ISIMA 1^{ère} Année Janvier 2004

Partiel de probabilités

Durée : 2 heures - Documents de cours autorisés

Problème 1

On lance deux dés D₁ et D₂ parfaitement équilibrés dont les faces sont numérotées de 1 à 6.

On note:

- X_1 le numéro obtenu en lançant le dé D_1 ,
- X₂ le numéro obtenu en lançant le dé D₂,
- S la variable aléatoire égale à la somme des deux numéros obtenus,
- P la variable aléatoire égale au numéro le plus grand obtenu,
- M la variable aléatoire égale au numéro le plus petit obtenu.
- 1. Calculez l'espérance de X₁ et l'espérance de X₂.

Quelle relation existe-t-il entre X₁, X₂ et S? Quelle est l'espérance de S?

2. Déterminez la loi de probabilité de P. Pour cela, on peut s'aider du tableau suivant en le complétant avec les valeurs que prend la variable P. Calculer E[P].

Résultat du dé D₁

		1	2	3	4	5	6
	1						
	2						
Résultat du dé	3						
	4						
	5						
	6						

- 3. Quelle relation simple a-t-on entre M, P et S?
- 4. Quelle est l'espérance de M?
- 5. Déterminez la loi de probabilité de M. Retrouvez alors le résultat précédent.

6. Déterminez la loi de probabilité de S. On présentera les résultats sous forme de tableau. Retrouvez alors directement l'espérance de S.

Problème 2

Soient X et Y deux variables aléatoires continues quelconques. Calculer E[X+Y].

Problème 3

On effectue une expérimentation sur le comportement des rats, consistant à les faire choisir entre deux portes A et B. Si le rat choisit la porte A, il reçoit une décharge électrique et la porte reste fermée ; s'il choisit la porte B, elle s'ouvre et le rat sort.

On constate expérimentalement qu'il y a deux types de rats : la probabilité conditionnelle pour qu'un rat sorte par la porte B au $k^{ième}$ essai, sachant qu'il a échoué (k-1) fois à la porte A, est p_k =0.5 pour les rats de type I (rats sans mémoire) et est $q_k = k/(k+1)$ pour les rats de type II (rats avec mémoire)

- 1. Calculer, pour le type I et pour le type II, les probabilités P_n et Q_n qu'un rat sorte au n^{ième} essai.
- 2. On choisit au hasard un rat parmi une population contenant 60% de rats de type I et 40% de rats de type II. Calculer la probabilité conditionnelle que le rat soit de type II sachant qu'il est sorti au n^{ième} essai. Faire les calculs pour les valeurs suivantes de n : 1, 2 3,4.

Problème 4

On suppose que les n noeuds des réseaux série et parallèle de la figure tombent en panne après un temps exponentiellement distribué de paramètre μ . Les nœuds sont supposés indépendants. Pour chacun de ces réseaux, calculer la distribution du temps de fonctionnement et sa moyenne. Que peut-on dire quand n devient grand?

