Aufgabe 6

b)

Zu zeigen: $K \in PKP \iff f(K) \in PKP_b$

Sei K die die Eingabe für PKP. $K = \left\{ \begin{bmatrix} \frac{x_1}{y_1} \end{bmatrix}, \cdots, \begin{bmatrix} \frac{x_k}{y_k} \end{bmatrix} \right\}$

Fall 1 Wenn es in K keine Dominos gibt, wo das obere und das untere Wort gleich lang sind, so sei f(K) = K.

Fall 2 Ansonsten machen wir für die Dominos (oben und unten gleich lang) folgendes:

Wir bezeichnen solche Dominos als $K' = \left\{ \begin{bmatrix} \frac{x_{l_1}}{y_{l_1}} \end{bmatrix}, \cdots, \begin{bmatrix} \frac{x_{l_n}}{y_{l_n}} \end{bmatrix} \right\}$. (die Reihenfolge spielt keine Rolle)

Dann kombinieren wir Dominos aus K' (oben und unten gleich lang) mit einem anderen Domino aus K/K' (oben und unten verschieden lang):

Zum Beispiel können wir $\left[\frac{x_{l_1}}{y_{l_1}}\right]$ mit $\left[\frac{x_i}{y_i}\right]$ (einer aus K/K') kombinieren. In dem Fall bekommen wir zwei neue Dominos $\left[\frac{x_{l_1}x_i}{y_{l_1}y_i}\right]$ und $\left[\frac{x_ix_{l_1}}{y_iy_{l_1}}\right]$ (einmal vorn, einmal hinter) .

Insgesamt können wir $2 \times n \times (k-n)$ mal neue Dominos konstruieren. Man kann klar sehen, in solchen Dominos stehen immer verschieden lang Wörter oben und unten. Wir bezeichnen solche konstruierte Dominos als K''. So sei $f(K) = \{K/K', K''\}$.

Korrektheit:

 $K \in PKP \Longrightarrow f(K) \in PKP_b$

Sei (i_1, \dots, i_n) eine Lösung für K, d.h.

$$x_{i_1}x_{i_2}\cdots x_{i_n}=y_{i_1}y_{i_2}\cdots y_{i_n}$$

Für Fall 1 ist es klar, $f(K) \in PKP_b$.

Im Fall 2 gibt es immer eine Lösung für f(K), dessen entsprechende Wörter gleich wie oben ist.

Z.B. die Länge von x_{i_j} ist gleich wie y_{i_j} für ein $j \in \{1, \dots, n\}$. So ein Domino steht nicht in f(K). Aber können wir dieser durch $\left[\frac{x_{i_{j-1}}x_{i_j}}{y_{i_{j-1}}y_{i_j}}\right]$ und $\left[\frac{x_{i_j}x_{i_{j+1}}}{y_{i_j}y_{i_{j+1}}}\right]$ aus f(K) ersetzen und löschen die entsprechende Domino:

$$\begin{bmatrix} x_{i_1} \\ y_{i_1} \end{bmatrix} \cdots \begin{bmatrix} x_{i_j} \\ y_{i_j} \end{bmatrix} \cdots \begin{bmatrix} x_{i_n} \\ y_{i_n} \end{bmatrix} \Longrightarrow \begin{bmatrix} x_{i_1} \\ y_{i_1} \end{bmatrix} \cdots \begin{bmatrix} x_{i_j} x_{i_{j+1}} \\ y_{i_j} y_{i_{j+1}} \end{bmatrix} \begin{bmatrix} x_{i_{j+2}} \\ y_{i_{j+2}} \end{bmatrix} \cdots \begin{bmatrix} x_{i_n} \\ y_{i_n} \end{bmatrix}$$

 $K \notin PKP \Longrightarrow f(K) \notin PKP_b$

Offensichtlich.....

Wegen $K \in PKP \iff f(K) \in PKP_b$ und Unentscheidbarkeit von PKP ist PKP_b auch unentscheidbar.