Модульная домашняя работа №2

Мягкий дедлайн: $23:59 \ 02/05/2020$.

Жесткий дедлайн: 23:59 11/05/2020.

Форма, куда отправлять работу: Google forms.

Общие требования

- Для данного домашнего задания можно использовать языки программирования R, Python.
- Задания необходимо выполнять в RMarkdown либо jupyter notebook с комментариями и пояснениями, иначе работа проверяться не будет.
- Если работа будет прислана до мягкого дедлайна, то она будет проверена и вы будете иметь возможность исправить ее. Иначе ваша работа будет проверяться по мере возможности.
- После жесткого дедлайна никакие исправления нельзя будет вносить.
- Все вопросы и предложения по условию задач рассматриваются до мягкого дедлайна.
- Комментируйте то, что вы делаете.
- Если у вас возникнут вопросы, то можно их задавать в телеграм-чате или лично в день занятий.

Требования к заданиям

- Для всех используемых библиотечных функций обосновать корректность их применения. **Это нулевое задание для всех вариантов.** Комментарии «Это ж из scipy» не рассматриваются.
- Все ответы на вопросы должны быть обоснованы при помощи моделирования. По возможности необходимо предоставлять всяческие графики, а не просто выводить какието числа (например, для того чтобы проверить, как ведет себя ошибка первого рода, необходимо нарисовать график для всех уровней значимости α , а не вывести несколько каких-то чисел).
- В данных необходимо найти что-нибудь интересное, используя различные критерии, с которыми вы познакомились на курсе. Необходимо самостоятельно ставить гипотезы и проверять их.

- 1. Пусть $x_1, \ldots, x_n \sim \mathrm{N}(a_1, \sigma_1^2)$ и $y_1, \ldots, y_n \sim \mathrm{N}(a_2, \sigma_2^2)$ где σ_1^2, σ_2^2 известны. Хотим проверить гипотезу $\mathrm{H}_0: a_1 a_2 = 0$ против $\mathrm{H}_1: a_1 a_2 \neq 0$.
 - Примените t-test и критерий Mann-Whitney для проверки данной гипотезы.
 - Почему можно сравнивать эти критерии?
 - Сравните мощности критериев. Какой из них более мощный?
- 2. Данные Abalone.

Вариант 2

- 1. Пусть $x_1, ..., x_n \sim \text{Exp}(\lambda_1)$ и $y_1, ..., y_n \sim \text{Exp}(\lambda_2)$. Хотим проверить гипотезу $H_0: \lambda_1 \lambda_2 = 0$ против $H_1: \lambda_1 \lambda_2 \neq 0$.
 - Примените t-test и критерий Mann-Whitney для проверки данной гипотезы.
 - Корректно ли применение этих критериев для данной задачи? Почему?
 - Продемонстрируйте поведение ошибок первого и второго рода в каждом из случаев.
- 2. Данные Contraceptive Method Choice.

Вариант 3

- 1. Пусть x_1, \ldots, x_n выборка из абсолютно непрерывного распределения (существует плотность) с функцией распределения F. Хотим проверить гипотезу $H_0: F = G$ против альтернативы сдвига.
 - Продемонстрируйте (не)состоятельность критерия Колмогорова-Смирнова против альтернативы сдвига.
 - Зависит ли ошибка второго рода от альтернативы сдвига? Продемонстрируйте это.
- 2. Данные *Ecoli*.

Вариант 4

- 1. Пусть x_1, \ldots, x_n выборка из геометрического распределения с параметром p. Воспользуйтесь критерием согласия χ^2 для проверки $H_0: p=p_0$.
 - Что делать, если некоторые из ожидаемых частот (подсчитываются в ходе применения критерия) маленькие?
 - Есть ли зависимость мощности от p_1 при выборе простой $H_1: p = p_1$? Продемонстрируйте это с помощью моделирования;
- 2. Данные Immunotherapy.

- 1. Пусть $x_1,\dots,x_n \sim \mathrm{N}(a_1,\sigma^2)$ и $y_1,\dots,y_n \sim \mathrm{N}(a_2,\sigma^2)$, где σ^2 известна, и $\rho(x_i,y_i)=\rho>0$ для любого $i=1,\dots,n$.
 - Хотим проверить гипотезу $H_0: a_1 a_2 = 0$ против $H_1: a_1 a_2 \neq 0$.
 - Примените t-test для независимых выборок для данной гипотезы.
 - Продемонстрируйте, как себя ведут ошибки первого и второго рода для $\rho > 0$ и $\rho < 0$. Критерий является радикальным/точным/консервативным?
- 2. Данные <u>LiverDisorders</u>.

Вариант 6

- 1. Пусть $x_1, \ldots, x_n \sim \mathrm{N}(a_1, \sigma_1^2)$ и $y_1, \ldots, y_n \sim \mathrm{N}(a_2, \sigma_2^2)$, где a_1, a_2 неизвестны. Известно, что $\rho(x_i, y_i) = \rho > 0$ для любого $i = 1, \ldots, n$.
 - Хотим проверить гипотезу $H_0: \sigma_1^2 = \sigma_2^2$ против $H_1: \sigma_1^2 \neq \sigma_2^2$.
 - Примените критерий Фишера для проверки данной гипотезы.
 - Корректно ли его применять? Почему?
- 2. Данные seeds.

Вариант 7

- 1. Пусть есть выборка из гамма распределения со сдвигом a (другие параметры любые). Хотим проверить гипотезу $H_0: a=a_0$.
 - Примените для проверки данной гипотезы критерии Колмогорова-Смирнова и ω^2 .
 - Какой из них более мощный против $H_1: a = a_1 \neq a_0$ (остальные параметры те же)? Продемонстрируйте это при помощи моделирования.
- 2. Данные Yeast.

Вариант 8

- 1. Пусть x_1, \ldots, x_n выборка из распределения \mathcal{P} .
 - Хотим проверить гипотезу $H_0: \mathcal{P} \in \{N(a, \sigma^2)\}.$
 - Можно ли использовать критерий ω^2 для проверки принадлежности выборки к семейству нормальных? Подтвердите свой ответ с помощью моделирования.
 - Подойдет ли критерий Лиллиефорса для проверки принадлежности к семейству нормальных? Продемонстрируйте это.
- 2. Данные Blood Transfusion Service Center.

- 1. Пусть x_1, \ldots, x_n выборка из распределения \mathcal{P} .
 - Хотим проверить гипотезу $H_0 : \mathcal{P} \in \{N(a, \sigma^2)\}.$
 - Рассмотрим смесь двух нормальных распределений с различными средними и дисперсиями в качестве альтернативной гипотезы. Примените критерии Колмогоров-Смирнов и ω^2 .
 - Какой критерий против такой альтернативы будет более мощный: Колмогоров-Смирнов или ω^2 ?
- 2. Данные Cryotherapy.

- 1. Пусть x_1, \dots, x_n выборка из распределения \mathcal{P} . Хотим проверить гипотезу $H_0: \mathcal{P} \in \{N(a, \sigma^2)\}$.
 - Пусть $H_1: \mathcal{P} = Unif[0,1]$. Примените критерии Шапиро-Уилка и Лиллиефорса.
 - Какой критерий против такой альтернативы булет более мощный?
- 2. Данные Computer+Hardware.