```
In [391]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import matplotlib as mpl
   import bisect
   from matplotlib import colors
   from matplotlib.colorbar import ColorbarBase
   %config InlineBackend.figure_format = 'retina'
```

Question 1

```
In [269]: fig, ax = plt.subplots(1,1, figsize=(5,4))
          for i, columns in enumerate(reversed(customer.columns)):
              bar_color = ('#00279B' if i in [2,3,4] else '#AEBDBE')
              bar_height = customer.loc[:, :columns].sum(axis=1)
              label height = bar height - customer.loc[:, columns] / 2 - 1.8
              label_color = ('#5B9AE5' if i in [2,3,4] else '#4E4E4E')
              label weight = ('bold' if i in [2,3,4] else 'regular')
              axis_color = ('#033290' if i in [2,3,4] else '#4E4E4E')
              # draw segments
              ax.bar(customer.index, bar height
                    ,color=bar_color, edgecolor='white', linewidth=0.8
                    ,width=0.55)
              # label segments
              for i, height in enumerate(label height):
                  ax.text(i, height, str(customer.loc[:, columns][i]) + '%' ,
                          ha='center', color=label_color,
                          fontdict=dict(fontsize=11
                          ,weight='light'))
              # label axis
              ax.text(-0.6, label_height[0], columns,
                  ha='center', color=axis_color,
                  fontdict=dict(fontsize=11
                  ,weight=label_weight))
          ax.spines['top'].set visible(False)
          ax.spines['right'].set visible(False)
          ax.spines['left'].set visible(False)
          ax.spines['bottom'].set_color('#CDD0CE')
          ax.get yaxis().set visible(False)
          ax.tick params(length=6, color='white')
          ax.set_xticks([0,1])
          ax.set xticklabels(['US Population','Our Customers']
                              ,fontsize=12
                             ,color='#414141', fontweight='medium')
          # draw annotations
          ax.plot([0.55/2*1.1,0.55/2*1.1], [23,53], c='#415BA3', lw=.8)
          ax.plot([0.55/2*1.1+1,0.55/2 *1.1+1], [19,69], c='#415BA3', lw=.8)
          ax.text(0.55/2*1.2, 36, '30%', ha='left',
                  color='#00279B', fontsize=16, fontweight='bold')
          ax.text(0.55/2*1.2+1, 43, '50%', ha='left',
                  color='#00279B', fontsize=16, fontweight='bold')
          # add title
          ax.set title('Distribution by customer segment' +' '*8
                       ,loc='right' ,pad=15
                      , fontsize=16 , color='#3C3C3C', fontweight='roman')
          plt.tight layout()
          plt.show()
```

Distribution by customer segment

Question 2

Out[4]:

	Entity	Code	Year	Life expectancy at birth, total (years)
0	Afghanistan	AFG	1960	32.292
1	Afghanistan	AFG	1961	32.742
2	Afghanistan	AFG	1962	33.185
3	Afghanistan	AFG	1963	33.624
4	Afghanistan	AFG	1964	34.060

In [10]: # Rename Life Expectancy column for easier reading

df_life = df_life.rename(columns={"Life expectancy at birth, total (years)"

df_life

Out[10]:

	Entity	Code	Year	Life Expectancy
0	Afghanistan	AFG	1960	32.292
1	Afghanistan	AFG	1961	32.742
2	Afghanistan	AFG	1962	33.185
3	Afghanistan	AFG	1963	33.624
4	Afghanistan	AFG	1964	34.060
•••				
13742	Zimbabwe	ZWE	2012	56.516
13743	Zimbabwe	ZWE	2013	58.053
13744	Zimbabwe	ZWE	2014	59.360
13745	Zimbabwe	ZWE	2015	60.398
13746	Zimbabwe	ZWE	2016	61.163

13747 rows × 4 columns

In [26]: df_life.loc[df_life['Entity'].isin(['Egypt', 'Belarus', 'Finland', 'Timor'])

Out[26]:

	Entity	Code	Year	Life Expectancy
912	Belarus	BLR	1960	67.708098
913	Belarus	BLR	1961	68.212659
914	Belarus	BLR	1962	68.635829
915	Belarus	BLR	1963	68.992073
916	Belarus	BLR	1964	69.289927
12488	Timor	TLS	2012	67.805000
12489	Timor	TLS	2013	68.033000
12490	Timor	TLS	2014	68.285000
12491	Timor	TLS	2015	68.569000
12492	Timor	TLS	2016	68.881000

228 rows × 4 columns

```
In [272]: # Putting 4 graphs of 4 countries together
          lg = '#808080'
          def axis plot(ax):
              ax.set_ylim(0, 85)
              ax.set_xlim(1960, 2017)
              ax.spines["top"].set_visible(False)
              ax.spines["right"].set visible(False)
              ax.spines["bottom"].set_color(lg)
              ax.spines["left"].set_color(lg)
              ax.set_ylabel("Life Expectancy (years)", fontsize=11)
              ax.set_xlabel("Year", fontsize=11)
              return ax
          fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(12,
                                                       gridspec kw={'hspace': 0.4, 'ws
          # Egypt
          df_life[df_life['Entity'] == 'Egypt'].plot(x='Year', y='Life Expectancy', c
                                                      ax=axis_plot(ax1), legend=False)
          years_egypt = [1960.5, 2016]
          values_{egypt} = [48.056, 71.484]
          ax1.scatter(years_egypt, values_egypt, color="black")
          ax1.set_title("Consistent Improvement in Egypt over Time", style='italic',
          ax1.text(0.45,0.84,'71.48',transform=fig.transFigure, fontsize=10, fontweig
          ax1.plot([1960,2016], [48.05,48.05], ':', c='#415BA3', lw=1)
          ax1.annotate("20 Years Increase", xy=(2016, 70), xytext=(2007.5, 43), color
          # Belarus
          df life[df life['Entity'] == 'Belarus'].plot(x='Year', y='Life Expectancy',
                                                        ax=axis plot(ax2), legend=Fals
          years_bel = [1960.5, 2016]
          values bel = [67.708, 73.826]
          ax2.scatter(years bel, values bel, color="black")
          ax2.set_title("Stability in Life Expectancy in Belarus since 1960",
                        style='italic', fontsize=11.5, loc='left', pad=10)
          ax2.text(0.89,0.85,'73.82',transform=fig.transFigure, fontsize=10, fontweig
          ax2.plot([1960,2016], [67.7,67.7], ':', c='#415BA3', lw=1)
          # Finland
          df life[df life['Entity'] == 'Finland'].plot(x='Year', y='Life Expectancy',
                                                        label='Finland',ax=axis_plot(a
          df_life[df_life['Entity'] == 'World'].plot(x='Year', y='Life Expectancy', 1
                                                        label='World',ax=axis plot(ax3
          years fin = [1960.5, 2016]
          values fin = [68.819, 81.78]
          years world= [1960.5, 2016]
          values_world = [52.57, 72.03]
          ax3.scatter(years_fin, values_fin, color="black")
          ax3.scatter(years world, values world, color="black")
          ax3.set title("Higher Than Average Life Expectancy in Finland\nOver Time",
```

```
style='italic', fontsize=11.5,loc='left', pad=10)
ax3.text(0.45,0.4375,'81.78',transform=fig.transFigure, fontsize=10, fontwe
ax3.text(0.45,0.3675,'72.03',transform=fig.transFigure, fontsize=10, fontwe
ax3.legend(loc='lower right')
# Timor
df life[df life['Entity'] == 'Timor'].plot(x='Year', y='Life Expectancy', c
                                           ax=axis plot(ax4), legend=False)
years timor = [1960.5, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 2016]
values timor = [33.729, 39.085, 38.077, 36.659, 35.092, 33.714, 32.826, 32.
ax4.scatter(years timor, values timor, color='black')
ax4.set_title("Indonesian Invasion of Timor Causes Drop in Life Expectancy"
              fontsize=11.5, loc = 'left', pad=10)
ax4.text(0.89,0.39,'68.88',transform=fig.transFigure, fontsize=10, fontweig
ax4.annotate("39 Years", xy=(1972, 40), xytext=(1972, 50), color='red',
             arrowprops=dict(arrowstyle="->"))
ax4.annotate("32 Years", xy=(1979, 32), xytext=(1978, 20), color='red',
             arrowprops=dict(arrowstyle="->"))
plt.suptitle("Life Expectancy in Years from 1960 to 2016
                                                                   , horizon
plt.show()
```

Life Expectancy in Years from 1960 to 2016

Question 3

Out[286]:

	country	region	month	excess_deaths_pct_change
0	Brazil	Recife	1	0.308805
1	Brazil	Recife	2	0.303300
2	Brazil	Recife	3	0.295630
3	Brazil	Recife	4	0.845450
4	Brazil	Recife	5	1.945131

Out[369]:

	country	region	month	excess_deaths_pct_change	color_hex
34	Brazil	São Paulo	7	0.369215	#FFC57E
27	Brazil	Rio de Janeiro	7	-0.023321	#E8F0F4
13	Brazil	Manaus	7	0.063158	#FFEDD4
6	Brazil	Recife	7	0.523522	#FF804C
20	Brazil	Fortaleza	7	0.499261	#FFC57E

```
In [503]: fig,ax = plt.subplots(1,1, figsize=(8,4))
          regions = df brazil.region.unique()
          num_regions = len(regions)
          ones = np.ones(num regions)
          for month in range (7,0,-1):
              ax.barh(regions, month * ones
                      ,height=0.6
                      ,color=df brazil(df brazil.month == month)['color hex'],
                      align='center',
                      edgecolor='white')
          # hide spines
          ax.spines['top'].set_visible(False)
          ax.spines['right'].set visible(False)
          ax.spines['left'].set_visible(False)
          ax.spines['bottom'].set color('#CDD0CE')
          ax.tick_params(length=4, color='#CDD0CE')
          # configure y-axis alignment
          ax.set yticks(np.linspace(0,4,5))
          ax.set yticklabels(regions, ha='left')
          ax.get_yaxis().set_tick_params(pad=100)
          ax.yaxis.set tick params(length=0)
          # configure x-axis alignment
          ax.set xticks(np.linspace(0.2, 6.2, 7))
          ax.set_xticklabels(['January', 'February', 'March', 'April', 'May', 'June',
                             ,fontsize=8
                             ,ha='center')
          ax.set_title("Weekly death rates in Brazil" + " "*32, horizontalalignment="
          # Adding color bar
          colors = ['#E8F0F4','#FFEDD4', '#FFC57E','#FF804C','#E93C28','#B10000']
          bounds = [1,2,3,4,5,6,7]
          boundaries = [0, '0', '+25', '+50', '+100', '+200']
          ax c = fig.add axes([0.585, 0.95, 0.325, 0.03])
          cmap = mpl.colors.ListedColormap(colors)
          cb2 = ColorbarBase(ax c, cmap=cmap,
                             boundaries=bounds,
                             ticks=bounds,
                             label=boundaries,
                             orientation='horizontal')
          cb2.set label('Deviation from expected deaths, %' + ' '*11, fontsize=8, font
          cb2.set ticklabels(boundaries)
          cb2.ax.tick params(labelsize = 8, length = 17, direction = 'inout')
          cb2.outline.set visible(False)
          for label in cb2.ax.xaxis.get ticklabels()[:1]:
```

label.set_visible(False)

