EE2703: Applied Programming Lab Assignment 3: Linear Least Squares Fitting

Soham Roy EE20B130

February 14, 2022

1 Introduction

For this assignment we use the Bessel function and Gaussian noise to study the effect of changing standard deviation on the linear fitting of the data.

$$f(t) = AJ_2(t) + Bt + n(t)$$

Where, A = 1.05, B = -0.105, $J_2 =$ Bessel function, n(t) = Noise function. Our aim is to relate the error in estimating A, B to the standard deviation of the Gaussian noise.

2 Subquestions

2.1 Generate the Data

On running the python script generate_data.py, the data is written to the file fitting.dat. The scipy library has been used to calculate the Bessel function. The numpy.array t contains 101 equally spaced numbers between 0 and 10, which are fed into the Bessel function and added with noise to generate the data.

2.2 Load the Data

The data from fitting.dat is loaded using numpy.loadtxt(). The first column of raw_data are the time values, and the subsequent columns are the corresponding noisy data values.

```
raw_data = loadtxt(DATAFILE)
Time = raw_data[:, 0]
F = raw_data[:, 1:]
```

2.3 The Function and the Noise

The true values are generated using $F_{true} = g(Time)$, where the function g(t,A,B) defined as:

```
def g(t, A=A_true, B=B_true):
    return A * jn(2, t) + B * t
```

where A_{true} , $B_{\text{true}} = 1.05$, -0.105 are the true values of A and B. The noise is generated using Sigma = logspace(-1, -3, K), where K = 9 is the number of curves to be plotted.

2.4 Plot the Data

We plot the data along with the function g(t,A,B) for A=1.05, B=-0.105.

```
plot(Time, F)
plot(Time, F_true, color='black', lw=2)
```


2.5 Plot with Error Bars

A plot of the first column of data with error bars has been generated, with every 5^{th} data item plotted for readability. The exact curve has also been plotted to see how much the data diverges.

errorbar(Time[::5], F[::5, 0], Sigma[0], fmt="ro")
plot(Time, F_true, color='black', lw=2)

2.6 Equate the Vectors

$$g(t, A, B) = \begin{pmatrix} J_2(t_1) & t_1 \\ \dots & \dots \\ J_2(t_m) & t_m \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} \equiv M \cdot P$$
 (1)

F_true.reshape(N, 1) is g(t, A, B), the vector of the true values. M = c_[jn(2, Time), Time] generates M, which is multiplied by [[A_true], [B_true]], i.e. P, to obtain the RHS vector. assert ensures that the two vectors are equal by evaluating numpy.allclose(), as we cannot reliably equate floats.

2.7 Mean Squared Error

The mean squared error between the data (f_k) and the assumed model has been calcuated for every combination of A and B, where A and B range from 0 to 1 and -0.2 to 0 respectively.

The following formula has been implemented:

$$\epsilon_{ij} = \frac{1}{101} \sum_{k=0}^{101} (f_k - g(t_k, A_i, B_j))^2$$

by looping over the following line of code:

$$eps[i][j] = mean((F[:, 0] - g(Time, A[i], B[j])) ** 2)$$

2.8 Plot the MSE

The contour plot has been generated by contour, and labeled using clabel. Further, the exact location of (A_true, B_true) has been plotted and annotated.

```
clabel(contour(A, B, eps, 15))
plot([A_true], [B_true], "ro")
annotate("Exact location", xy=(A_true, B_true), size=16)
```


2.9 Best Estimate for A and B

The matrix M, defined in Equation 1, has been used to find the best estimate of A and B for the first column of data. This was done by computing the least-squares solution for it using scipy.linalg.lstsq() to print:

```
"Best estimate: A = \{\}, B = \{\}".format(*lstsq(M, F[:, 0])[0])
```

2.10 Plot the Errors in A, B

The errors in A and B have been calculated by subtracting the true values:

These have thus been plotted against the standard deviations of the data:

```
plot(Sigma, Aerr, 'o', linestyle="dashed")
plot(Sigma, Berr, 'o', linestyle="dashed")
```


2.11 Plot using log-log Scale

The scale of the graph has been changed to log-log, with an errorbar() plot:

```
xscale("log")
yscale("log")
errorbar(Sigma, Aerr, Sigma, fmt="o")
errorbar(Sigma, Berr, Sigma, fmt="o")
```


3 Conclusion

As we see from the plots, the error in estimated A and B increases with increase in the standard deviation of the Gaussian noise in the data. Further, we see that the increase is somewhat linear when plotted on a log-log scale.