Vodouno	DIM
Кафедра	JDIVI

Отчет по лабораторной работе № 1 Тема: «Принятие решений в неструктурированных задачах на основе методов экспертного анализа»

Выполнил: ст. гр. 950505 Довголёнок Д.А Проверил: Байдун Д.Р.

1 ЦЕЛЬ РАБОТЫ

Целью работы является:

- изучение методов экспертного анализа, включая процедуры сбора экспертных оценок, их проверки и обработки;
- изучение возможностей применения методов экспертного анализа для поддержки принятия управленческих решений.

2 ХОД РАБОТЫ

2.1 Метод Саати

Составляем матрицу сравнения (рис.2.1.1):

	A1	A2	A3	A4
A1	1,00	7,00	0,33	3,00
A2	0,14	1,00	0,11	5,00
A3	3,00	9,00	1,00	5,00
A4	0,33	0,20	0,20	1,00

Рисунок 2.1.1 – Матрица парных сравнений

Находим цены альтернатив (Ci) - средние геометрические строк матрицы (рис. 2.1.2) и сумма цен альтернатив (рис. 2.1.3):

	Ci
Танкерные перевозки	1,63
Железнодорожный транспорт	0,53
Построить нефтепровод	3,41
Отказ от строительства	0,34

Рисунок 2.1.2 – Нахождение цен альтернатив

Рисунок 2.1.3 – Нахождение суммы цен альтернатив

Находятся веса альтернатив (Vi) – отношение Сi к С (рис. 2.1.4):

Vi		
0,28		
0,09		
0,58	оптимально	е
0,06		

Рисунок 2.1.4 – Нахождение веса альтернатив

Наиболее предпочтительной, по мнению эксперта, является альтернатива, имеющая максимальный вес. Таким образом, по мнению эксперта, наиболее эффективной является построить нефтепровод(A3); следующая за ней — танкерные перевозки (A1), менее эффективна железнодорожный транспорт (A2), наименее эффективен отказ от строительства (A4).

При проверке данной задачи на непротиворечивость находятся суммы столбцов матрицы парных сравнений (Ri) (рис. 2.1.5):

		•		Проверка на непротиворечивость							
Суммы столбцов:	R1 R2 R3 R4										
	4,48	17,20	1,64	14,00							

Рисунок 2.1.5 – Нахождение находятся суммы столбцов матрицы парных сравнений

=CYMM(K11:K14)

Рассчитывается вспомогательная величина λ (рис. 2.1.6) — сумма произведений Ri на Vi:

Рисунок 2.1.6 – Нахождение находятся вспомогательной величины λ

Находится величина, называемая индексом согласованности (ИС): ИС = $(\lambda - N)/(N-1)$ (рис. 2.1.7).

Рисунок 2.1.7 – Нахождение индекса согласованности

В зависимости от размерности матрицы парных сравнений находится величина случайной согласованности (СлС). Для матрицы размером 4х4 СлС равна 0,9. Исходя из ИС и СлС находится отношение согласованности: ОС = ИС / СлС (рис. 2.1.8):

NC=	0,18				
СлС=	0,90	(по таблице)			
OC=	0,197517	Уточнение экспертных оценок не требуется			буется

Рисунок 2.1.8 – Нахождение отношения согласованности

Если отношение согласованности превышает 0,2, то требуется уточнение матрицы парных сравнений. В данном примере ОС = 0,197. Таким образом, уточнение экспертных оценок в данном случае не требуется.

2.2 Метод предпочтений

Каждому эксперту предлагается выполнить ранжирование альтернатив по предпочтению (номер 1 лучшей альтернативе, 2 — следующей по важности и т.д. Оценки, указанные экспертами, сводятся в таблицу (матрицу) размером MxN, где М - количество экспертов, N- количество альтернатив (рис. 2.2.1):

Матрица оценок							
	Альтернативы						
Эксперты	A1 A2 A3 A4						
1	2	4	1	3			
2	1	3	2	4			
3	3	4	1	2			

Рисунок 2.2.1 – Матрица эскпертных оценок для метода предпочтений

Производится преобразование матрицы оценок по формуле: Bij = N - Xij, где Bij– элементы преобразованной матрицы, а Xij – исходной (рис. 2.2.2):

Преобра							
	Альтернативы						
Эксперты	A1 A2 A3 A4						
1	2	1					
2	3	3 1 2					
3	1	0	3	2			

Рисунок 2.2.2 – Преобразованная матрица экспертных оценок

Находятся суммы преобразованных оценок по каждой из альтернатив (Ci) (рис. 2.2.3) и сумма всех оценок (C) (рис. 2.2.4):

I	C1	C2	C3	C4	
	6	1	8	4	
	=CYMM(K39:K41)				

Рисунок 2.2.3 – Вычисление суммы преобразованных оценок

Рисунок 2.2.4 – Вычисление суммы всех оценок

Находятся веса альтернатив Vj = Cj/C (рис. 2.2.5):

V -		V2	V3	V4
0,:	32	0,05	0,42	0,21

Рисунок 2.2.3 – Вычисление веса оценок

Чем больше вес, тем более предпочтительной является альтернатива (по мнению экспертов). В данном примере наиболее эффективной является построить нефтепровод(А3); следующая за ней танкерные перевозки (А1), наименее эффективны отказ от строительства(А4) и железнодорожный транспорт(А2).

Для проверки согласованности мнений экспертов находятся суммы оценок, указанных экспертами для каждой из альтернатив (Si) (рис. 2.2.4):

Выполним проверку согласований						
S1	S2	S3	S4			
6	11	4	9			

=СУММ(К32:К34)

Рисунок 2.2.4 – Вычисление суммы оценок альтернатив

По формуле A = M(N+1)/2 находится вспомогательная величина A (рис. 2.2.5):

Рисунок 2.2.5 – Вычисление вспомогательной величины А

По формуле $S = \sum_{j=1}^{N} (S_j - A)^2$. находится вспомогательная величина S (рис.

2.2.6):

Рисунок 2.2.6 – Вычисление вспомогательной величины S Находится коэффициент конкордации ($W = \frac{12 \cdot S}{M^2 \cdot N \cdot (N^2 - 1)}$) (рис. 2.2.7):

Рисунок 2.2.7 – Вычисление коэффициента конкордации

При W>0,5 степень согласованности экспертных оценок может считаться достаточной. В данном примере W = 0.64, в таком случае согласованности экспертных оценок достаточная.

2.3 Метод ранга

Каждый эксперт указывает оценки альтернатив по 10-балльной шкале. Оценки, указанные экспертами, сводятся в матрицу размером МХN (рис. 2.3.1):

Альтернативы								
Эксперты	A1	A2	A3	A4				
1	6	2	10	4				
2	10	6	8	4				
3	6	2	10	8				

Рисунок 2.3.1 – Матрица экспертных оценок для метода ранга

Находятся суммарные оценки альтернатив всеми экспертами Ci (рис. 2.3.2) и сумма всех оценок (C) (рис. 2.3.4):

Рисунок 2.3.2 – Вычисление суммарных оценок альтернатив

	C1	C2	C3	C4	С	
I	22	10	28	16	76	

Рисунок 2.3.3 – Вычисление суммы оценок альтернатив

Находятся веса альтернатив ($V_j = C_j/C$) рис. 2.3.4:

Рисунок 2.3.4 – Вычисление веса альтернатив

В данном примере наиболее эффективной является постройка нефтепровода (А3); следующая за ней – танкерные перевозки(А1), менее эффективен отказ от

строительства (А4) и самой неэффективной по мнению экспертов является железнодорожный транспорт(А2).

Для проверки на согласованность находятся средние оценки каждой альтернативы (рис. 2.3.5):

$$\overline{X}_{j} = \frac{1}{M} \sum_{i=1}^{M} X_{ij}$$

Выполним проверку согласований						
X1	X2	Х3	X4			
7,33	3,33	3,33 9,33				
=СУММ(К62:К64)/3						

Рисунок 2.3.5 – Вычисление средних оценок каждой альтернативы

Находятся дисперсии оценок каждого эксперта (рис. 2.3.6):

$$D_{\ni i} = \frac{1}{N-1} \sum_{j=1}^{N} (X_{ij} - \overline{X}_{j})^{2}$$

	Находим дисперсию оценок каждого эксперта						
	D1	D2	D3				
	1,93	5,93	3,70				
=((K62-J76)^2 + (L62-K76)^2 + (M62-L76)^2 +(N62-M76)^2) * 1/3							

Рисунок 2.3.6 – Вычисление дисперсии оценок каждого эксперта

Находятся дисперсии оценок каждой альтернативы (рис. 2.3.7):

$$D_{aj} = \frac{1}{M-1} \sum_{i=1}^{M} (X_{ij} - \overline{X}_{j})^{2}$$

Находим дисперсию оценок каждой альтернативы							
D1	D2	D3	D4				
5,33	5,33	1,33	5,33				

=((K62-J76)^2 + (K63-J76)^2 + (K64-J76)^2) * 1/2

Рисунок 2.3.7 – Вычисление дисперсии оценок каждой альтернативы

Полученные дисперсии альтернативы А3 доказывают, что мнение экспертов относительно нее совпадают, в то время как оценку остальных альтернатив необходимо уточнить.

3 ВЫВОДЫ

В ходе выполнения лабораторной работы были изучены методы экспертного анализа, включая процедуры сбора экспертных оценок, их проверки и обработки. Были произведены расчеты с помощью метода Саати, позволяющий обработать оценку альтернатив одним экспертом и проверить ее на противоречивость, а также метод ранга и метод предпочтений, позволяющие проанализировать оценку группы экспертов и проверить оценки на непротиворечивость.