

**Definição:** Seja f uma função de n variáveis  $(x_1, x_2, \dots, x_n)$  que possui derivadas parciais no ponto  $P_0$ .

O **vetor gradiente** de f em  $P_0$ , denotado por  $\nabla f(P_0)$ , é definido por

$$\nabla f(P_0) := \left(\frac{\partial f}{\partial x_1}(P_0), \frac{\partial f}{\partial x_2}(P_0), \cdots, \frac{\partial f}{\partial x_n}(P_0)\right).$$

Em particular, se f(x, y) é uma função de duas variáveis que possui derivadas parciais no ponto  $(x_0, y_0)$ , então

$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right).$$

Se f(x, y, z) é uma função de três variáveis que possui derivadas parciais no ponto  $(x_0, y_0, z_0)$ , então

$$\nabla f(x_0, y_0, z_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0, z_0), \frac{\partial f}{\partial y}(x_0, y_0, z_0), \frac{\partial f}{\partial z}(x_0, y_0, z_0)\right).$$

**Exemplo 1:** Seja  $f(x, y, z) = z^2 + x \cos y$ . Encontre  $\nabla f(1, \pi, -1)$ .

Resolução: A princípio, observemos que

$$\nabla f(x, y, z) = (\cos y, -x \sin y, 2z).$$

Logo,

$$\nabla f(1,\pi,-1) = (\cos \pi, -\sin \pi, 2(-1)) = (-1,0,-2).$$

**Teorema 1:** Sejam z = f(x, y) uma função de classe  $C^1$  em um aberto U de  $\mathbb{R}^2$  e  $P_0 = (x_0, y_0)$  um ponto de U tal que

$$\nabla f(P_0) \neq \mathbf{0}$$
.

Seja k uma constante e C a curva de nível

$$f(x,y)=k.$$

Suponha que  $P_0 \in C$ . Então,

 $\nabla f(P_0)$  é normal à curva de nível C em  $P_0$ , ou seja,  $\nabla f(P_0)$  é perpendicular a qualquer vetor tangente à C em  $P_0$ .



Uma equação para a reta tangente à  ${\it C}$  em  ${\it P}_0$  é

$$\nabla f(P_0) \cdot (x - x_0, y - y_0) = 0.$$



**Exemplo 1:** Seja C a curva de equação  $x^2 + 4y^2 = 9$ . Encontre a reta tangente à curva C no ponto (1,2).

**Resolução:** Observemos que C é a curva de nível f(x,y)=9 em que f é a função de classe  $C^1$ :  $f(x,y)=x^2+4y^2$ . Temos,

$$\nabla f(x,y) = (2x,8y), \quad \nabla f(1,2) = (2,16) \neq \mathbf{0}.$$

A reta tangente à curva C no ponto (1,2) é

$$\nabla f(1,2) \cdot (x-1,y-2) = 0,$$
  
(2,16) \cdot (x-1,y-2) = 0,

ou seja,

$$2x + 16y = 34$$
.

**Teorema 2:** Sejam w = f(x, y, z) uma função de classe  $C^1$  num conjunto aberto  $U \subset \mathbb{R}^3$  e  $P_0 = (x_0, y_0, z_0) \in U$  tal que

$$\nabla f(P_0) \neq \mathbf{0}$$
.

Seja k uma constante e S a superfície de nível de equação

$$f(x, y, z) = k$$
.

Suponha que S contém  $P_0$ . Então,

 $\nabla f(P_0)$  é normal à S em  $P_0$ , ou seja,  $\nabla f(P_0)$  é normal a qualquer vetor tangente à S em  $P_0$ .



Nas condições do Teorema 2, o plano de equação

$$\nabla f(P_0) \cdot (x - x_0, y - y_0, z - z_0) = 0$$

é chamado de **plano tangente** à S em  $P_0$ .

A reta de equação

$$(x, y, z) = (x_0, y_0, z_0) + \lambda \nabla f(P_0), \quad \lambda \in \mathbb{R},$$

é chamada de **reta normal** à S em  $P_0$ .

**Exemplo 2:** Determine a equação do plano tangente à superfície S de equação

$$x^2 + 3y^2 + 4z^2 = 8$$

em (1, -1, 1).

**Resolução:** Observemos que S é a superfície de nível f(x,y,z)=8 em que f é a função de classe  $C^1$ :  $f(x,y,z)=x^2+3y^2+4z^2$ . Temos,

$$\nabla f(x, y, z) = (2x, 6y, 8z), \quad \nabla f(1, -1, 1) = (2, -6, 8) \neq \mathbf{0}.$$

A equação do plano tangente à S em (1,-1,1) é

$$\nabla f(1,-1,1) \cdot (x-1,y+1,z-1) = 0,$$

ou seja,

$$2x - 6y + 8z = 16$$
.

**Exemplo 3:** Determine a equação da reta normal à superfície S de equação

$$x^2 + 3y^2 + 4z^2 = 8$$

em (1, -1, 1).

**Resolução:** Observemos que S é a superfície de nível f(x, y, z) = 8 em que f é a função de classe  $C^1$ :  $f(x, y, z) = x^2 + 3y^2 + 4z^2$ . Temos.

$$\nabla f(x, y, z) = (2x, 6y, 8z), \quad \nabla f(1, -1, 1) = (2, -6, 8) \neq \mathbf{0}.$$

A equação da reta normal à S em (1,-1,1) é

$$(x, y, z) = (1, -1, 1) + \lambda \nabla f(1, -1, 1), \quad \lambda \in \mathbb{R},$$

ou seja,

$$(x, y, z) = (1, -1, 1) + \lambda(2, -6, 8), \quad \lambda \in \mathbb{R}.$$

**Problema 1:** Seja C a curva de interseção de duas superfícies  $S_1$  e  $S_2$  de equações

$$F(x, y, z) = 0$$
 e  $G(x, y, z) = 0$ ,

respectivamente.

Suponha que F e G são de classe  $C^1$  num conjunto aberto  $U \subset \mathbb{R}^3$  que contém o ponto  $P_0 = (x_0, y_0, z_0) \in C$ .

Encontre uma equação para a reta tangente à C em  $P_0$ .

**Resolução:** Sejam  $N_1 = \nabla F(P_0)$  e  $N_2 = \nabla G(P_0)$  os vetores normais às superfícies  $S_1$  e  $S_2$  em  $S_2$  em  $S_2$  em  $S_2$  em  $S_2$  em  $S_2$  em  $S_3$  espectivamente.

A reta tangente à C em  $P_0$  está contida em cada um dos planos tangentes às superfícies  $S_1$  e  $S_2$  em  $P_0$ , respectivamente. Observe que esta reta é a interseção destes dois planos tangentes.

Portanto,  $N_1$  e  $N_2$  são ortogonais à reta tangente à C em  $P_0$ .

Assim, o produto vetorial de  $N_1$  com  $N_2$ , denotado por  $N_1 \times N_2$ , tem a mesa direção da reta tangente à C em  $P_0$ .

Logo, uma equação para a reta tangente à  ${\it C}$  em  ${\it P}_{\it 0}$  é

$$(x,y,z) = (x_0,y_0,z_0) + \lambda(\nabla F(P_0) \times \nabla G(P_0)), \quad \lambda \in \mathbb{R}.$$