

Métodos não paramétricos

Ou: o que fazer caso seus dados não sejam normais?

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Métodos não paramétricos

Felipe Figueiredo

auia passada

Normanuaue

Iransformaçõe

parametri

Resumo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Transformaçõ

Métodos não paramétricos

Resumo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Discussão da aula passada

Normalidade

Transformaçõ

paramétrico:

Resumo

Discussão da aula passada

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade

reormanada

Iransformaçõe

Métodos não paramétricos

Resumo

Aprofundament

Discussão da leitura obrigatória da aula passada

A hipótese da normalidade

- Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos
- Desvios da normalidade precisam ser contornados¹
- Veremos duas maneiras: transformações e alternativas

Mas antes...

... como identificar essa necessidade?

Métodos não paramétricos

> Felipe Figueiredo

Normalidade

Visualização
Normalidade

ransformaçõe

aramétrico

Resumo

¹há controvérsias:

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- 6 Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização

Transformaçõe

Métodos não

Resumo

4 ロ ト 4 倒 ト 4 三 ト 4 三 ・ かなべ

Dados normais

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçõe

Métodos nã paramétrico

Resumo

Dados não normais

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçõe

paramétrico

Resumo

Dados normais

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Normalidade
Visualização
Normalidade

Transformaçõe

Métodos nã paramétrico

Resumo

Dados não normais

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçõe

Métodos nã paramétrico

Resumo

Métodos não paramétricos

Discussão da aula passada

Normalidade

Visualização

Normalidade

Transformaçõe

Métodos não aramétricos

Resumo

Visualização - boxplot

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçõe

paramétric

Resumo

O Q-Q plot

- Gráfico que compara os quantis da amostra com os quantis teóricos
- Adicionalmente uma reta "ideal" é sobreposta, como referência
- Dados normalmente distribuídos ficam próximos da reta

Princípio

Quanto maior o desvio da normalidade...

... maior a distância à reta

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

ransformaçõe

aramétrico

Resumo

Visualização - QQ plot

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformações

Métodos não paramétricos

Resumo

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- 6 Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização

Transformaçõe

aramétrico

Resumo

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída? Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Visualização Normalidade

Transformaçõe

Métodos não paramétricos

Resumo

²Lembre: **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar H₀ ⊘ ⊲ ⊘

• Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

Transfermenão

Transformaçõe

aramétrico

Resumo

²Lembre: **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar H₀ ∞ < ∞

• Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

TVOITIGIIGAGE

Transformaçõe

aramétrico

Resumo

²Lembre: **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar H₀ ∞ < ∞

 Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?

Resposta curta: NÃO.

 Resposta longa: podemos examinar se há evidências para "aceitar" esta hipótese² Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçõe

létodos não

.

Resumo

²Lembre: **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar H₀ ∞ a ∞

Alguns testes contra a normalidade

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

_

Mátadas não

.

Aprofundamen

Shapiro-Wilk

Anderson-Darling

Kolmogorov-Smirnov

Alguns testes contra a normalidade

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

Normalidade

Transformaçõe

aramétri

Resumo

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

Shapiro-Wilk – Rejeitamos a H_0 de normalidade?

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Iransionnaçõe

Recum

Shapiro-Wilk – Rejeitamos a H₀ de normalidade?

p-value = 0.7766

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

Tuese of a una e a a

Transformaçõe

. Daariina

....

Shapiro-Wilk – Rejeitamos a H_0 de normalidade?

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade Visualização Normalidade

Transformaçã

Métodos não

Resumo

Shapiro-Wilk – Rejeitamos a H₀ de normalidade?

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Visualização

Normalidade

Transformação

Métodos não

Resumo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 6 Resumo
- Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformações

Métodos não

Resumo

Aprolulidame

Transformações

 Podemos aplicar uma transformação nos dados, para coagi-los a se aproximar das premissas requeridas

Transformações usuais incluem:

- logaritmo
- exponencial
- raiz quadrada
- potências

Geralmente envolve tentativa e erro ³

Hipóteses sobre o problema ou desenho experimental ajudam

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normalidade

Transformações

Métodos não

Resumo

³Mas a transformação de Box-Cox pode ajudar! □ → ⟨♂ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ ≥ → ⟨ 2 → | 2

Exemplo

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Iransformaçõe

Transformações

Métodos não paramétricos

Resumo

Aprofundamer

Transformação sugerida: logaritmo.

Exemplo

Histogram of log(x2)

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・夕久で

Dados normais x dados log-transformados

Métodos não paramétricos

Felipe Figueiredo

aula passada

Transformaçõ

Transformações

paramétricos

Resumo

Exemplo

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Transformaçõ

Transformações

Posumo

Aprofundame

(p-valor S-W: 1.657e-09) x (p-valor S-W: 0.05032)

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Transformaç

Métodos não paramétricos

Intro

4 ロ ト 4 倒 ト 4 三 ト 4 三 ・ かなべ

1 amostra 2 médias

3+ amostras

Resumo

. .

Introdução aos métodos não paramétricos

Métodos paramétricos

usam a distribuição dos dados^a...

...para possibilitar cálculos simples como média e DP.

^aGeralmente distribuição Normal

Métodos não paramétricos

Não presumem nada sobre a distribuição dos dados.

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformações

Métodos não paramétricos

Intro

1 amostra

+ amostras

Racijma

Resumo

Introdução aos métodos não paramétricos

Métodos não paramétricos

> Felipe Figueiredo

Intro

Sem média e DP⁴, a única coisa que resta para comparar...

... é a **ordem** dos dados (*ranks*).

⁴tendência central e dispersão, respectivamente 🗗 🗸 😩 🔻 💂 🔻 🔊 🤄 🗢

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 6 Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transforma

Métodos não paramétricos

Intro

1 amostra 2 médias

3+ amostras

Resumo

nesumo

Teste para 1 amostra

 Desvios da normalidade severos impactam os testes paramétricos

- Nesses casos, tenta-se transformar os dados, se possível
- Caso não seja, deve-se usar um teste não paramétrico⁵

Teste para uma amostra

Ao invés do teste t, usar o teste de Wilcoxon (Capítulo 25)

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Normalidade

Transformações

Metodos nad paramétricos

Intro

2 médias

3+ amostras

Resumo

⁵Sem transformação!

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente: parâmetro fixo

Exemplo

escore HHS mediano ~ 70

Exemplo

escore ASA mediano ~ II

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normandade

Transformações

Métodos não paramétricos

Intro

2 médias

3+ amostras

Resumo

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Normalidade

Transformaçã

Métodos não paramétricos

Intro

2 médias

3+ amostras

Correlação

Resumo

Testes para 2 amostras

Dados normais

amostras independentes ⇒ t-teste não pareado

amostras pareadas ⇒ t-teste pareado

Dados não normais

amostras independentes ⇒ Mann-Whitney (Capítulo 24)

amostras pareadas ⇒ Wilcoxon (Capítulo 25)

Métodos não paramétricos

Felipe Figueiredo

auia passada

Normalidade

iransiormaçõe

paramétricos

Intro

2 médias

3+ amostras

Resumo

Quais são as variáveis?

Métodos não paramétricos

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)

dente: Felipe Figueiredo

ddia passadi

Hormanada

Transformaçõe

Métodos não paramétricos

ntro

1 amost

2 médias

+ amostras correlação

Resumo

Aprofundamento

Esta relação pode ser expressa como

escore HHS tratamento ~ escore HHS controle

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos não paramétricos

Felipe Figueiredo

aula passada

Métodos não

Intro

1 amostra 2 médias

3+ amostras

Resumo

4 = + 4 = + = + 9 Q (~

Exemplo

- Assumindo⁶ que elas são
 - normalmente distribuídas, e
 - independentes,

poderíamos fazer um teste t não pareado.

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra

2 médias

+ amostra: Correlação

Resumo

⁶pelo desenho experimental

Exemplo

Assumindo⁶ que elas são

normalmente distribuídas, e

• independentes,

poderíamos fazer um teste t não pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Normalidade

Transformações

Métodos não paramétricos

Intro

1 amostra 2 médias

3+ amostra:

Correlação

Resumo

⁶pelo desenho experimental

Exemplo

- Assumindo⁶ que elas são
 - normalmente distribuídas, e
 - independentes,

poderíamos fazer um teste t não pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

Felipe Figueiredo

2 médias

Métodos não paramétricos

⁶pelo desenho experimental

Novamente...

Métodos não paramétricos

Felipe Figueiredo

aula passada

Transformaçõe

Métodos não

Intro

1 amostra 2 médias

3+ amostras

Resumo

Histogramas

Χ

Métodos não paramétricos

Felipe Figueiredo

aula passada

Transformaçõe

Métodos não paramétricos

Intro

1 amostra 2 médias

3+ amostras

Resumo

Aprofundamer

QQ-plots

Theoretical Quantiles

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normandade

Métodos não paramétricos

Intro

2 médias

3+ amostras Correlação

Resumo

Teste t

p-valor = 0.259 (não significativo)

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normalidade

Métodos não

paramétrico

Intro

1 amostra 2 médias

3+ amostras

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

• x: p-valor = 5.515e-16

y: p-valor = 5.274e-09

Métodos não paramétricos

Felipe Figueiredo

aula passad

INOTITIATIUAUE

Transformaçõe

Métodos não paramétricos

Intro

amostra

2 médias

+ amostras

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

x: p-valor = 5.515e-16

y: p-valor = 5.274e-09

Devemos rejeitar a hipótese de normalidade.

• Então o teste t não é apropriado!

Substituto: teste de Mann-Whitney

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amosti

2 médias

3+ amostras

Resumo

Teste t

p-valor = 0.259 (não significativo)

Aplicando o teste de Shapiro-Wilk em x e y

x: p-valor = 5.515e-16

• y: p-valor = 5.274e-09

Devemos rejeitar a hipótese de normalidade.

• Então o teste t não é apropriado!

Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normandade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra 2 médias

3+ amostras

Resumo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 6 Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Normalidade

Transforma

Métodos não paramétricos

Intro

1 amostra 2 médias

3+ amostras

Correlação

Resumo

Relembrando

- Para testar a diferença nas médias de 3 ou mais amostras
 - Análise de Variâncias (ANOVA)
 - Leva em conta as variâncias entre os grupos (inter)
 - Leva em conta a variância em cada grupo (intra)
 - H_0 : Todos os grupos são =
 - H₁: pelo menos um grupo é significativamente ≠

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normalidade

Métodos não

paramétrico

ntro

1 amostra

3+ amostras

+ amostras

Resumo

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Medições de qualidade do ar em NY

Métodos não paramétricos

Felipe Figueiredo

aula passada

reomandado

Métodos não

Intro

1 amostra

3+ amostras

Resumo

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente:
 - grupo (categórica nominal 3+ níveis)

Esta relação pode ser expressa como

Ozônio ~ Mês

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normandade

Iransformaçõe

Métodos não paramétricos

Intro

1 amostra 2 módias

3+ amostras

Correlação

Resumo

110301110

ANOVA

p-valor = 0.0776 (não significativo)

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Métodos não

Intro

1 amostra

3+ amostras

S+ amostras

Resumo

ANOVA

p-valor = 0.0776 (não significativo)

Shapiro-Wilk (Ozônio por mês (Maio – Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformaçõe

Métodos não

Intro

1 amostra

medias

3+ amostras

Resumo

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês (Maio Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra

3+ amostras

+ amostras

Resumo

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês (Maio Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normandade

Transformaçõe

Métodos não paramétricos

Intro

1 amostra

3± amnetrae

+ amostras correlação

Resumo

Métodos não paramétricos

> Felipe Figueiredo

aula passad

Normalidade

Transformaçõe

Métodos não paramétricos

Intr

1 amostra

3+ amostras

+ amostras

Resumo

Aprofundament

Mais quais são os meses diferentes?

Pós-teste de Wilcoxon

Mês x Mês (correção de Bonferroni)

- 5 x 6: p = 1.0000
- 9 5 x 7: p = 0.0003
- 5 x 8: p = 0.0012
- 5 x 9: p = 1.0000
- 6 x 7: p = 0.1414
- 6 x 7: p = 0.141
- 6 x 8: p = 0.2591 6 x 9: p = 1.0000
- 7 x 8: p = 1.0000
- 7×9 : p = 0.0074
- 8 x 9: p = 0.0325

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normalidade

Transformações

Métodos não paramétricos

Intro

- 1 amostra
- 2 médias

3+ amostras

Resumo

Sumário

- Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- 6 Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Transforma

Métodos não

Intro

Int

2 médias

3+ amostras Correlação

Resumo

.

Aprolundamen

Correlação não-paramétrica

Métodos não paramétricos

> Felipe Figueiredo

Correlação

- A correlação de Pearson
 - associa dados numéricos (contínuos);
 - mede a direção e força desta associação.

Correlação de Spearman

Ao invés da correlação linear de Pearson...

... usar a correlação de ranks de Spearman (Capítulo 17).

Número de resultados no PUBMED⁷

• t-test: 61488

• ANOVA: 431252

Wilcoxon: 19881

Mann-Whitney: 25571

Kruskal-Wallis: 11943

Shapiro-Wilk: 519

Kolmongorov-Smirnoff: 0

Anderson-Darling: 49

Chi-square: 107277

OR: 221034RR: 344996

Métodos não paramétricos

> Felipe Figueiredo

aula passad

- . . .

Métodos não

Resumo

⁷Levantamento feito em 2017-11-30

Resumo (teste oftálmico)

Table 37.1. Selecting a Statistical Test

Goal	Type of Data			
	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time
Describe one group	Mean, SD	Median, interquartile range	Proportion	Kaplan Meier survival curve
Compare one group to a	One-sample t test	Wilcoxon test	Chi-square	_
hypothetical value			or	
			Binomial test**	
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel-Haenszel*
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression**
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression*
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**	C
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*

^{*}Only briefly mentioned in this book.

^{**}Not discussed in this book.

Resumo (agora sim)

Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)
Describe one group	Mean, SD	Median, interquartile range
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test
Compare two unpaired groups	Unpaired t test	Mann-Whitney test
Compare two paired groups	Paired t test	Wilcoxon test
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test
Quantify association between two variables	Pearson correlation	Spearman correlation

Métodos não paramétricos

> Felipe Figueiredo

idia paooada

Transformaçõe

parametrico

Resumo

Sumário

- 🕕 Discussão da aula passada
 - Discussão da aula passada
- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação
- Resumo
- Aprofundamento
 - Aprofundamento

Métodos não paramétricos

Felipe Figueiredo

aula passad

Normalidade

Transformaçõe

paramétr

Resumo

Aprofundamento

Aprofundamento

Aprofundamento

Leitura obrigatória

- Capítulo 37
- Capítulo 38

Exercícios selecionados

Não há.

Leitura recomendada

- Parte VI Designing Clinical Trials
- Trechos de testes n\u00e3o param\u00e9tricos que pulamos dos caps:
 - 17
 - 24
 - 25
 - 30

Métodos não paramétricos

Felipe Figueiredo

aula passada

Normalidade

Transformações

parametri

Resumo

Aprofundament