ИСПОЛЬЗОВАНИЕ МЕТОДОВ ТРОПИЧЕСКОЙ ОПТИМИЗАЦИИ ДЛЯ ОПТИМАЛЬНОГО СОСТАВЛЕНИЯ ГРАФИКОВ РАБОТ 1

Кривулин Н.К., д.ф.-м.н. профессор кафедры статистического моделирования СПбГУ, nkk@math.spbu.ru

Губанов С.А., инженер-программист СПбФ АО «КБ «Луч», segubanov@mail.ru

Аннотация

На основе применения методов тропической оптимизации предлагаются прямые решения задач составления оптимального графика выполнения работ проекта при различных ограничениях на время выполнения работ и критериях оптимальности плана.

Введение

Одним из способов решения задачи составления оптимального графика выполнения работ в управлении проектами является ее сведение к задаче тропической оптимизации [1].

Тропическая математика является областью прикладной математики, изучающей полукольца с идемпотентнм сложением [2, 3, 4]. Тропическая оптимизация занимается задачами оптимизации, сформулированными в терминах тропической математики.

Цель настоящей работы — представить новые способы решения задач оптимального составленя графиков работ на основе методов тропической математики, опирающиеся на статьи [5, 6, 7, 8]. В статье [9] задача составления оптимального графика сводится к задаче минимизации. Ниже рассматриваются задачи составления оптимального графика выполнения проекта при заданных ограничениях на время начала и завершения работ проекта в соответствии с критериями максимума разброса времени начала или времени завершения работ.

Задачи оптимизации сроков выполнения работ

В этом разделе описываются задачи оптимизации, которые возникают при планировании сроков начала и завершения работ проекта при

 $^{^{1}}$ Работа выполнена при финансовой поддержке РГНФ, проект №16-02-00059.

Ограничения на время выполнения работ

Рассмотрим проект, который заключается в выполнении n работ. Для каждой работы $i=1,\ldots,n$ введем обозначения: x_i – время начала, y_i – время завершения работы; g_i – наиболее раннее возможное время начала работы; h_i – наиболее позднее время завершения работы; a_{ij} – минимальный допустимый временной интервал между началом работы j и завершением i; b_{ij} – минимальный промежуток времени между началом работ i и j. Если величина a_{ij} или b_{ij} не задана, то считаем ее равной $-\infty$.

Ограничения типа «старт-финиш» не позволяют работе завершиться, пока не прошло определенное время после начала других работ. Считаем, что работа немедленно завершается при выполнении всех ограничений на время ее завершения. Эти ограничения эквивалентны равенству $\max_{1 \le j \le n} (a_{ij} + x_j) = y_i$.

Ограничения типа «старт-старт», определяющие минимальный интервал между временами начала любых двух работ, можно представить в виде неравенства $\max_{1 \le j \le n} (b_{ij} + x_j) \le x_i$.

Ограничение «ранний старт» задает самое раннее возможное время начала работы, а ограничение «поздний финиш» определяет наиболее позднее возможное время завершения работы. Эти ограниченичя можно записать при помощи неравенств $x_i \geq g_i, \ y_i \leq h_i.$

Kритерии оптимальности и задачи планирования

В задачах составления графиков при условии недостатка ресурсов часто рассматривают следующие критерии оптимальности. Одним из критериев является максимальный разброс времени начала всех работ

$$\max_{1 \leq i \leq n} x_i - \min_{1 \leq i \leq n} x_i = \max_{1 \leq i \leq n} x_i + \max_{1 \leq i \leq n} \left(-x_i \right).$$

Другой критерий задает максимальный разброс времени завершения

$$\max_{1 \le i \le n} y_i - \min_{1 \le i \le n} y_i = \max_{1 \le i \le n} y_i + \max_{1 \le i \le n} \left(-y_i \right).$$

Рассмотрим примеры задач составления оптимальных графиков работ с указанными ограничениями и критериями оптимальности [10]. Предположим, что заданы ограничения «старт-старт» и «ранний старт». Задача оптимального планирования по критерию максимума разброса времени начала работ имеет вид

$$\max \max_{1 \le i \le n} x_i + \max_{1 \le i \le n} (-x_i), \max_{1 \le j \le n} (b_{ij} + x_j) \le x_i, \quad g_i \le x_i, \quad i = 1, \dots, n.$$
 (1)

Пусть имеются ограничения «старт-старт», «старт-финиш» и «поздний финиш». Для составления оптимального графика по критерию максимума разброса времени завершения необходимо решить задачу

$$\max \max_{1 \le i \le n} y_i + \max_{1 \le i \le n} (-y_i),$$

$$\max_{1 \le j \le n} (b_{ij} + x_j) \le x_i, \quad \max_{1 \le j \le n} (a_{ij} + x_j) = y_i,$$

$$y_i \le h_i, \quad i = 1, \dots, n.$$
(2)

Далее представим эти задачи в терминах тропической математики.

Элементы тропической математики

Приведем обзор основных определений и результатов [2], которые требуются для описания задач тропической оптимизации.

Пусть множество $\mathbb X$ замкнуто относительно ассоциативных и коммутативных операций сложения \oplus и умножения \otimes , и содержит их нейтральные элементы ноль $\mathbb O$ и единицу $\mathbb 1$. Сложение идемпотентно, а умножение обладает свойством дистрибутивности относительно сложения и обратимо. Так как $\mathbb X_+ = \mathbb X \setminus \{ \mathbb O \}$ образует группу по умножению, структуру $\langle \mathbb X, \mathbb O, \mathbb 1, \oplus, \otimes \rangle$ называют идемпотентным полуполем. Знак умножения \otimes далее будет опускаться. Примером такого полуполя является вещественное полуполе $\mathbb R_{\max,+} = \langle \mathbb R \cup \{ -\infty \}, -\infty, 0, \max, + \rangle$.

Обозначим через $\mathbb{X}^{m \times n}$ множество матриц, состоящих из m строк и n столбцов с элементами из \mathbb{X} . Регулярной по строкам (по столбцам) является матрица без нулевых строк (столбцов). Матрица, регулярная по строкам и по столбцам называется регулярной.

Для согласованных по размеру матриц $A = (a_{ij}), B = (b_{ij}), C = (c_{ij})$ и скаляра x матричные сложение, умножение и умножение на скаляр определяются по формулам

$$\{\boldsymbol{A} \oplus \boldsymbol{B}\}_{ij} = a_{ij} \oplus b_{ij}, \quad \{\boldsymbol{BC}\}_{ij} = \bigoplus_{k} b_{ik} c_{kj}, \quad \{x\boldsymbol{A}\}_{ij} = x a_{ij}.$$

Для каждой матрицы $m{A}$ обозначим ее транспонированную матрицу через $m{A}^T.$

Для любой матрицы $\mathbf{A}=(a_{ij})\in\mathbb{X}^{m\times n}$ введем мультипликативно сопряженную матрицу $\mathbf{A}^-=(a_{ij}^-)\in\mathbb{X}^{n\times m}$, где $a_{ij}^-=a_{ji}^{-1}$, если $a_{ji}\neq \mathbb{0}$, и $a_{ij}^-=\mathbb{0}$ иначе.

Рассмотрим квадратные матрицы в $\mathbb{X}^{n \times n}$. Единичной является матрица с элементами, равными $\mathbb{1}$ на главной диагонали и $\mathbb{0}$ – вне ее. Обозначим такую матрицу через I.

Для каждой матрицы $A = (a_{ij})$ введем функции

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn}, \quad \operatorname{Tr} (\mathbf{A}) = \operatorname{tr} \mathbf{A} \oplus \cdots \oplus \operatorname{tr} \mathbf{A}^{n}.$$

Если $\operatorname{Tr}(\boldsymbol{A}) \leq 1$, то определим матрицу Клини

$$A^* = I \oplus A \oplus \cdots \oplus A^{n-1}$$
.

Матрица разложима, если путем перестановки строк вместе с такой же перестановкой столбцов ее можно привести к блочно-треугольной форме. Заметим, что матрица с регулярными строками (столбцами) не имеет нулевых элементов и потому не яаляется разложимой (неразложима).

Обозначим через \mathbb{X}^n множество вектор-столбцов размерности n.

Вектор без нулевых компонент называется регулярным.

Вектор, состоящий из единиц, обозначается через $\mathbf{1} = (1, \dots, 1)^T$.

Для каждого ненулевого вектора $\boldsymbol{x}=(x_1,\ldots,x_n)^T\in\mathbb{X}^n$ определим мультипликативно сопряженный вектор $\boldsymbol{x}^-=(x_1^-,\ldots,x_n^-)$ с элементами $x_i^-=x_i^{-1}$, если $x_i\neq \emptyset$, и $x_i^-=\emptyset$ иначе.

Пусть для заданных матрицы $A \in \mathbb{X}^{n \times n}$ и вектора $b \in \mathbb{X}^n$ необходимо найти регулярные векторы $x \in \mathbb{X}^n$, удовлетворяющие неравенству

$$Ax \oplus b \leq x$$
. (3)

Решение неравенства предлагает следующее утверждение.

Теорема 1 ([6]). Пусть x — общее регулярное решения неравенства (3). Тогда справедливы утверждения:

- 1. Если $\mathrm{Tr}(m{A}) \leq \mathbb{1},$ то $m{x} = m{A}^*m{u}$ для любого регулярного вектора $m{u} \geq m{b}.$
- 2. Если ${
 m Tr}({m A})>1$, то регулярных решений не существует.

Задача тропической оптимизации

Пусть заданы матрица $A \in \mathbb{X}^{n \times n}$ и векторы $p, q \in \mathbb{X}^n$. Требуется найти векторы $x \in \mathbb{X}^n$, которые решают задачу

$$\max \quad \boldsymbol{q}^{-}\boldsymbol{x}(\boldsymbol{A}\boldsymbol{x})^{-}\boldsymbol{p}. \tag{4}$$

В работе [8] предлагается следующее решение.

Теорема 2. Предположим, что матрица $\mathbf{A} = (\mathbf{a}_j)$ имеет регулярные столбцы $\mathbf{a}_j = (a_{ij})$, а векторы $\mathbf{p} = (p_j)$ и $\mathbf{q} = (q_j)$ являются регулярными. Тогда максимум в задаче (4) равен $\Delta = \mathbf{q}^- \mathbf{A}^- \mathbf{p}$, а все регулярные решения имеют вид $\mathbf{x} = (x_i)$, где

$$x_k = \alpha a_{sk}^{-1} p_s, \quad x_j \le \alpha a_{sj}^{-1} p_s, \quad j \ne k,$$

для всех $\alpha > 0$ и индексов k и s, определяемых условиями

$$k = \arg\max_{1 \le i \le n} q_i^{-1} \boldsymbol{a}_i^{-1} \boldsymbol{p}, \quad s = \arg\max_{1 \le i \le n} a_{ik}^{-1} p_i.$$

Решение задач планирования

В этом разделе предложено решение задач оптимального планирования (1) и (2), которое получено путем их сведения к задаче тропической оптимизации (4) с ограничениями в форме (3).

Максимизация разброса времени начала работ

Чтобы записать задачу максимизации разброса времени начала работ (1) в терминах идемпотентного полуполя $\mathbb{R}_{\max,+}$ в векторном виде, введем матрично-векторные обозначения

$$B = (b_{ij}), \quad g = (g_i), \quad y = (y_i), \quad x = (x_i).$$

С учетом введенных обозначений, задача может быть представлена в виде

$$\max \quad \mathbf{1}^T \boldsymbol{x} \boldsymbol{x}^- \mathbf{1}, \\ \boldsymbol{B} \boldsymbol{x} \oplus \boldsymbol{g} \le \boldsymbol{x}. \tag{5}$$

Решение задчи (5) дает следующий результат.

Лемма 3. Предположим, что матрица $B = (b_i)$ со столбцами $b_i = (b_{ij})$ является неразложимой и $\mathrm{Tr}(B) \leq \mathbb{1}$. Тогда максимум в задаче (5) равен $\Delta = \mathbf{1}^T B^*(B^*)^{-1}$, и достигается тогда и только тогда, когда $x = B^* u$, где $B^* = (b_i^*)$ – матрица Клини, $u = (u_j)$ – любой вектор с компонентами

$$u_k = \alpha(b_{sk}^*)^{-1}, \quad g_j \le u_j \le \alpha(b_{sj}^*)^{-1}, \quad j \ne k,$$

при условии, что

$$\alpha \geq \max_{1 \leq j \leq n} g_j b_{sj}^*, \quad k = \arg\max_{1 \leq i \leq n} \mathbf{1}^T \boldsymbol{b}_i^* (\boldsymbol{b}_i^*)^- \mathbf{1}, \quad s = \arg\max_{1 \leq i \leq n} (b_{ik}^*)^{-1}.$$

Максимизация разброса времени завершения работ

Так же, как при решении предыдущей задачи, введем обозначения

$$A = (a_{ij}), \quad B = (b_{ij}), \quad x = (x_i), \quad y = (y_i), \quad h = (h_i).$$

Представим задачу максимизацим разброса времени завершения работ (2) в терминах полуполя $\mathbb{R}_{\max,+}$ в матрично-векторном виде

$$\max \quad \mathbf{1}^{T} y y^{-1}$$

$$Ax = y, \quad Bx \le x, \quad y \le h.$$
(6)

Решение задачи (6) можно представить следующим образом.

Лемма 4. Пусть матрица A является регулярной, $\text{Tr}(B) \leq 1$, а матрица $D = AB^*$ имеет регулярные столбцы $d_i = (d_{ij})$. Тогда максимум в задаче (6) равен $\Delta = \mathbf{1}^T DD^- \mathbf{1}$ и достигается, когда $\mathbf{x} = B^* \mathbf{u}$ и $\mathbf{y} = D\mathbf{u}$, где $\mathbf{u} = (u_i)$ – любой вектор с компонентами

$$u_k = \alpha d_{sk}^{-1}, \quad u_j \le \alpha d_{sj}^{-1}, \quad j \ne k,$$

при условии, что

$$\alpha \leq \min_{1 \leq j \leq n} d_{sj} \boldsymbol{h} \boldsymbol{d}_j^-, \quad k = \arg\max_{1 \leq i \leq n} \boldsymbol{1}^T \boldsymbol{d}_i \boldsymbol{d}_i^- \boldsymbol{1}, \quad s = \arg\max_{1 \leq i \leq n} d_{ik}^{-1}.$$

Заключение

В работе рассмотрены задачи составления оптимального графика выполнения проекта при заданных ограничениях на время начала и завершения работ проекта в соответствии с критериями максимума разброса времени начала или времени завершения работ. Предложены прямые решения указанных задач на основе методов и результатов тропической оптимизации.

Список литературы

- [1] Cuninghame-Green R. A. Projections in minimax algebra // Math. Program., 1976. Vol. 10. P. 111-123.
- [2] Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб. : Изд-во С.-Петерб. ун-та., 2009.
- [3] Маслов В. П., Колокольцев В. Н. Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994.
- [4] Butkovič P. Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. London: Springer, 2010.
- [5] Krivulin N. Explicit solution of a tropical optimization problem with application to project scheduling // Mathematical Methods and Optimization Techniques in Engineering/ Ed. By D. Biolek, H. Walter, I. Utu, C. von Lucken. WSEAS Press, 2013. P. 39-45.
- [6] Krivulin N. A multidimensional tropical optimization problem with nonlinear objective function and linear constraints // Optimization. 2015. Vol. 64, N 5. P. 1107-1129.
- [7] Krivulin N. A constrained tropical optimization problem. Complete solution and application example // Tropical and Idempotent Mathematics and Applications/ Ed. by G. L. Litvinov, S. N. Sergeev. Vol. 616 of Contemporary Mathematics, AMS, 2014. P. 163-177.
- [8] Krivulin N. A maximization problem in tropical mathematics: A complete solution and application examples // Informatica. 2016. Vol. 27, N 3. P. 587-606.
- [9] Кривулин Н. К., Губанов С. А. Решение задачи сетевого планирования на основе методов тропической оптимизации// Вестн. С.-Петерб. ун-та. Сер. 10. 2016. N 3. С. 62-72.
- [10] V. T'kindt and J.-C. Billaut, *Multicriteria Scheduling*. Springer, Berlin, 2 ed., 2006.