CS536 Science of Programming Fall 2024 Assignment 1 Sample Solution Sketches

- 1. (a) In general, $e_1 = e_2$ does not logically imply $e_1 \equiv e_2$. A counterexample can be 2 + 2 = 4 but $2 + 2 \not\equiv 4$.
 - (b) In general, $e_1 \neq e_2$ logically implies $e_1 \not\equiv e_2$. We know that syntactic equality implies semantic equality, or in other words, $e_1 \equiv e_2 \Rightarrow e_1 = e_2$, the contrapositive of this statement is $e_1 \neq e_2 \Rightarrow e_1 \not\equiv e_2$, which is also true.
- 2. (a) In the following truth table, we can see that $(p \lor q) \land q$ and q always have the same truth value, so they are logically equivalent to each other.

p	q	$p \lor q$	$(p \lor q) \land q$
T	T	T	T
T	F	T	F
F	T	T	T
F	F	F	F

(b) In the following truth table, we can see that $\neg(p \leftrightarrow q)$ and $\neg p \leftrightarrow q$ always have the same truth value, so they are logically equivalent to each other.

p	q	$p \leftrightarrow q$	$\neg (p \leftrightarrow q)$	$\neg p$	$\neg p \leftrightarrow q$
T	T	T	F	F	F
T	F	F	T	F	T
\overline{F}	T	F	T	T	T
\overline{F}	F	T	F	T	F

(c) In the following truth table, we can see the column that represents the truth value of $\neg p \land (p \lor q) \rightarrow q$ is always true, so $\neg p \land (p \lor q) \rightarrow q$ is logically equivalent to T.

p	q	$\neg p$	$p \lor q$	$\neg p \land (p \lor q)$	$\neg p \land (p \lor q) \to q$
T	T	F	T	F	T
T	F	F	T	F	T
\overline{F}	T	T	T	T	T
F	F	T	F	F	T

3. (a) Here I start from the left-hand side of this equality.

$$\begin{array}{ll} (p \to q) \lor (p \to r) & \Leftrightarrow (\neg p \lor q) \lor (p \to r) & \text{Definition of} \to \\ & \Leftrightarrow (\neg p \lor q) \lor (\neg p \lor r) & \text{Definition of} \to \\ & \Leftrightarrow (\neg p \lor \neg p) \lor (q \lor r) & \text{Commutativity and Associativity of} \lor \\ & \Leftrightarrow \neg p \lor (q \lor r) & \text{Idempotency} \\ & \Leftrightarrow p \to (q \lor r) & \text{Definition of} \to \end{array}$$

1

(b) Here I start from the left-hand side of this equality.

$$\begin{array}{ll} (p\vee q)\wedge\neg q & \Leftrightarrow (p\wedge\neg q)\vee(q\wedge\neg q) & \text{Distributivity of }\wedge\\ & \Leftrightarrow (p\wedge\neg q)\vee F & \text{Contradiction}\\ & \Leftrightarrow p\wedge\neg q & \text{Identity}\\ & \Leftrightarrow \neg(p\to q) & \text{Negation of Implication} \end{array}$$

(c) Here I start from the left-hand side of this equality.

$$\begin{array}{lll} (p \to q) \wedge (\neg p \to q) & \Leftrightarrow (\neg p \vee q) \wedge (\neg p \to q) & \text{Definition of} \to \\ & \Leftrightarrow (\neg p \vee q) \wedge (p \vee q) & \text{Definition of} \to \text{and Double Negation} \\ & \Leftrightarrow (\neg p \wedge p) \vee q & \text{Distributivity of} \vee \\ & \Leftrightarrow q & \text{Contradiction and Identity} \end{array}$$

4. (a)

$$\neg (p \land q) \land p \qquad \Leftrightarrow (\neg p \lor \neg q) \land p \qquad \qquad \text{DeMorgan's Law}$$

$$\Leftrightarrow (\neg p \land p) \lor (\neg q \land p) \qquad \qquad \text{Distributivity of } \land$$

$$\Leftrightarrow \neg q \land p \qquad \qquad \text{Contradiction and Identity}$$

$$\Rightarrow \neg q \qquad \qquad \text{and-elimination}$$

(b)

$$\begin{array}{ll} p \wedge q \vee q \wedge r & \Rightarrow p \vee q \wedge r & \text{and-elimination} \\ \Rightarrow p \vee q & \text{and-elimination} \\ \Rightarrow p \vee q \vee r & \text{or-introduction} \end{array}$$

(c)

$$(p \to q) \land (\neg p \to r) \qquad \Leftrightarrow T \land (p \to q) \land (\neg p \to r) \qquad \text{Identity}$$

$$\Leftrightarrow (p \lor \neg p) \land (p \to q) \land (\neg p \to r) \qquad \text{Excluded Middle}$$

$$\Leftrightarrow p \land (p \to q) \land (\neg p \to r) \lor \qquad \qquad \text{Distributivity of } \land \\ \Rightarrow q \land (\neg p \to r) \lor \qquad \qquad \qquad \text{Modus Ponens}$$

$$\Rightarrow q \land (\neg p \to r) \lor \qquad \qquad \qquad \text{Modus Ponens}$$

$$\Rightarrow q \land (\neg p \to q) \qquad \qquad \text{Modus Ponens}$$

$$\Rightarrow q \lor r \land (p \to q) \qquad \qquad \text{and-elimination}$$

$$\Rightarrow q \lor r \qquad \qquad \qquad \text{and-elimination}$$

$$\Rightarrow q \lor r \qquad \qquad \qquad \text{and-elimination}$$

5. Here are the states that satisfy $p \leftrightarrow q \leftrightarrow r$:

(a)
$$\sigma = \{p = T, q = T, r = T\}$$
, since $\sigma(q \leftrightarrow r) = T$ and $\sigma(p) \leftrightarrow T = T$.

(b)
$$\sigma = \{p = T, q = F, r = F\}$$
, since $\sigma(q \leftrightarrow r) = T$ and $\sigma(p) \leftrightarrow T = T$.

(c)
$$\sigma = \{p = F, q = F, r = T\}$$
, since $\sigma(q \leftrightarrow r) = F$ and $\sigma(p) \leftrightarrow F = T$.

(d)
$$\sigma = \{p = F, q = T, r = F\}$$
, since $\sigma(q \leftrightarrow r) = F$ and $\sigma(p) \leftrightarrow F = T$.

These are all the states that satisfy the requirement. Since p,q,r are proposition variables, there are only eight different possible states containing only p,q,r that are proper for $p \leftrightarrow q \leftrightarrow r$. If you list the other four states, you will see they do not satisfy $p \leftrightarrow q \leftrightarrow r$.

- 6. (a) False. The state is not proper for the predicate since b is an integer variable in the state but b represents an array in the predicate.
 - (b) True. The expression can be evaluated in the given state, even though there will be a run-time error in during the evaluation.
 - (c) True. T can be satisfied by any (well-formed) state.
 - (d) True. $\sigma(p \leftrightarrow (\sigma(b[b[1]]) = 2)) = T \leftrightarrow (\sigma(b[0]) = 2) = T \leftrightarrow T = T$.
 - (e) True. If a and b are the same array then b[0] and a[1][3] cannot be of the same type.
- 7. (a)

$$\neg \forall x \geq 1. \ x^2 > x$$

$$\equiv \ \neg \forall x. \ x \geq 1 \rightarrow x^2 > x$$

$$\Leftrightarrow \exists x. \ \neg (x \geq 1 \rightarrow x^2 > x)$$
Definition of bounded quantifier
$$\Leftrightarrow \exists x. \ x \geq 1 \land x^2 \leq x$$
DeMorgan's Law
Negation of \rightarrow

(b)

(c)

$$\neg \Big(\big(\exists x. \exists y. \ Q(x,y) \big) \land \forall x. \forall y. \ Q(y,x) \Big)$$

$$\Leftrightarrow \neg \Big(\exists x. \exists y. \ Q(x,y) \big) \lor \neg \forall x. \forall y. \ Q(y,x) \qquad \text{DeMorgan's Law}$$

$$\Leftrightarrow \Big(\forall x. \neg \exists y. \ Q(x,y) \big) \lor \exists x. \neg \forall y. \ Q(y,x) \qquad \text{DeMorgan's Law}$$

$$\Leftrightarrow \Big(\forall x. \forall y. \ \neg Q(x,y) \big) \lor \exists x. \exists y. \ \neg Q(y,x) \qquad \text{DeMorgan's Law}$$

- 8. There are more than one correct ways to define these predicate functions.
 - (a) $isGreater(b, m, x) \equiv 0 < m \le size(b) \land \forall i. \ 0 \le i < m \to x > b[i]$
 - (b) $hasGreater(a, b) \equiv \forall 0 \le i < size(b). \exists 0 \le j < size(a). b[i] > a[j]$
 - (c) $Extends(a, b) \equiv size(a) \le size(b) \land \forall 0 \le i < size(a). \ a[i] = b[i]$

9. Remind that, syntactic equality logically implies semantic equality.

			$\sigma[u \mapsto \alpha][v \mapsto \beta] \equiv \sigma[v \mapsto \beta]$
		β][$u \mapsto \alpha$]?	β][$u \mapsto \alpha$]?
$u \equiv v$	$\alpha = \beta$	Yes, because they are syntacti-	Yes, on both hand-sides we
		cally equal.	are updating the same variable
			with the same value twice.
$u \equiv v$	$\alpha \neq \beta$	No. On the left-hand-side, $u \equiv$	No, because they are not se-
		v is bind with β ; and on the	mantically equal.
		right hand side, $u \equiv v$ is bind	
		with α .	
$u \not\equiv v$	$\alpha = \beta$	Yes. On both hand-sides, u and	No, they are not the same pro-
		v are both bind with α (or β ,	cedure since u and v are differ-
		since they are the same value).	ent variables.
$u \not\equiv v$	$\alpha \neq \beta$	Yes. On both hand-sides, u is	No, they are not the same pro-
		bind with α and v is bind with	cedure since u and v are differ-
		β .	ent variables.

10. (a)
$$\sigma[x \mapsto \sigma(y)][y \mapsto \sigma(x)] = \sigma[x \mapsto 5][y \mapsto \sigma(x)] = \sigma[x \mapsto 5][y \mapsto 2] = \{x = 5, y = 2\}.$$

(b)
$$\gamma = \sigma[x \mapsto 3][y \mapsto \tau(x) * 4] = \sigma[x \mapsto 3][y \mapsto \sigma[x \mapsto 3](x) * 4] = \sigma[x \mapsto 3][y \mapsto 12] = \{x = 3, y = 12\}.$$