\tilde{\t	X	5	R			
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			
Date	1	1	

Session	28:	Optimization	Prof

Hems 7225-1-11

=)
$$f_x = 0$$
 and $f_y = 0$

Not all oritical point is maximum or minimum

5=2x, fy=2y, thus critial point =) (0,0)

but graph = the point isn't maximum or minimum

$$w = \frac{12}{x} + \frac{16}{y} + 3xy = 0$$

$$w_{x} = -\frac{6}{x^{2}} + 3xy = 0$$

$$w_{y} = -\frac{6}{y^{2}} + 5x = 0$$

$$\Rightarrow x = 0, 2 \Rightarrow x = 2, y = 1$$

X = 0, y =)

文						
Мо	Tu	We	Th	Fr	Sa	Su

Memo No.			_
Date	1	/	

Problems:

1. Find all critical points

f(x,y) = x6+ y3+6x - 12y +7

Tx = 6x5+6, Ty=3y2-12

 $f_{x=0} \Rightarrow x=-1$

ty=0=) y=± \$2 so critical prints:

(-1,-4) 1-1,21

Session 29 Least Squares (最本 = 養養法)

225.1.11

the logrange interpolation formula (拉格朗日插街湖)

akitb) o	
1	
6(xi.yi)	
	(xi,yil

we want to find aline "best" pass) x through the points

Mo Tu We Th Fr Sa Su	Memo No.
	Date / /
	(Gaussian error distribution)
7 ¹ deviations 1	only sum positives quantities
method of Teast least so	<i>Tuares</i>
y=ax+b => the lea	st squares line or the
regression line	
how to calculate a and	b) = make D a minimum
$=)\left(\frac{\partial P}{\partial \alpha} = \sum_{i=1}^{n} 2(y_i - y_i)\right)$	$ax_{i} - b$). $(-X_{i}) = b$
$\begin{cases} \frac{\partial \mathcal{O}}{\partial b} = \sum_{i=1}^{n} 2(y_i - i) \\ \frac{\partial \mathcal{O}}{\partial b} = \sum_{i=1}^{n} 2(y_i - i) \end{cases}$	2×1 -b)·(-1) =0.
=) (高Xi) a +(是X	.] / -) · · · ·
ラ (声Xi) a + n·b:	. (7)
•	of x2
•	$\bar{X}.b = \bar{A} \Sigma XiYi$
	$a+b=\pm\Sigma y;=\overline{y}$
2 fitting curves by 1	east squares. (油过强)=
来这 f以会曲线) if th	e points seem to a curve rather
161 than a	cline:
y=aotaix+azx2	
$D = \sum_{i=1}^{n} (y_i - (a_0 + a_0))$	2(x +d2x2))2

\times	Z		R				
Мо	Tu	We	Th	Fr	Sa	Su	

Memo No.			
Date	1	1	

use chain rule to get and, and, and son they can be solved by finding the inverse matrice matrix or using a calculator on Matlab

In general, this method of least squares applies
to a trial expression of the form

(9) $y = a \cdot f \cdot (x) + a \cdot f \cdot (x) + \cdots + a \cdot f \cdot (x)$ f(x) = 0 Simple ones like $[x, x^2, x^2, x^2, e^{kx} - \cdots]$ sunch (9) called limetar combination of the funcation f(x) = 0

Examples:

Use the method of least squares to flt a line to the three dute points.

 $D = \sum_{i=1}^{n} (y_i - (ax_i + b_i)^2)$

 $D = (o - (a \cdot o + b))^{2} + (2 - (a + b))^{2} + (1 - (a \cdot 2 + b))^{2}$ $= b^{2} + (2 - a - b)^{2} + (1 - 2a - b)^{2}$

