FREQUENCY DOMAIN REPRESENTATION OF LTI SYSTEMS

DICRETE TIME FOURIER TRANSFORM (DTFT)

EXISTENCE

MEAN SQUARE CONVERGENCE

FOURIER TRANSFORM OF A CONSTANT SEQUENCE

FOURIER TRANSFORM OF A COMPLEX EXPONENTIAL SEQUENCE

FOURIER TRANSFORM OF A SINUSOIDAL SEQUENCE

FOURIER TRANSFORM OF UNIT STEP SEQUENCE

SYMMETRY PROPERTIES OF FOURIER TRANSFORM

REAL SEQUENCES

FOURIER TRANSFORM THEOREMS

FOURIER TRANSFORM PAIRS

IDEAL LOWPASS FILTER (IMPULSE RESPONSE)

MOVING AVERAGE FILTER

EXAMPLES

LCCDES AND FREQUENCY RESPONSE

DTFT OF WINDOWED SINUSOID (ESTIMATING THE FREQUENCY, EFFECT OF NOISE)

DICRETE TIME FOURIER TRANSFORM (DTFT)

The Fourier transform of a sequence x[n] is defined as

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

If the FT exists (summation converges) the sequence can be obtained from its FT as

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

What is this?

Fourier Transform is periodic with 2π .

LTI SYSTEMS

The frequency response function of a LTI system,

$$H(e^{j\omega})$$
,

is the FT of its impulse response

$$h[n]$$
.

EXISTENCE

FT of a sequence x[n] exists, i.e.,

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

converges to a continuous function of ω , if x[n] is absolutely summable.

(sufficient condition)

Proof: Exercise

$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n](\cos(\omega n) - j\sin(\omega n))$$
$$= \sum_{n=-\infty}^{\infty} x[n]\cos(\omega n) - j\sum_{n=-\infty}^{\infty} x[n]\sin(\omega n)$$

Both sums have to converge

ightarrow All stable LTI systems have frequency response functions.

Ex: DTFT of

$$x[n] = a^n u[n]$$

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} a^n e^{-j\omega n}$$

$$= \sum_{n=0}^{\infty} (ae^{-j\omega})^n$$

$$= \frac{1}{1 - ae^{-j\omega}} \qquad if |ae^{-j\omega}| < 1 \quad or \quad |a| < 1$$

Magnitude of

$$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, \qquad |a| < 1$$

$$|X(e^{j\omega})|^2 = \frac{1}{|1 - ae^{-j\omega}|^2}$$

$$= \frac{1}{|1 - a\cos(\omega) + ja\sin(\omega)|^2}$$

$$= \frac{1}{1 + a^2 - 2a\cos(\omega)}$$

$$|X(e^{j\omega})| = \frac{1}{\sqrt{1+a^2-2a\cos(\omega)}}$$

Phase of

$$X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, \qquad |a| < 1$$

MEAN SQUARE CONVERGENCE

Some sequences, which are not absolutely summable but square summable

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \text{finite constant}$$

can still be represented by Fourier Transform, but...

Ex: Ideal lowpass filter.

$$H(e^{j\omega}) = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & \omega_c < |\omega| \le \pi \end{cases}$$

Let's find h[n]

$$h[n] = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$
$$= \frac{1}{j2\pi n} \left(e^{j\omega_c n} - e^{-j\omega_c n} \right)$$
$$= \frac{\sin(\omega_c n)}{\pi n}$$

Note that,

$$h[n] = \frac{\sin(\omega_c n)}{\pi n}$$

is not absolutely summable!

Then, one may question the Fourier transform of h[n],

$$\sum_{n=-\infty}^{\infty} \frac{\sin(\omega_c n)}{\pi n} e^{-j\omega n} = ?$$

Define

$$H_M = \sum_{n=-M}^{M} \frac{\sin(\omega_c n)}{\pi n} e^{-j\omega n}$$

detail

Even if you take $M \to \infty$ oscillations do not die to zero.

However

$$\lim_{M\to\infty}\int_{-\pi}^{\pi} |H(e^{j\omega}) - H_M(e^{j\omega})|^2 d\omega = 0.$$

This is called "mean square" convergence.

The oscillatory behavior around $\,\omega=\omega_c$ is called the Gibbs phenomenon.

MATLAB code

```
clear all; close all;
precision =0.0001
w = [-pi:precision:pi];
ideaL = zeros(1,length(w));
wc = pi/2;
orta = round(length(w)/2);
ideaL((orta-round(wc/precision)):(orta+round(wc/precision)))=1;
M = 10000;
H = 0;
for n = -M:-1
  H = H+(\sin(wc^*n)/(pi^*n))^*\exp(-i^*w^*n);
for n = 1:M
  H = H+(\sin(wc^*n)/(pi^*n))^*exp(-i^*w^*n);
end
  H = H+(wc/pi);
plot(w,H); hold on;
plot(w,idea,'r')
grid
```

FOURIER TRANSFORM OF A CONSTANT SEQUENCE

$$x[n] = 1$$
 \leftrightarrow $X(e^{j\omega}) = 2\pi \sum_{r=-\infty}^{\infty} \delta(\omega + 2\pi r)$

not absolutely summable

or we can write as

$$X(e^{j\omega}) = 2\pi\delta(\omega)$$
 $0 \le \omega < 2\pi$

keeping in mind that FT is periodic with 2π .

FOURIER TRANSFORM OF A COMPLEX EXPONENTIAL SEQUENCE

$$x[n] = e^{j\omega_0 n} \quad \leftrightarrow \quad X(e^{j\omega}) = 2\pi \sum_{r=-\infty}^{\infty} \delta(\omega - \omega_0 + 2\pi r)$$

not absolutely summable

or we can write as

$$X(e^{j\omega}) = 2\pi\delta(\omega - \omega_0)$$
 $0 \le \omega \le 2\pi$

keeping in mind that FT is periodic with 2π .

FOURIER TRANSFORM OF A SINUSOIDAL SEQUENCE

$$x[n] = \cos(\omega_0 n)$$
$$= \frac{1}{2} \left(e^{j\omega_0 n} + e^{-j\omega_0 n} \right)$$

Note that it is not absolutely summable.

$$X(e^{j\omega}) = \pi \left(\sum_{r=-\infty}^{\infty} \delta(\omega + \omega_0 + 2r\pi) + \delta(\omega - \omega_0 + 2r\pi) \right)$$

FOURIER TRANSFORM OF UNIT STEP SEQUENCE

$$x[n] = u[n]$$
 \leftrightarrow $X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} + \pi \sum_{r = -\infty}^{\infty} \delta(\omega + 2\pi r)$

not absolutely summable

SYMMETRY PROPERTIES OF FOURIER TRANSFORM

Definitions:

Conjugate symmetric (CS) sequence.

$$x[n] = x^*[-n]$$

Conjugate antisymmetric (CaS) sequence.

$$x[n] = -x^*[-n]$$

Using the above definitions, any sequence can be written as

$$x[n] = x_e[n] + x_o[n]$$

where

$$x_e[n] = \frac{1}{2}(x[n] + x^*[-n])$$
 is the CS part

and

$$x_o[n] = \frac{1}{2}(x[n] - x^*[-n])$$
 is the CaS part.

SYMMETRY PROPERTIES

Fundamental relations

Let $x[n] \leftrightarrow X(e^{j\omega})$ be a FT pair. Then, the following hold:

$$x^*[n] \leftrightarrow X^*(e^{-j\omega})$$
 since $X^*(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x^*[n]e^{-j\omega n}$

and

$$x[-n] \leftrightarrow X(e^{-j\omega})$$
 since $X(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n}$

Above yields

$$x^*[-n] \leftrightarrow X^*(e^{j\omega})$$

The two relations above also yield:

1)
$$Re\{x[n]\} = \frac{x[n] + x^*[n]}{2} \quad \leftrightarrow \quad \underbrace{X_e(e^{j\omega}) = \frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2}}_{\text{CS part of } X(e^{j\omega})}$$

$$jIm\{x[n]\} = \frac{x[n] - x^*[n]}{2} \quad \leftrightarrow \quad \underbrace{X_o(e^{j\omega}) = \frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2}}_{\text{CaS part of } X(e^{j\omega})}$$

3)
$$x_e[n] = \frac{x[n] + x^*[-n]}{2} \quad \leftrightarrow \quad Re\{X(e^{j\omega})\} = \frac{X(e^{j\omega}) + X^*(e^{j\omega})}{2}$$

Therefore FT of an even sequence is real!

4)
$$x_o[n] = \frac{x[n] - x^*[-n]}{2} \quad \leftrightarrow \quad jIm\{X(e^{j\omega})\} = \frac{X(e^{j\omega}) - X^*(e^{j\omega})}{2}$$

Therefore FT of an odd sequence is purely imaginary!

Ex: Let a[n] and b[n] be two real sequences with their DTFTs $A(e^{j\omega})$ and

 $B(e^{j\omega})$, respectively.

Let

$$x[n] = a[n] + jb[n]$$

Then,

$$X(e^{j\omega}) = A(e^{j\omega}) + jB(e^{j\omega})$$

Note that $A(e^{j\omega})$ is NOT the real part of $X(e^{j\omega})$.

However,

$$A(e^{j\omega}) = \frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2}$$

i.e. conjugate symmetric part of $X(e^{j\omega})$,

since

$$X^*(e^{-j\omega}) = \underbrace{A^*(e^{-j\omega})}_{A(e^{j\omega})} - j \underbrace{B^*(e^{-j\omega})}_{B(e^{j\omega})} \ .$$

Similarly,

$$jB(e^{j\omega}) = \frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2}$$

i.e. conjugate antisymmetric part of $X(e^{j\omega})$.

Ex: (cont'd)

a[n]: $[-1 \ 1]$

b[n]: [1 1]

 $x[n]: [-1+j \ 1+j]$

$$A\!\left(e^{j\omega}\right) = -1 + e^{-j\omega}$$

$$B\!\left(e^{j\omega}\right)=1+e^{-j\omega}$$

$$X(e^{j\omega}) = -1 + e^{-j\omega} + j + je^{-j\omega}$$

$$X^*(e^{-j\omega}) = -1 + e^{-j\omega} - j - je^{-j\omega}$$

$$\frac{X(e^{j\omega}) + X^*(e^{-j\omega})}{2} = -1 + e^{-j\omega}$$

$$\frac{X(e^{j\omega}) - X^*(e^{-j\omega})}{2} = j + je^{-j\omega}$$

REAL SEQUENCES

Based on the above relations, for real sequences $(x[n] = x^*[n])$:

$$X(e^{j\omega}) = X^*(e^{-j\omega})$$
 (conjugate symmetry)

which implies

Magnitude is even..... $|X(e^{j\omega})| = |X(e^{-j\omega})|$

Phase is odd...... $\not\preceq X(e^{j\omega}) = - \not\preceq X(e^{-j\omega})$

Real part is even...... $Re\{X(e^{j\omega})\} = Re\{X(e^{-j\omega})\}$

Imaginary part is odd...... $Im\{X(e^{j\omega})\} = -Im\{X(e^{-j\omega})\}$

Verification by an example

$$x[n] = a^n u[n] \quad \longleftrightarrow \quad X\left(e^{j\omega}\right) = \frac{1}{1 - ae^{-j\omega}} \quad |a| < 1$$

a) FT is conjugate symmetric:

$$X(e^{j\omega}) = X^*(e^{-j\omega}) = \frac{1}{1 - ae^{-j\omega}}$$

b) Real part of FT is an even function:

$$Re\{X(e^{j\omega})\} = Re\{X(e^{-j\omega})\} = \frac{1 - a\cos(\omega)}{1 + a^2 - 2a\cos(\omega)}$$

c) $Re\{X(e^{j\omega})\}$ is the FT of $x_e[n]$:

$$Re\{X(e^{j\omega})\} = \frac{1 - a\cos(\omega)}{1 + a^2 - 2a\cos(\omega)}$$

$$x_e[n] = \frac{1}{2}(a^n u[n] + a^{-n} u[-n])$$

d) Imaginary part of FT is an odd function.

$$Im\{X(e^{j\omega})\} = -Im\{X(e^{-j\omega})\} = \frac{-a\sin(\omega)}{1 + a^2 - 2a\cos(\omega)}$$

e) $Im\{X(e^{j\omega})\}$ is the FT of $x_o[n]$:

$$Im\{X(e^{j\omega})\} = \frac{-a\sin(\omega)}{1 + a^2 - 2a\cos(\omega)}$$

$$x_o[n] = \frac{1}{2}(a^n u[n] - a^{-n} u[-n])$$

f) Magnitude of FT is an even function:

$$|X(e^{j\omega})| = |X(e^{-j\omega})| = \frac{1}{\sqrt{1 + a^2 - 2a\cos(\omega)}}$$

g) Phase of FT is an odd function

$$\angle X(e^{j\omega}) = -\angle X(e^{j\omega}) = -\tan^{-1}\left(\frac{a\sin(\omega)}{1 - a\cos(\omega)}\right)$$

FOURIER TRANSFORM THEOREMS

$$x[n] \leftrightarrow X(e^{j\omega})$$

1)
$$ax[n] + by[n] \leftrightarrow aX(e^{j\omega}) + bY(e^{j\omega})$$
 linearity

2)
$$x[n-n_0] \leftrightarrow e^{-j\omega n_0} X(e^{j\omega})$$
 time-shift

3)
$$e^{j\omega_0 n}x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})$$
 freq.-shift

4)
$$x[-n] \leftrightarrow X(e^{-j\omega})$$
 time reversal

5)
$$nx[n] \leftrightarrow j \frac{dx(e^{j\omega})}{d\omega}$$
 differentiation in freq. domain

6)
$$x[n] * y[n] \leftrightarrow X(e^{j\omega})Y(e^{j\omega})$$
 convolution (proof below)

7)
$$x[n]y[n] \leftrightarrow \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} X(e^{j\theta})Y(e^{j(\omega-\theta)})d\theta$$
 modulation, windowing

8) Parseval's theorem (prove as an exercise)

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

Note that $\left|X(e^{j\omega})\right|^2$ is called the "energy density spectrum".

$$\sum_{n=-\infty}^{\infty} x[n] y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

Proof of (6):

$$w[n] \stackrel{\text{def}}{=} \sum_{k=-\infty}^{\infty} x[k]y[n-k] = x[n] * y[n]$$

$$W(e^{j\omega}) = ?$$

$$W(e^{j\omega}) = \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k]y[n-k]\right) e^{-j\omega n}$$

$$= \sum_{k=-\infty}^{\infty} x[k] \left(\sum_{n=-\infty}^{\infty} y[n-k]e^{-j\omega n}\right)$$

$$= \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \left(\sum_{m=-\infty}^{\infty} y[m]e^{-j\omega m}\right)$$

$$= X(e^{j\omega})Y(e^{j\omega})$$

Proof of (8) using (6):

Let

$$w[n] \stackrel{\text{def}}{=} \sum_{k=-\infty}^{\infty} x[k] x^*[k-n] = x[n] * x^*[-n]$$

$$W(e^{j\omega}) = X(e^{j\omega})X^*(e^{j\omega}) = |X(e^{j\omega})|^2$$

$$w[0] = \sum_{k=-\infty}^{\infty} x[k]x^*[k] = \sum_{k=-\infty}^{\infty} |x[k]|^2$$

$$w[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(e^{j\omega}) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$

Proof of (9):

$$\sum_{n=-\infty}^{\infty} x[n]y^*[n]$$

$$= \sum_{n=-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega\right) y^*[n]$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \left(\sum_{n=-\infty}^{\infty} y^*[n]e^{j\omega n}\right) d\omega$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) Y^*(e^{j\omega}) d\omega$$

FOURIER TRANSFORM PAIRS

$\delta[n]$	1
$\delta[n-n_0]$	$e^{-j\omega n_0}$
$1 \qquad -\infty < n < \infty$	$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} \delta[\omega + 2\pi k]$
$a^n u[n]$ $ a < 1$	$\frac{1}{1-ae^{-j\omega}}$
u[n]	$\frac{1}{1 - ae^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega + 2\pi k)$
$na^nu[n]$ $ a < 1$	$\frac{ae^{-j\omega}}{(1-ae^{-j\omega})^2}$
$(n+1)a^nu[n]$	
$= (a^n u[n]) * (a^n u[n])$	$\frac{1}{(1-ae^{-j\omega})^2}$
a < 1	
$\frac{1}{2}(n+2)(n+1)a^nu[n]$	$\frac{1}{(1-ae^{-j\omega})^3}$
$\frac{(n+k-1)!}{(k-1)! n!} a^n u[n]$	$\frac{1}{(1-ae^{-j\omega})^k}$
$\frac{1}{\sin(\omega_0)}r^n\sin(\omega_0(n+1))u[n]$	$\frac{1}{1 - 2r\cos(\omega_0)e^{-j\omega} + r^2e^{-j2\omega}}$
r < 1	show using the DTFT of $a^nu[n]$

$\sin(\omega_c n)$	$ \omega < \omega$
$\frac{\sin(\omega_c n)}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1 & \omega < \omega_c \\ 0 & \omega_c < \omega \le \pi \end{cases}$
$x[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & otherwise \end{cases}$	$\frac{\sin\left(\omega\frac{(M+1)}{2}\right)}{\sin\left(\frac{\omega}{2}\right)}e^{-j\omega\frac{M}{2}}$
$e^{j\omega_0n}$	$2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 + 2\pi k)$
$\cos(\omega_0 n + \phi)$	$\pi e^{j\phi} \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \sum_{k=-\infty}^{\infty} \delta(\omega + \omega_0 + 2\pi k)$
$\sin(\omega_0 n + \phi)$	$-j\pi e^{j\phi} \sum_{k=-\infty}^{\infty} \delta(\omega - \omega_0 + 2\pi k) + j\pi e^{-j\phi} \sum_{k=-\infty}^{\infty} \delta(\omega + \omega_0 + 2\pi k)$

Ex: IDEAL LOWPASS FILTER (IMPULSE RESPONSE)

They are infinitely long sequences in $-\infty < n < \infty$ Plots are arbitrarily in -20 < n < 20

Ex: MOVING AVERAGE FILTER

DTFT functions are plotted in $-\pi \leq \omega < \pi$ or in $0 \leq \omega < 2\pi$

M = 1

$$h[n] = \frac{1}{2} (\delta[n] + \delta[n-1]) \leftrightarrow H(e^{j\omega}) = \frac{1}{2} (1 + e^{-j\omega})$$
$$= e^{-j\frac{\omega}{2}} \cos\left(\frac{\omega}{2}\right)$$

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

M = 4

$$h[n] = \frac{1}{5} (\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \delta[n-4]) \leftrightarrow H(e^{j\omega})y[n]$$

$$y[n] = \frac{1}{2}(x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])$$

$$H(e^{j\omega}) = \frac{1}{5} \left(1 + e^{-j\omega} + e^{-j2\omega} + e^{-j3\omega} + e^{-j4\omega} \right)$$
$$= \frac{1}{5} e^{-j2\omega} (1 + 2\cos(\omega) + 2\cos(2\omega))$$
$$= \frac{1}{5} e^{-j2\omega} \frac{\sin\left(\frac{5}{2}\omega\right)}{\sin\left(\frac{\omega}{2}\right)}$$

Ex: Express $X_1(e^{j\omega})$, $X_2(e^{j\omega})$, in terms of $X(e^{j\omega})$, the DTFT of x[n].

$$x_1[n] = x[n] + x[-(n-7)]$$

$$X_1(e^{j\omega}) = X(e^{j\omega}) + e^{-j7\omega}X(e^{-j\omega})$$

$$x_2[n] = x[n] + x[n-4]$$

$$X_2(e^{j\omega}) = X(e^{j\omega}) + e^{-j4\omega}X(e^{j\omega})$$

One can also write as

$$X_{1}(e^{j\omega}) = X(e^{j\omega}) + e^{-j7\omega}X(e^{-j\omega})$$

$$= X(e^{j\omega}) + e^{-j7\omega}X^{*}(e^{j\omega}) \quad \text{since } x[n] \text{ is real}$$

$$= |X(e^{j\omega})| \left(e^{j4X(e^{j\omega})} + e^{-j7\omega}e^{-j4X(e^{j\omega})}\right)$$

$$= |X(e^{j\omega})| e^{-j\frac{7}{2}\omega} \left(e^{j\frac{7}{2}\omega}e^{j4X(e^{j\omega})} + e^{-j\frac{7}{2}\omega}e^{-j4X(e^{j\omega})}\right)$$

$$= 2 \operatorname{Re} \left\{e^{j(4X(e^{j\omega}) + \frac{7}{2}\omega)}\right\} |X(e^{j\omega})| e^{-j\frac{7}{2}\omega}$$

$$X_{2}(e^{j\omega}) = X(e^{j\omega})(1 + e^{-j4\omega})$$

$$= X(e^{j\omega})e^{-j2\omega}(e^{j2\omega} + e^{-j2\omega})$$

$$= X(e^{j\omega})e^{-j2\omega}2 \cos(2\omega)$$

$$= 2 \cos(2\omega) |X(e^{j\omega})| e^{-j2\omega}e^{j2X(e^{j\omega})}$$

Ex: What is the inverse DTFT, y[n], of

$$Y(e^{j\omega}) = \frac{2e^{-j3\omega}}{\left(1 - \frac{1}{8}e^{-j\omega}\right)^2}?$$

From the table

$$(n+1)a^nu[n] \quad \leftrightarrow \quad \frac{1}{(1-ae^{-j\omega})^2} \quad |a| < 1$$

$$2(n+1)\left(\frac{1}{8}\right)^n u[n] \quad \leftrightarrow \quad \frac{2}{\left(1-\frac{1}{8}e^{-j\omega}\right)^2}$$

$$2(n-2)\left(\frac{1}{8}\right)^{n-3}u[n-3] \quad \leftrightarrow \quad \frac{2e^{-j3\omega}}{\left(1-\frac{1}{8}e^{-j\omega}\right)^2}$$

Why does the high frequency gain of MA filter "decrease" as M increases?

Comment on the above illustrations.

LCCDEs AND FREQUENCY RESPONSE

$$y[n] = x[n] * h[n] \stackrel{FT}{\longleftrightarrow} Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$$
$$\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k] \stackrel{FT}{\longleftrightarrow} \sum_{k=0}^{N} a_k e^{-jk\omega} Y(e^{j\omega})$$
$$= \sum_{k=0}^{M} b_k e^{-jk\omega} X(e^{j\omega})$$

$$\Rightarrow Y(e^{j\omega})\sum_{k=0}^{N}a_{k}e^{-jk\omega}=X(e^{j\omega})\sum_{k=0}^{M}b_{k}e^{-jk\omega}$$

$$\Rightarrow \frac{Y(e^{j\omega})}{X(e^{j\omega})} = H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_k e^{-jk\omega}}{\sum_{k=0}^{N} a_k e^{-jk\omega}}$$

$$H(e^{j\omega}) = \frac{b_0 + b_1 e^{-j\omega} + b_2 e^{-j2\omega} + \dots + b_M e^{-jM\omega}}{a_0 + a e^{-j\omega} + a_2 e^{-j2\omega} + \dots + a_N e^{-jN\omega}}$$