Density-based Approaches

- Why Density-Based Clustering methods?
 - O Discover clusters of arbitrary shape.
 - Clusters Dense regions of objects separated by regions of low density
 - □ DBSCAN the first density based clustering
 - □ OPTICS density based cluster-ordering
 - □ DENCLUE a general density-based description of cluster and clustering

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Proposed by Ester, Kriegel, Sander, and Xu (KDD96)
- Relies on a density-based notion of cluster: A cluster is defined as a maximal set of density-connected points.
- Discovers clusters of arbitrary shape in spatial databases with noise

Density-Based Clustering

** Basic Idea:

Clusters are dense regions in the data space, separated by regions of lower object density

Why Density-Based Clustering?

Results of a k-medoid algorithm for k=4

Different density-based approaches exist (see Textbook & Papers) Here we discuss the ideas underlying the DBSCAN algorithm

cse@buffalo

Density Based Clustering: Basic Concept

- Intuition for the formalization of the basic idea
 - □ For any point in a cluster, the local point density around that point has to exceed some threshold
 - ☐ The set of points from one cluster is spatially connected
- Local point density at a point *p* defined by two parameters
 - $\square \varepsilon$ radius for the neighborhood of point p: $N_{\varepsilon}(p) := \{q \text{ in data set } D \mid dist(p, q) \le \varepsilon\}$
 - \square MinPts minimum number of points in the given neighbourhood N(p)

ε-Neighborhood

- **E-Neighborhood** Objects within a radius of ε from an object. $N_{\varepsilon}(p) : \{q \mid d(p,q) \le \varepsilon\}$
- **"High density" ε-Neighborhood of an object contains at least** *MinPts* **of objects.**

ε-Neighborhood of *p* ε-Neighborhood of *q*

Density of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 4)

Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and MinPts, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

M, P, O, and R are core objects since each is in an Eps neighborhood containing at least 3 points

Minpts = 3

Eps=radius of the circles

Density-Reachability

- **Directly density-reachable**
 - **An object q is directly density-reachable from object p if p is a core object and q is in p's ε-neighborhood.**

- q is directly density-reachable from p
- p is not directly density- reachable from q?
- **■** Density-reachability is asymmetric.

MinPts = 4

Density-reachability

- Density-Reachable (directly and indirectly):
 - ☐ A point p is directly density-reachable from p2;
 - p2 is directly density-reachable from p1;
 - □ p1 is directly density-reachable from q;
 - \square p \leftarrow p2 \leftarrow p1 \leftarrow q form a chain.

- p is (indirectly) density-reachable from q
- **q** is not density- reachable from p?

Density-Connectivity

- **Density-reachable is not symmetric**
 - □ not good enough to describe clusters
- **Density-Connected**
 - □ A pair of points p and q are density-connected if they are commonly density-reachable from a point o.
- p q

Density-connectivity is symmetric

Formal Description of Cluster

- Given a data set D, parameter ε and threshold MinPts.
- A cluster C is a subset of objects satisfying two criteria:
 - □ Connected: \forall p,q ∈ C: p and q are density-connected.
 - □ Maximal: ∀ p,q: if p ∈ C and q is density-reachablefrom p, then q ∈ C. (avoid redundancy)

P is a core object.

Review of Concepts

cseebuffalo

DBSCAN Algorithm

```
Input: The data set D

Parameter: ε, MinPts

For each object p in D

if p is a core object and not processed then

C = retrieve all objects density-reachable from p

mark all objects in C as processed

report C as a cluster

else mark p as outlier

end if

End For
```

DBScan Algorithm

DBSCAN: The Algorithm

- ☐ Arbitrary select a point p
- ☐ Retrieve all points density-reachable from p wrt Eps and MinPts.
- \square If p is a core point, a cluster is formed.
- \square If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

DBSCAN Algorithm: Example

Parameter

$$\odot \varepsilon = 2 \text{ cm}$$


```
for each o \in D do
   if o is not yet classified then
       if o is a core-object then
          collect all objects density-reachable from o
          and assign them to a new cluster.
       else
          assign o to NOISE
```


DBSCAN Algorithm: Example

Parameter

$$\odot \varepsilon = 2 \text{ cm}$$

$$\bigcirc MinPts = 3$$


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


DBSCAN Algorithm: Example

Parameter

- $\odot \varepsilon = 2 \text{ cm}$
- \bigcirc MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


- 1. Check the ε-neighborhood of p;
- 2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
- Otherwise mark p as processed and put all the neighbors in cluster C

- Check the unprocessed objects in C
- 2. If no core object, return C
- 3. Otherwise, randomly pick up one core object p₁, mark p₁ as processed, and put all unprocessed neighbors of p₁ in cluster C

Example

Original Points

Point types: core, border and outliers

 ε = 10, MinPts = 4

When DBSCAN Works Well

Original Points

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle Varying densities
- sensitive to parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Determining the Parameters ε and *MinPts*

- **Cluster: Point density higher than specified by ε and** *MinPts*
- Idea: use the point density of the least dense cluster in the data set as parameters but how to determine this?
- Heuristic: look at the distances to the k-nearest neighbors

3-distance(p): \longrightarrow

3-distance(q): \longrightarrow

- Function k-distance(p): distance from p to the its k-nearest neighbor
- **■** *k-distance plot: k-* **distances of all objects, sorted in decreasing order**

Determining the Parameters ε and *MinPts*

Example k-distance plot

Heuristic method:

- □ Fix a value for *MinPts* (default: $2 \times d 1$)
- User selects "border object" o from the MinPts-distance plot; ε is set to MinPts-distance(ο)

Determining the Parameters ε and *MinPts*

Problematic example

Density Based Clustering: Discussion

- Advantages
 - □Clusters can have arbitrary shape and size
 - **■Number of clusters is determined automatically**
 - □Can separate clusters from surrounding noise
 - □Can be supported by spatial index structures
- Disadvantages
 - □Input parameters may be difficult to determine
 - ☐ In some situations very sensitive to input parameter setting

cseebuffalo

OPTICS: Ordering Points To Identify the Clustering Structure

- **DBSCAN**
 - □Input parameter hard to determine.
 - **□**Algorithm very sensitive to input parameters.
- OPTICS Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - ☐ Based on DBSCAN.
 - **□** Does not produce clusters explicitly.
 - ☐ Rather generate an ordering of data objects representing density-based clustering structure.

OPTICS con't

- Produces a special order of the database wrt its density-based clustering structure
- This cluster-ordering contains info equiv to the density-based clusterings corresponding to a broad range of parameter settings
- Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
- Can be represented graphically or using visualization techniques

Density-Based Hierarchical Clustering

Observation: Dense clusters are completely contained by less dense clusters

■ *Idea*: Process objects in the "right" order and keep track of point density in their neighborhood

Core- and Reachability Distance

Parameters: "generating" distance ε, fixed value MinPts

 $\blacksquare core\text{-}distance_{\varepsilon,MinPts}(o)$

"smallest distance such that o is a core object"

(if that distance is $\leq \varepsilon$; "?" otherwise)

 \blacksquare reachability-distance $_{\varepsilon,MinPts}(p, o)$

"smallest distance such that p is

directly density-reachable from o" (if that distance is $\leq \varepsilon$; "?" otherwise)

cseebuffalo

OPTICS: Extension of DBSCAN

Order points by shortest reachability distance to guarantee that clusters w.r.t. higher density are finished first. (for a constant MinPts, higher density requires lower ε)

The Algorithm OPTICS

Basic data structure: controlList

■ Memorize shortest reachability distances seen so

far

("distance of a jump to that point")

■Visit each point

■ Make always a shortest jump

Output:

□order of points

Output Core-distance of points

Preachability-distance of points

The Algorithm OPTICS

* ControlList ordered by reachability-distance.

```
foreach o \in Database
 // initially, o.processed = false for all objects o
 if o.processed = false;
   insert (o, "?") into ControlList;
 while ControlList is not empty
     select first element (o, r-dist) from ControlList;
     retrieve N_{\varepsilon}(o) and determine c\_dist=core\_distance(o);
     set o.processed = true;
     write (o, r\_dist, c\_dist) to file;
     if o is a core object at any distance \leq \varepsilon
       foreach p \in N_{\epsilon}(o) not yet processed;
           determine r\_dist_p = reachability\text{-}distance(p, o);
           if (p, \_) \notin ControlList
              insert (p, r\_dist_p) in ControlList;
           else if (p, old\_r\_dist) \in ControlList and r\_dist_p < old\_r\_dist
              update (p, r\_dist_p) in ControlList;
```


OPTICS: Properties

- **■** "Flat" density-based clusters wrt. ε* ≤ ε and *MinPts* afterwards:
 - □ Starts with an object *o* where c-dist(o) ≤ ε* and r-dist(o) > ε*
 - **□** Continues while *r*-*dist* ≤ ε*

- Performance: approx. runtime(DBSCAN(\varepsilon, MinPts))
 - \square O($n * runtime(\varepsilon-neighborhood-query))$
 - \bigcirc without spatial index support (worst case): O(n^2)
 - \bigcirc e.g. tree-based spatial index support: O(n * log(n))

OPTICS: The Reachability Plot

- represents the density-based clustering structure
- **easy to analyze**
- independent of the dimension of the data

cse@buffalo

OPTICS: Parameter Sensitivity

- Relatively insensitive to parameter settings
- Good result if parameters are just "large enough"

$$MinPts = 10, \varepsilon = 10$$

$$MinPts = 10, \epsilon = 5$$

MinPts = 2,
$$\varepsilon = 10$$

An Example of OPTICS

neighboring objects stay close to each other in a linear sequence.

DBSCAN VS OPTICS

	DBSCAN	OPTICS
Density	Boolean value (high/low)	Numerical value (core distance)
Density- connected	Boolean value (yes/no)	Numerical value (reachability distance)
Searching strategy	random	greedy

When OPTICS Works Well

Cluster-order of the objects

cse@buffalo

When OPTICS Does NOT Work Well

DENCLUE: using density functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Major features
 - **☐** Solid mathematical foundation
 - ☐ Good for data sets with large amounts of noise
 - ☐ Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - ☐ Significantly faster than existing algorithm (faster than DBSCAN by a factor of up to 45)
 - ☐ But needs a large number of parameters

Denclue: Technical Essence

- Model density by the notion of influence
- Each data object exert influence on its neighborhood.
- **■** The influence decreases with distance
- **Example:**
 - ☐ Consider each object is a radio, the closer you are to the object, the louder the noise
- **Key:** Influence is represented by mathematical function

Denclue: Technical Essence

Influence functions: (influence of y on x, σ is a user given constant)

Square:
$$f_{square}^{y}(x) = 0$$
, if dist(x,y) > σ ,

1, otherwise

□Guassian:

$$f_{Gaussian}^{y}(x) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

Density Function

Density Definition is defined as the sum of the influence functions of all data points.

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

 $(\mathbf{d}) \ \sigma = 1.5$

cse@buffalo

Gradient: The steepness of a slope

Example

Example
$$f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^2}{2\sigma^2}}$$

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_i)^2}{2\sigma^2}}$$

$$\nabla f_{Gaussian}^{D}(x, x_i) = \sum_{i=1}^{N} (x_i - x) \cdot e^{\frac{-d(x, x_i)^2}{2\sigma^2}}$$
cseebuffalo

cse@buffalo

Denclue: Technical Essence

- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maximum of the overall density function.

Density Attractor

(a) Data Set

Cluster Definition

- Center-defined cluster
 - ☐ A subset of objects attracted by an attractor x
 - \Box density(x) $\geq \xi$
- **■** Arbitrary-shape cluster
 - ☐ A group of center-defined clusters which are connected by a path P
 - □ For each object x on P, density(x) ≥ ξ.

Center-Defined and Arbitrary

Figure 3: Example of Center-Defined Clusters for different σ

Figure 4: Example of Arbitray-Shape Clusters for different ξ

DENCLUE: How to find the clusters

- Divide the space into grids, with size 2σ
- Consider only grids that are highly populated
- For each object, calculate its density attractor using hill climbing technique
 - ☐ Tricks can be applied to avoid calculating density attractor of all points
- **Density attractors form basis of all clusters**

Features of DENCLUE

- Major features
 - **□** Solid mathematical foundation
 - O Compact definition for density and cluster
 - O Flexible for both center-defined clusters and arbitraryshape clusters
 - ☐But needs a large number of parameters
 - \circ \circ : parameter to calculate density
 - **Ο** ξ: density threshold
 - \circ δ : parameter to calculate attractor

