Super-allowed α decay above doubly-magic 100 Sn and properties of 104 Te = 100 Sn \otimes α

Peter Mohr¹ a

Diakoniekrankenhaus, D-74523 Schwäbisch Hall, Germany

Received: date / Revised version: date

Abstract. α-decay half-lives for 104,105,106 Te and 108,109,110 Xe close above the doubly-magic 100 Sn are calculated from systematic double-folding potentials. The derived α preformation factors are compared to results for 212,213,214 Po and 216,217,218 Rn above the doubly-magic 208 Pb. α-decay energies of $Q_{\alpha} = 5.42 \pm 0.07$ MeV and 4.65 ± 0.15 MeV are predicted for 104 Te and 108 Xe; the corresponding half-lives are $T_{1/2} \approx 5$ ns for 104 Te and of the order of $60 \, \mu s$ for 108 Xe. Additionally, the properties of rotational bands in 104 Te are analyzed, and the first excited 2^+ state in 104 Te is predicted at $E_x = 650 \pm 40 \, \text{keV}$; it decays preferentially by γ emission with a reduced transition strength of 10 Weisskopf units to the ground state of 104 Te and with a minor branch by α emission to the ground state of 100 Sn.

PACS. 21.10.-k Properties of nuclei; nuclear energy levels – 21.10.Tg Lifetimes – 27.60.+j $90 \le A \le 149 - 21.60$.Gx Cluster models

1 Introduction

Studies of α -decay properties of nuclei with $Z \approx N$ in the mass region above $A \approx 100$ have been stimulated by recent experimental progress: Seweryniak et al. [1] have detected the α -decay of 105 Te at the Argonne Fragment Analyzer, and Liddick et al. [2] have analyzed the α -decay chain 109 Xe(α) 105 Te(α) 101 Sn at the Recoil Mass Spectrometer of the Holifield Radioactive Ion Beam Facility. In both papers the measured α -decay half-lives are interpreted as indication for super-allowed α -decay in the vicinity of the doubly-magic nucleus ¹⁰⁰Sn with Z = N = 50. Whereas the larger experimental uncertainties in [1] allowed only to conclude "a modest enhancement of α -decay rates toward the N = Z line", the latest data of [2] clearly confirm the super-allowed α -decay of ¹⁰⁵Te by comparison with the analogous α -decay of ²¹³Po. A first theoretical report by Xu and Ren [3] is based on improved folding potentials, and they find an increased α preformation factor for N = Z nuclei.

The present study reanalyzes the new experimental data [1,2] using a similar model as [3] in combination with double-folding potentials which are close to the results of elastic scattering data on $N \approx Z$ data in the $A \approx 100$ mass region (92 Mo [4], 106 Cd [5], 112 Sn [6]). The results further confirm the super-allowed α -decay around 100 Sn. The systematic properties of the double-folding potentials allow a prediction of the α -decay energy of 104 Te and 108 Xe with relatively small uncertainties. However, the prediction of the α -decay half-lives has still considerable uncertainties

because of the exponential dependence on the α -decay energy. In addition, α cluster properties of the nucleus $^{104}\mathrm{Te} = ^{100}\mathrm{Sn} \otimes \alpha$ can be predicted in a similar way as in [7,8] for $^{94}\mathrm{Mo} = ^{90}\mathrm{Zr} \otimes \alpha$. In particular, the excitation energy of the first excited 2^+ state in $^{104}\mathrm{Te}$ and its decay properties by γ and α emission are calculated. These decay properties have noticeable influence on the experimental determination of the α -decay of $^{104}\mathrm{Te}$.

2 α -decay half-lives

In a semi-classical approximation the α -decay width Γ_{α} is given by the following formulae [9]:

$$\Gamma_{\alpha} = PF \frac{\hbar^2}{4\mu} \exp\left[-2 \int_{r_0}^{r_3} k(r) dr\right] \tag{1}$$

with the preformation factor P, the normalization factor F

$$F \int_{r_1}^{r_2} \frac{dr}{2k(r)} = 1 \tag{2}$$

and the wave number k(r)

$$k(r) = \sqrt{\frac{2\mu}{\hbar^2} |E - V(r)|} \qquad . \tag{3}$$

 μ is the reduced mass and E is the decay energy of the α -decay which was taken from the mass table of Ref. [10] and the recent experimental results of [1,2]. The r_i are the classical turning points. For $0^+ \to 0^+$ s-wave decay

^a email: WidmaierMohr@compuserve.de

the inner turning point is at $r_1=0$. r_2 varies around 7 fm, and r_3 varies strongly depending on the energy. The decay width Γ_{α} is related to the half-life by the well-known relation $\Gamma_{\alpha}=\hbar \ln 2/T_{1/2,\alpha}$. Following Eq. (1), the preformation factor may also be obtained as

$$P = \frac{T_{1/2,\alpha}^{\text{calc}}}{T_{1/2,\alpha}^{\text{exp}}} \tag{4}$$

where Γ_{α} or $T_{1/2,\alpha}^{\rm calc}$ are calculated from Eq. (1) with P=1. For completeness, I define the here predicted half-life for unknown nuclei as $T_{1/2,\alpha}^{\rm pre} = T_{1/2,\alpha}^{\rm calc}/P$. Further details of the model can be found in [11,12].

The potential V(r) in Eq. (3) is given by

$$V(r) = V_N(r) + V_C(r) = \lambda V_F(r) + V_C(r)$$
 (5)

where the nuclear potential V_N is the double-folding potential V_F multiplied by a strength parameter $\lambda \approx 1.1-1.3$ [13]. The nuclear densities have been taken from [14] in the same parametrization as in [12] for all nuclei under study. V_C is the Coulomb potential in the usual form of a homogeneously charged sphere with the Coulomb radius R_C chosen the same as the rms radius of the folding potential V_F . For decays with angular momenta $L \neq 0$ an additional centrifugal potential $V_L = L(L+1)\hbar^2/(2\mu r^2)$ is used.

The potential strength parameter λ of the folding potential was adjusted to the energy of the α particle in the α emitter $(A+4)=A\otimes\alpha$. The number of nodes of the bound state wave function was taken from the Wildermuth condition

$$Q = 2N + L = \sum_{i=1}^{4} (2n_i + l_i) = \sum_{i=1}^{4} q_i$$
 (6)

where Q is the number of oscillator quanta, N is the number of nodes and L the relative angular momentum of the α -core wave function, and $q_i = 2n_i + l_i$ are the corresponding quantum numbers of the nucleons in the α cluster. I have taken q=4 for $50 < Z, N \le 82, q=5$ for $82 < Z, N \le 126$ and q=6 for N>126 where Z and N are the proton and neutron number of the daughter nucleus. This leads to Q=16 for the nuclei above $^{100}\mathrm{Sn}$ and Q=22 for the nuclei above $^{208}\mathrm{Pb}$.

The results for the nuclei 108,109,110 Xe and 104,105,106 Te above the doubly-magic 100 Sn and for 216,217,218 Rn and 212,213,214 Po above the doubly-magic 208 Pb are listed in Table 1. The derived preformation factors P are shown in Fig. 1 as a function of ΔA_D where ΔA_D gives the distance from a double shell closure. E.g., the preformation factor for the α -decay 106 Te \rightarrow 102 Sn can be found at $\Delta A_D = 2$ because the daughter nucleus 102 Sn has two nucleons above the doubly-magic 100 Sn. The same value of $\Delta A_D = 2$ is found for the α -decay 214 Po \rightarrow 210 Pb. Thus, a comparison between the results above A = 100 and above A = 208 can be done easily.

The systematic behavior of the potential parameters is one main advantage of the folding potentials. The potential strength parameter λ and the normalized volume

Fig. 1. Comparison of preformation factors P for the α -decays of 104,105,106 Te and 108,109,110 Xe above doubly-magic 100 Sn (circles) and 212,213,214 Po and 216,217,218 Rn above doubly-magic 208 Pb (squares), derived from Eq. (4). The open circles for 104 Te and 108 Xe indicate assumed values: $P=10\,\%$ for 104 Te and $P=5\,\%$ for 108 Xe. The lines are to guide the eye only.

integral per interacting nucleon pair

$$J_R = \frac{\lambda}{A_P A_T} \int V_F(r) \, d^3r \tag{7}$$

show values around $\lambda \approx 1.10$ and $J_R \approx 303\,\mathrm{MeV}\,\mathrm{fm}^3$ for the systems $^{100,101,102}\mathrm{Sn} \otimes \alpha$ and $^{104,105,106}\mathrm{Te} \otimes \alpha$ above A=100; the variations of λ and J_R are less than 1% and allow thus extrapolations with limited uncertainties. The same range of variations of less than 1% is found for the considered systems above A=208 where $\lambda \approx 1.24$ and $J_R \approx 327\,\mathrm{MeV}\,\mathrm{fm}^3$.

The analysis of the $0^+ \to 0^+$ decays of the even-even

The analysis of the $0^+ \to 0^+$ decays of the even-even systems is straightforward. The ground state transitions dominate because these transitions have the maximum energy, and the decay is not hindered by an additional centrifugal barrier because L=0. In both decays $^{217}{\rm Rn} \to ^{213}{\rm Po}$ and $^{213}{\rm Po} \to ^{209}{\rm Pb}$ the ground state transitions $9/2^+ \to 9/2^+$ with L=0 also dominate. However, the analysis of the α -decays $^{109}{\rm Xe} \to ^{105}{\rm Te}$ and $^{105}{\rm Te} \to ^{101}{\rm Sn}$ requires further study.

Two α groups have been detected in the decay of 109 Xe \rightarrow 105 Te which have been interpreted as the L=0 and L=2 decays from the $7/2^+$ ground state of 109 Xe to the $5/2^+$ ground state and $7/2^+$ first excited state in 105 Te [2]. From Eq. (1) one calculates $T_{1/2,\alpha}^{\rm calc}=5.71\times 10^{-4}\,\mathrm{s}$ for the L=2 ground state decay and $T_{1/2,\alpha}^{\rm calc}=1.42\times 10^{-3}\,\mathrm{s}$ for the L=0 decay to the first excited state, in both cases using P=1. The theoretical branching is 71% for the ground state branch and 29% for the branch to the first excited state. This is in excellent agreement with the experimental values of (70 ± 6) % for the ground state branch and (30 ± 6) % for the branch to the first excited state [2]. In Fig. 1 I show the preformation factor P in 109 Xe for the L=0 decay only because all the other decays in Fig. 1 have the same L=0.

decay	$J_i{ ightarrow} J_f$	E (MeV)	λ	J_R (MeV fm ³)	$T_{1/2}^{\text{exp}}$ or $T_{1/2}^{\text{pre}}$ (s)	$T_{1/2}^{ m calc}$ (s)	P (%)
$\begin{array}{c} 2^{18}\text{Rn} \rightarrow {}^{214}\text{Po} \\ 2^{17}\text{Rn} \rightarrow {}^{213}\text{Po} \\ 2^{16}\text{Rn} \rightarrow {}^{212}\text{Po} \\ 2^{14}\text{Po} \rightarrow {}^{210}\text{Pb} \\ 2^{13}\text{Po} \rightarrow {}^{209}\text{Pb} \\ 2^{12}\text{Po} \rightarrow {}^{208}\text{Pb} \end{array}$	$0^{+} \rightarrow 0^{+}$ $9/2^{+} \rightarrow 9/2^{+}$ $0^{+} \rightarrow 0^{+}$ $0^{+} \rightarrow 0^{+}$ $9/2^{+} \rightarrow 9/2^{+}$ $0^{+} \rightarrow 0^{+}$	7.263 7.887 8.200 7.834 8.536 8.954	1.2431 1.2390 1.2386 1.2384 1.2333 1.2316	328.2 327.2 327.2 327.3 326.1 325.7	$(3.5 \pm 0.5) \times 10^{-2}$ $(5.4 \pm 0.5) \times 10^{-4}$ $(4.5 \pm 0.5) \times 10^{-5}$ $(1.64 \pm 0.02) \times 10^{-4}$ $(4.2 \pm 0.8) \times 10^{-6}$ $(2.99 \pm 0.02) \times 10^{-7}$	3.41×10^{-3} 3.30×10^{-5} 4.07×10^{-6} 8.32×10^{-6} 9.38×10^{-8} 8.70×10^{-9}	9.74 ± 1.39 6.11 ± 0.57 9.04 ± 1.01 5.06 ± 0.06 2.23 ± 0.43 2.96 ± 0.02
$^{110}\text{Xe} \rightarrow ^{106}\text{Te}$ $^{109}\text{Xe} \rightarrow ^{105}\text{Te}$ $^{108}\text{Xe} \rightarrow ^{104}\text{Te}$ $^{106}\text{Te} \rightarrow ^{102}\text{Sn}$ $^{105}\text{Te} \rightarrow ^{101}\text{Sn}$ $^{104}\text{Te} \rightarrow ^{100}\text{Sn}$	$0^{+} \rightarrow 0^{+}$ $7/2^{+} \rightarrow 7/2^{+}$ $0^{+} \rightarrow 0^{+}$ $0^{+} \rightarrow 0^{+}$ $5/2^{+} \rightarrow 5/2^{+}$ $0^{+} \rightarrow 0^{+}$	3.885 4.067 4.65 ° 4.290 4.889 5.42 °	1.0981 1.1006 1.099 1.1026 1.1006 1.100	302.4 303.2 303.4 304.5 304.1 304.0	$\begin{array}{l} \approx 4 \times 10^{-1} \ ^{a} \\ \approx 4 \times 10^{-1} \ ^{a} \\ (1.3 \pm 0.2) \times 10^{-2} \\ \approx 60 \ \mu s \ ^{c,d} \\ (6.0^{+3.0}_{-1.0}) \times 10^{-5} \\ (6.2 \pm 0.7) \times 10^{-7} \\ \approx 5 \ ns \ ^{c} \end{array}$	1.29×10^{-2} $1.42 \times 10^{-3} b$ $\approx 3 \times 10^{-6} d$ 8.66×10^{-6} 3.07×10^{-8} $\approx 5 \times 10^{-10}$	≈ 3.2 $\approx 3^{\ b}$ $\approx 5^{\ e}$ $14.4^{+3.0}_{-4.8}$ 4.95 ± 0.56 $\approx 10^{\ e}$

Table 1. α -decay half-lives for nuclei above ¹⁰⁰Sn and ²⁰⁸Pb.

For the α -decay $^{105}\mathrm{Te} \to ^{101}\mathrm{Sn}$ only one α group has been detected in [2], and an upper limit of 5% is given for other decay branches. The α -decay strength increases with increasing energy and decreasing angular momentum. If only one decay branch is observed, one may conclude that this branch corresponds to a L=0 ground state transition. Consequently, $J^{\pi}(^{101}\mathrm{Sn})=J^{\pi}(^{105}\mathrm{Te})=5/2^{+}$ [2]. This is in agreement with a recent theoretical prediction [22]. The derived values for the potential strength parameter λ and the volume integral J_R fit into the systematics and thus strengthen the above tentative spin assignment.

The results in Fig. 1 and Table 1 confirm the superallowed nature of α -decay near the doubly-magic $^{100}\mathrm{Sn}$. For $^{216,217,218}\mathrm{Rn}$ one finds preformation values P between about 5% and 10%. Surprisingly, P slightly decreases for $^{212,213,214}\mathrm{Po}$ to values between about 2% and 5% when approaching the doubly-magic daughter nucleus $^{208}\mathrm{Pb}$. For $^{109,110}\mathrm{Xe}$ relatively small values of $P\approx3\%$ are found. When approaching the doubly-magic daughter $^{100}\mathrm{Sn}$, the preformation values P show the expected behavior and increase to about 5% to 15% for $^{105,106}\mathrm{Te}$. A comparison between the preformation factors P for the Po isotopes and the Te isotopes shows that

$$P(\text{Te}) \approx 3 \times P(\text{Po})$$
 (8)

in agreement with the conclusions of [1,2].

3 Predicted half-lives of ¹⁰⁴Te and ¹⁰⁸Xe

The systematic behavior of the potential parameters λ and J_R in combination with the shown preformation factors P (see Fig. 1) enables the extrapolation to the decays $^{108}\text{Xe} \rightarrow ^{104}\text{Te} \rightarrow ^{100}\text{Sn}$ with limited uncertainties. For the prediction of the α -decay energies I use a local potential which is adjusted to the neighboring nuclei.

The potentials for $^{105}\mathrm{Te}=^{101}\mathrm{Sn}\otimes\alpha$ and $^{106}\mathrm{Te}=^{102}\mathrm{Sn}\otimes\alpha$ are practically identical. From the average $J_R=304.29\,\mathrm{MeV}\,\mathrm{fm}^3$ one obtains the $\alpha\text{-decay}$ energy of $^{104}\mathrm{Te}$ $E=5.354\,\mathrm{MeV},$ whereas a linear extrapolation yields a slighly weaker potential $J_R=303.76\,\mathrm{MeV}\,\mathrm{fm}^3$ and slightly higher energy $E=5.481\,\mathrm{MeV}.$ Combining these results, a reasonable prediction of the $\alpha\text{-decay}$ energy of $^{104}\mathrm{Te}$ is $E=5.42\pm0.07\,\mathrm{MeV}.$

From the lower decay energy $E=5.354\,\mathrm{MeV}$ one obtains $T_{1/2,\alpha}^\mathrm{calc}=7.87\times10^{-10}\,\mathrm{s}$ from Eq. (1) with P=1; the higher decay energy yields $T_{1/2,\alpha}^\mathrm{calc}=3.13\times10^{-10}\,\mathrm{s}$. The uncertainty of the α -decay energy of about 70 keV translates to an uncertainty in the calculated half-life of about a factor of 1.5. For a prediction of the α -decay half-life one has to find a reasonable assumption for the preformation factor P. Following the pattern of P in Fig. 1, I use $P=10\,\%$ with an estimated uncertainty of a factor of two. Combining the above findings, the predicted half-life of $^{104}\mathrm{Te}$ is $T_{1/2,\alpha}^\mathrm{pre}=5\,\mathrm{ns}$ with an uncertainty of about a factor three. The uncertainty of the predicted half-life is composed of similar contributions for the unknown α -decay energy and the assumed preformation factor P.

The potentials for $^{109}\mathrm{Xe} = ^{105}\mathrm{Te} \otimes \alpha$ and $^{110}\mathrm{Xe} = ^{106}\mathrm{Te} \otimes \alpha$ change by about $1\,\mathrm{MeV}\,\mathrm{fm^3}$; this is still very similar, but not as close as in the above $^{105}\mathrm{Te} = ^{101}\mathrm{Sn} \otimes \alpha$ and $^{106}\mathrm{Te} = ^{102}\mathrm{Sn} \otimes \alpha$ cases. Repeating the above procedure, one finds the α -decay energy $E = 4.792\,\mathrm{MeV}$ from the average $J_R = 302.82\,\mathrm{MeV}\,\mathrm{fm^3}$ and $E = 4.506\,\mathrm{MeV}$ from the extrapolated $J_R = 303.96\,\mathrm{MeV}\,\mathrm{fm^3}$. The calculated half-lives using P = 1 are $T_{1/2,\alpha}^{\mathrm{calc}} = 7.40 \times 10^{-7}\,\mathrm{s}$ for the higher energy $E = 4.792\,\mathrm{MeV}$ and $T_{1/2,\alpha}^{\mathrm{calc}} = 1.18 \times 10^{-5}\,\mathrm{s}$ for the lower energy $E = 4.506\,\mathrm{MeV}$. Combining these results, the α -decay energy is $E = 4.65 \pm 0.15\,\mathrm{MeV}$. Together with a preformation factor of about $P = 5\,\%$ the α -decay half-life is predicted to be of the order of $100\,\mu\mathrm{s}$.

^a α -decay branch only

^b branching to $7/2^+$: see Sect. 2

^c predicted values; see Sect. 3

^d huge uncertainty from unknown energy E; see Sect. 3

^e assumed values; see Fig. 1

Fig. 2. Volume integral J_R and energy E in dependence of the mass number A_D from $^{102}\mathrm{Sn}$ to $^{124}\mathrm{Sn}$ (See text).

However, the uncertainty of the decay energy of 150 keV leads to an uncertainty in the half-life of a factor of 4; thus it is impossible to predict the α -decay half-life of 108 Xe better than this uncertainty.

It is interesting to compare the predictions for the α -decay properties of $^{104}\mathrm{Te}$ with the results of [3]. In [3] the α -decay energy is linearly extrapolated from the neighboring even-even Te isotopes $^{106,108,110}\mathrm{Te}$ leading to $E=5.053\,\mathrm{MeV}$. I have repeated this procedure for the Te isotopes $^{106}\mathrm{Te}$ to $^{126}\mathrm{Te}$. The α -decay energies and derived volume integrals J_R are shown in Fig. 2. For an extrapolation to the α -decay of $^{104}\mathrm{Te}$ I have fitted the data in Fig. 2 using a polynomial

$$E(A_D) = \sum_{i=0}^{n} a_i (A_D - 100)^i$$
 (9)

and a corresponding formula for the volume integral J_R . It has turned out that the reduced χ^2 of the fit improves when one increases the number n up to n=4; no further significant improvement is found for larger values of n. These fourth-order polynomials for E and J_R are shown as lines in Fig. 2. The resulting numbers for $A_D=100$, i.e. the $^{104}{\rm Te} \to ^{100}{\rm Sn}$ α -decay, are $E=5.379\,{\rm MeV}$ and $J_R=304.4\,{\rm MeV}$ fm³ which is within the error bars of the values derived above from the neighboring potentials.

Because of the higher α -decay energy derived in this work, the α -decay half-life of ¹⁰⁴Te is about a factor of 10 shorter compared to the predictions of [3]. Experimental data are required to distinguish between the predictions of this work and Ref. [3].

The results for $^{108}\mathrm{Xe}$ roughly agree with the predictions in [3]: Xu et al. predict the $\alpha\text{-decay}$ energy $E=4.44\,\mathrm{MeV}$ compared to $E=4.65\pm0.15\,\mathrm{MeV}$ in this work, and the predicted half-life in [3] is between 150 and 290 $\mu\mathrm{s}$ which should be compared to the predicted half-life of

Table 2. Comparison of α -decay energies from a local extrapolation using folding potentials (this work) to predictions of global mass formula [15,16,17,18,19]. All energies are given in MeV.

	exp. or	FRDM	HFB-1	HFB-2	DZ
	this work	[16]	[17,15]	[18]	[19]
¹⁰⁴ Te	5.42 ± 0.07^{a} 4.89 4.29 4.65 ± 0.15^{a} 4.22^{b} 3.89	6.12	4.85	4.68	5.24
¹⁰⁵ Te		6.31	4.91	4.28	4.91
¹⁰⁶ Te		6.01	4.72	4.16	4.60
¹⁰⁸ Xe		5.53	4.69	4.38	4.93
¹⁰⁹ Xe		4.81	4.23	4.03	4.62
¹¹⁰ Xe		4.61	3.60	3.71	4.33

^a predicted from folding potential

 $T_{1/2,\alpha}^{\rm pre}=236\,\mu{\rm s}$ derived from the lower limit $E=4.5\,{\rm MeV}$ of the energy with $P=5\,\%$.

4 Comparison to mass formulae

The α -decay energies of the folding calculation may be compared to predictions from global mass formulae. Here I restrict myself to the three selected mass formulae of the so-called Reference Input Parameter Library RIPL-2 of the IAEA [15] which are the Finite Range Droplet Model (FRDM) [16], the Hartree-Fock-Bogoliubov (HFB) method [17] in the versions of [15] and its latest update [18], and the simple 10-parameter formula of Duflo and Zuker (DZ) [19]. The results are listed in Table 2.

The FRDM predictions seem to overestimate the experimental α -decay energies slightly, especially when approaching the doubly-magic core $^{100}\mathrm{Sn}$. The predictions of HFB-1 and HFB-2 are close to the experimental values, and also the simple 10-parameter parametrization DZ is in reasonable agreement with the data. The predictions from the folding potential calculation for $^{104}\mathrm{Te}$ and $^{108}\mathrm{Xe}$ are close to the average values of the above global mass models [15,16,17,18,19].

5 Accuracy of semi-classical half-lives

The results which are presented in Table 1 and Fig. 1 have been obtained using the semi-classical approximation of Eq. (1) for the decay width Γ_{α} . From a fully quantum-mechanical analysis the decay width Γ_{α} is related to the energy dependence of a resonant scattering phase shift $\delta_L(E)$ by

$$\delta_L(E) = \arctan \frac{\Gamma_\alpha}{2(E_R - E)}$$
 (10)

In practice, it is difficult to determine widths of the order of $1\,\mu {\rm eV}$ at energies of the order of several MeV because of numerical problems. For the system $^{104}{\rm Te}=^{100}{\rm Sn} \otimes \alpha$ such an analysis is possible at the limits of numerical stability.

^b from ground state in ¹⁰⁹Xe to ground state in ¹⁰⁵Te

Fig. 3. Phase shift δ_L for the L=0 partial wave for the system $^{104}{\rm Te}=^{100}{\rm Sn}\otimes\alpha$. The derived width from Eq. (10) is $\Gamma=1.36\times 10^{-12}$ MeV. Note the extremely small stepsize of the calculation of $\Delta E=1.0\times 10^{-14}$ MeV! See text for details.

In Fig. 3 the resonant behavior of the s-wave phase shift $\delta_{L=0}(E)$ is shown around the resonance energy $E_R=5.481\,\mathrm{MeV}$ which is obtained in the potential with $J_R=303.76\,\mathrm{MeV}$ (see Sect. 3). The dots are obtained from solving the Schrödinger equation at $E=E_0+i\times\Delta E$ with $E_0=5.481305851985\,\mathrm{MeV}$ and $\Delta E=10^{-14}\,\mathrm{MeV}$. The full line is a fit of data using Eq. (10) where the resonance energy E_R and the width Γ_α have been adjusted. This yields $\Gamma_\alpha=1.36\,\mu\mathrm{eV}$ and a corresponding half-life of $T_{1/2,\alpha}^{\mathrm{calc}}=0.336\,\mathrm{ns}$. The semi-classical approximation in Eq. (1) gives $T_{1/2,\alpha}^{\mathrm{calc}}=0.313\,\mathrm{ns}$ which is about 8% lower than the value from the fully quantum-mechanical calculation.

The validity of the semi-classical approximation for Γ_{α} in Eq. (1) is confirmed for the α -decay of 104 Te by the above analysis of the scattering phase shift $\delta_L(E)$ with an uncertainty of less than 10%. For two other nuclei (⁸Be and 212 Po) the semi-classical approximation deviates by about 30% from the fully quantum-mechanical value. In all cases the semi-classical half-life is slightly shorter than the fully quantum-mechanical result.

In a detailed study on proton-decay half-lives of proton-rich nuclei [20] it has been shown that the semi-classical approximation agrees within about $\pm 10\,\%$ with the result of a direct calculation of the transition amplitude using the distorted-wave Born approximation (DWBA) formalism. Surprisingly, the agreement between the quantum-mechanical DWBA calculation and the semi-classical result becomes worse in [20] when an improved normalization factor from Eq. (25) of [20] is used compared to the simple normalization factor in Eq. (24) of [20] or Eq. (2) in this work. For the case of 104 Te, the α -decay half-life in the semi-classical calculation changes from 0.313 ns using Eq. (2) to 0.231 ns using Eq. (25) of [20]; thus, the findings in [20] are confirmed.

6 Properties of $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$

From the given potential of the system $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$ it is not only possible to determine the α -decay half-life of the ground state. Following the formalism in [21], energies

Table 3. Excitation energies $E_x = E - E(0^+)$ of excited states in $^{104}\text{Te} = ^{100}\text{Sn} \otimes \alpha$ woth Q = 16, 17, and 18.

J^{π}	Q	N	L	λ	E (keV)	E_x (keV)
0+	16	8	0	1.1005	5354.2	0.0
2^+	16	7	2	1.0915	6003.5	649.3
4^+	16	6	4	1.0825	6739.6	1385.4
6^{+}	16	5	6	1.0735	7565.2	2211.0
8+	16	4	8	1.0645	8477.2	3123.0
10^{+}	16	3	10	1.0555	9469.2	4115.0
12^{+}	16	2	12	1.0465	10543.2	5189.0
14^{+}	16	1	14	1.0375	11731.2	6377.0
16^{+}	16	0	16	1.0285	13097.1	7742.9
1^{-}	17	8	1	1.0960	10951.4	5597.2
0_{+}	18	9	0	1.1005	$\approx 15\mathrm{MeV}^{~a}$	$\approx 10\mathrm{MeV}^{~a}$

a very broad

and electromagnetic decay properties of excited states in $^{104}\mathrm{Te}$ can be predicted.

The ground state wave function of 104 Te is characterized by Q=2N+L=16, see Eq. (6). Further members of this Q=16 band are expected with $J^{\pi}=2^+,4^+,\ldots,16^+$. It has been observed that the potential strength parameter λ has to be varied slightly to obtain an excellent prediction of the excitation energies:

$$\lambda(L) = \lambda(L=0) - c \times L \tag{11}$$

with the constant $c \approx (3-5) \times 10^{-3}$ for neighboring $N = 50 \otimes \alpha$ nuclei $^{94}\text{Mo} = ^{90}\text{Zr} \otimes \alpha$ [7,8], $^{93}\text{Nb} = ^{89}\text{Y} \otimes \alpha$ [24], neighboring Z = 50 nuclei $^{116}\text{Te} = ^{112}\text{Sn} \otimes \alpha$, and the systems $^{20}\text{Ne} = ^{16}\text{O} \otimes \alpha$ [23], $^{44}\text{Ti} = ^{40}\text{Ca} \otimes \alpha$ [13], and $^{212}\text{Po} = ^{208}\text{Pb} \otimes \alpha$ [25].

For the following analysis I adopt $\lambda=1.1005$ which corresponds to $J_R=304.29\,\mathrm{MeV}\,\mathrm{fm^3}$ from the average of the two neighboring systems $^{105,106}\mathrm{Te}=^{101,102}\mathrm{Sn}\otimes\alpha$ and $c=(4.5\pm0.3)\times10^{-3}$ from the neighboring nuclei $^{93}\mathrm{Nb},~^{94}\mathrm{Mo},$ and $^{116}\mathrm{Te}$ above N=50 or Z=50 cores. Because the predicted excitation energies $E_x=E-E(0^+)$ (see Table 3) are relative to the ground state energy, the excitation energies do not change significantly when one varies $\lambda(L=0)$ or J_R within the given uncertainties.

varies $\lambda(L=0)$ or J_R within the given uncertainties. The first excited 2^+ state in $^{104}{\rm Te}$ is found at $E_x=649\,{\rm keV}$. From the uncertainty of the constant c in Eq. (11) one can derive a very small uncertainty for the potential strength $\lambda(L=2)$ and a resulting uncertainty of about $40\,{\rm keV}$ for the excitation energy E_x for the first 2^+ state. Somewhat larger uncertainties are found for $\lambda(L>2)$; consequently, the uncertainty of the predicted excitation energies increases up to about $400\,{\rm keV}$ for the 16^+ state at $E_x=8.55\,{\rm MeV}$.

In addition, the 1^- and 0^+ band heads of the bands with Q=17 and Q=18 are predicted at energies around $E_x=5.60\,\mathrm{MeV}$ and about $10\,\mathrm{MeV}$. The 0^+ state is very broad. It is difficult to estimate the uncertainty of the predicted energies of the 1^- and 0^+ states with Q=17 and Q=18 because usually the potential strength has to be slightly readjusted to obtain a good description of such bands. A rough estimate for the uncertainty is about

 $1\,\mathrm{MeV}$ which corresponds to an uncertainty of about $2\,\%$ for the potential strength parameter $\lambda.$

Following the formalism of Ref. [21], reduced transition strengths of 10.1 W.u., 14.0 W.u., and 14.1 W.u. are calculated for the $2^+ \rightarrow 0^+, 4^+ \rightarrow 2^+, \text{ and } 6^+ \rightarrow 4^+$ transitions in ¹⁰⁴Te. The corresponding radiation widths Γ_{γ} are slightly larger than the direct α -decay widths from the excited states in ¹⁰⁴Te to the ground state in ¹⁰⁰Sn. The γ -decay branching ratio

$$b_{\gamma} = \frac{\Gamma_{\gamma}}{\Gamma_{\gamma} + \Gamma_{\alpha}^{\text{pre}}} \tag{12}$$

is between 86% and 93% for the 2⁺ state, between 62% and 76% for the 4⁺ state, and between 48% and 62% for the 6⁺ state. This is an extremely important result for future experiments! If the γ -decay branch b_{γ} of the first 2⁺ state were small (e.g., of the order of a few per cent), it would be extremely difficult to produce ¹⁰⁴Te in its ground state because ¹⁰⁴Te produced in excited states could directly decay to the ¹⁰⁰Sn ground state by α emission

It is interesting to note that the predicted branchings b_{γ} are not very sensitive to the predicted excitation energy. E.g., if the excitation energy of the first excited 2^+ state in $^{104}{\rm Te}$ is $E_x=1\,{\rm MeV}$, the radiation width Γ_{γ} increases with E_{γ}^5 by a factor of about 9 and the width Γ_{α} increases by a factor of about 8 because of the reduced Coulomb barrier. Thus, b_{γ} values close to unity are very likely. Consequently, a direct production reaction like e.g. $^{50}{\rm Cr}(^{58}{\rm Ni},4n)^{104}{\rm Te}$ similar to the experiment in [1] should be feasible. However, only the indirect production via the α -decay of $^{108}{\rm Xe}$ in a reaction like e.g. $^{54}{\rm Fe}(^{58}{\rm Ni},4n)^{108}{\rm Xe}$ similar to [2] ensures the production of $^{104}{\rm Te}$ in its ground state.

7 Conclusions

The systematic properties of folding potentials provide a powerful tool for the analysis of the system $^{104}{\rm Te}=^{100}{\rm Sn}$ \otimes α above the doubly-magic $^{100}{\rm Sn}$ core. In particular, α -decay energies and half-lives can be predicted with relatively small uncertainties. The predicted α -decay energy for $^{104}{\rm Te}$ is $E=5.42\pm0.07\,{\rm MeV},$ and the corresponding half-life is $T_{1/2,\alpha}^{\rm pre}=5\,{\rm ns}$ with an uncertainty of a factor of three.

Excitation energies and decay properties of the members of the Q=16 rotational band in $^{104}\mathrm{Te}$ are calculated, and the predicted values have small uncertainties. For the first excited 2^+ state in $^{104}\mathrm{Te}$ one obtains $E_x=650\pm40\,\mathrm{keV}.$ The $\gamma\text{-decay}$ strength to the ground state in $^{104}\mathrm{Te}$ is about 10 Weisskopf units. The corresponding radiation width Γ_γ is about a factor of 10 larger than the $\alpha\text{-decay}$ width Γ_α to the ground state in $^{100}\mathrm{Sn}.$

The finding that Γ_{γ} is larger than Γ_{α} for excited states in $^{104}\mathrm{Te}$ is important for the experimental production of $^{104}\mathrm{Te}$ in its ground state and the measurement of the α -decay half-life of $^{104}\mathrm{Te}$. The condition $\Gamma_{\gamma} > \Gamma_{\alpha}$ allows

to use reactions which produce $^{104}\mathrm{Te}$ in excited states because these states preferentially decay to the $^{104}\mathrm{Te}$ ground state. However, only the indirect production of $^{104}\mathrm{Te}$ via the $\alpha\text{-decay}$ of $^{108}\mathrm{Xe}$ safely guarantees that $^{104}\mathrm{Te}$ is produced in its ground state.

I thank Z. Ren, Gy. Gyurky, and Zs. Fülöp for encouraging discussions and the referees for their constructive reports.

References

- D. Seweryniak, K. Starosta, C.N. Davids, S. Gros, A.A. Hecht, N. Hoteling, T.L. Khoo, K. Lagergren, G. Lotay, D. Peterson, A. Robinson, C. Vaman, W.B. Walters, P. J. Woods, and S. Zhu, Phys. Rev. C 73, 061301(R) (2006).
- S.N. Liddick, R. Grzywacz, C. Mazzocchi, R.D. Page, K.P. Rykaczewski, J.C. Batchelder, C.R. Bingham, I.G. Darby, G. Drafta, C. Goodin, C.J. Gross, J.H. Hamilton, A.A. Hecht, J.K. Hwang, S. Ilyushkin, D.T. Joss, A. Korgul, W. Królas, K. Lagergren, K. Li, M.N. Tantawy, J. Thomson, and J.A. Winger, Phys. Rec. Lett. 97, 082501 (2006).
- 3. C. Xu and Z. Ren, Phys. Rev. C 74, 037302 (2006).
- Zs. Fülöp, Gy. Gyürky, Z. Máté, E. Somorjai, L. Zolnai,
 D. Galaviz, M. Babilon, P. Mohr, A. Zilges, T. Rauscher,
 H. Oberhummer, and G. Staudt, Phys. Rev. C 64, 065805 (2001).
- G.G. Kiss, Zs. Fülöp, Gy. Gyürky, Z. Máté, E. Somorjai, D. Galaviz, A Kretschmer, K. Sonnabend, and A. Zilges, Europ. Phys. J. A 27, 197 (2006).
- D. Galaviz, Zs. Fülöp, Gy. Gyürky, Z. Máté, P. Mohr, T. Rauscher, E. Somorjai, and A. Zilges, Phys. Rev. C 71, 065802 (2005).
- 7. S. Ohkubo, Phys. Rev. Lett. 74, 2176 (1995).
- 8. F. Michel, S. Ohkubo, and G. Reidemeister, Prog. Theor. Phys. Suppl. **132**, 7 (1998).
- S. A. Gurvitz and G. Kälbermann, Phys. Rev. Lett. 59, 262 (1987).
- A.H. Wapstra, G. Audi, and C. Thibault, Nucl. Phys. A729, 129 (2003).
- 11. P. Mohr, Phys. Rev. C 61, 045802 (2000).
- 12. P. Mohr, Phys. Rev. C 73, 031301(R) (2006).
- 13. U. Atzrott, P. Mohr, H. Abele, C. Hillenmayer, and G. Staudt, Phys. Rev. C **53**, 1336 (1996).
- H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).
- T. Belgya et al., Handbook for calculations of nuclear reaction data, RIPL-2, IAEA-TECDOC-1506 (IAEA, Vienna, 2006); available online at http://www-nds.iaea.org/RIPL-2/.
- P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995); http://t2.lanl.gov/data/astro/molnix96/molnix.html.
- M. Samyn, S. Goriely, P.-H. Heenen, J. M. Pearson, and F. Tondeur, Nucl. Phys. A700, 142 (2001).
- S. Goriely, M. Samyn, J. M. Pearson, and M. Onsi, Nucl. Phys. A750, 425 (2005); http://www-astro.ulb.ac.be/Nucdata/Masses/.
- 19. J. Duflo and A. P. Zuker, Phys. Rev. C52, 23 (1995).
- S. Åberg, P. B. Semmes, and W. Nazarewicz, Phys. Rev. C 56, 1762 (1997); Phys. Rev. C 58, 3011 (1998).
- B. Buck, A.C. Merchant, and S.M. Perez, Phys. Rev. C 51, 559 (1995).
- 22. O. Kavatsyuk et al., GSI Report 2006-1 (to be published).

- 23. H. Abele and G. Staudt, Phys. Rev. C ${\bf 47},\,742$ (1993).
- 24. G.G. Kiss et al.,, in preparation.
- 25. F. Hoyler, P. Mohr, and G. Staudt, Phys. Rev. C **50**, 2631 (1994).