Les capteurs

Un **capteur** est un élément qui transforme l'état d'une grandeur physique en une grandeur exploitable.

C'est le premier élément d'une chaîne de mesurage

Mesurande = grandeur physique que l'on veut mesurer.

A.Caractéristiques d'un capteur

• Fidélité

<u>Justesse</u>

• Sensibilité

• Linéarité

• Plage de mesure

• Temps de réponse

• Résolution

• Grandeurs d'influence

<u>Fidélité</u>

Etroitesse de l'accord entre les mesures répétées du même objet dans certaines conditions.

Bonne fidélité de mesure si la dispersion est faible.

Ecart-type ou variance.

Conditions:

- répétabilité (m labo, m operateur, m système de mesure , intervalle très court) ou
- reproductibilité de mesure (des moments différents,..)

<u>Justesse</u>

Etroitesse de l'accord entre la moyenne des mesures répétées et une valeur de référence.

Quand l'erreur systématique est faible, la justesse est bonne.

Biais ou biais de mesure ou erreur de justesse : estimation de l'erreur systématique :

Biais = <Y> - Y reference

Fidélité –Justesse

Précision

Elle est définie par l'écart en pourcentage que l'on peut obtenir entre la valeur réelle et la valeur obtenue en sortie du capteur.

La précision est souvent donnée en pourcentage de l'étendue de mesure.

Un capteur précis est juste et fidèle

Capteur: PT 100

Caractéristiques:

Mesure: 0 à 250 ° C

Sortie: 4-20 mA

Tension: C.C 24V

Précision: plus ou moins 0,2 % FS

Dimensions: 45mm / 1,77 Inch(diameter)

Ex. Ce capteur mesure une température de 100°C.

Quelle est l'erreur maximum commise sur cette température ?

Sensibilité

C'est le coefficient qui lie la grandeur physique d'entrée à mesurer à la grandeur électrique de sortie.

Plus un capteur est sensible plus la mesure pourra être précise.

Exemple: Capteur de pression:
$$V(p) = a \cdot p + V_0$$

=> $S_{\underline{c}} = dV/dp = a$

Par exemple a = 10 mV/hPa.

<u>Linéarité</u>

Un capteur est linéaire si sa sensibilité est constante.

Exercices: capteur linéaire ou non linéaire? Justifiez

variation de la résistance avec la température :

Cas sonde Pt100): $R(T) = R_0 (1 + a T)$

 \circ Cas d'une thermistance: $R(T) = a. e^{b/T}$

Erreur de linéarité.

L'erreur de linéarité est la valeur absolue de l'écart maximum entre la courbe caractéristique du capteur (par valeurs montantes) à la droite de référence.

Pour déterminer l'erreur de linéarité, une série de mesures est prise par valeurs montantes jusqu' à la valeur nominal.

Erreur de réversibilité

C'est une mesure d'hystérésis = mesure de la différence entre les courbes caractéristiques déterminées au couple croissant et décroissant.

Résolution

C'est la plus petite variation de grandeur mesurable par le capteur.

Plus elle est faible, meilleur est cette résolution.

Exemple: pH-mètre: Acide -> base

Résolution: 0,01

Intervalle de mesure : 0 à 14

→ Le nombre récolté varie par pas de 0,01

Etendue de mesure

C'est la plage des valeurs d'entrée qu'il peut traiter sans dégrader son fonctionnement.

Exemple : pour un intervalle nominal de -5V à +5V, l'étendue de mesure est de 10 V

Rapidité

C'est le temps de réaction d'un capteur entre la variation de la grandeur physique qu'il mesure et l'instant où l'information prise en compte par la partie commande.

Grandeurs d'influence

Grandeur physique autre que le mesurande dont la variation peut modifier la réponse du capteur (température, pression, humidité,...)

Nécessité de les réduire, de les stabiliser et/ou de les compenser.

Exercice et analyse documentaire

1, Determination sensibilité d'un circuit

2, Transmetteur de niveau, de densité et d'interface 244 LD

- 3, Data sheet concernant des capteurs pour la mesure
- De distance (liaison théorie-choix capteurs)
- D'humidité
- De monoxyde de carbone CO et dioxyde d'azote No2 (comparaisons)
- De distance (anglais)

Exercice

On désire acquérir la température ambiante d'une salle. Pour cela, on utilise un capteur de température qui est une sonde PT100 possédant une résistance R_{θ} qui dépend de température θ suivant la relation R_{θ} = R_0 (1+ $a\theta$) avec :

$$R_0=100 \Omega$$
, $a=0.4 °C^{-1}$ et θ température en °C.

Le montage conditionneur permettant de traduire la température θ en une tension .

On donne : $R_2=R_3=1$ $K\Omega$, $R_1=3$ $K\Omega$ et $V_{cc}=12$ V.

- 1. Montrer que la tension V_3 s'écrit : V_3 =(0,12.0)+3,3
- 2. Calculer la sensibilité du montage définie par : $S_m = \Delta V_3/\Delta \theta$.
- 3. Tracer et relever la caracteristique V(♥) sous le simulateur Qucs

Exemple: Capteur de mesure de distance

FT 50 RLA-40

Capteur de mesure de distance

Catalogue général

VISOR® et capteurs pour l'automatisation industrielle

POINTS FORTS

- · Haute résolution et petit spot laser
- Plage de travail 45 ... 85 mm
- · Lumière rouge laser 670 nm
- · Petit spot laser bien visible
- · Pas de réglages nécessaires
- Résolution 0,02 mm / 0,08 mm
- Sortie analogique 0 ... 10 V
- Connecteur rotatif à 270°

Données optiques		Fonctions	
Plage de travail	45 85 mm ¹	Affichage LED verte	Tension d'alimentation
Plage de mesure	40 mm	Affichage LED rouge	Affichage de l'encrassement
Type de lumière	Laser, rouge 670 nm	Réglage de la distance de mesure	Réglage fixe
Classe laser (IEC 60825-1)	1		
Résolution	80 μm / 20 μm (cf. tableau)		
Linéarité	< 1 %		
Taille du spot	< 0,8 mm pour 65 mm		
Reproductibilité	< 0,2 mm / 0,1 mm (cf. tableau)		

Exemple: Capteur de mesure de distance

Données électriques		Données mécaniques	
Tension d'alim. +U _B	18 28 V DC	Dimensions	50 × 50 × 17 mm
Courant à vide I ₀	≤ 35 mA	Indice de protection	IP 67 ²
Circuits de protection	Protection contre les inversions de polarité	Matériau boîtier	ABS, antichoc
	U _B / Courts-circuits Q	Matériau vitre avant	PMMA
Protection électrique	2	Type de raccordement	cf. tableau
Sortie analogique	0 10 V (max. 3 mA)	Température de fonctionnement	0 +45 °C
Fréquence limite	400 Hz / 40 Hz (cf. tableau)	Température de stockage	-20 +60 °C
Dérive de température	18 µm / K	Poids (avec connecteur)	40 g
Temps de montée (10 sur 90 %)	3 ms / 30 ms (cf. tableau)	Poids (avec câble)	260 g
Temps de descente (90 sur 10 %)	2 ms / 20 ms (cf. tableau)	Résistance aux chocs et vibrations	EN 60947-2

¹ Matériau de référence : Kodak gris, 18 % ² avec connecteur IP 67 connecté

Résolution	Reproducti- bilité	Temps de montée	Temps de descente	Fréquence limite	Type de raccordement	Réf. produit	N° article
80 µm	< 0,2 mm	3 ms	2 ms	400 Hz	Connecteur, M12x1, 4 pôles	FT 50 RLA-40-F-L4S	574-41001
20 µm	< 0,1 mm	30 ms	20 ms	40 Hz	Connecteur, M12x1, 4 pôles	FT 50 RLA-40-S-L4S	574-41003
80 µm	< 0,2 mm	3 ms	2 ms	400 Hz	Câbles, 6 m, 4 fils	FT 50 RLA-40-F-K5	574-41000
20 µm	< 0,1 mm	30 ms	20 ms	40 Hz	Câbles, 6 m, 4 fils	FT 50 RLA-40-S-K5	574-41002

Exemple: Capteur de mesure de distance

Capteur de mesure de distance Internet

comparer les deux specifications

Specifications - Carbon Monoxide (standar	d)
Carbon Monoxide	
Nominal range:	0-1000 ppm
Expected operating life:	Three years in air
Resolution:	0.5 ppm
Response time (T-90):	< 30 seconds
Temperature range:	-20 C to +50 C
Relative humidity:	15 to 90% non-condensing
Repeatability:	1% of signal
Output Linearity:	Linear
Calibration cycle:	Annual
Long term drift:	< 2% signal loss per year
Specifications - Nitrogen Dioxide	
Nitrogen Dioxide	
Nominal range:	0-20 ppm
Expected operating life:	Two years in air
Resolution:	0.1 ppm
Response time (T-90):	< 40 seconds
Temperature range:	-20 C to +50 C
Relative humidity:	15 to 90% non-condensing
Repeatability:	2% of signal
Output Linearity:	Linear
Calibration cycle:	Annual
Long term drift:	< 2% signal loss per month

Capteur de température avec convertisseur de mesure

Description

Caractéristiques

- Signal standard 0 ... 10 V ou 4 ... 20 mA
- Mesure du taux d'humidité linéarisé et compensation de température
- Stabilité à long terme élevée, technique innovante
- Tube de sonde en acier inoxydable 1.4571
- Boîtier de qualité IP 65
- Tête du capteur avec filtre fritté

Champs d'application

- Gestion technique des bâtiments
- Techniques de régulation et de mesure industrielles
- Mesures climatologiques
- Techniques de séchage

Broche	Fonction	Description
1	24 V DC	Tension de fonctionnement
2	HYGRO 4 20 mA	Signal humidité 4 20 mA
3	TEMP 4 20 mA	Signal température 4 20 mA
4	SHIELD	Blindage

Mesure de l'humidité 0 ... 10V, mesure de la température 0 ... 10V, type -TE1

Broche	Fonction	Description
1	24 V AC/DC	Tension de fonctionnement
2	GND 0V	Masse d'alimentation
3	HYGRO 0 10V	Signal humidité 0 10V
4	TEMP 0 10V	Signal température 0 10V

Caracteristiques techniques

Mesure de l'humidité

Plage de mesure 0 ... 100% HR, non condensée

Précision ± 2% HR (de 30 ... 90% HR)

Temps de réponse t90 environ 25 sec (avec filtre de protection)

Echelle de sortie : 0 ... 100 % HR

Mesure de la température (type TE1 uniquement)

Plage de mesure -30 ... +70°C

Précision ±0,5 °C (de 0 ... 50°C)

Echelle de sortie : -30 ... 70°C

Généralités

Conformité CE 89/336/CEE

Rayonnements électromagnétiques parasites EN 61000-6-3:2001

Rayonnements électromagnétiques parasites EN 61000-6-2:2001

Dimensions du capteur Voir schéma coté

Tube du capteur Acier inoxydable 1.4571

Filtre de protection Filtre fritté PE 40µm

Boîtier électronique Polyamide GK30

Branchement Bornes à vis 0,75 mm2

Câble de raccordement (-EXT) 1500 mm

Tension de fonctionnement Type -10 V : 12 ... 24 V AC/DC

Type -20MA: 12 ... 24 V DC

Protection contre les surtensions Varistance et filtre RC

Exemple: capteur de distance (datasheet)

871C Analog Output, 3-wire DC Tubular Sensors

Plastic Face/Nickel-plated Brass Barrel

Specifications

Attribute	12 mm	18 mm	30 mm
Analog Output	010V Sourcing	•	•
Load Current	5mA		
Operating Voltage	1830V DC		
Repeatability	≤1%		
Ripple	10 %		
Slew Speed	1.0 V/ms	0.7 V/ms	0.1 V/ms
∆ Output/∆ Distance	0.25 mm/V	0.375 mm/V	0.875 mm/V
Linearity Tolerance	6.25%	_	100
lemperature Drift	±0.3V		
Protection Type	Transient noise, reverse p	colarity, short circuit, and overlo	nad
Certifications	CE Marked for all applica	ble directives	
Enclosure Type Rating	NEMA 1, 2, 3, 4, 12, 13; II	P67 (IEC529)	
Housing Material	Nickel-plated brass barre	l, plastic face (PBT)	
Connection Type	Cable: 2 m (6.5 ft) length	, 3-conductor PVC	
Status Indicator	None		
Operating Temperature	-25+70°C(-13+1	58°F)	
Shock	30 g (1.06 oz), 11 ms		
Vibration	55 Hz, 1 mm amplitude,	3 planes	

Correction Factors

Steel Stainless Steel Brass	Correction Factor		
Steel	1.0		
Stainless Steel	0.70.8		
Brass	0.40.5		
Aluminum	0.30.4		
Copper	0.20.3		

Approximate Dimensions [mm (in.)]

Thread Size	mm (in.)						
Tilleau Size	A	В	C	D			
12 mm	12.0 (0.47)		59.0/2.28\				
18 mm	18 (0.71)	81.0 (3.15)	12 (0.47)				
30 mm	30.0 (1.18)		70 (2.75)	12 (0.47)			

Wiring Diagrams

12 mm

18 mm

30 mm

Nominal Output

12 mm

18 mm

30 mm

B. Étalonnage des capteurs

L'étalonnage d'un capteur consiste à établir la relation qui existe entre la grandeur à mesurer et la grandeur électrique de sortie.

- → si cette relation est graphique : courbe d'étalonnage.
- → si cette relation est algébrique
 :équation caractéristique du capteur.

Capteurs de pression de haute précision, silicium micro-usiné

Série PX409

Capteurs de pression de haute précision

€450,00 PX409-005GV

PASSEZ VOTRE COMMANDE 💘

- Pièces mouillées : acier inox 316
 Boîtier: acier inox soudé
- Haute précision ±0.08% (BFSL) inclut les effets de linéarité, d'hystérésis et de répétabilité
- Large gamme de compensation en température -29 à 85°C
- Performance excellente en température: ±0,5% sur la place de compensation
- Certificat d'étalonnage raccordé à 5 points, inclus

(25 mbar)

- · Pression absolue de 5 à 1000 psia
- Temps de réponse rapide
- Haute fiabilité et stabilité
- Mesure pression absolue et jauge
- Pression d'épreuve minimum de 300%

Transducteurs de pression - Voir Les Produits Associés

Logiciel d'étalonnage Type WIKA-CAL

Fiche technique WIKA CT 95.10

Applications

- Création de certificats d'étalonnage pour des instruments mécaniques et électriques de mesure de pression
- Etalonnage complètement automatique avec contrôleurs de pression
- Pour l'enregistrement de données nécessaires à l'établissement du certificat, en combinaison avec les terminaux de la série CPU6000
- Détermination des masses à charger pour les balances manométriques
- Etalonnage d'instruments de mesure de pression relative avec des étalons en pression absolue et inversement

Particularités

- Modèles pour la création de certificats d'étalonnage et protocoles d'enregistrement
- Nouveau concept d'étalonnage pour la création facilitée de certificats
- Fonctionnement simple et installation aisée du logiciel
- Base de données SQL indépendante de Microsoft® Access®

Logiciel d'étalonnage WIKA-CAL

Etalonnage à l'aide d'Excel

A partir des points de mesure, le logiciel Excel va nous permettre de tracer la courbe de tendance et de donner son équation. A partir de celle-ci, on pourra par la suite connaître une température quelconque de la CTN par la mesure de sa résistance

Pour étalonner correctement un capteur, il est parfois nécessaire de comparer les valeurs lues aux valeurs correctes attendues afin de corriger les erreurs (calibrage de l'appareil)

Exemple 1 (à reproduire)

On prépare des solutions étalons et on mesure leur conductance à l'aide d'un conductimètre. Les valeurs de concentrations et de conductances de ces solutions sont reportées dans le tableau ci-dessous :

c (mol·L ⁻¹)	1,0	0,70	0,49	0,21	0,10	0,0
G (mS)	1,30	0,89	0,66	0,28	0,12	0,0

On demande de/d'

- •tracer la courbe d'étalonnage correspondant à ces mesures sous Excel
- •afficher l'équation de la courbe correspondant au nuage de points obtenus et le coefficient de corrélation de la courbe

NB. La concentration molaire du soluté est c = n/V où n =quantité de matière de soluté(mol) et V le volume de solution(l).

Exercice

On chauffe un ballon contenant de l'eau et de la glace jusqu'à ébullition. La thermistance est immergée dans ce milieu ainsi qu'un thermomètre pour suivre l'évolution de la température. La thermistance est reliée à un Ohmmètre.

On a relevé les valeurs suivantes

Température (°C)	0	5	10	15	20	25	30	35	40	45
Résistance (kΩ)	6,4	4,78	4,06	3,26	2,53	2,03	1,63	1,31	1,05	0,85
Température (°C)	50	55	60	65	70	75	80	85	90	95
Résistance (kΩ)	0,69	0,56	0,46	0,38	0,32	0,28	0,22	0,19	0,16	0,14

On demande de tracer la courbe d'étalonnage du capteur sur le tableur Excel et de donner l'équation de la courbe de tendance.

Étalonnage des capteurs

L'étalonnage simple consiste à fixer tous les paramètres d'influence et ne faire varier que la seule grandeur à mesurer; L'étalonnage absolu consiste à fournir les valeurs de la grandeur à mesurer par des étalons ou par des éléments de référence de très grande précision.

L'étalonnage multiple tient compte de toutes les grandeurs d'influence, il s'agit d'un ensemble d'étalonnages successifs qui détermine la dépendance de la grandeur principale vis-à-vis des grandeurs d'influence. L'étalonnage relatif est l'utilisation d'un capteur dont on connaît la courbe d'étalonnage et dont la stabilité est assez grande.

Le capteur à étalonner et le capteur étalonné sont soumis tous les deux aux mêmes contraintes et dans les mêmes conditions.

C'est alors par comparaison qu'on établit la courbe d'étalonnage du capteur.