Two-phase dual simplex method.
nature tableau is not primal feasible.
we want to find a basic feasible solution
to begin with.
1. First optimize an artificial obj function using (Such as XIXXIII) dual Simplex
t
the final terbleau will be primal feasible for
any ohj function.
2. Use primal simplex method starting from
final tablean. Add in orginal obj. row-reduce
The method above depends on <u>slack vars</u> .
What if we are given constraints in Ax=b,x20.
1. First row reduce $A \times = b$ ignoring $X \ge 0$

=) Arrive at a basic solution.

2. Now Pick an artificial obj function that gives you a dual fensible tablea (ex: sum of nonbasic vars). Use dual simplex method. Ex: Find an X. S.t. $\begin{cases} X_{1} + 2X_{2} - 3X_{3} + X_{4} = 5 \\ 2X_{1} + 4X_{2} + X_{3} - 2X_{4} = 2 \end{cases}$ $\begin{cases} X_{1}, X_{2}, X_{3}, X_{4} \geq 0 \\ -\frac{5}{7}X_{4} = \frac{11}{7} \end{cases}$ $\begin{cases} X_{1} + 2X_{2} - \frac{5}{7}X_{4} = -\frac{6}{7} \end{cases}$ $\begin{cases} X_{1} + 2X_{2} - \frac{5}{7}X_{4} = -\frac{6}{7} \end{cases}$ Basic vars (X1, X1) = (1/7, -3) Use Obj fune: X2 + X4 then apply dual simplex method to find a primal feasible tableau.

Adding constraints

min x + y

S.t. $-2x - y + S_1 = -6$		1			1
$-3 \mid 0 \mid 0 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid$	$S.t2X - V + S_1 = -6$	X	У	S, S2 S3	
$-3 \mid 0 \mid 0 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid$	final tableau X	/	0	$-\frac{2}{3} O \frac{1}{3}$	1
$-3 \mid 0 \mid 0 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid$	$-3 \times -y + S_2 = -1$ Sz	0	0	- \frac{1}{3} / \frac{1}{3}	0
$-3 \mid 0 \mid 0 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid -1 \mid$	$-X-LY+S_i=-9$	0	/	$\frac{1}{3} 0 - \frac{2}{3}$	4

we add an additional constriant X ≥ 2.

i.e. -x + S4 =-2.

Just add an row into the final tableau

	ХУ	Si	52 53	S4				X	У	Sis	2 53	S4	
X	10	- <u>२</u>	0/3	0	1		X	1	0	$-\frac{2}{3}$	0 {	0	1
	00					row reduce	Sz	0	0	- 5	1 {	0	0
	01					1000 realle	У	0	/	1/3 0	7 - 3	0	4
	-10						S4	0	0	-3 0	3	1	-/
-2	00	43	0 3	0	-5		-2	0	0	30	, <u>/</u>	0	-5

then use dual simplex method.

Shadow costs

LP: max CTX

S.t. AXEb XZO we want a Small change to either c or b. Can we predict how opt sol changes. Example: Max 2x + 3y S.t. -xty = 3 X-24 < 2 $X + y \leq 7$ X, y >0 Upt sol is (x, y) =(2,5) opt value is 19. Let's change 2x+3y-> 2.1x+3y. opt sol is still (2,5) opt value is 19.2 2X+3y->(2+8)x+3y obj value at (2,5) is (19+28) is the lower bound on new opt value If we change x+y < 7 -> x+y < 7+8 Prediction: obj val change to 19 ± (=)

$w = \frac{5}{2}$ represents the Sensitivity of objudl
to changes in corresponding constraint.
Dual vars are often called "shadow cost"
is the cost of a change in X+Y =7.