Complementos de Cálculo Diferencial e Integral

4ª Ficha de trabalho - 2º Semestre 2014/2015

1. Seja φ uma aplicação de \mathbb{R}^3 em \mathbb{R}^2 , diferenciável em todos os pontos de \mathbb{R}^3 ; sejam L_1 e L_2 as funções coordenadas da sua derivada no ponto (0,0,0):

$$L_1(x, y, z) = 2x + 3y + 4z$$

$$L_2(x,y,z) = x - y$$

Seja ψ a seguinte aplicação de \mathbb{R}^2 em \mathbb{R} :

$$\psi(u,v) = \arctan\left(u^2 + v^3\right).$$

Sabendo que $\varphi(0,0,0)=(1,0)$, Calcule a matriz Jacobiana de $\psi\circ\varphi$ no ponto (0,0,0).

2. Sendo G uma função diferenciável em \mathbb{R}^2 e

$$F(x, y, z) = G(x^2 - y^2, y^2 - z^2)$$

- (a) Indique, justificando, em que pontos ${\cal F}$ é diferenciável.
- (b) Mostre que, em qualquer ponto (x, y, z), se verifica a igualdade

$$yzF'_{x}(x,y,z) + xzF'_{y}(x,y,z) + xyF'_{z}(x,y,z) = 0$$

3. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciável em \mathbb{R}^2 e tal que f(-1,1) = -1. Considere uma função G definida por

$$G(x,y) = f(f(x,y), f^{2}(x,y))$$

Mostre que

$$\frac{\partial G}{\partial x}(-1,1) + 2\frac{\partial G}{\partial y}(-1,1) = \left[\frac{\partial f}{\partial x}(-1,1)\right]^2 - 4\left[\frac{\partial f}{\partial y}(-1,1)\right]^2$$

- 4. Seja f uma função diferenciável em \mathbb{R}^2 . Mostre que as seguintes proposições são equivalentes:
 - (a) $\exists \alpha \in \mathbb{R} \quad \forall t > 0, \ (x, y) \in \mathbb{R}^2 \qquad f(tx, ty) = t^{\alpha} f(x, y).$
 - (b) $\forall (x,y) \in \mathbb{R}^2$ $x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$

Sugestão: Para (b) \Rightarrow (a) mostre que a função $\psi(t) = \frac{f(tx,ty)}{t^{\alpha}}$ é constante em $]0,+\infty[$.