Tutorat mathématiques : TD3 Université François Rabelais

Département informatique de Blois

Mathématiques générales

* *

Problème 1

Les énoncés sont indépendants.

- 1. Démontrer que n est pair $\Leftrightarrow n^2$ est pair.
- 2. Démontrer que 0 n'a pas d'inverse dans \mathbb{K} . ($\mathbb{K} \subseteq \mathbb{C}$)

Problème 2

Le théorème de Cantor énonce le résultat suivant :

Théorème de Cantor - Pour tout ensemble E fini ou infini, il n'existe pas de bijection entre E et l'ensemble des parties $\mathcal{P}(E)$.

- 1. Montrer q'il existe une injection de E vers $\mathcal{P}(E)$.
- 2. On considère la partie $A \in \mathcal{P}(E)$ telle que $A = \{x \in E | x \notin \varphi(x)\}$, soit l'ensemble des éléments de E qui n'appartiennent pas à leur propre image par la fonction $\varphi : E \to \mathcal{P}(E)$. Montrer que φ n'est pas surjective puis conclure.

Problème 3

Soit $(u_n)_{n\in\mathbb{N}}$, une suite réelle.

- 1. Écrire en langage mathématique les assertions suivantes :
 - (a) (P): la suite (u_n) est croissante.
 - (b) (Q): la suite (u_n) est majorée par 2.
- 2. On suppose (P) et (Q) vraies; qu'en déduisez-vous pour (u_n) ?
- 3. On considère l'assertion suivante :

$$(R): \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, |u_n - 2| \leq \varepsilon$$

- 4. Que peut-on dire de la suite (u_n) ?
 - (a) Donner un exemple de suite réelle vérifiant (R).
 - (b) Écrire en langage mathématique l'assertion $\neg(R)$.

Problème 4

Soit f la fonction qui à un complexe z associe, lorsque c'est possible :

$$f(z) = \frac{z^2}{z - 2i}$$

- 1. Déterminer le domaine de définition D_f de f.
- 2. Déterminer les racines carrées complexes de 8-6i. En déduire les antécédents de 1+i par f.
- 3. Soit h, un complexe. Discuter selon les valeurs de h le nombre d'antécédents de h par f.
- 4. Déterminer $f(D_f)$. La fonction est-elle une application surjective de D_f dans \mathbb{C} ?
- 5. f est-elle une application injective de D_f dans \mathbb{C} ?

Problème 5

On rappelle que $\mathbb{N} = \{0, 1, 2, 3, ...\}$ est l'ensemble des entiers naturels. On note $\operatorname{card}(\mathbb{N}) = \infty$. \mathbb{N} est un ensemble infini dénombrable.

On peut prouver que deux ensembles E et F ont le même cardinal s'il existe une bijection f entre eux.

$$\operatorname{card}(E) = \operatorname{card}(F) \Leftrightarrow (\exists f \in F^E | \forall y \in F, \exists ! x \in E, f(x) = y)$$

Par exemple, pour montrer que $\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{Z})$. Il nous suffit de créer la fonction $f: \mathbb{N} \to \mathbb{Z}$ telle que $f(n) = \begin{cases} -\frac{n}{2} & \text{si } n \text{ est pair} \\ \frac{n+1}{2} & \text{si } n \text{ est impair} \end{cases}$

- 1. Montrer que f réalise bien une bijection de \mathbb{N} vers \mathbb{Z} .
- 2. Soit $E = \{-1, 0, 1, 2, 3, ...\} = \mathbb{N} \cup \{-1\}$. Montrer que $card(E) = card(\mathbb{N})$.

Problème 6

- 1. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ telle que f(x) = |x+1|.
 - (a) Représenter graphiquement la courbe \mathcal{C} associée à f dans le plan \mathbb{R}^2 .
 - (b) Calculer les ensembles $f([-3,2]), f(\{-2\}), f^{-1}(\{1\})$ et $f^{-1}([-5,2])$.
 - (c) L'application f est-elle injective? Surjective? Bijective?
- 2. On considère de plus l'application $g: \mathbb{R} \to \mathbb{R}$ tel que g(x) = |x-1|.
 - (a) Résoudre dans \mathbb{R} l'équation $g \circ f(x) = 1$. On rappelle que $g \circ f(x) = g(f(x))$.
 - (b) Représenter graphiquement l'application $g \circ f$ dans le plan \mathbb{R}^2 .

Problème 7

Soit l'application $f: E \to F$ définie telle que $f(x) = x^2$.

- 1. Donner deux ensembles E et F tels que f soit injective mais non surjective.
- 2. Donner deux ensembles E et F tels que f soit non injective mais surjective.
- 3. Donner deux ensembles E et F tels que f soit ni injective ni surjective.
- 4. Donner deux ensembles E et F tels que f soit bijective.