Lab 1: Brainteasers 380CT

(1)

$$3 \ 1 \ 3 \ 6 = 8$$

$$(3+1)/3 \times 6 = (3+1)/(3/6) = 8$$

- Not easy to find, but easy to verify. (NP certificates)
- Could do exhaustive search (Arithmetic trees), but may be easier to "guess then check."
- Think outside the box: think about fractions, not only integers.

(2) Table form:

Action	A (3L Jug)	B (5L Jug)
	0	0
Fill A	3	0
Empty A into B	0	3
Fill A	3	3
Fill B from A (2L)	1	5
Empty B	1	0
Empty A into B	0	1
Fill A	3	1
Empty A into B	0	4

- Not easy to find, easy to verify. (NP certificates)
- Could do exhaustive search (Arithmetic trees), but may be easier to "guess then check."
- (3) White (North pole), spherical triangle.
 - Think outside the box.

(4) Python quick script:

```
lockers = [False for i in range(101)]

for run in range(1,101):
    for locker in range(run,101,run):
        lockers[ locker ] = not lockers[
            locker ]

for i in range(101):
    if lockers[i]:
        print(i)
```

Lab 1: Brainteasers

380CT

• Quick code helps find the pattern. Use maths to justify.

(5) No.

Minimum is:

$$0+1+2+\cdots+9=\frac{10\times(0+9)}{2}=45>44.$$

- Sometimes we have to prove a solution does not exist.
- (6) The answer is: 10 + 9 = 19.

Use "baby-step giant-step": use first egg at floors $10, 20, \ldots, 100$. Once it breaks at floor 10k we then know it will break at $10k - 9, \ldots, 10k - 1$. Use second egg 9 times at most

In general, for n floor: use giant steps of size x: optimal when (n/x+x-1)'=0 i.e. $x=\sqrt{n}$. So number of steps is $2\sqrt{n}-1$.

For 3 eggs: $(n/x + (2\sqrt{x} - 1) - 1)' = 0$ i.e. $x = n^{2/3}$. So number of steps is: $3n^{1/3} - 2$.

For 4 eggs, etc.

When we have "enough" eggs ($\ell \ge \log_2 n$) we can perform binary search: $\log_2 n$ steps.

- Special cases, sub-problems, generalizations.
- (7) No.

There are more black squares than white squares. (Each domino covers exactly one black and one white).

• Idea of invariant.

(1) Give the truth table for the following propositions

Expression	Meaning
$a \wedge b$	a and b
$a \lor b$	$a ext{ or } b$
$a \oplus b$	$a \operatorname{xor} b$
$\neg a$ (or \bar{a})	$\operatorname{not} a$
$a \implies b$	a implies b , or: if a then b
$a \iff b$	a and b are equivalent, or: " a if and only if b "

It is usual to apply these "bit-wise" to the bits of integers, e.g. $0011 \oplus 0101 = 0110$.

Solution									
	$\neg a$	a	b	$a \wedge b$	$a \lor b$	$a \oplus b$	$a \implies b$	$a \iff b$	
	1	0	0	0	0	0	1	1	
	1	0	1	0	1	1	1	0	
	0	1	0	0	1	1	0	0	
	0	1	1	1	1	0	1	1	
·									'

(2) Recall that $\mathbb{N} = \{1, 2, 3, ...\}$ is the set of **natural numbers**, and $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is the set of **integers**.

Consider the following set definitions

- $A = \{a \in \{1, 2, 3, 4\} \mid (a < 2) \lor (a > 3)\}$
- $\bullet \ B = \{a \in \mathbb{N} \mid a < 9\}$
- $\bullet \ C = \{ a \in \mathbb{N} \mid a > 2 \land a < 7 \}$
- $\bullet \ D = \{i \in \mathbb{Z} \mid i^2 \le 9\}$
- a) Give an explicit enumeration for each set, i.e. write down the elements in the form $\{x_1, x_2, \ldots\}$.
- b) What is the cardinality of each set?
- c) Which of these sets are subsets of at least one other set?

Solution

- a) $A = \{1, 4\}$
 - $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - $C = \{3, 4, 5, 6\}$
 - $D = \{-3, -2, -1, 0, 1, 2, 3\}$
- b) #A = 2

(#A is also denoted by |A|)

- #B = 8
- #C = 4
- #D = 7
- c) $A \subset B$ and $C \subset B$.

(3) If the set A is $\{1,3,4\}$ and the set B is $\{3,5\}$, write down:

Expression	Meaning
$A \cup B$	union of A and B
$A \cap B$	intersection of A and B
A - B	A minus B
$A \times B$	Cartesian product of A and B : set of all possible pairs (a, b)
	where $a \in A$ and $b \in B$
2^B (or $\mathcal{P}(B)$)	power set of B: set of all subsets of B

Solution

- $A \cup B = \{1, 3, 4, 5\}$
- $\bullet \ A\cap B=\{3\}$
- $A B = \{1, 4\}$
- $\bullet \ A\times B=\{(1,3),(1,5),(3,3),(3,5),(4,3),(4,5)\}$
- $2^B = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}$
- (4) Draw the (undirected) graph G = (V, E), where

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 4), (2, 3), (2, 4), (3, 5), (1, 5)\}$$

- a) Is the graph connected?
- b) What about the graph G' = (V', E'), where $V' = \{1, 2, 3, 4\}$ and $E' = \{(1, 3), (2, 4)\}$?

(5) Draw the graph G = (V, E), where $V = \{1, \dots, 5\}$ and

$$E = \{(a, b) \mid a, b \in V \land (a < b < a + 3)\}.$$

- (6) Express the following expressions using O-notation
 - \bullet x+5

- $2784x + 132 \times 1074$ $x + x \log^2 x + 35$

• 2016

- $x^{578} + 4685 + 2^x$
- $2016^x + x^x + x!$

- $543x + x^3 + 13$
- $x^2 + x(\log x)^2 + 35$
- $x^{86754} + x!$

Solution

$$x + 5 = O(x)$$

$$2016 = O(1)$$

$$543x + x^{3} + 13 = O(x^{3})$$

$$2784x + 132 \times 1074 = O(x)$$

$$x^{578} + 4685 + 2^{x} = O(2^{x})$$

$$x^{2} + x(\log x)^{2} + 35 = O(x^{2})$$

$$x + x \log^{2} x + 35 = O(x \log^{2} x)$$

$$2016^{x} + x^{x} + x! = O(x^{x})$$

$$x^{86754} + x! = O(x!)$$