3 Natural transformations

Exercise 3.1. Give three more examples of natural transformations not mentioned above.

Solution. • Consider the category \mathscr{A} of n dimensional vector spaces over \mathbb{R} with basis. So every object is a vectorspace together with the choice of a basis. As arrows we consider the linear maps $f:(V,(v_1,\ldots,v_n))\to (W,(w_1,\ldots,w_n))$ such that $f(v_i)\subset < w_1,\ldots,w_i>$. This is exactly defined in a way such that restriction works. So consider the category \mathscr{B} of finite dimensional vectorspaces with basis. Here the arrows are just linear maps. Then we can consider $F,G:\mathscr{A}\to\mathscr{B}$ where F restricts to the span of the first n-1 basis elements and G restricts to the first n-2 to basis elements. For each object $(V,(v_1,\ldots,v_n))$ in \mathscr{A} we have a natural map $F(V)\to G(V)$. It is just restriction. We have to check commutativity of the following diagram for all $f:V\to W$.

$$\langle v_1, \dots, v_{n-1} \rangle \xrightarrow{f \mid \langle v_1, \dots, v_{n-1} \rangle} \langle w_1, \dots, w_{n-1} \rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\langle v_1, \dots, v_{n-2} \rangle \xrightarrow{f \mid \langle v_1, \dots, v_{n-2} \rangle} \langle w_1, \dots, w_{n-2} \rangle$$

Here the vertical arrows are just the natural projections. Note that this is well defined as f is an arrow in \mathscr{A} , i.e. it respects restriction. But if this diagram is well-defined it is clearly commutative.

- Let $F, G: \mathcal{A} \to \mathcal{B}$ be two constant functors. That means there are objects B_1, B_2 in \mathcal{B} such that F maps evry object to B_1 and every map to the identity on B_1 and G does the same for B_2 . Then a natural transformation is just the same as a morphism $B_1 \to B_2$ and it is a nautral isomorphism exactly if the morphism is an isomorphism.
- Let **Rings** be the category of Rings with ringmorphisms between them. Let F, G be the morphisms to the category of sets with basepoints that choose the 0 (respectivly 1) as basepoint. Then for each ring R we can consider the map $F(R) \to G(R)$ that swaps 1 and 0. It is easy to check that this is a natural transformation.

Exercise 3.2. Prove lemma 1.3.11. Let $\mathscr{A} \xrightarrow{F} \mathscr{B}$ be a natural transformation.

Then α is a natural isomorphism if and only if $\alpha_A \colon F(A) \to G(A)$ is an isomorphism for alle $A \in \mathscr{A}$.

Proof. Suppose α is a natural isomorphism. Then there exists a natural transformation

$$\mathscr{A}$$
 $\xrightarrow{\mathcal{F}}$ \mathscr{B} , such that $\alpha \circ \beta = \mathrm{id}_G$ and $\beta \circ \alpha = \mathrm{id}_F$. Let $A \in \mathscr{A}$ be an object. Then

$$\alpha_A \circ \beta_A = (\alpha \circ \beta)_A = (\mathrm{id}_G)_A = \mathrm{id}_{G(A)},$$

and similarily,

$$\beta_A \circ \alpha_A = (\beta \circ \alpha)_A = (\mathrm{id}_F)_A = \mathrm{id}_{F(A)}.$$

This just means that α_A is an isomorphism in \mathscr{B} .

Now the other direction: Suppose $\alpha_A \colon F(A) \to G(A)$ is an isomorphism for every $A \in \mathscr{A}$. Then we can define for every $A \in \mathscr{A}$ a morphism $\beta_A := \alpha_A^{-1} \colon G(A) \to F(A)$.

We need to show, that β is a natural transformation $G \to F$, it then follows immediately from the definitions that β is an inverse to α , i.e. α is a natural isomorphism.

So let $f: A \to A'$ be a morphism in \mathscr{A} . Then

$$\begin{split} \beta_{A'} \circ G(f) &= \\ & \downarrow \text{Definition of } \beta_{A'} \\ &= \alpha_{A'}^{-1} \circ G(f) \\ &= \alpha_{A'}^{-1} \circ G(f) \circ \operatorname{id}_{G(A)} \\ & \downarrow \alpha_A \text{ is an isomorphism} \\ &= \alpha_{A'}^{-1} \circ G(f) \circ \alpha_A \circ \alpha_A^{-1} \\ & \downarrow \alpha \text{ is a natural transformation} \\ &= \alpha_{A'}^{-1} \circ \alpha_{A'} \circ F(f) \circ \alpha_A^{-1} \\ & \downarrow \alpha_{A'} \text{ is an isomorphism} \\ &= \operatorname{id}_{F(A')} \circ F(f) \circ \alpha_A^{-1} \\ &= F(f) \circ \alpha_A^{-1}. \end{split}$$

This is just the naturality condition, hence β is a natural transformation and we are done.

(Note: This proof is very similar to the proof that the inverse of a bijective linear map is again bijective, or that the inverse of a bijective group homomorphism is again a group homomorphism)

Exercise 3.3. Let A and B be sets, and denote by B^A the set of functions from A to B. Write down:

- 1. a canonical function $A \times B^A \to B$;
- 2. a canonical function $A \to B^{(B^A)}$.

Solution. 1. we have a canonical function $(a, f) \mapsto f(a)$

2. we have a canonical function $a \mapsto (f \mapsto f(a))$

Note that this is very similar to the construction of the embedding $V \to V^{**}$ of an k-vectorspace into its bi-dual space.

Also note that both solutions are "essentially the same map". The procedure of switching between both solutions is called currying.

Exercise 3.4. In this exercise, you will prove Proposition 1.3.18. Let $F: \mathcal{A} \to \mathcal{B}$ be a functor.

- \bullet Suppose that F is an equivalence. Prove that F is full, faithful and essentially surjective on objects.
- Now suppose instead that F is full, faithful and essentially surjective on objects. For each $B \in \mathcal{B}$, choose an object G(B) of A and an isomorphism $\epsilon_B \colon F(G(B)) \to B$. Prove that G extends to a functor in such a way that $(\epsilon_B)_{B \in \mathcal{B}}$ is a natural isomorphism $FG \to 1_{\mathcal{B}}$. Then construct a natural isomorphism $1_{\mathcal{A}} \to GF$, thus proving that F is an equivalence.
- *Proof.* Let F be an equivalence. Then there is a functor $G \colon \mathscr{B} \to \mathscr{A}$, and natural isomorphisms $\eta \colon 1_{\mathscr{A}} \to G \circ F$ and $\epsilon \colon F \circ G \to 1_{\mathscr{B}}$. We first show that F is faithful and full. For this, let $A, B \in \mathscr{A}$. We need to show that $\mathscr{A}(A, B) \to \mathscr{B}(F(A), F(B))$ is injective and surjective. We consider the composition

$$\mathscr{A}(A,B) \xrightarrow{F} \mathscr{B}(F(A),F(B)) \xrightarrow{G} \mathscr{A}(G(F(A)),G(F(B))) \to \mathscr{A}(A,B),$$

where the last arrow is given by $f\mapsto \eta_B^{-1}\circ f\circ \eta_A$. By definition of η , this composition is just the identity on $\mathscr{A}(A,B)$. Since η_A,η_B are isomorphisms, we see that $\mathscr{A}(A,B)\xrightarrow{G\circ F}\mathscr{A}(G(F(A)),G(F(B)))$ is bijective. This implies that $\mathscr{A}(A,B)\to\mathscr{B}(F(A),F(B))$ is injective. Surjectivity follows similar.

It remains to show that F is essentially surjective. Let $X \in \mathcal{B}$. Let A := G(X). Then $F(A) = F(G(X)) \cong X$, where the last isomorphism is given by ϵ_X . Hence F is essentially surjective.

• Suppose now that F is a fully faithful, essentially surjective functor. For every $B \in \mathcal{B}$, we choose an object $G(B) \in \mathcal{A}$ and an isomorphism $\epsilon_B \colon F(G(B)) \to B$. This is possible since F is essentially surjective. Thus we have defined our G on objects. We need to say what it does to morphisms. So let $f \colon B \to B'$ a morphism in \mathcal{B} . Let $f' := \epsilon_{B'}^{-1} \circ f \circ \epsilon_B \colon F(G(B)) \to F(G(B'))$. Since F is fully faithful, there exists a unique morphism G(f), such that F(G(f)) = f'. Thus we have defined G on morphisms. It is easy to see that G preserves identites and compositions.

The next thing we need to show is, that $\epsilon \colon F \circ G \to \mathrm{id}_{\mathscr{B}}$ is a natural isomorphism. Since ϵ_B is an ismorphism for every B by construction, the only thing we need to

check is the naturality. So let $f: B \to B'$ a morphism in \mathscr{B} . Then

$$\begin{split} \epsilon_{B'} \circ F(G(f)) &= \\ & \downarrow \text{Definition of } G \\ &= \epsilon_{B'} \circ \epsilon_{B'}^{-1} \circ f \circ \epsilon_{B} \\ &= f \circ \epsilon_{B} \\ &= 1_{\mathscr{B}}(f) \circ \epsilon_{B}. \end{split}$$

This is just the naturality condition.

To conclude, we must construct a natural isomorphism $\eta\colon 1_\mathscr{A}\to G\circ F$. Let $A\in\mathscr{A}$. Then we have an ismorphism $\epsilon_{F(A)}\colon F(G(F(A)))\to F(A)$. As F is fully faithful, this gives us a unique ismorphism $G(F(A))\to A$, we denote by $\eta_A\colon A\varnothing G(F(A))$ its inverse. From this construction it is clear that η is a natural ismorphism $1_\mathscr{A}\to G\circ F$ if we can prove naturality. The prove of naturality is similar to the prove of naturality of ϵ , and we omit it here.

Exercise 3.5. For a fixed field k we consider the category of **Mat** whose objects are the natural numbers and where $\mathbf{Mat}(m,n) = \{n \times m \text{ matrices over } k\}$. We show that **Mat** is equivalent to **FDVect**.

Proof. Composition of matrices is of course just matrix multiplication. Consider the functor $F: \mathbf{FDVect} \to \mathbf{Mat}$ that maps are vectorspace to its dimension. For each vectorspace we chose a basis (for k^n we chose the standard basis) and then given a linear map $V \to W$ we have representation of that map as a matrix. For the functor $G: \mathbf{Mat} \to \mathbf{FDVect}$ we map n to the vector space k^n (with the standard basis). Given a $n \times m$ matrix we think of it as a representation of a linear map $k^m \to k^n$ with respect to the standard basis. It is easy to see that $F \circ G$ is the identity functor on \mathbf{Mat} . The other direction is a bit harder as $G \circ F$ is clearly not the identity functor. Any vectorspace of dimension n gets mapped to k^n . But that is okay as we have a natural map from V to k^n as soon as we have chosen a basis on both of them. But that is something we have done in the very beginning. Or a little bit mor precise for each V we consider the map $V \to k^n$ induced by the basis. Then this induces a natural equivalence between the identity functor on \mathbf{FDVect} and our functor $G \circ F$.

In this proof we have seen that there is a canonical way to go from **Mat** to **FDVect**. But to get the map in the other direction we have to chose a basis for each vector space. So it is not canonical. Another way to say what is going on is that (similar to the example of the sets $\{1, \ldots, n\}$ as canonical elements in **Sets**) we have that the subcategory of **FDVect** given by the vectorspaces k^n with maps between them is equivalent to **FDVect**.

П