# Introduction to Algorithms

Lecture 2

July 24, 2019

# **Primitive Operations**

Operations that can be performed in constant amount of time are known as primitive operations. For ex., addition, comparison, multiplication, division, assignment between 2 small numbers (i.e. numbers that can be stored in 1 computer word) can be performed in constant amount of time.



Figure 1: Addition operation between 2 small numbers

## Are Loop Operations Primitive Operations?

Loop Operations are not considered as primitive operations as 1 loop operation contains multiple primitive operations and hence cannot be performed in constant amount of time.

Operations in 1 loop iteration:

| S.No. | Operation | Description                                    |
|-------|-----------|------------------------------------------------|
| 1     | i=1       | Assign i value 1                               |
| 2     | y[i]      | Address calculation of y[i] and fetching value |
| 3     | x[i]      | Address calculation of x[i] and fetching value |
| 4     | x[i]=y[i] | Assignment                                     |

#### If numbers are not small?

If operations are performed between numbers that are not small then the operation cannot be completed in constant amount of time.

#### Representation of a large number

Let X be a large number.



Figure 2: Input size of X is n computer words

- Number of bits taken by X is  $b = \log_2 X$
- Since 1 computer word contains 1 bit, number of computer words taken by X is  $n = \log_2 X$
- If 1 computer word = 2 bits, then number of bits  $b = \log_2 X$  and number of computer words  $n = \frac{\log_2 X}{2}$  which is same as  $\log_4 X$
- We can write  $\frac{\log_2 X}{2}$  as  $\log_4 X$ :

$$\log_4 X = \frac{\log_b X}{\log_b 4} = \frac{\log_b X}{\log_b 2^2} = \frac{\log_b X}{2\log_b 2} = \frac{\log_2 X}{2}$$

• Now, if 1 computer word= 3 bits,  $n = \log_8 X$ 

Calculate number of computer words:

| Bits in 1 CW | No. of computer words(n)                      |
|--------------|-----------------------------------------------|
| 1            | $\log_2 X$                                    |
| 2            | $\log_4 X$                                    |
| 3            | $\log_8 X$                                    |
| 4            | $ \log_2 X  \log_4 X  \log_8 X  \log_{16} X $ |

#### Result:

So, time taken to perform operation between two large numbers X and Y taking more than 1 computer word to store is

 $= \mathcal{O}[\max[\log_2 X,\, \log_2 Y]]$ 

= O(n)

= Linear Time

≠ Constant Time

## **Asymptotic Notations**

Notations to analyze and represent an algorithm's run-time performance.

Running Time= No. of primitive operations X Constant Time

## 1. Big O Notation

**Def:** Given functions f(n) and g(n),

$$f(n) = O(g(n))$$

if there exists constants c > 0 and m > 0 such that for all  $n \ge m$ , we have,  $f(n) \le c \cdot g(n)$ .

We measure performance for value of large inputs (as n grows higher). As soon as n crosses m, c.g(n) leads f(n).

## **Graphical Representation:**



Figure 3: Big O

#### 2. Theta $(\theta)$ Notation

**Def:** Given functions f(n) and g(n),

$$f(n) = \theta(g(n))$$

if there exists constants  $c_1 > 0$ ,  $c_2 > 0$  and m > 0 such that for all  $n \ge m$ , we have,  $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ .

We measure performance for value of large inputs (as n grows higher). As soon as n crosses m, the value of f(n) lies above  $c_1.g(n)$  and at or below  $c_2.g(n)$ . In other words, for all  $n \ge m$ , f(n) is equal to g(n) to within a constant factor. We can also use notation f(n) = g(n).

## **Graphical Representation:**



Figure 4: Theta  $(\theta)$ 

## 3. Omega ( $\Omega$ ) Notation

**Def:** Given functions f(n) and g(n),

$$f(n) = \Omega(q(n))$$

if there exists constants c > 0 and m > 0 such that for all  $n \ge m$ , we have,  $0 \le c \cdot g(n) \le f(n)$ .

We measure performance for value of large inputs (as n grows higher). As soon as n crosses m, the value of f(n) on or above c.g(n).

## **Graphical Representation:**



Figure 5: Omega  $(\Omega)$ 

# Limit form Definitions for Asymptotic Notations

## 1. Big O Notation

**Def:** Given functions f(n) and g(n), If

$$\lim_{x\to\infty}\frac{f(x)}{g(n)}=c\qquad \{0\le c<\infty\}$$

then 
$$f(n) \leq g(n)$$
 i.e.  $f(n) = O(g(n))$ .

O represents a combination of  $\theta$  and o

#### 2. Theta $\theta$ Notation

**Def:** Given functions f(n) and g(n), If

$$\lim_{x \to \infty} \frac{f(x)}{g(n)} = c \qquad \{0 < c < \infty\}$$

then 
$$f(n) = g(n)$$
 i.e.  $f(n) = \theta(g(n))$  .

## 3. Omega $\Omega$ Notation

**Def:** Given functions f(n) and g(n), If

$$\lim_{x \to \infty} \frac{f(x)}{g(n)} = c \qquad \{0 < c \le \infty\}$$

then 
$$f(n) \ge g(n)$$
 i.e.  $f(n) = \Omega(g(n))$ .

 $\Omega$  represents a combination of  $\theta$  and  $\omega$ 

## 4. Small o Notation

**Def:** Given functions f(n) and g(n), If

$$\lim_{x \to \infty} \frac{f(x)}{g(n)} = 0$$

then 
$$f(n) < g(n)$$
 i.e.  $f(n) = o(g(n))$ .

f(n) is strictly less than g(n)

## 5. Small Omega $\omega$ Notation

**Def:** Given functions f(n) and g(n), If

$$\lim_{x \to \infty} \frac{f(x)}{g(n)} = \infty$$

then 
$$f(n) > g(n)$$
 i.e.  $f(n) = \omega(g(n))$ .

f(n) is strictly greater than g(n)