CS208: Mathematical Foundations of CS

Fall 2018

Lecture 25: October 10

Lecturer: Samar Scribes: Sambhav Dusad, Saransh Sharma

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

25.1 Problem on Floor function

Problem 1. Evaluate $\sum_{k=0}^{n} \lfloor \sqrt{k} \rfloor$

Solution 1. Our idea is to introduce the variable $n = |\sqrt{k}|$.

$$\begin{split} &= \sum_{m,k \geq 0} m[k < n][m = \left \lfloor \sqrt{k} \right \rfloor] \\ &= \sum_{m,k \geq 0} m[k < n][m^2 \leq k \leq (m+1)^2] \\ &= \sum_{m,k \geq 0} m[k < n][m^2 \leq k < (m+1)^2 \leq n] + \sum_{m,k \geq 0} m[k < n][m^2 \leq k < n < (m+1)^2] \end{split}$$

Here, the second term will be 0 when n is a perfect square as no integer lies between m and m+1.

Case 1: n is a perfect square

Let $n = a^2$

$$\begin{split} \sum_{m,k \geq 0} m[k < n][m^2 \leq k < (m+1)^2 \leq n] \\ &= \sum_{m,k \geq 0} m[k < n][m^2 \leq k < (m+1)^2 \leq a^2] \\ &= \sum_{m \geq 0} m((m+1)^2 - m^2)[m+1 \leq a] \\ &= \sum_{m \geq 0} m(2m+1)[m < a] \\ &= \sum_{m \geq 0} (2m^2 + 3m^1)\delta m^{-[1]} \\ &= \frac{2}{3}a(a-1)(a-2) + \frac{3}{2}a(a-1)^{-[2]} \\ &= \frac{1}{6}(4a+1)(a)(a-1) \end{split}$$

Case 2: n is not a perfect square

Let $a = \lfloor \sqrt{n} \rfloor$, then we merely need to add the terms for $a^2 \leq k < n$; which are all equal to a. So,

$$\sum m[m^2 \le k < n < (m+1)^2] = a(n-a^2)$$

Lecture 25: October 10 25-2

So,

$$\sum_{k=0}^{n} \left\lfloor \sqrt{k} \right\rfloor = na - \frac{1}{3}a^3 - \frac{1}{2}a^2 - \frac{1}{6}a$$

25.2 Asymptotic Notation

There are 5 types of asymptotic notation Θ , O, Ω , o and ω .

$$\begin{split} \Theta(g(n)) &= \{f(n) \mid \exists \, c_1, c_2, n_o \, s.t. \, c_1 g(n) \leq f(n) \leq c_2 g(n) \, \, \forall \, n \geq n_o \} \\ & f(n) = \frac{1}{2} n^2 - \frac{3}{n} = \Theta(n^2) \\ & c_1 n^2 \leq \frac{1}{2} n^2 - \frac{3}{n} \leq c_2 n^2 \\ & c_1 \leq \frac{1}{2} - \frac{3}{n^3} \leq c_2 \end{split}$$

A valid set of values for c_1,c_2 and n_o are $c_1 = \frac{1}{2}$, $c_2 = \frac{1}{6}$ and $n_o = \sqrt[3]{9}$. So, $f(n) = \Theta(n^2)$.

Notes

1. Falling powers $n^{\underline{k}}$ (read n to the falling k) is defined as follows:

$$n^{\underline{k}} = n(n-1)(n-2)....(n-(k-1))$$

Similarly, Rising powers $n^{\overline{k}}$ (read n to the rising k) is defined as follows:

$$n^{\overline{k}} = n(n+1)(n+2)....(n+(k-1))$$

2.

$$\sum_{x=a}^{b} x^{n} = \sum_{x=a}^{b} [x(x-1)(x-2)...(x-(n-1))]$$

$$= \sum_{x=a}^{b} (x^{n} + \sum_{k=1}^{n-1} a_{k}x^{k})$$

$$= \begin{cases} \frac{x^{n+1}}{n+1} \Big|_{a}^{b} & n \neq -1 \\ H_{x} \Big|_{a}^{b} & n = -1 \end{cases}$$