

Our country, our future

525/1

S6 CHEMISTRY

Exam 29

PAPER 1

DURATION: 2 HOUR 45 MINUTES

For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709,

Instructions

- This paper consists of two sections A and B
- Section A is compulsory
- Attempt only six questions in section B
- Answers must be written in the spaces provided only.

Where necessary use the following:

Molar gas constant, R = $8.31 \text{JK}^{-1} \text{mol}^{-1}$

Molar volume of a gas at s.t.p = 22.4litres

Standard temperature = 273K

Standard pressure = 10125Nm⁻²

For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

SECTION A: (46 MARKS)

2.

1. a) Bond energies for some bonds are given below

Bond	Bond energy (kJmol ⁻¹)
CEC	+813
C-C	+346
С-Н	+413
н-н	+436
.Calculate enthalpy of hydrogenation of ethyne	(3marks)
(b) State whether hydrogenation of ethyne is feat (1 ½ mark)	asible or not. Give a reason for your answer.
State what is observed and write equation of the compounds are mixed (i) Methanoic acid and ammoniacal silver response to the compounds of the compounds are mixed.	
Equation	

	Observation
	Equation
	(c) Propanone and Brady's solution
	Observation
	Equation
	Calculate the pH of solution formed by mixing 80cm ³ of 0.1M hydrochloric acid with 120cm ³ 0.1M potassium hydroxide
	(a) State three reasons for the difference in properties between fluorine and other elements group VII (3marks)
•••	

(ii)	Fluorine and water	(1 ½ marks)

5. Complete the following reactions and write the accepted mechanism

(b)
$$CH_3 - C - CH_3$$
 $Na_2SO_3(aq)$

6. (a) (i) Explain what is meant by the order of chemical reaction. (1mark)

(ii) Name two methods used to determine orders of reactions. (1mark)

(b) The results obtained for the kinetics of the decomposition of nitrogen (V) oxide are given in the table below:

[N₂O₅]/moldm⁻³	Initial rate/moldm ⁻³ s ⁻¹
1.6 x 10 ⁻³	0.12
2.4 x 10 ⁻³	0.18
3.2 x 10 ⁻³	х

	Calcula	ate	
	(i)	Order of reaction	(4marks)
	(ii)	Value of x	
	•••••		
_			
7.		the electronic configuration of;	/1 a
	(i)	Nitrogen	(1mark)
	(ii)	Phosphorus	(1mark)
	(b) Ex	plain why nitrogen form (NCl₃) whereas phosphorus forms the chlorides F	PCl₃ and PCl₅.
			(1 ½ marks)

(c)	Write	e equations for the hydrolysis of phosphorus chlorides by	y water (3marks).
	(i)	Phosphorus (V) chloride	
		Equation	
	(ii)	Phosphorus (III) chloride	
		Equation	
bur	nt wit	20cm ³ of hydrocarbon Z was exploded in 200cm ³ of oxy	g to room temperature wa
bur 160	nt wit		g to room temperature wa
bur 160 200	nt wit Ocm³. (cm³.	h a sooty flame. The volume of residual gas after cooling	g to room temperature wa
bur 160 200	nt wit Ocm³. (cm³.	th a sooty flame. The volume of residual gas after cooling	g to room temperature wa
bur 160 200 Cald	nt wit Ocm ³ . (cm ³ . culate	th a sooty flame. The volume of residual gas after cooling	g to room temperature wa dual gas, the final volume (3marks)
bur 160 200 Cald	nt wit Ocm ³ . (cm ³ . culate	th a sooty flame. The volume of residual gas after cooling On addition of aqueous potassium hydroxide to the residual the molecular formula of Z.	g to room temperature wa dual gas, the final volume (3marks)
bur 160 200 Cald	nt wit Ocm ³ . (cm ³ . culate	th a sooty flame. The volume of residual gas after cooling On addition of aqueous potassium hydroxide to the residual the molecular formula of Z.	g to room temperature wa dual gas, the final volume (3marks)
bur 160 20c Cald	ont wit	th a sooty flame. The volume of residual gas after cooling On addition of aqueous potassium hydroxide to the residual the molecular formula of Z.	g to room temperature wa

	Solut	tion which cooled in presence of dilute sulphuric	c acid to form a crystalline solid P.				
	(i)	Identify	(1mark)				
		Z:					
		P:					
	(ii)	Write equations to show how P is formed.					
	•••••						
9. (a	a) Explai	in why diffusion in solution is very slower than in	n gases.				
••	•••••						
((c) 141.4	4cm ³ of gas X diffuse through a porous plug in th	ne same time as it took 50cm ³ of oxygen				
((to dif	ffuse through the same plug under identical con					
((ffuse through the same plug under identical con					
	to dif	ffuse through the same plug under identical con					
	to dif	ffuse through the same plug under identical con					
	to dif	ffuse through the same plug under identical con	nditions. Calculate the relative molecular				
	to dif	ffuse through the same plug under identical consoft X	nditions. Calculate the relative molecular				
	to dif	ffuse through the same plug under identical consoft X	nditions. Calculate the relative molecular				
	to dif	ffuse through the same plug under identical consolors	nditions. Calculate the relative molecular				

SECTION B: (54 MARKS)

). Sta	te what is observed and write equation for the reaction that takes place when;
(a)	Potassium iodide is added to acidified hydrogen peroxide solution
	Observation
	Equation
	4.5.5.5
(h)	Concentrated hydrochloric acid is added drop wise until in excess to aqueous solution
(υ)	
	containing cobalt (II) ions.
	Observation
	Equation
•••••	
(c)	Aqueous sodium hydroxide is added drop wise to aqueous solution containing beryllium (II
	ions.
	Observation
	Equation
	Equation

11. (a) A	compound Y contains by mass 22.86% oxygen, 8	.5% hydrogen and the rest carbon
(i)	Calculate the empirical formula of Y.	(2 ½ mmarks)

(ii)	When 0.30g of Y is vaporized at 80°C and 700mmHg pressure, it oc 134.77cm ³ . Determine the molecular formula of Y	cupied a volume of
	forms a yellow precipitate with 2,4-dinitrophenylhydrazine but does rreagent. Identify Y.	not react with Tollens (1marks)
(c)	Write equation for the formation of a yellow precipitate (b).	(2marks)
 2. (a) S 	tate three characteristics of chemical equilibrium	(2 ½ marks)
	Phosphorus (V) chloride when heated decomposed at according to the $PCl_5(g)$ $PCl_3(g) + Cl_2(g)$	
(i)	Write the expression for equilibrium constant, Kc.	(1marks)
(ii)	When 1 mole of phosphorus (V) chloride was heated in a closed ve equilibrium mixture was found to contain 38.4% of chlorine. Calcul constant, Kc at 350°C.	

(iii)	The equilibrium constant at 250°Cis 1.54, state whether	the reaction is exothermic or
	endothermic. Give a reason for your answer.	(1 ½ mark)
(c) S	state what would happen to the concentration of chlorine if	f the prossure in the vessel was
-	Decreased white the temperature is maintained at 3500C. g	·
		(1 ½ marks)

	Write equation to show how the the reaction]	e following	conver	sions ca	an be e	пестеа	. [inciua		ions for ks each)
	(a) Benzoic Acid to phenylamin	e						(Silial)	KS Cacily
	(b) Ethene to butanol								
					•••••				
	(c) 1-chloroethane to ethanam	ide							
L4.	(a) (i) Explain what is meant by a	an acid- ind	icator.						(1mar
	(ii) Explain in titration experiments one or two drops of indicators are used								
	(b) The table below gives data obtained when 100cm ³ of propanaoic acid was titrated with								
	(b) The table below gives data of	btained w	hen 100	Ocm³ of	propar	naoic a	cid was t	titrated	with
	(b) The table below gives data of 1.0M sodium hydroxide solution		nen 100	Ocm ³ of	propar	naoic a	cid was t	titrated	with
			1.0	5.0	propar 9.0	9.5	10.5	11.0	15.0

(i) Draw a graph of pH against the volume of sodium hydroxide

(ii)	Explain the shap	e of the graph you have	e drawn in b(i).	(2 ½ marks)			
•••••							
(iii)	Determine the p	H of the solutions at ec	quivalent point.	(1 mark)			
(iv)	Which of the following indicators would be suitable for titration above? Give a reason						
	for you answer.	Total Land	B th Ith	Blooding			
	Indicator	Methyl red	Bromothymol blue	Phenol red			
	pH range	4.2-6.3	6.0-7.6	6.8-8.4			
	Indicator			(½ mark)			
	Reasons			(1 ½ marks)			
				(' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			
(a)Coı	mpare the following	g properties of group (I	I) and group (I) elements	s. In each case, give a			
reaso	n for your answer.			(1 ½ mark ea			
(i)	First ionization e	nergy					

(ii)	Melting points
•••••	

(iii)	Electroposivity				
(b) Th	e decomposition tem	peratures of t	he carbonates of	group (II) elemer	it are given below
	Carbonates	MgCO ₃	CaCO₃	SrCO₃	BaCO₃
	Decomposition temperature °C	404	826	1098	1370
i) St	ate how the decomp	osition temper	ratures vary	(11	mark)
ii) Ex	xplain your answer in	(b)(i)			(3 ½ mark)
	e a reagent that can be what would be obser				-
(a) Reage	and ent				(3marks each)
Obser	rvation				

(b)	O and O O
	Reagent
	Observation
(c)	$\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — NH_2 and $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ — CH_2NH_2
	Reagent
	Observation

	••••	(ii)	Ethoxyethane	
		follov (i)	wing compounds from ethanol. Polyethene	(1 ½ marks each)
	(c) Write equations(s) stating conditions for the reaction leading to the form		the formation of the	
	(b)		ribe how 100% (absolute) ethanol can be produced from cr above.	ude ethanol produced (2marks)
(iii)		abov	e equation to show how crude ethanol can be obtained fron	(3marks)
<i>/</i> ····\				
				(1:

	tion(s) to show how each of the following compounds could be obtained f				
Polythene.		(1 ¹ / ₂ marks)			
ethoxyethane.		(1 ¹ / ₂ marks)			
		Min to to the state of the stat			
	END				