

AD9238 波形显示

黑金动力社区 2020-03-19

1 实验简介

本实验练习使用 ADC,实验中使用的 ADC 模块型号为 AN9238,最大采样率 65Mhz,精度为 12 位。实验中把 AN9238的 2 路输入以波形方式在 HDMI/VGA 上显示出来,我们可以用更加直观的方式观察波形,是一个数字示波器雏形。

AN9238 双路 65M 采样 12 位 ADC 模块

实验预期结果

2 实验原理

黑金高速 AD 模块 AN9238 为 2 路 65MSPS ,12 位的模拟信号转数字信号模块。模块的 AD 转换采用了 ADI 公司的 AD9238 芯片 ,AD9238 芯片支持 2 路 AD 输入转换,所以 1 片 AD9238 芯片一共支持 2 路的 AD 输入转换。模拟信号输入支持单端模拟信号输入,输入电压范围为-5V~+5V,接口为 SMA 插座。

AN9238 模块的原理设计框图如下:

关于 AD9238 的电路具体参考设计请参考 AD9238 的芯片手册。

2.1 单端输入及运放电路

单端输入 AD1 和 AD2 通过 J5 或者 J6 两个 SMA 头输入,单端输入的电压为-5V~+5V。

板上通过运放 AD8065 芯片和分压电阻把-5V~+5V 输入的电压缩小成-1V~+1V。 如果用户想输入更宽范围的电压输入只要修改前端的分压电阻的阻值。

黑金动力社区

下表为模拟输入信号和 AD8065 运放输出后的电压对照表:

AD 模拟输入值	AD8065 运放输出
-5V	-1V
0V	0V
+5V	+1V

2.2 单端转差分及 AD 转换

-1V~+1V 的输入电压通过 AD8138 芯片转换成差分信号(VIN+ - VIN-),差分信号的共模电平由 AD 的 CML 管脚决定。

黑金动力社区 3/11

下表为模拟输入信号到 AD8138 差分输出后的电压对照表:

AD 模拟输入 值	AD8065 运放输出	AD8138 差分输出 (VIN+− VIN−)
-5V	-1V	-1V
0V	0V	0V
+5V	+1V	+1V

2.3 AD9238 转换

默认 AD 是配置成 offset binary 的, AD 转换的值如下图所示:

Table 16. Output Data Format

Input (V)	Condition (V)	Offset Binary Output Mode
VIN+ - VIN-	< -VREF - 0.5 LSB	0000 0000 0000
VIN+ - VIN-	= -VREF	0000 0000 0000
VIN+ - VIN-	= 0	1000 0000 0000
VIN+ - VIN-	= +VREF - 1.0 LSB	1111 1111 1111
VIN+ - VIN-	> +VREF – 0.5 LSB	1111 1111 1111

黑金动力社区 4/11

在模块电路设计中, AD9238 的 VREF 的值为 1V, 这样最终的模拟信号输入和 AD 转换的数据如下:

AD 模拟输	AD8055 运放	AD8138 差分输出	AD9238 数字
入值	输出	(VIN+-VIN-)	输出
-5V	-1V	-1V	00000000000
OV	0V	0V	10000000000 0
+5V	+1V	+1V	11111111111

从表中我们可以看出,-5V 输入的时候,AD9238 转换的数字值最小,+5V 输入的时候,AD9238 转换的数字值最大。

2.4 AN9238 数字输出时序

AD9238 双通道 AD 的数字输出为+3.3V 的 CMOS 输出模式, 2 路通道(A 和 B) 独立的数据和时钟。AD 数据在时钟的上降沿转换数据, FPGA 端可用 AD 时钟的采样 AD 数据。

黑金动力社区 5 / 11

3 程序设计

本实验显示部分是基于前面的已有的实验,在彩条上叠加网格线和波形,整个项目的框图如下图所示:

ad9238_sample 模块主要完成 ad9238 的 AD 数据采集和转换。首先把 AD 采集到的数据进行有符号数转换,最后的数据只取 8 位数据,数据宽度转换到 8bit(为了跟其它 8 位的 AD 模块程序兼容)。另外每次采集 1024 个数据,然后等待一段时间再继续采集下面的 1024 个数据。

信号名称	方向	宽度 (bit)	说明
adc_clk	in	1	adc 系统时钟
rst	in	1	异步复位,高复位
adc_data	in	12	ADC 数据输入
adc_buf_wr	out	1	ADC 数据写使能
adc_buf_addr	out	12	ADC 数据写地址
adc_buf_data	out	8	无符号 8 位 ADC 数据

ad9238_sample 模块端口

黑金动力社区 6/11

grid_display 模块主要完成视频图像的网格线叠加,本实验将彩条视频输入,然后叠加一个网格后输出,这一块网格区域提供给后面的波形显示模块使用,这个网格区域是位于显示器水平方向(从左到右)从9到1018,垂直方向(从上到下)从9到308的视频显示位置。

```
if(pos_y >= 12' d9 && pos_y <= 12' d308 && pos_x >= 12' d9 && pos_x <= 12' d1018)
region_active <= 1'b1;
```

信号名称	方向	宽度 (bit)	说明
pclk	in	1	像素时钟
rst_n	in	1	异步复位,低电平复位
i_hs	in	1	视频行同步输入
i_vs	in	1	视频场同步输入
i_de	in	1	视频数据有效输入
i_data	in	24	视频数据输入
o_hs	out	1	带网格视频行同步输出
o_vs	out	1	带网格视频场同步输出
o_de	out	1	带网格视频数据有效输出
o_data	out	24	带网格视频数据输出

grid display 模块端口

wav_display 显示模块主要是完成波形数据的叠加显示,模块内含有一个双口 ram,写端口是由 ADC 采集模块写入,读端口是显示模块。在网格显示区域有效的时候,每行显示都会读取 RAM中存储的 AD 数据值,跟 Y 坐标比较来判断显示波形或者不显示。

黑金动力社区 7/11

信号名称	方向	宽度 (bit)	说明
pclk	in	1	像素时钟
rst_n	in	1	异步复位,低电平复位
wave_color	in	24	波形颜色,rgb
adc_clk	in	1	adc 模块时钟
adc_buf_wr	in	1	adc 数据写使能
adc_buf_addr	in	12	adc 数据写地址
adc_buf_data	in	8	adc 数据,无符号数
i_hs	in	1	视频行同步输入
i_vs	in	1	视频场同步输入
i_de	in	1	视频数据有效输入
i_data	in	24	视频数据输入
o_hs	out	1	带网格视频行同步输出
o_vs	out	1	带网格视频场同步输出
o_de	out	1	带网格视频数据有效输出
o_data	out	24	带网格视频数据输出

wav_display 模块端口

timing_gen_xy 模块为其它模块的子模块,完成视频图像的坐标生成,x 坐标,从左到右增大,y 坐标从上到下增大。

信号名称	方向	宽度 (bit)	说明
clk	in	1	系统时钟
rst_n	in	1	异步复位,低电平复位
i_hs	in	1	视频行同步输入
i_vs	in	1	视频场同步输入
i_de	in	1	视频数据有效输入
i_data	in	24	视频数据输入

黑金动力社区

o_hs	out	1	视频行同步输出
o_vs	out	1	视频场同步输出
o_de	out	1	视频数据有效输出
o_data	out	24	视频数据输出
X	out	12	坐标 x 输出
y	out	12	坐标 y 输出

timing_gen_xy 模块端口

4 实验现象

- (1)将 AN9238模块插入开发板, AX7101接J11、AX7102接J5, AX7103接J13, 注意1脚对 齐, 不要插错、插偏, 不能带电操作。
- (2) 连接 AN9238 的输入到信号发生器的输出,*这里使用的是专用屏蔽线,如果使用其他线可能会有较大干扰*。

AN9238 连接信号源示意图

(3) 连接 HDMI/VGA 显示器,*注意:连接的是显示器,不是笔记本电脑接口*

黑金动力社区 9/11

AX7101 开发板连接图

AX7102 开发板连接图

黑金动力社区 10/11

AX7103 开发板连接图

(4)下载程序,调节信号发生的频率和幅度,AN9238 输入范围-5V-5V,为了便于观察波形数据,建议信号输入频率 200Khz 到 1Mhz。观察显示器输出,红色波形为 AD1 输入、蓝色为 AD2 输入、黄色网格最上面横线代表 5V,最下面横线代表-5V,中间横线代表 0V,每个竖线间隔是 10 个采样点。

黑金动力社区 11/11