

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/07, 8719/07

MATHEMATICS AND HIGHER MATHEMATICS Paper 7 (Probability and Statistics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003		7

1 (i) 2.5 1.25	B1 B1	2	For correct mean. For correct variance
(ii) 5 5	B1ft B1ft	2	For correct mean. For correct variance
2 H ₀ : $p = 0.6$ H ₁ : $p > 0.6$	B1		For correct H ₀ and H ₁
$P(X \ge 10) = {}_{12}C_{10}0.6^{10}0.4^2 + {}_{12}C_{11}0.6^{11}0.4^1 + 0.6^{12} = 0.0834$	M1* M1*dep A1		For one Bin term (n = 12, p = 0.6) For attempt <i>X</i> = 10, 11, 12 or equiv. For correct answer (or correct individual terms and dig showing 0.1)
Reject H ₀ , i.e. accept claim at 10% level	B1ft	5	For correct conclusion
S.R. Use of Normal scores 4/5 max $z = \frac{9.5 - 7.2}{\sqrt{2.88}}$	B1		For correct H ₀ and H ₁
(or equiv. Using N(0.6, 0.24/12)) = 1.3552 Pr(>9.5) = 1 - 0.9123 = 0.0877	M1 A1		Use of N(7.2, 2.88) or N(0.6, 0.24/12) and standardising with or without cc For correct answer or 1.3552 and
Reject H ₀ , i.e. accept claim at 10% level	B1ft		1.282 seen For correct conclusion
3 (i) $31\pm2.326 \times \frac{3}{\sqrt{20}}$	B1		For correct mean
= (29.4, 32.6)	M1		Calculation of correct form
			$\bar{x} \pm z \times \frac{s}{\sqrt{n}}$
	B1 A1	4	(must have \sqrt{n} in denominator) z = 2.326 Correct answer
(ii) 30% is inside interval Accept claim (at 2% level)	ftB1* ftB1*dep	2	S.R. Solutions not using (i) score B1ft only for correct working and conclusion
4 (i) $P(X > 1.5) = \left[x - \frac{x^2}{4} \right]_{1.5}^2$	M1		For substituting 2 and 1.5 in their $\int f(x)dx$ (or area method ½ their base x their height)
or 1 - $\left[x - \frac{x^2}{4} \right]_{.0}^{1.5}$			
= 0.0625	A1	2	For correct answer

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709	7

	/ii\	E/V) -			
	(11)	$E(X) = \int_{0}^{2} (x - \frac{1}{2}x^{2}) dx = \left[\frac{x^{2}}{2} - \frac{x^{3}}{6}\right]_{0}^{2}$	M1		For evaluating their $\int xf(x)dx$
		= 2/3	A1 2	2	For correct answer
	(iii)	$m-\frac{m^2}{4}=0.5$	M1		For equating their $\int f(x)dx$ to 0.5
		$m = 0.586 (2 - \sqrt{2})$	M1 A1 3	3	For solving the related quadratic For correct answer
5	(i)	$P(X < 1.7) = \Phi\left(\frac{1.7 - 2.1}{0.9 / \sqrt{20}}\right)$ $= 1 - \Phi(1.9876)$	B1 M1 A1		For identifying prob Type I error For standardising For correct standardising and correct area
		= 0.0234	A1 4	4	
	(ii)	P(Type II error) = $P(X > 1.7)$	B1		For identifying prob for Type II error
		$= 1 - \Phi\left(\frac{1.7 - 1.5}{0.9/\sqrt{20}}\right)$	M1		For standardising using 1.5 and their 1.7
			A1		For correct standardising and correct area
		= 1 - Φ (0.9938) = 0.160	A1 4	1	For correct final answer
6	(i)	<i>λ</i> = 1.25	M1		For attempting to find new λ and using it
		P(X < 4) =			3
		$e^{-1.25} \left(1 + 1.25 + \frac{1.25^2}{2} + \frac{1.25^3}{6} \right)$	M1		For summing P((0,) 1, 2, 3) or P(0, 1, 2, 3, 4) using a Poisson expression
		= 0.962	A1 3	3	For correct answer
	(ii)	$X \sim N(182.5, 182.5)$ P(> 200 breakdowns) =	B1 M1		For correct mean and variance For standardising process with or without continuity correction
		$1 - \Phi\left(\frac{200.5 - 182.5}{\sqrt{182.5}}\right)$			
		= 1 - Φ (1.332)	A1ft		For correct standardising and correct tail
		= 0.0915 (0.0914)	A1 4	4	For correct answer
	(iii)	λ = 5 for phone calls λ = 6.25 for total	B1		
		$P(X = 4) = e^{-6.25} \left(\frac{6.25^4}{4!} \right)$	M1		For summing their two λ s and using a Poisson expression OR alt. method using sep. distributions 5
		= 0.123	A1 3	3	terms req. For correct answer

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003		7

7 (i) 20 of A ~A*	B1	For correct mean for either
~N(401, 20 x 0.15 ²) ~N(401, 0.45)		
20 of <i>B</i> ~B* ~N(401, 1.458)	B1	For variance 20 x 0.15 ² or 20 x 0.27 ²
A* - B* ~N(0, 1.908)	M1	For adding their two variances
P(A* - B* > 2)		
$= 1 - \Phi\left(\frac{2-0}{\sqrt{1.908}}\right)$	M1	For consideration of their A* - B* > 2
= 1 - Φ (1.4479)	M1	For standardising and finding correct area
= 0.0738	A1 6	For correct answer
<u>OR</u> $\overline{A} \sim N(20.05, 0.15^2/20),$		
$\overline{B} \sim N(20.05, 0.27^2/20)$	B1	For correct mean for either
A - B ~N(0, 0.00477)	B1 M1	For variance 0.15 ² /20 or 0.27 ² /20 For adding their variances
$P(\overline{A} - \overline{B} > 0.1)$	M1	For consideration of their
$= 1 - \Phi\left(\frac{0.1 - 0}{\sqrt{0.00477}}\right)$	M1	$\overline{A} - \overline{B} > 0.1$ For standardising and finding correct area
= 0.0738	A1 6	For correct answer
(ii) $1.96 = \frac{20.07 - 20.05}{(0.15/\sqrt{n})}$	M1	For an equation of correct form on
$(0.15/\sqrt{n})$		RHS involving \sqrt{n}
	B1	For 1.96 used
	M1	For solving an equation of correct form (any z)
n = 216	A1 4	For correct answer