驰"充"无阻-基于 TRIZ 理论的智能移动多端口两轮电动 车充电站实施方案书

刚给你买了 Iphone (5) 团队

东北大学秦皇岛分校 2024 年 6 月 27 日

目录

1	项目	概述		4
2	项目	背景		4
3	项目	建设内	容	4
	3.1	目标 .		4
	3.2	预期成	汉果	5
	3.3	服务对	 象	5
	3.4	主要部	3署地点	5
		3.4.1	城市中心区	5
		3.4.2	交通枢纽	6
		3.4.3	社区和居民区	6
		3.4.4	公共停车场和停车库	6
		3.4.5	学校和教育机构	7
		3.4.6	快递和外卖配送中心	7
4	实施	步骤		8
	4.1	安装智	R能导轨系统	8
		4.1.1	设计方案	8
		4.1.2	安装导轨	8
		4.1.3	测试导轨	9
	4.2	配置充	医电桩	9
		4.2.1	采购充电桩	9
		4.2.2	安装充电桩	10
		4.2.3	配置软件	10
	4.3	测试与	ĵ调试	10
		4.3.1	功能测试	10
		4.3.2	系统调试	11
	4.4	员工培	到	11
		4.4.1	培训内容	11
		4.4.2	培训方式	11
	4.5	正式投	b.人使用及优化	12

		4.5.1	正元	式启月	Ħ																	 •	12
		4.5.2	用戶	户反负	溃										•							 •	12
5	项目	时间表																					13
6	项目	管理																					13
7	预算	与成本	分析	:																			14
	7.1	总体预	算																				14
	7.2	详细成	本分	分析																			14
		7.2.1	智能	能导轴	执系	系统	定制	訓、	釆	经购	和	安	装										14
		7.2.2	充□	电桩矩	定制	与	采贝	匈															14
		7.2.3	系织	充调记	武与	亨测	试																14
		7.2.4	员_	L培i																			15
		7.2.5	其代	也费月	用			•										•				 •	15
8	风险	管理																					15
	8.1	技术风	脸																				15
	8.2	安装风	脸																				15
	8.3	操作风	.险																				15
	8.4	维护风	.险					•							•				•		•		16
9	监控	与评估																					16
	9.1	监控 .																•					16
	9.2	评估 .																			•		16
10	结论	与建议																					16

1 项目概述

项目名称: 驰 "充" 无阻——基于 TRIZ 理论的智能移动多端口两轮电动车充电站 项目团队:

• 负责人: 况小媛颖

• 成员: 周仁杰, 夏冰, 赵郑洁, 齐军

• 指导教师: 敬茂华

2 项目背景

近年来,两轮电动车作为一种环保、经济的交通工具,其保有量不断增长。然而,现有充电设施不足、利用率低、安全性差等问题显著。特别是一些因充电引发的安全事故频发,亟需创新的充电解决方案来应对这些挑战。本项目通过 TRIZ 创新理论,提出了一种智能化、高效率的两轮电动车充电站设计。

Figure 1: 电动车市场

3 项目建设内容

3.1 目标

• 设计并实现一种智能移动多端口的两轮电动车充电站

- 提高充电桩的使用效率,减少闲置时间
- 优化车棚空间利用,增加停车容量
- 提供智能化、便捷的充电服务,提高用户满意度
- 建立高效的充电桩管理系统,实现智能监控和维护

3.2 预期成果

- 一套可行的智能充电站设计方案
- 原型机的制作与测试
- 用户满意度调查报告

3.3 服务对象

- 两轮电动车用户
- 电动车租赁公司
- 政府和公共机构
- 政府和公共机构

3.4 主要部署地点

3.4.1 城市中心区

商业综合体和购物中心

- 人流量大,消费者对充电需求高。
- 部署充电站可以吸引电动车用户,提高顾客停留时间和消费欲望。

办公楼和写字楼

- 通勤族在办公时间内可以利用充电服务,提升工作便利性。
- 为员工和访客提供充电设施,增加办公楼的附加值。

3.4.2 交通枢纽

火车站和地铁站

- 人流密集、车流量大,方便电动车用户在出行途中充电。
- 提供快速充电服务,减少用户等待时间,提高交通便利性。

公交枢纽站

- 支持公共交通系统内的电动车充电需求,确保电动车的持续运营。
- 提供安全、便捷的充电设施,提升公共交通服务质量。

3.4.3 社区和居民区

大型居民社区

- 居民日常生活中使用电动车的频率高, 充电需求集中。
- 部署充电站方便居民在家附近充电,提高生活便利性。

高层住宅小区

- 为高层住宅提供分布合理的充电设施,解决居民充电难题。
- 增强小区的配套设施,提高居住满意度和物业价值。

3.4.4 公共停车场和停车库

公共停车场

- 覆盖城市各主要区域,为电动车用户提供随时随地的充电服务。
- 结合停车收费系统,提供一体化服务,方便用户使用。

大型停车库

- 集中部署充电站,满足停车库内大量电动车用户的充电需求。
- 提供长期停车和充电服务,吸引更多用户选择电动车出行。

3.4.5 学校和教育机构

大学校园

- 大学生和教职工中使用电动车的比例高,对充电需求大。
- 部署充电站方便学生和教职工日常使用,提升校园生活质量。

中小学

- 为学生家长提供充电服务,方便接送孩子的同时进行电动车充电。
- 提供安全、环保的充电设施, 支持绿色出行理念。

3.4.6 快递和外卖配送中心

快递配送中心

- 快递员使用电动车进行配送, 充电需求频繁且集中。
- 部署充电站可以提高快递员的工作效率,减少充电时间。

外卖配送中心

- 外卖骑手需要快速充电,保证订单配送的及时性。
- 提供高效、稳定的充电服务,支持外卖平台的运营需求。

Figure 2: 主要部署地点

4 实施步骤

4.1 安装智能导轨系统

4.1.1 设计方案

现场测量与勘察

- 组织专业团队对车棚的实际情况进行现场测量,确定车棚的尺寸和结构。
- 记录车棚内外环境,包括地面平整度、支撑结构和电源分布等信息。

布局图设计

- 根据测量数据,绘制智能导轨系统的布局图,确定导轨的具体位置和长度。
- 考虑导轨系统与车棚其他设施的兼容性, 避免冲突和干扰。

材质和规格确定

- 选择导轨的材质,考虑其强度、耐久性和防腐蚀性能,综合使用高强度铝合金或不锈钢材料。
- 确定导轨的规格,包括导轨的宽度、高度和承重能力,确保其能够承载充电桩的重量和频繁移动的需求。

4.1.2 安装导轨

施工准备

- 确定施工日期,发布施工通知,确保施工期间车棚现场无其他活动。
- 清理施工区域, 移除所有障碍物, 确保施工环境干净整洁。

导轨安装

- 根据设计图纸,标记导轨安装位置,确保位置准确无误。
- 使用专业工具安装导轨,确保其牢固可靠,并符合设计图纸要求。
- 安装充电桩工作卡槽,确保充电桩能够在导轨上平稳移动。

安装验收

- 组织验收团队对导轨安装进行初步检查,确保安装质量符合标准。
- 对导轨进行初步功能测试,确保其移动平稳,无卡滞现象。

4.1.3 测试导轨

承载能力测试

- 在导轨上施加预定重量,测试其承载能力,确保导轨能够承受充电桩的重量。
- 记录测试数据,分析导轨的承载性能。

移动平稳性测试

- 模拟充电桩在导轨上的移动过程,测试导轨的平稳性和可靠性。
- 观察移动过程中是否存在卡滞或晃动现象,确保系统运行顺畅。

调整与优化

- 根据测试结果,调整导轨的安装细节,优化导轨系统的运行性能。
- 记录调整后的测试数据,确保导轨系统达到设计要求。

4.2 配置充电桩

4.2.1 采购充电桩

型号选择

- 根据需求分析结果,选择符合需求的充电桩型号,确保其支持智能导轨系统的接口和功能。
- 确认充电桩具备快速充电、智能控制等功能,并能够兼容不同类型的电动车。

质量保障

- 确保采购的充电桩具备必要的安全认证 (CE、UL 等认证),保证产品的质量和安全性。
- 与供应商签订采购合同,明确产品的技术规格、交货时间和售后服务等条款。

4.2.2 安装充电桩

安装位置确认

- 根据导轨系统的布局图,确定充电桩的具体安装位置,确保其与导轨系统兼容。
- 标记安装位置,确保充电桩安装准确无误。

安装过程

- 将充电桩固定在导轨系统的工作卡槽中,确保其牢固可靠。
- 连接电源和数据接口,确保充电桩正常通电和数据传输。

初步测试

• 对安装完成的充电桩进行初步测试,确保其能够正常工作。

4.2.3 配置软件

软件安装

- 安装充电桩管理软件,确保充电桩的智能控制功能正常运行。
- 配置软件的基础功能模块,如用户管理、充电记录、故障监测等。

功能配置

- 配置充电桩的移动、定位和充电等功能,确保其与智能导轨系统的协同工作。
- 设置充电桩的充电模式和充电参数,满足不同用户的需求。

4.3 测试与调试

4.3.1 功能测试

全面测试

- 对充电桩的移动、定位、充电等功能进行全面测试,确保系统稳定运行。
- 测试过程中记录各项数据,分析系统性能。

故障模拟

- 模拟各种可能的故障情况,测试系统的故障处理能力和应急响应速度。
- 记录测试数据,评估系统的可靠性。

4.3.2 系统调试

结果分析

- 根据测试结果,分析系统的性能和存在的问题。
- 制定调试方案, 优化充电桩和导轨系统的配合度。

调试过程

- 进行系统调试,调整软件和硬件的参数,确保系统运行稳定。
- 重复测试和调试过程, 直至系统达到预期的性能要求。

4.4 员工培训

4.4.1 培训内容

基本原理与操作

- 介绍智能导轨系统和充电桩的基本原理和操作流程。
- 详细讲解系统的各个组成部分及其功能。

安全注意事项

- 强调系统操作中的安全注意事项,包括充电桩的安全使用和导轨系统的维护。
- 介绍紧急情况的应对措施和常见问题的处理方法。

4.4.2 培训方式

现场演示与讲解

- 采用现场演示和讲解的方式进行培训,确保每位工作人员都能实际操作并理解系统的运行机制。
- 演示系统的各项功能和操作步骤, 让工作人员亲身体验。

提供培训手册

- 提供详细的培训手册和操作指南,供工作人员学习参考。
- 安排答疑时间,解答培训过程中出现的各种问题。

4.5 正式投入使用及优化

4.5.1 正式启用

- 完成所有安装、测试和培训工作后,正式启用智能导轨系统和充电桩。
- 宣布系统正式投入使用的时间,并通过多种渠道通知相关用户。

4.5.2 用户反馈

- 通过调查问卷、线上反馈等方式收集用户在使用过程中的意见和建议。
- 根据用户反馈进行持续优化,提升系统的使用体验和服务质量。

Figure 3: 实施步骤

5 项目时间表

步骤	时间安排
设计方案	1周
导轨安装	2周
充电桩配置	1周
系统测试	1周
员工培训	1周
正式启用	1 天
持续优化	持续进行

Table 1: 项目时间表

6 项目管理

项目团队职责分工:

	成员姓名	职责分工
项目经理	况小媛颖	负责整体协调与进度把控
技术负责人	周仁杰	负责硬件设计与开发
软件负责人	夏冰	负责软件开发与测试
市场推广负责人	赵郑洁	负责市场推广与应用
风险管理负责人	齐军	负责风险评估与应对

Table 2: 项目团队分工

7 预算与成本分析

7.1 总体预算

项目	预算(人民币)
智能导轨系统定制、采购和安装	50,000
充电桩定制与采购	100,000
系统调试与测试	10,000
员工培训	5,000
其他费用	10,000
总计	175,000

Table 3: 总体预算

7.2 详细成本分析

7.2.1 智能导轨系统定制、采购和安装

- 设计与定制部分包括根据项目需求进行智能导轨系统的设计,并购买必要的材料进行定制。加工定制部分包括将材料加工成实际使用的导轨系统。
- **安装**部分包括人工费用、工具及设备租赁费用以及安装前的现场清理费用。这些费用确保导轨系统能够顺利安装并正常使用。

7.2.2 充电桩定制与采购

- 设计与定制充电桩采购部分预算主要用于购买符合需求的充电桩。预计采购 8 个 充电桩,每个价格为 10,000 人民币。配件及附加设备包括数据接口、电缆和安全 防护设备,确保充电桩的正常运行和安全性。
- 运输费用用于将采购的充电桩和附加设备运输到安装现场。

7.2.3 系统调试与测试

• 调试费用包括软件的安装与配置,以及硬件的调试与测试,确保整个系统能够正常运行。

• 测试费用包括对系统的各项功能进行测试,以及根据测试结果进行系统优化和调整。

7.2.4 员工培训

- **培训课程开发**包括培训手册的编写与印刷,以及培训视频的制作,确保员工能够 系统地学习和理解操作流程。
- **培训实施**包括培训师的费用和培训场地的租赁及设备费用,确保培训能够顺利进 行。

7.2.5 其他费用

- 项目管理费用用于项目经理的报酬及项目协调和沟通的费用,确保项目能够按计划推进。
- 不确定性费用用于应对项目实施过程中可能出现的不可预见的支出,保证项目顺利完成。

8 风险管理

8.1 技术风险

风险描述: 导轨系统与充电桩不兼容, 导致系统无法正常运行。

解决方案: 选择经过充分测试的硬件设备,确保兼容性,并在安装前进行模拟测试。

8.2 安装风险

风险描述:安装过程中出现意外情况,如设备损坏或安装错误。

解决方案:制定详细的施工计划,确保安装过程中的安全操作,并安排专业人员进行安装。

8.3 操作风险

风险描述:工作人员操作不当,导致系统故障或安全隐患。

解决方案:进行全面培训,提供操作手册,并设置操作权限,确保只有经过培训的人员能够操作系统。

8.4 维护风险

风险描述: 系统在运行过程中出现故障, 影响充电服务的正常提供。

解决方案:建立完善的维护体系,定期检查和保养设备,设置紧急故障处理机制,确保系统运行的稳定性。

9 监控与评估

9.1 监控

- 设置远程监控系统,实时监控充电桩和导轨系统的运行状态。
- 记录每次充电的详细数据,包括充电时间、充电量、用户信息等,以便后续分析和优化。

9.2 评估

评估方法:

- 阶段性评估: 每个阶段结束后进行评估, 确保项目按计划进行。
- 用户反馈: 收集用户使用反馈, 评估用户满意度。
- 成果验收:根据预期成果进行验收,评估项目完成情况。

评估指标:

- 充电站的充电效率和安全性。
- 用户满意度和使用体验。
- 市场推广效果。

10 结论与建议

本实施方案通过详细的步骤和全面的考虑,确保智能导轨系统和充电桩的成功安装和运行。项目的顺利实施将显著提升充电桩的使用效率和用户体验,并为车棚空间的优化利用提供创新解决方案。建议在项目实施过程中,严格按照时间表和预算执行,及时解决出现的问题,并通过持续优化,不断提升系统的性能和用户满意度。