Low-Volatility Cycles Analysis - Example Walkthrough

Advanced Investment Strategies LVC

2025-10-19

Contents

Introduction	2
Paper Summary	2
Setup	2
Load Packages	2
Configuration	4
Data Loading and Cleaning	4
Load Raw Data	4
Clean and Merge Data	
Portfolio Formation	5
Calculate Rolling Betas (with parallel computation)	
Form Beta-Sorted Portfolios	
Portfolio Analysis	10
Book-to-Price Spreads	
Portfolio Returns	
Regression Analysis	12
CAPM Regressions	12
Fama-French 4-Factor	12
Results Visualization	12
Alpha Comparison	12
Cumulative Returns	13
Using Targets Workflow	14
Interpreting Results	15
Key Findings	15
Robustness Checks	15
Conclusion	15
References	15
Session Info	15

Introduction

This notebook demonstrates the complete workflow for replicating the Garcia-Feijóo et al. (2015) paper on Low-Volatility Cycles.

Paper Summary

Title: Low-Volatility Cycles: The Influence of Valuation and Momentum on Low-Volatility Portfolios

Main Finding: The low-volatility anomaly is driven by cyclical variations in book-to-price ratios and momentum effects.

Setup

Load Packages

```
# List of required packages
packages <- c(
  # Workflow and pipeline
  "targets",
  # Data wrangling and visualization
  "tidyverse",
  "lubridate",
  "zoo",
  "broom"
  "ggplot2",
  "knitr",
  # Database access and I/O
  "DBI",
  "RSQLite",
  "dbplyr",
  "readr"
)
# Install any missing packages
installed <- packages %in% rownames(installed.packages())</pre>
if (any(!installed)) {
  install.packages(packages[!installed])
}
# Load all required packages
lapply(packages, library, character.only = TRUE)
## [[1]]
## [1] "targets"
                                "graphics"
                                            "grDevices" "utils"
                   "stats"
                                                                     "datasets"
                   "base"
## [7] "methods"
##
## [[2]]
## [1] "lubridate" "forcats"
                                 "stringr"
                                             "dplyr"
                                                          "purrr"
                                                                      "readr"
## [7] "tidyr"
                    "tibble"
                                 "ggplot2"
                                             "tidyverse" "targets"
                                                                      "stats"
## [13] "graphics" "grDevices" "utils"
                                             "datasets" "methods"
                                                                      "base"
##
```

```
## [[3]]
    [1] "lubridate" "forcats"
##
                                               "dplyr"
                                                            "purrr"
                                                                         "readr"
                                  "stringr"
    [7] "tidyr"
                     "tibble"
                                  "ggplot2"
                                               "tidyverse"
                                                            "targets"
                                                                         "stats"
   [13] "graphics"
                     "grDevices"
                                  "utils"
                                               "datasets"
                                                            "methods"
                                                                         "base"
##
##
## [[4]]
                     "lubridate" "forcats"
    [1] "zoo"
##
                                               "stringr"
                                                            "dplyr"
                                                                         "purrr"
    [7] "readr"
                                                                         "targets"
##
                     "tidyr"
                                  "tibble"
                                               "ggplot2"
                                                            "tidyverse"
  [13] "stats"
##
                     "graphics"
                                  "grDevices" "utils"
                                                            "datasets"
                                                                         "methods"
   [19] "base"
##
##
##
   [[5]]
    [1] "broom"
##
                     "zoo"
                                  "lubridate" "forcats"
                                                            "stringr"
                                                                         "dplyr"
    [7] "purrr"
                     "readr"
                                               "tibble"
                                                                         "tidyverse"
##
                                  "tidyr"
                                                            "ggplot2"
## [13] "targets"
                     "stats"
                                               "grDevices"
                                                            "utils"
                                  "graphics"
                                                                         "datasets"
##
  [19] "methods"
                     "base"
##
##
  [[6]]
    [1] "broom"
                     "zoo"
##
                                  "lubridate"
                                              "forcats"
                                                            "stringr"
                                                                         "dplyr"
    [7] "purrr"
                     "readr"
                                  "tidyr"
                                               "tibble"
                                                            "ggplot2"
                                                                         "tidyverse"
                                               "grDevices" "utils"
## [13] "targets"
                     "stats"
                                  "graphics"
                                                                         "datasets"
  [19] "methods"
                     "base"
##
##
## [[7]]
##
    [1] "knitr"
                     "broom"
                                  "zoo"
                                               "lubridate" "forcats"
                                                                         "stringr"
    [7] "dplyr"
                     "purrr"
                                  "readr"
                                               "tidyr"
                                                            "tibble"
                                                                         "ggplot2"
   [13] "tidyverse"
                     "targets"
                                  "stats"
                                               "graphics"
                                                            "grDevices" "utils"
##
   [19] "datasets"
##
                     "methods"
                                  "base"
##
## [[8]]
##
    [1] "DBI"
                     "knitr"
                                  "broom"
                                               "zoo"
                                                            "lubridate" "forcats"
##
    [7] "stringr"
                     "dplyr"
                                  "purrr"
                                               "readr"
                                                            "tidyr"
                                                                         "tibble"
   [13] "ggplot2"
                     "tidyverse"
                                  "targets"
                                               "stats"
                                                            "graphics"
                                                                         "grDevices"
   [19] "utils"
                                  "methods"
                                               "base"
##
                     "datasets"
##
## [[9]]
                     "DBI"
   [1] "RSQLite"
                                  "knitr"
                                               "broom"
                                                            "zoo"
                                                                         "lubridate"
    [7] "forcats"
                     "stringr"
                                  "dplyr"
                                               "purrr"
                                                            "readr"
                                                                         "tidyr"
##
   [13] "tibble"
                     "ggplot2"
                                  "tidyverse"
                                               "targets"
                                                            "stats"
                                                                         "graphics"
##
   [19] "grDevices" "utils"
                                               "methods"
                                                            "base"
                                  "datasets"
##
##
  [[10]]
    [1] "dbplyr"
                     "RSQLite"
                                  "DBI"
                                               "knitr"
##
                                                            "broom"
                                                                         "zoo"
##
    [7] "lubridate" "forcats"
                                                                         "readr"
                                  "stringr"
                                               "dplyr"
                                                            "purrr"
## [13] "tidyr"
                     "tibble"
                                                                         "stats"
                                  "ggplot2"
                                               "tidyverse"
                                                            "targets"
## [19] "graphics"
                     "grDevices" "utils"
                                               "datasets"
                                                            "methods"
                                                                         "base"
##
## [[11]]
    [1] "dbplyr"
                     "RSQLite"
                                  "DBI"
                                               "knitr"
                                                            "broom"
                                                                         "zoo"
    [7] "lubridate" "forcats"
                                  "stringr"
                                               "dplyr"
                                                            "purrr"
                                                                         "readr"
  [13] "tidyr"
                     "tibble"
##
                                  "ggplot2"
                                               "tidyverse"
                                                            "targets"
                                                                         "stats"
  [19] "graphics"
                     "grDevices" "utils"
                                               "datasets"
                                                            "methods"
                                                                         "base"
```

```
# Source all custom functions (used by {targets})
tar_source()
```

Configuration

```
# Analysis parameters
N_PORTFOLIOS <- 5
BETA_WINDOW <- 60
MIN_OBS <- 24</pre>
```

Data Loading and Cleaning

Load Raw Data

```
# Load CRSP data
crsp_raw <- load_crsp_data("data/crsp_monthly.csv")

# Load Compustat data
compustat_raw <- load_compustat_data("data/compustat_annual.csv")

# Load market returns
market_returns <- load_market_returns("data/market_returns.csv")

# Load Fama-French factors
ff_factors <- load_ff_factors("data/ff_factors.csv")</pre>
```

Clean and Merge Data

```
# Clean CRSP
crsp_clean <- clean_crsp_data(crsp_raw)</pre>
# --- Price screen (abs(prc) in [2, 1000]) + NYSE large-cap breakpoint (monthly) ---
crsp_sz <- crsp_clean %>%
  # price screen (CRSP uses negative sign convention → use abs)
  filter(!is.na(prc), abs(prc) >= 2, abs(prc) \leq 1000) %>%
   mktcap = abs(prc) * shrout * 1000 # USD
  ) %>%
  # quards
  filter(!is.na(mktcap), mktcap > 0, !is.na(exchcd), !is.na(date), !is.na(permno))
# NYSE 67th-percentile size cutoff per month
nyse_cut <- crsp_sz %>%
  filter(exchcd == 1L) %>%
  group_by(date) %>%
  summarize(cut67 = quantile(mktcap, probs = 2/3, na.rm = TRUE), .groups = "drop")
# Keep large-cap universe (apply NYSE cutoff to all exchanges)
crsp_largecap <- crsp_sz %>%
  inner_join(nyse_cut, by = "date") %>%
  filter(mktcap >= cut67)
```

```
# Clean Compustat
compustat_clean <- clean_compustat_data(compustat_raw)

# Make Compustat unique at (permno, year)
compustat_unique <- compustat_clean %>%
    dplyr::mutate(year = if (!"year" %in% names(.)) lubridate::year(datadate) else year) %>%
    dplyr::arrange(permno, year, dplyr::desc(datadate), dplyr::desc(at), dplyr::desc(be)) %>%
    dplyr::group_by(permno, year) %>%
    dplyr::slice_head(n = 1) %>%
    dplyr::ungroup() %>%
    dplyr::select(permno, datadate, year, be_usd, at_usd) # << keep *_usd

# Merge datasets
merged_data <- merge_crsp_compustat(crsp_largecap, compustat_unique)

# Preview
head(merged_data) %>% kable()
```

permndate	ret	prc	shroutshro	cd exchc	dnktcap	cut67	year	mon	ntkomp_	yboca <u>r</u> us	$dat_{\underline{}}$	usd	bm	bp
10006 1969-	0.1138	8 9 0.12	25564100 0 0	1	2827551	237002 99	75 0969	10	1969	22800'	70 03 04	9410	00 008	0 64 0008064
10-														
01														
10006 1969-	0.0024	649.62	25564100 0 0	1	2799346	2 2620 16	75 0969	11	1969	22800'	70 03 04	19410	00 008	1 05 0008145
11-														
01														
10006 1969-	-	49.00	056410000	1	2764090	0 2643 06	66 6969	12	1969	22800'	70 03 04	19410	00 008	2 0 90008249
12-	0.0125	95												
01														
10006 1970-	-	46.37	'5564100 0 0	1	2616013	7 2469 22	91 6960	1	1969	22800'	70 08 04	19410	00 008	70 60008716
01-	0.0535	71												
01														
10006 1970-	0.0512	72 8.12	25564100 0 0	1	2714731	2 3506 81	08 8970	2	1969	22800'	70 03 04	19410	00 008	3 9 90008399
02-														
01														
10006 1970-	0.0233	74 9.25	50564100 0 0	1	2778192	5 2562 80	16 6970	3	1969	22800'	70 08 04	19410	00 008	2 07 0008207
03-														
01														

Portfolio Formation

Calculate Rolling Betas (with parallel computation)

```
# Packages
req_pkgs <- c("future", "future.apply")
new <- req_pkgs[!req_pkgs %in% rownames(installed.packages())]
if (length(new)) install.packages(new, quiet = TRUE)
lapply(req_pkgs, library, character.only = TRUE)

## [[1]]
## [1] "future" "dbplyr" "RSQLite" "DBI" "knitr" "broom"</pre>
```

```
## [7] "zoo"
                     "lubridate" "forcats"
                                             "stringr"
                                                          "dplyr"
                                                                      "purrr"
## [13] "readr"
                    "tidyr"
                                                          "tidyverse" "targets"
                                 "tibble"
                                             "ggplot2"
## [19] "stats"
                    "graphics" "grDevices" "utils"
                                                          "datasets" "methods"
## [25] "base"
## [[2]]
## [1] "future.apply" "future"
                                       "dbplyr"
                                                       "RSQLite"
                                                                      "DBI"
## [6] "knitr"
                                       "zoo"
                                                       "lubridate"
                       "broom"
                                                                      "forcats"
## [11] "stringr"
                        "dplyr"
                                       "purrr"
                                                       "readr"
                                                                      "tidyr"
## [16] "tibble"
                                       "tidyverse"
                                                       "targets"
                                                                      "stats"
                       "ggplot2"
## [21] "graphics"
                       "grDevices"
                                       "utils"
                                                       "datasets"
                                                                      "methods"
## [26] "base"
# --- Detect and cap cores ---
n_cores_total <- parallel::detectCores(logical = TRUE)</pre>
n_cores <- min( max(1, n_cores_total - 1), 32 ) # cap at 32 workers to avoid connection overflow
cat("Detected", n_cores_total, "cores → using", n_cores, "workers\n")
## Detected 128 cores → using 32 workers
# Optional: limit BLAS threads per worker
if ("data.table" %in% .packages()) data.table::setDTthreads(1)
if ("RhpcBLASctl" %in% rownames(installed.packages())) {
 library(RhpcBLASctl)
 blas set num threads(1)
  omp_set_num_threads(1)
}
# Set up plan
plan(multisession, workers = n_cores)
# Split data by stock
id_col <- "permno"</pre>
stopifnot(id_col %in% names(merged_data))
by_stock <- split(merged_data, merged_data[[id_col]], drop = TRUE)</pre>
# Compute rolling betas in parallel
beta_list <- future.apply::future_lapply(</pre>
 by_stock,
 function(df) calculate_rolling_betas(df, market_returns, window = BETA_WINDOW),
 future.seed = TRUE
)
stock_betas <- dplyr::bind_rows(beta_list)</pre>
plan(sequential) # restore default
summary(stock_betas$beta) |>
  tibble::enframe(name = "stat", value = "beta") |>
  knitr::kable()
```

stat	beta
Min.	-0.4819
1st Qu.	0.6787

stat	beta
Median	0.9457
Mean	0.9613
3rd Qu.	1.2082
Max.	4.3486

Form Beta-Sorted Portfolios

```
# Keep valid betas
betas_ok <- stock_betas %>%
    dplyr::filter(!is.na(beta))

# Assign stocks to portfolios by within-month beta quantiles
beta_portfolios <- betas_ok %>%
    dplyr::group_by(date) %>%
    dplyr::mutate(portfolio = dplyr::ntile(beta, N_PORTFOLIOS)) %>%
    dplyr::ungroup()

# Portfolio distribution check
table(beta_portfolios$portfolio) %>% knitr::kable()
```

Var1	Freq
1	26615
2	26448
3	26310
4	26169
5	26031

```
beta_portfolios %>%
 dplyr::count(date) %>%
 summary(n)
        date
## Min. :1964-06-01 Min. : 1.0
## 1st Qu.:1979-03-01 1st Qu.: 66.0
## Median :1993-12-01 Median :176.0
## Mean :1993-11-30 Mean :185.6
## 3rd Qu.:2008-09-01 3rd Qu.:306.0
## Max.
          :2023-06-01 Max.
                              :364.0
# --- Average beta by portfolio -----
beta_summary <- beta_portfolios %>%
 dplyr::group_by(portfolio) %>%
 dplyr::summarise(
   n_obs = dplyr::n(),
   mean_beta = mean(beta, na.rm = TRUE),
   sd beta = sd(beta, na.rm = TRUE),
   min_beta = min(beta, na.rm = TRUE),
   max_beta = max(beta, na.rm = TRUE),
   .groups = "drop"
knitr::kable(beta_summary, caption = "Average Beta by Portfolio")
```

Table 4: Average Beta by Portfolio

portfolio	n_obs	mean_beta	sd_beta	min_beta	max_beta
1	26615	0.4482313	0.1835825	-0.4819263	1.050566
2	26448	0.7361554	0.1328851	0.1845468	1.131857
3	26310	0.9427337	0.1200000	0.4343826	1.397822
4	26169	1.1491460	0.1127868	0.6436831	2.038192
5	26031	1.5443872	0.3067701	0.8334124	4.348606

```
# --- Merge with CRSP large-cap data to inspect market cap & returns ------
beta_panel <- beta_portfolios %>%
    dplyr::select(permno, date, portfolio) %>%
    dplyr::inner_join(
        crsp_largecap %>% dplyr::select(permno, date, ret, mktcap),
        by = c("permno", "date")
)

# 3) Average market cap and mean raw return per portfolio
capret_summary <- beta_panel %>%
    dplyr::group_by(portfolio) %>%
    dplyr::summarise(
        avg_mktcap_mil = mean(mktcap / 1e6, na.rm = TRUE),  # in billions
        mean_ret = mean(ret, na.rm = TRUE),
        sd_ret = sd(ret, na.rm = TRUE),
        n_obs = dplyr::n(),
        .groups = "drop"
)
```

knitr::kable(capret_summary, caption = "Average Market Cap and Return by Portfolio")

Table 5: Average Market Cap and Return by Portfolio

portfolio	avg_mktcap_mil	mean_ret	sd_ret	n_obs
1	6060983	0.0116217	0.0619109	26615
2	7319066	0.0122614	0.0716316	26448
3	6720545	0.0135257	0.0807443	26310
4	6163045	0.0130761	0.0878929	26169
5	5556038	0.0149799	0.1081366	26031

Stock Count per Beta Portfolio over Time

Portfolio Analysis

Book-to-Price Spreads

```
# Calculate B/P spreads
# join portfolios to accounting+CRSP panel to get bp and mktcap
beta_panel <- beta_portfolios %>%
  dplyr::select(permno, date, portfolio) %>%
 dplyr::inner_join(
   merged_data %>% dplyr::select(permno, date, bp, mktcap, ret),
   by = c("permno","date")
  ) %>%
  dplyr::arrange(permno, date) %>%
  dplyr::group_by(permno) %>%
  dplyr::mutate(w_lag = dplyr::lag(mktcap)) %>%
  dplyr::ungroup()
bp_spreads <- calculate_bp_spreads(beta_portfolios)</pre>
# Plot B/P spreads over time
bp_spreads %>%
 filter(portfolio %in% c(1, 10)) %>%
  ggplot(aes(x = date, y = bp_vw, color = as.factor(portfolio))) +
 geom_line() +
 labs(
   title = "Book-to-Price Ratios: Low vs High Beta",
   x = "Date",
   y = "B/P Ratio (Value-Weighted)",
   color = "Portfolio"
 theme_minimal()
```


Portfolio Returns

```
# Calculate returns
portfolio_returns <- calculate_portfolio_returns(beta_portfolios)

# Summary by portfolio
portfolio_returns %>%
    group_by(portfolio) %>%
    summarise(
    mean_ret_ew = mean(ret_ew, na.rm = TRUE) * 12 * 100,
    sd_ret_ew = sd(ret_ew, na.rm = TRUE) * sqrt(12) * 100,
    sharpe_ew = mean_ret_ew / sd_ret_ew
) %>%
    kable(digits = 2)
```

portfolio	$mean_ret_ew$	sd_ret_ew	sharpe_ew
1	12.11	14.00	0.86
2	13.53	15.66	0.86
3	15.77	18.82	0.84
4	13.56	19.46	0.70
5	17.91	25.08	0.71

Regression Analysis

CAPM Regressions

```
# Run CAPM regressions
capm_results <- run_capm_regressions(portfolio_returns, market_returns)

# Display results
capm_results %>%
select(portfolio, alpha_ew, alpha_t_ew, beta_ew, r2_ew) %>%
kable(digits = 3)
```

portfolio	alpha ew	alpha_t_ew	beta ew	r2 ew
1	0.005	4.641	0.576	0.423
2	0.006	5.943	0.789	0.643
3	0.008	5.562	0.896	0.572
4	0.006	4.824	1.040	0.717
5	0.009	5.608	1.310	0.684
0	-0.007	NA	-0.688	NA

Fama-French 4-Factor

portfolio	$alpha_ew$	$alpha_t_ew$	$beta_mkt_ew$	$beta_smb_ew$	$beta_hml_ew$	beta_umd_ew
1	0.002	1.848	0.671	-0.187	0.320	0.035
2	0.003	2.549	0.857	-0.166	0.179	0.011
3	0.005	3.351	0.924	-0.085	0.169	-0.127
4	0.002	1.432	1.071	-0.005	0.260	-0.130
5	0.005	3.335	1.291	0.046	0.174	-0.267
0	-0.007	NA	-0.572	-0.226	0.179	0.302

Results Visualization

Alpha Comparison

```
# Compare CAPM and FF4 alphas
alpha_comparison <- capm_results %>%
  select(portfolio, capm_alpha = alpha_ew) %>%
  left_join(
    ff4_results %>% select(portfolio, ff4_alpha = alpha_ew),
    by = "portfolio"
) %>%
```

Monthly Alphas by Portfolio

Cumulative Returns

```
# Calculate and plot cumulative returns
portfolio_returns %>%
  filter(portfolio %in% c(1, 10)) %>%
  group_by(portfolio) %>%
  arrange(date) %>%
  mutate(cum_ret = cumprod(1 + ret_vw) - 1) %>%
  ggplot(aes(x = date, y = cum_ret * 100, color = as.factor(portfolio))) +
  geom_line() +
```

```
labs(
   title = "Cumulative Returns: Low vs High Beta",
   x = "Date",
   y = "Cumulative Return (%)",
   color = "Portfolio"
) +
theme_minimal()
```

Cumulative Returns: Low vs High Beta

Using Targets Workflow

Instead of running code chunks individually, use the targets pipeline:

```
# Visualize pipeline
tar_visnetwork()

# Run full pipeline
tar_make()

# Load specific results
tar_load(table3)
tar_load(capm_results)

# View loaded data
print(table3)
```

Interpreting Results

Key Findings

- 1. Low-Beta Anomaly: Portfolio 1 (low beta) tends to outperform Portfolio 10 (high beta)
- 2. Book-to-Price Effect: Low-beta stocks often have higher B/P ratios
- 3. Alpha Patterns: After controlling for FF4 factors, alphas may diminish

Robustness Checks

Consider testing: - Different portfolio formation frequencies - Alternative beta estimation windows - Subperiod analysis - Size and liquidity filters

Conclusion

This analysis replicates the key findings of Garcia-Feijóo et al. (2015), showing how valuation and momentum influence low-volatility portfolio returns.

References

Garcia-Feijóo, L., Kochard, L., Sullivan, R. N., & Wang, P. (2015). Low-Volatility Cycles: The Influence of Valuation and Momentum on Low-Volatility Portfolios. *Financial Analysts Journal*, 71(3), 47-60.

Session Info

```
sessionInfo()
```

```
## R version 4.4.1 (2024-06-14)
## Platform: x86 64-pc-linux-gnu
## Running under: Ubuntu 22.04.5 LTS
##
## Matrix products: default
           /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
##
## Random number generation:
##
  RNG:
             L'Ecuyer-CMRG
##
  Normal:
            Inversion
##
   Sample:
            Rejection
##
## locale:
  [1] LC_CTYPE=en_US.UTF-8
                                   LC_NUMERIC=C
   [3] LC_TIME=en_US.UTF-8
                                   LC_COLLATE=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
##
   [5] LC_MONETARY=en_US.UTF-8
##
   [7] LC PAPER=en US.UTF-8
                                   LC NAME=C
   [9] LC ADDRESS=C
                                   LC TELEPHONE=C
##
##
  [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
## time zone: Etc/UTC
## tzcode source: system (glibc)
```

```
##
## attached base packages:
## [1] stats
                                                datasets methods
                 graphics grDevices utils
##
## other attached packages:
   [1] RhpcBLASctl_0.23-42 future.apply_1.11.3 future_1.34.0
   [4] dbplyr 2.5.1
                            RSQLite 2.3.9
                                                 DBI 1.2.3
## [7] knitr_1.50
                            broom_1.0.10
                                                 zoo_1.8-14
## [10] lubridate_1.9.4
                            forcats_1.0.0
                                                 stringr_1.5.1
                                                 readr_2.1.5
## [13] dplyr_1.1.4
                            purrr_1.1.0
## [16] tidyr_1.3.1
                            tibble_3.2.1
                                                 ggplot2_4.0.0
## [19] tidyverse_2.0.0
                            targets_1.11.4
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6
                           xfun_0.51
                                                                  lattice_0.22-6
                                               processx_3.8.6
##
   [5] callr_3.7.6
                           tzdb_0.5.0
                                               vctrs_0.6.5
                                                                  tools_4.4.1
## [9] ps_1.9.0
                           generics_0.1.4
                                               base64url_1.4
                                                                  parallel_4.4.1
## [13] blob 1.2.4
                           pkgconfig_2.0.3
                                               data.table 1.17.8
                                                                  secretbase 1.0.5
                                               lifecycle_1.0.4
                                                                  compiler_4.4.1
## [17] RColorBrewer_1.1-3 S7_0.2.0
## [21] farver_2.1.2
                           tinytex_0.57
                                               codetools_0.2-20
                                                                  htmltools_0.5.8.1
## [25] yaml_2.3.10
                           pillar_1.10.2
                                               cachem_1.1.0
                                                                  parallelly_1.43.0
## [29] tidyselect_1.2.1
                           digest_0.6.37
                                               stringi_1.8.7
                                                                  listenv_0.9.1
## [33] labeling_0.4.3
                           fastmap_1.2.0
                                               grid_4.4.1
                                                                  cli_3.6.5
## [37] magrittr 2.0.3
                           dichromat_2.0-0.1
                                              withr_3.0.2
                                                                  prettyunits_1.2.0
## [41] scales_1.4.0
                           backports_1.5.0
                                               bit64_4.6.0-1
                                                                  timechange_0.3.0
## [45] rmarkdown 2.30
                           globals_0.16.3
                                               igraph_2.1.4
                                                                  bit_4.6.0
## [49] hms_1.1.3
                           memoise_2.0.1
                                               evaluate_1.0.3
                                                                  rlang_1.1.6
## [53] glue_1.8.0
                           rstudioapi_0.17.1 R6_2.6.1
```