Homework #5

Course: CSE4010-01 Computer Architecture

Professor Juho Kim

May 26, 2021

1. Submission

- Submission Deadline: June 1, 2021, 11:59 pm (Submit at Cyber Campus) (20% deduction per day. No credit after 3days)
- Write solving processes and answers on a blank white paper, scan it and submit it as a **PDF file.**
- The filename should be **HW5_STUDENT-ID_NAME.pdf** (ex. HW5_20219999_홍길동.pdf)
- **WARNING**:
 - Students who copy other's homework will get zero point for this assignment.
 - Submission without any solving processes will get zero points.
 - Submission with another form rather than pdf will have a 3 points reduction of the total score.
 - Submission with the wrong file name will have 3 points reduction of total score.
 - Before submission, please check whether your solving processes and answers are clear enough to read. (No credit will be given if your work is illegible)
 - All works must be hand-written.(50% reduction for typed submissions)

2. Reference

- Lecture notes
- Patterson and Hennessy, Computer Organization and Design 4th (ARM Edition), Morgan Kaufmann, 2010

1. Assume that main memory accesses take 70ns and that memory accesses are 36% of all instructions. The following table shows data for L1 caches attached to each of two processors, P1 and P2. (25pts)

	L1 size	L1 miss rate	L1 hit time
P1	8KB	4.3%	0.96ns
P2	16KB	3.4%	1.08ns

- 1-1 Assuming that the L1 hit time determines the cycle times for P1 and P2, what are their respective clock rates?
- 1-2 What is the AMAT(Average Memory Access Time) for each of P1 and P2?
- 1-3 Assuming a base CPI of 1.0, what is the total CPI for each of P1 and P2? Which processor is faster?
- **2.** For a direct-mapped cache design with 32-bit address, the following bits of the address are used to access the cache.(**10pts**)

Tag	Index	Offset
31-12	11-15	4-0

- 2-1 What is the cache line size (in words)?
- 2-2 How many entries does the cache have?
- **3.** Calculate the improvement in performance of interleaving compared to 1, 2, and 4 word block size.(25pts)

DI I :	4 1			
Block size	1 word			
Memory bandwidth		1 word		
Miss rate	1 word	25%		
(at each block size)	2 words	15%		
	4 words	10%		
Memory access per instruction		1.2		
Cache miss penalty		8		
CPI(without cache miss)		2		

Basic memory organization

- 1 cycle for send address
- 6 cycles for access time/word
- 1 cycle to send a word of data

3-1 What is CPI for base machine using one word block?

Assuming that block size is increased up to 2,

- 3-2 What is CPI for CPI with interleaving?
- 3-3 What is CPI for CPI without interleaving?

Assuming that block size is increased up to 4,

- 3-4 What is CPI for CPI with interleaving?
- 3-5 What is CPI for CPI without interleaving?

4. A direct mapped cache was designed with 8 blocks and 1 word/block. (20pts)

4-1 When this cache is used, fill the blanks in the below table.

Word Address	Binary Address	Hit/Miss	Cache block
22			
26			
22			
26			
16	•		
3			
16			
18			

4-2 What will be the shape of cache after completion of 4-1?

Index	Valid	Tag	Data
000			
001			
010			
011			
100			
101			
110			
111			

- 5. Assume that the miss rate of an instruction cache is 2% and the miss rate of the data cache is 4%. If a processor has a CPI of 2 without any memory stalls and the miss penalty is 100 cycles for all misses, determine how much faster a processor would run with a perfect cache that never missed. (Assume that the frequency of all loads and stress is 36%) (10pts)
- 6. For the below conditions, how much faster $CPU_{time\ with\ ideal\ cache}$ than $CPU_{time\ with\ stall}$? (10pts).
 - I-cache miss rate = 3%
 - D-cache miss rate = 5%
 - Miss penalty = 120 cycles for all misses
 - Base CPI (ideal cache) = 2
 - Load & Store are 40% of instructions