Admitere * Universitatea Politehnica din București 2008 Disciplina: Algebră și Elemente de Analiză Matematică Varianta A

- 1. Să se rezolve ecuația $C_n^1 + C_n^2 = 6$. (4 pct.)
 - a) n = 5; b) n = 3; c) n = 6; d) n = 2; e) n = 4; f) n = -4.
- 2. Să se rezolve inecuația $\frac{x+1}{2} \leq \frac{2x}{3}$. (4 pct.)
 - a) $(-\infty, 3]$; b) $(3, \infty)$; c) $(-\infty, 3)$; d) R; e) \emptyset ; f) $[3, \infty)$.
- 3. Să se determine mulțimea valorilor parametrului real λ pentru care sistemul $\begin{cases} x+y=1\\ x+\lambda y=2 \end{cases}$ este compatibil determinat. (4 pct.)
 - a) \emptyset ; b) R; c) R\{1\}; d) {1\}; e) $(-\infty, 1)$; f) $(1, \infty)$.
- 4. Să se determine mulțimea soluțiilor ecuației $\begin{vmatrix} 3 & 3 & x \\ 1 & x & 1 \\ 1 & 0 & x \end{vmatrix} = 2$. (4 pct.)
 - a) $\{1,2\}$; b) $\{1,-1\}$; c) $\{1,\frac{1}{2}\}$; d) $\{3\}$; e) \emptyset ; f) $\{1,3\}$
- 5. Fie legea de compoziție definită pe R prin x * y = x (1 y) + y (1 x). Să se determine elementul neutru. (4 pct.)
 - a) 1; b) -2e; c) -1; d) nu există; e) 2; f) 0.
- 6. Fie funcția $f: C \longrightarrow C$, $f(z) = 1 + z + z^2 + z^3 + z^4$. Să se calculeze f(i). (4 pct.) a) 1 i; b) 0; c) 1 + i; d) i; e) -i; f) 1.
- 7. Fie $A = \begin{pmatrix} 1 & 0 \\ 1 & 2 \end{pmatrix}$. Să se determine matricea $B = \frac{1}{2}(3I_2 A)$, unde I_2 este matricea unitate de ordinul al doilea. (4 pct.)
 - $a) \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right); b) \left(\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array} \right); c) \left(\begin{array}{cc} 1 & 0 \\ -1/2 & 1/2 \end{array} \right); d) \left(\begin{array}{cc} 3 & 3 \\ 0 & -1/2 \end{array} \right); e) \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right); f) \left(\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right).$
- 8. Fie $f: \mathbf{R} \longrightarrow \mathbf{R}, \ f(x) = \frac{2}{x^2+1}$. Să se determine primitiva funcției f care se anulează în x=0. (4 pct.) a) $\ln(x^2+1)$; b) x^2 ; c) $2\arcsin x$; d) $\frac{1}{x^3+x}$; e) $\frac{x}{x^2+1}$; f) $2\arctan x$.
- 9. Să se rezolve ecuația $3^{x^2} = 9^x$. (4 pct.)
 - a) \emptyset ; b) $\{1\}$; c) $\{2\}$; d) $\{0,1\}$; e) $\{0,2\}$; f) $\{0\}$.
- 10. Să se calculeze limita șirului $a_n = \frac{\sqrt{n^2 + n + 1}}{2n}, n \ge 1$. (4 pct.)
 - a) nu există; b) 0; c) $\frac{1}{2}$; d) ∞ ; e) 1; f) $\frac{3}{2}$.
- 11. Să se determine abscisele punctelor de inflexiune ale funcției $f: \mathbf{R} \longrightarrow \mathbf{R}, \quad f(x) = \ln(x^2 + 1)$. (4 pct.) a) $\{0, 1\}$; b) $\{-1\}$; c) $\{0\}$; d) nu există; e) $\{1\}$; f) $\{-1, 1\}$.
- 12. Să se determine termenul a_4 al progresiei aritmetice cu primul termen $a_1 = 1$ și rația r = 2. (4 pct.) a) 7; b) 5; c) 9; d) 13; e) 11; f) 3.
- 13. Să se determine numărul real m pentru care polinomul $f = X^2 4X + m$ are rădăcină dublă. (6 pct.) a) 1; b) -2; c) -4; d) 2; e) 0; f) 4.
- 14. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x^4-1}$. (6 pct.)
 - a) $\frac{1}{4}$; b) 1; c) 0; d) 2; e) ∞ ; f) $\frac{1}{2}$.
- 15. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \begin{cases} x^3 + x, \operatorname{daca} x \leq 1 \\ mxe^{x-1}, \operatorname{daca} x > 1 \end{cases}$ să fie continuă pe \mathbb{R} . (6 pct.)
 - a) e; b) 1; c) 2; d) nu există; e) 4; f) e^{-1} .

- 16. Fie $f: \mathbf{R} \longrightarrow \mathbf{R}$, $f(x) = x e^x$. Să se calculeze f'(0). (8 pct.) a) 0; b) nu există; c) 1; d) e; e) 2; f) 3.
- 17. Să se calculeze $\int_{0}^{1} (x^{3} + x^{2}) dx$. (8 pct.)
 - a) $\frac{5}{6}$; b) $\frac{1}{5}$; c) 6; d) 5; e) $\frac{7}{12}$; f) 2.
- 18. Să se rezolve ecuația $x^2 5x + 4 = 0$. (8 pct.)
 - a) $\{0\}$; b) \emptyset ; c) $\{4,5\}$; d) $\{-1,-4\}$; e) $\{1\}$; f) $\{1,4\}$.