| Esercizio no.1             | Soluzione a pag.5                       |
|----------------------------|-----------------------------------------|
| $\sqrt{x+4} < 4$           | $R \left( -3 \le x < 13 \right)$        |
| Esercizio no.2             | Soluzione a pag.5                       |
| $\sqrt{2x+1} > 3$          | R(x>4)                                  |
| Esercizio no.3             | Soluzione a pag.5                       |
| $\sqrt{x-2}+2>0$           | $R (x \ge 2)$                           |
| Esercizio no.4             | Soluzione a pag.5                       |
| $\sqrt{3x-2} > -2$         | $R\left(x \ge \frac{2}{3}\right)$       |
| Esercizio no.5             | Soluzione a pag.6                       |
| $\sqrt{x+2} \ge 1$         | $R(x \ge -1)$                           |
| Esercizio no.6             | Soluzione a pag.6                       |
| $\sqrt{3+2x} > 1$          | $R\left(x \ge -\frac{3}{2}\right)$      |
| Esercizio no.7             | Soluzione a pag.6                       |
| $\sqrt{x-1} < \frac{1}{4}$ | $R\left(1 \le x < \frac{17}{16}\right)$ |
| Esercizio no.8             | Soluzione a pag.6                       |
| $\sqrt{1-x} < 1$           | $R(0 < x \le 1)$                        |
| Esercizio no.9             | Soluzione a pag.7                       |
| $\sqrt{x^2 - 9} > -3$      | $R (x \le -3 \lor x \ge 3)$             |
| Esercizio no.10            | Soluzione a pag.7                       |
| $\sqrt{x^2 - 4} < -3$      | R (impossibile)                         |

 $\frac{1}{\sqrt{x-2}} > -\frac{1}{2}$ 

| Esercizio no.11                                                                                               | Soluzione a pag.7                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| $\sqrt{x^2 + x + 25} < 4$                                                                                     | R (impossibile)                                                                                                                   |
| Esercizio no.12                                                                                               | Soluzione a pag.8                                                                                                                 |
| $\sqrt{x^3 - x} + 4 < 0$                                                                                      | R (impossibile)                                                                                                                   |
| Esercizio no.13                                                                                               | Soluzione a pag.8                                                                                                                 |
| $\sqrt{2-3x}+3>0$                                                                                             | $R\left(x \le \frac{2}{3}\right)$                                                                                                 |
| Esercizio no.14                                                                                               | Soluzione a pag.8                                                                                                                 |
| $\sqrt{2-x} < 1$                                                                                              | $R (1 < x \le 2)$                                                                                                                 |
| Esercizio no.15                                                                                               | Soluzione a pag.8                                                                                                                 |
| $\sqrt[3]{2-x} < 1$                                                                                           | R(x>1)                                                                                                                            |
| Esercizio no.16                                                                                               | Soluzione a pag.8                                                                                                                 |
|                                                                                                               |                                                                                                                                   |
| $\sqrt{x^2 - 5x} + 1 > \frac{1}{2}$                                                                           | $R (x \le 0 \lor x \ge 5)$                                                                                                        |
| $\sqrt{x^2 - 5x + 1} > \frac{1}{2}$ Esercizio no.17                                                           | $R \ (x \le 0 \ \lor \ x \ge 5 \ )$ Soluzione a pag.9                                                                             |
| 2                                                                                                             | , , , , , , , , , , , , , , , , , , ,                                                                                             |
| Esercizio no.17                                                                                               | Soluzione a pag.9                                                                                                                 |
| Esercizio no.17 $\sqrt{\frac{x-l}{x+l}} > 2$                                                                  | Soluzione a pag.9 $R\left(-\frac{5}{3} < x < -1\right)$                                                                           |
| Esercizio no.17 $\sqrt{\frac{x-l}{x+l}} > 2$ Esercizio no.18                                                  | Soluzione a pag.9 $R\left(-\frac{5}{3} < x < -1\right)$ Soluzione a pag.10                                                        |
| Esercizio no.17 $ \sqrt{\frac{x-l}{x+l}} > 2 $ Esercizio no.18 $ \sqrt{\frac{x-2}{x-l}} > 2 $                 | Soluzione a pag.9 $R\left(-\frac{5}{3} < x < -1\right)$ Soluzione a pag.10 $R\left(\frac{2}{3} < x < 1\right)$                    |
| Esercizio no.17 $ \sqrt{\frac{x-l}{x+l}} > 2 $ Esercizio no.18 $ \sqrt{\frac{x-2}{x-l}} > 2 $ Esercizio no.19 | Soluzione a pag.9 $R\left(-\frac{5}{3} < x < -1\right)$ Soluzione a pag.10 $R\left(\frac{2}{3} < x < 1\right)$ Soluzione a pag.11 |

R(x>2)

$$\sqrt{3x+5} < 0$$
 R (impossibile)

$$\sqrt[3]{x+3} > -1$$
  $R(x > -4)$ 

$$\sqrt{2-3x} > \sqrt{4x-1}$$

$$R \left(\frac{1}{4} \le x < \frac{3}{7}\right)$$

$$\sqrt{\frac{l+x^2}{x^2-l}} < 1$$
 R (impossibile)

$$R\left(\frac{1}{4} \le x < \frac{3}{5}\right)$$

$$\sqrt{3-2x} < \sqrt{3+2x}$$

$$R\left(0 < x \le \frac{3}{2}\right)$$

$$\frac{3}{\sqrt{1+x}} < \sqrt{1-x}$$
  $R(x < 0)$ 

$$\sqrt{x^2 - 4} > x + 1$$
  $R(x \le 2)$ 

## Esercizio no.29 Soluzione a pag.16

$$R\left(-\frac{5}{2} \le x \le -2 \quad \lor \quad x \ge 2\right)$$

$$x - 1 < \sqrt{25 - x^2}$$
  $R (-5 \le x < 4)$ 

 $\sqrt[3]{x^3 - 1} < \sqrt{x^2 + 1}$ 

| Esercizio no.31                      | Soluzione a pag.18                                    |
|--------------------------------------|-------------------------------------------------------|
| $x + 5 < \sqrt{x^2 - 1}$             | $R\left(x < -\frac{13}{5}\right)$                     |
| Esercizio no.32                      | Soluzione a pag.18                                    |
| $\sqrt{x^2 - 5x} > 2x$               | R(x<0)                                                |
| Esercizio no.33                      | Soluzione a pag.19                                    |
| $\sqrt{2x - x^2} > x$                | R(0 < x < 1)                                          |
| Esercizio no.34                      | Soluzione a pag.20                                    |
| $\sqrt{(x-2)^2 - x} - x + 3 < 0$     | $R (4 \le x < 5)$                                     |
| Esercizio no.35                      | Soluzione a pag.21                                    |
| $x + 6 > \sqrt{4x - x^2}$            | $R (0 \le x \le 4)$                                   |
| Esercizio no.36                      | Soluzione a pag.22                                    |
| $\sqrt{2x^2 - x - 1} < x - 1$        | R(impossibile)                                        |
| Esercizio no.37                      | Soluzione a pag.23                                    |
| $\sqrt{x^2 - 4x + 3} < 5 - x$        | $R  \left( x < 1  \lor  3 < x < \frac{11}{3} \right)$ |
| Esercizio no.38                      | Soluzione a pag.24                                    |
| $\sqrt{5+x} > \sqrt{x} + \sqrt{5-x}$ | $R \ (4 < x \le 5)$                                   |
| Esercizio no.39                      | Soluzione a pag.25                                    |
| $\sqrt{3x+1} > 9 - \sqrt{3x+10}$     | R(x>5)                                                |
| Esercizio no.40                      | Soluzione a pag.25                                    |

 $R \ ( \ \forall x \in \Re \ )$ 

### Esercizio no.1:soluzione

$$\sqrt{x+4} < 4$$
 è nella forma  $\sqrt[p]{A(x)} < B(x)$  per cui: 
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

La condizione B(x) > 0 è sempre verificata.

$$\begin{cases} x+3 \ge 0 \\ x+3 < 4^2 \end{cases} \begin{cases} x \ge -3 \\ x+3 < 16 \end{cases} \begin{cases} x \ge -3 \\ x < 13 \end{cases}$$

$$R (-3 \le x < 13)$$

## Esercizio no.2:soluzione

$$\sqrt{2x+1} > 3 \text{ è nella forma } \sqrt[p]{A(x)} > B(x) \text{ per cui:} \begin{cases} B(x) \ge 0 \\ A(x) > [B(x)]^p \end{cases}$$

dato che la prima disequazione del sistema è sempre verificata, controlliamo la seconda.

$$2x+1>3^2 \rightarrow 2x+1>9 \rightarrow x>\frac{8}{2} \rightarrow x>4$$
 che è la soluzione.

#### Esercizio no.3:soluzione

$$\sqrt{x-2}+2>0$$
 equivale a  $\sqrt{x-2}>-2$ 

la condizione di esistenza del radicale è  $x-2 \ge 0 \rightarrow x \ge 2$ 

per tale intervallo la disequazione è certamente verificata dato che  $\sqrt{x-2} \ge 0$ 

## Esercizio no.4:soluzione

 $\sqrt{3x-2} > -2$  eseguendola come nel caso precedente:

 $3x-2 \ge 0 \rightarrow x \ge \frac{2}{3}$  questo intervallo verifica certamente la disequazione assegnata dato che

per tali valori  $\sqrt{3x-2} \ge 0$ . La soluzione è dunque:  $x \ge \frac{2}{3}$ 

## Esercizio no.5:soluzione

$$\sqrt{x+2} \ge I$$
 dobbiamo verificare 
$$\begin{cases} B(x) \ge 0 \\ A(x) > [B(x)]^p \end{cases}$$

la prima disequazione è sempre vera, la seconda è verificata se  $x+2 \ge l^2 \rightarrow x \ge -l$ che è la soluzione della disequazione.

#### Esercizio no.6:soluzione

$$\sqrt{3+2x} > 1$$
 come nel caso precedente  $\begin{cases} B(x) \ge 0 \\ A(x) > [B(x)]^p \end{cases}$  dobbiamo verificare solo:

$$3 + 2x > 1^2 \rightarrow 2x > 1 - 3 \rightarrow 2x > -2 \quad x > -1$$

se viene verificata questa condizione, è certamente verificata la condizione di esistenza del radicale:  $x \ge -\frac{3}{2}$ .

### Esercizio no. 7: soluzione

Esercizio no. 7: soluzione 
$$\sqrt{x-1} < \frac{1}{4} \text{ è nella forma } \sqrt[p]{A(x)} < B(x) \text{ per cui: } \begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

La condizione B(x) > 0 è sempre verificata, per cui:

$$\begin{cases} x-1 \ge 0 & \begin{cases} x \ge 1 \\ x-1 < \frac{1}{16} \end{cases} & \begin{cases} x \ge 1 \\ x < 1 + \frac{1}{16} \end{cases} & R \left( 1 \le x < \frac{17}{16} \right) \end{cases}$$

#### Esercizio no.8:soluzione

$$\sqrt{1-x} < 1$$
 è nella forma  $\sqrt[p]{A(x)} < B(x)$  con  $B(x) > 0$  per cui

$$\begin{cases} 1 - x \ge 0 & \begin{cases} x \le 1 \\ 1 - x < 1 \end{cases} & \begin{cases} x \le 0 \end{cases}$$

per cui la soluzione è :  $0 < x \le 1$ .

## Esercizio no.9:soluzione

 $\sqrt{x^2-9} > -3$  se viene verificata la condizione di esistenza  $x^2-9 \ge 0$  la disequazione è sicuramente soddisfatta, visto che risulterà  $\sqrt{x^2 - 9} \ge 0$ 



Essendo la funzione  $v = x^2 - 9$  una parabola con concavità rivolta verso l'alto, avente radici in  $x = \pm 3$ 

È positiva per i valori esterni a tali radici:

$$x \le -3 \lor x \ge 3$$

come si vede dalla figura.

# Esercizio no.10:soluzione

$$\sqrt{x^2 - 4} < -3$$
 è nella forma  $\sqrt[p]{A(x)} < B(x)$  per cui: 
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

ma la seconda disequazione del sistema non è mai verificata: la disequazione è dunque impossibile. Avremmo potuto notare che ca condizione di esistenza del radicale è:

$$x^2 - 4 \ge 0$$
 implica  $\sqrt{x^2 - 4} \ge 0$  che non verifica mai la disequazione di partenza.

## Esercizio no.11:soluzione

$$\sqrt{x^2 + x + 25} < 4 \text{ è nella forma } \sqrt[p]{A(x)} < B(x) \text{ per cui: } \begin{cases} A(x) \ge 0 \\ B(x) > 0 \end{cases}$$
La condizione  $B(x) > 0$  è sempre verificata.

Rimane da verificare: 
$$\begin{cases} x^2 + x + 25 \ge 0 \\ x^2 + x + 25 < 16 \end{cases}$$

La condizione B(x) > 0 è sempre verificata.

$$\begin{cases} x^2 + x + 25 \ge 0 \\ x^2 + x + 25 < 16 \end{cases}$$



la funzione  $y = x^2 + x + 25$  è un trinomio di II° grado con  $A = b^2 - 4ac = 1 - 4 \cdot 25 < 0$ 

non sono previste intersezioni con l'asse reale; si tratta di una parabola totalmente collocata sul semipiano positivo.

La condizione  $x^2 + x + 25 \ge 0$  è sempre verificata.

 $x^2 + x + 25 < 16 \rightarrow x^2 + x + 9 < 0$  cha ha un resta da controllare la:

 $\Delta = b^2 - 4ac = 1 - 36 < 0$ : anche essa è una parabola totalmente collocata sul semipiano positivo che, stavolta, non verificami la condizione posta. La disequazione assegnata è pertanto impossibile.

### Esercizio no.12:soluzione

$$\sqrt{x^3 - x} + 4 < 0 \rightarrow \sqrt{x^3 - x} < -4 \text{ è nella forma } \sqrt[p]{A(x)} < B(x) \text{ per cui: } \begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

ma la seconda disequazione del sistema non è mai verificata; la disequazione di partenza è dunque impossibile. Come al solito si poteva notare che la condizione di esistenza del radicale:

 $x^3 - x \ge 0 \rightarrow \sqrt{x^3 - x} \ge 0$  non verificava la disequazione di partenza: disequazione impossibile.

## Esercizio no.13:soluzione

$$\sqrt{2-3x} + 3 > 0 \rightarrow \sqrt{2-3x} > -3$$

viene verificata la condizione di esistenza  $2-3x \ge 0$  la disequazione è sicuramente soddisfatta, visto che risulterà  $\sqrt{2-3x} \ge 0$ . La soluzione è, pertanto,  $x \le \frac{2}{3}$ .

## Esercizio no.14:soluzione

$$\sqrt{2-x} < 1$$
 è nella forma  $\sqrt[p]{A(x)} < B(x)$  per cui: 
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

con la condizione B(x) > 0 che è sempre verificata. Resta da verificare il sistema:

$$\begin{cases} 2 - x \ge 0 & \begin{cases} x \le 2 \\ 2 - x < 1 \end{cases} & \text{la soluzione è dunque } 1 < x \le 2 \end{cases}$$

### Esercizio no.15:soluzione

 $\sqrt[3]{2-x} < 1$  in questo caso dobbiamo solo elevare al cubo entrambi i membri:

$$2 - x < 1^3 \rightarrow 2 - x < 1 \rightarrow x > 1$$

### Esercizio no.16:soluzione

$$\sqrt{x^2 - 5x} + 1 > \frac{1}{2} \rightarrow \sqrt{x^2 - 5x} > \frac{1}{2} - 1 \rightarrow \sqrt{x^2 - 5x} > -\frac{1}{2}$$



è sufficiente verificare la condizione di esistenza del radicale affinché la disequazione assegnata sia automaticamente verificata.

 $x^2 - 5x \ge 0$  si tratta di una parabola con concavità rivolta verso l'alto avente radici  $x_1 = 0$  ed  $x_2 = 5$ . Come si vede dall'immagine deve essere  $x \le 0 \lor x \ge 5$ 

## Esercizio no.17:soluzione

 $\sqrt{\frac{x-1}{x+1}} > 2$  in primo luogo, controlliamo la condizione di esistenza del radicale:



$$\frac{x-1}{x+1} \ge 0$$

Come si vede dall'immagine la condizione è verificata per  $x < -1 \lor x \ge 1$ 

poi resta da controllare quando:

$$\frac{x-1}{x+1} > 2^2 \rightarrow \frac{x-1}{x+1} > 4 \rightarrow \frac{x-1-4x-4}{x+1} > 0 \rightarrow \frac{-3x-5}{x+1} > 0$$

se moltiplico i due membri per -1 si ottiene:

$$\frac{3x+5}{x+1} < 0$$



L'intervallo che ci interessa è

$$-\frac{5}{3} < x < -1$$



La soluzione del sistema è illustrata in figura:

ragione per cui: 
$$-\frac{5}{3} < x < -1$$
.

## Esercizio no.18:soluzione

 $\sqrt{\frac{x-2}{x-1}} > 2$  anche in questo caso dobbiamo prima verificare la condizione di esistenza del radicale:



Come si vede dall'immagine

$$\frac{x-2}{x-1} \ge 0 \quad \text{per} \quad x < 1 \quad \lor \quad x \ge 2$$

verifichiamo la successiva condizione:

$$\frac{x-2}{x-1} > 4 \rightarrow \frac{x-2-4x+4}{x-1} > 0 \rightarrow \frac{2-3x}{x-1} > 0$$



La disequazione è vera per

$$\frac{2}{3} < x < 1$$





Componendo i due risultati si trova

$$\frac{2}{3} < x < 1$$

### Esercizio no.19:soluzione

$$\sqrt{\frac{x-3}{x-4}} < 1$$
 disequazione del tipo  $\sqrt[p]{A(x)} < B(x)$  per cui: 
$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B^p(x) \end{cases}$$

che si riduce a  $\begin{cases} A(x) \ge 0 \\ A(x) < B^p(x) \end{cases}$  la  $\frac{x-3}{x-4} \ge 0$  viene verificata



poi 
$$\frac{x-3}{x-4} < 1 \rightarrow \frac{x-3-x+4}{x-4} < 0 \rightarrow \frac{1}{x-4} < 0$$
 per essere vera deve essere:

$$x-4 < 0 \rightarrow x < 4$$
 componendo il sistema:



## Esercizio no.20:soluzione

 $\frac{1}{\sqrt{x-2}} > -\frac{1}{2}$  anche in questo caso la condizione di esistenza del radicale sarà sufficiente a verificare l'intera disequazione.

Deve dunque essere x > 2 per far si che  $\sqrt{x-2} > 0 > -\frac{1}{2}$  trattandosi di un denominatore dobbiamo escludere l'eventualità x = 2 che renderebbe privo di senso il primo membro.

#### Esercizio no.21:soluzione

$$\sqrt{3x+5} < 0$$

La disequazione è impossibile perché se il radicale è un numero reale è nullo oppure positivo e non può mai essere negativo.

### Esercizio no.22:soluzione

$$\sqrt[3]{x+3} > -1$$

L'indice della radice è dispari e quindi elevando entrambi i membri al cubo , si ha la disequazione equivalente:

$$x+3>-1 \rightarrow x>-4$$

## Esercizio no.23:soluzione

$$\sqrt{2-3x} > \sqrt{4x-1}$$

Se sono soddisfatte le condizioni di esistenza dei due radicali, il primo e il secondo membro della disequazione sono positivi o nulli e quindi potremmo elevare al quadrato entrambi i membri. Si deve pertanto risolvere il seguente sistema:

$$\begin{cases} 2 - 3x \ge 0 \\ 4x - 1 \ge 0 \\ 2 - 3x > 4x - 1 \end{cases} \begin{cases} x \le 2/3 \\ x \ge 1/4 \\ 3 > 7x \end{cases} \begin{cases} x \le 2/3 \\ x \ge 1/4 \\ x < 3/7 \end{cases}$$



$$\frac{1}{4} \le x < \frac{3}{7}$$

## Esercizio no.24:soluzione

$$\sqrt{\frac{l+x^2}{x^2-l}} < l$$
 disequazione del tipo  $\sqrt[p]{A(x)} < B(x)$  con B(x)>0 per cui: 
$$\begin{cases} A(x) \ge 0 \\ A(x) < B^p(x) \end{cases}$$

il rapporto radicando  $\frac{I+x^2}{x^2-I} \ge 0$  quando  $x^2-I > 0$  (si deduce che tale rapporto non potrà mai essere uguale a 0)

$$\begin{cases} x^{2} - 1 > 0 \\ \frac{1 + x^{2}}{x^{2} - 1} < 1 \end{cases} \begin{cases} x < -1 \lor x > 1 \\ \frac{1 + x^{2} - x^{2} + 1}{x^{2} - 1} < 0 \end{cases} \begin{cases} x < -1 \lor x > 1 \\ \frac{2}{x^{2} - 1} < 0 \end{cases} \begin{cases} x < -1 \lor x > 1 \\ -1 < x < 1 \end{cases}$$



Non vi è intersezione fra i due insiemi trovati, la disequazione è impossibile

## Esercizio no.25:soluzione

$$\sqrt{4x-1} < \sqrt{2-x}$$

Verifichiamo le condizioni di esistenza dei radicali unitamente al risultato della disequazione:

$$\begin{cases} 4x - 1 \ge 0 \\ 2 - x \ge 0 \\ 4x - 1 < 2 - x \end{cases} \begin{cases} x \ge 1/4 \\ x \le 2 \\ 5x < 3 \end{cases} \begin{cases} x \ge 1/4 \\ x \le 2 \\ x < 3/5 \end{cases}$$



La soluzione della disequazione è

$$\frac{1}{4} \le x < \frac{3}{5}$$

## Esercizio no.26:soluzione

$$\sqrt{3-2x} < \sqrt{3+2x}$$

Verifichiamo le condizioni di esistenza dei radicali unitamente al risultato della disequazione:

$$\begin{cases} 3 - 2x \ge 0 \\ 3 + 2x \ge 0 \\ 3 - 2x < 3 + 2x \end{cases} \begin{cases} 2x \le 3 \\ 2x \ge -3 \\ 4x > 0 \end{cases} \begin{cases} x \le 3/2 \\ x \ge -3/2 \\ x > 0 \end{cases}$$



La soluzione della disequazione è

$$0 < x \le \frac{3}{2}$$

# Esercizio no.27:soluzione

$$\sqrt[3]{1+x} < \sqrt{1-x}$$

Dobbiamo solo verificare l'esistenza del radicale al II°membro poi essendo 6 l'mcm fra 3 e 2 elevo alla sesta potenza entrambi i membri

$$\begin{cases} 1 - x \ge 0 \\ \frac{6}{(1+x)^{\frac{6}{3}}} < (1-x)^{\frac{6}{2}} \end{cases} \begin{cases} x \le 0 \\ (1+x)^2 < (1-x)^3 \end{cases}$$
 avremo:

$$\begin{cases} x \le 0 \\ 1 + 2x + x^2 < 1 - 3x + 3x^2 - x^3 \end{cases}$$
 l'ultima di queste diventa:

$$x^3 - 2x^2 + 5x < 0 \rightarrow x(x^2 - 2x + 5) < 0$$

analizzando questa disequazione, il trinomio di II° non prevede le radici perchè:

 $\Delta = b^2 - 4ac = 4 - 20 < 0$  ed è una parabola con concavità verso l'alto, totalmente contenuta nel semipiano cartesiano superiore.

quindi l'ultima disequazione è verificata per x<0. Per il sistema impostato;



La soluzione è x < 0.

## Esercizio no.28:soluzione

$$\sqrt{x^2 - 4} > x + 1$$

essendo una disequazione del tipo  $\sqrt{A(x)} > B(x)$  la soluzione sarà l'unione delle soluzioni dei due sistemi:

$$\begin{cases} A(x) \ge 0 \\ B(x) < 0 \end{cases} \begin{cases} B(x) \ge 0 \\ A(x) > B^2(x) \end{cases}$$
 per cui il primo sistema è

$$\begin{cases} x^2 - 4 \ge 0 & \begin{cases} x \le -2 \lor x \ge 2 \\ x + 1 < 0 & \begin{cases} x \le -2 \lor x \ge 2 \end{cases} \end{cases}$$
 il primo sistema è verificato per  $x \le -2$ 



Il secondo sistema:

$$\begin{cases} x+1 \ge 0 & \{x \ge -1 \\ x^2 - 4 > (x+1)^2 & \{x^2 - 4 > x^2 + 2x + 1 \} \end{cases} \begin{cases} x \ge -1 & \{x \ge -1 \\ -5 > 2x \end{cases} \begin{cases} x < -5/2 \end{cases}$$



Quindi il secondo sistema non è mai verificato; l'unione delle due soluzioni vale:

$$x \le 2$$

## Esercizio no.29:soluzione

$$x + 4 \ge \sqrt{x^2 - 4}$$

essendo una disequazione del tipo  $\sqrt{A(x)} \le B(x)$  deve essere verificato il sistema:

$$\begin{cases} A(x) \ge 0 \\ B(x) \ge 0 \\ A(x) \le B^2(x) \end{cases} \begin{cases} x^2 - 4 \ge 0 \\ x + 4 \ge 0 \\ x^2 - 4 \le (x+4)^2 \end{cases} \begin{cases} x \le -2 \lor x \ge 2 \\ x \ge -4 \\ x^2 - 4 \le \chi^2 + 8x + 16 \end{cases} \begin{cases} x \le -2 \lor x \ge 2 \\ x \ge -4 \\ 0 \le 8x + 20 \end{cases}$$

in definitiva

$$\begin{cases} x \le -2 \lor x \ge 2 \\ x \ge -4 \\ x \ge -\frac{20}{8} \end{cases} \qquad \begin{cases} x \le -2 \lor x \ge 2 \\ x \ge -4 \\ x \ge -\frac{5}{2} \end{cases}$$



E' verificata per: 
$$-\frac{5}{2} \le x \le -2 \lor x \ge 2$$

## Esercizio no.30:soluzione

$$x - 1 < \sqrt{25 - x^2}$$

 $x-1 < \sqrt{25-x^2}$  essendo una disequazione del tipo  $\sqrt{A(x)} > B(x)$  la soluzione sarà l'unione delle soluzioni dei due sistemi:

$$\begin{cases} A(x) \ge 0 \\ B(x) < 0 \end{cases}$$

$$\begin{cases} A(x) \ge 0 & \begin{cases} B(x) \ge 0 \\ B(x) < 0 \end{cases} & \text{per cui il primo sistema è} \end{cases}$$

$$\begin{cases} 25 - x^2 \ge 0 \\ x - 1 < 0 \end{cases} \begin{cases} -5 \le x \le 5 \\ x < 1 \end{cases}$$



La prima disequazione del sistema è una funzione rappresentata da una parabola con concavità rivolta verso il basso con soluzioni  $x = \pm 5$ .



il sistema ha soluzione  $-5 \le x < 1$ .

il secondo sistema è

$$\begin{cases} x - 1 \ge 0 & \begin{cases} x \ge 1 \\ 25 - x^2 > (x - 1)^2 \end{cases} & \begin{cases} x \ge 1 \\ 25 - x^2 > x^2 - 2x + 1 \end{cases} & \begin{cases} x \ge 1 \\ 2x^2 - 2x - 24 < 0 \end{cases}$$

 $x^2 - x - 12 < 0$ L'ultima disequazione può essere rappresentata come è una parabola con concavità rivolta verso l'alto che prevede le radici:

$$x_{1/2} = \frac{1 \pm \sqrt{1+48}}{2} = \begin{cases} \frac{1+7}{2} = \frac{8}{2} = 4\\ \frac{1-7}{2} = -\frac{6}{2} = -3 \end{cases}$$



Verificata per -3 < x < 4



Il secondo sistema è verificato per  $1 \le x < 4$ 

Unendo le soluzioni dei due sistemi avremo:  $-5 \le x < 4$ .

### Esercizio no.31:soluzione

 $x + 5 < \sqrt{x^2 - 1}$  quindi  $\sqrt{x^2 - 1} > x + 5$  del tipo del tipo  $\sqrt{A(x)} > B(x)$  la soluzione sarà l'unione delle soluzioni dei due sistemi:

$$\begin{cases} A(x) \ge 0 \\ B(x) < 0 \end{cases} \begin{cases} B(x) \ge 0 \\ A(x) > B^2(x) \end{cases}$$
 il primo sistema è

$$\begin{cases} x^2 - 1 \ge 0 & \begin{cases} x \le -1 \lor x \ge 1 \\ x + 5 < 0 & \begin{cases} x < -5 \end{cases} \end{cases}$$



soddisfatta per x < -5 mentre il secondo sistema:

$$\begin{cases} x+5 \ge 0 & \begin{cases} x \ge -5 & \\ x^2-1 > (x+5)^2 & \end{cases} & \begin{cases} x^2-1 > x^2+10x+25 & \end{cases} & \begin{cases} 10x+26 < 0 & \begin{cases} x \ge -5 & \begin{cases} x \ge -5 & \\ 5x+13 < 0 & \end{cases} & \begin{cases} x < -13/5 & \end{cases} & \end{cases}$$



In questo ultimo sistema la soluzione è  $-5 \le x < -\frac{13}{5}$ Se uniamo questa soluzione a quella del sistema precede

Se uniamo questa soluzione a quella del sistema precedente  $x < -\frac{13}{5}$ 

#### Esercizio no.32:soluzione

 $\sqrt{x^2 - 5x} > 2x$  del tipo del tipo  $\sqrt{A(x)} > B(x)$  la soluzione sarà l'unione delle soluzioni dei due sistemi:

$$\begin{cases} A(x) \ge 0 & \begin{cases} B(x) \ge 0 \\ B(x) < 0 \end{cases} & \text{il primo sistema è} \end{cases}$$

$$\begin{cases} x^2 - 5x \ge 0 & \begin{cases} x \le 0 \lor x \ge 5 \\ 2x < 0 & \end{cases} & \begin{cases} x \le 0 \lor x \ge 5 \end{cases}$$
 Soddisfatta per 
$$x < 0$$

il secondo sistema è

$$\begin{cases} 2x \ge 0 \\ x^2 - 5x > 4x^2 \end{cases} \begin{cases} x \ge 0 \\ 3x^2 + 5x < 0 \end{cases} \begin{cases} x \ge 0 \\ -5/3 < x < 0 \end{cases}$$
 mai verificata; l'unione delle due soluzioni è  $x < 0$ .

## Esercizio no.33:soluzione

$$\sqrt{2x-x^2} > x$$

del tipo del tipo  $\sqrt{A(x)} > B(x)$  la soluzione sarà l'unione delle soluzioni dei due sistemi:

$$\begin{cases} A(x) \ge 0 \\ B(x) < 0 \end{cases} \begin{cases} B(x) \ge 0 \\ A(x) > B^{2}(x) \end{cases}$$
 il primo sistema è

$$\begin{cases} 2x - x^2 \ge 0 \\ x < 0 \end{cases}$$

La prima disequazione è una parabola con concavità rivolta verso il basso come si vede il sistema non è mai verificato.





il secondo sistema è:

$$\begin{cases} x \ge 0 \\ 2x - x^2 > x^2 \end{cases} \begin{cases} x \ge 0 \\ 2x^2 - 2x < 0 \end{cases} \begin{cases} x \ge 0 \\ x^2 - x < 0 \end{cases}$$



La seconda disequazione è una parabola con concavità rivolta verso l'alto, soddisfatta nell'intervallo 0 < x < 1

Il sistema risulta soddisfatto in tale intervallo come illustrato nella figura a destra.



Unendo i due risultati si ha 0 < x < 1.

## Esercizio no.34:soluzione

$$\sqrt{(x-2)^2 - x} - x + 3 < 0 \rightarrow \sqrt{(x-2)^2 - x} < x - 3$$

Disequazione del tipo  $\sqrt{A(x)} < B(x)$  va soddisfatto il sistema:

$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \end{cases} \begin{cases} (x-2)^2 - x \ge 0 \\ x-3 > 0 \end{cases} \begin{cases} x^2 - 4x + 4 - x \ge 0 \\ x > 3 \end{cases}$$
$$(x-2)^2 - x < (x-3)^2 \end{cases} \begin{cases} x^2 - 4x + 4 - x < x \ge 0 \\ x > 3 \end{cases}$$

$$\begin{cases} x^2 - 5x + 4 \ge 0 \\ x > 3 \\ x - 5 < 0 \end{cases} \begin{cases} x^2 - 5x + 4 \ge 0 \\ x > 3 \\ x < 5 \end{cases}$$

$$x_{1/2} = \frac{5 \pm \sqrt{25 - 16}}{2} = \begin{cases} \frac{5+3}{2} = 4\\ \frac{5-3}{2} = 1 \end{cases}$$



La prima disequazione è soddisfatta per  $x \le 1 \lor x \ge 4$ 



Il sistema è soddisfatto per

$$4 \le x < 5$$

#### Esercizio no.35:soluzione

$$x + 6 > \sqrt{4x - x^2} \rightarrow \sqrt{4x - x^2} < x + 6$$

Disequazione del tipo  $\sqrt{A(x)} < B(x)$  va soddisfatto il sistema:

$$\begin{cases} 4x - x^2 \ge 0 \\ x > -6 \\ 2x^2 + 8x + 36 > 0 \end{cases} \begin{cases} 4x - x^2 \ge 0 \\ x > -6 \\ x^2 + 4x + 18 > 0 \end{cases} \begin{cases} 4 \le x \le 0 \\ x > -6 \\ \forall x \end{cases}$$

La prima è infatti una parabola con concavità rivolta verso il basso con intersezioni sull'asse delle ascisse x = 0 ed x = 4 è, pertanto, soddisfatta nei valori interni a tale intervallo.

L'ultima è una parabola con concavità rivolta verso l'alto ma il suo  $\Delta < 0$ : non ha intersezioni con l'asse x ed è totalmente collocata nel semipiano positivo.



Il sistema è soddisfatto per

$$0 \le x \le 4$$

### Esercizio no.36:soluzione

$$\sqrt{2x^2 - x - 1} < x - 1$$

Disequazione del tipo  $\sqrt{A(x)} < B(x)$  va soddisfatto il sistema:

$$\begin{cases} A(x) \ge 0 \\ B(x) > 0 \end{cases} \begin{cases} 2x^2 - x - 1 \ge 0 \\ x - 1 > 0 \end{cases} \begin{cases} x \le -1/2 \lor x \ge 1 \\ x > 1 \end{cases}$$
$$2x^2 - x - 1 < (x - 1)^2 \end{cases} \begin{cases} x \le -1/2 \lor x \ge 1 \end{cases}$$

La prima è, infatti una parabola con concavità rivolta verso l'alto, soddisfatta nell'intervallo:

$$x_{1/2} = \frac{1 \pm \sqrt{1+8}}{4} = \begin{cases} \frac{1+3}{4} = 1\\ \frac{1-3}{4} = -\frac{1}{2} \end{cases}$$



$$x \le -\frac{1}{2} \lor x \ge 1$$

L'ultima diventa:  $3x^2 + x - 2 < 0$ 

$$x_{1/2} = \frac{-1 \pm \sqrt{1 + 24}}{6} = \begin{cases} \frac{-1 + 5}{6} = \frac{4}{6} = \frac{2}{3} \\ \frac{-1 - 5}{6} = -1 \end{cases}$$



soddisfatta per  $-1 < x < \frac{2}{3}$  in definitiva avremo:



Il sistema non è mai verificato, la soluzione è impossibile:

R (impossibile)

## Esercizio no.37:soluzione

$$\sqrt{x^2 - 4x + 3} < 5 - x$$

dalla

$$\sqrt{A(x)} < B(x) \rightarrow \begin{cases} A(x) \ge 0 \\ B(x) > 0 \\ A(x) < B(x)^2 \end{cases}$$

$$\begin{cases} x^2 - 4x + 3 \ge 0 \\ 5 - x > 0 \\ x^2 - 4x + 3 < (5 - x)^2 \end{cases}$$

per la prima le radici sono

$$x_{1/2} = \frac{4 \pm \sqrt{16 - 12}}{2} = \begin{cases} \frac{4+2}{2} = 3\\ \frac{4-2}{2} = 1 \end{cases}$$

Si vede come deve essere  $x < 1 \lor x > 3$ 



per la seconda basta scrivere x < 5

la terza comporta: 
$$x^2 - 4x + 3 < 25 - 10x + x^2 \rightarrow 6x < 22 \rightarrow x < \frac{22}{6} \rightarrow x < \frac{11}{3}$$



Componendo queste tre condizioni, il sistema risultante risulta soddisfatto per

$$x < 1 \lor 3 < x < \frac{11}{3}$$

## Esercizio no.38:soluzione

$$\sqrt{5+x} > \sqrt{x} + \sqrt{5-x}$$

per elevare al quadrato i due membri della disequazione occorre verificare le condizioni di esistenza dei radicali

$$\begin{cases} 5+x \ge 0 \\ x \ge 0 \end{cases}$$

$$\begin{cases} x \ge -5 \\ x \ge 0 \end{cases}$$

$$5-x \ge 0$$

$$5+x > x+2\sqrt{x(5-x)}+5-x$$

$$\begin{cases} x \ge -5 \\ x \ge 0 \end{cases}$$

$$\begin{cases} x \le 5 \\ 5+x > x+2\sqrt{x(5-x)}+5-x \end{cases}$$

questa ultima disequazione è del tipo consueto ed equivale al sistema:



quindi riscriviamo il primo sistema come:



Quest ultimo è risolto per

$$4 < x \le 5$$

#### Esercizio no.39:soluzione

$$\sqrt{3x+1} > 9 - \sqrt{3x+10}$$

$$\begin{cases} 3x + 1 \ge 0 \\ 3x + 10 \ge 0 \\ 3x + 1 > 81 - 18\sqrt{3x + 10} - 3x - 10 \end{cases} \begin{cases} x \ge -1/3 \\ x \ge -10/3 \\ 3x + 1 > 81 - 18\sqrt{3x + 10} + 3x + 10 \end{cases}$$

L'ultima disequazione viene ricondotta a  $90 < 18\sqrt{3x+10}$   $\rightarrow$   $5 < \sqrt{3x+10}$  viene risolta dal sistema:

$$\begin{cases} 3x + 10 \ge 0 \\ 3x + 10 > 25 \end{cases} \begin{cases} x \ge -10/3 \\ x > 15/3 \end{cases} \rightarrow x > 5$$

tornando al sistema iniziale

$$\begin{cases} x \ge -1/3 \\ x \ge -10/3 \end{cases}$$
 la disequazione iniziale è verificata per  $x > 5$ 
$$x > 5$$

## Esercizio no.40:soluzione

$$\sqrt[3]{x^3 - 1} < \sqrt{x^2 + 1}$$

sia il primo che il secondo membro rappresentano dei numeri reali (la condizione di esistenza della radice quadra è sempre verificata).

Se 
$$x^3 - 1 \le 0 \rightarrow x \le 1$$
 la disequazione è sempre vera perché  $\sqrt{x^2 + 1} > 0$ 

Se  $x^3 - 1 > 0 \rightarrow x > 1$  bisogna simultaneamente verificare che:

$$(x^3 - 1)^{\frac{1}{3}} < (x^2 + 1)^{\frac{1}{2}}$$
 elevo alla sesta potenza entrambi i membri

$$(x^3 - 1)^2 < (x^2 + 1)^3 \rightarrow x^6 - 2x^3 + \chi < x^6 + 3x^4 + 3x^2 + \chi$$
 cioè

$$3x^4 + 2x^3 + 3x^2 > 0 \rightarrow x^2(3x^2 + 2x + 3) > 0$$

Per l'espressione di II°  $3x^2 + 2x + 3$  si ha  $\Delta = b^2 - 4ac = 4 - 36 < 0$  quindi

la disequazione è sempre verificata, se  $x \neq 0$ . Quindi questo secondo sistema ci porta a scrivere:

$$\begin{cases} x > 1 \\ \sqrt[3]{x^3 - 1} < \sqrt{x^2 + 1} \end{cases} \qquad \begin{cases} x > 1 \\ x \neq 0 \end{cases}$$
 che è sempre verificata...

in definitiva la soluzione è  $\forall x \in \Re$ .