

Ford-	Fulkerson	Algor	ithm	(u vertion un edges
	D Flow S.		! lie BF	S or DFS
	s-t path P i	0		
	t with Butt	enecle (P) thou	\$2 wds edge i	khns 6 ear
rehan f.	O(m)		= 0 (cn)	
		Each loop ite	rahm is	0(~)_

Ford-Fulkerson Algorithm Start with O Flow S. How many times do we orecute the loop? [(C) Heratines] O(nC) whole I am s-t path P in Gg: August f with Bithmeel (P) for Assume all capacities are integers. return f

Upped bound any flow by Co Ent Ce. => flow on FF it alway integervalued.

Each iteration alds flow
(must lake a forward else out of

Lemm Let
$$(A, B)$$
 be an $S-t$ cut.
Then $v(S) = S^{ovt}(A) - S^{in}(A)$
Proof. $f^{ovt}(A) - S^{in}(A) = 2J S^{ovt}(a) - 2J S^{in}(a)$
 $= 2J S^{ovt}(a) - S^{in}(a) + S^{ovt}(s) - S^{in}(s)$
 $= 0 + S^{ovt}(s)$

Chues us a general under of any flow!

Chart band on the value of any flow!

Capacity of the cut

Proof.
$$v(s) \leq s$$
 out $(A) > \sum_{cont} c_{cont} = c(A,B)$

Corollary If fiz a flow and (A,B) is on s-t cut with v(f) = C(A,B), then f is a maximal flow.

Lemma 2 Let (A, B) be an st E cut.
Then v(f) \(\sum_{\text{cut}} \) Ce = C(A, B)

Bipartite Matching Problem

Have a bipartite graph G=(V, E).

Bipartite: V=X, LIX2, every edge soes ban X, to Xz. A match is a subset MCE such that no vertex is adjacent to more than I edge in M X, XL

