Módulo

O módulo de um número real x é definido por:

$$|x| = \begin{cases} x, & \text{se } x \ge 0\\ -x, & \text{se } x < 0 \end{cases}$$

Por exemplo, |-3,15| = 3,15, |7| = 7, |0| = 0.

• Note que $\sqrt{x^2} = |x|$

Exemplo 1.

$$|2x - 3| = \begin{cases} 2x + 3, & \text{se } 2x - 3 \ge 0 \\ -2x + 3, & \text{se } 2x - 3 < 0 \end{cases}$$
$$= \begin{cases} 2x - 3, & \text{se } x \ge 3/2 \\ -2x + 3, & \text{se } x < 3/2 \end{cases}$$

Exemplo 2. A função módulo é a função

$$f(x) = |x| = \begin{cases} x, & \text{se } x \ge 0\\ -x, & \text{se } x < 0 \end{cases}$$

Para esboçar o gráfico de f considere as funções y=x e y=-x:

x	y = x
0	0
1	1

x	y = -x
0	0
1	-1

FIGURA 1. A função módulo

• $Dom(f) = \mathbb{R}$ e $Im(f) = [0, +\infty[$.

Exemplo 3. Seja f(x) = (x+1)|x-3|.

Vamos começar reescrevendo a função sem o símbolo de módulo:

$$f(x) = \begin{cases} (x+1)(x-3), & \text{se } x-3 \ge 0\\ (x+1)(-x+3), & \text{se } x-3 < 0 \end{cases}$$
$$= \begin{cases} x^2 - 2x - 3, & \text{se } x \ge 3\\ -x^2 + 2x + 3, & \text{se } x < 3 \end{cases}$$

Para esboçar o gráfico de f considere as funções:

$$y = x^2 - 2x - 3$$
 e $y = -x^2 + 2x + 3$

	$y = x^2 - 2x - 3$	
	raízes	-1 e 3
ĺ	vértice	v = (1, -4)

Exemplo 4. Seja
$$f(x) = \frac{x}{|x|}$$

Para esboçar o gráfico de f vamos reescrever, de forma equivalente, a função sem o símbolo de módulo.

$$f(x) = \frac{x}{|x|} = \begin{cases} \frac{x}{x}, & \text{se } x > 0 \\ \frac{x}{-x}, & \text{se } x < 0 \end{cases} = \begin{cases} 1, & \text{se } x > 0 \\ \\ -1, & \text{se } x < 0 \end{cases}$$

Exemplo 5. Seja
$$f(x) = x|x-1| - x^2 + 1$$

Reescrevendo f(x) obtemos:

$$f(x) = \begin{cases} x(x-1) - x^2 + 1, & \text{se } x - 1 \ge 0 \\ \\ x(-x+1) - x^2 + 1, & \text{se } x - 1 < 0 \end{cases}$$

Portanto

$$f(x) = \begin{cases} -x+1, & \text{se } x \ge 1\\ -2x^2 + x + 1, & \text{se } x < 1 \end{cases}$$

Para esboçar o gráfico de f considere as funções y=-x+1 e $y=-2x^2+x+1\colon$

y =	= -x + 1
x	y
0	1
1	

$y = -2x^2 + x + 1$	
raízes	-1/2 e 1
vértice	v = (1/4, 9/8)

-

$$Dom(f) = \mathbb{R}$$
 e $Im(f) =]-\infty, 9/8]$

Exemplo 6. Considere a função g = |f|. Então,

$$g(x) = |f(x)| = \begin{cases} f(x), & \text{se } f(x) \ge 0\\ -f(x), & \text{se } f(x) < 0 \end{cases}$$

Assim, o gráfico de |f| coincide com o gráfico de f onde f for positiva ou nula e coincide com o gráfico de -f onde f for negativa, isto é, o gráfico de f será girado 180° no eixo x, onde f for negativa.

As duas figuras abaixo são os gráficos de uma função f e de |f|.

Exemplo 7. Seja $f(x) = |x^2 - 1|$

Primeiro esboçamos o gráfico de $y = x^2 - 1$:

$y = x^2 - 1$		
raízes	-1 e 1	
vértice	v = (0, -1)	

Para esboçar o gráfico de $f(x) = |x^2 - 1|,$ giramos 180° em torno do eixo x, aquela(s) parte(s) do gráfico de $y=x^2-1$ em que y é negativo:

Exercícios de revisão

1 Esboce o gráfico indicando domínio, imagem, intersecções com os eixos coordenados e vértices (se houver):

(a)
$$f(x) = (x-1)|x+2|$$

(a)
$$f(x) = (x-1)|x+2|$$
 (e) $f(x) = x^2 + |x-1| + 1$

(b)
$$f(x) = |x - 1|(x + 2)$$
 (f) $f(x) = x|x - 1|$

(f)
$$f(x) = x|x-1$$

(c)
$$f(x) = |2x + 3| - 2x + 1$$
 (g) $f(x) = |-x^2 + 1|$

(g)
$$f(x) = |-x^2 + 1|$$

(d)
$$f(x) = -x^2 + x|x|$$

(d)
$$f(x) = -x^2 + x|x|$$
 (h) $f(x) = |x^2 + 2x| + 3$

A distância entre dois pontos a e b em \mathbb{R} , denotada por dist(a, b)é o módulo da diferença entre eles, isto é, dist(a,b) = |a-b|. Como |x| = |x - 0|, então |x| é a distância de x até a origem 0.

Assim,

- $|x| = 2 \iff x = \pm 2$, pois queremos aqueles números cuja distância até a origem vale 2.
- $|x| = 0 \Longleftrightarrow x = 0$, |x| = -2 não tem solução
- $\bullet\,$ De modo geral: se $a\geq 0,$ então $|x|=a\Longleftrightarrow x=\pm a;$ se a < 0, então |x| = a não tem solução.
- $|x| < 3 \iff$ a distância entrex e 0 é menor que 3. Portanto $|x| < 3 \iff -3 < x < 3$.
- $|x| \leq 3 \iff$ a distância entrex e 0 é menor ou igual a 3. Portanto $|x| < 3 \iff -3 \le x \le 3$.
- $|x| > 3 \iff$ a distância entrex e 0 é maior que
3. Portanto $|x| > 3 \iff x < -3 \text{ ou } x > 3.$
- $|x| \geq 3 \iff$ a distância entrex e 0 é maior ou iguall a 3. Portanto $|x| \ge 3 \iff x \le -3 \text{ ou } x \ge 3.$
- De modo geral, se a > 0, então:

$$|x| < a \iff -a < x < a.$$

$$|x| \le a \iff -a \le x \le a.$$

$$|x|>a\Longleftrightarrow x<-a \text{ ou } x>a.$$

$$|x| \ge a \iff x \le -a \text{ ou } x \ge a.$$

Resolva:

(a)
$$|3x - 1| = 4$$

(f)
$$|3x-1| < 4$$

(b)
$$|-4x+1|=2$$

(g)
$$|-4x+1| \ge 2$$

(c)
$$|5x - 2| = 0$$

(h)
$$|5x - 2| < 0$$

(d)
$$|x^2 - x + 1| = 1$$

(i)
$$|x^2 - x + 1| < 1$$

(e)
$$\left| \frac{2x+1}{x-2} \right| =$$

$$(j) \left| \frac{2x+1}{x-2} \right| \ge 1$$

RESPOSTAS

2 (a)
$$x = -1$$
 ou $x = 5/3$ (f) $]-1,4/3[$

(f)
$$]-1,4/3$$

(b)
$$x = 3/4$$
 ou $x = -1/4$

(g)
$$]-\infty, 1/4] \cup [3/4, +\infty[$$

(c)
$$x = 2/5$$

(d)
$$x = -1$$
 ou $x = 2$

(e)
$$x = -3$$
 ou $x = 1/3$

(j)
$$]-\infty, -3] \cup [1/3, 2[\cup]2, +\infty[$$