ASSIGNMENT-1 QUESTION-2

TEST CASE-1: $f(x)=600*x^4 - 550*x^3 + 200*x^2 - 20*x - 1 = 0$

1. Muller Method INPUT:

Choose the method of solution by selecting number shown with method: Muller-1, Bairstow-2

1

Enter the degree of Polynomial f(x):

4

Enter (degree+1) number of coefficients in increasing order of degree separated by a space:

-1 -20 200 -550 600

Enter the first starting point

0.0

Enter the second starting point

0.1

Enter the third starting point

0.3

Enter the stopping criteria:

Enter the maximum number of iterations allowed

20

Enter the maximum relative approximate error allowed(in %) 0.05

OUTPUT:

Root is NaN+0.000000i

Iterations stopped: Maximum relative error stopping criteria met

2. Bairstow Method

INPUT:

Choose the method of solution by selecting number shown with method: Muller-1, Bairstow-2

2

Enter the polynomial f(x): $600*x^4-550*x^3+200*x^2-20*x-1$

Enter starting value of r: -1 Enter starting value of s: -1

Enter the maximum relative approximate error allowed(in %):

0.05

Enter the maximum number of iterations allowed: 20

OUTPUT:

Roots of the function are: 0.232353, -0.035840

Roots of the function are: 129620.181797 + 95567.867372i,

129620.181797 - 95567.867372i

TEST CASE-2: $f(x)=x^3 + x^2 - 4x - 4 = 0$

1. Muller Method

INPUT:

Choose the method of solution by selecting number shown with method: Muller-1, Bairstow-2

1

Enter the degree of Polynomial f(x):

3

Enter (degree+1) number of coefficients in increasing order of degree separated by a space:

-4 -4 1 1

Enter the first starting point

0.0

Enter the second starting point

0.5

Enter the third starting point

1.0

Enter the stopping criteria:

Enter the maximum number of iterations allowed

20

Enter the maximum relative approximate error allowed(in %) 0.05

OUTPUT:

Root is NaN+0.000000i

Iterations stopped: Maximum relative error stopping criteria met

2. Bairstow Method

INPUT:

Choose the method of solution by selecting number shown with method: Muller-1, Bairstow-2

2

Enter the polynomial f(x): $x^3 + x^2 - 4x - 4$

Enter starting value of r: -1 Enter starting value of s: -1

Enter the maximum relative approximate error allowed(in %):

0.05

Enter the maximum number of iterations allowed: 20

OUTPUT:

Roots of the function are: 2.000000, -1.000000

Roots of the function are: -2.000000

