Lab 2 prep

1. What do the commands ps and top do?

Displays information about the active processes. Running ps from a terminal shows the list of processes started from the shell. Normally, it would only show bash and ps, but running a program in the background previously followed by ps would also show the given program.

To view all running processes (not just started from the shell), use ps -A.

The top command simply displays a table of all the processes, along with some information about the CPU and memory.

2. How do you run a program in the background?

To run a program in the background, we type the program name followed by a &. For example, if you wanted to start Firefox in the background, you would type:

firefox &

3. How do you terminate a task using its process ID?

In order to terminate a process by its name, we use the killall command. To terminate a process given its **PID**, we use pkill.

For example, to terminate process with PID of 14722, you would type kill 14722.

Notice that the above is equivalent to kill -15 14722, where the 15 indicates the process should be terminated, which allows the program to do some last minute cleanup before closing.

In order to force close the program, use kill -9.

4. How do you pause a running program, and then send it to the background / bring a background back to the foreground?

- If a process is already running, you can stop it with the CTRL+Z shortcut
- Use the bg command to bring the stopped program to the background
- Use the fg command to bring the stopped program to the foreground

5. What does the taskset command do?

The processor **affinity** allows binding processes to specific CPU cores.

The taskset command can be used to retrieve the affinity of a specific process or to launch a given command with a specified affinity.

Retrieve affinity of a process

```
Where [PID] is the process id:

taskset -p [PID]

This would normally output something like this:

pid [PID]'s current affinity mask: f
```

The **f** is the hexadecimal value which describes that the process can run on any 4 of the CPU cores. **f** corresponds to hex 0x15 indicating it would be able to run on cores 0-15.

Changing process affinity

To change the affinity of process with id [PID] to affinity with hex value of 0x1, we write:

```
taskset -p 0x1 [PID]
output:
pid [PID]'s current affinity mask: f
pid [PID]'s new affinity mask: 1
```

6. What would passing the parameter -c 0 to taskset do?

The -c allows to specify a range of CPUs, such as 0, 1, 0-3, etc... So taskset -c 0 1s would set the affinity mask to 0, only allowing the command to run on the one CPU core.

7. What is an oscilloscope?

An oscilloscope is an electronic test instrument that allows real time graphing of input voltages over time. This results in a 2D representation of one or more voltage signals over time. It can be used to measure waveforms, display things like capacitor discharging and more. Most oscilloscopes allow you to calibrate/adjust the time scale, voltage range and many other properties.

- 8. What is shown on each axis of the oscilloscope?
 - Time on the X-Axis.
 - Voltage on the Y-Axis.
- 9. How long is one cycle in the waveform above?
 - 5ms (0.005sec)
- 10. What frequency is the square wave?
 - 200Hz
- 11. Why are the green traces thick at the peaks of the cycle? What causes this 'roughness' in the data?

This is called **noise**. It is caused by internal component issues such as loose connections, power supplies, or even faulty components.

12. Draw the waveform you would expect for one byte sent over this serial link