Системи числення

Система числення - це спосіб подання чисел та відповідні йому правила дії з числами.

Різноманітні системи числення, які існували раніше і які використовуються в наш час, можна розділити на непозиційної і позиційні. Знаки, використовувані при записі чисел, називаються цифрами.

У непозиційних системах числення від положення цифри в записі числа не залежить величина, яку вона позначає.

Прикладом непозиційній системи числення ϵ римська система (римські цифри). У римській системі в якості цифр використовуються латинські літери:

ĺ	I	V	X	L	С	D	M
	1	5	10	50	100	500	1000

У римських числах цифри записуються зліва направо у порядку убування. У такому разі їх значення складаються. Якщо ж зліва записана менша цифра, а праворуч - велика, то їх значення віднімаються, наприклад:

$$VI = 5 + 1 = 6$$
, a $IV = 5 - 1 = 4$.

Число ССХХХII складається з двох сотень, трьох десятків і двох одиниць – 232.

У римських числах цифри записуються зліва направо у порядку убування. У такому разі їх значення складаються. Якщо ж зліва записана менша цифра, а праворуч - велика, то їх значення віднімаються, наприклад:

$$VI = 5 + 1 = 6$$
, a $IV = 5 - 1 = 4$.

Завдання

1. Записати римське число MCMXCVIII в десяткового системі

Позиційні СЧ

У позиційних системах числення величина, що позначається цифрою в записі числа, залежить від її позиції. Кількість використовуваних цифр називається *підставою* позиційної системи числення.

Система числення, застосовувана в сучасній математиці, ϵ позиційної десяткової системою. Її основа дорівню ϵ десяти, тому що запис будь-яких чисел проводиться за допомогою десяти цифр:

Позиційний характер цієї системи легко зрозуміти на прикладі будь-якого багатозначного числа. Наприклад, в числі 333 перша трійка означає три сотні, друга - три десятки, третя - три одиниці.

Для запису чисел в позиційній системі з основою n потрібно мати алфавіт з n цифр. Зазвичай для цього при n < 10 використовують n перших арабських цифр, а при n > 10 до десяти арабським цифрам додають літери. Ось приклади алфавітів декількох систем:

Підстава	Назва	Алфавіт
n = 2	двійкова	0 1
n = 3	трійкова	0 1 2
n = 8	восьмерична	0 1 2 3 4 5 6 7
<i>n</i> = 16	шестнадцатеричная	0 1 2 3 4 5 6 7 8 9 ABCDEF

Якщо потрібно вказати основу системи, до якої належить число, то воно приписується нижнім індексом до цього числа. Наприклад: $101101_{\ 2}, 3671_{\ 8}, 3B8F_{\ 16}.$

В системі числення з основою q (q-кова система числення) одиницями розрядів служать послідовні степені числа q.

q одиниць якого-небудь розряду утворюють одиницю наступного розряду. Для запису числа в q-iчной системі числення потрібно q різних знаків (цифр), що зображують числа 0, 1, ..., q - 1. Запис числа q в q-iчной системі числення має вигляд 10. Розгорнутою формою запису числа називається запис у вигляді

$$A_{a} = \pm (a_{n-1}q^{n-1} + a_{n-2}q^{n-2} + \dots + a_{0}q^{0} + a_{-1}q^{-1} + a_{-2}q^{-2} + \dots + a_{-m}q^{-m}).$$

Тут A_q — саме число, q - основа системи числення, a_i - цифри даної системи числення, n - число розрядів цілої частини числа, m - число розрядів дробової частини числа.

Згорнутою формою запису числа називається запис у вигляді

$$A_a = a_{n-1}a_{n-2}...a_1a_0a_{-1}...a_{-m}$$

якою користуються в повсякденному житті.

- **3.** Записати в розгорнутому вигляді число $A_{10} = 4718,63$
- **4.** Записати в розгорнутому вигляді число $A_8 = 7764,1$
- **5.** Записати в розгорнутому вигляді число $A_{16} = 3AF$
- **6.** Всі числа 112 ₃, 101101 ₂, 15FC ₁₆, 101,11 ₂ перевести в десяткову систему

Перекодування десяткових чисел в інші системи числення

- 1. Послідовно виконати поділ даного числа і одержуваних неповних часток на основу нової системи числення до тих пір, поки не отримаєте неповну частку, меншу дільника;
- 2. отримані залишки, є цифрами числа в новій системі числення, привести у відповідність з алфавітом нової системи числення;
- 3. скласти число в новій системі числення, записуючи його, починаючи з останньої частки.
- **8.** Перекласти число 37 $_{10}$ в двійкову систему числення. Для позначення цифр у записі числа використовуємо символіку: а $_5$ а $_4$ а $_3$ а $_2$ а $_1$ а $_0$.

9. Перекласти десяткове число 315 у вісімкову і в шістнадцяткову системи числення.

Нагадаємо, що 11 $_{10} = \mathbf{y}_{16.}$

Переклад двійкових чисел в системи числення з основою 2 п

Для того, щоб ціле двійкове число записати в системі числення з основою $q = 2^n$ (4, 8, 16 і т.д.), потрібно:

- 1. дане двійкове число розбити справа наліво на групи по n цифр у кожній групі;
- 2. якщо в останній лівій групі виявиться менше n розрядів, то її треба доповнити зліва нулями до потрібного числа розрядів;
- 3. розглянути кожну групу як *n-розрядне* двійкове число і записати її відповідною цифрою в системі числення з основою $q=2^{n}$.

Нижче наводиться таблиця з числами систем числення з основами $q = 2^{n}$, де n = 1, 3, 4 і десяткової системи числення.

Десяткова	Двійкова	Вісімкова	Шістнадцяткова
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8

9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

10. Перекласти число 1100101011010101111 ₂ в вісімкову систему числення.

Розбиваємо число на групи по три цифри - тріади (тому q = 8, $8 = 2^{n}$, n = 3) справа наліво і, користуючись таблицею, записуємо відповідне вісімкове число. Заповнюємо таблицю відповідності.

11. Перекласти число 1100101010110101111 ₂ в шістнадцяткову систему числення.

Розбиваємо число на групи по чотири цифри - тетради (тому q = 16, $16 = 2^{n}$, n = 4) справа наліво і, користуючись таблицею, записуємо відповідне шістнадцяткове число. Заповнюємо таблицю відповідності.

12. Чому дорівнює значення основи системи числення X, якщо відомо, що 175 $_{X}$ = 7D $_{16^{\circ}}$

Для того, щоб довільне число, записане в системі числення з основою $q = 2^{n}$ перевести в двійкову систему числення, потрібно кожну цифру цього числа замінити її n-розрядним еквівалентом у двійковій системі числення.

Стосовно до комп'ютерної інформації часто використовуються системи з основою 8 (восьмерична) або 16 (шестнадцатеричная).

13. Перекласти двійковечисло 110111101011101111 в шістнадцяткову систему числення.

Для нижченаведених завдань навести роз'яснення вибору.

14. Кількісний еталон числа 100_q є сумою $(33 + 22 + 16 + 17)_{10}$. В якій системі числення представлене число 100_q ?

Варіанти відповіді: а) 7; б) 9; в) 11; г) 13.

15. Кількісний еталон числа $53_q + 53_q \in 136_{10}$.

Яка система числення використана?

Варіанти відповіді: а) 11; б) 13; в) 15; г) 17.

16. Оберіть число з найбільшим кількісним еталоном серед наведених?

Варіанти відповіді: а) 152 ₇, б) 152 ₁₀, в) 152 ₁₂, г) 152 ₁₆.

- 17. Переведіть двійкові числа в вісімкову систему числення:
- a) 110000110101; 1010101 б) 11100001011001; 1000010101.
- 18. Переведіть двійкові числа в шістнадцяткову систему числення:
- a) 11011010001; 11111111111000001 б) 10001111010; +100011111011.
- 19. Переведіть шістнадцяткові числа в двійкову систему числення:
- a) 1AC7 б) FACC.
- 20. Переведіть числа з вісімковій системи числення в шістнадцяткову:
- a) 774; 6) 665.