Algorithm 2017 Spring Quiz Solutions

指導教授:謝孫源教授

助教: 許景添 陳琮皓 林玉陞 何岱璇

1 (20nts) Is the graph acyclic?

No, a directed graph is not acyclic because it has "back" edges.

```
BFS(V, E, s)
for each u \in V - \{s\}
    do d[u] \leftarrow \infty
d[s] \leftarrow 0
Q \leftarrow \Phi
ENQUEUE(Q, s)
While Q \neq \Phi
  do u \leftarrow \text{DEQUEUE}(Q)
    for each v \in Adj[u]
            do if d[v] = \infty
                  then d[v] \leftarrow d[u] + 1
                       ENQUEUE(Q, v)
```

2.

3. For the following graph

A. (10pts) What is a minimum-cost spanning tree? Please write down the a minimum-cost spanning tree.

• (5pts) Cost: 46

• (5pts) The MST:

a

5

b

8

c

12

10

e

6

h

3. For the following graph

9.

return A

```
B. (10pts) Write an algorithm to describe how you get the result of (A).
    Method 1 : KRUSKAL(V, E, w)
       A \leftarrow \emptyset
       for each vertex v \in V[G]
             do MAKE-SET(\nu)
        sort E into nondecreasing order by weight w
 4.
        for each (u, v) taken from the sorted list
 5.
             do if FIND-SET(u) \neq FIND-SET(v)
 6.
                   then A \leftarrow A \cup \{(u, v)\}
 7.
                        UNION(u,v)
 8.
```

3. For the following graph

```
Method 2 : PRIM(V, E, w, r)
1.
        Q \leftarrow \emptyset
        for each u \in V[G]
3.
             do key[u] \leftarrow \infty
                \pi[u] \leftarrow \text{NIL}
                INSERT(Q, u)
5.
       DECREASE-KEY(Q, r, 0)
6.
        while Q \neq \emptyset
7.
8.
            do u \leftarrow \text{EXTRACT-MIN}(Q)
                 for each v \in Adj[u]
                      do if v \in Q and w(u, v) < key[v]
10.
                            then \pi[v] \leftarrow u
11.
                                   DECREASE-KEY(Q, v, w(u, v))
12.
```

Q: Show, by means of a counterexample, that the following "greedy" strategy does not always determine an optimal way to cut rods. Define the density of a rod of length i to be p_i , that is, its value per inch. The greedy strategy for a rod of length n cuts off a first piece of length i, where $1 \le i \le n$, having maximum density. It then continues by applying the greedy strategy to the remaining piece of length n-i

	length i	1	2	3	4	
Sol.	price p_i	1	20	33	36	
➤ Here is a counterexample for the "greedy" strategy:	p_i/i	1	10	(11)	9	

- Let the given rod length be 4.
- According to a greedy strategy, we first cut out a rod of length 3 for a price of 33, which leaves us with a rod of length 1 of price 1.
- The total price for the rod is 34. The optimal way is to cut it into two rods of length 2 each fetching us 40 dollars.

5. (20pts) In the algorithm SELECT, the input elements are divided into groups of 5.

(a) (10pts) What is the purpose of this algorithm?

The SELECT algorithm determines the *i*th smallest of an input array of n>1 distinct elements.

(b) (10pts) Will the algorithm work in linear time if they are divided into groups of 7?

Ans: YES

。決定median of medians x後,至少有 $\frac{2n}{7}-8$ 個 elements大於x,所以至多有 $\frac{5n}{7}+8$ 個elements小於x,worst case為在 $\frac{5n}{7}+8$ 中找 *i*-th smallest element Total cost: $T(n) \leq T(\left\lceil \frac{n}{7} \right\rceil) + T(\frac{5n}{7}+8) + O(n) => T n = O(n)$

• 示意圖:

5. (20pts) In the algorithm SELECT, the input elements are divided into groups of 5.

(b) (10pts) Will the algorithm work in linear time if they are divided into groups of 7?

•
$$T(n) \le T(\left\lceil \frac{n}{7} \right\rceil) + T(\frac{5n}{7} + 8) + O(n)$$
 利用substitution method得到的結果為
$$T(n) \le \frac{6cn}{7} + 9c + an \le cn = cn + (-\frac{cn}{7} + 9c + an)$$
• $-\frac{cn}{7} + 9c + an \le 0$

$$\frac{cn}{7} - 9c \ge an$$
 $cn - 63c \ge 7an$

$$c(n - 63) \ge 7an$$

$$取 c \ge 7a(\frac{n}{n-63})$$
 得到 $T(n) = O(n)$