

<u>Home</u> <u>Week-7</u> <u>Week-9</u>

## PDSA - Week 8

#### PDSA - Week 8

Divide and conquer

Divide and conquer example

Counting inversions

Closest pair of points

Integer multiplication

Quick select and Fast select

Median of Medians(MoM)

Fast select using MOM

Recursion trees

# Divide and conquer

- Break up a problem into disjoint subproblems
- Combine these subproblem solutions efficiently
- Examples
  - Merge sort
    - Split into left and right half and sort each half separately
    - Merge the sorted halves
  - Quicksort
    - Rearrange into lower and upper partitions, sort each partition separately
    - Place pivot between sorted lower and upper partitions

# Divide and conquer example

## **Counting inversions**

- Compare your profile with other customers
- Identify people who share your likes and dislikes
- No inversions rankings identical
- Every pair inverted maximally dissimilar
- Number of inversions ranges from 0 to n(n 1) / 2



- An inversion is a pair (i, j), i < j, where j appears before i
- Recurrence: T(n) = 2T(n/2) + n = O(nlogn)

#### **Implementation**

```
def mergeAndCount(A,B):
 2
         (m,n) = (len(A), len(B))
 3
         (C,i,j,k,count) = ([],0,0,0,0)
        while k < m+n:
 4
             if i == m:
 5
 6
                 C.append(B[j])
                 i += 1
 8
                 k += 1
 9
             elif j == n:
10
                 C.append(A[i])
                 i += 1
11
12
                 k += 1
             elif A[i] < B[j]:
13
14
                 C.append(A[i])
                 i += 1
15
                 k += 1
16
17
             else:
18
                 C.append(B[j])
                 j += 1
19
                 k += 1
20
21
                 count += m-i
22
         return(C,count)
23
    def inversionCount(A):
24
25
        n = len(A)
26
        if n <= 1:
27
             return(A,0)
         (L,countL) = inversionCount(A[:n//2])
28
29
         (R, countR) = inversionCount(A[n//2:])
30
         (B,countB) = mergeAndCount(L,R)
31
         return(B,countL + countR + countB)
32
    L = [2,4,3,1,5]
    print(inversionCount(L)[1])
```

#### **Output**

```
1 | 4 # 4 is the number of inversions
```

### Closest pair of points

- Several objects on screen
- · Basic step: find closest pair of objects
- n objects naive algorithm is  $n^2$ 
  - For each pair of objects, compute their distance
  - Report minimum distance across all pairs
- There is a clever algorithm that takes time O(nlogn) using divide and conquer
- Given n points  $p1, p2, \ldots, pn$  find the closest pair
  - Assume no two points have same x or y coordinate
  - o Split the points into two halves by vertical line
  - Recursively compute closest pair in each half
  - o Compare shortest distance in each half to shortest distance across the dividing line
- Recurrence: Tn = 2Tn/2 + O(n)
- Overall: O(nlogn)

#### **Pseudocode**

```
def ClosestPair(Px,Py):
 2
        if len(Px) \ll 3:
 3
            compute pairwise distances
             return closest pair and distance
 4
 5
        Construct (Qx,Qy), (Rx,Ry)
 6
        (q1,q2,dQ) = ClosestPair(Qx,Qy)
7
        (r1,r2,dR) = ClosestPair(Rx,Ry)
        Construct Sy from Qy, Ry
8
9
        Scan Sy, find (s1,s2,dS)
10
        return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
11
        #depending on which of dQ, dR, dS is minimum
```

#### **Implementation**

```
import math
 2
    # Returns eucledian disatnce between points p and q
 3
    def distance(p, q):
4
 5
      return math.sqrt(math.pow(p[0] - q[0],2) + math.pow(p[1] - q[1],2))
 6
 7
    def minDistanceRec(Px, Py):
     s = len(Px)
8
9
      # Given number of points cannot be less than 2.
     # If only 2 or 3 points are left return the minimum distance accordingly.
10
     if (s == 2):
11
12
        return distance(Px[0],Px[1])
13
      elif (s == 3):
14
        return min(distance(Px[0],Px[1]), distance(Px[1],Px[2]),
    distance(Px[2],Px[0]))
15
16
      \# For more than 3 points divide the poitns by point around median of x
    coordinates
      m = s//2
17
```

```
18
      Qx = Px[:m]
19
      Rx = Px[m:]
20
      xR = Rx[0][0]
                        # minimum x value in Rx
21
22
      # Construct Qy and Ry in O(n) rather from Py
23
      Qy=[]
24
      Ry=[]
25
      for p in Py:
26
        if(p[0] < xR):
27
          Qy.append(p)
28
        else:
29
          Ry.append(p)
30
31
      # Extract Sy using delta
32
      delta = min(minDistanceRec(Qx, Qy), minDistanceRec(Rx, Ry))
33
      Sy = []
34
      for p in Py:
35
        if abs(p[0]-xR) \leftarrow delta:
36
          Sy.append(p)
37
38
      #print(xR,delta,Sy)
39
      sizeS = len(Sy)
40
      if sizeS > 1:
41
          minS = distance(Sy[0], Sy[1])
42
          for i in range(1, sizeS-1):
43
               for j in range(i, min(i+15, sizeS)-1):
44
                   minS = min(minS, distance(Sy[i], Sy[j+1]))
          return min(delta, minS)
45
46
      else:
47
          return delta
48
    def minDistance(Points):
49
50
      Px = sorted(Points)
51
      Py = Points
52
      Py.sort(key=lambda x: x[-1])
53
      #print(Px,Py)
54
      return round(minDistanceRec(Px, Py), 2)
55
56
57
58
    pts = [(2, 15), (40, 5), (20, 1), (21, 14), (1,4), (3, 11)]
59
    mu1 = 0
60
    if (len(pts) > 100): mul = 0
61
    result = minDistance(pts)
62
    for i in range(mul):
      minDistance(pts)
63
    print(result)
64
```

#### Output

```
1 | 4.12
```

### Integer multiplication

- Traditional method:  $O(n^2)$
- Naïve divide and conquer strategy:  $T(n) = 4T(n/2) + n = O(n^2)$
- ullet Karatsuba's algorithm: T(n) = 3Tn/2 + n pprox On~log~3)

#### **Implementation**

```
# here 10 represent base of input numbers x and y
    def Fast_Multiply(x,y,n):
 3
       if n == 1:
            return x * y
 5
       else:
 6
            m = n/2
 7
            xh = x//10**m
            x1 = x \% (10**m)
 8
            yh = y//10**m
9
10
            y1 = y \% (10**m)
            a = xh + x1
11
            b = yh + y1
12
13
            p = Fast_Multiply(xh, yh, m)
            q = Fast_Multiply(xl, yl, m)
14
15
            r = Fast_Multiply(a, b, m)
            return p*(10**n) + (r - q - p) * (10**(n/2)) + q
16
17
    print(Fast_Multiply(3456,8902,4))
```

#### **Output**

```
1 | 30765312.0
```

## **Quick select and Fast select**

- Find the  $k_{th}$  smallest value in a sequence of length k
- Sort in descending order and look at position k O(nlogn)
- For any fixed k, find maximum for k times O(kn)
- k=n/2 (median)  $O(n^2)$
- Median of medians -O(n)
- Selection becomes O(n) in Fast select algorithm
- Quicksort becomes O(nlogn) using MoM

#### **Implementation**

```
def quickselect(L,1,r,k): # k-th smallest in L[1:r]
2
     if (k < 1) or (k > r-1):
       return(None)
4
5
     (pivot, lower, upper) = (L[1], l+1, l+1)
6
     for i in range(l+1,r):
7
       if L[i] > pivot: # Extend upper segment
8
         upper = upper + 1
9
       else: # Exchange L[i] with start of upper segment
         (L[i], L[lower]) = (L[lower], L[i])
```

8/13/22, 9:18 AM Week 8 Summary

```
(lower,upper) = (lower+1,upper+1)
11
12
      (L[1],L[lower-1]) = (L[lower-1],L[l]) # Move pivot
13
      lower = lower - 1
14
      # Recursive calls
15
16
      lowerlen = lower - l
      if k <= lowerlen:</pre>
17
        return(quickselect(L,1,lower,k))
18
      elif k == (lowerlen + 1):
19
20
        return(L[lower])
21
      else:
22
        return(quickselect(L,lower+1,r,k-(lowerlen+1)))
23
    print(quickselect([5,3,7,2,1],0,5,2))
```

#### Output

```
1 | 2
```

### Median of Medians(MoM)

- Divide L into blocks of 5
- Find the median of each block (brute force)
- Let M be the list of block medians
- Recursively apply the process to M
- We can visualize the blocks as follows



- Each block of 5 is arranged in ascending order, top to bottom
- · Block medians are the middle row
- The median of block medians lies between 3len(L)/10 and 7len(L)/10



#### **Implementation**

```
def MoM(L): # Median of medians
1
2
      if len(L) <= 5:
 3
        L.sort()
4
        return(L[len(L)//2])
 5
      # Construct list of block medians
6
      M = []
7
      for i in range(0,len(L),5):
8
        X = L[i:i+5]
9
        X.sort()
10
        M.append(X[len(X)//2])
11
      return(MoM(M))
12
    print(MoM([4,3,5,6,2,1,8,9,7,10,13,15,18,17,11]))
```

#### **Output**

```
1 | 8
```

### **Fast select using MOM**

#### **Implementation**

```
def MoM(L): # Median of medians
 2
      if len(L) <= 5:
3
       L.sort()
4
        return(L[len(L)//2])
 5
      # Construct list of block medians
 6
      M = []
7
      for i in range(0,len(L),5):
8
        X = L[i:i+5]
9
        X.sort()
        M.append(X[len(X)//2])
10
11
      return(MoM(M))
12
13
14
    def fastselect(L,1,r,k): # k-th smallest in L[1:r]
15
16
      if (k < 1) or (k > r-1):
17
        return(None)
18
19
      # Find MoM pivot and move to L[]]
20
      pivot = MoM(L[1:r])
21
      pivotpos = min([i for i in range(1,r) if L[i] == pivot])
22
      (L[1],L[pivotpos]) = (L[pivotpos],L[1])
23
24
      (pivot,lower,upper) = (L[1],l+1,l+1)
      for i in range(l+1,r):
25
26
        if L[i] > pivot: # Extend upper segment
27
          upper = upper + 1
28
        else: # Exchange L[i] with start of upper segment
29
          (L[i], L[lower]) = (L[lower], L[i])
```

```
(lower, upper) = (lower+1, upper+1)
30
31
      (L[1],L[lower-1]) = (L[lower-1],L[l]) # Move pivot
32
      lower = lower - 1
33
      # Recursive calls
34
35
      lowerlen = lower - l
36
      if k <= lowerlen:</pre>
        return(fastselect(L,1,lower,k))
37
38
      elif k == (lowerlen + 1):
39
        return(L[lower])
40
      else:
41
        return(fastselect(L,lower+1,r,k-(lowerlen+1)))
    print(fastselect([4,3,5,6,2,1,8,9,7,10,13,15,18,17,11],0,15,4))
42
```

#### Output

```
1 | 4
```

### **Recursion trees**

- Recursion tree-Rooted tree with one node for each recursive subproblem
- Value of each node is time spent on that subproblem excluding recursive calls
- ullet Concretely, on an input of size n
  - $\circ$  f(n) is the time spent on non-recursive work
  - $\circ$  r is the number of recursive calls
  - $\circ~$  Each recursive call works on a subproblem of size n/c
- Resulting recurrence: T(n) = rT(n/c) + f(n)
- Root of recursion tree for T(n) has value f(n)
- Root has r children, each (recursively) the root of a tree for T(n/c)
- Each node at level d has value  $f(n/c^d)$ 
  - $\circ \;\;$  Assume, for simplicity, that n was a power of c

# Recursion tree for T(n) = rT(n/c) + f(n)



- Leaves correspond to the base case T(1)
  - Safe to assume T(1) = 1, asymptotic complexity ignores constants
- Level i has  $r^i$  nodes, each with value  $f(n/c^i)$
- Tree has L levels,  $L = \log_{c} n$
- Total cost is  $T(n) = \sum_{i=0}^{L} r^{i} \cdot f(n/c^{i})$
- Number of leaves is r<sup>L</sup>
  - Last term in the level by level sum is  $r^L \cdot f(1) = r^{\log_c n} \cdot 1 = n^{\log_c r}$
  - Recall that  $a^{\log_b c} = c^{\log_b a}$
  - Tree has  $\log_c n$  levels, last level has cost is  $n^{\log_c r}$
  - Total cost is  $T(n) = \sum_{i=0}^{L} r^{i} \cdot f(n/c^{i})$
  - Think of the total cost as a series. Three common cases
  - Decreasing Each term is a constant factor smaller than previous term
    - Root dominates the sum, T(n) = O(f(n))
  - Equal All terms in the series are equal
    - $T(n) = O(f(n) \cdot L) = O(f(n) \log n) \log_c n$  is asymptotically same as  $\log n$
  - Increasing Series grows exponentially, each term a constant factor larger than previous term
    - Leaves dominate the sum,  $T(n) = O(n^{\log_c r})$