

数据库系统概论 An Introduction to Database System

第十一章 并发控制

中国人民大学信息学院 陈红

第十一章 并发控制

- 11.1 并发控制概述
- 11.2 封锁
- 11.3 活锁和死锁
- 11.4 并发调度的可串行性
- 11.5 两段锁协议
- 11.6 封锁的粒度
- 11.7 小结

- ❖ DBMS 对并发事务不同的调度可能会产生不同的结果
- ❖串行调度是正确的
- ❖执行结果等价于串行调度的调度也是正确的, 称为可串行化调度

❖可串行化 (Serializable) 调度

多个事务的并发执行是正确的,当且仅当其结果与按某一次序串行地执行这些事务时的结果相同

❖可串行性 (Serializability)

- 是并发事务正确调度的准则
- 一个给定的并发调度,当且仅当它是可串行化的,才认为是正确调度

[例]现在有两个事务,分别包含下列操作:

■ 事务 T1: 读 B; A=B+1; 写回 A

■ 事务 T2: 读 A; B=A+1; 写回 B

现给出对这两个事务不同的调度策略

串行化调度,正确的调度

T_1	T_2	
Slock B		
Y=R(B)=2		
Unlock B		■ 假设 A 、 B 的初值均为
Xlock A		
A=Y+1=3		2 .
W(A)		■ 按 T1→T2 次序执行结果
Unlock A		₩ A-2 D-4
	Slock A	为 A=3 , B=4
	X=R(A)=3	■ 串行调度策略,正确的调度
	Unlock A	
	Xlock B	
	B=X+1=4	
	W(B)	
	Unlock B	An Introduction to Database System

串行调度 (a)

串行化调度,正确的调度

T_1	T_2	
	Slock A	
	X=R(A)=2	
	Unlock A	■ 假设 A 、 B 的初值均为
	Xlock B	2 。
	B=X+1=3	
	W(B)	■ T2→T1 次序执行结果为
	Unlock B	B=3 , $A=4$
Slock B		■ 串行调度策略,正确的调度
Y=R(B)=3		中13751文外中1911年3751文
Unlock B		
Xlock A		
A=Y+1=4		
W(A)		
Unlock A		

不可串行化调度,错误的调度

T ₁	T_2	
Slock B		
Y=R(B)=2		
	Slock A	■ 执行结果与(a)、(b)的
Unlock B	X=R(A)=2	结果都不同
	Unlock A	■ 是错误的调度
Xlock A		
A=Y+1=3		
W(A)		
	Xlock B	
	B=X+1=3	
	W(B)	
Unlock A		
	Unlock B	An Introduction to Database System

不可串行化的调度

可串行化调度,正确的调度

T_1	T_2	
Slock B		
Y=R(B)=2		
Unlock B	į	■ 执行结果与串行调度
Xlock A	Slock A	(a) 的执行结果相同
A=Y+1=3		■ 是正确的调度
W(A)		
Unlock A		
	X=R(A)=3	
	Unlock A	
	Xlock B	
	B=X+1=4	
	W(B)	
	Unlock B	An Introduction to Database System

可串行化的调度

- ❖冲突可串行化
 - 一个比可串行化更严格的条件
 - ■商用系统中的调度器采用
- ❖冲突
 - 调度中一对连续的动作,它们满足:如果它们的顺序交换,那么涉及的事务中至少有一个的行为会改变

冲突

❖不会冲突:

- r_i(X); r_j(Y) 读
- r_i(X); w_j(Y), X 不等于 Y
- w_i(X); r_j(Y), X 不等于 Y
- w_i(X); w_j(Y), X 不等于 Y

冲突

- ❖不能交换(Swap)的动作:
 - 同一事务的两个 actions
 - 不同事务对同一数据库元素的写冲突
 - 不同事务对同一数据库元素的读写冲突
- ❖结论:
 - ▶涉及同一个数据库元素
 - 并且至少有一个是写操作的动作 不能交换

冲突可串行化

conflict- equivalent schedules:

如果 S1 能通过一系列的非冲突交换变成 S2,则 S1 S2 是冲突等价的调度。

conflict serializable schedules:

一个调度是冲突可串行化的,如果它和某些串行调度 是冲突等价的.

 $Sc=r_1(A)w_1(A)r_2(A)w_2(A)r_1(B)w_1(B)r_2(B)w_2(B)$

Sc is "equivalent" to a serial schedule (in this case T₁,T₂)

$Sd=r_1(A)w_1(A)r_2(A)w_2(A)r_2(B)w_2(B)r_1(B)w_1(B)$

Sd cannot be rearranged into a serial schedule Sd is not "equivalent" to any serial schedule Sd is "bad"

冲突可串行性的判定: 优先图

S是一个调度, S的优先图 P(S)

结点:S中的事务

弧: Ti → Tj (Ti<Tj) Ti 优先于 Tj

whenever

- p_i(A), q_j(A) are actions in S
- $p_i(A) <_s q_j(A)$
- at least one of pi, qj is a write

调度 S 涉及三个事务: T1, T2, T3

S: r2(A);r1(B);w2(A);r3(A);w1(B);w3(A);r2(B);w2(B);

从 A 可以看出: T2 <_s T3

因此 T2 → T3

从 B 可以看出: T1 <_s T2

因此 T1 → T2

S的调度优先图:

冲突可串行的判断

- 쐏构造S的优先图
- ❖判断其中是否有环:
 - 有, S不是冲突可串行化。
 - 无, S冲突可串行化,而且任意一个拓扑顺序 就是一个冲突等价串行顺序

S: r2(A);r1(B);w2(A);r3(A);w1(B);w3(A);r2(B);w2(B); S的调度优先图:

调度优先图无环,S是冲突可串行化的。

S': r1(B);w1(B);r2(A);w2(A);r2(B);w2(B);r3(A);w3(A);

S1: r2(A);r1(B);w2(A);r2(B);r3(A);w1(B);w3(A);w2(B);

从 w2(A);r3(A) 可以看出: T2 <_s T3 , 因此 T2 → T3

从 r1(B);w2(B) 可以看出: T1 <_s T2, 因此 T1 → T2

从 r2(B);w1(B) 可以看出: T2 <_s T1, 因此 T2 → T1

S1的调度优先图:

调度优先图有环, S1 不是冲突可串行化的。

冲突可串行化调度

❖ 冲突可串行化调度是可串行化调度的充分条件,不是必要条件。还有不满足冲突可串行化条件的可串行化调度。

[例]有3个事务

T1=W1(Y)W1(X), T2=W2(Y)W2(X), T3=W3(X)

- 调度 L1=W1(Y)<u>W1(X)</u>W2(Y)W2(X) W<u>3(X)</u> 是一个串行调度。