

Winning Space Race with Data Science

Christian Gmeiner 19.02.2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection using webscraping and the provided SpaceX API
- Data cleaning and wrangling, exploratory data analysis and visualisazion including a dashboard
- Machine learning predictions and evaluation of different models

Summary of all results

- EDA showed a clear trend of increasing success rate over the past years in starts a s well as landings of reusable booster
- Analysis of the launch sites established KSC LC 39A as most successful location
- ML and evaluation directed us to a decision tree classifier as the best model for predictions

Introduction

The objective is to evaluate the viability of the new company Space Y to compete with Space X.

Expected answers:

- Predicting launch cost based on successful landings and therefor reuse of first stage bosster rockets
- Launchfacility with the highest success rate

Methodology

Executive Summary

- Data collection methodology:
 - Two sources were used Space X API and launch data from Wikipedia
- Perform data wrangling
 - Creating of a landing class columns represented a binary for all possible outcomes
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - · Data was normalized and divides into training and test data
 - Each model was iteratively trained to find the best settings

Data Collection

- Two different methods were used to gather the required date
 - Calls to the Space X API
 - Webscraping with BeautifulSoup
- Objects were parsed accordingly into dataframes and populated with additional data
- Dealt with missing values from API call

Data Collection – SpaceX API

- Getting data from API as response
- https://api.spacexdata.com/v4/launches/p ast
- Normalizing json data into dataframe
- Additional API calls with helper functions to get more descriptive data as dictionary
- Combining everything into DF
- Replacing missing values in Payload mass with mean()
- <u>link</u>

Data Collection - Scraping

Getting response from

https://en.wikipedia.org/w/index.ph p?title=List_of_Falcon_9_and_Falcon Heavy_launches&oldid=1027686922

- Parsing with beautifulSoup
- Extracting header information
- Extracting data into dictionary
- Combining into dataframe
- link

Data Wrangling

- There were eight possible outcomes in Outcome column
- This needed to be cast into a binary form of success and failure for further steps
- The new class column was used for preliminary success rate calculation using mean()
- Overall success rate = 0,66%
- <u>link</u>

EDA with Data Visualization

- Multiple scatter plots were used to show the relationship between different variables
 - To gather insights and see correlation
- A line graph to show the trend of increasing success rate over time
- A bar chart to show numeric relationship between Orbit and success rate

• link

EDA with SQL

Multiple queries were performed to gather insights and additional metrics

- Names of the unique launch sites in the space mission.
- 5 records where launch sites begin with the string 'CCA'
- Total payload mass carried by boosters launched by NASA (CRS).
- Average payload mass carried by booster version F9 v1.1.
- Date of the first successful landing outcome on ground pad.
- Names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
- Total number of successful and failure mission outcomes.
- Names of the booster_versions which have carried the maximum payload mass.
- Records which will display the month names, failure landing_ouutcomes in drone ship, booster versions, launch site for 2015.
- Count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 descending.
- link

Build an Interactive Map with Folium

- Marked the launch sites on map overview
- Created markers for each site showing the outcome as red and green markers
- Measured distances for each site for
 - Coastlines
 - Railways
 - Highways
 - Cities
- link

Build a Dashboard with Plotly Dash

- Added a dropdown menu to select the four different launch sites to filter the charts
- Pie chart for visualizing the success rate
- Slider for payload mass to filter scatter plot and view which booster versions are successful depended on the mass selectes
- Scatter plot with payload mass, success rate and colorcoded booster versions

• link

Predictive Analysis (Classification)

- Data normalization and split into test and train set
- Training models via GridSearchCV to finetune parameters
- Evaluation of models
- Displaying and comparing scores
- Bar chart to visualize the performance of each model type

• link

Results

- While overall mission outcome is very high, 100 out of 101 successful, the landing outcome lies behind with 61 successful out of 101
 - This is due to 22 landings not even attempted
 - Both success rates increased significantly over time
 - First successful recovery was in 2015 five years after the first rocket launch
- 3 out of 4 launch sites are located on the east coast
 - Including the highly successful KSC LC-39A

Results

• The decision tree classifier was

Chosen as the best model for this task

Flight Number vs. Launch Site

- Most launches happen at CCAFS SLC 40
- Significat increase of success rate over time
- KSC LC 39A with the highest success rate

Payload vs. Launch Site

- Maximum payload only achievable at KSC LC 39A and CCAFS SLC 40
- Higher payloads seem to have a higher chance of successful outcome

Success Rate vs. Orbit Type

- Orbits with highest success rate:
 - ES-L1
 - GEO
 - HEO
 - SSO
- Lowest
 - GTO at about 50%

Flight Number vs. Orbit Type

- Increase of success rate to every orbit type over the years
- Some even with 100%

Payload vs. Orbit Type

- Higher payload mass seems to to have a better chance reaching desired orbit
- With the exeption of GTO

Launch Success Yearly Trend

Increasing success rate from 2013 to 2020

All Launch Site Names

• There are four distivt Launch sites in the dataset

%sql SELECT DISTINCT Launch_Site FROM SPACEXTBL;

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

Five entrees of CCAFS LC-40

%%sql SELECT *

FROM SPACEXTBL

WHERE Launch_Site like 'CCA%'

LIMIT 5;

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Sum of payload mass delivered for NASA

%%sql SELECT SUM(PAYLOAD_MASS__KG_)

FROM SPACEXTBL

WHERE Customer = 'NASA (CRS)';

SUM(PAYLOAD_MASS_KG_)

45596

Average Payload Mass by F9 v1.1

Average payload mass delivered by F9 v1.1 booster rocket

```
%%sql SELECT AVG(PAYLOAD_MASS__KG_)
FROM SPACEXTBL
WHERE Booster_Version = 'F9 v1.1';
```

AVG(PAYLOAD_MASS_KG_)
2928.4

First Successful Ground Landing Date

First successful landing on ground pad

%%sql SELECT MIN(Date)

FROM SPACEXTBL

WHERE "Landing _Outcome" = 'Success (ground pad)'

MIN(Date)

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

 Booster versions with successful landings on drone ship with payload between 4000 and 6000 kg

%%sql SELECT Booster_Version

FROM SPACEXTBL

WHERE "Landing _Outcome" = 'Success (drone ship)'

AND PAYLOAD_MASS__KG_ between 4000 and 6000;

Booster_Version F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Total number of mission outcomes

%%sql SELECT Mission_Outcome, count(*)

FROM SPACEXTBL

GROUP BY Mission_Outcome;

Mission_Outcome	count(*)
Failure (in flight)	1
Success	98
Success	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

• Boosters capable of delivering maximum payload

%%sql SELECT Booster_Version, PAYLOAD_MASS__KG_

FROM SPACEXTBL

WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL)

GROUP BY Booster_Version;

Booster_Version	PAYLOAD_MASS_KG_
F9 B5 B1048.4	15600
F9 B5 B1048.5	15600
F9 B5 B1049.4	15600
F9 B5 B1049.5	15600
F9 B5 B1049.7	15600
F9 B5 B1051.3	15600
F9 B5 B1051.4	15600
F9 B5 B1051.6	15600
F9 B5 B1056.4	15600
F9 B5 B1058.3	15600
F9 B5 B1060.2	15600
F9 B5 B1060.3	15600

2015 Launch Records

 Landing_outcomes on drone ship with booster version and launch site name for 2015

%%sql SELECT substr(Date, 4, 2) AS "Month of year", "Landing _Outcome", Booster_Version, Launch_Site

FROM SPACEXTBL

WHERE "Landing _Outcome" = 'Failure (drone ship)'

AND substr(Date, 7, 4) = '2015';

Month of year	Landing _Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Ranking of successful outcomes

%%sql SELECT "Landing _Outcome", count(*)

FROM SPACEXTBL

WHERE Date BETWEEN '2010-06-04' and '2017-03-20"

AND "Landing _Outcome" LIKE 'Success%'

GROUP BY "Landing _Outcome"

ORDER BY count(*) DESC;

count(*)		
5		
5		

Needed to convert the date to datetime - df['Date'] = pd.to_datetime(df['Date']) before df.to_sql for the BETWEEN operation to work properly

Overview location of launch sites

Launch site being on the coasts for safety reasons

Launch outcomes by sites

On the right we have KSC LC-39A with higher success rate indicated by the green markers

Launch site safety and logistics

- All launch sites are near
 coastlines (1-8km)
- Highways and Railways are near as
 well for logistics reasons (1-6km)
- For safety launch sites tend to
 be 14-18km away from cities

Successful Launches by Site

Successrate for all site showing KSC LC 39A is the best option for a successful start

Launch Success Ratio for KSC LC 39A

Further exploration into the success rate of KSC LC 39A showing 76,9 % successful launches

Payload vs. Launch Outcome

FT4 booster with low to moderate payload seems to be a very good setting

Classification Accuracy

 Evaluation of accuracy with training and testing date clearly shows the higher performance of the decision tree classifier

All other models have the same performance

Confusion Matrix

Confusion matrix showing the prediction and actual labels of the data using the decision tree classifier

With one out of 18 misscalculated

Conclusions

- Significant increases in recovery rate of booster since 2015
- To further cut costs of launches, every booster should be tried to recover
 - No attempt should be no option
- Most successful launch site is KSC LC-39A
 - Further invesigation is required for why
 - Focus on this site for future launches
- More focus on successful orbits
 - GEO, HEO, SSO, ES-L1 should be favored

