实验五 数字化交流电压表 实验报告

姓名: 李显昱

学号: <u>2018011498</u>

班级: 自83

日期: 2020.5.21

目录 1

目录

1	实验目的	2
2	实验内容	2
	2.1 各模块的设计过程	2
	2.2 全部实验内容的面包板电路实拍图	2
	2.3 波形截图与数据表格	2
3	设计和调试中遇到的问题及解决方法	5

1 实验目的 2

1 实验目的

- (1) 熟悉小型电子系统的设计和实现;
- (2) 初步掌握小型电子系统的安装和调试方法;
- (3) 了解电压表性能指标意义,并尝试改进电路性能;
- (4) 熟练掌握基于 Multisim 的电路设计和仿真。

2 实验内容

2.1 各模块的设计过程

本次实验完成模拟部分电路涉及。

输入阻抗变换 由于实验要求中涉及输入阻抗 $\geq 10M\Omega$,所以我考虑使用电压跟随器完成输入阻抗的变换,提高输入电阻,本部分电路不涉及参数设计。

精密整流电路 本部分电路参考教材第 383 页的电路,实现了全波的精密整流。其中电阻涉及 R, R_f 和 R_1 还有 R_2 ,R 的阻值我选取的为 $10k\Omega$,根据 R 和 R_f 的关系,即: $R_f=2R$,所以 $R_f=20k\Omega$ 。因为 R_1 还有 R_2 的设置对于全波整流具体效果没有影响,所以在此次电路中,我选取 $2k\Omega$ 作为 R_1 和 R_2 的阻值(也是因为 $10k\Omega$ 电阻不够用了)。

低通滤波电路 为了能够达到更好的低通滤波效果,我使用了压控电压源(VCVS)二阶低通滤波器滤出直流分量。对于参数 R_1 , R_2 ,R 和 C,先考虑 R_1 和 R_2 ,在模电课程分析中得到,Q=1 时, f_0 点处增益等于 A_{up} ,所以将 Q 点设置为 1,可以计算得到 $A_{up}=2$,进而计算得到 $R_1=R_2$,最后我选取了 $R_1=R_2=20k\Omega$ 。而为了达到更好的低通滤波效果,在 RC 的选取上我采用 $R=1k\Omega$ 和 $C=0.1\mu F$,使得计算得到的 $f_0=\frac{1}{2\pi RC}=15.92Hz$,可以获得较好的直流分量。

电压平率转换电路 本部分电路参考教材第 386 页的电路,即电荷平衡式 V-F 转换电路。根据电路, $R_5 << R_1$,所以我选取了 $R_5 = 1k\Omega$,但是 R_1 因为和 T 有关,而最后我们要得到了 f 和输入信号 u_I 峰值有关,为了能够利用变阻器调节 R_3 来达到要求更好,所以 R_1 没有选取很大,只是 $10k\Omega$ 。而 R_2 和 C 在仿真过程中不断地调整最后选用盒子里有的元器件值 $C = 0.1\mu F$ 和 $R_2 = 10k\Omega$ 。

最后如果真的需要转换电平,我认为可以在后面再加一级施密特触发器,进而达到 FPGA 输入要求。 而在本实验中最后我加入了一个稳压管,后面可以看到基本输出电平峰值为 4.8V 左右。

2.2 全部实验内容的面包板电路实拍图

如图 1为全部实验内容的面包板电路实拍图。

2.3 波形截图与数据表格

前三个模块均使用输入电压为 2V 是得到的波形,图可见 2,3,4。

输入阻抗变换

精密整流电路

低通滤波电路

关于电压平率转换电路将放 4 张图进行展示。见图

2 实验内容 3

图 1: 全部实验内容的面包板电路实拍图

图 2: 输入阻抗变换示波器波形

图 3: 精密整流电路示波器波形

图 4: 低通滤波电路示波器波形

2 实验内容 5

图 5: 电压平率转换电路

表 1: $1V \sim 5V$ 测量数据处理

U_{Ipp}/V	f/Hz	相对误差/%
1.04	101	2.88
1.49	152	1.97
2.01	201	0
2.53	251	0.79
2.98	299	0.34
3.54	347	1.98
4.06	395	2.71
4.55	441	3.08
5.03	486	3.38

电压平率转换电路

表 1为此次实验中记录的数据表。图 6为测量数据结果拟合曲线。其中拟合曲线结果 $f=95.53u_I+7.95$,相关系数 $R^2=0.99921$,从相关系数来说,线性性还是很好的,而从斜率来看误差大概为 4.47%,整体来说,实验结果达到了预期。如果电路还能实现的更好的话,我觉得可以相对于现在的 R_3 (教材 386 页关于电荷平衡式 V-F 转换电路中的 R_3) 可以再稍微调大一点(现在 $R_3=22.50k\Omega$),之前是将输入电阻固定在 1V 时调节的 R_3 ,所以加上截距,导致后期误差更大。

图 6: 1~5V 测量结果拟合曲线

3 设计和调试中遇到的问题及解决方法

本次实验因为模块划分比较准确,所以在一个一个模块分析的时候,整体问题不大。碰到的一个花了一些时间去调试的是:全波精密整流模块的输出是半波精密整流的波形,后来我一个一个排查电路电阻发现,反馈电阻在搭建电路的时候因为粗心所以忘记接入了。同时本次实验比较花费时间的便是最后一个模块调节 R_3 以获得较为准确的输出。