- ▶ КС компонента связности
- ▶ нечетная КС КС с нечетным числом вершин
- lackbox Для $U\subseteq V$ обозначим Gackslash U индуцированный подграф на Vackslash U.

Теорема 2 (Татт, 1947)

В графе G = (V, E) есть совершенное паросочетание $\Leftrightarrow \forall U \subseteq V$ подграф $G \setminus U$ содержит не более |U| нечетных KC.

В частности, условие для $U=\emptyset$ означает, что |V| четно.

Доказательство. (\Rightarrow) Пусть $M\subseteq E$ — совершенное паросочетание, и пусть $U\subseteq V$ — подмножество вершин.

Тогда в $G \setminus U$ для всякой нечетной КС $C \subseteq V \setminus U$ паросочетание M должно содержать хотя бы одно ребро между C и U, т.е., (u_C, v_C) , где $u_C \in U$ и $v_C \in C$.

Так как вершины u_C , выбранные для разных таких компонент C, повторяться не могут (тогда это не было бы паросочетанием), получается, что число вершин в U не может быть меньше, чем число нечетных компонент связности.

 (\Leftarrow) Пусть совершенного паросочетания нет. Пусть $\hat{G} = (V, \hat{E})$ граф, полученный из G добавлением максимального числа ребер, так, чтобы в нем все еще не было совершенного паросочетания, но добавление любого дополнительного ребра приводило бы к появлению такового.

Тогда достаточно построить $U\subseteq V$, удаление которого разбивало бы \hat{G} так, чтобы в нем оставалось более чем |U| нечетных КС — тогда и в G число нечетных КС будет не меньше (удаление одного ребра либо сохранает нечетную КС, либо разбивает ее на две, одна из которых опять нечетная).

$$U := \{v \in V | \operatorname{deg} v = |V| - 1\}.$$

Утверждение. В $\hat{G} \setminus U$ всякая КС — полный граф. Доказательство утверждения. Пусть есть КС $C \subseteq V \setminus U$, которая не является полным графом.

Т.е. существуют вершины $v_1, v_2, v_3 \in C$, для которых $(v_1, v_2), (v_1, v_3) \in \hat{E}$, $(v_2, v_3) \notin \hat{E}$.

Т.к. $v_1 \notin U$, то $\exists v_4 \in V \colon (v_1, v_4) \notin \hat{E}$.

 $\hat{G}\Rightarrow$ если добавить в него ребро (v_1,v_4) , то будет совершенное паросочетание $M_1\subseteq\hat{E}\cup\{(v_1,v_4)\}$. Но раз в \hat{G} совершенного паросочетания не было, то $(v_1,v_4)\in M_1$.

Аналогично при добавлении ребра (v_2, v_3) получится совершенное паросочетание $M_2 \subseteq \hat{\mathcal{E}} \cup \{(v_2, v_3)\}$, где $(v_2, v_3) \in M_2$.

 $G':=(V,M_1\cup M_2)$ состоит из отдельных ребер из $M_1\cap M_2$, а также из циклов четной длины, в которых чередуются ребра из M_1 и M_2 .

Ребра (v_1, v_4) и (v_2, v_3) попадут в такие циклы, поскольку каждое из них принадлежит ровно одному из двух паросочетаний.

Рассмотрим два случая.

- Если эти ребра попадают в один и тот же цикл, то его можно перестроить, задействовав одно из ребер (v_1, v_2) и (v_1, v_4) получим совершенное паросочетание для \hat{G} .
- ightharpoonup Если же эти ребра попадают в разные циклы, то в каждом цикле можно взять другие ребра, и опять получится совершенное паросочетание для \hat{G} .

Утверждение доказано.

Итак, удалением $U\subseteq V$ получатся КС — полные графы, из них не более |U| нечетных.

Строим совершенное паросочетание в \hat{G} : четные КС сами с собой; нечетные — соединением одной вершины с произвольной вершиной из U, остальные вершины — сами с собой; оставшиеся вершины из U — между собой.

Противоречие.