Lecture 11: Neural Networks; Design and Regularization

S-109A Introduction to Data Science

Pavlos Protopapas and Kevin Rader

Representation

Representation Matters

Neural Network

Learning Multiple Components

(Goodfellow 2016)

Depth = Repeated Compositions

Beyond Linear Models

Linear models

- Can be fit efficiently (via convex optimization)
- Limited model capacity

Alternative:

$$f(x) = w^T f(x)$$

Where ϕ is a non-linear transform

Traditional ML

Manually engineer ϕ

Domain specific, enormous human effort

Generic transform

- Maps to a higher-dimensional space
- Kernel methods: e.g. RBF kernels
- Over fitting: does not generalize well to test set
- Cannot encode enough prior information

Deep Learning

• Directly learn ϕ

$$f(x;q) = w^T f(x;q)$$

where θ are parameters of the transform

- ϕ defines hidden layers
- Non-convex optimization
- Can encode prior beliefs, generalizes well

Neural Networks

Hand-written digit recognition: MNIST data

Example: Learning XOR

$$h_1 = \mathcal{S}(w_1^T x + c_1)$$

$$h_2 = \mathcal{S}(w_2^T x + c_2)$$

$$y = S(w^T h + b)$$

where,

$$S(z) = \max\{0, z\}$$

Design Choices

Cost function

Output units

Hidden units

Architecture

Optimizer

Cost Function

Cross-entropy between training data and model distribution (i.e. negative log-likelihood)

$$J(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}, \mathbf{y} \sim \hat{p}_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x})$$

Do not need to design separate cost functions Gradient of cost function must be large enough

Cost Function

Example: sigmoid output + squared loss

$$S(z) = \frac{1}{1 + e^{-z}}$$

$$L_{sq}(y,z) = (y - S(z))^2$$

Flat surfaces

Cost Function

Example: sigmoid output + cross-entropy loss

$$L_{ce}(y,z) = -(y\log(z) + (1-y)\log(1-z))$$

Design Choices

Cost function

Output units

Hidden units

Architecture

Optimizer

Output Units

Output Type	Output Distribution	Output Layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary cross- entropy
Discrete	Multinoulli	Softmax	Discrete cross- entropy
Continuous	Gaussian	Linear	Gaussian cross- entropy (MSE)
Continuous	Mixture of Gaussian	Mixture Density	Cross-entropy
Continuous	Arbitrary	See part III: GAN, VAE, FVBN	Various

Softmax Output

Discrete / Multinoulli output distribution

For output scores $z_1, ..., z_n$

Log-likelihood undoes exp softmax
$$(z)_i = \frac{\exp(z_i)}{\mathring{a}_i \exp(z_j)}$$

$$\log \operatorname{softmax}(z)_{i} = z_{i} - \log \mathop{\stackrel{\circ}{\triangle}} \exp(z_{j})$$

$$y = z_{i} - \max_{j} z_{j}$$

Design Choices

Cost function

Output units

Hidden units

Architecture

Optimizer

Hidden Units

$$\mathbf{h} = g(\mathbf{W}^T x + \mathbf{b})$$

with activation function *g*

- Ensure gradients remain large through hidden unit
- Preferred: piece-wise linear activation
- Avoid sigmoid/tanh activation
 - Do not provide useful gradient info when they saturate

ReLU

Rectified Linear Units

 $g(z) = \max\{0, z\}$

Gradient is 1 whenever unit is active

- More useful for learning compared to sigmoid
- No useful gradient information when z<0

Generalized ReLU

Generalization: For $\alpha_i > 0$

$$g(z; \partial)_i = \max\{0, z_i\} + \partial_i \min\{0, z_i\}$$

E.g. Absolute value ReLU:
$$\partial_i = -1 \ \triangleright \ g(z) = |z|$$

Maxout

Directly learn the activation function

Max of k linear functions

$$g(z) = \max_{i \in \{1, \perp, k\}} \partial_i z_i + b_i$$

Design Choices

Cost function

Output units

Hidden units

Architecture

Optimizer

Universal Approximation Theorem

One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy

So why deeper?

- Shallow net may need (exponentially) more width
- Shallow net may overfit more

Better Generalization with Depth

Large, Shallow Nets Overfit More

Design Choices

Cost function

Output units

Hidden units

Architecture

Optimizer

Backpropagation

Avoids repeated sub-expressions

Uses dynamic programming (table filling)

Trades-off memory for speed

Backprop: Arithmetic

Jacobian-gradient products

$$\mathbf{z} = g(\mathbf{x})$$

$$\mathbf{v} = f(\mathbf{z})$$

$$\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_m} \end{bmatrix} = \begin{bmatrix} \frac{\partial z_1}{\partial x_1} & \dots & \frac{\partial z_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial z_1}{\partial x_n} & \dots & \frac{\partial z_m}{\partial x_n} \end{bmatrix} \times \begin{bmatrix} \frac{\partial y}{\partial z_1} \\ \vdots \\ \frac{\partial y}{\partial z_m} \end{bmatrix}$$

grad w.r.t. x

Jacobian of 'g'

grad w.r.t. z

$$\nabla_{\mathbf{x}} y = \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right)^{T} \nabla_{\mathbf{z}} y \qquad \text{Apply recursively}$$

Backprop: Overview

Forward prop: compute activations

Compute loss

Back-prop: compute derivatives

Linear activation functions

No bias

Squared loss

S109A, PROTOPAPAS, RADER

Backprop: Example

Backward prop: Compute derivatives w.r.t. weights a_1 , a_2 , b_1 and b_2

Backprop: Example

Backprop: Example

Regularization

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Norm Penalties

Optimize:

$$J(q; X, y) + aW(q)$$

Biases not penalized

L_2 regularization:

- decays weights
- MAP estimation with Gaussian prior

L_1 regularization:

- encourages sparsity
- MAP estimation with Laplacian prior

$$W(q) = \frac{1}{2} \|\mathbf{w}\|_2^2$$

$$W(q) = \left\| \mathbf{w} \right\|_1$$

Norm Penalties as Constraints

$$\min_{\mathbb{W}(q) \leq K} J(q; X, y)$$

Useful if *K* is known in advance

Optimization:

- Construct Lagrangian and apply gradient descent
- Projected gradient descent

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Early Stopping

Early Stopping

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Data Augmentation

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Noise Robustness

Random perturbation of network weights

- Gaussian noise: Equivalent to minimizing loss with regularization term
- Encourages smooth function: small perturbation in weights leads to small changes in output

Injecting noise in output labels

Better convergence: prevents pursuit of hard probabilities

$$\mathbf{E} \Big[\Big\| \nabla_{W} y(x) \Big\| \Big]$$

Original dataset First ensemble member First resampled dataset Second resampled dataset Second ensemble member

Outline

Norm Penalties

Early Stopping

Data Augmentation

Bagging

Dropout

Dropout

Train all sub-networks obtained by removing non-output units from base network

Dropout: Stochastic GD

For each new example/mini-batch:

- Randomly sample a binary mask μ independently, where μ_i indicates if input/hidden node i is included
- Multiply output of node i with μ_i , and perform gradient update

Typically, an input node is included with prob=0.8, hidden node with prob=0.5

Dropout: Weight Scaling

During prediction time use all units, but scale weights with probability of inclusion

Approximates the followi

$$\tilde{p}_{ ext{ensemble}}(y \mid \boldsymbol{x}) = \sqrt[2^d]{\prod_{\boldsymbol{\mu}} p(y \mid \boldsymbol{x}, \boldsymbol{\mu})}$$

Cristina Scheau (2016)

Adversarial Examples

confidence

confidence

Training on adversarial examples is mostly intended to improve security, but can sometimes provide generic regularization.

deeplearningbook.org

confidence

Multi-task Learning

S109A, PROTOPAPAS, RADER

Optimization

Learning vs. Optimization

Goal of learning: minimize generalization error In practice, empirical risk minimization:

$$J(q) = \mathbf{E}_{(x,y) \sim p_{data}} \left[L(f(x;q), y) \right]$$

$$\hat{J}(q) = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; q), y^{(i)})$$

Quantity optimized different from the quantity we care about

Batch vs. Stochastic Algorithms

Batch algorithms

Optimize empirical risk using exact gradients

Stochastic algorithms

Estimates gradient from a small random sample

$$\nabla J(q) = \mathbf{E}_{(x,y) \sim p_{data}} \left[\nabla L(f(x;q), y) \right]$$

Large mini-batch: gradient computation expensive

Small mini-batch: greater variance in estimate, longer steps for convergence

Critical Points

Points with zero gradient

2nd-derivate (Hessian) determines curvature

Stochastic Gradient Descent

Take small steps in direction of negative gradient

Sample *m* examples from training set and compute:

Update parameters:
$$g = \frac{1}{m} \sum_{i} \nabla L(f(x^{(i)}; q), y^{(i)})$$

$$Q = Q - e_k g$$

In practice: shuffle training set once and pass through multiple times

Stochastic Gradient Descent

Oscillations because updates do not exploit curvature information

Goodfellow et al. (2016)

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Batch Normalization

Local Minima

Local Minima

Old view: local minima is major problem in neural network training

Recent view:

- For sufficiently large neural networks, most local minima incur low cost
- Not important to find true global minimum

Saddle Points

Recent studies indicate that in high dim, saddle points are more likely than local min

Gradient can be very small near saddle points

Saddle Points

SGD is seen to escape saddle points

Moves down-hill, uses noisy gradients

Second-order methods get stuck

solves for a point with zero gradient

Poor Conditioning

Poorly conditioned Hessian matrix

High curvature: small steps leads to huge increase
 Learning is slow despite strong gradients

Oscillations slow down progress

No Critical Points

Some cost functions do not have critical points

No Critical Points

Gradient norm increases, but validation error decreases

Convolution Nets for Object Detection

Linear activation

$$\mathbf{h}_1 = \mathbf{W}\mathbf{x}$$

$$\mathbf{h}_i = \mathbf{W}\mathbf{h}_{i-1}, \quad i = 2\square \quad n$$

$$y = S(h_1^n + h_2^n)$$
, where $S(s) = \frac{1}{1 + e^{-s}}$

Suppose
$$\mathbf{W} = \hat{\mathbf{e}} \begin{bmatrix} \hat{e} & a & 0 & \hat{\mathbf{u}} \\ \hat{e} & 0 & b & \hat{\mathbf{u}} \end{bmatrix}$$

$$\begin{bmatrix} h_1^1 \\ h_2^1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \cdots \qquad \begin{bmatrix} h_1^n \\ h_2^n \end{bmatrix} = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = S(a^{n}x_{1} + b^{n}x_{2})$$

$$\nabla y = S'(a^{n}x_{1} + b^{n}x_{2}) \begin{bmatrix} na^{n-1}x_{1} \\ nb^{n-1}x_{2} \end{bmatrix}$$

Suppose
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Case 1: a = 1, b = 2:

$$y \to 1$$
, $\nabla y \to \begin{bmatrix} n \\ n2^{n-1} \end{bmatrix}$ Explodes!

Case 2:
$$a = 0.5$$
, $b = 0.9$:

$$y \to 0, \quad \nabla y \to \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Vanishes!

Exploding gradients lead to cliffs

Can be mitigated using gradient clipping

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

SGD is slow when there is high curvature

Average gradient presents faster path to opt:

vertical components cancel out

Uses past gradients for update

Maintains a new quantity: 'velocity'

Exponentially decaying average of gradients:

$$v = av + (-eg)$$
Current gradient update

 $a\hat{1}$ [0,1) controls how quickly effect of past gradients decay

Compute gradient estimate:

$$g = \frac{1}{m} \sum_{i} \nabla_{q} L(f(x^{(i)}; q), y^{(i)})$$

Update velocity:

$$v = \partial v - \partial g$$

Update parameters:

$$Q = Q + v$$

Damped oscillations: gradients in opposite directions get cancelled out

Goodfellow et al. (2016)

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Adaptive Learning Rates

Oscillations along vertical direction

Learning must be slower along parameter 2

Use a different learning rate for each parameter?

AdaGrad

Accumulate squared gradients:

$$r_i = r_i + g_i^2$$

Update each parameter:

$$Q_i = Q_i - \frac{\theta}{d + \sqrt{r_i}} g_i$$

Inversely proportional to cumulative squared gradient

Greater progress along gently sloped directions

RMSProp

- For non-convex problems, AdaGrad can prematurely decrease learning rate
- Use exponentially weighted average for gradient accumulation

$$r_i = r_i + (1 - r_i)g_i^2$$

$$Q_i = Q_i - \frac{\theta}{Q + \sqrt{r_i}} g_i$$

Adam

- RMSProp + Momentum
- Estimate first moment:

$$v_i = \Gamma_1 v_i + (1 - \Gamma_1) g_i$$

Estimate second moment:

$$r_i = r_2 r_i + (1 - r_2) g_i^2$$

Update parameters:

$$Q_i = Q_i - \frac{e}{O + \sqrt{r_i}} v_i$$
 Works well in practice is fairly robust to hyper-parameters

Works well in practice, hyper-parameters

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Parameter Initialization

- Goal: break symmetry between units
 - so that each unit computes a different function
- Initialize all weights (not biases) randomly
 - Gaussian or uniform distribution
- Scale of initialization?
 - Large -> grad explosion, Small -> grad vanishing

Xavier Initialization

- Heuristic for all outputs to have unit variance
- For a fully-connected layer with *m* inputs:

$$W_{ij} \sim N_{\xi}^{2}0, \frac{10}{m}$$

• For ReLU units, it is recommended:

$$W_{ij} \sim N_{\xi}^{20}, \frac{20}{m}$$

Outline

Challenges in Optimization

Momentum

Adaptive Learning Rate

Parameter Initialization

Feature Normalization

Good practice to normalize features before applying learning algorithm:

Feature vector $\chi = \frac{\chi - m}{S}$

Features in same scale: mean 0 and variance I

Speeds up learning

Before normalization

After normalization

Internal Covariance Shift

Each hidden layer changes distribution of inputs to next layer: slows down learning

Training time:

Mini-batch of activations for layer to normalize

$$H = \begin{bmatrix} H_{11} & \cdots & H_{1K} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NK} \end{bmatrix}$$

K hidden layer activations

N data points in mini-batch

Training time:

Mini-batch of activations for layer to normalize

where

$$H' = \frac{H - m}{S}$$

$$M = \frac{1}{m} \mathring{a} H_{i,:}$$

Vector of mean activations across mini-batch

$$M = \frac{1}{m} \mathring{a}_{i} H_{i,:} \qquad S = \sqrt{\frac{1}{m}} \mathring{a}_{i} (H - m)_{i}^{2} + d$$

Vector of SD of each unit across mini-batch

Training time:

- Normalization can reduce expressive power
- Instead use:

Learnable parameters

Allows network to control range of normalization

Differentiate the joint loss for *N* mini-batches

Back-propagate *through* the norm operations

Test time:

- Model needs to be evaluated on a single example
- Replace μ and σ with running averages collected during training

