Примеры на лемму о разрастании

1)
$$L_1 = \{a^n b^n : n \ge 0\}$$

2)
$$L_2 = \{x : x \in \{a,b\}^*, n_a(x) = n_b(x)\},$$

$$L_2 \cap a *b* = L_1$$

aababb, abababab

3)
$$L_3 = \{x \in V^* : x = x^R, |V| > 1\},$$

$$L_3 \cap a^*ba^* = \{a^nba^n : n \ge 0\}, a \ne b$$

Шалаш, шабаш

SATOR

AREPO

TENET

OPERA

ROTAS

4)
$$L_4 = (\{a^nb^n : n > 0\})^*,$$

 $L_4 \cap a^*b^* = \{a^nb^n : n > 0\}$

$$L_{41} = \{a^n b^n : n > 0\}$$

5)
$$L_5 = \{a^{n^2} : n \ge 0\}$$

6)
$$L_6 = L_{41}^2 L_{41}^*,$$

 $L_6 \cap a^+ b^+ a^+ b^+ = \{a^n b^n a^m b^m : n, m > 0\}$

7) Язык двойных слов в алфавите, содержащем не менее 2-х букв:

$$L_7 = \{ ww : w \in V^*, |V| > 1 \}.$$

Рассмотрим пересечение

$$L_7 \cap a * b * a * b * = \{a^m b^n a^m b^n : m, n \ge 0\}$$

Очевидно, что расположение накачиваемой цепочки v целиком в любой из зон символа a или b невозможно.

Если $v = a^s b^r (0 < s \le m, 0 < r \le n)$, то $v^2 = a^s b^r a^s b^r$, и возникнет второе вхождение цепочки ba , что недопустимо по определению языка.

Если же $v = b^r a^s (0 < s \le m, 0 < r \le n)$ и $v^2 = b^r a^s b^r a^s$, то возникнет третье вхождение цепочки ab, что также недопустимо.

Расположение же накачиваемой цепочки «в обхват» какой-либо зоны невозможно из-за ограничений на длину накачиваемой цепочки: всегда можно выбрать «длины» зон так, чтобы они превосходили предполагаемую константу из леммы о разрастании, которая в силу предположения о регулярности языка где-то фиксирована на числовой прямой.

Следовательно, указанное пересечение нерегулярно, и язык L_{τ} нерегулярен.

8)
$$L_8 = \{xcy : x, y \in \{a,b\}^*, c \notin \{a,b\}, |x| \ge |y|\}$$

Нужно рассмотреть пересечение

$$L_8 \cap a * cb^* = \{a^m cb^n : m, n \ge 0, m \ge n\}$$

Расположение накачиваемой цепочки в зоне символов a отвергается рассмотрением цепочки вида $a^ncb^n, n \ge 0$. В таком случае выбрасывание накачиваемой цепочки приведет к выходу за пределы данного языка.

9)
$$L_9 = \{xcy : x, y \in \{a,b\}^*, c \notin \{a,b\}, |x| \neq |y| + k, k > 0\}$$

Самостоятельно.

10) Задача 7.35 в), д), з).