

United States Department of Commerce
Technology Administration
National Institute of Standards and Technology

NIST PUBLICATIONS

NIST Technical Note 1402

RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment

William L. Grosshandler

-QC 100 .U5753 #1402 1993 he National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . . . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . . . and to facilitate rapid commercialization . . . of products based on new scientific discoveries."

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information contact the Public Inquiries Desk, 301-975-3058.

Technology Services

- Manufacturing Technology Centers Program
- · Standards Services
- Technology Commercialization
- Measurement Services
- Technology Evaluation and Assessment
- Information Services

Electronics and Electrical Engineering Laboratory

- Microelectronics
- · Law Enforcement Standards
- Electricity
- Semiconductor Electronics
- Electromagnetic Fields¹
- Electromagnetic Technology¹

Chemical Science and Technology Laboratory

- Biotechnology
- Chemical Engineering¹
- Chemical Kinetics and Thermodynamics
- Inorganic Analytical Research
- Organic Analytical Research
- · Process Measurements
- Surface and Microanalysis Science
- Thermophysics²

Physics Laboratory

- · Electron and Optical Physics
- Atomic Physics
- · Molecular Physics
- Radiometric Physics
- Quantum Metrology
- Ionizing Radiation
- Time and Frequency¹
- Quantum Physics¹

Manufacturing Engineering Laboratory

- · Precision Engineering
- Automated Production Technology
- Robot Systems
- Factory Automation
- · Fabrication Technology

Materials Science and Engineering Laboratory

- Intelligent Processing of Materials
- Ceramics
- Materials Reliability¹
- Polymers
- Metallurgy
- Reactor Radiation

Building and Fire Research Laboratory

- Structures
- Building Materials
- Building Environment
- · Fire Science and Engineering
- · Fire Measurement and Research

Computer Systems Laboratory

- Information Systems Engineering
- Systems and Software Technology
- Computer Security
- · Systems and Network Architecture
- Advanced Systems

Computing and Applied Mathematics Laboratory

- Applied and Computational Mathematics²
- Statistical Engineering²
- Scientific Computing Environments²
- Computer Services²
- Computer Systems and Communications²
- · Information Systems

¹At Boulder, CO 80303.

²Some elements at Boulder, CO 80303.

RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment

William L. Grosshandler

Fire Science Division
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

April 1993

U.S. Department of Commerce Ronald H. Brown, Secretary

National Institute of Standards and Technology Raymond G. Kammer, Acting Director

National Institute of Standards and Technology Technical Note 1402 Natl. Inst. Stand. Technol. Tech. Note 1402 52 pages (Apr. 1993) CODEN: NTNOEF U.S. Government Printing Office Washington: 1993

For sale by the Superintendent of Documents U.S. Government Printing Office Washington, DC 20402

ABSTRACT

Radiation within a medium containing products of combustion is dependent upon the temperature and concentrations throughout the entire field. The energy is distributed across the infrared spectrum in a highly nonlinear fashion, which greatly complicates modeling of the heat transfer within a burning environment. This report describes a numerical program, RADCAL, which predicts the radiant intensity leaving a nonisothermal volume containing nonuniform levels of carbon dioxide, water vapor, methane, carbon monoxide, nitrogen, oxygen, and soot. The absorption coefficient of the combined gases is calculated from a narrowband model and a combination of tabulated spectral properties and theoretical approximations to the vibrational-rotational molecular bands. Soot is treated as a purely absorbing substance in the Rayleigh limit. Background on the development of the model, example calculations, and an explanation of input procedures are presented.

Key Words: models, radiation, radiative heat transfer, spectra, spectral absorptivity, spectral emissivity

TABLE OF CONTENTS

			Page
I.	INTRODUC	TION	. 1
II.	DEVELOPM	IENT OF RADCAL	2
III.	SAMPLE AI	PPLICATIONS OF RADCAL	4
IV.	PROGRAM	STRUCTURE	. 5
	A.	Input Parameters	14
	В.	Output Parameters	16
V.	GLOSSARY	••••••	. 23
VI.	REFERENC	ES	. 25
VII.	APPENDIX	•••••••••••••••••••••••••••••••••••••••	. 27
	A.	Data Input File, RC.DAT	27
	В.	Fortran Listing of RADCAL	. 27
		1. RCPART1.FOR	27
		2. RCPART2.FOR	40
		3. RCPART3.FOR	43
		4. RCPART4.FOR	47

RADCAL: A NARROW-BAND MODEL FOR RADIATION CALCULATIONS IN A COMBUSTION ENVIRONMENT

I. INTRODUCTION

The transfer of energy from and within a burning environment is controlled by diffusive, convective, and radiative processes. Because the temperatures associated with combustion are high, a proper physical description needs to account for radiation unless the characteristic radiation-to-convection ratio of the system is small. Bhattacharjee and Grosshandler (1989) define the following radiation/convection parameter, Ψ , in terms of the flame, surrounding wall and inlet temperatures (T_f , T_w and T_i), the mass flux of material brought into the flame times its heat capacity, $\rho_i u_i c_p$, and the optical thickness of the system based upon the absorption coefficient, a, and a stream-wise dimension, L:

$$\Psi = \frac{\sigma a L}{\rho_i u_i c_p} \frac{(T_f^A - T_w^A)}{(T_f - T_i)}$$
 (1)

 σ is the Stefan-Boltzmann constant. For Ψ less than unity, radiation has little effect on the energy transfer.

The radiation/convection parameter can be recast in terms relevant to fires by using a typical flame temperature of 1500 K and by replacing the convective energy with the thermal input, Q, per unit area of burning surface, A. Equation (1) becomes

$$\Psi \sim 300 \frac{aV}{O} \tag{2}$$

where V is the volume, LA, in cubic meters and Q is in kilowatts. Hence, highly absorbing fires in large volumes can be strongly influenced by radiation; conversely, a large thermal input can diminish the importance of radiation if the absorption properties, temperature and volume of interest remain about constant.

While Ψ is a useful global parameter, one must be able to estimate the absorption properties of the system and must recognize that the value of a can change substantially within the flow field. The absorption coefficient of the cool gases surrounding a fire can influence the transfer of energy from a burning object to a distant object. The absorption coefficient can also be used to analyze remotely the contents of the plume from a fire or an exhaust stack; and the absorption spectra of the pyrolysis and product gases formed during smoldering or shortly following ignition can be used for early detection of a fire.

For the above applications, a model which can predict the spectral structure of various

combustion products over a wide range of temperatures, pressures and pathlengths is required. The purpose of this report is to describe the development of one such model, RADCAL, to demonstrate its application, and to instruct others so that they can adapt it to their own needs.

II. DEVELOPMENT OF RADCAL

RADCAL computes the spectral intensity, i_{λ} ', from a non-isothermal mixture of combustion gases and soot incident upon a volume element within or external to the environment. The program solves the equation of transfer for an absorbing and emitting medium (no scattering) by breaking the line-of-sight into a number of uniform elements and by using molecular models and tabulated data for the spectral absorption coefficient, a_{λ} . Under these conditions the equation of transfer can be written as

$$i_{\lambda}'(l) = i_{\lambda,w}' e^{-\kappa_{\lambda}(l)} + \int_{0}^{\kappa_{\lambda}(l)} i_{b,\lambda}(l*) \exp[-(\kappa_{\lambda}(l) - \kappa_{\lambda}(l*))] d\kappa_{\lambda}(l*)$$
(3)

 $i_{b,\lambda}$ is the Planck blackbody function, κ_{λ} is the optical thickness defined by $\kappa_{\lambda} \equiv {}_{0}{}^{l} \int a_{\lambda}(l^{*}) dl^{*}$, λ is the wavelength, and the subscript w refers to a bounding wall condition.

The average spectral intensity incident on a differential volume from all directions is found by integrating eq (3) over solid angle, ω :

$$\overline{i_{\lambda}(l)} = \frac{1}{4\pi} \int i_{\lambda}'(l) d\omega \tag{4}$$

Two different spectrally averaged absorption coefficients are useful to define: the incident-mean, a_i ,

$$a_{i}(l) = \int_{0}^{\infty} \overline{i_{\lambda}(l)} a_{\lambda}(l) d\lambda / i_{i}(l) , \qquad (5)$$

and the Planck-mean, a_P ,

$$a_{P}(l) = \int_{0}^{\infty} i_{b,\lambda}(l) \, a_{\lambda}(l) \, d\lambda / i_{b}(l) \,. \tag{6}$$

The denominators in eqs (5) and (6) are, respectively, the average incident intensity (integral of eq (4) over wavelength) and the blackbody intensity, $\sigma T^4/\pi$. The *l* functionality persists because the medium is generally nonhomogeneous.

The divergence of the radiative flux vector, \mathbf{q}_r , (which is equal to the source term in the generalized energy equation) can then be written in terms of the mean coefficients (Siegel and Howell, 1981) as

$$-\nabla q_{r}(l) = 4\pi a_{i}(l) i_{i}(l) - 4\pi a_{p}(l) i_{b}(l).$$
 (7)

The first version of RADCAL was developed to predict the enhancement in radiation caused by the addition of pulverized coal to a 60 kW methanol-fired furnace (Grosshandler, 1976). The program solved the equations for the single-line group model (SLG) as listed in Table 5-18 of the Handbook of Infrared Radiation from Combustion Gases (Ludwig, et al., 1973). A combination of molecular models and data tables were used for the spectral properties of carbon dioxide, water vapor, and carbon monoxide, and contributions to the radiant intensity from the soot, ash and coal particles were handled with scattering neglected.

Validation of RADCAL was documented in a Factory Mutual Research Technical Report (Grosshandler, 1979), in which published experimental data were compared to the predictions of the numerical code for CO₂, H₂O, and CO individually and in mixtures. Spectral and total intensity experiments were examined, and the fidelity of the program for both isothermal and nonisothermal conditions was investigated. The spectrum between 1.25 and 12.5 μ m was satisfactorily reproduced, although some of the data at particular wavelengths differed from the prediction by as much as 17%. Considerable disagreement occurred between the integrated emittance of CO₂ as predicted from RADCAL and that computed from the charts of Hottel (1954). No one source for this disagreement was identified, but it was thought to be a combination of the difficulty in obtaining high accuracy spectral measurements under the full range of conditions investigated, the uncertainty associated with extrapolating total transmittance results beyond the measured temperature and pressure-pathlengths, and the approximations associated with the narrow-band models.

RADCAL was used as the benchmark for a simplified, non-spectral model, TTNH, which was designed to estimate the radiant intensity from combustion gas mixtures (Grosshandler, 1980). The total transmittance nonhomogeneous gas model (TTNH) was able to reproduce the narrow-band results from RADCAL within an error band of about 10% for a range of pathlengths between 0.2 and 2 m, temperatures between 800 and 1800 K, CO₂/H₂O ratios between 1/2 and 2, and for a total pressure of 101 kPa. The advantage of TTNH over RADCAL is its two orders-of-magnitude faster computational time.

Methane was added to the data base of RADCAL (Grosshandler and Nguyen, 1985) and the spectral region over which the calculations could be made was extended to 200 μ m. The current version of the program accounts for a radiating boundary, computes various absorption coefficients, has eliminated errors which were promulgated by the NASA report (Ludwig, et al., 1973), and has a more convenient data input. Table 1 summarizes the species currently in RADCAL, which molecular bands are modeled, and how they are modeled. The accuracy of the calculations are limited to those of the individual models at temperatures, pressures, and

Table 1. Molecular bands included in RADCAL

Species	<u>Band</u>	Method	Reference
$\overline{\text{CO}_2}$	$\frac{\overline{2.0 \mu}}{\mu}$ m	modeled	9
CO_2	$2.7 \mu m$	modeled	1
CO_2	$4.3~\mu \mathrm{m}$	modeled	2
CO_2	$10~\mu \mathrm{m}$	modeled	9
CO_2	$15~\mu \mathrm{m}$	tabulated	3
H_2O	$1.38~\mu\mathrm{m}$	tabulated	3
H_2O	1.88 μm	tabulated	3
H_2O	$2.7~\mu\mathrm{m}$	tabulated	3
H_2O	6.3 μm	tabulated	3
H_2O	20-200 μm	tabulated	3
CO	4.6 μm	modeled	4
CH ₄	$2.4~\mu \mathrm{m}$	modeled	5,6
CH ₄	$3.3~\mu\mathrm{m}$	tabulated	7,8
CH ₄	$7.7~\mu\mathrm{m}$	tabulated	7,8
soot	0.4-2000 μm	modeled	10

^{1.} Malkmus, 1963a

pathlengths for which the models were originally developed. In general, RADCAL is likely to be less accurate at temperatures below 295 or greater than 2500 K, at pressures over 1.0 MPa, and at distances greater than 50 m.

Applications of the program are demonstrated in the next section, and details of data input and parameter definition are given in the last section. A full listing of the fortran code is included in the appendix.

III. SAMPLE APPLICATIONS OF RADCAL

Computational results from earlier versions of RADCAL have been presented in several references (e.g., Grosshandler, 1979; Grosshandler, 1980; Grosshandler and Modak, 1981; Grosshandler and Thurlow, 1992). Several of these calculations have been verified with the latest version of RADCAL and are included here as baseline cases.

Hottel's charts (1954) are often referenced as the source of total emittance data for

^{4.} Malkmus and Thomson, 1961

^{7.} Brosmer and Tien, 1985 10. Dalzell and Sarofim, 1969

^{2.} Malkmus, 1963b

^{3.} Ludwig, et al., 1973

^{5.} Vincent-Geisse, 1955 6. Gray and Penner, 1965

^{8.} Lee and Happel, 1984 9. Leckner, 1971

carbon dioxide and water vapor. Estimates of CO_2 emittance from the current version of RADCAL as a function of pressure-pathlength are compared to what one calculates from Hottel (1954) in Figure 1. The results are in better agreement than indicated in an earlier study (Grosshandler, 1979) because the 15 μ m band is now included and an error in the tabulated data of Ludwig *et al.* (1973) has been corrected. From Figure 2, it can be seen that the two techniques diverge somewhat at the highest and lowest temperatures for a pressure-pathlength of 18.5 kPa-m. Discrepancies seen previously in the H_2O data remain, with RADCAL predicting greater emittance for all pressure-pathlengths at 1500 K, as shown in Figure 3. The open circles are data taken from Ludwig, *et al.* (1973), and indicate that, not surprisingly, RADCAL is in full agreement with the reference upon which it is based. Hottel and RADCAL are more consistent with each other at intermediate temperatures, as can be seen in Figure 4 for the case of a PL = 15.4 kPa-m. Ludwig (1973) pointed out that the earlier work by Hottel covered a more limited range of conditions and attempted to minimize the number of parameters for engineering estimates, and, thus, should not be expected to be as accurate as the narrow-band calculations.

Figure 5 is a spectral radiance calculation from a simulated 1.0 m diameter fire containing CO_2 , H_2O and soot at the levels indicated in Table 2 (Grosshandler, 1979; Grosshandler and Modak, 1981). The total intensity integrates to 33.77 kW/m²/sr. The spectral transmittance is also plotted in the figure. The major water and carbon dioxide bands are easily identifiable within the continuous soot spectrum.

Figure 6 represents the spectral intensity radiated upstream in a premixed methane/ N_2/O_2 flame at 606 kPa. Temperature and concentration profiles are listed in Table 3. In addition to carbon dioxide and water vapor, the molecular bands of CO and CH₄ are observable in this soot-free simulation. The program computes a total radiant intensity of 15.71 kW/m²/sr.

The spectral transmittance one might measure through a 320 K plume rising above material slowly pyrolyzing in atmospheric pressure air is shown in Figure 7. The concentrations of CO_2 , H_2O , CH_4 , and CO are uniform and equal 10 ppm (vol.) across the 0.5 m plume diameter, and it is assumed that smoke is present with a volume fraction of 10^{-8} . Even at these low concentrations the spectral character is evident, but the transmittance is close to 1.0 everywhere but in 4.3 and 15 μ m CO_2 bands.

IV. PROGRAM STRUCTURE

Figure 8 is a diagram of the structure of the program. The numerical code consists of a short main program which reads the temperature and concentration information from the data file, RC.DAT. SUBROUTINE RADCAL is called from the main program to perform all of the calculations listed in Table 5-18 of Ludwig, et al. (1973), and contains the instructions for printing the results into a file called RCOUT.DAT.

RADCAL relies upon four subroutines to compute the narrow-band parameters for the

Total emittance of carbon dioxide/air mixtures as a function of pressure-pathlength, comparing RADCAL (filled circles) to the measurements of Hottel (1954) (triangles).

Total emittance of carbon dioxide/air mixtures as a function of temperature, comparing RADCAL (filled circles) to the measurements of Hottel (1954) (triangles).

Total emittance of water vapor/air mixtures as a function of pressure-pathlength, comparing RADCAL (filled circles) to the measurements of Hottel (1954) (triangles). The open circles are taken from Fig. 6-33 of Ludwig, et al. (1973).

Total emittance of water vapor/air mixtures as a function of temperature, comparing RADCAL (filled circles) to the measurements of Hottel (1954) (triangles). The open circles are taken from Fig. 6-33 of Ludwig, et al. (1973).

Table 2. Radial profiles through simulated one meter diameter pool fire

	Partial Pressures, kPa									
Dist., m	Temp., K	\underline{CO}_2	$\underline{H}_2\underline{O}$	$\underline{\mathbf{N}}_2$	Soot, f_v					
0.05	899	7.07	7.07	86.8	5.55×10^{-8}					
0.10	1158	10.0	10.0	81.0	5.55×10^{-8}					
0.20	1438	13.1	13.1	74.7	5.55x10 ⁻⁸					
0.30	1637	15.4	15.4	70.3	5.55×10^{-8}					
0.50	1770	16.9	16.9	67.3	5.55×10^{-8}					
0.70	1637	15.4	15.4	70.3	5.55×10^{-8}					
0.80	1438	13.1	13.1	74.7	5.55x10 ⁻⁸					
0.90	1158	10.0	10.0	81.0	5.55×10^{-8}					
0.95	899	7.07	7.07	86.8	5.55×10^{-8}					

Table 3. Line-of-sight profiles through 20 mm thick, simulated, fuel-rich premixed methane/ O_2/N_2 flame

	Partial Pressures, kPa										
Dist., m	Temp., K	\underline{CO}_2	H_2O	<u>CH</u> ₄	CO	<u>O</u> ₂	N ₂				
0.001	300	0.0	0.0	122.2	0.0	185.8	298.0				
0.003	725	0.0	58.6	92.9	29.3	139.4	285.8				
0.005	1150	0.0	117.2	62.6	59.6	97.5	274.7				
0.007	1575	0.0	181.8	31.3	98.0	49.5	264.6				
0.009	2000	5.0	224.2	10.1	107.1	15.2	256.5				
0.015	2525	5.0	244.4	0.0	117.2	0.0	254.5				

Figure 5. Spectral intensity and transmittance in simulated pool fire with profile as given in Table 2.

Spectral intensity from simulated premixed methane/oxygen/nitrogen flame with profile as given in Table 3.

Figure 6.

Spectral transmittance through simulated 1/2 meter diameter plume of pyrolysis gases consisting of 10 ppm (vol.) each of CO₂, H₂O, CH₄, and CO and .01 ppm soot in atmospheric pressure air. T = 320 K.

carbon dioxide (SUBROUTINE CO2), water vapor (SUBROUTINE H2O), carbon monoxide (SUBROUTINE CO), and methane (SUBROUTINE FUEL). Two large block data files (BLOCK DATA BD1 and BLOCK DATA BD2) contain the absorption coefficient of water vapor as a function of temperature and wave number (Table A2-35 of Ludwig, *et al.* (1973)). A third data file, BLOCK DATA BD3, contains similar information for the 15.0 μm band of CO₂ (Table A2-28 of Ludwig, *et al.*, 1973), and the 3.3 and 7.4 μm bands of CH₄ (Brosmer and Tien, 1985). Line broadening parameters of Ludwig, *et al.* (1973) are listed at the beginning of BD3.

The spectral optical depth is calculated in SUBROUTINE RADCAL from the band-averaged absorption and line-width-to-line-spacing parameters (computed in the species subroutines), with a curve-of-growth based upon the particular species pressure-pathlength and with nonisothermal effects accounted for by the Curtis-Godson method. The particle optical depth is calculated in SUBROUTINE POD assuming the soot is in the Rayleigh limit with an albedo of zero. This value is added, in SUBROUTINE RADCAL, to the contributions from the gaseous species to determine the combined spectral optical depth.

SUBROUTINE RADCAL uses the optical depth to determine the spectral transmittance and intensity (calling FUNCTION PLANCK to evaluate the Planck blackbody intensity) as each new spatial element is added to the radiating path. Radiation from the far wall is counted after being attenuated by the calculated transmittance along the total length of the path. The spectral intensity is integrated across the spectrum to determine the total directional radiated energy flux. SUBROUTINE RADCAL separately computes the radiation from the soot for regions of the spectrum above and below the limits for the gas bands.

When the path contains only one element (i.e., it is isothermal and of uniform composition) three different absorption coefficients are calculated: the Planck-mean based upon the gas temperature (eq (6)), the incident-mean based upon the wall temperature (eq (5)), and the effective absorption coefficient, a_e . The effective absorption coefficient is used to calculate the total radiant intensity, i, leaving a uniform gas bounded by a black wall; i.e.,

$$i = \frac{\sigma}{\pi} [(1 - e^{-a_e L}) T^4 + e^{-a_e L} T_w^4]$$
 (8)

A. input parameters

The input data file, RC.DAT, is in free format, with the first line containing the number of elements (maximum of 50) into which the path is divided, NPT. The second line lists the size of the first element in meters, DD(1), its temperature in Kelvin, T(1), and the partial pressures in kilopascals of carbon dioxide, P(1,1), water vapor, P(1,2), methane, P(1,3), carbon monoxide, P(1,4), oxygen, P(1,5) and nitrogen, P(1,6). The last entry on the second line is the

Figure 8. Structure of radiation calculation program RADCAL.

volume fraction of soot in the first element, W(1). It is important to remember that the first element is located at the point in space for which the intensity is desired, and not at the far boundary of the computational volume.

The third line contains the size, temperature, species partial pressures, and soot volume fraction for the second element. Similar data is entered for the remainder of the NPT elements. Following this information is a line containing the wall temperature in Kelvin, TWALL, and the minimum and maximum wavenumbers in cm⁻¹, OMMIN and OMMAX. Normally, there is no need to go below 50 cm⁻¹ or above 10,000 cm⁻¹.

Additional cases can be stacked one upon another, but no data are carried over from the previous case even if they remain unchanged. The program terminates when it reads 0 for the value of NPT. Table 4 summarizes the input parameters and gives their limiting values.

B. output parameters

The results of the calculations can be found in the output file, RCOUT.DAT. The input conditions are summarized in tabular form, followed by the total directional radiated energy flux emanating outward from element one, Q. The spectral intensity, QW(K), and transmittance, TTAU(K), are listed for each wavelength, AMBDA(K). The number of wavelengths computed is limited to 600, and the wavelength intervals vary between $0.005~\mu m$ (50 cm⁻¹) at $1.0~\mu m$ and $18.2~\mu m$ (5 cm⁻¹) at $200~\mu m$. For the special case of a uniform pathlength with only one element, the program also calculates the effective absorption coefficient, AMEAN, the Planckmean absorption coefficient, APO, and the wall-incident-mean absorption coefficient, AIWALL. Additional parameters which are used within the different subroutines are defined in the Glossary.

Table 5 lists the output of the single uniform element case plotted in Figure 7. Only a few spectral entries are included for the sake of brevity. The output for the non-isothermal condition described in Table 2, and plotted over the full spectral range in Figure 5, is given in Table 6.

Table 4. Input data for RC.DAT

parameter	definition	units	range*	line numbers	
NPT	number of spatial elements	none	1 to 50	1	
DD(J)	length of Jth element	meters	10 ⁻⁴ to 10 ³ m	2 to (NPT+1)	
T(J)	temperature	Kelvin	270 to 2500 K	2 to (NPT+1)	
P(1,J)	partial pressure of CO ₂	kilopascals	0 to 10 MPa	2 to (NPT+1)	
P(2,J)	partial pressure of H ₂ O	kilopascals	0 to 10 MPa	2 to (NPT+1)	
P(3,J)	partial pressure of CH ₄	kilopascals	0 to 10 MPa	2 to (NPT+1)	
P(4,J)	partial pressure of CO	kilopascals	0 to 10 MPa	2 to (NPT+1)	
P(5,J)	partial pressure of O ₂	kilopascals	0 to 10 MPa	2 to (NPT+1)	
P(6,J)	partial pressure of N ₂	kilopascals	0 to 10 MPa	2 to (NPT+1)	
W(J)	volume fraction of soot	m³/m³	0 to 10 ⁻³	2 to (NPT+1)	
TWALL	far wall temperature	K	0 to 5000 K	(NPT+2)	
OMMIN	minimum wavenumber	cm ⁻¹	50 cm ⁻¹	(NPT+2)	
OMMAX	maximum wavenumber	cm ⁻¹	10,000 cm ⁻¹	(NPT+2)	

^{*}The accuracy of the program outside of the range where experimental data are available is limited to the accuracy of the original references.

Table 5. Sample output from RCOUT.DAT with isothermal, uniform path

Radial Profiles

Partial Pressures, kPa

J dist,m temp,K CO2 **H2O** CH4 CO 02 N2 FV 1 .5000 .001 320. .001 .001 .001 20.200 80.800 .1000E-07 wall 295.

Total directional radiated energy flux = .136910E+03 Watts/m-2/strad

Spectral Intensity Distribution, Watts/m-2/µm/strad

wavelength	intensity	tau	wavelength	intensity	tau
3.125	.6838E-01	.9887	28.169	.1445E+01	.9984
3.175	.8059E-01	.9888	28.986	.1329E+01	.9984
3.200	.8745E-01	.9888	29.412	.1273E+01	.9984
3.252	.1029E + 00	.9889	30.303	.1165E+01	.9983
3.361	.1417E + 00	.9893	32.258	.9646E+00	.9981
3.419	.1660E+00	.9896	33.333	.8720E+00	.9980
3.448	.1795E+00	.9897	33.898	.8277E + 00	.9979
3.509	.2098E + 00	.9900	35.088	.7430E+00	.9978
3.540	.2266E+00	.9901	35.714	.7026E+00	.9977
3.636	.2852E+00	.9904	37.736	.5893E+00	.9974
3.704	.3318E+00	.9906	39.216	.5204E + 00	.9972
3.738	.3577E + 00	.9907	40.000	.4879E + 00	.9970
3.846	.4468E+00	.9909	42.553	.3979E+00	.9967
3.922	.5170E+00	.9911	44.444	.3442E+00	.9964
3.960	.5558E+00	.9912	45.455	.3191E+00	.9964
4.040	.6413E+00	.9914	47.619	.2726E+00	.9962
4.082	.6884E+00	.9915	48.780	.2511E+00	.9961
4.167	.7919E + 00	.9916	51.282	.2115E+00	.9960
4.211	.8621E+00	.9809	52.632	.1933E+00	.9960
4.301	.9969E + 00	.9746	55.556	.1601E+00	.9960
4.348	.1043E+01	.9907	57.143	.1451E+00	.9960
4.444	.1190E+01	.9922	60.606	.1179E+00	.9961
4.494	.1271E+01	.9922	62.500	.1057E+00	.9961
4.598	.1449E+01	.9910	66.667	.8390E-01	.9963
4.651	.1543E+01	.9920	68.966	.7426E-01	.9964
4.819	.1861E+01	.9925	76.923	.4997E-01	.9969
4.878	.1977E+01	.9928	80.000	.4329E-01	.9970
5.000	.2229E+01	.9930	86.957	.3185E-01	.9975

The effective absorption coef. is .894161E-02/m
The Planck-mean absorption coef. is .673106E-02/m
The wall-incident mean is .632162E-02/m

Table 6. Sample output from RCOUT.OUT with nonhomogeneous input conditions

Radial Profiles

				Partial P	ressures	, kPa			
J	dist,m	temp,K	CO2	H2O	CH4	CO	02	N2	FV
1	.0500	899.	7.070	7.070	.000	.000	.000	86.800	.5550E-07
2	.1000	1158.	10.000	10.000	.000	.000	.000	81.000	.5550E-07
3	.1000	1438.	13.100	13.100	.000	.000	.000	74.700	.5550E-07
4	.1000	1637.	15.400	15.400	.000	.000	.000	70.300	.5550E-07
5	.3000	1770.	16.900	16.900	.000	.000	.000	67.300	.5550E-07
6	.1000	1637.	15.400	15.400	.000	.000	.000	70.300	.5550E-07
7	.1000	1438.	13.100	13.100	.000	.000	.000	74.700	.5550E-07
8	.1000	1158.	10.000	10.000	.000	.000	.000	81.000	.5550E-07
9	.0500	899.	7.070	7.070	.000	.000	.000	86.800	.5550E-07
w	all	0.							

Total directional radiated energy flux = .337731E+05 Watts/m-2/strad

Spectral Intensity Distribution, Watts/m-2/µm/strad

w.l.	intensity	tau	w.1.	intensity	tau	w.1.	intensity	tau	w.1.	intensity	tau
1.005	.4981E+04	.6794	6.061	.1187E+04	.6708	2.198	.5553E+04	.8340	16.000	.1248E+03	.0244
1.010	.5046E+04	.6807	6.154	.9046E+03	.7455	2.210	.5493E+04	.8349	16.129	.1220E+03	.0276
1.015	.5111E+04	.6820	6.250	.8433E+03	.7598	2.222	.5441E+04	.8355	16.260	.1151E+03	.0172
1.020	.5177E+04	.6834	6.349	.8481E+03	.7371	2.235	.5373E+04	.8366	16.393	.1132E+03	.0247
1.026	.5242E+04	.6847	6.452	.1305E+04	.5433	2.247	.5336E+04	.8369	16.529	.1118E+03	.0369
1.031	.5307E+04	.6860	6.557	.1582E+04	.3942	2.260	.5277E+04	.8378	16.667	.1082E+03	.0557
1.036	.5373E+04	.6874	6.667	.1717E+04	.3330	2.273	.5228E+04	.8384	16.807	.1047E+03	.0385
1.042	.5438E+04	.6887	6.780	.1607E+04	.3618	2.286	.5181E+04	.8389	16.949	.1014E+03	.0514
1.047	.5503E+04	.6900	6.897	.1499E+04	.3751	2.299	.5138E+04	.8393	17.094	.9767E+02	.0659
1.053	.5569E+04	.6914	7.018	.1368E+04	.4061	2.312	.5124E+04	.8391	17.241	.9467E+02	.0686
1.058	.5634E+04	.6927	7.143	.1272E+04	.4224	2.326	.5098E+04	.8390	17.391	.9110E+02	.0754
1.064	.5699E+04	.6941	7.273	.1184E+04	.4316	2.339	.5101E+04	.8384	17.544	.8796E+02	.0754
1.070	.5764E+04	.6954	7.407	.1155E+04	.4151	2.353	.5147E+04	.8366	17.699	.8539E+02	.0671
1.075	.5829E+04	.6968	7.547	.1120E+04	.3994	2.367	.5143E+04	.8359	17.857	.8187E+02	.0756
1.081	.5899E+04	.6980	7.692	.1058E+04	.4079	2.381	.5246E+04	.8322	18.018	.7857E + 02	.0791
1.087	.5965E+04	.6993	7.843	.9627E+03	.4337	2.395	.5340E+04	.8289	18.182	.7570E+02	.0785
1.093	.6139E+04	.6980	8.000	.9147E+03	.4411	2.410	.5704E+04	.8177	18.349	.7289E+02	.0783
1.099	.6105E+04	.7016	8.163	.8186E + 03	.4747	2.424	.6139E+04	.8042	18.519	.6994E+02	.0819
1.105	.6174E+04	.7028	8.333	.7143E+03	.5182	2.439	.6892E+04	.7804	18.692	.6737E + 02	.0812
1.111	.6249E+04	.7038	8.511	.5970E+03	.5749	2.454	.8025E+04	.7452	18.868	.6491E+02	.0814
1.117	.6324E+04	.7048	8.696	.4628E+03	.6495	2.469	.9151E+04	.7037	19.048	.6230E+02	.0832
1.124	.6395E+04	.7059	8.889	.3522E + 03	.7129	2.484	.1021E+05	.6586	19.231	.5993E+02	.0828
1.130	.6465E+04	.7070	9.091	.3632E+03	.6725	2.500	.1159E+05	.5996	19.417	.5753E+02	.0831
1.136	.6533E+04	.7082	9.132	.3553E+03	.6729	2.516	.1263E+05	.5503	19.608	.5531E+02	.0821
1.143	.6599E+04	.7095	9.174	.3451E+03	.6762	2.532	.1333E+05	.5110	19.802	.5310E+02	.0820
1.149	.6663E+04	.7107	9.217	.3322E+03	.6828	2.548	.1334E+05	.4961	20.000	.5065E + 02	.0871
1.156	.6728E+04	.7120	9.259	.3162E + 03	.6937	2.564	.1254E+05	.5222	20.202	.4863E+02	.0863
1.163	.6788E+04	.7133	9.302	.2961E+03	.7100	2.581	.1141E+05	.5399	20.408	.4667E+02	.0855
1.170	.6850E+04	.7146	9.346	.2720E+03	.7318	2.597	.1034E + 05	.5943	20.619	.4478E+02	.0848
1.176	.6907E+04	.7160	9.390	.2363E+03	.7667	2.614	.9393E+04	.6261	20.833	.4296E+02	.0842
1.183	.6966E+04	.7173	9.434	.2460E+03	.7515	2.632	.8849E+04	.6607	21.053	.4120E+02	.0836
1.190	.7018E+04	.7189	9.479	.2626E+03	.7272	2.649	.8499E+04	.6840	21.277	.3946E+02	.0833

Table 6. (continued)

w.l.	intensity	tau	w.l.	intensity	tau	w.l.	intensity	tau	w.l.	intensity	tau
1.198	.7058E+04	.7207	9.524	.2703E+03	.7124	2.667	.1935E+05	.1753	21.505	.3778E+02	.0831
1.205	.7102E+04	.7224	9.569	.2737E+03	.7028	2.685	.1964E+05	.1533	21.739	.3616E+02	.0828
1.212	.7146E+04	.7240	9.615	.2737E+03	.6977	2.703	.1936E+05	.1395	21.978	.3460E+02	.0826
1.220	.7193E+04	.7255	9.662	.2711E+03	.6963	2.721	.2019E+05	.1566	22.222	.3310E+02	.0825
1.227	.7230E + 04	.7273	9.709	.2666E+03	.6977	2.740	.2039E+05	.1936	22.472	.3163E+02	.0828
1.235	.7278E + 04	.7288	9.756	.2606E+03	.7011	2.759	.1874E+05	.2632	22.727	.3022E+02	.0831
1.242	.7321E+04	.7303	9.804	.2541E+03	.7051	2.778	.1785E+05	.2504	22.989	.2886E+02	.0834
1.250	.7354E + 04	.7321	9.852	.2470E+03	.7097	2.797	.1662E+05	.2721	23.256	.2755E+02	.0838
1.258	.7400E+04	.7335	9.901	.2397E+03	.7145	2.817	.1709E+05	.2502	23.529	.2628E+02	.0841
1.266	.7443E+04	.7349	9.950	.2322E+03	.7190	2.837	.1683E+05	.2693	23.810	.2505E+02	.0850
1.274	.7486E+04	.7363	10.000	.2248E+03	.7231	2.857	.1693E+05	.2894	24.096	.2387E+02	.0859
1.282	.7532E+04	.7376	10.050	.2182E+03	.7263	2.878	.1642E+05	.3301	24.390	.2273E+02	.0867
1.290	.7571E+04	.7390	10.101	.2114E+03	.7297	2.899	.1557E+05	.3713	24.691	.2163E+02	.0876
1.299	.7639E+04	.7395	10.152	.2043E+03	.7339	2.920	.1452E+05	.4191	25.000	.2058E+02	.0884
1.307	.7687E+04	.7407	10.204	.1964E+03	.7396	2.941	.1332E+05	.4673	25.316	.1956E+02	.0899
1.316	.7770E+04	.7405	10.256	.1873E+03	.7476	2.963	.1220E+05	.5105	25.641	.1858E+02	.0913
1.325	.7909E+04	.7386	10.309	.1777E+03	.7572	2.985	.1111E+05	.5500	25.974	.1763E+02	.0927
1.333	.8095E+04	.7366	10.363	.1658E+03	.7709	3.008	.1001E+05	.5905	26.316	.1673E+02	.0941
1.342	.8524E+04	.7261	10.417	.1550E+03	.7833	3.030	.9034E+04	.6246	26.667	.1586E+02	.0956
1.351	.9011E+04	.7089	10.471	.1643E+03	.7642	3.053	.8281E+04	.6515	27.027	.1502E+02	.0977
1.361	.9320E+04	.6979	10.526	.1701E+03	.7500	3.077	.7399E+04	.6840	27.397	.1422E+02	.0998
1.370	.9217E+04	.7029	10.582	.1744E+03	.7383	3.101	.6549E+04	.7158	27.778	.1345E+02	.1019
1.379	.9073E+04	.7100	10.638	.1766E+03	.7299	3.125	.6023E+04	.7352	28.169	.1271E+02	.1040
1.389	.9044E+04	.7091	10.695	.1771E+03	.7244	3.150	.5463E+04	.7546	28.571	.1200E+02	.1062
1.399	.9281E+04	.7063	10.753	.1762E+03	.7213	3.175	.5021E+04	.7703	28.986	.1132E+02	.1091
1.408	.9447E+04	.7073	10.811	.1742E+03	.7201	3.200	.4556E+04	.7861	29.412	.1066E+02	.1120
1.418	.9644E+04	.7063	10.870	.1723E+03	.7190	3.226	.4112E+04	.8023	29.412	.1004E+02	.1150
1.429	.9643E+04	.7106	10.929	.1697E+03	.7190	3.252	.3598E+04	.8217	30.303	.9439E+01	.1180
1.439	.9622E+04	.7161	10.989	.1666E+03	.7197	3.279	.3519E+04	.8229	30.769	.8867E+01	.1211
1.449	.9534E+04	.7218	11.050	.1633E+03	.7207	3.306	.3149E+04	.8365	31.250	.8320E+01	.1249
1.460	.9385E+04	.7291	11.111	.1600E+03	.7216	3.333	.2972E+04	.8423	31.746	.7798E+01	.1288
1.471	.9231E+04	.7369	11.173	.1593E+03	.7181	3.361	.2764E+04	.8494	32.258	.7300E+01	.1328
1.481	.9111E+04	.7416	11.236	.1587E+03	.7140	3.390	.2625E+04	.8539	32.787	.6825E+01	.1369
1.493	.8975E+04	.7468	11.299	.1584E+03	.7093	3.419	.2462E+04	.8597	33.333	.6373E+01	.1411
1.504	.8866E+04	.7511	11.364	.1802E+03	.6634	3.448	.2357E+04	.8631	33.898	.5938E+01	.1465
1.515	.8706E+04	.7563	11.429	.1820E+03	.6534	3.478	.2232E+04	.8674	34.483	.5525E+01	.1521
1.527	.8591E+04	.7606	11.494	.1866E+03	.6376	3.509	.2101E+04	.8722	35.088	.5133E+01	.1579
1.538	.8457E+04	.7649	11.561	.1876E+03	.6283	3.540	.2002E+04	.8753	35.714	.4760E+01	.1639
1.550	.8350E+04	.7687	11.628	.1898E+03	.6162	3.571		.8781	36.364	.4407E+01	.1701
1.563	.8224E+04	.7726	11.696	.1908E+03	.6063	3.604	.1912E+04 .1799E+04	.8825	37.037	.4075E+01	.1771
1.575	.8150E+04	.7752	11.765	.1925E+03	.5947				37.736		.1843
1.587	.8063E+04	.7780	11.834	.1955E+03	.5794	3.636	.1721E+04	.8851 .8877		.3761E+01 .3464E+01	.1919
1.600	.8000E+04	.7802	11.905	.1996E+03	.5612	3.670	.1639E+04	.8910	38.462 39.216	.3184E+01	.1999
1.613	.7927E+04	.7826	11.976	.2032E+03	.5434	3.704 3.738	.1551E+04	.8934	40.000	.2920E+01	.2081
1.626	.7870E+04	.7846	12.048	.2060E+03	.5255	3.774	.1481E+04 .1413E+04	.8956	40.816	.2673E+01	.2171
1.639	.7814E+04	.7865	12.121	.2076E+03	.5107	3.810	.1368E+04	.8968	41.667	.2441E+01	.2266
1.653	.7758E+04	.7884	12.121	.2078E+03	.4889	3.846	.1313E+04	.8984	42.553	.2224E+01	.2365
1.667	.7706E+04	.7901	12.173	.2144E+03	.4692			.8993	43.478	.2020E+01	.2470
1.681	.7657E+04	.7917	12.346	.2144E+03	.4505	3.883 3.922	.1270E+04 .1229E+04	.9003	44.444	.1829E+01	.2581
1.695	.7615E+04	.7932	12.422	.2205E+03				.9011	45.455	.1651E+01	.2702
1.709	.7593E+04	.7943	12.422	.2258E+03	.4251 .3964	3.960 4.000	.1190E+04	.9011	46.512	.1485E+01	.2830
1.724	.7678E+04	.7932					.1153E+04				
1.724	.7830E+04	.7905	12.579 12.658	.2317E+03 .2313E+03	.3644 .3483	4.040	.1125E+04	.9022	47.619	.1331E+01	.2967 .3114
1.754	.8075E+04	.7849	12.739	.2313E+03	.3228	4.082	.1103E+04	.9019	48.780	.1187E+01	
1.770	.8506E+04	.7743	12.739	.2405E+03	.2819	4.124	.1081E+04	.9017	50.000	.1054E+01	.3272
1.776	.8306E+04	.7574	12.821	.2403E+03	.2608	4.167	.1069E+04	.9007	51.282	.9335E+00	.3428
1.802	.9882E+04	.7363	12.903	.2411E+03	.2261	4.211	.3232E+04	.0002	52.632	.8224E+00	.3595
				.2452E+03		4.255	.2517E+04	.0000	54.054	.7201E+00	.3777
1.818	.1012E+05	.7257	13.072		.2012	4.301	.2324E+04	.0000	55.556	.6262E+00	.3974
1.835	.1005E+05	.7260	13.158	.2471E+03	.1690	4.348	.2347E+04	.0000	57.143	.5402E+00	.4189
1.852	.1026E+05	.7215	13.245	.2469E+03	.1407	4.396	.2874E+04	.0000	58.824	.4672E+00	.4375
1.869	.1073E+05	.7024	13.333	.2444E+03	.1299	4.444	.4123E+04	.0000	60.606	.4009E+00	.4576
1.887	.1003E+05	.7319	13.423	.2432E+03	.0938	4.494	.5932E+04	.0000	62.500	.3410E+00	.4795
1.905	.9225E+04	.7506	13.514	.2388E+03	.0659	4.545	.7919E+04	.0002	64.516	.2868E+00	.5037

Table 6. (continued)

w.l.	intensity	tau	w.l.	intensity	tau	w.l.	intensity	tau	w.l.	intensity	tau	
1.923	.9061E+04	.7501	13.605	.2328E+03	.0669	4.598	.9343E+04	.0099	66.667	.2381E+00	.5305	
1.942	.9682E+04	.7339	13.699	.2282E+03	.0571	4.651	.8932E+04	.1075	68,966	.1997E+00	.5506	
1.961	.9963E+04	.7259	13.793	.2209E+03	.0302	4.706	.6495E+04	.3408	71.429	.1656E+00	.5725	
1.980	.1139E+05	.7044	13.889	.2030E+03	.0107	4.762	.3933E+04	.5764	74.074	.1355E+00	.5965	
2.000	.1204E+05	.6812	13.986	.1979E+03	.0115	4.819	.2442E+04	.7117	76.923	.1091E+00	.6231	
2.010	.1100E+05	.7105	14.085	.1952E+03	.0140	4.878	.1865E+04	.7577	80.000	.8594E-01	.6530	
2.020	.1202E+05	.6897	14.184	.1895E+03	.0130	4.938	.1728E+04	.7601	83.333	.6909E-01	.6727	
2.030	.1149E+05	.7135	14.286	.1819E+03	.0099	5,000	.1763E+04	.7443	86.957	.5464E-01	.6941	
2.041	.1143E+05	.7123	14.388	.1721E+03	.0062	5.063	.1802E+04	.7279	90.909	.4235E-01	.7177	
2.051	.1033E+05	.7317	14.493	.1603E+03	.0033	5.128	.1800E+04	.7186	95.238	.3199E-01	.7439	
2.062	.9567E+04	.7486	14.599	.1542E+03	.0033	5.195	.1942E+04	.6779	100.000	.2334E-01	.7735	
2.073	.1035E+05	.7321	14.706	.1537E+03	.0036	5.263	.1975E+04	.6584	105.263	.1746E-01	.7924	
2.083	.8910E+04	.7692	14.815	.1351E+03	.0010	5.333	.1997E+04	.6395	111.111	.1270E-01	.8129	
2.094	.7131E+04	.8055	14.925	.1142E+03	.0000	5,405	.2040E+04	.6082	117.647	.8894E-02	.8355	
2.105	.6487E+04	.8176	15.038	.1234E+03	.0009	5.479	.2020E+04	.5972	125.000	.5920E-02	.8605	
2.116	.6219E+04	.8225	15.152	.1391E+03	.0039	5.556	.1971E+04	.5800	133.333	.3649E-02	.8886	
2.128	.6085E+04	.8249	15.267	.1331E+03	.0029	5.634	.1925E+04	.5718	142.857	.2470E-02	.9007	
2.139	.5974E+04	.8269	15.385	.1296E+03	.0042	5.714	.1875E+04	.5617	153.846	.1600E-02	.9135	
2.151	.5854E+04	.8291	15.504	.1320E+03	.0081	5.797	.1814E+04	.5491	166.667	.9796E-03	.9270	
2.162	.5769E+04	.8305	15.625	.1320E+03	.0123	5.882	.1628E+04	.5807	181.818	.5543E-03	.9414	
2.174	.5685E+04	.8319	15.748	.1290E+03	.0134	5.970	.1368E+04	.6365	200,000	.2782E-03	.9568	
2.186	.5630E+04	.8327	15.873	.1267E+03	.0174							

V. GLOSSARY

The glossary lists the major program parameters in alphabetical order, and gives the subroutine where they are first introduced. Parameters which are common to several subroutines are so indicated.

AB(J) spectral absorption coefficient through element J (RADCAL)
AC(J) collision-broadened fine structure parameter in element J (RADCAL)

AD(J) doppler-broadened fine structure parameter in element J (RADCAL)

AIWALL wall temperature weighted mean absorption coefficient in uniform medium

(RADCAL)

ALPHA integrated band intensity (CO2, CO)

AMBDA(KK) wavelength (RADCAL)

AMEAN effective absorption coefficient in uniform medium (RADCAL)

APO Planck-mean absorption coefficient in uniform medium (RADCAL)

DD(J) length of Jth element (COMMON)

DINV inverse line spacing parameter (CO2, H2O, CO, FUEL)

GAMMA(I,7) line-broadening parameter of species I by individual gases (RADCAL, BD3)

GDDINV line-width to line-spacing ratio for Doppler broadening (RADCAL)

GDINV line-width to line-spacing ratio (RADCAL)

I species index (COMMON)
J element index (COMMON)
KK spectral index (COMMON)

NOM number of wavenumber intervals (600 maximum) (COMMON)

NPT number of spatial elements (50 maximum) (COMMON)

NPRINT controls output (COMMON)
OMEGA wavenumber (COMMON)

maximum wavenumber (COMMON) **OMMAX OMMIN** minimum wavenumber (COMMON) P(1,J)partial pressure of CO₂ (COMMON) P(2,J)partial pressure of H₂O (COMMON) partial pressure of CH₄ (COMMON) P(3,J)P(4,J)partial pressure of CO (COMMON) partial pressure of O₂ (COMMON) P(5,J)P(6,J)partial pressure of N₂ (COMMON)

PLANCK(A,B) Planck blackbody distribution function at temperature A and wavelength B

Q total radiant intensity leaving path (RADCAL)
QW(KK) spectral intensity leaving path (RADCAL)

RIK imaginary part of the index of refraction for soot (POD)

RIN real part of the index of refraction for soot (POD)
RSL long wavelength soot radiance (RADCAL)
RSS short wavelength soot radiance (RADCAL)

RSS short wavelength soot radiance (RADCAL) SDWEAK spectral absorption coefficient (COMMON)

SD(L,K) tabulated values of the absorption coefficient for the L th temperature of the K th wavenumber of water vapor (BD1, BD2)

SD7(L,K) tabulated values of the absorption coefficient for the L th temperature of the K

th wavenumber of the 7.7 μ m band of CH₄ (BD3)

SD15(L,K) tabulated values of the absorption coefficient for the L th temperature of the K

th wavenumber of the 15 μm band of CO₂ (BD3)

SPECIE(I) if zero, particular species is absent (COMMON)

T(J) temperature of gas (COMMON)

TAU(J) spectral transmittance through element J (RADCAL)

TAUS(J) spectral transmittance through soot particles up to element J (RADCAL)

TTAU(K) spectral transmittance through entire path (RADCAL)

TWALL far wall temperature (COMMON)

U(I,J) pressure-pathlength of species I in element J (RADCAL)
UK pressure-pathlength times absorption coefficient (RADCAL)

W(J) volume fraction of soot (RADCAL)

X(I,J) optical depth of species I in element J (RADCAL)

XC optical depth for pure collision curve-of-growth (RADCAL)
XD optical depth for pure doppler curve-of-growth (RADCAL)

XPART(J) particle optical depth in element J (COMMON) XSTAR(J) optical depth of species in the weak-line limit

XTOT(J) combined optical depth in element J of all gases and soot (RADCAL)

VI. REFERENCES

Bhattacharjee, S. and Grosshandler, W., 1989, "Effect of Radiative Heat Transfer on Combustion Chamber Flows," *Comb. Flame* 77, pp. 347-358.

Brosmer, M. and Tien, C., 1985, J. Quant. Spectrosc. Radiat. Transfer 33, 521.

Dalzell, W. and Sarofim, A., 1969, "Optical Constants of Soot and their Application to Heat Flux Calculations," J. Heat Transfer 91, 100.

Goody, R., 1964, Atmospheric Radiation I, Theoretical Basis, Oxford at the Clarendon Press.

Gray, L. and Penner, S., 1965, "Approximate Band Absorption Calculations for Methane," J. Quant. Spectrosc. Radiat. Transfer 5, 611.

Grosshandler, W., 1976, "A Study of a Model Furnace Burning Methanol and a Methanol/Coal Slurry," PhD thesis, Department of Mechanical Engineering, University of California, Berkeley.

Grosshandler, W., 1979, "Radiation from Nonhomogeneous Fires," FMRC J.I. 0A0E6.BU-4, Factory Mutual Research Corporation, September.

Grosshandler, W., 1980, "Radiative Heat Transfer in Nonhomogeneous Gases: A Simplified Approach," *Int. J. Heat and Mass Transfer 23*, 1447-1459.

Grosshandler, W. and Modak, A., 1981, "Radiation from Nonhomogeneous Combustion Products," *Eighteenth Symposium (International) on Combustion*, The Combustion Institute, pp. 689-699.

Grosshandler, W. and Nguyen, H., 1985, "Application of the Total Transmittance Nonhomogeneous Radiation Model to Methane Combustion," J. Heat Transfer 107, 445-450.

Grosshandler, W. and Thurlow, E., 1992, "Generalized State-property Relations for Nonluminous Flame Absorption Coefficients," J. Heat Transfer 114, 243-249.

Hottel, H., 1954, in *Heat Transmission*, W.H. McAdams (ed.), 3rd edition, McGraw-Hill, New York.

Leckner, B., 1971, "The Spectral and Total Emissivity of Carbon Dioxide," Combustion and Flame 17, 27-44.

Lee, R. and Happel, J., 1964, "Thermal Radiation of Methane Gas," *Ind. Eng. Chem. Fundamentals 3*, 167-176.

Ludwig, C., Malkmus, W., Reardon, J., and Thomson, J., 1973, Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080.

Malkmus, W., 1963a, "Infrared Emissivity of Carbon Dioxide (2.7- μ Band)," General Dynamics/Astronautics AE 63-0047.

Malkmus, W., 1963b, "Infrared Emissivity of Carbon Dioxide (4.3- μ Band)," J. Opt. Soc. America 53, 951.

Malkmus, W. and Thomson, A., 1961, "Infrared Emissivity of Diatomic Gases for the Anharmonic Vibrating-rotator Model," J. Quant. Spectrosc. and Radiat. Transfer. 2, 17.

Siegel, R. and Howell, J., 1981, *Thermal Radiation Heat Transfer*, Hemisphere Publishing Corp., New York.

Vincent-Giesse, J., 1955, J. Ann. Phys. 10, 693.

VII. APPENDIX

A. Typical data input file, RC.DAT

```
1
36.58 306. .005 .0 .0 .0 .2 .795 .0
0. 400. 8000.
5
.30 1770. .1667 .1667 .0 .0 .0 .666 0.
.10 1637. .1520 .1520 .0 .0 .0 .696 0.
.10 1438. .1300 .1300 .0 .0 .0 .740 0.
.10 1158. .0992 .0992 .0 .0 .0 .802 0.
.05 899. .0705 .0705 .0 .0 .0 .859 0.
0. 50. 10000.
```

Data input file for RADCAL

line 1: number of homogeneous elements, n

line 2: pathlength (m), temperature (K), CO2 (atm), H2O, CH4, CO, O2, N2, fv

lines 3 through n+1: same as line 2 for the rest of the elements

line n+2: wall temperature (K), minimum wavenumber (cm-1), maximum wavenumber

line n+3: 0, or the number of homogeneous elements in the next case

B. Listing of RADCAL

RCPART1.FOR

```
C
   PROGRAM RADCAL (11/92)
C
C
C CONTROLLING PROGRAM FOR SUBROUTINE "RADCAL", A NARROW-BAND
   MODEL FOR CALCULATING SPECTRAL INTENSITY (W/M-2/SR/MICRON) AND
   SPECTRAL TRANSMITTANCE VERSUS WAVELENGTH (MICRONS) IN A NONISO-
   THERMAL, VARIABLE COMPOSITION MIXTURE OF CO2, H2O, CO, N2, O2,
C CH4, AND SOOT. FOR A HOMOGENEOUS PATH, THE PROGRAM ALSO COMPUTES
C THE PLANCK-MEAN ABSORPTION COEF., APO, THE INCIDENT-MEAN ABSORPTION
С
   COEFFICIENT, AIWALL, AND THE EFFECTIVE-MEAN ABSORPTION COEFFICIENT,
   AMEAN, ALL IN UNITS OF INVERSE METERS.
C
C
   INPUT PARAMETERS:
C
     NPT=NUMBER OF HOMOGENEOUS ELEMENTS
C
      DD(J)=THICKNESS OF J TH ELEMENT, M
      T(J)=TEMPERATURE OF J TH ELEMENT, K.
С
          P(I,J) = PARTIAL PRESSURE OF GASEOUS COMPONENTS, kPa:
C
          I GASEOUS SPECIES
          1
                CO<sub>2</sub>
С
          2
                H2O
С
           3
                CH4
```

```
C
            5
                 \Omega^2
C
                 N2
       W(J) = SOOT VOLUME FRACTION OF J TH ELEMENT
C
       OMMIN = MINIMUM WAVE NUMBER IN SPECTRUM, CM-1.
C
C
       OMMAX = MAXIMUM WAVE NUMBER IN SPECTRUM, CM-1.
C
C
   COMMON/CPART/W(50), XPART(50), T(50), DD(50), NPT
   COMMON/CMAIN/OMMIN,OMMAX,NOM,TWALL,P(6,50),SPECIE(5),NPRINT
C
   DATA ARE READ INTO UNIT 5 FROM DATA FILE "RC.DAT".
C
   OPEN (5, FILE='RC.DAT')
   OPEN (1, FILE = 'RCOUT.DAT')
C
40
   CONTINUE
   READ(5,*)NPT
   IF(NPT.EO.0)GO TO 3000
   SPECIE(1) = 0.
   SPECIE(2) = 0.
   SPECIE(3) = 0.
   SPECIE(4) = 0.
   SPECIE(5) = 0.
   DO 50 J=1,NPT
   READ(5,*)DD(J),T(J),(P(I,J),1=1,6),W(J)
   DO 48 I=1.6
   P(I,J) = P(I,J)/101.
   SPECIE(1) = P(1,J) + SPECIE(1)
   SPECIE(2) = P(2,J) + SPECIE(2)
   SPECIE(3) = P(3,J) + SPECIE(3)
   SPECIE(4) = P(4,J) + SPECIE(4)
   SPECIE(5) = W(J) + SPECIE(5)
50 CONTINUE
   READ(5,*)TWALL,OMMIN,OMMAX
   IF(OMMAX.LT.1100.)GO TO 101
   IF(OMMIN.GT.5000.)GO TO 102
   IF(OMMIN.LT.1100..AND.OMMAX.GT.5000.)GOTO 103
   IF(OMMIN.LT.1100.)GO TO 104
   IF(OMMAX.GT.5000.)GO TO 105
   NOM=IFIX((OMMAX-OMMIN)/25.)
   GO TO 106
101 NOM=IFIX((OMMAX-OMMIN)/5.)
   GO TO 106
102 NOM=IFIX((OMMAX-OMMIN)/50.)
103 NOM=IFIX((1100.-OMMIN)/5.)+IFIX((5000.-1100.)/25.)
          +IFIX((OMMAX-5000.)/50.)
   GO TO 106
104 NOM=IFIX((1100.-OMMIN)/5.)+IFIX((OMMAX-1100.)/25.)
105 NOM=IFIX((5000.-OMMIN)/25.)+IFIX((OMMAX-5000.)/50.)
106 NPRINT=1
   CALL RADCAL
   GO TO 40
3000 CONTINUE
   STOP
   END
C
C
   SUBROUTINE RADCAL
   DOUBLE PRECISION SDWEAK, GDINV, GDDINV, XC, AOM, Q, QW(600), TTAU(600),
                      XTOT(50), XT(600), XSTAR(50), X(4,50), UK, TAU(50)
   COMMON/CMAIN/OMMIN,OMMAX,NOM,TWALL,P(6,50),SPECIE(5),NPRINT
   COMMON/CPARAM/GAMMA(4,7)
   COMMON/CPART/W(50), XPART(50), T(50), DD(50), NPT
   DIMENSION U(4,50), AC(50), AD(50), GC(4,50), AMBDA(600), TAUS(50),
                  AB(600), PKPA(6)
```

```
C
C [NOTE: THE TOTAL INTENSITY CALCULATED IS THAT WHICH LEAVES INTERVAL J=1.
C P(I,J) IS PARTIAL PRESSURE, ATM, OF SPECIES 1 IN INTERVAL J.
C 1=1,2,3,4,5, OR 6 IMPLIES SPECIES IS CO2, H2O, CH4, CO, O2, OR N2, RESP.]
   DOM = 5.0
   OMEGA = OMMIN-DOM
   NM=NOM-1
C
    LOOP 1000 COMPUTES EACH SPECTRAL CONTRIBUTION
\mathbf{C}
   DO 1000 KK = 1, NOM
   OMEGA = OMEGA + DOM
   IF(OMEGA.LE.1100.)GO TO 109
   OMEGA = OMEGA + 20.
   IF(OMEGA.LE.5000.)GO TO 109
   OMEGA = OMEGA +25.
109 AMBDA(KK)=10000./OMEGA
   ABGAS=0.
C
       LOOP 200 COMPUTES THE CONTRIBUTION OF EACH SPECIES TO TAU
C
           ***********
C
   DO 200 1=1,4
C
   IF SPECIE(I) IS SET TO 0., THAT PARTICULAR RADIATING SPECIES IS
    NOT PRESENT. THE SPECIES CONSIDERED ARE
C
C
       I SPECIES
C
           CO2
C
       2
           H20
C
       3
           CH4
C
           CO
           PARTICULATES
C
   IF(SPECIE(I).EQ.0.) GO TO 200
C
          LOOP 100 IS FOR EACH ELEMENT ALONG PATH
C
C
          *************************
   DO 100 J=1,NPT
    (CALCULATION PROCEEDS IN ACCORDANCE WITH THE SLG MODEL, TABLE 5-18
C
    IN NASA SP-3080.)
   IF(KK.GT.1) GO TO 107
   U(I,J) = 273./T(J)*P(I,J)*100.*DD(J)
   GC(I,J) = 0.
   PTOT=0.
   DO 105 II=1,6
   PTOT = P(II,J) + PTOT
105 GC(I,J) = GC(I,J) + GAMMA(I,II) *P(II,J) *(273./T(J)) **.5
   GC(I,J) = GC(I,J) + GAMMA(I,7)*P(I,J)*273./T(J)
107 IF(P(I,J).EQ.0.) GO TO 121
   TEMP = T(J)
   GO TO(101,102,103,104),I
101 CALL CO2(OMEGA, TEMP, GC(1, J), SDWEAK, GDINV, GDDINV)
   GO TO 108
102 CALL H2O(OMEGA, TEMP, GC(2, J), SDWEAK, GDINV, GDDINV)
   GO TO 108
103 CONTINUE
    CALL FUEL(OMEGA, TEMP, P(3, J), PTOT, GC(3, J), SDWEAK, GDINV, GDDINV)
   GO TO 108
104 CONTINUE
    CALL CO(OMEGA, TEMP, GC(4, J), SDWEAK, GDINV, GDDINV)
108 UK=SDWEAK*U(I,J)
    IF(J.EQ.1) GO TO 110
   GKD=UK*GDINV
    GKDD=UK*GDDINV
   XSTAR(J) = XSTAR(J-1) + UK
    AD(J) = (XSTAR(J-1)*AD(J-1) + GKDD)/XSTAR(J)
    AC(J) = (XSTAR(J-1)*AC(J-1)+GKD)/XSTAR(J)
    GO TO 115
110 XSTAR(1) = UK + 1.D-34
```

```
ABGAS = UK/DD(1) + ABGAS
    AD(1)=GDDINV
   AC(1)=GDINV
115 IF(XSTAR(J).LT.1.E-6) GO TO 125
   XD=1.7*AD(J)*(DLOG(1.+(XSTAR(J)/1.7/AD(J))**2))**.5
   YD=1.-(XD/XSTAR(J))**2
   XC = XSTAR(J)/(1. + XSTAR(J)/4./AC(J))**.5
C
C THE FOLLOWING LOOP COMPUTES THE OPTICAL THICKNESS, XC, FOR METHANE USING
C THE GODSON EQUATION AND AN APPROXIMATION TO THE LADENBERG-REICHE
  FUNCTION AS RECOMMENDED BY BROSMER AND TIEN (JQSRT 33,P 521). THE
C
  ERROR FUNCTION IS FOUND FROM ITS SERIES EXPANSION.
C
    IF(I.NE.3.) GO TO 118
   IF(XC.GT.10.)GO TO 118
   AOM=XC
   XX = .5*3.141593**.5*XC
   IF(XX.LE.3.)GO TO 111
   AOM = 1.-EXP(-XX**2)/(3.141593**.5*XX)
   GO TO 117
111 ENN=1.
    DO 116 N=1,30
   ENN = ENN*N
   MM = 2*N + 1
    ARG=1.128379*(-1.)**N*((.88622693*XC)**MM)/(MM*ENN)
   ARGNEW=ARG+AOM
C IF(ABS(ARG/ARGNEW).LT..000001)N=30
116 AOM=ARGNEW
117 IF(AOM.GE.1.)AOM = .9999999
   XC=-DLOG(1.-AOM)
\mathbf{C}
C
118 YC=1.-(XC/XSTAR(J))**2
    Y = 1./YC**2+1./YD**2-1.
   X(I,J) = XSTAR(J)*((1.-(Y**(-.5)))**.5)
   GO TO 100
121 IF(J.GT.1) GO TO 123
   XSTAR(1) = 1.D-34
    AC(1)=1.
   AD(1) = 1.
   GO TO 125
123 XSTAR(J) = XSTAR(J-1)
   AC(J) = AC(J-1)
    AD(J) = AD(J-1)
125 X(I,J) = XSTAR(J)
100 CONTINUE
\mathbf{C}
C
200 CONTINUE
C
C DETERMINE OPTICAL DEPTH OF SOOT
\mathbf{C}
    IF(SPECIE(5).EQ.0.) GO TO 250
   CALL POD(OMEGA)
   GO TO 260
250 DO 255 J=1.NPT
255 XPART(J) = 0.
260 CONTINUE
   AB(KK) = ABGAS + XPART(1)/DD(1)
C
    EVALUATE THE COMBINED SPECTRAL TRANSMITTANCE AND RADIANCE
\mathbf{C}
    DO 500 J=1,NPT
   XTOT(J) = 0.
    DO 300 I=1,4
    IF(SPECIE(I).EQ.0.) X(I,J)=0.
300 XTOT(J) = X(I,J) + XTOT(J)
```

```
XTOT(J) = XTOT(J) + XPART(J)
   IF(XTOT(J).GE.99.) GO TO 305
   TAU(J) = DEXP(-XTOT(J))
   GO TO 310
305 TAU(J) = 0.
310 IF(J.EQ.1) GO TO 510
   QW(KK) = QW(KK) - (TAU(J) - TAU(J-1)) + PLANCK(T(J), AMBDA(KK))
   GO TO 500
510 QW(KK) = -(TAU(1)-1.)*PLANCK(T(1),AMBDA(KK))
500 CONTINUE
   XT(KK) = XTOT(NPT)
   TTAU(KK) = TAU(NPT)
   QW(KK) = QW(KK) + TTAU(KK) + PLANCK(TWALL, AMBDA(KK))
1000 CONTINUE
C
C INTEGRATE THE RADIANCE OVER THE SPECTRUM
C
   Q = QW(1)*(AMBDA(1)-AMBDA(2))
   DO 1100 KK = 2.NM
1100 Q=Q+QW(KK)*(AMBDA(KK-1)-AMBDA(KK+1))/2.
   Q = Q + QW(NOM)*(AMBDA(NOM-1)-AMBDA(NOM))
C
C DETERMINE SOOT RADIANCE FOR SHORT AND LONG WAVELENGTHS.
C
   RSL=0.
   RSS=0.
   ABLONG=0.
   ABSHRT=0.
   ABIL=0.
   ABIS=0.
   IF(SPECIE(5).EQ.0..AND.TWALL.EQ.0.)GOTO 1090
   KMAX = OMMIN/5*5
   DO 1040 KK=5,KMAX,5
   OMEGA = FLOAT(KK)
   WL=10000./OMEGA
   DAMBDA = 10000./(OMEGA-2.5)-10000./(OMEGA+2.5)
   CALL POD(OMEGA)
   DO 1020 J=1,NPT
   IF(XPART(J).GE.33.) GO TO 1010
   TAUS(J) = EXP(-XPART(J))
   GO TO 1012
1010 TAUS(J) = 0.
1012 IF(J.EQ.1)GO TO 1021
   RSL=RSL-(TAUS(J)-TAUS(J-1))*PLANCK(T(J),WL)*DAMBDA
1021 RSL=RSL-(TAUS(1)-1.)*PLANCK(T(1),WL)*DAMBDA
   ABLONG=ABLONG+XPART(1)/DD(1)*PLANCK(T(1),WL)*DAMBDA*5.5411E7
            /(T(1))**4
   ABIL=ABIL+XPART(1)/DD(1)*PLANCK(TWALL,WL)*DAMBDA*5.5411E7
           /(TWALL+.000001)**4
1020 CONTINUE
   RSL=RSL+TAUS(NPT)*PLANCK(TWALL,WL)*DAMBDA
1040 CONTINUE
   KMIN=OMMAX/100*100
   DO 1080 KK = KMIN, 25000, 100
   OMEGA = FLOAT(KK)
   WL=10000./OMEGA
   DAMBDA = 10000./(OMEGA-50.)-10000./(OMEGA+50.)
   CALL POD(OMEGA)
   DO 1070 J=1.NPT
   IF(XPART(J).GE.33.) GO TO 1050
   TAUS(J) = EXP(-XPART(J))
   GO TO 1060
1050 \text{ TAUS(J)} = 0.
1060 IF(J.EQ.1)GO TO 1071
    RSS = RSS-(TAUS(J)-TAUS(J-1))*PLANCK(T(J),WL)*DAMBDA
    GO TO 1070
```

```
1071 RSS=RSS-(TAUS(1)-1.)*PLANCK(T(1),WL)*DAMBDA
   ABSHRT = ABSHRT + XPART(1)/DD(1)*PLANCK(T(1),WL)*DAMBDA*5.5411E7
            /(T(1))**4
   ABIS = ABIS + XPART(1)/DD(1)*PLANCK(TWALL,WL)*DAMBDA*5.5411E7
           /(TWALL+.000001)**4
   2
1070 CONTINUE
    RSS=RSS+TAUS(NPT)*PLANCK(TWALL,WL)*DAMBDA
1080 CONTINUE
1090 CONTINUE
    O=O+RSS+RSL
C
C
    IF(NPRINT.EQ.1) GO TO 2300
    IF(NPRINT.EQ.0)GO TO 3000
   GO TO 2400
2300 WRITE(1,4)
   NPRINT=2
    DO 2000 J=1,NPT
    DO 2001 1=1,6
2001 PKPA(I) = P(I,J)*101.
2000 WRITE(1,6)J,DD(J),T(J),(PKPA(I),1=1,6),W(J)
    WRITE(1,7)TWALL
2400 WRITE(1,8) Q
2401 WRITE(1,10)
   LMAX = NOM/2
    IF(LMAX*2.LT.NOM) LMAX=LMAX+1
    DO 2100 L=1,LMAX
   K=NOM-LMAX+1-L
   J=K+LMAX
    IF(K.LT.1) K=1
2100 WRITE(1,12)AMBDA(J),QW(J),TTAU(J),AMBDA(K),QW(K),TTAU(K)
3000 CONTINUE
C
C
           THE FOLLOWING SECTION COMPUTES THE MEAN ABSORPTION COEFFICIENTS
C
           IF THE SYSTEM IS HOMOGENEOUS (IE., NPT=1).
C
    IF(NPT.NE.1)GO TO 6109
   NM = NOM-1
   ATWALL=AB(1)*(AMBDA(1)-AMBDA(2))/2.*PLANCK(TWALL,AMBDA(1))
   AP0 = AB(1)*(AMBDA(1)-AMBDA(2))/2.*PLANCK(T(1),AMBDA(1))
    DO 6100 KK=2,NM
   AIWALL = AIWALL + AB(KK)*(AMBDA(KK-1)-AMBDA(KK+1))/2.
            *PLANCK(TWALL, AMBDA(KK))
   AP0 = AP0 + AB(KK)*(AMBDA(KK-1)-AMBDA(KK+1))/2.
          *PLANCK(T(1), AMBDA(KK))
6100 CONTINUE
   AP0 = (AP0 + AB(NOM)*(AMBDA(NM)-AMBDA(NOM))/2.
          *PLANCK(T(1), AMBDA(NOM))) *5.5411E7/T(1) **4 + ABSHRT + ABLONG
   IF(TWALL.EQ.T(1).OR.TWALL.EQ.0.) GO TO 6105
   ATWALL=(ATWALL+AB(NOM)*(AMBDA(NM)-AMBDA(NOM))/2.*
            PLANCK(TWALL, AMBDA(NOM)))*5.5411E7/TWALL**4
   AMEAN = -1./DD(1)*DLOG((5.5411E7*Q-T(1)**4)/(TWALL**4-T(1)**4))
   GO TO 6107
6105 ATWALL=APO
   AMEAN = -1./DD(1)*DLOG((5.5411E7*Q-T(1)**4)/(-T(1)**4))
6107 WRITE(1,14) AMEAN, APO, AIWALL
C
C
4
   FORMAT(/,'
                                Radial Profiles'/
   2'
                    Partial Pressures, kPa'/
   3' J dist,m temp,K CO2 H2O
                                  CH4
                                         CO
                                                02
                                                     N2
        FV')
   FORMAT(1X,12,F9.4,F7.0,6(F8.3),1X,E10.4)
    FORMAT('wall',9X,F6.0)
   FORMAT(/,' Total directional radiated energy flux =',E12.6,
   1' Watts/m-2/strad'//' ')
```

```
10 FORMAT(8X, 'Spectral Intensity Distribution, Watts/m-2/micron/strad
   1',/ 8X,'--
   2',//,2X,'micron',4X,'intensity',6X,'tau',8X,'micron',4X,'intensity
   3',6X,'tau')
12 FORMAT(2(F8.3,3X,E10.4,2X,F8.4,5X))
14 FORMAT(///'The effective absorption coef. is ', E12.6,'/m',/
  2
         'The Planck-mean absorption coef. is ', E12.6,'/m',/
         'The wall-incident mean is ', E12.6,'/m',////)
   3
C
C
6109 CONTINUE
    RETURN
    END
C
    SUBROUTINE CO2(OMEGA, TEMP, GC1, SDWEAK, GDINV, GDDINV)
    COMMON/CCO2/SD15(6,80)
    DOUBLE PRECISION AA, BB, CC, DD, EE, FF, GG, SMINUS, SPLUS, SDWEAK, SDSTRG
   1,DINV,GDINV,GDDINV
    DIMENSION ATOT(3), BCNT(3)
    IF(OMEGA.GT.5725.)GO TO 300
    WM = 44.
    GD = 5.94E-6*OMEGA*(TEMP/(273.*WM))**.5
    IF(OMEGA.GT.4550.)GO TO 500
    IF(OMEGA.GT.3800.)GO TO 300
    IF(OMEGA.GT.3050.)GO TO 100
    IF(OMEGA.GT.2474.)GO TO 300
    IF(OMEGA.GT.1975.)GO TO 100
    IF(OMEGA.GT.1100.)GO TO 300
    IF(OMEGA.GT.880.)GO TO 600
    IF(OMEGA.GT.500.)GO TO 400
    GO TO 300
CONTRIBUTION TO 2.0 MICRON BAND FROM (000)-(041),(000)-(121),AND (000)
C -(201) TRANS.
500 OM1=1354.91
    OM2 = 673.0
    OM3=2396.49
    BCNT(1) = 4860.5
    BCNT(2) = 4983.5
    BCNT(3) = 5109.0
    TO = 300.
    C2 = 1.4388
    BE=0.391635
    COM1=4.*OM2+OM3
    COM2 = OM1 + 2.*OM2 + OM3
    COM3 = 2.*OM1 + OM3
    ATOT(3) = 0.426*TO/TEMP*(1.-EXP(-C2*COM3/TEMP/(1.-EXP(-C2*OM1/TEMP)))
   1))**2/(1.-EXP(-C2*OM3/TEMP))
    ATOT(2) = 1.01*TO/TEMP*(1.-EXP(-C2*COM2/TEMP))/(1.-EXP(-C2*OM1/TEMP))
   1)/(1.-EXP(-C2*OM2/TEMP))**2/(1.-EXP(-C2*OM3/TEMP))
    ATOT(1) = 0.272*TO/TEMP*(1.-EXP(-C2*COM1/TEMP))/(1.-EXP(-C2*OM2/TEMP))
    1))**4/(1.-EXP(-C2*OM3/TEMP))
   SDWEAK=0.0
    DO 510 K=1,3
    SDWEAK=SDWEAK+ATOT(K)*C2/(4.*BE*TEMP)*ABS(OMEGA-BCNT(K))
   1*EXP(-C2/(4.*BE*TEMP)*(OMEGA-BCNT(K))**2)
510 CONTINUE
    DINV = 1./(4.*BE)
    GDINV = GC1*DINV
    GDDINV=GD*DINV
C***EXPRESS S/D AT STP, AS IS IN NASA SP-3080
    SDWEAK=SDWEAK*TEMP/273.
    RETURN
100 CONTINUE
    B = .391635
    A = .0030875
```

```
X13 = -19.37
   X23 = -12.53
   X33 = -12.63
   OM1 = 1354.91
   OM2 = 673
   OM3 = 2396.49
   T0 = 300.
   C2 = 1.4388
   XBAR = .5*(.5*X13+X23)
   OM12 = .5*(.5*OM1 + OM2)
   SDWEAK = 0.
   SDSTRG=0.
   IF(OMEGA.LE.2395.)GO TO 200
CALCULATE ABSORPTION COEF. AND LINE SPACING PARAMETER FOR 2.7 MICRON BAND
   L=1
CONTRIBUTION TO 2.7 MICRON BAND FROM (000)-(021) AND (010)-(031) TRANS.
   ALPHA = 28.5
   OMPRIM = 2.*OM2 + OM3
120 AA = ALPHA *B*C2/(A*(1.-EXP(-OM3*C2/T0))*(1.-EXP(-OM12*C2/T0))**3
   1*(1.+EXP(-OM12*C2/T0))*(1.-EXP(-OMPRIM*C2/T0)))
   BB = (1.-EXP(-C2*OMEGA/TEMP))*(1.-EXP(-C2*OM3/TEMP))*
   1(1.-EXP(-OM12*C2/TEMP))**3*(1.+EXP(-OM12*C2/TEMP))
   2 *(1.-EXP(-C2*OMPRIM/TEMP))
   CC=AA*BB*OMEGA/TEMP*T0/TEMP
   DO 102 J=1.20
   V = FLOAT(J-1)
   IF(J/2*2.EQ.J)G = (V+1.)*(V+3.)/4.
   IF(J/2*2.NE.J)G = (V+2.)*(V+2.)/4.
   VBAR1 = -1. + (V+3.)*(V+4.)/(V+2.)/6.
   IF(J/2*2.EQ.J)VBAR1=-1.+(V+5.)/6.
   DO 101 K=1,10
   V3 = FLOAT(K-1)
   DD = (V3+1)*G*EXP(-(V3*OM3+V*OM12)*C2/TEMP)*(VBAR1+1.)
   GAM = B-A*(V3+1.)
   IF(L.EQ.2)GO TO 125
   OMVV3=3598.-18.*V-47.*V3
   IF(V.EO.0.)OMVV3 = 3613.-47.*V3
   GO TO 130
125 OMVV3=3728,-5.*V-47.*V3
   IF(V.EQ.0.)OMVV3=3715.-47.*V3
130 DELTA = A*(OMEGA-OMVV3)
   IF(GAM*GAM.LE.DELTA)GO TO 102
   D=2.*(GAM*GAM-DELTA)**.5
   OMVBAR = OMVV3*(1.-EXP(-OMVV3*C2/TEMP))
   F1 = GAM-D/2
   F2 = GAM + D/2.
   EE=C2*GAM/(A*A*TEMP)
   UNFLO1 = EE*DELTA*(1.+.5*A/GAM)
   IF(UNFLO1.LE.-78.)GO TO 102
   UNFLO2=EE*2.*GAM*F1
   IF(UNFLO2.GE.78.)GO TO 102
   FF = DEXP(EE*DELTA*(1.+.5*A/GAM))
   SMINUS=CC*DD/OMVBAR*ABS(F1)*FF*DEXP(-EE*2.*GAM*F1)
   UNFLO3=EE*2.*GAM*F2
   IF(UNFLO3.GE.78.)GO TO 160
   SPLUS=CC*DD/OMVBAR*ABS(F2)*FF*DEXP(-EE*2.*GAM*F2)
   GO TO 170
160 SPLUS=0.
170 GG=SDWEAK
   SDWEAK = (SMINUS + SPLUS)/D+SDWEAK
   TEST=(SDWEAK-GG)/SDWEAK
   IF(TEST.LT..0001)GO TO 102
   SDSTRG=(.5*G)**.5*(SMINUS**.5+SPLUS**.5)/D+SDSTRG
101 CONTINUE
102 CONTINUE
   IF(L.EQ.2)GO TO 250
CONTRIBUTION TO 2.7 MICRON BAND FROM (000)-(101) AND (010)-(111) TRANS.
```

```
ALPHA = 42.3
   OMPRIM=OM1+OM3
   L=2
   GO TO 120
CALCULATE ABSORPTION COEF AND LINE SPACING PARAMETER FOR 4.3 MICRON BAND
200 ALPHA = 2700.
   OMPRIM=OM3
   AA = ALPHA *B*C2/(A*(1.-EXP(-OM3*C2/T0))*(1.-EXP(-OM12*C2/T0))**3
   1*(1.+EXP(-OM12*C2/T0))*(1.-EXP(-OMPRIM*C2/T0)))
   BB = (1.-EXP(-C2*OMEGA/TEMP))*(1.-EXP(-C2*OM3/TEMP))*
   1(1.-EXP(-OM12*C2/TEMP))**3*(1.+EXP(-OM12*C2/TEMP))
   2 *(1.-EXP(-C2*OMPRIM/TEMP))
   CC=AA*BB*OMEGA/TEMP*T0/TEMP
   DO 202 J=1,20
   V = FLOAT(J-1)
   IF(J/2*2.EQ.J)G = (V+1.)*(V+3.)/4.
   IF(J/2*2.NE.J)G=(V+2.)*(V+2.)/4.
   DO 201 K=1,10
   V3 = FLOAT(K-1)
   DD = (V3 + 1.)*G*EXP(-(V3*OM3 + V*OM12)*C2/TEMP)
   GAM = B-A*(V3+1.)
   OMVV3=OM3+.5*X13+X23+2.*X33+XBAR*V+2.*X33*V3
   DELTA = A*(OMEGA-OMVV3)
   IF(GAM*GAM.LE.DELTA)GO TO 202
   D=2.*(GAM*GAM-DELTA)**.5
   OMVBAR = OMVV3*(1.-EXP(-OMVV3*C2/TEMP))
   F1 = GAM-D/2
   F2 = GAM + D/2.
   EE = C2*GAM/(A*A*TEMP)
   UNFLO1 = EE*DELTA*(1.+.5*A/GAM)
   IF(UNFLO1.LE.-78.)GO TO 202
   UNFLO2=EE*2.*GAM*F1
   IF(UNFLO2.GE.78.)GO TO 202
   FF=DEXP(EE*DELTA*(1.+.5*A/GAM))
   SMINUS = CC*DD/OMVBAR*ABS(F1)*FF*DEXP(-EE*2.*GAM*F1)
   UNFLO3=EE*2.*GAM*F2
   IF(UNFLO3.GE.78.)GO TO 246
   SPLUS=CC*DD/OMVBAR*ABS(F2)*FF*DEXP(-EE*2.*GAM*F2)
   GO TO 247
246 SPLUS=0.
247 GG=SDWEAK
   SDWEAK = (SMINUS + SPLUS)/D+SDWEAK
   TEST = (SDWEAK-GG)/SDWEAK
   IF(TEST.LT..0001)GO TO 202
   SDSTRG=(.5*G)**.5*(SMINUS**.5+SPLUS**.5)/D+SDSTRG
201 CONTINUE
202 CONTINUE
250 CONTINUE
   IF(SDWEAK.EQ.0.)GO TO 300
   DINV=SDSTRG*SDSTRG/SDWEAK
   GDINV = GC1*DINV
   GDDINV=GD*DINV
C***EXPRESS S/D AT STP, AS IS K IN NASA SP-3080
   SDWEAK = SDWEAK * TEMP/273.
   RETURN
CONTRIBUTION TO 10.0 MICRON BAND FROM (100)-(001) AND (020)-(001) TRANS.
600 OM1=1354.91
   OM2 = 673
   OM3=2396.49
   C2 = 1.4388
   BCNT(1) = 960.8
   BCNT(2) = 1063.6
   OMA = OM3
   OMB = (OM1 + 2.*OM2)/2.
   TO = 300.
   ATOT(1) = 0.0219
   ATOT(2) = 0.0532
```

```
BE=0.391635
   DO 610 K=1,2
   ATOT(K) = TO/TEMP*ATOT(K)*EXP(C2*OMB*(1./TO-1./TEMP))
  1*(1,-EXP(-C2*(OMA-OMB)/TEMP))/(1,-EXP(-C2*OMA/TEMP))
  2/(1.-EXP(-OMB*C2/TEMP))
610 CONTINUE
   SDWEAK=0.
   DO 620 I=1,2
   SDWEAK = SDWEAK + ATOT(I) *C2/(4.*BE*TEMP)*ABS(OMEGA-BCNT(I))
  1*EXP(-C2/(4,*BE*TEMP)*(OMEGA-BCNT(I))**2)
620 CONTINUE
   DINV = 1./4./BE
   GDINV = GC1*DINV
   GDDINV=GD*DINV
C***EXPRESS S/D AT STP, AS IS IN NASA SP-3080
   SDWEAK = SDWEAK * TEMP/273.
   RETURN
CONTRIBUTION TO 15.0 MICRON BAND FROM (000)-(010) TRANS.
400 TTEMP=TEMP
   J = (OMEGA-495.)/5.
   W1 = 495. + 5.*FLOAT(J)
   WW = (OMEGA-W1)/5
   IF(TEMP.GT.2400.)TEMP=2399.99
   IF(TEMP.LT.300.)TEMP=300.
   I = TEMP/300.
   IF((1,GT,2),AND,(TEMP,LT,1200,))GOTO 410
   IF((1.GT.5).AND.(TEMP.LT.2400.))GOTO 420
   T1 = FLOAT(D*300.
   TT = (TEMP-T1)/300.
   IF(1.GT.4)I=I-1
   GO TO 430
410 I=2
   TT = (TEMP-600.)/600.
   GO TO 430
420 1=5
   TT = (TEMP-1800.)/600.
430 TW=TT*WW
   SDWEAK = SD15(1,J)*(1.-TT-WW+TW)+SD15(1+1,J)*(TT-TW)
   1+SD15(I,J+1)*(WW-TW)+SD15(I+1,J+1)*TW
   IF(SDWEAK.EQ.0.)GO TO 300
CALCULATE LINE SPACING PARAMETER FOR 15.0 MICRON BAND
   DINV1=1.2
   DINV2 = 8.0
   DINV3 = 30.0
   TEMP1 = 300.0
   TEMP2 = 550.0
   TEMP3 = 830.0
   DINV = DINV1 *(TEMP-TEMP2) *(TEMP-TEMP3)/(TEMP1-TEMP2)/
   1(TEMP1-TEMP3) + DINV2*(TEMP-TEMP1)*(TEMP-TEMP3)/(TEMP2-TEMP1)
  2/(TEMP2-TEMP3) + DINV3*(TEMP-TEMP1)*(TEMP-TEMP2)/(TEMP3-TEMP1)
  3/(TEMP3-TEMP2)
   GDINV=GC1*DINV
   GDDINV=GD*DINV
   RETURN
300 SDWEAK=0.
   GDINV = 1.
   GDDINV=1.
   RETURN
   END
C
C****
        C
   SUBROUTINE H2O(OMEGA, TEMP, GC2, SDWEAK, GDINV, GDDINV)
   DOUBLE PRECISION SDWEAK, GDINV, GDDINV
   COMMON/CH2O/SD(6,376)
   IF (OMEGA.GE.9300..OR.OMEGA.LT.50.)GOTO 200
   WM=18.
```

```
GD = 5.94E-6*OMEGA*(TEMP/(273.*WM))**.5
   J = (OMEGA-25.)/25.
   TTEMP=TEMP
   IF(TEMP.GE.2500.) TEMP=2499.99
   IF(TEMP.LT.300.) TEMP=300.
   1=TEMP/500, +1
   IF(I,EO,2,AND,TEMP,LT,600,) 1=1
   W1 = 25 + 25 * FLOAT(J)
   WW=(OMEGA-W1)/25.
   IF(I.GT.2) GO TO 75
   IF(I.EQ.1) TT = (TEMP-300.)/300.
   IF(I.EQ.2) TT = (TEMP-600.)/400.
   GO TO 100
75 T1 = FLOAT(I-1)*500.
   TT = (TEMP-T1)/500.
100 TW=TT*WW
   SDWEAK = SD(I,J)*(1.-TT-WW+TW) + SD(I+1,J)*(TT-TW) + SD(I,J+1)*(WW-TW)
  1 + SD(I+1,J+1)*TW
   D=-2.294+.3004E-02*TEMP-.366E-06*TEMP**2
   B=SIN(.0036*OMEGA-8.043)
   DINV = EXP(.7941*B+D)
C DINV = EXP(0.00106*TEMP-1.21)
   GDINV=GC2*DINV
   GDDINV=GD*DINV
   TEMP=TTEMP
   RETURN
200 CONTINUE
   SDWEAK=0.
   GDINV=1.
   GDDINV=1.
   RETURN
   END
C
SUBROUTINE CO(OMEGA, TEMP, GC4, SDWEAK, GDINV, GDDINV)
   DOUBLE PRECISION AA, BB, CC, DD, EE, FF, GG, SMINUS, SPLUS, SDWEAK, SDSTRG
  2,GDINV,GDDINV
   IF(OMEGA.LT.1600.OR.OMEGA.GT.2400.)GO TO 300
   B = 1.93139
   ALPHA = 260.
   A = .017485
   OME=2170.21
   WX = 13.461
   WY = .0308
   OMPRIM = OME-2.*WX + 3.25*WY
   T0 = 300.
   C2 = 1.4388
   WM = 28
   GD=5.94E-6*OMEGA*(TEMP/(273.*WM))**.5
   SDWEAK=1.D-99
   SDSTRG=1.D-99
   AA = ALPHA *B*C2/(A*(1.-EXP(-OMPRIM*C2/T0))**2)
   BB = (1.-EXP(-OMEGA*C2/TEMP))*(1.-EXP(-OMPRIM*C2/TEMP))**2
   CC=AA*BB*OMEGA/TEMP*T0/TEMP
   DO 101 J=1,20
   V = FLOAT(J-1)
   DD = (V+1.)*EXP(-V*OME*C2/TEMP)
   GAM = B-A*(V+1.)
   OMV = OME-2.*(V+1.)*WX + (3.*(V+1.)*(V+1.)+.25)*WY
   DELTA = A*(OMEGA-OMV)
   IF(GAM*GAM.LE.DELTA) GO TO 102
   D=2.*(GAM*GAM-DELTA)**.5
   OMVBAR = OMV*(1.-EXP(-OMV*C2/TEMP))
   F1 = GAM-D/2.
   F2 = GAM + D/2.
   EE=C2*GAM/(A*A*TEMP)
```

```
FF = DEXP(EE*DELTA*(I.+.5*A/GAM))
   SMINUS=CC*DD/OMVBAR*ABS(F1)*FF*DEXP(-EE*2.*GAM*F1)
   SPLUS = CC*DD/OMVBAR*ABS(F2)*FF*DEXP(-EE*2.*GAM*F2)
   GG=SDWEAK
   SDWEAK = (SMINUS + SPLUS)/D+SDWEAK
   TEST = (SDWEAK-GG)/SDWEAK
   IF(TEST.LT..000I) GO TO 102
   SDSTRG=(SMINUS**.5+SPLUS**.5)/D+SDSTRG
101 CONTINUE
102 DINV=SDSTRG*SDSTRG/SDWEAK
   GDINV = GC4*DINV
   GDDINV=GD*DINV
C***EXPRESS S/D AT STP, AS IS K IN NASA SP-3080
   SDWEAK=SDWEAK*TEMP/273.
   RETURN
300 SDWEAK = 0.
   GDINV=1.
   GDDINV=I.
   RETURN
   END
SUBROUTINE POD(OMEGA)
C***POD CALCULATES PARTICLE OPTICAL DEPTH, XPART, OF THE VOLUME
C FRACTION OF SOOT PARTICLES IN GAS CLOUD. RIN AND RIK ARE
C THE REAL AND IMAGINARY PARTS OF THE INDEX OF REFRACTION. THE
C PARTICLES ARE ASSUMED TO BE IN THE RAYLEIGH LIMIT.
   COMMON/CPART/W(50), XPART(50), T(50), DD(50), NPT
   AMBDA = 10000./OMEGA
   RIN = 1.6
   RIK = .5
\mathbf{C}
    FF = 36.*3.1416*RIN*RIK/AMBDA/((RIN*RIN-RIK*RIK+2.)**2+(2.*RIN*RIK)
\mathbf{C}
C
C
   ABSORPTION COEF. IS BASED UPON MEASUREMENTS OF DALZELL AND
   SAROFIM.
   FF=7./AMBDA
   DO 300 J=1,NPT
   ABCO = FF*W(J)*1.E06
   1F(J.EO.1)GO TO 290
   XPART(J) = XPART(J-1) + ABCO*DD(J)
   GO TO 300
290 XPART(1) = ABCO*DD(1)
300 CONTINUE
   RETURN
   END
\mathbf{C}
C*
       *******************************
   SUBROUTINE FUEL(OMEGA, TEMP, PCH4, PTOT, GC3, SDWEAK, GDINV, GDDINV)
   COMMON/CCH4/SD7(3,16),SD3(3,32)
   DOUBLE PRECISION SDWEAK, GDINV, GDDINV
   DIMENSION BCNT(4), ATOT(4)
   IF(OMEGA.GT.5000..OR.OMEGA.LT.I125.)GOTO 100
   P1=3.14I59
   BE = 5.2412
   C2 = 1.4388
   WM = 16.
   GD=5.94E-6*OMEGA*(TEMP/(273.*WM))**.5
   IF(OMEGA.GT.3400.)GO TO 50
   PE=PTOT+.3*PCH4
   IF(OMEGA.GE.2625.)GO TO 200
   IF(OMEGA.GT.I450.)GO TO 100
   GO TO 300
```

```
C CONTRIBUTION TO 2.4 MICRON BAND FROM (0000)-(0110), (0000)-(0011),
  (0000)-(1001), AND (0000)-(0102) TRANS. THE INTEGRATED BAND INTENSITIES
C OF VINCENT-GEISSE (ANNALES DE PHYSIQUE SER.12, V. 10, 1955) HAVE
C BEEN MULTIPLIED BY A FACTOR OF 4 AND THE LINE SPACING IS THAT
C OF V4 FROM GRAY AND PENNER (JQSRT V. 5, 1965).
50 OM1 = 2914.2
   OM2 = 1526.0
   OM3 = 3020.3
   OM4 = 1306.2
   BCNT(1) = 4123.0
   BCNT(2) = 4216.3
   BCNT(3) = 4313.2
   BCNT(4) = 4546.0
   COM1 = OM2 + 2. *OM4
   COM2=OM1+OM4
   COM3 = OM3 + OM4
   COM4 = OM2 + OM3
   ATOT(1) = .64*273./TEMP**(1.-EXP(-C2*COM1/TEMP))/
   2(1.-EXP(-C2*OM2/TEMP))/(1.-EXP(-C2*OM4/TEMP))**2
   ATOT(2) = 17.6*273./TEMP*(1.-EXP(-C2*COM2/TEMP))/
   2(1.-EXP(-C2*OM1/TEMP))/(1.-EXP(-C2*OM4/TEMP))
   ATOT(3) = 14.8*273./TEMP*(1.-EXP(-C2*COM3/TEMP))/
  2(1.-EXP(-C2*OM3/TEMP))/(1.-EXP(-C2*OM4/TEMP))
   ATOT(4) = 5.04*273./TEMP*(1.-EXP(-C2*COM4/TEMP))/
   2(1.-EXP(-C2*OM2/TEMP))/(1.-EXP(-C2*OM3/TEMP))
   DINV=1./5.74
   GDINV=GC3*DINV
   GDDINV=GD*DINV
   SDWEAK=0.0
   DO 51 1=1,4
   SDWEAK=SDWEAK+2.*(OMEGA-BCNT(I))**2*(C2*BE/TEMP)**1.5*ATOT(I)
   2/P1**0.5*DINV**3*EXP(-C2*BE*DINV**2/TEMP*(OMEGA-BCNT(I))**2)
51 CONTINUE
   SDWEAK=SDWEAK*(TEMP/273.)
CONTRIBUTION TO 3.3 MICRON BAND FROM (0000)-(0010) TRANS.
C REFER TO BROSMER AND TIEN, JQSRT V. 33, P. 521
200 CONTINUE
   GDINV = .00734 * PE * (273./TEMP) * * .5 * EXP(1.02 * (TEMP-273.)/273.)
   GDDINV=GD/9.4
   J = (OMEGA-2600.)/25.
   W1 = 2600. + 25. *FLOAT(J)
   SDB = SD3(2,J) + (OMEGA-W1)/25.*(SD3(2,J+1)-SD3(2,J))
   IF(TEMP.GT.600.)GO TO 260
   SDA = SD3(1,J) + (OMEGA-W1)/25.*(SD3(1,J+1)-SD3(1,J))
   SDWEAK = SDA + (TEMP-290.)/310.*(SDB-SDA)
   IF(SDWEAK.LT.0.)SDWEAK=0.
   RETURN
260 SDC=SD3(3,J)+(OMEGA-W1)/25.*(SD3(3,J+1)-SD3(3,J))
   SDWEAK=SDB+(TEMP-600.)/250.*(SDC-SDB)
   IF(SDWEAK.LT.0.)SDWEAK=0.
   RETURN
CONTRIBUTION TO 7.7 MICRON BAND FROM (0000)-(0001) TRANS.
C REFER TO BROSMER AND TIEN, JQSRT V. 33, P. 521.
300 CONTINUE
   GDINV = .0243 * PE * (TEMP/273.) * * .8
   GDDINV=GD/5.1
   J = (OMEGA-1100.)/25.
   W1 = 1100. + 25.*FLOAT(J)
   SDB = SD7(2,J) + (OMEGA-W1)/25.*(SD7(2,J+1)-SD7(2,J))
   IF(TEMP.GT.600.)GO TO 360
   SDA = SD7(1,J) + (OMEGA-W1)/25.*(SD7(1,J+1)-SD7(1,J))
   SDWEAK = SDA + (TEMP-290.)/310.*(SDB-SDA)
   IF(SDWEAK.LT.0.)SDWEAK=0.
```

```
RETURN
360 SDC=SD7(3,J)+(OMEGA-W1)/25.*(SD7(3,J+1)-SD7(3,J))
  SDWEAK = SDB+(TEMP-600.)/250.*(SDC-SDB)
  IF(SDWEAK.LT.0.)SDWEAK=0.
  RETURN
100 SDWEAK=0.0
  GDINV=1.
   GDDINV=1.
   RETURN
   END
C
   FUNCTION PLANCK(A,B)
  COMPUTES BLACKBODY FUNCTION IN UNITS OF W/M-2/MICRON/SR
   C1 = .59544E08
   C2 = 14388.
  IF(A.EQ.0.)GO TO 100
   OVRFLO=C2/A/B
   IF(OVRFLO.GT.38.)GO TO 100
   PLANCK = 2.*C1*(B**(-5))/(EXP(C2/A/B)-1.)
   GO TO 101
100 PLANCK=0.
101 CONTINUE
   RETURN
   END
```

RCPART2.FOR

BLOCK DATA BDI								
COMMON/CH2O/SD(6,376)								
DIMENSION A1(6,8),A2(6,8),A3(6,8),A4(6,8),A5(6,8),A6(6,8),A7(6,8),								
2A8(6,8),A9(6,8),A10(6,8),A11(6,8),A12(6,8),A13(6,8),A14(6,8),								
3A15(6,8),A16(6,8),A17(6,8),A18(6,8),A19(6,8),A20(6,8),A21(6,8)								
EQUIVALENCE(A1(1,1),SD(1,1)),(A2(1,1),SD(1,9)),(A3(1,1),SD(1,17))								
1,(A4(1,1),SD(1,25)),(A5(1,1),SD(1,33)),(A6(1,1),SD(1,41))								
2,(A7(1,1),SD(1,49)),(A8(1,1),SD(1,57)),(A9(1,1),SD(1,65))								
3,(A10(1,1),SD(1,73)),(A11(1,1),SD(1,81)),(A12(1,1),SD(1,89))								
4,(A13(1,1),SD(1,97)),(A14(1,1),SD(1,105)),(A15(1,1),SD(1,113))								
5,(A16(1,1),SD(1,121)),(A17(1,1),SD(1,129)),(A18(1,1),SD(1,137))								
6,(A19(1,1),SD(1,145)),(A20(1,1),SD(1,153)),(A21(1,1),SD(1,161))								
C TEMP,K = 300 600 1000 1500 2000 2500	WAVE NO.							
DATA A1/								
1 .950E+00, .103E+00, .420E-01, .114E-01, .450E-02, .300E-02,	50							
1 .208E+01, .365E+00, .113E+00, .375E-01, .195E-01, .134E-01,	75							
1 .368E+01, .990E+00, .300E+00, .104E+00, .577E-01, .365E-01,	100							
1 .650E+01, .201E+01, .650E+00, .214E+00, .128E+00, .845E-01,	125							
1 .825E+01, .325E+01, .121E+01, .415E+00, .260E+00, .168E+00,	150							
1 .870E+01, .452E+01, .189E+01, .765E+00, .450E+00, .289E+00,	175							
1 .810E+01, .540E+01, .261E+01, .126E+01, .695E+00, .460E+00,	200							
1 .682E+01, .600E+01, .337E+01, .179E+01, .101E+01, .679E+00/	225							
DATA A2/								
1 .493E+01, .622E+01, .407E+01, .230E+01, .135E+01, .935E+00,	250							
1 .316E+01, .592E+01, .456E+01, .281E+01, .172E+01, .122E+01,	275							
1 .199E+01, .528E+01, .479E+01, .328E+01, .213E+01, .149E+01,	300							
1 .113E+01, .450E+01, .484E+01, .361E+01, .249E+01, .179E+01,	325							
1 .585E+00, .370E+01, .471E+01, .383E+01, .284E+01, .208E+01,	350							
1 .293E+00, .289E+01, .443E+01, .394E+01, .312E+01, .237E+01,	375							
1 .138E+00, .205E+01, .400E+01, .396E+01, .330E+01, .260E+01,	400							
1 .620E-01, .143E+01, .347E+01, .388E+01, .341E+01, .280E+01/	425							
DATA A3/								
1 .255E-01, .950E+00, .292E+01, .370E+01, .345E+01, .295E+01,	450							
1 .940E-02, .610E+00, .236E+01, .343E+01, .342E+01, .304E+01,	475							
1 .340E-02, .386E+00, .188E+01, .310E+01, .334E+01, .309E+01,	500							
1 .105E-02, .236E+00, .145E+01, .274E+01, .319E+01, .307E+01,	525							
1 .350E-03, .144E+00, .110E+01, .238E+01, .300E+01, .301E+01,	550							

```
1 .126E-03, .820E-01, .818E+00, .204E+01, .276E+01, .289E+01,
                                                                               575
1 .430E-04, .445E-01, .598E+00, .174E+01, .248E+01, .275E+01,
                                                                               600
1 .150E-04, .242E-01, .427E+00, .145E+01, .222E+01, .260E+01/
                                                                               625
DATA A4/
1.510E-05, .127E-01, .294E+00, .118E+01, .195E+01, .241E+01,
                                                                               650
1 .170E-05, .630E-02, .200E+00, .950E+00, .169E+01, .221E+01,
                                                                               675
1.570E-06, .300E-02, .134E+00, .748E+00, .146E+01, .200E+01,
                                                                               700
1.195E-06, .140E-02, .902E-01, .580E+00, .124E+01, .178E+01,
                                                                               725
1.680E-07, .620E-03, .590E-01, .443E+00, .103E+01, .156E+01,
                                                                               750
1.385E-07, .275E-03, .450E-01, .330E+00, .845E+00, .136E+01,
                                                                               775
1 .670E-07, .113E-03, .355E-01, .242E+00, .695E+00, .117E+01,
                                                                               800
1 .113E-06, .500E-04, .289E-01, .174E+00, .560E+00, .100E+01/
                                                                               825
DATA A5/
1.195E-06, .230E-04, .245E-01, .123E+00, .450E+00, .855E+00,
                                                                               850
1.328E-06, .103E-04, .214E-01, .100E+00, .357E+00, .718E+00,
                                                                               875
1 .560E-06, .460E-05, .189E-01, .830E-01, .278E+00, .595E+00,
                                                                               900
1.950E-06, .205E-05, .174E-01, .730E-01, .239E+00, .492E+00,
                                                                               925
1.160E-05, .140E-05, .166E-01, .665E-01, .211E+00, .405E+00,
                                                                               950
1.275E-05, .350E-05, .165E-01, .630E-01, .195E+00, .352E+00,
                                                                               975
1 .470E-05, .850E-05, .167E-01, .620E-01, .190E+00, .312E+00,
                                                                               1000
1 .810E-05, .215E-04, .175E-01, .630E-01, .191E+00, .289E+00/
                                                                               1025
DATA A6/
1.136E-04, .570E-04, .188E-01, .675E-01, .194E+00, .281E+00,
                                                                               1050
1 .235E-04, .150E-03, .208E-01, .745E-01, .202E+00, .283E+00,
                                                                               1075
1 .400E-04, .380E-03, .233E-01, .865E-01, .223E+00, .314E+00,
                                                                               1100
1.680E-04, .950E-03, .268E-01, .122E+00, .260E+00, .380E+00,
                                                                               1125
1.120E-03, .245E-02, .343E-01, .176E+00, .328E+00, .461E+00,
                                                                               1150
1.200E-03, .620E-02, .638E-01, .251E+00, .411E+00, .511E+00,
                                                                               1175
1 .365E-03, .140E-01, .107E+00, .330E+00, .458E+00, .542E+00,
                                                                               1200
1 .680E-03, .330E-01, .166E+00, .405E+00, .487E+00, .571E+00/
                                                                               1225
DATA A7/
1 .130E-02, .635E-01, .244E+00, .459E+00, .535E+00, .557E+00,
                                                                               1250
1.250E-02, .123E+00, .341E+00, .477E+00, .502E+00, .562E+00,
                                                                               1275
1.500E-02, .212E+00, .407E+00, .547E+00, .531E+00, .514E+00,
                                                                               1300
1 .103E-01, .285E+00, .489E+00, .592E+00, .497E+00, .486E+00,
                                                                               1325
1.219E-01, .328E+00, .491E+00, .558E+00, .489E+00, .485E+00,
                                                                               1350
1.485E-01, .345E+00, .505E+00, .521E+00, .477E+00, .484E+00,
                                                                               1375
1.114E+00, .361E+00, .538E+00, .563E+00, .503E+00, .502E+00,
                                                                               1400
1.249E+00, .460E+00, .621E+00, .624E+00, .538E+00, .538E+00/
                                                                               1425
1.397E+00,.569E+00,.749E+00,.768E+00,.581E+00,.565E+00,
                                                                               1450
1.418E+00, .627E+00, .824E+00, .849E+00, .640E+00, .594E+00,
                                                                               1475
1.108E+01, .125E+01, .113E+01, .940E+00, .807E+00, .663E+00,
                                                                               1500
1.165E+01, .155E+01, .118E+01, .670E+00, .562E+00, .483E+00,
                                                                               1525
1.142E+01, .675E+00, .557E+00, .349E+00, .276E+00, .263E+00,
                                                                               1550
1.451E+00, .202E+00, .132E+00, .118E+00, .134E+00, .156E+00,
                                                                               1575
1.603E-01, .538E-01, .863E-01, .112E+00, .120E+00, .125E+00,
                                                                               1600
1 .501E+00, .252E+00, .118E+00, .112E+00, .131E+00, .140E+00/
                                                                               1625
DATA A9/
1.730E+00, .430E+00, .237E+00, .191E+00, .171E+00, .170E+00,
                                                                               1650
1.149E+01, .506E+00, .294E+00, .238E+00, .210E+00, .201E+00,
                                                                               1675
1.100E+01, .553E+00, .434E+00, .340E+00, .260E+00, .220E+00,
                                                                               1700
1.802E+00, .658E+00, .528E+00, .411E+00, .300E+00, .240E+00,
                                                                               1725
1.580E+00, .527E+00, .460E+00, .378E+00, .322E+00, .283E+00,
                                                                               1750
1.330E+00, .403E+00, .430E+00, .356E+00, .318E+00, .270E+00,
                                                                               1775
1.250E+00, .393E+00, .405E+00, .342E+00, .301E+00, .275E+00,
                                                                               1800
1 .147E+00, .249E+00, .313E+00, .318E+00, .291E+00, .268E+00/
                                                                               1825
DATA A10/
1 .910E-01, .252E+00, .298E+00, .295E+00, .269E+00, .253E+00,
                                                                               1850
1.580E-01, .158E+00, .214E+00, .244E+00, .244E+00, .245E+00,
                                                                               1875
1.370E-01, .113E+00, .184E+00, .218E+00, .214E+00, .218E+00,
                                                                               1900
1.244E-01, .118E+00, .156E+00, .188E+00, .195E+00, .200E+00,
                                                                               1925
                                                                               1950
1.162E-01, .606E-01, .976E-01, .141E+00, .166E+00, .179E+00,
1 .112E-01, .425E-01, .903E-01, .133E+00, .148E+00, .156E+00,
                                                                               1975
1 .780E-02, .400E-01, .765E-01, .112E+00, .129E+00, .137E+00,
                                                                               2000
1 .540E-02, .352E-01, .647E-01, .876E-01, .110E+00, .118E+00/
                                                                               2025
DATA A11/
```

```
1 .380E-02, .252E-01, .507E-01, .705E-01, .888E-01, .100E+00,
                                                                                    2050
1 .260E-02, .179E-01, .377E-01, .546E-01, .724E-01, .828E-01,
                                                                                    2075
1 .180E-02, .123E-01, .294E-01, .443E-01, .608E-01, .686E-01,
                                                                                    2100
1 .127E-02, .850E-02, .212E-01, .378E-01, .579E-01, .640E-01,
                                                                                    2125
1 .880E-03, .680E-02, .152E-01, .275E-01, .449E-01, .521E-01,
                                                                                    2150
1 .620E-02, .400E-02, .107E-01, .214E-01, .374E-01, .453E-01,
                                                                                    2175
1 .480E-03, .298E-02, .931E-02, .189E-01, .329E-01, .403E-01,
                                                                                    2200
1 .405E-03, .175E-02, .696E-02, .152E-01, .295E-01, .365E-01/
                                                                                    2225
DATA A12/
1 .321E-03, .120E-02, .452E-02, .101E-01, .252E-01, .331E-01,
                                                                                    2250
1 .229E-03, .721E-03, .364E-02, .930E-02, .225E-01, .305E-01,
                                                                                    2275
1 .195E-03, .544E-03, .318E-02, .750E-02, .202E-01, .284E-01,
                                                                                    2300
1 .154E-03, .375E-03, .185E-02, .603E-02, .175E-01, .269E-01,
                                                                                    2325
1 .101E-03, .263E-03, .119E-02, .480E-02, .156E-01, .253E-01,
                                                                                    2350
1.852E-04, .185E-03, .909E-03, .360E-02, .133E-01, .241E-01,
                                                                                    2375
1 .763E-04, .137E-03, .711E-03, .316E-02, .122E-01, .237E-01,
                                                                                    2400
1.615E-04, .126E-03, .610E-03, .257E-02, .101E-01, .218E-01/
                                                                                    2425
DATA A13/
1 .480E-04, .113E-03, .518E-03, .201E-02, .920E-02, .200E-01,
                                                                                    2450
1 .372E-04, .106E-03, .435E-03, .168E-02, .785E-02, .183E-01,
                                                                                    2475
1.355E-04, .101E-03, .376E-03, .168E-02, .669E-02, .166E-01,
                                                                                    2500
1 .358E-04, .990E-04, .366E-03, .167E-02, .651E-02, .156E-01,
                                                                                    2525
1 .389E-04, .102E-03, .376E-03, .167E-02, .641E-02, .152E-01,
                                                                                    2550
1 .422E-04, .106E-03, .373E-03, .168E-02, .656E-02, .150E-01,
                                                                                    2575
1.521E-04, .111E-03, .371E-03, .170E-02, .673E-02, .152E-01,
                                                                                    2600
1 .646E-04, .121E-03, .384E-03, .179E-02, .798E-02, .179E-01/
                                                                                    2625
DATA A14/
1 .742E-04, .129E-03, .479E-03, .201E-02, .788E-02, .175E-01,
                                                                                    2650
1 .953E-04, .165E-03, .544E-03, .249E-02, .945E-02, .204E-01,
                                                                                    2675
1.101E-03, .190E-03, .761E-03, .324E-02, .106E-01, .231E-01,
                                                                                    2700
1 .147E-03, .272E-03, .892E-03, .441E-02, .125E-01, .257E-01,
                                                                                    2725
1.195E-03, .326E-03, .100E-02, .499E-02, .147E-01, .295E-01,
                                                                                    2750
1 .261E-03, .421E-03, .145E-02, .568E-02, .161E-01, .306E-01,
                                                                                    2775
1 .305E-03, .515E-03, .195E-02, .754E-02, .185E-01, .363E-01,
                                                                                    2800
1.362E-03, .645E-03, .237E-02, .830E-02, .205E-01, .373E-01/
                                                                                    2825
DATA A15/
1.507E-03, .850E-03, .274E-02, .888E-02, .234E-01, .431E-01,
                                                                                    2850
1 .799E-03, .118E-02, .322E-02, .110E-01, .262E-01, .451E-01,
                                                                                    2875
1 .935E-03, .160E-02, .386E-02, .126E-01, .292E-01, .530E-01,
                                                                                    2900
                                                                                    2925
1 .108E-02, .231E-02, .451E-02, .140E-01, .306E-01, .536E-01,
1.192E-02, .271E-02, .563E-02, .159E-01, .357E-01, .629E-01,
                                                                                    2950
1 .263E-02, .300E-02, .625E-02, .179E-01, .385E-01, .666E-01,
                                                                                    2975
1.295E-02, .330E-02, .701E-02, .203E-01, .460E-01, .782E-01,
                                                                                    3000
1.310E-02, .370E-02, .846E-02, .220E-01, .519E-01, .889E-01/
                                                                                    3025
1.340E-02, .400E-02, .969E-02, .279E-01, .662E-01, .109E+00,
                                                                                    3050
1.730E-02, .450E-02, .111E-01, .272E-01, .676E-01, .109E+00,
                                                                                    3075
1 .900E-02, .480E-02, .137E-01, .372E-01, .864E-01, .133E+00,
                                                                                    3100
1.100E-02, .510E-02, .162E-01, .471E-01, .100E+00, .142E+00,
                                                                                    3125
1 .640E-03, .550E-02, .205E-01, .530E-01, .122E+00, .168E+00,
                                                                                    3150
1.160E-02, .600E-02, .247E-01, .633E-01, .135E+00, .177E+00,
                                                                                    3175
1 .330E-02, .700E-02, .283E-01, .770E-01, .153E+00, .185E+00,
                                                                                    3200
1 .410E-02, .860E-02, .376E-01, .914E-01, .166E+00, .206E+00/
                                                                                    3225
1 .410E-02, .103E-01, .514E-01, .117E+00, .194E+00, .228E+00,
                                                                                    3250
1.290E-02, .129E-01, .664E-01, .147E+00, .220E+00, .254E+00,
                                                                                    3275
1 .220E-02, .161E-01, .834E-01, .171E+00, .237E+00, .263E+00,
                                                                                    3300
1.220E-02, .212E-01, .103E+00, .201E+00, .268E+00, .283E+00,
                                                                                    3325
1 .250E-02, .285E-01, .135E+00, .240E+00, .295E+00, .295E+00,
                                                                                    3350
1.310E-02, .385E-01, .169E+00, .272E+00, .312E+00, .301E+00,
                                                                                    3375
1 .420E-02, .540E-01, .214E+00, .309E+00, .329E+00, .307E+00,
                                                                                    3400
1 .600E-02, .770E-01, .267E+00, .343E+00, .332E+00, .314E+00/
                                                                                    3425
DATA A18/
1 .940E-02, .117E+00, .333E+00, .372E+00, .344E+00, .303E+00,
                                                                                    3450
1.165E-01, .173E+00, .365E+00, .385E+00, .353E+00, .300E+00,
                                                                                    3475
1.360E-01, .258E+00, .438E+00, .393E+00, .315E+00, .288E+00,
                                                                                    3500
1 .720E-01, .375E+00, .510E+00, .409E+00, .294E+00, .271E+00,
                                                                                    3525
```

1 .133E+00, .401E+00, .499E+00, .390E+00, .281E+00, .257E+00,	3550
1 .215E+00, .500E+00, .443E+00, .341E+00, .254E+00, .230E+00,	3575
1 .318E+00, .450E+00, .346E+00, .286E+00, .245E+00, .219E+00,	3600
1 .442E+00, .400E+00, .354E+00, .279E+00, .233E+00, .216E+00/	3625
DATA A19/	
1 .473E+00, .405E+00, .347E+00, .281E+00, .238E+00, .219E+00,	3650
1 .568E+00, .501E+00, .423E+00, .315E+00, .243E+00, .218E+00,	3675
1 .690E+00, .708E+00, .673E+00, .432E+00, .268E+00, .189E+00,	3700
1 .617E+00, .831E+00, .566E+00, .320E+00, .194E+00, .123E+00,	3725
1 .181E+01, .520E+00, .200E+00, .131E+00, .124E+00, .107E+00,	3750
1 .136E+00, .124E+00, .120E+00, .119E+00, .115E+00, .115E+00,	3775
1 .455E+00, .298E+00, .167E+00, .129E+00, .123E+00, .112E+00,	3800
1 .760E+00, .503E+00, .242E+00, .154E+00, .129E+00, .127E+00/	3825
DATA A20/	
1 .836E+00, .584E+00, .277E+00, .184E+00, .161E+00, .145E+00,	3850
1 .840E+00, .728E+00, .422E+00, .236E+00, .197E+00, .167E+00,	3875
1.505E+00,.500E+00,.379E+00,.276E+00,.227E+00,.192E+00,	3900
1 .117E+00, .400E+00, .423E+00, .315E+00, .243E+00, .202E+00,	3925
1 .460E-01, .300E+00, .358E+00, .290E+00, .230E+00, .202E+00,	3950
1 .183E-01, .205E+00, .269E+00, .235E+00, .195E+00, .192E+00,	3975
1 .730E-02, .135E+00, .186E+00, .179E+00, .159E+00, .168E+00,	4000
1 .557E-02, .790E-01, .113E+00, .124E+00, .124E+00, .134E+00/	4025
DATA A21/	
1 .283E-02, .415E-01, .662E-01, .886E-01, .103E+00, .106E+00,	4050
1 .226E-02, .197E-01, .367E-01, .594E-01, .801E-01, .879E-01,	4075
1 .155E-02, .860E-02, .211E-01, .395E-01, .503E-01, .610E-01,	4100
1 .103E-02, .521E-02, .119E-01, .246E-01, .354E-01, .480E-01,	4125
1 .821E-03, .365E-02, .759E-02, .166E-01, .258E-01, .370E-01,	4150
1 .752E-03, .183E-02, .445E-02, .100E-01, .179E-01, .268E-01,	4175
1 .429E-03, .141E-02, .354E-02, .821E-02, .142E-01, .212E-01,	4200
1 .327E-03, .902E-03, .209E-02, .588E-02, .112E-01, .172E-01/	4225
END	

RCPART3.FOR

BLOCK DATA BD2 COMMON/CH2O/SD(6,376) DIMENSION A22(6,8),A23(6,8),A24(6,8),A25(6,8),A26(6,8),A27(6,8), 5A29(6,8),A30(6,8),A31(6,8),A32(6,8),A33(6,8),A34(6,8),A35(6,8), 6A36(6,8),A37(6,8),A38(6,8),A39(6,8),A40(6,8),A41(6,8),A42(6,8), 7A43(6,8),A44(6,8),A45(6,8),A46(6,8),A47(6,8) EQUIVALENCE(A22(1,1),SD(1,169)),(A23(1,1),SD(1,177)),(A24(1,1) 1, SD(1,185)), (A25(1,1), SD(1,193)), (A26(1,1), SD(1,201)), (A27(1,1))2,SD(1,209)),(A28(1,1),SD(1,217)),(A29(1,1),SD(1,225)),(A30(1,1))3, SD(1,233)), (A31(1,1), SD(1,241)), (A32(1,1), SD(1,249)), (A33(1,1))4,SD(1,257)),(A34(1,1),SD(1,265)),(A35(1,1),SD(1,273)),(A36(1,1) 5,SD(1,281)),(A37(1,1),SD(1,289)),(A38(1,1),SD(1,297)) EQUIVALENCE(A39(1,1),SD(1,305)),(A40(1,1),SD(1,313)),(A41(1,1) 1,SD(1,321),(A42(1,1),SD(1,329)),(A43(1,1),SD(1,337)),(A44(1,1))2,SD(1,345)),(A45(1,1),SD(1,353)),(A46(1,1),SD(1,361)),(A47(1,1) 3,SD(1,369))

TEMP, K = 300	600	1000	1500	2000	2500	WAVE NO.
DATA A22/						
1 .225E-03, .685	5E-03, .1	89E-02,	.512E-02,	.101E-01,	.164E-01,	4250
1 .186E-03, .55	E-03, .1	56E-02,	.366E-02,	.812E-02,	.136E-01,	4275
1 .173E-03, .472	2E-03, .1	39E-02,	.306E-02,	.661E-02,	.115E-01,	4300
1 .138E-03, .395	5E-03, .1	10E-02,	.272E-02,	.587E-02,	.104E-01,	4325
1 .900E-04, .270	DE-03, .9	68E-03,	.222E-02,	.497E-02,	.921E-02,	4350
1 .752E-04, .233	3E-03, .7	44E-03,	.208E-02,	.466E-02,	.876E-02,	4375
1 .618E-04, .17:	5E-03, .6	38E-03,	.185E-02,	.465E-02,	.914E-02,	4400
1 .504E-04, .134	E-03, .4	99E-03,	.174E-02,	.455E-02,	.935E-02/	4425
DATA A23/						
1 .375E-04, .123	3E-03, .4	85E-03,	.182E-02,	.456E-02,	.971E-02,	4450
1 .305E-04, .892	2E-04, .3	38E-03,	.134E-02,	.460E-02,	.104E-01,	4475
1 .257E-04, .796	DE-04, .3	29E-03,	.154E-02,	.477E-02,	.112E-01,	4500

C

```
1 .242E-04, .740E-04, .308E-03, .135E-02, .497E-02, .122E-01,
                                                                    4525
1 .215E-04, .653E-04, .282E-03, .131E-02, .521E-02, .133E-01,
                                                                    4550
1 .218E-04, .660E-04, .272E-03, .152E-02, .573E-02, .148E-01,
                                                                    4575
                                                                    4600
1 .215E-04, .671E-04, .268E-03, .134E-02, .607E-02, .159E-01,
1 .217E-04, .695E-04, .285E-03, .161E-02, .677E-02, .173E-01/
                                                                    4625
DATA A24/
1 .219E-04, .722E-04, .297E-03, .169E-02, .783E-02, .197E-01,
                                                                    4650
1 .226E-04, .771E-04, .341E-03, .236E-02, .925E-02, .226E-01,
                                                                    4675
                                                                    4700
1 .250E-04, .815E-04, .387E-03, .286E-02, .106E-01, .250E-01,
1 .280E-04, .845E-04, .420E-03, .357E-02, .124E-01, .276E-01,
                                                                    4725
1.351E-04, .192E-03, .470E-03, .467E-02, .166E-01, .313E-01,
                                                                    4750
1 .435E-04, .200E-03, .105E-02, .566E-02, .185E-01, .341E-01,
                                                                    4775
1 .522E-04, .233E-03, .129E-02, .736E-02, .229E-01, .378E-01,
                                                                    4800
1 .673E-04, .306E-03, .183E-02, .982E-02, .258E-01, .404E-01/
                                                                    4825
DATA A25/
1 .886E-04, .399E-03, .246E-02, .128E-01, .302E-01, .430E-01,
                                                                    4850
1 .113E-03, .618E-03, .346E-02, .161E-01, .358E-01, .459E-01,
                                                                    4875
1 .174E-03, .825E-03, .441E-02, .200E-01, .417E-01, .493E-01,
                                                                    4900
1 .265E-03, .163E-02, .777E-02, .245E-01, .450E-01, .507E-01,
                                                                    4925
1 .355E-03, .200E-02, .978E-02, .317E-01, .492E-01, .527E-01,
                                                                    4950
                                                                    4975
1 .538E-03, .271E-02, .167E-01, .401E-01, .503E-01, .523E-01,
1 .651E-03, .301E-02, .264E-01, .467E-01, .520E-01, .526E-01,
                                                                    5000
1 .987E-03, .530E-02, .321E-01, .499E-01, .523E-01, .510E-01/
                                                                    5025
DATA A26/
1.135E-02, .860E-02, .389E-01, .528E-01, .513E-01, .492E-01,
                                                                    5050
1 .226E-02, .130E-01, .472E-01, .559E-01, .500E-01, .469E-01,
                                                                    5075
1 .431E-02, .198E-01, .526E-01, .557E-01, .480E-01, .452E-01,
                                                                    5100
1 .628E-02, .282E-01, .488E-01, .495E-01, .451E-01, .430E-01,
                                                                    5125
1 .900E-02, .390E-01, .471E-01, .449E-01, .430E-01, .423E-01,
                                                                    5150
1 .180E-01, .462E-01, .412E-01, .391E-01, .403E-01, .415E-01,
                                                                    5175
1.348E-01, .710E-01, .402E-01, .360E-01, .384E-01, .414E-01,
                                                                    5200
1 .718E-01, .590E-01, .399E-01, .360E-01, .376E-01, .420E-01/
                                                                    5225
DATA A27/
1.111E+00, .368E-01, .340E-01, .369E-01, .409E-01, .454E-01,
                                                                     5250
1 .329E-01, .285E-01, .365E-01, .423F-01, .461E-01, .482E-01,
                                                                    5275
1 .281E-01, .270E-01, .432E-01, .505E-01, .529E-01, .511E-01,
                                                                    5300
1.121E+00, .422E-01, .589E-01, .598E-01, .572E-01, .544E-01,
                                                                    5325
1.139E+00, .105E+00, .844E-01, .687E-01, .593E-01, .560E-01,
                                                                    5350
1 .774E-01, .710E-01, .683E-01, .618E-01, .556E-01, .534E-01,
                                                                    5375
1 .858E-01, .483E-01, .579E-01, .547E-01, .503E-01, .495E-01,
                                                                    5400
1 .985E-01, .575E-01, .589E-01, .510E-01, .451E-01, .449E-01/
                                                                    5425
DATA A28/
1 .996E-01, .682E-01, .539E-01, .489E-01, .454E-01, .446E-01,
                                                                    5450
1 .680E-01, .680E-01, .548E-01, .495E-01, .460E-01, .458E-01,
                                                                    5475
1 .325E-01, .520E-01, .515E-01, .483E-01, .449E-01, .454E-01,
                                                                    5500
1 .150E-01, .350E-01, .451E-01, .464E-01, .452E-01, .449E-01,
                                                                    5525
1 .620E-02, .238E-01, .369E-01, .408E-01, .414E-01, .417E-01,
                                                                    5550
1 .270E-02, .158E-01, .282E-01, .339E-01, .366E-01, .384E-01,
                                                                    5575
1 .113E-02, .101E-01, .203E-01, .263E-01, .303E-01, .333E-01,
                                                                    5600
1 .829E-03, .590E-02, .148E-01, .206E-01, .247E-01, .295E-01/
                                                                    5625
DATA A29/
1 .365E-03, .310E-02, .969E-02, .154E-01, .203E-01, .258E-01,
                                                                    5650
1 .240E-03, .130E-02, .589E-02, .112E-01, .164E-01, .222E-01,
                                                                    5675
1 .158E-03, .400E-03, .417E-02, .850E-02, .134E-01, .190E-01,
                                                                    5700
1 .103E-03, .262E-03, .208E-02, .594E-02, .109E-01, .162E-01,
                                                                    5725
1 .741E-04, .181E-03, .142E-02, .455E-02, .907E-02, .141E-01,
                                                                    5750
1 .625E-04, .135E-03, .816E-03, .316E-02, .698E-02, .121E-01,
                                                                    5775
1 .499E-04, .111E-03, .624E-03, .230E-02, .551E-02, .102E-01,
                                                                    5800
1 .325E-04, .677E-04, .425E-03, .124E-02, .385E-02, .818E-02/
                                                                    5825
DATA A30/
1 .231E-04, .563E-04, .278E-03, .986E-03, .290E-02, .672E-02,
                                                                    5850
1 .165E-04, .481E-04, .247E-03, .944E-03, .253E-02, .612E-02,
                                                                    5875
1 .126E-04, .432E-04, .241E-03, .886E-03, .220E-02, .582E-02,
                                                                    5900
1 .118E-04, .420E-04, .235E-03, .847E-03, .209E-02, .571E-02,
                                                                    5925
1 .110E-04, .408E-04, .226E-03, .812E-03, .221E-02, .604E-02,
                                                                    5950
1 .101E-04, .400E-04, .213E-03, .805E-03, .239E-02, .641E-02,
                                                                    5975
1 .983E-05, .395E-04, .186E-03, .801E-03, .247E-02, .691E-02,
                                                                    6000
```

```
6025
1 .979E-05, .401E-04, .193E-03, .805E-03, .260E-02, .732E-02/
DATA A31/
                                                                    6050
1 .976E-05, .410E-04, .201E-03, .814E-03, .285E-02, .776E-02,
1 .988E-05, .420E-04, .210E-03, .832E-03, .317E-02, .842E-02,
                                                                    6075
1 .991E-05, .425E-04, .219E-03, .877E-03, .340E-02, .888E-02,
                                                                    6100
1 .102E-04, .435E-04, .231E-03, .937E-03, .361E-02, .929E-02,
                                                                    6125
1 .110E-04, .486E-04, .244E-03, .971E-03, .402E-02, .994E-02,
                                                                    6150
                                                                    6175
1 .127E-04, .579E-04, .257E-03, .111E-02, .437E-02, .104E-01,
1.131E-04, .612E-04, .277E-03, .113E-02, .465E-02, .110E-01,
                                                                    6200
1 .150E-04, .783E-04, .353E-03, .116E-02, .510E-02, .116E-01/
                                                                    6225
DATA A32/
1 .178E-04, .922E-04, .394E-03, .157E-02, .555E-02, .123E-01,
                                                                    6250
1 .203E-04, .115E-03, .481E-03, .188E-02, .601E-02, .131E-01,
                                                                    6275
1 .230E-04, .145E-03, .617E-03, .183E-02, .644E-02, .139E-01,
                                                                    6300
1 .280E-04, .187E-03, .723E-03, .202E-02, .686E-02, .146E-01,
                                                                    6325
1 .305E-04, .209E-03, .811E-03, .243E-02, .779E-02, .157E-01,
                                                                    6350
1 .455E-04, .244E-03, .935E-03, .243E-02, .844E-02, .166E-01,
                                                                    6375
1 .661E-04, .320E-03, .989E-03, .288E-02, .902E-02, .173E-01,
                                                                    6400
1 .723E-04, .397E-03, .122E-02, .359E-02, .100E-01, .184E-01/
                                                                    6425
DATA A33/
1 .847E-04, .481E-03, .143E-02, .429E-02, .108E-01, .192E-01,
                                                                    6450
1.103E-03, .591E-03, .174E-02, .488E-02, .116E-01, .200E-01,
                                                                    6475
1 .131E-03, .703E-03, .247E-02, .549E-02, .124E-01, .205E-01,
                                                                    6500
1.165E-03, .872E-03, .265E-02, .641E-02, .131E-01, .211E-01,
                                                                    6525
1.205E-03, .110E-02, .298E-02, .749E-02, .140E-01, .218E-01,
                                                                    6550
1 .253E-03, .130E-02, .346E-02, .811E-02, .150E-01, .230E-01,
                                                                    6575
1 .338E-03, .150E-02, .445E-02, .890E-02, .159E-01, .237E-01,
                                                                    6600
1 .437E-03, .170E-02, .491E-02, .107E-01, .170E-01, .245E-01/
                                                                    6625
DATA A34/
1.581E-03, .190E-02, .537E-02, .116E-01, .179E-01, .254E-01,
                                                                    6650
1 .685E-03, .220E-02, .578E-02, .128E-01, .189E-01, .263E-01,
                                                                    6675
                                                                    6700
1 .900E-03, .250E-02, .649E-02, .134E-01, .195E-01, .275E-01,
1 .121E-02, .280E-02, .722E-02, .142E-01, .202E-01, .281E-01,
                                                                    6725
1 .152E-02, .330E-02, .813E-02, .161E-01, .212E-01, .288E-01,
                                                                    6750
1 .185E-02, .370E-02, .907E-02, .168E-01, .222E-01, .292E-01,
                                                                    6775
1 .220E-02, .430E-02, .929E-02, .183E-01, .233E-01, .294E-01,
                                                                    6800
1 .255E-02, .500E-02, .114E-01, .195E-01, .245E-01, .289E-01/
                                                                    6825
DATA A35/
1 .290E-02, .580E-02, .167E-01, .215E-01, .260E-01, .291E-01,
                                                                    6850
1 .320E-02, .670E-02, .208E-01, .237E-01, .274E-01, .293E-01,
                                                                    6875
1.360E-02, .880E-02, .220E-01, .253E-01, .282E-01, .300E-01,
                                                                    6900
1 .400E-02, .920E-02, .238E-01, .273E-01, .290E-01, .304E-01,
                                                                    6925
1 .460E-02, .108E-01, .272E-01, .279E-01, .298E-01, .310E-01,
                                                                    6950
1 .530E-02, .128E-01, .304E-01, .292E-01, .297E-01, .312E-01,
                                                                    6975
1 .620E-02, .152E-01, .344E-01, .303E-01, .293E-01, .310E-01,
                                                                    7000
1 .760E-02, .182E-01, .341E-01, .297E-01, .290E-01, .300E-01/
                                                                    7025
1 .980E-02, .222E-01, .398E-01, .318E-01, .291E-01, .294E-01,
                                                                    7050
1 .132E-01, .271E-01, .402E-01, .294E-01, .274E-01, .282E-01,
                                                                    7075
1 .190E-01, .335E-01, .421E-01, .286E-01, .262E-01, .269E-01,
                                                                    7100
1 .240E-01, .432E-01, .431E-01, .276E-01, .245E-01, .257E-01,
                                                                    7125
1 .288E-01, .570E-01, .458E-01, .270E-01, .228E-01, .243E-01,
                                                                    7150
1 .323E-01, .740E-01, .449E-01, .261E-01, .214E-01, .221E-01,
                                                                    7175
1 .570E-01, .890E-01, .435E-01, .225E-01, .199E-01, .196E-01,
                                                                    7200
1 .216E-01, .680E-01, .378E-01, .239E-01, .195E-01, .192E-01/
                                                                    7225
DATA A37/
1 .126E-01, .475E-01, .364E-01, .238E-01, .197E-01, .192E-01,
                                                                    7250
1 .117E-01, .369E-01, .385E-01, .249E-01, .212E-01, .204E-01,
                                                                    7275
1.140E-01, .370E-01, .419E-01, .272E-01, .228E-01, .213E-01,
                                                                    7300
1 .425E-01, .418E-01, .440E-01, .280E-01, .248E-01, .229E-01,
                                                                    7325
1 .640E-01, .460E-01, .427E-01, .290E-01, .263E-01, .238E-01,
                                                                    7350
1 .385E-01, .385E-01, .374E-01, .259E-01, .235E-01, .224E-01,
                                                                    7375
1 .182E-01, .179E-01, .282E-01, .231E-01, .211E-01, .214E-01,
                                                                    7400
1 .170E-01, .810E-02, .191E-01, .175E-01, .181E-01, .194E-01/
                                                                    7425
DATA A38/
1 .161E-01, .370E-02, .105E-01, .127E-01, .152E-01, .171E-01,
                                                                    7450
1 .145E-01, .170E-02, .554E-02, .855E-02, .113E-01, .131E-01,
                                                                    7475
```

```
1 .175E-02, .140E-02, .385E-02, .595E-02, .803E-02, .945E-02,
                                                                    7500
1.772E-03, .751E-03, .384E-02, .575E-02, .537E-02, .594E-02,
                                                                    7525
1.491E-03, .600E-03, .301E-02, .453E-02, .380E-02, .434E-02,
                                                                    7550
1 .275E-03, .410E-03, .193E-02, .366E-02, .319E-02, .332E-02,
                                                                    7575
1 .185E-01, .280E-03, .131E-02, .232E-02, .247E-02, .256E-02,
                                                                    7600
1.101E-03, .160E-03, .915E-03, .150E-02, .186E-02, .197E-02/
                                                                    7625
DATA A39/
1.691E-04, .110E-03, .565E-03, .114E-02, .205E-02, .192E-02,
                                                                    7650
1 .476E-04, .750E-04, .114E-02, .124E-02, .175E-02, .187E-02,
                                                                    7675
1.305E-04, .590E-04, .529E-03, .114E-02, .160E-02, .185E-02,
                                                                    7700
1 .240E-04, .480E-04, .293E-03, .842E-03, .141E-02, .184E-02,
                                                                    7725
1 .170E-04, .360E-04, .122E-03, .435E-03, .124E-02, .182E-02,
                                                                    7750
1 .120E-04, .240E-04, .121E-03, .435E-03, .118E-02, .187E-02,
                                                                    7775
1 .810E-05, .170E-04, .103E-03, .439E-03, .126E-02, .192E-02,
                                                                    7800
1 .550E-05, .120E-04, .866E-04, .367E-03, .119E-02, .193E-02/
                                                                    7825
DATA A40/
                                                                    7850
1.390E-05, .900E-05, .716E-04, .351E-03, .116E-02, .194E-02,
1.295E-05, .830E-05, .373E-04, .254E-03, .114E-02, .196E-02,
                                                                    7875
1 .230E-05, .800E-05, .465E-04, .298E-03, .117E-02, .201E-02,
                                                                    7900
1 .225E-05, .820E-05, .367E-04, .252E-03, .116E-02, .205E-02,
                                                                    7925
1 .220E-05, .840E-05, .371E-04, .268E-03, .127E-02, .211E-02,
                                                                    7950
1.223E-05, .920E-05, .396E-04, .273E-03, .128E-02, .216E-02,
                                                                    7975
1.235E-05, .103E-04, .415E-04, .263E-03, .121E-02, .221E-02,
                                                                    8000
1 .280E-05, .125E-04, .633E-04, .363E-03, .136E-02, .231E-02/
                                                                    8025
DATA A41/
1.310E-05, .150E-04, .979E-04, .492E-03, .150E-02, .241E-02,
                                                                    8050
1 .370E-05, .180E-04, .120E-03, .580E-03, .167E-02, .251E-02,
                                                                    8075
1.420E-05, .200E-04, .987E-04, .509E-03, .171E-02, .257E-02,
                                                                    8100
1 .510E-05, .240E-04, .134E-03, .547E-03, .173E-02, .267E-02,
                                                                    8125
1.600E-05, .270E-04, .121E-03, .534E-03, .172E-02, .274E-02,
                                                                    8150
1.720E-05, .300E-04, .204E-03, .684E-03, .184E-02, .285E-02,
                                                                    8175
1 .820E-05, .330E-04, .276E-03, .819E-03, .199E-02, .297E-02,
                                                                    8200
1 .100E-04, .380E-04, .317E-03, .859E-03, .214E-02, .308E-02/
                                                                    8225
DATA A42/
1 .125E-04, .420E-04, .240E-03, .818E-03, .220E-02, .317E-02,
                                                                    8250
1 .145E-04, .500E-04, .452E-03, .109E-02, .238E-02, .293E-02,
                                                                    8275
1 .175E-04, .560E-04, .301E-03, .941E-03, .243E-02, .342E-02,
                                                                    8300
1.198E-04, .630E-04, .280E-03, .107E-02, .260E-02, .353E-02,
                                                                    8325
1 .230E-04, .710E-04, .276E-03, .109E-02, .272E-02, .365E-02,
                                                                    8350
1 .280E-04, .830E-04, .369E-03, .127E-02, .295E-02, .377E-02,
                                                                    8375
1 .330E-04, .890E-04, .430E-03, .139E-02, .306E-02, .385E-02,
                                                                    8400
1.360E-04, .950E-04, .371E-03, .135E-02, .306E-02, .384E-02/
                                                                    8425
DATA A43/
1 .390E-04, .980E-04, .434E-03, .147E-02, .316E-02, .385E-02,
                                                                    8450
1.400E-04, .990E-04, .397E-03, .143E-02, .318E-02, .384E-02,
                                                                    8475
1 .400E-04, .980E-04, .364E-03, .141E-02, .317E-02, .381E-02,
                                                                    8500
1 .390E-04, .940E-04, .390E-03, .142E-02, .314E-02, .376E-02,
                                                                    8525
1 .380E-04, .900E-04, .380E-03, .145E-02, .318E-02, .375E-02,
                                                                    8550
1.380E-04, .900E-04, .380E-03, .145E-02, .318E-02, .375E-02,
                                                                    8575
1 .330E-04, .750E-04, .358E-03, .138E-02, .310E-02, .372E-02,
                                                                    8600
1.270E-04, .580E-04, .382E-03, .143E-02, .315E-02, .369E-02/
                                                                    8625
DATA A44/
1 .240E-04, .500E-04, .343E-03, .136E-02, .306E-02, .363E-02,
                                                                    8650
1.200E-04, .450E-04, .309E-03, .134E-02, .306E-02, .359E-02,
                                                                    8675
1 .180E-04, .400E-04, .281E-03, .127E-02, .294E-02, .341E-02,
                                                                    8700
1 .170E-04, .360E-04, .276E-03, .124E-02, .290E-02, .336E-02,
                                                                    8725
1 .160E-04, .310E-04, .272E-03, .122E-02, .283E-02, .323E-02,
                                                                    8750
1.140E-04, .280E-04, .241E-03, .117E-02, .273E-02, .309E-02,
                                                                    8775
1.120E-04, .250E-04, .237E-03, .115E-02, .269E-02, .297E-02,
                                                                    8800
1 .100E-04, .220E-04, .218E-03, .111E-02, .259E-02, .284E-02/
                                                                    8825
DATA A45/
1.920E-05, .198E-04, .206E-03, .105E-02, .246E-02, .269E-02,
                                                                    8850
1 .810E-05, .170E-04, .205E-03, .100E-02, .235E-02, .257E-02,
                                                                    8875
1 .720E-05, .160E-04, .177E-03, .921E-03, .220E-02, .245E-02,
                                                                    8900
1 .650E-05, .150E-04, .172E-03, .834E-03, .205E-02, .232E-02,
                                                                    8925
1 .590E-05, .130E-04, .147E-03, .735E-03, .194E-02, .218E-02,
                                                                    8950
1 .510E-05, .110E-04, .120E-03, .629E-03, .177E-02, .203E-02,
                                                                    8975
```

```
9000
1.460E-05, .950E-05, .960E-04, .513E-03, .154E-02, .180E-02,
1 .420E-05, .800E-05, .578E-04, .314E-03, .123E-02, .154E-02/
                                                            9025
DATA A46/
1 .380E-05, .720E-05, .529E-04, .292E-03, .114E-02, .137E-02,
                                                            9050
1.330E-05, .660E-05, .485E-04, .269E-03, .102E-02, .122E-02,
                                                            9075
1.290E-05, .580E-05, .430E-04, .239E-03, .896E-03, .107E-02,
                                                            9100
1 .270E-05, .520E-05, .259E-04, .193E-03, .748E-03, .944E-03,
                                                            9125
1.240E-05, .450E-05, .316E-04, .207E-03, .671E-02, .848E-03,
                                                            9150
1 .220E-05, .400E-05, .444E-05, .602E-04, .516E-03, .750E-03,
                                                            9175
1.190E-05, .360E-05, .324E-05, .460E-04, .439E-03, .688E-03,
                                                            9200
1 .170E-05, .320E-05, .180E-05, .321E-04, .384E-03, .653E-03/
                                                            9225
DATA A47/
1 .140E-05, .280E-05, .171E-05, .344E-04, .340E-03, .616E-03,
                                                            9250
1 .130E-05, .250E-05, .299E-05, .600E-04, .343E-03, .619E-03,
                                                            9275
1 .120E-05, .220E-05, .299E-05, .600E-04, .343E-03, .619E-03,
                                                            9300
END
```

RCPART4.FOR

```
BLOCK DATA BD3
    COMMON/CC02/SD15(6,80)
    COMMON/CCH4/SD7(3,16),SD3(3,32)
    COMMON/CPARAM/GAMMA(4,7)
    DIMENSION B1(6,8),B2(6,8),B3(6,8),B4(6,8),B5(6,8),
   1B6(6,8),B7(6,8),B8(6,8),B9(6,8),B10(6,8)
   DIMENSION C1(3,8), C2(3,8), C3(3,8), C4(3,8), C5(3,8), C6(3,8)
   EQUIVALENCE(B1(1,1),SD15(1,1)),(B2(1,1),SD15(1,9)),(B3(1,1),
   1SD15(1,17)),(B4(1,1),SD15(1,25)),(B5(1,1),SD15(1,33)),
   2(B6(1,1),SD15(1,41)),(B7(1,1),SD15(1,49)),(B8(1,1),SD15(1,57))
   3,(B9(1,1),SD15(1,65)),(B10(1,1),SD15(1,73))
   EQUIVALENCE(C1(1,1),SD7(1,1)),(C2(1,1),SD7(1,9)),
   1(C3(1,1),SD3(1,1)),(C4(1,1),SD3(1,9)),(C5(1,1),SD3(1,17)),
   2(C6(1,1),SD3(1,25))
   DATA GAMMA/
C LINE BROADENING PARAMETERS, GAMMA(I, J),
C J=CO2,H2O,CH4,CO,O2,N2,SELFRESONANT.
             CO2 H2O CH4 CO
C I=
C
  J
       .09 , .12, .0 , .07,
       .07, .09, .0, .06,
   2
   3
       .0 , .0 , .16, .0 ,
       .06, .10, .0, .06,
   5
       .055, .04, .0 , .05,
       .07 , .09, .0 , .06,
       .01, .44, .0, .0/
C THE FOLLOWING ARE DATA FOR THE 15.0 MICRON BAND OF CO2
C TEMP, K=300
                                                                       WAVE NO.
                       600
                                  1200
                                         1500
                                                   1800
                                                               2400
   DATA B1/
   1 .000E+00, .000E+00, .000E+00, .105E-01, .300E-01, .880E-01,
                                                                          500
   1 .000E+00, .000E+00, .000E+00, .180E-01, .490E-01, .880E-01,
                                                                          505
   1.000E+00,.000E+00,.000E+00,.300E-01,.540E-01,.740E-01,
                                                                          510
   1.000E+00, .000E+00, .000E+00, .300E-01, .560E-01, .890E-01,
                                                                          515
   1.000E+00,.000E+00,.000E+00,.330E-01,.690E-01,.990E-01,
                                                                          520
   1 .000E+00, .000E+00, .880E-02, .380E-01, .720E-01, .970E-01,
                                                                          525
   1 .000E+00, .000E+00, .110E-01, .530E-01, .950E-01, .124E+00,
                                                                          530
   1 .000E+00, .000E+00, .285E-01, .630E-01, .990E-01, .140E+00/
                                                                          535
   DATA B2/
   1.000E+00,.000E+00,.330E-01,.680E-01,.103E+00,.134E+00,
                                                                          540
   1.000E+00,.000E+00,.450E-01,.920E-01,.138E+00,.176E+00,
                                                                          545
   1 .000E+00, .000E+00, .490E-01, .970E-01, .148E+00, .191E+00,
                                                                          550
   1.000E+00,.000E+00,.490E-01,.120E-01,.188E+00,.247E+00,
                                                                          555
   1.000E+00,.000E+00,.480E-01,.126E+00,.201E+00,.241E+00,
                                                                          560
   1.000E+00,.000E+00,.820E-01,.198E+00,.270E+00,.265E+00,
                                                                          565
   1.000E+00, .750E-02, .690E-01, .140E+00, .225E+00, .340E+00,
                                                                          570
```

```
1 .000E+00, .205E-01, .820E-01, .145E+00, .236E+00, .530E+00/
                                                                       575
DATA B3/
1 .000E+00, .355E-01, .117E+00, .193E+00, .295E+00, .550E+00,
                                                                       580
1 .157E-01, .520E-01, .170E+00, .235E+00, .305E+00, .410E+00,
                                                                       585
1 .150E-01, .880E-01, .270E+00, .330E+00, .440E+00, .520E+00,
                                                                       590
1 .510E-01, .130E+00, .400E+00, .530E+00, .560E+00, .540E+00,
                                                                       595
1 .120E+00, .165E+00, .275E+00, .320E+00, .420E+00, .560E+00,
                                                                       600
1 .880E-01, .190E+00, .430E+00, .540E+00, .620E+00, .680E+00,
                                                                       605
1 .110E+00, .350E+00, .710E+00, .760E+00, .760E+00, .690E+00,
                                                                       610
1 .180E+00, .470E+00, .920E+00, .970E+00, .910E+00, .670E+00/
                                                                       615
DATA B4/
1 .970E-01, .265E+00, .610E+00, .720E+00, .780E+00, .730E+00,
                                                                       620
1 .175E+00, .380E+00, .720E+00, .790E+00, .830E+00, .840E+00,
                                                                       625
1 .370E+00, .640E+00, .920E+00, .960E+00, .980E+00, .940E+00,
                                                                       630
1.590E+00, .840E+00, .107E+01, .110E+01, .111E+01, .106E+01,
                                                                       635
1.940E+00, .103E+01, .115E+01, .115E+01, .115E+01, .118E+01,
                                                                       640
1 .196E+01, .177E+01, .146E+01, .136E+01, .132E+01, .139E+01,
                                                                       645
1.345E+01, .282E+01, .198E+01, .172E+01, .156E+01, .148E+01,
                                                                       650
1 .282E+01, .248E+01, .200E+01, .190E+01, .186E+01, .205E+01/
                                                                       655
1.254E+01, .234E+01, .184E+01, .176E+01, .174E+01, .203E+01,
                                                                       660
1 .142E+02, .860E+01, .370E+01, .260E+01, .196E+01, .142E+01,
                                                                       665
1.450E+01, .570E+01, .580E+01, .520E+01, .350E+01, .420E+01,
                                                                       670
1.360E+01, .310E+01, .330E+01, .290E+01, .205E+01, .200E+01,
                                                                       675
1.310E+01,.260E+01,.200E+01,.196E+01,.180E+01,.210E+01,
                                                                       680
1.240E+01,.250E+01,.230E+01,.220E+01,.170E+01,.194E+01,
                                                                       685
1.182E+01, .200E+01, .218E+01, .205E+01, .184E+01, .130E+01,
                                                                       690
1.104E+01, .135E+01, .172E+01, .172E+01, .165E+01, .130E+01
                                                                       695
DATA B6/
1.550E+00, .120E+01, .143E+01, .147E+01, .148E+01, .125E+01,
                                                                       700
1.136E+01, .128E+01, .128E+01, .135E+01, .138E+01, .134E+01,
                                                                       705
1.210E+00, .780E+00, .127E+01, .133E+01, .137E+01, .132E+01,
                                                                       710
1.190E+00, .780E+00, .140E+01, .146E+01, .147E+01, .142E+01,
                                                                       715
1.900E+00, .106E+01, .140E+01, .150E+01, .155E+01, .134E+01,
                                                                       720
1 .720E-01, .300E+00, .800E+00, .100E+01, .115E+01, .126E+01,
                                                                       725
1.640E-01, .210E+00, .560E+00, .720E+00, .860E+00, .102E+01,
                                                                       730
1 .680E-01, .210E+00, .530E+00, .670E+00, .790E+00, .101E+01/
                                                                       735
DATA B7/
1.690E-01, .210E+00, .540E+00, .690E+00, .820E+00, .910E+00,
                                                                       740
1.330E-01, .140E+00, .390E+00, .530E+00, .690E+00, .770E+00,
                                                                       745
1.230E-01, .780E-01, .270E+00, .410E+00, .560E+00, .890E+00,
                                                                       750
1 .300E-01, .860E-01, .280E+00, .400E+00, .520E+00, .710E+00,
                                                                       755
1.175E-01, .620E-01, .225E+00, .335E+00, .450E+00, .660E+00,
                                                                       760
1 .105E-01, .450E-01, .180E+00, .280E+00, .380E+00, .600E+00,
                                                                       765
1 .450E-02, .300E-01, .148E+00, .240E+00, .345E+00, .570E+00,
                                                                       770
1 .000E+00, .140E-01, .124E+00, .205E+00, .285E+00, .430E+00/
                                                                      775
DATA B8/
1 .000E+00, .115E-01, .110E+00, .185E+00, .260E+00, .375E+00,
                                                                      780
1.000E+00, .135E-01, .840E-01, .140E+00, .205E+00, .335E+00,
                                                                      785
1 .000E+00, .430E-02, .650E-01, .120E+00, .185E+00, .325E+00,
                                                                      790
1 .000E+00, .000E+00, .540E-01, .115E+00, .180E+00, .315E+00,
                                                                      795
1.000E+00, .000E+00, .440E-01, .950E-01, .150E+00, .270E+00,
                                                                       800
1.000E+00,.000E+00,.360E-01,.790E-01,.125E+00,.205E+00,
                                                                       805
1.000E+00,.000E+00,.250E-01,.650E-01,.110E+00,.178E+00,
                                                                       810
1.000E+00,.000E+00,.180E-01,.620E-01,.103E+00,.153E+00/
                                                                       815
DATA B9/
1.000E+00,.000E+00,.320E-01,.580E-01,.860E-01,.147E+00,
                                                                       820
1.000E+00, .000E+00, .800E-02, .510E-01, .870E-01, .134E+00,
                                                                      825
1.000E+00,.000E+00,.600E-02,.480E-01,.830E-01,.133E+00,
                                                                       830
1.000E+00,.000E+00,.000E+00,.430E-01,.780E-01,.118E+00,
                                                                       835
1.000E+00,.000E+00,.000E+00,.420E-01,.700E-01,.108E+00,
                                                                      840
1.000E+00,.000E+00,.000E+00,.360E-01,.640E-01,.980E-01,
                                                                      845
1 .000E+00, .000E+00, .000E+00, .350E-01, .610E-01, .870E-01,
                                                                      850
1.000E+00,.000E+00,.000E+00,.320E-01,.580E-01,.860E-01/
                                                                      855
DATA B10/
1.000E+00,.000E+00,.000E+00,.330E-01,.560E-01,.750E-01,
                                                                      860
1 .000E+00, .000E+00, .000E+00, .300E-01, .530E-01, .750E-01,
                                                                      865
```

```
1 .000E+00, .000E+00, .000E+00, .290E-01, .530E-01, .850E-01,
                                                                                870
   1.000E+00,.000E+00,.000E+00,.240E-01,.470E-01,.900E-01,
                                                                                875
   1.000E+00,.000E+00,.000E+00,.220E-01,.450E-01,.860E-01,
                                                                                880
   1.000E+00,.000E+00,.000E+00,.000E+00,.000E+00,.000E+00,
   1.000E+00,.000E+00,.000E+00,.000E+00,.000E+00,.000E+00,
   1\ .000E + 00,\ .000E + 00/
C THE FOLLOWING DATA ARE FOR THE 7.7 MICRON BAND OF CH4
C TEMP, K = 290
                     600 850
                                                                                         WAVE NO.
    DATA C1/
   1 0., 0., 0.,
   1 0., 0., 0.03,
   1 0., 0., 0.22,
   1 0.16, 0.20, 0.47,
   1 0.34, 0.34, 0.62,
   1 0.69, 0.53, 0.65,
   1 1.27, 0.88, 1.09,
   1 1.68, 1.38, 0.87/
    DATA C2/
   1 0.55, 0.28, 0.40,
   1 1.25, 0.86, 0.93,
   1 0.34, 0.59, 0.75,
   1 0., 0.13, 0.25,
   1 0., 0., 0.06,
   1 0., 0., 0.,
   1 0., 0., 0.,
   1 0., 0., 0./
C THE FOLLOWING DATA ARE FOR THE 3.3 MICRON BAND OF CH4
                      600 850
C TEMP, K = 290
    DATA C3/
   1 0., 0., 0.03,
   1 0., 0., 0.03,
   1 0., 0., 0.03,
   1 0., 0., 0.06,
   1 0.03, 0.03, 0.09,
   1 0.07, 0.07, 0.12,
   1 0.09, 0.09, 0.12,
   1 0.14, 0.15, 0.22/
    DATA C4/
   1 0.18, 0.22, 0.28,
   1 0.24, 0.31, 0.37,
   1 0.33, 0.44, 0.47,
   1 0.45, 0.50, 0.53,
   1 0.59, 0.62, 0.62,
   1 0.74, 0.70, 0.68,
   1 0.91, 0.77, 0.72,
   1 1.00, 0.81, 0.75/
   DATA C5/
   1 1.03, 0.84, 0.78,
   1 1.03, 0.84, 0.78,
   1 1.00, 0.81, 0.75,
   1 0.94, 0.77, 0.72,
   1 0.72, 0.68, 0.68,
   1 0.52, 0.63, 0.63,
   1 0.33, 0.50, 0.56,
   1 0.25, 0.42, 0.50/
   DATA C6/
   1 0.17, 0.26, 0.37,
   1 0.08, 0.18, 0.31,
   1 0.04, 0.11, 0.22,
   1 0., 0.06, 0.16,
   1 0., 0.02, 0.12,
   1 0., 0., 0.06,
   1 0., 0., 0.03,
   1 0., 0., 0./
    END
```


NIST Technical Publications

Periodical

Journal of Research of the National Institute of Standards and Technology—Reports NIST research and development in those disciplines of the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Institute's technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs – Major contributions to the technical literature on various subjects related to the Institute's scientific and technical activities.

Handbooks – Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NIST, NIST annual reports, and other special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series – Mathematical tables, manuals, and studies of special interest to physicists, engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public Law 90-396). NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published bi-monthly for NIST by the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints, and supplements are available from ACS, 1155 Sixteenth St., NW., Washington, DC 20056.

Building Science Series – Disseminates technical information developed at the Institute on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of other government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NIST administers this program in support of the efforts of private-sector standardizing organizations.

Consumer Information Series—Practical information, based on NIST research and experience, covering areas of interest to the consumer. Easily understandable language and illustrations provide useful background knowledge for shopping in today's technological marketplace.

Order the above NIST publications from: Superintendent of Documents, Government Printing Office, Washington, DC 20402.

Order the following NIST publications—FIPS and NISTIRs—from the National Technical Information Service, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB) — Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations).

NIST Interagency Reports (NISTIR)—A special series of interim or final reports on work performed by NIST for outside sponsors (both government and non-government). In general, initial distribution is handled by the sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper copy or microfiche form.

U.S. Department of Commerce
National Institute of Standards and Technology Gaithersburg, MD 20899 Penalty for Private Use \$300 Official Business