P1 – ARQUITETURA AVANÇADA

- 1) (1,0 ponto) Relacione a primeira coluna com a segunda.
 - a) RI () registrador que armazena temporariamente a informação que está sendo transferida da MP para o processador ou vice-versa
 b) CI () registrador de uso genérico utilizado para armazenar resultados de operações
 c) REM () registrador com função específica de armazenar a instrução a ser executada pelo
 - processador
 d) RDM () registrador com função específica de armazenar o endereço da próxima instrução a ser executada
 - e) R0 () registrador que armazena temporariamente o endereço de acesso a uma posição de memória
- 2) (2,0 pontos) Um computador tem um REM de 16 bits e um barramento de dados de 20 bits. Possui instruções de um operando, todos do tamanho de uma célula de memória e do mesmo tamanho da palavra. Ele foi adquirido com apenas uma placa de 4K de memória. Responda:
 - a) Qual o tamanho, em bits, do RDM e CI?
 - b) Seria possível aumentar-se a capacidade de armazenamento dessa memória? Até quando? Por quê?
 - c) Qual a capacidade máxima de instruções de máquina que poderia existir nesse computador?
- 3) (2,0 pontos) A figura a seguir ilustra uma memória de 256 células em que cada célula (ou palavra) contém 16 bits. Nessa figura, cada retângulo simboliza uma célula de memória; o número hexadecimal que está dentro do retângulo representa o seu conteúdo, e o número colocado ao lado de cada um indica o endereço da célula (retângulo).

colocado do lado de cada dili ili	
Endereço	Conteúdo da MP
00	0010
01	A0FD
02	0000
A4	1123
A5	C1305
A6	B200
FD	4040
FE	21F8
FF	09A5

Pergunta-se:

- a) Qual a capacidade total da memória em bits?
- b) Supondo que, no início de um ciclo de instrução, o conteúdo do CI seja o hexadecimal A5 e que cada instrução ocupe uma única célula (palavra), qual será a instrução que será executada?
- c) Supondo que o conteúdo da REM tenha o valor hexadecimal FD e que um sinal de leitura seja enviado da UCP para a memória, qual deverá ser o conteúdo do RDM ao final do ciclo de leitura?
- 4) (1,5 pontos) Qual é a diferença entre E/S programada e E/S controlada por interrupção?
- 5) (1,5 pontos) Quando ocorre uma interrupção de dispositivo, como o processador determina qual dispositivo emitiu a interrupção?
- 6) (2,0 pontos) Explique a função e como funciona a DMA (Acesso Direto à Memória)?

P1 – ARQUITETURA AVANÇADA - GABARITO

1)

2)

- a) RDM = 20b CI = REM = 16b
- b) Nº de endereços: 2¹6b = 26kb = 64kb de memória.
 Sim, é possível. Até 64kb de memória, pois o REM determina o número máximo de endereços, logo, é possível saber sua capacidade máxima
- c) 20 16 = 4b $2^4 = 16$ instruções de máquina possíveis

3)

- a) N° células = 256b = 2^{8} b

 Tamanho da célula = $16b = 2^{4}$ b

 T = n° células x tamanho da célula = 2^{8} x 2^{4} = 2^{12} = 4kb
- b) C1305
- c) 4040
- 4) Na E/S programa, o processador fica responsável por verificar se o módulo de E/S já enviou a resposta, e ele faz essa verificação regularmente, o que leva ao desperdício de tempo de CPU. Já na E/S controlada por interrupções, o processador passa as instruções ao módulo de E/S e vai fazer outras instruções. Fica a cargo do módulo gerar uma interrupção avisando que já tem a resposta.
- 5) Eles podem determinar de várias formas:
 - Descobrimento por software: o processador vai de dispositivo em dispositivo perguntando quem gerou a interrupção
 - Descobrimento por hardware: o processador emite um sinal que viu a interrupção, e o dispositivo que a gerou bota uma palavra (vetor de interrupção) no barramento
 - Descobrimento por barramento: o dispositivo, antes de gerar a interrupção, bota o vetor de interrupção no barramento, de forma que nenhum dispositivo possa usá-lo e quando o processador for procurar o gerador da interrupção, encontrará o vetor de interrupção no barramento
 - Múltiplas linhas.
- 6) A DMA é um módulo de E/S com acesso direto à memória. Nela há um módulo adicional que "substitui" o processador ao envio de blocos de instrução. O processador passa para o módulo DMA o comando, os endereços e os operandos de instrução e vai fazer outras coisas. O módulo DMA faz o que tem que ser feito direto na memória e depois, avisa ao processador por uma interrupção, que a instrução foi concluída.