Recall ε -Hermitian forms $B: V \times V \to \mathbb{C}, V: \mathbb{C}$ -vector space.

With $V=\mathbb{C}^n$, they correspond to ε -Hermitian matrices $A\in M_{n\times n}(\mathbb{C}), A^\dagger=\varepsilon A.$

In this case, left radical of B = right radical of B.

Adjoint linear maps on C inner product space

Definition-Proposition Let $B_1: V_1 \times V_1' \to \mathbb{C}, B_2: V_2 \times V_2' \to \mathbb{C}$ be sesquilinear forms with all dim $< \infty$. Assume B_1 is nondegenerate.

• \exists semi-linear map $\operatorname{Hom}(V_1,V_2) \to \operatorname{Hom}(V_2',V_1'), T \mapsto T^*$ characterized by

$$B_2(Tv_1,v_2')=B_1(v_1,T^*v_2').$$

• \exists semi-linear map $\operatorname{Hom}(V_1', V_2') \to \operatorname{Hom}(V_2, V_1), T \mapsto {}^*T$ characterized by

$$B_2(v_1', Tv_2) = B_1(^*Tv_1', v_2).$$

Proof

- 1. Repeat the proof in the linear case.
- 2. Reduce to the bilinear case by passing $\overline{V_1}$, $\overline{V_2}$.
- 3. Look at matrices. Up to \simeq , may assume $V_i=\mathbb{C}^{m_i}, V_i'=\mathbb{C}^{m_i'}.$ Here

$$B_i \longleftrightarrow A_i \in M_{m_i \times m_i'}(\mathbb{C}), \qquad A_1 : \text{invertible.}$$

For the right adjoint:

$$B_2(Tv_1,v_2') = (Tv_1)^\dagger A_2 v_2' = v_1^\dagger T^\dagger A_2 v_2' = v_1^\dagger A_1 \underbrace{A_1^{-1} T^\dagger A_2}_{T^*} v_2'.$$

For the left adjoint:

$$B_2(v_2,Tv_1')=v_2^{\dagger}A_2Tv_1'=v_2^{\dagger}A_2TA_1^{-1}A_1v_1'=\underbrace{\left(\underbrace{A_2TA_1^{-1}}^{\dagger}\right)^{\dagger}}_{^*T}v_2^{\dagger}\underbrace{A_1v_1'}.\blacksquare$$

Observation

- 1. $(ST)^* = T^*S^*$, check by using definition.
- 2. If B_1, B_2 both nondegenerate, then $^*(T^*) = T = (^*T)^*$.
- 3. If $\varepsilon = \pm 1$, both B_1 , B_2 are ε -Hermitian $(V_i = V_i')$, then $T^* = {}^*T$ since $B(Tv,w) = \varepsilon \overline{B(w,Tv)} = \varepsilon \overline{B({}^*Tw,v)} = \varepsilon^2 B(v,{}^*Tw) = B(v,{}^*Tw)$.

Definition Given a nondegenerate ε -Hermitian form $B: V \times V \to \mathbb{C}, T \in \text{End}(V)$.

- If $T = T^*$, we say T is **self-adjoint**,
- If $T = -T^*$, we say T is anti/skew-adjoint.

In term of matrices, $V \longleftrightarrow \mathbb{C}^n, B \longleftrightarrow A \in M_{n \times n}(\mathbb{C}) \text{ s.t. } A^\dagger = \varepsilon A, \text{ and } T \in \operatorname{End}(V) = M_{n \times n}(\mathbb{C}),$ then

$$T^* = +T \iff A^{-1}T^{\dagger}A = +T.$$

In particular if $\varepsilon = 1$, A = id (the standard complex inner product), then

T is self-adjoint
$$\iff T^{\dagger} = T$$
.

T is anti/skew-adjoint $\iff T^{\dagger} = -T$.

Remark Let $c \in i\mathbb{R} \setminus \{0\}$, then

 $B: V \times V \to \mathbb{C}$ is Hermitian $\iff cB$ is anti-Hermitian, $T \in \operatorname{End}(V)$ is self-adjoint $\iff cT$ is anti-adjoint.

Definition Let $V: \mathbb{C}$ -vs., dim $V < \infty, B: V \times V \to \mathbb{C}$, nondegenerate, ε -Hermitian. $T \in \operatorname{End}(V)$ is **normal** iff $TT^* = T^*T$.

T is self-adjoint and anti-adjoint $\Longrightarrow T$ is normal (and many other special cases).

§ Classification of Hermitian Forms

Recall Theory of quadratic forms say over \mathbb{R} ,

- 1. Quadratic forms $\sum_{i,j} a_{ij} X_i X_j, a_{ij} = a_{ji}$,
- 2. Symmetric matrices $A \in M_{n \times n}(\mathbb{R}), A^T = A$,
- 3. Symmetric bilinear forms $B: V \times V \to \mathbb{R}$,

are all the same. As for equivalent classes:

- 1. $f(y_1, ..., y_n)$ $f(y_1, ..., y_n)$, $f(y_1, ..., y_n)$, f(
- 2. $A \sim A'$ if $\exists C \in M_{n \times n}(\mathbb{R})$ invertible, $A = C^T A' C$.
- 3. $B \sim B'$ if B(v, v) = B'(Cv, Cv) where $C : \mathbb{R}^n \cong \mathbb{R}^n$.
- 4. $(V, B) \sim (V', B')$ if $\exists C : V \cong V', B(v_1, v_2) = B'(Cv_1, Cv_2)$.

Now, analogue for Hermitian forms on \mathbb{C} -vs. of dim = n.

- Classify all (V, B), dim $V = n, B : V \times V \to C$, ε -Hermitian up to \simeq .
- Classify for $V=\mathbb{C}^n$ or $A\in M_{n\times n}(\mathbb{C}), A^\dagger=A,$ up to $A\sim C^\dagger AC, C$ invertible.
- Classify all maps $f: \mathbb{C}^n \to \mathbb{C}$ of the form

$$f(x_1,...,x_n) = \sum_{i,j} a_{ij} \overline{x_i} x_j, \quad a_{ij} = \overline{a_{ji}},$$

up to \mathbb{C} -linear change of variables. Note that f is \mathbb{R} -valued.

We now show that the matrix version of complex quadratic forms is still the equivalent of the polynomial version.

- Matrices \Longrightarrow Poly: take f as above with a_{ij} = the (i,j)-th entry of A.
- Poly ⇒ Matrices:

$$\begin{split} f(v+w) - f(v) - f(w) &= B(v+w,v+w) - B(v,v) - B(w,w) \\ &= B(v,w) + B(w,v) \\ &= 2 \mathrm{Re} B(v,w). \end{split}$$

Therefore f determines the real part of B, and since ImB(v,w) = ReB(iv,w), B is completely determined and A follows B as well.

To classify them we can:

- Reduce to the quadratic forms on \mathbb{R} ,
- Use spectral theorem for self-adjoint versions,
- Copy the arguments for quadratic forms (配方法).
 - 1. Diagonalization: Any $f = \sum_{i,j} a_{ij} \overline{x_i} x_j$ is equivalent with a diagonal quadratic form

$$f' = \sum_{i} a_i |x_i|^2.$$

2. Rescaling: $x_i \to \sqrt{|a_i|} x_i$ when $a_i \neq 0 \Longrightarrow$ reduces to $a_i \in \{0, \pm 1\}$, i.e.

$$f \simeq \left| x_1 \right|^2 + \ldots + \left| x_p \right|^2 - \left| x_{p+1} \right|^2 - \ldots - \left| x_{p+q} \right|^2.$$

Proposition Given $n \in \mathbb{Z}_{>1}$,

$$\{\text{Hermitian forms } f:\mathbb{C}^n\to\mathbb{C}\}/_{\sim}=\big\{(p,q)\in\mathbb{Z}^2_{\geq 0}\ |\ p+q\leq n\big\}.$$

Definition Given $V: \mathbb{C}$ -vs., $B: V \times V \to \mathbb{C}$, Hermitian form. We say B is

- Positive semi-definite if $B(v, v) \ge 0$,
- Positive definite if $B(v, v) \ge 0$, $B(v, v) = 0 \iff v = 0$.

The negative case is similar, and B is **indefinite** if none of above is true.

If
$$f:\mathbb{C}^n \to \mathbb{R}$$
 (or $B:\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$) corresponds to (p,q) , then:

$$f(\text{or }B)$$
 is positive semi-definite $\iff q=0$,

positive definite
$$\iff p = n$$
,

indefinite
$$\iff p, q > 0$$
.

Definition p :=正惯性指数, q :=负惯性指数 of f (or B) up to \simeq .