Question 1. (a) Prove that the sequence defined by $x_1 = 3$ and

$$x_{n+1} = \frac{1}{4 - x_n}$$

converges.

- (b) Now that we know that $\lim_{n\to\infty} x_n$ exists, explain why $\lim_{n\to\infty} x_{n+1}$ must also exist and equal to the same value.
- (c) Take the limit of each side of the recursive equation in (a) to explicitly compute $\lim_{n\to\infty} x_n$.

Solution 1. Let $x_1 = 3$ and $x_{n+1} = \frac{1}{4-x_n}$.

(a) We will prove that $(x_n)_n$ converges using mathematical induction and the monotone convergence theorem. For the base case, we have $x_1 = 3$, and note that $x_2 = \frac{1}{4-x_1} = \frac{1}{4-3} = 1$. We claim that $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$. We have that

$$\frac{1}{4 - x_{n+1}} \le \frac{1}{4 - x_{n+2}} \Rightarrow 4 - x_{n+1} \ge 4 - x_{n+2} \Rightarrow -x_{n+1} \ge x_{n+2} \Rightarrow x_{n+1} \le x_{n+2}$$

Therefore, we have shown that x_n is monotonically increasing for all $n \in \mathbb{N}$. Then, note that since $x_n < 3$ and $x_{n+1} > 0$ for all $n \in \mathbb{N}$, we have that x_n is bounded. Therefore, by the monotone convergence theorem, $(x_n)_n$ converges.

- (b) The limit of a sequence is the same as the limit of the sequence of the next term because the value of the convergence does not change whenever we adjust the index by one.
- (c) Let $x = \lim_{n \to \infty} x_n = \frac{1}{4-x}$. We solve for x.

$$x = \frac{1}{4-x} \Rightarrow x(4-x) = 1 \Rightarrow 4x - x^2 = 1 \Rightarrow x^2 - 4x + 1 = 0$$

Using the Quadratic Formula,

$$x = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(1)}}{2(1)} = \frac{4 \pm \sqrt{12}}{2} = \frac{4 \pm 2\sqrt{3}}{2} = 2 \pm \sqrt{3}$$

Note that $x=2+\sqrt{3}>3$, so we reject this solution. Therefore, the converging limit is $x=2-\sqrt{3}$.

Question 2. (a) Show that

$$\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \dots$$

converges and find the limit.

(b) Does the sequence

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

converge? If so, find the limit.

Solution 2. (a) Let $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2+x_n}$. We claim that $(x_n)_n$ is a convergent sequence. We will use mathematical induction and the monotone convergence theorem to show this. For the base case we have $x_1 = \sqrt{2}$, and note that $x_2 = \sqrt{2+x_1} = \sqrt{2+\sqrt{2}}$. We claim that $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. We have that

$$\sqrt{2+x_n} \le \sqrt{2+x_{n+1}} \Rightarrow 2+x_n \le 2+x_{n+1} \Rightarrow x_n \le x_{n+1}$$

So we have shown that x_n is monotonically increasing for all $n \in \mathbb{N}$. Then note that since $x_n < 2$ and $x_n > 0$ we have that $(x_n)_n$ is bounded. Therefore, by the monotone convergence theorem, $(x_n)_n$ converges.

Let $x = \lim_{n \to \infty} x_n = \sqrt{2+x}$. We solve for x.

$$x = \sqrt{2+x} \Rightarrow x^2 = 2 + x \Rightarrow x^2 - x - 2 = 0$$

Then we have that x = -1 and x = 2. We reject x = -1, since $x_n > 0$ for all $n \in \mathbb{N}$. Therefore, the converging limit is x = 2.

(b) Let $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2x_n}$. We claim that the sequence $(x_n)_n$ converges. We will use mathematical induction and the monotone convergence theorem to show this. For the base case, we have $x_1 = \sqrt{2}$ and $x_2 = \sqrt{2x_1} = \sqrt{2\sqrt{2}}$, so we have that $x_1 \le x_2$. Then we claim that $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$. We have

$$\sqrt{2x_n} \le \sqrt{2x_{n+1}} \Rightarrow 2x_n \le 2x_{n+1} \Rightarrow x_n \le x_{n+1}$$

Therefore, we have shown that $(x_n)_n$ is monotonically increasing. Since $x_n > 0$ and $x_n < 2$, we have that $(x_n)_n$ is bounded. So by the monotone convergence theorem, $(x_n)_n$ converges.

Let $x = \lim_{n \to \infty} x_n = \sqrt{2x}$. We solve for x.

$$x = \sqrt{2x} \Rightarrow x^2 = 2x \Rightarrow x^2 - 2x = 0$$

so we have x=0 and x=2. Since $x_n>0$, the converging limit of $(x_n)_n$ is x=2.

Question 3 (Calculating Square Roots). Let $x_1 = 2$ and define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$$

- (a) Show that x_n^2 is always greater than or equal to 2, and then use this to prove that $x_n x_{n+1} \ge 0$. Conclude that $\lim_{n\to\infty} x_n = \sqrt{2}$.
- (b) Modify the sequence $(x_n)_n$ so that it converges to \sqrt{c} .

Solution 3. (a) We will show by mathematical induction that $x_n^2 \ge 2$. Since $x_1^2 \ge 2$, the base case is proven. Assume that $x_n^2 \ge 2$. We want to show that $x_{n+1}^2 \ge 2$.

$$x_{n+1}^2 = \frac{1}{4} \left(x_n + \frac{2}{x_n} \right)^2 = \frac{1}{4} \left(\frac{x_n^2 + 2}{x_n} \right)^2 \ge \frac{1}{4} \left(\frac{x_n + 2}{\sqrt{2}} \right)^2$$

Here, since $x_n^2 \ge 2$, then $x_n^2 + 2 \ge 4$. Therefore,

$$\frac{1}{4} \left(\frac{4}{\sqrt{2}} \right)^2 = \frac{4}{2} = 2 \ge 2$$

Therefore, we have shown that $x_n^2 \ge 2$. To show that $x_n - x_{n+1} \ge 0$, we use the fact that $x_n \ge 0$, and so

$$x_n - x_{n+1} = x_n - \frac{1}{2}\left(x_n + \frac{2}{x_n}\right) = x_n - \frac{1}{2}x_n - \frac{1}{x_n} \ge 0$$

Since $(x_n)_n \to x$, let $x^2 = 2$. Then $x = \pm \sqrt{2}$. Reject $x = -\sqrt{2}$. So $x = \sqrt{2}$, as required.

(b) Let $x_1 = c$ and define the sequence

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right)$$

Solve $x^2 = c$, and find that $x = \sqrt{c}$ is the converging limit of $(x_n)_n$.

Question 4 (Arithmetic–Geometric Mean). (a) Explain why $\sqrt{xy} \le \frac{x+y}{2}$ for any two positive real numbers x and y. (The geometric mean is always less than the arithmetic mean)

(b) Now let $0 \le x_1 \le y_1$ and define

$$x_{n+1} = \sqrt{x_n y_n} \qquad y_{n+1} = \frac{x_n + y_n}{2}$$

Show that $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ both exist and are equal.

Solution 4. (a) Since $\sqrt{xy} \le \frac{x+y}{2}$, note that

$$xy \le \frac{(x+y)^2}{4} \Rightarrow 4xy \le (x+y)^2 \Rightarrow (x+y)^2 - 4xy \ge 0 \Rightarrow x^2 - 2xy + y^2 \ge 0 \Rightarrow (x-y)^2 \ge 0$$

(b) Let $x = \lim_{n \to \infty} x_{n+1}$ and let $y = \lim_{n \to \infty} y_{n+1}$. Then if

$$x = \lim_{n \to \infty} x_{n+1} = \sqrt{xy}$$
 $y = \lim_{n \to \infty} y_{n+1} = \frac{x+y}{2}$

For the first equation, we have

$$x^2 = xy \Rightarrow x^2 - xy = 0 \Rightarrow x(x - y) = 0$$

So we have x = 0 or x = y. Similarly, for the second equation, we have

$$2y = x + y \Rightarrow x = y$$

So the only valid solution would be x=y. Therefore, $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ as desired.

Question 5. Give an example of each of the following, or argue that such a request is impossible.

- (a) A Cauchy sequence that is not monotone.
- (b) A Cauchy sequence with an unbounded sequence.

Solution 5. (a) True. Let $x_n = \frac{(-1)^n}{n}$. Then the sequence is Cauchy the sequence is convergent, but it is oscillating so it is not monotonic.

(b) False. A convergent sequence is said to be Cauchy. All convergent sequences are Cauchy. If the sequence is not bounded, it does not converge, so it is not Cauchy.

Question 6. If $(z_n)_n$ and $(w_n)_n$ are Cauchy sequences, then one easy way to prove that $(z_n + w_n)_n$ is Cauchy is to use the Cauchy Criterion. Since $(z_n)_n$ and $(w_n)_n$ must be convergent, and the Algebraic Limit Theorem then implies that $(z_n + w_n)_n$ is convergent and hence Cauchy.

- (a) Give a direct argument that $(z_n + w_n)_n$ is a Cauchy sequence that does not use the Cauchy Criterion or the Algebraic Limit Theorem.
- (b) Do the same for the product $(z_n w_n)_n$.

Solution 6. (a) Let $\epsilon > 0$ be arbitrary. Since $(z_n)_n$ converges to $L \in \mathbb{C}$, $(z_n)_n$ is a Cauchy sequence and there exists an $N_1 \in \mathbb{N}$ such that

$$|z_n - z_m| < \frac{\epsilon}{2}$$

for all $n \geq N_1$. Similarly, since $(w_n)_n$ converges to $K \in \mathbb{C}$, $(w_n)_n$ is a Cauchy sequence and there exists an $N_2 \in \mathbb{N}$ such that

$$|w_n - w_m| < \frac{\epsilon}{2}$$

Let $N = \max\{N_1, N_2\}$. Then for all $n \geq N$,

$$|(z_n + w_n) - (z_m - w_m)| \le |z_n + z_m| + |w_n - w_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, as $\epsilon > 0$ was arbitrary, $(z_n + w_n)_n$ is a Cauchy sequence.

(b) Let $\epsilon > 0$ be arbitrary. Since $(z_n)_n$ converges to L, $(z_n)_n$ is a Cauchy sequence and there exists an $N_1 \in \mathbb{N}$ such that

$$|z_n - z_m| < \frac{\epsilon}{2M_2}$$

for all $n \geq N_1$. Similarly, since $(w_n)_n$ converges to K, $(w_n)_n$ is a Cauchy sequence and there exists an $N_2 \in \mathbb{N}$ such that

$$|w_n - w_m| < \frac{\epsilon}{2M_1}$$

Let $N = \max\{N_1, N_2\}$. Then for all $n \geq N$,

$$|z_{n}w_{n} - z_{m}w_{m}| \leq |z_{n}w_{n} - z_{n}w_{m}| + |z_{n}w_{m} - z_{m}w_{m}|$$

$$= |z_{n}||w_{n} - w_{m}| + |w_{m}||z_{n} - z_{m}|$$

$$< |z_{n}|\frac{\epsilon}{2M_{2}} + |w_{m}|\frac{\epsilon}{2M_{1}}$$

$$\leq M_{2}\frac{\epsilon}{2M_{2}} + M_{1}\frac{\epsilon}{2M_{1}}$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore, as $\epsilon > 0$ was arbitrary, $(z_n w_n)_n$ is a Cauchy sequence.

Question 7. Decide whether each of the following series converges or diverges.

- (a) $\sum_{n=1}^{\infty} \frac{1}{2^n + n}$
- (b) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$
- (c) $1 \frac{3}{4} + \frac{4}{6} \frac{5}{8} + \frac{6}{10} \frac{7}{12} + \cdots$

Solution 7. (a) Let $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$. We claim that the series converges. To see this, we will use the Comparison Test. Since

$$\frac{1}{2^n + n} \le \frac{1}{2^n}$$

for all $n \in \mathbb{N}$, and since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converges, therefore, the sum $\sum_{n=1}^{\infty} \frac{1}{2^n+n}$ also converges.

(b) Let $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$. We claim that the series converges. To see this, we will use the Comparison Test. Since

$$\frac{\sin n}{n^2} \le \frac{1}{n^2}$$

for all $n \in \mathbb{N}$ and since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-series test, the sum $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ also converges.

(c) Let $\sum_{n=1}^{\infty} x_n = 1 - \frac{3}{4} + \frac{4}{6} - \frac{5}{8} + \frac{6}{10} - \frac{7}{12} + \cdots$. We claim that the series diverges. Since

$$x_n = \frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n}$$

The terms never get smaller than $\frac{1}{2}$ for all $n \in \mathbb{N}$. Therefore, the series diverges.

Question 8. Give an example of each or explain why the request is impossible by referencing the proper theorem(s).

- (a) Two series $\sum_{n=1}^{\infty} z_n$ and $\sum_{n=1}^{\infty} w_n$ that both diverge but where $\sum_{n=1}^{\infty} z_n w_n$ converges.
- (b) A convergent series $\sum_{n=1}^{\infty} z_n$ and a bounded sequence $(w_n)_n$ such that $\sum_{n=1}^{\infty} z_n w_n$ diverges.
- (c) Two sequences $(z_n)_n$ and $(w_n)_n$ where $\sum_{n=1}^{\infty} z_n$ and $\sum_{n=1}^{\infty} (z_n + w_n)$ both converge but $\sum_{n=1}^{\infty} w_n$ diverges.
- (d) A sequence $(z_n)_n$ satisfying $0 \le z_n \le \frac{1}{n}$ where $\sum_{n=1}^{\infty} (-1)^n z_n$ diverges.

Solution 8. (a) True. We can let $z_n = w_n = \frac{1}{n}$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the *p*-series test, the series $\sum_{n=1}^{\infty} z_n w_n$ converges.

- (b) True. Let $z_n = \frac{(-1)^n}{n}$ and $w_n = (-1)^n$. Then $\sum_{n=1}^{\infty} z_n w_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (-1)^n = \sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- (c) False. By the Algebraic Sum Property, $\sum_{n=1}^{\infty} z_n + \sum_{n=1}^{\infty} w_n = \sum_{n=1}^{\infty} (z_n + w_n)$, or

$$\sum_{n=1}^{\infty} (z_n + w_n) - \sum_{n=1}^{\infty} z_n = \sum_{n=1}^{\infty} w_n$$

The left hand side is convergent, but the right hand side is divergent, so it is not possible.

(d) True. The sequence

$$z_n = \begin{cases} \frac{1}{n} & n \text{ even} \\ 0 & \text{otherwise} \end{cases}$$

diverges for the same reason the harmonic series diverges.

Question 9. (a) Show that if $z_n > 0$ with $\lim_{n \to \infty} nz_n = L$ with $L \neq 0$, the series $\sum_{n=1}^{\infty} z_n$ diverges.

(b) Assume $z_n > 0$ and $\lim_{n \to \infty} n^2 z_n$ exists. Show that $\sum_{n=1}^{\infty} z_n$ converges.

Solution 9. (a) Suppose $\lim_{n\to\infty} nz_n = L \neq 0$. Then let $\epsilon = \frac{1}{2}$. We have that $nz_n \in (L - \frac{1}{2}, L + \frac{1}{2})$, implying that $z_n > \frac{L}{2n}$. The series $\sum_{n=1}^{\infty} z_n$ diverges since

$$\sum_{n=1}^{\infty} z_n > \sum_{n=1}^{\infty} \frac{L}{2n}$$

diverges as it is a multiple of the harmonic series.

(b) Let $L = \lim_{n \to \infty} n^2 z_n$, then let $\epsilon = L$ be such that $n^2 z_n \in (0, 2L)$, implying that $0 \le z_n \le \frac{2L}{n^2}$ and so $\sum_{n=1}^{\infty} z_n$ converges by the comparison test with $\sum_{n=1}^{\infty} \frac{2L}{n^2}$.

Question 10. Consider each of the following propositions. Provide short proofs for those that are true and counterexamples for any that are not.

- (a) If $\sum_{n=1}^{\infty} z_n$ converges absolutely, then $\sum_{n=1}^{\infty} z_n^2$ converges absolutely.
- (b) If $\sum_{n=1}^{\infty} z_n$ converges and $(w_n)_n$ converges, then $\sum_{n=1}^{\infty} z_n w_n$ converges.
- (c) If $\sum_{n=1}^{\infty} z_n$ converges conditionally, then $\sum_{n=1}^{\infty} n^2 z_n$ diverges.

Solution 10. (a) True. Since $\sum_{n=1}^{\infty} z_n$ converges absolutely, $\lim_{n\to\infty} z_n = 0$, and so this implies that $(z_n^2) \to 0$ eventually, so $z_n^2 \le |z_n|$, implying that by the Comparison Test, $\sum_{n=1}^{\infty} z_n^2$ converges absolutely.

(b) False. Let $z_n = \frac{(-1)^n}{\sqrt{n}}$ and $w_n = \frac{(-1)^n}{\sqrt{n}}$. Then $\sum_{n=1}^{\infty} z_n$ converges conditionally and $(w_n) \to 0$. However, if $z_n w_n = \frac{1}{n}$, then

$$\sum_{n=1}^{\infty} z_n w_n = \sum_{n=1}^{\infty} \frac{1}{n}$$

diverges by the p-series test.

(c) True. Assume that $\sum_{n=1}^{\infty} z_n$ converges conditionally. Suppose otherwise that $\sum_{n=1}^{\infty} n^2 z_n$ converges. Then this implies that for every $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that $|n^2 z_n| < \epsilon$ for all $n \in \mathbb{N}$. Then $|z_n| < \frac{\epsilon}{n^2}$, which implies that $|z_n|$ is absolutely convergent by the comparison test. This contradicts the assumption that $\sum_{n=1}^{\infty} z_n$ converges conditionally. Hence, $\sum_{n=1}^{\infty} n^2 z_n$ must diverge.

Question 11 (Ratio Test). Given a series $\sum_{n=1}^{\infty} z_n$ with $z_n \neq 0$, the Ratio Test states that if $(z_n)_n$ satisfies

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z_n} \right| = r < 1$$

then the series converges absolutely.

- (a) Let r' satisfy r < r' < 1. Explain why there exists an $n \ge N$ implies $|z_{n+1}| \le |z_n|r'$.
- (b) Why does $|z_N| \sum_{n=1}^{\infty} (r')^n$ converge?
- (c) Now show that $\sum_{n=1}^{\infty} |z_n|$ converges, and conclude that $\sum_{n=1}^{\infty} z_n$ converges.

Solution 11. (a) Let $r' \in (r,1)$. Since $\lim_{n\to\infty} \left| \frac{z_{n+1}}{z_n} \right| = r$, then there exists an $N \in \mathbb{N}$ such that

$$\left| \frac{z_{n+1}}{z_n} - r \right| < \epsilon$$

Let $\epsilon = r' - r$ be such that

$$r - \epsilon \le \frac{z_{n+1}}{z_n} \le r + \epsilon = r + r' - r = r'$$

So

$$\left| \frac{z_{n+1}}{z_n} \right| \le r' \Rightarrow |z_{n+1}| \le |z_n|r'$$

(b) We claim that for all $n \in \mathbb{N}$, that

$$|z_n| \le |z_{n-1}|(r')^1 \le |z_{n-2}|(r')^2 \le \dots \le |z_k|(r')^{n-k} \le \dots \le |z_1|(r')^{n-1}$$

We will use mathematical induction to show that this inequality is true. We will show that $|z_n| \le |z_1|(r')^{n-1}$, which then can be generalized for any $N \in \mathbb{N}$. For the base case where n = 1, we have

$$|z_1| \le |z_1|(r')^{1-1} = |z_1|$$

Therefore, the base case is proven. Next, we assume that $|z_n| \leq |z_1|(r')^{n-1}$. We want to show that $|z_{n+1}| \leq |z_1|(r')^{(n+1)-1}$. We have

$$|z_{n+1}| \le |z_1| (r')^n$$

Then for any $N \in \mathbb{N}$,

$$|z_n| \le |z_N| (r')^{n-N}$$

We can then write

$$\sum_{k=N}^{n} |z_k| \le |z_N| \sum_{k=0}^{n-1} (r')^k$$

which converges as the term on the right hand side is a Geometric series with |r'| < 1 and $|z_N|$ is constant.

(c) By the Comparison Test, $\sum_{n=1}^{\infty} z_n$ converges absolutely.

Question 12 (Summation by Parts). Let $(z_n)_n$ and $(w_n)_n$ be sequences, let $s_n = z_1 + z_2 + \cdots + z_n$ and set $s_0 = 0$. Use the observation that $z_k = s_k - s_{k-1}$ to show that

$$\sum_{k=m}^{n} z_k w_k = s_n w_{n+1} - s_{m-1} w_m + \sum_{k=m}^{n} s_k (w_k - w_{k+1})$$

Solution 12. If $z_k = s_k - s_{k-1}$, then

$$\sum_{k=m}^{n} z_k w_k = \sum_{k=m}^{n} (s_k - s_{k-1}) w_k = \sum_{k=m}^{n} w_k s_k - \sum_{k=m}^{n} w_k s_{k-1}$$

Observe for the second summation that

$$\sum_{k=m}^{n} w_k s_{k-1} = w_m s_{m-1} + w_{m+1} s_m + \dots + w_n s_{n-1} + w_{n+1} s_n - w_{n+1} s_n$$

$$= w_m s_{m-1} - w_{n+1} s_n + \sum_{k=m}^{n} w_{k+1} s_k$$

Therefore,

$$\sum_{k=m}^{n} w_k s_k - \left(w_m s_{m-1} - w_{n+1} s_n + \sum_{k=m}^{n} w_{k+1} s_k \right) = w_{n+1} s_n - w_m s_{m-1} + \sum_{k=m}^{n} s_k (w_k - w_{k+1})$$

as required.

Question 13 (Abel's Test). Abel's Test for convergence states that if the series $\sum_{k=1}^{\infty} z_n$ converges, and if $(w_k)_k$ is a sequence satisfying

$$w_1 \ge w_2 \ge w_3 \ge \cdots \ge 0$$

then the series $\sum_{k=1}^{\infty} z_k w_k$ converges.

(a) Use Question 12 to show that

$$\sum_{k=1}^{n} z_k w_k = s_n w_{n+1} + \sum_{k=1}^{n} s_k (w_k - w_{k+1})$$

where $s_n = z_1 + z_2 + \cdots + z_n$.

(b) Use the Comparison Test to argue that $\sum_{k=1}^{\infty} s_k(w_k - w_{k+1})$ converges absolutely, and show how this leads directly to a proof of Abel's Test.

Solution 13. (a) From Question 12, we have that

$$\sum_{k=m}^{n} z_k w_k = s_n w_{n+1} - s_{m-1} w_m + \sum_{k=m}^{n} s_k (w_k - w_{k+1})$$

Adjusting the indices we have that

$$\sum_{k=1}^{n} z_k w_k = s_n w_{n+1} + s_0 w_m + \sum_{k=1}^{n} s_k (w_k - w_{k+1})$$

and since $s_0 = 0$,

$$\sum_{k=1}^{n} z_k w_k = s_n w_{n+1} + \sum_{k=1}^{n} s_k (w_k - w_{k+1})$$

(b) First, note that as $n \to \infty$, $s_n w_{n+1}$ converges since w_{n+1} will eventually be constant. We first want to show that $\sum_{k=1}^{\infty} s_k (w_k - w_{k+1})$ is bounded. There exists an $M \in \mathbb{R}$ with M > 0 such that $|s_k| \le M$ and

$$\left| \sum_{k=1}^{\infty} s_k(w_k - w_{k+1}) \right| \le \sum_{k=1}^{\infty} |s_k| (w_k - w_{k+1}) \le M \sum_{k=1}^{\infty} (w_k - w_{k+1})$$

Note that the series on the right side is simply the telescopic series, i.e.

$$\sum_{k=1}^{\infty} (w_k - w_{k+1}) = (w_1 - w_2) + (w_2 - w_3) + \dots = w_1$$

and so

$$M\sum_{k=1}^{\infty} (w_k - w_{k+1}) = Mw_1$$

Therefore, by the Monotone convergence theorem, since $(w_k)_k$ is decreasing and bounded for all $k \in \mathbb{N}$, the series

$$\sum_{k=1}^{\infty} s_k (w_k - w_{k+1})$$

converges absolutely. Then by the Algebraic Limit Theorem, the sum of two convergent series is a convergent series, this proves Abel's Test.

Question 14. (a) Define a sequence of functions on \mathbb{R} by

$$f_n(x) = \begin{cases} 1 & \text{if } x = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

and let f be the pointwise limit of f_n . Is each f_n continuous at zero? Does $f_n \to f$ uniformly on \mathbb{R} ? Is f continuous at zero?

(b) Repeat this exercise using the sequence of functions

$$g_n(x) = \begin{cases} x & \text{if } x = 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

(c) Repeat the exercise once more with the sequence

$$h_n(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \\ x & \text{if } x = 1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n-1} \\ 0 & \text{otherwise} \end{cases}$$

In each case, explain how the results are consistent with the content of the Continuous Limit Theorem. Solution 14. (a) Each f_n is continuous at zero. $f_n \not\to f$ uniformly on \mathbb{R} , and f is not continuous at zero.

(b) Each g_n is continuous at zero. $g_n \to g$ may be uniform or not on \mathbb{R} , and g is continuous at zero. Since $|g_n(x) - g(x)| < \frac{1}{n}$ for all $n \in \mathbb{N}$ and for all x, if $N > \frac{1}{\epsilon}$, we have that for all $n \geq N$ and for all $x \in \mathbb{R}$,

$$|g_n(x) - g(x)| < \epsilon$$

so $\sup_{x \in \mathbb{R}} |g_n(x) - g(x)| < \epsilon$ and $(g_n) \to g$ uniformly.

(c) Each h_n is continuous at zero. $h_n \not\to h$ uniformly on \mathbb{R} , so h is not continuous at zero. To show non-uniform convergence, if $x_n = \frac{1}{n}$ and $\epsilon = \frac{1}{n}$, then

$$\left| h_n \left(\frac{1}{n} \right) - h \left(\frac{1}{n} \right) \right| = 1 - \frac{1}{n} \ge \epsilon$$

Therefore, no matter how large n is, it is not possible to make $|h_n(x) - h(x)| < \frac{1}{2}$ for all x, so $h_n \not\to h$ uniformly.

Question 15. For each $n \in \mathbb{N}$ and $x \in [0, \infty)$, let

$$g_n(x) = \frac{x}{1+x^n} \qquad h_n(x) = \begin{cases} 1 & \text{if } x \ge \frac{1}{n} \\ nx & \text{if } 0 \le x < \frac{1}{n} \end{cases}$$

Answer the following questions for $(g_n)_n$ and $(h_n)_n$.

- (a) Find the pointwise limit on $[0, \infty)$.
- (b) Explain how we know that the convergence cannot be uniform on $[0,\infty)$.
- (c) Choose a smaller set over which the convergence is uniform and supply an argument to show that this is indeed the case.

Solution 15. (a) For the sequence of functions $(g_n)_n$, we have

$$g(x) = \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{x}{1 + x^n} = \begin{cases} x & \text{if } 0 \le x < 1\\ \frac{1}{2} & \text{if } x = 1\\ 0 & \text{if } x > 1 \end{cases}$$

For the sequence of functions $(h_n)_n$ we have

$$h(x) = \lim_{n \to \infty} h(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- (b) Clearly, g_n and h_n are continuous functions for each $n \in \mathbb{N}$, but g and h are not.
- (c) Over $1 \le x < \infty$ $h_n(x) = h(x) = 1$ for all $n \in \mathbb{N}$, so $|h_n(x) h(x)| = 0$ for all $1 \le x < \infty$, so h_n converges uniformly.

Let $0 \le t < 1$. Suppose $g_n(x) \to x$ uniformly over $0 \le x < t$. We have

$$\left| \frac{x}{1+x^n} - x \right| = \left| \frac{x^{n+1}}{1+x^n} \right| < |t^{n+1}| < \epsilon$$

for $n > \log_t \epsilon$.

Question 16. Let f be uniformly continuous on all of \mathbb{R} , and define a sequence of functions by $f_n(x) = f(x + \frac{1}{n})$. Show that f_n converges uniformly to f. Give an example to show that this proposition fails if f is only assumed to be continuous and not uniformly continuous on \mathbb{R} .

Solution 16. To show that f_n uniformly converges to f, let $\epsilon > 0$ be arbitrary. Since f is uniformly continuous on \mathbb{R} , there exists a $\delta > 0$ such that for all $x, y \in \mathbb{R}$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Then if $|(x + \frac{1}{n}) - x| = \frac{1}{n} < \delta$, we have

$$\left| f\left(x + \frac{1}{n}\right) - f(x) \right| = \left| f_n(x) - f(x) \right| < \epsilon$$

for all $n \in \mathbb{N}$ and so

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| < \epsilon$$

and so f_n uniformly converges to f.

To show that the above proposition is false when f is not uniformly continuous, let $f(x) = x^2$. Then f is not uniformly continuous on \mathbb{R} and so

$$|f_n(x) - f(x)| = \left| \left(x + \frac{1}{n} \right)^2 - x^2 \right| = \left| x^2 + \frac{x}{n} + \frac{1}{n^2} - x^2 \right| = \left| \frac{2}{n} + \frac{1}{n^2} \right|$$

then for an arbitrary large $x, (f_n) \to \infty$ and so does not uniformly converge.

Question 17. Assume that $(f_n)_n$ and $(g_n)_n$ are uniformly convergent sequences of functions.

- (a) Show that $(f_n + g_n)_n$ is a uniformly convergent sequence of functions.
- (b) Give an example to show that the product $(f_ng_n)_n$ may not converge uniformly.

- (c) Prove that if there exists an $M \in \mathbb{R}$ with M > 0 such that $|f_n| \leq M$ and $|g_n| \leq M$ for all $n \in \mathbb{N}$, then $(f_n g_n)_n$ converge uniformly.
- Solution 17. (a) To show that $(f_n + g_n)_n$ is a uniformly convergent sequence of functions, let $\epsilon > 0$ be arbitrary. Since $(f_n)_n$ is a uniformly convergent sequence of functions, there exists an $N_1 \in \mathbb{N}$ such that

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \le |f_n(x) - f(x)| < \frac{\epsilon}{2}$$

for all $x \in \mathbb{R}$ and $n \geq N_1$. Similarly, since $(g_n)_n$ is a uniformly convergent sequence of functions, there exists an $N_2 \in \mathbb{N}$ such that

$$\sup_{x \in \mathbb{R}} |g_n(x) - g(x)| \le |g_n(x) - g(x)| < \frac{\epsilon}{2}$$

Then let $N = \max\{N_1, N_2\}$ be such that for all $n \geq N$,

$$\sup_{x \in \mathbb{R}} |(f_n(x) + g_n(x)) - (f(x) + g(x))| \le |(f_n(x) + g_n(x)) - (f(x) + g(x))|$$

$$\le |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Therefore, as $\epsilon > 0$ was arbitrary, we have shown that $(f_n + g_n)_n$ converges uniformly.

(b) Let $f_n(x) = x = f(x)$ and $g_n(x) = x + \frac{1}{n}$. Suppose there exists an $N \in \mathbb{N}$ such that for all $n, m \geq N$, the Cauchy Criterion gives us

$$|f_n g_n - f_m g_m| = \left| x \left(\frac{1}{n} - \frac{1}{m} \right) \right|$$

Making x large makes the error blow up regardless how large N is, so f_ng_n does not converge uniformly.

(c) To show that $(f_ng_n)_n$ converges uniformly, let $\epsilon > 0$. Since $(f_n) \to f$ and $|f_n(x)| \le M$, there exists an $N_1 \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| < \frac{\epsilon}{2M}$$

for all $n \geq N_1$ and $x \in \mathbb{R}$. Similarly, since $(g_n) \to g$ and $|g_n(x)| \leq M$, there exists an $N_2 \in \mathbb{N}$ such that

$$|g_n(x) - g(x)| < \frac{\epsilon}{2M}$$

for all $n \geq N_2$ and $x \in \mathbb{R}$. Then let $N = \max\{N_1, N_2\}$ be such that for all $n \geq N$,

$$|f_n(x)g_n(x) - f(x)g(x)| = |f_n(x)g_n(x) - f_n(x)g(x) + f_ng(x) - f(x)g(x)|$$

$$\leq |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)|$$

$$\leq |f_n(x)||g_n(x) - g(x)| + |g(x)||f_n(x) - f(x)|$$

$$< M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M}$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

Therefore, as $\epsilon > 0$ was arbitrary, $(f_n g_n)_n$ converges uniformly.

Question 18. Consider the sequence of functions defined by

$$g_n(x) = \frac{x^n}{n}$$

- (a) Show $(g_n)_n$ converges uniformly on [0,1] and find $g(x) = \lim_{n \to \infty} g_n(x)$. Show that g is differentiable and compute g'(x) for all $x \in [0,1]$.
- (b) Now show that (g'_n) converges on [0,1]. Is the convergence uniform? Set $h(x) = \lim_{n \to \infty} g'_n(x)$ and compare h and g'. Are they the same?

Solution 18. (a) First, we find the pointwise limit of $g_n(x)$. We have

$$g(x) = \lim_{n \to \infty} \frac{x^n}{n} = 0$$

Note that since $0 \le x \le 1$, so $0 \le x^n \le 1$ and since x is small, $(x^n) \to 0$ as $n \to \infty$. To show the convergence is uniform, there exists an $N \in \mathbb{N}$ such that

$$|g_n(x) - g(x)| = \left|\frac{x^n}{n}\right| < \epsilon$$

any $n \geq N = \frac{1}{\epsilon}$ will force $|g_n(x)| < \epsilon$. g(x) = 0 is differentiable at zero.

(b) If $g_n(x) = \frac{x^n}{n}$, then $g_n'(x) = \frac{nx^{n-1}}{n} = x^{n-1}$. Since $x \in [0,1]$, x is small, and so $(g_n') \to 0$ if $0 \le x < 1$ and $(g_n') \to 1$ if x = 1. However, since

$$h(x) = \lim_{n \to \infty} g'_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

h and g' are not the same, so they cannot be uniformly convergent.

Question 19. Consider the sequence of functions

$$f_n(x) = \frac{x}{1 + nx^2}$$

- (a) Find the points on \mathbb{R} where each $f_n(x)$ attains its maximum and minimum value. Use this to prove $(f_n)_n$ converges uniformly on \mathbb{R} . What is the limit function?
- (b) Let $f(x) = \lim_{n \to \infty} f_n(x)$. Compute f'_n and find all the values of x for which $f'(x) = \lim_{n \to \infty} f'_n(x)$.

Solution 19. (a) To find the maximum and minimum values, we can use the first derivative test to determine where the critical points of $f_n(x)$ are.

$$f'_n(x) = \frac{1 - nx^2}{(1 + nx^2)^2} = 0 \Rightarrow 1 - nx^2 = 0 \Rightarrow nx^2 = 1 \Rightarrow x^2 = \frac{1}{n} \Rightarrow x = \pm \frac{1}{\sqrt{n}}$$

Therefore, at $x = \frac{1}{\sqrt{n}}$ and $x = -\frac{1}{\sqrt{n}}$, we have

$$f_n\left(\frac{1}{\sqrt{n}}\right) = \frac{\frac{1}{\sqrt{n}}}{1 + n\left(\frac{1}{\sqrt{n}}\right)^2} = \frac{\frac{1}{\sqrt{n}}}{1 + n\frac{1}{n}} = \frac{\frac{1}{\sqrt{n}}}{1 + 1} = \frac{1}{2\sqrt{n}}$$

and

$$f_n\left(-\frac{1}{\sqrt{n}}\right) = \frac{-\frac{1}{\sqrt{n}}}{1 + n\left(-\frac{1}{\sqrt{n}}\right)^2} = \frac{-\frac{1}{\sqrt{2}}}{1 + n\frac{1}{n}} = \frac{-\frac{1}{\sqrt{n}}}{2} = -\frac{1}{2\sqrt{n}}$$

Therefore, $f_n(x)$ is bounded, i.e. $|f_n(x)| \leq \frac{1}{2\sqrt{n}}$. Take $n \to \infty$, and we see that $f_n(x) \to 0$. The limit function is zero.

(b) Since f(x) = f'(x) = 0, we have that

$$\lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} \frac{1 - nx^2}{1 + 2nx^2 + n^2x^4} = \lim_{n \to \infty} \frac{\frac{1}{n^2} - \frac{1}{n}x^2}{\frac{1}{n^2} + \frac{2}{n}x^2 + x^4} = 0$$

therefore, $f'(x) = \lim_{n \to \infty} f'_n(x)$ everywhere.

Question 20. Let

$$h_n(x) = \frac{\sin nx}{\sqrt{n}}$$

Show that $h_n \to 0$ on \mathbb{R} but that the sequence of derivatives $(h'_n)_n$ diverges for every $x \in \mathbb{R}$.

Solution 20. We can first find the maximum and minimum values. We use the first derivative test to determine where the critical points of $h_n(x)$ are.

$$h'_n(x) = \frac{n\cos nx}{\sqrt{n}} = \sqrt{n}\cos nx = 0 \Rightarrow \cos nx = 0 \Rightarrow nx = \frac{\pi}{2}, \frac{3\pi}{2} \Rightarrow x = \frac{\pi}{2n}, \frac{3\pi}{2n}$$

Therefore, at $x = \frac{\pi}{2n}$ and $x = \frac{3\pi}{2n}$, we have

$$h_n\left(\frac{\pi}{2n}\right) = \frac{\sin n\frac{\pi}{2n}}{\sqrt{n}} = \frac{\sin \frac{\pi}{2}}{\sqrt{n}} = \frac{1}{\sqrt{n}}$$

and

$$h_n\left(\frac{3\pi}{2n}\right) = \frac{\sin n \frac{3\pi}{2n}}{\sqrt{n}} = \frac{\sin \frac{3\pi}{2}}{\sqrt{n}} = -\frac{1}{\sqrt{n}}$$

Therefore, $|h_n(x)| \leq \frac{1}{\sqrt{n}}$, and as $n \to \infty$, $h_n(x) \to 0$.

To show that $(h'_n)_n$ diverges, note that

$$\lim_{n \to \infty} \sqrt{n} \cos nx = \infty$$

so $(h'_n)_n$ diverges for all $x \in \mathbb{R}$.

Question 21. Let

$$g_n(x) = \frac{nx + x^2}{2n}$$

and set $g(x) = \lim_{n \to \infty} g_n(x)$. Show that g is differentiable in two ways.

- (a) Compute g(x) by algebraically taking the limit as $n \to \infty$, and then find g'(x).
- (b) Compute $g'_n(x)$ for each $n \in \mathbb{N}$ and show that the sequence of derivatives $(g'_n)_n$ converges uniformly on every interval [-M, M]. Use Theorem 6.3.3 to conclude $g'(x) = \lim_{n \to \infty} g'_n(x)$.

(c) Repeat (a) and (b) for the sequence $f_n(x) = \frac{nx^2+1}{2n+x}$.

Solution 21. (a) First, we find the pointwise convergence of $(g_n)_n$.

$$g(x) = \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{nx + x^2}{2n} = \lim_{n \to \infty} \frac{x + \frac{x^2}{n}}{2} = \frac{x}{2}$$

Then $g'(x) = \frac{1}{2}$.

(b) Since $g'_n(x) = \frac{n+2x}{2n}$, and since $|x| \leq M$, let $\epsilon > 0$ be arbitrary. Then there exists an $N \in \mathbb{N}$ such that

$$\left| \frac{n+2x}{2n} - \frac{1}{2} \right| = \left| \frac{n+2x-n}{2n} \right| = \left| \frac{x}{n} \right| \le \frac{M}{n} < \frac{M}{\frac{M}{\epsilon}} = \epsilon$$

for all $n \ge N$ and $x \in [-M, M]$. Therefore, as $\epsilon > 0$ was arbitrary, $g'_n(x)$ converges to g'(x).

(c) Using the method in part (a), we find the pointwise convergence of $(f_n)_n$.

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx^2 + 1}{2n + x} = \lim_{n \to \infty} \frac{x^2 + \frac{1}{n}}{2 + \frac{x}{n}} = \frac{x^2}{2}$$

Then f'(x) = x.

Using the method in part (b), since

$$f'_n(x) = \frac{nx^2 + 4n^2x - 1}{(2n+x)^2}$$

and since $|x| \leq M$, let $\epsilon > 0$ be arbitrary. Then there exists an $N \in \mathbb{N}$ such that

$$\left| \frac{nx^2 + 4n^2x - 1}{(2n+x)^2} - x \right| = \left| \frac{nx^2 + 4n^2x - 1 - x(2n+x)^2}{(2n+x)^2} \right| \le \frac{M^3 + 3nM^2 + 1}{4n^2 - 4Mn} < \epsilon$$

which approaches zero as $n \to \infty$ since x is independent, and so (f'_n) converges uniformly over [-M, M].

Question 22. Prove an example or explain why the request is impossible. Take the domain of the functions to be all of \mathbb{R} .

- (a) A sequence $(f_n)_n$ of nowhere differentiable functions with $f_n \to f$ uniformly and f is everywhere differentiable.
- (b) A sequence $(f_n)_n$ of differentiable functions such that $(f'_n)_n$ converges uniformly but the original sequence $(f_n)_n$ does not converge for any $x \in \mathbb{R}$.
- (c) A sequence $(f_n)_n$ of differentiable functions such that both $(f_n)_n$ and $(f'_n)_n$ converge uniformly but $f = \lim_{n \to \infty} f_n$ is not differentiable at some point.

Solution 22. (a) True. Let $f_n(x) = \frac{g(x)}{n}$ where g(x) is a bounded function. Then $(f_n(x))_n \to 0$ as $n \to \infty$.

(b) True. Let $f_n(x) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$. Then $f'_n(x) = 0$ which converges uniformly to zero, but the original $(f_n)_n$ does not converge at all as the values are going between 0 and 1.

(c) False. If each f_n is differentiable at every point of $x \in \mathbb{R}$ then each f_n must be continuous for all $x \in \mathbb{R}$, and since $(f_n)_n$ and $(f'_n)_n$ both converge uniformly, the pointwise limit must also exist.

Question 23. Decide whether each proposition is true or false, providing a short justification or counterexample as appropriate.

- (a) If $\sum_{n=1}^{\infty} g_n$ converges uniformly, then $(g_n)_n$ converges uniformly to zero.
- (b) If $0 \le f_n(x) \le g_n(x)$ and $\sum_{n=1}^{\infty} g_n$ converges uniformly, then $\sum_{n=1}^{\infty} f_n$ converges uniformly.

Solution 23. (a) True. Applying Cauchy Criterion n = m+1, $|g_n(x)| < \epsilon$ for any $\epsilon > 0$ and so $g_n(x) \to 0$.

(b) True. By Cauchy Criterion,

$$\left| \sum_{k=m+1}^{n} f_k(x) \right| = \sum_{k=m+1}^{n} f_k(x) \le \sum_{k=m+1}^{n} g_k(x) = \left| \sum_{k=m+1}^{n} g_k(x) \right| < \epsilon$$

Question 24. (a) Prove that

$$h(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \frac{x^4}{16} + \cdots$$

is continuous on [-1,1].

(b) The series

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$

converges for every $-1 \le x < 1$ but does not converge when x = 1. For a fixed $x_0 \in (-1,1)$, explain how we can still use the Weierstrass M-Test to prove that f is continuous at x_0 .

Solution 24. (a) By the Weierstrass M-Test,

$$\left| \frac{x^n}{n^2} \right| \le \frac{1}{n^2} = M_n$$

and since $\sum_{n=1}^{\infty} M_n$ converges by the Weierstrass M-Test, $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ also converges.

(b) Let x_0 be fixed and consider the open interval $(-b,b) \subset [-1,1)$ where $-b < |x_0| < b$. Then if $M_n = \frac{b^n}{n}$, $M_n > \frac{x_0^n}{n}$ in a neighborhood of x_0 , hence f is continuous at x_0 .

Question 25. Let

$$f(x) = \sum_{k=1}^{\infty} \frac{\sin kx}{k^3}$$

- (a) Show that f(x) is differentiable and that the derivative f'(x) is continuous.
- (b) Can we determine if f is twice-differentiable?

Solution 25. (a) If $f_k(x) = \frac{\sin kx}{k^3}$, then

$$|f_k'(x)| = \left| \frac{\cos kx}{k^2} \right| \le \frac{1}{k^2}$$

Since $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, then by the Weierstrass M-Test, $\sum_{k=1}^{\infty} \frac{\sin kx}{k^3}$ converges uniformly. Then as $k \to \infty$, we have that $(f'_k) \to 0$, so by the differentiable limit theorem, f(x) is differentiable and $f'(x) = \sum_{k=1}^{\infty} f'_k(x)$. Since $f'_k(x)$ converges uniformly, f'(x) is continuous.

(b) Not twice differentiable. Taking the derivative again we have

$$|f_k''(x)| = \left|\frac{\sin kx}{k}\right| \le \frac{1}{k}$$

Since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, the Weierstrass M-Test would not work.

Question 26. Let

$$h(x) = \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$

- (a) Show that h is a continuous function defined on all of \mathbb{R} .
- (b) Is h differentiable. If so, is the derivative function h' continuous?

Solution 26. (a) Let $h_n(x) = \frac{1}{x^2 + n^2}$. By the Weierstrass M-Test, since

$$\left| \frac{1}{x^2 + n^2} \right| \le \frac{1}{n^2} = M_n$$

and since $\sum_{n=1}^{\infty} M_n$ converges by the *p*-series test, it follows that $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ converges uniformly and hence *h* is continuous on \mathbb{R} .

(b) If $h_n(x) = \frac{1}{x^2 + n^2}$, then

$$|h'_n(x)| = \left| \frac{2x}{(x^2 + n^2)^2} \right| < \frac{2x}{n^4}$$

Then for b > 0, we have an interval (-b, b) so that

$$|h_n'(x)| \le \frac{2b}{n^4} = M_n$$

Hence, by the differentiable limit theorem, and the Weierstrass M-Test, h' is continuous and h differentiable.

Question 27. Find suitable coefficients $(a_n)_n$ so that the resulting power series $\sum_{n=0}^{\infty} a_n x^n$ has the given properties, or explain why such a request is impossible.

- (a) Converges for every value $x \in \mathbb{R}$.
- (b) Diverges for every value of $x \in \mathbb{R}$.
- (c) Converges for all $x \in [-1, 1]$ and diverges off this set.

Solution 27. (a) $a_n = \frac{1}{n!}$, then $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is simply the power series for e^x that converges for every value of x.

- (b) Impossible. x = 0 will always converge.
- (c) $a_n = \frac{1}{n^2}$. The radius of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ is

$$R = \frac{1}{\limsup_{n \to \infty} \left| \frac{1}{n^2} \right|^{\frac{1}{n}}} = 1$$

So the series $\sum_{n=0}^{\infty} \frac{x^n}{n^2}$ is defined for $x \in [-1,1]$ and undefined for anywhere else.

Question 28. Previous work on the geometric series justifies the formula

$$\frac{1}{1-x} = 1 + x + x^2 + x^2 + x^3 + x^4 + \dots \qquad |x| < 1$$

Use the results about the power series to find the values for $\sum_{n=1}^{\infty} \frac{n}{2^n}$ and $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$.

Solution 28. If $\sum_{n=0}^{\infty} a_n x^n$ for $a_n = 1$, $\sum_{n=0}^{\infty} x^n$. Then differentiating the series, we have

$$\sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)x^n = \sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n = \frac{1}{(1-x)^2}$$

Then

$$\sum_{n=1}^{\infty} nx^n = \frac{1}{(1-x)^2} - \frac{1}{1-x}$$

For $x = \frac{1}{2}$, we have

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{(1 - \frac{1}{2})^2} - \frac{1}{1 - \frac{1}{2}} = 4 - 2 = 2$$

Similarly, for the second series, differentiating the series

$$\left(\sum_{n=0}^{\infty} nx^{n-1}\right)' = \sum_{n=0}^{\infty} n(n-1)x^{n-2} = \sum_{n=2}^{\infty} n(n-1)x^{n-2} = \sum_{n=1}^{\infty} (n+1)nx^{n-1}$$

$$= \sum_{n=1}^{\infty} n^2x^{n-1} + \sum_{n=1}^{\infty} nx^{n-1} = \sum_{n=0}^{\infty} (n+1)^2x^n + \sum_{n=0}^{\infty} (n+1)x^n$$

$$= \sum_{n=0}^{\infty} n^2x^n + 2\sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n + \sum_{n=0}^{\infty} nx^n + \sum_{n=0}^{\infty} x^n$$

$$= \sum_{n=0}^{\infty} n^2x^n + 3\sum_{n=0}^{\infty} nx^n + 2\sum_{n=0}^{\infty} x^n = \frac{2}{(1-x)^3}$$

Then

$$\sum_{n=1}^{\infty} n^2 x^n = \frac{2}{(1-x)^3} - 3\sum_{n=0}^{\infty} nx^n - 2\sum_{n=0}^{\infty} x^n$$

for $x = \frac{1}{2}$, we have

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} = \frac{2}{(1-\frac{1}{2})^3} - 3 \times 2 - 2 \times 2 = 16 - 6 - 4 = 6$$

Question 29. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with $a_n \neq 0$ and assume

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \tag{Ratio Test}$$

exists.

(a) Show that if $L \neq 0$, then the series converges for all $x \in \left(-\frac{1}{L}, \frac{1}{L}\right)$.

- (b) Show that if L = 0, then the series converges for all $x \in \mathbb{R}$.
- (c) Show that (a) and (b) continue to hold if L is replaced by the limit

$$L' = \lim_{n \to \infty} \sup_{k > n} \left| \frac{a_{k+1}}{a_k} \right|$$

Solution 29. (a) Since the ratio test converges whenever L < 1, let $b_n = a_n x^n$. Then

$$\lim_{n\to\infty}\left|\frac{b_{n+1}}{b_n}\right|=\lim_{n\to\infty}\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right|=|x|\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=|x|L<1$$

Then

$$|x| < \frac{1}{L} \Rightarrow x \in \left(-\frac{1}{L}, \frac{1}{L}\right)$$

- (b) When L=0, we simply have $x \in \left(-\frac{1}{0}, \frac{1}{0}\right) \Rightarrow x \in (-\infty, \infty)$ and since 0 < 1 for all x, the series converges still for L=0.
- (c) Since $\left(\sup_{k\geq n}\left|\frac{a_{k+1}}{a_k}\right|\right)_n$ converges to L', for every $\epsilon>0$,

$$\left| \frac{a_{k+1}}{a_k} \right| < M = L' + \epsilon$$

once k > N for some $N \in \mathbb{N}$. Then by the same logic as above, and the ratio test, the radius of convergence is still $\frac{1}{M}$, and since ϵ was arbitrary, this is effectively a radius of convergence of $\frac{1}{L}$.