Printed Pages: 4 **RCA - 103** (Following Paper ID and Roll No. to be filled in your **Answer Books**) Paper ID: 2289913

M.C.A.

Roll No.

Regular Theory Examination (Odd Sem-I) 2016-17 DISCRETE MATHEMATICS

Time: 3 Hours Max. Marks: 70

SECTION-A

- 1. Answer all parts. All parts carry equal marks. Write answer of each part in short. $(5 \times 2 = 10)$
 - Define a relation R which is Reflexive, Symmetric, a) Anti-symmetric and Transitive for a set $A = \{1, 2, 3, 4, 5\}$
 - Define the bounded lattice. **b**)
 - Write the conjunctive normal form for the c) expression (y+z') of three variable x, y, z.
 - Write converse and inverse for the following d) statement "If x+3 = 8 then x = 6"
 - e) . Given an example of homogenous and nonhomogeneous recurrence relation of order 4 and degree 3.

RCA-103

SECTION-B

Attempt any five questions from this section. $(5\times8=40)$

- 2. Show that for any two sets A and B. $A (A \cap B) = A B$. Also find the values $A - (A \cap B)$ and A - B for set $A = \{1, 2, 3, 4, 5\}$ $B = \{2, 3, 4, 6\}$.
- 3. What is composition of functions? Also prove that $f^1 \circ g^{-1} = (g \circ f)^{-1}$ where $f: Q \to Q$ such that f(x) = 4x and $f: Q \to Q$ such that g(x) = x+4 are two functions.
- 4. Let S = {1,2,3.....,12} be a poset under divisibility relation. Draw Flasse diagram and find first element & Last element. Also find upper bound, lowe bound, Least Upper Bound & Greatest Lower Bound for the subset {5,7,8}.
- 5. Simplify the Boolean expression $f(w, x, y, z) = \sum (0,1,3,5,9,11,12,14)$ by using K-map. Also draw the logic and circuit diagram of the simplified expression.
- 6. Define Boolean algebra. If $(B, +, \bullet, ', 0, 1)$ is a Boolean algebra and $a, b \in B$ then prove that (a + b)' = a' * b'

(2)

RCA - 103

- 7. Explain the quantifiers in details. Also write the following English language into symbolic statement.
 - "Every students of this university is either academician or sportsman".
- 8. Define Inference theory. Also explain the rules of inference with example.
- 9. Find complete solution of the recurrence relation $u_n 4u_{n-1} + 3u_{n-2} = 5^n + n$

SECTION-C

Attempt any two questions from this section. $(2\times10=20)$

- 10. a) If A be non empty set with n elements then prove that the number of function from $A \rightarrow A$ is less than the number of relation from $A \rightarrow A$ i.e. $n^n < 2^{n^2}$
 - b) If (A, \le) (B, \le) are posets, then $(A \times B, \le)$ is a poset with partial order defined by $(a,b) \le (a',b')$ if $a \le a'$ in A and $b \le b'$ in B.
- 11. a) Define disjunctive normal form (DNF). Also find the DNF for the following Boolean expression.

$$(a \times b') + (b \times c') + (c \times a')$$

RCA-103

- b) Define tautology. Prove that the statement $(p \land q) \rightarrow (p \lor q)$ is tautology.
- 12. a) Define pigeon hole principle. Find the minimum number of boys born in the same minute out of 3000 boys on a day.
 - b) In a MCA class of 40 students 5 are weak. Determine how many ways we can make a group of students
 - i) Five good students
 - ii) Five students in which exactly three are weak.