

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 06 – Equivalência entre portas lógicas.

Até aqui:

- Obtemos a expressão booleana a partir do circuito
- Obtemos o circuito lógico a partir da expressão
- Obtemos a tabela verdade a partir da expressão
- Obtemos a expressão a partir da tabela verdade

Equivalência entre Portas Lógicas

Motivação:

- 1. Otimização na utilização dos circuitos integrados
- 2. Redução do número de componentes
- 3. Minimização de custos

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NAND:

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NAND:

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NOR:

Equivalência entre Portas Lógicas

1. Inversor a partir de uma Porta NOR:

Equivalência entre Portas Lógicas

1. Porta NOR a partir de AND e INVERSORES:

Equivalência entre Portas Lógicas

1. Porta OR a partir de NAND e INVERSORES:

Equivalência entre Portas Lógicas

1. Porta NAND a partir de OR e INVERSORES:

Equivalência entre Portas Lógicas

1. Porta AND a partir de NOR e INVERSORES:

Modificando o teorema de DeMorgan: $\overline{A \cdot B} = \overline{A} + \overline{B}$

Exemplo

1. Desenhe o circuito usando apenas Portas NAND:

1. Desenhe o circuito usando apenas Portas NAND:

Solução:

Equivalências entre Portas Lógicas

1. Desenhe o circuito usando apenas Portas NAND:

Solução:

Equivalências entre Portas Lógicas

Circuito com Equivalência de Portas Lógicas

1. Desenhe o circuito usando apenas Portas NAND:

Solução:

Equivalências entre Portas Lógicas

Simplificação de Portas Lógicas

1. Desenhe o circuito usando apenas Portas NAND: Solução:

Equivalências entre Portas Lógicas

Circuito Final com Equivalência de Portas Lógicas

Exemplo

- 2.1. Obtenha a expressão a partir da TV.
- 2.2. Use a expressão para fazer o diagrama do circuito.

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

- 2.1. Obtenha a expressão a partir da TV.
- 2.2. Use a expressão para fazer o diagrama do circuito.

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

- 2.1. Obtenha a expressão a partir da TV.
- 2.2. Use a expressão para fazer o diagrama do circuito.

$$S = \overline{A} \cdot B + A \cdot \overline{B} = A \oplus B$$

Exemplo

- 3.1. Obtenha a expressão a partir da TV.
- 3.2. Use a expressão para fazer o diagrama do circuito.

Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

- 3.1. Obtenha a expressão a partir da TV.
- 3.2. Use a expressão para fazer o diagrama do circuito.

- 3.1. Obtenha a expressão a partir da TV.
- 3.2. Use a expressão para fazer o diagrama do circuito.

$$S = \overline{A} \cdot \overline{B} + A \cdot B = A \odot B$$

Simplificação de Expressões Booleanas

Exemplo:

Simplificar a expressão:

$$S=A.B.C+A.\overline{C}+A.\overline{B}$$

$$S=A.B.C+A.\overline{C}+A.\overline{B}$$

 $S=A.(B.C+\overline{C}+\overline{B})$ \longrightarrow A em evidência
 $S=A.[B.C+(\overline{B}+\overline{C})]$ \longrightarrow Usando $\overline{X}=X$
 $S=A.[B.C+(\overline{\overline{B}},\overline{\overline{C}})]$ \longrightarrow Aplic. DeMorgan
 $S=A.[B.C+(\overline{B},\overline{C})]$

Chamando
$$(\overline{B.C})$$
 de \overline{Y} e $(B.C)$ de Y
 $S = A \cdot [Y + \overline{Y}]$
 $S = A \cdot 1$
 $S = A$

Regras da Álgebra de Boole

1. Adjacência lógica - Prova

15 a.
$$A \cdot B + A \cdot \overline{B} = A$$

15 a. $A \cdot (B + \overline{B}) = A$

15 a.
$$A.1 = A$$

15 a.
$$A = A$$

Exemplos

Simplifique as expressões:

1.
$$S = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

2.
$$S = [\overline{(A.C)} + B + D] + C.(\overline{A.C.D})$$

Soluções

Simplifique as expressões:

1.
$$S = \overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C}$$

 $S = \overline{C} \cdot (\overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot \overline{B} + A \cdot B) + \overline{A} \cdot B \cdot C$
 $S = \overline{C} \cdot [\overline{A} \cdot (\overline{B} + B) + A \cdot (\overline{B} + B)] + \overline{A} \cdot B \cdot C$
 $S = \overline{C} \cdot [\overline{A} \cdot 1 + A \cdot 1] + \overline{A} \cdot B \cdot C$
 $S = \overline{C} \cdot [\overline{A} + A] + \overline{A} \cdot B \cdot C$
 $S = \overline{C} \cdot 1 + \overline{A} \cdot B \cdot C$
 $S = \overline{C} \cdot 1 + \overline{A} \cdot B \cdot C$

Circuito Original:

- 9 Inversores
- 5 ANDs
- 1 OR de 5 entradas

Circuito Simplificado:

- 2 Inversores
- 1 AND
- 1 OR de 2 entradas

Soluções

Simplifique as expressões:

2.
$$S = [(\overline{A.C}) + B + D] + C.(\overline{A.C.D})$$

$$S = [\overline{(A.C)} + B + D] + C.\overline{(A.C.D)}_{(DeMorgan)}$$

$$S = [\overline{(A+C)} + B + D] + C.\overline{(A+C+D)}_{(Distributiva)}$$

$$S = [\overline{(A+C)}.\overline{(B+D)}] + C.\overline{A} + C.\overline{C} + C.\overline{D}$$

$$S = [\overline{A}.\overline{C}.\overline{B}.\overline{D}] + C.\overline{A} + 0 + C.\overline{D}$$

$$S = A.C.\overline{B}.\overline{D} + C.\overline{A} + C.\overline{D}$$

$$S = C.\overline{D}.[A.\overline{B} + 1] + \overline{A}.C$$

$$S = C.\overline{D}.1 + \overline{A}.C$$

$$S = C.\overline{D} + \overline{A}.C$$

$$S = C.\overline{(A+D)}$$

Próxima Aula

Próxima Aula

• Mapas de Karnaugh de 2 à 5 variáveis