数据探索性分析与数据预处理

数据集一:NFL Play-by-Play 2009-2017

1. 数据摘要

i. 标称属性

以"FirstDown"属性为例,列举出了所有可能的取值,以及对应的频数:

FirstDown

0: 268810 1: 110067 NA: 28811

由于数据量较大,数据结果保存在/NFL Play by Plays/result_NFL_nominal.txt中

ii. 数值属性

以"Home_WP_pre"属性为例,分别给出了非空值数据的个数(count),平均值(mean),方差(std),最小值(min),四分位数(min,25%,50%,75%,max)以及最大值(max)。

Home_WP_pre
count 382734.000000
mean 0.534488
std 0.285574
min 0.000000
25% 0.325123
50% 0.531274
75% 0.769232
max 1.000000

数据结果保存在/NFL Play by Plays/result_NFL_numerical.txt中2数据可视化

针对数值属性,

绘制直方图,用 qq 图检验其分布是否为正态分布。

直方图如下所示:

qq 图如下所示:

由各个属性的 qq 图可以看出,属性 ExpPts 和 EPA 满足正态分布

绘制盒图,对离群值进行识别 盒图如下所示:

从各个属性的盒图观察可得,属性

PlayTimeDiff, ydstogo, ydsnet, GoalToGo, Yards.Gained, sp, Touchdown, Safety, Onsi dekick, AirYards, YardsAfterCatch, QBHit, Interception

Thrown、Reception、Fumble、Sack、Challenge.Replay、Accepted.Penalty、Penalty.Yards、PosTeamScore、DefTeamScore、ScoreDiff、AbsScoreDiff、Timeout_Indicator、posteam_timeouts_pre、HomeTimeouts_Remaining_pre、AwayTimeouts_Remaining_pre、HomeTimeouts_Remaining_pre、No_Score_prob、Opp_Field_Goal_prob、Opp_Safety_prob、Field_Goal_prob、Safety_prob、Touchdown_prob、Expoint_prob、Two Point_prob、ExpPts、EPA、airEPA、yacEPA、WPA、airWPA、yacWPA存在离群值

2. 数据缺失

i. 数据缺失原因

观察数据集中缺失的数据,原因主要是:

ii. 处理缺失数据

剔除缺失部分(绿色) vs 用最高频率值来填补缺失值(蓝色),下面都以属性"TimeUnder"为例

对于数值属性,可以通过计算协方差矩阵,来判断数据之间的相似度,利用属性的相关关系来填补缺失值。下图截取部分协方差矩阵值,观察可以发现,"Drive"属性和"qtr"属性相关系数为 0.91,二者之间的正相关性很高,因此当其中一个数据缺失时,可以使用另一个数据值进行填充。同理,"TimeSecs"属性和"Drive"、"qtr"属性之间的负相关性很高,它们之间也可以相互填补缺失值。

	GameID	Drive	qtr	down	TimeUnder	TimeSecs
GameID	1.000000	-0.016707	0.000594	-0.003281	-0.007028	-0.002367
Drive	-0.016707	1.000000	0.917050	-0.006638	-0.249329	-0.942744
qtr	0.000594	0.917050	1.000000	0.009883	-0.032128	-0.964949
down	-0.003281	-0.006638	0.009883	1.000000	-0.021469	-0.015410
TimeUnder	-0.007028	-0.249329	-0.032128	-0.021469	1.000000	0.292694
TimeSecs	-0.002367	-0.942744	-0.964949	-0.015410	0.292694	1.000000

数据集二:San Francisco Building Permits

- 1. 数据摘要
- i. 标称属性

以"Permit Type Definition"属性为例,列举出了所有可能的取值,以及对应的频数:

{'otc alterations permit': 178844, 'new construction wood frame': 950,

'sign - erect': 2892,

'additions alterations or repairs': 14663,

'grade or quarry or fill or excavate': 91,

'demolitions': 600,

'new construction': 349,

'wall or painted sign': 511}

ii. 数值属性

以"Existing Construction Type"属性为例,分别给出了非空值数据的个数(count),平均值(mean),方差(std),最小值(min),四分位数(min,25%,50%,75%,max)以及最大值(max)。

Existing Construction Type

count 155534.000000

mean 4.072878

std 1.585756

min 1.000000

25% 3.000000

50% 5.000000

75% 5.000000

7.570 5.000000

max 5.000000

2 数据可视化

针对数值属性,

绘制直方图,用 qq 图检验其分布是否为正态分布。

直方图如下所示:

由各个属性的 qq 图可以看出, 无属性满足正态分布

绘制盒图,对离群值进行识别 盒图如下所示:

从各个属性的盒图观察可得,属性Permit Type、Street Number、Unit、Number of Existing Stories、Number of Proposed Stories、Estimated Cost、Revised Cost、Existing Units、Proposed Units、Plansets、Zipcode、Record ID存在离群值

- 3. 数据缺失
- i. 数据缺失原因

观察数据集中缺失的数据,原因主要是:

ii. 处理缺失数据

剔除缺失部分(黄色) vs 用最高频率值来填补缺失值(粉色), Number of Existing Stories为例

对于数值属性,可以通过计算协方差矩阵,来判断数据之间的相似度,利用属性的相关关系来填补缺失值。下图截取部分协方差矩阵值,观察可以发现,"Number of Existing Stories"属性和"Number of Proposed Stories"属性相关系数为 0.99,二者之间的相关性很高,因此当其中一个数据缺失时,可以使用另一个数据值进行填充。同理,"Estimated Cost"属性和"Revised Cost"属性之间的相关系数为 0.97,也可以相互填补缺失值。

	Permit Type	Street Number	Unit	Number of Existing Stories	Number of Proposed Stories	Estimated Cost	Revised Cost
Permit Type	1.000000	-0.002281	0.031978	0.057106	0.055431	-0.120878	-0.120083
Street Number	-0.002281	1.000000	-0.040662	-0.218557	-0.215047	-0.011152	-0.010828
Unit	0.031978	-0.040662	1.000000	0.167038	0.168811	-0.009094	-0.007559
Number of Existing Stories	0.057106	-0.218557	0.167038	1.000000	0.997356	0.030248	0.039181
Number of Proposed Stories	0.055431	-0.215047	0.168811	0.997356	1.000000	0.050336	0.049165
Estimated Cost	-0.120878	-0.011152	-0.009094	0.030248	0.050336	1.000000	0.978798
Revised Cost	-0.120083	-0.010828	-0.007559	0.039181	0.049165	0.978798	1.000000