Mean and Range Charts

Data Science for Quality Management: Xbar and R / Xbar and S charts / X and MR charts

with Wendy Martin

Learning objectives:

Calculate Control Limits for the X Bar and R Chart

Estimate the standard deviation from the R chart

Control Limit Formulas

$$UCL_R = D_4 \overline{R}$$

$$LCL_R = D_3 \overline{R}$$

$$UCL_{\bar{X}} = \bar{\bar{X}} + A_2 \bar{R}$$
$$LCL_{\bar{X}} = \bar{\bar{X}} - A_2 \bar{R}$$

Control Chart Constants

 Derived from the random sampling distribution of ranges (specifically, the mean and standard deviation, d₂ and d₃) for a standard normal distribution and a specific subgroup sample size (n)

Mean(X)SD(X)

Individual Values

- Subgroup Averages
- Mean(\overline{X}) • SD(\overline{X})

- Subgroup Ranges
- Mean(R)SD(R)

Mean(X)SD(X)

Individual Values

Subgroup Averages

• Mean(X) = Mean
$$(\overline{X})$$

•
$$SD(\overline{X}) = \frac{SD(X)}{\sqrt{n}}$$

$\overline{X} = 10$

Individual Values

Subgroup Averages

 $\overline{\overline{X}} \cong 10$

Subgroup Ranges
$$\overline{R} \cong 4.10 \quad SD(R) = \frac{d_3 \overline{R}}{d_2}$$

1000

400

Frequency

Control Limits

Natural Process Limits

$\overline{\overline{X}} \pm 3 \frac{\overline{R}}{d_2 \sqrt{n}}$

Control Limits $\overline{R} \pm 3 \frac{d_3 \overline{R}}{d_3}$

Control Limit Formulas - Range

$$UCL_R = D_4 \overline{R} \qquad \qquad D_4 = 1 + 3 \frac{d_3}{d_2}$$

$$LCL_R = D_3 \overline{R}$$

$$D_3 = 1 - 3 \frac{d_3}{d_2}$$

$$\bar{R} \pm 3 \frac{d_3 \bar{R}}{d_2}$$

Control Limit Formulas - Mean

$$UCL_{\bar{X}} = \bar{\bar{X}} + A_2\bar{R}$$

$$LCL_{\bar{X}} = \bar{\bar{X}} - A_2\bar{R}$$

$$A_2 = \frac{3}{d_2 \sqrt{n}}$$

$$\bar{\bar{X}} \pm 3 \frac{\bar{R}}{d_2 \sqrt{n}}$$

Control Chart Constants

n	A ₂	D_3	D ₄	d ₂	d ₃	C ₄
2	1.880	None	3.267	1.128	0.853	0.7979
3	1.023	None	2.574	1.693	0.888	0.8862
4	0.729	None	2.282	2.059	0.880	0.9213
5	0.577	None	2.115	2.326	0.864	0.9400
6	0.483	None	2.004	2.534	0.848	0.9515
7	0.419	0.076	1.924	2.704	0.833	0.9594
8	0.373	0.136	1.864	2.847	0.820	0.9650
9	0.337	0.184	1.816	2.970	0.808	0.9693
10	0.308	0.223	1.777	3.078	0.797	0.9727
11	0.285	0.256	1.744	3.173	0.787	0.9754
12	0.266	0.283	1.717	3.258	0.778	0.9776
13	0.249	0.307	1.693	3.336	0.770	0.9794
14	0.235	0.328	1.672	3.407	0.763	0.9810
15	0.223	0.347	1.653	3.472	0.756	0.9823

Control Limit Calculations

$$UCL_R = 2.115(0.0076) = 0.0161$$

 $LCL_R = none$

$$UCL_{\bar{X}} = 1.0410 + 0.577(0.0076) = 1.0454$$

 $LCL_{\bar{X}} = 1.0410 - 0.577(0.0076) = 1.0366$

Sources

The material used in the PowerPoint presentations associated with this course was drawn from a number of sources. Specifically, much of the content included was adopted or adapted from the following previously-published material:

- Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982
- Luftig, J. Advanced Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1984.
- Luftig, J. A Quality Improvement Strategy for Critical Product and Process Characteristics. Luftig & Associates, Inc. Farmington Hills, MI, 1991
- Luftig, J. Guidelines for Reporting the Capability of Critical Product Characteristics. Anheuser-Busch Companies, St. Louis, MO. 1994
- Spooner-Jordan, V. Understanding Variation. Luftig & Warren International, Southfield, MI 1996
- Luftig, J. and Petrovich, M. Quality with Confidence in Manufacturing. SPSS, Inc. Chicago, IL 1997
- Littlejohn, R., Ouellette, S., & Petrovich, M. Black Belt Business Improvement Specialist Training, Luftig & Warren International, 2000
- Ouellette, S. Six Sigma Champion Training, ROI Alliance, LLC & Luftig & Warren, International, Southfield, MI 2005