建立一种用于动态预测脓毒症患者 诱发PICS的机器学习方法

华东理工大学 白栋栋 成昊南 黄海骅 霍松泽 摘要

TODO:

目录

1	项目	背景	2
2	材料	和方法	2
	2.1	数据来源	2
	2.2	选择数据	2
	2.3	定义输出	2
	2.4	计算输出	2
	2.5	数据分析	2
3 模型结果			
	3.1	基准特征	3
	3.2	模型比较	4
	3.3	完整模型与紧凑模型	4
	3.4	性能分析	6
	3.5	模型解释	6
	3.6	H5预测工具	7
4	结论		8
Α	附录		8

1 项目背景

TODO:

- 2 材料和方法
- **2.1** 数据来源 TODO:
- **2.2 选择数据** TODO:
- **2.3** 定义输出 TODO:
- **2.4** 计算输出 TODO:
- **2.5** 数据分析 TODO:

3 模型结果

3.1 基准特征

从 eICU 数据库中提取出 100,308 条数据,包含 17,729 名不同的脓毒症患者。其中,3,866 (3.85%) 条数据为正例,96,442 (96.15%) 条数据为反例。

如表 1 所示,经过比较,正例数据拥有更长的 ICU 入住天数、更少的血浆蛋白、更少的淋巴细胞数目、更高的心率、更高的呼吸频率、更少的血清总蛋白、更低的红细胞比容、更少的肌酸酐、更高的白细胞计数、更多的血小板、更低的平均动脉压。

指标名称	正例平均值	反例平均值	单位
ICU入住天数	21.067	10.852	天
血浆蛋白	2.109	2.520	g/dL
淋巴细胞数目	9.931	12.473	%
心率	93.337	88.458	次/分钟
呼吸频率	21.814	21.019	次/分钟
血清总蛋白	5.578	5.928	g/dL
红细胞比容	27.808	29.888	$\times 10^3 \ \mathrm{K/mcL}$
肌酸酐	1.489	1.610	mg/dL
白细胞计数	13.218	12.189	$\times 10^3 \ \mathrm{K/mcL}$
血小板	260.259	226.342	$\times 10^3 \ \mathrm{K/mcL}$
平均动脉压	79.727	82.055	mmHg

表 1: 正反例基准特征比较 (p < 0.001)

排名	模型名称	平均准确率	平均AUC ¹
1	CatBoost	$0.996(\pm0.001)$	$0.996(\pm0.001)$
2	Light Gradient Boosting	$0.995(\pm0.001)$	$0.996(\pm 0.001)$
3	Extreme Gradient Boosting	$0.995(\pm 0.001)$	$0.994(\pm 0.002)$
4	Hist Gradient Boosting	$0.994(\pm 0.002)$	$0.996(\pm 0.002)$
5	Ada Boost	$0.993(\pm 0.002)$	$0.995(\pm0.002)$
6	Decision Tree	$0.989(\pm0.002)$	$0.949(\pm 0.013)$
7	Multi-Layer Perceptron	$0.982(\pm0.004)$	$0.975(\pm0.008)$
8	SVM (RBF Kernel)	$0.973(\pm0.003)$	$0.957(\pm0.011)$
9	Logistic	$0.966(\pm0.007)$	$0.956(\pm0.012)$
10	Extra Trees	$0.961(\pm0.006)$	$0.977(\pm0.006)$
11	Naive Bayes	$0.961(\pm 0.006)$	$0.689(\pm0.034)$
12	Ridge	$0.961(\pm 0.007)$	$0.952(\pm0.013)$
13	Linear Discriminant Analysis	$0.961(\pm 0.010)$	$0.952(\pm0.013)$
14	K-Nearest Neighbours	$0.951(\pm 0.006)$	$0.544(\pm0.025)$

¹ AUC: Area Under Curve,接受者操作特性曲线下与坐标轴围成的面积。

表 2: 14种模型的交叉验证结果比较(按平均准确率排序)

3.2 模型比较

用提取出的数据训练预测模型,各种模型的交叉验证结果如表 2 所示。Logistic 回归表现良好(平均准确率: 0.966 , 平均 AUC: 0.956),而集成学习方法拥有更高的平均准确率和平均 AUC。其中,CatBoost 的预测结果最好(平均准确率: 0.996 , 平均 AUC: 0.996),故选择 CatBoost 进入下一步。

3.3 完整模型与紧凑模型

根据预测结果比较,选择含 57 个输入变量的 CatBoost 模型为完整模型。计算完整模型中各变量的平均 SHAP 值,结果如图 1 所示。此摘要图展示了各个变量对预测结果的影响情况分布。例如,ICU 入住天数(offset) 对结果影响明显,且 ICU 入住天数越长,发生ICU综合症的概率

图 1: 完整模型中各变量的平均 SHAP 值比较

越大。

根据变量的平均 SHAP 值大小和数据获取的难易程度,选择了 15 个变量作为输入,建立更加易于使用的紧凑模型。使用默认超参数的紧凑模型平均AUC为 90.219%。用贝叶斯优化调整超参数后,紧凑模型平均 AUC 达到了 90.682%,同时平均准确率为 96.120%。虽然预测结果的得分略低于完整模型,但是紧凑模型明显在临床上更加可行、更加易用。

图 2: 模型性能分析

3.4 性能分析

如图 2 所示, 完整模型和紧凑模型在各种指标的不同范围下都表现良好。当某个指标出现明显的异常值时, 模型可以非常敏锐地察觉到并给出十分准确的预测结果。

3.5 模型解释

图 3: 个例(A)中主要变量的 SHAP 值

图 1 从整体上展示了各个变量对于预测结果的影响情况,同时也展现了模型对输入变量变化的灵敏性。而图 3 和图 4 展示了两个个例(主)变量的 SHAP 值。图中红色条和蓝色条分别表示危险因素和安全因素,它们

图 4: 个例 (B) 中主要变量的 SHAP 值

共同作用决定了最终的结果。如图 3 ,在个例(A)中,虽然患者的平均动脉压偏低,但是其 ICU 入住天数很短、血浆蛋白较多、pH 值也良好,所以模型准确预测了患者次日无 ICU 综合症风险。又如图 4 ,在个例(B)中,虽然患者的血浆蛋白较多,但是其 ICU 入住天数较长、身体质量指数(BMI)偏低,所以模型准确预测了患者次日的 ICU 综合症。

3.6 H5预测工具

为了方便临床上对上述紧凑模型的测试,开发了一款预测脓毒症患者诱发 ICU 综合症的 H5 应用。只需在表单中输入指标数值,然后点击"提交",就可以获得紧凑模型对患者次日发生 ICU 综合症概率的预测。目前应用已部署在此网址上: http://1.15.185.22/sepsis-pics-tool/。

4 结论

TODO:

A 附录

TODO: