

最小生成树应用案例

参考书:

- 1. 龚劬 《图论与网络最优化算法》重庆大学出版社
- 2. 张绍民 李淑华 《数据结构教程C语言版》中国电力出版社

龚劬

范例:制造系统的分组技术

分组技术是设计制造系统的一种方法, 它把生产零件的机器分组, 相应地把需生产的零件分类, 使零件跨组加工的情形尽量少, 最理想的情况是使每个零件的加工, 都在组内完成。

假做有13种學作, 鼎在9台机器上 加工。在各台机器上加工的學作号在下 泉中给出。

范例:制造系统的分组技术

机器	1	2	3	4	5	6	7	8	9
加等件	2,3, 7,8, 9, 12, 13	2,7, 8, 11,1 2	1,6	3, 5, 10	3,7, 8,9, 12, 13	5	4, 10	4 , 10	6

建模

谈用M_i表示需由机器i加工的零件集,对任

意两合机器i,j, 定义相异度:

$$\omega(i, j) = \frac{|M_i \oplus M_j|}{|M_i \cup M_j|}$$

建模

$$\omega(i, j) = \frac{|M_i \oplus M_j|}{|M_i \cup M_j|}$$

"⊕": 对称差,

分子: 在机器i但不在机器j上加工, 或在机

器j但不在机器i上加工的零件数。

分學;或在机器i,或在机器j上加工的零件数。

显然 0≤∞≤1

想 1) $\omega(i,j)=0$ 和 $\omega(i,j)=1$ 分别表示什么?2) ω 表达了什么?

构造加权图

以机器为顶点,作一个完全图,每条边 (i, j) 被账予拟(a(i, j)。

原向题的转化

加权图的最小生成潮是由那些相异度最 小的边物成的连通图,如果希望把机器分成k 个组,就继续删去最小生成海上拟最大的k-1 条边。于是得到k个分离的子对,每棵树的顶 点慕就构成各机器组。

模型水解

用Kruskal算法可求出最小生成树,在前面给出的Kruskal算法的MATLAB程序中,这权矩阵的的直改为此处的边本矩阵,项点数n改为9即可。

上一页 下一页 主 页

模型结果

机器的分组:

 ${3, 9},$

 $\{1, 2, 5\},\$

 ${4, 6, 7, 8}$.

9

5

8 0 7 .75 <u>4</u> .67

现 你能给出对应于该机器分组的零件分类吗?

设 d_{ij} 是两点i与j之间的距离, $x_{ij} = 0$ 或1(1表示连接,0表示不连接),并假设顶点1是生成树的根.则

min
$$\sum_{(i,j)\in A} d_{ij}x_{ij}$$
;
s.t. $\sum_{j\in V} x_{1j} \ge 1$, (根至少有一条边连接到其他边) $\sum_{j\in V} x_{ji} = 1$, $i \ne 1$, (除根外,每个点只有一条边进入) (各边不构成圈)

例 (最优连线问题)我国西部的SV地区共有1个城市(标记为1)和9个乡镇(标记为2--10)组成,该地区不久将用上天然气,其中城市1含有井源.现要设计一供气系统,使得从城市1到每个乡镇(2--10)都有一条管道相连,并且铺设的管子的量尽可能的少.下表给出了城镇之间的距离.求SV地区的最优连线.

表 7-7: SV 地区城镇之间的距离									
	2	3	4	5	6	7	8	9	10
1	8	5	9	12	14	12	16	17	22
2		9	15	17	8	11	18	14	22
3			7	9	11	7	12	12	17
4				3	17	10	7	15	18
5					8	10	6	15	15
6						9	14	8	16
7							8	6	11
8								11	11
9									10

解: 按照数学规划写出相应的LINGO程序,

MODEL:

- 1] sets:
- 2] cities/1..10/:level; !level(i)= the level of city;
- 3] link(cities, cities):
- 4] distance, !The distance matrix;
- 5] x; ! x(i,j)=1 if we use link i,j;
- 6] endsets

```
7 data: Distance matrix, it need not be symmetric;
8] distance = 0 8 5 9 12 14 12 16 17 22
          8 0 9 15 16 8 11 18 14 22
9]
           5 9 0 7 9 11 7 12 12 17
107
          9 15 7 0 3 17 10 7 15 15
117
          12 16 9 3 0 8 10 6 15 15
12]
131
          14 8 11 17 8 0 9 14 8 16
141
          12 11 7 10 10 9 0 8 6 11
15]
          16 18 12 7 6 14 8 0 11 11
16]
          17 14 12 15 15 8 6 11 0 10
          22 22 17 15 15 16 11 11 10 0;
     enddata
```

主 页


```
19 n=@size(cities); !The model size;
20]! Minimize total distance of the links;
21]min=@sum(link(i,j)|i #ne# j: distance(i,j)*x(i,j));
22]!There must be an arc out of city 1;
23]@sum(cities(i)|i \#gt\# 1: x(1,i)>=1;
24]!For city i, except the base (city 1);
25]@for(cities(i) | i #gt# 1 :
26]! It must be entered;
27] @sum(cities(j)| j #ne# i: x(j,i))=1;
28]! level(j)=levle(i)+1, if we link j and i;
```



```
@for(cities(j)| j #gt# 1 #and# j #ne# i :
       level(j) >= level(i) + x(i,j)
301
31]
             -(n-2)*(1-x(i,j)) + (n-3)*x(j,i);
32]
33]! The level of city is at least 1 but no more n-1,
      and is 1 if it links to base (city 1);
 35] @bnd(1,level(i),999999);
 36] level(i)<=n-1-(n-2)*x(1,i);
37 );
38]! Make the x's 0/1;
39]@for(link: @bin(x));
END
```


利用水平变量(level)来保证所选的边不构成圈.

Global optimal solution found at iteration: 34

Objective value: 60.00000

Variable	Value	Reduced Cost
X(1,2)	1.000000	8.000000
X(1,3)	1.000000	5.000000
X(3,4)	1.000000	7.000000
X(3,7)	1.000000	7.000000
X(4,5)	1.000000	3.000000
X(5,8)	1.000000	6.000000
X(7,9)	1.000000	6.000000
X(9,6)	1.000000	8.000000
X(9, 10)	1.000000	10.00000

上一页 下一页

主页

连接这10个城镇的最小距离为60公里, 其连接情况如下.

上一页 | 下一页 | 主 页