Tirocinio su Posit

Luigi Leonardi

Indice

1	Intr	oduzio	one	е																												2
	1.1	Posit .																														2
	1.2	Note s																														2
2	Test su Moltiplicazione															3																
	2.1	Accura		_									_								_			_		_		_			_	3
		2.1.1					ntc																									3
		2.1.2			_		oni																									3
		2.1.3																														4
	2.2	Tempi																														5
	2.2	2.2.1					$_{ m ntc}$																									5
		2.2.1					oni																									5
		2.2.2																														5
		2.2.3	C	ou	псе	<i>;</i> .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
3	Test su Sigmoide															7																
	3.1	Introd	uz	ion	ie.																											7
	3.2	Valori																														7
		3.2.1					ntc																									7
		3.2.2			_		oni																									8
		3.2.3																														8
	3.3	Tempi																														10
	0.0	3.3.1			te i																											10
		3.3.2	_				Es																									11
		3.3.3																														11
		0.0.0	1	ar (ue A	_		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
4	Cod	lice?																														11

1 Introduzione

1.1 Posit

Il Posit è un formato di numero in virgola mobile ideato da John Gustafson, in alternativa allo standard IEEE 754. L'idea di base è fondamentalmente la stessa, anche nei Posit è presente un bit per il segno, dei bit per l'esponente e dei bit per la mantissa, le principali differenze consistono nella presenza di un "super esponente" o regime e nel non avere un numero di bit fissato per quest'ultimo e per la mantissa.

Il vantaggio nell'avere un super esponente, la cui lunghezza non è definita,

Figura 1: "Formato Posit"

permette di ottenere un range di numeri molto più flessibile, il suo contributo è pari a $2^{2^{es}}$ con es il numero di bit dell'esponente¹, permettendo quindi una riduzione del numero di bit assegnati a quest'ultimo campo oppure un incremento di range.

Questi bit di regime non sono altro che una sequenza di cifre binarie identiche, terminate dal complemento di esse.

Ad esempio: 0001 rappresenta -3, dove 3 è il numero degli 0 ed 1 è il terminatore. $^{2}[3]$

1.2 Note sui Test

Tutti i test svolti sui Posit sono stati effettuati sfruttando la libreria in C++BFP[1] implementando, dove necessario, le funzionalità mancanti.

I Posit scelti sono stati a 32/64 bit, con 0 bit di esponente³, dove non specificato diversamente.

¹L'esponente è l'unico campo ad avere una dimensione fissa

 $^{^2 \}rm Regimi$ che iniziano per 0 sono negativi, per 1 invece sono positivi. Lo0è rappresentato come 10

 $^{^3}$ Ha senso non utilizzare bit di esponente, in quanto si sfrutta il super esponente

2 Test su Moltiplicazione

2.1 Accuratezza

Questo test vuole dimostrare che a parità di bit utilizzati, 32 in questo caso, i Posit risultano essere più precisi nel rappresentare i risultati di prodotti, rispetto ad un Float in precisione singola.

In questo particolare caso sono stati impiegati Posit [32,3], ossia 32 bit totali, di cui 3 di esponente.

2.1.1 Svolgimento

Il test consiste nel creare 9 array, 6 per gli operandi e 3 per i risultati, di una dimensione compresa nell'ordine dei milioni:

- 3 di Posit [32,3]
- 3 di Float a 32 bit
- 3 di Double a 64 bit come riferimento

Il passo successivo consiste nel popolare gli array degli operandi, operazione che viene svolta partendo dai double sfruttando una funzione che genera dei numeri in modo pseudo-casuale, per poi provvedere a riempire gli altri semplicemente operando le necessarie conversioni.

Successivamente sono state eseguiti i vari prodotti i cui risultati sono stati collocati nel terzo array di ciascun tipo. Infine, per poter confrontare il tutto, i risultati sono stati riportarti in double e ne è stata fatta la differenza, in modulo, rispetto al riferimento.

Definisco:

$$\Delta_i(Posit) = |PositRes_i - DoubleRes_i|$$

 $\Delta_i(Float) = |FloatRes_i - DoubleRes_i|$

Dove FloatRes e PositRes sono il risultato del prodotto, fra float e posit rispettivamente, convertiti in double.

Se $\Delta_i(\text{Posit}) < \Delta_i(\text{Float})$ i posit sono più precisi dei float per questo indice. Se $\Delta_i(\text{Posit}) > \Delta_i(\text{Float})$ i float sono più precisi dei posit per questo indice.

2.1.2 Conclusioni

Dai risultati dei test svolti, i Posit si sono rivelati essere più precisi dei Float nel $\approx 56\%$ dei casi. Sono risultati pari merito nel $\approx 16\%$ dei casi.

I risultati risultano essere in linea con le aspettative, in quanto una maggiore precisione, a parità di dimensione, è imputabile ad un numero maggiore di bit disponibili per la mantissa, rispetto ai Float.

2.1.3 Codice

2.2 Tempi

Lo scopo di questo test è incentrato sul capire se, oltre ad esservi dei vantaggi a livello di precisione, vi sono dei vantaggi a livello di prestazioni nell'eseguire moltiplicazioni.

I Posit utilizzati sono del tipo [32-3].

2.2.1 Svolgimento

Per poter effettuare dei test che non avvantaggiassero i Float, sfruttando supporto hardware, è stata sfruttata la libreria SoftFloat[2] la quale implementa i Float interamente via software.

Lo svolgimento del test è simile al precedente, vengono creati 6 array di dimensione nell'ordine dei milioni

- 2 di Float
- $\bullet\,$ 2 di SoftFloat a 32 bit
- 2 di Posit[32,3]

I primi due vengono popolati con numeri generati in modo pseudo-casuale, mentre i rimanenti 4 vengono riempiti convertendo, nei rispettivi formati, i numeri ottenuti precedentemente. Per poter ottenere i tempi è stata sfruttata la funzione clock_gettime(), la quale restituisce il timestamp di sistema. Salvando il timestamp ad inizio e fine elaborazione, durante il quale vengono eseguite le moltiplicazioni fra i due array, si riescono ad ottenere per differenza i tempi di lavoro per ciascun tipo di numero.

2.2.2 Conclusioni

Come potevamo aspettarci i Float con supporto hardware, sono stati ≈ 11 volte più veloci dei SoftFloat o dei Posit. Per quanto riguarda i Posit invece, sono stati più lenti di ≈ 2 volte rispetto ai SoftFloat. Anche questo risultato era prevedibile, in quanto i Posit non sono altro che una generalizzazione dei Float, avendo aggiunto dei campi a lunghezza variabile.

2.2.3 Codice

```
8
             timespec start, stop;
 9
10
             clock_gettime( CLOCK_REALTIME, &start);
11
12
             for (unsigned long i=0; i< n; i++)
13
                       p1.setBits(X[i]);
14
                       p2.setBits(Y[i]);
15
16
                       p1.mul(p2);
             }
17
18
             clock_gettime( CLOCK_REALTIME, &stop);
19
20
             \label{eq:double_res} \begin{array}{lll} \mbox{double} & res = BILLION*( & stop.tv\_sec - start.tv\_sec ) + \\ \end{array}
21
22
             ( stop.tv_nsec - start.tv_nsec );
23
24
             return res;
25
26 }
```

3 Test su Sigmoide

3.1 Introduzione

Una caratteristica dei Posit con 0 bit di esponente, come osservato da Isaac Yonemoto, è che risulta molto facile e conveniente a livello computazionale, calcolare la funzione sigmoide, infatti bastano dei semplici shift e not. Essa trova largo impiego nell'ambito delle reti neurali e machine learning. Per poter eseguire i seguenti test, è stato necessario implementare una funzione di conversione da Posit[32-0] a Float, in quanto la libreria ne risulta essere sprovvista.

3.2 Valori

Il primo test che sono andato ad eseguire è stato di tipo numerico, ossia data la funzione sigmoide $f(x) = \frac{1}{1+e^{-x}}$, ne ho confrontato i risultati con quelli restituiti dalla sigmoide ottenuta mediante manipolazione dei bit.

3.2.1 Svolgimento

Per questo tipo di test ho generato un numero di Float, nell'ordine delle migliaia, in modo pseudo-casuale nel range -30 e 30, e ne ho calcolato la sigmoide sfruttando prima la funzione con l'esponenziale, e successivamente, dopo aver convertito il numero in Posit, l'altra. Infine ho plottato tutti i risultati su MatLab ed ho ottenuto il seguente grafico:

Figura 2: "Sigmoide"

3.2.2 Conclusioni

Come si può evincere dalla figura, il grafico ottenuto con i Posit sembra essere una spezzata che segue l'andamento della sigmoide con i Float, inoltre i due grafici si vanno a sovrapporre nell'origine. In generale comunque possiamo affermare che effettivamente questo tipo di manipolazione sui bit, ha fornito una approssimazione della sigmoide.

3.2.3 Codice

```
1 //Sigmoide con Float
 2 float sigmoid (float &x){
 3
           return 1/(\exp(-x)+1);
4 }
 5
 6 //Sigmoide con Posit
 7 unsigned int sigmoid (unsigned int bits) {
8
           bits = bits \hat{} 0x80000000;
9
           bits = bits \gg 2;
10
           return bits;
11 }
12
13
14 // Conversione da Posit [32-0] a Float
15 float Posit::subconv(){
16
           union {
17
                    float f;
18
                    uint32_t bits;
19
           };
20
           bits = 0;
21
22
           if((mBits & 0xFFFFFFFF) == 0)
23
           return 0.0 f;
24
           signed char c = (signed char)(regime());
25
           c+=127;
26
           unsigned int esponente = (unsigned int)(c);
27
28
           esponente = esponente << 23;
29
           bits = bits | esponente;
           unpacked_t aup = unpack_posit(mBits, mNbits, mEs);
30
31
           unsigned int fr = aup.frac;
32
33
           fr_{-} = fr_{-} >> 9;
           bits = bits | fr_-;
34
```

3.3 Tempi

Una volta dimostrato che possiamo approssimare la sigmoide, il passo successivo è quello di provare che effettivamente vi sia risparmio tangibile nell'eseguire i calcoli.

Questo test, suddiviso in più parti, effettua diversi confronti, sui tempi di elaborazione, fra sigmoide su Posit e sigmoide ottenuta in vari modi sui Float.

3.3.1 Parte 1

Il primo confronto eseguito è stato con la funzione sigmoide esponenziale $f(x) = \frac{1}{1+e^{-x}}$, la stessa utilizzata nel test numerico.

Esso consiste nel generare un milione di Float pseudo-casual,i e di scriverli su file sia come Float che come Posit sotto forma di bit, il tutto per evitare di falsare il test a sfavore di questi ultimi, in quanto nel tempo di elaborazione vi sarebbe anche il tempo di conversione.

Una volta acquisiti i dati da file, per ciascun tipo, impiego la funzione clock_gettime(), la quale viene richiamata prima e dopo aver finito di calcolare la sigmoide su tutti i dati.

Successivamente ho ripetuto lo stesso esperimento, incrementando gradualmente il numero di elementi, per verificare se l'eventuale margine fosse influenzato dalle dimensioni, nello specifico lo step scelto è stato di 10 mila, con numero massimo di 5 milioni.

Figura 3: "Tempi all'aumentare degli elementi"

3.3.2 Parte 1 - Esito

I risultati hanno evidenziato che la funzione, calcolata mediante manipolazione di bit, quindi impiegando solamente la ALU del processore, è più rapida di $\approx 1.5-1.8$ volte su un campione di 1 milione di elementi.

Per quanto riguarda l'incremento, come si può evincere dalla Figura 3, il tempo di elaborazione aumenta linearmente all'aumentare del numero degli elementi in entrambi i casi, di conseguenza possiamo affermare che il vantaggio rimane pressoché costante.

3.3.3 Parte 2

4 Codice?

```
1 //Prova.cpp
2 printf("Ciao");
```

Bibliografia

- [1] Boh. "Beyond Floating Point". URL: https://github.com/libcg/bfp.
- [2] John R. Hauser. "Berkeley SoftFloat". URL: http://www.jhauser.us/arithmetic/SoftFloat.html.
- [3] École polytechnique fédérale de Lausanne. GSN. URL: https://github.com/LSIR/gsn.
- [4] Mario. "ciao". In: Giornale (2017).