

SEQUENCE LISTING

<110> Crooke, Stanley T.
 Lima, Walter
 Wu, Hongjiang

<120> Methods of Using Mammalian RNase H and Compositions Thereof

<130> ISPH-0520

<140> US/09/781,712

<141> 2001-02-12

<150> US 09/684,254

<151> 2000-10-06

<150> US 09/343,809

<151> 1999-06-30

<150> US 09/203,716

<151> 1998-12-02

<150> US 60/067,458

<151> 1997-12-04

<160> 39

<170> PatentIn version 3.0

<210> 1

<211> 299

<212> PRT

<213> Homo sapiens

<400> 1

Met Asp Leu Ser Glu Leu Glu Arg Asp Asn Thr Gly Arg Cys Arg Leu

1 10 15

Ser Ser Pro Val Pro Ala Val Cys Arg Lys Glu Pro Cys Val Leu Gly 20 25 30

Val Asp Glu Ala Gly Arg Gly Pro Val Leu Gly Pro Met Val Tyr Ala 35 40 45

Ile Cys Tyr Cys Pro Leu Pro Arg Leu Ala Asp Leu Glu Ala Leu Lys 50 55 60

Val Ala Asp Ser Lys Thr Leu Leu Glu Ser Glu Arg Glu Arg Leu Phe
65 70 75 80

Ala Lys Met Glu Asp Thr Asp Phe Val Gly Trp Ala Leu Asp Val Leu 85 90 95

Ser Pro Asn Leu Ile Ser Thr Ser Met Leu Gly Trp Val Lys Tyr Asn 100 105 110

Leu Asn Ser Leu Ser His Asp Thr Ala Thr Gly Leu Ile Gln Tyr Ala 115 120 125

Leu Asp Gln Gly Val Asn Val Thr Gln Val Phe Val Asp Thr Val Gly 130 135 140

Met Pro Glu Thr Tyr Gln Ala Arg Leu Gln Gln Ser Phe Pro Gly Ile 145 150 155 160

Glu Val Thr Val Lys Ala Lys Ala Asp Ala Leu Tyr Pro Val Val Ser 165 170 175

Ala Ala Ser Ile Cys Ala Lys Val Ala Arg Asp Gln Ala Val Lys Lys 180 185 190

Trp Gln Phe Val Glu Lys Leu Gln Asp Leu Asp Thr Asp Tyr Gly Ser 195 200 205

Gly Tyr Pro Asn Asp Pro Lys Thr Lys Ala Trp Leu Lys Glu His Val 210 215 220

Glu Pro Val Phe Gly Phe Pro Gln Phe Val Arg Phe Ser Trp Arg Thr 225 230 235 240

Ala Gln Thr Ile Leu Glu Lys Glu Ala Glu Asp Val Ile Trp Glu Asp 245 250 255

Ser Ala Ser Glu Asn Gln Glu Gly Leu Arg Lys Ile Thr Ser Tyr Phe 260 265 270

Leu Asn Glu Gly Ser Gln Ala Arg Pro Arg Ser Ser His Arg Tyr Phe 275 280 285

Leu Glu Arg Gly Leu Glu Ser Ala Thr Ser Leu 290 295

<210> 2

<211> 128

<212> PRT

<213> Mus sp.

<400> 2

Met Asp Leu Ser Glu Leu Glu Arg Asp Asn Thr Gly Arg Cys Arg Leu 1 5 10 15

Ser Ser Pro Val Pro Ala Val Cys Leu Lys Glu Pro Cys Val Leu Gly

Val Asp Glu Ala Gly Arg Gly Pro Val Leu Gly Pro Met Val Tyr Ala 35 40 45

Ile Cys Tyr Cys Pro Leu Ser Arg Leu Ala Asp Leu Glu Ala Leu Lys 50 55 60

Val Ala Asp Ser Lys Thr Leu Thr Glu Asn Glu Arg Glu Arg Leu Phe 65 70 75 80

Ala Lys Met Glu Glu Asp Gly Asp Phe Val Gly Trp Ala Leu Asp Val . 85 90 95

Leu Ser Pro Asn Leu Ile Ser Thr Ser Met Leu Gly Arg Val Lys Tyr 100 105 110

Asn Leu Asn Ser Leu Ser His Asp Thr Ala Ala Gly Leu Ile Gln Tyr 115 120 125

<210> 3

<211> 307

<212> PRT

<213> Caenorhabditis elegans

<400> 3

Ser Lys Thr Val Lys Tyr Phe Ile Glu Arg Met Ser Leu Lys Cys Glu 1 5 15

Thr Glu Arg Ser Lys Thr Trp Asn Asn Phe Gly Asn Gly Ile Pro Cys 20 25 30

Val Leu Gly Ile Asp Glu Ala Gly Arg Gly Pro Val Leu Gly Pro Met 35 40 45

Val Tyr Ala Ala Ile Ser Pro Leu Asp Gln Asn Val Glu Leu Lys 50 55 60

Asn Leu Gly Val Asp Asp Ser Lys Ala Leu Asn Ġlu Ala Lys Arg Glu 65 70 75 80

Glu Ile Phe Asn Lys Met Asn Glu Asp Glu Asp Ile Gln Gln Ile Ile 85 90 95

Ala Tyr Ala Leu Arg Cys Leu Ser Pro Glu Leu Ile Ser Cys Ser Met
100 105 110

Leu Lys Arg Gln Lys Tyr Ser Leu Asn Glu Val Ser His Glu Ala Ala 115 120 125

Ile Thr Leu Ile Arg Asp Ala Leu Ala Cys Asn Val Asn Val Glu 130 135 140

Ile Lys Val Asp Thr Val Gly Pro Lys Ala Thr Tyr Gln Ala Lys Leu 145 150 155 160 Glu Lys Leu Phe Pro Gly Ile Ser Ile Cys Val Thr Glu Lys Ala Asp 165 170 175

Ser Leu Phe Pro Ile Val Ser Ala Ala Ser Ile Ala Ala Lys Val Thr 180 185 190

Arg Asp Ser Arg Leu Arg Asn Trp Gln Phe Arg Glu Lys Asn Ile Lys 195 200 205

Val Pro Asp Ala Gly Tyr Gly Ser Gly Tyr Pro Gly Asp Pro Asn Thr 210 215 220

Lys Lys Phe Leu Gln Leu Ser Val Glu Pro Val Phe Gly Phe Cys Ser 225 230 235 240

Leu Val Arg Ser Ser Trp Lys Thr Ala Ser Thr Ile Val Glu Lys Arg 245 250 . 255

Cys Val Pro Gly Ser Trp Glu Asp Asp Glu Glu Glu Gly Lys Ser Gln 260 265 270

Ser Lys Arg Met Thr Ser Trp Met Val Pro Lys Asn Glu Thr Glu Val 275 280 285

Val Pro Lys Arg Asn Met Glu Ile Asn Leu Thr Lys Ile Val Ser Thr 290 295 300

Leu Phe Leu 305

<210> 4

<211> 307

<212> PRT

<213> Saccharomyces cerevisiae

<400> 4

Met Val Pro Pro Thr Val Glu Ala Ser Leu Glu Ser Pro Tyr Thr Lys
1 10 15

Ser Tyr Phe Ser Pro Val Pro Ser Ala Leu Leu Glu Gln Asn Asp Ser 20 25 30

Pro Ile Ile Met Gly Ile Asp Glu Ala Gly Arg Gly Pro Val Leu Gly 35 40 45

Pro Met Val Tyr Ala Val Ala Tyr Ser Thr Gln Lys Tyr Gln Asp Glu 50 55 60

Thr Ile Ile Pro Asn Tyr Glu Phe Asp Asp Ser Lys Lys Leu Thr Asp 65 70 75 80

Pro Ile Arg Arg Met Leu Phe Ser Lys Ile Tyr Gln Asp Asn Glu Glu 85 90 95

Leu Thr Gln Ile Gly Tyr Ala Thr Thr Cys Ile Thr Pro Leu Asp Ile

100 105 110

Ser Arg Gly Met Ser Lys Phe Pro Pro Thr Arg Asn Tyr Asn Leu Asn 115 This Republic Re

Gln Asn Val Lys Leu Ser His Val Tyr Val Asp Thr Val Gly Pro Pro 145 150 155 160

Ala Ser Tyr Gln Lys Leu Glu Gln Arg Phe Pro Gly Val Lys Phe 165 170 175

Thr Val Ala Lys Lys Ala Asp Ser Leu Tyr Cys Met Val Ser Val Ala 180 185 190

Ser Val Val Ala Lys Val Thr Arg Asp Ile Leu Val Glu Ser Leu Lys 195 200 205

Arg Asp Pro Asp Glu Ile Leu Gly Ser Gly Tyr Pro Ser Asp Pro Lys 210 215 220

Thr Val Ala Trp Leu Lys Arg Asn Gln Thr Ser Leu Met Gly Trp Pro 225 230 235 240

Ala Asn Met Val Arg Phe Ser Trp Gln Thr Cys Gln Thr Leu Leu Asp 245 250 255

Asp Ala Ser Lys Asn Ser Ile Pro Ile Lys Trp Glu Glu Gln Tyr Met 260 265 270

Asp Ser Arg Lys Asn Ala Ala Gln Lys Thr Lys Gln Leu Gln Leu Gln 275 280 285

Met Val Ala Lys Pro Val Arg Arg Lys Arg Leu Arg Thr Leu Asp Asn 290 295 300

Trp Tyr Arg 305

<210> 5

<211> 198

<212> PRT

<213> Escherichia coli

<400> 5

Met Ile Glu Phe Val Tyr Pro His Thr Gln Leu Val Ala Gly Val Asp 1 5 10 15

Glu Val Gly Arg Gly Pro Leu Val Gly Ala Val Val Thr Ala Ala Val 20 25 30

Ile Leu Asp Pro Ala Arg Pro Ile Ala Gly Leu Asn Asp Ser Lys Lys 35 40 45

Leu Ser Glu Lys Arg Arg Leu Ala Leu Tyr Glu Glu Ile Lys Glu Lys
50 55 60

Ala Leu Ser Trp Ser Leu Gly Arg Ala Glu Pro His Glu Ile Asp Glu 65 70 75 80

Leu Asn Ile Leu His Ala Thr Met Leu Ala Met Gln Arg Ala Val Ala 85 90 95

Gly Leu His Ile Ala Pro Glu Tyr Val Leu Ile Asp Gly Asn Arg Cys100 105 110

Pro Lys Leu Pro Met Pro Ala Met Ala Val Val Lys Gly Asp Ser Arg 115 120 125

Val Pro Glu Ile Ser Ala Ala Ser Ile Leu Ala Lys Val Thr Arg Asp 130 135 140

Ala Glu Met Ala Ala Leu Asp Ile Val Phe Pro Gln Tyr Gly Phe Ala 145 150 155 160

Gln His Lys Gly Tyr Pro Thr Ala Phe His Leu Glu Lys Leu Ala Glu 165 170 175

His Gly Ala Thr Glu His His Arg Arg Ser Phe Gly Pro Val Lys Arg 180 185 190

Ala Leu Gly Leu Ala Ser 195

<210> 6

<211> 286

<212> PRT

<213> Homo sapiens

<300>

<302> Human Type 2 RNase H

<309>

<310> US/09/203,726

<311> 1998-12-02

<312> 1999-12-14

<400> 6

Met Ser Trp Leu Leu Phe Leu Ala His Arg Val Ala Leu Ala Ala Leu 1 5 10 15

Pro Cys Arg Arg Gly Ser Arg Gly Phe Gly Met Phe Tyr Ala Val Arg 20 25 30 Arg Gly Arg Lys Thr Gly Val Phe Leu Thr Trp Asn Glu Cys Arg Ala 35 40 45

Gln Val Asp Arg Phe Pro Ala Ala Arg Phe Lys Lys Phe Ala Thr Glu 50 55 60

Asp Glu Ala Trp Ala Phe Val Arg Lys Ser Ala Ser Pro Glu Val Ser 65 70 75 80

Glu Gly His Glu Asn Gln His Gly Gln Glu Ser Glu Ala Lys Pro Gly
85 90 95

Lys Arg Leu Arg Glu Pro Leu Asp Gly Asp Gly His Glu Ser Ala Gln
100 105 110

Pro Tyr Ala Lys His Met Lys Pro Ser Val Glu Pro Ala Pro Pro Val 115 120 125

Ser Arg Asp Thr Phe Ser Tyr Met Gly Asp Phe Val Val Val Tyr Thr 130 135 140

Asp Gly Cys Cys Ser Ser Asn Gly Arg Arg Lys Pro Arg Ala Gly Ile 145 150 155 160

Gly Val Tyr Trp Gly Pro Gly His Pro Leu Asn Val Gly Ile Arg Leu 165 170 175

Pro Gly Arg Gln Thr Asn Gln Arg Ala Glu Ile His Ala Ala Cys Lys 180 185 190

Ala Ile Glu Gln Ala Lys Thr Gln Asn Ile Asn Lys Leu Val Leu Tyr 195 200 205

Thr Asp Ser Met Phe Thr Ile Asn Gly Ile Thr Asn Trp Val Gln Gly 210 215 220

Trp Lys Lys Asn Gly Trp Lys Thr Ser Ala Gly Lys Glu Val Ile Asn 225 230 235 240

Lys Glu Asp Phe Val Ala Leu Glu Arg Leu Thr Gln Gly Met Asp Ile 245 250 255

Gln Trp Met His Val Pro Gly His Ser Gly Phe Ile Gly Asn Glu Glu 260 265 270

Ala Asp Arg Leu Ala Arg Glu Gly Ala Lys Gln Ser Glu Asp 275 285

<210> 7

<211> 286

<212> PRT

<213> Homo sapiens

<300>

<301> Wu et al.

<302> Molecular Cloning and Expression of cDNA for Human RNase H

<303> Antisense Nucleic Acid Drug Design

<304> 8

<305> 1

<306> 53-61

<307> 1998-02-08

<308> AF039652

<309> 1998-04-02

<400> 7

Met Ser Trp Leu Leu Phe Leu Ala His Arg Val Ala Leu Ala Ala Leu 1 5 10 15

Pro Cys Arg Arg Gly Ser Arg Gly Phe Gly Met Phe Tyr Ala Val Arg 20 25 30

Arg Gly Arg Lys Thr Gly Val Phe Leu Thr Trp Asn Glu Cys Arg Ala . 35 40 45

Gln Val Asp Arg Phe Pro Ala Ala Arg Phe Lys Lys Phe Ala Thr Glu 50 55 60

Asp Glu Ala Trp Ala Phe Val Arg Lys Ser Ala Ser Pro Glu Val Ser 65 70 75 80

Glu Gly His Glu Asn Gln His Gly Gln Glu Ser Glu Ala Lys Ala Ser 85 90 95

Lys Arg Leu Arg Glu Pro Leu Asp Gly Asp Gly His Glu Ser Ala Glu 100 105 110

Pro Tyr Ala Lys His Met Lys Pro Ser Val Glu Pro Ala Pro Pro Val 115 120 125

Ser Arg Asp Thr Phe Ser Tyr Met Gly Asp Phe Val Val Val Tyr Thr 130 135 140

Asp Gly Cys Cys Ser Ser Asn Gly Arg Arg Pro Arg Ala Gly Ile 145 150 155 160

Gly Val Tyr Trp Gly Pro Gly His Pro Leu Asn Val Gly Ile Arg Leu 165 170 175

Pro Gly Arg Gln Thr Asn Gln Arg Ala Glu Ile His Ala Ala Cys Lys 180 185 190

Ala Ile Glu Gln Ala Lys Thr Gln Asn Ile Asn Lys Leu Val Leu Tyr 195 200 205

Thr Asp Ser Met Phe Thr Ile Asn Gly Ile Thr Asn Trp Val Gln Gly 210 215 220

Trp Lys Lys Asn Gly Trp Lys Thr Ser Ala Gly Lys Glu Val Ile Asn 225 230 235 240

Lys Glu Asp Phe Val Ala Leu Glu Arg Leu Thr Gln Gly Met Asp Ile 245 250 255

Gln Trp Met His Val Pro Gly His Ser Gly Phe Ile Gly Asn Glu Glu 260 265 270

Ala Asp Arg Leu Ala Arg Glu Gly Ala Lys Gln Ser Glu Asp 275 280 285

<210> 8

<211> 286

<212> PRT

<213> Homo sapiens

<300>

<301> Cerritelli and Crouch

<302> Cloning, Expression and Mapping of Ribonucleases H of Human and Mouse Related to Bacterial RNase HI

<303> Genomics

<304> 53

<305> 3

<306> 300-307

<307> 1998-11-01

<400> 8

Met Ser Trp Phe Leu Phe Leu Ala His Arg Val Ala Leu Ala Ala Leu 1 5 10 15

Pro Cys Arg Arg Gly Ser Arg Gly Phe Gly Met Phe Tyr Ala Val Arg 20 25 30

Arg Gly Arg Lys Thr Gly Val Phe Leu Thr Trp Asn Glu Cys Arg Ala 35 40 45

Gln Val Asp Arg Phe Pro Ala Ala Arg Phe Lys Lys Phe Ala Thr Glu
50 60

Asp Glu Ala Trp Ala Phe Val Arg Lys Ser Ala Ser Pro Glu Val Ser 65 70 75 80

Glu Gly His Glu Asn Gln His Gly Gln Glu Ser Glu Ala Lys Ala Ser

Lys Arg Leu Arg Glu Pro Leu Asp Gly Asp Gly His Glu Ser Ala Glu 100 105 110 Pro Tyr Ala Lys His Met Lys Pro Ser Val Glu Pro Ala Pro Pro Val 115 120 125

(algorith)

Ser Arg Asp Thr Phe Ser Tyr Met Gly Asp Phe Val Val Val Tyr Thr 130 135 140

Asp Gly Cys Cys Ser Ser Asn Gly Arg Arg Pro Arg Ala Gly Ile 145 150 155 160

Gly Val Tyr Trp Gly Pro Gly His Pro Leu Asn Val Gly Ile Arg Leu 165 170 175

Pro Gly Arg Gln Thr Asn Gln Arg Ala Glu Ile His Ala Ala Cys Lys 180 185 190

Ala Ile Glu Gln Ala Lys Thr Gln Asn Ile Asn Lys Leu Val Leu Tyr 195 200 205

Thr Asp Ser Met Phe Thr Ile Asn Gly Ile Thr Asn Trp Val Gln Gly 210 215 220

Trp Lys Lys Asn Gly Trp Lys Thr Ser Ala Gly Lys Glu Val Ile Asn 225 230 235 240

Lys Glu Asp Phe Val Ala Leu Glu Arg Leu Thr Gln Gly Met Asp Ile 245 250 255

Gln Trp Met His Val Pro Gly His Ser Gly Phe Ile Gly Asn Glu Glu 260 265 270

Ala Asp Arg Leu Ala Arg Glu Gly Ala Lys Gln Ser Glu Asp 275 280 285

<210> 9

<211> 286

<212> PRT

<213> Homo sapiens

<300>

<301> Frank, Braunshofer-Reiter, Poltl and Holzmann

<302> Cloning, Subcellular Localization and Functional Expression of Human RNase HII

<303> Biol. Chem.

<304> 379

<305> 99

<306> 1407-1412

<307> 1998-12-01

Met Ser Trp Leu Leu Phe Leu Ala His Arg Val Ala Leu Ala Ala Leu 1 5 10 15

Pro Cys Arg Arg Gly Ser Arg Gly Phe Gly Met Phe Tyr Ala Val Arg 20 25 30

Arg Gly Arg Lys Thr Gly Val Phe Leu Thr Trp Asn Glu Cys Arg Ala 35 40 45

Gln Val Asp Arg Phe Pro Ala Ala Arg Phe Lys Lys Phe Ala Thr Glu 50 55 60

Asp Glu Ala Trp Ala Phe Val Arg Lys Ser Ala Ser Pro Glu Val Ser 65 70 75 80

Glu Gly His Glu Asn Gln His Gly Arg Glu Ser Glu Ala Lys Ala Ser 85 90 95

Lys Arg Leu Arg Glu Pro Leu Asp Gly Asp Gly His Glu Ser Ala Glu 100 105 110

Pro Tyr Ala Lys His Met Lys Pro Ser Val Glu Pro Ala Pro Pro Val 115 120 125

Ser Arg Asp Thr Phe Ser Tyr Met Gly Asp Phe Val Val Val Tyr Thr 130 135 140

Asp Gly Cys Cys Ser Ser Asn Gly Arg Arg Arg Pro Arg Ala Gly Ile 145 150 155 160

Gly Val Tyr Trp Gly Pro Gly His Pro Leu Asn Val Gly Ile Arg Leu 165 170 175

Pro Gly Arg Gln Thr Asn Gln Arg Ala Glu Ile His Ala Ala Cys Lys 180 185 190

Ala Ile Glu Gln Ala Lys Thr Gln Asn Ile Asn Lys Leu Val Leu Tyr 195 200 205

Thr Asp Ser Met Phe Thr Ile Asn Gly Ile Thr Asn Trp Val Arg Gly
210 215 220

Trp Lys Lys Asn Gly Trp Lys Thr Ser Ala Gly Lys Glu Val Ile Asn 225 230 235 240

Lys Glu Asp Phe Val Ala Leu Glu Arg Leu Thr Gln Gly Met Asp Ile 245 250 255

Gln Trp Met His Val Pro Gly His Ser Gly Phe Ile Gly Asn Glu Glu 260 265 270

Ala Asp Arg Leu Ala Arg Glu Gly Ala Lys Gln Ser Glu Asp 275 280 285

<210> 10

<211> 299

<212> PRT

<300>

<301> Frank, Braunshofer-Reiter, Wintersberger, Grimm and Busen

<302> Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII

and the group of the engineering against

<303> Proc. Natl. Acad. Sci. USA

<304> 95

<305> 22

<306> 12872-12877

<307> 1998-10-27

<400> 10

Met Asp Leu Ser Glu Leu Glu Arg Asp Asn Thr Gly Arg Cys Arg Leu 1 5 10 15

Ser Ser Pro Val Pro Ala Val Cys Arg Lys Glu Pro Cys Val Leu Gly 20 25 30

Val Asp Glu Ala Gly Arg Gly Pro Val Leu Gly Pro Met Val Tyr Ala 35 40 45

Ile Cys Tyr Cys Pro Leu Pro Arg Leu Ala Asp Leu Glu Ala Leu Lys 50 55 60

Val Ala Asp Ser Lys Thr Leu Leu Glu Ser Glu Arg Glu Arg Leu Phe 70 75 80

Ala Lys Met Glu Asp Thr Asp Phe Val Gly Trp Ala Leu Asp Val Leu 85 90 95

Ser Pro Asn Leu Ile Ser Thr Ser Met Leu Gly Arg Val Lys Tyr Asn 100 105 110

Leu Asn Ser Leu Ser His Asp Thr Ala Thr Gly Leu Ile Gln Tyr Ala 115 120 125

Leu Asp Gln Gly Val Asn Val Thr Gln Val Phe Val Asp Thr Val Gly 130 135 140

Met Pro Glu Thr Tyr Gln Ala Gln Leu Gln Gln Ser Phe Pro Gly Ile 145 150 155 160

Glu Val Thr Val Lys Ala Lys Ala Asp Ala Leu Tyr Pro Val Val Ser 165 170 175

Ala Ala Ser Ile Cys Ala Lys Val Ala Arg Asp Gln Ala Val Lys Lys 180 185 190

Trp Gln Phe Val Glu Lys Leu Gln Asp Leu Asp Thr Asp Tyr Gly Ser

195 200 205

Gly Tyr Pro Asn Asp Pro Lys Thr Lys Ala Trp Leu Lys Glu His Val 210 215 220

Glu Pro Val Phe Gly Phe Pro Gln Phe Val Arg Phe Ser Trp Arg Thr 225 230 235 240

Ala Gln Thr Ile Leu Glu Lys Glu Ala Glu Asp Val Ile Trp Glu Asp 245 . 250 . 255

Ser Ala Ser Glu Asn Gln Glu Gly Leu Arg Lys Ile Thr Ser Tyr Phe 260 265 270

Leu Asn Glu Gly Ser Gln Ala Arg Pro Arg Ser Ser His Arg Tyr Phe 275 280 285

Leu Glu Arg Gly Leu Glu Ser Ala Thr Ser Leu 290 295

<210> 11

<211> 285

<212> PRT

<213> Mus sp.

<300>

<301> Cerritelli and Crouch

<302> Cloning, Expression and Mapping of Ribonucleases H of Human and Mouse Related to Bacterial RNase HI

<303> Genomics

<304> 53

<305> 3

<306> 300-307

<307> 1998-11-01

<400> 11

Met Arg Trp Leu Leu Pro Leu Ser Arg Thr Val Thr Leu Ala Val 1 10 15

Arg Leu Arg Arg Gly Ile Cys Gly Leu Gly Met Phe Tyr Ala Val Arg 20 25 30

Arg Gly Arg Arg Thr Gly Val Phe Leu Ser Trp Ser Glu Cys Lys Ala

Gln Val Asp Arg Phe Pro Ala Ala Arg Phe Lys Lys Phe Ala Thr Glu

Asp 65	Glu	Ala	Trp	Ala	Phe 70	Val	Arg	Ser	Ser	Ser 75	Ser	Pro	Asp	Gly	Ser 80
Lys	Gly	Gln	Glu	Ser 85	Ala	His	Glu	Gln	Lys 90	Ser	Gln	Ala	Lys	Thr 95	Ser
Lys	Arg	Pro	Arg 100	Glu	Pro	Leu	Gly	Glu 105	Gly	Glu	Glu	Leu	Pro 110	Glu	Pro
Gly	Pro	Lys 115	His	Thr	Arg	Gln	Asp 120	Thr	Glu	Pro	Ala	Ala 125	Val	Val	Ser
Lys	Asp 130	Thr	Phe	Ser	Tyr	Met 135	Gly	Glu	Ser	Val	Ile 140	Val	Tyr	Thr	Asp
Gly 145	Cys	Cys	Ser	Ser	Asn 150	Gly	Arg	Lys	Arg	Ala 155	Arg	Ala	Gly	Ile	Gly 160
Val	Tyr	Trp	Gly	Pro 165	Gly	His	Pro	Leu	Asn 170	Val	Gly	Ile	Arg	Leu 175	Pro
Gly	Arg	Gln	Thr 180	Asn	Gln	Arg	Ala	Glu 185	Ile	His	Ala	Ala	Cys 190	Lys	Ala
Ile	Met	Gln 195	Ala	Lys	Ala	Gln	Asn 200	Ile	Ser	Lys	Leu	Val 205	Leu	Tyr	Thr
Asp	Ser 210	Met	Phe	Thr	Ile	Asn 215	Gly	Ile	Thr	Asn	Trp 220	Val	Gln	Gly	Trp
Lys 225	Lys	Asn	Gly	Trp	Arg 230	Thr	Ser	Thr	Gly	Lys 235	Asp	Val	Ile	Asn	Lys 240
Glu	Asp	Phe	Met	Glu 245	Leu	Asp	Glu	Leu	Thr 250	Glņ	Gly	Met	Asp	Ile 255	Gln
Trp	Met	His	Ile 260	Pro	Gly	His	Ser	Gly. 265	Phe	Val	Gly	Asn 	Glu 270	Glu	Ala
Asp	Arg	Leu 275	Ala	Arg	Glu	Gly	Ala 280	Lys	Gln	Ser	Glu	Asp 285			
<210	>	12					••				•	***		•	
<211	.>	1131				. : : :						*			
<212	>	DNA													
<213	> :	Homo	sapi	ens											

c400> 12
cgcgcctgca gtattagttc ttgcagctgg tggtggcgc tgaggcggca tggatctcag 60
cgagctggag agagacaata caggccgctg tcgcctgagt tcgcctgtgc ccgcggtgtg 120
ccgcaaggag ccttgcgtcc tgggcgtcga tgaggcgggc aggggccccg tgctgggccc 180

<210> 13

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Sense primer

<400> 13 agcaggcgcc gcttcgaggc

20

<210> 14

<211> 26

<212> DNA

<213> Artificial

<220>			
<223>	Sense primer		
<400> cccgct	14 cctg cagtattagt tcttgc		26
<210>	15		
<211>	25		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	Sense primer		
<400> ttgcag	15 ctgg tggtggcggc tgagg		25
<210>	16		
<211>	26		
<212>	DNA		
<213>	Artificial		
222			
<220>			
	Antisense primer		
<400> tccaata	16 aggg tetttgagte tgecae	gia. S	26
	<u></u>		
<210>	17 25		
<211>			
<212>	DNA		
<213>	Artificial		
		· -	
<220>			
<223>	Antisense primer		
	10	•	

cactttcagc gcctccagat ctgcc

25

```
<211>
      26
<212> DNA
<213> Artificial
<220>
<223> Antisense primer
<400> 18
                                                                      26
gcgaggcagg ggacaataac agatgg
<210>
      19
<211>
      17
<212> DNA
<213> Artificial
<220>
<223> Ras RNA fragment for use in RNase H cleaving assay
<400> 19
                                                                      17
gggcgccgtc ggtgtgg
<210>
      20
<211>
      20
<212>
      DNA
<213> Artificial
<220>
<223> Antisense oligonucleotide
<400> 20
                                                                      20
cgcctcagcc gccaccacca
<210>
      21
<211> 20
<212>
      DNA
```

<210>

18

<213> Artificial

<220> <223> Antisense oligonucleotide <400> 21 20 cacaggcgaa ctcaggcgac <210> 22 20 <211> <212> DNA Artificial <213> <220> <223> Antisense oligonucleotide <400> 22 20 ggacaataac agatggcgta <210> 23 <211> 20 DNA <212> <213> Artificial <220> <223> Antisense oligonucleotide <400> 23 20 cccgctcgct ctccaatagg <210> 24 <211> 20 <212> DNA Artificial <213> <220> <223> Antisense oligonucleotide

<400>

24

į

cccago	cgac aaagtccgtg	20
<210>	25	-
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> cggtgt	25 ccac gaatacctgg	20
<210>	26	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> cgcgcc	26 tggt atgtctctgg	20
<210>	27	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> ggtaga	27 gggc atctgctttg	20
<210>	28	
<211>	20	

<211>

<212> DNA <213> Artificial <220> <223> Antisense oligonucleotide <400> 28 ccaccttggc acagatgctg <210> 29 <211> 20 <212> DNA <213> Artificial <220> <223> Antisense oligonucleotide <400> 29 cagtttctcc acgaattgcc <210> 30 <211> 20 <212> DNA <213> Artificial <220> <223> Antisense oligonucleotide <400> 30 ttttgtcttg ggatcattgg <210> 31 <211> 20

20

20

20

<220>

<212> DNA

<213> Artificial

<223>	Antisense Oligonacieotide	
<400> agctga	31 accg gacaaactgg	20
<210>	32	
<211>	20	
<212>	DNA	-
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> cctctt	32 tete caggatggte	20
<210>	33	
<211>	20	•
<212>	DNA	
<213>	Artificial	
<220>	-	
<223>	Antisense oligonucleotide	
<400> actccag	33 ggcc gcgttccagg	20
<210>	34	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	^
<400> cctacgt	34 tgtg gttctcctta	20
<210>	35	

<211>	20	
<212>	DNA	
<213>	Artificial	
•		
<220>		
<223>	Antisense oligonucleotide	
<400> gcacac	35 tece acettgette	20
<210>	36	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> caaaag	36 gaag tagctggacc	20
<210>	37	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Antisense oligonucleotide	
<400> aaacaa	37 tttt aatgtctggg	2
<210>	38	
<211>	20	
<212>	DNA	

Artificial

<220>	
<223>	Antisense oligonucleotide
<400> aatttt	38 aatg totgggttgg
<210>	39
<211>	20
<212>	DNA .
<213>	Artificial
<220>	
<223>	Antisense oligonucleotide
<400>	39