# **Business Case: Aerofit - Descriptive Statistics & Probability**

#### **About Aerofit**

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

#### **Business Problem**

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- (1) Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- (2) For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

```
In [ ]:
```

#### In [1]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import figure
import warnings
warnings.filterwarnings('ignore')
sns.set(font scale= 1)
```

```
In [2]:
```

```
df = pd.read_csv("C:/Users/srinj/Downloads/aerofit_treadmill.txt")
```

```
In [3]:
```

```
df.shape
```

# Out[3]:

(180, 9)

# In [4]:

```
df.head(5)
```

# Out[4]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    |
| 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    |
| 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    |
| 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    |

```
In [5]:
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):
                180 non-null object
Product
                180 non-null int64
Age
Gender
               180 non-null object
Education
              180 non-null int64
MaritalStatus 180 non-null object
              180 non-null int64
Usage
Fitness
              180 non-null int64
               180 non-null int64
Income
Miles
               180 non-null int64
dtypes: int64(6), object(3)
memory usage: 12.7+ KB
```

checking for Null Values in each columns

```
In [6]:
```

```
df.isna().sum()
```

# Out[6]:

0 Product 0 Age Gender 0 Education 0 MaritalStatus 0 Usage Fitness 0 Income 0 Miles 0 dtype: int64

No null values found in dataset.

### Data pre-processing

Redefine fitness field

```
In [7]:
```

```
df["Fitness_category"] = df["Fitness"]
```

```
In [8]:
```

```
df["Fitness_category"].replace({1:"Very poor shape",2:"Bad shape", 3:"Average Shape",4:"Good Shape", 5:"Ex
```

Convert gender and maritial status to category

```
In [9]:
```

```
df = df.astype({"Gender":'category',"MaritalStatus":'category'})
```

add product price field

```
In [10]:
```

```
def Product_price(df):
    if df['Product'] == "KP281":
        return 1500
    elif df['Product'] == "KP481":
        return 1750
    elif df['Product'] == "KP781":
        return 2500
```

#### In [11]:

```
df["Price"]=df.apply(Product_price, axis=1)
```

#### In [12]:

```
df.head(5)
```

# Out[12]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles | Fitness_category | Price |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|------------------|-------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | Good Shape       | 1500  |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    | Average Shape    | 1500  |
| 2 | KP281   | 19  | Female | 14        | Partnered     | 4     | 3       | 30699  | 66    | Average Shape    | 1500  |
| 3 | KP281   | 19  | Male   | 12        | Single        | 3     | 3       | 32973  | 85    | Average Shape    | 1500  |
| 4 | KP281   | 20  | Male   | 13        | Partnered     | 4     | 2       | 35247  | 47    | Bad shape        | 1500  |

#### Define age group

#### In [13]:

```
df["Age_group"]=pd.cut(df["Age"],bins=[0,21,35,45,55,65],include_lowest=True,labels=["Teen(0 to 21)","Adult
```

# In [ ]:

# In [14]:

```
df.head(2)
```

# Out[14]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles | Fitness_category | Price | Age_gr |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|------------------|-------|--------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | Good Shape       | 1500  | Teen   |
| 1 | KP281   | 19  | Male   | 15        | Single        | 2     | 3       | 31836  | 75    | Average Shape    | 1500  | Teen   |
| 4 |         |     |        |           |               |       |         |        |       |                  |       | •      |

```
In [15]:
```

df.describe(include='all')

### Out[15]:

|        | Product | Age        | Gender | Education  | MaritalStatus | Usage      | Fitness    | Income        | Miles      |
|--------|---------|------------|--------|------------|---------------|------------|------------|---------------|------------|
| count  | 180     | 180.000000 | 180    | 180.000000 | 180           | 180.000000 | 180.000000 | 180.000000    | 180.000000 |
| unique | 3       | NaN        | 2      | NaN        | 2             | NaN        | NaN        | NaN           | NaN        |
| top    | KP281   | NaN        | Male   | NaN        | Partnered     | NaN        | NaN        | NaN           | NaN        |
| freq   | 80      | NaN        | 104    | NaN        | 107           | NaN        | NaN        | NaN           | NaN        |
| mean   | NaN     | 28.788889  | NaN    | 15.572222  | NaN           | 3.455556   | 3.311111   | 53719.577778  | 103.194444 |
| std    | NaN     | 6.943498   | NaN    | 1.617055   | NaN           | 1.084797   | 0.958869   | 16506.684226  | 51.863605  |
| min    | NaN     | 18.000000  | NaN    | 12.000000  | NaN           | 2.000000   | 1.000000   | 29562.000000  | 21.000000  |
| 25%    | NaN     | 24.000000  | NaN    | 14.000000  | NaN           | 3.000000   | 3.000000   | 44058.750000  | 66.000000  |
| 50%    | NaN     | 26.000000  | NaN    | 16.000000  | NaN           | 3.000000   | 3.000000   | 50596.500000  | 94.000000  |
| 75%    | NaN     | 33.000000  | NaN    | 16.000000  | NaN           | 4.000000   | 4.000000   | 58668.000000  | 114.750000 |
| max    | NaN     | 50.000000  | NaN    | 21.000000  | NaN           | 7.000000   | 5.000000   | 104581.000000 | 360.000000 |
| 4      |         |            |        |            |               |            |            |               | •          |

# **General outcomes**

- 1. Median Age of Customer is 26 years.`
- 2. Maximum users are Adults(22-35) years and are Male and Partnered.`
- 3. Maximum Selling Product is KP281.`
- 4. Maximum numbers of customers' fitness level is average shape`
- 5. Median Miles run/walk per customer: 94 Miles`
- 6. Median income of the customers:50596.5 USD`
- 7. Median of average usage per customer: 3 days a week`
- 8. Average Customer education is 16 years: `

Plotting correlation values in heatmap

### In [16]:

```
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(), annot=True)
```

### Out[16]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x23d575e6e80>



Fitness and miles have very high correlation (0.79)

Education and income are much correlated (0.63)

Price and income are highly correlated (0.7)

# Gender-wise pair plot

#### In [17]:

```
sub_df=df[["Product", "Gender", "Education", "MaritalStatus", "Usage", "Income", "Miles", "Fitness_categor"
```

# In [18]:

sns.pairplot(sub\_df, kind='reg',hue='Gender')

# Out[18]:

<seaborn.axisgrid.PairGrid at 0x23d57591668>



# **Outlier detection**

### In [19]:

```
sns.boxplot(x="Miles",data=df,y="Gender")
```

#### Out[19]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x23d59beae10>



### In [20]:

```
Miles_Q1 = df['Miles'].quantile(0.25)
Miles_Q3 = df['Miles'].quantile(0.75)
Miles_IQR = Miles_Q3 - Miles_Q1
Miles_ub = Miles_Q3 + (1.5*Miles_IQR)
Miles_lb = Miles_Q1 - (1.5*Miles_IQR)
```

#### In [21]:

Miles\_ub

# Out[21]:

187.875

### In [22]:

Miles\_lb

### Out[22]:

-7.125

### In [23]:

```
outlier_data = df[df["Miles"]>Miles_ub]
len(outlier_data)
```

#### Out[23]:

13

13 outliers detected who are running more than 187.875 miles

Considering only upperbound since negative values are not possible

### In [24]:

```
sns.boxplot(x = "Income",data = df,y="Gender")
```

#### Out[24]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x23d5a4c3978>



### In [25]:

```
Income_Q1=df["Income"].quantile(0.25)
Income_Q3=df["Income"].quantile(0.75)
Income_IQR=Income_Q3-Income_Q1
Income_Ub=Income_Q3 + (1.5*Income_IQR)
Income_Ub
```

# Out[25]:

80581.875

# In [26]:

```
outlier_income=df[df["Income"]>Income_Ub]
len(outlier_income)
```

### Out[26]:

19

19 People has much higher income over 80K yearly

# Sales data

# In [27]:

```
df["Gender"].value_counts()
```

### Out[27]:

Male 104 Female 76

Name: Gender, dtype: int64

### In [28]:

```
sns.countplot(x="Gender", data=df)
plt.title("Gender wise sales")
plt.show()
```



#### In [29]:

```
df["Product"].value_counts()
```

### Out[29]:

KP281 80 KP481 60 KP781 40

Name: Product, dtype: int64

### In [30]:

```
df["Product"].value_counts(normalize=True)*100
```

# Out[30]:

**KP281** 44.44444 **KP481** 33.333333 KP781 22.22222

Name: Product, dtype: float64

Product KP281 of price 1500\$ has most sales, over 44%

# In [31]:

```
sns.countplot(x="Product", data=df)
plt.title("Product wise sales")
plt.show()
```



### In [32]:

```
sns.countplot(x="Product", data=df, hue="Gender")
plt.title("Gender wise product sold")
plt.show()
```



#### In [33]:

```
df.groupby("Gender")["Product"].value_counts()
```

### Out[33]:

| Gender | r Product | Ī      |      |
|--------|-----------|--------|------|
| Female | E KP281   | 40     |      |
|        | KP481     | 29     |      |
|        | KP781     | 7      |      |
| Male   | KP281     | 40     |      |
|        | KP781     | 33     |      |
|        | KP481     | 31     |      |
| Name:  | Product,  | dtype: | int6 |

In [ ]:

# Marginal prob for gender vs product

### In [34]:

```
((pd.crosstab(df["Product"],df["Gender"],margins=True))/180)*100
#180 is total number of customers
```

# Out[34]:

| Gender  | Female    | Male      | All        |  |
|---------|-----------|-----------|------------|--|
| Product |           |           |            |  |
| KP281   | 22.22222  | 22.22222  | 44.44444   |  |
| KP481   | 16.111111 | 17.222222 | 33.333333  |  |
| KP781   | 3.888889  | 18.333333 | 22.22222   |  |
| All     | 42.222222 | 57.777778 | 100.000000 |  |

Prob of male cutomer buying the the expensive product is 0.18, for female it is 0.04

For rest of two products male and female has almost equal probability to buy

# Conditional prob for gender vs product

# In [35]:

(pd.crosstab(df["Product"],df["Gender"],margins=True,normalize="columns"))\*100

### Out[35]:

| Gender  | Female    | Male      | All       |
|---------|-----------|-----------|-----------|
| Product |           |           |           |
| KP281   | 52.631579 | 38.461538 | 44.44444  |
| KP481   | 38.157895 | 29.807692 | 33.333333 |
| KP781   | 9 210526  | 31 730769 | 22 222222 |

Prob if buying KP281 given male is 38.5%

Prob if buying KP281 given female is 52.5%

Prob if buying KP781 given male is 31.7%

Prob if buying KP281 given female is 9.2%

# In [36]:

df.head(1)

#### Out[36]:

|   | Product | Age | Gender | Education | MaritalStatus | Usage | Fitness | Income | Miles | Fitness_category | Price | Age_gr |
|---|---------|-----|--------|-----------|---------------|-------|---------|--------|-------|------------------|-------|--------|
| 0 | KP281   | 18  | Male   | 14        | Single        | 3     | 4       | 29562  | 112   | Good Shape       | 1500  | Teen   |
| 4 |         |     |        |           |               |       |         |        |       |                  |       | •      |

# Analysis by maritial status

#### In [38]:

df["MaritalStatus"].value\_counts(normalize=True)\*100

#### Out[38]:

Partnered 59.444444 Single 40.555556

Name: MaritalStatus, dtype: float64

60% partnered and 40% Single

### In [40]:

```
sns.countplot(data=df, x="Product", hue="MaritalStatus")
plt.title("Maritial status vs product")
plt.show()
```



### In [44]:

df.groupby("MaritalStatus")["Product"].value\_counts()

### Out[44]:

| MaritalStatus | Product |    |
|---------------|---------|----|
| Partnered     | KP281   | 48 |
|               | KP481   | 36 |
|               | KP781   | 23 |
| Single        | KP281   | 32 |
|               | KP481   | 24 |
|               | KP781   | 17 |

Name: Product, dtype: int64

# Marginal prob Marital status vs product

### In [46]:

```
(pd.crosstab(df["Product"],df["MaritalStatus"],margins=True)/180)*100
```

# Out[46]:

| MaritalStatus |         | Partnered | Single    | All        |  |
|---------------|---------|-----------|-----------|------------|--|
|               | Product |           |           |            |  |
|               | KP281   | 26.666667 | 17.777778 | 44.44444   |  |
|               | KP481   | 20.000000 | 13.333333 | 33.333333  |  |
|               | KP781   | 12.777778 | 9.444444  | 22.22222   |  |
|               | All     | 59.44444  | 40.555556 | 100.000000 |  |

Single person has 9.4% chance to buy the premium product where as that raises to 12.7% for partnered

# **Conditional prob Marital status vs product**

```
In [49]:
```

```
(pd.crosstab(df["Product"],df["MaritalStatus"],margins=True,normalize="columns"))*100
```

# Out[49]:

| MaritalStatus | Partnered | Single    | All       |  |
|---------------|-----------|-----------|-----------|--|
| Product       |           |           |           |  |
| KP281         | 44.859813 | 43.835616 | 44.44444  |  |
| KP481         | 33.644860 | 32.876712 | 33.333333 |  |
| KP781         | 21.495327 | 23.287671 | 22.22222  |  |

We have almost same probability for Partnered or single for buying any given product.

```
In [ ]:
```

# Miles count in different product across gender

# In [52]:

```
pd.crosstab(df["Product"],df["Gender"],values=df["Miles"],aggfunc=np.sum,margins=True)
```

#### Out[52]:

| Gender  | Female | Male  | All   |  |
|---------|--------|-------|-------|--|
| Product |        |       |       |  |
| KP281   | 3048   | 3575  | 6623  |  |
| KP481   | 2533   | 2743  | 5276  |  |
| KP781   | 1260   | 5416  | 6676  |  |
| All     | 6841   | 11734 | 18575 |  |

### In [53]:

```
pd.crosstab(df["Product"],df["Gender"],values=df["Miles"],aggfunc=np.mean,margins=True)
```

#### Out[53]:

| Gender  | Female     | Male       | lale All   |  |
|---------|------------|------------|------------|--|
| Product |            |            |            |  |
| KP281   | 76.200000  | 89.375000  | 82.787500  |  |
| KP481   | 87.344828  | 88.483871  | 87.933333  |  |
| KP781   | 180.000000 | 164.121212 | 166.900000 |  |
| All     | 90.013158  | 112.826923 | 103.194444 |  |

Taking avg miles covered by each gender in each machine gives clear picture in Female - KP781 combo

Male runs almost same avg miles in both KP281 and KP481

The more valuable product people buy, the more people use

# **Product vs fitness connection**

### In [56]:

```
plt.figure(figsize=(10,8))
sns.countplot(x="Fitness_category", data=df, hue="Product")
plt.title("Product used by different fitness level")
plt.show()
```



People in excelent shapes use the top quality product

Avg fitness people try to avoid top quality product

No interest in top product by the people in bad shape

### In [ ]:

#### **Gender vs Fitness**

#### In [60]:

```
df.groupby("Gender")["Fitness_category"].value_counts()
```

### Out[60]:

| Gender | Fitness_category |    |
|--------|------------------|----|
| Female | Average Shape    | 45 |
|        | Bad shape        | 16 |
|        | Good Shape       | 8  |
|        | Excelent Shape   | 6  |
|        | Very poor shape  | 1  |
| Male   | Average Shape    | 52 |
|        | Excelent Shape   | 25 |
|        | Good Shape       | 16 |
|        | Bad shape        | 10 |
|        | Very poor shape  | 1  |
|        |                  |    |

Name: Fitness\_category, dtype: int64

### In [59]:

```
plt.figure(figsize=(10,8))
sns.countplot(x="Fitness_category",data=df,hue="Gender")
plt.title("Gender vs Fitness")
plt.show()
```



There is a subtle difference in numbers between male and female when they are considered to be in excelent shape

# Relation between income and product price

```
In [67]:
```

```
df.head(0)
```

# Out[67]:

Product Age Gender Education MaritalStatus Usage Fitness Income Miles Fitness\_category Price Age\_grc

# In [73]:

```
plt.title("Income vs Product price")
plt.show()
```



People with annual income less than 70k\$ is not trying the high end product

# Miles vs Fitness level

### In [76]:

```
sns.jointplot(x = df["Miles"],
              y= df["Fitness"],
              kind="scatter")
plt.title("Miles vs Fitness level")
plt.show()
```



People with poor fitness running less than 100 miles

There is a large frequency of data for poor and avg fit people who run just around 100 miles Peoplw with good or excelent shape tend to run more than 150 miles

### Miles vs age

### In [77]:

```
sns.jointplot(x = df["Miles"],
              y= df["Age"],
              kind="scatter")
plt.title("Miles vs Age")
plt.show()
```



Young people tend to run more, although most of the data points are below 35 years covering under 200 miles

# Age wise product use

### In [80]:

```
pd.crosstab(index=df["Product"],columns=df["Age_group"],margins=True)
```

#### Out[80]:

### Age\_group Teen(0 to 21) Adult(22 to 35) Mid Age(36 to 45) Aging(45 to 55) All

| Product |    |     |    |       |
|---------|----|-----|----|-------|
| KP281   | 10 | 56  | 11 | 3 80  |
| KP481   | 7  | 45  | 7  | 1 60  |
| KP781   | 0  | 34  | 4  | 2 40  |
| All     | 17 | 135 | 22 | 6 180 |

Products are mostly used by the people between 22 to 35 years of age

Teens dont use high end product

Aging people has significantly low number of product usage

# In [ ]:

# **Customer Profiling - Categorization of users**

### **KP281**:

- · Cheapest product
- · Maximum Selling Product.
- · have equal male female buyers
- on average 82-83 miles are run in this by the user (significantly large contribution by males)
- · mostly used by bad or avg shape people
- highest selling numbers in Adult(22 to 35) age group

#### KP481:

- Intermediate Price Range
- · medium selling numbers
- · have almost equal male and female buyers, though female buyers are little high
- on average 89 miles are run in this by the user
- · mostly used by avg shape people
- highest selling numbers in Adult(22 to 35) age group

#### **KP781:**

- · high price range
- · least sold product
- · male buyers are significantly higher for this product
- on average 166 miles are run in this by the user
- · best choice for people with excelent shape
- · highest selling numbers in Adult(22 to 35) age group and no teen user

### **Recommendations:**

- Give offer to upgrade the KP481 user to become KP781 user and target the users having income over 50k\$ as the income of KP781 user varies from 50k to 100k.
- · Good shape people has almost equal distribution between 3 products, give upgradation offer to good shape people with high miles to avail KP781 product.
- In general focus on age group between 22-35 and charge some extra price on well shaped people over age 40 with high income. They will pay to be in shape at this age.
- Target female customes with avg shape and high income for the sale of KP781

| In [ ]: |  |  |
|---------|--|--|
|         |  |  |