PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

DO PORTO					
Ano	Ano Letivo, 2013/2014 Data, 11/05/2013 Prova, MATEMATICA			da Prova: <u>2h</u> ia: <u>15 min</u>	
	Escola onde realiza est	a prova: ESEIG E	STGF ISCAP	☐ ISEP	Rubrica de Docente em Vigilância
A preencher pelo candidato	Nome do Candidato: _				
	Documento de Identif	cação apresentado: 🔲 BI	C.Cid. Pas. C	C.Cond. Outro	Classificação Final
	Número do Document	o de Identificação:			
	Escola(s) a que se cano	lidata: ESEIG EST	ΓGF ∏ISCAP [ISEP	(0-200) Rubrica de Docente
	Curso(s) a que se cand	idata:			(Júri de Prova)
	Número de <u>folhas extr</u>	<u>a</u> entregues pelo Candidato:			
	É obrigatória a apresentação de documento de identificação com fotografia ao docente encarregado da vigilância				

Material admitido:

- Material de escrita.
- Máquina de calcular elementar ou máquina de calcular científica (não gráfica).

Utilize apenas caneta ou esferográfica de tinta indelével, azul ou preta, exceto nas respostas que impliquem a elaboração de construções, de desenhos ou de outras representações, que podem ser primeiramente elaborados a lápis, sendo, a seguir, passados a tinta.

Não é permitido o uso de corretor. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

A prova é constituída por dois grupos, I e II.

- O Grupo I inclui 7 questões de escolha múltipla.
 - Para cada uma delas, são indicadas quatro alternativas, das quais apenas uma está correta.
 - Responda na página fornecida para o efeito, respeitando as regras nela indicadas. Só serão consideradas as respostas dadas nessa página.
- O Grupo II inclui 8 questões de resposta aberta, algumas delas subdivididas em alíneas, num total de 12.
 - Nas questões deste grupo apresente de forma clara o seu raciocínio, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias.
 - Quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exato.
 - o Cada questão deve ser respondida na própria folha do enunciado.
 - Devem ser pedidas folhas adicionais caso a resposta à pergunta não caiba na folha respetiva.

A prova tem 18 páginas e termina com a palavra FIM.

Na página 17 é indicada a cotação de cada pergunta.

Na página 18 é disponibilizado um formulário.

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

Nº Respostas CERTAS:

Classificação Grupo I:

Rubrica de Docente Corretor

FOLHA DE RESPOSTAS DO GRUPO I

Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a resposta for ilegível. Não apresente cálculos, nem justificações.

Assinalar resposta correta:	(A) (& © (D	
Anular a resposta:	A		D	
Assinalar de novo resposta anulada:	(A)		D	
1	A	B	<u>C</u>	D
2	A	B	(C)	D
3	A	B	(C)	D
4	A	B	(C)	D
5	A	B	(C)	D
6	A	B	<u>C</u>	D

7

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

Nome do Candidato: _______

Número do Documento de Identificação: ________

Escola(s) a que se candidata: _____ ESEIG ___ ESTGF ___ ISCAP ___ ISEP

Curso(s) a que se candidata: ______

GRUPO I — RESPONDA NA PÁGINA FORNECIDA PARA O EFEITO

1. Entre as várias escalas de temperatura existentes, as mais utilizadas são a escala em graus Celsius (oC) e a escala em graus Fahrenheit (oF). No Sistema Internacional (S.I.) utiliza-se a escala absoluta em Kelvin (K). A relação entre graus Celsius e graus Fahrenheit pode ser dada por $F = \frac{9}{5}C + 32$ e a correspondência entre Kelvin e graus Celsius pode ser expressa por C = K - 273,15. Então, a relação entre Kelvin e graus Fahrenheit pode ser dada por:

(A)
$$K = \frac{9F - 288}{5} + 273,15$$

(c)
$$\frac{F-32}{9} = \frac{K-273,15}{5}$$

(B)
$$\frac{K-273,15}{9} = \frac{F-32}{5}$$

(D)
$$K = \frac{5F - 150}{9} - 273,15$$

2. Seja g uma função quadrática. Sabendo que a função admite um zero para x=3 e que g(0)=g(2)<0, podemos afirmar que g(x)>0 se e só se:

(A)
$$x \in]-1,3[$$

(C)
$$x \in]-\infty, 0[\cup]2, +\infty[$$

(B)
$$x \in]0,2[$$

(D)
$$x \in]-\infty, -1[\cup]3, +\infty[$$

3. O domínio da função real de variável real f , definida por $f(x) = \frac{\sqrt{1-x^2}}{\ln(2x-1)}$, é:

(A)
$$[1,+\infty]$$

(c)
$$\frac{1}{2}$$
, $+\infty$

(B)
$$\frac{1}{2}$$
, 1

(D)
$$[-1,1]$$

- **4.** Se $\log_3(a) = \frac{1}{4}$, então o valor de $\log_3\left(\frac{a^4}{9}\right)$ é:
 - (A) -2

(C) -1

(B) 2

- **(D)** 3
- **5.** Na figura ao lado estão representados, num referencial ortonormado xOy, o círculo trigonométrico e um triângulo OAB.

Os pontos $A \in B$ pertencem à circunferência.

A reta AB é paralela ao eixo Ox.

Sendo α a amplitude do $\angle AOP$ tal que $0<\alpha<\frac{\pi}{2}$, indique, entre as expressões seguintes, a que pode representar a área do triângulo OAB em função de α .

(A) $sen(\alpha).cos(\alpha)$

(c) $tg(\alpha).sen(\alpha)$

(B) $\frac{\sin(2\alpha).\cos(2\alpha)}{2}$

- (D) $\frac{\operatorname{tg}(2\alpha).\cos(2\alpha)}{2}$
- **6.** Considere a função real de variável real h, definida por $h(x) = k \cdot x^n$, $k \in \mathbb{R}$, $n \in \mathbb{N}$. Sabendo que h'(1) = 2 e h'(3) = 54, então os valores de k e n são:

(A)
$$k = 2 e n = 4$$

(C)
$$k = 2 e n = 3$$

(B)
$$k = \frac{1}{2} \text{ e } n = 4$$

(D)
$$k = 1 \text{ e } n = 2$$

7. Na figura ao lado encontra-se parte da representação geométrica do gráfico de uma função real de variável real f definida por $f(x) = a + \frac{b}{x+c}$, onde $a,b,c \in \mathbb{R}$

As retas de equação x=2 e y=1 são assíntotas do gráfico da função.

O ponto (0,0) pertence ao gráfico da função.

No caso da função representada, os valores de a , b e c são:

(A)
$$a = -1$$
, $b = -2$, $c = -2$

(C)
$$a = -1$$
, $b = 2$, $c = 2$

(B)
$$a=1, b=2, c=2$$

(D)
$$a=1, b=2, c=-2$$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	3 ANOS	
Ol:	Nome do Candidato	o:	GII Q1.	GII Q2.
eencher pelo candidato	Número do Documo	ento de Identificação:	Clas. Parc	ial Q1+Q2
g ,	Escola(s) a que se c	andidata:	Rubrica de Corr	e Docente etor
∢	Curso(s) a que se ca	andidata:		

GRUPO II

1. A piscina retangular do Clube IPP tem 25 metros de comprimento, 16 metros de largura e 2,5 metros de profundidade a todo o comprimento. A função $v(t)=4t\,$ dá-nos a quantidade de água, em metros cúbicos, $t\,$ minutos depois de aberta a torneira de enchimento, isto é, esta torneira tem um caudal constante de $4 \, \mathrm{m}^3 \,$ por minuto. Num dia de aulas na piscina do clube, o senhor António, responsável pela manutenção da piscina, chegou às instalações às $7 \, \mathrm{h} 15 \, \mathrm{m} \,$ e verificou que esta estava quase vazia, tendo apenas $200 \, \mathrm{m}^3 \,$ de água. Sabendo que, nesse dia, as aulas se iniciavam às $10 \, \mathrm{h} 30 \, \mathrm{m} \,$, diga, justificando, se o senhor António dispunha de tempo para encher a piscina até à hora de início da primeira aula.

2. Calcule o valor da seguinte expressão numérica utilizando, sempre que possível, as regras das $\left(\frac{2}{3}\right)^{-30} \times \left(\frac{3}{3}\right)^{15} \div (0,3)^{45}$

operações com potências:
$$\frac{\left(\frac{2}{3}\right)^{-30} \times \left(\frac{3}{2}\right)^{15} \div \left(0,3\right)^{45}}{\left[3 \times 2^2 - 7 \times \left(-1\right)^4\right]^{44}}$$

3. Determine todos os valores <u>inteiros</u> de x que verificam simultaneamente as inequações:

$$6(x+5)-2(4x+2)>10$$
 e $7-3x<4$

4. Sabendo que sen(2x) = a, $com a \ne 0$, mostre que: $\frac{a.sen(x)}{2\cos(x)} + \frac{a.\cos(x)}{2\sin(x)} = 1$

POLITÉCNICO DO PORTO		PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 2	23 ANOS
	Nome do Candidato);	GII Q5.1.1
pelo o	Trome do Camarace	GII Q5.1.2	
ă o		GII Q5.2	
eencher p candidato	Número do Documento de Identificação:		Clas. Parcial GII Q5
preencl		andidate: DECEIC DECECE DICCAR DICER	Rubrica de Docente
Α D	Escola(s) a que se ca	andidata: ESEIG ESTGF ISCAP ISEP	Corretor
`	Curso(s) a que se ca	andidata:	

- **5.** Um objeto foi colocado numa panela com água à temperatura de 100 graus Celsius (°C) e manteve-se a temperatura da água constante. A temperatura do objeto, em graus Celsius (°C), t segundos após a colocação na panela, é dada por: $T(t) = 100 ae^{-bt}$, $a,b \in \mathbb{R}$.
 - **5.1.** Considerando a = 80 e b = 0.004, determine:
 - **5.1.1.** A temperatura do objeto no momento em que este foi colocado na panela.
 - **5.1.2.** Ao fim de quanto tempo o objeto atingiu a temperatura de $80^{\circ}C$. Apresente o valor aproximado às unidades e traduza-o em minutos e segundos.
 - **5.2.** Sabendo que 30 segundos depois do objeto ter sido colocado na panela, a sua temperatura é de $50^{\circ}C$ e que esta aumenta, nesse instante, à razão $1^{\circ}C/s$, isto é, T'(30)=1, calcule os valores dos parâmetros a e b, arredondando, se necessário, o resultado às centésimas.

POLITÉCNICO DO PORTO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS Nome do Candidato: Número do Documento de Identificação: Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP Contractor Clas. Parcial GII Q6 Rubrica de Docente Corretor

6. Dada a função real de variável real definida por:

Curso(s) a que se candidata: __

$$f(x) = \ln\left(\frac{5}{2x+3}\right) - 2x \cdot \cos(3x)$$

mostre que uma expressão analítica para a derivada desta função pode ser dada por:

$$f'(x) = -\frac{2}{2x+3} - 2.\cos(3x) + 6x.\sin(3x)$$

POLITÉCNICO DO PORTO PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS Nome do Candidato: Número do Documento de Identificação: Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP Clas. Parcial GII Q7 Rubrica de Docente Corretor

7. Um balão de ar quente encontra-se diretamente por cima de uma estrada reta que une duas

localidades. Segundo as medições realizadas pelo balonista num determinado momento, o ângulo de depressão relativamente à localidade mais próxima é de $45^{\rm o}$, enquanto o ângulo de depressão relativamente à localidade mais afastada é de $30^{\rm o}$. Considerando os dados apresentados na figura ao lado, esquema que não está representado à escala, determine a altura h do balão ao solo, nesse momento, apresentando o resultado final em metros, arredondado a uma casa decimal.

Curso(s) a que se candidata: _

PROVAS DE ACESSO E INGRESSO PARA OS MAIORES DE 23 ANOS

A preencher pelo candidato

	GII Q8.1
Nome do Candidato:	GII Q8.2
	GII Q8.3
Número do Documento de Identificação:	Clas. Parcial GII Q8
Escola(s) a que se candidata: ESEIG ESTGF ISCAP ISEP	Rubrica de Docente Corretor
Curso(s) a que se candidata:	

8. Num concurso de salto em altura com *skyrunners* foram apurados dois atletas para a final. Sabe-se que os seus saltos se iniciaram no mesmo local e no mesmo instante. As alturas de cada um dos saltos são modeladas de acordo com as seguintes funções:

$$h_1(t) = -3t^2 + 6t$$
 e $h_2(t) = -2t^2 + 4.8t$

- t representa a variável tempo (em segundos)
- h_1 representa a altura do salto do concorrente nº1 (em metros)
- h₂ representa a altura do salto do concorrente nº2 (em metros)

- **8.1.** Diga, justificando, qual dos concorrentes se manteve mais tempo no ar e durante quanto tempo.
- **8.2.** Indique, justificando, qual dos concorrentes saltou mais alto e qual foi essa altura.
- **8.3.** Determine durante quanto tempo se manteve o concorrente nº1 acima dos 2,97 m.

COTAÇÕES

Grupo I		84 pontos
Cada resposta certa	12 pontos	
Cada questão errada, não respondida ou anulada	0 pontos	
Grupo II		116 pontos
1	10 pontos	
2	10 pontos	
3	14 pontos	
4	10 pontos	
5	23 pontos	
5.1.1		
5.1.2		
5.2. 10 pontos		
6	14 pontos	
7	15 pontos	
8	20 pontos	
8.1. 05 pontos		
8.2. 08 pontos		
8.3. 07 pontos		
	-	

TOTAL 200 pontos

FORMULÁRIO

Relações trigonométricas de ângulos agudos

	$sen(\alpha)$	$\cos(\alpha)$	$\operatorname{tg}(\alpha)$
$\alpha = 0^{\circ}$	0	1	0
$\alpha = 30^{\circ}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\alpha = 45^{\circ}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\alpha = 60^{\circ}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\alpha = 90^{\circ}$	1	0	-

Trigonometria

•
$$\operatorname{sen}^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

•
$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cdot \cos(\beta) + \operatorname{sen}(\beta) \cdot \cos(\alpha)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$$

•
$$tg(\alpha) = \frac{sen(\alpha)}{cos(\alpha)}$$

Regras de derivação

$$(\cos(u))' = -u' \cdot \sin(u)$$

Volume do Paralelepípedo $V = c \times l \times h$

FIM