600.363/463 Solution to Homework 8 Posted: 11/5/03 Due: Wednesday, 11/12/03

26.1-6

 $f_1 + f_2$ satisfies skew symmetry and flow conservation, but might violate the capacity constraint.

26.1-7

Prove it by verifying it satisfies all the three properties:

- Capacity: $\alpha f_1(u,v) + (1-\alpha)f_2(u,v) \le \alpha \cdot c(u,v) + (1-\alpha)c(u,v) = c(u,v)$
- Symmetry: $(\alpha f_1 + (1-\alpha)f_2)(u,v) = -\alpha f_1(v,u) (1-\alpha)f_2(v,u) = -(\alpha f_1 + (1-\alpha)f_2)(u,v)$
- Conservation: $\sum (\alpha f_1 + (1 \alpha)f_2)(u, v) = \alpha \sum f_1(u, v) + (1 \alpha) \sum f_2(u, v) = 0$

26.2-9

For any two vertices u and v in G, you can define a flow network G_{uv} consisting of the directed version of G with all edge capacities 1, s = u, and t = v. G_{uv} has O(V) vertices and O(E) edges, as required. Let f_{uv} denote a maximum flow in G_{uv} . We claim for any $u \in V$, the edge connectivity $k = \min_{v \in V - \{u\}} |f_{uv}|$ (this van be proved). Thus we can find k as follows:

EDGE-CONNECTIVITY(G)

Select any vertex $u \in V$ for each vertex $v \in V - u$

do set up the f;pw metwprl G_{uv} as described above find the maximum flow f_{uv} on G_{uv} .

return the minimum of the |V|-1 max-flow values: $\min_{v \in V-\{u\}} |f_{uv}|$

The claim follows from the max-flow min-cut theorem and the fact that we chee capacities so that the capacity of a cut is the number of edges crossing it.

26.2-10

From the time (u,v) is a critical edge until it is again a critical edge, $\delta(s,u)$ increases by at least 2, as shown in Theorem 26.9. Similarly, you can show that $\delta(v,t)$ also increases by at least 2. Thus the length of the augmenting path $s \leadsto u \to v \leadsto t$ increases by at least 4 between times (u,v) is critical. Since the length of an augmenting path cannot exceed |V|-1, (u,v) can be critical <|V|/4 times. Edmonds-Karp terminates when there are no more augmenting paths, so it must terminate when there are no more critical edges, which akes at most $(\# \text{ edges}) \cdot (\max \# \text{ times each edge critical})_{\mathbf{i}} |E_f|(V|/4)$ iterations. In general, $|E_f| \le 2|E|$, so the number of iterations is at most (actually, fewer than) |E||V|/2. But if we assume that G always has edges in both directions (i.e., $(u,v) \in E$) iff $(v,u) \in E$), then $|E_f| \le |E|$, and the number of iterations is at most |E||V|/4.