Конспект по Дискретной математике.

Чепелин В.А.

Содержание

1 J.	Іекция 1.
1.1	Аксиоматическое вероятное пространство
2 J	Іекция 2.
2.1	Случайная величина
2.2	Мат. ожидание.
	Незав. случайные величины
2.4	Дисперсия случайной величины
3 J.	Іекция 3.
3.1	Ковариация
	Корреляция
	Хвостовые неравенства
4 J	Іекция 4.
4.1	Введение в теорию информации.
4.2	Энтропия
5 V	Інформация о курсе

1 Лекция 1.

1.1 Аксиоматическое вероятное пространство.

Пусть у нас есть Ω - элементарные исходы и связанная с ним функция $p:\Omega\to [0,1]$ - дискретная вероятностная мера (плотность вероятности) - функция, которая по элементарному исходу возвращает вероятность.

А также $\sum_{w \in \Omega} p(w) = 1$, а также $0 \le p_i \le 1$ А также мы считаем, что $|\Omega|$ не более чем счетно. Для множеств мощности континуума нам нужна более сложная теория.

Рассмотрим примеры:

1. Честная монета:

$$\Omega = \{0, 1\}. \ p(0) = p(1) = \frac{1}{2}.$$

2. Нечестная монета или распределение Бернулли:

$$\Omega = \{0, 1\}. \ p(0) = 1 - p(1) = q.$$

3. Честная игральная кость:

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$
 $p(w) = \frac{1}{6}.$ $p(w) = \frac{1}{52}$

4. Колода карт:

$$\Omega = \{ \langle c, r \rangle \ 1 \le c \le 4, 1 \le r \le 15 \}$$

5. Геометрическое распределение:

$$\Omega = \mathbb{N}, \, p(i) = \frac{1}{2^i}$$

Замечание. Не существует равномерного распределения на счетном множестве.

<u>Событие</u> — множество $A\subset \Omega.$ $P(A)=\sum_{w\in A}p(w).$ (Иногда используют \Pr).

P(A) = 1 — достоверное событие.

P(A) = 0 — невозможное событие.

Рассмотрим примеры на честной игральной кости:

- 1. Только четные: $P(A) = \frac{3}{6} = \frac{1}{2}$.
- 2. Больше 4-ex: $P(A) = \frac{2}{6} = \frac{1}{3}$.

Замечание: нельзя с равной вероятностью выбрать случайное целое число.

Независимые события — A,B независимы, если $P(A \cap B) = P(A) \cdot P(B)$.

$$\frac{P(A\cap B)}{P(B)}=\frac{P(A)}{P(\Omega)}$$
— независимы (если выполнилось B, то вероятность не поменялась)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
— вероятность А при условии В — **условная вероятность**.

Произведение вероятностных пространств.

Пусть у нас есть $\Omega_1.p_1$, а также Ω_2,p_2 , тогда произведение вероятностных пространств:

$$\Omega = \Omega_1 \times \Omega_2$$
$$p(\langle w1, w2 \rangle) = p_1(w_1) \cdot p_2(w_2)$$

•

Утв. $\forall A \subset \Omega_1, B \subset \Omega_2$.

 $A \times \Omega_2$ и $\Omega_1 \times B$ независимы.

Пусть у нас есть n - событий: A_1, A_2, \dots, A_n .

Тогда обычно **независимость n событий** подразумевает:

1. A_i, A_j - независимы $\forall i, j$

2.
$$\forall I \subset \{1, 2, 3, ..., n\}. \ P(\bigcap_{i \in I} A_i) = \prod_{i \in I} P(A_i)$$

Формула полной вероятности

 $\Omega = A_1 \cup A_2 \cup \ldots \cup A_n, \, \forall i \neq j : A_i \cap A_j = \emptyset -$ полная система событий.

Возьму В - какое-то событие.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) \cdot P(A_i)$$

Пример: Урна с шариками. Сначала выбираете урну, потом достаете шарик.

Формула Байеса.

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i) \cdot P(A_i)}{\sum_{j=1}^{n} P(B|A_j) \cdot P(A_j)}$$

2 Лекция 2.

2.1 Случайная величина.

Случайная величина или численная характеристика каждого элементарного исхода — это отображение, $\xi:\Omega\to\mathbb{R},$ которое сопоставляет каждому элементарному исходу какое-то число. Пример:

- 1. $D=\{1,2,\dots,6\}$. Возьмем $\Omega=D^2$. Например, человек бросает два игральных кубика. Тогда, очевидно, $p(\langle i,j\rangle)=\frac{1}{36}$. И тогда он задает функцию случайной величины, например, как $\xi(\langle i,j\rangle)=i+j$.
- 2. Возьмем случайный граф G на n вершинах. $\xi(G) =$ количеству компонент связности. Или $\xi(G) =$ количеству ребер в этом графе.
- 3. Давайте кидать игральный кубик и сопоставим каждой выпадающей гране число равное количеству точек на этой грани. То есть $\Omega = \{1, 2, \dots, 6\}, \, \xi(i) = i.$

4.
$$\Omega = \{1, 2, \dots, 6\}; E = \{2, 4, 6\}. \ x_E(w) = \begin{cases} 1, w \in E \\ 0, w \notin E \end{cases}$$

Возьмем какие-то Ω, p, ξ :

 $[\xi=i]=\{w|\xi(w)=i\}\subset \Omega-$ множество элементарных исходов, случайная величина, которых равна i.

 $\underline{\operatorname{def:}}\ f_{\xi}:\mathbb{R} o \mathbb{R}$ — дискретная плотность вероятности $\xi.$

$$P([\xi = i]) = P(\xi = i) = f_{\xi}(i) = \sum_{w \in [\xi = i]} p(w)$$

Дискретная плотность вероятности — это функция, которая говорит нам, насколько вероятно каждое из этих отдельных значений, которые может принимать случайная величина. Другими словами, она присваивает вероятность каждому возможному исходу.

Немного поменяем и получим $[\xi \leq i] = \{w | \xi(w) \leq i\} \subset \Omega.$

$$P([\xi \le i]) = P(\xi \le i) = F_{\xi}(i)$$

 $\underline{\mathbf{def:}}\ F_{\xi}: \mathbb{R} \to \mathbb{R} - \underline{\mathbf{функция распределения}}.$ У дискретной случайной величины функция распределения ступенчатая. Например:

2.2 Мат. ожидание.

Математическое ожидание — среднее значение случайной величины.

$$E_{\xi} = \sum_{w} p(w)\xi(w) = \sum_{i} i \cdot P(\xi = i).$$

Дальше А.С. использует 3 вида обозначений:

1. E_{ξ} 2. $E(\xi)$ 3. $E\xi$ — не боимся, это одно и то же.

Теорема (линейность мат ожидания)

$$E\lambda\xi = \lambda E_{\xi}$$
 $E_{(\xi+\eta)} = E_{\xi} + E_{\eta}$

Доказательство:

$$E\lambda\xi=\sum_w p(w)\cdot\lambda\xi(w)=\lambda\sum_w p(w)\xi(w)=\lambda E_\xi$$

$$E(\xi+\eta)=\sum_w p(w)(\xi(w)+\eta(w))=\sum_w p(w)\xi(w)+\sum_w p(w)\eta(w)=E(\xi)+E(\eta)$$
 Q.E.D.

МАТ. ОЖИДАНИЕ ВСЕГДА ЛИНЕЙНО!!!

2.3 Незав. случайные величины

 ξ,η - **независимы**, если $[\xi=a],[\eta=b]$ — независимы $\forall a,b.$

Эквивалентное утверждение — $[\xi \leq a], [\eta \leq b]$ — независимы $\forall a, b.$

Иначе говоря, две случайные величины называются *независимыми*, если по значению одной нельзя сделать выводы о значении другой.

Теорема (о мультипликативности мат. ожидания)

$$\xi, \eta$$
 — независимы $\Rightarrow E(\xi \cdot \eta) = E_{\xi} \cdot E_{\eta}$.

Доказательство:

$$\begin{split} E_{(\xi\cdot\eta)} &= \sum_{a} aP(\xi,\eta=a) = \sum_{a} a \sum_{\forall i,j:\, i\cdot j=a} \sum_{i\in R_{\xi},j\in R_{\eta}} P(\xi=i,\eta=j) = \\ &= \sum_{a} \sum_{i} \sum_{j} aP(\xi=i)P(\eta=j) = \sum_{i} iP(\xi=i) \cdot \sum_{j} jP(\eta=j) = E_{\eta} \cdot E_{\xi} \end{split}$$
 Q.E.D.

2.4 Дисперсия случайной величины.

 $D_{\xi} = Var(\xi)$ — **дисперсия** случайной величины.

$$D_{\xi} = E((\xi - E_{\xi})^2) = E_{\xi^2} - (E_{\xi})^2$$

Дисперсия случайной величины — это мера того, насколько сильно разбросаны значения этой случайной величины вокруг её математического ожидания (среднего значения). Другими словами, она показывает, насколько "широко" распределение вероятностей случайной величины.

Теорема (свойства дисперсии). Если ξ, η - независимы:

$$D_{c\eta} = c^2 D_{\eta}$$
 $D_{\xi+\eta} = D_{\xi} + D_{\eta}$

Доказательство тривиально из линейности мат. ожидания

3 Лекция 3.

3.1 Ковариация

$$Cov(\xi, \eta) = E_{\xi\eta} - E_{\xi}E_{\eta}$$

Ковариация или **корреляционный** момент показывает на сколько зависимы случайные величины это мера зависимости двух случайных величин.

3.2 Корреляция

$$Corr(\xi, \eta) = \frac{E_{\xi\eta} - E_{\xi}E_{\eta}}{\sqrt{D_{\xi} \cdot D_{\eta}}} = \frac{Cov(\xi, \eta)}{\sqrt{D_{\xi} \cdot D_{\eta}}}$$

Корреляция - статистическая взаимосвязь двух случайных величин. Корреляция является **нормированной** версией ковариации, что позволяет сравнивать силу линейной зависимости между различными парами переменных, независимо от их масштаба.

Теорема (об ограниченности корреляции)

$$-1 \le Cor(\xi, \eta) \le 1$$

Доказательство:

Возьму $\alpha = \xi - \lambda \eta$:

$$D\alpha = D(\alpha) = E\xi^2 - 2\lambda E_{\xi\eta} + \lambda^2 E\eta^2 - (E\xi)^2 + 2\lambda E_{\xi} E_{\eta} - \lambda^2 (E_{\eta})^2 \ge 0$$
$$D\xi - 2\lambda Cov(\xi, \eta) + \lambda^2 D\xi \ge 0$$

Откуда, если рассматривать это, как уравнение относительно λ , то $D \leq 0$, то есть:

$$4Cov(\xi,\eta) - 4D_{\eta}D_{\xi} \le 0$$

А если присмотреться, то это и есть то, что нам надо.

Q.E.D.

3.3 Хвостовые неравенства

Рассмотрим азартную игру. не одобряем, не играем.

Проводится случайный эксперимент, смотрится значение ξ . Если оно получилось 100 или больше, то мы платим 100 рублей, а иначе наш друг платит нам 100 рублей. Мы знаем $E\xi=10,\xi\geq 0$

Хотим оценить $P(\xi \le 100)$:

Давайте посмотрим, является ли наша вероятность меньше $\frac{1}{2}$. Тогда всё, что правее 100 имеет вероятность выпадения $\geq \frac{1}{2}$. Все левое оценивается нулем, откуда мат ожидание хотя бы 50. Такого быть не может. В общем случае:

Теорема (Неравенство Маркова)

$$\xi \not\equiv 0, \xi \ge 0 : P(\xi \ge a \cdot E_{\xi}) \le \frac{1}{a}$$

Доказательство:

$$E_{\xi} = \sum_{v} v \cdot P(\xi = v) = \sum_{v \leq a \cdot E\xi} v P(\xi = v) + \sum_{v \geq a \cdot E\xi} v (P(\xi = v)) \geq aE\xi \cdot P(\xi \geq a \cdot E\xi)$$

Q.E.D.

Теорема (Неравенство Чебышева)

$$P(|\xi - E\xi| \ge a\sqrt{D\xi}) \le \frac{1}{a^2}$$

Доказательство:

Используем неравентсво Маркова для оценки дисперсии:

$$D_{\xi} = E(\xi - E\xi)^2 \qquad \eta = (\xi - E\xi)^2$$

Возьму и подставлю неравенство Маркова для η :

$$P((\xi - E\xi)^2 \ge a^2 D\xi) \le \frac{1}{a^2}$$

$$P(|\xi - E\xi| \ge a\sqrt{D\xi}) \le \frac{1}{a^2}$$

Q.E.D.

Переобозначим $\sqrt{(D\xi)}=\sigma_\xi$ — среднеквадратическое отклонение.

Так же неравенство Чебышева удобно записывать по-другому:

$$P(|\xi - E_{\xi}| \ge c) \le \frac{D\xi}{c^2}$$

Нечестная монета. Вот вам дали домашку, вместе с вопросом $p>\frac{1}{2}$ или $p<\frac{1}{2}$. Что вы можете делать? Только кидать ее, но при этом бесконечное количество раз вы не кинете, у вас дедлайн домашки через час.

Пусть мы бросили n раз. Выпало c единиц и n-c нулей. Пусть $c \leq \frac{n}{2}$:

$$P(\xi = c) \le P(\xi \le c) \le P(|\xi - pn| \ge pn - c) \le P(|\xi - pn| \ge \frac{n}{2}c) \le \frac{n}{4} \cdot \frac{1}{\left(\frac{n}{2} - c\right)^2}$$

Что это концептуально значит? На самом деле то, это дает нам оценку на распределение. Зачем? Чтобы **СДАТЬ** домашку.

Теорема (Граница Чернова)

$$P(|\xi - \mu| \ge \delta\mu) \le e^{-\mu\frac{\delta^2}{3}}$$

где $\mu = np$

todo: тут немного не написано про μ , будет дополнено после очной лекции

4 Лекция 4.

4.1 Введение в теорию информации.

информация = - неопределенность - сказал дяденька Шеннон

Для осознания нам поможет рисунок АС:

Есть что-то - неизвестное - облачко. Затем, вы с помощью глаза заглядываете туда, и ваша неопределенность уменьшается. Соответственно вы получили информацию. То есть сначала была неопределенность H_1 , потом H_2 . $I = H_1 - H_2$, откуда и получается наша формула. У него есть глубокий смысл, но создается вопрос: «И че? И что это за неопределенность?»

Ну наличие глаза мешает, непонятно, фу фу фу. Поэтому хотим ввести что-то более формальное и менее абстрактное.

Пусть у нас есть какой-то случайный эксперимент Ω , с вероятностями p_1, \ldots, p_n . И вот мы получили информацию что выпало (например орел на монетке).

 $\underline{\textbf{Cлучайный источник}}$ — черный ящик с красной кнопкой, который показывает номер эл. исхода, когда вы нажимаете на красную кнопку.

Возьмем монетку. Кинули, получили 0 или 1. Теперь возьмем кубик, получим число от 1 до 6. Когда мы кидаем кубик, мы получаем больше информации. И вот Шеннон решил систематизировать все это...

4.2 Энтропия

Пусть у нас есть случайный источник и вероятности p_1, p_2, \ldots, p_n . Мы хотим померить численно сколько информации содержится в одном эксперименте:

$$H(p_1,\ldots,p_n):RS\to R^+$$

Возьму пример
$$p_i = \frac{1}{n}.$$
 $h(n) = H(\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$

Очевидно, что h(n+1) > h(n).

Теперь рассмотрим вероятностное пространство и источник на нем:

$$\Omega = \{(1,1), (1,1), \dots, (1,m_1), (2,1), \dots, (k,1), \dots, (k,m_k)\}$$

И давайте теперь каждому причислим какую-то q_{ij} , так, что в сумме 1. $p_i = \sum_{j=1}^{m_i} q_{ij}$. Пусть наш случайный источник сломан и показывает только одно число. Если я возьму сломанный

случайный источник от Ω , то мы получим столько же информации сколько и у случайного источника сделанного из p.

Теперь давайте делить это на 2 части. Что вот мы сначала видим первую часть информации, а потом хоба и видим вторую часть информации. И того мы получаем, что когда мы открываем вторую часть мы получим $p_iH(\frac{q_{i1}}{p_i},\ldots,\frac{q_{mi}}{p_i})$ информации. Откуда благодаря таким рассуждение получаем свойство, которое называется **аддитивностью энтропии**:

$$H(p_1, \dots, p_k) + \sum_{i=1}^k p_i H(\frac{q_{i1}}{p_i}, \dots, \frac{q_{mi}}{p_i}) = H(q_{11}, \dots, q_{mk})$$

Также для фиксированного n, H непр из $\mathbb{R}^n \to \mathbb{R}$.

Теорема. (Формула энтропии Шеннона)

$$H(p_1, \dots, p_n) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

 α отвечает за выбор единицы измерений.

Доказательство:

Лемма 1. $h(n \cdot m) = h(n) + h(m)$.

Доказательство:

Возьмем $k=n, m_i=m, p_{=\frac{1}{n}}, q_{ij}=\frac{1}{nm}.$ Из утверждения сверху это верно!

Q.E.D.

Фиксируем $h(2) = \alpha$. Тогда:

<u>Лемма 2.</u> $h(2^k) = k\alpha$. тривиально из Леммы 1.

Лемма 2,5. $h(n^r) = rh(n)$. тривиально из Леммы 1.

<u>Лемма 3.</u> $h(n) = \alpha \log_2 n$

Доказательство:

Найду i такое, что $2^{i} \le n^{r} < 2^{i+1}$, где $r \in \mathbb{N}$.

Из монотонности h следует: $\alpha i \leq h(n^r) < \alpha(i+1)$. Поэтому:

$$\alpha i \leq r h(n) < \alpha \quad \Leftrightarrow \quad a \frac{i}{r} \leq h(n) \leq a \frac{i+1}{r}$$

Также мы знаем, что $i \leq r \log_2 n < i+1$. Получим, что:

$$\alpha \frac{i}{r} \le \alpha log_2 n < \alpha \frac{i+1}{r}$$

То есть $\forall r: |h(n) - \alpha log_2 n| \leq \frac{\alpha}{r}$. Откуда, получаем требуемое равенство.

Возвращаемся к доказательству теоремы. Пусть p_i рациональные. Приведем все p к общему знаменателю и пусть теперь $p_i=\frac{a_i}{b_i}$. Возьму $m_i=a_i,\ r_{ij}=\frac{1}{a_i}, q_{ij}=\frac{1}{n}$. Подставим во второе неравенство получим:

$$H\left(\frac{1}{b}, \frac{1}{b}, \dots, \frac{1}{b}\right) = H(p_1, p_2, \dots, p_k) + \sum_{i=1}^k p_i H\left(\frac{1}{a_i}, \dots, \frac{1}{a_i}\right)$$

Что тут происходит? Я разбиваю каждый исход изначальный, на a_i исходов по $\frac{1}{b_i}$. С одной стороны я получаю b исходов по $\frac{1}{b}$. С другой стороны я могу выбрать исход, а потом его разбить. Откуда по аддитивности и получается такая формула. А она в свою очередь уже удобная, так как в ней повторяются значения внутри H, так что можем заменить на h:

$$h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

Заметим, что $\sum_{i=1}^{n} p_i = 1$, так что левую часть на эту сумму:

$$\sum_{i=1}^{n} p_i h(b) = H(p_1, \dots, p_k) + \sum_{i=1}^{k} p_i h(a_i)$$

$$H(p_1, \dots, p_k) = \sum_{i=1}^n p_i(h(b) - h(a_i))$$

$$H(p_1,\ldots,p_k) = \sum_{i=1}^n p_i(\alpha log_2 b - \alpha log_2 a_i) = -\alpha \sum_{i=1}^n p_i \log_2 p_i$$

. Это формула верна и не для рац. из непрерывности (любое не рац. можно зажать с двух сторон сходящимися последовательностями и мы победили)

Q.E.D.

 α — бит, единица информации.

5 Информация о курсе

Поток — y2024.

Группы М3138-М3142.

Преподаватель — Станкевич Андрей Сергеевич.

В данном семестер фокусируются 2 темы: Дискретная теория вероятности и представление слов (токенов) в компьютере.

