TUTORIAL-2

$$j=1, i=0+1$$
 $j=2, i=0+1+2$
 $j=3, i=0+1+2+3$
loop ends when $i>=n$
 $0+1+2+3+...+n>n$
 $\frac{K(K+1)}{2}>n$
 $K>n$
 $K>n$
 $K>n$

Ans-2) Recurrence Relation for Fibonacci Series
$$T(n) = T(n-1) + T(n-2)$$

$$T(0) = T(1) = 1$$

• if
$$T(n-1) \approx T(n-2)$$

(lower bound)

= $2(2T(n-4)) = 4T(n-4)$
= $4(2T(n-6)) = 8T(n-6)$
= $8(2T(n-8)) = 16T(n-8)$
 $T(n) = 2^k T(n-2k)$

$$n-2K = 0$$
 $n=2^{K}K$
 $T(n) = 2^{n/2} T(0) = 2^{n/2}$
 $T(n) = -2 (2^{n/2})$

$$T(n) = 2T(n-1)$$

= $2[2T(n-2)] = 4T(n-2)$
= $4(2T(n-3)) = 8T(n-3)$
= $2^{k}T(n-k)$

$$T(n) = 2^{K} \times T(0) = 2^{n}$$

$$T(n) = O(2^{n}) \quad (upper bound)$$

$$\frac{Ans \rightarrow 3)}{Some o(1)} \cdot O(nlogn) \Rightarrow for (int i=0; i < n; i+1)$$

$$for (int j=1; j < n; j=j*2)$$

$$// Some o(1)$$

$$\frac{3}{1}$$

•
$$O(n^3) \Rightarrow for (int i=0; i < n; i+t)$$

$$for (int j=0; j < n; j+t)$$

Ans-4)
$$T(n) = T(n/4) + T(n/2) + cn^{2}$$
lets awwe
$$T(n/2) > = T(n/4)$$
So
$$T(n) = 2T(n/2) + cn^{2}$$
applying Marter's theorem
$$a = 2, b = 2, f(n) = n^{2}$$

$$c = log_{b}a = 1$$

$$n^{c} = n$$
Compare $n^{c} \ell$ $f(n)$

$$T(n) = O(n^2)$$
 Az

Ans-5) int fun (int n)
$$\hat{s}$$

for (int i=1; i <= n; i++) \hat{s}

for (int j=1; j < n; j += \hat{s})

 \hat{s}
 \hat{s}

% total Complexity =
$$O(n^2) + O(n^2) + \dots = O(n^2)$$

$$T(() = O(\log(\log n))$$

- $\frac{Ans-8}{}$ a) $100 < log n < \sqrt{n} < n < log (log n) < n log n < log (log n) < n log n < log n < 2ⁿ < 2ⁿ < 2ⁿ < 4ⁿ$
- b) $1 < \sqrt{\log n} < \log n < 2\log n < \log 2N < N < 2N < 4N < \log (\log N) < N\log N < \log N! < N! < N^2 < 2×2^N$
- c) $96 < \log_8 N < \log_2 N < n\log_6 N < n\log_2 N < \log_2 N < \log_$