Capítulo 2

EDO de $2^{\underline{a}}$ ordem com Coeficientes Constantes

2.1 Introdução - O Problema Carro-Mola

Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro em movimento puxando-o x_0 metros de sua posição de equilíbrio e soltando-o. Pela lei de Hooke, a mola exerce uma força F_m sobre o carro proporcional à sua distensão, com coeficiente de proporcionalidade k. Vamos supor que o meio viscoso oferece uma força F_v de resistência ao movimento proporcional à sua velocidade com constante de proporcionalidade c. Seja x = x(t) a posição do carro em um instante t e v = v(t) sua velocidade. Uma vez iniciado o movimento, as forças atuantes no carro, F_m e F_v , tem sinais contrários. Coloquemos um referencial conforme a figura 2.1.

Figura 2.1: Carro-mola

Vamos supor que por um instante, o carro está à direita do ponto de equilíbrio, sendo puxado pela mola. Neste caso, a força F_m assume o sinal negativo e a força F_v o sinal positivo. Acontece que, como o carro está se movimentando para a esquerda, a distância x(t) da posição de equilíbrio está

diminuindo, isto é, x(t) está decrescendo e, portanto, sua derivada x'(t) é uma função negativa, ou seja, sua velocidade é negativa. Como F_v é positiva, então $F_v = -cx'(t)$. Logo, pela $2\underline{a}$ lei de Newton, a soma das forças atuantes no sistema carro-mola, nos dá a equação diferencial linear homogênea de segunda ordem com coeficientes constantes:

$$mx''(t) + cx'(t) + kx(t) = 0 (2.1)$$

Vamos resolver este problema considerando c=5 e k=6. A idéia é reduzir esta equação de $2^{\underline{a}}$ ordem a duas de primeira.

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = \frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 3\frac{dx}{dt} + 3.2x$$
$$= \frac{d}{dt}\left(\frac{dx}{dt} + 2x\right) + 3\left(\frac{dx}{dt} + 2x\right)$$

Chamando $\frac{dx}{dt} + 2x = y$, tem-se,

$$\frac{dx}{dt} + 3y = 0 \Rightarrow y = ce^{-3t}$$

Logo,
$$\frac{dx}{dt} + 2x = ce^{-3t}$$
 $(e^{2t}x)' = ce^{-t}$, assim,

$$e^{2t}x = \int ce^{-t} dt = -ce^{-t} + c_1$$

Logo, a solução geral da equação é

$$x(t) = c_1 e^{-2t} + c_2 e^{-3t}$$

Supondo que as condições iniciais do problema, posição e velocidade, são x(0) = 5 e x'(0) = 0, tem-se a solução $x(t) = 15e^{-2t} - 10e^{-3t}$. Para saber qual é o movimento do carro em qualquer instante, fazemos um gráfico de sua solução.

Figura 2.2: Solução do problema carro-mola super-amortecido

Observando o gráfico, vemos que o carro sai de sua posição inicial x(0) = 5 com velocidade x'(0) = 0 e tende para sua posição de equilíbrio.

Exemplo 2.1 (Movimento sub-amortecido) Considere o problema carro-mola com m=1, c=4 e k=4. Tem-se a equação

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0 (2.2)$$

Como no exemplo anterior, vamos reduzir esta equação de segunda ordem a duas de primeira:

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = \frac{d^2x}{dt} + 2\frac{dx}{dt} + 2\frac{dx}{dt} + 4x$$
$$= \frac{d}{dt}\left(\frac{dx}{dt} + 2x\right) + 2\left(\frac{dx}{dt} + 2x\right)$$
$$= \frac{dy}{dt} + 2y$$

onde $y = \frac{dx}{dt} + 2x$. A solução da equação de primeira ordem $\frac{dy}{dt} + 2y = 0$ é $y = ce^{-2t}$. Assim,

$$\frac{dx}{dt} + 2x = ce^{-2t} \Rightarrow (xe^{2t})' = ce^{-2t}e^{2t} = c \Rightarrow xe^{2t} = \int c \, dt = ct + c_1 \Rightarrow x = (c + c_1t)e^{-2t}$$

Considerando as condições iniciais: x(0) = 2 e x'(0) = -5, obtém-se

$$x(t) = (2 - 9t)e^{-2t}$$

Apesar de encontrarmos a solução da equação, a descrição do movimento do carro-mola nos é dada por uma análise do gráfico de sua equação

Figura 2.3: Carro-mola com movimento sub-amortecido

Como vimos nos dois exemplos anteriores, a dificuldade de resolver uma equação diferencial de segunda ordem ao reduzi-la para duas de primeira ordem está na decomposição da equação de segunda ordem. Uma maneira de contornar este problema é mudar a notação de derivada e observar que o ato de derivar uma função nada mais é que uma operação que leva uma função à sua derivada, isto é, derivar uma função é uma operação que leva uma função f à sua derivada f' ou $\frac{df}{dt}$. Chamamos esta função

$$D: f \mapsto Df = \frac{df}{dt} = f'$$

de **operador diferencial linear**. A operação de derivar duas vezes é denotada por

$$D^2 f = D(D f) = f''$$

Lembrando que as operações de soma de duas funções g e h e a multiplicação por escalar são definidas por por

$$(g+h)(x) = g(x) + h(x)$$
 e $(kg)(x) = kg(x)$

.

e que o operador D é uma função, tem-se então que

$$m\frac{d^2x}{dt^2} + k\frac{dx}{dt} + c\frac{dx}{dt} = mD^2x + kDx + cx = (mD^2 + kD + c)x = 0$$
(2.3)

Esta última igualdade nos faz lembrar do polinômio $p(r)=mr^2+kr+c$, o qual chamaremos de polinômio característico da equação diferencial acima. Resolvendo a, assim chamada, equação característica $mr^2+kr+c=r^2+\frac{k}{m}r+\frac{c}{m}=0$, encontramos suas raízes r_1 e r_2 . Logo,

$$p(r) = r^2 + \frac{k}{m}r + \frac{c}{m} = (r - r_1)(r - r_2)$$

Transpondo para a equação diferencial 2.3, vemos que podemos reescrevê-la assim:

$$m\frac{d^2x}{dt^2} + k\frac{dx}{dt} + c\frac{dx}{dt} = mD^2x + kDx + cx = (mD^2 + kD + c)x = (D - r_1)(D - r_2)x = 0$$
 (2.4)

Agora, basta chamar $(D - r_2)x = y$ e resolver a equação diferencial de primeira ordem $(D - r_1)y = y' - r_1y = 0$. Sua solução, como já vimos é $y = ce^{r_1t}$. Logo,

$$(D - r_2)x = y = ce^{r_2t} \Leftrightarrow x' - r_2x = ce^{r_2t}$$

Esta equação de primeira ordem tem solução

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Isto quando as raízes do polinômio característico forem reais e $r_1 \neq r_2$.

Quando as raízes forem reais e iguais, isto é, $r_1 = r_2 = r_0$, a decomposição do polinômio característico é a mesma, ou seja, $p(r) = (r - r_0)(r - r_0)$, e a equação diferencial fica

$$(D - r_0)(D - r_0)x = 0$$

A resolução final segue a da anterior chamando $(D-r_0)x=y$. O que não se pode fazer é simplificar $(D-r_0)(D-r_0)x=(D-r_0)^2x$. Esta igualdade realmente não vale para operadores diferenciais. Experimente!!!

Vejam que qualquer que seja o caso de raízes reais, distintas ou iguais, o método de resolução acima nos leva às soluções gerais:

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}, \qquad r_1 \neq r_2$$
 (2.5)

$$x(t) = (c_1 + c_2 t)e^{rt}, r_1 = r_2 = r$$
 (2.6)

onde c_1 e c_2 são constantes reais quaisquer. Caso o polinômio característico tenha raízes complexas, o mesmo método de resolução acima nos leva no mesmo tipo de solução de raízes reais, como veremos no próximo exemplo.

Exemplo 2.2 (Movimento Oscilatório Amortecido) Considere, agora, o problema carro-mola com as constantes tomando valores m = 1, k = 2 e c = 2. Assim,

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 2x = 0 \Leftrightarrow (D^2 + 2D + 2)x = 0$$

A equação característica $r^2 + 2r + 2 = 0$ tem raízes complexas $r_1 = -1 + i$ e $r_2 = -1 - i$. Assim, $r^2 + 2r + 2 = (r - (-1 + i))(r - (-1 - i)) = 0$ e nossa equação diferencial fica assim decomposta:

$$(D - (-1+i))(D - (-1-i))x = 0$$

Como fizemos no exemplo anterior, chame (D-(-1-i))x=y. Então, $(D-(-1+i))y=0 \Rightarrow y'-(-1+i)y=0$.

Temos aí uma equação diferencial de primeira ordem com um coeficiente complexo. Se usarmos o fator integrante para resolvê-la, teremos

$$u = e^{\int (-1+i) \, dt}$$

e o que significa isto? Integral de um número complexo e, conseqüentemente, uma função exponencial com expoente complexo. Precisamos, então, entender seus significados.

2.2 Um pequeno resumo de funções complexas

Vamos entender primeiro o que é uma função complexa. Chamamos de função complexa uma função $f: \mathbb{R} \to \mathbb{C}$, definida por

$$f(t) = u(t) + iv(t)$$

, sendo $u:\mathbb{R}\to\mathbb{R}$ e $v:\mathbb{R}\to\mathbb{R}$, \mathbb{R} o conjunto dos números reais e \mathbb{C} o conjunto dos números complexos. Exemplos:

Exemplo 2.3 (a) $f(t) = 1 + t^2 + i(3t - 2)$

- **(b)** $f(t) = \sin(5t) + i\cos(5t)$
- (c) $f(t) = e^{3t}(\cos(2t) + i\sin(2t))$

Derivada de uma função complexa: A derivada de uma função complexa f(t) = u(t) + iv(t) é definida como sendo a derivada das partes real e imaginária, i.e.,

$$f'(t) = u'(t) + iv'(t)$$

Integral de uma função complexa: A integral de uma função complexa f(t) = u(t) + iv(t) é definida como sendo a integral das partes real e imaginária, i.e.,

$$\int f(t) dt = \int u(t) dt + i \int v(t) dt$$

Exemplo 2.4
$$\int 1 + t^2 + i(3t - 2) dt = \int (1 + t^2) dt + i \int (3t - 2) dt = t + \frac{t^3}{3} + i(\frac{3}{2}t^2 - 2t)$$

Exponencial complexa: Definimos a função exponencial complexa

$$f(t) = e^{(a+bi)t} = e^{at}(\cos bt + i \sin bt)$$

Observe que se a = 0 e b = 1, temos a chamada fórmula de Euler

$$e^{it} = \cos t + i \sin t$$

Utilizando as definições dadas acima é fácil de mostrar que as regras usuais de exponenciação são válidas para função exponencial complexa e que se z = a + bi, então,

$$\frac{d(e^{zt})}{dt} = ze^{zt} \tag{2.7}$$

$$\int e^{zt} dt = \frac{1}{z}e^{zt} + c \tag{2.8}$$

• Voltando ao exemplo 2.2 do movimento oscilatório amortecido, podemos, agora, resolver a equação diferencial

$$y' - (-1+i)y = 0$$
 ou $y' + (1-i)y = 0$.

Seu fator integrante é $u = e^{\int (1-i) dt} = e^{(1-i)t}$, logo, $y = ce^{(-1+i)t}$.

Assim, resolvendo-se, agora, a equação

$$x' + (1+i)x = ce^{(-1+i)t}$$
,

obtém-se a solução geral

$$x(t) = c_1 e^{(-1+i)t} + c_2 e^{(-1-i)t}$$

$$= e^{-t} (c_1 e^{it} + c_2 e^{-it})$$

$$= e^{-t} (c_1 (\cos t + i \sin t) + c_2 (\cos t - i \sin t))$$

$$= e^{-t} ((c_1 + c_2) \cos t + i (c_1 - c_2) \sin t)$$

$$= e^{-t} (c_3 \cos t + c_4 \sin t)$$

onde $c_3 = c_1 + c_2$ e $c_4 = i$ $(c_1 - c_2)$. Se considerarmos as condições iniciais x(0) = 2 e x'(0) = 0, obtém-se $c_3 = c_4 = 2$ e a solução particular

$$x(t) = 2e^{-t}(\cos t + \sin t) \tag{2.9}$$

Como nos casos anteriores do problema carro-mola, para se fazer uma análise do tipo de movimento com as condições iniciais dadas acima, temos que analisar o gráfico da solução 2.9. Evidentemente, quando se tem um programa computacional algébrico como o Maple, traça-se o gráfico rapidamente. Quando não, a melhor maneira de se fazer um esboço do gráfico é transformar a soma $c_3 \cos t + c_4 \sin t$ em $\cos(t-\phi)$, muito mais fácil de se traçar um gráfico sem ajuda do computador. Para isso, observe que $\cos(t-\phi) = \cos t \cos \phi + \sin t \sin \phi$ e como os valores de c_3 e c_4 podem ser em valor absoluto maiores que 1. Portanto, para transformar a expressão $c_3 \cos t + c_4 \sin t$ em $\cos(t-\phi)$ devemos multiplicá-la por número, tal que seja possível comparar as duas expressões. Vamos chamar tal número de r. Então,

$$\cos(t - \phi) = \cos t \cos \phi + \sin t \sin \phi = rc_3 \cos t + rc_4 \sin t$$

Para se verificar tal igualdade,

$$\cos \phi = rc_3$$
 e $\sin \phi = rc_4$

Assim, resolvendo-se este sistema, obtém-se $r = \frac{1}{\sqrt{c_3^2 + c_4^2}}$

Para a solução 2.9, $r = \frac{1}{\sqrt{8}} = \frac{\sqrt{2}}{2}$ e assim $\phi = \frac{\pi}{4}$. Logo,

$$x(t) = \sqrt{8}e^{-t}\cos(t - \frac{\pi}{4})$$

Portanto, o gráfico de x(t) é o gráfico do coseno deslocado de $\frac{\pi}{4}$ unidades para a direita, limitado acima pelo gráfico de $\sqrt{8}e^{-t}$ e abaixo pelo gráfico de $-\sqrt{8}e^{-t}$, pois nos pontos t onde $\cos(t-\frac{\pi}{4})=1$ e $\cos(t-\frac{\pi}{4})=-1$, os valores assumidos por x(t) são os das funções $\sqrt{8}e^{-t}$ e $-\sqrt{8}e^{-t}$, respectivamente. Veja o gráfico da Figura 2.4.

Figura 2.4: Movimento oscilatório amortecido

Figura 2.5: Movimento livre

Exemplo 2.5 (Movimento oscilatório livre) Considere o problema carro-mola com c = 0, k = 1 e condições iniciais x(0) = 2 e x'(0) = 2. Neste caso, tem-se a equação diferencial

$$x'' + x = 0$$

cuja solução é $x(t)=2\cos t+2\sin t=\sqrt{8}\cos\left(t-\frac{\pi}{4}\right)$ Veja o gráfico da Figura 2.5.

Resumo:

Dada uma equação homogênea de segunda ordem com coeficientes constantes $m, c \in k$

$$mx'' + cx' + kx = 0,$$

sejam r_1 e r_2 raizes de sua equação característica

$$p(r) = mr^2 + cr + k = 0$$

Caso 1: Se r_1 e r_2 são raizes reais e $r_1 \neq r_2$, então, a solução geral será:

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

Caso 2: Se r_1 e r_2 são raizes reais e $r_1=r_2=r$, então, a solução geral será:

$$x(t) = (c_1 + c_2 t)e^{rt}$$

Caso 3: Se $r_1 = \alpha + \beta i$ e $r_2 = \alpha - \beta i$ são raizes complexas, então, a solução geral será:

$$x(t) = e^{\alpha t} (c_1 \cos \beta t + c_2 \sin \beta t)$$

2.3 O problema carro-mola com movimento forçado

Considere o problema carro-mola com uma força externa f(t) agindo sobre o carro. A equação diferencial que modela este problema é, então:

$$mx''(t) + cx'(t) + kx(t) = f(t)$$
 (2.10)

Para exemplificar, considere $m=1,\ c=5,\ k=6$ e f(t)=4t. O método de resolução é o mesmo do caso homogêneo. A equação característica $r^2+5r+6=0$ tem raízes $r_1=-2$ e $r_2=-3$ o que nos dá a decomposição

$$(D+2)(D+3)x = 4t (2.11)$$

Chamando (D+3)x=y, a equação 2.11 fica (D+2)y=4t, ou seja, temos que resolver a equação diferencial de $1^{\underline{a}}$ ordem y'+2y=4t. Multiplicando-se esta equação pelo fator integrante $u=e^{2t}$ e integrando ambos os lados, obtém-se:

$$(ye^{2t})' = 4te^{2t} \Rightarrow ye^{2t} = 4\int te^{2t} dt \Rightarrow y = (2t - 1) + c_1e^{-2t}$$

Como x' + 3x = y, temos que resolver outra equação diferencial de primeira ordem $x' + 3x = (2t - 1) + c_1 e^{-2t}$. Novamente, multiplicando-se ambos os lados desta equação pelo fator integrante $u = e^{3t}$ e integrando obtém-se a solução da equação 2.10:

$$x(t) = \frac{2}{3}t - \frac{5}{9} + c_1e^{-2t} + c_2e^{-3t}$$

Observe que, como c_1 e c_2 são constantes quaisquer, se tomarmos $c_1 = c_2 = 0$, $x(t) = \frac{2}{3}t - \frac{5}{9}$ é uma solução particular da equação 2.10. Portanto, este método nos mostra que a solução geral da equação diferencial 2.10 pode ser decomposta assim:

$$x(t) = x_p(t) + x_h(t)$$

onde $x_p(t)$ é uma solução particular de 2.10 e $x_h(t)$ é a solução da equação homogênea associada mx'' + cx' + kx = 0.

Encontrar a solução geral da homogênea associada é um passo muito fácil, como já vimos. O problema, então, se resume em determinar a solução particular sem que tenhamos que calcular integrais, o que freqüentemente o fazemos com erros. A seção a seguir apresenta um método para encontrar tal solução, chamado *método dos coeficientes a determinar*.

2.3.1 Método dos Coeficientes a Determinar

O método a seguir é bem simples, porém se aplica somente às equações diferenciais de segunda ordem com coeficientes constantes

$$a\frac{d^2x}{dt^2} + b\frac{dx}{dt} + cx = g(t)$$
(2.12)

onde
$$g(t) = P_n(t)e^{\alpha t} \begin{cases} \cos(\beta t) \\ \sin(\beta t) \end{cases}$$
 e $P_n(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$.

O método dos coeficientes a determinar se baseia no fato de que as derivadas de somas e produtos de constantes, polinômios, exponenciais, senos e cosenos são ainda somas e produtos destas funções.

A idéia central deste método é partir de uma conjectura sobre a forma da solução x_p , isto é, dar um bom "chute" sobre a forma de x_p . Baseado no tipo de função que é g(t) e observando que a combinação linear $ax_p'' + bx_p' + cx_p$ tem que ser igual a g(t), parece razoável supor, então, que a solução particular x_p tenha a mesma forma de g(t).

Daremos alguns exemplos para ilustrar o método.

Exemplo 2.6 Encontre a solução geral da equação

$$x'' + x' - 2x = 4t^2 (2.13)$$

A equação característica $r^2 + r - 2 = 0$ da equação diferencial 2.13 tem raízes $r_1 = 1$ e $r_2 = -2$. Portanto a solução da homogênea associada é $x_h = c_1 e^t + c_2 e^{-2t}$. Resta-nos encontrar, agora, uma solução particular $x_p(t)$.

Procuramos, então, uma função $x_p(t)$, tal que, $x_p'' + x_p' - 2x_p$ seja igual a $4t^2$. Evidentemente, quando fazemos tal comparação, a tal função x_p que procuramos só pode ser um polinômio de grau 2, pois ela contém o termo $-2x_p$. Assim $x_p(t) = at^2 + bt + c$. Substituindo na equação acima, obtém-se a = b = c = -2, isto é,

$$x_n(t) = -2(t^2 + t + 2)$$

. Logo a solução geral é $x(t) = -2(t^2 + t + 2) + c_1 e^t + c_2 e^{-2t}$

Exemplo 2.7 Encontre a solução geral da equação

$$x'' + x' = 4t^2 (2.14)$$

A equação característica $r^2+r=0$ da equação 2.14 tem raízes $r_1=0$ e $r_2=-1$. Assim, a solução geral de 2.14 é $x_h=c_1+c_2e^{-t}$

Agora, a solução particular x_p é uma função, tal que, $x_p'' + x_p'$ seja igual a $4t^2$. É claro que x_p só pode ser um polinômio. Como estamos comparando o lado esquerdo da equação com um polinômio de grau 2, se tomarmos $x_p = at^2 + bt + c$ o lado esquerdo será um polinômio de grau 1, pois ele não aparece na soma. Assim, temos que aumentar o grau de x_p para 3, pois a derivada será de grau 2. Tomamos, então, $x_p = at^3 + bt^2 + ct$ sem termo constante, pois o termo constante é solução da homogênea associada e quando substituirmos x_p na equação ele desaparecerá ficando impossível calculá-lo.

Substituindo x_p na equação, obtém-se $a=\frac{4}{3}, b=-4, c=8$. Logo, a solução geral será

$$x_p(t) = 8t - 4t^2 + \frac{4}{3}t^3 + c_1 + c_2e^{-t}$$

Exemplo 2.8 Encontre a solução geral da equação

$$x'' + x' - 2x = e^{3t} (2.15)$$

A solução geral de 2.15 foi encontrada no exemplo 2.6. Assim, temos que encontrar uma solução particular x_p , tal que, $x_p'' + x_p' - 2x_p$ seja igual a e^{3t} . É razoável conjecturar que x_p , neste caso, só pode ser uma função exponencial do mesmo tipo, ou seja, $x_p = ae^{3t}$. Substituindo na equação 2.15 encontramos $a = \frac{1}{10}$. Logo,

$$x(t) = \frac{1}{10}e^{3t} + c_1e^t + c_2e^{-2t}$$

Exemplo 2.9 Encontre a solução geral da equação

$$x'' + x' - 2x = e^{-2t} (2.16)$$

Supondo, como no exemplo anterior, que a solução $x_p = ae^{-2t}$ e substituindo em 2.16, obtemos

$$4ae^{-2t} - 2ae^{-2t} - 2ae^{-2t} = e^{-2t}$$

Como o lado esquerdo da equação é zero, não existe escolha para a. O que difere este exemplo do anterior é o expoente da função exponencial. Observe que o termo e^{-2t} aparece na solução da

homogênea associada. Assim, o chute inicial $x_p = ae^{-2t}$ "desaparecerá" ao ser substituído na equação. Então, pensemos em uma solução do tipo $u(t)e^{-2t}$. Ao substituir esta solução em 2.16 o termo e^{-2t} será cancelado, pois ele aparecerá em todos os termos da equação. Assim, teremos:

$$u'' - 3u' = 1 (2.17)$$

Logo, uma escolha bem razoável de u para que o lado esquerdo de 2.17 seja igual a 1 é um polinômio de grau 1 sem o termo constante, pois o termo constante não aparece em 2.17 e portanto fica impossível de calculá-lo. A razão do desaparecimento do termo constante é que e^{-2t} é solução da homogênea. Assim,

$$x_p = ate^{-2t}$$

Substituindo em 2.16, encontramos $a = -\frac{1}{3}$.

O exemplo 2.9 nos mostra que se a solução "chutada" tiver algum termo que seja solução da homogênea, temos que multiplicá-la por t. Em alguns casos é necessário multiplicá-la por t^2 . Para uma equação diferencial de segunda ordem este é o maior grau de t que temos que multiplicar. (Você sabe porquê?)

Exemplo 2.10 Encontre a solução geral da equação

$$x'' + x' - 2x = 2\operatorname{sen} x \tag{2.18}$$

Neste exemplo procuramos uma solução particular x_p , tal que, $x_p'' + x_p' - 2x_p = 2\operatorname{sen} x$. É claro que uma função deste tipo só pode ser uma combinação de senos e cosenos, ou seja,

$$x_p = a \sin x + b \cos x \tag{2.19}$$

Como $x'_p = a \cos x - b \sin x$ e $x''_p = -a \sin x - b \cos x$, substituindo em 2.21

$$a\cos x - b\sin x - a\sin x - b\cos x - 2(a\sin x + b\cos x) = 2\sin x \tag{2.20}$$

obtém-se $a = -\frac{3}{5}$ e $b = -\frac{1}{5}$

Exemplo 2.11 Encontre a solução geral da equação

$$x'' - 4x = te^{2t} (2.21)$$

A equação característica $r^2-4=0$ da equação 2.21 tem raízes ± 2 . Logo, a solução da homogênea associada é

$$x_h = c_1 e^{2t} + c_2 e^{-2t}$$

Para encontrar uma solução particular x_p de 2.21 vemos que o lado direito de 2.21 é o produto de um polinômio com uma função exponencial. Assim podemos conjecturar que $x_p = (at+b)e^{2t}$. Agora observe que o termo be^{2t} é solução da homogênea associada, logo ele desaparece quando substituirmos x_p na 2.21. Assim, multiplicamos x_p por t, ou seja, $x_p = (at^2 + bt)e^{2t}$. Substituindo x_p em 2.21 obtemos $a = \frac{1}{8}$ e $b = \frac{1}{16}$. Logo, a solução geral de 2.21 é

$$x(t) = \left(\frac{1}{8}t^2 - \frac{1}{16}t\right)e^{2t} + c_1e^{2t} + c_2e^{-2t}$$

Propriedade: Se $ax'' + bx' + cx = g_1 + g_2$ e x_{p1} é uma solução de $ax'' + bx' + cx = g_1$ e x_{p2} é uma solução de $ax'' + bx' + cx = g_2$, então, a soma $x_{p1} + x_{p2}$ é solução de $ax'' + bx' + cx = g_1 + g_2$.

Esta propriedade é uma consequência imediata da propriedade de derivada: "a derivada da soma é a soma das derivadas".

Exemplo 2.12 Resolva o problema com condições iniciais

$$x'' + 4x = te^{t} + t \operatorname{sen} 2t$$

$$x(0) = 0, \quad x'(0) = \frac{1}{5}$$
(2.22)

A equação característica $r^2+4=0$ da equação 2.22 tem raízes $\pm 2i$. Logo, a solução da homogênea associada é $x_h=c_1\cos 2t+c_2\sin 2t$.

Pela propriedade vista acima vamos calcular separadamente as soluções particulares das equações

$$x'' + 4x = te^t (2.23)$$

$$x'' + 4x = t \operatorname{sen} 2t \tag{2.24}$$

Como o lado direito da equação 2.23 é um polinômio vezes uma exponencial, podemos supor $x_{p1}=(at+b)e^t$. Substituindo x_{p1} em 2.23, obtemos $a=\frac{1}{5}$ e $b=-\frac{2}{25}$.

Na equação 2.24, o lado direito é o produto de um polinômio pela função sen 2t. Logo uma solução particular $x_{p2} = (at + b)$ sen 2t + (ct + d) cos 2t. Porém, observemos que bsen 2t e d cos 2t são soluções da homogênea associada. Então, multiplicamos x_{p2} por t, isto é,

$$x_{p2} = (at^2 + bt) \operatorname{sen} 2t + (ct^2 + dt) \cos 2t$$

Substituindo x_{p2} em 2.24 encontramos $a=0,\ b=\frac{1}{16},\ c=-\frac{1}{8}$ e d=0. Logo, a solução geral da equação 2.22 é

$$x(t) = \left(\frac{t}{5} - \frac{2}{25}\right)e^t + \frac{t}{16}\operatorname{sen} 2t - \frac{t^2}{8}\cos 2t + c_1\cos 2t + c_2\operatorname{sen} 2t$$

Utilizando as condições iniciais de 2.22, obtém-se

$$x(t) = \left(\frac{t}{5} - \frac{2}{25}\right)e^t + \frac{t}{16}\operatorname{sen} 2t - \frac{t^2}{8}\cos 2t + \frac{2}{25}\cos 2t + \frac{1}{25}\operatorname{sen} 2t$$

Resumo do Método dos Coeficientes a Determinar

$\mathbf{g}(\mathbf{t})$	$x_{ m p}$
$P_n(t)$	$t^s(A_0 + A_1t + \dots + A_nt^n)$
$P_n(t)e^{\alpha t}$	$t^s(A_0 + A_1t + \dots + A_nt^n)e^{\alpha t}$
$P_n(t)e^{\alpha t} \begin{cases} \cos(\beta t) \\ \sin(\beta t) \end{cases}$	$t^s e^{\alpha t} [(A_0 + A_1 t + \dots + A_n t^n) \cos \beta t +$
	$(B_0 + b_1 t + \dots + B_n t^n) \operatorname{sen} \beta t]$

onde s é o menor inteiro não-negativo (s=0,1,2) que assegura que nenhum termo em x_p seja solução da equação homogênea associada.

2.4 Exercícios

1. Resolva as seguintes equações diferenciais

(a)
$$y'' - y' - 2y = 0$$

(b) $y'' - 7y = 0$
(c) $y'' + 4y = 0$
(d) $y'' + y' + 3y = 0$
R: $y = c_1 e^{-x} + c_2 e^{2x}$
R: $y = c_1 + c_2 e^{7x}$
R: $y = c_1 \cos 2x + c_2 \sin 2x$
R: $y = c_1 e^{-x} \cos(\sqrt{2x}) + c_2 e^{-x} \sin(\sqrt{2x})$

- 2. Encontre a equação diferencial linear homogênea de menor ordem, tal que , uma de suas soluções seja:
 - (a) e^{-2t}
 - (b) $2e^{2t} 5e^{-t}$
 - (c) $(4-3t)e^{2t}$
- 3. Resolva as seguintes equações diferenciais:

(a)
$$y'' - 8y' + 7y = 14$$
 $y = c_1 e^{7x} + c_2 e^x + 2$

(b)
$$2y'' - 4y' + 2y = 0$$
, $y(0) = 1$ $y'(0) = 0$ $y = e^t - te^t$

(c)
$$y'' + 6y' + 9y = t + 2$$
, $y(0) = 0$, $y'(0) = 0$ $y = \left(-\frac{4}{27} - \frac{5}{9}\right)e^{-3t} + \frac{t}{9} + \frac{4}{27}$

(d)
$$y'' - 7y' + 12y = -e^{4x}$$
 $y = c_1 e^{3x} + c_2 e^{4x} - x e^{4x}$
(e) $y'' - 4y' + 4y = 2e^{2x}$, $y(0) = y'(0) = 1$ $y = (1 - x)e^{2x} + x^2 e^{2x}$

(f)
$$y'' + y' - 6y = xe^{2x}$$

$$y = c_1 e^{2x} + c_2 e^{-3x} + xe^{2x} \left(\frac{x}{10} - \frac{1}{25} \right)$$

(g)
$$y'' + y = \cos x$$

$$y = c_1 \cos x + c_2 \sin x + \frac{x}{2} \sin x$$

(h)
$$y'' - y = 2x \operatorname{sen} x$$
, $y(0) = 0$, $y'(0) = 1$ $y = e^x - x \operatorname{sen} x - \cos x$

(i)
$$y'' - 2y' + 10y = e^x + \text{sen3x}$$
 $y = e^x(c_1\cos 3x + c_2\sin 3x) + \frac{1}{9}e^x + \frac{1}{37}(\sin 3x + 6\cos 3x)$

(j)
$$y'' - 3y' = x + \cos x$$

$$y = c_1 + c_2 e^{3x} - \frac{1}{10}\cos x - \frac{3}{10}\sin x - \frac{1}{6}x^2 - \frac{1}{9}x$$

4. (Problema da ressonância) Resolva o problema carro-mola dado pela equação abaixo com as condições iniciais:

$$x'' + 16x = 2 \operatorname{sen} 4t$$
, $x(0) = -\frac{1}{2}$, $x'(0) = 0$

Descreva seu movimento.

- 5. Uma massa de 10 kg acha-se suspensa por uma mola distendendo-a de 0,7m além de seu comprimento natural. Põe-se o sistema em movimento a partir da posição de equilíbrio, com uma velocidade inicial de 1m/s orientada "para cima". Determine o movimento subseqüente se a a resistência do ar é proporcional à velocidade com constante de proporcionalidade 90. (R: $x(t) = -\frac{1}{5}e^{-2t} + \frac{1}{5}e^{-7t}$, considere g = 9, 8)
- 6. Resolva o problema anterior considerando a aplicação ao sistema massa-mola de uma força externa $f(t) = 5 \operatorname{sen} t$. (R: $x(t) = \frac{9}{50} e^{-7t} \frac{9}{50} \cos t + \frac{13}{50} \operatorname{sen} t$).
- 7. Um corpo de $1\,kg$ estica de $0,2\,m$ uma mola. O corpo é impulsionado a partir do equilíbrio com uma velocidade para baixo de $14\,m/s$ e se não há resistência do ar. Uma força externa de $28\cos 7t + 56\mathrm{sen}7t$ Newtons age sobre o corpo. Determine a sua posição em cada instante t $(g=9,8\,m/s^2)$. R: $x(t)=\frac{18}{7}\mathrm{sen}7t-4t\cos 7t$.
- 8. Em uma mesa horizontal está uma massa de 2 Kg presa a uma mola com constante de elasticidade k = 10 Kg/m em um meio viscoso com constante de resestência proporcional à velocidade, de 8 N/(m/s). Além disto, há uma força externa igual à $2 \operatorname{sen} 2t + 16 \operatorname{cos} 2t$ agindo sobre o sistema. A mola parte a 1 m da posição de equilibrio com uma velocidade inicial de 2 m/s.
 - (a) Dê a posição x(t) da massa, justificando. $x(t) = \sin 2t + e^{-2t}(\cos t + 2\sin t).$
 - (b) Escreva $x(t) = x_h(t) + x_p(t)$, e determine o $\lim_{t\to\infty} |x(t) x_p(t)|$. R: zero.

- (c) Desenhe o gráfico de $x(t) x_p(t)$.
- 9. Considere a equação diferencial de segunda ordem

$$x'' + 25x = 20 \operatorname{sen} 5t$$
 $x(0) = 1, \quad x'(0) = 0$

- (a) Encontre a solução geral da equação homogênea associada.
- (b) Encontre a solução da equação (não homogênea) que satisfaz as condições iniciais dadas.
- (c) Encontre a amplitude e o período do movimento.
- 10. Em uma mesa horizontal está um corpo de massa $1\,Kg$ preso a uma mola com constante de elasticidade $k=9\,N/m$, em um meio viscoso que exerce sobre a massa uma força de resistência proporcional ao módulo da velocidade e direção contraria à da velocidade. A constante de proporcionalidade é $c=6\,\frac{N}{m/s}$. Sobre a massa também age uma força externa $F(t)=6te^{-3t}$, onde t é o tempo. Em t=0, o corpo se encontra na origem e sua velocidade é $1\,m/s$.
 - (a) Determine a posição x(t) do corpo,

R:
$$x(t) = e^{-3t}(t - 2t + t)$$

(b) Determine o $\lim t \to \infty$, justificando.

R: zero.

11. Uma corda flexível homogênea é pendurada numa roldana ficando 8 metros de um lado e 12 metros do outro. Qual a velocidade da queda da corda em cada instante? R: $v(t) = e^t - e^{-t}$