CSC 461: Machine Learning Fall 2024

Feature transformation

Prof. Marco Alvarez, Computer Science University of Rhode Island

Scaling

Min-max scaling

$$\tilde{x} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Standardization

$$\tilde{x} = \frac{x - \mu}{\sigma}$$

MinMaxScaler()

StandardScaler()

[[-1.54757414			-0.01789141] 1.64600941]
[0.89102753	-1.92494389	-0.19663876	-1.16294143] -0.87667893]
			0.41150235]]

Data transformation

Definition

- converting or mapping data from its raw form into a format that better suits the learning algorithms
- crucial step in the machine learning pipeline that can significantly improve model performance

► Why?

- meet algorithm assumptions
- handle non-linear relationships
- scale features appropriately
- handle different data types

Categorical transformations

▶ One-hot encoding

- converts categorical variables into binary vectors
- each category becomes a column, only one column contains 1, the rest are 0

```
[['red'] [[0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
['red'] [0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
['red'] [0. 0. 1.]
['green'] [0. 1. 0.]
['blue'] [1. 0. 0.]
```

▶ Label encoding

- converts categorical values into numerical by assigning a unique integer to each category

```
[['red'] [[2]
['green'] [1]
['blue'] [0]
['red'] [2]
['green'] [1]
['blue'] [0]
['red'] [2]
['green'] [1]
['green'] [1]
```

Non-linear transformations

Motivation

- data is not always "linear"

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \qquad \overset{\mathbf{\Phi}}{\rightarrow} \qquad \mathbf{z} = \begin{bmatrix} \Phi_1(\mathbf{x}) \\ \vdots \\ \Phi_{\tilde{d}}(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} z_1 \\ \vdots \\ z_{\tilde{d}} \end{bmatrix}$$

input space $\mathcal{X} = \mathbb{R}^d$

feature space
$$\mathcal{Z} = \mathbb{R}^{\tilde{d}}$$

Non-linear transformations

• k-th order polynomial features on one variable

$$\mathbf{x} = [x] \qquad \qquad \mathbf{z} = \begin{bmatrix} x^0 \\ x^1 \\ \vdots \\ x^k \end{bmatrix}$$

	Polyn	PolynomialFeatures(degree=4)						
[[7]	[[1.	7.	49.	343.	2401.]		
[22]	[1.	22.	484.	10648.	234256.]		
[-38]	[1.	-38.	1444.	-54872.	2085136.]		
[-67]	[1.	-67 .	4489.	-300763.	20151121.]		
[0]]	[1.	0.	0.	0.	0.]]		

Non-linear transformations

• k-th order polynomial features on two variables

der polynomial features on two variable
$$\mathbf{z} = \begin{bmatrix} x_1 \\ x_2 \\ x_2^2 \\ x_1^2 \\ x_1 \\ x_2 \\ x_2^2 \end{bmatrix} \text{ degree k=2}$$

PolynomialFeatures(degree=2)

[-46 [97 [53	79] -23] -87] 26]]]]]]	1. 1.	-46. 97.	-23. -87.	2116. 9409.	1058. -8439.	6241.] 529.] 7569.] 676.]
[53	26]	L	⊥.	53.	20.	2809.	13/8.	0/0.]
[41	-8]]	[1.	41.	-8.	1681.	-328.	64.]]

Non-linear transformations

- k-th order polynomial features on d variables
 - "all polynomial combinations of the features with degree less than or equal to the specified degree"
- Issues:
 - be aware of computational cost
 - be aware of overfitting
- Alternatives?
 - use other non-linear functions: logarithmic, power, etc.

Data transformation

- Best Practices
 - transform after splitting data
 - fit transformers on training data only
 - handle missing values before transformation and use appropriate imputation
 - use pipelines to ensure reproducibility and to prevent data leakage

Overfitting

Overfitting

▶ Reasons

- model is too complex
- model is fitting noise present in the training data
- training data is not a representative sample of the distribution

▶ How to prevent?

- use more training data
- use fewer features
- **regularize** your model