Rule Mining in Knowledge Graphs

January 24, 2025

The vision of Semantic Web: enable algorithms to interpret, reason, and interact intelligently with information.

How to represent knowledge in a form that can be processed by machines?

How to represent knowledge?

Relational Model:

- Well-defined structure, efficient for tabular data.
- Typically used for restrained number of relations.
- However, real-life relations are in the order of tens of thousands.

RDF: Resource Description Framework

- A standard proposed by the W3C to structure knowledge.
- Flexible and extensible format, suited for open and interconnected systems.

Principle of the RDF Model

Describe knowledge as elementary assertions:

Example:

- Marie Curie was born in Warsaw.
- Marie Curie was married to Pierre Curie.
- Marie Curie lived in Paris.
- Marie Curie is a scientist.
- A scientist is a person.

Simple model, but several considerations must be addressed: ambiguities, consistency, and predicate interoperability.

Addressing ambiguity

Representing knowledge with unique identifiers (IRIs):

- For **predicates** (relations).
- For **entities** (people, concepts, places).

Addressing ambiguity

Representing knowledge with unique identifiers (IRIs):

- For predicates (relations).
- For entities (people, concepts, places).

In Turtle, our examples can be expressed as follows:

```
@prefix yago: <http://yago-knowledge.org/resource/>.
@prefix schema: <https://schema.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
```

yago:Marie_Curie yago:Marie_Curie yago:Marie_Curie yago:Marie_Curie yago:Marie_Curie yago:Scientist schema:birthPlace sc

yago:Warsaw. yago:Pierre_Curie. yago:Paris. yago:Scientist. yago:Person.

Textual descriptions: multilingual and multi-type

- Motivation: Some values need to be represented directly.
- A literal is a textual or numerical value considered to be fixed.
- A literal may be associated with a language tag or a data type.

Example:

```
yago:Marie_Curie rdfs:label "Marie Curie"@fr.
yago:Marie_Curie rdfs:label "Maria Skłodowska-Curie"@pl.
yago:Marie_Curie schema:birthDate "1867-11-07"^xsd:date.
```

Note: The predicate rdfs:label is generally used to associate an entity with its **textual label**:

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
```

Knowledge Graphs Overview

Intuitively, a knowledge graph is a set of triples:

Definition: Let the following sets be given:

- \mathcal{E} : the set of entities (IRI).
- P: the set of predicates (IRI).
- L: the set of literal values (e.g., strings, numbers).

A knowledge graph is a set $\mathcal{K} \subseteq (\mathcal{E} \cup \mathcal{P}) \times \mathcal{P} \times (\mathcal{L} \cup \mathcal{E})$.

Simplified Graph Representation

Simplifications for readability:

- We omit the prefixes of IRI identifiers.
- We use images for some entities instead of their IRIs.
- We do not explicitly represent the labels (rdf:label).

Rules and Integrity Constraints

Examples of natural language expressions:

- Married people live in the same city.
- A person has only one birth date.
- Every subject of the predicate marriedTo is of type Person.
- Two authors of the same publication with the same name are the same person.

Rules and Integrity Constraints

Examples of natural language expressions:

Married people live in the same city.

(Horn rule)

A person has only one birth date.

- (functional dependency)
- Every subject of the predicate marriedTo is of type Person.

(inclusion dependency)

 $\bullet\,$ Two authors of the same publication with the same name are the same person.

(key constraint)

Applications of Rules: Fact Prediction

Rule: Married people live in the same locality.

Type Inference

Rule: Every subject of the marriedTo relation is of type Person.

Type Inference

Rule: Every subject of the marriedTo relation is of type Person.

Inferring equivalent entities

Rule: Two authors sharing the same name and the same publications are the same person.

The Three Musketeers

Reinforcing constraints

Rule: A person can have only one birthdate.

Exception raised: two birthdates for the same person.

Applications: detecting inconsistencies and cleaning data.

How to learn rules from Knowledge Graphs?

Induction approach: Generalise a number of similar observations into a hypothesis.

Example: Given many examples of spouses living together, generalise this knowledge.

Intuition Homemaker Knowledge Base: type m_curie -marriedTo > [p_curie] m_planck - marriedTo - m_merck livedIn livedIn livedIn livedÍn Paris Berlin Homemaker type a_camus | -marriedTo > [f_faure] j_smith|-marriedTo>(s_smith) livedIn livedÍn livedIn Paris London

Observation: In 75% of the cases, spouses are recorded as living together.

Reducing the scope of the analysis

Knowledge Base:

Observation: Reducing the analysis to spouses where one is a homemaker, the rule that the two live together holds in 100% of cases.

• How to find the right balance between generality and specificity?

- How to find the right balance between generality and specificity?
- How to evaluate the rules?

- How to find the right balance between generality and specificity?
- How to evaluate the rules?
- Knowledge bases are incomplete.
 How can we distinguish between false and missing information?

- How to find the right balance between generality and specificity?
- How to evaluate the rules?
- Knowledge bases are incomplete.
 How can we distinguish between false and missing information?
- The search space is too vast to cover efficiently.

- How to find the right balance between generality and specificity?
- How to evaluate the rules?
- Knowledge bases are incomplete.
 How can we distinguish between false and missing information?
- The search space is too vast to cover efficiently.
- The search space depends on the expressivity of the rule language.

- How to find the right balance between generality and specificity?
- How to evaluate the rules?
- Knowledge bases are incomplete.
 How can we distinguish between false and missing information?
- The search space is too vast to cover efficiently.
- The search space depends on the expressivity of the rule language.
- We need smart heuristics to uncover good rules.

Conjunctive queries for extracting frequent patterns

Query: Find all pairs (?y, ?z) such that the spouse of ?y lives in ?z.

The query in SPARQL:

```
SELECT ?y ?z
WHERE {
    ?x marriedTo ?y.
    ?x livedIn ?z.
}
```

The query as a graph pattern:
select ?y, ?z

?x — marriedTo → ?y

livedIn

?z

Conjunctive queries for extracting frequent patterns

Query: Find all pairs (?y, ?z) such that the spouse of ?y lives in ?z.

The guery in SPARQL:

SELECT ?y ?z WHERE { ?x marriedTo ?y. ?x livedIn ?z.

The query as a graph pattern: select ?y, ?z

Knowledge Graph:

Knowledge Graph as a set of facts (grounded atoms):

marriedTo(m_curie, p_curie)
 livedIn(m_curie, Paris)

marriedTo(m_planck, m_merck)
 livedIn(m_planck, Berlin)

Knowledge Graph as a set of facts (grounded atoms):

```
marriedTo(m_curie, p_curie) marriedTo(m_planck, m_merck)
    livedIn(m_curie, Paris) livedIn(m_planck, Berlin)
```

Datalog Query:

```
marriedTo(x, y), livedIn(x, z) \Rightarrow R_1(y, z)
```

Knowledge Graph as a set of facts (grounded atoms):

Datalog Query:

marriedTo(x, y), livedIn(x, z)
$$\Rightarrow R_1(y, z)$$

• marriedTo(x, y), livedIn(x, z), and $R_1(y, z)$ are atoms.

Knowledge Graph as a set of facts (grounded atoms):

```
marriedTo(m_curie, p_curie) marriedTo(m_planck, m_merck)
    livedIn(m_curie, Paris) livedIn(m_planck, Berlin)
```

Datalog Query:

marriedTo(x, y), livedIn(x, z)
$$\Rightarrow R_1(y, z)$$

- marriedTo(x, y), livedIn(x, z), and $R_1(y, z)$ are **atoms**.
- The variables x, y, and z are placeholders for values from the KG.

Knowledge Graph as a set of facts (grounded atoms):

```
marriedTo(m_curie, p_curie) marriedTo(m_planck, m_merck)
    livedIn(m_curie, Paris) livedIn(m_planck, Berlin)
```

Datalog Query:

marriedTo(x, y), livedIn(x, z)
$$\Rightarrow R_1(y, z)$$

- marriedTo(x, y), livedIn(x, z), and $R_1(y, z)$ are atoms.
- The variables x, y, and z are placeholders for values from the KG.
- R_1 is the **query result relation**, generated from the rule.

Knowledge Graph as a set of facts (grounded atoms):

Datalog Query:

marriedTo(x, y), livedIn(x, z)
$$\Rightarrow R_1(y, z)$$

- marriedTo(x, y), livedIn(x, z), and $R_1(y, z)$ are **atoms**.
- The variables x, y, and z are placeholders for values from the KG.
- R_1 is the **query result relation**, generated from the rule.

Query Answers: Each valid **substitution** for x, y, and z that satisfies the rule generates a row in the result:

?x	?y	?z
m_curie	p_curie	Paris
m_planck	m_merck	Berlin

Introduction to Horn Rules

Example Rule R: marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)

• A fact p predicted by the Knowledge Graph K and rule R is denoted:

$$\mathcal{K} \wedge R \models p$$

Here, \models indicates logical entailment, meaning p is implied by \mathcal{K} and R.

Introduction to Horn Rules

Example Rule R: marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)

ullet A fact p predicted by the Knowledge Graph ${\mathcal K}$ and rule R is denoted:

$$\mathcal{K} \wedge R \models p$$

Here, \models indicates logical entailment, meaning p is implied by \mathcal{K} and R.

The rule states: If a person x is married to y and x lived in a city z, then y
is also inferred to have lived in z.

Introduction to Horn Rules

Example Rule R: marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)

• A fact p predicted by the Knowledge Graph K and rule R is denoted:

$$\mathcal{K} \wedge R \models p$$

Here, \models indicates logical entailment, meaning p is implied by \mathcal{K} and R.

- The rule states: If a person x is married to y and x lived in a city z, then y
 is also inferred to have lived in z.
- The variables x, y, and z are **universally quantified**, meaning the rule applies to all individuals in \mathcal{K} .

Introduction to Horn Rules

Example Rule R: marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)

• A fact p predicted by the Knowledge Graph K and rule R is denoted:

$$\mathcal{K} \wedge R \models p$$

Here, \models indicates logical entailment, meaning p is implied by \mathcal{K} and R.

- The rule states: If a person x is married to y and x lived in a city z, then y
 is also inferred to have lived in z.
- The variables x, y, and z are **universally quantified**, meaning the rule applies to all individuals in \mathcal{K} .

Application to our KG:

- $K \land R \models livedIn(p_curie, Paris)$
- $K \land R \models livedIn(m_merck, Berlin)$

Mining Horn Rules: Reducing the Search Scope

- Systems like AMIE and AnyBURL focus on mining positive Horn rules:
 - The conclusion consists of a single positive literal.
 - The premise is a conjunction of positive literals.
- To further reduce the search space, they impose additional constraints:
 - Connectedness: All atoms in the rule must be transitively connected.
 - Closedness: A rule is closed if:
 - All variables appear in at least two atoms.
- A closed rule ensures **safely**: variables in conclusion appear in the premise.

Question: Among the following formulas, which are not Horn rules?

- Married people live in the same city.
- · A person has only one date of birth.
- Every subject of the predicate marriedTo is of type Person.
- Two authors of the same publication with the same name are the same person.

Question: Among the following formulas, which are not Horn rules?

Married people live in the same city.

$$marriedTo(x, y)$$
, $livesIn(x, z) \Rightarrow livesIn(y, z)$

- A person has only one date of birth.
- Every subject of the predicate marriedTo is of type Person.
- Two authors of the same publication with the same name are the same person.

Question: Among the following formulas, which are not Horn rules?

• Married people live in the same city.

$$marriedTo(x, y)$$
, $livesIn(x, z) \Rightarrow livesIn(y, z)$

A person has only one date of birth.

birthdate(x,
$$d_1$$
), birthdate(x, d_2) $\Rightarrow d_1 = d_2$

- Every subject of the predicate marriedTo is of type Person.
- Two authors of the same publication with the same name are the same person.

Question: Among the following formulas, which are not Horn rules?

Married people live in the same city.

$$marriedTo(x,y)$$
, $livesIn(x,z) \Rightarrow livesIn(y,z)$

• A person has only one date of birth.

birthdate(
$$x, d_1$$
), birthdate(x, d_2) $\Rightarrow d_1 = d_2$

• Every subject of the predicate marriedTo is of type Person.

$$marriedTo(x,y) \Rightarrow type(x, 'Person') \checkmark$$

Two authors of the same publication with the same name are the same person.

Question: Among the following formulas, which are not Horn rules?

Married people live in the same city.

$$marriedTo(x, y)$$
, $livesIn(x, z) \Rightarrow livesIn(y, z)$

A person has only one date of birth.

birthdate(
$$x, d_1$$
), birthdate(x, d_2) $\Rightarrow d_1 = d_2$

• Every subject of the predicate marriedTo is of type Person.

$$marriedTo(x, y) \Rightarrow type(x, 'Person')$$

Two authors of the same publication with the same name are the same person.

authorOf(
$$x, p$$
), authorOf(y, p), label(x, n), label(y, n) $\Rightarrow x = y$

Expressivity: Hierarchy of Languages

Lattice: Rule Refinements Exploration

Initial Query: \Rightarrow livesIn(y,z)

Query Containment

Rules can be generated by **extending existing rules**, forming a containment relationship between rules.

Example:

```
R_1: marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)

R_2: marriedTo(x,y), livedIn(x,z), type(x,'Homemaker') \Rightarrow livedIn(y,z)
```

• Does R_2 generate a subset of predictions compared to R_1 ?

Inclusion of Conjunctive Queries

Queries:

```
R_1: marriedTo(x, y), livedIn(x, z) \Rightarrow R_1(y, z)

R_2: marriedTo(x, y), livedIn(x, z), type(x, 'Homemaker') \Rightarrow R_2(y, z)
```

- Regardless of the knowledge base, the results of query R_2 are always included in those of query R_1 .
- Formally, R_2 is a sub-query of R_1 , denoted as:

$$R_2 \sqsubseteq R_1$$

KG Example

Knowledge Base:

Specialization of Rules

The specialization of a rule can be achieved in two main ways:

- Adding atoms to the body of a rule (as seen previously).
- Replacing variables with constants, restricting the application of the rule to a specific subset.

Example:

```
R_1: marriedTo(x, y), livedIn(x, z) \Rightarrow livedIn(y, z)
```

 R_3 : marriedTo(x, y), livedIn(x, 'Paris') \Rightarrow livedIn(y, 'Paris')

Observation: R_3 applies only to people married to Parisians.

Specialization of Rules

The specialization of a rule can be achieved in two main ways:

- Adding atoms to the body of a rule (as seen previously).
- **Replacing variables with constants**, restricting the application of the rule to a specific subset.

Example: Let us compare the results of the two rules:

 R_1 : marriedTo(x, y), livedIn(x, z) $\Rightarrow R_1(y, z)$

 R_3 : marriedTo(x, y), livedIn(x, 'Paris') $\Rightarrow R_3(y, 'Paris')$

Notice that here as well, $R_3 \sqsubseteq R_1$.

Observation: R_3 applies only to people married to Parisians.

Rule Generation Lattice

- Rule generation can be represented as a lattice, where rules are connected by the inclusion operator ⊆.
- General rules are at the top, while specific rules are at the bottom.
- Lattices optimize rule generation by factoring computations and avoiding redundancies

Question: Where should rule specialization stop?

Challenge: Finding the right balance between generality and specificity.

Rule Support

Definition: The support of a rule R is the number of true facts it generates:

$$support(R) = |\{p : (\mathcal{K} \land R \models p) \land p \in \mathcal{K}\}|$$

Property: The support decreases as a rule becomes more specialized.

Utility: A rule is not refined if its support falls below a threshold.

Question: What support threshold should you choose for your data?

Calculating Rule Support

Rules:

 $R_1 : marriedTo(x,y), livedIn(x,z) \Rightarrow livedIn(y,z)$

 R_2 : marriedTo(x,y), livedIn(x,z), type(x,'Homemaker') \Rightarrow livedIn(y,z)

Predictions:

κ_1	
livedIn	
p_curie	Paris
m_merck	Berlin
f_faure	Paris
s_smith	London

R_2	
livedIn	
m_merck	Berlin
s_smith	London

Confidence Measure of a Rule

Definition: The confidence of a rule R is the proportion of true predictions among all predictions:

$$confidence(R) = \frac{support(R)}{support(R) + |cex(R)|}$$

where cex(R) represents the counterexamples of R.

Extension: AMIE 3 generalizes Inductive Logic Programming (ILP) by discovering *soft* rules that tolerate a limited number of counterexamples.

Summary:

• **Support:** Relevance of a rule.

Confidence: Accuracy of a rule.

Objective: Extract rules with support and confidence above defined thresholds.

The Problem of Counterexamples

Observation: Knowledge bases primarily contain positive information but lack explicit counterexamples.

Solution: Negative facts can be inferred based on assumptions:

- Closed World Assumption (CWA): What is not known is false.
- Open World Assumption (OWA): What is not known is unknown (and could therefore be true).
- Partial Completeness Assumption (PCA): Proposed by AMIE.

Counterexample or True Prediction?

Consider the prediction:

$$\mathcal{K} \wedge R \models \text{livedIn}(\text{Marie Merck, Berlin})$$

where \mathcal{K} is the following knowledge base:

Interpretation based on assumptions:

- **CWA:** The prediction is false, so it is a counterexample.
- OWA: No conclusion can be drawn; the fact might be unknown.
- PCA: The prediction is true because no other residence is known for Marie Merck.

Knowledge Base Update

Consider the prediction:

$$\mathcal{K}' \wedge R \models \text{livedIn(Marie Merck, Berlin)}$$

where \mathcal{K}' is the following knowledge base:

- CWA & OWA: No change in interpretation.
- PCA: The prediction is a counterexample, as another fact livedIn(Marie Merck, Berlin-Grunewald) is known.

Overview of Rule Discovery Methods

 Inductive Logic Programming (ILP): Finding hypotheses that cover examples.

Approaches:

- Top-Down: Based on specialization (e.g., AMIE, RUDIK).
- Bottom-Up: Based on generalization (e.g., GOLEM, AnyBURL).

Interesting Perspective:

Rule discovery on vector representations.

Bibliography

- Luis Galárraga, Christina Teflioudi, Katja Hose, Fabian M. Suchanek:
 "AMIE: Association Rule Mining under Incomplete Evidence" WWW 2013.
- N. Lavrač, S. Džeroski: "Inductive Logic Programming Techniques and Applications." References.
- F. Suchanek, J. Lajus, A. Boschin, G. Weikum: "Knowledge Representation and Rule Mining in Entity-Centric KBs"
 Reasoning Web Summer School (RW), 2019.