# Санкт-Петербургский Государственный Политехнический Университет Институт Информационных Технологий и Управления

# Кафедра Компьютерных Систем и Програмных Технологий

Отчёт по лабораторным работам №4,5 на тему Аналоговая модуляция. Частотная и фазовая модуляция

> Работу выполнила Студентка группы 33501/1 Михалёва М.В. Преподаватель Богач Н.В.

### 1 Цель работы

Изучить амплитудную модуляцию/демодуляцию сигнала. Изучить частотную и фазовую модуляцию/демодуляцию сигнала.

#### 2 Постановка задачи

- 1. Сгенерировать однотональный сигнал низкой частоты;
- 2. Выполнить амплитудную модуляцию (AM) сигнала по закону  $u(t) = (1 + MU_m cos(\Omega t))cos(w_0 t + \phi_0)$  для различных значений глубины модуляции М. Используйте встроенную функцию Matlab ammod:
- 3. Получить спектр модулированного сигнала;
- 4. Выполнить модуляцию с подавлением несущей  $u(t) = MU_m cos(\Omega t) cos(w_0 t + \phi_0)$ . Получить спектр;
- 5. Выполнить однополосную модуляцию:

$$u(t) = U_m cos(\Omega t) cos(w_0 t + \phi_0) + \frac{U_m}{2} \sum_{n=1}^{N} M_n (cos(w_0 + \Omega_n)t + \phi_0 + \Phi_n)$$

положив n=1;

- 6. Выполнив синхронное детектирование и получить исходный однополосный сигнал;
- 7. Рассчитать КПД модуляции:

$$\mu_{AM} = \frac{U_m 2^2 M^2}{4 P_U} = \frac{M^2}{M^2 + 2}$$

- 8. Выполнить фазовую модуляцию/демодуляцию сигнала по закону  $u(t) = U_m cos(\omega t + ks(t))$ , использую встроенную функцию Matlab pmmod, pmdemod;
- 9. Получить спектр модулированного сигнала;
- 10. Выполнить частотную модуляцию/демодуляцию по закону:

$$u(t) = U_m cos(\phi_0 t + k \int_0^t s(t)dt + \phi_0)$$

используя встроенные функции Matlab fmmod, fmdemod;

# 3 Теоретическая часть

Модуляция аналоговых сигналов. Сигналы от любых источников информации передаются по линиям связи к приемникам. Как правило, информационные сигналы яв- ляются низкочастотными и ограниченными по ширине спектра, тогда как методы пере- дачи сигналов рассчитаны на работу с высокочастотным сигналом. При этом важным вопросом является частотное разделение каналов передачи информации с целью эффек- тивного использования каналообразующего оборудования и выделенного для передачи частотного диапазона. Перенос спектра сигналов из низкочастотной области на задан- ную частоту, т.е. в выделенную для их передачи область высоких частот выполняется операцией модуляции.

Обозначим низкочастотный сигнал, подлежащий передаче по какому-либо каналу связи, s(t). В канале связи для передачи данного сигнала выделяется определенный диапазон высоких частот и формируется вспомогательный периодический высокоча- стотный сигнал  $u(t) = f(t; a_1, a_2, ... a_m)$ . Совокупность параметров  $a_i$  определяет форму вспомогательного сигнала. Значения параметров  $a_i$  в отсутствие модуляции являются величинами постоянными. Если на один из этих параметров

перенести сигнал s(t), т.е. сделать его значение пропорционально зависимым от значения s(t) во времени (или по любой другой независимой переменной), то форма сигнала u(t) приобретает новое свойство. Она служит для переноса информации, содержащейся в сигнале s(t). Сигнал u(t) называется несущим сигналом, а физический процесс переноса информации на параметры несущего сигнала – его модуляцией. Исходный информационный сигнал s(t) называют модулирующим, результат модуляции – модулированным сигналом. Обратную операцию выделения модулирующего сигнала из модулированного колебания называют демодуляцией или детектированием. Наиболее распространенной формой несущих сигналов являются гармонические ко- лебания:

$$u(t) = U\cos(wt + \phi)$$

которые имеют три свободных параметра: U, w и  $\phi$ . В зависимости от того, на какой из данных параметров переносится информация, различают амплитудную (AM), частотную (ЧМ) и фазовую ( $\Phi$ M) модуляции несущего сигнала.

**Амплитудная модуляция**/**демодуляция.** При AM выполняется перенос информации s(t) на U(t) при постоянных значениях параметров несущей частоты w и  $\phi$ . AM—сигнал представляет собой произведение информационной огибающей U(t) и гармо- нического колебания ее заполнения с более высокими частотами:

$$U(t) = U_m(1 + Ms(t))$$

где  $U_m$  — постоянная амплитуда несущего колебания при отсутствии входного (модулирующего) сигнала s(t), М — глубина АМ. Значение М должно находиться в пределах от 0 до 1 для всех гармоник модулирующего сигнала.

Простейшая форма модулированного сигнала создается при однотональной амплитудной модуляции – модуляции несущего сигнала гармоническим колебанием с одной частотой Ω:

$$u(t) = U_m(1 + M\cos(\Omega t))\cos(w_0 t)$$

Значения начальной фазы углов примем равными нулю. Поскольку  $cos(x)cos(y) = \frac{1}{2}(cos(x+y) + cos(x-y))$ , из предыдущего выражения получаем:

$$u(t) = U_m cos(w_0 t) + \frac{U_m M}{2} cos[(w_0 + \Omega)t] + \frac{U_m M}{2} cos[(w_0 - \Omega)t]$$

Данное соотношение называется основной теоремой модуляции: модулирующее колеба- ние с частотой  $\Omega$  перемещается в область частоты  $w_0$  и расщепляется на два колебания, симметричные относительно частоты  $w_0$ , с частотами соответственно  $w_0 + \Omega$  верхняя боковая частота, и  $w_0 - \Omega$  нижняя боковая частота.

Коэффициент полезного действия данного типа модуляции определяется отношени- ем мощности боковых частот к общей средней мощности модулированного сигнала:

$$\mu_{AM} = \frac{U_m 2^2 M^2}{4P_U} = \frac{M^2}{M^2 + 2}$$

Отсюда следует, что при M=1 КПД амплитудной модуляции составляет только 33%, а на практике обычно меньше 20%.

**Фазовая модуляция.** При фазовой модуляции значение фазового угла постоянной несущей частоты колебаний  $w_0$  пропорционально амплитуде модулирующего сигнала s(t). Соответственно, уравнение ФМ-сигнала определяется выражением:

$$u(t) = U_m cos(w_0 t + ks(t))$$

где k — коэффициент пропорциональности. При s(t)=0, ФМ-сигнал является простым гармоническим колебанием. С увеличением значений s(t) полная фаза колебаний  $\psi(t)=w_0t+ks(t)$  нарастает во времени быстрее и опережает линейное нарастание  $w_0t$ . Соответственно, при уменьшении значений s(t) скорость роста полной фазы во времени спадает. В моменты экстремальных значений s(t) абсолютное значение фазового сдвига  $\Delta \psi$  между ФМ-сигналом и значением  $w_0t$  немодулированного колебания также является максимальным и носит название deвuayuu фазы (вверх  $\Delta \phi B = ksmax(t)$ , или вниз  $\Delta \phi H = ksmin(t)$  с учетом знака экстремальных значений модулирующего сигнала).

**Частотная модуляция**. Частотная модуляция характеризуется линейной связью модулирующего сигнала с мгновенной частотой колебаний, при которой мгновенная ча- стота колебаний образуется сложением частоты высокочастотного несущего колебания  $w_0$  со значением амплитуды модулирующего сигнала с определенным коэффициентом пропорциональности k:

$$w(t) = w_0 + ks(t)$$

Соответственно, полная фаза колебаний:

$$\psi(t) = w_0(t) + k \int_0^t s(t)dt + \phi_0$$

Уравнение ЧМ-сигнала:

$$u(t) = U_m cos(w_0(t) + k \int_0^t s(t)dt + \phi_0)$$

Аналогично  $\Phi M$ , для характеристики глубины частотной модуляции используются по- нятия  $\theta e \theta u$ ации частоты вверх  $\Delta w_e = ksmax(t)$ , и вниз  $\Delta \phi_e = ksmin(t)$ .

# 4 Ход работы

Сгенерируем низкочастотный однотональный сигнал:

```
f = 50;
Fs = f*10;
t = 0:1/Fs:5;
x = sin(2*pi*t);
plot(t,x);
```



Рис. 1: Исходный сигнал

## 4.1 Амплитудная модуляция

Выполним амплитудную модуляцию (AM) сигнала по закону  $u(t) = (1 + MU_m cos(\Omega t))cos(w_0 t + \phi_0)$  для различных значений глубины модуляции М. Используя встроенную функцию Matlab ammod

```
iniPhase = 0;
M = 1;
mod = ammod(x, f, Fs, iniPhase, M);
figure;
plot(t,mod);
```



Рис. 2: Смоделированный сигнал (М=1)



Рис. 3: Смоделированный сигнал (M=0,6)

Построим спектры данных сигналов:

```
N = length(t);
fftL = 2^nextpow2(N);
Y = abs (fft(mod, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot (F,Y(1:length(F)));
```



Рис. 4: Спектр смоделированного сигнала (М=1)



Рис. 5: Спектр смоделированного сигнала (M=0,6)

### 4.2 Модуляция с подавлением несущей

```
Выполним модуляцию с подавлением несущей: u(t) = MU_m cos(\Omega t) cos(w_0 t + \phi_0). iniPhase = 0; mod = ammod(x, f, Fs, iniPhase); figure; plot(t,mod);
```



Рис. 6: Смоделированный сигнал с подавлением несущей

Получим его спектр:

```
N = length(t);
fftL = 2^nextpow2(N);
Y = abs (fft(mod, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot (F,Y(1:length(F)));
```



Рис. 7: Спектр смоделированнного сигнала с подавлением несущей

### 4.3 Однополосная модуляция

Выполним однополосную модуляцию:

```
u(t) = U_m cos(\Omega t) cos(w_0 t + \phi_0) + \frac{U_m}{2} \sum_{n=1}^N M_n (cos(w_0 + \Omega_n) t + \phi_0 + \Phi_n) положив n=1; f = 10; Fs = f*128; t = 0:1/\text{Fs}:2.5; x = \sin(2*\text{pi*t}); mod = \operatorname{ssbmod}(x, f, Fs); figure; plot(t, mod);
```



Рис. 8: Сигнал после однополосной модуляции

Получим его спектр:

```
N = length(t);
fftL = 2^nextpow2(N);
Y = abs (fft(mod, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot (F,Y(1:length(F)));
```



Рис. 9: Спектр сигнала после однополосной модуляции

Выполним синхронное детктирование и получим исходный однополосный сигнал:

```
sig=ssbdemod(mod, f, Fs);
figure;
plot(t, sig);
```



Рис. 10: Сигнал после синхронного детектирования

Получим его спектр:

```
N = length(t);
fftL = 2^nextpow2(N);
Y = abs (fft(sig, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot (F,Y(1:length(F)));
```



Рис. 11: Спектр сигнала после синхронного детектирования

Рассчитаем КПД модуляции при различных М.

1. M=1

$$\mu_{AM} = \frac{M^2}{M^2 + 2} = \frac{1}{3} = 33\%$$

2. M=0.6

$$\mu_{AM} = \frac{M^2}{M^2 + 2} = \frac{0.36}{2.36} = 15\%$$

3. M=1.4

$$\mu_{AM} = \frac{M^2}{M^2 + 2} = \frac{1.96}{3.96} = 50\%$$

#### 4.4 Фазовая модуляция/демодуляция

Выполним фазовую модуляцию сигнала по закону  $u(t) = U_m cos(\omega t + ks(t))$ , используя встроенную функцию Matlab pmmod, pmdemod;

```
phaseDev = pi/2;
mod = pmmod(x, fc, Fs, phaseDev);
figure;
plot(t, mod);
N = length(t);
fftL = 2^nextpow2(N);
Y = abs(fft(mod, fftL));
F=0:Fs/fftL:Fs/2-1/fftL
figure;
plot(F,Y(1:length(F)));
```



Рис. 12: Сигнал после фазовой модуляции



Рис. 13: Спектр сигнала после фазовой модуляции

#### Проведем демодуляцию:

```
sig = pmdemod(mod, fc, Fs, phaseDev);
figure; plot(t ,sig);
N = length(t);
fftL = 2^nextpow2(N);
Y = abs(fft(sig, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot(F, Y(1:length(F)));
```



Рис. 14: Сигнал после фазовой демодуляции



Рис. 15: Спектр сигнала после фазовой демодуляции

#### 4.5 Частотная модуляция/демодуляция

Выполним частотную модуляцию по закону:

$$u(t) = U_m cos(\phi_0 t + k \int_0^t s(t)dt + \phi_0)$$

используя встроенные функции Matlab fmmod, fmdemod;

```
freqDev = 15;
mod = fmmod(x, fc, Fs, freqDev);
figure;
plot(t ,mod);
N = length(t);
fftL = 2^nextpow2(N);
Y = abs(fft(mod, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot(F, Y(1:length(F)));
```



Рис. 16: Сигнал после частотной модуляции



Рис. 17: Спектр сигнала после частотной модуляции

#### Проведем демодуляцию:

```
sig = fmdemod(mod, fc, Fs, freqDev);
figure;
plot(t, sig);
N = length(t);
fftL = 2^nextpow2(N);
Y = abs(fft(sig, fftL));
F=0:Fs/fftL:Fs/2-1/fftL;
figure;
plot(F, Y(1:length(F)));
```



Рис. 18: Сигнал после частотной демодуляции



Рис. 19: Спектр сигнала после частотной демодуляции

### 5 Вывод

В ходе данной работы были получены навыки аналоговой модуляции.

Можно отметить спектр АМ-сигнала содержит несущую частоту, уровень которой определяет постоянная составляющая огибающей, и верхнюю и нижнюю боковые полосы. Если не производить подавление несущей и без искажения основная доля мощности АМ-сигнала приходится на несущую частоту, и только оставшаяся доля мощности — для передачи полезного сигнала. КПД сигнала с подавлением несущей практически 100 процентов.

Также мы получили навыки частотной и фазовой модуляции/демодуляции сигнала.

Для их демодуляции можно использовать схему  $\Phi$ АПЧ, которая сравнивает сигналы путём перемножения в  $\Phi$ Д, где внешний сигнал и сигнал с выхода ГУН создают комбинационные частоты (т.е. суммарные и разностные частоты).

Надо отметить следующее: когда колебание промодулировано гармоническим сигналом, отличить частотную модуляцию от фазовой можно, только сравнив изменения мгновенной фазы модулированного колебания с законом изменения модулирующего сигнала.