Лабораторная работа 1.4.8

Измерение модуля Юнга методом аккустического резонанса

Дербенев Никита Максимович

26 октября 2023

Цель работы: Исследовать явление акустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

В работе используются:

- 1. Генератор звуковых частот
- 2. Частотомер
- 3. Осциллограф
- 4. Электромагнитные излучатель и приёмник колебаний
- 5. Набор стержней из различных материалов

Ход работы:

- 1. Настроим частотометр и осциллограф для работы с установкой
- 2. Поместим медный стержень на подставку, придвинем максимально близко к торцам датчики, не допуская соприкосновения со стержнем. Расстояние между торцами стержня и датчиками получилось < 0.5мм.
- 3. Определим приблизительную частоту первого резонанса медного стержня по формуле:

$$f_1=rac{u}{2L}pproxrac{3.7\cdot 10^3}{2\cdot 0.6}pprox 3.083$$
 к
Гц

- 4. Плавно изменяя частоту генератора в районе 3 кГц, найдем положение резонанса, при котором амплитуда сигнала будет максимальна и изображение на осциллографе будет представлять собой бочку (на самом деле это обрезанный эллипс, ибо датчик жестко обрезает выходной сигнал). Запишем значение резонансной частоты в табл. 1.
- 5. Получим резонансы на частотах, соответствующих кратным гармоникам. Для этого, плавно перестраивая генератор, добемсяь резонанса вблизи частот $f_n = nf_1$, где n = 2, 3, ... Запишем измеренные значения частот в табл. 1.

Таблица 1: Значения резонансых частот

№ гармоники	1	2	3	4	5	6	7	8	9	10	11
Медь	3.2489	6.4596	9.7282	12.9987	16.2359	19.4556	22.6828	25.9312	29.1485	32.4021	35.6396
Дюраль	4.2274	8.4898	12.7445	16.9726	21.1814	25.3987	29.5944	33.8376	38.0211	42.3422	-
Сталь	4.1291	8.2701	12.3921	16.5571	20.6358	24.7582	28.8421	-	-	-	-

- 6. Повторим пункты 2-5 для дюрали и стали.
- 7. Определим плотность материалов стержней. Для этого взвесим и измерим штангенциркулем линейные размеры небольшого образца цилиндрической формы, изготовленного из исследуемого материала. Результаты запишем в табл. 2:

$$\rho = \frac{4m}{\pi l d^2}$$

$$\varepsilon_{\rho} = \varepsilon_m + \varepsilon_{\pi} + \varepsilon_l + 2\varepsilon_d \approx 2\varepsilon_d$$

$$\sigma_{\rho} = \varepsilon_{\rho} \rho$$

Таблица 2: Параметры кусочков стержней

Материал	Медь	Дюраль	Сталь
m, Γ	39.366	37.072	26.017
d, mm	11.9	12.2	12.1
l, MM	39.6	41.1	29.5
$S, \text{ mm}^2$	111.22	116.90	114.99
V , mm^3	4404.3	4804.6	3392.2
$\rho, \frac{\kappa \Gamma}{M^3}$	$8930 \pm 300 \; (3.4\%)$	$7720 \pm 250 \ (3.3\%)$	$7670 \pm 250 \; (3.3\%)$

Таблица 3: Параметры стержней

Материал	Медь	Дюраль	Сталь		
f_1 , к Γ ц	$3.2391 \pm 0.0016 \; (0.05\%)$	$4.2261 \pm 0.0032 \; (0.08\%)$	$4.1197 \pm 0.0042 \; (0.10\%)$		
$u, \frac{M}{c}$	$3887 \pm 2 \; (0.05\%)$	$5071 \pm 4 \; (0.08\%)$	$4994 \pm 5 \; (0.10\%)$		
$E, \Gamma \Pi a$	$135 \pm 5 \; (3.5\%)$	$199 \pm 7 \; (3.5\%)$	$191 \pm 7 \; (3.5\%)$		

8. Построим график зависимостей резонансной частоты от номера гармоники (рис. 1). Видим, что точки хорошо ложаться на прямые $f_n = kn$. Вычислим скорость распространения волн в стержне по МНК и запишем в табл. 3:

$$u = 2kL$$

$$\varepsilon_u = \varepsilon_L + \varepsilon_k \approx \varepsilon_k = \frac{\sigma_k}{k}$$

$$\sigma_u = u\varepsilon_u$$

9. Определим модули Юнга различных материалов и запишем в табл. 3:

$$E = u^{2}\rho$$

$$\varepsilon_{E} = 2\varepsilon_{u} + \varepsilon_{r}ho$$

$$\sigma_{E} = \varepsilon_{E}E$$

- 10. Добьемся возникновения резонанса в стержне из дюрали на частоте $f_1/2$. Добьемся возникновения на экране осциллографа фигуры Лиссажу (рис. 2).
- 11. Измерим добротность колебаний в дюралюминиевом стержне. Для этого определим частоты вблизи резонанса, при которых амплитуда сигнала достигает $\frac{U_{max}}{\sqrt{2}}$:

$$f_1 = 4238.0 \; \Gamma$$
ц
$$f_2 = 4230.1 \; \Gamma$$
ц
$$\Delta_f = \frac{f_1 + f_2}{2} \approx 4.0 \; \Gamma$$
ц
$$U = \frac{f_n}{\Delta_f} \approx 1058$$

Вывод: Метод аккустического резонанса - достаточно точный метод определения модуля Юнга материалов с низкой погрешностью (3.5%). Основная погрешность связана с определением плотности материалов, а точнее с определением диаметра стержней. Ее можно уменьшить, если измерять диаметр стержней микрометром в разных местах.

