

Faculté des Sciences Semlalia

Dépendance Fonctionnelle et Normalisation

Enseigné par: Pr. J. ZAHIR

16 décembre 2020

Objectifs d'apprentissage de la séance

- Comprendre la redondance des données
- Comprendre les concepts reliés au principe de la dépendance fonctionnelle
- Comprendre le principe de la décomposition sans perte
- Connaitre les 1FN, 2FN, 3FN, BCNF et 4FN
- Pouvoir effectuer une transformation en 3FN

Plan

- 1 La redondance
 - Anomalie d'insertion
 - Anomalie de suppression
 - Anomalie de modification
- Dépendances fonctionnelles
- Normalisation des Relations
- 4 Fermeture transitive et couverture minimale
- 6 Dépendances Multivaluées et 4ème forme normale

La redondance Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Anomalie d'insertion Anomalie de suppression Anomalie de modification

Une définition

La redondance des données au sein d'une BD désigne le fait qu'une même donnée soit stockée/répétée dans deux ou plusieurs champs différents.

Exemple:

NUM_LIVRE	LIVRE	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

Une définition

La redondance des données au sein d'une BD désigne le fait qu'une même donnée soit stockée/répétée dans deux ou plusieurs champs différents.

Exemple:

NUM_LIVRE	LIVRE	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

⇒ Redondance des valeurs (catégorie, prix) : (Enfant, 200) apparaît 4 fois.

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 4 / 51

Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Conséquences de la redondance

- Perte d'espace sur le support physique de stockage (n'est plus vraiment une contrainte de nos jours)
- Anomalies de stockage

Anomalies de stockage

- Anomalie d'insertion
- 2 Anomalie de suppression
- Anomalie de modification

Anomalie d'insertion

• Insérer l'information suivante : " Les livres de la catégorie "Jeune âge" coûtent 150 euros"

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 6 / 51

Normalisation des Relations Fermeture transitive et couverture minimal Dépendances Multivaluées et 4ème forme normal

Anomalie d'insertion

Anomalie d'insertion

• Insérer l'information suivante : " Les livres de la catégorie "Jeune âge" coûtent 150 euros"

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

- Pas de livre ⇒ Pas de NUM_LIVRE ⇒ Impossible d'insérer
- En plus de la possibilité d'introduction d'erreurs

Anomalie de suppression

• Et si nous supprimions la dernière ligne?

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 7 / 51

Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Anomalie de suppression

Anomalie de suppression

• Et si nous supprimions la dernière ligne?

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

→ Perte d'information

Anomalie de modification

• Et si le prix de la catégorie "Enfants" changeait?

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 8 / 51

Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Anomalie de modification

• Et si le prix de la catégorie "Enfants" changeait?

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE	PRIX
1	Hergé	Objectif Lune	Enfants	200
2	Gosciny	Astérix le Gaulois	Enfants	200
3	Gossiny	Dalton City	Enfants	200
4	Franquin	Le Cas la Gaffe	Enfants	200
5	Franquin	Idées noires	Adultes	300

● ⇒ Coût élevé de la mise à jour

Une solution?

CATEGORIE	PRIX
Enfants	200
Adultes	300

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE
1	Hergé	Objectif Lune	Enfants
2	Gosciny	Astérix le Gaulois	Enfants
3	Gossiny	Dalton City	Enfants
4	Franquin	Le Cas la Gaffe	Enfants
5	Franquin	Idées noires	Adultes

- Anomalie d'insertion ⇒ Résolue
- Anomalie de suppression ⇒ Résolue
- Anomalie de modification ⇒ Résolue

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 9 / 51

Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Anomalie de modification

Une solution?

CATEGORIE	PRIX
Enfants	200
Adultes	300

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE
1	Hergé	Objectif Lune	Enfants
2	Gosciny	Astérix le Gaulois	Enfants
3	Gossiny	Dalton City	Enfants
4	Franquin	Le Cas la Gaffe	Enfants
5	Franquin	Idées noires	Adultes

- Anomalie d'insertion ⇒ Résolue
- Anomalie de suppression ⇒ Résolue
- Anomalie de modification ⇒Résolue

Question: Pourra t-on retrouver la relation initiale?

Une solution?

64TE60DIE	DDIV
CATEGORIE	PRIX
Enfants	200
Adultes	300

NUM_LIVRE	AUTEUR	TITRE	CATEGORIE
1	Hergé	Objectif Lune	Enfants
2	Gosciny	Astérix le Gaulois	Enfants
3	Gossiny	Dalton City	Enfants
4	Franquin	Le Cas la Gaffe	Enfants
5	Franquin	Idées noires	Adultes

- Anomalie d'insertion ⇒ Résolue
- Anomalie de suppression ⇒ Résolue
- Anomalie de modification ⇒ Résolue

Question: Pourra t-on retrouver la relation initiale?

Réponse : Oui, en effectuant une jointure entre les deux relations sur l'attribut catégorie.

⇒ Nous venons d'effectuer une décomposition réversible, appelée aussi décomposition sans perte

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

9 / 51

Plan

- 1 La redondance
- Dépendances fonctionnelles
 - Définition
 - Axiomes d'armstrong
 - Propriétés supplémentaires des DF
 - Types des DF
 - Graphe de Dépendances Fonctionnelles
- 3 Normalisation des Relations
- 4 Fermeture transitive et couverture minimale
- 5 Dépendances Multivaluées et 4ème forme normale

Dépendance fonctionnelle : Introduction

- Notion introduite par Codd
- Objectif: → Caractériser les relations pouvant être décomposées sans perte d'information

Définition

- Soient A et B deux attributs (ou deux groupes d'attributs) et R une relation, on dit que:
 - B est fonctionnellement dépendant de A, ou
 - A détermine B
- si à toute valeur de A correspond au plus une valeur de B
- Notation : $A \rightarrow B$

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 11 / 51

Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Axiomes d'armstrong Propriétés supplémentaires des DF Types des DF

Exemple

NSS → Nom

Au NSS 252 correspond toujours à M. Durand (Pierre).

Au nom Martin correspond les NSS 126 (M. Philippe Martin) et 327 (M. Paul Martin)

Propriétaire (NSS, Nom, Prénom, Adr, Tel)

NSS	Nom	Prénom	Adr	Tel
251	Dupont	Jean		
252	Durand	Pierre		
126	Martin	Philippe	15, rue A	012345
327	Martin	Paul	27, av. C	019876

Remarque

Une DF est une assertion sur TOUTES les valeurs possibles et non pas uniquement sur les valeurs actuellement présentes

Réflexivité, Augmentation et Transitivité

Les DF obéissent à des propriétés mathématiques particulières, dites axiomes d'Armstrong.

Réflexivité

Tout ensemble d'attributs détermine lui-même, ou une partie de lui-même

- E→E
- A, B→A

Augmentation

Si $E \rightarrow F$ alors $\forall G E, G \rightarrow F$

Transitivité

Si $E \rightarrow F$ et $F \rightarrow G$ alors $E \rightarrow G$

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

l6 décembre 2020

13 / 51

La redondance **Dépendances fonctionnelles** Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale Définition
Axiomes d'armstrong
Propriétés supplémentaires des DF
Types des DF
Granbe de Dépendances Fonctionnelles

Union, Pseudo-Transitivité et Décomposition

Union (additivité)

Si $E \rightarrow F$ et $E \rightarrow G$ alors $E \rightarrow F$, G

Décomposition

Si $E \rightarrow F$ et $G \in F$ alors $E \rightarrow G$

Pseudo-transitivité

Si $E \rightarrow F$ et F, $G \rightarrow H$ alors E, $G \rightarrow H$

DF Canonique

 $E \rightarrow F$ est canonique si F ne contient qu'un seul attribut.

Exemple

- ullet NV o Type
- ullet NV o Marque

Voiture (NV, Type, Marque, Puiss, Coul, NSS)

NV	Туре	Marque	Puiss	Coul	NSS
123AB91	2CV	Citroën	2	Verte	251
234CD75	R5	Renault	5	Rouge	251
541EF92	Punto	Fiat	7	Grise	126
621ZE38	Sierra GLX	Ford	9	Blanche	327

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 15 / 51

Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale Axiomes d'armstrong Propriétés supplémentaires des DF Types des DF

DF Directe

 $E \rightarrow F$ est directe s'il n'existe pas G tel que $E \rightarrow G$ et $G \rightarrow F$

Exemple

 $NV \rightarrow Marque \ n'est \ pas \ directe puisque \ NV \rightarrow Type \ et \ Type \rightarrow Marque$

Voiture (NV, Type, Marque, Puiss, Coul, NSS)

NV	Туре	Marque	Puiss	Coul	NSS
123AB91	2CV	Citroën	2	Verte	251
234CD75	R5	Renault	5	Rouge	251
541EF92	Punto	Fiat	7	Grise	126
621ZE38	Sierra GLX	Ford	9	Blanche	327

DF Elémentaire : DFE

 $E \rightarrow F$ (avec $F \notin E$) est une DFE s'il n'existe aucun sous-ensemble de E qui détermine F (il n'existe pas $G \in E$ pour lequel $G \rightarrow F$)

Exemple

NV, Type \rightarrow Coul n'est pas une DFE puisque NV \rightarrow Coul

Voiture (NV, Type, Marque, Puiss, Coul, NSS)

NV	Туре	Marque	Puiss	Coul	NSS
123AB91	2CV	Citroën	2	Verte	251
234CD75	R5	Renault	5	Rouge	251
541EF92	Punto	Fiat	7	Grise	126
621ZE38	Sierra GLX	Ford	9	Blanche	327

Remarque

La transitivité est le seule axiome applicable sur les DFE

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

17 / 51

La redondance

Dépendances fonctionnelles

Normalisation des Relations

Fermeture transitive et couverture minimale

Dépendances Multivaluées et 4ème forme normale

Définition
Axiomes d'armstrong
Propriétés supplémentaires des DF
Types des DF
Graphe de Dépendances Fonctionnelles

- \Rightarrow Moyen de visualiser les Dépendances Fonctionnelles.
 - Les sommets correspondent aux attributs
 - Les arcs correspondent aux DFE entre les attributs

GDF: Cas d'un ensemble d'attributs

Soit la relation CodePostal (Code, ville, Rue)

- \bullet Code \rightarrow ville
- (Ville, Rue) \rightarrow Code

Pour pouvoir représenter le GDF, il faut introduire une sorte d'association entre plusieurs sommets vers un autre sommet

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 19 / 51

Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Graphe de Dépendances Fonctionnelles

Graphe de DF: Exercice d'application 2

Dessiner le GDF correspondant à l'exemple suivant :

Exemple

- NV → CRU
- NV → MILL
- NB → NOM
- (NV, NB) → QTE

Graphe de DF : Exercice d'application 2

Dessiner le GDF correspondant à l'exemple suivant :

Exemple

- NV → CRU
- NV → MILL
- NB → NOM
- (NV, NB) → QTE

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

20 / 51

Plan

- 1 La redondance
- 2 Dépendances fonctionnelles
- Normalisation des Relations
 - 1FN
 - 2FN
 - 3FN
- 4 Fermeture transitive et couverture minimale
- 5 Dépendances Multivaluées et 4ème forme normale

Normalisation : Le pourquoi

- Une mauvaise conception des entités et associations représentant le monde réel modélisé conduit à des relations problématiques
- Une redondance des données conduit à des risques d'incohérences

Solution

Eliminer toute anomalie afin de faciliter la manipulation des relations \Rightarrow Normalisation des relations (Décomposition sans perte ou décomposition réversible

DFs et Normalisation

- Les DFs guident la normalisation
- Rappelons qu'une décomposition sans perte des données est une décomposition qui préserve les DFs.

I ZAHIR ESSM

Dépendance Fonctionnelle et Normalisation

l6 décembre 2020

22 / 51

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale

1FN 2FN

Formes Normales

- Type de relation particulier entre les entités
- Permet d'éviter les anomalies transactionnelles dues à une mauvaise modélisation des données
- Il existe 8 formes normales
- Le respect d'une FN de niveau supérieur implique le respect des FN des niveaux inférieurs
- Les 3 premières 1FN, 2FN et 3FN sont les plus utilisées

1ère Forme Normale

- Consiste à éviter les domaines composés de plusieurs valeurs et des attributs multivalués irréguliers
- Exemple :

CODE_COURS	TITRE_COURS	PROF	NIVEAU	MOTS_CLES
001	Bases de données	Dupont	S5	SGBD, Modèle EA, Relationnel
002	Systèmes d'informations	Durand	S4	UML,MERISE

TABLE - Relation Cours

CATEGORIE	PRIX
enfant	200-250
adulte	300-400
adolescent	200

TABLE - Relation CategrorieLivre

I ZAHIR ESSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

24 / 51

La redondance Dépendances fonctionnelles Normalisation des Relations ensitive et couverture minimale

1FN 2FN 3FN

1ère Forme Normale

1FN: Définition

- Tout attribut dépend fonctionnellement de la clé
- La relation ne contient que des attributs atomiques

Exemple : Relation Cours à la 1FN

CODE_COURS	TITRE_COURS	PROF	NIVEAU
001	Bases de données	Dupont	S 5
002	Systèmes d'informations	Durand	S4

CODE_COURS	MOTS_CLES
001	SGBD
001	Modèle EA
001	Relationnel
002	UML
002	MERISE

• Remarque : La 1FN crée des redondances

1ère Forme Normale

Transformer Intuitivement la relation CategrorieLivre en 1FN

CATEGORIE	PRIX
enfant	200-250
adulte	300-400
adolescent	200

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

26 / 51

La redondance Dépendances fonctionnelles **Normalisation des Relations** ransitive et couverture minimale

1FN 2FN 3FN

1ère Forme Normale

Transformer Intuitivement la relation CategrorieLivre en 1FN

CATEGORIE	PRIX
enfant	200-250
adulte	300-400
adolescent	200

CATEGORIE	PRIX_MIN	PRIX_MAX
enfant	200	250
adulte	300	400
adolescent	200	200

Deuxième forme normale

On supposera dans ce qui suit que chaque relation a exactement une clé candidate, c'est-à-dire une clé primaire et aucune clé alternative.

• Elimine les redondances en garantissant qu'aucun attribut n'est detérminé par une partie de la clé.

2FN: Définition

- Etre en 1FN
- Tout attribut dépend de toute la clé
- Uniquement des DFEs entre les attributs non-clé et la clé

Une telle relation doit être décomposée en R1(K1,K2,X) et R2(K2,Y)

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

27 / 51

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale
épendances Multivaluées et 4ème forme normale

FN FN

Deuxième forme normale : Exemple

Soit la relation : FOURNISSEUR (NOM, ADRESSE, ARTICLE, PRIX)

• Est ce que la relation FOURNISSEUR est en deuxième forme normale?

Deuxième forme normale : Exemple

Soit la relation : FOURNISSEUR (NOM, ADRESSE, ARTICLE, PRIX)

- Est ce que la relation **FOURNISSEUR** est en deuxième forme normale?
- Si (NOM, ARTICLE) \rightarrow PRIX et NOM \rightarrow ADRESSE. \Rightarrow La réponse est Non.
 - En considérant ces DF, mettre la relation **FOURNISSEUR** en 2FN.

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

28 / 51

La redondance Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale pendances Multivaluées et 4ème forme normale

1FN **2FN** 3FN

Deuxième forme normale : Exemple

Soit la relation : **FOURNISSEUR** (<u>NOM</u>, ADRESSE, <u>ARTICLE</u>, PRIX)

- Est ce que la relation **FOURNISSEUR** est en deuxième forme normale?
- Si (NOM, ARTICLE) \rightarrow PRIX et NOM \rightarrow ADRESSE. \Rightarrow La réponse est Non.
 - En considérant ces DF, mettre la relation FOURNISSEUR en 2FN.
 - FOURNISSEUR (NOM, ADRESSE)
 - PRODUIT (#NOM, ARTICLE, PRIX)

Normalisation des Relati

Troisième forme normale

Elimine les redondances dues aux dépendances transitives

3FN: Définition

- Être en 2FN
- Il n'existe aucune DF entre les attributs non-clé
- Uniquement des DF élémentaires et directes entre les attributs clés et les attributs non-clé

Une telle relation doit être décomposée en R1(K, X, Y) et R2(X, Z)

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 29 / 51

Normalisation des Relations

Troisième forme normale : Exemple (1/2)

• Est ce que la relation VOITURE(NV, MARQUE, TYPE, PUISSANCE, COULEUR) est en 3FN?

Troisième forme normale : Exemple (1/2)

 Est ce que la relation VOITURE(NV, MARQUE, TYPE, PUISSANCE, COULEUR) est en 3FN?

Si TYPE \rightarrow PUISSANCE et TYPE \rightarrow MARQUE \Rightarrow La réponse est Non

• En considérant ces DF, mettre la relation VOITURE en 3FN

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

l6 décembre 2020

30 / 53

La redondance Dépendances fonctionnelles **Normalisation des Relations** Fermeture transitive et couverture minimale <u>Dépendances Multivaluées et 4ème forme normale</u>

1FN 2FN 3FN

Troisième forme normale : Exemple (1/2)

 Est ce que la relation VOITURE(NV, MARQUE, TYPE, PUISSANCE, COULEUR) est en 3FN?

Si TYPE \rightarrow PUISSANCE et TYPE \rightarrow MARQUE \Rightarrow La réponse est Non

- En considérant ces DF, mettre la relation VOITURE en 3FN
- **VOITURE** (<u>NV</u>, #TYPE, COULEUR)
- MODELE (TYPE, MARQUE, PUISSANCE)

Troisième forme normale : Propriétés

La 3FN est une décomposition sans perte qui preserve les DF

Exemple:

Soit la relation **VOITURE** et les DF : TYPE→ PUISSANCE, TYPE → MARQUE, NV \rightarrow COULEUR et NV \rightarrow TYPE

- Décomposition 1 : R1(<u>NV</u>, #TYPE, COULEUR) , R2(<u>TYPE</u>, MARQUE, PUISSANCE)
- Décomposition 2 : V1(NV, #TYPE), V2(TYPE, PUISSANCE, COULEUR) et V3(#TYPE, MARQUE)

Laquelle des deux décompositions n'est pas en 3FN? Pourquoi?

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 31 / 51

Normalisation des Relations Fermeture transitive et couverture minimale endances Multivaluées et 4ème forme normale

Troisième forme normale : Exemple (2/2)

1FN 2FN

Normalisation 1FN, 2FN et 3FN : Synthèse

UNF	1NF	2NF	3NF
Module Code Module Title Student Code	Module Code Module Title	Module Code Module Title	Module Code Module Title
Student Name Date of Birth Grade Result	Module Code * Student Code Student Name Date of Birth	Module Code * Student Code * Grade Result	Module Code * Student Code * Grade*
	Grade Result	Student Code Student Name Date of Birth	Student Code Student Name Date of Birth
			<u>Grade</u> Result

I ZAHIR ESSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

33 / 5

Plan

- 1 La redondance
- 2 Dépendances fonctionnelles
- Normalisation des Relations
- 4 Fermeture transitive et couverture minimale
 - Fermeture transitive
 - Couverture minimale
 - Algorithme de décomposition
 - Algorithme de synthèse
 - BCNF
- 5 Dépendances Multivaluées et 4ème forme normale

Fermeture transitive : Définition

A partir d'un ensemble de DFE, on peut composer par transitivité d'autres DFE

Fermeture Transitive de F notée F^+

Ensemble des DFE considérées (F) enrichies de toutes les DFE obtenues par transitivité

Exemple:

- Déterminer la fermeture transitive de :
- F={ NV \rightarrow TYPE; TYPE \rightarrow MARQUE; TYPE \rightarrow PUISSANCE; NV \rightarrow COULEUR }
- F^+ = F \cup {NV \rightarrow MARQUE; NV \rightarrow PUISSANCE}

Notion d'équivalence des ensembles

- Deux ensembles de DFE sont dits équivalents s'il ont la même fermeture transitive.
- Le sous ensemble minimal de F permettant de générer tous les autres ensembles équivalents est appelé Couverture minimale de F

I ZAHIR ESSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

35 / 51

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale

Fermeture transitive
Couverture minimale
Algorithme de décomposition

GDF de F et de \overline{F}^+

FIGURE - GDF de F

FIGURE – GDF de F^+

Couverture minimale

Définition

Ensemble F de DFE associé à un ensemble d'attributs vérifiant les propriétés suivantes :

- **1** Aucune DF dans F n'est redondante \Rightarrow Pour toute DF f de F, $F f \not\equiv F$
- 2 Tout ensemble d'attributs a une couverture minimale qui n'est pas unique

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

6 décembre 2020

37 / 5

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale

Fermeture transitive
Couverture minimale
Algorithme de décomposition
Algorithme de synthèse
BCNF

3FN : Algorithme de décomposition

Transformation en 3FN, deux façons de faire :

- Algorithme par décomposition
- Algorithme par synthèse

Algorithme par décomposition

- En pratique, considérer les relations obtenues après l'étape de la modélisation logique
- Appliquer les transformations de normalisation pour obtenir des relations en 3FN

3FN : Algorithme de synthèse

- Entrée : Relation universelle R (tous les attributs) et un ensemble F de DF
- Sortie : Schémas $R_1, R_2, ..., R_n$ avec R_i en 3NF pour tout i

Etape 1:

• Rechercher une couverture minimale G de F (Eliminer les DF redondantes)

Etape 2:

• Partitionner G en groupes ayant la même partie gauche

Etape 3:

• Fusionner les groupes G_i et G_j possédant des parties gauches X_i et X_j équivalentes

Etape 4:

• Pour chaque groupe, créer un schéma relationnel Ri dont la clé est la partie gauche des DF et les attributs non clés est la partie droite des DF.

Etape 5

 Si aucune des clés candidates ne figure dans une des relations Ri alors il est nécessaire de rajouter une relation dont les attributs constituent une clé candidate

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

39 / 51

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale

Fermeture transitive Couverture minimale Algorithme de décomposition Algorithme de synthèse BCNF

3FN : Algorithme de synthèse - Exercice d'application-

Soit R(A,B,C,D,E) et les dépendances $A \rightarrow B$; $A \rightarrow C$; $C,D \rightarrow E$; $B \rightarrow D$; décomposer R à la 3FN en utilisant l'algorithme de synthèse

- Étape 1 : Ces DF forment déjà une couverture minimale, il est impossible d'enlever une de ces dépendances.
- Étape 2 : Il y a trois groupes de dépendances avec la même partie gauche : $\{A \rightarrow B ; A \rightarrow C\} \{C, D \rightarrow E\}$ et $\{B \rightarrow D\}$
- Étape 4 : On obtient une décomposition en trois relations R1(A,#B,C), R2(C,D,E), R3(B,#D).

Fermeture transitive Couverture minimale Algorithme de décomposition Algorithme de synthèse BCNF

La forme normale Boyce et Codd

Introduite par Boyce et Codd pour éliminer les redondances crées par des dépendances entre parties de clés et celles déjà éliminées par la 3e FN.

Définition

Une relation est en BCNF si et seulement si les seules dépendances fonctionnelles élémentaires sont celles dans lesquelles une clé entière détermine un attribut.

Une telle relation doit être décomposée en R1(K1, K2, X) et R2(Y, K1)

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

41 / 51

La redondance
Dépendances fonctionnelles
Normalisation des Relations
Fermeture transitive et couverture minimale

Fermeture transitive Couverture minimale Algorithme de décomposition Algorithme de synthèse BCNF

BCNF: Exemple

Soit la relation :

- UNIVERSITE(étudiant, matière, enseignant, note), avec les DF :
 - étudiant, matière →enseignant
 - étudiant, matière → note
 - enseignant → matière

Est ce que la relation UNIVERSITE est en BCNF?

La réponse est Non.

Mettre la relation UNIVERSITE en BCNF :

- UNIVERSITE(étudiant, matière, note)
- REPARTITION(enseignant, matière)

BCNF: Propriétés

Ressortir les DF de la décomposition obtenue dans l'exemple précédent :

- UNIVERSITE(étudiant, matière, note)
- REPARTITION(enseignant, matière)

Comparer avec les DF de la relation intiale

- étudiant, matière →enseignant
- étudiant, matière → note
- ullet enseignant o matière
- ⇒ Une décomposition en BCNF ne préserve en général pas les DF.
 - Il a été montré que toute relation a une décomposition en BCNF qui est sans perte.

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

43 / 51

Plan

- 1 La redondance
- Dépendances fonctionnelles
- 3 Normalisation des Relations
- 4 Fermeture transitive et couverture minimale
- 5 Dépendances Multivaluées et 4ème forme normale
 - Introduction
 - Dépendances Multivaluées
 - 4FN

Exemple Introductif

Soit la relation ETUDIANT(NE, COURS, SPORT)

NE	COURS	SPORT
100	Bases de données	Tennis
100	Bases de données	Football
100	Réseaux	Tennis
100	Réseaux	Football
200	Réseaux	Vélo

• La relation **ETUDIANT** est elle en 3FN? BCNF?

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 45 / 51

Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Dépendances Multivaluées 4FN

Exemple Introductif

Soit la relation **ETUDIANT**(NE, COURS, SPORT)

NE	COURS	SPORT
100	Bases de données	Tennis
100	Bases de données	Football
100	Réseaux	Tennis
100	Réseaux	Football
200	Réseaux	Vélo

• La relation **ETUDIANT** est elle en 3FN? BCNF?

Mais des redondances existent toujours ⇒ d'où le besoin de la 4FN

Dépendances Multivaluées : Définition

Définition

Soient:

- R (A1, A2... An) un schéma de relation,
- X et Y deux sous-ensembles de {A1, A2, ... An}

On dit que X woheadrightarrow Y (X multidétermine Y, ou il y a une dépendance multivaluée de Y sur X) si étant données des valeurs de X, il y a un ensemble de valeurs de Y associées et cet ensemble est indépendant des autres attributs Z = R - X - Y de la relation R.

Plus formellement

$$(X \rightarrow Y) \Leftrightarrow \{(xyz)et(xy'z') \in R \Rightarrow (xy'z)et(xyz') \in R\}$$

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020

46 / 51

La redondance Dépendances fonctionnelles Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Introduction Dépendances Multivaluées 4FN

Retour à l'exemple introductif

NE	COURS	SPORT
100	Bases de données	Tennis
100	Bases de données	Football
100	Réseaux	Tennis
100	Réseaux	Football
200	Réseaux	Vélo

A partir de la relation **ETUDIANT** (exemple introductif) :

- NE→ COURS
- NE → SPORT

DF vs DM

Soient:

- R (A1, A2... An) un schéma de relation,
- X et Y deux sous-ensembles de {A1, A2, ... An}

$$X \rightarrow Y \Leftrightarrow \{(xyz)et(xy'z') \in R \Rightarrow y = y'\}$$

$$X \rightarrow Y \Leftrightarrow \{(xyz)et(xy'z') \in R \Rightarrow (xy'z)et(xyz') \in R\}$$

$$X \rightarrow Y \Rightarrow X \twoheadrightarrow Y$$

Conclusion

Les dépendances fonctionnelles sont un cas particulier des dépendances multivaluées

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 48 / 51

Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

Dépendances Multivaluées

DM élémentaires

DM élémentaire : Définition

Dépendance multivaluée X --> Y d'une relation R telle que :

- Y n'est pas vide et est disjoint de X.
- ② R ne contient pas une autre DM du type $X' \rightarrow Y'$ telle que $X' \subset X$ et $Y' \subset Y$.

Exemple de DME : Soit la relation : **VOL** (NV, AVION, PILOTE), où :

- NV est un numéro de vol.
- On suppose disposer d'un ensemble d'avions et d'un ensemble de pilotes.
- Tout pilote est conduit à piloter tout avion sur n'importe quel vol.

Y'a t-il des DM? Si oui, sont elles élémentaires?

DM élémentaires

DM élémentaire : Définition

Dépendance multivaluée X --> Y d'une relation R telle que :

- 1 Y n'est pas vide et est disjoint de X.
- 2 R ne contient pas une autre DM du type $X' \rightarrow Y'$ telle que $X' \subset X$ et $Y' \subset Y$.

Exemple de DME : Soit la relation : **VOL** (NV, AVION, PILOTE), où :

- NV est un numéro de vol.
- On suppose disposer d'un ensemble d'avions et d'un ensemble de pilotes.
- Tout pilote est conduit à piloter tout avion sur n'importe quel vol.

Y'a t-il des DM? Si oui, sont elles élémentaires?

- Les avions et les pilotes sont indépendants, donc oui des DM existent et elles sont élémentaires
 - NV --> AVION
 - NV → PILOTE

J. ZAHIR, FSSM

Dépendance Fonctionnelle et Normalisation

16 décembre 2020 49 / 51

Normalisation des Relations Fermeture transitive et couverture minimale Dépendances Multivaluées et 4ème forme normale

4ème forme normale : Définition

Définition

Une relation est en 4FN si les seules DME sont celles dans lesquelles une clé multidétermine un attribut.

Soit la relation : **ETUDIANT**(NE, COURS, SPORT)

• Est ce que **ETUDIANT** est en 4FN?

La clé est l'ensemble des attributs et il existe des DM élémentaires entre des attributs participants à la clé \Rightarrow **ETUDIANT** n'est pas en 4FN.

- Décomposer ETUDIANT en 4FN
- R1(NE,COURS)
- R2(NE,SPORT)