

MORE ON LP RELAXATION

weight maximum bipartite matching given a bipartite graph G(CV, E) with |x|=|Y| max \(\sum_{eeE} \overline{\chi_e} \) St $\sum_{v \in \mathcal{C}} x_{e} = 1$ $\forall v \in V$; RE EQIB + EEE min vertex cover find min IVI, V'CV such that \(\tau_{\text{v}}\) \(\epsi_{\text{e}}\) e \(\epsi_{\text{E}}\) either u E v' or v E v' or both. $min. \sum_{v \in V} n_v$

xu e &0,13.

 $x_{\nu} \in [0,1]$ (LP-R) Z_{μ}^{*} χ^{*} Sip = & xx > 1/2 } -> vertex cover may not be optimal. Sip = EVEV | 20 > 1/2 3 15,p = > 1 < > 2.x < \ \ 2. x* \ \(\sigma \ \nabla \) < 2 > y = 2 | Sopt | Sopt & Sup & 2 Sopt

maximum intependent set ! no useful bounds. (depends on size of graph)

	LP RELAXATION FOR 2 MACHINES
	2 machines and J jobs.
e e e e e e e e e e e e e e e e e e e	dij > time for jobj to
	we know that mux time is the time taken by the machine ends last.
	min ± to rej
	st. Exgdig & t + iem
	Exert Viet ; xeje logit
	cf we IP-relax rej & Eo, 13 -> [0, 1]
	only 1 job will get split. why? let s be the job that gets split. we assign a to me if ne > ne otherwise, assign to me.
	ef this leads to Tapprox and TX is the optimal solver then.
	Tapprox & 2T*

Tapprox & T' + Ts T' & T* Ts & T* Tapprox & 2T* where T' be optimal soln. before assigning S to one machine. WHEN DOES AN LP LEAD TO INTEGER SOLUTION? note: the constraints Ax & b calon be converted to Axib with additional variables. a matrix is totally unimodullar CTU) if all its square submatrices have a determinant in E-1, 0, 13. note: of A is TU A' = [A, I] is also To & A is TO and b is integral, LP gives integral soln.

WHEN DOES AN LP LEAD TO INTEGER SOLUTION?

for BPG, A is TU

consider a matrix A (IVIXIEI).

A has only two I in every column. we can prove by induction. sketch,

Q is IXI Q is TO why?

if sub matrices of (I-1) x (I-1) are TU, Q then Q of IXI is also To. evny).

Q has a column of no 1.

Q has a column of one 1. all columns of Q have 2 1s.

numerical example.