WST 311

Assignment D: 26 February - 2 March 2018

1. This exercise revisit the derivation of the conditional distribution of multivariate normal distributions

Suppose $X: p \times 1$ is $N(\mu, \Sigma)$ distributed, i.e. with density function

$$f(x) = (2\pi)^{-\frac{p}{2}} |\Sigma|^{-\frac{1}{2}} \exp\{-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\}$$

Let
$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$
, $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0.75 \\ 0.75 & 1 \end{pmatrix}$.

- (a) Calculate $E(X_1|X_2=x_2)$ and the covariance matrix $cov(X_1,X_1|X_2=x_2)$.
- (b) Condition on $x_2 = 0.75$ and calculate the mean of X_1 and $var\left(X_1\right)$.
- (c) Take $x_2 = -0.5$ and repeat 1(b).
- 2. Use SAS/IML to rework the results of Example 8 and Example 9 in the notes.
- 3. You are given the random vector $\mathbf{X}' = (X_1, X_2, X_3, X_4, X_5)$ with mean vector $\boldsymbol{\mu}' = (2, -1, 3, 4, 0)$ and covariance matrix

$$\Sigma = \begin{pmatrix} 4 & \frac{1}{2} & -\frac{1}{2} & -1 & 0\\ \frac{1}{2} & 6 & 1 & 1 & -1\\ -\frac{1}{2} & 1 & 4 & -1 & 0\\ -1 & 1 & -1 & 3 & 0\\ 0 & -1 & 0 & 0 & 2 \end{pmatrix}.$$

Use SAS/IML to calculate the following.

- (a) Calculate ρ_{34} , the correlation between X_3 and X_4 .
- (b) Calculate $\rho_{34.25}$, the partial correlation between X_3 and X_4 controlling for X_2 and X_5 .

(c) Calculate
$$E\left(\left(\begin{array}{c}X_3\\X_4\end{array}\right)\middle|\left(\begin{array}{c}X_2\\X_5\end{array}\right)=\left(\begin{array}{c}1\\1\end{array}\right)\right)$$
.

4. Work through Example A, Questions 4, 5 and 6.

Note that if $\mathbf{S} = \begin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \\ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix}$ is the unbiased estimator for $\mathbf{\Sigma} = \begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}$, then it can be shown that an unbiased esimator for $\mathbf{\Sigma}_{11.2}$ is $\frac{n-1}{n-r-1} \begin{pmatrix} \mathbf{S}_{11} - \mathbf{S}_{12} \mathbf{S}_{21}^{-1} \mathbf{S}_{21} \end{pmatrix}$ where n is the sample size and $\mathbf{S}_{22} : r \times r$.

1