André Garnier Coutinho

Aplicação de novas metodologias à modelagem e controle de mecanismos de arquitetura paralela

Relatório anual de atividades apresentado à Comissão de Atividade Discente (CADIS) do Programa de Pós Graduação em Engenharia Mecânica (PPGEM) da Escola Politécnica da Universidade de São Paulo (EPUSP)

Área de concentração: Engenharia Mecânica

Orientador:

Prof. Dr. Tarcísio A. Hess Coelho

São Paulo 15 de Janeiro de 2015 Nome: André Garnier Coutinho

NUSP: 6846085

Curso: Mestrado

Área de concentração: Engenharia Controle e Automação Mecânica (3152)

Orientador: Professor Doutor Tarcísio Antônio Hess Coelho

Ano de ingresso no PPGEM: 2014

Bolsista: Sim

Agência de fomento: CAPES

Edital/Chamada: Cota Institucional (Demanda Social)

Resumo

Para realizar o projeto de um sistema de controle, é necessário primeiramente de um modelo da planta a ser controlada. O grau de fidelidade do modelo da planta, dentro das condições de operação desejadas do sistema, influi diretamente na performance do sistema em malha fechada que o projeto do controlador pode oferecer. Quanto mais rico for o modelo, mais fácil de atingir requisitos de performance mais elevados (menor tempo de resposta e menor sobressinal, por exemplo) garantindo a estabilidade do sistema.

Utilizando os métodos tradicionais de modelagem de Sistemas Mecânicos Multicorpos, é difícil e trabalhoso de se obter modelos de sistemas complexos, como mecanismos paralelos. Para contornar esse problema, é comum desprezar alguns efeitos de acoplamentos inerciais, simplificando o processo de modelagem. Porém, essa estratégia gera modelos mais pobres, o que irá limitar a perfomance que o sistema poderá atingir quando for feito o projeto do sistema de controle.

A solução proposta para ser possível aumentar a performance, garantindo a robustez, de um sistema de controle de mecanismos paralelos é a utilização dos novos métodos de modelagem dinâmica desenvolvidos pelo grupo de pesquisa do Prof. Doutor Tarcisio Antonio Hess Coelho, os quais são adequados para incluir todos os efeitos de dinâmica de corpos rígidos, independentemente da complexidade do sistema.

O presente projeto visa desenvolver um algoritmo simples que inclua todos os efeitos da dinâmica de corpos rígidos para realizar a modelagem dinâmica de mecanismos paralelos (baseado na metodologia de Orsino baseada nas equações de Gibbs-Appell e Maggi), desenvolver uma metodologia de projeto de controle robusto para mecanismos paralelos tradicionais e mecanismos com atuação redundante, e desenvolver leis de controle adequadas para sistemas descritos por coordenadas redundantes.

1 Introdução

Há uma série de vantagens em utilizar mecanismos de cadeia cinemática paralela no lugar dos tradicionais mecanismos seriais. Dentre elas podemos citar sua grande capacidade de carga, alta precisão de posicionamento do efetuador e uma redução significativa na inércia. Outra característica marcante desse tipo de arquitetura são as altas velocidades e acelerações atingidas, as quais superam muito os valores máximos atingidos utilizando arquitetura serial. Grande parte dessas vantagens se devem à possibilidade de ter todos os motores localizados na base. Como desvantagens podemos citar o menor espaço de trabalho e modelo dinâmico muito mais complexo e difícil de se obter [6, 1].

Devido à grande dificuldade de se obter o modelo dinâmico completo de mecanismos paralelos, muitos pesquisadores preferem utilizar mecanismos seriais para realizar tarefas que exigem um grande domínio sobre a dinâmica dos sistema, como plataformas robóticas voltadas a reabilitação, pois é necessário um conhecimento detalhado do comportamento dinâmico do mecanismo utilizado para poder controlar as forças de interação entre o mecanismo e o paciente [2].

Atualmente novas metodologias para modelagem de dinâmica multicorpos que se mostram muito mais adequadas para aplicações em qualquer tipo de mecanismo estão sendo desenvolvidas, das quais se destaca o trabalho realizado por Renato Orsino, doutorando também orientado pelo professor Dr. Tarcísio Coelho [7, 3].

Outro assunto relevante ainda pouco estudado por pesquisadores é o controle voltado a mecanismos paralelos [6]. Como já foi dito anteriormente, devido a grande dificuldade de modelagem de sistemas complexos utilizando os métodos tradicionais, ainda são poucos os estudos de implementação de técnicas de controle em mecanismos de cadeia fechada. Sendo assim, é possível aliar as novas metodologias de modelagem desenvolvidas à implementação, adaptação e aprimoramentos de algoritmos de controle não-linear voltados a mecanismos paralelos [4]. Além disso é possível aproveitar os novos métodos desenvolvidos para explorar outro assunto ainda pouco estudado, a implementação de leis de controle utilizando variáveis redundantes [1, 5, 8, 9].

2 Objetivos

A proposta atual é a utilização de novos métodos de modelagem dinâmica multicorpos para implementar, adaptar e aprimorar algoritmos de controle não-linear para mecanismos paralelos. Possui diferenciação em relação a outros trabalhos desenvolvidos, pois utiliza novas metodologias para modelagem, as quais ainda são pouco difundidas, tem foco em mecanismos de cadeia fechada, os quais ainda não são tão explorados, e estuda técnicas de controle não-linear, inclusive a utilização de variáveis redundantes em sistemas de controle, fato não muito comum na literatura.

Os principais objetivos do projeto são:

- Desenvolvimento de um algoritmo para dedução das equações diferenciais de movimento de mecanismos de arquiteturas serial e paralela com vínculos de natureza holônoma (baseado na metodologia de Orsino baseada nas equações de Gibbs-Appell e Maggi) que possua as seguintes características:
 - Considere todos os efeitos da dinâmica de corpos rígidos.
 - Aplicação simples, mesmo para sistemas de alta complexidade.
 - Alto grau de automatização, de modo que possa ser facilmente implementado em softwares de manipulação simbólica.
- Desenvolvimento de metodologia de projeto de controle não linear robusto, baseado na técnica de controle por modos deslizantes, para mecanismos de arquitetura paralela, tradicionais e com atuação redundante, com incertezas paramétricas.
- Desenvolvimento de lei de controle adequada para sistemas descritos por coordenadas redundantes, como por exemplo modelos mecanismos cuja orientação é descrita por quaternions unitários.

3 Metodologia do projeto

O desenvolvimento do projeto consiste basicamente em três frentes: o desenvolvimento e aprimoramento do algoritmo utilizado para modelagem dinâmica das plataformas robóticas, o desenvolvimento de uma metologia de projeto de sistema de controle não linear robusto para plataformas robóticas com incertezas paramétricas, e a elaboração de leis de controle adaquadas a sistemas descritos por coordenadas redundantes.

O desenvolvimento do algoritmo de modelagem é feito começando pelo estudo dos métodos tracionais e da metodologia de Orsino baseada nas equações de Gibbs-Appell e Maggi de modelagem de sistemas mecânicos multicorpos, seguido pela concepção da primeira verão do algoritmo, aplicação da versão atual do algoritmo em diversas plataformas robóticas utilizando softwares de manipulação simbólicas, automatização e adição de aprimoramentos ao algoritmo, voltando às etapas de aplicação, automatização e adição de aprimoramentos iterativamente.

O desenvolvimento da metodologia de projeto de sistema de controle não linear robusto para plataformas robótica com incertezas paramétricas inicia-se no estudo de técnicas de controle que seguem esta linha e aplicação em sistemas de menor complexidade. Depois de adquirir o domínio das leis de controle estudadas, aplicar as tércnicas nos modelos de manipuladores paralelos deduzidos pelo algoritmo de modelagem desenvolvido e por fim automatizar ao máximo a metodologia de projeto desenvolvida.

O desenvolvimento de leis de controle adaquadas a sistemas descritos por coordenadas redundantes é feito baseado nas leis de controle não linear robusto estudas, com o objetivo de realizar o controle de plataformas robóticas cuja orientação é descrita por quaternions unitários. Essa etapa do projeto exige a integração dos conhecimentos adquiridos nas áreas de modelagem e controle de plataformas robóticas, com o fim de sintetizar novas leis de controle adequadas a sistemas descritos por coordenadas redundantes.

4 Síntese de Resultados

Esta seção pretende apresentar uma síntese dos principais resultados teóricos obtidos até o momento.

4.1 Algoritmo para modelagem de plataformas robóticas

Para explicar o algoritmo desenvolvido é necessário primeiro definir uma série de conceitos:

Seja \mathcal{B} um sistema mecânico serial de $\nu^{\#}$ graus de liberdade. Definimos:

- N: referencial inercial.
- \bullet N: sistema de coordenadas fixo a \mathcal{N} .
- \mathcal{B}_i , $i = 1, ..., \nu^{\#}$: i-ésima barra do mecanismo serial.
- $\bullet \ {\sf g}_i,\, i=1,...,\nu^{\#}$: centro de massa da i-ésima barra.
- x: ponto no espaço fixo ao efetuador.
- B_i , $i = 1, ..., \nu^{\#}$: sistema de coordenadas solidário a \mathcal{B}_i com origem no centro da i-ésima junta e eixos paralelos às direções principais de inércia de \mathcal{B}_i .
- m_i : massa da barra \mathcal{B}_i .
- I_i : tensor de inércia da barra \mathcal{B}_i .
- $\boldsymbol{\omega}_i$: vetor velocidade angular absoluta da barra \mathcal{B}_i .
- \mathbf{v}_i : vetor velocidade linear absoluta do centro de massa \mathbf{g}_i .
- a_i : vetor aceleração linear absoluta do centro de massa g_i .
- ω : vetor contendo as componentes de $[\boldsymbol{\omega}_i]_{B_i}$, com $i=1,...,\nu^{\#}$.
- ν : vetor contendo as componentes de $[\mathbf{v}_i]_{\mathbb{N}}$, com $i=1,...,\nu^{\#}$.
- $\mathbb{Q}^{\#}$: vetor de $\nu^{\#}$ coordenadas generalizadas independentes. Contém os deslocamentos angulares relativos das juntas rotativas e os deslocamentos lineares relativos das juntas prismáticas.
- q° : vetor de $\nu_{q^{\circ}}$ coordenadas generalizadas redundantes. Contém as coordenadas dos centros de massa das barras do mecanismo escritas no sistema N.
- q: vetor contendo todas as coordenadas generalizadas. É definido por $q = \begin{bmatrix} q^{\#^T} & q^{\circ T} \end{bmatrix}^T$
- $\mathbb{p}^{\#}$: vetor de $\nu^{\#}$ velocidades generalizadas independentes. É dado por $\mathbb{p}^{\#} = \dot{\mathbb{q}}^{\#}$.

- \mathbb{p}° : vetor de $\nu_{\mathbb{p}^\circ}$ velocidades generalizadas redundandes. É definido por $\mathbb{p}^\circ=\begin{bmatrix}\omega^\mathsf{T}&\nu^\mathsf{T}\end{bmatrix}^\mathsf{T}$
- \mathbb{p} : vetor contendo todas as velocidades generalizadas. É definido por $\mathbb{p} = \begin{bmatrix} \mathbb{p}^{\#^T} & \mathbb{p}^{\circ^T} \end{bmatrix}^T$
- $p^{\circ}(q^{\#}, p^{\#})$: p° escrito em função de $q^{\#}$ e $p^{\#}$.
- A(q#): Jacobiano dos vínculos de velocidades.
- $\mathbb{C}(q^{\#})$: complemento ortogonal do Jacobiano dos vínculos de velocidades.
- M: matriz de inércia desacoplada.
- v(p#): vetor dos termos giroscópicos desacoplados.
- $\mathbb{f}(q^{\#})$: vetor dos esforços de atrito aplicados na direção oposta a p.
- g: vetor dos esforços gravitacionais aplicados na direção oposta a p.
- u: esforços ativos externos aplicados na direção de p#.

O algoritmo é baseado na metodologia de Orsino baseada nas equações de Gibbs-Appell e Maggi para modelagem dos subsistemas seriais. O modelo para simulação dinâmica direta é dado pelo seguinte equacionamento:

$$\begin{cases} \mathbb{C}^{\mathsf{T}}(\mathbf{q}^{\#}) \Big(\mathbb{M}\dot{\mathbf{p}} + \mathbf{v}(\mathbf{p}^{\#}) + \mathbb{f}(\mathbf{p}^{\#}) + \mathbf{g} \Big) = \mathbf{u} \\ \mathbb{A}(\mathbf{q}^{\#})\dot{\mathbf{p}} = \mathbb{b}(\mathbf{q}^{\#}, \mathbf{p}^{\#}) \end{cases}$$
(1)

Sendo:

$$\mathbb{C} = \begin{bmatrix} \mathbb{1} \\ \frac{\partial \underline{\mathbb{p}}^{\circ}}{\partial \mathbb{p}^{\#}} \end{bmatrix}$$
(2)

$$\mathbb{A} = \begin{bmatrix} \frac{\partial \underline{\mathbf{p}}^{\circ}}{\partial \mathbf{p}^{\#}} & -\mathbb{1} \end{bmatrix} \tag{3}$$

$$\mathbb{b} = -\dot{\mathbb{A}}(\mathbb{q}^{\#}, \mathbb{p}^{\#})\mathbb{p} \tag{4}$$

$$S = \frac{1}{2} \sum_{i=1}^{\nu^{\#}} \left(m_i \mathbf{a}_i \cdot \mathbf{a}_i + \dot{\boldsymbol{\omega}}_i \cdot \mathbf{I}_i \dot{\boldsymbol{\omega}}_i + 2 \dot{\boldsymbol{\omega}}_i \cdot (\boldsymbol{\omega}_i \wedge \mathbf{I}_i \boldsymbol{\omega}_i) \right)$$
(5)

$$M = \frac{\partial^2 S}{\partial \dot{p}^2} \tag{6}$$

$$\mathbf{v} = \frac{\partial S}{\partial \dot{\mathbf{p}}} - \frac{\partial^2 S}{\partial \dot{\mathbf{p}}^2} \dot{\mathbf{p}} \tag{7}$$

Aqui seguem as etapas do algoritmo para dedução do modelo dinâmico de um subsistema serial acompanhado de um exemplo de aplicação no mecanismo <u>RR</u>:

Figura 1: Mecanismo <u>RR</u>

1) Definição das coordenadas generalizadas:

$$q^{\#} = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix} \tag{8}$$

$$q^{\circ} = \begin{bmatrix} x_1 & y_1 & x_2 & y_2 \end{bmatrix} \tag{9}$$

2) Definição das velocidades generalizadas:

$$\mathbb{p}^{\#} = \begin{bmatrix} \dot{\theta}_1 & \dot{\theta}_2 \end{bmatrix} \tag{10}$$

$$\mathbb{p}^{\circ} = \begin{bmatrix} \omega_{z1} & \omega_{z2} & v_{x1} & v_{y1} & v_{x2} & v_{y2} \end{bmatrix}$$
 (11)

3) Cinemática de posição dos centros de massa e do efetuador utilizando matrizes de transformação homogênea:

$$\left[\mathbf{g}_{1}\right]_{\mathbf{B}_{1}}^{\mathsf{H}} = \begin{bmatrix} l_{g1} & \mathbf{0} & \mathbf{1} \end{bmatrix}^{\mathsf{T}} \tag{12}$$

$$\left[\mathbf{g}_{2}\right]_{\mathbf{B}_{2}}^{\mathsf{H}} = \begin{bmatrix} l_{g2} & 0 & 1 \end{bmatrix}^{\mathsf{T}} \tag{13}$$

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathbf{B}_2}^{\mathsf{H}} = \begin{bmatrix} l_2 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \tag{14}$$

$$\begin{bmatrix} 1 \end{bmatrix}_{N|B_1}^{H} = \begin{bmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (15)

$$\begin{bmatrix} 1 \end{bmatrix}_{B_1 \mid B_2}^{H} = \begin{bmatrix} c_2 & -s_2 & l_1 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(16)

$$[1]_{N|B_{2}}^{H} = [1]_{N|B_{1}}^{H} [1]_{B_{1}|B_{2}}^{H} = \begin{bmatrix} c_{1+2} & -s_{1+2} & l_{1}c_{1} \\ s_{1+2} & c_{1+2} & l_{1}s_{1} \\ 0 & 0 & 1 \end{bmatrix}$$
(17)

$$[g_1]_{N}^{H} = [1]_{N|B_1}^{H} [g_1]_{B_1}^{H} = \begin{bmatrix} l_{g1}c_1 \\ l_{g1}s_1 \\ 1 \end{bmatrix}$$
 (18)

$$[g_2]_{N}^{H} = [1]_{N|B_2}^{H} [g_2]_{B_2}^{H} = \begin{bmatrix} l_1 c_1 + l_{g2} c_{1+2} \\ l_1 s_1 + l_{g2} s_{1+2} \\ 1 \end{bmatrix}$$
(19)

$$[\mathbf{x}]_{\mathbf{N}}^{\mathbf{H}} = [\mathbb{1}]_{\mathbf{N}|\mathbf{B}_{2}}^{\mathbf{H}} [\mathbf{x}]_{\mathbf{B}_{2}}^{\mathbf{H}} = \begin{bmatrix} l_{1}c_{1} + l_{2}c_{1+2} \\ l_{1}s_{1} + l_{2}s_{1+2} \\ 1 \end{bmatrix}$$
(20)

4) Cinemática de velocidades dos centros de massa:

$$[\underline{\boldsymbol{\nu}}_{1}]_{N} = \frac{\mathsf{d}}{\mathsf{d}t}[\mathbf{g}_{1}]_{N} = \begin{bmatrix} -l_{g1}\mathbf{s}_{1}\dot{\theta}_{1} \\ l_{g1}\mathbf{c}_{1}\dot{\theta}_{1} \end{bmatrix}$$
(21)

$$[\underline{\mathbf{v}}_{2}]_{N} = \frac{\mathsf{d}}{\mathsf{d}t}[\mathsf{g}_{2}]_{N} = \begin{bmatrix} -l_{1}\mathsf{s}_{1}\dot{\theta}_{1} - l_{g2}\mathsf{s}_{1+2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ l_{1}\mathsf{c}_{1}\dot{\theta}_{1} + l_{g2}\mathsf{c}_{1+2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \end{bmatrix}$$
(22)

5) Cinemática de velocidades angulares das barras:

$$[\underline{\boldsymbol{\omega}}_{1}]_{B_{1}+B_{1}}^{S} = [\mathbb{1}]_{N+B_{1}}^{T} \frac{d}{dt} [\mathbb{1}]_{N+B_{1}} = \begin{bmatrix} 0 & \dot{\theta}_{1} \\ -\dot{\theta}_{1} & 0 \end{bmatrix} \Rightarrow \underline{\boldsymbol{\omega}}_{1} = \dot{\theta}_{1} \hat{\boldsymbol{k}}$$
(23)

$$[\underline{\boldsymbol{\omega}}_{2}]_{\mathsf{B}_{2}+\mathsf{B}_{2}}^{\mathsf{S}} = [\mathbb{1}]_{\mathsf{N}+\mathsf{B}_{2}}^{\mathsf{T}} \frac{\mathsf{d}}{\mathsf{d}t} [\mathbb{1}]_{\mathsf{N}+\mathsf{B}_{2}} = \begin{bmatrix} 0 & \dot{\theta}_{1} + \dot{\theta}_{2} \\ -\dot{\theta}_{1} - \dot{\theta}_{2} & 0 \end{bmatrix} \Rightarrow \underline{\boldsymbol{\omega}}_{2} = (\dot{\theta}_{1} + \dot{\theta}_{2})\hat{\boldsymbol{k}}$$
(24)

6) Montar o vetor $\underline{p}^{\circ}(q^{\#}, p^{\#})$ e calcular \mathbb{C} , \mathbb{A} e \mathbb{b} através das equações (2), (3) e (4):

$$\underline{\mathbb{p}}^{\circ}(\mathbf{q}^{\#}, \mathbf{p}^{\#}) = \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{1} + \dot{\theta}_{2} \\ -l_{g1}\mathbf{s}_{1}\dot{\theta}_{1} \\ l_{g1}\mathbf{c}_{1}\dot{\theta}_{1} \\ -l_{1}\mathbf{s}_{1}\dot{\theta}_{1} - l_{g2}\mathbf{s}_{1+2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \\ l_{1}\mathbf{c}_{1}\dot{\theta}_{1} + l_{g2}\mathbf{c}_{1+2}(\dot{\theta}_{1} + \dot{\theta}_{2}) \end{bmatrix}$$
(25)

$$\frac{\partial \underline{\mathbb{p}}^{\circ}}{\partial \mathbb{p}^{\#}} = \begin{bmatrix}
1 & 0 \\
1 & 1 \\
-l_{g1}s_{1} & 0 \\
l_{g1}c_{1} & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} & -l_{g2}s_{1+2} \\
l_{1}s_{1} + l_{g2}c_{1+2} & l_{g2}c_{1+2}
\end{bmatrix}$$
(26)

$$\mathbb{C} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
-l_{g1}s_{1} & 0 \\
l_{g1}c_{1} & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} & -l_{g2}s_{1+2} \\
l_{1}s_{1} + l_{g2}c_{1+2} & l_{g2}c_{1+2}
\end{bmatrix} (27)$$

$$\mathbb{A} = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\ -l_{g1}\mathbf{s}_{1} & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ l_{g1}\mathbf{c}_{1} & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ -l_{1}\mathbf{s}_{1} - l_{g2}\mathbf{s}_{1+2} & -l_{g2}\mathbf{s}_{1+2} & 0 & 0 & 0 & 0 & -1 & 0 \\ l_{1}\mathbf{c}_{1} + l_{g2}\mathbf{c}_{1+2} & l_{g2}\mathbf{c}_{1+2} & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$(28)$$

$$\mathbb{b} = \begin{bmatrix} 0 \\ 0 \\ l_{g1} c_1 \dot{\theta}_1^2 \\ l_{g1} s_1 \dot{\theta}_1^2 \\ l_1 c_1 \dot{\theta}_1^2 + l_{g2} c_{1+2} (\dot{\theta}_1 + \dot{\theta}_2)^2 \\ l_1 s_1 \dot{\theta}_1^2 + l_{g2} s_{1+2} (\dot{\theta}_1 + \dot{\theta}_2)^2 \end{bmatrix}$$

$$(29)$$

7) Calcular a energia de acelerações S:

$$S = \frac{1}{2} \left(m_1 (\dot{v}_{x1}^2 + \dot{v}_{y1}^2) + m_2 (\dot{v}_{x2}^2 + \dot{v}_{y2}^2) + J_{z1} \dot{\omega}_{z1}^2 + + J_{z2} \dot{\omega}_{z2}^2 \right)$$
(30)

8) Obter M e v utilizando as equações (6) e (7):

$$\mathbb{M} = \begin{bmatrix} 0 & 0 & J_{z1} & J_{z2} & m_1 & m_1 & m_2 & m_2 \end{bmatrix}^{\mathsf{D}}$$
 (31)

$$v = 0 \tag{32}$$

9) Montar os vetores f, g e u:

$$\mathbb{f} = \begin{bmatrix} c_1 \dot{\theta}_1 + \gamma_1 \operatorname{sign}(\dot{\theta}_1) \\ c_2 \dot{\theta}_2 + \gamma_2 \operatorname{sign}(\dot{\theta}_2) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(33)

$$g = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ m_1 g \\ 0 \\ m_2 g \end{bmatrix}$$
(34)

$$\mathbf{u} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} \tag{35}$$

Sendo assim, a partir da equação (1), temos que o modelo para simulação dinâmica direta do mecanismo <u>RR</u> é dado por:

$$\begin{cases}
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
l_{g1}c_{1} & 0 & 0 \\
l_{g1}c_{1} & 0 & 0 \\
l_{t1}s_{1} + l_{g2}c_{1+2} - l_{g2}s_{1+2}
\end{bmatrix}^{\mathsf{T}}
\begin{cases}
\begin{bmatrix}
0 \\ 0 \\ 0 \\
J_{z1} \\ \dot{\theta}_{z} \\
J_{z1} \\ \dot{\theta}_{z1} \\
\dot{\theta}_{z1} \\
\dot{\theta}_{z1} \\
\dot{\theta}_{z1} \\
\dot{\theta}_{z1} \\
\dot{\theta}_{z2} \\
\dot{\theta}_{z2}
\end{bmatrix}^{\mathsf{T}}
\begin{cases}
\begin{bmatrix}
0 \\ 0 \\ 0 \\ 0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\ 0 \\ 0 \\
0 \\
0 \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\ 0 \\ 0 \\
0 \\
m_{1}g \\
0 \\
m_{1}g \\
0 \\
m_{2}g
\end{bmatrix} + \begin{bmatrix}
\tau_{1} \\ \tau_{2} \\
\tau_{2} \\
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-l_{g1}s_{1} & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
-l_{g1}s_{1} & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{g2}s_{1+2} - l_{g2}s_{1+2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
-l_{1}s_{1} - l_{1}s_{1} -$$

Para realizar a modelagem de mecanismos paralelos a partir de subsistemas seriais já deduzidos, é necessário introduzir mais alguns conceitos:

Sejam \mathcal{B}_0 , \mathcal{B}_1 , ..., \mathcal{B}_{n-1} n subsistemas mecânicos e \mathcal{M} um sistema mecânico de $\nu^{\#}$ graus de liberdade gerado pelo acoplamento dos subsistemas citados. Definimos:

- q_0 : vetor de coordenadas generalizas da plataforma/efetuador de \mathcal{M} .
- $\mathbb{q}_{j}^{\#}$, j=1,...,n-1: vetor de coordenadas generalizadas independentes do subsistema \mathscr{B}_{j} .
- $\mathfrak{q}^{\varnothing}$: vetor de coordenadas generalizadas redundantes não pertencentes à plataforma/efetuador. Definido como $\mathfrak{q}^{\varnothing} = \begin{bmatrix} \mathfrak{q}_1^{\#^\mathsf{T}} & \dots & \mathfrak{q}_{n-1}^{\#^\mathsf{T}} \end{bmatrix}^\mathsf{T}$.
- q: vetor contendo todas as coordenadas generalizadas do sistema \mathcal{M} . Definido como $q = \begin{bmatrix} q_0^\mathsf{T} & q^\varnothing^\mathsf{T} \end{bmatrix}^\mathsf{T}$.
- $\overline{\mathbb{q}}(\mathbb{q})$: vetor dos vínculos de posição entre subsistemas. As equações vínculares são dadas por $\overline{\mathbb{q}}(\mathbb{q}) = \mathbb{0}$.
- $\mathbb{p}_0^{\#}$: vetor de velocidades generalizadas independentes da plataforma/efetuador de \mathcal{M} . É definido por $\mathbb{p}_0^{\#} = \mathbb{D}(\mathbb{q}_0)\dot{\mathbb{q}}_0$, sendo $\mathbb{D}(\mathbb{q}_0)$ tal que $\dot{\mathbb{q}}_0 = \mathbb{D}^+(\mathbb{q}_0)\mathbb{p}_0^{\#}$.

- $\mathbb{p}_{j}^{\#}$, j = 1, ..., n-1: vetor de velocidades generalizadas independentes do subsistema \mathscr{B}_{j} . É definido por $\mathbb{p}_{j}^{\#} = \dot{\mathbb{q}}_{j}^{\#}$.
- \mathbb{p}_{j}° , j = 1, ..., n 1: vetor de velocidades generalizadas redundantes do subsistema \mathscr{B}_{j} .
- \mathbb{p}_j , j = 1, ..., n-1: vetor de velocidades generalizadas do subsistema \mathscr{B}_j . É definido por $\mathbb{p}_j = \begin{bmatrix} \mathbb{p}_j^{\#^\mathsf{T}} & \mathbb{p}_j^{\circ \mathsf{T}} \end{bmatrix}$.
- $\mathbb{p}^{\#}$: vetor de $\nu^{\#}$ velocidades generalizadas independentes de \mathcal{M} . É dado por $\mathbb{p}^{\#} = \mathbb{p}_{0}^{\#}$.
- \mathbb{p}° : vetor de $\nu^{\#}$ velocidades generalizadas redundantes de \mathcal{M} . É definido por $\mathbb{p}^{\circ} = \begin{bmatrix} \mathbb{p}_{1}^{\mathsf{T}} & \mathbb{p}_{2}^{\mathsf{T}} & \dots & \mathbb{p}_{n-1}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}$.
- \mathbb{p} : vetor contendo todas as velocidades generalizadas de \mathcal{M} . É definido por $\mathbb{p} = \begin{bmatrix} \mathbb{p}^{\#^T} & \mathbb{p}^{\circ T} \end{bmatrix}^T$.
- $\bullet \ \ \text{$\wp$: vetor definido como} \ \ \mathbb{p} = \begin{bmatrix} \mathbb{p}^{^{\#}}^{\mathsf{T}} \quad \mathbb{p}^{^{\circ}}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \ \text{sendo} \ \ \mathbb{p}^{^{\#}} = \mathbb{p}_{0}^{^{\#}} \ \ \mathbb{e} \ \ \mathbb{p}^{^{\circ}} = \dot{\mathbb{q}}^{^{\varnothing}}.$
- $\overline{\mathbb{p}}(\mathbb{p})$: vetor dos vínculos de velocidades entre subsistemas. As equações vínculares são dadas por $\overline{\mathbb{p}}(\mathbb{p}) = \mathbb{0}$.
- $\mathbb{A}_{j}(\mathbb{Q}_{j}^{\#}), j = 0, ..., n-1$: Jacobiano dos vínculos de velocidades do subsistema \mathscr{B}_{j} .
- $\mathbb{C}_j(\mathfrak{q}_j^{\#}), j = 0, ..., n-1$: complemento ortogonal do Jacobiano dos vínculos de velocidades do subsistema \mathscr{B}_j .
- \mathbb{M}_j , j = 0, ..., n-1: matriz de inércia desacoplada do subsistema \mathcal{B}_j .
- $\mathbf{v}_{j}(\mathbf{p}_{j}^{*}), j = 0, ..., n-1$: vetor dos termos giroscópicos desacoplados do subsistema \mathcal{B}_{j} .
- $\mathbb{f}_{j}(\mathbb{q}_{j}^{\#}), j = 0, ..., n-1$: vetor dos esforços de atrito do subsistema \mathcal{B}_{j} .
- g_j , j = 0, ..., n 1: vetor dos esforços gravitacionais do subsistema \mathcal{B}_j .
- u_j , j = 0, ..., n 1: vetor dos esforços ativos externos do subsistema \mathcal{B}_j .

O modelo para simulação dinâmica direta é dado pelo seguinte equacionamento:

$$\begin{cases} \dot{\mathbf{q}}_{0} = \mathbb{D}^{+}(\mathbf{q}_{0})\mathbb{p}^{\#} \\ \mathbb{C}^{\mathsf{T}}(\mathbf{q}) \Big(\mathbb{M}\dot{\mathbb{p}} + \mathbf{v}(\mathbb{p}) + \mathbb{f}(\mathbb{p}) + \mathbf{g} \Big) = \hat{\mathbb{C}}^{\mathsf{T}}(\mathbf{q})\mathbf{u} \\ \mathbb{A}(\mathbf{q})\dot{\mathbb{p}} = \mathbb{b}(\mathbf{q}, \mathbb{p}) \end{cases}$$
(37)

Sendo:

$$\overline{p} = \frac{\partial \overline{q}}{\partial q_0} \mathbb{D}^+ p^\# + \frac{\partial \overline{q}}{\partial q^\varnothing} p^\circ$$
(38)

$$\hat{\mathbb{C}} = \begin{bmatrix} \mathbb{1} \\ -\frac{\partial \overline{\mathbf{q}}}{\partial \mathbf{q}^{\varnothing}} & \frac{\partial \overline{\mathbf{q}}}{\partial \mathbf{q_0}} \cdot \mathbb{D}^+ \end{bmatrix}$$
(39)

$$\mathbb{C} = \begin{bmatrix}
\mathbb{C}_0 & \mathbb{O} & \dots & \mathbb{O} \\
\mathbb{O} & \mathbb{C}_1 & \dots & \mathbb{O} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{O} & \mathbb{O} & \dots & \mathbb{C}_{n-1}
\end{bmatrix} \hat{\mathbb{C}}$$
(40)

$$\mathbb{A} = \begin{bmatrix} \begin{bmatrix} \mathbb{O} & \mathbb{A}_1 & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \mathbb{A}_2 & \dots & \mathbb{O} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \mathbb{O} & \dots & \mathbb{A}_{n-1} \end{bmatrix} \\ \frac{\partial \overline{\mathbb{P}}}{\partial \mathbb{P}}$$

$$(41)$$

$$\mathbb{b} = -\dot{\mathbb{A}}(\mathfrak{q}, \mathfrak{p})\mathfrak{p} \tag{42}$$

$$\mathbb{M} = \begin{bmatrix}
\mathbb{M}_0 & \mathbb{O} & \dots & \mathbb{O} \\
\mathbb{O} & \mathbb{M}_1 & \dots & \mathbb{O} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{O} & \mathbb{O} & \dots & \mathbb{M}_{n-1}
\end{bmatrix}$$
(43)

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_0^\mathsf{T} & \mathbf{v}_1^\mathsf{T} & \dots & \mathbf{v}_{n-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} \tag{44}$$

$$\mathbf{f} = \begin{bmatrix} \mathbf{f}_0^\mathsf{T} & \mathbf{f}_1^\mathsf{T} & \dots & \mathbf{f}_{n-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} \tag{45}$$

$$g = \begin{bmatrix} g_0^\mathsf{T} & g_1^\mathsf{T} & \dots & g_{n-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} \tag{46}$$

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_0^\mathsf{T} & \mathbf{u}_1^\mathsf{T} & \dots & \mathbf{u}_{n-1}^\mathsf{T} \end{bmatrix}^\mathsf{T} \tag{47}$$

Aqui seguem as etapas do algoritmo para dedução do modelo dinâmico de um subsistema serial acompanhado de um exemplo de aplicação para dedução do modelo dinâmico do mecanismo 5R (pentágono articulado) a partir do acoplamento dos modelos de 2 mecanismos <u>RR</u> e uma massa pontual (efetuador).

Figura 2: Mecanismo 5R

O modelo do mecanismo <u>RR</u> é dado pela equação (36). O modelo da massa pontual é dado pela seguinte expressão:

$$\begin{bmatrix} m_0 \\ m_0 \end{bmatrix}^{\mathsf{D}} \begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} 0 \\ m_0 g \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(48)

Etapas do algoritmo:

1) Definição das coordenadas generalizadas:

$$q_0 = \begin{bmatrix} x & y \end{bmatrix}^\mathsf{T} \tag{49}$$

$$\mathbf{q}_{1}^{\scriptscriptstyle\#} = \begin{bmatrix} \theta_{1,1} & \theta_{1,2} \end{bmatrix}^{\mathsf{T}} \tag{50}$$

$$\mathbf{q}_2^{\scriptscriptstyle\#} = \begin{bmatrix} \theta_{2,1} & \theta_{2,2} \end{bmatrix}^\mathsf{T} \tag{51}$$

2) Definição das velocidades generalizadas:

$$\mathbb{p}_0^{\#} = \begin{bmatrix} \dot{x} & \dot{y} \end{bmatrix}^{\mathsf{T}} \Rightarrow \mathbb{D} = \mathbb{1} \tag{52}$$

$$\mathbb{p}_{1}^{\circ} = \begin{bmatrix} \omega_{1,z1} & \omega_{1,z2} & v_{1,x1} & v_{1,y1} & v_{1,x2} & v_{1,y2} \end{bmatrix}^{\mathsf{T}}$$
(53)

$$\mathbb{p}_{2}^{\circ} = \begin{bmatrix} \omega_{2,z1} & \omega_{2,z2} & v_{2,x1} & v_{2,y1} & v_{2,x2} & v_{2,y2} \end{bmatrix}^{\mathsf{T}}$$
 (54)

3) Definição dos vínculos de posição utilizando matrizes de transformação homogênea:

$$\begin{bmatrix} \mathbb{1} \end{bmatrix}_{\mathbb{N} \mid \mathbb{N}_1}^{\mathsf{H}} = \begin{bmatrix} 1 & 0 & l_0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(55)

$$[1]_{N|N_2}^{\mathsf{H}} = \begin{bmatrix} -1 & 0 & -l_0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (56)

$$\left[\mathbf{x}_{0}\right]_{N} = \begin{bmatrix} x \\ y \end{bmatrix} \tag{57}$$

$$\left[\mathbf{x}_{1}\right]_{\mathbf{N}_{1}} = \begin{bmatrix} l_{1}\mathbf{c}_{1,1} + l_{2}\mathbf{c}_{1,1+2} \\ l_{1}\mathbf{s}_{1,1} + l_{2}\mathbf{s}_{1,1+2} \end{bmatrix}$$
(58)

$$[\mathbf{x}_2]_{\mathbf{N}_2} = \begin{bmatrix} l_1 \mathbf{c}_{2,1} + l_2 \mathbf{c}_{2,1+2} \\ l_1 \mathbf{s}_{2,1} + l_2 \mathbf{s}_{2,1+2} \end{bmatrix}$$
 (59)

$$[\mathbf{x}_{1}]_{\mathbf{N}}^{\mathsf{H}} = [\mathbb{1}]_{\mathbf{N} \mid \mathbf{N}_{1}}^{\mathsf{H}} [\mathbf{x}_{1}]_{\mathbf{N}_{1}}^{\mathsf{H}} = \begin{bmatrix} l_{0} + l_{1} c_{1,1} + l_{2} c_{1,1+2} \\ l_{1} s_{1,1} + l_{2} s_{1,1+2} \\ 1 \end{bmatrix}$$
(60)

$$\left[\mathbf{x}_{2}\right]_{N}^{H} = \left[\mathbb{1}\right]_{N \mid N_{2}}^{H} \left[\mathbf{x}_{2}\right]_{N_{2}}^{H} = \begin{bmatrix} -l_{0} - l_{1}c_{2,1} - l_{2}c_{2,1+2} \\ l_{1}s_{2,1} + l_{2}s_{2,1+2} \\ 1 \end{bmatrix}$$
(61)

Vínculos de posição:

$$\begin{cases} [\mathbf{x}_{0}]_{N} = [\mathbf{x}_{1}]_{N} \\ [\mathbf{x}_{0}]_{N} = [\mathbf{x}_{2}]_{N} \end{cases} \Rightarrow \begin{cases} x = l_{0} + l_{1}c_{1,1} + l_{2}c_{1,1+2} \\ y = l_{1}s_{1,1} + l_{2}s_{1,1+2} \\ x = -l_{0} - l_{1}c_{2,1} - l_{2}c_{2,1+2} \\ y = l_{1}s_{2,1} + l_{2}s_{2,1+2} \end{cases}$$

$$(62)$$

$$\therefore \overline{q}(q) = \begin{bmatrix} x - l_0 - l_1 c_{1,1} - l_2 c_{1,1+2} \\ y - l_1 s_{1,1} - l_2 s_{1,1+2} \\ x + l_0 + l_1 c_{2,1} + l_2 c_{2,1+2} \\ y - l_1 s_{2,1} - l_2 s_{2,1+2} \end{bmatrix} = 0$$
(63)

4) Cálculo dos Jacobianos dos vínculos de posição e definição dos vínculos de velocidades:

$$\frac{\partial \overline{\mathbb{q}}}{\partial \mathbb{q}_0} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & 0\\ 0 & 1 \end{bmatrix} \tag{64}$$

$$\frac{\partial \overline{\mathbb{Q}}}{\partial \mathbb{Q}^{\mathscr{S}}} = \begin{bmatrix}
l_1 \mathbf{s}_{1,1} + l_2 \mathbf{s}_{1+2} & l_2 \mathbf{s}_{1+2} & 0 & 0 \\
-l_1 \mathbf{c}_{1,1} - l_2 \mathbf{c}_{1+2} & -l_2 \mathbf{c}_{1+2} & 0 & 0 \\
0 & 0 & -l_1 \mathbf{s}_{2,1} - l_2 \mathbf{s}_{2+2} & -l_2 \mathbf{s}_{2+2} \\
0 & 0 & -l_1 \mathbf{c}_{2,1} - l_2 \mathbf{c}_{2+2} & -l_2 \mathbf{c}_{2+2}
\end{bmatrix}$$
(65)

$$\bar{\rho} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} l_1 s_{1,1} + l_2 s_{1+2} & l_2 s_{1+2} & 0 & 0 \\ -l_1 c_{1,1} - l_2 c_{1+2} & -l_2 c_{1+2} & 0 & 0 \\ 0 & 0 & -l_1 s_{2,1} - l_2 s_{2+2} & -l_2 s_{2+2} \\ 0 & 0 & -l_1 c_{2,1} - l_2 c_{2+2} & -l_2 c_{2+2} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1,1} \\ \dot{\theta}_{1,2} \\ \dot{\theta}_{2,1} \\ \dot{\theta}_{2,2} \end{bmatrix} = 0$$
(66)

5) Cálculo de $\hat{\mathbb{C}}$, \mathbb{C} , \mathbb{A} e \mathbb{b} através de (39), (40), (41) e (42):

$$\hat{\mathbb{C}} = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\frac{c_{1,1+2}}{l_1 s_{1,2}} & \frac{s_{1,1+2}}{l_1 s_{1,2}} \\
-\frac{l_1 c_{1,1} + l_2 c_{1,1+2}}{l_1 l_2 s_{1,2}} & -\frac{l_1 s_{1,1} + l_2 s_{1,1+2}}{l_1 l_2 s_{1,2}} \\
-\frac{c_{2,1+2}}{l_1 s_{2,2}} & \frac{s_{2,1+2}}{l_1 s_{2,2}} \\
\frac{l_1 c_{2,1} + l_2 c_{2,1+2}}{l_1 l_2 s_{2,2}} & -\frac{l_1 s_{2,1} + l_2 s_{2,1+2}}{l_1 l_2 s_{2,2}}
\end{bmatrix}$$
(67)

$$\mathbb{C} = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & \frac{c_{1,1+2}}{l_1s_{1,2}} & \frac{s_{1,1+2}}{l_1s_{1,2}} \\
-\frac{l_1c_{1,1} + l_2c_{1,1+2}}{l_1s_{1,2}} & -\frac{l_1s_{1,1} + l_2s_{1,1+2}}{l_1s_{1,2}} \\
-\frac{l_1l_2s_{1,2}}{l_1s_{1,2}} & -\frac{l_1s_{1,1} + l_2s_{1,1+2}}{l_1s_{1,2}} \\
-\frac{l_1l_2s_{1,2}}{l_1s_{1,2}} & -\frac{l_1s_{1,1+2}}{l_1s_{1,2}} \\
-\frac{l_2s_{1,1}c_{1,1+2}}{l_2s_{1,2}} & -\frac{l_2s_{1,1}s_{1,1+2}}{l_2s_{1,2}} \\
-\frac{l_2s_{1,1}c_{1,1+2}}{l_1s_{1,2}} & -\frac{l_2s_{1,1}s_{1,1+2}}{l_1s_{1,2}} \\
-\frac{l_2s_{1,1}c_{1,1+2} - l_2s_{2}c_{1,1}s_{1,1+2}}{l_1s_{1,2}} & -\frac{(l_2 - l_2)s_{1,1}s_{1,1+2}}{l_2s_{1,2}} \\
-\frac{l_2s_{1,2}}{l_2s_{1,2}} & -\frac{l_2c_{1,1}s_{1,1+2} - l_2s_{2,1}c_{1,1+2}}{l_1s_{2,2}} \\
-\frac{c_{2,1+2}}{l_1s_{2,2}} & -\frac{l_2c_{1,1}s_{1,1+2} - l_2s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{1,1} + l_2s_{2,1+2}}{l_1s_{2,2}} & -\frac{l_1s_{2,1} + l_2s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{1,1}}{l_2s_{2,2}} & -\frac{l_1s_{2,1} + l_2s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{2,1}}{l_2s_{2,2}} & -\frac{l_2s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2}}{l_1s_{2,2}} & -\frac{l_2s_{2,1}s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2}}{l_1s_{2,2}} & -\frac{l_2s_{2,1}s_{2,1+2}}{l_1s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2} - l_2s_{2,1+2}}{l_1s_{2,2}} & -\frac{l_2s_{2,2}}{l_2s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2} - l_2s_{2,1}c_{2,1+2}}{l_1s_{2,2}} & -\frac{l_2c_{2,1}s_{2,1+2}}{l_2s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2} - l_2s_{2,1}c_{2,1+2}}{l_2s_{2,2}} & -\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} \\
-\frac{l_2s_{2,1}c_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} & -\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} \\
-\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} & -\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} \\
-\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} & -\frac{l_2c_{2,1}s_{2,1+2} - l_2s_{2,2}}{l_2s_{2,2}} \end{bmatrix}$$

$$\mathbb{b} = \begin{bmatrix} 0 \\ l_{g1}c_{1,1}\dot{\theta}_{1,1}^{2} \\ l_{g1}s_{1,1}\dot{\theta}_{1,1}^{2} \\ l_{1}c_{1,1}\dot{\theta}_{1,1}^{2} + l_{g2}c_{1,1+2}(\dot{\theta}_{1,1} + \dot{\theta}_{1,2})^{2} \\ l_{1}s_{1,1}\dot{\theta}_{1,1}^{2} + l_{g2}s_{1,1+2}(\dot{\theta}_{1,1} + \dot{\theta}_{1,2})^{2} \\ l_{1}s_{1,1}\dot{\theta}_{1,1}^{2} + l_{g2}s_{1,1+2}(\dot{\theta}_{1,1} + \dot{\theta}_{1,2})^{2} \\ 0 \\ l_{g1}c_{2,1}\dot{\theta}_{2,1}^{2} \\ l_{g1}s_{2,1}\dot{\theta}_{2,1}^{2} \\ l_{2}c_{2,1}\dot{\theta}_{2,1}^{2} + l_{g2}c_{2,1+2}(\dot{\theta}_{2,1} + \dot{\theta}_{2,2})^{2} \\ l_{2}s_{2,1}\dot{\theta}_{2,1}^{2} + l_{g2}s_{2,1+2}(\dot{\theta}_{2,1} + \dot{\theta}_{2,2})^{2} \\ -l_{1}c_{1,1}\dot{\theta}_{1,1}^{2} - l_{2}c_{1,1+2}(\dot{\theta}_{1,1} + \dot{\theta}_{1,2})^{2} \\ -l_{1}s_{1,1}\dot{\theta}_{1,1}^{2} - l_{2}s_{1,1+2}(\dot{\theta}_{1,1} + \dot{\theta}_{1,2})^{2} \\ l_{1}c_{2,1}\dot{\theta}_{2,1}^{2} + l_{2}c_{2,1+2}(\dot{\theta}_{2,1} + \dot{\theta}_{1,2})^{2} \\ -l_{1}s_{2,1}\dot{\theta}_{2,1}^{2} - l_{2}s_{2,1+2}(\dot{\theta}_{2,1} + \dot{\theta}_{1,2})^{2} \end{bmatrix}$$

6) Obter M, v, f, g e u através de (43), (44), (45), (46) e (47):

$$\mathbb{M} = \begin{bmatrix} m_0 & m_0 & 0 & 0 & J_{z1} & J_{z2} & m_1 & m_1 & m_2 & m_2 & 0 & 0 & J_{z1} & J_{z2} & m_1 & m_1 & m_2 & m_2 \end{bmatrix}^{\mathsf{D}}$$

$$(71)$$

$$v = 0 \tag{72}$$

$$g = \begin{bmatrix} 0 & m_0 g & 0 & 0 & 0 & 0 & m_1 g & 0 & m_2 g & 0 & 0 & 0 & 0 & m_1 g & 0 & m_2 g \end{bmatrix}^\mathsf{T}$$
(73)

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ \tau_{1,1} \\ \tau_{1,2} \\ \tau_{2,1} \\ \tau_{2,2} \end{bmatrix} \tag{74}$$

$$\begin{bmatrix}
0 \\
0 \\
c_1\dot{\theta}_{1,1} + \gamma_1 \operatorname{sign}(\dot{\theta}_{1,1}) \\
c_2\dot{\theta}_{1,2} + \gamma_2 \operatorname{sign}(\dot{\theta}_{1,2}) \\
0 \\
0 \\
0 \\
0 \\
c_1\dot{\theta}_{2,1} + \gamma_1 \operatorname{sign}(\dot{\theta}_{2,1}) \\
c_2\dot{\theta}_{2,2} + \gamma_2 \operatorname{sign}(\dot{\theta}_{2,2}) \\
0 \\
0 \\
0 \\
0 \\
0$$

4.2 Controle por modos deslizantes

Nesta subseção será feita uma breve introdução ao controle por modos deslizantes. Esta técnica de controle não linear robusto é a base para do desenvolvimento da metodologia de projeto de controle para mecanismos paralelos e para o desenvolvimento de leis de controle adequadas para sistemas descritos por coordenadas redundantes. Nesta introdução, o tema será explorado apenas para o controle de sistemas de segunda ordem, sem incertezas paramétricas.

Seja um sistema dinâmico dado pela seguinte equação diferencial:

$$\ddot{x} = u \tag{76}$$

Definimos a seguinte superfície, chamada de superfície de escorregamento:

$$s(e, \dot{e}) = -(\dot{e} + \lambda e) = 0, \ \lambda > 0 \tag{77}$$

Sendo $e = x_d - x$ o erro de controle e x_d o sinal de referência. Repare que se o sistema estiver na superfície de escorregamento, temos:

$$\dot{e} + \lambda e = 0 \Rightarrow e(t) = Ce^{-\lambda t}$$
 (78)

Sendo assim, o erro cai exponencialmente para zero, com constante de tempo $1/\lambda$.

Para encontrar a lei de controle que leva o sistema à superfície de escorregamento, parte-se da definição de s:

$$s = -(\dot{e} + \lambda e)$$

Derivando no tempo:

$$\dot{s} = -(\ddot{e} + \lambda \dot{e}) = \ddot{x} - \ddot{x}_d - \lambda \dot{e} \tag{79}$$

Substituindo (76) em (79):

$$\dot{s} = u - \ddot{x}_d - \lambda \dot{e} \tag{80}$$

Utizando a seguinte lei de controle:

$$u = \ddot{x}_d + \lambda \dot{e} - k \operatorname{sign}(s), k > 0$$
(81)

Temos:

$$\dot{s} = -k \operatorname{sign}(s) \tag{82}$$

Supondo que o sistema começa em $s(0) = s_0 > 0$. Resolvendo a EDO para s > 0:

$$\dot{s} = -k \Rightarrow s = -kt + c$$

$$s(0) = s_0 \Rightarrow c = s_0$$

$$\therefore s = s_0 - kt, s > 0$$

Em $t=t_s=\frac{|s_0|}{k},\,s$ chega em zero. Resolvendo a EDO para $s(t_s)=0$:

$$\dot{s} = 0 \Rightarrow s = c$$

$$s(t_s) = 0 \Rightarrow c = 0$$

Portanto, para a solução da EDO para $s(0) = s_0 > 0$ é

$$s(t) = \begin{cases} s_0 - kt, \ t < t_s \\ 0, \qquad t \ge t_s \end{cases}$$
 (83)

Resolvendo para $s(0) = s_0 < 0$, temos um resultado análogo:

$$s(t) = \begin{cases} s_0 + kt, \ t < t_s \\ 0, \qquad t \ge t_s \end{cases}$$
 (84)

Assim, pode-se concluir que a EDO (82) converge para s = 0, independente da condição inicial. Portanto, temos que a lei de controle (81) faz com que o sistema representado

por (76) siga o sinal de referência, pois o erro de controle converge para zero.

4.3 Controle por modos deslizantes extendido

Esta subseção tem o intuido de apresentar o desenvolvimento da lei de controle adequada para sistemas descritos por coordenadas redundantes desenvolvida.

Seja o modelo de um sistema mecânico multi-corpos descrito pelas seguintes equações:

$$\begin{cases} \mathbb{C}^{\mathsf{T}}(\mathbf{q}) \Big(\mathbb{M}(\mathbf{q}) \ddot{\mathbf{q}} + \mathbb{w}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbb{z}(\mathbf{q}) \Big) = \mathbb{u} \\ \mathbb{A}(\mathbf{q}) \ddot{\mathbf{q}} + \mathbb{b}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbb{0} \end{cases}$$
(85)

De maneira matricial compacta:

$$\begin{bmatrix} \mathbb{C}^{\mathsf{T}} \mathbb{M} \\ \mathbb{A} \end{bmatrix} \ddot{\mathbf{q}} = \begin{bmatrix} \mathbf{u} - \mathbb{C}^{\mathsf{T}} (\mathbf{w} + \mathbf{z}) \\ -\mathbb{b} \end{bmatrix}$$
(86)

Gostaria que $\ddot{q} = v$, sendo v uma entrada de controle. Para que isso aconteça, utilizamos a seguinte lei de controle:

$$\mathbf{u} = \mathbb{C}^{\mathsf{T}}(\mathbb{M}\mathbf{v} + \mathbf{w} + \mathbf{z}) \tag{87}$$

Como queremos que $\ddot{q}=v$ e \ddot{q} tem restrições, v deve respeitar as mesmas restrições, ou seja:

$$Av + b = 0 \tag{88}$$

Aplicando a lei de controle (87) e a restrição (88) em (86), temos:

$$\begin{bmatrix} \mathbb{C}^{\mathsf{T}} \mathbb{M} \\ \mathbb{A} \end{bmatrix} \ddot{q} = \begin{bmatrix} \mathbb{C}^{\mathsf{T}} (\mathbb{M} \mathbf{v} + \mathbf{w} + \mathbf{z}) - \mathbb{C}^{\mathsf{T}} (\mathbf{w} + \mathbf{z}) \\ \mathbb{A} \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbb{C}^{\mathsf{T}} \mathbb{M} \mathbf{v} \\ \mathbb{A} \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbb{C}^{\mathsf{T}} \mathbb{M} \\ \mathbb{A} \end{bmatrix} \mathbf{v}$$

$$\mathbf{Como} \begin{bmatrix} \mathbb{C}^{\mathsf{T}} \mathbb{M} \\ \mathbb{A} \end{bmatrix} \acute{\mathbf{e}} \ \text{n\~ao singular:}$$

$$\ddot{q} = \mathbf{v} \tag{89}$$

Seja v' dado pela lei de controle por modos deslizantes:

$$\mathbf{v}' = \ddot{\mathbf{q}}_{n,d} + \lambda \dot{\mathbf{e}} + k \operatorname{sign}(\dot{\mathbf{e}} + \lambda \mathbf{e}) \tag{90}$$

Sendo $e = q_{n,d} - q$ o erro de controle e $q_{n,d}$ o sinal de referência. Se não houvesse restrições, poderiamos fazer v = v':

$$\ddot{\mathbf{q}} = \mathbf{v} \Rightarrow \ddot{\mathbf{e}} + \lambda \dot{\mathbf{e}} + k \operatorname{sign}(\dot{\mathbf{e}} + \lambda \mathbf{e}) = \mathbf{0} \Leftrightarrow \dot{\mathbf{s}} = -k \operatorname{sign}(\mathbf{s})$$

Isso garantiria que $e \to 0$ quando $t \to \infty$ para quaisquer condições iniciais, como visto na seção anterior.

Como temos restrições em v, procuramos v mais próximo possível de v atraves da solução do seguinte problema de otimização:

$$\underset{\mathbf{v}}{\text{Min}} \quad (\mathbf{v} - \mathbf{v}')^{\mathsf{T}} \mathbb{M}(\mathbf{v} - \mathbf{v}')
\text{tal que } \mathbb{A}\mathbf{v} + \mathbb{b} = \mathbb{0}$$
(91)

Como $\mathbb M$ é não-negativa definida, temos que $(v-v')^T\mathbb M(v-v')\geq 0$ para qualquer valor de v.

Aplicando a ténica dos multiplicadores de Lagrange, pode-se dizer que o seguinte problema é equivalente:

$$\underset{\mathbf{v}, \mathbf{\lambda}}{\text{Min}} \quad L = (\mathbf{v} - \mathbf{v}')^{\mathsf{T}} \mathbb{M} (\mathbf{v} - \mathbf{v}') + (\mathbb{A}\mathbf{v} + \mathbb{b})^{\mathsf{T}} \mathbf{\lambda} \tag{92}$$

Para solucionar o problema, impõe-se a estacionariedade da função lagrangeana:

$$\begin{split} \delta L &= 0 \Rightarrow \delta \mathbf{v}^\mathsf{T} \mathbb{M} (\mathbf{v} - \mathbf{v}') + (\mathbf{v} - \mathbf{v}')^\mathsf{T} \mathbb{M} \delta \mathbf{v} + (\mathbb{A} \delta \mathbf{v})^\mathsf{T} \mathbb{X} + (\mathbb{A} \mathbf{v} + \mathbb{b})^\mathsf{T} \delta \mathbb{X} = 0 \\ &\Rightarrow \delta \mathbf{v}^\mathsf{T} \Big((\mathbb{M} + \mathbb{M}^\mathsf{T}) (\mathbf{v} - \mathbf{v}') + \mathbb{A}^\mathsf{T} \mathbb{X} \Big) + \delta \mathbb{X}^\mathsf{T} (\mathbb{A} \mathbf{v} + \mathbb{b}) = 0 \end{split}$$

Como M é simétrica e δv e $\delta \lambda$ são arbitrários, temos:

$$\begin{cases} 2\mathbb{M}(\mathbb{V} - \mathbb{V}') + \mathbb{A}^{\mathsf{T}}\mathbb{A} = \mathbb{0} \\ \mathbb{A}\mathbb{V} + \mathbb{b} = \mathbb{0} \end{cases}$$
(93)

Como \mathbb{C} é o complemento ortogonal de \mathbb{A} , multiplicando a primeira equação de (93) por \mathbb{C}^{T} , temos:

$$2\mathbb{C}^{\mathsf{T}}\mathbb{M}(\mathbf{v} - \mathbf{v}') + \mathbb{C}^{\mathsf{T}}\mathbb{A}^{\mathsf{T}}\mathbb{A} = \mathbb{O} \Rightarrow \mathbb{C}^{\mathsf{T}}\mathbb{M}(\mathbf{v} - \mathbf{v}') = \mathbb{O}$$
$$\therefore \mathbb{C}^{\mathsf{T}}\mathbb{M}\mathbf{v} = \mathbb{C}^{\mathsf{T}}\mathbb{M}\mathbf{v}' \tag{94}$$

Sendo assim, temos que a lei de controle que torna o sistema em malha fechado o mais próximo possível de $\ddot{q} = v'$, segundo o critério de otimização adotado, é:

$$\mathbf{u} = \mathbb{C}^{\mathsf{T}}(\mathbb{M}\mathbf{v}' + \mathbf{w} + \mathbf{z}) \tag{95}$$

5 Disciplinas de pós-graduação

Como durante a graduação já foram cursadas 5 matérias de pós-graduação, espera-se que seja possível fazer o aproveitamento de créditos. As matérias de pós-graduação já cursadas anteriormente são as seguintes:

- PMR-5010 Elementos Finitos em Sistemas Multifísicos: Fundamentos
- PMR-5215 Otimização Aplicada ao Projeto de Sistemas Mecânicos
- PMR-5234 Técnicas de Ultra-Som e suas aplicações na Indústria e na Medicina
- PMR-5238 Análise e Síntese de Mecanismo Planos e Tridimensionais
- PMR–5211 Mecânica dos Sólidos Experimental

Além disso, pretende-se cursar a seguinte disciplina no primeiro quadrimestre de 2014:

• PME-5004 — Complementos de Matemática I

6 Cronograma de Atividades do Projeto

Serão realizados os seguintes passos para a realização da proposta:

- (1) Cumprimentos dos créditos de pós-graduação.
- (2) Pesquisa e revisão bibliográfica da literatura para o desenvolvimento teórico.
- (3) Estudo dos aprimoramentos dos métodos de Lagrange, Kane e Gibbs-Appell, desenvolvidos no grupo de pesquisa do professor Dr. Tarcísio Coelho.
- (4) Elaboração de algoritmo de modelagem dinâmica multicorpos baseados nos aprimoramentos dos métodos estudados.
- (5) Aplicação do algoritmo desenvolvido em diferentes mecanismos.
- (6) Simulação da dinâmica inversa para os mecanismos escolhidos.
- (7) Estudo de técnicas de controle não-linear.
- (8) Desenvolvimento de metodologia de projeto de controlador não linear robusto, voltada à mecanismos paralelos com incertezas paramétricas.
- (9) Simulação da dinâmica direta utilizando as técnicas de controle estudadas.
- (10) Desenvolvimento de leis de controle que permitam o controle de mecanismos descritos por modelos com coordenadas redundantes.
- (11) Simulação da dinâmica direita utilizando as técnicas de controle com variáveis redundantes.
- (12) Comparação e análise dos resultados obtidos utilizando as leis de controles implementadas em simulação.
- (13) Avaliação geral dos resultados.
- (14) Preparo da dissertação.

Aqui segue um cronograma estimado para realização das atividades propostas:

Tabela 1: Cronograma – Planejamento de Atividades por quadrimestre

Ativ./Quad.	$1^{o}/14$	2º/14	3º/14	$1^{o}/15$	$2^{o}/15$	$3^{o}/15$
(1)						
(2)						
(3)						
(4)						
(5)						
(6)						
(7)						
(8)						
(9)						
(10)						
(11)						
(12)						
(13)						

Referências

- [1] Rynaldo Z. H. de Almeida. Modelagem dinâmica e controle e robô manipulador de arquitetura paralela assimétrica de três graus de liberdade. Tese (Doutorado) Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2013.
- [2] André G. Coutinho and Guilherme M. Dobriankyj. Plataforma robótica para reabilitação do membro superior humano. Tese (Trabalho de Conclusão de Curso) Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia Mecatrônica e de Sistemas Mecânicos, 2013.
- [3] Renato M. M. Orsino and Tarcisio A. Hess Coelho. Metodologia para Análise e Síntese de Mecanismos. *Material de apoio para as disciplinas PMR2430 e PMR2331* Escola Politécnica da Universidade de São Paulo, 2013.
- [4] J.J. Craig. *Introduction to robotics: mechanics and control*. Addison-Wesley series in electrical and computer engineering: control engineering. Pearson/Prentice Hall, 2005.
- [5] Elzbieta Jarzebowska. Quasi-coordinates based dynamics modeling and control design for nonholonomic systems. *Nonlinear Analysis: Theory, Methods and Applications*, 71(12):e118 e131, 2009.
- [6] J.P. Merlet. Still a long way to go on the road for parallel mechanisms. In ASME DETC Conference, Montreal, 2002, 2002.

- [7] Renato M. M. Orsino and Tarcisio A. Hess Coelho. A contribution for developing more efficient dynamic modelling algorithms of parallel robots. *International Journal of Mechanisms and Robotic Systems*, 1(1):15 34, 2013.
- [8] Zubizarreta, A. and Cabanes, I. and Marcos, M. and Pinto, C. and Portillo, E. Extended CTC control for parallel robots. *Emerging Technologies and Factory Automation* (ETFA), 2010 IEEE Conference on, 2010.
- [9] Bloch, A.M. and Reyhanoglu, M. and McClamroch, N.H. Control and stabilization of nonholonomic dynamic systems. *Automatic Control, IEEE Transactions on*, 1992.