Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2017/2018 Corso di Laurea in Ingegneria Fisica

Primo appello di Analisi III, 18 gennaio 2017 - Prof. I. FRAGALÀ

ESERCIZIO 1. (8 punti) (indicare solo le risposte senza il procedimento seguito)

Si consideri la funzione di variabile complessa

$$f(z) = \frac{\cot z}{z}$$

e, per ogni $n \in \mathbb{N}$, sia Q_n il quadrato del piano complesso centrato nell'origine e avente lato n.

- (a) Determinare le singolarità isolate di f, e classificarle.
- (b) Calcolare $\int_{\partial Q_n} f(z) dz$, dove ∂Q_n indica il bordo di Q_n , percorso 1 volta in senso orario.

Soluzione.

- (a) Le singolarità di f sono i punti $z_k = k\pi$, al variare di $k \in \mathbb{Z}$. Per ogni $k \neq 0$, z_k è un polo semplice, mentre $z_0 = 0$ è un polo di ordine 2.
- (b) Si ha $\operatorname{Res}(f, z_0) = 0$ (perché f è pari), mentre per ogni $k \neq 0$ si ha

$$\operatorname{Res}(f, z_k) = \lim_{z \to k\pi} \frac{(z - k\pi)\cos z}{z\sin z} = \lim_{z \to k\pi} \frac{-(z - k\pi)\sin z + \cos z}{\sin z + z\cos z} = \frac{1}{k\pi}.$$

In particolare, poiché risulta $\operatorname{Res}(f, z_k) = -\operatorname{Res}(f, -z_k)$, e Q_n è centrato nell'origine, l'integrale assegnato è nullo per ogni $n \in \mathbb{N}$.

ESERCIZIO 2. (8 punti) (indicare solo le risposte senza il procedimento seguito)

Si consideri la funzione

$$u(x) = (1 - |x|)_{+} = \max\{1 - |x|, 0\}, \quad x \in \mathbb{R}.$$

- (a) Calcolare u' e u'' (nel senso delle distribuzioni).
- (b) Stabilire se $u \in H^1(\mathbb{R})$ e se $u' \in H^1(\mathbb{R})$.

Soluzione.

- (a) $u' = \chi_{[-1,0]} \chi_{[0,1]}; \quad u'' = \delta_{-1} 2\delta_0 + \delta_1.$
- (b) $u \in H^1(\mathbb{R}); u' \notin H^1(\mathbb{R}).$

ESERCIZIO 3. (8 punti) (indicare non solo le risposte ma anche il procedimento seguito)

Sia $u(x) = (\sin x)\chi_{[-1,1]}(x)$, per $x \in \mathbb{R}$.

- a. Senza calcolare \hat{u} , rispondere giustificando la risposta alle seguenti domande:
 - (i) \hat{u} è pari oppure dispari? è puramente reale o puramente immaginaria?
 - (ii) per quali $k \in \mathbb{N}$ si ha $\hat{u} \in C^k(\mathbb{R})$?
 - (iii) $\hat{u} \in L^2(R)$?
 - (iv) $\hat{u} \in L^1(\mathbb{R})$?
- b. Calcolare \hat{u} .

Soluzione.

a.

- (i) \hat{u} è dispari e immaginaria pura, perché u è dispari reale;
- (ii) $\hat{u} \in C^{\infty}(\mathbb{R})$, poiché $x^k u \in L^1(\mathbb{R})$ per ogni $k \in \mathbb{N}$;
- (iii) $\hat{u} \in L^2(\mathbb{R})$, poiché $u \in L^2(\mathbb{R})$;
- (iv) $\hat{u} \notin L^1(\mathbb{R})$, poiché altrimenti applicando il teorema di Rieman Lebesgue all'antitrasformata, si dovrebbe avere $u \in C^0(\mathbb{R})$.
- b. Ricordando che si ha

$$\mathcal{F}(\chi_{[-1,1]}(x)) = 2\frac{\sin \xi}{\xi}, \qquad \sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

otteniamo

$$\hat{u}(\xi) = i \frac{\sin(\xi + 1)}{\xi + 1} - i \frac{\sin(\xi - 1)}{\xi - 1}.$$

TEORIA. (7 punti)

- (a) Fornire la definizione di operatore lineare limitato tra spazi vettoriali normati, e la definizione di norma per un tale operatore.
- (b) Scrivere la formulazione variazionale del problema $-\Delta u=f$ in Ω aperto limitato di \mathbb{R}^n con condizione di Dirichlet u=0 su $\partial\Omega$ (dove f è una funzione assegnata in $L^2(\Omega)$), e dimostrare che ogni soluzione classica $u\in C^2(\overline{\Omega})$ è anche soluzione variazionale.