

Big Data Tools and Techniques

Week 6

Real-Time Magic

Stream Processing & Structured Streaming in PySpark

Expectations

- 1. Choose a quiet place to attend the class and please concentrate during the lecture.
- 2. Put your questions in Padlet and I will review them in the due time (Padlet link is in BB, week 6, Lecture folder for Q&A week6).
- 3. You can find a handout on BB.
- 4. We will have 5 mins break after the first hour of the lecture (please remind me).
- 5. Jisc code will be shared during the break time.

Learning Outcomes

- 1. To recognize the stream processing
- 2. To describe differences between batch and stream processing
- 3. To apply Apache Spark Structured Streaming in different use cases.

Different Types of Analysis

Types of Analysis	Questions	Value	Complexity	Example
Descriptive	What happened?	Summarizes past performance.	Low	Monthly sales report.
Diagnostic	Why did it happen?	Identifies causes of past events.	Moderate	Analysing drop in sales for a region.
Predictive	What will happen?	Forecasts future outcomes.	High	Predicting product demand for the next quarter.
Prescriptive	What should we do about it?	Recommends actions to achieve goals.	Very high	Optimizing inventory levels for the predicted demand to avoid stockouts.

Characteristics of Big Data (The 5 Vs)

Data Analytics

Allows comprehensive processing at scheduled intervals

Historical datasets

Modelling

Insight

Question?

Does this approach work for every applications?

Activity

Stream Processing

Stream processing

Unveiling the Core of Stream Processing Pipelines

Real-Time Data Processing Funnel

Data Sources

Engines

Stream Processing Engine Overview

Data Storage

How should processed data be stored?

Data Sinks

Streamlining Data to Actionable Insights

Monitoring and Management

Components of Stream Processing Pipelines

Key Features

- Real-time Processing
- Low Latency
- Data Streams
- Stateful Processing
- Event-Driven
- Windowing

Key Challenges

- Complexity of Handling Late
 Data
- State Management
- Resource & Performance Tuning
- Increased System Complexity
- Data Quality

News

 Wes Streeting unveils plans for 'patient passports' to hold all medical records

Use Case - Real-Time Health Monitoring for Chronic Disease Management

• How stream processing can transform patient care by enabling real-time health monitoring, particularly for chronic diseases such as heart failure or diabetes.

• Source: <u>arxiv.org</u> and <u>confluent.io</u>

Batch Vs Stream

Aspect	Stream Processing	Batch Processing
Latency	Milliseconds to seconds	Minutes to hours
Data Nature	Unbounded, continuous	Bounded, discrete
Processing	Incremental (micro- batches) or event-by- event	Processed all at once
Use Cases	Real-time monitoring, IoT, fraud detection	Reporting, analytics, historical analysis

Choose the right data approach for your needs.

Apache Spark Streaming

Structured Streaming

Every data item that is arriving on the stream is like a new row being appended to the input table.

Structured Streaming Model

The possible input sources

- File source
 - Reads files written in a directory as a stream of data.

File-O.json

File-1.json

File-2.json

File-3.json

File-4.json

File-n.json

Files will be processed in the order of file modification time.

If *latestFirst* is set, order will be reversed

Supported file formats are text, CSV, JSON, ORC, Parquet.

Input Stream (file source)

```
streamingInputDF = (
 spark
                              # it can be "read" for defining static
   .readStream
processing
  .schema(jsonSchema)
                                 # Set the schema of the JSON
data
  .option("maxFilesPerTrigger", 1) # Treat a sequence of files as a
stream by picking one file at a time
  .json(inputPath)
```

Processing pipeline (examples)

You can do a wide variety of processing/transformation over the incoming data stream.

```
# Split the lines into words
words = streamingInputDF.select(
    explode(
        split(streamingInputDF.value, " ")
    ).alias("word") # name of the new field
)

# Generate running word count
wordCounts = words.groupBy("word").count()
```

Processing pipeline (examples)

```
streamingCountsDF = (
streamingInputDF
  .groupBy(
    streamingInputDF.action,
    window(streamingInputDF.time, "1 hour"))
  .count()
```

Processing pipeline (examples)

```
result_df = streamingInputDF \
    .groupBy("name") \
    .agg({"price": "mean"})
```

The possible output modes

Complete Mode: The entire updated result table is written to external storage.

Append Mode: Only new rows appended in the result table since the last trigger are written to external storage.

Update Mode: Only the rows that were updated in the result table since the last trigger are written to external storage.

Output Sinks

File sink

```
writeStream
   .format("parquet") # can be "orc", "json", "csv", etc.
   .option("path", "path/to/destination/dir")
   .start()
Kafka sink
   writeStream
    .format("kafka")
    .option("kafka.bootstrap.servers", "host1:port1,host2:port2")
   .option("topic", "updates")
   .start()
```

Output Sinks ...

Console sink (for debugging) - Prints the output to the console/stdout every time there is a trigger. Both, Append and Complete output modes, are supported.

```
writeStream
.format("console")
.start()
```

Memory sink (for debugging) - The output is stored in memory as an in-memory table. Both, Append and Complete output modes, are supported.

```
writeStream
.format("memory")
.queryName("tableName")
.start()
```

Output Stream Example

Start running the query that prints the running counts to the console query = wordCounts \
.writeStream \
.outputMode("complete") \
.format("console") \
.start()

query.awaitTermination() # keeps waiting for the termination of the query.

Output Stream Example ...

```
query = result_df.writeStream \
   .format("console") \
   .outputMode("complete") \
   .start()
query.awaitTermination()
```

Output Stream Example ...

```
query = (
 streamingCountsDF
  .writeStream
  .format("memory")
                        # memory = store in-memory table
  .queryName("counts")
                         # counts = name of the in-memory table
  .outputMode("complete") # complete = all the counts should be in
the table
  .start()
```

References

- https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
- https://docs.databricks.com/structured-streaming/examples.html
- https://www.databricks.com/spark/getting-started-with-apache-spark/streaming
- https://docs.databricks.com/getting-started/streaming.html#notebook-stream
- https://www.splunk.com/en_us/blog/learn/stream-processing.html
- https://arxiv.org/pdf/1707.04364
- https://www.confluent.io/en-gb/blog/single-patient-view/

Workshop

- Defining an appropriate schema for parsing incoming messages.
- Implementing input data stream.
- Designing a pipeline to process data.
- Creating a right stream writer