

MARWADI UNIVERSITY DEPARTMENT OF CE

Subject: DM (01CE0409) SEM: 04 AY: 2023-24

Assignment: 1 Unit: Logic and Predicates

1	Draw the truth table for each of following	Evaluate
	1. $(p \lor r) \land (q \land r)$	
	2. $(p \lor q) \land (\sim r \land q)$	
	3. $(p \lor q) \leftrightarrow (q \rightarrow r)$	
2	Show that, $p \lor (q \land r) \longleftrightarrow (p \lor q) \land (p \lor r)$ is a tautology. (Using truth	Understanding
	table)	
3	State and prove DE Morgan's law	Analyses
4	State and prove Absorption law	Analyses
5	Check logical equivalence of following compound statement or not.	Application
	1. $A: p \rightarrow q$ $B: \sim q \rightarrow \sim p$	
	2. $A: p \land q \ B: \sim (p \rightarrow \sim q)$	
	3. $A: (p \to q) \land (p \to r) B: p \to (q \to r)$	
	4. $A:(p \to r) \lor (q \to r) B:(p \land q) \to r$	
6	Check validity of argument of following statement or not	Evaluate
	1. $p \rightarrow q$. $q \rightarrow r$ $\therefore r \rightarrow p$	
	2. $\sim (p \rightarrow q)$. $p \qquad \therefore q \rightarrow p$	
	3. $\sim (p \to q)$. $q \to p$ $\therefore \sim q$	
7	Let $P(x): x^2 > x$ be the given predicate and let the domain be the set of	Understanding
	all real numbers then find the value of existential quantifier. D =N	
8	Find the value of universal quantifier and existential quantifier of following	Understanding
	predicates.	
	i. Let $P(x): x^2 \ge x$ and let the domain be the set of all integers	
	ii. Let $P(x): x \ge 3$ and let the domain be the set of all real numbers	
	iii. $p(x) : x + 1 = 1$. D=Z	
9	i. Find the value of $\forall x \ p(x)$ following cases where the domain of discourse	Application
	is the set of all positive integers	
	(a) p(x): (x+1) (x+2) is an even integer.	
	(b) $p(x)$: $x+1 > x$.	
	ii. Find the value of $\exists x \ p(x)$ where the domain of the discourse is the set of	
	all real numbers	
	(a) $p(x): x + 1 = 1$.	
	(b) $p(x): x^2 + 2x + 1 < 0$	