PARTE II: DESENVOLVIMENTO E SIMULAÇÃO DE ALGORITMOS ESTRUTURADOS

Introdução à Computação I

Programa

- Um programa é uma sequência de instruções que descrevem uma tarefa a ser realizada por um computador (hardware)
- As etapas para o desenvolvimento de um programa são:
 - Análise
 - Estuda-se o enunciado do problema para definir os dados de entrada, o processamento e os dados de saída
 - Algoritmo
 - Utilizado para descrever o problema com suas soluções
 - Codificação
 - O algoritmo é transformado em código na linguagem de programação escolhida para se trabalhar
- Um programa é a codificação de um algoritmo em uma linguagem de programação

Algoritmo

- Algoritmo é uma sequência lógica de passos que levam a um determinado objetivo
- Algoritmo é a descrição de uma sequência de passos que deve ser seguida para a realização de uma tarefa
- Executamos vários algoritmos no dia-a-dia

ALGORITMO 1 - SOMAR TRÊS NÚMEROS

Passo 1 - Receber os três números.

Passo 2 - Somar os três números.

Passo 3 - Mostrar o resultado obtido.

ALGORITMO 2 - FAZER UM SANDUÍCHE

Passo 1 - Pegar o pão.

Passo 2 - Cortar o pão ao meio.

Passo 3 - Pegar a maionese.

Passo 4 - Passar a maionese no pão.

Passo 5 - Pegar e cortar alface e tomate.

Passo 6 - Colocar alface e tomate no pão.

Passo 7 - Pegar o hambúrguer.

Passo 8 - Fritar o hambúrguer.

Passo 9 - Colocar o hambúrguer no pão.

ALGORITMO 3 - TROCAR UMA LÂMPADA

```
Passo 1 - Pegar uma Lâmpada Nova.
             Passo 2 - Pegar uma escada.
             Passo 3 - Posicionar a escada embaixo da Lâmpada Queimada.
             PASSO 4 - SUBIR NA ESCADA COM A LÂMPADA NOVA NA MÃO.
             Passo 5 - RETIRAR A LÂMPADA QUEIMADA.
             Passo 6 - Colocar a Lâmpada Nova.
             Passo 7 - Descer da escada.
             Passo 8 - Testar o Interruptor.
             PASSO 9 - GUARDAR A ESCADA.
             PASSO 10 - JOGAR A LÂMPADA VELHA NO LIXO.
ALGORITMO 4 - IR PARA A ESCOLA
             Passo 1 - Acordar cedo.
             Passo 2 - IR AO BANHEIRO.
             Passo 3 - Abrir o armário para escolher uma roupa.
             Passo 4 - Se o tempo estiver quente, pegar uma camiseta e uma calça
                         JEANS; CASO CONTRÁRIO, PEGAR UM AGASALHO E UMA CALCA JEANS.
             Passo 5 - Vestir a Roupa escolhida.
             PASSO 6 - TOMAR CAFÉ.
             Passo 7 - Pegar uma condução.
             Passo 8 - Descer próximo à escola.
```

ALGORITMO 5 - SACAR DINHEIRO NO BANCO 24 HORAS

Passo 1 - IR ATÉ UM BANCO 24 HORAS.

Passo 2 - Colocar o cartão.

Passo 3 - Digitar a senha.

Passo 4 - Solicitar a Quantia desejada.

Passo 5 - Se o saldo for maior ou igual à quantia desejada, sacar; caso contrário, mostrar mensagem de impossibilidade de saque.

Passo 6 - RETIRAR O CARTÃO.

Passo 7 - Sair do banco 24 horas.

- Se observamos os exemplos apresentados, é possível que nem todas as pessoas realizem as tarefas descritas da mesma maneira
- Sendo assim, notamos que um problema pode ser resolvido de diversas maneiras, porém, gerando a mesma resposta
- Conclusão: podem existir vários algoritmos para solucionar o mesmo problema

Construção de Algoritmos

- Para a construção de qualquer tipo de algoritmo, é necessário seguir estes passos:
 - Compreender completamente o problema a ser resolvido
 - Definir os dados de entrada
 - Definir o processamento
 - Procedimentos utilizados para chegar ao resultado final
 - Definir os dados de saída
 - Construir o algoritmo
 - Testar o algoritmo realizando simulações

- Descrição Narrativa
- □ Fluxograma
- Pseudocódigo ou Portugol

- Descrição Narrativa
 - Consiste em analisar o enunciado do problema e escrever, utilizando uma linguagem natural, os passos a serem seguidos para sua resolução
 - Vantagem: não é necessário aprender nenhum conceito novo
 - Desvantagem: a língua natural abre espaço para várias interpretações, o que posteriormente dificultará a transcrição desse algoritmo para programa

Fluxograma

- Consiste em analisar o enunciado do problema e escrever, utilizando símbolos gráficos, os passos a serem seguidos para sua resolução.
 - Vantagem: o entendimento de elementos gráficos é mais simples que o entendimento de textos
 - Desvantagem: é necessário aprender a simbologia dos fluxogramas e, além disso, o algoritmo resultante não apresenta muitos detalhes, dificultando sua transcrição para um programa

□ Fluxograma

TABELA 1.1 Conjunto de símbolos utilizados no fluxograma.

	Símbolo utilizado para indicar o início e o fim do algoritmo.		
\	Permite indicar o sentido do fluxo de dados. Serve exclusivamente para conectar os símbolos ou blocos existentes.		
	Símbolo utilizado para indicar cálculos e atribuições de valores.		
	Símbolo utilizado para representar a entrada de dados.		
	Símbolo utilizado para representar a saída de dados.		
\Diamond	Símbolo utilizado para indicar que deve ser tomada uma decisão, apontan- do a possibilidade de desvios.		

- Pseudocódigo ou Portugol
 - Consiste em analisar o enunciado do problema e escrever, por meio de regras predefinidas, os passos a serem seguidos para sua resolução
 - Vantagem: a passagem do algoritmo para qualquer linguagem de programação é quase imediata, bastando conhecer as palavras reservadas dessa linguagem
 - Desvantagem: é necessário aprender as regras do pseudocódigo, que serão estudadas durante a disciplina

Faça um algoritmo para mostrar o resultado da multiplicação de dois números.

Algoritmo em descrição narrativa:

Passo 1 - Receber os dois números que serão multiplicados.

Passo 2 - Multiplicar os números.

Passo 3 - Mostrar o resultado obtido na multiplicação.

Algoritmo em pseudocódigo:

b) Faça um algoritmo para mostrar o resultado da divisão de dois números.

Algoritmo em descrição narrativa:

- Passo 1 Receber os dois números que serão divididos.
- Passo 2 Se o segundo número for igual a zero, não poderá ser feita a divisão, pois não existe divisão por zero; caso contrário, dividir os números e mostrar o resultado da divisão.


```
Algoritmo em pseudocódigo:

ALGORITMO

DECLARE N1, N2, D NUMÉRICO

ESCREVA "Digite dois números"

LEIA N1, N2

SE N2 = 0

ENTÃO ESCREVA "Impossível dividir"

SENÃO INÍCIO

D ← N1/N2

ESCREVA "Divisão = ", D

FIM

FIM_ALGORITMO.
```

- Quando um algoritmo é desenvolvido em pseudocódigo não há como testar no computador se o código está correto
- □ Nesse caso, deve-se realizar o teste de mesa
- O teste de mesa nada mais é do que seguir as instruções do algoritmo de maneira precisa para verificar se há erro na sua estrutura, independente da linguagem em que será implementado

```
Algoritmo Vértices_Objeto_Geométrico

var vértices, faces, arestas: inteiro;
início

lescreva("Entre com o número de faces do objeto geométrico: ");
leia(faces);
escreva("Entre com o número de arestas do objeto geométrico: ");
leia(arestas);
vértices ← arestas + 2 - faces;
escreva("O número de vértices do objeto especificado é: ", vértices);
fim
```

Entrada: 6 e 12

Linha	vértices	faces	arestas	Comentário	
1	?	?	?	Variáveis com valores indefinidos	
2	?	[6]	?	faces lida	
3	?	6	?		
4	?	6	[12]	[12] arestas lida	
5	8	6	12	Cálculo de vértices	
6	{8}	6	12	Saída com o número de vértices	

Exercício: fazer para as entradas 4 e 6

```
Algoritmo Troca_Valores_Versão1

var a, b: inteiro;
início

1 leia(a, b);
2 a ← b;
3 b ← a;
4 escreva(a, b);
fim
```

Exercício: fazer para as entradas 4 e 7 e verificar se o algoritmo está correto

Linha	a	b
1	[4]	[7]
2		(182,G) (See 1)
3		
4		

```
Algoritmo Troca_Valores_Versão1

var a, b: inteiro;
início

leia(a, b);

a ← b;

b ← a;

escreva(a, b);

fim
```

Exercício: fazer para as entradas 4 e 7 e verificar se o algoritmo está correto

Linha	a	b
1	[4]	[7]
2		108/2/15
3		
4		

Linha	a	b
1	[4]	[7]
2	7	7
3	7	7
4	{7}	{7}

Exercícios

Exercícios

- Faça um algoritmo que receba três notas e seus respectivos pesos, calcule e mostre a média ponderada. Fazer teste de mesa.
- Faça um algoritmo que receba o salário de um funcionário, calcule e mostre o novo salário, sabendo-se que este sofreu um aumento de 25%. Fazer teste de mesa.

Exercícios

- □ Faça um algoritmo que calcule e mostre a área de um triângulo. Sabe-se que: Área = (base * altura)/2. Fazer teste de mesa.
- Sabe-se que:
 - 1 pé = 12 polegadas
 - 1 jarda = 3 pés
 - 1 milha = 1760 jardas

Faça um algoritmo que receba uma medida em pés, faça as conversões a seguir e mostre os resultados. Fazer teste de mesa.

- (a) polegadas;
- (b) jardas;
- (c) milhas.

Referências

Referências

- ASCENCIO, A. F. G.; CAMPOS, E. A. V.
 Fundamentos da programação de computadores:
 Algoritmos, Pascal, C/C++ e Java. Prentice Hall,
 2007.
- MEDINA, M.; FERTIG, C. Algoritmos e Programação:
 Teoria e Prática. Novatec, 2005.