ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа 3.6.1

Спектральный анализ электрических сигналов.

Цель работы: Изучить спектральный состав периодических электрических сигналов.

В работе используются: Анализатор спектра, генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

1 Теоретическая часть:

Разложение сложных сигналов на периодические колебания

Метод для описания сигналов. Для него используется разложение в сумму синусов и косинусов с различными аргументами или, как чаще его называют, разложение в ряд Фуръе.

Пусть задана функция f(t), которая периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T период повторения импульсов. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(n\Omega_1 t\right) + b_n \sin\left(n\Omega_1 t\right) \right] \tag{1}$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n)$$
(2)

Если сигнал четен относительно t = 0, так что f(t) = f(-t) в тригонометрической записи остаются только косинусные члены. Для нечетной наоборот.

Коэффициенты определяются по формуле

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$
(3)

Здесь t_1 — время, с которого мы начинаем отсчет.

Сравнив формулы (1) и (2) можно получить выражения для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2}; \psi_n = \arctan \frac{b_n}{a_n} \tag{4}$$

Периодическая последовательность прямоугольных импульсов

Введем некоторые величины:

$$\Omega_1 = \frac{2\pi}{T},$$

где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}$$
 (5)

Здесь V_0 - амплитуда сигнала.

Поскольку наша функция четная, то $b_n = 0$.

Пусть у нас au кратно T. Тогда введем ширину спектра, равную $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедится при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

$$\Delta\omega\tau \simeq 2\pi \Rightarrow \Delta\nu\Delta t \simeq 1 \tag{6}$$

Периодическая последовательность цугов

Функция f(t) снова является четной относительно t=0. Коэффициент при n-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} - n\Omega_{1}\right)\frac{\tau}{2}} + \frac{\sin\left[\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}\right]}{\left(\omega_{0} + n\Omega_{1}\right)\frac{\tau}{2}} \right)$$
(7)

Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$.

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t \tag{8}$$

Коэффициентом m называется глубина модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{9}$$

Простым тригонометрическим преобразованием уравнения (9) можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t$$
(10)

2 Ход работы:

2.1 A. Исследование спектра периодической последовательности прямоугольных импульсов

Исследуем прямоугольные импульсы с $\nu_{rep} = 1$ к Γ ц и длительностью импульса $\tau = 100$ мкс. Получим на экране спектр сигнала и будем изменять τ и ν_{rep} , наблюдая как изменяется спектр.

Рис. 1: Спектр при $\nu_{rep}=1$ к Γ ц, au=100мкс

Рис. 2: Спектр при $\nu_{rep}=1$ к
Гц, $\tau=200$ мкс

Рис. 3: Спектр при $\nu_{rep}=2$ к Γ ц, au=100мкс

Исследуем зависимость ширины спектра от длительности импульса при частоте повторения $\nu_{rep}=1 \mathrm{k} \Gamma \mathrm{q}$

τ , MKC	$\Delta \nu$, к Γ ц
40	25
60	16
80	13
100	10
120	8
140	7
160	6
180	5.5
200	5

Запишем резульаты в таблицу $\Delta \nu(1/ au)$:

$1/ au$, к Γ ц	$\Delta \nu$, к Γ ц		
25	25		
16.67	16		
12.5	13		
10	10		
8.33	8		
7.14	7		
6.25	6		
5.56	5.50		
5	5		

Получим график:

Рис. 4: График $\Delta\nu(1/\tau)$ для прямоугольных импульсов с $\nu_{rep}=1$ к Гц

Тогда зависимость:

$$\Delta
u = (0.998 \pm 0.016) \cdot \frac{1}{\tau} + (0.094 \pm 0.098)$$
к Γ ц

Выполняется соотношение определённости:

$$\Delta \nu \cdot \tau \simeq 1$$

2.2 В. Исследование спктра периодической последовательности цугов гармонических колебаний

Исследуем последовательность цугов, для этого установим частоту несущей $\nu_0=25$ к Γ ц и получим на экране осциллографа устойчивую картину.

Пронаблюдаем изменение спектра:

Рис. 5: Спектр при $\nu_{rep}=1$ к Γ ц, $\nu_0=25$ к Γ ц, au=100мкс

Рис. 6: Спектр при $\nu_{rep}=1$ к Γ ц, $\nu_0=25$ к Γ ц, au=200мкс

Рис. 7: Спектр при $\nu_{rep}=1$ к Γ ц, $\nu_0=10$ к Γ ц, au=100мкс

Рис. 8: Спектр при $\nu_{rep}=1$ к
Гц, $\nu_0=40$ к Гц, $\tau=100$ м
кс

Рис. 9: Спектр при $\nu_{rep}=2$ к
Гц, $\nu_0=30$ к Гц, $\tau=100$ мкс

Получим зависимость $\delta
u(
u_{rep})$ при au=100 мкс и $u_0=25$ к Γ ц:

δu , к Γ ц	$ u_{rep}$, к Γ ц		
0.5	0.5		
1	1		
2	2		
4	4		
5	5		

v rep, кГц относительно параметра " δv , кГц"

Рис. 10: График $\delta \nu (\nu_{rep})$ для прямоугольных импульсов с $\nu_0=25$ кГц и $\tau=100$ мкс

Получим завивисимость:

$$\delta
u = (1.0 \pm 0.1) \cdot
u_{rep} + (0.0 \pm 0.1)$$
к
Гц

Тоже выполняется соотношение неопределённости:

$$\delta \nu \cdot T \simeq 1$$

2.3 С. Исследование спектра гармонических сигналов, модулированных по амплитуде

Получим спектр исследуемого сигнала. Для этого установим частоту несущей $\nu_0=25$ к Γ ц и частоту модуляции $\nu_{mod}=1$ к Γ ц.

Рис. 11: Спектр модулированного сигнала при m=1.

Изучим зависимость отношения амплитуд $k=A_s/A_m$ боковой и основной частоты от параметра $m=\left(A_{max}-A_{min}\right)/(A_{max}+A_{min}).$

A_m , mV	A_s , mV	m	k
322	16	0.1	0.050
322	47	0.3	0.146
322	75	0.5	0.233
322	107	0.7	0.332
322	139	0.9	0.431
322	153	1.0	0.475

Работа 3.6.1 3 Выводы

Рис. 12: График k(m) для модулированного сигнала с $\nu_0=25$ кГц, $\nu_{mod}=1$ кГц

Получим зависимость:

$$k = (0.474 \pm 0.004) \cdot m + (0.001 \pm 0.001)$$

Установим, что

$$\frac{k}{m} = 0.474 \pm 0.04$$

Это почти сходится с теорией (0,5).

3 Выводы

В лабараторной работе былт изучена зависимость спектра прямогольных сигналов, гармонических цугов и амплитудно модулированного гармонического сигнала. Также были прверены соотношения неорпеделенности, проверены справедливость разложения сигналов в ряд Фурье. Все сошлось с теорией.