中国科学技术大学

2018-2019 第一学期期末考试题

考试科目: 随机过程(B)		得多	分:
学生所在系:	_ 姓名:	学号:	
(2019	年1月10日,	半开卷)	
一、(30分。填空题每空3分,	其余每空2分)	判断是非与填空:	
(1) (是非) 若马氏链 $X = \{X_n,$	$n \ge 0$ }的初始分	$\pi = \{\pi_j, j \ge 0\}$ 为其平	稳分布,则:
(a) $\sum_{i\geq 0} \pi_i p_{i,j}^{(n)} = \pi_j, (j \geq 0, n)$	∈ N) () :	(b) X 为严格平稳过	程()
(c) $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}, (i, j \ge 0)$	():	(d) X 必有正常返状态	() .
(2) (是非) 下列关于τ的函数	$R(\tau)$ 是否为(实现	成复)平稳过程的协方差函数	数?
(a) $R(\tau) = e^{- \tau } (\tau + 1)^2$ ()	; (b) $R(\tau) = \tau $	$ e^{-\tau^2/2}(); (c) R(\tau) =$	sinf ()
(d) $R(\tau) = \sigma^2 e^{i\lambda \tau}$ (); (e	$e) R(\tau) = \sigma^2 e^{-it}$	^{ijr} ()。(注: σ,λ > 0	$), i = \sqrt{-1})$
(3) (填空) 设 X ₁ , X ₂ , X ₃ 相	互独立,且 X_i	$\sim Exp(\lambda_i), i = 1,2,3$ (指導	数分布),则
$X_{(1)} = \min\{X_1, X_2, X_3\}$ 的分布为	(), 概率	$P\{X_1 = X_{(1)}\}$ 等于().
(4) (填空) 设{N(t), t≥0}是	一强度为え的 Po	$isson$ 过程, W_k 为其第 k	个事件发生的
时间, 并设 $1 \le k \le n, t > 0$, 则 E	$\{W_k \mid N(t) = n\}$	$=(), E(W_k)=($).
二、(8分)假设汽车按强度为	λ 的泊松过程进	入一条单向行驶的无限长的	的公路,进入
的第 i 辆车以速度 V_i 行驶。假定诸 V_i	(i≥1) 为相互	1独立的正随机变量,有共	同分布F。
试求在时刻 t 位于区间 (a,b) 内的平	均汽车辆数。		
三、 (15 分) 设马氏链{X _n , n	≥0}的转移概率	为:	

(1) 证明该马氏链为不可约常返的,且为非周期:

 $p_{0,j}=a_j>0,\;(j\geq 0)\quad p_{i,j-1}=1,\;(i\geq 1)$

(2) 试求过程由0出发后首次返回到0的平均时间 μ_0 , 并据以回答: 过程何时为正常

返?何时为零常返?

- (3) 在正常返时, 试求该马氏链的极限分布: $\pi = \{\pi_i, j \ge 0\}$ 。
- 四、 (20 分) 设马氏链 $\{X_n, n \ge 0\}$ 的一步转移概率矩阵为:

$$P = \begin{bmatrix} 1 & 0 & 0.5 & 0.3 & 0.2 \\ 2 & 0 & 0.2 & 0.4 & 0.4 \\ 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (1) 试讨论该马氏链的状态分类(即:分为几个等价类、各类的周期性如何、是否为常 返、是否为正常返?)。
- (2) 试求过程由状态k 出发而被状态j 吸收的概率 $f_{k,i}$, (k=1,2;j=3,4)。

五、(15分)设A与 Θ 独立且分别服从均匀分布U(0,1)与 $U(0,2\pi)$,定义过程:

$$X(t) = A\cos(\omega_0 t + \Theta)$$
 $(t \in R, \omega_0 为非零常数)$

- (1) 证明{X(t), t∈R}为宽平稳过程:
- (2) 试求其功率谱密度函数 S(ω)。

大、(12 分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 3}{\omega^4 + 11\omega^2 + 28}$$

- (1) 试求 X 的协方差函数 R(r):
- (2) 间 X 的均值是否有遍历性? 为什么?

(完)

随机过程期末考试参考答案与评分标准

(2019年1月10日)

一、(30分)

- (1) (每至2分); a. (是); b. (是); c. (非); d. (是)。
- (2) (每空 2 分): a. (非); b. (非); c. (是); d. (是); e. (非)。
- (3) (每空3分) $(1/(\lambda_1+\lambda_2+\lambda_3))$, $(\lambda_1/(\lambda_1+\lambda_2+\lambda_3))$.
- (4) (每至3分) $(\lambda^k x^{k-1} e^{-\lambda x}/(k-1)!)$, $(\lambda t^2/2)$

二、(6分)

若第 i 辆汽车于时刻 s(s<t)进入该公路,则 $P\{a<(t-s)V_i< b\}=F(\frac{b}{t-s})-F(\frac{a}{t-s})$,故第 i 辆车于时刻 t 位于区间(a,b)的概率 $p=\frac{1}{t}\int_0^t [F(\frac{b}{t-s})-F(\frac{a}{t-s})]ds$,从而时刻 t 位于区间(a,b)内的平均汽车辆数为 $\lambda pt=\lambda \int_0^t [F(\frac{b}{t-s})-F(\frac{a}{t-s})]ds$ 。

三、(16分)

- (1) 易证马氏链为不可约($p_{i,j} \ge a_j > 0$, $\forall i \ne j$)、非周期($p_{0,0}^{(1)} = a_0 > 0$),且 $f_{0,0} = \sum_{j=0}^{+\infty} a_j = 1$,故常返:
 - (2) 求得: $\mu_0 = \sum_{n=1}^{+\infty} n f_{0,0}^{(n)} = \sum_{n=1}^{+\infty} n a_{n-1}$, 显然, 马氏链为正常返 $\iff \mu_0 < +\infty$;

(3)
$$\pi_j = \frac{1}{\mu_0} \sum_{k \ge j} a_k$$
, $(j \ge 0)$.

四、(20分)

- (1) 四类: $\{1\},\{2\}$ 均为瞬过类, $d(1)=\infty,d(2)=1$: $\{3\},\{4\}$ 为二遍历类(吸收态)。
- (2) 设T 为过程进入吸收态的时间,记 $f_{k,j} = P\{X_T = j \mid X_0 = k\}$, (k = 1,2; j = 3,4)则有:

$$\begin{split} f_{1,3} &= P\{X_T = 3 \mid X_0 = 1\} = \sum_i P\{X_T = 3 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,3} + 0.3 \\ f_{1,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,4} + 0.2 \\ f_{2,3} &= \sum_i P\{X_T = 3 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,3} + 0.4 \\ f_{2,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,4} + 0.4 \end{split}$$

解得: $f_{1,3} = 11/20$, $f_{1,4} = 9/20$, $f_{2,3} = f_{2,4} = 1/2$ 。

五、(16分)

$$EX(t) = EAE \cos(\omega_0 t + \Theta) = 0$$

(1)
$$\gamma_{\chi}(t+\tau,t) = EA^{2}E\cos[\omega_{0}(t+\tau) + \Theta]\cos(\omega_{0}t + \Theta) =$$

$$= \frac{1}{2}EA^{2}E\{\cos[\omega_{0}(2t+\tau) + 2\Theta] + \cos\omega_{0}\tau\} = \frac{1}{2}EA^{2}\cos\omega_{0}\tau$$

$$= 4\cos\omega_{0}\tau = R_{\chi}(\tau)$$

故 $\{X(t), t \in R\}$ 为宽平稳。

(2)
$$R_X(\tau) \leftrightarrow S(\omega) = 4\pi(\delta(\omega + \omega_0) + \delta(\omega - \omega_0))$$
.

六、(12分)

(1)
$$S(\omega) \leftrightarrow R(\tau) = \frac{2\sqrt{7}}{21} e^{-\sqrt{7}|\tau|} - \frac{1}{12} e^{-2|\tau|}$$
.

(2) 该过程的均值有遍历性,因为:
$$\int_{0}^{\infty} |R(\tau)| d\tau < \infty$$
 。

(完)