ЛАБОРАТОРНАЯ РАБОТА №04

Результат выполнения задач и примеров с именем «Фамилия Имя _ 04_№ в виде файла программы и скриншота полного экрана (с датой и временем) с вашего компьютера сохраняем в архив и загружаем на «Образовательный портал ФПМИ БГУ – Мобильная робототехника – Раздел контроля знаний – Лабораторная работа №3 ЗАДАНИЕ»

Дисплей контроллера TRIКпозволяет выводить на него различные рисунки, тексты и цифры.

ВЫПОЛНИТЕ ПРИМЕР 04_1:

вывести на дисплей контроллера веселый смайлик.

А теперь попробуем вывести на экран значения датчика расстояния

Как видим, рисование на дисплее иногда оказывается очень полезным

У NXT нет функции рисовать смайлики. Задача для вывода значения датчика выглядит так:

ЗАДАЧИ для самостоятельного выполнения:

- 04_2. Вывести последовательность различных фигур.
- **04_3.** При обнаружении предмета вывести текст «Обнаружен объект».
- **04_4.** Определить числовое значение цветов: красный, зеленый и синий.

Рассмотрим еще один блок «ждать нажатия кнопки». В нашем случае, это означает нажатие кнопки на контроллере. В окне «двумерная модель» изображение контроллера спрятано за правым краем окна, на нем можно тоже нажимать кнопки.

ВЫПОЛНИТЕ ПРИМЕР 04_5:

движение робота начинается после нажатия кнопки.

TRIK:

NXT:

На практике мы неоднократно сталкивались с тем, что показания одинаковых приборов могут различаться. Это связано с рядом факторов, таких как условия окружающей среды, несовершенство изделий и т.п. В наборе ТКІК датчики, используемые для конструирования, также не являются идеальными. Например, значения, возвращаемые двумя датчиками оборотов, могут не совпадать. Попробуем учесть эту разницу. Синхронизируем моторы.

В программе мы использовали метод релейного регулирования для исправления ошибки. В нашем тексте мы не будем вдаваться в подробности теории управления, но воспользуемся некоторыми ее результатами.

ВЫПОЛНИТЕ ПРИМЕР 04_6:

Стабилизировать мотор в положении 45°.

В этой задаче для исправления ошибки также воспользуемся релейным регулятором.

Мотор будет колебаться около положения 45°. Более точное исправление ошибки достигается использованием пропорционального регулятора. Подправим наш алгоритм, используя коэффициент усиления регулятора 2,5. Поправка u=2.5*(45-encoder1). Соответственно синхронизация моторов на П-регуляторе будет выглядеть так

Для NXT программа выглядит следующим образом:

Достаточно большое количество задач в робототехнике связано с движением вдоль линий.

ВЫПОЛНИТЕ ПРИМЕР 04_7:

движения с одним датчиком освещенности. Используем релейный регулятор.

Робот двигается по ломанной кривой, периодически наезжая на линию.

На П-регуляторе движения робота будут более осмысленными. Число 45 означает, что цвет серый.

Модернизируем конструкцию робота, добавив еще один датчик. На такую модель практически не влияют колебания освещенности в помещении.

Сравнивая начальные показания датчиков с текущими значениями на Π -регуляторе, имеем

ЗАДАЧИ для самостоятельного выполнения:

- **04_8.** Двигаться по линии, пока робот датчиком касания не упрется в стену
- **04_9.** Двигаться по линии до перекрестка, на нем развернуться на 180° и двигаться по линии в обратном направлении