$11a_{203} \ (K11a_{203})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{30} - 8u^{28} + \dots + u + 1 \rangle$$

 $I_2^u = \langle u - 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 31 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{30} - 8u^{28} + \dots + u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ -u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ u^{16} - 4u^{14} + 8u^{12} - 8u^{10} + 4u^{8} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ u^{14} - 4u^{12} + 7u^{10} - 6u^{8} + 2u^{6} - u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{25} + 6u^{23} + \dots - 3u^{5} + u \\ u^{25} - 7u^{23} + \dots - 2u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{25} - 6u^{23} + \dots + 3u^{5} - u \\ -u^{27} + 7u^{25} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{25} - 6u^{23} + \dots + 3u^{5} - u \\ -u^{27} + 7u^{25} + \dots - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-4u^{29} + 32u^{27} - 4u^{26} - 124u^{25} + 28u^{24} + 284u^{23} - 96u^{22} - 400u^{21} + 192u^{20} + 300u^{19} - 232u^{18} - 4u^{17} + 140u^{16} - 224u^{15} + 12u^{14} + 188u^{13} - 84u^{12} - 28u^{11} + 40u^{10} - 52u^{9} + 12u^{8} + 32u^{7} - 24u^{6} - 8u^{5} + 8u^{4} + 4u^{3} + 4u - 10$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{30} - 8u^{28} + \dots + u + 1$
c_2	$u^{30} + 16u^{29} + \dots + 3u + 1$
c_3, c_4, c_8 c_9, c_{10}	$u^{30} - 20u^{28} + \dots + 3u + 1$
c_5	$u^{30} - 6u^{29} + \dots + 23u + 41$
c_7, c_{11}	$u^{30} - 3u^{29} + \dots + 37u - 11$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{30} - 16y^{29} + \dots - 3y + 1$
c_2	$y^{30} - 4y^{29} + \dots - 7y + 1$
c_3, c_4, c_8 c_9, c_{10}	$y^{30} - 40y^{29} + \dots - 3y + 1$
c_5	$y^{30} - 16y^{29} + \dots - 36527y + 1681$
c_7, c_{11}	$y^{30} + 27y^{29} + \dots - 3129y + 121$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.887519 + 0.482432I	-1.82016 + 4.25744I	-10.93711 - 7.73976I
u = -0.887519 - 0.482432I	-1.82016 - 4.25744I	-10.93711 + 7.73976I
u = 0.935013 + 0.538460I	-10.87340 - 5.27966I	-12.05604 + 5.65823I
u = 0.935013 - 0.538460I	-10.87340 + 5.27966I	-12.05604 - 5.65823I
u = -1.09884	-14.6811	-17.7740
u = 0.778482 + 0.436098I	1.00011 - 1.87364I	-3.05909 + 5.26127I
u = 0.778482 - 0.436098I	1.00011 + 1.87364I	-3.05909 - 5.26127I
u = 0.113847 + 0.839746I	-15.0478 + 5.3499I	-12.97012 - 2.66295I
u = 0.113847 - 0.839746I	-15.0478 - 5.3499I	-12.97012 + 2.66295I
u = -0.100894 + 0.796851I	-5.17949 - 3.97369I	-12.30033 + 4.02503I
u = -0.100894 - 0.796851I	-5.17949 + 3.97369I	-12.30033 - 4.02503I
u = 0.523957 + 0.596828I	-9.71958 + 0.79768I	-9.60193 + 0.22241I
u = 0.523957 - 0.596828I	-9.71958 - 0.79768I	-9.60193 - 0.22241I
u = -1.175620 + 0.433898I	-4.54064 + 2.58760I	-11.91074 + 0.31463I
u = -1.175620 - 0.433898I	-4.54064 - 2.58760I	-11.91074 - 0.31463I
u = 1.178600 + 0.472961I	-4.25686 - 5.88582I	-10.73071 + 7.02338I
u = 1.178600 - 0.472961I	-4.25686 + 5.88582I	-10.73071 - 7.02338I
u = 1.209450 + 0.403071I	-9.06454 - 0.14928I	-16.5343 - 0.4492I
u = 1.209450 - 0.403071I	-9.06454 + 0.14928I	-16.5343 + 0.4492I
u = 0.064904 + 0.715291I	-1.08394 + 1.47244I	-7.45106 - 4.26447I
u = 0.064904 - 0.715291I	-1.08394 - 1.47244I	-7.45106 + 4.26447I
u = -0.551842 + 0.441212I	-0.931280 - 0.302386I	-8.66690 + 0.70064I
u = -0.551842 - 0.441212I	-0.931280 + 0.302386I	-8.66690 - 0.70064I
u = -1.236340 + 0.392586I	-19.1575 - 1.1230I	-17.1562 - 0.4196I
u = -1.236340 - 0.392586I	-19.1575 + 1.1230I	-17.1562 + 0.4196I
u = -1.198880 + 0.495938I	-8.40726 + 8.70507I	-15.2295 - 7.1454I
u = -1.198880 - 0.495938I	-8.40726 - 8.70507I	-15.2295 + 7.1454I
u = 1.212990 + 0.509772I	-18.3208 - 10.2613I	-15.9531 + 5.7696I
u = 1.212990 - 0.509772I	-18.3208 + 10.2613I	-15.9531 - 5.7696I
u = -0.633476	-0.803448	-13.1110

II.
$$I_2^u = \langle u - 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_6, c_8, c_9 c_{10}	u-1
c_2, c_5	u+1
c_{7}, c_{11}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10}	y-1
c_7,c_{11}	y

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000	-4.93480	-18.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u-1)(u^{30} - 8u^{28} + \dots + u + 1)$
c_2	$(u+1)(u^{30}+16u^{29}+\cdots+3u+1)$
c_3, c_4, c_8 c_9, c_{10}	$(u-1)(u^{30}-20u^{28}+\cdots+3u+1)$
c_5	$(u+1)(u^{30} - 6u^{29} + \dots + 23u + 41)$
c_{7}, c_{11}	$u(u^{30} - 3u^{29} + \dots + 37u - 11)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$(y-1)(y^{30} - 16y^{29} + \dots - 3y + 1)$
c_2	$(y-1)(y^{30}-4y^{29}+\cdots-7y+1)$
c_3, c_4, c_8 c_9, c_{10}	$(y-1)(y^{30}-40y^{29}+\cdots-3y+1)$
c_5	$(y-1)(y^{30} - 16y^{29} + \dots - 36527y + 1681)$
c_7, c_{11}	$y(y^{30} + 27y^{29} + \dots - 3129y + 121)$