

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół: 1.Kulig Mateusz 2.Ryś Przemysław

A G H	Fizyka techniczna		= , 5 1 120111, 510	
AGH				
Laboratorium elektroniczne WFiIS				
Rok akademicki: 2022/2023 Semestr V Grupa: 2				
Temat ćwicze	Temat ćwiczenia:			
Wzmacniacze operacyjne A-3				
Data wykonania ćwiczenia		Data oddania sprawozdania	Ocena	
	22.11.2022	06.12.2022		

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie parametrów wzmacniacza operacyjnego pracującego w różnych konfiguracjach układowych.

2 Aparatura

W ćwiczeniu użyliśmy następujących przyrządów:

- Układ ze wzmacniaczem
- Generator sygnału
- Zasilacz
- Oscyloskop
- Woltomierz

3 Analiza danych

W trakcie przeprowadzania doświadczenia doszliśmy do wniosku, że wzmacniacz nie działa tak jak powinien, co jest prawdopodobną przyczyną rozbieżności niektórych obliczonych wartości z wartościami katalogowymi.

3.1 Badanie wtórnika napięciowego

Układ konfigurujemy jako wtórnik napięciowym, który pokazany jest na rysunku 1, włączając w obwód jego sprzężenia zwrotnego rezystor $10k\Omega$. Sygnał wejściowy U_1 podajemy na wejście nieodwracające (+) wzmacniacza wykorzystując złącze P5. Wyjściem układu obserwowanym za pomocą woltomierza lub oscyloskopu będzie U2 dostępne na złączu P6, OUT1 lub OUT2. Napięcie zasilania dla każdego podpunktu tego ćwiczenia wynosiło 14,98 [V].

Rys. 1: Wtórnik napięciowy

3.1.1

Na wejście przyłożyliśmy stałe napięcie w zakresie od 0 do +/-15V. By nie wykonywać pomiarów dla napięcia wejściowego 0 [V] wykonaliśmy je dla +-0.1 [V]. Pomiarów dokonywaliśmy ze skokiem 1 [V], gdy wzmacniacz wchodził w obszar nasycenia, to dokonaliśmy większej ilości pomiarów. Pomiary przedstawiliśmy w tabeli 2. Wykres 2 przedstawia charakterystykę przenoszenia dla tego wzmacniacza. Granice zakresu liniowego wzmacniacza wynoszą -14 oraz 12 [V] Za pomocą użytej funkcji "REGLINP()"w programie Microsoft Excel wyznaczyliśmy współczynniki prostej regresji dla zmierzonych danych w zakresie liniowym. Wynoszą one odpowiednio a=1,00195,b=-0,0566 Wzmocnienie stało prądowe jest nachyleniem charakterystyki w zakresie liniowym, a więc jego wartość jest równa współczynnikowi a prostej regresji, zatem k=1,00195. Wejściowe napięcie niezrównoważenia jest napięciem jakie należy przyłożyć na wejściu, aby na wyjściu uzyskać napięcie równe 0. Więc w naszym przypadku offset jest dany wyrażeniem: $0=1,00195 \cdot V_{\rm OS}-0,0566 \Rightarrow V_{\rm OS}=0,05639$ [V].

Rys. 2: Charakterystyka przenoszenia.

Tab. 1: Tabela wyników dla charakterystyki przenoszenia.

V_we	V_{wy}	V_we	V_wy
-14	-12,20	0,1	0,21
-13	-12,20	1	1,11
-12	-11,89	2	2,11
-11	-10,89	3	3,11
-10	-9,89	4	4,11
-9	-8,90	5	5,11
-8	-7,90	6	6,11
-7	-6,90	7	7,11
-6	-5,90	8	8,11
-5	-4,90	9	9,10
-4	-3,90	10	10,10
-3	-2,90	11	11,10
-2	-1,90	12	12,10
-1	-0,90	13	13,10
-0,1	-1,00	14	13,70
		14,2	13,71
		14,5	14,27
		15	14,48

3.1.2

Na wejście podaliśmy przebieg prostokątny o częstotliwości 10 [kHz] i amplitudzie 100 [mVpp]. Czas narastania według karty katalogowej w 25 stopniach Celsjusza wynosi 0,3 [μ s], z kolei zmierzony przez nas czas narastania wynosi 0,107 [μ s].

Rys. 3: Obraz z oscyloskopu dla sygnału prostokątnego.

3.1.3

Na wejście podaliśmy przebieg prostokątny o częstotliwości 10 [kHz] i amplitudzie 5 [Vpp]. By dokonać pomiaru szybkości zmian napięcia wybraliśmy dwa punkty, na początku oraz końcu liniowego narastania sygnału wejściowego. Zmierzona zmiana napięcia ΔV wynosiła 3,5 [V] na odcinku czasu Δt równym 1,45[μ s]. Szybkość zmian napięcia wynosi zatem

$$\frac{\Delta V}{\Delta t} = 2,41 [\frac{\mathrm{V}}{\mu \mathrm{s}}].$$

Według karty katalogowej szybkość zmian napięcia (slew rate) w 25 stopniach Celsjusza wynosi $0, 5[\frac{V}{uS}]$.

3.1.4

Na wejście podaliśmy przebieg sinusoidalny o amplitudzie 100 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=103 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 0,1 do 10000 [kHz]. Pomiary przedstawiono w tabeli 2. Charakterystykę amplitudową przedstawiono na wykresie 6. Wzmocnienie dla małych częstotliwości wynosi $K=\frac{U_{out}}{U_{in}}=\frac{105,25}{103}\approx 1,02184$. Jest to wynik większy niż ten uzyskany w podpunkcie a.

Do danych dopasowaliśmy dwie krzywe za pomocą programu Microsoft Excel o wzorach analitycznych y=0,054

ln(x) + 0,1864 oraz $y = -11,73 \cdot ln(x) + 83,732$. Częstotliwość graniczną obliczyliśmy odejmując od pierwszej krzywej 3 decybele oraz wyznaczyliśmy jej punkt przecięcia z drugą krzywą. Rozwiązując poniższe równanie:

$$0.054 \cdot ln(x) + 0.1864 - 3 = -11.73 \cdot ln(x) + 83.732$$

otrzymujemy: $f_g=1547,4[\text{kHz}]$ podczas gdy wartość katalogowa to $f_g=1000[\text{kHz}]$. Pole wzmocnienia obliczyliśmy za pomocą wzoru $GWB=K\cdot f_g$ i w tym przypadku otrzymujemy

$$GWB = 1,02184 \cdot 1547, 4 \approx 1581, 195 [\text{kHz}].$$

Rys. 4: Charakterystyka amplitudowa.

Tab. 2: Zależność amplitudy od częstotliwości.

częstotliwość [kHz]	amplituda wyjściowa [mV]
0,1	105,25
0,2	105,25
0,3	105,25
0,6	105,25
1	105,25
2	105,25
3	105,25
6	105,25
10	105,25
20	105,25
30	105,25
60	105,25
100	105,25
150	112,75
200	115
300	122,75
600	168,75
1000	143,75
1250	100,75
1500	77,25
2000	53
3000	38,25
10000	5,875

3.2 Badanie wzmacniacza o wzmocnieniu 11[V/V]

Na wejście podaliśmy przebieg sinusoidalny o amplitudzie 100 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=103 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 0,1 do 1000 [kHz]. Pomiary przedstawiono w tabeli 3. Charakterystykę amplitudową przedstawiono na wykresie 6. Wzmocnienie dla małych częstotliwości wynosi $K=\frac{U_{out}}{U_{in}}=\frac{1127.5}{103}\approx 10,947$. Do danych dopasowaliśmy dwie krzywe za pomocą programu Microsoft Excel o wzorach analitycznych y=-7.

Do danych dopasowaliśmy dwie krzywe za pomocą programu Microsoft Excel o wzorach analitycznych $y=-7\cdot 10^{-15}ln(x)+20,786$ oraz $y=-7,378\cdot ln(x)+50,651$. Częstotliwość graniczną obliczyliśmy odejmując od pierwszej krzywej 3 decybele oraz wyznaczyliśmy jej punkt przecięcia z drugą krzywą. Rozwiązując poniższe równanie:

$$-7 \cdot 10^{-15} ln(x) + 20,786 - 3 = -7,378 \cdot ln(x) + 50,651$$

otrzymujemy: $f_g = 86[\text{kHz}]$.

Pole wzmocnienia obliczyliśmy za pomocą wzoru $GWB = K \cdot f_g$ i w tym przypadku otrzymujemy

$$GWB = 10,947 \cdot 86 \approx 941,442 \text{[kHz]}.$$

Jest to wartość znacznie mniejsza niż otrzymana w poprzednim podpunkcie.

Rys. 5: Charakterystyka amplitudowa dla wzmacniacza o wzmocnieniu 11.

Tab. 3: Zależność amplitudy wyjściowej od częstotliwości.

częstotliwość [kHz]	amplituda wyjściowa [V]
0,1	1,1275
0,2	1,1275
0,3	1,1275
0,6	1,1275
1	1,1275
10	1,175
100	0,7025
1000	0,099375

3.3 Badanie wzmacniacza o wzmocnieniu -10 [V]

Na wejście podaliśmy przebieg sinusoidalny o amplitudzie 100 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=97,75 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 0,1 do 1000 [kHz]. Pomiary przedstawiono w tabeli 3. Charakterystykę amplitudową przedstawiono na wykresie 6. Wzmocnienie dla małych częstotliwości wynosi $K = \frac{U_{out}}{U_{in}} = \frac{977.5}{97.75} = 10$. Do danych dopasowaliśmy dwie krzywe za pomocą programu Microsoft Excel o wzorach analitycznych y = -0.015.

 $ln(x) - 40,019 \text{ oraz } y = -7,728 \cdot ln(x) - 8,1526.$ Częstotliwość graniczną obliczyliśmy odejmując od pierwszej krzywej

3 decybele oraz wyznaczyliśmy jej punkt przecięcia z drugą krzywą. Rozwiązując poniższe równanie:

$$-0.015 \cdot ln(x) - 40.019 - 3 = -7.728 \cdot ln(x) - 8.1526,$$

otrzymujemy: $f_g=90,3$ [kHz]. Pole wzmocnienia obliczyliśmy za pomocą wzoru $GWB=K\cdot f_g$ i w tym przypadku otrzymujemy

$$GWB = 10 \cdot 90, 3 \approx 903 [\text{kHz}].$$

Jest to wartość bliska wartości uzyskanej w poprzednim punkcie.

Rys. 6: Charakterystyka amplitudowa dla wzmacniacza o wzmocnieniu 10.

Tab. 4: Zależność amplitudy wyjściowej od częstotliwości.

częstotliwość [kHz]	amplituda wyjściowa [V]
0,1	0,9775
0,2	0,9775
0,3	0,9775
0,6	0,9775
1	0,9775
10	0,97
30	0,9125
100	0,61
200	0,36375
1000	0,0805

3.4 Badanie wzmacniacza odejmującego o wzmocnieniu $10[{ m V/V}]$

Układ skonfigurowaliśmy jako wzmacniacz odejmujący. Napięcie U_2 było stałe i wynosiło 1,3[V]. Napięcie U_1 zmienialiśmy w zakresie od 0 do 2,8[V] z krokiem 0,2[V]. Otrzymane przez nas pomiary przedstawione zostały w tabeli 7 oraz na wykresie. Z wykresu możemy wyznaczyć zakres liniowy wzmacniacza, w naszym przypadku jest to 2,6[V]. Do danych z obszaru liniowego dopasowaliśmy krzywą o równaniu

$$y = -9,9958x + 13,99.$$

Wzmocnienie stało prądowe wzmacniacza jest równe współczynnikowi a dopasowanej krzywej zatem K=9,9958, czyli zgadza się to ze wzmocnieniem teoretycznym równym 10.

Rys. 7: Zależność napięcia wyjściowego od napięcia wejściowego dla wzmacniacza odejmującego z dopasowaną prostą w obszarze liniowym.

Tab. 5: Zależność napięcia wyjściowego od napięcia wejściowego dla wzmacniacza odejmującego.

U_1	$U_{ m out}$
0	13,423
0,2	11,999
0,4	9,9901
0,6	7,9833
0,8	6,9752
1	3,9695
1,2	1,9632
1,4	-0,0429
1,6	-2,047
1,8	-4,056
2	-6,0625
2,2	-8,068
2,4	-10,074
2,6	-12,02
2,8	-12,097

3.5 Badanie wzmacniacza sumującego o wzmocnieniach -10[V/V] (U1) i -2[V/V] (U2) $_{\rm Pominieto.}$

3.6 Wzmacniacz logarytmiczny

Układ skonfigurowaliśmy jako wzmacniacz logarytmiczny. Dokonaliśmy szeregu pomiarów napięcia wyjściowego. Otrzymaną zależność napięcia wyjściowego od wejściowego przedstawiono w tabeli ?? oraz na wykresie 8. Otrzymana Zlinearyzowaną zależność przedstawiliśmy na wykresie 9 oraz dopasowaliśmy do niej krzywą o równaniu y=-0,0453x-0,516. Dokładność logarytmowania wzmacniacza jest dobra ponieważ punkty dobrze układają się na dopasowanej prostej. Przyjmując, że dane zostały zmierzone w temperaturze pokojowej, przyjmujemy napięcie termiczne $V_T=25mV$. Zatem współczynnik $\eta=\frac{-a}{V_T}=\frac{0,0453}{0,025}=1,812$.

Rys. 8: Zależność napięcia wyjściowego od napięcia wejściowego dla wzmacniacza logarytmicznego.

Rys. 9: Zależność napięcia wyjściowego od zlinearyzowanego napięcia wejściowego dla wzmacniacza logarytmicznego.

Tab. 6: Zależność napięcia wyjściowego od napięcia wejściowego dla wzmacniacza logarytmicznego.

U_in [V]	U_out [V]	U_in [V]	U_out [V]
0,01	-0,31372	0,56	-0,48851
0,014	-0,32875	0,8	-0,50503
0,02	-0,34029	1	-0,51547
0,028	-0,3522	1,4	-0,53105
0,04	-0,36789	2	-0,54752
0,056	-0,38254	2,8	-0,56306
0,08	-0,39916	4	-0,57952
0,1	-0,40914	5,6	-0,59507
0,14	-0,42427	8	-0,61173
0,2	-0,44099	10	-0,62209
0,28	-0,45627	14	-0,63806
0,4	-0,47304		