

M3239.003100: Data Analysis and Visualization Lecture 4

Univariate Analysis

Hyunwoo Park Graduate School of Data Science Seoul National University

Agenda

- Setup
 - Data Loading
 - Tidy Data
 - Data Transformation
- Descriptive Statistics
 - Describing One Variable
 - Types of Variables
 - Distributions
 - Summary Statistics

- Homework 1
 - Due 9/28 Tue Before Class 12:30pm
- Things to do
 - Review pandas / csv packages.
 - Compute summary statistics

Setup

→ Let's grab a dataset.

Video Game Sales with Ratings
 https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings

Data Loading

Using Stata

insheet using Video Games Sales as at 22 Dec 2016.csv, c Qv Search Stata/MP 17.0 Do-file Editor Data Editor Search Help Results Variables Name Label 17.0 Name name MP-Parallel Edition platform Platform Year_of_Release year_of_release Copyright 1985-2021 StataCorp LLC Statistics and Data Science genre Genre StataCorp Publisher publisher 4905 Lakeway Drive na sales NA Sales College Station, Texas 77845 USA ou cales ELL Calor 800-STATA-PC https://www.stata.com 979-696-4600 stata@stata.com ₹ Qv A (◀ ▶) ≡ **Properties** Stata license: Single-user 24-core perpetual Variables Serial number: 501706317931 Name Licensed to: Hyunwoo Park Label The Ohio State University Type Format Notes: Value label 1. Unicode is supported; see help unicode_advice. Notes 2. More than 2 billion observations are allowed; see help obs advice. ∨ Data 3. Maximum number of variables is set to 5,000; see help set_maxvar. Frame > Filename Label . insheet using Video_Games_Sales_as_at_22_Dec_2016.csv, c Notes (16 vars, 16,719 obs) Variables

→ Data loading

Using Stata

→ What is tidy data?

- It depends on the data context.
- Variables are easier to be linked; observations are harder.
- Further explanation on tidy data:
 Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59.
 http://vita.had.co.nz/papers/tidy-data.pdf

Figure from R4DS, p. 149 (https://r4ds.had.co.nz/tidy-data.html) GSDS

→ More on tidy data

• Why are these not tidy?

religion	<\$10k	10-20k	20-30k	30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns, 75-100k, 100-150k and 150k, have been omitted

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

→ More on tidy data

• Are they now?

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has been renamed to income, and value to freq.

year	artist	${\rm time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

Data Transformation

♪ Inspect the data.

- Number of observations?
- Number of variables?
- What types of variables does it have?

```
count
count if platform=="PS4"
describe
edit
```

→ 5 verbs of data transformation

- Column operations: select (keep/drop), mutate (generate/replace)
- Row operations: filter (keep/drop), arrange (gsort)
- Summarize (summarize)

- You select and mutate "variables", filter and arrange "observations".
- mutate = add or alter columnsarrange = sort

pd.Dat	taFrame(csv	data[1:], columns=cs	vdata[0])					
	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	Wii Sports	Wii	2006	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53
1	Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	Mario Kart Wii	Wii	2008	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52
3	Wii Sports Resort	Wii	2009	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77
4	Pokemon Red/Pokemon Blue	GB	1996	Role- Playing	Nintendo	11.27	8.89	10.22	1	31.37
16714	Samurai Warriors: Sanada Maru	PS3	2016	Action	Tecmo Koei	0	0	0.01	0	0.01

♪ Select

- You select "columns" or "variables" NOT "rows" or "observations".
- Let's select these 5 columns:
 Name, Platform, Year_of_Release, Genre, Global_Sales.

- preserve
 keep name platform year_of_release genre global_sales
- 3 restore

Mutate

- You add a new column as a combination (or operation) of other columns.
 You can also alter a current column by creating a new column with the same name.
- Let's create a new column called:
 Total_Sales = NA_Sales + EU_Sales + JP_Sales + Other_Sales.

```
preserve
preserve
total_sales = na_sales + eu_sales + jp_sales + other_sales
restore
```

ℷ Filter

- You can keep a subset of observations by filtering out others.
- Let's collect videos games released on PS4 or Xbox One.

```
preserve
keep if platform=="PS4" | platform=="XOne"
count
restore
```

Arrange

- You sort rows (or observations) with one or more criteria.
- Let's sort the data according to the following criteria in order:
 - (1) in descending order of Year_of_Release
 - (2) in ascending order of **Platform**
 - (3) in ascending order of Name

```
preserve
gsort -year_of_release platform name
edit if year_of_release !="N/A"
restore
```

Descriptive Statistics

→ A brief look at descriptive statistics and visualization

⊞ \	Video_Games_Sales_as_a	t_22_Dec_2016.csv (503	.05 KB)	16 of 16 columns	Y × = -	E 8
	A Name Name of the game	A Platform T Console on which the game is running	# Year_of_Release T Year of the game released	A Genre T	A Publisher T Publisher	# NA_S Game sa America units)
	11562 unique values	PS2 13% DS 13% Other (29) 74%	1.98k 2.02k	Action 20% Sports 14% Other (10) 66%	Electronic Arts 8% Activision 6% Other (580) 86%	0
1	Wii Sports	Wii	2006	Sports	Nintendo	
2	Super Mario Bros.	NES	1985	Platform	Nintendo	
3	Mario Kart Wii	Wii	2008	Racing	Nintendo	
4	Wii Sports Resort	Wii	2009	Sports	Nintendo	
5	Pokemon Red/Pokemon Blue	GB	1996	Role-Playing	Nintendo	
6	Tetris	GB	Hyunwoo Park @ SN 4 989 S	Puzzle	Nintendo	
_		20	2000	63.16		

Types of variables

- Categorical variables (or qualitative variable)
 - Platform: PS4, XOne, ...
 - Genre: Action, Sports, ...
- Numerical variables (or quantitative variable)
 - Discrete variables
 - Year_of_Release: 2006, 1985, 2008, 2009, ...
 - Continuous variables
 - Global_Sales: 82.53, 40.24, 35.52, 32.77, ...
- Understanding a single individual variable is to understand how it "varies" over different observations or measurements.
- Figuring out how observations are "distributed" along each of these variables is a good starting point.

才 Figuring out the distribution

- In essence, it is about counting observations that fall into a certain range.
- For categorical variable (and discrete variable sometimes), it's straightforward. And it's called tabulation.
- For continuous variable (and discrete variable sometimes), it requires another step before tabulation: binning.

Variable type	How to figure out the distribution?	Visualization
Categorical	Tabulation	Bar / Column Chart
Discrete	Both	Both
Continuous	Binning + Tabulation	Histogram, Density Plot, Boxplot

→ Tabulation for categorical variable

- You just need to count the number of observations for each category.
- Let's count with tab function.
- Since categories don't have intrinsic ordering,
 it's usually useful to sort them by count in descending order.

```
tab platform
tab platform, sort
```

→ Binning + tabulation for continuous variable

- For a continuous variable, you first need to discretize the variable into ranges.
- Three binning methods
 - makes groups of the given width
 - makes **n** groups with equal range
 - makes **n** groups with (approximately) equal numbers of observations

→ (Binning +) tabulation for discrete variable

• For a discrete variable, you can tabulate with or without binning.

Summary statistics for numerical variables

- Measure of location
 - Single representative numbers: mean, median
- Measure of spread
 - range, inter-quartile range, standard deviation
- Measure of rank
 - Five number summary
 - Minimum
 - First quartile
 - Median (= second quartile)
 - Third quartile
 - Maximum

Five-number summary

From Wikipedia, the free encyclopedia

The **five-number summary** is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles:

- 1. the sample minimum (smallest observation)
- 2. the lower quartile or first quartile
- 3. the median (the middle value)
- 4. the upper quartile or third quartile
- 5. the sample maximum (largest observation)

https://en.wikipedia.org/wiki/Fivenumber_summary

Summarize

• The fifth verb in data transformation is **summarize**.

```
replace year_of_release = "" if year_of_release=="N/A"
destring year_of_release, replace
su year_of_release
su year_of_release, d
```

♪ Export data

outsheet using test.csv, c replace

♪ Some other useful Stata commands & concepts

- egen (extensions to generate)
- collapse

Do files

• Long form vs wide form

Appendix: Python-version

→ Let's grab a dataset.

Video Game Sales with Ratings
 https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings

♪ Data Loading

Using pandas

Pokemon

Samurai

Warriors:

2007

Sanada Maru LMA Manager

Blue

•••

GB

•••

PS3

X360

4 Red/Pokemon

•••

16714

16715

<pre>pddata = pd.re pddata</pre>	_	Games_Sales_as	_at_22_Dec_2016.cs	v'

1996.0

2016.0

2006.0

•••

Role-

•••

Playing

Action

Nintendo

Tecmo Koei

Sports Codemasters

•••

-													
	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	ī
0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76.0	51.0	
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NaN	NaN	
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82.0	73.0	
3	Wii Sports	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80.0	73.0	

	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	ı
0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76.0	51.0	
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NaN	NaN	
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82.0	73.0	
3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80.0	73.0	

0	Wii Sports	Wii	2006.0	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53	76.0	51.0
1	Super Mario Bros.	NES	1985.0	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24	NaN	NaN
2	Mario Kart Wii	Wii	2008.0	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52	82.0	73.0
3	Wii Sports Resort	Wii	2009.0	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77	80.0	73.0

11.27

• • •

0.00

0.00

8.89

•••

0.00

0.01

10.22

•••

0.01

0.00

1.00

•••

0.00

0.00

31.37

•••

0.01

0.01

NaN

•••

NaN

NaN

NaN

•••

NaN

NaN

→ Data loading

Using csv

```
import csv
csvdata = [r for r in csv.reader(open('Video_Games_Sales_as_at_22_Dec_2016.csv'))]
csvdata
[['Name',
  'Platform',
  'Year of Release',
  'Genre',
  'Publisher',
  'NA Sales',
  'EU Sales',
  'JP Sales',
  'Other Sales',
  'Global_Sales',
  'Critic Score',
  'Critic_Count',
  'User_Score',
```

'Sports',
'Nintendo',

'Wii',

'User_Count',
'Developer',
'Rating'],
['Wii Sports',

♪ What to use? pandas vs. csv

pandas

- Numeric values are automatically parsed out.
- It returns a data frame object, which will work smoothly with numpy, jupyter notebook, and other numerical/scientific packages.
- Column-oriented data structure.
- [Pros] It comes with all the fancy helpers.
- [Pros] You benefit from performance improvements of the package.
- [Pros] You look like a data scientist.
- [Pros] Your data science friends/collaborators are likely using it.
- [Cons] It's not designed for row-wise operations.
- [Cons] Steeper learning curve

CSV

- Everything is parsed as strings.
- It returns a list of lists.
- Row-oriented data structure.
- [Pros] Transparent
- [Pros] Easier to code for processing row by row
- [Cons] You have to do the housekeeping work yourself.
- [Cons] Easier to make mistake (You have to validate your data yourself.)
- [Cons] You look like a primate in data science.

→ Going back and forth between DataFrame and list of lists

• DataFrame to LoL

```
[list(pddata.columns)]+pddata.to_numpy().tolist()

[['Name',
    'Platform',
    'Year of Release',
```

LoL to DataFrame

'Genre',

pd.DataFrame(csvdata[1:], columns=csvdata[0])

	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sa
0	Wii Sports	Wii	2006	Sports	Nintendo	41.36	28.96	3.77	8.45	82
1	Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40
2	Mario Kart Wii	Wii	2008	Racing	Nintendo	15.68	12.76	3.79	3.29	35

→ Your own library of helpers

Add the folder containing this file to PYTHON_PATH.
 (Or place it in the same folder of your working directory.)

```
import pandas as pd
    import csv
    def pd2csv(df): return [list(df.columns)]+df.to numpy().tolist()
    def csv2pd(lol): return pd.DataFrame(lol[1:], columns=lol[0])
    def read csv(fname):
      print('Reading', fname)
      return list(csv.reader(open(fname, 'r')))
10
11
    def write csv(fname, data):
12
      print('Writing', fname)
      output = csv.writer(open(fname, 'w'))
13
      output writerows (data)
14
```

→ Resources for pandas

https://github.com/wesm/pydata-book

IPython Notebooks:

- Chapter 2: Python Language Basics, IPython, and Jupyter Notebooks
- Chapter 3: Built-in Data Structures, Functions, and Files
- Chapter 4: NumPy Basics: Arrays and Vectorized Computation
- · Chapter 5: Getting Started with pandas
- Chapter 6: Data Loading, Storage, and File Formats
- · Chapter 7: Data Cleaning and Preparation
- Chapter 8: Data Wrangling: Join, Combine, and Reshape
- Chapter 9: Plotting and Visualization
- Chapter 10: Data Aggregation and Group Operations
- Chapter 11: Time Series
- Chapter 12: Advanced pandas
- Chapter 13: Introduction to Modeling Libraries in Python
- Chapter 14: Data Analysis Examples
- Appendix A: Advanced NumPy

→ What is tidy data?

- It depends on the data context.
- Variables are easier to be linked; observations are harder.
- Further explanation on tidy data:
 Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59.
 http://vita.had.co.nz/papers/tidy-data.pdf

→ More on tidy data

• Why are these not tidy?

religion	<\$10k	$10\text{-}20\mathrm{k}$	20-30k	30-40k	\$40-50k	50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns, 75-100k, 100-150k and 150k, have been omitted

year	artist	track	time	date.entered	wk1	wk2	wk3
2000	2 Pac	Baby Don't Cry	4:22	2000-02-26	87	82	72
2000	2Ge+her	The Hardest Part Of	3:15	2000-09-02	91	87	92
2000	3 Doors Down	Kryptonite	3:53	2000-04-08	81	70	68
2000	98^0	Give Me Just One Nig	3:24	2000-08-19	51	39	34
2000	A*Teens	Dancing Queen	3:44	2000-07-08	97	97	96
2000	Aaliyah	I Don't Wanna	4:15	2000-01-29	84	62	51
2000	Aaliyah	Try Again	4:03	2000-03-18	59	53	38
2000	Adams, Yolanda	Open My Heart	5:30	2000-08-26	76	76	74

Table 7: The first eight Billboard top hits for 2000. Other columns not shown are wk4, wk5, ..., wk75.

→ More on tidy data

• Are they now?

religion	income	freq
Agnostic	<\$10k	27
Agnostic	\$10-20k	34
Agnostic	\$20-30k	60
Agnostic	\$30-40k	81
Agnostic	\$40-50k	76
Agnostic	\$50-75k	137
Agnostic	\$75-100k	122
Agnostic	\$100-150k	109
Agnostic	> 150 k	84
Agnostic	Don't know/refused	96

Table 6: The first ten rows of the tidied Pew survey dataset on income and religion. The column has been renamed to income, and value to freq.

year	artist	${\rm time}$	track	date	week	rank
2000	2 Pac	4:22	Baby Don't Cry	2000-02-26	1	87
2000	2 Pac	4:22	Baby Don't Cry	2000-03-04	2	82
2000	2 Pac	4:22	Baby Don't Cry	2000-03-11	3	72
2000	2 Pac	4:22	Baby Don't Cry	2000-03-18	4	77
2000	2 Pac	4:22	Baby Don't Cry	2000-03-25	5	87
2000	2 Pac	4:22	Baby Don't Cry	2000-04-01	6	94
2000	2 Pac	4:22	Baby Don't Cry	2000-04-08	7	99
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-02	1	91
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-09	2	87
2000	2Ge+her	3:15	The Hardest Part Of	2000-09-16	3	92
2000	3 Doors Down	3:53	Kryptonite	2000-04-08	1	81
2000	3 Doors Down	3:53	Kryptonite	2000-04-15	2	70
2000	3 Doors Down	3:53	Kryptonite	2000-04-22	3	68
2000	3 Doors Down	3:53	Kryptonite	2000-04-29	4	67
2000	3 Doors Down	3:53	Kryptonite	2000-05-06	5	66

Table 8: First fifteen rows of the tidied billboard dataset. The date column does not appear in the original table, but can be computed from date.entered and week.

Data Transformation

♪ Inspect the data.

- Number of observations?
- Number of variables?
- What types of variables does it have?

pd.Da	taFrame(csv	data[1:],	columns=cs	vdata[0]
4	Red/Pokemon Blue	GB	1996	Hole- Playing
16714	Samurai Warriors: Sanada Maru	PS3	2016	Action
16715	LMA Manager 2007	X360	2006	Sports
16716	Haitaka no Psychedelica	PSV	2016	Adventure
16717	Spirits & Spells	GBA	2003	Platform
16718	Winning Post 8 2016	PSV	2016	Simulation

```
for c in pddata.columns:
    print([c])
    print(pddata[c].describe(), '\n')
['Name']
                                 16717
count
unique
                                 11562
          Need for Speed: Most Wanted
top
freq
                                    12
Name: Name, dtype: object
['Platform']
          16719
count
unique
             31
top
            PS2
freq
           2161
Name: Platform, dtype: object
['Year of Release']
         16450.000000
count
          2006.487356
mean
std
             5.878995
min
          1980.000000
25%
          2003.000000
50%
          2007.000000
75%
          2010.000000
          2020.000000
max
Name: Year of Release, dtype: float64
```

→ 5 verbs of data transformation in tidyverse

- Column operations: select, mutate
- Row operations: filter, arrange
- Summarize: summarize

- You select and mutate "variables", filter and arrange "observations".
- mutate = add or alter columnsarrange = sort

d.Dat	taFrame(csv	data[1:], columns=cs	vdata[0])					
	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales
0	Wii Sports	Wii	2006	Sports	Nintendo	41.36	28.96	3.77	8.45	82.53
1	Super Mario Bros.	NES	1985	Platform	Nintendo	29.08	3.58	6.81	0.77	40.24
2	Mario Kart Wii	Wii	2008	Racing	Nintendo	15.68	12.76	3.79	3.29	35.52
3	Wii Sports Resort	Wii	2009	Sports	Nintendo	15.61	10.93	3.28	2.95	32.77
4	Pokemon Red/Pokemon Blue	GB	1996	Role- Playing	Nintendo	11.27	8.89	10.22	1	31.37
16714	Samurai Warriors: Sanada Maru	PS3	2016	Action	Tecmo Koei	0	0	0.01	0	0.01

♪ Select

- You select "columns" or "variables" NOT "rows" or "observations".
- Let's select these 5 columns:

Name, Platform, Year_of_Release, Genre, Global_Sales.

pddata['Name, Platform, Year_of_Release, Genre, Global_Sales'.split(', ')]

	Name	Platform	Year_of_Release	Genre	Global_Sales
0	Wii Sports	Wii	2006.0	Sports	82.53
1	Super Mario Bros.	NES	1985.0	Platform	40.24
2	Mario Kart Wii	Wii	2008.0	Racing	35.52
3	Wii Sports Resort	Wii	2009.0	Sports	32.77
4	Pokemon Red/Pokemon Blue	GB	1996.0	Role-Playing	31.37
16714	Samurai Warriors: Sanada Maru	PS3	2016.0	Action	0.01
16715	LMA Manager 2007	X360	2006.0	Sports	0.01
16716	Haitaka no Psychedelica	PSV	2016.0	Adventure	0.01
16717	Spirits & Spells	GBA	2003.0	Platform	0.01
16718	Winning Post 8 2016	PSV	2016.0	Simulation	0.01

16719 rows × 5 columns

Mutate

- You add a new column as a combination (or operation) of other columns.
 You can also alter a current column by creating a new column with the same name.
- Let's create a new column called:

pddata['Total_Sales'] = pddata['NA_Sales']+pddata['EU_Sales']+pddata['JP_Sales']+pddata['Other_Sales']
pddata

enre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	User_Score	User_Count	Developer	Rating	Total_Sales
oorts	Nintendo	41.36	28.96	3.77	8.45	82.53	76.0	51.0	8	322.0	Nintendo	Е	82.54
form	Nintendo	29.08	3.58	6.81	0.77	40.24	NaN	NaN	NaN	NaN	NaN	NaN	40.24
cing	Nintendo	15.68	12.76	3.79	3.29	35.52	82.0	73.0	8.3	709.0	Nintendo	Е	35.52
orts	Nintendo	15.61	10.93	3.28	2.95	32.77	80.0	73.0	8	192.0	Nintendo	Е	32.77
Role- lying	Nintendo	11.27	8.89	10.22	1.00	31.37	NaN	NaN	NaN	NaN	NaN	NaN	31.38
otion	Tecmo Koei	0.00	0.00	0.01	0.00	0.01	NaN	NaN	NaN	NaN	NaN	NaN	0.01

♪ Filter

- You can keep a subset of observations by filtering out others.
- Let's collect videos games released on PS4 or Xbox One.

pddata[pddata.Platform.isin('PS4 XOne'.split())]

	Name	Platform	Year_of_Release	Genre	Publisher	NA_Sales	EU_Sales	JP_Sales	Other_Sales	Global_Sales	Critic_Score	Critic_Count	User_
31	Call of Duty: Black Ops 3	PS4	2015.0	Shooter	Activision	6.03	5.86	0.36	2.38	14.63	NaN	NaN	
42	Grand Theft Auto V	PS4	2014.0	Action	Take-Two Interactive	3.96	6.31	0.38	1.97	12.61	97.0	66.0	
77	FIFA 16	PS4	2015.0	Sports	Electronic Arts	1.12	6.12	0.06	1.28	8.57	82.0	42.0	
87	Star Wars Battlefront (2015)	PS4	2015.0	Shooter	Electronic Arts	2.99	3.49	0.22	1.28	7.98	NaN	NaN	
92	Call of Duty: Advanced Warfare	PS4	2014.0	Shooter	Activision	2.81	3.48	0.14	1.23	7.66	83.0	39.0	
16634	Sébastien Loeb Rally Evo	XOne	2016.0	Racing	Milestone S.r.I	0.00	0.01	0.00	0.00	0.01	63.0	8.0	

Arrange

- You sort rows (or observations) with one or more criteria.
- Let's sort the data according to the following criteria in order:
 - (1) in descending order of Year_of_Release

pddata.sort values('Year of Release Platform Name'.split(), ascending=[0,1,1])

- (2) in ascending order of **Platform**
- (3) in ascending order of Name

Name Platform Year of Release Genre Publisher NA Sales EU Sales JP Sales Other Sales Global Sales Critic Score Critic Count Use DS 2020.0 Simulation 0.27 0.00 0.00 0.02 0.29 NaN NaN Ubisoft Makeup Artist Online 2 Role-PS4 2017.0 0.00 0.00 0.04 0.00 0.04 NaN NaN Episode 4: Plaving Deluxe Package **Brothers** Conflict: **PSV** 2017.0 Action 0.00 0.00 0.01 0.00 0.01 NaN NaN Factory Precious Baby Phantasy Star Online 2 Role-2017.0 0.00 0.00 0.01 0.00 0.01 16222 Episode 4: **PSV** NaN NaN Playing Deluxe Package Bevblade Role-14985 3DS 2016.0 FuRyu 0.00 0.00 0.03 0.00 0.03 NaN NaN Plaving Tom Clancy's ΧB 0.01 0.00 0.00 0.06 54.0 10.0 Critical Hour

♪ Same transformations with list of lists from csv

Use just whatever way more intuitive and convenient for you.

```
# select
     [[r[c] \text{ for } c \text{ in } [0,1,2,3,9]] \text{ for } r \text{ in } csvdata]
    # mutate
    for i, r in enumerate(csvdata):
       if i==0: r.append('Total Sales'); continue
       r.append(sum([float(r[c]) for c in range(5,9)]))
    # filter
     [r for i, r in enumerate(csvdata) if i==0 or r[1] in 'PS4 XOne'.split()]
10
11
12
    # arrange
13
    keys = [(2,1), (1,0), (0,0)]
    temp = csvdata
14
15
    for k in reversed(keys):
       temp = [temp[0]]+sorted(temp[1:], key=lambda r: r[k[0]], reverse=k[1])
16
```

Descriptive Statistics

→ A brief look at descriptive statistics and visualization

⊞ 1	Video_Games_Sales_as_a	olumns	T × = -						
	A Name Name of the game	A Platform Console on which the game is running	٣	# Year_of_Release T Year of the game released	A Genre Game's category	٣	A Publisher Publisher	Τ	# NA_S Game sa America units)
	11562 unique values	PS2 139 DS 139 Other (29) 749	%	1.98k 2.02k	Action Sports Other (10)	20% 14% 66%	Electronic Arts Activision Other (580)	8% 6% 86%	0
1	Wii Sports	Wii		2006	Sports		Nintendo		
2	Super Mario Bros.	NES		1985	Platform		Nintendo		
3	Mario Kart Wii	Wii		2008	Racing		Nintendo		
4	Wii Sports Resort	Wii		2009	Sports		Nintendo		
5	Pokemon Red/Pokemon Blue	GB		1996	Role-Playing		Nintendo		
6	Tetris	GB		Hyunwoo Park @ SN ป จรจ ร	Puzzle		Nintendo		
_		20		2006	D1 + C				

Types of variables

- Categorical variables (or qualitative variable)
 - Platform: PS4, XOne, ...
 - Genre: Action, Sports, ...
- Numerical variables (or quantitative variable)
 - Discrete variables
 - Year_of_Release: 2006, 1985, 2008, 2009, ...
 - Continuous variables
 - Global_Sales: 82.53, 40.24, 35.52, 32.77, ...
- Understanding a single individual variable is to understand how it "varies" over different observations or measurements.
- Figuring out how observations are "distributed" along each of these variables is a good starting point.

才 Figuring out the distribution

- In essence, it is about counting observations that fall into a certain range.
- For categorical variable (and discrete variable sometimes), it's straightforward. And it's called tabulation.
- For continuous variable (and discrete variable sometimes), it requires another step before tabulation: binning.

Variable type	How to figure out the distribution?	Visualization
Categorical	Tabulation	Bar / Column Chart
Discrete	Both	Both
Continuous	Binning + Tabulation	Histogram, Density Plot, Boxplot

→ Tabulation for categorical variable

- You just need to count the number of observations for each category.
- Let's count with value counts function.
- Since categories don't have intrinsic ordering, it's usually useful to sort them by count in descending order.

pddata.Platform.value counts()

- PS2 2161 2152 DS
- PS3 1331
- Wii 1320
- X360 1262 1209 PSP
- 1197 PS
- PC974 824
- XB 822 GBA 556 GC
 - 520 3DS PSV 432
 - 393
 - 319
 - 247 239

147

SNES SAT 173

PS4

N64

XOne

WiiU

→ Binning + tabulation for continuous variable

- For a continuous variable, you first need to discretize the variable into ranges.
- Three binning methods
 - makes groups of the given width
 - makes **n** groups with equal range
 - makes **n** groups with (approximately) equal numbers of observations

```
pddata['Global Sales'].value counts(bins=10, sort=False)
      pddata['Global_Sales'].value_counts(bins=pd.interval_range(start=-5, end=85,
      freq=10), sort=False)
      pd.qcut(pddata['Global Sales'], q=10).value counts(sort=False)
(-0.0735, 8.262]
                   16638
                                 (-5, 5]
                                             16512
                                                                      (0.00900000000000001, 0.02]
                                                                                                    1725
(8.262, 16.514)
                      58
                                                                      (0.02, 0.05]
                                                                                                    2134
                                 (5, 15)
                                                179
(16.514, 24.766)
                      13
                                                                      (0.05, 0.08)
                                                                                                    1594
                                 (15, 25)
                                                 18
(24.766, 33.018)
                                                                      (0.08, 0.11]
                                                                                                    1271
                                 (25, 35)
(33.018, 41.27]
                                                                      (0.11, 0.17]
                                                                                                    1793
                                 (35, 45]
(41.27, 49.522]
                                                                      (0.17, 0.25)
                                                                                                    1620
                                 (45, 55)
(49.522, 57.774]
                                                                      (0.25, 0.38]
                                                                                                    1624
                                 (55, 651)
(57.774, 66.026]
                                                                      (0.38, 0.6]
                                                                                                    1636
                                 (65, 75]
(66.026, 74.278]
                                                                      (0.6, 1.2]
                                                                                                    1651
                                 (75, 851)
(74.278, 82.53]
                                                                                                    1671
                                                                      (1.2, 82.53)
Name: Global Sales, dtype: int64
                                 Name: Global Sales, dtype: int64
                                                                     Name: Global Sales, dtype: int64
```

↓ (Binning +) tabulation for discrete variable

For a discrete variable, you can tabulate with or without binning.

```
pddata['Year of Release'].value counts()
2008.0
          1427
2009.0
          1426
2010.0
          1255
2007.0
          1197
2011.0
          1136
2006.0
          1006
2005.0
          939
2002.0
           829
2003.0
           775
2004.0
           762
2012.0
           653
2015.0
           606
2014.0
           581
2013.0
           544
2016.0
           502
2001.0
           482
1998.0
           379
```

```
pddata['Year_of_Release'].value_counts(
    bins=pd.interval_range(start=1975, end=2025, freq=10), sort=False)

(1975, 1985]     136
(1985, 1995]     571
(1995, 2005]     5406
(2005, 2015]     9831
(2015, 2025]     506
Name: Year of Release, dtype: int64
```

Summary statistics for numerical variables

- Measure of location
 - Single representative numbers: mean, median
- Measure of spread
 - range, inter-quartile range, standard deviation
- Measure of rank
 - Five number summary
 - Minimum
 - First quartile
 - Median (= second quartile)
 - Third quartile
 - Maximum

Five-number summary

From Wikipedia, the free encyclopedia

The **five-number summary** is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles:

- 1. the sample minimum (smallest observation)
- 2. the lower quartile or first quartile
- 3. the median (the middle value)
- 4. the upper quartile or third quartile
- 5. the sample maximum (largest observation)

https://en.wikipedia.org/wiki/Fivenumber_summary

Summarize

• The fifth verb in data transformation is **summarize**, In pandas, you use **describe**.

```
pddata['Year of Release'].describe()
         16450,000000
count
          2006.487356
mean
std
             5.878995
min
          1980,000000
25%
          2003.000000
50%
          2007.000000
75%
          2010.000000
          2020,000000
max
Name: Year of Release, dtype: float64
```

Hyunwoo Park @ SNU GSDS

♪ Export data

Getting started User Guide API reference Development Release notes

Input/output

Pickling

read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file.

DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file.

Flat file

<pre>read_table(filepath_or_buffer[, sep,])</pre>	Read general delimited file into DataFrame.
read_csv(filepath_or_buffer[, sep,])	Read a comma-separated values (csv) file into DataFrame.
DataFrame.to_csv([path_or_buf, sep, na_rep,])	Write object to a comma-separated values (csv) file.
<pre>read_fwf(filepath_or_buffer[, colspecs,])</pre>	Read a table of fixed-width formatted lines into DataFrame.

: ■ On this page

Pickling

Flat file

Clipboard

Excel

JSON

HTML

XML

Latex

HDFStore: PyTables (HDF5)

Feather

Parquet ORC

SAS

SPSS

SQL

Google BigQuery

STATA

♪ Common discrete distributions

Distribution	R function	Example
Bernoulli	rbernoulli	Head or tail in a coin toss
Rectangular (or uniform)		Number of 1's in n dice rolls
Binomial	rbinom	Number of heads in n coin tosses
Geometric	rgeom	Number of failures until the first success
Negative binomial	rnbinom	Number of failures until nth success
Poisson	rpois	Number of events if occurrences are independent from each other
Zipf		Number of occurrences of words in texts

才 Common continuous distributions

Distribution	R function	Example
Uniform	runif	Random number within a range
Normal	rnorm	Height of people in a population
Exponential	rexp	Length of time between independent events
Lognormal	rlnorm	Length of comments, system repair times, income distribution
Pareto		Wealth distribution, city size, size of meteorites, 80/20 rule


```
from numpy.random import default rng
    rng = default rng()
    N = 1000

    Try to compute the summary statistics table

    data = [
                                             about this randomly generated dataset.
       rng.binomial(1,.1,size=N),
       rnq.integers(1,7,size=N),
       rng.binomial(10,.1,size=N),
       rng.geometric(.1,size=N),
       rng_negative binomial(10, 1, size=N),
10
       rng.poisson(10,size=N),
11
       rng_uniform(10,20,size=N),
12
       rng.normal(10,2,size=N),
13
       rng_exponential(_1,size=N),
14
       rng.lognormal(2,2,size=N)
15
    cnames = 'Bernoulli RandInt Binomial Geometric NBinom Poisson Uniform Normal
16
    Exp LogNormal'.split()
17
    randdf = pd.DataFrame({cnames[i]: data[i] for i in range(len(data))})
18
    randdf
```