Intro

• In this video we will take a quick look at other computer vision problems that utilize convolutional networks

We've examined image classification task

We've examined image classification task

Semantic segmentation:

We've examined image classification task

Semantic segmentation:

We've examined image classification task

Semantic segmentation:

Object classification + localization:

We've examined image classification task

Semantic segmentation:

water

duck

grass

Object classification + localization:

We need to classify each pixel

Naïve approach: stack convolutional layers and add per-pixel softmax

We need to classify each pixel

Naïve approach: stack convolutional layers and add per-pixel softmax

We go deep but don't add pooling, too expensive

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Wait a second!
We need to classify each pixel!

Need to do unpooling!

Let's add pooling, which acts like down-sampling

Let's add pooling, which acts like down-sampling

Nearest neighbor unpooling

Fill with nearest neighbor values

Pixelated and not crisp!

Max unpooling

Corresponding pairs of downsampling and upsampling layers

Max unpooling

Corresponding pairs of downsampling and upsampling layers

Remember which element was max during pooling, and fill that position during unpooling:

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Output: 4x4

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Output: 4x4

- Previous approaches are not data-driven!
- We can replace max pooling layer with convolutional layer that has a bigger stride!
- What if we can apply convolutions to do unpooling?

Output: 4x4

We need to find a bounding box to localize an object.

We need to find a bounding box to localize an object.

We will use regression for (x, y, w, h)!

Classification network:

Do we need a second network?

Classification + localization network:

Classification + localization network:

Summary

- In this video we took a sneak peek into other computer vision problems that successfully utilize convolutional neural networks.
- This video concludes our introduction to neural networks for images!