CEE 616: Probabilistic Machine Learning M2 Linear Methods: L2b Logistic Regression

Jimi Oke

UMassAmherst

College of Engineering

Thu, Sep 25, 2025

Outline

- Introduction
- 2 Logistic regression model
- 3 MLE
- 4 Optimization
- Outlook

2/34

Logistic regression

Introduction

The logistic regression model has the form:

$$p(y|\mathbf{x};\boldsymbol{\theta}), \quad \mathbf{x} \in \mathbb{R}^D, y \in \{1,\dots,C\}$$
 (1)

• Binary logistic regression: C = 2:

$$p(y|\mathbf{x};\boldsymbol{\theta}) = \mathsf{Ber}(y|\boldsymbol{\sigma}(\mathbf{w}^{\top}\mathbf{x}))$$
 (2)

where σ is the sigmoid function and $\theta = \mathbf{w} = (b, w_1, w_2, \dots, w_D)$

• Multinomial logistic regression: C > 2

$$p(y|\mathbf{x};\boldsymbol{\theta}) = \mathsf{Cat}(y|\mathcal{S}(\mathbf{W}\mathbf{x})) \tag{3}$$

where \mathcal{S} is the softmax function and $\boldsymbol{\theta} = \boldsymbol{W}$.

Introduction 000000

- Input vector: $\mathbf{x} = (1, x_1, x_2, \dots, x_D)$
- Weights (or weight vector): $\mathbf{w} = (b, w_1, w_2, \dots, w_D)$
- Bias: b (absorbed into weight vector)
- Sigmoid function:

$$\sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^{\top}\mathbf{x}}} \tag{4}$$

- Log-odds or logit: $\mathbf{w}^{\top}\mathbf{x}$ (binary case); $\mathbf{W}\mathbf{x}$ (multinomial)
- Softmax function:

$$S(\mathbf{Wx}) = \left[\frac{e^{\mathbf{w}_1^{\top} \mathbf{x}}}{\sum_{c'=1}^{C} e^{\mathbf{w}_{c'}^{\top} \mathbf{x}}}, \cdots, \frac{e^{\mathbf{w}_{c}^{\top} \mathbf{x}}}{\sum_{c'=1}^{C} e^{\mathbf{w}_{c'}^{\top} \mathbf{x}}} \right]$$
(5)

where $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_C]$ is a $C \times D$ weight matrix

Logistic (sigmoid) function

Introduction

For $w_1 > 0$, the logistic function increases w.r.t. x. For $w_1 < 0$, the logistic function decreases w.r.t. x.

What happens when b is increased or decreased?

Logistic function (cont.)

b shifts the curve left or right (adjusts average fitted probabilities).

(x)a

Logistic function (cont.)

 w_1 adjusts the steepness of the curve: as β_1 increases, the curve becomes steeper

p(x)

 Introduction
 Logistic regression model
 MLE
 Optimization
 Outlook

 00000€
 0000000
 0000000
 0000000
 0000000

Odds ratio and the logit function

From the logistic function, we can obtain the odds ratio (OR) as:

$$OR = \frac{p(x)}{1 - p(\mathbf{x})} = e^{b + w_1 x} \tag{6}$$

which is considered as the relative likelihood of success (p(x)).

Taking the log of the odds ratio yields the log-odds or logit function:

$$logit(p(x)) = \log\left(\frac{p(x)}{1 - p(x)}\right) = b + w_1 x \tag{7}$$

Notes

- The logit function is linear in x
- The inverse of the logit function yields the logistic function
- In the generalized linear framework, logit is the *link function* between the predictors and the mean response

Logistic regression

Logistic regression is an approach for modeling the *probability* of a *multinomial* response.

In the simple case, we consider a binomial (or binary) response.

Logistic function

This is the model equation for simple logistic regression:

$$p(y=1|\mathbf{x};\theta) = \frac{e^{b+w_1x}}{1+e^{b+w_1X}}$$
 (8)

where $p(y=1|\mathbf{x}, \mathbf{\theta}) \in [0,1]$

The logistic function is a member of the class of **sigmoid** functions (S-shaped curves) and can also be written:

$$p(y=1|x,\theta) = \frac{1}{1+e^{-\boldsymbol{w}^{\top}\boldsymbol{x}}} = (1+e^{-\boldsymbol{w}^{\top}\boldsymbol{x}})^{-1} = \sigma(\boldsymbol{w}^{\top}\boldsymbol{x})$$
(9)

where $\mathbf{w}^{\top} = (b, w_1)$

Credit card defaults

- Data: A simulated data set containing information on ten thousand customers.
- Question: Can we predict which customers will default on their credit card debt (based on income, etc)?

Four variables:

- default: A factor with levels No and Yes indicating whether the customer defaulted on their debt
- student: A factor with levels No and Yes indicating whether the customer is a student
- balance: The average balance that the customer has remaining on their credit card after making their monthly payment
- income: Income of customer

Example 1: Binomial logistic regression (cont.)

We want to model the probability of default based on the balance predictor. The estimated coefficients from a computer program are:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.065e+01 3.612e-01 -29.49 <2e-16 ***
balance 5.499e-03 2.204e-04 24.95 <2e-16 ***
```

Note that the null hypothesis for the tests is: H_0 : $\mathbf{w}_i = 0$ (i.e. no dependence on the corresponding predictor)

Example 1: Binomial logistic regression (cont.)

The estimated model is:

$$\hat{\rho}(y=1|\mathbf{x};\boldsymbol{\theta}) = \frac{e^{(-10.65+0.0055x)}}{1+e^{(-10.65+0.0055x)}} = \frac{1}{1+e^{(10.65-0.0055x)}} = \sigma(1+e^{(10.65-0.0055x)})$$
(10)

Example 1: Binomial logistic regression (cont.)

Recall the model:

$$\hat{\rho}(y=1|x) = \frac{e^{-10.65 + 0.0055x}}{1 + e^{-10.65 + 0.0055x}}$$

- How would \hat{p} (the predicted probability) change if x were to increase by \$100?
- What about if x were to decrease by \$100
- There are 333 defaults out of 10000 observations. What is the impact of *b*?

Multiple logistic regression

In multiple logistic regression, we predict a binary response using *multiple predictors*:

$$\log\left(\frac{p(x)}{1-p(x)}\right) = b + w_1x_1 + \dots + \mathbf{w}_Dx_D = \mathbf{w}^\top X$$
 (11)

where $\mathbf{x} = (x_1, ..., x_D)$.

Activity: Binomial logistic regression with multiple predictors

Using the Default dataset, predict the probability of default based on balance and student. Comment on your results and interpret the coefficient estimates.

Decision boundary

This is the line that defines the probability threshold τ for class assignment: In 1-D:

$$x^* : p(y = 1 | x = x^*, \theta) = \tau$$
 (12)

Typically, $\tau = 0.5$

The method of maximum likelihood is used to estimate logistic regression coefficients w

• The likelihood function $\mathcal{L}(\theta)$ represents the support provided by a sample for a given parameter θ :

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{N} p_{c_i}(\mathbf{x}_i; \boldsymbol{\theta})$$
 (13)

- where $p_{c_i}(x_i; \theta) = \Pr(G = c_i | X = x_i; \theta)$ • In the two-class case: $\theta = \mathbf{w} = \{b, w_1\}$
- Thus, we can write the conditional probabilities as:

$$p_1(x;\theta) = p(x;\theta) \tag{14}$$

$$p_2(x;\theta) = 1 - p(x;\theta) \tag{15}$$

• It is also convenient to encode c_i using a 0/1 response y_i :

$$y_i = \begin{cases} 1, & \text{when } c_i = \text{Class 1} \\ 0, & \text{when } c_i = \text{Class 2} \end{cases}$$
 (16)

Log-likelihood function for logistic regression

The principle of maximum likelihood dictates that the best parameter estimates are those that maximize the likelihood function.

• Equivalently, we minimize the negative log-likelihood function $NLL(\theta)$:

$$NLL(\theta) = -\sum_{i} \log p_{c_i}(x_i; \theta)$$
 (17)

In the binomial case, this simplifies to:

$$NLL(\boldsymbol{w}) = -\sum_{i} [y_i \log p(x_i; \boldsymbol{w}) + (1 - y_i) \log(1 - p(x_i; \boldsymbol{w}))]$$
 (18)

• Recall that we model $p(x_i; \mathbf{w})$ as:

$$p(x_i) = \frac{e^{b + w_1 x_i}}{1 + e^{b + w_1 x_i}} \tag{19}$$

Log-likelihood function for logistic regression

Substituting (19) into (18), we obtain:

$$NLL(\mathbf{w}) = -\sum_{i} \left[y_{i} \log \left(\frac{e^{b+w_{1}x_{i}}}{1 + e^{b+w_{1}x_{i}}} \right) + (1 - y_{i}) \log \left(1 - \frac{e^{b+w_{1}x_{i}}}{1 + e^{b+w_{1}x_{i}}} \right) \right] \\
= -\sum_{i} \left[y_{i} \log \left(\frac{e^{b+w_{1}x_{i}}}{1 + e^{b+w_{1}x_{i}}} \right) + (1 - y_{i}) \log \left(\frac{1}{1 + e^{b+w_{1}x_{i}}} \right) \right] \\
= -\sum_{i} \left[y_{i} \log \left(e^{b+w_{1}x_{i}} \right) - y_{i} \log \left(1 + e^{b+w_{1}x_{i}} \right) \right] \\
+ (1 - y_{i}) \log(1) - (1 - y_{i}) \log \left(1 + e^{b+w_{1}x_{i}} \right) \right] \\
= -\sum_{i} \left[y_{i} \left(b + w_{1}x_{i} \right) - y_{i} \log \left(1 + e^{b+w_{1}x_{i}} \right) - \log \left(1 + e^{b+w_{1}x_{i}} \right) \right] \\
+ y_{i} \left(1 + e^{b+w_{1}x_{i}} \right) \right] \\
NLL(\mathbf{w}) = -\sum_{i} \left[y_{i} \left(b + w_{1}x_{i} \right) - \log \left(1 + e^{b+w_{1}x_{i}} \right) \right] \\$$

troduction Logistic regression model MLE Optimization Outlook 00000 0000000 000000 000000 00000

Maximizing the log-likelihood

To find $\hat{\boldsymbol{w}}$, we find the derivative of NLL(\boldsymbol{w}), set it to zero and solve the resulting score equations:

$$\frac{\partial \text{NLL}}{\partial \boldsymbol{w}} = -\frac{\partial}{\partial \boldsymbol{w}} \sum_{i} \left[y_{i} \left(b + w_{1} x_{i} \right) - \log \left(1 + e^{b + w_{1} x_{i}} \right) \right]
\begin{pmatrix} \frac{\partial \text{NLL}}{\partial b} \\ \frac{\partial \text{NLL}}{\partial w_{1}} \end{pmatrix} = - \begin{pmatrix} \sum_{i} \left[y_{i} - \frac{e^{b + w_{1} x_{i}}}{1 + e^{b + w_{1} x_{i}}} \right] \\ \sum_{i} \left[x_{i} y_{i} - \frac{x_{i} \left(e^{b + w_{1} x_{i}} \right)}{1 + e^{b + w_{1} x_{i}}} \right] \end{pmatrix}
\begin{pmatrix} \frac{\partial \text{NLL}}{\partial b} \\ \frac{\partial \text{NLL}}{\partial w_{i}} \end{pmatrix} = - \begin{pmatrix} \sum_{i} \left[y_{i} - p(x_{i}) \right] \\ \sum_{i} \left[x_{i} \left(y_{i} - p(x_{i}) \right) \right] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
(21)

This is a system of two *nonlinear* equations in \boldsymbol{w} which can be solved via the **Newton-Raphson** method.

Alternatively, we can use the **gradient descent** approach to directly minimize NLL.

Maximum likelihood estimation (MLE) in logistic regression

Recall the negative log-likelihood function for the binomial logistic regression case:

$$NLL(\mathbf{w}) = -\sum_{i} \left[y_i \left(b + w_1 x_i \right) - \log \left(1 + e^{b + w_1 x_i} \right) \right]$$
 (22)

The optimal \hat{w} which minimizes NLL(w) is the maximum likelihood estimate.

Also recall the derivative of NLL:

$$\nabla_{\mathbf{w}} \mathsf{NLL} = \begin{pmatrix} \frac{\partial \mathsf{NLL}}{\partial b} \\ \frac{\partial \mathsf{NLL}}{\partial w_1} \end{pmatrix} = \begin{pmatrix} -\sum_i \left[y_i - p(x_i) \right] \\ -\sum_i \left[x_i \left(y_i - p(x_i) \right) \right] \end{pmatrix}$$
(23)

We can use either Newton-Raphson or gradient descent to minimize NLL.

NLL and entropy

We can show that the NLL is equal to the sum of the **binary cross entropy** of y_i and $p(y = 1|x_i)$ over N:

$$\mathbb{H}_{i}(y_{i}, p_{i}) = -[y_{i} \log p_{i} + (1 - y_{i}) \log(1 - p_{i})]$$
(24)

Note that $p_i = \sigma(\mathbf{w}^{\top} \mathbf{x}_i)$.

 Binary cross-entropy quantifies how far your predicted probabilities are from the actual binary labels.

Binary Cross Entropy vs. p (when y=1)

For a true label y=1, the binary cross entropy is $\mathbb{H}(1,p)=-\log(p)$. This function penalizes predictions that are far from the true label:

Key observations:

- As $p \to 1$: cross entropy $\to 0$ (low penalty for correct prediction)
- As p o 0: cross entropy $o \infty$ (high penalty for incorrect prediction)
- The function is convex, ensuring unique minimum in optimization

Example: predicting spam

a If the email is spam (y=1) and you predict 90% probability of spam (p=0.9), find the binary cross entropy (BCE):

$$\mathsf{BCE} = -[1 \times \log(0.9) + 0 \times \log(0.1)] = -\log(0.9) \approx 0.105 \quad \text{(low loss - good!)}$$

6 If the email is spam (y=1) but you predict only 10% probability of spam (p=0.1), find the BCE.

$$BCE = -[1 \times \log(0.1) + 0 \times \log(0.9)] = -\log(0.1) \approx 2.303$$
 (high loss - bad!)

Gradient descent for MLE in logistic regression

This approach only requires the first derivative:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \rho \nabla \mathsf{NLL}(\mathbf{w}_k) \tag{25}$$

Thus, to find $\hat{\mathbf{w}}$ we iterate using:

$$\begin{pmatrix} \mathbf{w}_{0,k} \\ \mathbf{w}_{1,k} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{0,k} \\ \mathbf{w}_{1,k} \end{pmatrix} + \rho \begin{pmatrix} \sum_{i} [y_{i} - p(x_{i})] \\ \sum_{i} [x_{i} (y_{i} - p(x_{i}))] \end{pmatrix}$$
(26)

Because the negative log-likelihood is *convex*, and thus a *minimization* problem, we descend the function and thus subtract the scaled derivative.

Note

- The gradient descent method does not require a second derivative
- However, it may require more iterations to converge than Newton-Raphson

Newton-Raphson approach for MLE in logistic regression

The optimal point $\hat{\boldsymbol{w}}$ is given by the root of the equation $\nabla_{\boldsymbol{w}} NLL = 0$.

Applying Newton-Raphson, the update step is:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mathbf{H}_{\mathbf{w}_k}^{-1}(\mathsf{NLL}) \nabla_{\mathbf{w}_k} \mathsf{NLL}(\mathbf{w}_k)$$
 (27)

The operator \mathbf{H}^{-1} represents the inverse **Hessian** (second derivative) matrix of NLL with respect to \mathbf{w} :

$$\boldsymbol{H}_{\boldsymbol{w}_{k}}(NLL) = \nabla_{\boldsymbol{w}_{k}}^{2} NLL = \begin{pmatrix} \frac{\partial^{2} NLL(\boldsymbol{w})}{\partial b^{2}} & \frac{\partial^{2} NLL(\boldsymbol{w})}{\partial b w_{1}} \\ \frac{\partial^{2} NLL(\boldsymbol{w})}{\partial w_{1}b} & \frac{\partial^{2} NLL(\boldsymbol{w})}{\partial w_{1}^{2}} \end{pmatrix}$$
(28)

Note that (27) is just the matrix representation of the 1-D case:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \frac{\mathsf{NLL}'(\mathbf{w}_k)}{\mathsf{NLL}''(\mathbf{w}_k)} \tag{29}$$

Newton-Raphson approach for MLE (cont.)

We can work out each component of the second derivative:

$$\frac{\partial^2 \mathsf{NLL}(\boldsymbol{w})}{\partial b^2} = \sum_i p(x_i)(1 - p(x_i)) \tag{30}$$

$$\frac{\partial^2 \text{NLL}(\boldsymbol{w})}{\partial b w_1} = \sum_i x_i p(x_i) (1 - p(x_i))$$
 (31)

$$\frac{\partial^2 \text{NLL}(\boldsymbol{w})}{\partial w_1^2} = \sum_i x_i^2 p(x_i) (1 - p(x_i))$$
 (32)

The complete update can then be shown as:

$$\begin{pmatrix} \mathbf{w}_{0,k+1} \\ \mathbf{w}_{1,k+1} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_{0,k} \\ \mathbf{w}_{1,k} \end{pmatrix} - \left[\begin{pmatrix} \frac{\partial^2 \text{NLL}(\mathbf{w})}{\partial b^2} & \frac{\partial^2 \text{NLL}(\mathbf{w})}{\partial b \partial w_1} \\ \frac{\partial^2 \text{NLL}(\mathbf{w})}{\partial w_1 \partial b} & \frac{\partial^2 \text{NLL}(\mathbf{w})}{\partial w_1^2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial \text{NLL}}{\partial b} \\ \frac{\partial \text{NLL}}{\partial w_1} \end{pmatrix} \right]_{\mathbf{w}_k}$$
 (33)

Alternatively:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \left[\left(\frac{\partial^2 \mathsf{NLL}(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^\top} \right)^{-1} \frac{\partial \mathsf{NLL}(\mathbf{w})}{\partial \mathbf{w}} \right]_{\dots}$$
(34)

26 / 34

Jimi Oke (UMass Amherst) L2b: Logistic Regression Thu, Sep 25, 2025

$$\frac{\partial \mathsf{NLL}(\boldsymbol{w})}{\partial \boldsymbol{w}} = \begin{pmatrix} -\sum_{i} [y_{i} - p(x_{i})] \\ -\sum_{i} [x_{i} (y_{i} - p(x_{i}))] \end{pmatrix} = -\begin{pmatrix} 1 & x_{1} \\ 1 & x_{2} \\ \vdots & \vdots \\ 1 & x_{n} \end{pmatrix}^{T} \begin{pmatrix} y_{1} - p(x_{1}) \\ y_{2} - p(x_{2}) \\ \vdots \\ y_{n} - p(x_{n}) \end{pmatrix}$$

$$= -\boldsymbol{X}^{T} (\boldsymbol{y} - \boldsymbol{p})$$

$$(35)$$

Compact matrix representation of derivatives (cont.)

We can also decompose the Hessian as:

$$\frac{\partial^2 \mathsf{NLL}(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{\top}} = \begin{pmatrix} \sum_i p(x_i)(1 - p(x_i)) & \sum_i x_i p(x_i)(1 - p(x_i)) \\ \sum_i x_i p(x_i)(1 - p(x_i)) & \sum_i x_i^2 p(x_i)(1 - p(x_i)) \end{pmatrix}
= \mathbf{X}^{\top} \mathbf{S} \mathbf{X}$$
(36)

where \boldsymbol{S} is a diagonal $N \times N$ matrix:

$$\mathbf{S} = \begin{pmatrix} p(x_1)(1-p(x_1)) & 0 & \dots & 0 \\ 0 & p(x_2)(1-p(x_2)) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & p(x_n)(1-p(x_n)) \end{pmatrix}$$
(37)

and X is defined as before:

$$\boldsymbol{X}^{T} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{pmatrix} \tag{38}$$

Compact matrix representation (cont.)

Putting the previous results together, we can express the update step as:

$$\mathbf{w}_{k+1} = \mathbf{w}_{k} - \mathbf{H}^{-1} \mathbf{g}_{k}$$

$$= \mathbf{w}_{k} + (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} (\mathbf{y} - \mathbf{p})$$

$$= (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{W} \mathbf{X}) \mathbf{w}_{k} + (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} (\mathbf{y} - \mathbf{p})$$

$$= (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{W} (\mathbf{X} \mathbf{w}_{k} + \mathbf{W}^{-1} (\mathbf{y} - \mathbf{p}))$$

$$= (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{W} \mathbf{z}$$
(39)

where the adjusted response z is given as:

$$z = Xw_k + W^{-1}(y - p)$$
 (40)

In this form, the estimation is also called iteratively reweighted least squares (IRLS).

OLS, WLS and IRLS

Recall the OLS estimate:

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y} \tag{41}$$

if \boldsymbol{y} is the response.

Also recall that the weighted least squares (WLS) is given by:

$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{W} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W} \boldsymbol{y} \tag{42}$$

 In logistic regression, the coefficients can be found via the Newton-Raphson update, which can be specified as:

$$\mathbf{w}_{k+1} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} z \tag{43}$$

where z is given as:

$$z = Xw_k + W^{-1}(y - p) \tag{44}$$

- Note that the update step is identical in form to the WLS estimator
- However, W and z change in each iteration, hence the name iteratively reweighted least squares (IRLS)

Summary

• The binary logistic regression model is given by:

$$p(y=1|\mathbf{x};\boldsymbol{\theta}) = \frac{1}{1+e^{-\mathbf{w}^{\top}\mathbf{x}}}$$
(45)

 The negative log-likelihood of a sample of N observations in the binomial response case is:

$$NLL(\mathbf{w}) = \sum_{i} \left[y_i \left(b + w_1 x_i \right) - \log \left(1 + e^{b + w_1 x_i} \right) \right]$$
 (46)

- Based on the principle of maximum likelihood, the estimate $\hat{\pmb{w}}$ is given by the minimizing NLL.
- This can be solved via gradient descent or Newton-Raphson.

Summary (cont.)

Gradient descent update for logistic regression

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \lambda \nabla \mathsf{NLL}(\mathbf{w}_k) \tag{47}$$

Newton-Raphson update for logistic regression

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mathbf{H}_{\mathbf{w}_k}^{-1}(\mathsf{NLL}) \nabla_{\mathbf{w}_k} \mathsf{NLL}(\mathbf{w}_k)$$
 (48)

This can be rewritten as:

$$\mathbf{w}_{k+1} = (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{W} z \tag{49}$$

where the adjusted response z is given as:

$$z = Xw_k + W^{-1}(y - p)$$
 (50)

In this form, the estimation is also called iteratively reweighted least squares (IRLS).

Other considerations

 MAP estimation: weight decay/regularization to make NLL convex (have unique solution). We define the penalized negative log-likelihood PNLL as:

$$PNLL(\boldsymbol{w}) = NLL(\boldsymbol{w}) + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}$$
 (51)

where λ is the decay parameter.

- Thus: $\nabla_{\mathbf{w}} PNLL(\mathbf{w}) = \mathbf{g}(\mathbf{w}) + 2\lambda \mathbf{w}$
- And: $\nabla_{\boldsymbol{w}}^2 PNLL(\boldsymbol{w}) = \boldsymbol{H}(\boldsymbol{w}) + 2\lambda \boldsymbol{I}$

Reading assignments

- **PMLCE** 9.2
- **PMLI** 10.1-3
- ESL 4.4