NUMERICAL METHODS, MAT202E

Homework II (Due April 8)

1- A linear system of equations arising from the finite element discretization of a beam is presented in matrix form:

87.82557	0	-43.91278	3659.399	0	0	$\left(\mathbf{x}_{1}\right)$		$\left[b_{1}\right]$	
0	813199.7	-3659.399	203299.9	0	0	$ \mathbf{x}_2 $		b_2	
-43.91278	-3659.399			-43.91278		$ \mathbf{x}_3 $	_	b_3	
3659.399	203299.9	0	813199.7	-3659.399	203299.9	$\int X_4$	>= {	b_4	>
0	0	-43.91278	-3659.399	44.41278	-3659.399	X_5		b_5	
0	0	3659.399	203299.9	-3659.399	406599.8	$\left[x_{6} \right]$	ļ	$\lfloor b_6 \rfloor$	

- a) Decompose the coefficient matrix into LU form using Gauss elimination.
- b) Decompose the coefficient matrix into LU form using Cholesky decomposition.
- c) Calculate the inverse of the coefficient matrix (use L and U matrices obtained in either part a or part b)
- d) Calculate the matrix condition number of the coefficient matrix using row-sum norm.
- 2- Use least squares regression to fit polynomials of order 1, 2 and 3 to the data given in table (Use Gauss elimination with <u>partial pivoting</u> in the solution of linear equation systems). Compute the correlation coefficient for each fit. Plot 1st, 2nd, and 3rd order polynomial fits and the given discrete data.

Comment on which of these curves explain better the variability of given data.

Xi	y i
-0.08782	0.078597
0.084523	0.308436
0.263619	0.62902
0.293331	0.90405
0.472033	0.880547
0.529981	1.072706
0.603711	1.081378
0.783421	0.849039
0.885681	0.669272
0.914265	0.449664
1.006573	0.191648
1.070965	-0.20313
1.232576	-0.42675
1.359112	-0.77451
1.327033	-0.85954
1.477735	-0.99787
1.647759	-1.06124
1.75348	-0.88792
1.882376	-0.73878
1.813837	-0.57943
1.92543	-0.2393

3- The variation of specific heats of air is presented in the table. By using this data, rebuild the given table for c_p , c_v and k between T=250K and T=500K with Δ T=10K steps by using Newton's divided difference interpolating polynomials or the Lagrange interpolating polynomials. Present your results in a new table.

Tomporaturo	c _p kJ/kg⋅K	c _v kJ/kg∙K	k				
Temperature, K	Air						
250	1.003	0.716	1.401				
300	1.005	0.718	1.400				
350	1.008	0.721	1.398				
400	1.013	0.726	1.395				
450	1.020	0.733	1.391				
500	1.029	0.742	1.387				

Note:

- Always use radians for trigonometric functions.
- Writing program codes for the solution of problems is highly recommended (You can use any programming language of your choice).
- You can't use built in functions for the solution of HW questions. You need to either write program codes (advised) or do calculations by hand (not advised, will take a lot of time and effort). There is no third option.
- Present your results in a HW report. If you wrote program codes you need to add them to your submission.
- If you calculated by hand (not advised) use at least 5 significant figures in calculations and present your calculations in your HW report.