

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE160503504

FCC REPORT

(UNII)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6 inches Android touch LCD Media Player

Model No.: DT156-AC4-1080, 502-1596ATATM

FCC ID: 2AB6ZDT156-AC4-1080

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 12 Jun.,2016

Date of Test: 12 Jun., to 14 Jun., 2016

Date of report issued: 16 Jun., 2016

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 Jun., 2016	Android player Main board with wireless module (FCC ID: 2AB6Z-1859ATMBA-V2) and same antenna were used by the device, only conducted emission and Radiated emission were re-tested.
		radiated emilesion were re-tested.

Tested by: 16 Jun., 2016

Tool Engineer

Reviewed by: Date: 16 Jun., 2016

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	14
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.7	Spurious Emission	
	6.7.1	. 10011.0104 = 0.114	
	6.7.2		
	6.8	FREQUENCY STABILITY	44
7	TES	T SETUP PHOTO	45
8	EUT	CONSTRUCTIONAL DETAILS	46

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407 (a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a) (1) (iv) &(a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMBA-V2.

Test according to ANSI C63.4:2014 and ANSI C63.10:2013

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address of Manufacturer/Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	15.6 inches Android touch LCD Media Player
Model No.:	DT156-AC4-1080, 502-1596ATATM
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2,802.11ac:1 Band 4: 802.11a/802.11n20: 5,802.11n40: 2,802.11ac:1
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps,MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.0 dBi
AC Adapter:	Model: PS24A120K2000UD Input: AC100-240V 50/60Hz 1.0A Output: DC 12.0V, 2000mA
Remark:	Model No.: DT156-AC4-1080, 502-1596ATATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.

Operation Frequency each of channel

Band 1							
802.11a	802.11a/802.11n20		802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
	Band 4						
802.11a	/802.11n20	802.1	1n40 802.11ac		.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1							
802.11a/802.11n20		802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz		
Middle channel	5200MHz	Highest channel	Highest channel 5230MHz				
Highest channel	5240MHz						
	Band 4						
802.11a/80	02.11n20	802.11	802.11n40 802.11ac		1ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz		
Middle channel	5785MHz	Highest channel	5795MHz				
Highest channel	5825MHz						

Report No: CCISE160503504

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	Data rate			
802.11a	6 Mbps			
802.11n20	6.5 Mbps			
802.11n40	13 Mbps			
802.11ac	23.9 Mbps			

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13 Mbps for 802.11n40 and 29.3Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE160503504

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017		
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal. Date	Cal. Due date		
	rest Equipment mandacturer	Manarastarsi	model ite.	No.	(mm-dd-yy)	(mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017		
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is a Reverse-SMA which cannot replace by end-user, the best case gain of the antenna is 2.0 dBi

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207								
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	150kHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz								
Limit:	Frequency range Limit (dBuV)								
	(MHz) Quasi-peak								
	0.15-0.5 66 to 56* 0.15-0.5								
	0.5-5 56 0.5-5								
	5-30 60 5-30								
	* Decreases with the logarithm of the frequency.								
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 								
Test setup:	Reference Plane								
	AUX Equipment Test table/Insulation plane Remark: E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m								
Test Uncertainty:	±3.28 dB								
Test Instruments:	Refer to section 5.7 for details								
Test mode:	Refer to section 5.3 for details.								
Test results:	Passed								

Measurement Data:

Line:

Trace: 19

Site

Condition

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : 15.6" Android touch LCD Media Player : DT156-AC4-1080 EUT

Model Test Mode : 5G-WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

Freq	Read Level	LISN Factor			Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
0.170	48.08	0.26	10.77	59.11	64.94	-5.83	QP
0.180	35.33	0.26	10.77	46.36	54.50	-8.14	Average
0.226	41.27	0.26	10.75	52.28	62.61	-10.33	QP
0.226	28.46	0.26	10.75	39.47	52.61	-13.14	Average
0.356	24.54	0.26	10.73	35.53	48.83	-13.30	Average
0.360	31.95	0.26	10.73	42.94	58.74	-15.80	QP
0.419	23.36	0.26	10.73	34.35	47.46	-13.11	Average
0.449	31.62	0.27	10.74	42.63	56.89	-14.26	QP
0.449	25.71	0.27	10.74	36.72	46.89	-10.17	Average
0.471	24.70	0.27	10.75	35.72	46.49	-10.77	Average
0.570	30.09	0.27	10.77	41.13	56.00	-14.87	QP
7.100	32.58	0.53	10.80	43.91	60.00	-16.09	QP
	Freq 0.170 0.180 0.226 0.226 0.356 0.360 0.419 0.449 0.449 0.471 0.570	Read Freq Level MHz dBuV 0.170 48.08 0.180 35.33 0.226 41.27 0.226 28.46 0.356 24.54 0.360 31.95 0.419 23.36 0.449 31.62 0.449 25.71 0.471 24.70 0.570 30.09	Read LISN Freq Level Factor MHz dBuV dB 0.170 48.08 0.26 0.180 35.33 0.26 0.226 41.27 0.26 0.226 28.46 0.26 0.356 24.54 0.26 0.360 31.95 0.26 0.419 23.36 0.26 0.419 23.36 0.26 0.449 31.62 0.27 0.449 25.71 0.27 0.471 24.70 0.27 0.570 30.09 0.27	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.170 48.08 0.26 10.77 59.11 0.180 35.33 0.26 10.77 46.36 0.226 41.27 0.26 10.75 52.28 0.226 28.46 0.26 10.75 39.47 0.356 24.54 0.26 10.73 35.53 0.360 31.95 0.26 10.73 34.35 0.360 31.95 0.26 10.73 34.35 0.449 23.36 0.26 10.73 34.35 0.449 31.62 0.27 10.74 42.63 0.449 25.71 0.27 10.74 36.72 0.471 24.70 0.27 10.75 35.72 0.570 30.09 0.27 10.77 41.13	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.170 48.08 0.26 10.77 59.11 64.94 0.180 35.33 0.26 10.77 46.36 54.50 0.226 41.27 0.26 10.75 52.28 62.61 0.236 28.46 0.26 10.75 39.47 52.61 0.356 24.54 0.26 10.73 35.53 48.83 0.360 31.95 0.26 10.73 42.94 58.74 0.419 23.36 0.26 10.73 34.35 47.46 0.449 31.62 0.27 10.74 42.63 56.89 0.449 25.71 0.27 10.74 36.72 46.89 0.471 24.70 0.27 10.75 35.72 46.49 0.570 30.09 0.27 <td>Read LISN Cable Limit Over Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.170 48.08 0.26 10.77 59.11 64.94 -5.83 0.180 35.33 0.26 10.77 46.36 54.50 -8.14 0.226 41.27 0.26 10.75 52.28 62.61 -10.33 0.266 28.46 0.26 10.75 39.47 52.61 -13.14 0.356 24.54 0.26 10.73 35.53 48.83 -13.30 0.360 31.95 0.26 10.73 34.94 58.74 -15.80 0.419 23.36 0.26 10.73 34.35 47.46 -13.11 0.449 31.62 0.27 10.74 42.63 56.89 -14.26 0.499 25.71 0.27 10.75 35.72</td>	Read LISN Cable Limit Over Freq Level Factor Loss Level Lime Limit MHz dBuV dB dB dBuV dBuV dB 0.170 48.08 0.26 10.77 59.11 64.94 -5.83 0.180 35.33 0.26 10.77 46.36 54.50 -8.14 0.226 41.27 0.26 10.75 52.28 62.61 -10.33 0.266 28.46 0.26 10.75 39.47 52.61 -13.14 0.356 24.54 0.26 10.73 35.53 48.83 -13.30 0.360 31.95 0.26 10.73 34.94 58.74 -15.80 0.419 23.36 0.26 10.73 34.35 47.46 -13.11 0.449 31.62 0.27 10.74 42.63 56.89 -14.26 0.499 25.71 0.27 10.75 35.72

Neutral:

Trace: 17

Site : CCIS Shielding Room

Condition : FCC PART15 B QP LISN NEUTRAL

EUT : 15.6" Android touch LCD Media Player Model : DT156-AC4-1080

Model : DT156-AC4-108 Test Mode : 5G-WIFI mode Power Rating : AC 120V/60Hz

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu∀	<u>dB</u>	
0.175	48.56	0.17	10.77	59.50	64.72	-5.22	QP
0.180	37.38	0.17	10.77	48.32	54.50	-6.18	Average
0.220	42.41	0.16	10.76	53.33	62.83	-9.50	QP
0.220	32.14	0.16	10.76	43.06	52.83	-9.77	Average
0.235	43.96	0.16	10.75	54.87	62.26	-7.39	QP
0.240	34.13	0.16	10.75	45.04	52.08	-7.04	Average
0.280	26.15	0.16	10.74	37.05	50.81	-13.76	Average
0.289	39.48	0.16	10.74	50.38	60.54	-10.16	QP
0.360	38.45	0.16	10.73	49.34	58.74	-9.40	QP
0.360	28.90	0.16	10.73	39.79	48.74	-8.95	Average
0.454	38.41	0.16	10.74	49.31	56.80	-7.49	QP
0.454	29.15	0.16	10.74	40.05	46.80		Average
	Freq MHz 0.175 0.180 0.220 0.225 0.240 0.280 0.289 0.360 0.360 0.454	Read Level MHz dBuV 0.175 48.56 0.180 37.38 0.220 42.41 0.220 32.14 0.235 43.96 0.240 34.13 0.280 26.15 0.289 39.48 0.360 38.45 0.360 28.90 0.454 38.41	Read LISN Freq Level Factor MHz dBuV dB 0.175 48.56 0.17 0.180 37.38 0.17 0.220 42.41 0.16 0.220 32.14 0.16 0.235 43.96 0.16 0.240 34.13 0.16 0.240 34.13 0.16 0.280 26.15 0.16 0.289 39.48 0.16 0.289 39.48 0.16 0.360 38.45 0.16 0.360 28.90 0.16 0.454 38.41 0.16	Read LISN Cable Level Factor Loss MHz dBuV dB dB	Read LISN Cable Freq Level Factor Loss Level MHz dBuV dB dB dB dBuV 0.175 48.56 0.17 10.77 59.50 0.180 37.38 0.17 10.77 48.32 0.220 42.41 0.16 10.76 53.33 0.220 32.14 0.16 10.76 43.06 0.235 43.96 0.16 10.75 54.87 0.240 34.13 0.16 10.75 45.04 0.280 26.15 0.16 10.74 37.05 0.289 39.48 0.16 10.74 50.38 0.360 38.45 0.16 10.73 49.34 0.360 28.90 0.16 10.73 39.79 0.454 38.41 0.16 10.74 49.31	Read LISN Cable Limit Freq Level Factor Loss Level Line MHz dBuV dB dB dBuV dBuV 0.175 48.56 0.17 10.77 59.50 64.72 0.180 37.38 0.17 10.77 48.32 54.50 0.220 42.41 0.16 10.76 53.33 62.83 0.220 32.14 0.16 10.76 43.06 52.83 0.235 43.96 0.16 10.75 54.87 62.26 0.240 34.13 0.16 10.75 45.04 52.08 0.280 26.15 0.16 10.74 37.05 50.81 0.289 39.48 0.16 10.74 50.38 60.54 0.360 38.45 0.16 10.73 49.34 58.74 0.350 28.90 0.16 10.73 39.79 48.74 0.454 38.41 0.16 <td>Read LISN Cable Limit Over Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dBuV dB 0.175 48.56 0.17 10.77 59.50 64.72 -5.22 0.180 37.38 0.17 10.77 48.32 54.50 -6.18 0.220 42.41 0.16 10.76 53.33 62.83 -9.50 0.220 32.14 0.16 10.76 43.06 52.83 -9.57 0.235 43.96 0.16 10.75 54.87 62.26 -7.39 0.240 34.13 0.16 10.75 45.04 52.08 -7.04 0.280 26.15 0.16 10.74 37.05 50.81 -13.76 0.289 39.48 0.16 10.74 50.38 60.54 -10.16 0.360 38.45 0.16 10.73 49.34 58.74 -9.40 0.360 28.90 0.16 10.73 39.79 48.74 -8.95 0.454 38.41 0.16 10.74 49.31 56.80 -7.49</td>	Read LISN Cable Limit Over Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dBuV dB 0.175 48.56 0.17 10.77 59.50 64.72 -5.22 0.180 37.38 0.17 10.77 48.32 54.50 -6.18 0.220 42.41 0.16 10.76 53.33 62.83 -9.50 0.220 32.14 0.16 10.76 43.06 52.83 -9.57 0.235 43.96 0.16 10.75 54.87 62.26 -7.39 0.240 34.13 0.16 10.75 45.04 52.08 -7.04 0.280 26.15 0.16 10.74 37.05 50.81 -13.76 0.289 39.48 0.16 10.74 50.38 60.54 -10.16 0.360 38.45 0.16 10.73 49.34 58.74 -9.40 0.360 28.90 0.16 10.73 39.79 48.74 -8.95 0.454 38.41 0.16 10.74 49.31 56.80 -7.49

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)						
Test Method:	ANSI C63.10: 2013, KDB789033						
Limit:	Band 1: 24dBm Band 4: 30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2						

6.4 Occupy Bandwidth

FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)							
ANSI C63.10:2013 and KDB 789033							
Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)							
Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Refer to section 5.7 for details							
Refer to section 5.3 for details							
Refer to FCC ID: 2AB6Z-1859ATMBA-V2							

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)						
Test Method:	ANSI C63.10:2013, KDB 789033						
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2						

6.6 Band Edge

6.6 Band Edge							
Test Requirement:	FCC Part15 E Section 15.407 (b)						
Test Method:	ANSI C63.10:2013 , KDB 789033						
Receiver setup:	Detector Peak RMS	RBW 1MHz 1MHz	VBW 3MHz 3MHz	MHz Peak Value			
Limit:	Band			BuV/m @3m) 68.20 54.00	Remark Peak Value Average Value		
	Band 4 78.20 Peak \ 54.00 Average						
	2. Band 4 limit	= EIRP[dBm] ::	+ 95.2=68.2		R[dBm]=-27dBm.		
Test Procedure:	the groundal todetermines. The EUT was antenna, who tower. The antennathe ground Both horizon make the make the make and the meters and to find the nate of the EUT have 10dB.	at a 3 meters the position as set 3 meters inchwas more an height is at the determinant and very easurement aspected enthe anterest inches inc	camber. To not the high ters away for the maximate on the maximate of the correct of the c	he table was rollinest radiation. From the interferment to form the top of a variation one meter to form value of the varions of the arrest of from 0 degrees to Peak Detect on Hold Mode. The peak mode was all do be stopped an erwise the emissisted one by one	ble-height antenna bur meters above e field strength. Intenna are set to leged to its worst from 1 meter to 4 less to 360 degrees		
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table 1.5m lm Amplifier						
Test Instruments:	Refer to section	5.7 for deta	ils				
Test mode:	Refer to section	5.3 for deta	ils				
Test results:	Passed						

Band 1:

				802.11a				
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5150.00	42.03	36.23	10.96	40.06	49.16	68.20	-19.04	Horizontal
5150.00	41.41	36.23	10.96	40.06	48.54	68.20	-19.66	Vertical
				802.11a				
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
` ′	(dBuV/m)	(dB)	(dB)	(dB)	` ′	(dBuV/m)	(dB)	
5150.00	32.48	36.23	10.96	40.06	39.61	54.00	-14.39	Horizontal
5150.00	31.47	36.23	10.96	40.06	38.60	54.00	-15.40	Vertical
				802.11a				
Test cl	nannel	Highest			Le	vel	F	Peak
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
` ′	(dBuV/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)	
5350.00	41.76	35.37	11.19	40.18	48.14	68.20	-20.06	Horizontal
5350.00	42.34	35.37	11.19	40.18	48.72	68.20	-19.48	Vertical
				802.11a				
Test cl			Highest		Le	vel	Av	rerage
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
` ′	(dBuV/m)	(dB)	(dB)	(dB)	,	(dBuV/m)	(dB)	
5350.00	31.52	35.37	11.19	40.18	37.90	54.00	-16.10	Horizontal
5350.00	32.34	35.37	11.19	40.18	38.72	54.00	-15.28	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT20									
Test cl	nannel		Lowest		Le	vel	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.83	36.23	10.96	40.06	48.96	68.20	-19.24	Horizontal		
5150.00	41.12	36.23	10.96	40.06	48.25	68.20	-19.95	Vertical		
			8	02.11n-HT20)					
Test cl	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.59	36.23	10.96	40.06	39.72	54.00	-14.28	Horizontal		
5150.00	31.77	36.23	10.96	40.06	38.90	54.00	-15.10	Vertical		
			8	02.11n-HT20)					
Test cl	nannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.41	35.37	11.19	40.18	48.79	68.20	-19.41	Horizontal		
5350.00	41.69	35.37	11.19	40.18	48.07	68.20	-20.13	Vertical		
			8	02.11n-HT20)					
Test cl	nannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.53	35.37	11.19	40.18	38.91	54.00	-15.09	Horizontal		
5350.00	31.18	35.37	11.19	40.18	37.56	54.00	-16.44	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40									
Test ch	nannel		Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	42.23	36.23	10.96	40.06	49.36	68.20	-18.84	Horizontal	
5150.00	43.12	36.23	10.96	40.06	50.25	68.20	-17.95	Vertical	
			8	02.11n-HT40)				
Test ch	nannel		Lowest		Le	vel	Av	rerage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	32.75	36.23	10.96	40.06	39.88	54.00	-14.12	Horizontal	
5150.00	33.69	36.23	10.96	40.06	40.82	54.00	-13.18	Vertical	
			8	02.11n-HT40)				
Test ch	nannel	Highest			Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.75	35.37	11.19	40.18	49.13	68.20	-19.07	Horizontal	
5350.00	42.62	35.37	11.19	40.18	49.00	68.20	-19.20	Vertical	
			8	02.11n-HT40)				
Test ch	nannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.65	35.37	11.19	40.18	39.03	54.00	-14.97	Horizontal	
5350.00	32.14	35.37	11.19	40.18	38.52	54.00	-15.48	Vertical	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac-HT80									
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	41.25	36.23	10.96	40.06	48.38	68.20	-19.82	Horizontal		
5150.00	42.28	36.23	10.96	40.06	49.41	68.20	-18.79	Vertical		
			8	02.11ac-HT8	0					
Test cl	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.15	36.23	10.96	40.06	39.28	54.00	-14.72	Horizontal		
5150.00	32.02	36.23	10.96	40.06	39.15	54.00	-14.85	Vertical		
			8	02.11ac-HT8	0					
Test cl	nannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.77	35.37	11.19	40.18	49.15	68.20	-19.05	Horizontal		
5350.00	41.16	35.37	11.19	40.18	47.54	68.20	-20.66	Vertical		
			80	02.11ac-HT8	0					
Test cl	nannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	31.38	35.37	11.19	40.18	37.76	54.00	-16.24	Horizontal		
5350.00	32.64	35.37	11.19	40.18	39.02	54.00	-14.98	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.62	34.65	11.62	40.54	47.35	78.20	-30.85	Horizontal		
5725.00	42.39	34.65	11.62	40.54	48.12	78.20	-30.08	Vertical		
				802.11a						
Test cl	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.48	34.65	11.62	40.54	37.21	54.00	-16.79	Horizontal		
5725.00	32.25	34.65	11.62	40.54	37.98	54.00	-16.02	Vertical		
				802.11a						
Test cl	hannel			Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.63	34.63	11.75	40.69	47.32	78.20	-30.88	Horizontal		
5850.00	40.78	34.63	11.75	40.69	46.47	78.20	-31.73	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.47	34.63	11.75	40.69	37.16	54.00	-16.84	Horizontal		
5850.00	30.86	34.63	11.75	40.69	36.55	54.00	-17.45	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	302.11n-HT20)			
Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	42.21	34.65	11.62	40.54	47.94	78.20	-30.26	Horizontal
5725.00	41.75	34.65	11.62	40.54	47.48	78.20	-30.72	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	32.69	34.65	11.62	40.54	38.42	54.00	-15.58	Horizontal
5725.00	31.86	34.65	11.62	40.54	37.59	54.00	-16.41	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	42.25	34.63	11.75	40.69	47.94	78.20	-30.26	Horizontal
5850.00	41.37	34.63	11.75	40.69	47.06	78.20	-31.14	Vertical
			8	02.11n-HT20)			
Test cl	nannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	32.37	34.63	11.75	40.69	38.06	54.00	-15.94	Horizontal
5850.00	31.56	34.63	11.75	40.69	37.25	54.00	-16.75	Vertical

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n-HT40									
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.69	34.65	11.62	40.54	47.42	78.20	-30.78	Horizontal		
5725.00	42.53	34.65	11.62	40.54	48.26	78.20	-29.94	Vertical		
802.11n-HT40										
Test cl	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	32.77	34.65	11.62	40.54	38.50	54.00	-15.50	Horizontal		
5725.00	32.04	34.65	11.62	40.54	37.77	54.00	-16.23	Vertical		
			8	02.11n-HT40)					
Test cl	nannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.69	34.63	11.75	40.69	47.38	78.20	-30.82	Horizontal		
5850.00	40.55	34.63	11.75	40.69	46.24	78.20	-31.96	Vertical		
			8	02.11n-HT40)					
Test cl	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	32.56	34.63	11.75	40.69	38.25	54.00	-15. 7 5	Horizontal		
5850.00	30.24	34.63	11.75	40.69	35.93	54.00	-18.07	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11ac-HT80									
Test ch	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.62	34.65	11.62	40.54	47.35	78.20	-30.85	Horizontal		
5725.00	42.47	34.65	11.62	40.54	48.20	78.20	-30.00	Vertical		
802.11ac-HT80										
Test ch	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	32.31	34.65	11.62	40.54	38.04	54.00	-15.96	Horizontal		
5725.00	31.69	34.65	11.62	40.54	37.42	54.00	-16.58	Vertical		
			8	02.11ac-HT8	0					
Test ch	nannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.68	34.63	11.75	40.69	47.37	78.20	-30.83	Horizontal		
5850.00	40.52	34.63	11.75	40.69	46.21	78.20	-31.99	Vertical		
			8	02.11ac-HT8	0					
Test ch	nannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.32	34.63	11.75	40.69	37.01	54.00	-16.99	Horizontal		
5850.00	30.24	34.63	11.75	40.69	35.93	54.00	-18.07	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band					
	Test Requirement:	FCC Part15 E	Section 15.40	07(b)		
	Test Method:	ANSI C63.10: 2	2013			
	TestFrequencyRange:	Band 1: 4.5 GH Band 4: 5.35 G			Iz to 5.46GH	Hz
	Test site:	Measurement [Distance: 3m			
	Receiver setup:	Frequency	Detector	RBW	VBW	Remark
	·	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value
	Limit:	Freque	ency	Limit (dBuV	/m @3m)	Remark
		Above 1	GHz	74.0		Peak Value
	Test Procedure:			54.0		Average Value e 0.8 meters above
	Test setup:	todetermin The EUT vantenna, vantenna, vantenna, vantenna, vantenna, vantenna, vantenna The anten the ground Both horiz make the vante sand to find the case and to find the specified East of the EUT have 10dE peak or avantent sand to find the EUT have 10dE peak or ava	ne the position was set 3 mer whichwas more whichwas more managements and very measurements and the rotatable maximum respected en and with the rotatable maximum respectiver systems and width with sion level of the cified, then are wouldbe repositions and wouldbe repositions are margin would and the reage method.	n of the higher ters away from unted on the training on the training of the maximum tical polarization. The Eleman was turned feading. The maximum Hamilton of the EUT in petesting could be ported. Otherword as specified the externing of the externing of the externing could be ported. Otherword of the externing	st radiation. In the interfer op of a variate meter to form value of the ons of the and to heights from 0 degree and the enter to height one by one and then repart one by one and then repart of the enter one by one and then repart of the enter one by one and then repart of the enter one by one and then repart of the enter one by one and then repart of the enter one by one and then repart of the enter one by one and then repart of the enter one of the enter	rence-receiving able-height antenna our meters above he field strength. Intenna are set to hanged to its worst from 1 meter to 4 hees to 360 degrees. Function and has 10dB lower than and the peak values assions that did not he using peak, quasi-ported in a data
			!!			
	Test Instruments:	Refer to section	n 5.7 for deta	ils		
	Test mode:	Refer to section				
	Test results:	Passed				
		•				

Report No: CCISE160503504

Band 1:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.28	34.50	10.22	40.67	47.33	74.00	-26.67	Horizontal
4500.00	42.16	34.50	10.22	40.67	46.21	74.00	-27.79	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.77	34.50	10.22	40.67	36.82	54.00	-17.18	Horizontal
4500.00	31.24	34.50	10.22	40.67	35.29	54.00	-18.71	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.69	34.90	11.32	40.23	47.68	74.00	-26.32	Horizontal
5460.00	42.01	34.90	11.32	40.23	48.00	74.00	-26.00	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.35	34.90	11.32	40.23	37.34	54.00	-16.66	Horizontal
5460.00	32.82	34.90	11.32	40.23	38.81	54.00	-15.19	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.63	34.50	10.22	40.67	45.68	74.00	-28.32	Horizontal
4500.00	42.21	34.50	10.22	40.67	46.26	74.00	-27.74	Vertical
Test cl	hannel		Lowest		Level		Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	31.02	34.50	10.22	40.67	35.07	54.00	-18.93	Horizontal
4500.00	32.43	34.50	10.22	40.67	36.48	54.00	-17.52	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.14	34.90	11.32	40.23	48.13	74.00	-25.87	Horizontal
5460.00	42.03	34.90	11.32	40.23	48.02	74.00	-25.98	Vertical
Test cl	hannel		Highest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.25	34.90	11.32	40.23	37.24	54.00	-16.76	Horizontal
5460.00	32.61	34.90	11.32	40.23	38.60	54.00	-15.40	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.23	34.50	10.22	40.67	46.28	74.00	-27.72	Horizontal
4500.00	41.62	34.50	10.22	40.67	45.67	74.00	-28.33	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.91	34.50	10.22	40.67	36.96	54.00	-17.04	Horizontal
4500.00	31.55	34.50	10.22	40.67	35.60	54.00	-18.40	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.71	34.90	11.32	40.23	47.70	74.00	-26.30	Horizontal
5460.00	42.25	34.90	11.32	40.23	48.24	74.00	-25.76	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.18	34.90	11.32	40.23	37.17	54.00	-16.83	Horizontal
5460.00	32.23	34.90	11.32	40.23	38.22	54.00	-15.78	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.75	34.50	10.22	40.67	45.80	74.00	-28.20	Horizontal
4500.00	41.23	34.50	10.22	40.67	45.28	74.00	-28.72	Vertical
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.02	34.50	10.22	40.67	36.07	54.00	-17.93	Horizontal
4500.00	31.89	34.50	10.22	40.67	35.94	54.00	-18.06	Vertical
Test cl	hannel		Highest		Level		F	Peak
Frequency	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	. Glanzation
5460.00			(dB) 11.32		(dBuV/m) 47.75			Horizontal
` ′	(dBuV/m)	(dB)		(dB)	` ′	(dBuV/m)	(dB)	
5460.00	(dBuV/m) 41.76 42.03	(dB) 34.90	11.32	(dB) 40.23	47.75	(dBuV/m) 74.00 74.00	(dB) -26.25 -25.98	Horizontal
5460.00 5460.00	(dBuV/m) 41.76 42.03	(dB) 34.90	11.32 11.32	(dB) 40.23	47.75 48.02	(dBuV/m) 74.00 74.00	(dB) -26.25 -25.98	Horizontal Vertical
5460.00 5460.00 Test cl	(dBuV/m) 41.76 42.03 hannel Read Level	(dB) 34.90 34.90 Antenna Factor	11.32 11.32 Highest Cable Loss	(dB) 40.23 40.23 Preamp Factor	47.75 48.02 Level	(dBuV/m) 74.00 74.00 vel Limit Line	(dB) -26.25 -25.98 Av Over Limit	Horizontal Vertical rerage

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test ch	nannel		Lowest		ا ا	vel	F	Peak
1631 01		Antonno		Drooms	Le			can
Frequency	Read	Antenna	Cable	Preamp	Level	Limit	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	Line	Limit	Polarization
(2)	(dBuV/m)	(dB)	(dB)	(dB)	(42417111)	(dBuV/m)	(dB)	
5350.00	42.45	35.37	11.19	40.18	48.83	74.00	-25.17	Horizontal
5350.00	41.71	35.37	11.19	40.18	48.09	74.00	-25.91	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
	Read	Antenna	Cable	Preamp	Lovel	Limit	Over	
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5350.00	32.65	35.37	11.19	40.18	39.03	54.00	-14.97	Horizontal
5350.00	31.26	35.37	11.19	40.18	37.64	54.00	-16.36	Vertical
Test ch	nannel		Lowest		Le	vel	F	Peak
Гиодиолом	Read	Antenna	Cable	Preamp	Lovel	Limit	Over	
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5460.00	42.25	34.90	11.32	40.23	48.24	74.00	-25.76	Horizontal
5460.00	41.69	34.90	11.32	40.23	47.68	74.00	-26.32	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Гиодиором	Read	Antenna	Cable	Preamp	Lovel	Limit	Over	
Frequency	Level	Factor	Loss	Factor	Level	Line	Limit	Polarization
(MHz)	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5460.00	33.03	34.90	11.32	40.23	39.02	54.00	-14.98	Horizontal
5460.00	32.15	34.90	11.32	40.23	38.14	54.00	-15.86	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.26	35.37	11.19	40.18	48.64	74.00	-25.36	Horizontal
5350.00	41.03	35.37	11.19	40.18	47.41	74.00	-26.59	Vertical
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.14	35.37	11.19	40.18	38.52	54.00	-15.48	Horizontal
5350.00	31.35	35.37	11.19	40.18	37.73	54.00	-16.27	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.47	34.90	11.32	40.23	48.46	74.00	-25.54	Horizontal
5460.00	43.16	34.90	11.32	40.23	49.15	74.00	-24.85	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.51	34.90	11.32	40.23	38.50	54.00	-15.50	Horizontal
5460.00	32.24	34.90	11.32	40.23	38.23	54.00	-15.77	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.25	35.37	11.19	40.18	48.63	74.00	-25.37	Horizontal
5350.00	42.91	35.37	11.19	40.18	49.29	74.00	-24.71	Vertical
Test cl	hannel		Lowest		Level		Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.63	35.37	11.19	40.18	39.01	54.00	-14.99	Horizontal
5350.00	32.71	35.37	11.19	40.18	39.09	54.00	-14.91	Vertical
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.16	34.90	11.32	40.23	48.15	74.00	-25.85	Horizontal
5460.00	42.05	34.90	11.32	40.23	48.04	74.00	-25.96	Vertical
Test cl	hannel		Lowest		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.38	34.90	11.32	40.23	38.37	54.00	-15.63	Horizontal
			11.32	40.23	37.74			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor .
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	41.78	35.37	11.19	40.18	48.16	74.00	-25.84	Horizontal
5350.00	41.56	35.37	11.19	40.18	47.94	74.00	-26.06	Vertical
Test cl	nannel		Lowest		Le	vel	Av	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.03	35.37	11.19	40.18	38.41	54.00	-15.59	Horizontal
5350.00	31.25	35.37	11.19	40.18	37.63	54.00	-16.37	Vertical
Test cl	nannel		Lowest		Level		F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.86	34.90	11.32	40.23	47.85	74.00	-26.15	Horizontal
5460.00	41.33	34.90	11.32	40.23	47.32	74.00	-26.68	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.56	34.90	11.32	40.23	37.55	54.00	-16.45	Horizontal
5460.00	31.47	34.90	11.32	40.23	37.46	54.00	-16.54	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

FCC Part15 C Section 15.209 and 15.205								
ANSI C63.10:20)13							
30MHz to 40GH	lz							
Measurement D	istance: 3m							
Frequency	Detector	VBW	Remark					
30MHz-1GHz		120kHz	300kHz	Quasi-peak Value				
Above 1GHz	Peak	1MHz	3MHz	Peak Value				
Freque	ncy	Limit (dBuV/	m @3m)	Remark				
				Quasi-peak Value				
88MHz-21	6MHz	43.5)	Quasi-peak Value				
216MHz-9	60MHz	46.0)	Quasi-peak Value				
960MHz-	1GHz	54.0)	Quasi-peak Value				
Freque	ncy		•	Remark				
Above 1	GHz			Peak Value				
		54.0	0	Average Value				
		-CO O dD::\//==	far EIDDIAD)1- 07-ID				
				14.04 000 409.000				
				rence-receiving				
antenna, w	hichwas mount	ed on the to	p of a varia	ble-height antenna				
tower.								
	•	anzauons oi	the antenn	ia are set to make the				
		sion the FU	T was arrar	nged to its worst case				
5. The test-receiver system was set to Peak Detect Function and								
				a 10dD laws: # #-				
	ANSI C63.10:20 30MHz to 40GH Measurement D Frequency 30MHz-1GHz Above 1GHz Freque 30MHz-8: 88MHz-21 216MHz-9: 960MHz- Freque Above 1 Remark: 1. Above 1GH E[dBµV/m] = EIF 1. The EUT w the groundatodetermine 2. The EUT w antenna, w tower. 3. The antenn ground to d horizontal a measureme 4. For each si and thenthe and the rota maximum r 5. The test-re- SpecifiedBa 6. If the emiss limitspecifie EUT would 10dB marg	ANSI C63.10:2013 30MHz to 40GHz Measurement Distance: 3m Frequency Detector 30MHz-1GHz Quasi-peak Above 1GHz Peak Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Frequency Above 1GHz Frequency Above 1GHz Remark: 1. Above 1GHz limit: E[dBµV/m] = EIRP[dBm] + 95.2= 1. The EUT was placed on the groundat a 3 meter can to determine the position of the groundat a 3 meter can to determine the position of the groundat and vertical policy and to determine the manatoma, which was mound tower. 3. The antenna height is variage ground to determine the manatoma height is variage and then the antenna was and the rotatable was turned maximum reading. 5. The test-receiver system of the system	ANSI C63.10:2013 30MHz to 40GHz Measurement Distance: 3m Frequency Detector RBW 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz Frequency Limit (dBuV/ 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Frequency Limit (dBm/ Above 1GHz limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m 1. The EUT was placed on the top of a rot the groundat a 3 meter camber. The tat todetermine the position of the highest 2. The EUT was set 3 meters away from antenna, whichwas mounted on the totower. 3. The antenna height is varied from one ground to determine the maximum val horizontal and vertical polarizations of measurement. 4. For each suspected emission, the EUT and thenthe antenna was tuned to height and the rotatablewas turned from 0 de maximum reading. 5. The test-receiver system was set to Po SpecifiedBandwidth with Maximum Hot In the emission level of the EUT in peal limitspecified, then testing could be sto EUT wouldbe reported. Otherwise the 10dB margin would bere-tested one by	ANSI C63.10:2013 30MHz to 40GHz Measurement Distance: 3m Frequency Detector RBW VBW 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz Frequency Limit (dBuV/m @3m) 30MHz-88MHz 40.0 88MHz-216MHz 43.5 216MHz-960MHz 46.0 960MHz-1GHz 54.0 Frequency Limit (dBm/MHz) 68.20 54.00 Remark: 1. Above 1GHz limit: E[dBµV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m,for EIPR[dE] 1. The EUT was placed on the top of a rotating table the groundat a 3 meter camber. The table was rotodetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interferantenna, whichwas mounted on the top of a variatiower. 3. The antenna height is varied from one meter to forground to determine the maximum value of the fire horizontal and vertical polarizations of the antenna measurement. 4. For each suspected emission, the EUT was arrar and thenthe antenna was tuned to heights from 1 and the rotatablewas turned from 0 degrees to 36 maximum reading. 5. The test-receiver system was set to Peak Detect SpecifiedBandwidth with Maximum Hold Mode.				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : 15.6" Android touch LCD Media Player : DT156-AC4-1080 : 5G-WIFI mode Condition

EUT

Model Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki

REMARK

rimarar.									
	Freq		Antenna Factor						
_	MHz	dBu₹	dB/m	<u>dB</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	44.275	42.49	17.52	1.28	29.87	31.42	40.00	-8.58	QP
1 2 3 4 5	94.098	51.02	8.53	2.01	29.55	32.01	43.50	-11.49	QP
3	191.745	53.72	9.79	2.81	28.89	37.43	43.50	-6.07	QP
4	350.477	50.43	14.16	3.10	28.56	39.13	46.00	-6.87	QP
5	429.523	47.70	16.08	3.15	28.83	38.10	46.00	-7.90	QP
6	807.429	42.57	20.66	4.33	28.17	39.39	46.00	-6.61	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL : 15.6" Android touch LCD Media Player Condition

EUT

: DT156-AC4-1080 Model Test mode : 5G-WIFI mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

101KPa

Test Engineer: Viki REMARK :

MADA										
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
_	MHz	dBu∇		dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		-
1	39.994	47.40	16.90	1.21	29.90	35.61	40.00	-4.39	QP	
1 2 3	191.745	51.96	9.79	2.81	28.89	35.67	43.50	-7.83	QP	
3	280.024	48.13	12.20	2.89	28.48	34.74	46.00	-11.26	QP	
4	352.943	49.79	14.22	3.10	28.57	38.54	46.00	-7.46	QP	
5	494.199	46.09	16.72	3.57	28.94	37.44	46.00	-8.56	QP	
6	807.429	43.52	20.66	4.33	28.17	40.34	46.00	-5.66	QP	

Above 1GHz:

Band 1:

		802.1	1a mode Lov	west chann	el (Peak Val	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	41.58	40.10	15.37	41.34	55.71	68.20	-12.49	Vertical
10360.00	42.07	40.10	15.37	41.34	56.20	68.20	-12.00	Horizontal
		802.11	a mode Low	est channe	l (AverageV	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	31.47	40.10	15.37	41.34	45.60	54.00	-8.40	Vertical
10360.00	32.58	40.10	15.37	41.34	46.71	54.00	-7.29	Horizontal

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.76	40.00	15.42	41.27	55.91	68.20	-12.29	Vertical			
10400.00	41.57	40.00	15.42	41.27	55.72	68.20	-12.48	Horizontal			
		802.11	a mode Mido	dle channe	I (AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	31.94	40.00	15.42	41.27	46.09	54.00	-7.91	Vertical			
10400.00	31.63	40.00	15.42	41.27	45.78	54.00	-8.22	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	40.87	39.70	15.55	41.10	55.02	68.20	-13.18	Vertical			
10480.00	40.71	39.70	15.55	41.10	54.86	68.20	-13.34	Horizontal			
		802.11	a mode High	est channe	el (Average)	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	30.61	39.70	15.55	41.10	44.76	54.00	-9.24	Vertical			
10480.00	30.23	39.70	15.55	41.10	44.38	54.00	-9.62	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

		802.11	n20 mode Lo	owest char	nel (Peak V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	41.45	40.10	15.37	41.34	55.58	68.20	-12.62	Vertical
10360.00	40.76	40.10	15.37	41.34	54.89	68.20	-13.31	Horizontal
		802.11n	20 mode Lov	west chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	32.03	40.10	15.37	41.34	46.16	54.00	-7.84	Vertical
10360.00	30.58	40.10	15.37	41.34	44.71	54.00	-9.29	Horizontal

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	42.69	40.00	15.42	41.27	56.84	68.20	-11.36	Vertical			
10400.00	41.13	40.00	15.42	41.27	55.28	68.20	-12.92	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	32.21	40.00	15.42	41.27	46.36	54.00	-7.64	Vertical			
10400.00	30.58	40.00	15.42	41.27	44.73	54.00	-9.27	Horizontal			

		802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10480.00	41.45	39.70	15.55	41.10	55.60	68.20	-12.60	Vertical				
10480.00	42.15	39.70	15.55	41.10	56.30	68.20	-11.90	Horizontal				
		802.11n2	20 mode Hig	hest chanr	nel (Average	Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10480.00	31.56	39.70	15.55	41.10	45.71	54.00	-8.29	Vertical				
10480.00	32.74	39.70	15.55	41.10	46.89	54.00	-7.11	Horizontal				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10380.00	41.58	40.00	15.42	41.31	55.69	68.20	-12.51	Vertical				
10380.00	40.71	40.00	15.42	41.31	54.82	68.20	-13.38	Horizontal				
		802.11n	40 mode Lov	west chann	el (Average	Value)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10380.00	31.34	40.00	15.42	41.31	45.45	54.00	-8.55	Vertical				
10380.00	31.16	40.00	15.42	41.31	45.27	54.00	-8.73	Horizontal				

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	40.58	39.80	15.51	41.17	54.72	68.20	-13.48	Vertical			
10460.00	41.46	39.80	15.51	41.17	55.60	68.20	-12.60	Horizontal			
		802.11n ²	40 mode Hig	hest chanr	nel (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	30.37	39.80	15.51	41.17	44.51	54.00	-9.49	Vertical			
10460.00	31.82	39.80	15.51	41.17	45.96	54.00	-8.04	Horizontal			

	802.11ac-HT80MHz mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	42.21	39.90	15.46	41.24	56.33	68.20	-11.87	Vertical			
10420.00	41.39	39.90	15.46	41.24	55.51	68.20	-12.69	Horizontal			
	80)2.11ac-HT	80MHz mod	e Middle c	hannel (Ave	rageValue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	32.48	39.90	15.46	41.24	46.60	54.00	-7.40	Vertical			
10420.00	31.07	39.90	15.46	41.24	45.19	54.00	-8.81	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Dana 4.								
	802.11a mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	42.03	41.50	16.83	40.75	59.61	74.00	-14.39	Vertical
11490.00	41.92	41.50	16.83	40.75	59.50	74.00	-14.50	Horizontal
	802.11a mode Lowest channel (AverageValue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.37	41.50	16.83	40.75	48.95	54.00	-5.05	Vertical
11490.00	32.74	41.50	16.83	40.75	50.32	54.00	-3.68	Horizontal

	802.11a mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	41.03	41.38	16.90	40.91	58.40	74.00	-15.60	Vertical
11570.00	40.85	41.38	16.90	40.91	58.22	74.00	-15.78	Horizontal
	802.11a mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	32.03	41.38	16.90	40.91	49.40	54.00	-4.60	Vertical
11570.00	32.14	41.38	16.90	40.91	49.51	54.00	-4.49	Horizontal

	802.11a mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	41.25	41.26	16.97	41.06	58.42	74.00	-15.58	Vertical
11650.00	40.69	41.26	16.97	41.06	57.86	74.00	-16.14	Horizontal
	802.11a mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	32.03	41.26	16.97	41.06	49.20	54.00	-4.80	Vertical
11650.00	31.17	41.26	16.97	41.06	48.34	54.00	-5.66	Horizontal

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	40.85	41.50	16.83	40.75	58.43	74.00	-15.57	Vertical
11490.00	40.16	41.50	16.83	40.75	57.74	74.00	-16.26	Horizontal
		802.11n2	20 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.26	41.50	16.83	40.75	48.84	54.00	-5.16	Vertical
11490.00	30.02	41.50	16.83	40.75	47.60	54.00	-6.40	Horizontal

	802.11n20 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	41.87	41.38	16.90	40.91	59.24	74.00	-14.76	Vertical
11570.00	42.07	41.38	16.90	40.91	59.44	74.00	-14.56	Horizontal
		802.11n	20 mode Mic	ldle chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	31.27	41.38	16.90	40.91	48.64	54.00	-5.36	Vertical
11570.00	32.38	41.38	16.90	40.91	49.75	54.00	-4.25	Horizontal

	802.11n20 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	41.02	41.26	16.97	41.06	58.19	74.00	-15.81	Vertical
11650.00	41.13	41.26	16.97	41.06	58.30	74.00	-15.70	Horizontal
	802.11n20 mode Highest channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	30.67	41.26	16.97	41.06	47.84	54.00	-6.16	Vertical
11650.00	31.82	41.26	16.97	41.06	48.99	54.00	-5.01	Horizontal

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	41.12	41.50	16.83	40.77	58.68	74.00	-15.32	Vertical
11510.00	40.08	41.50	16.83	40.77	57.64	74.00	-16.36	Horizontal
		802.11n	40 mode Lov	vest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	30.28	41.50	16.83	40.77	47.84	54.00	-6.16	Vertical
11510.00	29.86	41.50	16.83	40.77	47.42	54.00	-6.58	Horizontal

	802.11n40 mode Highest channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	41.64	41.32	16.93	40.95	58.94	74.00	-15.06	Vertical
11590.00	40.78	41.32	16.93	40.95	58.08	74.00	-15.92	Horizontal
		802.11n4	10 mode Hig	hest chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	31.54	41.32	16.93	40.95	48.84	54.00	-5.16	Vertical
11590.00	30.26	41.32	16.93	40.95	47.56	54.00	-6.44	Horizontal

	802.11ac-HT80 mode Middle channel (Peak Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	42.21	41.44	16.86	40.88	59.63	74.00	-14.37	Vertical
11550.00	41.65	41.44	16.86	40.88	59.07	74.00	-14.93	Horizontal
	802.11ac-HT80 mode Middle channel (Average Value)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	31.24	41.44	16.86	40.88	48.66	54.00	-5.34	Vertical
11550.00	31.73	41.44	16.86	40.88	49.15	54.00	-4.85	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.					
Test setup:	Temperature Chamber Spectrum analyzer EUT					
	Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test procedure:	The EUT is installed in an environment test chamber with external power source.					
	Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.					
	3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.					
	4. When temperature is stabled, measure the frequency stability.					
	5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMBA-V2					