Problem Set 4

- 1. Consider the formula $\varphi = \forall x \exists y R(x,y) \land \exists y \forall x \neg R(x,y)$. Show that φ is satisfiable over a structure whose universe is infinite and countable.
- 2. Let τ be a signature consisting of a binary relation P and a unary relation F. Let \mathcal{F} be a structure consisting of a universe of people, P(x,y) is interpreted on \mathcal{F} as "x is a parent of y" and F(x) is interpreted as "x is female". Given the τ -structure \mathcal{F} ,
 - Define a formula $\varphi_B(x,y)$ which says x is a brother of y
 - Define a formula $\varphi_A(x,y)$ which says x is an aunt of y
 - Define a formula $\varphi_C(x,y)$ which says x and y are cousins
 - Define a formula $\varphi_O(x)$ which says x is an only child
 - Give an example of a family relationship that cannot be defined by a formula
- 3. Consider the signature τ that has the binary functions $+, \times$. Let \mathcal{N} be the structure over τ having as universe the set \mathbb{N} of natural numbers and which interprets $+, \times$ in the usual way. Construct FO formulae Zero(x), One(x), Even(x), Odd(x) and Prime(x) using τ such that
 - For any $a \in \mathbb{N}$, $\mathcal{N} \models Zero(a)$ iff a is zero.
 - For any $a \in \mathbb{N}$, $\mathcal{N} \models One(a)$ iff a is one.
 - For any $a \in \mathbb{N}$, $\mathcal{N} \models Even(a)$ iff a is even.
 - For any $a \in \mathbb{N}$, $\mathcal{N} \models Odd(a)$ iff a is odd.
 - For any $a \in \mathbb{N}$, $\mathcal{N} \models Prime(a)$ iff a is prime.
 - Goldbach's conjecture says that every even integer greater than 2 is the sum of two primes. Whether or not this is true is an open question in number theory. State Goldbach's conjecture as a FO-sentence over τ .
- 4. A group is a structure (G, +, 0) where G is a set, $0 \in G$ is a special element called the identity and $+: G \times G \to G$ is a binary operation such that
- (A1) The operation + is associative
- (A2) The constant 0 is a right-identity for the operation +
- (A3) Every element in G has a right inverse: for each $x \in G$, we can find $y \in G$ such that x + y = 0
- (A4) For any three elements $x, y, z \in G$, if x + z = y + z, then x = y Using a signature $\tau = (c, op)$ where c is a constant and op is a binary function symbol write (A1)-(A4) in FO.
- 5. Let τ be a signature consisting of the binary function symbol + and a constant 0. We denote by x + y the function +(x, y). Consider the following sentences:

$$\varphi_1 : \forall x \forall y \forall z [(x + (y + z)) = ((x + y) + z)]$$

$$\varphi_2 : \forall x [(x + 0) = x \land (0 + x) = x]$$

$$\varphi_3: \forall x [\exists y(x+y=0) \land \exists z(z+x)=0]$$

Let ψ be the conjunction of the three sentences.

- Show that ψ is satisfiable by exhibiting a τ -structure.
- Show that ψ is not valid.
- Let α be the sentence $\forall x \forall y ((x+y)=(y+x))$. Does α follow as a consequence of ψ ? That is, is it the case that $\psi \to \alpha$?
- Show that ψ is not equivalent to any of $\varphi_1 \wedge \varphi_2$, $\varphi_2 \wedge \varphi_3$ and $\varphi_1 \wedge \varphi_3$.
- 6. Explain the difference between the first order prefixes $\exists x \forall y \exists z$ and $\forall x \exists y \forall z$.
- 7. Show that the sentences $\forall x \exists y \forall z (E(x,y) \land E(x,z) \land E(y,z))$ and $\exists x \forall y \exists z (E(x,y) \land E(x,z) \land E(y,z))$ are not equivalent by exhibiting a graph which satisfies one but not both of the sentences.
- 8. For each $n \in \mathbb{N}$, $\exists^{\geq n}$ denotes a counting quantifier. Intuitively, $\exists^{\geq n}$ means that "there exist at least n such that". FO with counting quantifiers is the logic obtained by adding these quantifiers (for each $n \in \mathbb{N}$) to the fixed symbols of FO. The syntax and semantics are as follows:

Syntax : For any formula φ of FO with counting quantifiers, $\exists^{\geq n} x \varphi$ is also a formula.

Semantics: $\mathcal{A} \models \exists^{\geq n} x \varphi$ iff $\mathcal{A} \models \varphi(a_i)$ for each of n distinct elements a_1, a_2, \ldots, a_n from the universe $u(\mathcal{A})$.

- Using counting quantifiers, define a sentence φ_{45} such that $\mathcal{A} \models \varphi_{45}$ iff $|u(\mathcal{A})| = 45$.
- Define a FO sentence φ (not using counting quantifiers) that is equivalent to the sentence $\exists^{\geq n} x (x = x)$.
- 9. Write an FO formula that will evaluate to true only over a structure that has at least n elements and at most m elements.