# **Cloud Computing Final Report**

Build IoT Platform using Docker, Kubernetes, and Tensorflow 羅允辰

## Github Project

我將 final project 的程式碼和實驗結果都整理至 github 上,老師和助教若有興趣可以按造 README.md 來進一步瀏覽,若覺得還不錯也請給我一個星星,謝謝 連結: https://github.com/jasonlo0509/Dockerized-YOLO-on-Rpi-Cluster

## **IoT Platform Prototype**

在 "Distributed Analytics in Fog Computing Platforms Using Tensorflow and Kubernetes" 與 "From Cloud Computing to Fog Computing: Unleash the Power of Edge and End Devices" 兩篇近年的 paper 中,都架設了一個由 3 個 open source projects (Docker, Kubernetes, Tensorflow)所組成的 IoT Platform Prototype。

Platform 的三個 projects 之間關係如圖一所示,一個 application(ex. YOLO object detection) 會 先用 Tensorflow 拆成數個 operator,將 operator 與其執行的環境包裝成 Docker Image 後,最後使用 Kubernets 將 Docker Image 部署到指定的 Device 上。



圖一. IoT Platform Prototype

## **Application : YOLO Object Detection**

我們所選的 Application 為 YOLO objection detection , YOLO 可以判斷圖片中物體的位置與該物體是什麼,適合用在智慧 IoT 的服務上。

我們的簡化版 YOLO 架構用 10 層 Convolution layers 與 3 層 Fully connected layers 所組成,詳細架構如圖二所示。



圖二. YOLO Architecture

## **Application Partition**

在拆分 YOLO 時,我做了兩種嘗試,並且在 Mac 上測試 CPU 使用量,分析分別如下:
1) 依據 Layer 特性, Convolution Layers & Fully Connected Layers 各自成為一個 operator,如
圖三所示



圖三. 1st Partition

但是這種切法會使得兩個 operator 的 CPU 使用量相差太多,如圖四所示

| Process Name | % CPU ^ | CPU Time | Threads | Idle Wake Ups | PID  | User    |            |
|--------------|---------|----------|---------|---------------|------|---------|------------|
| python2.7    | 0.0     | 1.12     | 30      | 1             | 3264 | jasonlo | Operator 2 |
| python2.7    | 4.1     | 11.74    | 30      | 2             | 3168 | jasonlo | Operator 2 |
| python2.7    | 76.6    | 13.40    | 14      | 4             | 3888 | jasonlo | Operator 1 |
| python2.7    | 213.5   | 8:33.98  | 39      | 3             | 3069 | jasonlo | operator r |
|              |         |          |         |               |      |         |            |
|              |         |          |         |               |      |         |            |

#### 2) 按造計算量來平均切分,如圖五所示



圖五. 2nd Partition

我們可以由圖六觀察到,按造這樣拆分, CPU 執行時的兩個 operator 的工作量是差不多的

| Process Name | % CPU ^ | CPU Time | Threads | Idle Wake Ups | PID | User      |            |
|--------------|---------|----------|---------|---------------|-----|-----------|------------|
| python2.7    | 14.6    | 1:00.05  | 38      | 1             | 448 | 2 jasonlo | Operator 1 |
| python2.7    | 59.1    | 1:06.10  | 19      | 0             | 486 | O jasonlo | Operator 2 |
| python2.7    | 117.5   | 5:26.48  | 31      |               |     |           | Operator 1 |
| python2.7    | 125.9   | 8:43.87  | 31      | 1             | 448 | 5 jasonlo | Operator 2 |

圖六. CPU Resources Usage

根據以上分析,我們最後選擇的 partition 方式是(2) 按造計算量平均拆分兩個 operator。如此一來,當 input 不斷進到兩個 operator 中時,才不會因為 workload 不平均而慢下來。

### **Our Platform**

我最終使用了 3 台 Raspberry Pi 作為 IoT Devices,用 wifi 連在一起,並且使用 Kubernetes 將他們連成 cluster,圖七為執行 kubernetes dashboard 時,由 host 端可以觀察到各個 device 情況的圖片。 yclo-pi1~3 為 raspberry pi,而 yunchen-ubuntu 則是 master 負責指派工作給 worker。



圖七. k8s dashboard

#### **Evaluation**

由於 wifi 的傳輸速度太慢,無法將 feature map 夠快的傳給下一個 operator,我實驗發現多個 node 的時間會比較慢

因此,我最後的實驗數據是在單個 node 上進行,並且以 CPU 的資源多寡來模擬多個 node 會有的加速。最後我得到在一個 device 上每分鐘可以辨識 19 張圖片,2 個 device 則會加速至 22 張照片。下圖的橫軸為 device 數量,縱軸為一分鐘可以辨識幾張照片。

