Modeling attractive and repulsive forces between semantic structures D. Gueorguiev 6/6/2022

Initial Notes

The attractive / repulsive force between semantic structures (SARF) acts on different (larger) scales compared to the attractive / repulsive force between properties (PARF).

Discovery of mutual attraction happens through regional exploration. Let us have a new semantic structure S constructed from recently parsed data. The chances are that all semantic structures which are attracted to S are in the vicinity of S.

Let us consider a newly formed semantic structure S_1^{new} . The closest semantic structure will be denoted with S_0 . On an aggregation level l_1 the nearby semantic structure S_0 can be represented as a graph of n_{l_1} substructures all of which belong to the set $\{S_0\}_{l_1}$. With $2^{\{S_0\}_{l_1}}$ we denote the power set of $\{S_0\}_{l_1}$. We want to compute the attractive force between S_1^{new} and S_0 . Let us assume that in a neighborhood of S_1^{new} there are other structures involving previous instances of $S_1 - S_1^{old_1}$, $S_1^{old_2}$, ..., $S_1^{old_k}$. For brevity we will denote $\{S_1^{old_1}, S_1^{old_2}, \dots, S_1^{old_k}\}$ with S^{old} . Let us assume that in the neighborhoods of the elements of S^{old} there are instances of elements in $2^{\{S_0\}_{l_1}}$ and possibly another instance of S_0 itself. Let us denote with $\{\{S_0\}_{l_1}\}_{l_1}$ the instances of the elements from $2^{\{S_0\}_{l_1}}$ which are in the neighborhood of $S_1^{old_i}$.

Obviously, the semantic distances between $S_1^{old_i}$ and the elements of $\{\{S_0\}_{l_1}\}_i$ are given as well as the masses and energy signatures of the latter.

We would like to estimate the attractive force between S_1^{new} and S_0 by using the information stored in the pairs $S_1^{old_i}$ and $\{\{S_0\}_{l_1}\}_i$ for i=1..k.

Estimation of the attractive force between two structures

Let us have two structures S_1 and S_2 which are in bound positions. We will denote with \vec{r}_1 the position of the centroid of S_1 in general. Similarly, with \vec{r}_2 we denote the position of the centroid of S_2 in general. The centroid of the compound structure $S_1 \cup S_2$ is given with \vec{r}_c . We denote with $\vec{x}_{1,b} = \vec{r}_{1,b} - \vec{r}_c$ and $\vec{x}_{2,b} = \vec{r}_{2,b} - \vec{r}_c$ the semantic distances from the bound positions of S_1 and S_2 to the centroid of the compound structure $S_1 \cup S_2$. Let us denote with $E(\vec{r}_{1,b})$ and $E(\vec{r}_{2,b})$ the semantic energies of S_1 and S_2 in bound state. With m_1 and m_2 we denote the semantic masses of S_1 and S_2 .