Cyclic Groups

December 27, 2016

- 1. The generators of a cyclic group Z_n are 1 and the elements coprime to n. The number of generators then is Euler's totient $\phi(n)$. For Z_6 , the generators are 1 and 5, and $\phi(6) = 2$.
- 2. For each i in Z_n , $if(x+y) = ifx + ify \pmod{n}$ gives an endomorphism $x \mapsto ix$. For any m not in Z_n , $x \mapsto mx$ is the same morphism $x \mapsto jx$ where $j \equiv m \mod n$.
- 3. Since 5 is prime, 1, 2, 3, and 4 are coprime. For any prime n, Z_n has $\phi(n) = n 1$ generators.
- 4. 1, 3, 5, 9, 11, and 13 are coprime to 14.
- 5. 1 and -1 generate Z. Remember that a g is a generator for a group G if for all $x \in G$, $g^y = x$ for some $y \in Z$.