Midterm Review STAT 506 Spring 2014

- 1. In linear mixed models with two levels of nested random effects, write out an expression for $Var(\boldsymbol{y}_i)$ or $Var(\boldsymbol{y}_{ij})$ in terms of Ψ_1 and Ψ_2 .
- 2. Interpret output from R functions gls, lme, and lmer and from SAS PROC MIXED.
- 3. Material from Stat 505 is implicit in all we're doing in Stat 506. In particular, you should review the basics of Chapters 9 and 10 on causal inference.
 - Fundamental Problem of causal inference:

We can't observe the same unit under more than one treatment condition. The unobserved counterfactual is not available. Work arounds:

- Use close substitutes
- Randomize treatment assignment
- Adjust for lurking variables.
- Randomized Experiments provide unbiased treatment effects contrasts.
- Observational Studies must assume **ignorability** to make causal inference.
- Do not control for post-treatment variables.
- 4. ARM Chapter 11 Multilevel Structures
 - Varying intercept and varying slope
 - Clustered data
 - Repeated Measures
 - Indicators in fixed and random models
 - Cost/benefit of multilevel modeling
- 5. ARM Chapter 12 Basic Multilevel linear models
 - Notation
 - Partial pooling (no predictors)
 - Partial pooling (with predictors)
 - Using lmer in R
 - Ways to write the multilevel model
 - Group level predictors
 - Model building and stat significance
 - Predictions
 - Minimal sample sizes
- 6. ARM Chapter 13
 - Growth curve model, $y_i \sim N(\alpha_{j[i]} + \beta_{j[i]}x_i, \sigma_y^2)$ population average intercept and slope, $(\mu_{\alpha}, \mu_{\beta})$. Individual "adjustments" to each have a variance-covariance matrix. Figures like 13.2 illustrate shrinkage toward the mean.
 - Centering reduces correlations between intercept and slope. (Fig 13.7)

- Crossed effects §13.5, especially HW8
- Model Selection §13.6

7. Model Selection, Multicollinearity (from notes)

- For each of the model comparison criteria, know what the goal is (smaller? larger? close to p?)
- What variables are plotted in an added variable plot?
- When is model selection not a big problem?
- How do we tell if there is a collinearity problem.
- What do you do about a collinearity problem which disappears in the centered data?

8. Chapter 14

- Multilevel models work nicely with stratified data.
 - Split voter data into lots of strata using fixed effects for race, gender, interaction.
 Add random effects for age, education, age by education interaction, state and region.
 - Use logistic regression to estimate voter probability of voting Rep in each stratum.
 - Multiply estimates by census data on actual numbers in each stratum to scale up to state results.
 - Resulting model gives predictions which vary about as much as the actual observations. No-pooling gives too much spread, complete pooling too little spread.
 Partial pooling is like Goldilocks just right.
- Item analysis shows how well questions discriminate, and how Justices vote on more (or less) contentious issues.