1. 请问 $L_1 = \{a^n b^j a^n b^j | n \ge 0, j \ge 0\}$ 是否为上下文无关语言,给出理由或证明。

解. L_1 不是上下文无关语言,采用反证法证明。

证明. 若 L_1 是上下文无关语言,设 p 是上下文无关语言泵引理的关键长度(与生成 $L_1 - \{\epsilon\}$ 的上下文无关文法 G 有关),考虑 L_1 中的串 $s = a^p b^p a^p b^p$,由于 $|s| \ge p$,知 s 可以写成 s = uvxyz 的形式,其中 $|vxy| \le p$, $|vy| \ge 1$ 。将 $s = a^p b^p a^p b^p$ 划分成如下四个区域,

$$\overbrace{a\cdots a}^{\text{(II)}}\overbrace{b\cdots b}^{\text{(III)}}\overbrace{a\cdots a}^{\text{(IV)}}\overbrace{b\cdots b}^{\text{(IV)}}$$

分情况讨论 v,y 的情况:

(1) vxy 只在区域 (I)

$$\underbrace{a \cdots a \cdots a \cdots a \cdots a \cdots a \cdots a}_{v} \underbrace{a \cdots b}_{x} \underbrace{a \cdots b}_{z} \underbrace{a \cdots a}_{z} \underbrace{b \cdots b}_{z}$$

此时有 $v=a^{k_1}, y=a^{k_2}$,其中 $k_1+k_2 \geq 1$ 。考察 $uv^2xy^2z=a^{p+k_1+k_2}b^pa^pb^p$,由 $p+k_1+k_2\neq p$ 知 $uv^2xy^2z\notin L_1$,而由上下文无关语言的泵引理知 $uv^2xy^2z\in L_1$,故产生矛盾!

- (2) vxy 只在区域 (II), 或只在区域 (III), 区域 (IV) 同情况 (1) 类似分析可得到矛盾。
- (3) vxy 跨区域(I)和(II)
 - ① v 只含 a, y 只含 b

此时有 $v = a^{k_1}, y = b^{k_2}$,其中 $k_1 + k_2 \ge 1$ 。考察 $uv^2xy^2z = a^{p+k_1}b^{p+k_2}a^pb^p$,因 $k_1 + k_2 \ge 1$,必有 $p + k_1 \ne p$ 或 $p + k_2 \ne p$ 中的一个成立,故 $uv^2xy^2z \notin L_1$,而 由上下文无关语言的泵引理知 $uv^2xy^2z \in L_1$,故产生矛盾!

② $v \triangleq a, b, y 只含 b$

$$\underbrace{\overbrace{a\cdots ab\cdots b\cdots b\cdots b\cdots b\cdots b}^{p}\underbrace{b\cdots b}_{x}\underbrace{b\cdots a\cdots ab\cdots b}_{z}$$

此时有 $v = a^{k_1}b^{k_2}, y = b^{k_3}$,其中 $k_1, k_2 \ge 1$ 。考察 $uv^2xy^2z = a^pb^{k_2}a^{k_1}b^{p+k_3}a^pb^p$,显然不属于 L_1 ,而由上下文无关语言的泵引理知 $uv^2xy^2z \in L_1$,故产生矛盾!

- ③ v 只含 a, y 含 a, b 同情况 ② 类似分析可得到矛盾。
- (4) vxy 跨区域 (II) 和 (III), 或跨区域 (III) 和 (IV) 对 L_1 而言¹, 同情况 (3) 类似分析可得到矛盾。

 1 对题 2 L_2 而言,如果仍然取 $s=a^pb^pa^pb^p$,跨区域 (II) 和 (III) 和跨区域 (I) 和 (III) 属于不同情况,需要详细讨论。

2. 请问 $L_2=\{a^nb^ja^jb^n|n\geq 0, j\geq 0\}$ 是否为上下文无关语言,给出理由或证明。

解. L_2 是上下文无关语言,因为存在上下文无关文法 G=(V,T,S,P) 能够生成 L_2 ,其中 $V riangleq \{S,E_{ab},E_{ba}\},T riangleq \{a,b\}$,规则 P 为,

$$S \rightarrow E_{ab} \mid \epsilon$$

$$E_{ab} \rightarrow aE_{ab} b \mid E_{ba}$$

$$E_{ba} \rightarrow bE_{ba} a \mid \epsilon$$