DIMENSION FINIE

DIMENSION

 $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Dimension d'un espace vectoriel

Définition 1 Soit E un \mathbb{K} -espace vectoriel. On dit que E est de **dimension finie** si E admet une famille génératrice finie de E.

Théorème 1 Soit $E \neq \{0_E\}$ un \mathbb{K} -espace vectoriel de dimension finie. Alors

- 1. E admet au moins une base.
- 2. Toutes les bases de E ont le même cardinal.

Définition 2 *Soit* E *un* \mathbb{K} – *espace vectoriel de dimension finie.*

- 1. Si $E \neq \{0_E\}$, on appelle dimension de E, notée $\dim{(E)}$, le cardinal d'une base de E
- 2. Si $E = \{0_E\}$, on pose $\dim(E) = 0$.

Exemples : $\dim (\mathbb{R}^n) = n$ et $\dim (\mathbb{R}_n[X]) = n + 1$.

Lemme 1 Soient E un \mathbb{K} -espace vectoriel de dimension finie, $(x_1, x_2, ..., x_p)$ une famille génératrice de E et $(u_1, u_2, ..., u_n)$ une famille libre. Alors $n \leq p$.

Proposition 1 Soit E un \mathbb{K} -espace vectoriel admettant une base ayant n vecteurs. Alors,

- 1. Toute famille libre de E possède au plus n vecteurs.
- 2. Toute famille génératrice de E possède au moins n vecteurs.
- 3. Toute base de E possède n vecteurs.
- 4. Toute famille de E d'au moins n+1 vecteurs est liée.

Proposition 2 Soient E un \mathbb{K} -espace vectoriel de dimension finie n, et $F=(u_1,...,u_n)$ une famille d'éléments de E. On a l'équivalence entre les assertions suivantes :

- 1. F est une base de E.
- 2. F est une famille libre de E.
- 3. F est une famille génératrice de E.

1 IONISX