# **CS23336-Introduction to Python Programming**

**Started on** Monday, 21 October 2024, 10:08 PM

State Finished

Completed on Monday, 21 October 2024, 11:05 PM

**Time taken** 56 mins 35 secs **Marks** 10.00/10.00

**Grade 100.00** out of 100.00

# **Question 1**

Correct

Mark 1.00 out of 1.00



#### **Question text**

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the  $p^{th}$  element of the list, sorted ascending. If there is no  $p^{th}$  element, return 0.

#### **Example**

n = 20

p = 3

The factors of 20 in ascending order are  $\{1, 2, 4, 5, 10, 20\}$ . Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

#### **Constraints**

 $1 \le n \le 10^{15}$ 

 $1 \le p \le 10^9$ 

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

### Sample Case 0

### Sample Input 0

10

### Sample Output 0

5

# Explanation 0

Factoring n = 10 results in  $\{1, 2, 5, 10\}$ . Return the  $p = 3^{rd}$  factor, 5, as the answer.

#### Sample Case 1

# **Sample Input 1**

10

\_

#### **Sample Output 1**

0

### **Explanation 1**

Factoring n = 10 results in  $\{1, 2, 5, 10\}$ . There are only 4 factors and p = 5, therefore 0 is returned as the answer.

# Sample Case 2

# Sample Input 2

1

# Sample Output 2

1

# **Explanation 2**

Factoring n=1 results in  $\{1\}$ . The p=1st factor of 1 is returned as the answer.

For example:

# **Input Result**

```
10
3
5
0
5
0
```

Answer:(penalty regime: 0 %)

# Feedback

# **Input Expected Got**

```
10
3 5 5
10
5 0 0
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 2**

Correct Mark 1.00 out of 1.00 Flag question

**Question text** An array is monotonic if it is either monotone increasing or monotone decreasing. An array A is monotone increasing if for all  $i \le j$ ,  $A[i] \le A[j]$ . An array A is monotone decreasing if for all  $i \le j$ , A[i]>= A[j].Write a program if n array is monotonic or not. Print "True" if is monotonic or "False" if it is not. Array can be monotone increasing or decreasing. Input Format: First line n-get number of elements Next n Lines is the array of elements Output Format: True ,if array is monotone increasing or decreasing. otherwise False is printed Sample Input1 8 Sample Output1 True Sample Input2 6 5 Sample Output2 True Sample Input 3

 $Sample\ Output 3$ 

False

8

For example:

# **Input Result**

4

```
5 True43
```

Answer:(penalty regime: 0 %)

### **Feedback**

# **Input Expected Got**

```
4
6
      True
                  True
5
4
3
4
3
      False
                  False
5
7
4
4
1
6
      False
                  False
9
2
4
6
      True
                  True
2
3
2
      False
                  False
1
4
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 3**

Correct
Mark 1.00 out of 1.00
Flag question

### **Question text**

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

Sample Test Cases

Test Case 1

Input

7

23

45

23

56

45

23

40

Output

23 occurs 3 times

45 occurs 2 times

56 occurs 1 times

40 occurs 1 times

Answer:(penalty regime: 0 %)

# Feedback

```
Input Expected Got
7
23
45    23    occurs 3 times 23 occurs 3 times
23    45    occurs 2 times 45 occurs 2 times
```

```
56 occurs 1 times 56 occurs 1 times
56
45
       40 occurs 1 times 40 occurs 1 times
23
40
Passed all tests!
Correct
Marks for this submission: 1.00/1.00.
Question 4
Correct
Mark 1.00 out of 1.00
Flag question
Question text
Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that
A[i] - A[j] = k, i! = j.
Input Format
     First line is number of test cases T. Following T lines contain:
2.
     N, followed by N integers of the array
3.
     The non-negative integer k
Output format
Print 1 if such a pair exists and 0 if it doesn't.
Example
Input
```

1

3

3 5

Output:

Input

1 3

1

5 99

0

Output

For example:

**Input Result** 

```
3
1 1
3
5
4
1
3
1 0
5
99
```

Answer:(penalty regime: 0 %)

# Feedback

# **Input Expected Got**

```
1 3 1 1 1 5 4 1 1 3 1 3 1 3 1 3 1 3 1 3 1 5 999
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 5**

Correct

Mark 1.00 out of 1.00

Flag question

### **Question text**

Given a matrix mat where every row is sorted in **strictly increasing** order, return the **smallest common element** in all rows.

If there is no common element, return -1.

# Example 1:

# **Input:**

4 5

12345

2 4 5 8 10

3 5 7 9 11

1 3 5 7 9

# **Output:**

5

#### **Constraints:**

- $1 \le \text{mat.length}$ ,  $\text{mat[i].length} \le 500$
- $1 \le mat[i][j] \le 10^4$
- mat[i] is sorted in strictly increasing order.

Answer:(penalty regime: 0 %)

```
1  import re
2  a=input()
3  row=int(a[0])
4  column=int(a[2])
5  matrix=[]
6  res=-1
7  for i in range(row):
8   temp=input()
9   matrix.append(re.findall(r'[0-9]+',temp))
10  for k in range(column):
11   x=(matrix[0])[k]
12  flag=0
13  for i in matrix:
14   if x in i:
15   | flag==row and res==-1:
16   if flag==row and res==-1:
17   res=x
18   elif flag==row and x<res:
19   res=x
20  print(res)</pre>
```

#### **Feedback**

### Input Expected Got

```
4 5
1 2 3 4 5
2 4 5 8 10 5 5
3 5 7 9 11
1 3 5 7 9
```

# Passed all tests!

#### Correct

Marks for this submission: 1.00/1.00.

# **Question 6**

Correct
Mark 1.00 out of 1.00

Flag question

# **Question text**

Program to print all the distinct elements in an array. Distinct elements are nothing but the unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length n.

Second line take n Integers which is inputs of array.

Output Format:

Print the Distinct Elements in Array in single line which is space Separated

Example Input:

5

1 2

2

3 4

Output:

1234

Example Input:

6

1

1

2

2

3

Output:

123

For example:

# **Input Result**

Answer:(penalty regime: 0 %)

#### **Feedback**

### **Input Expected Got**

```
5
1
2
2
1 2 3 4
1 2 3 4
3
4
6
1
1
2
1 2 3
1 2 3
3
3
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

### **Question 7**

Correct

Mark 1.00 out of 1.00

Flag question

### **Question text**

Given two arrays of positive integers, for each element in the second array, find the total number of elements in the first array which are *less than or equal to* that element. Store the values determined in an array.

For example, if the first array is [1, 2, 3] and the second array is [2, 4], then there are 2 elements in the first array less than or equal to 2. There are 3 elements in the first array which are less than or equal to 4. We can store these answers in an array, answer = [2, 3].

### **Program Description**

The program must return an array of m positive integers, one for each maxes[i] representing the total number of elements nums[j] satisfying  $nums[j] \le maxes[i]$  where  $0 \le j < n$  and  $0 \le i < m$ , in the given order.

The program has the following:

nums[nums[0],...nums[n-1]]: first array of positive integers
maxes[maxes[0],...maxes[n-1]]: second array of positive integers

#### **Constraints**

```
· 2 \le n, m \le 10^5

· 1 \le nums[j] \le 10^9, where 0 \le j < n.

· 1 \le maxes[i] \le 10^9, where 0 \le i < m.

Input Format For Custom Testing
```

Input from stdin will be processed as follows and passed to the program.

The first line contains an integer n, the number of elements in nums. The next n lines each contain an integer describing nums[j] where  $0 \le j < n$ . The next line contains an integer m, the number of elements in maxes. The next m lines each contain an integer describing maxes[i] where  $0 \le i < m$ .

Sample Case 0

# Sample Input 0

# Sample Output 0

4

### **Explanation 0**

We are given n = 4, nums = [1, 4, 2, 4], m = 2, and maxes = [3, 5].

- 1. For maxes[0] = 3, we have 2 elements in nums(nums[0] = 1) and nums[2] = 2) that are  $\leq maxes[0]$ .
- 2. For maxes[1] = 5, we have 4 elements in nums(nums[0] = 1, nums[1] = 4, nums[2] = 2, and <math>nums[3] = 4) that are  $\leq maxes[1]$ .

Thus, the program returns the array [2, 4] as the answer.

Sample Case 1

# Sample Input 1

# Sample Output 1

7

### **Explanation 1**

We are given, n = 5, nums = [2, 10, 5, 4, 8], m = 4, and maxes = [3, 1, 7, 8].

- 1. For maxes[0] = 3, we have 1 element in nums(nums[0] = 2) that is  $\leq maxes[0]$ .
- 2. For maxes[1] = 1, there are 0 elements in nums that are  $\leq maxes[1]$ .
- 3. For maxes[2] = 7, we have 3 elements in nums(nums[0] = 2, nums[2] = 5, and <math>nums[3] = 4) that are  $\leq maxes[2]$ .
- 4. For maxes[3] = 8, we have 4 elements in nums(nums[0] = 2, nums[2] = 5, nums[3] = 4, and nums[4] = 8) that are  $\leq maxes[3]$ .

Thus, the program returns the array [1, 0, 3, 4] as the answer.

Answer:(penalty regime: 0 %)

### **Feedback**

### **Input Expected Got**

```
4
2
3
5
2
10
5
       1
                    1
4
       0
                    0
8
       3
                    3
4
3
1
7
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 8**

Correct

Mark 1.00 out of 1.00

Flag question

### **Question text**

Assume you have an array of length n initialized with all 0's and are given k update operations.

Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of

subarray  $A[startIndex \dots endIndex]$  (startIndex and endIndex inclusive) with inc. Return the modified array after all  $\boldsymbol{k}$  operations were executed. **Example: Input:** 5 3 1 3 2 2 4 3 0 2 -2 **Output:** -20353 **Explanation:** Initial state: length = 5, updates = [[1,3,2],[2,4,3],[0,2,-2]] [0,0,0,0,0]After applying operation [1,3,2]:

[0,2,2,2,0]After applying operation [2,4,3]: [0,2,5,5,3]After applying operation [0,2,-2]:

[-2,0,3,5,3]

Answer:(penalty regime: 0 %)

```
import re
       a=input()
       temp=re.findall(r'[(-9)-0]+',a)
       tes.append(temp)
12 - for z in tes:
```

# **Feedback**

# Input Expected Got

```
5 3 1 3 2 -2 0 3 5 3 -2 0 3 5 3 2 4 3 0 2 -2
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 9**

Correct

Mark 1.00 out of 1.00

Flag question

#### **Question text**

Given an integer n, return an list of length n+1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.

Example:

```
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10

Example2:

Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
```

Note: Complete the given function alone

For example:

4 --> 100 5 --> 101

#### Test Result

print(CountingBits(5)) [0, 1, 1, 2, 1, 2]

Answer:(penalty regime: 0 %)

# Reset answer

#### **Feedback**

Test Expected Got

print(CountingBits(2)) [0, 1, 1] [0, 1, 1]

print(CountingBits(5)) [0, 1, 1, 2, 1, 2] [0, 1, 1, 2, 1, 2]

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

# **Question 10**

Correct
Mark 1.00 out of 1.00
Flag question

# **Question text**

The program must accept N integers and an integer K as the input. The program must print every K integers in descending order as the output.

<u>Note</u>: If N % K != 0, then sort the final N%K integers in descending order.

# **Boundary Condition(s):**

 $1 \le N \le 10^4$ -99999 \in Array Element Value \in 99999

### **Input Format:**

The first line contains the values of N and K separated by a space. The second line contains N integers separated by space(s).

# **Output Format:**

The first line contains N integers.

### **Example Input/Output 1:**

Input:

7 3 48 541 23 68 13 41 6

Output:

### Explanation:

The first three integers are  $48\,541\,23$ , after sorting in descending order the integers are  $541\,48\,23$ . The second three integers are  $68\,13\,41$ , after sorting in descending order the integers are  $68\,41\,13$ . The last integer is 6.

The integers are **541 48 23 68 41 13 6** Hence the output is **541 48 23 68 41 13 6**.

Answer:(penalty regime: 0 %)

```
1  import re
2  res=[]
3  a=input()
4  lis=re.findall(r'[0-9]+',a)
5  a=input()
6  integers=re.findall(r'[0-9]+',a)
7  split=len(integers)//int(lis[1])
8  x=0
9  for i in range(split):
10   temp=integers[x:x+int(lis[1])]
11   temp.sort(reverse=True)
12   res.extend(temp)
13   x+=int(lis[1])
14  if split*int(lis[1])!= len(integers):
15   res.extend(integers[x::])
16  print(*res)
```

#### **Feedback**

```
        Input
        Expected
        Got

        7 3
        48 541 23 68 13 41 6 541 48 23 68 41 13 6 541 48 23 68 41 13 6
        24 541 48 23 68 41 13 6 541 48 23 68 41 13 6
```

Passed all tests!

Correct

Marks for this submission: 1.00/1.00.

Finish review

Skip Quiz navigation

### **Quiz navigation**

Question 1 This page Question 2 This page Question 3 This page Question 4 This page Question 5 This page Question 6 This page Question 7 This page Question 8 This page Question 9 This page Question 10 This page Show one page at a timeFinish review