UNIVERSIDAD DE CUENCA. MÉTODOS NUMÉRICOS.

Antony Uquillas, Cristian Marín, Jorge Sanchez.

<u>Antony.uquillas2907@ucuenca.edu.ec</u>, <u>Teodoro.marin13@ucuenca.edu.ec</u>, <u>Jorge.sanchezi@ucuenca.edu.ec</u>

Halle las corrientes I1, I2, I3 utilizando las leyes de Kirchoof y resuelte el sistemas de ecuaciones lineales utilizando el método de Gauss.

Aplicando Ley de Nodos en el Nodo A.

<mark>|1 = |2+|3</mark>

Aplicando Mallas.

Malla1

$$6I_1 + 3I_2 = -4$$

Malla 2:

$$-3I_2 + 6I_3 = -10$$

Por lo tanto el sistema de Ecuaciones Lineales nos queda:

$$I_1 - I_2 - I_3 = 0$$

$$6I_1 + 3I_2 + 0I_3 = -4$$

$$0I_1 - 3I_2 + 6I_3 = -10$$

EJEMPLO 2: RESUELVA EL SIGUIENTE CIRCUITO UTILIZANDO LA LEY DE KIRCHOFF POR MALLAS. SE NECESITA ENCONTRAR LOS VALORES DE LAS CORRIENTES.

Aplicando Ley de Mallas de Kirchoff $\Sigma V=0$

Malla1:

$$15 = 20I_1 + 5I_1 + 5I_3$$
$$25I_1 + 0I_2 + 5I_3 = 15$$

Malla2:

$$5I_2 + 10I_2 - 20 + 10I_2 + 10I_3 = 0$$

 $0I_1 + 25I_2 + 10I_3 = 20$

Malla3:

$$-20 + 10I_3 + 10I_2 + 5I_3 + 5I_1 = 0$$

$$5I_1 + 10I_2 + 15I_3 = 20$$

Por lo tanto el sistema de Ecuaciones Lineales nos queda:

l ₁	<mark>l</mark> 2	<mark>l</mark> 3	TI
25	0	5	= 15
0	25	10	= 20
5	10	15	- 20