Static Single Assignment Form

CMPT 379: Compilers

Instructor: Anoop Sarkar

anoopsarkar.github.io/compilers-class

Program

```
i:=1
j:=1
k:=0
while k<100:
  if j < 20:
     j:=i
     k := k+1
  else:
     j:=k
     k:=k+1
return j
```


Control Flow Graph

Dominance Relations

•D(1) =
$$\{2,3,4,5,6,7\}$$

•D(2) = $\{3,4,5,6,7\}$

$$\bullet D(3) = \{5,6,7\}$$

•
$$D(4) = \{\}$$

•
$$D(5) = \{\}$$

•
$$D(6) = \{\}$$

•
$$D(7) = \{\}$$

Dominance Relations

 $\bullet D(1) = \{2,3,4,5,6,7\}$

Converting to SSA

Dominance Relations

Converting to SSA

•D(1) = $\{2,3,4,5,6,7\}$

$$\bullet D(2) = \{3,4,5,6,7\}$$

$$\bullet D(3) = \{5,6,7\}$$

•
$$D(4) = \{\}$$

•
$$D(5) = \{\}$$

$$\bullet D(6) = \{\}$$

•
$$D(7) = \{\}$$

Dominance Frontier

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

•DF(5) =
$$\{7\}$$

•DF(6) =
$$\{7\}$$

•DF
$$(7) = \{2\}$$

1:
$$i := 1$$
 $j := 1$ $k := 0$

Variable j in 5 $DF(5) = \{ 7 \}$

Variable j in 7 $DF(7) = \{ 2 \}$

Variable j in 6 $DF(6) = \{ 7 \}$

1:
$$i := 1$$
 $j := 1$ $k := 0$

Variable k in 5 $DF(5) = \{ 7 \}$

Variable k in 7 $DF(7) = \{ 2 \}$

Variable k in 6 $DF(6) = \{ 7 \}$

Program

k:=100 i:=0 while i<100: k:=k+1 i:=i+1 return k Control Flow Graph

Dominance Relations

•D(1) =
$$\{2,3,4\}$$

$$\bullet D(2) = \{3,4\}$$

•
$$D(3) = \{\}$$

•
$$D(4) = \{\}$$

Dominance Frontier

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

Variable i,k in 1 $DF(1) = \{\}$

Variable i in 2 $DF(2) = \{2\}$

Converting to SSA Form

Control Flow Graph

Variable i,k in 3 $DF(3) = \{2\}$

Variable k in 4
$$DF(4) = \{\}$$

1: k := 100

$$i := 0$$

2: $i = \phi(i,i)$ $k = \phi(k,k)$ if i < 100

3: k := k+1

i := i+1

4: return k

Dominance Relations

•D(1) =
$$\{2,3,4\}$$

$$\bullet D(2) = \{3,4\}$$

•
$$D(3) = \{\}$$

•
$$D(4) = \{\}$$

Dominance Frontier

•DF(1) =
$$\{\}$$

•DF(2) =
$$\{2\}$$

•DF(3) =
$$\{2\}$$

•DF(4) =
$$\{\}$$

