

RSQ045N03

Nch 30V 4.5A Power MOSFET

V_{DSS}	30V
R _{DS(on)} (Max.)	38 m Ω
I _D	4.5A
P_{D}	1.25W

Features

- 1) Low on resistance.
- 2) Built-in G-S Protection Diode.
- 3) Small Surface Mount Package (TSMT6).
- 4) Pb-free lead plating; RoHS compliant

Application

DC/DC converters

Outline

●Inner circuit

Packaging specifications

	Packaging	Taping
	Reel size (mm)	180
Typo	Tape width (mm)	8
Type	Basic ordering unit (pcs)	3,000
	Taping code	TR
	Marking	QL

● Absolute maximum ratings(T_a = 25°C)

Parameter	Symbol	Value	Unit
Drain - Source voltage	V_{DSS}	30	V
Continuous drain current	I _D ^{*1}	±4.5	А
Pulsed drain current	I _{D,pulse} *2	±18	А
Gate - Source voltage	V_{GSS}	±20	V
Power dissipation	P _D *3	1.25	W
Power dissipation	P _D *4	0.6	W
Junction temperature	T _j	150	°C
Range of storage temperature	T _{stg}	-55 to +150	°C

●Thermal resistance

Parameter	Symbol	Values			Unit
raiametei		Min.	Тур.	Max.	Offic
Thermal resistance, junction - ambient	R _{thJA} *3	1	-	100	°C/W
Thermal resistance, junction - ambient	R _{thJA} *4	ı	ı	208	°C/W

$\bullet \text{Electrical characteristics}(T_a = 25 ^{\circ}\text{C})$,unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit	
r ai ai nietei	Symbol	Conditions	Min.	Тур.	Max.	Offic	
Drain - Source breakdown voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 1mA$	30	-	-	V	
Breakdown voltage temperature coefficient	$\frac{\Delta V_{(BR)DSS}}{\Delta T_{j}}$	I _D =1mA referenced to 25°C	-	26	-	mV/°C	
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 30V, V_{GS} = 0V$	-	-	1	μΑ	
Gate - Source leakage current	I_{GSS}	$V_{GS} = 20V, V_{DS} = 0V$	ı	ı	10	μΑ	
Gate threshold voltage	V _{GS (th)}	$V_{DS} = 10V$, $I_D = 1mA$	1.0	ı	2.5	V	
Gate threshold voltage temperature coefficient	$\frac{\Delta V_{(GS)th}}{\Delta T_{j}}$	I _D =1mA referenced to 25°C	,	-2.8	-	mV/°C	
		V _{GS} =10V, I _D =4.5A	-	27	38		
Static drain - source	D *5	V _{GS} =4.5V, I _D =4.5A	-	36	51	m O	
on - state resistance	R _{DS(on)} 5	V _{GS} =4.0V, I _D =4.5A	ı	40	56	mΩ	
		V _{GS} =10V, I _D =4.5A, T _j =125°C	ı	50	70		
Gate input resistannce	R_{G}	f = 1MHz, open drain	-	6	-	Ω	
Transconductance	g _{fs} *5	V _{DS} =10V, I _D =4.5A	3.5	7.0	-	S	

^{*1} Limited only by maximum temperature allowed.

^{*2} Pw \leq 10 μ s, Duty cycle \leq 1%

^{*3} Mounted on a ceramic board (30x30x0.8mm)

^{*4} Mounted on a FR4 (15×20×0.8mm)

^{*5} Pulsed

• Electrical characteristics ($T_a = 25$ °C)

Parameter	Symbol	Conditions	Values			Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic	
Input capacitance	C _{iss}	$V_{GS} = 0V$	-	520	-		
Output capacitance	C _{oss}	V _{DS} = 10V	-	150	-	pF	
Reverse transfer capacitance	C_{rss}	f = 1MHz	-	95	-		
Turn - on delay time	t _{d(on)} *5	$V_{DD} \simeq 15V, V_{GS} = 10V$	-	12	-		
Rise time	t _r *5	I _D = 2.25A	-	19	-	20	
Turn - off delay time	t _{d(off)} *5	$R_L = 6.67\Omega$	-	41	-	ns	
Fall time	t _f *5	$R_G = 10\Omega$	-	14	-		

•Gate Charge characteristics($T_a = 25$ °C)

Parameter	Cumbal	Conditions	Values			Unit
- Farameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Total gate charge	**5	$V_{DD} \simeq 15V$, $I_D=4.5A$ $V_{GS} = 5V$	-	6.8	9.5	
Total gate charge Q _g	Qg *5	$V_{DD} = 15V, I_{D} = 4.5A$ $V_{GS} = 10V$	-	13	-	nC
Gate - Source charge	Q _{gs} *5	$V_{DD} \simeq 15V$, $I_D=4.5A$ $V_{GS} = 5V$	-	1.6	-	
Gate - Drain charge	Q _{gd} *5	$V_{GS} = 5V$	-	2.3	-	

•Body diode electrical characteristics (Source-Drain)($T_a = 25$ °C)

Parameter	Symbol	Conditions	Values			Unit
r ai ai ii etei	Symbol		Min.	Тур.	Max.	Offic
Inverse diode continuous, forward current	l _S *1	T _a = 25°C	-	-	1	А
Forward voltage	V _{SD} *5	$V_{GS} = 0V, I_{s} = 1.0A$	-	-	1.2	V

Fig.1 Power Dissipation Derating Curve

Fig.2 Maximum Safe Operating Area

Drain - Source Voltage : V_{DS} [V]

Junction Temperature : T_j [°C]

Fig.3 Normalized Transient Thermal Resistance vs. Pulse Width

Pulse Width: Pw [s]

Fig.4 Single Pulse Maximum Power dissipation

Pulse Width: P_W [s]

Peak Transient Power: P(W)

Fig.5 Typical Output Characteristics(I)

Drain - Source Voltage : V_{DS} [V]

Fig.6 Typical Output Characteristics(II)

Drain - Source Voltage : V_{DS} [V]

Fig.7 Breakdown Voltage vs. Junction Temperature

Junction Temperature : T_j [°C]

Fig.8 Typical Transfer Characteristics

Gate - Source Voltage : V_{GS} [V]

Drain - Source Breakdown Voltage: V_{(BR)DSS} [V]

Drain Current : I_D [A]

Gate Threshold Voltage : $V_{GS(th)}[V]$

•Electrical characteristic curves

Fig.9 Gate Threshold Voltage

Fig.10 Transconductance vs. Drain Current

Fig.11 Drain CurrentDerating Curve

Fig.12 Static Drain - Source On - State Resistance vs. Gate Source Voltage

Gate - Source Voltage : V_{GS} [V]

Fig.14 Static Drain - Source On - State Resistance vs. Junction Temperature 60 Static Drain - Source On-State Resistance 50 40 $:R_{\text{DS(on)}}\left[\text{m}\Omega\right]$ 30 20 $V_{GS} = 10V$ $I_D = 4.5A$ Pulsed 10 0 -50 -25 0 25 50 75 100 125 150

Junction Temperature : T_i [°C]

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current(II) 1000 V_{GS}= 10V Static Drain - Source On-State Resistance Pulsed Ta=125°C Ta=75°C Ta=25°C 100 Ta= -25°C $: R_{\mathsf{DS}(\mathsf{on})} \ [m\Omega]$ 10 0.1 1 10 Drain Current : I_D [A]

Fig.17 Static Drain - Source On - State Resistance vs. Drain Current(IV) 1000 Static Drain - Source On-State Resistance V_{GS}= 4.0V Pulsed Ta=125°C Ta=75°C Ta=25°C Ta= -25°C 100 $:R_{\text{DS(on)}}\left[m\Omega \right]$ 10 0.1 1 10 Drain Current : I_D [A]

Fig.18 Typical Capacitance
vs. Drain - Source Voltage

10000

Ta=25°C
f=1MHz
Vas= 0V

Ciss

Coss

100
0.01
0.1
1
10
100

Fig.19 Switching Characteristics

10 Ta=25°C V_{DD}= 15V $I_D = 7.5A$ $R_G = 10\Omega$ Pulsed 7 6 5 4 3 2 0 0 2 6 8 10 12 14

Fig.20 Dynamic Input Characteristics

Drain - Source Voltage : V_{DS} [V]

Gate - Source Voltage : V_{GS} [V]

Fig.21 Source Current vs. Source Drain Voltage

Source-Drain Voltage : V_{SD} [V]

●Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

Fig.2-1 Gate Charge Measurement Circuit

Fig.1-2 Switching Waveforms

Fig.2-2 Gate Charge Waveform

●Dimensions (Unit : mm)

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

DIM	MILIMI	MILIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	-	1.00	ı	0.039
A1	0.00	0.10	0.000	0.004
A2	0.75	0.95	0.030	0.037
A3	0.3	25	0.0	10
b	0.35	0.50	0.014	0.020
С	0.10	0.26	0.004	0.010
D	2.80	3.00	0.110	0.118
Е	1.50	1.80	0.059	0.071
е	0.9	95	0.0	37
HE	2.60	3.00	0.102	0.118
L1	0.30	0.60	0.012	0.024
Lp	0.40	0.70	0.016	0.028
Q	0.05	0.25	0.002	0.010
Х	_	0.20	_	0.008
у	_	0.10	_	0.004

DIM MILIMETERS			INCHES		
DIIVI	MIN	MAX	MIN	MAX	
b2		0.70	ı	0.028	
e1	2.	10	0.0	83	
l1	_	0.90	-	0.035	

Dimension in mm / inches

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/