

ces. Aligning the positions to steps in computation time, they generate a sequence of hidden t_t , as a function of the previous hidden state h_{t-1} and the input for position t . This inherently sequential nature precludes parallelization within training examples, which becomes critical at longer sequence lengths, as memory constraints limit batching across examples. Recent work has achieved significant improvements in computational efficiency through factorization tricks [IB] and conditional computation [26], while also improving model performance in case of the latter. The fundamental constraint of sequential computation, however, remains.
on mechanisms have become an integral part of competting sequence modeling and transduc- odels in various tasks, allowing modeling of dependencies without regard to their distance in ut or output sequences [2,16]. In all but a few cases [22], however, such attention mechanisms are used in conjunction with a recurrent network.
work we propose the Transformer, a model architecture eschewing recurrence and instead gentirely on an attention mechanism to draw global dependencies between input and output ransformer allows for significantly more parallelization and can reach a new state of the art in translation quality after being trained for as little as twelve hours on eight P100 GPUs.
3 nckground
at of reducing sequential computation also forms the foundation of the Extended Neural GPG yteNet [15] and ConvS2S [8], all of which use convolutional neural networks as basic building computing hidden representations in parallel for all input and output positions. In these models, he number of operations required to relate signals from two arbitrary input or output positions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet. This makes it more difficult to learn dependencies between distant positions [11]. In the Transformer this is educed to a constant number of operations, albeit at the cost of reduced effective resolution due of averaging attention-weighted positions, an effect we counteract with Multi-Head Attention as lescribed in section [3,2]
fention, sometimes called intra-attention is an attention mechanism relating different positions ngle sequence in order to compute a representation of the sequence. Self-attention has been uccessfully in a variety of tasks including reading comprehension, abstractive summarization textual entailment and learning task-independent sentence representations [4] [22] [23] [19].
6 d recurrence and have been shown to perform well on simple-language question answering and age modeling tasks [28].
best of our knowledge, however, the Transformer is the first transduction model relying on self-attention to compute representations of its input and output without using sequence I RNNs or convolution. In the following sections, we will describe the Transformer, motivate self-attention and discuss its advantages over models such as [14][15] and [8].
8 odel Architecture
the encoder maps an input sequence of symbol representations $(x_1,,x_n)$ to a sequence usous representations $\mathbf{z}=(z_1,,z_n)$. Given \mathbf{z} , the decoder then generates an output sequence $(y_1,,y_m)$ of symbols one element at a time. At each step the model is auto-regressive \mathbf{y} , consuming the previously generated symbols as additional input when generating the next.
11 ed layers for both the encoder and decoder, shown in the left and right halves of Figure vely.
12 coder and Decoder Stacks
The encoder is composed of a stack of $N = 6$ identical layers. Each layer has two starts first is a multi-head self-attention mechanism, and the second is a simple, position-
2

400

600

500

0

100 -

200 -

300 -

400 -

500 -

600 -

700 -

0

100

 erent layer types. n is t 	the sequence length, d is t	he representati	imber of sequential operation on dimension, k is the kern
Layer Type	size of the neighborhood Complexity per Layer	in restricted se Sequential Operations	Maximum Path Length
Self-Attention Recurrent Convolutional	$O(n^2 \cdot d)$ $O(n \cdot d^2)$ $O(k \cdot n \cdot d^2)$	O(1) O(n) O(1)	$O(1)$ $O(n)$ $O(log_k(n))$
Self-Attention (restricted)	coder stacks. The position:	O(1)	O(n/r)
and fixed [8].	two can be summed. Then cosine functions of difference cosine functions of difference cosine 3 $pos,2i=sin(pos/sin($	nt frequencies	oices of positional encoding
d fonds to a sinusoid. The this function because we relative positions, since for an PEpos. o experimented with use is produced nearly idea.	as the dimension. That is wavelengths form a geome we hypothesized it would a ny fixed offset k , PE_{pos+} ing tearned positional emi- ntical results (see Table 3	etric progression allow the mode can be represented beddings [8] in row (E)). We	on of the positional encoding from 2π to $10000 \cdot 2\pi$. Vel to easily learn to attend the sented as a linear function stead, and found that the two chose the sinusoidal versinger than the ones encounters
7 layers commonly used:	for mapping one variable- ace of equal length $(z_1,$	-length sequen , z_n), with x_i	to the recurrent and convo- ce of symbol representation, $z_i \in \mathbb{R}^d$, such as a hidd g our use of self-attention v
8 allelized, as measured burd is the path length be dencies is a key challen	y the minimum number of tween long-range depend ge in many sequence tran- acies is the length of the p shorter these paths betwee er it is to learn long-range	f sequential op- encies in the n sduction tasks. saths forward a n any combina dependencies	etwork. Learning long-ran; One key factor affecting that and backward signals have ation of positions in the inp [I]. Hence we also compa
10 in Table 1 a self-atter operations, whereas	a recurrent layer require lf-attention layers are fast representation dimension by state-of-the-art models entations. To improve con	es $O(n)$ sequer er than recurre ality d , which in machine tra aputational per	nslations, such as word-pie formance for tasks involvir
	6		

100 -

200 -

300 -

400 -

500 -

600 -

700 -

0

100

200

300

400

600

	out sequence centered around the respective output position. This would increase the maximum ength to $O(n/r)$. We plan to investigate this approach further in future work.
100 -	ns. Doing so requires a stack of $O(n/k)$ convolutional layers in the case of contiguous kernels $og_k(n)$ in the case of dilated convolutions [15], increasing the length of the longest paths between any two positions in the network. Convolutional layers are generally more expensive than recurrent layers, by a factor of k . Separable convolutions [6], however, decrease the complexity considerably, to $O(k \cdot n \cdot d + n \cdot d^2)$. Even with $k = n$, however, the complexity of a separable convolution is equal to the combination of a self-attention layer and a point-wise feed-forward layer the approach we take in our model.
200 -	e benefit, self-attention could yield more interpretable models. We inspect attention distributions ur models and present and discuss examples in the appendix. Not only do individual attention clearly learn to perform different tasks, many appear to exhibit behavior related to the syntactic and semantic structure of the sentences. Taining
	3 ection describes the training regime for our models.
300 -	raining Data and Batching ned on the standard WMT 2014 English-German dataset consisting of about 4.5 million of epairs. Sentences were encoded using byte-pair encoding [3], which has a shared source-vocabulary of about 37000 tokens. For English-French, we used the significantly larger WMT 2014 English-French dataset consisting of 36M sentences and split tokens into a 32000 word-piece vocabulary [3T]. Sentence pairs were batched together by approximate sequence length. Each training
400 -	batch contained a set of sentence pairs containing approximately 25000 source tokens and 25000 tareet tokens.
	ardware and Schedule Ined our models on one machine with 8 NVIDIA P100 GPUs. For our base models using perparameters described throughout the paper, each training step took about 0.4 seconds. We have the base models for a total of 100,000 steps or 12 hours. For our big models, (described on the bottom line of table 3, step time was 1.0 seconds. The big models were trained for 300,000 steps (3.5 days).
500 -	9 ptimizer 1 the Adam optimizer [17] with $\beta_1 = 0.9$, $\beta_2 = 0.98$ and $\epsilon = 10^{-3}$. We varied the learning r the course of training, according to the formula:
600 -	(3) responsibly the reasing the learning rate linearly for the first warmup_steps training steps, easing it thereafter proportionally to the inverse square root of the step number. We used p_steps = 4000.
700	by three types of regularization during training: 14 Dropout We apply dropout [27] to the output of each sub-layer, before it is added to the input and normalized. In addition, we apply dropout to the sums of the embeddings and the
700 -	l encodings in both the encoder and decoder stacks. For the base model, we use a rate of $P_{drop} = 0.1$.

	BL.	EU	Training Cost (FLOPs		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet 15	23.75	20.2		10.103	
Deep-Att + PosUnk [32] GNMT + RL [31]	24.6	39.2 39.92	$2.3 \cdot 10^{19}$	$1.0 \cdot 10^{2}$ $1.4 \cdot 10^{2}$	
Conv\$2\$ [8]	25.16	40.46	$9.6 \cdot 10^{18}$	1.5 · 10 ²	
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{2}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{2}$	
ConvS2S Ensemble 8	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{2}$	
Transformer (base model) Transformer (big)	27.3 28.4	38.1 41.0		10 ¹⁸ 10 ¹⁹	
Smoothing During training, we e erplexity, as the model learns to be i					
MM1 2014 English-to-German tran e 2) outperforms the best previously , establishing a new state-of-the-art	reported m BLEU scor	odels (inclu re of 28.4. T	ding ensemble The configurati	s) by more ion of this	
wM1 2014 English-to-German transe [2] outperforms the best previously, establishing a new state-of-the-art in the bottom line of Table [3]. Training sea all previously published models impetitive models. WM1 2014 English-to-French transforming all of the previously publish us state-of-the-art model. The Transt rate P _{dron} = 0.1, instead of 0.3.	reported m BLEU scor ng took 3.5 and ensemb lation task, ed single m sformer (bi	odels (inclu re of 28.4. T days on 8 F oles, at a frac our big mod odels, at les g) model tr	ding ensemble the configuration of the tra- tion of the tra- let achieves a E is than 1/4 the ained for Engli	s) by more ion of this yen our bas ining cost of BLEU score training co lish-to-Free	
WM1 2014 English-to-German tran e [2] outperforms the best previously, establishing a new state-of-the-art in the bottom line of Table [3]. Training ses all previously published models in pretitive models. WM1 2014 English-to-French trans forming all of the previously publish us state-of-the-art model. The Trans	reported m BLEU scotn and took 3.5 and ensemb lation task, ed single m sformer (bi del obtaine the big mod- and length p evelopment e early who es our translate the num en number of	odels (inclure of 28.4. I days on 8 F dels, at a frac- our big mod- odels, at les g) model tr. d by averag- els, we aver- enalty \(\alpha = \text{set} \) ten possible [aution quality- ber of floatif GPUs used	ding ensemble the configurati the configuration th	s) by more ion of this wen our ba- ining cost of SLEU score training co lish-to-Free eneckpoint 20 checkpo se hyperpa output lengt costs to oth tions used t	
wMT 2014 English-to-German transe [2] outperforms the best previously, establishing a new state-of-the-art in the bottom line of Table [3]. Training sea all previously published models impetitive models. WMT 2014 English-to-French transforming all of the previously publish sorming all of the previously publish as state-of-the-art model. The Transet rate P _{demi} = 0.1, instead of 0.3. To be models, we used a single movinten at 10-minute intervals. For the am search with a beam size of 4 at loosen after experimentation on the docto input length + 50, but terminate summarizes our results and comparatives from the literature. We estimately multiplying the training time, the	reported m BLEU scott gard took 3.5 and ensemb lation task, ed single m sformer (bi det obtaine the big mode del ength p veclopment te early who es our translate the num enumber of each GPU mponents o n performa- neam searcl	odels (inclure of 28.4. To days on 8 F bles, at a fraction our big mododels, at les g) model traction our big model traction our big model traction our big model traction our big model traction out big model traction out big model traction quality ber of floating out big of the transition of the transition of big of the big of the big of the transition of big of the	ding ensemble the configurati the trained for the trained for Engl ting the last 2 aged the la	s) by more ion of this ven our basen in translation of the series of the	

100 -

300 -

400 -

500 -

700 -

O All metrics are on the English-to-German tities are per-wordpiece, according to our by	ranslation development set, newstest2013. List
per-word perplexities.	

	N	$d_{\rm model}$	d_{ff}	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
				1	512	512				5.29	24.9	
(4)				4	128	128				5.00	25.5	
(A)				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
(D)					32					5.01	25.4	60
	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
(C)		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
							0.0			5.77	24.6	
(D)							0.2			4.95	25.5	
(D)								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)		posi	tional er	nbedd	ling in	stead o	f sinusoi	ds		4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

It is that determining compatibility is not easy and that a more sophisticated compatibility in than dot product may be beneficial. We further observe in rows (C) and (D) that, as expected sigger models are better, and dropout is very helpful in avoiding over-fitting. In row (E) we replace our sinusoidal positional encoding with learned positional embeddings 8, and observe nearly identical esults to the base model.

7 2 clusion

100

200

0

100

200

300

400

500

600

700

0

- work, we presented the Transformer, the first sequence transduction model based entirely on in, replacing the recurrent layers most commonly used in encoder-decoder architectures with leaded self-attention.
- anslation tasks, the Transformer can be trained significantly faster than architectures based urrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 h-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles.
- excited about the future of attention-based models and plan to apply them to other tasks. We extend the Transformer to problems involving input and output modalities other than text and stigate local, restricted attention mechanisms to efficiently handle large inputs and outputs ach as images, audio and video. Making generation less sequential is another research goals of ours.

sugare total, restricted anemon mechanisms to enticiently handle large inputs and outputs ch as images, audio and video. Making generation less sequential is another research goals of ours, ode we used to train and evaluate our models is available at https://github.com/literature/html.

8 wiedgements We are grateful to Nal Kalchbrenner and Stephan Gouws for their fruitful tents, corrections and inspiration.

300

400

600

) T		
	0 ences	
) -	2 (iv:1607.06450, 2016.	
	— Dimitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by joint learning to align and translate. CoRR, abs/1409.0473, 2014.	
	 Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc V. Le. Massive exploration of neuromachine translation architectures. CoRR, abs/1703.03906, 2017. 	
	 Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machin reading. arXiv preprint arXiv:1601.06733, 2016. 	
	5] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwen , and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistic: machine translation. CoRR, abs/1406.1078, 2014.	
	 Francois Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint arXiv:1610.02357, 2016. 	
_	Young Chung, Çaglar Gulçehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation ated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.	
	 Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convol- tional sequence to sequence learning. arXiv preprint arXiv:1705.03122v2, 2017. 	
	 Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013. 	
-	[0] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for in- age recognition. In Proceedings of the IEEE Conference on Computer Vision and Patter Recognition, pages 770–778, 2016.	
	p Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow i irrent nets: the difficulty of learning long-term dependencies, 2001.	
	p Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation. [5] F1735-1780, 1997.	
	fal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Explorin, blimits of language modeling. arXiv preprint arXiv:1602.02410, 2016.	
1	 [4] Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In International Conference on Learning Representations (ICLR), 2016. 	
	[5] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex Graves, and Karay Kavukcuoglu. Neural machine translation in linear time. arXiv preprint arXiv:1610.10099v2, 2017.	
	Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured attention networks a International Conference on Learning Representations, 2017.	
	[7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2013.	
	[8] Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for LSTM networks. arXiv preprist arXiv:1703.10722, 2017.	
	[9] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowe a Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprist arXiv:1703.03130, 2017.	
1	Samy Bengio Łukasz Kaiser. Can active memory replace attention? In Advances in Neure Information Processing Systems, (NIPS), 2016.	
	10	
0	100 200 300 400 500	

	h-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention and neural machine translation. arXiv preprint arXiv:1508.04025, 2015.
00 -	kur Parikii, Oscar Tackstrom, Dipanjan Das, and Jakob Uszkorent. A decomposable attenue del. In Empirical Methods in Natural Language Processing, 2016.
	[23] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.
	[24] Ofir Press and Lior Wolf. Using the output embedding to improve language models. arX v preprint arXiv:1608.05859, 2016.
00 -	25] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare works with subword units. arXiv preprint arXiv:1508.07909, 2015.
	[26] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.
	[27] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutt i-nov. Dropout: a simple way to prevent neural networks from overfitting. <i>Journal of Machis e Learning Research</i> , 15(1):1929–1958, 2014.
00 -	[28] Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end memo y networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2440–2448. Curran Associates, Inc., 2015.
	3 utskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neurul rks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.
0 -	36 Stian Szegedy, Vincent Vanhoucke, Sergey Iotte, Jonathon Shlens, and Zbigniew Wojra. 4 inking the inception architecture for computer vision. CoRR, abs/1512.00567, 2015.
	[31] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgar g Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google's neural machie e translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.
	3. Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei Xu. Deep recurrent models with forward connections for neural machine translation. CoRR, abs/1606.04199, 2016.
00 -	
00 -	
, o	
00 -	
	11