EXAMPLES: DEADLOCKS

DR. ARIJIT ROY

COMPUTER SCIENCE AND ENGINEERING GROUP INDIAN INSTITUTE OF INFORMATION TECHNOLOGY

- No deadlock
- Most of the processes are independent
- Only possibility is P2, as it is holding R3 and requesting for R2 (which is holding by P3)
- P3 has already R1 and R3, so it can complete its execution and release the resources
- On releasing R2 by P3, P2 may acquire it.

• P2 requests for R2

- P2 requests for R2
- R2 is allocated to P2

- P2 requests for R2
- R2 is allocated to P2
- P5 requests for R2

- Find out the safe sequence
- Total number of resources: 3
- A=7, B=7, C=8
- Process: $4(P_0-P_3)$

Process	Allo	catio	n	Max	K		Ava	ailab	le
	A	В	C	A	В	C	A	В	C
P0	2	2	0	5	7	7	2	2	5
P1	0	1	2	2	2	3			
P2	3	1	0	4	2	3			
P3	0	1	1	4	5	6			

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4 (P_0 - P_3)$

Process	All	ocat	ion		Max		A	vaila	ble	Need			
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7	2	2	5	3	5	7	
P1	0	1	2	2	2	3				2	1	1	
P2	3	1	0	4	2	3				1	1	3	
P3	0	1	1	4	5	6				4	4	5	

• Calculate Need matrix

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4 (P_0 - P_3)$

Available resource

Process	All	Allocation			Max		A	vaila	ble	Need			
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7	2	2	5	3	5	7	
P1	0	1	2	2	2	3				2	1	1	
P2	3	1	0	4	2	3				1	1	3	
P3	0	1	1	4	5	6				4	4	5	

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4(P_0-P_3)$

Available resource

Process	Allocation				Max		A	vaila	ble	Need			
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7	2	2	5	3	5	7	
P1	0	1	2	2	2	3				2	1	1	
P2	3	1	0	4	2	3				1	1	3	
P3	0	1	1	4	5	6				4	4	5	

With the available resources, P1 and P2 can be served

• Total number of resources: 3

• A=7, B=7, C=8

Process

P0

P1

P2

P3

• Process: 4 (P₀-P₃)

Max

3

3

Allocation

В

C

	1 1 V	ana		CSOU	
A	vaila	ble		Need	
A	В	C	A	В	C
2	2	5	3	5	7
			2	1	1
			1	1	3

Available resource

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4(P_0-P_3)$

Available resource

Process	Allocation				Max		A	aila	ble /	Need			
	A	В	C	A	В	C	A	В	Q	A	В	C	
P0	2	2	0	5	7	7				3	5	7	
P1	0	1	2	2	2	3	2	3	7				
P2	3	1	0	4	2	3				1	1	3	
P3	0	1	1	4	5	6				4	4	5	

Already done

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4 (P_0-P_3)$

Available resource

										/		
Process	All	ocat	ion		Max		A	vaila	ble		Need	
	A	В	C	A	В	C	A	В	C	A	В	C
P0	2	2	0	5	7	7				3	5	7
P1	0	1	2	2	2	3	2	3	7			
P2	3	1	0	4	2	3				1	1	3
P3	0	1	1	4	5	6				4	4	5

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4(P_0-P_3)$

Available resource

Process	All	Allocation			Max		A	vaila	ble	Need			
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7				3	5	7	
P1	0	1	2	2	2	3							1
P2	3	1	0	4	2	3	5	4	7				1
P3	0	1	1	4	5	6				4	4	5	

Already done

Already done

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4 (P_0-P_3)$ Available resource

	(-	0 -	3/										
Process	All	ocat	ion		Max	<u> </u>	A	vaila	ble		Need	1	
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7				3	5	7	
P1	0	1	2	2	2	3							Already done
P2	3	1	0	4	2	3	5	4	7				Already done
P3	0	1	1	4	5	6				4	4	5	Next we can allocate to P3
													<p1, p2,="" p3=""></p1,>

• Total number of resources: 3

• A=7, B=7, C=8

• Process: $4 (P_0-P_3)$

Available resource

Process	Allocation				Max		Av	vaila	ble				
	A	В	C	A	В	C	A	В	C	A	В	C	
P0	2	2	0	5	7	7				3	5	7	
P1	0	1	2	2	2	3							A
P2	3	1	0	4	2	3							A
P3	0	1	1	4	5	6	5	5	8				A

Already done Already done

Already done

• Total number of resources: 3

• A=7, B=7, C=8

• Process: 4 (P₀-P₃) Available resource

Pro	ocess	All	ocat	ion		Max		A	aila	ble		Need		
		A	В	C	A	В	C	A	В	C	A	В	C	F' 11 11 11 11 10 10 10 10 10 10 10 10 10
]	P0	2	2	0	5	7	7				3	5	7	Finally we can allocate to P0 <p1, p0="" p2,="" p3,=""></p1,>
]	P1	0	1	2	2	2	3							Already done
	P2	3	1	0	4	2	3			I				Already done
]	P3	0	1	1	4	5	6	5	5	8				Already done

Total number of resources: 3

•	A=7	. B=	=7.	C=8
	I I - /	, _ _	_ / 🤊	\mathbf{C}

Process: $4(P_0-P_3)$ Available resource Allocati Available **Process** Max Need on B C A В В Already done 2 0 5 P0 Already done 2 2 3 P1 Already done 1 0 4 3 P2 Already done 5 P3 4 6

One of the safe sequences: <P1, P2, P3, P0>

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		1	Avai	labl	e
	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2				
P_1	3	0	1	1	3	1	3	4				
P_2	1	2	0	2	6	4	2	3				
P_3	1	1	3	0	5	3	7	5				
P_4	0	3	1	1	7	4	4	3				

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		ı	Avai	lable	e/		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2	1	3	3	4	6	3	2	2
P_1	3	0	1	1	3	1	3	4					0	1	2	3
P_2	1	2	0	2	6	4	2	3					5	2	2	1
P_3	1	1	3	0	5	3	7	5					4	2	4	5
\mathbf{P}_{4}	0	3	1	1	7	4	4	3					7	1	3	2

Available resources

Calculate Need matrix

Available resources

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5(P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		1	Avai	labl	e/		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2	1	3	3	4	6	3	2	2
P_1	3	0	1	1	3	1	3	4					0	1	2	3
P_2	1	2	0	2	6	4	2	3					5	2	2	1
P_3	1	1	3	0	5	3	7	5					4	2	4	5
P_4	0	3	1	1	7	4	4	3					7	1	3	2

3 4 6 3 2 2

The available resources can

be allocated to P₁

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		,	Avai	labl	e /		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2					6	3	2	2
P_1	3	0	1	1	3	1	3	4	4	3	4	5				
P_2	1	2	0	2	6	4	2	3					5	2	2	1
P_3	1	1	3	0	5	3	7	5					4	2	4	5
P_4	0	3	1	1	7	4	4	3					7	1	3	2

Available resources

Already done

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		1	Avai	labl	e /		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2					6	3	2	2
P_1	3	0	1	1	3	1	3	4	4	3	4	5				
P_2	1	2	0	2	6	4	2	3					5	2	2	1
P_3	1	1	3	0	5	3	7	5					4	2	4	5
P_4	0	3	1	1	7	4	4	3					7	1	3	2

Available resources

Already done

The available resources can be allocated to P_3

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0 P_4)$

Process	A	Allo	catio	n		M	ax			Avai	labl	e		Ne	ed		
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	8	3	4	2					6	3	2	2	
\mathbf{P}_{1}	3	0	1	1	3	1	3	4									Already done
P_2	1	2	0	2	6	4	2	3	5	4	7	5	5	2	2	1	
P_3	1	1	3	0	5	3	7	5									Already done
P_4	0	3	1	1	7	4	4	3					7	1	3	2	

Available resources

<P1, P3>

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax			Avai	labl	e /		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2					6	3	2	2
P_1	3	0	1	1	3	1	3	4								
P_2	1	2	0	2	6	4	2	3	5	4	7	5	5	2	2	1
P_3	1	1	3	0	5	3	7	5								
P_4	0	3	1	1	7	4	4	3					7	1	3	2

Available resources

Already done

The available resources can be allocated to Parallel Already done

$$<$$
P₁, P₃, P₂ $>$

Available resources

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		M	ax			Avai	labl	e		Ne	ed		
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	8	3	4	2					6	3	2	2	
P_1	3	0	1	1	3	1	3	4									Already done
P_2	1	2	0	2	6	4	2	3									Already done
P_3	1	1	3	0	5	3	7	5	6	6	7	7					Already done
P_4	0	3	1	1	7	4	4	3					7	1	3	2	

$$<$$
P₁, P₃, P₂ $>$

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5(P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		1	Avai	labl	e /		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2					6	3	2	2
P_1	3	0	1	1	3	1	3	4								
P_2	1	2	0	2	6	4	2	3								
P_3	1	1	3	0	5	3	7	5	6	6	7	7				
P_4	0	3	1	1	7	4	4	3					7	1	3	2

Available resources

The available resources can be allocated to P₀

Already done

Already done

Already done

$$<$$
P₁, P₃, P₂, P₀ $>$

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5(P_0-P_4)$

Process	A	Alloc	catio	n		M	ax		1	Avai	labl	e		Ne	ed	
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
P_0	2	0	2	0	8	3	4	2								
P_1	3	0	1	1	3	1	3	4								
P_2	1	2	0	2	6	4	2	3								
P_3	1	1	3	0	5	3	7	5			1					
P_4	0	3	1	1	7	4	4	3	8	6	9	7	7	1	3	2

Available resources

Already done
Already done
Already done
Already done

$$<$$
P₁, P₃, P₂, P₀ $>$

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

													1				
Process	P	Alloc	catio	n		M	[ax			Avai	ilabl	e		Ne	ed		
	P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	8	3	4	2									Already
P_1	3	0	1	1	3	1	3	4									Already
P_2	1	2	0	2	6	4	2	3									Already
P_3	1	1	3	0	5	3	7	5			,						Already
P_4	0	3	1	1	7	4	4	3	8	6	9	7	7	1	3	2	The avail
P ₃	1 0	1			5	3	7	5	8	6	9	7	7	1	3	2	Alrea

Available resources

v done

v done

v done

v done

ilable resources can be allocated to P₂

$$<$$
P₁, P₃, P₂, P₀, P₄ $>$

- Find out the safe sequence
- Total types of resources:
 - Printer (P): 8 instances
 - Scanner (S): 9 instances
 - File (F): 10 instances
 - Keyboard (K): 8 instances
- Process: $5 (P_0-P_4)$

A	Alloc	catio	n		M	ax		1	Avai	labl	e		Ne	ed	
P	S	F	K	P	S	F	K	P	S	F	K	P	S	F	K
2	0	2	0	8	3	4	2								
3	0	1	1	3	1	3	4								
1	2	0	2	6	4	2	3								
1	1	3	0	5	3	7	5								
0	3	1	1	7	4	4	3								
	P 2 3 1 1 1	P S 2 0 3 0 1 2 1 1	P S F 2 0 2 3 0 1 1 2 0 1 1 3	P S F K 2 0 2 0 3 0 1 1 1 2 0 2 1 1 3 0	P S F K P 2 0 2 0 8 3 0 1 1 3 1 2 0 2 6 1 1 3 0 5	P S F K P S 2 0 2 0 8 3 3 0 1 1 3 1 1 2 0 2 6 4 1 1 3 0 5 3	P S F K P S F 2 0 2 0 8 3 4 3 0 1 1 3 1 3 1 2 0 2 6 4 2 1 1 3 0 5 3 7	P S F K P S F K 2 0 2 0 8 3 4 2 3 0 1 1 3 1 3 4 1 2 0 2 6 4 2 3 1 1 3 0 5 3 7 5	P S F K P S F K P 2 0 2 0 8 3 4 2 3 0 1 1 3 1 3 4 1 2 0 2 6 4 2 3 1 1 3 0 5 3 7 5	P S F K P S F K P S 2 0 2 0 8 3 4 2 2 3 0 1 1 3 1 3 4 4 1 2 0 2 6 4 2 3 1 1 3 0 5 3 7 5	P S F K P S F K P S F 2 0 2 0 8 3 4 2 2 3 0 1 1 3 1 3 4 1 1 2 0 2 6 4 2 3 1 1 3 0 5 3 7 5	P S F K P S F K P S F K 2 0 2 0 8 3 4 2 2 3 4 1 3 1 3 4 4 4 1 1 1 1 3 1 3 4 4 2 3 3 4 1 1 1 3 0 5 3 7 5 3 7 5 3 7 5 3 7 5 3 7 5 3 4 2 3 4 2 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3 3 4 2 3	P S F K P S F K P S F K P 2 0 2 0 8 3 4 2 3 4 3 4	P S F K P S F K P S F K P S 2 0 2 0 8 3 4 2 3 4	P S F K P S F K P S F K P S F 2 0 2 0 8 3 4 2 0

Available resources

10

Already done

Already done

Already done

Already done One of the safe sequences

Already done

$$<$$
P₁, P₃, P₂, P₀, P₄

Resource-Allocation Graph (RAG)

We can generate Wait-for-Graph from the RAG

Resource-Allocation Graph (RAG)

Wait-for-Graph

We can generate Wait-for-Graph from the RAG

Resource-Allocation Graph (RAG)

We can generate Wait-for-Graph from the RAG

• Need to detect if there is a deadlock when we have multiple instances of a resource

• A: 7 Instances

• B: 8 Instances

• C: 9 Instances

Process	Allo	catio	n	Req	uest		Ava	ailab	le
	A	В	C	A	В	C	A	В	C
P0	1	3	1	5	5	7	0	2	1
P1	2	1	2	0	2	1			
P2	3	1	4	4	6	3			
P3	1	1	1	4	5	6			

• Need to detect if there is a deadlock when we have multiple instances of a resource

• A: 7 Instances

• B: 8 Instances

• C: 9 Instances

Process	Allo	catio	n	Req	uest		Ava	ailab	le
	A	В	C	A	В	C	A	В	C
P0	1	3	1	5	5	7	0	2	1
P1	2	1	2	0	2	1			
P2	3	1	4	4	6	3			
P3	1	1	1	4	5	6			

P1 can execute with the available resources

• Need to detect if there is a deadlock when we have multiple instances of a resource

• A: 7 Instances

• B: 8 Instances

• C: 9 Instances

Process	Allo	catio	n	Req	uest		Ava	ailab	le
	A	В	C	A	В	C	A	В	C
P0	1	3	1	5	5	7	0	2	1
P1	2	1	2						
P2	3	1	4	4	6	3			
P3	1	1	1	4	5	6			

Let P1 is executed

• Need to detect if there is a deadlock when we have multiple instances of a resource

• A: 7 Instances

• B: 8 Instances

• C: 9 Instances

Process	Allo	catio	n	Req	uest		Ava	ailab	le
	A	В	C	A	В	C	A	В	C
P0	1	3	1	5	5	7			
P1	2	1	2				2	3	3
P2	3	1	4	4	6	3			
P3	1	1	1	4	5	6			

With the available resources, none of the processes can be executed – Deadlock occurs

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 12 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	catio	n		Req	uest	;	Available				
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5	0	3	6	1	
P_1	3	0	1	1	0	2	4	1					
P_2	0	2	0	2	6	4	2	3					
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1	3	3	7	1					

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	catio	n		Req	uest	;	Available				
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5	0	3	6	1	
P_1	3	0	1	1	0	2	4	1					
P_2	0	2	0	2	6	4	2	3					
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1	3	3	7	1					

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	catio	n		Req	uest		Available				
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5	0	3	6	1	
P_1	3	0	1	1	0	2	4	1					
P_2	0	2	0	2	6	4	2	3					
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1	3	3	7	1					

With the available resources, P₁ can execute

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	atio	n		Req	uest		Available				
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5					
P_1	3	0	1	1					3	3	7	2	
P_2	0	2	0	2	6	4	2	3					
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1	3	3	7	1					

Let P₁ is executed

Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	catio	n		Req	uest		Available				
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5					
P_1	3	0	1	1					3	3	7	2	
P_2	0	2	0	2	6	4	2	3					
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1	3	3	7	1					

Let P₁ is executed

With the available resources, P₄ can execute

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0 - P_4)$

Process	A	Alloc	catio	n		Req	uest			Avai	ilabl	e	
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5					
P_1	3	0	1	1									Let P1 is executed
P_2	0	2	0	2	6	4	2	3	3	6	8	3	
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1									Let P ₄ is executed

 $< P_1, P_4 >$

• Total types of resources:

• Printer (P): 6 instances

• Scanner (S): 9 instances

• File (F): 13 instances

• Keyboard (K): 5 instances

• Process: $5 (P_0-P_4)$

Process	A	Alloc	catio	n		Req	uest			Avai	labl	e	
	P	S	F	K	P	S	F	K	P	S	F	K	
P_0	2	0	2	0	3	3	4	5					
P_1	3	0	1	1									Let P1 is executed
P_2	0	2	0	2	6	4	2	3	3	6	8	3	
P_3	1	1	3	0	5	3	8	6					
P_4	0	3	1	1									Let P ₄ is executed

With the available resources, none of the processes can be served. So, there is a deadlock

$$<$$
P₁, P₄ $>$

THANK YOU!