Лабораторная работа 3.2.2 РЕЗОНАНС НАПРЯЖЕНИЙ В ПОСЛЕДОВАТЕЛЬНОМ КОНТУРЕ

Аксенова Светлана 3 ноября 2020 г.

Рисунок 1 – Схема экспериментального стенда

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудночастотных и фазово-частотных характеристик, а также определение основных параметров контура.

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

1 Экспериментальная установка

Схема экспериментальной установки для изучения резонанса напряжений в последовательном колебательном контуре представлена на рис. 1. Синусоидальный сигнал от генератора поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 В (цепь питания на схеме не показана). Источник напряжения, обладающий нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала $\mathcal{E} = \mathcal{E}_0 cos(\omega t + \phi_0)$ на меняющейся по величине нагрузке – последовательном колебательном контуре. Источник напряжения с соглащующейся цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанас напряжений», отмеченный на рисунке штриховой линией.

На корпусе имеются коаксильные разъёмы «Вход», « U_1 », « U_2 », а также переключатель магазина ёмкостей. Величины ёмкостей указаны в табл. 1. Напряжение \mathcal{E} на контуре через разъём « U_1 » попадает на канал 1 осциллогрофа и на вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_c подаётся через разъём « U_2 » одновременно на канал 2 осциллогрофа и на вход 2-го цифрового вольтметра.

n	1	2	3	4	5	6	7
C_n б н Φ	25,0	33,2	47,5	57,2	67,4	82,1	99,6

Таблица 1 — Соответсвие ёмкости C и номера на переключателе магазина ёмкостей

2 Реальные элементы цепи

Колебательный контур нашей установки собран из стандартных элементов, используемых в современных радиоэлетронных цепях. Известно, что происходят необратимые потери энергии в реальных конденсаторах (утечки и диэлектрические потери), в катушках индуктивности (вихревые токи, потери на перемагничивание в сердечнике), на проводниках (омические потери). Рост потерь приводит к увеличению действительных частей комплексных сопротивлений элементов контура, и, значит, к изменению его резонансных свойств, к уменьшению добротности.

Потери в элементах контура зависят как от частоты, так и от амплитуды тока(напряжения), температуры и ряда других факторов. От перечисленных факторов в общем случае зависят основные параметры контура: индуктивность L, ёмкость C и суммарное активное сопротивление R_{Σ} .

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной резонанской частотовь $\nu_{L0} \geq 1,3$ МГц. Каждая катушка, помимо индуктивности L, характеризуется также собственной (межвитковой) ёмкостью C_L и активным сопротивлением потерь R_L , распределёнными по её длине. Вследствие влияния ёмкости C_L при измерении на частоте ν определяется эффективное значение индуктивности $L_{ef} = L/(1-\nu^2/\nu_0^2)$, которое может заметно отличаться от истинной величины L. В рабочем диапазоне частот нашего контура выполняется неравенство $\nu \ll \nu_0$, поэтому индуктивность в эквивалетной схеме контура на рис. 1 индуктивность представлена своим истинным значением L и активным сопротивлением R_L .

Полипропиленовые конденсаторы, входящие в комплект магазина ёмкостей, в рабочем диапазоне частот имеют пренебрежимо малые собственные индуктивности (менее мГн на 1 см общей длины обкладок и выводов) и относительно малые активные потери. Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с ёмкостью последовательной эквивалентной схемой, показанной на рис. 2а. R_s – это эквивалентное последовательное сопротивление (ЭПС), обусловленное электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Из эквивалентной схемы и векторнойд иаграммы (рис.26) видно, что активные потери вконденсаторе, пропорциональные косинусу угла сдвига фаз между током и напряжением на ёмкости, убывают с ростом ϕ и, соответственно, с уменьшением угла $\delta = \pi/2 - \phi$. Потери в конденсаторе характеризуют величиной $\tan \delta$.

Рисунок 2 – Последовательная эквивалентная схема конденсатора с потерями

Выражение для ЭПС на циклической частоте $\omega=2\pi\nu$

$$R_S = \frac{U_{RS}}{I} = \frac{U_{RS}}{\omega C U_{CS}} = \frac{\tan \delta}{\omega C} \tag{1}$$

Конденсаторы магазина ёмкостей в интересующем нас диапазоне частот имеют $\tan\delta < 10^{-3},$ что является низким показателем для конденсаторов с твёрдым диэлектриком.

3 Свойства колебательного контура

Для упрощения процедур получения и обработки резонансных кривых в колебательный контур добавлен постоянный резистор R, снижающей его добротность. Суммарное активное сопротивление контура

$$R_{\Sigma} = R + R_L + R_S \tag{2}$$

Тем не менее, добротность контура остаётся достаточно высокой, поэтому можно пользоваться формулой (3)

$$Q = \frac{\rho}{R_{sum}} = \frac{\omega_0 L}{R_{sum}} = \frac{1}{\omega_0 C R_{sum}} \gg 1 \tag{3}$$

Для импедансов ёмкости Z_C , индуктивности Z_L и последовательного контура $Z=Z_L+R+Z_C$ с учётом (1), (2) получаем

$$Z_C = R_S - \frac{i}{\omega C}, Z_L = R_L + i\omega L, Z = R_\Sigma + i(\omega L - \frac{1}{\omega C}).$$
 (4)

Комплексные амплитуды тока в контуре I=E/Z и напряжений на сопротивлении $U_R=RI$, ёмкости $U_C=Z_CI$ и индуктивности $U_L=Z_LI$ при нулевой начальной фазе ϕ_0 напряжения на контуре $\mathcal{E}=\mathcal{E}_0e^{i\phi_0}$ удобно записать в виде

$$I = \frac{U_R}{R} = \frac{\mathcal{E}_0}{R_{\Sigma}} \frac{1}{1 + iQ(\omega/\omega_0 - \omega_0/\omega)},\tag{5}$$

$$U_C = -iQ\mathcal{E}_0 \frac{\omega_0}{\omega} \frac{1 + i \tan \delta}{1 + iQ(\omega/\omega_0 - \omega_0/\omega)},\tag{6}$$

$$U_L = Q \mathcal{E}_0 \frac{\omega_0}{\omega} \frac{1 - iR_L/\rho}{1 + iQ(\omega/\omega_0 - \omega_0/\omega)}.$$
 (7)

Указанными потерями, представленными мнимыми добавками в числителям формул, при условии $Q\gg 1$ и $\tan\delta<10^{-3}$ можно пренебречь.

Наибольший практический интерес представляет случай, когда отклонение $\Delta\omega=\omega-\omega_0$ частоты внешней ЭДС от собственной частоты контура ω_0 удовлетворяют

$$|\Delta\omega| \ll \omega_0 \tag{8}$$

При этом в первом порядке малости по относительной расстройке частоты $\Delta\omega/\omega_0$

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0},\tag{9}$$

что позволяет упростить выражения (5)-(7)

$$I = \frac{U_R}{R} = \frac{\mathcal{E}_0}{R_{\Sigma}} \frac{\cos(\omega t - \psi_I)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \, \psi_I = \arctan(\tau \Delta \omega)$$
 (10)

$$U_C = -iQ\mathcal{E}_0 \frac{\omega_0}{\omega} \frac{\cos(\omega t - \psi_C)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \ \psi_C = \psi_I + \frac{\pi}{2} - \delta$$
 (11)

$$U_L = Q \mathcal{E}_0 \frac{\omega_0}{\omega} \frac{\cos(\omega t - \psi_L)}{\sqrt{1 + (\tau \Delta \omega)^2}}, \ \psi_L = \psi_I - \frac{\pi}{2} + R_L/\rho$$
 (12)

Здесь τ - время затухания. При резонансе, когда для высокодобротного контура можно положить $\omega = \omega_0$, выражения принимают вид

$$I(\omega_0) = \frac{\mathcal{E}_0}{R_{\Sigma}}, \, \psi_I(\omega_0) = 0, \tag{13}$$

$$U_C(\omega_0) = Q\mathcal{E}_0, \, \psi_C(\omega_0) = \frac{\pi}{2} - \delta, \tag{14}$$

$$U_L(\omega_0) = Q\mathcal{E}_0, \, \psi_L = -\frac{\pi}{2} + \frac{R_L}{\rho} \tag{15}$$

Следовательно, амплитуда тока достигачет максимального значения.

В нашем эксперименте резонансные явления в последовательном колебательном контуре исследуются по напряжению на контуре \mathcal{E} и напряжению на ёмкости U_C , а также по фазовым сдвигам между ними.

4 Выполнение исследования и обработка результатов

Для контуров с семью различными ёмкостями были измерены резонансные частоты и напряжения. Приближение к резонансу наблюдалось по фигуре Лиссажу на экране осциллографа в режиме X-Y. При этом фигура Лиссажу представляла собой эллипс, оси которого на резонансной частоте направлены вдоль осей X, Y. Все результаты проведённых измерений представлены в таблице 2. Таким образом, индуктивность равна

$$L = 948, 4 \pm 1, 9$$
 мк Γ н.

C_n ,	ν_{0n} ,	U_C ,	E,	L,	Q	ρ ,	R_{Σ} ,	$R_{S_{max}}$,	R_L ,	I,
Φ_{H}	кΓц	В	В	мкГн		Ом	Ом	Ом	Ом	мА
25	32,5	3,86	0,2	959,25	19,3	195,88	10,15	0,20	6,50	19,71
33,2	28,5	5,07	0,2	939,32	25,35	168,20	6,64	0,17	3,02	30,14
47,5	24,0	4,35	0,2	925,81	21,75	139,61	6,42	0,14	2,83	31,16
57,2	21,5	5,70	0,2	958,00	28,50	129,42	4,54	0,13	0,96	44,04
67,4	19,8	5,22	0,2	958,63	26,10	119,26	4,57	0,12	1,00	43,77
82,1	18,0	4,86	0,2	925,25	24,30	107,70	4,43	0,11	0,87	45,13
99,6	16,4	4,19	0,2	945,57	20,95	97,44	4.65	0,10	1,10	43,00

Таблица 2 – Результаты измерений

Рисунок 3 – Зависимость $R_L(\nu)$

Сопротивление индуктивности

$$R_L = 2,35 \pm 0,12$$
Om.

По данным таблицы был построен график зависимости $R_L(\nu)$ (рисунок 3, нанесена прямая $< R_L >= 2,35$ Ом.

4.1 Амплитудно-частотная характеристика

Для контуров с двумя различными ёмкостями были сняти АЧХ для значений $U_c(f) \geqslant 0, 6U_c(\nu_{0n})$. График представлен на рисунке 4 в координатах (U_C, ν) и на рисунке 5 в координатах $(U_C/U_C(\omega_0), \nu)$ Из рис.4 по формуле (16) посчитаем добротность по ширине резонансных кривых на уровне 0,707.

$$Q = \frac{\nu_0}{\Delta \nu} \tag{16}$$

$$Q_{C_2} = 24, 8 \pm 3, 1, Q_{C_4} = 28, 7 \pm 4, 8$$

Рисунок 4 — АЧХ для двух колебательных контуров

Рисунок 5 — АЧХ для двух колебательных контуров

Рисунок 6 – ФЧХ для двух колебательных контуров

Значения добротности полученные в таблице 2, незначительно отличается от рассчитанных.

4.2 Фазово-частотная характерика

При тех же значениях ёмкостей была измерена ФЧХ контуров, график представлен на рисунке 6. На рисунке 6 нет отрицательных значений по оси ординат и не определено значение при x=0, следовательно, нельзя посчитать добротность вторым способом.

5 Вывод

В результате был исследован резонанс напряжений в последовательном колебательном контуре с изменяемой ёмкостью. Были получены АЧХ и ФЧХ для двух контуров с двумя разными значениями ёмкости и определены основные параметры контура.

6 Список литературы

- 1. Методическое пособие по выполнению работы
- 2. Лабораторный практикум по общей физике: Учебное пособие в трех томах. Т. 2. Электричество и магнетизм. 2-е изд., перераб и дополн. / Никулин М.Г., Попов П.В, Нозик А.А. и др.; Под ред. А.В. Максимычева, М.Г. Никулина. М.: МФТИ, $2019.-370~{\rm c}.$

7 Приложение

Ссылка на данные и их обработку