

# PlacaCAN v20190517



# INTRODUCCIÓN

La PlacaCAN está basada en el CAN Controller + Transceiver MCP25625, y tiene como objetivo poder interfacear con un bus CAN a MCUs low-cost que no poseen periférico CAN.

### Características principales:

- Se puede utilizar como solo transceiver, como solo controller o como ambos.
- Interfaz SPI con el MCU, aparte de otras señales I/O opcionales (INT, RESET, etc.).
- 2 tensiones: VIO digital y VCC CAN (permite interfaz con MCU a 3.3V y con CAN a 5V). Incluye reguladores para generar las distintas tensiones.
- Tiene 3 buffers de transmisión, 2 buffers de recepción y 6 filtros de aceptación.

# **ALIMENTACIÓN**

Para funcionar la PlacaCAN necesita 2 alimentaciones: VIO y 5V.

- VIO: Alimentación de la parte lógica, puede ser 2,7V, 3,3V o 5V, de acuerdo a la tensión del SPI.
- 5V: Alimentación del tranceiver e interfaz CAN.

Aparte existen otras alimentaciones, que pueden ser utilizadas o no para generar las anteriores:

- VCAN: Alimentación que transporta el conector CAN. Puede ser 5V o la tensión de una batería (entre 8 y 14V).
- VREG5: Salida de un regulador de tensión lineal de 5V, obtenida de VCAN.
- VREGIO: Salida de un regulador de tensión lineal de 3,3V, obtenida de 5V.

Es posible tanto alimentar al MCU desde la PlacaCAN, como alimentar la PlacaCAN desde el MCU.

*¡Peligro!* ¡Nunca conectar las alimentaciones del MCU con la PlacaCAN si ambas generan tensión! Esto generará un cortocircuito.



# CONFIGURACIÓN

La PlacaCAN tiene varios jumpers para que el usuario la configure.

# ALIMENTACIÓN 5V (J5)

El conector J5 configura de dónde se obtienen los 5V necesarios para el transceiver CAN.

- De VCAN: Si VCAN = 5V, se pueden obtener los 5V de VCAN, uniendo 5V VCAN mediante un jumper.
- De VREG5: Si 7V < VCAN < 15V, se pueden obtener los 5V del regulador de tensión de 5V de la placa (cuya entrada es VCAN), uniendo VREG5 5V mediante un jumper.
- Del MCU: Si el MCU tiene 5V disponibles, se pueden obtener los 5V del MCU, conectando los 5V a J3.2 (pin 2 del conector J3) y quitando el jumper de J5.

# ALIMENTACIÓN VIO (J9)

El conector J9 configura de dónde se obtienen la alimentación VIO necesaria para la parte lógica.

- De 5V: Si la lógica es de 5V, se pueden obtener VIO de los 5V, uniendo VIO 5V mediante un jumper.
- De VREGIO: Si la lógica es de 3,3V, se pueden obtener VIO del regulador de tensión de 3,3V de la placa (cuya entrada es 5V), uniendo VREGIO VIO mediante un jumper.
- Del MCU: Si el MCU tiene alimentación lógica disponible, se pueden obtener VIO del MCU, conectando VIO a J4.2 (pin 2 del conector J4) y quitando el jumper de J9.

# TERMINADOR (J1 Y J2)

Los conectores J1 y J2 permiten conectar un terminador de  $120\Omega$  entre CANH y CANL si la PlacaCAN se encuentra en algún extremo del bus CAN.

- Si se encuentra en un extremo: Colocar los jumpers en J1 y J2, conectando el terminador.
- Si no se encuentra en un extremo: Quitar los jumpers de J1 y J2, desconectando el terminador.

# CONTROLLER Y/O TRANSCEIVER (J7 Y J8)

Los conectores J7 y J8 permiten conectar el controlador al transceiver.

- Si se desean utilizar ambos: Colocar los jumpers en J7 y J8, conectando el controlador al transceiver.
- Si se desea utilizar solo el transceiver o controlador: Quitar los jumpers de J7 y J8, desconectando el controlador del transceiver.



# PAD DE GND (J6)

El conector J6 permite conectar los pads de las esquina (i.e: los agujeros dónde se enroscan los tamecos) a GND. Esto facilita un punto donde "morder" con el cocodrilo de una punta de osciloscopio o tester. Sin embargo, si el tameco de fijación puede generar un cortocircuito con la carcasa, se puede desconectar. Por defecto se encuentra unido.

- Si se desea tener los PADs conectados a GND: Unir el pad J6 con una gota de estaño.
- Si no se desea tener los PADs conectados a GND: Quitar la gota de estaño de J6 y cortar con un cutter la traza que une los dos semicírculos de J6.



### CONEXIONADO

# CONEXIONADO MÍNIMO ENTRE MCU Y PLACACAN

- GND (J4.1, J4.11, J3.1, J3.11): Ground (power).
- CS (J4.7): SPI Chip Select (entrada). Activo bajo. Por defecto está deshabilitado mediante pullup.
- SCK (J4.4): SPI Clock (entrada).
- MOSI (J4.5): SPI Master Output Slave Input (entrada).
- MISO (J4.6): SPI Master Input Slave Output (salida).

### CONEXIONADO OPCIONAL ENTRE MCU Y PLACACAN

- VIO (J4.2): Alimentación lógica (power).
- 5V (J3.2): Alimentación de 5V (power).
- VCAN (J3.10): Alimentación del conector CAN (power).
- INT (J4.3): Interrupción (salida). Flag para indicar un evento.
- RXOBF (J3.3): Buffer RX 0 flag (salida). Indica un nuevo mensaje disponible. Activo bajo.
- RXOBF (J3.4): Buffer RX 1 flag (salida). Indica un nuevo mensaje disponible. Activo bajo.
- TXORTS (J3.7): Buffer TX 0 Request-to-Send (entrada). Solicita el envío del buffer. Activo bajo.
- TX1RTS (J3.6): Buffer TX 1 Request-to-Send (entrada). Solicita el envío del buffer. Activo bajo.
- TX2RTS (J3.5): Buffer TX 2 Request-to-Send (entrada). Solicita el envío del buffer. Activo bajo.
- RESET (J4.8): Reset del controlador CAN (entrada). Activo bajo. Por defecto se encuentra no reseteado mediante pullup.
- STBY (J3.8): Reset del trasceiver CAN (entrada). Activo alto. Por defecto se encuentra no reseteado mediante pulldown.
- TXD (J4.9): CAN TX data del transceiver (entrada).
- RXD (J4.10): CAN RX data del transceiver (salida).
- CLKOUT (J3.9): Cristal Clock output (salida).

# CONEXIONADO ENTRE NODOS CAN

Los conectores CAN1 y CAN2 permiten interconectarse con el bus CAN. Ambos conectores están en paralelo, por lo que se pueden utilizar de manera indistinta. Su pinout es:

- 1. GND: Ground (negativo)
- 2. CANL: CAN Low
- 3. CANH: CAN High
- 4. VCAN: CAN Power (positivo)



# **LEDS INDICADORES**

La PlacaCAN posee 5 LEDs para visualizar fácilmente el estado de algunas señales.

- VIO (rojo): Se enciende si hay alimentación en VIO.
- 5V (rojo): Se enciende si hay alimentación en 5V.
- INT (amarillo): Se enciende si se activa la señal INT. Suele ser solo un destello.
- RX (verde): Se enciende si hay actividad en RXD. Suele ser solo un destello.
- TX (verde): Se enciende si hay actividad en TXD. Suele ser solo un destello.

# **INTERFAZ SPI**

- Configuración SPI
  - Latchea en el flanco ascendente, cambia en el flanco descendente.
  - O Usa el /CS (MOSI en Hi-Z si no está habilitado).
  - o fclk max = 10MHz
- Hay 7 tipos de instrucciones que se envían en un frame de SPI.
  - o De 1, 2 o más bytes.
  - o La más utilizadas es WRITE (escribir un registro) y READ (leer un registro).
  - BIT MODIFY permite escribir enmascarado un registro (más rápido que hacer READ seguido de WRITE).
- Ver del datasheet del MCP25625:
  - o TABLE 5-1: SPI INSTRUCTION SET
  - TABLE 4-1: CAN CONTROLLER REGISTER MAP
  - TABLE 4-2: CONTROL REGISTER SUMMARY

# LINKS

- MCP25625 Official Website
- MCP25625 CAN datasheet
- MCP25625 PICtail Plus Daughter Board User Guide.pdf







# LISTA DE MATERIALES

| Designator                          | Quantity | Description                                                                                               | Part Number        |
|-------------------------------------|----------|-----------------------------------------------------------------------------------------------------------|--------------------|
| C1, C5                              | 2        | Capacitor SMD 4.7nF                                                                                       |                    |
| C2, C3, C4, C8, C10                 | 5        | Capacitor SMD 100nF                                                                                       |                    |
| C6                                  | 1        | Capacitor Polarized                                                                                       |                    |
| C7, C9                              | 2        | Capacitor Polarized                                                                                       |                    |
| CAN1, CAN2                          | 2        | Header Polarized 4                                                                                        |                    |
| D1, D2                              | 2        | LED SMD GREEN                                                                                             | LTST-C171GKT       |
| D3, D5                              | 2        | LED SMD RED                                                                                               | LTST-C171KRKT      |
| D4                                  | 1        | LED SMD YELLOW                                                                                            | LTST-C171KSKT      |
| J1, J2, J7, J8                      | 4        | Connector 2 + Jumper                                                                                      |                    |
| J3, J4                              | 2        | Header 11                                                                                                 |                    |
| J5, J9                              | 2        | Connector 3 + Jumper                                                                                      |                    |
| J10, J11, J12, J13                  | 4        | Tameco                                                                                                    |                    |
| R1, R2, R3, R5, R6,<br>R8, R10, R12 | 8        | Resistencia SMD 270ohms                                                                                   |                    |
| R4, R9                              | 2        | Resistencia SMD 60.4ohms                                                                                  | RMCF0805FT60R4     |
| R7                                  | 1        | Resistencia SMD 0ohms                                                                                     |                    |
| R11, R14, R15                       | 3        | Resistencia SMD 10kohms                                                                                   |                    |
| R13, R16, R17                       | 3        | Resistencia SMD 470ohms                                                                                   |                    |
| U1                                  | 1        | CAN Controller with Transceiver SSOP28 Microchip MCP25625-E/SS, CAN Controller 1MBps CAN 2.0, 28-Pin SSOP | MCP25625T-E/SS     |
| U2                                  | 1        | Regulator LDO 5V                                                                                          | TLV1117-50CDCYR    |
| U3                                  | 1        | Regulator LDO 3.3V                                                                                        | TLV1117-33CDCYR    |
| X1                                  | 1        | Cristal 16MHz                                                                                             | CSTNE16M0VH3L000R0 |