Indian Institute of Technology Guwahati Department of Mathematics

MA 101 - MATHEMATICS-I (2017-18)

Tutorial Sheet - Extra

Topics Covered:

Vector spaces and subspaces, Linear independence, basis, dimension, Linear transformation, kernel, range, rank-nullity theorem, matrix of a linear transformation.

Corresponding sections in the textbook [Poole]: 6.1, 6.2, 6.3, 6.4, 6.5

Note: If the field of scalars is not mentioned for a vector space, you may assume the same to be \mathbb{R} . **Recall:**

- ullet $\mathscr F$ is the set of all real valued functions defined on the real line.
- $M_{r,c}(\mathbb{F})$ denotes the set of all $r \times c$ matrices with entries from \mathbb{F} .
- $\mathscr{P}_n(\mathbb{F})$ denotes the set of all polynomials of degree at most n, with coefficients in \mathbb{F} .
- 1. In each of the following, determine whether the given set is a vector space, as specified.
 - (a) The set of all vectors in \mathbb{R}^2 of the form $\begin{bmatrix} x \\ x \end{bmatrix}$, with the usual vector addition and scalar multiplication, where scalars are the real numbers.
 - (b) The set of all vectors in \mathbb{C}^2 of the form $\begin{bmatrix} z \\ \bar{z} \end{bmatrix}$, with the usual vector addition and scalar multiplication, where scalars are the complex numbers.
 - (c) $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x \ge y \right\}$, with the usual vector addition and scalar multiplication, where scalars are the real numbers.
 - (d) $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R}, ad = 0 \right\}$, with the usual matrix addition and scalar multiplication, where scalars are the real numbers.
 - (e) The set of all vectors in \mathbb{Z}_2^n with even number of 1s, with the usual vector addition and scalar multiplication, where scalars are from \mathbb{Z}_2 .
- 2. $\mathbf{H} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \text{ such that } \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1\}$. Is it possible to define operations on \mathbf{H} so that \mathbf{H} becomes a vector space over \mathbb{R} .
- 3. In each of the following, determine whether W is a subspace of V.

(a)
$$V = M_{2,2}$$
 and $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| ad \ge bc \right\}$.

- (b) $V = M_{r,r}$ and W be the set of invertible $r \times r$ matrices.
- (c) $V = \mathscr{F}$ and $W = \{ f \in \mathscr{F} \mid f(0) = 0 \}.$
- (d) $V = \mathscr{F}$ and $W = \{ f \in \mathscr{F} \mid f(1) = 0 \}.$
- (e) $V = \mathscr{F}$ and $W = \{ f \in \mathscr{F} \mid f(0) = 1 \}.$
- (f) $V = \mathscr{F}$ and W be the set of all continuous real valued functions on \mathbb{R} .
- (g) $V = \mathscr{F}$ and W be the set of all differentiable real valued functions on \mathbb{R} .
- (h) $V = \mathscr{F}$ and W be the set of all integrable real valued functions on \mathbb{R} .
- (i) $\mathbf{H} = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \mid a, b, c, d \in \mathbb{R} \text{ such that } \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1\}$. Is it possible to define the operations on \mathbf{H} so that \mathbf{H} becomes a vector space over \mathbb{R} .
- (j) $V = \mathbb{C}$ and $W = \mathbb{R}$ (both trated as a vector spaces over \mathbb{R} .)
- 4. (a) Prove that zero element of a vector space is unique.
 - (b) Prove that for every vector v in a vector space V, there is a unique $v' \in V$ such that $v + v' = \mathbf{0}$. For such v, v', is it possible that $v + v' = \mathbf{0}$ but $v' + v \neq \mathbf{0}$?
- 5. Check whether the following sets are linear independent in the given vector space.
 - (a) $\{x, 1+x\}$ in \mathcal{P}_1 .
 - (b) $\{x, 2x x^2, 3x + 2x^2\}$ in \mathscr{P}_2 .

- (c) $\{x, 2x x^2, 3x + 2x^2\}$ in \mathcal{P}_3 , in \mathcal{P}_n for $n \ge 2$.
- (d) $\{1, \sin x, \cos x\}$ in \mathscr{F} .
- (e) $\{\sin x, \sin 2x, \sin 3x\}$ in \mathscr{F} .
- 6. Let \mathcal{B} be a set of vectors in a vector space V with the property that every vector in V is a unique linear combination of vectors in \mathcal{B} .

Then prove or disprove that \mathcal{B} is a basis for V.

- 7. For each of the following vector spaces, find the dimension and give a basis.
 - (a) $\{p(x) \in \mathscr{P}_2 \mid p(1) = 0\}$
 - (b) $\{A \in M_{2,2} \mid A \text{ is upper triangular } \}$
 - (c) $\{A \in M_{3,3} \mid A \text{ is diagonal } \}$
 - (d) \mathbb{C}^2 as a vector space over \mathbb{R} .
- 8. Determine whether each of the following functions is a linear transformation.

(a)
$$T: M_{2,2} \to M_{2,2}$$
 given by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & 0 \\ 0 & c+d \end{bmatrix}$.

(b)
$$T: M_{2,2} \to \mathbb{R}$$
 given by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = abcd.$

(c)
$$T: M_{2,2} \to \mathbb{R}$$
 given by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$.

- (d) Let $B \in M_{n,n}$ be a matrix. $T: M_{n,n} \longrightarrow M_{n,n}$ defined by T(A) = AB.
- (e) Let $B \in M_{n,n}$ be a matrix. $T: M_{n,n} \longrightarrow M_{n,n}$ defined by T(A) = A + B.
- (f) $T: \mathscr{P}_2 \longrightarrow \mathscr{P}_2$ defined by $T(a+bx+cx^2) = (a+1)+(b+1)x+(c+1)x^2$.
- 9. Let $T: \mathscr{P}_2 \longrightarrow \mathscr{P}_2$ be a linear transformation for which $T(1+x) = 1+x^2$, $T(x+x^2) = x-x^2$ and $T(1+x^2) = 1+x+x^2$. Find $T(4-x+3x^2)$ and $T(a+bx+cx^2)$.
- 10. Let V and W be vector spaces over the same set of scalars. Prove that the set $\mathcal{L}(V,W)$ of all linear transformations is a vector space, with the vector addition and scalar multiplication as defined over \mathscr{F} .
- 11. Describe $\ker(T)$ and $\operatorname{range}(T)$ of the following linear transformations and compute a basis for each. Also determine the rank and the nullity of T and hence verify the $\operatorname{rank-nullity}$ theorem.
 - (a) Let $T: M_{2,2} \longrightarrow M_{2,2}$ be the linear transformation defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$.
 - (b) $T: M_{2,2} \longrightarrow \mathbb{R}$ defined by $T(A) = \operatorname{tr}(A)$.
 - (c) $T: M_{2,2} \longrightarrow \mathbb{R}^2$ defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a-b \\ c-d \end{bmatrix}$.
 - (d) $T: \mathscr{P}_2 \longrightarrow \mathbb{R}^2$ defined by $T(p(x)) = \left[\begin{array}{c} p(0) \\ p(1) \end{array} \right]$.
 - (e) $T: \mathbb{C} \to \mathbb{R}$ given by T(2) = 2 and T(1+i) = 1. (Considering \mathbb{C} as a vector space over \mathbb{R} .)
 - (f) $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ defined by T(A) = AB BA, where $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.
- 12. Let T be a linear transformation on a vector space V. Let $\dim V = n \ge 1$. Suppose there exists $x \in V$ such that $T^{n-1}(x) \ne 0$ but $T^n(x) = 0$. Then show that the set $\{x, T(x), \dots, T^{n-1}(x)\}$ is a basis for V. Also, find the matrix representation of T with respect to this basis. (What is the codomain of T?)

References

[Poole] David Poole, Linear algebra: a modern introduction. 3rd ed., Brooks/Cole, 2011.