М1. Сигналы

L03. Оценивание спектра сигнала. Фурье-преобразования: FT, DTFT, DFT, FFT

Корнилова Дарья

17 сентября 2019

1 Сигналы и гармонические колебания

Дано: непрерывный сигнал

Найти: гармоничесие колебания

Дргуими словами, мы хотим непрерывный сигнал представить в виде:

$$\sum_{n} A_n \cos(2\pi w_n t + \phi_n) + \dots$$

Гармонические колебания характеризуются следуйщими величинами $\{A,w,\phi\}$, где A - амплитуда колебаний, w - частота колебаний, ϕ - фаза колебания. Они полностью определяют гармонические колебания.

 ${m A}{m Y}{m X}$ - амплитудно-частотная характеристика

 $\Phi \, YX$ - фазочастотная характеристика

 $A \Phi YX$ - амплитудно-фазочастотная характеристика

з A и ϕ можно получить одно комплексное значение

$$A\cos(2\pi wt + \phi)$$

$$C\cos(2\pi wt) + S\sin(2\pi wt)$$

$$A(e^{2\pi iwt} + e^{-2\pi iwt})/2$$

Вспоминая, что \forall непрерывную фунуцию можно разложить в ряд Φ урье, получаем:

$$S(t) = a_0/2 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$

Чем это плохо?

Тем, что в качестве частот берутся целые числа w=1,2,...,n. А у нас и не только целые числа могут встречаться.

 $5\cos t + \cos 2\pi t$ и получаем, что $w = 1/(2\pi) \approx 0.16$

$$S(t) = \sum_{-\infty}^{\infty} c_n e^{int}$$

Найти c_n легко, если он нормальный, в нашем случае он нормальный так как разные $e \perp$

$$\Rightarrow c_n = \int_{-\infty}^{\infty} S(t)e^{int} * dt = \int_{-\infty}^{\infty} S(t)e^{-int} dt \to \{c_n\}_n^{\infty}$$

Печально то, что (c_5, c_{-5}) характеризуют одну и ту же частоту 5

$$c_n = \int S(t)e^{iwt}dt$$

$$c_n \to S^*(w) = \int_{-\infty}^{\infty} s(t)e^{-2piiwt}dt$$

 $S(t) o S^*(w) \in \mathbb{C}$ что можно записать в виде $Ae^{i\phi}$

2 Дельта фунция

В лабораторной работе был сигнал состоящий из 3 гармоник $S_L + S_M + S_H$, но такой функции не бывает (точнее они плохие, почти везде кроме 3 точек).

Figure 1: Множество объектов.

Что же тогда делать?

Надо придумать обощенную функцию. Пусть $\mathbb H$ - множество "хороших" функций. $\mathbb H=\{f,g\}$ можно определить скалярное произведение $\int f(T)g(t)dt$. Если значения будут комплексными, то скалярный квадрат получится отрицательным $\Rightarrow \int f(T)\overline{g(t)}dt$. Пусть есть ϕ , тогда $\int \#\overline{\phi(t)}dt$, где вместо # нужно подставить f(t)

Как это относится к дельта функции?

Пусть есть f(t) и g(t), а я хочу научится их считать, значит надо определить

операции $f(t)*g(t)\to\mathbb{R}$, но нам надо $f(t)*g(t)\to\mathbb{H}$, но это плохо. Тогда давайте придумаем умнажение, которое будет лучше. На помощь нам придет свертка.

$$f(t) \star g(t) = \int f(t)g(t-\tau)d\tau$$

Нам безразницы какую функцию сдвигать так как получится одно и тоже. Есть ли функция, которая может свернуть функцию с ней? Да, такой функцией является дельта фунция

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases}$$

 $\int \delta(t)dt=0$ так как везде 0, кроме одной точки \Rightarrow . 0, t=0, t=0. $\int \delta(t)dt=1\!\int_{-\infty}^{\infty}f(t)\delta(\tau)dt=f(0)0, \int_{-\epsilon}^{\epsilon}f(t)\delta(t)dt\epsilon\to 0$ получим f(0)

Дельта функция из фенкций выбивает ее значение в 0 Как найти значение в точке a? Надо ее перевернуть $f(a) = \int f(t)\delta(t-a)$

3 Преобразование Фурье

$$S(t) \rightarrow S^*(w) = \int_{-\infty}^{\infty} S(t)e^{-2\pi i w t} dt$$

Свойства

- 1. линейность
- 2. $coxpansem \ \phi op My \ ||S*(t)|| = ||S(t)||$
- 3. $S(t-a) \to e^{-2\pi i a} S^*(w)$
- 4. $S(at) = S^*(w/a)/|a|$
- 5. $S_1(t)S_2(t) \to S_1^*(w) \star S_2^*(w)$
- 6. $S_1(t) \star S_2(t) \to S_1^*(w)S_2^*(w)$
- 7. $\overline{S(t)} \to S^*(-w)$

Пусть $S(t) \to S^*(w)$. Надо прнобразовать сигнал в гармоники, но трудность заключается в том, что наш сигнал аналоговый и компьютер его кушать не горит желанием. Надо изучить S(t), а дано $\{S_n\}$. Сигнал бесконечен, а мы имеем только какие-то кго точки и то на определенном отрезке \Rightarrow .

Как законно это исправить? (а точнее бесконечный сигнал запихнуть в коробку) Нужно воспользоваться $x=\sin x/x$

Как получить точки?

Гребенка Дирака $\delta(t-1) + \delta(t-2) + \dots$

$$DiraceComb(t) = \sum_{-\infty}^{\infty} \delta(t - n)$$

$$S(t)\Pi(t)\amalg(t)\to T\tau S^*(w)\star Tw)\star \amalg (Tw)$$