PENGUJIAN VEKTOR NILAI TENGAH DUA POPULASI

1. Uji Hipotesis

a. Sampel Berpasangan

$$H_0: \boldsymbol{d} = \underline{\boldsymbol{\mu}}_1 - \underline{\boldsymbol{\mu}}_2 = \mathbf{0}$$

$$H_1: \boldsymbol{d} = \underline{\boldsymbol{\mu}}_1 - \underline{\boldsymbol{\mu}}_2 \neq \mathbf{0}$$

• Statistik Uji :

$$T^2 = n\overline{\boldsymbol{d}}'\boldsymbol{S}^{-1}\overline{\boldsymbol{d}}$$

- Tolak H₀ jika $T^2>c^2=\frac{(n-1)p}{(n-p)}F_{(p,n-p)}(\alpha)$ dengan n adalah banyaknya sampel dan p adalah banyaknya peubah
- b. Sampel Saling Bebas dengan $\Sigma_1 = \Sigma_2$

$$H_0 = \underline{\mu}_1 = \underline{\mu}_2$$
$$H_1 = \underline{\mu}_1 \neq \underline{\mu}_2$$

• Statistik Uji:

$$T^{2} = (\overline{\underline{x}}_{1} - \overline{\underline{x}}_{2})' \left[(\frac{1}{n_{1}} + \frac{1}{n_{2}}) S_{gab} \right]^{-1} (\overline{\underline{x}}_{1} - \overline{\underline{x}}_{2})$$

Dengan

$$\boldsymbol{S}_{gab} = \frac{(n_1 - 1)\boldsymbol{S}_1 + (n_2 - 1)\boldsymbol{S}_2}{n_1 + n_2 - 2}$$

- Tolak H₀ jika $T^2 > c^2 = \frac{(n_1 + n_2 2)p}{n_1 + n_2 p 1} F_{(p, n_1 + n_2 p 1)}(\alpha)$ dengan n adalah banyaknya sampel dan p adalah banyaknya peubah (variable)
- c. Sampel Saling Bebas dengan $\Sigma_1 \neq \Sigma_2$

$$H_0 = \underline{\mu}_1 = \underline{\mu}_2$$
$$H_1 = \underline{\mu}_1 \neq \underline{\mu}_2$$

• Statistik Uji:

$$T^2 = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)' \left(\frac{s_1}{n_1} + \frac{s_2}{n_2}\right)^{-1} (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

• Tolak H_0 jika $T^2 > \chi^2_{\alpha,p}$

(LATIHAN)

1. Seorang guru memberikan tugas kepada 15 orang siswanya untuk menulis dua jenis essay, yaitu essay yang bersifal formal dan yang bersifat informal. Penilaian baik buruknya essay dilihat dari dua aspek, yaitu banyaknya kata dan banyaknya kata kerja yang termuat di dalam essay. Semakin banyak kata dan kata kerja yang termuat di essay, maka semakin bagus penilaiannya. Berikut adalah data hasil penulisan essay yang telah dibuat oleh 15 siswa tersebut.

	Essay Informal		Essay Formal		
Siswa	Kata	Kata Kerja	Kata	Kata Kerja	
1	148	20	137	15	
2	159	24	164	25	
3	144	19	224	27	
4	103	18	208	33	
5	121	17	178	24	
6	89	11	128	20	
7	119	17	154	18	
8	123	13	158	16	
9	76	16	102	21	
10	217	29	214	25	
11	148	22	209	24	
12	151	21	151	16	
13	83	7	123	13	
14	135	20	161	22	
15	178	15	175	23	

Ujilah apakah terdapat perbedaan kata dan kata kerja antara essay formal dengan essay informal. Uji dengan alpha 5%.

2. Kekuatan baju ditentukan oleh kekuatan kain (*X*₁) dan kekuatan jahitan (*X*₂). Ada dua pabrik pembuatan baju. Katakan Pabrik A dan Pabrik B. Kita ambil baju dari pabrik A sebanyak 10 potong dan pabrik B sebanyak 10 potong . Hipotesis nol rata-rata kekuatan baju dari kedua pabrik itu sama. Ujilah apakah pernyataan tersebut benar?. Gunakan alpha 5%.

Data hasil rata-rata adalah sebagai berikut:

$$X'_A = (9.230 \quad 2.060)$$

 $X'_B = (10.170 \quad 2.870)$

Dengan matriks ragam peragam sebagai berikut:

$$S = \begin{bmatrix} 0.256 & 0.232 \\ 0.232 & 0.259 \end{bmatrix}$$

Jawab:

Hipotesis:

$$H_0$$
: $\mu_A = \mu_B$

$$H_0: \mu_A \neq \mu_B$$

Statistik Uji:

$$T^{2} = (\bar{X}_{A} - \bar{X}_{B})' \left(\left(\frac{1}{n_{A}} + \frac{1}{n_{B}} \right) S \right)^{-1} (\bar{X}_{A} - \bar{X}_{B})$$

$$T^{2}$$

$$= \left(\begin{bmatrix} 9.230 \\ 2.060 \end{bmatrix} - \begin{bmatrix} 10.170 \\ 2.970 \end{bmatrix} \right)' \left(\frac{1}{10} + \frac{1}{10} \begin{bmatrix} 0.256 & 0.232 \\ 0.232 & 0.259 \end{bmatrix} \right)' \left(\begin{bmatrix} 9.230 \\ 2060 \end{bmatrix} - \begin{bmatrix} 10.170 \\ 2.870 \end{bmatrix} \right)$$

$$T^{2} = \left(\begin{bmatrix} -0.94 \\ -0.91 \end{bmatrix} \right)' \left(\begin{bmatrix} 0.0512 & 0.0464 \\ 0.0464 & 0.0518 \end{bmatrix} \right)' \left(\begin{bmatrix} -0.94 \\ -0.91 \end{bmatrix} \right)$$

$$T^{2} = ([-0.94 & -0.81]) \left(\begin{bmatrix} 103.766 & -92.487 \\ -92.9487 & 102.5641 \end{bmatrix} \right) \left(\begin{bmatrix} -0.94 \\ -0.81 \end{bmatrix} \right)$$

$$T^{2} = 17.44$$

Nilai titik kritis:

$$C^{2} = \frac{(n1 + n2 - 2)p}{(n1 + n2 - p - 1)} F_{p,n1+n2-p-1}(\alpha)$$

$$C^{2} = \frac{(10 + 10 - 2)2}{(10 + 10 - 2 - 1)} F_{2,17(0.05)} = \frac{36}{17} 3.5915 = 7.6055$$

Kesimpulan: $T^2 > C^2$ sehingga tolak H_0 artinya belum cukup bukti untuk menyatakan bahwa rata-rata kekuatan baju dari pabrik A sama dengan pabrik B.

3. Diketahui terdapat dua kelas dari sebuah sekolah. Jumlah siswa kelas A sebanyak 10 siswa dan kelas B sebanyak 15 siswa. Masing-masing kelas akan diukur tinggi badan, berat badan, dan suhu badan. Diasumsikan ragam kedua kelas tersebut homogen. Ujilah apakah tinggi badan, berat badan, dan suhu badan kedua kelas tersebut sama pada taraf nyata 5%.

Populasi I				Popul	asi II		
No.	ТВ	ВВ	Suhu badan	No.	ТВ	ВВ	Suhu
1	155	57	36	1	171	80	36.4
2	145	40	36.5	2	174	81	36.9
3	147	40	36.3	3	173	81	37
4	150	44	37	4	169	75	37.3
5	148	50	36.9	5	168	76	36.6
6	140	49	36.7	6	165	74	36.8
7	151	52	37.1	7	175	85	36.2
8	160	60	37.2	8	180	84	37
9	162	61	36.1	9	181	83	37.1
10	153	55	36.8	10	179	85	37.4
				11	169	75	36.7
				12	168	74	36.5
				13	167	71	36.8
				14	170	70	36
				15	176	73	36.5

4. Di Indonesia sejak tahun 2013 diberlakukan proses seleksi Calon Pegawai Negeri Sipil (CPNS) menggunakan sistem Computer Assited Test (CAT). Namun, pada tahun 2013, belum seluruh instansi penerima CPNS menggunakan sistem ini. Materi soal yang diujikan pada tes tahap pertama (Tes Kompetensi Dasar/TKD) terdiri dari tiga bagian, yaitu Tes Wawasan Kebangsaan (TWK), Tes Intelegensi Umum (TIU) dan Tes Karakteristik Pribadi (TKP). Dari ketiga bagian soal tersebut, yang membutuhkan kemampuan kognitif yang jawabannya mutlak benar atau salah adalah TWK dan TIU, sedangkan TKP mengukur kematangan mental seseorang dan kesesuainnya dengan pekerjaan yang dilamar. Ada dugaan bahwa rata-rata nilai hasil test untuk TWK dan TIU dari peserta yang mengikuti seleksi menggunakan CAT berbeda dengan peserta yang mengikuti seleksi menggunakan sistem manual (lembar jawaban komputer/LJK). Untuk membuktikan kebenaran dugaan itu, sesorang melakukan survey dengan mengambil sampel 20 orang peserta yang telah mengikuti test menggunakan CAT dan 20 orang yang mengikuti test secara manual. Hasil nilai yang diperoleh adalah sebagai berikut:

NO	MANU	JAL	CAT		
	TWK	TIU	TWK	TIU	
1	58	84	54	77	
2	49	60	76	58	
3	83	69	55	58	
4	55	60	79	63	
5	85	89	84	37	
6	90	68	60	45	

7	42	36	73	60
8	85	57	81	56
9	80	46	65	80
10	89	51	54	42
11	40	65	67	42
12	71	64	51	64
13	81	82	56	62
14	40	50	50	41
15	80	77	58	43
16	75	35	82	46
17	41	55	61	48
18	54	61	60	43
19	48	50	45	56
20	69	43	80	38

Lakukan pengujian menggunakan taraf nyata 5% apakah dugaan tersebut benar? Asumsi kondisi di luar metode dikondisikan heterogen.

5. Suatu perusahaan memproduksi sabun dengan dua metode yang berbeda untuk memilih metode produksi yang terbaik dilakukan pengamatan terhadap 50 buah sabun untuk setiap metode. Karakteristik sabun yang diamati antara lain X1 = lather dan X2=mildness . Ringkasan datanya diperoleh sebagai berikut :

$$\bar{x}_1 = \begin{pmatrix} 8.3 \\ 4.0 \end{pmatrix}$$
, $S_1 = \begin{pmatrix} 3 & 1 \\ 1 & 6 \end{pmatrix}$, $\bar{x}_2 = \begin{pmatrix} 10 \\ 3.9 \end{pmatrix}$, $S_1 = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$

Asumsi : Semua kondisi di luar metode diasumsikan heterogen. Ujilah apakah terdapat perbedaan kedua metode dengan alpha 5%.