形式语言与自动机理论

上下文无关语言的性质

王春宇

计算机科学与技术学院 哈尔滨工业大学

上下文无关语言的性质

- 上下文无关语言的泵引理
 - 上下文无关语言的泵引理
 - 泵引理的应用
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

上下文无关语言的泵引理

定理 33

如果语言 L 是 CFL, 那么存在正整数 N, 对 $\forall z \in L$, 只要 $|z| \ge N$, 就可以将 z 分为五部分 z = uvwxy 满足:

- $\bullet \ vx \neq \varepsilon \ (\not \underline{\mathbf{x}}|vx| > 0);$
- $|vwx| \le N;$
- $\exists \forall i \geq 0, \ uv^i w x^i y \in L.$

证明:

- ① 设 CNF 格式 CFG G 中变元数 |V|=m, 令 $N=2^m$, 若有 $z\in L(G)$, 且 $|z|\geq N$.
- ② 则 z 的派生树内节点是二叉树, 最长路径长度至少 m+1, 节点至少 m+2 个.
- ③ 该路径由下至上 m+1 个内节点中, 必有两个 T_2 和 T_1 标记了相同的变元 A.
- 若记 T_2 产物为 w, 且是 T_1 的子树, T_1 的产物可记为 vwx, 则有 $A \Rightarrow vAx$ 和 $A \Rightarrow w$.
- **⑤** 那么 $\forall i \geq 0, A \stackrel{*}{\Rightarrow} v^i w x^i$. 不妨设 z = uvwxy, 则 $S \stackrel{*}{\Rightarrow} uAy \stackrel{*}{\Rightarrow} uv^i w x^i y$.
- **6** T_1 路径长不超过 m+1, 那么 T_1 产物长不超过 2^m , 所以 $|vwx| \leq 2^m$.
- **⑦** T_2 必在 T_1 的左/右儿子中, 所以 v 和 x 不可能同时为空, 即 $vx \neq \varepsilon$.

泵引理的应用

例 1. 证明 $L = \{0^n 1^n 2^n \mid n \ge 1\}$ 不是上下文无关语言.

证明:

- 假设 L 是 CFL, 那么存在整数 N, 对 $\forall z \in L(|z| \ge N)$ 满足泵引理.
- ② 从 L 中取 $z = 0^N 1^N 2^N$, 则显然 $z \in L$ 且 $|z| = 3N \ge N$.
- 3 由泵引理, z 可被分为 z = uvwxy, 且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$.
- 那么 vwx 可能

 - **●** 只包含 0 和 1, 或只包含 1 和 2, 那么也有 $uwy \notin L$;
- **⑤** 与泵引理 $uwy = uv^0wx^0y \in L$ 矛盾, 假设不成立.
- **⑥** *L* 不是上下文无关的.

例 2. 证明 $L = \{ww \mid w \in \{0,1\}^*\}$ 不是上下文无关的. (错误的) 证明: 假设 L 是 CFL. 取 $z = 0^N 10^N 1$, 那么 z = uvwxy 为

则对任意 $i \geq 0$, 有 $uv^i w x^i y \in L$, 满足泵引理.

- (正确的) 证明: 假设 L 是 CFL. 取 $z = 0^N 1^N 0^N 1^N$, 将 z 分为 z = uvwxy 时
 - ① 若 vwx 在 z 中点的一侧, uv^0wx^0y 显然不可能属于 L;
- ② 若 vwx 包括 z 中点, 那么 uv^0wx^0y 为 $0^N1^i0^j1^N$, 也不可能属于 L. 所以假设不成立, L 不是 CFL.