Jednostajna ciągłość i lipschitzowskość

Zadanie 1. Niech $f:(a,b)\mapsto \mathbb{R}$ będzie funkcją jednostajnie ciagłą. Pokaż, że tę funkcję da się rozszerzyć do funkcji ciągłej $\widetilde{f}:[a,b]\mapsto \mathbb{R}$, tzn. istnieją odpowiednie jednostronne granice na krańcach przedziału.

WSKAZÓWKA: Ciągi Cauchy'ego.

Zadanie 2. Pokaż, że złożenie funkcji jednostajnie ciągłych jest funkcją jednostajnie ciągłą, oraz że złożenie funkcji lipschitzowskich jest funkcją lipschitzowską.

Zadanie 3. Pokaż, że suma funkcji jednostajnie ciągłych o tej samej dziedzinie jest funkcją jednostajnie ciągłą.

Czy podobne twierdzenie zachodzi dla iloczynu? Rozpatrz przypadki odcinków ograniczonych i nieograniczonych.

Zadanie 4. Uzasadnij, że funkcja jednostajnie ciągła na ograniczonym przedziale (a,b) jest ograniczona.

Zadanie 5. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją ciągłą, dla której istnieją skończone granice w $\pm \infty$. Pokaż, że f jest jednostajnie ciągła oraz ograniczona.

Zadanie 6. Zbadaj jednostajną ciągłość oraz lipschitzowskość funkcji na podanych zbiorach:

- $f(x) = \sin x$ na $(0, \pi)$, oraz na \mathbb{R} ,
- $f(x) = \sqrt{x}$ na [0, 1], oraz na $[1, \infty)$,
- $f(x) = \sin x^2$ na $(0, 2\pi)$, oraz na \mathbb{R} ,
- $f(x) = \frac{x}{|x|+1}$ na \mathbb{R} .

Zadanie 7. W zależności od parametru $a \in \mathbb{R}$ zbadaj ciągłość oraz jednostajną ciągłość funkcji

$$f(x) = \begin{cases} \frac{1 - \cos(x - 2)}{x^2 - 4x + 4} & x \in (2, \infty) \\ a & x = 2 \end{cases}$$

na zbiorze $[2, +\infty)$.

Wypukłość funkcji

Zadanie 8. Niech f będzie funkcją wypukłą, a g funkcją wypukłą i rosnącą. Pokaż, że $g \circ f$ jest wypukła.

Uzasadnij, że założenie monotoniczności jest konieczne.

Zadanie 9. Załóżmy, że f jest funkcją wypukłą na odcinku [0,a] oraz f(0)=0. Pokaż, że dla dowolnych $x,y:x+y\in(0,a)$ zachodzi $f(x)+f(y)\leq f(x+y)$. Korzystając z tego faktu uzasadnij, że dla $x,y,z:x+y+z\in(0,\pi)$ zachodzi

$$\sin x + \sin y + \sin z \ge \sin(x + y + z)$$

Badanie przebiegu funkcji

Zadanie 10. Wyznacz $p \in R$ tak, aby funkcja $f(x) = x^3 - px + 5x - 2$ osiągała minimum w punkcie x = 5.

Zadanie 11. Zbadaj wypukłość i punkty przegięcia funkcji $f(x) = x^2 \ln x$.

Zadanie 12. Pokaż, że dla każdego $x \in [0, \frac{\pi}{4}]$ zachodzi nierówność $sin(\operatorname{tg} x) \geq x$.

Zadanie 13. Pokaż, że dla każdego $x\in (-1,+\infty)$ zachodzi tożsamość $\arg x+\arg \tan \frac{1-x}{1+x}=\frac{\pi}{4}.$

Zadanie 14. Przeprowadź analizę przebiegu funkcji (granice na krańcach przedziałów, ekstrema, punkty przegięcia, przedziały monotoniczności, wypukłość):

- $f(x) = 2x + 2e^{-x}$ na \mathbb{R} ,
- $g(x) = x + \frac{1}{2}e^{-2x}$ na \mathbb{R} ,
- $h(x) = x^{-x} \operatorname{na}(0, \infty)$.