RASTER DATA

A simple, storage intensive format best suited for **continuous phenomena**.

RASTER DATA MODEL

Represents space **continuously**:

- Rectangular grid of equally sized cells
- Each cell only has **one value**

RASTER DATA MODEL

Multiple **bands** needed for multiple attributes

- Standard color photos have three bands:
 - Red, green, & blue
- LANDSAT8 has 11 bands:
 - Ultra blue to thermal infrared

RESOLUTION & EXTENT

Resolution: cell size.

• $1 \text{ m x } 1 \text{ m} = 1 \text{ m}^2$

Extent: depends on number of cells.

- 5 rows, 5 columns
- 1 m cell size
- Covers 5 m x 5 m

RESOLUTION & EXTENT

Resolution: 10 m cell size = 100 m^2

Extent: varies with number of cells.

Rows	Columns	Extent
5	5	50 m x 50 m
5	10	50 m x 100 m
100	100	1 km x 1 km

IMPLICATIONS

Loss of information during rasterization.

- A "bigger" issue for larger cells.
- At a certain point features become unrecognizable.
- Higher resolution = larger file for equivalent areas.

MIXED PIXEL PROBLEM

One cell: one value

- What if it covers multiple values?
 - A: Winner take all
 - B: Cell center
- Other options?

FILE SIZE

The number of cells per image dictates file size: $Cells = rows \times columns \times bands$.

Extent	Bands	Cell Size	Cells
1 x 1 km	1	100 m	100 cells
1 x 1 km	1	1 m	1,000,000 cells
1 x 1 km	3	100 m	300 cells
1 x 1 km	3	1 m	3,000,000 cells

FILE SIZE

Increases **exponentially** with resolution and **linearly** with number of bands.

Extent	Bands	Cell Size	Cells
1 x 1 km	1	100 m	100 cells
1 x 1 km	1	1 m	1,000,000 cells
1 x 1 km	3	100 m	300 cells
1 x 1 km	3	1 m	3,000,000 cells

WHY DOES THIS MATTER?

Downloading a decade (87,600 bands) of snow cover data:

- 5 min for the red area
- 2 hrs for the orange area (17x larger)

METADATA IN ARCPRO

WHY DOESTHIS MATTER?

Processing times will increase as well:

• Any manipulation or analysis of the red area will be much faster than the orange area

RASTER OVERLAY

A **key advantage** of raster data model is how algebraic expressions can be performed efficiently.

• A: Winter Temperature

• B: Summer Temperature

• Range: B-A

• Average: (A+B)/2

KEYADVANTAGES

- Well suited for continuous phenomena:
 - Continuous in **space** and **time**.
- Simple data structure makes overlay is easy and efficient.

GEOTIFF

One of the most common/functional raster formats, based of the Tag Image File Format (TIFF). A TIFF file stores metadata (data about the data) as tags. A GeoTIFF is a standard .tif image format plus additional tags spatial tags denoting spatial information including:

- Extent (minimum x,y and maximum x,y)
- Resolution (cell size)
- Projection, Coordinate system, and datum

OTHER FILE TYPES

Raster data can come in many different formats. You will likely encounter when working with raster data include:

- IMG A proprietary image format commonly used by ESRI products
- JPEG2000 A geospatial version of the common .jpg image type
- ASCII An older human readable format (simple text file) with slower performance than the types listed above