Практическая работа. Параметризованный абстрактный тип данных «Память»

Цель

Сформировать практические навыки реализации параметризованного абстрактного типа данных с помощью шаблона классов C++.

Задание

- 1. В соответствии с приведенной ниже спецификацией реализовать параметризованный абстрактный тип данных «память», для хранения одного числа объекта типа T, используя шаблон классов C++.
- 2. Протестировать каждую операцию, определенную на типе данных одним из методов тестирования.

Спецификация типа данных «память».

ADT TMemory

Данные

Память (тип ТМетогу, в дальнейшем - память) - это память для хранения «числа» объекта типа Т в поле FNumber, и значения «состояние памяти» в поле FState. Объект память - изменяемый. Он имеет два состояния, обозначаемых значениями: «Включена» (_On), «Выключена» (_Off). Её изменяют операции: Записать (Store), Добавить (Add), Очистить (Clear).

Операции

Конструктор	
Начальные значения:	Нет.
Процесс:	Инициализирует поле FNumber объекта «память» (тип TMemory) объектом «число»
	(тип Т) со значением по умолчанию.
	Например для числа типа TFrac co
	значением 0/1. Память устанавливается в

	состояние «Выключена», в поле FState
	«состояние памяти» заносится значение
	(_Off).
Записать	
Вход:	(E) – объект тип Т.
Предусловия:	Нет.
Процесс:	В объект «память» (тип TMemory) в поле
	FNumber записывается копия объекта Е.
	Память устанавливается в состояние
	«Включена», в поле FState «состояние
	памяти» заносится значение (_On).
Выход:	Нет.
Постусловия:	Состояние памяти поле FState –
	«Включена» (_On).
Взять	
Вход:	Нет.
Предусловия:	Нет.
Процесс:	Создаёт и возвращает копию объекта
	хранящегося в объекте «память» (тип
	TMemory) в поле FNumber.
Выход:	Объект типа Т.
Постусловия:	Состояние памяти поле FState –
	«Включена» (_On).
Добавить	
Вход:	(E) – число объект типа Т.
Предусловия:	Нет.
Процесс:	В поле FNumber объекта «память» (тип

ТМетогу) записывается объект типа T,
полученный в результате сложения числа
(Е) и числа, хранящегося в памяти в поле
FNumber.
Нет.
Состояние памяти поле FState –
«Включена» (On).
Нет.
Нет.
В поле числа (FNumber) объекта «память»
(тип TMemory) записывается объект типа Т
со значением по умолчанию. Например, для
простой дроби - 0/1. Память (поле FState)
устанавливается в состояние «Выключена»
(_Off).
Нет.
Состояние памяти поле FState –
«Выключена» (_Off).
Нет.
Нет.
Копирует и возвращает значение поля
FState «состояние памяти» объекта
«память» (тип TMemory) в формате строки.
Значение поля «состояния памяти» (типа
String).

Постусловия:	Нет.
Читать Число	
Вход:	Нет.
Предусловия:	Нет.
Процесс:	Копирует и возвращает значение поля «число» (FNumber) объекта «память» (тип TMemory).
Выход:	Объект число (тип T).
Постусловия:	Нет.

end TCMemory

Рекомендации к выполнению

- 1. Тип данных реализуйте, используя параметризованный класс C++. template <class T>
- 2. Число храните в поле FNumber типа Т.
- 3. Для чтения состояния памяти и хранимого значения используйте свойство (property).
- 4. Тип данных реализуйте в отдельном модуле UMemory.

Ниже приведены диаграмма классов и диаграмма состояний для класса «Память».

Рис. Диаграмма классов для класса «Память».

Рис. Диаграмма состояния для класса «Память»

Содержание отчета

- 1. Задание.
- 2. Текст программы.
- 3. Тестовые наборы данных для тестирования типа данных.

Контрольные вопросы

- 1. Когда в классе необходимо явным образом описать конструктор?
- 2. Что можно использовать в качестве параметров шаблона?
- 3. Можно ли использовать шаблоны в качестве параметров шаблона?