Compactification in low dimension

Tri Nguyen - University of Alberta

July 17, 2024

In this expository note, I will try to explain explicitly how to compactify $\Gamma\backslash\mathbb{H}$ by adding points in two ways.

1 Some preparations

We will always denote Γ a subgroup of the group $SL_2(\mathbb{Z})$ of finite index, and this group acts on the upper half complex plane \mathbb{H} by

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \circ z := \frac{az+b}{cz+d}$$

When z tends to infinity, we have

$$\lim_{z \to \infty} \frac{az + b}{cz + d} = \frac{a}{c},$$

so we add the rational line to define the action of this group at ∞ . In particular, we consider the set

$$\overline{\mathbb{H}}=\mathbb{H}\cup\mathbb{P}^1(\mathbb{Q})$$

Note that on the projective rational line, we define the action to be the multiplication of a 2×2 matrix with a 2×1 vector. Then under this action, we have the following lemma

Lemma 1. $SL_2(\mathbb{Z})$ acts transitively on $\mathbb{P}^1(\mathbb{Q})$.

Proof. For each point in $\mathbb{P}^1(\mathbb{Q})$, we can choose the representative to be of the form [a:b], where $\gcd(a,b)=1$. Then there exists $x,y\in\mathbb{Z}$ such that

$$ax - by = 1$$

Thus we get the following equality

$$\begin{bmatrix} b & a \\ -x & y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

This implies any points in $\mathbb{P}^1(\mathbb{Q})$ can be moved to [0:1], and thus the action is transitive. \square

Corollary 2. If Γ is a subgroup of finite index in $\mathrm{SL}_2(\mathbb{Z})$ then $\Gamma \backslash \mathbb{P}^1(\mathbb{Q})$ has only finite orbits.

2 Compactification of $\Gamma\backslash\mathbb{H}$ by adding points.

We introduce a topology on $\overline{\mathbb{H}}$. For the usual upper half plane, the topology is the usual metric topology on \mathbb{C} , and we only define the system of the neighborhood of $r \in \mathbb{P}^1(\mathbb{Q})$.

Let $S(c,\omega)$ be the circle that touches the real line at $\omega = p/q$ and has the radius $\frac{c}{2q^2}$. Then the collection of circles $D(c,\omega) = \bigcup_{0 < c' \le c} S(c',\omega)$ is called *Farey disk*. Let $c \to 0$, these disks define a neighborhood of ω . The Farey disks at ∞ are defined to be the region

$$D(T, \infty) = \{z : \Im z \geqslant T\}$$

It can be checked easily that the matrix under inversion, the Farey disk at ∞ is mapped to D(1/T,0). In general, if $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = \omega$ then $D(T,\infty)$ is mapped to $D(1/T,\omega)$. With the above topology on the extended upper half plane, we could show that

Lemma 3. $\Gamma \setminus \overline{\mathbb{H}}$ is a compact set.

The proof is taken from [1] and I rewrite it here for completeness.

Proof. We first prove for the case $\Gamma = \mathrm{SL}_2(\mathbb{Z})$. It is well known that the quotient space $\Gamma \backslash \mathbb{H}$ is identical to the set

$$\mathcal{F} = \{ z \in \mathbb{H} : \Re z \in [-1/2, 1/2), |z| \ge 1 \text{ and } |z| > 1 \text{ if } \Re z > 0 \}$$

By lemma 1, the projective rational line "shrinks" to a point under the action of $\Gamma = \operatorname{SL}_2(\mathbb{Z})$, Thus we can identify $\Gamma \backslash \overline{\mathbb{H}}$ with the set $\tilde{\mathcal{F}} = \mathcal{F} \cup \{\infty\}$. Consider an open cover $\{U_i\}_{i \in I}$ of $\tilde{\mathcal{F}}$ and the natural projection $\pi \colon \overline{\mathbb{H}} \to \tilde{\mathbb{F}}$. Then the set $\{\pi^{-1}(U_i)\}_{i \in I}$ forms an open cover of $\overline{\mathbb{H}}$. There must be an index i_0 such that $\pi^{-1}(U_{i_0})$ contains a neighborhood of ∞ , namely contains a Farey disk $D(T, \infty)$ for some T > 0. Since $\overline{\mathcal{F}} - D(T, \infty)$ is a compact set, its image under π is compact, hence it can be covered by U_{i_1}, \ldots, U_{i_m} . Altogether, $\tilde{\mathcal{F}}$ admits a finite subcover U_{i_0}, \ldots, U_{i_m} . Now we proceed to the general case. Note that

$$\overline{\mathbb{H}} = \operatorname{SL}_2(\mathbb{Z}) \circ \tilde{\mathcal{F}} = \bigcup \Gamma a_i \circ \tilde{\mathcal{F}}$$

by corollary 2. Then under the surjective map $\pi \colon \overline{\mathbb{H}} \to \Gamma \backslash \overline{\mathbb{H}}$, we have

$$\Gamma \setminus \overline{\mathbb{H}} = \bigcup \pi \left(\Gamma a_i \circ \tilde{\mathcal{F}} \right),$$

which shows that the set $Y(\Gamma) = \Gamma \setminus \overline{\mathbb{H}}$ is compact as it is the union of compact sets.

The orbit of $\mathbb{P}^1(\mathbb{Q})$ under the action of Γ is called *cusps*. We have the obvious equality that

$$\Gamma\backslash\overline{\mathbb{H}}=\Gamma\backslash\mathbb{H}\cup\underbrace{\Gamma\backslash\operatorname{\mathbb{P}}^1(\mathbb{Q})}_{\text{cusps}}$$

So in fact lemma 3 tells us that we only need to add a finite cusp to get a compact domain. That means we only need to consider the actions of Γ on the projective rational line. By the orbit-stabilizer theorem, we get the decomposition

$$\Gamma \backslash \bigcup_{\omega} D(c, \omega) = \bigcup \Gamma_{\omega_i} \backslash D(c, \omega_i)$$

where ω_i is the set of representative for the action of Γ on $\mathbb{P}^1(\mathbb{Q})$ and Γ_{ω_i} are the stabilizer of $\omega_i \in \Gamma$.

Again, since the action of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{P}^1(\mathbb{Q})$ is transitive, for each $r \in \mathbb{P}^1(\mathbb{Q})$, there exists an element $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = r$. So we have $\Gamma_r = \gamma \Gamma_\infty \gamma^{-1}$. Hence we only need to know the "shape" of the domain $\Gamma_\infty \backslash D(T, \infty)$. WLOG, we could assume $\Gamma = \mathrm{SL}_2(\mathbb{Z})$, and hence

$$\Gamma_{\infty} = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} : n \in \mathbb{Z} \right\}$$

Geometrically, $\Gamma_{\infty}\backslash D(T,\infty)$ is the strip $\{\Re z \in [-1/2,1/2), \Im z \geqslant T\}$. But this is biholomorphic to a closed disk that misses a point on the boundary. So compactification is obtained by filling in the missing points to get finitely many compact disks.

3 Borel - Serre compactification of $\mathrm{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$

We consider another compactification, by looking at the Farey disk $D(c, \omega)$ for fixed parameters c, ω . Then for any points $y \neq \omega$ on the Farey circle $S(c, \omega)$, we could connect y with ω by a unique geodesic in the upper half-plane.

These geodesics are either upper half circles that are orthogonal to the real line or the vertical line passing through ω . We thus can identify the Farey disks as follows

$$D(c,\omega) - \{\omega\} = X_{\infty,\omega} \times (0,c],$$

since a point θ on the Farey circles $S(c,\omega)$ is defined by its radius, up to a scaling of c, and the intersection of the geodesic $\overline{\theta\omega}$ with the real line. The uniqueness of the geodesics gives us a bijection between two sets. Here we let $X_{\infty,\omega} = \mathbb{P}^1(\mathbb{R}) - \{\omega\}$

How does the group Γ act on the set on the RHS set in the above identification? First, we look at the special case where $\omega = \infty$. In this case, the identification is

$$D(T, \infty) - \infty = X_{\infty, \infty} \times [T, \infty)$$

On the left, stabilizer subgroup Γ_{∞} can be thought of as a subgroup of the group of translation, which leaves all the Farey circles $S(t,\infty)$ - which are the line $\{\Im z = t \geqslant T\}$ in this case - intact. Thus on the right-hand side, the action of Γ_{∞} only affects the first coordinate. In general case, we need a lemma

Lemma 4. If $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ such that $\gamma \circ \infty = \omega$ then $\gamma \circ D(T, \infty) = D(1/T, \omega)$.

Assume lemma 4 with the note that $\Gamma_{\omega} = \gamma \Gamma_{\infty} \gamma^{-1}$, we conclude that the action of Γ_{ω} only affects $X_{\infty,\omega}$ for all $\omega \in \mathbb{P}^1(\mathbb{Q})$. Since $\Gamma_{\omega} \backslash X_{\infty,\omega}$ is a circle, it is compact. Hence we can compactify the quotient space $\Gamma_{\omega} \backslash D(c,\omega) - \{\omega\}$ as

$$\Gamma_{\omega}\backslash D(c,\omega) - \{\omega\} \hookrightarrow \Gamma_{\omega}\backslash X_{\infty,\omega} \times [0,c]$$

As in section 1, we only need to compactify finitely many such quotient spaces and get the compactification of $\Gamma\backslash\mathbb{H}$.

Now we give a proof of lemma 4

Proof. Assume $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ is an element that sends ∞ to $\omega = \frac{p}{q}$. Let $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}.$$

Thus we must have a=p, c=q and b, c are integers such that aq-cp=1. A Farey circle in the neighborhood of ∞ is, in fact, a line $S(T,\infty)=\{\Im z=T\}$, and this line is mapped to a circle tangent to the real line. Direct calculation shows that, for z=x+iT

$$\Im(\gamma \circ z) = \frac{\Im z}{|cz+d|^2} = \frac{T}{(cx+d)^2 + c^2 T^2} \le \frac{1}{q^2 T}$$

The equality happens if x = -d/c. Since this $\gamma \circ z$ is a point on the circle tangent to the real line at p/q and has the largest distance to the real line, the segment connect p/q and $\gamma \circ z$ must be the diameter of the image circle. In particular, the radius of the image circle is $\frac{1}{2Tq^2}$. Lemma 4 follows immediately.

The above process can be applied to finitely many Fareye disks as in section 2 to get a compactification of $\Gamma\backslash\mathbb{H}$.

References

[1] Diamond, F., & Shurman, J. M. (2005). A first course in modular forms (Vol. 228, pp. xvi-436). New York: Springer.