Tasks and Analysis for Simple Harmonic Motion Experiment

Before or after the experiment you will be required to add or remove some pieces of python code to a python script **(SHM1.py)** that uses the accelerometer to record the changing acceleration values. The tasks are as follows:

1. IF else statement

Add a block of code inside the while loop that sets the LED screen to a specific color if each of the acceleration in the X, Y, Z direction is greater than or equal to 0.7 **Hint:** To set all the LEDs to a specific color, use **sense.set_pixels(pixel_list)** depending on the color of choice. Such as green list or red list.

2. While loop

The while loop of this python script is an endless loop i.e. it will run continuously. Add a break statement given the condition that when the loop counter gets to 10, the program should stop looping.

3. For loop

Change the while loop above to for loop. Make the loop run only 10 times

4. Functions

A function called storeXYZ_values has been defined in the beginning of this python script. This function allows you to automatically save the acceleration and time interval values in a csv file. You are required to write a piece of code to call the function in a specific part of the script. The location will be indicated in the SHM1.py script.

5. Graph your recorded values directly from the csv file

Create a new python script called acc_graph.py to graph your recorded x acceleration values against time directly from the csv file.

Here's a simplified example of how matplotlib could be used to graph data loaded from a csv file.

#imports the necessary modules to run the script import matplotlib import csv matplotlib.use("TKAgg") import matplotlib.pyplot as plt

arrays to store the different values of each data to be plotted

x = []

y = []

```
# command to read a specific csv file, take the required data needed from the file and
#append to each data to its corresponding array
with open('example.txt','r') as csvfile:
    plots = csv.reader(csvfile, delimiter=',')
    for row in plots:
        x.append(float(row[0]))
        y.append(float(row[1]))
plt.plot(x,y, label='Loaded from file!')

plt.xlabel('x')
plt.ylabel('y')
plt.title('Interesting Graph\nCheck it out')
plt.legend()
plt.show()
```