	Project Stage II - Calvin Ng Functions and Package Imports Below are the functions and package imports I will be using for this stage. The functions I wrote myself for the group section of this stage and have either directly copied from the group notebook or have made minor adjustments for use in the individual section. There are also a few other functions that I have written specifically for this individual portion.
In [1]: In [2]:	<pre>import pandas as pd import statistics as stat import numpy as np import matplotlib.pyplot as plt def cumulate_weekly_data_columns(df, start_index, end_index): "'' Given a start and end column, this function sums up each column in between and then groups days by week.</pre>
	This function is used to read data from the df set containing data from the US. :param df: the dataframe from which data is read from. :param start_index: The starting columnn. :param end_index: The ending column. :return: Two lists; one containing weeks and the other containing the summation of the columns of that week. "" # calculate summation of previous week prev_sum = 0 prev_day = df.iloc[:, start_index - 8].sum()
	<pre>for i in range(start_index - 7, start_index): col = df.iloc[:, i] curr_day = col.sum() prev_sum += curr_day - prev_day prev_day = curr_day</pre> curr_sum = 0 days_passed = 0 weekly_x = [] weekly_y = []
	<pre># cumulate weekly data for i in range(start_index, end_index + 1): col = df.iloc[:, i] curr_day = col.sum() curr_sum += curr_day - prev_day prev_day = curr_day days_passed += 1 if days_passed == 7: weekly_y.append(curr_sum) curr_sum = 0</pre>
In [3]:	<pre>days_passed = 0 begin_week = df.columns[i - 6] weekly_x.append(begin_week[-5:]) return weekly_x, weekly_y def print_stats(data, country, data_type): Prints mean, median, and mode about the given dataset.</pre>
	<pre>:param data: A list containing the data. :param country: The name of the country the data belongs to. :param data_type: What type of data is contained in data. ''' print('%s weekly %s mean: %15.2f' % (country, data_type, stat.mean(data))) print('%s weekly %s median: %13.2f' % (country, data_type, stat.median(data))) print('%s weekly %s mode: %15.2f' % (country, data_type, stat.mode(data)))</pre>
In [4]:	<pre>def normalize(dataset, population, normalization_factor): This function normalizes a set of values given a populationa nd normalization factor. :param dataset: An iterable structure containing the data we want to normalize. :param population: The population the data is describing. It is an integer. :param normalization_factor: An integer defining the noramlization factor; per 10,000, per 100,000, etc.</pre>
	<pre>normalized_data = [] # avoid division by zero if population == 0: population = 1 for data in dataset: normalized_data.append(data / population * normalization_factor) return normalized_data</pre>
	Section I: Overview of North Carolina Continuing my work from the previous stage, I will calculate statistics for North Carolina. Specifically, I will calculate the mean, median, and mode. For this section, these will be unnormalized values. The general methodology is very similar to the group notebook. The only difference is we will only be keeping rows where the state is 'NC.'
In [6]:	<pre># read base df base = pd.read_csv('/Data/base_set_joined.csv') # drop non-NC rows nc_df = base.drop(base[base['State'] != 'NC'].index) # get NC population nc_population = nc_df['population'].sum()</pre>
In [7]:	<pre># get start and end indices start_index = nc_df.columns.get_loc("cases 2022-06-01") end_index = nc_df.columns.get_loc("cases 2022-12-31") # calculate and print new cases stats nc_cases_x, nc_cases_y = cumulate_weekly_data_columns(nc_df, start_index, end_index) print_stats(nc_cases_y, 'NC', 'cases') NC weekly cases mean: 19062.00 NC weekly cases median: 20382.50 NC weekly cases mode: 27790.00</pre>
In [8]:	<pre># get start and end indices start_index = nc_df.columns.get_loc("deaths 2022-06-01") end_index = nc_df.columns.get_loc("deaths 2022-12-31") # calculate and print new deaths stats nc_deaths_x, nc_deaths_y = cumulate_weekly_data_columns(nc_df, start_index, end_index) print_stats(nc_deaths_y, 'NC', 'deaths') NC weekly deaths mean: 99.00 NC weekly deaths median: 47.50 NC weekly deaths mode: 48.00</pre>
	Section II: Comparison to Other States Now that we have numbers from North Carolina, we'll repeat the process for three other states. From there, I will plot the data in two separate graphs: one for new cases and one for new deaths. The states I have chosen are New York, Florida, and Kansas. I chose New York and Florida because they are also east coast states with different approaches to the pandemic. Influenced largely by its governor, Florida has been relatively lenient on its Covid restrictions while New York and North Carolina have been more restrictive. In the past year, most
In [9]:	states have let up on restrictions, so I'm referring to the early response during the first couple of years. I chose Kansas because it's a largely rural state, so it offers a chance to compare the recent impact of covid between relatively urban vs rural states. New York also offers this opportunity; despite the fact that it is home to one of the largest cities in the US, most of the state is rural. # drop non-NY rows ny_df = base.drop(base[base['State'] != 'NY'].index) # get NY population ny_population = ny_df['population'].sum()
In [10]:	<pre># get start and end indices start_index = ny_df.columns.get_loc("cases 2022-06-01") end_index = ny_df.columns.get_loc("cases 2022-12-31") # calculate and print new cases stats ny_cases_x, ny_cases_y = cumulate_weekly_data_columns(ny_df, start_index, end_index) print_stats(ny_cases_y, 'NY', 'cases') NY weekly cases mean:</pre>
In [11]:	<pre>NY weekly cases mode: 43135.00 # get start and end indices start_index = ny_df.columns.get_loc("deaths 2022-06-01") end_index = ny_df.columns.get_loc("deaths 2022-12-31") # calculate and print new deaths stats ny_deaths_x, ny_deaths_y = cumulate_weekly_data_columns(ny_df, start_index, end_index) print_stats(ny_deaths_y, 'NY', 'deaths') NY weekly deaths mean: 189.00</pre>
	NY weekly deaths median: 162.50 NY weekly deaths mode: 193.00 # drop non-FL rows fl_df = base.drop(base[base['State'] != 'FL'].index) # get FL population fl_population = fl_df['population'].sum() # get start and end indices start_index = fl_df.columns.get_loc("cases 2022-06-01")
In [14]:	<pre>end_index = fl_df.columns.get_loc("cases 2022-12-31") # calculate and print new cases stats fl_cases_x, fl_cases_y = cumulate_weekly_data_columns(fl_df, start_index, end_index) print_stats(fl_cases_y, 'FL', 'cases') FL weekly cases mean:</pre>
Tn [15].	<pre>start_index = fl_df.columns.get_loc("deaths 2022-06-01") end_index = fl_df.columns.get_loc("deaths 2022-12-31") # calculate and print new deaths stats fl_deaths_x, fl_deaths_y = cumulate_weekly_data_columns(fl_df, start_index, end_index) print_stats(fl_deaths_y, 'FL', 'deaths') FL weekly deaths mean:</pre>
	<pre>ks_df = base.drop(base[base['State'] != 'KS'].index) # get KS population ks_population = ks_df['population'].sum() # get start and end indices start_index = ks_df.columns.get_loc("cases 2022-06-01") end_index = ks_df.columns.get_loc("cases 2022-12-31") # calculate and print new cases stats</pre>
In [17]:	<pre>ks_cases_x, ks_cases_y = cumulate_weekly_data_columns(ks_df, start_index, end_index) print_stats(ks_cases_y, 'KS', 'cases') KS weekly cases mean:</pre>
	# calculate and print new deaths stats ks_deaths_x, ks_deaths_y = cumulate_weekly_data_columns(ks_df, start_index, end_index) print_stats(ks_deaths_y, 'KS', 'deaths') KS weekly deaths mean: 25.00 KS weekly deaths median: 7.50 KS weekly deaths mode: 0.00 We now have some numbers now to compare, but they mean nothing as of now due to the differing populations. From here, we'll prepare the data by normalizing our y values, then we'll plot it in two separate graphs. Finally, we'll draw conclusions and make comparisons between states and the US as a whole.
In [18]:	<pre># normalize y values nf = 100000 nc_cases_normalized = normalize(nc_cases_y, nc_population, nf) ny_cases_normalized = normalize(ny_cases_y, ny_population, nf) fl_cases_normalized = normalize(fl_cases_y, ny_population, nf) ks_cases_normalized = normalize(ks_cases_y, ks_population, nf) nc_deaths_normalized = normalize(nc_deaths_y, nc_population, nf) ny_deaths_normalized = normalize(ny_deaths_y, ny_population, nf) fl_deaths_normalized = normalize(fl_deaths_y, ny_population, nf) ks_deaths_normalized = normalize(ks_deaths_y, ks_population, nf)</pre>
In [19]:	<pre>plt.plot(nc_cases_x, nc_cases_normalized, label = 'North Carolina') plt.plot(ny_cases_x, ny_cases_normalized, label = 'New York') plt.plot(fl_cases_x, fl_cases_normalized, label = 'Florida') plt.plot(ks_cases_x, ks_cases_normalized, label = 'Kansas') plt.xlabel('Weeks') plt.ylabel('New Cases') plt.title('State New Cases Per 100,000') plt.xticks(nc_cases_x[::2], rotation = 45) plt.legend() plt.show()</pre>
	State New Cases Per 100,000 400 -
	North Carolina New York Starida
	New Cases Analysis Across States
In [20]:	For the most part, the new cases are very similar across states in comparison to the US as a whole. Still, there are some subtle differences to examine. Florida and North Carolina have a higher rate of cases than the other two during the summer months. I believe this is due to summer tourism, Florida in particular. New York has a relatively consistent rate of cases for the entire half of the year. This might be due to the fact that there are no tourist destinations that are seasonal. As an example, New York City remains a viable tourist destination the entire year. plt.plot(nc_deaths_x, nc_deaths_normalized, label = 'North Carolina') plt.plot(ny_deaths_x, ny_deaths_normalized, label = 'New York')
	<pre>plt.plot(fl_deaths_x, fl_deaths_normalized, label = 'Florida') plt.plot(ks_deaths_x, ks_deaths_normalized, label = 'Kansas') plt.xlabel('Weeks') plt.ylabel('New Deaths') plt.title('State New Deaths Per 100,000') plt.xticks(nc_deaths_x[::2], rotation = 45) plt.legend() plt.show()</pre> State New Deaths Per 100,000
	15.0 - 12.5 - 10.0 - 17.5 - 10.0 -
	2.5 - 0.0 -
	New Deaths Analysis Across States The deaths data is less revealing. Similar to the US deaths data, it is all over the place. Still, there are a few notable peaks. In particular, the peaks around the end of August and the end of October are visible in both the states data and the US data.
	For the last week in August, this is likely a common time families with children travel as this is the last week before school begins for many children. It may also be possible that this is the first week of school for primary grade students, so they have higher exposure to other people. Regardless of the specifics, I do think it revolves around children. This peak isn't prominent in the cases data for either the states or the US, and I think that's because, while the number of cases doesn't shift substantially, who is getting these cases does, and since children are getting it more during this week and they generally have weaker immune systems than adults, they're more at risk to die than adults, driving the death rate up. The peak at the end of October likely has a very similar and sad explanation: Halloween. This peak does show up in the cases data, which makes sense; unlike the first week of school, it isn't just children that are involved in Halloween; parents have to escort their children, and their neighbors give out candy, so plenty of adults are exposed during this time, too. It isn't surprising to see the death rate shoot up during this time in both the states and US data.
	Finally, there is a rather large elephant in the room, and that is the fact that apparently people are coming back from the dead. As you can see, there are dips below zero, implying that between days, negative people died. What I've learned from working with this data is it's extremely unreliable, likely due to recording issues. As such, at the end of the day, I say that this data can't be trusted, and therefore, any results from it can't be trusted, either. Section III: Counties Analysis The final section of this notebook focuses on counties in North Carolina with high cases and death rates.
	The methodology will be to calculate weekly cases and deaths for each county and store these values in lists. We can the iterate through these lists and calculate the counties with the highest median cases and deaths. It's important to note that the counties with the highest cases might not be the same as those with the highest deaths, so it's important to perform this process twice for both cases and deaths. It's important to note that I will take the time to normalize the data for each county per 100,000 people. If I do not, this analysis will favor counties with high populations, and that's not particularly useful. Once the counties with the highest cases and deaths have been calculated, their datasets can be plotted and compared to the dataset for North Carolina as a whole. We will then wrap up with some analysis.
In [21]:	<pre>county_cases = [] county_deaths = [] # get start and end indices start_index = nc_df.columns.get_loc("cases 2022-06-01") end_index = nc_df.columns.get_loc("cases 2022-12-31") first_index = nc_df.index[0] # populate county cases list</pre>
	<pre>for i in range(first_index, first_index + nc_df.shape[0]): curr_row = nc_df.loc[[i]] county_weekly_cases = cumulate_weekly_data_columns(curr_row, start_index, end_index)[1] county_name = curr_row.iloc[0]['County Name'] county_population = curr_row.iloc[0]['population'] county_tuple = (county_name, county_population, county_weekly_cases) county_cases.append(county_tuple) # get start and end indices start_index = nc_df.columns.get_loc("deaths 2022-06-01") end_index = nc_df.columns.get_loc("deaths 2022-12-31")</pre>
To [40].	<pre># populate county deaths list for i in range(first_index, first_index + nc_df.shape[0]): curr_row = nc_df.loc[[i]] county_weekly_death = cumulate_weekly_data_columns(curr_row, start_index, end_index)[1] county_name = curr_row.iloc[0]['County Name'] county_population = curr_row.iloc[0]['population'] county_tuple = (county_name, county_population, county_weekly_death) county_deaths.append(county_tuple)</pre> <pre> nf = 100000</pre>
111 [42].	<pre># calculate counties with highest cases highest_cases = [('na', 0, [], []), ('na', 0, [], [])] for county in county_cases: # calculate median of current county normalized_county = normalize(county[2], county[1], nf) curr_median = stat.median(normalized_county) # compare to current highest counties for i in range (0, len(highest_cases)): if highest_cases[i][1] < curr_median:</pre>
	<pre>prev_highest = highest_cases[i] for j in range (i + 1, len(highest_cases)): temp = highest_cases[j] highest_cases[j] = prev_highest prev_highest = temp new_highest_county = (county[0], curr_median, county[2], normalized_county) highest_cases[i] = new_highest_county break print('%-20s %5.2f' % (highest_cases[0][0], highest_cases[0][1])) print('%-20s %5.2f' % (highest_cases[1][0], highest_cases[1][1]))</pre>
In [41]:	<pre>print('%-20s %5.2f' % (highest_cases[2][0], highest_cases[2][1])) Yadkin County</pre>
	<pre>normalized_county = normalize(county[2], county[1], nf) curr_median = stat.median(normalized_county) # compare to current highest counties for i in range (0, len(highest_deaths)): if highest_deaths[i][1] < curr_median: prev_highest = highest_deaths[i] for j in range (i + 1, len(highest_deaths)): temp = highest_deaths[j] highest_deaths[j] = prev_highest prev_highest = temp</pre>
	<pre>new_highest_county = (county[0], curr_median, county[2], normalized_county) highest_deaths[i] = new_highest_county break print('%-20s %5.2f' % (highest_deaths[0][0], highest_deaths[0][1])) print('%-20s %5.2f' % (highest_deaths[1][0], highest_deaths[1][1])) print('%-20s %5.2f' % (highest_deaths[2][0], highest_deaths[2][1])) Surry County</pre>
In [48]:	<pre># graph cases data plt.plot(nc_cases_x, highest_cases[0][2], label = highest_cases[0][0]) plt.plot(nc_cases_x, highest_cases[1][2], label = highest_cases[1][0]) plt.plot(nc_cases_x, highest_cases[2][2], label = highest_cases[2][0]) plt.xlabel('Weeks') plt.ylabel('New Cases') plt.title('NC Counties Cases Raw') plt.xticks(nc_cases_x[::2], rotation = 45) plt.legend() plt.show()</pre>
	NC Counties Raw Yadkin County Robeson County Swain County
	No 200 - 100 - 0 - 100 -
In [49]:	# graph cases data plt.plot(nc_cases_x, np.log10(highest_cases[0][3]), label = highest_cases[0][0]) plt.plot(nc_cases_x, np.log10(highest_cases[1][3]), label = highest_cases[1][0])
	<pre>plt.plot(nc_cases_x, np.log10(highest_cases[2][3]), label = highest_cases[2][0]) plt.xlabel('Weeks') plt.ylabel('New Cases') plt.title('NC Counties New Cases Per 100,000 and Logged') plt.xticks(nc_cases_x[::2], rotation = 45) plt.legend() plt.show()</pre> C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1970399254.py:2: RuntimeWarning: divide by zero encountered in log10 plt.plot(nc_cases_x, np.log10(highest_cases[0][3]), label = highest_cases[0][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1970399254.py:3: RuntimeWarning: divide by zero encountered in log10
	plt.plot(nc_cases_x, np.log10(highest_cases[1][3]), label = highest_cases[1][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1970399254.py:4: RuntimeWarning: divide by zero encountered in log10 plt.plot(nc_cases_x, np.log10(highest_cases[2][3]), label = highest_cases[2][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1970399254.py:4: RuntimeWarning: invalid value encountered in log10 plt.plot(nc_cases_x, np.log10(highest_cases[2][3]), label = highest_cases[2][0]) NC Counties New Cases Per 100,000 and Logged 2.8
	2.4 - 89g 2.2 - May 2.0 -
	1.8 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.6 - 1.7 -
	Counties Cases Analysis. First, let's talk about general patterns. In general, these counties do follow the overarching state pattern; high cases during the summer months, and peaks near the end of August and October. Like I've stated prior in this report, these are likely due to summer travel and Halloween. Next, lets take a look at individual counties. I went ahead and did some research on each of the counties. First, lets talk about Swain County. Swain County is a far western county. It's population is 14,136 as of 2021, so it is a very small county in terms of population. One thing to note is
	that it is home to a Native American reservation; about a third of the county's population is Native American. Furthermore, 18.3% of the population lives below the poverty line, almost 50% more than the national average of 11.6%. This isn't too surprising considering many people who live on reservations tend to be poor. My guess as to why this county was hit particularly hard is due to cramped and poor living conditions on reservations and inadequate access to healthcare. Robeson County is yet another similar story, located in the South. In contrast, it has a much larger population of 116,530 people. It has a large mix of ethnicities, although Native American is the largest at 38%. White and black each are at 22%, and hispanic makes up 10% of the population. In Robeson County, 27.9% of the population lives below the poverty line, which is more than 100% more than the national average. Similar to Swain County, Robeson County is likely at risk due to poor living conditions and inadequate access to healthcare.
In [51]:	Yadkin County is a Northwestern county and home to 37,214 people. Unlike the previous two counties, there are very few minorities living here; 92.54% of the population is white. Furthermore, only 10% of the population lives below the poverty line, which is slightly less than the national average. In conclusion, based on a cursory glance, it's difficult to chalk up the infection rate to socioeconomic factors. A deeper analysis into Yadkin County would be required to properly conclude causality. # graph deaths data plt.plot(nc_deaths_x, highest_deaths[0][2], label = highest_deaths[0][0]) plt.plot(nc_deaths_x, highest_deaths[1][2], label = highest_deaths[1][0]) plt.plot(nc_deaths_x, highest_deaths[2][2], label = highest_deaths[2][0]) plt.ylabel('New Deaths')
	plt.title('NC Counties Deaths Raw') plt.xticks(nc_deaths_x[::2], rotation = 45) plt.legend() plt.show() NC Counties Deaths Raw
	10 - Sea Dead Properties - Sea Dead Properti
	See Ser Ser Ser Ser Ser Ser Ser Ser Ser
In [50]:	<pre># graph deaths data plt.plot(nc_deaths_x, np.log10(highest_deaths[0][3]), label = highest_deaths[0][0]) plt.plot(nc_deaths_x, np.log10(highest_deaths[1][3]), label = highest_deaths[1][0]) plt.plot(nc_deaths_x, np.log10(highest_deaths[2][3]), label = highest_deaths[2][0]) plt.xlabel('Weeks') plt.ylabel('New Deaths') plt.title('NC Counties New Deaths Per 100,000 and Logged') plt.xticks(nc_deaths_x[::2], rotation = 45) plt.legend()</pre>
	<pre>c:\Users\calvi\AppData\Local\Temp\ipykernel_236\1055913860.py:2: RuntimeWarning: divide by zero encountered in log10 plt.plot(nc_deaths_x, np.log10(highest_deaths[0][3]), label = highest_deaths[0][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1055913860.py:2: RuntimeWarning: invalid value encountered in log10 plt.plot(nc_deaths_x, np.log10(highest_deaths[0][3]), label = highest_deaths[0][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1055913860.py:3: RuntimeWarning: divide by zero encountered in log10 plt.plot(nc_deaths_x, np.log10(highest_deaths[1][3]), label = highest_deaths[1][0]) C:\Users\calvi\AppData\Local\Temp\ipykernel_236\1055913860.py:4: RuntimeWarning: divide by zero encountered in log10 plt.plot(nc_deaths_x, np.log10(highest_deaths[2][3]), label = highest_deaths[2][0]) NC Counties New Deaths Per 100,000 and Logged</pre>
	1.2 ————————————————————————————————————
	0.6 - 0.2 - 0.0 -
	Counties Deaths Analysis Looking at the counties graphs, there are two notable peaks: one at the beginning of June, and another at the end of August. These are both present in the state graph. I'm not sure why the beginning of June is particularly popular; there isn't anything special about that week, so it might just be chance that that week was particularly deadly. I've already stated my
	thoughts earlier on possible explanations for the peak at the end of August; families travel before school begins for children and the first week of school exposes many children to Covid again. I'll once again run through each county individually. Surry County is located in the Northwest and is home to 71,359 people. It is mostly white, which makes up 90.4% of the population. 16.1% of the population lives in poverty. Similar to Yadkin County, there isn't enough information from demographics alone to strongly conclude any causality, although it is worth noting that the poverty rate is higher than the national average.
	Nash County is a central county with a population of 94,970. It has a relatively diverse racial background; whites make up 48.77% of the population while blacks make up 38.62% of the population. 13.4% of the population lives in poverty. Aside from the diverse racial background, there isn't much to point to for causality. More research would be necessary to properly conclude anything. Cleveland County is a Southwestern state and is home to 99,519 people. Whites make up 70.5% of the populatio while blacks make up 20.13% of the population. 13.3% of the population lives in poverty. Once again, there isn't enough demographic information to make any strong conclusions. What I find interesting was there appeared to be a strong correlation between demographic information and new cases, but not between demographic information and new deaths. It's possible the death rate is strongly tied to something else that isn't demographics. What that other factor is would require more research.