P8130_final_project

Leonor Rui

2024-12-03

Appendix

• Data Import

• Data Description

.. cols(

```
str(survival_df)
```

```
## spc_tbl_ [4,024 x 16] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ age
                         : num [1:4024] 68 50 58 58 47 51 51 40 40 69 ...
## $ race
                          : chr [1:4024] "White" "White" "White" ...
                          : chr [1:4024] "Married" "Married" "Divorced" "Married" ...
## $ marital_status
## $ t_stage
                          : chr [1:4024] "T1" "T2" "T3" "T1" ...
                          : chr [1:4024] "N1" "N2" "N3" "N1" ...
## $ n_stage
## $ x6th_stage
                          : chr [1:4024] "IIA" "IIIA" "IIIC" "IIA" ...
## $ differentiate
                          : chr [1:4024] "Poorly differentiated" "Moderately differentiated" "Moderat
                          : chr [1:4024] "3" "2" "2" "3" ...
## $ grade
                          : chr [1:4024] "Regional" "Regional" "Regional" "Regional" ...
## $ a_stage
## $ tumor_size
                          : num [1:4024] 4 35 63 18 41 20 8 30 103 32 ...
                          : chr [1:4024] "Positive" "Positive" "Positive" "Positive" ...
## $ estrogen_status
## $ progesterone_status : chr [1:4024] "Positive" "Positive" "Positive" "Positive" ...
## $ regional_node_examined: num [1:4024] 24 14 14 2 3 18 11 9 20 21 ...
## $ reginol_node_positive : num [1:4024] 1 5 7 1 1 2 1 1 18 12 ...
## $ survival_months
                           : num [1:4024] 60 62 75 84 50 89 54 14 70 92 ...
                           : chr [1:4024] "Alive" "Alive" "Alive" "Alive" ...
## $ status
## - attr(*, "spec")=
```

```
##
         Age = col_double(),
##
         Race = col_character(),
         'Marital Status' = col character(),
##
          'T Stage' = col_character(),
##
          'N Stage' = col_character(),
##
##
         '6th Stage' = col_character(),
##
         differentiate = col character(),
     . .
         Grade = col_character(),
##
##
         'A Stage' = col_character(),
     . .
##
          'Tumor Size' = col_double(),
##
         'Estrogen Status' = col_character(),
          'Progesterone Status' = col_character(),
##
          'Regional Node Examined' = col_double(),
##
     . .
##
          'Reginol Node Positive' = col_double(),
##
          'Survival Months' = col_double(),
##
         Status = col_character()
##
   - attr(*, "problems")=<externalptr>
```

Numeric variables include age, tumor_size, regional_node_examined, reginol_node_positive, and survival_months.

These are continuous variables that can be used for our later regression analysis.

Categorical variables include race, marital_status, t_stage, n_stage, x6th_stage, differentiate, grade, a_stage, estrogen_status, progesterone_status, and status.

Then we will convert these variables into factors.

```
survival_df = survival_df |>
mutate(
    race = factor(race),
    marital_status = factor(marital_status),
    t_stage = factor(t_stage),
    n_stage = factor(n_stage),
    x6th_stage = factor(x6th_stage),
    differentiate = factor(differentiate),
    grade = factor(grade),
    a_stage = factor(a_stage),
    estrogen_status = factor(estrogen_status),
    progesterone_status = factor(progesterone_status),
    status = factor(status)
)
```

```
summary(survival_df) |>
knitr::kable()
```

age race marital_sst	$a_stagemor\underline{estizegeprog} testeusginen\underline{stratyislel}\underline{s} nundiiv\underline{a} bdsiusiuchs$									
Min. BlackDivorcefd1:1	16032732 Moderat	elyt:	Dist	anMin.	Nega	ti Ne ga	tiv M in.	Min.	Min.	Alive:3408
:30.00291 :	:1305 differ-	543	:	:	269	698	:	:	:	
486	enti-		92	1.00			1.00	1.000	1.0	
	ated: 235	1								

age 1	race	marita	ılt_sst	adges	t xge h_	d iffæge ntia	tgrade	a_sta	gemoi	estizoe	por <u>og</u> est	ers ginenasl	tzetgisle]	enazadhiri	<u>aptel</u> siusineh
1st (Othe	ıMarrie	еТ2:1	17826i	IIB	Poorly	2	Regio	n last :39	32ositi	v Po3575i5 v	e1 3 626	1st	1st	Dead
Qu.:47	300	:2643		820	:1130	differ-	:2351	_	Qu.:			Qu.:	Qu.:	Qu.:	:
						enti-			16.00			9.00	1.000	56.0	616
						ated									
						:1111									
Media	May hit	88448	at Te31::	N3:	IIIA:	105 6ifferer	n & iated	NA	Media	a i NA	NA	Median	Median	Media	nΝA
:54.00		45	533	472		: 19	:1111		:			:14.00	:	:	
									25.00				2.000	73.0	
Mean I	NA	Single	T4:	NA	IIIB:	Well	anaplast	iNA	Mean	NA	NA	Mean	Mean	Mean	NA
:53.97		:	102		67	differ-	Grade		:			:14.36	:	:	
		615				enti-	IV: 19		30.47				4.158	71.3	
						ated:									
						543									
3rd	NA	Widov	v&A	NA	IIIC:	NA	NA	NA	3rd	NA	NA	3rd	3rd	3rd	NA
Qu.:61	.00	:			472				Qu.:			Qu.:19.0	Q u.:	Qu.:	
•		235							38.00			·	5.000	90.0	
Max. I	NA	NA	NA	NA	NA	NA	NA	NA	Max.	NA	NA	Max.	Max.	Max.	NA
:69.00									:140.0	00		:61.00	:46.000	:107.0	

The wide range of values in variables such as tumor_size, regional_node_examined, and survival_months indicates the need to explore relationships and their potential nonlinearities with survival, giving us a possible analytical regression model.

colSums(is.na(survival_df))

##	age	race	${ t marital_status}$
##	0	0	0
##	t_stage	${ t n_stage}$	x6th_stage
##	0	0	0
##	differentiate	grade	a_stage
##	0	0	0
##	tumor_size	estrogen_status	<pre>progesterone_status</pre>
##	0	0	0
##	regional_node_examined	reginol_node_positive	survival_months
##	0	0	0
##	status		
##	0		

We can conclude that no missing values are present in this dataset across all variables.

• Data Visualization

Some distributions of the variables in this data

Distribution of age

```
survival_df |>
  ggplot(aes(age)) +
  geom_histogram(fill = "light blue", color = "black") +
  theme_minimal() +
  labs(
    title = "Distribution of age",
    x = "Age",
    y = "Frequency"
)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

The histogram shows the age distribution of patients. Most patients are aged between 40 and 70 years. The data is well spread across middle and older age groups, making it possible for age-related analysis. Therefore, age will likely be a significant predictor for later analysis.

Distribution of tumor size

```
ggplot(survival_df, aes(x = tumor_size)) +
  geom_histogram(fill = "light blue", color = "black") +
  scale_x_continuous(breaks = seq(0, max(survival_df$tumor_size, na.rm = TRUE), by = 5)) +
  labs(
    title = "Distribution of Tumor Size",
```

```
x = "Tumor Size (mm)",
y = "Frequency"
)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Tumor Size

This is the distribution of all tumor sizes, and most of the tumor sizes are smaller than 50 mm. We can find that the most frequent size is around 19 mm, followed by around 14 mm.

Distribution of examined regional node

```
ggplot(survival_df, aes(x = regional_node_examined)) +
  geom_histogram(fill = "light blue", color = "black") +
  scale_x_continuous(breaks = seq(0, max(survival_df$regional_node_examined, na.rm = TRUE), by = 5)) +
  labs(
    title = "Distribution of Examined Regional Node",
    x = "Examined Regional Node",
    y = "Frequency"
)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Examined Regional Node

This plot maps the frequency of different number of examined regional nodes for each subject. The number of examined regional nodes for most subjects are smaller than 30, and the subjects with nearly 12 examined regional nodes are the most.

Distribution of positive regional node

```
ggplot(survival_df, aes(x = reginol_node_positive)) +
  geom_histogram(fill = "light blue", color = "black") +
  scale_x_continuous(breaks = seq(0, max(survival_df$reginol_node_positive, na.rm = TRUE), by = 5)) +
  labs(
    title = "Distribution of Positive Reginol Node",
    x = "Positive Reginol Node",
    y = "Frequency"
)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Distribution of Positive Reginol Node

Then is the distribution of different number of positive reginol node for each subject. Over 2500 subjects only have 1 or 2 positive reginol nodes, which is the most frequent number of positive reginol nodes.

Distribution of Cancer Grades

This bar chart provides an overview of how cancer cases are distributed across grades. Grade 2 represents the majority of cases, suggesting it is the most frequently observed grade, while Grade IV is exceedingly rare.

Distribution of survival months by status

```
ggplot(survival_df, aes(x = survival_months, fill = status)) +
  geom_histogram(binwidth = 5, position = "dodge") +
  labs(title = "Distribution of Survival Months", x = "Survival Months", y = "Frequency") +
  theme_minimal()
```


The Dead group is concentrated in the shorter survival months, while the Alive group is predominant in longer survival months, particularly beyond 60 months.

test the relationship between these variables

Distribution of age by survival status

```
ggplot(survival_df, aes(x = status, y = age)) +
  geom_boxplot(fill = "light blue") +
  labs(title = "Age by Survival Status", x = "Survival Status", y = "Age")
```

Age by Survival Status


```
survival_df |>
group_by(race) |>
summarize(Count = n(), Proportion = n() / nrow(survival_df)) |>
knitr::kable()
```

race	Count	Proportion
Black	291	0.0723161
Other	320	0.0795229
White	3413	0.8481610

The majority of patients in the dataset are White, accounting for approximately 84.82% of the total population. Black patients make up 7.23%, and patients classified as "Other" constitute 7.95%. This imbalance suggests that the dataset is heavily skewed towards White patients, which could influence the generalizability of the findings to other racial groups.

The distribution of the tumor sizes by t_stage

```
ggplot(survival_df, aes(x = tumor_size, y = t_stage)) +
  geom_boxplot(fill = "light blue") +
  scale_x_continuous(breaks = seq(0, max(survival_df$tumor_size, na.rm = TRUE), by = 10)) +
  labs(
    title = "Distribution of Tumor Sizes by T_stage",
```

```
x = "Tumor Sizes",
y = "T_stage"
)
```

Distribution of Tumor Sizes by T_stage

In this plot, we explore the tumor size distribution at different T stages. From T1 to T3, as the stage changes, both the mean tumor sizes and IQR become larger. At T4 stage, the IQR of tumor sizes is much larger than others, and the mean size is smaller than the mean size at T3 stage. There are some outliers both ar T1 stage and T3 stage.

The distribution of survival months by a_stage based on status(alive/dead)

```
ggplot(survival_df, aes(x = survival_months, y = a_stage)) +
  geom_boxplot(fill = "light blue") +
  scale_x_continuous(breaks = seq(0, max(survival_df$survival_months, na.rm = TRUE), by = 10)) +
  labs(
    title = "Distribution of Survival Months by A_stage",
    x = "Survival Months",
    y = "A_stage"
  ) +
  facet_grid(~ status)
```

Distribution of Survival Months by A_stage

Through this plot, we can find that subjects with Distant stage have fewer survival months than subjects with Regional stage. However, the IQR of the survival months of subjects with Distant stage is much larger than subjects with Regional stage.

Distribution of Estrogen Status by Tumor Size Based on race

```
ggplot(survival_df, aes(x = progesterone_status, y = tumor_size)) +
  geom_boxplot(fill = "light blue") +
  labs(
    title = "Distribution of Estrogen Status by Tumor Size",
    x = "Estrogen Status",
    y = "Tumor Size"
  ) +
  facet_grid(~ race)
```


While the overall patterns are consistent, with Negative estrogen status generally associated with slightly larger tumor sizes, the variability and prevalence of outliers differ between groups. The White group shows the greatest spread in tumor size, while the Other group displays the least variability.

Tumor Size Distribution by Grade

Lower grades (1–3) exhibit comparable tumor size distributions, with slight increases in variability as the grade increases.

Grade IV stands out due to its higher median and broader range, suggesting that more aggressive tumor grades are associated with larger tumor sizes.

Proportion of Grade by Estrogen Status

As tumor grade increases, the proportion of Negative estrogen status gradually increases, becoming more prominent in the anaplastic Grade IV category. Conversely, the dominance of the Positive estrogen status decreases with higher tumor grades.

Proportion of Grade by Marital Status

Across all grades, the "Married" group consistently constitutes the largest proportion of individuals, dominating every tumor grade category.

The "Single" group is the second-largest proportion in most grades, particularly Grades 2 and 3.

The "Widowed" group and "Divorced" group make up smaller proportions across all tumor grades.

Relationship Between Age and Tumor Size across status

'geom_smooth()' using formula = 'y ~ x'

Relationship Between Age and Tumor Size

This figure highlights the differences in tumor size distribution and trends with age between individuals who are alive and those who are deceased. While the "Alive" group shows no significant relationship between age and tumor size, the "Dead" group exhibits a pattern where larger tumors are associated with younger ages.

Age vs. Tumor Size Across Grades

'geom_smooth()' using formula = 'y ~ x'

Age vs. Tumor Size Across Grades

Divorced: Tumor size seems to remain fairly constant with age, as the trend line is relatively flat.

Married: A slight negative trend is observable, suggesting that tumor size may decrease marginally with age.

Separated: The data is sparse, but the trend shows a slightly negative relationship, with wide confidence intervals due to fewer observations.

Single: A modest negative trend is observed, indicating a potential decline in tumor size with increasing age.

Widowed: A more apparent negative trend is evident compared to other groups, suggesting a stronger decrease in tumor size with age.