Baroclinic instability with topography

Navid * Bill and Joe

December 22, 2018

Abstract

We study the effect of bottom topography on the vertical mode structure in a two-layer quasigeostrophic model.

1 The 2-layer case

Consider a two layer fluid. The fluid's resting heights are H_1 and H_2 . The total fluid depth is H - h(x, y), where $H \stackrel{\text{def}}{=} H_1 + H_2$. The QGPV equations for each layer are:

$$q_{1t} + J(\psi_1, q_1) + \beta \psi_{1x} = 0,$$
 (1a) eq:q1t

$$q_{2t} + J(\psi_2, q_2 + \underbrace{\frac{f_0 h}{H_2}}_{\stackrel{\text{def}}{=} n}) + \beta \psi_{2x} = 0, \qquad (1b) \qquad \boxed{\text{eq:q2t}}$$

with

$$q_1 \stackrel{\text{def}}{=} \triangle \psi_1 + F_1(\psi_2 - \psi_1),$$
 (2a) eq:q1def

$$q_2 \stackrel{\text{def}}{=} \triangle \psi_2 + F_2(\psi_1 - \psi_2)$$
, (2b) eq:q2def

Now assume that there is a zonal mean flow $U_j(y)$ in each layer, i.e., $\psi_j \mapsto \psi_j - \int^y U_j(y') \, dy'$. This implies:

$$q_1 \mapsto q_1 - U_{1y} + F_1 \int_{-y}^{y} \left[U_2(y') - U_1(y') \right] dy',$$
 (3a)

$$q_1 \mapsto q_2 - U_{2y} - F_2 \int^y \left[U_1(y') - U_2(y') \right] dy',$$
 (3b)

and the EOM become:

$$q_{1t} + U_1 q_{1x} + \mathsf{J}(\psi_1, q_1) + \left[\beta - U_{1yy} - F_1 (U_2 - U_1)\right] \psi_{1x} = 0 \,, \tag{4a} \label{eq:uq1t}$$

$$q_{2t} + U_2(q_{2x} + \eta_x) + \mathsf{J}(\psi_2, q_2 + \eta) + \left[\beta - U_{2yy} - F_2(U_1 - U_2)\right]\psi_{2x} = 0. \tag{4b}$$

After linearizing:

$$q_{1t} + U_1 q_{1x} + \left[\beta - U_{1yy} - F_1 (U_2 - U_1)\right] \psi_{1x} = 0,$$
 (5a) eq:linUq1t

$$q_{2t} + U_2(q_{2x} + \eta_x) + \mathsf{J}(\psi_2, \eta) + \left[\beta - U_{2yy} - F_2(U_1 - U_2)\right]\psi_{2x} = 0. \tag{5b}$$

eq:linUq2t

eq:Uq2t

qs:lin2layer

^{*}Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0230, USA. email: navid@ucsd.edu.

Parameters

Domain size: $L_x = L_y = 2$ $F_1 = 25, F_2 = 25/4, \beta = 0$ $U_1(y) = \operatorname{sech}(5y)^2, U_2(y) = 0$ $\eta = 10 \cos(10\pi x) \cos(10\pi y)$

We want to study the stability of the imposed U(y) with topography. The idea is that you start with some random, small-amplitude q_1,q_2 and then you either (i) integrate forward the linearized equation until the most unstable mode pops up or (ii) you integrate forward the nonlinear equations but every some prescribed Δt you rescale q_1,q_2 so that they remain small-amplitude and nonlinear terms won't matter much.

The two methods should give the same results.

You can also compute the growth rate by looking how much the energy of, e.g., q_1 grows for time Δt as:

growth rate_j =
$$\frac{\log \left(\frac{\text{KE after } \Delta t}{\text{KE initially}}\right)}{2\Delta t}$$
 (6)

As the structure of q_1, q_2 converges to the unstable mode the value of growth rate_j will converge to the corresponding growth rate.