Understanding Hadoop Clusters and the Network

Part 1. Introduction and Overview

Brad Hedlund

http://bradhedlund.com
http://www.linkedin.com/in/bradhedlund
@bradhedlund

Hadoop Server Roles

Hadoop Cluster

Typical Workflow

- Load data into the cluster (HDFS writes)
- Analyze the data (Map Reduce)
- Store results in the cluster (HDFS writes)
- Read the results from the cluster (HDFS reads)

Sample Scenario:

How many times did our customers type the word "Fraud" into emails sent to customer service?

Huge file containing all emails sent to customer service

File.txt

- Client consults Name Node
- Client writes block directly to one Data Node
- Data Nodes replicates block
- Cycle repeats for next block

Hadoop Rack Awareness – Why?

- Never loose all data if entire rack fails
- Keep bulky flows in-rack when possible
- Assumption that in-rack is higher bandwidth, lower latency

Pipelined Write

Data Nodes 1
 & 2 pass data along as its received

TCP 50010

BRAD HEDLUND.com

Pipelined Write

BRAD HEDLUND .com

Multi-block Replication Pipeline

Client writes Span the HDFS Cluster

Factors:

- Block size
- File Size

File.txt

More blocks = Wider spread

Data Node writes span itself, and other racks

Name Node Awesome! Thanks. metadata File system DN1: A,C DN2: A.C File.txt = A,C**DN3: A,C** Name Node I have ľm blocks: alive! A, C Data Node 1 Data Node 2 **Data Node 3 Data Node N**

- Data Node sends Heartbeats
- Every 10th heartbeat is a Block report
- Name Node builds metadata from Block reports
- TCP every 3 seconds
- If Name Node is down, HDFS is down

Re-replicating missing replicas

- Missing Heartbeats signify lost Nodes
- Name Node consults metadata, finds affected data
- Name Node consults Rack Awareness script
- Name Node tells a Data Node to re-replicate

Secondary Name Node

- Not a hot standby for the Name Node
- Connects to Name Node every hour*
- Housekeeping, backup of Name Node metadata
- Saved metadata can rebuild a failed Name Node

Client reading files from HDFS

- Client receives Data Node list for each block
- Client picks first Data Node for each block
- Client reads blocks sequentially

BRAD HEDLUND .com

Data Node reading files from HDFS

- Name Node provides rack local Nodes first
- Leverage in-rack bandwidth, single hop

Data Processing: Map

- Map: "Run this computation on your local data"
- Job Tracker delivers Java code to Nodes with local data

What if data isn't local?

- Job Tracker tries to select Node in same rack as data
- Name Node rack awareness

Data Processing: Reduce

- Reduce: "Run this computation across Map results"
- Map Tasks <u>deliver output data over the network</u>
- Reduce Task data output <u>written to and read from HDFS</u>

Unbalanced Cluster

- Hadoop prefers local processing <u>if possible</u>
- New servers underutilized for Map Reduce, HDFS*
- Might see more network bandwidth, slower job times**

Cluster Balancing

- Balancer utility (if used) runs in the background
- Does not interfere with Map Reduce or HDFS
- Default speed limit 1 MB/s

Thanks!

Narrated at:

http://bradhedlund.com/?p=3108