INTRO TO PREDICTIVE MODELING FOR HEPATITIS-C

COBB2010: Foundations of Computational Biology

Name: Kamaru-deen Lawal Email: <u>kal246@pitt.edu</u>

INTRODUCTION

- Hepatitis C is a liver infection spread through contact with blood from an infected person
- Most people become infected by sharing needles or other equipment used to prepare and inject drugs. It can also be transmitted sexually
- The disease can also be transmitted via unprotected sex (especially when blood is present)
- For some, Hepatitis C causes nothing more than a short illness, but for others it can result in serious problems such as cirrhosis and liver cancer
- Goal of project is to build interpretable models that can aid in predicting the presence of Hepatitis C

DATA BACKGROUND

0=Blood Donor	533
3=Cirrhosis	30
1=Hepatitis	24
2=Fibrosis	21
0s=suspect Blood Donor	7

- Dataset has twelve features
 - I I Quantitative (Age, ALB, ALP, ALT, AST, BIL, CHE, CHOL, CREA, GGT, PROT)
 - I Categorical (Gender)
- Dataset has one multi-class target representing level of Hepatitis C present for patient
- Each patient can have a Hepatitis C rating of 0 (blood donor), 0s (suspected blood donor), 1 (Hepatitis), 2 (Fibrosis), or 3 (Cirrhosis)
- The dataset was extremely imbalanced. Some levels occurred fewer than 10 times in the dataset. As a result we examine a binarized classification problem instead of the original multi-class problem
- In the following slides we examine some of the key features we will use to build our model

ALBUMIN (ALB)

- Globular proteins commonly found in blood plasma
- They differ from other proteins in that they are not glycosylated
- Conclusion: Blood Donors have a few more outliers for albumin. It also seems like Hepatitis C carriers have more uniformly distributed albumin values

ALKALINE PHOSPHATASE (ALP)

- In humans, it is present in all tissues throughout the body
- Diagnosticians commonly use it as a biomarker to search for the presence of Hepatitis and Osteomalacia
- Conclusion: There is a higher degree of variability for ALP amongst Hepatitis C carriers

ALANINETRANSAMINASE (ALT)

ruvate Standard Curve a) Colorimetric, b) Fluorometric. Measurement sferase activity in Positive Control (c) and HepG2 Cells (10 ug) and Live . Assays were performed following the kit protocol.

- Commonly measured clinically as part of liver function tests
- Significantly elevated levels often indicate some sort of medical problem
- For years, the Red Cross used ALT testing to ensure the safety of its bloody supply
- Conclusion: Both Blood Donors and Hepatitis C carriers have outliers

ASPARTATE TRANSAMINASE (AST)

- Similar to ALT in that both enzymes are associated with liver parenchymal cells
- Difference is ALT is found mainly in the liver, while AST is found in the liver, heart, skeletal muscles, kidneys, brain, and red blood cells
- Important to note source of AST may reflect pathology in organs other than the liver
- Conclusion: Similarly to ALP, there is a significantly higher degree of variability for AST amongst Hepatitis C carriers

BILIRUBIN (BIL)

- BIL levels in the body represent the balance between production and excretion
- Not usually detected in the urine of healthy people. If blood level of conjugated bilirubin becomes elevated, excess is excreted in the blood
- Conclusion: Mean BIL is 282% higher for Hepatitis C carriers. An indicator variable based on BIL could be useful if it can be constructed in a way that doesn't result in a near zero variance feature (see appendix for more information on NZV features)

CHOLINESTERASE (CHE)

- Levels may be reduced in patients with advanced liver disease
- Conclusion: Both Blood Donors and Hepatitis C carriers follow roughly the same distribution for CHE

CHOLESTEROL (CHOL)

- Lipid profiles are a panel of blood tests commonly used as screening tools for abnormalities in lipids, such as cholesterol and triglycerides
- Results can identify genetic diseases along with approximate risks for cardiovascular diseases and and certain forms of pancreatic diseases
- Conclusion: Both Blood Donors and Hepatitis C carriers follow roughly the same distribution for CHOL.

CREATININE (CREA)

- Most commonly used indicator of renal function
- Elevated creatinine is not always representative of a true reduction in GFR. A high reading may be due to increased production not due to decreased kidney function
- Worked on a project at Enterprises where Creatinine was the key featured used to create a target for the dataset
- Conclusion: Hepatitis C carriers have a significantly higher mean and variance for CREA.

STAGES OF	CHRONIC KIDNEY DISEASE	GFR*	% OF KIDNE FUNCTION
Stage 1	Kidney damage with normal kidney function	90 or higher	90-100%
Stage 2	Kidney damage with mild loss of kidney function	89 to 60	89-60%
Stage 3a	Mild to moderate loss of kidney function	59 to 45	59-45%
Stage 3b	Moderate to severe loss of kidney function	44 to 30	44-30%
Stage 4	Severe loss of kidney function	29 to 15	29-15%
Stage 5	Kidney failure	Less than 15	Less than 15%

GAMMA-GLUTAMYLTRANSFERASE (GGT)

- Predominately used as a diagnostic marker for liver disease
- Latent elevations in GGT are typically seen in patients with chronic viral hepatitis
- Elevated levels can also be found in diseases of the biliary system and pancreas
- Conclusion: Hepatitis C carriers have a significantly higher mean and variance for GGT.

SERUMTOTAL PROTEIN (PROT)

- Concentrations below the reference range usually reflect low albumin concentration
- Concentrations above usually reflect leukemia
- Conclusion: Both Blood Donors and Hepatitis C carriers follow roughly the same distribution for PROT

MODELING/EVALUATION TECHNIQUES

- Assessed performance of model using two different evaluation methods
 - 80/20 (Train/Test split)
 - k-Fold Cross Validation (k=9)
- Model: LogisticRegression w/ an ElasticNet penalty
- Achieved AUC of .97 for the 80/20 split
- Achieved Mean AUC of .98 for the k-Fold Cross Validation

80/20 MODEL EVALUATION

K-FOLD CV MODEL EVALUATION

K-FOLD CV EXPLAINED

- Used to select a model and give an approximation of the test error
- Randomly divide the data into K equal-sized parts. Train the model on K-I of the parts, and use the K-th part to validate the model
- We do this for each k = 1, ..., K and then combine the results
- Method is particularly useful when data is limited
- Worth noting that choosing the right value for K is a bit of an art form as the bias-variance tradeoff ends up coming into play

LOGISTIC REGRESSION EXPLAINED

Used to predict the probability of a binary event

ELASTIC-NET REGRESSION EXPLAINED

L1 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} |W_j|$$

L2 Regularization

Cost =
$$\sum_{i=0}^{N} (y_i - \sum_{j=0}^{M} x_{ij} W_j)^2 + \lambda \sum_{j=0}^{M} W_j^2$$
Loss function Regularization Term

- Despite being somewhat overly simplistic, linear models are often the model of choice because of their interpretability
- Shrinkage methods can be used to zero out weak predictors while in reducing variance
- Idea is to fit a model containing all features using a techniques that regularizes the coefficient estimates for each feature
- As with straight least squares, the goal of Elastic-Net Regression is to minimize RSS. But the summands with lambdas in front of them are minimized when the coefficients are close to 0
- Cross validation is often used to determine lambda

BIBLIOGRAPHY

- Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.
 An Introduction to Statistical Learning: with Applications in R.
 New York: Springer, 2013.
- Kuhn, Max., and Kjell Johnson. Applied Predictive Modeling. New York: Springer, 2013.
- Various images online for Data description

Appendix

NEAR ZERO VARIANCE FEATURES

- Lots of potential advantages to removing unnecessary predictors
 - Fewer predictors => Lower computation time and complexity
 - Two predictors correlated => measuring same underlying property, removing one might make model more interpretable
- Good rule of thumb: if the fraction of unique values over the sample is low (<10%) AND the ratio of the 1st to 2nd most common value for the feature is large (>= 20), then the feature is near zero variance

ALB DISTRIBUTION

ALP DISTRIBUTION

ALT DISTRIBUTION

AST DISTRIBUTION

BIL DISTRIBUTION

CHE DISTRIBUTION

CHOL DISTRIBUTION

GGT DISTRIBUTION

PROT DISTRIBUTION

