Variant calling with validated community developed tools

Brad Chapman
Bioinformatics Core, Harvard Chan School
https://bcb.io

http://j.mp/bcbiolinks

6 July 2017

Outline

- Overview of variant calling tools
- Open source community resources
- bcbio validated variant analysis
- Science
 - Human build 38
 - GATK4 validation
 - Cancer calling of low frequency variants
 - Structural variation
- Practical calling example

Human whole genome sequencing

http://ensembl.org/Homo_sapiens/Location/Genome

High throughput sequencing

Variant calling

http://en.wikipedia.org/wiki/SNV_calling_from_NGS_data

Scale: exome to whole genome

The haploid human genome sequence

https://www.flickr.com/photos/119980645@N06/

SNPs and Indels

http://carolguze.com/text/442-2-mutations.shtml

Structural variations

Germline population calling

http://blog.goldenhelix.com/grudy/the-state-of-ngs-variant-calling-dont-panic/

Genome Analysis Toolkit (GATK)

The Genome Analysis Toolkit or GATK is a software package developed at the Broad Institute to analyze high-throughput sequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance. Its robust architecture, powerful processing engine and high-performance computing features make it capable of taking on projects of any size.

https://www.broadinstitute.org/gatk/

GATK Best Practices

https://www.broadinstitute.org/gatk/guide/best-practices

HaplotypeCaller

http://gatkforums.broadinstitute.org/discussion/5464/workshop-presentations-2015-uk-4-20-24

Joint calling on large populations

http://gatkforums.broadinstitute.org/discussion/5464/workshop-presentations-2015-uk-4-20-24

GATK4 now open source for all uses

Q (11)

This is one of two posts announcing the imminent beta release of GATK4; for a technical description of features, see this other post.

"Walt, what?" Yes, you read that right, we're moving GATK4 to a fully open source license – specifically, BSD 3-clause. And to be clear, this applies to all of GATK4. Not Just the core framework (which, little known fact, has always been open source), but all the tools that were previously "protected", including HaplotypeCaller, the new CNV discovery tools, everything. The whole enchilada.

https://software.broadinstitute.org/gatk/blog?id=9645

FreeBayes

https://github.com/ekg/freebayes

Filtering - Variant Quality Score Recalibration

VQSLOD(x) = Log(p(x)/q(x))

Filtering – hard cutoffs

```
filters = ('((AC[0] / AN) <= 0.5 && DP < 4 && %QUAL < 20) || '
'(DP < 13 && %QUAL < 10) || '
'((AC[0] / AN) > 0.5 && DP < 4 && %QUAL < 50)')
```

http://bcb.io/2014/05/12/wgs-trio-variant-evaluation/

Effects prediction

http://www.ensembl.org/info/genome/variation/predicted_data.html

Tools for effects predictions

snpEff

http://snpeff.sourceforge.net/

■ Variant Effect Predictor (VEP) from Ensembl

http://www.ensembl.org/info/docs/tools/vep/index.html

Annotation and analysis - GEMINI

https://github.com/arq5x/gemini

VCF – overview

http://vcftools.sourceforge.net/VCF-poster.pdf

VCF – representations

Types of variants

SNPs

Alignment VCF representation
ACGT POS REF ALT
ATGT 2 C T

Deletions

Alignment VCF representation
ACGT POS REF ALT
A--T 1 ACG A

Insertions

Alignment VCF representation
AC-GT POS REF ALT
ACTGT 2 C CT

Complex events

Alignment VCF representation
ACGT POS REF ALT
A-TT 1 ACG AT

Large structural variants

VCF representation
POS REF ALT INFO
100 T SVTYPE=DEL;END=300

http://vcftools.sourceforge.net/VCF-poster.pdf

Learning to read VCFs

■ Step by step guide from Broad

https://www.broadinstitute.org/gatk/guide/article?id=1268

Specification

http://samtools.github.io/hts-specs/

You want to build a variant calling pipeline

Best Practices for Germline SNPs and Indels in Whole Genomes and Exomes - June 2016

https://software.broadinstitute.org/gatk/best-practices/

https://commons.wikimedia.org/wiki/File:Efficiency_diagram_by_Zureks.svg

Barriers to implementing yourself

- Changing tools
- Feature support burden
- Validation

Build open source communities

http://www.amazon.com/ Community-Structure-Belonging-Peter-Block/ dp/1605092770

http://www.open-bio.org/wiki/BOSC_2017

Overview

https://github.com/chapmanb/bcbio-nextgen

Supported analysis types

We made a pipeline – so what?

There have been a number of previous efforts to create publicly available analysis pipelines for high throughput sequencing data. Examples include Omics-Pipe, bcbio-nextgen, TREVA and NGSane. These pipelines offer a comprehensive, automated process that can analyse raw sequencing reads and produce annotated variant calls. However, the main audience for these pipelines is the research community. Consequently, there are many features required by clinical pipelines that these examples do not fully address. Other groups have focused on improving specific features of clinical pipelines. The Churchill pipeline uses specialised techniques to achieve high performance, while maintaining reproducibility and accuracy. However it is not freely available to clinical centres and it does not try to improve broader clinical aspects such as detailed quality assurance reports, robustness, reports and specialised variant filtering. The Mercury pipeline offers a comprehensive system that addresses many clinical needs: it uses an automated workflow system (Valence) to ensure robustness, abstract computational resources and simplify customisation of the pipeline. Mercury also includes detailed coverage reports provided by ExCID, and supports compliance with US privacy laws (HIPAA) when run on DNANexus, a cloud computing platform specialised for biomedical users Mercury offers a comprehensive solution for clinical users, however it does not achieve our desired level of transparency, modularity and simplicity in the pipeline specification and design. Further, Mercury does not perform specialised variant filtering and prioritisation that is specifically tuned to the needs of clinical users.

http://www.genomemedicine.com/content/7/1/68

Sustainability

A piece of software is being sustained if people are using it, fixing it, and improving it rather than replacing it.

http://software-carpentry.org/blog/2014/08/sustainability.html

Complex, rapidly changing baseline functionality

Whole genome, deep coverage v1

Warning: the material on this page is considered out of date by the GSA team.

Best Practice Variant Detection with the GATK v2

Warning: the material on this page is considered out of date by the GSA team.

RETIRED: Best Practice Variant Detection with the GATK v3

Best Practice Variant Detection with the GATK v4, for release 2.0 [RETIRED]

Any 2012 edited February 4 The Best Practices have been updated for GATK version 3. If you are running an older version, you should seriously consider upgrading. For more details

Unboxing GATK4

Posted by Geraldine VdAuwera on 24 May 2017

Feature support burden

Workflow	Nextflow	Galaxy	Toll	Snakemake	Bpipe
Platform [®]	Groovy/JVM	Python	Python	Python	GroovyiJVM
Native task support ^b	Yes (any)	No	No	Yes (BASH only)	Yes (BASH only)
Common workflow language ^c	No	Yes	Yes	No	No
Streaming processing ⁶	Yes	No	No	No	No
Dynamic branch evaluation	Yes	?	Yes	Yes	Undocumented
Code sharing integration*	Yes	No	No	No	No
Workflow modules ⁴	No	Yes	Yes	Yes	Yes
Workflow versioning ^p	Yes	Yes	No	No	No
Automatic error failover ^h	Yes	No	Yes	No	No
Craphical user interface	No	Yes	No	No	No
DAG rendering	Yes	Yes	Yes	Yes	Yes
Container management					
Docker support*	Yes	Yes	Yes	No	No
Singularity support	Yes	No	No	No	No
Multi-scale containers ^m	Yes	Yes	Yes	No	No
Built-in batch schedulers ⁿ					
Univa Orid Engine	Yes	Yes	Yes	Partial	Yes
PBS/Torque	Yes	Yes	No	Partial	Yes
LSF	Yes	Yes	No	Partial	Yes
SLURM	Yes	Yes	Yes	Partial	No
HTCondor	Yes	Yes	No	Partial	No
Built-in distributed cluster®					
Apache Ignite	Yes	No	No	No	No
Apache Spark	No	No	Yes	No	No
Kubernetes	Yes	No	No	No	No
Apache Mesos	No	No	Yes	No	No
Built-in cloud ^p					
AWS (Amazon Web Services)	Yes	Yes	Yes	No	No

http://www.nature.com/nbt/journal/v35/n4/full/nbt.3820.html

Community: sustainability and support

https://github.com/chapmanb/bcbio-nextgen

Value of validation

- Integration tests for pipelines
- Unbiased algorithm comparisons
- Baseline for improving methods

Reference materials

Global Alliance for Genomics & Health

ICGC-TCGA DREAM Mutation Calling challenge

http://www.genomeinabottle.org/

http://ga4gh.org/#/benchmarking-team

https://www.synapse.org/#!Synapse:syn312572

GATK and Genome in a Bottle

- Collaboration with GATK methods development
- Compare HaplotypeCaller to other methods
- Germline validation
- Genome in a Bottle reference materials
 - NA12878 Caucasian
 - NA24385 Ashkenazim Jewish
 - NA24631 Chinese

Validation graphs

NA12878

NA12878: Genome in a Bottle whole genome validation

NA24385

NA24385: Genome in a Bottle whole genome validation

Validation results

- Good performance for GATK HaplotypeCaller
- Other good performing callers: FreeBayes
- Consistency across diverse samples
- Identify potential problem areas for tuning
 - samtools Indel false positive rates
 - Platypus SNP sensitivity
- PrecisionFDA: https://precision.fda.gov/

Outline: Science

- Human build 38
- GATK4 validation
- Low frequency somatic calling
- Structural variation

GRCh37/hg19

http://www.ncbi.nlm.nih.gov/books/NBK153600/?report=reader

GRCh38 - graph based, many more alternative loci

 $\verb|http://www.slideshare.net/GenomeRef/transitioning-to-grch38|$

GRCh38 – advantage for variant calling

Reference assembly influence

Personalis^{*}

3 Personalis, Inc.

Avoiding collapsed repeats

http://www.slideshare.net/kmsteinberg/

the-importance-of-high-quality-reference-genome-assemblies-to-personal-and-medical-genomics

Comparison

- Build 37 and 38
- Validation sets: Genome in a Bottle, Illumina Platinum Genomes
- 38 builds: with/without alternative alleles
- Variant callers: FreeBayes, GATK HaplotypeCaller

http://bcb.io/2015/09/17/hg38-validation/

hg19/hg38 comparison: NA12878 Platinum Genomes

Small variant results

- SNPs: build 38 more sensitive
- SNPs: build 38 reduces false positives
- Indels: build 38 detected more
- Indels: work on sensitivity and precision

Outline: science

- Human build 38
- GATK4 validation
- Low frequency somatic calling
- Structural variation

NA12878 hg38: GATK4

SNPs: NA12878

Indels: NA12878

False discovery rate

GATK4 validation results

- Comparable sensitivity and specificity to GATK3
- Removed a recommended filter
 - Strand Odds Ratio (SOR) strand bias
 - Improves sensitivity
 - ~6000 TPs vs ~2000 FPs
- Indels in GATK need additional tuning
 - Sensitivity/specificity tradeoff
 - ~26k TPs vs ~11k FPs

Outline: science

- Human build 38
- GATK4 validation
- Low frequency somatic calling
- Structural variation

Cancer somatic calling

http://www.nature.com/nmeth/journal/v10/n8/fig_tab/nmeth.2562_F1.html

Cancer heterogeneity

http://en.wikipedia.org/wiki/Tumour_heterogeneity

VarDict

- AstraZeneca
- Germline + Cancer calling
- SNP + Insertion/Deletions
- Whole genome + exome
- Also works on deep targeted data

```
https://github.com/AstraZeneca-NGS/VarDictJava
http://nar.oxfordjournals.org/content/early/2016/04/07/
nar.gkw227.full
```

DREAM synthetic dataset 4

in silico 3	in silico 4
BWA Backtrack	BWA MEM
SNV, SV (deletions, duplications, insertions, inversions) & \ensuremath{INDEL}	SNV, SV (deletions, duplications, inversions) & INDEL
100%	80%
50%, 33%, 20%	50%, 35% (effectively 30% and 15% due to cellularity)
Female	Male
HCC1143 BL from TCGA Benchmark 4	CPCG0102R (Provided by ICGC)

https://www.synapse.org/#!Synapse:syn312572/wiki/62018

VarDict sensivitity/precision before

VarDict sensivitity/precision after

How? Filter summary

```
((AF * DP < 6) &&

((MQ < 55.0 && NM > 1.0) ||

(MQ < 60.0 && NM > 2.0) ||

(DP < 10) ||

(QUAL < 45)))
```

Example filter: mapping quality and number of mismatches

Outline: science

- Human build 38
- GATK4 validation
- Low frequency somatic calling
- Structural variation

Structural variants critical in cancer

 $\verb|http://www.nature.com/nature/journal/v518/n7540/full/nature14169.htm||$

Improvements in speed, sensitivity and precision

- Manta: https://github.com/Illumina/manta
- CNVkit https://github.com/etal/cnvkit
- Lumpy: https://github.com/arq5x/lumpy-sv
- WHAM: https://github.com/zeeev/wham
- MetaSV: https://github.com/bioinform/metasv

Results: Somatic deletions

Prioritize in previously known regions

Public cancer variant databases

- CIViC: https://civic.genome.wustl.edu
- IntOGen: http://www.intogen.org

http://www.amazon.com/The-Biology-Cancer-Robert-Weinberg/dp/0815340761

Practical overview

- Small dataset single chromosome, exome
- Cancer sample from DREAM synthetic dataset 3
- Call against build 38

https://www.synapse.org/#!Synapse:syn312572/wiki/58893

Demonstrates

- Somatic tumor/normal samples
- SNP and indel calling at lower frequency
- Structural variant detection
- Prioritization with CIViC
- HLA typing

bcbio configuration file

configuration.html

```
details:
  - analysis: variant2
    genome_build: hg38
    algorithm:
      aligner: bwa
      mark_duplicates: true
      recalibrate: false
      realign: false
      variantcaller: [vardict, mutect, freebayes]
      ensemble:
        numpass: 2
      svcaller: [lumpy, manta]
https://bcbio-nextgen.readthedocs.org/en/latest/contents/
```

bcbio template file – CSV

samplename, description, batch, phenotype, sex, variant_regions sample1, ERR256785, batch1, normal, female, /path/to/regions.bed sample2, ERR256786, batch1, tumor,, /path/to/regions.bed

https://bcbio-nextgen.readthedocs.org/en/latest/contents/configuration. html#automated-sample-configuration

Template to full configuration

```
bcbio_nextgen.py -w template \
  tumor-paired.yaml project1.csv \
  sample1.bam sample2_1.fq sample2_2.fq
```

```
\label{lem:https://bcbio-nextgen.readthedocs.org/en/latest/contents/configuration. $$  html \#automated-sample-configuration $$  \
```

Running bcbio

bcbio_nextgen.py project1.yaml -n 8

https://bcbio-nextgen.readthedocs.org/en/latest/contents/testing.html

AWS example configuration and output

```
https://bcbio-nextgen.readthedocs.org/en/latest/contents/teaching.html
```

- Pre-downloaded and analysis run
- AMI (ami-5e84fe34)

Summary

- Overview of variant calling tools
- Open source community resources
- bcbio validated variant analysis
- Science
 - Human build 38
 - GATK4 validation
 - Cancer calling of low frequency variants
 - Structural variation
- Practical calling example

http://bcb.io

