Hoofdstuk 2: Praktische opampschakelingen 1

1: Inleiding

Opamps worden zeer vaak toegepast in diverse elektronische schakelingen. De toepassingsmogelijkheden van opamps worden enkel beperkt door de fantasie van de ontwerper.

Zo kunnen opamps bijvoorbeeld als versterker geschakeld worden (zowel voor AC-signalen als voor DC-signalen). Doch ze kunnen even goed als filter, comparator, generator (opwekken van sinussen, blokgolven, driehoeken of andere golfvormen), convertor (van stroom naar spanning en omgekeerd), elektronische opteller, elektronische aftrekker, elektronische vermenigvuldiger of deler, integrator of differentiator, regelaar (P, I en D-regeling) ... gebruikt worden.

Opamps kunnen aangewend worden om 'ideale' diodes te simuleren, doch ze kunnen ook gebruikt worden om spoelen, condensatoren, negatieve weerstanden ... te simuleren. Er zijn dan ook volledige boeken geschreven over opamps en hun toepassingen.

Ondanks de vele toepassingen, is het echter vrij eenvoudig een opampschakeling te ontwerpen en te begrijpen. Het is niet nodig over een massa voorkennis te beschikken. In werkelijkheid steunen alle opamp schakelingen op een beperkt aantal steeds terugkerende basiseigenschappen. In Hoofdstuk 1 hebben we ze al allemaal gezien.

In dit hoofdstuk en in het volgende hoofdstuk bestuderen we enkele belangrijke opampschakelingen in hun eenvoudigste vorm. Voor diverse uitbreidingen en combinaties van toepassingen verwijzen we naar de elektronica cursussen in het derde en vier jaar.

2: De opamp als comparator

Een comparatorschakeling wordt weergegeven in Figuur 2.1. Het ingangssignaal u_i wordt vergeleken met een referentiespanning u_{ref} (van bijvoorbeeld 5 V). De opamp heeft bijvoorbeeld een <u>open loop versterking</u> $A = u_O/u_{id}$ van 200000 (in plaats van de theoretische oneindig). In een eerste benadering verwaarlozen we de offsetspanning U_{OS} (we stellen $U_{OS} = 0$).

We komen dan ook gemakkelijk tot het besluit dat:

Als u_i gelijk is aan + 5,0001 V of hoger, dan is u_{id} minstens 0,0001 V positief. Theoretisch is u_O dan minstens 20 V positief. In de realiteit kan u_O echter nooit hoger zijn dan V^+ . In Figuur 2.1 is V^+ = 10 V wat betekent dat u_O in al die gevallen gelijk zal zijn aan 10 V (in realiteit zal zelfs die 10 V niet gehaald worden, u_O zal beperkt zijn tot bijvoorbeeld 9,7 V).

Als u_i gelijk is aan + 4,9999 V of lager, dan is u_{id} minstens 0,0001 V negatief. Theoretisch is u_O dan minstens 20 V negatief. In de realiteit kan u_O echter nooit lager zijn dan V⁻. In Figuur 2.1 is V⁻ = 0 V wat betekent dat u_O in al die gevallen gelijk zal zijn aan 0 V (in realiteit zal zelfs die 0 V niet gehaald worden, u_O zal beperkt zijn tot bijvoorbeeld + 0,3 V). Merk op dat bij een V⁻ = -10 V de uitgangsspanning u_O bijvoorbeeld een waarde van -9,7 V zal aannemen.

Figuur 2.1: De comparator

We kunnen dus besluiten dat:

- wanneer u_i groter is dan u_{ref}, dan wordt u₀ maximaal positief
- wanneer u_i kleiner is dan u_{ref}, dan wordt u_O maximaal negatief

De schakeling vergelijkt dus u_i met u_{ref} (to compare \rightarrow comparator) en maakt u_O ofwel hoog ofwel laag.

2.1: Opmerkingen en vragen

Indien we rekening houden met <u>de input offsetspanning</u> U_{OS} , dan moeten we in de besluiten van hierboven steeds u_{ref} vervangen door $u_{ref} + U_{OS}$. Verklaar dit! Zelfs bij de goedkoopste opamp is U_{OS} slechts enkele mV (positief of negatief). Dit betekent dat het effect van U_{OS} <u>meestal te verwaarlozen</u> is ($|U_{OS}| << u_{ref}$). Indien U_{OS} toch niet verwaarloosbaar zou zijn , dan kan U_{OS} via een <u>offset nul regeling</u> geminimaliseerd worden.

Indien we u_i aansluiten op de inverterende ingang en u_{ref} aansluiten op de niet-inverterende ingang, dan reageert de comparator net tegengesteld als de schakeling van Figuur 2.1. Ga dit zelf na.

In de schakeling van Figuur 2.1, zal de LED oplichten (of de last aangeschakeld worden) van zodra u_i hoger wordt dan $u_{ref} = +5$ V. Is u_i lager dan $u_{ref} = +5$ V, dan licht de LED niet op (en is de last afgeschakeld).

Wat is in Figuur 2.1 de functie van de transistor T? Waarom kan de opamp de belasting niet rechtstreeks aansturen?

Hoe kunt u de spanning u_{ref} afleiden uit V^+ ? Maak hierbij onderscheid tussen het geval waarbij V^+ gegarandeerd stabiel is en het geval waarbij V^+ enigszins kan variëren. Is het nuttig hier een zenerdiode te gebruiken? Hoe bekomt u een instelbare referentiespanning u_{ref} ?

In de schakeling van Figuur 2.1 zal u_{ref} alleen zeer klein (bijvoorbeeld 1 V) of zelfs nul genomen mogen worden wanneer de input common mode range (CMR, zie Paragraaf 3.1 in Hoofdstuk 1) van de opamp de voedingsspanning V omvat. Verklaar dit aan de hand van Figuur 1.3 (rechts). Een voorbeeld van een dergelijke opamp (die bovendien MOSFET-ingangen heeft) is de CA3140 van RCA. Zoek zelf de datasheets op van de CA3140 en verifieer dat de Common Mode Input Voltage Range 0,5 V onder V kan komen.

2.2: De comparator: toepassing 1

Het is mogelijk een comparator te gebruiken om te hoge of te lage temperaturen te detecteren. Het is eveneens mogelijk om via de comparator magnetische velden, lichtsterktes ... te detecteren.

Het werkingsprincipe is analoog aan de detectieschakelingen welke u reeds kent uit het eerste semester (zie Paragraaf 3, Paragraaf 4 en Paragraaf 5 uit Hoofdstuk 11). Deze schakeling maakt nu echter geen gebruik van een bipolaire transistor maar van een opamp-comparator (natuurlijk gecombineerd met een NTC, PTC, MDR, LDR, ...).

De transistorschakelingen van Paragraaf 3, Paragraaf 4 en Paragraaf 5 uit Hoofdstuk 11 hebben veelal het nadeel dat er een te ruime zone is waarin de aangestuurde LED of de aangestuurde zoemer half werkt. Er is met andere woorden geen abrupte overgang tussen een alarmsituatie en het ontbreken van die alarmsituatie. Verklaar dit. Bovendien is in de transistorschakelingen van Paragraaf 3, Paragraaf 4 en Paragraaf 5 uit Hoofdstuk 11 de schakeldrempel vaak temperatuursafhankelijk. De opampschakeling hoeft deze nadelen niet te hebben. Verklaar!

2.3: De comparator: toepassing 2

Beschouw een comparator met een LED-uitgang zoals weergegeven in Figuur 2.1. De LED aan de uitgang van deze comparator licht op u_0 hoog is. De spanning u_0 is hoog als $u_i > u_{ref}$. Hoe kunt u die schakeling aanpassen zodat de LED oplicht wanneer u_0 laag is?

Hoe kunt u de comparator aanpassen zodat u_0 hoog is wanneer $u_i < u_{ref}$?

Hoe kunt u een schakeling opbouwen die bestaat uit tien comparatoren met elk een LED-uitgang? Stel dat bij elke comparator de referentiespanning aangelegd wordt aan de niet-inverterende ingangsklem. Hoe bekomt u bij de eerste comparator een $u_{ref1} = U_{DC}/10$, bij de tweede comparator een $u_{ref2} = 2$ ($U_{DC}/10$), bij de derde comparator een $u_{ref3} = 3$ ($U_{DC}/10$), ..., bij de tiende comparator een $u_{ref10} = 10$ ($U_{DC}/10$) = U_{DC} . Teken een schakeling welke dit realiseert.

Aan de uitgang van elke comparator wordt een LED (in serie met een stroombegrenzende weerstand) geschakeld die oplicht indien de uitgang van de betreffende comparator laag is. Teken ook dit.

De inverterende ingangsklemmen van de opamps zijn allen met elkaar verbonden. Hier wordt het ingangssignaal u_i aangelegd. Indien nu $u_i < u_{refl}$, dan zijn bij alle comparator uitgangen hoog en brandt er geen enkele LED.

Wat gebeurt er indien $u_{ref1} < u_i < u_{ref2}$? Wat gebeurt er indien $u_{ref2} < u_i < u_{ref3}$? Wat gebeurt er indien $u_{ref3} < u_i < u_{ref4}$? Wat gebeurt er indien $u_{ref9} < u_i < u_{ref10}$? Wat gebeurt er indien u_{ref10} ?

Ziet u dat er bij de hierboven beschreven <u>bar graph indicator</u> steeds meer LED's oplichten naarmate u_i hoger wordt?

De hierboven beschreven schakeling kunt u zelf bouwen, doch dit eist wel veel componenten (om te beginnen al tien opamps). Daarom bestaan er IC's op de markt waar de meeste componenten van de hierboven beschreven bar graph indicator in geïntegreerd zijn. Een veel gebruikt IC is de LM3914.

Bestudeer de datasheets van de LM3914 welke opgenomen zijn in Bijlage 3. Heb hierbij vooral aandacht voor de schakeling op bladzijde 6.

Naast de LM3914, is ook de LM3915 op de markt verkrijgbaar. Dit IC is sterk analoog aan de LM3914. Doch de spanningsdeler (welke zorgt voor de nodige referentiespanningen) die bij de LM3914 uitgevoerd is met behulp van tien gelijke weerstanden van elk 1 k Ω , is bij de LM3915 opgebouwd uit allemaal verschillende (goed gekozen) weerstandswaarden.

We laten het over aan de geïnteresseerde student om de datasheets van de LM3915 zelf te zoeken op het internet. Wel wordt in Bijlage 4 een bar graph indicator weergegeven welke gebruik maakt van de LM3915. Ga zelf na dat $u_{ref2} = 1,41 \ u_{ref1}$, $u_{ref3} = 1,41 \ u_{ref2}$, $u_{ref4} = 1,41 \ u_{ref3}$, ... Anders gezegd er is steeds 3 dB verschil tussen twee opeenvolgende referentiespanningen.

Steunende op de LM3915 kan een logaritmische bar graph indicator gebouwd worden daar waar met behulp van de LM3914 een lineaire bar graph indicator gebouwd kan worden.

Naast de LM3914 en de LM3915, is ook de LM3916 op de markt verkrijgbaar. Deze LM3916 kan eveneens gebruikt worden om een bar graph indicator te bouwen. Deze bar graph indicator kan dienst doen als VU meter (volume unit meter).

We laten het over aan de geïnteresseerde student om de datasheets van de LM3916 zelf te zoeken op het internet. Wel wordt in Bijlage 4 een bar graph indicator weergegeven welke gebruik maakt van de LM3916.

Bereken de referentiespanning u_{ref7} bij de LM3916 (de referentiespanning bij de zevende comparator indien u van onderen begint te tellen). Dit spanningsniveau stemt overeen met 0 dB. Bereken het spanningsniveau u_{ref8} en verifieer dat dit overeenstemt met 1 dB. Bereken het spanningsniveau u_{ref9} en verifieer dat dit overeenstemt met 2 dB. Bereken het spanningsniveau u_{ref8} en verifieer dat dit overeenstemt met 3 dB.

Bereken het spanningsniveau u_{ref5} en verifieer dat dit overeenstemt met - 1 dB. Bereken het spanningsniveau u_{ref5} en verifieer dat dit overeenstemt met - 3 dB. Bereken het spanningsniveau u_{ref4} en verifieer dat dit overeenstemt met - 5 dB. Bereken het spanningsniveau u_{ref3} en verifieer dat dit overeenstemt met - 7 dB. Bereken het spanningsniveau u_{ref2} en verifieer dat dit overeenstemt met - 10 dB. Bereken het spanningsniveau u_{ref2} en verifieer dat dit overeenstemt met - 20 dB.

3: Opampschakelingen met een terugkoppeling

Bij de comparator welke we in Paragraaf 2 bestudeerd hebben, had <u>de uitgang</u> u_0 van de opamp in principe <u>geen enkele invloed op de ingangsspanningen</u> (de spanningen aan de inverterende en niet-inverterende ingangsklemmen). Men zegt dan ook dat de opamp <u>zonder terugkoppeling</u> (= <u>zonder feedback</u>) werkt. De opamp werkt met andere woorden in <u>open loop</u>.

In de schakelingen welke we nu zullen bestuderen, zal er <u>een weerstand</u> R_f (of een impedantie Z_f) <u>tussen de uitgang</u> (u_O) <u>en één ingang</u> geplaatst worden. Via deze R_f (of Z_f) beïnvloedt u_O dan natuurlijk de ingangsspanning op deze ingang. Men zegt dat de opamp nu <u>met terugkoppeling</u> (van de uitgang naar de ingang) werkt. Men zegt ook dat de opamp nu <u>met feedback</u> werkt, ze werkt met andere woorden in <u>closed loop</u>.

Indien de uitgang vooral de inverterende ingangsklem beïnvloedt (dus via een weerstand tussen de uitgang en die inverterende ingangsklem), dan spreekt men van een negatieve terugkoppeling of tegenkoppeling.

Indien de uitgang vooral de niet-inverterende ingangsklem beïnvloedt (dus via een weerstand tussen de uitgang en die niet-inverterende ingangsklem), dan spreekt men van een positieve terugkoppeling of meekoppeling.

3.1: Een negatieve terugkoppeling

Vooral tegengekoppelde schakelingen worden zeer vaak toegepast. Het is hier dus kenmerkend dat een weerstand R_f (of een condensator C_f of een spoel L_f) tussen de uitgang van de opamp en de inverterende ingangsklem geschakeld is.

De tegengekoppelde opampschakeling vertoont een uitermate interessante eigenschap:

Wanneer de uitgangsspanning van de opamp niet vastloopt tegen zijn voedingsspanning (V⁺ of V⁻), zal de opamp zijn uitgangsspanning u_O altijd en automatisch bijregelen totdat u_{id} gelijk wordt aan nul.

Dit kunnen we aantonen via een bewijs uit het ongerijmde.

We gaan er eerst van uit dat de opamp een $U_{OS} = 0$ heeft en dat $A = |u_O/u_{id}|$ nagenoeg oneindig is. De opamp gedraagt zich ideaal.

Indien de inverterende ingangsklem positief neigt te worden ten opzichte van de nietinverterende ingangsklem (neiging tot negatieve u_{id}), dan schuift $u_0 = A u_{id}$ naar een zeer sterke negatieve spanningswaarde. Via de terugkoppelweerstand R_f wordt op die manier de positieve neiging aan de inverterende ingangsklem afgebroken en volledig ongedaan gemaakt (tenzij u₀ daartoe niet negatief genoeg zou kunnen worden wegens het vastlopen tegen V⁻).

De inverterende klem kan dus niet noemenswaardig positief worden ten opzichte van de niet-inverterende klem, want dat zou onmiddellijk een sterk negatieve u_0 veroorzaken. Die sterk negatieve u_0 zou via R_f de initiële positieve neiging op de inverterende ingangsklem tegenwerken en wegnemen.

De inverterende ingangsklem kan echter evenmin noemenswaardig negatief worden ten opzichte van de niet-inverterende ingangsklem (tenzij u_0 daartoe niet positief genoeg zou kunnen worden wegens het vastlopen tegen V^+). Ga dit zelf na, de beredenering is heel sterk gelijklopend met de bovenstaande beredenering.

We kunnen dan ook <u>besluiten</u> dat de inverterende ingangsklem noch positief, noch negatief kan worden ten opzichte van de niet-inverterende ingangsklem. De invloed van u_0 op de inverterende ingangsklem zorgt hiervoor. Tenzij u_0 vastloopt tegen V^+ of V^- (opamp in verzadiging), kan de spanning u_{id} alleen maar ongeveer nul zijn.

Wat indien de opamp niet ideaal is (dus als U_{OS} niet nul is en A niet oneindig groot is)?

Indien A oneindig groot is, wordt $u_{id} = u_O/A$ inderdaad altijd nul (dus in de veronderstelling dat u_O niet vastloopt op V^+ of V^-). In de praktijk is A eindig, maar doorgaans toch erg groot. Zo is A bijvoorbeeld 10^5 en $u_O = 10$ V wat aanleiding geeft tot een $u_{id} = 0,0001$ V. Dit betekent dat we (zeker in een eerste benadering) u_{id} toch ongeveer <u>nul</u> kunnen stellen.

Indien de opamp een U_{OS} verschillend van nul heeft, dan streeft de tegengekoppelde opamp naar $u_{id} = U_{OS}$ in plaats van naar $u_{id} = 0$ (stel A oneindig groot). Zelfs goedkope opamps hebben zelden een U_{OS} van meer dan enkele mV. In een eerste benadering kan dan toch opnieuw gesteld worden dat u_{id} ongeveer \underline{nul} is.

Indien zowel rekening gehouden wordt met het eindig zijn van A en het niet nul zijn van U_{OS} , dan wordt $u_{id} \cong u_O/A + U_{OS}$. Ook deze uitdrukking is met een goede benadering gelijk aan nul.

3.2: Instabiliteit van opampschakelingen met tegenkoppeling

In schakelingen met tegenkoppeling wordt het uitgangssignaal u_0 via R_f (of Z_f) geheel of gedeeltelijk teruggekoppeld naar de inverterende ingangsklem. Hierdoor kan de schakeling <u>instabiel</u> worden en <u>oscilleren</u> (zie Paragraaf 4 in Hoofdstuk 7 in de cursus van het eerste semester).

De schakeling wordt instabiel als de opamp en R_f (of Z_f) samen een totale (rondgaande) fasedraaiing van 360° veroorzaken bij een totale (rondgaande) versterking van 1 of meer.

We veronderstellen echter dat de fasedraaiing van de toegepaste opamp (tussen u_i en u_0) hoogstens 90° zal afwijken van de normaal optredende 180°. De meeste opmaps voldoen automatisch (en bij alle frequenties) aan deze voorwaarde. Dit is ofwel het gevolg van hun inwendige bouw (<u>interne compensatie</u>) ofwel wordt het bekomen via <u>een externe compensatiecondensator</u>.

Deze externe compensatiecondensator heeft meestal een waarde tussen 10 pF en 1000 pF. De compensatiecondensator wordt aangebracht tussen twee speciaal voorziene compensatie-aansluitingen.

De LM741 is een intern gecompenseerde opamp. De compensatiecondensator $C_1 = 30$ pF kunt u in Bijlage 1 terugvinden in het interne schema van de LM741. De LM748 en de LM301 zijn opamps welke niet intern gecompenseerd zijn. Zoek de datasheets op en verifieer waar de externe compensatiecondensator aangebracht kan worden.

Aangezien de tegenkoppeling in onze schakelingen steeds zal bestaan uit een zuivere weerstand $R_{\rm f}$ (behalve bij de integrator) tussen de opamp-uitgang en diens inverterende ingangsklem, zijn een rondgaande fasedraaiing van 360° en alsook instabiliteiten en oscillaties uitgesloten.

Meer uitleg in verband met het compenseren van opamps en de stabiliteit van opampschakelingen vindt u onder meer in het boek 'Design with operational amplifiers and analog integrated circuits' van S. Franco.

3.3: Toepassingen

In de hier volgende paragrafen en in het volgende hoofdstuk worden een aantal belangrijke opampschakelingen bestudeerd welke een negatieve terugkoppeling bevatten. Bij al deze schakelingen is $u_{id} \cong 0$. Bovendien zijn de ingangstromen i^+ en i^- nagenoeg gelijk aan nul (zeker indien een opamp met FET-ingangen gebruikt wordt).

In het huidige hoofdstuk zullen we onder meer uitgebreid aandacht besteden aan

- de inverterende versterker
- de inverterende opteller.

In Hoofdstuk 3 zullen we onder meer uitgebreid aandacht besteden aan

- de niet-inverterende versterker

4: De inverterende versterker

Een inverterende versterker wordt weergegeven in Figuur 2.3. Een dergelijke opamp draagt de naam inverterende versterker omdat de uitgang u_O <u>in tegenfase</u> (tegengesteld) met de ingangsspanning u_i verloopt. De ingangsspanning kan zowel een DC-spanning als een AC-spanning zijn. Meer nog, u_i kan een willekeurige golfvorm zijn.

Voorlopig veronderstellen we dat de opamp ideaal is. Zo veronderstellen we onder meer dat A oneindig groot is en dat U_{OS} gelijk is aan nul.

De opamp in Figuur 2.3 wordt gevoed met een V^+ = 15 V en een V^- = - 15 V. Wanneer u_O tussen – 15 V en + 15 V gelegen is, dan is $u_{id} \cong 0$. Bovendien zijn de ingangsstromen i^+ en i^- ongeveer gelijk aan nul.

Figuur 2.3: De inverterende versterker

4.1: De spanningsversterking

Door het aanleggen van een ingangsspanning u_i (bijvoorbeeld een positieve u_i) ontstaat er een stroom $i_1 = u_i/R_1$ want $u_{R1} = u_i$ bij een $u_{id} \cong 0$.

Omdat $i^- = 0$, weten we dat $i_2 = i_1$ zodat $u_{Rf} = i_2$ $R_f = (R_f/R_1)$ u_i . Volgens de spanningswet van Kirchoff weten we dat $u_{id} + u_{Rf} + u_O = 0$ zodat

$$u_0 = -u_{Rf} = -(R_f/R_1) u_i$$

De spanningsverterking van de schakeling (de zogenaamde <u>closed loop gain</u> A_{CL}) is dus

$$A_{CL} = u_O/u_i = -(R_f/R_1).$$

Het minteken in de bovenstaande formule wijst er op dat u₀ en u_i in tegenfase zijn.

In plaats van twee weerstanden R_1 en R_f te nemen, kan men algemener twee impedanties Z_1 en Z_f nemen. Stel dat het ingangssignaal sinusvormig (met pulsatie ω) is zodat de complexe voorstelling gebruikt kan worden. In een dergelijk geval is

$$A_{CL}(j\omega) = u_O(j\omega)/u_i(j\omega) = -(Z_f(j\omega)/Z_1(j\omega)).$$

Bemerk dat de versterking A_{CL} niet bepaald wordt door de waarden van de weerstanden of impedanties zelf, maar door hun verhouding.

4.2: Opgave

Stel dat bij de inverterende versterker van Figuur 2.3 de weerstanden $R_1 = 10 \text{ k}\Omega$ en $R_f = 1 \text{ M}\Omega$. Bereken A_{CI} .

Stel dat u_i achtereenvolgens gelijk is aan + 20 mV (DC) en aan – 0,1 V (DC). Welke waarde heeft u_0 ?

Welke waarde heeft u_0 indien $u_i = 1 \text{ V (DC)}$.

Stel dat u_i een sinusvormige spanning is met een amplitude van 10 mV. Teken het verloop van $u_O(t)$.

4.3: Belangrijke opmerkingen

De niet-inverterende ingangsklem ligt aan massa en $u_{id} \cong 0$. Dit betekent dat ook de inverterende ingangsklem op massapotentiaal ligt. Het is <u>alsof</u> de inverterende ingangsklem met de massa doorverbonden zou zijn (wat in werkelijkheid natuurlijk niet het geval is). Men noemt de inverterende ingangsklem daarom <u>een virtueel</u> massapunt.

Het gevolg van dat virtueel massapunt is dat de ingangsweerstand van de inverterende versterker gelijk is aan R_1 . Dit betekent dus dat

$$Z_{IS} = R_1$$
.

Inderdaad, $Z_{I,S} = u_i/i_1 = u_{R1}/i_1 = R_1$. Dus ondanks het feit dat de opamp zelf erg hoogohmig is $(Z_{I,T}$ is bij een ideale opamp oneindig groot), is $Z_{I,S}$ slechts R_1 .

Uit het schema blijkt dat de uitgang van de opamp de stroom door R_1 en R_f volledig moet opnemen (sinken) of leveren (sourcen). Het is duidelijk dat deze stromen groter worden naarmate de weerstanden kleiner genomen worden. Eerder zagen we dat de uitgangsstromen van een reële opamp beperkt moeten blijven (mA-bereik). <u>De</u> weerstanden bij een opamp schakeling mogen dan ook niet te klein gekozen worden.

Bij reële opamps zijn i⁺ en i⁻ niet gelijk aan nul. Deze input bias currents (die weliswaar erg klein zijn bij een opamp met FET-ingangen) vloeien dan ook door R₁ en R_f. Hierdoor ontstaat er aan de uitgang een storende <u>foutspanning</u>. Het is duidelijk dat deze foutspanningen kleiner zijn bij kleine weerstanden. <u>Men mag de weerstanden dus evenmin te groot kiezen</u>.

Als compromis wordt aangeraden de weerstanden in opampschakelingen tussen bijvoorbeeld 5 k Ω en 5 M Ω te kiezen. Deze vuistregel geldt vrijwel algemeen voor alle opampschakelingen. Bij opamps met FET-ingangen kunnen soms grotere weerstanden gebruikt worden (bijvoorbeeld 10 M Ω en meer). Verklaar!

5: De inverterende versterker op basis van een niet-ideale opamp

Ideale opamps bestaan niet. Daardoor ontstaan er fouten of beperkingen in verband met A_{CL} en het frequentiebereik van reële schakelingen.

Moderne opamps met FET-ingangen hebben zeer kleine ingangsstromen. Bovendien hebben ze een lage uitgangsweerstand. De fouten en beperkingen ontstaan dan ook hoofdzakelijk ten gevolge van de <u>offsetspanning</u> U_{OS} en de <u>eindige versterkingsfactor</u> A (vooral bij toenemende frequenties).

5.1: De invloed van de input offset spanning

Stel dat A oneindig is maar dat U_{OS} niet gelijk is aan nul. Dan zorgt de teruggekoppelde opamp er voor dat $u_{id} = U_{OS}$ (in plaats van $u_{id} = 0$). Stel dat $u_i = 0$ (de ingang is aan de massa gelegd), dan zou de ideale schakeling met $U_{OS} = 0$ een $u_O = 0$ geven.

Doch wat is u_O indien U_{OS} verschillend is van nul? Welnu, U_{OS} staat over R₁ zodat

$$u_{R1} = u_{id} = U_{OS}$$
.

Er geldt dan ook dat $i_1 = i_2 = u_{R1}/R_1 = U_{OS}/R_1$. Dat betekent dat

$$u_{Rf} = i_2 R_f = (R_f/R_1) U_{OS}.$$

Volgens de spanningswet van Kirchoff, geldt dat $u_{id} + u_{Rf} + U_{O} = 0$ zodat de spanning $u_{O} = -(R_f/R_1) U_{OS} - U_{OS}$. Dus u_{O} is niet nul maar wel degelijk

$$u_0 = - (1 + R_f/R_1) U_{OS}$$
.

Op de uitgangsspanning zit een vaste fout gelijk aan - $(1 + R_f/R_1) U_{OS}$.

Wanneer er nu wel <u>een ingangsspanning</u> u_i aangelegd wordt aan de inverterende versterker, dan bekomt men steunende op het superpositieprincipe dat

$$u_O = -(R_f/R_1) u_i - (1 + R_f/R_1) U_{OS}$$
.

Zelfs bij goedkope opamps is U_{OS} klein (bijvoorbeeld 5 mV). Maar let goed op, de spanning U_{OS} verschijnt fors <u>versterkt</u> aan de uitgang (met een versterkingsfactor (1 + R_f/R_1)). Op de uitgangsspanning u_O kan dan ook een grote fout zitten.

Wanneer bijvoorbeeld $R_1 = 10 \text{ k}\Omega$ en $R_f = 1 \text{ M}\Omega$ dan geeft een $U_{OS} = 5 \text{ mV}$ aanleiding tot een constante fout van -0.505 V aan de uitgang.

Los de opgave van Paragraaf 4.2 opnieuw op, maar ga er dit keer niet van uit dat $U_{OS} = 0$. Reken een $U_{OS} = +5$ mV uitdrukkelijk mee.

Men kan U_{OS} minimaliseren met behulp van een <u>offset nul regeling</u>. Dit is echter reeds besproken in Paragraaf 3.7 van Hoofdstuk 1.

Als de schakeling uitsluitend AC-signalen moet versterken (geen DC-component), dan vervangt men R_1 door een serieschakeling van R_1 en een voldoende grote condensator C. Voor AC-signalen zal deze serieschakeling equivalent zijn met R_1 alleen. Verklaar! Voor DC-signalen (zoals ook U_{OS}) is de serieschakeling een open keten (oneindig grote weerstand). Nu bedraagt de fout op u_O ten gevolge van U_{OS} slechts $-U_{OS}$ in plaats van de $-(1+R_1/R_1)$ U_{OS} van daarnet. Dit betekent dat U_{OS} niet langer versterkt wordt. Verklaar dit!

5.2: De invloed van de open loop gain

Figuur 2.4: De inverterende versterker

Het <u>eindig</u> zijn van de versterkingsfactor A en het <u>eindig</u> zijn van de unity gain frequency f_T heeft ook zijn effect.

Beschouwen we Figuur 2.4 waar het eindig zijn van A expliciet in rekening gebracht is. Het is duidelijk dat

$$i_1 = (u_i + u_O/A)/R_1$$

en dat

$$u_0 + R_f i_2 + u_0 / A = (1 + 1/A) u_0 + R_f i_1 = 0.$$

Het is mogelijk de stroom i₁ uit de twee bovenstaande vergelijkingen te elimineren zodat we bekomen dat

$$u_0/u_1 = -(R_f/R_1)(1/(1+(1/A)(1+R_f/R_1))).$$

De closed loop gain

$$A_{CL} = -(R_f/R_1)(1/(1+(1/A)(1+R_f/R_1)))$$

heeft slechts de waarde $A_{CL} = -R_f/R_1$ indien R_f/R_1 voldoende klein is ten opzichte van de open loop gain A.

In de praktijk zullen we R_f/R_1 (en dus de versterkingsfactor) soms veel kleiner (bijvoorbeeld 10 of 100 keer kleiner) moeten kiezen dan A. Zoniet, zal er een afwijking optreden van de werkelijke A_{CL} ten opzichte van $-R_f/R_1$.

Dit alles is misschien best te illustreren met behulp van <u>een voorbeeld</u>. Stel een opamp heeft een A = 1000 (de waarde van A zelf is van ondergeschikt belang, vooral de verhouding van R_f/R_1 ten opzichte van A zal doorslaggevend zijn). Verder is $R_1 = 10$ $k\Omega$ en is $R_f = 1$ $M\Omega$.

Bij een $u_O = 10 \text{ V}$, is $u_{id} = u_O/A = 0.01 \text{ V}$. Stel U_{OS} gelijk aan nul zodat $u_{Rf} = -u_O - u_{id} = -10.01 \text{ V}$. Verder is $i_2 = u_{Rf}/R_f = i_1 = -10.01 \text{ }\mu\text{A}$. Verder is $u_{R1} = R_1 i_1 = -0.1001 \text{ V}$. Steunende op de spanningswet van Kirchoff, geldt dat $u_i - u_{R1} + u_{id} = 0$ zodat $u_i = -0.1101 \text{ V}$. Dus het aanleggen van een $u_i = -0.1101 \text{ V}$ zal u_O gelijk maken aan +10 V.

Dit betekent dat de werkelijke $A_{CL} = u_O/u_i = -90,826$ in plaats van de theoretische – $R_f/R_1 = -100$. De fout is bijgevolg 10,1%. De waarde van R_f/R_1 ligt 10,1% hoger dan de werkelijke $|A_{CL}| = |u_O/u_i|$.

In ons voorbeeld is $(1 + R_f/R_1) = 101$ juist 10,1% van A = 1000. In dat geval blijkt dus een versterkingsfout op te treden van 10,1%.

In de onderstaande tabel is in de middelste kolom weergegeven welk percentage R_f/R_1 boven de echte $|A_{CL}|$ ligt. Dus $((R_f/R_1) - |A_{CL}|)/|A_{CL}|$ is er uitgezet. Reken zelf na dat $((R_f/R_1) - |A_{CL}|)/|A_{CL}|$ steeds gelijk is aan $(1 + R_f/R_1)/A$.

In de rechterkolom van de onderstaande tabel is $((R_f/R_1) - |A_{CL}|)/(R_f/R_1)$ uitgezet.

$(1 + R_f/R_1)$, uitgedrukt in %	Percentage dat R _f /R ₁ boven	Percentage dat de echte
van A	de echte versterking $ A_{CL} $	versterking A _{CL} onder
	$ligt (A_{CL} = u_O/u_i)$	R_f/R_1 ligt
0,1%	0,1%	0,099%
1%	1%	0,99%
10%	10%	9,09%
20%	20%	16,66%
50%	50%	33,33%
70%	70%	41,18%
100%	100%	50%
meer dan 100%	Meer dan 100%	meer dan 50%

Bemerk dat de onderste rij van de tabel onrealistisch is, want de versterking A_{CL} kan natuurlijk nooit hoger zijn dan A. Het heeft dan ook geen zin om $(1 + R_f/R_1)$ groter dan A te nemen.

We kunnen dus besluiten de foutpercentages kleiner worden naarmate men $(1 + R_f/R_1)$ kleiner neemt ten opzichte van A. Neemt men $(1 + R_f/R_1) = A$, dan zal de werkelijke closed loop versterking $|A_{CL}|$ slechts de helft (50%) bedragen van R_f/R_1 . Controleer dit in de tabel.

5.3: De invloed van de open loop gain bij AC-signalen

In voorgaande Paragraaf 5.2 hielden we geen rekening met een eventuele faseverschuiving φ tussen u_0 en u_{id} (we namen als het ware $\varphi = 0$). Daarom zijn <u>de resultaten in Paragraaf 5.2 alleen correct bij de versterking van DC-signalen</u> (waar φ inderdaad nul is) of zeer laagfrequente AC-signalen (als $f << f_1$, is φ zeer klein).

Gebruikt men de opamp echter bij 'normale' AC-frequenties (dus $f > f_1$), dan is er natuurlijk wel een serieuze faseverschuiving φ tussen u_0 en u_{id} .

Dit heeft tot gevolg dat ook bij een AC-verterking de foutpercentages stijgen naarmate R_f/R_1 dichter bij A gekozen wordt, doch deze foutpercentages zullen afwijken van deze uit onze tabel in Paragraaf 5.2. Gelukkig liggen de foutpercentages lager bij AC-versterking dan bij DC-versterking (bij gelijke verhoudingen van $(1 + R_f/R_1)$ ten opzichte van A).

Inderdaad, bij DC ($\phi = 0$ zodat u_O en u_{id} in fase zijn) waren u_{R1} en $-u_{id}$ in fase zodat daar

$$|u_i| = |u_{R1}| + |u_{id}|.$$

Bij AC (dus $\varphi \neq 0$) zal er echter ook een faseverschuiving zijn tussen u_{R1} en $-u_{id}$ zodat deze laatste twee spanningen (nu vectorieel op te tellen) elkaar niet meer maximaal zullen versterken. Bij AC-versterkingen ($\varphi \neq 0$) geldt dus dat

$$|u_i| < |u_{R1}| + |u_{id}|$$
.

Dus voor een zelfde $|u_O|$ is $|u_i|$ kleiner bij AC dan bij DC. Bijgevolg is $|A_{CL}|$ groter bij AC dan bij DC zodat de $|A_{CL}|$ -daling ten opzichte van R_f/R_1 kleiner is bij AC.

Vandaar de regel die men aantreft in diverse handboeken:

Neemt men R_f/R_1 gelijk aan A, dan zal de werkelijke AC-versterking $|A_{CL}|$ ongeveer 30% lager liggen (in plaats van de 50% uit de tabel) dan R_f/R_1 . Met andere woorden, met $R_f/R_1 = A$, ligt de werkelijke $|A_{CL}|$ op ongeveer 70% van $R_f/R_1 = A$. Nog anders gezegd, $|A_{CL}|$ ligt 3 dB onder $R_f/R_1 = A$.

Een 3 dB afwijking wordt vaak beschouwd als de hoogst aanvaardbare afwijking. Dit betekent dat men in de praktijk R_f/R_1 dus hoogstens gelijk zal nemen aan A.

Bij het besluit dat men R_f/R_1 hoogstens gelijk zal nemen aan A, moet wel degelijk de correcte A in rekening gebracht worden. De versterking A is namelijk afhankelijk van de frequentie. Indien de versterker frequenties $f \le f_{max}$ moet versterken, moet als A de open loop gain van de opamp bij de frequentie f_{max} in rekening gebracht worden.

5.4: Opgave 1

Een opamp met FET-ingangen heeft een $A_{DC} = 10^5$, een $f_T = 3$ MHz en een volgens de datasheets is $|U_{OS}| \le 5$ mV.

Met behulp van de hierboven beschreven opamp wordt een inverterende versterker gebouwd die <u>DC-signalen</u> moet verwerken. De ingangsweerstand van de schakeling $Z_{I,S}$ moet minstens 5 k Ω bedragen. De versterking $|A_{CL}| = |u_O/u_i|$ moet 1000 bedragen. De uitgangsspanning u_O moet tussen -10 V en +10 V kunnen variëren.

Teken de schakeling. Ga eerst uit van een ideale opamp. Welke A_{CL} zult u bekomen met de reële opamp(dus nog steeds voor een DC-signaal). Welk besluit trekt u hieruit? De reële opamp heeft bovendien een $|U_{OS}| \le 5$ mV. Bepaal de mogelijke u_O -waarden bij $u_i = -3$ mV (DC). Welke remedie stelt u voor?

Met behulp van dezelfde opamp wordt nu een <u>AC-verterker</u> voor audiosignalen gebouwd. De ingangsimpedantie $Z_{I,S}$ moet minstens 20 k Ω zijn. Aan de uitgang moet een amplitude van 5 V mogelijk zijn.

Teken het schema voor een gewenste versterking $A_{CL} = -10$ (ga altijd eerst uit van een ideale opamp). Welke A_{CL} zal de reële opamp opleveren bij f = 1 kHz? En bij 3 kHz?

Bepaal de -3 dB bandbreedte (met andere woorden de frequentie waarbij $|A_{CL}|$ ongeveer 30% gedaald is of met andere woorden ongeveer 7 geworden is) van de reële schakeling.

Los de bovenstaande vragen opnieuw op indien voor AC-signalen een $A_{CL} = -50$ gewenst is. Wat kunt u besluiten betreffende de relatie tussen de haalbare bandbreedte en de gewenste versterking $|A_{CL}|$?

Bij een hi-fi-versterker moet de -3 dB bandbreedte minstens 20 kHz bedragen (met andere woorden bij 20 kHz mag de versterking $|A_{CL}|$ hoogstens 30% minder zijn dan bij alle lagere frequenties). Teken de schakeling met <u>de grootst mogelijke versterking</u>, die aan deze bovenstaande eis voldoet. Welke A_{CL} heeft deze schakeling bij 100 Hz. Welke A_{CL} heeft deze schakeling bij 20 kHz. Schets $|u_0|$ in functie van de frequentie wanneer u_i een amplitude van 1 mV heeft.

Men eist een versterking van 200 bij een – 3 dB bandbreedte van 30 kHz. Is dat mogelijk met één enkele opamp van het gegeven type? Toon aan! Welke opamps zouden wel voldoen?

Hoe kunt u de offset op u_O gemakkelijkst tot maximum 5 mV reduceren in al uw AC-verterkerschakelingen.

5.5: Opgave 2

Beschouw een inverterende versterker opgebouwd met behulp van een opamp. Stel dat het te versterken signaal een frequentie $f = 100 f_1$ heeft (f_1 is de kantelfrequentie van Figuur 1.4). Bij die $f = 100 f_1$ is de open loop versterking van de opamp A = 50.

Wat is A_{DC} van de gebruikte opamp? Wat is bij $f = 100 f_1$ het faseverschil tussen u_{id} en u_O ? Wat is dan voor de beschouwde $\omega = 2\pi f$ de waarde van $u_O(j\omega)/u_{id}(j\omega) = A(j\omega)$.

Reken zelf na dat algemeen geldt dat

$$u_{O}(j\omega)/u_{i}(j\omega) = -(R_{f}/R_{1})(1/(1+(1/A(j\omega))(1+R_{f}/R_{1}))).$$

Bereken aan de hand van deze formule wat hier de waarde is van $u_O(j\omega)/u_i(j\omega)$ en interpreteer dit resultaat.

6: De inverterende optelschakeling

We gaan er van uit dat de opamp ideaal is. De schakeling bevat duidelijk een tegenkoppeling. Wanneer de opamp niet overstuurd wordt (dus u_0 loopt niet vast op V^+ of V^-), dan regelt de uitgang van de opamp $u_{id} = 0$.

Aangezien $u_{id} = 0$ terwijl de niet-inverterende ingangsklem aan de massa ligt, is de inverterende ingangsklem opnieuw een virtueel massapunt. Hierdoor zijn de stromen i_1 , i_2 , i_3 en i_4 (die vloeien ten gevolge van de ingangsspanningen u_1 , u_2 , u_3 en u_4) respectievelijk gelijk aan u_1/R_1 , u_2/R_2 , u_3/R_3 en u_4/R_4 .

Volgens de spanningswet van Kirchoff is $u_O + u_{Rf} + u_{id} = u_O + u_{Rf} = 0$ zodat $u_O = -u_{Rf} = -R_f i_f$. Aangezien $i_f = i_T = i_1 + i_2 + i_3 + i_4$ bekomen we dat

$$u_0 = -R_f(i_1 + i_2 + i_3 + i_4) = -(u_1(R_f/R_1) + u_2(R_f/R_2) + u_3(R_f/R_3) + u_4(R_f/R_4)).$$

Aan de uitgang van de opamp vinden we de som van de versterkte ingangssignalen u_1 , u_2 , u_3 en u_4 . Merk wel op dat al deze signalen geïnverteerd aan de uitgang verschijnen. Wanneer $R_1 = R_2 = R_3 = R_4$, dan zijn alle signalen even veel versterkt. Als deze weerstanden R_1 , R_2 , R_3 en R_4 een verschillende waarde hebben, dan stemt met elk ingangssignaal een verschillende versterking overeen.

Vanzelfsprekend mogen de ingangssignalen zowel DC-signalen als AC-signalen zijn.

Aangezien de inverterende ingangsklem van de opamp een virtueel massapunt is, geldt opnieuw dat $Z_{I,S1} = R_1$ (de ingangsweerstand voor u_1), $Z_{I,S2} = R_2$, $Z_{I,S3} = R_3$ en dat $Z_{I,S4} = R_4$.

6.1: Opgave

Beschouw de inverterende optelschakeling van Figuur 2.5 waarbij $R_1 = 10 \text{ k}\Omega$, $R_2 = 20 \text{ k}\Omega$, $R_3 = 100 \text{ k}\Omega$, $R_4 = 1 \text{ M}\Omega$ en $R_f = 100 \text{ k}\Omega$. Bepaal de uitgangsspanning u_0 indien $u_1 = -0.5 \text{ V}$, $u_2 = 2 \text{ V}$, $u_3 = -5 \text{ V}$ en $u_4 = 5 \text{ V}$ (allemaal DC). Bepaal verder van elke ingang de ingangsweerstand.

6.2: De inverterende optelschakeling op basis van een niet-ideale opamp

De fouten en beperkingen waarmee rekening gehouden moet worden is heel sterk analoog met wat besproken geweest is in verband met de inverterende versterker.

Bij u_O moet opnieuw de invloed van U_{OS} in rekening gebracht worden. Verifieer zelf dat de uitgangsfout ten gevolge van U_{OS} gelijk is aan

$$-U_{OS}(1 + R_f/R_V)$$
 waarbij $R_V = R_1 // R_2 // R_3 // R_4$.

De fout op u_O kan geminimaliseerd worden door een offset nul regeling. Indien uitsluitend AC-signalen verwerkt moeten worden, kan en voldoende grote condensator tussen de punten A en B in Figuur 2.5 geplaatst worden. De condensator moet zo gekozen worden dat zijn impedantie flink kleiner is dan R_V , ook bij de laagste werkfrequentie.

Vervolledig de schakeling van Figuur 2.5 zodat ze kan toegepast worden als een mengpaneel. Hierbij moet het mogelijk zijn om alle audiofrequenties tussen 16 Hz en 20 kHz te mengen.

Er is niet enkel de invloed van U_{OS} . Een reële opamp heeft een eindige versterking. De uitdrukking $u_O = -(u_1(R_f/R_1) + u_2(R_f/R_2) + u_3(R_f/R_3) + u_4(R_f/R_4))$ is dan ook enkel geldig indien R_f/R_V flink kleiner is dan A. Opnieuw kan gesteld worden dat R_f/R_V hoogstens gelijk aan A genomen kan worden.

Net zoals bij een gewone inverterende verterker, zorgt men er best voor dat R_V -waarden en R_f -waarden tussen 5 k Ω en 5 M Ω genomen worden.

6.3: Toepassingsvoorbeeld: thermometer interface

Het is mogelijk een diode als temperatuurssensor te gebruiken omdat de voorwaartse diodespanning U_F een temperatuurscoëfficiënt α heeft. We sturen een constante stroom I_F van bijvoorbeeld 1 mA door een diode. Bij een temperatuur van 0 °C is U_F gelijk aan U_{F0} die bijvoorbeeld een waarde heeft van 0,7 V.

Indien de temperatuur van de diode varieert, varieert ook U_F. Meer specifiek geldt dat

$$U_F(t \, {}^{\circ}C) = U_{F0} + \alpha t$$

waarbij α bijvoorbeeld gelijk is aan $-2 \text{ mV/}^{\circ}\text{C}$.

Als we temperaturen willen meten tussen -30 °C en +100 °C, dan varieert de voorwaartse diodespanning tussen 760 mV (bij -30 °C) en 500 mV (bij 100 °C).

Figuur 2.6: Temperatuursmeting

We hebben een elektronische schakeling nodig die de U_F -waarden omzet naar een uitgangsspanning u_O van -3 V tot + 10 V (bij respectievelijk een temperatuur van - 30 °C en + 100 °C). Deze uitgangsspanning u_O wordt gemeten met behulp van een voltmeter die op die manier een gevoeligheid heeft van 100 mV/°C.

Dit alles betekent dat 0 V op de voltmeter overeen moet komen met 0 °C, 1 V moet overeen komen met 10 °C, ..., 10 V met 100 °C. Verder moet -1 V overeen komen met -10 °C, ..., -3 V met -30 °C. Dit is het geval indien

$$u_0 = (100/\alpha) (U_F - U_{F0}).$$

Aangezien in ons voorbeeld $\alpha = -2 \text{ mV/}^{\circ}\text{C}$ en $U_{F0} = 0.7 \text{ V}$, moet gelden dat

$$u_0 = -50 U_F + 35 V$$
.

De sommatorschakeling van Figuur 2.6 realiseert dit dan ook.

De opamps is bijvoorbeeld een CA3140 die gevoed wordt met een $V^+ = + 12 \text{ V}$ en een $V^- = -5 \text{ V}$. Mede dank zij de ontkoppelcondensatoren C_{OK} zijn zowel V^+ als V^- mooi constant.

Aan de uitgang van de opamp wordt een voltmeter geplaatst die op de reeds eerder aangeduide manier de te meten temperatuur zal weergeven.

De potentiometer P_2 moet zo afgeregeld worden dat bij 0 °C de uitgangsspanning u_0 gelijk is aan 0 V. Die 0 °C wordt bekomen door de diode (elektrisch geïsoleerd) onder te dompelen in ijswater.

Natuurlijk moet er ook rekening gehouden worden met de toleranties op de weerstanden. Daarom wordt de diode ondergedompeld in kokend water (100 °C) en wordt potentiometer P_1 (dus R_f) bijgeregeld zodat u_0 exact gelijk is aan + 10,0 V.

Reken zelf na dat met de hierboven gebruikte weerstandswaarden de gewenste

$$u_0 = -50 U_F + 35 V$$

bekomen wordt indien (nominaal toch) $u_2 = -3.5 \text{ V}.$

Bepaal zelf u_1 , u_2 , u_0 , i_{R1} en i_{R2} bij een ingangstemperatuur van – 30 °C, 0 °C, 25 °C en 100 °C.

Wat doet u als de voedingsspanningen te veel variëren?

6.4: Toepassingsvoorbeeld: mengpaneel

Het mengpaneel van Figuur 2.7 heeft twee ingangen u_1 en u_2 . Aan elke ingang bevindt zich een potentiometer van 47 k Ω die zorgt voor de voorinstelling. Daarna komt er telkens een mengpotentiometer van eveneens 47 k Ω . Deze mengpotentiometer is logaritmisch uitgevoerd omdat ons gehoor een logaritmische (exponentiële) gevoeligheid heeft.

Na de verzwakking via die (al dan niet logaritmische) 47 k Ω potentiometers volgt de sommator zelf. Nu telt de sommator twee signalen op. Breidt zelf de schakeling uit zodat ze bijvoorbeeld vier signalen kan optellen.

Indien de 470 k Ω feedback weerstand als een potentiometer uitgevoerd is, kan ook de versterking van de sommator geregeld worden. De schakeling is hier zo uitgevoerd dat er twee uitgangen u_{O1} en u_{O2} beschikbaar zijn. Beide uitgangen hebben hetzelfde tijdsverloop, enkel kan via de potentiometer van 10 k Ω aan de uitgang de amplitude van de u_{O2} uitgang extra bijgeregeld worden.

Wat is het nut van de 680 nF condensatoren?

De opamp moet uiteraard nog gevoed worden met een V^{+} en een V^{-} , maar dit is niet expliciet aangeduid op Figuur 2.7.