1 Student Information

Name : Hasan Berk Uzunova

ID: 2376028

Answer 1

a)

Getting at least 1 white ball probability equals to subtracting getting 3 black balls from 1 so: 1 - BBB =1 - $\frac{8}{10}$ $\frac{11}{15}$ $\frac{9}{12}$ = $\frac{42}{75}$ =0.56

b)

Getting white ball from each boxes: WWW= $\frac{2}{10}$ $\frac{4}{15}$ $\frac{3}{12}$ = $\frac{1}{75}$ = 0.013

 $\mathbf{c})$

Box 1: $\frac{2}{10} \frac{1}{9} = \frac{1}{45}$

Box 2: $\frac{4}{15} \frac{3}{14} = \frac{2}{35}$

Box 3: $\frac{3}{12} \frac{2}{11} = \frac{1}{22}$

I would choose box 2 since it has greater probability to get 2 white balls.

d)

Since we need to get 2 white balls, we just focus on drawing white balls. Firstly,box 2 has greatest probability with $\frac{4}{15}$, after drawing there remains $\frac{3}{14}$ for box 2 , however ; box 3 has $\frac{3}{12}$ to get white ball. So the order is box 2 - box 3

e)

	0	1	2	3
P(X=x)	0.44	0.4167	0.13	0.013
	WWW	WBB,BWB,BBW	WBB,WBW,BWW	WWW

Expected Value = 0 * 0.44 + 1 * 0.4167 + 2 * 0.13 + 3 * 0.013 = 0.7167

f)

Box 1:
$$\frac{1}{3} \frac{2}{10} = \frac{1}{15}$$

Box 2:
$$\frac{1}{3} \frac{4}{15} = \frac{4}{45}$$

Box 3:
$$\frac{1}{3} \frac{3}{12} = \frac{1}{12}$$

$$\frac{BOX1}{BOX1+BOX2+BOX3} = 0.279$$

Answer 2

F=Frodo is corrupted S=Sam is corrupted R=Ring is destroyed

a)

$$P(R \mid \overline{S}) = 0.9$$

$$P(R \mid S) = 0.5$$

$$P(S) = 0.1$$

If we add the probabilities of ring being destroyed where Sam is corrupted and not corrupted, we can find the total probability of ring being destroyed:

$$P(R) = P(\overline{S}) * P(R \mid \overline{S}) + P(S) * P(R \mid S) = 0.86$$

From Bayes Theorem;
$$P(S \mid R) = \frac{P(R|S) * P(S)}{P(R)} = \frac{0.5 * 0.1}{0.86} = 0.058$$

b)

$$P(F) = 0.25$$

$$P(D | F) = 0.2$$

$$P(D \mid \overline{F} \cap \overline{S}) = 0.9$$

$$P(D | F \cap S) = 0.05$$

We need to find the probability that the ring destroyed both Sam and Frodo are corrupted:

$$P(F \cap S \mid D)$$

From Bayes Theorem:

P(F \cap S)
$$P(E) = \frac{P(D|F \cap S) * P(F \cap S)}{P(D)}$$

 $P(F \cap S)=P(F)*P(S)$ since these are independent events. $P(F \cap S)=0.25*0.1=0.025$

$$P(D) = P(D \mid F) * P(F) + P(D \mid S) * P(S) - P(D \mid F \cap S) * P(F \cap S) + P(D \mid \overline{F} \cap \overline{S}) * P(\overline{F} \cap \overline{S})$$

$$P(D)=0.2*0.25+0.5*0.1-0.05*0.025+0.9*0.75*0.9=0.70625$$

By using Inclusion-Exclusion Principle $P(D \mid F \cap S)^*P(F \cap S)$ part is subtracted to avoid calculating intersection part twice.

When we use these values in Bayes Theorem we can find P($F \cap S \mid D$).

$$P(F \cap S \mid D) = \frac{0.05*0.025}{0.70625} = 0.018$$

Answer 3

a)

We can see that there are only 2 cases that conform 4 snowy days : P(A=2, I=2)=0.2 or P(A=3, I=1)=0.12 from the law of probability; P(A=2, I=2) + P(A=3, I=1) = 0.32

b)

	P(A=1)	P(A=2)	P(A=3)	P(A=a)
P(I=1)	0.18	0.3	0.12	0.6
P(I=2)	0.12	0.2	0.08	4
P(I=i)	0.3	0.5	0.2	1

Events A and B are independent if occurrence of B does not affect the probability of A.From the table we can infer that P(A|B)=P(A) and $P(A\cap B)=P(A)P(B)$ for all values of A and B.Hence we can say that snowy days in Ankara and Istanbul are independent.