Autómatas Finitos Determinísticos

(máquina de estado *finito*, finite state machine)

¿Autómatas Finitos?

 Son sistemas que en todo momento se encuentran en uno de los estados (finitos) existentes.

Un autómata finito determinístico es una quíntupla (Q, Σ , δ , q₀, F) donde:

- Q es un conjunto finito de estados.
- \square Σ un alfabeto de entrada finito.
- q₀ elemento de Q , es el estado inicial.
- F subconjunto de Q, es el conjunto de estados finales o de aceptación.
- □ δ es la función δ : Q x Σ \rightarrow Q que determina el único estado siguiente para el par (q1, σ) correspondiente al estado actual q1 y la entrada σ .

Autómatas Finitos determinísticos

Máquina de Estados Finitos

- 1. Poseen un conjunto finito de estados y un conjunto de transiciones de estado a estado, que se dan sobre símbolos de entrada tomados de un alfabeto Σ .
- 2. Para cada símbolo de entrada existe **exactamente** una transición a partir de cada estado.
- 3. Un estado, por lo general denotado como q₀ es el estado inicial, en el que el autómata comienza.
- 4. Algunos estados están designados como final o de aceptación.

- Se puede construir un diagrama para que ayude a determinar los distintos miembros o cadenas del lenguaje.
- El diagrama tiene la forma de un grafo dirigido con información añadida, y se llama diagrama de transición.
- Los nodos del grafo corresponden a los estados del AFD.
- Por lo general q0 es el estado inicial, marcando con una flecha
 (→) el comienzo del autómata.
- Algunos estados están designados como final o aceptación indicados por un doble círculo.

- Los símbolos del alfabeto (σ ∈ Σ) son las etiquetas de los arcos del grafo.
- Si cuando ha sido tratada la cadena en su totalidad se termina en un estado de aceptación entonces la cadena es aceptada por el lenguaje.
- Si M es un AFD, entonces el lenguaje aceptado por M es L(M) = {w ∈ Σ */ w es aceptada por M}.
- Por tanto, L(M) es el conjunto de cadenas que hacen que M pase de su estado inicial a un estado de aceptación.

Ejemplo1: Autómatas Finitos (determinísticos)

Se pide:

- a) Construir la función de transición con representación matricial.
- b) Señalar formalmente el lenguaje que reconoce el autómata finito representado por la figura 1.

Ejemplo1, solución:

$$\delta: Q \times \Sigma \to Q$$

Q/Σ	а	b
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_2	q_2

L = { w $\in \Sigma^*$ / w tiene como substring a "ab"} // debe darse ab = { w $\in \Sigma^*$ / "ab" \in w} // donde debe darse substring "ab"

Ejemplo2 (AFD):

Se pide:

- a) Describir formalmente el autómata finito de la figura.
- b) Escribir en forma matricial a la función de transición del autómata
- Escribir formalmente el lenguaje que reconoce el autómata.

Ejemplo2, solución:

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{0,1\}, \{q_0, q_1\}, \delta, q_0, q_0)$$

δ: función de transición

Σ	0	1
Q		
q_0	q_1	q_0
q ₁	q_0	q ₁

L = { w
$$\in \Sigma^*$$
/ w tiene un número par de 0's}
= { w $\in \Sigma^*$ / | w | 0 = 2n, n \geq 0} // se repetirá 0 2n veces

Ejemplo3:

a) Dibujar el AFD asociado a la función de transición δ

b) Describir formalmente el lenguaje L(M) descrito por el AFD presentado.

δ	а	b	С
q0	q0	q1	q0
q1	q0	q1	q0

Ejemplo3:

 a) Dibujar el AFD asociado a la función de transición δ.

δ	а	b	С
q0	q0	q1	q0
q ₁	q0	q1	q0

b) Describir formalmente el lenguaje L(AFD) descrito por el AFD presentado.

 $L(AFD) = \{ w \in \Sigma^* / w = xb \text{ con } x \in \Sigma^* \} // x \text{ veces } b$

Ejemplo4:

- 1. Determinar la función de transición asociada
- 2. Describir el AFD formalmente.
- 3. Describir formalmente al lenguaje L(AFD) reconocido por el AFD

Ejemplo4, Solución:

Función de transición asociada

σ	а	b
q0	q0	q1
q1	q1	q2
q2	q0	q1

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{a,b\}, \{q_0, q_1, q_2\}, \delta, q_0, q_2)$$

Lenguaje L(M) reconocido por el AFD:

L(M) ={
$$w \in \Sigma^* / |w|_b = 2n$$
, n>0 y que termine en "b"}
={ $w \in \Sigma^* / |w|_b = 2n$, n>0 $\land w = xb \text{ con } x \in \Sigma^*$ }

Ejemplo5:

- 1. Determinar la función de transición asociada
- 2. Describir el AFD formalmente.
- 3. Describir formalmente al lenguaje L(AFD) reconocido por el AFD

١.				
		а	b	С
	q0	q1	q3	q0
	q 1	q3	q2	q3
	q2	q1	q3	q2
	q 3	q3	q3	q3

Función de transición asociada

Ejemplo5, Solución:

$$M = (\Sigma, Q, \delta, q_0, F)$$

$$M = (\{a,b,c\},\{q_0,q_1,q_2,q_3\},\delta,q_0,\{q_0,q_2\})$$

Lenguaje L(M) reconocido por el AFD:

$$L(M) = \{ w \in \Sigma^* / w = c^n (ab c^p)^m con n, p, m \ge 0 \}$$

Ejemplo6 (AFD):

$$\mathbf{M} = (\Sigma, \mathbf{Q}, \delta, \mathbf{q}_0, \mathbf{F})$$

$$\mathbf{M} = (\{0,1\}, \{q_0, q_1\}, \delta, q_0, q_0)$$

δ: función de transición

Σ	0	1
$Q \setminus$		
q_0	q_2	q_1
q ₁	q ₁	q_2

Ejemplo7:

1. Describir formalmente el lenguaje L reconocido por el AFD

2. Escribir una expresión Regular que describa al lenguaje reconocido por el AFD

Solución:

	а	b
q0	q0	q1
q1	q1	q2
q2	q0	q1

•Expresión Regular para el lenguaje que reconoce el AFD:

$$a*(ba*b)^{+}$$

•Describa el lenguaje L reconocido por el AFD:

L={
$$w \in \Sigma^*/|w|_b=2n, n>0 y que termine en "b"}$$

Función de transición asociada

Ejercicio 1:

Se pide:

- 1. Determinar la función de transición asociada
- 2. Escribir una expresión para el lenguaje que reconoce el AFD
- 3. Describir formalmente el lenguaje L reconocido por el AFD

Ejercicio 2:

Se pide:

- 1. Determinar la función de transición asociada
- 2. Escribir una expresión regular (ER) para el lenguaje que reconoce el AFD
- 3. Describir formalmente el lenguaje L(M) reconocido por el AFD

Ejercicio 3:

1. Determinar la función de transición asociada

2. Escribir una expresión regular para el lenguaje que reconoce el AFD

3. Describir formalmente el lenguaje L reconocido por el AFD.

Ejercicio 4:

Se pide:

- 1. Determinar la función de transición asociada
- 2. Escribir una expresión regular (ER) para el lenguaje que reconoce el AFD
- 3. Describir formalmente el lenguaje L reconocido por el AFD

Ejercicio 5:

1. Sea M un AFD

$$M: Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_2\}$$

δ	а	b
q_o	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_0

- a) Realizar el diagrama de estados del AFD.
- b) Determinar si las cadenas pertenecen al lenguaje:
 - abaa
 - bbbabb
 - bababa
- c) Describa el lenguaje L(M) reconocido por el AFD
- d) Escribir una expresión regular (ER) para L(M)

Ejercicio 6:

Construya un AFD completo para cada uno de los lenguajes descritos:

- 1. El conjunto de cadenas para alfabeto {a,b} en donde la subcadena aa ocurra al menos dos veces.
- 2. El conjunto de cadenas para alfabeto {a,b,c} que comienzan con a, contienen exactamente dos b's y terminan con cc.
- 3. El lenguaje definido por ER= (ab)*ba
- 4. El lenguaje definido por ER = (ab)*(ba)*