Scilab Textbook Companion for Electronic Devices And Circuits by D. A. Bell¹

Created by
Vaibhav Singh
B.Tech(pursuing)
Electronics Engineering
NIT kurukshetra
College Teacher
Karan Sharma
Cross-Checked by
Prashant Dave

May 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices And Circuits

Author: D. A. Bell

Publisher: Oxford University Press

Edition: 5

Year: 2008

ISBN: 0-19-569340

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	basic semiconductor and pn junction theory	13
2	semiconductor diodes	17
3	Diode applications	24
4	Bipolar junction transistors	38
5	BJT biasing	41
6	Ac analysis of BJT circuits	53
8	BJT specifications and performance	61
10	FET biasing	67
11	Ac analysis of FEt circuits	7 4
12	Small signal Amplifiers	7 8
13	Amplifier with negative feedback	93
14	Ic operational Amplifier and basic Op amp circuits	101
15	Operational amplifier frequency Response and compensation	109
16	Signal generators	113

17 Active filters	120
18 Linear and switching voltage regulators	127
19 Power amplifiers	136
20 Thyristors	151
21 Optoelectronic Devices	156

List of Scilab Codes

Exa 1.1	resultant densities	13
Exa 1.2	drift current velocity	14
Exa 1.3		14
Exa 1.4	reverse saturation current	15
Exa 1.5	junction current	15
Exa 1.6		16
Exa 1.1		17
Exa 2.1		17
Exa 2.3		18
Exa 2.5		18
Exa 2.6		19
Exa 2.8		19
Exa 2.9		20
Exa 2.10		20
Exa 2.11		21
Exa 2.12		21
Exa 2.14		22
Exa 2.15		22
Exa 2.16		23
Exa 2.17		23
Exa 3.1		24
Exa 3.2		24
Exa 3.3		25
Exa 3.4		25
Exa 3.5		26
Exa 3.6		26
Exa 3.7		27
Exa 3.8		27

Exa 3.9	required reservoir capacitance
Exa 3.10	calculate surge limiting resistance
Exa 3.11	specify transformer for full wave rectifier
Exa 3.12	dc output voltage and outpur ripple amplitude 29
Exa 3.13	suitable value of L1 and C1
Exa 3.14	peak output voltage and value of L1 and C1 30
Exa 3.15	load and source effects and load and line regulation 3
Exa 3.16	circuit current
Exa 3.17	maximum load current
Exa 3.18	line regulation laod regulation and ripple rejection ratio 33
Exa 3.19	resistance R1 and forward and reverse current
Exa 3.20	resistance R1 and forward current and reverse voltage 33
Exa 3.21	resistor for R1
Exa 3.22	zener diode and R1
Exa 2.23	tilt on output waveform
Exa 3.24	suitable value of R1 and C1
Exa 3.25	capacitor voltage
Exa 3.26	determine C1 and C2
Exa 3.27	diode forward current
Exa 4.1	calculate Ic and Ie
Exa 4.2	new base current
Exa 4.3	dc collector voltage and circuit voltage gain 39
Exa 4.4	calculate Ic Ib and hFE
Exa 4.6	determine Ib and Ic
Exa 5.1	new dc load line
Exa 5.2	circuit Q point
Exa 5.3	determine Ib Ic and Vce
Exa 5.4	maximum and minimum level of Ic and Vce 4
Exa 5.5	determine Ib Ic and Vce
Exa 5.7	emitter voltage collector voltage and collector and emit-
	ter voltage
Exa 5.8	determine Ic Ve Vc vce
Exa 5.9	analyze voltage divider bais circuit for hFE 50 4
Exa 5.10	analyze voltage divider bais circuit for hFE is 200 4
Exa 5.11	design base bias circuit
Exa 5.12	collector to base bais circuit
Exa 5.13	design voltage divider bais circuit
Exa 5.14	design voltage divider bais circuit 40

Exa 5.15	design bais circuit operate from 18V supply	47
Exa 5.16	design bais circuit operate from 9V supply	48
Exa 5.17	stability factors for three bias circuit	49
Exa 5.18	determine Ic change when tempreture increases	49
Exa 5.19	change in Ic by effect of change in Vbe	50
Exa 5.20	calculate minimum hFE and transistor Vce	50
Exa 5.21	calculate minimum hFE for transistor	51
Exa 5.22	deremine suitable resistance for Rb and Rc	51
Exa 5.23	suitable resistor for capacitor coupled switching	52
Exa 6.1	calculate base bais voltage	53
Exa 6.2	Dc and Ac load line	53
Exa 6.3	determine hfe and hoe	54
Exa 6.4	calculate hfc hob and alfa	55
Exa 6.5	estimate the CE input resistance	55
Exa 6.6	circuit input and output impedance voltage gain	56
Exa 6.7	estimate re and circuit voltage gain	56
Exa 6.8	circuit input and output impedance and voltage gain .	57
Exa 6.9	circuit input and output impedance with Rl not con-	
	nected	57
Exa 6.10	circuit input and output impedance and voltage gain .	58
Exa 6.11	input impedance and voltage gain when C1 is discon-	
	nected	58
Exa 6.12	calculate vo	59
Exa 6.13	calculate Ic Ie and Ib	60
Exa 8.2	output power change	61
Exa 8.3	output power change	61
Exa 8.4	input capacitance	62
Exa 8.5	input capacitance limited upper cutoff frequency	62
Exa 8.6	upper 3db frequency	63
Exa 8.8	calculate suitable speed up capacitor	63
Exa 8.9	noise output voltage	64
Exa 8.10	total noise output voltage for amlifier	64
Exa 8.11	calculate maximum Ic	65
Exa 8.13	maximum power dissipation	65
Exa 8.14	thermal resistance	66
Exa 10.1	Dc load line	67
Exa 10.4	determine Idmax and Idmin	67
Exa 10.6	Id max Idmin and Vds	68

Exa 10.7	gate bais circuit	68
Exa 10.8	self bais circuit	69
Exa 10.9	design voltage divider bais circuit	69
Exa 10.11	constant current bias circuit	70
Exa 10.12	determine Id and Vds	70
Exa 10.13	determine Idmax and Vdsmin	71
Exa 10.14	determine Id and Vds	72
Exa 10.16	design JFET switching	72
Exa 10.17	determine suitable resistance and calculate Vds	72
Exa 11.2	circuit input and output impedance and voltage gain .	74
Exa 11.3	gate input and source output impedance and voltage gain	74
Exa 11.4	circuit input and output impedance and voltage gain .	75
Exa 11.5	circuit and device input and output impedance and volt-	
	age gain	75
Exa 11.6	output voltage	76
Exa 11.7	input capacitance limited cutoff frequency	77
Exa 12.1	required capacitance and voltage gain at different fre-	
	quency	78
Exa 12.2	suitable resistor for common emitter amplifier	79
Exa 12.3	suitable capacitor for CE	79
Exa 12.4	suitable resistor for common source circuit	80
Exa 12.5	suitable resistor for common source amplifier	80
Exa 12.7	analyze two stage amplifier	81
Exa 12.8	resistor for two stage direct coupled amplifier	81
Exa 12.9	capacitor for two stage direct coupled amplifier	82
Exa 12.10	minimum overall voltage gain	82
Exa 12.11	resistor for two stage amplifier	83
Exa 12.12	suitable capacitor for circuit	84
Exa 12.13	analyze two stage amplifier and determine minimum	
	voltage gain	84
Exa 12.14	Dc feedback pair with an emitter follower output	85
Exa 12.15	suitable resistor for BIBET amplifier	86
Exa 12.16	suitable capacitor For BIFET direct coupled amplifier	87
Exa 12.17	determine minimum overall voltage gain	87
Exa 12.18	suitable resistor for differential amplifier	88
Exa 12.19	suitable capacitor value for amplifier and voltage gain	88
Exa 12.20	suitable resistor for cascode amplifier	89
Exa 12.21	suitable capacitor for cascode circuit	89

Exa 12.22	resonance frequency voltage gainbandwidth of amplifier	90
Exa 12.23	resonance frequency voltage gainbandwidth of amplifier	91
Exa 12.24	capacitor to resonate secondry and overall voltage gain	91
Exa 13.1	closed loop gain for negative feedback amplifier	93
Exa 13.2	input impedance with negative feedback	93
Exa 13.3	input and output impedance when negative feedback .	94
Exa 13.4	circuit input and output impedance and voltage gain	
	without feedback	94
Exa 13.5	two stage coupled BJT use as voltage feedback	95
Exa 13.6	modify direct coupled amplifier to use as series voltage	
	negative feedback	95
Exa 13.7	calculate resistor value	96
Exa 13.8	calculate Acl Zin and Zout	96
Exa 13.9	calculate output impedance for circuit modification	97
Exa 13.10	calculate precise value of circuit voltage gain	97
Exa 13.11	modify Ce amplifier to use emitter current feedback to	
	give Av 70	98
Exa 13.12	suitable emitter resistor value	98
Exa 13.13	suitable capacitor for two stage circuit	99
Exa 13.14	determine current gain and input impedance	100
Exa 13.15	calculate total harmonic	100
Exa 14.1	calculate maximum resistance	101
Exa 14.2	suitable resistor for BIFET op amp is used	101
Exa 14.3	typical difference between input and out voltage and Zin	
	and Zout	102
Exa 14.4	capacitor coupled voltage follower usin 741 op amp	102
Exa 14.5	direct coupled non inverting amplifier	103
Exa 14.6	typical input and output impedances for non inverting	103
Exa 14.7	voltage gain and lower cutoff frequency	104
Exa 14.8	direct coupled inverting amplifier	104
Exa 14.9	design three input summing amplifier	105
Exa 14.10	suitable resistor for 741 op amp	105
Exa 14.11	overall voltage gain for instrumentation amplifier	105
Exa 14.12	typical output voltage swingand calculate rise time	106
Exa 14.13	calculate resistor for schmitt trigger circuit	107
Exa 14.14	upper and lower trigger for non inverting schmitt trigger	107
Exa 15.2	determine suitable component	109
Exa. 15.3	miller effect capacitor	109

Exa 15.5	cutoff frequencies using gain bandwidth 110
Exa 15.6	full power bandwidth for AD843 op amp circuit 110
Exa 15.7	input terminal stray capacitor
Exa 15.8	load capacitance
Exa 16.1	phase shift oscillator
Exa 16.2	colpitts oscillator
Exa 16.3	hartley oscillator
Exa 16.4	wein bridge oscillator
Exa 16.5	phase shift oscillator
Exa 16.6	amplitude stabilization circuit
Exa 16.7	square wave generator
Exa 16.8	calculate t1 t2 and pulse frequency
Exa 16.10	triangular wave generator
Exa 16.11	wein bridge oscillator
Exa 16.12	pierce oscillator and peak power dissipated 119
Exa 17.1	calculate attenuation
Exa 17.2	first order active low pass filter
Exa 17.3	first order high pass filterand filter bandwidth 121
Exa 17.4	butterworth second order low pass filter 121
Exa 17.5	using BIFET op amp design butterworth second order
	filter
Exa 17.6	third order low pass filter
Exa 17.7	third order high pass filter
Exa 17.8	single stage band pass filter
Exa 17.9	calculate Q factor for wide band filter 124
Exa 17.10	center frequency and bandwidth
Exa 17.12	state variable band pass filter
Exa 17.13	required resistance to operate one half of an MF10 126
Exa 18.1	load and source effects and load and line regulation 127
Exa 18.2	voltage regulator circuit
Exa 18.3	modify voltage regulator
Exa 18.4	voltage regulator to change the load current 129
Exa 18.5	suitable component for preregulator circuit 129
Exa 18.6	differential amplifier
Exa 18.7	fold back current limiting circuit for voltage regulator 131
Exa 18.8	adjustable voltage regulator circuit
Exa 18.9	input voltage and maximum load current 132
Exa 18 10	calculate regulator power dissipation 133

Exa 18.11	efficiencies of linear regulator and switching regulator.	133
Exa 18.12	step down switching regulator	134
Exa 18.13	determine suitable value for R1 R2 Rsc and Ct	134
Exa 19.1	Dc and Ac load line transistor common emitter charac-	
	teristics	136
Exa 19.2	maximum efficiency of class A amplifier	136
Exa 19.4	power deliver to load in class AB amplifier	137
Exa 19.5	output transformer and transistor of class B circuit	138
Exa 19.6	determine required supply voltage for class AB amplifier	138
Exa 19.7	output transistors	139
Exa 19.8	capacitor value for Ce and Co	139
Exa 19.9	determine the value of Vcc Rc and Rb for class AB	
	amplifier	140
Exa 19.10	design Vbe multiplier	140
Exa 19.11	required supply voltage and specify output transistors	141
Exa 19.12	suitable resistor for output and intermediate stage	142
Exa 19.13	calculate required supply voltage and suitable DC volt-	
	age drop	142
Exa 19.14	determine resistor value for MOSFET amplifier	143
Exa 19.15	bootstrap capacitor terminal voltage and peak output	
	voltage	144
Exa 19.16	use BIFET to determine supply voltage and resistor value	144
Exa 19.17	capacitor value	145
Exa 19.18	MOSFET gate source voltage for complementry com-	
	mon source amplifier	145
Exa 19.19		146
Exa 19.20	maximum peak output voltage minimum supply voltage	
	at op amp terminal	146
Exa 19.21	op amp minimum supply voltage and MOSFET maxi-	
	mum gate source voltage	147
Exa 19.22	determine Po Acl f1 and f2	147
Exa 19.23	maximum output power voltage gain and low cutoff fre-	
	quency	148
Exa 19.24	determine the load power dissipation	148
	calculate ac output power dc input power conduction	
	angle and efficiency	149
Exa 19.26	for class C amplifier determine tank circuit component	
	value and peak current	149

Exa 19.27	for class C amplifier determine Ql Qp and Pl and band-	
	width and efficiency	150
Exa 20.1	calculate instantaneous supply voltage	151
Exa 20.2	determine suitable resistance	151
Exa 20.3	determine SCR anode cathode voltage	152
Exa 20.4	specify the SCR and suitable components for D1 and R1	153
Exa 20.5	smallest conduction angle	153
Exa 20.6	determine capacitor charging time	154
Exa 20.7	calculate maximum Vb1b2 be used at temperature 100C	154
Exa 20.8	maximum and minimum triggering voltage	155
Exa 20.9	calculate Re for relaxation oscillator and oscillating fre-	
	quency	155
Exa 21.1	total luminous flux	156
Exa 21.3	suitable resistor	156
Exa 21.4	total power supplied to digit LED	157
Exa 21.5	required series resistance and dark current	157
Exa 21.6	minimum light level when transitor is turn off	158

Chapter 1

basic semiconductor and pn junction theory

Scilab code Exa 1.1 resultant densities

```
1 //chapter 1
2 //example 1.1
3 //page 15
4 printf("\n")
5 printf("given")
6 Nd=3*10^14; Na=.5*10^14; // all in atom/cm^3
7 ni=1.5*10^10;
8 disp("resultant densities of free electrons and hole ")
9 ne=(-(Na-Nd)+(sqrt(((Na-Nd)^2)+4*ni^2)))/2;
10 disp(ne)//electron densities in electron/cm^3
11 Nd>Na;
12 n=Nd-Na;
13 disp(n)
14 p=(ni^2)/n
15 printf("densities of hole is %dhole/cm3\n",p)
```

Scilab code Exa 1.2 drift current velocity

```
1 //chapter 1
2 //example 1.2
3 //page 18
4 printf("\n")
5 printf("given")
6 l=1*10^-3; E=10;
7 un=1500*10^-4; up=500*10-4;
8 Vn=-(un*E)/1;
9 printf("drift current is %dm/s\n", Vn)
10 disp("drift current of hole")
11 Vp=(up*E)/1;
12 printf("drift current is %dm/s\n", Vp)
```

Scilab code Exa 1.3 conductivity and resistance

```
1 //chapter 1
2 //example 1.3
3 //page 19
4 printf("\n")
5 printf("given")
6 l=1*10^-3; a=.1*10^-4;
7 ni=1.5*10^10; p=1.5*10^10;
8 disp("a)")
9 un=1500; up=500; // in cm3/V.s
10 q=1.6*10^-19;
11 m=q*((ni*un)+(p*up))*10^6;
12 printf ("mobility is \%3.2 \, \text{fmicro/ohmcm} \, \text{n}", m)
13 R=1/(m*a);
14 printf(" resistance is \%3.2 \,\mathrm{fMohm}\,n",R)
15 disp("b)")
16 //for doped material
17 n=8*10^13;
18 p=(ni^2)/n
```

```
19 m=q*((n*un)+(p*up));
20 printf("mobility is %3.4 f/ohmcm\n",m)
21 R=1/(m*a);
22 printf(" resistance is %dohm\n",R)
```

Scilab code Exa 1.4 reverse saturation current

```
1 //chapter 1
2 // eaxample 1.4
3 //page 26
4 printf("\n")
5 printf("given")
6 T1=25; T2=35; T3=45;
7 I0=30//nA
8 disp("I0(35)=I0*2^(T2-T1)/10")
9 //on solving
10 I0(35)=I0*2^((T2-T1)/10);
11 printf("current at 35c is %dnA\n",I0(35))
12 disp("I0(45)=I0*2^(T3-T1)/10")
13 //on solving
14 I0(45)=30*2^2;
15 printf("current at 45c is %dnA\n",I0(45))
```

Scilab code Exa 1.5 junction current

```
1 //chapter 1
2 //example 1.5
3 //page 28
4 printf("\n")
5 printf("given")
6 I0=30; Vd=.7; n=2; Vt=26*10^-3;
7 k=Vd/(n*Vt);
8 disp("junction current")
```

```
9 Id=I0*((2.7^k)-1)*10^-6
10 printf(" forward bais current is %dmA\n",Id)
11 disp("b)")
12 Vd=-10// reverse bais
13 k=Vd/(n*Vt);
14 Id=I0*((2.7^k)-1)
15 printf(" forward bais current is %dnA\n",Id)
```

Scilab code Exa 1.6 junction forward voltage

```
//chapter 1
//example 1.6
//page 29
printf("\n")
frintf("given")
ld=.1*10^-3;n=2;vt=26*10^-3;
l0=30*10^-9;
disp("a)")
Vd=(n*Vt)*log(Id/I0)*10^3;
printf(" forward bais current is %dmV\n",Vd)
disp("b)")
ld=10*10^-3
Vd=(n*Vt)*log(Id/I0)*10^3;
printf(" forward bais current is %dmV\n",Vd)
```

Chapter 2

semiconductor diodes

Scilab code Exa 1.1 forward and reverse resistance

```
//chapter 2
//example 2.1
//page 37
printf("\n")
printf("given")
disp("a)")
If=100*10^-3; Vf=.75; // given
disp("forward resistance")
Rf=Vf/If;
printf("forward resistance is %3.1 fohm\n", Rf)
disp("b)")
Vr=50; Ir=100*10^-9;
Rr=(Vr/Ir);
printf("reverse resistance is %3.0 fohm\n", Rr)
```

Scilab code Exa 2.1 dynamic resistance

```
1 / chapter 2
```

```
2 //example 2.2
3 //page 39
4 printf("\n")
5 printf("given")
6 If=70*10^-3;
7 rd=(26*10^-3)/If;
8 printf("dynamic resistance is %3.2 fohm\n",rd)
9 disp("a)")
10 If=60*10^-3; Vf=.025;
11 rd=Vf/If;
12 printf("dynamic resistance is %3.2 fohm\n",rd)
```

Scilab code Exa 2.3 diode current

```
1 //chapter 2
2 //example 2.3
3 //page 40
4 printf("\n")
5 printf("given")
6 R1=4.7*10^3; E=15; Vf=.7;
7 disp("diode current is E=If*R1+Vf")
8 If=((E-Vf)/R1)*10^3;
9 printf(" diode current is %3.2fmA\n", If)
```

Scilab code Exa 2.5 forward current

```
1 //chapter 2
2 //example 2.5
3 //page 41
4 printf("\n")
5 printf("given")
6 E=1.5; Vf=.7; R1=10; rd=.25; 7 disp("a)")
```

```
8  If=(E-Vf)/R1;
9  printf(" forward current is %3.3fmA\n",If)
10  disp("b)")
11  If=(E-Vf)/(R1+rd);
12  printf(" forward current is %3.3fmA\n",If)
```

Scilab code Exa 2.6 dc load line

```
1 //chapter 2
2 //example 2.6
3 //page 43
4 printf("\n")
5 printf("given")
6 If=0; Vf=5; R1=100;
7 E=(If*R1)+Vf
8 disp("E")
9 disp("B)")
10 Vf=0; E=5; R1=100;
11 If=(E/R1)*1000;
12 printf("resistance is %dmA\n", If)
```

Scilab code Exa 2.8 new supply voltage

```
1 //chapter 2
2 //example 2.8
3 //page 45
4 printf("\n")
5 printf("given")
6 If=50*10^-3; Vf=1.1; R1=100;
7 Vf1=If*R1;
8 disp("Vf1")
9 E=Vf1+Vf
10 printf(" new supply voltage is %3.1 fV\n",E)
```

Scilab code Exa 2.9 maximum forward current

```
1 //chapter 2
2 //example 2.9
3 //page 48
4 printf("\n")
5 printf("given")
6 P1=700*10^-3; Vf=.7;
7 //at 25C
8 If=P1/Vf;
9 disp("If")
10 //at 65C
11 D=5*10^-3; T=65-25;
12 P2=P1-D*T
13 If=P2/Vf;
14 printf("maximum forward current at 65C is %3.3fA\n", If)
```

Scilab code Exa 2.10 diode Vf and junction dynamic resistance

```
1 //chapter 2
2 //example 2.10
3 //page 49
4 printf("\n")
5 printf("given")
6 Vf1=.7; Vf=-1.8*10^-3; If=26*10^-3;
7 T=100-25;
8 Vf2=Vf1+(T*Vf);
9 printf(" voltage at 100C is %3.3fV\n", Vf2)
10 disp("At 25C")
11 T1=25;
```

```
12 rd=(26*10^-3/If)*((T1+273)/298);
13 printf(" resistance at 25 C is %dohm\n",rd)
14 disp(" At 100C")
15 T2=100;
16 rd=(26*10^-3/If)*((T2+273)/298);
17 printf(" resistance at 100 C is %3.2 fohm\n",rd)
```

Scilab code Exa 2.11 diffusion capacitance

```
1 //chapter 2
2 //example 2.11
3 //page 51
4 printf("\n")
5 printf("given")
6 If=10*10^-3; Vf=.7; t=70*10^-9;
7 Cd=((t*If)/Vf)*10^9;
8 printf(" diffusion capacitance is %dnF\n",Cd)
```

Scilab code Exa 2.12 minimum fall times

```
1 //chapter 2
2 //example 2.12
3 //page 53
4 printf("\n")
5 printf("given")
6 disp("A")
7 trr=10*10^-9;
8 tf=10*trr*10^9
9 printf("minimum fall times is %dns\n",tf)
10 disp("B)")
11 trr=3;
12 tf=10*trr;
13 printf("minimum fall times is %dns\n",tf)
```

Scilab code Exa 2.14 resistor for R1 and appropriate scale

```
1 //chapter 2
2 //example 2.14
3 //page 58
4 printf("\n")
5 printf("given")
6 Io=75*10^-3;
7 //vertical scale of 5mA/cm
8 If=Io/5*10^-3
9 R1=15/(75*10^-3)
10 P=((Io)^2)*R1
```

Scilab code Exa 2.15 maximum current

```
1 //chapter 2
2 //example 2.15
3 //page 63
4 printf("\n")
5 printf("given")
6 Vz=7.5; Pd=400*10^-3; D=3.2*10^-3;
7 Izm=Pd/Vz
8 printf("current at 50C is %3.3fA\n", Izm)
9 disp("At 100C")
10 P2=Pd-((100-50)*D)
11 printf("power at 100C is %3.3fW\n", P2)
12 Izm=P2/Vz;
13 printf("current at 100C is %3.3fA\n", Izm)
```

Scilab code Exa 2.16 diode current and power dissipation

```
1 //chapter 2
2 //example 2.16
3 //page 64
4 printf("\n")
5 printf("given")
6 E=20;R1=620;Vz=7.5;
7 Vr1=E-Vz
8 Iz=Vr1/R1;
9 printf(" diode current is %3.5fA\n",Iz)
10 Pd=Vz*Iz;
11 printf( "power dissipation is %3.3fW\n",Pd)
```

Scilab code Exa 2.17 upper and lower limit of Vz

```
1 //chapter 2
2 //example 2.17
3 //page 64
4 printf("\n")
5 printf("given")
6 Vz=4.3; Zz=22; Iz=20*10^-3;
7 Iz1=5*10^-3; //change in current
8 Vz1=Iz1*Zz;
9 Vzmax=Vz+Vz1;
10 printf("maximum voltage is %3.3fV\n", Vzmax)
11 Vzmin=Vz-Vz1;
12 printf("minimum voltage is %3.3fV\n", Vzmin)
```

Chapter 3

Diode applications

Scilab code Exa 3.1 peak output volatge laod current peak reverse voltage

```
//chapter 3
//example 3.1
//page 73
printf("\n")
printf("given")
Vf=.7;Rl=500;Vi=22;
Vpi=1.414*Vi;
disp("Vpi")
Vpo=Vpi-Vf;
printf("peak vouput voltage is %3.2fV\n",Vpo)
Ip=Vpo/Rl;
printf("peak load current is %3.4fA\n",Ip)
PIV=Vpi;
printf("diode paek reverse voltage %3.2fV\n",PIV)
```

Scilab code Exa 3.2 peak output voltage and current

```
1 //chapter 3
```

```
2 //example 3.2
3 //page 779
4 printf("\n")
5 printf("given")
6 Vi=30;Rl=300;Vf=.7;
7 Vpi=1.414*Vi;
8 Vpo=Vpi-2*Vf;
9 printf(" peak output voltage %dV\n", Vpo)
10 Ip=Vpo/Rl;
11 printf(" current bridge is %3.3fA\n", Ip)
```

Scilab code Exa 3.3 peak to peak voltage

```
1 //chapter 3
2 //example 3.3
3 //page 83
4 printf("\n")
5 printf("given")
6 C1=680*10^-6; Eo=28; R1=200; f=60;
7 I1=Eo/R1;
8 T=1/f;
9 t1=T;
10 Vr=(I1*t1)/C1;
11 printf("peak to peak ripple voltage is %3.2 fV\n", Vr)
```

Scilab code Exa 3.4 required reservoir capacitance

```
1 //chapter 3
2 //example 3.4
3 //page 84
4 printf("\n")
5 printf("given")
6 Eo=20;Rl=500;f=60;
```

```
7 Vr=(10*Eo)/100//10% of Eo
8 Il=Eo/Rl
9 T=1/f;
10 t1=T
11 C1=((Il*t1)/Vr)*10^6;
12 printf("reservior capacitance is %duF\n",C1)
```

Scilab code Exa 3.5 charging and discharging time

```
1 //chapter 3
2 //example 3.5
3 //page 85
4 printf("\n")
5 printf("given")
6 Eo=20; f=60; R1=500;
7 Il=Eo/Rl;
8 Vr = (10 * Eo) / 100;
9 printf ("10 percent of Eo is %dV \ n", Vr)
10 Eomin=Eo-.5*Vr
11 Eomax = Eo + .5 * Vr
12 Q1=sin(inv(Eomin/Eomax));
13 Q1=65
14 Q2=90-Q1
15 T=1/f;
16 t2=(Q2*T)/360;
17 printf(" charging time is \%3.4 \, \text{fs} \, \text{n}",t2)
18 t1=T-t2
19 printf("discharging time is \%3.4 \, \text{fs} \, \text{n}",t1)
20 C1 = ((I1*t1)/Vr)*10^6;
21 printf("reservior capacitance is %duF\n",C1)
```

Scilab code Exa 3.6 required surge limiting resistance

```
1 //chapter 3
2 //example 3.6
3 //page 88
4 printf("\n")
5 printf("given")
6 Eo=21;Vf=.7;
7 t1=1.16*10^-3;t2=15.54*10^-3;
8 Vp=Eo+Vf
9 Vr=2*Vp
10 I1=40*10^-4;
11 Ifrm=(I1*(t1+t2))/t2;
12 Ifsm=30;
13 Rs=Vp/Ifsm
14 printf(" surge limiting resistance is %3.2fohm\n",Rs
)
```

Scilab code Exa 3.7 transformer for half wave rectifier

```
1 //chapter 3
2 //example 3.7
3 //page 89
4 printf("\n")
5 printf("given")
6 Vf=.7; Eo=21; Il=40*10^-3; Vp=115;
7 Vs=.707*(Vf+Eo);
8 printf(" Vrms voltage is %3.3 fV\n", Vs)
9 Is=3.6*Il;
10 printf(" rms current is %3.3 fA\n", Is)
11 Ip=(Vs*Is)/Vp;
12 printf("primary current is %3.3 fA\n", Ip)
```

Scilab code Exa 3.8 required reservoir capacitance

```
1 //chapter 3
2 //example 3.8
3 //page 92
4 printf("\n")
5 printf("given")
6 Vr=2;T=16.7*10^-3;t2=1.16*10^-3;I1=40*10^-3;//from example 3.5
7 t1=(T/2)-t2
8 C1=(I1*t1)/Vr;
9 printf("resrvior capacitor is %3.6fF\n",C1)
```

Scilab code Exa 3.9 required reservoir capacitance

```
1 //chapter 3
2 //example 3.9
3 //page 93
4 printf("\n")
5 printf("given")
6 Vr=2;T=16.7*10^-3;Il=40*10^-3;
7 t1=T/2
8 C1=(Il*t1)/Vr;
9 printf(" reservior capacitance is %3.6fF\n",C1)
```

Scilab code Exa 3.10 calculate surge limiting resistance

```
1 //chapter 3
2 //example 3.10
3 //page 93
4 printf("\n")
5 printf("given")
6 Eo=21; Vf = .7; Il = 40*10^-3; t1 = 7.19*10^-3; t2 = 1.16*10^-3;
7 Vp = Eo + (2*Vf)
8 Vr = Vp
```

```
9 If=I1/2
10 Ifrm=I1*(t1+t2)/t2
11 Ifsm=30;
12 Rs=Vp/Ifsm
13 printf("surge limiting resistance is %3.3fohm\n",Rs)
```

Scilab code Exa 3.11 specify transformer for full wave rectifier

```
1 //chapter 3
2 //example 3.11
3 //page 73
4 printf("\n")
5 printf("given")
6 Eo=21; Vf=.7; Il=40*10^-3; Vp=115;
7 Vs=.707*(Eo+2*Vf)
8 Is=1.6*Il
9 Ip=(Vs*Is)/Vp;
10 printf(" supply current is %3.3fA\n", Ip)
```

Scilab code Exa 3.12 dc output voltage and outpur ripple amplitude

```
1 //chapter 3
2 //example 3.12
3 //page 97
4 printf("\n")
5 printf("given")
6 Eo=20; Il=40*10^-3; R1=22; Vr=2; C1=150*10^-6; C2=C1; fr=120;
7 Vo=Eo-Il*R1;
8 vi=Vr/3.14
9 Xc2=1/(2*3.14*fr*C2)
10 vo=(vi*Xc2)/sqrt((R1^2) + (Xc2^2))
11 printf(" dc output voltage is %3.3fV\n",vo)
```

```
12 Vpp=2*vo;
13 printf(" peak to peak voltage is %3.3fV\n", Vpp)
```

Scilab code Exa 3.13 suitable value of L1 and C1

```
1 //chapter 3
2 //example 3.13
3 //page 98
4 printf("\n")
5 printf("given")
6 C1=150*10^-6;C2=C1;vi=4;vo=1;f=120;
7 Xc2=8.84;//FROM EXAMPLE 3.12
8 X1=Xc2*((vi/vo)+1)
9 L1=X1/(2*3.14*f);
10 printf(" suitable value of L1 is %3.3fH\n",L1)
```

Scilab code Exa 3.14 peak output voltage and value of L1 and C1

```
1 //chapter 3
2 //example 3.14
3 //page 101
4 printf("\n")
5 printf("given")
6 Edc=20; vo=.24; Vo=20; Il=40*10^-3; fr=120;
7 Eomax=(3.14*Edc)/2
8 Epeak=(4*Eomax)/(3*3.14)
9 vi=Epeak;
10 Rl=Vo/Il
11 Xlc=(2*Rl)/3
12 Lc=Xlc/(2*3.14*fr)
13 L=1.25*Lc;
14 Xl=2*3.14*fr*L
15 Xc=Xl/((vi/vo)+1)
```

```
16 C1=1/(2*3.14*fr*Xc)
```

Scilab code Exa 3.15 load and source effects and load and line regulation

```
//chapter 3
//example 3.15
//page 105
printf("\n")
printf("given")
Eo=20
Color E0=20-19.7//load effect
loadregulation =(E0*100)/Eo//percentage
sourceeffect=20.2-20
lineregulation =(sourceeffect*100)/Eo
```

Scilab code Exa 3.16 circuit current

```
1 //chapter 3
2 //example 3.16
3 //page 108
4 printf("\n")
5 printf("given")
6 Vz=9.1; Izt=20*10^-3; Es=30;
7 R1=(Es-Vz)/Izt
8 Pr1=(Izt^2)*R1
9 Es=27;
10 Iz=(Es-Vz)/R1
```

Scilab code Exa 3.17 maximum load current

```
1 //chapter 3
2 //example 3.17
3 //page 110
4 printf("\n")
5 printf("given")
6 Vz=6.2; Pd=400*10^-3; Es=16;
7 Izm=Pd/Vz
8 R1=(Es-Vz)/Izm
9 Pr1=(Izm^2)*R1
10 Izmin=5*10^-3;
11 Izmax=Izm-Izmin;
12 printf("maximum current is %3.4fA\n", Izmax)
```

Scilab code Exa 3.18 line regulation laod regulation and ripple rejection ratio

```
1 / chapter 3
2 //example 3.18
3 //page 112
4 printf("\n")
5 printf("given")
6 Zz=7; Es=16; Vo=6.2; I1=59.5*10^-3;
7 es=(10*Es)/100//10\% os Es
8 Rl=Vo/Il
9 disp("es*Zz | |R1/R1+Zz| |R1")
10 V0=es*((Zz*R1)/(Zz+R1))/(R1+((Zz*R1)/(Zz+R1)))
11 lineregulation=(V0*100)/Vo;
12 printf ("line regulation voltage is \%3.3 fpercentage\n
     ",lineregulation)
13 V0=I1*((Zz*R1)/(Zz+R1))
14 loadregulation=(V0*100)/Vo;
15 printf ("loadregulation voltage is \%3.3 fpercentage \n"
      ,loadregulation)
16 Rr = ((Zz*R1)/(Zz+R1))/(R1+(Zz*R1)/(Zz+R1));
17 printf("ripple rejection is \%3.3 \, f \, n", Rr)
```

Scilab code Exa 3.19 resistance R1 and forward and reverse current

```
1 //chapter 3
2 //example 3.19
3 //page 114
4 printf("\n")
5 printf("given")
6 E=9;Vf=.7;If=1*10^-3;
7 Vo=E-Vf
8 R1=Vo/If
9 Vr=E;
10 printf("diode forward voltage is %3.2fohm\n",Vr)
11 printf("diode forward current is %3.3fA\n",If)
```

Scilab code Exa 3.20 resistance R1 and forward current and reverse voltage

```
1 //chapter 3
2 //example 3.20
3 //page 117
4 printf("\n")
5 printf("given")
6 E=5; Vo=4.5; Il=2*10^-3;
7 R1=(E-Vo)/Il;
8 printf(" suitable resistance is %dohm\n",R1)
9 Vr=E
10 disp("when diode is forward baised")
11 If=(E-Vf)/R1;
12 printf(" diode forward current is %3.3fA\n",If)
```

Scilab code Exa 3.21 resistor for R1

```
1 //chapter 3
2 //example 3.21
3 //page 119
4 printf("\n")
5 printf("given")
6 Vo=2.7; Vf=.7; E=9; If=1*10^-3; Il=If;
7 Vb=Vo-Vf;
8 R1=(E-Vo)/(Il+If);
9 printf("resistance is %3.3fOhm\n",R1)
```

Scilab code Exa 3.22 zener diode and R1

```
1 //chapter 3
2 //example 3.22
3 //page 120
4 printf("\n")
5 printf("given")
6 Vo=5; Vf=.7; Iz=5*10^-3; Il=1*10^-3; E=20;
7 Vz=Vo-Vf
8 R1=(E-Vo)/(Il+Iz);
9 printf("zener diode resistance si %dohm\n", R1)
```

Scilab code Exa 2.23 tilt on output waveform

```
1 //chapter 3
2 //example 3.21
3 //page 119
4 printf("\n")
5 printf("given")
6 E=10;R1=56*10^3;f=1000;C1=1*10^-6;
7 Vo=2*E
```

Scilab code Exa 3.24 suitable value of R1 and C1

```
1 //chapter 3
2 //example 3.24
3 //page 124
4 printf("\n")
5 printf("given")
6 f=500; Rs=600; E=8;
7 t=1/(2*f)
8 PW=t;
9 C1=PW/Rs
10 Vo=2*E
11 Vc=(1*Vo)/100; //1% of the Vo
12 Ic=(Vc*C1)/t
13 R1=(2*E)/Ic;
14 printf("suitable value of R1 is %dohm\n",R1)
```

Scilab code Exa 3.25 capacitor voltage

```
1 //chapter 3
2 //example 3.25
3 //page 125
4 printf("\n")
5 printf("given\n")
6 Vf=.7; E=6; Vb1=3;
7 Vc=Vb1-Vf-(-E)
8 Vo=Vb1-Vf
9 disp("when input is +E")
```

```
10 Vo=E+Vc

11 Vc=E-Vb1-Vf

12 Vo=Vb1+Vf

13 disp("when input is -E")

14 Vo=-E+(-Vc)
```

Scilab code Exa 3.26 determine C1 and C2

```
1 / chapter 3
2 //example 3.26
3 //page 130
4 printf("\n")
5 printf("given")
6 E=12; Vf=.7; R1=47*10^3; f=5000;
7 Vo=2*(E-Vf)
8 I1=Vo/R1
9 disp(" capacitor discharge time")
10 \ t=1/(2*f)
11 disp(" for 1% ripple allow .5% due to discharge of
      C2 ,.5%due to discharge of C1")
12 Vc = (.5 * Vo) / 100
13 C2=((I1*t)/Vc)*10^6;
14 printf(" value of capacitor C2 is \%3.2 \,\mathrm{fuF} \,\mathrm{n}", C2)
15 \quad C1 = 2 * C2;
16 printf("value of capacitor C1 is \%3.2 \, \text{fuF} \, \text{n}",C1)
```

Scilab code Exa 3.27 diode forward current

```
1 //chapter 3
2 //example 3.21
3 //page 119
4 printf("\n")
5 printf("given")
```

```
6 Vcc=5; Vf=.7; R1=3.3*10^3;
7 disp("A)")
8 \text{ Ir1}=(\text{Vcc}-\text{Vf})/\text{R1};
9 printf("diode forward current when all input are low
        is \%3.4 \, \text{fA} \, \text{n}, Ir1)
10 disp("for each diode")
11 If=Ir1/3
12 disp("B)")
13 If2=Ir1/2
14 If3=If2;
15 printf(" forward current when input A is high is \%3
       .5\,\mathrm{fA}\,\mathrm{\ n}",If3)
16 disp("C)")
17 If3=Ir1;
18 printf(" forward current when input A and B are high
        and C is low \%3.5\,\mathrm{fA}\,\mathrm{n}, If3)
```

Chapter 4

Bipolar junction transistors

Scilab code Exa 4.1 calculate Ic and Ie

```
1 //chapter 4
2 //example 4.1
3 //page 153
4 printf("\n")
5 printf("given")
6 Adc=.98; Ib=100*10^-6;
7 Ic=(Adc*Ib)/(1-Adc);
8 printf("value of Ic is %3.3fA\n",Ic)
9 Ie=Ic/Adc;
10 printf(" value of Ie is %3.3fA\n",Ie)
11 Bdc=Adc/(1-Adc);
12 disp(Bdc)
```

Scilab code Exa 4.2 new base current

```
1 //chapter 4
2 //example 4.2
3 //page 153
```

```
4 printf("\n")
5 printf("given")
6 Ic=1*10^-3; Ib=25*10^-6;
7 Bdc=Ic/Ib
8 Ie=Ic+Ib
9 Adc=Ic/Ie
10 Ib=Ic/Bdc
```

Scilab code Exa 4.3 dc collector voltage and circuit voltage gain

```
//chapter 4
//example 4.1
//page 153
printf("\n")
printf("given")
Bdc=80; Bac=Bdc; Vcc=18; R1=10*10^3;
Ib=15*10^-6; //for Vb=.7
Ic=Bdc*Ib;
Vc=Vcc-(Ic*R1);
printf("dc collector voltage is %dV\n", Vc)
disp(" when vi=50mV")
Ib=3*10^-6; Vi=50*10^-3;
Ic=Bdc*Ib
Vo=Ic*R1
Av=Vo/Vi
```

Scilab code Exa 4.4 calculate Ic Ib and hFE

```
1 //chapter 4
2 //example 4.4
3 //page 160
4 printf("\n")
5 printf("given")
```

```
6 Vcc=5; Vce=.2; R2=4.7*10^3; Vi=2; Vbe=.7; R1=12*10^3; 
7 Ic=(Vcc-Vce)/R2
8 Ib=(Vi-Vbe)/R1
9 hFE=Ic/Ib
```

Scilab code Exa 4.6 determine Ib and Ic

```
1 //chapter 4
2 //example 4.6
3 //page 169
4 printf("\n")
5 printf("given")
6 Vbe=.7; Vce=-6;
7 Ib=20*10^-6
8 Ic=2.5*10^-3//from output characteristics
9 Bdc=Ic/Ib
```

Chapter 5

BJT biasing

Scilab code Exa 5.1 new dc load line

```
1 //chapter 5
2 //example 5.1
3 //page 182
4 printf("\n")
5 printf("given")
6 Rc=12*10^3; Vcc=20;
7 disp("When Ic=0")
8 Ic=0;
9 Vce=Vcc-Ic*Rc
10 disp("At point A Ic=0 nad Vce=20")
11 disp("When Vce=0")
12 Vce=0;
13 Ic=Vcc/Rc
14 disp("At point B Ic=1.7mA and Vce=0")
```

Scilab code Exa 5.2 circuit Q point

```
1 / chapter 5
```

```
2 //example 5.2
3 //page 186
4 printf("\n")
5 printf("given")
6 Vcc=18; Rc=2.2*10^3; Ib=40*10^-6;
7 disp("when Ic=0")
8 Ic=0;
9 Vce=Vcc-Ic*Rc
10 disp("At point A Ic=0 and Vce=18")
11 disp("when Vce=0")
12 Ic=Vcc/Rc
13 disp(" at point B Ic=8.2mA and Vce=0")
```

Scilab code Exa 5.3 determine Ib Ic and Vce

```
1 //chapter 5
2 //example 5.1
3 //page 182
4 printf("\n")
5 printf("given")
6 Rb=470*10^3; Rc=2.2*10^3; Vcc=18; hfe=100;
7 Vee=.7;
8 Ib=(Vcc-Vee)/Rb
9 Ic=hfe*Ib
10 Vce=Vcc-Ic*Rc
```

Scilab code Exa 5.4 maximum and minimum level of Ic and Vce

```
1 //chapter 5
2 //example 5.4
3 //page 189
4 printf("\n")
5 printf("given")
```

```
6 hFEmin=50; hFEmax=200; Vcc=18; Vbe=.7; Rb=470*10^3;
7 Ib=(Vcc-Vbe)/Rb
8 Ic=hFEmin*Ib
9 Vce=Vcc-Ic*Rc
10 Ic=hFEmax*Ib
11 Vce=Vcc-Ic*Rc
```

Scilab code Exa 5.5 determine Ib Ic and Vce

```
1 //chapter 5
2 //example 5.5
3 //page 193
4 printf("\n")
5 printf("given")
6 Rb=270*10^3; Rc=2.2*10^3; Vcc=18;
7 hFE=100; Vbe=.7;
8 Ib=(Vcc-Vbe)/(Rb+Rc*(hFE+1))
9 Ic=hFE*Ib
10 Vce=Vcc-Rc*(Ic+Ib)
```

Scilab code Exa 5.7 emitter voltage collector voltage and collector and emitter voltage

```
1 //chapter 5
2 //example 5.7
3 //page 197
4 printf("\n")
5 printf("given")
6 R1=33*10^3; R2=12*10^3; Rc=1.2*10^3; Re=1*10^3;
7 Vcc=18; Vbe=.7;
8 Vb=(Vcc*R2)/(R1+R2)
9 Ve=Vb-Vbe
10 Ie=(Vb-Vbe)/Re
```

```
11 Ic=Ie;
12 Vc=Vcc-(Ic*Rc)
13 Vce=Vc-Ve
```

Scilab code Exa 5.8 determine Ic Ve Vc vce

```
1 //chapter 5
2 //example 5.8
3 //page 199
4 printf("\n")
5 printf("given")
6 Vcc=18; Vbe=.7; hfe=100;
7 R1=33*10^3; R2=12*10^3; Re=1*10^3;
8 Vt=(Vcc*R2)/(R1+R2)
9 Rt=(R1*R2)/(R1+R2)
10 Ib=(Vt-Vbe)/(Rt+Re*(1+hfe))
11 Ic=hfe*Ib
12 Ie=Ib+Ic
13 Ve=Ie*Re
14 Vc=Vcc-(Ic*Rc)
15 Vce=Vc-Ve
```

Scilab code Exa 5.9 analyze voltage divider bais circuit for hFE 50

```
1 //chapter 5
2 //example 5.9
3 //page 200
4 printf("\n")
5 printf("given")
6 hfe=50; Vt=4.8; Rt=8.8*10^3; //from example 5.7
7 Re=1*10^3; Vbe=.7;
8 Ib=(Vt-Vbe)/(Rt+Re*(1+hfe))
9 Ic=hfe*Ib
```

Scilab code Exa 5.10 analyze voltage divider bais circuit for hFE is 200

```
1 //chapter 5
2 //example 5.10
3 //page 201
4 printf("\n")
5 printf("given")
6 Vt=4.8;Rt=8.8*10^3;//from example 5.8
7 Re=1*10^3;Vbe=.7;hfe=200;
8 Ib=(Vt-Vbe)/(Rt+Re*(1+hfe))
9 Ic=hfe*Ib
10 Ie=Ib+Ic
11 Ve=Ie*Re
12 Vc=Vcc-(Ic*Rc)
13 Vce=Vc-Ve
```

Scilab code Exa 5.11 design base bias circuit

```
1 //chapter 5
2 //example 5.11
3 //page 208
4 printf("\n")
5 printf("given")
6 Vce=5;Ic=5*10^-3;Vcc=15;hfe=100;
7 Rc=(Vcc-Vce)/Ic
8 Ib=Ic/hfe
9 Rb=(Vcc-Vbe)/Ib
```

Scilab code Exa 5.12 collector to base bais circuit

```
1 //chapter 5
2 //example 5.12
3 //page 209
4 printf("\n")
5 printf("given")
6 Vce=5; Ic=5*10^-3; Vcc=15; hfe=100;
7 Ib=Ic/hfe
8 Rc=(Vcc-Vce)/(Ic+Ib)
9 Rb=(Vce-Vbe)/Ib
```

Scilab code Exa 5.13 design voltage divider bais circuit

```
1 //chapter 5
2 //example 5.13
3 //page 211
4 printf("\n")
5 printf("given")
6 Vce=5; Ve=Vce; Ic=5*10^-3; hFE=100; Vcc=15; Vbe=.7;
7 Ie=Ic;
8 Re=Ve/Ie
9 Rc=(Vcc-Vce-Ve)/Ic
10 I2=Ic/10
11 Vb=Ve+Vbe
12 R2=Vb/I2
13 R1=(Vcc-Vb)/I2
```

Scilab code Exa 5.14 design voltage divider bais circuit

```
1 // chapter 5
2 //example 5.14
3 / page 212
4 printf("\n")
5 printf("given")
6 Vce=3; Ve=5; Ic=1*10^-3; Vcc=12;
7 Ie=Ic;
8 R4 = Ve/Ie
9 disp(" with Ic=1mA and R4=4.7Kohm")
10 R4=4.7*10^3;
11 Ve=Ic*R4
12 \quad Vc = Ve + Vce
13 Vr3=Vcc-Vc
14 R3=Vr3/Ic
15 \text{ Vb=Ve+Vbe}
16 I2 = Ic/10
17 R2 = Vb/I2
18 disp(" with R2=56Kohm and Vb=5.4V")
19 R2=56*10^3;
20 I2=Vb/R2
21 R1 = (Vcc - Vb)/I2
```

Scilab code Exa 5.15 design bais circuit operate from 18V supply

```
1 //chapter 5
2 //example 5.15
3 //page 214
4 printf("\n")
5 printf("given")
6 Vce=9; Ve=4; Ic=4*10^-3; Vcc=18;
7 Ie=Ic;
8 R4=Ve/Ie
9 Vb=Ve+Vbe
10 I2=Ic/10
11 R2=Vb/I2
```

```
12 disp(" with R2=12Kohm standard")
13 R2=12*10^3;
14 I2=Vb/R2
15 R1=(Vce+Ve-Vb)/I2
16 disp(" with R1=22kohm standard")
17 R1=22*10^3;
18 Vr3=Vcc-Vce-Ve
19 R3=Vr3/(Ic+I2)
```

Scilab code Exa 5.16 design bais circuit operate from 9V supply

```
1 //chapter 5
2 //example 5.16
3 //page 216
4 printf("\n")
5 printf("given")
6 Vc=5; Ic=1*10^-3; hFE=70; Vbe=.7; Vee=9; Vcc=Vee; Re
      =8.2*10^3;
7 Ve=Vee-Vbe
8 Ie=Ic:
9 R3=Ve/Ie
10 disp(" with R3=8.2kohm standard value")
11 R3=8.2*10<sup>3</sup>;
12 \text{ Ie=Ve/R3}
13 Vr2=Vcc-Vc
14 R2=Vr2/Ic
15 Ib=Ic/hFE
16 \ Vr1 = Vbe / 10
17 R1=Vr1/Ib
18 disp(" use 4.7Kohm as standard")
19 //the transistor emitter terminal is .7 below ground
       and voltage across Re is
20 \text{ Ve=Vee-Vbe}
21 Ie=Ve/Re
22 \text{ Vc=Vcc-(Ie*3.9*10^3)}
```

Scilab code Exa 5.17 stability factors for three bias circuit

```
1 //chapter 5
2 //example 5.17
3 //page 220
4 printf("\n")
5 printf("given")
6 hFE=100;
7 Rc=2.2*10^3; Rb=270*10^3; Re=1*10^3; R1=33*10^3; R2=12*10^3;
8 S=1+hFE
9 disp("for collector to base bias")
10 S=(1+hFE)/(1+(hFE*Rc)/(Rc+Rb))
11 disp(" for voltage divider bias")
12 disp("S=(1+hFE)/(1+hFE*Re(Re+R1||R2))")
13 S=(1+hFE)/(1+(hFE*Re)/(Re+(R1*R2)/(R1+R2)))
```

Scilab code Exa 5.18 determine Ic change when tempreture increases

```
1 //chapter 5
2 //example 5.18
3 //page 221
4 printf("\n")
5 printf("given")
6 Icbo1=15*10^-9;// at 25C
7 S=101;
8 disp("chnage in temp")
9 T=105-25
10 disp(" n=T in 10 step")
11 n=T/10
12 Icbo2=Icbo1*2^n
```

```
13   Icbo=Icbo2-Icbo1
14   disp(" for base bais")
15   Ic=S*Icbo
16   disp(" for collector to base bais")
17   S=56;
18   Ic=S*Icbo
19   disp(" for voltage divider bais")
20   S=8.2;
21   Ic=S*Icbo
```

Scilab code Exa 5.19 change in Ic by effect of change in Vbe

```
1 //chapter 5
2 //example 5.19
3 //page 223
4 printf("\n")
5 printf("given")
6 Re=4.7*10^3;
7 T=125-25
8 Vbe=T*(1.8*10^-3)
9 Ie=Vbe/Re
```

Scilab code Exa 5.20 calculate minimum hFE and transistor Vce

```
1 //chapter 5
2 //example 5.20
3 //page 2
4 printf("\n")
5 printf("given")
6 Vcc=10;Rc=1*10^3;Rb=6.8*10^3;Vs=5;
7 disp("hFE calculation")
8 Ic=Vcc/Rc
9 Ib=(Vs-Vbe)/Rb
```

```
10 hFE=Ic/Ib

11 disp("when hFE=10")

12 hFE=10

13 Ic=hFE*Ib

14 Vce=Vcc-(Ic*Rc)
```

Scilab code Exa 5.21 calculate minimum hFE for transistor

```
1 //chapter 5
2 //example 5.21
3 //page 227
4 printf("\n")
5 printf("given")
6 Vcc=15; Rc=3.3*10^3; Vbe=.7; Rb=56*10^3;
7 Ic=Vcc/Rc
8 Ib=(Vcc-Vbe)/Rb
9 hFE=Ic/Ib;
10 printf(" minimum hFE is %3.2 f\n", hFE)
```

Scilab code Exa 5.22 deremine suitable resistancefor Rb and Rc

```
1 //chapter 5
2 //example 5.22
3 //page 229
4 printf("\n")
5 printf("given")
6 Vcc=12; Ic=1.5*10^-3; Vs=5; hFE=10; Vbe=.7;
7 Rc=Vcc/Ic
8 Ib=Ic/hFE
9 Rb=(Vs-Vbe)/Ib
```

Scilab code Exa 5.23 suitable resistor for capacitor coupled switching

```
1 //chapter 5
2 //example 5.23
3 //page 229
4 printf("\n")
5 printf("given")
6 Vcc=9; Ic=2*10^-3; hFE=10; Vbe=.7;
7 Rc=Vcc/Ic
8 Ib=Ic/hFE
9 Rb=(Vcc-Vbe)/Ib
```

Chapter 6

Ac analysis of BJT circuits

Scilab code Exa 6.1 calculate base bais voltage

```
1 //chapter 6
2 //example 6.1
3 //page 240
4 printf("\n")
5 printf("given")
6 Vcc=12;R2=15*10^3;R1=33*10^3;rs=600;
7 disp("with no signal source")
8 Vb=(Vcc*R2)/(R1+R2);
9 printf("base bais voltage when no signal source is present %3.2fV\n",Vb)
10 disp(" signal source directly connected")
11 Vb=(Vcc*((rs*R2)/(rs+R2))/(R1+((rs*R2)/(rs+R2))));
12 printf("base bais voltage is %3.2fV\n",Vb)
```

Scilab code Exa 6.2 Dc and Ac load line

```
1 //chapter 6
2 //example 6.2
```

```
\frac{3}{\text{page }} 244
4 printf("\n")
5 printf("given")
6 Rc=2.2*10^3; Re=2.7*10^3; R1=18*10^3; R2=8.2*10^3; Vbe
7 disp("drawing dc load line")
8 Rldc=Rc+Re
9 disp(" for Vce")
10 Ic=0; Vcc=20;
11 Vce=Vcc-Ic*(Rc+Re)
12 disp("plot point A at")
13 Ic=Vcc/(Rc+Re)
14 disp("plot point B Ic=4.08mA and Vce=0")
15 disp(" draw dc laod line through point A nad B")
16 Vb = (Vcc*R2)/(R1+R2)
17 \quad Ve = Vb - Vbe
18 Ic=Ve/Re
19 Ie=Ic
20 disp ("drawing the ac load line")
21 Rlac=Rc//when there is no external Rl
22 \text{ Vce=Ic*Rc}
```

Scilab code Exa 6.3 determine hee and hoe

```
1 //chapter 6
2 //example 6.2
3 //page 251
4 printf("\n")
5 printf("given")
6 Vce=4.5; Ib=40*10^-6;
7 disp("from current characteristic at Vce=4.5V and Ib=40uA")
8 Ic=4*10^-3; Ib=30*10^-6;
9 hFE=Ic/Ib;
10 printf(" the value of hFE is %d\n", hFE)
```

Scilab code Exa 6.4 calculate hfc hob and alfa

```
1 //chapter 6
2 //example 6.4
3 //page 253
4 printf("\n")
5 printf("given")
6 hfe=133; hoe=33.3*10^-6;
7 hfc=1+hfe
8 hob=hoe/(1+hfe)
9 A=hfe/(1+hfe)
```

Scilab code Exa 6.5 estimate the CE input resistance

```
1 //chapter 6
2 //example 6.5
3 //page 253
4 printf("\n")
5 printf("given")
6 Ib=20*10^-6; Ic=1*10^-3;
7 Ie=Ic;
8 re=(26*10^-3)/Ie
9 hfe=Ic/Ib
10 hie=(1+hfe)*re
11 r=hie
12 B=hfe
```

Scilab code Exa 6.6 circuit input and output impedance voltage gain

```
//chapter 6
//example 6.6
//page 258
printf("\n")
hie=2.1*10^3; hfe=75; hoe=1*10^-6; R1=68*10^3; R2
=56*10^3; Rc=3.9*10^3; R1=82*10^3;
input impedance Zi=R1||R2|| hie")
Zi=((R1*R2*hie)/(R1+R2+hie))*10^-3;
printf(" input impedance is %3.2fKohm\n",Zi)
disp("output impedance is Zo=Rc||(1/hoe)")
Zo=((Rc*(1/hoe))/(Rc+(1/hoe)))*10^-3;
printf(" output impadance is %f3.2fKohm\n",Zo)
Av=-(hfe*((Rc*R1)/(Rc+R1)))/hie;
printf(" voltage gain is %d\n",Av)
```

Scilab code Exa 6.7 estimate re and circuit voltage gain

```
1 //chapter 6
2 //example 6.7
3 //page 259
4 printf("\n")
5 printf("given")
6 Ic=1.5*10^-3; Rc=4.7*10^3; Rl=56*10^3;
7 Ie=Ic;
8 re=(26*10^-3)/Ie
9 Av=-(((Rc*Rl)/(Rc+Rl))/re);
10 printf(" voltage gain is %d\n", Av)
```

Scilab code Exa 6.8 circuit input and output impedance and voltage gain

Scilab code Exa 6.9 circuit input and output impedance with Rl not connected

```
1 //chapter 6
2 //example 6.9
3 //page 267
4 printf("\n")
5 printf("given")
6 hie=2.1*10^3; hfe=75; R1=10*10^3; R2=10*10^3; Re=4.7*10^3; R1=12*10^3; rs=1*10^3;
7 disp("Rl is not connected")
8 hic=hie
9 hfc=1+hfe
```

```
10 Zb=hic+hfc*(Re)
11 Zi=(R1*R2*Zb)/(R1+R2+Zb)
12 Ze=(hic+(R1*R2*rs)/(R1+R2+rs))/hfc
13 Z0=(Ze*Re)/(Ze+Re)
14 disp(" when Rl is connected")
15 Zb=hic+hfc*((Re*Rl)/(Re+Rl))
16 Zi=(R1*R2*Zb)/(R1+R2+Zb)
17 hib=hie/(1+hfe)
18 Av=((Re*Rl)/(Re+Rl))/(hib+((Re*Rl)/(Re+Rl)))
```

Scilab code Exa 6.10 circuit input and output impedance and voltage gain

```
//chapter 6
//example 6.10
//page 273
printf("\n")
hie=2.1*10^3; hfe=75; Re=4.7*10^3; Rc=3.9*10^3; Rl=82*10^3;
hib=hie/(1+hfe)
hfb=hfe/(1+hfe)
final put impedance is %3.2 fohm\n", Zi)
Zo=Rc;
printf("input impedance is %3.2 fohm\n", Zo)
Av=(hfb*((Rc*R1)/(Rc+R1)))/hib;
printf(" voltage gain is %3.2 f\n", Av)
```

Scilab code Exa 6.11 input impedance and voltage gain when C1 is disconnected

```
1 //chapter 6
2 //example 6.11
```

```
3 //page 273
4 printf("\n")
5 printf("given")
6 hib=27.6; hfb=.987; R1=68*10^3; R2=56*10^3; Re=4.7*10^3;
    Rc=3.9*10^3; R1=82*10^3;
7 Rb=(R1*R2)/(R1+R2);
8 Ze=hib+Rb*(1-hfb)
9 Zi=(Ze*Re)/(Ze+Re)
10 Av=(hfb*((Rc*R1)/(Rc+R1)))/(hib+Rb*(1-hfb))
```

Scilab code Exa 6.12 calculate vo

```
1 //chapter 6
2 //example 6.12
3 //page 277
4 printf("\n")
5 printf("given")
6 Rc=5.6*10^3; R1=33*10^3; rs=600;
7 hfe=100; hie=1.5*10^3; vs=50*10^-3;
8 disp(" CE circuit operation with vs at transistor
      base and Re bypassed")
9 Av=(hfe*((Rc*R1)/(Rc+R1)))/hie
10 Zb=hie
11 Rb = (R1*R2)/(R1+R2);
12 Zi = (Rb*Zb)/(Rb+Zb)
13 \text{ vi=}(\text{vs*Zi})/(\text{rs+Zi})
14 \text{ vo} = \text{Av} * \text{vi}
15 disp("Cb circuit operation with vs at emitter and
      the base resistor bypassed")
16 Av=(hfe*((Rc*R1)/(Rc+R1)))/hie
17 Ze=hie/(1+hfe)
18 Zi = (Ze*Re)/(Ze+Re)
19 vi=(vs*Zi)/(rs+Zi)
20 \text{ vo} = \text{Av} * \text{vi}
```

Scilab code Exa 6.13 calculate Ic Ie and Ib

```
1 // chapter 6
2 //example 6.13
3 / page 279
4 printf("\n")
5 printf("given")
6 Io=50*10^-9; Vbe=.7; Vbc=-10; Af=.995; Ar=.5; Vt
     =26*10^{-3}; n=2; Vd=-10;
7 x=Vd/(n*Vt);
8 Idc=(Io*((2.73^-x)-1))*10^9;
9 Idc=Io*(-1)
10 y=Vbe/(n*Vt);
11 Ide=Io*((2.73^y)-1)
12 I1=Af*Ide
13 I2=Ar*Idc
14 Ic=I1-Idc
15 Ie=Ide-I2
16 Ib=Ie-Ic
```

Chapter 8

BJT specifications and performance

Scilab code Exa 8.2 output power change

```
1 //chapter 8
2 //example 8.2
3 //page 313
4 printf("\n")
5 printf("given")
6 P2=25*10^-3;//when frequency increase to 20KHz
7 P1=50*10^-3;//when signal frequency is 5KHz
8 Po=10*log10(P2/P1);
9 printf(" output power change in decibels is %ddB\n", Po)
```

Scilab code Exa 8.3 output power change

```
1 //chapter 8
2 //example 8.3
3 //page 314
```

```
4 printf("\n")
5 printf("given")
6 v1=1;// output voltage measured at 5KHz
7 v2=.707;// output voltage measure at 20kHz
8 Po=20*log10(v2/v1);
9 printf(" output power change is %ddB\n",Po)
```

Scilab code Exa 8.4 input capacitance

Scilab code Exa 8.5 input capacitance limited upper cutoff frequency

```
1 //chapter 8
2 //example 8.5
3 //page 319
4 printf("\n")
5 printf("given")
6 R1=100*10^3; R2=47*10^3; Re=4.7*10^3;
7 Cbc=5*10^-12; Cbe=24.4*10^-12; hfe=50; hie=1.3*10^3; hib=24.5; rs=hib; rs=600;
```

```
8 disp(" common emitter circuit")
9 Rb=(R1*R2)/(R1+R2);
10 Zi=(Rb*hie)/(Rb+hie)
11 Cin=1.48*10^-9;
12 f2=1/(2*3.14*Cin*((rs*Zi)/(rs+Zi)));
13 printf("input-capacitance upper cutoff frequency is %dHz\n",f2)
14 disp("common base circuit")
15 Zi=(Re*hib)/(Re+hib)
16 Cin=(Cbe+Cbc)
17 f2=(1/(2*3.14*Cin*((rs*Zi)/(rs+Zi))))*10^-6;
18 printf(" input capacitance upper cutoff when operating as CB circuit with base bypassed to ground is %dMHz\n",f2)
```

Scilab code Exa 8.6 upper 3db frequency

```
1 //chapter 8
2 //example 8.6
3 //page 322
4 printf("\n")
5 printf("given")
6 fT=50*10^6; hfe=50; f2o=60*10^3; Rc=10*10^3;
7 fae=fT/hfe
8 C4=(1/(2*3.14*f2o*Rc))*10^12;
9 printf("capacitance required for C4 to give 60kHz upper cutoff frequency is %dpF\n",C4)
```

Scilab code Exa 8.8 calculate suitable speed up capacitor

```
1 //chapter 8
2 //example 8.8
3 //page 326
```

```
4 printf("\n")
5 printf("given")
6 ton=100*10^-9; Rs=600; Rb=4.7*10^3;
7 C1=(ton/Rs)*10^12;
8 printf(" suitable speed up capacitor is %dpF\n",C1)
9 C1=160*10^-12; //standard value
10 PWmin=(5*Rs*C1);
11 SWmin=5*Rb*C1;
12 fmax=1/(PWmin+SWmin);
13 printf("maximum signal frequency is %dHz\n",fmax)
```

Scilab code Exa 8.9 noise output voltage

Scilab code Exa 8.10 total noise output voltage for amlifier

```
1 //chapter 8
2 //example 8.10
```

```
3 //page 331
4 printf("\n")
5 printf("given")
6 Ic=30*10^-6; Vce=5; eno=354*10^-6;
7 NF=10;
8 F=2.51; //F=antilog(NF/10)
9 Vn=((sqrt(F))*eno)*10^6;
10 printf("total noise output volateg for amplifier is %duV\n", Vn)
```

Scilab code Exa 8.11 calculate maximum Ic

```
1 //chapter 8
2 //example 8.11
3 //page 333
4 printf("\n")
5 printf("given")
6 Pd25=625*10^-3; D=5*10^-3; Vce=10;
7 T2=55;
8 Pdt2=Pd25-D*(T2-25)
9 Pd=Pdt2;
10 Ic=Pd/Vce;
11 printf(" maximum Ic level is %3.5fA\n",Ic)
```

Scilab code Exa 8.13 maximum power dissipation

```
1 //chapter 8
2 //example 8.13
3 //page 335
4 printf("\n")
5 printf("given")
6 Pd=80;
7 Vce=60;
```

Scilab code Exa 8.14 thermal resistance

```
1 //chapter 8
2 //example 8.14
3 //page 339
4 printf("\n")
5 printf("given")
6 Vce=20; Ic=1; T2=90; T1=25;
7 Q=Vce*Ic;
8 Qcs=.4; Qjc=1; //from table
9 Qsa=((T2-T1)/Q)-(Qjc+Qcs)
```

Chapter 10

FET biasing

Scilab code Exa 10.1 Dc load line

```
1 //chapter 10
2 //example 10.1
3 //page 381
4 printf("\n")
5 printf("given")
6 Vdd=22; Rd=2*10^3;
7 disp("when Id=0")
8 Id=0;
9 Vds=Vdd-Id*Rd
10 disp(" at point A Id=0 nad Vds=22")
11 Vds=0;
12 Id=Vdd/Rd
13 disp(" at point B Id=11mA and Vds=0")
```

Scilab code Exa 10.4 determine Idmax and Idmin

```
1 //chapter 10
2 //example 10.4
```

```
3 //page 387
4 printf("\n")
5 printf("given")
6 Idss=8*10^-3; Vpmax=6; Vgs=2.3; Vgsmax=6;
7 Id=Idss*(1-(Vgs/Vgsmax))^2
8 Idss=4*10^-3; Vp=3;
9 Idmin=Idss*(1-(Vgs/Vp))^2
```

Scilab code Exa 10.6 Id max Idmin and Vds

```
1 // chapter 10
2 //example 10.6
3 / \text{page } 393
4 printf("\n")
5 printf("given")
6 Vdd=25; R2=1*10^6; R1=3.8*10^6; Rs=2.5*10^3; Rd
      =2.5*10^3;
7 \text{ Vg} = (\text{Vdd} * \text{R2}) / (\text{R1} + \text{R2})
8 disp("when Id=0")
9 \text{ Id=0};
10 \, \text{Vgs=Vg-Id*Rs}
11 disp(" plot point A at Id=0 and Vgs=5.2")
12 Vgs = 0;
13 Id=Vg/Rs
14 disp(" plot point B at Id=2.08mA and Vgs=0")
15 disp(" where the base line intersect the transfer
       characteristics ")
16 Idmax=3*10^-3; Idmin=2.3*10^-3;
17 Vdsmin=Vdd-Idmax*(Rd+Rs)
18 Vdsmax=Vdd-Idmin*(Rd+Rs)
```

Scilab code Exa 10.7 gate bais circuit

```
1 //chapter 10
2 //example 10.7
3 //page 401
4 printf("\n")
5 printf("given")
6 Id=3*10^-3; Vgs=-2.3; Vdsmin=10; Vdd=25; Vgsoff=-6; Idss = 8*10^-3;
7 Vgs=Vgsoff*(1-sqrt(Id/Idss))
8 Rd=(Vdd-Vdsmin)/Id
```

Scilab code Exa 10.8 self bais circuit

```
1 //chapter 10
2 //example 10.8
3 //page 403
4 printf("\n")
5 printf("given")
6 Id=3*10^-3; Vds=10; Vdd=25; Vgs=2.3;
7 Rs=Vgs/Id
8 Rd=((Vdd-Vds)/Id)-Rs
```

Scilab code Exa 10.9 design voltage divider bais circuit

```
1 //chapter 10
2 //example 10.9
3 //page 405
4 printf("\n")
5 printf("given")
6 Id=3*10^-3; Vds=10; Vdd=25; Vg=5.2; Vgsoff=-6; Idss=8*10^-3; R2=1*10^6;
7 R=(Vdd-Vds)/Id//R=(Rs+Rd)/2
8 Rd=R/2
9 Rs=Rd
```

```
10  Vgs=Id*Rs
11  Vgs=Vgsoff*(1-sqrt(Id/Idss))
12  Vs=Id*Rs
13  Vg=Vs-(-Vgs)
14  R1=((Vdd-Vg)*R2)/Vg
```

Scilab code Exa 10.11 constant current bias circuit

```
1 //chapter 10
2 //example 10.11
3 //page 412
4 printf("\n")
5 printf("given")
6 Vee=20; Id=3*10^-3; Vds=9; Vbe=.7; Vb=0;
7 Ve=Vee-Vbe
8 Re=Ve/Id
9 Re=6.8*10^3; //satnadard value
10 Id=Ve/Re;
11 Idss=16*10^-3; Vgsoff=-8;
12 Vgs=Vgsoff*(1-sqrt(Id/Idss))
13 Vs=Vb-Vgs
14 Vrd=Vee-Vds-Vs
15 Rd=Vrd/Id
```

Scilab code Exa 10.12 determine Id and Vds

```
1 //chapter 10
2 //example 10.12
3 //page 415
4 printf("\n")
5 printf("given")
6 Idss=5*10^-3; Vgsoff=6; Rs=3.3*10^3; Vdd=20; Rd=Rs; disp("when Id=0, Vgs=Vs=0")
```

```
8  Id=0; Vgs=0; Vs=0;
9  disp(" at point A universal transfer characteristic
        Id/Idss and Vgs/Vgsoff=0")
10  Id=1.5*10^-3;
11  Vgs=Id*Rs
12  y=Id/Idss;
13  x=Vgs/Vgsoff;
14  disp(" point B the universal transfer charecteristic
        x=.825 and y=.3")
15  Id=.2*Idss
16  Vds=Vdd-Id*(Rd+Rs)
```

Scilab code Exa 10.13 determine Idmax and Vdsmin

```
1 / \text{chapter } 10
2 //example 10.13
3 //page 416
4 printf("\n")
5 printf("given")
6 Idss=9*10^-3; Vgsoff=7; Vdd=22; R1=4.7*10^6; R2=1*10^6;
      Rs = 2.7 * 10^3; Rd = Rs;
7 \text{ Vg} = (\text{Vdd} * \text{R2}) / (\text{R1} + \text{R2})
8 disp("when Vgs=0, Vgs/Vgsoff=0")
9 Id=Vg/Rs
10 disp("when Vgs/Vgsoff=.5")
11 Vgs=.5*(-Vgsoff)
12 Id=(Vg-Vgs)/Rs
13 x = Id/Idss
14 disp(" point Y on universal characteristic x=.3 and
      Vgs/Vgsoff=.5")
15 disp("draw voltage divider bias line through X nad Y
       where bisa line intersect transfer curve")
16 Id=.29*Idss
17 Vds=Vdd-Id*(Rd+Rs)
```

Scilab code Exa 10.14 determine Id and Vds

```
1 //chapter 10
2 //example 10.14
3 //page 419
4 printf("\n")
5 printf("given")
6 Vdd=40; R2=1*10^6; R1=5.6*10^6; Rd=4.7;
7 Vg=(Vdd*R2)/(R1+R2)
8 disp("from the point where the bias line intersect the transfer curve")
9 Id=6.2
10 Vds=Vdd-Id*Rd
```

Scilab code Exa 10.16 design JFET switching

```
1 //chapter 10
2 //example 10.16
3 //page 422
4 printf("\n")
5 printf("given")
6 rDS=25; Vgsoff=10; Vds=200*10^-3; Vdd=12;
7 Id=Vds/rDS
8 Rd=Vdd/Id
9 Vi=-(Vgsoff+1)
```

Scilab code Exa 10.17 determine suitable resistance and calculate Vds

```
1 / chapter 10
```

Chapter 11

Ac analysis of FEt circuits

Scilab code Exa 11.2 circuit input and output impedance and voltage gain

```
//chapter 11
//example 11.2
//page 443
printf("\n")
printf("given")
Yos=10*10^-6; Yfs=3000*10^-6; R1=1*10^6; R2=5.6*10^6; Rd=2.7*10^3; R1=Rd;
rd=1/Yos
Zi=((R1*R2)/(R1+R2))*10^-3;
printf("input impedance is %dKohm\n", Zi)
Zo=(Rd*rd)/(Rd+rd);
printf(" output inpedance is %dohm\n", Zo)
Av=-Yfs*((R1*rd)/(R1+rd))
```

Scilab code Exa 11.3 gate input and source output impedance and voltage gain

```
1 / chapter 11
```

Scilab code Exa 11.4 circuit input and output impedance and voltage gain

```
1 //chapter 11
2 //example 11.4
3 //page 451
4 printf("\n")
5 printf("given")
6 Yfs=3000*10^-6; Rgs=100*10^6; rd=50*10^3; Rs=5.6*10^3;
    Rl=12*10^3; R1=1.5*10^6; R2=1*10^6;
7 Zg=Rgs*(1+Yfs*((Rs*R1)/(Rs+R1)))
8 Zi=(R1*R2)/(R1+R2)
9 Zs=((1/Yfs)*rd)/((1/Yfs)+rd)
10 Zo=(Rs*Rl*(1/Yfs))/(Rs*Rl+Rs*(1/Yfs)+Rl*(1/Yfs))
11 Av=-(Yfs*((Rs*Rl)/(Rs+Rl)))/(1+Yfs*((Rs*Rl)/(Rs+Rl)))
    )
```

Scilab code Exa 11.5 circuit and device input and output impedance and voltage gain

```
//chapter 11
//example 11.5
//page 456
printf("\n")
printf("given")
Yfs=3000*10^-6;rd=50*10^3;Rs=3.3*10^3;Rd=4.7*10^3;Rl=50*10^3;rs=600;
Zs=1/Yfs
Zi=((1/Yfs)*Rs)/((1/Yfs)+Rs)
Zd=rd
Zo=(Rd*rd)/(Rd+rd)
Av=Yfs*((Rd*Rl)/(Rd+Rl))
disp("overall volateg gain")
Av=(Yfs*((Rd*Rl)/(Rd+Rl))*Zi)/(rs+Zi)
```

Scilab code Exa 11.6 output voltage

```
1 //chapter 11
2 //example 11.6
3 / page 459
4 printf("\n")
5 printf("given")
6 Yfs=6000*10^-6; R1=100*10^3; R2=47*10^3; vs=50*10^-3; Rd=100*10^3
      =2.7*10^3; R1 =33*10^3; vs =50*10^-3; rs =600; Rs =Rd;
7 disp(" CS circuit")
8 Av = -Yfs*((Rd*R1)/(Rd+R1))
9 Zi = (R1*R2)/(R1+R2)
10 vi=(vs*Zi)/(rs+Zi)
11 vo = Av * vi
12 disp("CG circuit")
13 Av=Yfs*((Rd*R1)/(Rd+R1))
14 Zi = ((1/Yfs)*Rs)/((1/Yfs)+Rs)
15 \text{ vi=(vs*Zi)/(rs+Zi)}
16 vo=Av*vi
```

Scilab code Exa 11.7 input capacitance limited cutoff frequency

Chapter 12

Small signal Amplifiers

Scilab code Exa 12.1 required capacitance and voltage gain at different frequency

```
1 //chapter 12
2 //example 12.1
3 / page 474
4 printf("\n")
5 printf("given")
6 hfe=50; hie=1*10^3; hib=20; f1=100; Rc=3.3*10^3; Re=Rc;
7 disp(" required capacitance")
8 \text{ Xc2=hib};
9 C2=1/(2*3.14*f1*Xc2)
10 disp(" voltage gain with emitter terminal completely
      bypassed to ground")
11 Av=-(hfe*Rc)/hie
12 disp("voltage gain when f=100")
13 Av=-(hfe*Rc)/sqrt(((hie^2)+((1+hfe)*Xc2)^2))
14 disp(" voltage gain when C2 is incorrectly selected
      as Xc2=Re/10")
15 Avx=-(hfe*Rc)/sqrt(((hie^2)+((1+hfe)*(Re/10))^2))
```

Scilab code Exa 12.2 suitable resistor for common emitter amplifier

Scilab code Exa 12.3 suitable capacitor for CE

```
1 //chapter 12
2 //example 12.3
3 //page 477
4 printf("\n")
5 printf("given")
6 hfe=100; Ie=1.3*10^-3; f1=100; R1=120*10^3; R2=39*10^3; rs=600; R1=R1;
7 re=(26*10^-3)/Ie
8 Xc2=re;
9 C2=1/(2*3.14*f1*Xc2)
10 hie=(1+hfe)*re
11 Zi=(R1*R2*hie)/(R1*R2+R1*hie+R2*hie)
12 C1=1/((2*3.14*f1*((Zi+rs)/10)))
13 C3=1/(2*3.14*f1*((Rc+R1)/10))
```

Scilab code Exa 12.4 suitable resistor for common source circuit

```
1 //chapter 12
2 //example 12.5
3 //page 485
4 printf("\n")
5 printf("given")
6 rs=600;f1=100;Yfs=6000*10^-6;R1=4.7*10^6;R2=1*10^6;
    Rd=6.8*10^3;R1=120*10^3;
7 Xc2=1/Yfs
8 C2=1/(2*3.14*f1*Xc2)
9 Zi=(R1*R2)/(R1+R2)
10 C1=1/(2*3.14*f1*(Zi+rs)/10)
11 C3=1/(2*3.14*f1*(Rd+R1)/10)
```

Scilab code Exa 12.5 suitable resistor for common source amplifier

```
1 //chapter 12
2 //example 12.5
3 //page 485
4 printf("\n")
5 printf("given")
6 rs=600;f1=100;Yfs=6000*10^-6;R1=4.7*10^6;R2=1*10^6;
    Rd=6.8*10^3;R1=120*10^3;
7 Xc2=1/Yfs
8 C2=1/(2*3.14*f1*Xc2)
9 Zi=(R1*R2)/(R1+R2)
10 C1=1/(2*3.14*f1*(Zi+rs)/10)
11 C3=1/(2*3.14*f1*(Rd+R1)/10)
```

Scilab code Exa 12.7 analyze two stage amplifier

Scilab code Exa 12.8 resistor for two stage direct coupled amplifier

```
1 / chapter 12
2 //example 12.8
3 / page 491
4 printf("\n")
5 printf("given")
6 Ve1=5; Vce1=3; Vce2=3; Vbe=.7; Vcc=14; R1=40*10^3;
7 \text{ Vb2=Ve1+Vce1}
8 \text{ Vc1=Vb2};
9 \text{ Ve2=Vb2-Vbe}
10 Vr5=Vcc-Ve2-Vce2
11 R5=R1/10//use 3.9Kohm satandard value
12 R5=3.9*10^3;
13 Ic2=Vr5/R5
14 R6=Ve2/Ic2//use 8.2Kohm as standard and recalculate
15 R6=8.2*10<sup>3</sup>;
16 \text{ Ic2=Ve2/R6}
17 Vr3=Vcc-Vc1
18 disp("Ic1>>Ib2, select Ic1=ImA")
```

Scilab code Exa 12.9 capacitor for two stage direct coupled amplifier

```
1 / chapter 12
2 //example 12.9
3 / page 493
4 printf("\n")
5 printf("given")
6 hfe=50; re=26; R1=68*10^3; R2=47*10^3; rs=600; f1=75; R5
       =3.9*10^3; R1=40*10^3;
7 \text{ hie}=(1+\text{hfe})*\text{re}
8 Zi=(R1*R2*hie)/(R1*R2+R1*hie+R2*hie)
9 \text{ Xc1}=(\text{Zi+rs})/10
10 C1=1/(2*3.14*f1*Xc1)
11 \text{ Xc2=.65*re}
12 Xc3=Xc2;
13 C2=1/(2*3.14*f1*Xc2)
14 C3 = C2;
15 \text{ Xc4} = (R5 + R1) / 10
16 \quad C4=1/(2*3.14*f1*Xc4)
```

Scilab code Exa 12.10 minimum overall voltage gain

Scilab code Exa 12.11 resistor for two stage amplifier

```
1 //chapter 12
2 //example 12.11
3 / page 497
4 printf("\n")
5 printf("given")
6 Vp=100*10^{-3}; Rl=100; Vbe=.7; Vcc=20;
7 ip=Vp/R1
8 disp("select Ie2>ip")
9 Ie2=2*10^-3;
10 Ve1=5; Vce1=3;
11 Vb2=Ve1+Vce1
12 \text{ Vc1=Vb2};
13 Ve2=Vb2-Vbe
14 R5=Ve2/Ie2//use 3.3Kohm standard value
15 R5=3.3*10^3;
16 \text{ Ic1=1*10^--3};
17 Vr3=Vcc-Vb2
18 R3=Vr3/Ic1
19 R4=Ve1/Ic1//use 4.7Kohm standard value
20 R4 = 4.7 * 10^3;
21 \text{ Vb1} = \text{Ic1} * \text{R4} + \text{Vbe}
```

```
22 R2=10*R4
23 R1=((Vcc-Vb1)*R2)/Vr2
```

Scilab code Exa 12.12 suitable capacitor for circuit

```
1 / chapter 12
2 //example 12.11
3 / page 498
4 printf("\n")
5 printf("given")
6 rs=600; Ie1=1*10^-3; hfe=50; R1=120*10^3; R2=47*10^3; f1
      =150; Ie2=2*10^-3; R5=3.3*10^3; R3=12*10^3; R1=100;
7 \text{ re} = 26 * 10^{-3} / \text{Ie} 1
8 \text{ hie} = (1 + \text{hfe}) * \text{re}
9 Zi = (R1*R2*hie)/(R1*R2+R1*hie+R2*hie)
10 Xc1 = (Zi + rs)/10
11 C1=1/(2*3.14*f1*Xc1)/use 6*10^-6 as standard value
12 Xc2=.65*re
13 C2=1/(2*3.14*f1*Xc2)
14 re2=26*10^-3/Ie2
15 Zo=(R5*(re2+R3/hfe))/(R5+(re2+R3/hfe))
16 \text{ Xc3} = .65 * (R1 + Zo)
17 C3=1/(2*3.14*f1*Xc3)
```

Scilab code Exa 12.13 analyze two stage amplifier and determine minimum voltage gain

```
1 //chapter 12
2 //example 12.13
3 //page 499
4 printf("\n")
5 printf("given")
```

Scilab code Exa 12.14 Dc feedback pair with an emitter follower output

```
1 //chapter 12
2 //example 12.14
3 //page 503
4 printf("\n")
5 printf("given")
6 vp=50*10^-3; R1=50; Ve2=5; Vcc=12; Vbe=.7; hFE=70; hfe
      =100; R2=120*10^3; f1=150; R3=150*10^3; R1=5.6*10^3;
      R4 = 2.2 * 10^3;
7 ip=vp/R1
8 disp("select Ie2>ip")
9 Ie2=2*10^-3;
10 R4=Ve2/Ie2//use standard 2.2Kohm
11 R4=2.2*10^3;
12 \text{ Ie}2=\text{Ve}2/\text{R}4
13 Ic1=1*10^-3;
14 \text{ Vr1=Vcc-(Vbe+Ve2)}
15 R1=Vr1/Ic1//use 5.6kohm and recalculate
16 R1=5.6*10^3;
17 Ic1=Vr1/R1
18 \quad Ib1=Ic1/hFE
19 hie=hfe*(26*10^-3/Ic1)
20 hie2=hfe*((26*10^-3)/(2.27*10^-3))
21 \text{ Zi1=}(R2*hie)/(R2+hie)
```

```
22 Xc1=Zi1/10

23 C1=1/(2*3.14*f1*Xc1)

24 Xc2=R3/100

25 C2=1/(2*3.14*f1*Xc2)

26 Zo=(((hie2+R1)/hfe)*R4)/(((hie2+R1)/hfe)+R4)

27 Xc3=R1+Zo

28 C3=1/(2*3.14*f1*Xc3)
```

Scilab code Exa 12.15 suitable resistor for BIBET amplifier

```
1 //chapter 12
2 //example 12.15
3 //page 407
4 printf("\n")
5 printf("given")
6 Vgsoff=-6; Idss=20*10^-3; Yfs=4000*10^-6; Id=2*10^-3;
      Vcc=20; Zi=500*10^3; R2=560*10^3; R1=80*10^3; Vbe=.7;
      Vce=3;
7 Vgs=Vgsoff*(1-sqrt(Id/Idss))
8 \text{ Vds} = (-\text{Vgsoff}) + 1 - (-\text{Vgs})
9 \text{ Vr3}=(\text{Vcc}-\text{Vds})/2
10 Vr4=Vr3;
11 R3=Vr4/Id//use 3.9kohm as standard and recalculate
      Vr3 and Vr4
12 R4=R3;
13 R4=3.9*10^3;
14 Vr3=Id*R4
15 Vr4=Vr3;
16 Vr2=Vr4-(-Vgs)
17 \text{ Vr1=Vcc-Vr2}
18 R1 = (Vr1 * R2) / Vr2
19 R6 = R1/10
20 \text{ Vr5=Vr3-Vbe}
21 Vr6=Vcc-Vr5-Vce
22 \text{ Ic2=Vr6/R6}
```

Scilab code Exa 12.16 suitable capacitor For BIFET direct coupled amplifier

```
1 / chapter 12
2 //example 12.16
3 //page 508
4 printf("\n")
5 printf("given")
6 R1=2.7*10^6; R2=560*10^3; f1=150; Yfs=8000*10^-6; Ie
       =1.2*10^{-3}; R1=80*10^{3}; R6=8.2*10^{3};
7 \text{ Zi} = (R1*R2)/(R1+R2)
8 \text{ Xc1}=\text{Zi}/10
9 C1=1/(2*3.14*f1*Xc1)
10 \text{ Xc2} = .65/\text{Yfs}
11 C2=1/(2*3.14*f1*Xc2)//use 15pF as standard value
12 \text{ re} = 26 * 10^{-3} / \text{Ie}
13 \text{ Xc3} = .65 * \text{re}
14 \quad C3=1/(2*3.14*f1*Xc3)
15 \text{ Xc4} = (R6 + R1) / 10
16 \quad C4 = 1/(2*3.14*f1*Xc4)
```

Scilab code Exa 12.17 determine minimum overall voltage gain

```
8 Av1=-Yfs*((R3*Zi2)/(R3+Zi2))
9 Av2=-(hfe*((R6*R1)/(R6+R1)))/Zi2
10 disp("overall voltage is Av=Av1*Av2")
11 Av=Av1*Av2
```

Scilab code Exa 12.18 suitable resistor for differential amplifier

Scilab code Exa 12.19 suitable capacitor value for amplifier and voltage gain

```
1 //chapter 12
2 //example 12.19
3 //page 517
4 printf("\n")
5 printf("given")
6 f1=60; Ie=1.13*10^-3; hfe=60; Rb=3.9*10^3; Rl=70*10^3; Rc=6.8*10^3;
```

```
7 re=26*10^-3/Ie//use 20 as standard value
8 re=20;
9 hie=hfe*re
10 Zb=2*hie
11 Zi=(Rb*Zb)/(Rb+Zb)
12 C1=1/(2*3.14*f1*Zi)
13 C2=1/(2*3.14*f1*(R1/10))
14 Av=(hfe*((Rc*R1)/(Rc+R1)))/(2*hie)
```

Scilab code Exa 12.20 suitable resistor for cascode amplifier

```
1 / chapter 12
2 //example 12.20
3 //page 521
4 printf("\n")
5 printf("given")
6 Vcc=20; Rl=90*10^3; hfe=50; hie=1.2*10^3; hib=24; Vce=3;
      Vce1=Vce; Ve=5; Vbe=.7;
7 Rc=R1/10//use 8.2kohm as standard value
8 Rc=8.2*10^3;
9 Vrc=Vcc-Vce-Vce1-Ve
10 Ic=Vrc/Rc
11 Re=Ve/Ic
12 Re=4.7*10^3; //use 4.7 as standard value
13 R3 = 10 * Re
14 \quad Vb1 = Ve + Vbe
15 I3=Vb1/R3
16 Vb2=Ve+Vce+Vbe
17 Vr2=Vb2-Vb1
18 R2 = Vr2/I3
19 R1=(Vcc-Vb2)/I3
```

Scilab code Exa 12.21 suitable capacitor for cascode circuit

```
1 //chapter 12
2 //example 12.21
3 //page 522
4 printf("\n")
5 printf("given")
6 f1=25; R2=24.7*10^3; R3=47*10^3; hie=1.2*10^3; hib=24; Rc =9*10^3; R1=90*10^3;
7 Zi=(R2*R3*hie)/(R2*R3+R2*hie+R3*hie)
8 C1=1/(2*3.14*f1*(Zi/10))
9 C2=1/(2*3.14*f1*(hie/10))
10 C3=1/(2*3.14*f1*hib)
11 C4=1/(2*3.14*f1*(Rc+R1)/10))
```

Scilab code Exa 12.22 resonance frequency voltage gainbandwidth of amplifier

```
1 // chapter 12
2 //example 12.22
3 //page 525
4 printf("\n")
5 printf("given")
6 hie=1*10^3; hfe=50; hoe=10*10^-6; Cc=5*10^-12; Cp
      =330*10^{-12}; Lp=75*10^{-6}; Rw=1; Rl=5*10^{3}; hfb=50; fo
      =1*10^6;
7 fo=1/(2*3.14*sqrt(Lp*(Cp+Cc)))
8 printf("resonance frequency is %3fHz\n",fo)
9 Zp=Lp/((Cp+Cc)*Rw)
10 \text{ Rc}=1/\text{hoe}
11 RL=(Zp*Rc*Rl)/(Rl*Rc+Rc*Zp+Rl*Zp);
12 RL=4.7*10^3; //as standard value
13 Av=(hfb*RL)/hie;
14 printf(" voltage gain is %d\n", Av)
15 Qp = ((Rc*R1)/(Rc+R1))/(2*3.14*fo*Lp)
16 \quad QL = (2*3.14*fo*Lp)/Rw
17 disp("since QL>Qp")
```

```
18 B=fo/Qp;
19 printf("bandwidth is %dHz\n",B)
```

Scilab code Exa 12.23 resonance frequency voltage gainbandwidth of amplifier

```
1 / chapter 12
2 //example 12.23
3 //page 528
4 printf("\n")
5 printf("given")
6 hie=1*10^3; hfe=50; hoe=10*10^-6; Cc=5*10^-12; Cp
      =330*10^{-12}; Lp=75*10^{-6}; Rw=1; R1=5*10^{3}; fo=1*10^{6};
      zP = 224*10^3; rC = 100*10^3; K = .015; Ls = 50*10^-6;
7 RL = (Zp*Rc)/(Rc+Zp)
8 disp("voltage gain from the input to the primary
     memory winding")
9 Avp=(hfe*RL)/hie
10 Vsp=K*sqrt(Ls/Lp)
11 disp("overall voltage gain from the input to teh
      secondary winding")
12 Av=Avp*Vsp
13 Qp=Rc/(2*3.14*fo*Lp)
14 Q1=471;
15 Q=(Ql*Qp)/(Ql+Qp)
16 B=fo/Q;
17 printf("bandwidth is %dHz\n",B)
```

Scilab code Exa 12.24 capacitor to resonate secondry and overall voltage gain

```
1 //chapter 12
2 //example 12.24
```

```
3 / page 530
4 printf("\n")
5 printf("given")
6 f=1*10^6; L2=50*10^-6; K=.015; L1=75*10^-6; rs=5; Rw=1; Lp
      =100*10^{-6}; Cp=330*10^-12; Cc=5*10^-12; Rc=100*10^3;
      hfe=50; hie=1*10^3;
7 C2=1/(((2*3.14*f)^2)*L2)
8 \text{ M=K*sqrt}(L1*L2)
9 Rs=(((2*3.14*f)^2)*(M)^2)/rs
10 \text{ Rp=Rs+Rw}
11 Zp=Lp/((Cp+Cc)*Rp)
12 R1=(Zp*Rc)/(Zp+Rc)
13 disp("voltage gain from the input to primary winding
      ")
14 \text{ Avp=(hfe*Rl)/hie}
15 Vsp=12.2*10^-3;
16 \text{ Vos} = ((2*3.14*f)*L2)/rs
17 disp("overall voltage gain from the input to
      secondary winding ")
18 \text{ Av=Avp*Vos*Vsp}
```

Chapter 13

Amplifier with negative feedback

Scilab code Exa 13.1 closed loop gain for negative feedback amplifier

```
1 //chapter 13
2 //example 13.1
3 //page 547
4 printf("\n")
5 printf("given")
6 Av=100000; B=1/100;
7 disp("when Av=100000")
8 Acl=Av/(1+Av*B)
9 disp("when Av is 150000")
10 Av=150000;
11 Acl=Av/(1+Av*B)
12 disp("when Av is 50000")
13 Av=50000;
14 Acl=Av/(1+Av*B)
```

Scilab code Exa 13.2 input impedance with negative feedback

Scilab code Exa 13.3 input and output impedance when negative feedback

```
//chapter 13
//example 13.3
//page 552
printf("\n")
printf("given")

Zb=1*10^3; B=1/100; Av=5562; R1=68*10^3; R2=47*10^3; hoe
=1/(50*10^3); Rc=3.9*10^3;

Zi=(1+Av*B)*Zb
Zin=(R1*R2*Zi)/(R1*R2+R2*Zi+R1*Zi)
Zo=(1/hoe)/(1+Av*B)
Zout=(Rc*Zo)/(Rc+Zo);
printf(" circuit output impedance is %dohm\n", Zout)
```

Scilab code Exa 13.4 circuit input and output impedance and voltage gain without feedback

```
1 / chapter 13
```

Scilab code Exa 13.5 two stage coupled BJT use as voltage feedback

```
1 //chapter 13
2 //example 13.5
3 //page 558
4 printf("\n")
5 printf("given")
6 Rf2=220; R4=3.9*10^3; Acl=75; f=100;
7 Rf1=(Acl-1)*Rf2
8 Xc2=Rf2;
9 C2=1/(2*3.14*f*Rf2)
10 Xcf1=Rf1/100;
11 Cf1=1/(2*3.14*f*Xcf1)
```

Scilab code Exa 13.6 modify direct coupled amplifier to use as series voltage negative feedback

```
1 / chapter 13
```

```
2 //example 13.6
3 //page 560
4 printf("\n")
5 printf("given")
6 Acl=300; Rf2=220; R4=4.7*10^3; f=100;
7 Rf1=(Acl-1)*Rf2
8 xc2=Rf2;
9 C2=1/(2*3.14*f*Rf2)
```

Scilab code Exa 13.7 calculate resistor value

```
1 // chapter 13
\frac{2}{\sqrt{\text{example }}} 13.7
3 //page 565
4 printf("\n")
5 printf("given")
6 hfe=100; Vbe=.7; Ic1=1*10^-3; Ic2=Ic1; Ic3=Ic2; Ic4=Ic3;
      Vee=10; Vce=3; Acl=33;
7 disp("different resistor value of circuit")
8 R1=Vbe/((10*Ic1)/hfe)
9 R3=(Vee-Vbe)/(Ic1+Ic2)
10 Vr2=Vee+Vbe-Vce
11 R4=Vr2/Ic1
12 R2=R4;
13 R7 = (Vr2 - Vbe) / (Ic3 + Ic4)
14 R8 = Vee/Ic3
15 R6=6.8*10^3;
16 R5 = (Acl -1) *R6
```

Scilab code Exa 13.8 calculate Acl Zin and Zout

```
1 //chapter 13
2 //example 13.8
```

Scilab code Exa 13.9 calculate output impedance for circuit modification

Scilab code Exa 13.10 calculate precise value of circuit voltage gain

```
1 //chapter 13
2 //example 13.10
3 //page 570
4 printf("\n")
```

Scilab code Exa 13.11 modify Ce amplifier to use emitter current feedback to give Av 70

Scilab code Exa 13.12 suitable emitter resistor value

```
1 //chapter 13
2 //example 13.12
3 //page 573
4 printf("\n")
```

Scilab code Exa 13.13 suitable capacitor for two stage circuit

```
1 / chapter 13
2 //example 13.13
3 / page 574
4 printf("\n")
5 printf("given")
6 f=100; hie=2*10^3; hfe=100; R8=12*10^3; R1=120*10^3; R10
      =3.9*10^3; R6=R1; R7=39*10^3; R3=R8; R4=220; rs=600;
      Zin2=16*10^3; R9=330;
7 Zb=hie+R4*(1+hfe)
8 Zin=(R1*R2*Zb)/(R1*R2+R1*Zb+R2*Zb)
9 C1=1/(2*3.14*f*((Zin+rs)/10))
10 Xc2 = .65 * R4:
11 C2=1/(2*3.14*f*Xc2)
12 C3=1/(2*3.14*f*((Zin2+R3)/10))
13 C4=1/(2*3.14*f*.65*R9)
14 \quad C5=1/(2*3.14*f*((R8+R1)/10))
```

Scilab code Exa 13.14 determine current gain and input impedance

```
1 //chapter 13
2 //example 13.14
3 //page 580
4 printf("\n")
5 printf("given")
6 hfe=100; hie=2*10^3; R4=100; R1=5.6*10^3; R6=2.2*10^3;
7 Zi=hie+(1+hfe)*R4
8 disp("open loop current gain")
9 Ai=(hfe*hfe*R1)/(R1+Zi)
10 B=R4/(R4+R6)
11 disp("closed loop gain")
12 Acl=Ai/(1+Ai*B)
13 Zi=hie/(1+Ai*B)
```

Scilab code Exa 13.15 calculate total harmonic

```
1 //chapter 13
2 //example 13.15
3 //page 585
4 printf("\n")
5 printf("given")
6 Av=60000; Acl=300; f1=15*10^3; B=1/300;
7 f2=(Av*f1)/Acl
8 disp("% distortion with NFB")
9 NFB=(.1/(1+Av*B))*100;
10 printf(" percenatge distortion with NFB is %3.3 f\n", NFB)
```

Chapter 14

Ic operational Amplifier and basic Op amp circuits

Scilab code Exa 14.1 calculate maximum resistance

```
1 //chapter 14
2 //example 14.1
3 //page 597
4 printf("\n")
5 printf("given")
6 Vbe=.7; Ib=500*10^-9;
7 R1=Vbe/(10*Ib);
8 R1=120*10^3//use standard value
9 R2=R1;
10 I2=100*Ib
11 Vr1=15; Vr2=Vr1;
12 R1=Vr1/I2
13 R1=270*10^3; // use satndard value
14 R2=R1;
15 R3=(R1*R2)/(R1+R2)
```

Scilab code Exa 14.2 suitable resistor for BIFET op amp is used

```
1 //chapter 14
2 //example 14.2
3 //page 599
4 printf("\n")
5 printf("given")
6 R2=1*10^6; Vb=3; Vo=3; Vee=9;
7 Vr2=Vb-(-Vee)
8 Vr1=Vee-Vb
9 I2=Vr2/R2
10 R1=Vr1/I2
11 R3=0
```

Scilab code Exa 14.3 typical difference between input and out voltage and Zin and Zout

```
1 //chapter 14
2 //example 14.3
3 //page 601
4 printf("\n")
5 printf("given")
6 Av=200000; ri=2*10^6; ro=75; Vo=1; B=1;
7 Vd=Vo/Av
8 Zi=(1+Av*B)*ri
9 Zo=ro/(1+Av*B)
```

Scilab code Exa 14.4 capacitor coupled voltage follower usin 741 op amp

```
1 //chapter 14
2 //example 14.4
3 //page 603
4 printf("\n")
```

```
5 printf("given")
6 f=70;Rl=4*10^3;Ib=500*10^-9;Vbe=.7;
7 R1=Vbe/(10*Ib)
8 R1=120*10^3;//use standard value
9 R2=R1;
10 disp(" desire value of capacitor is C=1/2*3.14*f*R")
11 C2=1/(2*3.14*f*R1)
12 C1=1/(2*3.14*f*(R1/10))
```

Scilab code Exa 14.5 direct coupled non inverting amplifier

```
1 //chapter 14
2 //example 14.5
3 //page 605
4 printf("\n")
5 printf("given")
6 Ib=500*10^-9; Vi=50*10^-3; Vo=2;
7 I2=100*Ib;
8 R3=Vi/I2
9 R2=(Vo/I2)-R3
10 R1=(R2*R3)/(R2+R3)
```

Scilab code Exa 14.6 typical input and output impedances for non inverting

```
1 //chapter 14
2 //example 14.6
3 //page 606
4 printf("\n")
5 printf("given")
6 Av=200000; ri=2*10^6; ro=75; R3=1*10^3; R2=39*10^3; B=R3/(R2+R3)
8 Zi=(1+Av*B)*ri
```

```
9 printf(" typical input impedance for non-inverting
        amplifier is %dohm\n",Zi)
10 Zo=ro/(1+Av*B)
```

Scilab code Exa 14.7 voltage gain and lower cutoff frequency

```
1 //chapter 14
2 //example 14.7
3 //page 607
4 printf("\n")
5 printf("given")
6 R2=50*10^3; R3=2.2*10^3; C2=8.2*10^-6; R1=600;
7 disp("voltage gain ")
8 Ac1=(R3+R2)/R3
9 disp("lower cuttoff frequency ")
10 f=1/(2*3.14*C2*R1)
```

Scilab code Exa 14.8 direct coupled inverting amplifier

```
1 //chapter 14
2 //example 14.8
3 //page 610
4 printf("\n")
5 printf("given")
6 Acl=144; Vi=20*10^-3; Ib=500*10^-9;
7 I1=100*Ib
8 R1=Vi/I1
9 R1=390; //use standard value
10 R2=Acl*R1
11 R3=(R1*R2)/(R1+R2)
```

Scilab code Exa 14.9 design three input summing amplifier

```
1 //chapter 14
2 //example 14.9
3 //page 612
4 printf("\n")
5 printf("given")
6 Acl=3;R4=1*10^6;Vi=1;
7 R1=R4/Acl
8 R1=330*10^3;//use standard value
9 R2=R1;R3=R1;
10 I1=Vi/R1
11 I2=I1;I3=I1;
12 I4=I1+I2+I3
13 Vo=-I4*R4
```

Scilab code Exa 14.10 suitable resistor for 741 op amp

```
1 //chapter 14
2 //example 14.10
3 //page 615
4 printf("\n")
5 printf("given")
6 Ib=500*10^-9; Vi=1; Acl=10;
7 I1=100*Ib
8 R1=Vi/I1
9 R1=18*10^3; //use standard value
10 R2=Acl*R1
11 R4=R1
12 R3=R1/Acl
```

Scilab code Exa 14.11 overall voltage gain for instrumentation amplifier

```
1 / chapter 14
2 //example 14.11
3 / page 619
4 printf("\n")
5 printf("given")
6 Vi=10*10^-3; Vn=1; R1=33*10^3; R2=300; R5=15*10^3; R4
      =15*10^3; Vi2=-10*10^-3; R3=R1; R6=15*10^3; R7=R6;
7 Acl=((2*R1+R2)/R2)*(R5/R4)
8 disp("at junction of R1 and R2")
9 Vb = Vi + Vn
10 disp("at junction of R2 and R3")
11 Vc = Vi2 + Vn
12 disp(" current through R2")
13 I2 = (Vb - Vc)/R2
14 disp("at the output of A1")
15 Va=Vb+(I2*R1)
16 disp("at output of A2")
17 Vd=Vc-(I2*R3)
18 disp("at junction of R6 and R7")
19 Vf = Vd * (R7/(R6+R7))
20 disp("at junction of R4 and R5")
21 \text{ Ve=Vf}
22 disp ("current through R4")
23 I4 = (Va - Ve)/R4
24 disp("at output of A3")
25 \text{ Vg=Ve-(I4*R5)}
```

Scilab code Exa 14.12 typical output voltage swingand calculate rise time

```
1 //chapter 14
2 //example 14.12
3 //page 623
4 printf("\n")
5 printf("given")
6 Vcc=15; Vee=-15; Av=200000; SR=.5/10^-6; Vo=14;
```

```
7 V=(Vcc-1)-(Vee+1)
8 Vi=Vo/Av
9 disp("rise time of output is ")
10 t=(V/SR)*10^6;
11 printf("rise time of output is %dus\n",t)
```

Scilab code Exa 14.13 calculate resistor for schmitt trigger circuit

```
1 //chapter 14
2 //example 14.13
3 //page 627
4 printf("\n")
5 printf("given")
6 Ib=500*10^-9; UTP=5; Vcc=15;
7 I1=100*Ib
8 R2=UTP/I1
9 R1=((Vcc-1)-5)/I1
```

Scilab code Exa 14.14 upper and lower trigger for non inverting schmitt trigger

```
1 //chapter 14
2 //example 14.14
3 //page 630
4 printf("\n")
5 printf("given")
6 Vcc=15; Vsat=Vcc; R2=150*10^3; Vf=.7; R1=27*10^3; R3
=120*10^3;
7 I2=(Vsat-Vf)/R2
8 UTP=I2*R1
9 disp(" LTP calculation including Vf")
10 I3=(Vsat-Vf)/R3
11 LTP=-I3*R1
```

Chapter 15

Operational amplifier frequency Response and compensation

Scilab code Exa 15.2 determine suitable component

```
1 //chapter 15
2 //example 15.2
3 //page 648
4 printf("\n")
5 printf("given")
6 R2=1*10^6; Acl=4.5;
7 R1=R2/Acl
8 R1=220*10^3; //use standard value
9 R3=(R1*R2)/(R1+R2)
10 Cf=((R1*30*10^-12)/(R1+R2))*10^12;
11 printf(" suitable value of capacitor is %3.2fpF\n", Cf)
```

Scilab code Exa 15.3 miller effect capacitor

```
1 / chapter 15
```

```
2 //example 15.3
3 //page 649
4 printf("\n")
5 printf("given")
6 f=35*10^3; Rf=68*10^3;
7 Cf=(1/(2*3.14*f*Rf))*10^12;
8 printf(" suitable miller effect capacitor is %dpF\n", Cf)
```

Scilab code Exa 15.5 cutoff frequencies using gain bandwidth

```
1 //chapter 15
2 //example 15.5
3 //page 652
4 printf("\n")
5 printf("given")
6 Acl=100; Av=10;
7 disp(" for Cf=30pF")
8 GBW=800*10^3;
9 F2=GBW/Acl
10 disp(" for Cf=3pF")
11 GBW=(800*10^3)*Av;
12 f2=GBW/Acl
```

Scilab code Exa 15.6 full power bandwidth for AD843 op amp circuit

```
1 //chapter 15
2 //example 15.6
3 //page 654
4 printf("\n")
5 printf("given")
6 Vip=1;R2=39*10^3;R3=4.7*10^3;SR=250/10^-6;f
=100*10^3;
```

```
7 disp(" for the AD843")
8 Vop=((R2+R3)/R3)*Vip
9 fp=SR/(2*3.14*Vop);
10 printf("full power bandwidth is %dHz\n",fp)
11 disp(" for a 741")
12 SR=.5/10^-6;
13 Vp=SR/(2*3.14*f);
14 printf(" maximum peak output voltage is %3.2fV\n",Vp
)
```

Scilab code Exa 15.7 input terminal stray capacitor

```
1 //chapter 15
2 //example 15.7
3 //page 656
4 printf("\n")
5 printf("given")
6 rs=600;R1=1*10^3;R2=10*10^3;f=800*10^3;
7 disp("stray capacitance")
8 Cs=1/(2*3.14*f*10*(((rs+R1)*R2)/(rs+R1+R2)))
9 disp("compensation capacitor")
10 C2=((Cs*(rs+R1))/R2)*10^12;
11 printf("compensation capacitor is %3.2fpF\n",C2)
```

Scilab code Exa 15.8 load capacitance

```
1 //chapter 15
2 //example 15.8
3 //page 659
4 printf("\n")
5 printf("given")
6 ro=25;f=2*10^6;R2=10*10^3;Rx=25;
7 Cl=(1/(2*3.14*f*(10*ro)))*10^+12;
```

```
8 printf(" load capacitance is \%3.2\,\mathrm{fpF}\,\mathrm{n}",C1)

9 Cl=.1*10^-6;

10 C2=((Cl*(ro+Rx))/R2)*10^12;

11 printf(" compensation capacitance is \%\mathrm{dpF}\,\mathrm{n}",C2)
```

Chapter 16

Signal generators

Scilab code Exa 16.1 phase shift oscillator

```
1 / chapter 16
2 //example 16.1
3 //page 6568
4 printf("\n")
5 printf("given")
6 Vcc=10; Ib=500*10^-9; Acl=29; f=1*10^3;
7 disp(" phase shift oscillator")
8 I1 = 100 * Ib
9 vo = Vcc - 1
10 vi=vo/Acl
11 R1=vi/I1
12 R1=5.6*10^3; // use standard value 5.6 Kohm
13 R2 = Ac1 * R1
14 R2=180*10^3; // use satudard value 180Kohm to give Acl
      > 180
15 R3=R2; R=R1;
16 C=1/(2*3.14*R*f*sqrt(6))
```

Scilab code Exa 16.2 colpitts oscillator

```
1 / chapter 16
2 //example 16.2
3 / page 672
4 printf("\n")
5 printf("given")
6 f=40*10^3; L=100*10^-3; vp=8;
7 disp("colpitts oscillator")
8 Ct=1/(4*3.14*3.14*(f^2)*L)
9 C1 = 10 * Ct
10 C2=1/((1/Ct)-(1/C1))
11 C2=180*10^-12; //use standard value
12 \text{ Xc2=1/(2*3.14*f*C2)}
13 Xc1=1/(2*3.14*f*C1)
14 R1=10*Xc1
15 R1=27*10^3; //use standard value
16 \text{ Acl} = \text{C1/C2}
17 R2 = Ac1 * R1
18 R2=270*10^3; //use stabdard value
19 R3 = (R1 * R2) / (R1 + R2)
20 f2=Ac1*f
21 SR = 2*3.14*f*vp
```

Scilab code Exa 16.3 hartley oscillator

```
1 //chapter 16
2 //example 16.3
3 //page 678
4 printf("\n")
5 printf("given")
6 vo=8;f=100*10^3;
7 disp("hartley oscillator")
8 Vcc=vo+1
9 X12=1*10^3;
10 L2=X12/(2*3.14*f)
11 L2=1.5*10^-3;//use standard value
```

Scilab code Exa 16.4 wein bridge oscillator

```
1 //chapter 16
2 //example 16.4
3 / page 680
4 printf("\n")
5 printf("given")
6 f = 100 * 10^3; Vo = 9; Acl = 3;
7 disp(" design of wein bridge oscillator")
8 \quad Vcc = Vo + 1
9 C1=1000*10^-12; //standard value
10 C2 = C1;
11 R1=1/(2*3.14*f*C1)
12 R2=R1; R4=R2;
13 R3=2*R4;
14 R3=3.3*10^3; //use standard value
15 disp(" minimum full power bandwidth")
16 f2=Ac1*f
17 SR = 2 * 3.14 * f * Vo
```

Scilab code Exa 16.5 phase shift oscillator

```
1 / chapter 16
2 //example 16.5
\frac{3}{\text{page }} 683
4 printf("\n")
5 printf("given")
6 f=5*10^3; vo=5; I1=1*10^-3; Vf=.7;
7 disp("phase shift oscillator")
8 R1 = (vo/29)/I1
9 R1=150; //use standard value
10 R2=29*R1
11 R4 = (2*Vf)/I1
12 R4=1.5*10^3; //use 1.5kohm standard value
13 R5 = R2 - R4
14 R6 = .4 * R5
15 R7 = .8 * R5
16 R=R1;
17 C=1/(2*3.14*R*f*sqrt(6))
```

Scilab code Exa 16.6 amplitude stabilization circuit

```
1 //chapter 16
2 //example 16.6
3 //page 686
4 printf("\n")
5 printf("given")
6 rds=600; Vgs=1; Vd1=.7; f=100*10^3;
7 disp("wien bridge ocillator")
8 R4=560;
9 R3=2*((R4*rds)/(R4+rds))
10 I5=200*10^-6; Vo=6;
```

```
11 R6=Vgs/I5
12 R5=(Vo-(Vgs+Vd1))/I5
13 disp(" C4 discharge voltage ")
14 Vc=.1*Vgs
15 disp("C4 discharge time")
16 T=1/f
17 Ic=I5;
18 C4=(Ic*T)/Vc
19 Xc3=rds/10//at oscillating frequency
20 C3=1/(2*3.14*f*Xc3)
```

Scilab code Exa 16.7 square wave generator

```
1 / chapter 16
2 //example 16.7
\frac{3}{\text{page }} 689
4 printf("\n")
5 printf("given")
6 Vo=14; Vr3=.5; Ib=500*10^-9; f=1*10^3;
7 disp("square wave generator")
8 \quad Vcc = Vo + 1
9 UTP=Vr3; LTP=UTP;
10 I2=100*Ib;
11 R3=Vr3/I2
12 R2 = (Vo - Vr3) / I2
13 t=1/(2*f)
14 V = UTP - (-LTP)
15 C1 = .1 * 10^{-6};
16 I1 = (C1 * V) / t
17 R1 = Vo/I1
```

Scilab code Exa 16.8 calculate t1 t2 and pulse frequency

```
1 //chapter 16
2 //example 16.8
3 //page 694
4 printf("\n")
5 printf("given")
6 R1=2.2*10^3; R2=2.7*10^3; C2=.5*10^-6; Vcc=15;
7 t1=.693*C2*(R1+R2)
8 t2=.693*C2*R2
9 T=t1+t2
10 f=1/T
11 Ic1=(Vcc/3)/(R1+R2)
```

Scilab code Exa 16.10 triangular wave generator

```
1 / chapter 16
2 //example 16.10
3 / page 699
4 printf("\n")
5 printf("given")
6 Vcc=9; Vo=3; I1=1*10^-3; f=500; UTP=3;
7 disp("design the triangular wave")
8 \text{ Vi=Vcc-1}
9 V = V_0 - (-V_0)
10 disp(" I1>>Ibmax for op-amp")
11 R1=Vi/I1
12 t=1/(2*f)
13 C1 = (I1 * t) / V
14 disp("schmitt design")
15 I2=1*10^-3;
16 R2=UTP/I2
17 R3 = (Vcc - 1) / I2
```

Scilab code Exa 16.11 wein bridge oscillator

```
1 //chapter 16
2 //example 16.11
3 //page 705
4 printf("\n")
5 printf("given")
6 f=100*10^3; Rs=1.5*10^3;
7 R1=2*Rs
8 R1=2.7*10^3; // use standard value
9 R2=R1+Rs
10 C1=1/(2*3.14*f*R2)
11 R4=R2;
12 R3=2*R4
```

Scilab code Exa 16.12 pierce oscillator and peak power dissipated

Chapter 17

Active filters

Scilab code Exa 17.1 calculate attenuation

```
1 / \text{chapter } 17
2 //example 17.1
3 //page 716
4 printf("\n")
5 printf("given")
6 rs=600; R1=12*10^3; R1=100*10^3; C1=.013*10^-6;
7 disp("when Rl is not connected")
8 fc=1/(2*3.14*R1*C1)
9 disp(" when Rl is connected")
10 fc=1/(2*3.14*((R1*R1)/(R1+R1))*C1)
11 Attn=3//at fc attenuation is =3dB
12 falloffrate=6
13 disp("attenuation at 2fc")
14 Attn=3+6;
15 printf("attenuation at 2fc is %ddB\n", Attn)
16 Attn=3+6+6;
17 printf(" attenuation at 4fc is %ddB\n", Attn)
```

Scilab code Exa 17.2 first order active low pass filter

```
1 //chapter 17
2 //example 17.2
3 //page 718
4 printf("\n")
5 printf("given")
6 Ib=500*10^-9;f=1*10^3;
7 R1=(70*10^-3)/Ib
8 R1=140*10^3;//use standard value
9 R2=R1;
10 C1=(1/(2*3.14*R1*f))*10^12;
11 printf(" capacitor used is of %dpF\n",C1)
```

Scilab code Exa 17.3 first order high pass filterand filter bandwidth

```
1 //chapter 17
2 //example 17.3
3 //page 719
4 printf("\n")
5 printf("given")
6 disp("first order high pass active filter")
7 f=5*10^3;C1=1000*10^-12;fu=1*10^6;
8 R1=1/(2*3.14*f*C1)
9 BW=fu-f;
10 printf(" bandwidth is %dHz\n",BW)
```

Scilab code Exa 17.4 butterworth second order low pass filter

```
1 //chapter 17
2 //example 17.4
3 //page 724
4 printf("\n")
5 printf("given")
6 f=1*10^3; Ib=500*10^-9;
```

```
7 disp("butterworth second order filter")
8 R=(70*10^-3)/Ib
9 R1=R/2
10 R1=68.1*10^3; // use standard value
11 R2=R1;
12 R3=2*R1
13 Xc1=sqrt(2)*R2
14 C1=1/(2*3.14*f*sqrt(2)*R2)
15 C2=2*C1
16 fc=1/(2*3.14*(sqrt(R1*R2*C1*C2)));
17 printf("actual cutoff frequency is %dHz\n",fc)
```

Scilab code Exa 17.5 using BIFET op amp design butterworth second order filter

```
1 //chapter 17
2 //example 17.5
3 //page 7
4 printf("\n")
5 printf("given")
6 f=12*10^3;C1=1000*10^-12;
7 disp("butterworth second order filter")
8 C2=C1;
9 R2=(sqrt(2))/(2*3.14*f*C1)
10 R1=.5*R2
11 R3=R2;
12 fc=1/(2*3.14*(sqrt(R1*R2*C1*C2)));
13 printf("actual cutoff frequency is %dHz\n",fc)
```

Scilab code Exa 17.6 third order low pass filter

```
1 //chapter 17
2 //example 17.6
```

```
\frac{3}{\text{page }} 729
4 printf("\n")
5 printf("given")
6 f = 30 * 10^3; C1 = 1000 * 10^-12;
7 disp(" third order low pass filter")
8 disp("-20 dB per decade stage")
9 fc1=f/.65;
10 R1=1/(2*3.14*fc1*C1)
11 R2=R1;
12 disp("-40dB per decade stage")
13 C3=1000*10^{-12};
14 C2=2*C3
15 \text{ fc2=f/.8}
16 R4=1/(2*3.14*fc2*C3*(sqrt(2)))
17 R3=R4;
18 R5=R3+R4
```

Scilab code Exa 17.7 third order high pass filter

```
1 / chapter 17
2 //example 17.7
3 //page 730
4 printf("\n")
5 printf("given")
6 f = 20 * 10^3;
7 disp("3rd order high pass filter")
8 disp("-20dB per decade stage")
9 R1=121*10^3;
10 \text{ fc1} = .65 * f
11 C1=1/(2*3.14*fc1*R1)
12 //this is so small it might be effected by stray
      capacitor.redesign , first choosing a suitable
      capacitance C1
13 C1 = 100 * 10^{-12};
14 R1=1/(2*3.14*f*C1)
```

```
15 R2=R1;

16 disp("-40dB per decade stage")

17 C3=1000*10^-12;

18 R4=(sqrt(2))/(2*3.14*.8*f*C3)

19 C2=C3;

20 R3=.5*R4

21 R5=R4
```

Scilab code Exa 17.8 single stage band pass filter

```
1 //chapter 17
2 //example 17.8
3 //page 734
4 printf("\n")
5 printf("given")
6 f1=300;f2=30*10^3;
7 disp(" single stage band pass filter")
8 C2=1000*10^-12;
9 R2=1/(2*3.14*f2*C2)
10 R1=R2;
11 Xc1=R1;//at voltage gain Av=1
12 C1=1/(2*3.14*f1*R1)
13 R3=R2
```

Scilab code Exa 17.9 calculate Q factor for wide band filter

```
1 //chapter 17
2 //example 17.9
3 //page 736
4 printf("\n")
5 printf("given")
6 f1=300;f2=30*10^3;
7 fo=sqrt(f1*f2)
```

```
8 \quad BW = f2 - f1
9 \quad Q = fo/BW
```

Scilab code Exa 17.10 center frequency and bandwidth

```
1 //chapter 17
2 //example 17.10
3 //page 737
4 printf("\n")
5 printf("given")
6 R1=60.4*10^3; R4=1.21*10^3; C=.012*10^-6; R2=121*10^3;
7 Q=sqrt((R1+R4)/(2*R4))
8 fo=Q/(3.14*C*R2);
9 printf(" center frequency is %3.2 fHz\n",fo)
10 BW=fo/Q;
11 printf(" bandwidth is %3.1 fHz\n",BW)
```

Scilab code Exa 17.12 state variable band pass filter

```
1 //chapter 17
2 //example 17.12
3 //page 744
4 printf("\n")
5 printf("given")
6 f1=10.3*10^3;f2=10.9*10^3;
7 C1=1000*10^-12;C2=C1;
8 fo=sqrt(f1*f2)
9 R5=1/(2*3.14*fo*C1)
10 R1=R5;
11 Q=fo/(f2-f1)
12 R2=R1*(2*Q-1)
```

Scilab code Exa 17.13 required resistance to operate one half of an MF10

```
1 //chapter 17
2 //example 17.13
3 //page 750
4 printf("\n")
5 printf("given")
6 f1=10.3*10^3;f2=10.9*10^3;Hobp=34;
7 sqrt(f1*f2)
8 Q=fo/(f2-f1)
9 R3=120*10^3;
10 R2=R3/Q
11 R1=R3/Hobp
12 fck=50*fo
```

Chapter 18

Linear and switching voltage regulators

Scilab code Exa 18.1 load and source effects and load and line regulation

```
1 / chapter 18
2 //example 18.1
\frac{3}{\sqrt{\text{page } 761}}
4 printf("\n")
5 printf("given")
6 Vs=21; Vo=12; Av=100;
7 vo=(Vs*.1)/Av;//source effect is 10% of the Vs
8 printf(" source effect is \%3.3\,\mathrm{fV}\,\mathrm{n}",vo)
9 vo = (21-20)/100;
10 printf (" laod effect is \%3.3 \,\mathrm{fV} \,\mathrm{n}", vo)
11 LR = (21*10^{-3} *100)/12;
12 printf("line regulation is \%3.3 fpercentage\n",LR)
13 LR=(10*10^-3*100)/12;
14 printf (" load effect is \%3.3 fpercentage \n", LR)
15 RJ = 20 * log 10 (1/Av);
16 printf("ripple rejection is %ddB\n",RJ)
```

Scilab code Exa 18.2 voltage regulator circuit

```
1 / chapter 18
2 //example 18.2
3 / page 762
4 printf("\n")
5 printf("given")
6 Vo=12; Il=40*10^-3; Vs=20; Vbe=.7;
7 \ Vz = .75 * Vo
8 disp("for minimum D1 current select")
9 Ir2=10*10<sup>-3</sup>;
10 R2 = (Vo - Vz) / Ir2
11 Ie1=I1+Ir2
12 disp("specification for Q")
13 Vce1=20; Vs=Vce1;
14 \text{ Ic1=50*10^--3};
15 Pd = (Vs - Vo) * Ie1
16 hfe=50;
17 Ib1=Ie1/hfe
18 \text{ Ic2=5*10^--3};
19 R1 = (Vs - (Vo + .7)) / (Ic2 + Ib1)
20 Iz=Ie2+Ir2
21 I4=1*10^-3;
22 R4 = (Vz + Vbe) / I4
23 R3=(Vo-(Vz+Vbe))/I4
```

Scilab code Exa 18.3 modify voltage regulator

```
1 //chapter 18
2 //example 18.3
3 //page 765
4 printf("\n")
5 printf("given")
6 I4=1*10^-3; Vb2=9.8;
7 disp(" for Vo=11V moving contact at top of R5")
```

```
8 Vo=11;

9 R3=(Vo-Vb2)/I4

10 R=Vb2/I4//R=R4+R5

11 disp(" for Vo=13V moving contact at bottom of R5")

12 Vo=13;

13 I4=Vo/(R3+R)

14 R4=Vb2/I4

15 R5=R-R4
```

Scilab code Exa 18.4 voltage regulator to change the load current

```
1 //chapter 18
2 //example 18.4
3 //page 766
4 printf("\n")
5 printf("given")
6 hFE3=50; hFE1=20; Ie1=200*10^-3+10*10^-3; Ic2=1*01^-3;
        Vs=20; Vb3=13.4; Vo=12; Vbe=.7;
7 Ib1=Ie1/hFE1
8 Ib3=Ib1/hFE3
9 R1=(Vs-Vb3)/(Ic2+Ib3)
10 disp("select I6=.5*10^-3")
11 I6=.5*10^-3;
12 R6=(Vo+Vbe)/I6
13 Pd=(Vs-Vo)*Ie1
```

Scilab code Exa 18.5 suitable component for preregulator circuit

```
1 //chapter 18
2 //example 18.5
3 //page 769
4 printf("\n")
5 printf("given")
```

Scilab code Exa 18.6 differential amplifier

```
1 / chapter 18
2 //example 18.6
3 //page 770
4 printf("\n")
5 printf("given")
6 Vc5=9.8; Vb2=Vc5; Vce5=3; Vbe=.7; Vo=12;
7 Vr9=Vc5-Vce5
8 Vz2=Vr9+Vbe
9 Ic5=1*10^-3;
10 R8 = (Vo - Vc5) / Ic5
11 Ir9=2*Ic5
12 R9=Vr9/Ir9
13 disp(" Iz2>>Ib5 and Iz2>(Izk for the zener diode)")
14 Iz2=10*10^-3;
15 R7 = (Vo - Vz2) / Iz2
16 \quad I4 = 1 * 10^{-3};
17 Vb6=7.5; Vz2=Vb6;
18 disp(" when Vo=11V(moving contact at top of R5)")
19 Vo = 11:
20 R3 = (Vo - Vb6) / I4
21 R3=3.3*10^3; //use standard value
22 I4 = (Vo - Vb6)/R3
23 R = Vb6/I4//R = R4 + R5
24 disp(" when Vo=13V(moving contact at bottom of R5)")
25 \text{ Vo} = 13; \text{Vb6} = 7.5;
26 I4 = Vo/(R3 + R)
```

```
27 R4=Vb6/I4
28 R5=R-R4
```

Scilab code Exa 18.7 fold back current limiting circuit for voltage regulator

```
1 //chapter 18
2 //example 18.7
3 //page 7
4 printf("\n")
5 printf("given")
6 Isc=100*10^-3; Vr10=.5; Vo=12;
7 R10=Vr10/Isc
8 R10=4.7; //use standard value
9 I1=200*10^-3;
10 Vr10=I1*R10
11 Vr11=Vr10-.5
12 I11=1*10^-3;
13 R11=Vr11/I11
14 R12=(Vo+Vr10-Vr11)/I11
```

Scilab code Exa 18.8 adjustable voltage regulator circuit

```
1 //chapter 18
2 //example 18.8
3 //page 778
4 printf("\n")
5 printf("given")
6 Vo=12; hFE1=20; hFE2=50; I1=250*10^-3;
7 Vz=.75*Vo
8 Vz=9.1; //use standard value for 1N757 diode
9 Iz1=10*10^-3;
10 R1=(Vo-Vz)/Iz1
```

Scilab code Exa 18.9 input voltage and maximum load current

```
1 // chapter 18
2 //example 18.9
3 / page 782
4 printf("\n")
5 printf("given")
6 I2=1*10^-3; Vr2=7.15; Vref=Vr2; Vo=10; Pdmax=1000*10^-3;
7 R2=Vref/I2
8 R2=6.8*10^3; //use standard value and recalculate the
      12
9 I2=Vref/R2
10 R1=(Vo-Vref)/I2
11 Vs=Vo+5//for satisfactory operation of series pass
     transistor
12 Iint=25*10^-3; //internal circuit current
13 Pi=Vs*Iint
14 disp("maximum power dissipated in series pass
     transistor")
15 Pd=Pdmax-Pi
16 disp("maximum load current is ")
```

Scilab code Exa 18.10 calculate regulator power dissipation

```
1 //chapter 18
2 //example 18.10
3 //page 785
4 printf("\n")
5 printf("given")
6 I1=1*10^-3; Vref=1.25; Vo=6; Vs=15; I1=200*10^-3;
7 R1=Vref/I1
8 R2=(Vo-Vref)/I1
9 Pd=(Vs-Vo)*I1;
10 printf("regulated power dissipation is %3.2fW\n",Pd)
```

Scilab code Exa 18.11 efficiencies of linear regulator and switching regulator

```
1 //chapter 18
2 //example 18.11
3 //page 788
4 printf("\n")
5 printf("given")
6 Vo=10; Io=1; Vce=7; Vf=1;
7 Po=Vo*Io
8 disp("linear regulator")
9 Pi=Po+(Vce*Io)
10 n=(Po*100)/Pi//efficiency
11 disp("switching regulator")
12 Vce=1;
13 Pi=Po+Io*(Vce+Vf)
14 n=(Po*100)/Pi//efficiency
```

Scilab code Exa 18.12 step down switching regulator

Scilab code Exa 18.13 determine suitable value for R1 R2 Rsc and Ct

```
1 //chapter 18
2 //example 18.13
3 //page 799
4 printf("\n")
5 printf("given")
6 disp(" an MC34063 controller is for step down transformer")
7 Ib=-400*10^-3; I1=1*10^-3; Vref=1.25; V0=12; Ip=1; ton =8.6*10^-6;
8 R1=Vref/I1
9 R1=1.2*10^3; // use standard value
10 I1=Vref/R1
11 R2=(Vo-Vref)/I1
```

- 12 Rsc=.33/Ip 13 Ct=4.8*10^-5 *ton

Chapter 19

Power amplifiers

Scilab code Exa 19.1 Dc and Ac load line transistor common emitter characteristics

```
1 / chapter 19
2 //example 19.1
3 //page 810
4 printf("\n")
5 printf("given")
6 Rpy=40; N1=74; N2=14; R2=3.7*10^3; R1=4.7*10^3; Vbe=.7; Re
      =1*10^3; Vcc=13; R1=56;
7 disp("Q-point")
8 Vb = Vcc * (R2/(R1+R2))
9 \text{ Ic=(Vb-Vbe)/Re}
10 Ie=Ic;
11 Vce=Vcc-Ic*(Rpy+Re)
12 \text{ rl} = (N1/N2)^2 *R1
13 rl=rl+Rpy
14 \text{ Ic=}5*10^-3;
15 \text{ Vce=Ic*rl}
```

Scilab code Exa 19.2 maximum efficiency of class A amplifier

```
1 //chapter 19
2 //example 19.2
3 //page 814
4 printf("\n")
5 printf("given")
6 Vcc=13; Icq=5*10^-3; Vceq=8; Vp=Vceq; Ip=Icq; nt=.8;
7 Pi=Vcc*Icq
8 Po=.5*Vp*Ip
9 PO=nt*Po
10 n=(P0/Pi)*100;
11 printf(" maximum efficiency is %3.2 f percentage\n",n
)
```

Scilab code Exa 19.4 power deliver to load in class AB amplifier

```
1 / chapter 19
2 //example 19.4
3 //page 821
4 printf("\n")
5 printf("given")
6 N1=60; N2=10; R1=16; Rpy=0; R6=56; Vcc=27; Vce=.5; n=.79;
7 disp(" Referred laod")
8 \text{ rl} = (N1/N2)^2 *R1
9 disp(" tatol ac load line in series with each of Q2
      and Q3")
10 R1=r1+R6+Rpy
11 disp(" peak primary current")
12 Ip = (Vcc - Vce)/R1
13 disp("peak primary voltage")
14 Vp = Vcc - Vce - (Ip * R6)
15 disp("power delivered to primary")
16 Po = .5 * Vp * Ip
17 disp(" power delivered to the load")
18 Po=Po*n//n is power efficiency
```

Scilab code Exa 19.5 output transformer and transistor of class B circuit

```
1 / chapter 19
2 //example 19.5
\frac{3}{\text{page }} 824
4 printf("\n")
5 printf("given")
6 Po=4; nt=.8; Vcc=30; Vp=Vcc; R1=16;
7 PO=Po/nt
8 \text{ rl}=(Vp)^2 /(2*P0)
9 rl=4*rl
10 disp("transformer specification Po=4, Rl=16 rl=360")
11 Vce=2*Vcc
12 Ip = (2*P0)/Vp
13 Pi=Vcc*.636*Ip
14 Pt=.5*(Pi-P0)
15 disp ("transistor specification is Py=.68W Vce=60
      Ip = 333mA")
```

Scilab code Exa 19.6 determine required supply voltage for class AB amplifier

```
1 //chapter 19
2 //example 19.6
3 //page 830
4 printf("\n")
5 printf("given")
6 Rl=50; Po=1; hFE=50; Vbe=.7; Vrc=4; Vre=1; Vd1=.7; Vd2=Vd1;
7 Vp=sqrt(2*Rl*Po)
8 Ip=Vp/Rl
9 Re3=.1*Rl;
10 Re2=4.7; // use stabdard value
```

```
11 Re2=Re3;
12 Icq=.1*Ip
13 Vb=Vbe+Icq*(Re2+Re3)+Vbe
14 Vc1=Vrc;
15 Ib2=Ip/hFE
16 Irc=Ib2+1*10^-3
17 Rc=Vrc/Irc
18 Rc=680; // use standard value
19 Vcc=2*(Vp+Vre+Vbe+Vrc)
20 Vcc=32; // use standard value
21 Vrcdc=.5*(Vcc-Vb)
22 Ic1=Vrcdc/Rc
23 Rb=(Vb-Vd1-Vd2)/Ic1
```

Scilab code Exa 19.7 output transistors

```
1 //chapter 19
2 //example 19.7
3 //page 832
4 printf("\n")
5 printf("given")
6 Vcc=32; Vce=32; Ip=200*10^-3; Po=1;
7 Ic=1.1*Ip
8 Pi=.35*Vcc*Ip
9 Pt=.5*(Pi-Po)
```

Scilab code Exa 19.8 capacitor value for Ce and Co

```
1 //chapter 19
2 //example 19.8
3 //page 832
4 printf("\n")
5 printf("given")
```

```
6 f=50; hib=2; Rl=50;
7 Ce=1/(2*3.14*f*hib)
8 Co=1/(2*3.14*50*.1*Rl)
```

Scilab code Exa 19.9 determine the value of Vcc Rc and Rb for class AB amplifier

```
1 //chapter 19
2 //example 19.9
3 / page 834
4 printf("\n")
5 printf("given")
6 hFE=2000; Vbe=1.4; Vp=10; Ip=200*10^-3; Icq2=20*10^-3;
      Re3=4.7; Re2=4.7; Vd=.7;
7 Ve1=3; Vc1=15.2; Vrc=Vc1;
8 \text{ Vb=Vbe+Icq*(Re2+Re3)+Vbe}
9 \quad Vcc = Vrc + Vc1 + Vb
10 Ib2=Ip/hFE
11 Irc=1*10^-3;
12 Vrcac=4;
13 Rc=Vrcac/Irc
14 Ic1=Vrc/Rc
15 Rb = (Vb - (4*Vd))/Ic1
```

Scilab code Exa 19.10 design Vbe multiplier

```
1 //chapter 19
2 //example 19.10
3 //page 838
4 printf("\n")
5 printf("given")
6 Vb=3.2; Ic1=5*10^-3; Vce=3.2; Vbe=.7;
7 Vbmin=Vb-.5
```

```
8  Vbmax=Vb+.5
9  I10=.1*Ic1
10  R10=(Vce-Vbe)/I10
11  R10=4.7*10^3; // use standard value
12  disp(" for Vce=3.7")
13  Vce=3.7;
14  I10max=(Vce-Vbe)/R10
15  disp("Vce=2.7V")
16  Vce=2.7;
17  I10min=(Vce-Vbe)/R10
18  R=Vbe/I10min
19  R11=Vbe/I10max
20  R12=R-R11
```

Scilab code Exa 19.11 required supply voltage and specify output transistors

```
1 // chapter 19
2 //example 19.11
3 / page 843
4 printf("\n")
5 printf("given")
6 R1=16; Po=6; Vbe=.7;
7 Vp = sqrt(2*R1*Po)
8 Vr14=.1*Vp; Vr15=Vr14;
9 R14=.1*R1; R15=R14;
10 Vce3=1; Vce4=Vce3;
11 Vr9=3; Vr11=Vr9;
12 Vcc = (Vp + Vr14 + Vbe + Vce3 + Vr9)
13 Vee=-Vcc;
14 Ip=Vp/R1
15 disp(" DC power inpit from supply line")
16 Pi=(Vcc-Vee)*.35*Ip
17 disp(" output
                  transistor specification")
18 Pt = .5*(Pi - Po)
```

```
19 Vce=2*Vcc
20 Ic=1.1*Ip
```

Scilab code Exa 19.12 suitable resistor for output and intermediate stage

```
1 / chapter 19
2 //example 19.12
3 //page 844
4 printf("\n")
5 printf("given")
6 hFE7=20; Icbo=50*10^-6; hFE5=70; Vr9=3; Ip=869*10^-3; R15
      =1.5; R8=15*10^3; Vbe=.7; Vr11=3; Vee=20;
7 R12 = .01/Icbo
8 R12=220; //use standard value
9 R13=R12;
10 lb5=lp/(hFE7*hFE5)
11 Ic3=2*10^-3;
12 R9=Vr9/Ic3
13 R11=R9;
14 Iq78=.1*Ip
15 Vr14=Iq78*R15
16 Vr15=Vr14;
17 \text{ Vr}10 = (\text{Vr}14 + \text{Vr}15) + (\text{Vr}14 + \text{Vr}15)/2
18 R10=Vr10/Ic3
19 Ir8 = (Vr11 + Vbe)/R8
20 R7 = (Vee - (Vr11 + Vbe)) / Ir8
```

Scilab code Exa 19.13 calculate required supply voltage and suitable DC voltage drop

```
1 //chapter 19
2 //example 19.13
3 //page 848
```

```
4 printf("\n")
5 printf("given")
6 R1=20; Po=2.5; Rd=4; Vr6=1; Vr9=Vr6; Vth=1; gFS=250*10^-3;
      Vbe = .7;
7 Vp=sqrt (2*R1*Po)
8 \text{ Ip=Vp/Rl}
9 Vcc = (Vp + Ip * Rd)
10 vr6=Ip/gFS
11 \ Vr2 = vr6 + 1
12 Vce=Vr2;
13 Vce3=1;
14 \text{ Vr2=Vcc-Vce}
15 Vee=Vcc;
16 Vr3=Vee-Vbe
17 Vr7=Vr2-Vr6
18 Vr8=Vcc-(-Vee)-Vr6-Vr7-Vr9
```

Scilab code Exa 19.14 determine resistor value for MOSFET amplifier

```
1 / chapter 19
2 //example 19.14
3 //page 849
4 printf("\n")
5 printf("given")
6 R6=100*10^3; R9=R6; Vth=1; Vr7=8; Vr8=14; Vr3=11.3; Vpout
      =10; Vpin=800*10^-3;
7 I6 = Vth/R6
8 R7 = Vr7 / I6
9 R8=Vr8/I6
10 Ic1=1*10^-4; Ic2=Ic1; Vr2=9;
11 R2=Vr2/Ic1
12 R3=Vr3/(Ic1+Ic2)
13 R5=4.7*10^3;
14 Acl=Vpout/Vpin
15 R4 = R5/(Ac1-1)
```

Scilab code Exa 19.15 bootstrap capacitor terminal voltage and peak output voltage

```
1 / chapter 19
2 //example 19.15
3 //page 854
4 printf("\n")
5 printf("given")
6 Vce=1.5; Vcc=17; Vd1=.7; R8=1.5*10^3; R9=R8; R1=100; R6
      =8.2;
7 I4 = (Vcc - Vd1) / (R8 + R9)
8 \ Vc3=Vcc-(I4*R8);
9 printf(" bootstrap capacitance terminal voltage is
      \%3.1\,\mathrm{fV}\,\mathrm{n}", Vc3)
10 V = Vcc - Vce / /V = Vp + Vr6
11 Ip=V/(R1+R6)
12 Vp = Ip * R1;
13 printf(" peak output voltage is \%3.1\,\mathrm{fV}\n", Vp)
14 Po=(Vp)^2 /(2*R1);
15 printf(" peak output power is %dW\n",Po)
```

Scilab code Exa 19.16 use BIFET to determine supply voltage and resistor value

```
1 //chapter 19
2 //example 19.16
3 //page 856
4 printf("\n")
5 printf("given")
6 Rl=8; Po=6; vs=.1; hFE=1000; Vce=2; f=50*10^3; Vd1=.7;
7 Vp=sqrt(2*Rl*Po)
```

Scilab code Exa 19.17 capacitor value

```
1 //chapter 19
2 //example 19.17
3 //page 858
4 printf("\n")
5 printf("given")
6 f=50;R1=100*10^3;R2=1*10^3;R8=2.7*10^3;R9=R8;
7 C1=1/(2*3.14*f*.1*R1)
8 C2=1/(2*3.14*f*R2)
9 Xc3=.1*((R8*R9)/(R8+R9))
10 C3=1/(2*3.14*f*Xc3)
11 C4=C3
```

Scilab code Exa 19.18 MOSFET gate source voltage for complementry common source amplifier

```
1 //chapter 19
2 //example 19.18
```

Scilab code Exa 19.19 calculate Vgsmax and Vgsmin

```
1 //chapter 19
2 //example 19.19
3 //page 862
4 printf("\n")
5 printf("given")
6 Vbe=.7; R2=560; R3min=0; R3max=1*10^3; Is=2*10^-3;
7 Ic2max=Vbe/(R2+R3min)
8 Ic2min=Vbe/(R2+R3max)
9 Vgsmin=(Is+Ic2min)*820
10 Vgsmax=(Is+Ic2max)*820
```

Scilab code Exa 19.20 maximum peak output voltage minimum supply voltage at op amp terminal

```
1 //chapter 19
2 //example 19.20
3 //page 865
```

```
4 printf("\n")
5 printf("given")
6 Vcc=12;Rl=10;Rd=.5;gfs=2.5;R7=820;V9=1*10^3;R10=R9;
7 Vp=(Vcc*R1)/(Rd+R1)
8 Ip=Vp/Rl
9 Vgs=Ip/gfs
10 Vr7=Is*R7
11 Vs=Vcc-Vr7-Vgs
12 disp("op-amp peak output voltage is")
13 Vr9=(Vp*R9)/(R9+R10)
```

Scilab code Exa 19.21 op amp minimum supply voltage and MOSFET maximum gate source voltage

```
1 //chapter 19
2 //example 19.21
3 //page 867
4 printf("\n")
5 printf("given")
6 Vbe=.7; R2=470; R3=1*10^3; Is=.5*10^-3; R7=1.5*10^3; Vcc = 15;
7 Ic2max=Vbe/R2
8 Ic2min=Vbe/(R2+R3)
9 Vgs=(Is+Ic2max)*R7;
10 printf(" MOSFET maximum gate source voltage is %3.1 fV\n", Vgs)
11 Vs=Vcc-Vgs;
12 printf(" op-amp minimum suppy is %3.2 fV\n", Vs)
```

Scilab code Exa 19.22 determine Po Acl f1 and f2

```
1 //chapter 19
2 //example 19.22
```

Scilab code Exa 19.23 maximum output power voltage gain and low cutoff frequency

```
1 //chapter 19
2 //example 19.23
3 //page 871
4 printf("\n")
5 printf("given")
6 Vcc=23;Rl=8;Rf2=100*10^3;Rf1=5.6*10^3;Cf=1*10^-6;
7 Vp=Vcc-5
8 Po=(Vp)^2 /(2*Rl);
9 printf("maximum output power is %3.2fW\n",Po)
10 Acl=(Rf1+Rf2)/Rf1;
11 printf(" voltage gain %3.1f\n",Acl)
12 f=1/(2*3.14*Cf*Rf1);
13 printf("lower cutoff frequency is %dHz\n",f)
```

Scilab code Exa 19.24 determine the load power dissipation

```
1 //chapter 19
2 //example 19.24
3 //page 875
4 printf("\n")
5 printf("given")
6 Rf=15*10^3; R1=5.6*10^3; vs=.5; Vp=2.7;
7 Acl=(2*Rf)/R1
8 Vo=Acl*vs
9 Po=(Vp)^2 /(2*Rl);
10 printf("load power dissipation is %3.2fW\n",Po)
```

Scilab code Exa 19.25 calculate ac output power dc input power conduction angle and efficiency

```
1 //chapter 19
2 //example 19.25
3 //page 880
4 printf("\n")
5 printf("given")
6 Vcc=10; Rl=1*10^3; f=3*10^6; Ip=25*10^-3; Vce=.3;
7 Vp=Vcc-Vce
8 Po=(Vp)^2 /(2*R1)
9 T = 1/f
10 t=(Po*T)/(Ip*Vp)
11 angle=(t/T)*360;
12 printf(" conduction angle is \%3.1 \, \text{fdegree} \setminus \text{n}", angle)
13 Idc=Po/Vp
14 Pi=Vcc*Idc;
15 printf ("dc input power is \%3.4 \text{fW/n}",Pi)
16 n=(Po/Pi)*100//efficiency
```

Scilab code Exa 19.26 for class C amplifier determine tank circuit component value and peak current

```
//chapter 19
//example 19.26
//page 882
printf("\n")
f=1*10^6; Xc=120; Vce=.5; Vcc=30; Rl=1.2*10^3; O=100;
Cp=1/(2*3.14*f*Xc)
Cp=1300*10^-12; // use standard value
Lp=1/(((2*3.14*f)^2)*Cp)
Vp=Vcc-Vce
Po=((Vp)^2) /(2*Rl)
Idc=Po/Vp
T=1/f
t=(0*T)/360
Ip=(Idc*T)/t
```

Scilab code Exa 19.27 for class C amplifier determine Ql Qp and Pl and bandwidth and efficiency

```
1 //chapter 19
2 //example 19.27
3 //page 883
4 printf("\n")
5 printf("given")
6 Rw=.1;f=1*10^6;Lp=19.5*10^-6;Rl=1.2*10^3;Vcc=30;Idc=12.3*10^-3;
7 QL=(2*3.14*f*Lp)/Rw
8 Qp=R1/(2*3.14*f*Lp)
9 B=f/Qp
10 Il=(.707*Vp)/(2*3.14*f*Lp)
11 Pl=(Il)^2 *Rw
12 Pi=(Vcc*Idc)+Pl
13 n=(Po/Pi)*100
```

Chapter 20

Thyristors

Scilab code Exa 20.1 calculate instantaneous supply voltage

```
1 //chapter 20
2 //example 20.1
3 //page 902
4 printf("\n")
5 printf("given")
6 Vs=25; Vtm=1.7; R1=25; Ih=5*10^-3;
7 Vspk=1.414*Vs
8 Ilpk=(Vs-Vtm)/R1
9 disp(" for half wave rectifier sinusodial waveform")
10 Ilrms=.5*Ilpk
11 disp("switch-off voltage")
12 es=Vtm+(Ih*R1)
```

Scilab code Exa 20.2 determine suitable resistance

```
1 //chapter 20
2 //example 20.2
3 //page 905
```

```
4 printf("\n")
5 printf("given")
6 Vs=30; Vd1=.7; Vg=.8; Ig=200*10^-6;
7 Vspk=1.414*Vs
8 disp(" at 5 degree")
9 es=Vspk*.087// \sin 5 = .087
10 disp(" at 90 degree")
11 \text{ es=Vspk}
12 Vt=Vd1+Vg
13 disp(" to trigger at es=3.7V the R2 moving contact
      is at the top")
14 \text{ es} = 3.7;
15 \text{ Vr1=es-Vt}
16 I1=1*10<sup>-3</sup>;
17 R1=Vr1/I1
18 R = Vt/I1//R = R2 + R3
19 disp(" to trigger at es =42.4 the R2 moving contact
      at the bottom")
20 \text{ es} = 42.4;
21 \text{ Vr3=Vt};
22 \quad I1=es/(R+R1)
23 R3=Vt/I1
24 R2 = R - R3
```

Scilab code Exa 20.3 determine SCR anode cathode voltage

```
1 // chapter 20
2 // example 20.3
3 // page 906
4 printf("\n")
5 printf("given")
6 R1=2.2*10^3; R2=1.5*10^3; R3=120; Vt=1.5;
7 disp(" with R2 contact at center")
8 Vak=Vt*((R1+R2+R3)/(R3+.5*R2))
9 disp(" with R2 contact at zero")
```

Scilab code Exa 20.4 specify the SCR and suitable components for D1 and R1

```
1 //chapter 20
2 //example 20.4
3 //page 911
4 printf("\n")
5 printf("given")
6 Vs=5; Ilmax=300*10^-3; Vl=7; Vg=.8;
7 Vz=Vl-Vg
8 disp(" for D1, select a 1N753 with Vz=6.2")
9 Izmin=1*10^-3;
10 R1=Vg/Izmin
```

Scilab code Exa 20.5 smallest conduction angle

```
1 //chapter 20
2 //example 20.5
3 //page 9
4 printf("\n")
5 printf("given")
6 R1=25*10^3;R2=2.7*10^3;C1=3*10^-6;Vg=.8;Vd1=8;Vs
=115;f=60;
7 Vc1=Vd1+Vg
8 //assume the average charging voltage is
9 Vac=1.414*Vs
10 E=.636*Vac
11 //average charging
12 Ic=E/(R1+R2)
13 //charging time
14 t=(C1*Vc1)/Ic
```

```
15 T=1/f

16 q=(t*360)/T

17 disp(" concudtion angle")

18 a=180-q
```

Scilab code Exa 20.6 determine capacitor charging time

Scilab code Exa 20.7 calculate maximum Vb1b2 be used at temperature 100C

Scilab code Exa 20.8 maximum and minimum triggering voltage

```
1 //chapter 20
2 //example 20.8
3 //page 931
4 printf("\n")
5 printf("given")
6 Vb1b1=25; nmax=.86; nmin=.74; Vd=.7;
7 Vpmax=Vd+(nmax*Vb1b1)
8 Vpmin=Vd+(nmin*Vb1b1)
```

Scilab code Exa 20.9 calculate Re for relaxation oscillator and oscillating frequency

Chapter 21

Optoelectronic Devices

Scilab code Exa 21.1 total luminous flux

```
1 //chapter 21
2 //example 21.1
3 //page 947
4 printf("\n")
5 printf("given")
6 r=3;0s=25;area=.25;
7 Ea=0s/(4*3.14*(r)^2)
8 Tf=Ea*area;
9 printf(" total flux is %3.3fW\n",Tf)
```

Scilab code Exa 21.3 suitable resistor

```
1 //chapter 21
2 //example 21.3
3 //page 951
4 printf("\n")
5 printf("given")
6 Vcc=9; Vf=1.6; Vb=7; hFE=100; Vce=.2; Ic=10*10^-3; Vbe=.7;
```

```
7 R2=(Vcc-Vf-Vce)/Ic

8 R2=680;//use standard value

9 Ic=(Vcc-Vf-Vce)/R2

10 Ib=Ic/hFE

11 Rb=(Vb-Vbe)/Ib
```

Scilab code Exa 21.4 total power supplied to digit LED

```
1 //chapter 21
2 //example 21.4
3 //page 952
4 printf("\n")
5 printf("given")
6 Vcc=5;
7 N=(3*7)+(1*2)
8 It=N*10*10^-3
9 P=It*Vcc
```

Scilab code Exa 21.5 required series resistance and dark current

```
1 //chapter 21
2 //example 21.5
3 //page 957
4 printf("\n")
5 printf("given")
6 Rc=1*10^3; I=10*10^-3; E=30;
7 R1=E/I -Rc
8 R1=1.8*10^3; // use standard value
9 disp(" when dark Rc=100Kohm")
10 Rc=100*10^3;
11 I=E/(R1+Rc)
```

Scilab code Exa 21.6 minimum light level when transitor is turn off

```
1 / chapter 21
2 //example 21.6
3 / page 958
4 printf("\n")
5 printf("given")
6 Vee=6; Vbe=.7; Ib=200*10^-6; Vb=.7; Vcc=6;
7 disp("when cell is dark Rc=100Kohm")
8 Rc=100*10^3;
9 Vrc=Vee+Vbe
10 Irc=Vrc/Rc
11 Ir1=Irc+Ib
12 Vr1=Vcc-Vb
13 R1=Vr1/Ir1
14 R1=18*10^3; // use standard value
15 disp(" when Q1 is off")
16 Vr1=6; Vrc=6;
17 Ir1=Vr1/R1
18 Rc=Vrc/Ir1
```