Summary

- Pipeline Details:
 - Data Cleaning and Preprocessing:
 - Source on public kernels (on Kaggle):
 https://www.kaggle.com/khyeh0719/how-to-win-kaggle-competition-final-project
 - Executable on Kaggle.
 - Data Cleaning:
 - Repeated rows: 24 rows found and removed.
 - Outlier Values: item_price <0 and >30000 (Really really far from others)
 - EDA:
 - Monthly sales count distributions.
 - Item prices distribution:
 - Right skew heavily, so I mapped it to log space with np.log1p.
 - Hyper-parameters optimization:
 - Simple Holdout (Time-based Split)
 - Write my own Grid Search Function on validation data.
 - See uploaded notebook: Notebook for Peer Review (1st\2nd Level Model Training)
 - customized_grid_search_simple_holdout_e valuate(stage2)
 - First Level Training:
 - Source Code:
 - Notebook for Peer Review (1st Level Model Training):
 - Executable, but need ENOUGH memory and is computational intensive. Apologies for inconvenience, since I didn't have time to clean the code, serialize those models and test them again...
 - Data (part1): Preprocessed Data WITHOUT text features.

- Models:
 - Linear Models: Ridge, Lasso
 - Tree-Based Models: Random Forest, LightGBM.
 - Neighbor Models: K-Nearest Neighbors
 - Clustering: Minibatch KMeans.
- Data (part2): Preprocessed Data WITH text features.
 - TF-IDF + TF-IDF(Binarized) + HashingVectorizer + HashingVectorizer(Binarized), and applied TruncatedSVD to reduce dimensions.
 - Note: PCA does not support sparse input.
 - Model: Ridge.
- Second Level Training:
 - Source Code:
 - Notebook for Peer Review (2nd Level Model Training)
 - Executable, and should be fast with serialized lightgbm model in the uploaded files.
 - Data: From First Level's Validation Data.
 - First Level Models' Predictions (+ Feature Engineering) + 1st Level Features.
 - Take min\max\med\stddev\geo-mean of first level model predictions.
 - Model:
 - LightGBM.
- Uploaded Files(s):
 - Source Code:
 - Data Cleaning + EDA:
 https://www.kaggle.com/khyeh0719/how-to-win-kaggle-competition-final-project
 - Notebook for Peer Review (1st Level Model Training)
 - Notebook for Peer Review (2nd Level Model Training)

- Intermediate Data:
 - stage2_data.dataframe
 - stage2_data_text.dataframe
 - text_features.dataframe
 - "input" folder (for preprocessed data):
 - proc_train.csv.gz
 - proc_test.csv.gz
 - test_id.csv
- Serialized Model:
 - lgb_stage2.model
 - For 2nd level submission generation.
- · Requirement and How to run:
 - To run fast, execute "Notebook for Peer Review (2nd Level Model Training)"
 - Open Jupyter notebook.
 - Run all.
 - Library:
 - My local computer:
 - numpy: 1.21.1
 - pandas: 0.21.0
 - sklearn: 0.19.1
 - lightgbm: 2.0.10
 - Kaggle:
 - Latest Docker image.
 - Computational Power:
 - Kaggle & My local computer:
 - 4 core, 16 GB RAM.

- Tool(s)
- Programming Language: Python.
- Platform\Environment:
 - EDA: On Kaggle using its kernel environment.
 - Model Training: Locally with Jupyter notebook.
- How long it takes to train models.

- Hyper-parameter optimization: 4 Hrs.
- First Level Training: 3 Hrs.
- Second Level Training: 1 Hrs.