1. 数据读取

```
import warnings
warnings.filterwarnings("ignore") # 忽略警告信息
import matplotlib.pyplot as plt # 导入matplotlib.pyplot模块,用于数据可视化

# 设置中文编码和负号的正常显示
plt.rcParams['font.family'] = 'Microsoft YaHei' # 设置字体为微软雅黑
plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题

import pandas as pd # 导入pandas库,用于数据处理和分析
import numpy as np # 导入numpy库,用于科学计算
```

这段代码主要完成以下操作:

- 1. 导入 warnings 模块,用于控制警告信息的显示与忽略。
- 2. 调用 filterwarnings 函数,设置忽略警告信息,避免警告信息的输出。
- 3. 导入 matplotlib.pyplot 模块,用于绘制数据可视化图形。
- 4. 设置中文编码和负号的正常显示。通过 plt.rcParams 字典来配置 matplotlib 的全局参数。
 - o ['font.family'用于设置字体族,这里将其设置为"Microsoft YaHei",即微软雅黑字体。
 - o 'axes.unicode_minus'用于解决负号显示问题,将其设置为 False ,表示显示正常的负号。
- 5. 导入 pandas 库,用于数据处理和分析。
- 6. 导入 numpy 库,用于进行科学计算。

```
data_train = pd.read_csv("./datasets/train.csv")
data_test = pd.read_csv("./datasets/test.csv")
data_train
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev.	male	27.0	0	0	211536	13.0000	NaN	S

Juozas

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
88	7 888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
88	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
88	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
89	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

可以看到训练集总共有12列891行数据,其中Survived字段表示的是乘客是否获救,其余都是乘客个人信息,包括:

- Passengerld --- 乘客ID
- Survived --- 获救情况 (二分类, 因变量)
- Pclass --- 乘客等级(1/2/3等舱位)
- Name --- 乘客姓名
- Sex --- 性别
- Age --- 年龄
- SibSp --- 堂兄弟/妹个数
- Parch --- 父母与小孩个数
- Ticket --- 船票信息
- Fare --- 票价
- Cabin --- 客舱
- Embarked --- 登船港口

1.2 简单描述性分析

```
# data_train.info()
print("-----\n训练集")
print(data_train.isnull().sum()) # 看一下数据类型及缺失情况
print("-----\n测试集")
print(data_test.isnull().sum())
```

```
      训练集

      PassengerId
      0

      Survived
      0

      Pclass
      0

      Name
      0

      Sex
      0

      Age
      177

      SibSp
      0

      Parch
      0

      Ticket
      0
```

数据显示,

训练数据集中12列特征,其中有三列数据存在缺失:

• Age(年龄): 有177条记录缺失;

Cabin(客舱):有687条记录缺失,缺失较多!;Embarked(登船港口):只有两条记录缺失;

训练数据集中12列特征,其中有两列数据存在缺失:

• Age(年龄): 有86条记录缺失;

• Cabin(客舱): 有327条记录缺失, 缺失较多!;

data_train.describe()

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

根据表格,我们可以得出一些基本信息:

- Survived: 大概有0.383838比例的人最后获救了;
- Pclass: 2号和3号舱的人要比1号舱的人多;
- Age: 所有乘客的平均年龄大概再29.7岁,最小的乘客0.42岁,最大的乘客80岁;
- Fare: 平均票价在32元, 最高的票价在512元;
- ...

data_test.describe()

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	PassengerId	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

训练集和测试集大致的分布相差不大;

1.3 探索性分析

1.3.1 乘客不同特征的描述性统计

```
import matplotlib.pyplot as plt
%matplotlib inline
fig = plt.figure(figsize=(15,10))
fig.set(alpha=0.2) # 设定图标透明度
plt.subplot2grid((2,3),(0,0)) # 分为2行3列,从(0,0)算起
data_train.Survived.value_counts().plot(kind='bar')
plt.title('获救情况(1为获救)')
plt.ylabel('人数')
plt.subplot2grid((2,3),(0,1))
data_train.Pclass.value_counts().plot(kind="bar")
plt.ylabel("人数")
plt.title("乘客等级分布")
plt.subplot2grid((2,3),(0,2))
\verb|plt.scatter| (data\_train.Survived, data\_train.Age)|
plt.ylabel("年龄")
plt.grid(True, which='major', axis='y') # 绘制网格线
plt.title("按年龄看获救分布 (1为获救)")
plt.subplot2grid((2,3),(1,0), colspan=2)
data_train.Age[data_train.Pclass == 1].plot(kind='kde') # 绘制密度图
\label{lambda} data\_train.Age[data\_train.Pclass == 2].plot(kind='kde')
data_train.Age[data_train.Pclass == 3].plot(kind='kde')
plt.xlabel("年龄")
plt.ylabel("密度")
plt.title("各等级的乘客年龄分布")
plt.legend(('头等舱', '2等舱', '3等舱'),loc='best')
plt.subplot2grid((2,3),(1,2))
data_train.Embarked.value_counts().plot(kind='bar')
plt.title("各登船口岸上船人数")
plt.ylabel("人数")
```

```
Text(0, 0.5, '人数')
```


- 根据训练集数据绘制如上图所示,从图中我们可以得到一些信息:
 - 。 未能获救的人有500+, 而获救的人大概有300+, 不到人数的一半;
 - 。 三等舱乘客最多,接近500人,而一等和二等舱的乘客相对较少,都在200人左右;
 - 。 从年龄分布可以看出,遇难和获救的乘客年龄分布都比较离散,跨度大;
 - 三个不同舱的乘客年龄总体趋势大致相同,其中20岁左右的乘客主要集中再二三等舱,一等舱中40岁左右的最多;
 - 。 再登船港口中,其中S港口上传人数最多,有600+人,另外两个C和Q港口,都不到200人,要远远小于C港口;
- 根据以上结论,提出一些假设:
 - 。 不同舱位/乘客等级可能和财富/地位有关系, 最后获救概率可能会不一样;
 - 年龄对获救概率也一定是有影响的,毕竟背景知识提到,副船长还说『小孩和女士先走』呢;
 - 获救概率与登船港口是不是有关系呢? 也许登船港口不同, 人的出身地位不同?
 - o ...

1.3.2 看看各乘客等级的获救情况

```
fig = plt.figure()
fig.set(alpha=0.2) # 设定图表颜色alpha参数

Survived_0 = data_train.Pclass[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Pclass[data_train.Survived == 1].value_counts()
df = pd.DataFrame({u'未获救':Survived_0, u'获救':Survived_1})
df.plot(kind='bar', stacked=True)
plt.title(u'不同等级乘客获救情况')
plt.xlabel(u'乘客等级')
plt.ylabel(u'人数')
plt.show()
```

<Figure size 640x480 with 0 Axes>

不同等级乘客获救情况


```
data_train[['Pclass', 'Survived']].groupby('Pclass').mean()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	Survived
Pclass	
1	0.629630
2	0.472826
3	0.242363

从图中可以看出,等级为1的乘客,获救的概率最大,并且随着等级的递减,获救的概率也是递减状态! 所以,乘客等级这必然是一个影响乘获救的重要特征!!

1.3.3 查看各性别的获救情况

```
fig = plt.figure()
fig.set(alpha=0.2)

Survived_0 = data_train.Survived[data_train.Sex == 'male'].value_counts()
Survived_1 = data_train.Survived[data_train.Sex == 'female'].value_counts()

df = pd.DataFrame({u'男性':Survived_0, u'女性':Survived_1})

df.plot(kind='bar', stacked=True)
plt.title(u'不同性别乘客获救情况')
plt.xlabel(u'获救与否')
plt.ylabel(u',大数')
plt.show()
```

<Figure size 640x480 with 0 Axes>


```
data_train[['Sex','survived']].groupby('Sex').mean()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	Survived
Sex	
female	0.742038
male	0.188908

从图中可以看出,相对男性来说,女性的获救率远远高于男性,看来外国人还是比较践行女性优先的! 所以,性别对于最终生存与否也是有非常重要影响的!

1.3.4 查看各登船港口的获救情况

泰坦尼克号从英国的南安普顿港出发,途径法国瑟堡和爱尔兰昆士敦,那么在昆士敦之前上船的人,有可能在瑟堡或昆士敦下船,这些人将不会遇到海难。

```
fig = plt.figure(figsize=(10,15))
fig.set(alpha=0.2)

Survived_0 = data_train.Embarked[data_train.Survived == 0].value_counts()
Survived_1 = data_train.Embarked[data_train.Survived == 1].value_counts()
df = pd.DataFrame({u'未获救':Survived_0, u'获救':Survived_1})
df.plot(kind='bar', stacked=True)
plt.title(u'不同登船港口的乘客获救情况')
plt.xlabel(u'登船港口')
plt.ylabel(u'人数')
plt.show()
```

```
<Figure size 1000x1500 with 0 Axes>
```

不同登船港口的乘客获救情况 | 100 - | 100

```
data_train[['Embarked','Survived']].groupby('Embarked').mean()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	Survived
Embarked	
С	0.553571
Q	0.389610
S	0.336957

```
import seaborn as sns

# 使用seaborn库绘制分类条形图,展示各登录港口乘客的获教情况
sns.catplot(x='Embarked', y='Survived', data=data_train, kind='bar')

# 图表标题
plt.title('各登录港口乘客的获教情况')

# 显示图表
plt.show()
```


可以看出,再不同港口上船,生还率不同,其中C港口最高,Q次之,S港口最低;

1.3.5 查看携带家人数量不同的获救情况

```
# 给家庭人数特征列赋值, 将sibsp (亲属兄弟姐妹数量) 和Parch (亲属父母子女数量) 相加data_train['family'] = data_train['sibsp'] + data_train['Parch']
# 输出家庭人数特征列data_train['family']
```

```
0
       1
1
2
       0
3
       1
4
       0
886
      0
887
      0
888
889
      0
890
      0
Name: family, Length: 891, dtype: int64
```

```
# 对于未获教的乘冬,统计家庭人数特征列的各个取值出现次数
Survived_0 = data_train.family[data_train.survived == 0].value_counts()

# 对于获教的乘客,统计家庭人数特征列的各个取值出现次数
Survived_1 = data_train.family[data_train.survived == 1].value_counts()

# 创建一个DataFrame*保存携带不同家人数量的乘客获教情况

df = pd.DataFrame({u'未获教':Survived_0, u'获教':Survived_1})

# 绘制堆积条形图
df.plot(kind='bar', stacked=True)

# 图表标题
plt.title(u'携带不同家人数量的乘客获教情况')

# x輔标签
plt.xlabel(u'携带家人数量')

# y轴标签
plt.ylabel(u'人数')
```


对家庭人数特征列和获救情况特征列进行分组,统计各家庭人数的获救率,并绘制条形图 data_train[['family', 'Survived']].groupby('family').mean().plot.bar()

<Axes: xlabel='family'>

可以看到,独自一人和亲友太多,存活率都比较低;

1.3.6 不同船舱类型的乘客获救情况

船舱的缺失值确实太多,有效值仅仅有204个,很难分析出不同的船舱和存活的关系,我们可以直接将该组特征丢弃掉,也可以简单地将数据分为是否有Cabin记录作为特征,将缺失数据归为一类,未缺失数据归为一类,一同跟与Survived进行分析;

统计Cabin是否为空的乘客中获救和未获救人数

is_null = data_train.Survived[data_train.Cabin.isnull()].value_counts()

统计Cabin非空的乘客中获救和未获救人数

```
not_null = data_train.Survived[data_train.Cabin.notnull()].value_counts()

# 创建一个DataFrame*保存Cabin是否为空的乘客中的获教情况

df = pd.DataFrame({'为空':is_null, '非空':not_null}).transpose()

# 绘制堆积条形图

df.plot(kind='bar', stacked=True)

# 图表标题
plt.title('按Cabin是否为空看获教情况')

# x轴标签
plt.xlabel('Cabin是否为空')

# y轴标签
plt.ylabel('人数')

# 显示图表
plt.show()
```


统计Cabin非空的乘客中获救和未获救人数,并计算获救人数占总人数的比例 data_train.Survived[data_train.Cabin.notnull()].value_counts(normalize=True)

```
1 0.666667
0 0.333333
Name: Survived, dtype: float64
```

可以看出,有cabin记录的乘客survival比例比无记录的高很多;

1.3.7 缺失值处理

- 这里只是为了进行探索性分析,具体更详细的数据处理见特征工程部分;
- 通常遇到缺值的情况,有下面几种处理方式:
 - 如果缺值的样本占比较高,可以直接舍弃,以免作为特征加入,反倒带入噪声;
 - o 如果缺值的样本适中,而该属性非连续值特征属性(比如类目属性),那就把NaN作为一个新类别,加到类别特征中
 - 如果缺值的样本适中,而该属性为连续值特征属性,可以尝试分桶处理;
 - 当缺失的样本并不是特别多的时候,我们可以试着根据已有的值,拟合一下数据,补充上。
- Embarked (共有三个上船地点) , 缺失俩值, 可以用众数填充;
- Cabin将缺失信息当做一个类目;

处理Embarked和数据

由于总共有1309条数据,Embarked只缺失两个,所以用众数填充即可

```
# 如果Embarked缺失,则用出现次数最多的值进行填充data_train.Embarked.isnull() == True] = data_train.Embarked.dropna().mode().values

# 对于Cabin缺失的数据,用UO进行填充data_train['Cabin'] = data_train.Cabin.fillna('UO')
```

处理Age数据

```
# 任务: 绘制数据集data_train中Survived列与Age列的关系图,并按照Survived列进行分组,展示各组的核密度估计图。
# 使用seaborn库的FacetGrid方法创建画布facet,hue参数指定按Survived分组,aspect参数指定画布宽高比为4:1
facet = sns.FacetGrid(data_train,hue="Survived",aspect=4)
# 在facet上绘制核密度估计图, x轴为Age列, shade参数指定是否填充颜色
facet.map(sns.kdeplot,'Age',shade=True)
# 设置x轴范围为0到Age列的最大值
facet.set(xlim=(0,data_train['Age'].max()))
# 添加图例
facet.add_legend()
```

```
<seaborn.axisgrid.FacetGrid at 0x2d201c02170>
```


- 通常使用回归、随机森林等模型来预测缺失属性的值。
- 经过分析: Age在该数据集里是一个相当重要的特征,所以保证一定的缺失值填充准确率是非常重要的,对结果也会产生较大影响。
- 这里使用随机森林预测模型,选取数据集中的数值属性作为特征(因为sklearn的模型只能处理数值属性,所以这里先仅选取数值特征,但在实际的应用中需要将非数值特征转换为数值特征);

```
# 任务: 查看数据集data_train的基本信息,包括列名、非空值数量、数据类型等。
```

输出 $data_train$ 的基本信息,包括列名、非空值数量、数据类型等 $data_train.info()$

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 13 columns): # Column Non-Null Count Dtype O PassengerId 891 non-null int64 Survived 891 non-null 1 int64 Pclass 891 non-null int64 3 891 non-null object Name 4 Sex 891 non-null object 5 Age 714 non-null float64 sibsp 891 non-null int64 7 Parch 891 non-null int64 891 non-null 8 Ticket object 891 non-null float64 Fare 10 Cabin 891 non-null object 11 Embarked 891 non-null object 12 family 891 non-null int64 dtypes: float64(2), int64(6), object(5) memory usage: 90.6+ KB

```
# 任务:使用随机森林回归模型填充数据集data_train中的缺失值,然后输出数据集的基本信息
# 导入随机森林回归模型
from sklearn.ensemble import RandomForestRegressor
cols = ['Age', 'Survived', 'Pclass', 'SibSp', 'Parch', 'Fare']
# 选出数据集中Age列非空的数据
age_df = data_train[cols]
X_train = age_df[age_df.Age.notnull()][cols[1:]]
y_train = age_df[age_df.Age.notnull()][cols[0]]
# 选出数据集中Age列为空的数据
X_test = age_df[age_df.Age.isnull()][cols[1:]]
# 构建随机森林回归模型
rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1) #n_estimators控制随机森林决策树的数量; n_jobs=-1会使用CPU的全部内核, 大幅度提升速
rfr.fit(X_train, y_train)
# 预测Age列的缺失值
y_predict = rfr.predict(X_test)
# 将预测的缺失值填充到原数据集中
data_train.loc[data_train.Age.isnull(),'Age'] = y_predict
# 输出填充后的数据集的基本信息
data_train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 13 columns):
# Column Non-Null Count Dtype
O PassengerId 891 non-null int64
1 Survived 891 non-null int64
2 Pclass 891 non-null int64
3 Name 891 non-null object
4 Sex
             891 non-null object
5 Age
6 SibSp
             891 non-null float64
891 non-null int64
             891 non-null int64
7 Parch
8 Ticket 891 non-null object
9 Fare
             891 non-null float64
10 Cabin
              891 non-null object
11 Embarked 891 non-null object
               891 non-null int64
12 family
dtypes: float64(2), int64(6), object(5)
memory usage: 90.6+ KB
```

1.3.8 不同年龄下的平均生存率

```
# 任务: 绘制乘客年龄与生还率的柱状图

# 导入绘图相关的库
import matplotlib.pyplot as plt
import seaborn as sns

# 设置绘图的大小
plt.figure(figsize=(18,6))

# 将Age列转换为整型数据并加入到原数据集中
data_train['Age_int'] = data_train.Age.astype(int)

# 对Age_int和survived两列进行分组并计算生还率
rate = data_train[['Age_int', 'Survived']].groupby('Age_int', as_index=False).mean()

# 绘制柱状图
sns.barplot(x='Age_int', y='Survived', data=rate)

# 显示图形
plt.show()
```



```
# 任务: 查看数据集data_train中年龄列的描述性统计信息
```

输出数据集中年龄列的描述性统计信息

data_train['Age'].describe()

```
891.000000
count
          29.667574
mean
std
          13.743877
min
           0.420000
25%
          21,000000
50%
          28.000000
75%
          37.000000
          80.000000
Name: Age, dtype: float64
```

从上图可以看出,训练样本共有891份,平均年龄在29.5岁,标准差为13.7岁,最小年龄0.42岁,最大年龄80岁;根据年龄,可以将乘客划分为儿童、少年、成年、 老年,分析四个群体的生还情况;

```
# 任务: 将年龄列按照一定的区间划分为不同的组,并计算每组的生还率
```

导入pandas库

import pandas as pd

划分年龄区间

bins = [0, 12, 18, 65, 100]

data_train['Age_group'] = pd.cut(data_train['Age'], bins)

按照年龄区间分组并计算生还率

age_group_survived_rate = data_train.groupby('Age_group')['Survived'].mean()

输出每个年龄组的生还率

age_group_survived_rate

任务: 将每个年龄组的生还率以条形图形式展示出来

将每个年龄组的生还率以条形图形式展示出来

 $age_group_survived_rate.plot(kind="bar")$

从图中可以看出,0到12岁儿童的存活率是最高的,达到了50%左右,其次是少年群体,在45%以上,最低的就属于65岁到100岁的老年群体,存活率最低,在12% 左右;所以看得出来,不管在哪,孩子永远都是第一要保护的对象;

1.3.9 不同称呼的乘客生存情况

通过观察名字数据,我们可以看出其中包括对乘客的称呼,如:Mr、Miss、Mrs等,称呼信息包含了乘客的年龄、性别,同时也包含了入社会地位等的称呼,如:Dr,Lady,Major(少校),Master(硕士,主人,师傅)等的称呼。

data_train['Name']

```
0
                                 Braund, Mr. Owen Harris
       Cumings, Mrs. John Bradley (Florence Briggs Th...
1
2
                                 Heikkinen, Miss. Laina
3
            Futrelle, Mrs. Jacques Heath (Lily May Peel)
4
                               Allen, Mr. William Henry
886
                                  Montvila. Rev. Juozas
887
                            Graham, Miss. Margaret Edith
888
                Johnston, Miss. Catherine Helen "Carrie"
889
                                   Behr, Mr. Karl Howell
890
                                     Dooley, Mr. Patrick
Name: Name, Length: 891, dtype: object
```

```
# 任务: 提取每个乘客的称呼,并根据性别进行分类统计

# 方法一:

# 通过lambda表达式和字符串切片提取乘客的称呼
data_train['Title'] = data_train['Name'].apply(lambda x : x.split(',')[1].split('.')[0].strip())

# 方法二:

# 通过正则表达式提取乘客的称呼

# data_train['Title'] = data_train['Name'].str.extract('([A-Za-z]+)\.',expand=False)

# 使用交叉表统计每个称呼在不同性别中出现的次数
pd.crosstab(data_train['Title'],data_train['Sex'])
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

Sex	female	male
Title		
Capt	0	1
Col	0	2
Don	0	1
Dr	1	6
Jonkheer	0	1
Lady	1	0
Major	0	2
Master	0	40
Miss	182	0
MIIe	2	0
Mme	1	0
Mr	0	517
Mrs	125	0
Ms	1	0
Rev	0	6
Sir	0	1
the Countess	1	0

```
# 不同称呼的生存率
data_train[['Title', 'Survived']].groupby('Title').mean().plot(kind='bar')
```

```
<Axes: xlabel='Title'>
```


从图中可以看出,不同称呼的乘客存活情况也不尽相同,存在显著差异,其中称呼为Lady、Mlle、Mme、Ms、Sir以及the countess的人群的存活率最高,均达到了100%的存活率;

1.3.10 票价分布与Survived的关系

任务: 绘制票价分布情况的直方图

设置绘图的大小

plt.figure(figsize=(10, 8))

绘制票价分布情况的直方图

data_train['Fare'].hist(bins=70)

显示图形

plt.show()


```
891.000000
count
        32.204208
mean
         49.693429
std
min
         0.000000
25%
         7.910400
50%
         14.454200
75%
         31.000000
       512.329200
max
Name: Fare, dtype: float64
```

```
# 任务: 绘制生还者与非生还者的票价均值和方差的关系
# 导入绘图相关的库
import pandas as pd
import matplotlib.pyplot as plt
# 选出生还者和非生还者的票价数据
fare_not_survived = data_train['Fare'][data_train['Survived'] == 0]
fare_survived = data_train['Fare'][data_train['Survived'] == 1]
# 计算票价均值和方差
average_fare = pd.DataFrame([fare_not_survived.mean(),fare_survived.mean()])
std_fare = pd.DataFrame([fare_not_survived.std(),fare_survived.std()])
# 绘制票价均值和方差的条形图
average\_fare.plot(yerr=std\_fare,kind="bar",legend=False)
# 设置图形标题和横轴标签
plt.title('Fare by Survived')
plt.xlabel('Survived')
# 显示图形
plt.show()
```


从图中可以看出,生存者的平均票价要大于未生还者的平均票价

1.4 小结

根据以上探索性分析,我们可以猜测出一些结论:

- 舱位等级: 舱位越高的获救的概率最大,并且随着等级的递减,比如一等舱就比二三等舱获救概率大;
- 性别:女性的获救率远远高于男性;
- 登船港口: C港口最高, Q次之, S港口最低; (需结合具体背景解释原因)

- 携带家人数量:独自一人和亲友太多,存活率都比较低;
- 客舱: 缺失值较多,很难分析出有用信息,这里简单将缺失的看成一类,未缺失的看成一类;
- 年龄: 0到12岁儿童存活率最高,在50%左右,其次是少年,最低的是65岁到100岁的老年群体;
- 称呼:不同称呼的乘客存活情况也不尽相同,存在显著差异;其中,Lady、Mlle、Mme、Ms、Sir以及the countess存活率均在100%;
- 票价: 生存者的平均票价要大于未生还者的平均票价;

2.特征工程

2.1 合并训练集与测试集

在进行特征工程的时候,我们不仅需要对训练数据进行处理,还需要同时将测试数据同训练数据一起处理,使得二者具有相同的数据类型和数据分布。

```
import pandas as pd

train = pd.read_csv('./datasets/train.csv')

test = pd.read_csv('./datasets/test.csv')

train_and_test = train.append(test, sort=False) # 合并训练集与测试集

PassengerId = test['PassengerId']

train_and_test.shape
```

(1309, 12)

2.2 缺失值处理

- 对Embarked直接用众数填充;
- 对Fare用均值填充;
- 对Age, 建立模型预测;

2.2.1 填充Embarked字段

```
# 任务: 使用众数填充数据集train_and_test中的Embarked列的缺失值,并检查是否还存在缺失值
```

找到Embarked列的众数

mode = train_and_test['Embarked'].mode().iloc[0]

使用众数填充Embarked列的缺失值

 $train_and_test['{\color{red}{\textbf{Embarked'}}}].fillna({\color{red}{\textbf{mode}}}, \ inplace={\color{red}{\textbf{True}}})$

检查数据集中是否还存在缺失值

train_and_test.isnull().sum()

```
PassengerId
            418
Survived
            0
Pclass
Name
             0
Sex
            263
Age
SibSp
             0
             0
Parch
Ticket
             0
Fare
              1
            1014
Cabin
Embarked
              0
dtype: int64
```

2.2.2 填充船票Fare字段

```
train_and_test['Fare'].mean()
```

33.29547928134557

```
Fare_mean = train_and_test['Fare'].mean()
train_and_test['Fare'].fillna(Fare_mean, inplace=True)
train_and_test.isnull().sum()
```

```
PassengerId
Survived 418
           0
Pclass
Name
           0
            0
          263
Age
           0
SibSp
Parch
           0
Ticket
           0
Fare
Cabin 1014
Embarked 0
           0
dtype: int64
```

2.2.3 填充年龄Age字段

为尽可能用多的特征去预测Age的值,先对Cabin、Embarked、Name、Sex、Ticket、Pclass等特征进行处理,模型预测见后;

2.3 不同特征字段的数据处理

2.3.1 先对Embarked、Sex以及Pclass等用dummy处理

```
# 任务: 对数据集train_and_test中的分类特征进行编码,并检查是否还存在缺失值

# 导入pandas库
import pandas as pd

# 指定需要进行编码的列
cols = ['Embarked', 'Sex', 'Pclass']

# 对这些列进行独热编码
train_and_test = pd.get_dummies(train_and_test, columns=cols, prefix_sep='__')

# 检查数据集中是否还存在缺失值
train_and_test.isnull().sum()
```

```
PassengerId
Survived
           418
           0
Name
Age
          263
          0
SibSp
Parch
           0
Ticket
           0
Fare
      1014
Cabin
Embarked__C 0
Embarked__Q
           0
Embarked__S
Sex__female
           0
            0
Sex__male
Pclass__1
Pclass__2
Pclass__3
           0
dtype: int64
```

2.3.2 票价分级处理

我们可以尝试将Fare分桶处理,使用qcut函数。qcut是根据这些值的频率来选择箱子的均匀间隔,每个箱子中含有的数的数量是相同的;

```
# 任务: 将数据集train_and_test中的票价列按照分位数进行分组,并对分组后的数据进行编码
# 将票价列按照分位数进行分组,并生成一个新的列
train_and_test['Fare_bin'] = pd.qcut(train_and_test['Fare'], 5)
# 对新生成的列进行编码
```

```
train_and_test['Fare_bin_id'] = pd.factorize(train_and_test['Fare_bin'])[0]
fare_bin_dummies_df = pd.get_dummies(train_and_test['Fare_bin_id']).rename(columns=lambda x : 'Fare_' + str(x))

# 将编码后的数据与原数据集进行合并
train_and_test = pd.concat([train_and_test, fare_bin_dummies_df], axis=1)

# 删除临时生成的列
train_and_test.drop(['Fare_bin'], axis=1, inplace=True)
```

2.3.3 名字处理

对名字Name进行处理,提取其特征;

```
# 任务: 提取数据集train_and_test中每个乘客的称呼

# 提取每个乘客的称呼
train_and_test['Title'] = train_and_test['Name'].apply(lambda x : x.split(',')[1].split('.')[0].strip())

# 输出每个乘客的称呼
train_and_test['Title']
```

```
0
        Mr
1
        Mrs
2
       Miss
3
        Mrs
4
        Mr
413
       Mr
414
       Dona
      Mr
415
416
    Master
417
Name: Title, Length: 1309, dtype: object
```

```
# 任务: 将数据集train_and_test中的各式称呼进行统一化处理
# 定义称呼映射表
titleDict = {
  "Capt" :
   "Capt" : "Officer",
"Col" : "Officer",
   "Major":
              "Officer",
   "Jonkheer": "Royalty",
   "Don":
               "Royalty",
   "sir":
               "Royalty",
           "Officer",
"Officer",
   "Dr":
   "Rev":
   "the Countess": "Royalty",
   "Dona": "Royalty",
              "Mrs",
   "Mme":
   "Mlle":
               "Miss".
               "Mrs",
   "Ms":
              "Mr",
   "Mr" :
   "Mrs" : "Mrs",
   "Miss": "Miss",
   "Master" : "Master",
              "Royalty"
   "Lady" :
}
# 使用映射表将各式称呼进行统一化处理
train_and_test['Title'] = train_and_test['Title'].map(titleDict)
# 输出每种称呼的数量
train_and_test['Title'].value_counts()
```

```
Mr 757
Miss 262
Mrs 200
Master 61
Officer 23
Royalty 6
Name: Title, dtype: int64
```

```
# 任务: 对数据集train_and_test中的称呼列进行one-hot编码
# 为称呼列进行编码
train_and_test['Title'] = pd.factorize(train_and_test['Title'])[0]
# 对编码后的数据进行one-hot编码
\label{title_dummies_df} title\_dummies\_df = pd.get\_dummies(train\_and\_test['Title'], prefix=train\_and\_test[['Title']].columns[0])
# 将one-hot编码后的数据与原数据集进行合并
train_and_test = pd.concat([train_and_test, title_dummies_df], axis=1)
# 检查数据集中每列的数据类型和非空值数量
train and test.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 30 columns):
# Column Non-Null Count Dtype
   PassengerId 1309 non-null int64
0
1 Survived 891 non-null float64
               1309 non-null object
2 Name
3 Age
              1046 non-null float64
4 SibSp
              1309 non-null int64
5 Parch
              1309 non-null int64
6 Ticket
               1309 non-null object
           1309 non-null float64
295 non-null object
   Fare
8
   Cabin
9 Embarked__C 1309 non-null uint8
10 Embarked__Q 1309 non-null uint8
11 Embarked__S 1309 non-null uint8
12 Sex_female 1309 non-null uint8
13 Sex__male 1309 non-null uint8
14 Pclass_1 1309 non-null uint8
15 Pclass_2 1309 non-null uint8
16 Pclass__3 1309 non-null uint8
17 Fare_bin_id 1309 non-null int64
18 Fare_0 1309 non-null uint8
19 Fare_1
              1309 non-null uint8
              1309 non-null uint8
20 Fare_2
```

```
# 任务: 提取长度特征
# 将train_and_test数据集中Name列的每个元素转化为其长度,存储到Name_length列中
train_and_test['Name_length'] = train_and_test['Name'].apply(len)
# 输出Name_length列的数据
train_and_test['Name_length']
```

21 Fare_3 1309 non-null uint8 22 Fare_4 1309 non-null uint8 23 Title 1309 non-null int64

24 Title_0 1309 non-null uint8 25 Title_1 1309 non-null uint8 26 Title_2 1309 non-null uint8 27 Title_3 1309 non-null uint8 28 Title_4 1309 non-null uint8

1309 non-null uint8 dtypes: float64(3), int64(5), object(3), uint8(19)

29 Title_5

memory usage: 147.0+ KB

```
0
     23
1
      51
2
      22
3
      44
4
     24
413
    18
414 28
     28
415
416
417
Name: Name_length, Length: 1309, dtype: int64
```

2.3.4 Cabin处理

Cabin缺失值过多,将其分为有无两类,进行编码,如果缺失,即为0,否则为1;

```
# 任务: 处理Cabin特征
# 将train_and_test数据集中Cabin列中缺失值替换为'U0'
train_and_test.loc[train_and_test.Cabin.isnull(), 'Cabin'] = 'U0'
# 将train_and_test数据集中Cabin列中的非缺失值替换为1. 缺失值替换为0
train_and_test['Cabin'] = train_and_test['Cabin'].apply(lambda x : 0 if x == 'U0' else 1)
# 输出Cabin列的数据
train_and_test['Cabin']
```

```
0
     0
1
     1
2
     0
3
4
     0
413
414
    0
415
    0
416
417
     0
Name: Cabin, Length: 1309, dtype: int64
```

2.3.5 Ticket处理

Ticket有字母和数字之分,对于不同的字母,可能在很大程度上就意味着船舱等级或者不同船舱的位置,也会对Survived产生一定的影响,所以我们将Ticket中的字母分开,为数字的部分则分为一类。

```
# 任务: 处理Ticket特征
# 将train_and_test数据集中Ticket列中的每个元素按空格拆分,取第一个元素存储到Ticket_Letter列中
train_and_test['Ticket_Letter'] = train_and_test['Ticket'].str.split().str[0]
# 如果Ticket_Letter列的值为数字,则将其替换为'UO'
train_and_test['Ticket_Letter'] = train_and_test['Ticket_Letter'].apply(lambda x : 'UO' if x.isnumeric() else x)
# 将Ticket_Letter列进行factorize编码
train_and_test['Ticket_Letter'] = pd.factorize(train_and_test['Ticket_Letter'])[0]
# 输出Ticket_Letter列的数据
train_and_test['Ticket_Letter']
```

```
0
       0
1
       1
2
       2
3
       3
4
       3
413
    24
415
     21
     3
416
417
      3
Name: Ticket_Letter, Length: 1309, dtype: int64
```

2.4 利用随机森林预测Age缺失值

```
# 任务: 使用随机森林回归模型

# 等入随机森林回归模型

from sklearn.ensemble import RandomForestRegressor

# 去除数据集中字符串类型的字段, 获取仅包含数值类型的数据集

missing_age = train_and_test.drop(['PassengerId', 'Survived', 'Name', 'Ticket'], axis=1)

# 获取Age列非空值所在的行, 作为训练集

missing_age_train = missing_age[missing_age['Age'].notnull()]

# 获取Age列空值所在的行, 作为测试集

missing_age_test = missing_age[missing_age['Age'].isnull()]

# 分别获取训练集和测试集中的特征和标签
```

```
X_train = missing_age_train.iloc[:,1:]
y_train = missing_age_train.iloc[:,0]
X_test = missing_age_test.iloc[:,1:]

# 创建随机森林回归模型并进行训练
rfr = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
rfr.fit(X_train, y_train)

# 预测并填充测试集中的缺失值
y_predict = rfr.predict(X_test)
train_and_test.loc[train_and_test['Age'].isnull(), 'Age'] = y_predict

# 输出填充后的数据集信息
train_and_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 32 columns):
 # Column
                 Non-Null Count Dtype
                         O PassengerId 1309 non-null int64
 1 Survived 891 non-null float64
 2
                         1309 non-null
                                              object
                      1309 non-null float64
1309 non-null int64
 3
     Age
 4 sibsp
                      1309 non-null int64
 5 Parch
 6 Ticket
                       1309 non-null object
 7 Fare
                       1309 non-null float64

      8
      Cabin
      1309 non-null int64

      9
      Embarked_C
      1309 non-null uint8

      10
      Embarked_Q
      1309 non-null uint8

      11
      Embarked_s
      1309 non-null uint8

 12 Sex_female 1309 non-null uint8
 13 Sex_male 1309 non-null uint8
 14 Pclass_1 1309 non-null uint8

      15
      Pclass_2
      1309 non-null uint8

      16
      Pclass_3
      1309 non-null uint8

      17
      Fare_bin_id
      1309 non-null int64

      18
      Fare_0
      1309 non-null uint8

 17 Fare_0 1309 non-num
18 Fare_0 1309 non-num
1309 non-num
131 uint8
                      1309 non-null uint8
 20 Fare_2
                      1309 non-null uint8
 21 Fare_3
 22 Fare_4
                      1309 non-null uint8
                       1309 non-null int64
 23 Title
 24 Title_0 1309 non-null uint8
25 Title_1 1309 non-null uint8
26 Title 2 1309 non-null uint8
                       1309 non-null uint8
 26 Title_2
 27 Title_3
                       1309 non-null uint8
 28 Title_4 1309 non-null uint8
29 Title_5 1309 non-null uint8
 30 Name_length 1309 non-null int64
 31 Ticket_Letter 1309 non-null int64
dtypes: float64(3), int64(8), object(2), uint8(19)
memory usage: 167.5+ KB
```

2.5 各特征与Survived的相关系数排序

```
# 任务: 筛选出重要特征
# 计算train_and_test数据集中各特征与Survived特征的相关系数并按照系数的绝对值从大到小排序
train_and_test.corr()['Survived'].abs().sort_values(ascending=False)
```

```
1.000000
0.549199
Survived
Title 0
            0.543351
Sex__male
Sex__female
             0.543351
Title
             0.377155
          0.344935
Title 1
Title_2
           0.332795
Name_length 0.332350
Pclass__3 0.322308
           0.316912
Cabin
Pclass_1 0.285904
Fare_1
             0.263007
            0.257307
Fare
Fare_2
           0.191707
Fare_0
           0.171109
```

```
Embarked__C 0.168240
Embarked S
              0.149683
Pclass_2 0.093349
Title_3 0.085221
Title_3
Ticket_Letter 0.082068
Parch
                 0.081629
                 0.080518
Fare_bin_id 0.071787
Fare_4 0.064843
Fare_3 0.040812
sibsp
               0.035322
Title_4 0.033391
                0.031316
Title 5
PassengerId
Embarked__Q
               0.005007
0.003650
Name: Survived, dtype: float64
```

2.6 保存特征处理后的数据

```
train_and_test.to_csv('./datasets/经过特征工程处理后的数据.csv', index=None)
```

2.7 小结

特征工程这一章主要做了以下工作:

- 合并训练集和测试集
 - 。 为了使二者具有相同的数据类型和数据分布;
- 缺失值处理:
 - o Embarked:众数填充;
 - o Fare:平均值填充;
 - o Age:随机森林预测填充;
- 各特征字段的数据处理:
 - o Embarked, Sex, Pclass: 直接dummy编码;
 - o Fare: 先分桶处理,再dummy编码;
 - 。 Name: 先提取称呼,再对称呼进行人群分类,最后dummy处理;
 - 。 cabin: 缺失值较多,根据是否缺失划分类别,缺失为0,否则为1;
 - o Ticket:只保留其中字母,并对字母进行数字转换;
- 随机森林建模预测Age缺失值;
- 对各特征与生存与否进行了相关系数大小排序;

3. 建模及模型评价

3.1 数据分离

将经过特征工程处理后的数据分开,分成最初的训练数据和测试数据;

3.1.1 读取数据

```
# 任务: 读取数据文件
# 导入pandas库, 并读取train.csv、test.csv、gender_submission.csv和经过特征工程处理后的数据.csv文件
import pandas as pd
train = pd.read_csv('./datasets/train.csv')
test = pd.read_csv('./datasets/test.csv')
truth = pd.read_csv('./datasets/gender_submission.csv')
train_and_test = pd.read_csv('./datasets/经过特征工程处理后的数据.csv')

# 将test数据集中的PassengerId列提取出来,并存储到PassengerId变量中
PassengerId = test['PassengerId']
```

3.1.2 划分训练集和测试集

```
# 任务: 划分训练集和测试集
# 获取test数据集中的第一个乘客的索引
index = PassengerId[0] - 1

# 去除train_and_test数据集中的PassengerId、Name和Ticket列,获取仅包含特征和标签的数据集
train_and_test_drop = train_and_test.drop(['PassengerId', 'Name', 'Ticket'], axis=1)
# 将train_and_test数据集划分为训练集和测试集
train_data = train_and_test_drop[:index]
test_data = train_and_test_drop[index:]

# 分别获取训练集和测试集中的特征和标签
```

```
train_X = train_data.drop(['Survived'], axis=1)
train_y = train_data['Survived']
test_X = test_data.drop(['Survived'], axis=1)
test_y = truth['Survived']

# 输出训练集和测试集的形状
train_X.shape, train_y.shape, test_X.shape
```

```
((891, 28), (891,), (418, 28))
```

3.2 建模及模型评价

3.2.1 逻辑回归

```
# 任务: 使用逻辑回归模型进行预测
# 导入LogisticRegression模型
from sklearn.linear_model import LogisticRegression
# 导入roc_auc_score评价指标
from sklearn.metrics import roc_auc_score
# 创建LogisticRegression模型并进行训练
lr = LogisticRegression()
lr.fit(train_x, train_y)
# 使用训练好的模型进行预测.并计算预测准确率
pred_lr = lr.predict(test_X)
accuracy_lr = roc_auc_score(test_y, pred_lr)
print("逻辑回归的预测结果: ", accuracy_lr)
```

逻辑回归的预测结果: 0.9140037593984963

3.2.2 随机森林-RF

```
# 任务: 使用随机森林模型进行预测
# 导入RandomForestClassifier模型
from sklearn.ensemble import RandomForestClassifier

# 创建RandomForestClassifier模型并进行训练
rfc = RandomForestClassifier()
rfc.fit(train_x, train_y)

# 使用训练好的模型进行预测,并计算预测准确率
pred_rfc = rfc.predict(test_x)
accuracy_rfc = roc_auc_score(test_y, pred_rfc)
print("随机森林的预测结果: ", accuracy_rfc)
```

随机森林的预测结果: 0.843984962406015

3.2.3 支持向量机-SVM

```
# 任务: 使用支持向量机模型进行预测
# 导入SVC模型
from sklearn.svm import SVC

# 创建SVC模型并进行训练
svm = SVC()
svm.fit(train_X,train_y)

# 使用训练好的模型进行预测,并计算预测准确率
pred_svm = svm.predict(test_X)
accuracy_svm = roc_auc_score(test_y, pred_svm)
print("支持向量机的预测结果: ", accuracy_svm)
```

支持向量机的预测结果: 0.6484962406015038

3.2.4 K最近邻-KNN

```
# 任务: 使用K最近邻分类器进行预测
# 导入KNeighborsClassifier模型
from sklearn.neighbors import KNeighborsClassifier

# 创建KNeighborsClassifier模型并进行训练
knn = KNeighborsClassifier()
knn.fit(train_X,train_y)

# 使用训练好的模型进行预测,并计算预测准确率
pred_knn = knn.predict(test_X)
accuracy_knn = roc_auc_score(test_y, pred_knn)
print("K最近邻分类器的预测结果: ", accuracy_knn)
```

K最近邻分类器的预测结果: 0.6884398496240602

3.2.5 决策树

```
# 任务: 使用决策树模型进行预测
# 导入DecisionTreeClassifier模型
from sklearn.tree import DecisionTreeClassifier

# 创建DecisionTreeClassifier模型并进行训练
dtree = DecisionTreeClassifier()
dtree.fit(train_X,train_y)

# 使用训练好的模型进行预测,并计算预测准确率
pred_dtree = dtree.predict(test_X)
accuracy_dtree = roc_auc_score(test_y, pred_dtree)
print("决策树模型的预测结果: ", accuracy_dtree)
```

决策树模型的预测结果: 0.8143796992481203

3.2.6 梯度提升决策树-GBDT

```
# 任务: 使用GBDT模型进行预测
# 导入GradientBoostingClassifier模型
from sklearn.ensemble import GradientBoostingClassifier

# 创建GradientBoostingClassifier模型并进行训练
gbdt = GradientBoostingClassifier()
gbdt.fit(train_X, train_y)

# 使用训练好的模型进行预测.并计算预测准确率
pred_gbdt = gbdt.predict(test_X)
accuracy_gbdt = roc_auc_score(test_y, pred_gbdt)
print("GBDT模型的预测结果: ", accuracy_gbdt)
```

GBDT模型的预测结果: 0.850093984962406

3.2.7 LightGBM算法

```
# 任务: 使用LightGBM模型
import lightgbm as lgb

# 创建LightGBM训练集和测试集
lgb_train = lgb.Dataset(train_X, train_y)
lgb_eval = lgb.Dataset(test_X, test_y, reference = lgb_train)

# 创建LightGBM模型并进行训练
gbm = lgb.train(params = {}, train_set = lgb_train, valid_sets = lgb_eval)

# 使用训练好的模型进行预测,并计算预测准确率
pred_lgb = gbm.predict(test_X, num_iteration = gbm.best_iteration)
accuracy_lgb = roc_auc_score(test_y, pred_lgb)
print("LightGBM模型的预测结果: ", accuracy_lgb)
```

```
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000544 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 384

[LightGBM] [Info] Number of data points in the train set: 891, number of used features: 26

[LightGBM] [Info] Start training from score 0.383838
```

```
[1] valid_0's 12: 0.206646
[2] valid 0's 12: 0.185886
[3] valid_0's 12: 0.169265
[4] valid_0's 12: 0.155595
[5] valid_0's 12: 0.144824
[6] valid_0's 12: 0.135448
[7] valid_0's 12: 0.128143
[8] valid_0's 12: 0.122101
[9] valid_0's 12: 0.117703
       valid_0's 12: 0.112993
[10]
        valid_0's 12: 0.109994
[12]
       valid_0's l2: 0.1071
Γ137
        valid_0's 12: 0.105071
[14]
        valid_0's 12: 0.103037
        valid_0's 12: 0.101951
Γ157
        valid 0's 12: 0.100891
Г167
[17]
        valid_0's 12: 0.100526
        valid_0's 12: 0.0995172
[18]
[19]
        valid_0's 12: 0.0985701
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
        valid_0's 12: 0.0988206
[20]
[21]
        valid_0's 12: 0.0990039
[22]
        valid_0's 12: 0.0986685
        valid_0's 12: 0.0998083
[23]
        valid_0's 12: 0.099625
[24]
[25]
        valid_0's 12: 0.100057
[26]
        valid_0's 12: 0.100609
        valid_0's 12: 0.100822
[27]
[28]
        valid_0's 12: 0.101015
[29]
        valid_0's 12: 0.101092
        valid_0's 12: 0.10182
Γ301
[31]
        valid_0's 12: 0.101747
        valid_0's 12: 0.102328
[32]
[33]
        valid_0's 12: 0.10228
        valid_0's 12: 0.102379
[34]
[35]
        valid_0's 12: 0.102448
Г361
        valid_0's 12: 0.102522
        valid_0's 12: 0.102818
[37]
        valid_0's 12: 0.103097
F381
        valid_0's 12: 0.103253
Г391
        valid_0's 12: 0.103881
Γ401
[41]
        valid_0's 12: 0.104041
        valid_0's 12: 0.104306
[42]
[43]
        valid_0's 12: 0.10491
[44]
        valid_0's 12: 0.10537
        valid_0's 12: 0.105566
[45]
        valid_0's 12: 0.105731
[46]
[47]
        valid_0's 12: 0.106104
[48]
        valid_0's 12: 0.106607
[49]
        valid_0's 12: 0.106823
[50]
        valid_0's 12: 0.1071
[51]
        valid_0's 12: 0.107633
        valid_0's 12: 0.108191
[52]
        valid_0's 12: 0.108866
Γ531
        valid_0's 12: 0.108997
[54]
[55]
        valid_0's 12: 0.109433
[56]
        valid_0's 12: 0.109936
        valid_0's 12: 0.110535
Γ571
        valid_0's 12: 0.110664
[58]
[59]
        valid_0's 12: 0.111198
F601
        valid_0's 12: 0.111464
[61]
        valid_0's 12: 0.111533
[62]
        valid_0's 12: 0.111386
[63]
        valid_0's 12: 0.112057
        valid_0's 12: 0.112178
Γ641
[65]
        valid_0's 12: 0.112459
[66]
        valid_0's 12: 0.112762
        valid_0's 12: 0.113394
[67]
        valid_0's 12: 0.114175
Γ681
[69]
        valid_0's 12: 0.114199
[70]
        valid_0's 12: 0.114549
        valid_0's 12: 0.115071
[71]
        valid_0's 12: 0.115652
Γ721
[73]
        valid_0's 12: 0.116587
[74]
        valid_0's 12: 0.116613
[75]
        valid_0's 12: 0.116831
[76]
        valid_0's 12: 0.117479
        valid_0's 12: 0.117981
[77]
[78]
        valid_0's 12: 0.118353
[79]
        valid_0's 12: 0.118804
```

```
[80] valid_0's 12: 0.119104
[81] valid_0's 12: 0.11985
[82] valid_0's 12: 0.120175
[83] valid_0's 12: 0.120557
[84] valid_0's 12: 0.120778
[85]
      valid_0's 12: 0.120922
[86]
      valid_0's 12: 0.12109
[87]
      valid_0's 12: 0.121378
     valid_0's 12: 0.121822
Γ881
[89] valid_0's 12: 0.121974
[90] valid_0's 12: 0.122359
[91] valid_0's 12: 0.122306
[92] valid_0's l2: 0.122358
[93]
      valid_0's 12: 0.122052
      valid_0's 12: 0.122091
Γ947
     valid_0's 12: 0.122241
Γ951
[96] valid_0's 12: 0.122332
[97] valid_0's 12: 0.122759
[98] valid_0's 12: 0.123048
[99]
     valid_0's 12: 0.123202
[100] valid_0's 12: 0.123423
LightGBM模型的预测结果: 0.9024782350613376
```

3.2.8 XGBoost算法

```
# 任务: 使用XGBoost模型进行预测
# 导入XGBClassifier模型
from xgboost import XGBClassifier

# 创建XGBClassifier模型并进行训练
xgbc = XGBClassifier()
xgbc.fit(train_x, train_y)

# 使用训练好的模型进行预测,并计算预测准确率
pred_xgbc = xgbc.predict(test_X)
accuracy_xgbc = roc_auc_score(test_y, pred_xgbc)
print("XGBoost模型的预测结果: ", accuracy_xgbc)
```

XGBoost模型的预测结果: 0.819078947368421

3.2.9 极端随机树

```
# 任务: 使用极端随机树模型对数据进行训练,并输出预测结果的准确性

from sklearn.ensemble import ExtraTreesClassifier

# 使用极端随机树模型对训练集train_x和训练标签train_y进行训练
etree = ExtraTreesClassifier()
etree.fit(train_x, train_y)

# 使用训练好的模型对测试集test_x进行预测.并计算预测准确性
pred_etree = etree.predict(test_x)
accuracy_etree = roc_auc_score(test_y, pred_etree)

# 输出预测准确性结果
print("极端随机树模型的预测结果: ", accuracy_etree)
```

3.2.10 AdaBoost算法

极端随机树模型的预测结果: 0.8359962406015037

```
# 任务: 使用AdaBoost模型对数据进行训练,并输出预测结果的准确性
# 使用AdaBoost模型对训练集train_X和训练标签train_y进行训练

from sklearn.ensemble import AdaBoostClassifier

abc = AdaBoostClassifier()
abc.fit(train_x, train_y)

# 使用训练好的模型对测试集test_x进行预测,并计算预测准确性
pred_abc = abc.predict(test_X)
accuracy_abc = roc_auc_score(test_y, pred_abc)

# 输出预测准确性结果
print("AdaBoost模型的预测结果: ", accuracy_abc)
```

3.2.11 基于Bagging的K最近邻

```
# 任务: 使用基于Bagging的K紧邻模型对数据进行训练,并输出预测结果的准确性
# 使用K紧邻模型作为基分类器,通过Bagging方式对训练集train_X和训练标签train_y进行训练

from sklearn.ensemble import BaggingClassifier

bag_knn = BaggingClassifier(KNeighborsClassifier())
bag_knn.fit(train_X, train_y)

# 使用训练好的模型对测试集test_X进行预测,并计算预测准确性
pred_bag_knn = bag_knn.predict(test_X)
accuracy_bag_knn = roc_auc_score(test_y, pred_bag_knn)

# 输出预测准确性结果
print("基于Bagging的K紧邻模型的预测结果: ", accuracy_bag_knn)
```

基于Bagging的K紧邻模型的预测结果: 0.7161654135338346

3.2.12 基于Bagging的决策树

```
# 任务: 使用基于Bagging的决策树模型对数据进行训练,并输出预测结果的准确性
# 使用决策树模型作为基分类器,通过Bagging方式对训练集train_x和训练标签train_y进行训练

from sklearn.ensemble import BaggingClassifier

bag_dt = BaggingClassifier(DecisionTreeClassifier())
bag_dt.fit(train_x, train_y)

# 使用训练好的模型对测试集test_x进行预测,并计算预测准确性
pred_bag_dt = bag_dt.predict(test_x)
accuracy_bag_dt = roc_auc_score(test_y, pred_bag_dt)

# 输出预测准确性结果
print("基于Bagging的决策树模型的预测结果: ", accuracy_bag_dt)
```

基于Bagging的决策树模型的预测结果: 0.8336466165413533

3.3 小结

```
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(rc={'figure.figsize':(15,6)}) # 设置画布大小
accuracys = [accuracy_lr, accuracy_rfc, accuracy_svm, accuracy_knn, accuracy_dtree, accuracy_gbdt, accuracy_rgbc, accuracy_etree, accuracy_abc, accuracy_bag_knn, accuracy_bag_dt, ]
models = ['Logistic', 'RF', 'SVM', 'KNN', 'Dtree', 'GBDT', 'LightGBM', 'XGBoost', 'Etree', 'Adaboost', 'Bagging-Dtree']
bar = sns.barplot(x=models, y=accuracys)

# 显示数值标签
for x, y in enumerate(accuracys):
    plt.text(x, y, '%s'% round(y,3), ha='center')

plt.xlabel("Model")
plt.ylabel("Model")
plt.ylabel("Accuracy")
plt.show()
```


根据上述条形图可以看出,在全部模型默认参数的情况下,逻辑回归的预测准确率最高,达到了0.911,其次是LightGBM模型,也在0.9以上,达到80%准确率以上的模型有RF、GBDT、XGBoost、ETree、Adaboost以及基于Bagging的决策树,其他模型的预测准确率则较低;