LC8 : Caractérisations par spectroscopie en synthèse organique

Synthèse de l'indigo

2 0

4 H₂O

+

2-nitrobenzaldéhyde

acétone

ion hydroxyde

indigo

ion éthanoate

eau

0.5 g= $3.3.10^{-3} \text{ mol}$

1. Transformation

précipite

+

Entonnoir en verre fritté

Spectre de l'indigo commercial, identification

Effet de la conjugaison des doubles liaisons

Un exemple de spectre IR

 \Rightarrow **C** - **H**: bande autour de 3000 cm⁻¹

Intense et large bande autour de $3200 - 3400 \ cm^{-1}$

Intense et fine bande autour de $1600 - 1700 \ cm^{-1}$

 $\Rightarrow C = O$

Intense et fine bande autour de $1650 - 1750 \ cm^{-1}$

Pentan-1-amine $\Rightarrow N - H$

Moyenne et fine bande autour de $3100 - 3500 \ cm^{-1}$

Table de données IR

Type de liaison		σ (en $ m cm^{-1}$)	Largeur de la bande	Intensité d'absorption	Remarques
0 – H hydroxyle	phase gazeuse	3600 – 3700	Fine	Moyenne	
	phase condensée	3200 - 3400	Large	Forte	se superpose à la précédente
N — H		3100 - 3500	Fine	Moyenne (amine) à forte (amide)	double bande si NH ₂
С — Н		2900 - 3100	Variable	Moyenne à forte	Peut descendre à 2700 cm ⁻¹ pour un aldéhyde
O - H carboxyle		2500 - 3200	Large	Moyenne à forte	se superpose aux C-H
C = O		1650 - 1750	Fine	Forte	
C = C		1600 - 1700	Variable	Moyenne	
N — H		1560 - 1640	Fine	Forte	se superpose à C=O pour un amide

Spectre IR du paracétamol

Comparaison de deux spectres IR

Comparaison de deux spectres RMN

Déplacement chimique

SPECTRE RMN DE L'ETHANE

SPECTRE RMN DU METHOXYETHANE

Table de déplacements chimiques

Type de proton	Exemple	δ (ppm)
Proton d'un alcane ou de chaîne carbonée éloignée d'atomes électronégatifs	$CH_3 - CH_2 - CH_2 - CH_3$	0,8 - 2,5
Proton sur un atome de carbone lié à un atome électronégatif	$CH_3 - OH$ $CH_3 - CH_2 - O - CH_3$ $CH_3 - CH_2 - CI$	3,1 - 5,0
Proton lié à un atome de carbone d'une double liaison ${\it C}={\it C}$ d'un alcène ou d'un cycle.	$CH_3 - CH = CH_2$	4,5-6,0 pour l'alcène $6,5-8,2$ pour le cycle
Proton lié à l'atome de carbone d'un groupe carbonyle	$CH_3 - CH = 0$	9,5 - 11
Proton lié à d'un groupe carboxyle	$CH_3 - CO_2$ H	10,5 - 12
Proton d'un groupe hydroxyle ou amino	$CH_3 - OH$ $CH_3 - NH_2$	0,5 - 5

Spectre RMN du paracétamol

Spectre RMN du paracétamol

Spectre RMN de l'éthanol

Spectre RMN du propan-1-ol

