Devoir à la maison n°14 : corrigé

SOLUTION 1.

- 1. Il est clair que $\lim_{0} g = 0$. g est donc prolongeable par continuité en 0.
- **2.** g est dérivable sur]0,1] et pour tout $x \in]0,1]$,

$$g'(x) = 1 + \ln(x)$$

Ainsi g' est strictement négative sur $]0, e^{-1}[$, s'annule en e^{-1} et est strictement positive sur $]e^{-1}, 1]$. g est donc strictement décroissante sur $[0, e^{-1}]$ et strictement croissante sur $[e^{-1}, 1]$.

3. Tout d'abord, $-g(x) - x = -x(\ln x + 1) \ge 0$ pour tout $x \in]0, e^{-1}]$. En particulier, $-g(t_0) \ge t_0$. On a évidemment $t_0 \le t_n \le e^{-1}$ pour n = 0. Supposons que ce soit vrai pour un certain $n \in \mathbb{N}$. Par croissance de -g sur $[0, e^{-1}]$, $-g(t_0) \le -g(t_n) \le -g(e^{-1})$ donc a fortiori $t_0 \le t_{n+1} \le e^{-1}$. On a donc bien montré par récurrence que

$$\forall n \in \mathbb{N}, \ t_0 \le t_n \le e^{-1}$$

4. Fixons $x \in [t_0, e^{-1}]$. Comme g est de classe \mathscr{C}^2 (et même \mathscr{C}^{∞}) sur $[x, e^{-1}]$, on peut appliquer l'inégalité de Taylor-Lagrange à l'ordre 1.

$$\left|g(x)-g(e^{-1})-g'(e^{-1})(x-e^{-1})\right| \leq \frac{|x-e^{-1}|^2 \max_{[x,e^{-1}]}|g''|}{2}$$

Or $g'(e^{-1}) = 1 + \ln(e^{-1}) = 0$ et

$$\max_{[x,e^{-1}]} |g''| = \max_{t \in [x,e^{-1}]} \frac{1}{t} = \frac{1}{x \le \frac{1}{t_0}}$$

On en déduit que

$$\left|g(x) - g(e^{-1})\right| \le \frac{|x - e^{-1}|^2}{2t_0}$$

5. D'après la question précédente,

$$|t_1 - e^{-1}| = |g(t_0) - g(e^{-1})| \le \frac{|t_0 - e^{-1}|^2}{2t_0} = \frac{(e^{-1} - t_0)^2}{2t_0}$$

Donc l'inégalité à établir est vraie lorsque n = 1.

Supposons qu'elle le soit pour un certain $n \in \mathbb{N}^*$. Alors

$$|t_{n+1} - e^{-1}| = |g(t_n) - g(e^{-1})| \le \frac{|t_n - e^{-1}|^2}{2t_0} \le \frac{1}{2t_0} \left(2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^n}\right)^2 = 2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^{n+1}}$$

Par récurrence, l'inégalité est vraie pour tout $n \in \mathbb{N}^*$.

6. Remarquons que

$$\frac{e^{-1} - t_0}{2t_0} = \frac{e^{-1}}{2t_0} - \frac{1}{2}$$

Puisque $t_0 \in \left[\frac{e^{-1}}{3}, e^{-1} \right]$,

$$\frac{1}{2} < \frac{e^{-1}}{2t_0} < \frac{3}{2}$$

Ainsi

$$0 < \frac{e^{-1} - t_0}{2t_0} < 1$$

Posons $q = \frac{e^{-1} - t_0}{2t_0}$. La suite géométrique (q^n) converge donc vers 0. Sa suite extraite (q^{2^n}) converge également vers 0. Puisque

$$\forall n \in \mathbb{N}^*, |t_n - e^{-1}| \le 2t_0 q^n$$

la suite (t_n) converge vers e^{-1} .

SOLUTION 2.

1. On reconnaît une somme de Riemann. Puisque $x \mapsto \ln(1+x)$ est continue sur [0,1],

$$\lim_{n \to +\infty} S_n = \int_0^1 \ln(1+x) \, dx = \left[(1+x) \ln(1+x) - (1+x) \right]_0^1 = 2 \ln 2 - 1 = \ln(4) - 1$$

2. Soit $n \in \mathbb{N}^*$. Tout d'abord,

$$\begin{split} \ln(u_n) &= \ln(4) + \ln(n) + \frac{1}{n} \sum_{k=1}^n \ln(k) - \frac{1}{n} \sum_{k=1}^{2n} \ln(k) \\ &= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=n+1}^{2n} \ln(k) \\ &= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=1}^n \ln(n+k) \\ &= \ln(4) + \ln(n) - \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{n+k}{n}\right) - \frac{1}{n} \sum_{k=1}^n \ln(n) \\ &= \ln(4) - S_n \end{split}$$

Ainsi la suite $(\ln(u_n))$ converge vers 1. On en déduit que la suite (u_n) converge vers e.

SOLUTION 3.

- 1. Il est clair que $\lim_{0} f = 0$ de sorte que f est prolongeable par continuiét en 0. Une étude rapide montre que f est strictement croissante sur $[0, e^{-1}]$ et strictement décroissante sur $[e^{-1}, 1]$.
- **2.** Soit $t \in \mathbb{R}_+$. Comme exp est de classe \mathscr{C}^{∞} sur [0,t], on peut appliquer l'inégalité de Taylor-Lagrange :

$$\left| e^t - \sum_{k=0}^n \frac{t^k}{k!} \right| \le \frac{|t|^{n+1}}{(n+1)!} \cdot \max_{[0,t]} \left| \exp^{(n+1)} \right|$$

Or $t \ge 0$ donc |t| = t et

$$\max_{[0,t]} |\exp^{(n+1)}| = \max_{[0,t]} \exp = e^t$$

Finalement,

$$|\mathsf{R}_n(t)| \le \frac{t^{n+1}e^t}{(n+1)!}$$

3.

$$\left| \mathbf{I} - \sum_{k=0}^{n} \frac{(-1)^k}{k!} \mathbf{I}_{k,k} \right| = \left| \int_0^1 \left(e^{f(x)} \, \mathrm{d}x - \sum_{k=0}^{n} \int_0^1 \frac{(f(x))^k}{k!} \right) \, \mathrm{d}x \right| = \left| \int_0^1 \mathbf{R}_n(f(x)) \, \mathrm{d}x \right| \le \int_0^1 |\mathbf{R}_n(f(x))| \, \mathrm{d}x$$

Soit $x \in [0, 1]$. Alors $f(x) \ge 0$ et, d'après la question 2,

$$|\mathbf{R}_n(f(x))| \le \frac{(f(x))^{n+1}e^{f(x)}}{(n+1)!}$$

D'après les variations de f, $0 \le f(x) \le f(e^{-1} = e^{-1})$ donc

$$|\mathbf{R}_n(f(x))| \le \frac{(e^{-1})^{n+1}e^{e^{-1}}}{(n+1)!} = \frac{e^{e^{-1}}}{e^{n+1}(n+1)!}$$

Finalement,

$$\left| \mathbf{I} - \sum_{k=0}^{n} \int_{0}^{1} (-1)^{k} \mathbf{I}_{k,k} \right| \le \int_{0}^{1} \frac{e^{e^{-1}}}{e^{n+1}(n+1)!} \, \mathrm{d}x = \frac{e^{e^{-1}}}{e^{n+1}(n+1)!}$$

4. Par intégration par parties.

$$I_{p,q} = \left[\frac{x^{p+1}}{p+1} (\ln x)^q \right]_0^1 - \int_0^1 \frac{x^{p+1}}{p+1} \cdot q \cdot \frac{1}{x} \cdot (\ln x)^{q-1} = -\frac{q}{p+1} I_{p,q-1}$$

Fixons $p \in \mathbb{N}$. Par télescopage

$$I_{p,q} = I_{p,0} \prod_{k=1}^{q} \frac{I_{p,k}}{I_{p,k-1}} = \frac{1}{p+1} \prod_{k=1}^{q} \frac{-k}{p+1} = \frac{(-1)^q q!}{(p+1)^{p+1}}$$

5. Notamment pour tout $k \in \mathbb{N}$, $I_{k,k} = \frac{(-1)^k k!}{(k+1)^{k+1}}$. On en déduit que pour tout $n \in \mathbb{N}$,

$$I - \sum_{k=0}^{n} \frac{-1)^k}{k!} I_k = I - \sum_{k=0}^{n} \frac{1}{(k+1)^{k+1}} = I - \sum_{k=1}^{n+1} \frac{1}{k^k}$$

puis, d'après la question 3

$$\left| I - \sum_{k=1}^{n+1} \frac{1}{k^k} \right| \le \frac{e^{e^{-1}}}{e^{n+1}(n+1)!}$$

Puisque $\lim_{n \to +\infty} \frac{e^{e^{-1}}}{e^{n+1}(n+1)!} = 0$,

$$\lim_{n \to +\infty} \sum_{k=1}^{n+1} \frac{1}{k^k} = I$$

Ainsi la série $\sum_{n\in\mathbb{N}^*} \frac{1}{n^n}$ converge et $\sum_{n=1}^{+\infty} \frac{1}{n^n} = \mathrm{I}$.