Accepted Manuscript

Antibiotic-resistance, enterotoxin gene profiles and farm-level prevalence of Staphylococcus aureus in cow, sheep and goat bulk tank milk in Jordan

Mohammad M. Obaidat, Amira A. Roess, Amjad A. Mahasneh, Rana A. Al-Hakimi

PII: S0958-6946(18)30038-4

DOI: 10.1016/j.idairyj.2018.02.001

Reference: INDA 4274

To appear in: International Dairy Journal

Received Date: 13 November 2017
Revised Date: 9 February 2018
Accepted Date: 9 February 2018

Please cite this article as: Obaidat, M.M., Roess, A.A., Mahasneh, A.A., Al-Hakimi, R.A., Antibiotic-resistance, enterotoxin gene profiles and farm-level prevalence of *Staphylococcus aureus* in cow, sheep and goat bulk tank milk in Jordan, *International Dairy Journal* (2018), doi: 10.1016/j.idairyj.2018.02.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Antibiotic-resistance, enterotoxin gene profiles and farm-level prevalence of
2	Staphylococcus aureus in cow, sheep and goat bulk tank milk in Jordan
3	
4	
5	
6	
7	Mohammad M. Obaidat ^a , Amira A. Roess ^b , Amjad A. Mahasneh ^c , Rana A. Al-Hakimi ^c
8	
9	
10	
11	
12	^a Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine
13	Jordan University of Science and Technology, Irbid 22110, Jordan,
14	^b Department of Global Health, The George Washington University, Washington, DC
15	20052, United States
16	^c Department of Applied Biological Science, Faculty of Science and Arts, Jordan
17	University of Science and Technology, Irbid 22110, Jordan
18	
19	
20	
21	
22	* Corresponding author. Tel.: +962 7201000 ext. 22061.
23	E-mail address: mmobaidat@just.edu.jo (M. Obaidat)
24	

25	
26	ABSTRACT
27	
28	Bulk tank milk was collected from 44 cow, 47 sheep and 26 goat farms to determine
29	antibiotic resistance, enterotoxin gene profiles, and Staphyococcus aureus prevalence in
30	Jordan. S. aureus (n = 169) was detected in 69.2% of farms; 65.9% cow, 68.1% sheep, and
31	76.9% goat farms. Thirty-three (19.5%) isolates harboured enterotoxin genes, sec was the
32	most prevalent (75.8%) and six profiles were observed. Resistance to ≥ 1 antibiotic class
33	and multidrug resistance were exhibited by 93.5% and 59.2% of isolates, respectively. One
34	goat and two sheep isolates resisted seven classes. More than 50% of the isolates resisted
35	penicillin, ampicillin, and clindamycin and 30-40% resisted tetracycline, gentamicin,
36	rifampin and erythromycin. About 20% resisted cefotaxime, doxycycline and amoxicillin-
37	clavulanic acid. Meanwhile, 10% resisted chloramphenicol, sulfamethoxazole-
38	trimethoprim and ciprofloxacin. The resistance found is alarmingly higher than elsewhere
39	and necessitates programs to promote judicious use of antibiotics in Jordan.
40	
41	
42	
43	

1. Introduction

1	5
4	J

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

44

Staphylococcus aureus can cause several diseases in human and animals, including foodborne intoxication in humans and mastitis in animals (Hennekinne, De Buyser, & Dragacci, 2012; Ruegg, 2012). Staphylococcal foodborne intoxication, which results from ingesting food contaminated with staphylococcal enterotoxin, is an important public health issue worldwide (Hennekinne et al., 2012; Painter et al., 2013). Several food types provide a suitable environment for S. aureus growth and enterotoxin production, including milk and milk products (Cretenet, Even, & Le Loir, 2011; Hennekinne, et al., 2012; Kadariya, Smith, & Thapaliya, 2014; Sabike, Fujikawa, Sakha, & Edris, 2014). S. aureus contaminates milk through contaminated containers, unhygienic farm environments, unhygienic handling, mastitic udders and other routes (Jørgensen, Mørk, Høgasen, & Rørvik, 2005; Kümmel, et al., 2016). Even though S. aureus can be killed during pasteurisation, the heat stable enterotoxins may survive the pasteurisation process and cause intoxication (Hennekinne et al., 2012; Oliver, Boor, Murphy, & Murinda, 2009). In dairy ruminants, S. aureus can cause contagious mastitis, which decreases milk production and leads ultimately to economic and financial losses for the dairy industry (Botaro et al., 2015; Tesfaye, Regassa, & Kelay, 2010). The dairy industry in Jordan, which includes cow, sheep and goat milk, is an important economic sector and contributes \$160 million yearly to the national gross domestic product (DoS, 2015). A recent report from Jordan found that mastitis is very common in dairy ruminants and between 30–51% of mastitis cases require veterinary interventions (Obaidat, Al-Zyoud, Bani Salman, & Davis, 2017; Obaidat, Bani Salman, Davis, & Roess, 2018). Several antibiotics are used to treat mastitis in Jordan including amoxicillin, tetracyclines and gentamicin (Obaidat et al.,

68	2017) and this may result in emerging resistance in Jordan as it has elsewhere (Pantosti,
69	Sanchini, & Monaco, 2007).
70	Globally, studies usually determine the prevalence of <i>S. aureus</i> in individual herds
71	or in a few preselected herds (or characterise isolates from mastitis cases or milk samples
72	with no reference to prevalence (Cortimiglia et al., 2015; Fessler et al., 2010;
73	Vanderhaeghen et al., 2010). In Jordan, anecdotal evidence from field veterinarians and
74	from our diagnostic laboratory observed a significant proportion of drug resistant mastitis
75	cases in dairy ruminants that require expensive and lengthy treatment and in many cases
76	culling (Jebreen and Zuraikat, personal communication). In addition to its animal health
77	impact, in subclinical mastitis, S. aureus infection does not change the organoleptic
78	characteristics of milk (Le Maréchal, Thiéry, Vautor, & Le Loir, 2011). Thus, the
79	probability of foodborne intoxication through the consumption of milk and dairy products
80	exists. Moreover, the production of unpasteurised cheese (Bayada cheese) from bulk milk
81	is widely practiced in Jordan and other Middle Eastern countries (Hilali, El-Mayda, &
82	Rischkowsky, 2011).
83	Bulk tank milk (BTM) testing can be a valuable and inexpensive approach to
84	determine the herd prevalence of <i>S. aureus</i> compared with testing individual milk samples
85	This study aimed to shed light on the magnitude of the animal and public health impact of
86	S. aureus in dairy ruminants in Jordan. Specifically, the objectives were to (1) determine
87	the prevalence of S. aureus in bulk tank milk from cow, sheep and goat farms in Jordan,
88	(2) investigate the proportion of <i>S. aureus</i> isolates that carry enterotoxin genes, (3)
89	determine the antibiotic resistance percentages, multidrug resistance of <i>S. aureus</i> among
90	isolates and (4) determine the antibiotic resistance pattern the S. aureus isolates.
91	

92

Materials and methods 2.

\cap	2
ч	7

2.1. Population

In Jordan, the dairy cow production system is divided into two systems; large and small scale, and both systems raise Holstein-Friesian dairy cows. The large system depends on zero-grazing, utilises modern management practices and is located in the East-Northern area of Jordan (Al-Dulial area) that produces approximately 60% of the country's milk (DoS, 2015). The small system houses cows in small brick barns, with traditional management practices, and is scattered in various regions of Jordan, mostly in the Northern Highland area.

Small ruminant farms in Jordan can be divided into two major production systems; extensive and semi-extensive and these are scattered throughout the country. The extensive system is located primarily in the Northern highlands that receive high amounts of rainfall and are occupied by small herders who use rangelands under constant search for grass and water (Tarawneh & Kadıoğlu, 2003). But, the semi-extensive system is located in the Badia in eastern and southern Jordan which is arid to semi-arid and occupied by nomadic or pastoralist Bedouin (Tarawneh & Kadıoğlu, 2003). Both systems rely on low production technologies (Tarawneh & Kadıoğlu, 2003).

2.2. Sample size

The prevalence of *S. aureus* in dairy ruminant farms in Jordan is unknown. Using the sample size formula $n = z^2 p(1-p)/d^2$; where *n* is the sample size, *z* is the statistic for a level of confidence (equal 1.96 at 95% level of confidence), *p* is the expected prevalence (p = 0.5) and *d* is precision (*d* is 0.1), the needed sample size is 96 farms. We randomly

118	selected 117 farms (44 cow; 47 sheep; 26 goat farms) from a list of farms provided by
119	local veterinary associations to account for an expected 10-15% refusal rate based on our
120	previous experience conducting similar surveys in Jordan. An equal number of farms from
121	each region were selected to ensure representativeness. We selected 22 dairy cow farms in
122	Al-Dulail area and 22 from the Northern highlands and 35 sheep and goat farms from
123	Northern Jordan and 37 farms from Southern Jordan and the Badia. Samples were
124	collected between December 2015 and March 2016. This period was chosen because
125	parturitions in sheep and goats occur between December to March in Jordan, while
126	parturitions in cow usually occur year around.
127	
128	2.3. Sampling approach
129	
130	Milk samples (100 mL each) were collected aseptically from bulk tanks and
131	individually packed in sterile cups and transported immediately under cold conditions in
132	an ice box to the Food Safety and Zoonotic Diseases Laboratory, Jordan University of
133	Science and Technology. Upon arrival at the laboratory, each sample was registered in the
134	sample log and then stored in the refrigerator for 4 to 5 days at 4 $^{\circ}$ C, then frozen at –20 $^{\circ}$ C
135	before testing to release the intracellular S. aureus in milk somatic cells upon subsequent
136	thawing as done by others (Paterson et al., 2014).
137	
138	2.4. Isolation of S. aureus from the milk samples
139	
140	Frozen samples were thawed at 37 °C and 2 mL of milk were mixed with 8 mL of
141	Mueller-Hinton broth (Oxoid, Hampshire, England) supplemented with 6.5% NaCl and

incubated at 37 $^{\circ}$ C under shaking at 200 rpm. Samples were then streaked onto Baird-

142

143	Parker agar (Oxoid) supplemented with egg yolk tellurite emulsion (Oxoid). Agar plates
144	were incubated at 35 °C for 48 h. Suspected S. aureus colonies (black surrounded with
145	halo zone) were stored in TSB with 20% buffered glycerol at $-20~^{\circ}\text{C}$ for subsequent DNA
146	isolation, molecular confirmation, enterotoxin gene profiling and antibiotic resistance
147	testing.
148	
149	2.5. Molecular confirmation of S. aureus and detection of enterotoxin genes
150	
151	Each S. aureus isolate was revived in 1 mL of Tryptone Soya Broth (TSB) (Oxoid)
152	with 6.5% NaCl and incubated at 37 °C for 24 h (Obaidat, Bani Salman, & Lafi, 2015).
153	The genomic DNA of each isolate was extracted using QIAamp DNA Mini Kit (Qiagen,
154	Hilden, Germany) according to the manufacturer instructions after using 20 mg mL ⁻¹
155	lysozyme (Sigma-Aldrich, St. Louis, MO, USA) to lyse the bacterial cell wall. S. aureus
156	isolates were confirmed using the <i>nuc</i> gene as previously described (Obaidat et al., 2015).
157	To detect enterotoxin genes, two multiplex PCR reactions were performed (Obaidat et al.,
158	2015). The first reaction was carried out to detect the "classical" enterotoxin genes (sea,
159	seb, sec, sed, see), and the second reaction to detect three of the new enterotoxin genes
160	(seg, seh, and sei). Multiplex PCR reactions were carried out using the same primers,
161	concentration and cycling conditions as described elsewhere (Vázquez-Sánchez, López-
162	Cabo, Saá-Ibusquiza, & Rodríguez-Herrera, 2012). The positive controls for the first
163	reaction were S. aureus ATCC 13565 for sea and sed, ATCC 19095 for sec, ATCC 14458
164	for seb, and ATCC 27664 for see and the positive control for the second reaction was
165	ATCC 19095 (Obaidat et al., 2015).
166	
167	2.6. Antibiotic susceptibility testing

169	S. aureus isolates were tested for resistance towards thirteen antibiotics that belong
170	to nine antibiotic classes. Resistance testing was performed by the disk diffusion method
171	on Mueller-Hinton agar (Oxoid, Hampshire, UK) according to the Clinical and Laboratory
172	Standards Institute Standards (CLSI, 2014). Bacterial suspensions were adjusted to a 0.5
173	McFarland turbidity in normal saline tubes. Isolates were tested for resistance against
174	(Oxoid Ltd.) β -lactams [penicillin, (P, 10 units), ampicillin (Amp, 10 μ g), amoxicillin—
175	clavulanic acid (Amc, 30 μg), and cefotaxime (Ctx, 30 μg)], quinolones [ciprofloxacin
176	(Cip, 5 μ g)], aminoglycosides [Cn, gentamicin (10 μ g)], phenicols [chloramphenicol (C,
177	30 μ g)], folate pathway inhibitors [sulfamethoxazole–trimethoprim (Sxt, 25 μ g)],
178	tetracyclines [tetracycline (Te, 30 μg), doxycycline (DA, 30 μg)], lincosamides
179	[clindamycin (Da, 2 μ g)], ansamycins [rifampin (Rd, 5 μ g)] and macrolides [erythromycin,
180	$(E, 15 \mu g)].$
181	Zones of inhibition were measured after 18 h of incubation at 35 °C. S. aureus
182	ATCC 25923 was tested in every replicate for quality control. Any isolate with
183	intermediate susceptibility to a tested antibiotic was considered susceptible for this study's
184	purpose. Any isolates that demonstrated resistance to at least one antibiotic were
185	considered resistant and isolates that were resistant to at least three classes of antibiotics
186	were considered multi-drug resistant (Magiorakos et al., 2012). An isolate was classified as
187	highly resistant if it was resistant to \geq 50% of antibiotics, moderate if it was resistant to $<$
188	50% to \geq 10%, and low if it was resistant to $<$ 10%.
189	
190	2.7. Statistical analysis

192	Data were entered in Microsoft Excel and analysed using IBM SPSS 20.0 software
193	for windows (IBM SPSS Corp., Armonk, NY, USA). If no suspected S. aureus colonies
194	grew on the Baird Parker plates from a farm milk sample, this farm was considered
195	negative for S. aureus. Meanwhile, if suspected S. aureus colonies grew, up to three
196	colonies from that farm sample were further confirmed and tested for enterotoxins and
197	antibiotics resistance. Frequencies were calculated to determine the percentage of isolates
198	resistant to the tested antibiotics. Chi-square and Fisher's exact test were used as
199	appropriate to determine statistically significant differences.
200	
201	3. Results
202	
203	3.1. Prevalence of S. aureus in dairy ruminant farms
204	
205	S. aureus was isolated from bulk tank milk in 69.2% (81/117) of farms (95% CI,
206	60.4-76.9 %), specifically the prevalence in cow, sheep and goat farms were 65.9% (95%
207	CI, 51.1–78.1%), 68.1% (95% CI, 53.8–79.6%), and 76.9% (95% CI, 57.9–88.9%),
208	respectively. A total of 169 unique S. aureus isolates were obtained and further analysed.
209	Isolates were obtained from each type of animal milk (cow, $n = 53$), (sheep, $n = 78$), and
210	(goat, $n = 38$).
211	
212	3.2. Enterotoxigenicity of S. aureus
213	
214	In total, 19.5% (33/169) of the isolates harboured enterotoxin genes; specifically,
215	sec was the most frequently carried gene (25/169; 14.8%), followed by sei (9/169, 5.3%)
216	and seg (5/169, 3%). Only two and one isolates carried the sea and sed; respectively. None

Most of the S. aureus isolates (94%; 158/169) demonstrated antibiotic resistance to

217	of the isolates carried the seb, see and seh genes (Table 1). Isolates obtained from cows
218	had the most diversity in enterotoxin profiles (Fig. 1).

219

3.3. Antibiotic resistance

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

220

one and more of the tested antibiotics (Table 2). A high percentage of cow, sheep and goat isolates were resistant to penicillin G (92%, 80%, and 90%, respectively), ampicillin (70%, 77%, and 76%, respectively) and clindamycin (70%, 59%, and 66%, respectively). A higher percentage of the cow isolates demonstrated resistance to tetracycline (60%) and gentamicin (53%), compared with sheep (41% and 22%, respectively) and goat (26% and 32%, respectively) isolates. About one-third of isolates from the three animal species exhibited resistance to rifampin (32%, 33%, and 29%, respectively), erythromycin (30%, 33%, and 21%, respectively) and cefotaxime (23%, 22%, and 21%, respectively). The cow, sheep and goat isolates exhibited resistance to doxycycline (24%, 24%, and 13%, respectively) and amoxicillin-clavulanic acid (11%, 24%, and 21%, respectively). In general, a low percentage (< 10%) of isolates exhibited resistance to chloramphenicol, sulfamethoxazole-trimethoprim and ciprofloxacin (Table 2). The multi-antibiotics resistance by S. aureus isolates is shown in Fig. 2. In general, 94% of the isolates were resistant to one or more of the antibiotic classes tested, 74% toward two or more classes and 59.2% toward three or more classes (multidrug resistance) (Fig. 2). One goat and two sheep (from two separate farms) isolates were resistant to seven classes of antibiotics and 21% of isolates were resistant to five or more classes of antibiotics. A greater percentage of cow isolates demonstrated resistance to at least one antibiotic class; 98% of cow compared with 91% of sheep and 92% of goat isolates. More

242	cow isolates also demonstrated resistance to three or more antibiotic classes (multidrug
243	resistance); 71%, 66% and 48% of cow, sheep and goat isolates; respectively (Fig. 2).
244	Forty antibiotic resistance profiles were exhibited by the S. aureus isolates from the
245	three animal species. S. aureus from the sheep exhibit the highest number of patterns (29
246	patterns), followed by cow (27 patterns) and goat (19 patterns). Eleven resistance patterns
247	were shared by isolates from the three animal species (Supplementary table). The most
248	prevalent resistance pattern was penicillin G- ampicillin- clindamycin- rifampin -
249	erythromycin-amoxicillin-clavulanic acid (P-Amp-Da-Rd-E-Amc) (18 isolates, 11%)
250	followed by penicillin- ampicillin (10 isolates, 6%) (Supplementary material, Table S1).
251	Four cow isolates had resistance to seven antibiotics; namely, penicillin-ampicillin-
252	clindamycin- rifampin- erythromycin -amoxicillin-clavulanic acid (P-Amp-Da-Te-Cn-Rd-
253	Ctx) (Supplementary material, Table S1).
254	
255	4. Discussion
256	

257

258

259

260

261

262

263

264

265

266

Worldwide raw cows' milk is a common source of S. aureus (Oliver et al., 2009). In this study, a high prevalence (66%) of S. aureus was found in the bulk tank milk of dairy cow farms. High rates were reported on dairy cow farms in both resources-rich and resources-poor countries. For example, high rates were reported in Minnesota (84%; Haran et al., 2012), Wisconsin, USA (73%; Sato, Bennedsgaard, Bartlett, Erskine, & Kaneene, 2004) and in other parts of the USA (55%; Cicconi-Hogan et al., 2013), Denmark (85%; Sato et al., 2004), Norway (75%; Jørgensen et al., 2005), China (50%; Bi et al., 2016), Northern Italy (47.2%; Cortimiglia et al., 2015), Prince Edward Island, Canada (73; Olde Riekerink et al., 2006) throughout Canada (74%; Olde Riekerink, Barkema, Scholl, Poole, & Kelton, 2010), Tunisia (50%; Ben Said et al., 2016), São Miguel Island, (Azores) (59%;

267	Azevedo et al., 2016), north-western Greece (40%; Papadopoulos et al., 2018) and
268	Northern Ethiopia (34%; Tarekgne et al., 2016). This contamination level might be
269	attributed to improper farms management and milking practices (Ruegg, 2003).
270	Despite the widespread use of small ruminant dairy products, often a main source
271	of dairy in resource-poor settings, there are a limited number of studies on the prevalence
272	and antibiotic resistance patterns of S. aureus in small ruminants. In this study, a high
273	prevalence of <i>S. aureus</i> was detected in sheep (68%) and goat (77%) farms. Similar high
274	prevalence rates were reported elsewhere; 96% of goat milk samples in Norway
275	(Jørgensen et al., 2005), 63.2% sheep and 80% goat (80%) bulk tank milk in north-western
276	Greece (Papadopoulos et al., 2018) and 46% of sheep and goat bulk tank milk samples in
277	Switzerland (Merz, Stephan, & Johler, 2016). The high prevalence of <i>S. aureus</i> in sheep
278	and goat bulk tank milk highlight the risk from unpasteurised milk and milk products,
279	which are commonly consumed in Jordan and in other Middle Eastern countries (Hilali et
280	al., 2011).
281	Alarmingly high numbers of antibiotic resistant S. aureus isolates were detected
282	from bulk tank milk from all three animal species studied in Jordan. Specifically, 94% of
283	S. aureus isolates from dairy ruminants' bulk milk exhibited antibiotic resistance to one or
284	more of the tested antibiotics. Lower percentages of antibiotic resistant isolates were
285	reported from other resources-poor countries. For example, 41 and 28% of cow isolates
286	showed resistance to at least one antibiotic in Iran and Malaysia, respectively (Jamali,
287	Paydar, Radmehr, Ismail, & Dadrasnia, 2015; Shamila-Syuhada, Rusul, Wan-Nadiah, &
288	Chuah, 2016). Meanwhile, 46% of sheep milk isolates exhibited resistance to at least one
289	antibiotic in Iran (Jamali et al., 2015). However, the only antibiotic resistant isolate
290	identified from cow, sheep and goat bulk milk in Australia was a single isolate which was
291	resistant to penicillin (McMillan, Moore, McAuley, Fegan, & Fox, 2016).

Resistance to penicillin G and ampicillin was exhibited by a large number of S.
aureus isolates from the three ruminant species in this study. This corroborates the
findings of several other studies that reported a high rate of resistance (\geq 70%) to these
antibiotics; from cow, sheep and goat milk in north-western Greece (Papadopoulos et al.,
2018), from cow milk in Ethiopia, Iran and China (Daka, G/silassie & Yihdego, 2012;
Jamali, Radmehr, & Ismail, 2014; Shi, Hao, Zhang, Wulan, & Fan, 2010) and from cow
and sheep milk in Iran (44% and 51% for penicillin G; Jamali et al., 2015), and Taiwan
(70% for penicillin; Chu et al., 2013). In contrast, a low prevalence (≤17%) of resistance to
ampicillin and penicillin were exhibited by S. aureus isolates from raw cow milk in
Vermont, USA (D'Amico & Donnelly, 2011). Similarly, a low prevalence of penicillin
resistance (7%) was exhibited by sheep milk isolates in from transhumant farms in Greece
(Zdragas et al., 2015). The differences by country might be related to the regulation and
use of these antibiotics for food animal production, with resources-rich countries (USA)
generally enforcing more stringent regulations while resources-poor countries having
fewer regulations and enforcement of antibiotic use in food animal production. Moreover,
the low prevalence of resistance in Greece might be attributed to the sampled sheep farms
that use 'transhumant breeding system (Zdragas et al., 2015). The general agreement in the
literature about high resistance toward β -lactam antibiotics may be because these
antibiotics were the first against which S. aureus developed resistance.
In our study, 20 to 30% of S. aureus isolates exhibited resistance to tetracycline,
gentamicin, rifampin, erythromycin, cefotaxime, and doxycycline. Other studies reported
similar percentages of <i>S. aureus</i> resistance to tetracycline and gentamicin (Chu et al.,
2013; Kumar, Yadav, & Singh, 2010). Studies in China and Mexico reported somewhat
similar percentages of resistance to rifampin (Ochoa-Zarzosa et al., 2008; Shi et al., 2010).
In contrast, lower percentage (<12%) of the cow milk isolates from studies in Greece and

317	Malaysia were resistant to tetracycline and erythromycin (Pexara, Solomakos, Sergelidis,
318	Angelidis, & Govaris, 2016; Shamila-Syuhada, et al., 2016). In contrast again, about 50%
319	of cow and sheep milk isolates were resistant to tetracycline and a low percentage (≤8%)
320	of isolates resistant to gentamicin, erythromycin and kanamycin in Iran (Jamali et al.,
321	2015) which are similiar to reported perecentages in north-western Greece for isolates
322	from cow, sheep and goat bulk tank milk (Papadopoulos et al., 2018). Another study from
323	Iran reported that a low percentage of cow, sheep and goat milk isolates were resistant to
324	tetracycline and erythromycin (Alian et al., 2012). In addition, a low percentage (<3) of
325	sheep milk isolates were resistant to tetracycline and erythromycin in transhumant farms
326	Greece (Zdragas et al., 2015).
327	Similar to our study several others report no to low resistance to sulfamethoxazole-
328	trimethoprim (SXT), chloramphenicol, ciprofloxacin and amoxicillin–clavulanic acid in S.
329	aureus isolates from milk sample. In Greece, for example, two studies reported no
330	resistance to SXT in cow, sheep and goat milk isolates (Papadopoulos et al., 2018; Pexara
331	et al., 2016), while another study there reported that about 1% of sheep milk isolates from
332	transhumant farms were SXT resistant (Zdragas et al., 2015). No resistance to
333	chloramphenicol and ciprofloxacin was exhibited by cow, sheep and goat milk isolates in
334	Iran but a low percentage were resistant (8%) to SXT (Alian et al., 2012). Similar findings
335	were reported from Ethiopia (no resistance to ciprofloxacin, 8% to SXT resistant cow milk
336	S. aureus isolates (Daka et al., 2012) and from Iran (no resistance to ciprofloxacin and
337	≤5% chloramphenicol resistant cow and sheep milk isolates) (Jamali et al., 2015).
338	Due to the variation in the panel of tested antibiotics among studies, comparing our
339	resistance patterns with previous studies is somewhat difficult. In addition, a limitation to
340	our study is that the isolates were not tested for oxacillin or methicillin resistance.
341	Nonetheless, forty different antibiotic resistance patterns were exhibited by the 169 <i>S</i> .

342	aureus isolates in our study and the two most prevalent patterns were penicillin G-
343	ampicillin- amoxicillin-clavulanic acid - rifampin - erythromycin - clindamycin and
344	penicillin- ampicillin. In other studies, the number and structure of the patterns differ, but
345	some similarities are noted. For example, Ochoa-Zarzosa et al. (2008) detected 32
346	different patterns; where penicillin- ampicillin was the most prevalent pattern exhibited by
347	S. aureus isolates from dairy cows with subclinical mastitis in Mexico.
348	In this study 20% of S. aureus isolates from each of the three animal species carried
349	enterotoxin genes; specifically, 13% of dairy, 22% of sheep and 18% of goat isolates.
350	Similar percentages (10–28%) were reported in isolates from US dairy cow milk (Oliveira,
351	Rodrigues, Hulland, & Ruegg, 2011), Brazilian goat milk (Ferreira, Carvalho, Nardelli,
352	Sousa, & Oliveira, 2014), Serbian cow milk (Rajic-Savic, Katic, Velebit, Colovic, 2015)
353	and cow milk in Brazil (de Freitas Guimarães et al., 2013). In contrast, a number of studies
354	detected a high percentage of enterotoxigenic S. aureus isolates in milk. For example, a
355	high percentage (45–75%) was reported in milk isolates in Italy, France, Norway, Spain,
356	Sweden and Ethiopia (Bianchi et al., 2014; Haenni et al., 2011; Jørgensen et al., 2005;
357	Linage, Rodriguez-Calleja, Otero, Garcia-Lopez, & Santos, 2012; Rosengren, Fabricius,
358	Guss, Sylven, & Lindqvist, 2010; Tarekgne et al., 2016). These findings of high
359	percentages of enterotoxin carriage among S. aureus isolates necessitate the maintenance
360	of the cold chain to prevent the production of the S. aureus pasteurisation, protease and
361	processing- stable enterotoxins (Hennekinne et al., 2012).
362	In our study, the most frequent gene carried by the S. aureus isolates from the three
363	animal species was sec (15% of the isolates). This result is consistent with other studies,
364	which were carried out in Italy, Brazil and Switzerland (Basanisi et al., 2016; Cremonesi et
365	al., 2006; Ferreira et al., 2014; Riva et al., 2015; Scherrer, Corti, Muehlherr, Zweifel, &
366	Stephan, 2004; Vimercati et al., 2006) and all demonstrated a high prevalence of the sec

367	gene among S. aureus isolated from cow, sheep and goat milk samples. Several studies
368	showed that around 20% S. aureus dairy cow isolates carried sea; specifically, in Turkey,
369	Ethiopia and Italy (Boynukara, Gulhan, Alisarli, Gurturk, & Solmaz, 2008; Rall et al.,
370	2014; Tarekgne et al., 2016; Vimercati et al., 2006) and 53% in Brazil (Rall et al., 2014).
371	We found the presence of sea in one isolate from sheep milk and one from goat milk but
372	none from cow milk. The presence of enterotoxin genes on genetic mobile elements
373	(phages, plasmids and pathogenicity islands) allows them to transmit among different
374	isolates by horizontal gene transfer (Malachowa & DeLeo, 2010; Moore & Lindsay, 2001)
375	Here, six different enterotoxin genes patterns were detected in the 33 enterotoxin –
376	positive S. aureus isolates and the most diversity was observed in isolates obtained from
377	cow milk. Similarly, in Italy 15 different enterotoxin profiles were identified in 35 cow,
378	sheep and goat milk isolates and there was also more diversity in the cow milk samples
379	(Carfora et al., 2015). In addition, 35 different enterotoxin gene profiles were distinguished
380	among 255 S. aureus isolates from milk and dairy products in Italy (Bianchi et al., 2014).
381	While 18 profiles were found in 57 se-positive isolates in Ethiopia (Tarekgne et al., 2016).
382	This variation likely results from differences in the country or geographical location, and
383	the number of tested enterotoxin genes. For example, the most recent studies test for all of
384	the new enterotoxin and the enterotoxin-like genes; so the comparison with different
385	studies could be somehow difficult.

5. Conclusions

The findings of this study suggest that urgent interventions are needed to control the emergence and spread of *S. aureus* in dairy ruminants to ultimately protect the milk supply from contamination with this pathogen. Further, in Jordan, as in much of the world,

392	there is a growing demand for raw cows' milk and coupled with the fact that raw milk is a
393	common source of S. aureus and other pathogens a growing number of raw milk
394	consumers may be at an increased risk for food intoxication. Monitoring resistance
395	patterns is important given that resistant S. aureus causes subclinical and clinical mastitis
396	that are difficult to treat, result in poor animal health and economic losses for the farmer.
397	Surveillance systems should also consider monitoring enterotoxins in the milk supply.
398	Finally, interventions should be adopted to reduce the sources of milk contamination with
399	S. aureus such as more frequent cleaning of animal housing areas, and educating famers on
400	udder hygienic scoring charts. Moreover, adopting uniform milking practices such as pre-
401	dipping with iodine and forestripping should be considered.
402	
403	Acknowledgments
404	
405	This research was supported by the Deanship of Research at Jordan University of
406	Science and Technology [grant number 77/2016]. We acknowledge Alaa E. Bani Salman
407	for her support in implementing this study.
408	
409	References
410	
411	Alian, F., Rahimi, E., Shakerian, A., Momtaz, H., Riahi, M., & Momeni, M. (2012).
412	Antimicrobial resistance of Staphylococcus aureus isolated from bovine, sheep and
413	goat raw milk. Global Veterinaria, 8, 111–114.
414	Azevedo, C., Pacheco, D., Soares, L., Romão, R., Moitoso, M., Maldonado, J., et al.
415	(2016). Prevalence of contagious and environmental mastitis-causing bacteria in

416	bulk tank milk and its relationships with milking practices of dairy cattle herds in
417	São Miguel Island (Azores). Tropical Animal Health and Production, 48, 451-459
418	Basanisi, M. G., Nobili, G., La Bella, G., Russo, R., Spano, G., Normanno, G., et al.
419	(2016). Molecular characterization of Staphylococcus aureus isolated from sheep
420	and goat cheeses in southern Italy. Small Ruminant Research, 135, 17-19.
421	Ben Said, M., Abbassi, M. S., Bianchini, V., Sghaier, S., Cremonesi, P., Romanò, A., et al
422	(2016). Genetic characterization and antimicrobial resistance of Staphylococcus
423	aureus isolated from bovine milk in Tunisia. Letters in Applied Microbiology, 63,
424	473–481.
425	Bi Y., Wang Y.J., Qin Y., Vallverdu R.G., Garcia J.M., Sun W. et al. (2016). Prevalence
426	of bovine mastitis pathogens in bulk tank milk in China. PLoS One, 11, Article
427	e0155621.
428	Bianchi, D. M., Gallina, S., Bellio, A., Chiesa, F., Civera, T., & Decastelli, L. (2014).
429	Enterotoxin gene profiles of Staphylococcus aureus isolated from milk and dairy
430	products in Italy. Letters in Applied Microbiology, 58, 190–196.
431	Botaro, B. G., Cortinhas, C. S., Dibbern, A. G., e Silva, L. F. P., Benites, N. R., & dos
432	Santos, M. V. (2015). Staphylococcus aureus intramammary infection affects milk
433	yield and SCC of dairy cows. Tropical Animal Health and Production, 47, 61–66.
434	Boynukara, B., Gulhan, T., Alisarli, M., Gurturk, K., & Solmaz, H. (2008). Classical
435	enterotoxigenic characteristics of Staphylococcus aureus strains isolated from
436	bovine subclinical mastitis in Van, Turkey. International Journal of Food
437	Microbiology, 125, 209–211.
438	Carfora, V., Caprioli, A., Marri, N., Sagrafoli, D., Boselli, C., Giacinti, G., et al. (2015).
439	Enterotoxin genes, enterotoxin production, and methicillin resistance in

440	Staphylococcus aureus isolated from milk and dairy products in Central Italy.
441	International Dairy Journal, 42, 12–15.
442	Chu, C., Wei, Y., Chuang, S. T., Yu, C., Changchien, C. H., & Su, Y. (2013). Differences
443	in virulence genes and genome patterns of mastitis-associated Staphylococcus
444	aureus among goat, cow, and human isolates in Taiwan. Foodborne Pathogens and
445	Disease, 10, 256–262.
446	Cicconi-Hogan, K. M., Gamroth, M., Richert, R., Ruegg, P. L., Stiglbauer, K. E., &
447	Schukken, Y. H. (2013). Risk factors associated with bulk tank standard plate
448	count, bulk tank coliform count, and the presence of Staphylococcus aureus on
449	organic and conventional dairy farms in the United States. Journal of Dairy
450	Science, 96, 7578–7590.
451	CLSI. (2014). Performance standards for antimicrobial susceptibility testing; 24th
452	informational supplement. CLSI document M100-S24. Wayne, PA, USA: Clinical
453	and Laboratory Standards Institute.
454	Cortimiglia, C., Bianchini, V., Franco, A., Caprioli, A., Battisti, A., Colombo, L., et al.
455	(2015). Prevalence of Staphylococcus aureus and methicillin-resistant S. aureus in
456	bulk tank milk from dairy goat farms in Northern Italy. Journal of Dairy Science,
457	98, 2307–2311.
458	Cremonesi, P., Vimercati, C., Pisoni, G., Castiglioni, B., Luzzana, M., Ruffo, G., et al.
459	(2006). Identification of enterotoxin genes in Staphylococcus aureus isolates from
460	bovine and caprine milk. Veterinary Research Communications, 30, 241-243.
461	Cretenet, M., Even, S., & Le Loir, Y. (2011). Unveiling Staphylococcus aureus
462	enterotoxin production in dairy products: a review of recent advances to face new
463	challenges. Dairy Science and Technology, 91, 127-150.

464	Daka, D., G/silassie, S., & Yihdego, D. (2012). Antibiotic-resistance Staphylococcus
465	aureus isolated from cow's milk in the Hawassa area, South Ethiopia. Annals of
466	Clinical Microbiology and Antimicrobials, 11, 26.
467	D'Amico, D. J., & Donnelly, C. W. (2011). Characterization of Staphylococcus aureus
468	strains isolated from raw milk utilized in small-scale artisan cheese production.
469	Journal of Food Protection, 74, 1353–1358.
470	de Freitas Guimarães, F., Nóbrega, D. B., Richini-Pereira, V. B., Marson, P. M., de
471	Figueiredo Pantoja, J. C., & Langoni, H. (2013). Enterotoxin genes in coagulase-
472	negative and coagulase-positive staphylococci isolated from bovine milk. Journal
473	of Dairy Science, 96, 2866–2872.
474	DoS. (2015). Department of Statistics. Agriculture surveys: Livestock production value
475	and quantity. http://web.dos.gov.jo/sectors/economic/agriculture/agriculture-
476	surveys/. Last accessed February 2018.
477	Ferreira, D., Carvalho, M., Nardelli, M., Sousa, F., & Oliveira, C. (2014). Occurrence of
478	enterotoxin-encoding genes in Staphylococcus aureus causing mastitis in lactating
479	goats. Pesquisa Veterinaria Brasileira, 34, 633–636.
480	Fessler, A., Scott, C., Kadlec, K., Ehricht, R., Monecke, S., & Schwarz, S. (2010).
481	Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases
482	of bovine mastitis. Journal of Antimicrobial Chemotherapy, 65, 619-625.
483	Haenni, M., Galofaro, L., Ponsin, C., Bes, M., Laurent, F., & Madec, J. Y. (2011).
484	Staphylococcal bovine mastitis in France: enterotoxins, resistance and the human
485	Geraldine methicillin-resistant Staphylococcus aureus clone. Journal of
486	Antimicrobial Chemotherapy, 66, 216–218.
487	Haran, K. P., Godden, S. M., Boxrud, D., Jawahir, S., Bender, J. B., & Sreevatsan, S.
488	(2012). Prevalence and characterization of <i>Staphylococcus aureus</i> , including

489	methicillin-resistant <i>Staphylococcus aureus</i> , isolated from bulk tank milk from
490	Minnesota dairy farms. Journal of Clinical Microbiology, 50, 688-695.
491	Hennekinne, J. A., De Buyser, M. L., & Dragacci, S. (2012). Staphylococcus aureus and
492	its food poisoning toxins: characterization and outbreak investigation.
493	Microbiology Reviews, 36, 815–836.
494	Hilali, M., El-Mayda, E., & Rischkowsky, B. (2011). Characteristics and utilization of
495	sheep and goat milk in the Middle East. Small Ruminant Research, 101, 92-101.
496	Jamali, H., Paydar, M., Radmehr, B., Ismail, S., & Dadrasnia, A. (2015). Prevalence and
497	antimicrobial resistance of Staphylococcus aureus isolated from raw milk and dairy
498	products. Food Control, 54, 383–388.
499	Jamali, H., Radmehr, B., & Ismail, S. (2014). Prevalence and antibiotic resistance of
500	Staphylococcus aureus isolated from bovine clinical mastitis. Journal of Dairy
501	Science, 97, 2226–2230.
502	Jørgensen, H. J., Mørk, T., Høgasen, H. R., & Rørvik, L. M. (2005). Enterotoxigenic
503	Staphylococcus aureus in bulk milk in Norway. Journal of Applied Microbiology,
504	99, 158–166.
505	Kadariya, J., Smith, T. C., & Thapaliya, D. (2014). Staphylococcus aureus and
506	staphylococcal food-borne disease: an ongoing challenge in public health. BioMed
507	Research International, 2014, Article 827965.
508	Kumar, R., Yadav, B. R., & Singh, R. S. (2010). Genetic determinants of antibiotic
509	resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle.
510	Current Microbiology, 60, 379–386.
511	Kümmel, J., Stessl, B., Gonano, M., Walcher, G., Bereuter, O., Fricker, M., et al. (2016).
512	Staphylococcus aureus entrance into the dairy chain: tracking S. aureus from dairy
513	cow to cheese. Frontiers in Microbiology, 7, Article 1603.

514	Linage, B., Rodriguez-Calleja, J. M., Otero, A., Garcia-Lopez, M. L., & Santos, J. A.
515	(2012). Characterization of coagulase-positive staphylococci isolated from tank and
516	silo ewe milk. Journal of Dairy Science, 95, 1639-1644.
517	Le Maréchal, C., Thiéry, R., Vautor, E., & Le Loir, Y. (2011). Mastitis impact on
518	technological properties of milk and quality of milk products—a review. Dairy
519	Science and Technology, 91, 247–282.
520	Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G.,
521	et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant
522	bacteria: an international expert proposal for interim standard definitions for
523	acquired resistance. Clinical Microbiology and Infection, 18, 268–281.
524	Malachowa, N., & DeLeo, F. R. (2010). Mobile genetic elements of Staphylococcus
525	aureus. Cellular and Molecular Life Sciences, 67, 3057–3071.
526	McMillan, K., Moore, S. C., McAuley, C. M., Fegan, N., & Fox, E. M. (2016).
527	Characterization of Staphylococcus aureus isolates from raw milk sources in
528	Victoria, Australia. BMC Microbiology, 16, Article 169.
529	Merz, A., Stephan, R., & Johler, S. (2016). Staphylococcus aureus isolates from goat and
530	sheep milk seem to be closely related and differ from isolates detected from bovine
531	milk. Frontiers in Microbiology, 7, Article 319.
532	Moore, P. C., & Lindsay, J. A. (2001). Genetic variation among hospital isolates of
533	methicillin-sensitive Staphylococcus aureus: evidence for horizontal transfer of
534	virulence genes. Journal of Clinical Microbiology, 39, 2760–2767.
535	Obaidat, M. M., Al-Zyoud, A. A., Bani Salman, A. E., & Davis, M. A. (2017).
536	Antimicrobial use and resistance among commensal Escherichia coli and
537	Salmonella enterica in rural Jordan small ruminant herds. Small Ruminant
538	Research, 149, 99–104.

539	Obaidat, M. M., Bani Salman, A. E., & Lafi, S. Q. (2015). Prevalence of <i>Staphylococcus</i>
540	aureus in imported fish and correlations between antibiotic resistance and
541	enterotoxigenicity. Journal of Food Protection, 78, 1999–2005.
542	Obaidat, M. M., Bani Salman, A. E., Davis, M. A., & Roess A. A. (2018). Major diseases,
543	extensive misuse, and high antimicrobial resistance of Escherichia coli in large-
544	and small-scale dairy cattle farms in Jordan. Journal of Dairy Science, In Press.
545	Ochoa-Zarzosa, A., Loeza-Lara, P., Torres-Rodríguez, F., Loeza-Angeles, H., Mascot-
546	Chiquito, N., Sánchez-Baca, S., et al. (2008). Antimicrobial susceptibility and
547	invasive ability of Staphylococcus aureus isolates from mastitis from dairy
548	backyard systems. Antonie van Leeuwenhoek, 94, 199-206.
549	Olde Riekerink, R. G., Barkema, H. W., Scholl, D. T., Poole, D. E., & Kelton, D. F.
550	(2010). Management practices associated with the bulk-milk prevalence of
551	Staphylococcus aureus in Canadian dairy farms. Preventive Veterinary Medicine,
552	97, 20–28.
553	Olde Riekerink, R. G. M., Barkema, H. W., Veenstra, S., Poole, D. E., Dingwell, R. T., &
554	Keefe, G. P. (2006). Prevalence of contagious mastitis pathogens in bulk tank milk
555	in Prince Edward Island. Canadian Veterinary Journal, 47, 567-572.
556	Oliveira, L., Rodrigues, A. C., Hulland, C., & Ruegg, P. L. (2011). Enterotoxin
557	production, enterotoxin gene distribution, and genetic diversity of Staphylococcus
558	aureus recovered from milk of cows with subclinical mastitis. American Journal of
559	Veterinary Research, 72, 1361–1368.
560	Oliver, S. P., Boor, K. J., Murphy, S. C., & Murinda, S. E. (2009). Food safety hazards
561	associated with consumption of raw milk. Foodborne Pathogens and Disease, 6,
562	793–806.

563	Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden, C. R., Angulo, F. J., et al.
564	(2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food
565	commodities by using outbreak data, United States, 1998-2008. Emerging
566	Infectious Disease, 19, 407–415.
567	Pantosti, A., Sanchini, A., & Monaco, M. (2007). Mechanisms of antibiotic resistance in
568	Staphylococcus aureus. Future Microbiology, 2, 323–334.
569	Papadopoulos, P., Papadopoulos, T., Angelidis, A. S., Boukouvala, E., Zdragas, A., Papa,
570	A., et al. (2018). Prevalence of Staphylococcus aureus and of methicillin-resistant
571	S. aureus (MRSA) along the production chain of dairy products in north-western
572	Greece. Food Microbiology, 69, 43–50.
573	Paterson, G. K., Morgan, F. J., Harrison, E. M., Peacock, S. J., Parkhill, J., Zadoks, R. N.,
574	et al. (2014). Prevalence and properties of mecC methicillin-resistant
575	Staphylococcus aureus (MRSA) in bovine bulk tank milk in Great Britain. Journal
576	of Antimicrobial Chemotherapy, 69, 598–602.
577	Pexara, A., Solomakos, N., Sergelidis, D., Angelidis, A. S., & Govaris, A. (2016).
578	Occurrence and antibiotic resistance of enterotoxigenic Staphylococcus aureus in
579	raw ovine and caprine milk in Greece. Dairy Science and Technology, 96, 345-
580	357.
581	Rajic-Savic, N., Katic, V., Velebit, B., Colovic, S., 2015. Characteristics of
582	enterotoxigenic coagulase positive Staphylococci isolated from bovine milk in
583	cases of subclinical mastitis. Procedia Food Science, 5, 250-253.
584	Rall, V. L., Miranda, E. S., Castilho, I. G., Camargo, C. H., Langoni, H., Guimaraes, F. F.,
585	et al. (2014). Diversity of Staphylococcus species and prevalence of enterotoxin
586	genes isolated from milk of healthy cows and cows with subclinical mastitis.
587	Journal of Dairy Science, 97, 829–837.

588	Riva, A., Borghi, E., Cirasola, D., Colmegna, S., Borgo, F., Amato, E., et al. (2015).
589	Methicillin-resistant Staphylococcus aureus in raw milk: prevalence, SCCmec
590	typing, enterotoxin characterization, and antimicrobial resistance patterns. Journal
591	of Food Protection, 78, 1142–1146.
592	Rosengren, A., Fabricius, A., Guss, B., Sylven, S., & Lindqvist, R. (2010). Occurrence of
593	foodborne pathogens and characterization of Staphylococcus aureus in cheese
594	produced on farm-dairies. International Journal of Food Microbiology, 144, 263-
595	269.
596	Ruegg, P. L. (2003). Practical food safety interventions for dairy production. Journal of
597	Dairy Science, 86, E1–E9.
598	Ruegg, P. L. (2012). Mastitis in dairy cows. Veterinary Clinics of North America: Food
599	Animal Practice, 28, xi–xii.
600	Sabike, I. I., Fujikawa, H., Sakha, M. Z., & Edris, A. M. (2014). Production of
601	Staphylococcus aureus enterotoxin A in raw milk at high temperatures. Journal of
602	Food Protection, 77, 1612–1616.
603	Sato, K., Bennedsgaard, T. W., Bartlett, P. C., Erskine, R. J., & Kaneene, J. B. (2004).
604	Comparison of antimicrobial susceptibility of Staphylococcus aureus isolated from
605	bulk tank milk in organic and conventional dairy herds in the midwestern United
606	States and Denmark. Journal of Food Protection, 67, 1104–1110.
607	Scherrer, D., Corti, S., Muehlherr, J. E., Zweifel, C., & Stephan, R. (2004). Phenotypic and
608	genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank
609	milk samples of goats and sheep. Veterinary Microbiology, 101, 101-107.
610	Shamila-Syuhada, A., Rusul, G., Wan-Nadiah, W., & Chuah, L. (2016). Prevalence and
611	antibiotics resistance of Staphylococcus aureus isolates isolated from raw milk

612	obtained from small-scale dairy farms in Penang, Malaysia. Pakistan Veterinary
613	Journal, 36, 98–102.
614	Shi, D., Hao, Y., Zhang, A., Wulan, B., & Fan, X. (2010). Antimicrobial resistance of
615	Staphylococcus aureus isolated from bovine mastitis in China. Transboundary and
616	Emerging Diseases, 57, 221–224.
617	Tarawneh, Q., & Kadıoğlu, M. (2003). An analysis of precipitation climatology in Jordan.
618	Theoretical and Applied Climatology, 74, 123–136.
619	Tarekgne, E. K., Skjerdal, T., Skeie, S., Rudi, K., Porcellato, D., Felix, B., et al. (2016).
620	Enterotoxin gene profile and molecular characterization of Staphylococcus aureus
621	isolates from bovine bulk milk and milk products of Tigray region, northern
622	Ethiopia. Journal of Food Protection, 79, 1387–1395.
623	Tesfaye, G. Y., Regassa, F. G., & Kelay, B. (2010). Milk yield and associated economic
624	losses in quarters with subclinical mastitis due to Staphylococcus aureus in
625	Ethiopian crossbred dairy cows. Tropical Animal Health and Production, 42, 925-
626	931.
627	Vanderhaeghen, W., Cerpentier, T., Adriaensen, C., Vicca, J., Hermans, K., & Butaye, P.
628	(2010). Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated
629	with clinical and subclinical mastitis in Belgian cows. Veterinary Microbiology,
630	<i>144</i> , 166–171.
631	Vázquez-Sánchez, D., López-Cabo, M., Saá-Ibusquiza, P., & Rodríguez-Herrera, J. J.
632	(2012). Incidence and characterization of Staphylococcus aureus in fishery
633	products marketed in Galicia (Northwest Spain). International Journal of Food
634	Microbiology, 157, 286–296.
635	Vimercati, C., Cremonesi, P., Castiglioni, B., Pisoni, G., Boettcher, P. J., Stella, A., et al.
636	(2006). Molecular typing of Staphylococcus aureus isolated from cows, goats and

637	sheep with intramammary infections on the basis of gene polymorphisms and
638	toxins genes. Journal of Veterinary Medicine B, Infectious Diseases and Veterinary
639	Public Health, 53, 423–428.
640	Zdragas, A., Papadopoulos, T., Mitsopoulos, I., Samouris, G., Vafeas, G., Boukouvala, E.,
641	et al. (2015). Prevalence, genetic diversity, and antimicrobial susceptibility profiles
642	of Staphylococcus aureus isolated from bulk tank milk from Greek traditional
643	ovine farms. Small Ruminant Research, 125, 120–126.

Figure legends

Fig. 1. Number (n) of *S. aureus* isolates bearing SE gene profiles from (a) cow, (b) sheep, and (c) goat bulk tank milk samples in Jordan, Dec 2015–March 2016.

Fig. 2. Percentage of *S. aureus* isolates from cow (\blacksquare), sheep (\blacksquare) and goat (\blacksquare) bulk tank milk (and, on the left of each set, total: \blacksquare) that exhibited resistance to one or more antibiotic classes in Jordan, Dec 2015–March 2016.

1 Table 1

- Number and percentage of enterotoxin gene profiles of *S. aureus* isolates from cow, sheep
- 3 and goat bulk tank milk samples in Jordan, Dec 2015–March 2016.

Enterotoxin genes	Cow	Sheep	Goat	Total	
	(n = 53)	(n = 78)	(n = 38)	(n = 169)	
sea		1 (1.3%)	1 (2.6%)	2 (1.2%)	
seb					
sec	5 (9.4%)	12 (15.4%)	8 (21.1%)	25 (14.8%)	
sed		1 (1.3%)		1 (0.6%)	
see					
seh					
sei	2 (3.8%)	5 (6.4%)	2 (5.3%)	9 (5.3%)	
seg	1 (1.9%)	3 (3.8%)	1 (2.6%)	5 (3.0%)	
Enterotoxin profiles					
sec	5 (9.4%)	11 (14.1%)	6 (15.8%)	22 (13.0 %)	
sei	1 (1.9 %)	2 (2.6%)	1 (2.6 %)	4 (2.4%)	
sec-sei-seg		1 (1.3%)	1 (2.6%)	2 (1.2%)	
sei-seg	1 (1.9%)	2 (2.6%)		3 (1.8%)	
sea-sec			1 (2.6%)	1 (0.6%)	
sea-sed		1 (0.6%)		1 (0.6%)	

4

5 Table 2

- 6 Percentage of antibiotic resistant *S. aureus* isolates from cow, sheep and goat bulk tank
- 7 milk samples in Jordan, Dec 2015–March 2016.

Antibiotics	Cow	Sheep	Goat	Total
(breakpoints, mm)	(n = 53)	(n = 78)	(n = 38)	(n = 169)
Penicillin (≤ 28)	92.5	79.5	89.5	85.8
Ampicillin (≤ 28)	69.8	76.9	76.3	74.6
Clindamycin (≤ 14)	69.8	59.0	65.8	63.9
Tetracycline (≤ 14)	60.4	41.0	26.3	43.8
Gentamicin (≤ 12)	52.8	21.8	31.6	33.7
Rifampin (≤ 16)	32.1	33.3	28.9	32.0
Erythromycin (≤ 13)	30.2	33.3	21.1	29.6
Cefotaxime (≤ 14)	22.6	21.8	21.1	21.9
Doxycycline (≤ 12)	24.5	24.4	13.2	21.9
Amoxicillin–clavulanic acid (≤ 19)	11.3	24.4	21.1	19.5
Chloramphenicol (≤ 12)	3.8	3.8	2.6	4.1
Sulfamethoxazole-trimethoprim (≤ 10)	7.5	3.8	0.0	4.1
Ciprofloxacin (≤ 15)	1.9	5.1	2.6	3.6

8

9

10

