

## درس یادگیری ماشین میانترم دوم – پاییز ۱۴۰۰ دانشکده برق و کامپیوتر



لطفا به نكات زير توجه كنيد.

- ۱) مدت زمان امتحان ۳ ساعت است.
- ۲) هیچ گونه مشارکتی در امتحان مجاز نیست.
- ۳) بارم سوالات ۱۶۵ نمره است. برای گرفتن نمره کامل باید به ۱۴۰ نمره پاسخ دهید. با پاسخ دادن به سوالات بیشتر ۲۵ نمره اضافی می توانید دریافت کنید.

| میتوانید دریافت کنید.                                                                                                            |      |
|----------------------------------------------------------------------------------------------------------------------------------|------|
| سوال                                                                                                                             | ردیف |
| تفاوت روش $EM$ و $MLE$ چیست؟ با ذکر مثال کاربردهای هر کدام را مشخص کنید.                                                         | ١    |
|                                                                                                                                  | (۱۵) |
| کدام یک از مرزهای تصمیم زیر می تواند توسط طبقه بند KNN ایجاد شده باشد؟ توضیح دهید.                                               | ۲    |
|                                                                                                                                  | (1.) |
| ······································                                                                                           |      |
|                                                                                                                                  |      |
|                                                                                                                                  |      |
|                                                                                                                                  |      |
|                                                                                                                                  |      |
| A. B.                                                                                                                            |      |
| A                                                                                                                                |      |
| ··································////                                                                                           |      |
|                                                                                                                                  |      |
|                                                                                                                                  |      |
|                                                                                                                                  |      |
| ········                                                                                                                         |      |
| C. D.                                                                                                                            |      |
|                                                                                                                                  |      |
| متغیر تصادفی برنولی $X$ با پارامتر $p$ را در نظر بگیرید ( $P(X=1)=p$ ). فرض کنید برای $X$ مجموعه ای از مشاهدات بصورت $(1,1,0,1)$ | ٣    |
| داريم.                                                                                                                           | (٣٠) |
| الف) تابع likelihood را بر حسب p بنويسيد.                                                                                        |      |
| ب) عبارتی برای مشتق negative log likelihood (از تابع likelihood لگاریتم بگیرید و در منفی ضرب کنید) بدست آورید.                   |      |
| پ) با توجه به مشاهدات تخمین $ML$ پارامتر $p$ چقدر است.                                                                           |      |
|                                                                                                                                  |      |
|                                                                                                                                  | **   |
| طبقه بند نزدیک ترین همسایه را در نظر بگیرید. برای داده های زیر خطای live-one-our cross validation را حساب کنید.                  | ۴    |

| - <u>-</u> -+ +                                                                                                                                     |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| در چه صورتی طبقهبند KNN معنای معادل طبقهبند بهینه بیزی با تخمین ناپارمتری از pdf را پیدا می کند. این مسئله را با استفاده از                         | ۵    |
| روابط ریاضی توضیح دهید. با استفاده از این دید جدید از طبقهبند KNN چه مشکلی برای این طبقهبند می توانید بیان کنید؟ برای حل                            | (٣۵) |
| این مشکل چه راه حلی پیشنهاد میدهید.                                                                                                                 |      |
| پنجره پارزن در تخمین ناپارامتری چه خواصی باید داشته باشد؟ علت لزوم هرخاصیت را بیان کنید.                                                            | ۶    |
|                                                                                                                                                     | (۲۰) |
| آیا Feature Scaling (مانند نرمالیزه کردن ویژگی ها) در طبقهبند KNN ضروری است؟ توضیح دهید.                                                            | ٧    |
|                                                                                                                                                     | (1.) |
| دو توزیع احتمال دخواه $f_1$ و $f_2$ را در نظر بگیرید. در این سوال می خواهیم فرمولی برای مخلوط این دو توزیع (mixture) بدست آوریم.                    | ٨    |
| به بیان دقیق تر فرض کنید                                                                                                                            | (٣۵) |
| $f_{\lambda}(x) = \lambda f_1(x) + (1 - \lambda)f_2(x)$                                                                                             |      |
| که در آن $f_1$ و $f_2$ توابع چگالی احتمال دلخواه هستند و $\lambda$ پاراتری نامعلوم (mixture parameter) است.                                         |      |
|                                                                                                                                                     |      |
| الف) با فرض داشتن یک مشاهده $x$ و معلوم بودن پارامتر $\lambda$ احتمال اینکه مشاهده $x$ از توزیع $f_1$ آمده باشد را حساب کنید. (۱۰)                  |      |
| $i.i.d$ و به ازای هر مشاهده یک مقدار $c_i$ داریم. مشاهدات به بصورت $\{x_1,\dots,x_n\}$ و به ازای هر مشاهده یک مقدار                                 |      |
| از توزیع مخلوط بدست آمده اند. اگر مقدار $c_i$ برابر ۱ باشد یعنی مشاهده $x_i$ از توزیع $f1$ آمده است و اگر مقدار $c_i$ برابر $c_i$ باشد یعنی         |      |
| مشاهده $x_i$ است توزیع $f_2$ آمده است. با فرض مشخص بودن $\lambda$ عبارتی برای مقدار $f_2$ است توزیع                                                 |      |
| ابدست آورید. (۱۰) بدست آورید. $\log P(x1,c1,,xn,cn \lambda)$                                                                                        |      |
| پ) حال فرض کنید که دیگر مشاهدات c <sub>i</sub> را نداریم. به عبارت دیگر نمیدانیم هر مشاهده X <sub>i</sub> از کدام توزیع آمده است. با استفاده روابطی |      |
| که در قسمت های قبل بدست آوره اید، E-Step و M-Step در الگوریتم $EM$ را برای تخمین پارامتر $\lambda$ بدست آورید. (۱۵)                                 |      |
| / /                                                                                                                                                 | 1    |

اگر دانشی مردراند سخن / توشبوکه دانش نگر دد کهن