```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
        using SSBR
In [2]:
        function getPos(ped,IDs)
            posAi = Array(Int64, size(IDs, 1))
            for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
            end
            return posAi
        end
Out[2]: getPos (generic function with 1 method)
In [3]: ; cd Data/0.5a0/G/10
        /home/nicole/Jupyter/JG3/Data/0.5a0/G/10
In [4]:
        ;ls
        Correlation.G5.G.PBLUP.txt
        G0.Genotype.ID
        G0.ID
        G0.noGenotype.ID
        G1.Genotype.ID
        G1.ID
        G1.noGenotype.ID
        G2.Genotype.ID
        G2.ID
        G2.noGenotype.ID
        G3.Genotype.ID
        G3.ID
        G3.noGenotype.ID
        G4.Genotype.ID
        G4.ID
        G4.noGenotype.ID
        G5.Genotype.ID
        G5.ID
        G5.noGenotype.ID
        GenNF.txt
        PedAll.txt
        Phe.txt
        PheAll.txt
        Regression.G5.G.PBLUP.txt
        all.ID
        genotype.ID
        noGenotype.ID
        sim.bv
        sim.phenotype
In [5]: ;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
```

```
;join -v1 all.ID genotype.ID > noGenotype.ID
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
 In [9]:
         ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [12]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [13]:
In [14]:
         ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
         ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
In [17]:
         ; join G1.ID genotype.ID > G1.Genotype.ID
         ; join G2.ID genotype.ID > G2.Genotype.ID
In [18]:
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
In [20]:
         ; join G4.ID genotype.ID > G4.Genotype.ID
         ; join G5.ID genotype.ID > G5.Genotype.ID
In [21]:
In [22]:
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
         ;join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [23]:
In [24]:
         ;join -v1 G2.ID genotype.ID > G2.noGenotype.ID
In [25]:
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [26]:
In [27]: |;join -v1 G5.ID genotype.ID > G5.noGenotype.ID
```

```
In [28]:
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800 7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
In [30]:
         nothing
         df
                = read_genotypes("GenNF.txt",numSSBayes)
         M Mats = make MMats(df, A Mats, ped, center=true);
                                                                                  # with
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J_Vecs = make_JVecs(numSSBayes,A_Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                  # wit
         nothing
         vRes
                = 0.460
In [31]:
         vG
                = 0.460
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M Mats,y Vecs,J Vecs,Z Mats,X Mats,W Mats,A Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         2555.498608 seconds (23.06 G allocations: 724.102 GB, 7.51% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          5.81827
          1.64285
In [33]: using DataFrames
```

```
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: | IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.910
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.947
Out[35]: 0.9096473479319694
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: -0.9078722279538987
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi], aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.982
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.030
Out[37]: 0.9823137312752407
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 0.10556971544249082
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.867
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.934
Out[39]: 0.8666358276033275
```

```
In [40]: GEBV = aHat1[posAi]
         mean (GEBV)
Out[40]: -1.1417434456607576
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with e;
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation =
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.717
Out[41]: 0.6343444223996542
In [42]: GEBV = aHat1[posAi]
         G0GEBV=mean(GEBV)
Out[42]: -2.0341856246581567
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         req4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.779
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.972
Out[43]: 0.7785581854265996
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -1.5557735174712843
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with ei
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.764
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.988
Out[45]: 0.7642294296711255
```

```
In [46]: | GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -1.0758067031328282
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with e;
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation =
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.983
Out[47]: 0.7660845656859318
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -0.6700169654464937
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         req7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.780
         SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = 0.979
Out[49]: 0.7796752551323727
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -0.25828945485512106
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with ei
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.979
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.029
Out[51]: 0.9794934668879882
```

```
In [52]: | GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 0.14683889784049217
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation =
         SSBRJC from Gibbs - G0.Genotype.ID: regression of TBV on GEBV = 1.046
Out[53]: 0.983599163563904
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: -1.0459087998861325
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         req9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.976
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.017
Out[55]: 0.9760330083175025
In [56]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[56]: -0.5441137774947732
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.978
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 1.015
Out[57]: 0.9776904987214403
```

```
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: -0.23101039326177875
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", cor11
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.971
         SSBRJC from Gibbs - G3.Genotype.ID: regression of TBV on GEBV = 0.995
Out[59]: 0.9713641571233127
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: 0.16761201961086772
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.972
         SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = 1.025
Out[61]: 0.9720178881660148
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: 0.5305022323242168
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.979
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 1.029
Out[63]: 0.9794934668879882
In [64]: | writedlm("Correlation.G5.G.JC.txt",cor13)
```

```
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
In [66]: TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 5.911964
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 0.14683889784049217
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.610
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.704
Out[68]: 0.610252621712907
In [69]: | GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: -2.059526056062567
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.760
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.974
Out[70]: 0.7599495197105519
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: -1.5817135108040155
```

```
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.748
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 0.991
Out[72]: 0.7478425919097834
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: -1.097468146975676
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.749
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.985
Out[74]: 0.7494182377031193
In [75]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[75]: -0.6914946317300158
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.764
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.978
Out[76]: 0.7641337843707041
In [77]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[77]: -0.27851488273151437
```

```
numSSBayes
In [78]:
Out[78]: SSBR.NumSSBayes(54929,45929,9000,40000,39000,1000,200)
In [79]:
         J1 = sortrows(J_Vecs.J1)
Out[79]: 45929x1 Array{Float64,2}:
          -0.999204
          -0.99309
          -0.989635
          -0.989354
          -0.986951
          -0.985619
          -0.985586
          -0.985568
          -0.98548
          -0.985301
          -0.984423
          -0.98427
          -0.98317
           7.41993e-17
           7.42088e-17
           7.65502e-17
            7.85836e-17
            8.88438e-17
            8.88468e-17
            8.90394e-17
            8.90569e-17
            1.10945e-16
           1.11217e-16
            1.21753e-16
            1.2328e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43854x1 Array{Float64,2}:
          -0.999204
          -0.99309
          -0.989635
          -0.989354
          -0.986951
           -0.985619
          -0.985586
          -0.985568
          -0.98548
          -0.985301
          -0.984423
          -0.98427
           -0.98317
           :
           -1.12625e-35
           -1.10536e-35
          -7.23354e-36
          -7.22508e-36
          -7.2166e-36
          -7.19638e-36
          -7.19638e-36
          -4.91411e-36
          -7.61803e-65
          -2.53068e-66
           -1.43549e-66
           -8.89359e-67
```