Nettack

Adversarial Attacks on Neural Networks for Graph Data

KDD 2018 图神经网络对抗攻击开山之作

单目标攻击: Nettack 通过攻击某个节点(攻击者 acttacker)实现让另一个节点(目标 target)的误分类

攻击

攻击理论

攻击目标分两类:

- 图结构攻击 structure attacks
- 特征攻击 feature attacks

攻击节点分两类:

- Target 目标节点: 让模型错误分类的结点
- Attackers 攻击者结点: 攻击者可以操作的结点

攻击方式:

- direct attack 直接攻击:攻击者可以直接操作目标结点,目标结点 == 攻击者结点
- influence attack 推理攻击:攻击者只能操作除目标结点以外的结点,目标结点 ∉ 攻击者结点

Target node $t \in V$: node whose classification label the attacker wants to change

Attacker nodes $S \subset V$: nodes the attacker can modify

Direct attack (S = {t})
 Modify the target's features
 Add connections to the target

Buy likes/followers

 Remove connections from the target

Unfollow untrusted users

Indirect attack ($t \notin S$)

 Modify the attackers' features

 Remove connections from the attackers Example

Hijack friends of target

Create a link/ spam farm

设定攻击范围Δ:

$$\sum_{u} \sum_{i} |X_{ui}^{(0)} - X_{ui}'| + \sum_{u < v} |A_{uv}^{(0)} - A_{uv}'| \leq \Delta$$

攻击目标:

$$\underset{(A',X')\in\mathcal{P}_{\Delta,\mathcal{A}}^{G0}}{\operatorname{max}} \max_{c\neq c_{old}} \ln Z_{v_0,c}^* - \ln Z_{v_0,c_{old}}^*$$

subject to
$$Z^* = f_{\theta^*}(A', X')$$
 with $\theta^* = \arg\min_{\theta} L(\theta; A', X')$

对于参数 θ 的考虑,对于攻击后的图G',应当使用新训练的 θ^* ,考虑到过渡性学习(transductive learning),使用静态参数:原始图像的训练参数。

场景

- 投毒攻击 (poisoning attack)
 - 。 发生在模型被训练前,攻击者可以在训练数据中投毒,导致训练的模型出现故障
- 逃逸攻击 (evasion attack)
 - 发生在模型被训练以后或者测试阶段,模型已经固定了,攻击者无法对模型的参数或者结构产生影响

主要问题

如何有效的攻击

图像:连续特征,可以采用基于梯度构造干扰

图: 离散型数据, 没有梯度

第一, 扰动是不被注意到的

第二,确保攻击者不能修改整个图,允许的扰动数目是有限制的

保留图的结构性 (固有特征)

图结构最突出的特征是它的度分布,使用幂律分布来描述:

$$p(x) \propto x^{-\alpha}$$

缩放参数α的表达式:

$$\alpha_G \approx 1 + |\mathcal{D}_G| \cdot \left[\sum_{d_i \in \mathcal{D}_G} \log \frac{d_i}{d_{\min} - \frac{1}{2}} \right]^{-1}$$

最大似然估计:

$$l(\mathcal{D}_x) = |\mathcal{D}_x| \cdot \log \alpha_x + |\mathcal{D}_x| \cdot \alpha_x \cdot \log d_{\min} - (\alpha_x + 1) \sum_{d_i \in \mathcal{D}_x} \log d_i$$

citeseer数据集度分布:

想法:

□ 拟合幂律分布,对每个节点通过一定方式进行评估,作为权重加入信息传递函数

保留节点特征

特征的共现关系

反例:如果两个节点都没某个特征,经过攻击,两个节点都有了这个特征,就能增加节点的相似性。 在特征共现图上随机游走,如果有相当大的概率到达一个新加入的特征,那么就认为这个扰动的加入是 不被注意的

攻击

代理模型 Surrogate model

☐ Linear surrogate model based on two-layer GCN.

☐ Enables computation of the exact impact of a perturbation efficiently and in closed form.

☐ Attacker chooses perturbation that maximizes loss on the surrogate model (one at a time).

 $Z = f_{\theta}(A, X) = softmax(\hat{A} RXLU(\hat{A}XW^{(1)})W^{(2)})$ Linearize classifier:

 $\log Z' = \hat{A}^2 X W'$ Simplified equation:

 $\max_{\hat{A}} \mathcal{L}'(\log Z'_v) \text{ where } \log Z'_v = [\hat{A}^2 C]_v$ $\max_{X} \mathcal{L}'(\log Z'_v) \text{ where } \log Z'_v = [C_1 X C_2]_v$ Structure perturbations:

Feature perturbations:

为了能够量化扰动的效果,同时简便计算,所以提出了一个替代模型 代理模型使用两层的GCN,把激活函数做了线性的替换

扰动评价

代理模型损失函数:

$$\mathcal{L}_{s}(A, X; W, v_{0}) = \max_{c \neq c_{old}} [\hat{A}^{2} XW]_{v_{0}c} - [\hat{A}^{2} XW]_{v_{0}c_{old}}$$

目标:找到扰动的图损失最大

$$\underset{(A',X')\in\hat{\mathcal{P}}_{\Delta,\mathcal{A}}^{G0}}{\arg\max}\,\mathcal{L}_{\mathcal{S}}\left(A',X';W,v_{0}\right).$$

评分函数:

$$s_{struct}(e; G, v_0) := \mathcal{L}_s(A', X; W, v_0)$$

$$s_{feat}(f; G, v_0) := \mathcal{L}_s(A, X'; W, v_0)$$

算法

Algorithm 1: NETTACK: Adversarial attacks on graphs

```
Input: Graph G^{(0)} \leftarrow (A^{(0)}, X^{(0)}), target node v_0, attacker nodes \mathcal{A}, modification budget \Delta Output: Modified Graph G' = (A', X')

Train surrogate model on G^{(0)} to obtain W // Eq. (13); t \leftarrow 0; while |A^{(t)} - A^{(0)}| + |X^{(t)} - X^{(0)}| < \Delta do

\begin{bmatrix}
C_{struct} \leftarrow \text{candidate\_edge\_perturbations}(A^{(t)}, \mathcal{A}); \\
e^* = (u^*, v^*) \leftarrow \underset{e \in C_{struct}}{\operatorname{arg max}} s_{struct} \left(e; G^{(t)}, v_0\right); \\
C_{feat} \leftarrow \text{candidate\_feature\_perturbations}(X^{(t)}, \mathcal{A}); \\
f^* = (u^*, i^*) \leftarrow \underset{f \in C_{feat}}{\operatorname{arg max}} s_{feat} \left(f; G^{(t)}, v_0\right); \\
if s_{struct}(e^*; G^{(t)}, v_0) > s_{feat}(f^*; G^{(t)}, v_0) \text{ then } \\
G^{(t+1)} \leftarrow G^{(t)} \pm e^*; \\
else \ G^{(t+1)} \leftarrow G^{(t)} \pm f^*; \\
t \leftarrow t + 1; \\
\text{return} : G^{(t)}
```

// Train final graph model on the corrupted graph $G^{(t)}$;

类似贪心思想,每次找到使得Loss最大的扰动

缺点:由于是贪心思想,会陷入局部最优

想法

类似HoneyPot 蜜罐攻击的思想,认为制造类似梯度陷阱的漏洞,让攻击陷入其中

图像数据比较大,能够进行陷阱制作但不影响模型效果,但是图结构不行,图的结构性是度分布。

实现

- (i) the 10 nodes with highest margin of classification, i.e. they are clearly correctly classified
- (ii) the 10 nodes with lowest margin (but still correctly classified)
- (iii) 20 more nodes randomly

直接攻击, Nettack

影响攻击, Nettack-In (从目标的附近随机挑选5个节点作为攻击者,实现不改变目标节点的任何边或特征,并误分类)

效果

分类正确率:

Attack	Cora			Citeseer			Polblogs		
method	GCN	CLN	DW	GCN	CLN	DW	GCN	CLN	DW
Clean	0.90	0.84	0.82	0.88	0.76	0.71	0.93	0.92	0.63
NETTACK	0.01	0.17	0.02	0.02	0.20	0.01	0.06	0.47	0.06
FGSM	0.03	0.18	0.10	0.07	0.23	0.05	0.41	0.55	0.37
RND	0.61	0.52	0.46	0.60	0.52	0.38	0.36	0.56	0.30
NETTACK-IN	0.67	0.68	0.59	0.62	0.54	0.48	0.86	0.62	0.91

直接攻击的效果要比推理攻击更好

- FGSM, 快速梯度下降法,基于梯度的方法应用于离散数据并不是一个好的选择,实验表明在邻接 矩阵中改变元素时,梯度和实际的损失变化不一致
- RND, 改变图的结构, 随机采样点然后添加边

分类效果图:

Figure 6: Results on Cora data using different attack algorithms. Clean indicates the original data. Lower scores are better.

不同目标度数的分类精度:

度数越高越难受到攻击

	[1;5]	[6;10]	[11;20]	[21;100]	[100; ∞)
Clean	0.878	0.823	1.0	1.0	1.0
NETTACK	0.003	0.009	0.014	0.036	0.05

Figure 7: Attacks with limited knowledge about the data