Elliptic operators on rough domains

José María Martell

AMS Spring Eastern Sectional Meeting

Special Session on Special Session on Regularity Theory of PDEs and Calculus of Variations on Domains with Rough Boundaries

April 13, 2019

Hartford

Introduction

Introduction

•00000

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1}$$
 Lipschitz domain $\implies \left\{ \begin{array}{l} \omega \in RH_2(\sigma) \\ \left(\oint_{\Delta} k^2 \, d\sigma \right)^{\frac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = \frac{w(\Delta)}{\sigma(\Delta)} \end{array} \right.$

$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \begin{cases}
\mathcal{L}u = 0 \text{ in } \Omega \\
u|_{\partial\Omega} = f \in L^2(\sigma)
\end{cases}$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q)$$
 solvable for some q (large)

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1} ext{ Lipschitz domain } \implies \left\{ egin{array}{l} \omega \in RH_2(\sigma) \\ \left(\oint_{\Delta} k^2 \, d\sigma
ight)^{rac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = rac{w(\Delta)}{\sigma(\Delta)} \end{array}
ight.$$

$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^2(\sigma) \end{cases}$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q)$$
 solvable for some q (large)

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1} ext{ Lipschitz domain } \implies \left\{ egin{array}{l} \omega \in RH_2(\sigma) \ \ \left(\oint_{\Delta} k^2 \, d\sigma
ight)^{rac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = rac{w(\Delta)}{\sigma(\Delta)} \end{array}
ight.$$

•
$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^2(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q)$$
 solvable for some q (large)

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1} ext{ Lipschitz domain } \implies \left\{ egin{array}{l} \omega \in RH_2(\sigma) \\ \left(\oint_{\Delta} k^2 \, d\sigma
ight)^{rac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = rac{w(\Delta)}{\sigma(\Delta)} \end{array}
ight.$$

•
$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^2(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains?

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q)$$
 solvable for some q (large)

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1}$$
 Lipschitz domain $\implies \left\{ egin{array}{l} \omega \in RH_2(\sigma) \\ \left(\oint_{\Delta} k^2 \, d\sigma
ight)^{rac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = rac{w(\Delta)}{\sigma(\Delta)} \end{array}
ight.$

•
$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^2(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains?

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q)$$
 solvable for some q (large)

Theorem (Dahlberg 1977)

$$\Omega \subset \mathbb{R}^{n+1}$$
 Lipschitz domain $\implies \left\{ egin{array}{l} \omega \in RH_2(\sigma) \\ \left(\oint_{\Delta} k^2 \, d\sigma
ight)^{rac{1}{2}} \lesssim \oint_{\Delta} k \, d\sigma = rac{w(\Delta)}{\sigma(\Delta)} \end{array}
ight.$

•
$$\omega \in RH_2(\sigma) \iff \text{Solvability of } (D_2) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^2(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves (D_2)

• Can we go beyond Lipschitz domains?

$$\omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \rightsquigarrow (D_q) \text{ solvable for some } q \text{ (large)}$$

- $\Omega \subset \mathbb{R}^{n+1}$, n > 2, open

$$u(X) = \int_{\partial\Omega} f(x) d\omega^{X}(x) \quad \text{solves} \quad (D) \begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{''} f \in C_{c}(\partial\Omega) \end{cases}$$

$$\Delta(x,r) = B(x,r) \cap \partial\Omega, \ x \in \partial\Omega$$

$$\bullet \ \sigma = \mathcal{H}^n \big|_{\partial \Omega}$$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, open
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of "probabilities" on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D) $\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{``} f \in C_c(\partial\Omega) \end{cases}$

 $\partial \Omega \text{ ADR } \leadsto \sigma(\Delta(x,r)) \approx r^n, \quad x \in \partial \Omega$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, open
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of "probabilities" on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D) $\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{''} f \in C_c(\partial\Omega) \end{cases}$

$$\Delta(x,r) = B(x,r) \cap \partial\Omega, \ x \in \partial\Omega$$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, open
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of "probabilities" on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D) $\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{``} f \in C_c(\partial\Omega) \end{cases}$

Surface ball

$$\Delta(x,r) = B(x,r) \cap \partial\Omega, \ x \in \partial\Omega$$

- $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, open
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of "probabilities" on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D) $\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{``} f \in C_c(\partial\Omega) \end{cases}$

Surface ball

$$\Delta(x,r) = B(x,r) \cap \partial\Omega, x \in \partial\Omega$$

$$\bullet \ \sigma = \mathcal{H}^n \big|_{\partial\Omega}$$

- $\Omega \subset \mathbb{R}^{n+1}$, n > 2, open
- Harmonic measure $\{\omega^X\}_{X\in\Omega}$ family of "probabilities" on $\partial\Omega$

$$u(X) = \int_{\partial\Omega} f(x) d\omega^X(x)$$
 solves (D) $\begin{cases} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} \text{``} = \text{''} f \in C_c(\partial\Omega) \end{cases}$

Surface ball

$$\Delta(x,r) = B(x,r) \cap \partial\Omega, \ x \in \partial\Omega$$

$$\bullet \ \sigma = \mathcal{H}^n \big|_{\partial\Omega}$$

• $\partial \Omega$ ADR $\leadsto \sigma(\Delta(x,r)) \approx r^n$, $x \in \partial \Omega$

- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

- Path-connectedness \rightsquigarrow Harnack chain condition

- Openness \(\sigma \) Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

- Path-connectedness \rightsquigarrow Harnack chain condition

- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

- Ω is CAD \equiv • Interior Corkscrew and Harnack Chain Exterior Corkscrew $\partial\Omega$ ADR

Introduction

000000

- Openness → Corkscrew condition
- Path-connectedness \rightsquigarrow Harnack chain condition

- Ω is CAD \equiv • Interior Corkscrew and Harnack Chain Exterior Corkscrew $\partial\Omega$ ADR
- Ω is 1-sided CAD \equiv • Interior Corkscrew and Harnack Chain $\partial\Omega$ ADR

Theorem (David-Jerison 1990; Semmes 1989)

$$\bullet \ \Omega \subset \mathbb{R}^{n+1} \ \mathbf{CAD} \quad \Longrightarrow \quad \left\{ \begin{array}{l} \omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \\ \left(\oint_{\Delta} k^p \, d\sigma \right)^{\frac{1}{p}} \lesssim \oint_{\Delta} k \, d\sigma = \frac{w(\Delta)}{\sigma(\Delta)} \end{array} \right.$$

•
$$\omega \in RH_p(\sigma) \iff \text{Solvability of } (D_{p'}) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^{p'}(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves $(D_{p'})$

• Can we consider operators with variable coefficients'

Theorem (David-Jerison 1990; Semmes 1989)

$$\bullet \ \Omega \subset \mathbb{R}^{n+1} \ \mathbf{CAD} \quad \Longrightarrow \quad \left\{ \begin{array}{l} \omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \\ \left(\oint_{\Delta} k^p \, d\sigma \right)^{\frac{1}{p}} \lesssim \oint_{\Delta} k \, d\sigma = \frac{w(\Delta)}{\sigma(\Delta)} \end{array} \right.$$

•
$$\omega \in RH_p(\sigma) \iff \text{Solvability of } (D_{p'}) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^{p'}(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves $(D_{p'})$

Theorem (David-Jerison 1990; Semmes 1989)

$$\bullet \ \Omega \subset \mathbb{R}^{n+1} \ \mathbf{CAD} \quad \Longrightarrow \quad \left\{ \begin{array}{l} \omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \\ \left(\oint_{\Delta} k^p \, d\sigma \right)^{\frac{1}{p}} \lesssim \oint_{\Delta} k \, d\sigma = \frac{w(\Delta)}{\sigma(\Delta)} \end{array} \right.$$

•
$$\omega \in RH_p(\sigma) \iff \text{Solvability of } (D_{p'}) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^{p'}(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves $(D_{p'})$

• Can we consider operators with variable coefficients'

Theorem (David-Jerison 1990; Semmes 1989)

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 CAD \Longrightarrow
$$\begin{cases} \omega \in A_{\infty}(\sigma) = \bigcup_{p>1} RH_p(\sigma) \\ \left(\oint_{\Delta} k^p \, d\sigma \right)^{\frac{1}{p}} \lesssim \oint_{\Delta} k \, d\sigma = \frac{w(\Delta)}{\sigma(\Delta)} \end{cases}$$

•
$$\omega \in RH_p(\sigma) \iff \text{Solvability of } (D_{p'}) \left\{ \begin{array}{l} \mathcal{L}u = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^{p'}(\sigma) \end{array} \right.$$

•
$$u(X) = \int_{\partial \Omega} f(y) d\omega^X(y)$$
 solves $(D_{p'})$

• Can we consider operators with variable coefficients?

•
$$Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$$

•
$$A(X) = (a_{i,j}(X))_{1 \le i,j \le n+1}$$
 real (symmetric)
 $A(X)\xi \cdot \xi > \Lambda^{-1}|\xi|^2$ and $|A(X)\xi \cdot \eta| < \Lambda|$

• ω_L elliptic measure

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 CAD • $\delta(X) := \operatorname{dist}(X, \partial \Omega)$
• $|\nabla A| \, \delta \in L^{\infty}(\Omega)$

$$\bullet$$
 $|\nabla A|^2 \delta$ is a Carleson measure $\Big]$

• A is a Carleson perturbation of
$$A_0$$
 \Longrightarrow $\omega_L \in A_{\infty}(\sigma)$

Can we go beyond CAD?

•
$$Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$$

•
$$A(X) = (a_{i,j}(X))_{1 < i,j < n+1}$$
 real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$

and

$$|A(X)\xi \cdot \eta| \le \Lambda |\xi| |\eta|$$

$$\bullet |\nabla A| \delta \in L^{\infty}(\Omega)$$

$$\bullet$$
 $|\nabla A|^2 \delta$ is a Carleson measure

$$\omega_{L_0} \in A_{\infty}(\sigma)$$

- $Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$
- $A(X) = (a_{i,j}(X))_{1 \le i, j \le n+1}$ real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$

and

$$|A(X)\xi \cdot \eta| \le \Lambda |\xi| |\eta|$$

• ω_L elliptic measure

THEOLETTI (Manual)

$$\delta(X) := \operatorname{dist}(X \partial \Omega)$$

- \bullet $|\nabla A| \delta \subset L^{\infty}(\Omega)$
- $|\nabla A|^2 \delta$ is a Carleson measure
- $\omega_{L_0} \in A_{\infty}(\sigma)$
- 0 A :- O---I
- Can we go beyond CAD?

- $Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$
- $A(X) = (a_{i,j}(X))_{1 \le i,j \le n+1}$ real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$

• ω_L elliptic measure

Theorem (Kenig-Pipher 01; Fefferman-Kenig-Pipher 91, Milakis-Pipher-Toro 13)

and

• $\Omega \subset \mathbb{R}^{n+1}$ CAD

• $\delta(X) := \operatorname{dist}(X, \partial\Omega)$

- |∇A| δ ∈ L[∞](Ω)
 |∇A|² δ is a Carleson measure

 $|A(X)\xi \cdot \eta| \le \Lambda |\xi| |\eta|$

•
$$Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$$

•
$$A(X) = (a_{i,j}(X))_{1 \le i,j \le n+1}$$
 real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$

and

$$|A(X)\xi\cdot\eta|\leq \Lambda|\xi|\,|\eta|$$

• ω_L elliptic measure

Theorem (Kenig-Pipher 01; Fefferman-Kenig-Pipher 91, Milakis-Pipher-Toro 13)

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 CAD

•
$$\delta(X) := \operatorname{dist}(X, \partial\Omega)$$

$$\bullet |\nabla A| \delta \in L^{\infty}(\Omega)$$

•
$$|\nabla A|^2 \delta$$
 is a Carleson measure

$$\longrightarrow w_{r} \in \Lambda (\sigma$$

Can we go beyond CAD?

•
$$Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$$

•
$$A(X) = (a_{i,j}(X))_{1 \le i,j \le n+1}$$
 real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$
 and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$

• ω_L elliptic measure

Theorem (Kenig-Pipher 01; Fefferman-Kenig-Pipher 91, Milakis-Pipher-Toro 13)

• $\Omega \subset \mathbb{R}^{n+1}$ CAD

• $\delta(X) := \operatorname{dist}(X, \partial\Omega)$

- $\bullet |\nabla A| \, \delta \in L^{\infty}(\Omega)$ $\bullet |\nabla A|^2 \, \delta \text{ is a Carleson measure }$
- $\bullet \ \omega_{L_0} \in A_{\infty}(\sigma)$
 - $\bullet \ A \ is \ a \ Carleson \ perturbation \ of \ A_0 \ \ \Longrightarrow \ \omega_L \in A_{\infty}(\sigma)$

•
$$Lu(X) = -\operatorname{div}(A\nabla u)(X), X \in \Omega$$

•
$$A(X) = (a_{i,j}(X))_{1 \le i,j \le n+1}$$
 real (symmetric)

$$A(X)\xi \cdot \xi \ge \Lambda^{-1}|\xi|^2$$
 and $|A(X)\xi \cdot \eta| \le \Lambda|\xi||\eta|$

• ω_L elliptic measure

Theorem (Kenig-Pipher 01; Fefferman-Kenig-Pipher 91, Milakis-Pipher-Toro 13)

• $\Omega \subset \mathbb{R}^{n+1}$ CAD

• $\delta(X) := \operatorname{dist}(X, \partial\Omega)$

- $\bullet |\nabla A| \, \delta \in L^{\infty}(\Omega)$ $\bullet |\nabla A|^2 \, \delta \text{ is a Carleson measure }$
- $\bullet \ \omega_{L_0} \in A_{\infty}(\sigma)$ $\bullet \ A \ is \ a \ Carleson \ perturbation \ of \ A_0$ $\Longrightarrow \quad \omega_L \in A_{\infty}(\sigma)$
- Can we go beyond CAD?

Section 2

Characterizations of CAD

•
$$L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$$
:

•
$$|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$$
 is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}(\partial \Omega)}} \frac{1}{\sigma(\Delta(x,r))} \iint_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAT

•
$$L \in \mathbb{L}_0$$

$$\bigcirc$$
 Ω CAD

$$0 \implies 2$$
 [Kenig-Pipher] $\leadsto \mathbb{L}_0$; [David-Jerison; Semmes] \leadsto Laplacian

$$2 \implies 1$$
 [Hofmann-M.-Mayboroda-Toro-Zhao] $\rightsquigarrow L_0$

• [Hofmann-M.-Toro]
$$\rightsquigarrow |\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|$$
 is a Carleson measure

•
$$L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$$
:

•
$$|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$$
 is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}\left(\partial \Omega\right)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

$$\mathbf{0} \Omega \text{ CAD}$$

•
$$L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$$
:

•
$$|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$$
 is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}\left(\partial \Omega\right)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

$$2 \implies 1$$
 [Hofmann-M.-Mayboroda-Toro-Zhao] $\rightsquigarrow \mathbb{L}_0$

- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$:
 - $|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$ is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}\left(\partial \Omega\right)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- $2\omega_L \in A_{\infty}(\sigma)$
- $1 \implies 2$ [Kenig-Pipher] $\rightsquigarrow \mathbb{L}_0$; [David-Jerison; Semmes] \rightsquigarrow Laplacian

- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$:
 - $|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$ is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}\left(\partial \Omega\right)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- $L \in \mathbb{L}_0$
- $\bigcirc \Omega \text{ CAD} \iff$
- $2\omega_L \in A_{\infty}(\sigma)$
- $1 \implies 2$ [Kenig-Pipher] $\rightsquigarrow L_0$; [David-Jerison; Semmes] \rightsquigarrow Laplacian
- $2 \implies 1$ [Hofmann-M.-Mayboroda-Toro-Zhao] $\rightsquigarrow L_0$

- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$:
 - $|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$ is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}(\partial \Omega)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- $L \in \mathbb{L}_0$
- $\bigcirc \Omega \text{ CAD} \iff$
- $2\omega_L \in A_{\infty}(\sigma)$
- $1 \implies 2$ [Kenig-Pipher] $\rightsquigarrow L_0$; [David-Jerison; Semmes] \rightsquigarrow Laplacian
- $2 \implies 1$ [Hofmann-M.-Mayboroda-Toro-Zhao] $\rightsquigarrow L_0$
- [Hofmann-M.-Uriarte; Azzam-Hofmann-M.-Nyström-Toro] → Laplacian

- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}_0$:
 - $|\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|^2 \delta$ is a Carleson measure:

$$\sup_{\substack{x \in \partial \Omega \\ 0 < r < \operatorname{diam}\left(\partial \Omega\right)}} \frac{1}{\sigma(\Delta(x,r))} \iint\limits_{B(x,r) \cap \Omega} |\nabla A(Y)|^2 \delta(Y) \, dY < \infty$$

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- $L \in \mathbb{L}_0$
- $\bigcirc \Omega \text{ CAD} \iff$
- $2\omega_L \in A_{\infty}(\sigma)$
- $1 \implies 2$ [Kenig-Pipher] $\rightsquigarrow L_0$; [David-Jerison; Semmes] \rightsquigarrow Laplacian
- $2 \implies 1$ [Hofmann-M.-Mayboroda-Toro-Zhao] $\rightsquigarrow L_0$
- [Hofmann-M.-Uriarte; Azzam-Hofmann-M.-Nyström-Toro] \leadsto Laplacian
- [Hofmann-M.-Toro] $\rightsquigarrow |\nabla A| \delta \in L^{\infty}(\Omega) + |\nabla A|$ is a Carleson measure

•
$$u(X) = \int_{\partial\Omega} f(y) d\omega_L^X(y), f \in C_c(\partial\Omega) \quad \leadsto \quad Lu = 0$$

•
$$(D_p)$$

$$\begin{cases} Lu = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^p(\sigma) \\ \|Nu\|_{L^p(\sigma)} \lesssim \|f\|_{L^p(\sigma)} \end{cases}$$

•
$$(D_p)$$
 solvable $\iff \omega_L \in RH_{p'}(\sigma)$

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

$$\longrightarrow$$

•
$$(D_p)$$
 is solvable for large p

•
$$u(X) = \int_{\partial\Omega} f(y) d\omega_L^X(y), f \in C_c(\partial\Omega) \quad \leadsto \quad Lu = 0$$

$$\bullet \ (D_p) \ \begin{cases} Lu = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^p(\sigma) \\ \|Nu\|_{L^p(\sigma)} \lesssim \|f\|_{L^p(\sigma)} \end{cases}$$

• (D_p) solvable $\iff \omega_L \in RH_{p'}(\sigma)$

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

•
$$(D_n)$$
 is solvable for large p

•
$$u(X) = \int_{\partial\Omega} f(y) d\omega_L^X(y), f \in C_c(\partial\Omega) \quad \leadsto \quad Lu = 0$$

$$\bullet \ (D_p) \ \begin{cases} Lu = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^p(\sigma) \\ \|Nu\|_{L^p(\sigma)} \lesssim \|f\|_{L^p(\sigma)} \end{cases}$$

• (D_p) solvable $\iff \omega_L \in RH_{p'}(\sigma)$

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

•
$$(D_n)$$
 is solvable for large p

•
$$u(X) = \int_{\partial\Omega} f(y) d\omega_L^X(y), f \in C_c(\partial\Omega) \quad \leadsto \quad Lu = 0$$

$$\bullet (D_p) \begin{cases} Lu = 0 \text{ in } \Omega \\ u|_{\partial\Omega} = f \in L^p(\sigma) \\ \|Nu\|_{L^p(\sigma)} \lesssim \|f\|_{L^p(\sigma)} \end{cases}$$

• (D_p) solvable $\iff \omega_L \in RH_{p'}(\sigma)$

•
$$\Omega \subset \mathbb{R}^{n+1}$$
 1-sided CAD

•
$$L \in \mathbb{L}_0$$

•
$$\Omega$$
 CAD

$$\Longrightarrow$$

•
$$(D_p)$$
 is solvable for large p

•00000

Perturbation

Elliptic operators on rough domains

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- Ω CAD \iff $\omega_L \in A_{\infty}$

- (D_n) solvability $p \gg 1$

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- Ω CAD \iff $\omega_L \in A_{\infty}$

- (D_p) solvability $p \gg 1$
- Can we consider other operators? (e.g., non-smooth coefficients)

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

- Ω CAD \iff $\omega_L \in A_{\infty}$

- (D_p) solvability $p \gg 1$
- Can we consider other operators? (e.g., non-smooth coefficients)
- [Fefferman-Kenig-Pipher 1991, Milakis-Pipher-Toro 2013]
 - $A_{\infty}(\sigma)$ is stable under Carleson perturbation on CAD

Theorem

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

• $L \in \mathbb{L}_0$

- Ω CAD \iff $\omega_L \in A_{\infty} \iff$ (D_p) solvability $p \gg 1$
- Can we consider other operators? (e.g., non-smooth coefficients)
- [Fefferman-Kenig-Pipher 1991, Milakis-Pipher-Toro 2013] $A_{\infty}(\sigma)$ is stable under Carleson perturbation on CAD
- Goal: Develop perturbation theory on 1-sided CAD

12 / 23

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - Fefferman-Kenig-Pipher → Lipschitz
 Milakis-Pipher-Toro → CAL
- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz
 Milakis-Pipher-Toro → CAD

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

$$\bullet \ \omega_{L_0} \in A_{\infty} = \bigcup_{q > 1} RH_q$$

$$\bullet \ \omega_{L_0} \in RH_p$$

• $(D_{p'})$ is solvable p'

- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$:
 - Fefferman-Kenig-Pipher -- Lipschitz
- Milakis-Pipher-Toro ↔ CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

•
$$\omega_{L_0} \in A_{\infty} = \bigcup_{q > 1} RH_q$$

•
$$(D_a)$$
 is solvability $q \gg 1$

•
$$\omega_{L_0} \in RH_p$$
 \uparrow

• $(D_{n'})$ is solvable p'

Elliptic operators on rough domains

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

•
$$(D_q)$$
 is solvability $q \gg 1$

•
$$\omega_{L_0} \in RH_p$$
 $\uparrow \uparrow$

- $(D_{p'})$ is solvable p'
- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - \bullet Fefferman-Kenig-Pipher \leadsto Lipschitz
- Milakis-Pipher-Toro → CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

•
$$(D_q)$$
 is solvability $q \gg 1$

$$\bullet \ \omega_{L_0} \in RH_p$$

- $(D_{p'})$ is solvable p'
- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - \bullet Fefferman-Kenig-Pipher \leadsto Lipschitz
- Milakis-Pipher-Toro → CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

•
$$(D_q)$$
 is solvability $q \gg 1$

$$\bullet \ \omega_{L_0} \in RH_p$$

- $(D_{n'})$ is solvable p'
- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - ${\color{red} \bullet}$ Fefferman-Kenig-Pipher ${\color{red} \leadsto}$ Lipschitz
- Milakis-Pipher-Toro → CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

•
$$(D_q)$$
 is solvability $q \gg 1$

•
$$\omega_{L_0} \in RH_p$$
 \uparrow

- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - ${\color{blue} \bullet}$ Fefferman-Kenig-Pipher ${\color{blue} \leadsto}$ Lipschitz
- Milakis-Pipher-Toro → CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

• Good operator: $L_0 u = -\operatorname{div}(A_0 \nabla u)$

$$\bullet \ \omega_{L_0} \in A_{\infty} = \bigcup_{q > 1} RH_q$$

•
$$(D_q)$$
 is solvability $q \gg 1$

$$\bullet \ \omega_{L_0} \in RH_p$$

- $(D_{p'})$ is solvable p'
- Perturbed operator: $Lu = -\operatorname{div}(A\nabla u)$
- Question 1: When $\omega_L \in A_{\infty}$?
 - \bullet Fefferman-Kenig-Pipher \leadsto Lipschitz
- \bullet Milakis-Pipher-Toro \leadsto CAD

- Question 2: When is $\omega_L \in RH_p$?
 - Dahlberg → Lipschitz

 \bullet Milakis-Pipher-Toro \leadsto CAD

Disagreement between L_0 and L

$$\rho(A_0,A)(Y) := \sup_{Z \in B(Y,\frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\| = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\sigma(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 \, \delta(Y) \, dY$$

•
$$\Omega$$
 1-sided CAD • L_0 , L elliptic operators • $\|\rho(A_0,A)\| < \varepsilon$

$$\omega_{L_0} \in A_{\infty}(\sigma) \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\sigma)$$

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\| = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\sigma(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 \, \delta(Y) \, dY$$

Theorem (Cavero-Hofmann-M.; Cavero-Hofmann-M.-Toro

$$\Omega$$
 1-sided CAD \circ L_0 , L elliptic operators

$$\omega_{L_0} \in A_{\infty}(\sigma) \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\sigma)$$

 (D_p) solvable for $p > p_0$ \Longrightarrow (D_p) solvable for $p > q_0$

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\| = \sup_{\Delta(x,r)\subset\partial\Omega} \frac{1}{\sigma(\Delta(x,r))} \iint_{B(x,r)\cap\Omega} \rho(A_0,A)(Y)^2 \,\delta(Y) \,dY$$

Theorem (Cavero-Hofmann-M.; Cavero-Hofmann-M.-Toro)

- Ω 1-sided CAD L_0 , L elliptic operators $\|\rho(A_0,A)\| < \infty$
 - $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

 (D_p) solvable for $p > p_0$ \Longrightarrow (D_p) solvable for $p > q_0$

14 / 23

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\| = \sup_{\Delta(x,r)\subset\partial\Omega} \frac{1}{\sigma(\Delta(x,r))} \iint_{B(x,r)\cap\Omega} \rho(A_0,A)(Y)^2 \,\delta(Y) \,dY$$

Theorem (Cavero-Hofmann-M.; Cavero-Hofmann-M.-Toro)

•
$$\Omega$$
 1-sided CAD • L_0 , L elliptic operators • $\|\rho(A_0,A)\| < \infty$

$$\omega_{L_0} \in A_{\infty}(\sigma) \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\sigma)$$

$$(D_p)$$
 solvable for $p > p_0 \implies (D_p)$ solvable for $p > q_0$

• Disagreement between L_0 and L

$$\rho(A_0,A)(Y) := \sup_{Z \in B(Y,\frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\| = \sup_{\Delta(x,r)\subset\partial\Omega} \frac{1}{\sigma(\Delta(x,r))} \iint_{B(x,r)\cap\Omega} \rho(A_0,A)(Y)^2 \,\delta(Y) \,dY$$

Theorem (Cavero-Hofmann-M.; Cavero-Hofmann-M.-Toro)

•
$$\Omega$$
 1-sided CAD • L_0 , L elliptic operators • $\|\rho(A_0,A)\| < \infty$

$$\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$$

$$(D_p)$$
 solvable for $p > p_0$ \Longrightarrow (D_p) solvable for $p > q_0$

•
$$L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$$
: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.

•
$$L = -\operatorname{div}(A\nabla) \in \mathbb{L}$$
: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollar

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAT

 \bullet $L \in I$

 \bigcirc Ω CAD

 $2 \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega$ CAD

$$1 \implies 2$$

- [Kenig-Pipher]: Ω CAD $\implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Milakis-Pipher-Toro]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0\nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

• $L \in \mathbb{L}$

 $\bigcirc \Omega$ CAD

 \iff

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega \text{ CAD}$

- [Kenig-Pipher]: Ω CAD $\implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Milakis-Pipher-Toro]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0\nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

• $L \in \mathbb{L}$

 \square Ω CAD

 $\mathbf{2} \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega$ CAD

- [Kenig-Pipher]: Ω CAD $\Longrightarrow \omega_{L_0} \in A_{\infty}(\sigma)$
- [Milakis-Pipher-Toro]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

 \bullet $L \in \mathbb{L}$

- Ω CAD
- $2 \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0\nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

• $L \in \mathbb{L}$

 $\mathbf{0} \Omega \text{ CAD}$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega$ CAD

- [Kenig-Pipher]: Ω CAD $\Longrightarrow \omega_{L_0} \in A_{\infty}(\sigma)$
- [Milakis-Pipher-Toro]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

 \bullet $L \in \mathbb{L}$

 Ω CAD

- $2 \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega$ CAD

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

 \bullet $L \in \mathbb{L}$

- Ω CAD
- $2 \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega \text{ CAD}$

- [Kenig-Pipher]: Ω CAD $\Longrightarrow \omega_{L_0} \in A_{\infty}(\sigma)$

Large constant perturbation and Characterization of CAD

- $L_0 = -\operatorname{div}(A_0 \nabla) \in \mathbb{L}_0$: $|\nabla A_0| \delta \in L^{\infty}(\Omega) + |\nabla A_0|^2 \delta$ Carleson meas.
- $L = -\operatorname{div}(A\nabla) \in \mathbb{L}$: $\|\rho(A_0, A)\| < \infty$ for some $L_0 \in \mathbb{L}_0$

Corollary

• $\Omega \subset \mathbb{R}^{n+1}$ 1-sided CAD

 \bullet $L \in \mathbb{L}$

 $\mathbf{1}$ Ω CAD

- - $2 \omega_L \in A_{\infty}(\sigma)$

- [Cavero-Hofmann-M.]: $\omega_L \in A_{\infty}(\sigma) \implies \omega_{L_0} \in A_{\infty}(\sigma)$
- [Hofmann-M.-Mayboroda-Toro-Zhao]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \Omega$ CAD

- [Kenig-Pipher]: Ω CAD $\Longrightarrow \omega_{L_0} \in A_{\infty}(\sigma)$
- [Milakis-Pipher-Toro]: $\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)$

Small constant perturbation

• Disagreement between L_0 and L

$$\rho(A_0,A)(Y):=\sup_{Z\in B(Y,\frac{\delta(Y)}{2})}\frac{|A_0(Z)-A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\| = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\sigma(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 \, \delta(Y) \, dY$$

Theorem (Cavero-Hofmann-M.)

$$\Omega$$
 1-sided CAD Ω Ω 1-sided CAD Ω 1-sided CAD Ω Ω 1-sided CAD Ω 1-sided CAD

 (D_p) solvable for $p \geq q'$

Small constant perturbation

• Disagreement between L_0 and L

$$\rho(A_0,A)(Y) := \sup_{Z \in B(Y,\frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\| = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\sigma(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 \, \delta(Y) \, dY$$

Theorem (Cavero-Hofmann-M.)

$$\Omega$$
 1-sided CAD \circ L_0 , L elliptic operators

$$\omega_{L_0} \in RH_q(\sigma) \implies \omega_L \in RH_q(\sigma)$$

 (D_p) solvable for $p \ge q'$ \Longrightarrow (D_p) solvable for $p \ge q'$

Small constant perturbation

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\| = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\sigma(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 \, \delta(Y) \, dY$$

Theorem (Cavero-Hofmann-M.)

• Ω 1-sided CAD • L_0 , L elliptic operators • $\|\rho(A_0,A)\| \ll 1$

$$\omega_{L_0} \in RH_q(\sigma) \Longrightarrow \omega_L \in RH_q(\sigma)$$

 (D_p) solvable for $p \ge q'$ \Longrightarrow (D_p) solvable for $p \ge q'$

Small constant perturbation

• Disagreement between L_0 and L

$$\rho(A_0,A)(Y) := \sup_{Z \in B(Y,\frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\| = \sup_{\Delta(x,r)\subset\partial\Omega} \frac{1}{\sigma(\Delta(x,r))} \iint_{B(x,r)\cap\Omega} \rho(A_0,A)(Y)^2 \,\delta(Y) \,dY$$

Theorem (Cavero-Hofmann-M.)

• Ω 1-sided CAD • L_0 , L elliptic operators • $\|\rho(A_0,A)\| \ll 1$

$$\omega_{L_0} \in RH_q(\sigma) \implies \omega_L \in RH_q(\sigma)$$

 (D_p) solvable for $p \ge q'$ \Longrightarrow (D_p) solvable for $p \ge q'$

Section 4

Other A_{∞} properties

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
 - Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher: Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve $\sigma!!!$

- 1-sided CAD $\leadsto \sigma = H^n|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_\infty(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

18 / 23

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
- Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve σ !!!

18 / 23

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
- Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve σ !!!

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
- Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve $\sigma!!!$

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
- Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve $\sigma!!!$

18 / 23

- 1-sided CAD $\leadsto \sigma = H^n \big|_{\partial\Omega}$ good measure $\leadsto \omega_L \in A_{\infty}(\sigma)$
 - What happens if $H^n|_{\partial\Omega}$ is a bad object?
- Ω a 1-sided CAD and $\sup_{\Delta \subset \partial \Omega} \frac{1}{\sigma(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 \, \delta \, dY < \infty$

$$\left(\omega_{L_0} \in A_{\infty}(\sigma) \implies \omega_L \in A_{\infty}(\sigma)\right) \implies \omega_L \in A_{\infty}(\omega_{L_0})$$

- Can we directly prove $\omega_L \in A_{\infty}(\omega_{L_0})$?
- [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\rightsquigarrow \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

This condition does not involve $\sigma!!!$

Main questions

• [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

- Question 1: Do we really need $\partial\Omega$ ADR:
 - Good PDE background $\rightsquigarrow \omega_{L_0}$ doubling, CFMS ...
- Question 2: Large constant case?

Main questions

• [Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\leadsto \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_\infty(\omega_{L_0})$$

- Question 1: Do we really need $\partial \Omega$ ADR?
 - Good PDE background $\rightsquigarrow \omega_{L_0}$ doubling, CFMS ...
- Question 2: Large constant case?

Main questions

[Fefferman-Kenig-Pipher; Milakis-Pipher-Toro] $\rightsquigarrow \Omega$ CAD

$$\sup_{\Delta \subset \partial \Omega} \frac{1}{\omega_{L_0}(\Delta)} \iint_{B \cap \Omega} \rho(A_0, A)^2 G_{L_0} dY \ll 1 \implies \omega_L \in RH_2(\omega_{L_0}) \subset A_{\infty}(\omega_{L_0})$$

- Question 1: Do we really need $\partial\Omega$ ADR?
 - Good PDE background $\rightsquigarrow \omega_{L_0}$ doubling, CFMS ...
- Question 2: Large constant case?

- $\Omega \subset \mathbb{R}^{n+1}$ 1-sided NTA (aka uniform domain)
 - Interior Corkscrew
- Interior Harnack Chain
- Ω satisfies CDC (capacity density condition, aka uniform 2-fat)

$$\frac{\operatorname{Cap}_2(\overline{B} \setminus \Omega, 2B)}{\operatorname{Cap}_2(\overline{B}, 2B)} \gtrsim 1$$

where
$$\operatorname{Cap}_2(K, D) = \inf \left\{ \iint_D |\nabla v|^2 dX : v \in C_c^{\infty}(\mathcal{D}), v \ge 1 \text{ in } \right\}$$

- CDC is a quantitative version of Wiener regularity
- Examples:
 - Ω NTA \Longrightarrow CDC $\leadsto \overline{B'} \subset \overline{B} \setminus \overline{\Omega} \subset \overline{B} \setminus \Omega$ (exterior
 - 1-sided Ω CAD \Longrightarrow CDC $\leadsto \overline{\Delta} \subset \overline{B} \cap \partial \Omega \subset \overline{B} \setminus \Omega$ (boundary

- $\Omega \subset \mathbb{R}^{n+1}$ 1-sided NTA (aka uniform domain)

 - Interior Corkscrew
 Interior Harnack Chain
- Ω satisfies CDC (capacity density condition, aka uniform 2-fat)

$$\frac{\operatorname{Cap}_2(\overline{B} \setminus \Omega, 2B)}{\operatorname{Cap}_2(\overline{B}, 2B)} \gtrsim 1$$

where
$$\operatorname{Cap}_2(K, D) = \inf \left\{ \iint_D |\nabla v|^2 dX : v \in C_c^{\infty}(\mathcal{D}), v \geq 1 \text{ in } K \right\}$$

- $\Omega \subset \mathbb{R}^{n+1}$ 1-sided NTA (aka uniform domain)

 - Interior Corkscrew
 Interior Harnack Chain
- Ω satisfies CDC (capacity density condition, aka uniform 2-fat)

$$\frac{\operatorname{Cap}_2(\overline{B} \setminus \Omega, 2B)}{\operatorname{Cap}_2(\overline{B}, 2B)} \gtrsim 1$$

where
$$\operatorname{Cap}_2(K, D) = \inf \left\{ \iint_D |\nabla v|^2 dX : v \in C_c^{\infty}(\mathcal{D}), v \geq 1 \text{ in } K \right\}$$

- CDC is a quantitative version of Wiener regularity

- $\Omega \subset \mathbb{R}^{n+1}$ 1-sided NTA (aka uniform domain)

 - Interior Corkscrew
 Interior Harnack Chain
- Ω satisfies CDC (capacity density condition, aka uniform 2-fat)

$$\frac{\operatorname{Cap}_2(\overline{B} \setminus \Omega, 2B)}{\operatorname{Cap}_2(\overline{B}, 2B)} \gtrsim 1$$

where
$$\operatorname{Cap}_2(K, D) = \inf \left\{ \iint_D |\nabla v|^2 dX : v \in C_c^{\infty}(\mathcal{D}), v \geq 1 \text{ in } K \right\}$$

- CDC is a quantitative version of Wiener regularity
- Examples:
 - Ω NTA \Longrightarrow CDC $\leadsto \overline{B'} \subset \overline{B} \setminus \overline{\Omega} \subset \overline{B} \setminus \Omega$ (exterior)

- $\Omega \subset \mathbb{R}^{n+1}$ 1-sided NTA (aka uniform domain)

 - Interior Corkscrew
 Interior Harnack Chain
- Ω satisfies CDC (capacity density condition, aka uniform 2-fat)

$$\frac{\operatorname{Cap}_2(\overline{B} \setminus \Omega, 2B)}{\operatorname{Cap}_2(\overline{B}, 2B)} \gtrsim 1$$

where
$$\operatorname{Cap}_2(K, D) = \inf \left\{ \iint_D |\nabla v|^2 dX : v \in C_c^{\infty}(\mathcal{D}), v \ge 1 \text{ in } K \right\}$$

- CDC is a quantitative version of Wiener regularity
- Examples:
 - Ω NTA \Longrightarrow CDC $\leadsto \overline{B'} \subset \overline{B} \setminus \overline{\Omega} \subset \overline{B} \setminus \Omega$ (exterior)
 - 1-sided Ω CAD \Longrightarrow CDC $\leadsto \overline{\Delta} \subset \overline{B} \cap \partial \Omega \subset \overline{B} \setminus \Omega$ (boundary)

Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0, A)\|_{\omega_{L_0}} = \sup_{\Delta(x, r) \subset \partial\Omega} \frac{1}{\omega_0(\Delta(x, r))} \iint_{B(x, r) \cap \Omega} \rho(A_0, A)(Y)^2 G_{L_0}(Y) dY$$

$$\|\rho(A_0,A)\|_{\omega_L} \ll_n 1 \qquad \Longrightarrow \qquad \omega_L \in RH_n(\omega_{L_0})$$

21 / 23

Disagreement between L_0 and L

$$\rho(A_0,A)(Y) := \sup_{Z \in B(Y,\frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} = \sup_{\Delta(x,r) \subset \partial\Omega} \frac{1}{\omega_0(\Delta(x,r))} \iint_{B(x,r) \cap \Omega} \rho(A_0,A)(Y)^2 \, G_{L_0}(Y) \, dY$$

$$\circ$$
 Ω 1-sided NTA \circ Ω CDC \circ L_0, L elliptic operators

$$\|\rho(A_0,A)\|_{\omega_{L_0}} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} \ll_p 1 \implies \omega_L \in RH_p(\omega_{L_0})$$

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} = \sup_{\Delta(x,r) \subset \partial\Omega} \frac{1}{\omega_0(\Delta(x,r))} \iint_{B(x,r) \cap \Omega} \rho(A_0,A)(Y)^2 \, G_{L_0}(Y) \, dY$$

Theorem (Akman, Hofmann, M., Toro)

- \bullet Ω 1-sided NTA
- Ω CDC
- L_0 , L elliptic operators

$$\|\rho(A_0, A)\|_{\omega_{L_0}} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\rho(A_0, A)\|_{\omega_{L_0}} \ll_n 1 \qquad \Longrightarrow \qquad \omega_L \in RH_n(\omega_{L_0})$$

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} = \sup_{\Delta(x,r) \subset \partial\Omega} \frac{1}{\omega_0(\Delta(x,r))} \iint_{B(x,r) \cap \Omega} \rho(A_0,A)(Y)^2 \, G_{L_0}(Y) \, dY$$

Theorem (Akman, Hofmann, M., Toro)

- Ω 1-sided NTA
- \bullet Ω CDC
- 0/ 1 1

• L_0 , L elliptic operators

$$\|\rho(A_0, A)\|_{\omega_{L_0}} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} \ll_p 1 \qquad \Longrightarrow \qquad \omega_L \in RH_p(\omega_{L_0})$$

• Disagreement between L_0 and L

$$\rho(A_0, A)(Y) := \sup_{Z \in B(Y, \frac{\delta(Y)}{2})} \frac{|A_0(Z) - A(Z)|}{\delta(Z)}$$

$$\|\rho(A_0,A)\|_{\omega_{L_0}} = \sup_{\Delta(x,r)\subset\partial\Omega} \frac{1}{\omega_0(\Delta(x,r))} \iint_{B(x,r)\cap\Omega} \rho(A_0,A)(Y)^2 \, G_{L_0}(Y) \, dY$$

Theorem (Akman, Hofmann, M., Toro)

 $\|\rho(A_0,A)\|_{\omega_{L_0}}<\infty$

- Ω 1-sided NTA
- Ω CDC
- $\implies \omega_L \in A_{\infty}(\omega_{L_0})$

• L_0 , L elliptic operators

$$\|\rho(A_0, A)\|_{\omega_{L_0}} \ll_p 1 \implies \omega_L \in RH_p(\omega_{L_0})$$

• Conical square function

$$\mathcal{A}(\rho(A_0, A))(x) := \left(\iint_{\Gamma(x)} \frac{\rho(A_0, A)(Y)^2}{\delta(Y)^{n-1}} \, dY \right)^{\frac{1}{2}}, \qquad x \in \partial \Omega$$

Theorem (Akman, Hofmann, M., Toro)

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

• Conical square function

$$\mathcal{A}(\rho(A_0, A))(x) := \left(\iint_{\Gamma(x)} \frac{\rho(A_0, A)(Y)^2}{\delta(Y)^{n-1}} \, dY \right)^{\frac{1}{2}}, \qquad x \in \partial \Omega$$

Theorem (Akman, Hofmann, M., Toro)

- \bullet Ω 1-sided NTA
- Ω CDC
- L_0 , L elliptic operators

$$||\nabla^{\mathbf{t}}(\rho(\Pi_0,\Pi))||_{L^{\infty}(\omega_{L_0})} < \infty \qquad \longrightarrow \qquad \omega_L \in \Pi_{\infty}(\omega_{L_0})$$

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} \ll_p 1 \qquad \Longrightarrow \qquad \omega_L \in RH_p(\omega_{L_0})$$

[Fefferman; Fefferman-Kenig-Pipher; Milakis-Pipher-Toro]

• Conical square function

$$\mathcal{A}(\rho(A_0, A))(x) := \left(\iint_{\Gamma(x)} \frac{\rho(A_0, A)(Y)^2}{\delta(Y)^{n-1}} \, dY \right)^{\frac{1}{2}}, \qquad x \in \partial \Omega$$

Theorem (Akman, Hofmann, M., Toro)

- Ω 1-sided NTA
- Ω CDC
- L_0 , L elliptic operators

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} \ll_p 1 \implies \omega_L \in RH_p(\omega_{L_0})$$

- [Fefferman; Fefferman-Kenig-Pipher; Milakis-Pipher-Toro]
- Large constant case is new even in \mathbb{R}^{n+1}_+ , unit ball, Lipschitz ...

• Conical square function

$$\mathcal{A}(\rho(A_0, A))(x) := \left(\iint_{\Gamma(x)} \frac{\rho(A_0, A)(Y)^2}{\delta(Y)^{n-1}} \, dY \right)^{\frac{1}{2}}, \qquad x \in \partial \Omega$$

Theorem (Akman, Hofmann, M., Toro)

- Ω 1-sided NTA
- \bullet Ω CDC
- L_0 , L elliptic operators

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} \ll_p 1 \implies \omega_L \in RH_p(\omega_{L_0})$$

- Small constant case in the unit ball, Lispschitz, CAD
 [Fefferman; Fefferman-Kenig-Pipher; Milakis-Pipher-Toro]
- Large constant case is new even in \mathbb{R}^{n+1}_+ , unit ball, Lipschitz ...

• Conical square function

$$\mathcal{A}(\rho(A_0, A))(x) := \left(\iint_{\Gamma(x)} \frac{\rho(A_0, A)(Y)^2}{\delta(Y)^{n-1}} \, dY \right)^{\frac{1}{2}}, \qquad x \in \partial \Omega$$

Theorem (Akman, Hofmann, M., Toro)

- Ω 1-sided NTA
- Ω CDC
- L_0 , L elliptic operators

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} < \infty \qquad \Longrightarrow \qquad \omega_L \in A_{\infty}(\omega_{L_0})$$

$$\|\mathcal{A}(\rho(A_0,A))\|_{L^{\infty}(\omega_{L_0})} \ll_p 1 \implies \omega_L \in RH_p(\omega_{L_0})$$

- Small constant case in the unit ball, Lispschitz, CAD
 [Fefferman; Fefferman-Kenig-Pipher; Milakis-Pipher-Toro]
- Large constant case is new even in \mathbb{R}^{n+1}_+ , unit ball, Lipschitz ...

Thank you for your attention!!!