TALLER INTEGRALES DE LÍNEA Y CAMPOS VECTORIALES

 x² + y² + z² = a², x ≥ 0, y ≥ 0, z ≥ 0. Para solucionar parametrice las rectas Hallar la integral de línea ∫_σ y dx+z dy+x dz donde σ es la curva x = a cos t, y = a sen z = bt (0 ≤ t ≤ 2π). Sea F(x, y, z) = (z³ + 2xy, x², 3xz²). Probar que ∫_σ F = 0 si σ es el perímetro cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Hallar el trabajo realizado por la fuerza F(x, y) = (3y² + 2, 16x) 		Calcular integral
 Hallar las coordenadas del centro de gravedad del contorno del triángulo esférica x² + y² + z² = a², x ≥ 0, y ≥ 0, z ≥ 0. Para solucionar parametrice las rectas Hallar la integral de línea ∫_σ y dx+z dy+x dz donde σ es la curva x = a cos t, y = a sen z = bt (0 ≤ t ≤ 2π). Sea F(x,y,z) = (z³ + 2xy, x², 3xz²). Probar que ∫_σ F = 0 si σ es el perímetro e cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Hallar el trabajo realizado por la fuerza F (x,y) = (3y² + 2,16x) 	1	$\int_C (x+y) ds$ donde σ es el borde del triángulo con vértices $(0,0), (1,0), (0,1)$
 x² + y² + z² = a², x ≥ 0, y ≥ 0, z ≥ 0. Para solucionar parametrice las rectas Hallar la integral de línea ∫_σ y dx+z dy+x dz donde σ es la curva x = a cos t, y = a sen z = bt (0 ≤ t ≤ 2π). Sea F(x,y,z) = (z³ + 2xy,x²,3xz²). Probar que ∫_σ F = 0 si σ es el perímetro cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Hallar el trabajo realizado por la fuerza F(x,y) = (3y² + 2,16x) 		Para solucionar parametrice las rectas
 Hallar la integral de línea ∫_σ y dx+z dy+x dz donde σ es la curva x = a cos t, y = a sen z = bt (0 ≤ t ≤ 2π). Sea F(x, y, z) = (z³ + 2xy, x², 3xz²). Probar que ∫_σ F = 0 si σ es el perímetro e cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Hallar el trabajo realizado por la fuerza F(x, y) = (3y² + 2, 16x) 	2	
cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1). Hallar el trabajo realizado por la fuerza $\overrightarrow{F}(x,y) = (3y^2 + 2, 16x)$	3	Hallar la integral de línea $\int_{\mathcal{S}} y dx + z dy + x dz$ donde σ es la curva $x = a \cos t$, $y = a \sin t$,
$\overrightarrow{F}(x,y) = (3y^2 + 2, 16x)$	4	Sea $F(x,y,z)=(z^3+2xy,x^2,3xz^2)$. Probar que $\int_{\sigma} \overrightarrow{F}=0$ si σ es el perímetro de cualquier cuadrado unitario (es decir, con un vértice en el origen y lado 1).
5		Hallar el trabajo realizado por la fuerza
elipse $b^2x^2 + y^2 = b^2$. ¿Qué elipse (es decir, qué valor de b) hace mínimo el trabajo?	5	al mover una partícula desde $(-1,0)$ hasta $(1,0)$ siguiendo la mitad superior de la