Laboratorium 6 - Kwadratury

Dawid Żak

Szymon Hołysz

2025-04-22

Table of contents

Zadanie 1 (a)	1
Zadanie 1 (b)	
Zadanie 1 (c)	
7adanie 2	5

Zadanie 1. Wiadomo, że

$$\int_0^1 \frac{4}{1+x^2} dx = \pi. \quad (1)$$

Powyższą równość można wykorzystać do obliczenia przybliżonej wartości π poprzez całkowanie numeryczne.

Zadanie 1 (a)

Oblicz wartość powyższej całki, korzystając ze złożonych kwadratur otwartej prostokątów (ang. mid-point rule), trapezów i Simpsona. Można wykorzystać funkcje integrate.trapz i integrate.simps z biblioteki scipy. Na przedziale całkowania rozmieść 2^m+1 równoodlpegłych węzłów. W kolejnych próbach m wzrasta o 1, tzn. między każde dwa sąsiednie węzły dodawany jest nowy węzeł, a ich zagęszczenie zwiększa się dwukrotnie. Przyjmij zakres wartości m od 1 do 25.

Dla każdej metody narysuj wykres wartości bezwzględnej błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej, n+1 (gdzie n=1/h, z krokiem h). Wyniki przedstaw na wspólnym wykresie, używając skali logarytmicznej na obu osiach.

Nieciągłość wykresu dla metody Simpsona wynika z osiągnięcia precyzji większej niż precyzja float64, umieszczenie wartości zerowych na wykresie logarytmicznym jest niemożliwe. Metoda Simpsona jest też najdokładniejsza spośród trzech rozważanych.

Zadanie 1 (b)

Czy istnieje pewna wartość, poniżej której zmniejszanie kroku h nie zmniejsza już błędu kwadratury? Porównaj wartość h_{\min} , odpowiadającą minimum wartości bezwzględnej błędu względnego, z wartością wyznaczoną w laboratorium 1.

	Method	h_min
0	Rectangular	9.536743e-07
1	Trapezoidal	1.192093e-07
2	Simpson	3.906250e-03

Na wykresie powyżej można zauważyć moment, w którym zmniejszanie kroku przestaje zmniejszać błąd kwadratury, a nawet go zwiększa. Wartość h, w którym błąd osiąga minimum jest zbliżony dla metody prostokątów i trapezów oraz znacznie mniejszy dla metody Simpsona. Wynika to z tego, że błąd tej metody znacznie szybciej zbiega do zera. Obliczony krok dla minimalnego błędu jest porównywalny do tego obliczonego w laboratorium nr. 1 ($\cong 10^{-8}$)

Figure 1: image.png

Wykres ilustrujący wyniki z pierwszego laboratorium.

Zadanie 1 (c)

Dla każdej z użytych metod porównaj empiryczny rząd zbieżności z rząd zbieżności przewidywanym przez teorię. Aby wyniki miały sens, do obliczenia rzędu empirycznego użyj wartości h z zakresu, w którym błąd metody przeważa nad błędem numerycznym.

	Rectangular
0	2.707131
1	2.358356
2	2.179738
3	2.090014
4	2.045045
5	2.022532
6	2.011269
7	2.005635
8	2.002818
9	2.001409

Rectangular

- 10 2.000705
- 11 2.000351
- 12 2.000222
- 13 2.000008
- 14 2.001489

Trapezoidal

- 0 2.710441
- 1 2.358425
- 2 2.179742
- 3 2.090014
- $4 \quad 2.045045$
- 5 2.022532
- 6 2.011269
- 7 2.005635
- 8 2.002818
- 9 2.001409
- 10 2.000705
- $11 \quad 2.000352$
- 12 2.000177
- 13 2.000085
- 14 2.000069

Simpson

- 0 11.432385
- 1 8.623452
- 2 6.536879
- 3 6.269862
- 4 6.135489
- 5 6.090216

Obliczone rzędy zbieżności dla metody prostokątów i trapezów to 2 (zgodne z teoretycznym rzędem zbieżności), a dla metody Simpsona 6 - co nie zgadza się z wartością teoretyczną równą 4. Może to wynikać z faktu, że precyzja obliczeń nie pozwala obliczyć rzędu dla kolejnych wartości m.

Zadanie 2.

Oblicz wartość całki

$$\int_0^1 \frac{4}{1+x^2} dx$$

metodą Gaussa-Legendre'a. Narysuj wykres wartości bezwzględnej błędu względnego w zależności od liczby ewaluacji funkcji podcałkowej, n+1. Przyjmij na tyle duży zakres n, aby wykryć, kiedy błąd numeryczny zaczyna przeważać nad błędem metody. Postaraj się umiejscowić otrzymane wyniki na wykresie stworzonym w podpunkcie (a).

Na powyższym wykresie można zauważyć, że błąd metody Gaussa - Legendre'a maleje najszybciej, ale błąd numeryczny zaczyna przeważać nad błędem metody już dla kilkunastu węzłów. Dlatego korzystając z tej metody najbardziej należy uważać na ilość węzłów wykorzystanych w obliczeniach.