(9)

(10)

GATE: EE - 47.2022

EE22BTECH11219 - Rada Sai Sujan

QUESTION

Let an input $x(t) = 2\sin(10\pi t) + 5\cos(15\pi t) + 7\sin(42\pi t) + 4\cos(45\pi t)$ is passed through an LTI system having an impulse response

$$h(t) = 2\left(\frac{\sin(10\pi t)}{\pi t}\right)\cos(40\pi t)$$

The output of the system is

- (a) $2\sin(10\pi t) + 5\cos(15\pi t)$
- (b) $2\sin(10\pi t) + 4\cos(45\pi t)$
- (c) $7 \sin(42\pi t) + 4 \cos(45\pi t)$
- (d) $5\sin(15\pi t) + 7\cos(42\pi t)$

Solution:

Given,

$$h(t) = 2\left(\frac{\sin(10\pi t)}{\pi t}\right)\cos(40\pi t) \tag{1}$$

$$=\frac{\sin 50\pi t}{\pi t} - \frac{\sin 30\pi t}{\pi t} \tag{2}$$

$$=h_1(t)-h_2(t)$$
 (3)

where,

$$h_1\left(t\right) = \frac{\sin 50\pi t}{\pi t}$$

$$h_2(t) = \frac{\sin 30\pi t}{\pi t} \tag{5}$$

Taking Fourier transform of h(t)

$$h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_1(f) - H_2(f)$$
 (6)

where,

$$h_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_1(f)$$

$$h_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H_2(f)$$

(7)

Plotting $H_1(f)$ and $H_2(f)$ we get,

Therefore, the given system is a Bandpass filter with passband:

$$15 \le |f| \le 25 \tag{12}$$

Veryfying Table I with (12), only f_3 and f_4 will

Frequency components of input	Value
f_1	$\frac{10\pi}{2} = 5Hz$
f_2	$\frac{15\pi}{2} = 7.5Hz$
f_3	$\frac{42\pi}{2} = 21Hz$
f_4	$\frac{45\pi}{2} = 22.5Hz$

TABLE I
FREQUENCY COMPONENTS

be passed through the system.

$$y(t) = 7\sin(42\pi t) + 4\cos(45\pi t)$$
 (13)

(: |H(f)| = 1, the amplitude of frequency components will be unchanged.)