Formulæ for concepts that Tom is drawing

Thomas Levine

April 2, 2013

These formulæ are for the bivariate (rather than more-than-two) populations (rather than samples).

1 Covariance

Conceptually, it's this.

$$\sigma_{xy} = E[(x - E[x])(y - E[y])]$$

More precisely, it could be this.

$$\sigma_{xy} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

As matrix arithmetic, it's written in a way that works for more than two variables. I'm not going to explain it, but here it is. (Σ is the covariance matrix.)

$$\Sigma = E\left[\left(\mathbf{X} - E[\mathbf{X}] \right) \left(\mathbf{X} - E[\mathbf{X}] \right)^{T} \right]$$

In R, it's this.

Two variables
cov(x,y)

More variables
var(iris[-5])
cov(iris[-5])

2 Variance

Variance is the covariance of something with itself.

$$\sigma_x^2 = \sigma_{xx} = E[(x - E[x])^2]$$

More precisely, like the covariance, it could be this.

$$\sigma_x^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (x_i - \bar{x})$$

As matrix arithmetic, it's the diagonal of the covariance. Again, I'm not really going to explain it.

$$diag(\Sigma)$$

In R, all of these would work.

One variable
var(x)
cov(x,x)

More variables
lapply(iris[-5],var)
diag(cov(iris[-5]))

3 Correlation

Correlation (specifically, the Pearson product-moment correlation coefficient—there are others) measures how much the variables linearly depend on each other.

For perfectly linear variables that move together, ρ_{xy} will be 1. For perfectly linear variables that move oppositely, ρ_{xy} will be -1.

 ρ_{xy} is just the covariance (σ_{xy}) divided by the product of the standard deviations $(\sigma_x \sigma_y)$.

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

We can also factor out the N term and write it as the sum of the rectangles divided by the rectangle formed by the square roots of the sums of the squares.

$$\beta = \frac{\sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

If you need to be convinced that σ_{xy} is no greater than $\sigma_x\sigma_y$, recall that the covariance includes negative rectangles and the variance does not;

4 Ordinary least-squares regression

Simple regression is a best fit line between two variables; we are looking for α and β .

$$\hat{y}_i = \alpha + \beta x_i$$

 β is just the covariance divided by the variance.

$$\beta = \sigma x y / \sigma_x^2$$

We can also factor out the N term and write it as the sum of the rectangles divided by the sum of the squares.

$$\beta = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})}{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\beta = \frac{\sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

5 Credits

Some formulæ were lifted from these pages.

- http://en.wikipedia.org/w/index.php?title=Covariance&action=edit
- http://en.wikipedia.org/w/index.php?title=Pearson_product-moment_correlation_coefficient&action=edit§ion=3
- http://en.wikipedia.org/w/index.php?title=Ordinary_least_squares&action=edit