MATH 2135 Linear Algebra

2.C Dimension

Alyssa Motas

March 8, 2021

Contents

1	Din	nension
	1.1	Basis length does not depend on basis
	1.2	Definition of a dimension
	1.3	Examples of a dimension
	1.4	Dimension of a subspace
	1.5	Linearly independent list of the right length is a basis
	1.6	Examples
	1.7	Spanning list of the right length is a basis
	1.8	Dimension of a sum

1 Dimension

1.1 Basis length does not depend on basis

Any two bases of a finite-dimensional vector space have the same length.

Proof. Suppose V is finite-dimensional. Let B_1 and B_2 be two bases of V. Then B_1 is linearly independent in V and B_2 spans V, so the length of B_1 is at most length of B_2 . Interchanging the roles, we also see that the length of B_2 is at most the length of B_1 . Thus the length of B_1 equals the length of B_2 , as desired.

1.2 Definition of a dimension

- The *dimension* of a finite-dimensional vector space is the length of any basis of the vector space.
- The dimension of V (if V is finite-dimensional) is denoted by dim V.

1.3 Examples of a dimension

- 1. dim $\mathbf{F}^n = n$ because the standard basis of \mathbf{F}^n has length n.
- 2. dim $\mathcal{P}_m(\mathbf{F}) = m+1$ because the basis $1, z, \dots, z^m$ of $\mathcal{P}_m(\mathbf{F})$ has length m+1.

1.4 Dimension of a subspace

If V is finite-dimensional and U is a subspace of V, then $\dim U \leq \dim V$.

Proof. Suppose V is finite-dimensional and U is a subspace of V. Think of a basis of U as a linearly independent list in V, and think of a basis of V as a spanning list in V. These linearly independent vectors u_1, \ldots, u_m can be extended to a basis of V. That extended basis has at least m vectors, so $\dim V \ge \dim U$.

1.5 Linearly independent list of the right length is a basis

Suppose V is finite-dimensional. Then every linearly independent list of vectors in V with length dim V is a basis of V.

Proof. Suppose dim V = n and v_1, \ldots, v_n is linearly independent in V. The list v_1, \ldots, v_n can be extended to a basis of V. However, every basis of V has length n, so in this case the extension is the trivial one, meaning that no elements are adjoined to v_1, \ldots, v_n . In other words, v_1, \ldots, v_n is a basis of V, as desired.

1.6 Examples

1. Show that the list (5,7), (4,3) is a basis of \mathbf{F}^2 .

Proof. The two vectors are linearly independent (because neither vector is a scalar multiple of the other). Note that \mathbf{F}^2 has dimension 2. Thus, Theorem 1.5 implies that the linearly independent list of length 2 is a basis of \mathbf{F}^2 .

2. Show that $p(x) = x^2 + 1$, $q(x) = x^2 + x$, $r(x) = x^2$ are a basis of $\mathcal{P}_2(\mathbf{F})$

Proof. Assume $a(x^2+1)+b(x^2+x)+c(x^2)=0$, where $a,b,c\in \mathbf{F}$. Then we have $(a+b+c)x^2+bx+a=0\Rightarrow a+b+c=0$. We know that a=b=0 so it follows that c=0. Hence, p,q,r are linearly independent. Since we know that $\dim \mathcal{P}_2(\mathbf{F})=3$ then by Theorem 1.5, p,q,r are bases of $\mathcal{P}_2(\mathbf{F})$.

1.7 Spanning list of the right length is a basis

Suppose V is finite-dimensional. Then every spanning list of vectors in V with length dim V is a basis of V.

Proof. Suppose dim V = n and v_1, \ldots, v_n spans V. The list v_1, \ldots, v_n can be reduced to a basis of V (by removing 0 or more vectors from the list). However, every basis of V has length n, so the reduction is the trivial one, meaning that no elements are deleted from v_1, \ldots, v_n . In other words, v_1, \ldots, v_n is a basis of V, as desired.

1.8 Dimension of a sum

If U_1 and U_2 are subspaces of a finite-dimensional vector space, then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Proof. Let u_1, \ldots, u_m be a basis of $U_1 \cap U_2$; thus $\dim(U_1 \cap U_2) = m$. These basis are linearly independent in U_1 and can be extended to a basis $u_1, \ldots, u_m, v_1, \ldots, v_j$. Thus, $\dim U_1 = m + j$ Also, $u_1, \ldots, u_m, w_1, \ldots, w_k$ of U_2 and so $\dim U_2 = m + k$.

We need to show that $u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k$ is a basis of $U_1 + U_2$.

$$\dim(U_1 + U_2) = m + j + k$$

$$= (m + j) + (m + k) - m$$

$$= \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Clearly $span(u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k)$ contains $U_1 + U_2$ which equals $U_1 + U_2$. To show that this list is a basis of $U_1 + U_2$, we need to show that it is linearly independent. Suppose that

$$a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_iv_i + c_1w_1 + \cdots + c_kw_k = 0$$

where $a, b, c \in \mathbf{F}$. Then

$$c_1w_1 + \dots + c_kw_k = -a_1u_1 - \dots - a_mu_m - b_1v_1 - \dots - b_jv_j.$$

This implies that $c_1w_1 + \cdots + c_kw_k \in U_1$ and consequently, $c_1w_1 + \cdots + c_kw_k \in U_1 \cap U_2$. Since u_1, \ldots, u_m is a basis of $U_1 \cap U_2$, we can write

$$c_1w_1 + \dots + c_kw_k = d_1u_1 + \dots + d_mu_m$$

for some scalars $d \in \mathbf{F}$. But $u_1, \ldots, u_m, w_1, \ldots, w_k$ are linearly independent, so all c's and d's equal 0. Thus, our original equation becomes

$$a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_iv_i = 0.$$

Since $u_1, \ldots, u_m, v_1, \ldots, v_j$ are linearly independent, then all a's and b's equal 0.