Tarea #2 Diego García Santoyo 143659 19/2/2019

1. Generación de la funcion BinNeg.Plot

Función Binomial

Primero se presentan los resultados de la función Binomial. Plot ya vistos anteriormente en el markdown Binomial. Plot (100,0.3)

Función Poisson

Ahora se presentan los resultados de la función Poisson. Plot con
 $\lambda{=}5$

Poisson.Plot(5)

Función Binomial Negativa

Para finalizar se presenta la gráfica de la función Binomial Negativa usando la funcion BinNeg.Plot (modificación a partir de la Poisson.Plot)

BinNeg.Plot(40,0.75)

2. Agregación Poisson

Sean $X_1, ..., X_n$ v.a.independientes distribuidas $Pois(\lambda_i)$.

Sabemos que la f
gm de una variable aleatoria $X \sim Pois(\lambda)$ es $\phi_X(s) = e^{\lambda(s-1)}$.

Al ser independientes las n
 variables aleatorias, se tiene que la fgm de la suma de las n
 variables poisson es $\phi_{X_1+X_2+...+X_n}(s)=\phi_{X_1}(s)\phi_{X_2}(s)...\phi_{X_n}(s)=e^{\lambda_1(s-1)}e^{\lambda_2(s-1)}...e^{\lambda_n(s-1)}=e^{(\lambda_1+\lambda_2+...+\lambda_n)(s-1)}$

De donde se puede ver que $X_1 + ... + X_n \sim Pois(\lambda_1 + ... + \lambda_n)$.

3. Distribución binomial-negativa como mezcla de poisson-gamma

Sean las siguientes v.a. $X_1 \sim Pois(n|\lambda)$ y $X_2 \sim Gam(\lambda|\alpha,\beta)$

Entonces tenemos que

$$\begin{split} P(N=n) &= \int_0^\infty Pois(n|\lambda)Gam(\lambda|\alpha,\beta)d\lambda \\ &= \int_0^\infty \frac{\lambda^n e^{-\lambda}}{n!} \frac{\lambda^{\alpha-1} e^{\frac{-\lambda}{\beta}}}{\Gamma(\alpha)\beta^\alpha} d\lambda \\ &= \frac{1}{n!\Gamma(\alpha)\beta^\alpha} \int_0^\infty \lambda^{n+\alpha-1} e^{-\frac{\lambda}{1+\frac{1}{\beta}}} d\lambda \\ &= \frac{1}{n!\Gamma(\alpha)\beta^\alpha} \int_0^\infty \lambda^{n+\alpha-1} e^{-\frac{\lambda}{1+\frac{1}{\beta}}} \frac{\Gamma(n+\alpha)}{\Gamma(n+\alpha)} \frac{\left(\frac{\beta}{\beta+1}\right)^{n+\alpha}}{\left(\frac{\beta}{\beta+1}\right)^{n+\alpha}} d\lambda \end{split}$$

$$=(\frac{\beta}{\beta+1})^{n+\alpha}\frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)\beta^{\alpha}}\int_{0}^{\infty}\frac{\lambda^{n+\alpha-1}e^{\frac{-\lambda}{1+\frac{1}{\beta}}}}{\Gamma(n+\alpha)(\frac{\beta}{\beta+1})^{n+\alpha}}$$

Notar que el término $\int_0^\infty \frac{\lambda^{n+\alpha-1}e^{\frac{-\lambda}{1+\frac{1}{\beta}}}}{\Gamma(n+\alpha)(\frac{\beta+1}{\beta+1})^{n+\alpha}}$ se va a 1 al ser una $Gam(n+\alpha,\frac{\beta}{\beta+1})$

$$= \left(\frac{\beta}{\beta+1}\right)^{n+\alpha} \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)\beta^{\alpha}}$$

$$= \frac{\beta^n}{(\beta+1)^{n+\alpha}} \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)}$$

$$= \left(\frac{1}{\beta+1}\right)^{\alpha} \left(\frac{\beta}{\beta+1}\right)^n \frac{\Gamma(n+\alpha)}{n!\Gamma(\alpha)}$$

lo cual coincide con la funcion de probabilidad de una distribucion $BinNeg(\alpha, \frac{1}{\beta+1})$.