Describing Categorical Variables

Stat 120

April 02 2023

Descriptive Statistics

- In order to make sense of data, we need ways to summarize and visualize it
- Summarizing and visualizing variables and relationships between two variables is often known as descriptive statistics, also known as exploratory data analysis (EDA)
- The type of summary statistics and visualization methods depend on the type of variable(s) being analyzed (categorical or quantitative)

One Categorical Variable

A random sample of US adults in 2012 were surveyed regarding the type of cell phone owned

Android? iPhone? Blackberry? Non-smartphone? No cell phone?

Frequency Table

Subset of Daw Data

A frequency table shows the number of cases or counts that fall in each category:

Subset of Raw Data			
Case 1	Android		
Case 2	none		
Case 3	none		
Case 4	iPhone		
Case 5	Non Smartphone		
Case 6	iPhone		
Case 7	Blackberry		
Case 8	Non Smartphone		
Case 9	Android		
Case 10	Android		
	(for 2253 cases)		

Cell Phone Type	Frequency	
Android	458	
iPhone	437	
Blackberry	141	
Non Smartphone	924	
No Cell Phone	293	
Total	2253	

Proportion

The proportion in a category is found by

$$proportion = \frac{number in category}{total sample size}$$

```
Percentages/proportions (relative frequencies)
```

- p = proportion for a population (parameter)
- \hat{p} = proportion for a sample (statistic) ("p-hat")

What proportion of adults sampled do not own a cell phone?

Cell Phone Type	Frequency	Proportion	
Android	458	0.203	
iPhone	437	0.194	
Blackberry	[141]	0.063	
Non Smartphone	924	0.41	
No Cell Phone	293	0.13	
Total	2253	1.000	

Proportions and percentages can be used interchangeably

Distribution of a variable

The "distribution of variable Y"

 describes the count or percent of observations that fall into each category of "variable Y"

• E.g. In the 2020 election, 51.3% of voters voted for Biden, 46.8% for Trump and 1.8% for third-party candidates

Bar Chart/Plot/Graph

In a barplot, the height of the bar corresponds to the number of cases falling in each category

Pie Chart

In a pie chart, the relative area of each slice of the pie corresponds to the proportion in each category

Two Categorical Variables

Look at the relationship between two categorical variables

- Relationship status
- Gender

	Female	Male	Total
[In a Relationship]	32	10	42
[It's Complicated	12	7	[19]
Single	63	45	[108]
Total	[107]	62	[169]

We add a second dimension to a frequency table to account for the second categorical variable

Relationship status and Gender

Proportion of students that are in a relationship?

```
ans <- 42/169
round(ans,2)
[1] 0.25
```

Proportion of students in a relationship that are female?

```
ans <- 32/42 round(ans,2)
[1] 0.76
```

Proportion of students in a relationship that are male?

```
ans <- 10/42 round(ans,2)
[1] 0.24
```

Relationship status and Gender

Proportion of males that are in a relationship?

```
ans <- 10/62 round(ans,2)
[1] 0.16
```

Proportion of females that are in a relationship?

```
ans <- 32/107
round(ans,2)
[1] 0.3</pre>
```

Difference in proportions

A difference in proportions is a difference in proportions for one categorical variable calculated for different levels of the other categorical variable

ullet Example: $\operatorname{proportion}_{\operatorname{Females}}$ - $\operatorname{proportion}_{\operatorname{Males}}$

$$\hat{p}_F - \hat{p}_M = rac{32}{107} - rac{10}{62} = 0.14$$

```
# R-code
prop.female <- 32/107
prop.male <- 10/62
prop.diff <- prop.female - prop.male
round(prop.diff,2)
[1] 0.14</pre>
```

Side-by-Side bar Chart

The height of each bar is the number of the corresponding cell in the two-way table

Segmented Bar Chart

A segmented bar chart is like a side-by-side bar chart, but the bars are stacked instead of side-by-side

- Let's go over this article
- Download the Class Activity

 Rmd file for today and skim
 through the corresponding
 problems

Flowers v. Mississippi

2019 Supreme Court case:

• Has Mississippi prosecutor Doug Evans deliberately use "peremptory challenges" to strike black jurors from jury pools?

American Public Media journalist collected trial data from this district from 1992 to 2017 (Link)

The data set APM_DougEvansCases.csv contains data on 1517 jurors for cases which listed Doug Evans as the first prosecutor.

- Only looking at jurors with race listed as Black or White.
- These jurors are eligible for Evans to strike.

Source: Click here

Look at the data

```
jurors <- read.csv("https://raw.githubusercontent.com/deepbas/statdatasets/main/APM_DougEvansCases.csv")

dim(jurors) # dimension of dataset
[1] 1517 6</pre>
```

Look at the first three rows of the data set

Look at the data

```
jurors$struck_state[1:10] # first 10 entries in the `struck_state` variable
[1] "Not struck by State" "Struck by State" "Not struck by State" "Not st
```

Graphical summary: bar plot

Associations between two categorical variables

How does state struck status vary by juror race? (How are race and state strikes associated?)

Numerically:

- summarize counts in a contingency/two-way table
- conditional proportions: "The conditional distribution of Y given variable X" describes how Y is distributed within each category of X (group by X).

Graphically:

• stacked bar graph of conditional proportions

Two-way (contingency) table

First 10 entries of race and struck_state variable is

```
jurors[(1:10), (2:3)]
race struck_state

1 Black Not struck by State

2 Black Struck by State

3 White Not struck by State

4 White Not struck by State

5 Black Struck by State

6 White Not struck by State

7 Black Struck by State

8 White Not struck by State

9 White Not struck by State

10 White Not struck by State
```

table gives two-way tables when two variables are included.

```
mytable <- table(jurors$race, jurors$struck_state)
mytable

Not struck by State Struck by State
Black 225 310
White 859 123</pre>
```

20

Conditional proportions

prop.table gives conditional proportions grouped by the row variable when margin=1

```
      prop.table(mytable, margin = 1)

      Not struck by State Struck by State

      Black 0.4205607 0.5794393

      White 0.8747454 0.1252546
```

- Of all eligible black jurors, about 57.9% were struck by the state.
- What proportion of eligible white jurors were struck by the state?

Is there evidence of an association between juror race and state strikes?

Stacked bar graph (counts)

- Please go over the in-class activity
- Talk to your neighbor
- Let me know if you have any questions