Криптография, Лекция № 11

24 ноября 2014 г.

1 Надежный протокол электронной подписи полиномиального числа слов полиномиальной длины без памяти

Idea 1.

Изначально есть два ключа: закрытый - d и открытый - e. S может подписать пару e_0e_1 ключом d. затем подписать $e_{00}e_{01}$ ключом d_0 и $e_{10}e_{11}$ ключом d_1 . За n шагов можно получить 2^n пар ключей. Когда нужна новая подпись, S выбирает случайный из сгенерированных 2^n один ключ и подписывает им сообщение.

Например, выпало 0100, тогда S пошлет e_0e_1 подписанные ключом d, $e_{00}e_{01}$ - ключом d_0 , $e_{010}e_{011}$ - d_{01} , $e_{0100}e_{0101}$ - d_{010} , x - d_{0100} . Итого, подписывание происходит только по одной ветке. Почему мы подписываем пары? Потому, что второй мы уже не сможем отпарвить. e_{α} генерируются псевдослучайно, номер функции - часть закрытого ключа.

Формально

Definition 1.

(K,S,V) - протокол надежной подписи одного сообщения произвольной длины. K - генератор ключей, S - подписывающий, V - верификатор. $(\bar{K},\bar{S},\bar{V})$ - требуемый протокол.

- 1. Определим \bar{K} :
 - $\bar{d}=(d,s),\; \bar{e}=e,\; s$ идентификатор псевдослучайной функции из $\{0,1\}^*\mapsto \{0,1\}^{l(n)},\; e(n)$ число случайных битов, которые использует K.
- $2. \bar{S}$:

 \bar{S} получает \bar{d} и x. Выбирает случайное α длины n. Для всех префиксов $\beta \subset \alpha$ генерирует $(e_{\beta 0}, d_{\beta 0})$ и $(e_{\beta 1}, d_{\beta 1})$ при помощи K и $f_s(\beta 0)$ и $f_s\beta 1$ в качестве случайных битов. Также $e_{\varepsilon}=e$ и $d_{\varepsilon}=d$, где через ε обозначено пустое слово.

$$\bar{S}(\bar{d},x) = (e_0e_1, S(d, e_0e_1), \dots, e_{\beta 0}e_{\beta 1}, S(d_{\beta}, e_{\beta 0}e_{\beta 1}), \dots, S(d_{\alpha}, x))$$

3. \bar{V} проверяет подпись естественным образом.

Корректность протокола очевидна. Надежность: с экспоненциально малой вероятностью могут выпасть одинаковые α для разных x-ов. Так что можно считать, что такого не происходит. Далее, можно считать, что Π С Φ алгоритм имеет доступ к случайному оракулу то есть все пары (d_{α}, e_{α}) генерируются независимо друго от друга алгоритмом K.

Пусть схема C взламывает $(\bar{K},\bar{S},\bar{V})$ с вероятностью $\varepsilon>\frac{1}{poly(n)}$. Как использовать эту схему для взлома исходного протокола? C получает e, адаптивно генерирует x_1,\ldots,x_n получает подписи $\bar{s}_1,\ldots,\bar{s}_n$ генерирует x' и подпись s', такие, что $\bar{V}(s',x')=1$ с вероятностью ε . Будем говорить, что слово α использованное, если \bar{S} в ходе атаки C сгенерировал пару (e_α,d_α) . Будем говорить, что α особое, если оно использованное и к тому же, $e_\alpha=e'_\alpha$, где e'_α - элемент S', а ключ d_α не использовался для подписи соответсвующего сообщения из s'.