注意x =0 和 x = pi的情况讨论

1.(3) $\Leftrightarrow \operatorname{grad} u = [u'_x, u'_y, u'_z] = [\cos x - \cos(x + y + z), \cos y - \cos(x + y + z), \cos z - \cos(x + y + z)] = \mathbf{0}$;

即 $\cos(x+y+z) = \cos x = \cos y = \cos z$; 由于 $x, y, z \in [0,\pi]$, 故 $\cos x = \cos y = \cos z \Leftrightarrow x = y = z$,

那么 $\cos x = \cos 3x = 4\cos^3 x - 3\cos x$,即 $\cos x \sin^2 x = 0$,由此解得 $x = \pi/2 = y = z$,

因此u(x, y, z)在区域 $\{(x, y, z) | x, y, z \in [0, \pi]\}$ 内有唯一驻点 $P(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$; 函数u 的 Hesse 矩阵为

$$H(u) = \begin{bmatrix} u''_{xx} & u''_{xy} & u''_{xz} \\ u''_{xy} & u''_{yz} & u''_{yz} \\ u''_{xz} & u''_{yz} & u''_{zz} \end{bmatrix} = \begin{bmatrix} \sin(x+y+z) - \sin x & \sin(x+y+z) & \sin(x+y+z) \\ \sin(x+y+z) & \sin(x+y+z) - \sin y & \sin(x+y+z) \\ \sin(x+y+z) & \sin(x+y+z) & \sin(x+y+z) - \sin z \end{bmatrix},$$
在点 P处,
$$H(u) = \begin{bmatrix} -2 & -1 & -1 \\ -1 & -2 & -1 \\ -1 & -1 & -2 \end{bmatrix}$$
 负定; 故
$$u(x, y, z)$$
 在点
$$P(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2})$$
 有极大值
$$u(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}) = 4.$$

2.由于 $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$, 故 $4x + 2zz'_x + 8(z + xz'_x) - z'_x = 0$, $4y + 2zz'_y + 8xz'_y - z'_y = 0$;

可得 $z'_x = -\frac{4x+8z}{8x+2z-1}$, $z'_y = -\frac{4y}{8x+2z-1}$; 令 grad $z = \left[z'_x, z'_y\right] = \mathbf{0}$, 可得 x+2z=0 且 y=0 ,

代入原方程可解得 z(x,y) 在 \mathbb{R}^2 上有两个驻点 $P_1(-2,0)$ 与 $P_2(\frac{16}{7},0)$;

函数 z(x,y) 在点 P_1 处的 Hesse 矩阵 $H_1(z) = \begin{bmatrix} 4/15 & 0 \\ 0 & 4/15 \end{bmatrix} = \frac{4}{15} I_{2\times 2}$ 正定,故 P_1 为 z(x,y) 的极小值点;函数 z(x,y) 在点 P_2 处的 Hesse 矩阵 $H_2(z) = \begin{bmatrix} -28/135 & 0 \\ 0 & -4/15 \end{bmatrix}$ 负定,故 P_2 为 z(x,y) 的极大值点;

因此 z=z(x,y) 在 $P_1(-2,0)$ 处有极小值 $z_{\text{Wh}}=1$,在 $P_2(\frac{16}{7},0)$ 处有极大值 $z_{\text{Wh}}=-\frac{8}{7}$. **建议将二阶导数的计算式显示给出**

7.(3)构造拉格朗日函数 $L(x,y,z,\lambda) = x^2 + y^2 + z^2 - \lambda(\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} - 1)$,其驻点满足:

 $\frac{\partial L}{\partial x} = (2 - \frac{\lambda}{8})x = 0, \quad \frac{\partial L}{\partial y} = (2 - \frac{2}{9}\lambda)y = 0, \quad \frac{\partial L}{\partial z} = (2 - \frac{\lambda}{2})z = 0, \quad \frac{\partial L}{\partial z} = 1 - (\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4}) = 0;$

由约束条件可知 x, y, z 不能同时为零,而 $2-\frac{\lambda}{8}, 2-\frac{2}{9}\lambda, 2-\frac{\lambda}{2}$ 中至多一个为零,因此:

- ①当 $\lambda = 16$ 时,y = z = 0, $x = \pm 4$,L有驻点($\pm 4,0,0,16$),此时u = 16;
- ②当 λ =9时,x=z=0, $y=\pm3$,L有驻点 $(0,\pm3,0,9)$,此时u=9;
- ③当 $\lambda = 4$ 时,x = y = 0, $z = \pm 2$,L有驻点 $(0,0,\pm 2,4)$,此时u = 4;

由于在有界闭集 $\left\{ (x,y,z) \in \mathbb{R}^3 \middle| \frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1 \right\} \perp u = x^2 + y^2 + z^2$ 存在最大值与最小值,

故u 在点(±4,0,0)处取得最大值 u_{max} =16,在点(0,0,±2)取得最小值 u_{min} =4.

8.①令 grad
$$u = \begin{bmatrix} u'_x, u'_y, u'_z \end{bmatrix} = \begin{bmatrix} 2x - 2y, 4y - 2x - 2z, 2z - 2y \end{bmatrix} = \mathbf{0}$$
,解得 $x = y = z$,此时 $u \equiv 0$,注意到 $u = x^2 + 2y^2 + z^2 - 2xy - 2yz = (x - y)^2 + (y - z)^2 \ge 0$,故 u 在点 (a, a, a) 处有极小值 $u_{\overline{k}/v} = 0$ 落在区域 $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 \middle| x^2 + y^2 + z^2 \le 4 \right\}$ 的内部的点为 (a, a, a) ,其中 $3a^2 < 4$;

②而在
$$\Omega$$
的边界 $\overline{\Omega} = \{(x,y,z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 4\}$ 上,此时为条件极值问题,构造拉格朗日函数 $L(x,y,z,\lambda) = (x-y)^2 + (y-z)^2 - \lambda(x^2 + y^2 + z^2 - 4)$,其驻点满足: $L'_{\lambda} = 4 - (x^2 + y^2 + z^2) = 0$, $L'_{x} = 2(x-y) - 2\lambda x = 0$, $L'_{y} = 2(y-x) + 2(y-z) - 2\lambda y = 0$, $L'_{z} = 2(z-y) - 2\lambda z = 0$; 即 $x-y=\lambda x$, $z-y=\lambda z$, $2y-x-z=\lambda y$,整理可得 $(x-z)(\lambda-1)=0$,

(a)
$$\stackrel{\text{def}}{=} x = z \text{ iff}$$
, $\lambda y = 2y - x - z = 2(y - x) = -2\lambda x$, $\mathbb{I} \lambda(2x + y) = 0$,

• 若
$$\lambda = 0$$
,则 $x = y = z$,代入约束条件可解得 $(x, y, z) = \pm \frac{2\sqrt{3}}{3}(1, 1, 1)$,此时 $u = 0$;

• 若
$$2x+y=0$$
,则 $-\frac{y}{2}=x=z$,代入约束条件可解得 $(x,y,z)=\pm\frac{\sqrt{6}}{3}(1,-2,1)$,此时 $u=12$; (b) 当 $\lambda=1$ 时, $y=0$ 且 $x=-z$,代入约束条件可解得 $(x,y,z)=\pm\sqrt{2}(1,0,-1)$,此时 $u=4$;由于在有界闭集 $\Omega=\left\{(x,y,z)\in\mathbb{R}^3\middle|x^2+y^2+z^2\le 4\right\}$ 上 $u=(x-y)^2+(y-z)^2$ 存在最大值与最小值,故 u 在 $\Omega\cap\left\{(x,y,z)\in\mathbb{R}^3\middle|x=y=z\right\}$ 上有最小值 $u_{\min}=0$,在点 $\pm\frac{\sqrt{6}}{3}(1,-2,1)$ 上有最大值 $u_{\max}=12$.

9.(3)设长方体的一个顶点为
$$(x, y, z)$$
, $x, y, z \ge 0$; 由对称性可知, 其体积函数 $V(x, y, z) = 8xyz$, 构造拉格朗日函数 $L(x, y, z, \lambda) = 8xyz - \lambda(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1)$, 其驻点满足:

$$\begin{split} \frac{\partial L}{\partial x} &= 8yz - \frac{2\lambda x}{a^2} = 0 \;, \;\; \frac{\partial L}{\partial y} = 8xz - \frac{2\lambda y}{b^2} = 0 \;, \;\; \frac{\partial L}{\partial z} = 8xy - \frac{2\lambda z}{c^2} = 0 \;, \;\; \frac{\partial L}{\partial \lambda} = 1 - (\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}) = 0 \;; \\ \text{解得} \; (x,y,z) &= \frac{\sqrt{3}}{3} (a,b,c) \; \text{或} \; xyz = 0 \;, \;\; \text{两类解分别对应着V} = \frac{8\sqrt{3}}{9} \, abc \; \text{与V} = 0 \; \text{的情况} \;; \\ \text{由于在有界闭集} \; \Omega &= \left\{ (x,y,z) \in \mathbb{R}^3 \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, x, y, z \geq 0 \right\} \; \text{内V} \; \text{存在最大值与最小值} \;, \end{split}$$

故V在 $\frac{\sqrt{3}}{3}(a,b,c)$ 处有最大值 $V_{\max} = \frac{8\sqrt{3}}{9}abc$,在 $\Omega \cap \left\{ (x,y,z) \in \mathbb{R}^3 \middle| xyz = 0 \right\}$ 上有最小值 $V_{\min} = 0$;但由于实际问题中,长方体边长不能为零,即 $xyz \neq 0$,故最小值 $V_{\min} = 0$ 无法取到;综上所述,当 $(x,y,z) = \frac{\sqrt{3}}{3}(a,b,c)$ 时长方体体积有最大值 $\frac{8\sqrt{3}}{9}abc$,体积没有最小值.

10.(1)设该等腰梯形的面积为S,上底长为x,下底长为y(y>x>0),高为h(h>0);

将y=2x代入到S = 1/2(x+y)h中求解得到x和y的表达式

⑥+⑦可得
$$\frac{4h^2+(y-x)^2}{\sqrt{4h^2+(y-x)^2}} = \sqrt{4h^2+(y-x)^2} = \frac{y-x}{2} + \frac{y+x}{2} = y$$
,代入⑤式,可得 $y = 2x$;

进一步可以得到
$$y = 2x = \frac{4}{3}\sqrt{\sqrt{3}S}$$
 , 即 $(x, y) = \frac{2}{3}\sqrt{\sqrt{3}S}(1, 2)$, 此时 $u = 3x = 2\sqrt{\sqrt{3}S}$;

接下来考虑延拓后的区域 $\Omega = \{(x, y, h) \in \mathbb{R}^3 | y \ge x \ge 0, h \ge 0\}$ 的边界:

- 当 x = 0 时, S = hy/2 , $u = \sqrt{4h^2 + y^2} \ge 2\sqrt{hy} = 2\sqrt{2S}$, y = 2h 时等号成立,故 $u_{\min} = 2\sqrt{2S}$;
- 当 y=x时, S=hx, $u=x+2h\geq 2\sqrt{2xh}=2\sqrt{2S}$,在 x=2h 时等号成立,故 $u_{\min}=2\sqrt{2S}$;
- 当h=0时,S=0, $u=x+y-x=x\geq 0$,在x=0时等号成立,故 $u_{\min}=0$;

由区域 Ω 的开放性,显然在任何情况下u(x,y,h)都不存在最大值;

而在边界 x=0 , y=x 上取得的最小值均大于 $2\sqrt{3S}$, h=0 可归为 $u=2\sqrt{3S}$ 的特殊情况,综上所述,当 $(x,y)=\frac{2}{3}\sqrt{\sqrt{3}S}(1,2)$ 时,有 $u_{\min}=2\sqrt{\sqrt{3}S}$;此时上底:下底:腰=2:1:1.

由前面条件此处应为上底:下底:腰=1:2:1

习题 2.2

1.(1)
$$\oplus \exists f(x,a) = \sqrt{x^2 + a^2} \in C[-1,1] \times [-1,1], \quad \text{if } \lim_{a \to 0} \int_{-1}^{1} \sqrt{x^2 + a^2} \, dx = \int_{-1}^{1} \lim_{a \to 0} \sqrt{x^2 + a^2} \, dx = \int_{-1}^{1} |x| \, dx = 1.$$

$$2.(4) F'(t) = \int_0^t \frac{\partial f}{\partial t}(x+t, x-t) dx + f(2t, 0) = \int_0^t f_1'(x+t, x-t) dx - \int_0^t f_2'(x+t, x-t) dx + f(2t, 0).$$

$$4. \frac{\partial u}{\partial t} = \frac{a}{2} [\varphi'(x+at) - \varphi'(x-at)] + \frac{1}{2} [\psi(x+at) + \psi(x-at)],$$

$$\frac{\partial^2 u}{\partial t^2} = \frac{a^2}{2} \left[\varphi''(x+at) + \varphi''(x-at) \right] + \frac{a}{2} \left[\psi'(x+at) - \psi'(x-at) \right];$$

$$\frac{\partial u}{\partial x} = \frac{1}{2} \left[\varphi'(x+at) + \varphi'(x-at) \right] + \frac{1}{2a} \left[\psi(x+at) - \psi(x-at) \right],$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{2} [\varphi''(x+at) + \varphi''(x-at)] + \frac{1}{2a} [\psi'(x+at) - \psi'(x-at)]; \quad \text{if } \pm \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad \text{if } \pm \text{.}$$