A *crystalline solid* possesses rigid and long-range order. In a crystalline solid, atoms, molecules or ions occupy specific (predictable) positions.

An *amorphous solid* does not possess a well-defined arrangement and long-range molecular order.

A *unit cell* is the basic repeating structural unit of a crystalline solid.

Unit Cell

Unit cells in 3 dimensions

Crystal = Lattice + Motif

Motif or Basis:

an entity (typically an atom or a group of atoms) associated with each lattice point

```
Lattice ➤ the underlying periodicity of the crystal
```

Motif > Entity associated with each lattice points

Lattice > how to repeat

Motif > what to repeat

Lattice

Translationally periodic arrangement of points

Crystal

Translationally periodic arrangement of motifs

Seven Types of Unit Cells

Simple cubic a = b = c $\alpha = \beta = \gamma = 90^{\circ}$

Tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Orthorhombic $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$

Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$

Monoclinic $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$

Triclinic $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$

Hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

Three Types of Cubic Cells

Arrangement of Identical Spheres in a simple Cubic Cell

Arrangement of Identical Spheres in a Body-Centered Cube

A Corner Atom and a Face-Centered Atom

Shared by 8 unit cells

Shared by 2 unit cells

Simple cubic

1 atom/unit cell $(8 \times 1/8 = 1)$

Body-centered cubic

2 atoms/unit cell $(8 \times 1/8 + 1 = 2)$

Face-centered cubic

4 atoms/unit cell $(8 \times 1/8 + 6 \times 1/2 = 4)$

Relationship Between the Atomic Radius and the Edge Length in Three Different Unit Cells

$$a = 2r$$

$$b^{2} = a^{2} + a^{2}$$

$$c^{2} = a^{2} + b^{2}$$

$$= 3a^{2}$$

$$c = \sqrt{3}a = 4r$$

$$a = \frac{4r}{\sqrt{3}}$$

$$b = 4r$$

$$b^2 = a^2 + a^2$$

$$16r^2 = 2a^2$$

$$a = \sqrt{8}r$$

Property	SC	ВСС	FCC
Edge length, a	a = 2r	$a = (4/\sqrt{3})r$	$a = \sqrt{8} r$
Volume of unit cell	$a^3 = 8r^3$	$a^3 = (4/\sqrt{3}r)^3$	$a^3 = (2\sqrt{2} r)^3$
No. of Atoms per unit cell	1	2	4
Volume occupied by atoms per unit cell	1 x (4/3) pi r ³	2 x (4/3) pi r ³	4 x(4/3) pi r ³
Packing Fraction = $\frac{\text{vol. occupied by atoms}}{\text{vol. of unit cell}}$	= 0.524	= 0.68	= 0.74
% Free space per unit cell	47.6%	26%	32%

MILLER INDICES

- ☐ Miller indices are used to specify directions and planes.
- ☐ These directions and planes could be in lattice or in crystals.
- ☐ (It should be mentioned at the outset that special care should be given to see if the indices are in a lattice or a crystal).
- ☐ The number of indices will match with the dimension of the lattice or the crystal: in 1D there will be 1 index and 2D there will be two indices etc.
- Some aspects of Miller indices, especially those for planes, are not intuitively understood and hence some time has to be spent to familiarize oneself with the notation.

Note: both directions and planes are imaginary constructs

Miller indices for DIRECTIONS

A vector **r** passing from the origin to a lattice point can be written

as:
$$r = r_1 a + r_2 b + r_3 c$$

$$r = r_1 \vec{a} + r_2 \vec{b} + r_3 \vec{c}$$

Where, $\mathbf{a}, \mathbf{b}, \mathbf{c} \rightarrow \text{basis vectors}$

- Basis vectors are unit lattice translation vectors which define the coordinate axis (as in the figure below).
- Note their length is not 1 unit! (like for the basis vectors of a coordinate axis).

Miller Indices for directions in 2D

Miller indices \rightarrow [53]

Another 2D example

Miller Indices for the direction with magnitude $\rightarrow 2[2\overline{1}]$

Miller Indices for just the direction \rightarrow [2 $\overline{1}$]

Important directions in 3D represented by Miller Indices (cubic lattice)

Summary of notations

	Symbol			
Direction	[]	[uvw]	\rightarrow	Particular direction
	<>	<uvv></uvv>	\rightarrow	Family of directions
Plane	()	(hkl)	\rightarrow	Particular plane
	{ }	{hkl}	\rightarrow	Family of planes

Silicon

Silicon is the primary semiconductor used in VLSI systems

Band Diagrams

Band Diagram Representation

Energy plotted as a function of position

- $E_c \rightarrow Conduction band$
 - → Lowest energy state for a free electron
- $E_v \rightarrow Valence band$
 - → Highest energy state for filled outer shells
- $E_G \rightarrow Band gap$
 - → Difference in energy levels between E_c and E_v
 - \rightarrow No electrons (e⁻) in the bandgap (only above E_C or below E_V)
 - \rightarrow E_G = 1.12eV in Silicon

Conductor, Semiconductor or Insulator?

