Summary

Sample Mean	Sample Proportion	Sample Variance	Sample Standard Deviation	Z-Score
$\bar{X} = \frac{1}{n} \sum x_i$	$\hat{p} = \frac{k}{n}$	$S^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$	$S = \sqrt{S^2}$	$Z = \frac{X - Mean}{SD}$

Probability

General Addition Rule $P(E \cup F) = P(E) + P(F) - P(E \cap F)$	General Multiplication Rule $P(E \cap F) = P(E F)P(F)$
Two Independent Events	Law of Total Prob.
$P(E \cap F) = P(E)P(F)$	$P(E) = P(E B_1)P(B_1) + + P(E B_k)P(B_k)$
Bayes' Rule	Complement Rule
$P(B_i E) = \frac{P(E B_i)P(B_i)}{P(E B_1)P(B_1) + P(E B_2)P(B_2) + \dots + P(E B_k)P(B_k)}$	P(E') = 1 - P(E)
Permutation	Combination
$P_k^n = \frac{n!}{(n-k)!}$	$C_k^n = \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Random Variables and Probability Distribution

Expected Value (Discrete)	Variance (Discrete)	Z-score
$E[X] = \mu = \sum xp(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$	$Z = \frac{X - \mu}{\sigma}$
Expected value (Binomial)	Variance (Binomial)	Probability (Binomial)
$\mu = np$	$\sigma^2 = np(1-p)$	$p(x) = \binom{n}{k} p^k (1-p)^{n-k}$
Expected value (Geometric)	Variance (Geometric)	Probability (Geometric)
$\mu = \frac{1}{p}$	$\sigma^2 = \frac{1-p}{p^2}$	$p(x) = (1-p)^{x-1}p, x = 1, 2, 3, \dots$
$E[y] = E[a_1x_1 + a_2x_2 + + a_nx_n]$	$Var(y) = Var(a_1x_1 + a_2x_2 + + a_nx_n)$	Constant, a_o
$\mu_y = a_1 \mu_1 + a_2 \mu_2 + \dots + a_n \mu_n$	$\sigma_y^2 = b_1^2 \sigma_1^2 + b_2^2 \sigma_2^2 + \dots + b_n^2 \sigma_n^2; \ \sigma_y = \sqrt{Var(y)}$	$E[a_o] = a_o; Var(a_o) = 0$

Probability in density curves

Rule	SD within the mean	Area under the curve
Empirical	1	68%
Empirical	2	95%
Empirical	3	99.7%
Chebyshev	k	$\geq (1 - \frac{1}{k^2})100\%$

Normal Approximation to a Binomial Distribution

X is Binomial	X is Normal
P(a < X < b)	P(a + 0.5 < X < b - 0.5)
$P(a \le X \le b)$	P(a - 0.5 < X < b + 0.5)

Sampling Distribution

Statistic	Mean	Standard Error	Distribution
\bar{X}	$\mu_{\bar{x}} = \mu$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	Normal
\bar{X}	$\mu_{\bar{x}} = \mu$	$\sigma_{ar{x}} = rac{S}{\sqrt{n}}$	T with $df = n - 1$
\hat{p}	$\mu_{\hat{p}} = p$	$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	Normal

Parameter Estimation

Parameter	Point estimator	Confidence Interval	Additional
p	\hat{p}	$\hat{p}\pm Z_{crit}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$	$n = p(1-p)(\frac{1.96}{B})^2$ at 95%
μ	$ar{X}$	$\bar{X} \pm Z_{crit} \frac{\sigma}{\sqrt{n}} \text{ or } \bar{X} \pm t_{crit} \frac{S}{\sqrt{n}}$	$n = (\frac{1.96\sigma}{B})^2 at 95\%$
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$(\hat{p}_1 - \hat{p}_2) \pm Z_{crit} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$(\bar{x}_1 - \bar{x}_2) \pm t_{crit} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$	$df = \frac{(V_1 + V_2)^2}{\frac{V_1^2}{n_1 - 1} + \frac{V_2^2}{n_2 - 1}}; V_1 = \frac{S_1^2}{n_1} \text{ and } V_2 = \frac{S_2^2}{n_2}$

Hypothesis Testing

Testing	Test Statistic	σ	Degrees of Freedom	Additional
μ	$Z = \frac{\bar{X} - \mu_o}{\sigma / \sqrt{n}}$	known		
μ	$t = \frac{\bar{X} - \mu_o}{S/\sqrt{n}}$	unknown	n - 1	
p	$Z = \frac{\hat{p} - p_o}{\sqrt{\frac{p_o(1 - p_o)}{n}}}$	•	·	
$\mu_1 - \mu_2$	$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_{1o} - \mu_{2o})}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	unknown	$\frac{(V_1 + V_2)^2}{\frac{V_1^2}{n_1 - 1} + \frac{V_2^2}{n_2 - 1}}$	$V_1 = \frac{S_1^2}{n_1}$ and $V_2 = \frac{S_2^2}{n_2}$
$p_1 - p_2$	$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}}$			$\hat{p}_c = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$
Goodness of Fit	$X^2 = \sum \frac{(O-E)^2}{E}$		k - 1	$E = np_{io}$
Homogeneity or Independence	$X^2 = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$		(I - 1)(J - 1)	$E_{ij} = \frac{n_{i.}n_{.j}}{n}$
	$X^2 = \sum_{i} \sum_{j} \frac{n_{ij}^2}{E_{ij}} - n$		(I - 1)(J - 1)	$E_{ij} = \frac{n_{i.}n_{.j}}{n}$

Simple Linear Regression: Inferential Methods

S_e	S_b	S_{xx}	Conf. Interval of b	Test Statistic for b
$\sqrt{\frac{SSE}{n-2}}$	$\frac{S_e}{\sqrt{S_{xx}}}$	$\sum (x - \bar{x})^2$	$b \pm t_{crit}S_b$	$\frac{b-eta_o}{S_b}$

Summarizing Bivariate Data

Correlation	y-intercept	slope	Sum Sq Error	Sum Sq Total
$r = \frac{\sum Z_x Z_y}{n-1}$	$a = \bar{Y} - b\bar{X}$	$b = \frac{\sum (x - \bar{X})(y - \bar{Y})}{\sum (x - \bar{X})^2}$	$SSE = \sum (y - \hat{y})^2$	$SSTo = \sum (y - \bar{Y})^2$
Coef. Determination	Standard Error			
$r^2 = 1 - \frac{SSE}{SSTo}$	$S_e = \sqrt{\frac{SSE}{n-2}}$			

ANOVA

Source	df	SS	MS	F
Treatment	k - 1	$\sum_{i=1}^k n_i (\bar{x}_i - \bar{x})^2$	$\frac{SST}{k-1}$	$\frac{MST}{MSE}$
Error	n - k	$\sum_{i=1}^{k} (n_i - 1) S_i^2$	$\frac{SSE}{n-k}$	
Total	n - 1	SST + SSE		