```
clc; clear all; clf;
```

Avance 2: Entrenamiento, adecuacion y evaluacion de modelos

Para este avance se tomaran los diferentes datasets obtenidos en el avance 1 y se procedera a buscar el mejor /mejores modelos de clasificación para predecir la posibilidad de intento de suicidio recurrente.

En un primer momento se probaran diferentes modelos, haciendo uso de la herramienta "Classification Learner" de Matlab, debido a su facilidad y rapidez para probar multiples modelos simultaneamente. Se tomaran los pares dataset-modelo que mejores resultados den (preferiblemente por encima de 70% de acierto) para seguirlos trabajando, en cuanto a selección de parametros y ajuste de hiperparametros.

Para la seleccion de parametros y ajuste de hiperparametros en donde sea posible se usaran herramientas interactivas o automaticas que provee MAtlab.

Como metodos de validacion y calificacion de los modelos se prentenden usar los dados a continuacion (To Do: añadir breve descripcion de cada uno)

- Score
- Matriz de confusion
- ROC curve

Debido al problema a resolver, al momento de realizar predicciones se generaran dos. Un deterrministica y otra probabilistica.

Descripcion de los data set de entrada.

En el avance 1 se obtuvieron 4 datasets despues del proceso de limpieza, los cuales se describiran a continuacion:

- cds_imputed : dataset con 33 carateristicas y 4146 registros
- cds: dataset con 28 caracteristicas 4146 registros,
- cds_few : 33 caracteristicas y 655 registros
- cds_fem_minus_alcohol: 32 caracteristicas 1690 registros.

Con estos dataset se procede realizar un enntrenamiento exploratorio de modelos , para continuar con los mas prometedores. Sin embargo, es necesarion definir el concepto de "mas prometedor". En este primer momeno se tendra en cuanta la exactitud del modelos

Es de utilidad tener en cuenta que para lo expuesto a continuación fue usada validación cruzaada con "k-folds" (k=5), y el valor de precision presentado es correspondiente a esto.

Resultados cds

1.1 Tree Last change: Fine Tree	Accuracy: 63.8% 28/28 features	1.14 🏠 SVM Last change: Coarse Gaussian SVM	
1.2 🏠 Tree Last change: Medium Tree	Accuracy: 65.1% 28/28 features	1.15 A KNN Last change: Fine KNN	Accuracy: 5 28/28 fea
1.3 Tree Last change: Coarse Tree		1.16 🏠 KNN Last change: Medium KNN	Accuracy: 6 28/28 fea
1.4 🏠 Linear Discriminant Last change: Linear Discriminant		1.17 🏠 KNN Last change: Coarse KNN	Accuracy: 6 28/28 fea
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discriminal		1.18 A KNN Last change: Cosine KNN	Accuracy: 6 28/28 fea
1.6 \(\frac{1}{12}\) Logistic Regression Last change: Logistic Regression		1.19 🏠 KNN Last change: Cubic KNN	Accuracy: 6 28/28 fea
1.7 \(\triangle \) Naive Bayes Last change: Gaussian Naive Baye		1.20 🏠 KNN Last change: Weighted KNN	Accuracy: 6 28/28 fea
1.8 A Naive Bayes Last change: Kernel Naive Bayes		1.21 🏠 Ensemble Last change: Boosted Trees	
1.9 🖒 SVM Last change: Linear SVM		1.22 🏠 Ensemble Last change: Bagged Trees	
1.10 🖒 SVM Last change: Quadratic SVM	Accuracy: 65.3% 28/28 features	1.23 🏠 Ensemble Last change: Subspace Discrimina	
1.11 🖒 SVM Last change: Cubic SVM	Accuracy: 63.8% 28/28 features	1.24 🏠 Ensemble Last change: Subspace KNN	
1.12 🖒 SVM Last change: Fine Gaussian SVM		1.25 🏠 Ensemble Last change: RUSBoosted Trees	
1.13 🖒 SVM Last change: Medium Gaussian SV		2 🖒 Quadratic Discriminant Last change: 'Covariance structure'	

Resultados cds_imputed

1.1 🏠 Tree	Accuracy: 64.5%	1.14 🏠 SVM	
Last change: Fine Tree	33/33 features	Last change: Coarse Gaussian SVM	
1.2 🏠 Tree		1.15 🏠 KNN	Accuracy: 6
Last change: Medium Tree		Last change: Fine KNN	33/33 fee
1.3 Tree Last change: Coarse Tree	Accuracy: 66.8%	1.16 🏠 KNN	Accuracy: 6
	33/33 features	Last change: Medium KNN	33/33 fee
1.4 🏠 Linear Discriminant		1.17 🏠 KNN	Accuracy: 6
Last change: Linear Discriminant		Last change: Coarse KNN	33/33 fee
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discrimina		1.18 A KNN Last change: Cosine KNN	Accuracy: 6 33/33 fe
1.6 🏠 Logistic Regression Last change: Logistic Regression		1.19 A KNN Last change: Cubic KNN	Accuracy: 6 33/33 fe
1.7 🏠 Naive Bayes Last change: Gaussian Naive Baye		1.20 A KNN Last change: Weighted KNN	Accuracy: 6 33/33 fe
1.8 🏠 Naive Bayes Last change: Kernel Naive Bayes		1.21 🏠 Ensemble Last change: Boosted Trees	
1.9 🖒 SVM	Accuracy: 66.8%	1.22 🏠 Ensemble	
Last change: Linear SVM	33/33 features	Last change: Bagged Trees	
1.10 🏠 SVM Last change: Quadratic SVM	Accuracy: 65.4% 33/33 features	1.23 🏠 Ensemble Last change: Subspace Discriminal	
1.11 ☆ SVM	Accuracy: 63.3%	1.24 🏠 Ensemble	Accuracy: 6
Last change: Cubic SVM	33/33 features	Last change: Subspace KNN	33/33 fe
1.12 🏠 SVM	Accuracy: 61.8%	1.25 🏠 Ensemble	
Last change: Fine Gaussian SVM	33/33 features	Last change: RUSBoosted Trees	
1.13 🏠 SVM Last change: Medium Gaussian SV	Accuracy: 65.5% /M 33/33 features	2 \(\triangle \) Quadratic Discriminant Last change: 'Covariance structure'	

Resultados cds_few

Para este dataset algunos modelos se hicieron individualmente, porque presentaban problemas con las caracteristicas 'antec_tran', 'tipo_ss_l', 'suici_fm_a' y 'tipo_SS_P ya que la mayoria o casi todos sus valores son iguales o no presentan variacion con respecto a una de las clases por hallar, por lo que no aportan informacion

1.1 🏠 Tree	Accuracy: 53.9%	1.15 A KNN	Accuracy: 5
Last change: Fine Tree	33/33 features	Last change: Fine KNN	33/33 fe
1.2 🏠 Tree	Accuracy: 60.5%	1.16 🏠 KNN	Accuracy: 6
Last change: Medium Tree	33/33 features	Last change: Medium KNN	33/33 fe
1.3 🏠 Tree	Accuracy: 64.4% 33/33 features	1.17 🏠 KNN	Accuracy: 6
Last change: Coarse Tree		Last change: Coarse KNN	33/33 fe
1.4 🏠 Linear Discriminant	Failed	1.18 A KNN Last change: Cosine KNN	Accuracy: 6
Last change: Linear Discriminant	33/33 features		33/33 fe
1.5 🖒 Quadratic Discriminant Last change: Quadratic Discriminar		1.19 🏠 KNN Last change: Cubic KNN	Accuracy: 6 33/33 fe
1.6 🖒 Logistic Regression Last change: Logistic Regression		1.20 🏠 KNN Last change: Weighted KNN	Accuracy: 5 33/33 fe
1.7 🏠 Naive Bayes	Failed	1.21 🏠 Ensemble	Accuracy: 5
Last change: Gaussian Naive Baye	s 33/33 features	Last change: Boosted Trees	33/33 fe
1.8 🏠 Naive Bayes		1.22 🏠 Ensemble	Accuracy: 5
Last change: Kernel Naive Bayes		Last change: Bagged Trees	33/33 fe
1.9 ☆ SVM	Accuracy: 61.2%	1.23 🏠 Ensemble	Accuracy: 6
Last change: Linear SVM	33/33 features	Last change: Subspace Discrimina	nt 33/33 fe
1.10 🏠 SVM	Accuracy: 57.7%	1.24 🏠 Ensemble	
Last change: Quadratic SVM	33/33 features	Last change: Subspace KNN	
		1.25 🏠 Ensemble Last change: RUSBoosted Trees	
		2 🏠 Linear Discriminant Last change: 'Covariance structure'	
		3 🖒 Quadratic Discriminant Last change: 'Covariance structure'	
1.14 🏠 SVM	Accuracy: 61.1%	4 🏠 Naive Bayes	Accuracy: 5

Resultados cds_few_minus_alcohol

Last change: Coarse Gaussian SVM

33/33 features

Last change: Removed 3 features

1.1 🏠 Tree Last change: Fine Tree	Accuracy: 54.2% 32/32 features	1.15 A KNN Last change: Fine KNN	Accuracy: 53 32/32 fea
1.2 Tree Last change: Medium Tree	Accuracy: 55.6% 32/32 features	1.16 A KNN Last change: Medium KNN	Accuracy: 55 32/32 fea
1.3 Tree Last change: Coarse Tree		1.17 🏠 KNN Last change: Coarse KNN	Accuracy: 50 32/32 fea
1.4 🏠 Linear Discriminant Last change: Linear Discriminant		1.18 A KNN Last change: Cosine KNN	Accuracy: 55 32/32 fea
1.5 \(\sigma\) Quadratic Discriminant Last change: Quadratic Discrimina		1.19 A KNN Last change: Cubic KNN	Accuracy: 5- 32/32 fea
1.6 \(\triangle\) Logistic Regression Last change: Logistic Regression		1.20 A KNN Last change: Weighted KNN	Accuracy: 55 32/32 fea
1.7 \(\triangle \) Naive Bayes Last change: Gaussian Naive Baye	Failed es 32/32 features	1.21 🏠 Ensemble Last change: Boosted Trees	
1.8 Naive Bayes Last change: Kernel Naive Bayes		1.22 🏠 Ensemble Last change: Bagged Trees	
1.9 🖒 SVM Last change: Linear SVM	Accuracy: 58.5% 32/32 features	1.23 🏠 Ensemble Last change: Subspace Discrimina	
1.10 SVM Last change: Quadratic SVM		1.24 🏠 Ensemble Last change: Subspace KNN	
1.11 🖒 SVM Last change: Cubic SVM	Accuracy: 53.3% 32/32 features	1.25 🏠 Ensemble Last change: RUSBoosted Trees	Accuracy: 57 32/32 fea
1.12 SVM Last change: Fine Gaussian SVM	Accuracy: 54.3% 32/32 features	2 🏠 Linear Discriminant Last change: 'Covariance structure'	Accuracy: 6
1.13 🖒 SVM Last change: Medium Gaussian SV	Accuracy: 56.5% /M 32/32 features	3 🖒 Quadratic Discriminant Last change: 'Covariance structure'	
1.14 🏠 SVM	Accuracy: 58.4%	4 🏠 Naive Bayes	Accuracy: 5

Por motivos exploratorios se realizaron pruebas aplicandole PCA a los datos, pero los resultadon en general fueron inferiores(en terminos de precision) a los obtenidos sin esta transformacion. (¿Uno si deberia hacer PCA en datos categoricos?)

32/32 features

Last change: Removed 3 features

28/32 fea

Last change: Coarse Gaussian SVM

Como se puede notar, ningun par dataset-modelo obtuvo una precision mayore al 70% tal y como se habia definido inicialmente para su aceptacion. Por este motivo se tomara aquel dataset que produjo el modelo con la mayor precision(cds_imputed) y los mejores modelos obtenidos a partir de este.

Coarse Tree, Linear discriminant, Logistic regresion, SVM coarse emse

Feature selection

Bucando reducir la dimensionalidad y explorar direferente opciones se pretende realizar un proceso de seleccion de caracteriscas. Esto se hara filtrando aquellas caracteristicas menos importantes para la respuesta 'inten_prev' mediante el algoritmo MRMR(Minimum Redundancy Maximun Relevance), del cual se puede obtener el "ranking" de importancia de los predictores teniendo en cuentas la respuesta.

Se entrenaran 2 modelos, uno con todas las caracteristicas y adicionalmente otro con el conjunto de las 7 mas importantes

```
idx = fscmrmr(cds imputed, 'inten prev');
most_signif_features = cds_imputed.Properties.VariableNames(idx(1:7)).'
most_signif_features = 7×1 cell
'antec tran'
'hist_famil'
'muerte_fam'
'antec_v_a'
'prob consu'
'plan_suici'
'gp_psiquia'
less signif features =cds imputed.Properties.VariableNames(idx(end-4:end)).'
less_signif_features = 5×1 cell
'escolarid'
'esco educ'
'tipo ss C'
'trab_socia'
'sexo '
```

Optimizacion de hiperparametros

Se presentara el proceso para cada uno de los modelos reaizados

Arboles de decision:

Presentacion de resultados usando el data set completo y el reducido despues de la seelccion de caracteristicas

caso se tendran en cuenta varias cosas:

- La precision del modelo, mientras mayor mejor, sin llegar a un caso de sobreajuste.
- El numero de parametros, en general es de interes obtener modelos que con un bajo numero de parametros sean capaces de cumplir con su objetivo a cabalidad, esto debido a que en un caso real es mas dificil y costoso, en terminop de dinero y timepo obtener mas informacion. En este caso no le daremos mayor importancia a unos parametrso sobre otros, nos concentraremos principalmente en el numero de ellos.
- Un ultimo factor que se tendra en cuenta para preferir un modelo sobre otro es la presdisposicion de falsos positvios hacia cierta clase particular, i.e. en este contexto no seria nada bueno identificar erroneamente a aquellas personas con tendencia repetitiva al intento de suicidio, mientras que identificar erroneamente a aquellos que en realidad no seria mas aceptable. Esto se tendra en cuenta al observar matrices de confusion despues de realizar la optimizacion de hiperparametros.

When you open the plot, the rows show the true class, and the columns show the predicted class. If you are using holdout or cross-validation, then the confusion matrix is calculated using the predictions on the held-out observations. The diagonal cells show where the true class and predicted class match. If these diagonal cells are blue, the classifier has classified observations of this true class are classified correctly.

Conclusiones

Select Features to Include

In Classification Learner, you can specify different features (or predictors) to include in the model. See if you can improve models by removing features with low predictive power. If data collection is expensive or difficult, you might prefer a model that performs satisfactorily without some predictors.

dando prioridad a los sugeridos por el profesor: Regresion logistica, SVM, Arboles de decision, Redes neuronales, LMP, Random Fores

Intent_prev $\{1 = SI; 2 = NO\}$

Refs:

https://www.mathworks.com/help/stats/feature-selection-and-feature-transformation.html

https://www.mathworks.com/help/stats/train-classification-models-in-classification-learner-app.html

https://www.mathworks.com/help/stats/assess-classifier-performance.html

https://towardsdatascience.com/intuitive-hyperparameter-optimization-grid-search-random-search-and-bayesian-search-2102dbfaf5b

https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a

https://towardsdatascience.com/workflow-of-a-machine-learning-project-ec1dba419b94

https://www.mathworks.com/help/stats/feature-selection.html

```
%Feature selection tests
%X = table2array([cds(:,1:2), cds(:, 4:end)])
%y = table2array(cds(:,3))
%ncaMdl = fscnca(X,y,'FitMethod','exact','Verbose',1,'Solver','lbfgs');
%Model1 = stepwiselm(X,Y,'constant','ResponseVar','ResResistant')
%Model2 = stepwiselm(X,Y,'linear','ResponseVar','ResResistant')
```

```
% figure
% semilogx(ncaMdl.FeatureWeights,'ro')
% xlabel('Feature index')
% ylabel('Feature weight')
% grid on
```

```
% cds_new = movevars(cds,'inten_prev','after','tipo_ss_S');
```

```
% [idx,scores] = fscmrmr(cds_new,"antec_tran");
% bar(scores(idx))
% xlabel('Predictor rank')
% ylabel('Predictor importance score')
```

```
% idx(1:5)
% cds_new.Properties.VariableNames()
% cds_new.Properties.VariableNames(idx(1:5))
```

```
% cds_new.Properties.VariableNames(idx(end-4:end))
```