

B1
cont.

(IV-1)

(IV-2)

(IV-3)

(IV-4)

wherein, A, R², R³, B¹, and B² are synonymous with A, R², R³, B¹, and B² in said general formula (I);

R²⁰¹, R²⁰², and R²⁰³ represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -OR¹¹, -SR¹², -

B1
cont-

CO_2R^{13} , $-\text{OCOR}^{14}$, $-\text{NR}^{15}\text{R}^{16}$, $-\text{CONR}^{17}\text{R}^{18}$, $-\text{SO}_2\text{R}^{19}$, $-\text{SO}_2\text{NR}^{20}\text{R}^{21}$, $-\text{NR}^{22}\text{CONR}^{23}\text{R}^{24}$, $-\text{NR}^{25}\text{CO}_2\text{R}^{26}$ - COR^{27} , $-\text{NR}^{28}\text{CO}\text{R}^{29}$, or $-\text{NR}^{30}\text{SO}_2\text{R}^{31}$;
 R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} ,
 R^{29} , R^{30} , and R^{31} represent respectively independently a hydrogen atom, an aliphatic group
or an aromatic group; and

R^{201} and R^{202} optionally may be combined with each other to form a ring structure.

B2

12. (Twice Amended) A coloring composition formed by dispersing coloring particulates in a water-based medium, the coloring particulates containing a nonionic oil-soluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the following general formula (I):

wherein, X represents the residue of a color coupler;
A represents $-\text{NR}^4\text{R}^5$ or a hydroxyl group;
 R^4 and R^5 represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;
 B^1 represents $=\text{C}(\text{R}^6)\text{-}$ or $=\text{N}\text{-}$;
 B^2 represents $-\text{C}(\text{R}^7)\text{=}$ or $-\text{N}\text{=}$;

*B2
Cont.*

R², R³, R⁶, and R⁷ represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, -SR⁵¹, -SR⁵², -CO₂R⁵³, -OCOR⁵⁴, -NR⁵⁵R⁵⁶, -CONR⁵⁷R⁵⁸, -SO₂R⁵⁹, -SO₂NR⁶⁰R⁶¹, -NR⁶²CONR⁶³R⁶⁴, -NR⁶⁵CO₂R⁶⁶, -COR⁶⁷, -NR⁶⁸COR⁶⁹, or -NR⁷⁰SO₂R⁷¹; R⁵¹, R⁵², R⁵³, R⁵⁴, R⁵⁵, R⁵⁶, R⁵⁷, R⁵⁸, R⁵⁹, R⁶⁰, R⁶¹, R⁶², R⁶³, R⁶⁴, R⁶⁵, R⁶⁶, R⁶⁷, R⁶⁸, R⁶⁹, R⁷⁰, and R⁷¹ represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R² and R³, R³ and R⁴, R⁴ and R⁵, R⁵ and R⁶, and R⁶ and R⁷ optionally may be connected to each other to form rings.

B3

14. (Twice Amended) An ink jet recording method, in which recording is carried out using an ink-jet ink which contains a coloring composition, the coloring composition being formed by dispersing coloring particulates in a water-based medium, the coloring particulates containing a nonionic oil-soluble polymer, a hydrophobic high boiling point organic solvent having a boiling point of 150°C or more, and an oil-soluble dye, wherein the oil-soluble dye is represented by the following general formula (I):

wherein, X represents the residue of a color coupler;

A represents -NR⁴R⁵ or a hydroxyl group;

*B3
cont.*
 R^4 and R^5 represent respectively independently a hydrogen atom, an aliphatic group, an aromatic group, or a heterocyclic group;

B^1 represents $=C(R^6)-$ or $=N-$;

B^2 represents $-C(R^7)=$ or $-N=$;

R^2 , R^3 , R^6 , and R^7 represent respectively independently a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, $-SR^{51}$, $-SR^{52}$, $-CO_2R^{53}$, $-OCOR^{54}$, $-NR^{55}R^{56}$, $-CONR^{57}R^{58}$, $-SO_2R^{59}$, $-SO_2NR^{60}R^{61}$, $-NR^{62}CONR^{63}R^{64}$, $-NR^{65}CO_2R^{66}$, $-COR^{67}$, $-NR^{68}COR^{69}$, or $-NR^{70}SO_2R^{71}$;
 R^{51} , R^{52} , R^{53} , R^{54} , R^{55} , R^{56} , R^{57} , R^{58} , R^{59} , R^{60} , R^{61} , R^{62} , R^{63} , R^{64} , R^{65} , R^{66} , R^{67} , R^{68} , R^{69} , R^{70} , and R^{71} represent respectively independently a hydrogen atom, an aliphatic group, or an aromatic group; and

R^2 and R^3 , R^3 and R^4 , R^4 and R^5 , R^5 and R^6 , and R^6 and R^7 optionally may be connected to each other to form rings.