Aplicaciones Polinomios de Legendre

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

6 de junio de 2022

Agenda Aplicaciones Polinomios de Legendre

- 1 Función generatriz dipolos y multipolos
- Expansión multipolar
- 3 Interpolación polinomial de puntos experimentales
- 4 Integración de funciones por cuadraturas: Simpson
- 5 Intregración por cuadratura de Gauss-Legendre
- Recapitulando

Consideremos un dipolo donde $V = q\left(\frac{1}{R'} - \frac{1}{R}\right)$

Donde
$$(R')^2 = r^2 + d^2 - 2r \ d\cos(\theta)$$
 y $R^2 = r^2 + d^2 - 2r \ d\cos(\pi - \theta)$

Entonces

$$\frac{1}{R'} = \frac{1}{r} \left[1 - 2\cos(\theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos(\theta)) \left(\frac{d}{r} \right)^n, y$$

$$\frac{1}{R} = \frac{1}{r} \left[1 - 2\cos(\pi - \theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} =$$

$$= \frac{1}{r} \sum_{n=0}^{\infty} P_n \left[\cos(\pi - \theta) \right] \left(\frac{d}{r} \right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos(\theta)) \left(\frac{d}{r} \right)^n$$

Entonces

$$\frac{1}{R'} = \frac{1}{r} \left[1 - 2\cos(\theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos(\theta)) \left(\frac{d}{r} \right)^n, \text{ y}$$

$$\frac{1}{R} = \frac{1}{r} \left[1 - 2\cos(\pi - \theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} =$$

$$= \frac{1}{r} \sum_{n=0}^{\infty} P_n \left[\cos(\pi - \theta) \right] \left(\frac{d}{r} \right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos(\theta)) \left(\frac{d}{r} \right)^n$$

• El potencial será $V = \frac{q}{r} \sum_{n=0}^{\infty} \left[P_n(\cos(\theta)) - P_n(-\cos(\theta)) \right] \left(\frac{d}{r} \right)^n$.

Entonces

$$\frac{1}{R'} = \frac{1}{r} \left[1 - 2\cos(\theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos(\theta)) \left(\frac{d}{r} \right)^n, \text{ y}$$

$$\frac{1}{R} = \frac{1}{r} \left[1 - 2\cos(\pi - \theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} =$$

$$= \frac{1}{r} \sum_{n=0}^{\infty} P_n \left[\cos(\pi - \theta) \right] \left(\frac{d}{r} \right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos(\theta)) \left(\frac{d}{r} \right)^n$$

- El potencial será $V = \frac{q}{r} \sum_{n=0}^{\infty} \left[P_n(\cos(\theta)) P_n(-\cos(\theta)) \right] \left(\frac{d}{r} \right)^n$.
- Todos los términos pares de $P_n(\cos(\theta))$ se anulan y tendremos $V = \frac{2q}{r} \sum_{n=0}^{\infty} P_{2n+1}(\cos(\theta)) \left(\frac{d}{r}\right)^{2n+1}$

Entonces

$$\frac{1}{R'} = \frac{1}{r} \left[1 - 2\cos(\theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos(\theta)) \left(\frac{d}{r} \right)^n, y$$

$$\frac{1}{R} = \frac{1}{r} \left[1 - 2\cos(\pi - \theta) \left(\frac{d}{r} \right) + \left(\frac{d}{r} \right)^2 \right]^{-1/2} =$$

$$= \frac{1}{r} \sum_{n=0}^{\infty} P_n[\cos(\pi - \theta)] \left(\frac{d}{r} \right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos(\theta)) \left(\frac{d}{r} \right)^n$$

- El potencial será $V = \frac{q}{r} \sum_{n=0}^{\infty} \left[P_n(\cos(\theta)) P_n(-\cos(\theta)) \right] \left(\frac{d}{r} \right)^n$.
- Todos los términos pares de $P_n(\cos(\theta))$ se anulan y tendremos $V = \frac{2q}{r} \sum_{n=0}^{\infty} P_{2n+1}(\cos(\theta)) \left(\frac{d}{r}\right)^{2n+1}$
- Si $\frac{d}{r} \ll 1 \quad \Rightarrow \quad V \approx \frac{q}{r^2} \ 2d \cos(\theta)$.

Consideremos un cuadrupolo donde $V=q\left(\frac{1}{R_1}+\frac{1}{R_2}-\frac{2}{r}\right)$

con
$$V_1=q\left(\frac{1}{R_1}-\frac{1}{r}\right)$$
 y $V_2=q\left(\frac{1}{R_2}-\frac{1}{r}\right)\Rightarrow V=V_1+V_2$.

Esta configuración representa un cuadrupolo: un par de dipolos superpuestos con orientaciones opuestas

• Igual que en el caso del monopolo

• Igual que en el caso del monopolo

$$R_1^2 = r^2 + d^2 - 2r \ d \cos \theta \quad \text{y} \quad R_2^2 = r^2 + d^2 - 2r \ d \cos (\pi - \theta) \ ,$$

$$\text{con lo cual } \frac{1}{R_1} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos \theta) \left(\frac{d}{r}\right)^n \text{ y}$$

$$\frac{1}{R_2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n\left[\cos (\pi - \theta)\right] \left(\frac{d}{r}\right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos \theta) \left(\frac{d}{r}\right)^n$$

• El potencial será $V = \frac{q}{r} \left[\sum_{n=0}^{\infty} \left[P_n(\cos \theta) + P_n(-\cos \theta) \right] \left(\frac{\mathrm{d}}{r} \right)^n - 2 \right] = \frac{2q}{r} \left[\sum_{n=0}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n} - 1 \right] = \frac{2q}{r} \sum_{n=1}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n}.$

• Igual que en el caso del monopolo

$$R_1^2 = r^2 + d^2 - 2r \ d \cos \theta \quad \text{y} \quad R_2^2 = r^2 + d^2 - 2r \ d \cos (\pi - \theta) \ ,$$

$$\text{con lo cual } \frac{1}{R_1} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos \theta) \left(\frac{d}{r}\right)^n \text{ y}$$

$$\frac{1}{R_2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n \left[\cos (\pi - \theta)\right] \left(\frac{d}{r}\right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos \theta) \left(\frac{d}{r}\right)^n$$

- El potencial será $V = \frac{q}{r} \left[\sum_{n=0}^{\infty} \left[P_n(\cos \theta) + P_n(-\cos \theta) \right] \left(\frac{\mathrm{d}}{r} \right)^n 2 \right] = \frac{2q}{r} \left[\sum_{n=0}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n} 1 \right] = \frac{2q}{r} \sum_{n=1}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n}.$
- Se anulan los términos impares y el primer término (n = 0).
- El primer término de la serie, n=1, es el cuadrupolo $V=\frac{2qd^2P_2(\cos\theta)}{r^3}$

- Igual que en el caso del monopolo $R_1^2 = r^2 + d^2 2r \ d\cos\theta \quad \text{y} \quad R_2^2 = r^2 + d^2 2r \ d\cos(\pi \theta) \ ,$ con lo cual $\frac{1}{R_1} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos\theta) \left(\frac{\mathrm{d}}{r}\right)^n \ \text{y}$ $\frac{1}{R_2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n\left[\cos(\pi \theta)\right] \left(\frac{\mathrm{d}}{r}\right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos\theta) \left(\frac{\mathrm{d}}{r}\right)^n$
- El potencial será $V = \frac{q}{r} \left[\sum_{n=0}^{\infty} \left[P_n(\cos \theta) + P_n(-\cos \theta) \right] \left(\frac{\mathrm{d}}{r} \right)^n 2 \right] = \frac{2q}{r} \left[\sum_{n=0}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n} 1 \right] = \frac{2q}{r} \sum_{n=1}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n}.$
- Se anulan los términos impares y el primer término (n = 0).
- El primer término de la serie, n=1, es el cuadrupolo $V=\frac{2qd^2P_2(\cos\theta)}{r^3}$
- Podemos generalizar las contribuciones al potencial con multipolos puntuales de i-cargas en $r \to 0$ con términos proporcionales a $\frac{P_n(\cos\theta)}{r^{n+1}}$ de la forma $V = \frac{1}{r} \left[\mu_0 + \frac{\mu_1}{r} P_1(\cos\theta) + \frac{\mu_2}{r^2} P_2(\cos\theta) + \cdots \right]$, con $V = \frac{1}{r} \left[\sum_i q_i + \sum_i \frac{q_i d_i}{r} P_1(\cos\theta) + \sum_i \frac{q_i d_i^2}{r^2} P_2(\cos\theta) + \cdots \right]$

- Igual que en el caso del monopolo $R_1^2 = r^2 + d^2 2r \ d\cos\theta \quad \text{y} \quad R_2^2 = r^2 + d^2 2r \ d\cos(\pi \theta) \ ,$ con lo cual $\frac{1}{R_1} = \frac{1}{r} \sum_{n=0}^{\infty} P_n(\cos\theta) \left(\frac{\mathrm{d}}{r}\right)^n \ \text{y}$ $\frac{1}{R_2} = \frac{1}{r} \sum_{n=0}^{\infty} P_n\left[\cos(\pi \theta)\right] \left(\frac{\mathrm{d}}{r}\right)^n = \frac{1}{r} \sum_{n=0}^{\infty} P_n(-\cos\theta) \left(\frac{\mathrm{d}}{r}\right)^n$
- El potencial será $V = \frac{q}{r} \left[\sum_{n=0}^{\infty} \left[P_n(\cos \theta) + P_n(-\cos \theta) \right] \left(\frac{\mathrm{d}}{r} \right)^n 2 \right] = \frac{2q}{r} \left[\sum_{n=0}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n} 1 \right] = \frac{2q}{r} \sum_{n=1}^{\infty} P_{2n}(\cos \theta) \left(\frac{\mathrm{d}}{r} \right)^{2n}.$
- Se anulan los términos impares y el primer término (n = 0).
- El primer término de la serie, n=1, es el cuadrupolo $V=\frac{2qd^2P_2(\cos\theta)}{r^3}$
- Podemos generalizar las contribuciones al potencial con multipolos puntuales de i—cargas en $r \to 0$ con términos proporcionales a $\frac{P_n(\cos\theta)}{r^{n+1}}$ de la forma $V = \frac{1}{r} \left[\mu_0 + \frac{\mu_1}{r} P_1(\cos\theta) + \frac{\mu_2}{r^2} P_2(\cos\theta) + \cdots \right]$, con $V = \frac{1}{r} \left[\sum_i q_i + \sum_i \frac{q_i d_i}{r} P_1(\cos\theta) + \sum_i \frac{q_i d_i^2}{r^2} P_2(\cos\theta) + \cdots \right]$
- El monopolo $\mu_0 = \sum_i q_i$: la carga total. El dipolo $\mu_1 = \sum_i q_i d_i^2$; El cuadrupolo $\mu_2 = \sum_i q_i d_i^2$ y así consecutivamente.

• Dato un conjunto de n medidas o puntos experimentales $\{(x_1, y_1) = f(x_1), (x_2, y_2) = f(x_2), \cdots, (x_n, y_n) = f(x_n)\}$ queremos una función que ajuste estos puntos.

- Dato un conjunto de n medidas o puntos experimentales $\{(x_1, y_1) = f(x_1), (x_2, y_2) = f(x_2), \cdots, (x_n, y_n) = f(x_n)\}$ queremos una función que ajuste estos puntos.
- Un polinomio de grado n-1 que pase por los puntos experimentales.

- Dato un conjunto de n medidas o puntos experimentales $\{(x_1, y_1) = f(x_1), (x_2, y_2) = f(x_2), \cdots, (x_n, y_n) = f(x_n)\}$ queremos una función que ajuste estos puntos.
- ullet Un polinomio de grado n-1 que pase por los puntos experimentales.

• Tendremos:
$$\mathcal{P}(x) = f(x) = \sum_{k=0}^{n-1} C_k P_k(x) \Rightarrow$$

$$\Rightarrow \begin{cases} y_1 = f(x_1) = C_0 P_0(x_1) + C_1 P_1(x_1) + \dots + C_{n-1} P_{n-1}(x_1) \\ y_2 = f(x_2) = C_0 P_0(x_2) + C_1 P_1(x_2) + \dots + C_{n-1} P_{n-1}(x_2) \\ \vdots \\ y_n = f(x_n) = C_0 P_0(x_n) + C_1 P_1(x_n) + \dots + C_{n-1} P_{n-1}(x_n) \end{cases}$$

- Dato un conjunto de n medidas o puntos experimentales $\{(x_1, y_1) = f(x_1), (x_2, y_2) = f(x_2), \cdots, (x_n, y_n) = f(x_n)\}$ queremos una función que ajuste estos puntos.
- ullet Un polinomio de grado n-1 que pase por los puntos experimentales.

• Tendremos:
$$\mathcal{P}(x) = f(x) = \sum_{k=0}^{n-1} C_k P_k(x) \Rightarrow$$

$$\begin{cases} y_1 = f(x_1) = C_0 P_0(x_1) + C_1 P_1(x_1) + \dots + C_{n-1} P_{n-1}(x_1) \\ y_2 = f(x_2) = C_0 P_0(x_2) + C_1 P_1(x_2) + \dots + C_{n-1} P_{n-1}(x_2) \\ \vdots \\ y_n = f(x_n) = C_0 P_0(x_n) + C_1 P_1(x_n) + \dots + C_{n-1} P_{n-1}(x_n) \end{cases}$$

• Un sistema de n ecuaciones con n incógnitas: los coeficientes $\{C_0, C_1, \cdots C_{n-1}\}$ que definen al polinomio

En el lado izquierdo se muestran el conjunto de puntos experimentales: $\{(2,8),(4,10),(6,11),(8,18),(10,20),(12,34)\}$ y a la derecha la función polinómica que los interpola. Nótese el reescalamiento de la variable x en el rango de validez de los polinomios de legendre.

8 / 14

Cuadratura e integración de funciones

• La integración numérica de una función se le conoce como integración por cuadratura. Su historia se remonta a los orígenes del cálculo.

Cuadratura e integración de funciones

- La integración numérica de una función se le conoce como integración por cuadratura. Su historia se remonta a los orígenes del cálculo.
- La cuadratura no es más que el caso especial más sencillo: La evaluación de la integral $\int_a^b f(x) dx \approx \sum_{k=1}^N h f_k$, con $h_k = x_{k+1} x_k = cte$, y $f(x_k) = f_k$.

Cuadratura e integración de funciones

- La integración numérica de una función se le conoce como integración por cuadratura. Su historia se remonta a los orígenes del cálculo.
- La cuadratura no es más que el caso especial más sencillo: La evaluación de la integral $\int_a^b f(x) dx \approx \sum_{k=1}^N h f_k$, con $h_k = x_{k+1} x_k = cte$, y $f(x_k) = f_k$.
- Con la idea de calcular el área bajo la curva con poliedros identificamos varias fórmulas populares y famosas

Figura: Cuadratura de una función para puntos equi-espaciados

• Este esquema implica la evaluación de las función en dos puntos y los coeficientes se ajustan con una recta (aproximación lineal) $\int_{x_0}^{x_1} f(x) dx = h\left[\frac{1}{2}f_0 + \frac{1}{2}f_1\right] + E_3(h^3f''). E_3(h^3f'') \text{ es del orden } h^3.$

- Este esquema implica la evaluación de las función en dos puntos y los coeficientes se ajustan con una recta (aproximación lineal) $\int_{x_0}^{x_1} f(x) dx = h\left[\frac{1}{2}f_0 + \frac{1}{2}f_1\right] + E_3(h^3f''). \ E_3(h^3f'') \text{ es del orden } h^3.$
- Es inmediato ver que siy(x) = ax + b, el área bajo la curva será $A = \int_0^h (ax + b) dx = \left| \frac{a^x}{2} + bx \right|_0^h = \left| \frac{a^h}{2} + bh \right| = h\left(\frac{ah}{2} + b\right)$

- Este esquema implica la evaluación de las función en dos puntos y los coeficientes se ajustan con una recta (aproximación lineal) $\int_{x_0}^{x_1} f(x) dx = h\left[\frac{1}{2}f_0 + \frac{1}{2}f_1\right] + E_3(h^3f''). \ E_3(h^3f'') \text{ es del orden } h^3.$
- Es inmediato ver que siy(x) = ax + b, el área bajo la curva será $A = \int_0^h (ax + b) dx = \left. a \frac{x}{2} + bx \right|_0^h = a \frac{h^2}{2} + bh = h \left(\frac{ah}{2} + b \right)$
- Además $f_1 = ah + b$ y $f_0 = b \Rightarrow A = \frac{h}{2}(f_1 + f_0)$.

- Este esquema implica la evaluación de las función en dos puntos y los coeficientes se ajustan con una recta (aproximación lineal) $\int_{x_0}^{x_1} f(x) dx = h \left[\frac{1}{2} f_0 + \frac{1}{2} f_1 \right] + E_3(h^3 f''). E_3(h^3 f'') \text{ es del orden } h^3.$
- Es inmediato ver que siy(x) = ax + b, el área bajo la curva será $A = \int_0^h (ax + b) dx = \left. a \frac{x}{2} + bx \right|_0^h = a \frac{h^2}{2} + bh = h \left(\frac{ah}{2} + b \right)$
- Además $f_1 = ah + b$ y $f_0 = b \Rightarrow A = \frac{h}{2}(f_1 + f_0)$.
- Del mismo modo, si empleamos tres puntos, $\int_{x_0}^{x_2} f(x) dx = h \left[\frac{1}{3} f_0 + \frac{4}{3} f_1 + \frac{1}{3} f_2 \right] + E_5 \left(h^5 f^{(4)} \right).$
- Podemos espejar los coeficientes para una parábola

$$\int_{-h}^{h} (ax^{2} + bx + c) dx = \frac{ax^{3}}{3} + \frac{bx^{2}}{2} + cx \Big|_{-h}^{h} = \left(\frac{ah^{3}}{3} + \frac{bh^{2}}{2} + ch\right) - \left(-\frac{ah^{3}}{3} + \frac{bh^{2}}{2} - ch\right) = \frac{2ah^{3}}{3} + 2ch = \frac{h}{3}(2ah^{2} + 6c)$$

- Este esquema implica la evaluación de las función en dos puntos y los coeficientes se ajustan con una recta (aproximación lineal) $\int_{x_0}^{x_1} f(x) dx = h \left[\frac{1}{2} f_0 + \frac{1}{2} f_1 \right] + E_3(h^3 f''). E_3(h^3 f'') \text{ es del orden } h^3.$
- Es inmediato ver que siy(x) = ax + b, el área bajo la curva será $A = \int_0^h (ax + b) dx = \left| \frac{a^x}{2} + bx \right|_0^h = \left| \frac{a^h}{2} + bh \right| = h\left(\frac{ah}{2} + b\right)$
- Además $f_1 = ah + b$ y $f_0 = b \Rightarrow A = \frac{h}{2}(f_1 + f_0)$.
- Del mismo modo, si empleamos tres puntos, $\int_{x_0}^{x_2} f(x) dx = h \left[\frac{1}{3} f_0 + \frac{4}{3} f_1 + \frac{1}{3} f_2 \right] + E_5 \left(h^5 f^{(4)} \right).$
- Podemos espejar los coeficientes para una parábola

$$\int_{-h}^{h} (ax^{2} + bx + c) dx = \frac{ax^{3}}{3} + \frac{bx^{2}}{2} + cx \Big|_{-h}^{h} = \left(\frac{ah^{3}}{3} + \frac{bh^{2}}{2} + ch\right) - \left(-\frac{ah^{3}}{3} + \frac{bh^{2}}{2} - ch\right) = \frac{2ah^{3}}{3} + 2ch = \frac{h}{3}(2ah^{2} + 6c)$$

• Como la parábola pasa por los tres puntos, $f_0 = ah^2 - bh + c$, $f_1 = c$ y $f_2 = ah^2 + bh + c$. Entonces: $A = \frac{h}{3}(2ah^2 + 6c) = \frac{h}{3}(f_0 - 2f_1 + f_2 + 6f_1) = \frac{h}{3}(f_0 + 4f_1 + f_2)$.

• Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_a^b f(x) dx = \sum_{k=1}^N c_k f(x_k) + E_N$

- Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_a^b f(x) dx = \sum_{k=1}^N c_k f(x_k) + E_N$
- Se requieren 2N números $(c_k$ y los x_k con $k=1,2,\cdots N)$, seleccionados de forma que la aproximación es exacta cuando f(x) es un polinomio de grado $\leq 2N-1$.

- Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_a^b f(x) dx = \sum_{k=1}^N c_k f(x_k) + E_N$
- Se requieren 2N números $(c_k$ y los x_k con $k=1,2,\cdots N)$, seleccionados de forma que la aproximación es exacta cuando f(x) es un polinomio de grado $\leq 2N-1$.
- Con los polinomios de Legendre para aproximamos la integral (y la función) $f(x) = \sum_{k=0}^{\infty} a_k P_k(x)$, donde $a_k = \left(k + \frac{1}{2}\right) \int_{-1}^{1} \mathrm{d}x \ f(x) P_k(x) \ y \ a_0 = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \ f(x).$

- Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_a^b f(x) dx = \sum_{k=1}^N c_k f(x_k) + E_N$
- Se requieren 2N números $(c_k \text{ y los } x_k \text{ con } k = 1, 2, \dots N)$, seleccionados de forma que la aproximación es exacta cuando f(x) es un polinomio de grado $\leq 2N 1$.
- Con los polinomios de Legendre para aproximamos la integral (y la función) $f(x) = \sum_{k=0}^{\infty} a_k P_k(x)$, donde $a_k = (k + \frac{1}{2}) \int_{-1}^{1} dx \ f(x) P_k(x) \ y \ a_0 = \frac{1}{2} \int_{-1}^{1} dx \ f(x)$.
- Con lo cual $\int_{-1}^{1} f(x) dx \approx \sum_{k=1}^{N} c_k f(x_k) = \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} a_n P_n(x_k) = \sum_{n=0}^{\infty} a_n \sum_{k=1}^{N} c_k P_n(x_k).$

- Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_a^b f(x) dx = \sum_{k=1}^N c_k f(x_k) + E_N$
- Se requieren 2N números $(c_k \text{ y los } x_k \text{ con } k = 1, 2, \dots N)$, seleccionados de forma que la aproximación es exacta cuando f(x) es un polinomio de grado $\leq 2N 1$.
- Con los polinomios de Legendre para aproximamos la integral (y la función) $f(x) = \sum_{k=0}^{\infty} a_k P_k(x)$, donde $a_k = (k + \frac{1}{2}) \int_{-1}^{1} dx \ f(x) P_k(x) \ y \ a_0 = \frac{1}{2} \int_{-1}^{1} dx \ f(x)$.
- Con lo cual $\int_{-1}^{1} f(x) dx \approx \sum_{k=1}^{N} c_k f(x_k) = \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} a_n P_n(x_k) = \sum_{n=0}^{\infty} a_n \sum_{k=1}^{N} c_k P_n(x_k).$
- $P_N(x)$ tiene N raíces, $x = x_j$, en $-1 \le x \le 1$. Seleccionamos esos puntos $x = x_j$ para evaluar la función $f(x_k)$.

- Nos planteamos la posiblilidad de aproximar la integral con puntos espaciados estratégicamente: $\int_{a}^{b} f(x) dx = \sum_{k=1}^{N} c_k f(x_k) + E_N$
- Se requieren 2N números $(c_k$ y los x_k con $k=1,2,\cdots N)$, seleccionados de forma que la aproximación es exacta cuando f(x) es un polinomio de grado $\leq 2N-1$.
- Con los polinomios de Legendre para aproximamos la integral (y la función) $f(x) = \sum_{k=0}^{\infty} a_k P_k(x)$, donde $a_k = (k + \frac{1}{2}) \int_{-1}^{1} dx \ f(x) P_k(x) \ y \ a_0 = \frac{1}{2} \int_{-1}^{1} dx \ f(x)$.
- Con lo cual $\int_{-1}^{1} f(x) dx \approx \sum_{k=1}^{N} c_k f(x_k) = \sum_{k=1}^{N} c_k \sum_{n=0}^{\infty} a_n P_n(x_k) = \sum_{n=0}^{\infty} a_n \sum_{k=1}^{N} c_k P_n(x_k).$
- $P_N(x)$ tiene N raíces, $x = x_j$, en $-1 \le x \le 1$. Seleccionamos esos puntos $x = x_j$ para evaluar la función $f(x_k)$.
- Podremos encontrar los pesos c_k resolviendo el sistema de N ecuaciones $\sum_{j=1}^N c_j P_0(x_j) = \sum_{j=1}^N c_j = 2$ y $\sum_{j=1}^N c_j P_k(x_j) = 0$ para $k = 1, 2, \dots, N-1$. $P_k(x_j)$ son los distintos polinomios evaluados en las raíces del polinomio de grado N

• Se puede demostrar que la solución de este sistema son los pesos

$$c_j = \frac{2}{(1-x_i^2)(P_N'(x_j))^2}$$
, donde: $P_N'(x_j) = \frac{dP_N(x)}{dx}\Big|_{x=x_j}$

• Se puede demostrar que la solución de este sistema son los pesos

$$c_j = \frac{2}{(1-x_j^2)\left(P_N'(x_j)\right)^2}$$
, donde: $P_N'(x_j) = \frac{\mathrm{d}P_N(x)}{\mathrm{d}x}\Big|_{x=x_j}$

• Entonces tendremos $\int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{(b-a)t+b+a}{2}\right) dt$,

• Se puede demostrar que la solución de este sistema son los pesos

$$c_j = \frac{2}{(1-x_j^2)\left(P_N'(x_j)\right)^2}$$
, donde: $P_N'(x_j) = \frac{\mathrm{d}P_N(x)}{\mathrm{d}x}\Big|_{x=x_j}$

- Entonces tendremos $\int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{(b-a)t+b+a}{2}\right) dt$,
- y para la cuadratura de Gauss-Legendre será $\int_a^b f(x) \mathrm{d}x = \frac{b-a}{2} \sum_{k=1}^N c_k f\left(\frac{(b-a)t_k+b+a}{2}\right)$ donde los t_k son las raíces de $P_N(t_k) = 0$.

- Se puede demostrar que la solución de este sistema son los pesos $c_j = \frac{2}{(1-x_i^2)(P_N'(x_j))^2}$, donde: $P_N'(x_j) = \frac{\mathrm{d}P_N(x)}{\mathrm{d}x}\Big|_{x=x_i}$
- Entonces tendremos $\int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{(b-a)t+b+a}{2}\right) dt$,
- y para la cuadratura de Gauss-Legendre será $\int_a^b f(x) \mathrm{d}x = \tfrac{b-a}{2} \sum_{k=1}^N c_k f\left(\tfrac{(b-a)t_k+b+a}{2}\right)$ donde los t_k son las raíces de $P_N(t_k) = 0$.
- Para el caso general, la cuadratura de Gauss aproxima la integral como $\int_a^b \mathrm{d}x \ w(x) f(x) \approx \sum_{k=1}^N c_k f(x_k)$, donde las $\{x_1, \dots x_k, \dots x_N\}$ son los ceros del polinomio ortogonal, de grado N, $p_N(x)$, elegido.

- Se puede demostrar que la solución de este sistema son los pesos $c_j = \frac{2}{(1-x_i^2)(P_N'(x_i))^2}$, donde: $P_N'(x_j) = \frac{\mathrm{d}P_N(x)}{\mathrm{d}x}\Big|_{x=x_i}$
- Entonces tendremos $\int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{(b-a)t+b+a}{2}\right) dt$,
- y para la cuadratura de Gauss-Legendre será $\int_a^b f(x) \mathrm{d}x = \tfrac{b-a}{2} \sum_{k=1}^N c_k f\left(\tfrac{(b-a)t_k+b+a}{2}\right)$ donde los t_k son las raíces de $P_N(t_k) = 0$.
- Para el caso general, la cuadratura de Gauss aproxima la integral como $\int_a^b \mathrm{d}x \ w(x) f(x) \approx \sum_{k=1}^N c_k f(x_k)$, donde las $\{x_1, \dots x_k, \dots x_N\}$ son los ceros del polinomio ortogonal, de grado N, $p_N(x)$, elegido.
- Los N pesos $\{c_1, \cdots c_k, \cdots c_N\}$ surgen de resolver el sistema $\sum_{j=1}^N c_j = \frac{h_0}{p_0^2}$ con $h_0 = \int_a^b w(x) p_0^2(x) \mathrm{d}x$ y $\sum_{j=1}^N c_j p_k(x_j) = 0$

- Se puede demostrar que la solución de este sistema son los pesos $c_j = \frac{2}{(1-x_i^2)(P_N'(x_i))^2}$, donde: $P_N'(x_j) = \frac{\mathrm{d}P_N(x)}{\mathrm{d}x}\Big|_{x=x_i}$
- Entonces tendremos $\int_a^b f(x) dx = \frac{b-a}{2} \int_{-1}^1 f\left(\frac{(b-a)t+b+a}{2}\right) dt$,
- y para la cuadratura de Gauss-Legendre será $\int_a^b f(x) \mathrm{d}x = \tfrac{b-a}{2} \sum_{k=1}^N c_k f\left(\tfrac{(b-a)t_k+b+a}{2}\right)$ donde los t_k son las raíces de $P_N(t_k) = 0$.
- Para el caso general, la cuadratura de Gauss aproxima la integral como $\int_a^b \mathrm{d}x \ w(x) f(x) \approx \sum_{k=1}^N c_k f(x_k)$, donde las $\{x_1, \dots x_k, \dots x_N\}$ son los ceros del polinomio ortogonal, de grado N, $p_N(x)$, elegido.
- Los N pesos $\{c_1, \dots c_k, \dots c_N\}$ surgen de resolver el sistema $\sum_{j=1}^N c_j = \frac{h_0}{p_0^2}$ con $h_0 = \int_a^b w(x) p_0^2(x) \mathrm{d}x$ y $\sum_{j=1}^N c_j p_k(x_j) = 0$
- Esto es $\int_0^\infty dx \ e^{-x} f(x) \Rightarrow \text{Laguerre}, \ \int_{-\infty}^\infty dx \ e^{-x^2} f(x) \Rightarrow \text{Hermite}, \ \int_{-1}^1 dx \ \frac{f(x)}{\sqrt{1-x^2}} \Rightarrow \text{Tchebychev}.$

Puntos y pesos para una cuadratura de Gauss-Leg

N	$P_N(x_j)=0$	$c_j = rac{2}{(1-x_j^2)\left(P_N'(x_j) ight)^2}$	2N - 1
2	$\pm\sqrt{3}/3$	1	3
3	0	8/9	5
	$\pm\sqrt{15}/5$	5/9	
4	±0,3399810436	0,65214515	7
	±0,8611363116	0,34785485	
5	0	0,56888889	9
	$\pm 0,5384693101$	0,47862867	
	$\pm 0,9061798459$	0,23692689	
6	±0,2386191861	0,46791393	11
	$\pm 0,6612093865$	0,36076157	
	$\pm 0,9324695142$	0,17132449	
:	:	:	:

Cuadro: Puntos y pesos para una cuadratura de Gauss-Legendre

Recapitulando

En presentación consideramos

