Theory of Computation

Regular Languages & Non Regular Languages

DPP-02

[MCQ]

1. Consider the following DFA over $\Sigma = \{0, 1\}$

How many states are required in minimal DFA?

- (a) 3
- (b) 2
- (c) 4
- (d) 5

[MCQ]

2. Consider the following epsilon NFA:

What is the set of reachable states for the input string ba?

- $(a) \quad \{B,F\}$
- (b) {F}
- (c) $\{C, B, F\}$
- $(d) \quad \{S,B,F\}$

[MCQ]

- 3. For language (L) = $\{Xw \mid X = \{ab\}, w = \{a, b\}^*\}$ How many states are required in NFA for above language (L)?
 - (a) 4
 - (b) 3
 - (c) 6
 - (d) None

[MSQ]

- **4.** Which of the following statement is/are correct?
 - (a) Every DFA can be converted into equivalent NFA
 - (b) Every DFA can be convert into equivalent ∈-NFA
 - (c) Every NFA can be converted into equivalent minimal DFA.
 - (d) NFA with ∈-moves is not equivalent to NFA without epsilon move.

[MSQ]

5. Consider the following \in -NFA:

Which of the following is/are correct regular expression for above ∈-NFA?

- (a) $a^*b^*(a+b)^*$
- (b) $(a + b + c)^*$
- (c) $a^*b^+c^+(a+b+c)^*$
- (d) $a^*b^*c^*(c+a+b)^*$

[MCQ]

6. Consider the following finite state automaton (M) **M**:

Let \overline{M} be the modified automaton obtained from M by interchanging finals and non-finals. If language accepted by above automaton is L(M), then the language accepted by $L(\overline{M})$ will be:

- (a) $L(\overline{M}) = \{a(a+b)^*, (bb) (a+b)^*, \in \}$
- (b) $L(\overline{M}) = \{ \in, b \}$
- (c) $L(\overline{M}) = \{\text{not starting with 'ba'}\}$
- (d) $L(\overline{M}) = \text{none of these}$

[NAT]

Given a language L, define L' as follows:

$$L^0=\{\in\}$$

$$L^{0} = \{ \in \}$$

$$L^{i} = L^{i-1}. \ \forall_{i>0}$$

The order of a language L is defined as the smallest k such that $L^k = L^{k+1}$.

Consider the language L_1 (over alphabet 0) accepted by the following automaton.

The order of L₁ is

Answer Key

- (c) 1.
- 2. **(b)**
- **3.** (b)
- 4. (a, b, c)

- 5. (b, d)
- 6. (b) 7. (2)

Hints and Solutions

1. (c)

0 equivalent:

$$\{A,B,C,D\} \qquad \qquad \{F\}$$

Non-final states Final state

1 equivalent:

$$\{A, C\} \{B\} \{D\} \{F\}$$

2 equivalent:

$$\{A, C\} \{B\} \{D\} \{F\}$$

Number of states = 4

Minimized DFA

2. (b)

$$\delta^*(S, ba) = \{F\}$$

Hence, option (b) is correct.

3. (b)

$$L = \{Xw \ | X = \{ab\}, \ w = \{a, \, b\} * \}$$

$$L = ab(a+b)^*$$

= {start with ab}

$$NFA = A B B B$$

Number of states = 3

4. (a, b, c)

$$DFA \cong NFA \in \cong -NFA$$

Hence, option (a, b, c) are correct.

5. (b,d)

$$L = \{ \in, a^*, b^* c^*, (a+b+c)^* \dots \} L$$

$$= (a + b + c)*$$

$$a*b*(a+b+c) = \in \cdot \in (a+b+c)*$$

=
$$(a + b + c)$$
* Hence, option (b, d)

are correct.

6. (b)

M:

 $L(M) = ba(a + b)^*$

 $\bar{\mathbf{M}}$:

 $L(\overline{M}) = \{b, \in\}$

Hence, option (b) is correct.

7. (2)

Smallest value of k = 2

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if