## Convex Analysis

Shuoqi Sun

Tepper School of Business, CMU

#### Outline of this section

- Definition and properties of convex sets and related concepts;
- Applications in optimization, approximation and separation.

#### Convex Sets

- For any  $\lambda \in [0,1]$ ,  $\lambda x + (1-\lambda)y$  is the **line segment** between x and y.
- A set S is convex if all line segments of any two elements of S belongs to S:

$$\forall x, y \in S, \ \forall \lambda \in [0,1] : \lambda x + (1-\lambda)y \in S$$

- S is strictly convex if  $\forall x, y \in S$  and  $\forall \lambda \in (0,1)$  we have  $\lambda x + (1 \lambda)y \in int(S)$ .
- Intersection of any collection of convex sets is convex.
- Union of convex sets may not be convex.

#### Convex combination

A convex combination of a set S is a vector

$$s = \lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$$

where 
$$s_i \in S$$
,  $\lambda_i \geq 0$  and  $\sum_{1}^{n} \lambda = 1$ .

 A set S is convex if and only if it contains all convex combinations of S.

#### Convex Hull

- Convex hull of set S ⊂ X is the set of all convex combinations of all elements in S;
- Convex hull of S is the intersection of all convex sets containing S;
- Obviously, the convex hull of a convex set is the set itself.



# Examples of Convex hull





#### **Extreme Points**

• x is an extreme point of a convex set  $S \subset X$  if it could not be written as a convex combination of any two distinct points in S. That is, whenever there exists  $\lambda \in (0,1)$  and  $x_1,x_2 \in S$  such that

$$x = \lambda x_1 + (1 - \lambda)x_2$$

we must have  $x_1 = x_2 = x$ 

- Let ext{S} denote the set of extreme points of S. ext{S} can be empty.
- If S is a convex and compact subset of X, then  $ext\{S\} \neq \emptyset$ .

### Extreme points and Convex sets

- Let  $P_n = \{ \alpha \in \mathbb{R}^n | \alpha_i \ge 0, \sum \alpha_i = 1 \}$
- Caratheodory's Theorem: For any set  $S \in \mathbb{R}^n$ ,  $conv(S) = \{\sum_{i=1}^{n+1} \alpha_i x_i | x_i \in S, \forall i, \alpha \in P_{n+1} \}$ .
- Krein-Milman Theorem Let X be a normed linear space and S be a compact and convex subset of X, then S is the closed convex hull of its extreme points.
- These two theorems imply that any points in a convex and compact subset in  $\mathbb{R}^n$  can be written as a convex combination of at most (n+1) of its extreme points.

### Extreme points and optimization

- Extreme points can be useful for characterizing the solutions for some optimization problems.
- Bauer Maximization Principle: Let X be a normed linear space and  $S \subset X$  be a non-empty,convex and compact subset. Suppose that  $f: S \to \mathbb{R}$  is upper semicontinuous and convex. Then:

$$\arg\max_{x\in S}f(x)\cap \operatorname{ext}(S)\neq\emptyset$$



### Approximation in Hilbert spaces

- Let X be a Hilbert space and M be a nonempty, closed and convex subset of X. For any  $x \in X$  there exists a unique  $y \in M$  such that  $||x y|| \le ||x y'||$  for all  $y' \in M$ .
- Furthermore, if M is a closed subspace of X, a necessary and sufficient condition for  $y \in M$  to be the unique minimizing vector is that for all  $y' \in M$ , x y and y' be orthogonal, that is  $(x y) \cdot y' = 0$ .

### Affine manifold and hyperplane

- A subset of Y of the vector space X is called an **affine** manifold if  $Y = Z + x^*$  for some  $x^* \in X$  and Z is a subspace of X.
- Y is called a hyperplane if Z is a ⊇-maximal proper linear subspace of X.
- A **hyperplane** in  $\mathbb{R}^n$  is characterized by a vector  $p \in \mathbb{R}^n$  and a scalar  $\alpha \in \mathbb{R}$  such that  $H(p,\alpha) = \{x \in \mathbb{R}^n | x \cdot p = \alpha\}$ .
  - It is a set constructed by shifting an (n-1)-dimensional subspace of  $\mathbb{R}^n$ .



# Hyperplanes and Halfspaces on $\mathbb{R}^n$

• **Hyperplane**:  $\{x | \langle a, x \rangle = b\}$   $(a \neq 0) \rightarrow$  affine and convex



• Halfspace:  $\{x | \langle a, x \rangle \leq b\}$   $(a \neq 0) \rightarrow \text{convex}$ 



# Supporting Hyperplane Theorem

• Supporting Hyperplane Theorem: Let  $S \subseteq \mathbb{R}^n$  be a convex set and  $\operatorname{int} S \neq \emptyset$ . Then for any  $x \in bd(S)$ , there exists a hyperplane  $H(p,\alpha)$  such that  $x \in H(p,\alpha)$  and  $\forall y \in S$ ,  $\langle y,p \rangle \geq \alpha$ .





### Separating hyperplane theorem

• Separating Hyperplane Theorem: Let  $S, T \subseteq \mathbb{R}^n$  be disjoint nonempty convex sets. There exists a hyperplane  $H(p,\alpha)$  such that  $\forall x \in S$  and  $\forall y \in T$ ,  $\langle x,p \rangle \geq \alpha \geq \langle y,p \rangle$ .



