Waymo Motion Prediction Competition

3rd place solution

Our team

Artsiom Sanakoyeu Heidelberg University

Kirill Brodt Novosibirsk State University

Stepan Konev Skoltech

Data

Goal: Predict future coordinates

Input image

224x224xC

- Target agent's velocity at prediction moment is aligned with x-axis
- Target agent is always located in the same place at the image

History frames: current frame and 1 sec (10 frames) in the past

Solution

Goal: Predict future coordinates

224x224xC

Visualization of the predictions

Core model: Regression CNN

Regression CNN: different backbones

Ground truth coordinates

$$\mathbf{GT} = [(x_1, y_1), \dots, (x_{80}, y_{80})]$$

hypothesis_k =
$$[(x_1^{(k)}, y_1^{(k)}), \dots, (x_{80}^{(k)}, y_{80}^{(k)})], k = 1, \dots, K$$

$$L = -logP(\mathbf{GT}) =$$

$$\begin{aligned} \mathbf{GT} &= [(x_1,y_1),\dots,(x_{80},y_{80})] \\ \mathbf{hypothesis}_k &= [(x_1^{(k)},y_1^{(k)}),\dots,(x_{80}^{(k)},y_{80}^{(k)})],\ k=1,\dots,K \\ L &= -logP(\mathbf{GT}) = \\ &= -log\sum_k c^k \prod_t \mathcal{N}(\mathbf{GT}|\mu = \mathbf{hypothesis}_k, \Sigma = E) \end{aligned}$$

Ground truth coordinates
$$\mathbf{GT} = [(x_1, y_1), \dots, (x_{80}, y_{80})]$$

$$\mathbf{hypothesis}_k = [(x_1^{(k)}, y_1^{(k)}), \dots, (x_{80}^{(k)}, y_{80}^{(k)})], \ k = 1, \dots, K$$

$$L = -logP(\mathbf{GT}) =$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(\mathbf{GT}|\mu = \mathbf{hypothesis}_k, \Sigma = E)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

Ground truth coordinates
$$\mathbf{GT} = [(x_1, y_1), \dots, (x_{80}, y_{80})]$$

$$\mathbf{hypothesis}_k = [(x_1^{(k)}, y_1^{(k)}), \dots, (x_{80}^{(k)}, y_{80}^{(k)})], \ k = 1, \dots, K$$

$$L = -logP(\mathbf{GT}) =$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(\mathbf{GT}|\mu = \mathbf{hypothesis}_k, \Sigma = E)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$

$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Confidences
$$= -log\sum_k c^k \prod_t \mathcal{N}(x_t|\mu = \bar{x}_t^{(k)}, \sigma = 1)\mathcal{N}(y_t|\mu = \bar{y}_t^{(k)}, \sigma = 1)$$
Ground truth coordinates

Important training details: Rasterizer optimization

Default I5kit rasterizer: 15 images / sec on a single core.

Best single model: Xception71

Test MAP score: 0.2136

Training parameters:

- Adam with LR=0.001
- Batch size 48
- Scheduler: cosine annealing warm restarts every 2 epochs and minimum Ir 1e-5

Top 3 Predicted hypotheses

Results

Object Type	mAP	Min ADE	Min FDE	Miss Rate	Overlap Rate
Vehicle	0.2357	0.8946	1.8175	0.2138	0.0886
Pedestrian	0.2175	0.4449	0.9131	0.1276	0.2725
Cyclist	0.1875	0.8803	1.7501	0.2860	0.1071
Avg	0.2136	0.7400	1.4936	0.2091	0.1560

Conclusion

Conclusion

- Rasterizer optimization is important
- A Simple CNN regression baseline is very strong
- Training for longer with right parameters on the full dataset was crucial
- Ensembling most likely would give further improvements.

Regression CNN: More hypotheses

Predicted 3 hypotheses

