RECURSION LESSON 11

NANODEGREE → **ENGINEERING MODULE**

AGENDA

01 Recursion

02 Famous recursion functions

03 Practice and coding

RECURSION

M RECURSIVE FUNCTIONS

of programming or coding a problem, in which a function calls itself one or more times in its body. Usually, it is returning the return value of this function call.

RECURSION ADVANTAGES

- Recursive functions make the code look clean and elegant.
- 2. A complex task can be broken down into simpler sub-problems using recursion.
- 3. Sequence generation is easier with recursion than using some nested iteration.

RECURSION DISADVANTAGES

- Sometimes the logic behind recursion is hard to follow through.
- 2. Recursive calls are expensive (inefficient) as they take up a lot of memory and time.
- 3. Recursive functions are hard to debug.

FAMOUS RECURSION

CODING EXAMPLES

n	n!		
1	1	1	1
2	2 × 1	= 2 × 1!	= 2
3	3 × 2 × 1	= 3 × 2!	= 6
4	4 × 3 × 2 × 1	= 4 × 3!	= 24
5	5 × 4 × 3 × 2 × 1	= 5 × 4!	= 120
6	etc	etc	

FACTORIAL

 The factorial function (symbol: !) says to multiply all whole numbers from our chosen number down to 1.

$$\left\{ n! = n \times (n-1)! \right\}$$

FAMOUS RECURSION

The Fibonacci Sequence

1,1,2,3,5,8,13,21,34,55,89,144,233,377...

1+1=2	13+21=34
1+2=3	21+34=55
2+3=5	34+55=89
3+5=8	55+89=144
5+8=13	89+144=233
8+13=21	144+233=377

FIBONACCI

• Fibonacci sequence is one of the most famous formulas in mathematics. Each number in the sequence is the sum of the two numbers that precede it.

$$F_n = F_{n-1} + F_{n-2}$$

RECURSION IMPLEMENTATION EXERCISES & PRACTICE

THANK YOU!