

FIG. 1A

FIG. 1B

FIG. 2

BCI₃ Plasma Etching: Etch Rate Comparison [500 mTorr / 1 Watt/cm²]

Relative etch rate comparsion for HfO_2 , $\mathsf{Al}_2\mathsf{O}_3$, and ZrO_2 . $FIG.\ 3$

FIG. 4

FIG. 5

FIG. 6

Figure 7a: HfO_2 etch rates at different NF₃ by volume percentages in the gaseous mixture of BCl_3 and NF₃.

Figure 7b: $HfSi_xO_y$ etch rates at different NF_3 by volume percentages in the gaseous mixture of BCI_3 and NF_3 .

Figure 7c: ZrO_2 etch rates at different NF $_3$ by volume percentages in the gaseous mixture of BCl $_3$ and NF $_3$.