Algoritmos de optimización bioinspirados

Introducción a las metaheurísticas

Inteligencia Artificial INFO257

Profesor: Jorge Maturana jorge.maturana@inf.uach.cl

Introducción

- La Ingeniería está asociada al diseño de artefactos eficientes
- La eficiencia de estos artefactos depende de parámetros de diseño
 - Capacidad de carga
 - Grosor de vigas
 - Elección de materiales
 - etc.
- La correcta elección de estos parámetros, de acuerdo a un objetivo, es materia de la optimización

Ejemplo: Ingeniería Naval

Diseño naval

- Determinar parámetros que determinan forma del casco
- Objetivo: obtener buena estabilidad, maniobrabilidad, distribución de esfuerzos, velocidad, capacidad de carga, etc.

Ejemplo: Ing. Informática/Electrónica

Prof. Jorge Maturana Ortiz Universidad Austral de Chile

- Diseño de lógica
 - Circuitos
 - Programas

- Diseño de artefactos
 - Antenas

Métodos basados en el gradiente

- Idea: encontrar la dirección de mayor cambio (max/min) y avanzar en ese sentido
- A partir de un punto cualquiera, iterar hasta que se obtenga una buena solución
- En 1 dimensión:

(cuasi)óptima

Ejemplo: Método de Cauchy

$$min f(x, y) = x - y + 2x^{2} + 2xy + y^{2}$$

Limitaciones de Métodos de gradiente

 Qué sucede si se aplica un método basado en gradiente a los puntos de la figura?

Optimización local y global

 Espacio de búsqueda: conjunto de posibles soluciones (dominio de la función objetivo)

 Vecindad (de un punto): conjunto de puntos "cercanos" a él en el espacio de búsqueda, definidos por un operador

Local vs. Global

Límites para métodos tradicionales

- Aparte de la localidad, normalmente se requiere que exista una función continua y diferenciable
- Qué sucede si la función no es continua, no es diferenciable, es desconocida o simplemente no existe?

Multimodalidad

Ejemplo: Travelling Salesman Problem

Sean N ciudades de un territorio. El objetivo es encontrar una ruta que, comenzando y terminando en una ciudad concreta, pase una sola vez por cada una de las ciudades y minimice la distancia recorrida por el viajante.

Tiempo en supercomputador

22 1.1E+21 11.880 años 65 días 23 2.5E+22 273 mil años 4.1 años		Ciudades	Itinerarios	PC	Jaguar XT5
20 2.4E+18 25.7 años 3.4 horas 21 5.1E+19 540 años 3 días 22 1.1E+21 11.880 años 65 días 23 2.5E+22 273 mil años 4.1 años	Š.	18	6.4E+15	24.7 días	32 s
21 5.1E+19 540 años 3 días 22 1.1E+21 11.880 años 65 días 23 2.5E+22 273 mil años 4.1 años		19	1.2E+17	1.4 años	10.1 min
22 1.1E+21 11.880 años 65 días 23 2.5E+22 273 mil años 4.1 años		20	2.4E+18	25.7 años	3.4 horas
23 2.5E+22 273 mil años 4.1 años		21	5.1E+19	540 años	3 días
		22	1.1E+21	11.880 años	65 días
24 6 2F+23 6 5 millones años 98 4 años		23	2.5E+22	273 mil años	4.1 años
		24	6.2E+23	6.5 millones años	98.4 años

Prof. Jorge Maturana Ortiz Universidad Austral de Chile

Maldición de la dimensionalidad

- Si el problema se escala, los recursos serán insuficientes
- Propio de sistemas complejos
 - Compuesto de muchos elementos
 - Ej: Problemas combinatorios

Heurísticas

- Son métodos computacionales utilizados en optimización
- Se basan en una idea "razonable" que la mayor parte de las veces arroja buenos resultados
- Ejemplo 1: TSP
 - Hurística: Nearest neighbor: Próxima ciudad es la más cercana a la última visitada.

https://optimization.mccormick.northwestern.edu/index.php/Heuristic_algorithms

- Ejemplo 2: Problema de la mochila (knapsack)
 - Existe un conjunto de objetos con distinto peso y valor
 - Se cuenta con una mochila con capacidad finita, menor a la suma de los pesos de los objetos
 - Problema: seleccionar los objetos a meter en la mochila, maximizando el valor
 - Heurística: seleccionar los objetos ordenados según su valor/peso

Metaheurísticas (MH)

- La heurísticas son formuladas para problemas específicos
- La MH son heurísticas de alto nivel, aplicables a diversos problemas
 - Término propuesto por Fred Glover en 1986
- Se desenvuelven bien en espacios de búsqueda grandes y complejos
- Exigen pocas condiciones de los espacios de búsqueda y pueden operar con poco conocimiento sobre los problemas
- No aseguran la convergencia hacia el óptimo global
- Muchas veces son estocásticas

Metaheurísticas

