Machine Learning Homework 2

Written by: Lior Shacohach - id - 206284960 Moriya Barel - id - 207304353

התרומה של כל אחד: עבדנו ביחד על כל השאלות.

Question 1.A

Let S be point-set of size n, $\Pi(C, S)$ be all possible labelings that C assigns to S and $\Pi(D, S)$ be all possible labelings that D assigns to S.

Notice that all possible labelings for n points of class E can be bounded by:

$$\Pi(E,S) = \Pi(C \cup D, S) \le \Pi(C,S) + \Pi(D,S).$$

By Sauer's lemma $\Pi(C,S) \leq \sum_{i=0}^{c} \binom{n}{i}$ and $\Pi(D,S) \leq \sum_{i=0}^{d} \binom{n}{i}$ therefore:

$$\Pi(E,S) \le \sum_{i=0}^{c} {n \choose i} + \sum_{i=0}^{d} {n \choose i}.$$

Using the identity
$$\binom{n}{i} = \binom{n}{n-i} \rightarrow \Pi(E, S) \leq \sum_{i=0}^{c} \binom{n}{i} + \sum_{i=0}^{d} \binom{n}{n-i}$$

Change second sigma variable
$$\rightarrow \Pi(E,S) \leq \sum\limits_{i=0}^{c} \binom{n}{i} + \sum\limits_{i=n-d}^{n} \binom{n}{i}$$

If n = c + d + 2 then:

$$\Pi(E,S) \le \sum_{i=0}^{c} {c+d+2 \choose i} + \sum_{i=c+2}^{c+d+2} {c+d+2 \choose i} = \sum_{i=0}^{c+d+2} {c+d+2 \choose i} - {c+d+2 \choose d+1} = 2^{c+d+2} - {c+d+2 \choose d+1} < 2^{c+d+2}$$

Overall $\Pi(E,S) < 2^n$ consequently, class E cannot shatter c+d+2 points.

Question 1.B

The VC-dimension of unidirectional balls on d-dimensional points is d+1.

Lower bound:

It can shatter d+1 points in R^d .

Similar to the proof we've seen in class of d-1 hyperplanes on d-dimensional points, we can take the base vectors and the zero vector and circle any set of the vectors without intersection with the points out of the set.

Upper bound:

It cannot shatter d+2 points in R^d .

Let S be a point set of size d+2, by Radon's theorem S can be partitioned into two disjoint sets A, B whose convex hulls intersect.

Any ball containing set A must also contain points from set B and any ball containing set B must contain points from set A \rightarrow a ball cannot shatter d+2 in R^d .

Question 1.C

Let class C be the class of infinite uni-directional circles that labels points inside as +.

Let class D be the class of infinite uni-directional circles that labels points inside as -.

Let class E be the class of infinite bi-directional circles.

Class E is the union of both C and D, explanation - for any labeling achievable by a unidirectional circle we get the opposite labeling by switching the direction which is the exact definition of bidirectional.

Using the bound from 1A we get: $VC_{dim}(E) = VC_{dim}(C \cup D) \le VC_{dim}(C) + VC_{dim}(D) + 1 = 3 + 3 + 1 = 7.$

Question 2

By the union and intersection of hypothesis bound - $2ds * log_2(3s)$:

Hearts:

We can see that hearts are built from 2 lines and 2 circles.

$$VC_{dim}(Hearts) \leq 2 \ * \ 3 \ * \ 4 \ * \ log_{2}(3 \ * \ 4) \ = \ 86.039... \ \rightarrow VC_{dim}(Hearts) \leq 86$$

Clubs:

We can see that clubs are built from the intersection of 3 lines and the union of 3 circles.

$$VC_{dim}(Clubs) \le 2 * 3 * 6 * log_2(3 * 6) = 150.1... \rightarrow VC_{dim}(Clubs) \le 150.1...$$

Diamonds:

We can see that diamonds are built from the intersection of 4 lines.

$$VC_{dim}(Hearts) \le 2 * 3 * 4 * log_{2}(3 * 4) = 86.039... \rightarrow VC_{dim}(Hearts) \le 86$$

Overall for class C:

$$VC_{dim}(C) = VC_{dim}(Hearts \cup Clubs \cup Diamonds) \leq VC_{dim}(Hearts) + VC_{dim}(Clubs) + VC_{dim}(Diamonds) + 2C_{dim}(Clubs) + C_{dim}(Clubs) + C_{dim}(Club$$

$$VC_{dim}(C) \le 86 + 150 + 86 + 2 = 324$$

Question 3

Class
$$C' = \bigcup_{i=0}^{s} (\{Union\ of\ s\ -\ i\ objects\ and\ intersection\ of\ i\ objects\ from\ class\ C\})$$

Explanation: C_0 is only union of objects, C_1 is all objects that consists of s-1 unions and 1 intersection,

 \mathcal{C}_2 is all objects of s-2 unions and 2 intersections ... \mathcal{C}_s is all objects that consist of only intersections.

$$VC_{dim}(C_0) = 2ds * log_2(3s) // only unions.$$

$$VC_{dim}(C_1) = 2ds * log_2(3s) // s-1$$
 unions and 1 intersection (s-1 + 1 = s).

$$VC_{dim}(C_2) = 2ds * log_2(3s) // s-2$$
 unions and 2 intersections (s-2 + 2 = s).

. . .

$$VC_{dim}(C_s) = 2ds * log_2(3s) // only intersections.$$

Overall:
$$VC_{dim}(C) = \bigcup_{i=0}^{s} (C_i) = [(s+1) * 2ds * log_2(3s)] + s$$

Question 4

Let S be a point sample of size n.

For any $S \subseteq S$, there has to be a convex body that labels $S \cap S$ (because we have an infinite amount of convex bodies of any convex shape).

This means we can achieve all 2^n possible labelings for $S \rightarrow S$ ince S is arbitrary, the set of infinite convex bodies can shatter any given set of points -> The VC dimension of our set is **infinity**.