Verilog HDL 课程设计实验指导书

实验一

A、加法器的模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下描写出简单的 8 位加法器及 其测试程序:
- 2. 用测试程序在 Modelsim 仿真环境中对 8 位加法器进行波形仿真测试; 画出仿真波形;
 - 3. 总结实验步骤和实验结果

模块接口格式

输入为两组 8bit 数据 iA,iB,输出为 9bit 相加结果 oAdd module adder

```
( input [7:0] iA, iB,
output [8:0] oAdd
);
```

B、乘法器的模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下描写出简单的 8 位乘法器及 其测试程序;
- 2. 用测试程序在 Modelsim 仿真环境中对 8 位乘法器进行波形仿真测试; 画出仿真波形;
 - 3. 总结实验步骤和实验结果

模块接口格式

输入为两组 8bit 数据 iA,iB,输出为 16bit 相乘结果 oMul module Mul

```
( input [7:0] iA, iB,
output [15:0] oMul
);
```

实验二 8 位数值比较器模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下描写出简单的 8 位数据比较器及其测试程序:
- 2. 用测试程序在 Modelsim 仿真环境中对 8 位比较器进行波形仿真测试; 画 出仿真波形;
 - 3. 总结实验步骤和实验结果

模块接口格式

模块名 compare;

输入为两组待比较的 8bit 数据 iA,iB;

输出为3个1bit的数据: oL, oG, oM

oL=1 表示 iA>iB,oG=1 表示 iA=iB,oM=1 表示 iA<iB

实验三

A、编码器的模块设计与验证

实验要求

1. 设计一个类似 74x148 的 8 线-3 线优先编码器,编码器输入输出均为低电平有效,其真值表如下:

表 1 奕似 74x148 的 8 线-3 线优先编码器具值

	输			Д					输			出	
\overline{ST}	$ar{I}_7$	\bar{I}_6	\bar{I}_5	$ar{I}_4$	\bar{I}_3	\bar{I}_2	\bar{I}_1	$ar{I}_0$	\overline{Y}_2	\overline{Y}_1	\overline{Y}_0	\overline{Y}_{EX}	Y_S
1	×	×	×	×	×	×	×	×	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
0	0	\times	\times	\times	×	\times	\times	×	0	0	0	0	1
0	1	0	\times	\times	×	\times	\times	×	0	0	1	0	1
0	1	1	0	\times	×	X	\times	×	0	1	0	0	1
0	1	1	1	0	×	X	\times	×	0	1	1	0	1
0	1	1	1	1	0	×	\times	\times	1	0	0	0	1
0	1	1	1	1	1	0	\times	×	1	0	1	0	1
0	1	1	1	1	1	1	0	×	1	1	0	0	1
0	1	1	1	1	1	1	1	0	1	1	1	0	1

2. 用 Verilog HDL 语言在 Quartus II 编译环境下编写此 8 线-3 线优先编码器 的模块及其测试程序;

- 3. 用测试程序在 Modelsim 仿真环境中对上述编码器进行波形仿真测试; 画出仿真波形;
- 4. 总结实验步骤和实验结果

模块接口格式

模块名 encoder;

iI_L: 低电平有效的 8 位编码器数据输入

iST_L: 选通输入端

oY L: 低电平有效的 3 位编码输出

oYex_L: 优先扩展输出端

oYs: 选通输出端

B、译码器的设计与验证

实验要求 设计一个类似 74x138 的译码器

1. 设计一个类似 74x138 的 3 线-8 线译码器,译码器输入为高电平有效,输出为低电平有效,其真值表如下:

	车			输出								
S_1	$\overline{S}_2 + \overline{S}_3$	A_2	A_1	A_0	$\overline{\overline{\mathbf{Y}}}_{7}$	$\overline{\overline{Y}}_6$	$\overline{\overline{Y}}_5$	$\overline{\overline{\mathrm{Y}}}_{4}$	$\overline{\overline{Y}}_3$	$\overline{\overline{Y}}_2$	$\overline{\overline{\mathbf{Y}}}_{1}$	$\overline{\overline{Y}}_0$
1	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	1	1	1	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1
0	X	X	\times	\times	1	1	1	1	1	1	1	1
X	1	X	X	X	1	1	1	1	1	1	1	1

表 2 类似 74x138 的 3 线-8 线译码器真值表

- 2. 用 Verilog HDL 语言在 Quartus II 编译环境下编写此 3 线-8 线译码器的模块及其测试程序;
- 3. 用测试程序在 Modelsim 仿真环境中对上述译码器进行波形仿真测试; 画出仿真波形;
- 4. 总结实验步骤和实验结果

模块接口格式

模块名 decoder3_8;

iS1: 高电平有效的选通输入控制端

iS2_L, iS3_L: 低电平有效的选通输入控制端

iA: 3bit 译码器数据输入端

oY L: 8bit 低电平有效译码数据输出端

实验四

A、异步 JK 触发器的模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下分别描写出带异步清 0、置 1端(低电平有效)的 JK 触发器及各自测试程序:
- 2. 用测试程序在 Modelsim 仿真环境中对 JK 触发器进行波形仿真测试; 画出仿真波形:
 - 3. 总结实验步骤和实验结果

模块接口格式

带异步清 0、置 1 端的 JK 触发器:

模块名: JK FF1;

输入: clk: 时钟信号;

set: 异步置 1;

reset: 异步清 0;

i: 触发器输入;

k: 触发器输入;

q: 触发器输出;

B、同步 JK 触发器的模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下分别描写出带同步清 0、置 1端(高电平有效)的 JK 触发器及各自测试程序;
- 2. 用测试程序在 Modelsim 仿真环境中分别对 2 种 JK 触发器进行波形仿真测试; 画出仿真波形;
 - 3. 总结实验步骤和实验结果

模块接口格式

带同步清 0、置 1 端的 JK 触发器:

模块名: JK FF2;

输入: clk: 时钟信号;

set: 同步置 1;

reset: 同步清 0;

i: 触发器输入;

k: 触发器输入;

q: 触发器输出;

实验五

A、 模 60 的 BCD 码加法计数器设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下描写出一个模 60 的 BCD 码 加法计数器及其测试程序;
- 2. 要求该计数器具有同步复位 reset (高电平有效); 同步置数 load (高电平有效);
- 3. 用测试程序在 Modelsim 仿真环境中对计数器器进行波形仿真测试; 画出仿真波形;
 - 4. 总结实验步骤和实验结果

模块接口格式

模块名: count60;

输入: [7:0] qout: 计数结果输出

cout: 进位输出 [7:0] data: 置数输入

load: 同步置数,高电平有效; reset: 同步清 0,高电平有效;

clk: 时钟信号;

B、 二进制加/减计数器的模块设计与验证

实验要求

- 1. 用 Verilog HDL 语言在 Quartus II 编译环境下描写出一个 8 位加/减计数器 及其测试程序;
- 2. 要求该计数器通过加/减控制端 up_down 控制加减,高电平实现加计数,低电平实现减计数; load 同步置数(高电平有效), clr 同步清 0 (高电平有效);
- 3. 用测试程序在 Modelsim 仿真环境中对计数器器进行波形仿真测试; 画出 仿真波形;
 - 4. 总结实验步骤和实验结果

模块接口格式

模块名: updown_count;

输入: clk: 时钟信号;

load: 同步置数,高电平有效; clr: 同步清 0,高电平有效;

[7:0] d: 置数输入;

up_down: 加/减控制端,高电平实现加计数,低电平实现减计数;

[7:0] qd: 计数结果输出;