Die Gruppe $\mathbb{Z}_{N^2}^*$

Lemma Teilerfremdheit von N und $\phi(N)$

Sei N = pq ein RSA-Modulus mit p, q gleicher Bitlänge. Dann gilt $ggT(N, \phi(N)) = 1$.

Beweis:

- OBdA p > q. Dann kann p weder (p-1) noch (q-1) teilen.
- Annahme: q teilt p-1. Dann ist $\frac{p-1}{q} \ge 2$.
- Widerspruch: $\frac{p}{q}$ < 2, da p, q gleiche Bitlänge besitzen.

Lemma Ordnung von $(1 + N) \mod N^2$

Sei N ein RSA-Modul. Dann besitzt (1 + N) in $\mathbb{Z}_{N^2}^*$ Ordnung N.

Beweis:

- Es gilt $(1 + N)^a = \sum_{i=0}^a {a \choose i} N^i = 1 + aN \mod N^2$.
- D.h. $(1 + N)^a \neq 1 \mod N^2$ für $1 \leq a < N \pmod {1 + N}^N = 1 \mod N^2$.

Die Struktur von $\mathbb{Z}_{N^2}^*$

Satz Isomorphismus $\mathbb{Z}_N \times \mathbb{Z}_N^* \simeq \mathbb{Z}_{N^2}^*$

Die Abbildung $f: \mathbb{Z}_N \times \mathbb{Z}_N^* \to \mathbb{Z}_{N^2}^*$ mit $f(a, b) = (1 + N)^a \cdot b^N \mod N^2$ ist ein Isomorphismus, d.h.

- f ist bijektiv.
- $(a_1,b_1)\cdot f(a_2,b_2)=f(a_1+a_2,b_1b_2) \qquad \forall a_1,a_2\in\mathbb{Z}_N,b_1,b_2\in\mathbb{Z}_N^*.$

Beweis: Bijektivität

- Zeigen, dass $|\mathbb{Z}_N \times \mathbb{Z}_N^*| = |\mathbb{Z}_{N^2}^*|$ und dass f injektiv ist.
- $|\mathbb{Z}_{N^2}^*| = \phi(N^2) = (p^2 p)(q^2 q) = pq(p-1)(q-1) = |\mathbb{Z}_N| \cdot |\mathbb{Z}_N^*|$
- Annahme: $\exists (a_1, b_1) \neq (a_2, b_2) \text{ mit } f(a_1, b_1) = f(a_2, b_2).$
- Dann folgt $(1+N)^{a_1}b_1^N = (1+N)^{a_2}b_2^N \mod N^2$.
- Wegen $|\mathbb{Z}_{N^2}^*| = N \cdot \phi(N)$ liefert Potenzieren mit $\phi(N)$ $(1 + N)^{(a_1 a_2)\phi(N)} = 1 \mod N^2.$
- Es gilt ord(1 + N) = N und daher N | $(a_1 a_2)\phi(N)$.
- Wegen $ggT(N, \phi(N)) = 1$ folgt $N \mid a_1 a_2$, d.h. $a_1 = a_2 \mod N$.

Beweis: Fortsetzung Bijektivität

- $a_1 = a_2$ liefert $b_1^N = b_2^N \mod N^2$ und damit $b_1^N = b_2^N \mod N$.
- Wegen $ggT(N, \phi(N))$ ist die Exponentiation mit N bijektiv.
- Daraus folgt $b_1 = b_2 \mod N$. (Widerspruch: $(a_1, b_1) \neq (a_2, b_2)$)

Beweis: Homomorphismus-Eigenschaft

- Es gilt $f(a_1, b_1) \cdot f(a_2, b_2) = (1 + N)^{a_1 + a_2} \cdot (b_1 b_2)^N \mod N^2$.
- Wegen $\operatorname{ord}(1+N) = N$ entspricht dies $(1+N)^{a_1+a_2 \mod N} \cdot (b_1b_2)^N$.
- Es gilt $f(a_1 + a_2, b_1 b_2) = (1 + N)^{a_1 + a_2 \mod N} \cdot (b_1 b_2 \mod N)^N \mod N^2$.
- Sei $r = b_1b_2 \mod N$. D.h. $b_1b_2 = r + kN$.
- Dann gilt $(b_1b_2)^N = (r + kN)^N = r^N = (b_1b_2 \mod N)^N \mod N^2$.

N-te Reste

Definition *N*-te Reste

Sei N ein RSA-Modul. Wir bezeichnen die Elemente der Menge $Res(N^2) := \{ y \in \mathbb{Z}_{N^2}^* \mid \exists x \in \mathbb{Z}_{N^2}^* \text{ mit } x^N = y \}$ als N-te Reste in $\mathbb{Z}_{N^2}^*$.

Lemma Eigenschaften N-ter Reste

- Exponentiation mit N ist eine (N:1)-Abbildung in $\mathbb{Z}_{N^2}^*$.
- **2** $Res(N^2) \simeq \{(0,b) \mid b \in \mathbb{Z}_N^*\}$

Beweis:

- Sei $x \in \mathbb{Z}_{N^2}^*$ mit $x \simeq (a, b)$. Dann gilt $x^N \mod N^2 \simeq (a, b)^N = (N \cdot a \mod N, b^N \mod N) = (0, b^N)$.
- Für die N Elemente (a,b), $a \in \mathbb{Z}_N$, gilt $(a,b)^N = (0,b^N)$.
- Damit ist jeder N-te Rest von der Form $(0, b^N)$.
- Bleibt zu zeigen, dass jedes Element $y \simeq (0, b)$ ein N-ter Rest ist.
- Falls $y \simeq (0, b)$ ist, so gilt $y = (1 + N)^0 \cdot b^N = b^N \mod N^2$.
- Damit ist y ein N-ter Rest.

DCR Annahme

Definition Decisional Composite Residuosity (DCR)

Das Decisional Composite Residuosity Problem ist hart bezüglich GenModulus falls für alle ppt \mathcal{A} und $r \in_{\mathcal{R}} \mathbb{Z}_{N^2}^*$ gilt

$$\left|\operatorname{Ws}[\mathcal{A}(1^n,N,r^N \bmod N^2) = 1] - \operatorname{\textit{Ws}}[\mathcal{A}(1^n,N,r) = 1]\right| \leq \operatorname{negl}(n).$$

DCR Annahme: DCR ist hart bezüglich GenModulus.

• DCR Annahme: Unterscheiden von (0, r) und (r', r) ist schwer.

Idee: zur Konstruktion einer Verschlüsselungsfunktion

- Sei $m \in \mathbb{Z}_N$. Wähle einen zufälligen N-ten Rest (0,r) und setze $c \leftarrow (m,1) \cdot (0,r) = (m,r)$.
- Da (0, r) ununterscheidbar von (r', r), ist c ununterscheidbar von $c' \leftarrow (m, 1) \cdot (r', r) = (m + r', r)$.
- c' = (m + r', r) ist für $r' \in_R \mathbb{Z}_N$ ein zufälliges Element in $\mathbb{Z}_N \times \mathbb{Z}_N^*$.
- Insbesondere ist c' unabhängig von m.

Verschlüsselung

Algorithmus Verschlüsselung

EINGABE: $m \in \mathbb{Z}_N$

- Wähle $r \in_R \mathbb{Z}_N^*$.
- **2** Berechne $c \leftarrow f(m, r) = (1 + N)^m \cdot r^N \mod N^2$.

AUSGABE: $c \in \mathbb{Z}_{N^2}^*$

Anmerkungen:

- Wir berechnen das Bild von (m, r) unter unserem Isomorphismus.
- Faktor der Nachrichtenexpansion beträgt 2.

Entschlüsselung

Algorithmus Entschlüsselung

EINGABE:
$$c \simeq (m, r) \in \mathbb{Z}_{N^2}^*$$

- **1** Berechne $c' := c^{\phi(N)} \mod N^2$.
- 2 Berechne $m' := \frac{c'-1}{N}$ über \mathbb{N} .
- **3** Berechne $m := m' \cdot \phi(N)^{-1} \mod N$.

AUSGABE: $m \in \mathbb{Z}_N$

Korrektheit:

- Es gilt $c' \simeq (m, r)^{\phi(N)} = (m\phi(N), r^{\phi(N)}) = (m\phi(N), 1)$.
- Damit gilt

$$c' = (1 + N)^{m\phi(N) \mod N} \quad 1^N = 1 + (m\phi(N) \mod N) \cdot N \mod N^2.$$

- Da 1 + $(m\phi(N) \mod N)N < N^2$ gilt die Gleichung über \mathbb{N} .
- Daraus folgt $m' = m\phi(N) \mod N$. Multiplikation mit $\phi(N)^{-1}$ liefert

$$m = m' \cdot \phi(N)^{-1} \mod N$$
.

Paillier Kryptosystem (1999)

Algorithmus Paillier Verschlüsselung

- **1 Gen:** $(N, p, q) \leftarrow GenModulus(1^n)$. Ausgabe $pk = N, sk = \phi(N)$.
- ② Enc: Für eine Nachricht $m \in \mathbb{Z}_N$, wähle ein $r \in_R \mathbb{Z}_N^*$ und berechne $c \leftarrow (1+N)^m \cdot r^N \mod N^2$.
- **10 Dec:** Für einen Chiffretext $c \in \mathbb{Z}_{N^2}^*$ berechne

$$m' := \frac{\left(c^{\phi(N)} \mod N^2\right) - 1}{N}$$
 über $\mathbb N$ und $m := m' \cdot \phi(N)^{-1} \mod N$.

Sicherheit von Paillier Verschlüsselung

Satz Sicherheit von Paillier Verschlüsselung

Unter der DCR Annahme ist Paillier Verschlüsselung Π_P CPA-sicher.

Beweis:

- Sei A ein Angreifer mit Erfolgsws $\epsilon(n) = \text{Ws}[PubK_{A,\Pi_P}^{cpa}(n) = 1].$
- ullet Konstruieren Algorithmus $\mathcal{A}_{\textit{dcr}}$ für das DCR Problem.

Algorithmus DCR Unterscheider A_{dcr}

EINGABE: 1^n , N, y

- **○** Setze pk = N und berechne $(m_0, m_1) \leftarrow A(1^n, pk)$.
- ② Wähle $b \in \{0, 1\}$ und berechne $c \leftarrow (1 + N)^{m_b} \cdot y \mod N^2$.

$$\mathsf{AUSGABE:} = \left\{ \begin{array}{ll} 1 & \text{falls } b = b', & \text{Interpretation } y \in \textit{Res}(N^2) \\ 0 & \text{sonst}, & \text{Interpretation } y \in \mathbb{Z}_{N^2}^* \end{array} \right..$$

Algorithmus DRC Unterscheider

Sicherheit von Paillier Verschlüsselung

Fall 1: $y \in_R Res(N^2)$, d.h. $y = r^N$ für $r \in_R \mathbb{Z}_{N^2}$.

- Verteilung von c ist identisch zum Paillier Verfahren.
- D.h. Ws[$A_{dcr}(1^n, N, r^N) = 1$] = $\epsilon(n)$.

Fall 2: $y \in_R \mathbb{Z}_{N^2}^*$, d.h. $y = r \in_R \mathbb{Z}_{N^2}^*$.

- Dann ist $c = (1 + N)^{m_b} \cdot y \mod N^2$ zufällig in $\mathbb{Z}_{N^2}^*$.
- Insbesondere ist die Verteilung von *c* unabhängig von *b*.
- Daraus folgt Ws[$\mathcal{A}_{dcr}(1^n, N, r) = 1$] = $\frac{1}{2}$.

Unter der DCR-Annahme folgt

$$\operatorname{negl}(n) \geq \left| \operatorname{Ws}[\mathcal{A}_{dcr}(1^n, N, r^N \bmod N^2) = 1] - \operatorname{Ws}[\mathcal{A}_{dcr}(1^n, N, r) = 1] \right| \\
= \left| \epsilon(n) - \frac{1}{2} \right|.$$

Daraus folgt $\epsilon(n) \leq \frac{1}{2} + \text{negl}(n)$.

