Software Atelier: Differential Equations

Academic Year 2016/2017

Instructor: Dr. Drosos Kourounis TA: Hardik Kothari

Assignment 4 - Finite Element Solution of Poisson's equation in 3D

Due date: Monday 7 November 2016, 10:30

Solution of Poisson's equation

We seek the discrete solution of Poisson's equation

$$-\nabla^2 u(x, y, z) = \frac{f(x, y, z)}{\partial u}, \quad \in \Omega$$
$$\frac{\partial u}{\partial n} = 0, \quad y = 1, z = 1,$$

$$u(x, y, z) = u_0(x, y, z)$$
, otherwise,

where $\Omega = [0, 1]^3$. We discretize the domain Ω using a quadrilateral $N_x \times N_y \times N_z$ grid of trilinear elements.

1. Find the analytical expression of f(x, y) so that the exact solution of the PDE is

$$u_0(x,y) = x e^{-(y-1)^2(z-1)^2}.$$

- 2. Verify that the exact solution satisfies the homogeneous Neumann conditions at y = 1 and at z = 1.
- 3. Implement the solution in MATLAB following the steps described below.

1. Mesh generation

Modify the mesh generation routine you already have, so that it assumes three input arguments for the cube dimensions L_x , L_y , L_z and three for the grid size N_x , N_y , N_z . It outputs the hexahedral mesh of the cube.

2. Finite element assembly

- Compute by hand the mass matrix and the Laplacian on the Hexahedron $[0, 1]^3$.
- Compute the mass and Laplacian matrices on the single-element grid consisting of the hexahedron you used in the previous step using your code and verify that previous steps produces the same matrices.

3. Local operators

Modify the following functions to obtain the local operators for hexahedral trilinear elements.

$$M_e = \int_{V_e} N_i N_j dV_e$$

```
function I = Mass2DSymbolic()
    xi = sym('xi', 'real');    eta = sym('eta', 'real');
    dx = sym('dx', 'real');    dy = sym('dy', 'real');

    c=[-1 -1; 1 -1; 1 1; -1 1];

    J(1,1) = 0.5*dx; J(2,2) = 0.5*dy;

    for i=1:4
        N(i) = 1/4*( 1+c(i,1)*xi )*( 1+c(i,2)*eta );
    end

    F = det(J)*N'*N;
    M = int(int(F, 'xi', -1, 1), 'eta', -1, 1);
end
```

$$K_e = \int_{V_e} \nabla N_i \cdot \nabla N_j dV_e$$

```
function I = Laplace2DSymbolic()
    xi = sym('xi', 'real'); eta = sym('eta', 'real');
    dx = sym('dx', 'real'); dy = sym('dy', 'real');

c=[-1 -1; 1 -1; 1 1; -1 1];
    J(1,1) = 0.5*dx; J(2,2) = 0.5*dy;

for i=1:4
    N(i) = 1/4*( 1+c(i,1)*xi )*( 1+c(i,2)*eta );
end

Nx = diff(N, 'xi'); Ny = diff(N, 'eta');
    dN = [Nx; Ny];
    Jd = inv(J) * dN;
    F = det(J)*Jd'*Jd;
    I = int(int(F, 'xi', -1, 1), 'eta', -1, 1);
end
```

4. Linear Solver

- 1. Use the direct sparse solver implemented in MATLAB (backslash) to solve the linear system for $h = \delta z = \delta y = \delta x = 1/N$ for N = 10, 20, 40, 80, 160. Create a table listing the running time of the direct sparse solver. Use the superfast assembly routine you were provided.
- 2. For each N of the previous question, compute the time needed for the assembly, and the solution of the linear system and plot them using the logarithmic scale on both axes.

5. Convergence study

Perform a study of the convergence. Compute the L^2 and H^1 norms of the error and plot it **using logarithmic scale on both axes** as a function of $h=\delta z=\delta y=\delta x=1/N$ for N=10,20,40,80,160. Note that the discrete L^2 and H^1 norms are easily obtained from

$$||u - u_h||_{L^2} = \sqrt{(u - u_h)^T M(u - u_h)}$$

$$||u - u_h||_{H^1} = \sqrt{(u - u_h)^T M(u - u_h) + (u - u_h)^T K(u - u_h)},$$

where u_h is the vector of the discrete finite element solution you obtained by solving the linear system $Ku_h=b$ and u is the vector of the exact values of the solution (recall that the exact solution is given by $u_0(x,y,z)$) evaluated at the grid-points.

6. Visualization

Visualize the solution using (ViSiT) for three values of N, N=10,80,160 and also visualize the exact solution at the end (as the fourth plot) for comparison.