Классификация распределения с помощью случайных графов

Соколовский С.П., Григоренко М.Д.

Дата: 23 мая 2025 г.

Предисловие

Договоримся об обозначениях:

- n размер вектора реализаций случайной величины
- \bullet k, d параметры построения KNN и дистанционного графов соответственно
- θ, v параметры распределений
- T^{KNN} , T^{dist} характеристики случайных графов

Часть I. Исследование свойств характеристики

Используемые инструменты Соколовского С.П.

Весь код в ветке Crazy-Explorer31/first_part, в директории src/:

- graphs.py реализации KNN и дистанционного графов (у каждого есть метод для построения и отрисовки)
- characteristics.py функции для получения характеристик графов, построенных при данных параметрах (распределений, построения графов...). Самый важный get_average_characteristics, возвращающий средние характеристики графов, построенных при переданных параметрах
- visualisations.py функции для удобной построения графиков
- metrics.py функции, приближенно считающие ошибку I рода и мощность для данного A. Считается по методу Монте-Карло, используя переданное в функцию множество точек (число компонент, хром число), принадлежащих какому-то распределению.

Используемые инструменты Григоренко М.Д.

Beсь код в ветке maxGrigorenko/first_part, в директории src/:

- graph_common_functions.py реализации KNN и дистанционного графов (у каждого есть метод для построения из значений случайной величины, а также методы вычисления характеристик)
- distribution_functions.py функции для генерации выборки и вычисления матожидания характеристики методом Монте-Карло.

Шаг 1. Фиксируем n. Исследуем взаимосвязь между θ, v и T^{KNN} , T^{dist}

Результаты Соколовского С.П.

В файле experiments_first_part_1.ipynb происходит следующее:

- Для каждой тройки (распределение, тип графа, характеристика) перебираются параметры трех перечисленных объектов, после чего вычисляются характеристики полученных графов.
- Для каждой тройки строится диаграмма рассеивания, в которой по горизонтальной оси параметр распределения, а по вертикальной характеристика графа

Из графиков заметно, что лишь с дистанционным графом хочется продолжать работать

Результаты Григоренко М.Д.

B файле experiments_first_part_1.ipynb происходит следующее:

- Реализованы функции plot_sigma и plot_beta, перебирающие значения соответствующих параметров распределений и выводящих график зависимости характеристики графов (knn и dist) от перебираемого параметра
- При фиксированном размере выборки проведены эксперименты с различными параметрами d и k.

В результате всех экпериментов delta графа knn была константной, то есть эта характеристика никак не связана с параметрами распределений. А вот доминирующее число дистанционного графа в среднем увеличивалось при увеличении параметра sigma. На двух графиках ниже показана зависимость среднего числа характеристик в завимости от параметров распределений:

Шаг 2. Фиксируем θ, v . Исследуем взаимосвязь между n, k, d и T^{KNN}, T^{dist}

Результаты Соколовского С.П.

В файле experiments_first_part_2.ipynb, аналогично первому шагу, генерятся много налюдений для всех комбинаций распределений, типов графов, их характеристик. Далее на диаграммах рассеивания по оси Ох откладываются параметры построения графов, по Oy-ux характеристики, и ещё цветом отражена, при каком n было получено наюлюдение. Выводы аналогичные первому эксперименту

Результаты Григоренко М.Д.

В файле experiments_first_part_2.ipynb зафиксированы параметры распределений и отрисованы графики зависимости характеристик графов от размера выборки. delta графа knn оказалась неинформативной характеристикой. А вот доминирующее число дистанционного графа немного по-разному меняется при изменении размера выборки, в особенности, если в качестве параметра дистанционного графа установить значение d>=3, то характеристика графа из нормального распределения становится почти всегда равной 1, а вот при распределении Лапласа немного больше. Снизу график зависимости среднего числа доминирования от размера выборки при d=3.5:

Compare normal and laplace distributions

Шаг 3. Фиксируем θ, v . Строим \mathcal{A} для переданного n

Результаты Соколовского С.П.

Файл experiments_first_part_3.ipynb поделен на два раздела. В первом фиксируются все параметры и строится \mathcal{A} . Во втором рассуждения, изложенные в первом разделе обобщаются, и приведена реализация класса, строящая \mathcal{A} по переданному в конструктор n Используется следующий алгоритм построения \mathcal{A} :

- 1. Строятся точки с координатами (число компонент, хроматическое число) по генерирующимся векторам случайных величин
- 2. За изначальное \mathcal{A} берется множество всех сгенерированных точек, полученных по первому распределению (Exp).
- 3. Далее пытаемся удалить точку из \mathcal{A} так, чтобы ошибка I рода не превысила 0.05, а мощность была максимальной (ошибка I рода и мощность считаются на основе точек, сгенерированных в начале). Для этого перебираем все варианты и выбираем наилучший
- 4. Пытаемся так удалить что-то из ${\cal A}$ много раз
- 5. В итоге получаем искомое \mathcal{A}

Результаты Григоренко М.Д.

В файле experiments_first_part_3.ipynb реализован алгоритм конструирования множества \mathcal{A} , которое должно удовлетворять двум условиям:

- 1. Контроль ошибки первого рода: вероятность ошибочно отвергнуть нулевую гипотезу H_0 (данные имеют нормальное распределение) при её справедливости не превышает $\alpha = 0.05$.
- 2. Максимизация мощности: вероятность корректно отвергнуть H_0 в пользу альтернативы H_1 (например, распределение Лапласа) должна быть максимальной.

Множество \mathcal{A} конструируется итеративно следующим образом: На каждом шаге генерируется большое число выборок (number_of_experiments) из нормального распределения. Для каждой выборки вычисляется характеристика графа. Если значение характеристики не принадлежит текущему множеству \mathcal{A} , оно считается "ошибочным"(ложным отклонением H_0). Ошибка первого рода оценивается как доля таких "ошибочных"случаев: Пока ошибка err $> \alpha$, в \mathcal{A} добавляется наиболее частое значение характеристики из "ошибочных"результатов (мода). Это снижает долю ошибок за счёт включения типичных для H_0 значений. Процесс останавливается, когда err $\leq \alpha$, либо когда "ошибочные"значения исчерпаны.

Часть II. Несколько характеристик проверки гипотезы

Шаг 1. Исследуем важность характиристик

Результаты Соколовского С.П.

TODO

Результаты Григоренко М.Д.

В файле experiments_second_part.ipynb написан класс DistribituionClassifier, принимающий на вход параметр n - размер выборки и модель классификации, которую предстоит обучить. Для выявление признаков по данной выборке строится 4 дистанционных графа с различным параметром d, для каждого графа считаеются следующие характеристики:

- 1. Минимальная степень вершины
- 2. Средняя степень вершины
- 3. Максимальная степень вершины
- 4. Число доминирования
- 5. Кликовое число

TODO

Шаг 2. Метрики качества для разных выборок

Результаты Соколовского С.П.

TODO

Результаты Григоренко М.Д.

TODO

Шаг 3. Выводы о вероятности ошибки первого рода и мощности подхода

Результаты Соколовского С.П.

TODO

Результаты Григоренко М.Д.

TODO