Problem 1

3 / 13

Problem 1 Faraday's Law

• Magnet is moving up into a square planar loop of copper wire.

(a) Using the normal $\mathbf{\hat{n}}_1$, roughly sketch the flux $\phi_1(t) = \int_S \vec{\mathbf{B}} \cdot (\mathbf{\hat{n}}_1 dS)$ as a function of t while the magnet is below the copper loop.

Is the flux in the loop produced by the magnet increasing or decreasing?

With normal $\mathbf{\hat{n}}_1$, $\phi_1(t) = \int_{\mathcal{S}} \vec{\mathbf{B}} \cdot (\mathbf{\hat{n}}_1 dS)$ is **positive** and **increasing**.

So
$$\xi_m \triangleq -\frac{d\phi_1(t)}{dt} < 0$$
.

Problem 1 Faraday's Law (continued)

(b) Using the normal \mathbf{n}_1 , what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?

With the normal \mathbf{n}_1 , the positive direction of travel around the surface is \mathbf{CCW} .

(c) What is the direction of the **induced** current (clockwise or counterclockwise)? Let $\psi_1(i)$ be the flux in the loop due to the induced current.

Is $\psi_1(i)$ positive or negative while the magnet is below the loop?

Is $\psi_1(i)$ increasing or decreasing while the magnet is below the loop, but moving up?

As $\xi_m \triangleq -d\phi_1(t)/dt < 0$ the induced current flows in the **CW** direction.

 $\psi_1(i) = \int_S \vec{\mathbf{B}}_i \cdot (\mathbf{\hat{n}}_1 dS) < 0$ is the flux in the loop due to the **induced** current.

 $\phi_1(t)>0$ and increasing while $\psi_1(i)<0$.

So $\psi_1(i) < 0$ is opposing the increasing flux $\phi_1(t) > 0$

• The arrow (\rightarrow) next to i is the actual direction of i and not a sign convention.

Problem 1 Faraday's Law (continued)

(d) Using the normal $\hat{\mathbf{n}}_2$, roughly sketch the flux $\phi_2(t) = \int_S \vec{\mathbf{B}} \cdot (\hat{\mathbf{n}}_2 dS)$ as a function of t while the magnet is below the copper loop. Is the flux in the loop produced by the magnet increasing or decreasing?

With the normal $\mathbf{\hat{n}}_2$, $\phi_2(t) = \int_S \vec{\mathbf{B}} \cdot (\mathbf{\hat{n}}_2 dS)$ is negative and decreasing.

That is,
$$\xi_m = -rac{d\phi_2(t)}{dt} > 0$$
.

Problem 1 Faraday's Law (continued)

(e) Using the normal \mathbf{n}_2 , what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?

With $\hat{\mathbf{n}}_2$, the positive direction of travel around the surface is **CW**.

(f) What is the direction of the induced current (clockwise or counterclockwise)?

Let $\psi_2(i)$ be the flux in the loop due to the induced current.

Is $\psi_2(i)$ positive or negative while the magnet is below the loop?

Is $\psi_2(i)$ increasing or decreasing while the magnet is below the loop, but moving up?

 $\xi_{\it m} = -d\phi_{\it 2}(t)/dt > 0 \Longrightarrow$ Induced current flows in the CW direction.

Same induced voltage/current as computed using $\vec{\mathbf{n}}_1$ in part (c)!

 $\phi_2(t) <$ 0 and decreasing (becoming more negative)

 $\psi_2(i) = \int_{\mathcal{S}} ec{\mathbf{B}}_i \cdot (\mathbf{\hat{n}}_2 d\mathcal{S}) > 0$ opposes the negative and decreasing flux $\phi_2(t)$

• The arrow (\rightarrow) next to i is the actual direction of i and not a sign convention.