

MEDIA TRANSMISYJNE 2 – projekt

ZAJĘCIA ORGANIZACYJNE

- I. \rightarrow LOGOWANIE NA PORTALU ,KURSY'
- II. \rightarrow ZASADY ZALICZENIA PRZEDMIOTU
- III. \rightarrow STRUKTURA PROJEKTU
 - I. Wstęp, analiza parametryczna, analiza przypadków realistycznych + wnioski szczegółowe, wnioski ogólne, bibliografia;
 - II. Niezbędnik dot. prezentacji multimedialnej;
 - III. Niezbędnik dot. wykresów i prezentacji danych

Prowadzący:

dr hab. inż. Kamil STANIEC

tel.: 320 34 34, p. 333 C4

e-mail: kamil.staniec@pwr.edu.pl

dr inż. Michał KOWAL

tel.: 320 44 38, p. 809 C5

e-mail: michal.kowal@pwr.edu.pl

I → LOGOWANIE NA PORTALU ,KURSY'

- 1. Strona WWW portalu ,Kursy': https://kursy.pwr.wroc.pl/
- 2. Ścieżka na portalu ,Kursy' do przedmiotu:

Teleinformatyka' → Media transmisyjne' → Media Transmisyjne 2 – projekt'

3. Hasło do kursu *Transmisyjne 2 – projekt*:

hasło ma ogólny format: grupa_xx_yyyy, gdzie ,xx' to skrót od dnia tygodnia, ,yyyy' to godzina (bez kropki), np.:

- hasło dla grupy czwartkowej o 09.15 to: grupa_cz_0915
- hasło dla grupy poniedziałkowej o 13.15 to: grupa_pn_1315
- Wtorek: xx=wt, środa: xx=sr, piątek: xx=pt

4. Hasło do otwarcia plików zawierających tematy projektu nr 1 i 2:

MT2_2015_16_KSMK

II → ZASADY ZALICZENIA PRZEDMIOTU

- 1. Obowiązkowe zaliczenie ustne (prezentacja + projekt w formie papierowej + CD) obu projektów
 - Sem0: ocena z seminarium nr 0 (5-minutowa prezentacja założeń oraz krótkie wprowadzenie do projektu nr 1);
 - Sem1: ocena z seminarium nr 1 (12-minutowa prezentacja projektu nr 1);
 - Sem2: ocena z seminarium nr 2 (10-minutowa prezentacja projektu nr 2).
- 2. Ocena końcowa = 0,05· Sem0 + 0,51·Sem1 + 0,44· Sem2
- 3. Hasło do kursu *Transmisyjne 2 projekt*:

hasło ma ogólny format: grupa_xx_yyyy, gdzie ,xx' to skrót od dnia tygodnia, ,yyyy' to godzina (bez kropki), np.:

- hasło dla grupy czwartkowej o 09.15 to: grupa_cz_0915
- hasło dla grupy poniedziałkowej o 13.15 to: grupa_pn_1315
- wtorek: xx=wt, środa: xx=sr, piątek: xx=pt
- 4. Hasło do otwarcia plików zawierających tematy projektu nr 1 i 2: MT2_2015_16_KSMK

III → STRUKTURA PROJEKTU

1. Wstęp

- Projekt nr 1: syntetyczne wprowadzenie do metody (czemu służy? Jakie są zakresy jej stosowalności? Podział metody na podmetody (jeśli istnieją). Prezentacja wzorów/formuł matematycznych z objaśnieniem ich znaczenia;
- Projekt nr 2: przekopiować dosłownie treść zadania projektowego z listy projektów.
- 2. Analiza parametryczna (tylko projekt nr 1): badanie wrażliwości metody na rozmaite jej parametry. W każdym kroku uzmienniamy jeden z parametrów, zachowując pozostałe na wartościach typowych, np. środkowych dla zakresu wartości, jaki może przyjąć w danej metodzie określony parametr.

Przykładowo, załóżmy, że w danym modelu **tłumienie propagacyjne** L jest $L(f, d, w, \Theta)$, czyli odpowiednio:

- częstotliwości f (800 MHz 2000 MHz)
- odległości *d* od nadajnika (50 m 5000 m)
- szerokości ulic w (20 m 50 m).

Krok 1.: uzmienniamy *f* w zakresie od 1000 MHz do 2000 MHz (czyli zmieniamy dwukrotnie), pozostałe parametry przyjmują wartości typowe: *d*=2500 m, *w*=35 m.

Wniosek: dynamika zmian *L* w funkcji dwukrotnego zwiększenia częstotliwości wynosi 20 dB.

2. Analiza parametryczna c.d:

Krok 2.: uzmienniamy d w zakresie od 2000 m do 4000 m (czyli zmieniamy dwukrotnie), pozostałe parametry przyjmują wartości typowe: f=1400 m, w=35 m.

Wniosek: dynamika zmian *L* w funkcji dwukrotnego zwiększenia częstotliwości wynosi 50 dB.

Krok 3.: uzmienniamy **w** w zakresie od 25 m do 50 m (czyli zmieniamy dwukrotnie), pozostałe parametry przyjmują wartości typowe: **f**=1400 m, **d**=2000 m.

Wniosek....

Podany wyżej przypadek jest zamieszczonych jedynie w celach orientacyjnych. Specyfika każdego projektu implikuje indywidualne podejście do analizy parametrycznej, lecz naczelną zasadą powinna być możliwość dokonania porównawczej analizy wpływu rozmaitych parametrów (w tym celu powinny być zmieniane o ten sam iloraz, np. o 2 razy. W przeciwnym razie trudno będzie dokonać oceny wpływu różnych czynników na wartość końcową (czyli tłumienie L, stosunek C/N, charakterystykę promieniowania itp.)

2. Analiza parametryczna c.d:

Analizę parametryczną powinny zwieńczyć wnioski, czyli:

- Syntetyczne podsumowanie wyników analizy parametrycznej, z omówieniem. Na przykład ze wskazaniem parametru, na który dana metoda wykazuje największą wrażliwość albo uszeregować te parametry względem wrażliwości metody na nie);
- Wnioski dot. stosowalności metody w świetle wrażliwości na rozmaite parametry (np. z jakiego typu możliwymi różnicami w wynikach możemy się liczyć, jeśli będziemy dysponować nie dość dokładnymi informacjami dot. np. topografii terenu, bądź charakterystyki zabudowy, szerokości budynków, tłumienia ścian/przeszkód itp.);

3 Analiza przypadków realistycznych

- Obejmuje <u>obliczenie wartości</u> (nie wykresów, bo te powinny znajdować się w części "Analiza parametryczna"), czyli np. tłumienia propagacyjnego L, dla kilku (1-3, zależnie od tematu) przypadków realistycznych na danej odległości między nadajnikiem a odbiornikiem;
- Przypadki muszą być od siebie różnić i stanowić reprezentatywny przekrój środowisk (np. 1. centra wielkich aglomeracji, 2. przedmieścia, 3. tereny wiejskie/otwarte), które zakłada dana metoda;
- Każdy analizowany przypadek należy podeprzeć mapką sytuacyjną, np. zrzutem ekranu
 z Google Maps i zaznaczoną trasą, dla której wyznaczono tłumienie między nadajnikiem (Tx)
 a odbiornikiem (Rx). Dodatkowo, dla metod dyfrakcyjnych, należy rozrysować plan przeszkód
 na całej trasie, zaznaczając wyraźnie, które będą brane pod uwagę (patrz: rys. poniżej);
 Przypadek 2.
- W metodach dyfrakcyjnych (np. Deygout, dyfrakcja na klinie, Giovanelli) należy zamodelować przeszkody (np. budynki) najpierw jako kliny, a następnie porównać wyniki uwzględniając ich rzeczywiste grubości. Grubości te modelujemy stosując poprawkę na obłość przeszkody (wyrażaną jej promieniem R, który wyliczamy jak pokazano na rysunku).

Przypadek 3.

4. Wnioski ogólne

Najważniejsze konkluzje wyciągnięte na podstawie wyników analizy parametrycznych oraz analizy wartości zwracanych w przypadkach realistycznych

5. Bibliografia

- Format numeracji liniowy (nie dzielimy pozycji bibliograficznych na typy):
 - [1] ...
 - [2] ...
 - [3] ...
 - [4] ...
- <u>Do każdej pozycji bibliograficznej musi znaleźć się odwołanie w tekście</u>, w kolejności ich zamieszczenia w Bibliografii (czyli pierwszą pozycją, na którą się powołujemy np. w rozdz. ,Wprowadzenie' nie może być [4] tylko [1])
- Do dokumentów z bazy IEEExplore dostęp jest bezpłatny, jeżeli wykonywany z komputerów PWr;
- Zależnie od typu cytowanego źródła, należy podać nie jedynie autora i tytuł, ale także inne dane towarzyszące, jak pokazano na następnym slajdzie $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

Załączniki

Do projektu w wersji papierowej dołączamy płytę CD, na której znajdują się:

- Projekt w wersji DOC oraz PDF;
- Arkusz kalkulacyjny;
- Prezentacja w wersji edytowalnej.

5. Bibliografia *c.d.*

- Powtórzenie: Do dokumentów z bazy IEEExplore dostęp jest bezpłatny, jeżeli wykonywany z komputerów PWr;
- Zależnie od typu cytowanego źródła, należy podać nie jedynie autora i tytuł, ale także (patrz poniżej ↓ ↓ ↓ ↓ ↓ ↓ ↓):

Jeżeli CZASOPISMO:

[1] Jasani H., Yen K., Performance improvement using directional antennas in ad hoc networks, International Journal of Computer Science and Network Security, vol. 6, no. 6, June 2006, pp. 180-188

Jeżeli MATERIAŁY KONFERENCYJNE:

- [1] Kurek K., Modelski J., Analiza przestrzennego rozkładu sygnałów wielodrogowych propagujących wewnątrz pomieszczenia, materiały Krajowej Konferencji Radiokomunikacji, Radiofonii i Telewizji, pp. 145-148, Wrocław, June 2003
- [2] Elbatt T., Anderson T., Ryu B., Performance evaluation of multiple access protocols for ad hoc networks using directional antennas, Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), March 16-20, 2003, New Orleans (Louisiana), USA

Jeżeli KSIAŻKA:

[1] Rappaport T.S., Wireless communications. Principles and practice. 2nd edition. Prentice Hall, 2002

Jeżeli STANDARD:

[1] IEEE, IEEE Std 802.15.4TM-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (WPANs)

Jeżeli PRACA MAGISTERSKA/DOKTORSKA:

[1] Ahmadzadeh A.M., Capacity and Cell-Range Estimation for Multitraffic Users in Mobile WiMAX, Master thesis, University of Boras, 2008

Jeżeli NORMA ITU:

[1] ITU, ITU-R Recommendation P.452, Prediction procedure for the evaluation of microwave interference between stations on surface of the Earth

BARDZO WAŻNE UWAGI DOT. PREZENTACJI MULTIMEDIALNEJ:

- 1. Nie przeładowywać tekstem slajdu umieszczać hasła bądź główne myśli, szczegóły domówić;
- 2. Nie czytać! Można się jedynie wspomagać, tzn. można mieć notatki, do których będzie można się odnieść, ale tylko jak pomoc używana sporadyczna, np. kiedy się pogubimy;
- 3. Nie mamrotać pod nosem, tylko mówić głośno i wyraźnie do słuchaczy (nie tylko prowadzącego);
- 4. Utrzymywać kontakt wzrokowy ze słuchaczami a nie z ekranem;
- 5. Wiedzieć, co jest napisane na slajdach, nie dukać przygotować się wcześniej;
- 6. Pozytywne wrażenie na słuchaczach zawsze robi zamieszczenie w rogu każdego slajdu informacji: $\{\text{\#slajdu} / \Sigma_{\text{slajdów}}\}$
- 7. Ile slajdów na prezentację? Najlepiej tyle, ile mamy minut do jej wygłoszenia (czyli 12 slajdów na 12-minutową prezentację);
- 8. Jak przygotować prezentację? NIGDY NIE ZACZYNAMY PRZYGOTOWYWAĆ PREZENTACJI OD WSTĘPU, gdyż wówczas zajmie on ¾ pojemności prezentacji albo i więcej. Najlepiej przyjąć poniższą zasadę:

Liczba slajdów = **k**

- Szykując prezentację zawierającą łącznie *n* slajdów, zaczynamy od slajdów zawierających analizę parametr.;
- potem przypadki realistyczne
- · następnie wnioski i bibliografia;
- Jeżeli wyszło k slajdów, na "Wprowadzenie/wstęp" przeznaczamy n-k slajdów.

BARDZO WAŻNE UWAGI DOT. WYKRESÓW I PREZENTACJI DANYCH:

- 1. Do projektu (szczeg. w części "Analiza parametryczna") nie załączamy surowych danych, np. wyników obliczeń w tabelach, na podstawie których powstały wykresy, tylko same wykresy;
- 2. Prezentacja graficzna (wykresy) musi pozwalać na szybką i jednoznaczną ocenę wzrokową, czyli:

ŹLE:

automatyczne skalowanie (Excel, Matlab itp.) uniemożliwia szybką ocenę wzrokową zaprezentowanych scenariuszy P_1 , P_2 i P_3 . W rezultacie, wszystkie przebiegi wyglądają identycznie (bądź prawie identycznie).

BARDZO WAŻNE UWAGI DOT. WYKRESÓW I PREZENTACJI DANYCH:

2. kont. Prezentacja graficzna (wykresy) musi pozwalać na szybką i jednoznaczną ocenę wzrokową, czyli:

DOBRZE (ALE NIE NAJLEPIEJ):

- Ręczne wyskalowanie na wszystkich wykresach do scenariusza o największej dynamice, umożliwia szybką ocenę wzrokową zaprezentowanych scenariuszy P_1 , P_2 i P_3 . W rezultacie, łatwo ocenić, który cechuje największa dynamika zmian w funkcji d;
- Problem? Częste zapominanie druku w kolorze... Efekt: trudno rozróżnialne odcienie szarości (pomimo odwołań w tekście do konkretnych kolorów (czyt. ocena idzie w dół za niską czytelność graficzną).

12/12

BARDZO WAŻNE UWAGI DOT. WYKRESÓW I PREZENTACJI DANYCH:

2. kont. Prezentacja graficzna (wykresy) musi pozwalać na szybką i jednoznaczną ocenę wzrokową, czyli:

NAJLEPIEJ (warianty zalecane):

- Umieszczenie wszystkich wykresów (ale maks. 3-4, dla czytelności) na wspólnym wykresie eliminuje problem automatycznego skalowania;
- Użycie markerów bądź różnych stylów linii eliminuje ryzyko nieczytelności graficznej wskutek wydruku monochromatycznego kolorów.

13/12