

FOR FURTHER TRAN

OFFICE OF NAVAL RESEARCH
Control Naval RESEARCH
Task No. NR 056-625

(12)

TECHNICAL REPORT, NO. 78-13

New $\sigma\text{-Ethyl}$ Compounds of Dimolybdenum (M=M) and

Evidence for Dinuclear Reductive Elimination with a Concomitant

Metal-Metal Triple to Quadruple Bond Transformation:

Et-M=M-Et \rightarrow M=M + C₂H₄ + C₂H₆.

M. H./Chisholm, D. A./Haitko

C. A./Murillo

Prepared for Publication

in

Journal of the American Chemical Society

Department of Chemistry

Princeton University

Princeton, New Jersey 08540

June 6, 1978

(1) 6 Jun 78

(12) 9p.

Reproduction in whole or in part is permitted for any purpose of the United States Government

Approved for Public Release: Distribution Unlimited

(4) TR-78-13

78 06 26 069

490 363

Jul

SECURITY CLASSIFICATION OF THIS PAGE (When Date	Littered)	
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER		3. RECIPIENT'S CATALOG NUMBER
 TITLE (and Subuute) New σ-Ethyl Composition ybdenum(M≡M) and Evidence for 		4. TYPE OF REPORT & PERIOD COVERED Technical Report 1978
Reductive Elimination with a (Metal-Metal Triple to Quadrup)		6. PERFORMING ORG. REPORT NUMBER
formation: Et-M=M-Et→M=M+C2H4-	Ю₂Н6.	TR-78-13
7. AUTHOR(s) M. H. Chisholm, D. A. Haitko a C. A. Murillo	and	NOO014-76-C-0826
9. PERFORMING ORGANIZATION NAME AND ADDRESS Department of Chemistry Princeton University Princton, N. J.		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE June 6, 1978
Office of Naval Research Department of the Navy		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
$\sigma extsf{-} ext{Ethyl, Dimolybdenum, Metal-Metal Triple}$ and $ extsf{Q} ext{uadruple}$ Bonds, Dinuclear Reductive Elimination.		
20. ABSTRACT (Continue on reverse side if necessary and identity by block number) The preparation and properties of Mo ₂ Et ₂ (NMe ₂) ₄ and Mo ₂ Et(OBu ^t) ₅		
are described. Reaction of the former with ${\rm CO_2}(\ge 4$ equiv) leads to ${\rm Mo_2}({\rm O_2CNMe_2})_4$, ${\rm C_2H_6}$ and ${\rm C_2H_4}$.		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TRANSPORMENT OF THIS PAGE (When Data Entered)

New σ -Ethyl Compounds of Dimolybdenum (M=M) and Evidence for Dinuclear Reductive Elimination with a Concomitant Metal-Metal Triple to Quadruple Bond Transformation: Et-M=M-Et \rightarrow M=M + C₂H₄ + C₂H₆.

Sir:

Transition metal complexes containing σ -ethyl ligands are prone to thermal decomposition by an initial step involving β -hydrogen elimination: 1 M-C₂H₅ \Rightarrow M-H + C₂H₄. This reaction is surpressed when the metal is coordinatively saturated and attains an 18-valence shell electronic configuration. 2 We report here (i) the preparation of the thermally stable σ -ethyl dimolybdenum compounds Mo₂Et₂(NMe₂)₄ and Mo₂Et(OBu¹)₅, in which the ethyl ligands are coordinated to unsaturated metal centers 3 and (ii) the reaction between Mo₂Et₂(NMe₂)₄ and CO₂ which proceeds according to eq 1 and provides a model reaction for studies of dinuclear reductive elimination. 4

 $1 \quad \text{Mo}_2\text{Et}_2(\text{NMe}_2)_4 + 4\text{CO}_2 \rightarrow \text{Mo}_2(\text{O}_2\text{CNMe}_2)_4 + \text{C}_2\text{H}_4 + \text{C}_2\text{H}_6$

 ${
m Mo_2Cl_2(NMe_2)_4}^5$ reacts smoothly at -78°C with EtLi (2 equiv) in hydrocarbon solvents to give the yellow, crystalline compound ${
m Mo_2Et_2(NMe_2)_4}$ which may be obtained analytically pure⁶ by sublimation (60-70°C, 10^{-4} mmHg) in greater than 70% yield based upon eq 2.

 $2 \quad Mo_2Cl_2(NMe_2)_4 + 2LiEt \rightarrow Mo_2Et_2(NMe_2)_4 + 2LiCl$

The ¹H NMR spectrum of Mo₂Et₂(NMe₂)₄ obtained in toluene-d₈ at -61°C at 270 MHz is shown in Figure 1. This corresponds to the low temperature limiting spectrum of a mixture of anti and gaucherotamers of an ethane-like molecule (Me₂N)₂EtMo²MoEt(NMe₂)₂. Note the methylene protons of the gauche rotamer (but not the anti-rotamer)

are diastereotopic and form part of an ABX₃ spectrum. At 90°C rotation about the M-N bonds is rapid on the NMR timescale leading to the coalescence of proximal and distal N-Me signals but rotation about the M=M bond (anti = gauche isomerization) is still slow. In the mass spectrometer there is a strong molecular ion $\text{Mo}_2(\text{NMe}_2)_4\text{Et}_2^+$ ($^{\text{m}}/\text{e} = 430$) and an ion $\text{Mo}_2(\text{NMe}_2)_4^+$ ($^{\text{m}}/\text{e} = 372$) corresponding to the loss of 2Et.

 $Mo_2Et_2(NMe_2)_4$ reacts rapidly at room temperature with tert-butanol in benzene according to eq 3.

3 $Mo_2Et_2(NMe_2)_4 + Bu^tOH(ex) \rightarrow Mo_2Et(OBu^t)_5 + 4 HNMe_2 + C_2H_6$

 ${
m Mo_2Et(OBu^t)_5}$ is a burgundy-red solid which sublimes with some decomposition at 60-70°C 10⁻⁴ mtMHg. The ¹H NMR spectrum at low temperature (-76°C) at 270 MHz in toluene-d₈ consists of a simple triplet and quartet for the Et ligand and two resonances in the ratio of 3:2 for the ${
m OBu}^t$ groups. ⁸ This is consistent with an ethane-like molecule $({
m Bu}^t{
m O})_2({
m Et}){
m Mom}{
m Mo}({
m OBu}^t)_3$ in which rotation about the ${
m Mom}{
m Mo}$ bond is rapid on the NMR timescale. ⁹

 $ext{Mo}_2 ext{Et}_2(ext{NMe}_2)_4$ in toluene reacts rapidly with $ext{CO}_2$ (≥ 4 equiv) to give a pale-yellow finely divided precipitate. This compound has not been structurally characterized but is considered to be $ext{Mo}_2(0_2 ext{CNMe}_2)_4$ and to have the dimolybdenum tetraacetate structure ($ext{M}\equiv ext{M}$) on the following grounds: (i) analytical data¹¹, (ii) infrared data¹², and (iii) the appearance in the mass spectrum of a very strong ion corresponding to $ext{Mo}_2(0_2 ext{CNMe}_2)_4^+$ (this is the ion of highest mass) and the doubly charged ion $ext{Mo}_2(0_2 ext{CNMe}_2)_4^{2+}$. The compound is not appreciably soluble in hydrocarbon solvents, nor $ext{CD}_2 ext{Cl}_2$, but is sparingly soluble in pyridine. 13

In a sealed NMR tube reaction $Mo_2Et_2(NMe_2)_4$ in toluene- d_8 was reacted with CO_2 (> 4 equiv). The finely divided precipitate was centrifuged to the top of the tube and the ¹H NMR spectrum of the clear, virtually colorless solution was recorded.

The only proton signals observed corresponded to ethylene and ethane which were in the integral ratio of 4:6, respectively. ¹⁴ We conclude that the reaction between $Mo_2Et_2(NMe_2)_4$ and CO_2 proceeds stoichiometrically according to eq 1 and as such provides a model reaction for detailed studies of dinuclear reductive elimination. ¹⁵ A simple intramolecular mechanism involving an initial β -hydride elimination, $Et-Mo=M-H+C_2H_4$, followed by C-H reductive elimination across the Mo=Mo bond, $Et-Mo=Mo-H \rightarrow Et-H + Mo=Mo$, satisfies all our observations.

In contrast to the above we find that $Mo_2Me_2(NMe_2)_4$ reacts with CO_2 according to eq 4.

 $\frac{4}{2} \operatorname{Mo_2Me_2(NMe_2)_4} + 4\operatorname{CO_2} \rightarrow \operatorname{Mo_2Me_2CO_2(NMe_2)_4}$

The compound $\mathrm{Mo_2Me_2}(\mathrm{O_2CNMe_2})_4^{16}$ is of sufficient thermal stability to allow the detection of the molecular ion $\mathrm{Mo_2Me_2}(\mathrm{O_2CNMe_2})_4^+$ in the mass spectrometer. In the solid state and in solution $\mathrm{Mo_2Me_2}(\mathrm{O_2CNMe_2})_4$ is believed to share the $\mathrm{W_2Me_2}(\mathrm{O_2CNEt_2})_4$ structure¹⁷ which has a planar C-WwW-C unit with a C-W-W angle equal to $\mathrm{106^0}$. Acknowledgements.

We thank the Office of Naval Research for support of this work and Professor D. C. Bradley, Queen Mary College, London who through the auspices of a NATO Grant kindly provided mass spectral results.

Authors

Malcolm H. Chisholm* 18 Deborah A. Haitko Carlos A. Murillo

Department of Chemistry Princeton University Princeton, New Jersey 08540

References

- 1. a) G. Wilkinson, Science, 185, 109 (1974).
 - b) P. J. Davidson, M. F. Lappert and R. Pearce, <u>Acc. Chem. Res.</u> 7, 209 (1974).
 - c) R. R. Schrock and G. W. Parshall, Chem. Rev. 76, 243 (1976).
- See, for example, the detailed studies of the thermal reaction
 (η⁵-C₅H₅)Fe(CO)(PPh₃)(alkyl) → (η⁵-C₅H₅)Fe(CO)(H)(PPh₃) + olefin:
 D. L. Reger and E. C. Culbertson, <u>J. Am. Chem. Soc.</u> 98, 2789 (1976).
- 3. In M₂X₆ and M₂X_{6-n}Y_n compounds (X, Y are uninegative monodentate ligands) the metals attain only 12 valence shell electrons as a result of M-X σ bonds and the M-M triple bond. The metals are capable of increasing their coordination number and number of valence electrons by Lewis base association reactions e.g., Mo₂(OSiMe₃)₆ + 2HNMe₂ = Mo₂(OSiMe₃)₆(HNMe₂)₂ M. H. Chisholm, F. A. Cotton, M. W. Extine and W. W. Reichert, J. Am. Chem. Soc. 100, 153 (1978).
- 4. For reductive elimination in mononuclear chemistry see C. A. Tolman, Chem. Soc. Rev. 1, 357 (1972).
- M. Akiyama, M. H. Chisholm, F. A. Cotton, M. W. Extine and
 C. A. Murillo, <u>Inorg. Chem.</u> 16, 320 (1977). Note all operations must be carried out in dry and oxygen free solvents and atmosphere.
- 6. Found (Calcd): C, 33.55 (33.79); H, 7.89 (8.04); N, 12.99 (13.15).
- 7. See the structural and dynamic behavior of the related compound W₂Me₂(NEt₂)₄: M. H. Chisholm, F. A. Cotton, M. W. Extine, M. Millar and B. R. Stults, <u>Inorg. Chem.</u> 15, 2244 (1976).
- 8. Et group: $\delta(CH_2) = 2.98$, $\delta(CH_3) = 1.78$, $J_{(HH)} = 7.9$ Hz.

 OBu groups at -76° C: $\delta = 1.60$ and 1.56 in the integral ratio

 3:2, respectively. Chemical shifts (δ) given in ppm downfield from TMS.
- 9. Accidental magnetic degeneracy could account for the observed 3:2 spectrum (c.f. predicted low temperature limiting spectrum 2:2:1).

- 10. For a recent review of compounds containing M-M quadruple bonds see F. A. Cotton, Chem. Soc. Rev. 4, 27 (1975) (b) The diethylcarbamate Cr₂(O₂CNEt₂)₄ ·(HNEt₂)₂ has recently been structurally characterized and shown to have a Cr≡Cr bond. M. H. Chisholm, F. A. Cotton, M. W. Extine and D. C. Rideout, Inorg. Chem., submitted for publication.
- 11. Found (Calcd): C, 26.23 (26.48); H, 4.25 (4.44); N, 10.09 (10.29).
- 12. In particular the presence of a strong absorption at 1560 cm⁻¹ assignable to ν(NCO₂) of a bridging bidentate carbamate ligand. See M. H. Chisholm and M. W. Extine, <u>J. Am. Chem. Soc.</u> 99, 782 (1977).
- 13. ¹H nmr data recorded at 100MHz, 25° C in pyridine- d_5 : $\delta(O_2\text{CNMe}_2) = 2.93 \text{ ppm}$ relative to TMS.
- 14. Found by weighing the traces 38:62. Any departure from the predicted ratio, 4:6, may be due to their differing solubilities.
- 15. Labelling studies are planned in order to investigate (i) the reversibility of β-hydrogen elimination and (ii) the intra vs. intermolecular nature of the reaction.
- 16. Analysis Found (Calcd): C, 29.50 (29.29); H, 5.14 (5.23); M, 9.65 (9.75).
- 17. M. H. Chisholm, F. A. Cotton, M. W. Extine and B. R. Stults, Inorg. Chem. 16, 603 (1977).
- 18. Alfred P. Sloan Fellow, 1976-78.

H

Caption to Figure 1

 1 H nmr spectrum of a mixture of anti- and gauche- Et(Me $_2$ N) $_2$ Mo \equiv Mo(NMe $_2$) $_2$ Et recorded in toluene-d $_8$ at -61 $^{\circ}$ C and 270MHz.

(*) anti & gauche – $Mo_2(\sigma - C_2H_5)_2(NMe_2)_4$

