11 Veröffentlichungsnummer:

0071707 A1

12

EUROPÄISCHE PATENTANMELDUNG

2 Anmeldenummer: 82104688.5

2 Anmeldetag: 28.05.82

60 Int. Cl.³: C 07 D 309/06, C 07 D 309/22, C 07 D 307/14, C 07 D 307/16, C 07 D 317/28, C 07 D 317/30,

C 07 D 319/06, C 07 D 335/02,

C 07 D 339/06, A 01 N 43/02

(3) Priorität: 29.05.81 DE 3121355

(7) Anmelder: BASF Aktiengesellschaft, Carl-Bosch-Strasse 38, D-6700 Ludwigshafen (DE)

(3) Veröffentlichungstag der Anmeldung: 16.02.83 Patentblatt 83/7

Erfinder: Becker, Rainer, Dr., Sonnenwendstrasse 83, D-6702 Bad Duerkheim (DE)
Erfinder: Jahn, Dieter, Dr., Burgunder Weg 8, D-6803 Neckarhausen (DE)
Erfinder: Rohr, Wolfgang, Dr., In der Dreispitz 13, D-6706 Wachenheim (DE)
Erfinder: Himmele, Walter, Dr., Eichenweg 14, D-6909 Walldorf (DE)
Erfinder: Siegel, Hardo, Dr., Hans-Purrmann-Allee 25, D-6720 Speyer (DE)
Erfinder: Wuerzer, Bruno, Dr. Dipl.-Landwirt,

Ruedigerstrasse 13, D-6701 Otterstadt (DE)

Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE

Cyclohexandionderivate, Verfahren zu Ihrer Herstellung und diese enthaltende Herbizide.

 Die vorliegende Anmeldung betrifft Cyclohexandionderivate der aligemeinen Formel

A

in der

R¹ Alkyl

R² Alkyl, Alkenyl, Alkinyl, Halogenalkenyl

X Alkylenrest

n = 0 oder 1

Y Heterocyclus

Z Wasserstoff oder Methoxycarbonyl bedeutet, sowie die Salze dieser Verbindung und diese enthaltende Herbizide.

Cyclohexandionderivate, Verfahren zu ihrer Herstellung und diese enthaltende Herbizide

- Die vorliegende Erfindung betrifft neue Cyclohexan-1,3--dionderivate, Verfahren zur Herstellung dieser Verbindungen sowie Herbizide, welche diese Verbindungen enthalten.
- Cyclohexandionderivate mit Thienyl- oder Furylsubstitution in 5-Position mit relativ geringer herbizider Wirkung sind bekannt (DE-AS 24 39 104).

Es wurde nun gefunden, daß Verbindungen der allgemeinen Formel I

15

20

in der

R¹ Alkyl mit 1 - 4 Kohlenstoffatomen

25 R²

Alkyl mit 1 - 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 - 3 Halogenatomen

25

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Fy einen nichtaromatischen Heterocyclus mit 4 7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder 2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge, wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindungen unerwünschte Pflanzen aus der Familie der Gräser sehr gut bekämpfen und gleichzeitig als selektive Herbizide ein hohes Maß an Verträglichkeit für breitblättrige und andere nicht zu der Familie der Gräser zählende Kulturpflanzen besitzen.

R¹ bedeutet beispielsweise Propyl, Ethyl, Butyl,
R² bedeutet beispielsweise Methyl, Ethyl, Propyl, Allyl,
20 2-Chlorallyl, 3-Chlorallyl,
X bedeutet beispielsweise Methylen, Ethylen,
Y bedeutet beispielsweise Tetrahydropyranyl, Dihydropyranyl,
Methyltetrahydropyranyl, Dioxanyl, Dioxolanyl, Dithiolanyl,
Dihydrothiopyranyl.

Die neuen Verbindungen können in verschiedenen tautomeren Formen vorliegen:

30
$$\bigvee_{\substack{N \\ N \\ Y}} \bigcap_{N} \bigcap$$

35 Die vorliegende Erfindung umfaßt alle diese Formen.

10

15

20

25

30

35

Zur Herstellung der neuen Verbindungen ist beispielsweise der nachfolgend beschriebene Weg geeignet:

wobei R¹, R², X, Y, Z, A die oben genannte Bedeutung haben.

Man führt die Reaktion zweckmäßig in heterogener Phase in einem inerten Lösungsmittel bei Temperaturen zwischen O und 80°C in Gegenwart einer Base durch. Basen sind beispielsweise Carbonate, Hydrogencarbonate, Acetate, Alkoholate, Hydroxide oder Oxide von Alkalioder Erdalkalimetallen, besonders von Natrium und Kalium sowie Magnesium und Kalium. Daneben können auch organische Basen wie Pyridin oder tertiäre Amine Verwendung finden.

Ein für die Umsetzung besonders geeigneter definierter pH-Bereich reicht von pH 2 bis pH 7, insbesondere von pH 4,5 bis pH 5,5. Die Einstellung des pH-Bereichs für die Umsetzung erfolgt vorteilhaft durch Zusatz von Acetaten, beispielsweise Alkaliacetaten, insbesondere Natrium- oder Kaliumacetat oder ihren Mischungen. Die Alkaliacetate werden beispielsweise angewendet in Mengen von 0,5 bis 2 mol, bezogen auf die Ammoniumverbindung.

Als Lösungsmittel sind geeignet beispielsweise Methanol, Ethanol, Isopropanol, Benzol, Tetrahydrofuran, Chloroform, Acetonitril, Dichlorethan, Essigsäureethylester, Dioxan, Dimethylsulfoxid.

10

15

25

30

35

Die Reaktion ist nach einigen Stunden beendet, das Reaktionsprodukt kann durch Einengen der Mischung, Zugabe von Wasser und Extraktion mit einem unpolaren Lösungsmittel sowie Abdestillieren des Lösungsmittels unter vermindertem Druck, isoliert werden.

- b) Darüber hinaus ist die Herstellung der neuen Verbindungen auch durch Umsetzung der Verbindungen II mit den entsprechenden Aminen R2-ONH2 durchführbar.
- c) Weiterhin ist die Herstellung der neuen Derivate auch durch Alkylierung der Oxime mit Alkylierungsmitteln möglich:

Das Verfahren a) wird bevorzugt.

Die Verbindungen der Formel II können durch Acylierung der Cyclohexan-1,3-dione III, wie dies in Tetrahedron Letters 29, 2491 beschrieben ist, erhalten werden. Die Verbindungen III können ebenfalls in tautomeren Formen vorliegen.

Verbindungen der Formel III sind aus Aldehyden Y-Xn-CH=0 nach literaturbekannten Methoden beispiels-

10

15

20

25

30

35

weise durch Aldolkondensation mit Keton und anschließender Cyclisierung mit Malonsäureestern analog Organic Synthesis Coll. Vol. II, Seite 200 herstellbar. Auch durch Umsetzung des Aldehyds Y-X_n-CH=0 mit Malonsäure nach Knoevenagel-Döbner (s. Org. Reaktions Bd. <u>15</u>, Seite 204), Veresterung der erhaltenen Säure sowie Cyclisierung mit Acetessigester, in analoger Weise wie dies z.B. in Chem. Ber. <u>96</u>, Seite 2946 beschrieben wird,

Die Salze der Verbindungen sind beispielsweise die Alkalisalze, insbesondere Natrium- oder Kaliumsalze.

gelangt man zu den Zwischenprodukten der Formel III.

Die Natrium- und Kaliumsalze der neuen Verbindungen können durch Behandeln dieser Verbindungen mit Natrium- oder Kaliumhydroxid in wäßriger Lösung oder in einem organischen Lösungsmittel wie Methanol, Ethanol, Aceton erhalten werden. Es können auch Alkalialkoholate als Basen eingesetzt werden.

Andere Metallsalze, z.B. die Mangan-, Kupfer-, Zink-, Eisen- oder Bariumsalze können aus dem Natriumsalz durch Reaktion mit dem entsprechenden Metallchlorid in wäßriger Lösung hergestellt werden. Die folgenden Beispiele erläutern die Herstellung der neuen Cyclohexandione (Gewichtsteile verhalten sich zu Volumenteilen wie Kilogramm zu Liter).

Beispiel 1

10,0 Gewichtsteile 2-Butyryl-4-methoxycarbonyl-5[-tetra-hydropyran-4-ylmethyl]-cyclohexan-1,3-dion wurden in 150 Volumenteilen Ethanol gelöst und mit 2,93 Gewichtsteilen Ethyloxiammoniumchlorid sowie 2,71 Gewichtsteilen wasserfreiem Natriumacetat versetzt. Nach 20stündigem Rühren bei

20°C wurde in Eiswasser gegeben und mit Methylenchlorid extrahiert. Nach dem Einengen der organischen Phase verblieben 10,5 Gewichtsteile 2(1-Ethoxyaminobutyliden)-4-methoxy-carbonyl-5-[tetrahydropyran-4-ylmethyl-]cyclohexan-1,3-dion (Verbindung Nr. 1) als zähes öl mit folgender Struktur:

Beispiel 2

25

20

5

10

15

10,0 Gewichtsteile 2-Butyryl-5[2-(1,3-dioxan-2-yl-)ethyl]--cyclohexan-1,3-dion wurden in 150 Volumenteilen Ethanol gelöst und mit 3,72 Gewichtsteilen Allyloxiammoniumchlorid sowie 3,03 Gewichtsteilen wasserfreiem Natriumacetat versetzt und 20 Stunden bei 20°C gerührt. Anschließend wurde die Suspension in Eiswasser eingerührt und mit Methylenchlorid extrahiert. Nach Einengen der organischen Phase verblieben 11,5 Gewichtsteile 2-(1-Allyloxiaminobutyliden)-5-[2-(1,3-dioxan-2-yl-)ethyl]-cyclohexan-1,3-dion (Verbindung Nr. 2) als Feststoff mit folgender Struktur (Schmelzpunkt 50 bis 52°C):

15

20

5

$$C_{19}H_{29}O_5N$$
 M = 351

Ber: C 64,9 H 8,3 N 4,C Gef: C 65,1 H 8,1 N 3,7

Beispiel 3

12,0 Gewichtsteile 2-Butyryl-4-methoxycarbonyl-5-[2-(1,3-di-thiolan-2-yl-)-ethyl]-cyclohexan-1,3-dion wurden in 150 Volumenteilen Ethanol gelöst und mit 3,29 Gewichtsteilen Allyloxiammoniumchlorid sowie 3,28 g wasserfreiem Natrium-acetat versetzt. Nach 20stündigem Rühren bei 20°C wurde auf Eiswasser gegeben und mit Methylenchlorid extrahiert. Nach Einengen der organischen Phase verblieben 13,1 Gewichtsteile 2-(1-Allyloxiaminobutyliden)-4-methoxycarbonyl-5-[2-(1,3-dithiolan-2-yl-)-ethyl]-cyclohexan-1,3-dion (Verbindung Nr. 3) als zähes Öl mit nachstehender Struktur:

30

- 8 -

0.2. 0050/35177

 $C_{20}H_{29}O_5NS_2$ M = 427

Ber: C 56,2 H 6,8 N 2,3 S 15,0

Gef: C 57,0 H 6,7 N 2,8 S 14,7

Die folgenden Verbindungen wurden in entsprechender Weise erhalten:

10

5

15

20

25

30

O. Z. 0050/35177

5	Fp oder Brechungs- index						Ç	$n_{\rm D}^{22}$ 1,5235	C	$n_{\rm D}^{62}$ 1,5297							($_{ m D}^{20}$ 1,5339
	2	^к ноооо	, #	Н	COOCH	н	COOCH	ш		Н	C000H3	COOCH ₃	H	C00CH ₃	Соосн	COOCH ₃	COOCH	н
15	X _n -Y	Tetrahydropyran-4-ylmethyl	=	Ξ.	2-(1,3-D1oxan-2-y1-)ethyl	=	4-Methyltetrahydropyran-3-yl	=		=	1-(4-Methyl-1,3-dioxan-2-yl-) COOCH ₃ $2-methyl-propyl$	=	=	1-Phenyl-2-(1,3-dioxolan- 2-yl-)ethyl	=	(2-H)-5,6-D1hydropyran-3-yl		=
25	R ²	Allyl	Ethyl	A11y1	Allyl 2	Ethyl	Allyl	Ethyl		A11y1	Ethyl 2	A11y1	Ethyl	Ethyl 1	Allyl	Ethyl (A11y1	Ethyl
30	g R ¹	Propyl	=	=	=	=	:	=		=	=	=	=	=	=	=	=	=
35	Verbindung Nr.	=	2	9	7	80	6	10		11	12	13	14	15	16	17	18	19

0.2. 0050/35177

5	Fp oder Brechungs- index	n _D 1,5225	n ²⁷ 1,5262	n ²⁴ 1,5142	$n_{\rm D}^{25}$ 1,5204	$n_{\rm D}^{26}$ 1,5136	$n_{\rm D}^{27}$ 1,5200	$n_{\rm D}^{24}$ 1,5149	FP 75-79°	Fp 72-75			Fp 55-58°
	2	соосн3	c000H ₃	cooch3	c0000H3	Ħ	Ħ	æ	COOCH	COOCH	Е	H	н
15	х- ^х -х	(4-H)-2,3-D1hydropyran-2-y1	(4-H)-2,3-Dihydropyran-2-yl	Tetrahydropyran-2-yl	E	E	E	Tetrahydropyran-3-yl	Te trahydropyran-4-ylme thyl	=	=	=	2-(1,3-D1oxan-2-y1-)ethyl
25	. R ²	Ethyl	Allyl	Ethyl	Allyl	Ethy1	Allyl	Ethyl	3-Chlorallyl	2-Chlorallyl	3-Chlorallyl	2-Chlorallyl	=
30	Verbindung R ¹ Nr.	Propyl	=	=	=	=	E	=	=	=	=	=	=
35	Verbind	20	21	22	23	24	25	56	27	28	31	32	36

O. Z. 0050/35177

•	-											
5	Fp oder Brechungs- Index	n _D 1,5281	n _D 1,5401	$n_{\rm D}^{22}$ 1,5389	a ·	$n_{\rm D}^{18}$ 1,5259	$n_{\rm D}^{18}$ 1,5301	n _D ²³ 1,5620	$n_{\rm D}^{23}$ 1,5678	n _D 1,5464	$n_{\rm D}^{23}$ 1,5510	
	2											
		Ħ	н	Ħ	Ħ	Ħ	H	Ħ	Ħ	H	Ħ	H
15	X –Y	-2-y1-)ethyl	=	4-Methyltetrahydropyran-3-yl	1-Phenyl-2-(1,3-d1oxolan-2- yl-)ethyl	ethyl-2,3-d1- yl		(2-H)-5,6-Dihydrothiopyran-3-yl	E	hyl-5,6-d1- 3-yl		4-Methyltetrahydropyran-3-yl
20		2-(1,3-Dioxan-2-yl-)ethyl	Ţ	4-Methyltetra	1-Phenyl-2-(1 yl-)ethyl	(4-H)-2,5-Dimethyl-2,3-di- hydropyran-2-yl		(2-H)-5,6-Dihyd		(2-H)-2,6-Dimethyl-5,6-d1- hydrothiopyran-3-yl		
25	R ²	3-Chlorallyl	2,3,3-Trichlorallyl	3-Chlorallyl	Allyl	Ethyl	Allyl	Ethyl	Allyl	Ethyl	A11y1	2,3,3-Trichlorallyl
30	$^{\rm R}$	Propyl	=	=	=	=	=	=	=	±	=	=
35	Verbindung Nr.	37 Pr	38	41	th	48	617	61	62		99	89

0. Z. _{0050/35177}

	-						•				
5	Fp oder Brechungs- 1ndex	$n_{\rm D}^{23}$ 1,5332	$n_{\rm D}^{26}$ 1,5181	n ¹⁸ 1,5449	$n_{\rm D}^{31}$ 1,5199	$_{ m D}^{31}$ 1,5265	$n_{\rm D}^{18}$ 1,5313	Fp 38-40°	$n_{\rm D}^{18}$ 1,5342	$n_{\rm D}^{23}$ 1,5549	$n_{\rm D}^{23}$ 1,5608
	2										
		H	Ħ	=	Ħ	Ħ	H	H	Ħ	Ħ	Ħ
10		ran-3-y1		.3-y1	Ęł.		н			d1-	
15	x -x	4-Methyltetrahydropyran-3-yl	=	(2-H)-5,6-D1hydropyran-3-y1	Tetrahydropyran-2-yl	=	Te trahyd ropyran–3-y1	=	=	(2-H)-2,6-Dimethyl-5,6-d1-	- F
20		4-Methyl		(2-H)-5,6-D	Tetrahy		Te trahy			(2-H)-2,6-Dimethyl-	
25	я 2	Propargyl	Propyl	Allyl	Ethy1	A11y1	Allyl	Ethyl	Allyl	Ethyl	Allyl
30	g R ¹	Propyl	=	E	Ethyl	=	Propyl	Ethyl	Ethyl	=	=
35	Verbindung R ¹ Vr.	7.1	72	92	7.7	78	62	80	81	83	84

5	Fp oder Brechungs- Index	$n_{\rm D}^{23}$ 1,5689	$n_{\rm D}^{23}$ 1,5727	$n_{\rm D}^{21}$ 1,5179	$n_{\rm D}^{21}$ 1,5261	n _D 1,5149	n _D 1,5275	Fp 168-172° (Zers.)
	2							
10		-у1 н	二	H	H	H	.	
15	X _n -Y	(2-H)-5,6-D1hydrothlopyran-3-yl	=	Tetrahydrofuran-2-yl	=	(2-H)-2,6-Dimethyl-5,6-d1- hydropyran-3-yl	=	Nr. 26
25	R ²	Ethyl	Allyl	Ethyl	Allyl	Ethyl	Allyl	r Verbindung Nr. 26
30	dung R ¹	Ethyl	E	Propyl	=	=	=	Natriumsalz der
35	Verbindung Nr.	85	98	91	92	66	100	112

Die folgenden Verbindungen können in entsprechender Weise erhalten werden:

o.z. _{0050/35177}

5																
	2	соосн3	COOCH ₃	×	cooch ₃	COOCH) ==	H	¤	н	Ħ	H	=	æ	н	H
15	X _n -Y	Tetrahydropyran-4-ylmethyl	=	=	2-(1,3-D1oxan-2-y1-)ethyl	Ξ	=	=	1-(4-Methyl-1,3-dioxan-2-yl-)-2-methyl-propyl	1-Phenyl-2-(1,3-dtoxolan-2-yl-)ethyl	2-(1,3-Dithiolan-2-yl-)ethyl	=	=	(4-H)-2,5-Dimethyl-2,3-d1- hydropyran-2-yl	2,5-Dimethyltetrahydropyran- 2-yl	=
25	R ²	1	2,3-Dibromallyl	£	3-Chlorallyl	2-Chlorallyl	2,3-Dichlorallyl	2,3-Dibromallyl	3-Chlorallyl	=	Allyl	Ethyl	3-Chlorallyl	=	Ethyl	3-Chlorallyl
30	R ₁	Propyl 2,3,3	=	=	=	=	=	=	=	=	=	=	=	=	=	=
35	Verbindung Nr.	59	. 08	33	34	35	39	40	75	43	45	91	117	50	51	52

0. Z. 0050/35177

5	2								соосн ³		соосн ³						
10		H	Ħ	Ħ	H	Н	H	H	ຽ	Ξ	2	H	H	H	H	=	Ħ
15	X-X	(2-H)-5,6-D1hydropyran-3-yl	(4-H)-2,3-D1hydropyran-2-y1	=	÷	Tetrahydropyran-3-yl	Tetrahydropyran-2-yl	(2-H)-2,6-Dimethyl-5,6-d1-hydrothlopyran-3-yl	(2-H)-5,6-Dihydrothiopyran-3-yl	z	(2-H)-2,6-Dimethyl-5,6-di-hydrothiopyran-3-yl	4-Methyltetrahydropyran-3-yl	=	Ξ	=	(2-H)-5,6-D1hydropyran-3-yl	Ξ
20		(2-H)	(4-H)			Tetrah	Tetrah	(2-H)-; hydrotl	(2-H)-9 3-y1		(2-H)-2 hydrot}	4-Meth				(2-H)-5	
25	R ²	3-Chlorallyl	Ethyl	Allyl	3-Chlorallyl	=	=	Ξ	Ethyl	3-Chlorallyl	A11y1	2-Chlorallyl	Ethyl	Allyl	Butyl	Ethyl	Allyl
30	ng R ¹	Propyl	=	=	=	=	=	=	=	=	=	=	Ethyl	=	Propyl	Ethy1	=
35	Verbindung R ¹ Nr.	53	54	55	99	2.1	58	59	09	63	119	19	69	02	73	1 r	75

. **0.2.** _{0050/35177}

											-	-						
5																		
•	Z	H	Ħ	H	Ħ	H	Ħ	H	H	H	Ħ	Ħ	Ħ	н	Ħ	H	Ħ	H
10		yran-2-yl	1-3-y1				ਜ਼				ran-3-y1		5,6-d1-		pyran-3-yl			
15	X-X	2,5-Dimethyltetrahydropyran-2-yl	Tetrahydrothiopyran-3-yl	=	=	=	Tetrahydrofuran-3-yl	=	=	=	(6-H)-4,5-Dihydropyran-3-yl	=	(2-H)-2,6-D1methyl-5,6-d1- hydropyran-3-yl	=	2,6-Dimethyltetrahydropyran-3-yl	=	=	=
20		2,5-Dimethy	Tetrahyo				Tetrahyo				η-(H-9)		(2-H)-2, hydropyi		2,6-Dimeth			
25	п2	Allyl	Ethy1	Allyl	Ethyl	Allyl	Ethyl	Allyl	Ethyl	Allyl	Ethyl	Allyl	=	Ethyl	=	Allyl	Ethyl	Allyl
30	dung R ¹	Propyl	=	=	Ethyl	•	Propyl	=	Ethyl	=	Propyl	=	Ethyl	=	Propyl	=	Ethyl	=
35	Verbindung Nr.	82	87	88	89	90	93	16	95	96	16	98	101	102	103	104	105	106

0. Z.	0050/35177	

	-	1											
5	2		H	H	H	H						٠	
10													
15	X _n -Y		1,3-Dioxep-5-yl	Ξ	2-(1,3-Dithian-2-yl-)ethyl	=	=	26	26	79	19	19	
25	R ²		Ethy1	Allyl	Ethyl	A11y1	3-Chlorallyl	Calciumsalz der Verbindung Nr.	der Verbindung Nr.	der Verbindung Nr.	rbindung Nr.	rbindung Nr.	
30	ıdııng R ¹		Propyl	=	=	=	=	alciumsalz de	Kupfersalz de	Natriumsalz de	Natriumsalz der Vei	Calciumsalz der Ve	
35	Verbindung Nr.		107	108	109	110	111	113 C	114 K	115 N	116 N	117 C	

O.Z. 0050/35177

Die an diesen Verbindungen festgestellten 1H-NMR-spektroskopischen Daten sind in folgender Tabelle aufgeführt. Die chemischen Verschiebungen wurden auf Tetramethylsilan als internen Standard bezogen und in δ -Werten (ppm) angegeben.

Als Lösungsmittel diente CDCl₃; Abkürzungen für die Signalstrukturen

- s Singulett
- 10 d Dublett

- t Triplett
- q Quartett
- m Multiplett mit mehr als vier Linien

15	Verbindung Nr.	_/	Charakter	istische Signale
		HH	O-CH ₂	COOCH3
	1	-	4,09 (q)	3,75 (s)
	2	-	4,51 (d)	-
. 20	3	-	4,51 (d)	3,77 (s)
	4	-	4,51 (d)	3,78 (s)
	5		4,11 (q)	-
	6	-	4,52 (a)	-
	7	-	4,51 (d)	3,76 (s)
25	8	-	4,08 (q)	-
	9	_	4,50 (d)	3,78 (s)
	10	-	4,08 (q)	-
	11	-	4,58 (a)	-
	12	-	4,09 (q)	3,74 (s)
30	13	-	4,54 (d)	3,78 (s)
	14	-		
	15	-	4,06 (q)	3,69 (s)
	16	-	4,51 (d)	3,70 (s)
	17	5,75 (s)		3,78 (s)
35				

	Verbindung Nr.	_/	Charakter	ristische Signale
		н н	O-CH ₂	COOCH
	18	5,75 (s)	4,50 (ā)	3,75 (s)
5	19	5,60 (s)	4,10 (q)	
	20	4,65 (m)	4,10 (q)	3,75 (s) ⁺⁾
		6,20 (m)		
	21	4,70 (m)	4,60 (a)	3,70 (s)
		6,30 (m)		
10	22	-	4,11 (q)	3,75 (s)
				3,80 (s)
	23	-	4,52 (d)	3,75 (s)
				3,80 (s)
	24	-	4,12 (q)	-
15	25	-	4,51 (d)	-
	26	-	4,05 (q)	-
	31	~	4,50 (m)	-
	32	~	4,56 (s)	-
	##	-	4,50	-
20	68	-	4,89 (s)	-

⁺⁾ Die Aufspaltung der Estersignale wird durch Diasteromerie hervorgerufen.

Die Anwendung als Herbizid erfolgt z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Streichen, Tränken, Vernebeln, Verstäuben, Verstreuen oder Gießen. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollen in jedem Fall möglichst die feinste Verteilung der neuen Wirkstoffe gewährleisten.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten und Öldispersionen kommen Mineralölfraktionen

15

20

30

35

O.Z. _{0.050/35177}

von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle usw., sowie öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, zum Beispiel Benzol, Toluol, Xylol, 5 Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate zum Beispiel Methanol, Athanol, Propanol, Butanol, Chloroform, Tetrachlorkohlenstoff, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoran usw., stark polare Lösungsmittel, z.B. Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon, Wasser usw. in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulvern), Öldispersionen durch Zusatz von Wasser bereitet werden. Zur Herstellung vom Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Die Herbizide enthalten z.B. 5 bis 95 % (Gew.-%) insbeson-25 dere 10 bis 80 % Wirkstoff.

An oberflächenaktiven Stoffen sind zu nennen: Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäuren, Phenolsulfonsäuren, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Alkali- und Erdalkalisalze der Dibutylnaphthalinsulfonsäure, Lauryläthersulfat, Fettalkoholsulfate, fettsaure Alkali- und Erdalkalisalze, Salze sulfatierter Hexadecanole, Heptadecanole, Octadecanole, Salze von sulfatiertem Fettalkoholglykoläther, Kondensationsprodukte von sulfoniertem Naphthalin und Naphtha-

O. Z. 0050/35177

Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylen-octylphenolether, äthoxylier-tes Isooctylphenol-, Octylphenol-, Nonylphenol, Alkyl-phenolpolyglykoläther. Tributylphenylpolyglykolether, Alkylarylpolyätheralkoholate, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Lignin, Sulfitablaugen und Methylcellulose.

Pulver, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste
Trägerstoffe hergestellt werden. Feste Trägerstoffe sind
z.B. Mineralerden wie Kieselsäuren, Silikate, Talkum, Kaolin, Kalk, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte,
wie Getreidemehle, Baumrinden-, Holz- und Nußschalenmehl,
Cellulosepulver und andere feste Trägerstoffe.

Beispiel a

Man vermischt 90 Gewichtsteile der Verbindung 1 mit 10 Gewichtsteilen N-Methyl-alpha-pyrrolidon und erhält eine Lösung, die zur Anwendung in Form kleinster Tropfen geeignet ist.

Beispiel b

10 Gewichtsteile der Verbindung 2 werden in einer Mischung gelöst, die aus 90 Gewichtsteilen Xylol, 6 Gewichtsteilen 5 des Anlagerungsproduktes von 8 bis 10 Mol Äthylenoxid an 1 Mol Ölsäure-N-mono-äthanolamid, 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 2 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Äthylenoxid an 1 Mol Ricinusöl besteht.

10

15

Beispiel c

20 Gewichtsteile der Verbindung 3 werden in einer Mischung gelöst, die aus 60 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 5 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Athylenoxid an 1 Mol Isooctylphenol und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Athylenoxid an 1 Mol Ricinusöl besteht.

20 Beispiel d

20 Gewichtsteile der Verbindung 1 werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Äthylenoxid an 1 Mol Ricinusöl besteht.

Beispiel e

30 80 Gewichtsteile des Wirkstoffs 1 werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalin-alpha-sulfonsäure, 10 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 7 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermahlen.

Beispiel f

5 Gewichtsteile der Verbindung 1 werden mit 95 Gewichtsteilen feinteiligem Kaolin innig vermischt. Man erhält auf diese Weise ein Stäubemittel, das 5 Gewichtsprozent des Wirkstoffs enthält.

Beispiel g

5

30 Gewichtsprozent der Verbindung 1 werden mit einer Mischung aus 92 Gewichtsteilen pulverförmigem Kieselsäuregel und 8 Gewichtsteilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde, innig vermischt. Man erhält auf diese Weise eine Aufbereitung des Wirkstoffs mit guter Haftfähigkeit.

Beispiel h

40 Gewichtsteile des Wirkstoffs 1 werden mit 10 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formalde-hyd-kondensats, 2 Teilen Kieselgel und 48 Teilen Wasser innig vermischt. Man erhält eine stabile wäßrige Dispersion.

25 Beispiel i

20 Teile des Wirkstoffs 1 werden mit 12 Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Teile Fettalkohol-polygly-koläther, 2 Teilen Natriumsalz eines Phenolsulfonsäure-harnstoff-formaldehyd-kondensats und 68 Teilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.

- Die Wirkung der neuen Cyclohexan-1,3-dionderivate auf das Wachstum von Pflanzen aus der Gräserfamilie (Gramineen) und breitblättrigen Kulturpflanzen läßt sich durch Gewächshaus- und Freilandversuche zeigen. Dabei können auch Kulturpflanzen aus der Familie der Gramineen absterben oder stark geschädigt werden. Dies kann in der Praxis durchaus erwünscht sein, da auch Kulturpflanzen zu unerwünschten Pflanzen werden können, wenn sie aus im Boden zurückgebliebenem Samen in einer anderen Kultur aufwachsen, wie z.B. Ausfallgerste (voluntary barley) in Winterraps oder Soghum in Sojabohnenfeldern.
- Als Kulturgefäße für die Versuche dienten Plastikblumentöpfe mit 300 cm³ Inhalt und lehmigem Sand mit etwa 1,5 %

 Humus als Substrat. Bei Soja wurde etwas Torf (peat) zugemischt, um ein besseres Wachstum zu gewährleisten. Die
 Samen der Testpflanzen wurden nach Arten getrennt flach
 eingesät.
- Bei der Vorauflaufbehandlung wurden die Wirkstoffe auf die Erdoberfläche aufgebracht. Sie wurden hierzu in Wasser als Verteilungsmittel suspendiert oder emulgiert und mittels fein verteilender Düsen gespritzt. Bei dieser Applikationsmethode betrug die Aufwandmenge 3,0 kg Wirkstoff/ha. Nach dem Aufbringen der Mittel wurden die Gefäße leicht beregnet, um Keimung und Wachstum in Gang zu bringen. Danach deckte man die Gefäße mit durchsichtigen Plastikhauben ab, bis die Pflanzen angewachsen waren. Die Abdeckung bewirkte ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung zog man die Pflanzen je nach Wuchsform bis zu einer Wuchshöhe von 3 bis 15 cm

O. Z. 0050/35177

an. Die Aufwandmengen für die Nachauflaufbehandlung variierte je nach Wirkstoff und Einsatzziel. Sie betrugen 0,125, 0,25, 0,5 und 1,0 kg Wirkstoff/ha.

5 Als Vergleichsbeispiel (DE-AS 24 39 104) dienten jeweils im Nachauflaufverfahren

mit 0,25 kg/ha sowie

20 und

L

10

mit je 0,25 und 0,5 kg/ha.

Bei der Durchführung der Gewächshausversuche hielt man wärmeliebende Arten in wärmeren Bereichen (20 bis 35°C) und solche gemäßigter Klimate bevorzugt bei 10 bis 20°C. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

o. z. _{0050/35177}

Bewertet wird nach einer Skala von 0 bis 100. Dabei bedeutet 0 keine Schädigung oder normaler Aufgang und 100 kein Aufgang bzw. völlige Zerstörung zumindest der oberirdischen Sproßteile.

5

10

Bei den ergänzend herangezogenen Feldversuchen wurden die Mittel auf Kleinparzellen ebenfalls in Wasser als Verteilungsmittel emulgiert oder suspendiert im Nachauflaufverfahren ausgebracht. Man benutzte hierzu eine auf einen Traktor montierte Parzellenspritze. Die Aufwandmengen betrugen 0,25 kg Wirkstoff/ha. Das Bekämpfungsziel war Ausfallgerste (voluntary barley) in jungem Winterraps.

Für die Darstellung der Ergebnisse wurden folgende Testpflanzen herangezogen:

	Botanischer Name	Deutscher Name	Englischer Name
	Alopecurus myosuroides	Ackerfuchsschwanz	blackgrass
20	Avena fatua	Flughafer	wild oats
	Avena sativa	Hafer	oats
	Beta vulgaris	Zuckerrüben	suggarbeets
	Brassica napus	Raps	rape seed
•	Bromus tectorum	Dach-Trespe	downy brome
25	Echinochloa crus-galli	Hühnerhirse	barnyardgrass
	Gossypium hirsutum	Baumwolle	cotton
	Glycine max.	Sojabohnen	soybeans
	Hordeum vulgare	Gerste	barley
	Lolium multiflorum	Ital. Raygras	annual ryegrass
30	Rottboellia exaltata	••	itchgrass
	Setaria spp.	Borstenhirsearten	foxtail
	Sorghum bicolor	Mohrenhirse	sorghum
	Sorghum halepense	Sudangras	Johnsongrass
	Triticum aestivum	Weizen	wheat
35	Zea mays	Mais	indian corn

15

20

30

35

Die Ergebnisse zeigen, daß die neuen Verbindungen bei Nachauflaufanwendung zur Bekämpfung von unerwünschten Pflanzen
aus der Familie der Gräser (Gramineen) geeignet sind.
Dabei kann es sich um typische Ungrasarten handeln, wie
z.B. Flughafer (Avena fatua) oder um Kulturpflanzen aus
der Familie der Gramineen, welche am falschen Standort
wachsend zu unerwünschten Pflanzen werden (z.B. Mais in
einem Sojabohnenfeld). Einzelne Verbindungen, bekämpfen
einerseits unerwünschte Gräser, andererseits weisen sie
neben ihrer guten Selektivität für breitblättrige Kulturen
gleichzeitig ein hohes Maß an Verträglichkeit für Weizen,
der botanisch wiederum zur Gräserfamilie gehört, auf.

Die Prüfung der herbiziden Wirkung bei Nachauflaufanwendung von 0,25 kg Wirkstoff/ha der Verbindung Nr. 26 erbrachte gegen neun Beispielsgrasarten einen durchschnittlichen Bekämpfungswert von 81. Bei derselben Aufwandmenge und der gleichen Anwendungsmethode erreichte die Verbindung Nr. 24 einen Wert von 74.

Das bekannte Vergleichsmittel A hatte dagegen ebenfalls bei Nachauflaufanwendung von 0,25 kg Wirkstoff/ha gegen dieselben Grasarten nur eine durchschnittliche Wirkung von 52 %. Auch die beiden weiteren Vergleichsmittel B und C zeigten eine vergleichsweise nur schwache herbizide Aktivität.

Breitblättrige Kulturpflanzen, wie Baumwolle (Gossypium hirsutum), Soja (Glycine max.), Zuckerrüben (beta vulgaris) und Raps (Brassica napus) blieben bei diesen Behandlungen völlig ohne Schädigung oder zeigten nur ganz unwesentliche Beeinträchtigungen des Wuchses. Daraus resultiert für die neuen Verbindungen ein hohes Maß an Selektivität für dikotyle Kulturen. Darüber hinaus bekämpften einzelne der neuen Verbindungen, wie z.B. die Nr. 31 und

- 1, mit 0,25 kg Wirkstoff/ha unerwünschte Gräser, wie Ackerfuchsschwanz und Hirsen und verhielten sich dabei gleichzeitig selektiv für das Nutzgras Weizen.
- Was die herbizide Aktivität betrifft, so konnten in einer Reihe weiterer Beispiele die Wirkung der neuen Verbindungen gegen Pflanzenarten aus der Gräserfamilie nachweisen, z.B. die Nr. 2, 10, 11, 19, 24 und 26.
- In den beschriebenen Gewächshausversuchen erbrachten ferner bei Nachauflaufanwendung die Verbindungen Nr. 1, 4, 5, 8, 31, 32, 36 und 37 einen vergleichsweise guten Bekämpfungserfolg.
- In Freilandversuchen wurde bei Nachauflaufanwendung von 0,25 kg Wirkstoff/ha der Verbindungen Nr. 10, 11 und 26 Ausfallgerste in Raps selektiv bekämpft.
- Neben den Nachauflaufwirkungen wurden auch positive Ergebnisse bei Vorauflaufanwendung der neuen Verbindungen im
 Gewächshaus erzielt. So wirkten bei 3,0 kg Wirkstoff/ha
 bei dieser Anwendungsmethode die Verbindungen Nr. 2, 5, 8,
 10, 14, 19, 26, 32, 36, 37, 48, 49, 54, 55, 77 und 78
 stark herbizid gegen die grasartigen Beispielspflanzen
 Hafer, Weidelgras und Hühnerhirse. Ebenso hatten die
 Verbindungen Nr. 1, 3 und 4 bei Vorauflaufanwendung von
 3,0 kg Wirkstoff/ha im Gewächshaus eine beachtliche herbi-

zide Aktivität gegen diese eben genannten Grasarten.

In Anbetracht der guten Verträglichkeit können die neuen Herbizide oder diese enthaltende Mittel noch in einer weiteren großen Zahl von Kulturpflanzen zur Beseitigung unerwünschten Pflanzenwuchses eingesetzt werden. Die Aufwandmengen können dabei zwischen 0,025 und 15 kg/ha und mehr, vorzugsweise zwischen 0,1 und 5 kg/ha, schwanken.

0. 2.	0050/35177

35	25	20	15	5	
F Beispielsweise kommen		folgende Kulturpflanzen in Betracht.	racht.		
Botanischer Name	ø.	Deutscher Name		Englischer Name	
Allium cepa		Küchenzwiebel		onions	
Ananas comosus		Ananas		pineapple	
Arachis hypogaea	æ	Erdnuß		peanuts (groundnuts)	
Asparagus officinalis	lnalls	Spargel		asparagus	
Beta vulgaris spp. altissima	op. altissima	Zuckerrübe		sugarbeets	
Beta vulgaris spp. rapa	op. rapa	Futterrübe		fooder beets	
Beta vulgaris spp. esculenta	p. esculenta	Rote Rübe		table beets, red beets	
Brassica napus var. napus	ar. napus	Raps		rape seed	
Brassica napus v	Brassica napus var. napobrassica	Kohlrübe			
Brassica napus var. rapa	/ar. rapa	Weiße Rübe		turnips	
Brassica rapa var. silvestris	ir. silvestris	Rübsen			
Camellia sinensis	ဒ	Teestrauch		tea plants	
Carthamus tinctorius	rius	Saflor - Färberdistel	stel	safflower	
Carya 1111nolnensis	ısts	Pekannußbaum		pecan trees	
Citrus limon		Zitrone		lemon	
Citrus maxima		Pampelmuse		grapefruits	
Citrus reticulata	ខ	Mandarine			
Citrus sinensis		Apfelsine, Orange		orange trees	
Coffea arabica (Coffea Coffea liberica)	Coffea canephora,	Kaffee		coffee plants	
Cucumis melo		Melone		melons	

			ηđ																
5			turfs a																
10	Englischer Name	cucumber	Bermudagrass in turfs and lawns	carrots	oil palms	strawberries	soybeans	cotton	sunflowers		rubber plants	hop	sweet potato	walnut trees	lettuce	lentila	flax	tomato	apple trees
15											S								
20	Deutscher Name	Gurke	Bermudagras	Möhre	ďlpalme	Erdbeere	Sofabohne	Baumwolle	Sonnenblume	Topinambur	Parakautschukbaum	Hopfen	Süßkartoffeln	Walnußbaum	Kopfsalat	Linse	Faserlein	Tomate	Apfel
25																			
30	Botanischer Name	Cucumis sativus	Cynodon dactylon	carota	Elaeis guineensis	Fragaria vesca	max	Gossypium hirsutum (Gossypium arboreum Gossypium herbaceum Gossypium vitifolium)	Helianthus annuus	Hellanthus tuberosus	Hevea brasiliensis	Humulus lupulus	Ipomoea batatas	regia	sativa	linaris	Linum usitatissimum	Lycopersicon lycopersicum	pp•
35	^r Botanis	Cucumis	Cynodon	Daucus carota	Elae18	Fragari	Glyoine max	Gossypti (Gossypti Gossypti Gossypti	Hellant	Hellant	Hevea b	Humulus	Ipomoea	Juglans regla	Lactua sativa	Lens culinaris	Linum us	Lycopera	Malus spp.

5	Englischer Name	cassava	alfalfa (lucerne)	peppermint	banana plants	tabacco	olive trees	limabeans	mungbeans	snapbeans, green beans, dry beans		parsley	Norway spruce	fire trees	cherry trees	plum trees
15	Φ				1 banane						hrkolben-	11e				
20	Deutscher Name	Maniok	Luzerne	Pfefferminze	Obst- und Mehlbanane	Tabak	Ulbaum	Mondbohne	Urdbohne	Buschbohnen	Perl- oder Rohrkolben- hirse	Wurzelpetersilie	Rotfichte	Weißtanne	Kiefer	Pflaume
25																
30	F Botanischer Name	Manihot esculenta	Medicago sativa	1per1ta	å.	Nicotiana tabacum (N. rustica)	ropaea	Phaseolus lunatus	Phaseolus mungo	Phaseolus vulgaris	Pennisetum glaucum	Petrosellnum crispum spp. tuberosum	oles	lba	spp.	Pisum sativum
35	F Botanis	Manihot	Medicag	Metha piperita	Musa spp.	Nicotian (N. rus	Olea europaea	Phaseolu	Phaseol	Phaseol	Pennise	Petroselinum c spp. tuberosum	Picea ables	Ables alba	Pinus sp	P1sum s

30	20 .	15	10	5	
Botanischer Name	Deutscher Name		Englischer Name		
Prunus dulcis	Mandelbaum		almond trees		
Prunus persica	Pfirstch		peach trees		
Pyrus communis	B1rne		pear trees		
Ribes sylvestre	Rote Johannisbeere	ere	red currants		
Ribes uva-crispa	Stachelbeere				
Ricinus communis	Rizinua				
Saccharum officinarum	Zuckerrohr		sugar cane		
Sasamum 1ndicum	Sesam		Sesame		
Solanum tuberosum	Kartoffel		Irish potatoes		
Sorghum bicolor (s. vulgare)	Mohrenhirse (Unterblattspritzung) (post-directed)	tzung)	sorghum		
Spinacia oleracea	Spinat		spinach		
Theobroma cacao	Kakaobaum		cacao plants		
Trifolium pratense	Rotklee		red clover		
Triticum aestivum	Weizen		wheat		
Vaccinium corymbosum	Kulturheidelbeere	eg e	blueberry		
Vaccinium vitis-idaea	Preißelbeere		cranberry		
Vicia faba	Pferdebohnen		tick beans		
Vigna sinensis (V. unguiculata)	a) Kuhbohne		cow peas		
Vitis vinifera	Weinrebe.		grapes		
Zea mays	Mais (Unterblattspritzung) (post-directed)	tzung)	Indian corn, sweet corn maize	t corn	-
3	1				

"Zur Verbreiterung des Wirkungsspektrums und zur Erzielung auch synergistischer Effekte können die neuen Cyclohexan-1,3-dion-Derivate mit bekannten Cyclohexan-1,3-dion-Derivaten und mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4 H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate und andere in Frage. Sinnvolle Mischungen ergeben die erfindungsgemäßen Verbindungen je nach Einsatzziel mit folgenden Wirkstoffen:

```
5-Amino-4-chlor-2-phenyl-3(2H)-pyridazinon
    5-Amino-4-brom-2-phenyl-3(2H)-pyridazinon
    5-Amino-4-chlor-2-cyclohexyl-3(2<u>H</u>)-pyridazinon
    5-Amino-4-brom-2-cyclohexyl-3(2H)-pyridazinon
5
    5-Methylamino-4-chlor-2-(3-trifluormethylphenyl)-3(2H)-
    -pyridazinon
    5-Methylamino-4-chlor-2-(3-alpha-alpha-beta-beta-tetra-
    fluorethoxyphenyl)-3(2H)-pyridazinon
10
    5-Dimethylamino-4-chlor-2-phenyl-3(2H)-pyridazinon
    4,5-Dimethoxy-2-phenyl-3(2H)-pyridazinon
    4,5-Dimethoxy-2-cyclohexyl-3(2H)-pyridazinon
    4,5-Dimethoxy-2-(3-trifluormethylphenyl)-3(2H)-pyridazinon
    5-Methoxy-4-chlor-2-(3-trifluormethylphenyl)-3(2H)-pyrida-
    zinon
15
    5-Amino-4-brom-2-(3-methylphenyl)-3(2H)-pyridazinon
    3-(1-Methylethyl)-1H-2,1,3-benzothiadiazin-4(3H)-on-2,2-
    -dioxid und Salze
    3-(1-Methylethyl)-8-chlor-1H-2,1,3-benzothiadiazin-4(3H)-
20
    -on-2,2-dioxid und Salze
    3-(1-Methylethyl)-8-fluor-1H-2,1,3-benzothiadiazin-4(3H)-
    -on-2,2-dioxid und Salze
    3-(1-Methylethyl)-8-methyl-1H-2,1,3-benzothiadiazin-4(3H)-
    -on-2,2-dioxid und Salze
25
    1-Methoxymethyl-3-(1-methylethyl)-2,1,3-benzothiadiazin-
    -4(3H)-on-2,2-dioxid
    1-Methoxymethyl-8-chlor-3-(1-methylethyl)-2,1,3-benzothia-
    diazin-4(3H)-on-2,2-dioxid
    1-Methoxymethyl-8-fluor-3-(1-methylethyl)-2,1,3-benzothia-
    diazin-4(3H)-on-2,2-dioxid
    1-Cyan-8-chlor-3-(1-methylethyl)-2,1,3-benzothiadiazin-
    -4(3H)-on-2,2-dioxid
    1-Cyan-8-fluor-3-(1-methylethyl)-2,1,3-benzothiadiazin-
35
    -4(3H)-on-2,2-dioxid
```

O. Z. 0050/35177

```
[1-Cyan-8-methyl-3-(1-methylethyl)-2,1,3-benzothiadiazin-
     -4(3H)-on-2,2-dioxid
     1-Cyan-3-(1-methylethyl)-2,1,3-benzothiadiazin-4(3H)-on-
     -2,2-dioxid
     1-Azidomethyl-3-(1-methylethyl)-2,1,3-benzothiadiazin-
5
     -4(3H)-on-2,2-dioxid
     3-(1-methylethyl)-1H-(pyridino-[3,2-e]2,1,3-thiadiazin-
     -(4)-on-2,2-dioxid
     N-(1-Ethylpropyl)-2,6-dinitro-3,4-dimethylanilin
10
     N-(1-Methylethyl)-N-ethyl-2,6-dinitro-4-trifluormethyl-
     -anilin
     N-n-Propyl-N-beta-chlorethyl-2,6-dinitro-4-trifluormethyl-
     -anilin
     N-n-Propyl-N-cyclopropylmethyl-2,6-dinitro-4-trifluor-
15
     -methyl-anilin
     N-Bis(n-propyl)-2,6-dinitro-3-amino-4-trifluormethyl-
     anilin
     N-Bis(n-propyl)-2,6-dinitro-4-methyl-anilin
     N-Bis(n-propyl)-2,6-dinitro-4-methylsulfonyl-anilin
20
     N-bis(n-propyl)-2,6-dinitro-4-aminosulfonyl-anilin
     Bis(6-chlorethyl)-2,6-dinitro-4-methyl-anilin
     N-Ethyl-N-(2-methylallyl)-2,6-dinitro-4-trifluormethyl-
     -anilin
25
     N-Methylcarbaminsäure-3,4-dichlorbenzylester
     N-Methylcarbaminsäure-2,6-di(tert.butyl)-4-methylphenyl-
     -ester
     N-Phenylcarbaminsäure-isopropylester
     N-3-Fluorphenylcarbaminsäure-3-methoxypropyl-2-ester
30
     N-3-Chlorphenylcarbaminsäure-isopropylester
     N-3-Chlorphenylcarbaminsäure-butin-1-yl-3-ester
     N-3-Chlorphenylcarbaminsäure-4-chlor-butin-2-yl-1-ester
     N-3,4-Dichlorphenylcarbaminsäure-methylester
35
     N-(4-Amino-benzolsulfonyl)-carbaminsäure-methylester
```

```
O-(N-Phenylcarbamoyl)-propanonoxim
     N-Ethyl-2-(phenylcarbamoyl)-oxypropionsäureamid
     3'-N-Isopropyl-carbamoyloxy-propionsäureanilid
     Ethyl-N-(3-(N'-phenylcarbamoyloxy)-phenyl)-carbamat
5
     Methyl-N-(3-(N'-methyl-N'-phenylcarbamoyloxy)-phenyl)-
     -carbamat
     Isopropyl-N-(3-(N'-ethyl-N'-phenylcarbamoyloxy)-phenyl)-
     -carbamat
     Methyl-N-(3-(N'-3-methylphenylcarbamoyloxy)-phenyl)-
10
     -carbamat
     Methyl-N-(3-(N'-4-fluorphenylcarbamoyloxy)-phenyl)-
     -carbamat
     Methyl-N-(3-(N'-3-chlor-4-fluorphenylcarbamoyloxy)-
     -phenyl)-carbamat
15
     Ethyl-N-(3-N'-3-chlor-4-fluorphenylcarbamoyloxy)-phenyl)-
     -carbamat
     Ethyl-N-(3-N'-3,4-difluorphenylcarbamoyloxy)-phenyl)-carbamat
     Methyl-N-(3-(N'-3,4-difluorphenylcarbamoyloxy)-phenyl)-
     -carbamat
20
     N-3-(4-Fluorphenoxycarbonylamino)-phenylcarbaminsäure-
     -methylester
     N-3-(2-Methylphenoxycarbonylamino)-phenylcarbaminsäure-
     -ethylester
25
     N-3-(4-Fluorphenoxycarbonylamino)-phenylthiolcarbaminsäure-
     -methylester
     N-3-(2,4,5-Trimethylphenoxycarbonylamino)-phenylthiolcar-
     baminsäure-methylester
     N-3-(Phenoxycarbonylamino)-phenylthiolcarbaminsäure-methyl-
30
     ester
     N, N-Diethyl-thiolcarbaminsäure-p-chlorbenzylester
     N, N-Di-n-propyl-thiolcarbaminsäure-ethylester
     N, N-Di-n-propyl-thiolcarbaminsäure-n-propylester
35
```

O. Z. 0050/35177

```
N, N-Di-isopropyl-thiolcarbaminsäure-2,3-dichlorallylester
     N, N-Di-isopropyl-thiolcarbaminsäure-2, 3, 3-trichlorallyl-
     ester
     N, N-Di-isopropyl-thiolcarbaminsäure-3-methyl-5-isoxazolyl-
5
     -methylester
     N, N-Di-isopropyl-thiolcarbaminsäure-3-ethyl-5-isoxazolyl-
     -methylester
     N, N-Di-sec.butyl-thiolcarbaminsäure-ethylester
     N, N-Di-sec.butyl-thiolcarbaminsäure-benzylester
     N-Ethyl-N-cyclohexyl-thiolcarbaminsäure-ethylester
10
     N-Ethyl-N-bicyclo-[2,2,1]-heptyl-thiolcarbaminsäure-
     ethylester
     S-(2,3-Dichlorally1)-(2,2,4-trimethy1-azetidin)-1-carbo-
     thiolat
     S-(2,3,3-Trichlorally1)-(2,2,4-trimethyl-azetidin)-1-
15
     -carbothiolat
     S-Ethyl-hexahydro-1-H-azepin-1-carbothiolat
     S-Benzyl-3-methylhexahydro-1-H-azepin-1-carbothiolat
     S-Benzyl-2,3-dimethylhexahydro-1-H-azepin-1-carbothiolat
     S-Ethyl-3-methylhexahydro-1-H-azepin-1-carbothiolat
20
     N-Ethyl-N-n-butyl-thiolcarbaminsäure-n-propylester
     N, N-Dimethyl-dithiocarbaminsäure-2-chlorallylester
     N-Methyl-dithiocarbaminsäure-Natriumsalz
     Trichloressigsäure-Natriumsalz
25
     Alpha, alpha-Dichlorpropionsäure-Natriumsalz
     Alpha, alpha-Dichlorbuttersäure-Natriumsalz
     Alpha, alpha, beta, beta-Tetrafluor propions äure-Natriumsalz
     Alpha-Methyl, alpha, beta-dichlorpropionsäure-Natriumsalz
30
     Alpha-Chlor-beta-(4-chlorphenyl)-propionsäure-methylester
     Alpha, beta-Dichlor-beta-phenylpropionsäure-methylester
     Benzamido-oxy-essigsäure
     2.3.5-Trijodbenzoesäure
                                         (Salze, Ester, Amide)
     2.3.6-Trichlorbenzoesäure
                                         (Salze, Ester, Amide)
     2.3.5,6-Tetrachlorbenzoesäure
35
                                         (Salze, Ester, Amide)
```

```
2-Methoxy-3,6-dichlorbenzoesäure (Salze, Ester, Amide)
      2-Methoxy-3,5,6-trichlorbenzoesäure (Salze, Ester, Amide)
      3-Amino-2,5,6-trichlorbenzoesäure (Salze, Ester, Amide)
     O,S-Dimethyl-tetrachlor-thioterephtalat
      Dimethyl-2,3,5,6-tetrachlor-terephthalat
5
     Dinatrium-3,6-endoxohexahydro-phthalat
      4-Amino-3,5,6-trichlor-picolinsäure (Salze)
      2-Cyan-3-(N-methyl-N-phenyl)-amino-acrylsäureethylester
      2-[4-(4'-Chlorphenoxy)-phenoxy]-propionsäureisobutylester
      2-[4-(2',4'-Dichlorphenoxy)-phenoxy]-propionsauremethyl-
10
      ester
      2-[4-(4'-Trifluormethylphenoxy)-phenoxy]-propionsäure-
      -methylester
      2-[4-(2'-Chlor-4'-trifluorphenoxy)-phenoxy]-propionsäure-
      Natriumsalz
15
      2-[4-(3',5'-Dichlorpyridyl-2-oxy)-phenoxy]-propionsäure-
      Natriumsalz
      2-(N-Benzoyl-3, 4-dichlorphenylamino)-propionsäureethyl-
      ester
20
      2-(N-Benzoyl-3-chlor-4-fluorphenylamino)-propionsäure-
      -methylester
      2-(N-Benzoyl-3-chlor-4-fluorphenylamino)-propionsäure-
      isopropylester
25
      2-Chlor-4-ethylamino-6-isopropylamino-1,3,5-triazin
      2-Chlor-4-ethylamino-6-(amino-2'-propionitril)-1,3,5-
      -triazin
      2-Chlor-4-ethylamino-6-2-methoxypropyl-2-amino-1,3,5-
      -triazin
 30
      2-Chlor-4-ethylamino-6-butin-1-yl-2-amino-1,3,5-triazin
      2-Chlor-4.6-bisethylamino-1,3,5-triazin
      2-Chlor-4,6-bisisopropylamino-1,3,5-triazin
      2-Chlor-4-isopropylamino-6-cyclopropylamino-1,3,5-triazin
```

```
2-Azido-4-methylamino-6-isopropylamino-1,3,5-triazin
      2-Methylthio-4-ethylamino-6-isopropylamino-1,3,5-triazin
      2-Methylthio-4-ethylamino-6-tert.butylamino-1,3,5-triazin
      2-Methylthio-4,6-bisethylamino-1,3,5-triazin
      2-Methylthio-4,6-bisisopropylamino-1,3,5-triazin
5
      2-Methoxy-4-ethylamino-6-isopropylamino-1,3,5-triazin
      2-Methoxy-4,6-bisethylamino-1,3,5-triazin
      2-Methoxy-4,6-bisisopropylamino-1,3,5-triazin
10
      4-Amino-6-tert.butyl-3-methylthio-4,5-dihydro-1,2,4-
      -triazin-5-on
      4-Amino-6-phenyl-3-methyl-4,5-dihydro-1,2,4-triazin-5-on
      4-Isobutylidenamino-6-tert.butyl-3-methylthio-4,5-dihydro-
      -1.2.4-triazin-5-on
      1-Methyl-3-cyclohexyl-6-dimethylamino-1,3,5-triazin-2.4-
15
      -dion
      3-tert.Butyl-5-chlor-6-methyluracil
      3-tert.Butyl-5-brom-6-methyluracil
      3-Isopropyl-5-brom-6-methyluracil
20
      3-sec.Butyl-5-brom-6-methyluracil
      3-(2-Tetrahydropyranyl)-5-chlor-6-methyluracil
      3-(2-Tetrahydropyranyl)-5,6-trimethylenuracil
      3-Cyclohexyl-5,6-trimethylenuracil
25
      2-Methyl-4-(3'-trifluormethylphenyl)-tetrahydro-1,2,4-
      -oxadiazin-3,5-dion
      2-Methyl-4-(4'-fluorphenyl)-tetrahydro-1,2,4-oxadiazin-
      -3.5-dion
      3-Amino-1,2,4-triazol
30
      1-Allyloxy-1-(4-bromphenyl)-2-[1',2',4'-triazolyl-(1')-]-
      ethan (Salze)
      1-(4-Chlorphenoxy-3,3-dimethyl-1(1H-1,2,4-triazol-1-yl)-
      -2-butanon
      N, N-Diallylchloracetamid
35
```

O. Z. 0050/35177

```
N-Isopropyl-2-chloracetanilid
     N-(1-Methyl-propin-2-yl)-2-chloracetanilid
     2-Methyl-6-ethyl-N-(propargyl)-2-chloracetanilid
     2-Methyl-6-ethyl-N-(ethoxymethyl)-2-chloracetanilid
     2-Methyl-6-ethyl-N-(2-methoxy-1-methylethyl)-2-chloracet-
     anilid
     2-Methyl-6-ethyl-N-(isopropoxycarbonylethyl)-2-chloracet-
     anilid
     2-Methyl-6-ethyl-N-(4-methoxypyrazol-1-yl-methyl)-2-chlor-
10
     -acetanilid
     2-Methyl-6-ethyl-N-(pyrazol-1-yl-methyl)-2-chloracetanilid
     2,6-Dimethyl-N-(pyrazol-1-yl-methyl)-2-chloracetanilid
     2,6-Dimethyl-N-(4-methylpyrazol-1-yl-methyl)-2-chlor-
     acetatanilid
15
     2,6-Dimethyl-N-(1,2,4-triazol-1-yl-methyl)-2-chloracet-
     anilid
     2,6-Dimethyl-N-(3,5-dimethylpyrazol-1-yl-methyl)-2-chlor-
     acetanilid
     2,6-Dimethyl-N-(1,3-dioxolan-2-yl-methyl)-2-chloracet-
20
     anilid
     2,6-Dimethyl-N-(2-methoxyethyl)-2-chloracetanilid
     2,6-Dimethyl-N-(isobutoxymethyl)-2-chloracetanilid
     2,6-Diethyl-N-(methoxymethyl)-2-chloracetanilid
     2,6-Diethyl-N-(n-butoxymethyl)-2-chloracetanilid
25
     2,6-Diethyl-N-(ethoxycarbonylmethyl)-2-chloracetanilid
     2,3,6-Trimethyl-N-(pyrazol-l-yl-methyl)-2-chloracetanilid
     2,3-Dimethyl-N-(isopropyl)-2-chloracetanilid
     2,6-Diethyl-N-(2-n-propoxyethyl)-2-chloracetanilid
30
     2-(2-Methyl-4-chlorphenoxy-N-methoxy-acetamid
     2-(Alpha-Naphtoxy)-N, N-diethylpropionamid
     2, 2-Diphenyl-N, N-dimethylacetamid
     Alpha(3,4,5-Tribrompyrazol-1-yl)-N,N-dimethylpropionamid
     N-(1,1-Dimethylpropinyl)-3,5-dichlorbenzamid
35
```

-dion

O.Z. 0050/35177

```
N-1-Naphthylphthalamidsäure
     Propionsäure-3,4-dichloranilid
     Cyclopropancarbonsäure-3,4-dichloranilid
     Methacrylsäure-3, 4-dichloranilid
     2-Methylpentancarbonsäure-3,4-dichloranilid
 5
      5-Acetamido-2,4-dimethyltrifluormethan-sulfonanilid
      5-Acetamido-4-methyl-trifluormethan-sulfonanilid
     2-Propionyl-amino-4-methyl-5-chlor-thiazol
      O-(Methylsulfonyl)-glykolsäure-N-ethoxymethyl-2,6-dimethyl-
10
     anilid
      O-(Methylaminosulfonyl)-glykolsäure-N-isopropyl-anilid
      O-(i-Propylaminosulfonyl)-glykolsäure-N-butin-1-yl-3-anilid
      O-(Methylaminosulfonyl)-glykolsäure-hexamethylenamid
      2,6-Dichlor-thiobenzamid
15
      2,6-Dichlorbenzonitril
      3,5-Dibrom-4-hydroxy-benzonitril (Salze)
      3,5-Dijod-4-hydroxy-benzonitril (Salze)
      3,5-Dibrom-4-hydroxy-0-2,4-dinitrophenylbenzaldoxim (Salze)
     3,5-Dibrom-4-hydroxy-0-2-Cyan-4-nitrophenylbenzaldoxim
20
      (Salze)
      Pentachlorphenol-Natriumsalz
      2,4-Dichlorphenyl-4'-nitrophenylether
      2,4,6-Trichlorphenyl-4'-nitrophenylether
      2-Fluor-4,6-dichlorphenyl-4'-nitrophenylether
25
      2-Chlor-4-trifluormethylphenyl-4'-nitrophenylether
      2,4'-Dinitro-4-trifluormethyl-diphenylether
      2,4-Dichlorphenyl-3'-methoxy-4'-nitro-phenylether
      2-Chlor-4-trifluormethylphenyl-3'-ethoxy-4'-nitro-phenyl-
      ether
 30
      2-Chlor-4-trifluormethylphenyl-3'-carboxy-4'-nitro-phenyl-
      ether (Salze)
      2,4-Dichlorphenyl-3'-methoxycarbonyl-4'-nitro-phenylether
      2-(3,4-Dichlorphenyl)-4-methyl-1,2,4-oxadiazolidin-3,5-
```

0. Z. 0050/35177

```
2-(3-tert.Butylcarbamoyl-oxyphenyl)-4-methyl-1,2,4-oxadia-
      zolidin-3,5-dion
      2-(3-iso-Propylcarbamoyl-oxyphenyl)-4-methyl-1,2,4-oxadia-
      zolidin-3,5-dion
 5
      2-Phenyl-3, 1-benzoxazinon-(4)
      (4-Bromphenyl)-3,4,5,9,10-pentaazatetracyclo-[5,4,1,0<sup>2,6</sup>,0.
      8,11]-dodeca-3,9-dien
      2-Ethoxy-2,3-dihydro-3,3-dimethyl-5-benzofuranyl-methan-
      -sulfonat
10
      2-Ethoxy-2, 3-dihydro-3, 3-dimethyl-5-benzofuranyl-dimethyl-
      -aminosulfonat
     2-Ethoxy-2, 3-dihydro-3, 3-dimethyl-5-benzofuranyl-(N-methyl-
      -N-acetyl)-aminosulfonat
      3,4-Dichlor-1,2-benzisothiazol
      N-4-Chlorphenyl-allylbernsteinsäureimid
15
      2-Methyl-4,6-dinitrophenol (Salze, Ester)
      2-sec.Butyl-4,6-dinitrophenol (Salze.)
      2-sec.Butyl-4,6-dinitrophenol-acetat
      2-tert.Butyl-4,6-dinitrophenol-acetat
      2-tert.Butyl-4,6-dinitrophenol (Salze)
20
      2-tert.Butyl-5-methyl-4,6-dinitrophenol (Salze)
      2-tert.Butyl-5-methyl-4, 6-dinitrophenol-acetat
      2-sec.Amyl-4,6-dinitrophenol (Salze, Ester)
      1-(Alpha, alpha-Dimethylbenzyl)-3-(4-methylphenyl)-harnstoff
25
      1-Phenyl-3-(2-methylcyclohexyl)-harnstoff
      1-Phenyl-1-benzoyl-3,3-dimethyl-harnstoff
      1-(4-chlorphenyl)-1-benzoyl-3,3-dimethyl-harnstoff
      1-(4-chlorphenyl)-3,3-dimethyl-harnstoff
      1-(4-Chlorphenyl)-3-methyl-3-butin-1-yl-3-harnstoff
30
      1-(3,4-Dichlorphenyl)-3,3-dimethyl-harnstoff
      1-(3,4-Dichlorphenyl)-1-benzoyl-3,3-dimethyl-harnstoff
      1-(3,4-Dichlorphenyl)-3-methyl-3-n-butyl-harnstoff
      1-(4-i-Propylphenyl)-3,3-dimethyl-harnstoff
      1-(3-Trifluormethylphenyl)-3,3-dimethyl-harnstoff
35
```

```
1-(3-Alpha, alpha, beta, beta-Tetrafluorethoxyphenyl)-
     -3.3-dimethyl-harnstoff
     1-(3-tert.Butylcarbamoyloxy-phenyl)-3,3-dimethyl-harnstoff
     1-(3-Chlor-4-methylphenyl)-3,3-dimethyl-harnstoff
     1-(3-Chlor-4-methoxyphenyl)-3,3-dimethyl-harnstoff
5
     1-(3,5-Dichlor-4-methoxyphenyl)-3,3-dimethyl-harnstoff
     1-[4(4'-Chlorphenoxy)-phenyl]-3,3-dimethyl-harnstoff
     1-[4(4'-methoxyphenoxy)-phenyl]-3,3-dimethyl-harnstoff
     1-Cyclooctyl-3,3-dimethyl-harnstoff
     1-(Hexahydro-4,7-methanindan-5-yl)-3,3-dimethyl-harnstoff
10
     1-[1- oder 2-(3a,4,5,7,7a-Hexahydro)-4,7-methanoindanyl]-
     -3,3-dimethyl-harnstoff
     1-(4-Fluorphenyl)-3-carboxymethoxy-3-methyl-harnstoff
     1-Phenyl-3-methyl-3-methoxy-harnstoff
     1-(4-Chlorphenyl)-3-methyl-3-methoxy-harnstoff
15
     1-(4-Bromphenyl)-3-methyl-3-methoxy-harnstoff
     1-(3,4-Dichlorphenyl)-3-methyl-3-methoxy-harnstoff
     1-(3-Chlor-4-bromphenyl)-3-methyl-3-methoxy-harnstoff
     1-(3-Chlor-4-isopropylphenyl)-3-methyl-3-methoxy-harnstoff
     1-(3-Chlor-4-methoxyphenyl)-3-methyl-3-methoxy-harnstoff
20
     1-(3-tert.Butylphenyl)-3-methyl-3-methoxy-harnstoff
     1-(2-Benzthiazolyl)-1,3-dimethyl-harnstoff
     1-(2-Benzthiazoly1)-3-methyl-harnstoff
     1-(5-Trifluormethyl-1, 3, 4-thiadiazolyl)-1, 3-dimethyl-
     -harnstoff
25
     Imidazolidin-2-on-1-carbonsäure-iso-butylamid
     1,2-Dimethyl-3,5-diphenylpyrazolium-methylsulfat
     1,2-4-Trimethyl-3,5-diphenylpyrazolium-methylsulfat
     1,2-Dimethyl-4-brom-3,5-diphenylpyrazolium-methylsulfat
     1,3-Dimethyl-4-(3,4-dichlorbenzoyl)-5-[(4-methylphenyl-
30
     sulfonyl)-oxy]-pyrazol
     2,3,5-Trichlor-pyridinol-(4)
     1-Methyl-3-phenyl-5-(3'-trifluormethylphenyl)-pyridon-(4)
     1-Methyl-4-phenyl-pyridiniumchlorid
 35
     1,1-Dimethylpyridiniumchlorid
```

```
3-Phenyl-4-hydroxy-6-chlorpyridazin
     1,1'-Dimethyl-4,4'-dipyridylium-di(methylsulfat)
     1,1'-Di(3,5-dimethylmorpholin-carbonylmethyl)-4,4'-di-
     pyridylium-dichlorid
     1,1'-Ethylen-2,2'-dipyridylium-dibromid
5
     3-[1(N-Ethoxyamino)-propyliden] -6-ethyl-3,4-dihydro-2-H-
     -pyran-2,4-dion
     3-[1-(N-Allyloxyamino)-propyliden]-6-ethyl-3,4-dihydro-2-
     -H-pyran-2,4-dion
     2-[1-(N-Allyloxyamino)-propyliden]-5,5-dimethylcyclohexan-
10
      -1,3-dion (Salze)
     2-[1-(N-Allyloxyamino-butyliden]-5,5-dimethylcyclohexan-
      -1,3-dion (Salze)
      2-[1-(N-Allyloxyamino-butyliden]-5,5-dimethyl-4-methoxy-
      carbonyl-cyclohexan-1,3-dion (Salze)
15
                                         (Salze, Ester, Amide)
      2-Chlorphenoxyessigsäure
                                         (Salze, Ester, Amide)
      4-Chlorphenoxyessigsäure
                                         (Salze, Ester, Amide)
      2,4-Dichlorphenoxyessigsäure
                                         (Salze, Ester, Amide)
      2,4,5-Trichlorphenoxyessigsäure
      2-Methyl-4-chlorphenoxyessigsäure (Salze, Ester, Amide)
20
      3,5,6-Trichlor-2-pyridinyl-oxyessigsäure (Salze, Ester,
      Amide)
      Alpha-Naphthoxyessigsäuremethylester
                                         (Salze, Ester, Amide)
      2-(2-Methylphenoxy)-propionsäure
 25
                                          (Salze, Ester, Amide)
      2-(4-Chlorphenoxy)-propionsäure
      2-(2,4-Dichlorphenoxy)-propionsäure (Salze, Ester, Amide)
       2-(2,4,5-Trichlorphenoxy)-propionsäure (Salze, Ester,
       Amide)
       2-(2-Methyl-4-chlorphenoxy)-propionsaure (Salze, Ester,
 30
       Amide)
       4-(2,4-Dichlorphenoxy)-buttersäure (Salze, Ester, Amide)
       4-(2-Methyl-4-chlorphenoxy)-buttersäure (Salze, Ester,
       Amide)
       Cyclohexyl-3-(2,4-dichlorphenoxy-acrylat
  35
```

```
9-Hydroxyfluoren-carbonsäure-(9) (Salze, Ester)
     2,3,6-Trichlorphenyl-essigsäure (Salze, Ester)
     4-Chlor-2-oxo-benzothiazolin-3-yl-essigsäure (Salze,
     Ester)
5
     Gibellerinsäure
                         (Salze)
     Dinatrium-methylarsonat
     Mononatriumsalz der Methylarsonsäure
     N-Phosphon-methyl-glycin
                                         (Salze)
     N, N-Bis(phosphormethyl)-glycin
                                         (Salze)
10
     2-Chlorethanphosphonsäure-2-chlorethylester
     Ammonium-ethyl-carbamoyl-phosphonat
     Di-n-butyl-1-n-butylamino-cyclohexyl-phosphonat
     Trithiobutylphosphit
     0,0-Diisopropyl-5-(2-benzosulfonylamino-ethyl)-phos-
     phordithioat
15
     2.3-Dihydro-5.6-dimethyl-1,4-dithiin-1,1,4,4-tetraoxid
     5-tert.Butyl-3-(2,4-dichlor-5-isopropoxyphenyl)-1,3,4-
     -oxadiazolon-(2)
     4.5-Dichlor-2-trifluormethyl-benzimidazol
                                                  (Salze)
     1,2,3,6-Tetrahydropyridazin-3,6-dion
                                                  (Salze)
20
     Bernsteinsäure-mono-N-dimethylhydrazid
                                                  (Salze)
     (2-Chlorethyl)-trimethyl-ammoniumchlorid
     (2-Methyl-4-phenylsulfonyl)-trifluormethansulfonanilid
     1,1-Dimethyl-4,6-diisopropyl-5-indanylethylketon
     Natriumchlorat
25
     Ammoniumrhodanid
     Calciumcyanamid
     2-Chlor-4-trifluormethylphenyl-3'-ethoxycarbonyl-4'-nitro-
     phenylether
30
     1-(4-Benzyloxyphenyl)-3-methyl-3-methoxyharnstoff
     2-[1-(2,5-Dimethylphenyl)-ethylsulfonyl]-pyridin-N-oxid
     1-Acetyl-3-anilino-4-methoxycarbonyl-5-methylpyrazol
     3-Anilino-4-methoxycarbonyl-5-methylpyrazol
35
     3-tert.Butylamino-4-methoxycarbonyl-5-methylpyrazol
```

```
N-Benzyl-N-isopropyl-trimethylacetamid
     2-[4-(4'-Chlorphenoxymethyl)-phenoxy]-propionsäuremethyl-
     ester
     2-[4-(5'-Brompyridyl-2-oxy)-phenoxy]-propionsäureethyl-
 5
     ester
     2-[4-(5'-Iodpyridyl-2-oxy)-phenoxy]-propionsaureethyl-
     2-[4-(5'-Iodpyridyl-2-oxy)-phenoxy]-propionsäure-n-butyl-
     ester
10
     2-Chlor-4-trifluormethylphenyl-3'-(2-fluorethoxy)-4'-nitro-
     phenylether
     2-Chlor-4-trifluormethylphenyl-3-(ethoxycarbonyl)-methyl-
     thio-4-nitrophenylether
     2,4,6-Trichlorphenyl-3-(ethoxycarbonyl)-methylthio-4-nitro-
15
     phenylether
     2-[1-(N-Ethoxamino)-butyliden]-5-(2-ethylthiopropyl)-3-
     -hydroxy-cyclohexen-(2)-on-(1) (Salze)
     2-[1-(N-Ethoxamino)-butyliden]-5-(2-phenylthiopropyl)-3-
     -hydroxy-cyclohexen-(2)-on-(1) (Salze)
20
     4-[4-(4'-Trifluormethyl)-phenoxy]-penten-2-carbonsaure-
     ethylester
     2-Chlor-4-trifluormethyl-3'-methoxycarbonyl-4'-nitrophenyl-
     ether
     2,4-Dichlorphenyl-3'-carboxy-4'-nitrophenylether (Salze)
25
     4,5-Dimethoxy-2-(3-alpha-alpha-beta-trifluor-beta-bromethoxy-
     phenyl)-3-(2H)-pyridazinon
     2,4-Dichlorphenyl-3'-ethoxy-ethoxy-ethoxy-4'-nitrophenyl-
     -ether
30
     2,3-Dihydro-3,3-dimethyl-5-benzofuranyl-ethansulfonat
     N-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl-aminocarbonyl)-2-
     -chlorbenzolsulfonamid
     1-(3-Chlor-4-ethoxyphenyl)-3,3-dimethylharnstoff
     2-Methyl-4-Chlorphenoxy-thioessigsäureethylester
35
     2-Chlor-3, 5-dijod-4-acetoxy-pyridin
```

```
1-{4-[2-(4-Methylphenyl)-ethoxy]-phenyl}-3-methyl-3-meth-
     oxyharnstoff
     2.6-Dimethyl-N-(pyrazol-1-yl-methylenoxymethyl)-2-chlor-
     acetanilid
     2-Methyl-6-ethyl-N-(pyrazol-1-yl-methylenoxymethyl)-2-chlor-
5
     acetanilid
     1-(Alpha-2, 4-Dichlorphenoxypropionsäure)-3-(0-methylcarba-
     moyl)-anilid
     1-(Alpha-2-Brom-4-chlorphenoxypropionsäure)-3-(O-methyl-
10
     carbamoyl)-anilid
     2-Methyl-6-ethyl-N-(pyrazol-1-yl-ethylenoxymethyl)-2-chlor-
     acetanilid
     Methyl-N-dichlorfluormethylsulfenyl-[3-(N'-dichlorfluor-
     methylsulfenyl-N'-phenylcarbamoyl-oxy)-phenyl]-carbamat
     Methyl-N-dichlorfluormethylsulfenyl-[3-(N'-dichlorfluor-
15
     methylsulfenyl-N'-3-methylphenylcarbamoyl-oxy)-phenyl]-
     -carbamat
     N-(Pyrazol-1-yl-methyl)-pyrazol-1-yl-essigsäure-2,6-di-
     methylanilid
     N-(Pyrazol-1-yl-methyl)-1,2,4-triazol-1-yl-essigsäure-2,6-
20
     -dimethylanilid
     2-(3-Trifluormethylphenyl)-4H-3,1-benzoxazin-4-on
     2-(2-Thienyl)-4H-3,1-benzoxazin-4-on
     2-(3-Pentafluorethoxyphenyl)-4H-3,1-benzoxazin-4-on
25
     2-(3-Trifluormethylthio-phenyl)-4H-3,1-benzoxazin-4-on
      2-(3-Difluor-chlormethoxyphenyl)-4H-3,1-benzoxazin-4-on
      5-Nitro-2-(3-trifluormethyl-phenyl)-4H-3,1-benzoxazin-4-on
30 5-Chlor-2-(3-trifluormethoxyphenyl)-4H-3,1-benzoxazin-4-on
      5-Chlor-2-[(3-alpha-alpha-beta-beta)-tetrafluorethoxyphenyl]-
     -4H-3,1-berzoxazin-4-on
      5-Fluor-2-[(3-alpha-alpha-beta-beta)-tetrafluorethoxyphenyl]-
     -4H-3,1-benzoxazin-4-on
```

5-Chlor-2-(4-Difluorchlormethoxyphenyl)-4H-3,1-benzoxazin-4-on

O.Z. 0050/35177

```
5-Fluor-2-(4-difluorchlormethoxyphenyl)-4H-3,1-benzoxazin-
     -4-on
     5-Fluor-2-(phenyl)-4H-3,1-benzoxazin-4-on
     5-Fluor-2-(3-difluormethoxyphenyl)-4H-3,1-benzoxazin-4-on
     5-Chlor-2-(phenyl)-4H-3,1-benzoxazin-4-on
5
     3-(3,5-Dichlorphenyl)-4-methoxycarbonyl-5-methylpyrazol
     3-(3-Chlorphenyl)-4-methoxycarbonyl-5-methylpyrazol
     3-(3-Fluorphenyl)-4-methoxycarbonyl-5-methylpyrazol
     1-Acetyl-3-(3-fluorphenyl)-4-methoxycarbonyl-5-methyl-
     pyrazol
10
     1-Acetyl-3-(3-chlorphenyl)-4-methoxycarbonyl-5-methyl-
     pyrazol
     1-Acetyl-3-(3-bromphenyl)-4-methoxycarbonyl-5-methyl-
     pyrazol
     1-Acetyl-3-(3,5-dichlorphenyl)-4-methoxycarbonyl-5-methyl-
15
     pyrazol
     1-Acetyl-3-thienyl-4-methoxycarbonyl-5-methylpyrazol
     N-3-Chlor-4-isopropylphenyl-thiolcarbaminsäuremethyl-
     N-3-Methyl-4-fluorphenyl-thiolcarbaminsäuremethylester
20
     N-3-Chlor-4-isopentylphenyl-thiolcarbaminsäuremethyl-
     ester
     N-3-Chlor-4-difluormethoxyphenyl-thiolcarbaminsauremethyl-
     ester
     N-3-Chlor-4-(1-chlorisopropyl)-phenyl-thiolcarbaminsäure-
25
     methylester
     1-(2-Fluorpheny1)-3-methyl-5-iminoimidazolidin-2-on
     1-(3-Isopropylphenyl)-3-methyl-5-iminoimidazolidin-2-on
     1-(4-Isopropylphenyl)-3-methyl-5-iminoimidazolidin-2-on
30
     1-[3-(1,1,2,2-Tetrafluorethoxy)-phenyl]-3-methyl-5-imino-
     imidazolidin-2-on
     1-(3,4-Dichlorphenyl)-3-methyl-5-iminoimidazolidin-2-on
     1-(3,4-Difluorphenyl)-3-methyl-5-iminoimidazolidin-2-on
```

```
6-Methyl-3-methoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-on-
      -1,1-dioxid
      6-Methyl-3-methoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-on-
      -1,1-dioxid Natriumsalz
 5
      6-n-Propyl-3-methoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-on-
      -1.1-dioxid
      6-Methyl-3-ethoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-on-
      -1,1-dioxid
      6-n-Propyl-3-ethoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-on-
10
      -1,1-dioxid Natriumsalz
      6-Methyl-3-isopropoxy-5, 6-dihydro-1, 2, 4, 6-thiatriazin-5-on-
      -1,1-dioxid
      6-n-Propyl-3-isopropoxy-5, 6-dihydro-1, 2, 4, 6-thiatriazin-5-on-
      -1.1-dioxid
      6-Isopropyl-3-sek.butoxy-5,6-dihydro-1,2,4,6-thiatriazin-5-
15
      -on-1,1-dioxid Natriumsalz
      N-3'-(2^n-Ch1or-4^n-trifluormethylphenoxy)-6'-nitrobenzoyl-
      anthranilsäure
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-6'-nitrobenzoyl-
      anthranilsäuremethylester
20
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-6'-nitrobenzoyl-
      anthranilsäure Natriumsalz
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-6'-nitrobenzoyl-
      -3-chloranthranilsäure
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-benzoyl-3-chlor-
25
      anthranilsäure
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-benzoy1-3-methyl-
      anthranilsäure
      N-3'-(2"-Chlor-4"-trifluormethylphenoxy)-benzoylanthranil-
 30
      säure
      N-3'-(2",4"-Dichlorphenoxy)-6'-nitrobenzoylanthranilsäure
      N-[3'-(2"-Chlor-4"-trifluormethylphenoxy)-6'-nitro-
      pheny1]-4H-1,3-benzoxazin-4-on
      N-[3'-(2"-Chlor-4"-trifluormethylphenoxy)-6'-nitro-
 35
      phenyl]-4H-1,3-8-methoxybenzoxazin-4-on
```

- 5-Chlor-2-(3-trifluormethyl-phenyl)-4H-3,1-benzoxazin-4-on 5-Fluor-2-(3-trifluormethyl-phenyl)-4H-3,1-benzoxazin-4-on 5-Fluor-2-(3-difluor-chlormethyl-phenyl)-4H-3,1-benzoxazin-4-on
- 5-Chlor-2-(3-difluor-chlormethyl-phenyl)-4H-3,1-benzoxazin--4-on 1-[5-(3-Fluorbenzylthio)-thiadiazolyl-2]-1-methyl-3-methylharnstoff
- Außerdem ist es nützlich, die neuen Verbindungen allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungs- oder Spurenelementmängeln eingesetzt werden. Zur Aktivierung der herbiziden Wirkung können auch Netz- und Haftmittel sowie nicht-phytotoxische öle und Olkonzentrate zugesetzt werden.

25

o.z. _{0050/35177}

Patentansprüche

1. Cyclohexandionderivat der allgemeinen Formel

5

Ю

15

20

25

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

2. Herbizid, enthaltend ein Cyclohexandionderivat der allgemeinen Formel

10 in der

5

15

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

- R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen
- X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

- y einen nichtaromatischen Heterocyclus mit 4 bis
 7 Atomen und keiner oder einer Doppelbindung im
 heterocyclischen Ring, enthaltend 1 oder
 2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
 wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl
- Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

30

3. Herbizid, enthaltend einen festen oder flüssigen Trägerstoff und ein Cyclohexandionderivat der allgemeinen Formel

5

10

15

20

25

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit·1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

Verfahren zur Herstellung eines Herbizids, <u>dadurch</u> <u>gekennzeichnet</u>, daß man einen festen oder flüssigen Trägerstoff vermischt mit einem Cyclohexandionderivat der allgemeinen Formel

5

10

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

15

Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

20

X geradkettiger oder verzweigter Alkylenrest mit l bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Z

25

y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

30

Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

5. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, <u>dadurch gekennzeichnet</u>, daß man den Boden
oder die Pflanzen behandelt mit einem Cyclohexandionderivat der allgemeinen Formel

5

10

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

20

15

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

30

Z

Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

O.Z. 0050/35177

6. Verfahren zur Herstellung eines Cyclohexandionderivats der allgemeinen Formel

10 in der

5

15

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung,

dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel

mit einer Ammoniumverbindung der Formel R²-O-NH⁺ A-, 3 in denen R¹, R², X, Y, Z die in Anspruch 1 genannten Bedeutungen haben und A⁻ ein Anion bedeutet, in einem inerten Lösungsmittel bei einem pH-Bereich von 2 bis 7 und bei Temperaturen zwischen O und 80°C umsetzt.

- 8. Cyclohexandionderivat, ausgewählt aus der Gruppe, bestehend aus
 2-(1-Ethyloxiaminobutyliden)-5-[3-(4-methyltetrahydro-pyranyl)]-cyclohexan-1,3-dion,
 2-(1-Allyloxiaminobutyliden)-5-[3-(4-methyltetrahydro-pyranyl)]-cyclohexan-1,3-dion,
 2-(1-Ethyloxiaminobutyliden)-5-[3-(2-H)-5,6-dihydro-pyranyl]-cyclohexan-1,3-dion.
- 9. Herbizid, enthaltend ein Cyclohexandionderivat, ausgewählt aus der Gruppe, bestehend aus 2-(1-Ethyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion, 2-(1-Allyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion, 2-(1-Ethyloxiaminobutyliden)-5-[3-(2-H)-5,6-dihydropyranyl]-cyclohexan-1,3-dion.

10. Herbizid, enthaltend einen festen oder flüssigen
Trägerstoff und ein Cyclohexandionderivat, ausgewählt
aus der Gruppe, bestehend aus
2-(1-Ethyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
2-(1-Allyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
2-(1-Ethyloxiaminobutyliden)-5-[3-(2-H)-5,6-dihydropyranyl]-cyclohexan-1,3-dion.

10

15

20

25

O.Z. 0050/35177

Patentansprüche (für Österreich)

1. Herbizid, enthaltend ein Cyclohexandionderivat der allgemeinen Formel

O HN OR 2

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen
R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit
3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis
4 Kohlenstoffatomen oder Halogenalkenyl mit 3
oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

30 Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

O.Z. 0050/35177

72. Herbizid, enthaltend einen festen oder flüssigen Trägerstoff und ein Cyclohexandionderivat der allgemeinen Formel

- 59 -

5

10

15

20

25

in der

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen
R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit
3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis
4 Kohlenstoffatomen oder Halogenalkenyl mit 3
oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung.

O. Z. 0050/35177

Verfahren zur Herstellung eines Herbizids, <u>dadurch</u>

<u>gekennzeichnet</u>, daß man einen festen oder flüssigen

Trägerstoff vermischt mit einem Cyclohexandionderivat

der allgemeinen Formel

..5

10

in der

Rl Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

20

15

X geradkettiger oder verzweigter Alkylenrest mit l bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

25

y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

30

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, <u>dadurch gekennzeichnet</u>, daß man den Boden oder die Pflanzen behandelt mit einem Cyclohexandionderivat der allgemeinen Formel

- 61 -

5

4.

10

in der

X

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

15

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

20

geradkettiger oder verzweigter Alkylenrest mit l bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

25

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

30

Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung. 5. Verfahren zur Herstellung eines Cyclohexandionderivats der allgemeinen Formel

n in der

5

15

R¹ Alkyl mit 1 bis 4 Kohlenstoffatomen

R² Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkenyl mit 3 bis 4 Kohlenstoffatomen, Alkinyl mit 3 bis 4 Kohlenstoffatomen oder Halogenalkenyl mit 3 oder 4 Kohlenstoffatomen und 1 bis 3 Halogenatomen

X geradkettiger oder verzweigter Alkylenrest mit 1 bis 5 Kohlenstoffatomen, gegebenenfalls phenylsubstituiert

n = 0 oder 1

Y einen nichtaromatischen Heterocyclus mit 4 bis
7 Atomen und keiner oder einer Doppelbindung im
heterocyclischen Ring, enthaltend 1 oder
2 Heteroatome aus der Gruppe Schwefel, Stickstoff, Sauerstoff in beliebiger Reihenfolge,
wobei der Heterocyclus gegebenenfalls substituiert ist durch Alkyl

Z Wasserstoff oder Methoxycarbonyl bedeutet sowie die Salze dieser Verbindung,

dadurch gekennzeichnet, daß man eine Verbindung der allgemeinen Formel

35

30

O.Z. 0050/35177

mit einer Ammoniumverbindung der Formel R²-O-NH⁺
3
in denen R¹, R², X, Y, Z die in Anspruch 1 genannten
Bedeutungen haben und A⁻ ein Anion bedeutet, in einem
inerten Lösungsmittel bei einem pH-Bereich von 2 bis
7 und bei Temperaturen zwischen O und 80°C umsetzt.

- 6. Herbizid, enthaltend ein Cyclohexandionderivat, ausgewählt aus der Gruppe, bestehend aus
 2-(1-Ethyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
 2-(1-Allyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
 2-(1-Ethyloxiaminobutyliden)-5-[3-(2-H)-5,6-dihydropyranyl]-cyclohexan-1,3-dion.
- 7. Herbizid, enthaltend einen festen oder flüssigen
 Trägerstoff und ein Cyclohexandionderivat, ausgewählt
 aus der Gruppe, bestehend aus
 2-(1-Ethyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
 2-(1-Allyloxiaminobutyliden)-5-[3-(4-methyltetrahydropyranyl)]-cyclohexan-1,3-dion,
 2-(1-Ethyloxiaminobutyliden)-5-[3-(2-H)-5,6-dihydropyranyl]-cyclohexan-1,3-dion.

30

25

EUROPÄISCHER RECHERCHENBERICHT

EP 82 10 4688

	EINSCHLÄG	IGE DOKUMENTE		
Kategorie		ts mit Angabe, soweit erforderlich, eblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. ³)
D,A	DE-A-2 439 104 (* Seiten 1-6; Se Seiten 25-41 *	NIPPON SODA) Lite 21, Nr. 118;	1-7	C 07 D 309/06 C 07 D 309/22 C 07 D 307/14 C 07 D 307/16 C 07 D 317/28
A	DE-A-2 524 577 (* Seiten 1-11 *	(NIPPON SODA)	1-7	C 07 D 317/30 C 07 D 319/06 C 07 D 335/02 C 07 D 339/06 A 01 N 43/02
				RECHERCHIERTE SACHGEBIETE (Int. Cl. ³)
				C 07 D 309/00 C 07 D 317/00 C 07 D 319/00 C 07 D 339/00
				C 07 D 307/00
De	er vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt.		
	Recherchenort	Abschlußdatum der Recherch	e I	Prüfer

KATEGORIE DER GENANNTEN DOKUMENTEN
X: von besonderer Bedeutung allein betrachtet
Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
A: technologischer Hintergrund
O: nichtschriftliche Offenbarung
P: Zwischenliteratur
T: der Erfindung zugrunde liegende Theorien oder Grundsätze

E: älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht w rden ist
 D: in der Anmeldung angeführtes Dokument
 L: aus andern Gründen angeführtes Dokument

8: Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

÷		
	•	