Parameters, Point Estimates, & Standard Errors Table

Population Parameter	Point Estimate (Sample Value)	True <i>SE</i> of Point Estimate	SE for Confidence Intervals	SE for Hypothesis Tests
μ	\overline{x}	<u> </u>	<u>s</u> <u>n</u>	
$\mu_1 - \mu_2$	$\overline{x}_1 - \overline{x}_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ 2	
$\mu_{ extit{diff}}$	₹ _{diff}	<u>σ diff</u> n	s <u>diff</u> n	
р	p	$\sqrt{\frac{p(1-p)}{n}}$	$\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$	$\sqrt{\frac{p_0(1-p_0)}{n}}$ 3
$p_1 - p_2$	$\widehat{p}_1 - \widehat{p}_2$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_1}}$	$\sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1}+\frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}$	$\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n_1} + \frac{\widehat{p}(1-\widehat{p})}{n_2}}$ 4

 $^{^2}$ When using t-test, if you think the population SD's are similar, can use pooled SD estimate $s_{pooled}^2=\frac{s_1^2\times (n_1-1)+s_2^2\times (n_2-1)}{n_1+n_2-2}$ in place of s_1^2 and s_2^2

 $^{{}^{3}}p_{0}$ is the null value from $H_{0}: p = p_{0}$

 $^{^4\}widehat{\rho}$ is the pooled estimate $\frac{\widehat{\rho}_1n_1+\widehat{\rho}_2n_2}{n_1+n_2}=\frac{\text{total }\#\text{ of successes in both groups}}{n_1+n_2},$ since under $H_0:\rho_1=\rho_2$