Confidence in Models

Author: Nicholas G Reich

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Today's Lecture

It aint what you dont know that gets you into trouble. Its what you know for sure that just aint so. -Mark Twain

Today's central question

What do linear regression models tell us about what we know and do not know about a particular dataset?

Based loosely on Kaplan, Chapter 12.

Process of building a statistical model

Process of building a statistical model

Where randomness enters the model-building process.

Circle of Life

How much will a sample tell us about the population

In practice we can very rarely sample the entire population of interest.

We can create a simple example of a population as a illustration. E.g. 8636 running times for the Cherry Blossom Ten Mile race in Washington DC in 2005:

```
race <- fetch::fetchData("ten-mile-race.csv")
head(race)</pre>
```

```
##
    state time net age sex
       VA 6060 5978 12
## 1
                        M
    MD 4515 4457 13
## 2
                        M
## 3 VA 5026 4928 13
                        M
## 4 MD 4229 4229 14
                        M
## 5 MD 5293 5076 14
                        Μ
## 6 VA 6234 5968 14
                        M
```

A simple model for the race data

$$net \sim age + sex$$
 or

$$net = \beta_0 + \beta_1 \cdot age + \beta_2 \cdot sex + \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{j} \sum_{j=1}^{n} \frac{1}$$

Using all the data, i.e. the entire "population"

Let's talk about SEs!

- ▶ We can use "statistical inference" to gauge our uncertainty about our estimated β s.
- ▶ Intuitively, we want to estimate how much uncertainty we expect to have about each β in our model.
- ▶ Out of the box, R gives you p-values to test hypothses of the form: $H_0: \beta_k = 0$.
- ▶ The more uncertainty we have about a specific $\hat{\beta}_k$, the less likely we are to reject the null hypothesis.

Factors influencing our uncertainty about $\hat{\beta}_k$

How do each of these factors influence uncertainty about $\hat{\beta}_k$

► Increased sample size:

► Increased variability in *y*;

▶ Increased variability in *x*:

$$\frac{E(\hat{\beta}) = \frac{MSE}{E(X_i - X_j)^2}}{E(Y_i - \hat{Y}_i)/(n - \hat{Y}_i)}$$

Sampling distribution terminology

Really important vocabulary!

- sampling distribution: the distribution of an estimated parameter, reflecting the randomness of the sampling (data collection) process.
- standard error: the standard deviation of a sampling distribution, measures the precision of our estimate or the amount of information we have about the parameter.
- margin of error: the half-width of the confidence interval
- **point estimate**: the exact numerical value that represents our best guess at the true parameter value. (In regression, this is the least-squares estimate of our β .)
- p-value: the probability of observing a value of as or more extreme as what you did observe in your data, assuming the null hypothesis is true.

Standard inference about β_k in R

Assuming $H_0: \beta_{age}=0$ is true we can use the estimated SE to approximate the sampling distribution as a t-distribution

Different inference techniques

Standard inference

Uses a mathematical approximation to the sampling distribution that gets more reliable with larger sample sizes. In many practical data analysis situations, this standard inference procedure works just fine.

Permutation-based inference

Uses numerical/simulated approximation to the sampling distribution under the null hypothesis. This is what we did for the Lady Tasting Tea example.

Bootstrap inference

Similar to permutation based inference but it does not permute the data and simulate when H_0 is true. Instead, it resamples your data to estimate the standard error.

Permutation and bootstrap inference can be particularly useful when you have a procedure that does not have a tidy, closed-form solution, unlike regression which does.

A sample of the race data gives different results

$$net = \beta_0 + \beta_1 \cdot age + \beta_2 \cdot sex$$

```
coef(fm)

## (Intercept) age sexM

## 5339.15545 16.89362 -726.61948
```

Using a sample of 100 observations from the population:

```
library(mosaic)
s \leftarrow do(500) * lm(net ~ age + sex, data=sample(race, 100))
head(s[,1:5])
##
     Intercept age sexM
                                      sigma r.squared
      5456.863 12.35424 -652.6228
                                   926.1072 0.10210471
## 1
      5229.565 22.54100 -898.5636
                                   891.7427 0.20015201
## 2
## 3
      5372.219 18.79278 -832.9769
                                   998.9424 0.15672015
## 4
      5626.164 10.20735 -889.5933
                                   832.1248 0.21965030
      5255.407 17.86686 -411.0323
## 5
                                   911.5224 0.06904405
## 6
      5469.381 11.13832 -567.3521 1023.4654 0.07475631
```

The sampling distribution of the β s

```
library(gridExtra)
p1 <- ggplot(s) + geom_density(aes(x=age)) +
    geom_vline(xintercept=coef(fm)["age"])
p2 <- ggplot(s) + geom_density(aes(x=sexM)) +
    geom_vline(xintercept=coef(fm)["sexM"])
grid.arrange(p1, p2, nrow=1)</pre>
```


The sampling distribution of the β s

Important to note that the sampling distributions may be correlated with each other.

```
ggplot(s, aes(x=age, y=sexM)) +
   geom_point() + geom_density_2d(color='red')
```


The standard error depends on...

The quality of the data

- If your data collection process involves a measurement process that contains a lot of error, how will that impact the standard errors?
- In the setting of the race, what measurement procedures might lead to less or more error?

The standard error depends on...

The quality of the model

Models with lower residual error tend to have _____ standard errors than ones with larger residual error.

The standard error depends on...

The sample size

As the sample size increases, what happens to the standard error?

The standard error and sample size

```
| s100 <- do(100) * lm(net ~ age + sex, data sample(race, 100)) | s1000 <- do(100) * lm(net ~ age + sex, data sample(race, 1000)) | ggplot() + geom_density(aes(x=age), fill="red", alpha=.5, data=s100) + geom_density(aes(x=age), fill="blue", alpha=.5, data=s1000)
```


The standard error and sample size (con't)

The formula for the standard error is proportional to $1/\sqrt{n}$. This is kind of a slow decrease: "to make the standard error 10 times smaller you need to make the dataset 100 times larger"!

And now, back to our true sample

In reality, we don't have the luxury of measuring the entire population!

- We can use information in the original sample to make a good guess at what the sampling distribution is (see Kaplan Ch 5.2).
- The guess is based on an approximation that has good properties when the assumptions of our model aren't broken.

Full data vs. partial data sampling distribution

Our estimated sampling distribution for 1000 observations (in blue) vs. the estimated sampling distribution for all data (in red).

Confidence Interval

A confidence interval summarizes our uncertainty about a point estimate.

- For example: "our analysis suggests that the age coefficient in the model is 17 ± 2 , with 95% confidence."
- $lue{}$ More precisely, we could do the calculation as: $16.9 \pm 2*0.94$.
- We multiply the standard error by two because this approximates a 95% coverage interval of the sampling distribution.
- NOTE: when your sample size is very small (e.g. n < 20) the multiplier of 2 is misleading, and larger values should be used. See, e.g. Table 12.1 in Kaplan.

```
summary(fm)$coef["age",]

## Estimate Std. Error t value Pr(>|t|)
## 1.689362e+01 9.443776e-01 1.788863e+01 2.660668e-70
```

Confidence in predictions

Confidence intervals are not appropriate for making predictions about individual data-points!

```
r <- sample(race, 500)
qplot(age, net, data=r) + geom_smooth(method="lm")
   10000
    8000
 net
    6000
    4000
             20
                         30
                                                50
                                                            60
                                                                        70
```

E.g. 95% of 60-year-olds will not have times within \pm 200 of the predicted value (\sim 5900?).

age

Confidence in predictions

Confidence intervals for regression coefficients represent the uncertainty in the coefficient, but not in the predictions at certain, fixed values. Recall that the line has to pass through the point (\bar{x},\bar{y}) . Small changes in slope/intercept will have minimal changes to where the line passes near that fulcrum, and larger changes at the fringes.

Making predictions

```
head(predict(fm, interval="confidence"))
##
        fit lwr
                        upr
## 1 4815.259 4757.616 4872.903
## 2 4832.153 4776.141 4888.165
## 3 4832.153 4776.141 4888.165
## 4 4849.047 4794.652 4903.442
## 5 4849.047 4794.652 4903.442
## 6 4849.047 4794.652 4903.442
head(predict(fm, interval="prediction"))
##
         fit
                  lwr
                           upr
## 1 4815.259 3050.770 6579.749
## 2 4832.153 3067.716 6596.590
## 3 4832.153 3067.716 6596.590
## 4 4849.047 3084.660 6613.433
## 5 4849.047 3084.660 6613.433
## 6 4849.047 3084.660 6613.433
```

Making predictions

Synax User

,

```
predict(fm, newdata = data.frame(age=c(20, 50, 60), sex=c("M", "M", "M")), interval="prediction")

## fit lwr upr
## 1 4950.408 3186.285 6714.532
## 2 5457.217 3693.359 7221.075
## 3 5626.153 3861.995 7390.312
```

Prediction vs. confidence interval, race data

Today's key topics

- Sampling distributions
- Standard error
- Confidence errors and intervals for coefficients
- Prediction intervals for future observations