Let EMPTY = {e: We = \$43 (notices of TMs which except \$).

is EMPTY recursive?

15 It re?

Claim! EMPTY is R.e. (just simulate on all inputs in dovetailing fashion).

(lains EMPTY is not re. (using fact that it's not recursive).

Reen K = { e: Me(e) } }.

Clerenz: $K \leq_m EMPTY$. given $e \in \omega$, construct a TM M that does the following on x: Simulate Me(e), if it accepts them reject x, else accept x (DOPSNT WOVK)

Similate $M_e^{\times}(e)$, is it accepts then accept x else reject x

Let f(e) be the index of M. and if $e \in K$ then $W f(e) = \emptyset$ so $f(e) \notin EMPIY$ 4 if $e \notin K$ then $f(e) \in EMPIX$.

efk $\Longrightarrow \exists x [M_e^x(e)] \Longrightarrow M$ accepts something $\Rightarrow f(t) \notin EMPTY$ $e4k \Longrightarrow \forall x [M_e^x(e)] \Longrightarrow M \text{ doesn + accept } \Longrightarrow f(e) \in EMPTY$ f is clearly +uring cop-like.

SO SINCE $K \leq m \in MPTY$, EMPTY is not recursive.

SO EMPTY is not rewreive & so since Empty is not r.e.

In fact, it's easier: Just use Mele) I instead of M'e (e) I.

to get same result in Claim 2.

15 L12 reursine?

Is Liz r.e.?

Lyn is re. (douctailing)

ls In r.e. ?

Claum: K=_T_12 = L212

Proof given e, construct a TM M that does (given in put x).

If $x \in \{1, 2, ..., 123\}$ accept x.

Use: if Me(e) then accept x.

let f (e) be in tex of M. eck \lefter f(e) \notine{L_n}

Claim 2: K Em La

Proof gram e, construct . TM M that does (given input x):

If $X \notin \{1, 2, ..., 12\}$ reject Xelse if $M_e(e) \downarrow$ accept Xelse reject X

Let f(e) be index of M. f is computable $e \in \mathbb{K} \implies M$ accepts $\{1,2,...,125\} \implies f(e) \in L_{12}$ $e \notin \mathbb{K} \implies M$ rejects all $\implies f(e) \notin L_{12}$

So Liz is not rewrowe.

K≤L12, K≤L12 So L12, L12 arenot v.e.

Using $A \leq_{n} B \iff \overline{A} \leq_{m} \overline{B}$