Advanced Bayesian Learning

Lecture 7 - Model comparison and evaluation

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Topic overview

- Bayesian model probabilities
- Model selection as a decision problem
- Predictive measures and Bayesian cross-validation
- Stacking and other approaches
- Bayesian variable selection and shrinkage

Likelihood ratios

- Comparing models:
 - ▶ M_1 : $p_1(y|\theta_1)$ against
 - ► M_2 : $p_2(y|\theta_2)$.
- Likelihood ratio

$$\log \frac{p_1(\mathbf{y}|\hat{\theta}_1)}{p_2(\mathbf{y}|\hat{\theta}_2)}$$

- $p_1(y|\hat{\theta}_1) > p_2(y|\hat{\theta}_2)$ if model M_1 is richer parametrized.
- Hypothesis test.
- Non-nested models are problematic.

Marginal likelihood and Bayes factor

The marginal likelihood for model M_k with parameters θ_k

$$p_k(\mathbf{y}) = \int p_k(\mathbf{y}|\theta_k)p_k(\theta_k)d\theta_k.$$

Marginal likelihood is the prior expected likelihood

$$p_k(\mathbf{y}) = \mathbb{E}_{p_k(\theta_k)} \left[p_k(\mathbf{y}|\theta_k) \right]$$

Bayes factor

$$B_{12}(\mathbf{y}) = \frac{p_1(\mathbf{y})}{p_2(\mathbf{y})}$$

- Jeffreys' scale of evidence for $B_{12}(\mathbf{y})$ (Kass-Raftery, JASA)
 - ▶ Barely worth mentioning: 1-3
 - ▶ Positive: 3 20
 - ► Strong: 20 − 150
 - ▶ Very strong: > 150

Modeling perspectives

- M-closed perspective
 - ▶ Data generating process $p_{\star}(y)$ is among the compared models.
 - ▶ Box: all models are false but some are useful.
- M-completed perspective
 - \triangleright $p_{\star}(\mathbf{y})$ is not among the compared models
 - ▶ A subjective belief distribution $p_u(y)$ exists.
- M-open perspective
 - $ightharpoonup p_{\star}(\mathbf{y})$ is not among the compared models
 - $ightharpoonup p_u(\mathbf{y})$ is too complicated/costly to obtain.

Bayesian model probabilities

- \longrightarrow \mathcal{M} -closed perspective, but often used also for \mathcal{M} -open.
- Posterior model probabilities

$$\underbrace{\Pr(\textit{M}_k|y)}_{\text{posterior model prob.}} \propto \underbrace{\textit{p}(y|\textit{M}_k)}_{\text{marginal likelihood prior model prob.}} \cdot \underbrace{\Pr(\textit{M}_k)}_{\text{prior model prob.}}$$

- **Variable selection**: p potential covariates. 2^p submodels M_k .
- Prior over model space, $Pr(M_k)$, can be determined by
 - prior over the total number of effective covariates, p_{eff}.
 - \blacktriangleright uniform prior over subsets with $p_{\rm eff}$ effective covariates.
- A posterior distribution over model space is nice (mock-up):

	M_1	M_2	<i>M</i> ₃	M_4
$\Pr(M_k)$	0.25	0.25	0.25	0.25
$\Pr(M_k y)$	0.05	0.81	0.10	0.04

Model choice in multivariate time series¹

Multivariate time series

$$x_t = \alpha \beta' z_t + \Phi_1 x_{t-1} + ... \Phi_k x_{t-k} + \Psi_1 + \Psi_2 t + \Psi_3 t^2 + \varepsilon_t$$

Need to choose:

- **Lag length**, (k = 1, 2..., 4)
- ► Trend model (s = 1, 2, ..., 5)
- ▶ Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

The most prob	SABLE	(k, r, s)) сом	BINATI	ONS IN	THE	Danisi	H MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

¹Corander and Villani (2004). Statistica Neerlandica.

Graphical models for multivariate time series²

- Graphical models for multivariate time series.
- Zero-restrictions on the effect from time series i on time series j, for all lags. (Granger Causality).
- Zero-restrictions on inverse covariance matrix of the errors. Contemporaneous conditional independence.

Advanced Bayesian Learning

²Corander and Villani (2004). Journal of Time Series Analysis.

Properties of Bayesian model comparison

■ Coherent pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

Consistency when $M_{\star} \in \mathcal{M} = \{M_1, ..., M_K\}$ (\mathcal{M} -closed)

$$\Pr\left(M = M_{\star}|\mathsf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

■ "KL-consistency" when $M_{\star} \notin \mathcal{M}$ (\mathcal{M} -open):

$$\Pr\left(M = \tilde{M}|\mathsf{y}\right) o 1 \quad \mathsf{as} \quad n o \infty,$$

 \tilde{M} minimizes KL divergence between $p_{\tilde{M}}(y)$ and $p_{\star}(y)$.

 \blacksquare KL-consistency may not be great in \mathcal{M} -open. More later.

Improper priors? Forget about it!

- Improper priors cannot be used for model comparison, not even as limits of proper priors.
- Prior $p_k(\theta) = c_k f_k(\theta_k)$ for some normalizing constant c_k .
- Posterior for θ_k : c_k cancels in the ratio

$$p_k(\theta_k|\mathbf{y}) = \frac{p(\mathbf{y}|\theta_k)p_k(\theta)}{\int p(\mathbf{y}|\theta_k)p_k(\theta)d\theta_k} = \frac{p(\mathbf{y}|\theta_k)f_k(\theta_k)}{\int p(\mathbf{y}|\theta_k)f_k(\theta_k)d\theta_k}$$

Bayes factor: normalizing constants do not cancel

$$B_{kl} = \frac{\int p_k(\mathbf{y}|\theta_k)p_k(\theta_k)d\theta_k}{\int p_l(\mathbf{y}|\theta_l)p_l(\theta_l)d\theta_l} = \frac{c_k}{c_l} \cdot \frac{\int p_k(\mathbf{y}|\theta_k)f_k(\theta_k)d\theta_k}{\int p_l(\mathbf{y}|\theta_l)f_l(\theta_l)d\theta_l}$$

- Improper prior OK for parameters that appear in all models.
- Example: Error variance σ^2 in regression. But somewhat suspect, since interpretation of σ^2 depends on model.

Normal example

- Model: $x_1, \ldots, x_n \stackrel{iid}{\sim} N(\theta, \sigma^2), \sigma^2$ known.
- Prior: $\theta \sim N(0, \sigma^2/\kappa_0)$.
- **Likelihood**: \bar{x} is sufficient for θ and $\bar{x}|\theta \sim N(\theta, \sigma^2/n)$.
- Marginal likelihood: $p(\bar{x}|H_1) = N(0, \sigma^2(1/n + 1/\kappa_0))$.
- Testing a sharp null: $H_0: \theta = 0$ vs $H_1: \theta \neq 0$.

$$B_{01} = \frac{p(\bar{x}|H_0)}{p(\bar{x}|H_1)} = \frac{\sqrt{2\pi\sigma^2(1/n+1/\kappa_0)}\exp\left(-\frac{1}{2\sigma^2(1/n)}(\bar{x}-0)^2\right)}{\sqrt{2\pi\sigma^2(1/n)}\exp\left(-\frac{1}{2\sigma^2(1/n+1/\kappa_0)}(\bar{x}-0)^2\right)}$$

$$\log \frac{p(\bar{x}|H_0)}{p(\bar{x}|H_1)} = -\frac{1}{2}\log\left(\frac{\kappa_0}{\kappa_0 + n}\right) - \frac{n\bar{x}^2}{2\sigma^2}\left(\frac{n}{\kappa_0 + n}\right)$$

- $\kappa_0 \to \infty$ then $B_{01} \to 1$ (prior under H_1 is a point mass at 0)
- $\kappa_0 \to 0$ then $B_{01} \to \infty$ $(p(\bar{x}|H_1)$ is average $p(\bar{x}|\theta)$ wrt prior)

Normal example

Marginal likelihood and predictive performance

■ The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

Assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- **Prediction** of y_1 is based on the prior of θ . Sensitive to prior.
- Prediction of y_n uses almost all the data to infer θ . Not sensitive to prior when n is not small.

Normal example

- **Model**: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- Prior: $\theta \sim N(0, \sigma^2/\kappa_0)$.
- Intermediate posterior after observation *i*

$$\theta|y_1,...,y_i \sim N\left[w_i(\kappa_0)\cdot \bar{y}_i,\frac{\sigma^2}{i+\kappa_0}\right]$$

where $w_i(\kappa) = \frac{i}{i + \kappa_0}$.

Intermediate predictive density for y_{i+1}

$$y_{i+1}|y_1,...,y_i \sim N\left[w_i(\kappa_0)\cdot \bar{y}_i,\sigma^2\left(1+\frac{1}{i+\kappa_0}\right)\right]$$

- For i=1: $y_1 \sim N\left[0, \sigma^2\left(1+\frac{1}{\kappa_0}\right)\right]$ can be very sensitive to κ_0 .
- For i = n: $y_n|y_1, ..., y_{n-1} \stackrel{approx}{\sim} N(\bar{y}_{n-1}, \sigma^2)$, not sensitive to κ_0 .

First observation is sensitive to $\kappa = 1/\sqrt{\kappa_0}$

First observation is sensitive to κ - zoomed

Log Predictive Score - LPS

- Reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a posterior.
- Predictive (Density) Score (PS). Decompose $p(y_1, ..., y_n)$ as $\underbrace{p(y_1)p(y_2|y_1)\cdots p(y_{n^*}|y_{1:(n^*-1)})}_{training} \underbrace{p(y_{n^*+1}|y_{1:n^*})\cdots p(y_n|y_{1:(n-1)})}_{test}$
- Usually report on log scale: Log Predictive Score (LPS).
- Time-series: obvious which data are used for training.
- Cross-sectional data: training-test split by cross-validation:

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Computing the marginal likelihood

Conjugate models:

$$p(y) = \frac{p(y|\theta)p(\theta)}{p(\theta|y)}$$

Marginal likelihood is a prior expectation.

$$p(y) = \int p(y|\theta)p(\theta)d\theta = E_{p(\theta)}[p(y|\theta)].$$

■ (Bad) Monte Carlo estimate. Draw $\theta^{(i)} \stackrel{\textit{iid}}{\sim} p(\theta)$ and

$$\hat{p}(y) = \frac{1}{N} \sum_{i=1}^{N} p(y|\theta^{(i)}).$$

Unstable when prior is somewhat different from likelihood.

Importance sampling. Let $\theta^{(1)}, ..., \theta^{(N)}$ be draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx N^{-1}\sum_{i=1}^{N} \frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

Computing the marginal likelihood

- Chib's method (1995, JASA). Great, but only Gibbs sampling.
- Chib-Jeliazkov (2001, JASA) generalizes to MH algorithm (good for IndepMH, terrible for RWM).
- Reversible Jump MCMC (RJMCMC) for model inference. (hard to design proposals, often slow convergence).
- Bayesian nonparametrics (e.g. Dirichlet process priors).
- The Laplace approximation:

$$\ln \hat{\rho}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln \left| J_{\hat{\theta},\mathbf{y}}^{-1} \right| + \frac{p}{2} \ln(2\pi),$$

where p is the number of unrestricted parameters.

BIC approximation: $J_{\hat{\theta}, \mathbf{v}}$ behaves like $n \cdot I_p$ in large samples

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

$Pr(M_k|y)$ can be overfident - macroeconomics³

Table: Posterior model probabilities - Smets-Wouters DSGE model

Base	M1	M2	М3	M4	M5	M6	M7	M8
0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00

³Oelrich et al (2020). When are Bayesian model probabilities overconfident?

$Pr(M_k|y)$ can be overfident - neuroscience⁴

Table: Posterior model probabilities - Dynamic Causal Models

Α	F	Р	AF	PA	PF	PAF
0.00	0.00	1.00	0.00	0.00	0.00	0.00

⁴Oelrich et al (2020). When are Bayesian model probabilities overconfident?

Model selection as a decision problem⁵

Utility

$$u(M_k, \tilde{\boldsymbol{y}})$$

Posterior expected utility

$$\bar{u}(M_k|\mathbf{y}) = \int u(M_k, \tilde{\mathbf{y}}) \rho_u(\tilde{\mathbf{y}}|\mathbf{y}) d\tilde{\mathbf{y}}$$

 \longrightarrow \mathcal{M} -closed

$$\rho_u(\tilde{\boldsymbol{y}}|\boldsymbol{y}) = \sum_{k=1}^K \Pr(M_k|\boldsymbol{y}) \rho_k(\tilde{\boldsymbol{y}}|\boldsymbol{y})$$

⁵Bernardo and Smith (1994). Bayesian Theory, Wiley.

Scoring rules

Log score

$$u(M_k, \tilde{\boldsymbol{y}}) = \log p_k(\tilde{\boldsymbol{y}}|\boldsymbol{y})$$

Quadratic

$$u(M_k, \tilde{\mathbf{y}}) = 1 - \int \left[\rho_k(\tilde{\mathbf{y}}|\mathbf{y}) - \delta_{\tilde{\mathbf{y}}}(\tilde{\mathbf{y}}) \right]^2 d\tilde{\mathbf{y}} = 2\rho_k(\tilde{\mathbf{y}}|\mathbf{y}) - \int \rho_k^2(\tilde{\mathbf{y}}|\mathbf{y}) d\tilde{\mathbf{y}}$$

- Proper rule: $\mathbb{E}_{p(\tilde{\boldsymbol{y}}|M_k)}[u(M,\tilde{\boldsymbol{y}})]$ is maximized for $M=M_k$.
- Local rule: $u(M_k, \tilde{\mathbf{y}})$ depends on $p(\mathbf{y}|M_k)$ only through the realized value $p(\tilde{\mathbf{y}}|M_k)$.
- The log score is the only local and proper scoring rule.
- Quadratic is proper, but not local.
- In real problems we may get utility from a model by
 - Predictive performance/profits etc
 - ▶ Computational and computer memory considerations.
 - Interpretation and communication abilities.

Choosing a model and an action

- Models are used for taking an action $a \in \mathcal{A} = \{a_1, \dots, a_J\}$.
- Utility

$$u(M_k, a_j, \tilde{\boldsymbol{y}})$$

Expected utility of model choice

$$\bar{u}(M_k|\mathbf{y}) = \int u(M_k, a^*(\mathbf{y}), \tilde{\mathbf{y}}) p_u(\tilde{\mathbf{y}}|\mathbf{y}) d\tilde{\mathbf{y}}$$

given optimal action $a^*(y)$ in M_k obtained by maximizing

$$\bar{u}(a|M_k, \mathbf{y}) = \int u(M_k, a_j, \tilde{\mathbf{y}}) p_u(\tilde{\mathbf{y}}|\mathbf{y}) d\tilde{\mathbf{y}}$$

Point prediction $u(M_k, a_j, \tilde{y}) = -(a_j - \tilde{y})^2$ with solution $a_k^*(\mathbf{y}) = \mathbb{E}(\tilde{y}|M_k, \mathbf{y}).$

Model averaging

- Not always a need for selecting one model.
- Utility

$$u(a_j, \tilde{\boldsymbol{y}})$$

Expected utility of action

$$ar{u}(a_j|oldsymbol{y}) = \int u(a_j, ilde{oldsymbol{y}})
ho_u(ilde{oldsymbol{y}}|oldsymbol{y}) d ilde{oldsymbol{y}}$$

where $p_u(\tilde{\boldsymbol{y}}|\boldsymbol{y})$ is obtained by model averaging

$$\rho_u(\tilde{\boldsymbol{y}}|\boldsymbol{y}) = \sum_{k=1}^K \Pr(M_k|\boldsymbol{y}) \rho_k(\tilde{\boldsymbol{y}}|\boldsymbol{y})$$

No model selection, but still model comparison: $Pr(M_k|\mathbf{y})$.

Bayesian cross-validation

- \mathcal{M} -open: $p_u(\tilde{\mathbf{y}}|\mathbf{y})$ is not available \Rightarrow Cross-validation ⁶
- Generalization performance on new data $\tilde{\mathbf{y}} \sim p_{\star}(\tilde{\mathbf{y}})$.
- Here: focus on conditionally iid data $\tilde{y}_i | \theta$.
- **Expected log pointwise predictive density** for a new dataset of same size as training data $\mathbf{y} = (y_1, \dots, y_n)^{\top}$

$$elpd = \sum_{i=1}^{n} \int \log p(\tilde{y}_{i}|\boldsymbol{y}) p_{\star}(\tilde{y}_{i}) d\tilde{y}_{i}$$

Over-estimate of elpd from the training data

$$lpd = \sum_{i=1}^{n} log \, p(y_i | \mathbf{y}) = \sum_{i=1}^{n} log \int p(y_i | \theta) p(\theta | \mathbf{y}) d\theta$$

■ Computing lpd by posterior simulation $\theta^{(s)} \sim p(\theta|\mathbf{y})$

$$\widehat{\text{lpd}} = \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i | \theta^{(s)}) \right)$$

⁶Bernardo and Smith (1994). Bayesian Theory, Wiley.

Leave-one-out (LOO) cross-validation

Bayesian LOO estimate of out-of-sample performance

$$\operatorname{elpd}_{\operatorname{loo}} = \sum_{i=1}^{n} \log p(y_i | \boldsymbol{y}_{-i})$$

where

$$p(y_i|\mathbf{y}_{-i}) = \int p(y_i|\theta)p(\theta|\mathbf{y}_{-i})d\theta$$

- Computationally costly: need simulate from *n* posteriors.
- **Importance sampling** with $p(\theta|\mathbf{y})$ as importance function.
- Importance weights

$$r_i^{(s)} = \frac{p(\theta^{(s)}|\mathbf{y}_{-i})}{p(\theta^{(s)}|\mathbf{y})} \propto \frac{1}{p(y_i|\theta^{(s)})}$$

■ LOO predictive distributions

$$p(\tilde{y}_i|\mathbf{y}_{-i}) \approx \frac{\sum_{s=1}^{S} r_i^{(s)} p(\tilde{y}_i|\theta^{(s)})}{\sum_{s=1}^{S} r_i^{(s)}}$$

Leave-one-out (LOO) cross-validation

At actual test data $\tilde{y}_i = y_i$. Harmonic mean of $p(y_i | \theta^{(s)})$:

$$p(y_i|\mathbf{y}_{-i}) \approx \frac{1}{S^{-1} \sum_{s=1}^{S} \frac{1}{p(y_i|\theta^{(s)})}}.$$

- Large weights important for the variance.
- PSIS-LOO: Pareto Smoothed Importance Sampling.
 - **Fit generalized Pareto** to largest importance ratios. Get \hat{k} .
 - Replace largest weights with expected values of order statistics from generalized Pareto.
- Pareto parameter \hat{k} can be used to assess the estimate:
 - ► *k* < 1/2 OK!
 - ▶ $1/2 \le k \le 1$ Warning!
 - k > 1. Red alert!
- Compute $p(y_i|\mathbf{y}_{-i})$ by sampling from $p(\theta|\mathbf{y}_{-i})$ when $\hat{k} > 0.7$.

WAIC

■ Watanabe's Bayesian AIC (WAIC)

$$\widehat{elpd}_{waic} = \widehat{lpd} - \hat{p}_{waic}$$

 p_{waic} is the effective number of parameters

$$p_{waic} = \sum_{i=1}^{n} \mathbb{V}_{p(\theta|\mathbf{y})} \left[\log p(y_i|\theta) \right]$$

- \hat{p}_{waic} estimates p_{waic} from simulation $\theta^{(s)} \sim p(\theta|\mathbf{y})$.
- WAIC removes some of the bias in lpd in estimating elpd.

Stacking - Optimal Prediction Pools

Model averaging

$$\rho(\tilde{\boldsymbol{y}}|\boldsymbol{y}) = \sum_{k=1}^{K} \Pr(M_k|\boldsymbol{y}) \rho_k(\tilde{\boldsymbol{y}}|\boldsymbol{y})$$

Stacking: Optimize model selection loss wrt ω_k

$$g(\omega) = u\left(\sum_{k=1}^{K} \omega_k p_k(\tilde{\boldsymbol{y}}|\boldsymbol{y}), \tilde{\boldsymbol{y}}\right)$$

Stacking uses log score out-of-sample (LOO)

$$g_{ls}(\omega) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \omega_k p_k(y_i | \boldsymbol{y}_{-i})$$

- Stacking weights converge as $n \to \infty$.
- Unlike $Pr(M_k|\mathbf{y})$, does not give zeros-one solutions.⁷

⁷Geweke and Amisano (2011). Optimal Prediction Pools. Journal of Econometrics.

Stacking - Optimal Prediction Pools⁸

 $^{^{8}}$ Geweke and Amisano (2011). Optimal Prediction Pools. Journal of Econometrics.