Aquapark

PREOI 2025

Dzień 6 - 30 stycznia 2025

Bajtazar ma cztery pasje: matematykę, programowanie i sport. Ponieważ w tej pierwszej nie jest najlepszy, to poza przygotowywaniem warsztatów, jest również ratownikiem w Bajtockim aquaparku. Jego zadaniem jest zarządzanie kolejką do zjeżdżalni.

Kod zadania:

Limit pamięci:

adii

512 MiB

W dowolnym momencie na koniec kolejki może dołączyć grupa znajomych. Zależnie od relacji wśród nich, może być chetna do podziału albo nie.

W dowolnym momencie pewna grupa znajomych może zrezygnować z oczekiwania na zjazd. W takim wypadku cała grupa opuszcza kolejkę.

Kiedy pojawia się nowy ponton (na określoną liczbę osób), Bajtazar jednokrotnie przechodzi się po **wszystkich** grupach, w kolejności od początku kolejki. Dla każdej grupy:

- 1. Jeżeli jest wystarczająco miejsca dla całej grupy, to opuszczają kolejkę i zajmują miejsca w pontonie.
- 2. Jeżeli nie ma miejsca dla całej grupy, ale znajomi są chętni do podziału, to kolejkę opuszcza i zajmuje miejsca w pontonie tyle osób, ile się w nim zmieści, a pozostali znajomi z grupy zostają w tym samym miejscu w kolejce.
- 3. Jeżeli nie ma miejsca dla całej grupy i znajomi nie są chętni do podziału, to Bajtazar pomija tę grupę.

Pomóż Bajtazarowi i dla każdego pontonu powiedz, ile osób z jakich grup go zajmie.

Wejście

W pierwszym wierszu wejścia standardowego znajduje się jedna liczba całkowita q ($1 \le q \le 200\,000$), oznaczająca liczbę zdarzeń.

W kolejnych q wierszach znajdują się zdarzenia. Każde z nich jest postaci:

- D z c oznaczające, że grupa z znajomych, którzy mogą się podzielić (c = 1) albo nie (c = 0) dołącza na koniec kolejki;
- R i oznaczające, że grupa o numerze i rezygnuje i opuszcza kolejkę;
- P m oznaczające, że pojawił się ponton, który ma m miejsc.

Dla wszystkich zdarzeń zachodzi $z \le 200\,000$ oraz $m \le 10^{12}$. Bajtazar numeruje grupy znajomych w kolejności dołączenia do kolejki, od 1. Możesz założyć, że dla każdej rezygnacji R i, w kolejce znajduje się grupa o numerze i. Ponadto, pojawi się przynajmniej jeden ponton.

Wyjście

Dla każdej operacji pojawienia się pontonu P wypisz opis grup znajomych, które nim pojadą. W pierwszym wierszu opisu wypisz jedną liczbę całkowitą k – liczbę grup, które pojadą pontonem. W każdym z k kolejnych wierszy wypisz dwie liczby całkowite i i m oznaczające, że pontonem jedzie m osób z grupy o numerze i. Grupy wypisz w kolejności rosnących numerów.

1/2

sio2.staszic.waw.pl

Przykłady

Wejście dla testu aqu0a:

	<u> </u>
7	
D	3 0
D	5 0
D	5 1
Р	6
R	2
D	9 0
Р	2025

Wyjście dla testu aqu0a:

Wyjaśnienie do przykładu:

- Dla pierwszego pontonu, w kolejce stoją grupy o rozmiarach: 3, 5, 5 (pogrubiona grupa jest chętna do podziału).
 - Ponton ma 6 wolnych miejsc, zatem cała grupa o numerze 1 wsiada, pozostały 3 miejsca.
 - Grupa o numerze 2 nie zmieści się w całości i nie jest chętna do podziału, nie wsiada wcale.
 - Grupa o numerze 3 jest chętna do podziału, więc 3 osoby wsiadają a 2 pozostają w kolejce.

Teraz, w kolejce stoją grupy o rozmiarach: 5, 2.

- Rezygnuje grupa o numerze 2, w kolejce stoi trzecia grupa z 2 osób.
- Dołącza grupa złożona z 9 osób, które nie są chętne do podziału.
- Dla drugiego pontonu wsiądzie każdy, kto stoi w kolejce.

Wejście dla testu aqu0b:

5	
D 1	0
D 1	0
D 1	0
D 1	0
Р 3	

Wyjście dla testu aqu0b:

	,,	1
3		
1	1	
2	1	
3	1	

Wejście dla testu aqu0c:

4	
D	20 1
P	12
P	12
P	100000000000

Wyjście dla testu aqu0c:

1							
1	12						
1							
1	8						
0							
1							

Ocenianie

Podzadanie	Ograniczenia	Limit czasu	Liczba punktów
1	$q \le 1000$	4 s	12
2	dla każdego zapytania D: $z=1$, $c=0$; brak zapytań R	4 s	7
3	dla każdego zapytania D: $z \leq 10$, $c = 0$; brak zapytań R	4 s	20
4	dla każdego zapytania D: $z \leq 10$; brak zapytań R	4 s	16
5	dla każdego zapytania D: $z \leq 10$	4 s	10
6	brak dodatkowych ograniczeń	4 s	35

2/2