SNP INDEL calling

Haoxiang Lin

Abstract

Citation: Haoxiang Lin SNP INDEL calling. **protocols.io** https://www.protocols.io/view/snp-indel-calling-grkbv4w

Published: 22 Jun 2017

Protocol

BWA ALN

Step 1.

BWA alignment

```
SOFTWARE PACKAGE (Linux)
```

BWA, 0.6.1

M DATASET

Raw reads

cmd COMMAND

bwa aln -n 3 -o 1 -e 50 -t 4 -I \$REF \$READ -f \$SAI

EXPECTED RESULTS

SAI

BWA SAMPE

Step 2.

BWA SAMPE

SOFTWARE PACKAGE (Linux)

BWA, 0.6.1

DATASET

SAI and Raw reads

cmd COMMAND

bwa sampe -a \$INSERTSIZE -r \$READ_GROUP_INFO \$SAI1 \$SAI2 \$READ1 \$READ2 | samtools view -S -b - -o \$BAM

∠ EXPECTED RESULTS

BAM

BAM sort

Step 3.

SOFTWARE PACKAGE (LINUX)

SAMtools, 0.1.18

DATASET

Sorted BAM

cmd COMMAND

samtools sort -m 3000000000 \$BAM \$BAM_SORT_PREFIX

EXPECTED RESULTS

Sorted BAM

BAM remove duplication

Step 4.

BAM remove duplication

SOFTWARE PACKAGE (LINUX)

SAMtools, 0.1.18

M DATASET

Sorted BAM

cmd COMMAND

samtools rmdup \$SORTED_BAM \$SORTE_RMDUP_BAM

EXPECTED RESULTS

Sorted and duplication removed BAM

BAM markduplicate

Step 5.

BAM markduplicate

SOFTWARE PACKAGE (LINUX)

Picard, 1.61

DATASET

remove duplicate BAM

cmd COMMAND

java -jar picard-

tools-1.61/MarkDuplicates.jar I=\$BAM O=\$DEDUP_BAM M=\$METRICS CREATE_INDEX=true VALIDATION_S TRINGENCY=SILENT

EXPECTED RESULTS

Duplication marked BAM

Read realign

Step 6.

Read realign

SOFTWARE PACKAGE (LINUX)

GATK, 2.7

M DATASET

Sorted.markdup.BAM

cmd COMMAND

java -jar GenomeAnalysisTK.jar -T RealignerTargetCreator -nt 4 -R \$HG19 -I \$BAM o \$intervals --known Mills_and_1000G_gold_standard.indels.hg19.sites.vcf -known 1000G_phase1.indels.hg19.vcf

java -jar GenomeAnalysisTK.jar -T IndelRealigner -model USE_SW -LOD 0.4 known Mills_and_1000G_gold_standard.indels.hg19.sites.vcf known 1000G_phase1.indels.hg19.vcf -R \$HG19 --targetIntervals \$INTERVALS -I \$BAM o \$REALN BAM

EXPECTED RESULTS

Realign BAM

BOSR

Step 7.

BOSR

SOFTWARE PACKAGE (LINUX)

GATK, 2.7

DATASET

Duplication marked BAM

cmd COMMAND

java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -knownSites Mills_and_1000G_gold_standard.indels.hg19.sites.vcf -knownSites 1000G_phase1.indels.hg19.vcf --knownSites dbsnp_135.hg19.vcf -R \$HG19 -I \$BAM o \$RECAL_FILE -L chr1 -L chr2 -L chr3 -L chr4 -L chr5 -L chr6 -L chr7 -L chr8 -L chr9 L chr10 -L chr11 -L chr12 -L chr13 -L chr14 -L chr15 -L chr16 -L chr17 -L chr18 -L chr19 L chr20 -L chr21 -L chr22 -L chrX -L chrY -L chrM -rf BadCigar
java -jar GenomeAnalysisTK.jar -T PrintReads -nct 6 -BQSR \$RECAL_FILE -R \$HG19 -I \$BAM -

o \$RECAL_BAM

EXPECTED RESULTS

Recalibrate BAM

BAM merge

Step 8.

BAM merge

SOFTWARE PACKAGE (LINUX)

SAMtools, 0.1.18

DATASET

Recalibrate BAM

cmd COMMAND

samtools merge -R \$CHR -rh \$READ GROUP INFO \$MERGE BAM \$INPUT BAM LIST

BAM reduce

Step 9.

BAM reduce

SOFTWARE PACKAGE (LINUX)

GATK, 2.7

DATASET

Merged BAM and site VCF

cmd COMMAND

java -jar \$GATK -R \$HG19 -T ReduceReads -I \$MERGE BAM -o \$REDUCE BAM -L \$CHR

EXPECTED RESULTS

Redcude BAM

UnifiedGenotyper

Step 10.

UnifiedGenotyper

SOFTWARE PACKAGE (LINUX)

GATK, 2.7

cmd COMMAND

java -jar GenomeAnalysisTK.jar -R \$HG19 -T UnifiedGenotyper -I \$BAM_LIST -dbsnp dbsnp_135.hg19.vcf -o \$VCF -stand_call_conf 50.0 -stand_emit_conf 10.0 -dcov 40000 nt 1 -glm BOTH -A AlleleBalance -A HomopolymerRun -A InbreedingCoeff -A Coverage A HaplotypeScore -l INFO --max alternate alleles 4 -bagGOP 30 -L \$REGION

EXPECTED RESULTS

VCF

VOSR

Step 11.

VQSR

cmd COMMAND

java -jar \$GATK -l INFO -R \$HG19 -T VariantRecalibrator -input \$SNP_VCF - resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.hg19.sites.vcf - resource:omni,known=false,training=true,truth=false,prior=12.0 1000G_omni2.5.hg19.sites.vcf - resource:dbsnp,known=true,training=false,truth=false,prior=8.0 dbsnp_135.hg19.vcf - an HaplotypeScore -an ReadPosRankSum -an FS -recalFile \$RECAL_FILE - tranchesFile \$TRANCHES_FILE -rscriptFile ./GATK.SNP.plot.R --TStranche 90.0 -- TStranche 93.0 --TStranche 95.0 --TStranche 97.0 --TStranche 99.0 --TStranche 100.0 - mode SNP

java -jar \$GATK -l INFO -R \$HG19 -T VariantRecalibrator -input \$INDEL_VCF resource:mills,VCF,known=true,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_stan
dard.indels.hg19.sites.vcf -

resource:mills,VCF,known=true,training=true,truth=true,prior=12.0 1000G_phase1.indels.hg19.vcf -an FS -an HaplotypeScore -an ReadPosRankSum -an MQRankSum --maxGaussians 4 -std 10.0 -percentBad 0.12 -recalFile \$RECAL_FILE -tranchesFile \$TRANCHES_FILE -

rscriptFile \$bin/GATK.INDEL.plot.R --TStranche 90.0 --TStranche 93.0 --TStranche 95.0 --TStranche 97.0 --TStranche 99.0 --TStranche 100.0 -mode INDEL

java -jar \$GATK -R \$HG19 -T ApplyRecalibration -input \$SNP_VCF --ts_filter_level 99.0 recalFile \$RECAL_FILE -tranchesFile \$TRANCHES_FILE -mode SNP -o \$SNP_VQSR_VCF

java -jar \$GATK -R \$HG19 -T ApplyRecalibration -input \$INDEL_VCF --ts_filter_level 95.0 recalFile \$RECAL_FILE -tranchesFile \$TRANCHES_FILE -mode INDEL -o \$INDEL_VQSR_VCF

Following, use inhouse script to keep variant which pass VQSR filter and remove variant with HRUN > 6(for SN
P) or HRUN > 10 (for INDEL)

Impuation

Step 12.

Impuation

SOFTWARE PACKAGE (LINUX)

BEAGLE, v3 🖸

DATASET

■ VCF

cmd COMMAND

java -Xmx2g -jar beagle.jar nthreads=4 window=3000 overlap=600 impute-its=10 gl=\$VCF out=\$0UT VCF

EXPECTED RESULTS

Imputation VCF