الشعبة: ع ت / تر / ريا

سلسلة التمارين في مادة العلوم الفيزيائية

المستوى: سنة ثالثة ثانوي

الوحدة 2 4: تطور جملة ميكانيكية - دراسة الحركة على المستوي الأفقى والمائل

جمع وإعداد الأستاذ: مدور سيف الدين

التمرين (1):

A نطبق قوة جر \vec{F} يصنع حاملها مع الأفق زاوية $\alpha=45^\circ$ على الجسم (S) كتلته m=800 ليتحرك من الموضع \vec{F} بسر عة \vec{V}_A على المسار (ABC) كما يوضح الشكل (1) ، يخضع الجسم على الجزء (ABC) لقوة احتكاك شدّتها ثابتة :

: (AB) على الجزء (S) على الجزء -I

- (S) عطالة الجسم المطبقة على مركز عطالة الجسم الم
 - (S) بتطبيق القانون الثاني لنيوتن على الجسم (S):
- $\frac{dv}{dt} = \frac{-f + F.\cos(\alpha)}{m}$: بيّن أنّ المعادلة التفاضلية لسرعة مركز عطالة الجسم (S) تكتب بالشكل أ
 - استنتج العبارة الزمنية لسرعة الجسم (S) ?
 - . (AB) على الجزء (S) على الجزء (S) على الجزء (AB) على الجزء
 - أ- هل يتوافق البيان مع العبارة الزمنية للسرعة ؟ علل.
 - \cdot F بنم استنتج a ، v_A : ب اوجد قیمه کل من
 - ت- احسب المسافة المقطوعة AB?
 - (AB) على الجزء ((S)) على الجزء ((AB))?
 - الحسم حركته على الجزء (BC) بدون احتكاك و بدون قوة جر ليصل إلى II

$$BC=63~Cm$$
 ، $oldsymbol{eta}=60^\circ$ ، $g=10~m/s^2$: نعتبر $\overrightarrow{v_C}$ نعتبر

- 1- مثل القوى الخارجية المؤثرة على مركز عطالة الجسم (S) ؟
- 2- أحسب شدة القوة R التي تطبقها الطريق على الجسم في هذا الجزء
- $v_{c}=5\ m/s$: بتطبيق مبدأ انحفاظ الطاقة على الجملة (جسم + أرض) بين أن 3

سلطح $\overline{v_c}$ يصنع حاملها الزاوية β مع الأفق ليرتطم بسطح الموضع $\overline{v_c}$ يصنع حاملها الزاوية β مع الأفق ليرتطم بسطح الأرض عند الموضع D.

- 9- أدرس طبيعة حركة الجسم (S) في المعلم (cx; cy) المرتبط بمرجع غاليلي
 - ي أكتب المعادلات الزمنية x(t) و x(t) ، ثم أكتب معادلة المسار x(t)
 - $_{s}$ ما هو أقصى ارتفاع $_{s}$ يصل اليه الجسم بالنسبة للأرض $_{s}$
 - 4- أحسب المسافة الأفقية OD (المدى) ؟
- 5- أحسب زمن السقوط t_D في الموضع ، ثم استنتج السرعة عند هذا الموضع ؟

المستوى : سنة ثالثة ثانوي المستوى : سنة ثالثة ثالثة ثالثة العلوم الفيزيانية الوحدة 2 4 : تطور جملة ميكانيكية – دراسة الحركة على المستوي الأفقى والمانل

الشعبة: ع ت / تر / ريا جمع وإعداد الأستاذ: مدور سيف الدين

التمرين (2):

سيارة كتلتها M=4000~kg ، تصل إلى الموضع M=4000~kg ، حيث M=4000~kg ، سيارة كتلتها M=4000~kg ، تصل إلى الموضع M=4000~kg ، التواصل بعد ذلك حركتها باتجاه الموضع M=4000~kg أعلى المستوي المائل الشكل M=4000~kg ، نعتبر شدة قوة الاحتكاك M=400~kg ، التواصل بعد ذلك حركتها باتجاه الموضع M=400~kg ، نعتبر شدة قوة الاحتكاك M=400~kg ، نعتبر شدة وجهتها عكس جهة الحركة ، يمثل الشكل M=400~kg ، مخطط السرعة للسيارة بين M=400~kg

[. الدراسة على المستوي المائل:

- \vec{F} اتمم تمثیل القوی المؤثرة علی السیارة حیث الت \vec{F} هي القوة التي يؤثر بها محرك السیارة و شدتها ثابتة
- 2 باستعمال البيان : أ- حدد طبيعة الحركة ، معللا جوابك AB أحسب المسافة المقطوعة AB
 - 3- ما هو المرجع المناسب لدر اسة الحركة ؟ عرفه
 - $ec{F}$ بتطبیق القانون الثانی لنیوتن عبر عن شدة القوة بتطبیق الثانی f ، g ، lpha بدلالة بدلالة g ، lpha ثم أحسب شدتها

II. السيارة على المستوي الأفقي:

BC=200~m بعد قطع مسافة a=2,5 m/s^2 بتسارع ثابت BC=200~m بعد قطع مسافة

الشكل (2)

تمر أمام رادار ، و بعد مدة من السير صادف السائق حاجز للدرك الوطني ، أوقفوه وأبلغوه أنه

. تجاوز السرعة المحددة في الأشارة بـ km/h عند النقطة C و عليه دفع غرامة مالية

تقدم السائق بشكوى مفادها أن هناك خطأ في اشتغال الرادار وأنه لم يتجاوز السرعة km/h 100 كون أن سرعة السيارة كانت مضبوطة عند القيمة km/h عند القيمة بالسيارة و الذي كان يشتغل أثناء اجتيازه موقع الرادار.

- . v=f(t) مبدأ الفواصل و الأزمنة عند B ، جد المعادلتين الزمنيتين $\chi(t)$ ، v(t) ثم ارسم كيفيا منحنى B -1
 - 2- تأكد إذا تجاوز السائق السرعة المحددة أم لا .
 - 3 يمثل الجدول أدناه الأحكام المتعلقة بمخالفات تجاوز حد السرعة القانونية المرخص بها (رادار) أثناء تحديد اشارة السرعة ب $100 \ km/h$ عدد درجة المخالفة ومقدار الغرامة المالية

قيمة الغرامة	تكييف المخالفة	نسبة الزيادة في السرعة
2500 دج	مخالفة من الدرجة الثانية	أقل من 10 %
3000 دع	مخالفة من الدرجة الثالثة	من 10 % إلى 20 %
5000 دج	مخالفة من الدرجة الرابعة	من 20 % إلى 30 %
تعين بمحضر	جنحة	أكثر من 30 %

ثانوية : المجاهد قندوز علي ، سيدي خويلد – ورقلة

المستوى: سنة ثالثة ثانوي سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: ع ت / تر / ريا الوحدة 2_4: تطور جملة ميكانيكية – دراسة الحركة على المستوي الأفقي والمائل جمع وإعداد الأستاذ: مدور سيف الدين

الشكل (1)

التمرين (3): -

ندفع جسم كتلته g 200 من أسفل مستوي مائل أملس يميل عن الأفق بزاوية α وبسرعة $\overline{v_B}$ حتى النقطة A أين تتعدم سرعته ليعود بفعل ثقله فيمر بالنقطة B مرة أخرى الشكل α

: AB دراسة الحركة الجزء

v=f(t) يمثل الشكل (2) تغيرات سرعة المتحرك بدلالة الزمن (2) تغيرات سرعة المتحرك بدلالة الزمن (4P) يمثل الشكل (4P) م

- (AB) استنتج من البيان : قيمة السرعة الابتدائية ، مسافة الصعود (AB)
- -2 باستخدام القانون الثاني لنيوتن : أ- جد عبارة التسارع أثناء مرحلة الصعود ب استنتج طبيعة الحركة ، ج احسب زاوية الميل α
 - 4- بين أن الجسم يعود إلى النقطة (B) بنفس السرعة التي دفع بها
 - II-دراسة الحركة الجزء BC: يلاقي الجسم أثناء رجوعه بعد مروره بالنقطة
 - مستوي أفقي خشن BD في وجود قوى احتكاك f ثابتة فتتباطأ سرعته حتى يتوقف في النقطة C والتي تبعد عن B مسافة D
- BD المقطع المؤثرة على الجسم خلال حركته على المقطع f المسب المقطع B و B ، الحسب f بين B و B ، الحسب المجملة (جسم) بين B و B ، الحسب المجملة (جسم)
 - ت- احسب المدة الزمنية المستغرقة لقطع المسافة BC
- <u>ت</u>- اعد رسم مخطط السرعة الموضح في الشكل (2)، ثم مثل عليه ما تبقى من منحنى سرعة الجسم للمقطع (BC)
- الله حركة السقوط الشاقولي: يعترض مسار الجسم عند النقطة C فجوة فيسقط شاقوليا دون سرعة ابتدائية نحو سطح الأرض نعتبر النقطة C مبدأ المعلم C الشاقولي والموجه في نفس جهة الحركة ، كما يخضع الجسم أثناء سطح الأرض نعتبر النقطة C مبدأ C حيث C حيث C معامل الاحتكاك .الدراسة التجريبية مكنتنا من رسم سقوطه لقوة احتكاك C حيث C حيث C معامل الاحتكاك .الدراسة التجريبية مكنتنا من رسم
 - (3) المنحنى البياني a=g(v) المنحنى البياني
 - 1- بتطبيق القانون الثاني لنيوتن وبإهمال دافعة أرخميدس:
 - (S) الجسم المعادلة التفاضلية لتطور السرعة v للجسم المعادلة التفاضلية المعادلة المعادلة
 - حيث au ثابت الزمن المميز للحركة يطلب تحديد عبارته au
 - a=g(v) على البيان -2
 - أ- جد قيمة ثابت الزمن au المميز للحركة .
 - . v_{lim} استنتج قيمة السرعة الحدية
 - S تأكد من قيمة الكتلة للجسم S

المستوى: سنة ثالثة ثانوي سلسلة التمارين في مادة العلوم الفيزيانية الشعبة: ع ت / تر / ريا الوحدة 2 4: تطور جملة ميكانيكية _ دراسة الحركة على المستوي الأفقى والمائل جمع وإعداد الأستاذ: مدور سيف الدين

التمرين (4): ــ

يتحرك جسم صلب (S) نعتبره نقطيا كتلته m=10~Kg انطلاقا من الموضع A دون سرعة ابتدائية مرورا بالمواضع

: حيث (1) التي تقع في مستوي شاقولي الموضح في الشكل C ،B

- α مستوي خشن يميل عن الأفق بزاوية (AB) -
- $R=8,75\ m$ ربع دائرة شاقولي مركزها (O) ونصف قطرها (CD) -

 $g = 10 \, m/s^2$ يعطى

a=0.5g-2: على طول المسار (AB) إلى قوة احتكاك \vec{f} ، وعبارة تسارعه من الشكل (S) على طول المسار

(AB) أ- مثل القوى المطبقة على الجسم (S) أثناء انتقاله على المسار

f عين قيمتي كل من : الزاوية α و شدة قوة الاحتكاك ϕ

 $V_D=15\ m/s$ و (CD) ، يصل الجسم (S) الموضع (BC) بسرعة -2 - يهمل قوى الاحتكاك في الجزئبين (BC) و (CD) ، يصل

(C) بتطبيق مبدأ انحفاظ الطاقة على الجملة (جسم + أرض) بين الموضعين ((CD) أوجد سرعة الجسم في الموضع

. يغادر الجسم (S) النقطة (D) ليواصل حركته في الهواء تحت تأثير ثقله فقط.

اً- أدرس طبيعة حركة (S) بعد مغادرته النقطة (S)

(t=0) مبدأ الفواصل في اللحظة z(t) ، v(t) مبدأ الفواصل في اللحظة z(t) ، v(t)

(D) النقطة (S) الخسم الزمن يعود الجسم الخسطة (S) النقطة (S)

المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيائية الشعبة: ع ت / تر / ريا الوحدة 2_4: تطور جملة ميكانيكية – دراسة الحركة على المستوي الأفقي والمائل جمع وإعداد الأستاذ: مدور سيف الدين

	التمرين (1) :				
	عناصر الإجابة				
مجموع				رين (20 نقاط):	التم
		\vec{F} \square	$\overrightarrow{R} \wedge (S)$		I
1	1	α	Í	تمثيل القوى	1
1	1	$B ullet_{ $	P	تملیل الفوی	1
	- ,	→ →	بالتكامل : بالتكامل $v_{(t)} = rac{ ext{F} \cdot ext{Cos}(lpha) - f}{m_{ ext{S}}} t + C$	المعادلة التفاضلية	
1,5	0,25 0,25 0,25	$F \cdot \text{Cos}(\alpha) - f = m_S \cdot a_G$ $a_G = \frac{F \cdot \text{Cos}(\alpha) - f}{m_S}.$ $\frac{dv}{dt} = \frac{F \cdot \text{Cos}(\alpha) - f}{m_S}.$	t=0 : من الشروط الابتدائية $v_{(0)}=C=v_A$ $v_{(t)}=rac{ ext{F}\cdot ext{Cos}(lpha)-f}{m_S}t+v_A.$	العبارة الزمنية	2
	0,25 0,25 0,25	معادلته m_S البيان خط مستقيم لا يمر بالمبدأ معادلته $y = ax + b$ $v = at + b$	$a = \frac{6-2}{4-0} = a = 1$, $b = 2$ $v_{(t)} = 1 \cdot t + 2$ نعم البيان يو افق العبارة الزمنية		
3	0,25 0,25 0,5	$a=1$, v $a=\frac{F \cdot \cos(\alpha) - f}{m_S} = > F = \frac{a \cdot m + f}{\cos(\alpha)}$ d		a,v_A , F قيم	3
	0,25 0,25	$S = \frac{\left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right)}{2}$. $S = \frac{\left(\frac{2+4}{2}\right) \times \left(\frac{1}{2}\right)}{2}$. $S = \frac{(2+4)\times 6}{2} = \frac{16 m}{2}$.	طريقة 2 : محذوفية الزمن $v_B^2 - v_A^2 = 2a \times AB$. $AB = \frac{v_B^2 - v_A^2}{2a} = \frac{6^2 - 2^2}{2 \times 1} = \frac{16 \text{ m}}{16}$.	المسافة	
	0,75	كة مستقيمة متغيرة بانتظام (متسارعة)	المسار مستقيم و التسارع ثابت فإن حر	طبيعة الحركة	
0.5	0.5	$ \mathcal{D}_{\mathcal{I}}^{\overrightarrow{J}} \longrightarrow$		تمثيل القوى	II
0,5	0,5	$\sum \vec{F} = m \cdot \overrightarrow{a_G}$ $R + P = m_S \cdot \overrightarrow{a_G}$: CX بالاسقاط على المحور $R - P_{\mathcal{V}} = m_S \cdot a_{\mathcal{V}}$	\vec{R} \vec{y} \vec{S}	تملین العوی	1
1	0,25 0,25 0,25	$R - m \cdot g \cdot Cos(\beta) = 0$	y'/\overrightarrow{P} β β	شدة القوة R	2
1	0,25 0,25 0,5	$Ec_B + Epp_B = Ec_C + Epp_C$ $\frac{1}{2}mV_B^2 = \frac{1}{2}mV_C^2 + mgh.$ $V_B^2 = V_C^2 + 2g \cdot BC \cdot Sin(\beta)$	$V_C^2 = V_B^2 - 2g \cdot BC \cdot Sin(\beta)$ $V_C^2 = 6^2 - 2.10 \cdot 0,63 \cdot Sin(60)$ $V_C = 5 \text{ m/s}$	V_C السرعة	3
1,5	0,25 0,25	$ \sum_{\vec{F}} \vec{F} = m \cdot \overrightarrow{a_G} P = m_S \cdot \overrightarrow{a_G} $	$0 = m_S \cdot a_x => a_x = 0$ $P = m_S \cdot a_y => a_y = -g$	[دراسة طبيعة الحركة	III 1

ثانوية: المجاهد قندوز علي ، سيدي خويلد _ ورقلة

الشعبة: عت/تر/ريا

تصحيح سلسلة التمارين في مادة العلوم الفيزيائية

المستوى: سنة ثالثة ثانوي

جمع وإعداد الأستاذ: مدور سيف الدين

الوحدة 2_4: تطور جملة ميكانيكية - دراسة الحركة على المستوي الأفقي والمائل

	ı		=
	0,5	(CX, CY) بتا تا السفاط على المحورين (CX)	
	0,5	الحركة على (CX) مستقيمة منتظمة الحركة على (CY) مستقيمة متغيرة بانتظام $a_x = \frac{dv_x}{dv_x} = 0$ الشروط $v_{x,y} = C_1$	
	0,25	$a_x = rac{dv_x}{dt} = 0.$ الشروط $v_{x(t)} = C_1$ الانتدائية والمنافية و	
	0,25	$a_x=rac{dv_x}{dt}=0.$ $a_y=rac{dv_y}{dt}=-g.$ $v_{x(t)}=C_1$ الزبندائية $v_{y(t)}=-g.t+C_2$ $t=0$ $v_{x(t)}=0$ $v_{x(t)}=0$,
	0,25	$ v_{x_{(0)}} = C_1 = > $ $C_1 = v_{x_{(0)}} = V_0. Cos(\beta)$	1
	0,25	$v_{y_{(0)}} = -g(0) + C_2 = v_{y_{(0)}} = V_0.Sin(\beta)$	
	0,5	$v_{x_{(t)}} = V_0. Cos(\beta)$ $x_{(t)} = V_0. Cos(\beta).t + C_3$	
	0,5	$v_{y_{(0)}} = V_0.Cos(\beta)$ $v_{x_{(t)}} = V_0.Cos(\beta)$ $v_{y_{(t)}} = -g.t + V_0.Sin(\beta)$ $v_{y_{(t)}} = V_0.Cos(\beta)$ $v_{y_{(t)}} = -\frac{1}{2}g.t^2 + V_0.Sin(\beta).t + C_4.$	
4,5	0,25	$(x_{(0)} - y_0, y_0, y_0)$, $(y_0) + y_0 - y_0$	
7,3	0,25	$y_{(0)} = -\frac{1}{2}g.(0)^2 + V_0.Sin(\beta).(0) + C_4 = $ $C_4 = y_{(0)} = 0.$ $C_4 = 0$	
	0,5	3.5. 10.6.843 10	
	0,5	$y_{(t)} = -\frac{1}{2}g.t^2 + V_0.Sin(\beta).$ $x_{(t)} = V_0.Cos(\beta).t$	
	0,25	$x_{(t)} = V_0. Cos(eta). t$ $t = \frac{x_{(t)}}{V_0. Cos(eta)}.$ $y_{(t)}$ معادلة $y_{(t)}$	2
	0.25		
	0,25	$y_{(t)} = -\frac{1}{2}g.\left(\frac{x_{(t)}}{V_0.\cos(\beta)}\right)^2 + V_0.\sin(\beta).\left(\frac{x_{(t)}}{V_0.\cos(\beta)}\right).$	
	0,5	$y_{(t)} = \frac{-g.x_{(t)}^2}{2.V_0^2.Cos^2(\beta)} + Tan(\beta).x_{(t)}. y_{(t)} = -0.8.x_{(t)}^2 + 1.73.x_{(t)}.$	
	0,5	$v_{\overline{Y_S}} = -g. t_S + V_0. Sin(\beta) t_S = \frac{V_0. Sin(\beta)}{g}.$	
	0,25	$g. t_S = V_0. Sin(\beta)$ $t_S = \frac{5. Sin(60)}{10} = > t_S = 0.43 \text{ s}.$	
2	0,25	$y_S = -\frac{1}{2}g.t_S^2 + V_0.Sin(\beta).t_S.$ 3	3
	0,5	$y_S = -5.(0.43)^2 + 5.Sin(60).(0.43) = y_S = 0.93 \text{ m}.$	
	0,5	$h_S = h + y_S = BC \cdot Sin(\beta) + y_S = 0.54 + 0.93$ $h_S = 1.47 \text{ m}$	
	0,25	$y_D = -0.8. x_D^2 + 1.73. x_D$ $y_D = -h = -BC \cdot Sin(\beta) = -0.54$	
	0,5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2	0,5	$\frac{\Delta - b - 4(a \times b) - (-1,73) - 4(0,6 \times -0,34) - 4,72}{-b - \sqrt{\Delta} 1,73 - \sqrt{4,72}} 0.27 \dots$	ı
	0,25	$x_1 = \frac{1}{2a} = \frac{1}{2 \times 0.8} = -0.27 \text{m}$	
	0,5	$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1,73 - \sqrt{4,72}}{2 \times 0,8} = -0,27 \ m$. مقبول $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1,73 + \sqrt{4,72}}{2 \times 0,8} = 2,43 \ m$.	
	0,5	$ x_D = V_0. Cos(\beta). t_D$	
	0,3	$t_D = \frac{x_D}{V_0.\cos(\beta)} = \frac{2,43}{5.\cos(60)} = \frac{t_D}{5.\cos(60)} = \frac{t_D}{5.\cos(60)} = \frac{0.97 \text{ s}}{5.\cos(60)}$ السقوط	
2	0,5	$= V_0. Cos(\beta) = 5. Cos(60) = \frac{2.5 m/s}{10.00000000000000000000000000000000000$	5
	0,5	$v_{y_D} = -g.t_D + V_0.Sin(\beta) = -10 \times 0.97 + 5.Sin(60) = -5.36 \text{ m/s}$	
	0,5	$v_D = \sqrt{v_{x_D}^2 + v_{y_D}^2} = \sqrt{(2.5)^2 + (-5.36)^2} = v_D = 5.91 m/s.$	
		l V	

تصحيح سلسلة التمارين في مادة العلوم الفيزيانية الشعبة: ع ت / تر / ريا

المستوى: سنة ثالثة ثانوي

الوحدة 2_4: تطور جملة ميكانيكية - دراسة الحركة على المستوي الأفقي والمائل جمع وإعداد الأستاذ: مدور سيف الدين

التمرين (2) :				الت
دمة		عناصر الإجابة		
مجموع	مجزأة		رين: (07 نقاط)	التم
		•	<u>(07) : 0;;</u>	I
0,75	0,75	بما أن المسار AB مستقيم بما أن المسار	التمثيل	1
	0,25 0,25	وقيمة السرعة من خلال البيان ثابتة فإن الحركة مستقيمة منتظمة \overline{R}	طبيعة الحركة	
1	0,25 0,25	المسافة $=$ مساحة الشكل $S=$ عرض \times طول $S=$	المسافة المقطوعة	2
0,5	0,25 0,25	$S = 16 \times 12 = 192 m$ المرجع المناسب: المرجع السطحي الأرضي هو كل مرجع مبدأه نقطة ساكنة بالنسبة لسطح الأرض (يدور مع الأرض حول نفسها) و نعتبره عطاليا باهمال حركة الأرض خلال مدة الدراسة	المرجع	3
1	0,25 0,25 0,25 0,25 0,25	$\sum \vec{F}_{ext} = 0.$ $\vec{F} + \vec{P} + \vec{f} + \vec{R} = 0$ $\therefore xx'$ بالإسقاط على المحور $F = 4000.10.\sin(20) + 400$ $\Rightarrow F = 14080.8 N$	عبارة شدة القوة	4
	I			II
1,5	0,25 0,25 0,25 0,25	$ \begin{aligned} \frac{dv}{dt} &= a = 2,5. \\ v_{(t)} &= a \cdot t + C_1 \\ v_{(0)} &= C_1 \\ v_{(t)} &= a \cdot t + v_0 \\ v_{(t)} &= a \cdot t + v_0 \\ v_{(t)} &= 2,5 \cdot t + 16 \end{aligned} \qquad \begin{aligned} \frac{dx}{dt} &= v_{(t)} = a \cdot t + v_0. \\ x_{(t)} &= \frac{a}{2} \cdot t^2 + v_0 \cdot t + C_2 \\ x_{(0)} &= C_2 = 0 \\ x_{(0)} &= C_2 = 0 \\ x_{(t)} &= \frac{a}{2} \cdot t^2 + v_0 \cdot t. \\ x_{(t)} &= \frac{a}{2} \cdot t^2 + t_0 \cdot t. \end{aligned} $	المعادلتين الزمنيتين $x_{(t)}$, $v_{(t)}$	1
	0,5	بريقة $x_{(t)} = \frac{2.5}{2} \cdot t^2 + 16 \cdot t$.	منحنى السرعة	
1	0,25 0,25 0,25 0,25	$\frac{2.5}{2} \cdot t^2 + 16 \cdot t + x_{(t)} = 0.$ $\Delta = b^2 - 4 \cdot a \cdot c$ $\Delta = 16^2 - (4 \cdot 1,25 \cdot -200)$ $\Delta = 1256$ $t_1 = \frac{-b - \sqrt{\Delta}}{2 \cdot a} = \frac{-16 - \sqrt{1256}}{2 \cdot 1,25}.$ $t_2 = \frac{-b + \sqrt{\Delta}}{2 \cdot a} = \frac{-16 + \sqrt{1256}}{2 \cdot 1,25}.$ $t_2 = 7,77 \text{ s}$ \vdots $v_{(t)} = 2.5 \cdot t + 16$ $v_{(t)} = (2.5 \cdot 7,77) + 16$ $v_{(t)} = 35,44 \text{ m/s}$ $v_{(t)} = 35,44 \text{ m/s}$ $v_{(t)} = 35,44 \text{ m/s}$	حساب السرعة	2

الشعبة: ع ت / تر / ريا	تصحيح سلسلة التمارين في مادة العلوم الفيزيانية	المستوى: سنة ثالثة ثانوي
جمع وإعداد الأستاذ: مدور سيف الدين	ة ـ دراسة الحركة على المستوي الأفقي والمائل	الوحدة 2_4: تطور جملة ميكانيكية

		$v_{(t)} = 127,58 km/h$	$v_{(t)} = 127,58 km/h$		
1	0,25 0,25	$ \begin{array}{l} 100 \ km/h \rightarrow 100 \% \\ 27,58 \ km/h \rightarrow x \\ x = \frac{27,58 \times 100}{100} = 27,58 \%. \end{array} $	نحسب نسبة الزيادة في السرعة $\Delta v = 127{,}58-100$ $\Delta v = 27{,}58$ km/h	درجة المخالفة	3
	0,25 0,25		نسبة الزيادة في السرعة محصورة بين % الدرجة الرابعة ومقدار الغرامة 5000 د	مقدار الغرامة	

			. (2) *	<u>. 411</u>	
زمة	التمرين (3) :العلامة				
مجموع	مجزأة	عناصر الإجابة			
<u></u>	<u>J.</u>	:	رين :(06 نقاط)	التم	
			, , , ,	Ι	
0.5	0,25	$v_B = -6m/s$: قيمة السرعة الابتدائية		1	
0,5	0,25	$AB = \frac{1 \times 6}{2} = \frac{3 \text{m}}{2}$: AB			
1,25	0,25 0,25	$\sum_{\vec{P}} \vec{F}_{ext} = m\vec{a}$. $\sum_{\vec{P}} \vec{F}_{ext} = m\vec{a}$. $\vec{P} + \vec{R} = m\vec{a}$ $P \cdot \sin(\alpha) = ma$ $a = g \cdot \sin(\alpha)$	عبارة التسارع	2	
1,23	0,25	بما أن المسار مستقيم و $v < 0$ فإن الحركة مستقيمة متباطئةً بانتظام	طبيعة الحركة		
	0,5	$a = \frac{\Delta v}{\Delta t} = \frac{-6 - 0}{0 - 1} = \frac{6 \text{ m/s}^2}{6 \text{ m/s}^2}.$ $a = g. \sin(\alpha) \Rightarrow \sin(\alpha) = \frac{a}{g} = \frac{6}{10} = 0,6 \Rightarrow \alpha = 37^{\circ}.$	زاوية الميل α		
0,25	0,25	$v_B = 6 m/s$ $t = 2 s$ من البيان لما		3	
				II	
0,25	<mark>0,25</mark>	\overrightarrow{F}	تمثيل القوى	ĵ	
0,75	0,25 0,25	C بنطبیق مبدأ انحفاظ الطاقة علی الجملة (جسم) بین الموضعین $E_{BC}+W_{BC}(\vec{P})+W_{BC}(\vec{R})- W_{BC}(\vec{f}) =E_{CC}$ $v_C=0$ $w_{BC}(\vec{R})=0$ $w_{BC}(\vec{P})=0$	شدة قوة الاحتكاك	ŗ	
01	0,5	$\sum \vec{F}_{ext} = m \vec{a_1}$: $_1$ حساب النسارع $\vec{P} + \vec{R} + \vec{f} = m \vec{a_1}$: $_1$ على محور الحركة : $-f = m. \ a_1 \Rightarrow a_1 = \frac{-f}{m} = \frac{-1}{200 \times 10^{-3}} = -5 \ m/s^2$. المسار مستقيم وقيمة التسارع ثابتة سالبة و بالتالي فإن الحركة مستقيمة متباطئة $v_{(t)} = a_1 \cdot t + v_B$: $v_c = a_1 \cdot t_c + v_B$: c_1 c_2 : c_3	المدة الزمنية المستغرقة	ű	

المستوى: سنة ثالثة ثانوي تصحيح سلسلة التمارين في مادة العلوم الفيزيانية الشعبة: ع ت / تر / ريا

جمع وإعداد الأستاذ: مدور سيف الدين

الوحدة 2_4: تطور جملة ميكانيكية _ دراسة الحركة على المستوي الأفقي والمائل

	33 ·	ا المياليي = ارالله السرد عي المستري الوسي راستان	<u> </u>	<u> </u>
		$t_c = \frac{-v_B}{a_1} = \frac{-6}{-5} = \frac{1.2 \text{ s}}{5}.$		
0,5	0.5	$ \begin{array}{c} v(m/s) \\ 0,5 \\ 0 \end{array} $	رسم مخطط السرعة	ٿ
]	III
0,5	<mark>0,5</mark>	$\sum \vec{F}_{ext} = m\vec{a}$. $\vec{P} + \vec{f} = m\vec{a}$ $P - f = ma$: بالاسقاط على محور الحركة : $mg - kv = m\frac{dv}{dt}$ $\frac{dv}{dt} + \frac{k}{m}v = g$ $t = \frac{m}{k}$. $t = \frac{m}{k}$. $t = a + av + B$: البيان عبارة عن خط مستقيم معادلته من الشكل :	المعادلة التفاضلية	1
0,5	0,25	$A=rac{10-0}{0-20}=-0.5$	ثابت الزمن	2
0,25	0,25	$a=0\Rightarrow v_{lim}=20m/s$: من البيان	السرعة الحدية	
0,25	0,25	$\tau = \frac{m}{k} \Rightarrow m = \tau. k = 2 \times 0, 1 = 0, 2Kg = 200 g.$	التأكد من كتلة الجسم	

		التمرين (4) :
رمة (العلا	
مجموع	مجزأة	عناصر الإجابة
		التمرين (04 نقاط):
1,5	0,5	\vec{P}_y \vec{P}_x \vec{P}_x \vec{P}_x \vec{P}_x \vec{P}_x
حة: 6 / 6	الصف	ثانوية : المجاهد قندوز علي ، سيدي خويلد _ ورقلة

الشعبة: ع ت / تر / ريا	تصحيح سلسلة التمارين في مادة العلوم الفيزيانية	المستوى: سنة ثالثة ثانوي
جمع و إعداد الأستاذ: مدور سيف الدين	ـ در اسبة الحركة على المستوى الأفقى و المائل	الوحدة 2 4: تطور حملة ميكانيكية _

سيف الدين	ناذ: مدور	ملة ميكانيكية _ دراسة الحركة على المستوي الأفقي والمانل جمع وإعداد الأست	4_2 : تطور ج	الوحدة
		- الجملة المدروسة : جسم (s). - مرجع الدراسة : سطحي أرضى نعتبره غاليلي.		
		ر بي		
	0,25 0,25 0,25 0,25	$\sum \overrightarrow{F_{ext}} = m \vec{a}$. $\overrightarrow{P} + \overrightarrow{R} + \overrightarrow{f} = m \vec{a}$ بالمطابقة مع العلاقة المعطاة : ox بالمطابقة مع العلاقة المعطاة : ox بالمطابقة مع $a = g. \sin \alpha - \frac{f}{m}$: $\sin \alpha - f = ma$ $a = \frac{mg. \sin \alpha - f}{m}$ $a = g. \sin \alpha - \frac{f}{m}$: $\sin \alpha = 0.5 \rightarrow \alpha = 30^{\circ}$ $\frac{f}{m} = 2 \rightarrow f = 2m = 2 \times 10$ $\frac{f}{m} = 20 \ N$	ب ـ قیمتي α و f	
0,5	0,25 0,25	: D و C بتطبیق مبدا انحفاظ الطاقة علی الجملة (جسم+ارض) بین C و C_{c} بین C	سرعة الجسم في الموضع C	2
	0,25	الجملة المدروسة : جسم (s) مرجع الدراسة : سطحي أرضي نعتبره غاليلي القوى الخارجية المؤثرة : الثقل \vec{P} .	31	
2	0,25 0,25	$\sum \overline{F_{ext}} = m\vec{a}$ $\vec{P} = m\vec{a}$ $-p = ma$: oz بالاسقاط على المحور $-mg = ma$ $a = -g$ \vec{a} \vec{a} \vec{b} \vec{c}	أ ـ طبيعة حركة الجسم (s) بعد مغادرته النقطة D	3
	0,25	$a=-g$ نكامل الطرفين بالنسبة للزمن: $v(t)=-gt+c_1$ بالتكامل نجد: $z(t)=-\frac{1}{2}gt^2+v_D$ $t+c_2$ $t=0 ightarrow v=v_D$ $t=0 ightarrow z=0 ightarrow c=0$ $z(t)=-\frac{1}{2}gt^2+v_D$ $z(t)=-\frac{1}{2}gt^2+v_D$	ب ـ المعادلتين v(t) و z(t)	
	0,25 0,25	$z(t)$ عند $z_D=0$ عند $z_D=0$ بالتعويض في المعادلة $z_D=0$ نجد $z_D=0$ عند	ت ـ لحظة رجوع (s) الى D	