Procesamiento digital de Imágenes

Tomografía

Introducción

- Uso mas frecuente en medicina
- Acústica
- Microondas
- Geología
- Microscopios electrónicos
- Radiotelescopios
- Rayos-X Positrones Rayos gama

Fundamentos

Concepto de proyección

Aplicación en Geología

Concepto de proyección

Concepto de proyección

Fundamentos

Proyección:

Es la operación matemática cuyo resultado es similar a la operación física de tomar una foto irradiada por un haz colimado de rayos X

Objetivo: Reconstruir el objeto en 2D a partir de proyecciones en diferentes ángulos

Fundamentos

$$I = I_o e^{\left[-\int_L f_c(t_1, t_2) du\right]}$$

$$\ln \frac{I_o}{I} = \int_{I} f_c(t_1, t_2) du = p(\theta, t)$$

Ejemplo

Encontramos ahora la relación entre ambos sistemas coordenados.

Resumiendo

$$t_1 = t \cos(\theta) - u \operatorname{sen}(\theta)$$

$$t_2 = t \operatorname{sen}(\theta) + u \cos(\theta)$$

$$p(\theta,t) = \int_{L} f_{\mathcal{C}}(t_1,t_2)_{\substack{t_1 = t\cos(\theta) - u \operatorname{sen}(\theta) \\ t_2 = t \operatorname{sen}(\theta) + u\cos(\theta)}} du$$

De aquí en mas nuestro objetivo será encontrar una relación entre la TF 2D de $f_c(t_1,t_2)$ y la TF 1D de $p(\theta,t)$.

Esto se puede hacer mediante lo que se conoce como Projection Slice Theorem

Empecemos por encontrar la TF de $fc(t_1,t_2)$

$$F_c(\Omega_1, \Omega_2) = 2D \ CTFT \left\{ f_c(t_1, t_2) \right\}$$

$$F_c(\Omega_1, \Omega_2) = \int_{t_1 = -\infty}^{+\infty} \int_{t_2 = -\infty}^{+\infty} f_c(t_1, t_2) e^{-j\Omega_1 t_1} e^{-j\Omega_2 t_2} dt_1 dt_2$$

A su vez la 2D CIFTde $F_c(\Omega_1\Omega_2)$ será:

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_{\Omega_1 = -\infty}^{+\infty} \int_{\Omega_2 = -\infty}^{+\infty} F_c(\Omega_1, \Omega_2) e^{j\Omega_1 t_1} e^{j\Omega_2 t_2} d\Omega_1 d\Omega_2$$

Por otro lado la TF 1D de $p(\theta,t)$ es:

$$P_{\theta}(\Omega) = 1D \ CTFT \{p(\theta, t)\}$$

$$P_{\theta}(\Omega) = \int_{t=-\infty}^{+\infty} p(\theta, t) e^{-j\Omega t} dt$$

Ahora el Projection Slice Theorem establece que:

$$P_{\theta}(\Omega) = F_{c}(\Omega_{1}, \Omega_{2}) \Big|_{\substack{\Omega_{1} = \Omega \cos \theta \\ \Omega_{2} = \Omega sen \theta}}$$

$$P_{\theta}(\Omega) = F_{c}(\Omega \cos \theta, \Omega \sin \theta)$$

$$F_c(\Omega_1,\Omega_2)$$

Este teorema es de gran utilidad ya que si tomamos múltiples proyecciones a diferentes ángulos podemos reconstruir la transformada de fourier de fc(t1,t2).Luego aplicando la Transfomada inversa obtenemos el objeto original.

$$P_{\theta}(\Omega) \to F_{c}(\Omega \cos \theta, \Omega \sin \theta) \to f_{c}(t_{1}, t_{2})$$

 $\theta = \theta_{1}, \theta_{2}, \theta_{3} \cdots$

Técnicas de reconstruccion

- 1. Simple: Nearest Neighbor (interpolacion de orden cero)
 - Interpolación de primer orden.
- 2. Formula de inversión de Radon
- 3. Técnicas Iterativas

Reconstrucción de la Transformada

Polar Sampling: Ej:. DFT de 9 puntos en cada direccion , 8 proyecciones Las muestras están igualmente espaciadas

Debemos encontrar los valores de la transformada en La grilla cartesiana a partir de los valores de la misma en forma polar (puntos rojos). La solución es Interpolar. Los métodos mas simples son:

Zeroth order → Nearest Neighbor First order → Weighed Sum of neighbor samples (Average)

Reconstrucción de la Transformada

Si modificamos la distancia entre las muestras en función del ángulo (obtenemos cuadrados concéntricos).

Partiendo de la IDFT 2D de Fc(Ω_1 , Ω_2)

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_{\Omega_1 = -\infty}^{+\infty} \int_{\Omega_2 = -\infty}^{+\infty} F_c(\Omega_1, \Omega_2) e^{j\Omega_1 t_1} e^{j\Omega_2 t_2} d\Omega_1 d\Omega_2$$

Vamos a convertirla a coordenadas polares esto es: $(\Omega_1, \Omega_2) \rightarrow (\omega, \theta)$.

Para realizar la conversión deberemos hacer uso del jacobiano Ω_2

Recordando que:

$$si \quad x = g(u, v) \quad y \quad y = h(u, v) \text{ entonces}:$$

$$\iint f(x, y) \, dx dy = \iint f(g(u, v), h(u, v)) \, J \, du dv \quad donde$$

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial(x)}{\partial(u)} & \frac{\partial(x)}{\partial(v)} \\ \frac{\partial(y)}{\partial(u)} & \frac{\partial(y)}{\partial(v)} \end{vmatrix} = \frac{\partial(x)}{\partial(u)} \frac{\partial(y)}{\partial(v)} - \frac{\partial(y)}{\partial(u)} \frac{\partial(x)}{\partial(v)}$$

si $\Omega_1 = g(\omega, \theta) = \omega \cos \theta$ y $\Omega_2 = h(\omega, \theta) = \omega \sin \theta$ entonces:

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \cos \theta & -\omega \sin \theta \\ \sin \theta & \omega \cos \theta \end{vmatrix} = \omega$$

Entonces fc(t₁, t₂) nos queda

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_{0}^{\pi} \int_{-\infty}^{+\infty} F_c(\omega \cos \theta, \omega \sin \theta) e^{j\omega(t_1 \cos \theta + t_2 \sin \theta)} |\omega| d\omega d\theta$$

Observemos que:

$$f_{c}(t_{1}, t_{2}) = \frac{1}{4\pi^{2}} \int_{0}^{\pi} \int_{-\infty}^{+\infty} F_{c}(\omega \cos \theta, \omega \sin \theta) e^{j\omega(t_{1}\cos \theta + t_{2}\sin \theta)} |\omega| d\omega d\theta$$

$$F_{\theta}(\omega)$$

$$f_{c}(t_{1}, t_{2}) = \frac{1}{4\pi^{2}} \int_{0}^{\pi} \int_{-\infty}^{+\infty} P_{\theta}(\omega) e^{j\omega(t_{1}\cos \theta + t_{2}\sin \theta)} |\omega| d\omega d\theta$$

Observemos que:

 $y t = t_1 \cos \theta + t_2 \sin \theta$

$$\begin{split} f_c(t_1,t_2) = & \frac{1}{4\pi^2} \int\limits_{0}^{\pi} \int\limits_{-\infty}^{+\infty} P_{\theta}(\omega) \, e^{j\omega(t_1\cos\theta + t_2\sin\theta)} \, \big| \omega \big| \ d\omega \, d\theta \\ & I = \int\limits_{-\infty}^{+\infty} G_{\theta}(\omega) \, e^{j\omega t} \, d\omega \quad donde : \\ & G_{\theta}(\omega) = P_{\theta}(\omega) \big| \omega \big| \quad IDFT \big[G_{\theta}(\omega) \big] = g_{\theta}(t) \end{split}$$

En definitiva nos queda que: $I = g_{\theta}(t) \Big|_{t=t_1 \cos \theta + t_2 \sin \theta}$

$$I = g_{\theta}(t_1 \cos \theta + t_2 \sin \theta)$$

Reemplazando en fc(t₁, t₂) nos queda:

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_0^{\pi} g_{\theta}(t_1 \cos \theta + t_2 \sin \theta) d\theta$$

Interpretacion

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_0^{\pi} g_{\theta}(t_1 \cos \theta + t_2 \sin \theta) d\theta$$

$$G_{\theta}(\omega) = P_{\theta}(\omega) |\omega| \implies g_{\theta}(t) = p(\theta, t) \otimes IDFT\{|\omega|\}$$

$$y \ t = t_1 \cos \theta + t_2 \sin \theta$$

Resulta que:

$$g_{\theta}(t) = p(\theta, t) \otimes IDFT\{|\omega|\} = \frac{d}{dt} \int_{-\infty}^{+\infty} \frac{P_{\theta}(\tau)}{t - \tau} d\tau$$

- 1- Encontramos $p(\theta,t)$
- 2- Hallamos $g_{\theta}(t) = p(\theta, t) \otimes IDFT\{|\omega|\} = \frac{d}{dt} \int_{-\infty}^{+\infty} \frac{P_{\theta}(\tau)}{t \tau} d\tau$
- 3- Reemplazamos este resultado en fc(t₁, t₂)

$$f_c(t_1, t_2) = \frac{1}{4\pi^2} \int_0^{\pi} g_{\theta}(t_1 \cos \theta + t_2 \sin \theta) d\theta$$

Convolution Backprojection Interpretación

$$g(t,\theta) = \Re[f(t_1,t_2)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(t_1,t_2) \, \delta(t_1 \cos \theta + t_2 \sin \theta - t) \, dt_1 \, dt_2$$

$$-\infty < t < \infty$$
 $0 \le \theta < \pi$

La función $g(t,\theta)$ es la transformada de Radon de $f(t_1,t_2)$ y es la proyección unidimensional de $f(t_1,t_2)$ en la dirección θ

Respecto del sistema rotado (t,u) $g(t,\theta)$ puede ser expresada como:

$$g(t,\theta) = \int_{-\infty}^{+\infty} f(t\cos\theta - u\sin\theta, t\sin\theta + u\cos\theta) du$$

$$-\infty < t < \infty$$
 $0 \le \theta < \pi$

La funcion $g(t,\theta)$ es denominada suma de rayos dado que representa la suma de $f(t_1,t_2)$ en la dirreccion θ . La transformada de radon mapea el dominio espacial (t_1,t_2) al dominio (t,θ) . Cada punto en el dominio (t,θ) corresponde a una linea en el dominio espacial (t_1,t_2)

Debe notarse que (t, θ) no son las coordenadas polares de (t_1, t_2) .

En efecto si llamamos a (r,θ) a las coordenadas de (t_1,t_2)

$$t_1 = r\cos(\phi)$$
 $t_2 = rsen(\phi)$

Entonces resulta que $s = r \cos(\theta - \phi)$

Esto ultimo nos dice que el punto P se transforma en una senoidal en el plano (t, θ) Entonces resulta que $s = r \cos(\theta - \phi)$

RADON TRANSFORM Obtiene las proyecciones a partir de la imagen

[R,xp] = radon(I,theta);

```
I = zeros(100,100);
I(25:75, 25:75) = 1;
imshow(I)
[R,xp] = radon(I,[0 45]);
figure; plot(xp,R(:,1)); title('R_{0^0} (x\prime)')
```


figure; plot(xp,R(:,2)); title(' R_{45^o} (x\prime)')

RADON TRANSFORM

Para ver la transformación para varios ángulos se suele verlas como una imagen.

```
theta = 0:180;
[R,xp] = radon(I,theta);
imagesc(theta,xp,R);
title('R_{\theta} (X\prime)');
xlabel('\theta (degrees)');
ylabel('X\prime');
set(gca,'XTick',0:20:180);
colormap(hot);
colorbar
```


INVERSE RADON TRANSFORM

Podemos reconstruir la imagen a partir de las proyecciones.

```
IR = iradon(R,theta);
```

```
P = phantom(256);
imshow(P)
```



```
theta1 = 0:10:170; [R1,xp] = radon(P,theta1);
theta2 = 0:5:175; [R2,xp] = radon(P,theta2);
theta3 = 0:2:178; [R3,xp] = radon(P,theta3);
```

figure, imagesc(theta3,xp,R3); colormap(hot); colorbar
xlabel('\theta'); ylabel('x\prime');

INVERSE RADON TRANSFORM

Podemos reconstruir la imagen a partir de las proyecciones.

```
IR = iradon(R,theta);
```

```
I1 = iradon(R1,10);
I2 = iradon(R2,5);
I3 = iradon(R3,2);
imshow(I1)
figure, imshow(I2)
figure, imshow(I3)
```


