Proving Insertion sort again

Mathematical induction

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Induction 4 Recorded: September 12, 2014

Insertion sort

Exercise

Prove that the output array of insertion sort (as given in previous videos) is sorted in increasing order.

```
procedure InsertionSort (A_1, A_2, ..., A_n)

if n = 0, then return []

else

InsertionSort (A_1, A_2, ..., A_{n-1})

insert (A_n \text{ into } A_1, A_2, ..., A_{n-1})
```

Linking the problem to natural numbers

Different predicates compared to iterative case

P(n) := Insertion sort can correctly sort n numbers

- What is the base case?
- \bullet P(0) the input is an empty array.
- P(0) is trivially true

Linking the problem to natural numbers

Different predicates compared to iterative case

P(n) := Insertion sort can correctly sort n numbers

- What is the base case?
- P(0) the input is an empty array.
- P(0) is trivially true

Linking the problem to natural numbers

Different predicates compared to iterative case

P(n) := Insertion sort can correctly sort n numbers

- What is the base case?
- \bullet P(0) the input is an empty array.
- P(0) is trivially true

Inductive case

We need to prove that $P(n-1) \Rightarrow P(n)$.

- Two operations in the recursive case
 - InsertionSort on n-1 numbers.
 - 2 Insert nth number into a sorted array.
- InsertionSort is correct for n-1 (P(n-1))
- It suffices to prove that the insert subroutine is correct

The insert algorithm

```
procedure insert (e into A_1, A_2, \ldots, A_n)
if n=0, then
   A_1 = e
else if e > A_n, then
   A_{n+1} = e
else
   A_{n+1}=A_n
    insert (e into A_1, A_2, \ldots, A_{n-1})
```

- Q(n): insert is correct for an array of n elements
- Q(0): trivially true; a singleton is always sorted

Inductive case

- Two subcases
 - \bullet $e > A_n$: e belongs at the end
 - $e \le A_n$: e is to the left of A_n
- In the second case, we insert into the subarray A_1, A_2, \dots, A_{n-1}
- This we can do by the inductive hypothesis
- The insert algorithm is correct by induction.

Summarising

- P(n): Insertion sort is correct for n inputs
- P(0) is trivially true (empty array)
- $P(n-1) \Rightarrow P(n)$ because the insert operation is correct
- Hence P(n) for any $n \ge 0$ by mathematical induction

Exercise

Selection sort

Consider the following selection sort algorithm (or the recursive variant which you have done in a previous exercise).

Input Array A of length n

Output The same array A sorted in place.

```
1 for i := 1 to n-1
2 for j := i+1 to n
3 if A_i > A_j
4 swap A_i with A_i
```

Question How do we know that it correctly produces a sorted array?

