## 23K-2001 BCS 2J Date:

| MVC - Task                                       | BCS 2J Date:      |                      |
|--------------------------------------------------|-------------------|----------------------|
| Q1. Determine whether f(x,                       | ) has a           | removable            |
| discontinuity at (0,0)                           |                   |                      |
| a. $f(x,y)$                                      | $= \chi^2$        |                      |
| <b>V</b> • <i>I</i>                              | $\chi^2 + \chi^2$ |                      |
| At $\chi = 0 \Rightarrow$                        | V                 |                      |
| lim f(0,y) = 02                                  | <sub>=</sub> 0    | ,                    |
| $\lim_{x \to 0} f(0,y) = 0^2$                    |                   |                      |
| At y=0 ->                                        |                   |                      |
|                                                  | = 1               |                      |
| $\lim_{y\to 0} f(x,0) = x^2$                     |                   |                      |
| At u=x ->                                        |                   |                      |
| $\frac{\lim_{y \to x} f(x, x) = x^2}{x^2 + x^2}$ | - 1               |                      |
| $y \rightarrow \chi$ $\chi^2 + \chi^2$           | 2                 |                      |
| Since different v                                | alves             |                      |
| Since different v                                | ice:              |                      |
|                                                  | imit does n       | ot exist             |
| $\underbrace{\text{ot } f(0,0) \rightarrow}$     |                   |                      |
| f(0,0)=                                          | 0' = 0            | (indeterminate form) |
|                                                  | 2+02 0            | 0. )                 |
| -> Discontinuity                                 | 's non-ren        | no vable 1           |
|                                                  | * 2 To 1          | Ans                  |
|                                                  |                   |                      |

6. 
$$f(x) = \begin{cases} x^2 + 7y^2, & \text{if } (x,y) \neq (0,0) \\ -y, & \text{f } (x,y) = (0,0) \end{cases}$$

$$\lim_{x,y \to 0,0} f(x,y) = 0 + 7(0)^2$$

$$\lim_{x,y \to 0,0} f(x,y) \neq f(0,0)$$

$$\lim_{x,y \to$$

## **URBANE PAPER PRODUCT**

$$\begin{array}{cccc}
\vdots & \nabla \cdot (\nabla x F) &= \partial \cdot (-z e^{y^2}) + \partial \cdot (x e^{x^2}) + \partial \cdot (3 e^y) \\
& & \partial x & \partial y & \partial z
\end{array}$$

$$= 0 + 0 + 0$$

$$\nabla \cdot (\nabla x F) &= 0 & Ans.$$

