IN THE CLAIMS:

1	1.	(Currently Amended) A method of chemical vapor deposition on a substrate
2	comprising:	
3		a) placing a substrate on a carrier [[and]] in a deposition chamber;
4		b) rotating said substrate;
5		c) heating said substrate, said heating applied to create a temperature
6		gradient in the range of 50°C to 100°C per inch above a deposition surface
7		of said substrate wherein the temperature increases with increasing
8		distance from said deposition surface; and
9		d) providing a flow of process gas across a surface of said substrate by
10		injecting said process gas at said surface with a plurality of gas injectors
11		so as to concentrate said gas at said surface,
12	thereby enhan	cing the deposition rate on said substrate over the deposition rate in an isothermal
13	environment.	
	•	
	2.	(Cancelled)
1	3.	(Original) A method as recited in claim 1 wherein said heating is accomplished
2	with a first he	ater radiating toward said deposition surface, and with a second heater radiating

1 4. (Original) A method as recited in claim 3 wherein said first heater radiates a 2 different amount of heat energy than said second heater.

toward a back surface of said substrate.

3

- 5. 1 (Original) A method as recited in claim 4 wherein said heating includes a first 2 thermal plate between said first heater and said substrate, and a second thermal plate between 3 said second heater and said substrate. (Original) A method as recited in claim 5 wherein said temperature gradient 1 6. 2 includes a temperature difference in the range of 100°C to 200°C between said first plate and 3 said second plate. 1 7. (Original) A method as recited in claim 1 wherein said providing includes 2 supplying said process gas at a flow rate in the range of 200 sccm to 800 sccm. 1 8. (Original) A method as recited in claim 1 wherein said providing includes 2 passing said process gas over said substrate at a gas velocity in excess of 100 cm/sec. 9. (Cancelled) 1 10. (Currently amended) A method as recited in claim [[9]] 1 wherein said gas 2 injectors are temperature controlled. 1 11. (Currently amended) A method as recited in claim [[9]] 1 wherein said gas
- 1 12. (Cancelled)

injectors are directed at said deposition surface.

2