

Politechnika Wrocławska

Model-to-Text (M2T)
Generowanie zapisu równań
matematycznych z modelu EMF

Aleksandra Chrustek, Julia Ujma, Gabrysia Czernecka

Cel projektu

Celem projektu jest automatyczne generowanie równań w formie tekstowej na podstawie abstrakcyjnego modelu danych.

Projekt pokazuje, że model może być punktem wyjścia do tworzenia rzeczywistego tekstu, a nie tylko rysunkiem. Dzięki temu można budować bardziej zautomatyzowane, mniej podatne na błędy systemy.

Kroki realizacji projektu:

- 1. Utworzenie metamodelu wraz z relacjami między wyrażeniami i operacjami.
- 2. Stworzenie instancji modelu (.xmi).
- 3. Zaprojektowanie szablonu .mtl w Acceleo.
- 4. Uruchomienie generacji.
- 5. Testy i poprawki.

Metamodel równań

Metamodel reprezentuje drzewo wyrażenia. Zawiera abstrakcyjną klasę ogólną **Expression** oraz klasy dziedziczące po niej:

- Number
- Variable
- Addition
- Multiplication
- Division
- Sqrt
- Constant
- Power
- Modulo
- Factorial
- Absolute

- Sum
- Integral
- Product
- FunctionCall
- Parenthesized
- MatrixExpr
- MatrixContent
- MatrixRow

Każda operacja ma swoje atrybuty i odniesienia do innych Expression.

Metamodel równań - Ecore

- ✓

 math
 - **Expression**
 - ▼ Number -> Expression
 - □ value : EDouble
 - → | Variable -> Expression
 - name: EString
 - - ➡ left: Expression
 - ⇒ right: Expression
 - → Multiplication
 - ⇒ left: Expression
 - □ right: Expression
 - ▼ Division
 - → numerator: Expression
 - □ denominator: Expression
 - ✓
 ☐ Sqrt
 - → radicand : Expression
 - - □ name: EString
 - ▼ Power -> Expression
 - ⇒ base: Expression
 - ⇒ exponent : Expression

- ▼

 Modulo -> Expression
 - ➡ left: Expression
 - ⇒ right: Expression
- ▼ | Factorial -> Expression
 - ⇒ value : Expression
- - ⇒ value : Expression
- ▼

 ☐ Sum -> Expression
 - □→ lower: Expression
 - □ upper: Expression
 - ⇒ body: Expression
- ▼ | Integral -> Expression
 - ➡ lower: Expression
 - ⇒ upper: Expression
 - ⇒ body : Expression
- ➤ ☐ Product -> Expression
 - → lower: Expression
 - □ upper: Expression

- ▼ | FunctionCall -> Expression
 - □ func : EString
 - ⇒ argument : Expression
- ▼ Parenthesized -> Expression
 - ⇒ expr : Expression
- ▼ | MatrixExpr -> Expression
 - ⇒ content : MatrixContent
- ▼ MatrixContent
 - prows: MatrixRow
- ▼ MatrixRow
 - elements : Expression

Model wyrażenia

Kolejnym krokiem jest stworzenie przykładowego **modelu wyrażenia** (instancji) .xmi.

Szablon Model-to-Text Language

Następnie należy stworzyć **szablon .mtl**. Plik .mtl to szablon Acceleo (Model-to-Text Language), który pozwala generować tekst z modeli EMF (np. .xmi).

Szablon .mtl działa podobnie jak szablon HTML pod względem logiki - posiada instrukcje warunkowe, pętle i wywołania szablonów.

Uruchomienie pliku szablonu wraz z modelem wyrażenia .xmi wygeneruje plik docelowy zawierający zapis matematyczny w formie tekstowej.

Politechnika Wrocławska

Dziękujemy za uwagę

Aleksandra Chrustek, Julia Ujma, Gabrysia Czernecka