### 1 Part A

To construct the stoichiometric array, I first identified 18 nodes or metabolites and 20 reactions or fluxes. Therefore, the stoichiometric array will be 18x20. The tables following define every meatbolite and flux needed for the reactions in the urea cycle.

Table One: Defined Metabolites in S Consistent with PS3 Diagram

| Row | Metabolite      | Row | Metabolite               |  |  |
|-----|-----------------|-----|--------------------------|--|--|
| 1   | Aspartate       | 10  | $H_2O$                   |  |  |
| 2   | Arginosuccinate | 11  | Pi                       |  |  |
| 3   | Fumarate        | 12  | AMP                      |  |  |
| 4   | Arginine        | 13  | PPi                      |  |  |
| 5   | Urea            | 14  | NO                       |  |  |
| 6   | Ornithine       | 15  | $O_2$                    |  |  |
| 7   | Carbamoyl Pi    | 16  | $H^+$ Sink               |  |  |
| 8   | Citruline       | 17  | NADPH Source             |  |  |
| 9   | ATP             | 18  | NADP <sup>+</sup> Source |  |  |

Table Two: Defined Fluxes Consistent with PS3 Diagram

| Variable | Flux                                   | Variable | Flux                  |
|----------|----------------------------------------|----------|-----------------------|
| $v_1$    | 6.3.4.5 Catalyzed Reaction             | $b_5$    | ATP Source            |
| $v_2$    | 4.3.2.1 Catalyzed Reaction             | $b_6$    | Water Source          |
| $v_3$    | 3.5.3.1 Catalyzed Reaction             | $b_7$    | Phosphate Sink        |
| $v_4$    | 2.1.3.3 Catalyzed Reaction             | $b_8$    | AMP Sink              |
| $v_{5f}$ | 1.14.13.39 Forward Reaction (Cit to R) | $b_9$    | Pyrophosphate Sink    |
| $v_{5r}$ | 1.14.13.39 Reverse Reaction (R to Cit) | $b_{10}$ | Nitric Oxide Sink     |
| $b_1$    | Carbamoyl Pi Source                    | $b_{11}$ | $O_2$ Sink            |
| $b_2$    | Aspartate Source                       | $b_{12}$ | H <sup>+</sup> Source |
| $b_3$    | Fumarate Sink                          | $b_{13}$ | NADPH Source          |
| $b_4$    | Urea Sink                              | $b_{14}$ | $NADP^+$ Sink         |

### 2 Part B

The code B\_balanced.jl shows the balanced nature of the first 6 fluxes (the actual chemical reactions). An atom matrix with dimensions of # of elements by # of metabolites (A) is multiplied by the stoichiometric array (S). The rows of A are thus C,H,N,O,P, and S respectively. The product E has zero entries for the elementally balanced reactions or the first 6 fluxes  $v_{1-5r}$  (columns). The reaction and stoichiometric coefficients were taken from the reactions and conditions on the KEGG database for the urea cycle. When values are not zero in the v reactions, the exact element (row) and reaction (column) entry is shown to not be zero and thus unbalanced in  $\mathbf{E}$ . We can thus edit the stoichiometric array until balanced.

# 3 Part C

CHEME5440HW3\_C.jl calls the Flux.jl function to complete the linear programming problem of FBA. We need bounds and an objective. the objective is to maximize urea flux:

 $Objective = Maximize b_4$ 

Subject To:

$$0 \le v_j \le k_{cat,j} * E * \theta * \prod_{i=1}^{M} \frac{X_i}{K_{Mij} + X_i}$$
$$0 \le b_{1-4} \le 10 \frac{10}{Min} \frac{M_i}{Mij} - hr$$
$$-10 \le b_{5-14} \le 10 \frac{M_i}{Min} \frac{M_i}{Min} - hr$$

Where M is the number of metabolites acted on by that enzyme in  $v_j$ . E,  $k_{cat,j}$ , and  $\theta$  are given in the problem statement.  $X_i$  and  $K_{Mij}$  are the metabolite concentrations and  $K_M$  values for each enzyme and substrate. These are all from the BRENDA enzyme database and Park et al[1]. A value for human cells was chosen first, then Mus musculus if needed, and finally a yeast value if none of those existed. When no metabolite value or  $K_M$  value could be found, the reaction had to be assumed to act at saturation. The saturation term was set to be 1. This was especially true for metabolites like water or  $H^+$  whose concentrations are not really measurable and are quite abundant anyway.  $b_j$  refers to fluxes in and out of the system and the bound is given. The metabolites  $(b_{5-14})$  have reversible transport and thus have both bounds. The stoichiometric matrix reveals the assumed direction (+ for into the cell). There are no metabolite bounds on this problem. All values were converted to mmol/gDW - hr

via the conversion in Appendix A. The solution or returned flux vector in mmol/gDW - hr:



Therefore the maximum urea flux  $b_4$  is:

$$UreaFlux = 1.27mmol/qDW - hr$$

All zero fluxes are reactions or transports that are not used. It is also worth noting that  $S^*v=0$  so the system checks itself.

# 4 Appendix A: Conversion

Molar values were converted to mmol/gDW with the following conversion factors. The mass of a mammalian cell (2.3e-9g from Park[2]) was converted to dry mass via the water fraction (0.798 from Savitz[3]). The molar value is divided by this and multiplied by the volume of a mammalian cell (1e-12L from Sims[4]). This is done via the internal function "convertfactor" in CHEME5440HW3\_C.jl.

### References

- [1] J. O. Park, S. A. Rubin, Y.-F. Xu, D. Amador-Noguez, J. Fan, T. Shlomi, and J. D. Rabinowitz, "Metabolite concentrations, fluxes and free energies imply efficient enzyme usage," *Nature chemical biology*, vol. 12, no. 7, p. 482, 2016.
- [2] K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J. P. Robinson, M. Toner, and R. Bashir, "living cantilever arrays for characterization of mass of single live cells in fluids," *Lab on a Chip*, vol. 8, no. 7, pp. 1034–1041, 2008.
- [3] D. Savitz, V. W. Sidel, and A. Solomon, "Osmotic properties of human red cells," *The Journal of general physiology*, vol. 48, no. 1, pp. 79–94, 1964.
- [4] C. E. Sims and N. L. Allbritton, "Analysis of single mammalian cells on-chip," Lab on a Chip, vol. 7, no. 4, pp. 423–440, 2007.