Selecting eigenvectors by inspection

TOTAL POINTS 6

1.Question 1

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [[2\ 0], [0\ 2]]$ is applied, which sends the three vectors to the light green vector $[2\ 0]$, the magenta vector $[2\ 2]$ and the orange vector $[0\ 2]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

1 / 1 point

☑ [10]

[11]

[0 1]

 \square None of the above.

2.Question 2

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following

questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [[3 \ 0], [0 \ 2]]$ is applied, which sends the three vectors to the light green vector $[3 \ 0]$, the magenta vector $[3 \ 2]$ and the orange vector $[0 \ 2]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation TT?

1 / 1 point

☑ [10]

□ [1 1]

☑ [0 1]

□ None of the above.

3.Question 3

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [[1 \ 0], [2 \ 1]]$ is applied, which sends the three vectors to the light green vector $[1 \ 0]$, the magenta vector $[3 \ 1]$ and the orange vector $[2 \ 1]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation *T*?

1 / 1 point

☑ [10]

□ [1 1]

[0 1]

□ None of the above.

4.Question 4

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [0 \ 1]$, $[-1 \ 0]$ is applied, which sends the three vectors to the light green vector $[0 \ 1]$, the magenta vector $[-1 \ 1]$ and the orange vector $[-1 \ 0]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation *T*? Select all correct answers.

1 / 1 point

- □ [10]
- [0 1]
- None of the above.

5. Question 5

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [-1 \ 0]$, $[0 \ -1]$ is applied, which sends the three vectors to the light green vector $[-1 \ 0]$, the magenta vector $[-1 \ -1]$ and the orange vector $[0 \ -1]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation T?

1 / 1 point

- **☑** [10]
- [11]
- **▽** [0 1]
- □ None of the above

6.Question 6

Recall that for a linear transformation, an eigenvector is a vector which, after applying the transformation, stays in the same span. In the following questions, you will try to geometrically see which vectors of a linear transformation are eigenvectors.

In the following diagram, the dark green vector is given by [1 0], the purple vector by [1 1] and the brown vector by [0 1].

The transformation $T = [2\ 0]$, $[1\ 2]$ is applied, which sends the three vectors to the light green vector $[2\ 0]$, the magenta vector $[3\ 2]$ and the orange vector $[1\ 2]$, respectively.

Which of the three original vectors are eigenvectors of the linear transformation TT?

1 / 1 point

- □ [10]
- □ [11]
- □ [0 1]
- \square None of the above.