Constraint-based Modeling of Cellular Networks

Exercise 4 – Metabolic models

10. 11. 2022

Let us buid the stoichiometric matrix ...

Q1: What is in the rows? What is in the columns?

Q2: What is the dimension of the stoichiometric matrix?

Let us buid the stoichiometric matrix ...

Q1: What is in the rows? What is in the columns?

Q2: What is the dimension of the stoichiometric matrix?

Number of rows = number of metabolites

Number of columns = number of reactions

-> 11 x 13 matrix

Number of rows = number of metabolites, Number of columns = number of reactions, 11 x 13 matrix

producing rxns - consuming rxns

$$\frac{dRuBP}{dt} = R12 - R1 - R2$$

Q: What are the coefficients we have to put in S?

producing rxns - consuming rxns
$$\frac{dRuBP}{dt} = R12 - R1 - R2$$

Number of rows = number of metabolites, Number of columns = number of reactions, 11 x 13 matrix

$$S = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 3PGA \\ 2PG \\ 73P \\ FBP \\ F6P \\ E4P \\ SBP \\ S7P \\ R5P \\ PP \end{bmatrix}$$

producing rxns - consuming rxns

$$\frac{dRuBP}{dt} = R12 - R1 - R2$$

$$\frac{d3PGA}{dt} = 2*R1+R2-R4$$

Q: What are the coefficients we have to put in S?

producing rxns - consuming rxns
$$\frac{dRuBP}{dt} = R12 - R1 - R2$$

$$\frac{d3PGA}{dt} = 2*R1+R2-R4$$

	<i>R</i> 1	R2	R_{i}^{2}	R^{4}	4 <i>R</i> 5	<i>R</i> 6	<i>R</i> 7	R8	<i>R</i> 9	<i>R</i> 10	<i>R</i> 11	<i>R</i> 12	R13	
	_Γ –1	-1	0	0	0	0	0	0	0	0	0	1	0 7	RuBP
S =	2	1	0	-1	0	0	0	0	0	0	0	0	0	3PGA
	0	1	-1	0	0	0	0	0	0	0	0	0	0	2 <i>PG</i>
	0	0	0	1	-2	0	-1	-1	0	-1	0	0	0	<i>T</i> 3 <i>P</i>
	0	0	0	0	1	-1	0	0	0	0	0	0	0	FBP
	0	0	0	0	0	1	-1	0	0	0	0	0	-1	F6P
	0	0	0	0	0	0	1	-1	0	0	0	0	0	E4P
	0	0	0	0	0	0	0	1	-1	0	0	0	0	SBP
	0	0	0	0	0	0	0	0	1	-1	0	0	0	S7P
	0	0	0	0	0	0	0	0	0	1	-1	0	0	<i>R</i> 5 <i>P</i>
	L 0	0	0	0	0	0	1	0	0	1	1	-1	0 -	PP

Number of rows = number of metabolites, Number of columns = number of reactions, 11 x 13 matrix

	<i>R</i> 1	. R2	2 R	3 R	4 <i>R</i> 5	<i>R</i> 6	<i>R</i> 7	R8	<i>R</i> 9	R10	R11	R12	R13	
	Γ-1	-1	0	0	0	0	0	0	0	0	0	1	0 7	RuBP
<i>S</i> =	2	1	0	-1	0	0	0	0	0	0	0	0	0	3 <i>PGA</i>
	0	1	-1	0	0	0	0	0	0	0	0	0	0	2 <i>PG</i>
	0	0	0	1	-2	0	-1	-1	0	-1	0	0	0	<i>T3P</i>
	0	0	0	0	1	-1	0	0	0	0	0	0	0	FBP
	0	0	0	0	0	1	-1	0	0	0	0	0	-1	F6P
	0	0	0	0	0	0	1	-1	0	0	0	0	0	E4P
	0	0	0	0	0	0	0	1	-1	0	0	0	0	SBP
	0	0	0	0	0	0	0	0	1	-1	0	0	0	S7P
	0	0	0	0	0	0	0	0	0	1	-1	0	0	<i>R</i> 5 <i>P</i>
	Γ0	0	0	0	0	0	1	0	0	1	1	-1	0 -	PP

Looking at a row we know the molarity with which a metabolite is produced (positive value) or consumed (negative value) by each reaction in the system

	<i>R</i> 1	<i>R</i> 2	R3	R4	<i>R</i> 5	R6	<i>R</i> 7	<i>R</i> 8	<i>R</i> 9	R10	R11	R12	R13	
	Γ –1	-1	0	0	0	0	0	0	0	0	0	1	0	RuBP
	2	1	0	-1	0	0	0	0	0	0	0	0	0	3 <i>PGA</i>
	0	1	-1	0	0	0	0	0	0	0	0	0	0	2 <i>PG</i>
	0	0	0	1	-2	0	-1	-1	0	-1	0	0	0	T3P
	0	0	0	0	1	-1	0	0	0	0	0	0	0	FBP
S =	0	0	0	0	0	1	-1	0	0	0	0	0	-1	F6P
	0	0	0	0	0	0	1	-1	0	0	0	0	0	E4P
	0	0	0	0	0	0	0	1	-1	0	0	0	0	SBP
	0	0	0	0	0	0	0	0	1	-1	0	0	0	S7P
	0	0	0	0	0	0	0	0	0	1	-1	0	0	<i>R</i> 5 <i>P</i>
	L 0	0	0	0	0	0	1	0	0	1	1	-1	0 -	PP

- Looking at a column we directly see the substrates (negative values) and products (positive values) of a reaction
- And molarity with which a metabolite enters the reaction

Number of rows = number of metabolites, Number of columns = number of reactions, 11 x 13 matrix

	<i>R</i> 1	<i>R</i> 2	<i>R</i> 3	<i>R</i> 4	<i>R</i> 5	<i>R</i> 6	<i>R</i> 7	<i>R</i> 8	<i>R</i> 9	<i>R</i> 10	<i>R</i> 11	R12	R13	
	$\begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$	-1 1 1	0 0 -1	$\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$	0 0 0	1 0 0	0 0 0	RuBP 3PGA 2PG						
	0	0	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	1	-2	0	-1	-1	0	-1	0	0	0	T3P
	0	0	0	0	1	-1	0	0	0	0	0	0	0	FBP
S =	0	0	0	0	0	1	-1	0	0	0	0	0	-1	F6P
	0	0	0	0	0	0	1	-1	0	0	0	0	0	E4P
	0	0	0	0	0	0	0	1	-1	0	0	0	0	SBP
	0	0	0	0	0	0	0	0	1	-1	0	0	0	S7P
	0	0	0	0	0	0	0	0	0	1	-1	0	0	<i>R</i> 5 <i>P</i>
	L 0	0	0	0	0	0	1	0	0	1	1	-1	0	l PP

Reactions that only consume or only produce metabolites are called **exchange reactions**

- Import reaction if it produces a metabolite
- Export reaction if it consumes a metabolite

Reaction reversibility

Irreversible

upper bound > 0 and lower bound = 0

lower bound < 0 and upper bound = 0

$$A \xrightarrow{r_1} E$$

Reversible

Reactions with upper bound > 0 and lower bound < 0

$$r_1$$
 A \longleftarrow B

Reaction reversibility

Irreversible

upper bound > 0 and lower bound = 0

lower bound < 0 and upper bound = 0

$$A \xrightarrow{r_1} B \qquad N = \begin{bmatrix} r_1 \\ -1 \\ 1 \end{bmatrix} A R$$

Reversible

Reactions with upper bound > 0 and lower bound < 0

$$A \leftarrow R \qquad N = \begin{bmatrix} r_1 \\ -1 \\ 1 \end{bmatrix} \begin{matrix} A \\ B \end{matrix}$$

No difference in stoichiometry!

Reversibility is defined over lower and upper bound values.

Q: Given a reversible reaction. How can we write it as two irreversible reactions?

Reaction reversibility

Irreversible

upper bound > 0 and lower bound = 0

lower bound < 0 and upper bound = 0

$$A \xrightarrow{r_1} B \qquad N = \begin{bmatrix} r_1 \\ -1 \\ 1 \end{bmatrix} A R$$

Reversible

Reactions with upper bound > 0 and lower bound < 0

$$A \leftarrow R \qquad N = \begin{bmatrix} r_1 \\ -1 \\ 1 \end{bmatrix} \begin{matrix} A \\ B \end{matrix}$$

No difference in stoichiometry!

Reversibility is defined over lower and upper bound values.

Q: Given a reversible reaction. How can we write it as two irreversible reactions?

$$r_1 = r_{1f} - r_{1b}$$

→ Add a new reaction with opposite signs to the stoichiometric matrix

$$\mathsf{A} \xrightarrow{r_{1f}} \mathsf{B} \quad \mathsf{B} \xrightarrow{r_{1b}} \mathsf{A}$$