Raven: Redundancy Aided Vehicular Networking

HyunJong (Joseph) Lee, Jason Flinn {hyunjong, jflinn}@umich.edu

Motivation

- Emerging vehicular applications are increasingly connected to cloud services
- Many vehicular apps are latency-critical
- Multiple networks available in vehicle
 - Wifi
 - Multiple cellular via tethering

Problem

- Network communication is substantial part of user-perceived latency in vehicular apps
- Vehicular networks change rapidly due to
 - Geographical variation in coverage
 - Radio shadows
 - Differing traffic density

Solution & Implementation

- Latency estimator, quickly adapt to network latency changes
 - Calculate the expected latency distribution
 - Maintain latency prediction interval w/ confidence interval
 - Quantifies uncertainty in network latency
- Redundantly transmit small data over multiple networks
 - When error bounds for expected transmission time overlap
 - Energy considerations are minimal in vehicular platforms

Raven is composed of libDCM, DCM Module, and scheduler

- libDCM allows apps to talk to kernel via APIs w/ abstractions
 - Policy: how to schedule packets
 - Label: apps to <u>explicitly</u> describe about data property
 - Constraint: which network to include/exclude
- MPTCP-DCM Scheduler selects appropriate scheduling algs.
 - Implements policy chosen by apps
 - Decides which data to send over which network
 - Supports redundant transmission over multiple networks

Vehicular Application libDCM Policy, Label, & User Space Constraint Kernel Space DCM Module Constraint Subflow Manager Valid Subflow(s) MPTCP-DCM Scheduler MPTCP Module

Preliminary Evaluation

- Redundancy policy reduces ~270ms compared to the state of art TCP and MPTCP
 - TCP: 2000ms (99th percentile)
 - MPTCP: 2020ms (99th percentile)
 - Redundancy: 1750ms (99th percentile)

