Chapitre 15

Limites et continuité

imites et continuité	
5.6 Limite en un point du domaine	
5.15Comparaison des limites de deux fonctions coincidant au voisinage de a	
5.17Unicité de la limite, cas réel	
5.23Propostion	
5.30Composition de limites	
5.32Limites et inégalités strictes	
5.33Limite et inégalités larges	
5.34 Caractérisations séquentielle de la limite d'une fonction	
5.39Théorème de la limite monotone	
5.59 Théorème des valeurs intermédiaires : version $1 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
5.60 Théorème des valeurs intermédiaires : version $2\ldots\ldots\ldots\ldots\ldots\ldots$	
5.61 Théorème des valeurs intermédiaires : version 3	

Limite en un point du domaine 15.6

Si $a \in X$ et si f(x) admet une limite finie en a, alors cette limite est nécessairement égale à f(a).

Comme f(x) admet une limite finie b quand $x \to a$:

$$\forall \epsilon, \exists \nu > 0, \forall x \in X, |x - a| \le \nu \Rightarrow |f(x) - b| \le \epsilon$$

Or pour tout $\epsilon > 0$:

$$|a-a| \le \nu$$
 (quelque soit ν)

Donc:

$$\forall \epsilon, |f(a) - b| \le \epsilon$$

Donc |f(a) = b|

15.15 Comparaison des limites de deux fonctions coincidant au voisinage de a

Soit f et g deux fonctions coincidant au voisinage d'un point a. Alors, si f admet une limite (finie ou infinie) en a, alors g aussi et

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

On choisit $W \in \mathcal{V}(a)$ tel que $W \cap X = W \cap Y$ et $f|_{W \cap X} = g|_{W \cap Y}$. Soit $b \in \mathbb{R}$ tel que f(x) tend vers b quand $x \to a$.

Soit $V \in \mathcal{V}(b)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V$$

Or

$$W \cap U \in \mathcal{V}(a)$$
 et $\subset f(W \cap U \cap X)_{g(W \cap U \cap Y)} \subset V$

Donc g admet une limite en a égale à b

15.17Unicité de la limite, cas réel

Soit $a \in \overline{X}$ et f une fonction réelle. Sous réserve d'existence, la limite de f(x), lorsque x tend vers a est

Par l'absurde. On suppose que f possède deux limites $l \neq l'$ en a.

On choisit $u \in \mathcal{V}(l)$ et $u' \in \mathcal{V}(l')$ tels que $u \cap u' = \emptyset$.

Par définition, on choisit $(W, W') \in \mathcal{V}(a)^2$ tels que $f(W \cap X) \subset U$ et $f(W' \cap X) \subset U'$. Or $W \cap W' \notin \mathcal{V}(a)$ et $f(W \cap W' \cap X) \subset U \cap U' = \emptyset$.

Or
$$\underbrace{W \cap W'}_{\neq \emptyset} \notin \mathcal{V}(a)$$
 et $f(\underbrace{W \cap W' \cap X}_{\neq \emptyset}) \subset U \cap U' = \emptyset$

Absurde.

15.23Propostion

Soit $a \in \overline{X}$. Soit $(Z_i)_{i \in I}$ une famille **finie** de sous-ensembles de \mathbb{R} tels que $X \in \bigcup Z_i$ (on dit que (Z_i) est un **recouvrement** de X). La fonction f admet au point a une limite ℓ (finie ou infinie) si et seulement si pour tout i tel que la limite de f en a sur Z_i est envisageable, cette limite existe et vaut ℓ .

On suppose que
$$\lim_{a} f = \ell$$
.

Soit $i \in I$ tel que $a \in \overline{X \cap Z}$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que $f(U \cap X) \subset V$.

EN particulier $f(U \cap X \cap Z_i) \subset V = f|_{X \cap Z_i} (U \cap X \cap Z_i)$.

$$\Leftarrow$$

Notons $J \subset I$ l'ensemble des indices pour lesquels la limite est envisageable en Z_i .

Soit $V \in \mathcal{V}(\ell)$. Pour tout $i \in J$, comme $\lim_{x \to ax \in Z_i} = \ell$ on choisit $U_i \in \mathcal{V}(a)$ tel que $f|_{Z_i \cap X} (U_i \cap Z_i \cap X) \subset V$.

On pose $U = \bigcap_{i \in J} U_i \in \mathcal{V}(a)$ car J est fini.

On choisit $U' \in \mathcal{V}(a)$ tel que $U' \cap \left(\bigcup_{i \in I \setminus J} Z_i\right) = \emptyset$.

$$f(U\cap U'\cap X)\subset V$$
 Donc
$$\left[\lim_a f=\ell\right].$$

Composition de limites 15.30

Soit $f: X \to \mathbb{R}, g: Y \to \mathbb{R}$ deux fonctions avec $f(X) \subset Y$. Soit $a \in \overline{X}, b \in \overline{Y}$ et $c \in \overline{\mathbb{R}}$. Si $\lim_{x \to \infty} f = b$ et si $\lim_{b} g = c$, alors $\lim_{a} g \circ f = c$.

Soit $W \in \mathcal{V}(c)$. On choisit $V \in \mathcal{V}(b)$ tel que :

$$g(V \cap Y) \subset W$$

On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U\cap X)\subset V\cap Y\ (\lim_a f=b)$$

On a alors:

$$g \circ f(U \cap X) \subset W$$

15.32 Limites et inégalités strictes

Soit $f: X \to \mathbb{R}$, $a \in \overline{X}$, $m \in \mathbb{R}$ et $M \in \mathbb{R}$.

- 1. Si $\lim_{a} f < M$ alors f(x) < M au voisinage de a
- 2. Si $\lim_{x \to a} f > m$ alors f(x) > m au voisinage de a.
- 1. Notons $b = \lim_{M \to \infty} f \in \mathbb{R}$. Si b < M, on choisit $U \in \mathcal{V}(b)$ et $U' \in \mathcal{V}(M)$ avec U < U'. Comme $\lim_{a} f = b$, on choisit $W \in \mathcal{V}(a)$ tel que :

$$f(W \cap X) \subset U$$

Limite et inégalités larges 15.33

Soit $f: X \to \mathbb{R}$ et $g: X \to \mathbb{R}$ deux fonctions et $a \in \overline{X}$. On suppose que f et g possède des limites finies

Si $f(x) \leq g(x)$ au voisinage de a, alors $\lim_{x \to a} f \leq \lim_{x \to a} g$.

Ce résultat est le plus souvent utilisé lorsqu'une des deux fonctions est constante.

RAF : absurde + (15.32)

15.34 Caractérisations séquentielle de la limite d'une fonction

Soit $f:X\to\mathbb{R}$ une fonction et $a\in\overline{X}$ et $\ell\in\overline{\mathbb{R}}$. Sont équivalentes :

1.
$$\lim_{a} f = \ell \Leftrightarrow \forall u_n \to a, \lim_{n \to a} f(u_n) = \ell (= f(\lim_{n \to a} u_n))$$

2. Pour toute suite (u_n) de limite a à valeurs dans X, la suite $(f(u_n))$ a pour limite ℓ .

$$1 \Rightarrow 2$$

On suppose que
$$\lim_{a} f = \ell$$
.
Soit $(u_n) \in X^{\mathbb{N}}$ avec $u_n \xrightarrow[n \to +\infty]{} a$.

Soit $V \in \mathcal{V}(\ell)$. On choisit $U \in \mathcal{V}(a)$ tel que :

$$f(U \cap X) \subset V \ (\lim_{a} f = \ell)$$

Comme $u_n \xrightarrow[n \to +\infty]{} a$, on choisit $N \in \mathbb{N}$ tel que :

$$\forall n > N, u_n \in U \cap X$$

Donc:

$$\forall n \geq N, f(u_n) \in V$$

Donc:

$$f(u_n) \underset{n \to +\infty}{\longrightarrow} \ell$$

$$1 \Leftarrow 2$$

Par contraposée. On suppose que f n'admet pas ℓ comme limite en a. Pour tout $n \in \mathbb{N}$, on note :

$$V_n = \begin{cases} \left[a - \frac{1}{n+1}, a + \frac{1}{n+1} \right] & \text{si } a \in \mathbb{R} \\ \left[n, +\infty \right] & \text{si } a = +\infty \\ \left[-\infty, -n \right] & \text{si } a = -\infty \end{cases}$$

Par définition, il existe $W \in \mathcal{V}(\ell)$ tel que pour tout $V \in \mathcal{V}(a)$, il existe $x \in V \cap X$ et $f(x) \neq W$. Pour tout $n \in \mathbb{N}$, on choisit $x_n \in V_n \cap X$ tel que $f(x_n) \neq W$. Par construction:

$$(x_n) \in X^{\mathbb{N}}, x_n \xrightarrow[n \to +\infty]{} a \text{ et } f(x_n) \xrightarrow[n \to +\infty]{} \ell$$

15.39 Théorème de la limite monotone

Théorème 15.39

Soit $a \in \mathbb{R}$ et $b \in \mathbb{R} \cup \{+\infty\}$ avec a < b et $f : [a, b] \to \mathbb{R}$ une fonction croissante.

- 1. La limite $\lim_{a^+} f$ existe et est finie. Plus précisément, on a $f(a) \leq \lim_{a^+} f$.
- 2. Pour tout $c \in]a,b[$, $\lim_{c^-} f$ et $\lim_{c^+} f$ existent et sont finies. Plus précisément : $\lim_{c^-} f \leq f(c) \leq \lim_{c^+} f$.
- 3. La limite $\lim_{h} f$ existe et est soit finie, soit égale à $+\infty$.
- 1. On note F = f(]a, b[). Comme f est définie au voisinage de a, $]a, b[\neq \emptyset \text{ et } F \neq \emptyset \text{.}$

Par ailleurs, comme f est croissante sur a, b, F est minorée par f(a).

D'après la propriété fondamentale de \mathbb{R} , F possède une borne inférieure notée α , avec $f(a) \leq \alpha$. Montrons par définition que $\lim f = \alpha$.

Soit $\epsilon > 0$, $\alpha + \epsilon$ n'est pas un minorant de F par définition de α . On choisit :

$$\alpha \le f(x_0) < \alpha + \epsilon$$

Par croissance de f sur a, b:

$$\forall x \in]a, x_0[, \alpha \le f(x) \le f(x_0) < \alpha + \epsilon$$

On pose $\eta = x_0 - a > 0$, on a montré que :

$$\forall x \in]a - \eta[\cap]a, b[, |f(x) - \alpha| < \epsilon]$$

2. Pour $c \in]a,b[$, en appliquant (15.39.1) à $f|_{[a,b[},$ on montre que $\lim_{c^+} f$ existe et $f(x) \leq \lim_{x^+} f$.

On adapte ensuite la preuve de $\left(15.39.1\right)$:

$$F = f(|a, c|), \alpha = \sup(F)$$

pour montrer que $\lim_{x \to a} f$ existe et

- 3. Par disjonction de cas.
 - Si f est majorée : on adapte la 2ème partie de (15.39.2).
 - Si f n'est pas majorée. Soit $A \in \mathbb{R}$. Comme f n'est pas majorée, on choisit $x_0 \in]a, b[$ tel que $f(x_0) > A$. Comme f est croissante :

$$\forall x > x_0, f(x) > A$$

Donc $\lim_{h} f = +\infty$.

15.59 Théorème des valeurs intermédiaires : version 1

Théorème 15.59

Soit f une fonction continue sur un intervalle I d'extrémité a et b dans $\overline{\mathbb{R}}$ (avec existence des limites dans le cas des bornes infinies). Alors si f(a) > 0 et f(b) < 0 (ou l'inverse), il exsite $c \in]a,b[$, tel que f(c) = 0.

On note $A = \{x \in I, f(x) > 0\}.$

- $A \neq \emptyset$ car f est définie et strictement positive au voisinage de a (15.32).
- A est majoré car f est strictement négative au voisinage de b (et tout élément dans ce voisinage est un majorant).

D'après la propriété fondamentale de \mathbb{R} , A possède une borne supérieure notée $c \in]a,b[$.

- On a $c \notin A$. En effet, si f(x) > 0, alors f est strictement postivie sur un voisinage de c, et comme f est définie à droite de c, cela contredirait que c'est un majorant de A. Donc $f(c) \leq 0$.
- Si f(c) < 0, alors f est strictement négative au voisinage à gauche de c. Absurde car c est le plus petit des majorants.

Conclusion, f(c) = 0.

15.60 Théorème des valeurs intermédiaires : version 2

Théorème 15.60

Soit f une fonction continue sur un intervalle I et soit $M = \sup_I f(x)$ et $m = \inf_I f(x)$ (éventuellement infinies).

Alors f prend toutes les valeurs de l'intervalle]m;M[:

$$\forall x_0 \in]m; M[, \exists c \in I, f(c) = x_0.$$

RAF: (15.59) à $f - x_0$.

15.61 Théorème des valeurs intermédiaires : version 3

Théorème 15.61

L'image d'un intervalle quelconque par une fonction continue est un intervalle.

Définition d'un intervalle par connexité.