

PRESENTATION

z/OS

10/12/2020

INTRODUCTION

OBJECTIFS

Le but de ce chapitre est de présenter :

- · Le rôle d'un système d'exploitation
- Définition et historique des systèmes d'exploitation
- L'architecture z/OS
- La notion de multiprogrammation
- · Gestion de la mémoire
- La notion de ressource

Un système d'exploitation est constitué par un ensemble de programme dont l'objectif est de faciliter l'exploitation et l'utilisation des ordinateurs en prenant en charge des fonctions telles que :

La gestion des entrées sorties vers les unités périphériques,

Le partage des ressources (processeur, mémoire, unités périphériques) entre les utilisateurs.

1980 à nos jours : La quatrième génération (ordinateurs personnels).

- Développement des circuits LSI contenant des centaines de transistors au cm² permettant la fabrication de micro-ordinateurs à moindre coût.
- Développement de l'interactivité et du graphisme permettant la diffusion de logiciels conviviaux destinés à des utilisateurs ayant peu voire pas de connaissances en informatique.

Développement des réseaux d'ordinateurs individuels fonctionnant sous des systèmes d'exploitation en réseau ou sous des systèmes d'exploitation distribués.

Notion d'appel système.

Le rôle d'un système d'exploitation est de fournir un certain nombre de services aux programmes utilisateurs.

Les programmes utilisateurs peuvent communiquer avec le système d'exploitation par l'intermédiaire des appels système. Les appels système sont contenus dans des procédures appelées par le programme utilisateur. Le principe de fonctionnement est le suivant :

Le programme utilisateur appel la procédure en lui passant les paramètres de l'appel système.

Le système d'exploitation prend la main, contrôle la validité des paramètres, exécute le traitement demandé et rend la main à la procédure en lui fournissant le résultat du traitement.

La procédure rend ensuite la main au programme appelant en lui fournissant le résultat du traitement

Notion de processus.

Par définition un processus est un programme qui s'exécute.

Il est constitué par le programme et toutes les informations nécessaires à l'exécution du programme (données, compteur ordinal, registres, pointeurs fichiers, emplacement mémoire, état...).

Les processus sont référencés dans la table des processus.

Un processus peut en créer un autre. On a alors la notion de processus père et de processus fils.

Les processus peuvent communiquer entre eux.

.

PRINCIPE DES SYSTÈMES D'EXPLOITATION.

Notion de fichiers.

Les fichiers sont des ensembles de données accessibles par les programmes. Ils sont stockés sur un support (disque, bande...).

Une fonction du système d'exploitation est de permettre aux programmes utilisateurs de gérer les fichiers indépendamment du matériel utilisé.

Des appels système permettent de créer, supprimer, ouvrir, lire, écrire et fermer les fichiers.

PRINCIPE DES SYSTÈMES D'EXPLOITATION.

communication avec le système d'exploitation.

La communication avec le système d'exploitation se fait à partir d'un terminal au moyen d'un langage de commandes.

Le langage de commandes fait appel à de nombreuses fonction du système et permet entre autres choses:

- De lancer des travaux,
- De les surveiller et d'intervenir sur le cours de leur exécution,
- De manipuler des fichiers,
- D'obtenir des informations sur le fonctionnement du système.

LES COUCHES

Le système d'exploitation est structuré en couches.

Chaque couche gère une fonction spécifique et s'appuie sur celle qui lui est immédiatement inférieure.

Exemple de système à couche :

5	Opérateur
4	Programmes utilisateurs
3	Gestion des entrées sorties
2	Communication opérateur-processus
1	Gestion de la mémoire
0	Allocation du processeur et multiprogrammation

LES COUCHES

LA MÉMOIRE

Différents types d'adressage

• 16 Méga octets : 24 bits

• 2 Giga octets : 31 bits

- Adressage 64 bits supporté
- Supporte toutes les représentations
- Contient le code et les données
- Partageable entre plusieurs Central Processing Units
- Interface entre la CPU et le système d'entréessorties

NOTIONS DE REGISTRES

- Taille unique de 4 octets
- 16 registres numérotés de 0 à 15
- Non partageables entre CPU
- Sont sauvegardés dans une Register Save Area (RSA)

LE SYSTÈME D'ADRESSAGE

31 bits adressent 2**31 Octets

xcccccccccccccccccccc

dddddddddd

Déplacement

LES INTERRUPTIONS

- Généré par le hardware
- Lors d'une interruption
 - MVS prend le contrôle
 - Sauvegarde l'environnement du programme interrompu :

Program Status Word

- Analyse l'interruption
- Passe le contrôle à la routine de traitement :

First Level Interrupt Handler

LE MÉCANISME DES INTERRUPTIONS

LA MULTIPROGRAMMATION

Job de type commercial (I/O limited)

Partage de la CPU entre plusieurs programmes

INTÉRÊT DE MVS

- Système de base pour environnements de plus en plus complexes:
 - Terminaux
 - Bases de données

Et toujours...

- BATCH
- Evolution compatible des systèmes antérieurs
- Basée sur les nouvelles technologies
 - Grandes mémoires centrales
 - Multiprocesseurs

HISTORIQUE DE L'ARCHITECTURE

LES TECHNIQUES UTILISÉES

- Inviolabilité du système
- Anticipation des incidents
- Méthodes d'accès adaptées
 - VSAM (Données + Catalogue)
 - VTAM (Communication)
- Sous-systèmes complémentaires
 - Gestion des travaux JES2/JES3
 - Gestion des réseaux VTAM
 - Temps partagé TSO
 - DB/DC: IMS
 - DB : DB2 (Relationnel)
 - DC : CICS (Transactionnel)
 - IMS/TM: Transactionnel

RESSOURCES D'UN SYSTÈME

· CPU

- Taux d'utilisation
- Multiprogrammation
- Vitesse
- · Mémoire réelle
 - Elimination du code dormant
 - Répartition de la mémoire entre différents utilisateurs
 - Clés de protection
 - Partage entre plusieurs CPU (6)
- · Unités:
 - Programmes indépendants
 - Allocation dynamique faite par MVS

RESSOURCES D'UN SYSTÈME

• Canaux:

- Communication rapide entre les unités et la mémoire réelle
- Optimisation en fonction de la charge
- Accès à une même unité par 4 canaux
- Communication inter-processeurs

• Données:

- Fichiers ou Data Bases
- Catalogues
- Méthodes d'accès

• Programmes:

- Bibliothèques
- Réentrance
- Chargement optimisé

QUELQUES NOTIONS

· JOB

- Exécution de programme(s) ayant un lien (ou non) logique entre eux.
- Un JOB est découpé en STEPS.

TACHE

- Unité de travail pouvant prétendre au contrôle de la CPU.
- Un STEP = une tâche

Job Control Language

- Permet de définir à MVS :
 - les caractéristiques des ressources demandées
 - · leurs critères d'utilisation.

LES APPORTS z/OS

MVS/ESA

Objectifs:

- Notion de SYSPLEX
- Evolutions sur opérations
- Evolutions d'utilisation
- Evolutions de service

MVS/ESA: LE SYSPLEX

MVS SYSPLEX (SYStems comPLEX) : Systèmes multiples

- Assemblage d'éléments matériels et de services logiciels
- Capacité de croissance du système
- XCF (Cross-System Coupling Facility) : plusieurs systèmes MVS mais un seule entité
- 1 à 8 systèmes MVS suivant le nombre de processeurs
- Commandes JES2 peuvent être gérées par n'importe quel système du SYSPLEX. JES2 permet de définir et de gérer des sous réseaux (SUBNETS)

MVS/ESA: EVOLUTIONS

- Simplification
- Interface de programmation MVS pour contrôle des opérations
- RECOVERY
- Avantages de l'automatisation
- Service de traductions des messages

MVS/ESA: SIMPLIFICATION

- Utilisation d'une seule console pour communiquer avec n'importe quel système
- Configuration des consoles simplifiant la gestion des activités du SYSPLEX
- Utilisation de noms symboliques
- Envoi de messages à n'importe quelle console du SYSPLEX
- Réduction du nombre de steps dans la séquence d'initialisation
- Préparation de la configuration dynamique des I/O en codant de nouvelles macros qui regroupent et extraient des données

MVS/ESA: CONTRÔLE DES OPÉRATIONS

- Contrôle du système MVS par session TSO pour des utilisateurs autorisés
- Extensions des possibilités des consoles MCS (Multiple Console Support) : recevoir des messages et passer des commandes opérateur, définition de groupes de consoles en cas d'abend de consoles...
- Suppression des messages information durant l'initialisation
- Réduction des boucles infinies potentielles

MVS/ESA: EVOLUTIONS D'UTILISATION

- 1. **HCD**: Hardware Configuration Définition
 - Interface interactive d'installation des configurations hardware par panels (liste de choix, commandes, touches fonctions...)
 - Aide
- 2. Evolutions **JCL**
 - JCL conditionnel (plus facile que le paramètre COND)
 - Procédures résidentes
 - Maintenance de librairies de procédures privées
 - Contrôle plus important sur manipulation des périphériques de sortie

MVS/ESA: LES TÂCHES

Pour le système :

- Le gestionnaire standard de tâches alloue les ressources pour chaque transaction et les désalloue quand la transaction se termine
- Le gestionnaire de tâches multi-transactions permet à une transaction de rester active entre des conversations intégrées. Ce type de gestionnaire permet des allocations et des désallocations répétées de ressources.

Le choix du type de gestionnaire de tâches dépend des caractéristiques du programme

GESTION DES ESPACES

- · SMS
- Produits DFSMS
- Classes et groupes SMS
- . ISMF
- DFHSM
- DFDSS
- DFSORT
- RACF

SMS - BUTS

System Managed Storage

- Permettre au système de gérer des fichiers de leur naissance à leur mort
- Possibilité de modélisation des fichiers (libération pour l'utilisateur des contraintes physiques)
- Libérer les utilisateurs des problèmes de type :
 - Performance
 - Disponibilité
 - Gestion d'espace
- Optimisation de la centralisation et de l'automatisation de la gestion des mémoires externes (disques)

DFSMS - GÉNÉRALITÉS

DATA FACILITY STORAGE MANAGEMENT SUBSYSTEM

- Environnement nouveau
- Ensemble des logiciels permettant :
 - · d'automatiser les opérations de stockage
 - d'assurer la séparation entre les vues logiques des données et leur implantation physique
- **ISMF** (Interactive Storage Management Facility)

Interface par menus standards entre SMS et les autres produits DATA FACILITY FAMILY

RACF

RESOURCE ACCES CONTROLE FACILITY

L'administrateur RACF définit :

- Des utilisateurs, des groupes et des niveaux d'autorité
- Des ressources et des niveaux d'autorisation

RACF (suite)

Logiciel de sécurité permettant d'assurer :

- L'identification de l'utilisateur demandant l'accès au système.
- Son authentification par contrôle de mot de passe.
- Le champ d'utilisation des ressources système.
- Le contrôle d'accès à ces ressources.
- La sortie de statistiques d'utilisation et de rapports.
- La protection de :
 - Volumes disques
 - Volumes bandes
 - Fichiers disques ou bandes
 - Load modules
 - Transactions CICS/IMS
 - Terminaux
 - Ressources utilisateurs

RACF - LES PROFILS

RACF construit des profils contenant des informations concernant les autorisations d'accès aux ressources protégées.

. LE PROFIL UTILISATEUR :

- Nom utilisateur
- Mot de passe
- Type d'attribut
- Groupe d'appartenance

. LE PROFIL GROUPE:

- · Liste des utilisateurs connectés à ce groupe
- Type d'autorité de chaque membre

GESTION DES DONNÉES

OBJECTIFS PÉDAGOGIQUES

Présentation de :

- la gestion des données
- Du concept des fichiers
- Etudier la notion :
 - 1.Enregistrement
 - 2.Fichier
 - 3.Label
 - 4.catalogues
- Composants de la gestion de données
- · Le mécanisme détaillé d'une entrée-sortie
- Concepts des bases de données

LES FICHIERS

Ensemble d'enregistrements; est connue via un Data Set Name.

- Multi volumes
- 16 extents par volume
- Batch : le programmeur est maître de son environnement
- La structure d'un fichier dépend de son utilisation
- Créé par le programme (via un JCL) ou par utilitaire
- Structure imposée par le programme

LES ATTRIBUTS DES FICHIERS.

Chaque fichier possède un nom et des données. Les systèmes d'exploitation associent d'autres informations aux fichiers :

- Taille des enregistrements
- Date et heure de création et de mise à jour
- Indicateur de mise à jour
- Protection
- Taille du fichier

Tous ces éléments constituent les attributs du fichier.

LES FICHIERS

Opérations sur les fichiers.

Les systèmes d'exploitation fournissent, au travers des appels système, des moyens variés pour effectuer les opérations sur les fichier. Les principales opérations sont :

- Création
- Suppression
- Modification du nom
- Ouverture
- Lecture
- Ecriture
- Fermeture
- Positionnement dans le fichier
- Récupération des attributs
 Positionnement des attributs

LES FICHIERS ET PDS

L'ENREGISTREMENT LOGIQUE

- Fixe
- Variable
- Possibilité de bloquer les enregistrements

L'ENREGISTREMENT PHYSIQUE

- non bloqué
- Bloqué

LES BASES DE DONNÉES

- TP : Partagée par plusieurs utilisateurs simultanément
- · La structure dépend du type de données
- Créé et géré par un Système de Gestion de Bases de Données
- Description de :
 - 1.La base de données
 - 2. Du programme
- Structure **indépendante** du programme C'est une réalité logique

GESTION DES CATALOGUES

GESTION DES CATALOGUES

Intérêt du catalogue :

- Décrire des fichiers nonVSAM
 - Systèmes
 - SYS1.LINKLIB
 - SYS1.PARMLIB
 - SYS1.PROCLIB
 - Utilisateurs
 - Séquentiels
 - Partitionnés
- · Décrire des fichiers VSAM
 - Systèmes
 - Utilisateurs
- Décrire des alias
- Pointer sur d'autres catalogues

ORGANISATION MVS

- Deux niveaux de catalogues au maximum
- Le MCAT ne doit pas être utilisé par les programmeurs

Deux niveaux de catalogues au maximum

LES NOMS DE FICHIERS

- Nom simple : SDJ longueur inférieure ou égale à 8 car.
- Nom qualifié: USER1.SDJ.FORMATIO
 - · disques : inférieur ou égal à 44 car.
 - bandes : inférieur ou égal à 17 car.
- Plus haut qualifieur : USER1

LES SAUVEGARDES

Les sauvegardes permettent de conserver une copie des fichiers en vue d'une restauration ultérieure.

Ces sauvegardes peuvent être faites :

- Au niveau fichier : On conserve une copie d'un fichier particulier.
- Au niveau volume : On conserve l'image d'un disque complet.
- En incrémental : C'est une sauvegarde de niveau fichier. Elle ne concerne que les fichiers qui ont été modifiés depuis la dernière sauvegarde. Cette information figure dans les attributs du fichier.

.ALIAS et VOLUME

INTÉRÊT DES CATALOGUES UTILISATEURS

- Ne pas endommager le Master catalogue
- Intégrité des données
- Sécurité des données

L'ICFCAT

Integrated Catalog Facility

Deux composants:

- 1. Basic Catalog Structure
- 2. VSAM Volume Data Set

BCS

- Informations permanentes
- Plusieurs par volume

VVDS

- Informations d'extent
- Un seul par volume.
- Extension de la VTOC

DADSM

- DADSM interdit deux fichiers de même nom sur un même volume
- Allocation d'espace par JCL
 - Demande primaire
 - Demande secondaire

MÉTHODES D'ACCÈS

L'accès aux informations est dépendant de l'organisation choisie :

- 1. Séquentielle
- 2.Directe
- 3. Partitionnée
 - 4.VSAM (ESDS, KSDS, RRDS, VRRDS, LDS)

Deux techniques d'accès à ces données :

- QUEUED : Lecture anticipée de blocs physiques
- BASIC : La technique de base (READ/WRITE)

Une technique d'accès + une méthode d'organisation = une **Méthode d'accès**

L'ORGANISATION PARTITIONNÉE

Généralités

Un fichier partitionné réside sur disque

Il réside sur un seul volume

C'est une organisation à la fois :

- Séquentielle
- Indexée

Les bibliothèques sont des fichiers partitionnés

- Eléments d'un fichier partitionné :
 - le répertoire
 - les membres
- · Un fichier partitionné peut être accédé en
 - SAM (BSAM ou QSAM)
 - BPAM

ORGANISATION D'UN PDS

Job Entry Subsystem

OBJECTIFS

Présenter:

- Les principes de base
- · Les fonctions d'un gestionnaire de JOB
- Le JCL: Interface utilisateur
- Les catégories de JOB MVS

NOTION DE JOB

EXEMPLE DE JOB

EXÉCUTION D'UN STEP

LE SPOOLING

Simultaneous Periphéral Operation OnLine

Au niveau de la carte JOB, on définit une classe d'entrée et une priorité de sélection

A chaque classe d'entrée correspond une file d'attente sur disque.

SPOOLING DES TRAVAUX

FONCTIONS D'UN JES

1. Avant exécution :

- Entrée et spooling
- Gestion de la file des jobs
- Gestion des INIT Batch
- Sélection des jobs pour exécution

2. Pendant l'exécution :

- Surveillance de la CPU
- Accès au SPOOL (SYSIN, SYSOUT)

3. Après exécution :

- Gestion des imprimantes
- Préparation des SYSOUT

AVANT EXÉCUTION

PENDANT L'EXÉCUTION

APRÈS EXÉCUTION

GESTION DES TÂCHES

OBJECTIFS PÉDAGOGIQUES

Présenter:

- La relation entre tâche et programme
- · Le rôle du dispatcher
- Les mécanismes de communication entre tâches
 - synchronisation
 - sérialisation

LA TÂCHE

- // JOB : Travail
- // EXEC PGM=pgm1 ===> Tâche
- SRM ne gère que les espace adresses
- Isolation du code

LA TÂCHE

- · Correspond à l'exécution d'un programme
- · A besoin de ressources système :
 - . Mémoire virtuelle
 - · Programmes en mémoire
 - · CPU
 - Unités d'entrées sorties

LES ÉTATS D'UNE TÂCHE

LE DISPATCHER

- 4. Choix de l'espace adresse prêt le plus prioritaire
- 5. Choix de la tâche prête la plus prioritaire

SYNCHRONISATION

- Les tâches d'un même espace adresse ne sont pas indépendantes
- Les tâches n'agissent pas directement les unes sur les autres.

Elles ont besoin:

- 1. Du système
- 2. De zones mémoires pour communiquer Les programmes doivent être écrits en fonction de ces relations.

SÉRIALISATION

Une tâche a besoin de:

- code
- données
- mémoire
- périphériques
- de CPU, etc ...

Ces entités sont les **ressources** nécessaires à la tâche

Quand une de ces ressources ne peut être attribuée à une tâche celle-ci est en **WAIT**.

NOTION DE RESSOURCE

Une ressource est dite:

- locale lorsqu'elle est utilisée par une tâche
- globale lorsqu'elle est utilisée par plusieurs tâches

Une ressource globale est dite:

- critique : attribuée à une seule tâche à un instant donné
- partageable : attribuée au même instant à plusieurs tâches

Exemple: Un fichier

- en lecture : ressource partageable
- en écriture : ressource critique

EXEMPLE

Problèmes lors d'une mise à jour d'un fichier

TACHE X

READ Enregistrement (CPT)

CPT = CPT + 100

REWRITE

TACHE Y

READ Enregistrement (CPT)

CPT = CPT - 100

REWRITE

EXÉCUTION

t1	Tâche X	READ Engt	1000
t2	Tâche Y	READ X	1000
t3	Tâche X	REWRITE	$1000 + 100 = 1100$ \nearrow ?
t4	Tâche Y	REWRITE	1000 - 100 = 900

EXEMPLE

La solution pour les mise à jour concurrentes

t1	Tâche X	-ENQ Engt	Engt bloqué par X
t2	Tâche X	READ	1000
t3	Tâche Y	ENQ Engt	WAIT _
t4	Tâche X	REWRITE	1000 + 100 = 1100
t5	Tâche X	DEQ	Engt libéré par X
t6	Tâche Y débloquée	READ	1100
t7	Tâche Y	REWRITE	1100 - 100 = 1000
t8	Tâche Y	DEQ	Engt libéré par Y

L'INTERBLOCAGE

EXEMPLE:

EVITER LES DEADLOCK

Plusieurs possibilités

- 1.Ne demander qu'une ressource à la fois.
- 2. Grouper toutes les demandes dans la même unité logique de travail.

ACR: Alternate CPU Recovery

AFQ : Available Frame Queue

AMS: Access Method Services

AS : Address Space

ASM: Auxiliary Storage Manager

BCS: Basic Catalog Structure

BDAM: Basic Direct Access Method

BPAM: Basic Partitioned Access Method

BPI: Bits Per Inch

CCW: Channel Command Word

CICS: Customer Information Control System

CKD: Count Key Data

CPU: Central Processing Unit

CR : Control Register

CS : Central Storage

DADSM: Direct Access Device Space Manager

DASD: Direct Access Storage Device

DAT : Dynamic Address Translator

DB : Data Base

DC : Data Communication

DCB : Data Control Block

DD : Data Definition

DDR : Dynamic Device Reconfiguration

DEQ : Dequeue

DFDSS: Data Facility Data Set Services

DFHSM: Data Facility Hierarchical Storage

Manager

DFP : Data Facility Product

DFSMS: Data Facility Storage Management

Subsystem

DL/1 : Data Language 1

DSCB: Data Set Control Block

EBCDIC: Extended Binary Coded Decimal

Interchange Code

ECB : Event Control Block

ENQ : Enqueue

EOF : End Of File

EOV : End Of Volume

ES : Expanded Storage

ESA : Enterprise Systems Architecture

FRR : Functional Recovery Routine

G : Giga (1024 M)

GDG : Generation Data Group

GPR : General Purpose Register

GTF : Generalized Trace Facility

HLL : High Level Language

HSA : Hardware System Area

I/O : Input Output

ICF : Integrated Catalog Facility

IMS : Information Management System

IOS : Input Output Supervisor

IPL : Initial Program Load

ISMF : Interactive Storage Management

Facility

ISPF: Interactive System Productivity

Facility

JCL : Job Control Language

JES : Job Entry Subsystem

K : Kilo (1024)

LDS : Linear Data Set

LLA : Library Look Aside

LNKLST: Link Library List

M : Mega (1024 K)

MCH : Machine Check Handler

MIH : Missing Interrupt Handler

MVS : Multiple Virtual Storage

OS : Operating System

PDF : Program Development Facility

PDS : Partitioned Data Set

PDS : Page Data Set

PR/SM : Processor Ressource/System Manager

PSW: Program Status Word

QMF : Query Management Facility

RACF: Resource Access Control Facility

RMF : Resource Measurement Facility

RMS : Recovery Management Support

RSM : Real Storage Manager

RTM : Recovery and Termination Manager

SLR : Service Level Reporter

SMF : System Management Facility

SMP : System Modification Program

SNA : System Network Architecture

SPOOL: Simultaneous Peripheral Operation

OnLine

SRM : System Resource Manager

STOR : Segment Table Origin Register

SVC : SuperVisor Call

TCB: Task Control Block

TCM: Thermal Conduction Module

TLB: Translation Lookaside Buffer

TP : TeleProcessing

TSO: Time Sharing Option

VS : Virtual Storage

VSAM: Virtual Storage Access Method

VSM : Virtual Storage Manager

VTAM: Virtual Telecommunication Access

Method

VTOC : Volume Table Of Contents

VVDS : VSAM Volume Data set

XA : Extended Architecture