Guia de trabajos prácticos N° 4 <u>Microprogramación</u>

Según la siguiente micro-arquitectura horizontal:

Con registros:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
PC	AC	SP	IR	TIR	0	+1	-1	AM ask	SM ask	Ax	Вх	Сх	Dx	Ex	Fx
?	?	?	?	?	x00 00	x00 01	xFF FF	x0F FF	x00 0F	?	?	?	?	?	?

Estructura del MIR

Α	С	ALU	SH	М	М	R	W	Е	С		В		Α		AD	DR	2	
M	0			В	Α	D	R	Ν										
U	N			R	R			С										
X	D																	

AMUX 0 = Buffer A 1 = MBR **COND** 0 = No salta 1 = Si N==1

2 = Si Z==1

<u>ALU</u> 0 = A + B 1 = A & B 2 = A <u>SH</u> 0 = No desplaza 1 = alu >> 1 2 = alu << 1 MBR, MAR, RD, WR, ENC 0 = No 1 = Si

3 = Salta siempre 3

3 = ~A

3 = (no usado)

1. Explicar en lenguaje natural lo que hacen los siguientes grupos de micro instrucciones.

a.

А	С	ALU	SH	М	М	R	1	E	С	В	Α	ADDR
M	Ο			В	A	D	R	N				
U	Ν			R	R			C				
X	D											
0	0	0	0	0	1	1	0	0	0	4	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	2	0	0	0	0	0	1	1	0	0	0

b.

		~.										
Α	С	ALU	SH	М	М	R	W	Е	С	В	Α	ADDR
M	Ο			В	Α	D	R	N				
U	Ν			R	R			C				
X	D											
0	0	0	0	0	1	1	0	0	0	4	0	0
0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0

C.

A M	C	ALU	SH	M B	M A	R D	W R	E N	С	В	Α	ADDR
U	N			R	R			C				
X	D											
0	0	3	0	0	0	0	0	1	1	0	13	0
0	0	0	0	0	0	0	0	1	1	6	1	0
0	1	0	0	0	0	0	0	0	0	1	10	(+3)
0	0	0	0	0	0	0	0	1	0	6	0	0
0	3	0	0	0	0	0	0	0	0	0	0	уу
0	3	1	0	0	0	0	0	1	0	3	8	XX

- 2. Codificar las siguientes micro-instrucciones:
 - a. Ax = (Ax + Bx) * 2
 - b. Dx = (Fx + Ax) / 4
 - c. [Fx] = [Cx Dx]
 - d. [(IR and AMask)] = Ax
 - e. Bx = Ex AND [Fx]
 - f. [SP+1] = [Dx * 2] + Cx
 - g. Ax = Ax or Bx
 - h. PC = [Dx] + Cx
 - i. [(IR and AMask)] = (Ex * 2) + (Ex / 2)
 - j. $[Dx] = (Ax + Bx + Cx) * \frac{1}{2}$
 - k. Ax = Ax * Bx
- 3. Resuelva las operaciones del ejercicio anterior usando las siguientes microinstrucciones de una arquitectura vertical:

Binario	Mnemónico	Instrucción	Significado				
0000	ADD	Suma	r1:=r1+r2				
0001	AND	Y bit a bit	r1:=r1&r2				
0010	MOVE	Mueve registro	r1:=r2				
0011	COMPL	Complemento	r1:=inv(r2)				
0100	LSHIFT	Desplaza a la Izquierda	r1:=r2<<1				
0101	RSHIFT	Desplaza a la Derecha	r1:=r2>>1				
0110	GETMBR	Almacena MBR en registro	r1:=MBR				
0111	TEST	Examina registro	N:=(r2<0); Z:=(r2==0)				
1000	BEGRD	Comienza la Lectura	MAR:=r1; rd				
1001	BEGWR	Comienza la Escritura	MAR:=r1; MBR:=r2; wr				
1010	CONRD	Continúa la Lectura	rd				
1011	CONWR	Continúa la Escritura	wr				
1100							
1101	NJUMP	Salta si N=true	if N then goto r1<<4 r2				
1110	ZJUMP	Salta si Z=true	if Z then goto r1<<4 r2				
1111	UJUMP	Salta siempre	goto r1<<4 r2				

4. Dada la arquitectura vertical propuesta por Tanenbaum y su matriz representativa del Decodificador de OP, se quieren implementar nuevas microinstrucciones, a saber:

- SetMBR carga el registro MBR con el contenido de un registro de uso general, MBR:=r2
 SetMBR ,AC
- AddMBR acumula el contenido del registro MBR y de un registro de uso general, r1:=MBR+r1

AddMBR AC

c. **ZJMBR** si el valor del registro MBR es cero, entonces salta a la microinstrucción cuya dirección se calcula como (r1<<4) | r2

ZJMBR XXXX