混合分布

正田 備也 masada@rikkyo.ac.jp

Contents

なぜ混合分布を使うのか

混合正規分布

これまでのモデリングの問題点

- ▶ これまでは、データ集合 $\mathcal{D} = \{x_1, \dots, x_N\}$ 全体に対して、 一つの確率分布を使うモデリングだけ議論していた
- ▶ しかし、多くのデータ集合は、たった一つの分布ではモデリングし切れない多様性を含んでいる
- ▶ 例えば、数値データの集合であれば、その周辺の数値が頻繁 に出現するという数値が、複数あったりする
 - ▶ 例:多峰性をもつデータ集合

混合分布

- ightharpoonup これまでは、全てのデータ $m{x}_i$ for $i=1,\ldots,N$ を、同じ一つ の分布から draw していた
 - ightharpoonup 全ての確率変数 $oldsymbol{x}_i$ for $i=1,\ldots,N$ が同じ分布に従うと考えていた
- ▶ 一方、混合分布によるモデリングでは、同じ種類の分布だが パラメータの値が違うだけの分布を、K個用意する
 - ▶ これらの分布をコンポーネントと呼ぶ
- ト そして、各データ x_i について、まず、カテゴリカル分布 $\operatorname{Cat}(\boldsymbol{\theta})$ にしたがって、K 個のコンポーネントから一つ選ぶ
 - lackbox θ_k は k 番目のコンポーネントが選ばれる確率
 - ト もちろん $\sum_k \theta_k = 1$ が成り立つ
- ightharpoonup そして、 $oldsymbol{x}_i$ がその選ばれた分布に従うと考える。

Contents

なぜ混合分布を使うのか

混合正規分布

混合正規分布

- ▶ 混合正規分布を使ったモデリングでは、データ集合 $\mathcal{D} = \{x_1, \dots, x_N\}$ が以下のように生成されると仮定する
- lacktriangleright i 番目のデータ $m{x}_i$ を生成するために、まず、カテゴリカル分布 $\mathsf{Cat}(m{ heta})$ から、確率変数 z_i の値を draw する
 - ▶ $z_i = k$ は、k 番目のコンポーネントが選ばれたことを意味する
- ightharpoonup その z_i の値に対応する確率分布から、 $oldsymbol{x}_i$ を draw する

$$z_i \sim \mathsf{Cat}(oldsymbol{ heta})$$

$$oldsymbol{x}_i \sim \mathcal{N}(oldsymbol{\mu}_{z_i}, oldsymbol{\Sigma}_{z_i})$$
 (1)

6 / 13

単変量正規分布の混合分布の場合

- ト K 個のコンポーネントからひとつを選ぶカテゴリカル分布 のパラメータは $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)$
 - θ_k は k 番目のコンポーネントが選ばれる確率
 - $ightharpoonup \sum_{k=1}^K heta_k = 1$ が成り立つ
- ▶ どのコンポーネントも単変量正規分布で、k番目のコンポーネントのパラメータは平均 μ_k と標準偏差 σ_k
 - ▶ その確率密度関数は

$$p(x; \mu_k, \sigma_k) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left(-\frac{(x - \mu_k)^2}{2\sigma_k^2}\right) \tag{2}$$

観測データの尤度

▶ 単変量正規分布の混合分布でモデリングされた観測データの尤度は

$$p(\mathcal{D}; \boldsymbol{\theta}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \prod_{i=1}^{N} p(x_i; \theta_{z_i}, \sigma_{z_i})$$

$$= \prod_{i=1}^{N} \left[\theta_{z_i} \times \frac{1}{\sqrt{2\pi\sigma_{z_i}^2}} \exp\left(-\frac{(x_i - \mu_{z_i})}{2\sigma_{z_i}^2}\right) \right]$$
(3)

▶ 個々のデータは、同じ分布からではないにせよ、独立に生成されると仮定している。

3 / 13

教師ありの設定の場合

- ▶ 教師ありの設定の場合、各データ x_i について、それがどの コンポーネントから生成されたかは、すでに分かっている
- ightharpoonup 言い換えれば、 z_i の値も観測データに含まれる
 - **>** つまり、 $\mathcal{D} = \{(x_1, z_1), \dots, (x_N, z_N)\}$
- ▶ このとき、観測データ D の尤度は

$$p(\mathcal{D}; \boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K)$$

$$= \prod_{k=1}^{K} \left[\theta_k^{c_k} \times \frac{1}{(\sqrt{2\pi\sigma_k^2})^{c_k}} \exp\left(-\frac{\sum_{\{i:z_i=k\}} (x_i - \mu_k)^2}{2\sigma_k^2}\right) \right]$$
(4)

 $ightharpoonup c_k$ は、k 番目のコンポーネントから生成されたデータの個数

$$L(\boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K) = \ln p(\mathcal{D}; \boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K) + \lambda \left(1 - \sum_{k=1}^K \theta_k\right)$$

$$L(\boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K) = \ln p(\mathcal{D}; \boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K) + \lambda \left(1 - \sum_{k=1}^K \theta_k\right)$$
$$= \sum_{k=1}^K c_k \ln \theta_k - \sum_{k=1}^K c_k \ln \sigma_k - \sum_{k=1}^K \sum_{k=1}^K \frac{(x_i - \mu_k)^2}{2\sigma_k^2} + \lambda \left(1 - \sum_{k=1}^K \theta_k\right) + const.$$

$$\frac{\partial L}{\partial \mu_k} = \frac{\sum_{\{i: z_i = k\}} (x_i - \mu_k)}{\sigma_k^2} = \frac{\sum_{\{i: z_i = k\}} x_i - c_k \mu_k}{\sigma_k^2}$$

 $\frac{\partial L}{\partial \mu_k} = 0$ より、 $\mu_k = \frac{\sum_{\{i: z_i = k\}} x_i}{c_k} = \bar{x}_k$ を得る。

$$rac{\partial L}{\partial \sigma_i} = x_k$$
 হাৰ ১০ $rac{\partial L}{\partial \sigma_i} = -rac{c_k}{\sigma_i} + rac{\sum_{\{i: z_i = k\}} (x_i - \mu_k)^2}{\sigma_i^3}$

$$rac{\partial L}{\partial \sigma_k} = 0$$
 より、 $\sigma_k^2 = rac{\sum_{\{i: z_i = k\}} (x_i - ar{x}_k)^2}{\sigma_i^2}$ を得る。

(6)

(7)

$$\frac{\partial L}{\partial \theta_k} = \frac{c_k}{\theta_k} - \lambda , \quad \frac{\partial L}{\partial \lambda} = 1 - \sum_{k=1}^{K} \theta_k$$
 (8)

$$rac{\partial L}{\partial heta_k} = 0$$
 より、 $heta_k = rac{c_k}{\lambda}$ を得る。 $rac{\partial L}{\partial \lambda} = 0$ より、 $1 - \sum_{k=1}^K rac{c_k}{\lambda} = 0$ を得る。 つまり、 $\lambda = \sum_k c_k$ が言えるので、 $heta_k = rac{c_k}{\sum_k c_k}$ を得る。

まとめると、

- \bullet θ_k は、k 番目のコンポーネントから生成されたデータの割合となる。

教師なしの設定の場合

- ▶ 教師なしの設定の場合、各データ x_i について、それがどのコンポーネントから生成されたかは、分からない!
- $ightharpoonup z_i$ は、値が観測されない確率変数、すなわち潜在変数
 - ightharpoonup つまり、 $\mathcal{D}=\{x_1,\ldots,x_N\}$
 - ▶ 一方、潜在変数の集合を $\mathcal{Z} = \{z_1, \ldots, z_N\}$ とする
- ▶ このとき、観測データ D の尤度は、どう書けばいいのか?
 - ト 下の式で与えられる $p(\mathcal{D}, \mathcal{Z})$ は、観測データの尤度 $p(\mathcal{D})$ ではない

$$p(\mathcal{D}, \mathcal{Z}; \boldsymbol{\theta}, \mu_1, \dots, \mu_K, \sigma_1, \dots, \sigma_K)$$

$$= \prod_{k=1}^{K} \left[\theta_k^{c_k} \times \frac{1}{(\sqrt{2\pi\sigma_k^2})^{c_k}} \exp\left(-\frac{\sum_{\{i:z_i=k\}} (x_i - \mu_k)^2}{2\sigma_k^2}\right) \right] \frac{(9)}{12/13}$$

周辺尤度

- ▶ 潜在変数を含むモデリングの場合、観測データの尤度 $p(\mathcal{D})$ は、潜在変数を周辺化 marginalize してはじめて得られる
 - ▶ 周辺化によって得られる尤度を周辺尤度 marginal likelihood と呼ぶ

$$p(\mathcal{D}) = \sum_{\mathcal{Z}} p(\mathcal{D}, \mathcal{Z})$$

$$= \sum_{z_1=1}^K \sum_{z_2=1}^K \cdots \sum_{z_{N-1}=1}^K \sum_{z_N=1}^K p(\mathcal{D}, \mathcal{Z})$$
(10)

- ightharpoonup 上の式で足し合わされている項は、 K^N 個もあって、妥当な時間内では計算できない!
 - ▶ いわゆる、組合せ論的爆発 combinatorial explosion