FCC Test Report

for

Electronic remote control system

Main Model Number :LDS4B8041A+

Series Model Number: LDS4B8042A+, LDS4B8043A+, LDS4B8021B+,

LDS4B8022B+, LDS4B8023B+

FCC ID : UX5-R300

Report Number : RF-T013-0808-141

Date of Receipt : Aug. 1, 2008

Date of Report : Dec. 10, 2008

Prepared for

Maxitrol Company

23555 Telegraph Road Box 2230 Southfield, MI 48033 USA

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

 ${\tt NVLAP\,LAB\;CODE\;200575-0}$

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Certification

Equipment under Test : Electronic remote control system

Main Model Number : LDS4B8041A+

Series Model Number : LDS4B8042A+, LDS4B8043A+ , LDS4B8021B+,

LDS4B8022B+, LDS4B8023B+

FCC ID : UX5-R300

Manufacturer : FORWARD Electronics Co., Ltd.

Applicant : Maxitrol Company

Address : 23555 Telegraph Road Box 2230 Southfield, MI 48033 USA

Date of Testing : Aug. 1~ Aug. 4, 2008

Applicable Standards : 47 CFR part 15, Subpart C

- Field strength of Fundamental*

- Radiated Emission Measurement *

Deviation : Some items subcontracted to WTS "*" Marked

Condition of Test Sample : Engineering Sample

We, **Central Research Technology Co.**, hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY: Cathy Chen, DATE: Dec. 10, 2008

(Cathy Chen/ Technical Manager)

(Tsun-Yu Shih/Laboratory Head)

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Contents

1	General Description	4
1.1	General Description of EUT	4
1.2	Test Methodology	4
1.3	Applied standards	5
1.4	The Support Units	7
1.5	Layout of Setup	7
1.6	Test Capability	8
1.7	Measurement Uncertainty	10
2	Field strength of Fundamental	11
2.1	Applied standard	11
2.2	Test Instruments	11
2.3	Test Data	12
3	Radiated Emission Measurement	19
3.1	Applied standard	19
3.2	Test Instruments	20
3.3	Test Data	21
4	Antenna Requirement	39
4.1	Applied standard	39
4.2	Antenna Information	39
4.3	Result	39
	ment 1 – Photographs of the Test Configurations	
Attach	ment 2 -External Photographs of EUT	

Attachment 3 -Internal Photographs of EUT

1 General Description

1.1 General Description of EUT

Equipment under Test : Electronic remote control system

Main Model Number : LDS4B8041A+

Series Model Number: LDS4B8042A+, LDS4B8043A+, LDS4B8021B+,

LDS4B8022B+, LDS4B8023B+

Power in : 3Vdc

Test Voltage : 3Vdc(battery*1)

Manufacturer : FORWARD Electronics Co., Ltd.

: 1 Channel Numbers

Frequency Range : 915MHz

Modulation : FSK

Function Description

The EUT is used to transmit control command. Please refer to the user's manual for the details.

There are one receiver and three types of transmitter and which are shown as below.

EUT Type	Type Description	Model No.
EUT 1	Standard	LDS4B8041A+, LDS4B8021B+
EUT 2	Display	LDS4B8042A+, LDS4B8022B+
EUT 3	Thermostatic	LDS4B8043A+, LDS4B8023B+

Since the EUT is considered a potable unit, it was pre-tested on the positioned of each 3 axis. There for only the test data of the worse case- X axis was used for Radiated test.

1.2 Test Methodology

For this EUT, both conducted and radiated emissions were performed according to the procrdures illustrated in ANSI C63.4:2003 and other required measurements were illustrated in separate sections of this test report for detail.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

1.3 Applied standards

(1) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MHZ)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(2) Field strength of fundamental

According to 15.249(a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength	Field Strength
Frequency	Fundamental	of Harmonics
	(millivolts/meter)	(microvolts/meter)
902 - 928 MHz	50	500
2400 - 2483.5 MHz	50	500
5725 - 5875 MHz	50	500
24.0 - 24.25 GHz	250	2500

(3) Radiated Emission Requirement

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

For intentional device, according to §15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
960 – 1610	3	500	54.0
above 1610	3	500	54.0

Note 1- The lower limit shall apply at the transition frequency.

(4) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Page : 6/39

² Above 38.6

1.4 The Support Units

No.	Unit	Model No./ Serial No.	Trade Name	Power Code	Supported by lab.
NA	-	-	-	-	-

1.5 Layout of Setup

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded Backshell	Supported by lab.	Note
NA	-	-	-	-	-	-	

Justification:

For both conducted and radiated emission below 1GHz, the system was configured for typical fashion as a customer could normal use it. The peripherals other than EUT was connected in normally standing by situation.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4.

Test Room	Type of Test Room	Descriptions
TR1	10m semi-anechoic chamber	
IKI	(23m×14m×9m)	Complying with the NSA requirements in
TR10	3m semi-anechoic chamber	documents CISPR 22 and ANSI C63.4.
TRIU	$(9m \times 6m \times 6m)$	- For the radiated emission measurement.
TR11	3m semi-anechoic chamber	To the radiated emission measurement.
IKII	$(9m \times 6m \times 6m)$	
TR13	Chamber	For the RF conducted emission
11(13	Chamber	measurement.
TR5	Shielding Room	For the conducted emission measurement.
113	(8m×5m×4m)	To the conducted emission measurement.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark	
	USA	NVLAP	200575-0	ISO/IEC 17025	
	R.O.C.	TAF	0905	ISO/IEC 17025	
Accreditation	(Taiwan)	IAF	0905		
Certificate			SL2-IN-E-0033,		
Certificate	R.O.C.	BSMI	SL2-IS-E-0033,	ISO/IEC 17025	
	(Taiwan)	DOIVII	SL2-R1/R2-E-0033,	150/IEC 17025	
			SL2-A1-E-0033		
	USA	FCC	474046 TW1021	Test facility list	
	USA		474046, TW1021	& NSA Data	
Site Filing	Canada	IC	4699A-1,-2,-3	Test facility list	
Document	Canaua	10	4099A-1,-2,-3	& NSA Data	
	lonon	VCCI	D 1527 C 1600 T 121 T 1441	Test facility list	
	Japan	VCCI	R-1527,C-1609,T-131,T-1441	& NSA Data	
Authorization	Germany	TUV	10021687-2007	ISO/IEC 17025	
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025	

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

Worldwide Testing Services(Taiwan) Co., Ltd. has been accredited/filed/authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
Accreditation Certificate	USA	A2LA	2732.01	
Site Filing Document	USA	FCC	930600	Test facility list & NSA Data
	Canada	IC	5679A-1	Test facility list & NSA Data

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 10/39

1.7 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty		
Peak Output Power	1.1dB		
Radiated Emission: (30MHz~200MHz)	Horizontal 2.8dB; Vertical 3.5 dB		
Radiated Emission: (200MHz~1GHz)	Horizontal 3.4dB;Vertical 2.8dB		
Radiated Emission: (1GHz~18GHz)	Horizontal 2.5dB; Vertical 2.4dB		
Radiated Emission: (18GHz~26.5GHz)	Horizontal 4.0dB; Vertical 3.9dB		
Line Conducted Emission	ESH2-Z5	3.1dB	
Line Conducted Emission	ENV 4200	3.8dB	

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 11/39

2 Field strength of Fundamental

Result: Pass

2.1 Applied standard

Fundamental Frequency	Peak	Average
☑ 902 – 928 MHz	500mV/m (114dBuV/m)	50mV/m (94dBuV/m)
□2400 – 2483.5 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 5725 – 5875 MHz	500 mV/m (114dBuV/m)	50 mV/m (94dBuV/m)
□ 24.0 – 24.25 GHz	2500 mV/m (128dBuV/m)	250 mV/m (108dBuV/m)

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration	
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date	
Test Receiver	R&S	ETSI 26/	2008/10/8	2009/10/7	
lest Receiver	1100	831438/001	2006/10/6	2009/10/7	
Test Receiver	R&S	ETSI 40/	2008/9/22	2000/0/21	
rest Receiver	πασ	832427/004	2006/9/22	2009/9/21	
Antenna	EMCO	3148/34429	2008/4/23	2009/4/22	

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, T.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.3 Test Data

Test Mode : EUT 1 Tester : Danny

Frequency (MHz)	Polarization	Reading Data (dBuV) Correction Factor		Factor	Stre	t Field ngth V/m)		nit V/m)	Maı (d	_
(141112)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
014.05	V	73.52	67.46	-0.56	72.96	66.90	114	94	41.04	27.10
914.95	Н	79.22	72.96	-0.56	78.66	72.40	114	94	35.34	21.60

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor

3. Margin (dB) = Limit – Output Field Strength

Test Mode : EUT 2 Tester : Danny

Frequency (MHz)	Polarization	Reading Data (dBuV)		Factor	Stre	t Field ngth V/m)		nit V/m)	Maı (d	_
(141112)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
014.05	V	73.10	66.68	-0.56	72.54	66.12	114	94	41.46	27.88
914.95	Н	81.05	74.14	-0.56	80.49	73.58	114	94	33.51	20.42

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Output Field Strength

Test Mode : EUT 3 Tester : Danny

Frequency (MHz)	Polarization	Reading Dat (dBuV)		, I actor		t Field ngth V/m)	Lir (dBµ	nit V/m)	Maı (d	_
(141112)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
014.05	V	69.93	63.84	-0.56	69.37	63.28	114	94	44.63	30.72
914.95	Н	82.15	75.55	-0.56	81.59	74.99	114	94	32.41	19.01

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Output Field Strength (dBuV/m) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Output Field Strength

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

EUT1

Vertical- PK

Vertical- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

EUT1

Horizontal- PK

Horizontal- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 15/39

EUT2

Vertical- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

EUT2

Horizontal-PK

Horizontal- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 17/39

EUT3

Vertical-PK

Vertical- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

EUT3

Horizontal-PK

Horizontal- AV

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 19/39

Radiated Emission Measurement

Result: Pass

3.1 Applied standard

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Limit for Harmonics Radiation Emission Measurement

Fundamental Frequency	Field Strength of Harmonics
☑ 902 – 928 MHz	500 uV/m (54dBuV/m)
□2400 – 2483.5 MHz	500 uV/m (54dBuV/m)
□ 5725 – 5875 MHz	500 uV/m (54dBuV/m)
□ 24.0 – 24.25 GHz	2500 uV/m(68dBuV/m)

Limit for Other Emissions except Harmonics

Frequency (MHz)	Quasi-peak (dBμV/m)					
30 to 88	4	40				
88 to 216	43.5					
216 to 960	46					
960 to 1000	54					
Frequency (MHz)	Peak (dBµV/m)	Average (dBµV/m)				
Above 1000	74 54					

Note 1- The lower limit shall apply at the transition frequency.

Note 2- Additional provisions may be required for cases where interference occurs.

CENTRAL RESEARCH TECHNOLOGY CO.

Page : 20/39

Test Instruments

Test Site and Equipment	Manufacturer	Model No./ Serial No.	Last Calibration Date	Calibration Due Date
Test Receiver	R&S	ETSI 26/ 831438/001	2008/10/8	2009/10/7
Test Receiver	R&S	ETSI 40/ 832427/004	2008/9/22	2009/9/21
Antenna	EMCO	3117/00035224	2008/3/26	2009/3/25
Antenna	EMCO	3148/34429	2008/4/23	2009/4/22
Antenna	EMCO	3109/33524	2008/4/23	2009/4/22

3.3 Test Data

Band Edge

Test Mode : EUT 1

Polarization :Vertical

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Polarization :Horizontal

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 23/39

Test Mode : EUT 2

Polarization :Vertical

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 24/39

Test Mode : EUT 2

Polarization :Horizontal

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 25/39

Test Mode : EUT 3

Polarization :Vertical

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

Polarization :Horizontal

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement below 1000MHz

Test Mode : EUT 1

Test Distance : 3m Tester : Danny

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 28/39

Test Mode : EUT 1

Test Distance : 3m Tester : Danny

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Danny

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Danny

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Distance : 3m Tester : Danny

Polarization : Vertical Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

Test Distance : 3m Tester : Danny

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Radiated Emission Measurement above 1000MHz

Test Model : EUT 1

Test Distance : 3m Tester : Danny

Antenna Polarization: Vertical Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.
TEL: 886.2-25984542

Page: 34/39

Test Model : EUT 1

Antenna Polarization: Horizontal Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Antenna Polarization: Vertical Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 36/39

Test Model : EUT 2

Antenna Polarization: Horizontal Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Antenna Polarization: Vertical Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11 Lane 41 Fushuen St. Jungshan Chiu, Taipei, T

FAX.: 886-2-25984546

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542

Page: 37/39

Antenna Polarization: Horizontal Frequency Range: 1GHz~9.5GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 4GHz to 9.5GHz, so the graphs are omitted above 4GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 39/39

4 Antenna Requirement

4.1 Applied standard

According to 15.247(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

4.2 Antenna Information

This antenna's relative information as follow:

Brand	Model	Frequency Range (MHz)	Gain (dBi)	Comment
Maxitrol	N/A	915	0	Printed antenna

Antenna Position:

4.3 Result

Gain of the antenn is less than 6dBi.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.