

Realistic CRAFT1 MC Scenario

Jim Pivarski

Texas A&M University

February 24, 2009

- ► A snapshot of the current state of the muon geometry, for use in MC for CRAFT1 analyses, can be generated via a deterministic script (random number seed is specified)
- ▶ To run the script, check out V02-08-10 of Alignment/MuonAlignment
 - Alignment/MuonAlignment/python/MCScenario_CRAFT1_22X.py
- ► To look at it on the web, go to
 - http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/ Alignment/MuonAlignment/python/MCScenario_CRAFT1_22X.py?view=markup
- ▶ For a copy of the SQLite file (to upload to the database), see
 - /afs/cern.ch/user/p/pivarski/public/
 MCScenario_CRAFT1_22X_V02-08-10.db
 - Only DTAlignmentRcd and CSCAlignmentRcd are meaningful (APEs should be zero, as they are in data)
 - SQLite file tag names are equal to the record names

- ► Many DT chambers were observed with globalMuons, but only the best-measured ones were aligned
- ▶ The residuals plots give us a good idea of where the rest of them are, with 1–2 mm uncertainty because we haven't decided that we can trust the residuals plots at a finer scale yet
- ▶ Randomly generate DT chamber positions using observed residuals as the mean and 1–2 mm as the sigma of the Gaussian
 - ▶ 1 mm of the "1–2 mm" is correlated between chambers in the same sector (because they lie on the same track)
 - another 1 mm is uncorrelated (a two-level hierarchy)
- Any gaps in the residuals plots are filled in with Gaussians as wide as the corrections (4.5 mm in local x, 2.3 mm in y, and 1.0 mrad in ϕ_z)
- ▶ Local x, y, and ϕ_z were best determined, local z inferred from typical slopes of residuals, and ϕ_x , ϕ_y estimated from \vec{B} -field plots

- ► CSC positions were observed with photogrammetry, and these corrections haven't been used in data processing yet
 - therefore, they are currently a known error (on the chamber-relative-to-disk level)
- ▶ Disk-bending corrections were derived from DCOPS, which have a 1.4 mm uncertainty (in $\vec{B} = 0$ data, with respect to photogrammetry)
 - \blacktriangleright this is correlated among all the chambers in the same ring that were corrected in z and $\phi_{\rm x}$
- Whole-disk positions have some uncertainty in CMS global coordinates
- lacktriangle Three-level hierarchy: disk ightarrow disk-bending ightarrow individual chambers
 - actually four levels, including layer-by-layer misalignments, but these are very small
- ightharpoonup CSC Overlaps information used to determine scale of chamber-by-chamber ϕ_y misalignments and layer misalignments

- ► More explicit justification for each parameter (pages 6–13)
 - including plots and references to talks which present them
- ▶ Plots of every constant (pages 14–70)
 - you can see some of the correlation-trends
 - photogrammetry CSC distribution is not exactly Gaussian
- This is the last slide in the basic overview

(these are global $r\phi$ and z, respectively)

- ▶ After a globalMuon alignment, uncertainties are not correlated on the station or wheel level
- But they are correlated roughly by sector, due to the fact that chambers in the same sectors largely share tracks
- ▶ The "1-2 mm" uncertainty is thus divided as
 - ▶ 1 mm independent chamber-by-chamber error
 - ▶ 1 mm correlation within each sector (sector⊗wheel pairs, actually)
- ▶ This is much more than the reproducibility of the procedure (0.098 mm in x and 0.186 mm in y), so we are conservatively assuming a 1-2 mm error in the technique
- ▶ The above only applies to aligned chambers; the other two categories are
 - unaligned due to low statistics, but obvious from the residuals plots* what the true misalignment is (to the nearest millimeter)
 - too few tracks on the chamber to even appear in the plots

[&]quot;more information" http://indico.cern.ch/conferenceDisplay.py?confId=51267

DT local x and y (continued)

Jim Pivarski 7/5

- ► Therefore I looked at each chamber, wrote down the apparent misalignment, and used that as a mean for the Gaussian-generated errors
 - e.g. a chamber looks misaligned by 6 mm, and we trust the procedure to 1 mm, so we generate a random misalignment with mean 6 mm and sigma 1 mm
- ▶ The table of "observed by hand" misalignments are in the script
- ▶ Chambers with too few tracks to appear in the plots were randomly generated with a mean of 0 and a sigma of 4.5 mm (x) and 2.3 mm (y)

lacktriangle The scenario will therefore have the right resolution(ϕ , z) dependence

DT local ϕ_{7}

Jim Pivarski

(this is rotation in the layer's measurement plane)

- ▶ Unlike the x and y translations, ϕ_z is a local measurement, depending only on the difference between nearby residuals
- ▶ One can imagine biases which distort the track source with a "low multipole" dependence (e.g. $\sin\phi$, $\cos2\phi$, z, z^2 ...), but this has minimal impact on ϕ_z
- ▶ Therefore, take the ϕ_z misalignment for aligned chambers to be the reproducibility of the procedure (RMS of second-iteration corrections): 0.058 mrad

► For unaligned chambers, it's 1.0 mrad, the typical correction (plot label should be "mrad", not "mm")

 Magnetic field measurements compared track and segment angles, observed $\phi_{\rm v}$ misalignments as a by-product of measuring field

- Conclude from slide 12 of Sara's talk at http://indico.cern.ch/conferenceDisplay.py?confId=51559 that 3 mm ϕ_{v} angles are typical
- \blacktriangleright Assume the same for ϕ_{\star}
- Note: this comes from only one measurement!

- CSCs have never been (robustly) measured by globalMuons, so uncertainties are still correlated via the following hierarchy:
 - CSC disks: aligned in the cavern with photogrammetry
 - ▶ CSC rings (disk bulging): z and chamber- ϕ_x corrections with DCOPS/SLMs (correlated within each ring)
 - CSC chambers: uncorrected translations/rotations known from photogrammetry data (except ϕ_{v} , that comes from CSC Overlaps)
 - CSC layers: observed tiny misalignments, put them in the scenario anyway

CSC disk precision

 \triangleright 0.5 mm x-y precision, 3 mm z, and 0.5 mrad in all three angles

(z and ϕ_x to represent disk bulging)

▶ DCOPS/PG comparison in z_{CMS}: page 7 of Samir's talk on http://indico.cern.ch/conferenceDisplay.py?confId=39027

 \blacktriangleright Implies z uncertainty is 1.438 mm and $\phi_{\rm x}$ uncertainty is 0.57 mrad

- Karoly has converted all CSC photogrammetry into a CSCAlignmentRcd, so it should be considered for the next reprocessing (whenever that is)
- ▶ In the meantime, these are known, uncorrected-for constants, which exactly quantifies our error (up to any changes the \vec{B} -field might make)
- ▶ When chambers have no photogrammetry information (ME1/1 and incomplete data in other rings), we use the RMS of the others:
 - ▶ 1.2 mm in x, 1.0 mm in y, 1.2 mm in z, 1.1 mrad in ϕ_x , 0.56 mrad in ϕ_z
- ▶ Two alignment pins cannot determine ϕ_y ; get an RMS of that from beam-halo CSC Overlaps measurement (left: measured, right: MC to gauge the precision)

- ▶ We've never modelled layer misalignments in an MC scenario before
- ▶ They are small (0.092 mm in x)
- ▶ I put this into the scenario anyway (x only)

Jim Pivarski

Jim Pivarski

Jim Pivarski

Jim Pivarski

Jim Pivarski

Jim Pivarski

19/5

Jim Pivarski

Jim Pivarski

