Efficient number theoretic transform

Rudolf Loretan Artur Melo Rijad Nuridini Philippe Panhaleux

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The NTT algorithm

- Number-Theoretic Transform (NTT) is a specialization of the DFT
 - NTT is over ring $F = \mathbb{Z}_p$
 - Replacing $e^{(-2\pi ik)/N}$ with n-th primitive root in matrix.
- Numeric problem: input: v₁, output: v₂

$$\mathbf{v}_{1},\mathbf{v}_{2} \subseteq \mathbb{Z}_{\mathbf{p}}^{\mathsf{n}}$$

- Drawback: Same complexity as DFT
 - Naïve implementation: O(n²)
- Advantage: DFT is a well known and optimized algorithm: O(n log n)
 - We can use radix algorithms:

We focused on 2 variants: Radix 2 iterative, Radix 4 recursive

Design Decisions and Cost Analysis

- NTT for input sizes 2^N
- Work on Z_p ring of integers modulo p
 - Chose p $\approx 2^{25}$ \rightarrow input numbers must be $\leq 2^{25}$
 - Reason: Multiplication can be done in a double w/o overflow
- Benchmark alternative: FTL-NTTW Library
- Cost analysis: int adds, mults, divs, mods but no index access operations

$$C_{twiddle} = 25C_{add} + 6C_{mul} + 5C_{mod}$$

$$C_{base} = 24C_{add} + 1C_{mul} + 1C_{mod}$$

$$C_{radix4-rec}(n) = \begin{cases} \frac{n}{2}(6C_{add} + 1C_{mul} + 1C_{mod} + (log_4(n) - 1)C_{twiddle} + \frac{(C_{base} + 1C_{div})}{2}) & \text{if } 4 \mid n \\ 2C_{radix4-rec}(\frac{n}{2}) + \frac{n}{2}(1C_{mul} + 1C_{mod} + 6C_{add})) & \text{otherwise} \end{cases}$$

Verified using counters embedded in code

Experimental Setup

Intel Core i7 7700 @ 3.6GHz - Skylake Architecture

L2 cache: 256KB

■ L3 cache: 8MB

- Benchmark: tsc_x86 hardware counters as in homeworks
 - Performance measurements for warm cache
- Validation:
 - Python NTT library:

... 2m

Profiler:

Scalar improvements

We tried replacing divs with shifts, floored division

Profiling

▼ Top Hotspots

This section lists the most active functions in yo improving overall application performance.

Function	Module	CPU Time ®
NTT4_twiddle	a.out	45.181s
NTT4_base	a.out	2.510s
do_NTT_radix4	a.out	2.220s
NTT_rec	a.out	0.973s
modpow	a.out	0.612s
[Others]	N/A*	0.204s

^{*}N/A is applied to non-summable metrics.

Problems:

- Loading data with strides
- Many overflow checks (before every single add/mult)
- How can we improve this?

Vectorization – Radix 4

- Can't vectorize single base4/twiddle4
- But: can do 4 at a time
 - Which is pretty much base16/twiddle16

- Problem: Integer Intrinsics in AVX2
 - Extremely small variety of instructions e.g.
 - multiplication only for epi32 \rightarrow 16 bit numbers or overflow
 - only two comparison instr: (eq and gt)
 - Not even plain load/store
- Would greatly benefit from AVX-512

Vectorization – Radix 4

Speedup: 7.3x over FTL, 16.5x over scalar base

Best Implementations

Memory and roofline analysis

Potential future work

- Maybe we will...
 - ... adapt NFLib to compare our implementation, potentially best library out there
 - ... compare AMD vs Intel
 - Artur has an AMD Ryzen 5 processor the charts seem different

- It could have been interesting, but we won't...
 - use code generation for radix algorithms of even higher order (8, 16)
 - ... use AVX-512 for a more complete set of int ops
 - Big potential improvement in speed and code simplicity