

GoogLeNet & ResNet

——ILSVRC: 2014/2015 Champion

学生创新中心: 肖雄子彦

目录 / CONTENTS

GoogLeNet 与 Inception模块

电影《盗梦空间》(inception)

卷积核与感受野?

信息分布更全局性的图像偏好较大的卷积核,信息分布比较局部的图像偏好较小的卷积核。

较小卷积核

稍大卷积核

大卷积核

Inception: deeper or wider?

Inception 模块

一般提升网络性能最直接的办法是增加深度,但存在以下问题:

- 参数多,简单堆叠卷积层非常消耗计算资源, 梯度更新较为困难
- 训练数据集有限,非常深的网络容易过拟合。

inception在同一层级上运行多个不同尺寸的filter 网络本质上会变得稍微「宽一些」,而不是「更深」

CNN 发展史上一个重要的里程碑

Inception V1

并行执行多个卷积或池化操作, 将输出结果拼接为一个非常深的特征图。

使用 3 个不同大小的kernel(1x1、3x3、5x5)对input 进行卷积操作,同时执行max-pooling 所有子层的输出最后会被级联拼接起来,并作为下一个 Inception 模块的输入。

参数: (1×1×192×64) + (3×3×192×128) + (5×5×192×32) = 387072

Inception模块

Inception Module

Inception V1

Inception V1

Bottleneck结构,大大减少了参数量

在3x3、5x5前、max pooling后分别加上1x1的卷积核,降低特征图的厚度

采用 Inception 的 GoogLeNet

使用了9个线性堆叠的Inception模块。它有22层(包括池化层的话是27层)。 在最后一个Inception模块使用全局平均池化(GAP)。

The total loss = real_loss + 0.3 * aux_loss_1 + 0.3 * aux_loss_2

InceptionV2 – 更少的参数

Inception V2

《Rethinking the Inception Architecture for Computer Vision》, 提出了一系列能增加准确度和减少计算复杂度的修正方法。

InceptionV2 - BN

Inception V2

提出了Batch Normalization(批标准化)

机器学习领域的重要假设: 训练数据和测试数据满足独立同分布

随着网络加深,在训练过程中,样本分布逐渐发生偏移或变动,训练收敛慢。一般是整体分布逐渐往非线性函数的取值区间的上下限两端靠近。

InceptionV2 - BN

Batch Normalization 的做法

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

$$m_i = \frac{1}{M} \sum_{r=1}^{M} x_i^r$$
 $\sigma_i^2 = \frac{1}{M} \sum_{r=1}^{M} (x_i^r - m_i)^2$

InceptionV2 - BN

Inception V2

提出了Batch Normalization(批标准化)

BN的主要作用:

- 使每一层输入保持同分布
- 加速训练效率
- 降低对初始化的要求
- 轻微的正则化效果,一定程度上改善过拟合

References

Inception Family Reference Going deeper with convolutions:

https://arxiv.org/pdf/1409.4842.pdf

Batch Normalization:

https://arxiv.org/pdf/1502.03167.pdf

Rethinking the Inception Architecture for Computer Vision: https://arxiv.org/pdf/1512.00567.pdf

Inception-v4, Inception-ResNet: https://arxiv.org/pdf/1602.07261.pdf

残差网络 ResNet

本节内容:

- •理解残差网络的提出解决的关键问题
- •掌握残差网络结构,分析网络创新点
- •完成ResNet识别案例

图像分类 | ILSVRC历届冠军网络 从AlexNet到SENet

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

使用的数据集为ImageNet(李飞飞团队从2007年起,耗费大量人力,收集制作而成,CVPR-2009)的子集——约1.2 million的训练集(约1000类)

 ImageNet: 一个超过 15 million的图像数据 集,约有22,000类。

• ILSVRC: 2010-2017

ResNet

何恺明

2003广东省理科高考状元 本科:清华大学

博士:香港中文大学多媒体实验室 2024 MIT 计算机学院副教授 微软亚洲研究院(MSRA) Facebook AI Research(FAIR) 2022,荣登AI 2000全球最具影响力学者榜单

- CVPR 2009首位华人得主
- CVPR 2016和ICCV 2017 (Marr Prize) 最佳论文奖
- Identity Mappings in Deep Residual Networks (2016ECCV, ResNet的后续原理分析及改进)
- ResNet (一作) Faster-RCNN (二作)
- Focal Loss (三作), R-FCN (三作)
- Single Image去雾, SPP-Net(ECCV2014),
- Instance-Aware Semantic Segmentation via Multi-task Network Cascades (2016CVPR, 2015MSCOCO语义分割冠军), Mask-RCNN
- Aggregated Residual Transformations for Deep Neural Networks (2017CVPR, ResNeXt)

Why ResNet?

思考1

网络的加深可以提取更多的特征,达到更好的效果。深度网络变得流行的同时,也带来了一些问题…

What's the ResNet?

What's the ResNet?

Figure 2. Residual learning: a building block.

Residual block

$$y_l = h(x_l) + F(x_l, W_l)$$

$$x_{l+1} = f(y_l)$$
 ReLU

如果 h(x) 是恒等映射的话,那么:

$$x_{l+1} = x_l + F(x_l, W_l)$$

因此循环递归得到以下公式:

$$x_{l+2} = x_{l+1} + F(x_{l+1}, W_{l+1})$$

$$= x_l + F(x_l, w_l) + F(x_{l+1}, W_{l+1})$$

What's the ResNet?

根据循环递归公式:

$$x_L = x_l + \sum_{i=1}^{L-1} F(x_i, W_i)$$
 Residual block

对于L层的输出而言,可看作任何一个之前的 x_l 和中间残差块的叠加。 因此,对于整个网络来说,任何一层和该层之前的任何一层都可以看成残差模块, 这样保证了整个网络的前向传播畅通,改进后网络的反向传播公式如下:

$$\frac{\partial l}{\partial x_l} = \frac{\partial l}{\partial x_L} \frac{\partial x_L}{\partial x_l} = \frac{\partial l}{\partial x_L} (1 + \frac{\partial}{\partial x_l} \sum_{i=l}^{L-1} F(x_i, W_i))$$

链式法则的累乘变成了累加,保证了梯度的有效传播。

Why ResNet

思考 2

当某一层已经达到了最佳状态,剩下层应该不做任何改变,自动学成恒等映射(identity mapping),该网络的浅层解空间应是深度解空间的子集。

网络退化的问题

- · 层数的增加会让误 差变大,accuracy 不降反升
- 冗余的层很难学习 恒等映射

残差网络:深度网络至少和浅 网络实现相同性能,让后面的 层能更好的实现恒等映射。

How it works

当浅层的特征已经足够成熟, 任何对于它的改变都会让Loss变大, F(x)会自动趋向于学成0,实现恒等映射。 ResNet模块将输出分成 F(x)+x 两部分:

原任务: 学习x → H(x) 的恒等映射

现任务: 学习x和H(x)之间的残差——F(x)=0

How it works

换个角度理解 Residual会减小模块中参数的值,让参数对反向传导的损失更敏感。

ResNet Structure

•		10.1	24.1	50.1	101.1	1521
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
	56×56	3×3 max pool, stride 2				
conv2_x		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	[1×1, 64]	[1×1, 64]	[1×1, 64]
				3×3, 64 ×3		$3\times3,64\times3$
				[1×1, 256]	[1×1, 256]	[1×1, 256]
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	[1×1, 128]	[1×1, 128]	[1×1, 128]
				3×3, 128 ×4	3×3, 128 ×4	3×3, 128 ×8
				[1×1,512]	[1×1, 512]	[1×1, 512]
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	[1×1, 256]	[1×1, 256]	[1×1, 256]
				$3\times3,256$ $\times6$	$3\times3,256$ $\times23$	3×3, 256 ×36
				[1×1, 1024]	[1×1, 1024]	[1×1, 1024]
	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3,512 \\ 3 \times 3,512 \end{array}\right] \times 3$	[1×1,512]	[1×1, 512]	[1×1, 512]
conv5_x				$3\times3,512\times3$	$3\times3,512\times3$	3×3, 512 ×3
				[1×1, 2048]	1×1, 2048	1×1, 2048
	1×1	average pool, 1000-d fc, softmax				
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^9	7.6×10 ⁹ https://bl	11.3×10 ⁹

ResNet设计非常巧妙: 加深网络层数? 担心梯度退化? 不想增加复杂度? ——都没问题!

ResNet in CNN

The identity block

x (shortcut)

x (shortcut)

X CONV2D Batch Norm ReLU → CONV2D Batch Norm ReLU → Relu →

卷积运算 中的 残差模块

The convolutional block

ResNet残差网络的优点主要有:

- A 帮助梯度传播,缓解梯度消失
- 虽然增加了参数,但简化了学习过程,提升了网络性能
- c 使用跳层连接,缓解网络性能退化问题

ResNet中的残差块到底指的是哪一部分?

- A A框的部分
- B B框的部分
- C框的部分
- D 以上都不是

· Thanks ·

学生创新中心: 肖雄子彦

