Задача 1. Пусть b(x) = sign x. Опишите все решения уравнения непрерывности

$$\partial_t \mu_t + \partial_x (b\mu_t) = 0,$$

которые удовлетворяют условию $\mu_0 = \delta_0$.

Задача 2. В условиях предыдущей задачи выясните, к каким из решений μ_t слабо сходятся меры μ_t^{ε} при $\varepsilon \to 0$, где μ_t^{ε} являются решениями уравнений

$$\partial_t \mu_t^{\varepsilon} = \varepsilon \partial_x^2 \mu_t^{\varepsilon} - \partial_x (b \mu_t^{\varepsilon})$$

с начальным условием $\mu_0^{\varepsilon} = \delta$. Можно использовать без обоснование известный факт, что при t>0 меры μ_t^{ε} обладают непрерывной плотностью $\varrho^{\varepsilon}(x,t)$ относительно меры Лебега.

Задача 3. Пусть $b \in C(\mathbb{R})$ и вероятностная мера ν имеет компактный носитель. Докажите, что если для решения μ_t уравнения непрерывности $\partial_t \mu_t + \partial_x (b\mu_t) = 0$ с начальным условием $\mu_0 = \nu$ выполняется принцип суперпозиции, то найдется такое $\tau > 0$, что μ_t имеет компактный носитель при всех $t \in (0, \tau)$. В качестве дополнительного (не является обязательным) задания постройте пример, когда принцип суперпозиции не выполняется.

Задача 4. Пусть $a \in \mathbb{R}$. Найдите решение задачи Коши

$$\partial_t \mu_t + \partial_x \Big(b(x, \mu) \Big), \quad \mu_0 = \delta_a.$$

где

$$b(x,\mu) = \int x \, d\mu.$$

Задача 5. Найдите функцию

$$u(x,t) = \inf_{\alpha} g(y_x(T)),$$

где $\dot{y}_x(s) = \alpha(s), y_x(t) = x, \alpha \in [-1,1]$ и $g(x) = \arctan x$. Исследуйте непрерывность и дифференцируемость функции u.

Задача 6. Пусть q – липшицева ограниченная функция на \mathbb{R} . Проверьте, что функция

$$u(x,t) = \inf_{y} \left\{ \frac{|x-y|^2}{2t} + g(y) \right\}$$

является вязкостным решением уравнения $u_t + \frac{|u_x|^2}{2} = 0$ на $(0,T) \times \mathbb{R}$. Проверьте, что это единственное вязкостное ограниченное равномерно непрерывное решение этого уравнения с начальным условием u(x,0) = g(x). Постройте пример g, когда u не является непрерывно дифференцируемым.

Задача 7. Пусть $A = \{1, 2, \dots, K\}$ и всякая вероятностная мера m на A отождествляется с точкой (m_1,\ldots,m_K) симплекса Δ , определенного соотношениями: $m_i\geq 0$ и $m_1+\ldots+m_d=$ 1. Пусть G — дифференцируемая функция на \mathbb{R}^K и $F(j,m)=\partial_{x_k}G(m)$. Докажите, что мера μ является решением задачи MFG: $\mathrm{sp}\mu\subset\{a\colon F(a,m)=\min_{b\in A}F(b,m)\}$ тогда и только тогда, когда μ является точкой локального минимума функции G на Δ .

Задача 8. Пусть A = [0,1] и

$$F(a,\mu) = a \int_A a \, d\mu.$$

Найдите все решения задачи MFG: $\mathrm{sp}\mu\subset\{a\colon F(a,m)=\min_{b\in A}F(b,m)\}$. Какие из этих решений являются предельными точками равновесий Нэша при $N \to +\infty$ в игре N игроков с множеством стратегий А и функциями штрафа

$$J_k(a_1, \dots, a_N) = F(a_k, \mu^N), \quad \mu^N = \frac{1}{N} (\delta_{a_1} + \dots + \delta_{a_N}).$$

Задача 9. Пусть функция $g_N : [0,1]^N \to \mathbb{R}$ симметрична, т.е.

$$g_N(a_1, a_2, \dots, a_N) = g_N(a_{\sigma(1)}, \dots, a_{\sigma(N)})$$

для всякой перестановки σ . Предположим, что $|g_N(a)| \leq C_1$ для всех a и N и имеет место оценка

$$|g_N(a) - g_N(b)| \le C_2 d_{KR}(\mu_a^N, \mu_b^N),$$

где d_{KR} — метрика Канторовича-Рубинштейна,

$$\mu_a^N = \frac{1}{N}(\delta_{a_1} + \dots + \delta_{a_N}), \quad \mu_b^N = \frac{1}{N}(\delta_{b_1} + \dots + \delta_{b_N}),$$

 $a = (a_1, \dots, a_N), \quad b = (b_1, \dots, b_N).$

Докажите, что найдется подпоследовательность N_k и непрерывная функция G на $\mathcal{P}([0,1])$, с которыми выполняется равенство

$$\lim_{k \to \infty} \sup_{a \in [0,1]^N} |g_{N_k}(a) - G(\mu_a^{N_k})| = 0.$$

Приведите примеры таких функций g_N и G. (Указание: построить G в виде предельной функции для последовательности $G_N(\mu) = \inf_{a \in [0,1]^N} \Big\{ g_N(a) + C_2 d_{KR}(\mu_a^N, \mu) \Big\}$.)