

فهرست

۲	فهرست
٣	بخش ١:
۴	بخش ۲:
۴	نیازمندیهای فراکار کردی
۴	نیازمندیهای کار کردی
۵	ابهامها
۵	سيستم
۵	رابطها و پورتهای سیستم
۶	كامپوننت MissDetector
٧	كامپوننت StatusClassifier
١	نمودارهای توالی
١	نتایج
١	بخش ٣:
١	٣State chart
١	نتایج

بخش ١:

n این یک ماشین حالت از نوع Extended است. در نگاه اول π حالت بیشتر دیده نمی شود ولی به خاطر وجود یک متغیر به نام π تعداد حالتهای این ماشین بیشتر از π خواهد بود.

طبق فرض سوال مقدار n می تواند در بازه اعداد صحیح مثبت و منفی قرار بگیرد. برای پیدا کردن تعداد حالتهای واقعی ماشین باید بازه عدد n در هر حالت را تعیین کنیم.

در حالت s1 عدد n با مقدار 0 شروع می شود. پس عدد s1 را به مجموعه مقادیر مجاز عدد s1 در حالت s1 را اضافه می کنیم:

 $s1: n \in \{0\}$

از حالت s1 اگر به s2 برویم مقدار s1 با s2 جمع می شود و در بازگشت از حالت s1 به s1 از مقدار s2 به می شود. پس می توان توالی تغییر مقدار s1 را اینطور نوشت:

$$0 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 0 \rightarrow -1 \rightarrow 1 \rightarrow 0$$

پس مقادیر n در حالت s1 را می توان اینطور به روز کرد:

 $s1: n \in \{-1, 0, 1, 2, 3\}$

یس تا به اینجای بررسی میتوان مقادیر n در حالت s2 را هم تعیین کرد:

 $s2: n \in \{0, 1, 2, 3, 4\}$

با پیدا کردن مجموعه اعداد n در حالت s2 می توان به سادگی مجموعه اعداد n در حالت s3 را هم تعیین کرد. زمانی که از s3 در s3 می رویم، مقدار s3 با نظوه می شود و در بازگشت یکی کم می شود. پس رفتن به حالت s3 تاثیری در مجموعه اعداد s3 را می توان اینطور نوشت:

 $s3: n \in \{1, 2, 3, 4, 5\}$

۱۵ حالت دست یافتنی دارد.

بخش ۲:

نیازمندیهای فراکارکردی

- **ایمنی**: با کمترین نرخ خطا باید وضعیت سلامت سیستم دیگر را بررسی کند تا از آسیبدیدگی اجزای مختلف سیستم جلوگیری شود.
- امنیت: از دادههای وضعیت سلامت سیستم باید به خوبی محافظت شود. دسترسیپذیری مهاجم به آن غیرممکن باشد.
- اتکاپذیری: از آنجایی که این سیستم نقش مهمی در پایش وضعیت سیستمها دارد، همیشه در حال اجرا بودن این سیستم بسیار مهم است. این سیستم باید در ۹۹.۹٪ مواقع فعال باشد.
- **شرایط محیطی**: این سیستم در شرایط محیطی یک کارخانه باید کار خود را انجام دهد. در برابر لرزشها، حرارت و دمای بالا باید مقاوم باشد.
 - کارایی: با کمترین تاخیر اتفاقات و نحوه کارکرد سیستم را گزارش کند.

نیازمندیهای کارکردی

- **فعال شدن سیگنال missed** اگر در فاصله زمانی بین کلاک اول تا دوم، سیگنال سنسور دریافت نشد، سیگنال اول تا دوم، سیگنال ارسال شود.
- فعال شدن سیگنال ok: اگر همزمان با کلاک اول یا تا قبل از کلاک دوم سیگنال سنسور دریافت شد، سیگنال ok فعال شود.
 - انتظار کلاک دوم: زمانی که کلاک اول دیده شد، سیستم باید در وضعیت انتظار برای دیدن کلاک دوم قرار بگیرد.
- انتقال به وضعیت هشدار: اگر تعداد سیگنالهای متوالی missed بیشتر از مقدار آستانه شد، سیستم باید در وضعیت هشدار قرار بگیرد.
- انتقال به وضعیت عادی: اگر تعداد سیگنالهای متوالی ok بیشتر از مقدار آستانه شد، سیستم باید در وضعیت عادی قرار بگیرد.
- ریست شدن سیگنالهای missed متوالی: اگر سیستم در وضعیت عادی باشد، به محض دریافت یک سیگنال ok باید توالی محاسبات تعداد سیگنالهای missed ریست شود و از صفر شمارش را آغاز کند.
- ریست شدن سیگنالهای ok متوالی: اگر سیستم در وضعیت هشدار باشد، به محض دریافت یک سیگنال misssed باید توالی محاسبات تعداد سیگنالهای ok ریست شود و از صفر شمارش را آغاز کند.
 - شمارش سیگنالهای ok: سیستم در وضعیت هشدار باید تعداد سیگنالهای ok متوالی را شمارش کند.
 - شمارش سیگنالهای missed: سیستم در وضعیت عادی باید تعداد سیگنالهای missed متوالی را شمارش کند.

ابهامها

مقدار متغیرهای warningThreshold و normalThreshold نامشخص بودند. این مقادیر توسط ما ۳ و α مقداردهی شدند.

سيستم

سیستم عیبیابی با توجه به توضیحات داده شده در صورت سوال به دو کامپوننت MissDetector و StatusClassifier نیاز دارد. پس از اضافه کردن آنها و مشخص کردن رابطهای میان آنها و ورودی، رفتار آنها را در Simulink stateflow مشخص می کنیم.

MissDetector < MissDetector > StatusClassifier < StatusClassifier > StatusClassifi

رابطها و پورتهای سیستم

Interfaces			Units Complexity Minimum Maximum Description real [] [] [] [] [] [] [] [] [] [] [] [] []						
Search Q Dictionary View									
	Туре	Dimensions	Units	Complexity	Minimum	Maximum	Description		
▼ 🖟 ex2_SystemCompos									
▼ sensorStatus									
ok	boolean	1		real	0	0			
missed	boolean	1		real	0	0			
▼ = systemInputs									
clock	double	1		real	0	0			
sensor	double	1		real	0	0			
▼ = systemStatus									
warning	double	1		real	0	0			
normal	double	1		real	0	0			

كاميوننت MissDetector

این استیت چارت به گونهای طراحی شده است که پس از دیدن clock اول به وضعیت انتظار رود و تا زمانی که میان دو clock رویداد sensor را دریافت نکند، رویداد missed را تریگر کند.

رویدادهای ورودی clock و sensor حساس به لبه بالارونده اند و رویدادهای خروجی ok و missed برای تریگر شدن لبه آنها تغییر میکنند.

كامپوننت StatusClassifier

برای تشخیص وضعیت سیستم، باید در وضعیت normal تعداد رویدادهای missed و در وضعیت سیستم، باید در وضعیت تعداد رویدادهای ok را بشماریم. درصورتی که تعداد هر یک از آستانه آن عبور کند، وضعیت سیستم تغییر می کند.

متغیر های شمارش رویدادهای ok و missed متغیرهای محلی چارت هستند.

همچنین وقادیر آستانه هر یک مقداری ثابت است.

رویدادهای ورودی ok و missed در هر دو لبه بالارونده و پایین رونده تریگر میشوند.

نمودارهای توالی

مشاهده می شود که پس از ۴ رویداد missed به حالت warning رفتیم و پس از ۵ رویداد ok به حالت normal برگشتیم. رویداد اول missed به منظور شروع چارت statusDetector شمارش نشده.

بخش ۳:

State chart

با کوچیک کردن استپ سایز مدل استیت فلو می توان مدلی نزدیک به timed-automata داشت. برای میمیک متغیر پیوسته زمان کافیست در هر استپ متغیر را به همان مقدار بیشتر کنیم. به این منظور در هر استیت یک سلف لوپ قرار می دهیم.

نتايج

