KLayout-PEX Documentation

Martin Köhler

2025-01-22

Table of contents

1	Introduction			
	1.1	Install	lation	2
		1.1.1	Option 1: Using IIC-OSIC-TOOLS Docker Image	2
		1.1.2	Option 2: Standalone Installation	3
		1.1.3	Useful tools: meshlab	3
2	First	Steps		4
	2.1	Exam	ples	4
		2.1.1	Running FasterCap	4

1 Introduction

KLayout is an open source VLSI layout viewer and editor.

KLayout-PEX (short KPEX) is a parasitic extraction (PEX) tool, well integrated with KLayout by using its API.

There are multiple PEX engines supported, currently:

- FasterCap integration (field solver engine)
- MAGIC integration (wrapper calling magic)
- Analytical 2.5D engine (parasitic concepts and formulas of MAGIC, implemented using KLayout methods)

Tip

KPEX tool source code itself is made publicly available on GitHub (follow this link) and shared under the GPL-3.0 license.

KPEX documentation source code is made publicly available on GitHub (follow this link) and shared under the Apache-2.0 license.

Please feel free to create issues and/or submit pull requests on GitHub to fix errors

and omissions!

The production of the tool and this document would be impossible without these (and many more) great open-source software products: KLayout, FasterCap, MAGIC, protobuf, Quarto, Python, ngspice, Numpy, Scipy, Matplotlib, Git, Docker, Ubuntu, Linux...

Caution

Currently, KPEX is developed as a Python prototype, using the KLayout Python API. This allows for a faster development cycle during the current prototyping phase. Eventually, critical parts will be re-implemented (in C++, and parallelized), to improve performance. As we're already using the KLayout API (which is pretty similar between Python, Ruby and C++), this will be relatively straight-forward.

1.1 Installation

Generally, KPEX is deployed using PyPi (Python Package Index), install via:

```
pip3 install --upgrade klayout-pex
kpex --version
                 # check the installed version
kpex --help
                 # this will help with command line arguments
```

As for the dependencies, there are multiple options available.

1.1.1 Option 1: Using IIC-OSIC-TOOLS Docker Image

We provide a comprehensive, low entry barrier Docker image that comes pre-installed with most relevant open source ASIC tools, as well as the open PDKs. This is a pre-compiled Docker image which allows to do circuit design on a virtual machine on virtually any type of computing equipment (personal PC, Raspberry Pi, cloud server) on various operating systems (Windows, macOS, Linux).

For further information please look at the Docker Hub page and for detailed instructions at the IIC-OSIC-TOOLS GitHub page.

🔔 Linux

In this document, we assume that users have a basic knowledge of Linux and how to operate it using the terminal (shell). If you are not yet familiar with Linux (which is basically a must when doing integrated circuit design as many tools are only available on Linux), then please check out a Linux introductory course or tutorial online, there are many resources available.

A summary of important Linux shell commands is provided in IIC-JKU Linux Cheat-sheet

1.1.2 Option 2: Standalone Installation

- KLayout layout tool:
 - is mandatory for all engines (besides the MAGIC-wrapper)
 - get the latest pre-built package version
 - or follow the build instructions
- FasterCap engine:
 - optional, required to run the FasterCap engine
 - either compile your own version from the GitHub repository
 - or use precompiled versions available at https://github.com/martinjankoehler/ FasterCap/releases
- MAGIC-wrapper engine:
 - optional, required to run the MAGIC-wrapper engine
 - Follow the installation instructions at the GitHub repository
- Skywater sky130A PDK:
 - optional, for now, KPEX technology specific files are deployed within the klayout-pex Python package
 - pip3 install --upgrade volare (install PDK package manager)
 - volare 1s-remote (retrieve available PDK releases
 - * for example PRE-RELEASE 0c1df35fd535299ea1ef74d1e9e15dedaeb34c32 (2024.12.11))
 - volare enable 0c1df35fd535299ea1ef74d1e9e15dedaeb34c32 (install a PDK version)
 - PDK files now have been installed under \$HOME/.volare/sky130A
- IHP SG13G2 PDK:
 - optional, for now, KPEX technology specific files are deployed within the klayout-pex Python package
 - git clone https://github.com/IHP-GmbH/IHP-Open-PDK (install PDK package manager)

1.1.3 Useful tools: meshlab

For previewing generated 3D geometries, representing the input to FasterCap, we recommend installing MeshLab.

MeshLab can open the STL-files generated in the output directory under output/<design>/Geometries/*.st

2 First Steps

- The command line tool kpex is used to trigger the parasitic extraction flow from the terminal.
- Get help calling kpex --help.

2.1 Examples

Example layouts are included in the testdata/designs subdirectory of the KLayout-PEX source code:

```
git clone https://github.com/martinjankoehler/klayout-pex.git

# for sky130A
find testdata/designs/sky130A -name "*.gds.gz"

# for IHP SG13G2
find testdata/designs/ihp_sg13g2 -name "*.gds.gz"
```

2.1.1 Running FasterCap

Preconditions:

- klayout-pex was installed, see Section 1.1
- FasterCap was installed, see Section 1.1

Note

Normally, devices with SPICE simulation models (e.g. like MOM-capacitors¹ in the sky130A PDK) are ignored ("blackboxed") during parasitic extraction. kpex has an option --blacklist n to allow extraction of those devices (whiteboxing),

kpex has an option --blacklist n to allow extraction of those devices (whiteboxing), which can be useful during development (during the prototype phase, whiteboxing is actually the default setting, so please use --blacklist y to explicitly configure blackboxing).

Let's try the following:

kpex --pdk sky130A --blackbox n --gds testdata/designs/sky130A/cap_vpp_04p4x04p6_l1m1m2_nd

 $^{^1}$ Metal-On-Metal capacitors

Note

This will report an error that we have not activated one or more engines, and list the available engines:

Argument	Description
fastercap y	Run kpex/FasterCap engine
2.5D y	Run kpex/2.5D engine
magic y	Run MAGIC engine

Now, to run the FasterCap engine (might take a couple of minutes):

kpex --pdk sky130A --blackbox n --fastercap y --gds testdata/designs/sky130A/cap_vpp_04p4x

The default output directory is output, in there we see a directory Geometries, containing STL-files. Those STL files provide a preview of the FasterCap input files. Use MeshLab (see Section 1.1.3) to open and preview those files:

ls -d output/cap_vpp_04p4x04p6_l1m1m2_noshield__cap_vpp_04p4x04p6_l1m1m2_noshield/Geometri

? Tip

- Open the STL files in MeshLab
- Use the eye buttons to hide and show each file/mesh
- Use the align tool ("A" in the toolbar) to assign different colors
- Start by showing only on the conductors (files named cond_*.stl)
- Then try showing different dielectrics (files named diel_*.stl), to see how they surround the conductors.

In the log file, we see the output of FasterCap including the Maxwell capacitance matrix:

```
Capacitance matrix is:
Dimension 3 x 3
g1_VSUBS 5.2959e-09 -4.46971e-10 -1.67304e-09
g2_C1 -5.56106e-10 1.5383e-08 -1.47213e-08
g3_C0 -1.69838e-09 -1.48846e-08 1.64502e-08
```

KPEX interprets this matrix and logs a CSV netlist, which can be pasted into a spreadsheet application:

```
Device; Net1; Net2; Capacitance [fF]

Cext_0_1; VSUBS; C1; 0.5

Cext_0_2; VSUBS; C0; 1.69

Cext_1_2; C1; C0; 14.8

Cext_1_1; C1; VSUBS; 0.08
```

In addition, a SPICE netlist is generated.