

WeChat: cstutorcs

1.1 - Memory Assignment Project Exam Helpdes

csullo22 - Introduction to Empiring III thtores@163.com

QQ: 749389476

https://tutorcs.com

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics

WeChat: cstutorcs

Recap: LDR and STR Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

How many memory acceled to compute

WeChat: cstutorcs total = total + (a × b)

Assignment Project Exam Help

where **total**, **a** and **b** are stored in memory at Email: tutorcs@163.com the addresses contained in **R0**, **R1** and **R2** respectively? QQ: 749389476

WeChat: cstutorcs

LDR LDR MUL	R5, [R1] R6, [R2] R5, R6, R5	Assignment Project Exam Help @ Load b Email:=tutores@163.com	
LDR ADD	R4, [R0] R4, R4, R5	QQ007 49389476 e total = total + (tmp)	
STR	R4, [R0]	https://tutorcs.com.o memory	

Design and write an asse組biyita Fguage ps编辑铺设 convert a string

stored in memory to UPPER CASE

```
While:
                    @ while ((ch = byte[address]) != 0)
       R2, [R1]
 LDRB
                    a WeChat: cstutorcs
 CMP
       R2, #0
       EndWhile
 BEQ
                      Assignment Project Exam Help
       R2, #'a'
 CMP
 BLO
       EndIfLwr
                    e Email: tutorcs@163.com
       R2, #'z'
 CMP
       EndIfLwr
 BHI
       R2, R2, #0x20 @ QQ:749389476x20;
 SUB
       R2, [R1] @ byte[address] = ch;
 STRB
                    e https://tutorcs.com
EndIfLwr:
                        address = address + 1;
 ADD R1, R1, #1
       While
  B
EndWhile:
```

Design and write an assembly language program that will calculate the sum of 10 word-size values stored in memory, beginning at the address in R1.

```
RO, #0
  MOV
                      @ WeChat: cstutorcs
  MOV
        R2, #0
While:
                      e Alssignment Project Exam Help
  CMP
        R2, #10
        EndWhile
  BHS
                      e Email: tutorcs@163.com
        R3, [R1]
                          value = word[address];
  LDR
                      @ QQum49389476value;
        R0, R0, R3
  ADD
                          address = address + 4;
       R1, R1, #4
  ADD
                      @ https=//tutorcs.com
        R2, R2, #1
  ADD
        While
  B
EndWhile:
```

Store the sum in R0.

WeChat: cstutorcs

Addressing Modes: Immediate Offset Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

The syntax [R1] is just one of many ways that we can specify the address of the memory location that we want to access Ashignments Project Exam Help

Remember: [R1] tells the protessor to access the value in memory at the address contained in register R1. (We can say that R1 "points to" a location in memory.)

QQ: 749389476
The syntax [R1] is an Addressing Mode

https://tutorcs.com [R1] is an abbreviated form of [R1, #0] (the #0 is implied if omitted)

The address of the memory location accessed by LDR or STR is called the Effective Address (EA)

Addressing Mode Syntax	程序代写纸做nCS编程系	# Example
[Rn, #offset]	Rn + offset	LDR R0, [R1, #4]
[R n]	0 (#0 is assumed)	LDR R0, [R1]

Effective Address is calculated by adding **offset** to the address in the **base register Rn** (note: offset may be negative) Chat: cstutorcs

The value in the base register Arsignement dhanget Exam Help

Example: load three consecutive wibrthsize value of from memory into registers R4, R5 and R6, beginning at the address contained in R0 QQ: 749389476

```
LDR R4, [R0] https://tutoucs.rcom0] (default = 0)
LDR R5, [R0, #4] @ R5 = word[R0 + 4]
LDR R6, [R0, #8] @ R6 = word[R0 + 8]
```


WeChat: cstutorcs

Addressing Modes: Register Offset Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Addressing Mode Syntax	程序代写纸做nCS编程有	浦 导 Example
[Rn, Rm]	= Rn + Rm	LDR R0, [R1, R2]

register Rn

Effective Address is calculated in the base

The values in the base register Rm and toffset register Rm do not change

Example: load three consecutive worthvelve from Example into registers R1, R2 and R3 beginning at the address in R0

Email: tutorcs@163.com

```
R4, =0
R1, [R0, R4] Q@ 774193805476ffset register = 0
r1 = word[r0 + r4]
LDR
LDR
ADD
LDR
ADD
         R4, R4, \#4 @ r4 = r4 + 4
        R3, [R0, R4] @ r3 = word[r0 + r4]
LDR
```


WeChat: cstutorcs

1.2 - Memory and Saigument Project Exachellely continued)

csullo22 - Introduction to Empiting III thtores@163.com

QQ: 749389476

https://tutorcs.com

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics

```
程序代写代做 CS编程辅导@index = 0
          R2, = 0
  LDR
whUpr:
  LDRB
          R4, [R1, R2]
                                         (char = byte[address + index]) != 0 )
  CMP
          R4, #0
          eWhUpr
  BEQ
                                if (char >= 'a'
  CMP
          R4, #'a'
  BLO
          eIfLwr
                             WeChat&cstutorcs
                                     char <= 'z')
          R4, #'z'
  CMP
          eIfLwr
  BHI
  BIC
          R4, #0x00000020
                             _@ .byte[address + index] = char
Email: tutorcs@163.com
          R4, [R1, R2]
  STRB
eIfLwr:
                                index = index + 1
  ADD
          R2, R2, #1
                                ): 749389476
          whUpr
  B
eWhUpr:
                            https://tutorcs.com
End_Main:
  BX
           LR
```

Design and write an asse**與协小**海野埃森是欧绵姆斯特at will calculate the sum of 10 word-size values stored in memory beginning at the address

in R1

```
LDR
                                                                                     R0, =0
                 LDR
                                                                                     R4, = 0
                                                                                      R5, = 0
                                                                                                                                                                                                                                   Q 	ext{ offset} = 0
                  LDR
                                                                                                                                                                                                                                         WeChat: cstutorcs
whSum:
                                                                                      R4, #10
                  CMP
                                                                                                                                                                                                                                 @AwsiignmenttProject Exam Help
                  BHS
                                                                                       eWhSum
                                                                                                                                                                                                                                 Email: tword[address.toffset]

e sum = num

e num

e sum + num

e sum 
                                                                                      R6, [R1, R5]
                 LDR
                                                                                      R0, R0, R6
                  ADD
                                                                                      R5, R5, #4
                  ADD
                                                                                      R4, R4, #1
                  ADD
                                                                                       whSum
                                                                                                                                                                                                                                    ehttps://tutorcs.com
 eWhSum:
  End_Main:
                                                                                        LR
                  BX
```


WeChat: cstutorcs

Addressing Modes: Scaled Register Offset Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Addressing Mode Syntax 程序代码数 CS编程辅导 Example [Rn, Rm, LSL #shift] (Rm x 2shift) LDR R0, [R1, R2, LSL #2]

Effective Address is calculated in the base registers. In a offset in **Rm**, shifted left by **shift** bits, to

The values in the base register and land offsetoregister Rm are not changed

Example: load three consecutive wondesite values from the try into registers R1, R2 and R3 beginning at the address in R0 Email: tutorcs@163.com

Re-write our program to calculate the sum of 10 word-size values stored in memory, this time using scaled register offset addressing

Allows count to be used f

```
R0, =0
 LDR
                          WeChat: cstutorcs
         R4, = 0
  LDR
whSum:
                          Assignment Project-Exam Help
  CMP
         R4, #10
  BHS
         eWhSum
         R6, [R1, R4, LSL ##hail: tutorcs@rf63deren + (count * 4)]
 LDR
         R0, R0, R6
  ADD
                                  sum = sum + num
                          QQ: 749389476 count + 1
         R4, R4, #1
  ADD
         whSum
eWhSum:
                          https://tutorcs.com
End_Main:
```

LR

BX

WeChat: cstutorcs

Addressing Modes: Pre- and Post-Indexed Addressing Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Many programs iterate sequentially through memory (examples?)

Often manifested as an Limitation followed by an ADD

```
LDR R4, [R1]
ADD R1, R1, #4
```

word manuficular word and a second second

WeChat: cstutorcs

ARM architecture provides a set of addressing modes that incorporate the Assignment Project Exam Help increment/decrement into the execution of the LDR/STR instruction

Email: tutorcs@163.com

Pre-Indexed Addressing 1. Increment / Decrement base address register (Rn) https://tutorcs.com 2. Compute Effective Address address register (Rn) https://tutorcs.com address register (Rn) address register (Rn)

LDR R4, [R1]
ADD R1, R1, #4

Immediate Offse Addressing

Immediate Post-Indexed Addressing

Syntax: post-indexed ad **Wessing modes** place the value to be added to the base register Rn **after** the []
Assignment Project Exam Help

Behaviour: (i) the LDR/SER is performed first using the original base register value, (ii) the base register is updated by applying the post-index operation QQ: 749389476

https://tutorcs.com Modes: Immediate Post-Indexed, Register Post-Indexed, Scaled Register Post-Indexed (LSL #shift)

Syntax: pre-indexed addressing modes place the value to be added to the base register Rn **inside** the base register Rn **inside** the state of the base register Rn **inside** the base regi

Assignment Project Exam Help An exclamation mark! after the [] distinguishes pre-indexed addressing from immediate offset addressing [R19#4] Whichdonesn't modify R1

Behaviour: (i) the base register is 4 pasted by applying the pre-index operation, (ii) the LDR/STR is performed using the updated base register value https://tutorcs.com

Modes: Immediate Pre-Indexed, Register Pre-Indexed, Scaled Register Pre-Indexed (LSL #shift)

```
whUpr:
                                        byte[address++]
  LDRB
          R4, [R1], #1
  CMP
          R4, #0
                                         char != 0 )
  BEQ
          eWhUpr
                                     (char >= 'a'
          R4, #'a'
  CMP
                            WeChaterstutores)
  BLO
          eIfLwr
          R4, #'z'
  CMP
       eIfLwr
  BHI
                            AssignmentcProject Example(p)20

@ byte[address - 1] = char
  BIC
          R4, #0x00000020
          R4, [R1, #-1]
  STRB
eIfLwr:
                            Email: tutorcs@163.com
          whUpr
  В
eWhUpr:
                             OO: 749389476
End_Main:
                            https://tutorcs.com
  BX
          LR
```

```
LDR
          R0, =0
          R4, = 0
  LDR
whSum:
  CMP
          R4, #10
  BHS
          eWhSum
          R6, [R1], #4
  LDR
          R0, R0, R6
  ADD
          R4, R4, #1
  ADD
          whSum
eWhSum:
End_Main:
          LR
  BX
```

```
@while (count < 10)
@WeChat: cstutorcs
@ num = word[address]; address = address + 4;
@Assignment+Project Exam Help
@ count = count + 1
@Email: tutorcs@163.com
@</pre>
QO: 749389476
```


WeChat: cstutorcs

1.3 - Arrays

Assignment Project Exam Help

csullo22 - Introduction to Empiring III thtores@163.com

QQ: 749389476

https://tutorcs.com

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics

WeChat: cstutorcs
Single-Dimensional Arrays
Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程 Nothing new here ... you have already been using arrays!

Array – an ordered collection homogeneous elements stored sequentially in memory WeChat: cstutorcs

e.g. integers, ASCII characters Assignment Project Example 19 Project Example 20 Project

"Homogeneous elements" (for us, at least with respect to size) Q: 749389476

"Dimension" number of elements of array

浦 号ddress	memory	index				
	• • •					
0x2000030	???????					
0x2000002C	???????					
0x20000028	???????					
0x20000024	31	5				
0x20000020	28	4				
0x200001C	30	3				
1972 1909 138	17	2				
0x20000014	31	1				
n x20000010	5	0				
0x200000C	???????					
0x20000008	???????					
0x20000004	???????					
0x2000000	???????					
	• • •					
32 bits = 4 bytes = 1 word						

Step 1: translate array i组像x throughte of the office the start address of array in memory

<

Step 2: add byte offset to array base address to access element

Assignment Project Exam Help Example: retrieve the 4th element (index 3) of an array of words stored in memory beginning at the Eddries suito Res @ 163.com

Efficient implementation & Pandon & Cess using Scaled Register Offset addressing mode:

https://tutorcs.com

```
LDR R5, =3 @ index = 3 (4th element)
LDR R6, [R4, R5, LSL #2] @ elem = word[arr + (index * 4)]
```

```
LDR
          R0, =0
                           程序代点线做。CS编程辅导
  LDR
          R4, = 0
whSum:
                                      ile (index < 10)
  CMP
          R4, #10
          eWhSum
  BHS
          R6, [R1, R4, LSL
  LDR
                                      um = array[index]
          R0, R0, R6
  ADD
                                    \overline{sum} = sum + num
                           WeChatindex = index + 1
WeChaticstutorcs
          R4, R4, #1
  ADD
          whSum
eWhSum:
                           Assignment Project Exam Help
End_Main:
                           Email: tutorcs@163.com
          LR
  BX
```

Déjà Vu? The pseudo-code QQn mente sha ve changed to use array syntax but the program is identical to our version of Sum with scaled register offset https://tutorcs.com

The register offset is our array index, which is scaled by the size of a single array element to give us the memory address offset for the element we want

You're reaction mpt Assignment 1 which will be released at the start of next week WeChat: cstutorcs

Assignment Project Exam Help
Before attempting Assignment 1, you should
complete the Bubblesort exercise

QQ: 749389476

WeChat: cstutorcs

1.4 – Arrays Assignment Project Exam Help

CSU11022 - Introduction to Empiring III thtores@163.com

QQ: 749389476

https://tutorcs.com

Dr Jonathan Dukes / jdukes@scss.tcd.ie School of Computer Science and Statistics

WeChat: cstutorcs

Multi-Dimensional Arrays Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Arrays can have more that 鄭氏衛飛越ios编程辅导

e.g. a two-dimensional application alogous to a table containing elements arranged in rover a lumns

Stored in memory by mapping the 2D array into 1D memory, e.g.

Column-major order: 2D tored in memory by storing each column contiguously in major is the assumed norm)

2D array declared in mem程序代写代做 CS编程辅导

... or equivalently ... but Frotaile tytolearly 163 or or ecommended ...

Step 1: translate 2D array index into 1D array index

<index> × <row_size>) + <col>

Step 2: translate 1D arrest into byte offset from start address of

array in memory

WeChat: cstutorcs

<

Step 3: add byte offset to array base address to access element

<address> = <array_base_address> + <byte_offset>

https://tutorcs.com

Example: retrieve the element at the 4th row and 3rd column of a 2D array of words with 6 rows and 8 columns – array[3][2]

of

Step 1 is new

Steps 2 & 3
are the same as
those for a 1-D
array ...

... because our 2-D
array is just a
different
interpretation of a
1-D array!

Example: retrieve the element at the 4th row and 3rd column of a 2D array of words – array[3][2]

in R5 and the number of **Exercise** is in R6.

The array starts in memorities address in R4. The number of rows in

WeChat: cstutorcs

```
; looking for array[3][2] (4th row, 3rd column)
Assignment Project Exam Help
 LDR r1, =3
 LDR
         r2, =2
                     Email: tutores@163.com
 ; <br/>
<br/>
's type offset' = ((row * type size) + col) * <elem_size<br/>
\frac{1}{100}
     r7, r1, r6; index = row * row_size
 MUL
         r7, r7, r2 https://tutorcis.dem index + col
 ADD
         r0, [r4, r7, LSL #2]; elem = word[ array + (index * elem_size)]
 LDR
```

Upper Triangular Matrix

1	2	3	4
0	5	6	7
0	0	8	9
0	0	0	10

Assume the matrix is stored in R1 and the number of rows and columns is stored in R2 (it's a square matrix!)

Assume the matrix is stored in R2 (it's a square matrix!)

For (r = 1; r < N; r++)

for (r = 1; r < N; r++)

for (c = 0; c < r; c++)

elem = matrix[r][c]

Store 1 in R0 if it is Upper Triangular and 0 in R0 if it is not.

https://tutorcs.com

s on the next slide.

Before looking at it, you should practice writing the ARM

Assembly Language Program yourself.

You can submit your solution to <u>submitty.scss.tcd.ie</u> for practice.

QQ: 749389476

```
@程s序代野代做 CS编程辅导
 MOV
         R0, #1
                                @ for (r = 1; r < N; r++)
 MOV
         R4, #1
whR:
 CMP
         R4, R2
 BHS
         ewhR
                                             ; c < r; c++)
 MOV
         R5, #0
whC:
 CMP
         R5, R4
 BHS
         ewhC
                                <sup>®</sup>WeChat: cstutorcs
                                     elem = matrix[r][c];
         R6, R4, R2
 MUL
 ADD
         R6, R6, R5
                                <sup>e</sup> Assignment Project Exam Help
         R7, [R1, R6, LSL #2]
 LDR
 CMP
         R7, #0
                                <sup>®</sup>Email: tutorcs @ 163.com
 BEQ
         endifz
                                       result = false;
 MOV
         RO, #0
                               @QQ! 749389476
endifz:
         R5, R5, #1
 ADD
         whC
                               @https://tutorcs.com
ewhC:
         R4, R4, #1
 ADD
         whR
ewhR:
```

e.g. a 3D array of size DZ

In general, the index of element a[z][y][x] is:

WeChat: cstutorcs index = ((z × DY × DX) + (y × DX) + x)

Assignment Project Exam Help e.g. a 4D array of size DWxDZ×DY×DX

Email: tutorcs@163.com

In general, the index of element a[w][z][y][x] is:

QQ: 749389476index = $((w \times DZ \times DY \times DX) + (z \times DY \times DX) + (y \times DX) + x)$