

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023

Instructor: Maria Samad

Binary Tree Representation – Array-Based

Student Name:

For the given trees, define them using Array Based Representation (implemented using Lists), and answer the specified questions

Tree Representation:

T = [7, 1, 9, 0, 3, 8, 10, None, None, 2, 5, None, Non

Parent of Node 5 (Use formula on the list to evaluate):

Parent Position = floor[
$$(f(p) - 1) / 2$$
]
= floor[$(10 - 1)/2$]
= floor($9/2$)
= floor(4.5)
= 4

Thus, Parent Node = Node 3

Left Child of Node 8 (Use formula on the list to evaluate):

Left Child Position =
$$2f(p) + 1$$

= $2(5) + 1$
= $10 + 1$
= 11

Thus, Left Child = None i.e. no left child

<u>Right Child of Node 9 (Use formula on the list to evaluate):</u>

Right Child Position =
$$2f(p) + 2$$

= $2(2) + 2$
= $4 + 2$
= 6

Thus, Right Child = Node 10

Tree Representation:

Parent of Node 35 (Use formula on the list to evaluate):

Parent Position = floor[
$$(f(p) - 1) / 2$$
]
= floor[$(5 - 1)/2$]
= floor($4/2$)
= floor(2)
= 2

Thus, Parent Node = Node 50

<u>Left Child of Node 70 (Use formula on the list to evaluate):</u>

Left Child Position =
$$2f(p) + 1$$

= $2(6) + 1$
= $12 + 1$
= 13

Thus, Left Child = Node 66

Right Child of Node 25 (Use formula on the list to evaluate):

Right Child Position =
$$2f(p) + 2$$

= $2(0) + 2$
= $0 + 2$
= 2

Thus, Right Child = Node 50

Tree Representation:

T = [**H**, **M**, **O**, **C**, **A**, **L**, **K**, **Y**, **B**, **S**, None, None, None, None]

Parent of Node S (Use formula on the list to evaluate):

Parent Position = floor[
$$(f(p) - 1) / 2$$
]
= floor[$(9 - 1)/2$]
= floor($8/2$)
= floor(4)
= 4

Thus, Parent Node = Node A

<u>Left Child of Node O (Use formula on the list to evaluate):</u>

Left Child Position =
$$2f(p) + 1$$

= $2(2) + 1$
= $4 + 1$
= 5

Thus, Left Child = Node L

<u>Right Child of Node C (Use formula on the list to evaluate):</u>

Thus, Right Child = Node B

Tree Representation:

T = [55, 35, 65, 25, 45, None, 75, 15, None, 87, 98, None, None, None, None]

Parent of Node 87 (Use formula on the list to evaluate):

Parent Position = floor[
$$(f(p) - 1) / 2$$
]
= floor[$(9 - 1)/2$]
= floor($8/2$)
= floor(4)
= 4

Thus, Parent Node = Node 45

Left Child of Node 25 (Use formula on the list to evaluate):

Left Child Position =
$$2f(p) + 1$$

= $2(3) + 1$
= $6 + 1$
= 7

Thus, Left Child = Node 15

Right Child of Node 75 (Use formula on the list to evaluate):

Right Child Position =
$$2f(p) + 2$$

= $2(6) + 2$
= $12 + 2$
= 14

Thus, Right Child = None, i.e. no right child