Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Методы оптимизации»

Студент: М.А. Бронников

Преподаватель: Т.И.Короткова

Группа: М8О-307Б

Дата: Оценка: Подпись:

1 Метод конфигураций

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом кофигурации.
- Что вычисляется в процессе решения: В процессе иттерации находятся точки базиса, в которых происходит исследующий поиск и поиск по образцу.
- Алгоритм: Описание алгоритма:
 - 1. Инициализация значений: Выбор начальной базисной точки $x^0 = (x_1^0, x_2^0, ..., x_n^0)$, начальных покоординатных приращений $dx_1^0, dx_2^0, ..., dx_n^0$, а также минимальной длины шага ξ для останова и необязательный параметр останова максимальное количество иттераций N_{max} . Для корректной работы алгоритма $dx_i^0 > \xi$ для $\forall i \in \{1, ..., n\}$. Начинаем первую иттерацию при j = 0.
 - 2. *Исследующий поиск:* Для базисной точки x^j , где j будем называть номером иттерации алгоритма, выполним:
 - (a) Проверим, если выполняется условие $dx_i^j < \xi$, значит выполнен основной критерий останова и выходим из алгоритма с результатом: x^j .
 - (b) Для $\forall i \in \{1, ..., n\}$:

$$x_{i}^{j+1} = \begin{cases} x_{i}^{j} + dx_{i}^{j}, & f(x_{1}^{j}, ..., x_{i}^{j} + dx_{i}^{j}, ..., x_{n}^{j}) < f(x_{1}^{j}, ..., x_{i}^{j}, ..., x_{n}^{j}) \\ x_{i}^{j} - dx_{i}^{j}, & f(x_{1}^{j}, ..., x_{i}^{j} - dx_{i}^{j}, ..., x_{n}^{j}) < min(f(x_{1}^{j}, ..., x_{i}^{j}, ..., x_{n}^{j}), f(x_{1}^{j}, ..., x_{i}^{j} + dx_{i}^{j}, ..., x_{n}^{j})) \\ x_{i}^{j}, & min(f(x_{1}^{j}, ..., x_{i}^{j} - dx_{i}^{j}, ..., x_{n}^{j}), f(x_{1}^{j}, ..., x_{i}^{j} + dx_{i}^{j}, ..., x_{n}^{j})) \ge f(x_{1}^{j}, ..., x_{i}^{j}, ..., x_{n}^{j}) \end{cases}$$

- (c) Если $x^{j+1}=x^j$, значит уменьшаем значения приращений $dx_1^j, dx_2^j, ..., dx_n^j$ (например, $dx_i^j=\frac{dx_i^j}{10}$ для $\forall i\in\{1,...,n\}$) и перейти к шагу (2).
- (d) Если $x^{j+1} \neq x^j$, значит получаем новую базисную точку x^{j+1} с сохранением приращений $dx_i^{j+1} = dx_i^j$ для $\forall i \in \{1,...,n\}$, увеличим j = j+1 и перейдём к шагу (3).
- 3. $\mathit{Поиск}$ по образцу: Для новой базисной точки x^j выполним:
 - (a) Проверим, если выполняется условие достижения макимального количества иттераций $j=N_{max}$, значит выходим из алгоритма с результатом: x^{j} .
 - (b) Делаем шаг поиска и вычисляем $x^e = x^j + t_j(x^j x^{j-1})$, где t_j параметр движения(зависит от реализаций, обычно $t_j = 2$ для $\forall j \in N$).

(c) Вычислим точку x^y . Для $\forall i \in \{1, ..., n\}$:

$$x_i^y = \begin{cases} x_i^e + dx_i^j, & f(x_1^e, ..., x_i^e + dx_i^j, ..., x_n^e) < f(x_1^e, ..., x_i^e, ..., x_n^e) \\ x_i^e - dx_i^j, & f(x_1^e, ..., x_i^e - dx_i^j, ..., x_n^e) < \min(f(x_1^e, ..., x_i^e, ..., x_n^e), f(x_1^e, ..., x_i^e + dx_i^j, ..., x_n^e)) \\ x_i^e, & \min(f(x_1^e, ..., x_i^e - dx_i^j, ..., x_n^e), f(x_1^e, ..., x_i^e + dx_i^j, ..., x_n^e)) \geqslant f(x_1^e, ..., x_i^e, ..., x_n^e) \end{cases}$$

- (d) Если $x^e = x^y$, значит поиск по образцу не удался. Переходим к шагу (2).
- (e) Если $x^e \neq x^y$, значит получаем новую базисную точку $x^{j+1} = x^y$ с сохранением приращений $dx_i^{j+1}=dx_i^j$ для $\forall i\in\{1,...,n\},$ увеличим j = j + 1 и перейдём к шагу (3).

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$N_{max} = 8$$

$$j = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

$$dx_1^0 = 1, dx_2^0 = 1$$

Делаем исследующий поиск:

$$dx_1^0 = 1 > 0.01 = \xi$$

$$dx_2^0 = 1 > 0.01 = \xi$$

$$dx_2^{\bar{0}} = 1 > 0.01 = \xi$$

 $j < N_{max}$, значит критерий останова не выполнен.

$$f(x_1^j, x_2^j) = 5 \cdot 121 + 3 \cdot 77 + 6 \cdot 49 + 22 + 7 + 9 = 1168$$

1. Для x_1 :

$$f(x_1^j+1,x_2^j)=5\cdot 144+3\cdot 84+6\cdot 49+24+7+9=1306>f(x_1^j,x_2^j)$$
 $f(x_1^j-1,x_2^j)=5\cdot 100+3\cdot 70+6\cdot 49+20+7+9=1040< f(x_1^j,x_2^j)$ Значит $x_1^{j+1}=x_1^j-1=11-1=10$

2. Для x_2 :

$$f(x_1^j, x_2^j + 1) = 5 \cdot 121 + 3 \cdot 88 + 6 \cdot 64 + 22 + 8 + 9 = 1292 > f(x_1^j, x_2^j)$$
 $f(x_1^j, x_2^j - 1) = 5 \cdot 121 + 3 \cdot 66 + 6 \cdot 36 + 22 + 6 + 9 = 1056 < f(x_1^j, x_2^j)$ Значит, $x_2^{j+1} = x_2^j - 1 = 7 - 1 = 6$

$$dx_1^{j+1} = dx_1^j = 1, dx_2^{j+1} = dx_2^j = 1$$

 $j = j + 1 = 1$
 $x^1 = (10, 6)$

Конец первой итерации.

• Результат компьютерных вычислений:

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Бронников, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод конфигураций

Точность метода: 0.01, N_{max} = 8, Количество итераций: 9

N_{HT}	x ₁	x2	$f(x_1,x_2)$	dx1	dx2	коэф-т к
0	11	7	1168	1	1	
1	10	б	931	1	1	0
2	9	5	722	1	1	0
3	8	4	541	1	1	0
4	7	3	388	1	1	0
5	б	2	263	1	1	0
6	5	1	166	1	1	0
7	4	0	97	1	1	0
8	3	-1	56	1	1	0
9	2	-1	32			

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 2.39202$$

$$|f(x) - f(x^*)| = 23.20721$$

2 Метод Марквардта

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Марквардта.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся шаг-приращение dx^k для точки x^k при помощи градиента и матрицы Гёссе в этой точке.
- Алгоритм: Перед началом описания алгоритма следует ввести следующие обозначения:

Матрица Гёссе:

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

- 1. Начальная инициализация: Задать точку для начала движения $x^0 = (x_1^0, x_2^0, ..., x_n^0)$, точность приближения ξ , необязательный парамметр максимальное количество иттераций N_{max} , а также выбрать значение параметра λ_0 , которое, впрочем, можно задать как $\lambda_0 = 50 \cdot max(h_{ij}^0)_{0 \le i,j \le n}$, где h_{ij}^k элемент матрицы $H_f(x^k)$ на i-ой строке и j-ом столбце. Начиннаем первую иттерацию при k=0.
- 2. Проверим критерий останова: Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k назовем номером иттерации, выходим из алгоритма с результатом x^k .

- 3. Вычисление новой точки: Вычислим приращение $dx^k = -[H_f(x^k) + \lambda_k E]^{-1} \nabla f(x^k)$ и новую точку $x^{k+1} = x^k + dx^k$.
 - Если $f(x^{k+1}) < f(x^k)$, значит мы успешно нашли новую точку и можем уменьшить значение параметра λ_{k+1} , например $\lambda_{k+1} = \frac{\lambda_k}{2}$. Положим k = k+1 и перейдем к шагу (2).
 - Если $f(x^{k+1}) \geqslant f(x^k)$, значит поиск неудачен и следует увеличить значение параметра λ_k , например $\lambda_k = \lambda_k \cdot 2$. Параметр k не меняется и повторим шаг (3) для поиска x^{k+1} с новым параметром λ_k .

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

 $\xi = 0.01$
 $N_{max} = 5 \ k = 0$
 $x_1^0 = 11, \ x_2^0 = 7$

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

$$H_f(x) = \left(\begin{array}{cc} 10 & 3\\ 3 & 12 \end{array}\right)$$

Матрица Гёссе положительно определена, поэтому для ускорения сходмости возьмем небольшой параметр $\lambda_0 = 1$, хотя в общем случае рекоменуется брать значение на порядок больше чем элементы в матрице Гёссе.

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 133\\118 \end{pmatrix} \right\| = \sqrt{133^2 + 119^2} = 177.8004 > 0.01 = \xi$$

 $k = 0 < 5 = N_{max}$, значит критерий останова не выполнен.

Вычислим следующую точку:

$$dx^k = -[H_f(x^k) + \lambda_k E]^{-1} \nabla f(x^k) = \begin{bmatrix} \begin{pmatrix} 10 & 3 \\ 3 & 12 \end{pmatrix} + \begin{pmatrix} \lambda_k & 0 \\ 0 & \lambda_k \end{pmatrix} \end{bmatrix}^{-1} \begin{pmatrix} 133 \\ 118 \end{pmatrix} = (-10.261, -6.709)$$

$$x^{k+1} = x^k + dx^k = (11,7) + (-10.261, -6.709) = (0.739, 0.291)$$

$$f(x^{k+1}) = 12.2598 < 1168 = f(x^k) \text{ , значит новая точка найдена успешно.}$$

$$\lambda_{k+1} = \frac{\lambda_k}{2} = 0.5$$

$$k = k+1$$

Конец первой итерации.

• Результат компьютерных вычислений:

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Бронников, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Марквардта

Точность метода: 0.01, N_{max} = 5, Количество итераций: 4

N _{HT}	шаг μ	x ₁	x ₂	$f(x_1,x_2)$	f'x1	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0	11	7	1168	133	118	177.80045
1	0	0.73881	0.29104	14.65115	10.26119	6.70896	12.25978
2	0	-0.10648	-0.02996	8.82872	0.84529	0.32101	0.90419
3	0	-0.1813	-0.03739	8.79308	0.07482	0.00743	0.07519
4	0	-0.18839	-0.03632	8.7928	0.00709	-0.00107	0.00717

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.00085$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

3 Метод Нельдера-Мида

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Нельдера-Мида.
- Что вычисляется в процессе решения: В процессе иттераций вычисляется центр тяжести набора точек, с целью заменить «худшую» точку из набора на более близкую к минимуму функции.
- **Алгоритм:** Минимизируем функцию f(x), где $x = (x_1, x_2, ..., x_n)$ Описание алгоритма:
 - 1. Начальная инициализация: Задать начальную систему из n+1 точек: $\{x^{0(1)}, x^{0(2)}, ..., x^{0(n+1)}\}$, точность ξ , максимальное количество иттераций N_{max} , а также параметр отражения $\alpha>0$ (рекомендуется $\alpha=1$), параметр сжатия $\beta>0$ (рекомендуется $\beta\in[0.4,0.6]$) и параметр растяжения $\gamma>0$ (рекомендуется $\gamma\in[2,3]$). Начиннаем первую иттерацию при k=0.
 - 2. Выбор трёх точек: Выберем три точки x_h, x_l, x_g из набора, таких что $f(x_h) \geqslant f(x_g) \geqslant f(x_i)$, для $\forall x_i \in \{x^{k(1)}, x^{k(2)}, ..., x^{k(n+1)}\} \setminus \{x_h, x_g\}$ и $f(x_l) \leqslant f(x_l)$ для $\forall x_i \in \{x^{k(1)}, x^{k(2)}, ..., x^{k(n+1)}\}$.
 - 3. Проверим критерий останова: Обозначим $\overline{f} = \frac{\displaystyle\sum_{j=1}^{n+1} f(x^{k(j)})}{n+1}.$

 $\sum_{i=1}^{n+1} \left| f(x^{k(i)}) - \overline{f} \right|^2$ Если $\sqrt{\frac{\sum_{i=1}^{n+1} \left| f(x^{k(i)}) - \overline{f} \right|^2}{n+1}} < \xi$ или $k = N_{max}$, то выходим из алгоритма с значением x_l , иначе k = k+1.

- 4. Найдем центр тяжести $x_c = \frac{(\sum\limits_{i=1}^{n+1} x^{k(i)} x_h)}{n}$
- 5. Отражение точки: Получим точку отражения $x_r = (1 + \alpha)x_c \alpha x_h$.
 - Если $f(x_r) < f(x_l)$, значит переходим к шагу (6).
 - Если $f(x_l) < f(x_r) < f(x_g)$, значит $x_h = x_r$, переходим на шаг (2).
 - Если $f(x_g) < f(x_r) < f(x_h)$, значит x_h меняют значения местами x_r , переходим на шаг (7).
 - Если $f(x_h) < f(x_r)$, перейдем на шаг (7).
- 6. *Растяжение точки:* Получим точку растяжения $x_e = (1 \gamma)x_c + \gamma x_r$.

- Если $f(x_e) < f(x_r)$, тогда $x_h = x_c$ и переходим на шаг (2).
- Если $f(x_e) > f(x_r)$, тогда $x_h = x_r$ и переходим на шаг (2).
- 7. Сжатие точки: Получим точку сжатия $x_s = \beta x_h + (1 \beta)x_c$.
 - Если $f(x_s) < f(x_h)$, тогда $x_h = x_s$ и переходим к шагу (2).
 - Если $f(x_s) > f(x_h)$, тогда выполняем редукцию: $x_i = x_l + \frac{(x_i x_l)}{2}$ и переходим к шагу (2)

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$N_{max} = 5 \ k = 0$$

$$x_1^0 = 11, \ x_2^0 = 7$$

$$\alpha = 1, \ \gamma = 2.8, \ \beta = 0.5$$

$$x^{0(1)} = (-3, 3), \ x^{0(2)} = (-3, -2), \ x^{0(3)} = (11, 7)$$

Выберем 3 точки:

$$x_l = (-3, 3), x_h = (11, 7), x_q = (-3, -2)$$

Найдем центр тяжести:
$$x_c = \frac{x_l + x_g}{2} = (\frac{-3-3}{2}, \frac{3-2}{2}) = (-3, 0.5)$$

Отражение точки:

$$x_r=(1+lpha)x_c-lpha x_h=(-6,1)-(11,7)=(-17,-6)$$
 $f(x_r)=1936$ $f(x_r)>1168=f(x_h)$, значит делаем сжатие.

Сжатие точки:

$$x_s=\beta x_h+(1-\beta)x_c=(5.5,3.5)+(-1.5,0.25)=(4,3.75)$$
 $f(x_s)=230.125$ $f(x_s)<1168=f(x_h),$ значит заменяем точку $x^{k(3)}=x_h$ в наборе на точку $x_s=(4,3.75).$

Проверим критерий окончания:

$$f(x^{k(1)}) = 78, f(x^{k(2)}) = 88, f(x^{k(3)}) = 230.125$$

$$\overline{f} = \frac{78 + 88 + 230.125}{3} = 132.041667$$

$$\sqrt{\frac{\sum_{i=1}^{3} \left| f(x^{k(i)}) - \overline{f} \right|^{2}}{n+1}} = 69.4754403 > 0.01 = \xi$$

$$k = 0 < 5 = N_{max}$$

$$k = k+1$$

Конец первой итерации.

• Результат компьютерных вычислений:

Расчет окончен

Протокол расчета

Выполнил: Бронников, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Нелдера-Мида

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

N _{HT}	α	операция	коэффициент	x ₁	x ₂	$f(x_1,x_2)$
				-3	3	78
0	1	редукция		-3	-2	88
				11	7	1168
				-3	0.5	45.5
1	1	редукция		-3	3	78
				4	5	312
				-3	0.5	45.5
2	1	редукция		-3	1.75	52.375
				0.5	2.75	63.5
		растяжение		-1.25	1.625	25.6875
3	1		2.8	-3	0.5	45.5
				-3	1.125	46.59375
				0.325	0.8875	16.65688
4	1	редукция		-1.25	1.625	25.6875
				-3	0.5	45.5
	П			-1.3375	0.69375	16.06734
5	1	растяжение	2.8	0.325	0.8875	16.65688
				-0.4625	1.25625	18.12672
				-0.55	0.325	9.835
6				-1.3375	0.69375	16.06734
	П			0.325	0.8875	16.65688

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.51042$$

$$|f(x) - f(x^*)| = 1.04221$$

4 Метод сопряженных градиентов

- Класс задач: безусловная оптимизация
- Формулировка задачи: Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом сопряженных градиентов.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся длина шага t_k и его направление dx^k для точки x^k при помощи градиента, направления dx^{k-1} с предыдущей иттерации и метода дихотомии.
- Алгоритм: Перед началом описания алгоритма следует ввести следующие обозначения:

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

- 1. Начальная инициализация: Задать точку для начала движения $x^0=(x_1^0,x_2^0,...,x_n^0)$, точность приближения ξ , необязательный парамметр максимальное количество иттераций N_{max} , а также выбрать значение параметра точности поиска ϵ и отрезка [a,b] для расчета длин шагов. Начинаем первую иттерацию при k=0 и $dx^0=-\nabla f(x^0)$.
- 2. Вычислим длину шага: Найдем длину шага $t_k = \underset{t \in [a,b]}{\operatorname{argmin}} |f(x^k + t \cdot dx^k)|$, поиск значения которой производится методом дихотомии на заданном отрезке [a,b] с точностью ϵ .
- 3. *Вычисление следующей точки:* Найдем новую точку $x^{k+1} = x^k + t_k \cdot dx^k$ и инкрементируем счетчик k = k+1.
- 4. Проверим критерий останова: Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k номер иттерации, выходим из алгоритма с результатом x^k .

5. Вычислим направление поиска: Найдем новое направление движения $dx^k = -\nabla f(x^k) + \beta_{k-1} dx^{k-1}, \text{ где коеффицент } \beta_{k-1} = \frac{\|\nabla f(x^k)\|^2}{\|\nabla f(x^{k-1})\|^2} \text{ и перей-дем к шагу (2).}$

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$\epsilon = 0.001$$

$$[a, b] = [0.05, 0.5]$$

$$N_{max} = 5$$

$$k = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

Градиент функции расчитывается по формуле:

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

Найдем направление движения:

Определим начальное направление движения $dx^0 = -\nabla f(x^k) = (-133, -118).$

Найдем длину шага:

Методом дихотомии с точностью ϵ на отрезке [a,b] определили оптимальное значение как $t_k=t_0=0.0722$.

Вычислим следующую точку:

Найдем новое значение точки:

$$x^{k+1} = x^k + t_k \cdot dx^k = (11,7) + 0.0722 \cdot (-133,-118) = (1.4021,-1.5155)$$
 И увеличим значение $k=k+1$

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 11.4743 \\ -12.9793 \end{pmatrix} \right\| = \sqrt{(11.4743)^2 + (-12.9793)^2} = 17.3240 > 0.01 = \xi$$

 $k=1<5=N_{max},$ значит критерий останова не выполнен.

Конец первой итерации.

• Результат компьютерных вычислений:

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Бронников, группа 80-307, 10.03.2020

Квадратичная функция: f(x₁,x₂)=5x₁²+ 3x₁x₂+ 6x₂²+ 2x₁+ 1x₂+ 9

Метод сопряженных градиентов

Точность метода: 0.01, N_{max} = 2, Количество итераций: 3

N _{HT}	шаг t	xı	x ₂	$f(x_1,x_2)$	f'x1	$\mathbf{f}'_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.07216	11	7	1168	133	118	177.80045
1	0.12484	1.40207	-1.51546	27.52301	11.47428	-12.97932	17.32403
2	0.0709	-0.18807	-0.03492	8.79281	0.01456	0.01674	0.02218
3	0	-0.1891	-0.03611	8.79279	0.00066	-0.00059	0.00089

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00011$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

5 Метод Ньютона-Рафсона

- Класс задач: безусловная оптимизация
- **Формулировка задачи:** Найти минимум функции 2-ух переменных $f(x_1, x_2)$ методом Ньютона-Рафсона.
- Что вычисляется в процессе решения: В процессе иттерации для поиска точки x^{k+1} с меньшим значением функции f(x) вычислятся длина t_k и направление dx^k шага для точки x^k при помощи градиента и матрицы Гёссе в этой точке.
- Алгоритм: Перед началом описания алгоритма следует ввести следующие обозначения:

Матрица Гёссе:

$$H_f(x) = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_r} \end{pmatrix}$$

Функции f(x), где $x = (x_1, x_2, ..., x_n)$.

Описание алгоритма:

- 1. Начальная инициализация: Задать точку для начала движения $x^0=(x_1^0,x_2^0,...,x_n^0)$, точность приближения ξ , необязательный парамметр максимальное количество иттераций N_{max} , а также выбрать значение параметра точности поиска ϵ и отрезка [a,b] для расчета длин шагов. Начинаем первую иттерацию при k=0.
- 2. Проверим критерий останова: Если выполнено основное условие $\|\nabla f(x^k)\| < \xi$ или дополнительное $k = N_{max}$, где k назовем номером иттерации, выходим из алгоритма с результатом x^k .

- 3. Вычислим направление поиска: Найдем новое направление движения $dx^k = -H_f^{-1}(x^k)\nabla f(x^k).$
- 4. Вычислим длину шага: Найдем длину шага $t_k = \underset{t \in [a,b]}{\operatorname{argmin}} |f(x^k + t \cdot dx^k)|$, поиск значения которой производится методом дихотомии на заданном отрезке [a,b] с точностью ϵ .
- 5. Вычисление следующей точки: Найдем новую точку $x^{k+1} = x^k + t_k \cdot dx^k$, инкрементируем счетчик k = k+1 и перейдем к шагу (2).

• 1-ая итерация:

$$f(x_1, x_2) = 5x_1^2 + 3x_1x_2 + 6x_2^2 + 2x_1 + x_2 + 9$$

$$\xi = 0.01$$

$$\epsilon = 0.001$$

$$[a, b] = [0.05, 0.5]$$

$$N_{max} = 5$$

$$k = 0$$

$$x_1^0 = 11, x_2^0 = 7$$

Градиент:

$$\nabla f(x) = \begin{pmatrix} 10x_1 + 3x_2 + 2\\ 12x_2 + 3x_1 + 1 \end{pmatrix}$$

Матрица Гёссе:

$$H_f(x) = \left(\begin{array}{cc} 10 & 3\\ 3 & 12 \end{array}\right)$$

Проверим критерий останова:

$$\|\nabla f(x^k)\| = \left\| \begin{pmatrix} 133\\118 \end{pmatrix} \right\| = \sqrt{133^2 + 119^2} = 177.8004 > 0.01 = \xi$$

 $k = 0 < 5 = N_{max}$, значит критерий останова не выполнен.

Найдем направление движения:

$$dx^k = -H_f^{-1}(x^k)\nabla f(x^k) = \begin{pmatrix} 10 & 3\\ 3 & 12 \end{pmatrix}^{-1} \begin{pmatrix} 133\\ 118 \end{pmatrix} = (-11.1913, -7.0408)$$

Найдем длину шага:

Методом дихотомии определили оптимальное значение как $t_k = t_0 = 0.5$.

Вычислим следующую точку:

$$x^{k+1}=x^k+t_k\cdot dx^k=(11,7)+0.5\cdot (-11.1913,-7.0408)=(5.4054,3.4820)$$
 $f(x^{k+1})=298.5946<1168=f(x^k),$ значит новая точка найдена успешно. $k=k+1$

Конец первой итерации.

• Результат компьютерных вычислений:

Расчет окончен

Протокол расчета

Выполнил: Бронников, группа 80-307, 10.03.2020

Квадратичная функция: $f(x_1,x_2)=5x_1^2+3x_1x_2+6x_2^2+2x_1+1x_2+9$

Метод Ньютона-Рафсона

Точность метода: 0.01, N_{max} = 5, Количество итераций: 6

N _{HT}	шаг t	\mathbf{x}_1	x ₂	$f(x_1,x_2)$	f'_{x_1}	$\mathbf{f}'_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.5	11	7	1168	133	118	177.80045
1	0.5	5.40541	3.48198	298.59459	66.5	59	88.90022
2	0.5	2.60811	1.72297	81.24324	33.25	29.5	44.45011
3	0.5	1.20946	0.84347	26.90541	16.625	14.75	22.22506
4	0.5	0.51014	0.40372	13.32095	8.3125	7.375	11.11253
5	0.5	0.16047	0.18384	9.92483	4.15625	3.6875	5.55626
6	0	-0.01436	0.0739	9.0758	2.07813	1.84375	2.77813

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.20652$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0.28301$$

6 Выводы

Выполнив лабораторную работу по курсу «Методы оптимизации», я узнал пять новых для себя алгоритмов безусловной оптимизации, позволяющих находить минимумы функций в процессе иттерационных приближений, и познакомился с преимуществами и недостатками каждого из них.

Самым полезным алгоритмом из рассмотренных мною при выполнении лабораторной работы, на мой взгляд, является алгоритм Нельдера-Мида, покольку он не достаточно оригинален и не требует вычисления градиента и матрицы Гёссе, что дает приемущество в производительности и в работе с негладкими функциями, а также не накладывает ограничений на положительную определенность матриц.

В процессе изучения я столкнулся с такими трудностями, как нехватка хорошего и подробного материала по методу конфигураций и методу Нельдера-Мида. Немало хлопот мне доставило разобратся с неточностью в методичке, касающуюся метода конфигураций, а также сформулировать этот метод в виде последовательного, понятного алгоритма.

Данная лабораторная обогатила меня новыми знаниями о методах, которые я непременно буду использовать в будуем, решая задачи машинного обучения.

Список литературы

- [1] Методы дихотомии URL: http://www.machinelearning.ru/wiki/index.php?title=Методы_дихотомии (дата обращения: 06.03.2020).
- [2] Memod Heлдера-Muда Википедия URL: https://ru.wikipedia.org/wiki/Метод_Нелдера_-_Мида (дата обращения: 06.03.2020).
- [3] Лекция 10: Многометрическая оптимизация НОУ ИНТУИТ URL: https://www.intuit.ru/studies/courses/1020/188/lecture/4931 (дата обращения: 07.03.2020).
- [4] Алгоритм Левенберга-Марквардта Википедия URL: https://ru.wikipedia.org/wiki/Алгоритм_Левенберга_-_Марквардта (дата обращения: 09.03.2020).
- [5] Memod Ньютона Википедия URL: https://ru.wikipedia.org/wiki/Метод_Ньютона (дата обращения: 09.03.2020).
- [6] Метод сопряженных градиентов Википедия URL: https://ru.wikipedia.org/wiki/Метод_сопряжённых_градиентов (дата обращения: 09.03.2020).