

WEBENCH® Design Report

VinMin = 10.0V VinMax = 16.0V Vout = 5.0V Iout = 0.25A Device = TPS62175DQCR Topology = Buck Created = 2/24/13 6:12:21 AM BOM Cost = \$1.41 Total Pd = 0.15W Footprint = 152.0mm2 BOM Count = 7

Design: 3670388/1 TPS62175DQCR TPS62175DQCR 10.0V-16.0V to 5.0V @ 0.25A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cin	Kemet	C1206C225K4RACTU Series= X7R	Cap= 2.2 µF ESR= 9.0 mOhm VDC= 16.0 V IRMS= 4.46 A	1	\$0.07	1206 19mm2
2.	Cout	TDK	C3225X5R1A226M Series= X5R	Cap= 22.0 µF ESR= 2.0 mOhm VDC= 10.0 V IRMS= 3.2 A	1	\$0.19	1210 23mm2
3.	L1	Bourns	SDR0604-100ML	L= 10.0 μH DCR= 100.0 mOhm	1	\$0.17	SDR0604 61mm2
4.	Rfbb	Vishay-Dale	CRCW0402374KFKED Series= CRCWe3	Res= 374.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 8mm2
5.	Rfbt	Vishay-Dale	CRCW08052M05FKEA Series= CRCWe3	Res= 2.05 MOhm Power= 125.0 mW Tolerance= 1.0%	1	\$0.01	0805 13mm2
6.	Rpg	Vishay-Dale	CRCW0402100KFKED Series= CRCWe3	Res= 100.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 8mm2
7.	U1	Texas Instruments	TPS62175DQCR	Switcher	1	\$0.95	R-PWSON-N10 21mm2

Operating Values

		9			
	#	Name	Value	Category	Description
-	1.	Cin IRMS	116.729 mA	Current	Input capacitor RMS ripple current
	2.	Cout IRMS	101.049 mA	Current	Output capacitor RMS ripple current
	3.	IC lpk	425.022 mA	Current	Peak switch current in IC
	4.	lin Avg	87.408 mA	Current	Average input current
	5.	L lpp	350.044 mA	Current	Peak-to-peak inductor ripple current
	6.	M1 Irms	141.674 mA	Current	Q lavg
	7.	BOM Count	7	General	Total Design BOM count
	8.	FootPrint	152.0 mm2	General	Total Foot Print Area of BOM components
	9.	Frequency	1.009 MHz	General	Switching frequency
	10.	IC Tolerance	24.0 mV	General	IC Feedback Tolerance
	11.	M Vds Act	109.719 mV	General	Voltage drop across the MosFET

#	Name	Value	Category	Description
12.	Mode	CCM	General	Conduction Mode
13.	Pout	1.25 W	General	Total output power
14.	Total BOM	\$1.41	General	Total BOM Cost
15.	Vout OP	5.0 V	Op_Point	Operational Output Voltage
16.	Duty Cycle	32.115 %	Op_point	Duty cycle
17.	Efficiency	89.38 %	Op_point	Steady state efficiency
18.	IC Tj	38.58 degC	Op_point	IC junction temperature
19.	ICThetaJA	61.6 degC/W	Op_point	IC junction-to-ambient thermal resistance
20.	IOUT_OP	250.0 mA	Op_point	lout operating point
21.	VIN_OP	16.0 V	Op_point	Vin operating point
22.	Vout p-p	2.634 mV	Op_point	Peak-to-peak output ripple voltage
23.	Cin Pd	122.631 μW	Power	Input capacitor power dissipation
24.	Cout Pd	20.422 µW	Power	Output capacitor power dissipation
25.	IC Pd	139.29 mW	Power	IC power dissipation
26.	L Pd	9.089 mW	Power	Inductor power dissipation
27.	Total Pd	148.524 mW	Power	Total Power Dissipation

Design Inputs

	O 1		
#	Name	Value	Description
1.	lout	250.0 mA	Maximum Output Current
2.	lout1	250.0 mAmps	Output Current #1
3.	VinMax	16.0 V	Maximum input voltage
4.	VinMin	10.0 V	Minimum input voltage
5.	Vout	5.0 V	Output Voltage
6.	Vout1	5.0 Volt	Output Voltage #1
7.	base_pn	TPS62175	National Based Product Number
8.	source	DC	Input Source Type
9.	Та	30.0 degC	Ambient temperature

Design Assistance

1. TPS62175 Product Folder: http://www.ti.com/product/tps62175: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.