AD-752 581

FUEL MODIFICATION FOR ABATEMENT OF AIR-CRAFT TURBINE ENGINE OXIDES OF NITROGEN EMISSIONS

Henry Shaw

Esso Research and Engineering Company

Prepared for:

Air Force Aero Propulsion Laboratory

October 1972

DISTRIBUTED BY:

CO 10 C) S ~

FUEL MODIFICATION FOR ABATEMENT OF AIRCRAFT TURBINE ENGINE OXIDES OF NITROGEN EMISSIONS

Henry Shaw

ESSO RESEARCH AND ENGINEERING COMPANY Distriction of the solid solid

Government Research Laboratory Linden, New Jersey

TECHNICAL REPORT AFAPL-TR-72-80 OCTOBER 1972

Approved for public release; distribution unlimited.

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE
U.S. Department of Communice
Springful divided 151

Air Force Aero Propulsion Laboratory Air Force Systems Command United States Air Force Wright-Patterson AFB, Ohio

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DOCUMENT CONTI				
(Socially classification of title, body of abstract and indexing a 1. ORIGINATINE ACTIVITY (Corporate author) Esso Research and Engineering Company Government Research Laboratory, P.O. Box 8 Linden, New Jersey 07036 3. REPORT TITLE Fuel Modification for Abatement of Aircraft	SECURITY CLASSIFICATION CLASSIFIED			
4. DESCRIPTIVE NOTES (Type of report and inclusive detes) Final Report, 26 April 1971 to 31 May 1972 5. AUTHOR(S) (First name, middle initial, iast name) Henry Shaw				
October 1972	7a. TOTAL NO. OF PAGES 122	76. NO. OF REFS		
SAL CONTRACT OR GRANT NO. F33615-71-C-1575 A. PROJECT NO. 3066 GRU.1GDJA.72				
•• 306605 «.	AFAPL-TR-7	y other numbers that may be assigned 2–80		
Approved for public release; distribution	unlimited.			
11. SUPPLEMENTARY NOTES	Air Force Aero Prop Fuels Branch (AFAPL Fuels and Lubricati (Project Engineer:	ulsion Laboratory /SFF)		
TO RESTRACT				

This report describes a broad experimental program that was undertaken to assess the feasibility of reducing NO_X from aircraft gas turbine engines by fuel modification. The Esso High Pressure Cannular Combustor was used to simulate the characteristic emissions of gas turbines at full power operation. Over 70 fuel modifications were tested using Jet A as the base fuel.

Soluble compounds of cobalt, iron, magnesium, and copper reduce NO_{X} by as much as 30% when added to the fuel at a treat rate of up to 0.5% (w). Compounds of sodium reduce NO_{X} by as much as 26% when added as suspensions or in aqueous emulsions. An aqueous emulsion containing 37 ppm (w) hydrazine acetate reduce NO_{X} by 15%, but this modification was not consistently effective. None of the investigated additives were fully acceptable because of the relatively low NO_{X} reduction that was obtained even with high additive treat rates.

A simple expression was derived which is useful in estimating NO levels in gas turbine combustors when equilibrium NO $_{\rm X}$ concentrations and tempeature are known.

Ia

DD FORM 1472 REPLACES DO FORM 1475, 1 JAN 44, WHICH IS

UNCLASSIFIED

Security Classification

UNCLASSIFIED

The second of th

Sec	Security Classification - This Page 14. Link A Link D Link							
	KEY WORDS		ROLE	WT	ROLE	WT	LINK C	
Pollu	ition Abatement	i						
Fuel	Additives							
Nitro	gen Oxides]	
Gas T	'urbines							
Heter	ogeneous Catalysis							
Flame	Quenching				1			
Free	Radical Scavenging							
j								
				į				
		÷						
		Ib						
		レジ		1		Sp.		

FUEL MODIFICATION FOR ABATEMENT OF AIRCRAFT TURBINE ENGINE OXIDES OF NITROGEN EMISSIONS

Henry Shaw

Approved for public release; distribution unlimited.

I()
ESSO REPORT GRU.IGDJA 72

FOREWORD

This report describes a study carried out by Esso Research and Engineering Company for the United States Air Force under Contract No. F33615-71-C-1575. The study examined the feasibility of reducing oxides of nitrogen emissions from aircraft turbine engines by fuel modification. The work was performed from April 26, 1971 to May 31, 1972 at the Esso Research Center in Linden, New Jersey. Lt. William S. Blazowski of the Air Force Aero Propulsion Laboratory was the responsible Government Engineer. Capt. Donald L. Champagne held this position during the initial phase.

The experimental work was skillfully carried out by Mr. C. J. McGoy. Valuable advice was obtained from Messrs. V. J. Siminski, O. G. Lewis, A. Skopp and Dr. J. P. Longwell.

This technical report has been reviewed and is approved.

Stehur V. Churchill
ARTHUR V. CHURCHI ..., CHIEF

Fuels Branch

Fuels and Lubrecation Division

Air Force Aero Cropulsion Laboratory

ABSTRACT

A broad experimental program was undertaken to assess the feasibility of reducing NO_X from aircraft gas turbine engines by fuel modifications (additives and/or treatments). The modifications were selected without regard to practical limitations in order not to obscure potentially useful approaches. The Esso High Pressure Cannular Combustor was used to simulate the characteristic emissions of gas turbines. Over 70 fuel modifications were tested using Jet A as the base fuel.

Soluble compounds of cobalt, iron, manganese and copper reduced NO_{X} by as much as 30% when added to the fuel at a treat rate of up to 0.5% (w) metal. Compounds of sodium reduced NO_{X} by as much as 26% when added in suspensions or in aqueous emulsions. An aqueous emulsion containing 37 ppm (w) hydrazine acetate reduced NO_{X} by 15%, but this modification was not consistently effective. None of the investigated additives was fully acceptable because of the relatively low NO_{X} reduction that was obtained even with high additive treat rates.

The experimental work was carried out at an overall air to fuel ratio of around 50 and at a pressure of 48 psig. The exhaust gas composition was representative of aircraft turbine engines with the exception of the carbon monoxide levels which were too high. A statistical analysis of results with unmodified Jet A fuel indicated that variation of air inlet moisture from 0.00025 to 0.0025 lb of water per lb of air, and pressure variations between 45 and 60 psig had an insignificant effect on NOx production over the range of the experimental work.

A simple expression was derived which is useful in estimating NO levels in gas turbine combustors when equilibrium NO concentrations and temperatures are known.

TABLE OF CONTENTS

	Peg	e
I.	SUMMARY	
II.	INTRODUCTION	
	1. NO _x Fermation	
	2. Aircraft Gas Turbines 6	
	3. Fuel Modifications	
III.	EXPERIMENTAL	
	1. Combustor	
	2. Air and Fuel Feed System	
	3. Sampling and Analytical System	
IV.	RESULTS	
	1. Emissions with Unmodified Fuel	
	2. Emissions with Modified Fuel	
v.	DISCUSSIONS	
VI.	CONCLUSIONS AND RECOMMENDATIONS	
VII.	REFERENCES	
	APPENDIX I EXPERIMENTAL RESULTS	
	APPENDIX II REFERENCE EMISSIONS	
	APPENDIX III MODIFICATION EFFECTIVENESS	
	APPENDIX IV UNMODIFIED JET A EXPERIMENTAL RESULTS 91	
	APPENDIX V MATERIAL BALANCE CALCULATIONS	
	APPENDIX VI KINETICS OF NO FORMATION IN GAS TURBINE COMBUSTOR	
	APPENDIX VII COMPUTER PROGRAM	

Preceding page blank

LIST OF ILLUSTRATIONS

No.		Page
1	NO _X Equilibrium in <u>Jet A</u> Combustion	7
2	$\mathrm{NO}_{\mathbf{x}}$ Levels in Aircraft Turbine Engines	9
3	High Pressure Combustor	19
4	Components of Combustor	20
5	Quartz Sleeve With Can II	21
L	Combustor Flowsheet	23
7	Schematic of Sampling and Analytical System	25
8	Comparison of Calculated and Least Squares Aplationship of NO _X from Unmodified Jet A as a Function of Equivalence Ratio	39
9	$\mathrm{NO}_{\mathbf{X}}$ Reducing Ability of Transition Metal Additives and Heterogeneous Catalysts	40
10	Effect of Concentration on $NO_{\mathbf{X}}$ Reducing Abilaty of Iron and Manganese Additives	42
11	Effect of Concentration on ${\rm NO}_{\rm X}$ Reducing Ability of Copper and Cobalt Additives	43
12	Effect of Water on the ${\rm NO_2}$ to ${\rm NO_x}$ Ratio	44
13	NO _x Reducing Ability of Alkali Metaî Hydroxide Water Emulsions	45
14	Effect of Temperature on NO ₂ /NO _x Ratio	50
15	Effect of Temperature on δ	113
16	Arrhenius Plot of θ	114

LIST OF TABLES

No.		Page
I	Average Gaseous Emissions from Commercial Aircraft Engine (13)	. 11
11	Average Gaseous Emission from Commercial Aircraft Engines (14)	. 12
III	Empirical NO _x Model	. 13
IV	Average Gaseous Emissions from Commercial Aircraft Engines (15)	. 14
v	Experimental Conditions	. 24
VI	List of Fuel Modifications - Metals	. 28
VII	List of Fuel Modifications - Emulsions	. 30
VIII	List of Fuel Modifications - Homogeneous Additives	. 31
IX	Correlation of $NO_{\mathbf{X}}$ with Other Emissions and Temperatures	. 34
x	Least Squares Relationships for Can II,	. 35
XI	Least Squares Relationships for Can I	. 36
XII	Correlation of $\mathrm{NO}_{_{\mathbf{X}}}$ with Other Emissions and Temperature	. 38
XIII	NO Reducing Effectiveness of Various Addivives	. 46
XIV	Experimental Results - Mole Fraction Uni's	. 57
χV	Experimental Results - Emission Index Units	. 65
XVI	Reference Emissions	. 74
XVII	Percent Change Due to Modification	. 83
XVIII	Runs with Unmodified Jet A Can I	. 92
XIX	Runs with Unmodified Jet A Cap II	. 94
ХХ	Runs with Unmodified Jet A Can I	. 97
XXI	Runs with Unmodified Jet A Can II	. 99

LIST OF TABLES (Cont'd.)

No.		Page
IIXX	Equilibrium Calculation Jet A ($C_1H_{1.9185}$) at 58.8 PSIA	107
XXIII	Time to Achieve a Particular ρ	111
XXIV	Range of Errors in Using Equation (6)	112
xxv	Kinetic Parameters for Equation (5)	115
XXVI	Comparison of Calculated and Observed ${\tt NO}_{\mathbf{X}}$ Levels - Adiabatic Flame Temperature	116
XXVII	Effect of Non-Adiabatic Flame Temperature on Residence Time	116

SECTION I

SUMMARY

A broad experimental program was undertaken to assess the feasibility of reducing $NO_{\mathbf{X}}$ from aircraft gas turbine engines by fuel modifications (additives and/or treatments). The modifications were selected without regard to practical limitations in order to fully evaluate the fuel modification concept and to uncover promising leads. Practical considerations could obscure potentially useful approaches.

The Esso High Pressure Cannular Combustor was used to simulate the characteristic emissions of gas turbines. Approximately 70 fuel modifications were tested using Jet A as the base fuel. These fell into seven general categories:

- (1) Soluble organometallic additives which become heterogeneous reduction or decomposition catalysts.
- (2) Additives that scavenge or recombine oxygen atoms.
- (3) Additives that reduce peck temperatures.
- (4) Additives that delay ignition.
- (5) Additives that change spray fluid-dynamics.
- (6) Additives that decompose NO or inhibit the NO producing chain reactions.
- (7) Combinations of the above for synergistic effects.

Category 1 proved to be the most effective in reducing NO_X emissions. The transition metals added to the Jet A fuel as organometallic compounds reduced NO_X more effectively than other additives. In particular, compounds of cobalt, iron, manganese and copper reduced NO_X by as much as 30% when added to the fuel at a treat rate of up to 0.5% (w) metal. In the alkali metal family, sodium proved most effective by reducing NO_X up to 26% at a treat rate of 0.1% (w). Sodium was added in a suspension as a carbonate or in an aqueous emulsion as a hydroxide. Zirconium reduced NO_X by 11% and 22% at treat rates of 0.1 and 0.2% (w) metal respectively. An aqueous emulsion containing 37 ppm (w) hydrazine acetate reduced NO_X by up to 15%, but this modification gave erratic results.

Most other additives were either ineffective or reduced NO_X by less than 10%. It is noteworthy that all nitrogen containing compounds added at treat levels of more than 0.5% (w) increased NO_X by about 50%. This corresponds to a conversion of up to 30% of the chemically bound nitrogen to NO_X . None of the investigated additives was fully acceptable because of the relatively low NO_X reduction that was obtained even with nigh additive treat rates.

The experimental work was carried out at an overall air to fuel ratio of around 50 and at a pressure of 48 psig. The exhaust gas composition was typical of the latest aircraft turbine engines with the exception of the carbon monoxide levels which were too high. A statistical analysis of results with unmodified Jet A fuel indicated that variation of air inlet moisture from 0.00025 to 0.0025 lb of water per lb of air, and pressure variations between 45 and 60 psig had an insignificant effect on $NO_{\rm X}$ production over the range of the experimental work.

To the contract of the second second

A kinetic analysis of the mechanism for NO formation at elevated temperature due to air fixation indicated that the experimental results are reasonable. A simple expression was derived which is useful in estimating NO_{X} levels in gas turbine combustors when the equilibrium NO concentration and temperature are known.

SECTION II

INTRODUCTION

The oxides of nitrogen (NO) are one of the major air pollutants in our atmosphere. On a total tonnage basis, the combustion of fossil fuels in motor vehicles, electric power plants, and industrial boilers accounts for most of the emissions of NO. However, the relative importance of uncontrolled NO emissions from various smaller sources such as jet aircraft can be expected to increase in the future as increasingly stringent air pollution controls take effect for automobiles and stationary combustion equipment. Consequently, the NO problem associated with such sources as jet aircraft can no longer be ignored in the overall national effort to improve the quality of our environment.

There are two ways in which the problem of controlling NO emissions from jet engines can be approached. The first would be to modify the engine design, primarily the combustor section, in order to provide temperature, residence time and oxygen concentrations less favorable to the formation of mitrogen oxides. Unfortunately, such engine modifications would cost billions of dollars and take years to fully implement. The alternate approach involves modifying the fuel to reduce NO emissions. Compared to engine modifications, the potential savings in both cost and time that the fuels approach provides is simply too great to dismiss without some kind of broadly based systematic empirical study.

1. NO FORMATION

Oxides of nitrogen (NO_X) are produced in all fuel combustion processes using air as the oxidizer. At flame temperatures, the combination of atmospheric oxygen and nitrogen results in the formation of nitric oxide (NO). The rate of NO formation and decomposition is very highly temperature-dependent. The mechanism of formation of NO from nitrogen and oxygen follows the chain reaction sequence first postulated by Zeldovich (1) for the H2-O2-N2 reaction system and confirmed by shock tube studies on N2-O2 mixtures (2).

$$0_2 + M \xrightarrow{\frac{k_1}{k_2}} 20 + M \tag{1}$$

$$0 + N_2 \xrightarrow{k_3} NO + N$$
 (2)

$$N + O_2 = \frac{k_5}{k_6} NO + O$$
 (3)

Although it is now generally accepted that the bulk of the NO in combustion processes is produced by the Zeldovich mechanism, recent studies (3), with premixed flat flames indicate that NO may be formed at rates higher than this mechanism predicts for hydrocarbon/air combustion. This "prompt NO" formation, which has not been observed in either hydrogen/air flames or CO/air flames may involve an attack of carbon or hydrocarbon radical on nitrogen molecules. This could result in the formation of HCN and atomic nitrogen which would then lead to the formation of NO at rates higher than those predicted by the Zeldovich mechanism. On the other hand, the reported high rates of NO might be equally well explained by the existence of super-equilibrium concentrations of O-atoms in the flame zone.

Besides the atomic chain route, NO can also be formed by reaction (4).

$$OH + N \xrightarrow{\frac{k_7}{k_8}} NO + H$$
 (4)

This reaction becomes important only under fuel rich conditions where the low oxygen concentration decreases the rate of reaction (3).

The kinetic mechanism consisting of reactions (1) through (4) can be solved analytically by assuming that all combustion is complete prior to NO formation, all combustion species except NO are in chemical equilibrium at the adiabatic flame temperature, and nitrogen atoms have achieved a steady state (d(N)/dt = 0). A full mathematical treatment is given in Appendix VI. The resulting expression is:

$$(\delta + 1) \ln (1-\rho) + (\delta-1) \ln (1+\rho) = -\theta t$$
 (5)

where,

$$\delta = \frac{\frac{k_4}{k_5}}{1 + \frac{k_7}{k_5}} \left(\frac{\frac{x_{N_2}}{x_{0_2}}}{\frac{x_{OH}}{x_{0_2}}} \right)$$

 ρ = reduced NO mole fraction with respect to equilibrium = $\frac{X_{NO}}{X_{NO}}$.

t = time in seconds.

X, = mole fraction of component i.

P = pressure in atmospheres.

R = gas constant = 82.057 $\frac{\text{cm}^3 \text{ atm}}{\text{mole }^6 \text{K}}$ = 1.987 $\frac{\text{cal}}{\text{mole }^6 \text{K}}$.

T = temperature in ^OK.

$$\theta = \frac{4k_3K_0^{\frac{1}{2}}P^{\frac{1}{2}}X_{N_2}^{\frac{1}{2}}}{K_{NO}^{\frac{1}{2}}RT}, sec^{-1}.$$

Equation (5) can be simplified for the practical conditions of aircraft combustion where $\rho < 0.2$ and $\delta < 0.8$ with an error of less than 9% to

$$\rho = \frac{\theta t}{2} .$$
(6)

Equation (6) is useful for estimating NO levels in gas turbine combustors with fair accuracy since "prompt NO" is minimal under fuel lean conditions. This will be illustrated in Section IV which describes the results.

Organic nitrogen compounds present in the fuel provide another source of NO in combustion processes. Based on experimental evidence, the role of fuel nitrogen appears to vary from being the dominant source of NO at low combustion temperatures to being of minor importance at high temperatures. In general, this source of NO is not important in aircraft engine operation since jet fuel contains less than 50 ppm (w) nitrogen and would contribute less than 0.16 lb NO_X (as NO_2) per 1000 lb of fuel.

The main environmental problem associated with NO_X emissions is actually due to NO_2 . The background presented above relating to NO formation is important because NO is the major precursor to NO_2 formation. Nitrogen dioxide contributes to pollution by reacting with hydrocarbons, ozone and light to produce smog. In addition, NO_2 reacts with water to produce acid which causes corrosion problems, and it absorbs visible light which reduces visibility as well as contrast and brightness of distant objects.

From the standpoint of minimizing total NO_X emissions, it is fortunate that the concentration of NO_2 in and near the combustion zone is very low. This results from the fact that NO_2 is thermodynamically unfavorable at combustion temperatures. In addition to this thermodynamic limitation, there is also a kinetic limitation at high temperature. The oxidation of NO by O_2 via reaction (7) is one of the few known reactions

$$2NO + O_2 \longrightarrow 2NO_2$$
 (7)

whose reaction rate decreases with increasing temperature (4). The consequence of these thermodynamic and kinetic limitations is that the amount of NO_2 emitted by combustion sources is limited to a few percent and only as the combustion gases cool in the atmosphere does any significant amount of the reddish brown NO_2 begin to form. The other six oxides of nitrogen $(N_2O_1, N_2O_2, N_2O_3, N_2O_4, N_2O_5, NO_3)$ play only insignificant roles in combustion processes.

2. AIRCRAFT GAS TURBINES

In an aviation gas turbine engine, inlet air is continuously compressed, mixed with liquid fuel, and then burned in a continuous combustor. Quantities of air greatly in excess of the stoichiometric fuel requirement are compressed and used to keep the combustor liner cool and to dilute the combustor exit gases so as to avoid damage to the turbine and nozzle.

AIR PREHEATED TO 400°F PRESSURE 4 ATMOSPHERES JET A = C H1.9185

Figure 1 ${
m NO}_{
m x}$ EQUILIBRIUM IN JET A COMBUSTION

The primary section of the combustor is operated near stoichiometric conditions (generally rich for military operations) and produces combustor gas temperatures in excess of 3800°F depending on the engine pressure ratio. Further down the combustor, secondary air is added which raises the Air/Fuel ratio and lowers gas temperatures. Gas temperatures exiting from the combustor are in the range of 2000°F depending on the engine pressure ratio. The fuel injection pressure varies. It is typically 600 psi for full power and as low as 60 to 100 psi for idle conditions in conventional aircraft. Newer fuel injection techniques involve premixing or carburization where the fuel is atomized and vaporized by shearing with the available air flows. In these aircraft, much lower fuel pressures are required. The pressure drop across the length of aircraft turbine engine combustor is generally about 5%. The total absolute operating pressure is in the range of 20 to 300 psi.

Aircraft turbine engines generally operate more efficiently then reciprocating internal combustion engines and therefore do not exhaust high levels of objectionable gaseous emission. The emissions that are classified as pollutants are emitted either during idle when CO and unburned hydrocarbons are maximized or during full power operation or take-off when $NO_{\rm x}$ and smoke emissions are maximized.

Since NO, formation is thermodynamically favored by high temperatures, and kinetic studies indicate that the rate of NO formation has a high activation energy (~115 kcal/mole), the major formation of NO must take place in the high temperature primary combustion zone. This point is illustrated in Figure 1. It is based on computer calculated equilibrium values (5) for the operating conditions used in this experimental program. The kinetic curve was obtained using Equation (6) for 2 milliseconds residence time. The equilibrium and kinetic data were converted into units of emission index in 1b per 1000 lb of fuel. This was done in order to present the data in a general format which avoids the effect of dilution. Using emission index, one can rank different aircraft engine designs which may have radically different recirculation patterns as well as other types of power plants. Note that the maximum equilibrium value of $NO_{\mathbf{X}}$ occurs at an equivalence ratio of 0.8 and is a factor of 20 larger than one would calculate based on kinetic limitations. The maximum kinetic value of NO_x is about 7.9 lb/1000 lb of fuel at an equivalence ratio of 1.0. Since gas turbines generally operate at full power at an equivalence ratio of about 0.3, the NOx produced in the primary zone under stoichiometric conditions is diluted by a factor of about 3.3. By using emission index units, no dilution correction needs to be made.

There have been numerous investigations of the composition of exhaust gases from aircraft gas turbines (6-15). Most of these studies were made with nearly atmospheric pressure cannular combustors or with actual model gas turbines. In general, the exhaust gases from cannular combustors tend to have higher concentrations of carbon monoxide and

- 9 -

unburned hydrocarbons and lower concentrations of oxides of nitrogen when compared with actual gas turbines. This is partly due to higher surface to volume ratios in laboratory units which make them less adiabatic. Additional factors which cause higher concentrations of CO and unburned hydrocarbons and lower $\mathrm{NO}_{\mathbf{x}}$ concentrations in laboratory units are: poorer fuel injection, poorer mixing, less efficient combustion, improper air distribution, and lower air preheat temperatures. In addition to the factors mentioned above, the higher $\mathrm{NO}_{\mathbf{x}}$ levels in the exhaust of gas turbines is believed due to higher pressure and temperature operation than in cannular combustors. The concentration of NO which generally comprises in excess of 80% of the NO, emissions from aircraft gas turbines is not predictable from equilibrium calculations. Figure 2 is a plot of data obtained from emissions measurements from representative aircraft gas turbines (14,15). These experimental results are compared with the equilibrium curve for 4 atm pressure and 400°F preheated air.

Some field surveys of the emissions of aircraft engines were recently published. Cox, Penn and Chase (13) measured the emissions of 25 aircraft turbine engines using Jet A fuel. Their results are presented in Table I. Hare, Dietzmann and Springer (14) reported on emissions measurements from two military engines and six commercial engines. Their data were converted to emission index units using the equations derived in Appendix V. The average baseline $\mathrm{NO_x}$ emissions from the military and commercial engines are presented in Table II. A. W. Nelson (15) measured the emission from nine JT3D, nine JT8D and four JT9D engines. He found that the empirical equations listed in Table III predict his results in pounds of $\mathrm{NO_x}$ per pound of fuel. Nelson's average experimental values are given in Table IV. $\mathrm{NO_x}$ emission levels of up to 420 ppm or an emission index of 36.8 lb per 1000 lb fuel were measured with the JT9D engine.

3. FUEL MODIFICATIONS

Very little work has been reported on the use of additives for reducing NO_{X} emissions. One of the more comprehensive efforts was reported by Martin, Pershing and Berkau (16). They found that no additive was effective in reducing NO_{X} in stationary power plant boilers, but iron, manganese and cobalt reduced particulate emissions. Some of the nitrogen containing additives increased NO_{X} emissions. Altwicker, Fredette and Shen (17) reported that 1.0% (v) cobalt naphthenate reduced NO_{X} in their laboratory burner set-up by 16%. Meguerian (18) investigated the effect of 29 fuel soluble organometallic compounds at a concentration level of one gram of metal per gallon of fuel. He found that chromium acetylacetonate, cobalt octoate, and nickel naphthenate were "very effective" in reducing NO_{X} under fuel-rich conditions. Copper naphthenate and cerium octoate were "less effective" and the rest of the additives were not effective. Under fuel-lean conditions, none of the additives

TABLE I

AVERAGE GASEOUS EMISSIONS FROM COMMERCIAL AIRCRAFT ENGINES (13)

	Engine operating parameters			Com	ponents,	1ь/1,000	lb fuel
Mode Thrust, Fuel, Fuel-air			CO	NO _x	HC	Aldehydes	
	1b	lb/hr	ratio		•		
		JT30-1 E	NGINF (1 ON	ILY)			
I-le	930	900	0.0078	87.1	2.0	91.4	5.1
Part power (trim)	8,400	4,500	.0114	4,7	8.3	.25	.08
Cruise	8,750	4,690	.0116	4.3	8.4	.27	.06
Maximum continuous	11,610	6,390	.0123	2.3	9.7	.17	.03
Takeoff	14,360	8,170	.0137	1.4	12.5	.11	.02
		JT3D-3B	ENGINES (3)			
Idle	870	925	0.0075	96.6	2.1	107.9	5.4
Part power (trim)	10,955	5,950	.0114	2.3	9.1	.19	.04
Cruise	10,875	5,895	.0114	2.7	8.6	.20	.05
Maximum continuous	13,280	7,300	.0127	1.7	8.8	.17	.03
Takeoff	15,900	9,185	.0143	1.3	¹ 14.2	1.28	.02
	JT8D-1		WITHOUT RE	ROFIT (3)		
[dle	950	1,030	0.0028	45,5	5.1	9.3	1.7
Part power (trim)	9,240	5,410	.0086	3.5	12.0	.16	.03
Cruise	10,650	6,260	.0100	2.7	12.5	.12	.02
Maximum continuous	11,690	6,905	.0105	2.5	14.0	.12	.02
Takeoff	12,545	7,555	,0112	2.5	16.5	.12	.01
			S WITH RET				
Idle	995	1,080	0.0041	30.8	2.9	5.5	1.1
Part power (trim)	9,185	5,445	.0100	1.9	11.6	.10	.03
Cruise	10,540	6,260	.0109	1.5	13.4	.11	.03
Maximum continuous	11,680	7,010	.0116	1.4	17.4	.08	.03
Takeoff	12,450	7,480	.0122	1.3	18.9	.07	.03
			WITHOUT RE		2)		
Idle	1,025	1,075	0.0026	44.2	5.1	10.9	1.7
Part power (trim)1:	9,750	5,740	.0099	2.9	11.6	.08	.)4
Cruise	10,860	6,400	.0106	2.5	12.2	.29	.04
Maximum continuous	12,060	7,170	.0116	2.1	13.8	.17	.05
Takeoff	13,055	7,885	.0126	1.9	15.2	.10	.05
		7 ENGINE					
Idle	960	1,060	0.0031	26.8	4.0	5,9	
Part power (trim)	9,755	5,705	.0101	1.6	12.7	.12	-
Cruise	10,855	6,420	.0114	1.4	14.3	.26	-
Maximum continuous	11,875	7,105	.0124	1.3	15.9	.21	
Takeoff	12,710	7,685	.0132	1.2	17.1	.16	١ -
ZOREOII,		9 ENGINE					L
Idle	980	1,040	0.0038	28.2	4.7	8.4	1.2
Part power (trim)	1	6,095	.0115	1.8	14.3	.11	.04
Cart power (crim)	10,830	6,310	.0117	1.7	14.1	.19	.05
Maximum continuous		6,975	.0126	1,5	15.6	.18	.04
		8,200	.0140	1.2	18.1	.18	.04
Takec ff		511-14 SF			1 -7	1	1
T d 1 a	625	915	0.0067	97.5	2.0	57.3	5.6
Idle	1				18.8	.13	.06
Takeoff	11,140	7,370	.0147	2.3	1	.13	.05
Checkpoint 1	10,705	7,005	.0141	2.4	18.1		.04
Checkpoint 2	10,140	6,545	.0135	2.7	18.5	.11	
Checkpoint 3		6,145	.0130	2.8	18.3	.11	.04
Checkpoint 4	7,490	4,685	.0114_	3.9	15.6	.12	.04

TABLE II

and the second of the second o

AVERAGE NO, EMISSION INDEX FROM MILITARY AND COMMERCIAL AIRCRAFT FIGINES (14)

Reverse			11.4	10.1	9.91	8.73	7.17	
Idle			2.27	2.51	2.13	1.61	1.35	1.70
Takeoff			12.6 2.27	10.5	10.8	09.6	8.48	9.24
M.E.T.O.			10.2	9.25	8.70	79.7	7.10	7.98
Cruise			8.30	7.80	7.61	6.02	6.70	7.55
Flight Idle	6.16	2.25						
Military	10.2	8.29						
7,007	10.2	5.33 7.12						
75%	8.36	5.33						
Number of Tests	13	4	17	5	9	œ	က	2
MODE	T56-A7B Turboprop	J79-GE-15 Turbojet	JT8D-9 Turbofan	JT8D-1 and JT8D-7 Turbofar	JT4A-H Turbojet	JT3D-B Turbofan	JT3C-6 Turbojet	CJ805 Turbojet

TABLE III

EMPIRICAL NOx MODEL

Engine	Equation
JT8D	$NO_{x} = .0237 + .0171 \text{ EPR}214 \times 10^{-5} \text{ Q}$
JT3D	NO _x =0098 + .0140 EPR194 H
JT9D	$NO_{x} =093 + .0770 \text{ EPR}263 \times 10^{-3} \text{ T}313 \text{ H}$
where	Q = Heac of Combustion ∿18,500 Btu/lb.
	EPR = Engine Pressure Ratio
	H = Humidity -1b water/1b air.
	T = Inlet Temperature %F.

TABLE IV

AVERAGE GASEOUS EMISSIONS FROM COMMERCIAL AIRCRAFT ENGINES (15)

Engine	Mode	Thrust lbs	Fuel Flow lbs/hr	NO _x lbs/ 1000 ibs Fuel	NO _x 1 Sigma <u>Variation</u>
J73D	Idle	900	1,070	2.25	0.85
	Approach	5,228	3,573	4.87	0.85
	Climb	16,400	8,120	11.92	0.85
	Takeoff	18,000	9,420	13.63	0.85
JT8D	Idle	800	920	1.71	0.78
	Approach	3,555	2,700	5.39	0.78
	Climb	12,600	7,020	15.60	0.78
	Takeoff	14,500	8,400	18.60	0.78
JT9D	Idle	3,550	1,976	3.41	1.9
	Approach	15,009	7,515	11.42	1.9
	Climb	39,650	14,109	30.00	1.9
	Takeoff	45,500	16,641	36.80	1.9

reduced NO $_{\rm X}$. These tests were run in a pulse-flame apparatus. McCreath (19) reported that isoamyl nitrate and ditertiary butyl peroxide reduced NO $_{\rm X}$ by 17 and 10% respectively in diesel engines. The effectiveness of these additives varied with concentration and age of the blend. Hare et. al. (14) added up to 0.1% (v) CI-2 (see pg. 29 for chemical composition) is some of the aircraft engine tests to determine the effect of additives on the level of emissions. No comprehensive analysis of the data was presented but it appears that hydrocarbons and CO increased slightly while NO $_{\rm X}$ decreased by up to 8%.

In addition to the organometallic additives mentioned above, there has been considerable work in reducing NO_{X} from gas turbines by additing water or steam to the combustor primary zone. Klapatch and Koblich (20) reported about 80% reduction of NO_{X} using 0.9 lb of water per lb of fuel (60 ppm (v) were reduced to 12 ppm (v) at 16 MW operation). They also found that the ratio of NO_{2} to NO_{X} increases as more water is added per pound of fuel.

It was clear from the research described above that the efforts in reducing NO_{K} emissions should be systematized. In an attempt to broadly evaluate the concept of NO_{K} reduction with fuel modifications the possible techniques were categorized as follows:

1. Soluble additives which become heterogeneous catalysts for:

A. Reduction

$$2NO + 2CO \longrightarrow N_2 + 2CO_2$$

B. Decomposition

$$2NO \longrightarrow N_2 + O_2$$

For example: Co, Na, Fe, Ni, Sb, etc.

2. Additives that scavenge or recombine oxygen atoms

A. Scavenge

$$0 + cF_3 \longrightarrow coF_2 + F$$

B. Recombine

$$0 + x_2 \longrightarrow 0x + x$$

$$0 + 0x \longrightarrow 0_2 + x$$

For example: $CC1_4$, $(CF_3)_2$ CHOH

- 3. Additives that reduce peak temperature
 - A. Radiative heat transfer with solids

For example: Dicyclopentadiene to produce soot, organometallics to produce oxides

B. Endothermic physical conversion

For example: Emulsion of water, alcohol, ammonium formate, hydrazine acetate

4. Additives that delay ignition and thus reduce exposure time at paak temperatures

For example: analine, ether

5. Additives that change spray fluid-dynamics

For example: polyisobutylene, dissolved polymers

6. Additives that decompose NO

$$N_C + NH - N_2 + OH$$

For example: analine, ammonium formate, hydrazine acetate

7. Combination of the above approaches for synergistic effects

For example: Sb + CCl_{Δ} , 0.7 Ni + 0.3 Cu (Monel)

These categories are only an attempt to systematize the research and are not meant to imply that a mechanism for NO_{X} reduction is known. No attempt to determine the actual NO_{X} reducing mechanism was made in this program.

The following factors were of secondary importance in this program but should be considered in evaluating the effectiveness of practical fuel modifications:

1. The tendency of fuel additives to cause problems (chemical incompatibility, loss of fuel thermal stability, etc.) generally varies with concentration. Experience indicates that any compound that is required in concentrations greater than about 0.25% by volume in real turbine systems will not be practicable.

- 2. A "fully effective modification" should, by definition, be capable of reducing the NO_X emission index by more than 90% with a reasonable additive concentration.
- 3. It is improbable that any modification will find wide acceptance if it increases fuel cost by more than 10% (approximately one cent per gallon modified) when in large quantity production. However, if the fuel additive is used on a demand basis such as during take-off, then a high additive cost could be tolerated.

SECTION III

EXPERIMENTAL

A high pressure cannular combustor was developed in order to test whether potential fuel modifications can reduce oxides of nitrogen emissions. The $\mathrm{NO}_{\mathbf{X}}$ emissions from actual aircraft turbine engines can be better simulated with the high pressure laboratory unit than with atmospheric pressure units. A continuous sampling and analytical system was developed which overcomes many of the difficulties and inherent errors of batch sampling. This section describes the design and operation of the combustor and the analytical system.

1. COMBUSTOR

The experimental apparatus consists of a high pressure cannular combustor similar to those used in aircraft gas turbine engines. Figure 3 is a scaled drawing of the Esso Cannular Combustor. The combustor's outer sleeve was initially made out of quartz in order to permit continuous viewing of combustion uniformity. Due to frequent breakage of the quartz, the outer sleeve was changed to one made out of Inconel, Periodic checks with a quartz sleeve showed that the two materials gave equivalent results. A 60-deg hollow cone 0.50 gallon per hour nozzle was used to feed Jet A fuel. Air was fed through a distribution box and was then swirled through the fuel feed zone and the secondary and quanch zones. Figure 4 is a photograph of the combustor components. The primary zone (surrounding the nozzle) provided additional swirl by injecting air tangentially. The primary zone average velocity was calculated to be 40 ft/sec which is lower than the 80 ft/sec attributed to modern aircraft combustors. The can was made out of Hastelloy X and is 2 in. in diameter and 6 in. long. The hole sizes in the can provide for the following air distribution.

Primary Zone	30.3%
1 L/D	12.2%
2 L/D	15.9%
3 L/D	41.5%

A minor modification in the equipment was made after Run 45. The modification consisted of dimpling the can after standard construction. A photograph of this dimpled can (Can II) is shown in Figure 5. The original type of can (Can I) was modified to avoid the following problems:

1. Flames occassionally shot out through the secondary air holes of the can. It was necessary to avoid this in order to maintain a consistent basis for determining NO_X reduction with modified fuel.

HIGH PRESSURE COMBUSTOR

Figure 4
COMPONENTS OF COMBUSTOR

Figure 5 QUARTZ SLEEVE WITH CAN II

2. The can experienced an aging effect after about 20 hours of operation. This caused a decrease in combustion efficiency. The ratio of CO to CO₂ climbed while the NO_x levels and the exit temperatures decreased from expected values. The installation of a new can was necessary in order to continue operation. The reason for the decrease in combustion efficiency was not determined.

One can postulate that the aging problem was caused by ineffective cooling of Can I, thus causing fuel to pyrolyze on the hot metal surface and producing carbon deposits. These deposits further reduced the heat transfer characteristics of the can and provided a hot carbon surface that could reduce NO. The hot carbon surface could also react with the excess oxygen available in the combustor and increase the level of CO. Ultimately the can would fail structurally. An aging effect was recently discussed by H. T. McAdams (21) for JT8D engines. He reported that in 18 tests of engines that had gone up to 3000 hours between overhauls of the hot section, the NO_{X} levels decreased as engine age increased. McAdams did not discuss the mechanism of NO_{X} reduction as a function of hot section age.

A high frequency discharge was used for ignition. The combustion gases passed through a stainless steel type 446 orifice which choked the flow to maintain the chamber pressure at 4 atmospheres. The chamber pressure could be increased to 6 atmospheres by changing the orifice plate or by increasing air and fuel flow rates. Static pressure was monitored at three points along the combustor length. The exhaust gases were sampled in a 10" atmospheric pressure sleeve after the orifice. Two sets of chromel-alumel thermocouples 3 in. apart were used to ascertain whether combustion had ceased. One set was located 4.5 in. from the orifice plate and the other set was 7.5 in. from the plate.

2. AIR AND FUEL FEED SYSTEM

The air and fuel feed system is shown schematically in Figure 6. The air feed system consisted of a compressor followed by an 18 ft. diameter sphere. The pressure in the sphere was maintained at approximately 100 psig. The sphere acted as a ballast for maintaining a constant pressure supply of air. The air coming from the sphere was filtered and regulated to 80 psig. The moisture level of the incoming air was continuously monitored. The moisture level varied by a factor of 10 depending on the ambient humidity. After the air flow rate was determined with a rotometer, it was preheated to 425°F.

The fuel feed system consisted of 2 pyrex 5 gallon reservoirs and an Eastern close coupled pump. As can be seen from Figure 6, the pump was used to fill the pyrex vessels as well as to feed fuel to the combustor. A back pressure regulator provided a fuel stream of approximately 350 psig to the fuel feed line while the rest of the fuel was recirculated. The

Figure 6 COMBUSTOR FLOWSHEET

recirculation ratio was approximately 10:1. The exact fuel rate was set with a needle valve following a rotometer. One of the reservoir vessels acted as a standard and was never contaminated with additives. The other vessel was used to feed all modified fuels. Since temperature can have a significant effect on the spray dynamics through the nozzle, the fuel was heated to 110°F just prior to injection.

The experimental conditions used throughout this program are listed in Table V. The air flow rate was maintained approximately constant while the fuel was varied for different equivalence ratios. In this manner, the combustor pressure was made independent of equivalence ratio.

TABLE V

EXPERIMENTAL CONDITIONS

Average Air Flow Rate = 162 lbs/hr

Nozzie = 0.5 GPH, 60° Hollow Cone

Orifice Diameter = 0.281 in

Combustor Pressure = 49.2 PSIG

Axial Pressure Drop in Combustor < 0.5 PSIG

Air Preheat = 425°F

Inlet Air Moisture = 400 to 4000 PPM (V)

Fuel Preheat = $110 + 5^{\circ}F$

Average Fuel Flow Rate = 3.4 lbs/hr

3. SAMPLING AND ANALYTICAL SYSTEM

The sampling system was designed and constructed to insure that representative samples were delivered to the various instruments. Tests indicated that the total analytical and sampling system provided a rapid response to changes in the emission levels in the combustor effluent. Details of the sampling system are shown in Figure 7. The sample gases from the quartz probe passed through a heated sample line. Quartz probes were used in order to avoid catalytic reduction of NO by CO (22). Exhaust gases flowed through a Teflon tube which was contained in a larger metal tube wrapped with heater tapes. A Gardsman Temperature controller was used to

Figure 7
SCHEMATIC OF SAMPLING AND ANALYTICAL SYSTEM

set the temperature of the sampling line. A metal tube was used to hold the Teflon tube and to provide an even temperature distribution which prevented localized burn-out of the Teflon. Because of its inertness, Teflon is an ideal material to prevent any adsorption of gaseous components which would bias the measurem ats. Sample line temperatures were maintained at 300°F, and were recorded on a strip chart recorder. The heated sample line went directly to the chromatographs. The sample line for the other analyzers tapped off the heated sample line and passed through an ice-trap for water removal. Teflon was used throughout the system.

The CO, CO₂, O₂ and NO_x analytical systems operated continuously and results were recorded permanently on strip chart recorders. The analyses of total hydrocarbons and water were performed chromatographically and depended on instrument response time. The analytical and sampling system completely eliminated the possibility of sample contamination caused by leaks during bottle or both storage.

The following analytical techniques were employed:

destances to particular descriptions are experienced and testing of factions and the section in principal expensions and the sections of the section of t

Total Hydrocarbon. Potal hydrocarbons were measured with a flame ionization detector (FID). This method is the most sensitive technique for the detection of hydrocarbons. Detector response is proportional to the number of carbon atoms which can be ionized by the flame per unit time. The technique was developed by removing the GC separation column from an F & M 609 Flame Ionization Temperature Programmed Gas Chromatograph equipped with a strip chart recorder. In order to ascertain whether the oxygen present in the combustion effluent stream affected instrument response (23,24), some calibrations were made with analyzed mixtures of CH4 in air. No significant difference was detected by using air instead of nitrogen in the premixed calibrating gas. The instrument was calibrated at two hydrocarbon levels using analyzed gas mixture (33 ppm CH4 in nitrogen and 280 ppm CH4 in nitrogen).

 $\mathrm{NO}_{\mathbf{X}}$. The Nitrogen Oxides were measured using an EnviroMetrics Model N122 continuous analyzer. This is a faradic device with replaceable fuel cell sensors. The gas is absorbed in a surface film and the oxidation/ reduction voltage signal produced is proportional to pollutant concentration. Instrument response is linear and up to 90% of full scale within 30 seconds. The analyzer was calibrated using an analyzed gas mixture (100 ppm NO in N_2). The instrument output can be read from the dial and was also recorded on a strip chart recorder. This instrument was purged continuously with nitrogen in order to obtain reproducible results. Readings were, therefore, taken periodically rather than continuously. The EnviroMetric was used to measure total $\mathrm{NO}_{\mathbf{x}}$ and NO_{2} . The NO concentration was determined by difference. In order to ascertain that no interference from other combustion products were observed on the EnviroMetrics analyzer, periodic checks were made with a Thermo Electron and a Bendix chemiluminescent analyzer and a Beckman NDIR analyzer. All NO, instruments gave results which agreed with the EnviroMetrics to within \pm 5%.

Carbon Dioxide was analyzed continuously using a Beckman Non-Dispersion Infrared Analyzer with a 0-10 vol. % scale readout. The $\rm CO_2$ readout was recorded on a strip chart recorder. The instrument was calibrated using an analyzed 2 vol. % $\rm CO_2$ and 100 ppm $\rm CO$ in nitrogen gas blend.

Water was determined on a thermal conductivity P&E 154 gas chromatograph employing a Poropak Q column. A sample of the combustion gas passed continuously through a GC sampling valve, which was used to introduce the sample into the thermal conductivity instrument. The technique was not sufficiently sensitive to distinguish between water emission levels in the air-to-fuel ratio used. The results were generally low by 25%.

Carbon Monoxide was analyzed continuously with a LIRA Infrared Analyzer Model 200 (Mine Safety Appliances). The instrument was calibrated using an analyzed 1000 ppm CO and 10,000 ppm CO mixture in nitrogen.

Oxygen was determined using a Beckman Model 715 Process Oxygen Monitor. This instrument uses a long-life polarographic sensor to measure oxyten. The instrument was calibrated using air.

Tests conducted on the instruments using preanalyzed gas mixtures indicated highly accurate and reproducible measurements of all emissions species of interest.

4. ADDITIVES

The additives were used without further treatment. They were added to measured quantities of fuel in the pyrex fuel tanks and mixed. The modified fuel was pumped through a filter and rotometer into the combustor. The rotometer calibration was checked with each additive and where necessary the fuel rate was corrected for deviations due to the additive. The emulsions that were too viscous to pump conventionally were fed into the combustor using a cylinder with a tightly fitting piston. The emulsion was loaded into the cylinder by hand and sealed. Unmodified fuel was used to drive the piston which in turn forced the emulsion into the combustor.

Over 70 additives were tested in this program. These included 12 metal naphthenates, 6 metal acetylacetonates, 5 metal salts of neoacids, 6 miscellaneous metal compounds, 4 alkali and alkaline earth metal carbonate suspensions, 17 non metal containing additives, and 21 emulsions. Only the additives that showed NO_{X} reductions of 15% or more were replicated. The variation of metal concentration on NO_{X} reducing effectiveness was studied for cobalt, iron, copper, and manganese. A detailed description of all the additives tested is included in Tables VI, VII and VIII. The category column refers to the items on pages 15 and 16 in the Introduction.

The metal acetylacetonates (Metal Acac) are not soluble in most common solvents. In order to introduce these compounds into Jet A, a commercial Esso solvent (ECA 9003) was used. This solvent is a mixed C_Q alkyl

TABLE VI

LIST OF FUEL MODIFICATIONS

Metals

	As	Me	Metal					
	Received	Conc. Used	Used	Suppliers				
Additive	X(w) Metal	Max.	Min. Z(v)	Designation	Supplier	Solvent	Symbol	Category
Naphthenate								
Cobalt	9	0.5	0.1	Nap-All Drier	Mooney	Mineral Spirits	CO*NAP	£,
Cobalt	12		0.1	Neo-Nap Drier	Mooney	High Flash Solvent	CO*NAP	1,3
Calcium	4		0.1		Mooney	Mineral Spirits	CA*NAP	1,3
Copper	œ	0.5	0.1	Nap-All Drier	Mooney	Mineral Spirits	CU*NAP	1,3
Iron	9	0.2	0.1	Nap-All Drier	Mooney	Mineral Spirits	FE*NAP	1,3
Manganese	9	0.2	0.1	Nap-All Drier	Mooney	Mineral Spirits	MN*NAP	1,3
Manganes e Zinc	10	0.0 7.7		Neo-Nap Drier Nap-All Drier	Mooney	High Flash Solvent Mineral Spirits	MN*NAP ZN*NAP	-i-i
hromium	4.0		0.1		ROC/RIC	None	CR*NAP	1,3
Vanadium	1.08		0.1	;	ROC/RIC	None	V*NAP	1,3
Nickel	5.6		0.1	;	ROC/RIC	None	NI*NAP	1,3
Cerium	12.7		0.1	1	ROC/RIC	None	CE*NAP	1,3
Lead	54	0.5		Nap-All Drier	Mooney	Mineral Spirits	PB*NAP	1,3
Acetyl Acetonates								
Ferric	15.8		0.1	;	ROC/RIC	Alkyl Phenol	FE*ACAC	1,3
Aluminum	8.3		0.1	:	ROC/RIC		AL*ACAC	1,3
Cupric	25.2		0.1	i	ROC/RIC	Alkyl Phenol	CO*ACAC	1,3
Cobaltic	16.7		0.1	ł	ROC/RIC	Alkyl Phenol	CO*ACAC	1,3
Cobaltous	23.9		0.15	1	ROC/RIC	Alkyl Phenol	CO*ACAC	1,3
Nickel	22.9		0.1	1	ROC/RIC	Alkyl Phenol	NI*ACAC	1,3
0.7 N1/0.3 Cu ("Monel")	1		0.1	;	ROC/RIC	Alkyl Phenol	MONEL*ACAC	1,3,7
Salt of Neo Acids								
Cobalt	12	0.2			Mooney	Neodecanoic Acid	CO*NEO	1,3
Zirconium	18	0.5	0.1		Mooney	Neodecanoic Acid	ZR*NEO	1,3
Zirconium	12	0.2			Mooney	C8 to C14 Neo Acid	ZR*NEO	1,3
Vanadium	o r	0.2	•		Mooney	Neodecanoic Acid	V*NEO	۳,
TTCUTT	7		7.0	ren-cem urier	rooney	Neodecanoic Acid	TT*NE0	1,3

TABLE VI (Cont'd.)

		As	Metal	al					
		Received	Conc. Used	Used	Suppliers				
	Additive	X(w) Metal	Max. Z(v)	Min. Z(v)	Designation	Supplier	Solvent	Symbol	Category
	Miscellaneous Metals								
	Sodium Methoxyethoxy-	20	0.13		SDMA	ROC/RIC	Benzene	SUMA	1.2.3
	aluminum Hydride					•			
	Tetraethyl Lead	79		0.18	1	Easo	None	PBATEL	1,3
	Methyl Cyclopenta-	24.7	0.5	0.1	CI-2	Ethy1	None	MN*CI2	(r
	dienyl Manganese					•			•
	Iron	30.0	0.5	0.1	Ferrocene	ROC/RIC	None	FE*FERRCCZNE	1,3
	Antimony Triphenyl	34.6		0.1	;	ROC/RIC	None	SB*3C6H5	1,3
	Copper-Phosphine	20		0.1	;	Esso	None	CUAPHOS	1,3
	Complex								
	Suspensions								
-	Sodium Carbonate	17		0.1	ECA-5202	Esso	Diluent Oil	NA*S	1,2,3
29	Calcium Carbonate	12		0.1	ECA-4651	Esso	Diluent Oil	CA*S	1,2,3
) -	Lithium Carbonate	-1		0.1	Experimental	Esso	Diluent Oil	LI*S	1,2,3
-	Barium Carbonate	17		0.1	Paradyne 12	Esso	Diluent 011	BA*S	1,2,3

TABLE VII

LIST OF FUEL MODIFICATIONS

Emulsions

	Internal to External							
	Phase	Exter	External Phase %(w)	e %(w)	Supplier			
Additive	Vol. Ratio	Water	Emuls.	Additive	Designat on	Supplier	Symbol	Category
Water	97:3	74.7	25.3	ļ	EFA-104A	Petrolite	3.8 H20*E	٣
Water + Methanol	97:3	59.7	25.3	15.0	EFA-104B	Petrolite	3.8 H20+CH30H*E	3,4
Water + Ammonium Formate	97:3	74.7	25.3	0.1	EFA-104C	Petrolite	3.8 H2O+NH4CH02*E	3,6
Water + Ammonium Nitrate	97:3	74.7	25.3	0.1	EFA-104D	Petrolite	3.8 H2O+NH4NO3*E	3,6
Water + Hydrazine Acetate	97:3	74.7	25.3	0.1	EFA-104E	Petrolite	3.8 H2O+N2H4.2C2H4O2×E	3,6
Water + Amine	97:3	74.7	25.3	0.1	EFA-104F	Petrolite	3.8 H2O+B4367*E	3,6
Water + Ammonium Molybdate	97:3	74.7	25.3	0.1	EFA-104G	Petrolite	3.8 (NH4)2M004*E	3,6
Water 3.3%(w)	97:3	76.7	23.3	}			3. C H20*E	က
Water 5.0%(w)	95:5	83.6	16.4	;			5.0 H20*E	ო
Water 10.0%(w)	91:9	90.9	9.1	ļ			10.0 R20*E	ო
Water 20.0%(w)	81:19	95.3	4.7	!			20.0 H20*E	ო
Water 33.3%(w)	71:29	97.1	2.9	!			33.0 H20*E	ო
Methanol	99:1	1	75.1	24.9			0.33 CH3OH*E	3,4
Water + Ammonium Hydroxide	99:1	6.3	91.0	2.7			0.07 H2O+NH3*E	3,6
Water + Hydrazine	97.4	68.6	20.9	10.5			3.5 H2O+N2H4*E	3,6
100:10:1 Water:Methanol:								•
Ammonta	7:96	71.4	21.2	7.3			3.3 HZO+CH3OH+NH3*E	3,6
Water + Lithium Hydroxide	9:56	75.6	23.8	0.5			5.8 H2O+LIOH*E	3,2,1
Water + Sodium Hydroxide	7:96	8.09	38.3	1.0				3,2,1
Water + Potassium Hydroxide	9:56	75.4	23.8	0.8			5.8 H2O+KOH*E	3,2,1
Water + Rubidium Hydroxide	7:96	59.8	37.7	2.5				3,2,1
Water + Cesium Hydroxide	9:76	74.4	23.4	2.2				3,2,1

TABLE VIII

LIST OF FUEL MODIFICATIONS

Homogeneous Additives

Category	বিব্যু লে		9 7
Symbol	3.5 EGDE*H 2.7 C6H6*H 5.0 CGL4*H 2.5 C2H5OH*H 3.7 C3H7NO3*H 3.2 C6H5NH2*H 3.1 POLY*H	2.9 DCPD*R 5.6 C3F6HOH*H 6.5 C13NH2*H 9.1 CEM A11*H 9.1 TEN GEM*H 9.1 HFL*H	0.55 TMA*H 2.6 C4H9SH*H
Supplier	Fisher Scientific Allied Chemical Allied Chemical Commercial Solvents Eastman Organic Allied Chemical Esso	Matheson, Coleman Bell Matheson, Coleman Bell Essc Mooney Mooney Mooney	Esso Matheson, Coleman Bell
Supplier Designation	Vistonex J	Cem-All-Solvent Ten-Cem Solvent High Flash Solvent Mineral Spirits	•
Z W Z V	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.5	0.55
Concen	3.5 2.7 2.5 2.5 3.2	9999999	.62
Additive	Ethylene Ether Dimethyl Glycol Benzene Carbon Tetrachloride Ethanol Propyl Nitrate Aniline Polyisobutylene	Dicyclopentadicae Hexafluoropropenol Ci3 Branched Amine Solvent for Cem-Ail Metals Solvent for Ten-Cem Metals Solvent for Neo-Nap Metals Solvent for Nap-Ail Metals	N,N,N, Tetramethylamine N-Butyl Mercaptan

phenol containing 65% monoalkyl phenol and 35% dialkyl phenol. The metal was generally dissolved to approximately 2% in the alkyl phenol and then diluted to the desired concentration in Jet A. As much as 5% of the fuel was alkyl phenol when the metal acetylacetonates were run.

The Petrolite emulsions contained a proprietary nonionic emulsifier blend called Tech Mul-2. The emulsifiers are oxyalkylates of linear and branched alcohols and they contain only carbon, hydrogen and oxygen in their makeup. The compound b-4367 is a proprietary antioxidant described as an oxyalkylated amine containing approximately 25% nitrogen in its composition the remainder being carbon, hydrogen and oxygen.

The Esso prepared emulsions contained a mixture of Tween 20 and Span 80. These emulsifiers are manufactured by Atlas Chemical Industries. They contain only carbon, hydrogen and oxygen.

the state of the s

SECTION IV

RESULTS

Experiments were run over the equivalence ratio range of 0.27 to 0.34. Equivalence ratio, ϕ , is the ratio of stochiometric air to fuel ratio to operating air to fuel ratio. This range of equivalence ratios corresponds to aircraft engine operation at full power. Experimental results were obtained under the operating conditions listed in Table V. The equivalence ratio values were calculated on a stoichiometric air to fuel ratio of 14.6 (by weight) which corresponds to a fuel with a hydrogen to carbon ratio of 1.89. The hydrogen to carbon ratio for Jet A was determined experimentally using a very accurate combustion technique and measuring the CO₂ and H₂O produced. The ratio is 1.89 \pm 0.08 at the 95% confidence level. Measurements of impurities in the fuel indicated that the percent oxygen is 0.38, the percent sulfur is 0.05, and the percent nitrogen is 0.00. The contribution of fuel nitrogen, assuming that the fuel contained 0.005% nitrogen and it was all converted to NO_x, would be 0.16 lb of NO_x (as NO₂) per 1000 lb of fuel.

The material balance calculations and the treatment of the data are explained in Appendix V. The experimental mole fraction values for ${\rm CO}_2$, ${\rm CO}_2$ and ${\rm NO}_{\rm X}$ were multiplied by a factor (1.0 - 0.132 ϕ) in order to compensate for the water removed in the ice bath.

1. EMISSIONS WITH UNMODIFIED FUEL

In order to measure the effectiveness of the fuel modifications tested, 93 runs were interspersed with unmodified Jet A fuel. The results of these runs were subjected to a statistical analysis in order to obtain the least squares relationships between the various components of the flue gas and equivalence pations.

The least squares relationships that were obtained with unmodified Jet A fuel are listed in Table IX for Can I and in Table X for Can II. The data in these tables are based on a linear regressions of the 93 separate runs that were made over the duration of the experimental phase of this program. The experimental data are given in Appendix IV.

All these equations apply only within the limited range of the experimental work. The tolerance limits on the slope of the least squares lines were calculated by multiplying the appropriate Student's t value by the standard error of the estimate. The average carbon balance for unmodified Jet A combustion was 96.3% and the average oxygen balance was 98.8%.

TABLE IX

LEAST SQUARES RELATIONSHIPS FOR CAN I

Linear Equation	Constraint	% Variation at 95% Confidence Level
$2^{\circ} CO_2 = (12.2 \pm 0.3)\phi$	Constant = 0	2.6
$z_{02} = (20.1 \pm 0.9) (1-\phi)$	Variable = $(1-\phi)$ Constant = 0	4.7
ppm CO = $-(11.9 \pm 1.8) 1000 \phi + 6400$	none	15.3
ppm HC = $(18.1 \pm 1.5) 100 \phi$ - 508	none	8.3
$ppm NO_{x} = (18.6 \pm 0.8) 10_{\phi} + 29.6$	none	4.3
$ppm NO_2 = (55.8 + 3.8)\phi - 2.24$	none	6.8
Te, °F = $(24.6 \pm 0.6) 100\phi + 768$	none	2.5
T_p , °F = (23.7 ± 0.6) 100 ϕ + 808	none	2.6

TABLE X

LEAST SQUARES RELATIONSHIPS FOR CAN II

Linear Equation	Constraint	% Variation at 95% Confidence Level
$7 \text{ co}_2 = (12.2 \pm 0.4) \phi$	Constant = 0	3.4
$z_{0_2} = (20.8 \pm 0.7) (1-\phi)$	Variable = $1-\phi$ Constant = 0	3.4
ppm CO = $-(47.1 \pm 1.6)$ 1000 ϕ + 18100	none	3.5
ppm HC = $-(22.2 \pm 1.8)$ 10ϕ $+ 86.5$	none	8.0
ppm NO _x = $(34.4 \pm 1.1) 10\phi$ + 23.0	n <i>o</i> ne	3.1
ppm $NO_2 = (17.8 \pm 0.8) 10\phi + 34.1$	none	4.4
Te, ${}^{\circ}F = (33.5 \pm 7.8) 100 \phi + 516$	none	2.3
Tp, °F = (30.9 ± 7.2) 100¢ $+597$	none	2.3

In order to provide a convertent source for comparison of the emission levels determined here with those from actual aircraft engines the mole fraction values were converted to emission index units and are reported in Table XI.

TABLE XI

AVERAGE VALUES OF EMISSION INDEX AND
TEMPERATURES FOR UNMODIFIED JET A COMBUSTION

Parameter	Emission Index 1b/1000 1b	Standard Deviation
Carbon Dioxide	2772	139
Oxygen	7598	610
Carbon Monoxide	147	53.4
Unburned Hydrocarbons as Methane	0.843	1.38
Oxides of Nitrogen (as Nitrogen Dioxide)	6.55	0.404
Nitrogen Dioxide	1.55	0.352
Exit Temperature, °F	1555	62.3
Probe Temperature, °F	1554	56.1

The method for converting mole fraction values to emission index is described in Appendix V and is based on equation (8).

EI₁ = X₁
$$\left[\frac{n\phi + 4.76 (4 + n)}{4.76 (4 + n)}\right] \frac{14.7}{\phi} \times \frac{(MW)_{1}}{29} \times 10^{3}$$
 (8)

where:

X, = mole fraction of i.

EI, = Emission index in 1b of i/1000 1b fuel.

n = Atomic hydrogen to carbon ratio of the fuel = 1.89 for Jet A.

φ = Equivalence ratio

(MW) = Molecular weight of i.

The average emission index for carbon monoxide was more than an order of magnitude higher than those reported from actual engine emissions measurements (13,14,15). This high level of carbon monoxide is attributed to less efficient mixing in the Esso combustor as measured by the low pressure drop through the combustor. In general, aircraft combustors have a 5% pressure drop (Δ P/P) while the pressure drop in the laboratory unit was about 1%.

A reference set of emissions was calculated for each fuel modification run using the least squares lines. These reference emission were used to calculate the change of emission levels due to the modification. The reference set of emissions is tabulated in Appendix II. Figure 8 is a plot of NO_X mole fraction in the effluent as a function of equivalence ratio. The least squares line is that given in Table X and the calculated line is based on equation (6) assuming that combustion occurs at an equivalence ratio of 1.0 and fuel flow rate sets the residence time in the primary zone. The primary zone residence time at an overall equivalence ratio of 0.27 is 1.5 x 10^3 seconds which was calculated assuming an L/D of 0.5. Calculational details are given in Appendix VI.

In addition to the least squares regression reported in Tables IX and X, the degree of linear relationship between the measured parameters and NO_X was determined. The statistical measure of the degree of relationship between two variables is called the correlation coefficient and is defined as the square root of the ratio of the explained variation to the total variation (25). A correlation coefficient of 0.8 means that 64% of the variation is accounted for by the least squares line. The other 36% must be accounted for by other factors. The simple correlation coefficients listed in Table XII were obtained from runs 1 to 42 using Can I, and from runs 43 to 93 using Can II. The minimum value of the simple correlation coefficient at the 95% confidence level for the number of experiments that were run is also included in Table XII.

Other parameters such as inlet air moisture and combustor pressure did not correlate significantly with $\mathrm{NO}_{_{\mathbf{X}}}.$

2. EMISSIONS FROM MODIFIED FUEL

Approximately 70 fuel modifications were tested using Jet A as the base fuel. These fell into the 7 categories mentioned in the Introduction. Only category 1 proved to be effective in reducing oxides of nitrogen emissions. The results with transition metals are presented in Figure 9. The mechanism for NO_X reduction with transition metals was not determined but seems to parallel results that have been observed in heterogeneous catalytic systems (26). Figure 9 shows that the logarithmic activity of some transition metal oxides for NO decomposition follows a similar trend to that observed with the transition metal additives that were tested in this program. The contribution due to the organic ligands was neglected as a first

Parameter	Sim	ple Correlatio	n Coefficient	(r)
	Can	II	Ca	n I
	Calculated M	in. Required	Calculated M	lin. Required
Equivalence ratio, φ	0.678	0.276	0.650	0.304
co ₂ , %	0.865	0.281	0.703	0.304
o ₂ , %	0.678	0.273	0.650	0.320
CO, ppm	0.685	0.276	0.553	0.304
NO ₂ , ppm	0.643	0.276	0.647	0.482
Te, °F	0.901	0.301	0.736	0.304
Tp, °F	0.838	0.295	0.678	0.304

The select of the selection of the selec

and the second of the process of the second of the second

NO_X REDUCING ABILITY OF TRANSITION METAL ADDITIVES AND HETEROGENEOUS CATALYSTS

approximation in plotting these results. The four most effective metals were studied as a function of treat rate. The data for manganese and iron are shown in Figure 10 and the data for cobalt and copper are shown in Figure 11. All four metals became less effective per incremental treat rate increase. The only other effective metal was zirconium which reduced NO_X by 11% at a 0.1% (w) treat rate and 22% at a 0.2% (w) treat rate. Other organometallic compounds containing calcium, cerium, lead aluminum, lithium, and antimony did not reduce NO_X significantly at the 0.1% (w) metal treat rate.

the subsection of the problem of the continue of the continue of the subsection of the continue of the continu

Four suspensions of metal carbonates were run at 0.1% (w) metal treat rate. Sodium carbonate reduced NO_X by about 16% and lithium carbonate by about 10%. The other carbonates, barium and calcium, were not effective.

Out of the 16 homogeneous (soluble liquid additives) fuel modifications only n-butyl mercaptan was effective. The mercaptan reduced NO_{X} by almost 11%. The nitrogen containing compounds increased NO_{X} in proportion to their nitrogen content. Approximately 25% of the nitrogen was converted to NO_{X} . As the treat level of nitrogen containing additives was reduced, the conversion of nitrogen to NO_{X} decreased at a greater rate than the reduction in treat level. This effect was not fully explored. The homogeneous additives tested include ethylene ether dimethyl glycol, benzene, carbon tetrachloride, ethanol, propyl nitrate, aniline, polyisobutylene, dicyclopentadidne, hexafluoropropanol, a C13 branched amine, N,N,N,N-tetramethyl-amine, and N-butyl mercaptan.

A number of water emulsions were run in order to determine the effect of water in reducing $\mathrm{NO}_{\mathbf{x}}$. Water emulsions also provide a convenient vehicle for introducing inorganics into the fuel. Emulsions were run with up to 33% (w) water. No reduction in $\mathrm{NO}_{\mathbf{x}}$ was observed as a function of equivalence ratio. The only effect was an increase in the NO_2 to $\mathrm{NO}_{\mathbf{x}}$ ratio as shown in Figure 12. A series of water emulsions containing equal molar concentrations of the alkali metal hydroxides gave the results plotted in Figure 13. Sodium proved to be the most effective additive in this series. The only other water emulsion that showed some promise in reducing $\mathrm{NO}_{\mathbf{x}}$ was one that contained 37 ppm (w) hydrazine acetate. The runs with this emulsion were erratic but some replicates gave as much as 16% $\mathrm{NO}_{\mathbf{x}}$ reduction. The emulsions which were ineffective were methanol, ammonium formate, ammonium nitrate, ammonium molybdate, ammonium hydroxide, and hydrazine.

Some runs were made with a combination of additives from two categories in an attempt to see whether synergistic effects are possible. Antimony triphenyl and carbon tetrachloride reduced NO_X by 12% which was in excess of the reduction obtained with *hese additives separately.

A simple way of ranking the effectiveness of the fuel modifications was developed. The effectiveness of the additives was measured in terms of the number of molecules of NO_{X} reduced per molecule of additive. Some of the more effective modifications are listed in Table XIII.

the second and the second seco

- 42 -

Figure 11

EFFECT OF CONCENTRATION ON NO_X REDUCING ABILITY
OF COPPER AND COBALT ADDITIVES

- 44 -

Figure 13

NO_X REDUCING ABILITY OF ALKALI
METAL HYDROXIDE WATER EMULSIONS

TABLE XIII

NO_X REDUCING EFFECTIVENESS OF VARIOUS ADDITIVES

a troa tow on v		OF VARLOUS ADDITIVES	
MOLECULE ADDITIVE		ADDITIVE IN PER CENT (W)	% REDUCTION NO.
06	0.0037	0.0037 HYDRAZINE ACETATE IN WATER EMULSION	15
1.7	0.1	MANGANESE NAPHTHENATE	20
1.5	0.1	COBALT ACETYLACETONATE	17
1.4	1.0	COPPER NAPHTHENATE	1.5
1.4	0.2	IRON NAPHTHENATE	35
1.0	0.1	IRON NAPHTHENATE	12
6.	0.1	SODIUM CARBONATE SUSPENSION	26
6.	0.2	COBALT NAPHTHENATE	25
8.	0.2	COPPER NAPHTHENATE	16
5.	0.5	COBALT NAPHTHENATE	30

SECTION V

DISCUSSION

The fuel modification experimental program was designed to be a broad based search for NO_{X} reducing additives. Practical limitations to the use of these additives in actual aircraft engines were relegated to secondary importance in order not to obscure potentially interesting leads. The potentially useful approaches to the problem were classified into 7 general categories which were described in the Introduction. These categories were selected so as to systematize the search for additives and/or modifications based on theory and prior art and to avoid a pure trial and error approach. As indicated in the results section, the organometallic compounds of some of the transition metals proved most effective in reducing NO_{X} . The mechanism for NO_{X} reduction vith transition metals was not determined but seems to parallel results that have been observed in heterogeneous catalytic systems ($\underline{26}$).

The catalysts that have been used to affect either the decomposition or reduction of nitrogen oxide have been heterogeneous catalysts. A bed of solid catalyst or a screen of catalyst wire was contacted with the nitrogen oxide containing gases. The metal and/or metal oxide catalysts which are active for NO conversion are insoluble in jet fuel. Organometallic compounds were added to the fuel as soluble compounds or when not soluble an organic carrier was used to maintain these compounds in solution. Upon entry into the combustion zone, these compounds are expected to form a highly dispersed heterogeneous catalyst. Indeed, in some experiments with iron compounds a red brown powder was found on the combustor can which was assumed to be iron oxide. Similarly, other metals seemed to leave traces of their oxides on the combustor can.

The introduction of metal containing compounds into the combustor of a gas turbine engine can cause serious operational problems. Deposits can be formed which could produce "hot spots" resulting in erosion and corrosion of the liner and turbine vanes. In addition, organometallic compounds are known to accelerate the formation of sediment in aircraft fuels. The sediment can plug narrow passages and foul heat transfer surfaces rendering an aircraft inoperable (27). These detrimental factors were not considered in choosing fuel modifications in order not to miss any leads to potentially promising approaches.

The mechanism and kinetics of NO formation in flames makes its production extremely sensitive to the time-temperature-history of the combustion process, and the oxygen concentration in the flame zone. Consequently, fuel additives or changes in composition capable of altering these factors could have a pronounced effect on the NO emission from jet engines.

The rate at which NO is formed from molecular nitrogen at high temperature depends upon the availability of atomic oxygen for reaction (2). Other factors being equal, any reduction in the concentration of atomic oxygen decreases the rate of NO formation and hence its emissions.

A reduction in atomic oxygen availability can be produced by using compounds capable of reacting with oxygen atoms or catalyzing their recombination. Compounds possessing these properties are known and have been studied and used for their flame inhibiting properties which also depend on the ability to scavenge or recombine oxygen. Some of the more effective compounds known for their flame inhibiting characteristics include the halogen gases (with the exception of florine), certain organo-halogen compounds such as CF₃Br and CF₃COCF₃, alkali metal oxides and carbonates, and certain organometallic compounds.

The metal oxides and carbonates act through the formation of metal peroxides by a mechanism involving atomic oxygen. This is in line with the fact that both the ease of formation and the stabilities of peroxides of the alkali metals increase with molecular weight as do the extinguishing efficiencies of the oxides and carbonates (28). In the series of alkali metal hydroxide solutions that were added to jet fuel as emulsions, sodium was found to be most effective. With this exception, the trend with molecular weight was followed with the other alkali metal hydroxides.

Out of the four carbonate suspensions that were tested, only the alkali metal carbonates were effective. Sodium carbonate reduced NO $_{\rm X}$ by 16% and lithium carbonate by 10%.

The effectiveness of the organometallics may be due to their ability to scavenge oxygen atoms rather than catalyze NO decomposition. No data is available to rule in favor of one mechanism over the other but some metals such as aluminum, which would be expected to scavenge oxygen atoms, did not reduce NO_{X} . On the other hand, this result is consistent with the inability of alumina to catalytically reduce or decompose NO_{X} (29).

Besides the halogen and metal containing compounds, soot (i.e., smoke) could also prove effective for promoting the recombination of oxygen atoms. Addition to the fuel of such soot precursors as benzene and dicyclopentadiene did not, however, reduce NO_{X} emissions.

Using fuel additives to produce lower combustion temperatures provides another technique for reducing NO emissions. Since the rate of NO formation from molecular nitrogen and oxygen is so extremely temperature dependent (see Appendix VI), small changes in peak combustion temperatures significantly affect NO formation. In gas turbine engines, peak temperatures are normally reached in the vicinity of the primary combustion zone where close to stoichiometric air/fuel conditions are achieved. Consequently, it is in this part of the engine where reductions in temperature would have their greatest impact in reducing NO formation.

Peak combustion temperatures in jet engines can be reduced by increasing the radictive heat transfer characteristics of the primary zone. Any particulate matter in the flame, including soot, would increase the amount of heat radiation from the flame. Increasing the $\rm CO_2$ content of the gas would also increase its radiative character. This category (category 3 in list) proved ineffective since all organometallic additives increased the solids loading in the flame yet some metallo-organics were effective $\rm NO_X$ reducers while others were not. Thus, one cannot attribute any significant reduction in $\rm NO_X$ to a radiative heat transfer mechanism.

A second potential method of reducing peak combustion temperatures in the jet engine would be to add compounds to the fuel capable of undergoing endothermic physical or chemical conversions within the primary zone of the jet engine. This could involve adding compounds to the fuel that are likely to undergo such reactions. Of course, the heat absorbed by the endothermic reaction in the fuel rich primary zone would be released in the cooler secondary zone as long as combustion was completed there. Thus, combustion efficiency need not suffer with this approach.

Water is generally considered the prime candidate additive capable of undergoing endothermic physical changes. Since the vaporization of water removes approximately 1000 Btu/lb compared to a fuel heating value of about 18,400 Btu/lb, water addition to the fuel would produce only small changes in combustion temperatures unless it were used in prohibitively large amounts. However, even small changes in jet engine peak temperatures may be sufficient to cause substantial changes in NO_x emissions. This fuel modification proved ineffective in this program even with water levels of 33% (w) of the fuel. On the other hand, an increase in the NO_2 to NO_x ratio is indicative of a reduction in operating temperature. As can be seen in Figure 14 the NO2:NOx ratio, calculated from equilibrium data (5), increases as temperature decreases under fuel lean operation. A recent paper evaluating the effect of water in gas turbines was presented by Lipfert (30). He shows that the effect of water is a function of the water to air ratio (by mass) and that relatively small effects are produced by water to air ratios of less than 0.01. Since 33% (w) water in fuel correponds to less than 0.007 lb water per lb of sir, it is not surprising that no effect due to water was observed. Also, Boccio, Weilerstein and Edelman (31) recently showed that the effectiveness of water emulsions in reducing $\overline{\text{NO}}_{X}$ is a function of droplet size and residence time in the primary zone. Using the correlations presented by Boccio et al for conditions that are assumed representative of the Esso combustor, i.e., 1.5 millisecond residence time and 35 micron droplet size (32), small NO_x reductions are predicted.

Exposure time at peak temperature is the most important parameter in determining the level of NO_{X} emissions (see equation(6)). In the absence of engine redesign, the best way of decreasing this exposure time is to delay ignition of the fuel. Some of the antiknock compounds used in gasoline were tested as gas turbine ignition delay additives. The most effective antiknock compounds are the organo-metals, tetraethyl and tetramethyl lead. Other compounds, including aniline, some ketones and ethers are also known to be effective. As ignition delay additives for jet fuels, however, none of these proved to be effective.

EFFECT OF TEMPERATURE ON NO2/NO RATIO

The possibility of synergistic effects was not explored thoroughly. It was found that antimony triphenyl and carbon tetrachloride reduced NO $_{\rm X}$ in excess of the sum of the NO $_{\rm X}$ reduction values observed by the two components separately. This combination has been found effective in reducing flammability of plastics.

SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

No "fully effective modification" was found. The most effective fuel modifications reduced NO_{X} by a third to about 4 lb NO_{X} per 1000 lb fuel. Other emissions and the outlet temperatures were not affected by the modifications. The effective additives contained metals in the 0.1 to 0.5% (w) range. This method of NO_{X} reduction will not be practicable because:

- 1. Metal and metal oxides emissions may be more detrimental to the environment than the ${\rm NO}_{\rm x}$ that is being removed.
- 2. The incremental benefit in $NO_{\mathbf{X}}$ reduction may not be worth the additional fuel cost.
- Some metals and metal oxides corrode and errode turbine blades.
- 4. Metals tend to catalyze the oxidation of the fuel forming sediments and deposits.

The results obtained in this program can possibly be used for $\mathrm{NO}_{\mathbf{X}}$ reduction in aircraft during take-off and climb out. Since during take-off and climb out, both smoke and $\mathrm{NO}_{\mathbf{X}}$ tend to be highest, one could inject ferrocene or manganese based organometallic compounds from a concentrate tank. This would help reduce smoke and $\mathrm{NO}_{\mathbf{X}}$ during the period when these emissions are highest. However, detrimental effects on the engine may preclude the use of additives even in this case.

SECTION VII

REFERENCES

- (1) .. Zeldovich, "The Oxidation of Nitrogen in Combustion and Explosives," Acta Physicochimica U.S.S.R., 21, 577 (1946).
- (2) H. S. Glich, J. J. Klein and W. Squire, J. Chem. Phys., 27, 850 (1957).
- (3) C. P. Fenimore, "Formation of Nitric Oxide in Premixed Hydrocarbon Flames," 13th International Symposium on Combustion, Salt Lake City, 1970.
- (4) P. G. Ashmore, M. G. Burnett and B. J. Tyler, Trans. Faraday Soc., <u>58</u>, 685 (1962).
- (5) S. Gordon and B. McBride, NASA-Lewis Research Center Chemical Equilibrium Program, November 6, 1970.
- (6) R. E. George, J. A. Verssens and R. L. Chass, J. Air Pollution Control Association, 19, 847 (1969).
- (7) C. W. Bristol, Jr., SAE Paper 710319, Washington, 1971.
- (8) J. O. Chare and R. W. Hurn, SAE Meeting, New York, 1970.
- (9) T. Durrant, SAE Paper 680347, New York, 1968.

A STATE OF THE STA

- (10) A. Liberman, J. Air Pollution Control Association, 18, 149 (1968).
- (11) E. R. Lozano, W. W. Melvin and S. Hochhesier, J. Air Pollution Control Association, 18, 392 (1968).
- (12) D. S. Smith, R. F. Sawyer and E. S. Starkman, J. Air Pollution Control Association, 18, 392 (1968).
- (13) F. W. Cox, F. W. Penn and J. O. Chase, "A Field Survey of Emissions from Aircraft Turbine Engines," Bureau of Mines Report RI 7634 (1)72).
- (14) C. T. Hare, H. E. Dietzmann and K. J. Springer, "Gaseous Emissions from a Limited Sample of Military and Commercial Aircraft Turbine Engines," U.S. Department of Commerce, Report No. PB 204177, August 31, 1972.
- (15) A. W. Nelson, "Collection and Assessment of Aircraft Emissions Baseline Data - Turbine Engines," U.S. Department of Commerce, Report No. PB 207321, February 1972.

- (16) G. B. Martin, D. W. Pershing and E. E. Berkau, "Effects of Fuel Additives on Air Pollutant Emissions from Distillate-Oil-Fired Furnaces," Office of Air Programs Publication No. AP-87, June 1971.
- (17) E. R. Altwicker, P. E. Fredette and T. Shen, "Pollutants from Fuel Oil Combustion and the Effects of Additives," 64th Annual APCA Meeting, Atlantic City, New Jersey, June 1971, Paper No. 71-14.
- (18) G. H. Meguenan, "Nitrogen Oxide: Formation, Suppression and Catalytic Reduction," Proceedings of the 8th World Petroleum Congress (Moskow) 1971, Paper PD23(3).
- (19) C. G. McCreath, "The Effect of Fuel Additives on the Exhaust Emissions from Diesel Engines," Comb. and Flame, 17, 359 (1971).
- (20) R. D. Klapatch and T. R. Koblish, "Nitrogen Oxide Control with Water Injection in Gas Turbines," ASME Paper 71WAIGT9.
- (21) H. T. McAdams, "Analysis of Aircraft Exhaust Emission Measurements: Statistics," U.S. Department of Commerce, Report No. PB 204869, November 19, 1971.
- (22) C J. Halstead and A. J. E. Munro, Proceeding of the Conference on Natural Gas Research and Technology, Chicago, 1971.
- (23) T. O. Wagner, SAE Paper 700338, New York, 1971.

The transfer of the contraction of the contraction

- (24) 1969 CRC Aviation Emission-Measurement Technique Evaluation, CRC Project CA-41-65, March, 1970.
- (25) O. L. Davies, Editor, "Statistical Methods in Research and Production," Hafner Publishing Company, New York, 1958, Pg. 191.
- (26) M. Shelef, K. Otto and H. Gandhi, "The Heterogeneous Decomposition of Nitric Oxides on Supported Catalysts," Atmospheric Environment, 3, 107 (1969).
- (27) W. F. Taylor, SAE Transactions, <u>76</u>, 2811 (1968).
- (28) M. Vanpee, et al., "Inhibition of Afterburning by Metal Compounds," Progress in Astronautics and Aeronautics, 15, 419 (1964).
- (29) M. Boudart, Private communication.
- (30) F. W. Lipfert, "Correlation of Gas Turbine Emissions Data," ASME Paper 72-GT-60 (1972).

- (31) J. Roccio, G. Weilerstein and R. Edelman, "On the Relationship Between Modeling and Basic Experiments in Defining Flame-Generated Pollutants from Real Systems," Presented at the First American Flame Days Meeting, Chicago, Illinois (1972).
- (31) J. Nixon, W. Philippoff and V. J. Siminski, "Optimization of Nonaqueous Fuel Emissions," USAAVLABS Technical Report 69-26 (1969).
- (32) D. L. Baulch, D. D. Drysdale, D. G. Horne and A. C. Lloyd, "Critical Evaluation of Rate Data for Homogeneous, Gas Phase Reactions of Interest in High-Temperature Systems", No. 4 Department of Physical Chemistry, the University, Leeds, Dec. 1969.
- (33) D. R. Stull and H. Prophet, Project Directors, JANAF Thermochemical Tables, Second Edition, NSRDS NBS37, June 1971.

The state of the s

APPENDIX I

EXPERIMENTAL RESULTS

The experimental results are tabulated in chronological order. Table XIV reports the data in mole fraction units and Table XV reports the data in emission index units. As indicated in the Results Section, the CO_2 , CO_1 , NO_2 and NO_2 values were multiplied by $(1-0.132\phi)$ in order to present the results on a wet basis. The material balance calculations were done using the formulas derived in Appendix V. The program for computing these tables is included in Appendix VII. The following notes pertain to these tables:

- All values reported as "O" indicate that no measurement was taken.
- 2. A minus sign in front of C BAL or O BAL indicates that one of the components was not measured. Therefore, the value is a minimum.
- The numerical value in front of the fuel modification symbol is percent by weight of that modification in the fuel.
- 4. The fuel modifications that were run as emulsions indicate the percent by weight water in front of the symbol.

- 5. Runs 71 to 84, 103 to 105, and 181 to 184 were reported using $(CO_2) = 12.2\phi$ rather than the measured ϕ .
- 6. In runs 129 and 130, ϕ 's were calculated using TE = 3351 ϕ + 516 rather than the measured ϕ 's.
- 7. The mole fraction and emission index of unburned hydrocarbon fuel, HC, is reported as methane.
- 8. TE is the average temperature 4.5 inches downstream from the orifice.
- 9. TP is the average temperature 7.5 inches downstream from the orifice. This was also the location of the probe.
- 10. The EI for NO_x is reported as NO_2 equivalent.

TABLE XIV

ale to the transfer of the tra

EXPERIMENTAL RESULTS - MOLE FRACTION UNITS

C BAL O BAL PCT PCT	98.2 -98.9	7.26- 0.66	92.5 -27.5	90.4 -30.0	94.3 -28.0	93.8 -30.0	93.2 -27.9	90.8 -30.7	94.8 -27.4	96.0 -30.5	7.06- 7.66-	-9648 -88.8	95.4 -96.6	91.6 -95.1	102.5 -97.4	-94.3 -98.1	-95.4 -96.1	95.8 -94.6	93.3 -93.6	88.2 -91.7	93.7 96.6	97.8 96.3	92.5 94.3	91.3 93.1
9 8 16	90.0	0.64	0.09	61.0	57.0	58.0	58.0	57.0	58.0	98.0	. 0.05	45.0	56.0	54.0	47.0	58.0	57.0	58.0	56.0	0.64	0.64	20.0	0.64	47.0
<u>a</u> u	1500	0	1500	1570	1551	1597	1506	1608	1520	1616	1516	1542	1510	1623	1488	1513	1603	1503	1627	1496	1500	1593	1493	1530
₩ ₩	1500	0	1530	1506	1505	1563	1488	1572	1517	1611	1510	1537	1483	1603	1472	1503	1590	1463	1623	1493	1496	1600	1470	1537
Z 0 D 0 D 0	0	0	0	0	0	0	0	O	0	0	0	o	0	0	0	0	0	0	0	0	12	13	13	13
NOV P P M	79	8 0	9	8	131	140	83	8.1	79	68	81	98	78	76	75	65	79	117	141	75	78	87	90	89
Y d	55	4	10	6 0	15	0	13	60	01	14	16	14	22	14	4	0	0	14	16	14	25	20	20	12
0 d 0 d	5084	2632	1970	1938	4640	3273	5364	3506	3054	2288	0	0	3696	2151	3721	7857	3752	2790	2055	2736	2886	2251	2621	2309
02 PCT	14.7	13.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.3	12.4	14.2	13.2	14.7	14.5	13.3	14.0	12.8	13.2	14.3	13.4	13.9	13.7
C02 PCT	3.50	4.12	3.62	3.92	3.53	3.88	3.45	3.92	3.57	4.05	3.56	3.97	3.52	4004	3.45	3.50	4.06	3.46	4.13	3.51	3.54	4.17	3,49	3.46
H	0.292	0.317	0.295	0.326	0.303	0.321	906 0	0.337	0.292	0.319	0.272	0.293	0.301	0.333	0.266	008.0	0.333	0.288	0.333	0.307	0.292	0.322	0.290	0.289
FUEL MODIFICATION	3.8 H20*E	3.8 H20*E	0.1 CO*NAP	0.1 CO*NAP	3.2 C6H5NH2*H	3.2 C6H5NH2*H	3.5 EGDE*H	3.5 EGDE#H	2.7 C6H6*H	2.7 C6H6*H	3.8 H20+CH30H*E	3.8 H20+CH30H*E	5.0 CCL4*H	5.0 CCL4*H	3.8 H2O+NH4CH02*E	0.5 CO*NAP	0.5 CO*NAP	3.7 C3H7NO3*H	3.7 C3H7NC3*H	0.1 CO*ACAC	2.5 C2H50H*H	2.5 C2H5OH*H	2.5 C2H5OH*H	3.8 HZ0+NH4NO3*E
S N	Ħ	~	m	4	€.	•	^	œ	o,	0.4	11	12	13	14	15	9 -1	17	18	19	50	2.2	22	23	54

TABLE XIV (Cont'd.)

47.0 92.1 102.0	49.0 90.3 99.7	50.0 87.3 101.2	50.0 86.8 101.6	48.0 89.4 101.1	49.0 90.0 99.7	47.0 88.2 96.8	47.0 91.7 96.8	45.0 98.7 96.6	46.0 98.1 95.4	45.0 100.1 94.9	47.0 92.8 95.5	48.0 90.9 96.6	48.0 92.6 96.3	48.0 90.0 96.5	49.0 89.6 95.1	48.0 91.8 96.0	•0 94•1 94•5	49.0 92.0 95.8	50.0 97.7 94.6	52.0 91.3 98.2	47.0 84.9 98.1	0.96 8.3 96.0	50.0 94.9 94.9
1460 47.0	67 0	1462 50	1456 50	1449 48	1484 49	1456 47	1463 47	1427 45	1483 46	1473 45	1503 47	1446 48	1482 48	1470 48	1607 49	1485 48	1583 50.0	1411 49	1594 50	1489 52	1530 47	1487 49	1557 50
1453	0	1467	1463	1468	8051.	1483	1467	1423	1480	1470	1523	1457	1489	1502	1580	1507	1597	1473	1612	1429	1523	1483	1547
83 15	15	15	17	14	15	10	13	13	13	13	13	13	13	12	19	13	18	10	14	10	10	12	13
89	98	12	92	62	99	29	77	69	73	99	99	67	12	75	82	79	. 91	9	17	69	78	30	06
512 46	06 20	421 18	08 20	58 48	13 51	96 24	56 20	41 12	44 16	90 14	50 164	22 24	027 18	321 37	65 28	40 23	894 24	17 48	327 20	104	725 26	823 13	40 16
5•3 45]	4.2 3106	5.1 24;	5.3 1608	5.3 2258	4.9 2113	4.3 2496	4.4 2356	4.5 2841	4.0 2644	4.1 2890	0400 3050	14.3 1922	4.2 30	14.2 333	3.2 2865	4.1 3840	3.1 289	4.1 5017	2.9 53	4.5 66	4.2 27	4.2 28;	3.3 1940
3.46 1	3.92 1	3.55 1	3.53 1	. 446 1	3,55 14	3.50 14	3.51 1	3.49 1	3.65 1	3.54 1	3.55 1	3.56 14	3.53 14	3.49	3.96 1	3.49	4.02 1	3.38 1	4.06 1	3.32 1	3.65 1	3.56 1	4.02 1
0.304	0.336	0.311	0,304	0.295	0.299	0.304	0.292	0.273	0.285	0.273	0.298	0.295	0.296	0.304	0.340	0.302	0.328	0.302	0.337	0.313	0.331	0.285	0.318
C.7N#8d 5.0	0.5 PB*NAP	0.5 CU*NAP	0.2 CU*.AP	0.2 CO*NEO	C.2 CO*NEO	0.2 FE#NAP	0.2 MN*NAP	3.8 H20+N2H4.2C2H402*E	3.8 H20+N2H4.2C2H402*E	3.8 H20+N2H4.2C2H402*E	0.1 MN*NAP	0.2 CU*NAP	0.1 CU*NAP	0.1 FE*NAP	0.1 FE#NAP	0.1 CA*S	0.1 CA#5	0-1 NA*S	0.1 NA#S	3.1 POLY*H	3.1 POLY*H	0.1 AL#ACAC	0.1 AL#ACAC
25 0•	26 0•	27 0•	28 0.	29 0•	30 C•	31 0.	32 0.	33 3•	34 3.	35 3.	36 0•	37 0.	38 0.	39 0•	•0 0•	41 0.	42 0•	43 0.	• 0 77	45 3•	46 3•	47 0.	48 0.

O BAL PCT	97.8	7.96	9.76	7.96	-81.2	98.0	96.8	7.76	9608	98.3	96.5	98.4	9.96	1.76	95.1	7.86	0.66	97.6	0.66	97.9	98.4	7.86	6.46	. 97.5	
C BAL PCT	92.7	95.2	92.0	-94.2	-11,07	90.2	92.5	1.68	91.1	91.9	4.46	91.5	94.46	91.5	0.96	91.7	92.5	94.3	92.7	95.7	95.3	9006	. 96.3	91.6	
PS1G	49.0	20•0	0.64	20.0	20.0	0.84	50.0	0.84	20.0	0.84	20.0	0.64	90.0	0.84	50.0	. 0.84	90.0	52.0	51.0	53.0	52.0	50.0	20.05	52.0	
٠ 4 س	1472	1593	1470	1574	1483	1450	1588	1491	1631	1493	1638	1504	1628	1513	1643	-1493	1480	1597	1483	1612	1: 73	1603	1518	1646	
₩ ₩	1490	1603	1443	- 1554	1476	1451	1600	148 i	1600	1430	1605	1454	1598	146	1594	1430	1515	1635	1502	1626	1485	1612	1528	1648	
7 D X D X D X D X D X D X D X D X D X D	F)	17	13	15	- 12	15	19	S .	19	- 15	11	13	18	7	19	12	12	11	10	18 -	19	15	- 13	19	
X X O d V o.	. *	94	7.7	**	. 59	42	82	47	81	75	8.5	7:	. 48	74	88	11	72	82	19	46	100	82	42	86	,
Υď	18	12	16	O	30	- 12	œ	18	01	18	20	50	14	50	. 02	0	54	54	21	18	50	17	15.	13	
0 g 2	4080	2559	4160	2790	9906	5066	1531	2953	2053	3338	1984	5884	2223	2763	1915	3842	3006	1676	3043	1651	2009	3217	3752	1959	
902 PCT	14.4	13.5	14.4	13.5	14.4	14.6	13.6	14.5	13.4	14.6-	13.4	14.6	13.4	14.4.	13.2	14.7	14.9	13.8	14.8	13.7	13.8	14.7	14.0	13.6	
C02 PCT	3.53	60.4	3.48	90*7	00.0	3.53	4.07	3.48	4.13	3.51	4.16	3.54	4.16	3.51	4.14	3.46	3.44	4.07	3.51	4.19	4.16	3.48	3.48	4.11	
H	0.304	0.327	0.303	0.330	0.311	0.296	0.327	0.301	0.341	0.299	0.331	006.0	0.332	0.296	0.323	006.0	0.289	0.322	0.294	0.326	0.328	0.300	0.286	0.337	
FUEL MODIFICATION	0.1 CA*NAP	0.1 CA*NAP	0.2 ZR#NEO	0.2 ZR*NEO	0.2 ZR*NEO	9.1 TENCEM*H	9.1 TENCEM#H	9.1 CEMALL*H	9.1 CEMALL*H	9.1 HFL*H	9.1 HFL*H	2.9 DCPD#H	2.9 DCPD*H	5.6 C3F6HOH*H	5.6 C3F6HOH*H	0+1 ZR*NEO	0.2 V*VEO	0.2 V*NEO	0.2 ZN*NAP	0.2 ZN#NAP	0.5 C134H2*H	0.5 C13NH2*H	3.3 H20*E	3.3 H20*E	
م م	64	50	11	52	53	54	s v	36	5.5	6 0	n	9	61	62	63	79	, 6 52	9	67	89	69	10	7.1	7.2	

O BAL PCT	97.8	97.4	7.86	98.5	97.3	95.8	95.9	96.1	97.8	91.6	98•3	97.9	98.6	9.66	666	98.8	99.3	98.8	9.66	99.2	99.1	98.6	7.66	99.1
C BAL PCT	95.4	91.0	95.6	91.5	7.76	91.2	98.3	1.36	96.2	91.3	95.2	93.1	0.66	93.6	91.8	92.1	69.9	92.8	93.8	9.56	93.6	91.6	95.4	94.8
PSIG	48.0	51.0	48.0	51.0	47.0	48.0	0.64	51.0	0.0	51.0	0.64	47.0	45.0	0.64	49.0	50.0	0.64	47.0	51.0	52.0	48.0	47.0	0.64	50.0
+ #	1525	1655	1496	1617	1478	1596	1510	1640	1506	1636	1490	1573	1472	1503	1513	1595	1509	1585	1500	1583	1483	1587	1520	1612
F 17	1530	1660	1470	1618	1487	1615	1513	1643	1502	1641	1470	1550	1437	1483	1490	1583	1476	1580	1497	1593	1482	1597	1518	1611
N 02 P P M	13	50	50	23	35	38	19	31	20	33	31	38	23	13	22	27	50	23	19	52	15	92	18	19
NO M	7.8	88	4	60	4	4	73	95	74	91	100	105	69	42	80	96	75	80	82	73	78	88	8	92
P P P	13	13	25	22	50	18	14	20	50	13	18	28	41	12	18	16	28	54	56	14	54	12	16	60
o d d d	3389	1599	3455	1920	2958	1744	9677	2125	3701	1863	3177	2535	4387	6042	4270	2795	4347	3081	4108	3300	4921	3058	4384	2702
02 PCT	14.5	13.5	14.8	13.9	14.5	13•3	14.2	13.2	14.6	13.6	14.8	13.8	15.0	14.7	14.7	13.9	14.7	13.9	14.9	14.0	14.7	13.9	14.8	14.0
C02 PCT	3.56	4.18	3.48	4.06	3.51	4.09	3,46	4.18	3.48	4.12	3.44	4.02	3,33	3.45	3.50	40.4	3.47	4004	3.46	4.06	3.46	3.99	3.55	4.07
I H	0.292	0.342	0.286	0.333	0.288	0.335	0.284	0.342	0.286	0.338	0.282	0.329	0.272	0.310	0.306	0.336	0.311	0.336	0.295	0.329	0.302	0.336	0.299	0.328
FUEL MODIFICATION	5+0 H20+E	5.0 H20*E	10.0 H20#E	10.0 H20*E	20.0 H204E	20.0 H2C*E	0.33 CH30H*E	0.33 CH30H*E	0.07 H20+NH3*E	0.07 H20+NH3*E	3.5 H20+N2H4*E	3.5 H20+N2H4*E	33.0 H20*E	0.1 LI*NEO	9.1 MS*H	9.1 MS#H	0.1 FE#ACAC	0.1 FE#ACAC	0.2 MN*NEO	0.2 MN*NEO	1.6 ARL-56	1.6 ARL-56	3.8 H20*E	3.8 T2C+E
α Ο	73	74	75	é	77	78	79	80	8 1	- 60	83	4 8	80	80	18	6 0	68	06	91	95	63	46	9.8	96

O BAL PCT	9.66	98.9	98.2	96.6	0.66	98.5	98.5	96.8	0.66	99.7	98.5	9066	100.0	98.3	99.8	0.66	9.66	-82.0	-78.1	98.6	97.4	100.3	99.7	986
C BAL PCT	95.1	97.2	7.56	7.96	91.0	91.5	102.0	97.4	6.46	1.68	90.5	88.7	97.1	0.86	90.3	93.5	88.0	-10.6	1.5.1	95.3	98.2	87.0	93.4	94•3
9 9 5 1 6	0.64	90.0	0.64	46.0	0.64	90.0	50.0	46.0	48.0	48.0	0.64	0.64	90.0	52.0	50.0	51.0	51.0	51.0	53.0	0.64	48.0	50.0	48.0	50.0
e e	1490	1593	1496	1580	1517	1620	1487	1565	1521	1470	1463	1535	5113	1625	1532	1632	1538	1533	1643	1535	1637	1517	1502	1623
₩	1487	1593	1463	1573	1513	1620	1501	1553	1517	1453	1415	1533	1538	1630	1535	1635	1542	1545	1653	1560	1657	1533	1530	1633
N M D M	19	54	18	19	19	21	19	25	10	59	22	13	13	27	21	22	18	17	56	50	23	19	19	28
N Q Q Q X X	16	4	77	80	76	98	69	7.4	53	11	4.	4	99	83	82	96	7,4	73	89	78	68	44	11	95
H d M d M d	50	12	23	54	14	14	34	22	90	32	8 7	30	56	22	18	34	54	18	50	18	14	20	22	12
0 d	3942	2873	4406	3208	4544	2674	5536	4377	5138	3740	3431	3476	7607	3541	3980	2032	4502	4603	2320	4420	2423	4235	5250	2414
02 PCT	14.9	14.0	14.6	13.6	14.6	13.8	14.7	13.5	14.7	14.8	14.6	14.8	14.7	13.8	14.8	13.9	14.7	14.6	13.8	14.6	13.7	14.8	14.7	13.8
C02 PC1	3.49	4.07	3.48	4.00	3.52	4.06	3.47	4.02	3.46	3.50	3.50	3.48	3.48	60.4	3.50	4.14	3.46	0.00	00.00	3.53	4.12	3.49	3.52	4.14
H4 H4	0.292	0.321	0.293	0.320	0.310	0.339	0.282	0.328	0.300	0.309	0.304	0.309	0.309	0.325	0.309	0.333	0.318	0.311	0.325	0.298	0.318	0.322	0.310	0.333
FUEL MODIFICATION	3.8 H20+84367*E	3+8 H.0+84367*E	3.8 H20+(NH4)2M004*E	3.8 H20+(NH4)2M004#E	0.1 CU*ACAC	0.1 CU*ACAC	0+15 CO*ACAC	0.15 CO*ACAC	C.2 MN*NAP	0.2 FE#NAP	C-13 SDMA	C:1 LI*S	C.1 LI*S	0.1 LI*S	3.1 POLY*H	3.1 POLY*H	0.1 CU*NAP	0.1 FE#NAP	0.1 FE*NAP	3.8 H20+NH4CH02*E	3.8 H20+NH4CH02*E	3.8 H20+N2H4.2C2H402*F	0.1 RA*S	C.1 BA#S
S N	4	90	66	100	101	102	103	104	105	106	101	108	109	110	111	112	113	114	115	116	117	118	119	120

13.6 3220 14 78 26 14.7 6174 18 64 19 13.7 5083 10 77 27 15.0 4345 14 69 20 15.0 3439 18 71 21	56 64 41 10 56 56 56 56 56 56 56 56 56 56 56 56 56	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6174 18 64 5083 10 77 4345 14 69 3439 18 71		m 4 m m m m m 4
5083 10 77 4345 14 69 3439 18 71		4 m m m m m 4
4345 14 69 3439 18 71		w w w w w 4
3439 18 71		3.46 3.72 3.43 4.07
		w w w 4
14.4 2350 0 79 25		W W 4 4 0 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4
14.2 6144 0 66 23		4.0
14.3 5104 12 73 19		4.07
13.5 2451 8 90 31		
12.7 6347 30 70 19		3.50
11.9 3350 8 86 27		4.12
13.9 7248 36 69 23		3.53
13.2 4091 24 84 30		4.18
15.0 4848 16 76 21		3.53
14.1 3278 8 84 27		4.16
15.1 6000 12 63 19		3.55
14.2 3182 10 74 27		4.19
14.5 5286 48 73 19		3.51
13.2 4651 10 82 23		4.20
14.9 4056 30 104 23		3.53
13.9 1818 18 115 32		4.14
14.8 6216 18 70 19		3.46
13.8 3253 10 79 26		4.09

The second designation of the second second

90 3.51 15.0 5219 12 4.08 14.1 3476 94 3.48 14.9 6487 27 4.09 14.0 3373	7.7	17 1506		
3 • 48 14 • 9 6	7 66 4 07	4 0 4 0	1503 47.5	99.4 100.7
4.09 14.0	70 68	150	9 47.	~
	12 78	19 1608	1612 49.5	91.0 99.6
99 3.48 15.0 6792	58 72	16 1495	1492 49.0	99.6 101.1
27 4.07 14.1 3900	12 83	19 1600	1609 50.5	97.7 99.9
99 3.48 15.0 5184	26 77	19 0	1495 48.0	95.6 100.7
22 4.12 14.1 2943	88	24 1612	1623 50.0	98.2 99.7
3.53 15.0 4300	20 72	17 1500	1498 48.0	9663 100.6
4.14 14.2 2778	10 85	20 1605	1602 49.5	100.4 100.3
3.53 15.0 5718	34 71	13 0	1485 49.0	99.8 100.9
4.10 14.1 3568	16 75	11 0	1592 50.0	101.0 99.6
3.54 15.0 3463	14 73	19 1508	1503 49.0	97.4 100.0
4.05 14.1 2038	6 82	22 1610	1603 51.0	97.2 98.9
3.51 14.9 3199	8 70	18 1516	1502 49.5	S*66 0*96
4.05 13.8 2373	78 7	23 1621	1608 50.5	98.0 97.7
3.46 15.2 4425	14 70	20 1517	1493 50.0	96.2 101.2
4.07 14.2 2584	8 82 2	3 1625	1612 51.0	95.7 99.9
3.51 14.9 3075	16 60	15 1530	1510 50.0	91.6 99.9
4.09 13.9 2823	8 71	22 1645	1633 48.0	95.5 98.8
3.48 14.8 4416	16 61	1520	1505 50.5	93.8 99.6
4.09 13.9 3035	10 72	22 1640	1608 49.0	6.86 4.66
3.51 14.9 3628	14 64	17 1548	1525 49.0	92.9 100.2
17 4.05 14.2 2108	8 10 76 21	1 1660	1617 50.5	96.2 99.5

THE THE PARTY OF T

FUEL MODIFICATION	H H	202	000	0	ų į	X	, O V	H .	Q	a	CBAL	O BAL
		PC1	PO-	∑ Q.	Œ Œ	Z Q	Σ 0. 0.	L	tı.	PSIG	PCT	PCT
	0.294	3,53	14.9	3436	12	65	17	1533	1505	50.5	94.2	6.66
	0.317	4.12	14.0	2108	6 0	11	21	1650	1618	52.0	97.8	99.1
	0.292	3.51	15.0	4156	0	72	17	0	1510	0.67	0.96-	100.4
	908.0	4.08	14.2	9672	0	98	2.1	0	1610	48.0	-101-2	99.3
	0.301	3.50	14.9	4032	0	75	11	O	1520	50.5	-92.7	100.1
	0.313	4.08	14.1	2493	0	85	2.1	o	1620	48.0	0.66-	99.2
	0.293	3.53	15.1	7328	29	55	15	0	1498	48.0	104.1	102.0
	0.318	4.07	14.3	3688	34	67	16	0	1607	48.0	100.0	100.5
	0.304	3.50	15.2	1008	30	99	16	0	1498	48.5	6.86	102.6
	0.328	4.07	14.1	3780	50	72	3.8	0	1600	48.5	97.2	6.66
	0.295	3.51	15.1	5693	0	99	16	1475	1497	0.64	-98.8	101.6
	0.326	3.45	15.0	3589	0	74	21	1545	1577	48.0	-83.7	101.5
	0.282	3.45	15.0	3711	10	83	50	0	0	0.67	96.8	666
	0.335	60.4	14.1	2188	4	9	23	0	0	45.0	92.2	100.0
	0.284	3.47	15.0	4218	09	42	16	1438	0	47.5	0.86	10001
	0.290	3.54	15.0	2862	16	77	19	1492	1495	46.5	94.3	100.0

TABLE XV

EXPERIMENTAL RESULTS - EMISSION INDEX UNITS

ابر قر		FUEL WODIFICATION	H a	EICO2	E102 E1	EICO EIHC 1000 PUU	IHC EINOX POUNDS OF	K EINOZ FUEL	- Ω ιτ	<u>ተ</u>	9 9 5 1 6	C BAL PCT	O BAL
					,								
-	3.8	3.8 H20*E	0.292	2726. 83	28. 252.	0 1.55	6.43	00.00	1500	1500	90.0	98.2	-98.9
2	3.8	H20*E	0.317	2961. 71	61. 120.	3 0.10	6.61	00.00	0	0	0.64	0.66	-97.4
w	0.1	CO*NAP	0.295	2791.	.96 .0	6 0.28	6.93	00.00	1530	1500	0.09	92.5	-27.5
4	0.1	CO*NAP	0.326	2741.	0.86.	2 0.20	6.21	00.0	1606	1570	61.0	4.06	-30.0
'n	3.2	C6H5NH2*H	0.303	2652.	0. 221.	8 0.40	10.28	00.0	1505	1521	57.0	94.3	-28.0
Ø	3.2	C6H5NH2*H	0.321	2754.	0. 147.	8 0.23	10.39	00.0	1563	1597	58.0	93.8	-30.0
^	3.5 E	EGDE*H	906.0	2567.	0. 253.	9 0.35	6+45	00.00	1488	1506	58.0	93.2	-27.9
œ	3.5 E	EGDE*H	0.337	2653.	0. 151.	0 0.19	6.15	00.00	1572	1608	57.0	90.6	-30.7
٥	2.7	C6146*H	0.292	2781.	0. 151.	3 0.28	6 • 43	00.0	1517	1520	58.0	9.46	-27.4
10	2.7	C6H6*H	0.319	2893.	0. 104.	0 0.36	49.9	00.0	1611	1616	99.0	0.96	-30.5
11	€ 00	H20+CH30H*E	0.272	2973. 80	78. 0.	0 0.48	7.07	00.0	1510	1516	9000	-93.4	4.06-
12	w &	H20+CH30H*E	0.293	3082. 70	01. 0.	0 0.39	6.98	00.0	1537	1542	45.0	8.96-	-88.8
13	2.0	CCL4*H	0.301	2661. 7809	. 177.	8 0.60	6.64	00.0	1483	1510	96.0	95.4	9.96-
14	5.0 6	5.0 CCL4*H	0.333	2767. 65	75. 93.	7 0.34	6.73	00•0	1603	1623	94.0	91.6	-95.1
H 20	ω • α	H2O+NH4CH02*E	0.266	2945. 91	26. 202.	1 0.12	69.9	00.0	1472	1488	47.0	102.5	-97.4
16	0.5	CO*NAP	0.300	2655. 8000	00. 221.	3 0.00	4.67	00.0	1503	1513	58.0	-94.3	-98.1
17	0.5	CO*NAP	0.333	2780. 66	25. 163.	s 0.00	4.58	00.0	1590	1603	97.0	-95.4	-96.1
8	3.7 (C3H7NO3*H	0.288	2732. 80	39. 140.	1 0.40	9.65	00.00	1463	1503	58.0	95.8	9.76-
19	3.7 (CSH7NOS*H	0.333	2828. 63	76. 89.	5 0.39	10.09	00.00	1623	1627	56.0	93•3	-93.6
20	0.1	CO*ACAC	0.307	2603. 71	20. 129.	1 0.37	5.58	00.00	1493	1496	0.64	88•2	-91.7
21	2.5	C2H5OH*H	0.292	2757. 81	01. 143.	0 0.70	6.35	16.0	1496	1300	0.64	93.7	9.96
22	2.5	С2Н5ОН*Н	0.322	2951. 68	98. 101.	3 0.51	6.43	96.0	1600	1593	50.0	97.8	96.3
23	2.5	C2H5OH*H	0.290	2737. 79	28. 130.	8 0.57	6.55	1.06	1470	1493	0.64	92.5	94.3
54	9.8	H20+NH4N03+E	0.289	2722. 78	40. 115.	6 0.34	7.23	1.06	1537	1530	47.0	91.3	93.1

7

	0.5 PB*NAP 0.5 CU*NAP 0.2 CU*VAP	0.304						,		•	600	102
			2591. 8332.	215.0	1.25	6 * * 9	1.17	1453	1460	47.0	4	
		0.336	2661. 7011.	134.2	0.49	96•9	1.06	0	0	0.64	90•3	•66
	2 CU*VAP	0.311	2599. 8042.	112.8	0.47	5.51	1.14	1467	1462	90.0	87.3	101.
		0.304	2643. 8332.	76.6	0.54	5.95	1.33	1463	1456	0.05	86.8	101.
	2 CO*NEO	0.295	2668. 8581.	110.8	1.34	66•7	1.12	1468	1449	0.84	89.4	101.
	2 CO*NEO	0.299	2702. 8247.	102.3	1.41	5.25	1.19	1508	1484	0.64	0.06	66
	2 FE#NAP	0.304	2621. 7788.	118.9	0.65	4.38	0.78	1483	1456	47.0	88•2	96
35 0	0.2 MN*NAP	0.292	2734. 8158.	116.7	95.0	6.27	1.05	1467	1463	47.0	91.7	96
33 3.8	8 H20+N2H4.2C2H402*E	0.273	2904. 8775.	150.4	0.36	00.9	1.13	1423	1427	0.64	7.86	96
34 3.8	8 H20+N2H4.2C2H402*E	0.285	2911. 8122.	134.2	94.0	60.08	1.08	1480	1483	0.94	98•1	95
35 3.8	8 H20+N2H4.2C2H402*E	0.273	2945. 8533.	153.0	0.42	5.91	1,13	1470	1473	0.64	10001	940
36 7.1	I MA*NAD	0.298	2710. 7775.	148.2	4.55	5.42	1.03	1523	1503	47.0	92.8	95.
37 0.2	CU*NAP	0.295	2745. 8021.	6.46	19.0	5.40	1.04	1457	1446	0 • 8 •	6.06	96
38 0.1	1 CU*NAP	0.296	2713. 7938.	148.0	0.50	5.78	1.04	1489	1452	48.0	95.6	96
39 0•1	1 FC*NAP	0.304	2613. 7733.	158.2	1.00	5.87	66.0	1502	1470	0.84	0.06	96
40 0.1	1 FEWNAP	0.340	2657. 6443.	122.3	0.68	5.15	1.33	1580	1607	0.64	9.68	95
41 0.1	1 CA*S	0.302	2630. 7729.	184.1	0.63	6.22	1.02	1507	1485	0.84	91.8	96
42 0.1	1 CA*S	0.328	2794. 6623.	128.0	09•0	6.61	1.30	1597	1583	50.0	94.1	• 76
43 0•1	1 NA*S	0.302	2547 7729	240.6	1.31	4.72	0.78	1473	1471	0.64	92.0	95
44 0.1	1 NA*S	0.337	2748. 6351.	229.4	64.0	5.02	66.0	1612	1594	20.0	7.16	94.
45 3.1	1 POLY*H	0.313	2416. 7674.	308.5	2.75	5.24	92.0	1429	1489	52.0	91.3	98•
46 3.1	1 POLY*H	0.331	2514. 7115.	119.4	99.0	5.61	0.72	1523	1530	47.0	84.9	98•
47 0.1	1 AL*ACAC	0.285	2840. 8238.	143.3	0.37	6.67	1.00	1483	1487	7.64	96•3	96•
48 0•	0.1 AL*ACAC	0.318	2880. 6931.	88•4	0.41	6.74	0.97	1547	1557	50.0	6.46	94.

۲° ۲		FUFL MODIFICATION	u H	EICO2 POUNDS	E102 PFR	E1C0	EIHC E POUNDS	INOX	E INO? FUEL	<u>п</u> г	<u>م</u> د	P PS1G	C BAL PCT	O PAL
40	0.1	0.1 CA*NAP	0.304	2643.	7842.	194.4	67.0	5.79	1.17	1490	1472	0.64	92.7	97.
50	0.1	0.1 CA*NAP	0.327	2851.	6845.	113.5	0.30	6.12	1.23	1603	1593	90.0	99.2	96
51	0.2	ZR*NEO	0.303	2614.	7868.	198.8	0.43	6.04	1.02	1443	1470	0.64	95.0	97.
52	0.2	ZR*NEO	0.330	2805.	6784.	122.6	00.00	6.57	1.08	1554	1574	90.0	-94.2	. 96
53	0.2	0.2 ZR*NEO	0.311	•	7669•	236.0	0.79	4.97	0.91	1476	1483	50.0	-11.7	-81
34	9.1	9.1 TENCEM*H	0.296	2713.	8162.	101.0	0.33	5.94	1.20	1451	1450	48.0	90.2	96
55	9.1	9.1 TENCEM*H	0.327	2837.	6896.	61.9	0.20	5.97	1.38	1600	1588	50.0	92.5	96
56	9.1	9.1 CEMALL*H	0.301	2631.	7974.	142.0	64.0	5.85	1.18	1487	1491	0.84	89.7	97.
57	9.1	9.1 CEMALL*H	0.341	2763.	6522•	87.4	0.24	5.66	1.32	1500	1631	50.0	91.1	96
58	9.1	HFL*H	0.299	2671.	8081.	161.6	64.0	96•5	1.19	1430	1493	48.0	91.9	98
50	9.1	9.1 HFL*H	0.331	2866.	6714.	86.9	0.50	5.90	1.22	1605	1638	50.0	7.76	96
9	2.9	2.9 DCPD*H	0.300	2685.	8055.	144.5	0.55	6.10	1.03	1454	1504	0.64	616	98
61	2.9	2.9 DCPD*H	0.332	2857.	• 7699	97.1	0.34	6.03	1.29	1598	1628	50.0	9.76	96
62	5.6	5.6 C3F6HOH*H	0.296	2698.	8050.	135.1	0.55	5.94	1.12	1460	1513	0.84	91.5	97.
63	5.6	5.6 C3F6HOr 'H	0.323	2921.	6774.	85.9	0.51	6.49	1.40	1594	1643	20.0	0.96	93.
49	0.1	0.1 ZR*NEO	0.300	2624.	8110.	185.4	1.10	5.63	96.0	1430	1493	48.0	91.7	98
6.5	0.2	0.2 V*NEO	0.289	2707.	8527•	150.5	0.68	5.92	96.0	1515	1480	90.0	92.5	66
99	0.2	0.2 V*NEO	0.322	2880.	7104.	75.4	0.61	90•9	1.25	1635	1597	52.0	84.3	97.
67	0.2	0.2 ZN*NAP	0.294	2716•	8329.	149.8	65.0	6.39	0.80	1502	1483	51.0	92.7	66
89	0.2	0.2 ZN*NAP	0.326	2930•	.1969	73.4	0.45	6.87	1.31	1626	1612	53.0	95.7	97.
69	0.5	0.5 C13NH2*H	0.328	2891•	.9269	88.8	0 • 20	7.26	1.38	1485	1473	52.0	95.3	98
70	0.5	C13NH2*H	0.300	2640.	8110.	155.3	0.46	6.50	1.18	1612	1603	50.0	9.06	98
7.1	3.3	3•3 H20∗E	0.286	2766.	8095.	189.8	0.43	95•9	1.08	1528	1518	90.0	96•3	94.
7.2	3.3	3•3 H20*E	0.337	2782.	•9699	84.3	0.32	6.08	1.34	1648	1646	52.0	91.6	97.

BAL O BAL PCT PCT	95.4 97.8	91.0 97.4	95.6 98.7	91.5 98.5	94.4 97.3	91.2 95.8	98.3 95.9	92•1 96•1	96.2 97.8	91.3 97.6	95.2 98.3	93.1 97.9	99.0 98.6	93.6 \$9.6	91.8 99.1	92.1 98.8	89.9 99.3	92.8 98.8	93.8 99.6	95.6 99.2	93.6 99.1	91.6 98.6	7.66 98.7	94.8 99.1
p c	6 0.84	51.0	6 0.84	51.0	47.0	5 0.84	6 0.64	51.0	6 0.84	51.0	6 0 • 6 +	47.0	45.0	6 0.64	6 0.64	50.03	8 0.64	47.0	51.0	52.0 9	6 0.84	6 0.47	6 0.64	50.0
د ۳ س	1525	1655	1496	1617	1478	1596	1510	1640	1506	1636	1490	1573	1472	1503	1513	1595	1509	1585	1500	1583	1483	1587	1520	1612
<u>н</u> п г	1530	1660	1470	1618	1487	1615	1513	1643	1502	1641	1470	1550	1437	1483	1490	1583	1476	1580	1497	1593	1482	1597	1518	1611
EINO2 FUEL	1.05	1,39	1.66	1.64	2.88	2.70	1.59	2.16	1.66	2.32	2.61	2.75	2.00	66.0	1.71	1.91	1.53	1.63	1.53	1.81	1.18	1.84	1.43	1.38
EINOX	6.35	6.13	95.9	6.37	6.52	06.9	6.10	6.41	6.15	6.42	8.42	7.60	6.02	5.83	6.22	6.81	5.74	5 • 8 9	66•4	5.28	6.14	6.24	77.9	6.68
EIHC POUND	0.36	0.31	0.72	C.54	15.0	77.0	0.40	0.48	0.57	0.31	0.52	0.70	1.24	0.32	0.48	0.39	94.0	69.0	0.72	0.35	9.65	0.29	77.0	0.20
2 EICO ER 1000	168.0	61.9	174.8	83.6	148.6	75.5	229.0	90.2	187.2	80.0	162.9	111.8	233.1	282.4	202.1	120.7	202.5	133.1	201.6	145.5	236.0	132.1	212.8	119.5
E 10	8215.	6551.	8557.	6924•	8327.	6586.	8267.	6406.	8441.	6676•	8676.	6956	9111.	7854.	7954.	6863.	7829.	6863.	8357.	7057.	8057.	\$863.	8192.	7078.
E1CO2 POUNDS	2773.	2789.	2766.	2780.	2771.	2785.	2769.	2789.	2766.	2781.	2773.	2786.	2781.	2534.	2604.	2743.	2541.	2743.	2668.	2913.	2607.	2709.	2702•	2829.
H Q	0.292	0.342	0.286	0.333	0.288	0.335	0.284	0.342	0.286	0.338	0.282	0.329	0.272	0.310	906.0	0.336	0.311	0.336	0.295	0.329	0.302	0.336	0.299	0.328
FUFL VQSIFICATION	5.0 H20*E	5.0 H20*E	10.0 H20*E	10.0 H20*E	20.0 H2C*E	20.0 H20*E	0.33 CH30H*E	0.33 CH30H*E	0.07 H20+NH9*E	0.07 H20+NH3*E	3.5 H20+N2H4*E	3.5 H20+N2H4*E	33.0 H20*E	0.1 LI*NEO	9•1 MS*H	9•1 MC*H	0.1 FE*ACAC	0.1 FE*ACAC	0.2 MWANEO	0.2 MN*NEO	1.6 ARL-56	1.6 ARL-56	3*8 H20*E	2/8 H20*E
۲'n.	73	74	75	76	77	78	79	80	81	82	83	8 4	80 70	86	87	88	88	06	91	92	66	76	٥ ٣	96

O BAL PCT	9•66	96.9	98.2	9.96	0.66	98.5	98.5	96.3	0.66	1.66	98.5	9.66	100.0	98.3	8.66	0.66	9.66	-82.0	-79.1	98.6	91.4	100.3	7.66	98.6
C BAL	95.1	97.2	7.66	96.7	91.0	91.5	102.0	97.4	6.46	89.7	9005	88.7	97.1	98.0	800	93.5	88.0	-10.6	-5.1	95.3	98•2	87.0	93.4	94•3
P PS16	0.64	50.0	49.0	46.0	49.0	90.0	90.0	46.0	48.0	48.0	0.64	0.64	50.0	52.0	50.0	51.0	51.0	51.0	53.0	0 • 6 7	48.0	50.0	48.0	20.0
ር ተ	1490	1593	1496	1580	1517	1620	1487	1565	1521	1470	1463	1535	5113	1625	1532	1632	1538	1533	1643	1535	1637	1517	1502	1623
Γ μ	1487	1593	1463	1573	1513	1620	1501	1553	1517	1453	1415	1533	1538	1630	1535	1635	1542	1545	1653	1560	1657	1533	1530	1633
E 11102 FUEL	1.54	1.78	1.46	1.41	1.45	1.47	1.60	1.81	0.79	2.23	1.72	1.00	1.00	1.97	1.61	1.57	1.34	1.30	1.90	1.59	1.72	1.40	1.45	2.00
E I NOX IDS OF	6.18	6.23	6.25	6.32	5.83	6.05	5.47	5.37	4.20	5.93	5.79	6. 08	5.08	90•9	6.31	6.87	5.54	5.58	6.45	6.22	99•9	5.47	5.91	6 • 80
EIHC E POUNDS	0.56	0.30	0.64	0.62	0.37	0.34	66.0	0.55	2.48	0.85	1.30	0.80	1.50	0.56	0.48	0.84	0.62	0.47	0.51	0.49	0.36	0.51	0.58	0.29
E1CO R 1000	195.4	129.8	217.6	145.3	198.4	114.5	283.9	193.6	248.0	175.4	163.5	163.0	332.8	158.0	186.6	88.5	205.2	214.5	103.5	214.7	110.4	190.7	245.4	105.2
E 102 PE	8441.	7229.	8244.	1044.	7800•	6755.	8618.	6825.	8110.	7932.	7951.	7932.	7879.	7039.	7932•	6924•	7660.	7776.	7039.	8108.	7139.	7618.	7854.	6874•
E1CO2 POUNDS	2718.	2889.	2701.	2848.	. 5862	2732.	2797.	2794.	2624•	. •6252	2621•	. * * 9 5 2	. • +952	2868.	. 6252	2835.	. 6442	•	•	2695.	. 2362	2470.	2586.	2835¢ (
Нd	0.292	0.321	0.293	0.320	0.310	0.339	0.282	0.328	006.0	0.309	0.304	606.0	0.309	0.325	606.0	0.333	0.318	0.311	0.325	0.298	0.318	0.322	0.310	0.333
FUEL MODIFICATION	3.8 H20+B4367*E	3.8 H20+84367*E	3.8 H20+(NH4)2M004*E	3.8 H20+(NH4)2M004*E	0.1 CU*ACAC	0.1 CU*ACAC	0.15 CO*ACAC	0.15 CO*ACAC	0.2 MN*NAP	0.2 FE*NAP	C3 SDMA	0.1 LI*S	0.1 LI#S	0.1 LI#S	3.1 POLY*H	3.1 POLY*H	0.1 CU*NAP	C.1 FE#NAP	0.1 FERNAP	3.8 H20+NH4CH02*E	3.8 H20+NH4CH02*E	3.8 H20+N2H4.2C2H402*E	0.1 BA#S	0.1 BA*S
S S	76	86	66	100	101	102	103	104	105	106	107	108	601	110 (111	112	113 (114 (115	116	117	118	119	120
											69 -													

O BAL PCT	98.9	97.5	7.66	91.6	1001	9.66	98.2	98+2	97.3	97.0	90.3	89.1	96.2	96.0	100.9	1001	101.9	100.6	98•2	95.7	100.3	98.8	100.0	58.5
C PAL PCT	90.1	7.76	100.2	106.7	91.6	95.0	88.8	-102.6	91.2	91.2	94.3	98.5	99.5	100.5	94.8	98.0	7.96	6.66	91.6	106.7	92.0	94.1	96.4	98.2
e SISd	50.0	52.0	51.0	52.0	48.0	0.64	45.0	68.0	50.0	49.0	50.0	49.0	0.84	46.0	50.0	52.0	51.0	53.0	50.0	52.0	48.0	0*67	48.0	49.5
<u>ة</u> بر ,	1455	1584	1508	1571	1473	1588	1670	1566	1570	1630	1505	1633	1481	0	1151	1631	1528	1637	1490	1622	1553	1662	1525	1623
표 교	1469	1629	1542	1610	1492	1595	1637	1548	1550	1567	1523	1633	1468	0	1518	1618	1527	1607	1482	1605	1525	1640	1515	1500
E1402 FUEL	1.38	1.86	1.51	2.08	1.58	1.74	1.90	1.81	1.46	2.18	1.44	1.98	1.78	2.18	1.64	1.96	1.47	1.99	1.52	1.74	1.78	2,31	1.49	1.92
EINOX S OF	5.06	5.58	5.10	5.93	5.47	2.90	6.02	5.20	5.62	6.33	5.30	6.32	5.36	6.12	96•5	6.10	4.88	5.45	5.86	6.23	8.09	8.33	5.49	5.84
EIHC Pound	0.37	0.34	0.49	0.26	0.38	0.52	00.00	00.0	0.32	0.19	0.79	0.20	0.97	09.0	3.43	0.20	0.32	0.25	1.34	0.26	0.31	0.45	67.0	0.25
EICOZ EIDZ EICO POURDS PER 1000	2571. 7800. 189.4	2794. 6774. 140.3	2718. 8163. 300.0	3021. 7343. 238.3	2586. 8276. 209.T	2750. 8673. 173.9	2657. 7645. 109.1	2803. 7783. 294.6	2527. 7664. 239.3	2739. 6608. 104.9	2539. 6703. 293.0	2898. 6089. 149.9	2626. 7521. 343.1	2914. 6653. 181.5	2652. 8195. 231.7	2891. 7128. 145.0	2633. 8145. 283.1	2956. 7287. 142.8	2698. 8106. 258.5	3056. 6986. 215.3	2626. 8062. 192.0	2869. 7006. 83.1	2599. 8102. 297.1	2895. 7145. 146.5
IHa	0,310	0,333	0.298	0.339	0.300.	0.286	0.312	0.302	0.309	0.339	0.314	0.324	906.0	0.327	0.303	0.328	0.307	0.323	0.296	0.313	906.0	0.329	0.303	0,322
FUEL WODIFICATION	0.1 WW*C12	0.1 XY*C12	0.1 KA*S	C.1 NA+S	0.1 NI*ACAC	3.3 H20+CH30H+NH3*E	3+3 H20+CH30H+NH3+E	3.0 H20+NAOH*E	C.1 MONEL+ACAC	0.1 MONEL#ACAC	3.0 H20+RBCH*E	3.G H23+RBCH*E	5.8 H20+CSGH*E	5.8 H20+CSOH*E	0.1 S3*3C6H5	0+1 S3*3C6H5	0.1 FE*FERROCENE	C.1 FE*FERROCENE	5.8 H20+KOH*E	5.8 H20+KOH*E	C.55 TVA*H	0.55 TMA*H	0.1 CU*PHOS	0.1 CU*PHOS
×0.0	121	122 (123 (124 (125 (126	127	128	129	150	131 3	132	133 5	134 5	135 0	136 0	137 0	138 0	139 5	140 5	141 0	142 0	143 0	144 0

KOE	FUFL MODIFICATION	IHd	EICO2 POUNDS	E102 PER	F1C0 1000	4.	FINC EINOX POUNDS OF	E INOZ FUEL	E F	4 F	P PSIG	C 3AL PCT	O PAL PCT
145	5.8 H20+LIOH*E	0.290	2752. 8	9069	260.4	0.91	5.98	1.39	1506	1503	47.5	7.66	100.7
146	5.8 H20+L10H*E	0.312	2978. 7	534.	161.4	0.26	6.33	1.75	1595	1597	0.64	101.5	9.66
147	0.1 SB+5.0 CCL4	0.294	2692 8	385.	319.4	1.96	5.50	1.53	1508	1513	47.5	100.5	100.2
148	0.1 SB+5.0 CCL4	0.327	2851. 71	34.	149.6	0.30	5.68	1.38	1608	1612	49.5	97.0	9.66
149	0.18 PR*TEL	0.299	2648• 8	314.	328.9	1.60	5.72	1.27	1495	1492	0.64	9.66	101.1
150	0.18 PB*TEL	0.327	2837. 7	7160.	173.0	0.30	6.05	1.38	1600	1609	50.5	7.16	6.66
151	0.1 CE+NAP	0.299	2648 8	314.	251.0	0.71	6.12	1.51	0	1495	48.0	95.6	100.7
152	0.1 CE*NAP	0.322	2916. 7	7268.	132.5	0.20	6.51	1.77	1612	1623	50.0	98•2	99.7
153	0.1 NI*NAP	0.294	2731. 8	464.	211.7	95.0	5.82	1.37	1500	1498	48.0	96•3	100.6
154	0.1 NI*NAP	0.315	2994. 7	505	127.8	0.26	6.42	1.51	1605	1602	49.5	100.4	100.3
155	2•6 С4Н95Н*Н	0.294	2731. 8	464.	281.5	96.0	5.74	1.05	0	1485	0.64	8•66	100.9
156	2.6 C4H9SH*H	0.316	2956. 74	•60	163.7	0.41	5.65	0.82	0	1592	50.0	101.0	9.65
157	0.1 FE#NAP	0.285	2824. 8	8708.	. 75.8	0.40	6.08	1.58	1508	1503	0.64	97.4	100.0
158	0.1 FE#NAP	0.313	2947. 7	7484.	64.3	0.15	6.23	1.67	1610	1603	51.0	97.2	98.9
159	0.1 FE*NAP	0.285	2800. 8	679.	162.4	0.23	5.83	1.50	1516	1502	49.5	0.96	66
160	0-1 FE#NAP	0.313	2947. 7	335.	109.8	0.10	6.39	1.74	1621	1608	50.5	98•0	97.7
161	C.1 CR*NAP	0.290	2713. 8	698.	220.8	0.39	5.73	1.63	1517	1493	50.0	96.2	101.2
162	P.1 CR*NAP	0.324	2863. 7	271.	115.6	0.20	6.03	1.69	1625	1612	51.0	7.56	6*56
163	O.1 FE*FERROCENE	0.298	2680. 83	297.	149.4	77.0	4.79	1.19	1530	1510	50.0	91.6	5.65
164	0.1 FE*FERROCENE	0.328	2843. 70	037.	124.8	0.20	5.16	1.59	1645	1633	48.0	95.5	98.8
165	0.1 FE*FERROCENE	0.299	2648. 8	209.	213.8	77.0	4.85	1.27	1520	1505	50.5	93.8	99.66
166	0.1 FE*FERROCENE	0.330	2826. 69	•066	133.4	0.25	5.20	1.58	1640	1608	49.0	7*56	98.9
167	0-1 CO*NAP	0.298	2680. 83	325.	176.3	0.38	5.10	1.35	1548	1525	0.64	92.9	100.2
168	0.1 CO*NAP	0.317	2911. 74	433.	4.96	0.26	5.71	1.57	1660	1617	50.5	96•2	99.5

•	
	٠
2	3
Ì	Ì
TABT W	

ø

....

Nn _o	ш.	FUEL MODIFICATION	I d	E1C02 POUNDS	E 102 PER	E1C0		INOX	E INOZ FUEL	u u	9 m	P 51G	C BAL PCT	O BAL
169	0.1	O.1 CO*NAP	0.294	2731.	8407.	169.2	0.33	5.25	1.37	1533	1505	50.5	94.2	6.66
170	0.1	0.1 CO#NAP	0.317	2961	7360.	96.4	0.23	5.78	1.57	1650	1618	52.0	97.8	99.1
171	0.1	0.1 MN#CI2	0.292	2734.	8521•	206.0	00.0	5.86	1.38	0	1510	0*65	0.96-	100.4
172	0.1	0.1 MN*C12	0.306	3035.	7689.	118.1	00.0	6.68	1.63	0	1610	48.0	-101-2	86.3
173	0.1	0.1 MN*CI2	0.301	2646.	8210.	194.0	00.00	26.5	1.34	0	1520	50.5	-92.7	10001
174	0.1	0.1 MN*CI2	6.313	2969.	7484.	115.4	00.0	94.9	1.59	0	1620	48.0	0.66-	99.2
175	0.5	0.5 MN*C12	0.293	2740.	8571.	362.0	1.75	4.46	1.21	0	1498	48.0	10401	102.0
176	0.5	0.5 MN*CI2	0.318	29169	7462.	168.1	0.88	5.01	1.19	0	1607	0.84	100.0	100.5
177	0.5	FE*FERROCENE	0.304	2621.	8311.	333.9	0.81	5.01	1.25	0	1498	48.5	98.9	102.6
178	0.5	FE*FERROCENF	0.328	2829.	7138.	167.2	0.50	5.23	1.30	0	1600	43.5	97.2	6.66
179	0.1	0.1 MN*NAP	0.295	2707.	8514.	279.4	00.00	5.32	1.29	1475	1497	0.64	8.96.	101.6
180	0.1	0.1 MN*NAP	0.326	2412.	7674.	159.7	00.00	5.41	1.53	1545	1577	0 • 87	-83.7	101.5
181	3.8	H20+N2H4.2C2H402*E	0.282	2781.	8846.	196.3	0.29	66•9	1.68	0	0	0.64	96.8	6*66
182	3.8	H20+N2H4.2C2H402*E	0.335	2785.	7002	94.8	60.0	6.40	1.63	0	0	45.0	92.2	100.0
183	3.8	H20+N2H4.2C2H402*E	0.284	1777.	8785.	214.8	1.74	6.19	1,33	1438	0	47.5	98.0	100:1
184	3.8	3.8 H20+N2H4.2C2H402*E	0.290	2776.	8561.	142.8	0.45	6.31	1.55	1492	1495	46.5	94.3	100.0

APPENDIX II

REFERENCE EMISSIONS

The reference emissions were calculated for the equivalence ratio of the modified fuel runs and are reported in Table XVI. The appropriate least squares relationships given in Tables IX and X were used to calculate the emissions. The carbon and oxygen balances were calculated using the calculated reference emissions. The formulas used for the material balance calculations are derived in Appendix V. The program for computing these tables is included in Appendix VII. In four runs the least squares HC line predicted negative values. These were reported as zero.

TABLE XVI

REFERENCE EMISSIONS

2 2 2	FUEL MODIFICATION	PHI	C02 PCT	02 PCT	O d M	I¶ Λ¶ Σ	N O O	N02 PPM	F 7F	4	P PSIG	C BAL PCT	O BAL
H	3+8 H20*E	0.292	3.55	14.2	2924	70	893	14	1486	1501	50.0	94.1	96•3
7	3.8 H20*E	0.317	3.86	13.7	56 26	99	6 0	15	1548	1560	0.67	93.2	96.2
m	0.1 CO*NAP	0.295	3.59	14.1	2888	97	48	14	1494	1508	0.09	0.46	96.3
4	0.1 CO*NAP	0.326	3.96	13c2	6152	82	06	16	1570	1581	61.0	95.8	96.2
ĸ	3.2 C6H5NH2*H	0.303	3.69	14.0	2793	40	86	14	1513	1527	57.0	93.7	96.2
S	3.2 C6H5NH2*H	0.321	3.90	13.6	2578	73	90	15	1558	1569	58.0	93.0	96.2
^	3.5 EGDE*H	906.0	3.72	13.9	2757	46	98	14	1521	1534	58.0	93.6	96.2
60	3.5 EGDE*H	0.337	4.10	13.3	2387	102	65	16	1597	1607	57.0	92.5	96.1
σ	2.7 С6Н6*н	0.292	3.55	14.2	5924	20	83	14	1486	1501	58.0	94.1	96•3
10	2.7 С6Н6*Н	0.319	3.88	13.7	2602	69	88	15	1553	1565	99.0	93.1	96.2
7	3.8 H20+CH30H*E	0,272	3,31	14.6	3162	0	80	13	1437	1453	50.0	95.1	96.3
12	3.8 H20+CH30H*E	0.293	3.56	14.2	2912	22	48	14	1489	1503	45.0	94.1	96.3
13	5.0 CCL4*H	0.301	3.66	14.0	2817	37	œ S	14	1508	1522	56.0	93.8	96.2
14	5*0 CCL4*H	0.333	4.05	13.4	2435	95	91	16	1587	1598	54.0	95.6	96.1
15	3.8 H2O+NH4CH02*E	0.266	3.24	14.7	3234	0	42	12	1422	1439	47.0	95.5	4.96
16	0.5 CO#NAP	0.300	3.65	14.0	2829	35	85	14	1506	1520	58.0	93.8	96.2
17	0.5 COWNAP	0.333	4.05	13.4	2435	95	91	16	1587	1598	57.0	95.6	96.1
18	3.7 C3H7NO3*H	0.288	3.50	14.3	2972	13	я 3	13	1476	1691	58.0	6.46	96.3
19	3.7 C3H7NO3*H	0.333	4.05	13.4	2435	66	91	16	1587	1598	96.0	95.6	96.1
20	0.1 CO*ACAC	0.307	3.73	13.5	2745	8 4	98	14	1523	1536	0.64	93.5	96.2
21	2.5 C2H5OH*H	0.292	3.55	14.2	5924	50	83	14	1486	1501	0.64	94.1	96.3
22	2.5 C2H5OH*H	0.322	3.92	13.6	2566	75	83	15	1560	1572	20.0	93.0	96.2
23	2.5 C2H5OH*H	0.290	3.53	14.2	2948	17	83	14	1481	1496	0.67	84.2	96.3
54	3.8 H20+NH4NO3*E	0.289	3.51	14•3	2960	15	83	13	1479	1493	47.0	94.3	96.3

The second secon

z S	FUEL MODIFICATION	I Hd	C02 PCT	02 PCT	0 d 2 v	T A	X & W	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ш ⊬ u.	<u> </u>	P 5189	C BAL PCT	O BAL
	0.5 PB*NAP	0.304	3.70	14.0	2781	42	98	14	1516	1529	47.0	93.6	96.2
	0.5 P8*NAP	0.336	60.4	13.3	2399	100	95	16	1595	1605	0.64	95.5	96.1
	0.5 CU*NAP	0.311	3.78	13.8	2697	55	8 7	15	1533	1546	90.0	93.4	96.2
	0.2 CU*NAP	0.304	3.70	14.0	2781	75	86	14	1516	1529	90.0	93.6	96.2
	0.2 CO*NEO	0.295	3.59	14.1	2888	56	98	14	1494	1508	48.0	0.46	96.3
	0.2 CO*NEO	0.299	3.64	14.1	2840	33	6 0	14	1503	1517	0.64	93.8	96.3
	0.2 FE*NAP	0.304	3.70	14.0	2781	45	86	14	1516	1529	47.0	93.6	96.2
	0.2 MV*NAP	0.292	3,55	14.2	2924	20	83	71	1486	1501	47.0	94.1	96•3
	3.8 H20+N2H4.2C2H402*E	0.273	3.32	14.6	3150	0	90	13	1439	1455	45.0	95.1	96.3
	3.8 H20+N2H4.2C2H402*E	0.285	3.47	14.3	3007	6 0	82	13	1469	1484	0.97	94.5	96.3
	3.8 H20+N"H4.2C2H402*E	0.273	3.32	14.6	3150	0	80	13	1439	1455	45.0	95.1	6.96
	0.1 MN*NAP	0.298	3.62	14.1	2852	31	80	14	1501	1515	47.0	6.6	6.96
	0.2 CU*NAP	0.295	3.59	14.1	2888	56	78	14	1494	1508	48.0	0.46	6.96
	0.1 CU*NAP	0.296	3.60	14.1	2876	28	84	14	1496	1510	48.0	0.46	96.3
	O.I FEANAD	0.304	3.70	14.0	2781	42	86	14	1516	1529	48.0	93.6	96.2
	0.1 FE*NAP	0.340	4.14	13.2	2352	108	95	16	1604	1614	0.64	95.4	96.1
	0.1 CA*S	0.302	3.67	14.0	2805	39	85	14	1511	1524	0.84	93.7	96.2
	C•1 CA*S	0.328	3.99	13.5	2495	98	90	16	1575	1586	20.0	92.8	96.2
	0.1 NA*S	0.302	3.67	14.0	2805	39	85	14	1511	1524	0.64	93.7	96.2
	0-1 NA*S	0.337	4.10	13•3	2387	102	95	16	1597	1607	90.0	92.5	96.1
	3.1 PCLY*H	0.313	3.81	13.8	2674	59	8.7	15	1538	1550	52.0	93.3	96.2
	3.1 POLY*H	0.331	4.03	13.4	5459	9.1	91	16	1582	1593	47.0	92.7	96.1
	0.1 AL*ACAC	0.285	3.47	14.8	4616	23	7.3	16	1411	1476	0.64	7.86	99.1
	0.1 AL*ACAC	0.318	3.88	14.2	3061	15	98	22	1581	1578	90.0	94.2	98.6

The first of the f

S S S	FUEL MODIFICATION	H H	C02 PCT	02 PcT	O d d	7 d 7 d	X X O d N d	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	⊢ π	4	PS16	C BAL PCT	O BAL
64	0.1 CA*NAP	0.304	3.71	14.4	3721	19	81	50	1535	1535	0.64	0.96	98.8
20	0.1 CA*NAP	0.327	3.99	14.0	2636	13	68	54	1612	1606	90.09	93.1	98.5
4	U.2 ZR*NEO	0.303	5,69	14.5	3768	19	81	20	1531	1532	0.64	96.1	98.9
52	0.2 ZR*NEO	0.330	4.02	13.9	5662	13	06	54	1622	1615	50.0	95.8	98.5
53	0.2 ZR*NEO	0.311	3.79	14.3	3391	17	7 8	21	1558	1557	90.0	95.1	7.86
3 4	9.1 TENCEM*H	0.296	3.61	14.6	4098	20	78	3.8	1508	1510	0.84	97.1	0.66
55	9.1 TENCEM*H	0.327	3.99	14.0	2636	13	68	77	1612	1606	50.0	93.1	98 .5
96	9.1 CEMALL*H	0.301	3.67	14.5	3862	19	08	19	1524	1526	0.84	7.96	98.9
5.7	9.1 CEMALL*H	0.341	4.16	13.7	1976	10	76	56	1659	1649	50.0	91.6	98.3
8	9.1 HFL*H	0.299	3.64	14.5	3956	50	42	19	1518	1520	0.84	7.96	98.9
66	9.1 HFL*H	0.331	4.03	13.9	2448	13	06	52	1625	1618	50.0	92.7	98.4
9	2.9 ОСРО*Н	0.300	3.66	14.5	3909	19	80	19	1521	1523	0.64	95.5	98.9
61	2.9 DCPD*H	0.332	4.05	13.9	2401	12	91	25	1628	1622	50.0	95.6	96.4
62	5.6 C3F6HOH*H	0.296	3.61	14.6	4098	20	7.8	18	1508	1510	0.84	97.1	0.66
63	5.6 C3F6HOH*H	0.323	3.94	14.0	2825	14	89	23	1598	1594	50.0	93.6	98.6
79	0.1 ZR*NEG	0.300	3.66	14.5	3909	19	80	19	1521	1523	48.0	5•96	6.86
65	0.2 V*NEO	0.289	3.52	14.8	4428	22	92	17	1484	1489	50.0	98•1	99.1
99	0.2 V*NEO	0.322	3.92	14.1	2872	15	18	23	1595	1591	52.0	93.7	98.6
67	0.2 ZN*NAP	0.294	3.58	14.7	7617	21	7.8	18	1501	1504	51.0	97.4	0.66
89	0.2 ZN#NAP	0,326	3.97	14.0	2683	14	89	24	1603	1603	53.0	93•3	98.5
69	0.5 C13NH2*H	0.328	00•4	13.9	2589	13	68	54	1615	1609	52.0	93.0	98.5
70	0.5 CI3NH2*H	0.300	3.66	14.5	3909	19	80	19	1521	1523	20.0	6.96	6.86
7.1	3.3 H20*E	0.286	3.49	14.8	4569	23	75	17	1474	1480	50.0	98.6	99.1
72	3.3 H20*E	160.0	4.11	13.8	2165	11	95	92	1645	1637	52.0	92.0	98.3

L OBAL	0.66	98.3	99.1	98.4	99.1	98.4	99.1	98•3	99.1	98.3	89.2	98.5	88.8	80	98•8	98.4	98.7	98.4	0.66	98.5	98.9	4.86	6.86	98.5
C BAL	7.16	91.5	98.6	92.5	98.3	92.2	98.9	91.5	98.6	91.9	99.2	92.9	100.8	95.2	95.7	92.1	95.1	92.1	97.2	92.9	96.3	92.1	7.96	93.0
9 S I S d	78.0	51.0	48.0	51.0	47.0	0 · 8 ·	0.64	51.0	48.0	51.0	49.0	47.0	45.0	0.64	0.67	20.0	0.64	47.0	51.0	52.0	48.0	47.0	0.67	50.0
- π	1498	1652	1480	1625	1486	1631	1473	1652	1480	1640	1467	1612	1436	1554	1541	1634	1557	1634	1507	1612	1529	1634	1520	1609
⊬ rr m	1494	1662	1474	1632	1481	1638	1468	1662	1474	1648	1461	1518	1427	1555	1541	1642	1558	1642	1504	1618	1528	1642	1518	1615
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18	27	17	25	17	25	16	27	17	56	16	54	14	21	20	25	21	25	18	54	19	25	19	54
χ g Ο g Χ Σ	7.7	46	75	91	76	92	74	46	75	63	74	90	70	83	82	92	8	95	7.8	90	80	92	79	89
I d O d E	21	10	23	12	22	12	23	10	23	11	23	13	56	17	1 38	11	17	11	21	13	19	11	20	13
0 d	4286	1929	4569	2353	4475	2259	4663	1929	4569	2118	4758	2545	5229	3438	3626	2212	3391	2212	4145	2542	3815	2212	3956	2589
02 PCT	14.7	13.7	14.8	13.8	14.8	13.8	14.9	13.7	14.8	13.7	14.9	13.9	15.1	14.3	14.4	13.8	14.3	13.8	14.6	13.9	14.5	13.8	14.5	13.9
002 PC1	3.56	4.17	3.49	4.06	3.51	4.08	3.46	4.17	3.49	4.12	3.44	4.01	3.32	3.78	3.73	4.10	3.79	4.10	3.60	4.01	3.68	4.10	3.64	6. 00
I H	0.292	0.342	0.286	0.333	0.288	0.335	0.284	0.342	0.286	0.338	0.282	c.329	0.272	0.310	906.0	0.336	0.311	0.336	0.295	0.329	0.302	0.336	0.299	0.328
FUEL MODIFICATION	5*0 H20*E	5.0 H2C*E	10.0 H20#E	10.0 H20*E	20.0 H20*E	20.0 H20*E	0.33 CH30H*E	0.33 CH30H*E	0.07 H20+NH3*E	0.07 H20+NH3#E	3.5 H20+N2H4#E	3.5 H20+N2H4#E	33.0 H20*E	0.1 L1*NEO	9.1 MS*H	9.1 MS*H	0.1 FE*ACAC	0.1 FE*ACAC	0.2 MN*NEO	0.2 MN*NEO	1.6 ARL-56	1.6 ARL-56	3.8 H20*E	3.8 H20*E
S S	73	74	ič.	16	11	78	42	80	8	82	83	8	80	86	60	6 0	6	06	91	85	66	76	9.8	96

<u></u>	FUEL MODIFICATION	H H	C02 PCT	PCT	O d	T d.	X Q Q X X	N W D D W W	F 77	C LL	P	C BAL PCT	O BAL
3.8	3.8 H20+84367*E	0.292	3.56	14.7	4286	21	7.7	18	1494	1498	0.64	7.76	0.66
3.8	H20+B4367*E	0.321	3.91	14.1	2919	15	87	23	1591	1588	90.0	93.8	98.6
3.8	3.8 H20+(NH4)2M004*E	0.293	3.57	14.7	4239	21	77	18	1498	1501	0.64	97.5	0.66
3.8	3.8 H20+(NH4)2M004*E	0.320	3.90	14.1	2966	15	87	53	1588	1585	46.0	0.46	98.6
0.1	0.1 CU*ACAC	0.310	3.78	14.3	3438	17	83	21	1555	1554	0.64	95.2	98.8
0.1	0.1 CU*ACAC	0.339	4.13	13.7	2071	11	66	56	1652	1643	20.0	91.8	98.3
0.15	0.15 CO#ACAC	0.282	3.44	14.9	4758	23	74	16	1461	1467	90.0	88.5	99.2
0.15	0.15 CG*ACAC	0.328	00.4	13.9	2589	13	89	54	1615	1609	46.0	93.0	98.5
0.2	0.2 MN*NAP	0.300	3.66	14.5	3909	19	90	19	1521	1523	48.0	96.5	98.9
0.2	0.2 FE*NAP	0.309	3.77	14.3	3485	17	83	21	1551	1551	48.0	95.3	98.8
0.13	0.13 SDMA	0.304	3.71	14.4	3721	19	81	20	1535	1535	0.64	0.96	98.8
0.1	0.1 LI*S	0.309	3.77	14.3	3485	11	83	21	1551	1551	0.64	95.3	98.8
0.1	0.1 LI*S	0.309	3.77	14.3	3485	1.7	83	21	1551	1551	90.0	95.3	98.8
0.1	0.1 LI*S	0.325	3.96	14.0	2731	14	88	23	1605	1600	52.0	93.4	98.5
3.1	3.1 POLY*H	0.309	3.77	14.3	3485	17	83	21	1551	1551	80.0	95.3	98.8
3.1	3.1 POLY*H	0.333	4.06	13.8	2353	12	91	52	1632	1625	51.0	92.5	98.4
0.1	0.1 CU*NAP	0.318	3.88	14.2	3061	15	98	22	1581	1578	51.0	94.2	98.6
0.1	FETNAP	0.311	3.79	14.3	3391	17	9.6	21	1558	1557	51.0	95.1	98.7
0.1	0.1 FE*NAP	0.325	3.96	14.0	2731	14	80	63	1605	1600	53.0	93.4	98.5
3.8	3.8 H20+NH4CH02*E	0.298	3.63	14.6	4003	20	4	19	1514	1517	0.64	96.8	6.96
3.8	3.8 H20+NH4CH02*E	0.318	3.88	14.2	3061	15	86	22	1581	1578	48.0	94.2	98.6
3.8	3.8 H20+N2H4.2C. H402*E	0.322	3.92	14.1	2872	15	8.7	23	1595	1591	50.0	93.7	98.6
0.1	BA*S	0.310	3.78	14.3	3438	17	83	21	1555	1554	48.0	95.2	98.8
0.1	0.1 BA#S	0.333	4.06	13.8	2353	12	16	52	1632	1625	90.0	95.5	98.4

And the second s

O BAL PCT	98.3	4.86	98.9	98•8	98.9	99.1	98.7	98.9	98.8	98.3	98.7	98.5	98•8	98.5	6.86	98.5	98.8	98.6	0.66	7.86	98•8	98.5	6.86	98.6
C BAL PCT	95.2	92.5	96.8	95.3	96.5	98.6	95.0	96.3	95.3	91.8	7.46	93.5	95.7	93.1	96.1	93.0	9.56	93.6	97.1	94.8	95.7	92.9	\$6.1	93.7
PS 1 G	50.0	52.0	51.0	52.0	48.0	0.64	45.0	48.0	20.0	0.64	20.0	48.0	0.84	0.94	90.09	52.0	51.0	53.0	50.0	52.0	48.0	0.64	48.0	49.5
F 4	1554	1625	1517	1551	1523	1480	1560	1529	1551	1643	1566	1597	1541	1606	1532	1609	1544	1594	1510	1563	1541	1612	1532	1561
F 14	1555	1632	1514	1551	1521	1474	1561	1528	1551	1652	1568	1602	1541	1612	1531	1615	1545	1598	1508	1565	1541	1618	1531	1595
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21	25	19	21	19	11	21	19	21	56	22	23	20	54	20	54	20	23	18	21	20	54	20	23
N G N E	83	91	44	83	C a	75	48	80	80	66	88	88	82	86	81	89	8	88	7.8	4	82	90	81	8.7
Y Q	17	12	5 0	17	19	23	17	19	11	11	16	14	18	13	19	13	18	14	20	11	18	13	19	15
0 4	3438	2353	4003	3485	3909	6957	3343	3815	3485	2071	3249	2778	3626	2636	3768	2589	3579	2825	4098	3296	3626	2545	3768	2872
02 PCT	14.3	13.8	14.6	14.3	14.5	14.8	14.3	14.5	14.3	13.7	14.2	14.0	14.4	14.0	14.5	13.9	14.4	14.0	14.6	14.3	14.4	13.9	14.5	14.1
C02 PCT	3.78	90•4	3.63	3.77	3.66	3.49	3.80	3.68	3.17	4.13	3,83	3.95	3.73	3.99	3.69	4.00	3.74	3.94	3.61	3.82	3.73	4.01	3.69	3.92
II d	0.310	0.333	0.298	0.309	00.300	0.286	0.312	0.302	0.309	0.339	0.314	0.324	0.306	0.327	0.303	0.328	0.307	0.323	0.296	0.313	0.306	0.329	0.303	0.322
FUEL MODIFICATION	0.1 MN*C12	0.1 MN*C12	0.1 NA#S	0.1 NA#S	0.1 NI ACAC	3.3 H20+CH30H+NH3*E	3.3 H20+CH30H+NH3*E	3.0 H20+NA0H*E	0.1 MONEL*ACAC	0.1 MONEL#ACAC	3.0 H20+RB0H*E	3.0 H20+RB0H*E	5.8 H20+CSOH*E	5.8 H20+CSOH*E	0.1 SB#3C6H5	0.1 SB*3C6H5	0.1 FEFFINGTENE	0.1 FE*FERROCENE	5.8 H20+K0H*E	5.8 H20+KOH*E	0.55 TMA*H	0.55 TMA*H	0.1 CU*PHOS	0.1 CU*PHOS
S S S	121	:22	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144

5.8 H204-L10HeE 5.312 5.80 14.3 14.3 14.3 14.3 17. 14.8 17. 14.8 11. 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14		FUEL MODIFICATION	H d	C02 PCT	02 PCT	og Æ	₩ PP&	X & Q d	0 M 0 M 0 M	H IT	F F	P 516	C BAL	O BAL
100 + L 100 + E 0.312 3.98 14.3 7.43 17 84 21 1561 1560 49.0 95.0	•	8 H20+L10H*E	0.290	3.53	14.7	4381	22	16	17	1488	1492	47.5	98.0	99.1
SGH-S-D CCL4 0.234 3-56 14-7 4192 21 16 1501 1504 47-5 99-74 SGH-S-D CCL4 0.327 3-99 14-7 266 13 89 24 1612 1606 49-5 93-1 99 PGH-TEL 0.229 3-64 14-5 3956 20 79 19-1 1520 49-0 99-1 99-1 PGH-TEL 0.229 3-64 14-5 3956 20 79 19-1 1520 49-0 99-1 99-1 FENAP 0.229 3-64 14-5 3956 20 79 19-1 1502 49-0 99-1 <td>•</td> <td>8 H20+L10H*E</td> <td>0.312</td> <td>3.80</td> <td>14.3</td> <td>. 343</td> <td>17</td> <td>8</td> <td>21</td> <td>1561</td> <td>1560</td> <td>0.64</td> <td>0.56</td> <td>7.86</td>	•	8 H20+L10H*E	0.312	3.80	14.3	. 343	17	8	21	1561	1560	0.64	0.56	7.86
PHYMATEL 0.237 3.94 1.4.0 6256 1.3 94 24 1612 1606 49.5 93.1 93.1 99.8 24 1612 1606 49.6 93.1 99.8 99.8 17 1518 1520 49.9 99.7 99.8 99.8 24 1612 1606 50.3 99.7 99.7 99.8 99.8 24 1612 1606 50.9 99.7 99.8 99.8 24 1612 1606 50.9 99.7 99.8 99.8 99.8 24 1612 1606 50.9 99.9 99.8 99.8 99.8 24 1612 1606 90.9 99.9 99.8	•	1 S8+5.0 CCL4	0.294	3.58	14.7	4192	2.1	78	18	1501	1504	47.5	97.4	0.66
PRATEL 0.299 3.464 14.45 3956 20 79 151 1516 1506 69.0 99.0 PRATEL 0.237 3.49 14.40 26.36 13 99 24 1612 1606 50.50 99.11 99 CENAP 0.237 3.49 14.40 26.36 12 19 15.18 15.20 49.00 99.17	÷	1 S8+5.0 CCL4	0.327	3.99	14.0	2636	13	89	54	1612	1606	49.5	93.1	98.5
PRETEL 0.327 3.99 14.0 2636 13 94 24 1612 1606 50.5 93.1 98.1 CENNAP 0.299 3.64 14.5 3956 20 79 19 1518 1520 48.0 96.7 98.7 CENNAP 0.229 3.64 14.7 212 15 15 15 150 150 99.7 98.7 NINNAP 0.226 14.7 4192 21 78 150 48.0 97.4 99.7 NINNAP 0.226 14.7 4192 21 78 16 48.0 97.4 99.4 NINNAP 0.229 14.2 14.2 12 16 87 170 190 99.4 99.4 AHNAP 0.236 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2	ċ	I8 PS*TEL	0.299	3.64	14.5	3956	20	79	19	1518	1520	0.64	7.96	98.9
CEWNAP 0.299 3.64 14.55 3956 20 79 19 1518 1520 48.0 96.7 98.7 9	ċ	18 PB#TEL	0.327	3.99	14.0	2636	13	&) ()	54	1612	1606	50.5	93.1	98.5
CF*NAP 0.322 3.92 14.1 2812 15 81 23 1595 1595 1595 1591 1504 6.00 93.7 99.7 NINNAP 0.234 3.58 14.7 4192 21 78 18 1501 1504 40.0 97.4 99.4 NINNAP 0.234 3.58 14.7 4192 21 16 85 22 1571 1504 49.6 97.4 99.4 CAH9SH#H 0.2294 3.58 14.7 4192 21 16 1501 1501 1504 49.6 97.4 99.4 CAH9SH#H 0.236 3.47 14.8 46.16 23 15 16 14.7 <t< td=""><td>ċ</td><td>1 CE*NAP</td><td>0.299</td><td>3.64</td><td>14.5</td><td>3956</td><td>20</td><td>42</td><td>19</td><td>1518</td><td>1520</td><td>48.0</td><td>7.96</td><td>6.86</td></t<>	ċ	1 CE*NAP	0.299	3.64	14.5	3956	20	42	19	1518	1520	48.0	7.96	6.86
N1*NAP N2*NAP NA	ċ	1 CF*NAP	0.322	3,92	14.1	2872	15	8.7	23	1595	1551	50.0	7.66	98.6
N14NAP 0-315 3+64 14.2 3202 16 85 22 1571 1569 49+5 94+6 94-5 C4H9SH+H 0-294 3+58 14.7 4192 21 78 18 1501 1504 49+0 94-6 97-4 C4H9SH+H 0-316 3+58 14.7 4192 21 18 1501 1504 49+0 97-4 99 C4H9SH+H 0-316 3+85 14.2 3156 16 82 1575 1501 49+0 99-6 99-6 99-6 99-7 16 84 21 1471 1476 49+0 99-7	ô	1 NI*NAP	0.294	3.58	14.7	4192	27	18	18	1501	1504	48.0	97.4	0.66
C4H9SH#H 0.294 3.58 14.7 4192 21 78 18 1501 1504 49.0 97.4 99.4 C4H9SH#H 0.316 3.85 14.2 3155 16 85 22 1575 1575 50.0 94.5 98 C4H9SH#H 0.316 3.85 14.2 3156 16 85 22 1575 1575 50.0 94.5 98 FE*NAP 0.313 3.82 14.3 4616 23 75 16 1471 1476 49.5 98.7 98 FE*NAP 0.239 3.47 14.8 4616 23 75 16 1471 1476 49.5 98.7 98 FE*NAP 0.231 3.82 14.7 4381 22 76 17 1488 149.7 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0	ò	1 NI*NAP	0.315	3.84	14.2	3202	16	89.57	22	1571	1569	49.5	9.46	7.86
C4H9SH+HH 0.316 3.85 14.2 3155 15 22 1575 1575 1575 50.0 94.5 98.7 98.8 98.7 98.7 98.7 98.7 98.7 <	2	H*HS6H*D 9	0.294	3.58	14.7	4192	2.1	78	3.8	1501	1504	0.64	97.4	0.66
FEFNAP 0.285 3.47 14.8 4616 23 75 16 1471 1476 49.0 98.7 98.7 FENNAP 0.313 3.82 14.3 3296 17 84 21 1565 1563 51.0 94.8 98 FENNAP 0.286 3.47 14.8 4616 23 75 16 1471 1476 49.5 98.7 98 FENNAP 0.290 3.43 14.3 22 76 17 14.8 14.5 98.0 98.0 98.0 CR*NAP 0.290 3.53 14.7 4381 22 76 17 14.8 90.0 98.0 98.0 98 78 16.2 15.9 90.0 98.0 98 78 15.4 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	2	н*HS6H+D 9	0.316	3.85	14.2	3155	16	8 2	22	1575	1572	50.0	94.5	98.7
FE#NAP 0.313 3.62 14.3 3296 17 84 21 1565 1565 1565 1565 1565 51.0 94.8 94	ò	1 FE*NAP	0.285	3.47	14.8	4616	23	75	16	1471	1476	0.67	7.86	99.1
FE#NAP 0.285 3.47 14.8 4616 23 75 16 1471 1476 49.5 98.7 98.7 FE*NAP 0.313 3.82 14.3 3296 17 84 21 1565 1563 50.5 94.8 98.7 CR*NAP 0.290 3.53 14.7 4381 22 76 17 1488 1492 50.0 98.0 98.0 CR*NAP 0.324 3.63 14.6 4003 20 79 1514 1514 50.0 96.8 98.0 FE*FERROCENE 0.298 3.64 14.6 4003 20 79 1514 1514 50.0 96.8 96.7 98 FE*FERROCENE 0.299 3.64 14.5 3956 20 79 1518 1520 69.0 96.0 96.7 98 FE*FERROCENE 0.330 4.00 14.6 4003 20 79 151 1514 1514	ċ	1 FE*NAP	0.313	3.82	14.3	3296	17	80 4	21	1565	1563	51.0	8.46	98.7
FE#NAP 0.313 3.82 14.3 3296 17 84 21 1565 1563 50.5 94.8 98 CR#NAP 0.290 3.53 14.7 4381 22 76 17 1488 1492 50.0 98.0 99 CR#NAP 0.324 3.65 14.0 2778 14 88 23 1602 1597 51.0 98.0 98 FE#FERROCENE 0.298 3.63 14.6 4003 20 79 19 1514 1514 50.0 96.8 98 FE#FERROCENE 0.328 4.00 13.9 2589 13 89 24 1615 1619 48.0 96.8 98 FE#FERROCENE 0.330 4.02 13.9 2495 13 90 24 1618 49.0 90.8 96.8 98 CO*NAP 0.298 3.64 14.6 4003 20 79 19 1514 1514	ô	1 FE*NAP	0.285	3.47	14.8	4616	23	15	16	1411	1476	49.5	7.86	99.1
CR*NAP 0.290 3.53 14.7 4381 22 76 17 1488 1492 50.0 98.0 98 CR*NAP 0.324 3.95 14.0 2778 14 88 23 1602 1517 50.0 93.5 98 FE*FERROCENE 0.298 3.63 14.6 4003 26 79 19 1514 1517 50.0 96.8 98 FE*FERROCENE 0.328 4.00 13.9 2589 13 89 24 1615 1609 48.0 96.7 98 FE*FERROCENE 0.299 3.64 14.6 3956 20 79 19 1518 1520 50.5 96.7 98 CO*NAP 0.298 3.64 4003 20 79 1514 1517 49.0 94.3 98	ċ	1 FE*NAP	0.313	3.82	14.3	3296	17	4	21	1565	1563	50.5	8.46	98.7
CR*NAP CO-324 3.95 14.0 2778 14 88 23 1602 1597 51.0 93.5 98 FE*FERROCENE 0.298 3.643 14.6 4003 20 79 19 1514 1517 50.0 96.8 98 FE*FERROCENE 0.328 4.00 13.9 2589 13 89 24 1615 48.0 93.0 98 FE*FERROCENE 0.299 3.64 14.5 3956 20 79 19 1518 1520 50.5 96.7 98 FE*FERROCENE 0.330 4.02 13.9 2495 13 90 24 1622 1615 49.0 92.8 98 CO*NAP 0.298 3.643 14.6 4003 20 79 1514 1514 1517 49.0 96.8 98 CO*NAP 0.317 3.86 14.2 3108 16 22 1578 50.5 94.3 <	÷	1 CR*NAP	0.290	•	14.7	4381	22	91	17	1488	1492	50.0	0.86	99.1
FE*FERROCENE 0.298 3.63 14.6 4003 20 79 19 1514 1514 50.0 96.8 98 FE*FERROCENE 0.328 4.00 13.9 2589 13 89 24 1615 1609 48.0 93.0 98 FE*FERROCENE 0.299 3.64 14.5 3956 20 79 19 1518 1520 50.5 96.7 98 FE*FERROCENE 0.330 4.02 13.9 2495 13 90 24 1612 49.0 92.8 98 CO*NAP 0.298 3.643 14.6 4003 20 79 1974 1575 50.5 94.3 98	·	I CR*NAP	0.324	3.95	14.0	2778	14	88	23	1602	1597	51.0	•	98.5
FE*FERROCENE 0.328 4.00 13.9 2589 13 89 24 1615 1609 48.0 93.0 98 FE*FERROCENE 0.299 3.64 14.5 3956 20 79 19 1518 1520 50.5 96.7 98 FE*FERROCENE 0.330 4.02 13.9 2495 13 90 24 1622 1615 49.0 92.8 98 CO*NAP 0.298 3.63 14.6 4003 20 79 19 1514 1514 49.0 96.8 98 CO*NAP 0.317 3.86 14.2 3108 16 86 22 1578 50.5 94.3 98	ċ	1 FE*FERROCENE	0.298	3.63	14.6	4003	20	44	19	1514	1517	50.0	8.96	6.86
FE*FERROCENE 0.299 3.64 14.5 3956 20 79 19 1518 1520 50.5 96.7 98 FE*FERROCENE 0.330 4.02 13.9 2495 13 90 24 1622 1615 49.0 92.8 96 CO*NAP 0.298 3.63 14.6 4003 20 79 19 1514 1517 49.0 96.8 98 CO*NAP 0.317 3.86 14.2 3108 16 86 22 1578 1575 50.5 94.3 98	ò	1 FE*FERROCENE	0.328	00.4	13.9	2589	13	68	54	1615	1609	48.0	93.0	98.5
FE*FERROCENE 0.330 4.02 13.9 2495 13 90 24 1622 1615 49.0 92.8 98 CO*NAP 0.298 3.63 14.6 4003 20 79 19 1514 1517 49.0 96.8 98 CO*NAP 0.317 3.86 14.2 3108 16 86 22 1578 1575 50.5 94.3 98	ċ	1 FE*FERROCENE	0.299	3.64	14.5	3956	20	42	19	1518	1520	50.5	7.96	•
CO*NAP 0.298 3.63 14.6 4003 20 79 19 1514 1517 49.0 96.8 98 CO*NAP 0.317 3.86 14.2 3108 16 86 22 1578 1575 50.5 94.3 98	ċ	1 FE*FERROCENE	0.330	4.02	13.9	40	13	96	54	1622	1615	0.67	95.8	•
CO*NAP 0.317 3.86 14.2 3108 16 86 22 1578 1575 50.5 94.3 98	ċ	1 CO4NAP	0.298	3.63	14.6	4003	50	4	19	1514	1517	0.64	96,8	98.9
	ė	1 CO*NAP	0.317	3.86	14.2	3108	16	86	22	1578	1575	50.5	94.3	98.6

in the distinctive and existing constitutions and existing and desirable and their substantial existing and the constitution of the constitution o

RUN	ű.	FUEL MODIFICATION	Ħ	C02 PC1	92 PC1	0 d 2	A g	P X X	7 E	F- 17 131	<u>a</u> u	P 5 1 G	C BAL	O BAL
169	0.1	CO*NAP	0.294	3.58	14.7	4192	21	78	18	1501	1504	50.5	97.64	0.66
2.70	0.1	CO*NAP	0.317	3.86	14.2	3108	1.6	99	22	1578	1575	52.0	64.3	98.6
171	0.1	MN*C12	0.292	3.56	14.7	4286	2.1	7.7	18	1494	1498	0.64	7.16	0.66
172	0.1	MN*C12	0.306	3.73	14.4	3626	18	82	20	1541	1541	48.0	95.7	96.8
173	0.1	3N*C12	0.301	3.67	14.5	3862	19	80	19	1524	1526	50.5	7.96	98.9
174	0.1	0.1 MN*C12	0.313	3.82	14.3	3296	17	48	21	1565	1563	0.84	94.8	7.86
175	0.5	0.5 MN*C12	0.293	3.57	14.7	4239	21	7.7	18	1498	1501	0.84	97.5	0.66
176	0.5	0.5 MN+C12	0.318	3.88	14.2	3061	15	86	22	1581	1578	0.84	94.2	98.6
177	0.5	0.5 FE#FERROCINE	0.304	3.71	14.4	3721	19	80	50	1535	1535	48.5	0.96	98.8
178	0.5	FE*FERROCENE	0.328	4.00	13.9	2589	13	60	54	1615	1609	48.5	93.0	98.5
179	0.1	MN*NAP	L.295	3.60	14.6	4145	2.1	78	18	1504	1507	0.64	97.2	0.66
180	0.1	MN*NAD	0.326	3.97	14.0	2683	14	80 0	54	1608	1603	48.0	93.3	98.5
181	3.8	H20+N2H4.2C2H402*E	0.282	3.44	14.9	4758	23	74	16	1461	1467	0.64	99.2	99.2
182	3.8	H2C+N2H4.2C2H402*E	0.335	4.08	13.8	2259	12	26	25	1638	1631	45.0	92.2	98.4
183	3.8	H20+N2H4.2C2H402*E	0.284	3.46	14.9	4663	23	74	16	1468	1473	47.5	98.9	99.1
184	3.8	H20+N2H4.2C2H402*E	0.290	3.53	14.7	4381	22	76	17	1488	1492	46.5	98.0	99.1

APPENDIX III

MODIFICATION EFFECTIVENESS

The effectiveness of the fuel modifications was measured by comparing the experimental emissions containing the fuel modification with the reference emissions. The formula used was:

A negative quantity, therefore, indicates a reduction.

And the second of the second o

The experimental emissions were taken from Table XIV and the reference emissions from Table XVI. Asterisks indicate that no experimental measurement were taken. Any run which contains asterisks in one of the columns other than PHI, TE and TP has an incorrect value in the C BAL and O BAL columns. The program for computing these tables is included in Appendix VII. The results are presented in Table XVII and are independent of dilution effects. The dilution effects are factored out since the experimental and reference values are taken at the same equivalence ratio.

TABLE XVII

PERCENT CHANGE DUE TO MODIFICATION

O BAL PCT	2.73	1.00	-71.43	-68.80	-70.91	-68.81	-71.01	-68.06	-71.54	-68.29	-6.17	-7.76	0.37	-1.08	1.08	1.92	+0.0-	-1.75	-2.64	-4.70	0.34	0.13	-2.06	-3.31
C BAL PCT	4.31	6.27	-1.61	-2.63	0.65	0.84	-0.39	-1.83	0.70	3.13	-1.81	2.87	-1.46	-1.10	7.37	0.52	3.01	-1.61	0.74	-5.70	-0.47	5.18	-1.84	-3.15
ب ۳	-0.06	* * * * * *	-0.53	-0.74	04.0-	1.74	-1.84	0.02	1.27	3.26	4.30	2.57	-0.81	1.55	3.39	97.0-	0.30	0.78	1.80	-2.64	90.0-	1.33	-0.21	2.42
F (F	0.90	***	2.41	2.27	-0.58	0.32	-2.18	-159	2.04	3.73	50.5	3.22	-1.71	26.0	3.47	-0.22	0.15	-0.94	2.23	-2.01	0.63	2.53	-0.79	3.90
P N O	***	****	****	****	****	****	***	****	* * * * *	***	****	****	****	****	****	* * * * *	****	****	****	****	-14.57	-17.30	-6.71	-6.33
Σ ď Ο ď Χ Σ	-5.80	-0.57	1.87	-5.74	52.50	56.87	00.4-	-5.66	-5.80	0.14	1.07	2.33	-1.79	2.76	-5.10	-30.87	-30.04	40.77	54.14	-16.90	66.9-	-2.12	-4.18	5.64
I d M	163.22	-93.96	-62.03	-90.31	-63.27	-87.75	-71.91	-92.19	-52.14	-19.96	0.0	-38.35	-40.88	-85.30	0.0	****	* * * * * *	2.61	-83.20	-70.89	19.65	-73.43	15.81	-22.36
0 d	73.86	0.22	-31.80	-23.06	66.12	26.93	94.53	46.82	77.7	-12.08	****	****	31.20	-11.68	15.05	62.04	54.05	-6.12	-15.63	-0.34	-1.31	-12.30	-11.10	-21.99
02 PCT	3.51	-0.00	****	* * * * *	****	****	* * * * *	****	****	****	-8.92	-12.56	1.27	-1.34	-0.16	3.27	-0.59	-1.97	-4.33	-5.04	69.0	-1.47	-2.40	-3.94
C02 PC1	-1.44	6.86	06.0	-1.13	-4.21	-0.61	-7.30	-4.36	0.53	4.39	7.62	11.41	-3.85	-0.25	9.9	-4.07	0.25	-1.22	1.98	-5.99	-0.32	6.48	-1.05	-1.56
Hd	0.292	0.317	0.295	0.326	0.303	0.321	0.306	0.337	0.292	0.319	0.272	0.293	0.301	0.333	0.266	0.300	0.333	0.288	0.333	0.307	0.292	0.322	0.290	0.289
FUEL MODIFICATION	3.8 H20*E	3.8 H20*E	0.1 CO*NAP	0.1 CO*NAP	3.2 C6H5Nr2*H	3.2 C6H5NH2*H	3.5 EGDE*H	3.5 EGDE*H	2.7 C6H5*H	2.7 C6H5*H	3.8 H20+CH30h*E	3.8 H20+CH30H*E	5.0 CCL4*H	5.0 CCL4",	3.8 H20+NH4CH02*E	0.5 CO*NAP	C.5 CO*NAP	3.7 C3H7NO3*H	3.7 C3H7NO3*H	C.1 CO*ACAC	2.5 C2H5OH*H	2.5 C2H5OH*H	2•5 C2H5OH*H	3.8 H20+NH4NO3*E
S S	-	8	m	4	ĸ	•	^	ω	6	2	11	12	13	14	ы Б	16	11	13	19	20	21	22	23	54

TABLE XVII (Cont'd.)

The state of the s

FUEL WODIFICATION PIT CO2 CO
FUEL WODIFICATION PHI GOZ PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PP
FUEL WODIFICATION O+304 O+304 O+304 O+304 O+305 O+305 O+305 O+305 O+305 O+306 O+30
FUEL WODIFICATION PHI CQZ QQZ CQQ PPH PPH 0.5 PRANAP 0.336 -6.42 9.59 62.23 7.86 0.5 PRANAP 0.336 -6.42 9.59 62.23 7.86 0.5 CURNAP 0.311 -6.14 9.26 -10.26 -67.47 0.2 CURNAP 0.304 -4.55 9.59 -2.18 -53.11 0.2 CURNAP 0.304 -4.55 9.56 -10.26 -67.47 0.2 CURNAP 0.295 -3.56 8.19 -21.88 82.28 -2.81 0.2 CURNAP 0.296 -3.56 8.19 -1.89 -2.83 82.28 -2.83 0.2 CURNAP 0.273 5.11 -0.57 -9.83 0.0 -2.83 0.1 VINANAP 0.273 5.61 -0.71 11.12 -3.24 -0.75 0.1 VINANAP 0.296 -1.94 0.56 5.23 -2.60 0.42 0.1 CURNAP 0.286 0.71 1.02 <t< td=""></t<>
FUEL WODIFICATION
COS PRIL MODIFICATION PHI COZ O2 DCT PCT PCT <t< td=""></t<>
FUEL WODIFICATION PHI CO22 0.5 PR#NAP 0.5 CU*NAP 0.6 CU*NAP 0.7 CU*NAP 0.7 CU*NAP 0.7 CU*NAP 0.7 CU*NAP 0.7 CU*NAP 0.7 CU*NAP 0.8 H27+N2H4.2C2H402*E 0.8 M3.4 H27+N2H4.2C2H402*E 0.8 M3.4 H27+N2H4.2C2H402*E 0.9 CC3 CO304 0.1 CU*NAP 0.2 CO4NG 0.3 CO4NG 0.3 CO4NG 0.4 CO4NG 0.5 CU4NAP 0.7 CO4NG 0.8 CO4NG 0.9 CO4
FUEL WODIFICATION PHI 0.5 PR*NAP 0.304 -6 0.5 CU*NAP 0.311 -6 0.5 CU*NAP 0.304 -4 0.2 CU*NAP 0.295 -3 0.2 CU*NAP 0.295 -3 0.2 CO*NEO 0.295 -3 0.2 MA*NAP 0.296 -1 0.1 WA*AP 0.296 -1 0.1 CA*S 0.300 -4 0.1 AL*ACAC 0.313 -12 0.1 AL*ACAC
FUEL MODIFICATION P

NL O BAL	3 -1.06	12 -1.82	10 -1.27	12 -1.78	9 -17.76	.0 -0.97	18 -1.72	1.20	13 -1.51	7 -0.62	16 -1.97	15 -0-51	-1.85	771.88	6 -3.51	0.20	72 -0.07	52 -0.99	11 0.01	13 -0.62	-0.08	.50.20	10 -4.25	-0-86
C BAL PCT	-3.43	2.22	-4.30	1.5	-87.69	-7.10	-0.68	-6.95	-0.53	76.4-	1.86	-5.22	2.20	-5.77	2.56	-5.01	-5.72	0.62	-4.81	2.63	2 • 45	-6.15	-2.30	-0.45
FF	-4.14	-0.84	-4.07	-2.59	-4.76	-4.02	-1.15	-2.31	-1.14	-1.78	1.18	-1.26	0.37	0.15	3.06	-1.98	-0.62	0.37	-1.44	0.53	-8.49	5.24	2.57	0.52
# 4	-2.93	-0.56	-5.78	-4.19	5.29	-3.79	-0.74	-2.48	13.55	-5.81	-1.25	77.7-	-1.89	-3.19	-0.29	-6.01	2.04	2.49	0.04	1.08	-8-07	26.5	3.62	- 0.15
2 G 2 G 2 G	-25.56	-29.90	-34.90	-39.48	-43.92	-19.88	-21.66	-23.52	-28.97	-22.11	-31.91	-33,11	-28.41	-25.22	-19.28	-38.26	-31.32	-27.23	-45.55	-25.23	-22.23	-22.62	-23.25	-27.02
2 G G G Z Z	-9.20	-6.04	-5.12	0.63	-22.53	-6.03	-8.28	-8.04	-14.02	-5.99	19.6-	-3.90	-7.81	-6.03	-0.03	-11.39	-5.69	-6.48	1.20		11,43	2.34	68.4	-7.36
J Q	-5.08	-13.38	-16.60	* * * * *	72.34	-42.14	-42.25	-8.30	-6.92	-10.33	54,26	0.75	9.86	-3.56	35 -67	101.50	7.65	60.38	-0.87	27.88	46.72	-14.36	-34.67	11.076
O d W	9.65	-2.95	10.40	11.81	49.40	-49.59	-41.94	-23.54	3.86	-15.64	-18.96	-23.42	-7.41	-32.58	-32.22	-1.73	-32-11	-41.65	-27.42	-38.48	-22.42	-17.71	-17.89	-9.53
02 PCT	-0.30	-3.33	77.0-	-2.90	0.72	-0.06	-2.62	-0.03	-2.01	0.37	-3.48	0.51	-3,33	=1.43	-6.94	1.20	66 90	-1.91	1.02	-2.05	-1.04	1.20	-5.51	-1.15
C02 PC1	-4.74	2.61	-5.17	76.0	* * * * *	-2.16	2.11	-5.15	-0.64	-3.69	3,11	-3.19	2,80	-2.71	5.15	-5.38	-2.35	3.70	-2.05	5 4 45	4.05	-4.83	-0.17	90.0
H H	0.304	0.327	0.303	0.330	0.311	0.296	0.327	0.301	0.341	0.299	0.331	0.300	0.332	0.296	0.323	0.300	0.289	0.322	0.294	0.326	0.328	0.300	0.286	. 0.337
FUEL MODIFICATION	0.1 CA+NAP	0.1 CA*NAP	2R#NEO	, ZR#NEO	0.2 ZRANEO	9.1 TENCEM*H	9.1 TENCEM*H	CEMALL*H	9.1 CFMALL*H	9.1 HFL*H	9.1 HFL*H	2.9 DCPD*H	2.9 DCPD*H	5.6 C3F6HCH*H	5.6 C3F6HOH*H	0.1 ZR*NEO	0.2 V*NFO	0.7 V*NFO	0.2 ZHNAP	ZN*NAD	0.5 C13NH2*H	- S C134H2*H	3.3 H21≄E	9•3 H20≉E
	0.1	0.1	0.2	0.2	0.2	9.1	9.1	9.1	9.1	9.1	9.1	2.9	2,9	5.6	5.6	0.1	0.2	0.0		0.2	٥ . 5	C.	3.3	6.
2 5 2	64	20	51	52	53	t W	55	56	5.	#/ cc	50	9	9	62	63	79	65	99	6.7	6.9	9	7.0	7.1	72

desidential designations of the contract of the

O BAL PCT	0.58	0.32	-0.81	-2.03	0.25	0.19	-0.68	-1.71	0.10	0.94	-0.35	0.84	1.25	-0.23	1.04	0.60	0.98	-16.95	-20.73	-0.34	-1.25	1.75	96.0	0.20
C BAL PCT	-2.63	3.58	-1.87	2.91	-4.42	-0.33	2.84	4.71	-1.70	-5.91	-5.73	96.9-	1.85	96•4	-5.28	1.13	-6.59	-88.85	75.76-	-1.57	4.24	-7.17	-1.90	1.99
F F	-0.56	0.31	-0.37	-0.31	-2.38	-1.44	1.32	-2.77	-0.14	-5.22	-4.72	-1.03	229.67	1.54	-1.22	0.43	-2.58	-1.55	2.66	1.19	3.69	99•7-	-3.35	-0-13
T E	-0.52	0.07	-2.34	-0.98	-2.70	-1.95	2.72	-3.86	-0.30	-6.36	-7.81	-1.20	-0.88	1.54	-1.07	0.18	-2.52	-0.86	2.97	2.98	4.75	-3.90	-1.61	90•0
7 E	5.51	3.53	-1.03	-17.40	-10.46	-20.43	17.11	2.33	-48.55	37.83	9.19	-38.22	-38.22	12.99	-0.19	-13.12	-20.52	-20.55	8.81	4.83	1.56	-18.66	-10.46	10.58
N G O G X W	-1.78	~4.82	-0.92	-2.29	-9.05	-8.04	-12.09	-17.54	-33.85	-7.47	-9.20	-5.07	-20.69	-6.44	-1.46	46.4	-14.26	-13.00	-0.80	-1.81	3.12	-15.60	-7.85	3.87
V a T a	-7.53	-20.98	7.45	55.76	-20.59	25.13	42.56	61.39	353.38	79.25	153.13	68.05	213.69	53.87	0.83	171.55	£1.39	3.40	39.88	-11.31	-11.69	33.65	24.19	-4.16
O d P d Æ	-8.04	-1.59	3.93	8.13	23.44	29.12	16.35	69.02	31.42	7.31	-7.79	-0.27	103.33	29.66	14.20	-13.67	47.08	35.74	-15.05	10.40	-20.84	47.44	52.70	2455
02 PCT	1.42	-0.64	-0.48	-3.62	1.97	0.61	-1.34	-3.19	1.20	3.22	1.09	3.22	2.52	-1.48	3.22	0.43	3.87	2.12	-1.48	0.23	-3.20	5.19	2.67	-0.30
C02 PCT	-1.94	4.02	-2.56	2.55	-6.84	-1.74	0.95	0.55	-5.38	-7.07	-5.54	-7.60	-7.60	3.25	-7.07	2.00	-10.74	* * * * *	***	-2.82	6.29	-11.08	-6.84	2.00
H I	0.292	0.321	0.293	0.320	0.310	0.339	0.282	0.328	0.300	0.309	0.304	0.309	0.309	0.325	0.309	0.333	0.318	0.311	0.325	0.298	0.318	0.322	0.310	0.333
FUEL MODIFICATION	3+8 H20+84367*E	3.8 H20+84367*E	3.8 H20+(NH4)2M004*F	3.8 H20+(NH4)2M004#E	0.1 CU*ACAC	0.1 CU*ACAC	0.15 CO*ACAC	0.15 CO*ACAC	0.2 MN*NAP	0.2 FERNAP	0.13 SDWA	C*1 11*S	0.1 LI*S	0.1 L1*S	3.1 POLY*H	3.1 POLY*H	0.1 CU*NAP	0.1 FE*NAP	0.1 FE*VAP	3.8 H20+NH4CH02*E	3+8 H20+NH4CH02*E	3.P H20+N2H4.2C2H402*E	0.1 BA*S	0.1 BA*S
R U	6	60	66	100	101	102	103	104	105	106	101	108	109	110	111	112	113	174	115	115	117	118	110	120

The boundary of the second of

DIFICATION PHI CO2 02 CO HC NOX N PCT PPM PPM P 0.310 -7.37 1.97 17.86 -20.59 -21.01 -15	PHI CO2 O2 CO HC NOX N PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	O2 CO HC NOX N PCT PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	CO HC NOX N PPM PPM PPM P	HC NOX N PPM PPM P	NOX PPM PP PPM PP PPM PPM PPM PPM PPM PPM P	X X X X X X X X X X X X X X X X X X X	20 0		14. FE	9 T 8 S L	C BAL PCT -5.36	O BAL PCT 0.15
0.1 MN*CI2 0.333 0.52 -1.74 36.80 11.81 -14.72 0.1 NA*S 0.298 -1.99 0.91 54.20 ~11.31 -19.43	.333 0.52 -1.74 36.80 11.81 -14.7 .298 -1.99 0.91 54.20 ~11.31 -19.4	.52 -1.74 36.80 11.81 -14.7 .99 0.91 54.20 ~11.31 -19.4	1.74 36.80 11.81 -14.7 0.91 54.20 ~11.31 -19.4	0 -11.31 -19.4	1 -14.7	r 4		2.68	-0.19	-2.53	2.43	-0.92
0.1 NA*S 0.309 8.86 -4.46 45.84 -43.98 -7.47	.309 8.86 -4.46 45.84 -43.98 -7.4	.86 -4.46 45.84 -43.98 -7.4	45.84 -43.98 -7.4	7-43-98 -7-4	4.7- 8	-7.47		28•32	3.76	1.29	11.92	-1.1
0.1 NI*ACAC 0.300 -6.75 3.27 11.14 -29.47 -13.88	.300 -6.75 3.27 11.14 -29.47 -13.8	3.27 11.14 -29.47 -13.8	•27 llel4 -29.47 -13.8	-29.47 -13.8	-13.8	-13.88		2.90	-1.94	-3.29	-5.12	1.21
3.3 H2O+CH3OH+NH3*E 0.286 =0.75 1.24 =24.74 =21.60 =5.73	.286 -0.75 1.24 -24.74 -21.60 -5.7	1.24 -24.74 -21.60 -5.7	-24.74 -21.60 -5.7	24.74 -21.60 -5.7	21.60 -5.7	-5.73		73.98	8.16	7.30	-3.62	0.49
3.3 H20+CH30H+NH3*E 0.312 -4.29 0.86 -29.72 ***** -6.23	•312 -4•29 0•86 -29•72 ****** -6•2	0.86 =29.72 ***** -6.2	****** -6.0	29.72 ***** -6.2	-6.2	-6.23		15.87	4.82	7.04	-6.48	-0.53
3.0 H20+NA0H*E 0.302 1.06 =1.96 61.04 ***** -18.33	.302 1.06 =1.96 61.04 ***** -18.3	*06 =1.96 61.04 ***** =18.3	61-04 ***** -18-3	*****	-18.3			16.21	1.29	2.40	6.58	-0.6
0.1 MONEL*ACAC 0.309 -8.93 -0.27 46.45 -32.78 -12.2	.309 -8.93 -0.27 46.45 -32.78 -12.2	8.93 -0.27 46.45 -32.78 -12.2	46.45 -32.78 -12.2	5 -32.78 -12.2	32.78 -12.2	-12.2	α,	-9.70	-0.11	1.23	-4.34	-1.49
C.1 MONEL*ACAC 0.339 -1.50 -1.58 18.35 -28.50 -3.77	.339 -1.50 -1.58 18.35 -28.50	.50 -1.58 18.35 -28.50	8 18.35 -28.50	-28.50		13	77	17.46	06.0	-0.83	99.0-	-1.34
3.0 H2C+QBOH*E 0.314 -8.55 -10.78 95.32 79.20 -17.5	.314 -8.55 -10.78 95.32 79.20	.55 -10.78 95.32 79.20	95.32 79.20	79.20		-17	.58	-13.37	-2.90	-3.92	-0.42	-8.50
3.0 H20+RB0H*E 0.324 4.32 -15.17 20.58 -44.90 -2	.324 4.32 -15.17 20.58 -44.90	-15.17 20.58 -44.90	15.17 20.58 -44.90	06.44-		-2	•68	13.84	1.94	2.24	5.36	-9.58
5.8 H2^+C5OH*E 0.306 -5.36 -3.48 99.85 94.40 -16.04	.306 -5.36 -3.48 99.85 94.40	.36 -3.48 99.85 94.40	3.48 99.85 94.40	9.85 94.40		-16.	40	12.16	-4.78	-3.94	3.94	-2.64
5.8 H20+CSOH*F 0.327 4.87 -5.48 55.16 73.24 -6.04	.327 4.87 -5.48 F5.16 73.24	.87 -5.48 55.16 73.24	5.48 55.16 73.24	73.24	.	9-	70	23.70	***	* * * * *	7.91	-2.54
0.1 S9*3C6H5 0.3C3 -4.42 3.71 28.66 -16.60 -6.35	.303 -4.42 3.71 28.66 -16.60	3.71 28.66 -16.60	•71 28.66 -16.60	3.66 -16.60		ģ	35	5.15	-0.89	-1.40	11.38	2.07
C.1 SB*3C6H5 0.328 4.05 1.11 26.58 -41.31 -6	.328 4.05 1.11 26.58 -41.31	1.11 26.58 -41.31	26.58 -41.31	-41.31	-	9	07.9-	10.52	0.16	1.33	5.35	1.64
0.1 FE*FERROCENE 0.307 -5.13 5.00 67.62 -34.41 -23.6	.307 -5.13 5.00 67.62 -34.41	5.13 5.00 67.62 -34.41	67.62 -34.41	.62 -34.41	-	-23	99•	-8.14	-1.16	-1.09	1.15	3.14
0.1 FE*FERROCENE 0.323 6.42 1.08 12.53 -32.17 -15	.323 6.42 1.08 12.53 -32.17	1.08 12.53 -32.17	12.63 -32.17	-32.17	۴-	-15	• 63	14.71	0.53	5.69	6.73	2.07
5.8 H20+KOH*E 0.296 -2.71 -0.74 28.99 131.44 -7.	.296 -2.71 -0.74 28.99 131.44 -7	•71 -0.74 28.99 131.44 -7	28.99 131.44 -7	8.99 131.44 -7	-1	-7-	•30	1.46	-1.73	-1.+38	0.52	-0.77
5.8 H20+KOH*E 0.313 10.09 -7.41 41.08 -41.05 -3.06	.313 10.09 -7.41 41.08 -41.05	-7.41 41.08 -41.05	41.08 -41.05	8 -41.05		-3.0	9	5.73	2.55	2.75	12.52	-3.05
0.55 TMA*H 0.306 -5.36 3.46 11.84 62.00 26.54	.306 -5.36 3.46 11.84 62.00	3.46 11.84 62.00	.46 11.84 62.00	4 62.00	2.00	26.5	t	12.16	-1.08	0.73	£ 3.9.)	1.50
0.55 TWA*H 0.329 3.24 -0.17 -28.49 34.23 27.6	•329 3•24 -0•1728•49 34•23 27•6	•24 -0•17 -28•49 34•23 27•6	-28.49 34.23 27.6	28.49 34.23 27.6	3 27.6	27.6	S	30.04	1.32	3.65	1.29	0.34
0.1 CU*P4OS 0.303 -6.32 2.53 64.96 -6.17 -13.74	.303 -6.32 2.53 64.96 -6.17	6.32 2.53 64.96 -6.17	.53 64.96 -6.17	-6.17		-13.7	4	-4.86	-1.08	-0.48	0.28	1.16
0.1 CU*PHOS 0.322 4.21 -1.34 13.25 -33.17 -9.90	.322 4.21 -1.34 13.25 -33.17	.21 -1.34 13.25 -33.17	13.25 +33.17	3.25 -33.17		6.6-	0	11.30	0.30	2.01	4 • 78	-0.07

To be the first that the second secon

α O	FUEL MODIFICATION	й	C02 PC1	02 PCT	0 x	V A	N 0 0 0 X X	N 0 0 0 0 X	₩ ₩	6 11	C BAL PCT	O BAL
	5.8 H20+LIOH*E	0.290	-0.70	2.52	19.13	44.98	-4.81	-3.69	1.21	0.72	1.46	1.66
	5.8 H20+LIOH*E	0.312	7.28	-0.61	3.95	-41.81	-1.48	09•9	2.13	2.36	06.9	0.89
	0.1 S9+5.0 CCL4	0.294	-2.89	1.72	54.73	230.44	-12.89	3.46	77.0	0.56	3.20	1.22
	0.1 SB+5.6 CCL4	0.327	2.61	0.75	27.92	-13,38	-12.75	-21.66	-0.25	0.34	4.15	1.12
	0.18 PR*TEL	0.299	-4.51	3.26	71.66	188.95	-9.75	-16.91	-1.53	-1.85	3.02	2.21
	0.18 PR#TEL	0.327	2.11	1,11	47.91	-13.38	-7.16	-21.66	-0.74	0.15	06.4	1.42
	0.1 CE*NAP	0.299	-4.51	3.26	31.02	29.53	-3.48	-1.34	* * * * *	-1.65	-1.12	1.80
	0.1 CE#NAP	0.322	4.97	0.36	2.46	-46.54	0.36	2.74	1.05	2.01	4.78	1.14
	0.1 NI #NAP	9.294	-1.49	2.66	2.57	-5.59	-7.77	-7.43	60.0-	77.0-	-1.11	1.62
	0.1 NI#NAP	0,315	7.83	0.39	-13.25	-39.46	-0.33	-9.55	2.11	2.07	6.16	3442
	7.6 C4H9SH#H	0.294	-1.49	99.7	36.39	60.50	-9.05	-29.21	* * * * *	-1.30	2.43	1.93
	2+6 C4H9SH*H	0.316	6 • 4 5	-0.45	13.08	-1.82	-12.40	-50.65	* * * * *	1.24	6.93	0.95
	O.1 FF*NAP	0.285	1.90	1.17	-24.99	-39.61	-2.63	13.37	2.50	1.77	-1.33	0.88
	0.1 FE+VAP	0.313	6.16	-0.81	-38.18	-64.63	-3.06	1.13	2.87	2.54	2.50	0.19
	0.1 FE*NAP	0.285	1.04	0.83	-30.71	-65.49	-6.63	7.40	3.04	1.70	-2.75	0.38
	0.1 FE#NAP	0.313	6.16	-2.78	-28.02	-76.42	-0.10	5.73	3.57	2.86	3.35	-1.02
	C-1 CR*NAP	0.290	-2.12	3.51	1.01	-36.57	-8.72	13.50	1.95	0.05	-1.80	2.17
	0.1 CR#NAP	0.324	3.06	1.30	66.9-	06.44-	-7.21	-3.02	1.44	0.92	2.37	1.38
	C.1 FERFROCENE	0.298	-3.37	2.56	-23.20	-: 1 - 16	-24.47	-21.38	1.00	97.0-	-5.39	0.98
	C.1 FEAFERROCENE	0.328	2.30	-0.18	9.01	-41.31	-20.89	-9.95	1.84	1.45	2.67	0.32
	0.1 FE*FERROCENE	0.299	-4.51	1.95	11.61	-20.29	-23.54	-16.91	0.12	66.0-	-2.98	0.69
	O.1 FEAFERROCENE	0.330	1.68	0.05	21.63	-24.17	-20.38	-11.24	1.11	-0.48	2.81	0.45
	0.1 CO*N.P	0.298	-3.37	2.90	-9.39	-31.02	-19.43	-10.90	2.19	0.53	-4.05	1.28
	C.1 CO+NAP	0.317	4.82	0.33	-32.18	-37.79	-11.59	-6.53	5.16	2.62	1.99	ទូ៦•0

_	FUEL MODIFICATION	H H	C02 PCT	02 PCT	0 g 2	N Q E	N U O Q X X	N E O d S	F F	- 17	C BAL PCT	O BAL
0.1 CO#NAP	g	0.294	-1.49	1.98	-18.04	-43.35	-16.73	-7.43	2.10	0.02	-3.27	0.92
0.1 CO*N'P	٩	0.317	69.9	-0.66	-32.18	-50.23	-10,43	-6.53	4.53	2.69	3.68	97.0
0.1 MN*CI2	12	0.292	-1.38	2.37	-3.05	****	96.9-	-5.60	****	0.77	-1.71	1.39
0.1 MN*C12	.12	906.0	9.39	-1.33	-31.18	****	4.64	2.41	****	4.43	5.71	67.0
0.1 MN*CI2	213	0.301	-4.60	2.93	4.39	***	-6.79	-13.33	****	-0.41	-3.84	1.23
0.1 MN*C12	C12	0.313	96.9	-0.81	-24.38	* * * * *	0.48	-3.47	***	3.63	04.4	0.50
0.5 MN*C12	C12	0.293	-1.16	3.47	72.85	189.64	-29.23	-17.52	* * * * *	-0.24	91.9	3,02
0.5 MN*C12	C12	0.318	2.00	1.19	20.48	114.47	-22,37	-29.35	* * * * *	1.79	6.15	1.89
0.5 FE*	FE*FERROCENE	0.304	-5.54	5.66	88.34	58.21	-21.47	-20.59	* * * * *	-2.44	3.02	3.80
0.5 FE*	FE*FERROCENE	0.328	1.80	1.26	45.97	46.72	-19.77	-26.32	***	-0.60	67.7	1.44
0.1 MN*NAP	NAP	0.295	-2.38	3.76	37.34	****	-15.82	-13.72	-1.98	-0.71	1.60	2.6
0+1 MN*NAP	NAP	0.326	-13.18	7.89	33.73	****	-16.91	-12.77	-3.96	-1.65	-10.24	3•0
3.8 H20	H20+N2H4.2C2H402*E	0.232	0.37	1.28	-22.01	-58.07	12.25	23.27	****	****	.7040	•
3.8 H20	H20+N2H4.2C2H407*E	0.335	0.16	2.47	-3.17	-66.88	-2.33	-10.43	* * * * *	***	70.0-	1.
3.8 H20	H20+N244.2C24402*E	0.284	0.24	1.56	-9.56	156,36	-0.84	-3.51	-2.04	* * * * *	-0.88	0
н50	3.8 H20+N2H4.2C2H402*E	0.290	0.15	1.88	-34.67	-27.51	0.41	7.64	0.27	0.18	-3.74	5 70

The data obtained with unmodified section. The experimental values for CO2, O2, CO, NO $_{\rm X}$ and NO $_{\rm Z}$ at the ty (1-0.132 $^{\rm O}$) and are presented on a wet basis. Table XVIII presents the unmodified Jet A data on a mole fraction basis for Can I and Table XIX presents the same data for Can II. In a similar manner Tables XX and XXI present the unmodified Jet A data in emission index units for Can I and Can II, respectively. The detailed mathematical technique for converting mole fraction measurements to emission index units is given in Appendix V.

TABLE XVIII

The second of the second secon

RUNS WITH UNNODIFIED JET A CAN I

O BAL	-97.0	-96.5	-97.1	1.46-	-93.6	-97.6	6.96-	-99.1	-98.6	-100.8	-27.9	-30°3	27.5	-30.5	1-96-	6256=	-95.6	-95.0	6.56-	8.76-	-96.3	-95.8	0.76-	7.76-
C BAL PCT	69.6	91.1	95.0	92.7	906	9006	82.7	92.7	91.3	9348	91.0	90.3	7:46	-93∙¢	9-16-	8.36-	-95.0	-97.1	4.07	6.96	92.2	91.7	7.96	98.5
9 9 1 0	48 • 0	48.0	58.0	59.0	59.0	59.0	57.0	90.0	51.0	46.0	58.0	59.0	58.0	0.09	57.0	50.0	0.94	0.09	58.0	0.09	58.0	59.0	48.0	0.64
ਦ ਸ	1627	1546	1600	1475	533	1522	1546	1445	1503	1600	1540	1630	1520	1610	1542	1523	1561	1630	1536	1608	1497	1570	1496	1586
T E	1597	1527	1596	1474	1523	1505	1543	1440	1500	1570	1535	1627	1523	1613	1535	1500	1546	1590	1485	1567	14 0	1567	1490	1580
2 S 0 d 0 d	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S J C J X Æ	89	82	76	86	83	68	80	81	85	6	8	76	8.8	16	83	7.7	98	88	98	92	83	9.8	83	88
E G	320	208	240	112	32	12	247	06	11	'n	37	18	18	0	0	0	0	0	16	30	60	œ	56	12
O a O a	2001	2874	1820	2720	3189	3216	2770	6054	5011	2838	4159	2500	3339	1988	3452	3680	2922	1796	2573	1870	2453	1914	3355	22.75
22 PCT	13.3	13.9	13.9	13.9	13.4	14.4	13.9	14.9	14.5	0.	0.0	0	0.0	0.0	14.2	14.1	13.5	13.2	14.1	13.3	14.3	13.5	14.3	13•1
C02 PCT	4.19	3.74	3.88	3.53	3.64	3.53	3.62	3.25	3.48	4.27	3.50	3606	3.56	4.00	3.63	3.59	3.93	4.15	3.61	4.05	3.51	3.97	3.60	4.12
i a	0.353	0.318	0.318	0.294	0.312	0.304	0.340	L,298	0.312	3.348	C • 308	0.331	0.294	0.321	0.291	0.296	0.318	0.319	0.292	0.313	0.291	0.325	0.291	0.316
ر د.	н	8	n	4	'n	•	r -	6 0	(r·	10	11	12	13	7 7	1.5	16	17	8	49	0	2.1	22	23	54

S PAL PCT	96.2	96.8	7.46	1.46-	94.46	89.3	93.2	8.66	7.86	86.3	95.6	93.5	9.96	95.0	97.0	92.6	6 6	98.9
C BAL PCT	-93.4	7.76-	92.1	97.2	84.2	91.2	93.2	92.3	95.50	7.96	91.8	93.0	93.6	4.06	-93.4	-93.6	97.0	97.4
515d	0.64	50.0	48.0	0 * 8 ¥	50.0	48.0	50.0	47.0	48.0	48.0	47.0	48.0	0.84	67.0	47.0	50.0	51.0	54.0
-	1500	1593	1470	1480	1573	1457	1555	1450	1592	1473	1490	1597	1497	1504	1472	1592	1530	1602
Г г	1493	1593	1453	1450	1550	1457	1563	1467	1607	1437	1487	1600	1497	1510	1473	1588	1482	1565
202 8 P P R	12	15	13	o	17	15	16	15	11	14	14	17	1.5	16	15	17	10	13
× W O d Z	80	63	87	81	9 6 .	98	ir	82	06	81	82	65	98	83	82	96	75	8
Y d	0	0	12	2.1	60	14	16	15	16	10	32	22	14	54	0	0	54	16
0 a	2581	2060	2155	2786	1892	1371	1746	2381	2153	1880	2739	1866	3267	2377	3077	2178	404	2634
02 PCT	14.8	13.7	14.0	14.1	13.2	12.9	12.9	15.0	13.9	14.4	14.1	12.9	14.3	14.0	14.4	13.4	14.6	14.0
ç02 PC1	3.56	00•4	3.51	3.48	4.02	3.54	4004	3.52	4.12	3.54	3.54	4.07	3.51	3.54	3.51	4.02	3.65	60.4
<i>o</i>	0.292	0.319	0.289	0.276	0.320	0.288	0.324	0.291	0.327	0.276	0.297	0.328	0.293	0.299	0.292	0.324	0.304	0.320
7 G	25	56	27	28	56	30	31	32	33	34	35	36	37	38	39	4	71	45

TABLE XIX

RUNS WITH UNMODIFIED JET A CAN II

	O BAL	96.5	95.4	-80.1	-77.3	98.6	9.16	98.1	96.5	99.5	0•66	99.2	98.4	97.2	98.5	98.8	98,1	9.65	98.9	7.16	6.66	7.16	1	98.8
	AL 7	90.5	93.8	- 4.8-	. 6.4-	91.4	94.1	92.7	4.66	92.3	93.6	97.2	91.3	93.7	90.5	7.06	93•3	-88.3	91.5	-95.6	91.0	94.1	•	89.7
	C BAL																							
	P PS1G	48.0	49.0	0.64	90.0	47.0	0.64	0.64	48 • 0	0.64	47.0	50.0	0.64	90.0	49.0	0.64	51.0	50.0	90.0	51.0	50.0	51.0	51.0	`
	ب 1	1482	1582	0	0	1516	1613	1497	1616	1492	1582	1493	1510	1630	1463	1538	1640	1527	1535	1642	1528	1637	1482	1
		 .		_		_	_								_	_		_				_		
ıſ	F F	1478	1582	0	0	1506	1610	1475	1608	1457	1608	1451	1472	1602	0	1528	1630	1538	1531	1645	1540	1657	1510	! !
	0	12	15	12	15	12	17	19	23	17	20	19	20	92	22	18	23	19	17	27	19	22	21	l
	Žā																							
	N Q Q Q	7.7	æ 85	76	88	73	86	76	6 0	75	89	7.7	14	87	74	80	9.5	83	80	66	81	96	78	
	∪ <u>å</u> 1. a	14	14	0	_O	٤,	20	50	15	20	12	22	0 7	16	8 7	12	œ	0	28	0	18	16	14	
	2					•							•	•	•				•					
	0 a 2	2354	1867	3437	2204	3840	2272	3568	2037	3745	2509	4429	2990	1937	3435	3932	1770	3476	4387	2320	4411	2103	2740	
	, F	6	4	4	7	9	7	•	ęs.	œ	o	æ	9	9	•	9	αc	œ	9	7	60	7	9	
	02 PCT	14.3	13.4	14.4	13.7	14.6	13.7	14.6	13.5	14.8	13.9	14.8	14.6	13.6	14.6	14.6	13.8	14.8	14.6	13.7	14.8	13.7	14.6	
	005 PO4	3.51	4.02	00.00	00.00	3.50	4.07	3.48	4.17	3,53	4.11	3.50	3.53	4.11	3.50	3.50	4-11	3.48	3.50	4.12	3.50	4.11	3.50	
	I I	0.296	0.321	0.292	0.316	0.304	0.327	9.536	0.315	0.301	0.334	0.290	0.300	0.329	0.304	0.308	0.329	.310	0.308	0.326	0.310	0.329	•308	
	ã	0	0	0	0	o	0	ô	0	0	0	0	•	ô	0	0	0	0	o	0	0	0	ô	
	ر ئ ک	43	1 1	4 2	46	4.7	£	64	20	ŭ,	22	5,	54	55	56	57	58	59	90	61	29	63	49	

O BAL PCT	98.3	6.66	6.66	98.8	8 • 66	91.6	7.56	6.56	7. 66	100.0	99.1	101.3	94.6	8.66	98.9	10001	99.2	100.4	99.8	100.3	4.66	100.9	6.66	100.8
C BAL oct	7.96	95.6	101+3	106.6	93.7	92.2	92.1	96.5	9.66	92.4	6.56	89.7	109.6	98•1	100.3	7.46	97.5	97.5	98.0	95.4	95.6	-96.7	-98.6	-96.3
P PSIG	47.0	0.64	50.0	48.0	50.0	47.0	49.5	50.5	50.0	48.0	0.64	48.5	52.0	0.64	49.5	48.5	0.64	48.5	49.5	49.5	50.5	48.5	0.67	0.64
<u>с</u> Н	1622	1533	1478	1542	1507	1640	0	0	1615	1547	1638	1525	1626	1527	1593	1495	1588	1511	1623	1482	1608	1495	1600	1497
ը ը	1627	1543	1513	1613	1503	1655	0	0	1578	1518	1610	1510	1590	1513	1565	0	0	0	0	1502	1620	1487	o	1450
2 2 0 2 2 2	34	19	19	52	23	34	19	30	56	19	27	20	25	19	23	19	23	19	25	19	26	19	25	19
N G O G X X	76	78	81	95	76	92	75	92	85	7.7	87	7.1	87	78	87	7.7	ω ω	76	17) 80	42	35	81	92	80
ž d Ž	16	10	50	œ	10	14	18	20	14	14	16	12	12	16	10	32	12	14	ω	18	9	0	o	0
o a O a	2799	3984	5766	4032	4848	2103	5131	3107	3473	4656	2656	0627	2565	5026	3329	5040	3445	5286	2680	4300	2440	4281	2350	4565
02 PCT	13.8	14.8	14.8	14.0	14.8	13.7	13.8	13.2	14.0	14.8	13.9	14.9	14.0	14.9	14.0	14.9	14.0	14.9	14.1	15.0	14.1	15.1	14.2	
C02 PCT	4.12	3.50	3.56	4.13	3.50	90•4	3.50	4.16	4.12	3.50	4.14	3.52	4.10	3.49	4.07	3.48	70° 7	3.48	4.14	3.48	4.07	3.51	4.08	3.48
ï	0.327	0.301	0.292	0.304	0.304	0.332	0.312	0.332	0.321	0.307	0.329	0.310	0.284	0.291	0.314	0.301	0.322	0.234	0.322	0.293	0.323	0.291	0.313	0.292
208	29	88	69	40	7.1	7.2	73	7 1	7.5	76	7.7	7.8	79	80	81	82	es es	4 6	80 72	98	7 9	6 0	8 6	0

YABLE XIX (Cont'd.)

C BAL PCT	8.56	9.66	97.4
C BAL PCT	666-	99.66	99.66
P C BAL PSIG PCT	0.64	47.5	48.5
c L	1558	O	0
F +	1610	1513	1670
NO2 PPM	23	19	23
X M d d	87	a 9	100
V Q V Q ∑	o	18	12
CO PPM	2587	3391	2273
02 PCT	14.2	14.9	13.7
C02 PCT	4.10	3.54	4.07
ī a	0.314	0.290	0.322
3 8	91	6	69

TABLE XX

A CONTRACTOR OF THE PROPERTY O

I MY
TT A
TIED .
Idougu
WITH
RUNS

O BAL	-97.0	9.96-	-97.1	-94.7	-93.6	9.16-	6.96-	-99.1	9.86-	-100.8	-27.9	-30.3	-27.5	-30.2	-96-7	6.56-	-95.6	0.56-	6.56.	8.46-	-96.3	-95.8	-97.0	7.76-
C BAL PCT	89.9	91.1	95.0	92.7	8.06	9006	92.7	92.7	91.3	93.8	91.0	90.3	7.46	-93.6	9.16-	-98.8	0.56-	-97.1	4.7	6.96	92.2	91.7	1.96	98•5
9 S I S	48.0	48.0	58.0	90.0	99.0	99.0	57.0	50.0	51.0	46.0	58.0	59.0	58•0	0.09	57.0	90.0	46.0	0.09	58.0	0.09	58•0	59.0	48.0	0.67
F 7	1627	1546	1600	1475	1533	1522	1546	1445	1503	1600	1540	1630	1520	1610	1542	1523	1561	1630	1536	1608	1497	1570	1496	1586
- π	1597	1527	1596	1474	1523	1505	1543	1440	1500	1570	1533	1627	1523	1613	15.5	1500	1546	1590	1485	1567	1430	1567	1490	1580
EINO2 FUEL	00•0	00.0	00•0	00.0	00.0	00•0	00.00	00•0	00.0	00.0	00•0	00.0	00.00	° 0	00 0	00.0	00.0	00 • 0	00.0	00.0	00.0	00 00	00.0	00•0
EINOX OF	5.95	6.14	7.04	66.95	6.33	96•9	6.17	94.9	6.48	6.51	6 • 56	F.77	6.97	7.20	6 • 78	6.40	6.44	6.57	7.00	66*9	6.78	6 • 45	6.78	6.63
E I HC POUNDS	7.52	5.41	6.25	3.15	0.84	0.32	6.02	2.49	0.29	0.11	66.0	0.45	0.50	00.0	00.0	00.00	00.0	00.0	0.45	0.79	0.22	0.20	0.73	0.31
E1C0 1000	82.3	131.0	82.9	133.9	148.1	153.2	118.3	294.1	232.7	118.4	195.6	109.6	164.4	89.8	171.7	186.1	133.2	81.6	127.5	86.6	122.0	85.4	166.8	104.3
E102 PER	6258.	7243.	7243.	7822.	7114.	7842.	6784.	8275.	7698.	6680.	•	° c	• ©	6	8072•	8152.	7035.	6857.	7988•	7039.	8129.	6886.	8129.	•6989
E1CO2 POUNDS	2716.	2679.	2780.	2731.	2657.	2643.	2429.	2481.	2540.	2801.	2587.	2700.	2754.	2840•	2837.	2854.	2816.	2964.	2812•	2947.	2743.	2784.	2813.	2970•
H d	0.353	0.318	0.318	0.294	0.312	0.304	0.340	0.298	0.312	0.348	0.308	0.331	0.294	0.321	0.291	0.286	0.318	0.319	0.292	0.313	0.291	0.325	0.291	0.316
ν N	~ 4	7	m	4	'n	9	7	60	٥	10	11	1.2	13	14	15	16	17	18	6	20	21	22	23	54

	O BAL	96.2	96.8	4.4	1.94.	7.76	89•3	93.2	8.66	98.7	96.3	95.8	93.5	9.96	95.3	97.0	9.56	66.5	6.86	
	C BAL PCT	-93.4	7.76-	92.1	97.2	94.2	91.2	93.2	92.3	95.0	96.4	91.8	93.0	93.66	90.6	-93.4	-93.6	97.0	97.4	
	9 5 1 C	49.0	90•0	48 • 0	53.0	90.0	48.0	50.0	47.0	48.0	48.0	47.0	48.0	48.0	47.0	0.44	80.0	51.0	54.0	
	<u>а</u> ш	1500	1593	1470	1480	1573	1457	1555	1450	1592	1473	1490	1597	1497	1504	1472	1592	1530	1602	
	<u>H</u> L	1493	1593	1453	1450	1550	1457	1563	1467	1601	1437	1487	1600	1497	1510	1473	1588	1482	1565	
	E1NO2 FUEL	0.97	1.12	1.06	00.0	1.26	1.23	1.17	1.22	1.23	1.20	1.12	1.23	1.21	1.27	1.22	1.25	0.78	96•0	
•	EINOX OF	7.16	76.9	7.15	16.9	7.14	40.7	6.98	6.70	95•9	6.97	95•9	6.68	86•9	09•9	6.67	7.06	5.87	6.62	
	EIHC POUNDS	00.0	00.00	0.34	0.62	0.20	0 4 • 0	0 • • 0	0.42	0.40	0.29	68.0	0.55	0.39	0.66	00 • 0	00 • 0	0.65	0.41	
	1000 1000	127.9	93.6	107.9	145.0	85.7	68.8	78.1	118.4	95.5	7.86	133.5	82.5	161.4	115.1	152.5	97.5	224.1	119.3	
	6102 PER	8045	7117•	9012.	8442.	6836.	7408.	.0099	8527.	1048.	8622.	7856.	6521.	8074.	1749.	8158.	6856.	7951.	7251•	
	E1002 PC340S	2773.	2857.	2762.	2865.	2862.	2795.	2842.	2751.	2872.	2914.	2712.	2829.	2725.	2694.	2734.	2828.	2733.	2912.	
	Ic	0.292	0.319	0.289	3.276	C+350	0.288	0.324	0.291	0.327	0.276	0.297	0.328	0.293	0.299	0.292	0.324	0.304	0.320	
	307	52	56	27	2.8	59	30	31	32	33	34	e S	36	37	38	39	0 4	41	4.2	

Reproduced from best available copy.

TABLE XXI

RUNS WITH UNMODIFIED JET A CAN II

C RAL PCT	96.5	95.4	-80.1	-77.3	98.6	97.5	1 '86	96.5	666	0.66	99.2	3.86	. 97.2	98.5	98.8	98.1	9.66	6.86	7.16	6.66	97.7	9.86	97.4	99.2
C PAL PCT	90.5	93.8	. 7.8-	6.7-	91.4	5.46	92.7	99.4.	92.3	93.6	97.5	91.3	93.7	90.5	7.06	93•3	-88.3	91.5	-95.6	91.0	94.1	7.60	95.7	4.96
o sisa	0 • 8 7	49.0	49.0	20.0	47.0	0.64	0.64	0.84	0.64	0.44	90.0	0.64	20.0	0.64 ::	-0 • 6 +	91.0	90.0	0.00	51.0	90.0	51.0	51.0	52.0	48 • 0
F #	1482	1582	0	0	1516	1613	1497	1616	1492	1582	1493	1510	1630	1463	1538	1640	1527	1535	1642	1528	1637	1483	1580	1515
<u>ш</u> ш	1478	1582	0	0	1506	1610	1475	1608	1457	1608	1451	1472	1602	0	1528	1630	1538	1531	1645	1540	1657	1510	1610	1535
EINO2 FUEL	96•0	1.11	0.97	1.13	- 0.93	1.23	. 1.52	1.73	1.34	1.42	1.55	1.58	1.88	1.72	1.39	1.66	1.45	1.31	1.97	1.45	1.59	19.61	1.88	1.79
EINOX OF	6.18	6.30	6.18	69.63	5.71	92.9	6.10	6.65	5.92	6.28	6.31	5.86_	6.30	5 • 79	6.18	99•9	6.37	6.18	7.23	6.22	6.95	6 • 00	06•9	6.18
EIHC POUNDS	0.39	0.36	00.0	00.0	0.62	0.50	0.55	0.39	0.54	0.29	0.62	1.10	0	1.30 -	0.32	0.20	00.0	0.75	00.0	0.48	0.40	. 76.0	0.30	0 • 90
E1CO 1000	115.1	84.3	170.3	101.1	182.9	100.8	174.5	93.7	190•2	109.0	221.0	144.3	85.4	163.5	184.9	78.0	162.5	206.4	103.2	206.2	92.7	175.4	115.3	227.4
E102 PE3	1994.	6919.	8158.	7183.	7951.	. 6947	8162.	7100.	8139.	• 7069	8441.	8055.	6855.	7951.	7850.	6956.	1907	7850.	6967	1907.	.5069	7825.	9-2-9	8385.
EICO2 POUNDS	2698.	2854.	•	•	2621.	2837.	2675.	3015.	2654.	2806.	2745.	2678•	2848•	2621.	2587.	2848•	2556.	2587•	2881.	25-71.	2848•	2579.	2864.	2710•
₩ G	0.296	0.321	0.292	0.316	908.0	0.327	0.296	0.315	0.301	0.334	0.290	0.300	0.329	0.304	0.308	0.329	0.310	0.30R	0.326	0.310	0.329	60 6 • 0	0.328	0.292
۶ 2 3	43	4 4	45	9 7	17	4 8	67	50	51	52	53	24	5.5	56	5,	58	59	09	61	62	63	79	65	99

.

4.)
Cont
XII (
ABLE

O BAL PCT	98.3	99.5	666	98.8	99.8	97.6	95.7	6.56	7.66	100.0	99.1	101.3	97.8	99.0	6.86	10001	99.2	100.4	8 • 66	100.3	4.66	100.9	6.66	100.8
C BAL PCT	7.96	95.6	101.3	106.6	93.7	92.2	92.1	96.5	99.6	95.4	6996	1.68	109.6	98.1	100.3	4.46	97.5	97.5	0.86	95.4	9.56	1-96-	9.86-	-96.3
a PS S	47.0	49.0	90.0	48.0	90.0	47.0	49.5	50.5	90.0	48.0	0.64	48.5	52.0	0.64	49.5	48.5	0.64	48.5	49.5	49.5	50.5	48.5	0.64	0.64
σ π	1622	1533	1478	1545	1507	1640	0	0	1615	1547	1638	1525	1626	1527	1593	1495	1588	1511	1623	1482	1608	1495	1600	1497
# L	1.627	1343	1513	1613	1503	1655	0	0	1578	1518	1610	1516	1590	1513	1565	0	0	0	0	1502	1620	1487	o	1450
EINO2 FUEL	2.47	1.50	1.54	1.95	1.80	2.44	1.45	2.15	1.92	1.47	36.1	1.49	2.09	1.55	1.74	1.50	1.70	1.53	1.85	1.54	1.91	1.55	1.90	1.54
EINOX OF	6 • 8 5	6.16	6.59	7.20	5.95	09.9	5.72	09•9	6.30	2.97	6.30	5.75	7.28	6.37	69.9	6.08	6.29	6.14	6.51	6.41	6.78	6.61	66.9	6.51
E I HC POUNDS	04.0	0.27	1.41	0.21	0.27	0.34	14.0	0.49	96.0	0.37	0.40	0.31	0.34	0.45	0.26	0.87	0.30	0.39	0.20	0.50	0.15	00.0	00.0	00.0
E1C0 1000	124.1	191.7	285.8	192.1	231.0	91.9	238.3	135.8	156.9	219.7	117.1	217.7	130.6	546.6	153.6	245.5	155.1	260•3	120.7	212.4	109.5	212.9	108.8	226.3
E102 PER	• 2669	8139.	8385.	7624.	8060.	6844.	7364.	•6659	7247.	1999.	7016.	7782.	8180.	8475.	1407	8194.	7243.	8436•	7268•	8492.	7246.	8612.	7563.	8577.
E1CO2 POUNDS	2872.	2646.	2773.	3092.	2621.	2789.	2555.	2857.	2925•	2595.	2869.	2514.	3282.	2727•	2952。	2631•	2859•	2692•	2930.	2701.	2872•	2743.	2969•	2710.
i d	0.327	0.301	0.292	0.304	0.304	0.332	0.312	0.332	0.321	0.307	0.329	0.319	0.284	0.291	0.314	0.301	0.322	0.294	0.322	0.293	0.323	0.291	0.313	0.292
a S S	67	89	69	70	7.1	72	73	74	75	76	77	7.8	79	0 60	81	8.2	8	34	85	86	7.8	6 0	60	06

\sim
-
701
-
- 11
ā
~
-XI
O
-
_
~
-
_
~
-
- 1
-4
40
-2
-

O BAL PCT	99.66	9.66	97.4	
	-99.3	95.6	95.6	
P C BAL	0.64	47.5	48.5	
5 π	1558	O	0	
F F	1610	1513	1670	
EINOZ FUEL	1.74	1.55	1.70	
EINOX	6.59	7.05	7.40	
EIHC POUNDS	00.0	0.51	0.30	
E1C0 1000	119.4	169.2	102.3	
£102 2ER	7508.	8504·	7068.	
E1CO2 POUNDS	2974•	2776.	2880.	
i a	0.314	0.290	0.327	L80
S S S S	16	26	63	// XEQ L80

APPENDIX V

MATERIAL BALANCE CALCULATIONS

The general chemical equation for burning in excess air can be approximated by,

$$CH_{n} + \frac{1}{\phi} \left(1 + \frac{n}{4}\right) \left[0_{2} + 3.76 \text{ N}_{2}\right] = CO_{2} + \frac{n}{2} H_{2}O + \frac{1}{\phi} \left(1 + \frac{n}{4}\right) 3.76 \text{ N}_{2} + \left(\frac{1}{\phi} - 1\right) \left(1 + \frac{n}{4}\right) O_{2}$$
 (10)

Assumed in equation (10) is that the CO and ${\rm CO_2}$ levels in the reactant air are negligible and that the CO and unburned hydrocarbon levels in the product stream can be neglected as a first approximation. These assumptions have been confirmed experimentally.

The stoichiometric air to fuel ratio $(A/F)_s$, can be calculated as a function of hydrogen to carbon ratio, n.

$$(A/F)_s = \frac{4.76 \ (1 \div n/4)}{1} \qquad \left(\frac{29}{12+n}\right) = 34.51 \left(\frac{4+n}{12+n}\right)$$
 (11)

Similarly, equivalence ratio can be expressed as a function of n and operating air to fuel ratio $(A/F)_{O}$.

$$\phi = (A/F)_{S} (F/A)_{O} = 34.51 \left(\frac{4+n}{12+n} \right) (F/A)_{O}$$
 (12)

In order to calculate the expected volume percent of ${\rm CO_2}$, ${\rm H_2O_3}$ and ${\rm O_2}$ in the combustion effluent stream, the mole ratio of reactant air to product gases, B, must be obtained.

$$B = \frac{1/\phi (1 + n/\frac{1}{2}) \cdot 4.76}{1 + \frac{n}{2} + \frac{1}{\phi} (1 + \frac{n}{4}) \cdot 3.76 + (\frac{1}{\phi} - 1) \cdot (1 + \frac{n}{4})}$$
(13)

which reduces to:

$$B = \frac{4.76 (4 + n)}{n\phi + 4.76 (4 + n)} \tag{14}$$

The volume percent carbon in the effluent stream can be calculated assuming that unburned hydrocarbons are expressed as methane.

$$% C = % (CO_2 + CO + CH_4) = (F/A)_0 \left(\frac{29}{12 + n}\right) \quad B \quad 100$$
 (15)

Substituting equation (12) into (15) the equation for carbon volume percent as a function of n and ϕ is obtained.

$$\% C = \frac{400 \phi}{n\phi + 4.76 (4 + n)} \tag{16}$$

The volume percent water is simply the volume percent carbon multiplied by n/2.

$$^{2}H_{2}^{0} = \frac{200 \text{ n}\phi}{\text{n}\phi + 4.76 (4 + \text{n})}$$
 (17)

The volume percent oxygen can be calculated by multiplying the volume percent carbon by $(1/\phi - 1)$ (1 + n/4).

Using the experimentally determined hydrogen to carbon ratio of 1.89 for Jet A fuel, then the predicted emission mole fractions in the range of .27< φ <.34 are:

$$\% (CO_2 + CO + CH_4) = 13.8 \phi$$
 (19)

$$% O_{2} = 20.6 (1 - \phi)$$
 (20)

$$% H_{2}O = 13.2\phi$$
 (21)

$$B = .977$$
 (22)

The correction factor for reporting CO, ${\rm CO_2}$, ${\rm NO_x}$, and ${\rm O_2}$ on a wet basis is therefore:

$$(1 - 0.132 \phi).$$
 (23)

Additional corrections for ${\rm CO}_2$ and ${\rm CO}$ present in the air originally can be added to the material balance equations listed above if additional accuracy is desired. This correction was found unnecessary for the results reported here.

The material balance equations used to compute the carbon balance and oxygen balance reported in Appendices I and IV are:

$$% 2 C = \frac{\text{measured mole fraction of carbon components}}{\text{Equation 16}} \times 100$$
 (24)

$$Z = \frac{(Z \text{ CO}_2 + 10^{-4} \text{ ppm CO} + 10^{-4} \text{ ppm HC})(n\phi + 4.76(4+n))}{4\phi}$$
 (25)

$$z_{0_2} = \frac{\text{measured mole fraction of oxygen components} + 1/2(\text{Equation 8})}{\text{Equation 16} + 1/2(\text{Equatior 17}) + \text{Equation 18}}$$
 (26)

Equations (25) and (27) reduce to:

$$\chi_{C} = \frac{(1.89\phi + 28.04)}{4\phi}$$
 (measured mole fraction of carbon components) (28)

%
$$0_2 = 32.1\phi + (0.321\phi + 4.76)$$
 (measured mole fraction of oxygen compounds) (29)

In order to convert the mole fraction of a component i in the combustion effluent stream to emission index in 1b per 1000 1b of fuel, one multiplies the mole fraction value by the molecular weight of i and by equation (11) and divides the product by equations (12), (14) and the molecular weight of air. The resulting expression is:

$$EI_{i} = X_{i} \left(\frac{A}{F}\right) \frac{(n\phi + 4.76 (4 + n))(MW)_{i}}{4.76 (4 + n)} \frac{10^{3}}{29}$$
 (30)

The symbols are defined on page 36.

Since n = 1.89 and $(A/F)_8 = 14.6$ for Jet A, Equation (30) reduces to:

$$EI_{i} = X_{i} (MW)_{i} (33.9 + \frac{503}{\phi})$$
 (31)

Equation (31) was used to compute the emission index values for Tables XV, XX and XXI. Similarly, one can calculate the emission index of any effluent species if the hydrogen to carbon ratio of the fuel and the equivalence ratios are known.

APPENDIX VI

KINETICS OF NO FORMATION IN GAS TURBINE COMBUSTORS

The mechanism for NO formation in hot air was described in the Introduction and is summarized below:

$$M + O_2 = \frac{1}{2} 20 + M$$
 (1)

$$0 + N_2 \xrightarrow{3} NO + N \tag{2}$$

$$N + O_2 = \frac{5}{6}$$
 NO + 0 (3)

$$N + OH \xrightarrow{\frac{7}{8}} NO + H \tag{4}$$

where reactions 2 and 3 are referred to as the Zeldovich chain mechanism.

In Table XXII are listed the mole fractions of all combustion product species with a mole fraction greater than 5×10^{-8} based on equilibrium calculations (5). The calculations were run assuming 4 atmosphere pressure and an air preheat of 400° F (478° K) using a fuel with a carbon to hydrogen ratio of 1.9185. This is representative of the Esso High Pressure Cannular Combustor using Jet A fuel. The mole fraction of nitrogen atoms, at equilibrium, never achieves a significant level. One can, therefore, make the steady state assumption for nitrogen atoms, (N) = 0. The steady state value for nitrogen atoms is:

$$(N)_{SO} = (0) \left[\frac{k_3(N_2) + k_6(NO) + k_8(H)(NO)(O)^{-1}}{k_4(NO) + k_5(O_2) + k_7(CH)} \right]$$
 (32)

where the brackets are used to indicate concentration in moles cm^{-3} .

The rate of production of nitric oxide is:

TABLE XXII

THE PARTY OF THE P

EQUILIBRIUM CALCULATION JET A (C₁H_{1.9185}) at 58.8 PSIA AIR PREHEAT = 478°K (400°F)

	1.50	7.72-3	1.23-1	5.60-2	3.23-4	1.07-5			5.27-2	1.16-1		1.18-5		6.45-1		3.65-7	8.26-5	1.50	3.46-7	6.90-7	7.03-8		2085	3293	9.77	0.480		
	1.30	8.09-3	8.46-2	7.78-2	5.76-4	7.62-7			2.58-2	1.27-1		1.10~4		6.76-1		6.55-6	4.23-4	1.30	1.37-5	1.93-7			2245	3581	11.3	0.445		
	1.10	8.49-3	3.53-2	1.09-1	6.33-4	2.28-7	8.99-8	1.57-7	7.15-3	1.27-1		1.23-3	1.50-7	7.08-1	1.17-7	1.22-4	2.05-3	1.10	9.16-4				2389	3840	13.4	0.419	0.460	98.4
	1.00	8.65-3	1.47-2	1.19-1	3.81-4	5.74-8	1.42-7	6.40-7	2.61-3	1.21-1	1.09-7	3.23-3	1.02-6	7.21-1	3.097	3.17-4	3.22-3	1.00	6.20-3				2388	3838	14.7	0.419	0.661	98.3
•	0.95	8.71-3	8.66-3	1.19-1	2.43-4		1.39-7	9.22-7	1.50-3	1.17-1	1.34-7	4.19-3	1.92-6	7.25-1	4.02-7	3,62-4	3.29-3	9.95	1.19-2				2352	3774	15.5	0.425	0.773	69.1
	0.90	8.76-3	4.83-3	1.17-1	1.39-4		1.19-7	1.10-6	8.36-4	1.12-1	1.43-7	4.83-3	3.02-6	7.29-1	4.65-7	3.43-4	3.01-3	0.90	1.94-2				2300	3680	16.4	9.435	0.774	39.8
	0.80	8.84-3	1.27-3	1.08-1	3.45-5		6.39-8	1.08-6	2.34-4	1.01-1	1.24-7	5.01-3	5.29-6	7.35-1	4.86-7	2.05-4	1.97-3	0.80	3.78-2			1.08-6	2162	3432	18.5	0.463	0.752	8,78
11 111	09.0	8.97-3	3.69-5	8.35-2	6.24-7			3.74-7	8.84-6	7.72-2		2.85-3	7.97-6	7.47-1	2.85-7	2.06-5	3.77-4	0.60	8.00-2			3.24-7	1820	2816	24.8	0.549	0.450	0.0701
	0.40	9.09-3	1.17-7	5.68-2						5.16-2		6.75-4	6.80-6	7.58-1	7.32-8	2.34-7	1.71-5	0.40	1.24-1				1424	2103	37.6	0.702	0.148	1.34-5
	0.35	9.12-3		5.00-2						4.51-2		3.78-4	5.93-6	7.61-1			5.93-6	0.35	1.34-1				1316	1909	43.3	.760		
	0.30	9.15-3		4.31-2						3.85-2		1.83-4	9-68.7	7.64-1			1.26-6	0.30	1.45-1				1205	1709	50.8	0.830		
	•	, A	. .	8 8	7 T	HCO	ON COM	HO.	н. 2	H-0	H20.	NO 2	NO.	N Z	N_0	05	Ю	-6	3 .	NH.	HCM	но ₂	T°K	t°F	A/F	103T-1°K-1	40	θ

22

The addition of (N) + (NO) gives the following equation:

$$\frac{d(NO)}{dt} = (NO) = 2k_3(0) \left[N_2 - \frac{k_4(NO)(N)}{k_3(0)} \right]$$
 (34)

Substituting equation (32) into (34) and making use of the equilibrium relationships,

$$K_{NO} = \frac{k_3}{k_4} + \frac{k_5}{k_6} = \frac{(NO)_e^2}{(O_2)_e(N_2)_e}$$
 and $\frac{k_3}{k_4} + \frac{k_7}{k_8} = \frac{(NO)_e^2 (H)_e}{(O)_e (OH)_e (N_2)_e}$

the following equation is obtained.

$$(NO) = 2k_{3}(0)(N_{2})_{e} \left[\frac{k_{5}(O_{2})_{e} \left[\frac{(O_{2})_{e}}{(O_{2})_{e}} \frac{(N_{2})_{e}}{(N_{2})_{e}} - \frac{(NO)_{e}}{(NO)_{e}} \right]^{2} + k_{7}(OH)_{e} \left[\frac{(N_{2})_{e}}{(N_{2})_{e}} \frac{(OH)_{e}}{(OH)_{e}} - \frac{(OH)_{e}}{(OH)_{e}} \right]^{2}}{k_{4}(NO) + k_{5}(O_{2}) + k_{7}(OH)} \right]$$

$$\frac{\left(\frac{(NO)_{e}}{(NO)_{e}}\right)^{2} \frac{(O)_{e}(H)_{e}}{(O)_{e}(H)_{e}}}{(OO)_{e}(H)_{e}}$$
(35)

Since the equilibrium mole fraction of NO is always small compared to the major combustion products ($CO_2 + H_2O$) one can assume that the NO producing reactions add little heat to the flame. The combustion reactions can, therefore, be assumed to take place at the adiabatic flame temperature and the primary combustion species are assumed at equilibrium. Equation (35) can now be simplified to:

$$\frac{d\rho}{dt} = \dot{\rho} = \frac{2k_3(0)_e(N_2)_e}{(NO)_e} \left[1 - \rho^2\right]$$

$$\frac{1}{1 + \frac{k_4 \rho}{k_5(0_2)_e} + k_7 \frac{(OH)_e}{(NO)_e}}$$
where $\rho = \frac{(NO)}{2}$

Making use of the equilibrium constants $K_0 = (0)_e^2/(0_2)_e$ and K_{NO} which was previously defined, the desired solution for $\dot{\rho}$ is obtained.

$$\rho = \frac{2k_3K_0^{1/2}(N_2)_e^{1/2}}{K_{NO}^{1/2}(RT)^{1/2}} \left[\frac{1 - \rho^2}{1 + \frac{k_4K_{NO}^{1/2}(N_2)_e^{1/2}}{k_5(0_2)_e^{1/2}\left(1 + \frac{k_7(OH)_e}{5(0_2)_e}\right)}} \right]$$
(37)

Equation (37) is integrated to give

$$(\delta + 1) \ln (1-\rho) + (\delta-1) \ln (1+\rho) = -\theta t$$
 (5)

where,

$$\delta = \frac{\frac{k_4}{k_5}}{\frac{k_7}{1 + \frac{k_7}{k_5}} \left(\frac{x_{N_2}}{x_{O_2}}\right)^{\frac{k_2}{2}}}$$
(38)

 X_i = mole fraction of component i.

P = pressure in atmospheres.

R = gas constant = 82.057
$$\frac{\text{cm}^3 \text{ atm}}{\text{mole °K}} = 1.987$$
 $\frac{\text{cal}}{\text{mole °K}}$

T = temperature in °K

$$\theta = \frac{4k_3K_0^{1/2} p^{1/2} X_{N_2}^{1/2}}{\kappa_{N_2}^{1/2} RT}$$
(39)

The following values for the rate constants (32) and a calculated value for k_7 based on collisio ... ory were used to evaluate δ and θ .

$$k_3 = 1.36 \times 10^{14} \exp \left[-75,400/RT \right] \text{ cm}^3 \text{ mole}^{-1} \text{ sec}^{-1}$$
 $k_4 = 3.10 \times 10^{13} \exp \left[-334/RT \right] \text{ cm}^3 \text{ mole}^{-1} \text{ sec}^{-1}$
 $k_5 = 6.43 \times 10^9 \text{ T} \exp \left[-6250/RT \right] \text{ cm}^3 \text{ mole}^{-1} \text{ sec}^{-1}$
 $k_7 = 7.25 \times 10^{11} \text{ T}^{\frac{1}{2}} \text{ cm}^3 \text{ mole}^{-1} \text{ sec}^{-1}$

. The value for k_7 was based on a collision diameter of 4.7A for OH and 2.7A for N. The equilibrium constants $k_0^{1/2}$ and $K_{NO}^{1/2}$ were determined by at least squares fit of the JANAF values (33) over the temperature range 1000°K to 2500°K.

$$K_0^{1/2} = 2.90 \times 10^3 \exp \left[-60,755/RT\right] atm^{1/2}$$
 $K_{NO}^{1/2} = 4.52 \exp \left[-21,583/RT\right]$

The numerical expressions for δ and Θ are:

$$\rho = \frac{2.18 \times 10^4 \text{ T}^{-1} \exp \left(-15,665/\text{RT}\right) \left(\frac{x_{\text{N}_2}}{\overline{x_{\text{O}_2}}}\right)^{\frac{1}{2}}}{1 + 1.13 \times 10^2 \text{ T}^{-\frac{1}{2}} \exp \left(6250/\text{RT}\right) \left(\frac{x_{\text{OH}}}{\overline{x_{\text{O}_2}}}\right)}$$
(40)

$$\theta = 4.24 \times 10^{15} \text{ T}^{-1} \text{ P}^{\frac{1}{2}} \text{ X}_{\text{N}2}^{\frac{1}{2}} \text{ (exp - 114,572/RT) sec}^{-1}$$
 (41)

The value for δ and Θ for the equivalence ratios 0.8 to 1.1 are included in Table XXII. The time required, in milliseconds, to achieve a particular fraction of the NO equilibrium value is tabulated in Table XXIII.

TABLE XXIII

TIME TO ACHIEVE A PARTICULAR P

		E	quivalence	Ratio	
ρ	0.8	0.9	0.95	1.0	1.1
0.01	1.72	0.391	0,225	0.136	0.0095
0,05	8.86	2.01	1.16	0.698	0.493
0.1	18.3	4.16	2.39	1.45	1.04
0.2	39.4	8.91	5.13	3.14	2.31
0.3	63.8	14.4	8.29	5.11	3.85
0.4	92.4	20.9	12.0	7.47	5.73
0.5	127	28.6	16.5	10.3	8.06

Equation (5) can be simplified for the conditions generally applicable to gas turbine combustors by substituting a series approximation for the natural logarithms.

$$\ln (1 - \rho) = -\rho - 1/2\rho^2 - 1/3\rho^3 - 1/4\rho^4 - \dots$$
 (42)

$$\ln (1 - \rho) = \rho - 1/2\rho^2 + 1/3\rho^3 + 1/4\rho^4 - \dots$$
 (43)

The following expression is obtained.

$$\rho(2 + \frac{2}{3}\rho^2 + \rho\delta + \frac{\rho^3\delta}{2}) = \theta t$$
 (44)

which can be simplified for $\rho < 0.2$ and $\delta < 0.8$ to:

$$\rho = \frac{\Theta t}{2} \tag{6}$$

The errors involved in using the approximate equation (6) are listed in Table XXIV.

TABLE XXIV

RANGE OF ERRORS IN USING EQUATION (6)

ρ	δ	<u> </u>	θt	Error
		Exact Equation(1)	Approximate Equation(5)	z
0.1	0.8	0.209	0.2	4.3
0.2	0.8	0.438	0.4	8.7
0.3	0.8	0.694	0.6	13.5
0.4	0.8	0.987	0.8	18.9
0.3	1.2	0.732	0.6	18.0
0.3	1.0	0.713	0.6	15.8
0.3	0.6	0.675	0.6	11.1
0.3	0.4	0.657	0.6	8.7
0.3	0.2	0.638	0.6	6.0
0.3	0	0.619	0.6	3.1

Figure 15 shows the effect of temperature on ρ as a function of equivalence ratio. Equation (6) overpredicts the NO mole fraction by less than 9% in the range of interest.

The empirical rate constant Θ behaves like a true rate constant over the range of interest for NO $_{\mathbf{x}}$ kinetics in combustion. The mole fraction of nitrogen is essentially constant and the pressure is usually constant in a combustor.

A tabulation of equilibrium mole fraction of NO_X as a function of temperature and equivalence ratio is included in Table XXV. Not that Θ is essentially independent of equivalence ratio. An Arrhenius plot of Θ is given in Figure 16. Using Table XXV and Figure 16, it is possible to calculate the Zeldovich NO_X mole fraction in one step. For example, assuming that combustion of fuel droplets occurs on the droplet surface at an equivalence ratio of one, at the adiabatic flame temperature, and the residence time in the primary zone is proportional to the fuel rate, then the data in Table XXVI are obtained.

Figure 15
EFFECT OF TEMPERATURE ON S

TABLE XXV

KINETIC PARAMETERS FOR EQUATION (5)

	Ature	×	2400	2300	2200	2,100	2000	1900	1800		2162	2 300	2352	2388	2389
	Temperature	(z,	3860	3680	3500	3320	3140	2960	3.58 2780		3432	3680	3774	3838	3840
		NO	1328	652	286	113	40.3	12.8	3.58						1230
	1.1	٥	0.455	0.434	0.393	0.345	0.296	0.249	0.247						0.460 1230
		Θ	109	40.2	13.5	4.04	1.08	0.249 0.249	0.0486 0.247						98.4
		NOX	3372	2317	1527	696	577	326	173					3230	
•	1.0	မ	0.654 3372	0.709 2317	0.774 1527	0.851	0.942	1.05	1.19					0.661 3230	
Equivalence Ratio, ϕ		θ	110	9.07	13.6	4.09	1.09	0.252	0.0492	ature				98.3	
utvale		NOX								labatic Flame Temperature			4190		
N	0.95	٥								Flame			69.1 0.773 4190		
		θ								atic]			69.1		
		NOX	6014	4830	3853	3037	2350	1774	1298	Adiab		4830			
	6.0	٥	0.722 601	0.774 4830	0.821 385	0.850 3037	0.854 2350	0.825	0.763			0.774 4830			
		θ	111	8.04	13.7	4.10	1.09	0.253 0.825 177	0.0493 0.763 129			39.8			
		NOX									5010				
	8.0	Ø									8.78 0.752 5010				
		Φ									8.78				

TABLE XXVI

COMPARISON OF CALCULATED AND OBSERVED

NO LEVELS - ADIABATIC FLAME TEMPERATURE

фр <u>Apparent</u>	φο <u>Overali</u>	Primary Zone Time sec	ρ	Distance in Can L/D	(NO _X) calc. ppm	(NO _X)
0.9	.27	1.5×10^{-3}	0.15	0.50	73	70
1.0	.30	1.7×10^{-3}	0.17	0.57	82	80
1.1	.33	1.9×10^{-3}	0.19	0.63	92	91

The agreement between theory and experiment is exceptionally good. The essence of the calculation is that the product Θt is proportional to the fraction of equilibrium achieved. The adiabatic flame temperature is not achieved experimentally. Thus Θ is smaller than calculated and in turn time must be longer. For example, if one assumes the primary temperature is $T = 3680\,^{\circ} F$ (2300°K) which is about $160\,^{\circ} F$ lower than the adiabatic flame temperature, then the corresponding Θ is 40 and $(NO)_e = 2317$. Thus lowering the flame temperature by $160\,^{\circ} F$ would require an increase in residence time by almost a factor of 4 to achieve the same NO_X levels. This is illustrated in Table XXVII.

TABLE XXVII EFFECT OF NON-ADIABATIC FLAME TEMPERATURE ON RESIDENCE TIME

фр Apparent	φο <u>Overall</u>		t sec	Distance in Can L/D	(NO _x) calc. ppm	(NO _x) obs. ppm
0.9	.27	0.11	5.3×10^{-3}	1.7	74	70
1.0	.30	0.12	5.9×10^{-3}	1.9	82	80
1.1	.33	0.13	6.5×10^{-3}	2.1	90	91
where, t =	1.54×10^{-3}	sec inch	at 3680°F and ov	verall L/D =	3.	

APPENDIX VII

COMPUTER PROGRAM

A listing of the Fortran 4 computer program that was used to calculate the results in Appendix I, II and III is included here. The experimental results were corrected and introduced on a wet basis. The program then calculated the material balance and printed an additional set of cards containing the material balance values. The complete set of cards was then read-in to calculate the reference emissions and the effectiveness of the modifications.

DATA IN:KO)-2:3/ DATA IN:KO)-2:3/ DO 5 I=1:184 READ(IN:10)RUN(I):(FUMOD(II:11:11:11:8): PHI(I):CO2(I):02(I):CO(I): INC(I):NOX(I):NO2(I):TE(I):TP(I):P(I): 10 FORMAT (F5:00: 844:F5:32-25-2:F5:0/5(F5:0):F5:1): PCAR(I):= ((CO2(I)+(1:E-04*CO(I):)+(1:E-04*CO(15 FORMAT(1x, run, 6x, Fuel Modification, 9x, PHI', 4x, 'CO2', 4x, 'O2', 12', 14x, 'CO', 5x, 'HC', 4x, 'NOX', 3x, 'NOZ', 5x, 'TE', 7x, 'TP', 5x, 'P', 6x, 'P', 6x, 'HC', 4x, 'O BAL')

"RITE(KO,115) ZPCAR(190).P(190).D2(190) DIMENSION | RUN(190).ICO(190).IHC(190).IOX(190).IOZ(190).ITE(190). IITP(190).NUMB(190) 115 FORMAT(41X*'PCT',3X*'PCT',4X*'PPM',44X,'PPW',3X,'PPM',3X,'PPM',5X* #RITE(KO,3A) IRUN(J).(FUYON(JJ-J).JJ=1.6).PHI(J).CO2(J).02(J). 11CO(J).IHC(J).1OX(J).1CO?(J).ITE(J).ITP(J). P(J).PCAR(J).PCC(J). 30 FOR'AT(1X:13:9X:5A&*2X*F5.3*1X*F6*2*1X*F5*1*1X*16*2X*13*2X*1 PO(190) +RUN(190) +FUNOD(8+190) + DIMENSION PHIC1901.CO2(1901.CG(1901.HC(1901.NOX(1901.NO2(1901. Reproduced from best available copy. 114 FORMAT (44X1 EXPERIMENTAL RESULTS (WET BASIS) 1/) 113+3x+14+3X+16+1X+F6-1+3X+F6+1+3X+F6+1/1 1((1₀89*PHI(1))+28₀04)/(4₀*PHI(1))) IF(PHI(1))3₀3₀2 IRUN(K)=IFIX(RUN(K)+.1) IOX (K)=IFIX (NOX (K)+.1) IC2(K)=IFIX(NO2(K)+₀1) ITE(K)=IFIX(TF(K)+₀1) ICO(K)=IFIX(CO(K)++1) IHC(K)=IFIX(HC(K)++1) ITP(K)=IFIX(TP(K)++1) PCAR PERCEUT CARBON PO = PERCENT OXYGEN 30 270 K=IFIRS+LAST 1TE(190)+TP(190)+ IF (NOX (I))7,7,33 IF (NO2 (1)) 7. .5 WRITE(KO:114) REAL NOX . NOZ WRITE(KO.15) WRITE(K0,14) PO(1)=-PO(1) 13 WRITE(KO.14 14 FORMAT('1') COLTINUE COUNTO 200 CONTINUE IFIRS=1 LAST=24 83228 UU

- 118 -

to destructions of the same translative states and a destruction of the same of the same states of the same same of the same o

```
PO(L)=PO(L)
WRITE(IN+370) PCAR(L)+PO(L)+NUMR(L)
FORMAT(2(3x+F6+1)+59x+13)
                       IF(ICOUN.EQ.8) GC TC 995
                                                                                                                                                                                   IF (PCAR(L))292,999,293
                                                                                                                                                                                              PCAR(L)=PCAR(L)*(-1.)
                                                                                                                                                                                                                      IF (PC(L))294,999,295
                                   IF (ICOUN-7)45,46,46
                                                                                                                                                                       NUMB(L)=NUMB(1)+1
                                                                                                                                                                                                                                   PO(L)=PO(L)*(-1.)
                                                                                                                                                                                                                                                                                  NUMB(1)=NUMB(L)
                                                                                                                                                                                                           PCAR(L)=PCAR(L)
                                                                                                                                                            DO 290 L#1,184
                                               IFIRS=IFIRS+24
                                                                                   IFIRS*IFIRS+24
                                                                                                                                  READ (IN. 990)
           I COUN = I COUN+1
                                                                                               LAST=LAST+16
                                                           LAST=LAST+24
                                                                                                                                              FORWAT (1A1)
                                                                                                                      NUMB(1)=0
                                                                       GO TO 13
                                                                                                            50 TO 13
                                                                                                                                                                                                                                                                                             CONTINUE
CONTINUE
0
                                                                                                                                                                                                                                              295
                                                                                                                                                                                                                                                                                              290
                                    866
                                               45
                                                                                     94
                                                                                                                       966
                                                                                                                                                                                               262
                                                                                                                                                                                                                                   566
                                                                                                                                                                                                                                                                       300
                                                                                                                                               J66
```

READ(IN+10)RUN(I)+(FUNOD(II+1)+II=1+8)+ PH1(:.,CO2(I)+02(I)+CO(I)+ best available copy 71-CR(190),107R(190),102R(190),1TER(190),1TPR(190) D1"ENSION PHI(190),CO2(190),CO(190),HC(190),NOX(190),NO2(190), 1TE(190),TP(190),1RUN(190),P(190),OZ(190),RUN(190),FUMOD(8,190), D1MENSION CCC7(190),CHOZ(190),CCO(190),CHC(190),NNOX(190), 1NNOZ(190),CTR(190),CTP(190),CPCAR(190),CPO(190) fror. DIMENSICH ICCO(190)+ICHC(190)+INDX(190)+INDZ(190)+NITER(190)+ O 22 POR(L) = ((02R(L)+CU2R(L))+(5.E-05*COR(L))+(1.E-04*N02R(L)) 1+(5.E-05*(NOXR(L)-N02R(L)))+((0.321*PHI(L)) + 4.76) 1((1.59*PH1(*))+28,04)/(4.*PH1(*)) 22C POR(V) = ((C; !(")+CO7R("))+(5.E=05*COR(V))+(1.F=04*V02R(K)) REAL NOX. NOZ. NOXR. NOZR. NOZR. NOX. NOZ. NOX. NOX. NOX. NOX. NOX. NOXR(190). 1007 NOXR(190). NOZR(190). NOZR(190). NOZR(190). TER(190). TPR(190). PR(190). POR(190). NOZR(190). PCT CHANGE CO AND PCT CLANSE 1HC(1).NCX(I).NOZ(I).TE(I).TP(I).P(I).PCI).PCAR(I).PO(I) 10 FOR4AT (F5.0. 8A4.F5.3.2F5.2.F5.0/5(F5.0).F5.1/2(3X.F6.1)) Reproduced TPR(L)=(2373.4*PHI(L))+807.89877 PCARR(L) = ((C)2R(L)+(1.6E=04*COR(L))+(1.6F=04*HCR(L)))* PCARR(W) = ((CO2R(M)+(1.6-04*CO2(V))+(1.6-04*HCR(V)))* 1+(5.E-05*(%0x2(%)-NG22(%))))*((C.321*PHI(W)) + 4.76) (REFERENCE) 1((1.89*PHI(L))+28.04)/(4.*PHI(L))) COR(L)=(-11919.*PHI(L))+6404.6053 NOXR(M1=(343-50*PHI(N1)-22-953053 NO28(M)=(178.38*PPI(V))-34.078409 NOXR(L)=(185.74*PHI(L))+29.624074 TPR(N)=(30AP.2*PHI(N))+596.69639 HC3(L)=(1812.9*PH[(L))-508.47181 "02R(L)=(55.772*PHI(L))-2.239382 TER(L)=(2461.04P41(L))+768.04131 COR (1) = (-47141 +PHI (7))+18C51+R2 HCQ(1:) = (-222.12*PHI(M))+86.48685 TER(N)=(3350.9*PHI(Y))+516.74596 1VITP(190) • PCAR(190) • PO(190) C2R(L)=20.059*(1.0-PHI(L)) 02R(W) =20.751#(1.0-PH1(V)) CO AND PCT O REFERENCE PCARR = PER CENT CARRON POR = PER CENT OXYGEN CPAR # PCT CMANGE (CO) CO2R(*)=12.189*PhI(F) IF (HCR (M) 1402 +402 +403 CO2R(L)=12.162*PH;(L) IF(HCR(L))400*450*401 0 CPO = PCT CHANGE DATA 14.KO/5.6/ DO 105 ME47+194 2+(32+14PHI(L)) 7+(32-1#PHI(V)) 30 10C L=1946 50 5 I=1:184 430 HCR(L) #9.C HCB (*) BUE 100 CONTINUE COSTINUE ins continue CENTO 15195=1 107 403 00000

IN MAN AT A STORM WAS AND THE PARTY SECTION OF THE PARTY.

- 120 -

15 FORWAT(1X+ RUN' + 6X+ FUEL MODIFICATION' +7X+ PH1' +4X+ 'CO2' +5X+ 'O2' +
14X+ 'CO' +4X+ 'HC' +4X+ 'NOX' +3X+ 'NOZ' +6X+ 'TE' +8X+ 'TP' +5X+ 'P' +6X+
2' C 9AL' +4X+ 'O 9AL')
ARITE(KO+115) 115 FORWAT (41% * PCT * 44% * PCT * 44% * PPW * 33% * PPW * 33% * PPW * 46% * XRITE(KO.37) [RUN(J).(FUVOD(JJ.J).JJ.]. 6).PHI(J).CO2R(J).02R(J). 11COR(J).[HCR(J).1OXK(J).1O2R(J).1TER(J).[TPR(J).PCJ).PCAKK(J). 30 FORMAT(1X+13+1X+6A4-ZX+F5-3+1X+F6-2+1X+F6-1+1X+16-2X+13+2X+14+3X+ 113+3X+16+3X+16+1X+F6-1+3X+F6-1+3X+F6-1/) Reproduced fro 194 FORMATIMAX FIRE CENT CHANGE OUR TO MODIFICATION (7) 194 FORMATIGGAD REFERENCE EVISSIONS (WET RASIS) 17) \(\text{NOX}(\text{N}) \times ((\text{NOX}(\text{N})) = \text{NOX}(\text{N}) \times \((\text{NOX}(\text{N})) \times \(\text{NOX}(\text{N})) \times \((\text{NOX}(\text{N})) \times \(\text{NOX}(\text{N})) \times \(\text{NOX}(\text{NOX}) \times \((\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}) \times \((\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}) \times \((\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}(\text{NOX}) \times \(\text{NOX}(\text{NOX}(\text{NOX}(\text{NOX}) \times \(\text{NOX}(\ CCO2(N) = ((CC2(N)=CO2R(N))/ CO2R(N))+100. CHO2(N) = ((C2(N)=C2R(N))/ O2R(N))+100. CCO(N) = ((CO(N)=COR(N)) / COR(N))+120. CTC(V) # ((TC(T)+HCB(T)) /HCB(V)) # 100* ITPR(K)=IFIX(TPR(K)+.1) IF (HCR(\))000,991,992 DO 40 JEIFIRS LAST 45 IFIRS=IFIRS+24 IFIRS=IFIRS+24 50 300 Am1:184 WRITE (KO+184) I COUN*!COUN+1 WQ:TF:KO+1941 WRITE (KO.15) 13 wRITE(KD+14) 14 =0RVAT(*1*) LAST=LAST+16 -AST=LAST+74 94 APITE (KO+94) 94 EQPVAT(111) じゅじゅ (シ) リカリ POS COSTINUE 40 CONTINUE 50 TO 13 CONTINCE 1F1RS=1 2024(3) 200 40 300 200 061

Polytruse traditional survey of the second s

~

alle manerie respectively and the contract of the contract of

```
FORMAT( 1X**RUN, *6X**FUEL MODIFICATION**7X**PHI', *4X**C02**5X**O2**, 14X***C0**5X***HC**7X***NOX**5X**NOZ**6X**TE**5X**TP**5X*
                                                                                                                              915 FORWAT (41X**PCT**5X**PCT**3X**PPM**4X**PPM**6X**PPW**5X**PPM**6X**
1*F**6X**F**7X**PCT**5X**PCT**/)
                                                                                                                                                                                                                                                                                                                  70 FORMAT (1X+13+3X+6A4+2X+F5+3+1X+F6+2+1X+F6+2+1X+F6+2+2X+F6+2+2X+
                                                                                                                                                                                                                                   WRITE(KO.70) IRUN(LI).(FUMOD(LL.LI).LL=1.6).PHI(LI).CCO2(LI).
                                                                                                                                                                                                                                                               ICHO2(LI) + CCO(LI) + CHC(LI) + NNOX(LI) + NNOZ(LI) + CTE(LI) + CTP(LI)
                                                                                                                                                                                                                                                                                                                                            1F6.2,2X,F6.2,2X,F6.2,2X,F6.2,2X,F6.2,2X,F6.2)
                                                                                                                                                                                                           IRUN(LI)=IFIX(RUN(LI)+.1)
                                                                                                                                                                                                                                                                                            CPCAR(LI) CPO(LI)
                                                                                                                                                                                                                                                                                                                                                                                                                             F(ICOUN.FO.B) GO TO
                                                                                                                                                                                  DO 500 LIRIFIRS LAST
                                                                           2'C BAL'+3X+'O BAL')
WRITE(KO+915)
                                                                                                                                                                                                                                                                                                                                                                                                                                                       IF (ICOUN-6)74,74,64
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               IFIRS=IFIPS+24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            IFIRS # IFIRS+24
                                                                                                                                                                                                                                                                                                                                                                                                 I COUNT I COUNT I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LAST=LAST+24
WRITE (KO , 95)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       LAST=LAST+16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         CALL EXIT
                                                                                                                                                                                                                                                                                                                                                                         SOO CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  GO TO 93
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             GO TO 93
                                                                                                                                                                                                                                                                                                                                                                                                                                                       966
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               94
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           066
```