Hyperbolic geometry

hyperboloid in $\mathbb{R}^{2,1}$

 $\mathsf{hyperbolic}\; \widetilde{\mathsf{disk}}\; (r,\theta)$

For further info, see Flavors of geometry (Cambridge University Press, 1997)

or Foundations of Hyperbolic Manifolds (Springer, 2019)

- Space of constant negative curvature (as opposed to flat or Euclidean space, or spherical space)
- ightharpoonup Model for the D=2 hyperbolic space : positive sheet of the hyperboloid defined by

$$x^2 + y^2 - z^2 = -1$$

 \triangleright Distance between points (x_1,y_1,z_1) and (x_2,y_2,z_2) is

$$d(1,2) = \operatorname{arccosh}(z_1 z_2 - x_1 x_2 - y_1 y_2)$$

> Polar coordinates

$$x = \sinh(r)\cos(\theta)$$
$$y = \sinh(r)\sin(\theta)$$
$$z = \cosh(r)$$

hyperboloid in $\mathbb{R}^{2,1}$

 $\mathsf{hyperbolic}\; \widetilde{\mathsf{disk}}\; (r,\theta)$

hyperboloid in $\mathbb{R}^{2,1}$

Hyperbolic geometry

- Space of constant negative curvature (as opposed to flat or Euclidean space, or spherical space)
- ightharpoonup Model for the D=2 hyperbolic space : positive sheet of the hyperboloid defined by

$$x^2 + y^2 - z^2 = -1$$

 \triangleright Distance between points (x_1,y_1,z_1) and (x_2,y_2,z_2) is

$$d(1,2) = \operatorname{arccosh}(z_1 z_2 - x_1 x_2 - y_1 y_2)$$

> Polar coordinates

$$x = \sinh(r)\cos(\theta)$$
$$y = \sinh(r)\sin(\theta)$$
$$z = \cosh(r)$$

hyperboloid in $\mathbb{R}^{2,1}$

Hyperbolic geometry

Simple random geometric graph

- 1. Sprinkle N nodes uniformly on the hyperbolic disk of radius R.
- 2. Connect any nodes separated by a distance less than r = R.

6

- ✓ high clustering
- ✓ power-law degree distribution with exponent -3

Phys. Rev. E 82, 036106 (2010)