

Model	Tuned Hyperparameters	Optimal Values
Linear regression		<pre>lr = LinearRegression() lr.fit(train_X,train_y) print('Attempting to fit Linear Regressor') Attempting to fit Linear Regressor</pre>

Random Forest		rf = RandomForestRegressor() rf.fit(train_X,train_y) print('Attempting to fit Random Forest Regressor') Attempting to fit Random Forest Regressor
	Model Optimiz	ation and Tuning Phase Report

Date	20 June 2024	
Team ID	739986	
Project Title	Customer Acquisition Cost Estimation Using ML	
Maximum Marks	10 Marks	

Model Optimization and Tuning Phase

In the model optimization and tuning phase for customer acquisition cost estimation using machine learning, split the data, select key hyperparameters (e.g., `estimators`, `max_depth`), and use `Randomized SearchCV` or `GridSearchCV` to identify optimal values. Evaluate performance using metrics like Mean Absolute Error (MAE) or Mean Squared Error (MSE).

Hyperparameter Tuning Documentation (6 Marks):					
Performance Metrics	Comparison Report (2 Marks):				
Model	Optimized Metric				


```
Random Forest
                                             y_pred_val_rf = rf.predict(val_X)
                                            print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_rf))
print("\n")
                                            print('MSE on Validation set :',metrics.mean_squared_error(val_y, y_pred_val_rf))
                                            print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pred_val_rf)))
                                            print("\n")
print("R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_rf))
                                         MAE on Validation set : 0.0925440344201496
                                         MSE on Validation set : 1.7262364914711157
                                         RMSE on Validation set : 0.3042105100422232
                                         R2 Score on Validation set : 0.9980566391348797
Linear Regressor
                                            y_pred_val_lr = lr.predict(val_X)
                                            print('MAE on Validation set :',metrics.mean_absolute_error(val_y, y_pred_val_lr))
print("\n")
print('MSE on Validation set :',metrics.mean_squared_error(val_y, y_pred_val_lr))
                                            print('RMSE on Validation set :',np.sqrt(metrics.mean_absolute_error(val_y, y_pred_val_lr)))
                                            print('R2 Score on Validation set :',metrics.r2_score(val_y, y_pred_val_lr))
                                        MAE on Validation set : 25.212882223695512
                                        MSE on Validation set : 862.7559482129169
                                        RMSE on Validation set : 5.0212430954590825
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
Random Forest Model	The Random Forest model was selected for its superior performance, exhibiting high accuracy. Its ability to handle complex relationships, minimize overfitting, and optimize predictive accuracy aligns with project objectives, justifying its selection as the final model.

