Bank Churn Prediction

宋怡葶

Table of contents

Problem

Data Source

EDA

Data Preprocessing

Analysis

Conclusions

Problem Introduction

- Problem: Increasing churning rate for their credit card services
- Objective: Predict clients that are leaving

Data Source

Kaggle Churn Modelling Dataset

Attribute	Data Type	Description
Attrition_Flag	object	Internal event (customer activity) variable - if the account is closed then 1 else 0
Customer_Age	int64	Demographic variable - Customer's Age in Years
Card_Category	object	Product Variable - Type of Card (Blue, Silver, Gold, Platinum)
Months_on_book	int64	Period of relationship with bank
Total_Trans_Amt	int64	Total Transaction Amount (Last 12 months)

Features

Numerical Data(Discrete)

"Card_Category","Total_Relationship_ Count","Customer_Age_cat","Months_ on_book_cat"

Numerical Data(Continuous)

"Months_Inactive_12_mon","Contacts_Count _12_mon","Credit_Limit","Total_Revolving_B al","Avg_Open_To_Buy", "Total_Amt_Chng_Q4_Q1","Total_Trans_Amt ","Total_Trans_Ct","Total_Ct_Chng_Q4_Q1"

listogram of bank_data_cleaned\$Customer

→ Numerical Variable - Age

→ Imbalance problem occurred in target variable

→ The dataset has no missing value

Exploratory Data Analysis - Outlier

Outlier Customer_Age

IQR: 11.0

Q1: 41.0

Lower Limit: 24.5

median: 46.0

Q3: 52.0

Upper_Limit: 68.5

	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status
251	0	73	1	0	3	1
254	0	70	1	0	3	1
11	0	65	1	1	6	1
18	0	61	1	1	3	1
27	0	63	1	1	6	1

- → Checking the presence of Outliers with IQR method
 - The outliers will not be removed.

Data Preprocessing

Methodology

Label Encoding

Numerical to Categorical

PCA

SMOTE

methodology

Label Encoding

• Encoding the following variables:

'Gender', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category'

• For instance:

Education_Level	Marital_Status	Income_Category	Card_Category
3	1	2	0
2	2	4	0
2	1	3	0
3	3	4	0
5	1	2	0

Numerical to Categorical

• Converting the following variables:

'Customer_Age' & 'Months_on_book"

For instance:

```
age Conditions = [
        (data["Customer_Age"] < 25),
        (data["Customer Age"] >= 25) & (data["Customer Age"] < 35),</pre>
        (data["Customer_Age"] >= 35) & (data["Customer Age"] <45),</pre>
        (data["Customer_Age"] < 55) & (data["Customer_Age"] >=45),
        (data["Customer_Age"] >= 55) & (data["Customer_Age"] < 65),
        (data["Customer Age"] >=65)
age Categories = [0, 1, 2, 3, 4, 5]
data['Customer_Age_cat'] = np. select(age_Conditions, age_Categories)
print(data['Customer_Age_cat'])
```

Scaling the dataset + PCA

Steps:

- Splitting into two datasets: continuous & discrete
- Scaling the dataset with continuous variables
- Reducing dimensions to 2D
- Merging the dataset

Upsampling with SMOTE

Problem: The target variable is imbalance.

Solution: Deploy SMOTE to "unsample" dataset

Analysis

Scores of different models

→ Extra Tree Classifier has the highest score

Confusion Matrix - AdaBoost Classifier

Attritionn_1

Predicted label

Attritionn 0

Confusion Matrix - Decision Tree Classifier

Attritionn 0

Attritionn 1

Predicted label

Confusion Matrix - Gradient Boosting

Predicted label

Confusion Matrix - Random Forest Classifier

Predicted label

Confusion Matrix - Extra Tree Classifier

Feature Importance - Extra tree classifier

Feature Importance - AdaBoost classifier

Feature Importance - Random Forest classifier

Conclusion

Conclusions

Dataset Problem

Solving imbalance
problem of the dataset
can help increasing
accuracy rate of models

Model Selection

Extra tree classifier
perform better than all
the other algorithms in
terms of accuracy rate
and recall rate.

Important Features

"Total relationship count", "education level" and "dependent count" are important features.

Marketing Implications

Knowing which
customers will leave
allows us to offer
promotions to keep
them from leaving or
switching banks.

Thank you for your attention