Polar Coordinates

Gunja Sachdeva

Department of Mathematics BITS Pilani, Goa Campus

August 5, 2024

- We know how to specify the location of a point in the plane by means of coordinates relative to two perpendicular coordinates axes.
 Such a system is called as Cartesian (or rectangular) coordinate systems.
- Some time a moving point has special affinity for some fixed point, such as a planet moving in an orbit under the central attraction of Sun.
- In such cases the path of particle is best described by its angular direction and its distance from the fixed point.

This representation of a point is called Polar coordinates.

Mathematical definition

Polar coordinates for a point P.

- Fix an origin O, called the pole, and an initial ray from O (initial ray is called polar axis).
- ② Let r be the 'directed' distance from O to P and θ be the 'directed' angle (counterclockwise, usually measured in radians) from the polar axis to the ray OP.
- ③ P is represented by the ordered pair (r, θ) . Here r, θ are called polar coordinates of the point P.

Types of coordinate systems

Three dimensional

Spherical Polar (3, 0, 0)

cylindrical Polar (2,0,2)

Remarks

If P = O, then r = 0 and $(0, \theta)$ represents the origin (pole) for any value of θ .

The point (r, θ) and $(-r, \theta)$ lie on the same line through the origin O and the same distance |r| from O, but on opposite sides of O.

3 Note that $(-r, \theta)$ represents the same point as $(r, \theta + \pi)$.

4. If r > 0, then the point (r, θ) lies in the same quadrant as θ .

5. If r < 0, then the point (r, θ) lies in the quadrant on the opposite side of the pole.

Examples

Plot the points whose polar coordinates are given as follows:

- $\bullet \quad \left(1, \frac{5\pi}{4}\right)$
- **2** $(2,3\pi)$

(-1,571/4)

Solutions

Cartesian Vs Polar coordinates

In the Cartesian coordinate system, every point has a <u>unique</u> representation.

Whereas, in the polar coordinate system, each point has many representations. For instance, the point $(2, \frac{\pi}{6})$.

$$\frac{1}{(2,\pi/6)} = (2, \frac{\pi}{6} + 2\pi\pi)$$

$$= (-2, \pi + \frac{\pi}{6}) = (-2, \frac{\pi}{6} + 2\pi\pi)$$

$$= (-2, -5\frac{\pi}{6}) = (-2, \frac{\pi}{6} - \pi)$$

Cartesian Vs Polar coordinates

In the Cartesian coordinate system, every point has a <u>unique</u> representation.

Whereas, in the polar coordinate system, each point has many representations. For instance, the point $(2, \frac{\pi}{6})$.

Different Polar representations of a point

Since a complete counterclockwise rotation is given by an angle 2π , the point represented by polar coordinates (r, θ) is also represented by

$$(r, \theta + 2n\pi)$$
 and $(-r, \theta + (2n+1)\pi)$

where *n* is any integer.

Therefore every point has <u>infinite</u> polar representations.

Relation between Cartesian and Polar coordinates

From Polar to Cartesian

- The pole corresponds to the origin.
- The polar axis coincides with the positive x-axis.
- If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ) , then from the figure, we have

$$\cos\theta = \frac{x}{r}$$
, $\sin\theta = \frac{y}{r}$ $\Rightarrow x = r\cos\theta$, and $y = r\sin\theta$.

Note. Although the above equations, deduced from the figure, illustrates the case where r>0 and $0<\theta<\frac{\pi}{2}$, but these equations are valid for all values of r and θ .

Example. Convert the point $(2, \frac{\pi}{3})$ from Polar to Cartesian coordinates.

$$J=2, O=T_{3}$$
 $S=J(0)$
 $S=J(0)$

= (1, 53)

Exercise. Find the Cartesian coordinates of $(-2, \frac{\pi}{3})$ and $(1, \frac{\pi}{4})$.

From Cartesian to Polar

$$r^2 = x^2 + y^2, \quad \tan\theta = \frac{y}{x}$$

Example. Represent the point with Cartesian coordinates (-1, -1) in terms of polar coordinates.

While finding the θ

- The above equations do not uniquely determine θ for a positive r, when x and y are given.
- This is because, as θ increases through the interval $0 \le \theta \le 2\pi$, each value of $\tan \theta$ occurs twice.
- So, in converting from Cartesian to polar coordinates, it is not good enough just to find r and θ that satisfy the equations $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$.
- Rather we must choose θ so that the point r, θ lies in the correct quadrant.

General formula

If the Cartesian coordinates (x, y) are given we can use the following formula to find the polar coordinates (r, θ) :

$$r = +\sqrt{x^2 + y^2}$$

$$\theta = \begin{cases} \tan^{-1}(\frac{y}{x}) & \text{if } x > 0; \\ \tan^{-1}(\frac{y}{x}) + \pi \text{ or } \tan^{-1}(\frac{y}{x}) - \pi & \text{if } x < 0; \\ \frac{\pi}{2} & \text{if } x = 0, y > 0; \\ -\frac{\pi}{2} & \text{if } x = 0, y < 0. \end{cases}$$

Note that for the origin, θ can take any value.

Exercise

Convert the Cartesian coordinates $(\sqrt{3},1),(1,-\sqrt{3})$ and $(-\sqrt{3},-1)$ into polar coordinates.

$$(53.1) - x=13 \qquad A = x = 2$$

$$7=1 \qquad tan0 = \frac{1}{53} \implies 0 = \frac{11}{6}, 771/6$$

$$\therefore \text{ polar coordinates will be } (2,776)$$

$$\therefore polar coordinates will be $(2,776)$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+11+3=2$$

$$4=+1$$$$