Introduction to Data Management CSE 344

Lecture 8-9: Relational Algebra and Query Evaluation

Magda Balazinska - CSE 344, Fall 2012

Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
- Inserting data one row at a time or in bulk (INSERT/.import)
- Modifying the schema and updating the data (ALTER/UPDATE)
- Querying the data (SELECT)
- Tuning queries (CREATE INDEX)
- · Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

Magda Balazinska - CSE 344, Fall 2012

2

Client-Server Architecture

- One server that runs the DBMS (or RDBMS):
 - Your own desktop, or
 - Some beefy system, or
 - A cloud service (SQL Azure)
- · Many clients run apps and connect to DBMS
 - Microsoft's Management Studio (for SQL Server), or
 - psql (for postgres)
- Some Java program (HW5) or some C++ program
- · Clients "talk" to server using JDBC/ODBC protocol

Magda Balazinska - CSE 344, Fall 2012

Using a DBMS Server 1. Client application establishes connection to server 2. Client must authenticate self 3. Client submits SQL commands to server 4. Server executes commands and returns results

Question: How does Query Evaluation Work?

Magda Balazinska - CSE 344, Fall 2012

The WHAT and the HOW

- In SQL we write WHAT we want to get form the data
- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the Relational Algebra

Magda Balazinska - CSE 344, Fall 2012

Physical Data Independence

- Means that applications are insulated from changes in physical storage details
 - E.g., can add/remove indexes without changing apps
 - Can do other physical tunings for performance
- SQL and relational algebra facilitate physical data independence because both languages are "set-at-a-time": Relations as input and output

Magda Balazinska - CSE 344, Fall 2012

Relational Algebra

Magda Balazinska - CSE 344, Fall 2012

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

Magda Balazinska - CSE 344, Fall 2012

Relational Algebra Operators

• Union U, intersection Ω, difference • Selection σ
• Projection Π
• Cartesian product x, join ×
• Rename ρ
• Duplicate elimination δ
• Grouping and aggregation γ
• Sorting τ

What about Intersection?

· Derived operator using minus

· Derived using join (will explain later)

R1 ∩ R2 = R1 ⋈ R2

Magda Balazinska - CSE 344, Fall 2012

Selection

· Returns all tuples which satisfy a condition

- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\ \sigma_{\text{\tiny name = "Smith"}} (\text{Employee})$
- The condition c can be =, <, \le , >, \ge , <>

Magda Balazinska - CSE 344, Fall 2012

Employee

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

 $\sigma_{\text{\tiny Salary > 40000}}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Magda Balazinska - CSE 344, Fall 2012

Projection

· Eliminates columns

- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee	SSN	Name	Salary
	1234545	John	20000
	5423341	John	60000
	/3523/2	lohn	20000

Π _{Name,Salary} (Employee)

Name	Salary
John	20000
John	60000
John	20000

Name	Salary
John	20000
John	60000

Bag semantics

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

 $\pi_{zip,disease}$ (Patient) zip disease 98125 flu 98125 heart 98120 lung

 $\sigma_{disease=\text{`heart'}}(\text{Patient})$

anocu	be- neure c	,	
no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

 $\pi_{zip} \, (\sigma_{\text{disease='heart'}}(\text{Patient}))$ zip 98120 98125

Magda Balazinska - CSE 344, Fall 2012

Cartesian Product

• Each tuple in R1 with each tuple in R2

• Rare in practice; mainly used to express joins

Magda Balazinska - CSE 344, Fall 2012

Cross-Product Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependent		
EmpSSN	DepName	
99999999	Emily	
77777777	Joe	

Employee X Dependent

Name	SSN	EmpSSN	DepName
John	999999999	99999999	Emily
John	999999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Magda Balazinska - CSE 344, Fall 2012

00

Renaming

· Changes the schema, not the instance

- Example:
 - − $\rho_{N, S}$ (Employee) \rightarrow Answer(N, S)

Not really used by systems, but needed on paper

Magda Balazinska - CSE 344, Fall 2012

Natural Join

R1 ⋈ R2

- Meaning: $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- · Where:
 - Selection σ checks equality of all common attributes
 - Projection eliminates duplicate common attributes

Magda Balazinska - CSE 344, Fall 2012

28

Natural Join Example

F

Α	В
Х	Υ
Х	Z
Y	Z
7	1/

S B C Z U W Z V

 $R \bowtie S = \Pi_{ABC}(\sigma_{R.B=S.B}(R \times S))$

Α	В	С
Х	Z	U
Х	Z	V
Y	Z	U
Y	Z	٧
Z	V	W

Magda Balazinska - CSE 344, Fall 2012

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

 voters V

 name
 age
 zip

 p1
 54
 98125

 p2
 20
 98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Magda Balazinska - CSE 344, Fall 2012

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S?
- Given R(A, B, C), S(D, E), what is R \bowtie S ?
- Given R(A, B), S(A, B), what is R⋈S?

Magda Balazinska - CSE 344, Fall 2012

Theta Join

· A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/disease example:

 $P \bowtie P.zip = V.zip$ and P.age < V.age + 5 and P.age > V.age - 5

Magda Balazinska - CSE 344, Fall 2012

Equijoin

• A theta join where θ is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

This is by far the most used variant of join in practice

Magda Balazinska - CSE 344, Fall 2012

Equijoin Example

AnonPatient P | age | zip | disease | | 54 | 98125 | heart | | 20 | 98120 | flu

Voters V						
	name	age	zip			
	p1	54	98125			
	p2	20	98120			

P ⋈_{Page=Vage} V

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

Magda Balazinska - CSE 344, Fall 2012

24

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection θ
- Equijoin: $R_{\bowtie_{\theta}} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S

Magda Balazinska - CSE 344, Fall 2012

So Which Join Is It?

 When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

Magda Balazinska - CSE 344, Fall 2012

More Joins

- · Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
- · Variants
 - Left outer join
 - Right outer join
 - Full outer join

Magda Balazinska - CSE 344, Fall 2012

Outer Join Example AnonPatient P AnnonJob J age zip disease job age zip 98125 lawyer 98125 20 98120 flu cashier 20 98120 98120 33 lung zip disease age 54 98125 heart lawyer $P \ltimes V$ 20 98120 flu cashier 33 98120 lung null Magda Balazinska - CSE 344, Fall 2012

Some Examples

Supplier(sno, sname, scity, sstate)
Part(pno,pname, psize, pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10 $\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} (Part))$

Q3: Name of supplier of red parts or parts with size greater than 10 π_{sname} (Supplier \bowtie Supply \bowtie ($\sigma_{psize>10}$ (Part) \cup $\sigma_{pcolor=red'}$ (Part)))

Magda Balazinska - CSE 344, Fall 2012

From SQL to RA

Magda Balazinska - CSE 344, Fall 2012

From SQL to RA

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

> > Magda Balazinska - CSE 344, Fall 2012

Extended RA: Operators on Bags $\hbox{$\bullet$ Duplicate elimination δ } \hbox{\bullet Grouping γ } \hbox{\bullet Sorting τ }$

From Logical Plans to Physical Plans

