ROS2rapper インターフェース解説書

2024/JUL/16 株式会社アックス

| 1. 概要                                       | 3  |
|---------------------------------------------|----|
| 1.1. はじめに                                   | 3  |
| 1.2. ROS2ŁROS2rapper                        | 4  |
| 1.3. サポートしている機能                             | 5  |
| 1.3.1. トピックのパブリッシュ                          | 5  |
| 1.3.2. トピックの サブスクライブ                        | 5  |
| 1.3.3. UDPデータグラムの送信                         | 5  |
| 1.3.4. UDPデータグラムの受信                         | 5  |
| 1.4. 制限事項                                   | 6  |
| 1.5. ROS2•RTPS用語の対応                         | 6  |
| 2. アーキテクチャ                                  | 7  |
| 3. ROS2rapper IPとユーザ・ロジックの接続                | 11 |
| 3.1. 概要                                     | 11 |
| 3.2. ROS2rapperのクロック、機能の有効化など               | 12 |
| 3.3. Ethernetモジュールとの接続                      | 13 |
| 3.3.1. Ethernet MACとの接続                     | 14 |
| 3.3.2. PHYの接続                               | 15 |
| 3.3.3. パケット送信間隔パラメータの設定                     | 15 |
| 3.4. ROS2rapperのポートの設定                      | 16 |
| 3.5. アプリケーション・データ・レジスタ(送信)の用意と接続            | 17 |
| 3.6. アプリケーション・データ・メモリの用意と接続                 | 18 |
| 3.7. IP受信ペイロード・メモリの用意と接続                    | 19 |
| 3.8. UDP送信メモリの用意と接続                         | 20 |
| 3.9. UDP受信メモリの用意と接続                         | 21 |
| 4. ROS2通信                                   | 22 |
| 4.1. ROS2rapper各機能の有効化                      | 22 |
| 4.2. パブリッシャの送信メッセージ(アプリケーション・データ・レジスタ)の変更   | 23 |
| 4.3. サブスクライバの受信メッセージ(アプリケーション・データ・メモリ)の読み出し | 25 |
| 5. UDPデータグラム通信                              | 26 |
| 5.1. UDPデータグラムの送信                           | 26 |
| 5.2. UDPデータグラムの受信                           | 27 |
| 6. 参考文献                                     | 28 |
| 7. 付録                                       | 29 |
| 7.1. ros2_etherモジュールのインターフェース仕様             | 29 |
| 7.2. ディレクトリ構成                               | 35 |
| 7.3. RTPS通信で使用されるUDPポート番号 一覧                | 37 |

# 1. 概要

## 1.1. はじめに

"ROS2rapper"は、ROS2の通信のRTPSプロトコルなどのハードウェア実装であり、HLS C++と Verilogで記述されている。

本文書では、ROS2rapperを利用したシステムの設計を行うユーザのための情報を提供する。

## 1.2. ROS2 & ROS2 rapper

ROS2採用システムにおけるROS2rapperの位置づけを、Fig.1.1に示す。着色された部分が、ROS2rapperの各モジュールである。

ROS2rapperは、RTPS/UDP/IPプロトコルを実装している。それに加えて、ROS2rapperのIP及び実装サンプルには通信の物理層にEthernetを用いた実装も含んでいる。

なお、Ethernet以外の物理層も使用可能である。そのためには、物理層およびROS2rapperとのインターフェース部分を、別途実装すること。



Fig.1.1 ROS2アーキテクチャにおけるROS2rapperの位置づけ

### 1.3. サポートしている機能

本IPが提供する機能をTable 1.1に示す。

本ROS2rapper IPは、下記の各機能を独立して個々に有効化/無効化できる。

- ROS2パブリッシュ機能
- ROS2サブスクライブ機能
- Ethernet

Table 1.1 サポート機能一覧

| 機能    |                      | 内容               | 備考                            |
|-------|----------------------|------------------|-------------------------------|
| プロトコル | RTPS<br>SPDP<br>SEDP | ROS2トピックのパブリッシュ  |                               |
|       | SEDP                 | ROS2トピックのサブスクライブ |                               |
|       | UDP/IP               | UDPデータグラムの送信     |                               |
|       |                      | UDPデータグラムの受信     |                               |
| 通信物理層 | Ethernet             | Ethernet層        | Ethernet以外<br>の物理層に差し<br>替え可能 |
|       | ARP                  | 物理アドレス解決         |                               |

#### 1.3.1. トピックのパブリッシュ

ROS2ネットワークへトピックをパブリッシュする。トピックをサブスクライブしたすべてのノードに対し、一定周期でメッセージを送信する。メッセージの型は任意であるが、ユーザが適切にシリアライズする必要がある。

#### 1.3.2. トピックのサブスクライブ

ROS2ネットワーク上のトピックをサブスクライブする。パブリッシャからメッセージが届くと、その内容をメモリ・インターフェースで外部メモリに書き出し、通知信号をアサート(「1」と)する。

#### 1.3.3. UDPデータグラムの送信

任意のペイロードを持つUDPデータグラムを送信する。ユーザは、宛先IPアドレス・宛先ポート・送信元ポートを指定できる。

#### 1.3.4. UDPデータグラムの受信

指定したポート番号宛のUDPデータグラムを受信することができる。ポート番号は1つのみ指定できる。RTPS通信に支障が出るため、RTPS通信で使用されるポート番号(付録7.3参照)は指定

してはならない。なお、受信するUDPデータグラムはペイロード長が248バイト以内でなければならない。その長さを超えるデータグラムは、破棄される。

### 1.4. 制限事項

本ROS2rapperのIPには、以下の制限事項が存在する。

- ノード数は1個
- パブリッシュ/サブスクライブできるトピックは合計4つ
- 通信相手のノードの離脱は検出できない
- メッセージ・サイズや通信可能ノード数などの制限(定数一覧を参照)

### 1.5. ROS2・RTPS用語の対応

本IPはRTPSの実装であるが、本書では主に、対応するROS2の用語で説明する。 なお、本文中やソースコード中に、一部RTPSの用語を使用している箇所がある。用語の読み替 えのため、以下にその対照表を示す。

Table 1.2 ROS2とRTPSの用語の対応

| ROS2用語     | RTPS用語           |
|------------|------------------|
| Node       | Participant      |
| Message    | Application Data |
| Topic      | Endpoint         |
| Publisher  | Writer           |
| Subscriber | Reader           |

# 2. アーキテクチャ

ROS2rapperの内部の機能ブロック図を、Fig. 2.1に示す。



Fig. 2.1 ROS2rapper機能ブロック図

通信の物理層をEtherrnetとして、ROS2rapperを使用する時(ros2\_ether)のモジュール構成図を、Fig. 2.2に示す。



Fig.2.2 ROS2rapperのEthernet使用時のモジュール構成

以下に、主なモジュールの概要を記述する。

• ros2 ether

ros2\_etherは、下記のサブ・モジュールから成る。

- ROS2rapper
  - RTPS/UDP/IP通信 各層の実装
- Ethernet MAC
  - EthernetのMAC層

verilog-ethernetを使用

https://github.com/alexforencich/verilog-ethernet

- 送信FIFO
  - Ethernet MACへのEthernetフレームをバッファリングするためのFIFO
- 受信FIFO
  - Ethernet MACからのEthernetフレームをバッファリングするためのFIFO
- アプリケーション・データ・レジスタ(送信) ROS2パブリッシャとして送信するデータを保持するレジスタまたはメモリ。ユーザ・ロジックで用意する。
- アプリケーション・データ・メモリ(受信) ROS2サブスクライバとして受信したデータを保持するメモリ。ROS2rapper IPから書き込まれる。ユーザ・ロジックで用意する。
- UDP送信メモリ

UDPデータグラムとして送信するデータを保持するメモリ。ユーザ・ロジックで用意する。

● UDP受信メモリ

受信したUDPデータグラムを保持するメモリ。ROS2rapper IPから書き込まれる。ユーザ・ロジックで用意する。

● IP受信ペイロード・メモリ

受信したIPパケットのフラグメントを格納して、全フラグメントの到着を待ち合わせるためのIP受信用のメモリ。

ユーザは、このメモリを用意し、接続しなければならない。

○ ユーザが用意すべきメモリの大きさは、バイト単位で、

MAX\_PENDINGS × IP\_MAX\_PAYLOAD\_LEN × MAX\_IP\_FRAGMENTS で計算できる。

定数のそれぞれの意味は次の通り。

- MAX\_PENDINGS、IP\_MAX\_PAYLOAD\_LEN、
  MAX\_IP\_FRAGMENTSの積で計算される。定数のそれぞれの意味は次
  の通り。
- MAX\_PENDINGS: 同時にIPフラグメント組み立て待ちを行えるIPデータ グラムの個数
- IP MAX PAYLOAD LEN:最大IP通信ペイロードサイズ
- MAX IP FRAGMENTS:最大IPフラグメント数
- デフォルト値はTable A-2を参照のこと。
- フラグメント化されないUDP受信のみ、または送信のみを行う場合は、このIP受信ペイロード・メモリは不要
- ユーザ・ロジック

ユーザの実現した機能を実装した論理であり、各モジュールの初期化や送受信メッセージの作成、送受信を行う。

- アプリケーション・データ・レジスタ(送信)
  - パブリッシュするメッセージの記憶域
- アプリケーション・データ・メモリ(受信)
  - サブスクライブしたトピックより受信したメッセージの記憶域

## 3. ROS2rapper IPとユーザ・ロジックの接続

#### 3.1. 概要

ここでは、ユーザ・ロジックを作成する開発者向けに、本ROS2rapper IPとユーザの論理(ユーザ・ロジック)を接続するための開発について説明する。

ROS2rapper IPには外部からクロックを与えること。

ROS2rapper IPの入力ポートは信号線であるから、適宜ユーザ・ロジックなどにレジスタ(D Flip Flop)を設けるなどして値を保持して、ポートへの信号を安定供給しなければならない。ポートに与える信号の変化は、ROS2rapperに与えるクロックに同期していること。複数ビットからなるポートや信号線は、LSB 0(最下位ビットが、ビット番号0)である。

開発の概略手順は、以下である。

- 1. 次のVerilogヘッダファイルをインクルードする。
  - ros2rapper/src/ros2rapper/include/ros2\_config.vh
  - ros2rapper/src/ether/include/ros2\_ether\_config.vh
- 2. ros2 ether.vにあるros2 etherをインスタンス化する。
  - その定義はros2rapper/src/ether/rtl/ros2 ether.vにある
  - ros2\_etherモジュールのポートとの接続、IP受信ペイロード・メモリとの接続を行う

次節以降ではFPGA(ASIC)へROS2rapperを接続する上での要点と、ユーザ・ロジック作成上の留意点やヒントとなる情報を記述する。

実装例として、examplesディレクトリ中の以下のコードを参照のこと。

- topic-pub-sub/top.v:トピックのパブリッシュ/サブスクライブの実装サンプル
- udp-tx-rx/top.v : UDPパケット送受信の実装サンプル

付録には以下の技術情報や、参考情報へのリンクを記述する。

- ROS2rapperのIPで、Fig2.2に示した ros2 etherモジュールのポート仕様
- 同ポート使用一覧表中の定数と設定の注意事項
- 参考文献、特に以下の技術情報へのリンク
  - ノード名・トピック名・トピック型名の制限:ROS2やRTPSの仕様書
  - アプリケーションデータのシリアライズ仕様:OMGの仕様書

## 3.2. ROS2rapperのクロック、機能の有効化など

#### 3.2.1 ROS2rapperのクロック

ROS2rapper IPへのクロック clkは、外部から供給する。 クロック周波数は、50MHz以上が望ましい。

#### 3.2.2 ROS2rapperのリセット

ROS2rapper IPのリセットはrst\_nを0にすることで行われる。rst nは非同期でよい。

#### 3.2.2 ROS2rapper各機能の有効化

先述のとおり、本ROS2rapper IPは、下記の各機能を独立して個々に有効化/無効化できる。

- ROS2パブリッシュ機能, ros2sub enにより制御
- ROS2サブスクライブ機能, ros2pub enにより制御
- Ethernet MAC, ether\_enにより制御

パブリッシュとサブスクライブは独立して個々に、または同時に使用できる

ROS2rapperの各機能を有効化するには、順序がある。

後述する各機能のポートの設定を行った上で、

物理通信手段(本実装サンプルではEther MAC)を有効化した後に、

ROS2のパブリッシュ、あるいはサブスクライブの機能の有効化を行わなければならない。

Table 3.1. ROS2rapperシステム・ポートの設定例

| ROS2rapperクロック/リセット |                            |      |                                                                        |
|---------------------|----------------------------|------|------------------------------------------------------------------------|
| ポート名                | 方向<br>(ROS2rapper<br>から見て) | ビット幅 | 説明                                                                     |
| clk                 | input                      | 1    | クロック(50MHz以上)                                                          |
| rst_n               | input                      | 1    | リセット(0でアサート)                                                           |
| ros2pub_en          | input                      | 1    | トピックのパブリッシュを有効にす<br>る(1でアサート)                                          |
| ros2sub_en          | input                      | 1    | サブスクライブを有効にする(1でア<br>サート)                                              |
| ether_en            | input                      | 1    | Ethernet MACを有効にする(1でア<br>サート)。 ether_enを一度アサートした<br>後、デアサート(0)してはならない |

# 3.3. Ethernetモジュールとの接続

ethernetモジュールとの接続は下記の2つがある

- Ethernet MAC
- PHY

#### 3.3.1. Ethernet MACとの接続

下記のポートはEthernet MACを制御する。

ユーザ・ロジックを各ポートに接続して、使用するネットワーク環境に応じた設定値を与える。 Ethernet MACを有効化するには、ポートのether\_enをアサート(1)する。 ether\_enは一度アサートしたら、デアサート(0)してはならない。

- Ethernet・IPプロトコル ether\_en mac\_addr ip\_addr gateway\_ip\_addr subnet\_mask
- ARP arp\_req\_retry\_count arp\_req\_retry\_interval arp\_req\_timeout

実装サンプルではROS2rapperは通信にEthernet MACを使用するため、Ethernet MACに適切な値を与えている。

設定例をTable 3.2.に記述する。

Table 3.2. Ethernet MAC関連のポートの設定例

| ポート名                   | 設定値の例                          | 説明                                                                          |
|------------------------|--------------------------------|-----------------------------------------------------------------------------|
| ether_en               | 1                              | Ethernet MAC有効(すべ<br>ての設定値が与えられてからアサート(1)すること。ア<br>サート後にデアサート(0)し<br>てはならない |
| mac_addr               | 48'h00_00_00_00_00_02          | 6バイト                                                                        |
| ip_addr                | {8'd100, 8'd1, 8'd168, 8'd192} | 192.168.1.100の場合                                                            |
| gateway_ip_addr        | {8'd1, 8'd1, 8'd168, 8'd192}   | 192.168.1.1の場合                                                              |
| subnet_mask            | {8'd0, 8'd255, 8'd255, 8'd255} | 255.255.255.0の場合                                                            |
| arp_req_retry_count    | 4                              | ARPの試行の最大回数                                                                 |
| arp_req_retry_interval | (125000000*2)                  | 単位:クロック数                                                                    |
| arp_req_timeout        | (125000000*30)                 | 単位:クロック数                                                                    |

#### 3.3.2. PHYの接続

クロック、リセット、Ethernet PHYの各端子とは以下のポートで接続する。 PHYのリファレンス・クロックは、ユーザ・ロジックで25MHzを生成して供給すること。

Table 3.3. クロック、リセット、Ethernet PHYのポート

| Ethernet MII |                            |      |                      |
|--------------|----------------------------|------|----------------------|
| ポート名         | 方向<br>(ROS2rapper<br>から見て) | ビット幅 | 説明                   |
| phy_rx_clk   | input                      | 1    | Ethernet MII 受信クロック  |
| phy_rxd      | input                      | 4    | Ethernet MII 受信データ   |
| phy_rx_dv    | input                      | 1    | Ethernet MII受信データ有効  |
| phy_rx_er    | input                      | 1    | Ethernet MII 受信エラー   |
| phy_tx_clk   | input                      | 1    | Ethernet MII 送信クロック  |
| phy_txd      | output                     | 4    | Ethernet MII 送信データ   |
| phy_tx_en    | output                     | 1    | Ethernet MII 送信イネーブル |
| phy_rst_n    | output                     | 1    | Ethernet MII リセット    |

#### 3.3.3. パケット送信間隔パラメータの設定

ros2rapper\_etherモジュールのパラメータで、パケット送信間隔を設定できる。パラメータの一覧はTable A-2を参照のこと。

RTPSの制御パケットの送信間隔は、通信相手検出までの時間やネットワーク帯域に応じて変更すること。

アプリケーション・データのパケットの送信間隔は、ROS2rapperのトピックをサブスクライブしたノードにメッセージが届く間隔である。アプリケーションに応じて変更すること。

# 3.4. ROS2rapperのポートの設定

ROS2rapperの制御は、ユーザ・ロジックを、下に示すポートに接続し、適切な値を与えることで行う。

Table 3.4. ROS2rapperのポートの設定例

| ポート名                         | 設定値の例                          | 説明                               |
|------------------------------|--------------------------------|----------------------------------|
| ros2_rx_udp_port             | 1234                           | UDP受信したいポート番号                    |
| ros2_node_udp_port           | 52000                          |                                  |
| ros2_port_num_seed           | 7400                           | 計算式:(ROS2のDomain<br>ID)*250+7400 |
| ros2_guid_prefix             | 0x010f37adde09000001000000     |                                  |
| ros2_node_name_len           | 19                             | 単位:バイト数<br>('\0'を含める)            |
| ros2_pub_topic_name_len      | 11                             | 単位:バイト数<br>('\0'を含める)            |
| ros2_pub_topic_type_name_len | 29                             | 単位:バイト数<br>('\0'を含める)            |
| ros2_pub_app_data_len        | 25                             | 単位:バイト数                          |
| ros2_node_name               | "elpmaxe_reppar2sor"           |                                  |
| ros2_pub_topic_name          | "rettahc/tr"                   |                                  |
| ros2_pub_topic_type_name     | "_gnirtS::_sdd::gsm::sgsm_dts" |                                  |
| ros2_pub_app_data            | "!dlrow reppar2SOR ,olleh"     |                                  |

## 3.5. アプリケーション・データ・レジスタ(送信)の用意と接続

アプリケーション・データ・レジスタは、ROS2rapperがパブリッシュしたトピックとして送信するデータを保持するレジスタである。

ROS2rapper IPは、パブリッシャ動作時に、外部へ送出するメッセージをアプリケーション・データ・レジスタから得る。

アプリケーション・データ・レジスタは、ユーザ・ロジックとして、メモリまたはD-FFで実現して用意し接続する。

アプリケーション・データ・レジスタは、ポートros2 pub app dataと接続する。

なお、アプリケーション・データ・レジスタ(ros2\_pub\_app\_dataの値)の変更には、後述の手順が必要である。

送信メッセージros2 pub app dataの、データの並びは次のとおり

- 1バイト中のビットのならび: LSB 0
- バイト単位で送出される
  - データを整数とした場合のバイト・オーダ: Little Endian固定

ros2\_pub\_app\_dataにセットするアプリケーション・データは下記の順序とする。

- ros2\_pub\_app\_data[7:0] が アプリケーション・データの1バイト目
- ros2 pub app data[15:8] が アプリケーション・データの2バイト目
- ..

#### ×注意

データが文字列である場合、user\_defined\_reg[63:56]を文字列の先頭として、

ros2\_pub\_app\_data[63:0]=user\_defined\_reg[63:0] **のように接続すると、送出されるデータは普通人が期待するものとは逆順となってしまう。よって、** 

のように、するとよい。

### 3.6. アプリケーション・データ・メモリの用意と接続

アプリケーション・データ・メモリは、ROS2rapperがサブスクライブしたトピックから受信したメッセージを保持するRAMである。

ROS2rapper IPは、サブスクライバ動作時に、外部から受信したメッセージをアプリケーション・データ・メモリに格納する。

先述のとおり、アプリケーション・データ・メモリは、ユーザ・ロジックとして、メモリまたはD-FFで実現して用意し接続する。

アプリケーション・データ・メモリは、ポートros2\_sub\_app\_data\_{addr, ce, we, wdata}と接続する。

なお、アプリケーション・データ・メモリの読み出しには、後述の手順が必要である。

アプリケーション・データ・メモリは、以下の仕様とすること。

- ポート数: 1RW
- データ幅: 8ビット
- アドレス幅: \$clog2(ROS2\_MAX\_APP\_DATA\_LEN) ビット
- ワード数:ROS2 MAX APP DATA LEN
- クロックに同期して読み書きを行う
- 以下のポートを持つ
  - ce:チップイネーブル(1でアサート)
  - we:ライト・イネーブル(1でアサート)
  - o addr: アドレス
  - wdata: 書き込みデータ
  - rdata: 読み出しデータ(出力)
- ceがアサート(1)されているとき、アドレスaddrのデータをrdataに出力する。
- ceがアサート(1)されていて、かつweがアサート(1)されているとき、アドレスaddrにwdata の値を書き込む。

### 3.7. IP受信ペイロード・メモリの用意と接続

IP受信ペイロード・メモリは、ROS2機能有効時に受信したIPフラグメント組み立てに使用する。IP受信ペイロード・メモリのサイズは、2960バイト程度が望ましい。

- IP受信ペイロード・メモリは、ポートip\_payloadsmem\_{addr, ce, we, wdata, rdata}と接続する。
- IP受信ペイロード・メモリは、以下の仕様とすること。
  - ポート数: 1RW
  - データ幅: 8ビット
  - アドレス幅: \$clog2(PAYLOADSMEM\_DEPTH) ビット
  - ワード数: PAYLOADSMEM DEPTH
  - クロックに同期して読み書きを行う
  - 以下のポートを持つ
    - ce:チップイネーブル(1でアサート)
    - we:ライト・イネーブル(1でアサート)
    - addr: アドレス
    - wdata: 書き込みデータ
    - rdata: 読み出しデータ(出力)
  - ceがアサート(1と)されているとき、アドレスaddrのデータをrdataに出力する。
  - ceがアサート(1と)されていて、かつweがアサート(1と)されているとき、アドレス addrにwdataの値を書き込む。

### 3.8. UDP送信メモリの用意と接続

UDP送信メモリは、ROS2rapperが送信するUDPデータグラムを保持するRAMである。 ROS2rapper IPは、udp\_txbuf\_relがアサート(1と)されると、UDP送信メモリ内のデータグラムを送信する。

UDP送信メモリは、ユーザ・ロジックとして、メモリまたはD-FFで実現して用意し接続する。UDP送信メモリは、ポートudp\_txbuf\_{addr, ce, we, rdata}と接続する。なお、UDP送信メモリへの書き込みには、後述の手順が必要である。

アプリケーション・データ・メモリは、以下の仕様とすること。

- ポート数: 1RW
- データ幅: 32ビット
- アドレス幅: \$clog2(ROS2\_MAX\_APP\_DATA\_LEN) ビット
- ワード数:2^UDP TXBUF AWIDTH
- クロックに同期して読み書きを行う
- 以下のポートを持つ
  - ce:チップイネーブル(1でアサート)
  - we:ライト・イネーブル(1でアサート)
  - o addr: アドレス
  - wdata: 書き込みデータ
  - rdata: 読み出しデータ(出力)
- ceがアサート(1)されているとき、アドレスaddrのデータをrdataに出力する。
- ceがアサート(1)されていて、かつweがアサート(1)されているとき、アドレスaddrにwdata の値を書き込む。

### 3.9. UDP受信メモリの用意と接続

UDP受信メモリは、設定されたUDP受信ポートへ届いたデータグラムを保持するRAMである。 ROS2rapper IPは、外部から受信したUDPデータグラムをUDP受信メモリに格納する。

UDP受信メモリは、ユーザ・ロジックとして、メモリまたはD-FFで実現して用意し接続する。 UDP受信メモリは、ポートudp\_rxbuf\_{addr, ce, we, wdata}と接続する。 なお、UDP受信メモリの読み出しには、後述の手順が必要である。

アプリケーション・データ・メモリは、以下の仕様とすること。

- ポート数: 1RW
- データ幅: 32ビット
- アドレス幅: \$clog2(ROS2\_MAX\_APP\_DATA\_LEN) ビット
- ワード数: 2^UDP\_RXBUF\_AWIDTH
- クロックに同期して読み書きを行う
- 以下のポートを持つ
  - o ce:チップイネーブル(1でアサート)
  - we:ライト・イネーブル(1でアサート)
  - o addr: アドレス
  - wdata: 書き込みデータ
  - rdata: 読み出しデータ(出力)
- ceがアサート(1)されているとき、アドレスaddrのデータをrdataに出力する。
- ceがアサート(1)されていて、かつweがアサート(1)されているとき、アドレスaddrlこwdata の値を書き込む。

## 4. ROS2通信

## 4.1. ROS2rapper各機能の有効化

先述のとおり、本ROS2rapper IPは、下記の各機能を独立して個々に有効化/無効化できる。

- ROS2パブリッシュ機能
- ROS2サブスクライブ機能
- Ethernet

ROS2rappaerの機能を有効化する前に、Ethernet MACなど物理層の有効化や初期化が必要である。

つまり、本実装サンプルでは先述のポートの設定を行った上で、

Ether MAC(物理通信手段)を有効化した後、ROS2rapperのROS2のパブリッシュ、あるいはサブスクライブ機能の有効化を行う。

#### 機能の有効化は次のとおり。

- トピックのパブリッシュを有効にする(すなわちパブリッシャとして使用する)には ros2pub\_enを、アサート(1と)する。
- サブスクライブを有効にする(すなわちサブスクライバとして使用する)にはros2sub\_enを、それぞれアサート(1と)する。
- パブリッシュとサブスクライブは独立に個々に、または同時に使用できる。
- Ethernet MACを有効化するには、ポートのether\_enをアサート(1と)する。
  - ether enを一度アサートしたら、デアサート(0と)してはならない。

なお、サンプル実装では、ros2\_etherと接続するポートはレジスタとしてユーザ・ロジックに中に実装して、接続している。

## 4.2. パブリッシャの送信メッセージ(アプリケーション・データ・レジスタ)の変更

パブリッシャ有効時には、ユーザ・ロジック内に用意された、アプリケーション・データ・レジスタからのデータを、ROS2送信メッセージとして自動的に周期的に送出する。

アプリケーション・データ・レジスタの出力は、ポートros2\_pub\_app\_dataの入力としなければならない。

送信内容(ros2\_pub\_app\_dataの入力)を変更するためには、後述の手続きが必要である。

ユーザ・ロジックは、ros2\_pub\_app\_dataの入力を変更する前に、ROS2rapperより「メッセージ変更権」を取得する必要がある。これは、変更途中のメッセージがROS2rapperにより読み出され、送信されることを防ぐためである。

下記のポートが、メッセージ変更権の制御のために用意されている。

- ros2 pub app data reg(ROS2rapperの入力):メッセージ変更権を要求する
- ros2 pub app data grant(ROS2rapperからの出力):メッセージ変更権が与えられた
- ros2\_pub\_app\_data\_rel(ROS2rapperの入力): メッセージ変更権を解放

送信メッセージ(ros2 pub app data入力)変更時のポート操作手順を以下に記述する。

- 1. ros2\_pub\_app\_data\_reqをアサート(1と)して、メッセージ変更権を要求する
- 2. メッセージ変更権を取得できた場合、次のサイクルでros2\_pub\_app\_data\_grantがアサート(1と)される。
- 3. 当該信号がアサートされていなければ1.へ戻る
- 4. メッセージの変更を行う。
- 5. ros2\_pub\_app\_data\_relを1クロックの間アサート(1と)し、メッセージ変更権を解放する。

送信アプリケーション・データ・レジスタに書き込むアプリケーション・データのフォーマットは、 Extensible and Dynamic Topic Types for DDS 仕様(参考文献[2])の、Classic CDR representation with Little Endian encodingに従うこと。エンコーディングの詳細は、参考文献[2] 7.4.3.5節のエンコーディング・ルールを参照すること。

1バイト中のビットの並びはLSB 0である。バイト・オーダはリトル・エンディアンでなければならない。

### 例) 32ビット整数x2(0x12345678, 0xaabbaabb)を含むアプリケーション・データ

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| 78     | 56     | 34     | 12     | bb     | aa     | bb     | aa     |
|        |        |        |        |        |        |        |        |

32ビット整数 "0x12345678"

32ビット整数 "0xaabbaabb"

例) 文字列"hello, world!"を含むアプリケーション・データ

| Byte 0 | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 | Byte 9 | Byt e 10 | Byte 11 | Byte 12 | Byte 13 | Byt e 14 | Byt e 15 | Byt e 16 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|---------|---------|----------|----------|----------|
| 0d     | 00     | 00     | 00     | 68     | 65     | 6c     | 6c     | 6f     | 2c     | 20       | 77      | 6f      | 72      | 6c       | 64       | 21       |
|        |        |        |        |        |        |        |        |        |        |          |         |         |         |          |          |          |
|        | )      |        |        |        |        |        |        |        |        | $\vee$   |         |         |         |          |          |          |
|        | 文字列    | 長 13   |        |        |        |        |        | 文      | 字列 "   | hello, v | vorld!" |         |         |          |          |          |

4.3. サブスクライバの受信メッセージ(アプリケーション・データ・メモリ)の読み出し

サブスクライバ機能は、サブスクライブしたデータを受信し、メモリ・インターフェースを通して、 ユーザ・ロジック内に用意されたアプリケーション・データ・メモリに受信データを書き込む。

受信したメッセージを読み出す際に「メッセージ読出し権」の取得が必要となる。これは、ユーザ・ロジックのメッセージ読み出し中に、ROS2rapper IPが、次の受信メッセージでメモリを上書きしないための手順である。

下記のポートが、メッセージ変更権の制御のために用意されている。

- ros2\_sub\_app\_data\_req(ROS2rapperの入力): メッセージ読出し権を要求する
- ros2 sub app data grant(ROS2rapperからの出力):メッセージ読出し権が与えられた
- ros2 sub app data re(ROS2rapperの入力)I: メッセージ読出し権を解放

受信メッセージ読出し時のポート操作手順を以下に述べる。

- 1. ros2 sub app data regをアサート(1と)する。
- 2. メッセージ読み出し権を取得できた場合、次のサイクルでros2\_sub\_app\_data\_grantがアサート(1と)される。
- 3. 当該信号がアサートされていなければ1.へ戻る
- 4. メッセージ読出しを行う。
- 5. ros2\_sub\_app\_data\_relを1クロックの間アサート(1と)し、メッセージ読出し使用権を解放する。

受信アプリケーション・データ・メモリに受信したアプリケーション・データのフォーマットおよびバイト・オーダは、ros2\_sub\_app\_data\_rep\_idポートより出力される "Representation Identifier" の値で判定する。Representation Identifierの値については、参考文献[3]のTable 10.3を参照すること。アプリケーション・データのフォーマットについては、参考文献[2] 7.4節を参照すること。

## 5. UDPデータグラム通信

## 5.1. UDPデータグラムの送信

ROS2rapperでは、シンプルなUDPデータグラムの送信を行うことができる。 下記のポートが、UDPデータグラム送信のために用意されている。

- udp\_txbuf\_grant(ROS2rapperからの出力): UDP送信メモリが空になったとき、アサート (1と)される
  - このとき、UDP送信メモリに送信データを置くことが可能である
- udp\_txbuf\_rel(ROS2rapperの入力):UDP送信メモリ中のUDPデータグラムの送信開始
  - 1クロックの間アサート(1と)する。

udp\_txbuf\_grantがデアサート(0)のときはUDP送信メモリのデータを更新してはならない。

#### 以下、手順を述べる。

- 1. ポート: udp\_txbuf\_grantが1になるまで待つ。
- 2. UDP送信メモリに送信するUDPデータグラムを書き込む。
- 3. ポート: udp txbuf relを1クロックの間アサートすると、送信が開始される。

UDP送信メモリ中のデータの形式をFig. 4.1.に示す。



なお、Payload Lengthフィールドの値は、244以下でなければならない。

Fig. 4.1. UDP送信メモリ中のデータの形式

# 5.2. UDPデータグラムの受信

ROS2rapperでは、シンプルなUDPデータグラムの受信を行うことができる。

下記のポートが、UDPデータグラム受信のために用意されている。

- ・udp\_rxbuf\_grant(ROS2rapperからの出力): UDP受信メモリにデータを置いた後、アサート (1と)する
  - 。このとき、UDP受信メモリを読出すことが可能である
  - udp rxbuf rel(ROS2rapperの入力):新しいUDPデータグラムの受信可能にする。
    - ∘ 1クロックの間アサート(1と)する。

#### 以下、手順を述べる。

- 1. UDPデータグラムが受信され、UDP受信メモリに置かれると、udp\_rxbuf\_grantがアサート(1と)される
- 2. ユーザ・ロジックは、UDP受信メモリからデータを読出す
- 3. バッファからの読出しが完了したら、新しいUDPデータグラムを受信可能にするため、 ユーザ・ロジックは、udp rxbuf relを1クロックの間アサート(1と)する。

UDP受信メモリに置かれるデータの形式をFig. 4.2. に示す。



Fig. 4.2. UDP受信メモリ中のデータの形式

# 6. 参考文献

- Topic and Service name mapping to DDS
   (https://design.ros2.org/articles/topic and service names.html#mapping-of-ros-2-top ic-and-service-names-to-dds-concepts)
- 2. Extensible and Dynamic Topic Types for DDS (https://www.omg.org/spec/DDS-XTypes/1.3/PDF)
- The Real-time Publish-Subscribe Protocol DDS Interoperability Wire Protocol (DDSI-RTPSTM) Specification Version 2.3 (<a href="https://www.omg.org/spec/DDSI-RTPS/2.3/PDF">https://www.omg.org/spec/DDSI-RTPS/2.3/PDF</a>)

# 7. 付録

# 7.1. ros2\_etherモジュールのインターフェース仕様

ros2\_etherモジュールのポート一覧をTable A-1に示す。

- 各信号は、LSB 0である。
- 接尾辞が\_nの信号は負論理、それ以外は正論理である。
  - 正論理の信号は、アサートで信号を1に、デアサートで信号を0にする。
  - 負論理の信号は、アサートで信号を0に、デアサートで信号を1にする。

Table A-1 ros2 etherモジュールのポート仕様一覧

| Iable A      | 1 10SZ_e | therモシュールのホ- | 一下1工惊一 <u>見</u><br>————————————————————————————————————                                     |
|--------------|----------|--------------|---------------------------------------------------------------------------------------------|
| ポート名         | 方向       | ビット幅         | 説明                                                                                          |
| クロック・リセット    | -        |              |                                                                                             |
| clk          | input    | 1            | クロック                                                                                        |
| rst_n        | input    | 1            | リセット(0でアサート)                                                                                |
| 機能有効化        | •        |              |                                                                                             |
| ether_en     | input    | 1            | Ethernet MACイネーブル<br>1: Ethernet有効<br>0: Ethernet無効<br>1に設定後、再び0に設定した場合の動作は保証されない。          |
| ros2pub_en   | input    | 1            | トピック・パブリッシュ・イネーブル<br>1: トピック・パブリッシュ有効<br>0: トピック・パブリッシュ無効<br>1に設定後、再び0に設定した場合の動作は保証されない。    |
| ros2sub_en   | input    | 1            | トピック・サブスクライブ・イネーブル<br>1: トピック・サブスクライブ有効<br>0: トピック・サブスクライブ無効<br>1に設定後、再び이に設定した場合の動作は保証されない。 |
| Ethernet MII |          |              |                                                                                             |
| phy_rx_clk   | input    | 1            | Ethernet MII 受信クロック                                                                         |
| phy_rxd      | input    | 4            | Ethernet MII 受信データ                                                                          |
| phy_rx_dv    | input    | 1            | Ethernet MII受信データ有効                                                                         |
| phy_rx_er    | input    | 1            | Ethernet MII 受信エラー                                                                          |
| phy_tx_clk   | input    | 1            | Ethernet MII 送信クロック                                                                         |
| phy_txd      | output   | 4            | Ethernet MII 送信データ                                                                          |
| phy_tx_en    | output   | 1            | Ethernet MII 送信イネーブル                                                                        |
| phy_rst_n    | output   | 1            | Ethernet MII リセット                                                                           |

| Ethernetアドレス/IPアドレス      |       |                               |                                                                                                  |
|--------------------------|-------|-------------------------------|--------------------------------------------------------------------------------------------------|
| mac_addr                 | input | 48                            | MACアドレス                                                                                          |
| ip_addr                  | input | 32                            | IPアドレス<br>a.b.c.dを設定する場合、ip_addr[31:0]<br>= {d,c,b,a}とする。                                        |
| gateway_ip_addr          | input | 32                            | ゲートウェイIPアドレス                                                                                     |
| subnet_mask              | input | 32                            | サブネットマスク                                                                                         |
| ros2_fragment_expiration | input | 32                            | IPフラグメントがすべて揃わない際のタイムアウト時間。<br>ROS2rapper内部サイクル数で指定する。                                           |
| ARP                      |       |                               |                                                                                                  |
| arp_req_retry_count      | input | 6                             | ARPリトライ回数                                                                                        |
| arp_req_retry_interval   | input | 36                            | ARPリトライ間隔(サイクル数)                                                                                 |
| arp_req_timeout          | input | 36                            | ARPタイムアウト時間(サイクル数)                                                                               |
| UDP                      |       |                               |                                                                                                  |
| ros2_rx_udp_port         | input | 16                            | UDP受信ポート番号<br>ここで指定したポート番号と一致する<br>UDPデータグラムが受信バッファに受<br>信される。                                   |
| ROS2                     |       |                               |                                                                                                  |
| ros2_node_name           | input | ROS2_MAX_NODE<br>_NAME_LEN*8  | ノード名<br>'\0'終端とし、終端以降はゼロで埋める<br>こと。                                                              |
| ros2_node_name_len       | input | 8                             | ノード名の長さ '\0'を含めたバイト数で指定すること。                                                                     |
| ros2_node_udp_port       | input | 16                            | ノードのUDPポート番号                                                                                     |
| ros2_port_num_seed       | input | 16                            | UDPポート番号のシード値<br>ROS2で使用するポート番号導出のた<br>めのマジックナンバーであり次の計算<br>式で得られる。<br>(ROS2のDomain ID)*250+7400 |
| ros2_guid_prefix         | input | 96                            | GUID(グローバルー意識別子) プレフィ<br>クス                                                                      |
| パブリッシュするトピック             |       |                               |                                                                                                  |
| ros2_pub_topic_name      | input | ROS2_MAX_TOPIC<br>_NAME_LEN*8 | トピック名<br>'\0'終端とし、終端以降はゼロで埋める<br>こと。                                                             |
| ros2_pub_topic_name_len  | input | 8                             | トピック名の長さ<br>'\0'を含めたバイト数で指定すること。                                                                 |
| ros2_pub_topic_type_name | input |                               | トピック型名<br>'\0'終端とし、終端以降はゼロで埋める<br>こと。                                                            |

| ros2_pub_topic_type_name_len input 8 トピック型名の長さ "0'を含めたバイト数で指定すること。 ros2_pub_app_data input ROS2_MAX_APP_DATA_LEN"8 データ自体の終端以降はゼロで埋めること。 ros2_pub_app_data_len input 8 メッセージの長さ、バイト数で指定すること。 ros2_pub_app_data_req input 1 メッセージ変更権リクエスト 1を書き込むと、メッセージ変更権をリクエストする。 ros2_pub_app_data_rel input 1 メッセージ変更権開放 1を書き込むと、メッセージ変更権を解放する。 ros2_pub_app_data_grant output 1 メッセージ変更権 0: メッセージ変更権 0: メッセージ変更権 0: メッセージ変更権 0: メッセージ変更権 7 メッセージ変更権 7 い終端とし、終端以降はゼロで埋めること。 ros2_sub_topic_name input ROS2_MAX_TOPIC NAME_LEN*8 8 いを含めたバイト数で指定。 ROS2_MAX_TOPIC トピック名の長さ 10 を3 かいを含めたバイト数で指定。 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA_LEN*8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ros2_pub_app_data_req input 1 メッセージ変更権リクエスト 1を書き込むと、メッセージ変更権をリクエストする。 ros2_pub_app_data_rel input 1 メッセージ変更権開放 1を書き込むと、メッセージ変更権を解放する。 ros2_pub_app_data_grant output 1 メッセージ変更権 0: メッセージ変更権 0: メッセージ変更権 0: メッセージ書き込み不許可 1: メッセージ書き込み不許可 1: メッセージ書き込み許可 サブスクライブするトピック ros2_sub_topic_name input ROS2_MAX_TOPIC NAME_LEN*8 こと。 ros2_sub_topic_name_len input ROS2_MAX_TOPIC トピック名の長さ 8 "00'を含めたバイト数で指定。                                                                                                                                                                          |
| Tos2_pub_app_data_rel   input   1   メッセージ変更権開放   1を書き込むと、メッセージ変更権開放   1を書き込むと、メッセージ変更権を解放する。   ros2_pub_app_data_grant   output   1   メッセージ変更権   0: メッセージ書き込み不許可   1: メッセージ書き込み許可   サブスクライブするトピック   ROS2_MAX_TOPIC   トピック名   ハン終端とし、終端以降はゼロで埋める こと。   トピック名の長さ   ros2_sub_topic_name   input   ROS2_MAX_TOPIC   トピック名の長さ   トピック名の長さ   ハンを含めたバイト数で指定。   ROS2_MAX_TOPIC   トピック型名                                                                                                                                                                                                 |
| Tos2_pub_app_data_grant   Output   1   メッセージ変更権   O: メッセージ書き込み不許可   O: メッセージ書き込み不許可   1: メッセージ書き込み所可   サブスクライブするトピック   ROS2_MAX_TOPIC   NAME_LEN*8   C: と。   トピック名   Name_Len*8   C: と。   トピック名の長さ   No'を含めたバイト数で指定。   ROS2_MAX_TOPIC   トピック名の長さ   No'を含めたバイト数で指定。   ROS2_MAX_TOPIC   トピック名の                                                                                                                                                                                                                                                                                   |
| 0: メッセージ書き込み不許可<br>1: メッセージ書き込み許可<br>サブスクライブするトピック  ROS2_MAX_TOPIC いの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ROS2_MAX_TOPIC '\0'終端とし、終端以降はゼロで埋める ros2_sub_topic_name input nput ROS2_MAX_TOPIC   トピック名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ROS2_MAX_TOPIC '\0'終端とし、終端以降はゼロで埋める                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ros2_sub_topic_name_len input 8 '\0'を含めたバイト数で指定。 ROS2_MAX_TOPIC トピック型名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TYPE_NAME_LE   '\0'終端とし、終端以降はゼロで埋める   ros2_sub_topic_type_name   input   N*8   こと。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ros2_sub_topic_type_name_len input 8 トピック型名の長さ '\0'含めたバイト数で指定。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ros2_sub_app_data_len output 8 受信したメッセージの長さ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ros2_sub_app_data_rep_id output 16 受信したメッセージのRepresentation Identifier Representation Identifierについて は、参考文献[2] Table 10.3を参照のこ                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cos2_sub_app_data_req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ros2_sub_app_data_req input 1 メッセージ読出し権リクエスト 1を書き込むと、メッセージ読出し権を                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ros2_sub_app_data_req input 1 メッセージ読出し権リクエスト 1を書き込むと、メッセージ読出し権を リクエストする。 ros2_sub_app_data_rel input 1 メッセージ読出し権解放 1を書き込むと、メッセージ読出し権解放 1を書き込むと、メッセージ読出し権を解                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ros2_sub_app_data_req input 1 メッセージ読出し権リクエスト 1を書き込むと、メッセージ読出し権を リクエストする。 ros2_sub_app_data_rel input 1 メッセージ読出し権解放 1を書き込むと、メッセージ読出し権を解放する。 ros2_sub_app_data_grant output 1 メッセージ読出し権 0: メッセージ読み出し不許可                                                                                                                                                                                                                                                                                                                                                                          |

|                         |        |                        | ,                              |  |  |
|-------------------------|--------|------------------------|--------------------------------|--|--|
|                         |        | _APP_DATA_LEN)         | ス<br>ユーザ・ロジックに確保したメモリのアド<br>レス |  |  |
| ros2_sub_app_data_ce    | output | 1                      | アプリケーション・データ・メモリのチップ<br>イネーブル  |  |  |
| ros2_sub_app_data_we    | output | 1                      | アプリケーション・データ・メモリのライ<br>ト・イネーブル |  |  |
| ros2_sub_app_data_wdata | output | 8                      | アプリケーション・データ・メモリの書き<br>込みデータ   |  |  |
| UDP受信メモリ                |        |                        |                                |  |  |
| udp_rxbuf_addr          | output | UDP_RXBUF_AWI<br>DTH   | UDP受信メモリ・メモリのアドレス              |  |  |
| udp_rxbuf_ce            | output | 1                      | UDP受信メモリのチップイネーブル              |  |  |
| udp_rxbuf_we            | output | 1                      | UDP受信メモリのライト・イネーブル             |  |  |
| udp_rxbuf_wdata         | output | 32                     | UDP受信メモリの読み出しデータ               |  |  |
| udp_rxbuf_rel           | input  | 1                      | UDP受信メモリの読み出し権解放               |  |  |
| udp_rxbuf_grant         | output | 1                      | UDP受信メモリの読み出し権                 |  |  |
| UDP送信メモリ                |        |                        |                                |  |  |
| udp_txbuf_addr          | output | UDP_TXBUF_AWID<br>TH   | UDP送信メモリ・メモリのアドレス              |  |  |
| udp_txbuf_ce            | output | 1                      | UDP送信メモリのチップイネーブル              |  |  |
| udp_txbuf_rdata         | input  | 32                     | UDP送信メモリの読み出しデータ               |  |  |
| udp_txbuf_rel           | input  | 1                      | UDP送信メモリの読み出し使用権開放             |  |  |
| udp_txbuf_grant         | output | 1                      | UDP送信メモリの読み出し使用権               |  |  |
| IP受信ペイロード・メモリ           | •      |                        |                                |  |  |
| ip_payloadsmem_addr     | output | PAYLOADSMEM_A<br>WIDTH | IP受信ペイロード・メモリのアドレス             |  |  |
| ip_payloadsmem_ce       | output | 1                      | IP受信ペイロード・メモリのチップイネー<br>ブル     |  |  |
| ip_payloadsmem_we       | output | 1                      | IP受信ペイロード・メモリのライト・イ<br>ネーブル    |  |  |
| ip_payloadsmem_wdata    | output | 8                      | IP受信ペイロード・メモリの書き込み<br>データ      |  |  |
| ip_payloadsmem_rdata    | input  | 8                      | IP受信ペイロード・メモリの読み出し<br>データ      |  |  |

| Sed ba                          | =× oo                                                                  |                                                   |
|---------------------------------|------------------------------------------------------------------------|---------------------------------------------------|
| パラメータ名                          | 説明                                                                     | デフォルト値                                            |
| PRESCALAR_DIV TX_INTERVAL_COUNT | パケット送信間隔カウンタの分周比パケット間送信間隔<br>(ROS2rapperのクロック数)                        | (`ROSCLK_HZ /<br>PRESCALER_DIV) / 100<br>(10msec) |
| TX_PERIOD_SPDP_WR_COUNT         | SPDP Writerのパケット送信間隔<br>(ROS2rapperのクロック数)                             | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_PUB_WR_C OUNT    | SEDP Publication WriterのDATAパケット送信間隔<br>(ROS2rapperのクロック数)             | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_SUB_WR_C OUNT    | SEDP Subscription WriterのDATAパ<br>ケット送信間隔<br>(ROS2rapperのクロック数)        | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_PUB_HB_C<br>OUNT | SEDP Publication Writerの<br>HEARTBEATパケット送信間隔<br>(ROS2rapperのクロック数)    | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_SUB_HB_C<br>OUNT | SEDP Subscription Writerの<br>HEARTBEATパケット送信間隔<br>(ROS2rapperのクロック数)   | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_PUB_AN_C<br>OUNT | SEDP Publication WriterのACKNACK<br>パケット送信間隔<br>(ROS2rapperのクロック数)      | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_SEDP_SUB_AN_C<br>OUNT | SEDP Subscription Writerの<br>ACKNACKパケット送信間隔<br>(ROS2rapperのクロック数)     | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |
| TX_PERIOD_APP_WR_COUNT          | アプリケーション・データ(Application<br>WriterのDATAパケット)送信間隔<br>(ROS2rapperのクロック数) | (`ROSCLK_HZ /<br>PRESCALER_DIV) * 3<br>(3sec)     |

## Table A-3 定数一覧

| 定数名                                          | 説明                | デフォルト値 | 定義されている場所<br>(*1) | 変更時の注意点                                       |
|----------------------------------------------|-------------------|--------|-------------------|-----------------------------------------------|
|                                              | ROS2ノード<br>名の最大長  |        | (hls/ros2.hpp)    | VerilogとHLS C++の<br>ヘッダに存在し、定数<br>名が異なる。(・)に記 |
| ROS2_MAX_TOPIC_NAME_LEN (MAX_TOPIC_NAME_LEN) | ROS2トピック<br>名の最大長 | 32     | (hls/ros2 hpp)    | 0                                             |

| 定数名                                                          | 説明                                               | デフォルト値                              | 定義されている場所<br>(*1)                                        | 変更時の注意点                          |
|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------|----------------------------------------------------------|----------------------------------|
|                                                              |                                                  |                                     | ,                                                        | る必要がある。                          |
| ROS2_MAX_TOPIC_TYPE_NAM<br>E_LEN<br>(MAX_TOPIC_TYPE_NAME_LEN | ROS2トピック<br>型名の最大<br>長                           | 64                                  | include/ros2_config<br>.vh<br>(hls/ros2.hpp)             |                                  |
| ROS2_MAX_APP_DATA_LEN (MAX_APP_DATA_LEN)                     | ROS2メッ<br>セージ・デー<br>タの最大長                        | 64                                  | include/ros2_config<br>.vh<br>(hls/ros2.hpp)             |                                  |
| TARGET_PARTICIPANT_ID                                        | ROS2ノード<br>のParticipant<br>ID                    | 1                                   | hls/common.hpp                                           |                                  |
| PAYLOADSMEM_DEPTH                                            | IP受信ペイ<br>ロード・メモリ<br>のワード数                       | 2960                                | include/ros2_config<br>.vh                               |                                  |
| PAYLOADSMEM_AWIDTH                                           | IP受信ペイ<br>ロード・メモリ<br>のアドレス幅                      | \$clog2(`PAYL<br>OADSMEM_D<br>EPTH) | include/ros2_config<br>.vh                               |                                  |
| MAX_PENDINGS                                                 | 同時にIPフラ<br>グメント組み<br>立て待ちを行<br>えるIPデータ<br>グラムの個数 | 1                                   | hls/ip.hpp                                               |                                  |
| IP_MAX_PAYLOAD_LEN                                           | 最大IP受信<br>ペイロード・メ<br>モリサイズ                       | 1480                                | hls/ip.hpp                                               | 1480=MTU(1500) -<br>IPヘッダサイズ(20) |
| MAX_IP_FRAGMENTS                                             | 最大IP受信<br>ペイロードフ<br>ラグメント数                       | 2                                   | hls/ip.hpp                                               |                                  |
| UDP_RXBUF_AWIDTH                                             | UDP受信メモ<br>リのアドレス<br>幅                           | 6                                   | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                  |
| UDP_TXBUF_AWIDTH                                             | UDP送信メモ<br>リのアドレス<br>幅                           | 6                                   | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                  |
| MAC_TX_FIFO_DEPTH                                            | MAC内送信<br>FIFOの深さ                                | 512                                 | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh | 2のべきでなければな<br>らない                |

| 定数名                  | 説明                         | デフォルト値    | 定義されている場所<br>(*1)                                        | 変更時の注意点                             |
|----------------------|----------------------------|-----------|----------------------------------------------------------|-------------------------------------|
| MAC_RX_FIFO_DEPTH    | MAC内受信<br>FIFOの深さ          | 2048      | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                     |
| EXT_TX_FIFO_DEPTH    | 送信FIFOの<br>深さ              | 2         | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                     |
| EXT_RX_FIFO_DEPTH    | 受信FIFOの<br>深さ              | 2048      | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                     |
| ARP_CACHE_ADDR_WIDTH | ARPキャッ<br>シュのアドレ<br>ス幅     | 4         | ros2rapper/src/ethe<br>rinclude/ros2_ether<br>_config.vh |                                     |
| ROS2CLK_HZ           | ROS2rapper<br>のクロック周<br>波数 | 100000000 |                                                          | ROS2rapperのクロッ<br>ク周波数に合わせて<br>変更する |

#### 注)

\*1 パスは、トップ・ディレクトリからの記述の無いものは、ros2rapper/src/ros2rapper/ 以下を記述

## 7.2. ディレクトリ構成

```
ros2rapper |
|- src
| |- ros2rapper : ROS2rapper
| | |- hls : HLS C++記述
| |- include : Verilog ヘッダファイル
| | |- rtl : Verilog RTL
| |- test : C-Sim用テストベンチ
| |
| |- ether : Ethernet層
| |- include : Verilog ヘッダファイル
| - rtl : Verilog RTL
| |- verilog-ethernet : Ethernet MACのVerilog RTL
| |- topic-pub-sub : トピックのパブリッシュ/サブスクライブの実装サンプル
| - udp-tx-rx : UDPパケット送受信の実装サンプル
```

|- formal:SymbiYosysを使用したフォーマル検証用のスクリプト

- README.md

# 7.3. RTPS通信で使用されるUDPポート番号 一覧

RTPS通信では、下記のUDPポート番号を受信に使用する。したがって、UDPデータグラムの受信ポート番号(ros2\_rx\_udp\_portで指定)はこれらのポート番号と重複してはならない。

- SPDP WELL KNOWN MULTICAST PORT
  - o 7400 + DOMAIN\_ID \* 250
- METATRAFFIC\_UNICAST\_LOCATOR
  - 7400 + DOMAIN\_ID \* 250 + 10 + 2 \* PARTICIPANT\_ID
- DEFAULT\_UNICAST\_LOCATOR
  - 7400 + DOMAIN\_ID \* 250 + 11 + 2 \* PARTICIPANT\_ID

式中のDOMAIN\_IDは、下記の値である。 (ros2\_port\_num\_seedポートの値) - 7400 / 250