SOLUTION FOR HOMEWORK ASSIGNMENT NO. 06

Nils Hoyer, Maurice Morgenthaler

Exercise 6.1

We are asked to derive the extenden likelihood function for the binned case.

We start by looking at the content in each bin, i.e.

$$n_b(\theta) = n_{\text{tot}} \int_{x_0 + h(b-1)}^{x_0 + hb} dx \cdot f(x \mid \theta)$$

$$\tag{1}$$

where h is the width of the bin and b the bin number.

For a Poissonian distribtion we then get

$$f(m, n(\theta)) = \frac{n_{tot}^m e^{-n_{tot}}}{m_{tot}!} \cdot \frac{m_{tot}!}{m_1! \dots m_N!} \left(\frac{n_1}{n_{tot}}\right)^{m_1} \dots \left(\frac{n_N}{n_{tot}}\right)^{m_N} = \prod_{i=1}^N \frac{n_i^{m_i}}{m_i!} e^{-n_i}$$
(2)

Therefore

$$\mathcal{L} = \ln\left(f(m, n(\theta)) = m_i \cdot \ln\left(n_i\right) - \ln\left(m_i\right!\right) - n_i \approx m_i \cdot \left(\ln(n_i) - \ln(m_i)\right) - \left(m_i + n_i\right) \tag{3}$$

where I used Stirling's formula.

Exercise 6.2

Given a PDF

$$f(t \mid \tau) = \frac{e^{-t/\tau}}{\tau} \tag{4}$$

we are asked to generate 100 pseudo events for $\tau_{\rm true}=1.0\,{\rm s}$. Using the unbinned maximum likelihood function we are asked to find the best fit value for τ by computing a local minimum using Minuit. Afterwards we should repeat this process for the binned case with $\Delta t=0.5\,{\rm s}$ where

$$\nu_i(\tau) = n_{\text{tot}} \int_{t_i^{\text{min}}}^{t_i^{\text{max}}} dt \cdot f(t \mid \tau).$$
 (5)

Eventually we shall use different binning values and see what happens if $\Delta t \to 0$ and $\Delta t \to \infty$.

Since we generated the random data with $\tau_{\rm true}=1.0$ we expect to find a value close to 1.0 when fitting. The result we get from Minuit after fitting the data for the unbinned case is $\tau_{\rm fit}^{\rm ubin}$ 1.069.

For the binned case with $\Delta t=0.5\,\mathrm{s}$ we get a value of $\tau_{fit}^{bin}=1$, however we suspect that our result is wrong as we get the same value for $\Delta t\to\infty$ and obtain for $\Delta t\to0$ nan.