

KULTUR SEL DAN JARINGAN TUMBUHAN (pertemuan ke 2)

IRMA MARDIAH, M.SI

PROGRAM STUDI SARJANA FARMASI

VISI STFI

KETENTUAN UMUM **KEGIATAN AKADEMIK**

- Koordinator Mata Kuliah/Praktikum akan 1 mengkonfirmasi kepada dosen terkait media dan *link* kegiatan
- Mahasiswa masuk ke dalam link yang 2 tersedia paling lambat 10 menit sebelum perkuliahan/praktikum dimulai
- Mahasiswa berpakaian dengan sepantasnya sesuai dengan aturan yang berlaku di STFI
- 4 Mahasiswa menyalakan kamera (on cam)

- Mahasiswa mengatur audio dalam kondisi
- 5 "mute", kecuali akan berdiskusi dengan dosen
- Jika izin ke toilet maka izinlah melalui fitur chat yang tersedia
 - Jika ada kendala jaringan, mohon segera
- 7 menghubungi koor mata kuliah/praktikum atau dosen saat itu juga
- Mahasiswa mengikuti kontrak belajar yang
- disepakati bersama dosen Program Studi Sarjana Farmasi

www.stfi.ac.id

TEHNIK KULTUR JARINGAN TUMBUHAN

APAKAH³

IN VITRO PROPAGASI?

MIKROPROPAGASI?

KULTUR IN VITRO?

KULTUR ASEPTIK TANAMAN?

REGENERASI?

MULTIPLIKASI?

- Klon yang identik
- Eksplan tungal dapat diperbanyak menjadi ribuan
- Produksi sepanjang tahun
- ▶ Tanaman yang langka atau yang berbahaya dapat di klon secara aman

www.stfi.ac.id

- Untuk memproduksi tanaman yang bebas virus
- Dapat disimpan dalam jangka Panjang pada "bank jaringan"
- Kultur tanaman mudah di ekspor daripada tanaman yang tumbuh di tanah
- Dapat memproduksi spesies yang sulit di perbanyak
- Menguntungkan secara skala industri

KEMAMPUAN DASAR TANAMAN BAGAIMANA SUATU SEL ATAU JARINGAN TANAMAN DAPAT TUMBUH?

- ▶ TOTIPOTENSI
- ▶ DIFFERENSIASI
- ► KOMPETENSI

OLEH KARENA ITU JARINGAN DAPAT DIREGENERASI DARI EKSPLAN SEPERTI KOTILEDON, HIPOKOTIL, DAUN, PUTIK, PROTOPLAS, AKAR, BENANG SARI DLL.

- ▶ 1902an-Haberlandt-konsep
- ▶ 1920an-Knudson-germinasi anggrek sederhana-pertamakali secara komersil
- 1930an-Thimann & Went-Auxin
- ▶ 1930an-White/Gautheret/Nobecourt-kultur akar
- 1950an-tim Skoog's-Sitokinin-penemuan struktur DNA oleh Crick dan Watson
- ▶ 1960an-Morel-mikropropagasi anggrek, termoterapi
- ▶ 1970an-mulai dilakukan rekayasa genetic
- 1990an-Calgene-rekayasa genetic kentang

APA YANG DIBUTUHKAN?

- ▶ Jaringan yang sesuai
- ▶ Medium tumbuh yang sesuai
- ► Kondisi aseptic (steril)
- ► Regulator tumbuh: rasio auksin dan sitokinin
- ► Frekuensi subkultur

TIPE TEHNIK KULTUR JARINGAN WWW.stfi.ac.id

- 4. Kultur kalus
- 5. Suspensi sel dan kultur sel tunggal
- 6. Kultur protoplas, hibridisasi somatik

- ı. Kultur tanaman utuh (kultur biji anggrek)
- 2. Kultur embrio (penyelamatan embrio)
- 3. Mikropropagasi organ kultur
 - 1. Organogenesis pada medium padat atau semi padat
 - 1. Kultur meristem dan batang
 - 2. Kultur tunas
 - 3. Kulltur akar
 - 4. Kultur daun
 - 5. Kultur benang sari
 - 2. Somatik embryogenesis
 - 3. Organogenesis dan somatic embryogenesis di bioreactor
 - 4. In vitro micrografting
 - 5. Teknologi Thin Cell Layer
 - 6. Kultur Fotoautotrof

TAHAP KULTUR JARINGAN TUMBUHAN

- ► Tahap 0- seleksi dan persiapan tanaman induk (sterilisasii jaringan tumbuhanl
- ► Tahap 1- inisiasi kultur (eksplan ditumbuhkan pada media tumbuh)
- ► Tahap 2- multiplikasi (eksplan di transfer ke media batang, batang dapat terpisah secara konstan)
- ► Tahap 3-perakaran (eksplan di transfer ke media akar)
- ► Tahap 4-transfer ke tanah (eksplan dikembalikan ke tanah)

ORGANOGENESIS OF PISTACHIO

ADVENTITIOUSORGANOGENESISIN PISTACHIO

SOMATIC EMBRYOGENESIS IN PISTACHIO

MICROPROPAGATION IN BIOREACTORS

WHAT IS MICROGRAFTING?

WEDGE MICROGRAFT SLIT MICROGRAFT

The thin cell layer (TCL) system consists of explants of small size excised from diff plant organs either longitudinally (lTCL) or transversally (tTCL)

PHOTOAUTOTROPHC CULTURE

APLIKASI MIKROPROPAGASI

SEKOLAH TINGGI FARMASI INDONESIA www.stfi.ac.id

- Memungkinkan untuk menyediakan material tanaman yang bersih dan seragam
- ► Kultur bioreactor dibangun di beberapa laboratorium mikropropagasi komersil, produk tanaman, farmasetikal, bumbu makanan dan kosmetik
- Pembibitan micrografting dapat dikomersialisasi untuk mencegah kerugian lahan akibat infeksi penyakit
- Teknologi TCL ideal untuk mikropropagasi tanaman ornament
- Perkembangan metode transgenic dan pertumbuhan bioteknologi agrikultur dimulai sejak 1980 dan meningkat secara global
- Teknologi haploid ganda yang efisien dapat mengurangi waktu dan biaya pengembangan kultifar baru dibangding praktek pembibitan konfensional

BAGAIMANA MASA DEPAN? FARMASI INDONESIA www.stfi.ac.id

- Adaptasi teknologi kultur jaringan pada lebih banyak spesies
- Propagasi cepat dan masal dari tanaman transformasi dengan rekayasa genetic
- Metode transformasi kloroplas
- ► Sistem komputerisasi yang efisien untuk memotong biaya laoratorium
- Produksil masal dari tanaman pengganti
- ▶ Teknologi baru

(Oney Ahmet, 2011)

Terimakasik

