본 강의에서 수업자료로 이용되는 저작물은

저작권법 제25조 수업목적 저작물 이용 보상금제도에 의거,

한국복제전송저작권협회와 약정을 체결하고 적법하게 이용하고 있습니다.

약정범위를 초과하는 사용은 저작권법에 저촉될 수 있으므로

수업자료의 재 복제, 대중 공개·공유 및 수업 목적 외의 사용을 금지합니다.

2021. . .

부천대학교·한국복제전송저작권협회

교육 과정 계획

• 교육 과정 계획

- 01 4차 산업혁명의 개요
- 02 빅데이터 개요
- 03 인공지능 개요
- 04 사물인터넷 개요
- 05 자율주행차 개요
- 06 가상·증강·혼합·확장현실 개요
- 07 드론 개요
- 08 중간고사
- 09 3D프린팅과 헬스케어 개요
- 10 블록체인 개요
- 11 클라우드 컴퓨팅 개요
- 12 신재생에너지와 산업 변화 (또는 산업체직무전문가 특강)
- 13 플랫폼 비즈니스 개요 (또는 산업체직무전문가 특강)
- 14 스마트 생태계 개요
- 15 기말고사

정보처리산업기사 실기 신기술 토픽들

학습 목표

• 학습 목표

- 자율주행차의 개념과 동향 파악
- 자율주행차의 전망과 난제들 파악
- 자율주행차의 미래에 대한 전망
- 신기술 용어 익히기

• 목차

- 01 자율주행차의 이해
- 02 자율주행차의 개발 동향
- 03 자율주행차의 시장 전망과 난제
- 04 자율주행차의 영향과 비즈니스
- 05 신기술 용어

• 자율주행

- 자율주행이란?
 교통수단이 운전자의 어떤 개입도 없이 스스로 판단하여 이동하고 장애물을 피하여 운행할 수 있는 기능
- 자율주행이 발달한 교통수단 : 철도, 항공기
- 자율주행차(autonomous vehicle/self-driving car)란?
 운전자의 개입 없이 주변 환경을 인식하고 주행 상황을 판단하여 차량을 제어함으로써 스스로 주어진 목적지까지 주행하는 자동차

[출처] Shahian Jahromi, Babak & Hussain, Syed & Karakas, Burak & Cetin, Sabri. (2017). Control of autonomous ground vehicles: a brief technical review. IOP Conference Series: Materials Science and Engineering. 224. 012029. 10.1088/1757-899X/224/1/012029.

• 자율주행

- 차선이탈 경고 시스템부터 브레이크 보조 시스템까지 자율 주행을 위한 많은 기술 필요 (표2) 자율주행 기술본류 및 정의

구분	기술분류	정의 및 요소기술			
차량	인지	· 차량, 보행자, 운전자, 도로, 장애물 등의 데이터를 수집하여 주행환경을 인지 하는 기술 ※ 센서: GPS, 정밀지도, 라이더, 레이더, 카메라, V2X 등			
	판단	· 주행환경에 따른 주행상황을 인식하고 최적의 주행조건(경로, 속도 등)을 결정 하는 기술 ※ 주행경로 탐색, 차량/보행자 충돌방지, 장애물 회피, 시스템 오류 등			
	제어	· 차량 주행 및 움직임과 관련된 구동계 등을 제어하는 기술 ※ 종방향(ESC), 횡방향(MDPS) 제어			
인프라	도로시설물	· 자율주행차량의 인지성능 향상과 사고위험 감소 등을 위해서 도로시설물에 적용되는 기술 ※ 스마트 톨게이트, 스마트 신호등, 발광 차선 등의 자율주행 지원 도로 시설물			
	노변센서	·도로 내외의 물체와 환경을 감지하는 기술 ※ 보행자, 차량, 장애물, 기후 등을 감지하는 노변 카메라, 레이더, 라이다 등의 센서			
	교통센터	· 차량과 도로시설물, 노변센서 등으로 수집된 데이터를 종합적으로 분석하고 관리하는 기술 ※ 교통신호, 정체, 사고, 공사, 기상 등의 정보를 관리			
	통신	· 자율주행에 필요한 데이터를 차량-차량간 또는 차량-인프라간에 송수신 하는 기술 ※ 5G/WAVE 등의 통신기술, 정밀 GPS 지원 통신기술			
	기타	·상기 기술분류에 포함되지 않는 인프라성 연구 ※ 기획/전략연구, 인력양성, 법·제도/정책연구, 보험 등			

• 자율주행차 핵심기술

<그림 4>

자율주행차 핵심기술 요소

ADAS(Advanced Driver Assistant System) LDM(Local Dynamic Map) HVI (Human Vehicle Interface)

자료 : 산업은행 재구성

- 자율주행차 주요기술
 - SLAM(Simultaneous localization and mapping): 차량 여러 대의 센서와 오 프라인 지도를 결합하여 주위 공간의 지도를 만들면서 동시에 그 지도상 위 치를 추정할 수 있도록 만드는 기술

그림 3. 자율주행 프로세싱 단계별 주요기술 예시

출처 : ETRI

- 자율주행차
 - 세종 자율주행규제자유특구 차량 현황

세부	사업	실증 차량	보유기업 (생산국, 탑승인원)	차량 특징 및 제원
	일반도로 (BRT)	[아이오닉 자율셔틀]	ETRI (한국, 5인승)	·동 력 원 : 전기배터리(최고시속 : 30km/h) ·주요센서 : lidar4, 레이더2, 카메라3 ·기타장비 : 원격 주행 리모트컨트롤 ·주요특징 : 정밀맵 상황판단 기반 레벨4 수준의 자율주행
	고 ['] 속주 ['] 행 (2대)	[자일대우 레스타]	오토너머스 에이투지 (한국, 14인승)	동 력 원 : 디젤최고시속 : 100km/h) 주요센서 : lidar2, 카메라2, 엑추에이터 1 ·기타장비 : 내외부 자율차 정보표시 ·주요특징 : 일반도로, 전용도로, 고속도로 주행 가능 레벨4 수준의 자율주행주야 및 약전후 주행 가능)
도심특화 전용공간 자율주행 (5대)	주거단지 저속주행 (3대)	[기아 카니발]	팬텀에이아이 코리아 (한국, 9인승)	동 력 원 : 가술린(최고시속 : 120km/h) 주요센서 : lidar5, 레이더2, 카메리8 -기타장비 : 내외부 자율차 정보표시 -주요특징 : 탑승자 승감 고려 주행
		[나브야 자율셔틀]	AI모빌리티 (프랑스, 11인승)	동 력 원 : 전기배터리(최고시속 : 40km/h) 주요센서 : lidar5, 레이더3, 카메리3 기타장비 : 내외부 자율차 정보표시 -주요특징 : 레벨4 수준의 자율주행
		[오미오 자율셔틀]	한국교통연구원 (뉴질랜드 20인승)	동 력 원 : 전기배터리(최고시속 : 49km/h) 주요센서 : lidar, GPS, 울트라소닉 UWB 기타장비 : 내외부 자율차 정보표시 - 주요특징 : 오픈소스기반의 자율주행차량
자율	공원 구항 대)	[언맨드솔루션 셔틀]	언맨드솔루션 (한국, 6인승)	·동 력 원 : 전기배타리(최고시속 : 30km/h) ·주요센서 : lidar4, 레이다2, 카메라B ·기타장비 : 원격 주행 리모트컨트롤 ·주요특징 : 국내 기술로 제작한 레벨4 수준의 저속 운행 전용의 자율주행차량

 자율주행 실증사업 – 판교 ZEROCITY https://www.ggzerocity.or.kr/#url

- 자율주행차 상용화로 인한 생활 변화
 - 교통사고의 원인을 대부분 제거할 수 있을 것으로 전망
 - 운전자가 필요 없다면 교통체증과 자동차 보험도 필요할지?
 - 이런 시대에 수동 운전 차량은 운행이 가능한지?(해일, 태풍, 경찰차, 비도로에서의 운전에 수동 운전이 필요할 것)
 - 택시, 버스, 화물차 운전직 일자리가 상당 부분 사라질 것(기계가 대신하므로 인건비, 노무비 등 비용 절감 효과)
 - 자동차는 트램이나 철도 차량과 다르게 완전 자동화를 실현하는 것이 기술
 적으로 어려운 분야임
 - 요금 납부나 부정 승차에 대한 문제 등 관리 운영의 어려움이 공존함

[함께 생각해 봅시다] 기술과 인간의 갈등은 무엇인 있을까? (직업의 변화 등)

• 자율주행차 선제적 규제혁파 로드맵

• 미래형 자동차

- 스마트카
 - 자동차에 각종 IT기술을 적용하여 편리성을 높인 차량
 - 위치확인시스템(GPS)과 지리정보시스템(GIS)을 바탕으로 자동차의 현재 위치를 알 수 있고 센서 기술을 바탕으로 운전 중 사각지대의 장애물 감지, 충돌 위험 시 스스로 제어
- 자율주행차
 - 주변 사물과 통신 신호를 주고 받으며 다양한 기능을 실행시킬 수 있음
 - 딥러닝 기술과 영상처리기술을 기반으로 운전자의 직접적인 개입 없이 스스로 운전하는 것을 목표로 함
- _ 커넥티드카
 - 모든 것이 자동차로 연결되어 있는 모습을 의미
 - 차와 운전자, 인터넷, 외부사물 등과 매우 밀접하게 연결된 자동차를 의미
 - 모든 사물이 밀접하게 연결된 상황에서는 차량 스스로 다른 차와의 거리를 계산하고 속도를 자동으로 조절, 원격 차량 제어, 다양한 서비스를 실시간 사용 가능

- 자동차 자동화 레벨 5단계 정의
 - 최종 목표는 완전 자율주행 단계

〈표 1〉 자율주행 레벨에 따른 구분

레벨	Lv. 0	Lv. 1	Lv. 2	Lv. 3	Lv. 4	Lv. 5
정의	無 자율주행 (No Automation)	운전자 지원 (Driver Assistance)	부분 자율주행 (Partial Automation)	조건부 자율주행 (Conditional Automation)	고도 자율주행 (High Automation)	완전 자율주행 (Full Automation)
자동화 기능	없음 (경고 등)	조향 또는 속도	조향 및 속도	조향 및 속도	조향 및 속도	조향 및 속도
운전자 주시	항시	항시	항시	시스템 요청시	자율주행 구간 내 불필요	전 구간 불필요
자율주행 구간	_	특정 구간	특정 구간	특정 구간	특정 구간	전 구간
양산 현황	대부분 완성차社 양산	대부분 완성차社 양산	7~8개 완성차社 양산	2개 완성차社 양산	없음	없음

• 자율주행차 기업 동향

표 2. 세계 자율주행차 기업 동향

구 분	주요 서비스
웨이모	o 2018년 1월 미국 애리조나 주에서 운송 사업자 면허를 시작으로 무료 자율주행 택시 서비스를 제공, 12월 피닉스 지역에서 2,300명에게 유료 승차 서비스인 웨이모 원 (Waymo One)을 시작, 2020년 4월에는 5세대 자율주행차(재규어 I-Pace베이스) 'Waymo Driver' 자율주행택시 시험 주행을 진행 중
포드	o 2017년 인공지능(AI) 기술 스타트업인 아르고,AI에 10억달러를 투자해 HD 고해상도 지도 데이터를 확보해 포드 차주들에게 제공해오고 있음
엔비디아	o 그래픽 가속기(GPU)와 영상센서기반의 자율주행기술 보유로 완성차 업계와 연합하는 중이며, Dive PX2 등을 토대로 자율주행플랫폼으로 영역 확대 중
바이두	o 2018년 7월에 개방형 자율주행 플랫폼인 '아폴로(Apollo) 3.0'을 공개하고, 2020년까지 고속도로와 복잡한 시내 환경에서 자율주행을 목표로 함
WeRide	o 중국계 미국 실리콘에 진출하여 자율주행 로봇택시 개발을 중점, 중국에서 50여 대의 로봇택시 실증을 진행 중
인텔	o 2017년 3월에 ADAS 기업인 모빌아이 인수를 통해서 자율주행 솔루션을 SoC (System on Chip) 형태의 반도체로 구현하는 방안 실현
테슬라	o 2019년 3월 오토파일럿(Autopilot) 기능 제공, FSD ⁶ /NOA ⁷⁾ 등의 인공지능 모듈 탑재 완전자율주행 기술개발에 중점

표 3. 국내 자율주행차 기업 동향

구 분	주요 서비스
현대기아 자동차	o 2019년 9월 Aptiv와 공동 합작법인 설립, 센서 업체 등과도 전략적 협업 추진 2020년부터 특정 환경에서 자율주행이 가능한 자동차 양산에 착수할 계획을 밝힘
LG전자	o LG화학, LG 디스플레이 등 계열사와의 협력을 통해 자율주행을 위한 부품개발, 제조, 공급을 그룹 내에서 수직 계열화함
네이버 랩스	o 2018년 10월 사람과 자율주행 머신을 위한 위치(Location)와 모빌리티를 통합한 솔루션인 'xDM platform'을 공개, 도심 자율주행 매핑 시스템 구축을 통해 자율주행 4단계 기술개발 진행 중
SKT/KT	o SKT는 2017년 시험용 자율주행자동차 임시 운행허가 취득, 스마트 도로, 관제센터 등과 통신용 자율주행 자동차 5G 망 연동테스트 시행, 서울 상암지구 자율주행 서비스 테스트 진행 중
	o KT는 5G기반 자율주행을 위한 서울, 경기도 판교, 대구 수성시티 등 다양한 통신 환경 하에 원격자율주행 기술 등에 대한 기술개발 진행 중
	o 2019년 6월 MDE는 자율주행차량 개발 자회사 오토모스(AUTOMOS)를 설립하여 본격 자율주행 차량 생산에 돌입
기타 중소기업	o 2019년 11월 SWM은 암스트롱(Amstrong)플랫폼을 기반으로 자율주행 시연등을 수행하고, 2023년 완전자율주행 플랫폼 개발 추진 중
	o 스프링클라우드는 이스라엘 모빌리티 빅데이터 인공지능(AI) 기업 오토플릿(Autofleet)과 'AI 기반 자율주행 모빌리티' 사업 협력 추진 중
	o 언맨드솔루션은 운전석이 없는 '위더스' 6인승 차량을 제작하여 무인셔틀서비스 개발 추진 중

출처 : ETRI

출처 : ETRI

• 2020년 자율주행 기술 평가 보고서 발표

Navigant Leaderboard 자율주행차 순위

	2020년	2019년	2018년
1	웨이모	웨이모	GM
2	포드	GM 크루즈	웨이모
3	크루즈	포드	다임러-보쉬
4	바이두	앱티브	포드
5	인텔-모빌아이	인텔-모빌아이	폭스바겐 그룹
6	앱티브-현대	폭스바겐 그룹	BMW-인텔-FCA
7	폭스바겐 그룹	다임러-보쉬	앱티브
8	얀덱스	바이두	르노-닛산
9	죽스	토요타	볼보-베오니어-에릭슨-제누티
10	다임러-보쉬	르노-닛산-미쓰비시	PSA
11	토요타	BMW-인텔-FCA	재규어 랜드로버
12	매이 모빌리티	볼보-베오니어-에릭슨-제누티	토요타
13	보이지 오토	죽스	나브야
14	BMW	매이 모빌리티	바이두-베이징
15	르노-닛산-미쓰비시	현대 그룹	현대 그룹
16	볼보	우버	혼다
17	나브야	나브야	우버
18	테슬라	보이지	애플
19		테슬라	테슬라
20		애플	

V2X(Vehicle to Everything)

자율주행차의 시장 전망과 난제

난제

- 자율주행차의 가격이 문제
- 법적 책임과 소송의 문제가 모호함
- 시큐리티 이슈(security issue) 발생 가능성(테러 발생 등)
- 개인 프라이버시 침해에 대한 우려(데이터 공유에 따른 문제 등)
- 자율주행차 관련 제도 미비

⟨표 4⟩

자율주행 안전, 보안기술

• •	
안전, 보안 이슈	대처 기술
센서, V2X통신 오류, SW 오류 등	기계결함 등 사고원인 분석을 위한 Data Recorder 등 의무장착,
으로 인한 돌발 상황 발생	중복시스템설계, System Safety 모니터링, 운전 제어권 양도 관리
차량내부시스템,	AUTOSAR ⁹⁾ 보안 규격 강화, 시스템 부팅 또는 업데이트 실행 시
불법접근, 위장 ECU 등	실행되는 SW가 제조사가 허가한 SW인지 확인
차량 내부 네트워크 증가로 인한	차량 통신규격인 CAN, Ethernet 진화에 맟줘 네트워크 모니터링,
통신 보안위험	사이버 공격 대응 통신 보안기술 개발
차량외부, 통신방해, 오작동 유발	국제표준을 준용하여 통신을 위한 암호, 서명 등 규격 통신보안
등 V2X 통신 위험	표준 제정, ITS단말의 신뢰보증등급 기준 제정

자료: 산업은행 재구성

자율주행차의 영향과 비즈니스

- 산업계에 미치는 영향
 - 자동차 전장 부품 산업의 성장
 - 운송 물류 산업의 혁신
 - 개인에서 기업으로 옮겨지는 자동차 보험의 변화

⟨표 5⟩

자율주행차 관련 분야별 파급효과

분야	파급 내용			파급 정도		
포약	파티 네공	상	중	하		
자동차 부품	센서, 제어기 등 전장부품 산업 확대	√				
관련 인프라	스마트 자동차 구축을 위한 도로 및 통신 인프라 산업 확대		√			
스마트카 서비스	카쉐어링, 인포테인먼트 등 서비스 시장 확대	√				
빅데이터	보험, 연비측정 등 차량운행 빅데이터 분석, 활용 시장 확대		√			

자료: 산업은행 재구성

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - IoT(Internet of Things, 사물인터넷)
 - 정보 통신 기술을 기반으로 실세계(physical world)와 가상 세계(virtual world)의 다양한 사물들을 연결하여 진보된 서비스를 제공하기 위한 서비스 기반 시설
 - 유비쿼터스 공간을 구현하기 위한 인프라 컴퓨팅 기기들이 환경과 사물에 심겨 환경이나 사물 그 자체가 지능화되는 것부터 사람과 사물, 사물과 사물 간에 지능 통신을 할 수 있는 사물 통신(M2M: Machine to Machine)의 개념을 인터넷으로 확장하여 사물은 물론, 현실 과 가상 세계의 모든 정보와 상호 작용하는 개념으로 진화
 - M2M(Machine to Machine, 사물 통신)
 - 무선 통신을 이용한 기계와 기계 사이의 통신
 - 사물 통신(M2M)은 기계, 센서, 컴퓨터 등 다양한 장치들이 유무선 통신 기술을 이용해 서로 정보를 교환하게 함으로써 개별 장치들의 기능이나 성능을 개선시켜 주고 개별 장치들이 제공하지 못했던 새로운 지능형 서비스를 제공함
 - 도메인 네임(Domain Name)
 - 숫자로 된 IP 주소를 사람이 이해하기 쉬운 문자 형태로 표현한 것
 - 호스트 컴퓨터 이름, 소속 기관 이름, 소속 기관의 종류, 소속 국가명순으로 구성
 - 도메인 네임을 숫자로 된 IP주소로 바꾸어 주는 역할을 하는 DNS 사용

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - IP(Internet Protocol)
 - 인터넷 상에서 한 컴퓨터에서 다른 컴퓨터로 데이터를 보내는 방식이나 규약
 - IP주소는 인터넷 상에서 모든 컴퓨터들로부터 이 컴퓨터를 유일하게 구별하는 것
 - SEO(Search Engine Optimization, 검색 엔진 최적화)
 - 각종 검색 엔진에 내 글을 효과적으로 싣고 널리 알릴 수 있도록 웹 페이지를 구성해서 검 색 결과의 상위에 오르게 작업
 - 자신의 사이트를 대표할 수 있는 핵심적인 키워드로 사이트를 등록하고 배너 교환이나 여러 사이트에 추천 사이트로 등록해 두면 이용자가 많아지고 사이트의 순위도 올라가게 됨
 - 위키피디아(Wikipedia)
 - 전 세계 사람들 누구나 자유롭게 쓸 수 있고 함께 만들어 가능 웹 기반의 백과사전
 - 2001년 1월 15일에 지미 웨일스와 래리 생어가 공동으로 세운 비영리 단체인 위키 미디어 재단에서 운영

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Pro-teur(Professional Amateur, 프로튜어)
 - 전문가 같은 아마추어
 - 프로페셔널(professional)과 아마추어(amateur)의 합성어
 - IPv6(Internet Protocol version 6)
 - IPv4의 주소 부족 문제를 해결하기 위해 개발된 IP 주소 체계의 차세대 버전
 - 16비트씩 8부분, 총 128비트로 구성
 - Semantic Web(시맨틱 웹)
 - 컴퓨터가 사람을 대신하여 정보를 읽고 이해하고 가공하여 새로운 정보를 만들어 낼 수 있 도록, 이해하기 쉬운 의미를 가진 차세대 지능형 웹
 - 시맨틱 웹을 구성하는 핵심 기술로는 웹 자원(resource)을 서술하기 위한 자원 서술 기술, 온톨로지(ontology)를 통한 지식 서술 기술, 통합적으로 운영하기 위한 에이전트(agent) 기 술들을 들 수 있음

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - Anycast(애니캐스트)
 - IPv6에서 한 송신자와 인근에 있는 일단의 소수 수신자간의 통신
 - 특정 다수에게 전송하는 멀티캐스트나 특정인에게 전송하는 유니캐스트와 구분됨
 - 애니캐스트는 일단의 수신자들을 묶어 하나의 그룹으로 나타낸 주소를 사용하여 그룹 내에서 가장 가까운 호스트에게만 전송하는 것
 - Unicast(유니캐스트)
 - 메시지의 수신 주소를 1개만 지정하는 1:1 통신 형태
 - 네트워크 내의 모든 주소에 동일 메시지를 보내는 것을 "브로드캐스트", 지정한 복수의 수 신 주소에 동일 메세지를 보내는 것을 "멀티캐스트"라고 함
 - Miracast(미라캐스트)
 - 휴대 기기로부터 대형 TV 스크린에 정보를 전송하는 Wi-Fi 기반의 표준
 - 와이파이 얼라이언스가 발표한 최신 무선 디스플레이 기술로 스마트 폰이나 스마트 패드와 같은 모바일 기기가 TV와 직접 Wi-Fi 기반의 무선 통신으로 연결되어 큰 화면으로 모바일 기기 속의 콘텐츠를 전송할 수 있는 기술

• 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기

Unicast, Broadcast, Multicast, Anycast

Unicast: One specific receiver

Broadcast: Many receivers, all on the network

Multicast: Many receivers, all of a specific group

Anycast:
One receiver,
"nearest" of a
specific group

Geocast: Many receivers, all of a geographic region

Ludwig-Maximilians-Universität München

Prof. Hußmann

Multimedia im Netz, WS 2012/13 - 10 - 5

Pictures: Wikipedia

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - XML(eXtensible Markup Language, 확장성 마크업 언어)
 - HTML의 문법이 각 웹 브라우저에서 상호 호환적이지 못하다는 문제와 SGML의 복잡성을 해결하기 위해 개발
 - 인간과 기계가 모두 이해할 수 있는 텍스트 형태로 마크업 포맷을 정의하기 위한 메타 언 어
 - WSDL(Web Service Description Language, 웹 서비스 기술 언어)
 - 비즈니스 서비스를 기술하여 비즈니스들끼리 전자적으로 서로 접근하는 방법을 제공하기 위해 사용되는 확장성 마크업 언어(XML) 기반의 언어
 - SOAP 툴킷에 웹 서비스를 기술하기 위해 개발됨
 - 웹 서비스가 XML을 기반으로 표현되고 웹 서비스 기술 언어로 정의되면 UDDI(Universal Description, Discovery, and Integration)에 의해 서비스 저장소에 등록됨
 - MMS(Multimedia Messaging System, 멀티미디어 메시징 시스템)
 - 3세대 이동 통신 서비스의 기본 요소로서 정지 영상, 음악, 음성 및 동영상 등의 다양한 형식의 데이터를 주고받을 수 있는 메시징 시스템
 - 2세대의 단문 메시지 서비스(SMS)의 뒤를 이은 멀티미디어 메시징 서비스(MMS)는 기존의 미디어 형식 메시지들과 멀티미디어 형식 메시지를 모두 제공함

- 정보처리산업기사(기사) 실기 시험 대비 신기술 용어 익히기[2,3]
 - DX(Digital Transformation)
 - 디지털 기술을 사회 전반에 적용하여 전통적인 사회 구조를 혁신시키는 것
 - 일반적으로 기업에서 사물 인터넷(IoT), 클라우드 컴퓨팅, 인공지능(AI), 빅데이터 솔루션 등 정보통신기술(ICT)을 플랫폼으로 구축·활용하여 기존 전통적인 운영 방식과 서비스 등을 혁신하는 것을 의미
 - DHCP(Dynamic Host Configuration Protocol, 동적 호스트 설정 통신 규약)
 - TCP/IP 통신을 실행하기 위해 필요한 설정 정보를 자동적으로 할당, 관리하기 위한 통신 규약
 - DHCP는 주어진 IP주소가 일정한 시간 동안만 그 컴퓨터에 유효하도록 하는 '임대' 개념을 사용하여 고유한 IP주소가 없어도 인터넷에 접속할 수 있도록 해주는 것
 - 위키노믹스(Wikinomics)
 - 인터넷 이용자들이 만든 무료 백과 사전 위키피디아(wikipedia)와 이코노믹스(economics) 의 합성어
 - 기존 경제의 주역이 뛰어난 소수였다면 위키노믹스의 주인공은 보통 사람들의 집단 지성
 - 대표적인 사례로는 컴퓨터용 운영체제 리눅스(Linux)가 있음

• 자율주행

- 자율주행이란?
 교통수단이 운전자의 어떤 개입도 없이 스스로 판단하여 이동하고 장애물을 피하여 운행할 수 있는 기능
- 자율주행 발달한 교통수단 : 철도, 항공기
- 자율주행차(autonomous vehicle/self-driving car)란?
 운전자의 개입 없이 주변 환경을 인식하고 주행 상황을 판단하여 차량을 제어함으로써 스스로 주어진 목적지까지 주행하는 자동차

[출처] Shahian Jahromi, Babak & Hussain, Syed & Karakas, Burak & Cetin, Sabri. (2017). Control of autonomous ground vehicles: a brief technical review. IOP Conference Series: Materials Science and Engineering. 224. 012029. 10.1088/1757-899X/224/1/012029.

• 자율주행차 핵심기술

자료: 산업은행 재구성

• 미래형 자동차

- 스마트카
 - 자동차에 각종 IT기술을 적용하여 편리성을 높인 차량
 - 위치확인시스템(GPS)과 지리정보시스템(GIS)을 바탕으로 자동차의 현재 위치를 알 수 있고 센서 기술을 바탕으로 운전 중 사각지대의 장애물 감지, 충돌 위험 시 스스로 제어
- 자율주행차
 - 주변 사물과 통신 신호를 주고 받으며 다양한 기능을 실행시킬 수 있음
 - 딥러닝 기술과 영상처리기술을 기반으로 운전자의 직접적인 개입 없이 스스로 운전하는 것을 목표로 함
 - 커넥티드카 이전의 단계에서 실현되는 기술이 구현된 차
- 커넥티드카
 - 모든 것이 자동차로 연결되어 있는 모습을 의미
 - 차와 운전자, 인터넷, 외부사물 등과 매우 밀접하게 연결된 자동차를 의미
 - 모든 사물이 밀접하게 연결된 상황에서는 차량 스스로 다른 차와의 거리를 계산하고 속도를 자동으로 조절, 원격 차량 제어, 다양한 서비스를 실시간 사용 가능

- 자동차 자동화 레벨 5단계 정의
 - 최종 목표는 완전 자율주행 단계

〈표 1〉 자율주행 레벨에 따른 구분

레벨	Lv. 0	Lv. 1	Lv. 2	Lv. 3	Lv. 4	Lv. 5
정의	無 자율주행 (No Automation)	운전자 지원 (Driver Assistance)	부분 자율주행 (Partial Automation)	조건부 자율주행 (Conditional Automation)	고도 자율주행 (High Automation)	완전 자율주행 (Full Automation)
자동화 기능	없음 (경고 등)	조향 또는 속도	조향 및 속도	조향 및 속도	조향 및 속도	조향 및 속도
운전자 주시	항시	항시	항시	시스템 요청시	자율주행 구간 내 불필요	전 구간 불필요
자율주행 구간	_	특정 구간	특정 구간	특정 구간	특정 구간	전 구간
양산 현황	대부분 완성차社 양산	대부분 완성차社 양산	7~8개 완성차社 양산	2개 완성차社 양산	없음	없음

난제

- 자율주행차의 가격이 문제
- 법적 책임과 소송의 문제가 모호함
- 시큐리티 이슈(security issue) 발생 가능성(테러 발생 등)
- 개인 프라이버시 침해에 대한 우려(데이터 공유에 따른 문제 등)
- 자율주행차 관련 제도 미비

⟨표 4⟩

자율주행 안전, 보안기술

,— ,	
안전, 보안 이슈	대처 기술
센서, V2X통신 오류, SW 오류 등	기계결함 등 사고원인 분석을 위한 Data Recorder 등 의무장착,
으로 인한 돌발 상황 발생	중복시스템설계, System Safety 모니터링, 운전 제어권 양도 관리
차량내부시스템,	AUTOSAR ⁹⁾ 보안 규격 강화, 시스템 부팅 또는 업데이트 실행 시
불법접근, 위장 ECU 등	실행되는 SW가 제조사가 허가한 SW인지 확인
차량 내부 네트워크 증가로 인한	차량 통신규격인 CAN, Ethernet 진화에 맟줘 네트워크 모니터링,
통신 보안위험	사이버 공격 대응 통신 보안기술 개발
차량외부, 통신방해, 오작동 유발	국제표준을 준용하여 통신을 위한 암호, 서명 등 규격 통신보안
등 V2X 통신 위험	표준 제정, ITS단말의 신뢰보증등급 기준 제정

자료: 산업은행 재구성

참고 및 자료 출처

- [1] 윤경배 등, "4차 산업혁명의 이해 [2판]", 일진사, 2021
- [2] 한기준, 김기윤 등, "2020 시나공 정보처리산업기사 실기", 길벗, 2020
- [3] TTA 한국정보통신기술협회 정보통신용어사전 https://terms.tta.or.kr/main.do