Python Mini Project by Abhishek Ankushe

Import Required Libraries

```
In []: # Importing necessary libraries for EDA, Visualization, and Data Handling
    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    # ignore warnings cluttering the notebook
    import warnings
    warnings.filterwarnings('ignore')

# Mounting Google Drive for file access in Colab
    from google.colab import drive
    drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call d rive.mount("/content/drive", force remount=True).

Data Loading & Understanding

```
In [ ]: # Loading the dataset from the CSV file

df = pd.read_csv('/content/Students Social Media Addiction (1).csv')
```

Display the first 5

```
In [ ]: # Display the first 5 records to understand the structure
    df.head()
```

Out[]:	Student_	ID Ag	e Gend	ler A	.cademic_Level	Country	Avg_Daily_Usage_Hour	
	0	1 1	.9 Fema	ale	Undergraduate	Bangladesh	5.2	
	1	2 2	.2 Ma	ale	Graduate	India	2.1	
	2	3 2	0 Fema	ale	Undergraduate	USA	6.0	
	3	4 1	.8 Ma	ale	High School	UK	3.0	
	4	5 2	?1 Ma	ale	Graduate	Canada	4.!	
In []:	<pre>[]: # Showing a random sample of 5 records df.sample(5)</pre>							
Out[]:	Studer	nt_ID	Age Ge	nder	Academic_Leve	el Countr	y Avg_Daily_Usage_Ho	
Out[]:	Studer 104	105	Age Ge	nder Male	_	Countr Te Afghanista		
Out[]:					_	e Afghanista	n	
Out[]:	104	105	22	Male	Graduat	ce Afghanista ce Maldive	n es	
Out[]:	104 165	105 166	22	Male Male	Graduat Graduat	ce Afghanista ce Maldive	n es	
Out[]:	104 165 121	105 166 122	22 21 21 Fe	Male Male emale	Graduat Graduat Graduat	ce Afghanista ce Maldive ce Maldive ce Canad	n es es	
Out[]:	104 165 121 613	105 166 122 614	22 21 21 Fe	Male Male emale Male	Graduat Graduat Graduat Undergraduat	ce Afghanista ce Maldive ce Maldive ce Canad	n es es	
Out[]:	104 165 121 613 247	105 166 122 614 248	22 21 21 Fe 21 22	Male Male emale Male Male	Graduat Graduat Graduat Undergraduat	ce Afghanista ce Maldive ce Maldive ce Canad ce German	n es es	

Number of rows: 705 Number of columns: 13

df.describe()

In []: # Descriptive view of the dataframe

Out[]:		Student_ID	Age	Avg_Daily_Usage_Hours	Sleep_Hours_Per_Night
	count	705.000000	705.000000	705.000000	705.000000
	mean	353.000000	20.659574	4.918723	6.868936
	std	203.660256	1.399217	1.257395	1.126848
	min	1.000000	18.000000	1.500000	3.800000
	25%	177.000000	19.000000	4.100000	6.000000
	50%	353.000000	21.000000	4.800000	6.900000
	75 %	529.000000	22.000000	5.800000	7.700000
	max	705.000000	24.000000	8.500000	9.600000

Data Cleaning

Handle missing values, if any

```
In [ ]: # Checking for any missing values in the dataset
        print("Missing Values:\n", df.isnull().sum())
      Missing Values:
                                        0
        Student_ID
      Age
                                       0
      Gender
                                       0
      Academic_Level
      Country
                                       0
      Avg_Daily_Usage_Hours
      Most_Used_Platform
      Affects_Academic_Performance
      Sleep_Hours_Per_Night
                                       0
      Mental Health Score
                                       0
      Relationship_Status
                                       0
       Conflicts_Over_Social_Media
                                       0
      Addicted_Score
       dtype: int64
```

- From the above code we found that there are no null values
- But if there were any null values then to handle missing values following will be applied

1. Dropping the null value rows

```
In [ ]: df.dropna(inplace = True)
```

2. Filling missing values in numerical columns with the mean of the column

```
In []: # Checking missing values before applying fillna
    print("Missing values BEFORE applying fillna:")
    print(df.isnull().sum())
    print('-' * 50)

numerical_cols = df.select_dtypes(include = np.number).columns

for col in numerical_cols:
    df[col].fillna(df[col].mean(), inplace = True)

# Checking missing values after applying fillna
    print("\nMissing values AFTER applying fillna:")
    print(df.isnull().sum())
```

```
Missing values BEFORE applying fillna:
Student ID
Age
                               0
Gender
                               0
Academic Level
Country
Avg Daily Usage Hours
Most Used Platform
Affects Academic Performance
                               0
Sleep Hours Per Night
Mental Health Score
Relationship Status
Conflicts_Over_Social_Media
                             0
Addicted Score
dtype: int64
Missing values AFTER applying fillna:
Student ID
Age
                               0
Gender
                               0
Academic Level
Country
Avg Daily Usage Hours
Most Used Platform
Affects Academic Performance
Sleep Hours Per Night
Mental Health Score
Relationship Status
Conflicts Over Social Media
                              0
Addicted Score
```

dtype: int64

```
In [ ]: print("\nData Types:\n", df.dtypes) # Checking data types of each column
# No missing values or type correction needed (based on data); if required the
# we use convert. For example: df['Age'] = df['Age'].astype(int)
```

```
Data Types:
 Student ID
                                 int64
                                int64
Age
Gender
                               obiect
Academic Level
                               object
Country
                               object
Avg Daily Usage Hours
                             float64
Most Used Platform
                              object
Affects Academic_Performance object
Sleep Hours Per Night
                              float64
Mental Health Score
                               int64
Relationship Status
                              object
Conflicts Over Social Media
                               int64
Addicted Score
                                int64
Risk Level
                               object
Detox Suggestion
                               object
dtype: object
```

- As seen on the above result datatypes are good and does not require any cleaning
- But if there were any dataypes mismatch then we can use the following

We can use two methods for datatype correction

Using astype()

```
In [ ]: # if Age column (integer) had incorrect datatype, the following code will fix

df['Age'] = df['Age'].astype(int)
```

2. using pd.to_numeric()

```
In []: # Check the datatype before conversion
    print("\nDatatype of 'Avg_Daily_Usage_Hours' BEFORE conversion:")
    print(df['Avg_Daily_Usage_Hours'].dtype)
    print('-' * 80)

# Convert 'Avg_Daily_Usage_Hours' to numeric
    df['Avg_Daily_Usage_Hours'] = pd.to_numeric(df['Avg_Daily_Usage_Hours'], error

# Check for any values that couldn't be converted
    print("\nNumber of non-numeric values after converting 'Avg_Daily_Usage_Hours'
    print(df['Avg_Daily_Usage_Hours'].isnull().sum())
    print('-' * 80)

# Verify the datatype
    print("\nDatatype of 'Avg_Daily_Usage_Hours' AFTER conversion:")
```

```
print(df['Avg Daily Usage Hours'].dtype)
      Datatype of 'Avg Daily Usage Hours' BEFORE conversion:
      float64
      Number of non-numeric values after converting 'Avg Daily Usage Hours':
      Datatype of 'Avg Daily Usage Hours' AFTER conversion:
      float64
        Understanding relationships between Age, Gender &
        Daily Usage
In [ ]: # Average daily usage hours by age
        usage by age = df.groupby('Age')['Avg Daily Usage Hours'].mean()
        print("Average Daily Usage by Age:")
        print(f"{usage_by_age}\n")
        print('-' * 50)
        # Average daily usage hours by gender
        print("\nAverage Daily Usage by Gender:")
        usage_by_gender = df.groupby('Gender')['Avg_Daily_Usage_Hours'].mean()
        print(usage_by_gender)
      Average Daily Usage by Age:
      Age
      18
            5.385714
      19
           5.120245
      20
           4.930303
      21
           4.950641
      22
           4.676190
      23
           4.508824
      24
            5.046154
      Name: Avg_Daily_Usage_Hours, dtype: float64
      Average Daily Usage by Gender:
      Gender
      Female 5.011048
      Male 4.826136
      Name: Avg_Daily_Usage_Hours, dtype: float64
```

Age, Gender & Daily Usage data observations:

Students aged 18 tend to have the highest average daily usage, while

- students aged 23 tend to have the lowest.
- The average daily social media usage is slightly higher for female students compared to male students.

bold text Understanding relationships between Sleep patterns, Academic performance & Social interaction

```
In []: # Average sleep hours per night by affect on affect on academic performance
    print("Relationship between Sleep Hours and Academic Performance:")
    academic_vs_sleepHours = df.groupby('Affects_Academic_Performance')['Sleep_Hou
    print(f"{academic_vs_sleepHours}\n")
    print('-' * 50)

# Average mental health score by sleep hours per night
    print("\nRelationship between Sleep Hours and Mental Health Score:")
    sleepHours_vs_mentalHealth = df.groupby('Sleep_Hours_Per_Night')['Mental_Healt
    print(f"{sleepHours_vs_mentalHealth.head(10)}\n")
    print('-' * 50)

# Average social media conflicts by relationship status
    print("\nRelationship between Conflicts over Social Media and Relationship Statel_status_vs_conflict = df.groupby('Relationship_Status')['Conflicts_Over_Social print(rel_status_vs_conflict)
```

```
Relationship between Sleep Hours and Academic Performance:
Affects Academic Performance
      7.813095
Yes
      6.343709
Name: Sleep Hours Per Night, dtype: float64
Relationship between Sleep Hours and Mental Health Score:
Sleep Hours Per Night
3.8
      5.000000
3.9
      5.000000
4.0 5.000000
4.1 5.500000
4.2 5.500000
4.3 5.500000
4.4 5.500000
4.5 5.000000
4.6 5.666667
4.7 5.666667
Name: Mental Health Score, dtype: float64
Relationship between Conflicts over Social Media and Relationship Status:
Relationship Status
Complicated
                 3.031250
In Relationship 2.761246
                  2.901042
Name: Conflicts Over Social Media, dtype: float64
```

Sleep Patterns, Academic Results & Social Interaction - Key Insights:

- Students whose academic performance suffers due to social media generally sleep fewer hours compared to those whose studies remain unaffected.
- A noticeable pattern shows that students with reduced nightly sleep often have lower mental health ratings.
- Those in "Complicated" relationships report somewhat higher social media conflict levels than peers who are "Single" or "In a Relationship".

Addiction variation across demographics

Exploratory Data Analysis & Visualization

```
In [ ]: # Average addiction score by Gender
print("Average Addiction Score by Gender:")
```

```
print(f"{df.groupby('Gender')['Addicted Score'].mean()}\n")
 print('-' * 50)
 # Average addiction score by Academic Level
 print("\nAverage Addiction Score by Academic Level:")
 print(f"{df.groupby('Academic Level')['Addicted Score'].mean()}\n")
 print('-' * 50)
 # Average addiction score by Age
 print("\nAverage Addiction Score by Age:")
 print(df.groupby('Age')['Addicted_Score'].mean())
Average Addiction Score by Gender:
Gender
Female
         6.515581
         6.357955
Male
Name: Addicted Score, dtype: float64
Average Addiction Score by Academic Level:
Academic Level
Graduate
             6.243077
High School
              8.037037
Undergraduate 6.492918
Name: Addicted Score, dtype: float64
Average Addiction Score by Age:
Age
18
     7.785714
19
    6.650307
    6.478788
20
21
    6.589744
22 6.095238
23
     5.676471
     6.115385
Name: Addicted Score, dtype: float64
```

Addiction across demographic (gender, academic level & age) observations :

- Addiction score tends to be higher in Females but only by a slight margin.
- High School students tend to have higher addiction score.
- Students aged 18 years have the highest addiction score.

Average addiction level across different Genders

```
In []: print("Average addiction level by Gender:")
    print('-' * 40)
    print(df.groupby('Gender')['Addicted_Score'].mean())

Average addiction level by Gender:
    Gender
    Female    6.515581
    Male     6.357955
    Name: Addicted_Score, dtype: float64
```

Average addiction level across different Age groups

```
In [ ]: print("\nAverage addiction level by Age group:")
        print('-' * 40)
        print(df.groupby('Age')['Addicted Score'].mean())
      Average addiction level by Age group:
      Age
      18
            7.785714
      19
           6.650307
      20 6.478788
      21
           6.589744
      22 6.095238
      23
           5.676471
      24 6.115385
      Name: Addicted Score, dtype: float64
```

Average addiction level across different Education levels

Classifying risk level (Low/Medium/High) based on usage hours

```
It uses if elif else conditions to return the appropriate risk level.
     if usage hours < 3:</pre>
          return "Low Risk"
     elif 3 <= usage hours < 6:</pre>
          return "Medium Risk"
     else:
          return "High Risk"
 # creating a new column for risk level with the risk level returned from above
 df['Risk Level'] = df['Avg Daily Usage Hours'].apply(classify risk)
 print("Risk Level Classification:")
 print('-' * 30)
 print(df['Risk_Level'].value_counts())
Risk Level Classification:
Risk Level
Medium Risk
               512
High Risk
              150
Low Risk
                43
Name: count, dtype: int64
```

Preparing Digital detox strategies

```
In [ ]: def suggest detox(risk level):
            This function returns digital detox strategies based on the risk level pas
            It is using if elif else conditions to return the appropriate strategy.
            if risk_level == "High Risk":
                return "Consider significantly reducing usage, setting strict limits,
            elif risk_level == "Medium Risk":
                return "Try setting daily time limits, scheduling screen-free activiti
            else:
                return "Continue healthy usage habits, be aware of potential triggers,
        # creating a new column for Detox suggestions with the values returned from th
        df['Detox Suggestion'] = df['Risk Level'].apply(suggest detox)
        print("\nDigital Detox Suggestions:")
        print('-' * 30)
        # taking a random sample of 5 records to show a the Detox assessment
        for index, row in df.sample(5).iterrows():
            print(f"For Student ID {row['Student_ID']} ({row['Risk_Level']}): {row['De
```

Digital Detox Suggestions:

For Student ID 626 (Medium Risk): Try setting daily time limits, scheduling screen-free activities, and being mindful of usage.

For Student ID 472 (Low Risk): Continue healthy usage habits, be aware of potential triggers, and maintain a balanced lifestyle.

For Student ID 677 (Medium Risk): Try setting daily time limits, scheduling scr een-free activities, and being mindful of usage.

For Student ID 86 (Medium Risk): Try setting daily time limits, scheduling scre en-free activities, and being mindful of usage.

For Student ID 182 (Medium Risk): Try setting daily time limits, scheduling scr een-free activities, and being mindful of usage.

Visualizing the data

Bar chart: Average Addiction Score by Academic Level

```
In [ ]: plt.figure(figsize = (10, 6))
        # creating a bar plot
        ax = sns.barplot(
            x = 'Academic_Level',
            y = 'Addicted Score',
            data = df
            palette = 'mako',
            ci = None
        plt.title('Average Addiction Score by Academic Level', color = '#1B2631', weig
        plt.ylabel('Average Addiction Score', color = '#117A65', weight = 'bold')
        plt.xlabel('Academic Level', color = '#117A65', weight = 'bold')
        # Add labels above the bars
        for container in ax.containers:
            ax.bar_label(container, fmt = \frac{1}{2}.2f', padding = 3, color = \frac{1}{2}00', weig
        plt.tight layout()
        plt.show()
```


Bar plot Insight:

- High School students show the highest average addiction score compared to Undergraduate and Graduate students.
- Graduate and Undergraduate students have almost similar addiction scores.

Pie chart: Distribution of Risk Levels

```
In []: risk_counts = df['Risk_Level'].value_counts() # count of risk level
plt.figure(figsize = (8, 8))

# creating a pie chart
plt.pie(
    risk_counts,
    labels = risk_counts.index,
    autopct = '%1.1f%%',
    startangle = 90,
    colors = sns.color_palette(['#2E86C1', '#28B463', '#E67E22', '#C0392B']),
    textprops={'color': '#2C3E50', 'weight': 'bold'}
plt.title('Distribution of Risk Levels', color = '#1B2631', weight = 'bold')
plt.legend(title="Risk Levels", loc="upper left", bbox_to_anchor=(0, 1))
plt.show()
```

Distribution of Risk Levels

Pie chart Insight:

- The "Medium Risk" category represents the largest portion of the student population studied.
- While "High Risk" is a smaller percentage, it still indicates a significant number of students who may be experiencing more severe issues related to social media usage.
- The "Low Risk" category is the smallest, suggesting that only a minority of students maintain low social media usage habits.

Heatmap: Correlation matrix of numerical columns

Heatmap Observations/Insight:

• Students who spend more time on social media each day usually show

- higher addiction levels. This is reflected by the strong positive correlation (0.83) between Avg Daily Usage Hours and Addicted Score.
- Greater addiction scores are linked to more frequent social media disputes, as indicated by the strong positive correlation (0.93) between Addicted_Score and Conflicts_Over_Social_Media.
- Increased daily usage is often connected with fewer hours of sleep per night. This is shown by the strong negative correlation (-0.79) between Avg Daily Usage Hours and Sleep Hours Per Night.
- Students who spend more time online also tend to have lower mental health ratings, as evidenced by the strong negative correlation (-0.80) between Avg_Daily_Usage_Hours and Mental_Health_Score.
- Lower mental health scores appear to go hand-in-hand with more conflicts on social media, supported by the strong negative correlation (-0.89) between Mental_Health_Score and Conflicts_Over_Social_Media.

In short, higher social media engagement appears to be tied to a pattern of negative effects — including poor sleep, declining mental well-being, higher addiction levels, and more frequent online conflicts.

Line plot: Average Daily Usage Hours by Age

```
In [ ]: data = df.groupby('Age')['Avg Daily Usage Hours'].mean().reset index()
        plt.figure(figsize = (10, 6))
        # creating a lineplot
        ax = sns.lineplot(
            x = 'Age', y = 'Avg_Daily_Usage_Hours',
            data = data, marker = 'o',
            markerfacecolor = '#FF7F0E',
            color = '#2E86C1'
        plt.title('Average Daily Usage Hours by Age', color = '#1B2631', weight = 'bol
        plt.ylabel('Average Daily Usage Hours', color = '#117A65')
        plt.xlabel('Age', color = '#117A65')
        plt.grid(True)
        # Add labels to the data points
        for x, y in df.groupby('Age')['Avg_Daily_Usage_Hours'].mean().reset_index().va
            plt.text(x, y, f'\{y:.2f\}', ha = 'left', va = 'bottom', color = '#C0392B',
        plt.tight_layout()
        plt.show()
```


Line plot Insight:

• Average daily social media usage hours tend to decrease as age people get older, with a significant increase at age 24.

Storytelling Deliverable - 10-Line Summary

- 1. Our analysis shows that **high school students** have the **highest social media addiction scores**, making them the **most at risk**.
- 2. While older students spend slightly less time online, high usage at any age still leads to greater addiction levels.
- 3. Addiction scores for males (6.3) and females (6.5) are similar, showing that gender is not a major factor.
- 4. Heavy social media use is linked to **reduced sleep hours** and **lower mental health scores**, harming overall **well-being**.
- 5. Excessive usage also causes **more frequent arguments** and **relationship conflicts**.
- 6. The **majority of students** fall into the **medium-risk usage group**, making this a **widespread concern**.
- 7. Younger students face stronger negative effects, including poor

- sleep patterns and reduced academic performance.
- 8. Without action, these patterns may worsen mental health and damage interpersonal relationships over time.
- 9. We recommend daily app usage limits, more screen-free activities, and awareness programs in schools.
- 10. For high-risk individuals, structured digital detox plans and professional counseling are essential for recovery.