Frühjahr 2025 Thema 1 Aufgabe 2

mks

6. Mai 2025

Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind. Geben Sie jeweils kurze Begründungen an (mit Nennung aller benutzten Sätze) oder ein Gegenbeispiel.

- a) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei stetig differenzierbar. Es gelte f(2) = 5 und $f'(x) \ge 1$ für alle $x \in \mathbb{R}$. Dann ist $f(5) \ge 8$
- b) Es sei $f: \mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\} \to \mathbb{C}$ holomorph und $|f'(z)| \le 1$ für alle $z \in \mathbb{D}$. Dann ist $|f(0)| \le 1$.
- c) Es sei $\gamma: \mathbb{R} \to \mathbb{R}^2$ eine stetige Kurve mit $\gamma(0) = (0,0)$ und $\gamma(1) = (2,5)$. Dann existiert ein $t \in [0,1]$ mit $\gamma(t) \in S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$.
- d) Die Reihe $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ konvergiert.
- e) Jede nach oben beschränkte Funktion $f:\mathbb{R}\to\mathbb{R}$ nimmt einen maximalen Wert an.

Lösung:

a)

Die Aussage ist wahr.

Nach dem Mittelwertsatz der Differentialrechnung gibt es ein $x_0 \in [2, 5]$ mit $f'(x_0) = \frac{f(5) - f(2)}{5 - 2} = \frac{f(5) - 5}{3}$ Da nach Angabe gilt $f'(x) \ge 1$ muss, damit dieses x_0 existieren kann, nach umstellen also gelten $f(5) \ge 8$.

Alternative Lösung: Aus der Voraussetzung $f'(x) \ge 1$ und der Monotonie des Integrals folgt durch Integrieren über das Intervall [2, 5] mit dem HDI $f(5) - f(2) \ge 3$ und damit $f(5) \ge 8$.

b)

Die Aussage ist falsch.

Ein Gegenbeispiel ist die Funktion $f: \mathbb{D} \to \mathbb{C}, f(z) = 107.$

Bemerkung: Möglicherweise ist aus Übungen bekannt, dass die Aussage für vertauschtes f und f' stimmt. Mit der verallgemeinerten Cauchy-Integralformel und der Standardabschätzung folgt

$$|f'(z)| = \left| \frac{1}{2\pi i} \oint_{\partial \mathbb{D}} \frac{f(w)}{(w-z)^2} dw \right| \le \frac{1}{2\pi} \oint_{|z-w|=1} \frac{|f(w)|}{|w-z|^2} dw \le 1.$$

c)

Die Aussage ist wahr.

Wir betrachten die Funktion $g: \mathbb{R} \to \mathbb{R}$, $g(t) = ||\gamma(t)||$. Da γ und der Betrag stetig sind ist g als Verkettung stetiger Funktionen stetig. Es gilt g(0) = 0 und $g(1) = ||(2,5)|| = \sqrt{29}$.

Da $0 \le 1 \le \sqrt{29}$ gibt es nach dem Zwischenwertsatz gibt es deshalb ein $t \in [0,1]$ mit g(t) = 1. Dann ist $1 = ||\gamma(t)|| = \sqrt{\gamma_x^2(t) + \gamma_y^2(t)}$, nach quadrieren also $\gamma(t) \in S^1$.

d)

Die Aussage ist wahr.

Wir schreiben die Reihe als $\sum_{n=1}^{\infty} (-1)^n a_n$ mit $a_n = \frac{1}{\sqrt{n}}$.

Da die Wurzelfunktion stetig ist und $\lim_{n\to\infty}\frac{1}{n}=0$ gilt $\lim_{n\to\infty}=0$. Wegen der strengen Monotonie der Wurzelfunktion und der Inversionsregel für Ungleichungen ist a_n außerdem streng monoton fallen.

Mit dem Leibnizkriterium folgt hieraus die Konvergenz der Reihe.

e)

Die Aussage ist falsch.

Ein mögliches Gegenbeispiel ist die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \begin{cases} -1 & x \in (-\infty, 0] \\ -\frac{1}{x} & x \in (0, \infty) \end{cases}$$

Da alle Funktionswerte negativ sind, ist die Funktion nach oben durch die 0 beschränkt und es gilt $\lim_{x\to\infty} f(x) = 0$. Es gibt allerdings kein $x\in\mathbb{R}$ mit f(x)=0.

Bemerkung 1: Weitere bekannte Gegenbeispiele sind die Funktionen arctan, arccot, tanh, u.v.m.

Bemerkung 2: Nach dem Satz vom Minimum und Maximum stimmt die Aussage für kompakten Definitionsbereich.