Dénombrement

Abdallah Khemais

Axione il viste un I ensemble vide mote

Vocabulaires:

14/09/2025

1 Rappel sur les ensembles

Ensemble :=	urt	une	collect	<u>7</u> 251√	d 06	iets.
Ensamble := 5= { 1/12,3	Y :	(2)	ert lin él	lene	M V	LE) E

	Notations	Vocabulaire	Notations	Vocabulaire
4	→ Ø	ensemble vide	$A \cup B$	réunion de A et B
	(Ω)	ensemble plein (mmnid	$A \cap B$	intersection de A et B
	<u></u> {ω}	singleton de Ω	A - B	intersection de A et \overline{B}
	· A C _ C	Σ partie de Ω	$A \cap B = \emptyset$	A et B sont disjoints
	$\omega \in A$	ω appartient à A	$A \subseteq B$	A est inclus dans B
	\overline{A}	complémentaire de A dans Ω	$A \times B$	produit cartésien de A et B

	6	$\neg \mathcal{L}_{x}$	P	(1))
Définition		A =	= {a	h }	B

Ensemble	Définition	$A = \{a, b\}, B = \{b, c\}, \Omega = \{a, b, c\}$
\overline{A}	$\{x\in\Omega;x\notin A\}$	$\{c\}$
$A \cup B$	$\{x \in \Omega; x \in A \text{ ou } x \in B\}$	$\{a,b,c\}$
$A \cap B$	$\{x \in \Omega; x \in A \text{ et } x \in B\}$	$\{b\}$
A-B	$\{x \in \Omega; x \in A \text{ et } x \notin B\}$	\rightarrow $\{a\}$
$A \times B$	$\{(x,y); x \in A \text{ et } y \in B\}$	$\{(a,b),(a,c),(b,b),(b,c)\}$

Opérations :

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

ADB = BDA
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cap C) \cup (B \cap C),$$

$$(A \cap B) \cup C = (A \cap C) \cup (B \cap C),$$

$$(A \cap B) \cup C = (A \cap C) \cup (B \cap C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (A \cup C) \cap (B \cup C),$$

$$(A \cap B) \cup C = (A \cup C) \cap (A \cup C) \cap (A \cup C),$$

$$(A \cap C) \cup C = (A \cup C) \cap (A \cup C) \cap (A \cup C),$$

$$(A \cap C) \cup C = (A \cup C) \cap (A \cup C),$$

$$(A \cap$$

$$\bigcap_{n} \bigcap_{k=1}^{n} \bigcap_{n} \bigcap_{k=1}^{n} \bigcap_{k=1}^{n} (A_{k} \cup B).$$

$$\frac{\mathcal{X} \circ \mathcal{W}}{\mathcal{D} \circ \mathcal{W}} = \frac{\overline{\mathcal{A}} \circ \overline{\mathcal{B}}}{\overline{\mathcal{A}} \circ \overline{\mathcal{B}}}, \quad \overline{A \cap B} = \overline{A} \circ \overline{B}, \quad \overline{A \cap B} = \overline{A} \circ \overline{B}, \quad \overline{A} \circ \overline{B} = \overline{A} \circ \overline{B} = \overline{A} \circ \overline{B}, \quad \overline{A} \circ \overline{B} = \overline{A} \circ \overline{B} = \overline{A} \circ \overline{B}, \quad \overline{A} \circ \overline{B} = \overline{$$

Partition:

 $(A_k)_{k\in\{1,\dots,n\}}$ partition de $\Omega\iff (A_k)_{k\in\{1,\dots,n\}}$ disjoints deux à deux et $\bigcup_{k=1}^n A_k=\Omega$.

Cardinal:

Le nombre des éléments d'un ensemble fini A est appelé cardinal de A. Il est noté Card(A).

Formule du crible (à l'ordre 2):

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B).$$

Propriétés:

$$\begin{split} \operatorname{Card}(\emptyset) &= 0, \quad A \cap B = \emptyset \Rightarrow \operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B), \\ \operatorname{Card}(\overline{A}) &= \operatorname{Card}(\Omega) - \operatorname{Card}(A), \quad \operatorname{Card}(A) = \operatorname{Card}(A \cap B) + \operatorname{Card}(A \cap \overline{B}), \\ \operatorname{Card}(A - B) &= \operatorname{Card}(A) - \operatorname{Card}(A \cap B), \quad A \subseteq B \Rightarrow \operatorname{Card}(A) \leq \operatorname{Card}(B), \\ \operatorname{Card}(A \times B) &= \operatorname{Card}(A) \operatorname{Card}(B). \end{split}$$

2 Principes combinatoires

Principe additif:

On considère une situation qui nous amène à faire un choix parmi n cas différents et exclusifs : le cas 1, ou le cas 2. . . , ou le cas n. Si, pour tout $k \in \{1, \ldots, n\}$, il y a u_k possibilités pour le k-ème cas, alors le nombre total de possibilités est $\sum_{k=1}^{n} u_k$.

Principe multiplicatif:

On considère une situation conjuguant k étapes : une étape 1, et une étape 2. . . ., et une étape k. Si, pour tout $i \in \{1, ..., k\}$, il y a n_i possibilités pour la k-ème étape, alors le nombre total de possibilités est

$$\prod_{i=1}^k n_i.$$

Principe du quotient

Le **principe du quotient** permet de compter en divisant quand plusieurs configurations différentes correspondent au même résultat final à cause de répétitions ou de symétries.

Liste, Arrangement, Permutation, Combinaison

Liste: Liste ordonnée d'éléments avec répétitions.

 $\begin{array}{l} \textbf{Arrangement}: \text{Liste ordonn\'ee d'éléments sans r\'ep\'etition.} \\ \textbf{Permutation}: \text{Arrangement de } n \text{ \'eléments parmi } n. \end{array}$

Combinaison: Partie d'un ensemble; l'ordre n'est pas pris en compte.

Exemple:

choix de 2 éléments parmi $\Omega = \{a,b,c\}$:

Choix	avec répétition	sans répétition	
avec ordre	Listes:	Arrangements:	
	(a,a) (a,b) (a,c)	(a,b) (a,c)	
	(b,a) (b,b) (b,c)	(b,a) (b,c)	
	(c,a) (c,b) (c,c)	(c,a) (c,b)	
	9	6	
sans ordre	Combinaisons avec répétitions :	Combinaisons:	
	[a,a] [a,b] [a,c]	${a,b} {a,c} {b,c}$	
	$[b,b] \ [b,c] \ [c,c]$	3	
	6		

Exemple:

Les permutations des éléments des 3 éléments de Ω sont : (a,b,c), (b,a,c), (a,c,b), (b,c,a), (c,a,b), (c,b,a). Il y en a 6.

Nombre de Liste

Le nombre de listes possibles de k éléments parmi n est n^k .

et -> x

1) combien y atil de Code à 5 chiffres. at 5 chiffus et qui pont des palindrems 00000 10023 00011 93993 < 105 = 100 000 100000 R 00000 00100 12321 en choisit enchoisit on chain't le z Uni Mya 10×10 ×10 polindinos for i'm transports of the transports of the state of the transports of the transport

Factorielle:

On appelle factorielle n l'entier :

$$n! = 1 \times 2 \times \ldots \times (n-1) \times n = \prod_{i=1}^{n} i.$$

On pose 0! = 1.

Nombre de permutations :

Le nombre de permutations de n éléments est n!.

3 Applications des principes

Nombre d'arrangements :

On appelle nombre d'arrangements "k parmi n " l'entier :

$$A_n^k = \frac{n!}{(n-k)!}.$$

C'est le nombre d'arrangements possibles de k éléments parmi n.

Coefficient binomial:

On appelle coefficient binomial "k parmi n" l'entier :

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Si $k \notin \{0, \dots, n\}$, on pose $\binom{n}{k} = 0$.

Nombre de combinaisons :

Le nombre de combinaisons possibles de k éléments parmi n est $\binom{n}{k}$.

Formule des arrangements avec objets identiques

Arrangement avec répétition

Soit un ensemble de N objets où :

- $-n_1$ objets sont identiques de type 1
- $-n_2$ objets sont identiques de type 2
- __ :
- n_k objets sont identiques de type k

avec
$$N = n_1 + n_2 + \dots + n_k$$
.

Formule

Formule principale Le nombre d'arrangements distincts est donné par :

$$A = \frac{N!}{n_1! \cdot n_2! \cdot \ldots \cdot n_k!}$$

Notation produit

Avec notation produit

$$A = \frac{N!}{\prod_{i=1}^{k} n_i!}$$

Notation multinomiale

Avec coefficient multinomial

$$A = \binom{N}{n_1, n_2, \dots, n_k} = \frac{N!}{n_1! n_2! \cdots n_k!}$$

Exemple

Pour N = 5 avec $n_1 = 2$ (objets A), $n_2 = 2$ (objets B), $n_3 = 1$ (objet C):

$$A = \frac{5!}{2! \cdot 2! \cdot 1!} = \frac{120}{2 \cdot 2 \cdot 1} = 30$$

Application aux Anagrammes

Anagramme

Une anagramme est une permutation des lettres d'un mot ou d'une phrase qui forme un nouveau mot ou une nouvelle phrase, en utilisant toutes les lettres exactement une fois.

Caractéristiques fondamentales

- Même multiset de lettres : Les deux mots doivent contenir exactement les mêmes lettres
- Ordre différent : L'ordre des lettres doit être modifié
- Longueur identique : Le nombre total de lettres reste le même

Exemples classiques

 $\mathbf{CHIEN} \to \mathbf{NICHE}$

 $\mathbf{LOUPE} \to \mathrm{POULE}$

 $\mathbf{MARIE} \to \mathrm{AIMER}$

 $\mathbf{ORANGE} \to \mathbf{ONAGRE}, \, \mathbf{ORGANE}$

CHÉRIE → ECHIRE, RÉCHIE

Approche mathématique et Formule

Le nombre d'anagrammes d'un mot de N lettres avec des répétitions est donné par le coefficient multinomial :

$$A = \frac{N!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!} = \binom{N}{n_1, n_2, \dots, n_k}$$

où:

--N: nombre total de lettres

— n_i : nombre d'occurrences de chaque lettre distincte

— k : nombre de lettres différentes

Cas particulier : toutes les lettres différentes

Si toutes les lettres sont distinctes $(n_i = 1 \text{ pour tout } i)$, la formule se simplifie :

$$A = N!$$

Exemple

Pour le mot "ABCD" (4 lettres différentes) :

$$A=4!=4\times 3\times 2\times 1=24$$
 anagrammes

Cas général : avec répétitions

Quand certaines lettres se répètent, le nombre d'anagrammes diminue :

$$A = \frac{N!}{\prod n_i!}$$

Exemple

Pour le mot "BALLON" :

- B : 1 fois
- A:1 fois
- L : 2 fois
- O:1 fois
- N : 1 fois

$$A = \frac{6!}{1! \cdot 1! \cdot 2! \cdot 1! \cdot 1!} = \frac{720}{2} = 360$$
 anagrammes

MISSISSIPPI

Lettres: M, I, S, S, I, S, S, I, P, P, I

Fréquence : M(1), I(4), S(4), P(2)

$$N = 11$$

$$A = \frac{11!}{1! \cdot 4! \cdot 4! \cdot 2!} = \frac{39916800}{24 \times 24 \times 2} = 34650$$

Remarque

Plus un mot contient de lettres répétées, moins il a d'anagrammes distincts. Les anagrammes représentent les **permutations avec répétition** d'un multiset.

4- Combinaisons avec répétition

Combinaisons avec répétition

Les **combinaisons avec répétition** permettent de compter le nombre de façons de choisir k objets parmi n types différents, avec la possibilité de sélectionner plusieurs fois le même type d'objet.

Formule

Le nombre de façons de choisir k objets parmi n types différents, avec la possibilité de sélectionner plusieurs fois le même type d'objet est donnée par :

$$\binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$$

Cette formule correspond au nombre de combinaisons de k objets parmi n avec répétition autorisée.

Exemples d'application

1. Choix de bonbons : Dans un magasin proposant n=5 parfums différents, le nombre de façons de choisir k=3 bonbons (en pouvant prendre plusieurs fois le même parfum) est :

$$\binom{5+3-1}{3}=\binom{7}{3}=35$$

2. Composition de glaces : Pour une glace avec k=2 boules choisies parmi n=4 parfums (répétition autorisée), le nombre de possibilités est :

$$\binom{4+2-1}{2} = \binom{5}{2} = 10$$

3. Solutions entières d'équations : Le nombre de solutions entières non négatives de l'équation $x_1 + x_2 + x_3 = 5$ est :

$$\binom{3+5-1}{5} = \binom{7}{5} = 21$$

où x_i représente le nombre d'occurrences du type i.

4. **Distributions identiques** : Répartir k = 6 livres identiques parmi n = 4 personnes (une personne peut recevoir plusieurs livres) :

$$\binom{4+6-1}{6} = \binom{9}{6} = 84$$

Différence avec les combinaisons simples

— Combinaisons simples : Pas de répétition, ordre sans importance

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

— Combinaisons avec répétition : Répétition autorisée, ordre sans importance

$$\binom{n+k-1}{k}$$

Interprétation combinatoire

Les combinaisons avec répétition correspondent au nombre de multisets de taille k formés à partir de n éléments différents, ou au nombre de solutions entières non négatives de l'équation $x_1+x_2+\cdots+x_n=k$.

8