This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

THIS PAGE BLANK (USPTO)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATIODN TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 January 2002 (31.01.2002)

PCT

(10) International Pubblication Number WO 02/094451 A2

(51) International Patent Classification7:

H04Q 7/00

(21) International Application Number: PCT/CA01/01040

(22) International Filing Date:

19 July 2001 (19.07.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/621,129

21 July 2000 (21.07.2000) US

- (71) Applicant (for all designated States except US): TELE-FONAKTIEBOLAGET L M ERICSSON (PUBL) [SE/SE]; S-126 25 Stockholm (SE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): LORD, Martin [CA/US]; 20455 Skyline Blvd., La Honda, CA 94020 (US). HASAN, Suhail [IN/US]; PMB #335, 16625 Redmond Way, suite: M, Redmond, WA 98052-444 (US). LUNG, Danny, S.H. [CA/CA]; 687 Leduc, Saint-Laurent, Québec H4L 2S3 (CA).

- (74) Agents: BEAUCHESNE, Sanddra et al.; ERICSSON CANADA INC., 8400 Decarie Boloulevard, Town of Mount Royal, Québec H4P 2N2 (CA).
- (81) Designated States (national): AEE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CAA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KKE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MMD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RRU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UGG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): AARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, ', TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MDD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ', ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OOAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, /, ML, MR, NE, SN, TD, TG).

Published:

 without international search repoiort and to be republished upon receipt of that report

[(Continued on next page]

(54) Title: MOBILE TERMINAL AND METHOD OF PROVIDING A NETWORK-TO-NETWORK COONNECTION

(57) Abstract: A mobile terminal (MT) (12) and a method of connecting a plurality of devices on a computer network to a packet data network (PDN) (18) over a single wireless link. In a first embodiment, the MT (12) requests and receieives from the PDN (18), a network IP address comprising a plurality of unique individual IP addresses. The MT (12) then utilizes a a Dynamic Host Configuration Protocol (DHCP) server (27) in the MT (12) to distribute the plurality of unique individual IP addidresses to the plurality of devices on the LAN. In a second embodiment, the MT (12) requests a separate PDP Context (45,46) for c each device on the LAN requiring an IP address. The MT utilizes a Point-to-Point Protocol over Ethernet (PPPoE) session to virtualally separate the physical network connection and distribute individual IP addresses to the plurality of devices on the LAN.

O 02/09451 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MOBILE TERMINAL AND METHOD OF PROVIDING A NETWORK-TO-NETWORK CONNECTION

BACKGROUND OF THE INVENTION

Technical Field of the Invention

This invention relates to telecommunication systems and, morre particularly, to a mobile terminal and a method of connecting a computer network too a packet data network (PDN) over a single wireless link.

Description of Related Art

10

15

20

25

30

5

In the General Packet Radio Service (GPRS) network architecturge, the "Mobile Terminal" (MT) is the radio device handling the GPRS air interface. TThe "Terminal Equipment" (TE) is the user equipment connected to the MT, and the "Mobile Station" (MS) designates both TE and MT together. In the Universal Mobile Telephony System (UMTS) architecture, the term "User Equipment" (UE) is equivalent to the GPRS MS.

In GPRS, the use of the Point-to-Point Protocol (PPP) to connect a single TE such as a laptop computer to an MT for the provision of wireless packet and Internet access has been well-documented in the UMTS standards UMTS 23.0060 and UMTS 27.060. The PPP protocol uses two protocols, the Link Control Protocol (LCP) and the Network Control Protocol (NCP) to first establish the link between t the TE and the MT, and then to provide a dynamic IP address to the TE. The way the teachnology and the standards are defined, however, they enable only one IP device to 3 be connected through one cellular link.

In the current cellular packet data network technologies, such as GPRS/GSM (Global System for Mobile Communications), GPRS/EDGE (Enhanced I Data Rates for GPRS Evolution), and UMTS, the network side can only associate a siringle host with each radio link between the Base Station System (BSS) and an MT. If r more than one host is connected to the MT, the network is not able to handle this v with only one packet data address association.

In the future, a user may carry a plurality of devices (for exampple, a Personal

WO 02/09451 PCT/T/CA01/01040

Digital Assistant (PDA), a laptop computer, a mobile telephone, etc.) thhat are capable of communicating with each other over a wired or wireless network. These devices may be connected to each other over a small Local Area Network (LANN) or a wireless LAN utilizing technologies such as Bluetooth, for example. It would be desirable to provide two-way connectivity to PDNs such as the Internet for all c of the devices connected to the user's LAN.

5

10

15

20

25

30

GPRS allows the MT to open up several Packet Data Protocol (PPDP) Contexts at the same time. In the GPRS architecture, the MT is connected to once or more TEs through the defined "R" interface. However, each opened PDP Contitext requires a separate PPP stack in the MT in a one-to-one ratio, since PPP requires two unique endpoints for each opened session. Thus, a subscriber with a PDAA and a laptop essentially requires two cellular links (and possibly two cellular subscriptions) to simultaneously connect both of the devices to the Internet.

With the advent of ad hoc networking, and with the important increase in bandwidth of the cellular PDNs based on EDGE and UMTS, it is expected that the capability to connect a network of computers through a single cellilular link will become more critical. This is not possible today because the network asssigns only one packet data address to the MS, and it is impossible for the PDN to assocciate with a TE if the TE does not have a unique address. When multiple TEs try to a connect to the network through the use of only one MT, there is an insufficient numbber of address associations. The existing cellular packet data technologies allow associating many packet data addresses with the same host, but that is of no help in solvining the problem here. No direct method based on ISO layer 2 and 3 technology can be e used to solve this problem. In addition, there are no existing cellular protocols or IP? protocols that can be used to solve the problem.

In order to overcome the disadvantage of existing solutions, it would be advantageous to have a mobile terminal and a method of connecting a plurality of devices with a plurality of IP addresses through the mobile terminal, and a single wireless link, to a packet data network (PDN) such as the Internet. The present invention provides such a mobile terminal and method.

SUMMARY OF THE INVENTION

In one aspect, the present invention is a method of connectingg a plurality of devices, each having a unique IP address, through a single MT and a single wireless link to a PDN. The plurality of devices are connected to the MT on a a network such as a LAN. In a first embodiment, the MT then requests and receives fifrom the PDN, a network IP address comprising a plurality of unique individual IP addresses. The MT then utilizes, for example, a Dynamic Host Configuration Protocol (I(DHCP) server in the MT to distribute the plurality of unique individual IP addresses to the plurality of devices on the LAN.

10

5

In a second embodiment, rather than requesting a network IP adddress, the MT requests a separate PDP Context for each device on the LAN, and utilizizes a PPP over Ethernet (PPPoE) session between the devices on the LAN and the MMT to virtually separate the physical network connection into a plurality of unique 3 individual IP addresses assignable to the plurality of devices on the LAN.

15

In yet another aspect, the present invention is an MT for connectiting a plurality of devices, each having a unique IP address, through a single wireless I link to a PDN. In a first embodiment, the MT includes (1) a Point-to-Point Protocol (I(PPP) stack for connecting the MT to the plurality of devices over a LAN; (2) means for receiving from the PDN a network IP address comprising a plurality of unique e individual IP addresses; and (3) a DHCP server for distributing the plurality of unique individual IP addresses to the plurality of devices on the LAN.

20

In a second embodiment of the MT, the MT includes (1) means 3 for requesting from the PDN, a separate packet data protocol (PDP) Context for each device on the LAN; and (2) a Point-to-Point Protocol over Ethernet (PPPoE) stacks. The PPPoE stack connects the MT to the plurality of devices on the LAN, receives an indication from each individual device on the LAN whether the device requires ε an IP address, and distributes IP addresses to the plurality of devices on the LAN.

BRIEF DESCRIPTION OF THE DRAWINGS

30

25

The invention will be better understood and its numerousis objects and advantages will become more apparent to those skilled in the art by reeference to the

WO 02/09451 PCT/T/CA01/01040

following drawings, in conjunction with the accompanying specificaticion, in which:

- FIG. 1 is a simplified block diagram of a network architecturure suitable for implementing the method of the present invention;
- FIG. 2 is a simplified functional block diagram of a first embbodiment of a mobile terminal in which a Dynamic Host Configuration Protocol (DHHCP) server is utilized to interface a plurality of TEs with a packet data network;
- FIG. 3 is a flow chart illustrating the steps of the first emboodiment of the method of the present invention;
- FIG. 4 is a simplified functional block diagram of a second embbodiment of a mobile terminal in which PPP over Ethernet (PPPoE) is utilized to interface a plurality of TEs with a packet data network; and
- FIG. 5 is a flow chart illustrating the steps of the second emboodiment of the method of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

5

10

15

20

25

30

The present invention is a method of connecting a plurality of ddevices with a plurality of IP addresses through a single mobile terminal (MT) and a sisingle wireless link to a packet data network (PDN) such as the Internet. The method inincludes all the required procedures to connect several hosts or devices in the LAN environment to a single GPRS/UMTS MT, with each host or device having its own IP a address. Each of these hosts or devices may then use this single MT to send and receive data to/from the Internet or private PDNs. Two embodiments are identified and desiscribed below. Both embodiments are designed for use with a wireless link, and do not a add significant overhead to messages sent over the air interface.

FIG. 1 is a simplified block diagram of a network architecture suitable for implementing the method of the present invention. The exemplaryy architecture illustrated in FIG. 1 is for a GPRS network, although, in the first embbodiment, the invention may be utilized with any type of wireless PDN. In the GBPRS network architecture, a Mobile Station (MS) 11 includes a Mobile Terminal (MMT) 12 which handles the GPRS air interface 13, and a plurality of Terminal Equipment (TEs) 14 which are connected through a wired or wireless LAN 15 to the MT. Onn the PDN side

10

15

of the air interface is a Base Station Controller (BSC) 16, a Serving GGPRS Support Node (SGSN) 17, the GPRS PDN 18, and a Gateway GPRS Support Node (GGSN) 19 which may be used to connect to other networks.

In order to connect several TEs in the LAN environment to a single GPRS/UMTS MT, with each TE device having its own IP addresss, the MT 12 implements the normal GPRS/UMTS protocols for connection to the PDN 18, and uses any layer 2 LAN interface (for example Ethernet, 802.11) for connection to the LAN 15. In one embodiment, the MT provides a Dynamic Host (Configuration Protocol (DHCP) server on the LAN interface to provide dynamic host t configuration for all the TE hosts and devices connected to this interface. The MT onn this interface also acts as a router or default gateway for hosts and devices visiting the 2 network. The MT implements a mapping between the DHCP requests from the hoststs connected to the LAN and the GPRS/UMTS protocols, and also routes traffic to/from those hosts. In an alternative embodiment, the MT uses PPP over Ethernet (PPPoEE, rfc 2516) to connect to each TE with a physical LAN, while maintaining sepparate logical connections with each individual TE. The subsequent paragraphs desceribe both the DHCP embodiment and the PPPoE embodiment.

Embodiment 1: DHCP

FIG. 2 is a simplified functional block diagram of a first embbodiment of a mobile terminal 12 in which a DHCP server is utilized to interface a phlurality of TEs with a PDN. The MT includes a radio side protocol stack 21 comprising a Radio Link Control/Medium Access Control (RLC/MAC) protocol layer 22, a Logical Link Control (LLC) layer 23, and a Sub-Network Dependence Convergence Protocol (SNDCP) layer 24. Mobility Management/Service Management (MMM/SM) is also performed at this layer. On top of the SNDCP layer is an IP stack 225 to which a network address comprising a plurality of individual IP addresses is paassed from the PDN 18. The IP stack is linked to a PPP stack 26 which establishes a link between the TEs 14 and the MT 12. A DHCP server 27 is implemented to assign the multiple IP addresses included in the network address to the TE hosts and devices connected to the LAN 15. The PPP stack then provides the dynamic IP addresses to the TEs using

10

15

20

25

30

802.x.

FIG. 3 is a flow chart illustrating the steps of the first emboodiment of the method of the present invention. The DHCP embodiment assumes thhat a user who desires to connect a plurality of devices to a PDN through a single wirireless link has some kind of subscription or agreement with the network operator whinch designates the number of unique individual IP addresses that the user needs. This 3 is indicated at step 31. At 32, the number of unique individual IP addresses for eachh subscriber is then stored in a subscriber database in the PDN. At 33, the TEs and thee MT are then connected on a network such as a wired or wireless LAN. When the usser connects to the IP network, instead of the network assigning a single IP address for a a single device to the user device, the network performs a single PDP Context activatition procedure at 34, but allocates a network address comprising the number of uniquee individual IP addresses designated in the subscription agreement. The network addresss is essentially a collection of single host addresses, and enables a number of devices too be addressed individually. When the IP protocol is used, this means assigning an address such as 10.1.1.0 with a subnet mask of 255.255.255.0 instead of an address suuch as 10.1.1.1 with a subnet mask of 255.255.255.255. When using the IP protocobl, the network address may comprise 1, 2, 4, or 16, etc. single host addresses. The MTI then takes the network address and divides it into a plurality of single addresses and ddistributes it to the separate devices on the LAN or wireless LAN.

Preferably, the invention provides public IP addresses rather than private IP addresses so that each device can be addressed from PDNs such as the Internet. If private IP addresses are supplied within the LAN, no help is required fifrom the PDN. However, it is anticipated that it will become increasingly important,, especially for multimedia types of applications, to be reachable from the PDN. It shhould be noted that while there is presently a concern regarding the availability of a suffficient number of IP addresses, many more IP addresses will be available when IPv6 is s implemented.

Additional procedures may also be implemented to ensure that only the number of IP addresses actually needed are sent to the user's device. After thee user accesses the IP network at 34, signaling with the network operator may be utilizeed to determine at step 35 whether the user needs fewer IP addresses or whether the user needs all of

10

, 15

the IP addresses designated in the subscription agreement. If the user rerequests fewer IP addresses, the process moves to step 36 where the PDN allocatess a network IP address to the MT comprising the requested number of individual IP adddresses. If the user does not request fewer IP addresses, the process moves to step 37 wwhere the PDN allocates a network IP address to the MT comprising the number of f individual IP addresses designated in the subscription agreement. In GPRS or UMTTS, this can be accomplished during the PDP Context procedure. The network IP address is assigned to a single PDP Context in the MT 12, and all traffic to/from the GPPRS PDN core network 18 is treated as traffic to/from the MT (from the peerspectives of authentication, authorization, access control, routing, and charging datata).

At step 38, the MT provides the network IP address and the subnnet mask to the DHCP server 27. At 39, the DHCP server assigns the unique individual IP addresses to each of the TEs connected to the LAN. Handling the uplink traffice in the MT is straight forward. For the downlink traffic, the MT receives the IP ppackets which include the proper final destination address for a particular TE on the LAN. On the LAN interface, the MT then uses normal Address Resolution Protocol (ARP) procedures at step 40 to deliver datagrams to the particular TE.

This solution requires minor changes to the existing GPRS/UMMTS protocols in order to enable the PDN to return a network address. However, thee solution can scale to a large number of hosts and devices, is simple for the PDN to implement, does not cost anything more from the PDN perspective, does not complicate routing, and, importantly, does not add overhead to the cellular link. It is then up to the user device to locally distribute the single IP addresses. Each device then has bi-t-directional IP connectivity.

25

30

20

Embodiment 2: PPPoE

FIG. 4 is a simplified functional block diagram of a second embodiment of a mobile terminal 12 in which PPP over Ethernet (PPPoE) is utilized 1 to interface a plurality of TEs with a PDN. As described above, the MT includes t the radio side protocol stack 21 comprising the RLC/MAC protocol layer 22, the LLCC layer 23, and the SNDCP layer 24. On top of the SNDCP layer, a plurality of PDP Contexts 45 and

10

15

20

25

30

46 are established: one for each TE 14 connected to the LAN 15. The 1 PDP Contexts connect to the PPP stack 26 which establishes a link between the TE 114 and the MT 12 using 802.x.

FIG. 5 is a flow chart illustrating the steps of the second emboodiment of the method of the present invention. Once again, at step 51, the TEs annd the MT are connected on a network such as a wired or wireless LAN. At 52, each TTE workstation on the LAN launches a PPP over Ethernet (PPPoE) session with the MTI 12 as per rfc 2516. The session ID parameter defined in rfc 2516 is used as an idenntifier for each PPP host TE. At 53, the Link Control Protocol (LCP) and Network Countrol Protocol (NCP) phases of the PPP state machine are passed over PPPoE frame between the TEs and the MT. When the MT receives an NCP message from one of the TEs on the LAN at 54, the MT launches a PDP Context for that TE. Thus, for each TE device in the LAN 15 that requires an IP address, the MT uses the existing PDP Context facility, as currently defined in GPRS/UMTS, to request a separate PDP Context procedure from the PDN. At 55, separate links are then set up from each openedd PDP Context to the PPP stack. At 56, the IP addresses are sent over the LAN to the TEs using the PPPoE protocol.

In GPRS, the PDP Context is intended to create a number of virirtual links, all ending in the same terminal. The GPRS standard allows for up to 14 IPDP Contexts to be opened at one time for use by the same device. There is; a one-to-one relationship between the PDP Contexts and the TEs connected to the LAAN. Therefore, the number of devices in the LAN is limited to 14.

Opening multiple PDP Contexts is a viable solution for connecting multiple TEs through the MT as long as there is only one physical link between the TEs and the MT, since it would be unrealistic to establish a separate link connection to each of the connected TEs. As shown at 57, on the LAN side there is still one physical link, but it is virtually separated into different IP addresses.

In this embodiment, the MT performs the key tasks of the maethod without requiring a lot of support from the PDN. This solution "costs" more onn the PDN side since multiple PDP Contexts must be set up and maintained. However, the function of distributing the IP addresses to the different devices is performed by the MT, and

WO 02/09451 PCT/T/CA01/01040

-9-

there are no network standardization changes required.

5

It is thus believed that the operation and construction of the pressent invention will be apparent from the foregoing description. While the mobilee terminal and method shown and described has been characterized as being preferrred, it will be readily apparent that various changes and modifications could be made therein without departing from the scope of the invention as defined in the following c claims.

10

15

20

25

30

WHAT IS CLAIMED IS:

1. A method of connecting a plurality of devices, each harving a unique Internet Protocol (IP) address, through a single mobile terminal (MTT) and a single wireless link to a packet data network (PDN), said method comprising the steps of:

connecting the plurality of devices and the MT on a network;

sending a network IP address from the PDN to the MT, the network IP address comprising a plurality of unique individual IP addresses; and

distributing by the MT, the plurality of unique individual IP adddresses to the plurality of devices on the network.

- 2. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 1 wherein the step of connecting the plurality of devices and the MT on a network includes connecting the plurality of devices and the MT on a local area network (LAN).
- 3. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 2 wherein the step of connecting the plurality of devices and the MT on a LAN includes connecting the plurality of devices and the MT on a wireless LAN.
- 4. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 1 further comprising, before the step of sending a network IP address from the PDN to the MT, the step of recording in a subscriber database associated with the PDN, how many unique individual IP addresses are to be included in the network IP address sent to the MT.
- 5. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 4 wherein the step of sendding a network IP address from the PDN to the MT includes the steps of:

performing, by the MT and the PDN, a packet data protocol ((PDP) context

10

activation procedure; and

allocating by the PDN, the network IP address to the MT.

6. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 1 wherein the step of distributing by the MT, the plurality of unique individual IP addresses to the plurality of ℓ devices on the network includes the steps of:

providing the network IP address and a subnet mask to a I Dynamic Host Configuration Protocol (DHCP) server in the MT; and

assigning by the DHCP server, the plurality of unique individual IP addresses to the plurality of devices on the network.

7. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 1 further comprising the steps of:

receiving IP packets in the MT that are addressed to one of the unique individual IP addresses; and

delivering datagrams by the MT to a device on the network associated with the unique individual IP address received in the IP packets, said delivering step utilizing Address Resolution Protocol (ARP) procedures to deliver the datagrams.

20

15

8. A method of connecting a plurality of devices, each haaving a unique Internet Protocol (IP) address, through a single mobile terminal (MTT) and a single wireless link to a packet data network (PDN), said method comprising the steps of:

connecting the plurality of devices and the MT on a network;

25

30

requesting by the MT, a separate packet data protocol (PDP) context for each device on the network; and

utilizing a Point-to-Point Protocol over Ethernet (PPPoE) session between the devices on the network and the MT to virtually separate the physical network connection into a plurality of unique individual IP addresses assignable a to the plurality of devices on the network.

9. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 8 wherein the step of econnecting the plurality of devices and the MT on a network includes connecting the plurality of devices and the MT on a local area network (LAN).

5

10. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 9 wherein the step of connecting the plurality of devices and the MT on a LAN includes connecting the plurability of devices and the MT on a wireless LAN.

10

11. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 8 wherein the step of requiesting by the MT, a separate packet data protocol (PDP) context for each device on the network includes the steps of:

15

launching a PPPoE session on the network between the MT and the plurality of devices;

receiving by the MT, an indication from an individual device on the network that the device requires an IP address; and

requesting by the MT, a separate PDP context for each individual device on the network that requires an IP address.

20

12. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 8 further comprising linking each separate PDP context to a PPP protocol stack in the MT.

25

13. The method of connecting a plurality of devices through a single MT and a single wireless link to a PDN of claim 12 further comprising sendifing by the MT, a unique individual IP address to each device on the network using the PPPoE protocol.

30

14. A mobile terminal (MT) for connecting a plurality of ê devices, each

15

having a unique Internet Protocol (IP) address, through a single wireless link to a packet data network (PDN), said MT comprising:

a Point-to-Point Protocol (PPP) stack for connecting the MT to t the plurality of devices over a local area network (LAN);

means for receiving a network IP address from the PDN, thhe network IP address comprising a plurality of unique individual IP addresses; and

a Dynamic Host Configuration Protocol (DHCP) server for dilistributing the plurality of unique individual IP addresses to the plurality of devices oon the LAN.

15. A mobile terminal (MT) for connecting a plurality of devvices on a local area network (LAN) through a single wireless link to a packet data network (PDN), said MT comprising:

means for requesting from the PDN, a separate packet data pprotocol (PDP) context for each device on the LAN; and

a Point-to-Point Protocol over Ethernet (PPPoE) stack comprisising:

means for connecting the MT to the plurality of devicess on the LAN;

means for receiving an indication from each individual device on the

LAN whether the device requires an Internet Protocol (IP) address; and

means for distributing IP addresses to the plurality of ddevices on the

20 LAN.

FIG. 2

FIG. 3

FIG. 5

(19) World Intellectual Property Oprganization International Bureau

(43) International Publicationn Date 31 January 2002 (31.01.20002)

PCT

(10) International Puublication Number WO 02/0099451 A3

(51) International Patent Classification³7: 12/56, 29/06

H04L 12/28,

(21) International Application Numberr: PCT/CA01/01040

(22) International Filing Date:

19 Ju'uly 2001 (19.07.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/621,129

21 July 20000 (21.07.2000) US

(71) Applicant (for all designated States: except US): TELE-FONAKTIEBOLAGET L M EERICSSON (PUBL) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US onlyly): LORD, Martin [CA/US]; 20455 Skyline Blvd., Laa Honda, CA 94020 (US). HASAN, Suhail [IN/US]; PMMB #335, 16625 Redmond Way, suite: M, Redmond, VWA 98052-444 (US).

LUNG, Danny, S.H. [CA/CA];; 687 Leduc, Saint-Laurent, Québec H4L 2S3 (CA).

- (74) Agents: BEAUCHESNE, Salandra et al.; ERICSSON CANADA INC., 8400 Decarie 1 Boulevard, Town of Mount Royal, Québec H4P 2N2 (CA).).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, ROD, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, LUG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MMD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DDK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GVW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: MOBILE TERMINAL AND MMETHOD OF PROVIDING A NETWORK-TO-NETWORK (CONNECTION

da ud re

(57) Abstract: A mobile terminal (MT) (112) and a method of connecting a plurality of devices on a commputer network to a packet data network (PDN) (18) over a single wire less link. In a first embodiment, the MT (12) requests and receives from the PDN (18), a network IP address comprising a plurality of unique individual IP addresses. The MT (12) then utilizees a Dynamic Host Configuration Protocol (DHCP) server (27) in the MT (12) to distribute the plurality of unique individual IP addresses to the plurality of devices on the LAN. In a second embodinment, the MT (12) requests a separate PDP Context (45,46) for each device on the LAN requiring an IP address. The MT utilizes a a Point-to-Point Protocol over Ethernet (PPPoE) session to virtrually separate the physical network connection and distribute individual IP addresses to the plurality of devices on the LAN.

Published:

with international search report

(88) Date of publication of the internatitional search report:
31 October 2002

For two-letter codes and other abbreviolations, refer to the "Guidance Notes on Codes and Abbreviationss" appearing at the beginning of each regular issue of the PCTT Gazette.

INTERNATIONAL SEARCH REPORT

Intel anal Application No PCT/CA 01/01(1040

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04L12/28 H04L H04L12/56 H04L29/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H04L H04Q Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched ed Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Cltation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1-5, 7-13,15 X WO 00 18066 A (QUALCOMM INC) 30 March 2000 (2000-03-30) abstract page 5, line 6 - line 20 page 6, line 8 -page 13, line 27 claims 1-3,7,8,11-14,17-21,24,25 figure 4 Υ 6,14 PERKINS C E ET AL: "USING DHCP WITH COMPUTERS THAT MOVE", WIRELESS NETWORKS, ACM, US, VOL. 1, NR. 3, PAGE(S) 341-353 Υ 6.14 XP000538245 ISSN: 1022-0038 abstract page 341, left-hand column, line 1 -page 344, left-hand column, line 25 -/--Further documents are listed in the continuation of box C. Patent family members are listed in annennex. Special categories of dted documents: "T later document published after the international filing date or priority date and not in conflict with the ar application but cited to understand the principle or theory us underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimeded invention cannot be considered novel or cannot be corconsidered to involve an inventive step when the documentent is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimethed invention cannot be considered to involve an inventivelive step when the document is combined with one or more otherher such documents, such combination being obvious to an a person skilled in the art. *O* document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&" document member of the same patent family illy Date of the actual completion of the international search Date of mailing of the International search repreport 23 July 2002 31/07/2002 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Alonso Maleta, J

INTERNATIONAL SEARCH REPORT

Inte onal Application No
PC 1/CA 01/011040

		PC1/CA 01/011040						
C.(Continuation) DOCUMENTS CONSIDERED TOO BE RELEVANT								
Category °	Cliation of document, with indication, withhere appropriate, of the relevant passages	Releievant to claim No.						
A	WO 99 16266 A (ERI(CSSON TELEFON AB L M) 1 April 1999 (1999)-04-01) abstract page 15, line 21 -page 16, line 12 page 20, line 26 -page 21, line 18 page 25, line 1 -paage 26, line 24	1-15						
E .	page 25, line 1 -page 26, line 24	1,2,6,14						

INTERNATIONAL SEARCH REPORT

iformation o on patent family members

Inte onal Application No PCT/CA 01/01040

Patent document cited in search report		l Publication date		Patent family member(s)	Publication date
WO 0018066	A	:30-03-2000	AU CN EP WO	6047399 A 1319297 T 1116359 A2 0018066 A2	10-04-2000 24-10-2001 18-07-2001 30-03-2000
WO 9916266	A	(01-04-1999	AU BR CA EP JP NZ WO ZA	742647 B2 9287698 A 9812522 A 2304863 A1 1018275 A1 2001517910 T 503466 A 9916266 A1 9808571 A	10-01-2002 12-04-1999 25-07-2000 01-04-1999 12-07-2000 09-10-2001 31-05-2002 01-04-1999 31-03-1999
WO 0186908	Α	115-11-2001	WO AU EP	0186908 A1 4404700 A 1192777 A1	15-11-2001 20-11-2001 03-04-2002