2020年度10月期入学/2021年度4月期入学京都大学大学院情報学研究科修士課程

システム科学専攻 入学者選抜 試験問題

【専門科目】

試験日時:2020年8月1日(土) 午後1時00分より同4時00分

問題冊子頁数(表紙、中表紙、裏表紙を除いて): 9頁

選択科目:下記の科目のうち、2科目を選択し解答すること。

【論理回路】(3) 【工業数学】(3)

【基本ソフトウェア】(2) 【確率統計】(3)

【制御工学】(3)

なお()内数字は解答用紙の最大使用枚数を示す。

注意:

- (1) 上記科目から2科目を超えて選択してはいけない。3科目以上選択した場合は、本専門科目の答案を無効にすることがある。<u>別紙の選択表への記入を忘れない</u>こと。
- (2) すべての解答用紙に受験番号と氏名を記入すること。
- (3) 解答は上記最大使用枚数に注意すること。対応する解答用紙に解答中の科目名を明記すること。なお各問題に注意書きがあればそれに従うこと。
- (4) 解答を表面に記入しきれない場合は裏面に記入してもよいが、表面において氏名、受験番号、整理番号などと記された部分の裏面にあたる上部を空白にしておくこと。(この上部は切り離すので、点線部分より下側を使用すること。)
- (5) 解答用紙は記入の有無にかかわらず持ち帰ってはならない。

【論理回路】

注意:問題毎にそれぞれ別の解答用紙を使用すること.

問題1

- (1) 以下の論理式を A, B, C の最簡積和形で表せ. $f = ABC + AB\overline{C} + A\overline{B}C + A\overline{B}\overline{C}$
- (2) 以下の論理式を A, B, C, D, E, F の最簡積和形で表せ. ただし、 $ABCD, AB\overline{CF}, AB\overline{EF}$ は don't care とする.

 $f = \overline{A}\overline{B}\overline{C}D + A\overline{B}\overline{C}E + AB\overline{C}F + \overline{A}\overline{B}\overline{D}E + AB\overline{E}\overline{F} + A\overline{C}D\overline{E} + AC\overline{D}E$

問題2

2つの整数を加算する組合せ回路を考える. 以下の設問に答えよ.

- (1) 1 ビット入力 a_1 と b_1 の和を, C_1 を桁上がりとして $(C_1S_1)_2$ とする. a_1 と b_1 に対する S_1 と C_1 の真理値表を示し,できるだけ少ない AND,OR,NOT,XOR 素子を用いて構成し,回路を図示せよ.
- (2) i 桁目 (i > 1) の加算では、下の桁からの桁上がり C_{i-1} を入力に考慮する必要がある. 1 ビット入力 a_i, b_i と C_{i-1} の和を、 C_i を桁上がりとして $(C_iS_i)_2$ とするとき、 a_i, b_i, C_{i-1} に対する S_i と C_i の真理値表を示せ、また、設問 (1) の回路に加えて、できるだけ少ない AND、OR、NOT、XOR素子を用いて構成し、回路を図示せよ、ただし、設問 (1) の回路を図 1 のように簡略化して用いて良い.
- (3) 設問(1)と(2)の回路を用いて,0以上7以下の2つの整数を加算する回路を 図示せよ.ただし,設問(1)の回路を図1,設問(2)の回路を図2のように簡 略化して用いて良い.

図 1: 設問 (1) の回路図

図 2: 設問 (2) の回路図

【論理回路】(続き)

問題3

図 3 は入力 X を受け付け,クロックに同期して 2 個の JK フリップフロップの内部状態を遷移させ,内部状態の組 Q_0 , Q_1 を出力する順序回路である.回路の現状態を Q_1Q_0 , 次状態を $Q_1^+Q_0^+$ とするとき,次の設問に答えよ.ただし,図中にはクロック信号は表記していない.

- (1) 入力 X, 現状態 Q_1Q_0 と 次状態 $Q_1^+Q_0^+$ との関係を示す状態遷移表を作成 せよ.
- (2) 設問 (1) で求めた状態遷移表を実現する順序回路 S をできるだけ少ない数 の T フリップフロップ, AND, OR, NOT 素子を用いて構成し、図示せよ.

図 3: 回路図

(論理回路の問題はここまで)

【工業数学】

注意: 問題毎にそれぞれ別の解答用紙を使用すること.

以下の設問においてiは虚数単位,eは自然対数の底を表す. $\mathbb C$ は複素数の集合を表す. また複素数zに対して、zはzの複素共役を表す.

問題1 複素関数

$$f(z) = \sin\left(\frac{1}{z^2 + 3z + 1 + 3i}\right)$$

について以下の設問に答えよ.

- (1) z = x + iy (x, y) は実数) として、f(z) の実部と虚部をそれぞれ x, y の関数として表せ.
- (2) f(z) がべき級数展開を持ちその収束半径が $\sqrt{2}$ である実軸上の点をすべて求めよ.

問題2 図の積分路に沿った複素積分を考えることで、積分

$$\int_{-\infty}^{\infty} \frac{\cos x}{\cosh x} \, dx$$

の値を求めよ.

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

をみたすならば、領域 Ω において調和関数であるという。以下の設問に答えよ.

- (1) $f(z) = e^z$ は \mathbb{C} において調和関数であることを示せ.
- (2) 領域 Ω において正則な複素関数は、 Ω において調和関数であることを示せ、
- (3) 領域 Ω において,f(z)と $\left(f(z)\right)^2$ とがともに調和関数であり,さらに $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ がいずれも0にならないとする.このとき,f(z)か $\overline{f(z)}$ かのいずれかが Ω において正則であることを示せ.

【基本ソフトウェア】

注意:問題毎にそれぞれ別の解答用紙を使用すること.

問題1

以下に示すて言語の関数 f() は、各要素が構造体 s であるような線形リスト (linear list)、すなわち先頭要素へのポインタが関数の引数 a、i 番目の要素の next が i+1 番目の要素へのポインタ、かつ最終要素の next が NULL であるようなリストをソート (sort) し、ソート後のリストの先頭要素へのポインタを返すものである。ただしソートは各要素の key の昇順 (ascending order) で行われる。この関数 f() と、これから呼び出される関数 g() と h()、および f() で用いているソートアルゴリズム(以下 A と呼ぶ)について、設問 (1)~(5) に答えよ。

```
struct s { int key; struct s *next;};
void h(struct s *a) {
  struct s *b = a-next, *p, *q,
           *c = NULL, *d = NULL;
  int x = b->key;
  for (p=b->next; (a)
                        ; p=q) {
    q = p->next;
                           ____; c = p ;
   if (p->key<x) { (b)
                  \{ p->next = d; (c) \}
  }
  a \rightarrow next = c; b \rightarrow next = d;
struct s *g(struct s *a) {
  struct s *b = a->next;
  if (b==NULL) return(a);
  h(a);
  g(a) \rightarrow next = (d)
  return(g(b));
struct s *f(struct s *a) {
  struct s b;
  b.next = a;
  g(&b); return((e)
}
```

- (1) 下線部(a)~(e)を埋めて, 関数f(),g(),h()を完成させよ.
- (2) ソートアルゴリズム A の名称を答えよ.
- (3) A の平均時間計算量 (average-case time complexity) および最悪時間計算量 (worst-case time complexity) のオーダを、ソート対象のデータ数を N として答えよ.
- (4) 設問(3)で回答した最悪時間計算量について、回答の根拠を述べよ.
- (5) A と平均時間計算量のオーダが等しいソートアルゴリズムを一つ挙げ、最悪時間計算量と線形リストのソートに要する作業領域量の観点から、両者の優劣を論ぜよ.

(基本ソフトウェアの問題は次ページに続く)

【基本ソフトウェア】(続き)

- 問題 2 単一コアで構成される単一 CPU での実行を考える. プロセスのスケジューリングに関する次の設問に答えよ.
- (1) 処理時間が表 1 に示されるプロセス A~D を処理する場合,次の(a)と(b)のスケジューリング方式によって得られる処理系列を示し,平均ターンアラウンド時間と平均待ち時間を求めよ.ただし,(b)においてタイムスライスは 10 とし,最初の処理は A,B,C,Dの順に行われることとする.また,すべてのプロセスは時刻 0 の時点ですでに到着しており,スケジューリングは完了しているとする.なお,この設問では,プロセス切り替えに要するオーバーヘッドは無視できるものとする.
 - (a) 処理時間順スケジューリング (shortest job first)
 - (b) ラウンドロビン (round-robin)

表 1

プロセス	処理時間
A	26
В	8
C	34
D	12

- (2) 設問(1)の結果に基づき, (a)と(b)を比較し, スケジューリングの特徴を論ぜ よ.
- (3) タイムスライスをtとしたラウンドロビンにおいて,n個のプロセスを処理することを考える.
 - (i) t がプロセスの処理時間よりも小さいとき、全プロセスに対する最大待ち時間をnとtを使い示せ、ただし、すべてのプロセスは時刻0の時点ですでに到着しているとする.
 - (ii) t が非常に大きいときと、t が非常に小さいとき、プロセスの実行と処理性能の観点からそれぞれスケジューリングがどのようになるか論ぜよ.

(基本ソフトウェアの問題はここまで)

【確率統計】

注意:問題毎にそれぞれ別の解答用紙を使用すること.

以下の問題において、P(A) は事象 A の確率を表し、 $[a,b]=\{x\mid a\leq x\leq b\}$ は実数における区間を表す。

問題 1

確率変数 X_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$ は独立に正規分布に従い, $X_{ij}\sim N(\mu_i,1)$ とする.ただし, $N(\mu,\sigma^2)$ は平均 μ ,分散 σ^2 の正規分布を表す.ここで n,m は正の整数, μ_i は未知パラメータである.また, $X\sim N(0,1)$ の分布関数 $P(X\leq x)$ を $\Phi(x)$ で表す.以下の設問に答えなさい.その導出過程も示すこと.

- (1) X_{i1}, \ldots, X_{in} をすべて用いて μ_i の最尤推定量 $\hat{\mu}_i$ を求めよ.
- (2) $\hat{\mu}_i$ が μ_i の不偏推定量であることを示せ.
- (3) 各 $i=1,\ldots,m$ において、帰無仮説 $H_0:\mu_i=0$ 、対立仮説 $H_1:\mu_i>0$ の仮説検定を有意 水準 α (0 < α < 1) で行いたい。そのために定数 $d_i>0$ を定めておき、 $\hat{\mu}_i>d_i$ のとき帰無仮説を棄却する。定数 d_i を求めよ.
- (4) 各 $i=1,\ldots,m$ において,ある定数 $c_i>0$ を用いて μ_i の信頼区間 $S_i=[\hat{\mu}_i-c_i,\hat{\mu}_i+c_i]$ を 定める.これが $P(\mu_i\in S_i)=1-\alpha$ (0 < α < 1) を満たすようにしたい.定数 c_i を求めよ.
- (5) 上記の S_i が $P(\mu_i \in S_i, i = 1, ..., m) = 1 \alpha$ を満たすようにしたい。 $c_i = c, i = 1, ..., m$ として,定数 c > 0 を求めよ.

(確率統計の問題は次ページに続く)

【確率統計】 (続き)

問題2

 X_1, X_2, \cdots, X_n を互いに独立で同一の確率密度関数に従う実数値確率変数とし、対応する確率 密度関数、確率分布関数をそれぞれ $f_X(x), F_X(x)$ とする。また

$$Y = \max \{X_1, X_2, \cdots, X_n\}$$

とする。以下の設問に答えなさい。

- (1) Y の確率分布関数 $F_Y(y)$ および確率密度関数 $f_Y(y)$ を f_X, F_X, n を用いて表せ.
- 以下の設問では、 X_i は区間 $[0,\theta]$, $\theta > 0$ 上の一様分布に従うものとする.
 - (2) $\hat{\theta} = aY$ が θ の不偏推定量となるように a を n を用いて表せ.
 - (3) θ の最尤推定量 $\hat{\theta}^{ML}$ を求めよ.
 - (4) $\hat{\theta}$ および $\hat{\theta}^{\rm ML}$ の平均二乗誤差を求め、どちらの推定量のほうが小さい平均二乗誤差を与えるか答えよ、ただし $\hat{\theta}$ は (2) で求めた不偏推定量である。
 - (5) θ の信頼区間として S = [Y, bY], b > 1 の形を考える。 $0 < \alpha < 1$ に対して, $P(\theta \in S) = 1 \alpha$ となるように b を設定せよ。

(確率統計の問題はここまで)

【制御工学】

注意:問題毎にそれぞれ別の解答用紙を使用すること.

問題1 図1のフィードバック制御系において,

$$P(s) = \frac{20}{(s+1)(s+20)}, \quad F(s) = \frac{a(s+1)}{s+10}, \quad H(s) = \frac{10}{s+10}, \quad K(s) = k_1 + \frac{k_2}{s}$$

とする. a, k_1, k_2 は定数パラメータである. 以下の設問に答えよ.

- (1) $a=10, k_1=0, k_2=0$ のとき、単位ステップ入力 r(t)=1 に対する出力 y(t) を求めよ.
- (2) $k_2=0$ のとき,フィードバック制御系が安定となるために a,k_1 が満たすべき 条件を求めよ.また,その条件が満たされるとき,単位ステップ入力 r(t)=1に対する出力 y(t) の定常値 $\lim_{t\to\infty}y(t)$ を, a,k_1 を用いて表せ.
- (3) $k_2 \neq 0$ のとき,フィードバック制御系が安定となるために a, k_1, k_2 が満たすべき条件を求めよ.

【制御工学】(続き)

問題 2 図 2 のフィードバック制御系について以下の設問に答えよ. ゲインk は 200 以上の実数とする.

図 2

- (1) k=200 のとき、一巡伝達関数のゲイン曲線を折れ線近似で示せ、
- (2) 一巡伝達関数のゲイン交差周波数をkの関数として求めよ.
- (3) ナイキストの安定判別法により, k = 400 の場合, 閉ループ系が安定であることを示し, 位相余裕を求めよ.
- (4) 閉ループ系の位相余裕が45度となるkの値を求めよ.