班级:		姓名:		学号:		周次: <u>1</u>
1、一弹: 示。若 平衡位	圣题(每题 6 分 簧振子作简谐排 片 t=0 时,(1)振 位置向正方向运 方向运动,则初	表动,振幅为 子在负的最远 动,则初相之	J <i>A</i> ,周期为 大位移处, 为	n <i>T</i> ,其运动 则初相为]方程使用氛 ;	(2)振子在
初速度	振动的表达式; 逐为 0.09 m/s,	则振幅 <i>A</i> =			的初位移为	0.04 m,
			v = dx/dt			
长度为 余弦函	用旋转矢量法表 0.04 m,旋转 函数表示的振动	表示了一个简 角速度 <i>ω</i> =4π 1方程为		旋转矢量的	O_{\parallel} $(t=0)$	$\frac{1}{2}$
则此简	振动用余弦函 奇谐振动的三个	·特征量为 A=	=	;	x (cm) 10 5 0 4710 -10	t(s)
	振动曲线如图/ 点的位移为			· ·	6 O 1 2 3	$ \begin{array}{c} t(s) \\ \end{array} $
2cm,	振动的旋转矢虫则该简谐振动	的振动方程为		 是长	t = t 0 T O	$ \begin{array}{c} t = 0 \\ x \neq 0 \end{array} $

7、质点作简谐振动,其振动曲线如图所示。根据此图,它的周期 T=_____,用余弦函数描述时初相 $\varphi=$ 。

8、已知两简谐振动曲线如图所示,则这两个简谐振动方程(余弦形式)分别为

- 9、质点沿 x 轴作简谐振动,振动方程为 $x = 4 \times 10^{-2}\cos(2\pi t + \frac{1}{3}\pi)$ (SI)。从 t = 0 时刻起,到质点位置在 x = -2 cm 处,且向 x 轴正方向运动的最短时间间隔为: ______s。
- 10、质点在x 轴上作简谐振动,振辐 A=4 cm,周期 T=2 s,其平衡位置取作坐标原点。若 t=0 时刻质点第一次通过 x=-2 cm 处,且向x 轴负方向运动,则质点第二次通过 x=-2 cm 处的时刻为:
- 11、弹簧振子系统具有 1.0 J 的振动能量, 0.10 m 的振幅和 1.0 m/s 的最大速率,则弹簧的劲度系数为______,振子的振动频率为_____。

二、选择题 (每空3分,共计9分)

1、质点作简谐振动,振幅为A,在起始时刻质点的位移为 $\frac{A}{2}$,且向x轴的正方向运动,代表此简谐振动的旋转矢量图为: ()

- 2、质点作简谐振动,周期为T。质点由平衡位置向x轴正方向运动时, 位置到二分之一最大位移这段路程所需要的时间为:) (
- (A) T/4 (B) T/6
- (C) T/8
- (D) T/12
- 3、已知某简谐振动的振动曲线如图所示,位移的单位为cm,时间单位为s, 则此简谐振动的振动方程为:)

(A)
$$x = 2\cos(\frac{2}{3}\pi t + \frac{2}{3}\pi)$$

三、计算题(共计19分,含必要解题过程,未写必要过程每题扣3分)

- 1、(本题 7 分) 已知简谐振动的表达式为: $x = 0.05\cos(8\pi t + \frac{\pi}{3})$ (SI: 国际制单
- 位), 求该振动的角频率、周期、频率、振幅、初相、最大速度和最大加速度。

2、(本题 12 分) 如图为简谐振动 x_1 和 x_2 的振动曲线, 求: x_1 和 x_2 的简谐振动 表达式、相位差以及两个简谐振动在a和b时刻各自对应的相位。

