	REG	REG	CFL	Turing DECID.	Turing RECOG.	P	NP	NPC	
$L_1 \cup L_2$	no	✓	✓	✓	✓	√	✓	no	۰
$L_1\cap L_2$	no	✓	no	✓	✓	√	✓	no	
\overline{L}	✓	✓	no	✓	no	√	?	?	
$L_1 \cdot L_2$	no	✓	✓	✓	✓	√	✓	no	
L^*	no	✓	✓	✓	✓	√	✓	no	
$_L\mathcal{R}$		✓	✓	✓	✓	√			
$L\cap R$		✓	√	✓	✓	√			
$L_1 \setminus L_2$		✓	no	✓	no	✓	?		

- (DFA) $M=(Q,\Sigma,\delta,q_0,F),\,\delta:Q imes\Sigma o Q$
- (NFA) $M = (Q, \Sigma, \delta, q_0, F), \delta : Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$
- (GNFA) $(Q, \Sigma, \delta, q_0, q_a)$,
 - $\delta: (Q \setminus \{q_{\mathrm{a}}\}) imes (Q \setminus \{q_{\mathrm{start}}\} \longrightarrow \mathcal{R}$ (where

- $\mathcal{R} = \{ \text{all regex over } \Sigma \})$
- GNFA accepts $w \in \Sigma^*$ if $w = w_1 \cdots w_k$, where $w_i \in \Sigma^*$ and there exists a sequence of states q_0, q_1, \ldots, q_k s.t. $q_0 = q_{\text{start}}, \ q_k = q_{\text{a}}$ and for each i, we have $w_i \in L(R_i)$, where $R_i = \delta(q_{i-1}, q_i)$.

Reg / DFA / NFA (1)

(**DFA-to-GNFA**) $G=(Q',\Sigma,\delta',s,a),$ $Q'=Q\cup\{s,a\},\quad \delta'(s,\varepsilon)=q_0,\quad \text{For each }q\in F,$

 $Q'=Q\cup\{s,a\},\quad \delta'(s,arepsilon)=q_0,\quad ext{For each }q\in F$ $\delta'(q,arepsilon)=a,\quad ext{((TODO...))}$

- (**P.L.**) If A is a regular lang., then $\exists p$ s.t. every string $s \in A$, $|s| \geq p$, can be written as s = xyz, satisfying: (i) $\forall i \geq 0, xy^iz \in A$, (ii) |y| > 0 and (iii) $|xy| \leq p$.
- Every NFA can be converted to an equivalent one that has a single accept state.

- $\hbox{ (reg. grammar) } G=(V,\Sigma,R,S). \hbox{ Rules: } A\to aB, \\ A\to a \hbox{ or } S\to \varepsilon. \hbox{ } (A,B,S\in V; a\in \Sigma).$
- (NFA → DFA)

- $N = (Q, \Sigma, \delta, q_0, F)$
- $\bullet \quad D=(Q'=\mathcal{P}(Q),\Sigma,\delta',q_0'=E(\{q_0\}),F')$
- $ullet F'=\{q\in Q'\mid \exists p\in F: p\in q\}$
- $E(\{q\}) := \{q\} \cup \{ \text{states reachable from } q \text{ via } arepsilon$
- $ilde{oldsymbol{arphi}} orall R \subseteq Q, orall a \in \Sigma, \delta'(R,a) = E\left(igcup_{r \in R} \delta(r,a)
 ight)$

CFL / CFG / PDA (2)

- $\text{ If } G \in \mathsf{CNF} \text{, and } w \in L(G) \text{, then } |w| \leq 2^{|h|} 1,$ where h is the height of the parse tree for w.
- $L \in \mathbf{CFL} \Leftrightarrow \exists rac{G}{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists rac{M}{\mathsf{PDA}} : L = L(M)$
- A CFL is inherently ambiguous if all CFGs that generate it are ambiguous.
- $\quad orall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- REG \subseteq CFL.
- $\{w \in \{a,b\}^* \mid w = w^{\mathcal{R}}\}, \{ww^{\mathcal{R}} \mid w \in \{a,b\}^*\}, \\ \{a^nb^n \mid n \in \mathbb{N}\}, \{w \in \{\mathtt{a},\mathtt{b}\}^* \mid \#_\mathtt{a}(w) = \#_\mathtt{b}(w)\} \in \mathsf{CFL} \\ \mathsf{but} \not\in \mathsf{REG}.$ A PDA can be represented by a state diagram, where each transition is labeled by the notation
- $$\begin{split} & \quad \{a^ib^jc^k \mid 0 \leq i \leq j \leq k\}, \, \{a^nb^nc^n \mid n \in \mathbb{N}\}, \\ & \quad \{ww \mid w \in \{a,b\}^*\}, \, \{\mathtt{a}^{j^2} \mid j \geq 0\}, \\ & \quad \{w \in \{\mathtt{a},\mathtt{b},\mathtt{c}\}^* \mid \#_\mathtt{a}(w) = \#_\mathtt{b}(w) = \#_\mathtt{c}(w)\} \not \in \mathsf{CFL} \end{split}$$
- $\text{ (derivation) } S \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_n = w, \\ \text{where each } u_i \text{ is in } (V \cup \Sigma)^*. \text{ (in this case, } G \\ \text{generates } w \text{ (or } S \text{ derives } w), S \overset{*}{\Rightarrow} w)$
- (**PDA**) $M=(Q,\sum\limits_{\mathsf{input}},\prod\limits_{\mathsf{stack}},\delta,q_0\in Q,\sum\limits_{\mathsf{accepts}}\subseteq Q).$ (where Q,Σ,Γ,F finite).

- $\delta:Q imes \Sigma_arepsilon imes \Gamma_arepsilon \longrightarrow \mathcal{P}(Q imes \Gamma_arepsilon).$
- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q \text{ and } s_0,,s_1,\ldots,s_m\in \Gamma^* \text{ s.t.}.$
 - $ullet r_0=q_0 ext{ and } s_0=arepsilon$
 - $\text{For } i=0,1,\ldots,m-1 \text{, we have} \\ (r_i,b)\in\delta(r_i,w_{i+1},a) \text{, where } s_i=at \text{ and} \\ s_{i+1}=bt \text{ for some } a,b\in\Gamma_\varepsilon \text{ and } t\in\Gamma^*.$
 - $ullet r_m \in F$

A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b\to c$ " to denote that the PDA: **Reads** a from the input (or read nothing if $a=\varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c=\varepsilon$)

• (CSG) $G=(V,\Sigma,R,S)$. Rules: $S \to \varepsilon$ or $\alpha A \beta \to \alpha \gamma \beta$ where: $\alpha,\beta \in (V \cup \Sigma \setminus \{S\})^*;$ $\gamma \in (V \cup \Sigma \setminus \{S\})^+; A \in V.$

- (**CFG**) $G=(\begin{subarray}{c} V, \Sigma, R, S \end{subarray}).$ Rules: A o w. (where $A \in V$ and $w \in (V \cup \Sigma)^*$).
- A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
- w is derived ambiguously in G if it has at least two different l.m. derivations.
- G is ambiguous if it generates at least one string ambiguously.
- A CFG is ambiguous iff it generates some string with two different parse trees.
- **(P.L.)** If L is a CFL, then $\exists p$ s.t. any string $s \in L$ with $|s| \geq p$ can be written as s = uvxyz, satisfying: (i) $\forall i \geq 0, uv^ixy^iz \in L$, (ii) $|vxy| \leq p$, and (iii) |vy| > 0.
- (CNF) $A \to BC$, $A \to a$, or $S \to \varepsilon$, (where $A,B,C \in V$, $a \in \Sigma$, and $B,C \ne S$).

(TM) $M = (Q, \sum\limits_{\mathsf{input}} \subseteq \Gamma, \prod\limits_{\mathsf{tape}}, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$,

where $\sqcup \in \Gamma$ (blank), $\sqcup
otin \Sigma$, $q_{\mathrm{reject}}
eq q_{\mathrm{accept}}$, and $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$

(unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, $REGULAR_{TM} = \{M \text{ is a TM and } L(M) \text{ is regular}\}$

 $EQ_{\mathsf{TM}} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$

- (recognizable) accepts if $w \in L$, rejects/loops if $w \notin L$.
 - L is recognizable $\iff L \leq_{\mathrm{m}} A_{\mathsf{TM}}$.

There exists some lang. that are unrecognizable.

(3) TM, (4) Decidability

- A is **co-recognizable** if \overline{A} is recognizable.
- Every inf. rec. lang. has an inf. dec. subset.
- (rec. but undec.) A_{TM} , $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM halts on } w \},$ $D = \{p \mid p \text{ is an int. poly. with an int. root}\},\$ $\overline{EQ_{\mathsf{CFG}}}, \overline{E_{\mathsf{TM}}}$
- (decidable) accepts if $w \in L$, rejects if $w \notin L$.
- L is decidable $\iff L \leq_{\mathrm{m}} 0^*1^*$.

- A_{DFA} , A_{NFA} , A_{REX} , E_{DFA} , E_{QDFA} , A_{CFG} , E_{CFG} , every CFL, every finite lang., A_{LBA} , $ALL_{\mathsf{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA}, L(A) = \Sigma^* \},$ $A\varepsilon_{\mathsf{CFG}} = \{\langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon\},\$
- $L \text{ is dec.} \iff (L \text{ is rec. } \land L \text{ is co-rec.}) \iff \exists \mathsf{TM}$
- (decider) TM that halts on all inputs.
- (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.

(5) Mapping Reduction ≤_m

 $f:\Sigma^* o\Sigma^*$ s.t. for every w, we have $w \in A \iff f(w) \in B$. (Such f is called the **m**. reduction from A to B.)

- If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{\mathrm{m}} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is
- (transitivity) If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.
- If A is recognizable and $A \leq_{\mathrm{m}} \overline{A}$, then A is decidable.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B}$

• $f: \Sigma^* \to \Sigma^*$ is computable if there exists a TM M s.t. for every $w \in \Sigma^*$, M halts on wand outputs f(w) on its tape.

A is m. reducible B

(denoted by $A \leq_{\mathrm{m}} B$), if there is a comp. func.

((Running time) decider M is a f(n)-time TM.)

 $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps

(and any branch of any n-length input. resp.).

 $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM}\}.$

 $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$

that DTM (or NTM) M takes on any n-length input

(7) Complexity, Polytime Reduction ≤_P $\mathbf{NP} = \{L \mid L \text{ is decidable by a PT verifier}\}.$

- $P \subseteq NP$.
- $f: \Sigma^* \to \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w)on its tape.
- A is PT (mapping) reducible to B, denoted $A \leq_{\rm P} B$, if there exists a PT computable func. $f: \Sigma^* \to \Sigma^*$ s.t. for every $w \in \Sigma^*$, $w \in A \iff f(w) \in B$. (in such case f is called the **PT reduction** of A to B).
 - If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
 - If $A \leq_{\mathbf{P}} B$ and $B \leq_{\mathbf{P}} A$, then A and B are \mathbf{PT} equivalent, denoted $A \equiv_P B$. \equiv_P is an

- equivalence relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of \equiv_P .
- **NP-complete** = $\{B \mid B \in \text{NP}, \forall A \in \text{NP}, A \leq_P B\}.$
- CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in \text{NP-complete}.$
- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_{\text{P}} C$, then $C \in \text{NP-complete}$.
- If P = NP, then

 $\forall A \in P \setminus {\emptyset, \Sigma^*}, A \in NP$ -complete.

Counterexamples:

 $\mathbf{P} = igcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$

(verifier for L) TM V s.t.

 $\mathbf{NP} = igcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$

 $L = \{ w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept} \}.$

 $V(\langle w,c\rangle)=\mathsf{accept}.$

• (certificate for $w \in L$) str. c s.t.

• $A \leq_{\mathrm{m}} B$ and $B \in \mathsf{REG}$, but, $A \notin \mathsf{REG}$:

$$A=\{0^n1^n\mid n\geq 0\},\, B=\{1\},\, f:A o B,\ f(w)=egin{cases} 1& ext{if }w\in A\ 0& ext{if }w
otin A. \end{cases}$$

• $L \in \mathsf{CFL}$ but $\overline{L} \notin \mathsf{CFL}$:

$$\begin{split} L &= \{x \mid \forall w \in \Sigma^*, x \neq ww\}, \\ \overline{L} &= \{ww \mid w \in \Sigma^*\}. \end{split}$$

• $L_1, L_2 \in \mathsf{CFL}$ but $L_1 \cap L_2 \not\in \mathsf{CFL}$:

$$L_1 = \{a^n b^n c^m\}, L_2 = \{a^m b^n c^n\},$$

 $L_1 \cap L_2 = \{a^n b^n c^n\}.$

 $A \leq_{\mathrm{P}} B$ and f: A o B s.t. $w \in A \iff f(w) \in B$ and f is poly-time comp.

Examples

$$\bullet \quad SAT \leq_P DOUBLE\text{-}SAT$$

•
$$f(\phi) = \phi \wedge (x \vee \neg x)$$

- SUBSET-SUM < P SET-PARTITION
 - $f(\langle x_1,\ldots,x_m,t\rangle)=\langle x_1,\ldots,x_m,S-2t\rangle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{P} 3COLOR_{almost}$

•
$$f(\langle G
angle) = \langle G'
angle$$
, where $G' = G \cup K_4$

VERTEX-COVER <_P WVC

$$f(\langle G,k
angle)=(G,w,k)$$
, $orall v\in V, w(v)=1$.

 $SimplePATH \leq_P UHAMATH$

- $f(\langle G=(V,E),k
 angle) = \langle G'=(V',E')
 angle$, if $k = \frac{|V|}{2}$, E = E', V' = V. if $k > \frac{|V|}{2}$, $V' = V \cup \{j = 2k - |V| \text{ new nodes}\}.$ if $V' = V \cup \{j = |V| - 2k \text{ new nodes}\}$ and $E' = E \cup \{ \text{edges for new nodes} \}$
- CLIQUE ≤P INDEPENDENT-SET
- $SET\text{-}COVER \leq_P VERTEX\text{-}COVER$
- $3SAT \leq_P SET\text{-}SPLITTING$
- INDEPENDENT-SET \leq_{P} VERTEX-COVER
- VERTEX-COVER \leq_{p} CLIQUE