Nonlocal games and the Grothendieck-Tsirelson inequality

Introduction to quantum information theory

Maxi Brandstetter, Felix Kirschner, Arne Heimendahl

University of Cologne

September 21, 2018

Outline

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

• We should know what a state is

- We should know what a state is
 - lacksquare i.e. a psd matrix ho that satisfies $\operatorname{Tr}(
 ho)=1$

- We should know what a state is
 - i.e. a psd matrix ρ that satisfies $\text{Tr}(\rho) = 1$
- We should know what the tensor product does

- We should know what a state is
 - i.e. a psd matrix ρ that satisfies $Tr(\rho) = 1$
- We should know what the tensor product does

We use the Kronecker product
$$A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix}$$

- We should know what a state is
 - i.e. a psd matrix ρ that satisfies $Tr(\rho) = 1$
- We should know what the tensor product does

► We use the Kronecker product
$$A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix}$$

• We should be familiar with the Dirac notation

- We should know what a state is
 - i.e. a psd matrix ρ that satisfies $Tr(\rho) = 1$
- We should know what the tensor product does

We use the Kronecker product
$$A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix}$$

- We should be familiar with the *Dirac notation*
 - $lackbox{} |\psi
 angle$ is a vector in \mathbb{C}^n and $\langle\psi|$ is its conjugate transpose

- We should know what a state is
 - i.e. a psd matrix ρ that satisfies $\operatorname{Tr}(\rho)=1$
- We should know what the tensor product does

► We use the Kronecker product
$$A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix}$$

- We should be familiar with the Dirac notation
 - $lackbox{} |\psi
 angle$ is a vector in \mathbb{C}^n and $\langle\psi|$ is its conjugate transpose

Quantum systems

- A quantum system is a portion of the whole universe. For example a set electrons.
- A quantum system X is associated with a copy of \mathbb{C}^k
- It may consist of subsystems X_1, \ldots, X_N each of which is associated with a copy of \mathbb{C}^{n_i} . In this case $k = n_1 \ldots n_N$

Physical quantities can be measured. But what is a measurement mathematically?

Physical quantities can be measured. But what is a measurement mathematically?

ullet A measurement can be performed on a system X that is in state ho

Physical quantities can be measured. But what is a measurement mathematically?

- ullet A measurement can be performed on a system X that is in state ho
- We want the set of outcomes to be finite. Let \mathcal{A} be this set

Physical quantities can be measured. But what is a measurement mathematically?

- ullet A measurement can be performed on a system X that is in state ho
- ullet We want the set of outcomes to be finite. Let $\mathcal A$ be this set
- ullet The outcome of a measurement is supposed to be a random variable χ that takes values in ${\mathcal A}$ with a certain probability

Physical quantities can be measured. But what is a measurement mathematically?

- ullet A measurement can be performed on a system X that is in state ho
- ullet We want the set of outcomes to be finite. Let $\mathcal A$ be this set
- \bullet The outcome of a measurement is supposed to be a random variable χ that takes values in $\mathcal A$ with a certain probability
- This can be achieved:

Definition

Measurement

- We define a measurement by a set of psd matrices $\{F^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ that sum up to the identity matrix, i.e. $\sum_{a\in\mathcal{A}}F^a=I$
- The outcome of a measurement is a random variable χ with probability distribution: $\mathbb{P}[\chi=a]=\mathrm{Tr}(\rho F^a)$
- A projective measurement is defined by psd matrices that satisfy $F^aF^b=\delta_{ab}F^a\ \forall a,b\in\mathcal{A}$

 \bullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers

- ullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers
- $\mathbb{E}[\chi] \stackrel{def}{=} \sum_{a \in \mathcal{A}} a \mathrm{Tr}(\rho F^a) \stackrel{lin}{=} \mathrm{Tr}(\rho(\sum_{a \in \mathcal{A}} a F^a))$

- ullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers
- $\mathbb{E}[\chi] \stackrel{def}{=} \sum_{a \in \mathcal{A}} a \mathrm{Tr}(\rho F^a) \stackrel{lin}{=} \mathrm{Tr}(\rho(\sum_{a \in \mathcal{A}} a F^a))$
- $\sum_{a \in \mathcal{A}} aF^a$ is called observable

- ullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers
- $\mathbb{E}[\chi] \stackrel{\text{def}}{=} \sum_{a \in \mathcal{A}} a \operatorname{Tr}(\rho F^a) \stackrel{\text{lin}}{=} \operatorname{Tr}(\rho(\sum_{a \in \mathcal{A}} a F^a))$
- $\sum_{a \in \mathcal{A}} aF^a$ is called observable
- A simple case we will use later are $\{-1,1\}$ -valued observables

- ullet To define an expected value we define outcomes in ${\mathcal A}$ as real numbers
- $\mathbb{E}[\chi] \stackrel{\text{def}}{=} \sum_{a \in \mathcal{A}} a \operatorname{Tr}(\rho F^a) \stackrel{\text{lin}}{=} \operatorname{Tr}(\rho(\sum_{a \in \mathcal{A}} a F^a))$
- $\sum_{a \in \mathcal{A}} aF^a$ is called observable
- ullet A simple case we will use later are $\{-1,1\}$ -valued observables
- if we consider projective measurements we have

$$(F^{+} - F^{-})^{2} = \underbrace{F^{+^{2}}}_{=F^{+}} - \underbrace{F^{+}F^{-}}_{\delta_{+-}=0} + \underbrace{F^{-^{2}}}_{F^{-}} = F^{+} + F^{-} = I$$

ullet i.e. a $\{-1,1\}$ -valued observable is both unitary an Hermitian

• Consider a system X consisting of subsystems $X_1, \ldots X_N$ which we distribute among N parties, which may be located anywhere in the universe

- Consider a system X consisting of subsystems $X_1, \ldots X_N$ which we distribute among N parties, which may be located anywhere in the universe
- The parties *share* the state *X* is in

- Consider a system X consisting of subsystems $X_1, \ldots X_N$ which we distribute among N parties, which may be located anywhere in the universe
- The parties share the state X is in
- Every party may perform a measurement on their subsystem X_i , i.e. there are N sets of psd matrices $\{F^{a_1}\}_{a_1 \in \mathcal{A}_1} \in \mathbb{C}^{n_1 \times n_1}, \dots, \{F^{a_N}\}_{a_N \in \mathcal{A}_N} \in \mathbb{C}^{n_N \times n_N}$

- Consider a system X consisting of subsystems $X_1, \ldots X_N$ which we distribute among N parties, which may be located anywhere in the universe
- The parties share the state X is in
- Every party may perform a measurement on their subsystem X_i , i.e. there are N sets of psd matrices $\{F^{a_1}\}_{a_1\in\mathcal{A}_1}\in\mathbb{C}^{n_1\times n_1},\ldots,\{F^{a_N}\}_{a_N\in\mathcal{A}_N}\in\mathbb{C}^{n_N\times n_N}$

The joint probability distribution of the N measurement outcomes χ_1,\ldots,χ_N is

$$\mathbb{P}\left[\chi_1=a_1,\chi_2=a_2,\ldots,\chi_N=a_N\right]=\operatorname{Tr}(\rho F_1^{a_1}\otimes\cdots\otimes F_N^{a_N})$$

• We will only consider pure states, i.e. states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$

- We will only consider pure states, i.e. states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$
- We do that because mixed states do not give an advantage over pure states

- We will only consider pure states, i.e. states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$
- We do that because mixed states do not give an advantage over pure states
- A state is called product state if it can be written as $|\psi\rangle=|\psi_1\rangle|\psi_2\rangle\dots|\psi_N\rangle$

- We will only consider pure states, i.e. states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$
- We do that because mixed states do not give an advantage over pure states
- A state is called product state if it can be written as $|\psi\rangle=|\psi_1\rangle|\psi_2\rangle\dots|\psi_N\rangle$
- \bullet When a vector $|\psi\rangle$ is referred to as a state we mean the matrix $|\psi\rangle\langle\psi|$

- We will only consider pure states, i.e. states that they have rank 1 and therefore can be written as $\rho=|\psi\rangle\langle\psi|$
- We do that because mixed states do not give an advantage over pure states
- A state is called product state if it can be written as $|\psi\rangle=|\psi_1\rangle|\psi_2\rangle\dots|\psi_N\rangle$
- \bullet When a vector $|\psi\rangle$ is referred to as a state we mean the matrix $|\psi\rangle\langle\psi|$
- A state that is not a product state is called entangled

• Let $|\psi\rangle = |\psi_A\rangle |\psi_B\rangle$ be a system and give $|\psi_A\rangle$ to Alice and $|\psi_B\rangle$ to Bob

- Let $|\psi\rangle = |\psi_A\rangle |\psi_B\rangle$ be a system and give $|\psi_A\rangle$ to Alice and $|\psi_B\rangle$ to Bob
- Let them perform measurements $\{G^b\}_{b\in\mathcal{B}}$ and $\{F^a\}_{a\in\mathcal{A}}$ on their respective quantum systems

- Let $|\psi\rangle = |\psi_A\rangle |\psi_B\rangle$ be a system and give $|\psi_A\rangle$ to Alice and $|\psi_B\rangle$ to Bob
- Let them perform measurements $\{G^b\}_{b\in\mathcal{B}}$ and $\{F^a\}_{a\in\mathcal{A}}$ on their respective quantum systems
- What is the probability of Alice getting measurement outcome $\chi_A=a$ and Bob getting $\chi_B=b$?

- Let $|\psi\rangle = |\psi_A\rangle |\psi_B\rangle$ be a system and give $|\psi_A\rangle$ to Alice and $|\psi_B\rangle$ to Bob
- Let them perform measurements $\{G^b\}_{b\in\mathcal{B}}$ and $\{F^a\}_{a\in\mathcal{A}}$ on their respective quantum systems
- What is the probability of Alice getting measurement outcome $\chi_A=a$ and Bob getting $\chi_B=b$?

Calculation

$$Tr(|\psi\rangle\langle\psi|F^{a}\otimes G^{b}) = \langle\psi|F^{a}\otimes G^{b}|\psi\rangle$$

$$= (\langle\psi_{A}|\otimes\langle\psi_{B}|)(F^{a}\otimes G^{b})(|\psi_{A}\rangle\otimes|\psi_{B}\rangle)$$

$$= ((\langle\psi_{A}|F^{a})\otimes(\langle\psi_{B}|G^{b}))(|\psi_{A}\rangle\otimes|\psi_{B}\rangle)$$

$$= \langle\psi_{A}|F^{a}|\psi_{A}\rangle\otimes\langle\psi_{B}|G^{b}|\psi_{B}\rangle$$

$$= \langle\psi_{A}|F^{a}|\psi_{A}\rangle\langle\psi_{B}|G^{b}|\psi_{B}\rangle$$

This is equal to the product of the probabilities of Alice measuring a and Bob measuring b, i.e. the outcomes do not correlate.

• Three participants: Alice, Bob and a referee

- Three participants: Alice, Bob and a referee
- Referee sends a question s to Alice and a question t to Bob

- Three participants: Alice, Bob and a referee
- Referee sends a question s to Alice and a question t to Bob
- Alice and Bob are assumed to be located anywhere in the universe respectively

Nonlocal games

- Three participants: Alice, Bob and a referee
- Referee sends a question s to Alice and a question t to Bob
- Alice and Bob are assumed to be located anywhere in the universe respectively
- Alice and Bob must not communicate once the game has started

Nonlocal games

- Three participants: Alice, Bob and a referee
- Referee sends a question s to Alice and a question t to Bob
- Alice and Bob are assumed to be located anywhere in the universe respectively
- Alice and Bob must not communicate once the game has started
- Alice sends answer a and Bob sends answer b back to the referee, who then
 decides whether both win or both lose

• Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \to [0,1]$

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \to [0,1]$
- ullet The referee sends with probability $\pi(s,t)$ s to Alice and t to Bob

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \to [0,1]$
- The referee sends with probability $\pi(s,t)$ s to Alice and t to Bob
- ullet They answer with an element $a\in\mathcal{A}$ and $b\in\mathcal{B}$ respectively

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \to [0,1]$
- The referee sends with probability $\pi(s,t)$ s to Alice and t to Bob
- ullet They answer with an element $a\in\mathcal{A}$ and $b\in\mathcal{B}$ respectively
- $\bullet \ \mathsf{A} \ \mathsf{map} \ V: \mathcal{S} \times \mathcal{T} \times \mathcal{A} \times \mathcal{B} \to \{0,1\}$

- Four finite sets $\mathcal{A}, \mathcal{B}, \mathcal{S}, \mathcal{T}$
- probability distribution π over $\mathcal{S} \times \mathcal{T}$ $\pi: \mathcal{S} \times \mathcal{T} \rightarrow [0,1]$
- The referee sends with probability $\pi(s,t)$ s to Alice and t to Bob
- They answer with an element $a \in \mathcal{A}$ and $b \in \mathcal{B}$ respectively
- A map $V: \mathcal{S} \times \mathcal{T} \times \mathcal{A} \times \mathcal{B} \rightarrow \{0,1\}$
- They win if V(s, t, a, b) = 1 and lose otherwise

 \bullet All players know π and V and the information they received but not what the other players received

- \bullet All players know π and V and the information they received but not what the other players received
- They are allowed to agree on a strategy beforehand but must not communicate once the game started

- \bullet All players know π and V and the information they received but not what the other players received
- They are allowed to agree on a strategy beforehand but must not communicate once the game started
- ullet A deterministic strategy is a map $a:\mathcal{S} o \mathcal{A}$ for Alice and $b:\mathcal{T} o \mathcal{B}$ for Bob

- \bullet All players know π and V and the information they received but not what the other players received
- They are allowed to agree on a strategy beforehand but must not communicate once the game started
- ullet A deterministic strategy is a map $a:\mathcal{S} o \mathcal{A}$ for Alice and $b:\mathcal{T} o \mathcal{B}$ for Bob
- The winning probability then is:

$$\mathbb{E}_{(s,t)\sim\pi}\left[V(a(s),b(t),s,t)\right]$$

• Suppose Alice and Bob both have a subsystem X_A, X_B of a quantum system X which is in state ρ , i.e. Alice and Bob share state ρ

- Suppose Alice and Bob both have a subsystem X_A, X_B of a quantum system X which is in state ρ , i.e. Alice and Bob share state ρ
- If the state is entangled measurements might give correlated measurement outcomes

- Suppose Alice and Bob both have a subsystem X_A, X_B of a quantum system X which is in state ρ , i.e. Alice and Bob share state ρ
- If the state is entangled measurements might give correlated measurement outcomes
- Alice and Bob may gain information by performing measurements

- Suppose Alice and Bob both have a subsystem X_A, X_B of a quantum system X which is in state ρ , i.e. Alice and Bob share state ρ
- If the state is entangled measurements might give correlated measurement outcomes
- Alice and Bob may gain information by performing measurements
- Answering according to measurement outcomes could increase winning probability

• Given a quantum system X consisting of two n-dimensional subsystems X_A, X_B in some entangled state ρ

- Given a quantum system X consisting of two n-dimensional subsystems X_A, X_B in some entangled state ρ
- Alice performs a measurement $\{F_s^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ on her subsystem X_A and Bob performs a measurement $\{G_t^b\}_{b\in\mathcal{B}}\subseteq\mathbb{C}^{n\times n}$ on his subsystem X_B

- Given a quantum system X consisting of two n-dimensional subsystems X_A, X_B in some entangled state ρ
- Alice performs a measurement $\{F_s^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ on her subsystem X_A and Bob performs a measurement $\{G_t^b\}_{b\in\mathcal{B}}\subseteq\mathbb{C}^{n\times n}$ on his subsystem X_B
- They send their measurement outcome as their answer to the referee

- Given a quantum system X consisting of two n-dimensional subsystems X_A, X_B in some entangled state ρ
- Alice performs a measurement $\{F_s^a\}_{a\in\mathcal{A}}\subseteq\mathbb{C}^{n\times n}$ on her subsystem X_A and Bob performs a measurement $\{G_t^b\}_{b\in\mathcal{B}}\subseteq\mathbb{C}^{n\times n}$ on his subsystem X_B
- They send their measurement outcome as their answer to the referee
- Their winning probability is:

$$\mathbb{E}_{(s,t)\sim\pi}\left[\sum_{a\in\mathcal{A}}\sum_{b\in\mathscr{B}}\operatorname{\mathsf{Tr}}(
ho \mathsf{\mathit{F}}^{a}_{s}\otimes \mathsf{\mathit{G}}^{b}_{t})V(a,b,s,t)
ight]$$

Two player XOR games

 \bullet Let the sets $\mathcal A$ and $\mathcal B$ be $\{0,1\},$ so Alice and Bob both answer either with 1 or 0

Two player XOR games

- Let the sets $\mathcal A$ and $\mathcal B$ be $\{0,1\}$, so Alice and Bob both answer either with 1 or 0
- The predicate V is defined as $V(a, b, s, t) = [a \oplus b = f(s, t)]$, where $f : \mathcal{S} \times \mathcal{T} \rightarrow \{0, 1\}$

Two player XOR games

- Let the sets $\mathcal A$ and $\mathcal B$ be $\{0,1\}$, so Alice and Bob both answer either with 1 or 0
- The predicate V is defined as $V(a,b,s,t)=[a\oplus b=f(s,t)]$, where $f:\mathcal{S}\times\mathcal{T}\to\{0,1\}$
- A truth table for $a \oplus b$ looks like this

\oplus	0	1
0	0	1
1	1	0

• Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin

- Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal classical strategy and denoted by $\beta(G)$

- Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal classical strategy and denoted by $\beta(G)$
- The bias $\beta^*(G)$ of entangled strategies is calculated the same way

- Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal classical strategy and denoted by $\beta(G)$
- The bias $\beta^*(G)$ of entangled strategies is calculated the same way
- ullet It is twice the amount by which the maximal winning probability exceeds $rac{1}{2}$

- Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal classical strategy and denoted by $\beta(G)$
- The bias $\beta^*(G)$ of entangled strategies is calculated the same way
- \bullet It is twice the amount by which the maximal winning probability exceeds $\frac{1}{2}$
- Since $\frac{1}{2} + \gamma (1 \frac{1}{2} \gamma) = 2\gamma$

- Alice and Bob can always win this game with probability $\frac{1}{2}$ by flipping an unbiased coin
- The classical bias of an XOR game G is defined as the difference of the probabilities of winning and losing for an optimal classical strategy and denoted by $\beta(G)$
- The bias $\beta^*(G)$ of entangled strategies is calculated the same way
- \bullet It is twice the amount by which the maximal winning probability exceeds $\frac{1}{2}$
- Since $\frac{1}{2} + \gamma (1 \frac{1}{2} \gamma) = 2\gamma$
- The violation ratio is defined as $\frac{\beta^*(G)}{\beta(G)}$

Signs and observables

• It is convenient to use the $\{-1,1\}$ -basis instead of the $\{0,1\}$ -basis for boolean valued objects

Signs and observables

- It is convenient to use the $\{-1,1\}$ -basis instead of the $\{0,1\}$ -basis for boolean valued objects
- Let $a: \mathcal{S} \to \{0,1\}$ and $b: \mathcal{T} \to \{0,1\}$ be classical strategies and π the probability distribution the referee uses to pick s,t

Signs and observables

- ullet It is convenient to use the $\{-1,1\}$ -basis instead of the $\{0,1\}$ -basis for boolean valued objects
- Let $a: \mathcal{S} \to \{0,1\}$ and $b: \mathcal{T} \to \{0,1\}$ be classical strategies and π the probability distribution the referee uses to pick s,t
- The bias is given by the probability under π that $a(s) \oplus b(t) = f(s,t)$ minus the probability under π that $a(s) \oplus b(t) \neq f(s,t)$

This means the bias can be written as:

$$\mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{[a(s)\oplus b(t)=f(s,t)]} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)\oplus b(t)+f(s,t)} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)} (-1)^{b(t)} (-1)^{f(s,t)} \right]$$

This means the bias can be written as:

$$\mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{[a(s)\oplus b(t)=f(s,t)]} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)\oplus b(t)+f(s,t)} \right] =$$

$$= \mathbb{E}_{(s,t)\sim\pi} \left[(-1)^{a(s)} (-1)^{b(t)} (-1)^{f(s,t)} \right]$$

Define the sign matrix $\Sigma_{s,t}=(-1)^{f(s,t)}$ and functions $\chi(s)=(-1)^{a(s)}$ and $\psi(t)=(-1)^{b(t)}$.

The expected value becomes

$$\mathbb{E}_{(s,t)\sim\pi}\left[\chi(s)\psi(t)\Sigma_{st}\right]$$

Recap

- ullet The measurement outcomes in an XOR game are $\{0,1\}$
- Alice and Bob have measurements $\{F_s^0, F_s^1\}$ and $\{G_t^0, G_t^1\}$ and share an entangled state
- The probability of Alice and Bob answering with a,b upon receiving s,t respectively is $\langle \psi | F_s^a \otimes G_t^b | \psi \rangle$

Recap

- ullet The measurement outcomes in an XOR game are $\{0,1\}$
- Alice and Bob have measurements $\{F_s^0,F_s^1\}$ and $\{G_t^0,G_t^1\}$ and share an entangled state
- The probability of Alice and Bob answering with a,b upon receiving s,t respectively is $\langle \psi | F_s^a \otimes G_t^b | \psi \rangle$

Lets calculate the expected value of $(-1)^{a \oplus b}$

Recap

- ullet The measurement outcomes in an XOR game are $\{0,1\}$
- Alice and Bob have measurements $\{F_s^0, F_s^1\}$ and $\{G_t^0, G_t^1\}$ and share an entangled state
- The probability of Alice and Bob answering with a,b upon receiving s,t respectively is $\langle \psi | F_s^a \otimes G_t^b | \psi \rangle$

Lets calculate the expected value of $(-1)^{a \oplus b}$

$$(1) \cdot \mathbb{P} [a = b] + (-1) \cdot \mathbb{P} [a \neq b] =$$

$$= \langle \psi | F_s^0 \otimes G_t^0 | \psi \rangle + \langle \psi | F_s^1 \otimes G_t^1 | \psi \rangle$$

$$- \langle \psi | F_s^1 \otimes G_t^0 | \psi \rangle - \langle \psi | F_s^0 \otimes G_t^1 | \psi \rangle$$

$$= \langle \psi | (F_s^0 - F_s^1) \otimes (G_t^0 - G_t^1) | \psi \rangle$$

• Define $\{-1,1\}$ -observables $F_s = F_s^0 - F_s^1$ and $G_t = G_t^0 - G_t^1$ with the property that their square is the identity matrix

- Define $\{-1,1\}$ -observables $F_s = F_s^0 F_s^1$ and $G_t = G_t^0 G_t^1$ with the property that their square is the identity matrix
- Using this strategy the bias becomes

$$\mathbb{E}_{(s,t)\sim\pi}\left[\langle\psi|F_s\otimes G_t|\psi\rangle\Sigma_{s,t}\right]$$

 For any XOR game the bias is defined as the difference of the probabilities of winning and loosing

- Define $\{-1,1\}$ -observables $F_s = F_s^0 F_s^1$ and $G_t = G_t^0 G_t^1$ with the property that their square is the identity matrix
- Using this strategy the bias becomes

$$\mathbb{E}_{(s,t)\sim\pi}\left[\langle\psi|F_s\otimes G_t|\psi\rangle\Sigma_{s,t}\right]$$

- For any XOR game the bias is defined as the difference of the probabilities of winning and loosing
- Which is, if considering the $\{-1,1\}$ basis, the expected value above

- Define $\{-1,1\}$ -observables $F_s = F_s^0 F_s^1$ and $G_t = G_t^0 G_t^1$ with the property that their square is the identity matrix
- Using this strategy the bias becomes

$$\mathbb{E}_{(s,t)\sim\pi}\left[\langle\psi|F_s\otimes G_t|\psi\rangle\Sigma_{s,t}\right]$$

- For any XOR game the bias is defined as the difference of the probabilities of winning and loosing
- Which is, if considering the $\{-1,1\}$ basis, the expected value above
- We are looking to maximize this quantity

Classical strategies

When using classical strategies this is

$$\max\{\mathbb{E}_{(s,t)\sim\pi}\left[\chi(s)\psi(t)\Sigma_{st}\right]:\chi:\mathcal{S}\to\{-1,1\},\\ \psi:\mathcal{T}\to\{-1,1\}\}$$

Entangled strategies

When using entangled strategies the winning probability might increase indefinitely with the dimensions, so we use the $\sup_{n\in\mathbb{N}}$

$$\sup_{n\in\mathbb{N}} \{ \mathbb{E}_{(s,t)\sim\pi} \left[\langle \psi | F_s \otimes G_t | \psi \rangle \Sigma_{st} \right] : |\psi\rangle \in \mathbb{C}^n \otimes \mathbb{C}^n,$$
$$F_s, G_t \in \mathcal{W}(\mathbb{C}^n) \}$$

with W being the set of all $\{-1,1\}$ -observables in $\mathbb{C}^{n\times n}$.

The CHSH game

- The CHSH game (Clauser, Horner, Shimony, Holt) is a two player XOR game with $\mathcal{A}=\mathcal{B}=\mathcal{S}=\mathcal{T}=\{0,1\}$ and π being the uniform distribution
- $f(s,t) = s \wedge t$, i.e. f(1,1) = 1 and f(0,0) = f(0,1) = f(1,0) = 0
- Alice and Bob can win $\frac{3}{4}$ of the games by using deterministic strategies (1,0) or (0,1)

Quantum strategy

- Let Alice and Bob share an EPR state
- Define

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- XY + YX = 0 and $X^2 = Y^2 = I$
- For Alice define the observable for question 0 by $F_0 = X$ and for question 1 by $F_1 = Y$
- Bobs observables are going to be $G_0 = (X Y)/\sqrt{2}$ for question 0 and $G_1 = (X + Y)/\sqrt{2}$ for question 1

$$\mathbb{E}_{(s,t)\sim\pi}\left[\Sigma_{s,t}\langle\psi|F_s\otimes G_t|\psi\rangle\right] = \frac{1}{4}\sum_{s,t=0}^1 (-1)^{s\wedge t}\langle\mathsf{EPR}|F_s\otimes G_t|\mathsf{EPR}\rangle$$

$$\mathbb{E}_{(s,t)\sim\pi}\left[\Sigma_{s,t}\langle\psi|\textit{F}_{s}\otimes\textit{G}_{t}|\psi\rangle\right] = \frac{1}{4}\sum_{s,t=0}^{1}(-1)^{s\wedge t}\langle\mathsf{EPR}|\textit{F}_{s}\otimes\textit{G}_{t}|\mathsf{EPR}\rangle$$

Straight forward calculation shows

$$\langle \mathsf{EPR} | F_s \otimes G_t | \mathsf{EPR} \rangle = egin{cases} rac{1}{\sqrt{2}}, (0,0), (1,0), (0,1) \ -rac{1}{\sqrt{2}}, (1,1) \end{cases}$$

$$\mathbb{E}_{(s,t)\sim\pi}\left[\Sigma_{s,t}\langle\psi|F_s\otimes G_t|\psi\rangle\right] = \frac{1}{4}\sum_{s,t=0}^1 (-1)^{s\wedge t}\langle\mathsf{EPR}|F_s\otimes G_t|\mathsf{EPR}\rangle$$

Straight forward calculation shows

$$\langle \mathsf{EPR}|F_s\otimes G_t|\mathsf{EPR}
angle = egin{cases} rac{1}{\sqrt{2}},(0,0),(1,0),(0,1) \ -rac{1}{\sqrt{2}},(1,1) \end{cases}$$

which is equivalent to

$$\langle \mathsf{EPR} | \mathcal{F}_s \otimes \mathcal{G}_t | \mathsf{EPR} \rangle = \frac{(-1)^{s \wedge t}}{\sqrt{2}}, s, t \in \{0, 1\}$$

$$\mathbb{E}_{(s,t)\sim\pi}\left[\Sigma_{s,t}\langle\psi|F_s\otimes G_t|\psi\rangle\right] = \frac{1}{4}\sum_{s,t=0}^1 (-1)^{s\wedge t}\langle\mathsf{EPR}|F_s\otimes G_t|\mathsf{EPR}\rangle$$

Straight forward calculation shows

$$\langle \mathsf{EPR} | F_s \otimes G_t | \mathsf{EPR} \rangle = egin{cases} rac{1}{\sqrt{2}}, (0,0), (1,0), (0,1) \\ -rac{1}{\sqrt{2}}, (1,1) \end{cases}$$

which is equivalent to

$$\langle \mathsf{EPR} | F_s \otimes G_t | \mathsf{EPR} \rangle = \frac{(-1)^{s \wedge t}}{\sqrt{2}}, s, t \in \{0, 1\}$$

Thus,

$$\frac{1}{4}\left((-1)^{0\wedge 0}\frac{1}{\sqrt{2}}+(-1)^{1\wedge 0}\frac{1}{\sqrt{2}}+(-1)^{0\wedge 1}\frac{1}{\sqrt{2}}+(-1)^{1\wedge 1}(-\frac{1}{\sqrt{2}})\right)=\frac{1}{4}\frac{4}{\sqrt{2}}$$

The bias is $\frac{1}{\sqrt{2}}!$

The bias is $\frac{1}{\sqrt{2}}!$

Note

$$\frac{1}{\sqrt{2}} = \beta^*(G) = \underbrace{\frac{1}{2} + \gamma}_{\text{winning probability}} - (1 - \frac{1}{2} - \gamma) = 2\gamma \Rightarrow \gamma = \frac{1}{2\sqrt{2}}$$

The bias is $\frac{1}{\sqrt{2}}$!

Note

$$\frac{1}{\sqrt{2}} = \beta^*(G) = \underbrace{\frac{1}{2} + \gamma}_{\text{winning probability}} - (1 - \frac{1}{2} - \gamma) = 2\gamma \Rightarrow \gamma = \frac{1}{2\sqrt{2}}$$

The winning probability follows directly

$$\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \approx 0.85 \dots$$

Outline

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

• Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$.

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$.
- Their common answer is the product $\xi_i \eta_i$.

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$.
- Their common answer is the product $\xi_i \eta_i$.
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i , Y_i .

- Deterministic strategies of Alice and Bob correspond to vectors $\xi \in \{-1,1\}^{\mathcal{S}}$, respectively $\eta \in \{-1,1\}^{\mathcal{T}}$.
- Their common answer is the product $\xi_i \eta_i$.
- Instead of deterministic strategies they can also answer according to the probability distribution of random variables X_i, Y_i .
- Their common answer is $\mathbb{E}[X_i Y_j]$.
- This information can be encoded in an $\mathcal{S} \times \mathcal{T}$ matrix. Motivation Quantum

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$.

Let $(X_i)_{1 \leq i \leq m}$ and $(Y_j)_{1 \leq j \leq n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \leq 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$.

Lemma

$$\mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

Let $(X_i)_{1 \le i \le m}$ and $(Y_j)_{1 \le j \le n}$ be families of random variables on a common probability space such that $|X_i|, |Y_j| \le 1$ almost surely. Then $A = (a_{ij})$ is the corresponding classical (or local) correlation matrix if

$$a_{ij} = \mathbb{E}[X_i Y_j]$$

for all $1 \le i \le m, 1 \le j \le n$.

• Set of all local correlation matrices: $LC_{m,n}$.

Lemma

$$LC_{m,n} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$$

 No matter which probabilistic strategy there is a deterministic one which as at least as good as the one one chooses.

• $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$).

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$).
- Suffices to show that $LC_{m,n}$ is convex.

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_i \equiv \eta_i$).
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ii}^{(k)} = \mathbb{E}[X_i^{(k)} Y_i^{(k)}]$ for $k \in \{0, 1\}$

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$).
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$.

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$).
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$.
- Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_i^{(\alpha)}$.

- $\xi \eta^T \in LC_{m,n}$ for all $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$ (Choose $X_i \equiv \xi_i, Y_j \equiv \eta_j$).
- Suffices to show that $LC_{m,n}$ is convex.
- Let $a_{ij}^{(k)} = \mathbb{E}[X_i^{(k)}Y_j^{(k)}]$ for $k \in \{0,1\}$
- Find $(X_i), (Y_j)$ with $|X_i|, |Y_j| \le 1$ almost surely such that for $\beta \in [0, 1]$ $\beta a_{ij}^{(0)} + (1 \beta) a_{ij}^{(1)} = \mathbb{E}[X_i Y_j]$.
- Define a Bernoulli random variable α (which is independent form $X_i^{(k)}, Y_j^{(k)}$) such that $\mathbb{P}(\alpha = 0) = \beta$, $\mathbb{P}(\alpha = 1) = 1 \beta$ and set $X_i = X_i^{(\alpha)}, Y_j = Y_j^{(\alpha)}$.
- Then

$$\mathbb{E}[X_{i}Y_{j}] = \mathbb{E}[X_{i}^{(\alpha)}Y_{j}^{(\alpha)}\mathbb{1}_{\{\alpha=0\}}] + \mathbb{E}[X_{i}^{(\alpha)}Y_{j}^{(\alpha)}\mathbb{1}_{\{\alpha=1\}}]$$

$$= \mathbb{E}[X_{i}^{(0)}Y_{j}^{(0)}]\mathbb{P}(\alpha=0) + \mathbb{E}[X_{i}^{(1)}Y_{j}^{(1)}]\mathbb{P}(\alpha=1)$$

$$= \beta a_{ij}^{(0)} + (1-\beta)a_{ij}^{(1)}.$$

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

• Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $.(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $.(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $.(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- ullet Hypercube description by its vertices: $[-1,1]^d=\operatorname{conv}\{\xi\,|\,\xi\in\{-1,1\}^d\}$.

$\mathsf{LC}_{m,n} \subset \mathsf{conv}\{\xi\eta^T \,|\, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$

- Let $a_{ij} = \mathbb{E}[X_i Y_j]$ for \mathbb{R} -valued random variables $.(X_i), (Y_j)$ defined on a common probability space Ω with $|X_i|, |Y_i| \leq 1$ almost surely.
- Set $X = (X_1, ..., X_m)$ and $Y = (Y_1, ..., Y_n)$, then $X \in [-1, 1]^m$, $Y \in [-1, 1]^n$ almost surely.
- \bullet Hypercube description by its vertices: $[-1,1]^d=\operatorname{conv}\{\xi\,|\,\xi\in\{-1,1\}^d\}$.
- ullet Define random variables $\lambda_{\xi}^{(X)}:\Omega^m o [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$.

ullet Define random variables $\lambda_{\xi}^{(X)}:\Omega^m
ightarrow [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$.

 \bullet Using the same decomposition for Y we obtain

$$a_{ij} = \mathbb{E}[X_i Y_j] = \mathbb{E}\Big[\Big(\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)} \xi_i\Big) \Big(\sum_{\eta \in \{-1,1\}^n} \lambda_{\eta}^{(Y)} \eta_j\Big)\Big]$$
$$= \sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\Big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\Big] \xi_i \eta_j.$$

ullet Define random variables $\lambda_{\xi}^{(X)}:\Omega^m
ightarrow [0,1]$ such that

$$X(\omega) = \sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega)\xi$$

almost surely and $\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)}(\omega) = 1$.

ullet Using the same decomposition for Y we obtain

$$a_{ij} = \mathbb{E}[X_i Y_j] = \mathbb{E}\Big[\Big(\sum_{\xi \in \{-1,1\}^m} \lambda_{\xi}^{(X)} \xi_i\Big) \Big(\sum_{\eta \in \{-1,1\}^n} \lambda_{\eta}^{(Y)} \eta_j\Big)\Big]$$
$$= \sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\Big[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\Big] \xi_i \eta_j.$$

• Due to $\sum_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \mathbb{E}\left[\lambda_{\xi}^{(X)} \lambda_{\eta}^{(Y)}\right] = 1$ the matrix (a_{ij}) is a convex combination of $\xi \eta^T$, $\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n$.

Quantum correlation matrices

• Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$.

Motivation Locality

Quantum correlation matrices

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$.
- They perform measurements $\{F_i^\xi\}_{\xi=\pm 1}$, respectively $\{G_j^\eta\}_{\eta=\pm 1}$.

Motivation Locality

Quantum correlation matrices

- Alice and Bob share a common state ρ and get inputs $i \in \mathcal{S}, j \in \mathcal{T}$.
- They perform measurements $\{F_i^\xi\}_{\xi=\pm 1}$, respectively $\{G_j^\eta\}_{\eta=\pm 1}$.
- The probability that their response is (ξ, η) for inputs (i, j) is given by $a_{ij} = \text{Tr}(\rho F_i^{\xi} \otimes G_i^{\eta}).$
- Again we can encode this information in a matrix.

Motivation Locality

Definition

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$ such that

$$a_{ij}=\operatorname{Tr}(\rho X_i\otimes Y_j).$$

Definition

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$ such that

$$a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j).$$

• Set of all quantum correlation matrices denoted by $QC_{m,n}$.

Definition

Let $(X_i)_{1\leq i\leq m}$ and $(Y_j)_{1\leq j\leq n}$ be self-adjoint operators on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} for some positive integers d_1,d_2 , satisfying $\|X_i\|_{\infty},\|Y_j\|_{\infty}\leq 1$. $A=(a_{ij})$ is called quantum correlation matrix if there exists a state ρ on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}$ such that

$$a_{ij}=\operatorname{Tr}(\rho X_i\otimes Y_j).$$

• Set of all quantum correlation matrices denoted by $QC_{m,n}$.

Lemma

$$\mathsf{QC}_{m,n} = \{ (\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$$

$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$

• $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}$, $\|Y_i\|_{\infty} \leq 1$.

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$.
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on \mathcal{H} by $\beta: B^{(sa)}(\mathcal{H}) \times B^{(sa)}(\mathcal{H}) \to \mathbb{R}$ where $\beta(S,T) = \text{Re}(\text{Tr } \rho ST)$.

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$.
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on $\mathcal H$ by $\beta: B^{(sa)}(\mathcal H) \times B^{(sa)}(\mathcal H) \to \mathbb R$ where $\beta(S,T) = \operatorname{Re}(\operatorname{Tr} \rho ST)$.
- Obtain an inner product vector space $U:=B^{sa}(\mathcal{H})/\ker\beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

$\mathsf{QC}_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- $a_{ij} = \operatorname{Tr}(\rho X_i \otimes Y_j)$, state ρ on a Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ and Hermitian operators $(X_i)_{1 \leq i \leq m}$, $(Y_j)_{1 \leq i \leq n}$ on \mathbb{C}^{d_1} , respectively \mathbb{C}^{d_2} satisfying $\|X_i\|_{\infty}, \|Y_j\|_{\infty} \leq 1$.
- Define a positive semidefinite symmetric bilinear form on the space of Hermitian operators on $\mathcal H$ by $\beta: B^{(sa)}(\mathcal H) \times B^{(sa)}(\mathcal H) \to \mathbb R$ where $\beta(S,T) = \operatorname{Re}(\operatorname{Tr} \rho ST)$.
- Obtain an inner product vector space $U:=B^{sa}(\mathcal{H})/\ker\beta$ equipped with the inner product

$$\tilde{\beta}([S],[T]) = \beta(S,T).$$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \mathsf{ReTr}(\rho X_i \otimes Y_j) = a_{ij}.$$

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Identify $X_i \otimes I$, $I \otimes Y_j$ with vectors x_i, y_j in U, then

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \mathsf{ReTr}(\rho X_i \otimes Y_j) = a_{ij}.$$

• $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by starting with a pure state $\rho = |\psi\rangle \langle \psi|$ and using a Schmidt-decomposition and $||X_i||_{\infty}, ||Y_i||_{\infty} \leq 1$).

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \mathsf{ReTr}(\rho X_i \otimes Y_j) = a_{ij}.$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by starting with a pure state $\rho = |\psi\rangle \langle \psi|$ and using a *Schmidt-decomposition* and $||X_i||_{\infty}, ||Y_i||_{\infty} \leq 1$).
- Project the y_i 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$).

$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \operatorname{ReTr}(\rho X_i \otimes Y_j) = a_{ij}.$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by starting with a pure state $\rho = |\psi\rangle \langle \psi|$ and using a *Schmidt-decomposition* and $||X_i||_{\infty}, ||Y_i||_{\infty} \leq 1$).
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$).
- If $\pi(y_j)$ is the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$.

$$QC_{m,n} \subset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

$$\tilde{\beta}(x_i, y_j) = \beta(X_i \otimes I, I \otimes Y_j) = \operatorname{ReTr}(\rho X_i \otimes Y_j) = a_{ij}.$$

- $\beta(X \otimes I, X \otimes I), \beta(I \otimes Y, I \otimes Y) \leq 1$ (this can be shown by starting with a pure state $\rho = |\psi\rangle \langle \psi|$ and using a *Schmidt-decomposition* and $||X_i||_{\infty}, ||Y_i||_{\infty} \leq 1$).
- Project the y_j 's orthogonally onto span $\{x_1,...,x_m\}$ (wlog $m \le n$).
- If $\pi(y_j)$ is the projection of y_j then $\tilde{\beta}(x_i, \pi(y_j)) = \tilde{\beta}(x_i, y_j)$.
- The vectors still have not the right dimension but again, we can project them onto vectors in \mathbb{R}^m .

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

we will use the following:

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$$

we will use the following:

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every element is the multiple of a unitary matrix.

In order to show

$$\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$$

we will use the following:

Proposition

For all $n \ge 1$ there is a subspace of the $2^n \times 2^n$ Hermitian matrices where every element is the multiple of a unitary matrix.

• The proof is based on n—fold tensor products of the Pauli matrices which are the three matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$\bullet \ \ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Proof.

• Define $U_i = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)}$, $U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}$ for $i = 1, \dots n$.

$$\bullet \ \ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Proof.

- Define $U_i = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)}$, $U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}$ for $i = 1, \dots n$.
- U_i 's are anti-commuting traceless Hermitian unitaries, i.e. $U_iU_j=-U_jU_i$ for $i\neq j$ and $U_i^2=I$.

$$\bullet \ \ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Proof.

- Define $U_i = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)}$, $U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}$ for $i = 1, \dots n$.
- U_i 's are anti-commuting traceless Hermitian unitaries, i.e. $U_iU_j=-U_jU_i$ for $i\neq j$ and $U_i^2=I$.
- For $X = \sum_{i=1}^{2n} \xi_i U_i$ we can calculate

$$XX^* = XX = \sum_{i=1}^{2n} \xi_i^2 I + \sum_{1 \le i \ne j \le 2n} \xi_i \xi_j U_i U_j$$

$$= \sum_{i=1}^{2n} \xi_i^2 I + \sum_{1 \le i < j \le 2n} \xi_i \xi_j U_i U_j - \sum_{1 \le i < j \le 2n} \xi_i \xi_j U_i U_j$$

$$= \sum_{i=1}^{2n} \xi_i^2 I = |\xi|^2 I.$$

Set

$$U_{i} = I^{\otimes (i-1)} \otimes X \otimes Y^{\otimes (n-i)},$$

$$U_{n+i} = I^{\otimes (i-1)} \otimes Z \otimes Y^{\otimes (n-i)}, i = 1, \dots n.$$

• Moreover, taking two linear combinations $X = \sum_{i=1}^{2n} \xi_i U_i$, $Y = \sum_{i=1}^{2n} = \eta_i U_i$ and consider the trace of the product we get

$$\operatorname{Tr}(XY) = \sum_{i=1}^{2n} \xi_i \eta_i \operatorname{Tr} I + \sum_{1 \le i \ne j \le 2n} \xi_i \eta_j \operatorname{Tr}(U_i U_j)$$
$$= \sum_{i=1}^{2n} \xi_i \eta_j 2^n = 2^n \cdot \langle \xi, \eta \rangle,$$

where we used that the product U_iU_i is traceless for $i \neq j$.

 $\mathsf{QC}_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1\}$

• Let $(x_i)_{1 \le i \le m}$, $(y_j)_{1 \le j \le n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \le 1$.

$$\mathsf{QC}_{m,n} \supset \{ (\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$.

$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$.
- Tr $(X_iY_j^T) = d \cdot \langle x_i, y_j \rangle$ and $\|X_i\|_{\infty} \leq 1$ since $X_iX_i^* = |x_i|^2 I$ and $|x_i|^2 \leq 1$ (the same holds for Y_j)

$\mathsf{QC}_{m,n} \supset \{ (\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1 \}$

- Let $(x_i)_{1 \leq i \leq m}$, $(y_j)_{1 \leq j \leq n} \subset \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j| \leq 1$.
- Let $X_i = \sum_{k=1}^{\min\{m,n\}} x_i(k) U_i$ and $Y_j^T = \sum_{k=1}^{\min\{m,n\}} y_j(k) U_k$ where the U_i 's are $d \times d$ matrices with $d = 2^{\lceil \min\{m,n\}/2 \rceil}$.
- Tr $(X_iY_j^T) = d \cdot \langle x_i, y_j \rangle$ and $\|X_i\|_{\infty} \leq 1$ since $X_iX_i^* = |x_i|^2 I$ and $|x_i|^2 \leq 1$ (the same holds for Y_j)
- Let $|\psi\rangle=\frac{1}{\sqrt{d}}\sum_{i=1}^d|i\rangle\otimes|i\rangle$ and $\rho=|\psi\rangle\langle\psi|$. Note that we can write ρ as

$$\rho = |\psi\rangle\langle\psi| = \frac{1}{d} \sum_{1 \le k, l \le d} |k\rangle \otimes |k\rangle\langle l| \otimes \langle l| = \frac{1}{d} \sum_{1 \le k, l \le d} |k\rangle\langle l| \otimes |k\rangle\langle l|.$$

$$QC_{m,n} \supset \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} \mid x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}.$$

• Let $|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$ and $\rho = |\psi\rangle\langle\psi|$. Note that we can write ρ as

$$\rho = \left| \psi \right\rangle \left\langle \psi \right| = \frac{1}{d} \sum_{1 \leq k,l \leq d} \left| \mathit{kk} \right\rangle \left\langle \mathit{II} \right| = \frac{1}{d} \sum_{1 \leq k,l \leq d} \left| \mathit{k} \right\rangle \left\langle \mathit{I} \right| \otimes \left| \mathit{k} \right\rangle \left\langle \mathit{I} \right|.$$

Then

$$\operatorname{Tr}(\rho X_{i} \otimes Y_{j}) = \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i} \otimes |k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \sum_{1 \leq k, l \leq d} \operatorname{Tr}(|k\rangle \langle l| X_{i}) \operatorname{Tr}(|k\rangle \langle l| Y_{j})$$

$$= \frac{1}{d} \operatorname{Tr} X_{i} Y_{j}^{T} = \langle x_{i}, y_{j} \rangle.$$

• $QC_{m,n}$ is convex.

- $QC_{m,n}$ is convex.
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_i|, |\bar{x}_i|, |\bar{y}_i| \leq 1$.

- $QC_{m,n}$ is convex.
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- Define vectors $\tilde{x}_i := \begin{pmatrix} \sqrt{\lambda} x_i \\ \sqrt{1 \lambda} \bar{x}_i \end{pmatrix}$, $\tilde{y}_j := \begin{pmatrix} \sqrt{\lambda} y_j \\ \sqrt{1 \lambda} \bar{y}_j \end{pmatrix}$ for $\lambda \in [0, 1]$.

- $QC_{m,n}$ is convex.
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- Define vectors $\tilde{x}_i := \begin{pmatrix} \sqrt{\lambda} x_i \\ \sqrt{1 \lambda} \bar{x}_i \end{pmatrix}$, $\tilde{y}_j := \begin{pmatrix} \sqrt{\lambda} y_j \\ \sqrt{1 \lambda} \bar{y}_j \end{pmatrix}$ for $\lambda \in [0, 1]$.
- It holds $|\tilde{x}_i| \leq \lambda \left| {x_i \choose 0} \right| + (1 \lambda) \left| {0 \choose \bar{x}_i} \right| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda) \langle \bar{x}_i, \bar{y}_j \rangle.$

- $QC_{m,n}$ is convex.
- Let $a_{ij} = \langle x_i, y_j \rangle$ and $\bar{a}_{ij} = \langle \bar{x}_i, \bar{y}_j \rangle$ for $x_i, y_j, \bar{x}_i, \bar{y}_j \in \mathbb{R}^{\min\{m,n\}}$ such that $|x_i|, |y_j|, |\bar{x}_i|, |\bar{y}_j| \leq 1$.
- Define vectors $\tilde{x}_i := \left(\frac{\sqrt{\lambda}x_i}{\sqrt{1-\lambda}\bar{x}_i}\right), \tilde{y}_j := \left(\frac{\sqrt{\lambda}y_j}{\sqrt{1-\lambda}\bar{y}_j}\right)$ for $\lambda \in [0,1]$.
- It holds $|\tilde{x}_i| \leq \lambda \left| {x_i \choose 0} \right| + (1 \lambda) \left| {0 \choose \bar{x}_i} \right| \leq 1$ and $\langle \tilde{x}_i, \tilde{y}_j \rangle = \lambda \langle x_i, y_j \rangle + (1 \lambda) \langle \bar{x}_i, \bar{y}_j \rangle$.
- Right dimension is obtained by projecting $(\tilde{x}_i)_{1 \leq i \leq m}$, $(\tilde{y}_j)_{1 \leq i \leq n}$ on span $\{x_1, \ldots, x_m\}$ or span $\{y_1, \ldots, y_n\}$, as in the proof before.

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$
- $\bullet \ \ \mathsf{QC}_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \leq i \leq m, 1 \leq j \leq n} \, | \, x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \leq 1, |y_j| \leq 1 \}$
- $LC_{m,n} \subset QC_{m,n}$

The relations between quantum correlation and local correlation matrices

- $\bullet \ \, \mathsf{LC}_{m,n} = \mathsf{conv}\{\xi \eta^T \, | \, \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n \}$
- $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$
- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |1\rangle$ and $y_j = \eta_j |1\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$).

The relations between quantum correlation and local correlation matrices

- $LC_{m,n} = conv\{\xi \eta^T | \xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n\}$
- $QC_{m,n} = \{(\langle x_i, y_j \rangle)_{1 \le i \le m, 1 \le j \le n} | x_i, y_j \in \mathbb{R}^{\min\{m,n\}}, |x_i| \le 1, |y_j| \le 1\}$
- $LC_{m,n} \subset QC_{m,n}$
- Set $x_i = \xi_i |1\rangle$ and $y_j = \eta_j |1\rangle$ it immediately follows $\xi_i \eta_j = \langle x_i, y_j \rangle$. Hence, $\xi \eta^T \in QC_{m,n}$ (rest follows with the convexity of $QC_{m,n}$).
- Inclusion is strict in general.

• Let us consider the case n = m = 2.

- Let us consider the case n = m = 2.
- $LC_{2,2} = conv\{\xi \eta^T \mid \xi \in \{-1,1\}^2, \ \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

- Let us consider the case n=m=2.
- $LC_{2,2} = conv\{\xi \eta^T | \xi \in \{-1,1\}^2, \eta \in \{-1,1\}^2\}$
- It holds

$$\mathsf{LC}_{2,2} = \mathsf{conv}\{\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \, \pm \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}\}.$$

W can also write it as in intersections of halfspaces:

$$\mathsf{LC}_{2,2} = \{ A \in \mathbb{R}^{2 \times 2} \mid -1 \le \mathsf{Tr} \, AM \le 1 \text{ for all } M \in \mathcal{H} \}, \tag{1}$$

where
$$\mathcal{H} = \{\frac{1}{2}\sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}), \sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \mid \sigma \in \{\mathsf{id}, (1\ 2), (1\ 3), (1\ 4)\}\}.$$

 We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

- We will show that the inclusion is strict by showing that both sets yield different values if we maximize in a certain direction
- Let $M = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
- $\begin{array}{l} \bullet \ \ \mathsf{LC_{2,2}} = \{A \in \mathbb{R}^{2 \times 2} \, | \, -1 \leq \mathsf{Tr} \, AM \leq 1 \ \mathsf{for \ all} \ M \in \mathcal{H}\}, \, \mathsf{where} \\ \mathcal{H} = \{ \frac{1}{2} \sigma(\begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}), \sigma(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) \, | \, \sigma \in \{\mathsf{id}, (1\ 2), (1\ 3), (1\ 4)\} \}. \end{array}$
- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$

 $\bullet \ \max\{\operatorname{Tr}(AM) \,|\, A \in \mathsf{LC}_{2,2}\} = 2$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \leq 1\}.$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \leq 1\}.$

- $\max\{\text{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \leq 1\}.$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

- $\max\{\text{Tr}(AM) | A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}.$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \le 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

$$= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$$

$$\le |x_1 + x_2| + |x_1 - x_2|.$$

•
$$(|x_1 + x_2| + |x_1 - x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$$

- $\max\{\operatorname{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \le 1\}.$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\mathsf{Tr}(AM) = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle$$

= $\langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \le |x_1 + x_2||y_1| + |x_1 - x_2||y_2|$
 $\le |x_1 + x_2| + |x_1 - x_2|.$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.

- $\max\{\operatorname{Tr}(AM) \mid A \in LC_{2,2}\} = 2$
- Recall $QC_{2,2} = \{\langle x_i, y_j \rangle \mid x_1, x_2, y_1, y_2 \in \mathbb{R}^2, |x_i|, |y_j| \leq 1\}.$
- $A \in QC_{2,2}$ we obtain, by Cauchy-Schwarz and $|y_i| \leq 1$,

$$\begin{aligned} \mathsf{Tr} \left(AM \right) &= \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle - \langle x_2, y_2 \rangle \\ &= \langle x_1 + x_2, y_1 \rangle + \langle x_1 - x_2, y_2 \rangle \leq |x_1 + x_2| |y_1| + |x_1 - x_2| |y_2| \\ &\leq |x_1 + x_2| + |x_1 - x_2|. \end{aligned}$$

- $(|x_1 + x_2| + |x_1 x_2|)^2 \le 4(|x_1|^2 + |x_2|^2)$
- Tr $(AM) \le |x_1 + x_2| + |x_1 x_2| \le 2\sqrt{|x_1|^2 + |x_2|^2} \le 2\sqrt{2}$.
- Bound is achieved by $A=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&1\end{pmatrix}$, induced by the vectors $x_1=x_2=\frac{1}{\sqrt{2}}(1,1)$ and $y_1=y_2=(1,0)$.

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Theorem (Grothendieck-Tsirelson)

There exists an absolute constant $K \ge 1$ such that, for any positive integers m, n, the following three equivalent conditions hold:

(1) We have the inclusion

$$QC_{m,n} \subset KLC_{m,n}. \tag{2}$$

(2) For any $M \in \mathbb{R}^{m \times n}$ and for any ρ, X_i, Y_j verifying the conditions of Definition 4.2.1 we have

$$\sum_{i,j} M_{ij} \operatorname{Tr} \rho(X_i \otimes Y_j) \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \sum_{i,j} M_{ij} \xi_i \eta_j \qquad (3)$$

$$\Leftrightarrow$$

$$\operatorname{Tr} MA^{\top} \leq \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{Tr} M(\xi \eta^{\top})^{\top}.$$
 (4)

(3) For any $M \in \mathbb{R}^{m \times n}$ and for any (real) Hilbert space vectors x_i, y_j with $|x_i| \le 1$, $|y_j| \le 1$ we have

$$\sum_{i,j} M_{i,j} \langle x_i, y_j \rangle \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{Tr} \xi^\top M \eta. \tag{5}$$

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

i,
$$\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$$

ii,
$$\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle).$$

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

i,
$$\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$$

ii,
$$\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$$
.

Proof.

ullet If x and y are linearly dependent, then

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

i,
$$\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$$

ii,
$$\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle).$$

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

i,
$$\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$$

ii,
$$\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$$
.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then
 - project r orthogonally on span $\{x,y\}$ which gives us a vector s with $\langle x,r\rangle=\langle x,s\rangle$ and $\langle y,r\rangle=\langle y,s\rangle$,

Let $x, y \in S^{d-1}$. Let $r \in S^{d-1}$ be a random unit vector chosen from O(d)-invariant probability distribution on the unit sphere. Then

- i, $\mathbb{P}[\operatorname{sign}(\langle x, r \rangle) \neq \operatorname{sign}(\langle y, r \rangle)] = \frac{\operatorname{arccos}(\langle x, y \rangle)}{\pi}$
- ii, $\mathbb{E}[\operatorname{sign}(\langle x, r \rangle) \operatorname{sign}(\langle y, r \rangle)] = \frac{2}{\pi} \arcsin(\langle x, y \rangle)$.

- If x and y are linearly dependent, then
 - if x = y: $arccos(\langle x, y \rangle) = arccos(1) = 0$.
 - if x = -y: $arccos(\langle x, y \rangle) = arccos(-1) = \pi$.
- If x and y are linearly independent, then
 - project r orthogonally on span $\{x,y\}$ which gives us a vector s with $\langle x,r\rangle=\langle x,s\rangle$ and $\langle y,r\rangle=\langle y,s\rangle$,
 - the normalized vector n := s/|s| is uniformly distributed on the intersection of the unit sphere and span $\{x,y\}$ by the O(d)-invariance of the probability distribution.

Calculation of the probability that the signs of the scalar products $\langle x, n \rangle$ and $\langle y, n \rangle$ are unlike:

$$\mathbb{P}[\mathsf{sign}(\langle x, \textit{n} \rangle) \neq \mathsf{sign}(\langle y, \textit{n} \rangle)] = 2 \frac{\mathsf{arccos}(\langle x, y \rangle)}{2\pi} = \frac{\mathsf{arccos}(\langle x, y \rangle)}{\pi}$$

We conclude with the proof of the second part of Lemma 6:

$$\begin{split} \mathbb{E}[\mathsf{sign}(\langle x, r \rangle) \, \mathsf{sign}(\langle y, r \rangle)] \\ &= 1 - 2 \frac{\mathsf{arccos}(\langle x, y \rangle)}{\pi} \\ &= \frac{2}{\pi} \, \mathsf{arcsin}(\langle x, y \rangle), \end{split}$$

because $\arcsin(t) + \arccos(t) = \pi/2$.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{6}$$

with
$$\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$$
.

Definition (The *k*-th tensor product)

The k-th tensor product of \mathbb{R}^n with orthonormal basis e_1, \ldots, e_n is denoted by $(\mathbb{R}^n)^{\otimes k}$ and it is a Euclidean vector space of dimension n^k with othonormal basis $e_{i_1} \otimes \cdots \otimes e_{i_k}$, $i_l \in \{1, \ldots, n\}$. In particular

$$\langle e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}, e_{j_{1}} \otimes \cdots \otimes e_{j_{k}} \rangle = \prod_{l=1}^{k} \langle e_{i_{l}}, e_{j_{l}} \rangle$$

$$= \begin{cases} 1 & \text{, if } i_{l} = j_{l} \text{ for all } l = 1, \dots, n, \\ 0 & \text{, otherwise,} \end{cases}$$
 (7)

and for $v \in \mathbb{R}^n$ with $v = v_1 e_1 + \dots + v_n e_n$ we define $v^{\otimes k} \in (\mathbb{R}^n)^{\otimes k}$ by

$$v^{\otimes k} := (v_1 e_1 + \dots + v_n e_n) \otimes \dots \otimes (v_1 e_1 + \dots + v_n e_n)$$

$$= \sum_{i_1,\dots,i_k} v_{i_1} \cdots v_{i_k} e_{i_1} \otimes \dots \otimes e_{i_k}.$$
(8)

Thus, for $v, w \in \mathbb{R}^n$

$$\langle v^{\otimes k}, w^{\otimes k} \rangle = \langle v, w \rangle^k. \tag{9}$$

Let $x_1, \ldots, x_m, y_1, \ldots, y_n \in S^{m+n-1}$ be given. Furthermore, let $r \in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1', \ldots, x_m', y_1', \ldots, y_n' \in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

• Define $E:[-1,+1] \rightarrow [-1,+1]$ by $E(t)=\frac{2}{\pi}\arcsin(t)$.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

- Define $E: [-1, +1] \to [-1, +1]$ by $E(t) = \frac{2}{\pi} \arcsin(t)$.
- $E(\langle x_i', y_j' \rangle) = \mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] \stackrel{!}{=} \beta \langle x_i, y_j \rangle$ by Grothendieck's identity.

Let $x_1,\ldots,x_m,y_1,\ldots,y_n\in S^{m+n-1}$ be given. Furthermore, let $r\in S^{n+m-1}$ be a random unit vector chosen form the O(n+m-1)-invariant probability distribution on the unit sphere. Then there are $x_1',\ldots,x_m',y_1',\ldots,y_n'\in S^{m+n-1}$ so that

$$\mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] = \beta \langle x_i, y_j \rangle, \tag{10}$$

with $\beta = \frac{2}{\pi} \ln(1 + \sqrt{2})$.

Proof of Krivine's trick.

- Define $E: [-1, +1] \to [-1, +1]$ by $E(t) = \frac{2}{\pi} \arcsin(t)$.
- $E(\langle x_i', y_j' \rangle) = \mathbb{E}[\operatorname{sign}(\langle x_i', r \rangle) \operatorname{sign}(\langle y_j', r \rangle)] \stackrel{!}{=} \beta \langle x_i, y_j \rangle$ by Grothendieck's identity.
- Idea: To find β, x'_i, y'_i invert E:

$$E^{-1}(t) = \sin(\pi/2 \cdot t) = \sum_{k=0}^{\infty} \underbrace{\frac{(-1)^{2k+1}}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1}}_{=:g_{2k+1}} t^{2k+1},$$

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{r=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{r=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define $\tilde{x}_i, \tilde{y}_i \in H$, i = 1, ..., m, j = 1, ..., n componentwise:

$$(\tilde{x}_i)_k = \operatorname{sign}(g_{2k+1})\sqrt{|g_{2k+1}|\beta^{2k+1}} \, x_i^{\otimes 2k+1}$$
 (12)

$$(\tilde{y}_j)_k = \sqrt{|g_{2k+1}|\beta^{2k+1}} y_j^{\otimes 2k+1}$$
 (13)

• Define the infinite-dimensional Hilbert space

$$H = \bigoplus_{r=0}^{\infty} (\mathbb{R}^{m+n})^{\otimes 2k+1}.$$
 (11)

• Define $\tilde{x}_i, \tilde{y}_j \in H$, i = 1, ..., m, j = 1, ..., n componentwise:

$$(\tilde{x}_i)_k = \operatorname{sign}(g_{2k+1}) \sqrt{|g_{2k+1}|} \beta^{2k+1} x_i^{\otimes 2k+1}$$
 (12)

$$(\tilde{y}_j)_k = \sqrt{|g_{2k+1}|\beta^{2k+1}} y_j^{\otimes 2k+1}$$
 (13)

Then

$$\begin{split} \langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{y}}_j \rangle &= \sum_{k=0}^{\infty} \mathbf{g}_{2k+1} \beta^{2k+1} \langle \mathbf{x}_i^{\otimes 2k+1}, \mathbf{y}_j^{\otimes 2k+1} \rangle \\ &= \sum_{k=0}^{\infty} \mathbf{g}_{2k+1} \beta^{2k+1} \langle \mathbf{x}_i, \mathbf{y}_j \rangle^{2k+1} \\ &= E^{-1} (\beta \langle \mathbf{x}_i, \mathbf{y}_i \rangle). \end{split}$$

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \ldots, \tilde{x}_m, \tilde{y}_1, \ldots, \tilde{y}_n$ are unit vectors:

$$\begin{split} 1 &= \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2} \right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta) \\ \Leftrightarrow \qquad \beta &= \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2}) \end{split}$$

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \ldots, \tilde{x}_m, \tilde{y}_1, \ldots, \tilde{y}_n$ are unit vectors:

$$1 = \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta)$$

$$\Leftrightarrow \qquad \beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2})$$

• Problem: $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are infinite-dimensional

• Hence, β is defined by the condition that the vectors $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are unit vectors:

$$1 = \langle \tilde{x}_i, \tilde{x}_i \rangle = \langle \tilde{y}_j, \tilde{y}_j \rangle = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} \left(\frac{\pi}{2}\right)^{2k+1} \beta^{2k+1} = \sinh(\frac{\pi}{2}\beta)$$

$$\Leftrightarrow \qquad \beta = \frac{2}{\pi} \operatorname{arcsinh}(1) = \frac{2}{\pi} \ln(1+\sqrt{2})$$

- Problem: $\tilde{x}_1, \dots, \tilde{x}_m, \tilde{y}_1, \dots, \tilde{y}_n$ are infinite-dimensional
- Solution: the positive definite and symmetric Gram matrix G

$$G = \begin{pmatrix} \langle \tilde{x}_{1}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{x}_{1}, \tilde{x}_{m} \rangle & \langle \tilde{x}_{1}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{x}_{1}, \tilde{y}_{n} \rangle \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \langle \tilde{x}_{m}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{x}_{m}, \tilde{x}_{m} \rangle & \langle \tilde{x}_{m}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{x}_{m}, \tilde{y}_{n} \rangle \\ \langle \tilde{y}_{1}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{y}_{1}, \tilde{x}_{m} \rangle & \langle \tilde{y}_{1}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{y}_{1}, \tilde{y}_{n} \rangle \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \langle \tilde{y}_{n}, \tilde{x}_{1} \rangle & \cdots & \langle \tilde{y}_{n}, \tilde{x}_{m} \rangle & \langle \tilde{y}_{n}, \tilde{y}_{1} \rangle & \cdots & \langle \tilde{y}_{n}, \tilde{y}_{n} \rangle \end{pmatrix}$$

$$(14)$$

• Due to the properties of G we can decompose G via a real orthogonal matrix Q with columns that are the eigenvectors of G and a real diagonal matrix Λ having the eigenvalues of G on the diagonal, thus

$$G = Q\Lambda Q^{\top} = \underbrace{(Q\Lambda^{1/2})^{\top}(Q\Lambda^{1/2})}_{=:A}.$$
 (15)

• Due to the properties of G we can decompose G via a real orthogonal matrix Q with columns that are the eigenvectors of G and a real diagonal matrix Λ having the eigenvalues of G on the diagonal, thus

$$G = Q\Lambda Q^{\top} = (Q\Lambda^{1/2})^{\top} (Q\Lambda^{1/2}). \tag{15}$$

• The columns of A are the vectors $x_1', \ldots, x_m', y_1', \ldots, y_n' \in S^{m+n-1}$ we are looking for.

Definition

For $M \in \mathbb{R}^{m \times n}$ define the quadratic program

$$||M||_{\infty \to 1} = \max \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \xi_{i} \eta_{j} : \xi_{i}^{2} = 1, i = 1, \dots, m, \eta_{j}^{2} = 1, j = 1, \dots, n \right\}$$

$$= \max \left\{ \operatorname{Tr} M \eta \xi^{\top} : \xi \in \{-1, 1\}^{m}, \eta \in \{-1, 1\}^{n} \right\}. \tag{16}$$

Definition

The SDP relaxation of $||M||_{\infty \to 1}$ is given via:

$$\operatorname{sdp}_{\infty o 1}(M) = \max \sum_{i=1}^m \sum_{j=1}^n M_{ij} \langle x_i, y_j
angle \ x_i, y_j \in \mathbb{R}^{m+n} \ |x_i| = 1, i = 1, \dots, m \ |y_j| = 1, j = 1, \dots, n$$

Theorem (Grothendieck's inequality)

There exists a constant K such that for all $M \in \mathbb{R}^{m \times n}$:

$$||M||_{\infty \to 1} \le \operatorname{sdp}_{\infty \to 1}(M) \le K||M||_{\infty \to 1}. \tag{17}$$

Proof.

Use the following approximation algorithm with randomized rounding:

Algorithm 1: Approximation algorithm with randomized rounding for $\|M\|_{\infty o 1}$

- 1. Solve $\operatorname{sdp}_{\infty \to 1}(M)$. Let $x_1, \ldots, x_m, y_1, \ldots, y_n \in S^{m+n-1}$ be the optimal unit vectors.
- 2. Apply Krivine's trick (Lemma 9) and use vectors x_i, y_j to create new unit vectors $x'_1, \ldots, x'_m, y'_1, \ldots, y'_n \in S^{m+n-1}$.
- 3. Choose $r \in S^{m+n-1}$ randomly.
- 4. Round: $\xi_i = \text{sign}(\langle x_i', r \rangle)$ $\eta_j = \text{sign}(\langle y_i', r \rangle)$

Expected quality of the outcome:

$$\begin{split} \|M\|_{\infty \to 1} &\geq \mathbb{E}\left[\sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \xi_{i} \eta_{j}\right] \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \mathbb{E}[\operatorname{sign}(\langle x_{i}', r \rangle) \operatorname{sign}(\langle y_{j}', r \rangle)] \\ &= \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \beta \langle x_{i}, y_{j} \rangle \\ &= \beta \operatorname{sdp}_{\infty \to 1}(M), \end{split}$$

where the second last equality follows by Krivine's trick with $\beta=\frac{2\ln(1+\sqrt{2)}}{\pi}$, thus $K<\beta^{-1}$.

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Theorem (Tsirelson)

(Hard direction) For all positive integers n, r and any x_1,\ldots,x_n , $y_1,\ldots,y_n\in S^{r-1}$, there exists a positive integer d:=d(r), a unit vector $|\psi\rangle\in\mathbb{C}^d\otimes\mathbb{C}^d$ and $\{-1,1\}$ -observables $F_1,\ldots,F_n,G_1,\ldots,G_n\in\mathbb{C}^{d\times d}$, such that for every $i,j\in\{1,\ldots,n\}$, we have

$$\langle \psi | F_i \otimes G_j | \psi \rangle = \langle x_i, y_j \rangle.$$
 (18)

Moreover, $d \leq 2^{\lceil r/2 \rceil}$.

(Easy direction) Conversely, for all positive integers n,d, unit vectors $|\psi\rangle\in\mathbb{C}^d\otimes\mathbb{C}^d$ and $\{-1,1\}$ -observables $F_1,\ldots,F_n,G_1,\ldots,G_n\in\mathbb{C}^{d\times d}$, there exist a positive integer r:=r(d) and $x_1,\ldots,x_n,y_1,\ldots,y_n\in S^{r-1}$ such that for every $i,j\in\{1,\ldots,n\}$, we have

$$\langle x_i, y_j \rangle = \langle \psi | F_i \otimes G_j | \psi \rangle.$$
 (19)

Moreover, $r < 2d^2$.

Proof.

For the hard direction look at the second part of the proof of $QC_{m,n} = \{(\langle x_i,y_j\rangle)_{1\leq i\leq m,1\leq j\leq n}\,|\,x_i,y_j\in\mathbb{R}^{\min\{m,n\}},|x_i|\leq 1,|y_j|\leq 1\}$ (Lemma). Due to the additional restriction/assumption that F_i and G_j are $\{-1,1\}$ -observables the other direction gets easier.

Since

- Introduction
 - Basics
 - Nonlocal games
 - A special case of nonlocal games
 - A specific example
- 2 Local and quantum correlation matrices
 - Local correlation matrices
 - Quantum correlation matrices
 - The relations between quantum correlation and local correlation matrices
 - Motivation: The Grothendieck-Tsirelson Theorem
 - Grothendieck's Inequality
 - Tsirelson's Theorem
 - Gorthendieck-Tsirelson Theorem

Theorem (Grothendieck-Tsirelson)

There exists an absolute constant $K \ge 1$ such that, for any positive integers m, n, the following three equivalent conditions hold:

(1) We have the inclusion

$$QC_{m,n} \subset KLC_{m,n}. \tag{20}$$

(2) For any $M \in \mathbb{R}^{m \times n}$ and for any ρ, X_i, Y_j verifying the conditions of Definition 4.2.1 we have

$$\sum_{i,j} M_{ij} \operatorname{Tr} \rho(X_i \otimes Y_j) \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \sum_{i,j} M_{ij} \xi_i \eta_j$$
 (21)

$$\Leftrightarrow$$

$$\operatorname{Tr} MA^{\top} \leq \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{Tr} M(\xi \eta^{\top})^{\top}.$$
 (22)

(3) For any $M \in \mathbb{R}^{m \times n}$ and for any (real) Hilbert space vectors x_i, y_j with $|x_i| \le 1$, $|y_j| \le 1$ we have

$$\sum_{i,i} M_{ij} \langle x_i, y_j \rangle \le K \max_{\xi \in \{-1,1\}^m, \eta \in \{-1,1\}^n} \operatorname{Tr} \xi^\top M \eta. \tag{23}$$

Proof.

Since (23) is a direct consequence of Grothendieck's inequality the only thing left to prove is the equivalence between (1)-(3). The equivalence of (3) and (2) (the Tsirelson's bound) is a consequence of either the proof of Lemma $\ref{lem:since:equal}$? or Tsirelsons Theorem (Theorem 1).

