The bodeplot package*

Rushikesh Kamalapurkar rlkamalapurkar@gmail.com

November 4, 2021

Contents

1	Inti	roduction	1				
2	Usage						
	2.1	Bode plots	2				
		2.1.1 Basic components up to first order	7				
		2.1.2 Basic components of the second order	8				
	2.2		10				
	2.3		12				
3	Implementation 1						
	3.1	Initialization	13				
	3.2	Parametric function generators for poles, zeros, gains, and delays	14				
	3.3	Second order systems	16				
	3.4	Commands for Bode plots	18				
			18				
		3.4.2 Internal macros	22				
	3.5		27				
		*	27				
			-· 30				
	3 6		30 30				

1 Introduction

Generate Bode, Nyquist, and Nichols plots for transfer functions in the canonical (TF) form

$$G(s) = e^{-T_s} \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$
(1)

^{*}This document corresponds to bodeplot v1.0.3, dated November 3, 2021.

and the zero-pole-gain (ZPK) form

$$G(s) = Ke^{-T_s} \frac{(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}.$$
 (2)

In the equations above, b_m, \dots, b_0 and a_n, \dots, a_0 are real coefficients, $T \geq 0$ is the loop delay, z_1, \dots, z_m and p_1, \dots, p_n are complex zeros and poles of the transfer function, respectively, and $K \in \Re$ is the loop gain. For transfer functions in the ZPK format in (2) with zero delay, this package also supports linear and asymptotic approximation of Bode plots. **Limitation:** in TF form, the phase angles are always between 0 and 360°, As such, the Bode phase plots and the Nyquist and Nichols plots will have phase wrapping discontinuities. I do not know how this can be rectified, pull requests are welcome!

2 Usage

2.1 Bode plots

 \BodeZPK

```
\label{eq:bodeZPK} $$ \begin{array}{l} \begin{subarray}{l} \begin{subarray}{
```

Plots the Bode plot of a transfer function given in ZPK format using the groupplot environment. The three mandatory arguments include: (1) a list of tuples, comprised of the zeros, the poles, the gain, and the transport delay of the transfer function, (2) the lower end of the frequency range for the x- axis, and (3) the higher end of the frequency range for the x-axis. The zeros and the poles are complex numbers, entered as a comma-separated list of comma-separated lists, of the form {{real part 1, imaginary part 1}, {real part 2, imaginary part 2},...}. If the imaginary part is not provided, it is assumed to be zero.

The optional argument is comprised of a comma separated list of tuples, either obj/typ/{opt}, or obj/{opt}, or just {opt}. Each tuple passes options to different pgfplots macros that generate the group, the axes, and the plots according to:

- Tuples of the form obj/typ/{opt}:
 - plot/typ/{opt}: modify plot properties by adding options {opt} to the \addplot macro for the magnitude plot if typ is mag and the phase plot if typ is ph.
 - axes/typ/{opt}: modify axis properties by adding options {opt} to the \nextgroupplot macro for the magnitude plot if typ is mag and the phase plot if typ is ph.
 - commands/typ/{opt}: add any valid TikZ commands (including the the parametric function generator macros in this package, such as \addBodeZPKPlots, \addBodeTFPlot, and \addBodeComponentPlot)

to the magnitude axes plot if typ is mag and the phase plot if typ is ph. The commands passed to opt need to be valid TikZ commands, separated by semicolons as usual. For example, a TikZ command is used in the description of the \BodeTF macro below to mark the gain crossover frequency on the Bode Magnitude plot.

- Tuples of the form obj/{opt}:
 - plot/{opt}: adds options {opt} to \addplot macros for both the magnitude and the phase plots.
 - axes/{opt}: adds options {opt} to \nextgroupplot macros for both the magnitude and the phase plots.
 - group/{opt}: adds options {opt} to the groupplot environment.
 - tikz/{opt}: adds options {opt} to the tikzpicture environment.
 - approx/linear: plots linear approximation.
 - approx/asymptotic: plots asymptotic approximation.
- Tuples of the form {opts} add all of the supplied options to \addplot macros for both the magnitude and the phase plots.

The options {opt} can be any key=value options that are supported by the pgfplots macros they are added to. Linear or asymptotic approximation of transfer functions that include a transport delay is not supported.

For example, given a transfer function

$$G(s) = 10 \frac{s(s + 0.1 + 0.5i)(s + 0.1 - 0.5i)}{(s + 0.5 + 10i)(s + 0.5 - 10i)},$$
(3)

its Bode plot over the frequency range [0.01,100] can be generated using \BodeZPK [blue,thick]

$${z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}$$

 ${0.01}{100}$

which generates the plot in Figure 1. If a delay is not specified, it is assumed to be zero. If a gain is not specified, it is assumed to be 1. By default, each of the axes, excluding ticks and labels, are 5cm wide and 2.5cm high. The width and the height, along with other properties of the plots, the axes, and the group can be customized using native pgf keys as shown in the example below.

As demonstrated in this example, if a single comma-separated list of options is passed, it applies to both the magnitude and the phase plots. Without any optional arguments, we gets a thick black Bode plot.

A linear approximation of the Bode plot with customization of the plots, the axes, and the group can be generated using

```
\BodeZPK[plot/mag/{red,thick},plot/ph/{blue,thick},
   axes/mag/{ytick distance=40,xmajorticks=true,
   xlabel={Frequency (rad/s)}},axes/ph/{ytick distance=90},
   group/{group style={group size=2 by 1,horizontal sep=2cm,
```


Figure 1: Output of the default \BodeZPK macro.

Figure 2: Customization of the default \BodeZPK macro.

```
width=4cm,height=2cm}},approx/linear] {z/{0,{-0.1,-0.5},{-0.1,0.5}}},p/{{-0.5,-10},{-0.5,10}},k/10} {0.01}{100} which generates the plot in Figure 2. 

\BodeTF \[ \langle obj1/typ1/\{\copt1\rangle},obj2/typ2/\{\copt2\rangle},...\rangle \] \{\coptime \coptime \cop
```

Plots the Bode plot of a transfer function given in TF format. The three mandatory arguments include: (1) a list of tuples comprised of the coefficients in the numerator and the denominator of the transfer function and the transport delay, (2) the lower end of the frequency range for the x- axis, and (3) the higher end of the frequency range for the x-axis. The coefficients are entered as a commaseparated list, in order from the highest degree of s to the lowest, with zeros for missing degrees. The optional arguments are the same as BodeZPK, except that linear/asymptotic approximation is not supported, so approx/... is ignored.

Figure 3: Output of the \BodeTF macro with an optional TikZ command used to mark the gain crossover frequency.

For example, given the same transfer function as (3) in TF form and with a small transport delay,

$$G(s) = e^{-0.01s} \frac{s(10s^2 + 2s + 2.6)}{(s^2 + s + 100.25)},$$
(4)

its Bode plot over the frequency range [0.01,100] can be generated using \BodeTF[commands/mag/{\node at (axis cs: 2.1,0)}

[circle,fill,inner sep=0.05cm,label=below:{ ω_{gc} }]{};}] {num/{10,2,2.6,0},den/{1,0.2,100},d/0.01} {0.01}{100}

which generates the plot in Figure 3. Note the 0 added to the numerator coefficients to account for the fact that the numerator does not have a constant term in it. Note the semicolon after the TikZ command passed to the \commands option.

BodePlot

 $\label{lem:lemma:continuous} $$ \left(\min\{ BodePlot \} \left[\langle axis-options \rangle \right] \left(\min\{ frequency \rangle \} \right] $$ \addBode...$

\end{BodePlot}

The BodePlot environment works in conjunction with the parametric function generator macros \addBodeZPKPlots, \addBodeTFPlot, and \addBodeComponentPlot. If supplied, axis-options are passed directly to the semilogaxis environment and the frequency limits are translated to the x-axis limits and the domain of the semilogaxis environment. Example usage in the description of \addBodeZPKPlots, \addBodeTFPlot, and \addBodeComponentPlot.

\addBodeZPKPlots

\addBodeZPKPlots [\langle approx1/\{\langle opt1\rangle \},approx2/\{\langle opt2\rangle \},...\rangle] \{\langle tot-type \rangle \} \{\langle t\langle tot-type \rangle \}, p/\{\langle tot-type \rangle \}, p/\{\langle tot-type \rangle \}, k/\{\langle ain \rangle \}, d/\{\langle tot-type \rangle \} \}

Figure 4: Superimposed approximate and true Bode plots using the BodePlot environment and the \addBodeZPKPlots macro.

Generates the appropriate parametric functions and supplies them to multiple \addplot macros, one for each approx/{opt} pair in the optional argument. If no optional argument is supplied, then a single \addplot command corresponding to a thick true Bode plot is generated. If an optional argument is supplied, it needs to be one of true/{opt}, linear/{opt}, or asymptotic/{opt}. This macro can be used inside any semilogaxis environment as long as a domain for the x-axis is supplied through either the approx/{opt} interface or directly in the optional argument of the semilogaxis environment. Use with the BodePlot environment supplied with this package is recommended. The second mandatory argument, plot-type is either magnitude or phase. If it is not equal to phase, it is assumed to be magnitude. The last mandatory argument is the same as \BodeZPK.

For example, given the transfer function in (3), its linear, asymptotic, and true Bode plots can be superimposed using

```
\begin{BodePlot}[ ylabel={Gain (dB)}, ytick distance=40,
  height=2cm, width=4cm] {0.01} {100}
  \addBodeZPKPlots[
    true/{black,thick},
    linear/{red,dashed,thick},
    asymptotic/{blue,dotted,thick}]
    {magnitude}
    \{z/\{0,\{-0.1,-0.5\},\{-0.1,0.5\}\},p/\{\{-0.1,-10\},\{-0.1,10\}\},k/10\}
\end{BodePlot}
\begin{BodePlot}[ylabel={Phase ($^{\circ}$)},
  height=2cm, width=4cm, ytick distance=90] {0.01} {100}
  \addBodeZPKPlots[
    true/{black,thick},
    linear/{red,dashed,thick},
    asymptotic/{blue,dotted,thick}]
    {z/{0, \{-0.1, -0.5\}, \{-0.1, 0.5\}\}, p/{\{-0.1, -10\}, \{-0.1, 10\}\}, k/10\}}}
\end{BodePlot}
```

which generates the plot in Figure 4.

\addBodeTFPlot

```
\label{eq:local_state} $$ \addBodeTFPlot[\langle plot-options \rangle] $$ {\langle plot-type \rangle} $$ {\langle num/\{\langle coeffs \rangle\}, den/\{\langle coeffs \rangle\}, d/\{\langle delay \rangle\} \rangle} $$
```

Generates a single parametric function for either Bode magnitude or phase plot of a transfer function in TF form. The generated parametric function is passed to the \addplot macro. This macro can be used inside any semilogaxis environment as long as a domain for the x-axis is supplied through either the plot-options interface or directly in the optional argument of the container semilogaxis environment. Use with the BodePlot environment supplied with this package is recommended. The second mandatory argument, plot-type is either magnitude or phase. If it is not equal to phase, it is assumed to be magnitude. The last mandatory argument is the same as \BodeTF.

\addBodeComponentPlot

 $\addBodeComponentPlot[\langle plot-options \rangle] \{\langle plot-command \rangle\}$

Generates a single parametric function corresponding to the mandatory argument plot-command and passes it to the \addplot macro. The plot command can be any parametric function that uses t as the independent variable. The parametric function must be gnuplot compatible (or pgfplots compatible if the package is loaded using the pgf option). The intended use of this macro is to plot the parametric functions generated using the basic component macros described in Section 2.1.1 below.

2.1.1 Basic components up to first order

\TypeFeatureApprox

 $\TypeFeatureApprox{\langle real-part \rangle}{\langle imaginary-part \rangle}$

This entry describes 20 different macros of the form \TypeFeatureApprox that take the real part and the imaginary part of a complex number as arguments. The Type in the macro name should be replaced by either Mag or Ph to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The Feature in the macro name should be replaced by one of K, Pole, Zero, or Del, to generate the Bode plot of a gain, a complex pole, a complex zero, or a transport delay, respectively. If the Feature is set to either K or Del, the imaginary-part mandatory argument is ignored. The Approx in the macro name should either be removed, or it should be replaced by Lin or Asymp to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively. If the Feature is set to Del, then Approx has to be removed. For example,

- \MagK{k}{0} or \MagK{k}{400} generates a parametric function for the true Bode magnitude of G(s)=k
- \PhPoleLin{a}{b} generates a parametric function for the linear approximation of the Bode phase of $G(s) = \frac{1}{s-a-\mathrm{i}b}$.
- \PhDel{T}{200} or \PhDel{T}{0} generates a parametric function for the Bode phase of $G(s)=e^{-Ts}$.

All 20 of the macros defined by combinations of Type, Feature, and Approx, and any gnuplot (or pgfplot if the pgf class option is loaded) compatible function of

Figure 5: Superimposed approximate and true Bode Phase plot using the BodePlot environment, the \addBodeComponentPlot macro, and several macros of the \TypeFeatureApprox form.

the 20 macros can be used as plot-command in the addBodeComponentPlot macro. This is sufficient to generate the Bode plot of any rational transfer function with delay. For example, the Bode phase plot in Figure 4 can also be generated using:

```
\begin{BodePlot}[ylabel={Phase (degree)},ytick distance=90]{0.01}{100}
\addBodeComponentPlot[black,thick]{\PhZero{0}{0} + \PhZero{-0.1}{-0.5} +
\PhZero{-0.1}{0.5} + \PhPole{-0.5}{-10} + \PhPole{-0.5}{10} +
\PhK{10}{0}}
\addBodeComponentPlot[red,dashed,thick] {\PhZeroLin{0}{0} +
\PhZeroLin{-0.1}{-0.5} + \PhZeroLin{-0.1}{0.5} +
\PhPoleLin{-0.5}{-10} + \PhPoleLin{-0.5}{10} + \PhKLin{10}{20}}
\addBodeComponentPlot[blue,dotted,thick] {\PhZeroAsymp{0}{0} +
\PhZeroAsymp{-0.1}{-0.5} + \PhZeroAsymp{-0.1}{0.5} +
\PhPoleAsymp{-0.5}{-10} + \PhPoleAsymp{-0.5}{10} + \PhKAsymp{10}{40}}
\end{BodePlot}
```

which gives us the plot in Figure 5.

2.1.2 Basic components of the second order

\TypeSOFeatureApprox

\TypeSOFeatureApprox $\{\langle a1 \rangle\}\{\langle a0 \rangle\}$

This entry describes 12 different macros of the form \TypeSOFeatureApprox that take the coefficients a_1 and a_0 of a general second order system as inputs. The Feature in the macro name should be replaced by either Poles or Zeros to generate the Bode plot of $G(s) = \frac{1}{s^2 + a_1 s + a_0}$ or $G(s) = s^2 + a_1 s + a_0$, respectively. The Type in the macro name should be replaced by either Mag or Ph to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The Approx in the macro name should either be removed, or it should be replaced by Lin or Asymp to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively.

\MagSOFeaturePeak

 $\MagSOFeaturePeak[\langle draw-options \rangle] \{\langle a1 \rangle\} \{\langle a0 \rangle\}$

This entry describes 2 different macros of the form \MagSOFeaturePeak that take the the coefficients a_1 and a_0 of a general second order system as inputs, and draw

Figure 6: Resonant peak in asymptotic Bode plot using \MagSOPolesPeak.

a resonant peak using the \draw TikZ macro. The Feature in the macro name should be replaced by either Poles or Zeros to generate a peak for poles and a valley for zeros, respectively. For example, the command

```
\begin{BodePlot}[xlabel={}]{0.1}{10}
\addBodeComponentPlot[red,dashed,thick]{\MagSOPoles{0.2}{1}}
\addBodeComponentPlot[black,thick]{\MagSOPolesLin{0.2}{1}}
\MagSOPolesPeak[thick]{0.2}{1}
\end{BodePlot}
```

generates the plot in Figure 6.

\TypeCSFeatureApprox

 $\label{typeCSFeatureApprox} $$\operatorname{CSFeatureApprox}(\langle zeta\rangle) = (\langle omega-n\rangle) $$$

This entry describes 12 different macros of the form \TypeCSFeatureApprox that take the damping ratio, ζ , and the natural frequency, ω_n of a canonical second order system as inputs. The Type in the macro name should be replaced by either Mag or Ph to generate a parametric function corresponding to the magnitude or the phase plot, respectively. The Feature in the macro name should be replaced by either Poles or Zeros to generate the Bode plot of $G(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ or $G(s) = s^2 + 2\zeta\omega_n s + \omega_n^2$, respectively. The Approx in the macro name should either be removed, or it should be replaced by Lin or Asymp to generate the true Bode plot, the linear approximation, or the asymptotic approximation, respectively.

\MagCSFeaturePeak

 $\label{local_magcsfeaturePeak} $$ \A continuous \ | \{\langle zeta \rangle\} \{\langle omega-n \rangle\} $$$

This entry describes 2 different macros of the form $\mbox{MagCSFeaturePeak}$ that take the damping ratio, ζ , and the natural frequency, ω_n of a canonical second order system as inputs, and draw a resonant peak using the \mbox{draw} TikZ macro. The Feature in the macro name should be replaced by either Poles or Zeros to generate a peak for poles and a valley for zeros, respectively.

\MagCCFeaturePeak

 $\MagCCFeaturePeak[\langle draw-options \rangle] \{\langle real-part \rangle\} \{\langle imaginary-part \rangle\}$ This entry describes 2 different macros of the form \MagCCFeaturePeak that take the real and imaginary parts of a pair of complex conjugate poles or zeros as inputs, and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak using the \MagCCFeaturePeak that take the real and draw a resonant peak u

Figure 7: Output of the \NyquistZPK macro.

2.2 Nyquist plots

generates the Nyquist plot in Figure 7.

\NyquistZPK

```
\label{eq:local_system} $$ \begin{aligned} & \  |\langle plot/\{\langle opt\rangle\}, axes/\{\langle opt\rangle\}\}| \\ & \  \{\langle z/\{\langle zeros\rangle\}, p/\{\langle poles\rangle\}, k/\{\langle gain\rangle\}, d/\{\langle delay\rangle\}\}\} \\ & \  \{\langle min\text{-}freq\rangle\} \{\langle max\text{-}freq\rangle\} \end{aligned}
```

Plots the Nyquist plot of a transfer function given in ZPK format with a thick red + marking the critical point (-1,0). The mandatory arguments are the same as \BodeZPK. Since there is only one plot in a Nyquist diagram, the \typ specifier in the optional argument tuples is not needed. As such, the supported optional argument tuples are plot/{opt}, which passes {opt} to \addplot, axes/{opt}, which passes {\opt} to the axis environment, and tikz/{opt}, which passes {\opt} to the tikzpicture environment. Asymptotic/linear approximations are not supported in Nyquist plots. If just {opt} is provided as the optional argument, it is interpreted as plot/{opt}. Arrows to indicate the direction of increasing ω can be added by adding \usetikzlibrary{decorations.markings} and \usetikzlibrary{arrows.meta} to the preamble and then passing a tuple of the form

```
plot/{postaction=decorate,decoration={markings,
    mark=between positions 0.1 and 0.9 step 5em with
    {\arrow{Stealth [length=2mm, blue]}}}
Caution: with a high number of samples, adding arrows in this way may cause
the error message! Dimension too big.
    For example, the command
\NyquistZPK[plot/{red,thick,samples=2000},axes/{blue,thick}]
    {z/{0,{-0.1,-0.5},{-0.1,0.5}},p/{{-0.5,-10},{-0.5,10}},k/10}
    {-30}{30}
```


Figure 8: Output of the \NyquistTF macro with direction arrows. Increasing the number of samples can cause decorations.markings to throw errors.

mark=between positions 0.1 and 0.9 step 5em with{\arrow{Stealth[length=2mm, blue]}}}} {num/{10,2,2.6,0},den/{1,1,100.25}} {-30}{30}

generates the Nyquist plot in Figure 8.

NyquistPlot

\end{NyquistPlot}

The NyquistPlot environment works in conjunction with the parametric function generator macros \addNyquistZPKPlot and \addNyquistTFPlot. If supplied, axis-options are passed directly to the axis environment and the frequency limits are translated to the x-axis limits and the domain of the axis environment.

\addNyquistZPKPlot

```
\label{eq:local_local_problem} $$ \addNyquistZPKPlot[\langle plot-options\rangle] $$ $ \{\langle z/\{\langle zeros\rangle\}, p/\{\langle poles\rangle\}, k/\{\langle gain\rangle\}, d/\{\langle delay\rangle\}\}\}$$
```

Generates a two parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are converted to real and imaginary part parametric functions and passed to the \addplot macro. This macro can be used inside any axis environment as long

Figure 9: Output of the \NyquistZPK macro.

as a domain for the x-axis is supplied through either the plot-options interface or directly in the optional argument of the container axis environment. Use with the NyquistPlot environment supplied with this package is recommended. The mandatory argument is the same as \BodeZPK.

\addNyquistTFPlot

```
\label{eq:local_state} $$ \addNyquistTFPlot[\langle plot-options \rangle] $$ $ \{\langle num/\{\langle coeffs \rangle\}, den/\{\langle coeffs \rangle\}, d/\{\langle delay \rangle\} \} $$
```

Similar to \addNyquistZPKPlot, with a transfer function input in the TF form.

2.3 Nichols charts

```
\NicholsZPK
                      \label{eq:local_problem} $$ \ [\langle plot/\{\langle opt \rangle\}, axes/\{\langle opt \rangle\} \rangle] $$
                            \{\langle z/\{\langle zeros \rangle\}, p/\{\langle poles \rangle\}, k/\{\langle gain \rangle\}, d/\{\langle delay \rangle\}\}\}
                            \{\langle min\text{-}freq \rangle\}\{\langle max\text{-}freq \rangle\}
                      Nichols chart of a transfer function given in ZPK format. Same arguments as
                      \NyquistZPK.
   \NicholsTF
                           \NicholsTF [\langle plot/f\langle opt \rangle \}, axes/f\langle opt \rangle \} \rangle ]
                            \{\langle num/\{\langle coeffs \rangle\}, den/\{\langle coeffs \rangle\}, d/\{\langle delay \rangle\}\}\}
                            {\langle min-freq \rangle} {\langle max-freq \rangle}
                      Nichols chart of a transfer function given in TF format. Same arguments as
                      \NyquistTF. For example, the command
                      \NicholsTF[plot/{green,thick,samples=2000}]
                         \{num/\{10,2,2.6,0\},den/\{1,1,100.25\},d/0.01\}
                         {0.001}{100}
                      generates the Nichols chart in Figure 9.
                           \begin{NicholsChart} [\langle axis-options \rangle] {\langle min-frequency \rangle} {\langle max-frequency \rangle} 
NicholsChart
                            \addNichols...
                           \end{NicholsChart}
```

The NicholsChart environment works in conjunction with the parametric function generator macros \addNicholsZPKChart and \addNicholsTFChart. If supplied, axis-options are passed directly to the axis environment and the frequency limits are translated to the x-axis limits and the domain of the axis environment.

\addNicholsZPKChart

```
\addNicholsZPKChart[\langle plot\text{-}options \rangle]
 \{\langle z/\{\langle zeros \rangle\}, p/\{\langle poles \rangle\}, k/\{\langle gain \rangle\}, d/\{\langle delay \rangle\}\}\}
```

Generates a two parametric functions for the magnitude and the phase a transfer function in ZPK form. The generated magnitude and phase parametric functions are passed to the \addplot macro. This macro can be used inside any axis environment as long as a domain for the x-axis is supplied through either the plot-options interface or directly in the optional argument of the container axis environment. Use with the NicholsChart environment supplied with this package is recommended. The mandatory argument is the same as \BodeZPK.

\addNicholsTFChart

```
\addNicholsTFChart[\langle plot-options \rangle]
 \{\langle num/\{\langle coeffs \rangle\}, den/\{\langle coeffs \rangle\}, d/\{\langle delay \rangle\} \}\}
```

Similar to \addNicholsZPKChart, with a transfer function input in the TF form.

Implementation 3

3.1 Initialization

The package makes extensive use of the \pdfstrcmp macro to parse options. Since that macro is not available in lualatex, this code is needed.

```
1 \RequirePackage{ifluatex}%
2 \setminus ifluatex
3 \let\pdfstrcmp\pdf@strcmp
4\fi
```

\n@pow idGnuplot This code is needed to support both pgfplots and gnuplot simultaneously. New macros are defined for the pow and mod functions to address differences between the two math engines. We start by processing the pgf class option.

gnuplot def gnuplot degrees

```
6 \DeclareOption{pgf}{%
  \@pgfargtrue
8 }
9 \ProcessOptions\relax
```

```
Then, we define two new macros to unify pgfplots and gnuplot.
10 \if@pgfarg
     \mbox{\newcommand} \n\pow} [2] { (#1)^(#2) } %
     \mbox{newcommand}(\n0\mbox{mod}[2]{\mbox{mod}((#1),(#2))}%
12
13 \else
     \mbox{newcommand} \n0pow} [2] {(#1)**(#2)}%
     \label{localization} $\operatorname{local}[2]_{(\#1)-(floor((\#1)/(\#2))*(\#2))}_{\%}$
```

Then, we create a counter so that a new data table is generated and for each new plot. If the plot macros have not changed, the tables, once generated, can be reused by gnuplot, which reduces compilation time.

\newcounter{idGnuplot}%

16

```
\setcounter{idGnuplot}{0}%
           17
                \tikzset{%
           18
                  gnuplot def/.style={%
           19
           20
                    id=\arabic{idGnuplot},
           21
                    prefix=gnuplot/\jobname
           22
                  }%
           23
               }
           Then, we add set angles degrees to all gnuplot macros to avoid having to
           convert from degrees to radians everywhere.
                \pgfplotsset{%
           24
                  gnuplot degrees/.code={%
           25
                    \ifnum\value{idGnuplot}=1
           26
                      \xdef\pgfplots@gnuplot@format{\pgfplots@gnuplot@format set angles degrees;}%
           27
           28
                    \fi
           29
                  }%
                }
           30
           If the operating system is not Windows, we create the gnuplot folder if it does
           not already exist.
                \ifwindows\else
                  \immediate\write18{mkdir -p gnuplot}%
           32
           33
           34 \fi
           Default axis properties for all plot macros are collected in this pgf style.
bodeStyle
           35 \pgfplotsset{%
                bodeStyle/.style = {%
                  label style={font=\footnotesize},
           37
                  tick label style={font=\footnotesize},
           38
                  grid=both,
           39
                  major grid style={color=gray!80},
           40
                  minor grid style={color=gray!20},
           41
                  x label style={at={(ticklabel cs:0.5)},anchor=near ticklabel},
           42
                  y label style={at={(ticklabel cs:0.5)},anchor=near ticklabel},
           43
           44
                  scale only axis,
           45
                  samples=200,
                  width=5cm,
           46
           47
               }%
           48 }
```

3.2 Parametric function generators for poles, zeros, gains, and delays.

\MagK True, linear, and asymptotic magnitude and phase parametric functions for a pure \MagKAsymp gain G(s)=k+0i. The macros take two arguments corresponding to real and \MagKLin \PhK

\PhKAsymp \PhKLin imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored.

```
49 \newcommand*{\MagK}[2]{(20*log10(abs(#1)))}
50 \newcommand*{\MagKAsymp}{\MagK}
51 \newcommand*{\MagKLin}{\MagK}
52 \newcommand*{\PhK}[2]{(#1<0?-180:0)}
53 \newcommand*{\PhKAsymp}{\PhK}
54 \newcommand*{\PhKLin}{\PhK}
```

\PhKAsymp \PhKLin

True magnitude and phase parametric functions for a pure delay $G(s) = e^{-Ts}$. The macros take two arguments corresponding to real and imaginary part of the gain to facilitate code reuse between delays, gains, poles, and zeros, but only real gains are supported. The second argument, if supplied, is ignored.

```
55 \newcommand*{\MagDel}[2]{0}
56 \newcommand*{\PhDel}[2]{-#1*180*t/pi}
```

\MagPole \MagPoleAsymp \MagPoleLin

These macros are the building blocks for most of the plotting functions provided by this package. We start with Parametric function for the true magnitude of a complex pole.

\PhPole \PhPoleAsymp \PhPoleLin

```
57 \newcommand*{\MagPole}[2]
58 {(-20*log10(sqrt(\n@pow{#1}{2} + \n@pow{t - (#2)}{2})))}
```

Parametric function for linear approximation of the magnitude of a complex pole.

```
59 \newcommand*{\MagPoleLin}[2]{(t < sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ?
60    -20*log10(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) :
61    -20*log10(t)
62    )}
```

Parametric function for asymptotic approximation of the magnitude of a complex pole, same as linear approximation.

63 \newcommand*{\MagPoleAsymp}{\MagPoleLin}

Parametric function for the true phase of a complex pole.

Parametric function for linear approximation of the phase of a complex pole.

```
68 \newcommand*{\PhPoleLin}[2]{%
                     (abs(#1)+abs(#2) == 0 ? -90 :
70
                      (t < (sqrt(\n0pow{#1}{2} + \n0pow{#2}{2})) /
                                  (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))}))?
71
72
                      (-atan2(-(#2),-(#1))):
                     (t \ge (\sqrt{n0pow}{\#1}{2} + \sqrt{n0pow}{\#2}{2}) *
73
                                  (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2} + \n@pow{#2}{2}))}))?
74
                     (#2>0?(#1>0?270:-90):-90):
75
                     (-atan2(-(#2),-(#1)) + (log10(t/(sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) / (log10(t/(sqrt(\n@pow{#1}{2}) + \n@pow{#2})) / (log10(t/(sqrt(\n@pow{#1}{2}) + \n@pow{#2}))) / (log10(t/(sqrt(\n@pow{#1}{2}) + \n@pow{#1}))) / (log10(t/(sqrt(\n@pow{#1}{2}) + \n@pow{#1}))) / (log10(t/(sqrt(\n@pow{#1}{2}) + \n@pow{#1}))) / (log10(t/(sqrt(\n@pow{#1}) + \n@pow{#1})))) / (log10(t/(sqrt(\n@pow{#1}) + \n@pow{#1}))) / (log10(t/(sqrt(\n@po
76
                                  (\n@pow{10}{sqrt(\n@pow{#1}{2}/(\n@pow{#1}{2})} +
77
```

```
\n@pow{#2}{2}))}))))*((#2>0?(#1>0?270:-90):-90) + atan2(-(#2),-(#1)))/
               78
               79
                      (log10(\n@pow{10}{sqrt((4*\n@pow{#1}{2}))/
                      (\n@pow{#1}{2} + \n@pow{#2}{2}))))))))
               80
               Parametric function for asymptotic approximation of the phase of a complex pole.
               81 \newcommand*{\PhPoleAsymp}[2]{(t < (sqrt(\n@pow{#1}{2} + \n@pow{#2}{2})) ?
                    (-atan2(-(#2),-(#1))):
                    (#2>0?(#1>0?270:-90):-90))}
               Plots of zeros are defined to be negative of plots of poles. The 0- is necessary due
     \MagZero
               to a bug in gnuplot (fixed in version 5.4, patchlevel 3).
\MagZeroAsymp
  \MagZeroLin
               84 \newcommand*{\MagZero}{0-\MagPole}
      \PhZero
               85 \newcommand*{\MagZeroLin}{O-\MagPoleLin}
 \PhZeroAsymp
               86 \newcommand*{\MagZeroAsymp}{0-\MagPoleAsymp}
               87 \newcommand*{\PhZero}{0-\PhPole}
   \PhZeroLin
               88 \newcommand*{\PhZeroLin}{0-\PhPoleLin}
               89 \newcommand*{\PhZeroAsymp}{O-\PhPoleAsymp}
```

3.3 Second order systems.

Although second order systems can be dealt with using the macros defined so far, the following dedicated macros for second order systems involve less computation.

```
Consider the canonical second order transfer function G(s) = \frac{1}{s^2 + 2\zeta w_n s + w_n^2}. We
     \MagCSPoles
\MagCSPolesAsymp
                  start with true, linear, and asymptotic magnitude plots for this transfer function.
  \MagCSPolesLin
                  90 \newcommand*{\MagCSPoles}[2]{(-20*log10(sqrt(\n@pow{\n@pow{\#2}}{2}))
      \PhCSPoles
                         - \ln(pow{t}{2}){2} + \ln(pow{2*#1*#2*t}{2})))
 \PhCSPolesAsymp
                  92 \newcommand*{\MagCSPolesLin}[2]{(t < #2 ? -40*log10(#2) : -40*log10(t))}
                  93 \newcommand*{\MagCSPolesAsymp}{\MagCSPolesLin}
   \PhCSPolesLin
     \MagCSZeros
                  Then, we have true, linear, and asymptotic phase plots for the canonical second
\MagCSZerosAsymp
                  order transfer function.
  \MagCSZerosLin
                  94 \mbox{ } [2]{(-atan2((2*(#1)*(#2)*t),(\n@pow{#2}{2}))}
      \PhCSZeros
                       - \n@pow{t}{2})))
 \PhCSZerosAsymp
                  96 \newcommand*{\PhCSPolesLin}[2]{(t < (#2 / (\n@pow{10}{abs(#1)})) ?
   \PhCSZerosLin
                       (t \ge (\#2 * (\n@pow{10}{abs(\#1)})) ?
                       (#1>0 ? -180 : 180) :
                  99
                       (#1>0 ? (-180*(log10(t*(\n@pow{10}{#1}))/#2))/(2*#1)) :
                 100
                         (180*(log10(t*(\n@pow{10}{abs(#1)})/#2))/(2*abs(#1))))))
                  101
                  102 \newcommand*{\PhCSPolesAsymp}[2]{(#1>0?(t<#2?0:-180):(t<#2?0:180))}
                  Plots of the inverse function G(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 are defined to be negative of
                  plots of poles. The 0- is necessary due to a bug in gnuplot (fixed in version 5.4,
                  patchlevel 3).
                  103 \newcommand*{\MagCSZeros}{0-\MagCSPoles}
                  104 \newcommand*{\MagCSZerosLin}{0-\MagCSPolesLin}
                  105 \newcommand*{\MagCSZerosAsymp}{0-\MagCSPolesAsymp}
                  106 \newcommand*{\PhCSZeros}{0-\PhCSPoles}
                  107 \newcommand*{\PhCSZerosLin}{0-\PhCSPolesLin}
                  108 \newcommand*{\PhCSZerosAsymp}{0-\PhCSPolesAsymp}
```

\MagCSPolesPeak \MagCSZerosPeak

These macros are used to add a resonant peak to linear and asymptotic plots of canonical second order poles and zeros. Since the plots are parametric, a separate \draw command is needed to add a vertical arrow.

```
109 \newcommand*{\MagCSPolesPeak}[3][]{%
                                                         \draw[#1,->] (axis cs:{#3},{-40*log10(#3)}) --
                                                          (axis cs:{#3},{-40*log10(#3)-20*log10(2*abs(#2))})
                                           111
                                           112 }
                                           113 \newcommand*{\MagCSZerosPeak}[3][]{%
                                                         \text{draw}[\#1,->] (axis cs:\{\#3\},\{40*\log10(\#3)\}) --
                                                         (axis cs:{#3}, {40*log10(#3)+20*log10(2*abs(#2))})
                                           115
                                           116 }
            \MagSOPoles Consider a general second order transfer function G(s) = \frac{1}{s^2 + as + b}. We start with
\MagSOPolesAsymp true, linear, and asymptotic magnitude plots for this transfer function.
    \MagSOPolesLin 117 \newcommand*{\MagSOPoles}[2]{%
              \label{locality} $$ \PrSOPoles $_{118}$ (-20*log10(sqrt(\n@pow{#2 - \n@pow{t}{2}}{2} + \n@pow{#1*t}{2})))$
  \PhSOPolesAsymp 119 \newcommand*{\MagSOPolesLin}[2]{%
       \PhSOPolesLin 120 (t < sqrt(abs(#2)) ? -20*log10(abs(#2)) : - 40*log10(t))}
            \MagSOZeros 121 \newcommand*{\MagSOPolesAsymp}{\MagSOPolesLin}
\MagSOZerosAsymp Then, we have true, linear, and asymptotic phase plots for the general second
    \MagSOZerosLin order transfer function.
               \label{local_phsozeros} $$ $122 \rightarrow 122 \end{substitute} $$ $ $ 122 \rightarrow 120 \end{substitute} $$ 
  \PhSOZerosAsymp _{123} \newcommand*{\PhSOPolesLin}[2]{(#2>0 ?
       \label{limits} $$ \PhSOZerosLin_{124} $$ \PhCSPolesLin{(#1/(2*sqrt(#2)))}{(sqrt(#2))} : $$
                                                         (#1>0 ? -180 : 180))}
                                           126 \newcommand*{\PhSOPolesAsymp}[2]{(#2>0 ?
                                                       \PhCSPolesAsymp{(#1/(2*sqrt(#2)))}{(sqrt(#2))} :
                                            128
                                                         (#1>0 ? -180 : 180))}
                                              Plots of the inverse function G(s) = s^2 + as + b are defined to be negative of
                                              plots of poles. The 0- is necessary due to a bug in gnuplot (fixed in version 5.4,
                                              patchlevel 3).
                                            129 \newcommand*{\MagSOZeros}{O-\MagSOPoles}
                                            130 \newcommand*{\MagSOZerosLin}{0-\MagSOPolesLin}
                                            131 \newcommand*{\MagSOZerosAsymp}{O-\MagSOPolesAsymp}
                                            132 \newcommand*{\PhSOZeros}{O-\PhSOPoles}
                                            133 \newcommand*{\PhSOZerosLin}{0-\PhSOPolesLin}
                                            134 \newcommand*{\PhSOZerosAsymp}{0-\PhSOPolesAsymp}
```

\MagSOPolesPeak These macros are used to add a resonant peak to linear and asymptotic plots of \MagSOZerosPeak general second order poles and zeros. Since the plots are parametric, a separate \draw command is needed to add a vertical arrow.

```
135 \newcommand*{\MagSOPolesPeak}[3][]{%
     \draw[#1,->] (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3))}) --
136
     (axis cs:{sqrt(abs(#3))},{-20*log10(abs(#3)) -
137
       20*log10(abs(#2/sqrt(abs(#3))))));
138
139 }
140 \newcommand*{\MagSOZerosPeak}[3][]{%
```

```
141 \draw[#1,->] (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3))}) --
142 (axis cs:{sqrt(abs(#3))},{20*log10(abs(#3))} +
143 20*log10(abs(#2/sqrt(abs(#3))))};
144 }
```

3.4 Commands for Bode plots

3.4.1 User macros

\BodeZPK This

This macro takes lists of complex poles and zeros of the form {re,im}, and values of gain and delay as inputs and constructs parametric functions for the Bode magnitude and phase plots. This is done by adding together the parametric functions generated by the macros for individual zeros, poles, gain, and delay, described above. The parametric functions are then plotted in a tikzpicture environment using the \addplot macro. Unless the package is loaded with the option pgf, the parametric functions are evaluated using gnuplot.

```
145 \newcommand{\BodeZPK}[4][approx/true]{%
```

Most of the work is done by the \parse@opt and the \build@ZPK@plot macros, described in the 'Internal macros' section. The former is used to parse the optional arguments and the latter to extract poles, zeros, gain, and delay from the first mandatory argument and to generate macros \func@mag and \func@ph that hold the magnitude and phase parametric functions.

```
146 \parse@opt{#1}%
147 \gdef\func@mag{}%
148 \gdef\func@ph{}%
149 \build@ZPK@plot{\func@mag}{\func@ph}{\opt@approx}{#2}%
```

The \noexpand macros below are needed to so that only the macro \opt@group is expanded.

```
\edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
150
        \noexpand\begin{groupplot}[%
151
152
          bodeStvle.
          xmin={#3},
153
          xmax={#4},
154
         domain=#3:#4,
155
          height=2.5cm,
156
          xmode=log,
157
          group style = {group size = 1 by 2, vertical sep=0.25cm},
158
          \opt@group
159
       1%
160
     }%
161
162
     \temp@cmd
```

To ensure frequency tick marks on magnitude and the phase plots are always aligned, we use the groupplot library. The \expandafter chain below is used to expand macros in the plot and group optional arguments.

```
163 \if@pgfarg
164 \expandafter\nextgroupplot\expandafter[ytick distance=20,
165 ylabel={Gain (dB)},xmajorticks=false,\optmag@axes]
```

```
\edef\temp@cmd{\noexpand\addplot[thick,\optmag@plot]}%
166
           \temp@cmd {\func@mag};
167
           \optmag@commands;
168
           \expandafter\nextgroupplot\expandafter[ytick distance=45,
169
             ylabel={Phase ($^{\circ}$)},xlabel={Frequency (rad/s)},\optph@axes]
170
171
           \edef\temp@cmd{\noexpand\addplot[thick,\optph@plot]}%
172
           \temp@cmd {\func@ph};
           \optph@commands;
173
         \else
174
```

In gnuplot mode, we increment the idGnuplot counter before every plot to make sure that new and reusable .gnuplot and .table files are generated for every plot.

```
175
         \stepcounter{idGnuplot}
         \expandafter\nextgroupplot\expandafter[ytick distance=20,
176
           ylabel={Gain (dB)},xmajorticks=false,\optmag@axes]
177
         \edef\temp@cmd{\noexpand\addplot[thick,\optmag@plot]}%
178
179
         \temp@cmd gnuplot[gnuplot degrees,gnuplot def] {\func@mag};
          \optmag@commands;
180
         \stepcounter{idGnuplot}
181
         \expandafter\nextgroupplot\expandafter[ytick distance=45,
182
           ylabel={Phase ($^{\circ}$)},xlabel={Frequency (rad/s)},\optph@axes]
183
         \edef\temp@cmd{\noexpand\addplot[thick,\optph@plot]}%
184
         \temp@cmd gnuplot[gnuplot degrees,gnuplot def] {\func@ph};
185
         \optph@commands;
186
187
188
       \end{groupplot}
     \end{tikzpicture}
189
190 }
```

\BodeTF Implementation of this macro is very similar to the \BodeZPK macro above. The only difference is the lack of linear and asymptotic plots and slightly different parsing of the mandatory arguments.

```
191 \newcommand{\BodeTF}[4][]{%
     \parse@opt{#1}%
192
193
     \gdef\func@mag{}%
     \gdef\func@ph{}%
     \build@TF@plot{\func@mag}{\func@ph}{#2}%
195
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
196
        \noexpand\begin{groupplot}[%
197
         bodeStyle,
198
         xmin={#3},
199
         xmax={#4},
200
         domain=#3:#4,
201
         height=2.5cm,
202
         xmode=log,
203
         group style = {group size = 1 by 2, vertical sep=0.25cm},
204
205
         \opt@group
206
       ]%
207
     }%
```

```
\temp@cmd
208
         \if@pgfarg
209
           \expandafter\nextgroupplot\expandafter[ytick distance=20,
210
             ylabel={Gain (dB)},xmajorticks=false,\optmag@axes]
211
           \edef\temp@cmd{\noexpand\addplot[thick,\optmag@plot]}%
212
213
           \temp@cmd {\func@mag};
214
           \optmag@commands;
           \expandafter\nextgroupplot\expandafter[ytick distance=45,
215
             ylabel={Phase ($^{\circ}$)},xlabel={Frequency (rad/s)},\optph@axes]
216
           \verb|\edef| temp@cmd{\noexpand\addplot[thick,\optph@plot]}||
217
           \temp@cmd {\func@ph};
218
219
           \optph@commands;
         \else
220
            \stepcounter{idGnuplot}%
221
           \expandafter\nextgroupplot\expandafter[ytick distance=20,
222
             ylabel={Gain (dB)},xmajorticks=false,\optmag@axes]
223
           \edef\temp@cmd{\noexpand\addplot[thick,\optmag@plot]}%
224
           \temp@cmd gnuplot[gnuplot degrees,gnuplot def] {\func@mag};
225
^{226}
           \optmag@commands;
227
           \stepcounter{idGnuplot}%
           \expandafter\nextgroupplot\expandafter[ytick distance=45,
228
             ylabel={Phase ($^{\circ}$)},xlabel={Frequency (rad/s)},\optph@axes]
229
           \edef\temp@cmd{\noexpand\addplot[thick,\optph@plot]}%
230
           \temp@cmd gnuplot[gnuplot degrees,gnuplot def] {\func@ph};
231
232
           \optph@commands;
233
         \fi
       \end{groupplot}
234
     \end{tikzpicture}
235
236 }
```

\addBodeZPKPlots

This macro is designed to issues multiple \addplot macros for the same set of poles, zeros, gain, and delay. All of the work is done by the \build@ZPK@plot macro.

```
237 \newcommand{\addBodeZPKPlots}[3][true/{}]{%
     \foreach \approx/\opt in {#1} {%
238
239
       \gdef\plot@macro{}%
240
       \gdef\temp@macro{}%
       \ifnum\pdfstrcmp{#2}{phase}=0
241
         \build@ZPK@plot{\temp@macro}{\plot@macro}{\approx}{#3}%
242
243
         \build@ZPK@plot{\plot@macro}{\temp@macro}{\approx}{#3}%
244
245
246
       \if@pgfarg
         \edef\temp@cmd{\noexpand\addplot[thick,\opt]}%
247
248
         \temp@cmd {\plot@macro};
249
         \stepcounter{idGnuplot}%
250
         \edef\temp@cmd{\noexpand\addplot[thick,\opt]}
251
252
         \temp@cmd gnuplot[gnuplot degrees,gnuplot def] {\plot@macro};
253
       \fi
```

```
}%
254
255 }
```

\addBodeTFPlot

This macro is designed to issues a single \addplot macros for the set of coefficients and delay. All of the work is done by the \build@TF@plot macro.

```
256 \newcommand{\addBodeTFPlot}[3][thick]{%
     \gdef\plot@macro{}%
257
     \gdef\temp@macro{}%
258
     \ifnum\pdfstrcmp{#2}{phase}=0
259
       \build@TF@plot{\temp@macro}{\plot@macro}{#3}%
260
261
       \build@TF@plot{\plot@macro}{\temp@macro}{#3}%
262
263
264
     \if@pgfarg
       \addplot[#1]{\plot@macro};
265
     \else
266
       \stepcounter{idGnuplot}%
267
268
       \addplot[#1] gnuplot[gnuplot degrees, gnuplot def] {\plot@macro};
269
270 }
```

\addBodeComponentPlot

This macro is designed to issue a single \addplot macro capable of plotting linear combinations of the basic components described in Section 2.1.1. The only work to do here is to handle the pgf package option.

```
271 \newcommand{\addBodeComponentPlot}[2][thick]{%
     \if@pgfarg
272
       \addplot[#1]{#2};
273
274
       \stepcounter{idGnuplot}%
275
276
       \addplot[#1] gnuplot[gnuplot degrees,gnuplot def] {#2};
277
     \fi
278 }
```

BodePlot An environment to host macros that pass parametric functions to \addplot macros. Uses the defaults specified in bodeStyle to create a shortcut that includes the tikzpicture and semilogaxis environments.

```
279 \newenvironment{BodePlot}[3][]{%
280
     \parse@env@opt{#1}%
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]
281
282
       \noexpand\begin{semilogxaxis}[%
283
          bodeStyle,
          xmin={\#2},
284
         xmax={#3},
285
286
          domain=#2:#3,
287
          height=2.5cm,
288
          xlabel={Frequency (rad/s)},
289
          \opt@axes
290
       1%
     }%
291
```

```
292 \temp@cmd
293 }{
294 \end{semilogxaxis}
295 \end{tikzpicture}
296 }
```

3.4.2 Internal macros

\add@feature

This is an internal macro to add a basic component (pole, zero, gain, or delay), described using one of the macros in Section 2.1.1 (input #2), to a parametric function stored in a global macro (input #1). The basic component value (input #3) is a complex number of the form {re,im}. If the imaginary part is missing, it is assumed to be zero. Implementation made possible by this StackExchange answer.

```
297 \newcommand*{\add@feature}[3]{%
     \ifcat$\detokenize\expandafter{#1}$%
298
       \xdef#1{\unexpanded\expandafter{#1 0+#2}}%
299
300
       \xdef#1{\unexpanded\expandafter{#1+#2}}%
301
302
     \fi
     \foreach \y [count=\n] in #3 {%
303
       \xdef#1{\unexpanded\expandafter{#1}{\y}}%
304
       \xdef\Last@LoopValue{\n}%
305
306
307
     \ifnum\Last@LoopValue=1%
       \xdef#1{\unexpanded\expandafter{#1}{0}}%
308
     \fi
309
310 }
```

\build@ZPK@plot

This is an internal macro to build parametric Bode magnitude and phase plots by concatenating basic component (pole, zero, gain, or delay) macros (Section 2.1.1) to global magnitude and phase macros (inputs #1 and #2). The \add@feature macro is used to do the concatenation. The basic component macros are inferred from a feature/{values} list, where feature is one of z,p,k, and d, for zeros, poles, gain, and delay, respectively, and {values} is a comma separated list of comma separated lists (complex numbers of the form {re,im}). If the imaginary part is missing, it is assumed to be zero.

```
311 \newcommand{\build@ZPK@plot}[4]{%
     \foreach \feature/\values in {#4} {%
312
       \ifnum\pdfstrcmp{\feature}{z}=0
313
314
         \foreach \z in \values {%
315
           \ifnum\pdfstrcmp{#3}{linear}=0
              \add@feature{#2}{\PhZeroLin}{\z}%
316
317
              \add@feature{#1}{\MagZeroLin}{\z}%
           \else
318
              \ifnum\pdfstrcmp{#3}{asymptotic}=0
319
                \add@feature{#2}{\PhZeroAsymp}{\z}%
320
321
                \add@feature{#1}{\MagZeroAsymp}{\z}%
```

```
\else
322
                \d00feature{#2}{\PhZero}{\z}%
323
                \add@feature{#1}{\MagZero}{\z}%
324
              \fi
325
           \fi
326
         }%
327
328
       \fi
       \ifnum\pdfstrcmp{\feature}{p}=0
329
         \foreach \p in \values {%
330
           \ifnum\pdfstrcmp{#3}{linear}=0
331
              \add@feature{#2}{\PhPoleLin}{\p}%
332
              \add@feature{#1}{\MagPoleLin}{\p}%
333
           \else
334
              \ifnum\pdfstrcmp{#3}{asymptotic}=0
335
                \add@feature{#2}{\PhPoleAsymp}{\p}%
336
                \add@feature{#1}{\MagPoleAsymp}{\p}%
337
338
                \add@feature{#2}{\PhPole}{\p}%
339
340
                \add@feature{#1}{\MagPole}{\p}%
341
             \fi
           \fi
342
         }%
343
       \fi
344
       \ifnum\pdfstrcmp{\feature}{k}=0
345
346
         \ifnum\pdfstrcmp{#3}{linear}=0
           \add@feature{#2}{\PhKLin}{\values}%
347
           \add@feature{#1}{\MagKLin}{\values}%
348
349
         \else
           \ifnum\pdfstrcmp{#3}{asymptotic}=0
350
              \add@feature{#2}{\PhKAsymp}{\values}%
351
              \add@feature{#1}{\MagKAsymp}{\values}%
352
353
           \else
354
              \add@feature{#2}{\PhK}{\values}%
              \add@feature{#1}{\MagK}{\values}%
355
           \fi
356
         \fi
357
       \fi
358
       \ifnum\pdfstrcmp{\feature}{d}=0
359
360
         \ifnum\pdfstrcmp{#3}{linear}=0
           \PackageError {bodeplot} {Linear approximation for pure delays is not
361
362
           supported.} {Plot the true Bode plot using 'true' instead of 'linear'.}
363
           \ifnum\pdfstrcmp{#3}{asymptotic}=0
364
             \PackageError {bodeplot} {Asymptotic approximation for pure delays is not
365
366
             supported.} {Plot the true Bode plot using 'true' instead of 'asymptotic'.}
367
368
              \ifdim\values pt < Opt
369
                \PackageError {bodeplot} {Delay needs to be a positive number.}
             \fi
370
              \add@feature{#2}{\PhDel}{\values}%
371
```

```
372 \add@feature{#1}{\MagDel}{\values}%
373 \fi
374 \fi
375 \fi
376 }%
377 }
```

\build@TF@plot

This is an internal macro to build parametric Bode magnitude and phase functions by computing the magnitude and the phase given numerator and denominator coefficients and delay (input #3). The functions are assigned to user-supplied global magnitude and phase macros (inputs #1 and #2).

```
378 \newcommand{\build@TF@plot}[3]{%
     \gdef\num@real{0}%
379
     \gdef\num@im{0}%
380
     \gdef\den@real{0}%
381
    \gdef\den@im{0}%
382
    \gdef\loop@delay{0}%
383
     \foreach \feature/\values in {#3} {%
384
       \ifnum\pdfstrcmp{\feature}{num}=0
385
        \foreach \numcoeff [count=\numpow] in \values {%
386
          \xdef\num@degree{\numpow}%
387
        }%
388
389
        \foreach \numcoeff [count=\numpow] in \values {%
390
          \pgfmathtruncatemacro{\currentdegree}{\num@degree-\numpow}%
          \ifnum\currentdegree = 0
391
            \xdef\num@real{\num@real+\numcoeff}%
392
          \else
393
            \ifodd\currentdegree
394
              395
                (\n@pow{t}{\currentdegree}))}%
396
397
              \xdef\num@real{\num@real+(\numcoeff*(\n@pow{-1}{(\currentdegree)/2})*%
398
                (\n@pow{t}{\currentdegree}))}%
399
            \fi
400
          \fi
401
        }%
402
403
       \ifnum\pdfstrcmp{\feature}{den}=0
404
        \foreach \dencoeff [count=\denpow] in \values {%
405
          \xdef\den@degree{\denpow}%
406
        }%
407
        \foreach \dencoeff [count=\denpow] in \values {%
408
          \verb|\pgfmathtruncatemacro{\currentdegree}{\den@degree-\denpow}||
409
          \ifnum\currentdegree = 0
410
            \xdef\den@real{\den@real+\dencoeff}%
411
412
            \ifodd\currentdegree
413
              414
415
                (\n@pow{t}{\currentdegree}))}%
416
            \else
```

```
\xdef\den@real{\den@real+(\dencoeff*(\n@pow{-1}{(\currentdegree)/2})*%
417
                  (\n@pow{t}{\currentdegree}))}%
418
              \fi
419
           \fi
420
         }%
421
422
       \fi
423
       \ifnum\pdfstrcmp{\feature}{d}=0
         \xdef\loop@delay{\values}%
424
       \fi
425
     ጉ%
426
     \xdef#2{(\n@mod{atan2((\num@im),(\num@real))-atan2((\den@im),%
427
428
       (\den@real))+360}{360}-\loop@delay*180*t/pi)}%
     \xdef#1{(20*log10(sqrt((\n@pow{\num@real}{2}))+(\n@pow{\num@im}{2})))-%
429
       20*log10(sqrt((\n@pow{\den@real}{2})+(\n@pow{\den@im}{2})))))%
430
431 }
```

\parse@opt

Parses options supplied to the main Bode macros. A for loop over tuples of the form \obj/\typ/\opt with a long list of nested if-else statements does the job. If the input \obj is plot, axes, group, approx, or tikz the corresponding \opt are passed, unexpanded, to the \addplot macro, the \nextgroupplot macro, the groupplot environment, the \build@ZPK@plot macro, and the tikzpicture environment, respectively. If \obj is commands, the corresponding \opt are stored, unexpanded, in the macros \optph@commands and \optmag@commands, to be executed in appropriate axis environments.

```
432 \newcommand{\parse@opt}[1]{%
433
     \gdef\optmag@axes{}%
     \gdef\optph@axes{}%
434
435
     \gdef\optph@plot{}%
436
      \gdef\optmag@plot{}%
      \gdef\opt@group{}%
      \gdef\opt@approx{}%
439
      \gdef\optph@commands{}%
      \gdef\optmag@commands{}%
440
      \gdef\opt@tikz{}%
441
     \foreach \obj/\typ/\opt in {#1} {\%}
442
443
        \ifnum\pdfstrcmp{\obj}{plot}=0
          \ifnum\pdfstrcmp{\typ}{mag}=0
444
            \xdef\optmag@plot{\unexpanded\expandafter{\opt}}%
445
446
          \else
            \displaystyle \prod \Big\{ \int \{ typ \} \{ ph \} = 0 \Big\}
447
              \xdef\optph@plot{\unexpanded\expandafter{\opt}}%
448
            \else
449
              \xdef\optmag@plot{\unexpanded\expandafter{\opt}}%
450
              \xdef\optph@plot{\unexpanded\expandafter{\opt}}%
451
452
          \fi
453
        \else
454
          \ifnum\pdfstrcmp{\obj}{axes}=0
455
            \ifnum\pdfstrcmp{\typ}{mag}=0
456
```

```
\xdef\optmag@axes{\unexpanded\expandafter{\opt}}%
457
            \else
458
              \ifnum\pdfstrcmp{\typ}{ph}=0
459
                \xdef\optph@axes{\unexpanded\expandafter{\opt}}%
460
461
              \else
462
                \xdef\optmag@axes{\unexpanded\expandafter{\opt}}%
463
                \xdef\optph@axes{\unexpanded\expandafter{\opt}}%
              \fi
464
           \fi
465
         \else
466
            \ifnum\pdfstrcmp{\obj}{group}=0
467
468
              \xdef\opt@group{\unexpanded\expandafter{\opt}}%
            \else
469
              \ifnum\pdfstrcmp{\obj}{approx}=0
470
                \xdef\opt@approx{\unexpanded\expandafter{\opt}}%
471
              \else
472
                \ifnum\pdfstrcmp{\obj}{commands}=0
473
                  \inf \pdfstrcmp{\typ}{phase}=0
474
475
                    \xdef\optph@commands{\unexpanded\expandafter{\opt}}%
476
                    \xdef\optmag@commands{\unexpanded\expandafter{\opt}}%
477
                  \fi
478
                \else
479
                  \ifnum\pdfstrcmp{\obj}{tikz}=0
480
481
                    \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
482
                  \else
                    \xdef\optmag@plot{\optmag@plot,\unexpanded\expandafter{\obj}}%
483
                    \xdef\optph@plot{\optph@plot,\unexpanded\expandafter{\obj}}%
484
                  \fi
485
                \fi
486
              \fi
487
488
           \fi
489
         \fi
490
       \fi
491
     }%
492 }
```

\parse@env@opt

Parses options supplied to the Bode, Nyquist, and Nichols environments. A for loop over tuples of the form \obj/\opt, processed using nested if-else statements does the job. The input \obj should either be axes or tikz, and the corresponding \opt are passed, unexpanded, to the axis environment and the tikzpicture environment, respectively.

```
493 \newcommand{\parse@env@opt}[1]{%
494 \gdef\opt@axes{}%
495 \gdef\opt@tikz{}%
496 \foreach \obj/\opt in {#1} {%
497 \ifnum\pdfstrcmp{\obj}{axes}=0
498 \xdef\opt@axes{\unexpanded\expandafter{\opt}}%
499 \else
```

```
500 \ifnum\pdfstrcmp{\obj}{tikz}=0
501 \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
502 \else
503 \xdef\opt@axes{\opt@axes,\unexpanded\expandafter{\obj}}%
504 \fi
505 \fi
506 }%
507}
```

3.5 Nyquist plots

3.5.1 User macros

\NyquistZPK

Converts magnitude and phase parametric functions built using \build@ZPK@plot into real part and imaginary part parametric functions. A plot of these is the Nyquist plot. The parametric functions are then plotted in a tikzpicture environment using the \addplot macro. Unless the package is loaded with the option pgf, the parametric functions are evaluated using gnuplot. A large number of samples is typically needed to get a smooth plot because frequencies near 0 result in plot points that are very close to each other. Linear frequency sampling is unnecessarily fine near zero and very coarse for large ω . Logarithmic sampling makes it worse, perhaps inverse logarithmic sampling will help, pull requests to fix that are welcome!

```
508 \mbox{ \newcommand{\NyquistZPK} [4] [] {\%}}
509
                                  \parse@N@opt{#1}%
                                   \gdef\func@mag{}%
510
                                   \gdef\func@ph{}%
511
                                  \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
512
                                  \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
513
                                                \noexpand\begin{axis}[%
514
515
                                                           bodeStyle,
516
                                                           domain=#3:#4,
                                                            height=5cm,
517
                                                            xlabel={{Re}},
518
                                                            ylabel={{\mathbb{S}},
519
                                                            samples=500,
520
                                                            \opt@axes
521
522
                                             ]%
                                 }%
523
524
525
                                                             \addplot [only marks, mark=+, thick, red] (-1 , 0);
                                                            \verb|\edg| $$ \operatorname{long}(M) = \operatorname{long}(M) + \operatorname{lon
526
                                                           \if@pgfarg
527
528
                                                                         \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
529
                                                                                     {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
530
                                                                         \opt@commands;
531
532
                                                                         \stepcounter{idGnuplot}%
                                                                         \temp@cmd gnuplot[parametric,gnuplot degrees,gnuplot def] {%
533
```

```
534 \n@pow{10}{((\func@mag)/20)}*cos(\func@ph),
535 \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
536 \opt@commands;
537 \fi
538 \end{axis}
539 \end{tikzpicture}
540}
```

\NyquistTF Implementation of this macro is very similar to the \NyquistZPK macro above. The only difference is a slightly different parsing of the mandatory arguments via \build@TF@plot.

```
541 \newcommand{\NyquistTF}[4][]{%
     \parse@N@opt{#1}%
542
     \gdef\func@mag{}%
543
544
     \gdef\func@ph{}%
     \build@TF@plot{\func@mag}{\func@ph}{#2}%
545
546
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
547
        \noexpand\begin{axis}[%
         bodeStyle,
548
         domain=#3:#4,
549
550
         height=5cm,
551
         xlabel={{Re}},
552
         ylabel={$\Im$},
         samples=500,
553
         \opt@axes
554
       ]%
555
     }%
556
557
     \temp@cmd
          \addplot [only marks, mark=+, thick, red] (-1 , 0);
558
          \edef\temp@cmd{\noexpand\addplot[thick,\unexpanded\expandafter{\opt@plot}]}%
559
         \if@pgfarg
560
            \temp@cmd ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
561
              {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)});}
562
            \opt@commands;
563
564
         \else
565
            \stepcounter{idGnuplot}%
            \temp@cmd gnuplot[parametric,gnuplot degrees,gnuplot def]{%
566
              \n @pow{10}{((\func@mag)/20)}*cos(\func@ph),
567
              \n \pow{10}{((\func@mag)/20)}*sin(\func@ph)};
568
            \opt@commands;
569
         \fi
570
571
        \end{axis}
572
     \end{tikzpicture}
573 }
```

\addNyquistZPKPlot Adds Nyquist plot of a transfer function in ZPK form. This macro is designed to pass two parametric function to an \addplot macro. The parametric functions for phase (\func@ph) and magnitude (\func@mag) are built using the \build@ZPK@plot macro, converted to real and imaginary parts and passed to

\addplot commands.

```
574 \newcommand{\addNyquistZPKPlot}[2][]{%
     \gdef\func@mag{}%
575
     \gdef\func@ph{}%
576
577
     \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
578
     \if@pgfarg
       \addplot [#1] ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
579
         {\n@pow{10}}((\func@mag)/20)}*sin(\func@ph)});
580
581
     \else
       \stepcounter{idGnuplot}%
582
       \addplot [#1] gnuplot[parametric,gnuplot degrees,gnuplot def]{%
583
         \n0pow{10}{((\nc0mag)/20)}*cos(\nc0ph),
584
         \n \pow{10}{((\func@mag)/20)}*sin(\func@ph)};
585
586
     \fi
587 }
```

\addNyquistTFPlot

Adds Nyquist plot of a transfer function in TF form. This macro is designed to pass two parametric function to an \addplot macro. The parametric functions for phase (\func@ph) and magnitude (\func@mag) are built using the \build@TF@plot macro, converted to real and imaginary parts and passed to \addplot commands.

```
588 \newcommand{\addNyquistTFPlot}[2][]{%
     \gdef\func@mag{}%
589
590
     \gdef\func@ph{}%
     \build@TF@plot{\func@mag}{\func@ph}{#2}%
592
       \addplot [#1] ( {\n@pow{10}{((\func@mag)/20)}*cos(\func@ph)},
593
         {\n@pow{10}{((\func@mag)/20)}*sin(\func@ph)} );
594
     \else
595
       \stepcounter{idGnuplot}%
596
       \addplot [#1] gnuplot[parametric,gnuplot degrees,gnuplot def]{%
597
          \n \pow{10}{((\func@mag)/20)}*cos(\func@ph),
598
          \n@pow{10}{((\func@mag)/20)}*sin(\func@ph)};
599
600
     \fi
601 }
```

NyquistPlot An environment to host \addNyquist... macros that pass parametric functions to \addplot. Uses the defaults specified in bodeStyle to create a shortcut that includes the tikzpicture and axis environments.

```
602 \newenvironment{NyquistPlot}[3][]{\%
603 \parse@env@opt{#1}%
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
604
        \noexpand\begin{axis}[%
605
606
         bodeStyle,
607
         height=5cm,
         domain=#2:#3
608
         xlabel={{Re}},
609
610
         ylabel={$\Im$},
611
         \opt@axes
```

```
]%
612
     }%
613
     \temp@cmd
614
        \addplot [only marks, mark=+, thick, red] (-1, 0);
615
616 }{%
617
        \end{axis}
618
     \end{tikzpicture}
619 }
```

3.5.2Internal commands

\parse@N@opt

Parses options supplied to the main Nyquist and Nichols macros. A for loop over tuples of the form \obj/\opt, processed using nested if-else statements does the job. If the input \obj is plot, axes, or tikz then the corresponding \opt are passed, unexpanded, to the \addplot macro, the axis environment, and the tikzpicture environment, respectively.

```
620 \newcommand{\parse@N@opt}[1]{%
     \gdef\opt@axes{}%
621
     \gdef\opt@plot{}%
622
623
     \gdef\opt@commands{}%
624
     \gdef\opt@tikz{}
     \foreach \obj/\opt in {#1} {%
625
       \ifnum\pdfstrcmp{\obj}{axes}=0
626
         \xdef\opt@axes{\unexpanded\expandafter{\opt}}%
627
628
         \ifnum\pdfstrcmp{\obj}{plot}=0
629
            \xdef\opt@plot{\unexpanded\expandafter{\opt}}%
630
631
            \ifnum\pdfstrcmp{\obj}{commands}=0
632
              \xdef\opt@commands{\unexpanded\expandafter{\opt}}%
633
            \else
634
              \ifnum\pdfstrcmp{\obj}{tikz}=0
635
636
                \xdef\opt@tikz{\unexpanded\expandafter{\opt}}%
637
                \xdef\opt@plot{\opt@plot,\unexpanded\expandafter{\obj}}%
638
              \fi
639
           \fi
640
         \fi
641
       \fi
642
     }%
643
644 }
```

3.6 Nichols charts

\NicholsZPK $\addNicholsZPKChart 646$ \parse@N@opt{#1}% \addNicholsTFChart

These macros and the NicholsChart environment generate Nichols charts, and they are implemented similar to their Nyquist counterparts.

```
NicholsChart _{645} \mbox{ newcommand{\NicholsZPK}[4][]{%}}
```

```
\gdef\func@mag{}%
647
     \gdef\func@ph{}%
648
     \build@ZPK@plot{\func@mag}{\func@ph}{}{#2}%
649
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
650
        \noexpand\begin{axis}[%
651
652
         bodeStyle,
653
         domain=#3:#4,
         height=5cm,
654
         xlabel={Phase (degrees)},
655
         ylabel={Gain (dB)},
656
         samples=500,
657
658
         \opt@axes
       ]%
659
     }%
660
     \temp@cmd
661
          \edef\temp@cmd{\noexpand\addplot[thick,\opt@plot]}%
662
         \if@pgfarg
663
            \temp@cmd ( {\func@ph} , {\func@mag} );
664
665
            \opt@commands;
666
         \else
            \stepcounter{idGnuplot}%
667
            \temp@cmd gnuplot[parametric, gnuplot degrees, gnuplot def]
668
              { \func@ph , \func@mag };
669
            \opt@commands;
670
         \fi
671
672
        \end{axis}
673
     \end{tikzpicture}
674 }
675 \newcommand{\NicholsTF}[4][]{%
     \parse@N@opt{#1}%
676
     \gdef\func@mag{}%
677
678
     \gdef\func@ph{}%
679
     \build@TF@plot{\func@mag}{\func@ph}{#2}%
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
680
681
        \noexpand\begin{axis}[%
682
         bodeStyle,
         domain=#3:#4,
683
684
         height=5cm,
685
         xlabel={Phase (degrees)},
         ylabel={Gain (dB)},
686
687
         samples=500,
688
         \opt@axes
       ]%
689
     }%
690
691
     \temp@cmd
692
         \edef\temp@cmd{\noexpand\addplot[thick,\opt@plot]}%
693
         \if@pgfarg
            \temp@cmd ( {\func@ph} , {\func@mag} );
694
695
            \opt@commands;
696
         \else
```

```
697
            \stepcounter{idGnuplot}%
698
            \temp@cmd gnuplot[parametric, gnuplot degrees, gnuplot def]
              { \func@ph , \func@mag };
699
            \opt@commands;
700
          \fi
701
702
        \end{axis}
703
     \end{tikzpicture}
704 }
705 \newenvironment{NicholsChart}[3][]{%
     \edef\temp@cmd{\noexpand\begin{tikzpicture}[\opt@tikz]%
706
        \noexpand\begin{axis}[%
707
708
          bodeStyle,
709
          domain=#2:#3
          height=5cm,
710
          ytick distance=20,
711
          xtick distance=15,
712
          xlabel={Phase (degrees)},
713
          ylabel={Gain (dB)},
714
715
          \opt@axes
716
       ]%
     }%
717
     \temp@cmd
718
719 }{
        \end{axis}
720
721
      \end{tikzpicture}
722 }
723 \newcommand{\addNicholsZPKChart}[2][]{%
      \gdef\func@mag{}%
724
     \gdef\func@ph{}%
725
     \label{lem:local_decomp} $$ \left(\frac{2FK@plot{\frac{mag}{\int unc@ph}{}{\#2}}\right) $$
726
     \if@pgfarg
727
728
        \addplot [#1] ( {\func@ph} , {\func@mag} );
729
     \else
        \stepcounter{idGnuplot}%
730
        \addplot [#1] gnuplot[parametric,gnuplot degrees,gnuplot def]
731
          {\func@ph , \func@mag};
732
     \fi
733
734 }
735 \newcommand{\addNicholsTFChart}[2][]{%
     \gdef\func@mag{}%
736
737
      \gdef\func@ph{}%
     \build@TF@plot{\func@mag}{\func@ph}{#2}%
738
     \if@pgfarg
739
        \addplot [#1] ( {\func@ph} , {\func@mag} );
740
741
     \else
742
        \stepcounter{idGnuplot}%
743
        \addplot [#1] gnuplot[gnuplot degrees,gnuplot def]
          {\func@ph , \func@mag};
744
745
     \fi
746 }
```

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Carrela a la	\da:- 289 414 497 420	${f G}$
Symbols	\den@im 382, 414, 427, 430	
\Oppgragfalse 5	\den@real 381,	$\gnuplot_{\square} def \ldots \underline{5}$
\@pgfargtrue 7	411, 417, 428, 430	$\gnuplot_{\sqcup} degrees \dots \underline{5}$
A	\dencoeff 405,	т
A	408, 411, 414, 417	I
\add@feature <u>297</u> , 316,	$\verb \denpow 405, 406, 408, 409 $	\idGnuplot $\underline{5}$
317, 320, 321,	To.	\ifcat 298
323, 324, 332,	E	\ifluatex 2
333, 336, 337,	environments:	\ifnum 26,
339, 340, 347,	BodePlot $\dots 279$	241, 259, 307,
348, 351, 352,	${f F}$	313, 315, 319,
354, 355, 371, 372	\func@mag . 147, 149,	329, 331, 335,
\addBodeComponentPlot		345, 346, 350,
	, , , ,	359, 360, 364,
\addBodeTFPlot 256	195, 213, 225, 510, 512, 528,	385, 391, 404,
\addBodeZPKPlots 237	, , , , ,	410, 423, 443,
\addNicholsTFChart . $\underline{645}$	529, 534, 535,	444, 447, 455,
\addNicholsZPKChart $\underline{645}$	543, 545, 561,	456, 459, 467,
\addNyquistTFPlot . $\underline{588}$	562, 567, 568,	470, 473, 474,
\addNyquistZPKPlot . 574	575, 577, 579,	480, 497, 500,
_	580, 584, 585,	626, 629, 632, 635
В	589, 591, 593,	\ifwindows 31
BodePlot (environ-	594, 598, 599,	\immediate 32
ment) $\dots $ $\underline{279}$	647, 649, 664,	-
\bodeStyle <u>35</u>	669, 677, 679,	J
\BodeTF <u>191</u>	694, 699, 724,	\jobname 21
\BodeZPK <u>145</u>	726, 728, 732,	${f L}$
\build@TF@plot 195,	736, 738, 740, 744	-
260, 262, 378,	\func@ph 148, 149,	\Last@LoopValue 305, 307
545, 591, 679, 738	172, 185, 194,	$\verb \loop@delay 383, 424, 428 $
\build@ZPK@plot 149,	195, 218, 231,	${f M}$
242, 244, 311,	511, 512, 528,	
512, 577, 649, 726	529, 534, 535, 544, 545, 561,	$\MagCSPoles \dots 90$ $\MagCSPolesAsymp \dots 90$
\mathbf{C}	562, 567, 568,	\MagCSPolesLin 90
\circ . 170, 183, 216, 229	576, 577, 579,	\MagCSPolesPeak 109
	580, 584, 585,	\MagCSZeros 90
\currentdegree 390, 391,	590, 591, 593,	$\Mag CSZ eros Asymp 90$
394–396, 398,	594, 598, 599,	\MagCSZerosLin 90
, , , ,	648, 649, 664,	\MagCSZerosPeak 109
399, 409, 410,	669, 678, 679,	\MagDel 55, 372
413–415, 417, 418	694, 699, 725,	\MagK 49, 355
D	726, 728, 732,	$\MagKAsymp \dots \underline{49}, 352$
\den@degree 406, 409	737, 738, 740, 744	\MagKLin 49, 348
(40110406100 100, 100	101, 100, 110, 111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

\MagPole $57, 84, 340$	\opt@axes . $289, 494,$	346, 350, 359,
$\MagPoleAsymp 57, 86, 337$	498, 503, 521,	360, 364, 385,
\MagPoleLin . $\overline{57}$, 85, 333	554, 611, 621,	404, 423, 443,
\MagSOPoles <u>117</u>	627, 658, 688, 715	444, 447, 455,
_	, , , , , , , , , , , , , , , , , , , ,	456, 459, 467,
\MagSOPolesAsymp <u>117</u>	\opt@commands	
$\MagSOPolesLin \dots 117$. 530, 536, 563,	470, 473, 474,
\MagSOPolesPeak 135	569, 623, 633,	480, 497, 500,
$\MagSOZeros \dots 117$	665, 670, 695, 700	626, 629, 632, 635
$\MagSOZerosAsymp 117$	\opt@group	\pgfplots@gnuplot@format
$\MagSOZerosLin \dots 117$. 159, 205, 437, 468	27
$\MagSOZerosPeak 135$	\opt@plot	\pgfplotsset 24, 35
\MagZero $\dots \underline{84}, \overline{324}$. 526, 559, 622,	\PhCSPoles 90
$\mbox{MagZeroAsymp}$. $\mbox{84}$, 321	630, 638, 662, 692	\PhCSPolesAsymp 90, 127
	\opt@tikz . 150, 196,	\PhCSPolesLin $\underline{90}$, 124
\MagZeroLin 84 , 317	281, 441, 481,	
IN T		\PhCSZeros 90
N	495, 501, 513,	\PhCSZerosAsymp 90
\n 303, 305	546, 604, 624,	\PhCSZerosLin 90
$\verb n@mod \underline{5}, 65, 427 $	636, 650, 680, 706	\PhDel 56, 371
\n@pow . 5 , $58-60$, 70 ,	\optmag@axes	\PhK $49, 354$
71, 73, 74, 76–	. 165, 177, 211,	\PhKAsymp $49, 55, 351$
81, 90, 91, 94-	223, 433, 457, 462	\PhKLin $49, 55, 347$
96, 98, 100, 101,	\optmag@commands	\PhPole $\overline{57}$, $\overline{87}$, $\overline{339}$
118, 122, 395,	168, 180,	\PhPoleAsymp 57 , 89, 336
396, 398, 399,	214, 226, 440, 477	\PhPoleLin . 57 , 88, 332
414, 415, 417,	\optmag@plot 166,	\PhSOPoles 117
418, 429, 430,	178, 212, 224,	
		\PhSOPolesAsymp 117
528, 529, 534,	436, 445, 450, 483	\PhSOPolesLin 117
535, 561, 562,	\optph@axes	\PhS0Zeros <u>117</u>
567, 568, 579,	. 170, 183, 216,	\P
580, 584, 585,	229, 434, 460, 463	\PhS0ZerosLin <u>117</u>
593, 594, 598, 599	\optph@commands	\PhZero $\underline{84}$, 323
\newcounter 16	173, 186,	$\PhZeroAsymp \dots 84, 320$
\newenvironment	219, 232, 439, 475	\PhZeroLin <u>84</u> , 316
$\dots 279, 602, 705$	\optph@plot 171,	\plot@macro
\NicholsChart 645	184, 217, 230,	. 239, 242, 244,
\NicholsTF $\dots \dots 645$	435, 448, 451, 484	
\NicholsZPK $\underline{645}$	100, 110, 101, 101	260, 262, 265, 268
\num@degree 387, 390	P	200, 202, 203, 208
		\mathbf{S}
\num@im 380, 395, 427, 429	-	~
\num@real 379,		\setcounter 17
392, 398, 427, 429		\stepcounter $175, 181,$
\numcoeff \dots 386,	$280, \underline{493}, 603$	221, 227, 250,
389, 392, 395, 398	$\verb \parse@N@opt 509,$	267, 275, 532,
\numpow 386, 387, 389, 390	$542, \ \underline{620}, \ 646, \ 676$	565, 582, 596,
\NyquistPlot $\dots \dots \underline{602}$	\parse@opt 146, 192, 432	667, 697, 730, 742
\NyquistTF <u>541</u>	\pdf@strcmp 3	
\NyquistZPK 508	\pdfstrcmp	${f T}$
• •	<u>1, 241, 259, 313,</u>	\temp@cmd 150,
O	315, 319, 329,	162, 166, 167,
\opt@approx 149, 438, 471	331, 335, 345,	171, 172, 178,
	55-, 555, 515,	,,,

179,	184,	185,	662, 664, 668,	372, 384, 386,
196,	208,	212,	680, 691, 692,	389, 405, 408, 424
213,	217,	218,	694, 698, 706, 718	
224,	225,	230,	$\texttt{ar{t}emp@macro}\ 240,242,$	\mathbf{W}
231,	247,	248,	244, 258, 260, 262	\write $\dots 32$
251,	252,	281,		
292,	513,	524,	\mathbf{V}	\mathbf{Y}
526,	528,	533,	\value 26	\y 303, 304
546.	557,	559.	\values $312, 314,$	
,	566,		330, 347, 348,	${f z}$
,	650,	,	351, 352, 354,	\z 314, 316, 317,
014,	550,	001,	355, 368, 371,	320, 321, 323, 324

Change History

v1.0	\NyquistTF: Added commands
General: Initial release 1	and tikz options 28
v1.0.1	\NyquistZPK: Added commands
\BodeZPK: Pass arbitrary TikZ	and tikz options 27
commands as options 18	\parse@N@opt: Added commands
\addBodeZPKPlots: Improved	and tikz options 30
optional argument handling 20	\parse@env@opt: Added tikz
v1.0.2	option to environments 26
gnuplot⊔degrees: Fixed issue #1 14	\parse@opt: Added Tikz option . 25
	gnuplot⊔def: Added jobname to
v1.0.3	gnuplot prefix
\BodeTF: Added Tikz option 19	NicholsChart: Added tikz option
\BodeZPK: Added Tikz option 18	to environments 30
\NicholsTF: Added commands	NyquistPlot: Added tikz option to
and tikz options 30	environments 29
\NicholsZPK: Added commands	BodePlot: Added tikz option to
and tikz options 30	environments