0.8. Представление информации в ЭВМ

0.8.1 Системы счисления (СС)

Основной СС является – двоичная, а вспомогательными – 8 и 16-ричные СС.

Под **системой счисления** (СС) понимается способ представления любого числа посредством некоторого алфавита символов, называемых цифрами.

В зависимости от способа изображения чисел, СС делятся на:

- **позиционные** (2013, 10010, 5F), количественное значение каждой цифры зависит от ее места (позиции), которую она занимает в изображении числа.
- **непозиционные** (XX, XIV, CXXVI), для каждого числа используется специфическое сочетание символов.

Позиционные системы счисления характеризуются:

• основанием m системы счисления — количеством (n) различных символов, используемых для изображения чисел.

Значения этих символов лежат в пределах от 0 до m-1;

• **разрядом** — позицией, занимаемой отдельным символом в изображении числа.

Разряды нумеруются справа налево, начиная с 0;

• **весом** разряда — количественным значением одной единицы разряда. Численно вес разряда определяется через основание \mathbf{m} системы счисления и номер \mathbf{n} разряда: $\mathbf{m}^{\mathbf{n}}$.

```
m — основание системы счисления; m = 10 в десятичной СС ( 0, 1, 2 ... 9 );
```

m = 2 в двоичной СС (0, 1);

$$m{=}10\left\{\begin{array}{cccccc} 3 & 2 & 1 & 0 & \text{номер разряда} \\ \textbf{2} & \textbf{0} & \textbf{1} & \textbf{5} & \text{десятичное число} \\ 10^3 & 10^2 & 10^1 & 10^0 & \text{вес разряда} \end{array}\right.$$

Максимальное целое число, которое может быть представлено в $\bf n$ разрядах

$$N_{\text{max}} = m^n - 1$$
.

Минимальное значащее (не равное 0) число, которое можно записать в \mathbf{s} разрядах дробной части —

$$N_{\min} = m^{-s}$$
.

Тогда, имея в целой части числа \mathbf{n} , а в дробной s разрядов, можно представить $\mathbf{m}^{\mathbf{n}+\mathbf{s}}$ чисел

Запись числа в СС с основанием т:

$$X_n m^n + X_{n-1} m^{n-1} + ... + X_1 m^1 + X_0 m^0 + X_{-1} m^{-1} + X_{-2} m^{-2} + X_{-s} m^{-s}$$

Например,

$$256,47_{10} = 2 \cdot 10^{2} + 5 \cdot 10^{1} + 6 \cdot 10^{0} + 4 \cdot 10^{-1} + 7 \cdot 10^{-2}$$

$$101,11_{2} = 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$$

Запись десятичного числа N (с основанием 10) в 2-й СС:

$$N_{10}\!=X_{n}\!\cdot\!2^{n}+X_{n\text{-}1}\!\cdot\!2^{n\text{-}1}\!+X_{n\text{-}2}\!\cdot\!2^{n\text{-}2}+\ldots+X_{0}\!\cdot\!2^{0}$$

Например,

$$10010 \rightarrow 1 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} = 16 + 2 = 18_{10}$$

$$10110101 \rightarrow 1 \cdot 2^{7} + 0 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = 128 + 0 + 32 + 16 + 0 + 4 + 0 + 1 = 181_{10}$$

0.8.2 Формы представления чисел в ЭВМ

В ЭВМ применяются две формы представления двоичных чисел – естественная форма или форма с фиксированной запятой (точкой) и нормальная форма или форма с плавающей запятой (точкой).

 $10^{-19} < N < 10^{19} (\pi. 3.)$ 0.015<N<1024 (ф. з.)

В естественной форме положение запятой, отделяющей целую часть числа от дробной части в разрядной сетке, постоянно для всех чисел.

Диапазон значащих чисел небольшой и при n-разрядной целой части и sразрядной дробной части числа без учета знака составляет от $m^{\text{-S}} < N < m^{\text{n}}$ - $m^{\text{-S}}$.

Если в результате операции получится число, выходящее за допустимый диапазон, происходит переполнение разрядной сетки, и дальнейшие вычисления теряют смысл.

В нормальной форме каждое число представляется как

$$N = \pm M \cdot m^{\pm n}$$
,

где M – мантисса числа (|M|<1), n – порядок (целое число), т – основание системы счисления.

Последовательность нескольких байтов называют **полем данных**. В ПК могут обрабатываться поля *постоянной* и *переменной* длины.

Поля постоянной длины могут быть следующих размеров (форматов): **слово (4** байта), **полуслово (2** байта), **полуторное слово (6** байт), **двойное слово (8** байт), **расширенное слово (10** байт).

В полях постоянной длины числа с фиксированной запятой чаще всего имеют формат слова и полуслова и заполняют формат справа налево. Оставшиеся свободными старшие разряды формата заполняются нулями.

В крайнем левом разряде формата отображается знак числа, при этом знак + кодируется нулем (0), а знак + единицей (1).

Например, запись числа $-195_{10} = -11000011_2$ с фиксированной запятой:

	Знак	Абсолютная величина числа ←													
№ разряда	31	30	29				• •	•						1	0
число	1	0	0	0.	••	0	0	1	1	0	0	0	0	1	1

Числа с **плавающей запятой** чаще всего имеют формат **двойного и расширенного слова**. Порядок заполняет соответствующую часть формата справа налево, а мантисса — слева направо. Оставшиеся свободными младшие разряды мантиссы формата заполняются нулями.

Например, запись числа $-195_{10} = -0.11000011 \cdot 2^{1000}$ с плавающей запятой:

		Γ	Іорядок ←	Мантисса →					
	Знак	Аб	солютная велич	ина	Знак	Абсолютная величина			
№ разряда	63	62	•••	56	55	54	•••	0	
ризриди	0	0	0 0 1 0 0	0	1	1	10000110	0	

Поля переменной длины имеют размер от 0 до 256 байт и кратный 8.

При выполнении операций ввода-вывода и арифметических действий данные часто представляются в двоично-десятичной системе счисления — когда каждая цифра десятичного числа отображается 4-разрядным двоичным числом.

Двоично-десятичные числа представляются полями переменной длины в так называемых *упакованном* и *распакованном* форматах.

Пример, запись числа — 195_{10} в *упакованном* формате

0001	1001	0101	1101
1	9	5	Знак

Пример, запись числа — 195_{10} в *распакованном* формате

0011	0001	0011	1001	1101	0101
Зона	на Зона		ŗ	Внак	_

8.3 Арифметические и логические основы работы ЭВМ 8.3.1 Арифметические основы

Сложение	Вычитание	Умножение
0 + 0 = 0	0 - 0 = 0	$0 \cdot 0 = 0$
0 + 1 = 1	1 - 0 = 1	$1 \cdot 0 = 0$
1 + 0 = 1	1 - 1 = 0	$0 \cdot 1 = 0$
1 + 1 = 10	10 - 1 = 1	$1 \cdot 1 = 1$

Примеры:

С целью упрощения реализации арифметических операций применяют специальные колы:

- прямой
- обратный
- дополнительный

Прямой: знак (+) кодируется 0, знак (-) кодируется 1, старший разряд называется знаковым.

Например:
$$+5_{10} = 0$$
 1 0 1_2 $-5_{10} = 1$ 1 0 1_2

Обратный: знаковый разряд кодируется как в прямом коде, для положительных чисел совпадает с прямым кодом, для отрицательных чисел значащие разряды инвертируются по отношению к прямому коду.

Например:
$$5_{10} = \mathbf{0} \quad 1 \quad 0 \quad 1_2 \quad -5_{10} = \mathbf{1} \quad 0 \quad 1 \quad 0_2$$

Например: $5_{10} = \mathbf{0} \ 1 \ 0 \ 1_2 \ -5_{10} = \mathbf{1} \ 0 \ 1 \ 0_2$ Дополнительный: знаковый разряд кодируется как в прямом коде, для положительных чисел совпадает с прямым кодом, для отрицательных чисел значащие разряды инвертируются по отношению к прямому и к младшему разряду добавляется 1.

Например:
$$+5_{10} = \mathbf{0} \quad 1 \quad 0 \quad 1_2$$
 $-5_{10} = \mathbf{1} \quad 0 \quad 1 \quad 0 + 1 = \mathbf{1} \quad 0 \quad 1 \quad 1_2$ $+3_{10} = \mathbf{0} \quad 0 \quad 1 \quad 1_2$ $-3_{10} = \mathbf{1} \quad 1 \quad 0 \quad 0 + 1 = \mathbf{1} \quad 1 \quad 0 \quad 1_2$ $+5 - 3 = +5 + (-3) = 2$ $\mathbf{0} \quad 1 \quad 0 \quad 1 \quad (+5)$ $\mathbf{0} \quad 0 \quad 1 \quad 1 \quad (+3)$ $+3 - 5 = +3 + (-5) = -2$ $+\frac{\mathbf{1} \quad 1 \quad 0 \quad 1}{1 \quad 0 \quad 0 \quad 1 \quad 0} \quad (-5)$ отбрасывается $\mathbf{0} \quad 0 \quad 1 \quad 0_2 \quad (+2)$ $\mathbf{1} \quad 1 \quad 1 \quad 0_2 \quad (-2)$ доп. код

8.3.2 Логические основы

Для анализа и синтеза (создания) цифровых систем используется математический аппарат алгебры логики или булева алгебра.

Алгебра логики — это раздел математической логики, все элементы (функции и аргументы) которой могут принимать только два значения: 0 и 1, да и нет.

а, b, с . . . – высказывания или логические переменные.

Простейшие операции:

І. Операция отрицания (операция НЕ, инверсия)

$$\mathbf{v} = \bar{\mathbf{a}}$$

II. Логическое умножение (операция И, конъюнкция)

$$y = a \wedge b$$
,

III. Логическое сложение (операция ИЛИ, дизъюнкция)

$$y = a \lor b$$
.

Старшей является операция инверсии, более младшей — операция конъюнкции, самой младшей — дизъюнкция.

Законы алгебры логики:

- сочетательный закон:

$$a \wedge (b \wedge c) = (a \wedge b) \wedge c,$$

 $a \vee (b \vee c) = (a \vee b) \vee c,$

- переместительный закон:

$$a \wedge b = b \wedge a$$
,
 $a \vee b = b \vee a$,

распределительный закон:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c),$$

 $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c),$

- закон двойной инверсии: $\bar{a} = a$;
- закон двойственности (правила де Моргана):

$$\overline{a \lor b} = \overline{a} \land \overline{b},$$
 $\overline{a \land b} = \overline{a} \lor \overline{b};$

Аксиомы: 1 _ 0

Тождества:

$$a \lor a = a$$

 $a \lor \overline{a} = 1$
 $a \lor 1 = 1$
 $a \lor 0 = a$
 $a \land a = a$
 $a \land a = 0$
 $a \land 1 = a$
 $a \land 0 = 0$

 $\Phi A J -$ алгебраическое выражение, содержащее элементы алгебры логики а,b,с...,связанные между собой операциями, определенными в этой алгебре.

Например:
$$f(a, \overline{b}, c) = \overline{a} \wedge \overline{b} \wedge \overline{c \vee a} \vee a \vee c$$
;

Элементарной называется ФАЛ одного или двух аргументов, в логическом выражении которой содержится не более одной логической операции. Например:

Для двух чисел А и В выполнить следующие операции:

Допустим $\mathbf{a} = 13_{10} \text{ и } \mathbf{b} = 21_{10}$

Представим их значения в двоичной системе счисления:

а
$$1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 13 \rightarrow 1101_2 \rightarrow 01101$$
 $\overline{\mathbf{a}} = 10010$ \mathbf{b} $1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 \rightarrow 10101_2$ $\overline{\mathbf{b}} = 01010$ Операции $\mathbf{a} \vee \mathbf{b} = 01101$ $\overline{\mathbf{a}} \vee \mathbf{b} = 01010$ $\overline{\mathbf{a}} \vee \mathbf{b} = 01010$ $\overline{\mathbf{a}} \vee \mathbf{b} = 01010$ $\overline{\mathbf{a}} \wedge \mathbf{b} = 01010$ $\overline{\mathbf{a}} \wedge \mathbf{b} = 01010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = 01010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{01010}$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{01101} = 00010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{00101} = 11010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{01010} = 11010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{01010} = 11010$ $\overline{\mathbf{a}} \wedge \overline{\mathbf{b}} = \overline{\mathbf{a}} = \mathbf{b} = \mathbf{a} + \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{$

Таблица условно графического обозначения логических элементов и операций

Операция		ский элемент	-	ло выпол операции	Функция	
	УГО	Название	а	b	у	
Отрицание (инверсия)	a—1 y	НЕ (инвертор)	0		1 0	y = \bar{x}
Дизъюнкция	a 1 - y	или	0 0 1 1	0 1 0 1	0 1 1 1	y = a∨b
Конъюнкция	а — & —у	И	0 0 1 1	0 1 0 1	0 0 0 1	y = a∧b
Стрелка Пирса	a-1-y	или-не	0 0 1 1	0 1 0 1	1 0 0 0	$y = a \downarrow b = \overline{a \lor b}$
Штрих Шеффера	а— & _у	И-НЕ	0 0 1 1	0 1 0 1	1 1 1 0	y = a b = a∧b
Сумма по модулю 2	a-=1 by	Исключающее ИЛИ	0 0 1 1	0 1 0 1	0 1 1 0	y = a⊕ b = ā∧b ∨ a∧b
Равнозначность	a —=1 — y	Равнозначность	0 0 1 1	0 1 0 1	1 0 0 1	y = a∾b = a⊕ b = a√b ∨ a∧b

Примеры работы с другими системами счисления

Dec (10)	Bin (2)	Oct (8)	Hex (16)
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

$$8 \to 1 \cdot 8^1 + 0 \cdot 8^0 = 8 + 0 = 10_8 = 8_{10}$$

 $9 \to 1 \cdot 8^1 + 1 \cdot 8^0 = 8 + 1 = 11_8 = 9_{10}$
 $10 \to 1 \cdot 8^1 + 2 \cdot 8^0 = 8 + 2 = 12_8 = 10_{10}$
 $11 \to 1 \cdot 8^1 + 3 \cdot 8^0 = 8 + 3 = 13_8 = 11_{10}$
 $1 \cdot 8^1 + 7 \cdot 8^0 = 8 + 7 = 15_{10}$

$$10 \rightarrow 10 \cdot 16^0 = A = 10_{10}$$
 $11 \cdot 16^0 = B = 11_{10}$ шестнадцатеричная СС $15 \rightarrow 15 \cdot 16^0 = F = 15_{10}$

Связь между системами счисления В – О – Н

$$0110110110_{2} = 1B6_{16}$$

$$1 B 6$$

$$5 6 C$$

$$1 3 A$$

$$0110110110_{2} = 666_{8}$$

$$472_{O} = 100111010_{B} = 13A_{H}$$

$$0 6 6 6$$

$$4 7 2$$

Операция ИЛИ

$$0 \lor 0 = 0$$

$$1 \lor 0 = 1$$

$$0 \lor 1 = 1$$

$$1 \lor 1 = 1$$

Операция И

$$0 \wedge 0 = 0$$

$$1 \wedge 0 = 0$$

$$0 \wedge 1 = 0$$

$$1 \wedge 1 = 1$$

Исключающее ИЛИ

$$0 \oplus 0 = 0$$

$$1 \oplus 0 = 1$$

$$0 \oplus 1 = 1$$

$$1 \oplus 1 = 0$$