Conversões

Comprimento

cm	inch	pés	mtr	km	milhas
1	.3937	.03281	.01	.00001	
2.54	1	.08333	.02778		
30.48	12	1	.3048		
100	39.37	3.281	1	.001	
100000	39370	3281	1000	1	.6214
160934	63360	5280	1609	1.609	1

Temperatura

de °C a °F	de °F a °C	
32 + (1,8 x °C)	(°F - 32) x 0,55	

Energía

ft-lbs	kg-m	kw-hr	hp-hr	in-lb	Joule
1	.1383			12	1.356
7.233	1			86.80	9.806
		1	1.341		859.9
		.7457	1		641.2
.0833	.01152			1	.113

Pressão

kgf/mm²	kgf/cm²	bar	psi	Мра
1	100	98.066	1422.334	9.807
0.01	1	0.9807	14.223	0.098
0.0102	1.0197	10	14.5038	0.1
0.0007	0.0703	0.06895	1	0.066895
0.10197	10.197	10	145.037	1

Velocidade

mtr/sec	ft/sec	km/hr	mph	ft/min
1	3.281	3.6	2.237	196.85
.3048	1	1.097	.6818	60
.2778	.9113	1	.6214	54.68
.4470	1.467	1.609	1	88
.00508	.01667	.01829	.01136	1

Torque

ft-lbs	lbs-in	da-Nm	Nm	kp-m	kg-m
1	12	.13556	1.356	.1382	.1382
.08333	1	.01130	.1130	.01152	.01152
7.376	88.51	1	10	1.019	1.019
.7376	8.851	.1	1	.102	.102
7.2359	86.80	.9806	9.806	1	1

Volume

in³	cm³	litros	quart	galón
1	16.39	.01639	.0173	.004
.06102	1	.001	.0010	.00026
61.02	1000	1	1.05	.26
57.75	947	.9463	1	.25
231.26	3790	3.79	3.98	1

Viscosidade

(SSU)	ISO-VG	CentiStoke	CentiPoise*
31	2	1.0	0.876
35	3	2.5	2.19
40	5	4.2	3.68
45	5/7	5.9	5.17
50	7	7.5	6.57
55	7/10	8.8	7.71
60	10	10.5	9.20
70	10/15	13.2	11.56
80	15	15.7	13.75
90	22	18.2	15.94
100	22	20.6	18.05
150	32	32.0	28.03
200	46	43.2	37.84
300	68	65.0	56.94
400	68/100	86.0	75.34
500	100	108	94.61
750	150	162	141.91
1000	220	216	189.22
1500	320	323	282.95
2000	460	431	377.56
3000	680	648	567.65
4000	1000	862	755.11

Força e Peso

newt	daN	kg (kp)	lbs
1	.1	.1020	.224
10	1	1.020	2.24
9.807	.9807	1	2.20
4.4482	.4448	.4536	1

Potência

hp	kw	met hp
1	.7457	1.014
1.341	1	1.360
.9863	.7355	1

Área

in²	cm²	mm²
1	6.452	645.2
.1550	1	.01
.001550	100	1

Fórmulas

Equações para Bombas e Motores

Potência (HP) =
$$\frac{\text{Pressão (PSI)} \times \text{Vazão (GPM)}}{1714}$$
 = $\frac{\text{Pressão (bar)} \times \text{Vazão (Its/min)}}{450 \times \eta}$

Equações para Motores:

Torque (daNm) =
$$\frac{\Delta p \text{ (bar)} \times \text{Cilindrada (cm}^3/\text{rev})}{628}$$

Torque (kgm) =
$$\frac{\text{Potência (HP)} \times 716,2}{\text{n (RPM)}}$$

Equações para Motores de Roda:

N° de voltas (RPM) =
$$\frac{\text{Velocidade (km/hs)}}{\text{Raio estático (mm)} \times 0,000754}$$

Raio estático (mm) =
$$\frac{\text{Velocidade (km/hs)}}{\text{n (RPM)} \times 0,000754}$$

Equações para Cilindros Hidráulicos:

Área do embolo (cm²) =
$$\frac{d_1^2 \text{ [mm]}^2. \pi}{400}$$

Área da haste (cm²) =
$$\frac{d_2^2 \text{ [mm]}^2. \pi}{400}$$

Área diferencial (cm²) =
$$\frac{(d_1^2[mm]^2 - d_2^2[mm]^2) \pi}{400}$$

Força de avanço (kN) =
$$\frac{p \cdot d_1^2 [mm]^2 \pi}{40.000}$$

Força de recuo (kN) =
$$\frac{p \cdot (d_1^2 [mm]^2 - d_2^2 [mm]^2) \pi}{40.000}$$

Cálculo de diâmetro nominal

Cálculo da perda de carga em tubulações

Devido a viscosidade e a capacidade da bomba, é possível determinar, mediante a tabela, a perda de carga para cada 100 m de tubulação. Estabelece-se, nas escalas de viscosidade, capacidade e diâmetro interno do tubo, os valores correspondentes V, Q e D. Unir os pontos V e Q com uma reta que cruza sobre a linha "índice" e o ponto de intersecção é o ponto I.

Traçar deste ponto I, uma reta que passe por D até que se encontre com a escala da perda de carga no ponto P; o valor correspondente representa a perda de carga ao comprimento de 100 m de tubulação.

EXEMPLO: uma tubulação percorrida por um fluído de 150 cSt. de viscosidade, com uma vazão de 200 l/min e com um diâmetro de 40 mm, tenderá a uma perda de carga de 1 kg/cm2 por cada 100 m de comprimento.

Rosca NPT e UNF / SAE

Rosca NPT

Cônica

NPT	FIOS POR POLEGADA	Α	В	С	D
1/8	27	10	9	10,4	9
1/4	18	14,2	12,5	13,9	11,7
3/8	18	14,2	13,5	17,3	15,2
1/2	14	19	16,5	21,6	18,8
3/4	14	19	17,5	27	24
1	11 1/2	24	20,5	33,7	30
1.1/4	11 1/2	25	21,0	42,5	38,8
1.1/2	11 1/2	25,5	21,0	48,7	45
2	11 1/2	26	22	60,7	57
2.1/2	8	38,5	30	73,5	68
3	8	40	32	89,4	84

Rosca UNF/SAE

Paralela

SAE	UNF paralela	FIOS POR POLEGADA	Α	В	С	D	E	G	ı	М	х
-	5/16	24	7,5	10	7,8	6,9					
-	3/8	24	7,5	10	9,4	8,5					
4	7/16	20	9,2	11,5	11	9,8	21,0	12,4	2,6	1,6	2,6
5	1/2	20	9,2	11,5	12,6	11,5	22,9	14,0	2,6	1,6	2,7
6	9/16	18	10	12,7	14,1	11,9	24,9	15,6	2,7	1,6	2,7
8	3/4	16	11,1	14,2	18,9	17,5	29,9	20,6	2,7	2,3	2,7
10	7/8	14	12,7	16,5	22,1	20,5	34,0	24,0	2,7	2,3	2,7
12	1 1/16	12	15	19	26,8	24,9	40,9	29,2	3,5	2,3	19
14	1 3/16	12	15	19	30	28	45,0	32,4	3,5	2,3	19
16	1 5/16	12	15	19	33,1	31,2	48,9	35,5	3,5	3,2	19
20	1 5/8	12	15	19	41,1	39,2	58,0	43,5	3,5	3,2	19
24	1 7/8	12	15	19	47,5	45,6	64,9	49,9	3,5	3,2	19

Rosca BSP

norma ISO 228

	i												
BSP	BSPT	BSP	FIOS p/	Α	A1	В	D	D1	D2	D3	D4	E	F
paralela	cônica	com O-Ring	POL	A	AI	В	, D	וט	DZ	DS	D4	-	Г
1/8 BSP	1/8 BSPT	1/8 BSP	28	8	10	10	9,6	10,1	14	18	8,8	17	
1/4 BSP	1/4 BSPT	1/4 BSP	19	12	14,2	13	13	13,7	18	22	11,8	22	
3/8 BSP	3/8 BSPT	3/8 BSP	19	12	14,2	15	16,5	17,2	22	24,2	15,3	24	
1/2 BSP	1/2 BSPT	1/2 BSP	14	14	19	16	20,8	21,6	26	30	19	31	0,5
3/4 BSP	3/4 BSPT	3/4 BSP	14	16	19	17	26,3	27	32	40	24,5	35	min
1 BSP	1 BSPT	1 BSP	11	18	24	20	33	34,1	39	46	30,7	43	
1.1/4 BSP	1.1/4 BSPT	1.1/4 BSP	11	20	25	22	41,8	42,7	49	54	39,6	53	
1.1/2 BSP	1.1/2 BSPT	1.1/2 BSP	11	22	25,5	22	47,7	48,6	55	60	45,4	60	
2 BSP	2 BSPT	-	11	24	26	24	59,5	60,0	68	-	57,2	-	-
2.1/2 BSP	2.1/2 BSPT	-	11	26	38,5	26	75	75,5	87	-	72,7	-	-
3 BSP	3 RSPT	-	11	28	40	28	87 7	89	103	_	85.5	_	-

Rosca métrica

norma ISO 262

1	létrica		étrica		étrica	A	В	D	D2	D3	D4	Е	F
pa	aralela	С	ônica	com	O-Ring								
М	8x1	MK	8x1			8	11	8	12	-	7	18	
М	10x1	MK	10x1	М	10x1	8	11	10	14	18	9	20	
М	12x1,5	MK	12x1,5	М	12x1,5	12	15	12	17	20	10,5	23	
М	14x1,5	MK	14x1,5	М	14x1,5	12	15	14	19	22	12,5	25	
М	16x1,5	MK	16x1,5	М	16x1,5	12	15	16	21	24,2	14,5	28	
М	18x1,5	MK	18x1,5	М	18x1,5	12	16	18	23	26,5	16,5	30	
М	20x1,5					14	17	20	25	-	18,5		
М	22x1,5	MK	22x1,5	М	22x1,5	14	17	22	27	30	20,5	34	0,5
М	24x1,5					14	17	24	29	-	22,5		min
М	26x1,5	MK	26x1,5			16	19	26	31	-	24,5		
М	27x2			М	27x2	16	19	27	32	40	25	40	
М	33x2			М	33x2	18	21	33	39	46	31	49	
М	42x2			М	42x2	20	23	42	49	54	40	60	
М	48x2			М	48x2	22	25	48	55	60	46		
М	60x2					24	26	60	68	-	58		
М	75x2					26	28	75	84	-	73		
М	88x2					28	30	88	98	-	86		

Flange SAE

(3000 PSI)

NDT	øA 0	_		F	:	
NPT	-3	В	С	métrica	UNC-28	G
1/2"	13	38,1	17,5	M8	5/6-18	16
3/4"	19	47,6	22,2	M10	3/8-16	16
1"	25	52,4	26,2	M10	3/8-16	17
1.1/4"	32	58,7	30,2	M10	7/16-14	20
1.1/2"	38	69,9	35,7	M12	1/2-13	20

Flange SAE (6000 PSI)

NPT	øA 0	В		F	•	(
NPI	-3	Ь	С	métrica	UNC-28	G
1/2"	13	40,5	18,2	M8	5/6-18	16
3/4"	19	50,8	23,8	M10	3/8-16	17
1"	25	57,2	27,8	M12	7/16-14	20
1.1/4"	32	66,7	31,8	M14	1/2-13	22
1.1/2"	38	79,4	26,6	M16	5/8-11	22

Aplicações para motores hidráulicos

Cálculo para veículos

1- Velocidade do motor:

$$\mathbf{n} = \frac{2,65 \times \text{Vkm x i}}{\text{Rm}}$$

Sem redutor usar i=1

Vkm = velocidade do veículo, km/h; Rm = raio médio do pneu, m; i = relação do redutor

2- Resistência ao atrito na translação do veículo: RR, daN

A resistência à locomoção depende do tipo de terreno:

 $RR = G \times p$

G= peso total do veículo, lbs daN; p= coeficiente de atrito do pneu (tabela 1)

Tabela 1: Coeficiente de atrito do pneu as diferentes superficie:

SUPERFICIE	р	SUPERFICIE	р
Concreto defeituoso	0,01	Macadam sinuoso	0,037
Concreto plano	0,015	Neve – 5 cm	0,025
Concreto sinuoso	0,02	Neve – 10 cm	0,037
Asfalto defeituoso	0,012	Superfície lisa	0,025
Asfalto plano	0,017	Superfície arenosa	0,04
Asfalto sinuoso	0,022	Barro	0,037 + 0,150
Macadam defeituoso (*)	0,015	Areia	0,060 + 0,150
Macadam plano	0,022	Areia solta	0,160 + 0,300

(*) Macadam = pavimento de pedra moída aglomerada por um rolo compactador.

3- Rampa: GR, daN

GR= G x (sen α + p x cos α) Ângulos de rampa (Tabela 2)

Tabela 2:

RAMPA %	ÂNGULO α	RAMPA %	ÂNGULO α
1	0° 35'	12	6° 5'
2	1° 09'	15	8° 31'
5	2° 51'	20	11° 19'
6	3° 26'	25	14° 3'
8	4° 35'	32	18°
10	5° 43'	60	31°

4- Força de aceleração: FA, daN

Força FA necessária para aceleração de 0 a máxima velocidade V e tempo necessário t.

$$FA = \frac{Vkm \times G, daN}{3.6 \times t}$$

FA = Força de aceleração, daN t = tempo

5- Força de tração: DP, daN

Força de tração adicional para iniciar o movimento de translação. Deve-se agregar a Força de tração nos itens 2, 3 e 4 no caso de força de arraste

6- Força de tração total: TE, daN

A força de tração total é a força necessária do veículo motriz. São a soma das forças obtidas nos itens 2 a 5, com um incremento de 10% por causa da resistência do ar.

TE=
$$1,1 \times (RR + GR + FA + DP)$$

RR= força necessária para vencer a resistência de locomoção.

GR= força necessária para vencer a rampa.

FA= força necessária para realizar a aceleração.

DP= força de tração adicional (arraste).

7- Torque do motor hidráulico: Mt, daN

Torque necessário para qualquer motor.

$$Mt = \frac{TE \times Rm}{N \times i \times \eta_M}$$

N= cilindrada do motor

η_M= eficiência mecânica (de estar disponível)

8- Aderência entre pneu e a superfície: Mw, daN

$$\mathbf{M}_{w} = \frac{G_{w} \times f \times Rm}{i \times \eta_{M}}$$

Para evitar patinamento, Ter as seguintes condições Mw > M f = fator de atrito (tabela 3)

Gw = peso total do veículo sobre as rodas, daN

Tabela 3:

SUPERFICIE	FATOR DE ATRITO	SUPERFÍCIE	FATOR DE ATRITO
Roda de aço x aço	0,15 + 0,20	Pneu x concreto	0,8 + 1,0
Pneu x superfície polida	0,5 + 0,7	Pneu x mato	0,4
Pneu x asfalto	0,8 + 1,0		

9- Carga radial do motor hidráulico: Prad, daN

Quando o veículo é utilizado com aro de roda montadas diretamente sobre o eixo do motor, a carga radial total sobre o eixo do motor Prad, compreende a soma da força do movimento e força a-tuante em cada roda.

Prad =
$$\sqrt{\frac{M}{Rm}}$$

Gw = peso total sobre cada roda

Prad = carga radial total sobre o eixo do motor

M/Rm = força de movimento

Conforme a carga calculada deve-se selecionar o motor hidráulico adequado

Circuitos hidráulicos

abertos e fechados

Os motores hidráulicos M+S podem ser utilizados tanto para circuitos abertos como em circuitos fechados.

Motor hidráulico em circuito aberto

Motor hidráulico em circuito fechado

Conexão individual, em série e em paralelo:

Os motores podem utilizar-se individualmente ou conectar-se em série ou paralelo.

No caso de funcionamento em série, o óleo de retorno flui de um motor para o outro seguinte. Isto quer dizer que cada motor utiliza a vazão de óleo total da bomba, procedimento eficaz para utilizar a capacidade da bomba, sempre e quando as perdas de carga através dos motores individuais são suficientes. Os valores admissíveis para as pressões de entrada e de retorno do motor assim como os valores de carga através dos motores, NÃO devem ser

ultrapassados.

Os eixos dos motores conectados em série não deverão estar acoplados mecanicamente (existem pequenas diferenças entre os deslocamentos e as vazões de saída dos motores).

Com o funcionamento em paralelo, a vazão total de óleo procedente da bomba se divide entre os motores conectados e a perda de carga máx. admissível pode ser utilizada completamente.

Sistemas hidráulicos:

Uma combinação de funcionamento em paralelo e em série é comumente usado para a transmissão hidrostática de veículos. O torque elevado e a velocidade reduzida permitidos para o funcionamento em paralelo são utilizados para o arranque e o deslocamento a velocidade lenta (trabalho em rampas elevadas inclusive).

O funcionamento em série permitirá obter uma velocidade elevada e um torque reduzido para o deslocamento em grande velocidade. A transmissão hidrostática realizada desta forma corresponde de forma a obter duas velocidades. Durante o funcionamento em série, os motores estão conectados pela mesma vazão de óleo, disposição que corresponde ao acoplamento mecânico dos motores como um diferencial.

Se empregam válvulas de sucção entre os motores porque a superfície sobre a qual se desloca o veículo comunica-se mecanicamente as rodas de arraste.