$$K_0^*(800)$$
 or κ

$$I(J^P) = \frac{1}{2}(0^+)$$

OMITTED FROM SUMMARY TABLE

Needs confirmation. See the mini-review on scalar mesons under $f_0(500)$ (see the index for the page number).

$K_0^*(800)$ MASS

VALU	E (MeV)		EVTS	DOCUMENT ID		TECN	COMMENT
682	±29	OUR AV	ERAGE	Error includes scale	facto	or of 2.4	See the ideogram below.
826	± 49	$+49 \\ -34$	1338	¹ ABLIKIM	11 B	BES2	$J/\psi \rightarrow K_S^0 K_S^0 \pi^+ \pi^-$
849	±77	$^{+18}_{-14}$	1421	^{2,3} ABLIKIM	10E	BES2	$J/\psi \rightarrow K^{\pm} K^0_S \pi^{\mp} \pi^0$
841	± 30	$^{+81}_{-73}$	25k	^{4,5} ABLIKIM	06 C	BES2	$J/\psi \rightarrow \overline{K}^*(892)^0 K^+ \pi^-$
658	± 13			⁶ DESCOTES-G.	.06	RVUE	$\pi K \rightarrow \pi K$
797	± 19	± 43	15k	^{7,8} AITALA	02	E791	$D^+ \rightarrow K^- \pi^+ \pi^+$
• •	• We d	lo not use	the follow	wing data for averag	ges, fit	ts, limits	s, etc. • • •
663	± 8	± 34		⁹ BUGG	10	RVUE	S-matrix pole
706.0	0± 1.8	3 ± 22.8	141k	¹⁰ BONVICINI	08A	CLEO	$D^+ \rightarrow K^- \pi^+ \pi^+$
856	± 17	± 13	54k	11 LINK	07 B	FOCS	$D^+ \rightarrow K^- \pi^+ \pi^+$
750	$^{+30}_{-55}$			¹² BUGG		RVUE	
855	±15		0.6k	¹³ CAWLFIELD	06A	CLEO	$D^0 \rightarrow K^+ K^- \pi^0$
694	± 53			^{3,14} ZHOU	06	RVUE	$Kp \rightarrow K^-\pi^+ n$
753	± 52			¹⁵ PELAEZ	04A	RVUE	$K\pi \rightarrow K\pi$
594	± 79			¹⁴ ZHENG	04	RVUE	$K^- p \rightarrow K^- \pi^+ n$
722	± 60			¹⁶ BUGG	03	RVUE	$11 K^- p \rightarrow K^- \pi^+ n$
905	$+65 \\ -30$			¹⁷ ISHIDA	97 B	RVUE	$11~K^-p \rightarrow ~K^-\pi^+n$

 $^{^1}$ The Breit-Wigner parameters from a fit with seven intermediate resonances. The Smatrix pole position is (764 \pm 63 $^{+\,71}_{-\,54})$ - i (306 \pm 149 $^{+\,143}_{-\,85})$ MeV.

Created: 5/30/2017 17:21

² From a fit including ten additional resonances and energy-independent Breit-Wigner width. 3 S-matrix pole.

 $^{^4}$ S-matrix pole. GUO 06 in a chiral unitary approach report a mass of 757 \pm 33 MeV and a width of 558 \pm 82 MeV.

⁵ A fit in the $K_0^*(800) + K^*(892) + K^*(1410)$ model with mass and width of the $K_0^*(800)$ from ABLIKIM 06C well describes the left slope of the $K_{S}^{0}\pi^{-}$ invariant mass spectrum in $\tau^- \to K_S^0 \pi^- \nu_{\tau}$ decay studied by EPIFANOV 07.

⁶S-matrix pole. Using Roy-Steiner equations (ROY 71) as well as unitarity, analyticity and crossing symmetry constraints.

⁷ Not seen by KOPP 01 using 7070 events of $D^0 \rightarrow K^-\pi^+\pi^0$. LINK 02E and LINK 05I show clear evidence for a constant non-resonant scalar amplitude rather than $K_0^*(800)$ in their high statistics analysis of ${\it D}^+ \rightarrow {\it K}^- \pi^+ \mu^+ \nu_\mu.$

- ⁸ AUBERT 07T does not find evidence for the charged $K_0^*(800)$ using 11k events of $D^0 \to 0$
- 9 S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C, AITALA 06, and LINK 09 using an s-dependent width with couplings to $K\pi$ and $K\eta'$, $10 \, {\rm T-matrix}$ pole.
- $^{11}\,\mathrm{A}$ Breit-Wigner mass and width.
- 12 S-matrix pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C using for the κ an s-dependent width with an Adler zero near threshold.
- 13 Breit-Wigner parameters. A significant S-wave can be also modeled as a non-resonant contribution.

 14 Using ASTON 88.
- 15 T-matrix pole. Reanalysis of data from LINGLIN 73, ESTABROOKS 78, and ASTON 88 in the unitarized ChPT model.

 16 T-matrix pole. Reanalysis of ASTON 88 data.
- ¹⁷ Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.

K₀*(800) WIDTH

				DOCUMENT ID			
547	± 24	OUR AV	ERAGE	Error includes sca	le fac	tor of 1	.1.
449	± 156	$^{+144}_{-81}$	1338	¹⁸ ABLIKIM	11 B	BES2	$J/\psi \rightarrow K_S^0 K_S^0 \pi^+ \pi^-$
512	± 80	+ 92 - 44	1421 19,	²⁰ ABLIKIM	10E	BES2	$J/\psi \to K^{\pm} K^0_S \pi^{\mp} \pi^0$
618	± 90	$^{+}$ 96 $^{-}$ 144	25k ¹⁹ ,	²¹ ABLIKIM	06 C	BES2	$J/\psi \to \overline{K}^*(892)^0 K^+ \pi^-$
557	\pm 24			²² DESCOTES-G.	.06	RVUE	$\pi K \rightarrow \pi K$
	± 43	± 87					$D^+ \rightarrow K^- \pi^+ \pi^+$
нт	ΓΡ://F	PDG.LBL	.GOV	Page 2		Cre	eated: 5/30/2017 17:21

• • • We do not use the following data for averages, fits, limits, etc. • • •

$658 \hspace{0.1cm} \pm \hspace{0.1cm} 10 \hspace{0.1cm} \pm \hspace{0.1cm} 44$		²⁵ BUGG		S-matrix pole
$638.8 \pm 4.4 \pm 40.4$	141k		08A CLEO	$D^+ \rightarrow K^- \pi^+ \pi^+$
$464 \hspace{0.1cm} \pm \hspace{0.1cm} 28 \hspace{0.1cm} \pm \hspace{0.1cm} 22$	54k		07в FOCS	$D^+ \rightarrow K^- \pi^+ \pi^+$
684 ± 120		²⁸ BUGG	06 RVUE	
$251 \ \pm \ 48$	0.6k	_	06A CLEO	$D^0 ightarrow K^+ K^- \pi^0$
606 ± 59		^{19,30} ZHOU	06 RVUE	$Kp \rightarrow K^-\pi^+ n$
470 ± 66		³¹ PELAEZ	04A RVUE	$K\pi \rightarrow K\pi$
724 ± 332		³⁰ ZHENG	04 RVUE	$K^- p \rightarrow K^- \pi^+ n$
772 ± 100		³² BUGG	03 RVUE	$11 K^- p \rightarrow K^- \pi^+ n$
$545 \begin{array}{c} +235 \\ -110 \end{array}$		³³ ISHIDA	97в RVUE	11 $K^-p \rightarrow K^-\pi^+n$

 $^{^{18}}$ The Breit-Wigner parameters from a fit with seven intermediate resonances. The Smatrix pole position is (764 \pm 63 $^{+71}_{-54})$ - i (306 \pm 149 $^{+143}_{-85})$ MeV.

Created: 5/30/2017 17:21

¹⁹ S-matrix pole.

²⁰ From a fit including ten additional resonances and energy-independent Breit-Wigner width.

width. 21 A fit in the $K_0^*(800)+K^*(892)+K^*(1410)$ model with mass and width of the $K_0^*(800)$ from ABLIKIM 06C well describes the left slope of the $K_S^0\pi^-$ invariant mass spectrum in $\tau^-\to K_S^0\pi^-\nu_{\tau}$ decay studied by EPIFANOV 07.

²² S-matrix pole. Using Roy-Steiner equations (ROY 71) as well as unitarity, analyticity and crossing symmetry constraints.

²³ Not seen by KOPP 01 using 7070 events of $D^0 \to K^-\pi^+\pi^0$. LINK 02E and LINK 05I show clear evidence for a constant non-resonant scalar amplitude rather than $K_0^*(800)$ in their high statistics analysis of $D^+ \to K^-\pi^+\mu^+\nu_\mu$.

²⁴ AUBERT 07T does not find evidence for the charged $K_0^*(800)$ using 11k events of $D^0 \to K^-K^+\pi^0$.

²⁵ S-Matrix pole. Supersedes BUGG 06. Combined analysis of ASTON 88, ABLIKIM 06C, AITALA 06, and LINK 09 using an s-dependent width with couplings to $K\pi$ and $K\eta'$, and the Adler zero near thresholds.

²⁶ T-matrix pole.

²⁷ A Breit-Wigner mass and width.

 $^{^{28}\,\}text{S-matrix}$ pole. Reanalysis of ASTON 88, AITALA 02, and ABLIKIM 06C using for the κ an s-dependent width with an Adler zero near threshold.

²⁹ Statistical error only. A fit to the Dalitz plot including the $K_0^*(800)^{\pm}$, $K^*(892)^{\pm}$, and ϕ resonances modeled as Breit-Wigners. A significant *S*-wave can be also modeled as a non-resonant contribution.

³⁰ Using ASTON 88.

³¹ T-matrix pole. Reanalysis of data from LINGLIN 73, ESTABROOKS 78, and ASTON 88 in the unitarized ChPT model.

³² T-matrix pole. Reanalysis of ASTON 88 data.

³³ Reanalysis of ASTON 88 using interfering Breit-Wigner amplitudes.

$K_0^*(800)$ REFERENCES

ABLIKIM ABLIKIM BUGG LINK BONVICINI AUBERT EPIFANOV LINK ABLIKIM AITALA Also BUGG CAWLFIELD DESCOTES-G GUO ZHOU LINK PELAEZ ZHENG BUGG BUGG	11B 10E 10 09 08A 07T 07 07B 06C 06 06 06A .06 06 05I 04A 04 03	PL B698 183 PL B693 88 PR D81 014002 PL B681 14 PR D78 052001 PR D76 011102 PL B654 65 PL B653 1 PL B633 681 PR D73 032004 PR D74 059901 (errat.) PL B632 471 PR D74 031108 EPJ C48 553 NP A773 78 NP A775 212 PL B621 72 MPL A19 2879 NP A733 235 PL B572 1	M. Ablikim et al. M. Ablikim et al. D.V. Bugg J.M. Link et al. G. Bonvicini et al. B. Aubert et al. D. Epifanov et al. J.M. Link et al. M. Ablikim et al. E.M. Aitala et al. E.M. Aitala et al. D.V. Bugg C. Cawlfield et al. S. Descotes-Genon, B. Mourie, K. Guo et al. Z.Y. Zhou, H.Q. Zheng J.M. Link et al. J.R. Pelaez H.Q. Zheng et al. D.V. Bugg	(BES II Collab.) (BES II Collab.) (LOQM) (FNAL FOCUS Collab.) (CLEO Collab.) (BABAR Collab.) (BELLE Collab.) (FNAL FOCUS Collab.) (FNAL E791 Collab.) (FNAL E791 Collab.) (FNAL E791 Collab.) (CLEO Collab.) ssallam
AITALA LINK KOPP ISHIDA ASTON ESTABROOKS	02 02E 01 97B 88 78	PRL 89 121801 PL B535 43 PR D63 092001 PTP 98 621 NP B296 493 NP B133 490	E.M. Aitala et al. J.M. Link et al. S. Kopp et al. S. Ishida et al. D. Aston et al. P.G. Estabrooks et al.	(FNAL E791 Collab.) (FNAL FOCUS Collab.) (CLEO Collab.) (SLAC, NAGO, CINC, INUS) (MCGI, CARL, DURH+)
LINGLIN ROY	73 71	NP B55 408 PL 36B 353	D. Linglin S.M. Roy	(CERN)

Created: 5/30/2017 17:21