计算物理 2019 春季 第一次大作业

姚铭星

1700011321

目录

1	第一	-题:十进制整数与双精度浮点数的相互转换	3
	1.1	问题描述	3
	1.2	思路	3
	1.3	实现	3
	1.4	结果讨论	5
2	第二	二题:高斯求积	5
	2.1	问题描述	5
	2.2	思路	6
	2.3	伪代码	6
	2.4	实现	7
	2.5	结果	7
	2.6	结果检验	7
3	第三	E题:放射衰变问题	8
	3.1	问题描述	8
	3.2	解析结果	8
	3.3	思路	8
	3.4	实现	9
	3.5	结果讨论	9
		3.5.1 短期衰变	9
		3.5.2 长期衰变	11
		3.5.3 误差	11

4	第四	题:三次样条插值	13
	4.1	问题描述	13
	4.2	三次样条插值	13
	4.3	实现	14
	4.4	结果分析	15
5	第五	题: 求解对称带状正定矩阵	16
	5.1	题目描述	16
	5.2	算法描述	16
	5.3	实现	17
	5.4	结果讨论	17
6	第六	题: 共轭梯度法求解稀疏矩阵线性方程组	18
	6.1	题目要求	18
	6.2	算法描述	19
	6.3	实现	19
	6.4	结果讨论	19
7	第七	.题:氢原子定态波函数求解	20
	7.1	广义拉盖尔多项式	20
		7.1.1 原理	20
		7.1.2 实现	21
		7.1.3 结果	21
	7.2	球谐函数	22
		7.2.1 思路	22
		7.2.2 实现	22
		7.2.3 问题	23
		7.2.4 实现	24
		7.2.5 结果	24
	7.3	电子密度	25
		7.3.1 思路	25
		7.3.2 结果	25
	7.4	计算氢原子能级	26
		7.4.1 思路	26
		7.4.2 实现	26
		743 结果讨论	27

目录

第一题:十进制整数与双精度浮点数的相互转换 1

1.1 问题描述

编写两个程序,实现任意十进制数与其规范化二进制双精度浮点数之间 的转换,并举足够多的算例说明你程序的正确性

1.2 思路

在 IEEE 754 标准下, double 型机器数的编码长度为 64, 格式为

$$\frac{(S)_2 | (E)_2 | (T)_2}{a[0] | a[1] | a[11] | a[12] | ... | a[63]}$$

$$d = (-)^S \times \begin{cases} 2^{E-1023}(1+2^{-52}T) & \text{if } E > 0\\ 2^{-1022}(0+2^{-52}T) & \text{if } E = 0 \end{cases}$$
(2)

对于十进制转二进制数,具体操作如下:

- 1. 确定符号位
- 2. 分开计算整数位和小数位
- 3. 确定指数位
- 4. 判断是否上溢或者下溢

对于二进制转十进制数,具体操作为:

- 1. 判断符号, 取绝对值
- 2. 对 x 取 log_2 , 并向下取整, 得到指数位 E, 加上偏移量 1023
- 3. 计算 $x/2^{E} 1$ 得到小数位
- 4. 将指数位和小数位转化为二进制

1.3 实现

```
# 二进制转十进制
def bi2deci(a):
      实现double型二进制数转十进制
      输入为 a [64] 数据类型为 < class = 'list'>
```

```
输出为 float (python 默认为 double)
7
           sign = -1 if a[0] == 1 else 1 #符号位
           E = 0# 指数位
           for i in range (1,12):
                   E += 2**(11-i)*a[i]
           \# print(E)
           T = 1# 尾数位
           for i in range (12,64):
                   T += a[i]*2**(11-i)
           # print(T)
17
           x = sign * T * 2**(E - 1023)
           if x < 2**(-1022):
                   return 0
           if x >= 2**(1023):
                   return NaN
           return x
22
   # 十进制转二进制
   def deci2bi(a):
27
           实现 double (float)型十进制数转二进制
29
           返回 res [64]
           a[0]为符号, a[1:12]为指数位, a[12:64]为小数位
           S = np.sign(a)
           res = [0 \text{ for } i \text{ in } range(64)]
           if S ==0:
                   return res
           S = 0 if np. sign(a) == 1 else 1
           res[0] = int(S)
           a = abs(a)
           E = ms. floor(ms. log2(a))
           if a >=2:
                   # 符号位> 1023
                   while a > = 2:
                            a/=2
           elif a < 1:
                   while a < 1:
                            a*=2
```

```
# 此时 a \in (1,2]
            a -= 1 #去掉首位的1
49
            \# print("E = "+str(E))
            E +=1023 #加上偏移量
51
            for k in range(11,0,-1): #计算指数位
                     res[k] = int(E \%2.0)
                     E /=2.0
                     if E==0:
                             break
            p = 1
            while p \le 52:
                     \mathbf{a} \ *=2
                     h = 1 if a > = 1.0 else 0
                     res[11+p] = h
                     a \ -\!\!=\!\! h
                     p+=1
            return res
```

1.4 结果讨论

表格中几乎涵盖了所有上溢、下溢、零、无理数的例子,可以说明程序 的进制转换是合理的

#	1	一些十进制实数与机器数编码间相互转换的	7
衣	1:	一些工作时头数与机器数编码间相互转换的	MI —

衣工: 全十姓的失效与机奋效编码内相互投资的例]						
x	$\mathrm{deci}2\mathrm{bi}(\mathrm{x})$	bi2deci(deci2bi(x))				
0.	0 0000000000 00000000000000000000000000	0				
π	0 10000000000 1001001000011111101101010100010001000101	$3.14159\cdots$				
-0.0625	1 01111111011 0000000000000000000000000	-0.0625				
2^{-1022}	0 0000000001 00000000000000000000000000	$2.22507 \cdot \cdot \cdot \cdot \text{e-}308$				
1.5×2^{1023}	0 11111111110 1000000000000000000000000	$1.34827 \cdot \cdot \cdot e + 308$				
0.5×2^{-1022}	0 0000000000 10000000000000000000000000	$1.11254 \cdots e-308$				
-2^{1024}	1 11111111111 0000000000000000000000000	NaN				

2 第二题:高斯求积

2.1 问题描述

构造以下几种非标准权函数的 Gauss 求积公式的求积系数与节点:

$$\int_{0}^{1} \sqrt{x} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$
(3)

$$\int_{-1}^{1} (1+x^2) f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$
(4)

$$\int_{0}^{1} \sqrt{x} f(x) dx \approx A_0 f(x_0) + A_1 f(x_1) + A_2 f(x_2)$$
 (5)

2.2 思路

具有如下形式的积分问题可以用高斯求积来解决:

$$\int_{a}^{b} w(x)f(x)dx$$

解决高斯求积问题的关键是找到一组在该权函数下的正交基。在定义内积

$$(f,g) = \int_{a}^{b} w(x)f(x)g(x)dx$$

的前提下,权重以及正交基满足下列关系:

$$p_{-1}(x) = 0$$

$$p_0(x) = 1$$

$$p_{j+1}(x) = (x - a_j)p_j(x) - b_j p_{j-1}(x)$$

其中:

$$a_{j} = \frac{(xp_{j}, p_{j})}{(p_{j}, p_{j})}$$
$$b_{j} = \frac{(p_{j}, p_{j})}{(p_{j-1}, p_{j-1})}$$

设 x_{μ} 是正交多项式 $p_{N}(x)$ 的第 μ 个根,则系数满足:

$$A_j = \frac{(p_{N-1}(x), p_{N-1}(x))}{p_{N-1}(x_j)p_N'(x_j)}$$
(6)

2.3 伪代码

求解流程大概按下面进行

- 1. 赋予初始条件 $P_{-1}(x) = 0$ 和 $P_0(x) = 1$
- 2. 利用递推关系,构建 N 个在权函数 w(x) 下正交的多项式
- 3. 求解每一个多项式的根
- 4. 根据式 $6求解系数 A_i$

2.4 实现

具体操作中调用了 numpy.poly1d() 类,简化了大部分计算过程。

```
import numpy as np
   def sqrtbuild(N):
2
3
             构造以|sqrt[x]为权函数的最高位N的正交多项式
5
            res = [0 for _ in range(N+2)] #把 n =-1存在了第一个
            res[0] = np.poly1d([0])
            res[1] = np.poly1d([1])
            for x in range (1,N+1):
                     p1 = np.poly1d([1,0])*res[x]**2
10
                     p2 = res[x]**2
11
                     p3 = res[x-1]**2
12
                     a = sqrtinte(p1)/sqrtinte(p2)
13
                     b = sqrtinte(p2)/sqrtinte(p3) if x > 1 else 0
14
                     \operatorname{res}[x+1] = \operatorname{np.poly1d}([1,-a]) * \operatorname{res}[x] - b * \operatorname{res}[x-1] #防止出现 0/0
15
            return res[1:len(res)]
16
```

求根直接调用 poly1d 的成员 r。

2.5 结果

表 2: 各非标准权函数的 Gauss 求积公式的求积系数和节点

机械求积公式	k	x_k	A_k
(2)	0	0.28994920	0.27755600
(3)	1	0.82116191	0.38911067
(4)	0	-0.63245553	1.33333333
(4)	1	0.63245553	1.33333333
	0	0.16471029	0.12578267
(5)	1	0.54986850	0.30760237
	2	0.90080583	0.23328162

2.6 结果检验

理论上来说,拥有 n 个节点的 Gaussian 求积公式应当有 2n+1 的代数精度。

对于 n=3 的情况,不难代入 mathematica 验证其精度与输入有效位数相同(即及其精度)

3 第三题:放射衰变问题

3.1 问题描述

考虑 A 和 B 两类原子核随时间的放射衰变问题, t 时刻, 其布居数分别为 $N_A(t)$ 和 $N_B(t)$ 。假定 A 类核衰变为 B 类核,B 类核可以继续衰变,满足以下微分方程组:

$$\frac{dN_A}{dt} = -\frac{N_A}{\tau_A}$$
$$\frac{dN_B}{dt} = \frac{N_A}{\tau_A} - \frac{N_B}{\tau_B}$$

其中, τ_A 和 τ_B 是时间衰变常数,在给定初始条件 $t_i = 0$ 时 $N_A(t_i) = N_B(t_i) = 1$ 下,回答下面三个问题:

- 1. 给出问题的解析解
- 2. 使用合适的算法数值求解上述耦合方程
- 3. 在给定 $\tau_A = 1s$,分别讨论 $\tau_B = 0.1s, 1s, 10s$,三种情况下的短期和长期衰变行为。选取 $\tau_B = 10s$ 这种情况,讨论数值算法的误差,展示取不同步长 $\Delta t = 0.2s, 0.1s, 0.05s$ 时与解析结果的比较

3.2 解析结果

解析解可以直接给出:

$$N_A(t) = e^{-t/\tau_A}$$

$$N_B(t) = \frac{\tau_B}{\tau_A - \tau_B} e^{-t/\tau_A} + \frac{\tau_A - 2\tau_B}{\tau_B - \tau_B} e^{-t/\tau_B}$$
(7)

3.3 思路

由于方程形式很简单,可以直接用有限差分的形式来代替微分,从而得到递推关系:

$$\begin{split} N_A((i+1)\Delta t) - N_A(i\Delta t) &= -N_A(i\Delta t) \cdot \frac{\Delta t}{\tau_A} \\ N_B((i+1)\Delta t) - N_B(i\Delta t) &= -N_B(i\Delta t) \cdot \frac{\Delta t}{\tau_B} + N_A(i\Delta t) \cdot \frac{\Delta t}{\tau_A} \end{split}$$

经过 $N = t_{max}/\Delta t$ 步迭代就能得到答案。

Jeffreyyao@pku.edu.cn

3.4 实现

```
def decay(ta,tb,dt,tmax=1):
    衰变函数
   返回 < class = 'tuple' > (NA, NB)
5
            n \, = \, 0
6
            NA=[1]
            NB=[1]
            while n*dt < tmax:
                    NA.append(NA[n]*(1-dt/ta))
10
                    NB. append (NB[n]*(1-dt/tb)+NA[n]*(dt/ta))
11
12
            return (NA,NB)
13
```

3.5 结果讨论

3.5.1 短期衰变

在固定 $\tau_A=1s$ 后,可以认为,当时间 t_{max} 小于任何一个半衰期,就可以认为是短期衰变,这里取固定 $t_{max}=0.1s$

计算结果如下图: 不难看出, 当 $t\tau_B = 0.1s < \tau_A$ 时, 二者短程呈现下降

图 1: 短程结果

趋势。当 $\tau_B=1=\tau_A$ 时, N_B 短程内几乎不发生变化。而当 $\tau_B=10s>\tau_A$ 时, N_B 开始呈现上升趋势,这与式 7是一致的。

图 2: 短程结果

图 3: 短程结果

图 4: 长期衰变

图 5: 长期衰变

3.5.2 长期衰变

同样地,我们取 $t_{max} = 100s > max(\tau_A, \tau_B)$,以研究长程情况计算结果如下图: 也可以看出,去除最开始的那段短程过程有些许不同之外,在最后都会趋于零。

3.5.3 误差

对于每一次计算,可以利用泰勒展开估计误差

$$N((i+1)\Delta t) = N(i\Delta t) + N'(i\Delta t) \cdot \Delta t + \frac{1}{2}N^{(2)}(\xi)\Delta t^2$$

图 6: 长期衰变

图 7: 误差随时间的变化

在忽略机器精度的情况下,绝对误差可以估计为一个上界:

$$\Delta(t) \le \frac{1}{2} \frac{\Delta t \cdot t}{\tau^2}$$

等号当且仅当在 t=0 时成立。

下面是实际的情况(绝对误差随时间的变化), 可以看出,在尺度上而言,的确是与 Δt 的取值成正比

4 第四题:三次样条插值

4.1 问题描述

对于飞机机翼的轮廓每隔 0.1m 的值,利用自然边界条件,使用三次样条插值估计任意一点的 y 值,需要与原始数据点一同绘制出飞机的轮廓曲线。

\overline{x}	0	3	5	7	9	11	12	13	14	15
y	0	1.2	1.7	2.0	2.1	2.0	1.8	1.2	1.0	1.6

4.2 三次样条插值

三次样条差值也是多项式插值的一种。相比于拉格朗日插值和牛顿插 值等多项式插值,三次样条方法拥有更加高阶的导数连续性。具体来说,三 次样条方法不仅要求在插值点上有连续的函数值,而且还要求有连续的一 阶以及二阶导数值。即因满足条件:

$$\begin{cases} S(x_i - 0) = S(x_i + 0) \\ S'(x_i - 0) = S'(x_i + 0), & i = 1, 2, \dots, n - 1 \\ S''(x_i - 0) = S''(x_i + 0) \end{cases}$$

在每一个区间 $x \in [x_k, x_{k+1}]$ 内部使用三次函数差值。

类似于 Hermite 插值法,使用分段 Hermite 多项式,此时零阶和一阶 条件自动满足:

$$H_3^{(k)}(x) = y_k \alpha_0^{(k)}(x) + y_{k+1} \alpha_1^{(k)}(x) + y_k' \beta_0^{(k)}(x) + y_{k+1}' \beta_1^{(k)}(x)$$

取用各节点的一阶导数为未知数 $S'(x_i) = m_i$, 利用二阶导数条件:

$$\mu_i m_{i+1} + 2m_i + \lambda_i m_{i-1} = e_i, \quad i = 1, 2, \dots, n-1$$

其中 $\mu_j = \frac{h_{j-1}}{h_{j-1} + h_j}$, $\lambda_j = \frac{h_j}{h_{j-1} + h_j}$, $e_i = 3 \left(\lambda_i f \left[x_{i-1}, x_i \right] + \mu_i f \left[x_i, x_{i+1} \right] \right)$ 并且使用自然边界条件:

$$S''(0) = S''(x_{n-1}) = 0$$

这样问题变为求解三对角矩阵方程解问题,可以利用追赶法快速求解。

4.3 实现

```
def firstorder (x,y):
2
           返回插值中n个点的一阶导数m i
3
            采用三转角方程求解一阶导数
4
5
           #建立矩阵
6
           mu=[h(i-1)/(h(i)+h(i-1)) for i in range(1,n)]
           lamb=[h(i)/(h(i)+h(i-1)) for i in range(1,n)]
8
           # 建立待解向量
           b = [3*d(0)] + [3*(lamb[i-1]*d(i-1)+mu[i-1]*d(i)))# 写不下換行
10
                    for i in range (1,n) + [3*d(n-1)]
11
           mu = [1] + mu
12
           lamb = lamb + [1]
13
           dia = [2 \text{ for } \_in \text{ range}(n+1)]
14
           # 开始追赶法求解三对角矩阵
15
           for i in range(1,n+1):
16
                   lamb[i-1] = lamb[i-1]/dia[i-1]
17
                   dia[i] = dia[i] - mu[i-1]* lamb[i-1]
18
                   b[i] = b[i-1]*lamb[i-1]
19
                   m = [-1 \text{ for } \_ \text{ in } range(n+1)]
20
           m[n] = b[n]/dia[n]
21
           for i in range(n-1,-1,-1):
22
                   m[i] = (b[i] - mu[i]*m[i+1])/dia[i]
23
           return m
```

4.4 结果分析

可以看出,函数的光滑性是很好的。

5 第五题: 求解对称带状正定矩阵

5.1 题目描述

对于带宽为 2m+1 的对称正定带状矩阵 \mathbf{A} , 可以分解为 $\mathbf{A} = \mathbf{LDL}^T$ 。 结果可以用于求解一般的对称正定带状线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 。

题目中给定的对称带状矩阵 $\mathbf{A}, m = 2$, 非零元素为 $a_{11} = a_{nn} = 5$; $a_{ii} = 6(i = 2, ..., n - 1)$; $a_{i,i-1} = 4(i = 2, ..., n)$; $a_{i,i-2} = 1(i = 3, ..., n)$, 右端向量为 $\mathbf{b} = (60, 120, ..., 120, 60)^T$ 。给出 n = 100 和 n = 10000 两个算例。

5.2 算法描述

对称带状矩阵也可以使用 Cholesky 分解方法, 可以假定 $\mathbf{D}_{ij} = 1/l_{ii}$, 由矩阵乘法的可以得到公式:

$$l_{ij} = a_{ij} - \sum_{k=r}^{j-1} l_{ik} l_{jk} / l_{kk}, i = 0, 1, 2, \dots, n-1$$

其中:

$$r = \begin{cases} 0, & i \le m+1\\ i-m, & i > m+1 \end{cases}$$

同时将右端向量也做分解, $\mathbf{b} = \mathbf{L}\mathbf{D}\tilde{\mathbf{b}}$,具体来说:

$$\tilde{b}_i = b_i - \sum_{j=r}^{i-1} l_{ij} \tilde{b}_j / l_{jj}, \quad i = 0, 1, 2, \dots, n-1$$

最后再求解等价线性方程组, $\mathbf{L}^{\mathbf{T}}\mathbf{x} = \tilde{\mathbf{b}}$,利用回代过程:

$$x_i = \left(\tilde{b}_i - \sum_{j=i+1}^t l_{ji} x_j\right) / l_{ii}, i = n - 1, \dots, 1, 0$$

其中:

$$t = \begin{cases} n-1, & i > n-m-1 \\ i+m, & i \le n-m-1 \end{cases}$$

关于储存,由于题干中要求时空复杂度做到最小,因此我们采用 (m+1) 个向量(数组)来储存,在求解的过程中不需要额外的向量来储存矩阵元。解向量也只用一个 n 维向量储存,不需要额外的空间。总的来说,空间复杂度为 $\mathcal{O}(mn)$ 。在时间复杂度方面,第一步 Cholesky 分解的复杂度为 $\mathcal{O}(m^2n)$,而后的每一步复杂度都为 $\mathcal{O}(mn)$ 。总的来说,计算的空间复杂度为 $\mathcal{O}(m^2n)$

5.3 实现

```
def cholesky(n, m, a, b):
2
             Cholesky 求解方法, 返回解向量和矩阵
3
             return a, b
4
5
            # print(a)c
6
            for k in range(n):
                     #先解对角元素
8
                     a[0][k] = sum([a[k-j][j]**2*a[0][j] \text{ for } j \text{ in } range(max(0,k-m),k)])
                     for l in range (1, \min(n-k, m+1)):
10
                              a[1][k] = sum([a[k-j][j]*a[0][j]*a[l+k-j][j] for j in
11
                              range(max(0, l+k-m), k))
12
                              a[1][k] /= a[0][k]
13
            #回代解方程
14
            for k in range(n):
15
                     b[k] = sum([a[k-j][j]*b[j] \text{ for } j \text{ in } range(max(0,k-m),k)])
16
            for k in range(n):
17
                     b[k] /= a[0][k]
18
            for k in range(n):
19
                     ki = n-1-k
20
                     b[ki] = sum([a[j][ki]*b[ki+j] \text{ for } j \text{ in } range(1, min(n-ki, m+1))])
21
            return a, b
22
```

5.4 结果讨论

为了更加直观地讨论问题,将解出来的解向量画为折线图,可以看出,体系包络的大小正比于 n^2

图 8: n = 100 算例

图 9: n = 10000 算例

6 第六题: 共轭梯度法求解稀疏矩阵线性方程组

6.1 题目要求

对于给定的稀疏矩阵

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 0 & \cdots & 0 & \frac{1}{2} \\ -1 & 3 & -1 & \cdots & \frac{1}{2} & 0 \\ 0 & -1 & 3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & \frac{1}{2} & 0 & \cdots & 3 & -1 \\ \frac{1}{2} & 0 & 0 & \cdots & -1 & 3 \end{bmatrix}$$

利用共轭梯度法, 求解线性方程组 $\mathbf{A}\mathbf{x}=\mathbf{b}$,并且要求两次的迭代误差要求 小于 $\epsilon=10^{-6}$ 。

Jeffreyyao@pku.edu.cn

分别取 n = 100 和 n = 10000 展示结果。

6.2 算法描述

共轭梯度法本质上属于一种迭代法,因此可以很好地利用矩阵稀疏性。相比于最速下降法,共轭梯度法避免了每一次下降的方向不变的缺点。实际上,每一步下降的矢量方向 p_i 都是 **A** 正交的,即 $p_i^T \mathbf{A} p_i = 0$

由于题目中给定的矩阵是一个对称正定矩阵,因此不用进一步进行预处 理即可直接应用共轭梯度法。

算法判停的条件是

$$\|\mathbf{b} - \mathbf{A}\mathbf{x}_{\mathbf{k}}\| / \|\mathbf{b}\| \le \epsilon$$

具体操作上是使用的 2- 范数

6.3 实现

```
\mathbf{def} \ \mathbf{CGM}(e,b,A,x=[0 \ \mathbf{for} \ \_ \ \mathbf{in} \ \mathbf{range}(n)]):
            '''Input error bound e and ndarray b and sparse matrix A
2
            return solution ndarray x
           x = np.array(x)
            r = b - A*x # 计算初始残差
            p = r # 计算初始方向矢量
            epsilon = np.dot(r.T,r)
           k = 0
            while epsilon >= e :
10
                    delt = A*p
                    a = np.dot(r,p)/np.dot(r,delt) # a是标量
12
                    x = x + a*p
13
                    r = r - a*delt # 更新残差
14
                    beta = - np.dot(r, delt)/np.dot(p, delt)
                    p = r + beta*p # 更新下降方向
16
                    k += 1
17
                    epsilon = np.dot(r.T,r) # 计算误差矢量的2-范数
                    print(k, "error□:□", epsilon) #输出每一步的数值
19
            return x
```

6.4 结果讨论

直接画出结果随坐标的变化 可以发现,结果残差被控制得很好。

图 10: n = 10000 的算例

图 11: n = 100 的算例

7 第七题: 氢原子定态波函数求解

7.1 广义拉盖尔多项式

7.1.1 原理

氢原子的径向波函数可以表示为广义拉盖尔多项式:

$$R_{nl}(r) = \sqrt{\left(\frac{2}{na_{\mu}}\right)^{3} \frac{(n-l-1)!}{2n(n+l)!}} e^{-r/na_{\mu}} \left(\frac{2r}{na_{\mu}}\right)^{l} L_{n-l-1}^{2l+1} \left(\frac{2r}{na_{\mu}}\right)^{l}$$

对此,要求解氢原子波函数问题,就需要计算广义拉盖尔多项式 $L_n^{\alpha}(x)$ 。 具体来说,可以利用广义拉盖尔的递推公式:

$$L_{n+1}^{(\alpha)}(x) = \frac{1}{n+1} \left((2n+1+\alpha-x) L_n^{(\alpha)}(x) - (n+\alpha) L_{n-1}^{(\alpha)}(x) \right)$$

Jeffreyyao@pku.edu.cn

以及初始条件:

$$L_0^{(\alpha)}(x) = 1$$

 $L_1^{(\alpha)}(x) = -x + \alpha + 1$

这样,就可以直接通过递推得到广义拉盖尔多项式的值。时间复杂度为 $\mathcal{O}(n)$ 。

7.1.2 实现

```
def LaguerreL(n,a,x):
2
             To calculate generalized Laguerre polinomial
             return L^a_n(x)
            Li = 1
            Lip = 1-x+a
            if n = 1:
                     return Lip
9
             elif n==0:
10
                     return Li
11
             else:
12
                      for i in range(1,n):# 进行迭代
13
                               \text{Li}, \text{Lip=Lip}, 1/(i+1)*((2*i+1+a-x)*\text{Lip}-(i+a)*\text{Li})
14
            return Lip
15
```

7.1.3 结果

注意到 Python 的 **Scipy** 库中有 **scipy.special.genlaguerre** 方法,因此利用内置函数计算出这种方法的误差:

以及下面为题目中要求的表格:

$x = 10^{-3}$	n=3	10	30
$\alpha = 2$	9.9900	65.780	491.058
20	1770.747	30030710.776	47061929154802.58
40	12340.097	10269773004.722	5.5307e+19

图 12: 广义拉盖尔函数与内置函数的误差

7.2 球谐函数

7.2.1 思路

求解球谐函数的关键是求解连带勒让德多项式,同样地我们采用递推公式方法。

$$\begin{split} &(\ell-m+1)P_{\ell+1}^m(x) = (2\ell+1)xP_{\ell}^m(x) - (\ell+m)P_{\ell-1}^m(x) \\ &2mxP_{\ell}^m(x) = -\sqrt{1-x^2}\left[P_{\ell}^{m+1}(x) + (\ell+m)(\ell-m+1)P_{\ell}^{m-1}(x)\right] \end{split}$$

实际上我们已知的是 $P_0^0(x) = 1$ 和 $P_1^0(x) = x$ 。我们的目的可以变为在一个二维网格上从 (0,0) 点走到 (l,m) 点。思路是首先利用勒让德多项式的递推公式走到 (l,0) 点,再利用连带勒让德的递推公式走到 (l,m) 点。

7.2.2 实现

```
      1
      def GeneralizedLegrend(l,m,x):

      2
      ,'',

      3
      水解连带勒让德函数

      4
      基本思路是利用递推公式达到二维平面上(l,m)这个点
```

7.2.3 问题

上面这种朴素的方法能够在 l 和 m 很小的时候达到很高的精度,但是对于作业中要求的 l=500 和 m=499 的问题,会出现上溢问题,因此采用重新定义连带勒让德函数的方式来解决。

定义新的连带勒让德函数:

$$\widetilde{P}_{l}^{m}(x) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(x)$$

满足新的递推关系:

$$\widetilde{P}_{l}^{m}(x) = x\sqrt{\frac{4l^{2}-1}{l^{2}-m^{2}}}\widetilde{P}_{l-1}^{m}(x) - \sqrt{\frac{2l+1}{2l-3}\frac{(l-1)^{2}-m^{2}}{l^{2}-m^{2}}}\widetilde{P}_{l-2}^{m}(x)$$

注意到此时的 \widetilde{P}_l^m 满足的递推关系中系数都是接近于 1 的数,不至于导致严重的下溢和上溢。

以及通过连带勒让德函数的定义不难看出:

$$\widetilde{P}_m^m(x) = (-)^m \frac{\left(1-x^2\right)^{m/2}}{2^m m!} (2m)! \sqrt{\frac{2m+1}{4\pi(2m)!}} = (-)^m \left(1-x^2\right)^{m/2} \sqrt{\frac{(2m+1)!!}{4\pi(2m)!!}}$$

以及有定义 $\widetilde{P}_l^m(x)=0$ 当 m< l 时。这样就不难从递推公式和初始条件中计算出所有的连带勒让德函数。而且我们注意到实际上 $\widetilde{P}_l^m(x)$ 和 $\widetilde{P}_m^m(x)$ 是成正比的,即:

$$\widetilde{P}_l^m(x) = f(l, m, x) \widetilde{P}_m^m(x)$$

因此实际计算中可以先不代入 $\tilde{P}_m^m(x)$,以减少溢出风险。为了进一步减少溢出风险,采用对数输出形式,即:

$$\log_{10} |\widetilde{P}_{l}^{m}(x)| = \log_{10} |f(l, m, x)| + \log_{10} |\widetilde{P}_{m}^{m}(x)|$$

虽然牺牲了精度,但是极大减少了溢出风险。

7.2.4 实现

```
def New_GeneralizedLegrend(l,m,x):
            新的连带勒让德函数计算方法,减少溢出风险
           P = 0
           Pi = 1# 并不直接代入P_m^m(x)
           if l−m< 0:
                    return 0
           for a in range (m+1, l+1):
                    Pi, P= \setminus
                    x*ms. sqrt((4*a**2-1.0)/(a**2-m**2))*Pi
                    -\text{ms.sqrt}((2*a+1.0)/(2*a-3.0)*)
                    ((a-1.0)**2-m**2)/(a**2-m**2))*P, Pi
           d = 1
                    for a in range(1,m+1):
                    d = (2*a+1)/(2*a)
           res = ms. \log 10 (abs(Pi)) + m/2.0*ms. \log 10 (1-x**2) + \\ \\ \\
17
           1/2.0*ms.log10(d/(4*ms.pi))
           return res
```

7.2.5 结果

结果储存在文件./data/Harmonic.txt 之中。

值得注意的是,当 L=1000, M=999 时, $Log_{10}(|Y_{lm}|)$ 已经达到了 10-2498 量级

7.3 电子密度

7.3.1 思路

由于之前已经得出了球谐函数和拉盖尔函数的计算方法,下面直接调用 朴素的连带勒让德函数。

7.3.2 结果

注意到归一化系数实际上对画热力图没有影响,故下面的图中都略去了归一化系数,绝对数值是不可靠的。而且考虑到 m 仅对角向有贡献,而实际上二维图应该是各项同性的,因此只放 m=0 的图。

图 13: 氢原子波函数图

7.4 计算氢原子能级

7.4.1 思路

由于氢原子的 SO(4) 对称性,氢原子能级与磁量子数 m 无关:

$$\begin{split} E_{nl} &= \left\langle \psi_{nl} \right| \hat{H} \left| \psi_{nl} \right\rangle \\ &= -\left\langle \psi_{nl} \right| \frac{1}{2r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{l(l+1)}{2r^2} + \frac{1}{r} \left| \psi_{nl} \right\rangle \end{split}$$

对于题目中给定的 n=3, l=1, m=1 的波函数

$$\Psi(r,\theta,\varphi) = \sqrt{\left(\frac{2}{3}\right)^3 \frac{(n-l-1)!}{2n(n+l)!}} e^{-\rho/2} \rho^l L_{n-l-1}^{2l+1}(\rho) Y_l^m(\theta,\varphi)$$
$$= \frac{4}{81\sqrt{6}} e^{-r/3} r(6-r) Y_1^1(\theta,\varphi)$$

设 $f=\mathrm{e}^{-r/3}r(6-r)$,代入 l=1,并且取积分域为 [0,60),得到能量的积分表达式。

$$E = \frac{8}{3^9} \int_0^{60} f\left(f(1-r) - rf' - \frac{r^2 f''}{2}\right) dr$$

在求解过程中通过不停减小积分间隔以达到精度要求。

7.4.2 实现

```
def energy():

''''

k 量函数, 计算氮原子能量

''''

epsi = 10**(-6)# 数值精度

d =60.0 # 数据范围

n = 2 # 初始分隔

S = d/n*(y(0)+y(d))

while abs(S**8/3**9+1/18.0) > epsi:

n *= 2

S = sum([y(d*i/(n-1)) for i in range(0,n)])/(n/d)

print('n=''+str(n))

print('Error=''+str(S**8/3**9+1/18.0))

return S**8/3**9

def y(r):
```

7.4.3 结果讨论

数值计算在 n = 65536 处停止,数值精度为 $e = 8.5 \times 10^{-7}$,具体结果如下图:

n = 65536 Error = 8.465007297411842e-07 -0.05555470905482581

图 14: 数值计算氢原子能级结果