- 1. Plot the following points in the complex plane: i, 2-i, 2+i, -5.
 - Compute |7-2i|.
 - Compute the distance from 7-2i to 0 in the complex plane.
 - Compute $|2e^{6i}|$.
 - Compute $|(2e^{6i})(7-2i)|$.
- 2. (Multiplicative inverse) Let z = a + ib be a nonzero complex number (so at least one of the real numbers a, b is nonzero). Then 1/z is the number such that (z)(1/z) = 1, and there is only one such number.
 - Show that

$$1/z = \frac{a - ib}{a^2 + b^2}$$

[Hint: Just show that multiplying the right hand side by a+ib produces the number 1, then the right hand side must be a correct formula for 1/z.]

- Compute real numbers a, b such that 1/(2+3i) = a+ib.
- Compute real numbers a, b such that (1-2i)/(2+3i) = a+ib.
- If the polar form of z is $Re^{i\theta}$, then what is the polar form of 1/z?
- 3. Let z = 2 + i2.
 - Find the polar form of z (i.e., find real numbers R and θ such that R > 0 and $2 + i2 = Re^{i\theta}$).
 - Find real numbers c and d such that 1/z = c + id.
- 4. Now z is a complex number written in the form $z = e^{x+iy}$, where x and y are real.
 - Let $Re^{i\theta}$ be the polar form of z. Give formulas using x and y for R and $\tan(\theta)$. For which z are the formulas valid?
 - Compute the polar form of e^{2-3i} .

5.

- 6. Find a trig identity which for any real numbers θ expresses $cos(3\theta)$ in terms of $cos(\theta)$ and $sin(\theta)$. [Hint: $e^{i3\theta} = e^{i\theta}e^{i\theta}e^{i\theta}$.]
- 7. Complex conjugates) Let z = a + ib, then the complex conjugate z is defined to be $\overline{z} = a ib$.
 - How are the locations of z and \overline{z} in the complex plane related?
 - Check that $\overline{z}z = |z|^2 = a^2 + b^2$.
 - Show that if z is nonzero, then $1/z = (\overline{z})/(|z|^2)$. (Multiply z by this expression and check that the product is 1.)
 - Use the previous formula to find 1/z if z = 2 + 3i.
- 8. (Complex conjugation respects arithmetic)
 - Show that $(\overline{w})(\overline{z}) = \overline{wz}$. To do this, given real numbers a, b, c, d, simply compute to check that (a ib)(c id) = (a + ib)(c + id).
 - Similarly check that $\overline{w+z} = \overline{w} + \overline{z}$.
 - Use the first item to give an elementary proof that for any complex numbers w and z, we have |wz| = |w||z|. (HINT: $|wz|^2 = (wz)(\overline{wz})$, and $|w|^2|z|^2 = w\overline{w}z\overline{z}$.)
- 9. From the last problem, it follows that if p(z) is a polynomial with real coefficients and w is a complex number such that p(w) = 0, then also $p(\overline{w}) = 0$, why? Check that any polynomial of the form $q(z) = (z w)(z \overline{w})$ is a polynomial with real coefficients.
- 10. (Roots of unity) Let n be a positive integer. The complex numbers $e^{2\pi i/n}$ has its nth power equal to 1. Likewise, if k is a nonnegative integer in the set 0, 1, ..., n-1, then $e^{2\pi ki/n}$ also has its nth power equal to 1. Such a number is

called an nth root of unity. These numbers can be drawn on the unit circle in the complex plane.

- Draw all the fourth roots of unity on the unit circle.
- Draw (in another picture) all the eighth roots of unity.
- 11. Let z = -1 + i.
 - Write z in polar form.
 - Use the polar form to compute z^{16} .
 - If n is a positive integer and M is a positive real number, then the equation $z^n = M$ has exactly the following n solutions: $M^{1/n}e^{2\pi ki/n}$, k = 0, 1, 2, ..., n-1, why? Find all solutions of the equation $z^8 = 16$, and plot these solutions in the complex plane.
- 12. (Differentiation) All the usual formulas for differentiation work for polynomials, cosine, sine and the exponential function considered over complex numbers. For example, since $e^{iz} = \cos(z) + i\sin(z)$, we can say the derivative of e^{iz} with respect to z is $ie^{iz} = -\sin(z) + i\cos(z)$. (You can check this one by differentiating the power series.) These formulas in particular are true if we restrict inputs to real numbers (in this case one often writes t in place of t). Compute the second derivative of t0 at t1.
- 13. (DeMoivre) To understand why $e^{iz} = \cos(z) + i\sin(z)$, compute by hand the first eight terms of these series, and compare.