ESC 201 designment 9 Solutions

$$= (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) + (0 \times 2^{1}) + (1 \times 2^{2}) + (1 \times 2^{2}) + (1 \times 2^{2})$$

$$= 8 + 0 + 2 + 0 + 0 = 5 + 0.25 + 0.125$$

Ans 2.

	27	remainder			
2	13	1			
2	6	1	2	7=	11011
2	3	0			
2	-	talk a tast	0.	25	
2	0	1	0.	5	X 2
			1.	0	X2

:. 0.25 = (-01)

Ano 3 dargest binary number that can be supresented using 8 bits is (11111111) = 255 Let the number of bits be n. The largest binary number using there 8 bits is $2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2^{n-1} + 1$ From due given condition, $2^{r_1} - 1 \ge 10^6$ $|n| \ge \log_2(10^6 + 1)$ n = 20.Ans4. (a) 24+17 = 40 Let the number system be a. $2x^{2} + 4x^{2} + 1xx^{2} + 7x^{2} = 4x^{2} + 0$ => 2x +4 +x+7 = 4x $\Rightarrow 11 = 4x - 3x$ or x = 11

(b) $22 \times 5 = 132$ det tere number system be a. $(2x+2x^{\circ})(5x^{\circ}) = (1x^{2}+3x^{\prime}+2x^{\circ})$

 \Rightarrow $(2x+2)(5) = (x^2 + 3x + 2)$

 $3) 10x + 10 = x^{2} + 3x + 2$ $3) x^{2} - 7x - 8 = 0$ $3) x^{2} - 8x + x - 8 = 0$

$$\Rightarrow x(x-8)+1(x-8)=0$$

$$\Rightarrow (x+1)(x-8)=0$$

$$x=-1 \text{ is inadmissible}$$

$$\therefore x=8$$

Ans 5. (a) 10000000

l's complement: 01111111

2's complement: 10000000

(b) 10101010 1's complement: 01010101 2's complement: 01010110

(c) 01110101 1's complement: 10001010 2's complement: 10001011

(d) 10011100 1's complement: 01100011 2's complement: 01100100

 $4n \times 6 \cdot (a) (32)_{10} = (100000)_2 = (0100000)_2$ For -32, take 2's complement of +32 $(-32)_{10} = (11000000)_2$

(b) Since the sign bit is 1, the number is negative. 2's complement of 11011111 is 00100001.

(00100001) = (33)10

Anet
$$(+32)_{10} = (001000000)_2$$

 $(-32)_{10} = (111000000)_2$
 $(+24)_{10} = (00011000)_2$
 $(-24)_{10} = (11101000)_2$

This is a negative number. 2's complement of 111001000

= \$00 111000 = 56

Ans 8.
$$x + \overline{x}y$$

$$= (x + \overline{x}) \cdot (x + y)$$

$$-32 + 24$$

11111000

This is a negative number. 2's complement of 11111000

= 00001000 = 8

$$\begin{array}{rrrr}
 +32-24 & 001000000 \\
 +111010000 \\
 \hline
 100001000 \\
 = 8
 \end{array}$$

[P3:
$$\alpha(y+3) = \alpha y + n z$$
]
[P4: $\alpha + \bar{\alpha} = 1$]

Anso. (a)
$$f=(x+y).(xy+x)$$

$$\Rightarrow f = xy + x.x + y.y + y.x$$

$$\Rightarrow f = xy + yx$$
(b) $f = ABCD + \overline{A}BD + ABCD$

$$\Rightarrow f = ABD(C+\overline{C}) + \overline{A}BD$$

$$\Rightarrow f = BD(A+\overline{A})$$

$$\Rightarrow f = BD$$

dno 10. f = (x.y+3)(y+x.3)

n	y	8	2.4+ z	8+2.3	f	
0	0	0	0	0	0	
0	0	1	1	0	0	
D	© I	0	0	1	0	
0	1	1	1	1	1	
1	0	0	0	0	b	
1	0	1	1	1	1	
ı	ï	0		1	1	
1	1	1	l	1	1	

SOP:
$$f = \overline{x}.y.3 + x.\overline{y.3} + x.y.\overline{3} + x.y.\overline{3}$$

POS: $f = (\overline{x} + y + 3).(x + \overline{y} + 3).(x + y + \overline{3}).(x + y + \overline{3})$