

Label Confidence Weighted Learning for Target-Level Sentence Simplification

Xinying Qiu and Jingshen Zhang

Department of Computer Science, School of Information Science and Technology

Guangdong University of Foreign Studies, Guangzhou, China

②: https://arxiv.org/abs/2410.05748

: xy.qiu@foxmail.com; audbut0702@163.com

Abstract

Definition

Multi-level sentence simplification generates simplified sentences for specific target audiences with varying language proficiency.

Challenge

Progress in this area has been hindered by limited availability of labeled parallel corpora and the augmentation techniques proposed in previous studies suffer from the propagation of label errors.

Proposal

We propose Label Confidence Weighted Learning (LCWL), a novel approach that incorporates a label confidence weighting scheme in the training loss of the encoder-decoder model.

Research Structure

Research Structure with Label Confidence Weighted Learning

Experiment Design

Dataset

Newsela-auto, Para-NMT-50M

Baseline Models

Unsupervised: MUSS, FUDGE-Target, SCE, LCWL, LCWL+SCE

Supervised: SUPER, GPT-3.5-Turbo, SCE+FT, LCWL+FT, SCE+LCWL+FT

Evaluation Metrics

ΔSLE, SARI, FKGL, LENS, LENS-SALSA, BERTScore, **BLEU**

Results and Analysis

	Evaluation Metrics	ΔSLE	LENS†	LENS- SALSA	SARI ↑	FKGL	$\mathrm{BS}{\uparrow}$	BLEU↑	Avg. Rank
Simp-1		0.67		70.697	-	9.66	-	-	
	MUSS	0.69*	63.28	70.46	35.69	7.75	75.95	41.29	3.15 2
Unsupervised Methods	FUDGE	0.32	61.13*	66.73	36.1	8.81	80.45	51.98	2.86 3
	SCE	0.479	59.28	68.88	37.06*	11.45*	78.1	41.8	3.43 3
	LCWL	1.73	60.86	69.43*	37.78	7.1	87.41*	43.07	2.86
	LCWL+SCE	0.671	59.68	69.05	37.03	11.92	88.11	43.74*	2.57
Supervised Methods	SUPER	0.07	65.03*	66.981	32.5	9.36	88.2	75.06	3.3 3
	GPT-3.5-Turbo	0.75	64.76	72.13	38.45	10.56	86.29	36.27	3 2.2
	SCE+FT	0.28*	61.59	69.77	37.53*	10.57	88.75*	58.94*	2.7 3
	SCE+LCWL+FT	0.277	65.43	67.91	36.8	10.51	88.3	58.8	3 3
	LCWL +FT	0.19	63.19	68.28*	37.1	10.29*	90.08	57.3	3 3.2
Simp-2		1.3		73.557		7.48	-		-
XX	MUSS	0.77	60.27*	71.3	36.57	7.27*	65.91	17.23	3.29
	FUDGE	0.51	58.19	67.08	38.32	7.42	70.75	36.89	3.57
Unsupervised	SCE	0.595	58.91	69.68	37.33	10.58	89.61	37.46	3.43
Methods	LCWL	1.74	61.84	70.78*	38.27*	7.14	89.54*	38.15*	1.86
	LCWL+SCE	0.79*	59.99	70.36	37.75	10.83	87.16	38.71	2.86
Supervised Methods	SUPER	0.14	62.2	66.7	31.1	8.88	78.2	56.65	4.3 4
	GPT-3.5-Turbo	0.88	67.16	74.02	41.62*	9.58	87.8	33.4	2.7 2
	SCE+FT	0.61	63.8	72.04*	39.4	7.82	96.92	52.3	2.7 3
	SCE+LCWL+FT	0.73	65.26*	71	42.7	8.35	96.92	55.58*	2.3 2
	LCWL +FT	0.8*	64.7	71.9	41.6	8.3*	96.92	48.4	2.6 2
S	imp-3	2.0		75.669		5.88			
Unsupervised Methods	MUSS	1.49*	57.02	71.3*	38.05	5.19*	56.03	10.55	3.43
	FUDGE	0.81	52.69	68.23	39.56	6.44	61.46	23.98	3.43
	SCE	0.65	58.17	70.68	37.51	10	89.61	33.19	3.57
	LCWL	1.63	61.68	71.83	38.68*	7.39	89.54*	33.31*	1.71
	LCWL+SCE	0.83	59.51*	71.08	38.22	10.13	87.16	34.09	2.86
Supervised Methods	SUPER	0.66	61	66.5	37.9	6.65	66.6	39.6	4.4 4
	GPT-3.5-Turbo	0.97	66.2	74.4	41	8.81	87.79*	31.3	4 4.2
	SCE+FT	1.59	66.64*	74.4	41.7	5.4	82.9	40.29*	2.9 3
	SCE+LCWL+FT	1.81*	67.98	75.13	46.14*	6.1*	92.15	46.48	1.4 1
	LCWL +FT	2.19	64.8	76.85*	47.11	5.87	74.7	34	2.3 1
Simp-4		2.63		77.639		4.16	-	-	
Unsupervised Methods	MUSS	1.41*	55.23	71.15	39.63	5.61*	51.73	7.65	3.14
	FUDGE	1.04	41.64	61.69	37.03	4.6	49.6	11.06	3.86
	SCE	0.69	58.94	71.16	35.18	8.81	87.77	26.9	3.43
	LCWL	1.76	60.46	72.14	37.49*	5.65	83.72*	27.48	1.57
	LCWL+SCE	0.852	59.89*	71.71*	37.32	9.32	82.85	27.07*	3 3.2
Supervised Methods	SUPER	1.53	58.9	62.6	43.2	5.09	55	24.5	4.3 4
	GPT-3.5-Turbo	1.14	65.6	75.1	40.9	7.87	79.97	28.6	3.9 4
	SCE+FT	1.98	67.16	74.7	42.1	3.95*	63.7	31.47*	2.9 2
	SCE+LCWL+FT	2.33*	62.9	76.52*	46.42	4.01	65	39.27	1.9 1
	LCWL + FT	2.69	65.42*	77.52	46.23*	4.73	75.51*	26.4	2.1 1

Table 2: Comparison of unsupervised and supervised methods on Newsela-auto across 4 simplification levels using 7 evaluation metrics. ↑ indicates higher scores are better. For ∆SLE, LENS-SALSA, and FKGL, scores closer to the ground truth are better. The best and second-best performances are bolded and starred, respectively. Our proposed methodologies are bolded and italicized. Average ranks within supervised and unsupervised categories are calculated across 7 metrics and 5 metrics (excluding BERTScore and BLUE), separated by || with the 7-metric average on the left, with highest ranks bolded.

Avg. Rank ↓ over 4 Levels	7-Metric	5-Metric	ΔSLE	LENS	LENS-SALSA	SARI	FKGL
SCE+LCWL+FT	1.68	1.8	2	1.25	2	1.75	2
LCWL+FT	1.71	1.6	1.5	1.75	1.5	1.75	1.5
LCWL	2.57	2.6	2.5	3	2.5	2.5	2.5

Table 5: Comparison of average ranks of two best supervised methods (SCE+LCWL+FT and LCWL+FT) and the best unsupervised method (LCWL). The best ranks are bolded.

Conclusion

- LCWL leverages weak supervision from a large paraphrase dataset and a pre-trained classifier, which sets it apart from existing confidence-weighting methods that primarily focus on classification tasks.
- **Experiments** the Newsela-auto dataset on demonstrated that LCWL outperforms state-of-the-art unsupervised baselines. After fine-tuning on indomain labeled data, it consistently delivers superior simplifications compared to strong supervised methods.