Electric Vehicle (EE60082)

Lecture 17: Charger part2

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Basic requirements for a charger(recap)

- > Available power sources
 - >50/60 Hz single phase grid at home
 - >50/60 Hz three phase grid at charging stations
- > Minimum requirements are
 - Controllable DC source
 - ➢ Isolation for safety

Charger architectures (recap)

On-board charger

- Low power
- ➤ Slow charging
- Home charger
- Called AC charger

Transformer ac 50/60 Hz Rectifier Rectifier hfac = Battery dc Inverter And and Filter Filter ← Off-board On-board Conductive ac

Off-board charger

- Medium to high power
- > Fast charging
- Charging stations
- ➤ Called DC charger

Charger standards around the world (recap

Type of Charging	North America	Japan	EU & rest of the market	China	All markets except EU	India
AC Type1: 1-3kW Type2: 3-22kW			000	0000		0000
Plug Name	J1772 (Type 1)	J1772 (Type 1)	Mennekes (Type 2) IEC62196-2	GB/T		Commando (Type- 1): IEC60309 Mennekes (Type-2): IEC62196-2
DC 10-400kW			PP	o o o		
Plug Name	CCS1	CHAdeMO	CCS2	GB/T	TESLA	GB/T, CCS2, CHAdeMO

SAE J1772 (AC) (recap)

Combined Charging Systems (CCS) (recap)

DC charger: Bypassing OBC, directly to battery

DC charger connector

CCS

Charger with diode bridge rectifier (recap)

Charger with Power Factor Correction (PFC) (recap)

PFC stage design (recap)

$$v_{ac}(\theta) = \sqrt{2}V_{ph}\cos\theta$$

$$i_{ac}(\theta) = \sqrt{2}I_{ph}\cos\theta$$

$$\nu_{RB}(\theta) = \sqrt{2} V_{ph} |\cos \theta|$$

$$i_{RB}(\theta) = \sqrt{2}I_{ph}|\cos\theta|$$

PFC boost inductor design (recap)

Duty cycle for the switch

$$d(\theta) = 1 - \frac{v_{RB}(\theta)}{V_{dc}} = 1 - \frac{\sqrt{2}V_{ph}|\cos\theta|}{V_{dc}}$$

Peak-peak current ripple

$$\Delta I_{L(p-p)}(\theta) = \frac{\sqrt{2}V_{ph}|\cos\theta|}{f_s L}d(\theta) = \frac{\sqrt{2}V_{ph}}{f_s L}\left(|\cos\theta| - \frac{\sqrt{2}V_{ph}\cos^2\theta}{V_{dc}}\right)$$

DC capacitor design (recap)

> Challenges: presence of second harmonic current

Option 1: allow this current into battery

Option 2: Filter out this current with the DC capacitor

Option 3: active dc bus

Active filtering (recap)

Drawbacks of passive filtering:

- Very costly (especially if High-Voltage / High-Power)
- > Large weight

Active filtering:

- Use additional circuitry to source/sink current into a "energy reservoir"
- Capacitor Cs can be small as it does not have any ripple specification

Wireless charging (recap)

enhanced safety

➤ More user friendly

Higher technical challenges and cost

Wireless charger (inductive) (recap)

Wireless charger (capacitive) (recap)

Dynamic wireless charger (recap)

Charging infrastructure

Charging power requirements

Legend: PHEV BEV

Top 15 PHEVs and EVs

(in terms of year to date unit sales) in 2020 in Europe

		Legend: Legend:		
Brand	Model	Battery Capacity kWh	AC Charging Capacity kW	DC Charging Capacity kW
Renault	Zoe	44.1	22	50
Tesla	Model 3	75	11	145
VW	ID.3	48	7.2	50
Hyundai	Kona EV	67.1	7.2	77
Audi	e-Tron	95	22	150
VW	e-Golf	35.8	7.2	44
Nissan	LEAF	40	3.6	46
Peugeot	208 EV	46	11	100
KIA	Niro EV	67.1	7.2	77

Brand	Model	Battery Capacity kWh	AC Charging Capacity kW	DC Charging Capacity kW
Mercedes	A250e	15.6	3.7	NA
Volvo	XC40 PHEV	10.7	3.7	NA
Mitsubishi	Outlander PHEV	13.8	3.7	22
VW	Passat GTE	13	3.7	NA
BMW	330e	76	3.6	NA

3.7

Source: CleanTechnica.com

XC60 PHEV

Charging infrastructure levels

Indian Standards EV Charging notified by BIS of 01.11.2021

1. Light EVAC Charge Point

Power Level 1	Charging Device	EV-EVSE Communication	Charge Point Plug/ Socket	Vehicle Inlet/ Connector	
Up to 7 kW	IS-17017-22-1	Bluetooth Low Energy	IS-60309	As per EV manufacturer	

2. <u>Light EV DC Charge Point</u>

Power	Charging	EV-EVSE	Charge Point Plug/	Vehicle Inlet/
Level 1	Device	Communication	Socket	Connector
Up to 7 kW	IS-170	017-25 [CAN]	Combined Socket under development	IS-17017-2-6

3. Parkbay AC Charge Point

	Power Level-	Device/ Protocol	EV-EVSE Communications	Infrastructure Socket	Vehicle Connector
-	Normal Power ~11kW/ 22 kW	IS-17017-1	IS-15118 [PLC] for Smart Charging	IS-17017-2-2	IS-17017-2-2

4. Parkbay DC Charge Point

Power	Device/	EV-EVSE	Infrastructure	Vehicle
Level-2	Protocol	Communications	Socket	Connector
Normal Power ~11kW/ 22 kW	IS-17017-23	IS-17017-24 [CAN] IS-15118 [PLC]	IS-17017-22-2	IS-17017-2-3

5. <u>DC Charging Protocol</u>

Power Level 3	Charging Device	EV-EVSE Communication	Connector
DC 50 kW to 250 kW	IS-17017-23	IS-17017-24 [CAN] IS-15118 [PLC]	IS-17017-2-3

6. <u>eBus Charging Station (Level-4: 250 to 500 kW)</u>

Power Level 4 DC High Power (250 kW> 500 kW)	Charging Device	EV-EVSE Communication	Connector
Dual Gun Charging Station	IS-17017-23-2	IS-15118 [PLC]	IS-17017-2-3
Automated Pantograph Charging Station	IS-17017-3-1		IS-17017-3-2

Electric Vehicle Supply Equipment (EVSE)

- Required hardware between charging plug and AC grid
- > Can be simple or sophisticated based on the power level

Functions of EVSE

- Power delivery to the EV
 - > Simple for Level 1 and 2
 - Complicated for level 3 and 4
- User interface (screen, buttons, indicators)
- > Safety mechanisms (earth fault, overcurrent, etc.)
- Communication with the EV (to negotiate charging speed)
- Authentication & billing (in public chargers)

EVSE for level 1 and 2 (AC charging)

EVSE for level 1 and 2 (AC charging)

Some commercial on-board chargers

EMI
Filter

AC
Grid

Single Phase Active Rectifier

Buck/Boost

Duel Active Bridge Converter

EV Batte
Pack

Hyundai

Tesla

Hella electronics

Integrated Onboard Charger

- Motor drive inverter and machine windings are multi-purposed as battery charger
- > Reduced size, weight, and cost

Some commercial integrated chargers

Renault

Valeo

Continental

Level 3 and 4

Charging station structure

Common AC bus structure

Common DC bus structure

Charging station with renewable sources

Converter topologies for Off-board chargers

ABB Terra 53/54 50-kW fast charger

ABB Terra HP 150-kW highpower charger

Converter topologies for Off-board chargers

Porsche modular fast charger Park A, up to 400 kW

Porsche modular fast charging Park B, up to 350 kW

Converter topologies for Off-board chargers

Tesla V2 Supercharger (150 kW)

Vehicle to grid

Advantages of V2G operation

- Grid Stabilization & Support
 - Peak shaving
 - > Frequency regulation
 - > Emergency backup
- Financial benefits to EV owners
 - Reduced energy bills
 - Utility may pay back to EV owner
- ➤ Environmental Impact
 - > Better renewable integration
 - > Better utilization of battery assets

Thank you!