Задачи к практическим занятиям на тему 1:

Математическая модель и функциональные свойства технического нейрона

Задача 1

Нейрон имеет 2 входа $x = (x_1, x_2)$, смещение (-b) и бинарную активационную характеристику (см. puc. 1).

Рис. 1. Схема технического нейрона к задаче 1

Требуется:

- 1. Написать уравнение функционирования нейрона.
- 2. Изобразить на рисунке функцию $y(x_1,x_2)$, реализуемую нейроном.

Задача 2

Решите задачу 1 в предположении, что активационная характеристика нейрона является гауссианой:

$$f(h) = \exp(-\frac{h^2}{2\sigma^2}),$$

где σ - заданная константа.

Задача 3

Нейрон с единственным входом (M = 1) имеет активационную характеристику – гауссиану $f(h) = \exp(-\frac{h^2}{2}) \text{ (рис. 2)}.$

Рис. 2. Схема технического нейрона к задаче 3

Требуется:

- 1. Написать выражение функции y(x), реализуемой нейроном.
- 2. Как влияют синаптические коэффициенты w и смещение -b на форму и расположение y(x)?

Задача 4

На рисунке 3 представлен нейросетевой компаратор на 2 входа, который вычисляет max (x_1, x_2) (выходная переменная z) и указывает, по какому входу поступил больший сигнал (полагается $x_1 \neq x_2$).

Рис. 3. Схема нейросетевого компаратора на 2 входа

Параметр c активационной характеристики нейронов 1 и 2 определяет рабочий диапазон искусственного нейрона при его аппаратной реализации. Предполагается, что в области допустимых значений x_1 и x_2 активационная характеристика нейронов 1 и 2 не выходит за пределы ограничения c.

Требуется:

Доказать, что нейросетевой компаратор реализует требуемые функциональные свойства.

Задача 5

Постройте схему нейросетевого компаратора, вычисляющего min (x_1, x_2) (полагается $x_1 \neq x_2$) и указывающего, на каком из входов сигнал меньше.

За основу следует взять схему, приведенную в предыдущей задаче, меняя в ней активационные характеристики и/или синаптические коэффициенты нейронов.

Задача 6 (ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ДОМА)

В условиях задачи 4 требуется так модифицировать нейросетевой компаратор на два входа, чтобы на выходе z формировалось значение $|x_1-x_2|$, а на выходах y_1 , y_2 происходила индикация того входа, по которому пришло максимальное значение.

Задача 7 (ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ДОМА)

Решить предыдущую задачу при условии $z = (x_1 - x_2)^2$.

Задача 8

С помощью нейросетевых компараторов на 2 входа, рассмотренных в задаче 4, постройте нейросеть, реализующую функцию max $(x_1, x_2, ..., x_8)$ в предположении, что среди $x_1, x_2, ..., x_8$ нет совпадающих значений.

Какие логические операции нужно выполнить над выходами y_1 , y_2 всех используемых компараторов, чтобы построить индикаторы входа, по которому поступил максимальный сигнал.

Задача 9

Постройте рекуррентную сеть MAXNET, предназначенную для выявления максимального из $\underline{\text{треx}}$ поданных на неё сигналов x_1, x_2, x_3 .

- 1) Какому условию должны удовлетворять сигналы x_1, x_2, x_3 ?
- 2) Каким способом сигналы x_1, x_2, x_3 вводятся в сеть MAXNET?
- 3) Какой параметр определяет динамику сети MAXNET?
- 4) Какое ограничение накладывается на этот параметр?
- 5) Нарисуйте график функции активации нейронов сети.

Задача 10

Напишите уравнение функционирования *i*-го нейрона сети MAXNET, построенной в задаче 9.

Задача 11

Рассчитайте результаты функционирования сети MAXNET в течение 4-х временных тактов при следующих условиях: K = 3, $\varepsilon = 0.2$, $x_1 = 10$, $x_2 = 8$, $x_3 = 2$, c > 10.

Как нужно изменить параметр є, чтобы переходной процесс завершился быстрее?

Рассчитайте процесс функционирования сети при $\varepsilon = 0.3$.