武汉大学计算机学院

学年第一学期 2006 级《计算机组成原理》 2007-2008

期末考试试题 A 卷

学号		_	_班级		姓名					
			_							
1.—	浮点数	, 阶码部	分为	q 位,属	《数部分为	p位,	各包含	合一位符	号位,	,均用补
码表示	、 该汽	孚点数所能	能表示的	勺最大正	数、最小	卜正数、	最大的	负数和最	小负数	汝分别是
多少?	(16	6分)								
2. 在	E一个具	有四体低	. 位多体	交叉的	存储器中,	如果	处理器	的访存	地址ナ	可以下十
进制。	求该存	储器比单	体存储	器的平均	匀访问速率	提高多	少?	(忽略社	刃启时	t的延迟 _。
(1)	1、2、	3、	32	(10	分)					
(2)	2、4、	6,	32	(10	分)					
o /07	<u> </u>	↓ <i>₽</i> <u>~</u> ₽ <u></u> ₽ ~								
3. 假	正指令 ⁷	格式如下	: (20)分)						
	_1	5 12			9		7	0		
		OP	×	I	× D/I A					
其中:										
D/	′Ⅰ为直	接/间接	寻址标	志,D』	/ I = 0 表示	·直接寻	址,D	/ I = 1 :	表示问	ョ接寻址.
		1:变址署					_ ,			
				,						
l.	父 有天音	5仔	小谷 刃	(1)=	=063215Q					
ì	式计算了	「列指令的	勺有效均	也址。	(Q 表示	八进制)			
(1)	1523010	Q	(2)	1400110	Q				

- 4. 已知某运算器的基本结构如图所示,它具有+ (加)、-(减)、和M(传送)三种 操作。
- (1) 写出图中 1~12表示的运算器操作的微命令;(6分)
- (2) 设计适合此运算器的微指令格式; (6分)
- (3) 指令 DDA 的功能是:若进位 C=0,则 R1+R2 R2;若进位 C=1,则 R1

+ R2 + R3 R2, 画出指令 DDA 的微程序流程图,并列出微操作序列(取指令流程不写,取指令微指令安排在 0号单元中);(6分)

(4)设下址地址为 5位,将微程序流程图安排在 1~3号单元里;(6分)

运算器的基本结构

5.有4个中断源 D1、D2、D3、D4,它们的中断优先级和中断屏蔽码如表所示, 其中"1"表示该中断源被屏蔽, "0"表示该中断源开放。

中断源	中断优先级	中断屏蔽码				
一个 <i>四川</i> 赤		D1	D2	D3	D4	
D1	1 (最高)	1	1	0	0	
D2	2 (第二)	0	1	0	1	
D3	3 (第三)	1	0	1	0	
D4	4 (最低)	1	0	1	1	

- (1) 处理机在 0 时刻开始响应中断请求,这时 4 个中断源都已经申请中断服务,画出中断响应及处理的示意图。 (10 分)
- (2) 处理机在 0 时刻开始响应中断请求,这时中断源 D3 和 D4 已经申请中断服务,在处理中断 D4 时 D1 和 D2 又同时申请中断服务,画出中断响应及处理的示意图。 (10分)

武汉大学计算机学院

2007-2008 学年第一学期 2006 级《计算机组成原理》

期末考试试题 A 卷 答案

1.(16分)解:

表数范围	规格化	阶码	规格化浮点数
最大正数(Nmax)	1-2 ^{-(p-1)}	2 ^(q-1) -1	$(1-2^{-(p-1)}) \times 2^{2^{q-1}-1}$
最小正数(Nmin)	2 ⁻¹		$2^{-1} \times 2^{-2^{q-1}}$
最大负数(-Nmin)	-(2 ⁻¹ +2 ^{-(p-1)})		$-(2^{-1}+2^{-(p-1)}) \times 2^{-2^{q-1}}$
最小负数(-Nmin)	- 1	- 2 ^(q-1)	-1 x 2 ^{2 q-1} - 1

2.(20分)

解:设存储器的访问周期为 T。

(1)四体低位多体交叉的存储器访问的情况如下:

1、 2、3 所需时间 = T ;

4、 5、 6、7 所需时间 = T ;

8、 9、10、11 所需时间 = T ;

12、13、14、15 所需时间 = T ;

16、17、18、19 所需时间 = T ;

20、21、22、23 所需时间 = T ;

24、25、26、27 所需时间 = T ;

28、29、30、31 所需时间 = T ;

32 所需时间 = T ;

四体低位多体交叉的存储器访问所需时间 =9T; 单体存储器访问所需时间 =32T;

所以平均访问速率提高: 32/9 倍

或者:

1、 2、3、4 所需时间 = T ;

5、 6、 7、8 所需时间 = T ;

9、10、11、12 所需时间 = T ;

13、14、15、16 所需时间 = T ;

17、18、19、20 所需时间 = T ;

21、22、23、24 所需时间 = T ;

25、26、27、28 所需时间 = T ;