WYKŁAD 2

Relacyjny i obiektowy model danych

Plan wykładu

- Relacyjny model danych
- Obiektowy model danych
- Struktury danych
- Operacje
- Ograniczenia integralnościowe

Model danych (1)

Model danych jest abstrakcją, spójną wewnętrznie, logiczną definicją struktur danych, operatorów danych, łączących łącznie abstrakcyjną maszynę, z którą pracuje użytkownik

Implementacja modelu danych jest fizyczną realizacją na prawdziwej maszynie elementów maszyny abstrakcyjnej, które wspólnie składają się na model

Definiuje

- struktury danych
- operacje (manipulacje)
- ograniczenia integralnościowe, reguły poprawności danych

Relacyjny model danych

- relacje
- selekcja, projekcja, połączenie, operacje na zbiorach
- klucz podstawowy, klucz obcy, zawężenie dziedziny, unikalność, null

Model danych (2)

Podstawowe elementy obiektowego modelu danych

- Obiekt: stan i funkcjonalność
- Cechy obiektów: atrybuty i związki
- Funkcjonalność obiektu: metody
- Tożsamość obiektu
- Hermetyczność obiektów
- Klasa: typ danych i moduł programowy
- Dziedziczenie: współdzielenie implementacji i relacja podtypu
- Przeciążanie i dynamiczne wiązanie funkcjonalności obiektów

JĘZYK UML (UNIFIED MODELING LANGUAGE)

Zunifikowany język modelowania

JĘZYK UML (UNIFIED MODELING LANGUAGE)

Zunifikowany język modelowania

JĘZYK UML (UNIFIED MODELING LANGUAGE)

Zunifikowany język modelowania

Samochód osobowy/ciężarowy – dziedziczy wszystkie cechy SAMOCHÓD

- → przewaga modelu OBIEKTOWEGO nad modelem RELACYJNYM
- → zlecanie częściowego wykonywania prac (tożsamość i hermetyczność)
- → łatwo rozbudować model OBIEKTOWY

Struktury danych (1)

- 1. Baza danych jest zbiorem relacji
- Schemat relacji R, oznaczony przez R(A1, A2, ..., An), składa się z nazwy relacji R oraz listy atrybutów A1, A2, ..., An
- 3. Liczbę atrybutów składających się na schemat relacji R nazywamy stopniem relacji
- 4. Każdy atrybut Ai schematu relacji R posiada domenę, oznaczoną jako dom(Ai)
- 5. Domena definiuje zbiór wartości atrybut relacji poprzez podanie typu danych
- 6. Relacją r o schemacie R(A1, A2, ..., An), oznaczoną r(R), nazywamy zbiór n-tek (krotek) postaci r={t1, t2,..., tm}.
- Pojedyncza krotka t jest uporządkowaną listą n wartości t=<v1, v2, ..., vn>, gdzie vi, 1<i<n, jest elementem dom(Ai) lub specjalną wartością pustą (NULL)
- i-ta wartość krotki t, odpowiadająca wartości atrybutu Ai, będzie oznaczana przez t[Ai]
- Relacja r(R) jest relacją matematyczną stopnia n zdefiniowaną na zbiorze domen dom(A1), dom(A2),..., dom(An) będącą podzbiorem iloczynu kartezjańskiego domen definiujących R: r(R) ⊆ dom(A1) x dom(A2) x ... x dom(An)

Struktury danych (2)

Relacja jest zbiorem krotek (k-wartości), które są listami wartości

relacja ≠ zmienna relacyjna

STRUKTURA DANYCH

R (A1, A2, A3, ..., An) → schemat relacji R

Stopień relacji

SCHEMAT RELACJI

→ jest w postaci zbioru:

Studenci kursu BD1 (nr_id, Imię, Nazwisko, Grupa)

KROTKA → na poziomie modelowania danych logicznych

SCHEMAT RELACJI

→ jest w postaci zbioru:

Studenci kursu BD1 (nr_id, Imię, Nazwisko, Grupa)

Każdy atrybut relacji ma unikalną nazwę (w ramach tej samej relacji nie może się powtórzyć)

Własności atrybutów są ATOMOWE – 1NF/1PN

Baza danych

Podsumowanie definicyjne

- Baza danych = zbiór relacji
- Schemat bazy danych = zbiór schematów relacji
- Schemat relacji = zbiór {atrybut, dziedzina, [ograniczenia integralnościowe]}
- Relacja = zbiór krotek
- Krotka = lista wartości atomowych

Relacje - cechy

Charakterystyka relacji

- Każdy atrybut relacji ma unikalną nazwę
- Porządek atrybutów w relacji nie jest istotny
- Porządek krotek w relacji nie jest istotny i nie jest elementem definicji relacji
- Wartości atrybutów są atomowe (elementarne)
- Relacja nie zawiera rekordów powtarzających się (z definicji zbiorów)

Relacje - klucze

Unikalność krotek relacji - klucze

Ograniczenie na unikalność krotek relacji

- Każdy podzbiór S atrybutów relacji R, taki że dla każdych dwóch krotek ze zbioru r(R) zachodzi t1[S] ≠ t2[S] → superkluczem (super key) R
- 2. Superklucz cały schemat relacji
- 3. Superklucz może posiadać nadmiarowe atrybuty
- Kluczem K schematu relacji R nazywamy superklucz schematu R o takiej własności, że usunięcie dowolnego atrybutu A z K powoduje, że K'=K-A nie jest już superkluczem
- Klucz jest minimalnym superkluczem zachowującym własność unikalność krotek relacji
- 6. Schemat relacji może posiadać więcej niż jeden klucz

Wyróżniony klucz → klucz podstawowy (primary key)
Pozostałe klucze → klucze wtórne lub kandydujące (foreign key)

Ograniczenia integralnościowe (1)

- Mechanizm (reguła), który gwarantuje że dane wpisane do relacji spełnią nałożone na nie warunki (czuwa nad tym SZBD)
- Definiuje się na poziomie
 - pojedynczego atrybutu
 - całej relacji
- Rodzaje
 - klucz podstawowy (primary key)
 - klucz obcy (foreign key)
 - unikalność (unique)
 - zawężenie domeny/dziedziny (check)
 - wartość pusta/niepusta (NULL/NOT NULL)

Ograniczenia integralnościowe (2)

Klucz podstawowy relacji (primary key - PK)

- atrybut (lub zbiór atrybutów), którego wartość jednoznacznie identyfikuje krotkę
- wartość ta jest unikalna w obrębie całej relacji i jest niepusta

Przykłady:

IdPrac, adres e-mail, NIP, PESEL, nr dowodu, nr paszportu

acja Prac	ownicy	
rac Imię	Nazwisl	ko Szef
0 Jan	Miś	
0 Piotr	Wilk	100
0 Roma	n Lis	100
	rac Imię 0 Jan 0 Piotr	0 Jan Miś 0 Piotr Wilk

Ograniczenia integralnościowe (3)

Klucz obcy relacji (foreign key - FK)

- atrybut (lub zbiór atrybutów), który wskazuje na klucz podstawowy
- służy do reprezentowania powiązań między danymi (łączenia relacji)

Naruszono w tym przypadku ograniczenie integralnościowe klucza obcego.

Ograniczenia integralnościowe (4)

Klucz obcy relacji (foreign key) – formalna reguła

Dane są relacje R1 i R2. Podzbiór FK atrybutów relacji R1 nazywany jest kluczem obcym R1 jeżeli:

- atrybuty w FK mają taką samą domenę jak atrybuty klucza podstawowego PK relacji R2
- dla każdej krotki t1 relacji R1 istnieje dokładnie jedna krotka t2 relacji R2, taka że t1 [FK] = t2 [PK], lub t1 [FK] = null

Klucz obcy (ograniczenie referencyjne) gwarantuje, że rekordy z tabeli R1 występują w kontekście związanego z nim rekordu z tabeli R2

Ograniczenia integralnościowe (5)

Zawężenie dziedziny (ograniczenie domeny) atrybutu (check)

 ograniczenie dozwolonych wartości do pewnego podzbioru przez wyrażenie logiczne określające przedział lub za pomocą wyliczeniowej listy wartości

Przykłady:

- płeć: K, M, nieznana, N/A (zgodnie ze standardem ISO)
- pensja: wartości dodatnie
- kolor oczu: niebieskie, szare, piwne

Ograniczenia integralnościowe (5)

Zawężenie dziedziny - przykład

- Etat dziedzina: {'Analityk', 'Dyrektor', 'Referent', Kierownik', 'Sekretarka'}
- Płaca dziedzina: placa>500
- IdPrac klucz podstawowy

relacja Pracownicy

IdPrac	Nazwisko	Etat	Placa	Szef	ldZesp
120	Kowalski	Analityk	850	100	10
100	Tarzan	Dyrektor	1700		10
130	Nowak	Referent	600	100	10
110	Józiek	Kierownik	1200	100	20
140	Nowacki	Analityk	800	110	20
150	Bunio	Sekretarka	700	100	10

insert

{200, 'Szop', 'Księgowy', 900, 10}

{130, 'Borsuk', 'Kierownik', 1000, 20}

{210, 'Rosomak', 'Kierownik', 400, 20}

Naruszenie integralności etatu

Naruszenie integralności PK

Naruszenie integralności płacy

Operatory algebry relacyjnej (1)

Założenia podstawowe

- Operatory relacyjne mają charakter ogólny (ang. generic), co oznacza, że mogą być stosowane do wszystkich możliwych relacji. Nie istnieje potrzeba tworzenia specjalnej relacji złączenia relacji A i B a innej dla relacji B i C.
- Operatory działają w trybie samego odczytu: odczytują operandy i zwracają wynik, lecz nie modyfikują niczego w samych operandach. Nie ingerują w zmienne relacyjne, lecz operują na relacjach
- Operacje INSERT, DELETE i UPDATE nie należą do algebry relacyjnej ponieważ modyfikują zawartość zmiennej relacyjnej

Operatory algebry relacyjnej (2)

Operatory algebry relacyjnej (3)

Operatory algebry relacyjnej (4)

Selekcja

Przeznaczenie:

wyodrębnienie podzbioru krotek relacji, które spełniają warunek selekcji

Notacja: σ_{<warunek selekcji>} (<Nazwa relacji>)

- warunek selekcji jest zbiorem predykatów postaci
 - <atrybut><operator relacyjny><literał>
 - <atrybut><operator relacyjny><atrybut>
- predykaty są łączone operatorami logicznymi: AND lub OR

Własności: operacja selekcji jest komutatywna:

$$\sigma_{\text{-war1>}} (\sigma_{\text{-war2>}}(R)) = \sigma_{\text{-war2>}} (\sigma_{\text{-war1>}} (R))$$

Operatory algebry relacyjnej (5)

Selekcja cd. - przykłady

S1: $\sigma_{IdZesp = 10}$ (Pracownicy)

select IdPrac, Nazwisko, Etat, Szef,
Zatrudniony, Płaca, IdZesp
from Pracownicy
where IdZesp=10

S3: σ_(IdZesp=10 AND Placa>7000) OR (IdZesp=20) AND Placa>8000) (Pracownicy)

select IdPrac, Nazwisko, Etat, Szef,
Zatrudniony, Płaca, IdZesp
from Pracownicy
where (IdZesp=10 and Płaca>7000)
or (IdZesp=20 and Płaca>8000)

S2:\(\sigma_{Placa > 7000}\) (Pracownicy)

select IdPrac, Nazwisko, Etat, Szef,
Zatrudniony, Płaca, IdZesp
from Pracownicy
where Płaca 7000

S4: $\sigma_{\text{Etat='Ksiegowv'}}$ AND (Płaca>=6000 AND Płaca<9000) (Pracownicy)

select IdPrac, Nazwisko, Etat, Szef,
Zatrudniony, Płaca, IdZesp
from Pracownicy
where Etat='KSIEGOWY'
and (Płaca>=6000 and Płaca<9000)

Operatory algebry relacyjnej (6)

Projekcja

Przeznaczenie:

wyodrębnienie wybranych atrybutów relacji

Notacja: π_{<atrybuty>} (<Nazwa relacji>)

atrybuty jest podzbiorem atrybutów ze schematu relacji

Własności: operacja projekcji nie jest komutatywna

Składanie operacji projekcji jest możliwe jeżeli lista2 zawiera wszystkie atrybuty lista1

$$\pi_{< lista1>} (\pi_{< lista2>} (R)) = \pi_{< lista1>} (R)$$

Operatory algebry relacyjnej (7)

Projekcja - przykład

P1: π_{Nazwisko} (Pracownicy)

select Nazwisko from Pracownicy

P2: $\pi_{Nazwisko, Etat, Płaca}$ (Pracownicy)

select Nazwisko, Etat, Płaca from Pracownicy

Operatory algebry relacyjnej (8)

Składanie operacji

Wynik danej operacji może być zbiorem wejściowym dla innej operacji

Złożenie operacji

Operatory algebry relacyjnej (9)

Operacje na zbiorach 1

Kompatybilność relacji

- Dwie relacje: R(A₁, ..., A_n) i S(B₁, ...,B_n) są kompatybilne, jeżeli mają ten sam stopień i jeżeli dom(A_n) = dom(B_n) dla 1≤i≤n
 Operacje na zbiorach
 - dla dwóch kompatybilnych relacji: R(A₁, ..., A_n) i S(B₁, ...,B_n)

Operatory algebry relacyjnej (10)

Operacje na zbiorach 2

Suma:

- Wynikiem tej operacji, oznaczanej przez R∪S, jest relacja zawierająca wszystkie krotki,
 które występują w R i wszystkie krotki, które występują w S, z wyłączeniem duplikatów krotek
- Operacja sumy jest operacją komutatywną: R∪S = S∪R

lloczyn:

- Wynikiem tej operacji, oznaczonej przez R∩S, jest relacja zawierająca krotki występujące zarówno w R i S
- Operacja iloczynu jest operacją komutatywną: R∩S = S∩R

Różnica:

- Wynikiem tej operacji, oznaczonej przez R-S, jest relacja zawierająca wszystkie krotki, które występują w R i nie występują w S
- Operacja różnicy nie jest operacją komutatywną: R S≠ S R

Operatory algebry relacyjnej (11)

Operacje na zbiorach - przykłady

Uczniowie		Instruktorzy			
lmię Nazwisko		lmię	Nazwisko		
Ala	Kusiak	Jan	Kuc		
Edek	Musiał	Edek	Musiał		
Adam	Zając	Wacek	Misiek		
Olek	Struś				
Ola	Buba				

Uczniowie ∪ Instruktorzy

lmię	Nazwisko
Ala	Kusiak
Edek	Musiał
Adam	Zając
Olek	Struś
Ola	Buba
Jan	Kuc
Wacek	Misiek

Uczniowie - Instruktorzy

li	mię	Nazwisko
Ala		Kusiak
Ada	m	Zając
Ole	k	Struś
Ola		Buba

Uczniowie ∩ Instruktorzy

lmię	Nazwisko	
Edek	Musiał	

Instruktorzy - Uczniowie

lmię	Nazwisko
Jan	Kuc
Wacek	Misiek .

select Imi**ę**, Nazwisko from Uczniowie UNION select Imi**ę**, Nazwisko from Instruktorzy;

select Imię, Nazwisko from Uczniowie INTERSECT select Imię, Nazwisko from Instruktorzy;

> select Imię, Nazwisko from Uczniowie MINUS select Imię, Nazwisko from Instruktorzy;

select Imię, Nazwisko from Instruktorzy MINUS select Imię, Nazwisko from Uczniowie;

Operatory algebry relacyjnej (12)

lloczyn kartezjański

- Dane są dwie relacje: R(A₁, ..., A_n) i S(B₁, ...,B_m) wynikiem iloczynu kartezjańskiego relacji R i S, oznaczonym przez R x S, jest relacja Q stopnia n+m i schemacie: Q(A₁, ..., A_n, B₁, ...,B_m)
- Krotkom w relacji Q odpowiadają wszystkie kombinacje krotek z relacji R i S
- Jeżeli relacja R ma N krotek, a relacja S ma M krotek, to relacja Q będzie miała N*M krotek

Operatory algebry relacyjnej (13)

lloczyn kartezjański - przykład

Pracownicy		Zespoły	
lmię	Nazwisko	Nazwa	Lokalizacja
Ala	Kusiak	Reklama	Krucza 10
Edek	Musiał	Badania	Piotrowo 3A
Adam	Zając	· ·	

Pracownicy x Zespoły

lmię	Nazwisko	Nazwa	Lokalizacja
Ala	Kusiak	Reklama	Krucza 10
Edek	Musiał	Reklama	Krucza 10
Adam	Zając	Reklama	Krucza 10
Ala	Kusiak	Badania	Piotrowo 3A
Edek	Musiał	Badania	Piotrowo 3A
Adam	Zając	Badamia	Piotrowo 3A

Operatory algebry relacyjnej (14)

Połączenie – złączenie

Przeznaczenie:

- łączenie na podstawie warunku połączeniowego wybranych krotek z dwóch relacji w pojedynczą krotkę

Notacja:

operacja połączenia relacji $R(A_1, ..., A_n)$ i $S(B_1,...,B_m)$, jest oznaczona jako: $R \leftrightarrow_{\text{<warunek połączeniowy>}} S$

- warunek połączeniowy jest zbiorem predykatów połączonych operatorami logicznymi AND
- predykaty są postaci: Ai θ Bj
 - A_i i B_i są atrybutami połączeniowymi
 - A_i jest atrybutem R, B_i jest atrybutem S
 - $dom(A_i) = dom(B_i)$,
 - θ jest operatorem relacyjnym ze zbioru { =, ≠, <, ≤, >, ≥ }

Operatory algebry relacyjnej (15)

Połączenie – złączenie

- Ogólna postać operacji połączenia (theta join) R θ S
- Połączenie równościowe (equi join) θ jest operatorem =
- Połączenie nierównościowe (non-equi join) θ jest operatorem różnym od =
- Połączenie naturalne (natural join)
 - połączenie równościowe
 - jeden z atrybutów połączeniowych jest usunięty ze schematu relacji wynikowej
 - oznaczane jako: R * S
 - atrybuty połączeniowe w obu relacjach muszą mieć taką samą nazwę

Operatory algebry relacyjnej (15)

Połączenie - przykład

Pracow	nicy			
IdPrac	lmię	Nazwisko	Szef	ldZesp
100	Jan	Miś		10
110	Piotr	Wilk	100	10
120	Roman	Lis	100	20

Zespoły		
ldZesp	Nazwa	•
10	Reklama	
20	Badania	

select *
from pracownicy p join zespoly z
on p.id_zesp=z.id_zesp

select nazwisko, nazwa from pracownicy p join zespoly z on p.id_zesp=z.id_zesp połączenie równościowe (niestandardowe)

połączenie równościowe (standardowe)

Pracownicy Szef=IdPrac Pracownicy

IdPrac	lmię	Nazwisko	Szef	ldZesp	IdPrac	lmię	Nazwisko	Szef	IdZe:
110	Piotr	Wilk	100	10	100	Jan	Miś		10
120	Roman	Lis	100	20	100	Jan	Miś		10

Pracownicy * Zespoły

IdPrac	lmię	Nazwisko	Szef	ldZesp	Nazwa	
100	Jan	Miś		10	Reklama	
110	Piotr	Wilk	100	10	Reklama	
120	Roman	Lis	100	20	Badania	

połączenie naturalne (standardowe)

select *
from pracownicy p natural join zespoly z

Obiektowy Model danych

Drogi rozwoju obiektowych baz danych

MODEL ERD

→ "model związków encji"

MODEL ER → schemat relacyjny

TRANSFORMACJA

MODEL KONCEPLUALNY

→ schemat relacyjny

Koniec wykładu 2