Geometría Diferencial

Ejercicios para Entregar - Práctica 4

Guido Arnone

Sobre los Ejercicios

Ejercicio 6. Si M y N son variedades no vacías, entonces $M \times N$ es orientable si y sólo si M y N lo son.

Demostración. content... □

Ejercicio 8.

a) Si $f:M\to N$ es una función diferenciable entre variedades, probar que los pull-backs $f^*:\Omega^k(N)\to\Omega^k(M)$ son tales que

$$-\ f^*(\omega_1+\omega_1)=f^*(\omega_1)+f^*(\omega_2),$$

$$-\ f^*(h\cdot \omega_1) = h\circ f\cdot f^*(\omega_1),\ y$$

-
$$f^*(\omega_1 \wedge \omega_2) = f^*(\omega_1) \wedge f^*(\omega_2)$$

para cada $\omega_1,\,\omega_2\in\Omega^\bullet(N)$ y $h\in C^\infty(N).$

b) Si U y V son abiertos de \mathbb{R}^n y $f:U\to V$ es diferenciable, entonces

$$f^*(dx_i) = \sum_{k=1}^n \frac{\partial f_i}{\partial x_k} dx_k$$

y

$$f^*(g \cdot d \, x_1 \wedge \dots \wedge d \, x_n) = g \circ f \cdot det \left(\frac{\partial f_i}{\partial x_j}\right)_{i,j} \cdot d \, x_1 \wedge \dots \wedge d \, x_n$$

para cada $i \in \{1, \dots, n\}$ y cada $g \in C^{\infty}(V)$.

Demostración. content... □