1. パターン認識システムの構成

1. 最近傍決定則(NN法)

2. アナログ信号のディジタル化

- 標本化と量子化
 - 細かすぎず、粗すぎず

2. 特徴抽出をしやすくする処理

• フィルタの適用

1画素ずつ走査

この画素の値を

$$\sum_{p=0}^{2} \sum_{q=0}^{2} x_{i+p,j+q} h_{pq}$$

と置き換える

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

-1	0	1
-1	0	1
-1	0	1

平均値フィルタ (縦) エッジフィルタ

3. 特徵抽出部

- 特徴抽出部の入出力
 - 入力:ディジタル信号
 - 出力: パターンの特徴を表す d 次元ベクトル

$$\boldsymbol{x} = (x_1, x_2, \dots, x_d)^T$$

- 特徵抽出処理
 - パターンの変動に影響されにくい特徴を選ぶ
 - 各軸のスケールを揃える:標準化処理

$$x_i' = \frac{x_i - m_i}{\sigma_i}$$
 $m_i, \ \sigma_i$:軸 i の平均、標準偏差

3. 主成分分析

 \bar{x}_1, \bar{x}_2 :平均値、 $N: \vec{y}$ データ数

対角成分は分散、 非対角成分は相関を表す

$$\sum (x_1 - \bar{x}_1)(x_2 - \bar{x}_2) \sum (x_2 - \bar{x}_2)^2$$

$\Sigma(t)$

半正定値(→固有値がすべて0以上の実数) 対称行列(→固有ベクトルが実数かつ直交) であるので、以下のように分解できる

$$\Sigma' = U^T \Sigma U = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

 $\Sigma' = U^T \Sigma U = \left(egin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right)$ 因有ベクトル $U_{\!\scriptscriptstyle I}$, $U_{\!\scriptscriptstyle 2}$ を並べたもの

 λ_{I} に対応する固有ベクトル U_{I} で 2次元データを1次元に射影

$$u_1 = U_1^T \boldsymbol{x}$$

寄与率=
$$\frac{\lambda_1}{\lambda_1 + \lambda_2}$$

4. プロトタイプと識別面の関係

- 特徴空間の分割
 - クラスを分離する境界…プロトタイプから等距離にある領域
 - 2次元のNN法では垂直2等分線
 - 多次元では超平面
 - 決定境界あるいは識別面と呼ぶ
 - 直線(超平面)で分割できる場合を線形分離可能と呼ぶ

4. 識別関数の設定

- 1クラス1プロトタイプの NN 法の定式化
 - クラス: ω_1,\ldots,ω_c
 - プロトタイプ: p_1,\ldots,p_c
 - 入力パターン:x(特徴ベクトル)
 - NN 法: $D(\boldsymbol{x},\boldsymbol{p}_i) = \|\boldsymbol{x}-\boldsymbol{p}_i\|$ を最小にする i を探す

$$\rightarrow \|\boldsymbol{x} - \boldsymbol{p}_i\|^2 = \|\boldsymbol{x}\|^2 - 2\boldsymbol{p}_i^T\boldsymbol{x} + \|\boldsymbol{p}_i\|^2$$

$$\rightarrow g_i(oldsymbol{x}) = oldsymbol{p}_i^T oldsymbol{x} - rac{1}{2} \|oldsymbol{p}_i\|^2$$
 を最大にする i を探す

$$\rightarrow g_i(\boldsymbol{x}) = w_{i0} + \sum_{j=1}^a w_{ij} x_j = \boldsymbol{w}_i^T \boldsymbol{x}$$

 $x \in \omega_i$ について、 $g_i(x)$ が 最大になるように w を 調整すればよい

4. パーセプトロンの学習アルゴリズム

- 2 クラス識別で g(x)=g₁(x)-g₂(x)=w^Tx と定義
 - w の初期値を適当に決める
 - 2. 学習パターンからひとつ x を選び、 g(x) を計算
 - 3. 誤識別が起きたときのみ、wを修正

$$oldsymbol{w}' = oldsymbol{w} +
ho oldsymbol{x}$$
 (クラス 1 のパターンをクラス 2 と誤ったとき)

$$oldsymbol{w}' = oldsymbol{w} -
ho oldsymbol{x}$$
 (クラス 2 のパターンをクラス 1 と誤ったとき)

学習係数

- 4. 2,3 を全ての学習パターンについて繰り返す
- 5. すべて識別できたら終了。そうでなければ2へ

学習データが線形分離可能な場合は、識別面を見つけて終了

4. k-NN 法

- k- N N 法とは
 - 全ての学習データをプロトタイプとする
 - 入力に近い順からk個のプロトタイプのクラスを 調べ、多数決を取る
 - 入力への近さを重みとした重み付き多数決を用いる場合もある

5. 誤差評価に基づく学習

- 2 クラス問題を考える場合
 - 誤差関数

$$J(\boldsymbol{w}) = rac{1}{2} \sum_{p=1}^{n} (\boldsymbol{w}^T \boldsymbol{x}_p - b_p)^2$$
 最小二乗学習

- 教師信号 b_p は $\mathbf{x}_p \in \omega_1$ のとき 1、 $\mathbf{x}_p \in \omega_2$ のとき -1
- パターン行列 $oldsymbol{X} = (oldsymbol{x}_1, \dots, oldsymbol{x}_n)^T$

教師信号ベクトル
$$\boldsymbol{b} = (b_1, \dots, b_n)^T$$

とすると
$$J(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{b}\|^2$$

5. 誤差評価に基づく学習

- 解析的な解法
 - *J(w)* が最小となる *w* を求める

$$\frac{\partial J}{\partial \boldsymbol{w}} = \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{b}) = 0$$

$$\Leftrightarrow \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{b}$$

$$\Leftrightarrow oldsymbol{w} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{b}$$
 最小二乗法

• 最急降下法

$$\mathbf{w}' = \mathbf{w} - \rho \frac{\partial J}{\partial \mathbf{w}}$$

= $\mathbf{w} - \rho \sum_{p=1}^{n} (\mathbf{w}^T \mathbf{x}_p - b_p) \mathbf{x}_p$

確率的最急降下法

各データに対して更新

ミニバッチ法

適切な個数でまとめて更新

- 線形 SVM
 - マージン最大となる線形識別面を求める

• 学習データ

$$\{(\boldsymbol{x}_i, y_i)\}$$
 $i = 1, \dots, n, y_i = 1 \text{ or } -1$

・ 線形識別面の式

$$\boldsymbol{w}^T \boldsymbol{x} + w_0 = 0$$

• 識別面の制約の導入(係数を定数倍しても平面は不変)

$$\min_{i=1,\dots,n} |\boldsymbol{w}^T \boldsymbol{x}_i + w_0| = 1$$

• 学習パターンと識別面との最小距離(=マージン)

$$\min_{i=1,...,n} Dist(oldsymbol{x}_i) = \min_{i=1,...,n} rac{|oldsymbol{w}^T oldsymbol{x}_i + w_0|}{||oldsymbol{w}||} = rac{1}{||oldsymbol{w}||}$$
 ் ಸಂಸ್ಥಿತಿ ಪ್ರಕ್ರಿಸಿಗೆ ಸಂಸ್ಥೆ ಸಂಸ

- 目的関数: $\min \frac{1}{2}||\boldsymbol{w}||^2$ $\frac{\text{Maliphanology}}{\text{Maliphanology}}$
- 制約条件: $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge 1$ i = 1, ..., n
- 解法:ラグランジュの未定乗数法
 - 問題 $\min f(x) \ s.t. \ g(x) = 0$
 - ラグランジュ関数 $L(x,\alpha) = f(x) \alpha g(x)$
 - $-\alpha \geq 0$
 - $-x, \alpha$ で偏微分して 0 になる値が極値

計算

$$L(\boldsymbol{w}, w_0, \boldsymbol{\alpha}) = \frac{1}{2} ||\boldsymbol{w}||^2 - \sum_{i=1}^n \alpha_i (y_i(\boldsymbol{w}^T \boldsymbol{x} + w_0) - 1)$$

$$\frac{\partial L}{\partial w_0} = 0 \quad \Rightarrow \sum_{i=1}^n \alpha_i y_i = 0$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = 0 \quad \Rightarrow \boldsymbol{w} = \sum_{i=1}^{n} \alpha_i y_i \boldsymbol{x}_i$$

$$L(m{lpha}) = rac{1}{2} \sum_{i,j=1}^n lpha_i lpha_j y_i y_j m{x}_i^T m{x}_j - \sum_{i=1}^n lpha_i$$
 最大化 2 次計画問題 $lpha_i \geq 0$

• 特徴ベクトルの次元数を増やす

ただし、元の空間でのデータ間の 距離関係は保持するように

- 非線形変換関数: $\phi(x)$
- カーネル関数
 - 元の空間での距離が変換後の空間の内積に対応

$$K(\boldsymbol{x}, \boldsymbol{x}') = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}')$$

線形カーネル $(\boldsymbol{x}^T \boldsymbol{x}')^p$

を用いる場合もある

- カーネル関数の例
 - 多項式カーネル

$$K(\boldsymbol{x}, \boldsymbol{x}') = (\boldsymbol{x}^T \boldsymbol{x}' + 1)^p$$

- ガウシアンカーネル
$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp(-\frac{||\boldsymbol{x} - \boldsymbol{x}'||^2}{\sigma^2})$$

この形であれば、対応する非線形変換が 存在することが数学的に保証されている

- 変換後の識別関数: $g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + w_0$
- SVM で求めた w の値を代入

$$g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y_i \phi(\mathbf{x})^T \phi(\mathbf{x}_i) + w_0$$

$$= \sum_{i=1}^{n} \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) + w_0$$
非線形変換の
式は不要!!!

カーネルトリック

• 単層パーセプトロンの定義

以後、 \boldsymbol{w} は w_{o} を含む

• $\boldsymbol{w}^T\boldsymbol{x}=0$ という特徴空間上の識別面を表現

• 誤差逆伝播法

- 1.リンクの重みを小さな初期値に設定
- 2.個々の学習データ (x_p,b_p) に対して以下繰り返し
 - a)入力 x_p に対するネットワークの出力 g_p を計算
 - b)出力層の k 番目のユニットに対してエラー量 ε を計算

$$\varepsilon_k \leftarrow (g_k - b_k)g_k(1 - g_k)$$

c)中間層の h 番目のユニットに対してエラー量 ε を計算

$$\varepsilon_j \leftarrow (\sum_k \varepsilon_k w_k) g_j (1 - g_j)$$

d)重みの更新

$$w_{ji} \leftarrow w_{ji} + \rho \varepsilon_j x_{pj}$$

局所最適解の可能性が 高いので、初期値を変 えて繰り返す

8. 統計的手法

- 事後確率最大法(ベイズ決定則)
 - $P(\omega_i | \mathbf{x})$ を最大にするクラス ω_i を識別結果とする

$$\underset{i=1,...,c}{\operatorname{arg max}} P(\omega_i | \boldsymbol{x})$$

$$=rg\max_{i=1,...,c}rac{p(oldsymbol{x}|\omega_i)P(\omega_i)}{p(oldsymbol{x})}$$
 べてズの定理

$$= \underset{i=1,...,c}{\operatorname{arg max}} p(\boldsymbol{x}|\omega_i) P(\omega_i)$$

8. 統計的手法

- 事前確率 P(ω_i) の求め方
 - 最尤推定
 - 学習データ数: N
 - クラス ω_i のデータ数: n_i
 - 事前確率の最尤推定値

$$P(\omega_i) = \frac{n_i}{N}$$

8. 統計的手法

- クラス分布 $p(x|\omega_i)$ の求め方
 - 確率分布の形を仮定して、そのパラメータを学習 データから推定
 - 例) 正規分布:平均と共分散行列を推定

$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}_i|^{\frac{1}{2}}} \exp\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{m}_i)^t \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{m}_i)\}$$

 $m{m}_i$: 平均ベクトル

 \sum_{i} : 共分散行列

9. 分割学習法

- ハイパーパラメータ調整を含む分割学習法
 - 全学習データ χ を学習用データ集合 χ 、調整用データ集合 χ 、評価用データ集合 χ に分割する
 - χ を用いて識別機を設計、 χ を用いてハイパーパラメータを調整、 χ を用いて誤識別率を推定する

9. 交差確認法

9. ハイパーパラメータ調整

- パラメータ 学習可能
 - 識別関数の重み
 - ニューラルネットワークの結合の重み
 - k-NN 法のプロトタイプの位置
- ハイパーパラメータ → 学習結果によって調整
 - 識別関数の次数
 - ニューラルネットワークの中間ユニット数
 - k-NN 法の k

9. ハイパーパラメータ調整

- ハイパーパラメータが複数ある場合
 - グリッドサーチ:各格子点で e_{λ} を求める

