Homework 6

Mark Petersen

Exercise 1. Let M be a Riemannian manifold. Consider the mapping

$$P = P_{c,t_o,t} : T_{c(t_0)}M \to T_{c(t)}M$$

defined by: $P_{c,t_o,t}(v)$, $v \in T_{c(t_o)}M$, is the vector obtained by parallel transporting the vector v along the curve c. Show that P is an isometry and that, if M is oriented, P preserves the orientation.

Proof: Let $v_{t_0}, w_{t_0} \in T_{c(t_0)}M$ and $g_p: T_pM \times T_pM \to \mathbb{R}$ be a compatible Riemannian metric. Then

$$g_{c(t_0)}(v_{t_0}, w_{t_0}) = a$$

is equal to a constant a. Let $v(t) = P_{c,t_o,t}(v_{t_0})$ and $w(t) = P_{c,t_o,t}(w_{t_0})$. Taking the derivative of the metric applied to the vector fields yields

$$\frac{d}{dt}g_{c(t)}(v(t), w(t)) = g_{c(t)}\left(\frac{Dv(t)}{dt}, w(t)\right) + g_{c(t)}\left(v(t), \frac{Dw(t)}{dt}\right)
= g_{c(t)}(0, w(t)) + g_{c(t)}(v(t), 0)
= 0,$$

thus, the quantity $g_{c(t)}(v(t), w(t))$ is constant along the curve c(t). This means that the length and angles of vectors that are parallel transported remain the same, which means that $P_{c,t_o,t}$ is an isometry. Since the angles between vectors stay the same, P preserves orientation.

Exercise 2. Let X and Y be differentiable vector fields on a Riemannian manifold M. Let $p \in M$ and let $c: I \to M$ be an integral curve of X through p, i.e. $c(t_0) = p$ and $\frac{dc}{dt} = X(c(t))$. Prove that the Riemannian connection of M is

$$\left(\nabla_{X}Y\right)\left(p\right)=\left.\frac{d}{dt}\left(P_{c,t_{0},t}^{-1}\left(Y\left(c\left(t\right)\right)\right)\right)\right|_{t=t_{0}},$$

where $P_{c,t_0,t}:T_{c(t_0)}M\to T_{c(t)}M$ is the parallel transport along c, from t_0 to t (this shows how the connection can be reobtained from the concept of parallelism).

Proof: Let X_i form a basis of vector fields in local coordinates that are parallel transport along c. We can write the vector field Y along c in local coordinates as

$$Y(t) = \sum y_i(t) X_i(t),$$

m(tthen

$$\left(\nabla_{X}Y\right)\left(p\right) = \frac{DY\left(t_{0}\right)}{dt} = \sum_{i} \frac{y_{i}\left(t\right)}{dt} \bigg|_{t=t_{0}} X_{i}\left(t_{0}\right) + y_{i}\left(t\right) \frac{DX_{i}}{dt}$$
$$= \sum_{i} \frac{y_{i}\left(t\right)}{dt} \bigg|_{t=t_{0}} X_{i}\left(t_{0}\right).$$

The term $\left.\frac{d}{dt}\left(P_{c,t_{0},t}^{-1}\left(Y\left(c\left(t\right)\right)\right)\right)\right|_{t=t_{0}}$ can be expanded out as

$$\frac{d}{dt} \left(P_{c,t_0,t}^{-1} \left(Y \left(c \left(t \right) \right) \right) \right) \Big|_{t=t_0} = \frac{d}{dt} \left(P_{c,t_0,t}^{-1} \left(\sum y_i \left(t \right) X_i \left(t \right) \right) \right) \Big|_{t=t_0}
= \frac{d}{dt} \sum y_i \left(t \right) P_{c,t_0,t}^{-1} \left(X_i \left(t \right) \right) \Big|_{t=t_0}
= \frac{d}{dt} \sum y_i \left(t \right) X_i \left(t_0 \right) \Big|_{t=t_0}
= \sum \frac{y_i \left(t \right)}{dt} \Big|_{t=t_0} X_i \left(t_0 \right).$$

Exercise 3. Let $M^2 \subset \mathbb{R}^3$ be a surface in \mathbb{R}^3 with the induced Riemannian metric. Let $c: I \to M$ be a differentiable curve on M and let V be a vector field tangent to M along c; V can be thought of as a smooth function $V: I \to \mathbb{R}^3$, with $V(t) \in T_{c(t)}M$.

- 1) Show that V is parallel if and only if $\frac{dV}{dt}$ is perpendicular to $T_{c(t)}M \subset \mathbb{R}^3$ where $\frac{dV}{dt}$ is the usual derivative of $V: I \to \mathbb{R}^3$. 2) If $S^2 \subset \mathbb{R}^3$ is the unit sphere of \mathbb{R}^3 , show that the velocity field along great circles, parametrized by arc length, is a
- parallel field. A similar argument holds for $S^n \subset \mathbb{R}^{n+1}$.

Proof: The first statement is biconditional and so we must prove both ways.

(\Longrightarrow): We suppose directly that V is parallel along the curve c(t), and let g denote the induced metric. By definition $\frac{DV}{dt}=0$ which is the orthogonally projected vector of $\frac{dv}{dt}$ onto $T_{c(t)}M$. (\Longleftrightarrow): We suppose directly that $\frac{dV}{dt}$ is perpendicular to $T_{c(t)}M$, then the orthogonal projection of $\frac{dV}{dt}$ onto $T_{c(t)}M$ is zero, and thus $\frac{DV}{dt}=0$. This implies that V is parallel along c.

For the second statement, we suppose directly that $S^2\subset\mathbb{R}^3$. Let $\gamma:I\to S^2$ be an integral curve along a great circle

defined as $\gamma(t) = (u(t), v(t))$, and let $c: I \to S^2$ be the rotated curve of γ such that c is the curve along the equator. Since the rotation doesn't affect the velocity of γ , γ is a parallel curve if and only if c is a parallel curve.

We can parameterize the surface by

$$r(u, v) = (\sin u(t) \cos v(t), \sin u(t) \sin v(t), \cos u(t)),$$

then

$$c(t) = (\cos(\alpha t), \sin(\alpha t), 0),$$

where $\alpha \in \mathbb{R}$ which is the arc length.

The derivative of c(t) is

$$\frac{dc}{dt} = V(t) = (-\alpha \sin(\alpha t), \alpha \cos(\alpha t), 0).$$

which is a vector field along the great circle. Taking the derivative again yields

$$\frac{dV}{dt} = \left(-\alpha^2 \cos\left(\alpha t\right), -\alpha^2 \sin\left(\alpha t\right), 0\right).$$

We know that c(t) is orthogonal to $T_{c(t)}M$. We can project $\frac{DV}{dt}$ onto $T_{c(t)}M$ using the projection theorem

$$\left(I - \frac{cc\top}{|c|^2}\right) \frac{dV}{dt} = \begin{bmatrix} \sin^2(\alpha t) & -\cos(\alpha t)\sin(\alpha t) & 0\\ -\cos(\alpha t)\sin(\alpha t) & \cos^2(\alpha t) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -\alpha^2\cos(\alpha t)\\ -\alpha^2\sin(\alpha t)\\ 0 \end{bmatrix} \\
= \begin{bmatrix} -\alpha^2\sin^2(\alpha t)\cos(\alpha t) - \alpha^2\cos(\alpha t)\sin^2(\alpha t)\\ \alpha^2\cos^2(\alpha t)\sin(\alpha t) - \alpha^2\cos^2(\alpha t)\sin(\alpha t)\\ 0 \end{bmatrix} \\
= 0$$

Therefore, the velocity field along a great circle is a parallel field.

Exercise 4. Consider the upper half-plane

$$\mathbb{R}^{2}_{+} = \left\{ (x, y) \in \mathbb{R}^{2} \, | \, y > 0 \right\}$$

with the metric given by $g_{11} = g_{22} = \frac{1}{u^2}$, $g_{12} = g_{21} = 0$

- 1) Show that the Christoffel symbols of the Riemannian connection are: $\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{12}^1 = 0$, $\Gamma_{11}^2 = \frac{1}{y}$, $\Gamma_{12}^1 = \Gamma_{22}^2 = -\frac{1}{y}$.
- 2) Let $v_0 = (0,1)$ be a tangent vector at the point (0,1) of \mathbb{R}^2_+ , $(v_0$ is a unit vector on the y-axis with origin at (0,1)). Let v(t) be the parallel transport of v_0 along the curve x=t, y=1. Show that v(t) makes an angle t with the direction of the y-axis, measured in the clockwise sense.

We can calculate the Christoffel symbols using the equation

$$\Gamma_{ij}^{m} = \frac{1}{2} \sum_{k} \left\{ \frac{\partial}{\partial x_{i}} g_{jk} + \frac{\partial}{\partial x_{j}} g_{ki} - \frac{\partial}{\partial x_{k}} g_{ij} \right\} g^{km},$$

where g^{km} is the inverse metric of g_{km} with coefficients $g^{11} = g^{22} = y^2$, $g^{12} = g^{21} = 0$.

$$\Gamma_{11}^{1} = \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{11} + \frac{\partial}{\partial x_1} g_{11} - \frac{\partial}{\partial x_1} g_{11} \right\} g^{11} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{12} + \frac{\partial}{\partial x_1} g_{21} - \frac{\partial}{\partial x_2} g_{11} \right\} g^{21}$$

$$= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} \frac{1}{y^2} + \frac{\partial}{\partial x_1} \frac{1}{y^2} - \frac{\partial}{\partial x_1} \frac{1}{y^2} \right\} y^2 + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} 0 + \frac{\partial}{\partial x_1} 0 - \frac{\partial}{\partial x_2} \frac{1}{y^2} \right\} 0$$

$$= 0$$

$$\begin{split} \Gamma_{12}^2 &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{21} + \frac{\partial}{\partial x_2} g_{11} - \frac{\partial}{\partial x_1} g_{12} \right\} g^{12} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{22} + \frac{\partial}{\partial x_2} g_{21} - \frac{\partial}{\partial x_2} g_{12} \right\} g^{22} \\ &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} 0 + \frac{\partial}{\partial x_2} \frac{1}{y^2} - \frac{\partial}{\partial x_1} 0 \right\} 0 + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} \frac{1}{y^2} + \frac{\partial}{\partial x_2} 0 - \frac{\partial}{\partial x_2} 0 \right\} y^2 \\ &= 0 \end{split}$$

$$\begin{split} \Gamma^{1}_{22} &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_{2}} g_{21} + \frac{\partial}{\partial x_{2}} g_{12} - \frac{\partial}{\partial x_{1}} g_{22} \right\} g^{11} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_{2}} g_{22} + \frac{\partial}{\partial x_{2}} g_{22} - \frac{\partial}{\partial x_{2}} g_{22} \right\} g^{21} \\ &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_{2}} 0 + \frac{\partial}{\partial x_{2}} 0 - \frac{\partial}{\partial x_{1}} \frac{1}{y^{2}} \right\} y^{2} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_{2}} \frac{1}{y^{2}} + \frac{\partial}{\partial x_{2}} \frac{1}{y^{2}} - \frac{\partial}{\partial x_{2}} \frac{1}{y^{2}} \right\} 0 \\ &= 0 \end{split}$$

$$\begin{split} \Gamma_{11}^2 &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{11} + \frac{\partial}{\partial x_1} g_{11} - \frac{\partial}{\partial x_1} g_{11} \right\} g^{12} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{12} + \frac{\partial}{\partial x_1} g_{21} - \frac{\partial}{\partial x_2} g_{11} \right\} g^{22} \\ &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} \frac{1}{y^2} + \frac{\partial}{\partial x_1} \frac{1}{y^2} - \frac{\partial}{\partial x_1} \frac{1}{y^2} \right\} 0 + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} 0 + \frac{\partial}{\partial x_1} 0 - \frac{\partial}{\partial x_2} \frac{1}{y^2} \right\} y^2 \\ &= \frac{1}{2} \left(- \left(-2 \frac{1}{y^3} \right) \right) y^2 \\ &= \frac{1}{y} \end{split}$$

$$\Gamma_{12}^{1} = \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{21} + \frac{\partial}{\partial x_2} g_{11} - \frac{\partial}{\partial x_1} g_{12} \right\} g^{11} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} g_{22} + \frac{\partial}{\partial x_2} g_{21} - \frac{\partial}{\partial x_2} g_{12} \right\} g^{21}$$

$$= \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} 0 + \frac{\partial}{\partial x_2} \frac{1}{y^2} - \frac{\partial}{\partial x_1} 0 \right\} y^2 + \frac{1}{2} \left\{ \frac{\partial}{\partial x_1} \frac{1}{y^2} + \frac{\partial}{\partial x_2} 0 - \frac{\partial}{\partial x_2} 0 \right\} 0$$

$$= \frac{1}{2} \left(-2 \frac{1}{y^3} \right) y^2$$

$$= -\frac{1}{y}$$

$$\begin{split} \Gamma_{22}^2 &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_2} g_{21} + \frac{\partial}{\partial x_2} g_{12} - \frac{\partial}{\partial x_1} g_{22} \right\} g^{12} + \frac{1}{2} \left\{ \frac{\partial}{\partial x_2} g_{22} + \frac{\partial}{\partial x_2} g_{22} - \frac{\partial}{\partial x_2} g_{22} \right\} g^{22} \\ &= \frac{1}{2} \left\{ \frac{\partial}{\partial x_2} 0 + \frac{\partial}{\partial x_2} 0 - \frac{\partial}{\partial x_1} \frac{1}{y^2} \right\} 0 + \frac{1}{2} \left\{ \frac{\partial}{\partial x_2} \frac{1}{y^2} + \frac{\partial}{\partial x_2} \frac{1}{y^2} - \frac{\partial}{\partial x_2} \frac{1}{y^2} \right\} y^2 \\ &= \frac{1}{2} \left(-2 \frac{1}{y^3} - 2 \frac{1}{y^3} + 2 \frac{1}{y^3} \right) y^2 \\ &= -\frac{1}{y^3} \end{split}$$

Using the Christoffel symbols, we can then create the differential equations for the parallel vector whose ode must satisfy the equation

$$0 = \frac{dv^k}{dt} + \sum_{i,j} \Gamma^k_{ij} v^j \frac{dx_i}{dt}, \quad k = 1, 2$$

with initial conditions $v\left(t_0\right)=\left(0,1\right)$, and that moves along the curve $\gamma\left(t\right)=\left(t,1\right)$. The parallel vector field can be written as $v\left(t\right)=a\left(t\right)\frac{\partial}{\partial x_1}+b\left(t\right)\frac{\partial}{\partial x_2}$, thus the ode must satisfy

$$0 = \left(\frac{da}{dt} + \Gamma_{11}^{1}a\left(t\right)\frac{dx_{1}}{dt} + \Gamma_{12}^{1}b\left(t\right)\frac{dx_{1}}{dt} + \Gamma_{21}^{1}a\left(t\right)\frac{dx_{2}}{dt} + \Gamma_{22}^{1}b\left(t\right)\frac{dx_{2}}{dt}\right)\frac{\partial}{\partial x_{1}}$$
$$= \left(\frac{da}{dt} - \frac{1}{y}b\left(t\right)\right)\frac{\partial}{\partial x_{1}}$$

and

$$0 = \left(\frac{db}{dt} + \Gamma_{11}^2 a\left(t\right) \frac{dx_1}{dt} + \Gamma_{12}^2 b\left(t\right) \frac{dx_1}{dt} + \Gamma_{21}^2 a\left(t\right) \frac{dx_2}{dt} + \Gamma_{22}^2 b\left(t\right) \frac{dx_2}{dt}\right) \frac{\partial}{\partial x_2}$$
$$= \left(\frac{db}{dt} + \frac{1}{y} a\left(t\right)\right) \frac{\partial}{\partial x_2}$$

Using the hint in the book, we get that

$$a(t) = \cos\left(\frac{\pi}{2} - t\right)$$
$$b(t) = \sin\left(\frac{\pi}{2} - t\right),$$

thus

$$v(t) = \cos\left(\frac{\pi}{2} - t\right) \frac{\partial}{\partial x_1} + \sin\left(\frac{\pi}{2} - t\right) \frac{\partial}{\partial x_2}.$$

The angle between v(t) and the y axis is calculated as

$$\cos^{-1} \frac{\left\langle v\left(t\right), \frac{\partial}{\partial x_{2}}\right\rangle}{\sqrt{\left\langle v\left(t\right)v\left(t\right)\right\rangle} \sqrt{\left\langle \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{2}}\right\rangle}} = \cos^{-1} \left\{ \frac{1}{\sqrt{\left(\cos^{2}\left(\frac{\pi}{2} - t\right) + \sin^{2}\left(\frac{\pi}{2} - t\right)\right)y}} \left(\cos\left(\frac{\pi}{2} - t\right)\left\langle \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right\rangle + \sin\left(\frac{\pi}{2} - t\right)\left\langle \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{2}}\right\rangle \right.$$

$$= \cos^{-1} \left(\sin\left(\frac{\pi}{2} - t\right)\frac{1}{y^{3}}\right)$$

$$= \cos^{-1} \left(\sin\left(\frac{\pi}{2} - t\right)\right)$$

$$= \cos^{-1} \left(\cos\left(t\right)\right)$$

Exercise 5. Let M be a smooth path-connected manifold with Riemannian metric g. Recall that $\ell_a^b(\gamma)$ denotes the length of a smooth curve $\gamma:[a,b]\to M$. For any $p,q\in M$, let

$$d\left(p,q\right)=\inf\left\{ \ell_{a}^{b}\left(\gamma\right)\mid\gamma:\left[a,b\right]\rightarrow M\text{ is piecewise smooth with }\gamma\left(a\right)=p\text{ and }\gamma\left(b\right)=q\right\} .$$

Prove that the pair (M, d) is a metric space.

Proof: A metric $d: M \times M \to \mathbb{R}$ must satisfy the following properties

- 1) d(p,q) = d(q,p)
- 2) $d(p,q) \ge 0$
- 3) d(p,q) = 0 if and only if x = y
- 4) For all points $p, q, z \in M$, $d(p, z) \leq d(p, q) + d(q, z)$.

The length of a smooth curve is defined as

$$\ell_a^b\left(\gamma\right) = \int_a^b g_{\gamma(t)}\left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt}\right)^{\frac{1}{2}} dt.$$

To prove the first property, suppose that γ is the curve from p to q with minimum length, then

$$\begin{split} d\left(p,q\right) &= \ell_a^b\left(\gamma\right) \\ &= \int_a^b g_{\gamma(t)} \left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt}\right)^{\frac{1}{2}} dt. \end{split}$$

We can construct another curve that goes from q to p as $\alpha(t) = \gamma(b-t)$ where $t \in [0,b-a]$, then

$$\begin{split} d\left(q,p\right) &= \ell_b^a\left(\alpha\right) \\ &= \int_0^{b-a} g_{\alpha(t)} \left(\frac{d\alpha}{dt}, \frac{d\alpha}{dt}\right)^{\frac{1}{2}} dt \\ &= \int_0^{b-a} g_{\gamma(b-t)} \left(-\frac{d\gamma}{dt}, -\frac{d\gamma}{dt}\right)^{\frac{1}{2}} dt \\ &= \int_0^{b-a} g_{\gamma(b-t)} \left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt}\right)^{\frac{1}{2}} dt. \end{split}$$

Since the integral is just a sum of positive numbers, the two integrals are equivalent.

The second and third property come from the fact that the Riemannian metric g is an inner product. Thus

$$g\left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt}\right) \ge 0,$$

and is only equal to zero when $\frac{d\gamma}{dt} = 0$. Thus the length of a curve is greater than or equal to zero, and is only equal to zero

$$\int_{a}^{b} g_{\gamma(t)} \left(\frac{d\gamma}{dt}, \frac{d\gamma}{dt} \right)^{\frac{1}{2}} dt = 0.$$

This implies that all of the velocities along the curve must be zero, thus p = q. Also, if p = q, then the shortest curve between them is the curve $\gamma(t)=p=q$ which is constant; thus $\frac{d\gamma}{dt}=0$ and $\int_a^b g_{\gamma(t)}\left(\frac{d\gamma}{dt},\frac{d\gamma}{dt}\right)^{\frac{1}{2}}dt=0$ which implies that d(x,y)=0. For the thrid property, let $\gamma_{i,j}$ be the curve from $i\in\{p,q,r\}$ to $j\in\{p,q,r\}$ such that $d(i,j)=\ell_a^b(\gamma_{i,j})$. We can construct

a new curve $\beta: [a, 2b-a] \to M$ such that

$$\beta(t) = \begin{cases} \gamma_{p,q}(t) & \text{if } t \in [a,b] \\ \gamma_{q,z}(t-b) & \text{else} \end{cases}.$$

which is the curve that goes from p to q, then to z along the curves that are shortest distance from p to q and from q to p. The length of β is

$$\ell_a^{2b-a}(\beta) = \ell_a^b(\gamma_{p,q}) + \ell_a^b(\gamma_{q,z})$$
$$= d(p,q) + d(q,z).$$

By definition of the metric,

$$d(p,z) = \ell_a^b(\gamma_{p,z})$$

$$\leq \ell_a^{2b-a}(\beta),$$

since $\gamma_{p,z}$ is the shortest path between p and z and must be shorter than or equal to the curve β , thus $d(p,z) \leq d(p,q) + d(q,z)$.

Exercise 6. Let $F: M \to N$ be a smooth immersion, and let g_N be a Riemannian metric on N. Let (U, φ) and (V, ψ) be charts on M and N with $F(U) \subset V$, and let $(g_N)_{i,j}$ be the local coordinate description of g_N under the chart (V,ψ) . If g_M is the metric induced on M from the immersion F, describe how the local coordinate description of g_M under (U,φ) denoted by $(g_M)_{i,j}$ are related to functions $(g_N)_{i,j}$. Let $u_i \in TU$, then the differential $df: TU \to TM$, thus we can let $v_i = dfu_i$. We can then use the metric g_N .

$$g_N(v_i, v_j) = g_N(dfv_i, dfv_j).$$

Let $[q_N]$ be the matrix form of q_N , then we can write the above equation in matrix notation as

$$v_i^{\top} df^{\top} [g_N] df v_i.$$

Thus $[q_M] = df^{\top} [q_N] df$.