WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/29, 15/82, 15/11, 5/10, C07K 14/415

A1

(11) International Publication Number:

WO 97/47745

(43) International Publication Date:

18 December 1997 (18.12.97)

(21) International Application Number:

PCT/EP97/03070

(22) International Filing Date:

12 June 1997 (12.06.97)

(30) Priority Data:

PCT/ES96/00130 13 June 1996 (13,06.96) WO

(34) Countries for which the regional or

international application was filed:

ES et al.

(71) Applicant (for all designated States except US): CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS [ES/ES]; Serrano, 117, E-28006 Madrid (ES).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **GUTIERREZ** ARMENTA, Crisanto [ES/ES]; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, E-28049 Cantoblanco (ES). XIE, Qi [CN/ES]; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, E-28049 Cantoblanco (ES). PELAYO SANZ-BURGOS, Andrés [ES/ES]; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, E-28049 Cantoblanco (ES). SUAREZ LOPEZ, Paula [ES/ES]; Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, E-28049 Cantoblanco (ES).

(74) Agent: POLO FLORES, Carlos; Profesor Waksman, 10, E-28036 Madrid (ES).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR. TT. UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Refore the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PLANT RETINOBLASTOMA-ASSOCIATED PROTEINS

(57) Abstract

The present invention is based on the isolation and characterization of a plant cell DNA sequence encoding for a retinoblastoma protein. Such finding is based on the structural and functional properties of the plant retinoblastoma protein as possible regulator of the cellular cycle, of the cellular growth and of the plant cellular differentiation. For this reason, among other aspects, it is claimed the use of retinoblastoma protein or the DNA sequence which encodes for it in the growing control of vegetable cells, plants and/or vegetable virus, as well as the use of vectors, cells, plants or animals, or animal cells modified through the manipulation of the control route based on plant retinoblastoma protein.

> Gordon-Kamm et al. Serial No. 09/511,445

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegai
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	ţī.	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	ltaly	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ.	Kazakstan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

- 1 -

PLANT RETINOBLASTOMA-ASSOCIATED PROTEINS DESCRIPTION

5

10

15

20

25

3.0

35

The present invention relates the proteins having biological activity in plant and animal systems, to polynucleotides encoding for the expression of such proteins, to oligonucleotides for use in identifying and synthesizing these proteins and polynucleotides, to vectors and cells containing the polynucleotides in recombinant form and to plants and animals comprising these, and to the use of the proteins and polynucleotides and fragments thereof in the control of plant growth and plant vulnerability to viruses.

Cell cycle progression is regulated by positive and negative effectors. Among the latter, the product of the retinoblastoma susceptibility gene (Rb) controls the passage of mammalian cells through G1 phase. In mammalian cells, Rb regulates G1/S transit by inhibiting the function of the E2F family of transcription factors, known to interact with sequences in the promoter region of genes required for cellular DNA replication (see eg Weinberg, R.A. Cell 81,323 (1995); Nevins, J.R. Science 258,424 (1992)). DNA tumor viruses that infect animal cells express oncoproteins that interact with the Rb protein via a LXCXE motif, disrupting Rb-E2F complexes and driving cells into S-phase (Weinberg ibid; Ludlow, J. W. FASEB J. 7, 866 (1993); Moran, E. FASEB J. 7, 880 (1993); Vousden, K. FASEB J. 7, 872 (1993)).

The present inventors have shown that efficient replication of a plant geminivirus requires the integrity of an LXCXE amino acid motif in the viral RepA protein and that RepA can interact with members of the human Rb family in yeast (Xie, Q., Suárez-López, P. and Gutiérrez, C. EMBO J. 14, 4073 (1995). The presence of the LXCXE motif in plant D-type cyclins has also been reported (Soni, R., Carmichael, J. P., Shah, Z. H. and Murray, J.

- 2 -

A. H. Plant Cell 7, 85-103 (1995)).

5

10

15

20

25

30

35

inventors have now identified present characteristic sequences of plant Rb proteins and corresponding encoding polynucleotides for the first time, isolated such a protein and polynucleotide, and particularly have identified sequences that distinguish it from known animal Rb protein sequences. The inventors have determined that a known DNA sequence from the maize encoding a vegetable Rb plant protein and is hereinafter called ZmRb1. ZmRb1 has been demonstrated by inventors to interact in yeasts with RepA, a plant geminivirus protein containing LXCXE motif essential for its function. The inventors have further determined that geminivirus DNA replication is reduced in plant cells transfected with plasmids encoding either ZmRb1 or human p130, a member of the human Rb family.

Significantly the inventors work suggests that plant and animal cells may share fundamentally similar strategies for growth control, and thus human as well as plant Rb protein such as ZmRb1 will be expected to have utility in, *inter alia*, plant therapeutics, diagnostics, growth control or investigations and many such plant proteins will have similar utility in animals.

In a first aspect of the present invention there is provided the use of retinoblastoma protein in controlling the growth of plant cells and/or plant viruses. Particularly, the present invention provides control of viral infection and/or growth in plant cells wherein the virus requires the integrity of an LXCXE amino acid motif in one of its proteins, particularly, e. g., in the viral RepA protein, for normal reproduction. Particular plant viruses so controlled are Geminiviruses.

A preferred method of control using such proteins involves applying these to the plant cell, either directly or by introduction of DNA or RNA encoding for

- 3 -

their expression into the plant cell which it is desired to treat. By over expressing the retinoblastoma protein, or expressing an Rb protein or peptide fragment thereof that interacts with the LXCXE motif of the virus but does not affect the normal functioning of the cell, it is possible to inhibit normal virus growth and thus also to produce infection spreading from that cell to its neighbours.

Alternatively, by means of introducing anti-sense DNA or RNA in plant cells in vectors form that contain the necessary promoters for the DNA or RNA transcription, it will be possible to exploit the well known anti-sense mechanism in order to inhibit the expression of the Rb protein, and thus the S-phase. Such plants will be of use, among other aspects to replicate DNA or RNA until high levels, e.g. in yeasts. The methods to introduce anti-sense DNA in cells are very well known for those skilled in the art: see for example "Principles of gene manipulation - An introduction to Genetic Engineering (1994) R.W. Old & S.B. Primrose; Oxford-Blackwell Scientific Publications Fifth Edition p398.

In a second aspect of the present invention there is provided recombinant nucleic acid, particularly in the form of DNA or cRNA (mRNA), encoding for expression of Rb protein that is characteristic of plants. This nucleic acid is characterised by one or more characteristic regions that differ from known animal Rb protein nucleic acid and is exemplified herein by SEQ ID No 1, bases 31-2079.

The DNA or RNA can have a sequence that contains the degenerated substitution in the nucleotides of the codons in SEQ ID No. 1, and in where the RNA the T is U. The most preferred DNA or RNA are capable of hybridate with the polynucleotide of the SEQ ID No. 1 in conditions of low stringency, preferably being the hybridization

5

10

15

20

- 4 -

produced in conditions of high stringency.

5

10

15

20

25

The expressions "conditions of low stringency" and "conditions of high stringency" are understood by those skilled, but are conveniently exemplified in US 5202257, Col-9-Col 10. If some modifications were made to lead to the expression of a protein with different amino acids, preferably of the same kind of the corresponding amino acids to the SEQ ID No 1; that is, are conservative substitutions. Such substitutions are known by those skilled, for example, see US 5380712, and it is only contemplated when the protein has activity with retinoblastoma protein.

Preferred DNA or cRNA encodes for a plant Rb protein having A and B pocket sub-domains having between 30% and 75% homology with human Rb protein, particularly as compared with p130, more preferably from 50% to 64% homology. Particularly the plant Rb protein so encoded has the C706 amino acid of human Rb conserved. Preferably the spacer sequence between the A and B pockets is not conserved with respect to animal Rb proteins, preferably being less than 50% homologous to the same region as found in such animal proteins. Most preferably the protein so encoded has 80% or more homology with that of SEQ NO 2 of the sequence listing attached hereto, still more preferably 90% or more and most preferably 95% or more. Particularly provided is recombinant DNA of SEQ ID No 1 bases 31 to 2079, or the entire SEQ ID No 1, or corresponding RNAs, encoding for maize cDNA clone encoding ZmRb1 of SQ ID No 2.

In a third aspect of the present invention there is provided the protein expressed by the recombinant DNA or RNA of the second aspect, novel proteins derived from such DNA or RNA, and protein derived from naturally occurring DNA or RNA by mutagenic means such as use of mutagenic PCR primers.

- 5 -

In a fourth aspect there are provided vectors, cells and plants and animals comprising the recombinant DNA or RNA of correct sense or anti-sense, of the invention.

In a particularly preferred use of the first aspect there is provided a method of controlling cell or viral growth comprising administering the DNA, RNA or protein of the second or third aspects to the cell. Such administration may be direct in the case of proteins or may involve indirect means, such as electroporation of plant seed cells with DNA or by transformation of cells with expression vectors capable of expressing or over expressing the proteins of the invention or fragments thereof that are capable of inhibiting cell or viral growth.

Alternatively, the method uses an expression vector capable of producing anti-sense RNA of the cDNA of the invention.

Another one of the specific characteristics of the plants protein and of the nucleic acids includes a N-terminal domain corresponding in sequence to the amino acids 1 to 90 of the SEQ ID No. 2 and a nucleotides sequence corresponding to the basis 31 to 300 of the SEQ ID No. 1. These sequences are characterized by possessing less than 150 and less than 450 units that the animal sequences which possess more than 300 amino acids and 900 pairs of more bases.

The present invention will now be illustrated further by reference to the following non-limiting Examples. Further embodiments falling within the scope of the claims attached hereto will occur to those skilled in the light of these.

Figures.

5

10

15

20

25

3.0

35

Fig. 1. The sub-figure A shows the relative lengths of the present ZmRb1 protein and the human retinoblastoma proteins. The sub-figure B shows the alignment of the

amino acids sequences of the Pocket A and Pocket B of the ZmRbl with that of the Xenopus, chicken, rat and three human protein (Rb, pl07 and pl30).

Fig. 2. This figure is a map of the main characteristics of the WDV virus and the pWori vector derived from WDV and the positions of the deletions and mutations used in order to establish that the LXCXE motif is required for its replication in plants cells.

EXAMPLE 1.

5

15

20

10 <u>Isolation of DNA and protein expressing clones.</u>

Total RNA was isolated from maize root and mature leaves by grinding the material previously frozen in liquid nitrogen essentially as described in Soni et al (1995). The major and minor p75ZmRb1 mRNAs were identified by hybridization to a random-primed 32P-labelled PstI internal fragment (1.4 kb).

A portion of a maize cDNA library (106 pfu) in 1ZAPII (Stratagene) was screened by subsequent hybridization to 5'-labelled oligonucleotides designed to be complementary to a known EST sequence of homologue maize of p130. These oligonucleotides were 5'-AATAGACACATCGATCAA/G (M.5m, nt positions 1411-1438) and 5'-GTAATGATACCAACATGG (M.3c, nt positions 1606-1590) (Isogen Biosciences).

After the second round of screening, pBluescript SK(pBS) phagemids from positive clones were isolated by in vivo excision with ExAssist helper phage (Stratagene) according to protocols recommended by the manufacturer.

DNA sequencing was carried out using a SequenaseTM Kit (USB).

The 5'-end of the mRNAs encoding p75ZmRbl was determined by RACE-PCR. Poly-A+mRNA was purified by chromatography on oligo-dT-cellulose (Amersham). The first strand was synthesized using oligonucleotide DraI35 (5'-GATTTAAAATCAAGCTCC, nt positions 113-96). After denaturation at 90°C for 3 min, RNA was eliminated by

5

10

15

20

25

3.0

RNase treatment, the cDNA recovered and 5'-tailed with terminal transferase and dATP. Then a PCR fragment was amplified using primer DraI35 and the linker-primer (50 bp) of the Stratagene cDNA synthesis kit.

One of the positive clones so produced contained a ${\sim}4$ kb insert that, according to restriction analysis, extended both 5' and 3' of the region contained in the Expressed Sequence Tag used. The nucleotide sequence corresponding to the longest cDNA insert (3747 bp) is shown in SEQ ID No. 1. This ZmRb1 cDNA contains a single open reading frame capable of encoding a protein of 683 amino acids (predicted Mr 75247, p75ZmRb1) followed by a 1646 bp 3'-untranslated region. Untranslated regions of similar length have been also found in mammalian Rb cDNAs (Lee, W.-L. et al, Science 235, 1394 (1987); Bernards, R. et al, Proc. Natl. Acad. Sci. USA 86, 6474 (1989)). Northern analysis indicates that maize cells derived from both root meristems and mature leaves contain a major message, $\sim 2.7\pm 0.2$ kb in length. In addition, a minor kb message also appears. Heterogeneous transcripts have been detected in other species (Destrée, O. H. J. et al, Dev. Biol. 153, 141 (1992)).

Plasmid pWoriAA was constructed by deleting in pWorimost of the sequences encoding WDV proteins (Sanz and Gutierrez, unpublished). Plasmid p35S.Rb1 was constructed by inserting the CaMV 35S promoter (obtained from pWDV3:35SGUS) upstream of the ZmRb1 cDNA in the pBS vector. Plasmid p35S.130 was constructed by introducing the complete coding sequence of human p130 instead of ZmRb1 sequences into p35S.Rb1. Plasmid p35.A+B was constructed by substituting sequences encoding the WDV RepA and RepB ORFs instead of ZmRb1 in p35S.Rb1 plasmid. (See Soni, R. and Murray, J. A. H. Anal. Biochem. 218, 474-476 (1994)).

35 The sequence around the methionine codon at nucleotide

5

10

position 31 contains a consensus translation start (Kozak, M. J. Mol. Biol. 196, 947 (1987)). To determine whether the cDNA contained the full-length ZmRbl coding region, the 5'-end of the mRNAs was amplified by RACE-PCR using an oligonucleotide derived from a region close to the putative initiator AUG, which would produce a fragment of ~150 bp. The results are consistent with the ZmRbl cDNA clone containing the complete coding region.

The ZmRbl protein contains segments homologous to the A and B subdomains of the "pocket" that is present in all members of the Rb family. These subdomains are separated by a non-conserved spacer. ZmRbl also contains non-conserved N-terminal and C-terminal domains. Overall, ZmRbl shares ~28-30% amino acid identity (~50%)

- similarity) with the Rb family members (Hannon, G. J., Demetrick, D. & Beach, D. Genes Dev. 7, 2378 (1993); Cobrinik, D., Whyte, P., Peeper, D.S., Jacks, T. & Weinberg, R. A. ibid., p. 2392 (1993). Ewen, M. E., Xing, Y. Lawrence, J. B. and Livingston, D. M. Cell 66, 1155
- 20 (1991))(Lee W. L. et al, Science 235, 1394 (1987);
 Bernards et al, Proc. Natl. Acad. Sci. USA 86, 6974 (1989)), with the A and B subdomains exhibiting the highest homology (~50-64%). Interestingly, amino acid C706 in human Rb, critical for its function (Kaye, F. J.,
- 25 Kratzke R. A., Gerster, J. L. and Horowitz, J. M. Proc. Natl. Acad. Sci. USA 87, 6922 (1990)), is also conserved in maize p75ZmRb1.

Note: The 561-577 amino acids encompass a proline-rich domain.

ZmRb1 contains 16 consensus sites, SP or TP for phosphorilation by cyclins dependant kinases (CDKs) with one of the 5'-tail of the sub-domain A and several in the C-terminal area which are potential sites of phosphorilation. A nucleic acid preferred group which encodes proteins in which one or more of these sites are

changed or deleted, making the protein more resistant to the phosphorilation and thus, to its functionality, for example linking to E2F or similar. This can be easily carried out by means of mutagenesis conducted by means of PCR.

EXAMPLE 2

5

In vivo activity.

Replication of wheat dwarf geminivirus dependent upon an intact LXCXE motif of the viral RepA protein. This motif can mediate interaction with a member 10 of the human Rb family, p130, in yeasts. Therefore, the inventors investigated whether p75ZmRb1 could complex with WDV RepA by using the yeast two-hybrid system (Fields, S. and Song, O. Nature 340, 245-246 (1989)). Yeast cells were co-transformed with a plasmid encoding 15 the fusion GAL4BD-RepA protein and with plasmids encoding different GAL4AD fusion protein. The GAL4AD-p75ZmRb1 fusion could also complex with GAL4BD-RepA to allow growth of the recipient yeast cells in the absence of histidine. This interaction was slightly stronger than 20 that seen with the human pl30 protein. RepA could also bind to some extent to a N-terminally truncated form of p75ZmRbl. The role of the LXCXE motif in RepA-p75ZmRbl interaction was assessed using a point mutation in WDV 25 RepA (E198K) which we previously showed to destroy interaction with human pl30. Co-transformation of ZmRb1 with a plasmid encoding the fusion GAL4BD-RepA(E198K) indicated that the interaction between RepA and p75ZmRb1 occurred through the LXCXE motif.

In this respect, the E198K mutant of WDV RepA behaves similarly to analogous point mutants of animal virus oncoproteins (Moran, E., Zerler, B., Harrison, T. M. and Mathews, M.B. Mol. Cell Biol. 6, 3470 (1986); Cherington, V. et al., ibid., p. 1380 (1988); Lillie, J. W., Lowenstein, P. M., Green, M. R. and Green, M. Cell 50,

1091 (1987); DeCarpio, J. A. et al., ibid., p. 275 (1988)).

Specific interaction between maize p75ZmRbl and WDV RepA in the yeast two-hybrid system (Fields et al) relied on the ability to reconstitute a functional GAL4 activity from two separated GAL4 fusion proteins containing the DNA binding domain (GAL4BD) and the activation domain (GAL4AD). Yeast HF7c cells were co-transformed with a plasmid expressing the GAL4BD-RepA or the GAL4BD-RepA(E198K) fusions and the plasmids expressing the GAL4AD alone (Vec) or fused to human p130, maize p75 (p75ZmRb1) or a 69 amino acids N-terminal deletion of p75 (p75ZmRb1-DN). Cells were streaked on plates with or without histidine according to the distribution shown in the upper left corner. The ability to grow in the absence of histidine depends on the functional reconstitution of a GAL4 activity upon interaction of the fusion proteins, since this triggers expression of the HIS3 gene which is under the control of a GAL4 responsive element. The growth characteristics of these yeast co-transformants correlate with the levels of b-galactosidase activity.

Procedures for two-hybrid analysis are described in Xie et al (1995). The GAL4AD-ZmRb1 fusions were construed in the pGAD424 vector.

25 EXAMPLE 3

5

10

15

20

30

3.5

In vivo activity.

Geminivirus DNA replication requires the cellular DNA replication machinery as well as other S-phase specific factors (Davies, J. W. and Stanley, J. Trends Genet. 5, 77 (1989); Lazarowitz, S. Crit. Rev. Plant Sci. 11, 327 (1992)). Consistent with this requirement, geminivirus infection appears to drive non-proliferating cells into S-phase, as indicated by the accumulation of the proliferating cell nuclear antigen (PCNA), a protein which is not normally present in the nuclei of

(Nagar, S., Pedersen, T. J., differentiated cells Carrick, K. M., Hanley-Bowdoin, L. and Robertson, D. Plant Cell 7, 705 (1995)). The inventors finding that efficient WDV DNA replication requires an intact LXCXE motif in RepA coupled with the discovery of a plant homolog of Rb supports the model that, as in animal cells, sequestration of plant Rb by viral RepA protein promotes inappropriate entry of infected cells into Sphase. Therefore, one way to investigate the function of p75ZmRbl was to measure geminivirus DNA replication in cells transfected with a plasmid bearing the ZmRb1 sequences under a promoter functional in plant cells, an approach analogous to that previously used in human cells (Uzvolgi, E. et al., Cell Growth Diff 2, 297 (1991)). Accumulation of newly replicated viral plasmid DNA was impaired in wheat cells transfected with plasmids expressing p75ZmRbl or human p130, when expression of WDV replication protein(s) is directed wither by the WDV promoter or by the CaMV 35S promoter.

Since WDV DNA replication requires an S-phase cellular environment, interference with viral DNA replication by p75ZmRb1 and human p130 strongly evidences a role for retinoblastoma protein in the control of the G1/S transition in plants. The existence of a plant Rb homolog implies that despite their ancient divergence, plant and animal cells use, at least in part, similar regulatory proteins and pathways for cell cycle control.

Two lines of evidences reinforce this model. First, a gene encoding a protein that complements specifically the G1/S, but not the G2/M transition of the budding yeast cdc28 mutant has been identified in alfalfa cells (Hirt, H., Páy, A., Bögre, L., Meskiene, I. and Heberle-Bors, E. Plant J. 4, 61 (1993)). Second, plant homologs of D-type cyclins have been isolated from Arabidopsis and these, like their mammalian relatives, contain LXCXE motifs. In

5

10

15

20

25

30

- 12 -

concert with plant versions of CDK4 and CDK6, plant D-type cyclins may regulate passage through G1 phase by controlling the phosphorylation state of Rb-like proteins.

In animal cells, the Rb family has been implicated in 5 tumor suppression and in the control of differentiation and development. Thus, p75ZmRb1 could also play key regulatory roles at other levels during the plant cell life. One key question that is raised by the existence of Rb homologs in plant cells in whether, as in animals 10 disruption of the Rb pathway leads to a tumor-prone condition. In this regard, the inventors have noted that the VirB4 protein encoded by the Ti plasmids of both Agrobacterium tumefaciens and A. rhyzogenes contains an LXCXE motif. Although the VirB4 protein is required for 15 tumor induction (Hooykas, P. J. J. and Beijersbergen, A. M. Annu. Rev. Phytopathol. 32, 157 (1994), function of its LXCXE motif in this context remains to be examined. Geminivirus infection is not accompanied by tumor development in the infected plant, but in some 20 cases an abnormal growth of enactions has been observed (G. Dafalla and B. Gronenborn, personal communication). Inhibition of wheat dwarf geminivirus (WDV) replication by ZmRb1 or human p130 in cultured wheat cells was carried out as follows. A. Wheat cells were 25 transfected, as indicated, with pWori (Xie et al. 1995) alone (0.5g), a replicating WDV-based plasmid which encodes WDV proteins required for viral DNA replication, and with control plasmid pBS (10 g) or p35S.Rb1 (10 g), which encodes ImRbl sequences under the control of the 30 CaMV 35S prometer. Total DNA was purified one and two days after transfection, equal amounts fractionated in agarose gels and ethidium bromide staining and viral pWori DNA identified by Southern hybridization. Plasmid DNA represents exclusively newly-replicated plasmid DNA 35

since it is fully resistant to DpnI digestion and sensitive to Mbol. Note that the MboI-digested samples were run for about half of the length than the undigested samples. B. To test the effect of human p130 on WDV DNA replication, wheat cells were co-transfected with pWori (0.5 g) and plasmids pBS (control), p35S.Rb1 or p35S.130 (10 g in each case). Replication of the test plasmid (pWori) was analyzed two days after transfection and was detected as described in part A using ethidium bromide staining; and Southern hybridization. C. To test the effect of ZmRb1 or human p130 on WDV DNA replication when expression of viral proteins was directed by the CaMV 35S promoter, the test plasmid pWori $\Delta\Delta$ (which does not encode functional WDV replication proteins but replicates when they are provided by a different plasmid, i. e. pWori) was used. Wheat cells were co-transfected, as indicated, with pWori $\Delta\Delta$ (0.25 g), pWori (0.25 g), p35S.A+B (6 g), p35S.Rb1 (10 g) and/or p35S.130 (10 g). Replication of the test plasmid (pWori $\Delta\Delta$) was analyzed 36 hours after transfection and was detected as described in part A using ethidium bromide staining; Southern hybridization. Plasmids pWori (M1) and pWori \(\Delta \) (M2; Sanz and Gutiérrez, unpublished), 100 pg in each case, were used as markers. Suspension cultures of wheat cells, transfection by particle bombardment and analysis of viral replication were carried out as described in (Xie et al. 1995), except that DNA extraction was modified as in (Soni and Murray. Arnal. Biochem. 218, 474-476 (1995).

RNSDOCID: WO 974774541 I

5

10

15

20

- 14 -

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: CRISANTO GUTIERREZ ARMENTA
- 5 (A) NAME: QI XIE
 - (A) NAME: ANDRES PELAYO SANZ-BURGOS
 - (A) NAME: PAULA SUAREZ-LOPEZ
 - (B) STREET: CSIC-UAM, UNIVERSIDAD AUTONOMA, CANTOBLANCO
 - (C) CITY: MADRID
- 10 (E) COUNTRY: SPAIN
 - (F) POSTAL CODE (ZIP): 28049
 - (ii) TITLE OF THE INVENTION: PLANT PROTEINS
 - (iii) NUMBER OF SEQUENCES: 2
- 15 (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- 20 (EPO)
 - (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3747 base pairs
- 25 (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
- 30 (iv) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Zea mays
 - (ix) FEATURE:
- 35 (A) NAME/KEY: CDS

- 15 -

(B) LOCATION: 31..2079

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

																54
GAAT	TCGC	CA C	GAGC	'AAAG	G TC	TGAT	TGAT								TTG Leu	24
								met 1		Сув	FILE	911		, Ao.	. Dea	
GAA	AAA	ATG	GΛG	AAA	CTA	TGT	AAT	TCT	AAT	AGC	TGT	AAA	GGG	GAG	CTT	102
								Sei								
	10					15					20					
														a	~	150
								AAT								150
	Phe	Lys	Ser	He	Leu 30	116	Asn	Asu	чвр	35	116	110	.y.	YOD	40	
25					30					-					-	
AAC	TCG	ACG	GGG	GAT	TCC	ACC	TAA	TTA	GGA	CAT	TCA	AAG	TGT	gcc	TTT	198
								Leu								
				4.5					50					55		
GAA	ACA	TTG	GCA	TCT	CCC	ACA	AAG	ACA	ATA	AAG	AAC	ATG	CLC	ACT	GTT	246
Glu	Thr	Leu		Ser	Pro	Thr	ГÀе	Thr	Ile	Lys	Asn	Met		Thr	val	
			60					65					70			
~~	ን ርግጥ		CCT.	ጉ ፕር	ידיים	CCA	GCC	ACC	GGT	GCT	TCA	GTC	AAG	ATT	GTG	294
								Thr								
		75					80					85				
								ATG								342
Gln	Met	Thr	Pro	Val	Thr	Ser	Ala	Met	Thr	Thr	Ala	Lys	Trp	Leu	Arg	
	90					95					100					
							a			mca.	TOT	N N C		~~.	CNG	390
								AAG Lys								3,50
GIU 105		ile	ser	ser	110	PIO	Азр	БУБ	110	115	50.	270	200	J	120	
105					110											
TTT	CTG	TCA	TCA	TGC	GAT	AGG	GAT	TTG	ACA	AAT	GCT	GTC	ACA	GAA	AGG	4 38
								Leu								
				125					130					135		
								TTT								486
Vai	Ser	I l e			Glu	Ala	lle	Phe		Thr	Γλε	ser	3er 150		Asn	
			140					145					130			
cee	e dan	тста	тсе	מדד:	GGT	· cTc	TAA :	TGT	GCA	. AAT	GCC	TTI	GAC	ATT	CCG	534
															Pro	
,	7	159			•		160					165				
															GTA	58 <u>2</u>
Trp	Ala	Gl	ı Ala	Arç	Lyr			Ala	Ser	. Lys			Tyr	Arq	Val	
	170	9				175	•				180	1				

	· GA	رےوں و	N AL	V. 1150	AG.	A GC	G GAC	3 TT.	A CAJ	AA A	C AG	C AA	T GI	'A N	AT I	LAJ.	630
Let	Gli	. A.	a II	e Cys	o Ar	g Al:	a Glu	ı Len	u Gla	a Acı	n Se	ı Ac	n Va	1 As	51: <i>i</i>	Asn	•
189					19					199						2011	
CTA	ACT	r cci	A TTO	e cro	G TC	A AA:	GAC	; cg	TTO	CAC	c cs	A TG	тт	G AT	r r (ЗСА	678
пел			o ne	205		r Aeı	1 GIU	ı Arç	g Phe 210		s Ar	g Cy	s Le	u 11 21		Ala	
TGT	TCF	. GCC	G GA	TT	GT	A TTC	GCC	ACA	A CAT	C AAC	G AC.	A GT	C AT	C AT	'G A	ATG	726
Cyn	Sei	Als	a Ası 220		ı Val	. Let	ı Ala	225		: Lys	7 Th	ı Va	1 11		et. M	let.	
TŢŢ	CCT	GCT	GT	cro	GAC	AG'	. ACC	. GGJ	r c'ta	ACT	r gc	A TT	T GA	т тт	G A	œc.	774
Plie	Pro	235	ı Val	l Leu	ı Gle	ı Ser	Thi 240		. Leu	Thr	: Al.	a Ph 24		p Le	u S	er	
AAA	ATA	ATI	GAC	, AAC	TI	GTG	AGA	CAT	GAA	GAG	ac:	c cr	a aa	A AG	A G	AA	822
Liyre	11e 250		. Glu	i Aas	. Phe	· Val 255		H1 :-	: Glu	Glu	Thi 266		i Pr	o Ai	ч G	lu	
TIG	AAA	AGG	CVC	· 274	AAT	TCC	тта	GAA	GAA	CAG	CT	TT	GA	A AG	C. A.	7:C:	976
Leu 265	lγε	Arq	Hir	Leu	270	: Ser	Leni	Glu	Glu	G1n 275		ı Leg	a (Gla	≀ Sec		et 80	
ecv	TGG	GAG	AAA :	GGT	TCA	TCA	TTG	TAT	' AAC	TCA	сто	AT7	GT	r geo	C A	GG	918
Mia	irp	GIU	ьys	3.y 385	Ser	Ser	Leu	Туг	Asn 290	Ser	Leu	lle	r Val	299 299		rg	
CCA	TCT	GTT	GCT	TCA	GAA	ATA	AAC	cac	CTT	GGT	CIT	TTO	ദേ	C GAJ	4 CC	CV	966
PLO	ser	val	300	A 61	Glu	Ile	Acti	Arg 305	Leu	Gly	Leu	Leu	310		i Pi	rc	
VIG	CCA	TCT	C.I.I.	CAT	GAC'	TTA	GTG	TCA	AGG	CVC	TAA	GTT	CGI	ATO	: G/	ΛG	1014
1et	Pro	315	Leu	Asp	Anp	Leu	Val 320	Ser	¥rā	Gln	Asn	Val 325		Ile	Gl	lu	
GC	TTG	CCT	GCT	ACA	CCA	TCT	AAA	AAA	CGT	GCT	GCT	GGT	CCA	GAT	GA	AC.	1062
31.À	330	Pro	Aia	Tin	Fro	Ser 335	Lyc	Lys	Arg	Ala	Ala 346	Gly	Pro	gaA	As	:p	
iAC	GCT	GAT	CCT	CGA	TCA	CCA	AAG	AGA	TCG	TGC	VVI.	GAA	TCI	AGG	AA	ec.	1116
45	Ala	Asp	Pro	≃rd	Ser 350	Pro	Lys	Arq	Ser	355 Cyn	λsn	Glu	Ser	¥ιά	A6		
CA	GTA	GTA	GAG	cae	AAT	TTG	CAG	ACA	CCJ.	ርርለ	מכפ	AAG	CAA	AGC	C'A	ı.	1158
(11	val	v41	GIU	355 355	Asn	Leu	Gln	Thr	Pro 370	Pro	Pro	Lys	Glu	Ser 375	Hı	£!	
TG	GTG	TCA	ACT	AGT	TTG	АЛА	GCA	AAA	TGC	CAT	CCA	СТС	CAG	TCC	AC.	A	1206
iet	Val	Sei	Thr 380	Ser	Leu	Lys	Ala	385 385	Сур	His	iro	Leu	Gln 390	Ser	Th	1	
T T	GC'A	AGT	CCA	ACT	GTC	TGT	AAT	CCT	GTT	GGT	GGG	TAA	GΛA	۸۸۸	TG	T	1354

- 17 -

Ph-	At	Ser 395	Pre	Thr	Val	Cys	Asn 400	Pro	Val	Gly	Gly	Asn 405	Glu	Lyc	Cys	
				ATT Ile												1302
				AGA Arq												1350
				TAT Tyr 445												1398
				AAT Asn												1446
				AAG Lys												1494
				AAA Lys												1542
				ggo Gly												1590
				ATT Ile 521												1638
				GTG Val												1686
				AGT Ser												1734
Tr:								000	220		CITY D	TICIS	GCL	TCT	CAT	1782
				CCA Pro												

TOA COA AGT TOO AGG AGT TIT TAT GOA TGO ATT GGT GAA GGC ACC CAT	187
Ser Pro Ser Ser Arg Ser Phe Tyr Ala Cys 11= Gly Glu Gly Thr His 605 610 615	• • • • • • • • • • • • • • • • • • • •
GCT TAT CAG AGC CCA TCT AAG GAT TTG GCT GCT ATA AAT AGC CGC CTA Ala Tyr Gln Ser Pro Ser Lys Asp Leu Ala Ala Ile Asn Ser Arg Leu 620 625 630	192
AAT TAT AAT GGC AGG AAA GTA AAC AGT CGA TTA AAT TTC GAC ATG GTG Aan Tyr Aan Gly Arg Lys Val Aan Ser Arg Leu Aan Phe Aap Met Val	197
AGT GAC TCA GTG GTA GCC GGC AGT CTG GGC CAG ATA AAT GGT GGT TCT Ser Asp Ser Val Val Ala Gly Ser Leu Gly Gln Ile Asn Gly Gly Ser	202:
650 655 660 ACT TOG GAT COT GCA GCT GCA TTT AGC CCC CTT TCA AAG AAG AGA GAG The Ser Act Pro Ale Ale Ale Phe Ser Fro Leu Jer Lys Lys Ard Glo	2070
ACA GAT ACT TGATCAATTA TAAATGGTGG CCTCTCTCGT ATATAGCTCA The Asp The	2112
CAGATCOGTG CTCCGTAGCA GTCTATTCTT CTGAATAAGT GGATTAACTG GAGCGATTTA	2179
ACTGTACATG TATGTGTTAG TGAGAAGCAG CAGTTTTTAG GCAGCAAACT GTTTCAAGTT	2239
AGCTTTTGAG CTATCACCAT TTCTCTGCTG ATTGAACATA TCCGCTGTGT AGAGTGCTAA TGAATCTTTA GTTTTCATTG GGCTGACATA ACAAATCTTT ATCCTAGTTG GCTGGTTGTT	2299
GGGAGGCATT CATCAGGGTT ATATTTGGTT GTCAAAAAGT ACTGTACTTA ATTCACATCT	2359 2419
TTCACATTTT TCACTAGCAA TAGCAGCCCC AAATTGCTTT CCTGACTAGG AACATATTCT	2479
TTACAGGTAT AAGCATGCCA ACTCTAAACT ATATGAATCC TTTTTATATT CTCATTTTTA AGTACTTCTC TGTTTCTGCT ACTTTTGTAC TGTATATTTC CAGCTTCTCC ATCAGACTGA	2539 2599
TGATCCCATA TTCAGTGTGC TGCAAGTGAT TTGACCATAT GTGGCTTATC CTTCAGGTAT	2659
STOTCATGIT GIGACTICAT IGCIGATIGC ITITGITAATG GIACIGITGA GITCATTICT GGITACAATC AGCCITTACT GCTITATATI GITCIACTAA ITITGGCTTG CACAGCCAGG	2719
ACCATTOGTT ITCTGCATCA ATCAATCTTT TTTAGGACAA GATATTTTTG TATGCTACAC	2779
TTCCCAAATT GCAATTAATC CAGAAGTCTA CCTTGTTTIA TTCTATTAGT TCTCAGCAAC	2899
AGTGAATGAA TATGAATCAG TCATGCTGAT AGATGTTCAT CTGGTTATTC CAAACAATCT GACATCGCAT CTCTTTCTCC AAGTGAGATG AAGAAAACCT GAAATGCTAT CACCATTTAA	2959
ARGANOUGUE GAOGIGG LAT CACCATTIAA	3619

- 19 -

AACATTGGCT	TCTGGAAGTT	CAGGTGATTA	GCAGGAGACG	TTCTGACATT	GCCATTGACA	3079
TGTACGGTAG	TGATGGCAGG	AGACGTTCTT	AAACAGCAGC	TGCTCCTTCA	GCTTGTAATG	3139
TCTGATTGTA	TTGACCAAGA	GCATCCACCT	TGCCTTATGG	TACTAACTGA	ATGAGCTGGT	3199
GACGCTGACT	CATCTGCATA	ATGGCAGATG	CTTAACCATC	TTTAGGAGCT	CATGTCATGA	3259
TTCCAGCTGC	ACCGTGTCAA	ATGTGAAGGC	CCTGCAAGGC	TTTCCAGGCC	GCACCAATCC	3319
TGCTTGCTTC	TTGAAGATAC	ATATGGTGCC	ACCTAAATAA	AAGCTGTTTC	TGGTTATGTC	3379
TGTCCTTGAC	ATGTCAACAG	ATTAGTGTTG	GGTTGCAGTC	ATGTGGTGTT	TAAGTCTTGG	1439
AGAAGGCGAG	AAGTCATTGC	TGCCAGCATT	GTGATCGTCA	GGCACAGAAG	TACTCAAAAG	3499
TGAGAGCTAC	TTGTTGCGAG	CAAACGGAGG	GCGATATAGG	TTGATAGCCA	ATTTCAGTTC	3559
TCTATATACA	AGCAGCGGAT	TTTGTTTAGA	GTTAGCTTTT	GAGATGCATC	ATTTCTTTCA	3619
CATCTGATTC	TGTGTGTTGT	AACTCGGAGT ·	CGCGTAGAAG	TTAGAATGCT	AACTGACCTT	3679
AATTTTCACC	GAATAATTTG	CTAGCGTTTT	TCAGTATGAA	ATCCTTGTCT	AAAAAAA T	3739
ЛАААААА						3747

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 683 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Mot Glu Cys Phe Gln Der Asn Leu Glu Lys Met Glu Lys Leu Cys Asn 1 5 10 15

Ser Asn Ser Cyn Lyn Gly Glu Leu Amp Phe Lyn Ser Ile Leu Ile Am 16 25 30

Ash Asp Tyr Ile Pro Tyr Asp Glu Ash Ser Thr Gly Asp Ser Thr Aon 35 40 45

Leu Gly His Ser Lys Cys Ala Phe Glu Thr Leu Ala Ser Pro Thr Lys 50 55 59

Thr	Ile	Lys	Asn	Met	Leu 7n	Thr	Val	Pro	Ser	Ser 75	Pro	Leu	Ser	८१५	80
Thr	Gly	Gly	Ser	Val 85	Lys	Ile	Val	Gln	Mer 90	Thr	Pro	Val	Thr	Ser 95	Ala
Mert	Thr	Thr	Ala 100	Lys	Trp	Leu	Arg	Glu 105	Val	Ile	Ser	Ser	Leu 110	Pro	Asp
Lys	Pro	Ser 115	Sei	Lyc	Leu	Gln	Gln 120	Phe	Leu	Ser	Ser	Сув 125	Asp	Arg	Asp
Loru	Thr 130	Asn	Ala	Val	Thr	Glu 135	Arg	Val	Ser	lle	Val 140	Leu	Glu	Ala	Ile
Phe- 14°	l'10	Thr	i.ys	Ser	Ser 150	Ala	Asn	Arg	Gly	Val 155	Sei	Leu	Gly	Leu	Asn 160
Cyr	Ala	Asn	Ala	Phe 165	qaA	Lic	Pro	Тгр	A15 170	G] u	Ala	ÄLG	Liye	Val 175	Glu
Ala	Ser	Lys	Leu 180	Түг	Tyr	¥Σα	Val	Leu 185	Glu	A:a	!le	Сув	Arg 190	Ala	alu
Leru	Gln	Aon 195	Ser	Asn	Val	Asn	Asn 200	Leu	Thi	Pro	Leu	Deu 205	Sen	Aen	Glu
Arg	Phe 210	His	Arq	Cys	Leu	11e 215	Ala	Сує	Ser	۸۱۵	Asp 220	Leu	Val	Leu	Ala
Thi 20%	Hls	Lys	Thi ⁻	Val	11e 230	Met	Met	Phe	Pre	Ala 235	Vai	Leu	Glu	Ser	Thi: 240
Slv	Leu	Tm	Ala	Phe 245	Asp	Leu	Ser	Lys	11e 250	11+	Glu	Αειι	Phe	Val 25°	Arq
	Glu		256					265					270		
Glu	Glu	Gln 279	Leu	Leu	Glu	Ser	Met 280	Ala	Trp	Glu	Lys	Gly 285	Ser	Sei	Leu
Tyr	Asn 290	3ei	Len	lle	Val	Ala 295	Ara	Pro	Ser	Val	Ala 300	Ser	Glu	ll e	Asn
A) g 305	Leu	Gly	Leu	Lėu	Ala 310	Glu	Pro	Met	Pro	Sei 31%	Leu	Asp	Апр	Leu	Va! 320
Ser	για	Gin	Asu	VAI 125	Ara	Ile:	Glu	Gly	Leu 326	Pro	Ala	Thi	Pro	Ser 145	Lyn
Lys	Arg	Ala	Ala 340	Gly	P1:0	Asp	Anp	Asn 345	Ala	Asp	Pro	Yrd	Ser 350	iro	Lys

- 21 -

A) q	Sei	Cys 355	Asn	Glu	Ser	Ang	Asn 366	Thr	Val	Val	Glu	A) g 365	Asn	Leu	Gln
Thr	Pro 370	Pro	Pro	Lys	Glu	Ser 375	His	Met	Val	Ser	Thr 380	Ser	Leu	Lys	Ala
Lys 385	Сує	His	Iro	Leu	Gln 390	Ser	Thr	Phe	Ala	Ser 395	Pro	Thr	Val	Cye	Asn 400
Pro	Val	gly	Gly	Asn 40%	Glu	Lys	Суп	Ala	А вр 410	Val	Thr	lle	Rio	11e 415	Phe
Ph⊬	Serr	Lyc	11e 426	Leu	Lys	Leu	Ala	Ala 425	Il€	Arg	lle	Arq	Asn 436	Leu	СУы
Glu	Arq	Val 435	Gln	Cys	Val	Glu	Gln 440	Thr	Glu	Arg	Val	Tyr 445	Asn	Val	Phe
Lwe	G414 450	i ie	Leu	Glu	31n	Glu 45e	Thu	Thr	Leu	Pho	Phe 460	Asn	Frd	His	11
հեք 455	Glu	læu	lie	Leu	Сув 470	Cys	Leu	Туг	Gly	Val. 475	Ala	Lys	Val	Cys	Gl n 486
Leu	Glu	Leu	Thr	Phe 485	Yr.d	Glu	lle	Leu	Asn 496	Asn	Туг	Lys	Arq	Glu 495	Δla
Glu	Cys	Lys	Pro EJO	Glu	Val	Phe	Ser	Ser 505	Il÷	Tyr	116	Gly	Ser 510	Thr	Asn
Arg	Asn	Gly 51°	7a1	Leu	Val	Ser	Arg 520	His	Val	Gly	Ile	Ile 52°	Thr	Phe	Тут
Asu	Glu 530	Val	Pne	Vai	Pro	A1a 535	Ala	Lys	Pro	Phe	Leu 540	Val	Seı	Leu	Her
Sei 545	Set	Glv	Thr	Hıs	Pro 550	Glu	Asp	Lys	Lys	Asn 555	Ala	Ser	Gly	Gln	11e 560
Pro	Øly	Ser	Fro	Lys 565	Pro	Ser	Pro	Phe	Pro 570	Asn	Leu	Pro	Asp	Met 575	Sei
Pro	Lys	Lvo	741 580	S#1	Ala	Ser	His	Asn 585	Val	Туг	Val	Ser	Pro 590	Lou	Arq
Gln	Thr	Lys 591	Leu	Asp	Leu	Leu	Leu 600	Ser	I'ro	Ser	Ber	Arg GOS	Ser	Phe	Тут
AL+	Cys 610	:l÷	Gly	Glu	Gly	Thr 615	His	Ala	Тут	Gln	Ser 620	Pro	Ser	Lys	Asp
Leu Ans	Ala	Ala	lle.	Ann	Sar 530	Arg	L⊬u	Asın	Tyr	Asn 635	Gly	Arg	Lys	Val	Ann 640

- 22 -

Ser Arg Leu Aon Phe Asp Met Val Ser Asp Ser Val Val Ala Gly Ser 650 655

Leu Gly Gln Ile Ash Gly Gly Ser Thr Ser Asp Pro Ala Ala Ala Phe 660 665 670

Ser Pro Leu Ser Lys Lys Arg Glu Thr Asp Thr 675 680

- 23 -

INFORMATION RELATIVE TO THE DEPOSIT OF A MICRO-ORGANISM

The micro-organism to which reference is made in page
6 of the disclosure has been deposited in the following
institution:

- COLECCION ESPAÑOLA DE CULTIVOS TIPO (CECT)

 Departamento de Microbiología

 Facultad de Ciencias Biológicas

 46100 EURJASOT (Valencia)

 Spain
- Deposit identification: pBS.Rb1
 Deposit date: June 12, 1996
 Order No.: 4699
 This information appears reflected in the form PCE/RO/134
 enclosed to the request.

- 24 -

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism reon page 6 line 24	formed to in the description and following
B. IDENTIFICATION OF DEPOSIT pBS.Rb1	Further deposits are identified on an additional sheet
Name of depository institution COLECCION ESPAÑOLA DE CULTIVOS	
Address of depositary institution (including postal code and country, Departamento de Microbiología Facultad de Ciencias Biológicas 46100 BURJASOT (Valencia) Spain	
Due of deposit 12 June 1996	Accession Number 4699
C. ADDITIONAL INDICATIONS (leave blank if not applicable	e) This information is continued on an additional shoet
D. DESIGNATED STATES FOR WHICH INDICATION	IS ARE MADE (if the indications are not for all designated States)
E. SEPARATE FURNISHING OF INDICATIONS (leave be be indications listed below will be submitted to the International Bumber of Depart")	lank if not applicable) uresu later (specify the general nature of the indications e.g., "Accession
For receiving Office use only This shoet was received with the international application	For International Bureau uso only This sheet was received by the International Bureau on:
n PCT/RO/134 (July 1992)	Authorized afficer

Form PCT/RO/134 (July 1992)

CLAIMS

Use of a retinoblastoma (Rb) protein for the control
of the growth and/or replication of plant cells and plant
viruses.

- 2. Use as claimed in claim 1 characterised in that the virus requires the integrity of an LXCXE amino acid motif in one of its proteins for the normal reproduction.
- 3. Use as claimed in claim 1 wherein the virus is a Geminivirus.
- 4. Use in accordance with claim 1 characterised in that the virus binds a retinoblastoma (Rb) protein in order to release a transcription factor.
- 5. A method of controlling the growth and/or replication of a plant cell or a plant virus within that cell, comprising the increase or decrease of the level and/or activity of a retinoblastoma protein in that plant cell.
 - 6. A method as claimed in claim 5 characterised in that the level of protein is increased by direct application.
 - 7. A method as claimed in claim 5 characterised in that the level of protein is increased by introduction of DNA or RNA encoding for its expression into the plant cell which it is desired to treat.

- 8. A method as claimed in claim 5, 6 or 7 wherein the protein is overexpressed.
- 9. A method of controlling the growth and/or replication
 35 of a plant cell or a plant virus comprising expressing an

Rb protein, or peptide fragment thereof that interacts with the LXCXE motif of the virus but does not affect the normal functioning of the cell, such as to inhibit cell growth or normal viral growth.

- 10. Recombinant nucleic acid encoding for expression of an Rb protein that has one or more characteristics of plant Rb protein not shared by animal Rb protein.
- 11. Nucleic acid as claimed in claim 10 characterised in that it comprises one or more characteristic regions that differ from known animal Rb protein nucleic acid.
- 12. Recombinant nucleic acid in the form of DNA or cRNA which encodes for a plant Rb protein having A and B pocket subdomains having a sequence with between 30% and 75% homology with human Rb protein.
- 13. Nucleic acid as claimed in claim 12 having a sequence with between 30% and 75% homology with p130 Rb retinoblastoma protein.
- 14. Nucleic acid as claimed in claim 12 or 13 characterised in that it has from 50% to 64% homology with animal or p130 Rb retinoblastoma protein.
 - 15. Nucleic acid as claimed in any one of claims 12 to 14 encoding for the C706 amino acid of human Rb.
- 16. Nucleic acid as claimed in any one of claims 12 to 15 wherein the spacer sequence between the A and B pockets is not conserved with respect to animal Rb proteins.
- 17. Nucleic acid as claimed in claim 16 wherein the spacer sequence has less than 50% homology to the same

5

region found in animal retinoblastoma proteins.

- 18. Nucleic acid as claimed in any one of claims 12 to 17 having 80% or more homology with that of SEQ NO 2.
- 19. Nucleic acid as claimed in claim 18 wherein the homology is 90% or more.
- 20. Recombinant DNA comprising a sequence corresponding to SEQ ID No 1 bases 31 to 2079.
 - 21. Recombinant DNA comprising a sequence corresponding to SEQ ID No 1 or corresponding RNA encoding for maize cDNA clone encoding ZmRb1 of SQ ID No 2.
- 22. Protein encoded by the recombinant DNA or RNA as claimed in any one of claims 12 to 21 or novel proteins derived from such DNA or RNA, and protein derived from naturally occurring DNA or RNA altered by mutagenic means.
 - 23. Protein as claimed in claim 22 wherein the mutagenic means comprises mutagenesis using mutagenic PCR primers.
- 24. Anti-sense DNA or RNA of a gene encoding for a plant retinoblastoma protein, a gene which possesses the nucleic acid sequence as the one which is claimed in any one of the claims 10 to 21.
- or RNA as claimed in any one of claims 12 to 22.
- 26. A method to control the growth and/or the proliferation of a vegetable cell or of a plant virus comprising the decrease of plant retinoblastoma protein

levels in the cell by incorporation to this cell of antisense DNA or RNA to the retinoblastoma protein.

- 27. cDNA encoding a protein as it is claimed in the claim 5 22.
 - 28. A nucleic acid encoding a protein in which one or more of these sites are altered or deleted, making the protein more resistant to the phosphorilation and thus,
- 10 to its functionality, for example, linking to E2F or similar.
 - 29. An encoded protein by the nucleic acid which is described in claim 28.

8

M

- Pocket

928

Human p130

Xenopus Rb Chicken Rb

Maize Rb1

 $\mathbf{\omega}$

Human p107

Human Rb

Maize Rb1

SUBSTITUTE SHEET (RULE 26)

p107

Human | Human |

Mouse Rb Human Rb

2/3	1							
492 701 719 721 868 9167	525	744	753 931	1006				
RVCQLE LTFRETLINGY RAKNID LRFKTTVTAN RVKNVD LRFKTTVTAN RVKNID LKFKTTVTAN RVKNID LKFKTTVTAN RVKNID LKFKTTVTAN RVTKEE RTFOETMKSV	GSTNRNG VLVSRHVGIT	EEEFDSII		ANSD MEEEERGDE				
YGVA YGIC YGIC YGIC YIMA			D ATKTPD	T PTRLTGANSD				
			CDLED ATKTPDCSSG	VPQPSSAPP		Ç	FIG. I	
EQOTT LFFTAR QOEYELMEDR QNESELMEDR QNEYELMEDR QNEYELMEDR VHCPDIMEDR				NKDRTSRDSS PVMRSSSTLP VPQPSSAPPT		•	* 4	
RVYNVFKOIL VIMILLOHIL LIMILLOHIL IIMILLOHIL IIMILLOHIL KIMICFEFIL KIMICFEFIL			NDDFEMID.					
MOCVEOTE LLSDHPELED LLSDHPELED LLSDHPELED LLSEHPELED LDVSN.ELRR LDVSN.ELRR				RSHQNSPTEL				
AIRTRNDCER YKRISSICSS YLRICHTIFFR YLRICHTICER YLRICHTICER SVRICHDICLK AVRICHDICCLK			SIP	~	7	2 0	ور د	- 7
IPPSKILKLA LPYKKVYRLA LPYKKVYRLA LPYKKVYRLA LPYKKVYRLA LFYKKVYHLA	FISSTATI	FKRWLTR FKRWLTR	FIXENTIK YRSWLK	MRSWITKGKR KE	AMPFLV 54 LESHIL 74	LETNIL 760 LETNIL 762	LETINIL 769	
Pocket B REKCADVATH OCKSTSUS OKPOKSTSUS OKPUKSTSUS OKPUKSTSUS NRPKRTGSUS NRPKRTGSUS	FREAQCK PEV KGLTNTNOET				TISYNEWENPA VISYNEWEMOK			OFWITTER
405 614 630 632 639 780 828		720	729	917	526	745	754	932 1007
Maize Rbi Xenopus Rb Chicken Rb Mouse Rb Human Rb Human p107								

PCT/EP 97/03070

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/29 C12N IPC 6 C12N15/82 C12N15/11 C12N5/10 C07K14/415 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELOS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7K C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ SHEN B. ET AL.: "Partial sequencing and 10-21, mapping of clones from two maize cDNA 25,27 libraries" PLANT MOLECULAR BIOLOGY, vol. 26, no. 4, November 1994, pages 1085-1101, XP002042536 see the whole document "AC T18395" EMBL DATABASE, 23 April 1994, HEIDELBERG, see the whole document GRAFI G. ET AL.: "AC U52099" X 10-26 EMBL DATABASE. 26 April 1996, HEIDELBERG, XP002042537 Υ see the whole document 1 - 9.27-/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "I later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not cited to understand the principle or theory underlying the considered to be of particular relevance invention *E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 6 October 1997 2 3. 10. 97 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Kania, T

1 tational Application No PCT/EP 97/03070

C.(Continue Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication where accounts of the relevant account	Relevant to claim No.
	Citation of document, with indication, where appropriate, of the relevant passages	Melevant to claim (No.
X	QIAN Y ET AL: "BIOLOGICAL FUNCTION OF THE RETINOBLASTOMA PROTEIN REQUIRES DISTINCT DOMAINS FOR HYPERPHOSPHORYLATION AND TRANSCRIPTION FACTOR BINDING" MOLECULAR AND CELLULAR BIOLOGY, vol. 12, no. 12, pages 5363-5372, XP000615356 see the whole document	28,29
X	WO 95 06661 A (RES DEV FOUNDATION ;FUNG YUEN KAI (US)) 9 March 1995 * see especially p.31, first par. *	28,29
Y	XIE Q. ET AL.: "Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral replication" THE EMBO JOURNAL, vol. 14, no. 16, 15 August 1995, pages 4073-4082, XP002042538 cited in the application * see the whole document, esp. pp. 4079/80	1-9,27
A	WO 95 07708 A (UNIV CALIFORNIA ;CANJI INC (US)) 23 March 1995 see the whole document	1-29
A	WO 92 05272 A (UNIV CALIFORNIA) 2 April 1992 see the whole document	24,26
A	COLLIN S. ET AL.: "The two nonstructural proteins from wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins" VIROLOGY, vol. 219, no. 1, 1 May 1996, pages 324-329, XPO02042539 * see the whole document, esp. p.325, right col. *	1-29
A	SONI R. ET AL.: "A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif" THE PLANT CELL, vol. 7, no. 1, January 1995, pages 85-103, XP002042540 cited in the application * see the whole document, esp. p.97, right col. *	1-29
1	-/	

PCT/EP 97/03070

· .	PCT/EP 97/03070
Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	
egory * Cfation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
XIE Q. ET AL.: "Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins" THE EMBO JOURNAL, vol. 15, no. 18, 16 September 1996, pages 4900-4908, XP002042541 see the whole document	1-29
GRAFI G. ET AL.: "A maize cONA encoding a member of the retinoblastoma protein family: involvement in endoreduplication" PNAS, U.S.A., vol. 93, no. 17, 20 August 1996, pages 8962-8967, XP002042542 see the whole document	1-29

nternational application No

PCT/EP 97/03070

Box i Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carned out, specifically
Please see Further Information sheet enclosed.
Claims Nos because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

FURTHER INFORMATION CONTINUED FROM PCT/ISAL 10

OBSCURITIES:

Claims 28 and 29 are formulated in a very inconcise manner. Consequently, the subject matter claimed was interpreted as follows and searched:

Claim 28: "A nucleic acid encoding a protein in which one or more sites are

altered or deleted, making the protein more resistant to the phosphorilation and thus to it's functionality, for example,

linking to E2F or similar "

Claim 29 : Unchanged.

Meaningful search not possible on the basis of all claims: In claim 18 Seq ID 2 was read as Seq ID 1.

Information on patent family members

national Application No PCT/EP 97/03070

Patent document cited in search repo		Publication date	Patent family member(s)	Publication date
WO 9506661	Α .	09-03-95	AU 7642694 A CA 2170605 A CN 1133595 A EP 0716660 A JP 9502183 T ZA 9406595 A	22-03-95 09-03-95 16-10-96 19-06-96 04-03-97 28-02-96
WO 9507708	A	23-03-95	AU 7834994 A ZA 9407065 A	03-04-95 03-05-95
WO 9205272	A	02-04-92	CA 2091759 A EP 0556231 A JP 6501160 T US 5324654 A	18-03-92 25-08-93 10-02-94 28-06-94

		•	
		*	
	•		