UNIVERSITY OF PISA

Artificial Intelligence and Data Engineering

Cloud Computing

Hadoop Letter Frequency

Authors: Gemelli M. Namaki D. Nocella F.

Academic Year 2023/2024

Contents

1	Introduction	2
2	Algorithm Design	3
	2.1 MapReduce with Combiner	3
	2.1.1 Pseudocode	
	2.2 MapReduce with In-Mapper Combiner	
	2.2.1 Pseudocode	5
3	Results	7
	3.1 Experimental Setup	7
	3.2 Performance Analysis	
	3.3 Letter Frequency Analysis	
4	Conclusions	14
	4.1 Performance	14
	4.2 Qualitative Analysis	14

Introduction

The objective of this project is to implement a data processing pipeline that can handle substantial data sets, ensuring efficient computation and meaningful data insights. By exploiting the MapReduce paradigm, data processing tasks is split into two main functions: the **Mapper** and the **Reducer**.

The Mapper function processes and filters the input data, emitting **key-value pairs**, while the Reducer function aggregates and processes these pairs to produce the final output.

The project was developed using the Hadoop framework, which provides an open-source implementation of the MapReduce paradigm. Hadoop allows for the distributed processing of large data sets across clusters of computers using simple programming models. The Hadoop ecosystem also includes other tools, such as HDFS (Hadoop Distributed File System) for distributed storage, and YARN (Yet Another Resource Negotiator) for cluster resource management.

Given a text document as input, it is aimed to extract the frequency of each letter composing such document. In Order to achieve this, two differnt jobs are required: the first job is responsible for counting the number of letters in the document, while the second job is responsible for evaluating the frequency of each letter. Finally, the results obtained from the processing pipeline will be shown.

Algorithm Design

The objective of this project is to analyze letter frequency in text documents utilizing Hadoop's MapReduce framework. Specifically, two distinct approaches were implemented to optimize the MapReduce task: the use of a Combiner and the implementation of an In-Mapper Combiner. These methods aim to enhance the efficiency of the MapReduce process by reducing the amount of data transferred between the Mapper and Reducer stages.

MapReduce with Combiner

The Combiner is a mini-reducer that processes the output of the Mapper tasks before passing it to the Reducer. By aggregating the intermediate data locally on the mapper nodes, the Combiner reduces the volume of data shuffled across the network, thus improving the performance of the MapReduce job. It performs its operations on the same node where the mapper is running.

Pseudocode

```
Algorithm 1 Letter Count with Combiner
Require: Txt file
Ensure: Total count of each letter in the input file
   Mapper
 1: procedure Setup(context)
       normalize \leftarrow context.getConfiguration().get("normalize")
       one \leftarrow new LongWritable(1)
 3:
 4:
       letterCountKey \leftarrow new Text("total_letter_count")
 5: end procedure
 6: procedure Map(Object key, Text value)
       line \leftarrow Normalize(value.toString(), normalize)
                                                           ▶ Remove accents and set lowercase
 7:
 8:
       for each character c in line do
          Emit("total_letter_count", one)
 9:
       end for
10:
11: end procedure
    Combiner & Reducer
12: procedure Reduce(Text key, Iterable<LongWritable> values)
       sum \leftarrow 0
13:
       for each LongWritable val in values do
14:
          sum \leftarrow sum + val.get()
15:
       end for
16:
       Emit(key, new LongWritable(sum))
17:
18: end procedure
```

Algorithm 2 Letter Frequency with Combiner

 $freq \leftarrow (double) sum / (double) letterCount$

Emit(key, new DoubleWritable(freq))

26:

27:

28: end procedure

```
Require: Txt file, Total number of characters in the txt file
Ensure: Frequency of each letter in the input file
    Mapper
 1: procedure Setup(context)
       normalize \leftarrow context.getConfiguration().get("normalize")
       one \leftarrow new LongWritable(1)
 3:
 4: end procedure
 5: procedure MAP(Object key, Text value)
       line \leftarrow Normalize(value.toString(), normalize)
 6:
                                                             ▶ Remove accents and set lowercase
       for each character c in line do
 7:
           \operatorname{Emit}(\operatorname{String.valueOf}(c), \operatorname{one})
 8:
       end for
 9:
10: end procedure
    Combiner
11: procedure Reduce(Text key, Iterable<LongWritable> values)
12:
13:
       for each LongWritable val in values do
14:
           sum \leftarrow sum + val.get()
15:
       end for
       Emit(key, new LongWritable(sum))
16:
17: end procedure
    Reducer
18: procedure Setup(context)
       letterCount ← context.getConfiguration().getLong("letterCountValue", 1)
20: end procedure
21: procedure Reduce(Text key, Iterable<LongWritable> values)
22:
23:
       for each LongWritable val in values do
           sum \leftarrow sum + val.get()
24:
       end for
25:
```

MapReduce with In-Mapper Combiner

Algorithm 3 Letter Count with In-Mapper Combiner

The In-Mapper Combiner combines the mapping and combining steps within the Mapper itself. This method involves accumulating the results in a data structure within the Mapper, which is then emitted at the end of the mapping phase. This approach minimizes the overhead of multiple data passes by efficiently combining intermediate results within the Mapper, reducing the need for external Combiner steps and further optimizing network usage and processing time.

Pseudocode

```
Require: Txt file
Ensure: Total count of each letter in the input file
    CountMapper
 1: procedure Setup(Context context)
       normalize \leftarrow context.getConfiguration().get("normalize")
 2:
       map \leftarrow \{\}
 3:
       letterCountKey ← new Text("total_letter_count")
 4:
 5: end procedure
 6: procedure Map(Object key, Text value)
       line \leftarrow Normalize(value.toString(), normalize)
 7:
       for each character c in line do
 8:
           map\{letterCountKey\} \leftarrow map\{letterCountKey\} + 1
 9:
       end for
10:
11: end procedure
12: procedure CLEANUP(Context context)
13:
       for each entry \langle k, v \rangle in map do
                                                               ▶ Emint key and count map{key}
14:
           \operatorname{Emit}(k, v)
       end for
15:
16: end procedure
    CountReducer
17: procedure Reduce(Text key, Iterable<LongWritable> values)
       sum \leftarrow 0
18:
       for each value in values do
19:
           sum \leftarrow sum + value
20:
       end for
21:
       Emit(key, sum)
22:
23: end procedure
```

Algorithm 4 Letter Frequency with In-Mapper Combiner

Require: Txt file, Total number of characters in the txt file

Ensure: Frequency of each letter in the input file

```
CountMapper
 1: procedure Setup(Context context)
       normalize \leftarrow context.getConfiguration().get("normalize")
3:
       map \leftarrow \{\}
4: end procedure
5: procedure MAP(Object key, Text value)
       line \leftarrow Normalize(value.toString(), normalize)
6:
7:
       for each character c in line do
          \max\{c\} \leftarrow \max\{c\} + 1
8:
9:
       end for
10: end procedure
11: procedure CLEANUP(Context context)
       for each entry \langle k, v \rangle in map do
                                                                ▶ Emit key and count map{key}
12:
          \operatorname{Emit}(k, v)
13:
14:
       end for
15: end procedure
   CountReducer
16: procedure Setup(Context context)
       letterCount ← context.getConfiguration().getLong("letterCountValue", 1)
18: end procedure
19: procedure Reduce(Text key, Iterable<LongWritable> values)
20:
       sum \leftarrow 0
       for each value in values do
21:
          sum \leftarrow sum + value
22:
23:
       end for
       freq \leftarrow (double) sum / (double) letterCount
24:
       Emit(key, freq)
25:
26: end procedure
```

Results

Experimental Setup

Executing the MapReduce workflow with different inputs, and configurations:

- **Input size**: the size of the input file is varied to evaluate the performance of the MapReduce workflow.
 - Paradise Lost $\sim 310~\mathrm{kB}$
 - Moby Dick $\sim 421 \text{kB}$
 - Frankenstein $\sim 440~\mathrm{kB}$
 - Divina Commedia $\sim 600 \text{ kB}$
 - Gerusalemme Liberata $\sim 691~\mathrm{kB}$
 - Promessi Sposi $\sim 1.440 \text{ kB}$
 - Test file (random generated sequence of char) of ~ 800 MB.
- Number of mappers: Hadoop handles this step
- Number of reducers: From one up to three reducers are used for letter frequency

Performance Analysis

Figure 1: TotalTimeMapReduce

Figure 2: Cpu Time

Figure 3: Peak Map Memory

Peak Reduce Physical memory (MB) 164.0 163.8 165 163.6 164 163.5 163.4 163.2 163.0 163.0 163.2 -® 163.4 163.2 165 164 163 162.8 163.0 162.8 162.6 161 162.4 Peak Reduce Virtual memory (MB) 1789.0 1788.5 1788.0 1788.0 1787.0 1787.2 1787.0 1786.25 E 1787.5 · 1787.0 · 1786.5 · 1 1786.0 1785.75 1786.6 1786.4 1785.50 1785.25 1786.0 1785.0 1785.00 1785.8 1786.2 1788.0 ₩ 1787.0 1786.0 1787.5 1786.5 1787.0 1785.8 1785.6 1786.0 1785.4 1785.5

Figure 4: Peak Reduce Memory

Figure 5: Performance Letter Count

Letter Frequency Analysis

Figure 6: Letter Frequency Distribution

Figure 7: Letter Frequency Distribution for different Operas

Figure 8: Letter Frequency Distribution for italian and english

Figure 9: Letter Frequency Distribution for english

Figure 10: Letter Frequency Distribution for italian

Figure 11: Top 5 letters

Conclusions

Performance

The performance evaluation of the letter frequency job and letter count job shows the impact of input size and number of reducers. Moreover, the comparison between the Combiner and In-Mapper Combiner implementations highlights the better performances obtained by using the *In-Mapper Combining* design pattern.

- Impact of Input Size: Larger input sizes, such as the 800 MB test file, grater the total processing time. This effect is evident across both the Combiner and In-Mapper Combiner implementations.
- Number of Reducers: It is shown that increasing the number of reducers do not lead to an overall significant improvement. This is due to the overhead of managing multiple reducers and the limited amount of data to process. In most cases, the performance is optimal with just two reducers.
- Combiner vs In-Mapper Combiner: The In-Mapper Combiner approach consistently outperforms the traditional Combiner method. The In-Mapper Combiner design pattern reduces the volume of intermediate data and minimizes data transfer overhead, leading to a more efficient MapReduce workflow.

Qualitative Analysis

The Letter Frequency Analysis provides significant insights into the variations and trends in letter usage across different texts and languages.

- Letter Frequency Distribution (Figure 6): The general letter frequency distribution graph highlights the overall trends in letter usage across the analyzed documents. Common letters like 'e', 'a', 't','i', and 'o' show high frequencies, consistent with typical linguistic patterns in English and other Latin-based languages.
- Comparison Across Different Operas (Figure 7): When comparing letter frequency distributions across different operas, noticeable variations can be seen. These differences may reflect the unique stylistic and linguistic choices of the authors, as well as the historical and cultural contexts in which these operas were written. For instance, certain operas may exhibit a higher frequency of specific letters due to their thematic or lexical peculiarities.
- Italian vs. English (Figures 8-10): The comparison between Italian and English texts reveals distinct frequency patterns. Italian texts, for instance, tend to have higher frequencies of vowels such as 'a' and 'o', which are more prevalent in Italian phonology. Conversely, English texts show a higher occurrence of consonants like 't' and 'h'. These differences underscore the phonetic and orthographic characteristics inherent to each language.
- Top 5 Letters (Figure 11): Analyzing the top 5 most frequent letters across the documents provides further insights into common linguistic elements. In English, letters like 'e', 't', and 'a' dominate due to their essential roles in constructing common words and grammatical structures. In Italian, vowels play a more prominent role, reflecting the language's phonetic structure.

In conclusion, the qualitative analysis of letter frequency data across different texts and languages highlights both universal and language-specific patterns. These findings not only reveal underlying linguistic trends but also enhance our understanding of how language and stylistic elements vary across different cultural and historical contexts.