ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 2.4.1. Определение теплоты испарения жидкости

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106

Долгопрудный, 2022

Содержание

1	Ані		3
2	Teo	ретические сведения	3
3	Me	годика измерений	4
4	Экс	спериментальная установка	4
5	Прі	иборы и инструментальные погрешности	5
6	Обр	работка полученных результатов	6
7	Вы	вод	6
8	Прі	иложения	8
	8.1	Таблица 1. Нагревание	8
	8.2	Таблица . Охлаждение	8
	8.3	График 1. $P(T)$ при нагревании	9
	8.4	График 2. $\ln(P)$ (1/T) при нагревании	9
	8.5	График 3. $P(T)$ при охлаждении	10
	8.6	График 4. $\ln(P)$ (1/T) при охлаждении	10
	8.7	График 5. Нагревание и охлаждение	11

1 Аннотация

В данной работе измеряются давление насыщенного пара и теплота испарения жидкости при различных температурах. Теплота испарения определяется с помощью уравнения Клапейрона-Клаузиуса.

2 Теоретические сведения

Испарение - процесс перехода вещества из жидкого состояния в газообразное.

Испарение происходит на свободной поверхности жидкости. Покинуть поверхность способны только молекулы с достаточной для этого кинетической энергией, поэтому испарение жидкости приводит к её охлаждению. Ясно, что для предотвращения охлаждения к жидкости необходимо подводить тепло.

Молярная теплота испарения - количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном давлению её насыщенного пара.

 Φ аза - макроскопическая однородная часть вещества, отделённая от остальных частей системы границей раздела так, что она может быть извлечена из системы механическим путём.

В случае равновесия двух фаз справедливо уравнение Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{L}{T(\nu_2 - \nu_1)},\tag{1}$$

где P - давление в системе, L - температура системы, $\nu_{1,2}$ - молярный объём фаз 1 и 2 соответственно, L - молярная теплота фазового перехода (испарения в нашем случае). Для воды: $\nu_{вод}=18\cdot 10^{-6}~\frac{\text{м}^3}{\text{моль}}$, для пара: $\nu_{\text{пар}}=31\cdot 10^{-6}~\frac{\text{м}^3}{\text{моль}}$. Из этого следует, что уравнение (1) можно записать в виде:

$$\frac{dP}{dT} = \frac{L}{T \cdot \nu_{\text{map}}} \tag{2}$$

Запишем уравнение Ван-дер-Ваальса для водяного пара:

$$(P + \frac{a}{v^2})(v - b) = RT \tag{3}$$

Для водяного пара: a=0,4 $\frac{\Pi a \cdot m^6}{\text{моль}^2}$, $b=26\cdot 10^{-6}$ $\frac{m^3}{\text{моль}}$. $b\ll v$, поэтому $v-b\approx v$. Слагаемым $\frac{a}{v^2}$ также можно пренебречь по сравнению с P, так как измерения проводятся при давлении ниже атмосферного. Таким образом, уравнение (3) переходит в уравнение состояния идеального газа:

$$Pv = RT \tag{4}$$

Подставим (4) в (2):

$$\begin{split} \frac{dP}{dT} &= \frac{PL}{RT^2} \Rightarrow L = R \frac{dP/P}{dT/T^2} \\ L &= -R \frac{d(\ln P)}{d(1/T)} \end{split} \tag{5}$$

3 Методика измерений

Молярная теплота испарения определяется по формуле (5). При этом температура жидкости измеряется термометром, давление - манометром. Производные $\frac{d(\ln P)}{d(1/T)}$ определяются графически как угловые коэффициенты касательной к кривой, построенной в координатах, где по оси абсцисс отложена величина $\ln P$, а по оси ординат - величина $\frac{1}{T}$.

4 Экспериментальная установка

Схема экспериментальной установки приведена на рисунке 1. Установка включает в себя термостат A, экспериментальный прибор B и отсчётный микроскоп C.

Экспериментальный прибор В представляет собой ёмкость 12, заполненную водой. В неё погружен запаянный прибор 13 с исследуемой жидкостью 14. Перед заполнением исследуемой жидкостью воздух из прибора 13 был удалён, так что над жидкостью находится только её насыщенный пар.

Давление пара определяется по ртутному манометру 15, соединённому с ёмкостью 13. Численная величина давления измеряется по разности показаний отсчётного микроскопа 16, настраиваемого последовательно на нижний и верхний уровни столбика ртути манометра. Пока-

Рис. 1. Схема установки для определения теплоты испарения

зания микроскопа снимаются по шкале 17.

Экспериментальная установка обладает тем недостатком, что термометр измеряет температуру термостата, а не исследуемой жидкости. Эти температуры можно считать равными, если нагревание происходит достаточно медленно (квазистатически).

5 Приборы и инструментальные погрешности

Погрешность измерение температуры считаем равной $\sigma_t=0.5~\mathrm{K}$, поскольку температура флуктуировала в таких пределах в ходе практически каждого измерения (младший разряд шкалы термометра - десятые доли градуса).

Давление находилось косвенно из измерений высоты ртутного столба. Давление в паскалях можно получить по формуле:

$$P_{\Pi a} = 13600 \cdot 9, 8 \cdot h_{MM},$$

где $P_{\Pi a}$ - давление в паскалях, 13600 - плотность ртути (ею заполнен манометр) в $\frac{\kappa r}{m^3}$, 9,8 - ускорение свободного падения вблизи поверхности Земли в $\frac{H}{\kappa r}$, h_{mm} - высота ртутного столба в миллиметрах.

Погрешностью измерения величины $h_{\text{мм}}$ считаем половину цены деления микроскопа, то есть $\sigma_h=0,5$ мм. Таким образом, погрешность вычисления давления можно найти по формуле:

$$\sigma_P = 13600 \cdot 9, 8 \cdot \sigma_h$$

6 Обработка полученных результатов

Выло проведено 2 серии экспериментов по измерению зависимости давления насыщенного водяного пара от температуры. В первой серии температура термостата постепенно увеличивалась, во второй - уменьшалась. Результаты измерений приведены в таблицах 1 (нагревание) и 2 (охлаждение). По этим данным построены графики в координатах P(T) (график 1: нагревание, график 3: охлаждение) и $\ln P(1/T)$ (график 2: нагревание, график 4: охлаждение). На каждом из графиков проведены аппроксимирующие прямые согласно методу наименьших квадратов. Обозначим коэффициент наклона прямой на i-м графике через k_i , тогда:

$$k_1 = (209 \pm 7) \frac{\Pi a}{K}$$

$$k_2 = (-5, 93 \pm 0.05) \cdot 10^3 \text{ K}$$

$$k_3 = (231 \pm 6) \frac{\Pi a}{K}$$

$$k_4 = (-6.3 \pm 0.2) \cdot 10^3 \text{ K}$$

Теперь получим молярные теплоты парообразования по графикам 2 и 4. Из (5) получаем:

$$L_{2,4} = -k_{2,4}R; \quad \sigma_L = \sigma_k R$$

Поэтому:

$$L_2 = (49300 \pm 400) \; \frac{\Delta m}{\text{моль} \cdot \text{K}}$$
 $L_4 = (52400 \pm 1700) \; \frac{\Delta m}{\text{моль} \cdot \text{K}}$

Для сравнения двух серий также построен график 5 в координатах P(T), содержащий лишь экспериментальные точки обеих серий.

7 Вывод

В ходе работы были получены два значения молярной теплоты парообразования воды. Оба результата не совпадают с табличным значением, которое равно L=40662 $\frac{\Delta^{\mathbf{x}}}{\text{моль K}}$. Объяснить такое несоответствие

можно неточностью измерения давления, так как оно измерялось человеком, а не электронным прибором как температура. Тем не менее результат, найденный из данных, соответствующих нагреванию воды, оказался более точным как в смысле относительной погрешности, так и в смысле близости к истинному результату.

8 Приложения

8.1 Таблица 1. Нагревание

T, K	σ _T , K	h, мм	σ _h , мм	Р, Па	σ _P , мм
296,0	0,5	15,8		2106	
297,2		17,5		2332	
298,0		18,2		2426	
299,1		19,4		2586	
300,1		20,8		2772	
301,1		22,3	0,05	2972	7
302,9		25,2	0,05	3359	1
304,0		26,8		3572	
305,0		28,4		3785	
306,0		30,6		4078	
307,0		32,7		4358	
308,0		34,9		4651	

8.2 Таблица . Охлаждение

T, K	σ _T , K	h, мм	σ _h , мм	Р, Па	σ _P , мм
307,0	0,5	34,5		4598	
306,0		33,5		4465	
305,0		32,7		4358	
304,0		30,5		4065	
303,0		28,8		3838	
302,0		26,1	0.05	3479	7
301,0		25,2	0,05	3359	1
300,0		22,7		3025	
299,0		21,4		2852	
298,0		19,5		2599	
297,0		17,9		2386	
296,0		16,5		2199	

8.3 График 1. Р(Т) при нагревании

8.4 График 2. $\ln(P)$ (1/T) при нагревании

8.5 График 3. Р(Т) при охлаждении

8.6 График 4. $\ln(P)$ (1/T) при охлаждении

8.7 График 5. Нагревание и охлаждение

