Simpson 1/3

Error de tercer orden

$$Error_{(3)} = \int_{\chi_0}^{\chi_2} \frac{(s-\chi_0)(s-\chi_1)(s-\chi_2)}{3!} f^{(3)}(\chi) ds$$

$$= \frac{f^{(3)}(7)}{6} \int_{x_0}^{x_2} (s-x_0)(s-x_1)(s-x_2) ds$$

(alculemos X2 (s-x0)(s-X1)(s-X2) ds

 $u = S - \chi_1$ du = ds

 $s = \chi_0 = \lambda_0 - \chi_1 = -h$ $s = \chi_2 = \lambda_1 - \chi_1 - h$

 $= \int_{-h}^{h} (u + \chi_1 - \chi_2) (u + \chi_1 - \chi_2) du$ $= \int_{-h}^{h} (u + \chi_1 - \chi_2) (u + \chi_1 - \chi_2) du$

 $= \int_{-h}^{h} (u+h)(u)(u-h) du = \int_{-h}^{h} u(u^2-h^2) du$

 $g(u) = u(u^2 - h^2)$ $g(-u) = -u(u^2 - h^2) = -g(u)$ = -g(u) = -g(u) = -g(u) = -g(u) = -g(u) = -g(u)

 $\frac{f^{(3)}(x)}{f^{(3)}} = \frac{f^{(3)}(x)}{f^{(3)}(x)} = \frac{f^{(3)}(x)}{f^{(3)}(x)} = 0$ $f^{(3)}(x) = \frac{f^{(3)}(x)}{f^{(3)}(x)} = 0$

Simpson
$$\frac{3}{8}$$

Error = $\int_{x_0}^{x_0} \frac{(s-x_0)(s-x_1)(s-x_2)(s-x_3)}{4!} \int_{x_0}^{(4)} (y) ds$
= $\frac{f^{(4)}(y)}{24} \int_{x_0}^{x_3} \frac{x_3}{(s-x_0)(s-x_1)(s-x_2)(s-x_3)} ds$
 $\int_{x_0}^{x_3} \frac{x_3}{(s-x_0)(s-x_1)(s-x_2)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_2)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_2)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_1)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_1)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)(s-x_1)} ds$
 $\int_{x_0}^{x_0} \frac{x_0}{(s-x_0)(s-x_1)(s-x_1)} ds$
 $\int_{x_0}^{x_0}$

$$=-\frac{3}{80}h^{5}f^{(4)}(\xi)$$