COMPOSITION OF LINEAR TRANSFORMATIONS

Let $T:U \to V$ and $S:V \to W$ be linear transformations. The composition of S with T is the mapping $S \circ T$ definite by $(S \circ T)(u) = S(T(u))$

EXAMPLE:

Let $T:\mathbb{R}^2 \to F_1$ and $S:F_1 \to F_2$ be the linear transformations defined by

$$T\begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$$
 and $S(f(x)) = xf(x)$

• Find $(S \circ T) \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$(S \circ T) \begin{bmatrix} 3 \\ -2 \end{bmatrix} = S \left(T \begin{pmatrix} 3 \\ -2 \end{pmatrix} \right) = S(3 + (3 - 2)x) = S(3 + x) = x(3 + x) = 3x + x^{2}$$

• Find $(S \circ T) \begin{bmatrix} a \\ b \end{bmatrix}$

$$(S \circ T) \begin{bmatrix} a \\ b \end{bmatrix} = S \left(T \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = S(a + (a+b)x) = x(a+(a+b)x) = ax + (a+b)x^2$$

If $T:U\to V$ and $S:V\to W$ are linear transformation, then $S\circ T:U\to V$ is a linear transformation.

$$(S \circ T)(u+v) = S(T(u+v)) \qquad (S \circ T)(cu) = S(T(cu))$$

$$= S(T(u)+T(v)) \qquad = S(cT(u))$$

$$= S(T(u))+S(T(v)) \qquad = cS(T(u))$$

$$= (S \circ T)(u)+(S \circ T)(v) \qquad = c(S \circ T)(u)$$

INVERSES OF LINEAR TRANSFORMATION

A linear transformation $T:V \to W$ is invertible if there is a linear transformation $T':W \to V$ such that $T'\circ T=I_V$ and $T\circ T'=I_W$

EXAMPLE:

Verify that the linear mapping
$$T:\mathbb{R}^2 \to F_1:T\begin{bmatrix}a\\b\end{bmatrix}=a+(a+b)x$$
 and
$$T':F_1\to\mathbb{R}^2:T'(c+dx)=\begin{bmatrix}c\\d-c\end{bmatrix} \text{are inverses.}$$

$$(T \circ T) \begin{bmatrix} a \\ b \end{bmatrix} = T \cdot \left(T \begin{bmatrix} a \\ b \end{bmatrix} \right) = T \cdot (a + (a+b)x) = \begin{bmatrix} a \\ (a+b)-a \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$(T \circ T \cdot)(c+dx) = T(T \cdot (c+dx)) = T \begin{bmatrix} c \\ d-c \end{bmatrix} = c + (c+(d-c))x = c + dx$$

Therefore they are inverses because $T \ensuremath{\,^{'}\!\!\circ} T = I_{\mathbb{R}^2}$ and $T \circ T \ensuremath{\,^{'}\!\!=} I_{F_{\!\scriptscriptstyle I}}$.