PUFs

Yu Bi

ELE594 – Special Topic on Hardware Security & Trust University of Rhode Island

PUF Experiments

 Fabricated 200 "identical" chips with PUFs in TSMC 0.18μ on 5 different wafer runs

Security

 What is the probability that a challenge produces different responses on two different PUFs?

Reliability

- What is the probability that a PUF output for a challenge changes with temperature?
- With voltage variation?

Inter-Chip Variation

Apply random challenges and observe 100 response bits

Environmental Variations

What happens if we change voltage and temperature?

- The structure relies on delay loops and counters instead of MUX and arbiters
- Better results on FPGA more stable

- Easy to duplicate a ring oscillator and make sure the oscillators are identical
 - Much easier than ensuring the racing paths with equal path segments
- How many bits can we generate from the scheme in the previous page?
 - □ There are N(N-1)/2 distinct pairs, but the entropy is significantly smaller: log₂(N!)
 - E.g., 35 ROs can produce 133 bits, 128 ROs can produce 716, and 1024 ROs can produce 8769

Consider the following minimal example, given three ROs: $RO_A.f < RO_B.f$ and $RO_B.f < RO_C.f$ implicates $RO_A.f < RO_C.f$. The total PUF entropy is only $log_2(N!)$ bit as there are N! ways to sort the frequency values.

- Two types of reliability issues:
- Aging:
 - Negative Bias Temperature Instability
 - Hot Carrier Injection (HCI)
 - Temp Dependent Dielectric Breakdown
 - Interconnect Failure
- Temperature
 - Slows down the device

Reliability Enhancement

 Environmental changes have a large impact on the freq. (and even relative ones)

- ROs whose frequencies are far are more stable than the ones with closer frequencies
 - Possible advantage: do not use all pairs, but only the stable ones
 - It is easy to watch the distance in the counter and pick the very different ones.
 - Can be done during enrollment
- RO PUF allows an easier implementation for both ASICs and FPGAs.
- The Arbiter PUF is appropriate for resource constrained platforms such as RFIDs and the RO PUF is better for use in FPGAs and in secure processor design.

Authentication

 Same challenges should not be used to prevent the man-in-the-middle attacks

Key Generation

- The unstability is a problem
- Some crypto protocols (e.g., RSA) require specific mathematical properties that random numbers generated by PUFs do not have
- How can we use PUFs to generate crypto keys?
 - Error correction process: initialization and regeneration
 - There should be a one-way function that can generate the key from the PUF output

Key Generation

- Initialization: a PUF output is generated and error correcting code (e.g., BCH) computes the syndrome (public info)
- Regeneration: PUF uses the syndrome from the initial phase to correct changes in the output
- Clearly, the syndrome reveals information about the circuit output and introduces vulnerabilities

Experiments with RO PUFs

- Experiments done on 15 Xilinx Virtex4 LX25 FPGA (90nm)
- They placed 1024 ROs in each FPGA as a 16by-64 array
- Each RO consisted of 5 INVs and 1 AND, implemented using look-up tables
- The goal is to know if the PUF outputs are unique (for security) and reproducible (for reliability and security)

Metrics

- Inter-chip variation: How many PUF output bits are different between PUF A and PUF B? This is a measure of uniqueness. If the PUF produces uniformly distributed independent random bits, the inter-chip variation should be 50% on average.
- Intra-chip (environmental) variation: How many PUF output bits change when re-generated again from a single PUF with or without environmental changes? This indicates the reproducibility of the PUF outputs. Ideally, the intra-chip variation should be 0%.

Distribution

- 128 bits are produced from each PUF
- x-axis: number of PUF o/p bits different b/w two FPGAs; y-axis: probability
- Purple bars show the results from 105 pair-wise comparisons
- Blue lines show a binomial distribution with fitted parameters (n=128, p =0.4615)
- Average inter-chip variations 0.4615 ~ 0.5

Other PUFs

- SRAM PUF
- Bistable Ring PUF
- DRAM PUF
- Magnetic PUF
- Emerging Memory PUF (e.g. ReRAM)
- Optical PUF
- •