Exercici 16. Calculeu totes les solucions de les congruències següents:

- (a) $30X \equiv 3 \pmod{7}$,
- (b) $15X \equiv 5 \pmod{26}$,
- (c) $1224X \equiv 31 \pmod{335}$,
- (d) $1984X \equiv 666 \pmod{2001}$,
- (e) $154X \equiv 112 \pmod{280}$,
- (f) $525X \equiv 735 \pmod{1000}$,
- (g) $55X \equiv 77 \pmod{121}$,
- (h) $68X \equiv 153 \pmod{170}$,
- (i) $45X \equiv 105 \pmod{120}$,
- (j) $45X \equiv 105 \pmod{100}$,

Solució 16. Per resoldre aquest exercici faré ús del següent mètode: Sigui $aX \equiv b \pmod{m}$. Aquesta congruència té solució \Leftrightarrow mcd(a, m) | b. Suposem que és cert. Hem de reduir a i b a (mod m):

$$a \equiv a' \pmod{m}$$
$$b \equiv b' \pmod{m}$$

Ara ens queda la congruència de la següent forma:

$$a' X \equiv b' \pmod{m}$$

- (1) Si a' = 1, ja hem acabat, ja que tenim el resultat $X \equiv b' \pmod{m}$.
- (2) Si no, busquem l'invers de $a' \in (\frac{\mathbb{Z}}{m\mathbb{Z}})^*$, al qual anomenarem a^* . Ara multipliquem a banda i banda de la congruència i obtenim:

$$X(a' \cdot a^* \equiv b' \cdot a^* \pmod{m}$$
.

Ara bé,

$$a' \cdot a^* \equiv 1 \pmod{m} \Rightarrow \text{tenim queX} \equiv b' \cdot a^* \equiv c \pmod{m}.$$

(a) $30X \equiv 3 \pmod{7}$,

$$mcd(30,7) = 1|3 \Rightarrow \exists \text{ soluci\'o}$$

 $30 \equiv 2 \pmod{7}$
 $2X \equiv 3 \pmod{7}$
 $4 = 2^{-1} \in (\frac{\mathbb{Z}}{7\mathbb{Z}})^* \Rightarrow X \equiv 4 \cdot 3 \equiv 5 \pmod{7}$

(b) $15X \equiv 5 \pmod{26}$,

$$mcd(15, 26) = 1|5 \Rightarrow \exists \text{ soluci\'o}$$

 $7 = 15^{-1} \in (\frac{\mathbb{Z}}{26\mathbb{Z}})^* \Rightarrow X \equiv 5 \cdot 7 \equiv 9 \pmod{26}$

(c) $1224X \equiv 31 \pmod{335}$,

$$mcd(1224, 335) = 1|31 \Rightarrow \exists \text{ solució}$$

 $1224 \equiv 219 \pmod{335}$
 $219X \equiv 31 \pmod{335}$
 $309 = 219^{-1} \in (\frac{\mathbb{Z}}{335\mathbb{Z}})^* \Rightarrow X \equiv 219 \cdot 309 \equiv 119 \pmod{335}$

(d) $1984X \equiv 666 \pmod{2001}$,

$$mcd(1984, 2001) = 1|666 \Rightarrow \exists \text{ soluci}$$

Per Bézout tenim que $1984\lambda + 2001\mu = 1$. Si resolem la equació diofantina, trobem que $\lambda = -824$. Aií doncs, tenim que:

$$-824 = 1984^{-1} \in (\frac{\mathbb{Z}}{2001\mathbb{Z}})^* \Rightarrow X \equiv (-824) \cdot 666 \equiv 1491 \pmod{2001}$$

(e) $154X \equiv 112 \pmod{280}$,

$$mcd(154, 280) = 14|112 \Rightarrow \exists \text{ soluci}$$

Dividim tota la congruència per $14 \Rightarrow 11X \equiv 8 \pmod{20}$

$$11 = 11^{-1} \in (\frac{\mathbb{Z}}{20\mathbb{Z}})^* \Rightarrow X \equiv 11 \cdot 8 \equiv 8 \pmod{20}$$

- (f) $525X \equiv 735 \pmod{1000}$. No té solucions, ja que $mcd(525,1000) = 25 \nmid 735$.
- (g) $55X \equiv 77 \pmod{121}$,

$$mcd(55, 121) = 11|77 \Rightarrow \exists \text{ soluci}$$

Dividim tota la congruència per $11 \Rightarrow 5X \equiv 7 \pmod{11}$

$$5 = 5^{-1} \in \left(\frac{\mathbb{Z}}{11\mathbb{Z}}\right)^* \Rightarrow X \equiv 5 \cdot 7 \equiv 2 \pmod{11}$$

- (h) $68X \equiv 153 \pmod{170}$. No té solucions, ja que $mcd(68, 153) = 34 \nmid 153$.
- (i) $45X \equiv 105 \pmod{120}$,

$$mcd(45, 120) = 15|105 \Rightarrow \exists \text{ soluci}$$

Dividim tota la congruència per $15 \Rightarrow 3X \equiv 7 \pmod{8}$

$$3 = 3^{-1} \in (\frac{\mathbb{Z}}{8\mathbb{Z}})^* \Rightarrow X \equiv 3 \cdot 7 \equiv 5 \pmod{8}$$

(j) $45X \equiv 105 \pmod{100}$,

$$mcd(45, 100) = 5|105 \Rightarrow \exists$$
 solució

Dividim tota la congruència per $5 \Rightarrow 9X \equiv 21 \pmod{50}$

$$9 = 9^{-1} \in \left(\frac{\mathbb{Z}}{50\mathbb{Z}}\right)^* \Rightarrow X \equiv 39 \cdot 21 \equiv 19 \pmod{50}$$