universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 8 - Measurable functions and the integral II

Exercise 1 (4 Points).

Let $(\Omega, \mathcal{F}), (\Omega', \mathcal{F}'), (\Omega'', \mathcal{F}'')$ be measurable spaces and $f: \Omega \to \Omega'$ measurable and $Z: \Omega \to \Omega''$. Then, Z is $\sigma(X)$ -measurable if and only if there is a $\mathcal{F}'/\mathcal{F}''$ -measurable mapping $\varphi: \Omega' \to \Omega''$ with $\varphi \circ X = Z$.

Exercise 2 (4 Points).

Prove Theorem 3.25

Exercise 3 (4 Points).

Let λ be Lebesgue measure on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Find $f,f_1,f_2,... \in \mathcal{L}^1(\lambda)$ with $f_n \xrightarrow{n \to \infty} f$ almost everywhere, with $\int f_n d\lambda \xrightarrow{n \to \infty} \int f d\mu$, but the corresponding Riemann integrals do not converge.

Exercise 4 (4 Points).

Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with derivative f'. Show that f' is $\mathcal{B}(\mathbb{R}) - \mathbb{B}(\mathbb{R})$ —measurable.