Functional Programming Assignment Report

Key	Value
Author	Haihao Yan
Date	31/03/2019
Source Code	https://github.com/hyan36/fdr

Introduction

The puzzle requires us to find the coin with different weight. In this example, we are going to use a list to represent a pile of coins, the element of the list is the weight of the coins. For example, given a list of coin [1,1,2,1,1], the coin weighs 2 is the fake coin.

Firstly, we will need to import required libraries.

```
import Data.List
import Data.Ord
import Test.QuickCheck
```

The following function will weigh 3 coins and spot the fake coin. Assume there is 3 coins in the pile, a, b and c. We will have following coinditions:

```
1. a == b && b == c : all coins are equal in weight

2. a == b && a /= c : c is the fake coin

3. a /= b && a == c : b is the fake coin

4. a /= b && a /= c && b == c : a is the fake coin
```

```
weigh :: [Int] -> Int
weigh (a:b:xs)
    | a == b && a == c = -1
    | a == b && a /= c = c
    | a /= b && a == c = b
    | otherwise = a
    where
        c = head xs
weigh xs = -1
```

My strategy is to weigh 3 coins each time until find the fake coins. However, this strategy creates a problem, when the size of pile can not be mod by 3, we will have 1 or 2 coins left in the pile whic can not be determined wether it is fake or not.

The solution is to take \mathbf{n} coins from the genue pile. (Given we have only one fake coin in the pile. If the program hits the last few coins, all previous tested coins are genue.)

```
• n = 3 - ((length xs) mod 3)
```

We then define a function to prefill the original list. So we can split the pile into smaller sizes 3. E.g. [[1,2,1], [1,1,1]...[1,1,1]].

```
prefill::Int -> [Int] -> [Int]
prefill _ [] = []
prefill n xs = xs ++ (take (if size == n then 0 else size) xs)
```

```
where
size = n - ((length xs) `mod` n)
```

Now that we have a list of test cases for every coins. We just need to weigh every 3 coins until find out the fake coin.

```
findFake::[Int] -> Int
findFake [] = -1
findFake (x:y:z:xs) = if test /= -1 then test else findFake xs
  where
    pile = prefill 3 (x:y:z:xs)
    test = weigh [x,y,z]
```

This is the most obvious way of finding the fake coins. The complexity of this solution is O(n/3). When there is 12 coins we will use 4 weighs to find the fake coin.

Solution

The core of our approach is to simulate a physical solution to the problem problems. The program will simulate all possible strategies and then choose the most optimized ways of weighing coins.

States and test

Firstly, we need to define the data type State and Test to represent the state of the coins and our strategy of testing them.

```
data State = Pair Int Int | Triple Int Int Int
  deriving (Eq, Show)
```

```
data Test = TPair (Int,Int) (Int,Int) | TTrip (Int,Int,Int) (Int,Int,Int)
  deriving (Eq,Show)
```

Q1 - Define valid

The valid function only returns true when matching following condition

- Pair can only be tested by TPair and Triple can only be tested by TTrip
- **validTest**: A valid test case requires the number of the coins on the right side matches the coins the left. We learn nothing if we weigh 3 coins against 4.
- **validSample**: You can't take more coins than the pile can offer. For example, assume we have a pile of 5 coins. We've taken 3 coins to the left hand side of the scales. There are 2 coins remaining in the pile. We can't take more than 2 coins for the right side of the scale.
- All other situation is invalid.

Thus, we will have the following definition.

```
valid:: State -> Test -> Bool
valid (Pair x y) (TPair (a,b) (c,d)) = validTest && validSample
    where
        validTest = (a + b) == (c + d)
        validSample = (a + c) <= x && (b + d) <= y
valid (Triple x y z) (TTrip (a,b,c) (d,e,f)) = validTest && validSample
    where
        validTest = (a + b + c) == (d + e + f)
        validSample = (a + d) <= x && (b + e) <= y && (c + f) <= z
valid _ _ = False</pre>
```

Choosing and conducting a test

Now we have a way to deterimine weather a state and test is valid or not. We will focus on getting the program to simulate the tests.

Q2 - Define outcomes

We will now define a function to determine all possible outcomes given a pair of valid state and tests.

There will always 3 outcomes for each test. [lighter, balanced, heavier]. The basic rules of Pair has been explained very well in assignment requirement. The triple situation is slightly more complicated.

Given (TTrip (a,b,c) (d,e,f)), we will have following combination:

- balanced all test coins goes to pile g
- ligther when left pan is ligther than right pan, the fake coin can only comes from pile a or pile e. All other coins left on the table goes to pile g.
- heavier when left pan is heavier than right pan, the fake coin can only comes from pile b or pile b. All other coins left on the table goes to pile g.

Thus, we will define outcomes::State -> Test -> [State] as follow:

```
outcomes::State -> Test -> [State]
outcomes s t
    valid s t = [(lighter s t),(balanced s t),(heavier s t)]
    otherwise = []
   where
        balanced (Pair x y) (TPair (a,b) (c,d)) = Pair (x - a - c) (y + a)
+ c)
        balanced (Triple x y z) (TTrip (a,b,c) (d,e,f)) = Triple (x - a - d) (y - balanced)
b - e) (z + a + d + b + e)
        lighter (Pair x y) (TPair (a,b) (c,d))
                                                      = Triple a c (x - a - c)
       lighter (Triple x y z) (TTrip (a,b,c) (d,e,f)) = Triple a e (x + y + z - f)
a - e)
        heavier (Pair x y) (TPair (a,b) (c,d))
                                                      = Triple c a (x - a - c)
        heavier (Triple x y z) (TTrip (a,b,c) (d,e,f)) = Triple d b (x + y + z - y)
b - d
```

Q3 - Define weighings Pair

Given TPair (a,b) (c,d), a sensible test must meet following requirement

- a + b == c + d: in our implementation, a + b == (a+b) + 0, thus there is no need to validate
- a + b > 0 : we will use as it is
- b * d == 0 : in our implementation, d = 0 thus b * d will always equals 0, thus there is no need to validate
- a + c <= u : since c = a + b thus we will translate this condition to 2 * a + b <= u
- $b + d \le g$: since d = 0 thus, b + d = b. In our implementation $b \le [0..g]$, it will always be smaller than g, thus there is no need to validate that
- $(a,b) \le (c,d)$: since c = a + b, d = 0. We translate the equation to $(a,b) \le (a+b,0)$

Q5 - Define weighings Triple

We will pick k number of coins for both pans. We will have following conditions:

- $k \le (1 + h + g) / 2$: you can't pick more coins than total amount of coins
- a + b + c == d + e + f: both pans need to have identical amount of coins
- a + b + c > 0 : you need to put something on the both pans
- c * f == 0 : don't pull genuine coins in both pans
- a + d <= I : enough light coins
- b + e <= h : enough heavy coins
- c + f <= g : enough genuine coins
- (a,b,c) <= (d,e,f) : symmetry breaker

Q4 - Define choice

We need to define a function to pick k number of coins from Triple 1 h g. Given we are picking i coins from pile 1 and j coins from pile h. A valid pick must meet following conditions:

- i+j <= k: you can't pick more than k number of coins.
- k-i-j <= q: you can't pick more coin than the pile can offer.

```
choices::Int -> (Int,Int,Int)->[(Int,Int,Int)]
choices k (l,h,g) = [(i,j,k-i-j) | i <- [0..1], j <-[0..h], k-i-j >= 0, k-i-j <=
g]</pre>
```

Q6 - Define Ord state

For any two instance of State, we will have following rules:

- Triple always less than Pair it always provides more information than pair
- For either Pair to Pair / Triple to Triple we always compare pile g, whomever has more coins in pile g provides more information than the other.

Q7 - Define productive

A productive test must given more information than the existing state. Thus we will have s' <= s. When there is no outcomes it always return False.

```
productive::State -> Test -> Bool
productive s t
    | length results > 0 = foldr (\x y -> x && y) True [ s' < s | s'<-results]
    | otherwise = False
    where
        results = outcomes s t</pre>
```

Q8 - Define tests

We will filter all possible weighings by following conditions:

- if it is a **valid** test cases
- if it is a **productive** test cases

```
tests::State -> [Test]
tests s = filter (\t -> (valid s t) && (productive s t)) (weighings s)
```

Decision trees

In this section, we are going to define a tree structure to represent the possible simulation.

Firstly, we will define a recursive Tree structure.

```
data Tree = Stop State | Node Test [Tree]
  deriving (Eq,Show)
```

We will need a function to determine if a state is final. A final states will have following rules:

```
1. For (Pair u g) we will have u == 0 \&\& g > 0: no fake coins on the table
```

- 2. For (Triple 1 h g) we will have exactly 1 coin in 1 or exactly 1 coin in h
- 3. Otherwise it is not final

Q10 - Define height

Function height will read the tree object recursively to cout the height of decision tree.

```
height::Tree -> Int
height (Stop x) = 0
height (Node t xs)
  | length xs > 0 = 1 + maximum [ height x | x <- xs]
  | otherwise = 1</pre>
```

Q11 - Define minHeight

Instead of defining our own minimum function, we will just try to utilize the existing minimum function.

As a result, we will need to define a new instance for Ord Tree. The order of two trees are determined by their height.

```
instance Ord Tree where
    compare x y = compare (height x) (height y)
minHeight::[Tree] -> Tree
minHeight xs = minimum xs
```

Q12 - Define mktree

Now we will define a function which gives the trees with minimum height.

```
1 = (length ts)
ts = tests s
```

13

```
data TreeH = StopH State | NodeH Int Test [TreeH]

deriving (Eq,Show)
```

```
heightH::TreeH -> Int
heightH (StopH s) = 0
heightH (NodeH h t ts) = h
```

```
treeH2tree::TreeH -> Tree
treeH2tree (StopH s) = Stop s
treeH2tree (NodeH n t ts) = Node t [ treeH2tree x | x <- ts]</pre>
```

14

```
nodeH :: Test -> [TreeH] -> TreeH
nodeH t ts = NodeH (maximum (map heightH ts) + 1) t ts
```

15

```
tree2treeH::Tree -> TreeH
tree2treeH (Stop s) = StopH s
tree2treeH (Node t ts) = NodeH (height (Node t ts)) t [ tree2treeH x | x <- ts]</pre>
```

16

```
instance Ord TreeH where
    compare x y = compare (heightH x) (heightH y)
minHeightH:: [TreeH] -> TreeH
minHeightH xs = minimum xs
```

```
ts)
where

l = (length ts)
trees t = [ mktreeH s' | s' <- (outcomes s t)]
height t = heightH (minHeightH (trees t)) + 1
ts = tests s
```

17

```
bestTests::State -> [Test]
bestTests s = filter (\t -> optimal s t) (tests s)
```

18

19

```
trees t = [ mktreeG' s' | s' <- (outcomes s t)]
height t = heightH (minHeightH (trees t)) + 1</pre>
```

```
mktreesG::State -> [TreeH]
mktreesG s = map ( \t -> mktreeG' s) (bestTests s)
```

Appendix - Unit Test

In order to justify the assumption in question 15, I implemented quick check tests to validate our theory. Although this can not proof the equation in theory, this still increases user's confidence.

"as an inverse to treeH2tree. Convince yourself that => heightH . tree2treeH = height"

Firstly, we need to create new instance for our customized data type State.

```
instance Arbitrary State where
   arbitrary = sized state'
   where
    state' 0 = do
        u <- arbitrary
        g <- arbitrary
        return (Pair u g)
   state' n = do
        l <- arbitrary
        h <- arbitrary
        g <- arbitrary
        return (Triple l h g)</pre>
```

Secondly, we need to create new instance for our customized data type Test.

```
instance Arbitrary Test where
    arbitrary = sized test'
        where
           test' 0 = do
               u <- arbitrary
               g <- arbitrary</pre>
               u' <- arbitrary
               g' <- arbitrary
               return (TPair (u,g) (u',g'))
           test' n = do
               1 <- arbitrary</pre>
               h <- arbitrary
               g <- arbitrary</pre>
               l' <- arbitrary</pre>
               h' <- arbitrary
               g' <- arbitrary
               return (TTrip (l,h,g) (l',h',g'))
```

Thirdly, we have to create new instance for Tree. Tree is recursive data type. It is important that we control the size of recursion. That is why I choose to use (n div 2) so it can avoid long test case generation.

```
instance Arbitrary Tree where
    arbitrary = sized tree'
    where
        tree' 0 = do
            a <- arbitrary
            return (Stop a)
        tree' n
            | n > 0 = do
                  t <- arbitrary
                  ts <- vectorOf 3 (tree' (n `div` 2))
                  return (Node t ts)</pre>
```

Finally, we define our test cases, given a random tree, we will always have the following equation

heightH (tree2treeH tree) == height tree

```
prop_testHeight t = heightH (tree2treeH t) == height t
```

After execution, we had following result:

Main> quickCheck prop_testHeight +++ OK, passed 100 tests.