STA302 / STA1001 Midterm Test Dept of Statistical Sciences, University of Toronto 24 October 2017, LEC0101: Professor Mark Ebden

First Name:	Surname:	Student number:
Test location:	OI G162 X UC 266	UC 273
Your course:	STA302 (undergraduate)	STA1001 (graduate)

Instructions:

• Time allowed: 105 minutes

• Answer all questions, in pen or pencil

• Aids allowed: You are allowed a nonprogrammable calculator

Question	Value
1	7
2	10
3	20
4	14
5	6
Total	57

This test should have eight pages including this page

Notation: This test uses the regular notation from class and from Simon Sheather's textbook:

$$Y_i = \beta_0 + \beta_1 x_i + e_i$$

You may assume in this test that a "small" dataset (for the purposes of the aid sheet formulae) has about 200 or fewer data points.

1. Warmup questions (7 marks)

- [a] (1 mark) In R, for vector y what is the command to take its transpose to the power of 0.7?
- [b] (2 marks) Write a single R command to evaluate at x = 8 the cumulative distribution function for a $\chi_5^2(x)$, saving the result as p.
- [c] (4 marks) Show that $\sum_{i=1}^{n} \hat{e}_i \hat{y}_i = 0$. You may or may not choose to use $\sum_{i=1}^{n} \hat{e}_i x_i = 0$ in your proof.

- **2.** Multiple choice and True/false $(5 \times 2 = 10 \text{ marks})$
- I. Suppose you have numerical variables $\{Z, W\}$ in your global environment in R. Which of the following R commands will correctly fit the SLR model $E(Z) = \beta_0 + \beta_1 W$?
 - $A. fit(Z \sim W)$
 - $B. lm(Z \sim W)$
 - C. fit(W ~ Z)
 - $D. lm(W \sim Z)$
- II. True / false: A Type II error is when we incorrectly reject the null hypothesis.
 - True False
- III. Which of the following is *not* one of the Gauss-Markov conditions?
 - A. The e_i 's are independent of each other
 - B. $\mathbb{E}(e_i) = 0$
 - C. $var(e_i) = constant$ for all i
 - D. None of the above
- IV. Multiple linear regression is an example of a remedial measure in which case?
 - A. A point exists with DFBETA > 1
 - B. You suspect an important predictor variable Z is missing from your analysis.
 - C. A log transformation of the data has failed to work as intended.
 - D. None of the above is likely to be an appropriate case.
- V. You perform a two-sample t-test and get a p-value of 0.012. You then use the same data to fit a linear regression model with dummy variable $X \in \{0,1\}$ as we did in class. Using confidence level $\alpha = 0.05$:
 - A. If $H_0: \beta_0 = 0$, you would necessarily reject the null hypothesis.
 - B. If $H_0: \beta_1 = 0$, you would necessarily reject the null hypothesis.
 - C. Neither of the above is certain.

3. R code (20 marks) In the Toronto Public Library system, there are n = 100 libraries, each of which provides a shelf for users to pick up books they have reserved (placed on Hold).

For the *i*th library, let x_i represent the number of Holds available for pickup in 2014, and let y_i represent the number of Holds available for pickup in 2015.

The R^2 between x and y is approximately 0.95. Consider the following code and output.

```
x<-X$Holds2014; y<-X$Holds2015
par(mfrow=c(2,2))
plot(lm(y~x))</pre>
```


[a] (6 marks) Explaining your answer, is there evidence for the data containing:[i] Outliers
[ii] Leverage points
[iii] Influential points
[b] (6 marks) In the first plot, Residuals vs Fitted, suppose the rightmost data point is removed and the linear regression is rerun. Which of the following quantities will change by a substantial (> 1%) amount? In such cases, indicate the direction of the change. [i] The slope, $\hat{\beta}_1$
[ii] The mean square error, S^2
[iii] The coefficient of determination, \mathbb{R}^2
[c] (3 marks) Assess the assumption of constant variance in the model error term, e_i .
[d] (3 marks) Assess the assumption of normal errors.
[e] (2 marks) Identify briefly two remedial measures you might take, explaining why.1.2.
2.

4. R code (14 marks) Consider the following code and output.

```
x \leftarrow seq(1,5); y \leftarrow c(1,-1,3,5,9)

summary(lm(y\sim x))
```

```
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
        2
             3 4
##
    1
   2.0 [A] -0.4 -0.6 1.2
##
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
                           -1.608 0.2062
## (Intercept)
               -3.20
## x
                 2.20
                            [B]
                                 3.667 0.0351 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.897 on [C] degrees of freedom
## Multiple R-squared: 0.8176, Adjusted R-squared: 0.7568
## F-statistic: [D] on 1 and DF, p-value: [E]
```

I. $(5 \times 2 \text{ marks})$ Find the five missing values, [A] through [E]. You do not need to show your work.

$$[A] = \underline{\hspace{1cm}} [B] = \underline{\hspace{1cm}}$$

$$[C] = \underline{\hspace{1cm}} [D] = \underline{\hspace{1cm}}$$

$$[E] = \underline{\hspace{1cm}}$$

II. (2 marks) What is the fitted regression line? You do not need to show your work.

III. (2 marks) In the line beginning (Intercept), what is the null hypothesis?

5. Theory (6 marks) Derive the formula for $cov(\hat{\beta}_0, \hat{\beta}_1)$ given on the aid sheet. You may use any other formulae except those whose derivations require knowing $cov(\hat{\beta}_0, \hat{\beta}_1)$. As usual, you can assume that a value of $X = x^*$ is fixed/given, implicitly.

This aid sheet will be provided to you along with your test, on the day. (You can't bring your own copy to the test.)

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2, \qquad S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}), \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}$$

$$\operatorname{var}(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right], \qquad \operatorname{var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \qquad \operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\sigma^2 \bar{x}}{S_{xx}}$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = b_1^2 \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} \hat{e}_i^2, \qquad \operatorname{SSReg} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2, \qquad F_{\text{obs}} = \frac{\operatorname{MSReg}}{\operatorname{MSE}}$$

$$\operatorname{var}(\hat{y}^*) = \sigma^2 \left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right], \qquad \operatorname{var}(Y^* - \hat{y}^*) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{S_{xx}} \right]$$

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sum_{i=1}^{n} (y_i - \bar{y})^2}, \qquad h_{ij} = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{S_{xx}}$$

$$\operatorname{DFBETA}_{ik} = \frac{\hat{\beta}_k - \hat{\beta}_{k(i)}}{s.e. \text{ of } \hat{\beta}_{k(i)}}, \qquad \operatorname{DFFITS}_i = \frac{\hat{y}_i - \hat{y}_{i(i)}}{s.e. \text{ of } \hat{y}_{i(i)}}, \qquad D_i = \frac{\sum_{j=1}^{n} (\hat{y}_{j(i)} - \hat{y}_j)^2}{2S^2} = \frac{r_i^2 h_{ii}}{2(1 - h_{ii})}$$

$$\operatorname{where} S^2 = \operatorname{MSE} = \frac{\operatorname{RSS}}{n-2} \text{ and } r_i = \frac{\hat{e}_i}{S\sqrt{1 - h_{ii}}}.$$

Criteria for ordinary data points on small datasets: $r_i < 2$, $h_{ii} < 4/n$, DFBETA < 1, DFFITS < 1, $D_i < 1$