

Universidade Federal Rural de Pernambuco Departamento de Estatística e Informática Bacharelado em Sistemas de Informação

Delivery e algoritmos de menor rota

Joel Fausto de Oliveira Filho

Recife

Agosto de 2022

1. Introdução

O serviço de delivery é algo comum em nossas vidas e tem de muitas formas beneficiado a sociedade com sua praticidade. Este trabalho trata-se da criação de um algoritmo para ajudar a resolução de um problema que possa vir a ocorrer em um futuro não tão distante, que seria o delivery em meio a um trânsito caótico. Visando que nesse futuro o modelo de delivery atual não seria eficiente por questões de tempo e mão-de-obra. Devido a este problema os drones seriam o meio mais eficiente de delivery pois são automáticos e realizam as entregas mais rapidamente, porque não "enfrentam" o trânsito caótico. Porém considerando que a capacidade da bateria dos drones continuam sendo ruim, deve-se obter a rota com maior otimização possível de trajeto, ou seja, deve-se implementar um algoritmo que possibilite aos drones a rota mais otimizada possível.

Serão abordados dois algoritmos para resolução do problema de rota mais otimizada, um algoritmo de "força bruta" e um algoritmo do tipo genético ou do "vizinho mais próximo". Após a elaboração de ambos faremos uma comparação para observar qual é o melhor em aspectos de complexidade para ser implementado.

A motivação do trabalho baseia-se em fornecer um algoritmo com uma solução para o problema em questão (delivery em meio a um trânsito caótico) que possa surgir na sociedade e com essa solução evitar transtornos e estresse para a sociedade de modo geral.

1.1 Objetivos

1.1.1 Objetivo Geral

O objetivo geral do trabalho é a criação de um algoritmo com a rota mais otimizada possível, ou seja, com a rota que possua menor distância.

1.1.2 Objetivos Específicos

- 1° Extrair da matriz os pontos de entrega do drone a partir de um arquivo .txt;
- 2° Analisar os dados da matriz, a fim de encontrar os pontos que interessam para o cálculo da melhor rota;
- 3° Fazer permutações com os pontos encontrados, para achar todas as rotas possíveis;
- 4° Calcular as distâncias entre os pontos;
- 5° Com as distâncias entre cada ponto, calcular as distâncias de cada rota nas permutações;
- 6° Examinar dentre todas as distâncias calculadas à menor, pois essa será a rota mais otimizada possível.

2. Referencial Teórico

2.1 Complexidade computacional

Complexidade computacional é a forma encontrada na computação para analisar a eficiência de um algoritmo. Um algoritmo eficiente é aquele que resolve um problema em menor tempo, e dentro da computação é muito importante saber em quanto tempo um algoritmo irá produzir uma resposta, pois existem algoritmos que podem variar de um segundo, até mesmo anos para produzir uma determinada resposta. A complexidade é divida em complexidade espacial (complexidade espacial refere-se ao espaço de memória que este necessita para executar até o fim) e complexidade temporal.

Definição 1.1 Segundo Rosen, KH (2009, p.193) "A complexidade temporal é descrita em termos do número de operações necessárias em vez do tempo atual do computador, por causa da diferença de tempo necessária para computadores diferentes realizarem as operações básicas."

2.1.1 Escalas de complexidade

- · Complexidade de melhor caso: "Representado pela letra grega Ω (Ômega), é o menor tempo de execução em uma entrada de tamanho N. É pouco usado, por ter aplicação em poucos casos."
- · Complexidade de caso médio: "Definido pela letra grega θ (Theta), é o mais difícil de se determinar. Pois deve-se obter a média dos tempos de execução de todas as entradas de tamanho 1, 2,... até N, ou baseado em probabilidade de determinada situação ocorrer."
- · Complexidade de pior caso: "Representado pela letra grega O (O maiúsculo. Trata-se da letra grega ômicron maiúscula), é o método mais fácil de se obter. Baseia-se no maior tempo de execução sobre as entradas de tamanho N."

2.1.2 Tipos de complexidade

A complexidade computacional, também possui dois tipos: polinomial e exponencial.

Definição 1.2 Segundo Rosen, KH (2009, p.197) "Um algoritmo tem complexidade polinomial se tiver complexidade $O(n^b)$, em que b é um número inteiro com $b \ge 1$."

Definição 1.3 Segundo Rosen, KH (2009, p.197) "Um algoritmo tem complexidade exponencial se tiver uma complexidade temporal $O(b^n)$, em que b > 1."

2.2 O problema do caixeiro viajante

"No problema do caixeiro-viajante, que está intimamente relacionado ao problema do ciclo hamiltoniano, um vendedor deve visitar n cidades. Modelando o problema como um grafo completo com n vértices, podemos dizer que o vendedor deseja fazer um percurso, ou um ciclo hamiltoniano, visitando cada cidade exatamente uma vez e terminando na cidade de onde partiu. O vendedor incorre em um custo inteiro não negativo c(i, j) para viajar da cidade i para a cidade j, e deseja fazer o percurso cujo custo total seja mínimo, em que o custo total é a soma dos custos individuais ao longo das arestas do percurso." (Cormen, Thomas H. et. al. Algoritmos: Teoria e Prática. Editora Campus, 2002.)

Definição 1.4 Segundo Rosen, KH (2009, p.656) "Um caminho simples em um grafo G que passe por todos os vértices exatamente uma vez é chamado de caminho hamiltoniano e um ciclo simples em um grafo G que passe pelos vértices exatamente uma vez é chamado de ciclo hamiltoniano."

2.2.1 Algoritmo de força bruta e o problema do caixeiro viajante

Definição 1.5 "Na ciência da computação, a busca por força bruta ou busca exaustiva também conhecido como gerar e testar, é uma técnica de solução de problemas trivial, porém muito geral que consiste em enumerar todos os possíveis candidatos da solução e checar cada candidato para saber se ele satisfaz o enunciado do problema."

Aplicando esta técnica ao problema do caixeiro viajante, testamos todos os caminhos hamiltonianos em busca da melhor rota. Computacionalmente este método para poucos pontos é rápido, porém conforme o número de pontos aumenta, os possíveis caminhos aumentam exponencialmente, fazendo deste método um método com complexidade exponencial como já foi descrito acima, sendo assim este método não é executável para valores "n" muito grandes.

Definição 1.6 "Para o caso de n cidades, como a primeira é fixa, o leitor não terá nenhuma dificuldade em ver que o número total de escolhas que podemos fazer é (n-1) x (n-2) x \dots x 2 x 1. De modo que, usando a notação de fatorial: R(n) = (n-1)!."

n	rotas por segundo	(n-1)!
5	250 milhoes	24
10	110 milhoes	362 880
15	71 milhoes	87 bilhoes
20	53 milhoes	1.2×10^{17}
25	42 milhoes	6.2×10^{23}

3. Procedimento

Para resolução do problema (obter rota com maior otimização possível de trajeto), foram implementados dois tipos de algoritmos, o algoritmo de força bruta, explicado na seção anterior, e o algoritmo do vizinho mais próximo.

3.1 Algoritmo do vizinho mais próximo

Após a aplicação do algoritmo de força bruta para resolução do problema, notou-se que o mesmo possuía uma complexidade muito grande, devido a isso uma nova meta-heurística (método heurístico para resolver problemas de otimização), fora escolhido para a solução do problema, o algoritmo do vizinho mais próximo. A escolha desta meta-heurística tem como objetivo desenvolver um método mais eficiente, ou seja, com menor complexidade ao problema do caixeiro viajante, utilizando uma solução adaptativa.

Definição 1.6 "O algoritmo do vizinho mais próximo foi, na ciência da computação, um dos primeiros algoritmos utilizados para determinar uma solução para o problema do caixeiro viajante. Ele gera rapidamente um caminho curto, mas geralmente não o ideal.".

Figura 2 - Função do algoritmo do vizinho mais próximo.

```
33 função A_Vizinho(lista, dic):
34
35
        começo
36
37
       rota <- ('R')
38
        soma <- 0
39
        ponto <- None
40
41
        Para p de 0 até comprimento(lista) Faça
42
                c, menor <- 0
43
                Enquanto c < comprimento(lista) Faça
                        d <- calc_distancia(dic[lista[0]][0], dic[lista[c + 1]][0], dic[lista[0]][1],
44
                                           dic[lista[c + 1]][1])
45
                        c <- c + 1
46
                        Se d < menor ou menor == 0 Faça
47
                                menor <- d
48
                                ponto <- pontos[c]
49
                soma <- soma + menor
50
                lista.remova(rota[-1])
51
                lista.remova(ponto)
                lista.insere(0, ponto)
52
53
                rota.adiciona(ponto)
55
                // Quando já tiver percorrido todos os pontos, ele deve voltar ao ponto 'R':
56
                lista.adiciona('R')
                d = calc distancia(dic[lista[0]][0], dic[lista[1]][0], dic[lista[0]][1], dic[lista[1]][1])
57
58
                soma <- soma + d
59
                rota.adiciona('R')
60
                rota <- ' → '.junte(rota)
61
    Retorne f'O menor percurso encontrado foi de (soma) dronômetros, com a rota: (rota)
62
63
64
        Fim
```

Para implementação do algoritmo do vizinho mais próximo, foi necessário a coleta de dados, obtidos de uma matriz advinda de um arquivo .txt. Os dados obtidos foram introduzidos a uma lista chamada "matriz". De dentro da lista "matriz" foram coletados os pontos de interesse que foram colocados em uma lista chamada "pontos", e em um dicionário chamado "dic_F" foram armazenados como "key" o ponto e como "item" desta "key" o par ordenado ao qual se localiza o ponto dentro da matriz, também foram coletados, os número de linhas e colunas que a matriz possuía. Para o cálculo das distâncias foi criado uma função chamada "calc_distancias", que realiza o cálculo entre dois pares ordenados, tendo como parâmetros respectivamente: x1, y1, x2 e y2, e retorna "distancia" que é a distância entre os dois pares ordenados. E para obtenção do menor percurso e sua respectiva rota, foi usada a lógica do algoritmo do vizinho mais próximo, implementado na função "A_Vizinho" com os parâmetros: lista e dic, que retorna uma string informando a o menor trajeto em dronômetros e a menor rota, como mostrado na Figura 2.

4. Resultados

DADOS		Tipos de Algoritmos						
		Força Bruta		Vizinho mais próximo				
Matrizes	Qtd. Pontos	Tempo	Rota Encontrada	Distância	Tempo	Rota Encontrada	Distância	
MatrizA	3	0.001s	ACD	6	0.001s	ACD	6	
MatrizB	5	0.002s	ADCEB	18	0.001s	BADCE	20	
MatrizC	7	0.056s	ADCEGFB	22	0.01s	BADCEGF	22	
MatrizD	10	42.355s	HADGCEJIFB	32	0.0s	BAHDCGEJIF	32	
MatrizE	11	596.576s	HADGCEKJIFB	34	0.0s	BAHDCGEKIFJ	42	

Figura 3 - Tabela com resultado das comparações entre algoritmos.

A tabela da figura 3, mostra a comparação entre os algoritmos de Força Bruta e Vizinho mais próximo, após uma série de testes de tempo de execução. Em dados, temos o nome da matriz que está sendo avaliada e a quantidade de pontos que a mesma possui. Na parte "Tipos de Algoritmos", vemos os algoritmos que estão sendo comparados, neste caso os usados para resolução do problema (rota mais otimizada), logo abaixo podemos observar o tempo gasto por cada algoritmo em segundos, a melhor rota encontrada e a distância total (ida e volta) que ele obteve.

5. Conclusão

Ao relembrarmos o objetivo principal do trabalho que era, a elaboração de um algoritmo que retornasse a rota mais otimizada possível, ou seja, a rota que com menor distância de ida e volta para determinados pontos, podemos perceber que ele foi alcançado com êxito.

Após a elaboração dos dois algoritmos propostos (Força Bruta e Vizinho mais próximo), obtivemos resultados satisfatórios. Em ambos algoritmos foram retornadas distâncias e rotas que são consideradas "boas". Porém notou-se uma grande diferença no tempo de execução dos algoritmos, como pode-se notar na tabela da figura 3, localizada nos Resultados. O que nos faz afirmar que em questão de tempo de execução, um algoritmo é melhor que o outro, neste caso o algoritmo do Vizinho mais próximo que nos retornou distâncias "ok" em um tempo bom, quando comparado ao outro algoritmo, que apesar de fornecer distâncias e rotas em alguns casos melhores, que o algoritmo do Vizinho mais próximo possui um tempo de execução ruim. O que ao trazermos para o cenário real é um grande problema, já que por vivermos na era da informação, necessitamos de serviços cada vez mais rápidos para suprir nossas necessidades.

Contudo, pode-se ainda testar diversos outros tipos de algoritmos para execução do problema em questão, visando o desfecho do objetivo principal, ou seja, para trabalhos futuros buscar-se-á a otimização dos algoritmos já experimentados, aspirando uma execução e resultados ainda melhores que os já obtidos ou ainda a implementação de novos tipos de algoritmos, como por exemplo: o algoritmo da colônia de formigas, o algoritmo genético e etc, buscando obter novos resultados que sejam ainda melhores que os obtidos, para um desfecho ainda melhor para o objetivo principal.

Referências Bibliográficas

Rosen, K. H. **Matemática Discreta e suas Aplicações**. Mc Graw Hill: Grupo A, 2010. 9788563308399. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788563308399/. Acesso em: 08 Aug 2022

Cormen, T. **Algoritmos - Teoria e Prática**. GEN LTC: Grupo GEN, 2012. 9788595158092. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595158092/. Acesso em: 08 Aug 2022

Busca por força bruta. **Wikipedia**, 2017. Disponível em: https://pt.wikipedia.org/wiki/Busca_por_for%C3%A7a_bruta#:~:text=Em%20ci%C3%AAncia%2 0da%20computa%C3%A7%C3%A3o%2C%20busca,satisfaz%20o%20enunciado%20do%20probl ema. Acesso em: 08 Ago. 2022.

O Problema do Caixeiro Viajante - UFRGS. **UFRGS**, 2000. Disponível em: http://www.mat.ufrgs.br/~portosil/caixeiro.html. Acesso em: 08 Ago. 2022.

Algoritmo do vizinho mais próximo. **Wikipedia**, 2022. Disponível em: https://pt.wikipedia.org/wiki/Algoritmo_do_vizinho_mais_pr%C3%B3ximo#:~:text=O%20algoritmo%20do%20vizinho%20mais,mas%20geralmente%20n%C3%A3o%20o%20ideal. Acesso em: 30 Ago. 2022.