Integrated Circuit Design

Homework #4 Logic Synthesis with Design Compiler

Due: 2018/05/23 13:00

1. 問題描述

接續作業三之問題,利用 Design Compiler 將上次作業 Register Transfer Level 的程式碼轉成 Gate Level 的檔案。

2. Design Compiler 簡介

在積體電路設計中,邏輯合成(logic synthesis)是將 RTL 之數位電路描述,經過布林函數化簡、優化後,轉換到 Gate Level 電路 Netlist 的過程。

3. 相關檔案介紹

(1) .synopsys_dc.setup

開啟 Design Compiler 時,會自動讀取同個路徑底下的隱藏檔.synopsys_dc.setup,該檔案內部定義了執行 Design Compiler 時所需 library 的路徑與名稱,執行 Design Compiler 前請用 ls -a 指令確認此檔案有在當前目錄底下。

下圖為檔案內最核心的部分,這些 library 包含對應合成前後的元件、時間資訊(Setup time...)與元件的功能(邏輯上的 AND, OR, NOT...等運算)。

(2) tsmc13 neg.v

這個檔案是 TSMC 130 奈米製程的 cell library,裡面描述了各種標準元件(standard cell)的電路特性,當完成電路的邏輯合成後,須將此檔案與合成後的 Gate level 檔案一起進行 post-synthesis 的模擬。

```
module BUFX3 (Y, A);
output Y;
input A;

buf IO(Y, A);
specify
   // delay parameters
   specparam
      tplh$A$Y = 1.0;
      // path delays
      (A *> Y) = (tplh$A$Y, tphl$A$Y);
endspecify
endmodule // BUFX3
```

(3) IG.sdc

Sdc 檔(standard design constraints file)內規範了 Design Compiler 合成電路時必須遵守的時間資訊,也就是 Design Compiler 在做電路優化時必須達到的目標。Constraints 可以簡單分為兩類,分別是 Optimization Constraints 以及 Design Rule Constraints。

A. Optimization Constraints

- (A) create_clock: 表示合成出之電路的時脈週期,單位為 ns。
- (B) set_dont_touch_network [get_clocks clk]:表示在進行邏輯合成時,暫時不考慮 clock 線路上的 fanout 是否過載,也不對 clock 線路插入推動 buffer。
- (C) set fix hold: 修正 hold time violation
- (D) set_ideal_network: 暫時將 clock 線路設定為理想電路(無負載、無延遲)
- (E) set_clock_uncertainty: 設定 clock skew
- (F) set_clock_latency: 線路造成之 clock delay
- (G) set_input_transition, set_clock_transition: 電壓從 0 到 1 以及從 1 到 0 所需時間(精確來說是超過 50%線所需充放電時間)
- (H) set_input_delay, set_output_delay: 整個電路的輸入輸出端需保留的延遲時間,讓前一級或後一級的電路留有運算時間。

B. Design Rule Constraints

```
# 6 environment settings
set_operating_conditions -min fast -max slow
set_load 4 [all_outputs]
set_wire_load_model -name tsmc13_wl10 -library slow
```

- (A) set_operating_condition: 在使用晶片時,需考慮 process, voltage, temperature(PVT)的變化。
- (B) set_load: 電路輸出端負載不會是 0,因此要預先設定。
- (C) set_wire_load_model: 設定連接各個元件的線所需面積以及時間。

4. 操作流程

- (1) 將 hw4.zip 解壓縮到 hw4 資料夾
- (2) 將 hw3 的 IG.v、testfixture.v、dat 資料夾複製到 hw4 資料夾底下
- (3) 將 synopsys_dc.setup 檔重新命名為.synopsys_dc.setup ※若有需要可以自行修改檔案內的 library 路徑

※注意檔名第一個字元必須有「.」

- mv synopsys_dc.setup .synopsys_dc.setup
- (4) source /usr/cad/synopsys/CIC/synthesis.cshrc
- (5) 開啟 design compiler
 - GUI 版: dv &
 - 無 GUI 版: dc shell
- (6) 讀取作業三所寫之 RTL 電路
 - read_file -format verilog "./IG.v"

注意: 合成結果不能有 latch, 若有 latch 須重新修改 Hw3 的 RTL code

Register Name	Type	Width	Bus	MB	AR	AS	SF	₹ 5	S	ST	Ī
y jump flag reg	Flip-flop	8	ΙΥ	N	N	N	N	1 1		N	ī
read state reg	Flip-flop	2	İΥ	N	N	N	N	ĺ		N	Ĺ
grad do r reg	Flip-flop	20	Y	N	N	N	N	1		N	
done_r_reg	Flip-flop	1	N	N	N	N	N	1		N	
grad_addr_r_reg	Flip-flop	16	Y	N	N	N	N	1		N	
write_buf_reg	Flip-flop	10	Y	N	N	N	N	1		N	
write_buf_reg	Flip-flop	10	Y	N	N	N	N	1		N	
grad_wr_r_reg	Flip-flop	1	N	N	N	N	N	1		N	
img_rd_r_reg	Flip-flop	1	N	N	N	N	N	1		N	
img_addr_r_reg	Flip-flop	16	Y	N	N	N	N	1		N	
read_buf_reg	Flip-flop	8	Y	N	N	N	N	1		N	
read_buf_reg	Flip-flop	8	Y	N	N	N	N	1		N	
read_buf_reg	Flip-flop	8	Y	N	N	N	N	1		N	
state_reg	Flip-flop	2	Y	N	Y	N	N	1		N	
state_reg	Flip-flop	1	N	N	N	Y	N	1		N	
x_jump_flag_reg	Flip-flop	8	Y	N	N	N	N	1		N	
addr_count_reg	Flip-flop	16	Y	N	N	N	N	1		N	

上圖中, type 需皆為 Flip-flop, 請在報告中附上截圖。

- (7) 讀取 standard design constraints file
 - source -echo -verbose ./IG.sdc
- (8) 執行以下三行指令以修正合成時可能遇到的問題
 - set high fanout net threshold 0
 - uniquify
 - set_fix_multiple_port_nets -all -buffer_constants [get_designs *]
- (9) 開始合成 gate level 電路
 - compile
- (10) 檢查 critical path 所需時間是否小於 cycle time(slack>=0), 若 critical path 大於 cycle time(slack<0),則代表 design compiler 無法將你的電路用這個 cycle time 合成,請去修改 IG.sdc 中「set cycle」後的數字或是修改 RTL code,並重新執行步驟(4)~(9)。
 - report_timing

- (11) 執行以下指令以修正輸出檔案時可能發生之錯誤
 - remove_unconnected_ports -blast_buses [get_cells -hierarchical *]
 - set bus_inference_style {%s[%d]}
 - set bus_naming_style {%s[%d]}
 - set hdlout_internal_busses true
 - change_names -hierarchy -rule verilog
 - define_name_rule allowed {a-z A-Z 0-9 _} -max_length 255 -type cell
 - define_name_rule allowed {a-z A-Z 0-9 _[]} -max_length 255 -type
 net
 - define_name_rules name_rule -map {{"*cell*" "cell"}}
 - define_name_rules name_rule -case_insensitive
 - change_names -hierarchy -rules name_rule
- (12) report_area
- (13) report_power
- (14) 輸出 gate level 之 verilog code
 - write -format verilog -hierarchy -output "IG_syn.v"
- (15) 輸出電路延遲資訊檔(standard delay format)
 - write_sdf -version 1.0 -context verilog -load_delay net IG_syn.sdf
- (16) quit,離開 design compiler
- (17) 修改 testfixture.v 中第二行`define SDFFILE 後的路徑,改成"IG_syn.sdf"。
- (18) 修改 testfixture.v 中第三行`define cycle 後的數字,改成 sdc file 中設定的 cycle time, sdc 中的 cycle time 必須和 testbench 一樣才是有效的模擬。
- (19) 用 ncverilog 對 design compiler 輸出之 SET_syn.v 進行 gate level 模擬 Gate-level 模擬指令如下:
 - neverilog testfixture.v -v tsmc13_neg.v IG_syn.v +access+r +define+SDF

5. 檔案說明

檔名	說明
IG.sdc	除了 cycle time 以外,其他參數請勿修改。
synopsys_dc.setup	Design compiler 環境設定,上傳至工作站後請記
	得修改檔名為 .synopsys_dc.setup
tsmc13_neg.v	模擬用之 Cell library

表三、檔案說明

6. 模擬結果

如果模擬有錯誤, testbench 會顯示期望的結果跟實際的結果:

```
Gradient y of pixel
Gradient x of pixel
Gradient y of pixel
Gradient x of pixel
Gradient x of pixel
                                                 0 is wrong! Your gradient y is 001,
1 is wrong! Your gradient x is 000,
1 is wrong! Your gradient y is 000,
2 is wrong! Your gradient x is 002,
3 is wrong! Your gradient x is 3fe,
4 is wrong! Your gradient x is 3fd.
                                                                                                             but expected gradient y is
                                                                                                             but expected gradient x is 3ff
but expected gradient x is 3ff
but expected gradient x is 000
but expected gradient x is 000
but expected gradient x is 002
Gradient x of pixel
Gradient x of pixel
                                                                                                             but expected gradient x
but expected gradient x
                                                  4 is wrong! Your gradient x is 3fd,
                                                     is wrong! Your gradient x is 001,
Gradient y of pixel
Gradient x of pixel
Gradient y of pixel
Gradient x of pixel
                                                    is wrong! Your gradient y is 001, is wrong! Your gradient x is 3fd, is wrong! Your gradient y is 000, is wrong! Your gradient x is 004,
                                                                                                             but expected gradient y but expected gradient x
                                                                                                                                                          001
                                                                                                             but expected gradient
Gradient of Pixel: 0 ~
                                              1999 are wrong ! The wrong pixel reached a total of
                                                                                                                                          3294 or more
Gradient of Pixel: 0 ~
                                              2999 are wrong ! The wrong pixel reached a total of
                                                                                                                                          5016 or more !
Gradient of Pixel: 0 ~
                                              3999 are wrong ! The wrong pixel reached a total of
                                                                                                                                          6748 or more !
Gradient of Pixel: 0 ~
                                              4999 are wrong ! The wrong pixel reached a total of
                                                                                                                                          8451 or more
Gradient of Pixel: 0 ~
                                              5999 are wrong ! The wrong pixel reached a total of
                                                                                                                                        10192 or more !
         FAIL! There are
                                                   117677 errors at functional simulation !
           ----- The test result is ..... FAIL -----
```

如果模擬無法在規定 cycle 數完成,會顯示以下結果:

```
Error!!! Running out of time!

There is something wrong with your code!

-----The test result is .....FAIL -------

Simulation complete via $finish(1) at time 100 MS + 0
```

如果模擬結果正確, testbench 會顯示以下結果:

7. 作業評分

本次作業滿分標準為:

- (1) 合成結果不能有 latch
- (2) 通過 Gate-level 模擬,並同時符合以下條件
 - 面積小於 20000 um²
 - cycle time 小於 10 ns

若你 Hw3 的 RTL code 無法修改到符合上述條件,可以寄信給助教,助教會給你另外一份可以合成的 RTL 檔案,完成電路合成後,可以拿到 60 分。

Report 內需要包含下列項目:

- (1) 證明電路中沒有 Latch 的截圖
- (2) report_timing 的截圖
- (3) report_area 的截圖
- (4) report_power 的截圖
- (5) Gate level 模擬通過截圖

所需繳交的檔案為:

Type	File Name	Description				
RTL-level	IG.v	合成所使用的 RTL Verilog Code				
Gate-level	IG _syn.v	Gate-level netlist				
	IG _syn.sdf	Standard Delay format file				
Report	ICD_HW4_StudentID.pdf	內需包含 Gate level 模擬結果的截圖、				
		合成沒有 latch 的截圖、design complier				
		所生成 的 timing/area/power report				

請將以上檔案壓縮成 YourID#_HW4_v*.tar.gz 並使用 FTP 繳交

[FTP info]

IP: 140.112.48.159 port: 56666

User name: icd2018 Password: ntueeicd

[助教範例]

(1) report_timing

Des/Clust/Port Wire Load Mode	el Library	
70 +10 -110	-1	
IG tsmc13_wl10	slow	
Point	Incr	Path
7 1 71 / 1 1 1		
clock clk (rise edge)	0.00	0.00
clock network delay (ideal)	0.50	0.50
img_addr_reg_1_/CK (DFFRX2)	0.00	0.50 r
img_addr_reg_1_/Q (DFFRX2)	0.43	0.93 f
sub_70/A[1] (IG_DW01_dec_0)	0.00	0.93 f
sub_70/U10/Y (0R2X2)	0.22	1.15 f
sub_70/U13/Y (0R2X4)	0.15	1.30 f
sub_70/U24/Y (OR2X1)	0.25	1.54 f
sub_70/U3/Y (0R2X1)	0.28	1.82 f
sub_70/U16/Y (OR2XL)	0.32	2.14 f
sub_70/U4/Y (OR2XL)	0.34	2.48 f
sub 70/U5/Y (OR2XL)	0.34	2.82 f
sub_70/U2/Y (OR2X1)	0.31	3.13 f
sub 70/U19/Y (NOR2X1)	0.34	3.47 r
sub_70/U15/Y (NAND2X1)	0.22	3.69 f
sub 70/U8/Y (OR2XL)	0.34	4.03 f
sub_70/U1/Y (NOR2X1)	0.36	4.40 r
sub_70/U14/Y (NAND2X1)	0.23	4.63 f
sub_70/U26/Y (NOR2BX1)	0.17	4.80 r
sub_70/U17/Y (XOR2XL)	0.27	5.07 r
sub_70/SUM[15] (IG_DW01_dec_0)	0.00	5.07 r
U296/Y (A022XL)	0.23	5.29 r
grad_addr_reg_15_/D (DFFRX2)	0.00	5.29 r
data amainal tima		5.29
	clock time	
clock clk (rise edge)	5.00	5.00
clock network delay (ideal)	0.50	5.50
clock uncertainty	-0.10	5.40
<pre>grad_addr_reg_15_/CK (DFFRX2)</pre>	0.00	5.40 r
library setup time	-0.10	5.30
data required time		5.30
data required time		5.30
	必須 >=0	-5.29
data allivat time Slack	少/只 /-∪	3.23
slack (MET)		0.00

(2) report_area

```
*************
Report : area
Design : IG
Version: G-2012.06
Date : Tue May 1 03:15:03 2018
Library(s) Used:
     typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db/typical.db)
Number of ports:
Number of nets:
Number of cells:
Number of combinational cells:
Number of sequential cells:
Number of macros:
Number of buf/inv:
Number of references:
                                                      95
                                                     398
                                                     323
254
                                                      67
0
                                                     115
                                                      33
Combinational area: 4201.064915
Noncombinational area: 2298.279560
Net Interconnect area:
                                43633.552185
                                                  Gate level 電路面積
                                6499.344475
Total cell area:
                                 50132.896660
Total area:
```

(3) report_power

Design	Wire Load Model	Library						
IG	tsmc13_	wl10 slow						
Power-specific	ing Voltage = 1.0 unit information							
Voltage Units = 1V Capacitance Units = 1.000000pf								
Time Units = 1ns Dynamic Power Units = 1mW (derived from V,C,T units) Leakage Power Units = 1pW								
Cell Internal Power = 443.2127 uW (20%) Net Switching Power = 1.7979 mW (80%)								
Total Dynamic Power = 2.2411 mW (100%)								
Cell Leakage Power = 1.3611 uW								
	Internal	Switching	Leakage	Total				
Power Group	Power	Power	Power	Power	(%)	Attrs	
io_pad	0.0000	0.0000	0.0000	0.0000	(0.00%)		
memory	0.0000	0.0000	0.0000	0.0000	(0.00%)		
black_box	0.0000	0.0000	0.0000	0.0000	(0.00%)		
clock_network	0.0000	0.0000	0.0000	0.0000	(0.00%)		
register sequential	0.3906	4.4794e-02	5.7142e+05	0.4359	(19.44%)		
combinational	0.0000 5.2633e-02	0.0000 1.7531	0.0000 7.8967e+05	0.0000 1.8065	(0.00%) 80.56%)		
Total	0.4432 mW	1.7979 mW	1.3611e+06 pW	2.2425	mW			

(4) Gate level 模擬通過

電路 cycle time 為 5ns,總模擬時間約為 655400 ns,完成電路運算共需 131080 cycles