Lycée Berthollet MPSI² 2023-24

Exercices sur les suites

Exercice 1 Réviser les exercices sur les limites de suites vus au Lycée.

Exercice 2 Déterminer les éventuelles limites des suites de termes généraux :

1.
$$\frac{3n^3 - |n| - 5}{(3 - 2n)^3}$$

$$2. \ \frac{2^{n+1} + 3^{n+1}}{2^n + 3^n}$$

3.
$$\sqrt{n^2 + 3n + 1} - n$$

4.
$$n - \sqrt{n^2 + 2}$$

5.
$$\sqrt{n^2+3n+1}-\sqrt{n^2+2}$$

6.
$$\frac{\sqrt{n^2+1}-1}{n+1}$$

7.
$$\sqrt{n+\sqrt{n}}-\sqrt{n}$$

Exercice 3 Déterminer les termes généraux des suites définies par les relations de récurrence suivantes :

1.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 2^{n+1}u_n$

2.
$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+1} = (u_n)^{n+1}$

Exercice 4 Déterminer les termes généraux et le comportement asymptotique des suites définies par les relations de récurrence suivantes :

1.
$$u_0 \in \mathbb{C}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n - \pi$

2.
$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n e$

3.
$$u_0 \in \mathbb{C}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = -u_n e^{-1}$

4.
$$u_0 \in \mathbb{C}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = -3u_n + 2i$

5.
$$(u_0, u_1) \in \mathbb{C}^2$$
 et $\forall n \in \mathbb{N}, u_{n+2} = \frac{5u_{n+1} - u_n}{6}$

6.
$$u_0 = u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} = -\frac{u_{n+1}}{2} - \frac{u_n}{4}$

7.
$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n \cos(n\pi) + 1$

Exercice 5 Calculer la somme $v_n = \sum_{k=0}^n u_k$ des n+1 premiers termes des suites précédentes et étudier le comportement asymptotique de ces suites (v_n) .

Exercice 6 Déterminer le comportement asymptotique de la suite de terme général

$$u_n = \frac{2n^3 - n^2 + 3n^{\alpha} - 15\sqrt{n} + \cos(n\pi)}{(n^2 + 3)^{\beta} + \sin^2 n}$$

en fonction des deux paramètres réels α et β . Représenter graphiquement les zones de convergence et de divergence dans le plan (en mettant α en abcisse et β en ordonnée) en précisant les éventuelles limites.

Exercice 7 Soit (u_n) une suite définie par son premier terme u_0 et la relation de récurrence $u_{n+1} = -\sqrt{-u_n - \frac{1}{8}}$.

- 1. Pour quelles valeurs de u_0 la suite est-elle bien définie pour tout $n \in \mathbb{N}^*$?
- 2. Déterminer le comportement de (u_n) suivant les valeurs de u_0 .

Exercice 8 Soit la suite de terme général $S_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Montrer que sa suite extraite de rang pair et sa suite extraite de rang impair sont adjacentes et en déduire le comportement asymptotique de (S_n) .

Exercice 9 On définit les suites (a_n) et (b_n) par $0 \le a_0 \le b_0$ et pour tout $n \in \mathbb{N}$:

$$\begin{cases} a_{n+1} = \sqrt{a_n b_n} \\ b_{n+1} = \frac{a_n + b_n}{2} \end{cases}.$$

- 1. Montrer que $(\forall n \in \mathbb{N}, a_n \leq b_n)$.
- 2. Montrer que (a_n) est croissante, (b_n) décroissante.
- 3. Montrer que $(\forall n \in \mathbb{N}, b_{n+1} a_{n+1} \leq \frac{b_n a_n}{2})$.
- 4. Que peut-on en déduire ? Retrouver en particulier le résultat de la première question.

Exercice 10 Soit (x_n) une suite réelle. Pour $n \in \mathbb{N}$, on définit l'ensemble $X_n = \{x_p; p \ge n\}$.

- Si (x_n) est minorée, montrer que la suite de terme général a_n = inf(X_n) est bien définie, croissante et a une limite. On l'appelle *limite inférieure* de (x_n) et on la note <u>lim</u>x_n.
 Lorsque (x_n) est majorée, on montrerait de même que la suite de terme général b_n = sup(X_n) est décroissante et a une limite, qu'on appelle la *limite supérieure* de (x_n), notée <u>lim</u>x_n. On prolonge ces définitions en posant <u>lim</u>x_n = -∞ lorsque la suite n'est pas minorée et <u>lim</u>x_n = +∞ lorsque la suite n'est pas majorée.
- 2. Montrer que $\underline{\lim} x_n \leq \overline{\lim} x_n$.
- 3. (*) Montrer que (x_n) a une limite si et seulement si $\underline{\lim} x_n = \overline{\lim} x_n$, et que dans ce cas, $\lim x_n = \overline{\lim} x_n$.

Exercice 11 On dit qu'une suite réelle (x_n) est une suite de Cauchy si et seulement si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall p \geq N, |x_n - x_p| \leq \varepsilon.$$

- 1. (*) Montrer que toute suite de Cauchy est bornée.
- 2. (*) Montrer que toute suite convergente est de Cauchy.
- 3. Est-ce que toute suite de Cauchy à valeurs rationnelles converge vers un rationnel?

- 4. (**) Montrer que toute suite de Cauchy est convergente (on dit que \mathbb{R} est complet), en utilisant l'exercice précédent et raisonnant par l'absurde.
- 5. La définition de suite de Cauchy ci-dessus fonctionne aussi pour les suites de nombres complexes. Déduire de la question précédente que toute suite de Cauchy complexe converge.

Exercice 12 (**) Soit (u_n) une suite réelle ayant une limite $l \in \overline{\mathbb{R}}$ et φ une bijection de \mathbb{N} dans \mathbb{N} . Montrer que $(u_{\varphi(n)})$ admet aussi l comme limite.

Exercice 13 (****) Quelles sont les limites inférieures et supérieures de la suite $(\cos n)_n$?