CHALMERS TEKNISKA HÖGSKOLA

Institutionen för signaler och system Reglerteknik, automation och mekatronik

ERE 102 Reglerteknik D Tentamen 2015-08-20

14.00 - 18.00 M

Examinator: Bo Egardt, tel 3721.

Tillåtna hjälpmedel:

- Typgodkänd räknare
- Mathematics Handbook (Beta)
- Physics Handbook
- Formelblad (bilagd tentatesen)

Poängberäkning: Tentamen består av 5 uppgifter om totalt 30 poäng. Nominella betygsgränser är 12 (3), 18 (4) respektive 24 (5) poäng. Lösningarna skall vara tydliga och väl motiverade!

Tentamensresultat: Granskning av rättningen erbjuds den 7 september kl 12-13 i rum 5413. Kommer du senare mottages endast skriftliga klagomål mot rättningen. Sådana skriftliga klagomål måste lämnas in **senast två veckor** efter ordinarie granskning.

LYCKA TILL!

Uppgift 1.

a. Vid ett experiment mäts impulssvaret för ett system upp med följande resultat:

$$g(t) = e^{-0.5t} (1 + 2e^{-0.5t})$$

Vilken är systemets statiska förstärkning?

b. Hur stor är fasförskjutningen för mycket höga frekvenser $(\omega \to \infty)$ för systemet med överföringsfunktionen

$$G(s) = \frac{1}{s+1} - \frac{s+1}{s^2 + 2s + 2}$$
(2 p)

(2 p)

c. Beräkna överföringsfunktionen $\frac{Y(s)}{V_1(s)}$ för det återkopplade reglersystemet nedan. För vilka värden på K är systemet stabilt? (2 p)

d. Följande signal har använts som insignal till fyra olika stabila minimumfassystem:

$$u(t) = \sin t + \sin 10t$$

Para med hjälp av figurerna på nästa sida ihop utsignalerna med respektive systems Bodediagram (amplituddelen).

e. Ett system återkopplas med en P-regulator med förstärkningen K. Det slutna systemets poler varierar med ökande värden på K enligt figur:

Stegsvaret för det slutna systemet har registrerats för fem olika värden på K (1, 6, 30, 50 och 60), och resultaten visas nedan. Para ihop respektive stegsvar med rätt K-värde och motivera dina val! (2 p)

Uppgift 2.

En process med överföringsfunktionen

$$G(s) = \frac{s+1}{s^2 + s + 1}$$

återkopplas med en P-regulator F(s) = K > 0 enligt nedan.

- a. För vilka värden på K är det slutna systemet stabilt? (2 p)
- b. Vad blir det kvarstående felet då r är ett steg med amplituden 10 och K=4? (2 p)
- c. Vilka blir det slutna systemets poler då $K\to\infty$? Ledning: För små x gäller att $\sqrt{1+x}\approx 1+x/2$. (2 p)

Uppgift 3.

I denna uppgift skall vi studera återkopplad reglering av en process, som enligt blockschemat nedan består av en delprocess $G_1(s)$ i serie med en integrator. Bodediagrammet för $G_1(s)$ visas i figuren längst ned. Observera alltså att systemet innehåller en integrator, som inte finns med i bodediagrammet (eftersom det bara är för $G_1(s)$).

- a. Dimensionera en P-regulator som ger en fasmarginal på 40°. (2 p)
- b. Vi vill nu göra det återkopplade systemet dubbelt så snabbt jämfört med (a). Dimensionera en lämplig regulator för att åstadkomma detta.

 (3 p)

Uppgift 4.

Ett mekaniskt system består av en massa, vars läge y(t) påverkas av såväl en fjäderkraft och en friktionskraft som av en yttre kraft u(t). Systemet beskrivs av differentialekvationen

$$m\ddot{y}(t) = u(t) - ky(t) - b\dot{y}(t)$$

där y(t) betecknar massans position och y(t) = 0 anger massans viloläge då u(t) = 0. Konstanterna m, k och b betecknar massa, fjäderkonstant respektive friktionskoefficient. Vi antar att m = k = 1.

a. Inför tillståndsvariablerna $x_1(t) = y(t)$ och $x_2(t) = \dot{y}(t)$. Verifiera att systemet beskrivs på tillståndsform av modellen

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & -b \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$
(1 p)

b. Antag att b=0.5. Bestäm en positionsreglering i form av en tillståndsåterkoppling på formen

$$u(t) = -L_u x(t) + K_r r(t)$$

sådan att det återkopplade systemets poler placeras i -2. Ledning: I detta steg behöver du bara bestämma L_u . (2 p)

c. Antag att man lägger på en referenssignal i form av ett steg med amplituden ett. Vad blir utsignalen y(t) när massan ställt in sig i sin nya position? Vad är ett lämpligt värde på K_r ? (2 p)

Uppgift 5.

Fyra system är givna:

$$G_A(s) = \frac{1}{s+10}$$
 $G_B(s) = \frac{25}{(s+1)(s^2+2s+2)}$ $G_C(s) = \frac{1}{s^2+4s+104}$ $G_D(s) = \frac{1}{(s-1)(s+4)}$

Nyquistdiagram och stegsvar för systemen visas nedan. Para ihop systemen med rätt figurer, och motivera noga dina svar med lämpliga räkningar och/eller överslag—poäng ges endast för korrekta motiveringar! (4 p)

SLUT!

Lösningsförslag

1. (a) Impulssvaret $g(t) = e^{-0.5t} + 2e^{-t}$ ger efter Laplace-transformering

$$G(s) = \frac{1}{s+0.5} + \frac{2}{s+1},$$

som har den statiska förstärkningen G(0) = 2 + 2 = 4.

(b) Gör först liknämnigt för att få G(s) som en rationell funktion:

$$G(s) = \frac{1}{(s+1)(s^2+2s+2)}$$

För höga frekvenser uppför sig denna som $1/\omega^3$ med fasförskjutningen $-3\cdot 90^\circ = -270^\circ$.

(c) Kalla överföringsfunktionerna i respektive block från vänster till höger $F_1,\,F_2,\,G_2$ och $G_1.$ Då fås genom enkel blockschemaräkning att

$$\frac{Y(s)}{V_1(s)} = \frac{G_1}{1 + F_2 G_2 + F_1 F_2 G_1 G_2} = \frac{1/s}{1 + \frac{1 - 0.1s}{s + 3} + \frac{K}{s} \cdot \frac{1 - 0.1s}{s + 3}}$$

där det är viktigt att notera att en faktor (s+2) förkortats bortdetta äventyrar dock inte stabiliteten, eftersom pol/nollställesparet liger i vänstra halvplanet. Efter förenkling fås

$$\frac{Y(s)}{V_1(s)} = \frac{s+3}{s(s+3) + s(1-0.1s) + K(1-0.1s)} = \frac{s+3}{0.9s^2 + s(4-0.1K) + K}$$

Av detta framgår att systemet är stabilt för 0 < K < 40 (kriteriet är att koefficienterna i det karakteristiska polynomet skall vara positiva).

- (d) Notera först att insignalen innehåller en komponent med frekvensen $\omega=1$ och en komponent med $\omega=10$. Från Bodediagrammen ses att A och B har hög förstärkning för $\omega=1$, dvs de svarar mot utsignalerna 1 och 4. Däremot har A mycket högre förstärkning för $\omega=10$, och alltså kan vi para ihop A-4 och B-1. Det är också tydligt att frekvensen $\omega=10$ slår igenom betydligt mer i utsignal 2 jämfört med nr 3, vilket förklaras av den högre förstärkningen vid $\omega=10$ för C jämfört med D. Alltså: C-2 och D-3.
- (e) För K=0 har systemet två poler i VHP och en i origo. Då K ökar blir systemet mer oscillativt, för att till sist bli instabilt. Stegsvaren i (a) och (e) är instabila, (e) mer än (a) (stegsvaret växer

snabbare), dvs K är större i (e) än i (a). Alltså gäller (a): K = 50, (e): K = 60.

Övriga fall är stabila, och (c) svarar mot en långsam pol nära origo, dvs fallet K=1.

De båda kvarvarande stegsvaren är båda oscillativa, men (d) har mindre dämpning än (b), vilket svarar mot poler närmare imaginäraxeln. Alltså: (b): K=6, (d): K=30.

(a):
$$K = 50$$
, (b): $K = 6$, (c): $K = 1$, (d): $K = 30$, (e): $K = 60$

2. (a) Den karakteristiska ekvationen ges av

$$s^{2} + s + 1 + K(s+1) = s^{2} + (K+1)s + (K+1) = 0$$

med lösningen

$$s = -\frac{K+1}{2} \pm \sqrt{(\frac{K+1}{2})^2 - (K+1)}$$
 (1)

För små K fås ett stabilt, komplexkonjugerat polpar. För ökande K fås så småningom två reella poler, men eftersom beloppet av den andra termen i (1) alltid är mindre än beloppet av den första termen, så blir båda polerna negativa, dvs stabila. Systemet är alltså stabilt för alla K>0.

(b) Eftersom det slutna systemet är stabilt, så kan det kvarstående felet beräknas med användning av slutvärdessatsen:

$$e_{\infty} = (1/(1 + KG(0)) \cdot 10 = 2$$

(c) Använd lösningen i (a) för att approximera för stora K:

$$s = -\frac{K+1}{2} \pm \sqrt{(\frac{K+1}{2})^2 - (K+1)} = -\frac{K+1}{2} \pm \sqrt{(\frac{K-1}{2})^2 - 1}$$
$$\approx -\frac{K+1}{2} \pm \frac{K-1}{2} \left(1 - \frac{1}{2} \left(\frac{2}{K-1}\right)^2\right)$$

som asymptotiskt $(K \to \infty)$ ger de två polerna s = -K och s = -1. Notera att den senare sammanfaller med det öppna systemets nollställe!

3. (a) Med en P-regulator med förstärkningen K_p får vi kretsförstärkningen $L(s) = \frac{K_p}{s}G_1(s)$, som har fasen $\arg L(i\omega) = \arg G_1(i\omega) - 90^\circ$. Önskad fasmarginal fås för skärfrekvensen $\omega = \omega_c$: $\arg G_1(i\omega_c)$

 $90^\circ=-180^\circ+\varphi_m=-140^\circ,$ vilket med Bodediagrammets hjälp ger $\omega_c=1.5.$ Dessutom skall för skärfrekvensen gälla att $|L(i\omega_c)|=\frac{K_p}{\omega_c}|G_1(i\omega_c)|=1,$ vilket åter med Bodediagrammets hjälp ger $K_p=\frac{1.5}{|G_1(i\cdot 1.5)|}=\frac{1.5}{0.3}=5.$

- (b) Dubbla snabbheten svarar mot dubbla skärfrekvensen, dvs den nya skärfrekvensen skall vara $\omega_c=3$. Vid denna frekvens gäller att arg $G_1(i\omega_c)=-100^\circ$, dvs vi har tappat 50° i fasen. Därför behövs t ex ett leadfilter $F(s)=K\frac{1+\tau_d s}{1+\tau_d s/b}$ för att höja fasen i motsvarande grad. Behovet av faslyft ger $b=\frac{1+\sin\varphi_{max}}{1-\sin\varphi_{max}}=\frac{1+\sin 50^\circ}{1-\sin 50^\circ}=7.5$. Maximalt faslyft $\frac{\sqrt{b}}{\tau_d}$ vid $\omega=\omega_c$ ger $\tau_d=0.9$. Slutligen ger kravet $|L(i\omega_c)|=K\sqrt{b}\frac{|G_1(i\omega_c)|}{\omega_c}=1$ med $|G_1(i\omega_c)|=0.08$ från Bodediagrammet valet K=13.7.
- 4. (a) Med de valda tillståndsvariablerna fås $\dot{x}_1=x_2$ och $\dot{x}_2=-k/m\cdot x_1-b/m\cdot x_2+1/m\cdot u=-x_1-b\cdot x_2+u$. På vektorform blir detta den givna modellen

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -1 & -b \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

(b) Med de vanliga beteckningarna beskrivs det återkopplade systemet av

$$\dot{x}(t) = (A - BL_u)x(t) + BK_r r(t)$$

med

$$A - BL_u = \begin{bmatrix} 0 & 1 \\ -1 - l_1 & -b - l_2 \end{bmatrix}$$

och med b=0.5 blir därmed det karakteristiska polynomet det $(sI-(A-BL_u))=s(s+l_2+0.5)+l_1+1$. Slutna systemets önskade karakteristiska polynom är $(s+2)^2=s^2+4s+4$, vilket uppnås med valen $l_1=3$ och $l_2=3.5$.

(c) Det slutna systemet är

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ K_r \end{bmatrix} r(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

Med r(t) = 1 fås stationärt (då $\dot{x}_1 = \dot{x}_2 = 0$) att $x_2 = 0$ och $y = x_1 = K_r/4$. Med $K_r = 4$ fås alltså inget stationärt fel.

- 5. Nyquistdiagrammet fås från avbildningen $s \mapsto G(s)$ då s genomlöper Nyquists kontur γ . En del av denna utgörs av segmentet $\gamma_1 : s = i\omega, \omega \in [r, R]$ där man låter $r \to 0$ och $R \to \infty$. Som ledning studerar vi hur detta segment avbildas under respektive överföringsfunktion:
 - G_A : Börjar i 1/10 och slutar i -i/R. Uppfylls endast av diagram III.
 - G_B : Börjar i 25/2 och slutar i 25 i/R^3 . Uppfylls endast av diagram IV.
 - G_{C} : Börjar i 1/104 och slutar i $-1/R^{2}.$ Uppfylls endast av diagram I.
 - G_D : Börjar i-1/4och slutar i $-i/R^2.$ Uppfylls endast av diagram II.

För stegsvaren gäller:

- G_A : Stabilt, första ordningens system med statisk förstärkning 0.1. Svarar mot stegsvar 1.
- G_B : Stabilt och väldämpat andra ordningens system med statisk förstärkning 25/2. Svarar mot stegsvar 3.
- G_C : Stabilt andra ordningens system med dålig dämpning och statisk förstärkning 1/104. Svarar mot stegsvar 4.
- G_D : Instabilit system (en pol i s=1). Svarar mot stegsvar 2.