MIPS Instruction Reference Data Connor Baker, January $20^{\rm th}$ 2017

Core Instruction Set

Name	Mnemonic	Format	Operation (in Verilog)	OPCODE/Funct (Hex)
Add	add	R	R[rd]=R[rs]+R[rt]	$(1) \ 0/20_{16}$
Add Immediate	addi	I	R[rt]=R[rs]+SigExtImm	(1,2) 8 ₁₆
Add Imm. Unsigned	addiu	I	R[rt]=R[rs]+SigExtImm	$(2) 9_{16}$
Add Unsigned	addu	R	$R[rd]{=}R[rs]{+}R[rt]$	$0/21_{16}$
And	and	R	$R[rd]{=}R[rs]\&R[rt]$	$(1) \ 0/24_{16}$
And Immediate	andi	I	R[rt]=R[rs]&ZeroExtImm	(3) C_{16}
Branch On Equal	beq	I	$ \begin{array}{c} if(R[rs] == R[rt]) \\ PC = PC + 4 + BranchAddr \end{array} $	$(4) \ 4_{16}$
Branch On Not Equal	bne	I	$\begin{array}{c} if(R[rs]!{=}R[rt]) \\ PC{=}PC{+}4{+}BranchAddr \end{array}$	$(4) \ 5_{16}$
$_{ m Jump}$	j	J	PC=JumpAddr	$(5) \ 2_{16}$
Jump And Link	jal	J	R[31]=PC+8; PC=JumpAddr	$(5) \ 3_{16}$
Jump Register	jr	R	PC=R[rs]	$0/08_{16}$
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs]] +SignExtImm](7:0)}	$(2) 24_{16}$

Name	Mnemonic	 Format	Operation (in Verilog)	OPCODE/Funct (Hex)
Load Halfword	lhu	I	R[rt]={16'b0,M[R[rs]]	(2) 25 ₁₆
Unsigned	Inu	1	+ SignExtImm](15:0)	(2) 2016
Load Linked	11	I	$R[rt]=M[R[rs]] \\ +SignExtImm]$	$(2,7) \ 30_{16}$
Load Upper Imm.	lui	I	$R[rt]{=}\{imm,16'b0\}$	F_{16}
Load Word	lw	I	R[rt]=M[R[rs] +SignExtImm]	$(2) 23_{16}$
Nor	nor	R	$\mathbf{R}[\mathbf{rd}] = \sim (R[rs] \mid R[rt])$	$0/27_{16}$
Or	or	R	$R[rd] = (R[rs] \mid R[rt])$	$0/25_{16}$
Or Immediate	ori	I	$R[rt]=R[rs] \mid ZeroExtImm$	(3) D_{16}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt])? 1:0	$0/2\mathrm{A}_{16}$
Set Less Than Imm.	slti	I	R[rt]=(R[rs] < SignExtImm) ? $1: 0$	(2) A_{16}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? $1: 0$	$(2,6) B_{16}$
Set Less Than Unsigned	sltu	R	R[rd]=(R[rs]< R[rt]) ? 1 : 0	(6) $0/2B_{16}$
Shift Left Logical	sll	R	$R[rd]{=}R[rt]{<}{<}shamt$	$0/00_{16}$
Shift Right Logical	srl	R	$R[rd]{=}R[rt]{>}{>}shamt$	$0/02_{16}$

Name	Mnemonic	Format	Operation (in Verilog)	OPCODE/Funct (Hex)
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) $=R[rt](7:0)$	$(2) 28_{16}$
Store Conditional	sc	I	M[R[rs]+SignExtImm]=R[rt]; $R[rt]=(atomic) ? 1 : 0$	$(2,7) 38_{16}$
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) $=R[rt](15:0)$	$(2) \ 29_{16}$
Store Word	sw	I	M[R[rs]+SignExtImm]=R[rt]	(2) $2B_{16}$
Subtract	sub	R	R[rd]=R[rs]-R[rt]	$(1) \ 0/22_{16}$
Subtract Unsigned	subu	R	R[rd]=R[rs]-R[rt]	$0/23_{16}$

- (1) May cause overflow exception
- (2) SignExtImm = {16{immediate[15], immediate}}
- (3) $ZeroExtImm = \{16\{1B'0\}, immediate\}$
- (4) BranchAddr = $\{14\{\text{immediate}[15]\}, \text{immediate}, 2'B0\}$
- $(5) \ \mathrm{JumpAddr} = \{\mathrm{PC+4[31:28]}, \, \mathrm{address}, \, 2\mathrm{'B0}\}$
- (6) Operands considered unsigned numbers (vs. 2's comp.)
- (7) Atomic test & set pair; R[rt]=1 if pair atomic, 0 if pair not atomic

Basic Instruction Formats