Quantifier Logic

LOGIC I Benjamin Brast-McKie October 31, 2023

Expressive Limitations

Socrates: Consider the following argument:

- (a) Every human is mortal.
- (b) Socrates is human.
- (c) . Socrates is mortal.

Mammals: Consider the following argument:

- (a) All humans are mammals.
- (b) All mammals are multi-celled organisms.
- (c) ... All humans are multi-celled organisms.

SL Regimentation: Neither argument is valid in SL.

Predicates, Variables, and Quantifiers

Mammals (a): Everything is such that if it is human then it is a mammal.

Mammals (b): Everything is such that if it is a mammal then it is a multi-celled

organism.

Mammals (c): Everything is such that if it is human then it is a multi-celled organism.

Predicates: 'is human',

'is a mammal', and

'is a multi-celled organism'.

Properties: Predicates express properties.

Variables: 'it'.

Reference: What does 'it' refer to?

Atomic Formulas: 'it is human',

'it is a mammal', and

'it is a multi-celled organism'.

Complex Formulas: 'if it is human then it is a mammal',

'if it is a mammal then it is a multi-celled organism', and

'if it is human then it is a multi-celled organism'.

Quantifiers: 'Everything is such that'.

Constants

Socrates (a): Everything is such that if it is human then it is mortal.

Socrates (b): Socrates is human.

Socrates (c): Socrates is mortal.

Predicates: 'is human' and 'is mortal'.

Variables: 'it'.

Constants: 'Socrates'.

Reference: Constants refer to objects.

Atomic Formulas: 'it is human', 'it is mortal', 'Socrates is human', and 'Socrates is mortal'.

Complex Formulas: 'if it is human then it is mortal'.

Quantifiers: 'Everything is such that'.

Binary Predicates

Height: Kin is taller than Prema.

... Prema is shorter than Kin.

Task 1: Regiment the argument above.

Predicates: 'is taller than', 'is shorter than', and 'is the same height as'.

Relations: Binary predicates express 2-place properties, i.e., *relations*.

- *Tkp* ... *Spk*.
- $Tkp : \neg Tpk$.
- $Tkp : \neg Tpk \land \neg Epk$.

Question 1: Is this argument valid, and if not how can we make it valid?

- Tkp, $Tkp \supset Spk$: Spk.
- Tkp, $\forall x \forall y (Txy \supset Syx)$... Spk.

Age: Jon is older than Sara.

Sara is older than Ethan.

∴ Jon is older than Ethan.

Task 2: Regiment the argument above.

Predicates: 'is older than'.

• Ojs, Ose . Oje.

Question 2: Is this argument valid, and if not how can we make it valid?

- Ojs, Ose, $(Ojs \land Ose) \supset Oje$. Oje.
- Ojs, Ose, $\forall x \forall y \forall z ((Oxy \land Oyz) \supset Oxz)$. Oje.

Polyadic Predicates

Triadic: 'x is between y and z',

'x is more similar to y than to z', 'x is closer to y than to z', ...

Polyadic: We may refer to predicates as *n*-place or *n*-adic.

Properties: n-place predicates express *n*-place properties.

Primitive Symbols of QL

Predicates: n-place predicates A^n, \ldots, Z^n for $n \ge 0$ possibly with subscripts.

Constants: a, b, c, . . . possibly with subscripts.

Variables: x, y, z, \dots possibly with subscripts.

Connectives: \neg , \wedge , \vee , \supset , \equiv .

Quantifiers: \forall , \exists .

Parentheses: (,).

Well-Formed Formulas of QL

Singular Terms: Constants and variables are called singular terms.

Well-Formed Formulas: We may define the well-formed formulas (wffs) of QL as follows:

- 1. $\mathcal{F}^n \alpha_1, \ldots, \alpha_n$ is a wff if \mathcal{F}^n is an n-place predicate and $\alpha_1, \ldots, \alpha_n$ are singular terms.
- 2. If φ and ψ are wffs and α is a variable, then:
 - (a) $\exists \alpha \varphi$ is a wff;
- (d) $(\phi \wedge \psi)$ is a wff;
- (b) $\forall \alpha \varphi$ is a wff;
- (e) $(\varphi \lor \psi)$ is a wff;
- (c) $\neg \varphi$ is a wff;
- (f) $(\varphi \supset \psi)$ is a wff; and
- (g) $(\varphi \equiv \psi)$ is a wff.
- 3. Nothing else is a wff.

Atomic Formulas: The wffs defined by (1) are atomic.

Arguments: The singular terms in an atomic wff are the *arguments* of the predicate.

Composition Rules: The clauses in (2) are called *composition rules*.

Scope: φ is the *scope* of the quantifier in $\exists \alpha \varphi$ and $\forall \alpha \varphi$.

• Compare the scope of negation.

Question 3: Does the definition above make sense as stated?

Task 3: How can we fix the definition above to respect use/mention?

The Sentences of QL

Free Variables: We define the free variables recursively:

- 1. α is free in $\mathcal{F}^n \alpha_1, \ldots, \alpha_n$ if $\alpha = \alpha_i$ for some $1 \leq i \leq n$ where α is a variable, \mathcal{F}^n is an n-place predicate, and $\alpha_1, \ldots, \alpha_n$ are singular terms.
- 2. If φ and ψ are wffs and α and β are variables, then:
 - (a) α is free in $\exists \beta \varphi$ if α is free in φ and $\alpha \neq \beta$;
 - (b) α is free in $\forall \beta \varphi$ if α is free in φ and $\alpha \neq \beta$;
 - (c) α is free in $\neg \varphi$ if α is free in φ ;
 - (d) α is free in $(\varphi \wedge \psi)$ if α is free in φ or α is free in ψ ;
 - (e) α is free in $(\varphi \lor \psi)$ if α is free in φ or α is free in ψ ;
 - (f) α is free in $(\varphi \supset \psi)$ if α is free in φ or α is free in ψ ;
 - (g) α is free in $(\varphi \equiv \psi)$ if α is free in φ or α is free in ψ ;
- 3. Nothing else is a free variable.
- *Bound Variables:* Every free occurrence of α in φ is *bound* in $\exists \alpha \varphi$ and $\forall \alpha \varphi$.
 - *Binding:* The variable α is the *binding variable* in $\exists \alpha \varphi$ and $\forall \alpha \varphi$.
- Open Sentences: An open sentence of QL is any wff with free variables.
 - Sentences: A sentence of QL is any wff without free variables.
 - *Interpretation:* Only the sentences of QL will have truth-values on an interpretation independent of an assignment function.