Data Science and Visualization (DSV, F23)

3. Data Visualization

Hua Lu

https://luhua.ruc.dk; luhua@ruc.dk

PLIS, IMT, RUC

Agenda

Basic Visualization

- Histograms
- Bar charts
- Box plots
- Scatter plots
- Line charts
- Advanced Visualization

Learning goals

for each plot type:

- What
- Why
- How

Visualization Module and Functions

- import matplotlib.pyplot as plt
 - Histogram: plt.hist()
 - Bar chart: plt.bar()
 - Boxplot: plt.boxplot()
 - Scatter plot: plt.scatter()
 - Line chart: plt.plot()
- Parameters
 - Data: in general, a Series object
 - Index for the X axis
 - Values for the Y axis
 - Others for labels, ticks, legend, title...

Useful Functions in Plotting

- X and Y labels
 - plt.xlabel(), plt.ylabel()
- X and Y ticks
 - plt.xticks(), plt.yticks()
- Title of a figure
 - plt.title()
- Legend
 - plt.legend()
- Save to file
 - plt.savefig()

Y ticks

Y label

- Location
- Font type
- Font size

Ticks

- Range and step
- Rotation

Save image

- dpi
- Image type (.jpg, .png, .pdf...)

Histogram

- An approximate representation of the distribution of numerical data.
- It plots the frequency distribution of numerical data (continuous or discrete).

Histogram in Python

- plt.hist(series_1)
 - series_1 = df.col1: To illustrate
 the frequency of each particular
 value of column df.col1
 - series_1 = a column with filtering
- Examples
 - Lecture3_Visualization.ipynb

Count of objects in each bin/bucket

X: Bins, or buckets. Each represents a unique value.

Bar Chart

- A generalization of histogram
 - For categorical data (X axis)
- plt.bar(x_data, y_data)
- Examples
 - Lecture3_Visualization.ipynb

Boxplot Anatomy

Compare Boxplots

Symmetric distribution: Boxes and means E.g., Gaussian • Overlap? Differences? sizes of boxes and whiskers Ranges and variability Right Skewed: Long tail on the right (large end) • Outliers? **Left Skewed**: Long tail on the left (small end) \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3

 Q_1

 Q_2 Q_3

 $\mathbf{Q}_1 \ \mathbf{Q}_2 \ \mathbf{Q}_3$

Don't be fooled by Boxplot

- Boxplot indicates
 - Range
 - Spread
 - Quartiles
- But not
 - Absolute quantity

Boxplot Creation

- plt.boxplot()
 - Lecture3_Visualization.ipynb

```
data['year'].describe()
In [6]:
Out[6]:
        count
                  25500.00000
                   1980.00000
        mean
                     14.71989
         std
        min
                   1955.00000
         25%
                   1967.00000
         50%
                   1980.00000
                   1993.00000
         75%
                   2005.00000
        max
        Name: year, dtype: float64
```


plt.boxplot(data['year'])
plt.xticks([1], ['Year'])

Scatter Plot

- A.k.a. scatter chart.
- A chart that shows the relationship between two variables (x vs. y).
- Regression
 - Linear
 - Polynomial

Scatter Plot in Python

- plt.scatter(x_data, y_data)
- Examples
 - Lecture3_Visualization.ipynb

Line Chart

- A line chart uses points connected by line segments from left to right to demonstrate changes in value.
 - X axis: a continuous progression, e.g., time.
 - Y axis: values corresponding to the progression.
- When to use it?
 - If you want to see changes of a variable
 - If you want to see the trend of a variable
 - If you want to compare the changes/trends of two or more variables
 - Two or more lines

USD to DKK Chart +7.27% (1Y) US Dollar to Danish Krone • 1 USD = 7.0583 DKK Feb 24, 2023, 19:04 UTC

Line Chart in Python

- plt.plot(x_data, y_data)
- Examples
 - Lecture3_Visualization.ipynb

Agenda

- Basic Visualization
- Advanced Visualization
 - Advanced bar chart
 - Pairplot
 - Correlation heatmap

Advanced Bar Chart

- We can plot horizontal bars with richer colors
 - import **seaborn** as sns
 - A matplotlib based library for nicer plots
- Lecture3_Advanced.ipynb
 - Data: gas_prices.csv (in Moodle)

Pairplot

- Compare a number of columns with another column
 - A series of scatter plots, still about correlation
 - sns.pairplot(data, x_vars=['France', 'Germany', 'Italy'], y_vars='UK', ...)
 - Lecture3_Advanced.ipynb

Correlation Heatmap

- To check the correlation for each pair of *numeric* columns
 - A color-encoded matrix: sns.heatmap(data.corr(), ...)
 - Lecture3 Advanced.ipynb

Correlation Heatmap

19

More Plot Types

• bubble

- pie
- Radar chart

• 3D

• ...

Reminders

- Exercises
 - Read the sample code before you do the exercises
 - At least take a quick look
- Groups for mini-project
 - Please use this Padlet to form your groups
 - Padlet: https://padlet.com/luhua/dsv-f23-mini-project-group-formation-sgw8mxkajzhh0tli

Summary

- Basic Visualization (import matplotlib.pyplot as plt)
 - Histograms
 - Bar charts
 - Boxplot
 - Scatterplots
 - Line charts
- Advanced Visualization (import seaborn as sns)
 - Advanced bar chart
 - Pairplot (2 dimensions/columns)
 - Correlation heatmap (A full pair-wise analysis)

References

- Matplotlib official website
 - https://matplotlib.org/
- Matplotlib Tutorial
 - https://www.w3schools.com/python/matplotlib intro.asp
 - https://www.geeksforgeeks.org/matplotlib-tutorial/?ref=lbp
- Seaborn official website
 - https://seaborn.pydata.org/

Exercises

- 1. Find the exercises in Lecture3_Visualization.ipynb
- 2. Find the exercises in Lecture3_Advanced.ipynb

• NB: For all these exercises, you just fill in the blank cells left in a notebook. Nevertheless, remember to run the cells that import the libraries and load/create the data before running your own code.