Vietnamese (VNM)



# **Hexagonal Territory**

Pak Dengklek đang đứng tại một ô, được gọi là ô xuất phát, trên một lưới hình lục giác vô hạn. Hai ô trong lưới hình lục giác được gọi là lân cận nếu chúng có một cạnh chung. Trong một bước, Pak Dengklek có thể đi từ một ô sang một trong các ô lân cận của nó bằng cách đi theo một trong sáu hướng có thể, được đánh số từ 1 đến 6, được minh họa trong hình dưới đây.



Pak Dengklek sẽ tạo ra một lãnh thổ bằng cách đi theo một lộ trình gồm một dãy các ô được thăm bởi dãy N phép dịch chuyển. Phép dịch chuyển thứ i được thực hiện bằng cách chọn một hướng D[i], sau đó thực hiện L[i] bước đi theo hướng đã chọn. Lộ trình có các thuộc tính sau:

- Lộ trình là đóng, nghĩa là ô ở cuối dãy trùng với ô ở đầu dãy.
- Lộ trình là đơn, có nghĩa là mọi ô có thể được đến thăm nhiều nhất một lần, ngoại trừ ô ban đầu, được đến thăm đúng hai lần (bắt đầu và kết thúc).
- Lộ trình là *lộ ra*, có nghĩa là mỗi ô trên lộ trình là ô lân cận với ít nhất một ô không nằm trên lộ trình và không phải là *bên trong*.
  - Một ô được gọi là bên trong nếu nó không nằm trên lộ trình và từ đó bạn chỉ có thể đi thăm được một số hữu hạn các ô bằng cách sử dụng bất kỳ dãy bước đi nào mà không đi qua bất kỳ ô nào trên lộ trình.

Dưới đây là một ví dụ về một lộ trình có thể đi được bởi Pak Dengklek.

- Ô được đánh số 1 (tô màu hồng) là ô xuất phát (và kết thúc).
- Các ô được đánh số (tô màu xanh lam nhạt) là các ô trên lộ trình, được đánh số theo thứ tự mà chúng được thăm.
- Ô được gạch chéo (tô màu xanh lam đậm) là ô bên trong.



Lãnh thổ được hình thành bao gồm tất cả các ô nằm trên lộ trình hoặc nằm bên trong. Khoảng cách của ô c trong lãnh thổ là số lượng bước ít nhất cần thiết để đi từ ô xuất phát đến ô c bằng cách chỉ đi qua các ô trong lãnh thổ. Điểm của một ô trong lãnh thổ được định nghĩa là  $A+d\times B$ , trong đó A và B là các hằng số do Pak Dengklek xác định trước và d là khoảng cách của ô trong lãnh thổ. Dưới đây là hình minh họa khoảng cách của mỗi ô trong lãnh thổ được hình thành bằng cách sử dụng lộ trình từ ví dụ trên.



Hãy giúp Pak Dengklek tính tổng điểm của tất cả các ô trong lãnh thổ được hình thành bởi N phép dịch chuyển mà Pak Dengklek sẽ thực hiện. Vì tổng điểm có thể lớn, hãy đưa ra kết quả theo môđun  $10^9+7$ .

## Chi tiết cài đặt

Bạn cần cài đặt hàm dưới đây.

int draw\_territory(int N, int A, int B, int[] D, int[] L)

- N: số phép dịch chuyển.
- A, B: các hằng số để tính điểm.
- D: một mảng độ dài N, trong đó D[i] là hướng của phép dịch chuyển thứ i.
- ullet L: một mảng độ dài N, trong đó L[i] là số lượng bước đi được thực hiện bởi phép dịch chuyển thứ i.
- ullet Hàm này cần trả về tổng điểm của tất cả các ô trong lãnh thổ theo mô-đun  $10^9+7$ .
- Hàm này được gọi đúng một lần.

#### Ví dụ

Hãy xem xét lời gọi dưới đây:

Các phép dịch chuyển giống như trong mô tả. Bảng sau liệt kê điểm của mỗi ô cho mọi khoảng cách có thể có trong lãnh thổ.

| Khoảng cách | Số lượng ô | Điểm của mỗi ô | Tổng điểm          |
|-------------|------------|----------------|--------------------|
| 0           | 1          | 2+0	imes 3=2   | 1	imes 2=2         |
| 1           | 4          | 2+1	imes 3=5   | 4	imes5=20         |
| 2           | 5          | 2+2	imes 3=8   | 5 	imes 8 = 40     |
| 3           | 6          | 2+3	imes 3=11  | $6 \times 11 = 66$ |
| 4           | 4          | 2+4	imes 3=14  | 4 	imes 14 = 56    |
| 5           | 3          | 2+5	imes 3=17  | 3 	imes 17 = 51    |
| 6           | 4          | 2+6	imes 3=20  | $4 \times 20 = 80$ |
| 7           | 4          | 2+7	imes 3=23  | 4	imes23=92        |
| 8           | 5          | 2+8	imes 3=26  | 5 	imes 26 = 130   |
| 9           | 3          | 2+9	imes 3=29  | 3 	imes 29 = 87    |
| 10          | 4          | 2+10	imes 3=32 | 4	imes32=128       |
| 11          | 5          | 2+11	imes 3=35 | 5	imes35=175       |
| 12          | 2          | 2+12	imes 3=38 | 2 	imes 38 = 76    |

Tổng điểm là 2+20+40+66+56+51+80+92+130+87+128+175+76=1003. Do đó, hàm draw\_territory cần trả về 1003.

#### Các ràng buộc

- 3 < N < 200000
- $0 \le A, B \le 10^9$
- $1 \leq D[i] \leq 6$  (với mọi  $0 \leq i \leq N-1$ )
- $1 \leq L[i]$  (với mọi  $0 \leq i \leq N-1$ )
- Tổng tất cả các phần tử của L không vượt quá  $10^9$ .
- Lộ trình là đóng, đơn và lộ ra.

#### Các Subtask

- 1. (3 điểm) N=3, B=0
- 2. (6 điểm) N=3

- 3. (11 điểm) Tổng tất cả các phần tử của L không vượt quá 2000.
- 4. (12 điểm) B=0, tổng tất cả các phần tử của L không vượt quá  $200\,000$ .
- 5. (15 điểm) B=0
- 6. (19 điểm) Tổng tất cả các phần tử của L không vượt quá  $200\,000$ .
- 7. (18 điểm) L[i] = L[i+1] (với mọi  $0 \leq i \leq N-2$ )
- 8. (16 điểm) Không có ràng buộc nào thêm.

### Trình chấm mẫu

Trình chấm mẫu đọc dữ liệu vào theo khuôn dạng sau:

- dòng 1: N A B
- dòng 2+i ( $0 \le i \le N-1$ ): D[i] L[i]

Trình chấm mẫu ghi kết quả của bạn theo khuôn dạng sau:

• dòng 1: giá trị trả về của hàm draw\_territory