

FINe: Future (Inter)Net(works)

The day by day of the course:

What we did What we learned What we will do today

2

September 23, 2020 (i)

- ✓ What did we do last week (on September 16)?
 - · We introduced the course
 - · Launched the first Panel session
 - · Launched the first set of questions
 - We started Chapter 1: Review of the statistical figures provided by ITU:
 - ICT facts and figures

September 23, 2020 (ú)

- ✓ What did we learn/revise/understand?
 - · We learned what to do for passing the course
 - · We revised the concept of Internet*:
 - The layer 3 (IP) being the glue for interconnecting different network technologies
 - An IP network is packet switched
 - · An IP network is connectionless
 - The IP packet is the universally accepted format for transporting data (either PDUs or streaming)
 - The Backbone (Transport) Network is usually connection oriented, and is in charge of transporting IP packets from source to destination

Internet became the Public Network

September 23, 2020 (iii)

- ✓ What did we learn/revise/understand? (cont.)
 - Revising the statistical figures provided by ITU, we knew that:
 - Internet usage keeps growing, but barriers lie ahead
 - · Lack of ICT skills a barrier to effective Internet use
 - · Most of the offline population lives in least developed countries
 - · The digital gender gap is growing in developing countries
 - Mobile-broadband subscriptions continue to grow strongly
 - · Computers no longer needed to access the Internet at home
 - Bundled mobile broadband prices, compared with the PPP\$
 (Purchasing Power Parity) of 2019
 - · Broadband still expensive in LDCs
 - Almost the entire world population lives within reach of a mobile network.

September 23, 2020 (iv)

- ✓ What did we learn/revise/understand? (cont.)
 - · We learned about the existence of...
 - Two organizations providing the main Internet standard documents, namely ITU and IETF
 - CIS (Commonwealth of Independent States), a very powerful political and economic organization, in the orbit of the united Kingdom, whose head currently is the Queen of UK (Elizabeth II)
 - <u>https://en.wikipedia.org/wiki/Commonwealth_of_Nations</u>

September 23, 2020 (V)

- ✓ What will we do today?
 - Continue with Chapter 1: Review of the statistical figures provided by:
 - Mary Meeker in her 2019 Internet Trends report
 - Explore one of the main concerns of the EU in the ICT arena:
 - Joining efforts to shape the <u>Digital Single Market</u>...
 - Go through the Networking Infrastructure models, in particular, commons versus private
 - Lecturer: Roger Baig

September 30, 2020 (í)

- ✓ What did we do last week (on September 23)?
 - · Review the statistical figures provided by:
 - Mary Meeker in her 2019 Internet Trends report
 - Explore the main concerns and active policies of the EU in the ICT arena
 - Technology that works for people
 - A fair and competitive digital economy
 - An open, democratic and sustainable digital society
 - Europe as a global digital player
 - The lecture on Infrastructure models, commons versus private (Lecturer: Dr. Roger Baig)

September 30, 2020 (ú)

- ✓ What did we learn/revise/understand?
 - From the Mary Meeker's 2019 Internet Trends report, we knew that:
 - The number of Internet users comprises more than half the world's population, but Internet user growth is slowing
 - E-Commerce continues to gain share vs. physical retail, but growth rates are slowing
 - Global innovation & competition continue to drive product improvements
 - New types of usage & monetization especially in areas of digital video, voice, wearables, on-demand + local services & traditionally underserved markets
 - Internet advertising growth is solid & innovation is healthy, but there are areas where customer acquisition costs may be rising to unsustainable levels
 - The rapid rise of gathering digital data is often core to the success of the fastest growing & most successful companies of our days
 - As Internet systems become increasingly sophisticated, data-rich & mission critical, so has the opportunity for cyber attacks
 - · We are in a new era of cyber security where technology issues are increasingly intermixed with interpational diplomacy & defense

September 30, 2020 (iíi)

- ✓ What did we learn/revise/understand?
 - We learned that the European Digital Strategy is focused in the development, deployment and uptake of digital technologies to achieve:
 - A real difference to enhance people's daily lives
 - A strong and competitive economy that masters and shapes technology in a way that respects European values
 - A frictionless single market, where companies of all sizes and in any sector
 can compete on equal terms, and can develop, market and use digital
 technologies, products and services at a scale that boosts their productivity
 and global competitiveness, and consumers can be confident that their rights
 are respected
 - A trustworthy environment in which citizens are empowered in how they act and interact, and of the data they provide both online and offline
 - A European way to digital transformation which enhances our democratic values, respects our fundamental rights, and contributes to a sustainable, climate-neutral and resource-efficient economy

September 30, 2020 (iv)

- ✓ What did we learn/refresh/understood?
 - With Roger Baig, we went into the concepts of property and management for the Internet/network infrastructures
 - We learned that the dominant models for building and managing the telecommunication infrastructures are three:
 - · Public
 - Public-private partnerships (PPP)
 - · Private
 - We discussed about the opportunities of an alternative model: The Commons

September 30, 2020 (V)

- ✓ What will we do today?
 - · Run the first panel
 - Panel chaired by the members of Group #2
 - First item of the Chapter 2 (Lecturer: Prof. Josep Solé-Pareta):
 - Review the Transport Network Concept
 - Review the Control Plane Concept
 - Review GMPLS¹: The control plane technology installed in current Backbone transport networks

¹⁾ GMPLS: Generalized MultiProtocol Label Switching

October 7, 2019 (Víí)

- ✓ What will we do today?
 - · Run the first panel
 - First item of the Chapter 2 (Lecturer: Prof. Josep Solé-Pareta):
 - Review the Transport Network Concept
 - Review the Control Plane Concept
 - Review GMPLS¹: The control plane technology installed in current Backbone transport networks
 - · Second item of Chapter 2 (Lecturer: Prof. Jordi Perelló):
 - Introduce SDN²the Emerging technology for implementing the control plane of the future networks
 - Introduce the OpenFlow Architecture

¹⁾ GMPLS: Generalized MultiProtocol Label Switching

²⁾ SDN: Software Defined Networking

October 7, 2020 (i)

- ✓ What did we do last Tuesday (September 30)?
 - · Run the first Panel on:
 - Democratizing the Digital Economy
 - Start with Chapter 2:
 - Review the Transport Network Concept
 - Review the Control Plane Concept
 - Introduced MPLS and GMPLS: The control plane technology installed in current Backbone transport networks

October 7, 2020 (ii)

- ✓ What did we learn/refresh/understood?
 - From Evgeny's Moroazov talk we learned how accumulation of power over user data by giant tech companies will lead to very difficult problems
 - Promíses by bíg tech companíes are líes
 - Their behavior just enhances their profit
 - Companies control what and how we access information
 - · Potential solutions:
 - Subscription-based: not clear
 - Competítion-based: not clear
 - Legal framework to regulate access to data: difficult, since depend on governments... they usually react at the last minute
 - Educating and informing well the people. Also difficult, but seems the most effective

October 7, 2020 (iii)

- ✓ What did we learn/refresh/understood?
 - About the Transport Networking technology existing below Internet, we knew that
 - Its features are key for a fast and reliable transport of the IP traffic
 - It uses Optical transmission and switching
 - It is Circuit-Switched based, currently supporting flexible Bw allocation
 - A Tutorial on the Flexible Optical Networking Paradigm: State-of-the-Art, Trends, and Research Challenges:

https://ieeexplore.ieee.org/abstract/document/6824237

· We learned the main elements of an ASON architecture

ASON architecture

CCI: Connection Control Interface

NMI-A: Network Management Interface for ASON Control Plane

NMI-T: Network Management Interface for the Transport Network

OCC: Optical Connection Controller

UNI: User to Network Interface.

NNI: Network to Network Interface

2DGN2Data Communication Network

Future (Inter)Net(wor@XC: Optical Cross Connect.

October 7, 2020 (iv)

- ✓ What did we learn/refresh/understood?
 - · We introduced the MPLS protocol, and we learned that
 - It allows for traffic engineering, QoS provisioning, tunnelling, etc.
 - Its generalization (GMPLS) is the Control Plane standard protocol installed in the Core of current transport networks

October 7, 2020 (V)

- ✓ What will we do today?
 - Second ítem of Chapter 2 (Lecturer: Prof. Jordí Perelló)
 - Introduce SDN ¹the Emerging technology for implementing the control plane of the future networks
 - Introduce the OpenFlow Architecture
 - Introduce the NFV² concept
 - Start with the third item of Chapter 2 (Lecturer: Dr. Fernando Afgraz)
 - SDN on Optical Networks and Data Centers: Two case studies

- 1) SDN: Software Defined Networking
- 2) NFV: Network Functions Virtualization

October 7, 2020 (ví)

- ✓ What will we do today?
 - · Launch the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
 - · Deadline for posting the report in ATENEA: October 14 (11:00 am.)
 - To be run on October 14 and Chaired by Working Group #3
 - · Evaluation period: From October 14 to October 21 (11:00 am.)

October 14, 2020 (i)

- ✓ What did we do last Tuesday (October 7)?
 - Second ítem of Chapter 2 (Lecturer: Prof. Jordí Perelló)
 - Introduced SDN ¹the Emerging technology for implementing the control plane of the future networks
 - Introduced the OpenFlow Architecture
 - Introduce dthe NFV² concept
 - Started the third item of Chapter 2 (Lecturer: Dr. Fernando Afgraz)
 - SDN on Optical Networks and Data Centers: Two case studies
 - · Launched the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
- 1) SDN: Software Defined Networking
- 2) NFV: Network Functions Virtualization

October 14, 2020 (ii)

- ✓ What did we learn/refresh/understood?
 - · About SDN and OpenFlow
 - SDN aims to counteract some limitations current networks operation
 - · Problematic vendor-specific configuration procedures
 - · Inconsistencies of distributed control protocols
 - •
 - SDN can be seen as an analogy of a computer OS, but operating over a network domain
 - OpenFlow is the most widely used standard protocol for communicate the SDN controller and the Network Devices
 - Initial OpenFlow main goal was to make Ethernet networks, which are native connectionless, able to operate in connection oriented mode.
 - ... as MPLS do with IP networs

The computer operating system model can be drawn in three basic layers: hardware, operating system and applications

Applications to customize the system behavior for specific needs

The OS can be seen as a middleware permitting applications to access HW resources, based on policies

Similarly, the SDN model can also be split into 3 different layers:

Applications to customize the network behavior for specific needs

The SDN controller provides services to automatically manage network devices, as well as a programmable interface (API) to the network applications

October 14, 2020 (iii)

- ✓ What did we learn/refresh/understood?
 - · About NFV
 - NFV consists of replacing specialized network appliances (like firewalls, load balancers, routers, etc.) with software running on VMs
 - SDN and NFV complement each other:
 - VNFs running on VMs in different servers can be connected over an SDN network to build an end-to-end service chain
 - · Orchestrator is then required to coordinate both SDN and NFV
 - That the LIGHTNESS project was about designing a novel interconnection network architecture for intra data center network (DCN)
 - Based on both Optical Circuit Switching and Optical Packet Switching technology
 - Leveraging SDN and OpenFlow solution/specs

October 14, 2020 (iv)

- ✓ What will we do today?
 - Finishing the third item of Chapter 2 (Lecturer: Dr. Fernando Afgraz)
 - SDN on Optical Networks and Data Centers: Two case studies
 - · Run the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
 - Erlang B Calculator
 - Launch the second set of questions
 - Devoted to Chapter 2
 - · Deadline for posting the questions in ATENEA: October 21 (11:00 am.)
 - · Evaluation period: From October 21 to October 28 (11:00 am.)
 - Technical reports assignment (tentative)

Note: I have extended the assessment period for the 1st. set of questions until midnight, today

October 14, 2020 (V)

- ✓ Tentative assignment of the technical reports
 - TOPIC for Group#2:

(Group members: <u>David Carrera Casado</u>, <u>Lauréline Le Godec</u>, <u>Axel Wassington</u>)

- Can GDPR protect the privacy rights of citizens?
 - https://gdpr-info.eu/
 - · https://ec.europa.eu/info/law/law-topic/data-protection
- · TOPIC for Group#3:

(Group members: <u>Ayoub Bellouk</u>, <u>Dínís Falcão Leite Moreira</u>, <u>Francesc Roy Campderros</u>, <u>Juan Pablo Royo Sales</u>)

- Solutions to secure the 59 system
 - <u>https://www-sciencedirect-</u>
 <u>com.recursos.biblioteca.upc.edu/science/article/pii/S138912861830817X</u>

October 14, 2020 (ví)

- ✓ Tentative assignment of the technical reports
 - TOPIC for Group#4:
 (Group members: Paulina Jedrzejewska, Julien Labarre, Adrian Manco Sanchez, Jorrit Wolfgang Palfner)
 - Towards the 6G Network era: New IP architecture
 - http://jultika.oulu.fi/files/isbn9789526226842.pdf
 - · https://www.oulu.fi/6gflagship/
 - TOPIC for Group#1 (sponsored by DAMM): (Group members: M Ros Gauthier, Kacper Szymula, Mar Vidal Segura)
 - Augmented traceability for food or its state (inclosing nanosensors inside the food / drink). Also applicable to control the beer fermentation process?
 - https://www.rentokil.com/blog/five-examples-iot-food-supply-chain/

October 21, 2020 (i)

- ✓ What did we do last Tuesday (October 14)?
 - · Finished with Chapter 2
 - Second case study: a SDN-based control plane and an Orchestration plane for provisioning coordinated 1aaS (Lecturer: Dr. Fernando Afgraz)
 - · Run the second panel session
 - On a Tutorial paper on ASON Automatically Switched Optical Networks
 - Evaluation period was until today at 11:00 am. → extended until midnight!
 - · Launched the second set of questions
 - Devoted to Chapter 2
 - Deadline for posting the questions in ATENEA: October 21 (11:00 am.)
 Extended until midnight!
 - Evaluation period: From October 21 to October 28 (11:00 am.)
 - Assigned the topics for doing the Technical Reports to the different working groups of the course
 - Date for the appointment? Pending for groups 2 and 4

October 21, 2020 (ii)

- ✓ What did we learn/refresh/understood?
 - While the LIGHTNESS project was about designing a novel interconnection network architecture for intra data center network (DCN)
 - Based on both Optical Circuit Switching and Optical Packet Switching technologies
 - The COSIGN project was about a novel architecture with a SDN-based control plane and an Orchestration plane for provisioning coordinated laas
 - We learned that Data Centers Orchestrator can provide network and IT
 virtualization allowing service programmability and complex service
 provisioning. The so called virtual Data Center(VDC) provisioning
 - VDCs emerged as a service to cope with the multi-tenancy requirements faced by the DC operators

October 21, 2020 (iii)

- ✓ What did we learn/refresh/understood? (cont.)
 - · About the tutorial paper on ASON, we learned/debated about:
 - The issues to operate the core transport networks in Internet
 - The main mechanisms and requirements for enabling the ASON architecture
 - · Which are also applicable to new schemes, such as SDN
 - The benefits of using ASON architecture
 - Matching client-network operator needs (Bw on Demand Service plus resource optimization)
 - · Easy network operation
 - · Facilitate network reliability
 - · ... among others

October 21, 2020 (iii)

- ✓ To do list from the pass class
 - · Review the last slides of Fernando's presentation on
 - Providing 5G services over an optical infrastructure
 - ... and send an e-maíl to Fernando (<u>agraz@tsc.upc.edu</u>), with Cc to me, if you have doubts
 - · Play with the Erlang B calculator
 - Erlang B Calculator
 - Review the generic slides on Optical Packet Switching of the pass version of the diary of the course

Packet Switching vs. Optical Packet Switching

Electronic to optical packet switching evolution:

- Optical Packet Switches main characteristics:
 - Both switching matrix and buffers are optical
 - Bit rate independent payload (transparent bit rate)
 - Headers still processed electronically

it bit rato,	Elec	Elec-Opt	Opt
Sw. Capacity	low	medium	high
Complexity	high	medium	low
Memory Dim.	high	high	low
Transparency	no	no	yes

Packet Switching vs. Optical Packet Switching

- Electronics are reacting to fill the opto-electronic capacity GAP:
 - > 1 Tbps throughput is reachable
- Photonic technology is also evolving fast
 - Solves the opto-electronic capacity GAP
 - Three dimensions: Space, Time, Wavelength

Dimensio	Space	Time			Wavelength	
Punction	Switch	Mux	Syn/Asyn	Storage	Mux	Conv.
Electronic						
Optical				•		

Optical Packet Switching operation

21/10/2020 35

Header

Guard bands

Optical Packet Switching operation

- Optical packets:
 - Electronic header
 - Optical transparent payload (time slot)
 - Because what is switched are very short light beams
- Optical buffers? Fiber delay lines

Optical packet

Fixed duration

Optical payload

October 21, 2020 (iv)

- ✓ What will we do today?
 - · Start with Chapter 3 (Lecturer: Prof. Pere Barlet)
 - Traffic Monitoring and Analysis
 - · Internet Measurements: Algorithms and Challenges
 - · If time, continue with Chapter 3 (Lecturers: José Suárez)
 - Traffic Monitoring and Analysis in SDN based networks
 - · Traffic Measurements in SDN environments
 - · Traffic Classification in SDN environments