Etude et conception Avion

Phases d'un projet

Sommaire – Phases d'un projet

- Naissance d'un programme d'avion
 - Quand est-ce qu'un projet commence ?
 - Processus itératif par nature
- Définition des phases d'un programme
 - Déroulement
 - Particularités d'un programme aéronautique

Références :

- 1. Aircraft Design: A Conceptual Approach Daniel P. Raymer
- 2 Synthesis of Subsonic Airplane Design Egbert Torenbeek
- <u>Airplane Design</u> Dr. Jan Roskam
- 4. The Design of Aeroplane Darrol Stinton

Sommaire – Phases d'un projet

- Naissance d'un programme d'avion
 - Quand est-ce qu'un projet commence ?
 - Processus itératif par nature
- Définition des phases d'un programme
 - Déroulement
 - Particularités d'un programme aéronautique

Références :

- 1. Aircraft Design: A Conceptual Approach Daniel P. Raymer
- 2 Synthesis of Subsonic Airplane Design Egbert Torenbeek
- <u>Airplane Design</u> Dr. Jan Roskam
- 4. The Design of Aeroplane Darrol Stinton

Naissance d'un programme

Quand est-ce qu'un projet commence ? Processus itératif par nature

Commencement d'un programme

- Pas de règle générale
 - Le concepteur : nouveau concept d'avion
 - Le spécialiste en dimensionnement : première estimation de la masse
 - Le client : écriture de la spécification
 - Le commercial : étude de marché
 - Le financier : les premières dépenses
 - Le certificateur : la demande de certification de type
 - etc.

Processus itératif par nature

A chaque itération, on connaît mieux l'avion et on le précise de plus en plus.

Sommaire – Phases d'un projet

- Naissance d'un programme d'avion
 - Quand est-ce qu'un projet commence ?
 - Processus itératif par nature
- Définition des phases d'un programme
 - Déroulement
 - Particularités d'un programme aéronautique

Références :

- 1. Aircraft Design: A Conceptual Approach Daniel P. Raymer
- 2 Synthesis of Subsonic Airplane Design Egbert Torenbeek
- 3. <u>Airplane Design</u> Dr. Jan Roskam
- 4. The Design of Aeroplane Darrol Stinton

Définition des phases d'un programme

Déroulement Particularités d'un programme aéronautique

Déroulement général

Evolution des équipes

Des rôles différents

des compétences et des équipes différentes

Déroulement général

Déroulement – dessin et analyse

- Première(s) itération(s) = Design Conceptuel / Faisabilité
 - Est-ce ça fonctionnera ?
 - A quoi ressemble-t-il?
 - Quelles sont les exigences qui vont piloter la conception ?
 - Quels compromis doivent être pris en compte ?
 - Quel coût et quelle masse ?
 - → Réponses aux questions « basiques » en terme de configuration et d'aménagement général, de dimensions, de masse et de performances
 - → « Est-ce qu'un avion d'un prix abordable peut être conçu et fabriqué tout en remplissant toutes les spécifications ? » Evolution potentielle des spécifications par le client
 - → A partir de là, <u>il n'y aura plus de grand changement</u>

Déroulement – dessin et analyse

- Itération(s) suivante(s) = Design Préliminaire
 - Gel de la configuration
 - Développement de la géométrie extérieure de l'avion
 - Mise en place d'essais et analyse préliminaire
 - Design des éléments majeurs
 - Estimation du coût réel (« You-BET-Your-COMPANY »)
 - → Les spécialistes (structure, systèmes, trains d'atterrissage, etc.) dessinent et analysent leur partie
 - → le but final est d'engager l'entreprise dans un programme pouvant lui coûter la vie

Déroulement – dessin et analyse

- Itération(s) finale(s) = Design Détaillé
 - Dessin des pièces à fabriquer
 - Définition des outils et des processus de fabrication
 - Tests des éléments majeurs (structures, trains, systèmes,...)
 - Estimations finalisées de la masse et des performances
 - → Exemple : le caisson de voilure devient un ensemble constitué de nervures, longerons et peau, assemblés entre eux.
 - → Processus de fabrication vu au sens large : des pièces les plus petites, assemblées progressivement pour arriver aux éléments majeurs de l'avion et leur assemblage final
 - → Essais : MTC, Iron Bird, Simulateurs de vol

- Industrialisation puis Montée en cadence
- Agréments de production
- Chaîne industrielle

Déroulement – La vie opérationnelle

- Suivi client
- Evolutions et modifications au cours de la vie de l'avion
- Suivi de navigabilité
- Extension de la durée de vie

Particularités

- Durée
- Coûts
- Partenaires industriels
- Les équipes
- Le haut niveau technologique

Particularité – Durée

Particularité – Coûts

Pour un avion de transport civil : plusieurs milliards d'euros d'investissements Un retour sur investissement à très long terme (~15 ans)

Particularité – Coûts

Importance des décisions prises très tôt dans le processus

Particularités – Sous-traitance classique

Pas de mode de coordination spécifique Production de pièces élémentaires Volume sous-traité faible Aucun partage de technologie ni de savoir-faire

Particularités – Sous-traitance globale

Besoin de mode de coordination spécifique Production d'ensembles complets et complexes Volume sous-traité important Transfert technologique et innovation ouverte

Particularités – Sous-traitance globale

Modification du rôle des acteurs :

- Sous-traitants → partenaires
- Donneur d'ordre → intégrateur, maître d'œuvre

Evolution du nombre de sous-traitant de production

<u>Évolution de la</u> <u>chaîne de production :</u>

- Réduction du nombre de sous-traitants directs (« tier 1 »)
- Structuration des filières régionales autour de ces tiers 1

Nouveau partage des responsabilités et des risques :

- Technologie
- Financement
- Industrialisation

Particularités – Notion de Risk Sharing Partner

Particularités - Notion de plateau

Besoin:

Implication de partenaires de plus en plus tôt dans le programme

Conception « conjointe » Conce ption Production Plateau Faisabilité Essais en vol **Exploitation** Préli taillée Essais au sol Revue de Certification Revue de Premier Fin de Lancement Conception Conception Vol Vie du Programme **Préliminaire** Détaillée

Structuration en plateau

Rassemblement de tous les partenaires de toutes les disciplines

En un même lieu géographique

Passage au plateau Virtuel

Equipes de retour dans leurs entreprises respectives

Particularités – Les équipes

Evolution des équipes

Des rôles différents

des compétences et des équipes différentes

Fort caractère multidisciplinaire et multiculturel

- Développement d'un nouveau programme = 5 ans
 - → trop court pour permettre l'émergence de nouvelles technologies
 - → trop de risques
- Importance d'avoir les technologies prêtes au bon moment
- Nécessité de :
 - Préparer la phase de conception et de développement
 - Maîtriser l'évolution des technologies
- Différentes étapes pour une technologie :
 - La découverte
 - La compréhension
 - L'adaptation
 - La validation
 - Le déploiement

- Mesure par l'échelle des TRL
- Technology Readiness Level (1 à 9)
- Taxonomie développée par la NASA

