Symulacja pożaru lasu - Fire & Smoke

Joanna Bryk Joanna Tokarska Zofia Grodecka

1. Wstęp

Projekt *Fire & smoke* realizuje symulację rozprzestrzeniania się ognia oraz dymu podczas pożaru lasu. W celu zbliżenia symulacji do rzeczywistości, implementację jej przebiegu oparto na wzorach fizycznych, opisujących konwekcję, przewodzenie ciepła oraz promieniowanie.

2. Implementacja modelu

Przy inicjacji terenu również podpalana jest jedna komórka reprezentująca drzewo, która inicjuje cały pożar. Ustawiana jest jej temperatura na 500°C, jako temperatura samozapłonu. Założono, że powinna być ona wyższa niż temperatura zapłonu kolejnych komórek drewna.

2.1. Komórki

W programie stworzona została tablica 3D komórek sześciennych. Każda komórka ma 6 sąsiadów, odpowiednio: od góry, od dołu oraz po bokach: ze strony północnej, południowej, wschodniej i zachodniej. Każda komórka ma rodzaj paliwa, z którego jest zbudowana oraz typ, czyli rolę jaką pełni w pożarze.

Możliwe rodzaje paliwa:

- powietrze
- trawa
- drzewo
- ziemia

To, czy komórka zamienia się w ogień albo czy jest wypalona (dotyczy trawy i drzewa) określa typ komórek. W przypadku powietrza jeśli, typ komórki ustawiony jest na "zapalony" (burning), posiada ona dym.

Typy komórek:

- dostepna dla ognia palna, ale jeszcze ogień do niej nie dotarł
- paląca się aktualnie pożerana przez ogień
- spalona już została spalona przez ogień
- niedostępna dla ognia niepalna, ale może przewodzić ciepło

2.2. Funkcje przejścia

2.2.1. Przewodnictwo

Zakładamy, że zjawisko przewodnictwa zachodzi wyłącznie od ciepłej do zimnej komórki.

Ilość ciepła, jaka przepłynie na odległość L w czasie dt przy różnicy temperatur dT przez powierzchnię S, dana jest wzorem:

$$dQ = \lambda \cdot \frac{S}{L} \cdot dt \cdot dT$$

gdzie:

λ - współczynnik przenikalności ciepła

S - powierzchnia komórki

L - odległość między środkami komórek

dt - czas

dT - różnica temperatur

dQ - ilość ciepła

2.2.2. Konwekcja

Konwekcja zachodzi pomiędzy komórkami powietrza. Jeśli komórka ma nad sobą sąsiada, który ma mniejszą temperaturę od niej, zachodzi zjawisko konwekcji.

Obliczana jest temperatura komórek ze wzoru:

$$T'_{u} = T_{u} + \frac{a}{mc} \left(T_{u} - T_{d} \right)$$

$$T'_{d} = T_{d} - \frac{a}{mc} \left(T_{u} - T_{d} \right)$$

gdzie:

 T'_{u} - temperatura komórki powyżej w następnej iteracji

 T'_d - temperatura komórki poniżej w następnej iteracji

 T_u - aktualna temperatura komórki powyżej

T_d - aktualna temperatura komórki poniżej

α- współczynnik przenikalności ciepła

m- masa komórki

c - ciepło właściwe

2.2.3. Promieniowanie

Szybkość wymiany ciepła przez promieniowanie między dwoma ciałami dana jest wzorem:

$$P_{wyp} = \sigma e S(T_2^4 - T_1^4)$$

gdzie:

P_{wvp}- szybkość wymiany ciepła

σ- stała Stefana-Boltzmanna

e - zdolność emisyjna ciała

S - pole powierzchni ciała

T₁, T₂- temperatury sąsiednich komórek

2.3. Współczynniki

2.3.1. Cechy pojedynczej kostki:

Objetość: $0.125m^3$

Powierzchnia ściany: $0.25m^2$

Odległość między kostkami: 0.5m

2.3.2. Temperatury

Podczas implementacji założono następujące temperatury spalania:

• dla drewna: 300℃

• dla trawy: 200℃

2.3.3. Współczynniki przenikalności ciepła/przewodnictwa cieplnego

Założono następujące wartości współczynnika przenikalności ciepła:

• dla drewna: 0.14 (drewno sosnowe)

• dla trawy: 0.035

• dla ziemi: 0.55

• dla powietrza: 0.026

2.3.4. Gęstości komórek

Założono następujące gęstości:

• dla drewna: $400 kg/m^3$

• dla trawy: $120 kg/m^3$

• dla ziemi: $1600 kg/m^3$

• dla powietrza: 1.29 kg/m^3

2.3.5. Ciepło właściwe

Założono następujące wartości:

• dla drewna: 2390 $J/(kg \cdot K)$

• dla trawy: 500 $J/(kg \cdot K)$

• dla ziemi: 800 $J/(kg \cdot K)$

• dla powietrza: 1005 $J/(kg \cdot K)$

2.3.6. Dodatkowe

Dla powietrza przyjęto wartość współczynnika konwekcji jako: 5 W/(m·K). Gęstość dymu (założono dym średnio gęsty): $0.0006 \ kg/m^3$.

2.4. Wiatr

W symulacji założono, że wiatr porusza wyłącznie powietrzem, które nagrzane następnie inicjuje ogień na obiektach pod nim, zgodnie z zasadą konwekcji.

2.5. **Dym**

Założono, że każda komórka może maksymalnie przyjąć od sąsiada ½ swojej wolnej przestrzeni na dym, a komórka przekazująca dym może oddać maksymalnie ½ ilości dymu, którą posiada.

Rozprzestrzenianie się dymu zostało zaimplementowane zgodnie ze wzorem:

$$D_{next} = d_n \cdot min(\frac{1}{6}D_{0'}, \frac{1}{6}(100\% - D_n))$$

gdzie:

 D_{next} -ilość dymu przekazana do sąsiedniej komórki

 d_n - współczynnik ilościowy

D₀- ilość dymu w aktualnej komórce

 D_n - aktualna ilość dymu w komórce, do której przekazywany jest dym

Przyjęte wartości współczynnika d_n :

• dla komórki powyżej: 100%

• dla komórek na tej samej wysokości: 50%

dla komórki poniżej: 25%

3. Wizualizacja

Do wizualizacji symulacji wykorzystano środowisko Unity, ponieważ umożliwia ono pokazanie symulacji w 3D. Dzięki temu dokładniej można zobaczyć dym, pojawiający się nad komórkami ognia, oraz odróżnić wysokości poszczególnych drzew.

Komórki pokazane na powyższym zdjęciu wizualizacji:

- brazowe ziemia
- jasnozielone trawa
- ciemnozielone drzewa
- czerwone płomienie ognia
- szare dym
- czarne spalone drzewa/trawy

Teren został wygenerowany z użyciem kodu napisanego w pythonie. Algorytm w nim użyty opiera się o wybór centralnego punktu (x_0, y_0) i odpowiedniego promienia (r).

Przeliczenie wysokości punktów(x,y) na płaskiej mapie zostało napisane z użyciem wzoru:

$$h = r^2 - ((x - x_0)^2 + (y - y_0)^2)$$

Czynność ta powtarzana jest kilkakrotnie dla różnych punktów centralnych i promieni, następnie teren jest normalizowany i na jego podstawie utworzona zostaje tabela 3D. Na koniec losowo dodawane są drzewa.

4. Wnioski

Ogień rozprzestrzenia się stopniowo, dopóki nie pożre wszystkich obiektów. Na samym końcu symulacji zostają spalone szczątki, a nad nimi unosi się dym, który został tam przeniesiony przez gorące powietrze. Po obejrzeniu wizualizacji można dojść do wniosku, że wszystkie parametry zostały dobrane prawidłowo, ponieważ wygląda ona bardzo naturalnie.

5. Bibliografia

- "Model pożaru budynku" Artur Karp i Szymon Łukasik
- "Cell2Fire: A Cell Based Forest Fire Growth Model" Cristobal Paisa, Jaime Carrascob, David L. Martelle, Andres Weintraubb, David L. Woodruff