GL78XX Series POSITIVE VOLTAGE REGULATOR

Description

The GL78XX Series are monolithic integrated circuits designed as fixed-voltage regulator. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation.

With adequate heatsinking they can deliver over 1.5A output currents. They are intended as fixed voltage regulators in a wide range of applications.

Features

- No External Components Required
- High Line Regulation
- · High Load Regulation
- Good Ripple Rejection (70dB)
- Low Temperature Coefficient of Output (1.0mV/°C)
- Wide Range Input Voltage
- · Low Input Bias Current
- Low Output Noise
- Output Current in Exess of 1.5A

Pin Configuration

(Top View)

Type No/Voltage

GL7805	5.0 Volts
GL7806	6.0 Volts
GL7808	8.0 Volts
GL7809	9.0 Volts
GL7812	12.0 Volts
GL7815	15.0 Volts
GL7824	24.0 Volts

Block Diagram

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$

- Input Voltage (5V Through 15V) (24V)
- Power Dissipation
- Operating Junction Temp.
- Storage Temp.
- Lead Temp. (Soldering, 10S)
- 35V 40V Output Current 3.3A 15W 0°C to +125°C
 - -65°C to +150°C 230°C

GL7805 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		UNIT
				MIN	MAX.	
Output Voltage (1)	V ₀₁	T _I =25°C,	V _{ID} =10V, I _O =500mA	4.8	5.2	٧
Output Voltage (2)	V ₀₂	7V≤V _{in} ≤20	0V, 5 0mA≤l _o ≤1 0A	4 75	5.25	٧
Line Regulation	ΔV ₀₁	T,=25°C	7≤V _{In} ≤25V, I _o =500mA		50	mV
	ΔV ₀₂	J	8V≤V _{in} ≤12V, I _o =500mA		25	mV
Load Regulation	ΔV ₀₃	T,=25°C	5 0mA≤I _o ≤1 5A, V _{in} =10V		50	mV
3	ΔV ₀₄	., 200	250mA≤I _o ≤750mA, V _{in} =10V		25	mV
Quiescent Current	la	T _j =25°C,	T _i =25°C, V _{in} =10V, I _o =500mA		8	mA
Quiescent Current Change	Δl _{Q1}	7V≤V _{in≤} 25	7V≤V _{In≤} 25V, I _o =500mA		1.3	mA
3	Δl _{Q2}	5.0mA≤I _o ≤1.0A, V _{in} =10V			0.5	mA
Output Noise Voltage	No	V _{in} =10V, I _o =500mA, 10Hz≤f≤100KHz 40(TYP)		ГҮР)	μV	
Ripple Rejection	R _R	$T_j = 25 ^{\circ}\text{C}, \ V_i = 1 \text{V}_{\text{(rms)}} \ 120 \text{Hz}, \ I_0 = 20 \text{mA}, \ 8 \text{V} \leq \text{V}_{\text{in}} \leq 18 \text{V}$		62		dB
Input-Output Voltage Differential	V _d	T _J =25°C, I _o =1.0A		2(T)	(P)	٧
Short-Circuit Limit	I _{sc}	V _{in} =35V, 0	Output-GND		10	Α
Peak Output Current	l _{peak}	T _J =25°C,	V _{In} =12V, V _O =4 75V	1.5	3.3	Α

GL7806 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		UNIT
					MAX	
Output Voltage (1)	V ₀₁	$T_j = 25 ^{\circ}\text{C}, \ V_{in} = 11 ^{\circ}\text{V}, \ I_o = 500 ^{\circ}\text{mA}$		5.75	6.25	٧
Output Voltage (2)	V ₀₂	8V≤V _{in} ≤21	V, 5.0mA≤I _o ≤1.0A	5.7	6.3	٧
Line Regulation	ΔV ₀₁	T,=25°C	8≤V _{in} ≤25V, I _o =500mA		60	mV
	ΔV ₀₂	,	9V≤V _{in} ≤13V, I _o =500mA		30	m۷
Load Regulation	ΔV ₀₃	T,=25°C	5mA≤l _o ≤1 5A, V _m =11V		60	mV
	ΔV ₀₄	,	250mA≤l _o ≤750mA, V _{in} =11V		30	mV
Quiescent Current	lα	T _j =25°C,	T _i =25°C, V _{in} =11V, I _o =500mA		8.0	mA
Quiescent Current Change	Δl _{Q1}	8V≤V _{m≤} 25	8V≤V _{m≤} 25V, I _o =500mA		1.3	mA
	ΔI_{Q2}	V _{in} =11V,	V _{in} =11V, 5mA≤I _o ≤1.0A		0.5	mA
Output Noise Voltage	N _o	V _{in} =11V, I	V _{in} =11V, I _o =500mA, 10Hz≤f≤100KHz		TYP)	μV
Ripple Rejection	R _R	$T_j = 25 ^{\circ}\text{C}, \ V_i = 1 V_{(rms)} \ 120 \text{Hz}, \ I_o = 20 \text{mA}, \ 9 V \leqslant V_{in} \leqslant 19 V$		57		dB
Input-Output Voltage Differential	٧ _d	T _J =25°C, I _o =1.0A		2(T	YP)	٧
Short-Circuit Limit	sc	V _{in} =35V, 0	Output-GND		1.0	Α
Peak Output Current	I _{peak}	T _j =25°C.	V _{in} =13V, V _O =5.7V	1.5	3.3	Α

GL7808 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL		TEST CONDITIONS	VALUES		UNIT
ININIETEIT	011111002			MIN.	MAX	
Output Voltage (1)	V ₀₁	T,=25°C,	V _{in} =14V, I _o =500mA	7.7	83	٧
Output Voltage (2)	V ₀₂	10.5V≤V _{in} :	≤23V, 5 0mA≤I _o ≤1.0A	7.6	8.4	٧
Line Regulation	ΔV ₀₁	T,=25°C	10.5V≤V _{in} ≤25V, I _o =500mA		80	mV
Line Hogalation	ΔV ₀₂] ', '	11V≤V _{in} ≤17V, l _o =500mA		40	mV
Load Regulation	ΔV ₀₃	T,=25°C	5.0mA≤I _o ≤1.5A, V _{in} =14V		80	mV
Load Negalation	ΔV ₀₄	1, 200	250mA≤1 _o ≤750mA, V _{in} =14V		40	mV
Quiescent Current	I _Q	T _I =25°C,	T ₁ =25°C, V _{In} =14V, I ₀ =500mA		8.0	mA
Quiescent Current Change	ΔI_{Q1}	10.5V≤V _{in}	10.5V≤V _{in≤} 25V, I _o =500mA		1.0	mA
Quiescent ourrent ondings	ΔI_{Q2}	5mA≤I _o ≤1.0A, V _{in} =14V			0.5	mA
Output Noise Voltage	N _o	V _{in} =14V,	V _{in} =14V, I _o =500mA, 10Hz≤f≤100KHz		TYP)	μ۷
Ripple Rejection	R _R	$T_j = 25$ °C, $V_i = 1V_{(rms)}$, 120Hz, $I_o = 20$ mA, 11.5V $\leq V_{in} \leq 21.5$ V		55		dB
Input-Output Voltage Differential	V _d	T _I =25°C, I _o =1.0A		2(1	YP)	٧
Short-Circuit Limit	I _{sc}	V _{in} =35V.	Output-GND		1.0	Α
Peak Output Current	peak	T _J =25°C,	$V_{in} = 15V, V_{O} = 7.6V$	1.5	3.3	Α

GL7809 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL		TEST CONDITIONS VALUES		UES	UNIT
	0002			MIN.	MAX.	
Output Voltage (1)	V ₀₁	T _j =25°C, V _{in} =15V, I _o =500mA		8 64	9 36	٧
Output Voltage (2)	V ₀₂	11 5V≤V _{in} :	≤24V, 5 0mA≤l _o ≤1.0A	8 55	9.45	٧
Line Regulation	ΔV ₀₁	T,=25°C	11 5V≤V _{in} ≤26V, I _o =500mA		90	mV
	ΔV ₀₂] ',	12V≤V _{In} ≤18V, I _o =500mA		45	mV
Load Regulation	ΔV ₀₃	T,=25°C	5 OmA≤I _o ≤1.5A, V _{in} =15V		90	mV
Loud Hogolation	ΔV ₀₄	', 20 0	250mA≤I _o ≤750mA, V _m =15V		45	mV
Quiescent Current	Ια	T _J =25°C,	T ₁ =25°C, V _{in} =15V, I _o =500mA		8	mA
Quiescent Current Change	ΔI_{Q1}	11.5V≤V _{in}	11.5V≤V _{in≤} 26V, I _o =500mA		10	mA
danosom osmango	Δl _{Q2}	$V_{in} = 15V, 5mA \le I_0 \le 1.5A$			0.5	mA
Output Noise Voltage	N _o	V _{in} =15V, I _o =500mA, 10Hz≤f≤100KHz		60(TYP)	μ۷
Ripple Rejection	R _R	$T_j = 25$ °C, $V_i = 1V_{(rms)}$ 120Hz, $I_o = 20$ mA, 12 5V $\leq V_m \leq 22$ 5V		55		dB
Input-Output Voltage Differential	V _d	T _J =25°C, I _o =1 0A		2(TYP)	V
Short-Circuit Limit	I _{sc}	V _{in} =35V,	Output-GND		1.0	Α
Peak Output Current	I _{peak}	T _J =25°C,	V _{in} =16V, V _O =8 55V	1.5	3.3	Α

GL7812 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS		VAL	UES	UNIT
				MIN.	MAX]
Output Voltage (1)	V ₀₁	T _j =25°C,	T _I =25°C, V _{In} =19V, I _o =500mA		125	٧
Output Voltage (2)	V ₀₂	14 5V≼V _{in}	≤27 OV, 5 OmA≤I _o ≤1.0A	11 4	12.6	ν
Line Regulation	∆V ₀₁	T,=25°C	14 5V≤V _{in} ≤30V, I _o =500mA		120	mV
	ΔV ₀₂	,	16.0V≤V _{in} ≤22V, I _o =500mA		60	mV
Load Regulation	ΔV ₀₃	T,=25°C	5 0mA≤l _o ≤1.5A, V _{in} =19V		120	mV
3	ΔV ₀₄	', 200	250mA≤I _o ≤750mA, V _{in} =19V		60	mV
Quiescent Current	la	T _j =25°C,	T ₁ =25°C, V _{In} =19V, I ₀ =500mA		8.0	mA
Quiescent Current Change	ΔI_{Q1}	14 5V≤V _{in≤} 30V, I _o =500mA			10	mA
,	ΔI_{Q2}	5 0mA≤I _o ≤1.0A, V _{in} =19V			05	mA
Output Noise Voltage	No	V _{in} =19V, I	V _{in} =19V, I _o =500mA, 10Hz≤f≤100KHz		ΓYP)	μ٧
Ripple Rejection	R _R	$T_j = 25$ °C, $V_i = 1V_{(rms)}$, 120Hz, $I_o = 20$ mA, 15V $\leq V_{in} \leq 25$ V		55		dB
Input-Output Voltage Differential	V _d	T _j =25°C, I _o =1.0A		2(1	YP)	٧
Short-Circuit Limit	I _{sc}	V _{in} =35V, (Output-GND		1.0	Α
Peak Output Current	I _{peak}	T _j =25°C,	V _{in} =19V, V _O =11 4V	1.5	33	Α

GL7815 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS		VAL	VALUES	
				MIN.	MAX.	UNIT
Output Voltage (1)	V ₀₁	T _i =25°C, V _{in} =23V, I _o =500mA		14.4	15.6	٧
Output Voltage (2)	V ₀₂	17.5V≤V _{in}	≤30V, 5.0mA≤I _o ≤1 0A	14.25	15 75	٧
Line Regulation	ΔV ₀₁	T,=25°C	17.5V≤V _{in} ≤30V, I _o =500mA		150	mV
	∆V ₀₂	, 	20V≤V _{in} ≤26V, I _o =500mA		75	mV
Load Regulation	∆V ₀₃	T,=25°C	5mA≤I _o ≤1.5A, V _{in} =23V		150	mV
	∆V ₀₄	, 200	250mA≤I _o ≤750mA, V _{in} =23V		75	mV
Quiescent Current	<u>l</u> a	T _j =25°C,	T _i =25°C, V _{in} =23V, I _o =500mA		8.0	mA
Quiescent Current Change	Δl _{Q1}	17.5V≤V _{in≤} 30V, I _o =500mA			1.0	mA
	Δl _{Q2}	5.0mA≤l _o ≤	$5.0\text{mA} \le I_0 \le 1.0\text{A}, V_{\text{in}} = 23\text{V}$		0.5	mΑ
Output Noise Voltage	No	V _{in} =23V, I _o =500mA, 10Hz≤f≤100KHz		90(T	YP)	μ٧
Ripple Rejection	R _F	T _I =25°C, V _I =1V _(rms) , 120Hz, I _o =20mA, 18.5V≤V _{In} ≤28.5V		54		dB
Input-Output Voltage Differential	٧ _d	T _j =25°C, l _o =1.0A		2(T	YP)	٧
Short-Circuit Limit	I _{sc}	V _{in} =35V, 0	Output-GND		1.0	Α
Peak Output Current	I _{peak}	T,=25°C,	V _{In} =22V, V _O =14.25V	15	3.3	Α

4-190

GL7818 Electrical Characteristics($T_A = 25^{\circ}C$)

			VALUES		
SYMBOL	TEST CONDITIONS		MIN	MAX	UNIT
V ₀₁	T,=25℃, V,	$T_j = 25 \text{°C}, \ V_{in} = 25 \text{V}, \ I_o = 500 \text{mA}$		187	٧
V ₀₂	20 5V≦V _{in} ≦	$33V$, 50mA≤ I_0 ≤ = 10A	17.1	18.9	٧
△V ₀₁		20 5V≦V _{in} ≦33V, I _o = 500mA		180	mV
△V ₀₂	T ₁ =25℃	24.0V≦V _{in} ≤30V, I _o =500mA		90	mV
△V ₀₃		$5.0 \text{mA} \le I_0 \le 1.5 \text{A}, V_{\text{in}} = 21 \text{V}$	1	180	mV
△V ₀₄	⊺,:25℃	250mA≤V ₁₀ ≤750mA, V _{in} =25V		90	mV
la	T _j =25°C, V,	_n = 25V, I _o = 50mA		8.0	mA
△l _{Q1}	20 5V≦V _{in} ≦	20 5V≤V _{in} ≤33V, I _o = 500mA		1.0	mA
△l _{Q2}	$5 \text{ 0mA} \le I_0 \le 1 \text{ 0A}, \ V_{in} = 25V$			05	mA
N ₀	$V_{10} = 25V, I_0$	$V_{in} = 25V$, $I_0 = 500$ mA, 10 Hz $ \le f \le 100$ KHz		TYP)	μ٧
	T _j =25°C, V,	$= 1V_{(rms)}$, 120Hz, $I_0 = 20mA$	T		,
R _R	21V≦V _{in} ≦3	21V≦V _{in} ≤33V			dB
				1	
V _d	$T_1 = 25 \text{C}, I_0$	= 1.0A	2(1	YP)	V
I _{sc}	V _{in} = 25V, O	utput-GND		10	Α
I _{peak}	T ₁ =25°C, V,	$_{\rm n} = 25 \text{V}, \ \text{V}_{\rm o} = 17.1 \text{V}$	15	33	Α
	V ₀₂	V_{01} $T_{j} = 25 ^{\circ} C$, V_{j} V_{02} $20.5 V \le V_{jn} \le 0$ $\triangle V_{01}$ $\triangle V_{02}$ $T_{j} = 25 ^{\circ} C$ $\triangle V_{03}$ $\triangle V_{04}$ $T_{j} = 25 ^{\circ} C$ $A_{j} = 25 ^{\circ} C$ A_{j	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TEST CONDITIONS MiN MAX V_{01} $T_j = 25 \circ$, $V_{in} = 25 v$, $I_0 = 500 \text{mA}$ 17 3 18 7 V_{02} $20.5 \text{V} \le V_{in} \le 33 \text{V}$, $5.0 \text{mA} \le I_0 \le 1.0 \text{A}$ 17.1 18.9 $\triangle V_{01}$ $20.5 \text{V} \le V_{in} \le 33 \text{V}$, $I_0 = 500 \text{mA}$ 180 $\triangle V_{02}$ $T_j = 25 \circ$ $24.0 \text{V} \le V_{in} \le 30 \text{V}$, $I_0 = 500 \text{mA}$ 90 $\triangle V_{03}$ $5.0 \text{mA} \le I_0 \le 1.5 \text{A}$, $V_{in} = 21 \text{V}$ 180 $\triangle V_{04}$ $T_j = 25 \circ$ $250 \text{mA} \le V_{10} \le 750 \text{mA}$, $V_{in} = 25 \text{V}$ 90 I_0 $I_j = 25 \circ$ $I_0 = 500 \text{mA}$ 8.0 $\triangle I_{01}$ $20.5 \text{V} \le V_{in} \le 33 \text{V}$, $I_0 = 500 \text{mA}$ 1.0 $\triangle I_{02}$ $5.0 \text{mA} \le I_0 \le 1.0 \text{A}$, $V_{in} = 25 \text{V}$ 0.5 I_0 $I_1 = 25 \circ$, $I_0 = 500 \text{mA}$, $I_0 + I_0 \le 1.0 \text{A}$ 110(TYP) $I_1 = 25 \circ$, $I_2 = 1.0 \text{A}$ $I_1 = 1.0 \text{A}$ 20(TYP) $I_3 = 1.0 \text{A}$ $I_1 = 2.0 \text{A}$ $I_2 = 2.0 \text{A}$ $I_3 = 1.0 \text{A}$ $I_1 = 2.0 \text{A}$ $I_2 = 2.0 \text{A}$ $I_3 = 1.0 \text{A}$ $I_1 = 2.0 \text{A}$ $I_2 = 2.0 \text{A}$ I_4

GL7824 Electrical Characteristics ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		UNIT
T ATTAMETER	O'MBOL		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	MIN	MAX.	
Output Voltage (1)	V ₀₁	T _j =25°C,	$T_j = 25$ °C, $V_{in} = 33$ V, $I_0 = 500$ mA		25	٧
Output Voltage (2)	V ₀₂	27V≤V _{in} ≤3	38V, 5.0mA≤l _o ≤1 0A	22 8	25 2	٧
Line Regulation	ΔV ₀₁	T,=25°C	27V≤V _{in} ≤38V, I _o =500mA		240	mV
Zino Mogalation	ΔV ₀₂	,	30V≤V _m ≤36V, I _o =500mA		120	mV
Load Regulation	ΔV ₀₃	T,=25°C	5mA≤I _o ≤1 5A, V _{in} =33V		240	mV
Louis Mogdianom	ΔV ₀₄	', 20 0	250mA≤I _o ≤750mA, V _{in} =33V		120	mV
Quiescent Current	la	T _J =25°C,	T ₁ =25°C, V _{In} =33V, I _o =500mA		8.0	mA
Quiescent Current Change	Δl _{Q1}	27V≤V _{in≤} 3	27V≤V _{in≤} 38V, I _o =500mA 5 0mA≤I _o ≤1 0A V _{in} =33V		1.0	mA
da.coom.com.go	Δl _{Q2}	5 0mA≤l _o ≤			0.5	mA
Output Noise Voltage	N _o	V _{in} =33V, I	V _{in} =33V, I _o =500mA, 10Hz≤f≤100KHz		TYP)	μ٧
Ripple Rejection	R _R	$T_j = 25 ^{\circ}\text{C}, \ V_i = 1 ^{\vee}\text{V}_{(rms)} \ 120 ^{\vee}\text{Hz}, \ I_o = 20 ^{\vee}\text{mA}, \ 28 ^{\vee}\text{V}_{in} \leq 38 ^{\vee}\text{V}$		5€		dB
Input-Output Voltage Differential	V _d	T ₁ =25°C, I ₀ =1.0A		2(1	YP)	٧
Short-Circuit Limit	I _{sc}	V _{in} =35V,	Output-GND		10	Α
Peak Output Current	I _{peak}	T _J =25°C,	V _{in} =31V, V _O =22 8V	1 5	3.3	Α

*GL78XX Series Test Circuit (AC & DC)

 $1 \quad V_{01}, \ V_{02}, \ \Delta V_{o}, \ I_{Q}, \ \Delta I_{Q}, \ V_{d}, \ I_{sc}, \ I_{peak}$

2 Ripple Rejection

3 Output Noise Voltage

* $C_{\text{in}},\ C_{\text{out}},\ C_{c}$ is Tantalium Capacitor

TYPICAL CHARACTERISTICS

 $(T_A - +25^{\circ}C \text{ unless otherwise noted})$

FIGURE 4 — PEAK OUTPUT CURRENT AS A FUNCTION

FIGURE 5 - PEAK OUTPUT CURRENT AS A

FIGURE 6 - RIPPLE REJECTION AS A FUNCTION

TYPICAL CHARACTERISTICS (continued) (T_A = 25°C unless otherwise noted.)

FIGURE 7 - RIPPLE REJECTION AS A FUNCTION OF FREQUENCY

FIGURE 8 — OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE

FIGURE 9 - OUTPUT IMPEDANCE AS A FUNCTION OF OUTPUT VOLTAGE

FIGURE 10 — QUIESCENT CURRENT AS A FUNCTION OF TEMPERATURE

FIGURE 11 - DROPOUT CHARACTERISTICS

