Probability and Statistics

Pritha Banerjee

University of Calcutta

banerjee.pritha74@gmail.com

March 5, 2025

Overview

Probability

- Probability Distribution
 - Popular Distribution

Statistics and their Distribution

Random Phenomena and Probability

- Deterministic phenomenon: Phenomenon whose outcome can be predicted with a very high degree of confidence. Ex: age from date of birth can be calculated.
- Stochastic phenomenon: Phenomenon which can have many possible outcomes for same experimental conditions. Outcomes predicted with limited confidence
- Unknown sources of data, data generation process causes errors in data.
- Errors are modeled using probability
- Random phenomenon are of two types:
 - Discrete Finite outcomes. Ex. Tossing a coin.
 - **Continuous** Infinite number of outcomes. Ex: Body temperature measurement in degree Fahrenheit.

Discrete phenomena - Discrete random variable

- Sample space S: Set of all possible outcomes of a random phenomena or experiment. Ex. Two coin toss;
 S = {HH, HT, TH, TT}
- **Event** A: Subset of a sample space. Ex: Occurrence of 1 H in first toss of a two coin toss experiment, $A = \{HH, HT\} \subseteq S$
- Each outcome of a sample space is an elementary event.

Probability Measure

- Given an experiment and a sample space S, the objective of probability is to assign to each event A a number P(A), called the probability of the event A, which will give a precise measure of the chance that A will occur.
- All assignment must satisfy the following axioms(basic properties):
 - For any event A, $P(A) \ge 0$.
 - P(S) = 1.
 - If $A_1, A_2, \dots A_n$ is an infinite collection of disjoint events, then $P(A_1 \cup A_2 \cup A_3 \dots) = \sum_{i=1}^{\infty} P(A_i)$
- $P(\phi) = 0$

Interpretation of Probability Measure (1)

- Consider an experiment is repeatedly performed n times in an identical and independent fashion, and let A be an event consisting of a fixed set of outcomes of the experiment. Ex. A = Obtaining head (H) in tossing a coin.
- Let n(A) is the number of replications (trials) on which A does occur.
- $\frac{n(A)}{n}$ is called the **relative frequency** of occurrence of the event A in the sequence of n replications/ trials.
- As n gets arbitrarily large, relative frequency gets stabilized, i.e, it approaches a limiting value referred to as the limiting (or long-run) relative frequency of the event A;

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$$

Interpretation of Probability Measure (2)

A be the event that a package sent for 2nd day delivery, actually arrives within one day. The results from sending 10 such packages:

delivery, actually arrives within one day. The results from sending 10 such packages: Package # 1 2 3 4 5 6 7 8 9 10 Did A occur? N Y Y N N Y Y N N Rel. freq. of A $\left(\frac{n(A)}{n}\right)$ 0 .5 .667 .75 .6 .5 .571 .625 .556 .5

Properties of probability

- For any event A, P(A) + P(A') = 1, from which P(A) = 1 P(A').
- For any event A, $P(A) \leq 1$.
- For any two events A and B, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- **Independent events**: Two events are independent if occurrence of one has no influence on occurrence of other. Events A and B are independent if and only if $P(A \cap B) = P(A).P(B)$. Ex: Two coin tossing.
- **Mutually exclusive**: Two events are mutually exclusive if occurrence of one implies non occurrence of other event. Events A and B are mutually exclusive iff $P(A \cup B) = P(A) + P(B)$.

Boole's Inequality

- $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$ for any sets A_1, A_2, \cdots
- Upper bound for probability of union of events
- Equality holds when A_i s are disjoint.

Conditional probability

- For any two events A and B with P(B) > 0, the **conditional probability of** A given that B has occurred is defined by $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- Example with figure:
- Multiplication Rule : multiply above by P(B), i.e, $P(A \cap B) = P(A|B).P(B)$.
- prior and posterior probability of an event: Before conditional probability is applied, an event has prior probability. With the conditional probability applied an event will get a posterior probability.

Conditional probability: Example

- A video stores sells three different brands of DVD players. Of its DVD player sales, 50% are brand 1, 30% are brand 2, and 20% are brand 3. It is known that 25% of brand 1's DVD players require warranty repair work, whereas the corresponding percentages for brands 2 and 3 are 20% and 10%, respectively.
- What is the probability that a randomly selected purchaser has bought a brand 1 DVD player that will need repair while under warranty? P(A₁ ∩ B) = P(B|A₁).P(A₁) = .125
- What is the probability that a randomly selected purchaser has a DVD player that will need repair while under warranty? $P(B) = P[(brand1 \land repair) \lor (brand2 \land repair) \lor (brand3 \land repair)] = .125 + .060 + .020 = .205$
- If a customer returns to the store with a DVD player that needs repair work, what is the probability that it is a brand 1 DVD player? A brand 2 DVD player? A brand 3 DVD player? $P[A_1|B] = \frac{.125}{.205} = .61$, $P[A_2|B) = \frac{.060}{.205} = .29$, $P[A_3|B) = 1 P[A_1|B) P[A_2|B] = .10$

Bayes' Theorem

- The Law of Total Probability: Let A_1, A_2, \dots, A_k be mutually exclusive and exhaustive (one A_i must occur so that $A_1 \cup \dots \cup A_k = S$) events. Then for any other event B, $P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_k)P(A_k) = \sum_{i=1}^k P(B|A_i).P(A_i)$
- **Bayes' Theorem**: Let A_1, A_2, \dots, A_k be a collection of k mutually exclusive and exhaustive events with *prior probabilities* $P(A_i)$, $i = 1, 2, \dots k$. Then for any other event B for which, the *posterior probability* of A_j given that B has occurred is $P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j).P(A_j)}{\sum_{k=1}^k P(B|A_k).P(A_k)}$.
- Example:Only 1 in 1000 adults is afflicted with a rare disease for which a diagnostic test is developed. when an individual actually has the disease, a positive result occurs 99% of the time, whereas without the disease shows a positive result only 2% of the time. If a randomly selected individual is tested and the result is positive, what is the probability that the individual has the disease?

March 5, 2025

Bayes' Theorem: Example

- A_1 = individual has the disease, A_2 = individual does not have the disease, and B = positive test result. Then , $P(A_1) = .001, P(A_2) = .999, P(B|A_1) = .99, P(B|A_2) = .02.$
- P(B) = .00099 + .01998 = .02097 [law of total probability : $P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2)$]
- $P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{.00099}{.02097} = .047$

Bayes' Theorem: Generalization

- Let A_1, A_2, \cdots be a partition pf sample space S and let B be any subset of Sample space, then for each $i=1,2,\cdots$, $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum\limits_{i=1}^{\infty} P(B|A_j)P(A_j)}$
- it helps in computing the conditional probability P(A|B) from inverse conditional probability P(B|A)

Independence: revisited

- Two events A and B are independent if P(A|B) = P(A) and are dependent otherwise.
- Example: Consider a gas station with six pumps numbered $1, 2, \dots, 6$ and let E_i denote the simple event that a randomly selected customer uses pump i ($i=1,2,\dots 6$). Suppose that $P(E_1)=P(E_6)=.10, P(E_2)=P(E_5)=.15, P(E_3)=P(E_4)=.25$ Define events A,B,C by $A=\{2,4,6\},B=\{1,2,3\},C=\{2,3,4,5\}.$ We then have $P(A)=.50,P(A\cup B)=.30,$ and $P(A\cup C)=.50.$ That is, events A and B are dependent, whereas events A and C are independent. Intuitively, C and C are independent because the relative division of probability among even- and odd-num- bered pumps is the same among pumps 2,3,4,5 as it is among all six pumps.

Conditional Independence

• Let A, B, C are three events with P(C) > 0. Given C, the events A and B are conditionally independent if $P(A \cap B|C) = P(A|C)P(B|C)$ or $P(A|B \cap C) = P(A|C)$

Random Variable

- **Definition**: For a given sample space S of some experiment, a random variable (rv) is any rule that associates a number with each outcome in S. An rv is a function $X:S\to\mathbb{R}$ whose domain is the sample space S and range is the set of real numbers.
- Let sample space S = Success, Failure. Random variable X(Success) = 1, X(Failure) = 0
- Bernoulli random variable: Any random variable whose only possible values are 0 and 1 is called a Bernoulli random variable.

Induced probability function

- Let $S = w_1, w_2 \cdots$ be a sample space and P be a probability measure(function)
- Let X be a random variable with range $X = \{x_1, x_2, \dots x_m\}$
- Induced probability function P_X on x is $P_X(X = x_i) = P(\{w_i \in S : X(w_i) = x_i\})$
- Example: X : number of heads obtained in three coin tosses.
 - Enumerate the elementary outcomes $w = \{HHH, HHT, HTH, THH, TTH, THT, HTT, TTT\} \text{ and } X(w) = \{3, 2, 2, 2, 1, 1, 1, 0\}$
 - Measure the probability of random variable taking on value in its range, i.e, $X = \{0, 1, 2, 3\}$
 - Thus, $P_X(X = x) = \{1/8, 3/8, 3/8, 1/8\}$

Types of Random Variable (RV)

- Discrete RV: A discrete random variable is an RV whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on ("countably" infinite).
- Continuous RV: A random variable is continuous if both of the following apply:
 - set of possible values consists either of all numbers in a single interval on the number line (possibly infinite in extent, e.g., from $-\infty to + \infty$) or all numbers in a disjoint union of such intervals (e.g., [0, 10] \cup [20, 30]).
 - No possible value of the variable has positive probability, that is, P(X = c) = 0 for any possible value c.

Probability distribution for Discrete RV (1)

- The probability distribution of X says how the total probability of 1 is distributed among (allocated to) the various possible X values. P(X = c) is denoted as p(x).
- probability distribution or probability mass function (pmf) of a discrete RV is defined for every number x by $p(x) = P(X = x) = P(\forall s \in S : X(s) = x)$.
- Properties: $p(x) \ge 0, \forall x \text{ and } \sum xp(x) = 1$
- **Probability histogram**: For each y with p(y), construct a rectangle centered at y. The height of each rectangle is proportional to p(y), and the base is the same for all rectangles.
- p(x) gives a model for the distribution of population values, where population consists of the values of RV X
- Having a population model, use it to compute values of population characteristics (e.g., the mean μ) and make inferences about such characteristics.

Probability distribution for Discrete RV (2)

Example: Consider 5 Blood donors : a, b, c, d, e. a and b have O+. Five blood samples, one from each individual, will be typed in random order until an O+ individual is identified. Let RV, X is the number of typings necessary to identify an O+ individual. Then the pmf of X

$$p(1) = P(X = 1) = \frac{2}{5} = 0.4$$

$$p(2) = P(X = 2) = P(c \lor d \lor e \text{ first}) . P(a \lor b \text{ next } | c \lor d \lor e \text{ first})$$

$$= \frac{3}{5} . \frac{2}{4} = .3$$

$$p(3) = P(X = 3) = P(c, d \lor e \text{ first and second, then } a \lor b) = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{2}{3} = .2$$

 $p(4) = P(X = 4) = P(c, d, \land e \text{ first}) = \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} = .1$

pmf is

$$x = 1$$
 2 3 4 $p(x) = 0.4$ 0.3 0.2 0.1

Probability density function for continuous r.v

- Probability Density function, PDF, of a continuous r. v is the function $f_X(x)$ that satisfies $F_X(x) = \int_{-\infty}^{x} f_X(t) dt, \forall x$
- Properties: $f_X(x) \geq 0, \forall x \text{ and } \int\limits_{-\infty}^{\infty} f_X(x) dx = 1$

Cumulative distribution function (cdf) (1)

- The cumulative distribution function (cdf) F(x) of a discrete random variable X with pmf p(x) is defined for every number x by $F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$.
- For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat between possible values. Such a graph is called a *step function*.
- For any integer a, b such that $a \le b$, $P(a \le X \le b) = F(b) F(a^-)$, i.e $P(a \le X \le b) = P(X = a \lor a + 1 \lor \cdots \lor b) = F(b) F(a 1)$
- Example: the probability distribution of r.v $y = \{1, 2, 4, 8, 16\}$ is given as $p(y) = \{.05, .10, .35, .40, .10\}$, then $F(y) = \{.5, .5 + .10 = .15, .15 + .35 = .50, .50 + .40 = .90, .90 + .10 = 1\}$

$$F(y) = \begin{cases} 0, & \text{if } y < 1\\ 0.05, & \text{if } 1 \le y < 2\\ 0.10, & \text{if } 2 \le y < 4\\ 0.50, & \text{if } 4 \le y < 8\\ 0.90, & \text{if } 8 \le y < 16\\ 1, & \text{if } 16 \le y \end{cases} \tag{1}$$

Cumulative distributions function (cdf) (2)

Computing $P(a \le X \le b)$ from cumulative probabilities

Expected value of X and function h(X)

- Let X be a discrete rv with set of possible values D and pmf p(x). The expected value or mean value of X, i.e, $E(X) = \mu_X = \mu = \sum_{x \in D} x \cdot p(x)$
- μ can be interpreted as the long-run average observed value of X when the experiment is performed repeatedly.
- The E(X) describes where the probability distribution is centered.
- If the rv X has a set of possible values D and pmf p(x), then the expected value of any function h(X), denoted by $E[h(X)] = \sum_{x \in D} h(x).p(x)$
- E(aX + b) = a.E(X) + b when h(X) is of the form aX + b
- Expectation: $E[x] = \int_{-\infty}^{\infty} x f_X(x) dx$, for probability density function, pdf.

Variance of RV X

- Used to capture the spread or variability in the distribution of *X*.
- Let X have pmf p(x) and expected value μ . Then the variance of X, $V(X) = \sigma_X^2 = \sigma^2 = \sum_D (x \mu)^2 . p(x) = E[(X \mu)^2] = E[X^2] E[X]^2$
- Standard deviation of X is $\sigma_X = \sqrt{\sigma_X^2}$
- σ can be interpreted as the size of a representative deviation from the mean value μ . Example: $\sigma=10$ means typical deviation from the mean will be something on the order of 10.
- $V(aX + b) = \sigma_{aX+b}^2 = a^2 \cdot \sigma_X^2$ and $SD(X) = \sigma_{aX+b} = |a| \cdot \sigma_X$
- \bullet Different probability distribution with same $\mu=$ 4 but different spread.

Covariance and Correlation

- The **covariance** of two random variables X and Y is Cov(X,Y) = E[(X E[X])(Y E[Y])]
- Covariance is a measure of how much two random variables changes together
- **Correlation** of two random variables X and Y is $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X).Var(Y)}}$, thus, ρ lies in [-1,1]
- Correlation is normalized Covariance.

Joint and Marginal Distribution

 Joint Distribution: To capture the properties of two random variables use Joint PMF

$$f_{X,Y} = \mathbb{R}^2 \rightarrow [0,1]$$

defined by

$$f_{X,Y}(x,y) = P(X = x, Y = y)$$

, where
$$\sum\limits_{X}\sum\limits_{Y}f_{X,Y}(x,y)=1$$

• Marginal Distribution: Given Joint PMF $f_{X,Y}(x,y) = P(X=x,Y=y)$, we can obtain the PMF of two random variables:

$$f_X = \sum_y f_{X,Y}(x,y)$$
, marginal PMF of X

$$f_Y = \sum_x f_{X,Y}(x,y)$$
, marginal PMF of Y

• For **continuous** random variable \sum is replaced by \int

Conditional Distribution

Conditional distribution

$$f_{X|Y} = P(X = x|Y = y)$$

is defined using conditional probability

$$f_{X|Y} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Parameter of Probability distribution : Bernoulli Distribution

• pmf of Bernoulli RV: $p(1) = \alpha$, $p(0) = 1 - \alpha$. pmf is

$$p(x,\alpha) = \begin{cases} 1 - \alpha, & \text{if } x = 0. \\ \alpha, & \text{if } x = 1. \\ 0, & \text{otherwise} \end{cases}$$
 (2)

- Each choice of **parameter** α gives different pmf. Collection of all probability distributions for different values of the parameter is called a **family of probability distributions**.
- Expectation E[X] = p and Var[x] = p(1 p)

Binomial Distribution (1)

- Binomial experiment: An experiment which satisfies the following:
 - The experiment consists of a sequence of *n* smaller experiments, **trials**, where *n* is fixed in advance of the experiment.
 - Each trial can result in one of the same two possible outcomes (dichotomous trials), denote by success (S) and failure (F).
 - The trials are independent, so that the outcome on any particular trial does not influence the outcome on any other trial.
 - The probability of success P(S) is constant from trial to trial; we denote this probability by p.
- The binomial random variable X associated with a binomial experiment consisting of n trials is defined as X = the number of Ss among the n trials.

Binomial Probability Distribution (2)

• pmf of binomial RV X is $b(x; n, p) = \{\text{number of sequences of length } n \text{ consisting of } x \text{ Success}\}$. $\{\text{probability of any particular such sequence}\}$, i.e.,

$$b(x; n, p) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, 2, \dots n. \\ 0, & \text{otherwise} \end{cases}$$
(3)

- First factor is the number of ways of choosing x of the n trials to be Successes, i.e, number of combinations of size x that can be constructed from n distinct trials.
- $p^{\times}(1-p)^{n-\times}$ is probability of x successes . probability of n-x failures.

Binomial Table

Table A.1 Cumulative Binomial Probabilities

a. n = 5

$$B(x; n, p) = \sum_{y=0}^{x} b(y; n, p)$$

		p														
		0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
	0	.951	.774	.590	.328	.237	.168	.078	.031	.010	.002	.001	.000	.000	.000	.000
	1	.999	.977	.919	.737	.633	.528	.337	.188	.087	.031	.016	.007	.000	.000	.000
x	2	1.000	.999	.991	.942	.896	.837	.683	.500	.317	.163	.104	.058	.009	.001	.000
	3	1.000	1.000	1.000	.993	.984	.969	.913	.812	.663	.472	.367	.263	.081	.023	.001
	4	1.000	1.000	1.000	1.000	.999	.998	.990	.969	.922	.832	.763	.672	.410	.226	.049

b. n = 10

		p													
	0.01	0.05	0.10	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.90	0.95	0.99
0	.904	.599	.349	.107	.056	.028	.006	.001	.000	.000	.000	.000	.000	.000	.000
1	.996	.914	.736	.376	.244	.149	.046	.011	.002	.000	.000	.000	.000	.000	.000
2	1.000	.988	.930	.678	.526	.383	.167	.055	.012	.002	.000	.000	.000	.000	.000
3	1.000	.999	.987	.879	.776	.650	.382	.172	.055	.011	.004	.001	.000	.000	.000
4	1.000	1.000	.998	.967	.922	.850	.633	.377	.166	.047	.020	.006	.000	.000	.000
5	1.000	1.000	1.000	.994	.980	.953	.834	.623	.367	.150	.078	.033	.002	.000	.000
6	1.000	1.000	1.000	.999	.996	.989	.945	.828	.618	.350	.224	.121	.013	.001	.000

Using Binomial Table

- **Binomial table**: computes binomial probabilities from Binomial table that tabulates cdf $F(X) = P(X \le x)$ for different n and p values.
- For $X \sim Bin(n, p)$ the cdf is $P(X \le x) = B(x; n, p) = \sum_{y=0}^{x} b(y; n, p), x = 0, 1, \dots n$
- **Example :**If 20% of all binding of new book fails binding strength test. Let there by 10 randomly selected books, what is the probability that atmost 5 fail the test?
- X has binomial distribution (Success/ Failure) with n = 10, p = 0.2.
- From binomial table see x = 5, p = 0.2 column of n = 10 table. B(5, 10, .2) = .994
- What is the probability that at least 5 fail the test? $1 P(X \le 4) = ?$
- What is the probability that between 3 and 5 inclusive fails ? $P(X \le 5) P(X \le 3) = ?$

Mean and Variance of Binomial variable X

- if n = 1 Binomial distribution becomes Bernoulli distribution.
- Expected value of Bernoulli RV $E(X)=0.P(X=0)+1.P(X=1)=0.(1-p)+1.p=p=\mu \text{ ,as Bernoulli RV}.$
- $V(X) = E[X^2] E[X]^2 = p p^2 = p(1-p)$
- If $X \sim Bin(n, p)$, $E[X] = \sum_{i=1}^{n} E[X_i] = np$
- If $X \sim Bin(n, p)$, $V[X] = \sum_{i=1}^{n} E[X_i] = n \cdot p(1-p)$

◆ロト ◆団 ト ◆ 圭 ト ◆ 圭 ・ りへで

Geometric Distribution

- Suppose we perform a series of independent Bernoulli trials, each with a probability p of success.
- Let X is number of trials before first success, then
- $P(X = x|p) = (1-p)^{x-1}p$, for $x = 1, 2, \cdots$
- E[x] = 1/p, and $Var[x] = (1-p)/p^2$
- **Example 1**: Suppose you are playing a game of darts. The probability of success is 0.4. What is the probability that you will hit the bullseye on the third try?
- Compute $P[X = 3] = (1 0.4)^2 \cdot 0.4 = 0.144$
- Example 2: If a patient is waiting for a suitable blood donor and the probability that the selected donor will be a match is 0.2, then find the expected number of donors who will be tested till a match is found including the matched donor.
- E(x) = 1/0.2 = 5

Uniform Distribution

- A continuous random variable X is said to be uniformly distributed on an interval [a,b], if its pdf is given as $f_X(x|a,b) = \frac{1}{b-a}$, if $x \in [a,b]$, otherwise, 0.
- E(X) = (a+b)/2
- $Var(X) = (b-a)^2/12$

Normal Distribution

 A continuous ry X is said to have a normal distribution with parameters μ and σ (or μ and σ^2), where $-\infty < \mu < \infty$ and $0 < \sigma$, if the PDF of X is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \tag{4}$$

Statistic

- A statistic is any quantity whose value can be calculated from sample data; mean, standard deviation
- A statistic is a random variable X, x represents an observed/computed value of X; Mean: \bar{X} , S
- The probability distribution of a statistic is referred to as its sampling distribution to emphasize that it describes how the statistic varies in value across all samples that might be selected.
- The random variables $X_1, X_2, \cdots X_n$ are said to form a (simple) random sample of size n (**independent and identically distributed** (iid)) if
 - The X_i 's are independent rv's.
 - Every X_i has the same probability distribution.
- Computer simulation is used to obtain information about a statistic's sampling distribution

Simulation of statistic's sampling distribution (1/2)

The **population distribution** for simulation study is **normal** with $\mu=8.25$ and $\sigma=.75$. For n=5,10,20,30, ie. 4 observations were made generating 500 samples for each n. Sample mean \bar{x} is computed for each sample of n.the results are plotted as histogram.

Simulation of statistic's sampling distribution (2/2)

For n = 5, 10, 20, 30, ie. 4 observations were made generating 500 samples for each n. Sample mean \(\bar{x}\) is computed for each sample of n.

Figure 5.11 Sample histograms for \overline{x} based on 500 samples, each consisting of n observations: (a) n = 5; (b) n = 10; (c) n = 20; (d) n = 30

Distribution of Sample Mean \bar{X}

Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean value μ and standard deviation σ . Then

- $E(\bar{X}) = \mu_{\bar{X}} = \mu$
- $V(\bar{X}) = \sigma_{\bar{X}}^2 = \sigma^2/n$ and $\sigma_{\bar{X}} = \sigma/\sqrt{n}$
- In addition, with $T_0 = X_1 + \cdots + X_n$ (the sample total), $E(T_o) = n\mu$, $V(T_o) = n\sigma^2$, and $\sigma_{T_o} = \sqrt{n}\sigma$

Let X_1, X_2, \cdots, X_n be a random sample from a normal distribution with mean μ and standard deviation σ . Then for any n, X is normally distributed (with mean μ and standard deviation σ/\sqrt{n}), as is T_o (with mean $n\mu$ and standard deviation $\sqrt{n}\sigma$).

Central Limit Theorem (CLT)

- Let X_1, X_2, \cdots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then if n is sufficiently large, \bar{X} has approximately a normal distribution with $\mu_{\bar{X}} = \mu$ and $\sigma^2_{\bar{X}} = \sigma^2/n$, and T_o also has approximately a normal distribution with $\mu_{T_o} = n\mu$, $\sigma^2_{T_o} = n\sigma^2$. The larger the value of n, the better the approximation.
- ullet When X_i 's are normally distributed, so is $ar{X}$ for every sample size n

For large n a suitable normal curve will approximate the actual distri
 X distribution for

