MÉTODOS DE SIMULACIÓN - FÍSICA Taller 1, Ejercicio 4

GAS DE LENNARD-JONES

El potencial de Lennard-Jones,

$$V(r) = \varepsilon \left[\left(\frac{r_0}{r} \right)^{12} - 2 \left(\frac{r_0}{r} \right)^{6} \right],$$

es un modelo aproximado de la interacción entre moléculas no polares que combina una fuerza repulsiva de exclusión de Pauli (el término a la potencia 12) con una fuerza atractiva debida a fuerzas de van der Waals (el término a la potencia 6). El potencial presenta

un valor mínimo – ε a una distancia r_0 , que es la distancia de equilibrio (ver Figura). La fuerza derivada de este potencial,

$$F(r) = \frac{12\varepsilon}{r} \left[\left(\frac{r_0}{r} \right)^{12} - \left(\frac{r_0}{r} \right)^6 \right] ,$$

es una fuerza restitutiva alrededor de r_0 , que corresponde más o menos a la de un resorte que es difícil de comprimir, pero fácil de estirar.

- 1) Construya un programa que simule el movimiento de una partícula bidimensional de masa m bajo el influjo de una fuerza de Lennard-Jones, implementada como una fuerza central. Utilice m=1.0, R=3.0, $\varepsilon=1.0$ y $r_0=10$. Como condición inicial coloque la partícula en x=10, y=0, $V_x=V_0$ y $V_y=0$, con $V_0=\sqrt{k_BT/m}$, donde $k_BT=1.0$ es la temperatura.
 - a. Observe cómo oscila.
 - b. Grafique x vs t para 0<t<100, y cuadre el paso Δt para que la energía no crezca (esto se puede comprobar verificando que la curva no cambia si se hace Δt diez veces más pequeño).

De este primera parte, presente:

- El programa .cpp o Phthon
- La gráfica del punto 1b
- 2) Ahora el objetivo es construir un gas de partículas que interactúan por Lennard-Jones. Para eso, modifique el programa Gas2D visto en clase de la siguiente manera:
 - a. Modifique la fuerza entre moléculas para que sea la de Lennard-Jones, con los mismos parámetros del punto anterior.
 - b. Como condición inicial, coloque un cuadrado de 5x5 partículas en las posiciones *x*=-20,-10,0,10,20 y *y*=-20,-

10,0,10,20, con magnitud de velocidad inicial $V_0 = \sqrt{k_B T/m}$, como en el caso anterior, y dirección de la velocidad θ escogida al azar entre 0 y 2π .

- c. Quite los granos que hacen las veces de paredes. En su lugar, dibuje un círculo de radio Rpared=50 centrado en el origen y añada una fuerza global de rebote ejercida por esa pared circular de la siguiente manera: si el grano de radio R penetra en la pared una distancia s, sentirá una fuerza de mangnitud F=Ks en dirección hacia el origen, con K=10000.
- d. Fije el paso de tiempo a $\Delta t = 5 \times 10^{-4}$, el tiempo máximo de simulación en tmax=100 y dibuje en la animación un total de 2000 cuadros.
- e. Vea qué pasa si $k_BT = 0.05$ (un sólido), $k_BT = 0.5$ (un líquido), y $k_BT = 10.0$ (un gas).

De este segunda parte, presente:

- El programa .cpp o Python
- Un .gif animado o un .mp4 de la simulación para cada uno de los estados: sólido, líquido y gas, a lo largo de un tiempo de simulación tmax=100.
- Describa, además, lo que observa.
- 3) Ahora vamos a construir una función que mida de manera aproximada el tamaño ocupado por los N=25 granos. Para ello, utilizaremos el radio de giro, que (como todas las masas son iguales) es dado por

$$R_{\text{giro}} = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} ||\vec{r}_i - \vec{r}_{\text{cm}}||^2}$$

a. Como primera parte de la función, calcule el vector posición $\vec{r}_{\rm cm}$ del centro de masa de todos los granos, como

$$\vec{r}_{\rm cm} = \frac{1}{N} \sum_{i=0}^{N-1} \vec{r}_i$$

- b. Complete la función para que calcule y devuelva el valor $R_{\rm giro}$.
- c. En el programa principal, deje de hacer la animación y en vez de ello imprima $R_{\rm giro}$ en función de t. Grafique en una sola figura $R_{\rm giro}$ en función de t para los casos de sólido, líquido y gas $(0 \le t \le 100)$.
- d. Calcule el valor promedio de R_{giro} desde t=20 hasta t=100 para los casos de sólido, líquido y gas. ¿Qué concluye de ello?

De este tercera parte, presente:

- El programa .cpp o Phthon
- La gráfica de R_{giro} vs t para sólido, líquido y gas del punto c)
- ullet Presente, además los valores promedio de $R_{
 m giro}$ para sólido, líquido y gas, y lo que concluye al analizar estos resultados.

Referencias

[1] https://es.wikipedia.org/wiki/Potencial de Lennard-Jones