

Creation of a RedShift Cluster

Screenshots of the configuration of the RedShift cluster that I have created:

Screenshot of the type of machine used along with number of nodes:

Screenshots of the various configurations associated with cluster creation:

I'll choose	Help me choose				
Node type Info					
Choose a node type that meets	s your CPU, RAM, sto	rage capacity, and drive type requir	ements.		
dc2.large		▼ .			
Nodes Enter the number of nodes tha	at you need				
2	at you need.				
1.000					
Range (1-32)					
1.000					
Range (1-32)					
Range (1-32) Configuration summ	nary Info				
Range (1-32)	nary Info				
Range (1-32) Configuration summ		20 GB			
Configuration summ dc2.large 2 nodes	3				
Range (1-32) Configuration summ dc2.large 2 nodes	compute T	20 GB otal compressed storage he total storage capacity for t	ie.		

Setting up a database in the RedShift cluster and running queries to create the dimension and fact tables

Viewing all the data in Amazon S3 bucket:

Query to create a schema for the dimension and fact tables:

create schema atm_data;

Queries to create the various dimension and fact tables with appropriate primary and foreign keys:

· Creating location dimension table

Creating atm dimension table

```
create table atm_data.DIM_ATM
(
    atm_id int not null DISTKEY SORTKEY,
    atm_number varchar(20),
    atm_manufacturer varchar(50),
    atm_location_id int,
    PRIMARY KEY(atm_id),
    FOREIGN KEY(atm_location_id) references atm_data.DIM_LOCATION(location_id)
);
```


Creating date dimension table

```
create table atm_data.DIM_DATE
(

date_id int not null DISTKEY SORTKEY,
full_date_time timestamp,
year int,
month varchar(20),
day int,
hour int,
weekday varchar(20),
PRIMARY KEY(date_id)
);
```


Creating card type dimension table

· Creating atm transactions fact table

create table atm_data.FACT_ATM_TRANS


```
trans_id bigint not null DISTKEY SORTKEY,
       atm id int,
       weather_loc_id int,
       date id int,
       card type id int,
       atm_status varchar(20),
       currency varchar(10),
       service varchar(20),
       transaction_amount int,
       message code varchar(225),
       message_text varchar(225),
       rain_3h decimal(10,3),
       clouds_all int,
       weather_id int,
      weather_main varchar(50),
      weather description varchar(255),
       PRIMARY KEY(trans_id),
       FOREIGN KEY(weather_loc_id) references atm_data.DIM_LOCATION(location_id),
       FOREIGN KEY(atm_id) references atm_data.DIM_DATA(atm_id),
       FOREIGN KEY(date_id) references atm_data.DIM_DATE(date_id),
       FOREIGN KEY(card_type_id) references atm_data.DIM_CARD_TYPE(card_type_id)
);
```


Loading data into a RedShift cluster from Amazon S3 bucket

Queries to copy the data from S3 bucket to the RedShift cluster in the appropriate tables:

Copying the data to dim_location table

copy atm_data.dim_location from 's3://etlprojectbyishan/dim_location/part-00000-4f4b02d0-919a-442e-9134-f459cbdb7909-c000.csv' iam_role 'arn:aws:iam::464886120274:role/redshift_s3_fullaccess' delimiter ',' region 'us-east-1' CSV;

Copying the data to dim_atm table

copy atm_data.dim_atm from ' s3://etlprojectbyishan/dim_atm/part-00000-c4425605-e626-4cd2-adb2-cef68f7cb1b9-c000.csv' iam_role 'arn:aws:iam::464886120274:role/redshift_s3_fullaccess' delimiter ',' region 'us-east-1' CSV;

Copying the data to dim_date table

copy atm_data.dim_date from 's3://etlprojectbyishan/dim_date/part-00000-7a7ef505-bc12-476c-a0a6-e9e8b544fe44-c000.csv' iam_role 'arn:aws:iam::464886120274:role/redshift_s3_fullaccess' delimiter ',' region 'us-east-1' CSV;

Copying the data to dim_card_type table

copy atm_data.dim_card_type from 's3://etlprojectbyishan/dim_card_type/part-00000-b9c7eb07-29c6-4445-ba0f-98de14834601-c000.csv'

iam_role 'arn:aws:iam::464886120274:role/redshift_s3_fullaccess' delimiter ',' region 'us-east-1' CSV;

Copying the data to fact_atm_trans table

copy atm_data.fact_atm_trans from 's3://etlprojectbyishan/fact_atm_trans/part-00000-978dd709-2ef2-4145-8ab5-9981558a8c60-c000.csv'iam_role 'arn:aws:iam::464886120274:role/redshift_s3_fullaccess'delimiter ',' region 'us-east-1' CSV;

