Show your steps clearly and note that this is a closed book test.

1. Consider the vectors $\bar{u} = \langle 1, 1, 2 \rangle$, $\bar{v} = \langle 0, 1, 0 \rangle$ and $\bar{w} = \langle 0, 1, 1 \rangle$ in \mathbb{R}^3 . Find (if possible) the value of $\bar{u} + (\bar{v} \cdot \bar{w})$.

[2]

By the definition of the dot product, $\bar{v} \cdot \bar{w} \in \mathbb{R}$. Therefore, by the definition of vector addition $\bar{u} + (\bar{v} \cdot \bar{w})$ does not exist.

2. Let \bar{u} and \bar{v} be vectors in \mathbb{R}^n . Prove that if \bar{u} and \bar{v} are not parallel and $a\bar{u}+b\bar{v}=a_1\bar{u}+b_1\bar{v}$ for $a,a_1,b,b_1\in\mathbb{R}$, then $a=a_1$ and $b=b_1$.

Assume that $\bar{u} \not\parallel \bar{v}$ and that

$$a\bar{u} + b\bar{v} = a_1\bar{u} + b_1\bar{v}$$

$$\Rightarrow a\bar{u} + b\bar{v} + (-a_1\bar{u}) + (-b_1\bar{v}) = a_1\bar{u} + b_1\bar{v} + (-a_1\bar{u}) + (-b_1\bar{v}) \quad [Adding (-a_1\bar{u}) \text{ and } (-b_1\bar{v}) \text{ on both sides}]$$
$$\Rightarrow (a - a_1)\bar{u} + (b - b_1)\bar{v} = \bar{0}.$$
$$[Additive inverse property]$$

Since \bar{u} and \bar{v} are not parallel, they are not scalar multiples of each other.

Hence the implication is true if and only if both $a - a_1 = 0$ and $b - b_1 = 0$, by the zero scalar multiplicative property.

Therefore $a = a_1$ and $b = b_1$.

3. Find α such that the vectors $\bar{u} = \langle -3, \alpha, 2 - \alpha \rangle$ and $\bar{v} = \langle 2, \alpha, \alpha - 2 \rangle$ are orthogonal.

 \bar{u} and \bar{v} are orthogonal if

$$\begin{split} \bar{u} \cdot \bar{v} &= 0 \\ \implies \langle -3, \alpha, 2 - \alpha \rangle \cdot \langle 2, \alpha, \alpha - 2 \rangle \\ \implies -6 + \alpha^2 + 2\alpha - 4 - \alpha^2 + 2\alpha = 0 \\ \implies 4\alpha = 10 \\ \implies \alpha = \frac{5}{2} \end{split}$$

4. Consider the lines

$$L_1 = \{ \langle 1+t, 2, 3+2t \rangle : t \in \mathbb{R} \} \text{ and } L_2 = \{ \langle 1, 2, 2+s \rangle : s \in \mathbb{R} \}.$$

Show in details that $L_1 \neq L_2$.

[3]

[2]

 $L_1 \not\parallel L_2$, by the definition of parallellism, so therefore, L_1 and L_2 have at least one point of intersection, or none at all, by the theorem on the relationship between two lines.

 L_1 and L_2 intersect at a point \bar{x} if and only if $\exists s, t \in \mathbb{R}$ such that

$$\bar{x} = \langle 1+t, 2, 3+2t \rangle = \langle 1, 2, 2+s \rangle.$$

By the definition of vector equality, $\bar{x} \in L_1 \cap L_2$ if and only if

$$1+t=1 \implies t=0$$

$$2=2$$

$$3+2t=2+s \implies 3+2(0)=2+s \implies s=1$$

Therefore $\bar{x} = \langle 1, 2, 3 \rangle \in L_1 \cap L_2$.

Now for L_1 and L_2 to be equal, it must hold that L_1 and L_2 intersect at another point \bar{y} , by the theorem on the equality of lines.

Pick t=1. Then $\bar{y}=\langle 2,2,5\rangle\in L_1$. Note that $\nexists s\in\mathbb{R}$ that satisfis the condition that $\bar{y}\in L_2$.

Therefore $L_1 \neq L_2$.