Retake 1TD389, 2020-08-28

① Det här är en förhandsvisning av den publicerade versionen av quizet

Startad: 1 dec kl 15.12

Instruktioner för Quiz

Fråga 1	0 poäng
Please upload your ID (e.g. student ID, drivers licence or passport)	
Ladda upp Välj en fil	

Fråga 2	4 poäng
What is true about data representation?	
☐ Unstructured grids take less storage than uniform grids	
☐ "Geometry" describes the dimensions of the object, e.g. angles and edges	length
☐ "Geometry" describes the form of the object, e.g. is it a triangle, rectangle	
☐ "Topology" describes the form of the object, e.g. is it a triangle, rectangle	
☐ Interpolation is always a "guess" of what the "missing" data would be like	
☐ "Topology" is the very same as "Geometry" (there are data representation s	synonyms)
☐ "Topology" describes the dimensions of the object, e.g. angles and edges le	ength
☐ Interpolation usually gives a better representation of the sampled data	

Fråga 3	4 poäng
What is true about visualisation?	
☐ Visualisation usually helps us understand data faster than when looking at nu	ımbers
☐ Glyph visualisations using many more than 5 dimension can be very hard to €	grasp
☐ Glyphs are a powerful visualisation technique that helps us grasp up to 100 d	imensions
─ Visualisation is more than just pretty pictures, since it can be used as a resea get insight into the data	rch tool to
☐ We can visualise more data with more than 3 dimensions thanks to Glyphs	
☐ 3D visualisations are always more effective than 2D visualisations	

Fråga 4	poäng
What is true about marching techniques?	
☐ Marching tetrahedra is aimed for 3 Dimensional data	
The ambiguity problem can be solved by looking at adjacent slices and draw cond from them	clusions
☐ Marching Bands can depict vortices	
☐ Marching cubes is aimed for 2 Dimensional data	
☐ Marching cubes does not suffer from the ambiguity problem	
☐ Marching cubes handles bifurcations automatically without causing triangle inters	ections
☐ The ambiguity problem can not be solved for marching cubes	
☐ Marching Squares produce 2D contours while marching cubes produce surfaces	

Fråga 5 4 poäng

☐ Vorticity can	be depicted using stream lines
☐ One way to g subsampling	et less occlusion is to use fewer lines or tubes (i.e. to use some kind of of the data)
☐ The position	of seed points will not affect how stream tubes will look like
☐ The position	of seed points will affect how streamlines will look like
☐ Colour mapp	ing should be avoided as it confuses the visual result
☐ The thicknes	s of stream tubes can depend on some variable in the data
☐ The colour of	streamlines can depend on some variable in the data
	pe used to make it possible to see the data better (less occlusion),

Frága 6	4 poäng
What is true about high dimensional visualisations?	
 In parallel coordinate visualisations it is preferable to have axis that correlate each other 	next to
Usually Glyphs makes a better high dimensional visualisation than Parallel C	coordinates
☐ PCA can be used to reduce the dimensionality of high dimensional data	
☐ For very high dimensional data Parallel coordinates are preferred compare to	t-SNE
☐ Parallel Coordinates is useful for visualising multidimensional data	
☐ t-SNE will create clusters where similar data (data with similar features) can	be found
 MipMap is an efficient is a powerful visualisation technique for high dimensio projects onto 2D 	nal data that
□ t-SNE is a powerful visualisation technique for high dimensional data that pro2D or 3D	ojects onto

▶

Fråga 7	3 poäng
Which of the following statements is correct in context of multiplexing of images?	of stereo
☐ Passive polarizing filter glasses cannot be used for temporal multiplexing	
 Anaglyphs using red/green stereo-glasses are efficient as they preserve sparesolution 	itial image
 Temporal multiplexing using active shutter glasses leads to lowered brightne of the displayed images 	ess & contrast
☐ Spatial multiplexing with lenticular lenses lowers the effective images resolut	tion
 Interlaced-stereo images (with left and right images on alternating pixel lines used with active shutter glasses 	;) can not be
 Multiplexing using lenticular lenses requires active frame-wise synchronization and right-subimages 	on of the left-

Fråga 8 2 poäng

•

Stereoscopic images, when produced and displayed with computer, can give convincing impression of a 3D scene. However, it should still be consider, that stereography / stereographic images must be used sensible to make the illusion work. Which of the following applies when it comes to producing effective and comfortable to view stereo-images?

comfortable to view stereo-images?		
☐ The resolution of the screen sets li represented in a stereographic visit	mits as to how small a depth difference can be ualization	
☐ The accommodation-convergence stereo-display	conflict (AC conflict) depends on the size of the	
☐ The accommodation-convergence distance to the screen	conflict depends on apparent parallax and viewing	
☐ The size of the screen determines	how close to the user a virtual point in 3D can be	

Fråga 9 3 poäng

Luminance and contrast in visualizations are important aspects of a visualization. Which of the following is true when it comes to human perception of colors/intensities in visualizations?

illumination levels	
Receptor bleaching and chromatic adaptation can cause incorrect interpretation of co	olors

☐ Brightness adaptation enables us to perceive detail and contrast across a wide range of

- ☐ Brightness adaptation enables us to judge absolute levels of intensities across a wide range illumination levels
- ☐ In 3D visualizations, shadows and shading effects are important to enhance the visual assessment of lightness levels of objects
- ☐ Simultaneous contrast enables correct assessment of absolute intensity levels in a visualization
- ☐ Simultaneous contrast overemphasizes intensity differences across intensity boundaries

Fråga 10 2 poäng

For efficient use of color in visualization, **two** among the following aspects must be considered?

- ☐ In order to reveal qualitative properties in visualizations of some items, the semantics (meaning) and conventions regarding the colors is more important than contrast
- ☐ In order to label a few (up to 10) items in a visualization with colors, it is important to guarantee that colors are perceptually orderable
- In order to express 5-8 different quantitative values in a visualization with colors (e.g. number of cylinders of car-engines in a visualization of a car database), neither perceptual linearity nor ordering of the used colors plays an important role

☐ In order to convey quantitative information in a visualization using color scales, it less
important to maintain perceptual linearity, but more important to maintain highest contrast

Fråga 11	2 poäng
What is true about transparency and shadows?	
 Opacity values for data points are often stored in a texture or obtained from a function 	a transfer
☐ Global effects such as shadows and ambient occlusion only affect the visual visualization, not the perception of its shape	quality of a
☐ Transparency is the only way to show different layers in the data	
☐ The Painter's algorithm allows us to efficiently render transparency for complewith many triangles or layers	lex models

Fråga 12	3 poäng
What is true about volume rendering`	
☐ Splatting was not used in Assignments 1 and 2 in this course	
 Direct volume rendering techniques cannot be implemented on graphics p (GPUs) that use a rasterization-based pipeline 	rocessing units
☐ The opacity function in a transfer function should always be linear	
 The ability to interactively change isovalue is useful when exploring for examedical CT volume 	ample a
Isosurface rendering (via raycasting) is generally more expensive to rende front-to-back alpha blending, because we have to compute surface norma	

Fråga 13 3 poäng

What is true about vector field visualisations?	
☐ Vector fields cannot be visualised without vector glyphs	
☐ Vector glyphs shall never be set to have unit lengths as it leads to cluttering	
☐ Vector fields can be visualised using vector glyphs	
☐ Vector fields can be visualised by computing the so called Curl	
☐ Vector fields can be visualised by computing the so called Promotor	
☐ Vector fields can be visualised by computing the so called Divergence	
Fråga 14	2 poäng
Fråga 14 What is true?	2 poäng
	2 poäng
What is true?	2 poäng
What is true? Uisualisations make use computer graphics	

Quiz sparad kl. 15.12

Lämna in quiz