

Introduction

Hi, I am **Abhishek Garg**. Currently working as *DoE* in **Syfe**.

Today I will be talking about one of architecture project we did back in 2018, when prometheus was getting pace and Thanos was very new.

I will talking about how we did migrate our observability from a enterprise to a in-house monitoring system which eventually helps us save millions of USD / Year.

Let's talk about Scale first !!

Nodes / Endpoints	Data Ingestion sum(scrape_samples_scraped)	Retention	Cost (DataDog)
25k	300 Million / minute	30-60 Days	\$ 6 Million / year *

*Datadog Current Pricing

- APM → \$31 \$45 (range reflects different tiers and access to features) / host / month
- Infrastructure Monitoring → \$15 \$34 (range reflects different tiers and access to features) /host /month

Current Base price around **USD 14 million / Year**

What is Prometheus??

What it is for

Metrics-based monitoring & alerting stack.

- Instrumentation
- Metrics collection and storage
- Querying, alerting, dashboarding
- For all levels of the stack!

What it is not for

Logging, Tracing and

- Logging, Event Collection or tracing
- Automatic anomaly detection
- Scalable or durable storage
- Automatic Horizontal scaling
- User authorization management

It's Simple, right?

Not Much, here are some problems!

1. Scalability Issue

- a. Single Server Limitations: Prometheus is designed as a single-node system, which can become a bottleneck when dealing with high cardinality metrics and large-scale environments.
- b. Storage Limitations: The local storage of Prometheus can be a limiting factor for long-term storage and high-frequency data points.

2. High Cardinality and Performance

- b. High Cardinality Metrics: Prometheus can struggle with high cardinality metrics (metrics with a large number of unique label combinations), which can lead to increased memory usage and degraded performance.
- c. Query Performance: Complex queries over large datasets can be slow and resource-intensive, impacting the responsiveness of the system.

more...

3. Configuration Management

a. Static Configuration: Prometheus relies on static configuration files for setting up scrape targets and rules, which can be cumbersome to manage in dynamic and large-scale environments.

4. Operational Overhead

b. Maintenance and Upgrades: Maintaining Prometheus, including handling updates, scaling, and troubleshooting, can require significant operational effort and expertise.

Let's talk business!

Problems

Solutions

Highly Available Prometheus!!!

Not without its challenges:

 When you refresh the data, you will see it change as metrics will potentially differ between the two instances

Thanos is a set of components that can be composed into a highly available metric system with unlimited storage capacity, which can be added seamlessly on top of existing Prometheus deployments.

Seems Costly?

·
.
.

Let's Calculate!

Components Used	Thanos, Prometheus, Grafana, Object Storage, ELB	
RAM requirement for 300 million / min metrics	Approx 7000 GB	
Storage requirements for above estimates metrics	46 TB (46000 GB)	
Cost of Graviton Instance (1 Year Upfront) / GB RAM / year	36.2 USD	
S3 Cost / GB	0.08 (assuming 10000 RW call / GB)	

Compute total Cost = (7000 * 36.2) = 253400 USD

Storage total Cost = (46000 * 0.08 * 12) = 44160 USD

Final Cost = Compute + Storage = (253400 + 44160) = 2,97,560 USD / Year

Savings:

Savings Percentage:

$$Savings~Percentage = \left(\frac{Savings}{Datadog~Cost}\right) \times 100 = \left(\frac{5702440}{6000000}\right) \times 100 \approx 95.04\%$$

Summary:

Savings Percentage: Approximately 95.04%

Note: even with a **45**% variance added as noise to the cost of Prometheus + Thanos, you would still save approximately **92.81**% compared to using Datadog.

Other Important points:

- Avoid Unnecessary Labels and metrics: Minimize the use of labels that can have a large number of unique values, such as timestamps, user IDs, session IDs, or request IDs. If possible try to combine them. Also drop excessive metrics or limit metric collection / host.
- **Limit Label Values:** Ensure that labels have a limited and predictable set of values. For example, instead of using exact URLs as labels, use URL patterns or endpoints.
- Aggregate Metrics: Use Prometheus recording rules to pre-aggregate metrics with high cardinality.
 This reduces the amount of data stored and queried. For example, aggregate metrics by time intervals or other meaningful dimensions.
- **Downsampling:** Apply downsampling techniques to reduce the resolution of historical data, retaining only the necessary level of detail.
- **Optimized PromQL Queries:** Write efficient PromQL queries that avoid scanning large datasets unnecessarily. Use functions like sum, avg, max, min, and rate to aggregate data effectively.
- **Query Caching:** Implement query caching mechanisms if possible to reduce the load on Prometheus when executing repeated queries.
- Monitoring and Alerting: Set up alerts to notify you when cardinality exceeds acceptable thresholds, enabling proactive management.

Meet the Team

Ram Shankar Jaiswal
Sr. Cloud Architect

Abhishek Garg
Director of Engineering

Q & A

Thanks

Scan here to connect me over LinkedIn

