Tartalomjegyzék

1.	Bevezető	1
	1.1. Cím	1
	1.2. Cím 2	2
2.	Szakirodalom áttekintése	3
	2.1. Cím 1	3
	2.1.1. Alcím 1	3
3.	Elméleti áttekintés	5
	3.1. Elméleti áttekintés	5
4.	Rendszer specifikációi	7
	4.1. Cím 1	7
5.	Gyakorlati megvalósítás	8
	5.1. Ágensek vezérlése	8
	5.1.1. Potenciálmező navigáció	8
6.	Eredmények	10
	6.1. Cím 1	10
7.	Összefoglalás	11
	7.1 Összefoglalás	11

rodalomjegyzék	11	
A. Függelék	13	
A.1. Alfejezet	13	
A.1.1. Cím	13	

Ábrák jegyzéke

1.1.	Rövid szöveg a képről, hivatkozás [1]	1
1.2.	Insbot és csótányok interakciója. Az insbot-ok képesek a csótányokat csalogatni	2
2.1.	V-REP, ARGoS, Gazebo összehasonlítása	3
6.1.	30 követő ágens, egy vezér	10

Bevezető

1.1. Cím

Általános bevezető szöveg. A 1.1 ábrán látható ahogy egy robotraj együttesen elmozdít egy kislányt.

1.1. ábra. Rövid szöveg a képről, hivatkozás [1]

1.2. Cím 2

Két ábra egymás mellett (lásd 1.2 ábra).

1.2. ábra. Insbot és csótányok interakciója. Az insbot-ok képesek a csótányokat csalogatni.

Szakirodalom áttekintése

2.1. Cím 1

2.1.1. Alcím 1

Táblázat:

Kritériumok	Vrep	ARGoS	Gazebo
Ingyenes	Igen, van fizetős verzió	Igen	Igen
	is		
Absztrakciós	Valósághű	Emelkedett absztrakciós	Valósághű
szint		szintet ajánl	
Robotrajokra op-	Nem optimalizált	Teljesen optimalizált	Képes, nagyobb erőforrás-
timalizált			igény, mint az ARGOS-nak
Nyílt forráskódú	Igen	Igen	Igen
Támogatott prog-	C/C++, Python, Java,	C/C++ és Lua	C/C++
ramozási nyelvek	Lua, Matlab, Octave		
Valós robotok	Igen	Igen	Igen
modelljei			

2.1. ábra. V-REP, ARGoS, Gazebo összehasonlítása

Hivatkozás a táblázatra: 2.1.1

Elméleti áttekintés

3.1. Elméleti áttekintés

```
Pszeudokód:
```

```
 \begin{array}{l} \textbf{Data: } \text{Tanulási tényező } (\alpha \in (0,1])), \, \varepsilon > 0 \\ \\ \text{Véletlenszerű érték minden } Q_1(s,a) \text{ és } Q_2(s,a)\text{-nek, kivéve } Q(\text{terminális},\cdot) = 0, \, s \in S, \, a \in A \text{ ;} \\ \textbf{for } \textit{minden epizód } \textbf{do} \\ \\ \text{S inicalizálása;} \\ \textbf{repeat} \\ \\ A \leftarrow \text{cselekvés, } S \text{ állapotban } \varepsilon\text{-greedy szerint } Q_1 + Q_2 \text{ ;} \\ A \text{ cselekedet végrehajtása, R és S' megfigyelése;} \\ \textbf{if } 50\% \text{ eséllyel then} \\ & \mid Q_1(S,A) \leftarrow Q_1(S,A) + \alpha[R + \gamma Q_2(S',arg\max_a Q_1(S',a)) - Q_1(S,A)] \\ \textbf{else} \\ & \mid Q_2(S,A) \leftarrow Q_2(S,A) + \alpha[R + \gamma Q_1(S',arg\max_a Q_2(S',a)) - Q_2(S,A)] \\ \textbf{end} \\ & S \leftarrow S'; \\ \textbf{until } S \text{ terminális állapot;} \\ \textbf{end} \\ \end{array}
```

Algorithm 1: Dupla Q-tanulás [4].

Hivatkozás pszeudokódra: 1.

Rendszer specifikációi

4.1. Cím 1

Gyakorlati megvalósítás

5.1. Ágensek vezérlése

Hivatkozásra példa

Az ágensek vezérléséhez a potenciálmező navigációs módszer volt felhasználva. Ez egy bevált módszer a robotrajok vezérléséhez [5]. Az alapötlete, hogy az akadályok taszító erővel hatnak az ágensre és a cél vonzó erővel. Ennek a két erőnek az eredője határozza meg az irányt amerre érdemes haladni.

5.1.1. Potenciálmező navigáció

Egyenletekre példa

A potenciálmező navigációs módszernél az erők nagysága az (5.1) egyenlet szerint van kiszámolva.

$$\begin{cases} |\vec{f}_{push}| = ae^{-\frac{(x-b_{push})^2}{2c_{push}^2}} \\ |\vec{f}_{pull}| = ae^{-\frac{(x-b_{pull})^2}{2c_{pull}^2}} \end{cases}$$
(5.1)

- a: Gauss görbe magassága
- b: Gauss görbe középpontja

• c: Gauss görbe szélessége

$$\vec{f}_{robot} = \sum_{i} \vec{f}_{push_i} + \sum_{i} \vec{f}_{pull_i}$$
 (5.2)

Az eredő vektor a (5.2) képlet szerint volt kiszámolva.

Eredmények

6.1. Cím 1

Eredmények leírása

6.1. ábra. 30 követő ágens, egy vezér

Összefoglalás

7.1. Összefoglalás

Irodalomjegyzék

- [1] L. E. Parker, D. Rus, and G. S. Sukhatme, "Multiple mobile robot systems," in *Springer Handbook of Robotics*, pp. 1335–1384, Springer, 2016.
- [2] A. Colot, G. Caprari, and R. Siegwart, "Insbot: Design of an autonomous mini mobile robot able to interact with cockroaches," in *IEEE International Conference on Robotics and Automation*, 2004. Proceedings. ICRA'04. 2004, vol. 3, pp. 2418–2423, IEEE, 2004.
- [3] S. Garnier, "From ants to robots and back: How robotics can contribute to the study of collective animal behavior," in *Bio-inspired self-organizing robotic systems*, pp. 105–120, Springer, 2011.
- [4] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
- [5] Z. Szántó, L. Márton, S. György, and T. I. Erdei, "Investigation of robotic swarms with partial team-goal knowledge," in 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES), pp. 243–248, IEEE, 2015.

A. függelék

Függelék

A.1. Alfejezet

A.1.1. Cím

Alcím