Understanding and Applying Factor Analysis and PCA

INTRODUCING FACTOR ANALYSIS AND PCA

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Introduce factor analysis and PCA and their link to linear regression

Learn when to use factor analysis and PCA

Understand just enough linear algebra and statistics to do so

Cutting Through Clutter with Factor Analysis

Keeping things simple is quite complicated

Similar, yet Different

Regression

Connect the dots

Factor Analysis

Cut through the clutter

Regression

Causes
Independent variables

EffectDependent variable

Factor Analysis

Many Observed Causes

Few Underlying Causes

One Effect

Simplistic

Causes
Independent variables

EffectDependent variable

Simple

Causes Independent variables

EffectDependent variable

Connecting the Dots with Regression

Regression is a technique to find the "best" line through a set of dots

Connecting the Dots with Regression

Cause

Independent variable

Effect

Dependent variable

Success as a Salesperson

Cause

Number of cold calls initiated

Effect

Bonus as member of sales team

One cause, one effect

Causes
Independent variables

EffectDependent variable

Success as a Salesperson

Causes

Number of cold calls, years of experience in sales jobs

Effect

Bonus as member of sales team

Success as a Salesperson

Many causes, one effect

Represent all n points as (x_i,y_i) , where i = 1 to n

Represent all n points as (x_i,y_i) , where i = 1 to n

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

$$y = A + Bx$$

$$y_1 = A + Bx_1 + e_1$$

 $y_2 = A + Bx_2 + e_2$
 $y_3 = A + Bx_3 + e_3$
...
$$y_n = A + Bx_n + e_n$$

$$y = A + Bx$$

Regression Equation:

$$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ ... \\ B_n \end{bmatrix} = A \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + B \begin{bmatrix} CC_1 \\ CC_2 \\ CC_3 \\ ... \\ CC_n \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ ... \\ e_n \end{bmatrix}$$

B_i = Bonus of salesperson i

CC_i = Number of cold calls made by salesperson i

Regression Equation:

$$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ ... \end{bmatrix} = A \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + B \begin{bmatrix} CC_1 \\ CC_2 \\ CC_3 \\ ... \\ CC_n \end{bmatrix} + C \begin{bmatrix} E_1 \\ E_2 \\ E_3 \\ ... \\ E_n \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ ... \\ E_n \end{bmatrix}$$

B_i = Bonus of salesperson i

CC_i = Number of cold calls made by salesperson i E_i = Number of years of experience of salesperson i

$$y = A + Bx + Cz$$

Regression Equation:

$$y = A + Bx + Cz$$

n Rows, 1 Column

$$\begin{bmatrix} 1 & X_1 & Z_1 \\ 1 & X_2 & Z_2 \\ 1 & X_3 & Z_3 \\ & & & C \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ & & e_n \end{bmatrix}$$

n Rows, 3 Columns 3 Rows, n Rows,1 Column1 Column

2 Causes
Cold calls, experience

1 Effect
Bonus in sales team

k Causes

Cold calls, experience, perceived honesty...

1 Effect

Bonus in sales team

$$y = C_1 + C_2 x_1 + ... + C_{k+1} x_k$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \dots \\ y_n \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ \dots \\ x_{n1} \end{bmatrix} + \dots C_{k+1} \begin{bmatrix} x_{1k} \\ x_{2k} \\ x_{3k} \\ \dots \\ x_{nk} \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ \dots \\ x_{nk} \end{bmatrix}$$

Regression Equation:

$$y = C_1 + C_2 x_1 + ... + C_{k+1} x_k$$

n Rows, 1 Column n Rows, k+1 Columns k+1 Rows, 1 Column n Rows, 1 Column

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_{k+1} X_k$$

Linear regression involves finding k+1 coefficients, k for the explanatory variables, and 1 for the intercept

Similar, yet Different

Regression

Connect the dots

Factor Analysis

Cut through the clutter

Simplistic

Causes
Independent variables

EffectDependent variable

Simple

Causes Independent variables

EffectDependent variable

Kitchen Sink Regression

Proposed Regression Equation:

+ ...

Kitchen Sink Regression

10 Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...

1 Effect

Bonus in sales team

Bad News: Multicollinearity Detected

6 of 10 explanatory variables are highly correlated with each other

A big risk with regression is **multicollinearity**: X variables containing the same information

Underlying Cause: Extroversion

Each of these explanatory variables is caused by an underlying personality trait

Underlying Cause: Extroversion

Simply measure extroversion and use it instead of the correlated explanatory variables

Kitchen Sink Regression

10 Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...

1 Effect

Bonus in sales team

Factor Analysis

Many Observed Causes

Few Underlying Causes

One Effect

Success as a Salesperson

Many Observed Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...

Few Underlying Causes

Personality traits

One Effect

Success as a salesperson

What and How: Factor Analysis and PCA

What and How

Cut through clutter

Extract underlying factors from a set of data

Principal components analysis (PCA)

Cookie-cutter technique that finds the 'good' factors from a set of data points

PCA is one solution to the factor-extraction problem - a cookie-cutter solution

What and How

Connect the dots

Fit a curve through a set of data

Regression

Cookie-cutter technique that finds the 'best-fit' line through a set of data points

Regression is one solution to the data-fitting problem - a cookie-cutter solution

We can draw any number of curves to fit such data

We can draw any number of curves to fit such data

A straight line represents a linear relationship

We could either make this curve pass through each point...

...Or in some sense "fit" the data in aggregate

A curve has a "good fit" if the distances of points from the curve are small

Finding the "best" such straight line is called Linear Regression

What and How

Cut through clutter

Extract underlying factors from a set of data

Principal components analysis (PCA)

Cookie-cutter technique that finds the 'good' factors from a set of data points

PCA is one solution to the factor-extraction problem - a cookie-cutter solution

Two Approaches to Factor Extraction

Rule-based

Human experts identify and extract factors

ML-based

Algorithm identifies and extracts factors

Success as a Salesperson

Many Observed Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...

Few Underlying Causes

Personality traits

One Effect

Success as a salesperson

Personality Profiles

Individual

Personality Assessment **Personality Profile**

Personality Profiles

Gregariousness	Warmth	Assertiveness	Excitement- seeking	Modesty	Order	
High	Medium	High	High	Low	High	 1 row

100 columns

Individual

Personality Profile

Information Overload

High	Medium	High	High	Low	High	

100 columns

Sales **Team**

Personality Profile Database

Conscientiousness Extraversion **Openness** Agreeableness Neuroticism

factor

trait out there

1 column for each personality trait out there

Rule-based Factor Extraction Technique

5 columns, 1 for each big-five factor

Individual

Rule-based Factor Extraction Technique Big Five Personality Profile

Openness	Conscientiousness	Extraversion	Agreeableness	Neuroticism	
High	Medium	High	High	Low	1 ro

5 columns

Individual

Personality Profile

Two Approaches to Factor Extraction

Rule-based

Human experts identify and extract factors

ML-based

Algorithm identifies and extracts factors

PCA and Factor Analysis Principal Component Analysis is one procedure for factor analysis

It is mathematically guaranteed to result in independent factors

However, those factors may not actually correspond to intuition

Whales: Fish or Mammals?

Mammals

Members of the infraorder *Cetacea*

Fish

Look like fish, swim like fish, move like fish

Rule-based Binary Classifier

ML-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

ML-based Binary Classifier

ML-based Binary Classifier

Rule-based or ML-based?

ML-based

Rule-based

Dynamic

Static

Experts optional

Experts required

Corpus required

Corpus optional

Training step

No training step

Two Approaches to Factor Extraction

Rule-based

Human experts identify and extract factors

ML-based

Algorithm identifies and extracts factors

What and How

Cut through clutter

Extract underlying factors from a set of data

Principal components analysis (PCA)

Cookie-cutter technique that finds the 'good' factors from a set of data points

PCA is one solution to the factor-extraction problem - a cookie-cutter solution

Applications of PCA

Dimensionality reduction

Cut through the clutter

Sparse data estimation

Estimate missing data

What-if risk analysis

Evaluate extreme scenarios

Mean and Variance

Data in One Dimension

Pop quiz: Your thoughtful, fact-based point-of-view on these numbers, please

Mean as Headline

The mean, or average, is the one number that best represents all of these data points

$$\frac{1}{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$

Variation Is Important Too

"Do the numbers jump around?"

Range = $X_{max} - X_{min}$

The range ignores the mean, and is swayed by outliers - that's where variance comes in

Variance is the second-most important number to summarise this set of data points

Variance is the second-most important number to summarise this set of data points

Variance is the second-most important number to summarise this set of data points

We can improve our estimate of the variance by tweaking the denominator - this is called Bessel's Correction

Mean and Variance

Mean and variance succinctly summarise a set of numbers

$$\frac{1}{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 Variance = $\frac{\sum (x_i - \overline{x})^2}{n-1}$

Variance and Standard Deviation

Standard deviation is the square root of variance

Variance =
$$\sum (x_i - \overline{x})^2$$

$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$
Std Dev = $\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

Small Stakes

Loser pays \$1, winner takes \$1

High Stakes

Loser pays \$1000, winner takes \$1000

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

Tabulate the possible outcomes (assume each coin is a fair one)

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n} = 0$$

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$\bar{x} = 0$$
 $\bar{y} = 0$

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

x _i - x	$(x_i - \bar{x})^2$
\$1	1
\$1	1
-\$1	1
-\$1	1

$$\bar{x} = 0$$

$$\bar{y} = 0$$

Variance =
$$\sum (x_i - \overline{x})^2 = 1$$

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

y _i - y	$(y_i - \bar{y})^2$
\$1,000	1000000
-\$1,000	1000000
\$1,000	1000000
-\$1,000	1000000

$$\bar{x} = O$$
 $\bar{y} = O$

Variance =
$$\sum (y_i - \overline{y})^2 = 1,000,000$$

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$x = 0$$
 $y = 0$
 $Var(x) = 1$ $Var(y) = 1,000,000$

As stakes grow, variance gets big faster than the mean

Small Stakes

Loser pays \$1, winner takes \$1

High Stakes

Loser pays \$1000, winner takes \$1000

As stakes grow 1000x, variance grows 1,000,000x

Covariance and Correlation

Data in One Dimension

Unidimensional data is analysed using statistics such as mean, median, standard deviation

Data in Two Dimensions

It's often more insightful to view data in relation to some other, related data

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Small Stakes

Loser pays \$1, winner takes \$1

High Stakes

Loser pays \$1000, winner takes \$1000

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$x = 0$$

Var(x) = 1

$$x = 0$$
 $y = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

x _i - x	y _i - y	$(x_i - \overline{x})(y_i - y\overline{)}$
\$1	\$1,000	1,000
\$1	-\$1,000	-1,000
-\$1	\$1,000	-1,000
-\$1	-\$1,000	1,000

$$x = 0$$

$$Var(x) = 1$$

$$x = 0$$
 $y = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance (x,y) =
$$\sum \frac{(x_i - \overline{x})(y_i - \overline{y})}{n} = 0$$

Tossing Two Coins

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$x = 0$$
 $y = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance(x,y) = 0

Independent variables have zero covariance

Intuition: Positive Covariance

Intuition: Positive Covariance

The deviations around the means of the two series are in-sync

Intuition: Negative Covariance

Intuition: Negative Covariance

The deviations around the means of the two series are out-of-sync

Intuition: Covariance and Variance

Intuition: Positive Covariance

Variance is the covariance of a series with itself

Covariance and Variance

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Variance (x) =
$$\sum_{n}^{(x_i - \overline{x})} = \text{Covariance (x,x)}$$

Variance (y) =
$$\sum_{n}^{(y_i - \overline{y})^2} = \text{Covariance (y,y)}$$

Random variables are outcomes of uncertain events

- Coin tosses
- Dice rolls
- Sporting events
- Stock returns

E_i = % return on Exxon stock on day i D_i = % return of Dow Jones index on day i

Returns (percentage changes) in the prices of two financial assets over time

- Exxon stock
- Dow Jones equity index

These returns are related to each other

Many Random Variables

 $E_i = \%$ return on Exxon stock on day i

Dow Jones index on day i

 $D_i = \%$ return of $G_i = \%$ return of Google stock on day i

 $A_i = \%$ return of Apple stock on day i

Summarise the returns of k stocks, each over n days, into an nxk matrix

Summarise the returns of k stocks, each over n days, into an nxk matrix

X₂ (n rows, 1 column)

k columns

$$[X_1 X_2 X_3 \dots X_k]^{n \text{ rows}}$$

k columns

Each element X_i of this matrix is a vector with 1 column and n rows

A covariance matrix summarises the covariances of columns in a data matrix

k columns

Each element of the covariance matrix contains the covariance of a pair of vectors from the original data

k columns

The first row contains the covariance of the first column X₁ with each of the columns (including itself)

k columns

The first row contains the covariance of the first column X₁ with each of the columns (including itself)

k columns

The first row contains the covariance of the first column X₁ with each of the columns (including itself)

The last row contains the covariance of the last column X_k with each of the columns (including itself)

k columns

The last row contains the covariance of the last column X_k with each of the columns (including itself)

The last row contains the covariance of the last column X_k with each of the columns (including itself)

The matrix is symmetric - the value at row i and column j is the same as that at row j and column i

k columns

The matrix is symmetric - the value at row i and column j is the same as that at row j and column i

The values along the diagonal are the variances of the corresponding columns

Covariance and Variance

Covariance (x,y) =
$$\sum_{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n}$$

Variance (x) =
$$\sum_{n}^{(x_i - \overline{x})} = \text{Covariance (x,x)}$$

Variance (y) =
$$\sum_{n}^{(y_i - \overline{y})^2} = \text{Covariance (y,y)}$$

The values along the diagonal are the variances of the corresponding columns

The values along the diagonal are the variances of the corresponding columns

k columns

k columns

Each element of the covariance matrix contains the covariance of a pair of vectors from the original data

Correlated Random Variables

Returns on the Dow and on Exxon are related to each other

Correlation Captures Linear Relationships

Correlation = +1

As X increases, Y increases linearly

Correlation = -1

As X increases, Y decreases linearly

Correlation = 0

Changes in X independent* of changes in Y

Correlation and Covariance

Correlation and Covariance

$$\rho_{xy} = \frac{\sigma^2_{xy}}{\sigma_x \sigma_y}$$

$$\rho_{xx} = \frac{\sigma^2_{xy}}{\sigma_x \sigma_x}$$

$$= 1$$

Correlation of any series with itself is always +1

k columns

Each element is the covariance of two random variables

Correlation Matrix

k columns

Each element is the correlation of two random variables

Correlation Matrix

k columns

Diagonal elements are always 1

Independent variables have zero covariance and zero correlation

Correlation Captures Linear Relationships

Correlation = +1

As X increases, Y increases linearly

Correlation = -1

As X increases, Y decreases linearly

Correlation = 0

Changes in X independent* of changes in Y

Correlation Matrix of Independent Variables

Correlation matrix of independent variables is the identity matrix

Covariance Matrix of Independent Variables

Covariance matrix of independent variables is a diagonal matrix

Tossing Two Coins

Small Stakes

Loser pays \$1, winner takes \$1

High Stakes

Loser pays \$1000, winner takes \$1000

Tossing Two Coins

Coin X Result	Coin Y Result	Coin X Payoff	Coin X Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$x = 0$$
 $y = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance(x,y) = 0

Independent variables have zero covariance

Covariance Matrix of Two Coin Tosses

Diagonal elements are variances, off-diagonal elements are covariances

Correlation Matrix of Two Coin Tosses

Correlation matrix of independent variables is the identity matrix

 $E_i = \%$ return on Exxon stock on day i

 $D_i = \%$ return of $G_i = \%$ return of **Dow Jones** index on day i

Google stock on day i

 $A_i = \%$ return of Apple stock on day i

 $E_i = \%$ return on Exxon stock on day i

Dow Jones index on day i

 $D_i = \%$ return of $G_i = \%$ return of Google stock on day i

 $A_i = \%$ return of Apple stock on day i

$$P = E + D + G_{...} + A$$

P_i = % return of stock portfolio on day i

Portfolio P consists of 1 stock each of Exxon, the Dow, Google and Apple

$$P = w_1E + w_2D + w_3G ... + w_kA$$

P_i = % return of stock portfolio on day i

Portfolio P consists of w₁ stocks of Exxon, w₂ of the Dow, w₃ of Google and w_k of Apple

$$y = X_1 + X_2 + X_3 ... + X_k$$

Analysing the sum of random variables is an extremely common use-case

k columns

$$[X_1 X_2 X_3 \dots X_k] \uparrow^{n \text{ rows}}$$

$$y = X_1 + X_2 + X_3 ... + X_k$$
 n rows

1 column

Adding n variables, each of k-dimensional data, gives 1-dimensional data

$$y = X_1 + X_2 + X_3 ... + X_k$$

$$Mean(y) = ?$$

Variance(y) = ?

$$y = X_1 + X_2 + X_3 ... + X_k$$

Mean(y) = Mean(
$$X_1$$
) +

Mean(X_2) +

Mean(X_3) +

k terms

...

Mean(X_k)

Mean of sum = sum of means

$$y = X_1 + X_2 + X_3 ... + X_k$$

Mean(y)

Simple - mean of sum is sum of means

Variance(y) = ?

$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance(y) = Covariance(
$$X_1, X_1$$
) +

Covariance(X₁,X₂) +

• • •

Covariance(X_{1}, X_{k}) +

Covariance($X_{k_1}X_1$) +

Covariance(X_k, X_2) +

Covariance (X_k, X_k)

k² terms

$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance (y) =
$$\sum_{i=1}^{k} \sum_{j=1}^{k} \text{Covariance}(X_{i},X_{j})$$
 k² terms

Variance of sum can be found from the covariance matrix

$$y = X_1 + X_2 + X_3 ... + X_k$$

k rows

k columns

Diagonal elements are the variances

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

Add all the diagonal elements...

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

...and half the sum of the off-diagonal entries

$$y = X_1 + X_2 + X_3 ... + X_k$$

Mean(y)

Simple - mean of sum is sum of means

Variance(y)

Tricky - requires use of covariance matrix

Adding related variables is difficult, adding independent variables is easy

$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance (y) =
$$\sum_{i=1}^{k} \sum_{j=1}^{k} \text{Covariance}(X_{i},X_{j})$$
 k² terms

If the X variables are independent, we can easily find the variance of the sum

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

Diagonal elements are the variances

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

Add all the diagonal elements...

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

...and half the sum of the off-diagonal entries

$$y = X_1 + X_2 + X_3 ... + X_k$$

k columns

But all off-diagonal entries are zero!

$$y = X_1 + X_2 + X_3 ... + X_k$$

Add all the diagonal elements...

$$y = X_1 + X_2 + X_3 ... + X_k$$

Variance (y) =
$$\sum_{i=1}^{k} \sum_{j=1}^{k} \text{Covariance}(X_{i}, X_{j})$$

$$= \sum_{k} \sum_{j=1}^{k} \text{Variance}(X_{i})$$

$$= \sum_{j=1}^{k} \text{Variance}(X_{i})$$

For independent variables, variance of sum is sum of variances

$$y = X_1 + X_2 + X_3 ... + X_k$$

Mean(y)

Simple - mean of sum is sum of means

Variance(y)

Simple - variance of sum is sum of variances

Tossing Two Coins

Small Stakes

Loser pays \$1, winner takes \$1

High Stakes

Loser pays \$1000, winner takes \$1000

Tossing Two Coins

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

$$x = 0$$
 $y = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance(x,y) = 0

Independent variables have zero covariance

Combined Payoff

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

x = 0 y = 0Var(x) = 1 Var(y) = 1,000,000

Covariance(x,y) = 0

Combined Payoff
\$1,001
-\$999
\$-999
-\$1,001

z = 0

Combined Payoff

Coin X Result	Coin Y Result	Coin X Payoff	Coin Y Payoff
Heads	Heads	\$1	\$1,000
Heads	Tails	\$1	-\$1,000
Tails	Heads	-\$1	\$1,000
Tails	Tails	-\$1	-\$1,000

Combined Payoff	
\$1,001	
-\$999	
\$-999	
-\$1,001	

z _i - z	(z _i - z) 2
\$1,001	1002001
-\$999	998001
\$-999	998001
-\$1,001	1002001

$$x = 0$$
 $y = 0$ $z = 0$
Var(x) = 1 Var(y) = 1,000,000

Covariance(x,y) = 0

Variance =
$$\sum (z_i - \overline{z})^2 = 1,000,001$$

Combined Payoff

$$Z = X + Y$$

Mean(z)

Simple - mean of sum is sum of means

Variance(z)

Simple - variance of sum is sum of variances

Exploratory Factor Analysis: Experts trace back principal components to observable factors

Summary

Factor analysis is a way to find the underlying drivers of a large dataset

PCA is one of many techniques that can be used in factor analysis

PCA is powerful and versatile, so it is very popular indeed

Some linear algebra and statistics are helpful in using factor analysis and PCA