RNA-seq: Experimental Design and Differential Expression Analysis

Jinliang Yang
PostDoc Scholar
Jeffrey R-I lab
Feb. 23, 2015

RNA-seq Outline

- Overview of RNA-seq Experiment
- Experimental Design
- Sequencing
- Data Analysis (Differential Expression)

Overview of RNA-seq Experiment

RNA-seq: A Toy Example

RNA-seq: Source of Variance

- Biological variance
 - Treatment effect (WT vs. Mut)
 - Difference between two plants
- Technical variance
 - RNA isolation difference
 - Sequencing library preparation difference
 - Sequencing difference
- Sampling variance
 - Sampling issue

Experimental Design: Control Source of Variance

Sampling variance is the inherent nature of a counting experiment

Sampling 10⁷ Molecules

1000 molecules / 109 in total

Sequencing depth is critical

Sampling 10⁸ Molecules

Technical Replication

Technical replication refers to sequencing multiple libraries derived from the same biological sample

	RNA and Lib Preparation	Sequencing
Mannanan	Protocol 1 Protocol 2	Sequencer 1 Sequencer 2
Mission of the second	Protocol 1 Protocol 2	Sequencer 1 Sequencer 2

Technical differences are not limited to above factors. WHO, WHEN and HOW can all be considered as the source of tech variance.

Biological Replication

Biological replication refers to sequencing libraries derived from the different biological individuals or tissues.

Sample		RNA and Lib Preparation	Sequencing
mm.	Ациини	Protocol 1	Sequencer 1
mm.	Aguuum	Protocol 1	Sequencer 1
Amm	Ациини	Protocol 1	Sequencer 1
mm.	Ацинин	Protocol 1	Sequencer 1

Take Home Message

- It is better to have more depth of sequencing (sampling variance)
 - About 10 million reads per sample is a benchmark to start. (Wang et al. 2011)
- Replication and randomization helps to control confounding variance
- Limited resources are probably better to allocate to biological rep than technical rep

RNA-seq Platforms

Illumina, Ion Torrent, PacBio and Oxford Nanopore

http://omicsmaps.com/

Ion PGM Sequencer?

RNA-seq Data

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>CCCCCCC65
```

- line 1: sequence id
- line 2: nucleotide sequence
- line 3: a "+" sign separator, optionally with the read identifier repeated
- line 4: a corresponding ASCII string of quality characters

$$Q_{\text{sanger}} = -10 \, \log_{10} p$$

p represents the probability that a given base is incorrectly called.

RNA-seq: Data Analysis Outline

- Quality checking and data cleaning
- Aligning RNA-seq reads to reference
- Count reads in gene models
- Differential Gene Expression Study

Pipeline: https://github.com/yangil/Demo

Or /group/jrigrp5/ECL298/Demo

RNA-seq: Quality Checking

Quality Score

Nucleotide Distribution

FASTX-Toolkit

Data Cleaning

- 1. Demultiplex by barcode
 - HiSeq 2000 normally yields ~150 million reads
 - 6nt barcode or index
- 2. Remove adapter sequences
- 3. Trim basepairs by quality
- 4. Discard reads by quality/ambiguity

Aligning Reads to a Reference Genome

- RNA-seq aligner:
 - Efficiency and splicing awareness
 - Widely used: GSNAP, BWA-mem, Bowtie2
- For differential expression study:
 - Reference genome
 - Gene annotation (typically the intron/exon annotations are available in GFF3 or GTF file)

Summary Statistics of Alignment

File	# of total reads	# of uniquely aligned reads	Mapping Rate (100%)
1.fq	4,413,034	4,147,652	94
2.fq	4,879,212	4,619,978	94.7
3.fq	6,924,929	6,618,966	95.6
4.fq	6,848,552	6,469,461	94.5
5.fq	5,438,538	4,962,816	91.3
6.fq	3,772,703	3,507,526	93

Uniquely aligned reads will be used for differential expression analysis

Read Counts and Normalization

RPKM: reads per kilobase per one million mapped reads. Adjust gene length and library size.

	Control	Control
Gene	rep1	rep2
1	2679	2360
2	177	161
3	381	371

C = = =	Control (CP1	controllepz
Gene	RPKM	RPKM
1	3.4	3.3
2	1.3	1.2
3	2.0	2.0

Control ren1 Control ren2

Raw counts scatter plot

RPKM scatter plot

Statistical Model for Differential Gene Expression Study

- Poisson distribution
 - Approximate the random draw reads from a population with given, fixed fraction of genes
 - Overdispersion issue
 - A poisson distribution assumes mean = variance
 - But, RNA-seq data variance > mean

- Negative binomial (NB) distribution
 - Characterized by an additional dispersion parameter
 - R packages: edgeR, DESeq2

MA plot

M (Log ratios) and A (mean value)

Fold change: measure how much the expression change from one treatment to the other, for example WT to Mutant.

MA plot

GeneID	Mean RPKM	log mean	log2FC
1	0.51	-0.29	-0.40
2	1.25	0.10	0.03
3	3.52	0.55	-0.89
4	0.19	-0.72	0.30
5	2.34	0.37	-0.36
6	6.14	0.79	-0.07

Volcano Plot

False Discovery Rate: is a statistical method to correct multiple hypothesis testing problem. **Volcano plot**

	DE Result			
GenelD	Log2FC	p-value	-log10(pvalue)	
1	-0.40	0.037	1.43	
2	0.03	0.916	0.04	
3	-0.89	2.42E-05	4.62	
4	0.30	0.130	0.89	
5	-0.36	0.140	0.85	
6	-0.07	0.811	0.09	

Take Home Message

- Experimental Design is critical
- Conduct quality checking and then determine how to clean the data
- NB distribution is a widely accepted distribution for modeling read counts data
- Use FDR and FC to clarify differentially expressed genes