Avoiding Repetitive Reduction Patterns in Lambda Calculus with letrec

Jan Rochel and Clemens Grabmayer

Dept. of Computer Science, and Dept. of Philosophy NWO-project Realising Optimal Sharing Utrecht University

> TF-lunch 8 March 2011

Apportionment of work

C:

- ▶ lambda Calculus; lambda Calculus with letrec
- visible and concealed redexes
- optimising repeat
- operational equivalence; applicative bisimulation

J:

- generalised β-reduction
- optimising replicate
- binding graph
- status quo report; our plans

λ-trees

 $(\lambda x.g(fx))3$

λ-trees

$$(\lambda x.g(fx))3$$

λ-terms

$$T ::= V$$
 (variable)
 $\mid TT$ (application)
 $\mid \lambda V.T$ (abstraction)

λ-trees

λ-terms

$$T ::= V$$
 (variable)
 $\mid TT$ (application)
 $\mid \lambda V.T$ (abstraction)

λ-trees

λ-terms

$$egin{array}{lll} T & ::= & V & & (variable) \ & & T & T & & (application) \ & & \lambda V. T & (abstraction) \end{array}$$

rewrite rules

$$(\lambda x.M)N \rightarrow M[x := N]$$
 $(\beta$ -reduction)
 $\lambda x.Mx \rightarrow M$ $(x \text{ not free in } M)$ $(\eta$ -reduction)

λ-graphs

$$r = \lambda x.: (x, (rx))$$

λ-graphs

$$r = \lambda x.x: (r x)$$

λ-graphs

$$r = \lambda x.x: (r x)$$

 $\mathbf{let}\ r = \lambda x.x : (r\ x)\ \mathbf{in}\ r$

λ-graphs

$$r = \lambda x.x: (r x)$$

 $\mathbf{let}\ r = \lambda x.x : (r\ x)\ \mathbf{in}\ r$

λ-Calculus with letrec

λ-graphs

$$r = \lambda x.x: (r x)$$

 $\mathbf{let}\ r = \lambda x.x \colon (r\ x)\ \mathbf{in}\ r$

λ_{letrec}-terms (with primitives)

$$T ::= V$$
 (variable)
 $\mid TT$ (application)
 $\mid \lambda V.T$ (abstraction)
 $\mid f(T,...,T)$ (primitive functions)
 $\mid let \ Defs \ in \ T$ (letrec)
 $Defs ::= V_1 = T ... \ V_n = T$ (equations)
 $(v_1,...,v_n \ distinct \ variables)$

stream of alternating bits

```
\begin{array}{c} \textbf{let} \\ alt = 0 : alt' \\ alt' = 1 : alt \\ \textbf{in} \\ alt \end{array}
```

stream of alternating bits

```
let alt = 0: alt' alt' = 1: alt \implies 0:1:0:1:0:1:... in alt
```

stream of alternating bits

stream of alternating elements

```
let

alt = \lambda x. \lambda y. x: (alt' x y)

alt' = \lambda x. \lambda y. y: (alt x y)

in

alt \ a \ b
```

stream of alternating bits

```
let alt = 0: alt' alt' = 1: alt ---- 0:1:0:1:0:1:... in alt
```

stream of alternating elements

```
let alt = \lambda x. \lambda y. x: (alt' x y) alt' = \lambda x. \lambda y. y: (alt x y) \Rightarrow a:b:a:b:a:b:... in alt\ a\ b
```

► Thue–Morse sequence (spec by Larry Moss)

```
let
L = 0:X
X = 1: zip X Y
Y = 0: zip Y X
zip (x:xs) (y:ys) = x: y: zip xs ys
in
L
```

let

mutual recursion

► Thue–Morse sequence (spec by Larry Moss)

```
L = 0:X
X = 1:zip X Y
Y = 0:zip Y X
zip (x:xs) (y:ys) = x:y:zip xs ys
in
L
\rightarrow 0:1:1:0:\dots
```

let

mutual recursion

▶ Thue–Morse sequence (spec by Larry Moss)

```
L = 0:X
X = 1:zip X Y
Y = 0:zip Y X
zip (x:xs) (y:ys) = x:y:zip xs ys
in
L
```

- 4日 × 4 周 × 4 恵 × - 恵 - 夕 Q (や

0:1:1:0:1:0:0:1:....

let

► Thue–Morse sequence (spec by Larry Moss)

```
L = 0:X
X = 1:zip X Y
Y = 0:zip Y X
zip (x:xs) (y:ys) = x:y:zip xs ys
in
L
```


In existing compilers:

visible redexes and their descendants are reduced

In existing compilers:

visible redexes and their descendants are reduced

In existing compilers:

- visible redexes and their descendants are reduced
- this does not hold for concealed redexes

let $repeat = \lambda x.x$: repeat x **in** repeat

let $repeat = \lambda x.x$: repeat x **in** repeat

let $repeat = \lambda x.x$: repeat x **in** repeat 3

let $repeat = \lambda x.x$: repeat x**in** $(\lambda x.x$: repeat x) 3

let $repeat = \lambda x.x$: repeat x**in** $(\lambda x.x$: repeat x) 3

let $repeat = \lambda x.x$: repeat x **in** 3 : repeat 3

let $repeat = \lambda x.x$: repeat x**in** 3: $(\lambda x.x$: repeat x) 3

let $repeat = \lambda x.x$: repeat x**in** 3: $(\lambda x.x$: repeat x) 3

$$\rightarrow_{\beta}$$

let $repeat = \lambda x.x$: repeat x **in** 3:3: repeat 3

3:3:...

let rec = 3 : rec **in** rec

let rec = 3 : rec **in** 3 : rec

let rec = 3 : rec **in** 3 : 3 : rec

Optimising repeat

(example due to Doaitse Swierstra)

let $repeat = \lambda x.x$: repeat x **in** repeat

 $repeat = \lambda x.$ **let** xs = x: xs **in** xs

Operational equivalence I

Used here:

$$=_{\nabla,\beta}^{\infty} = (\text{\leftarrow}_{\nabla} \cup \text{\leftarrow}_{\beta} \cup \text{\rightarrow}_{\beta} \cup \text{\rightarrow}_{\nabla})^*$$

as notion of operational equivalence.

Operational equivalence I

Used here:

$$=_{\nabla,\beta}^{\infty} = (\text{\leftarrow}_{\nabla} \cup \text{\leftarrow}_{\beta} \cup \text{\rightarrow}_{\beta} \cup \text{\rightarrow}_{\nabla})^*$$

as notion of operational equivalence.

To be shown:

lacktriangle important observable properties of terms are preserved under $=_{igtriangledown}^{\infty}$, eta.

Applicative bisimulation

Applicative bisimulation (Abramsky, 1990): 'Meaning' of λ -terms defined as repeated evaluation to weak head normal form (as in functional languages).

 λ -terms M, N are applicative bisimular ($M \sim^B N$) if M and N behave the same under all possible series E_0, E_1, E_2, \ldots of experiments:

Applicative bisimulation

Applicative bisimulation (Abramsky, 1990): 'Meaning' of λ -terms defined as repeated evaluation to weak head normal form (as in functional languages).

 λ -terms M, N are applicative bisimular ($M \sim^B N$) if M and N behave the same under all possible series E_0, E_1, E_2, \ldots of experiments:

- E₀ Given term P, reduce P to a weak head normal form; obtain as observations:
 - 1. the whnf of P exists, and is an abstraction $\lambda z. P'$
 - 2. the whnf of *P* does not exists, or is not an abstraction

Applicative bisimulation

Applicative bisimulation (Abramsky, 1990): 'Meaning' of λ -terms defined as repeated evaluation to weak head normal form (as in functional languages).

 λ -terms M, N are applicative bisimular ($M \sim^B N$) if M and N behave the same under all possible series E_0, E_1, E_2, \ldots of experiments:

- E₀ Given term P, reduce P to a weak head normal form; obtain as observations:
 - 1. the whnf of P exists, and is an abstraction $\lambda z. P'$
 - 2. the whnf of *P* does not exists, or is not an abstraction

 E_{n+1} Suppose the outcome of E_n is the abstraction $\lambda z_n P_n$. Then:

- ▶ choose an arbitrary λ -term Q_{n+1}
- ▶ carry out the analogous exper. to E_0 for $(\lambda z_n.P_n)Q_{n+1}$

Operational equivalence vs. applicative bisimulation

Proposition

 $=_{\nabla,\beta}^{\infty}$ is contained in \sim^{B} : for all terms M, N,

$$M =^{\infty}_{\nabla,\beta} N \quad \Rightarrow \quad M \sim^{B} N$$

replicate

```
replicate 0 \ x = []

replicate n \ x = x: replicate (n-1) \ x

replicate n \ x = let rec \ 0 = []

rec \ n = x: rec \ (n-1)

in rec \ n
```

replicate – generalised β -reduction

replicate – generalised β -reduction

Generalised $\beta\text{-Reduction}$

replicate – duplication of the function body

replicate – duplication of the function body

replicate – duplication of the function body

Operational equivalence II

$$=_{\bigtriangledown,g\beta}^{\infty} := (\leftarrow_{\eta} \cup \leftarrow_{\bigtriangledown} \cup \leftarrow_{g\beta} \cup \twoheadrightarrow_{g\beta} \cup \twoheadrightarrow_{\bigtriangledown} \cup \rightarrow_{\eta})^{*}$$

Proposition

$$=^{\infty}_{\nabla,g\beta}\subseteq \sim^{B}$$
. Moreover, $=^{\infty}_{\nabla,g\beta}$ is a refinement of \sim^{B} .

Rewrite Rule Formulation

$$f = \lambda x_1 \dots \lambda x_n \cdot \lambda y.$$

$$\mathbf{let} f' = \lambda x_1 \dots \lambda x_n \cdot C [f' t_1 \dots t_n]$$

$$\mathbf{in} f' x_1 \dots x_n$$

 $f = \lambda x_1 \dots \lambda x_n \cdot \lambda y \cdot C [f \ t_1 \dots t_n \ y]$

Rewriting repeat

let $repeat = \lambda x.x$: repeat x **in** repeat

_

 $repeat = \lambda x.$ **let** xs = x: xs **in** xs

Rewriting replicate

```
replicate 0 \ x = []

replicate n \ x = x: replicate (n-1) \ x

\rightarrow

replicate n \ x =  let rec \ 0 = []

rec \ n = x: rec \ (n-1)

in rec \ n
```

Rewriting append

$$(++) [] ys = ys$$

$$(++) (x:xs) ys = x:xs ++ ys$$

$$++) xs ys = let rec [] = ys$$

$$rec (x:xs) = x:rec xs$$

$$in rec xs$$

```
map \ \_[] = []
map f (x:xs) = f x: map f xs

\rightarrow

map f = let rec [] = []
rec (x:xs) = f x: rec xs

in rec
```

Rewriting until

$$until p f x = \mathbf{if} p x \mathbf{then} x \mathbf{else} until p f (f x)$$

 \rightarrow

until
$$p f x =$$
let $rec x =$ **if** $p x$ **then** x **else** $rec (f x)$
in $rec x$

Rewriting zip

let
$$x \ a \ b = b : zip (x \ a \ b) (y \ a \ b)$$

 $y \ s \ t = s : zip (y \ s \ t) (x \ s \ t)$
 $zip (x : xs) (y : ys) = x : y : zip xs ys$
in x

_

let
$$x a b =$$
let $x' = b : zip x' (y a b)$ in x'
 $y s t =$ let $y' = s : zip y' (x s t)$ in y'
 $zip (x : xs) (y : ys) = x : y : zip xs ys$
in x

Binding-Graph Method

$$y s t = s : zip (y s t) (x s t)$$

$$zip (x : xs) (y : ys) = x : y : zip xs ys$$

$$in x 0 1$$

 $\mathbf{let} \ x \ a \ b = b : zip \ (x \ a \ b) \ (y \ a \ b)$

- ▶ Binding relation: \bigcirc \subseteq $V \times T$
- Binding graph

Strong domination

Strong domination:

$$\iff$$

$$v \neq w \, \land \, \forall u_0, \ldots, u_n \in V \, \backslash \, \{v\}[\, u_0 \rightarrowtail \ldots \rightarrowtail u_n = w \implies v \rightarrowtail^* u_0 \, \land \, u_0 \not \rightarrowtail^* v \,]$$

Binding-Graph Method

 $\mathbf{let} \ x \ a \ b = b : zip \ (x \ a \ b) \ (y \ a \ b)$

```
y s t = s : zip (y s t) (x s t)

zip (x:xs) (y:ys) = x : y : zip xs ys

in x 0 1

let x = 1 : zip x y

y = 0 : zip y x

zip (x:xs) (y:ys) = x : y : zip xs ys

in x
```

Domination and the η-trick

let x a b = b : zip (x a b) (y a b)

```
y s t = s : zip (y s t) (x s t)
zip (x:xs) (y:ys) = x : y : zip xs ys
in x
\lambda a \rightarrow \lambda b \rightarrow
let x = b : zip x y
y = a : zip y x
zip (x:xs) (y:ys) = x : y : zip xs ys
in x
```

Current Plans

- upcoming talks
 - TERMGRAPH 2011 (Saarbrücken, 2 April)
 - Computer Science Colloquium (UU)
- practical aspects
 - implementation
 - repetitive reduction patters in the wild: population census
 - benchmarks
 - analysis of effects for different run-time systems
- theoretical aspects
 - formulation of optimisation rewrite rules as HRSs
 - (applicative bisimulation versus η-reduction)
 - domination after unfolding
 - efficiency measure for comparing different results of optimisation
 - interactions between optimisation of different parameter cycles
 - correctness proof
- full paper

Thanks

for your attention!

-

and for inspiration, and many discussions, to:

- Doaitse Swierstra
- Vincent van Oostrom