

64-189

Projekt: Entwurf eines Mikrorechners

http://tams.informatik.uni-hamburg.de/lectures/2013ws/projekt/mikrorechner

- VLSI- und Systementwurf: Methoden und Werkzeuge -

Andreas Mäder

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

24. Oktober 2013

Die folgenden Folien sind ein Auszug aus den Unterlagen der Vorlesung 64-613 Rechnerarchitekturen und Mikrosystemtechnik vom Wintersemester 2011/2012.

Das komplette Material findet sich auf den Web-Seiten unter http://tams.informatik.uni-hamburg.de/lectures/2011ws/vorlesung/ram

Gliederung

- 1. Entwurfsmethodik
 - Motivation
 - Abstraktion im VLSI-Entwurf
 - Vorgehensweise
- 2. EDA-Werkzeuge
- 3. Entwurfsstile

Motivation

Moore's Law

Die Zahl der Transistoren pro IC verdoppelt sich alle 2 Jahre

Gordon Moore 1965:

"Cramming more components onto integrated circuits"

Motivation (cont.)

Motivation (cont.)

1. Technologie

- Verkleinerung der Strukturbreite
- ▶ Höhere Integrationsdichte

[ITRS07]

Motivation (cont.)

[ITRS07]

Motivation (cont.)

Motivation (cont.)

2. Applikationen

- von Standardbausteinen zu ASICs und Systemen
- Digitale Anwendungen

Applikationsspezifische ICs Signalverarbeitung Eingebettete Systeme Entwurfsmethodik - Motivation

Motivation (cont.)

- ► + Analoge Komponenten
- ▶ + Mikrosysteme

Entwurfsmethodik - Motivation

Motivation (cont.)

Übergang zu Systemen

Entwurfsmethodik - Motivation

Motivation (cont.)

neue Anwendungsfelder

- "Computing"
- "Consumer Products"
- "Automotive"
- "Telecommunication"
- "mobile Applications"
- 3. Methoden und Werkzeuge im Chipentwurf
 - enges Zusammenwirken mit der technischen Entwicklung und den Anforderungen durch die Applikationen

Wie wird Entworfen?

Hardwareentwurf

Entwurfsmethodik - Motivation

Wie wird Entworfen?

Hardwareentwurf

...so nicht meistens

Wie wird Entworfen?

Hardwareentwurf

Hardwareentwurf

...so auch nicht

Wie wird Entworfen?

Hardwareentwurf

Wie wird Entworfen? (cont.)

```
mainP: process (clk. rst) is
 type stateTy is (Gr, Yr, Rr, Rq, RYr);
 variable timer : integer range 0 to maxWalkC:
 variable state : stateTy;
 variable request : boolean;
begin
 if rst = '0' then
                                ----- asvnc. reset
   liCar <= "001"; liWalk <= "10";
   request := false:
 elsif rising_edge(clk) then ------ clock edge
  case state is
  when Gr => ----
                 ----- Green + red
   liCar <= "001"; liWalk <= "10";
   if (regWalk = '1') then request := true; -- store request
   end if:
   if (timer > 0) then timer := timer - 1; -- no timeout
   end if:
                                  ----- Yellow + red
  when Yr => ------
   -- init timer
  when Rr => -----
                         ----- Red + red
```

Abstraktion im VLSI-Entwurf

Abstraktionsebenen

- keine einheitliche Bezeichnung in der Literatur
- Architekturebene
 - ► Funktion/Verhalten Leistungsanforderungen

Netzwerk

- ► Struktur aus
- Nachrichten Programme, Protokolle
- ► Geometrie Systempartitionierung
 - CPU Speicher I/O Control Adressbus

Prozessoren, Speicher, Busse, Controller...

CPU

Abstraktion im VLSI-Entwurf (cont.)

- ► Hauptblockebene (Algorithmenebene, funktionale Ebene)
 - ► Funktion/Verhalten Algorithmen, formale Funktionsmodelle
 - Struktur aus

Blockschaltbild Hardwaremodule, Busse...

Nachrichten

Protokolle

Geometrie

Cluster

Abstraktion im VLSI-Entwurf (cont.)

- ► Register-Transfer Ebene
 - ► Funktion/Verhalten Daten- und Kontrollfluss, Automaten...
 - Struktur aus

RT-Diagramm
Register, Multiplexer, ALUs...

Nachrichten

Zahlencodierungen, Binärworte...

Geometrie

Floorplan

Entwurfsmethodik - Abstraktion im VLSI-Entwurf

Abstraktion im VLSI-Entwurf (cont.)

- ► Logikebene (Schaltwerkebene)
 - ► Funktion/Verhalten Boole'sche Gleichungen
 - Struktur Gatternetzliste, Schematic aus Gatter, Flipflops, Latches...
 - ► Nachrichten Bit
 - Geometrie Moduln

Abstraktion im VLSI-Entwurf (cont.)

- elektrische Ebene (Schaltkreisebene)

 - Struktur aus
 - Nachrichten
 - Geometrie

- ► Funktion/Verhalten Differentialgleichungen
 - elektrisches Schaltbild
 - Transistoren, Kondensatoren...
 - Ströme, Spannungen
 - Polygone, Layout → physikalische Ebene

Abstraktion im VLSI-Entwurf (cont.)

- physikalische Ebene (geometrische Ebene)
 - ► Funktion/Verhalten partielle DGL
 - Struktur Dotierungsprofile

Entwurfsmethodik - Abstraktion im VLSI-Entwurf

Abstraktion im VLSI-Entwurf (cont.)

Y-Diagramm

D. Gajski, R. Kuhn 1983: "New VLSI Tools"

Abstraktion im VLSI-Entwurf (cont.)

Y-Diagramm / Gajski-Diagramm

- ▶ Visualisiert Abstraktionsebenen
- Sichtweisen
 - ► Funktion / Verhalten
 - Struktur
 - ► Geometrie (historisch, inzwischen überholt)

Entwurfsvorgehen

- Unterscheidung von Struktur und Verhalten
- ► Auf jeder Abstraktionsebene gibt es *elementare Einheiten* mit definiertem Verhalten
- ► Entwurfsaufgabe
 - ein gegebenes Verhalten in eine Strukturbeschreibung (aus elementaren Einheiten) der jeweiligen Ebene umzusetzen
 - jede dieser Einheiten ist ihrerseits in der nächst niedrigeren Abstraktionsebene entsprechend zu realisieren
 - ⇒ hierarchischer Entwurf, top-down

Entwurfsvorgehen (cont.)

- ⇒ top-down: typisches Entwurfsvorgehen
- ⇒ bottom-up: Einflüsse auf höhere Abstraktionsebenen
 - Zeitverhalten
 - Schaltungstechniken
 - Arithmetiken

 - ► Zentrale Bedeutung der Simulation, bzw. der Verifikation
 - Entwurf als iterativer Prozess
 - ► Alternativen: "exploring the design-space"
 - Versionen
 - Teamarbeit

Gliederung

- 1. Entwurfsmethodik
- 2. EDA-Werkzeuge

Hierarchischer Entwurf Werkzeuge

Probleme

3. Entwurfsstile

Hierarchischer Entwurf

Nur durch neue Methoden und Werkzeuge konnte die Produktivität beim Chipentwurf während der letzten Jahre mit Moore's Law mithalten

- Änderungen in der Entwurfsmethodik
 - Struktur \Rightarrow Verhalten grafische Eingabe \Rightarrow Hardwarebeschreibungssprachen
- Entwurf auf höheren Abstraktionsebenen
- Automatische Transformationen bis zum Layout
 - ► Synthese: Register-Transfer, High-Level
 - Datenpfad-/Makrozellgenerierung
 - Zellsynthese
 - ► Platzierung & Verdrahtung

EDA-Werkzeuge - Hierarchischer Entwurf

64-189 Projekt: Entwurf eines Mikrorechners

Entwurfswerkzeuge

Entwurfswerkzeuge

- Synthese
 - automatische Generierung von Strukturbeschreibungen aus Verhaltensmodellen
 - ► Trend: IP-Komponenten (Intellectual Property) und "behavioral Code"

Entwurfswerkzeuge (cont.)

► High-Level Synthese

- Einschränkung des "Suchraums"
- spezielle Zielarchitekturen
- spezielle Anwendungsfelder
- Datenflussdominiert DSPs Kontrollflussdominiert Prozessoren

Universität Hamburg

Entwurfswerkzeuge (cont.)

▶ CoDesign → CoSynthese

- Partitionierung Hardware / Software ?
- nur manuell möglich

FDA-Werkzeuge - Werkzeuge

Entwurfswerkzeuge (cont.)

- Simulation
 - ► Trend: wachsender Aufwand, Systemsimulation
 - ► Problem der Simulationsauswertung ⇒ auch dort Abstraktion
 - Programmiersprachen-Schnittstellen (VHPI, Verilog-PLI...)
 Beispiele: → Signalverarbeitung
 → Bildverarbeitung
 - Hardwarebeschleunigung
 - ► Emulation von Gatternetzlisten durch FPGA-Boards
 - Beispiel: Betriebssystem auf Simulationsmodell vom Mikroprozessor booten (Sun Microsystems)
 - ▶ gemischte Simulation
 - ► Hardware- und Software
 - auf verschiedenen Abstraktionsebenen
 - ► + IP-Modelle
 - + analoge Modelle

Entwurfswerkzeuge (cont.)

- Analysewerkzeuge
 - ► Leistungsverbrauch
 - Timing
 - jeweils: statisch, geschätzt oder in Verbindung mit Simulation
- Verifikation, wenn möglich
 - Verifikation: Aussagen gelten für alle möglichen Eingaben
 Simulation: Beschränkung auf Stimuli
 - ▶ formale Methoden, um Eigenschaften zu überprüfen
 - meist Vergleich verschiedener Modelle
 - ▶ in Verbindung mit Extraktion
 - Referenzmodell, woher?
 - Ersatz von Simulationen

Entwurfswerkzeuge (cont.)

- ► Layoutwerkzeuge / Platzierung & Verdrahtung
 - ► NP-vollständige Probleme
 - ⇒ Heuristiken
 - sehr starke Spezialisierung, z.B. Routing bei Standardzell Entwürfen:
 - 1. Verdrahtung der Spannungsversorgung: Power-Routing
 - 2. Clock-Tree Synthese / -Routing
 - 3. zeitkritische Netze bearbeiten: "constraint driven" Routing
 - 4. normale Verdrahtung
 - 5. nachträgliche Optimierung: DRC-Fehler, thermische Modelle...
- Test des Entwurfs
 - Testbarkeit: Fertigungsfehler (physikalisch) feststellen
 Simulation: Überprüfung der Funktion
 - ▶ Ziel: defekte ICs aussortieren, vor Verpackung in Gehäuse

Entwurfswerkzeuge (cont.)

- Problem
 - ▶ alle internen Leitungen/Gatter ansprechen
 - nur die Padzellen sind direkt zugänglich
- ► Fehlermodelle: "stuck-at", bridging, open...
- Verfahren um Testbarkeit zu gewährleisten
 - ► Selbsttest, z.B. BIST (Build In Self Test)
 - ► Scan-Path: Flipflops als Schieberegister
 - **.**..
 - ▶ Dabei wird zusätzliche Logik integriert (bis zu 30%)
 - ▶ (teil-)automatisch bei der Synthese
- Fehlersimulation: überprüft die Fehlerüberdeckung "Wie viele Fehler können erkannt werden?"
- ► Testmustergenerierung: erzeugt automatisch Testvektoren

64-189 Projekt: Entwurf eines Mikrorechners

Beispiel

- Signalverarbeitung
- ▶ digitales Filter

◆ Simulation

EDA-Werkzeuge - Werkzeuge

64-189 Projekt: Entwurf eines Mikrorechners

Beispiel

- ► Bildverarbeitung
- Segmentierung

◆ Simulation

EDA-Werkzeuge - Probleme

Probleme

Moore's Law heißt in der Praxis

- ► Entwurf immer größerer und komplexerer Systeme
- Produktivitätssteigerungen

Productivit Trans./Staff EDA-Werkzeuge - Probleme

Probleme (cont.)

Entwurfskosten

64-189 Projekt: Entwurf eines Mikrorechners

Probleme (cont.)

- Geänderte Systemanforderungen
 - Performance
 - Größe
 - ► ökonomische Randbedingungen
 - Low-Power: Leistungsaufnahme, Abwärme...
 - ▶ Umgebung: EMV, Temperatur, mechanische Eigenschaften...
 - Wie können all diese Anforderungen (formal) spezifiziert werden?

Gliederung

- 1. Entwurfsmethodik
- 2. EDA-Werkzeuge
- 3. Entwurfsstile

Full-Custom

Makro- und Standardzellentwurf

Gate-Array Entwurf

programmierbare Logik: PLDs, FPGAs

Vergleich

Entwurfsstile

mehrere Möglichkeiten Schaltungen zu entwerfen

Unterscheidungsmerkmale

Zeitaufwand: Entwurfsdauer, Fertigungszeit

Kosten: Fertigung, pro Stück, EDA-Werkzeuge

▶ IC-Eigenschaften: Größe, Taktfrequenz, Leistungsaufnahme...

Entwurfsstile

- Full-Custom
- Standardzell
- Gate-Array
- ► FPGA / programmierbare Schaltungen

64-189 Projekt: Entwurf eines Mikrorechner

Full-Custom

Vollkundenspezifischer Entwurf / Full-Custom

- ► Layout aller geometrischer Strukturen
- viel manuelle Arbeit mit Layout-Editoren
- optimal kleine, schnelle Entwürfe
- sehr lange Entwurfsdauer (Effizienz)
- Ausnutzen von Regularität
- Teamarbeit nötig, Schnittstellen
- erfordert erfahrene Entwerfer

Full-Custom (cont.)

Entwurfsstile - Makro- und Standardzellentwurf

Makrozellentwurf

Makrozellentwurf

- Zellen wie Speicher, ALUs oder Datenpfade werden über Generatoren erzeugt
- ► Makrozellen in Full-Custom Qualität
- meist in Verbindung mit Standardzellentwurf

Chipgröße variabel Zellenanzahl variabel Zellengröße variabel Anschlusslage variabel Leiterbahnkanäle variabel

句

Entwurfsstile - Makro- und Standardzellentwurf

Standardzellentwurf

Standardzellentwurf

- vorgefertigte Zellen aus Bibliotheken benutzen
- ▶ Layout der Standardzellen in Full-Custom Qualität
- schneller flexibler Entwurf
- ▶ meist in Verbindung mit Makrozellgeneratoren

Chipgröße	variabel
Zellenanzahl	variabel
Zellenhöhe	fest
Zellenbreite	variabel
Anschlusslage	variabel
l eiterbahnkanäle	variabel

Standardzellentwurf (cont.)

Schematic

Zell-Layout

Standardzellentwurf (cont.)

Standardzell Layout

Gate-Array Entwurf

Gate-Array / Sea-of-Gate Entwurf

- vorgefertigte Transistoren
- Layout durch Verbindungsstruktur (Verdrahtung, Kontakte)
- ▶ intra-Zell Verdrahtung aus Zellbibliotheken
- vorgegebene Master: Komplexität eingeschränkt, Verschnitt
- ► schnelle Verfügbarkeit

Chipgröße	fest
Zellenanzahl	fest
Zellengröße	fest
Anschlusslage	fest
Leiterbahnkanäle	fest

Entwurfsstile - Gate-Array Entwu

Gate-Array Entwurf (cont.)

Uncommited Cell

Committed Cell (4-input NOR)

Gate-Array

句

programmierbare Schaltungen

programmierbare Schaltungen: FPGA, PLD, LCA...

- ▶ fertig vorgegebene Schaltung: Logik und Verbindungsstruktur
- ► Entwurf: Programmierung durch Anwender ⇒ sofort verfügbar
- ► Einschränkung durch vorgegebene Struktur
- Rekonfiguration möglich
- ▶ in-Circuit programmierbar

Chipgröße fest
Blockanzahl fest
Anschlusslage fest
Verbindungsnetz fest
Blockfunktion progr.
Verbindungen progr.

64-189 Projekt: Entwurf eines Mikrorechners

Universität Hamburg

Vergleich der Entwurfsstile

Full-Custom	+++	+++	+++	. 77V7)		VOII	10°
Standard-/Makrozell	++	++	++	784		voll	10 ⁴
Gate-Array	+	0	+	0	0	4-10	10 ³
programmierbare Logik	_			//++	+++	0	$< 10^{3}$

Vergleich der Entwurfsstile (cont.)

Wirtschaftlichkeit der Entwurfsstile

Vergleich der Entwurfsstile (cont.)

Wahl des Entwurfsstils

- ► Kostenüberlegungen
- ► Entwurfsdauer: "time-to-Market"
- ▶ technische Randbedingungen, oft als K.O.-Kriterium
 - ► Fläche
 - ► Leistungsaufnahme
 - Sicherheitsaspekte
- organisatorische Randbedingungen
 - vorhandene Werkzeuge
 - Know-How
 - "Faktor: Mensch" (Erfahrungen, Vorlieben)
- ⇒ vielfältige Wechselwirkungen

64-189 Projekt: Entwurf eines Mikrorechner

Literaturliste

Literaturliste

- [BE95] Abdellatif Bellaouar, Mohamed I. Elmasry:
 - Low-power digital VLSI design: circuits and systems. Kluwer Academic Publishers; Boston, MA, 1995. ISBN 0-7923-9587-5
- [ITRS07] International Technology Roadmap for Semiconductors 2007 Edition. Semiconductor Industry Association. URL www.itrs.net/Links/2007ITRS/Home2007.htm
- [ITRS11] International Technology Roadmap for Semiconductors 2011 Edition. Semiconductor Industry Association. URL www.itrs.net/Links/2011ITRS/Home2011.htm

64-189 Projekt: Entwurf eines Mikrorechner

Literaturliste

Literaturliste (cont.)

[MC80] Carver Mead, Lynn Conway:

Introduction to VLSI systems.

Addison-Wesley; Reading, MA, 1980.

ISBN 0-201-04358-0

[She95] Naveed A. Sherwani:

Algorithms for VLSI physical design automation.

Kluwer Academic Publishers; Boston, MA, 1995.

ISBN 0-7923-9592-1

Literaturliste

Literaturliste (cont.)

[T⁺90] Donald E. Thomas [u. a.]:

Algorithmic and register-transfer level synthesis: the system architect's workbench.
Kluwer Academic Publishers; Boston, MA, 1990.

ISBN 0-7923-9053-9

[WE94] Neil H. E. Weste, Kamran Eshraghian:

Principles of CMOS VLSI design: a systems perspective.

Addison-Wesley; Reading, MA, 1994.

ISBN 0-201-53376-6