Documento de Projeto Casa Intelige	nte

Escola Senai Paulo Antônio Skaf

Arthur Batista Oliveira
João Victor Feitosa Santos
Anne Nicole De Lima Pereira
Anna Beatriz Arenas Henkel
Rawany Batista Manoel

Documento do Projeto – Casa Inteligente

São Paulo - 2025

Sumário

1. Histórico de revisões do Documento	4
2. Introdução	5
2.0 Propósito do Documento de Projeto da Casa Inteligente	5
2.1 Público-Alvo	5
3. Descrição Geral do Produto	5
.1 Situação Problema	5
.2 Situação Atual	5
.3 Proto-Jornada	6
.4 Mapa de Empatia	7
.5 Proto-Persona	8
.6 Tecnologias Utilizadas	10
.7 Atores	10
.7.1 Usuário Cadeirante/Lucas	10
Requisitos	11
4.1 Regras de Negócio	11
4.2 Requisitos Funcionais	11
4.3 Requisitos Não Funcionais	11
5. Fluxograma	12
6. Protótipos – TinkerCad	13

1. Histórico de revisões do Documento

Versão	Data	Autor	Descrição
1.0	21/03/2025	Matheus B. Arthur B.	Revisão e correção da escrita da documentação inicial.
1.1	21/03/2025	João V.	Inclusão da introdução e descrição geral do documento.
1.2	26/03/2025	Arthur B.	Alteração e detalhamento dos requisitos funcionais e suas propriedades.
1.3	26/03/2025	João V.	Revisão textual completa e atualização da seção 3.5 (proto-jornada).
1.4	26/03/2025	Arthur B	Elaboração e refinamento dos requisitos junto com Matheus B.
1.5	28/05/2025	Matheus B.	Desenvolvimento e integração do circuito com Arduino.
1.5	28/05/2025	Arthur B.	Planejamento geral do projeto e definição das etapas de desenvolvimento.
1.6	11/06/2025	Arthur B.	Adição das Regras de Negócio (RN10 a RN12), Requisitos Funcionais (RF08 a RF11) e Requisitos Não Funcionais (RNF08 a RNF11).

2. Introdução

2.0 Propósito do Documento de Projeto da Casa Inteligente

O projeto da Casa Inteligente tem como objetivo criar um sistema automatizado que garanta acessibilidade, conforto e segurança aos moradores, especialmente pessoas com mobilidade reduzida como Lucas. A proposta é utilizar tecnologia para facilitar o controle da casa, tornando o ambiente mais funcional, seguro e inclusivo.

2.1 Público-Alvo

O público-alvo do projeto da Casa Inteligente são pessoas que buscam mais conforto, praticidade e segurança em suas residências, especialmente aquelas com mobilidade reduzida, como cadeirantes, idosos ou pessoas com limitações físicas, que necessitam de um ambiente acessível e adaptado às suas necessidades diárias.

3. Descrição Geral do Produto

3.1 Situação Problema

Lucas, cadeirante, enfrenta dificuldades de acessibilidade em sua nova casa, como interruptores altos, porta da garagem pesada e fechadura inadequada, prejudicando sua autonomia.

3.2 Situação Atual

Lucas enfrenta dificuldades de acessibilidade em casa, dependendo de outros para acender luzes, abrir a garagem e destrancar a porta principal,luz e a porta da garagem

3.3 Proto-Jornada

A proto persona é uma representação fictícia de um grupo específico do cliente.

1. Usuário Lucas

A imagem apresenta a jornada de Lucas, uma pessoa esperançosa, determinada e engraçada, que enfrenta o problema de ter uma casa não acessível e está em busca de automatizá-la. O processo começa com a pesquisa no Google sobre automação residencial, seguido da escolha da melhor empresa, contato com ela, explicação do problema, agendamento da data e, finalmente, a automação da casa. Durante esse caminho, Lucas passa por sentimentos de ansiedade, esperança, preocupação, animação e alívio. Seus pensamentos refletem a expectativa de encontrar ajuda, confiar na empresa, ser compreendido e ter tudo resolvido no final. Como soluções, são sugeridas ações como exibir empresas do ramo, avaliações, facilitar o contato via WhatsApp, agendar reuniões para esclarecer dúvidas, ajudar na escolha da data e aplicar o sensor na casa.

clique aqui para acessar o link do miro

miro

Lucas

CENÁRIO/ SITUAÇÃO

PROBLEMA Dificuldade para abrir portão da garagem

miro

Mapa De Empatia Luz

miro

3.4 Mapa de Empatia

O mapa da empatia é uma ilustração que traz as necessidades e as dores dos cliente.

1. Lucas/Cadeirante

Lucas tem 30 anos e é cadeirante. Ele enfrenta dificuldades para ter autonomia em seu dia a dia, especialmente por não ter uma casa adaptada às suas necessidades. Sonha em ter um lar onde consiga realizar tarefas sozinho e se sentir acolhido, mas, na prática, lida com preconceito, falta de acessibilidade e comentários desmotivadores, como "você não sabe fazer nada sozinho" ou "aprenda a se virar", embora também ouça frases de incentivo como "você é um guerreiro". Trabalha em home office, faz fisioterapia e gosta de jogar videogame, mas ainda sente solidão e inferioridade por precisar constantemente de ajuda para sair de casa. Ele vê claramente a necessidade de uma casa acessível e deseja encontrar uma empresa que o ajude nesse processo de adaptação.

clique aqui para acessar o link do miro

3.5 Proto-Persona

Um mapa de jornada do cliente é uma representação visual do processo pelo qual seus clientes passam quando interagem com uma casa inteligente.

1. Cadeirante/Lucas

A imagem apresenta um perfil de Lucas, um homem de 30 anos, cadeirante, que mora sozinho em São Paulo. Ele é descrito como esperançoso, determinado e engraçado. Gosta de assistir filmes de terror, ama animais, faz fisioterapia e está sempre buscando aprender algo novo. Seus objetivos incluem ter uma casa adaptada e autônoma, vencer a timidez para socializar melhor, encontrar uma empresa que o apoie, evoluir na fisioterapia e ter um bom desempenho no trabalho. Link do Miro:

clique agui para acessar o link do miro

Lucas
esperançoso, determinado, engraçado

Comportamentos

- · Gosta de ver filmes de terror
- Gosta de estar sempre aprendendo
- · Ama animais
- · Faz fisioterapia

Infs.Demográficas

- 30 anos
- Mora sozinho em São Paulo
- Trabalha com desenvolvimento web
- É cadeirante

Necessidades e Objetivos

- · Ter uma casa autônoma
- Conseguir se socializar sem timidez
- Achar uma empresa que o ajude
- · Desenvolver na Fisioterapia
- Ter um bom deselvolvimento no seu trabalho

mirc

Solução Desenvolvida

Foi feito um desenvolvimento de um protótipo com sensores na casa para atender as necessidades do cliente.

3.6 Tecnologias Utilizadas

- Arduino Uno
- Sensor Ultrassônico HC-SR04
- Módulo de relé (Trava)
- LED
- Jumpers, resistores, fonte 5V/3V, etc.

3.7 Atores

3.7.1 Usuário Cadeirante/Lucas

O usuário Lucas, cadeirante, possui acesso total às funcionalidades do sistema desenvolvido para a casa inteligente. Ele poderá acender e apagar as luzes por meio de sensores de presença ou manualmente pelo aplicativo, destrancar e trancar as portas utilizando um sistema de senha, monitorar possíveis vazamentos de gás por meio de alertas sonoros e notificações no aplicativo e receber alertas de segurança em caso de tentativas de acesso inválidas ou falhas críticas no sistema. Essas funcionalidades foram desenvolvidas para proporcionar mais autonomia, segurança e conforto em sua rotina diária.

4.0 Requisitos

4.1 Regras de Negócio

RN	Descrição
RN01	A iluminação da casa deverá ser controlada automaticamente por um sensor ou manualmente por meio do aplicativo.
RN02	A porta deverá ter uma abertura automática ou um desbloqueio por meio de senha.
RN03	A casa deverá verificar o vazamento de gás para acionar um alarme sonoro e exibir em um aplicativo.
RN04	O sistema deverá utilizar um broker MQTT para comunicação entre dispositivos.
RN05	O hardware deverá ser baseado em Arduino ou ESP32.
RN06	O serviço deverá operar via rede web.
RN07	O custo de cada sensor não deverá ultrapassar \$100.
RN08	O Arduino deverá acionar automaticamente o sistema de luz quando estiver na presença de pessoas.
RN09	Desbloqueio por meio de senha.
RN10	O sistema deverá operar mesmo em caso de falha na conexão com a internet (modo offline limitado).
RN11	Todos os comandos realizados no aplicativo devem ser registrados com data e hora.
RN12	O sistema deverá enviar notificações por e-mail ou aplicativo em caso de falhas críticas (ex: vazamento de gás, acesso negado).

4.2 Requisitos Funcionais

RF	Descrição	Plataforma
RF01	A iluminação da casa deverá ser controlada automaticamente por um sensor ou manualmente por meio do aplicativo.	Web
RF02	A porta deverá ter uma abertura automática.	Web
RF03	A casa deverá verificar o vazamento de gás para acionar um alarme sonoro e exibir em um aplicativo.	Web
RF04	O arduino deverá controlar o sistema de gás da casa	Arduino
RF05	Desbloqueio por meio de senha.	Arduino
RF06	O Arduino deverá acionar automaticamente o sistema de luz quando estiver na presença de pessoas.	Arduino
RF07	O Arduino deverá registrar tentativas de acesso inválidas senhas incorretas e acionar um alerta sonoro.	Arduino
RF08	O sistema deverá permitir o cadastro de diferentes usuários com níveis de acesso (administrador, convidado, etc.).	Web
RF09	O sistema deverá permitir o agendamento de horários para acender/apagar as luzes automaticamente.	Web
RF10	O sistema deverá permitir reset de senha por e-mail.	Web
RF11	O sistema deverá operar uma rotina noturna onde todos os sensores são ativados automaticamente.	Arduino/Web

4.3 Requisitos Não Funcionais

RNF	Descrição	Plataforma
RNF01	O sistema deverá utilizar um broker MQTT para comunicação entre	Web
	dispositivos.	

RNF02	O hardware deverá ser baseado em Arduino ou ESP32.	Web
RNF03	O serviço deverá operar via rede web.	Web
RNF04	O custo de cada sensor não deverá ultrapassar \$100.	Web
RNF05	A aplicação deverá ter alta disponibilidade (operar 24/7).	Web
RNF06	O sistema deverá ser compatível com navegadores modernos (Chrome, Edge etc.).	Web
RNF07	O tempo de resposta do sistema não deverá exceder 2 segundos.	Web
RNF08	O sistema deverá armazenar os dados em um banco de dados seguro com criptografia.	Web
RNF09	O sistema deverá realizar backups automáticos dos dados diariamente.	Web
RNF10	A interface deverá responder a ações do usuário em até 1 segundo para tarefas críticas.	Web
RNF11	O sistema deverá funcionar em conexões com latência de até 150ms sem perda de funcionalidade crítica.	Web

5. Fluxograma

Abrir porta por detector de presença:

O sistema inicia monitorando a presença. Se detectar alguém, ele destrava e abre a porta. Após 5 segundos, a porta é fechada e trancada novamente. Se não houver presença, a porta permanece fechada.

Acender a luz por detector de presença:

O sistema verifica a presença no ambiente. Se detectar alguém, acende a luz. Caso contrário, mantém a luz apagada.

clique aqui para acessar o link do fluxograma

ABRIR PORTA POR DETECTOR DE PRESENÇA

ACENDER A LUZ POR DETECTOR DE PRESENÇA

6. Protótipos – TinkerCad

Link do Projeto aqui

Este protótipo, desenvolvido no Tinkercad, simula uma solução de automação residencial com foco em segurança, conforto e eficiência. Baseado na plataforma ESP32 (ou Arduino), o sistema integra:

- Sensor Ultrassônico: detecta aproximação de pessoas.
- Relé: controla dispositivos de maior potência.
- **LED indicador**: sinaliza status de funcionamento.
- Servo Motor: faz a porta abrir automática.

O projeto permite testar funcionalidades essenciais antes da implementação real, garantindo maior controle e precisão no desenvolvimento da versão física. A estrutura modular também possibilita futuras expansões, como integração com Wi-Fi e outros sensores.

