444 Lecture 2.3 - Ordinal and Cardinal Utility

Brian Weatherson

• Explain the difference between ordinal and cardinal utility.

Bonanno, section 2.1.

Utility

A utility function (for a particular agent) is a mapping U from situations to numbers satsifying this constraint.

• $U(S_1) > U(S_2)$ iff the agent is better off in S_1 than in S_2 .

Welfare

This isn't part of the formal theory, but we usually implicitly assume (at least in our narratives), the following principle.

The agent is better off in S_1 than in S_2 iff, given a choice and assuming they are fully informed, they prefer being in S_1 to S_2 .

That is, we'll usually speak as if a radically subjectivist view of welfare is correct. I've been doing this already, and I'm going to keep doing it.

Ordinal Utility

- When we say that we're working with ordinal utility functions, really the only principle that applies is the one from two slides back.
- Higher utilities are better, i.e., are preferred.
- The term ordinal should make you think of 'orders'; all an ordinal utility function does is provide a rank ordering of the outcomes.

Two Functions

So if we're working in ordinal utility, these two functions describe the same underlying reality.

	U ₁	U ₂
01	1	1
02	2	10
03	3	500
04	4	7329

Cardinal Utility

- In cardinal utility theory, the differences between the numbers matter.
- The numbers now express quantities, and the two functions from the previous slide do not represent the same underlying reality.

- There is a fussy point here that's worth going over.
- Even cardinal utility functions don't come with a scale.
- So two functions with different numbers in them can still express the same underlying reality.

The standard way to put this is that (cardinal) utility is defined only up to a **positive, affine transformation**. That means that if U_1 and U_2 are related by the following formula, then they represent the same state of affairs.

$$U_2(o) = aU_1(o) + b$$
 where $a > 0$

Celsius and Farenheit

- The main real world cases of scales that are related in this way are temperature scales.
- To convert between Celsius and Farenheit you use the formula F = 1.8C + 32.
- But the scales are just two ways of representing the same physical reality.

- So there is no such thing as one outcome being twice as good as another.
- But we can say a lot of things about differences.

 If the difference between O₁ and O₂ is the same as the difference between O₂ and O₃, that will stay the same under any positive affine transformation.

- If the difference between O₁ and O₂ is the same as the difference between O₂ and O₃, that will stay the same under any positive affine transformation.
- Indeed, for any k, if the difference between O₁ and O₂ is k times the difference between O₂ and O₃, that will stay the same under any positive affine transformation.

For Next Time

• We will start on section 2.2.