

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Communications Lab - ENEE4103

Pre-Lab #6

Experiment NO. 6: Pulse Amplitude Modulation (Sampling)

Prepared by:

Eman Asfour 1200206

Instructor: Dr. Alhareth Zyoud

Teacher Assistant: Eng. Shadi Banno

Section: 4

Date: 15-05-2023

1	prelab 6	Exp 6 PAM			Grade	out of
	ura		pulse train	ok		
			Natural sampling	ok]	
			Flat top smpling	ok]	
	5 bloc	k diagrams	Demodulation fo Nat and Flat	ok	3	3
		pulse train	pulse train (t and f)		1	1.5
			s(t) (t and f)			
			s(t) for f1 (t and f)]	
			s(t) for f2 (t and f)			
			s(t) for %D1 (t and f)]	
		Natural sampling	s(t) for %D2 (t and f)		1.5	2
			pulse train (t and f)			
			s(t) (t and f)		1	
			s(t) for f1 (t and f)]	
			s(t) for f2 (t and f)		1	
			s(t) for %D1 (t and f)		1	
		Flat top smpling	s(t) for %D2 (t and f)		1	1.5
	1		normal m and m' (t and f)			
		Demodulation	flat top m and m' (t and f)		1	1
			Natural s(t) (t and f)			
			flat top s(t) (t and f)			
	graphs/results	Aliasing	m and m' (t and f)		1	1
					8.5	10

Table of contents

1.	Part 1: Time and Frequency Characteristics of the pulse train	4
2.	Part 2: Characteristics of Pulse Amplitude Modulation (PAM)	6
3.	Part 3: Characteristics of Pulse Amplitude Demodulation	9
4.	Part 4: Aliasing in the Time and the Frequency Domains:	10
5.	Part 4: PAM Time Multiplex:	13

Table of Figures

Figure 1: Block digram	4
Figure 2: The Output of Dutey Cycle 50% and frequecy 500	4
Figure 3:The Running Output in frequency	5
Figure 7: The Running Output with DC=50%	7
Figure 8: The Running Output	8
Figure 9: The Block Diagram	9
Figure 10: Circuit Output in time domain	9
Figure 11: The running output in frequency domain	10
Figure 12: The running output	Error! Bookmark not defined.
Figure 15: The running output	Error! Bookmark not defined.
Figure 16: Block Diagram Connection	10
Figure 17: The running output	11
Figure 18: The running output	11
Figure 19: The running output	12
Figure 20: The running output	15
Figure 21: The running output demodulator	15
Figure 22: Block Diagram Connection	16
Figure 23: The running output	17
Figure 24: Block Diagram Connection	17
Figure 25: The Setting	18
Figure 26: The Output in Frequency Domain	18

1. Part 1: Time and Frequency Characteristics of the pulse train

Figure 1: Block digram

Figure 2: The Output of Dutey Cycle 50% and frequecy 500

Figure 3:The Running Output in frequency

2. Part 2: Characteristics of Pulse Amplitude Modulation (PAM)

Figure 4:Block Digram

Figure 5:The Connected Circuit output

Figure 6:The Running Output

Figure 4: The Running Output with DC=50%

Figure 5: The Running Output

change duty cycle and frequency?

3. Part 3: Characteristics of Pulse Amplitude Demodulation

Figure 6: The Block Diagram

Figure 7: Circuit Output in time domain

Figure 8: The running output in frequency domain

4. Part 4: Aliasing in the Time and the Frequency Domains:

Figure 96: Block Digram Connection

Figure 107: The running output

Figure 118: The running output

Figure 19: The running output

Figure 20: The running output demodualtour

Figure 21: The running output demodulator

5. Part 5: PAM Time Multiplex:

Figure 22: Block Digram Connection

Figure 23: The running output

Figure 24: The Setting

Figure 25: The Setting

Figure 26: The Output in Frequency domain

change f and duty cycle