Machin Learning

by-Andrew Ng

Tue 19 Jul	
week 4	
/	,

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Decision Tree Model

Cat classification example

	Ear shape (x ₁)	Face $shape(x_2)$	Whiskers (x ₃)	Cat
	Pointy 🕊	Round 🕊	Present 🕊	1
	Floppy 🕊	Not round 🕊	Present	1
(£)	Floppy	Round	Absent 🕊	0
	Pointy	Not round	Present	0
	Pointy	Round	Present	1
(33)	Pointy	Round	Absent	1
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
V-EV	Floppy	Round	Absent	0
3	Floppy	Round	Absent	0
_				

Categorical (discrete values)

Decision Tree

Decision Trees

Learning Process

4/4 cats

Decision 1: How to choose what feature to split on at each node?

?

Maximize purity (or minimize impurity)

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity)

Cat DNA

Νo

0/5 cats

Yes

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding

a maximum depth { not make a very big tour & reduce the risk of overfitting}

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

Decision 2: When do you stop splitting?

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

Measuring purity

Entropy as a measure of impurity

Entropy as a measure of impurity

 p_1

bos 2 makes the heak at
$$p_0 = 1 - p_1$$

$$H(p_1) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$

$$H(p_1) = -p_1 \log_2(p_1) - (1 - p_1) \log_2(1 - p_1)$$

Note: "
$$0 \log(0)$$
" = 0

Choosing a split: Information
Gain molning inpurity

goodnod without 7 cm began with 5 Cots 25 dags ? Choosing a split

$$p_1 = \frac{3}{4} = 0.75$$
 $p_1 = \frac{2}{6} = 0.33$
 $H(0.75) = 0.81$ $H(0.33) = 0.92$
 $H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$
 $= 0.12$

Information Gain

$$p_1^{\text{left}} = \frac{4}{5}$$
 $p_1^{\text{right}} = \frac{1}{5}$
 $w^{\text{left}} = \frac{5}{10}$ $w^{\text{right}} = \frac{5}{10}$

7 red in entropy

Information gain

$$= H(p_1^{\text{root}}) - \left(w^{\text{left}} H(p_1^{\text{left}}) + w^{\text{right}} H(p_1^{\text{right}}) \right)$$

Putting it together

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100% one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Recursive algorithm

Decision Tree Learning

Using one-hot encoding of categorical features

Features with three possible values

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
	Pointy 🕊	Round	Present	1
	Oval	Not round	Present	1
**	Oval 🕊	Round	Absent	0
	Pointy	Not round	Present	0
	Oval	Round	Present	1
	Pointy	Round	Absent	1
	Floppy 🕊	Not round	Absent	0
	Oval	Round	Absent	1
V. V	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

3 possible values

One hot encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	0	Round	Present	1
	Oval	O	O	1	Not round	Present	1
**	Oval	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
٠٠٠	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
()	Floppy	0	1	0	Round	Absent	0
	Floppy	0	1	0	Round	Absent	0

One hot encoding

If a categorical feature can take on k values, create k binary features (0 or 1 valued).

One hot encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	0	Round	Present	1
	Oval	0	0	1	Not round	Present	1
	Oval	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
(E)	Floppy	0	1	0	Round	Absent	0
3	Floppy	0	1	0	Round	Absent	0

One hot encoding and neural networks

Pointy ears	Floppy ears	Round ears	Face shape	Whiskers	Cat
1	0	0	-Round 1	Present 1	1
0	0	1	Not round O	-Present 1	1
0	0	1	Round 1	-Absent O	0
1	0	0	Not round O	Present 1	0
0	0	1	Round 1	Present 1	1
1	0	0	Round 1	Absent 0	1
0	1	0	Not round 0	Absent 0	1
0	0	1	Round 1	Absent 0	1
0	1	0	Round 1	Absent 0	1
0	1	0	Round 1	Absent 0	1

Decision Tree Learning

Continuous valued features

Continuous features

1	

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
(3)	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
	Pointy	Round	Present	8.4	1
	Pointy	Round	Absent	7.6	1
	Floppy	Not round	Absent	11	0
	Pointy	Round	Absent	10.2	1
(V	Floppy	Round	Absent	18	0
(3)	Floppy	Round	Absent	20	0

Splitting on a continuous variable

Decision Tree Learning

Regression Trees (optional)

Regression with Decision Trees: Predicting a number

	Ear shape	Face shape	Whiskers	Weight (lbs.)
3	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
3	Floppy	Round	Absent	15
	Pointy	Not round	Present	9.2
	Pointy	Round	Present	8.4
(L)	Pointy	Round	Absent	7.6
	Floppy	Not round	Absent	11
()	Pointy	Round	Absent	10.2
VeV	Floppy	Round	Absent	18
***	Floppy	Round	Absent	20
		X		y

Regression with Decision Trees

Ear

Variance at root node: 20.51 shape Pointy Floppy

Weights: 7.2, Weights: 8.8, 15, 9.2, 8.4, 7.6, 10.2

11, 18, 20

Variance: 1.47

Variance: 21.87

$$w^{\text{left}} = \frac{5}{10}$$

$$w^{\text{right}} = \frac{5}{10}$$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right)$$

$$= 8.84$$

Choosing a split

Weights: 7.2, 15, 8.4, 7.6, 10.2, 18, 20

Weights: 8.8,9.2,11

Variance: 27.80

Variance: 1.37

$$w^{\text{left}} = \frac{7}{10}$$

$$w^{\text{left}} = \frac{7}{10}$$
 $w^{\text{right}} = \frac{3}{10}$

$$20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$
$$= 0.64$$

Weights: 7.2, 8.8, 9.2, 8.4

Weights: 15, 7.6, 11, 10.2, 18, 20

Variance: 0.75

Variance: 23.32

$$w^{\text{left}} = \frac{4}{10}$$

$$w^{\text{left}} = \frac{4}{10}$$
 $w^{\text{right}} = \frac{6}{10}$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$
$$= 6.22$$

Tree ensembles

Using multiple decision trees

Trees are highly sensitive to small changes of the data

Tree ensemble

Face shape: Not Round Whiskers: Present

Prediction: Not cat

Prediction: Cat

Not Round

Whiskers

Absent

Not Cat

Face shape

Present

Cat

Round

Cat

Final prediction: Cat

Prediction: Cat

Presen

Ear

shape

Pointy

Cat

Whiskers

Floppy

Not cat

© DeepLearning.AI Stanford ONLINE

Tree ensembles

Sampling with replacement

Sampling with replacement

Sampling with replacement

_	Ear shape	Face shape	Whiskers	Cat
27	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
(2.0)	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
	Floppy	Not round	Absent	0
(w)	Pointy	Round	Absent	1
227	Pointy	Round	Present	1
	Floppy	Not round	Present	1
(F)	Floppy	Round	Absent	0
(20)	Pointy	Round	Absent	1

Tree ensembles

Random forest algorithm

() To build True ensemble

Generating a tree sample

Given training set of size m

For
$$b = 1$$
 to B $M \cdot \theta$ thus

Use sampling with replacement to create a new training set of size m

Train a decision tree on the new dataset (Sag dustion) int decision Whiskers Face Ear shape Whiskers Cat Ear Face shape shape Whiskers Absent shape shape Present Pointy Yes Pointy Round Present Pointy Present Yes Round Pointy Round Absent Yes Absent Floppy Round Floppy Not Round Absent Nο Face Ear shape ... Absent Nο Not cat Floppy Round Floppy Not Round Absent No Not cat shape Pointy Round Present Yes Pointy Round Absent Yes Yes Pointy Not Round Present Floppy Round Absent No Not round Round Floppy Round Absent No Not round Floppy Round Absent No Round, Yes Floppy Round Present Floppy Round Absent No Pointy Not Round Absent Nο Pointy Not Round Absent Not cat Cat Cat Not cat Not Round Absent Nο Pointy Round Yes Pointy Present Yes Pointy Not Round Present

Bagged decision tree

Randomizing the feature choice

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$\frac{K = \ln n}{K = \ln n}$$
Random forest algorithm and a lot of small no of partners

Tree ensembles

XGBoost

Boosted trees intuition

Given training set of size m

For b = 1 to B:

Use sampling with replacement to create a new training set of size m But instead of picking from all examples with equal (1/m) probability, make it more likely to pick examples that the previously trained trees misclassify

Train a decision tree on the new dataset

Ear shape	Face shape	Whiskers	Cat
Pointy	Round	Present	Yes
Floppy	Round	Absent	No
Floppy	Round	Absent	No
Pointy	Round	Present	Yes
Pointy	Not Round	Present	Yes
Floppy	Round	Absent	No
Floppy	Round	Present	Yes
Pointy	Not Round	Absent	No
Pointy	Not Round	Absent	No
Pointy	Not Round	Present	Yes

ar ape	Face shape	Whiskers	Predicti	ion
inty	Round	Present	Cat	✓
рру	Not Round	Present	Not cat	×
рру	Round	Absent	Not cat	V
inty	Not Round	Present	Not cat	7
inty	Round	Present	Cat	Ė
inty	Round	Absent	Not cat	×
рру	Not Round	Absent	Not cat	â
inty	Round	Absent	Not cat	✓ ×
рру	Round	Absent	Not cat	Ŷ

Absent

Round

1,2,...,b-1

Mighty chance to fick b

Triginal dataset

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- Highly competitive algorithm for machine learning competitions (eq: Kaggle competitions)

Using XGBoost

Classification

```
→from xgboost import XGBClassifier

→model = XGBClassifier()

→model.fit(X_train, y_train)

→y_pred = model.predict(X_test)
```

Regression

```
from xgboost import XGBRegressor

model = XGBRegressor()

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```


Conclusion

When to use decision trees

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data { housing brices }
- Not recommended for unstructured data (images, audio, text)
- Fast

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision trees may be human interpretable

Neural Networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string together multiple neural networks

© DeepLearning.AI Stanford онын Andrew Ng