Complex Analysis Logic and Set Summary

Dr. Paul L. Bailey September 4, 2017

Logic Notation Summary

Symbol	Abbrev	Name	Format
	NOT	Negation	$\neg p$
^	AND	Conjunction	$p \wedge q$
V	OR	Disjunction	$p \lor q$
\Rightarrow	IMP	Implication	$p \Rightarrow q$
\Leftrightarrow	IFF	Equivalence	$p \Leftrightarrow q$
1	XOR	Exclusion	$p \updownarrow q$
₩	NOR	Alternate Denial	$p \Downarrow q$
1	NAND	Joint Denial	$p \uparrow q$

Table 1: Logical Operators

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	$p \updownarrow q$	$p \Downarrow q$	$p \uparrow q$
\mathbf{T}	T	F	\mathbf{T}	T	\mathbf{T}	T	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	F	F	F	\mathbf{T}	F	F	\mathbf{T}	F	\mathbf{T}
F	T	\mathbf{T}	F	\mathbf{T}	\mathbf{T}	F	\mathbf{T}	F	\mathbf{T}
F	F	T	F	F	\mathbf{T}	\mathbf{T}	F	\mathbf{T}	\mathbf{T}

Table 2: Truth Tables

Precedence of Operators

- 1. NOT
- 2. AND, OR
- 3. XOR, NOR, NAND
- 4. IMP
- 5. IFF

Symbol	Abbrev	Meaning
A	FORALL	for every (for all)
∃ ∃	EXISTS	there exists (for some)
∃!	UNIQUE	there exists uniquely
€	ST	such that

Table 3: Quantifiers

Set Notation Summary

Symbol	Meaning	Definition
\in	is an element of	Example: $\pi \in \mathbb{R}$
∉	is not an element of	Example: $\pi \notin \mathbb{Q}$
C	is a subset of	$A \subset B \Leftrightarrow (a \in A \Rightarrow a \in B)$
Λ	intersection	$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
U	union	$A \cup B = \{x \mid x \in A \text{ or } x \in B$
\	complement	$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$
×	cartesian product	$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

Table 4: Set Operations

Set	Name	Definition
N	Natural Numbers	$\{1,2,3,\dots\}$
\mathbb{Z}	Integers	$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$
Q	Rational Numbers	$\{p/q \mid p, q \in \mathbb{Z}\}$
\mathbb{R}	Real Numbers	{"Dedekind Cuts"}
C	Complex Numbers	$\{a+ib \mid a,b \in \mathbb{R} \text{ and } i^2=-1\}$
\mathbb{R}^2	Euclidean Plane	$\{(a,b) \mid a,b \in \mathbb{R}\}$
\mathbb{R}^3	Euclidean Space	$\{(a,b,c) \mid a,b,c \in \mathbb{R}\}$

Table 5: Standard Sets