

Syntax-Directed Translation Part I

Chapter 5

COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2005

Syntax-Directed Definitions

- A syntax-directed definition (or attribute grammar) binds a set of semantic rules to productions
- Terminals and nonterminals have attributes
- A *depth-first traversal* algorithm is used to compute the values of the attributes in the parse tree using the semantic rules
- After the traversal is completed, the attributes contain the translated form of the input

4

Example Attribute Grammar

Production	Semantic Rule
$L \rightarrow E \mathbf{n}$	print(E.val)
$E \rightarrow E_1 + T$	E .val := E_1 .val + T .val
$E \rightarrow T$	E.val := T .val
$T \rightarrow T_1 * F$	$T.\text{val} := T_1.\text{val} * F.\text{val}$
$T \rightarrow F$	T.val := F .val
$F \rightarrow (E)$	F.val := E .val
$F \rightarrow \mathbf{digit}$	F.val := digit.lexval

Note: all attributes in this example are of the synthesized type

Example Attribute Grammar in Yacc

. .

Example Annotated Parse Tree

Note: all attributes in this example are of the synthesized type

Annotating a Parse Tree With Depth-First Traversals

```
procedure visit(n : node);
begin
  for each child m of n, from left to right do
    visit(m);
  evaluate semantic rules at node n
end
```

8

Depth-First Traversals (Example)

Note: all attributes in this example are of the synthesized type

Attributes

- Attribute values can represent
 - Numbers (literal constants)
 - Strings (literal constants)
 - Memory locations, such as a frame index of a local variable or function argument
 - A data type for type checking of expressions
 - Scoping information for local declarations
 - Intermediate program representations

10

Synthesized Versus Inherited Attributes

• Given a production

$$A \rightarrow \alpha$$

then each semantic rule is of the form

$$b := f(c_1, c_2, \dots, c_k)$$

where f is a function and c_i are attributes of A and α , and either

- -b is a *synthesized* attribute of A
- -b is an *inherited* attribute of one of the grammar symbols in α

Synthesized Versus Inherited Attributes (cont'd)

12

S-Attributed Definitions

- A syntax-directed definition that uses synthesized attributes exclusively is called an *S-attributed definition* (or *S-attributed grammar*)
- A parse tree of an S-attributed definition can be annotated with a simple bottom-up traversal
- Yacc only supports S-attributed definitions

Bottom-up Evaluation of S-Attributed Definitions in Yacc

Stack	val	Input	Action	Semantic Rule
\$	_	3*5+4n\$	shift	
\$3	3	*5+4n\$	reduce $F \rightarrow \mathbf{digit}$	\$\$ = \$1
\$ <i>F</i>	3	*5+4n\$	reduce $T \rightarrow F$	\$\$ = \$1
\$ T	3	*5+4n\$	shift	
\$ T *	3_	5+4n\$	shift	
\$ T * 5	3_5	+4n\$	reduce $F \rightarrow \mathbf{digit}$	\$\$ = \$1
\$ T * F	3_5	+4n\$	reduce $T \to T * F$	\$\$ = \$1 * \$3
\$ T	15	+4n\$	reduce $E \rightarrow T$	\$\$ = \$1
\$ E	15	+4n\$	shift	
\$ E +	15_	4n\$	shift	
\$ E + 4	15_4	n\$	reduce $F \rightarrow \mathbf{digit}$	\$\$ = \$1
\$ E + F	15_4	n\$	reduce $T \rightarrow F$	\$\$ = \$1
E + T	15_4	n\$	reduce $E \rightarrow E + T$	\$\$ = \$1 + \$3
\$ E	19	n\$	shift	
\$ E n	19_	\$	reduce $L \rightarrow E \mathbf{n}$	print \$1
\$ L	19	\$	accept	

Example Attribute Grammar with Synthesized+Inherited Attributes

Production Semantic Rule $D \rightarrow TL$ L.in := T.type $T \rightarrow int$ T.type := 'integer' $T \rightarrow real$ T.type := 'real' $L \rightarrow L_1$, id $L_1.in := L.in$; addtype(id.entry, L.in) $L \rightarrow id$ addtype(id.entry, L.in)

Synthesized: *T*.type, **id**.entry

Inherited: L.in

Acyclic Dependency Graphs for Parse Trees

$$A \rightarrow X Y$$

$$X$$
.x Y .y

$$A.a := f(X.x, Y.y)$$

$$X$$
.x X .x X .y.y

$$X.x := f(A.a, Y.y)$$

$$Y.y := f(A.a, X.x)$$

16

Dependency Graphs with Cycles?

- Edges in the dependence graph show the evaluation order for attribute values
- Dependency graphs cannot be cyclic

A.a := f(X.x)X.x := f(Y.y)

Y.y := f(A.a)

Error: cyclic dependence

Example Annotated Parse Tree

18

Example Annotated Parse Tree with Dependency Graph

Evaluation Order

- A topological sort of a directed acyclic graph (DAG) is any ordering $m_1, m_2, ..., m_n$ of the nodes of the graph, such that if $m_i \rightarrow m_i$ is an edge then m_i appears before m_i
- Any topological sort of a dependency graph gives a valid evaluation order for the semantic rules

Example Parse Tree with **Topologically Sorted Actions**

Topological sort:

- 1. Get **id**₁.entry
- 2. Get **id**₂.entry
- 3. Get id₃.entry
- 4. T_1 .type='real'
- 5. L_1 .in= T_1 .type
- 6. $addtype(id_3.entry, L_1.in)$
- 7. L_2 .in= L_1 .in
- 8. $addtype(id_2.entry, L_2.in)$
- 9. L_3 .in= L_2 .in
- 10. $addtype(\mathbf{id}_1.entry, L_3.in)$

Evaluation Methods

- *Parse-tree methods* determine an evaluation order from a topological sort of the dependence graph constructed from the parse tree for each input
- *Rule-base methods* the evaluation order is predetermined from the semantic rules
- *Oblivious methods* the evaluation order is fixed and semantic rules must be (re)written to support the evaluation order (for example S-attributed definitions)

22

L-Attributed Definitions

- The example parse tree on slide 18 is traversed "in order", because the direction of the edges of inherited attributes in the dependence graph point top-down and from left to right
- More precisely, a syntax-directed definition is *L*-attributed if each <u>inherited</u> attribute of X_j on the right side of $A \rightarrow X_1 X_2 \dots X_n$ depends only on
 - 1. the attributes of the symbols $X_1, X_2, ..., X_{i-1}$
 - 2. the inherited attributes of A

Shown: dependences of inherited attributes

L-Attributed Definitions (cont'd)

• L-attributed definitions allow for a natural order of evaluating attributes: depth-first and left to right

$$A \rightarrow X Y$$
 $X.i := A.i$
 $Y.i := X.s$
 $X \leftarrow Y$
 $Y.i := X.s$
 $A.s := Y.s$

• Note: every S-attributed syntax-directed definition is also L-attributed

Using Translation Schemes for L-Attributed Definitions

```
Semantic Rule
Production
D \to TL
                         L.in := T.type
T \rightarrow \text{int}
                         T.type := 'integer'
T \rightarrow real
                         T.type := 'real'
L \rightarrow L_1, id
                         L_1.in := L.in; addtype(id.entry, L.in)
L \rightarrow id
                         addtype(id.entry, L.in)
Translation Scheme
D \rightarrow T \{ L.in := T.type \} L
T \rightarrow \text{int} \{ T.\text{type} := \text{`integer'} \}
T \rightarrow \mathbf{real} \{ T.\mathsf{type} := 'real' \}
L \rightarrow \{L_1.\text{in} := L.\text{in}\} L_1, \text{id} \{addtype(\text{id.entry}, L.\text{in})\}
```

 $L \rightarrow id \{ addtype(id.entry, L.in) \}$

Implementing L-Attributed Definitions in Top-Down Parsers

L-attributed definitions are implemented in translation schemes first:

```
D \rightarrow T \{ L.in := T.type \} L

T \rightarrow int \{ T.type := 'integer' \}

T \rightarrow real \{ T.type := 'real' \}
```

```
{ Type Ttype = T();
  Type Lin = Ttype;
  L(Lin);
Type T()
{ Type Ttype;
  if (lookahead == INT)
  { Ttype = TYPE INT;
    match (INT);
  } else if (lookahead == REAL)
  { Ttype = TYPE REAL;
    match (REAL) ;
                           synthesized
  } else error()
                             attribute
  return(Ttype)
                        Input:
                       inherited
void L(Type (Lin)
                        attribute
```

26

Implementing L-Attributed Definitions in Bottom-Up Parsers

- More difficult and also requires rewriting Lattributed definitions into translation schemes
- Insert marker nonterminals to remove embedded actions from translation schemes, that is

 $A \rightarrow X$ { actions } Y is rewritten with marker nonterminal N into $A \rightarrow X N Y$

 $N \rightarrow \varepsilon$ { actions }

 Problem: inserting a marker nonterminal may introduce a conflict in the parse table

Emulating the Evaluation of L-Attributed Definitions in Yacc

```
Type Lin; /* global variable */
D \rightarrow T \{ L.in := T.type \} L
T \rightarrow \mathbf{int} \{ T. \mathsf{type} := 'integer' \}
                                                   : Ts L
T \rightarrow \mathbf{real} \{ T.\mathsf{type} := 'real' \}
                                                                    { Lin = $1; }
L \rightarrow \{ L_1.\text{in} := L.\text{in} \} L_1, \text{id} 
       { addtype(id.entry, L.in) }
                                                   : INT
                                                                    \{ $$ = TYPE INT; \}
                                                    | REAL
                                                                    \{ $$ = TYPE REAL; \}
L \rightarrow id \{ addtype(id.entry, L.in) \}
                                                   : L ',' ID { addtype($3, Lin);}
                                                    | ID
                                                                    { addtype($1, Lin);}
```

Rewriting a Grammar to Avoid Inherited Attributes

