Computing LZ78-Derivates with Suffix Trees

Dominik Köppl

Faculty of Engineering, University of Yamanashi

coding: (a,b)(1,b)(1,2)(1,a)

setting

text factorization

- \blacksquare input: text T with length n
- output: factorization of T
- examples of factorizations
 - LZ77
 - LZ78
- Lyndon factorization goal: compute factorization in $\mathcal{O}(n)$ time

substring compression

- \blacksquare index T in a preprocessing step
- lacksquare query: interval $[i..j] \subset [1..n]$
- \blacksquare output: factorization of T[i..j] goal:
 - query time linear to output size (output sensitive)
 - index time linear in input size $(\mathcal{O}(n) \text{ time})$

why restricting index time?

trivial solution for substring compression:

- \blacksquare compute and store the factorizations of all $\Theta(n^2)$ substrings
- lacktriangle answer a query in $\mathcal{O}(1)$ via lookup
- however: index space is $\Omega(n^2)$ (hence time is also $\Omega(n^2)$)

work on substring factorization

	factorization	construction time	query time	reference	
	LZ77	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z \lg n \lg \lg n)$	Cormode+'05	
	LZ77	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z \lg \lg n)$	Keller+'14	
	Lyndon	$\mathcal{O}(n \lg n)$	$\mathcal{O}(z)$	Babenko+'14	
	Lyndon	$\mathcal{O}(n)$	$\mathcal{O}(z)$	Kociumaka'16	
	LZ78	$\mathcal{O}(n)$	$\mathcal{O}(z)$	Köppl'21	
	LZD/LZMW	$\mathcal{O}(n)$	$\mathcal{O}(z)$	this talk	
2	z : output size of respective factorization				

factorizations in this talk

LZ78 derivations

- Lempel–Ziv Double (LZD) Goto'15
- Lempel–Ziv-Miller–Wegman (LZMW) Miller+'85

why?

- lacktriangle number of LZ78 factors is lower bounded by $\Omega(\sqrt{n})$
- \blacksquare in contrast, the lower bound for LZD and LZMW is $\Omega(\lg n)$

since the length
$$|F_x|$$
 of the x-th factor is x , $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\sqrt{n})$

coding: aa23

coding: aa234

definition of LZD

each factor represented as a pair

- element is either a character or the index of a former factor
- greedily maximize the length by the first element first

let dst_x denote the starting position of F_x in T.

formal definition

A factorization $F_1 \cdots F_z$ of T is LZD if

- $ightharpoonup F_x = G_1 \cdot G_2$ with
- $G_1, G_2 \in \{F_1, \ldots, F_{x-1}\} \cup \Sigma$ such that
- G_1 and G_2 are respectively the longest possible prefixes of $T[dst_x..]$ and of $T[dst_x + |G_1|..]$.

definition of LZMW

- has like LZD two references
- however references need to be successive
- thus needs to store only one reference to a former factor index

formal definition

A factorization $F_1 \cdots F_z$ of T is LZMW if F_x is the longest prefix of $T[dst_x..]$ with $F_x \in \{F_{y-1}F_y : y \in [2..dst_x-1]\} \cup \Sigma$, for every $x \in [1..z]$.

LZD and LZMW computation

```
time space reference \mathcal{O}(n \lg \sigma) \mathcal{O}(n) Goto+'15 \Omega(n^{5/4}) \mathcal{O}(z) Goto+'15, Badkobeh+'17 where \mathcal{O}(n+z\lg^2 n) expected \mathcal{O}(z) Badkobeh+'17 \mathcal{O}(n) this talk
```

- Goto+'15 only computes LZD
- $\sigma = n^{\mathcal{O}(1)}$ means that integer alphabets are supported

our contributions

- for the whole text, we can compute LZD and LZMW in O(n) time and space
- compute the substring compression of LZD and LZMW with
 - $\supset \mathcal{O}(n)$ index time for preprocessing
 - \Box $\mathcal{O}(z)$ query time
- setting
 - \square *n* : length of the input
 - □ integer alphabet
 - □ word RAM

tools

for computation, we leverage the following toolbox

- suffix tree ST Weiner'73
 - linear-time construction of ST Farach-Colton'00
- weighted ancestor query data structure Gawrychowski'14
 - \Box find an ancestor with string depth d of any ST node and any d in $\mathcal{O}(1)$ time
 - □ constructable in linear time Belazzougui'21
- lowest marked ancestor data structure Cole+'05
 - \Box can mark any ST node in $\mathcal{O}(1)$ time
 - \Box can find the lowest marked ancestor of any ST node in $\mathcal{O}(1)$ time

sum of needed space and time amounts to $\mathcal{O}(n)$ each

how used for LZD computation?

suffix tree of T\$ = ababbababbabb

T = ababbababbabb

T = ababbababbabb

■ ST root represents empty factor

T = ababbababbabb

- ST root represents empty factor
- lacksquare compute pair $F_1 = (e_L, e_R)$ of first factor
 - suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lowest marked ancestor of λ_1 is ST root, so $e_1 = T[1] = a$

T = ababbababbabb

- ST root represents empty factor
- compute pair $F_1 = (e_L, e_R)$ of first factor
 - suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lowest marked ancestor of λ_1 is ST root, so $e_{\mathsf{L}} = \mathcal{T}[1] = \mathsf{a}$
- λ_2 is leaf with suffix number 2

T = ababbababbabb

- ST root represents empty factor
- lacktriangle compute pair $F_1=(e_{\mathsf{L}},e_{\mathsf{R}})$ of first factor
- lacksquare suffix number of λ_1 is $\mathsf{dst}_1 = 1$
- lowest marked ancestor of λ_1 is ST root, so $e_L = \mathcal{T}[1] = a$
- $ightharpoonup \lambda_2$ is leaf with suffix number 2
- lowest marked ancestor of λ_2 is ST root, so $e_R = T[2] = b$
- mark ancestor of λ_1 with string depth 2 with 1

T = ab|abbababbabb

process F_2

- suffix number of λ_1 is $dst_2 = 3$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)

T = ab|abbababbabb

process F_2

- lacksquare suffix number of λ_1 is $dst_2 = 3$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)
- like before, $e_R = T[2] = b$
- mark ancestor of λ_1 with string depth $|F_2| = 3$ with 2

T = ab|abb|ababbabb

process F_3

- lacksquare suffix number of λ_1 is $dst_3 = 6$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)

T = ab|abb|ababbabb

process F_3

- suffix number of λ_1 is $dst_3 = 6$
- lowest marked ancestor of λ_1 is 3, so $e_L = 1$ (mark of 3)
- lowest marked ancestor of λ_2 is 7, so $e_L = 2$ (mark of 2)
- however: ancestor of λ_1 with string depth $|F_3| = 5$ does not exist!

T = ab|abb|ababb|abb

maintaining reference for F_3

- locus of F_3 can be witnesses by node 4
- let node 4 store length of F_3 ; mark node 4

T = ab|abb|ababb|abb|

time complexity

for processing F_x

- \blacksquare take leaf λ_1 corresponding to the starting position dst_x of F_x
- lacktriangle compute the lowest marked ancestor v_1 of λ_1
- lacktriangle given ℓ_1 is the string length of v_1 , take leaf λ_2 having suffix number ${\sf dst}_x + \ell_1$
- \blacksquare compute the lowest marked ancestor v_2 of λ_2
- \blacksquare length of F_x is $\ell_1 + \ell_2$, where ℓ_2 is the string length of v_2
- lacktriangle if v_1 (or v_2) refers to an implicit node, use the stored length instead of ℓ_1 (or ℓ_2)

each step takes $\mathcal{O}(1)$ time, so we have $\mathcal{O}(z)$ total time, where z is the number of processed factors

LZMW

LZMW computation works similarly

- \blacksquare mark the locus of $F_{x-1}F_x$ instead of F_x
- \blacksquare need only one lowest marked ancestor query (v_2 not needed)

summary

- \blacksquare can compute LZD and LZMW in $\mathcal{O}(n)$ time, in the computational model
 - \neg *n* : length of the input
 - □ alphabet can be integer
 - □ word RAM

for substring compression:

- $\mathcal{O}(n)$ index time
- $\mathcal{O}(z)$ query time, where z is the number of factors to output

Thank you for listening. Any questions are welcome!