Deep Learning

UFRN 2018.1

Prof. Helton Maia

Plano de Estudos

- Semana 1: What is Deep Learning?
- Semana 2: Fundamentos de Machine Learning
 - Introdução
 - Aprendizagem Supervisionada
 - CNN Layers: Convolutional, Activation, Pooling, Flattening, Fully-connected
- **Semana 3**: Processamento de Imagens em Python
 - Instalação de pacotes e preparação do ambiente
 - Manipulando imagens com OpenCV
- **Semanas 4-5**: Construíndo o Primeiro Classificador
 - Conheçendo o Keras
 - Repetindo exemplos conhecidos
 - o Projeto: Desenho e implementação de um novo experimento
- **Semanas 6-7**: Otimizando o Classificador
 - Analisando resultados e testando parâmetros
 - Apresentação de resultados

Semana 3

What is Deep Learning?

"A machine learning technique that learns features and tasks directly from data".

Full Connection

source: http://arun-aiml.blogspot.com.br/2017/07/convolutional-neural-networks.html

Instalação de pacotes e preparação do ambiente:

- Linux/VM
- Python 3.6
- Anaconda 1.6.5
- Conda
- Spyder 3.2.7
- Spyder 3.2.7OpenCV 3.3.0-
- Keras 2.1.4
- Tensorflow 1.4.1
- GitHub

#https://keras.io/

from keras.models import Sequential model = Sequential()

Example Dataset

Name	*	Size	Туре	Date Modified
▶ 🛅 S	ingle_prediction	2 items	Folder	sáb 25 fev 2017
▶ 🛅 t	est_set	2 items	Folder	qua 07 dez 2016
▶ 🛅 t	raining_set	2 items	Folder	qua 07 dez 2016

https://www.superdatascience.com/deep-learning/

Datasets

https://www.kaggle.com/

Datasets: https://github.com/keras-team/keras/tree/master/examples

Colab Google - https://colab.research.google.com

Test: convolve 32x7x7x3 filter over random 100x100x100x3 images (batch x height x width x channel). Sum of ten runs.

Helton-CPU (s): 6.736331526000868

Google-CPU (s): 8.688575368999864

Google-GPU (s): 0.17155587199977163

GPU speedup over CPU: 50x

Treinamento, validação e Testes

Visualize your data: histograms, scatter plots, debugging, find outliers/missing/duplicate values, rank metrics, etc.

Próximas semanas:

- Semanas 4-5: Construíndo o Primeiro Classificador
 - Conheçendo o Keras : API *Documentation*
 - Repetindo exemplos conhecidos:
 - 1) Testar e melhorar o desempenho do classificador exemplo (cat vs dog)
 - 2) Substituir as imagens/classes do item 1 e testar seu novo classificador
 - 3) Construa um classificador multiclass para um dataset conhecido a sua escolha
 - Projeto: Desenho e implementação de um novo experimento:
 - Discutir de ideias para o projeto