Org-mode 导出 PDF 中文演示

orger *

December 31, 2017

目录

1	简介												
	1.1 1.2	历史											
2	•	mode 1											
	2.1	简单引用											
	2.2	Org-mode 表格 3 2.2.1 图像 3 3											
	2.3	org 里通过 tex 面画的图											
3	入门	入门 5											
	3.1	基本操作											
		3.1.1 高级操作 6											
4	Org-	mode 操作 6											
	4.1	嵌入源码6											
		4.1.1 标记语言											
		4.1.2 T _E X 家族											
5	小结												
	5.1	小结9											
		5.1.1 小结											
6	小结												
	6.1	小结9											
		6.1.1 小结											
7	小结												
	7.1	小结9											
		7.1.1 小结											
8	小结												
	8.1	小结10											
		8.1.1 小结											

9	小结												10
	9.1	小结.		 		 10							
		9.1.1	小结	 		 10							

目录

目录

IALEX

1 简介

FLEX

滚滚长江东逝水, 浪花淘尽英雄。是非成败转头空。青山依旧在, 几度夕阳红。白发渔樵江渚上, 惯看秋月春风。一壶浊酒喜相逢。古今多少事, 都付笑谈中。

— 杨慎《临江仙》

1.1 历史

排版是人类生活中一项很重要的工作,也是传统印刷和电脑出版的核心活动。在一定的版面内摆放不同型态的对象(如数字、文字、表格和图形等),以合适的方法表现渲染它们,这个过程就是 排版。。一般人们提到的 \LaTeX 是一个总称,它包括 \TeX 、 \LaTeX 、 \LaTeX 、 $\end{Bmatrix}$ [1]。

今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何? 3x+2y+z=39

2x+3y+z = 34x+2y+3z = 26

- 《九章算术》

爱因斯坦的 $E = mc^2$ 方程

$$E = mc^{2}$$

$$E = mc^{2}$$

$$E = mc^{2}$$
(1)

1.2 Org-mode

Org-mode是最舒服的 文字编辑器。Org-mode 作为 Emacs[2] 文本编辑器里面的一个 Major mode, 它操作的当然也是纯文本,通过自有的标记语法来赋予文本样式和语义。先看其口号 Your Life in Plain Text 笼统的说,Org-mode 就是一个记事本工具,但其本身的设计非常高效和巧妙,除了作为记 note 工具,你可以用作 TODO / GTD 工具、项目管理工具、甚至生成纯文本的电子表格!

Org-mode是所思即所得的操作方式: 让你专注在 文字本身 , 其他的任务 (如文本样式和排版) 通过不打扰、流畅的方式来完成。不打扰的体现: 你双手不需要离开键盘、你不需要用鼠标在几百个菜单项找到你想要的操作。

2 Org-mode

排版的版面可以是有固定尺寸的印刷品,也可以是较为灵活的电脑软件、电子文档,还可以是 狂野奔放的网页。

限于篇幅和水平,本文只能提供一个概览外加一些八卦。比较严谨的入门资料有~Tobias Oetiker~的 《A (Not So) Short Introduction to 於T_EX 2_{ε} 》(**?**)(简称 lshort);若想对~炒T_EX~有更深入全面的了解,可以拜读~Mittelbach~的《The 比T_EX~Companion》(**?**)。

中文资料可参考李果正的《大家来学~LATeX》(?), lshort~有吴凌云等人翻译的中文版本1。

Comprehensive TeX Archive Network (CTAN) 和 ~TeX Users Group~ (TUG) 提供了权威、丰富的资源。

英国 TUG~ 和 ~CTeX~ 分别提供了常见问题集 (FAQ) (??), 一般问题多会在这里找到答案。

2. ORG-MODE 目录

图 1: 美丽的路边野花

中文~TEX~论坛有水木清华BBSTeX版、CTeX论坛。

排版按照历史时期和技术方法可以划分为和 [3] 两大类。数字排版的一个重要概念是光栅图像处理器 (raster image processor, RIP)。RIP 出现之前的印刷排版历史可参阅。

2.1 简单引用

Ditaa is a command-line utility that converts diagrams drawn using ASCII art into bitmap graphics.

RIP可以是硬件、固件或软件。硬件 RIP用于高档排版设备,1976年莫诺公司 (*Monotype Corp.*)的激光照排机 Lasercomp 就配有硬件 RIP。固件 RIP 在打印机内置微处理器上运行,每一台 *PostScript* (PS) 打印机都配有固件 RIP,比如 1985 年苹果公司的 /LaserWriter/。最早的软件 RIP 是 1986年的 Ghostscript。

顾名思义,页面描述语言是用来描述待输出页面的,它比二进制的图像数据高级一点,但是正常人类看起来还是会很费劲。所以人们要在它前面再加一层标记语言 (markup language)。图像数据、页面描述语言、标记语言的关系大致可以比喻为机器码、汇编语言、高级语言。而在排版领域,TeX [4] 是最精确最强大的标记语言,可谓公鸡中的战斗机。

数字排版的工作流程和主要工具见,。本节以下部分将分别回顾常见的页面描述语言、标记语言和 $T_{ extbf{E}} extbf{X}$ 。

顾名思义,页面描述语言是用来描述待输出页面的,它比二进制的图像数据高级一点,但是正常人类看起来还是会很费劲。所以人们要在它前面再加一层标记语言 (markup language)。图像数据、页面描述语言、标记语言的关系大致可以比喻为机器码、汇编语言、高级语言。而在排版领域,是最精确最强大的标记语言,可谓公鸡中的战斗机。

數字排版的工作流程和主要工具见,[[下一章]]。本节以下部分将分别回顿常见的页面描述语言、标记语言和 TeX。

¹此译本首发于 CTeX 论坛, 但是需要注册才能看见链接, 所以请读者自行搜索。

2. ORG-MODE 目录

2.2 Org-mode 表格

• 例子一

表 1: 数字排版工作流程及主要工具

标记语言	→ PDL	\rightarrow	RIP	\rightarrow	输出设备
troff 系列	PS		硬件 RIP		激光照排机
SGML 系列	PDF		固件 RIP		直接制版机
TeX 系列	DVI		软件 RIP		打印机

例子二

表 2: IMFX 发行版与编辑器

操作系统 发行版 编辑器

Windows MikTeX TeXnicCenter WinEdt Unix/Linux TeX Live Emacs vim Kile

Mac OS MacTeX TeXShop

2.2.1 图像

PostScript 最早的行式打印机只能打印字符,后来的针式打印机可以用点阵的方式画出字符,也可以画出粗糙的图形。当时矢量图只能用绘图仪来打印。1969 年施乐推出首台激光打印机之后,就一直在想办法精确描述页面图像,从而结合点阵打印机和绘图仪的优点,同时打印 高质量的图形和文字。1975 年 Robert F. Sproull [5] 主持开发了一种格式 Press,后来用于施乐的 Xerox Star 电脑(一种个人电脑的雏形)。但是 Press 只是一种格式而不是语言,所以施乐启动了 InterPress 研究计划。

Sutherland (1938-) 4 都是犹他大学的教授, 也是 Warnock 的博士导师。他们对施乐挖走得意门生耿耿于怀。1980 年 Sutherland 从施乐挖走另一位弟子 Sproull, 成立了那家咨询公司, 后被 Sun 收购。

在施乐这边,Warnock 和 Martin Newell 开发了新的图形系统 JaM (John and Martin),它后来被合并到 InterPress[6] 中去。这两位还开发过另一个系统 MaJ。

1982 年,Warnock 和同事 Charles M. Geschke (1939-) 5 一起离开施乐,创立了 Adobe。Newell 后来也加入了 Adobe,于是施乐的 InterPress 胎死腹中。1984 年 Adobe 发布 PostScript 后不久,乔帮主 (1955-2011) 跑来参观,并建议用它来驱动激光打印机。次年,苹果推出了配备 PS 解释器的 LaserWriter。之后 Adobe 分别于 1991 和 1997 年推出了 PostScript 2 和 PostScript 3,这三代 PostScript 都是当时的流行标准。据说 1980 年代 Adobe [7] 的收入多数来自 PS 解释器的许可费。1990 年代后期,廉价喷墨打印机的出现使得 PostScript 逐渐式微,因为 PS 解释器对它们毕竟是一个成本负担,另外 PostScript 过于复杂,对微处理器和内存要求都很高。

MT_EX

1993 年, Adobe 推出了另一种格式 portable document format (PDF), 它在 2008 年成为开放标准 ISO 32000。除了开放, PDF 比起 PostScript 还有其他一些优势:

2.3 org 里通过 tex 面画的图

EX

2. ORG-MODE 目录

图 2: 野花不要采

图 3: 海边

表 3: 希腊字母												
α	\alpha	θ	\theta	$\mid o \mid$	О	τ	\tau					
β	\beta	ϑ	\vartheta	π	\pi	v	\upsilon					
γ	\gamma	ι	\iota	$\overline{\omega}$	\varpi	ϕ	\phi					
δ	\delta	κ	\kappa	ρ	\rho	φ	\varphi					
ϵ	\epsilon	λ	∖lambda	ϱ	\varrho	χ	\chi					
ε	\varepsilon	μ	\mu	σ	\sigma	ψ	\psi					
ζ	\zeta	ν	\nu	ς	\varsigma	ω	\omega					
η	\eta	ξ	\xi									
Γ	\Gamma	Λ	\Lambda	Σ	\Sigma	Ψ	\Psi					
Δ	\Delta	Ξ	\Xi	Υ	\Upsilon	Ω	\Omega					
Θ	\Theta	П	\Pi	Φ	\Phi							

3 入门

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 $T_{E\!X}$ 编辑。你可以到这里看看

- 1 (setq TeX-auto-save t)
- 2 (setq TeX-parse-self t)
- 3 (setq-default TeX-master nil)

4. ORG-MODE 操作 目录

3.1 基本操作

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

1 use yii \ helpers \ Html;
2 use kartik \ grid \ Grid View;
3 use yii \ widgets \ Pjax;

3.1.1 高级操作

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

```
1 (defun org-mode-article-modes ()
2 (reftex-mode t)
3 (and (buffer-file-name)
4 (file-exists-p (buffer-file-name))
5 (reftex-parse-all)))
```

4 Org-mode 操作

4.1 嵌入源码

- 基本上是 PostScript 的一个子集, 因此更轻便 [8]。
- 支持更先进的字体, 具体见第三章。
- 支持透明图形, 还支持动画。
- 支持加密等安全特性。
- 支持更先进的字体, 具体见第三章 [9]。
- 支持透明图形, 还支持动画。
- 支持加密等安全特性。

FALEX

$$\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t).$$

4. ORG-MODE 操作 目录

虽然拥有上述优势, PDF 最初的推广 [10] 却并不顺利, 因为其读写工具 Acrobat 太贵。后来 Adobe 推出了免费的 Acrobat Reader (后更名为 Adobe Reader), 并不断改进 PDF, 终于使它超越了 PostScript, 成为网络时代电子文档的新标准。

其他页面描述语言 其他页面描述语言还有:

- 爱普生打印机标准码 (Epson standard code for printers, ESC/P) , 主要用于针式打印机。
- 惠普的打印机命令语言 (printer command language, PCL), 主要用于喷墨打印机。
- 惠普图形语言 (HP graphics language, HPGL), 主要用于绘图仪 [11]。
- TFX 家族的设备独立文件格式 (device independent file format, DVI) , 详见 ?? 节。
- 微软的 XML 纸张规范 (XML paper specification, XPS)。2009 年,基于 XPS 的 Open XPS 被 Ecma 国际 (Ecma International) 批准为 ECMA 标准。

4.1.1 标记语言

troff 系列 1964 年,MIT 的 Jerome H. Saltzer (1939-) 6 在参与开发第一个分时操作系统时,写了一个文本排版程序 RUNOFF。后来贝尔实验室的 Robert H. Morris 7 把 RUNOFF 移植到 GE 635 上,改名为 roff。1969 年,Malcolm D. McIlroy (1932-) 8 把 roff 用 BCPL[12] 语言重写,移植到 DEC PDP-7。

SGML 系列 1969 年,IBM 的 Charles F. Goldfarb 和同事 Edward Mosher, RaymondLorie 发明了通用标记语言 (generalized markup language, GML),GML 其实是他们三人姓氏的首字母。GML 把结构、内容、格式分开,这样作者就可以专心写作。另外还可以为输出设备指定各自的特性文件 (pro le),从而实现设备独立。1978 年,Goldfarb 等开始改进 GML[13]。

Scribe 1980年, 卡耐基梅隆的 Brian K. Reid (1949-) 提交了他的博士论文 Scribe: A Document Specication Language and its Compiler。1981年,Reid 鼓动 Goldfarb 一起参加了一个会议,Goldfarb 发现 Scribe和 SGML 在几处重要概念上是相似的,可谓英雄所见略同。

Reid 在毕业时把 Scribe 卖给了一位教授 Michael I. Shamos (1947-) 16 的统一逻辑公司 (Unilogic)。 Shamos 跟卡耐基梅隆为 Scribe 的知识产权打了几年官司, 然后给它装上时间炸弹迫使用户交钱。谴责说这是对程序员精神的背叛, 是对人类的犯罪。 Scribe 后来无疾而终。

4.1.2 T_FX 家族

包子曰:自施乐以降,豪杰并起,跨州连郡者不可胜数。初 SGML 名微而众寡,然遂能克 troff,以弱为强者,非惟天时,抑亦人谋也。今 SGML 已拥百万之众,挟互联网而令诸侯,此诚不可与争锋。土坯据有 PDL,已历三世,国险而民附,贤能为之用,此可以为援而不可图也。纳德将军既帝室之胄,信义著于四海,总揽英雄,思贤如渴,若跨有公式、算法,保其岩阻,西和 DocBook,南抚 Scribe,外结好土坯,内修政理;天下有变,则命一上将将公式之军以向 AMS, SIAM,将军身率算法之众出于 TUG,百姓孰敢不箪食壶浆,以迎将军者乎?诚如是,则霸业可成,雷太赫可兴矣 [15]。

引擎 谈到 TEX, 人们首先会想起 Donald E. Knuth (1938-)uth 18。1962 年 Knuth 开始写一本关于编译器设计的书, 原计划是 12章的单行本。不久 Knuth 觉得此书涉及的领域应该扩大, 于是越写越多, 如滔滔江水连绵不绝, 又如黄河泛滥一发不可收拾。1965 年完成的初稿居然有 3000 页, 据出版商估计, 这些手稿印刷出来需要 2000 页。出书的计划只好改为七卷, 每卷一或两章, 这就是 öe Art of Computer Programming

1976年,当 Knuth 改写第二卷的第二版时,很郁闷地发现第一卷的铅版不见了;而当时数字排版 刚刚兴起,质量还差强人意。于是 Knuth 仰天长啸:"我要扼住命运的咽喉",决定自己开发一个全新的排版系统,这就是 TEX。1978年 TEX 第一版发布后好评如潮,Knuth 趁热打铁在 1982 年发布了第二版,1989年发布的 TEX 3.0 将 7 位字符改为 8 位。之后 Knuth 宣布除了修正漏洞停止 TEX 的开发,因为它已经很稳定,而且他要集中精力完成那部巨著的后几卷。从那时起,每发布一个修正版,版本号就增加一位小数,趋近于 π;当前版本是 2008年的 3.1415926。他的另一个软件 METAFONT 的版本号趋近于 e,目前是 2.718281。Knuth 希望在他离世时,TEX 和 METAFONT 的版本号永远固定下来,从此人们不再改动他的代码。Knuth 在软件工程方面也独树一帜。一般认为,编程语言大致可以划分为四代: 机器语言、汇编语言、过程语言、面向对象语言。1970年代时,基于过程的结构化编程方法占据主导地方。它认为程序只应该包含顺序、分支、循环等三种结构,GOTO 跳转大大地不好,应该禁止。而 Knuth 认为只要使用得当,GOTO 没什么不好的。人们在编程时为了使程序清晰,常常在代码间插入注释。Knuth 认为这不够人性化,他主张按照程序员的思维逻辑,在注释间插入代码,这就是文学编程 (literate programming)。

格式 TEX 是一种语言也是一个排版引擎 (engine), 引擎的基本功能就是把字排成行, 把行排成页, 涉及到断字、断行、分页等算法。基本的 TEX 系统只有 300 多个元命令 (primitive), 十分精悍, 但是很难读懂, 只适于非正常人类。

宏包 LTEX 出现之后, 在它的基础上出现了很多宏包 (package)。 起初, 美国数学学会 (American Mathematical Society, AMS) 看着 TEX 是好的, 就派 Michael D. Spivak (1940-) 23 开发基于 Plain TEX 的 宏包 AMS-TEX, 它的开发进行了两年 (1983-1985)。

驱动 Knuth 最初设计的 TEX 只能用于施乐图形打印机 (Xerox graphic printer, XGP), 这台打印机本身还需要一台 PDP-6 为它服务。1979 年, David R. Fuchs 25 提出把 TEX 的输出改为设备无关的格式, 也就是 DVI。 DVI 和其他页面描述语言的主要区别是, 它不能嵌入字体和图形。所以它只能称作准页面描述语言, 用户需要用驱动程序 (driver) 把它转换为其它格式, 比如 PostScript 或 PDF 等。

革命 1990 年代初,Knuth 和 Jiří Zlatuška (1957-) 29, Philip Taylor (1947-) 30 等探讨过怎样改进扩展 TEX, 但是 Knuth 坚持只有他才能改动 TEX。1992 年这两位就纠集人马, 在一位匿名赞助者的支持下 搞了个新项目 new typesetting system (NTS), 企图改朝换代。他们不喜欢文学编程, 就派 Karel Skoupý 把 TEX 逆向工程, 还想换用 Java

- 架构, LATEX 内核小, 很多功能通过宏包来实现; ConTeXt 内核大, 事无巨细都亲力亲为。
- 宏包, LYTeX 谁都可以参与设计宏包, ConTeXt 则比较封闭。LYTeX 的宏包多了,它们之间会有冲突; ConTeXt 没这个问题。
- 运行、LATEX 占用内存小、速度快; ConTeXt 占用内存大、速度慢。
- 版权, LYTeX 自由、免费; ConTeXt 非商业使用免费。

5 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TeX 编辑。你可以到这里看看

5.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 T_PX 编辑。你可以到这里看看

5.1.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TeX 编辑。你可以到这里看看

6 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

6.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

6.1.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TrX 编辑。你可以到这里看看

7 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

7.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

7.1.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱, ……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

8 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TrX 编辑。你可以到这里看看

9. 小结

8.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

8.1.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TrX 编辑。你可以到这里看看

9 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

9.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱, ……事实上只有少量文档不适合用 TpX 编辑。你可以到这里看看

9.1.1 小结

eX 是一个非常多才多艺的程序。它不但可以编辑论文,书籍,幻灯片,学术杂志,还可以编辑乐谱,化学分子图,电路图,国际象棋,中国象棋,甚至围棋棋谱,……事实上只有少量文档不适合用 TeX 编辑。你可以到这里看看

[1] 数字排版:在固定版面内,排版摆置各种不同型态的数据,如数字、文字、表格、图形和图像等等,以最合适的方法呈现。[2] [3] 在 Unix 文化裡,Emacs是黑客们关于编辑器之战的两大主角之一,它的对手是 vi、Vim。[4] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[9] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[10] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[11] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[12] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[13] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。[15] 一般认为 TeX 是一种引擎, be TeX 是一种格式, 而 Ams be TeX 等是宏集。此处目的是简介,故不展开讨论。