Relatório 1º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)

Descrição do Problema e da Solução

O problema consiste em organizar uma sequência de números inteiros em uma estrutura hierárquica, utilizando um operador binário definido em uma tabela, para alcançar um valor desejado. A sequência não possui parênteses, tornando a ordem das operações ambígua. O objetivo é determinar se é possível inserir parênteses de forma válida para obter o resultado esperado e, em caso positivo, apresentar a estrutura de parênteses; caso contrário, indicar que não é viável.

Podemos resolver utilizando uma matriz de operações e uma sequência de números. Ele determina se é possível obter um resultado específico a partir da sequência, respeitando as regras da matriz de operações e fornece a "parentização" correspondente.

Análise Teórica

Considere:

- n: tamanho da sequência.
- **m**: tamanho da matriz.

Pseudocódigo e Complexidade

1. Leitura dos dados de entrada

- o Utiliza um loop simples para processar a sequência, com complexidade O(n).
- o Para a matriz, utiliza um duplo loop, com complexidade O(m^2).
- **Complexidade total**: O(m^2+n).

2. Preenchimento da matriz de operações

- o Iteração sobre a diagonal da matriz: O(n^2).
- o Iteração para separar a sequência em subproblemas: O(n).
- o Iteração para adicionar os resultados no hashmap: O(n^2).
- o Complexidade total: O(n^5).

3. Parentização da sequência

- Exploração de todos os subintervalos possíveis da sequência: O(n^2).
- o Complexidade total: O(n^2).

Complexidade global $O(n^5 + m^2)$ pois $O(n^5 + n^2 + n + m^2)$ vai ser semelhante a $O(n^5 + m^2)$

Relatório 1º Projeto ASA 2024/2025

Grupo: tp034

Alunos: Tomás Ferreira(nº:109881), Diogo Matias(nº:109639)

Avaliação Experimental dos Resultados

Foi feito um gráfico com o "n" e "m" a começar a partir de dez e adicionando sempre mais 5 até 20 iterações. Resultando na tabela e no gráfico visto em baixo.

Devemos observar uma relação linear entre a complexidade teórica prevista e os tempos registrados, confirmando que a implementação está alinhada com a análise teórica. Isso se torna mais evidente nas etapas finais, e, se continuássemos, alcançaríamos uma relação praticamente linear.

n	m	f(n,m)	time_taken(ms)
10	10	100100	2.0273
15	15	759600	3.1846
20	20	3200400	4.1957
25	25	9766250	7.1251
30	30	24300900	12.0776
35	35	52523100	17.7226
40	40	102401600	26.6957
45	45	184530150	39.1846
50	50	312502500	53.3893
55	55	503287400	69.8037
60	60	777603600	91.7552
65	65	1160294850	122.4582
70	70	1680704900	149.4040
75	75	2373052500	187.5188
80	80	3276806400	229.8582
85	85	4437060350	283.5395
90	90	5904908100	332.6581
95	95	7737818400	398.1769
100	100	10000010000	453.9347
105	105	12762826650	530.5462

Tabela 1

Figura 1 – complexidade sobre tempo