What Is Claimed Is:

1	1. A method for using a computer system to solve a global
2	optimization problem specified by a function f and a set of equality constraints,
3	the method comprising:
4	receiving a representation of the function f and the set of equality
5	constraints $q_i(\mathbf{x}) = 0$ $(i=1,,r)$ at the computer system, wherein f is a scalar
6	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
7	storing the representation in a memory within the computer system;
8	performing an interval equality constrained global optimization process to
9	compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
10	subject to the set of equality constraints;
11	wherein performing the interval equality constrained global optimization
12	process involves,
13	applying term consistency to a set of relations associated
14	with the interval equality constrained global optimization problem
15	over a subbox X , and excluding any portion of the subbox X that
16	violates any of these relations,
17	applying box consistency to the set of relations associated
18	with the interval equality constrained global optimization problem
19	over the subbox X , and excluding any portion of the subbox X that
20	violates any of the relations, and
21	performing an interval Newton step for the interval
22	equality constrained global optimization problem over the subbox
23	X.

4

5

1	2.	The method of claim 1, wherein applying term consistency to the
2	set of relation	ns involves applying term consistency to the set of equality
3	constraints q	$i(\mathbf{x}) = 0$ ($i=1,,r$) over the subbox \mathbf{X} .
1	3.	The method of claim 1, wherein applying box consistency to the
2	set of relation	ns involves applying box consistency to the set of equality constraints
3	$q_i(\mathbf{x}) = 0 \ (i =$	1,, r) over the subbox X .
1	4.	The method of claim 1,
2	wher	ein performing the interval equality constrained global optimization
3	process invo	lves,
4		keeping track of a least upper bound f_bar of the function
5		$f(\mathbf{x})$, and
6		removing from consideration any subbox for which
7		$inf(f(\mathbf{X})) > f_bar;$
8	wher	ein applying term consistency to the set of relations involves applying
9	term consist	ency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .
1	5.	The method of claim 4, wherein applying box consistency to the
2	set of relatio	ons involves applying box consistency to the f_bar inequality
3	$f(\mathbf{x}) \leq f_bar$	over the subbox X.
1	6.	The method of claim 1,
2	wherein per	forming the interval equality constrained global optimization process
3	involves pre	conditioning the set of equality constraints through multiplication by

an approximate inverse matrix ${f B}$ to produce a set of preconditioned equality

constraints; and

6	wherein applying term consistency to the set of relations involves applying
7	term consistency to the set of preconditioned equality constraints over the subbox
8	X.
1	7. The method of claim 6, wherein applying box consistency to the
2	set of relations involves applying box consistency to the set of preconditioned
3	equality constraints over the subbox X.
1	8. The method of claim 1, wherein performing the interval Newton
2	step involves performing the interval Newton step on the John conditions.
1	9. The method of claim 1, wherein prior to performing the interval
2	Newton step on the John conditions, the method further comprises performing a
3	linearization test to determine whether to perform the Newton step on the John
4	conditions.
1	10. The method of claim 1, wherein performing the interval equality
2	constrained global optimization process involves:
3	evaluating a first termination condition;
4	wherein the first termination condition is TRUE if the width of the subbox
5	X is less than a pre-specified value, ε_X , and the width of $f(\mathbf{X})$ is less than a pre-
6	specified value, ε_F ; and
7	if the first termination condition is TRUE, terminating further splitting of
8	the subbox X .
1	11. The method of claim 1, wherein performing the interval Newton
2	step involves:

1	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
2	evaluated as a function of x over the subbox X ; and
3	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
4	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where
5	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of
6	J(x,X).
1	12. A computer-readable storage medium storing instructions that
2	when executed by a computer cause the computer to perform a method for using a
3	computer system to solve a global optimization problem specified by a function f
4	and a set of equality constraints, the method comprising:
5	receiving a representation of the function f and the set of equality
6	constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$) at the computer system, wherein f is a scalar
7	function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
8	storing the representation in a memory within the computer system;
9	performing an interval equality constrained global optimization process to
10	compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$
11	subject to the set of equality constraints;
12	wherein performing the interval equality constrained global optimization
13	process involves,
14	applying term consistency to a set of relations associated
15	with the interval equality constrained global optimization problem
16	over a subbox X , and excluding any portion of the subbox X that
17	violates any of these relations,
18	applying box consistency to the set of relations associated
19	with the interval equality constrained global optimization problem

20	over the subbox X , and excluding any portion of the subbox X that
21	violates any of the relations, and
22	performing an interval Newton step for the interval
23	equality constrained global optimization problem over the subbox
24	X .
1	13. The computer-readable storage medium of claim 12, wherein
2	applying term consistency to the set of relations involves applying term
3	consistency to the set of equality constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$) over the subbox
4	X.
1	14. The computer-readable storage medium of claim 12, wherein
2	applying box consistency to the set of relations involves applying box consistency
3	to the set of equality constraints $q_i(\mathbf{x}) = 0$ $(i=1,,r)$ over the subbox \mathbf{X} .
1	15. The computer-readable storage medium of claim 12,
2	wherein performing the interval equality constrained global optimization
3	process involves,
4	keeping track of a least upper bound f_bar of the function
5	$f(\mathbf{x})$, and
6	removing from consideration any subbox for which
7	$inf(f(\mathbf{X})) > f_bar;$
8	wherein applying term consistency to the set of relations involves applying
9	term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .

3, 1 **7**

1	16. The computer-readable storage medium of claim 15, wherein
2	applying box consistency to the set of relations involves applying box consistency
3	to the f_bar inequality $f(\mathbf{x}) \leq f_bar$ over the subbox \mathbf{X} .
1	17. The computer-readable storage medium of claim 12,
2	wherein performing the interval equality constrained global optimization
3	process involves preconditioning the set of equality constraints through
4	multiplication by an approximate inverse matrix B to produce a set of
5	preconditioned equality constraints; and
6	wherein applying term consistency to the set of relations involves applying
7	term consistency to the set of preconditioned equality constraints over the subbox
8	X.
1	18. The computer-readable storage medium of claim 17, wherein
2	applying box consistency to the set of relations involves applying box consistency
3	to the set of preconditioned equality constraints over the subbox X.
1	19. The computer-readable storage medium of claim 12, wherein
2	performing the interval Newton step involves performing the interval Newton step
3	on the John conditions.
1	20. The computer-readable storage medium of claim 12, wherein prior
2	to performing the interval Newton step on the John conditions, the method further
3	comprises performing a linearization test to determine whether to perform the
4	Newton step on the John conditions.

* 1 1 \$

1	21. The computer-readable storage medium of claim 12, wherein
2	performing the interval equality constrained global optimization process involves:
3	evaluating a first termination condition;
4	wherein the first termination condition is TRUE if the width of the subbox
5	X is less than a pre-specified value, ε_X , and the width of the $f(\mathbf{X})$ is less than a pre-
6	specified value, ε_F ; and
7	if the first termination condition is TRUE, terminating further splitting of
8	the subbox X .
1	22. The computer-readable storage medium of claim 12, wherein
2	performing the interval Newton step involves:
3	computing $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f
4	evaluated as a function of x over the subbox X ; and
5	determining if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where
7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of
8	J(x,X).
1	23. An apparatus that solves a global optimization problem specified
2	by a function f and a set of equality constraints, the apparatus comprising:
3	a receiving mechanism that is configured to receive a representation of the
4	function f and the set of equality constraints $q_i(\mathbf{x}) = 0$ ($i=1,,r$), wherein f is a
5	scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n);$
6	a memory for storing the representation;
7	an interval global optimization mechanism that is configured to perform
8	an interval equality constrained global optimization process to compute

B () #

9	guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$ subject to the
10	set of equality constraints;
11	a term consistency mechanism within the interval global optimization
12	mechanism that is configured to apply term consistency to a set of relations
13	associated with the interval equality constrained global optimization problem over
14	a subbox X, and to exclude any portion of the subbox X that violates the set of
15	relations;
16	a box consistency mechanism within the interval global optimization
17	mechanism that is configured to apply box consistency to the set of relations
18	associated with the interval equality constrained global optimization problem over
19	the subbox X, and to exclude any portion of the subbox X that violates the set of
20	relations; and
21	an interval Newton mechanism within the interval global optimization
22	mechanism that is configured to perform an interval Newton step for the interval
23	equality constrained global optimization problem over the subbox \mathbf{X} .

- The apparatus of claim 23, wherein the term consistency 24. 1 mechanism is configured to apply term consistency to the set of equality 2 constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r) over the subbox \mathbf{X} . 3
- The apparatus of claim 23, wherein the box consistency 25. 1 mechanism is configured to apply box consistency to the set of equality 2 constraints $q_i(\mathbf{x}) = 0$ (i=1,...,r) over the subbox \mathbf{X} . 3
- The apparatus of claim 23, 1 26. wherein the interval global optimization mechanism is configured to, 2

3 1 X #

3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$,
4	and to
5	remove from consideration any subbox for which
6	$inf(f(\mathbf{X})) > f_bar;$
7	wherein the term consistency mechanism is configured to apply term
8	consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .
1	27. The apparatus of claim 26, wherein the box consistency
2	mechanism is configured to apply box consistency to the f_bar inequality
3	$f(\mathbf{x}) \le f_bar$ over the subbox \mathbf{X} .
1	28. The apparatus of claim 23,
2	wherein the interval global optimization mechanism is configured to
3	precondition the set of equality constraints through multiplication by an
4	approximate inverse matrix B to produce a set of preconditioned equality
5	constraints; and
6	wherein the term consistency mechanism is configured to apply term
7	consistency to the set of preconditioned equality constraints over the subbox X.
1	29. The apparatus of claim 28, wherein the box consistency
2	mechanism is configured to apply box consistency to the set of preconditioned
3	equality constraints over the subbox X.
1	30. The apparatus of claim 23, wherein the interval Newton
2	mechanism is configured to perform the interval Newton step on the John
3	conditions.

J(x,X).

8

* . . .

1	31. The apparatus of claim 23, wherein prior to performing the interval
2	Newton step on the John conditions, the interval global optimization mechanism
3	is configured to perform a linearization test to determine whether to perform the
4	Newton step on the John conditions.
1	32. The apparatus of claim 23, wherein the interval global optimization
2	mechanism is configured to:
3	evaluate a first termination condition, wherein the first termination
4	condition is TRUE if the width of the subbox X is less than a pre-specified value,
5	ε_X , and the width of $f(X)$ is less than a pre-specified value, ε_F ; and to
6	terminate further splitting of the subbox X if the first termination
7	condition is TRUE.
1	33. The apparatus of claim 23, wherein the interval Newton
2	mechanism is configured to:
3	compute $J(x,X)$, wherein $J(x,X)$ is the Jacobian of the function f evaluated
4	as a function of x over the subbox X ; and to
5	determine if $J(x,X)$ is regular as a byproduct of solving for the subbox Y
6	that contains values of y that satisfy $M(x,X)(y-x) = r(x)$, where
7	M(x,X) = BJ(x,X), $r(x) = -Bf(x)$, and B is an approximate inverse of the center of