Equivalenza di Espressioni

- Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- L'equivalenza è importante nella pratica perché i DBMS cercano di eseguire **espressioni equivalenti** a quelle date, ma **meno "costose"**

Equivalenza Importante

Push selections down:

$$\sigma_{A=k}(R_1 \bowtie R_2) \equiv R_1 \bowtie \sigma_{A=k}(R_2)$$

dove A è un attributo di R_2 e k è una costante sul dominio di A

 Riduce in modo significativo la dimensione del risultato intermedio, e quindi il costo dell'operazione

Equivalenza Importante

Push projections down:

$$\pi_{X_1Y_2}\left(R_1\bowtie R_2\right)\equiv R_1\bowtie \pi_{Y_2}\left(R_2\right)$$

dove X_1 sono gli attributi di R_1 , X_2 sono gli attributi di R_2 , e gli attributi X_2-Y_2 non sono coinvolti nel join

 Riduce in modo significativo la dimensione del risultato intermedio, e quindi il costo dell'operazione

Ottimizzazione delle Interrogazioni

- Query processor (od ottimizzatore): un modulo del DBMS
- Più importante nei sistemi attuali che in quelli "vecchi" (gerarchici e reticolari):
 - Le interrogazioni sono espresse **ad alto livello** (ricordare il concetto di indipendenza dei dati):
 - insiemi di *n*-uple
 - poca proceduralità
- L'ottimizzatore sceglie la **strategia realizzativa** (di solito fra diverse alternative), a partire dall'istruzione SQL

Esecuzione delle Interrogazioni

Profili delle Relazioni

- Informazioni quantitative:
 - cardinalità di ciascuna relazione
 - dimensioni delle *n*-uple
 - dimensioni dei valori
 - numero di valori distinti degli attributi
 - valore minimo e massimo di ciascun attributo
- Sono memorizzate nel "catalogo" e aggiornate con comandi del tipo update statistics
- Utilizzate nella fase finale dell'ottimizzazione, per stimare le dimensioni dei risultati intermedi

Ottimizzazione Algebrica

- Il termine **ottimizzazione** è **improprio** (anche se efficace) perché il processo utilizza **euristiche**
- Si basa sulla nozione di **equivalenza**:
 - Due espressioni sono equivalenti se producono lo stesso risultato qualunque sia l'istanza attuale della base di dati
- I DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"
- Euristica fondamentale:
 - selezioni e proiezioni il più presto possibile (per ridurre le dimensioni dei risultati intermedi):
 - "push selections down"
 - "push projections down"

Grafo

- Un **grafo** G = (V, E) consiste in:
 - un insieme V di vertici (o nodi)
 - ullet un insieme E di coppie di vertici, detti archi
 - ogni arco connette due vertici
- Grafo orientato (o diretto): ogni arco è orientato e rappresenta relazioni orientate tra coppie di oggetti
- Grafo non orientato (o non diretto): gli archi non hanno un orientazione e rappresentano relazioni simmetriche tra coppie di oggetti

Cammino e Ciclo

- Un **cammino** in un grafo G = (V, E) da un vertice x ad un vertice y è dato da una sequenza di vertici $(v_0, v_1, ..., v_k)$ di V con $v_0 = x$ e $v_k = y$ tale che per ogni $1 \le i \le k$, l'arco $(v_{i-1}, v_i) \in E$
- Un cammino $(v_0, v_1, ..., v_k)$ tale che $v_0 = v_k$ è detto ciclo
- Un grafo diretto è detto aciclico se non contiene cicli

Albero

- Un grafo non orientato si dice connesso se esiste un cammino tra ogni coppia di vertici.
- Un albero è un grafo non orientato nel quale due vertici qualsiasi sono connessi da uno e un solo cammino

- Alberi:
 - Foglie: dati (relazioni, file)
 - Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

• Alberi:

- Foglie: dati (relazioni, file)
- Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

$$\sigma_{A=10}(R_1 \bowtie R_2)$$

- Alberi:
 - Foglie: dati (relazioni, file)
 - Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

$$\sigma_{A=10}(R_1 \bowtie R_2)$$

- Alberi:
 - Foglie: dati (relazioni, file)
 - Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

$$\sigma_{A=10}(R_1 \bowtie R_2)$$
 $R_1 \bowtie \sigma_{A=10}(R_2)$

- Alberi:
 - Foglie: dati (relazioni, file)
 - Nodi intermedi: operatori (operatori algebrici, poi effettivi operatori di accesso ai dati)

$$\sigma_{A=10}(R_1\bowtie R_2)$$

$$R_1 \bowtie \sigma_{A=10}(R_2)$$

Procedura Euristica di Ottimizzazione

- 1. **Decomporre** le **selezioni congiuntive** in successive selezioni atomiche
- 2. Anticipare il più possibile le selezioni
- 3. In una sequenza di selezioni, **anticipare** le più **selettive**
- 4. Combinare prodotti cartesiani e selezioni per formare join
- 5. **Anticipare** il più possibile le **proiezioni** (anche introducendone di nuove)

- \bullet $R_1(ABC)$, $R_2(DEF)$, $R_3(GHI)$
- Interrogazione:

SELECT A, E

FROM R_1, R_2, R_3

WHERE

B > 100 AND H = 7 AND I > 2 AND C = D AND F = G

- dove:
 - FROM: prodotto cartesiano
 - WHERE: selezione
 - SELECT: proiezione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

• diventa (passi 1, 2, 3 e 4)

L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

• diventa (passi 1, 2, 3 e 4)

$$\pi_{AE}\left(\sigma_{B>100}(r_1)\bowtie_{C=D} r_2\right)\bowtie_{F=G} \sigma_{I>2}\left(\sigma_{H=7}(r_3)\right)$$

• L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

• diventa (passi 1, 2, 3 e 4)

$$\pi_{AE}\left(\sigma_{B>100}(r_1)\bowtie_{C=D} r_2\right)\bowtie_{F=G} \sigma_{I>2}\left(\sigma_{H=7}(r_3)\right)$$

diventa (passo 5)

L'espressione

$$\pi_{AE}\left(\sigma_{B>100} \text{ AND }_{H=7} \text{ AND }_{I>2} \text{ AND }_{C=D} \text{ AND }_{F=G}(r_1 \bowtie r_2 \bowtie r_3)\right)$$

• diventa (passi 1, 2, 3 e 4)

$$\pi_{AE}\left(\sigma_{B>100}(r_1)\bowtie_{C=D} r_2\right)\bowtie_{F=G} \sigma_{I>2}\left(\sigma_{H=7}(r_3)\right)$$

diventa (passo 5)

$$\pi_{AE} \left(\pi_{AEF}((\pi_{AC}(\sigma_{B>100}(r_1))) \bowtie_{C=D} r_2) \bowtie_{F=G} \pi_{G}(\sigma_{I>2}(\pi_{GI}(\sigma_{H=7}(r_3))) \right)$$

- Si consideri il seguente schema di base di dati
 - Film(<u>CodiceFilm</u>, Titolo, CodiceRegista, Anno)
 - Produzione(<u>CasaProduzione</u>, Nazionalità, <u>CodiceFilm</u>, Costo, Incasso1annoSala)
 - Artista(<u>CodiceAttore</u>, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
 - Interpretazione(<u>CodiceFilm</u>, <u>CodiceAttore</u>, Personaggio, SessoPersonaggio)
 - Regista(<u>CodiceRegista</u>, Cognome, Nome, Sesso, DataDiNascita, Nazionalità)
 - Noleggio(<u>CodiceFilm</u>, Incasso1annoVideo, Incasso1annoDVD)
- Formulare in algebra relazionale la seguente interrogazione:
 - Nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

- Formulare in algebra relazionale la seguente interrogazione:
 - Nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

- Formulare in algebra relazionale la seguente interrogazione:
 - Nomi e cognomi dei registi che hanno diretto film che hanno incassato il primo anno di uscita meno nelle sale che per il noleggio di DVD

```
\piN.C^{(}
   \pi_{N.C.CF}(\pi_{N.C.CR}(Regista) \bowtie \pi_{CF.CR}(Film))
      M
   \pi CF^{(\sigma)}Inc1Sala<Inc1DVD<sup>(</sup>
             \piInc1Sala,CF(Produzione)
                M
             \pi_{\text{Inc1DVD.CF}}(\text{Noleggio})
```

Relazioni Derivate

- Relazioni di base: contenuto autonomo
- Relazioni derivate: contenuto funzione del contento di altre relazioni
 - Rappresentazioni diverse per gli stessi dati
 - Definite per mezzo di interrogazioni
 - Le relazioni derivate possono essere definite su altre relazioni derivate ma...
- Due tipi di relazioni derivate:
 - Viste materializzate e
 - Viste virtuali, o più semplicemente viste

Esempio di Vista

Afferenza

Impiegato	Reparto
Rossi	А
Neri	В
Bianchi	В
Verdi	С

Direzione

Reparto	Саро
А	Mori
В	Bruni
С	Leoni

• Una vista:

 $\mathbf{Supervisione} = \pi_{\mathbf{Impiegato}, \mathbf{Capo}} \left(\mathbf{Afferenza} \bowtie \mathbf{Direzione} \right)$

Viste Materializzate

- Relazioni derivate memorizzate nella base di dati
- Vantaggi:
 - Immediatamente disponibili per le interrogazioni
- Svantaggi:
 - Ridondanti
 - Appesantiscono gli aggiornamenti
 - Sono raramente supportate dai DBMS

Viste Virtuali

- Relazioni derivate non memorizzate nella base di dati
- Sono supportate da tutti i DBMS
- Una interrogazione su una vista è eseguita "ricalcolando" la vista (o quasi)

Interrogazioni su viste

- Sono eseguite sostituendo alla vista la sua definizione:
- L'interrogazione

• è eseguita come

```
\begin{split} \sigma_{\text{Capo='Leoni'}}\left(\text{Supervisione}\right) = \\ &= \sigma_{\text{Capo='Leoni'}}(\\ & \qquad \qquad \pi_{\text{Impiegato,Capo}}\left(\text{Afferenza}\bowtie\text{Direzione}\right) \\ & \qquad \qquad \right) \end{split}
```

Perché le viste?

- Le viste sono uno **strumento di programmazione**:
 - Si può semplificare la scrittura di interrogazioni: espressioni complesse e sotto-espressioni ripetute
- L'uso delle viste virtuali non influisce sull'efficienza delle interrogazioni

Supponiamo di avere le seguenti relazioni:

$$R_1(ABC)$$
, $R_2(DEF)$, $R_3(GH)$

 \bullet e di definire la seguente vista R:

$$R = \sigma_{A>D}(R_1 \bowtie R_2)$$

- Un'interrogazione può essere definita:
 - Senza vista:

$$\sigma_{B=G}\left(\sigma_{A>D}\left(R_1\bowtie R_2\right)\bowtie R_3\right)$$

Con vista:

$$\sigma_{B=G}(R\bowtie R_3)$$

Viste e aggiornamenti

- Aggiornare una vista:
 - modificare le relazioni di base in modo che la vista, "ricalcolata", rispecchi l'aggiornamento
- L'aggiornamento sulle relazioni di base corrispondente a quello specificato sulla vista deve essere univoco
 - In generale però non è univoco!
- Ben pochi aggiornamenti sono ammissibili sulle viste

Convenzione

- Ignoriamo il join naturale
 - Vale a dire che non consideriamo implicitamente condizioni su attributi con nomi uguali
- Per "riconoscere" attributi con lo stesso nome gli premettiamo il nome della relazione seguita da "."
- Usiamo "assegnazioni", cioè viste, per ridenominare le relazioni
 - E gli attributi solo quando serve per l'unione

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\piMatr,Nome,Stip,MatrC,NomeC,StipC \Big( \sigma_{\text{Stip}}> \text{Stip} \Big) \Big( \sigma_{\text{Stip}}> \text{Stip} \Big( \sigma_{\text{Stip}}> \sigma_{\text{Stip}} \Big) \Big) \Big) 
\rho_{\text{MatrC,NomeC,StipC,EtàC}\leftarrow \text{Matr,Nome,Stip,Età} \Big( \sigma_{\text{Imp}} \Big) \Big) \Big) 
(\text{Sup} \bowtie_{\text{Imp}=\text{Matr}} \sigma_{\text{Imp}}) \Big) \Big)
```

```
\label{eq:matr_Nome} $^{\pi}$ Matr, Nome, Stip, MatrC, NomeC, StipC ( $^{\sigma}$ Stip>StipC ( $^{\rho}$ MatrC, NomeC, StipC, EtàC \leftarrow Matr, Nome, Stip, Età (Imp) $$ \bowtie $$ (Sup \bowtie_{Imp=Matr} Imp)) $$ )
```

```
\label{eq:matr_Nome} \begin{split} ^{\pi} & \mathsf{Matr}, \mathsf{Nome}, \mathsf{Stip}, \mathsf{MatrC}, \mathsf{NomeC}, \mathsf{StipC} \Big( \\ & {}^{\sigma} \mathsf{Stip} \!\!>\! \mathsf{StipC} \Big( \\ & {}^{\rho} \mathsf{MatrC}, \mathsf{NomeC}, \mathsf{StipC}, \mathsf{Et\grave{a}C} \!\!\leftarrow\! \mathsf{Matr}, \mathsf{Nome}, \mathsf{Stip}, \mathsf{Et\grave{a}}^{(\mathsf{Imp})} \\ & \bowtie \\ & (\mathsf{Sup} \bowtie_{\mathsf{Imp} = \mathsf{Matr}} \mathsf{Imp}) \Big) \Big) \end{split}
```

Capi := Imp

```
\piMatr, Nome, Stip, MatrC, NomeC, StipC
     <sup>σ</sup>Stip>StipC(
       \rhoMatrC,NomeC,StipC,EtàC\leftarrowMatr,Nome,Stip,Età^{(Imp)}
             M
       (Sup \bowtie_{Imp=Matr} Imp))
                             Capi := Imp
\piImp.Matr,Imp.Nome,Imp.Stip,Capi.Matr,Capi.Nome,Capi.Stip
  \sigmaImp.Stip>Capi.Stip(
     Capi
          <sup>⋈</sup>Capi.Matr=Capo
     (Sup \bowtie_{Imp=Imp.Matr} Imp))
```

Calcolo Relazionale

- Famiglia di linguaggi dichiarativi basati sul calcolo dei predicati del primo ordine
- Diverse versioni:
 - calcolo relazionale sui domini
 - calcolo sui domini, in breve
 - calcolo su n-uple con dichiarazione di range
 - calcolo sulle *n*-uple, in breve

Calcolo sui domini

• Sintassi: le espressioni hanno la forma:

$${A_1: x_1, ..., A_k: x_k | f}$$

- dove:
 - \bullet f è una **formula** (con connettivi Booleani e quantificatori)
 - A_i è un nome di **attributo**
 - x_i è un nome di **variabile**
 - $A_1: x_1, ..., A_n: x_n$ è chiamata **target list**, e descrive il risultato
- **Semantica**: il **risultato** è una relazione su $A_1, ..., A_k$ che contiene n-uple di valori per $x_1, ..., x_k$ che rendono vera la formula f rispetto a un'istanza di base di dati a cui l'espressione è applicata

Formula

- f è una **formula** secondo le seguenti **regole**:
 - Esistono formule atomiche:
 - $R(A_1:x_1,...,A_p:x_p)$, dove $R(A_1,...,A_p)$ è uno schema di relazione e $x_1,...,x_p$ sono variabili
 - $x\theta y$ o $x\theta c$, dove x e y sono variabili, c è una costante, e θ è un **operatore di confronto**
 - Se f_1 e f_2 sono formule, allora lo sono anche $f_1 \wedge f_2$, $f_1 \vee f_2$ e $\neg f_1$, e si possono usare le **parentesi**
 - Se f è una formula e x una variabile, allora anche $\exists x(f)$ e $\forall x(f)$ dove \exists e \forall sono **quantificatori**

Base di dati per gli esempi

- Impiegato(Matr, Nome, Età, Stipendio)
- Supervisione(Capo, <u>Impiegato</u>)

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

σStipendio>40(Impiegati)

{Matr: m, Nome: n, Età: e, Stipendio: s

Impiegati(Matr: m, Nome: n, Età: e, Stipendio: s) $\land s > 40$ }

 Trovare matricola e nome degli impiegati che guadagnano più di 40

$$\pi$$
Matr,Nome $\left(\sigma$ Stipendio>40 $\left(\text{Impiegati}\right)\right)$

{Matr: m, Nome: n

Impiegati(Matr: m, Nome: n, Età: e, Stipendio: s) $\land s > 40$ }

 Trovare matricola e nome dei capi i cui impiegati guadagnano più di 40

```
{Matr: c, Nome: n | Impiegati(Matr: c, Nome: n, Età: e, Stipendio: s) \land \forall m' \forall n' \forall e' \forall s':
```

Impiegati(Matr: m', Nome: n', Età: e', Stipendio: s') \land Supervisione(Capo: c, Impiegato: m') \land s' > 40}

Calcolo sui domini: discussione

- Pregi:
 - Dichiaratività
- Difetti:
 - Verbosità (tante variabili!)
 - Possibilità di scrivere espressioni senza senso (dipendenti dal dominio)
 - $\bullet \{A: x, B: y \mid R(A:x) \land y = y\}$
 - ullet Nel risultato compaiono tuple per qualsiasi valore del dominio di B
 - $\bullet \{A: x \mid \neg R(A:x)\}$
 - ullet Nel risultato compaiono tuple per qualsiasi valore del dominio di A che non compaiono in R
 - Nell'algebra tutte le espressioni hanno un senso (indipendenti dal dominio)

Calcolo sulle *n*-uple

• Le **espressioni** hanno la forma:

$$\{T|L|f\}$$

- dove:
 - T è la **target list**, con elementi del tipo
 - $\bullet Y: x.Z$
 - $\bullet x.Z \equiv Z:x.Z$
 - $x \cdot * \equiv X : x \cdot X$
 - x è una variabile
 - Y e Z sono liste di **attributi**
 - ullet Gli attributi di Z devono comparire nello schema della relazione che costituisce il campo di variabilità, o $\it range$, di $\it x$
 - ullet L è la $\it range list$, che elenca le variabili libere della formula $\it f$ con i relativi campi di variabilità, o $\it range$
 - ullet f è una **formula**

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

 $\{i.* \mid i(Impiegati) \mid i.Stipendio > 40\}$

 Trovare matricola e nome degli impiegati che guadagnano più di 40

$$\pi$$
Matr,Nome $\left(\sigma$ Stipendio>40 $\left(\text{Impiegati}\right)\right)$

 $\{i.(Matr, Nome) \mid i(Impiegati) \mid i.Stipendio > 40\}$

 Trovare matricola e nome dei capi i cui impiegati guadagnano più di 40

```
{Matr, Nome : i'. (Matr, Nome) | i'(Impiegati), s(Supervisione), i(Impiegati) | i'. Matr = s. Capo

\land s. Impiegato = i. Matr

\land i. Stipendio > 40}
```

Calcolo sulle *n*-uple: discussione

- Nel calcolo sulle n-uple le variabili rappresentano tuple quindi si ha minore verbosità
- Alcune interrogazioni importanti non si possono esprimere, in particolare le unioni: $R_1(AB) \cup R_2(AB)$
 - Ogni variabile nel risultato ha un solo range, mentre vorremmo n-uple sia della prima relazione che della seconda
 - Intersezione e differenza sono esprimibili
- Per questa ragione SQL (che è basato su questo calcolo) prevede un operatore esplicito di unione, ma non tutte le versioni prevedono intersezione e differenza

Calcolo e algebra: limiti

- Calcolo e algebra sono sostanzialmente equivalenti:
 - per ogni espressione del calcolo relazionale che sia indipendente dal dominio esiste un'espressione nell'algebra relazione equivalente a essa
 - per ogni espressione dell'algebra relazionale esiste un'espressione del calcolo relazionale equivalente a essa (e quindi indipendente dal dominio)
- Ci sono però interrogazioni interessanti non esprimibili:
 - calcolo di valori derivati: possiamo solo estrarre valori, non calcolarne di nuovi:
 - a livello di n-upla o di singolo valore (conversioni somme, differenze, etc.)
 - su insiemi di *n*-uple (somme, medie, etc.)
 - interrogazioni inerentemente ricorsive, come la chiusura transitiva

Chiusura transitiva

- Per ogni impiegato, trovare tutti i superiori
 - Cioè il capo, il capo del capo, e così via

Impiegato	Саро
Rossi	Lupi
Neri	Bruni
Lupi	Falchi

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Rossi	Falchi

Chiusura transitiva

- Nell'esempio precedente, basterebbe eseguire il join della relazione con se stessa, previa opportuna ridenominazione
- Aggiungiamo una nuova n—upla

Impiegato	Саро
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Falchi	Leoni

Impiegato	Superiore
Rossi	Lupi
Neri	Bruni
Lupi	Falchi
Falchi	Leoni
Rossi	Falchi
Lupi	Leoni
Rossi	Leoni

Chiusura transitiva

- Non esiste la possibilità di esprimere l'interrogazione che calcoli la chiusura transitiva di una relazione qualunque
- In algebra relazionale l'operazione si simulerebbe con un numero di join illimitato

Dati due insiemi di attributi disgiunti X₁ e X₂, una relazione r su X₁ ∪ X₂ e una relazione r₂ su X₂, la divisione r ÷ r₂ è una relazione su X₁ che contiene le n-uple ottenute come "proiezione" di n-uple di r che si combinano con tutte le n-uple di r₂ per formare n-uple di r:

$$r \div r_2 = \left\{ t_1 \text{ su } X_1 \mid \text{per ogni } t_2 \in r_2 \text{ esiste } t \in r \right.$$
$$\text{con } t[X_1] = t_1 \text{ e } t[X_2] = t_2 \right\}$$

Sedi

Uffici

Sedi

Filiale	Ufficio
Roma	Acquisti
Roma	Vendite
Roma	Studi
Milano	Acquisti
Milano	Vendite
Milano	Studi
Napoli	Acquisti
Napoli	Vendite

Uffici

Sedi

Filiale	Ufficio
Roma	Acquisti
Roma	Vendite
Roma	Studi
Milano	Acquisti
Milano	Vendite
Milano	Studi
Napoli	Acquisti
Napoli	Vendite

Uffici

Ufficio
Acquisti
Vendite
Studi

Sedi

Filiale	Ufficio
Roma	Acquisti
Roma	Vendite
Roma	Studi
Milano	Acquisti
Milano	Vendite
Milano	Studi
Napoli	Acquisti
Napoli	Vendite

Uffici

Ufficio
Acquisti
Vendite
Studi

Filiale
Milano
Roma

• L'operatore divisione è derivato perché può essere espresso con altri operatori nel seguente modo:

$$r \div r_2 = \pi_{X_1}(r) - \pi_{X_1} \left(\left(\pi_{X_1}(r) \times r_2 \right) - r \right)$$

- dove
 - $\pi_{X_1}(r) \times r_2$ contiene le n-uple di $\pi_{X_1}(r)$ "estese" con tutti i possibili valori di r_2
 - $(\pi_{X_1}(r) \times r_2) r$ contiene le "estensioni" di $\pi_{X_1}(r)$ che non compaiono in r
 - $\pi_{X_1}\left(\left(\pi_{X_1}(r)\times r_2\right)-r\right)$ contiene le n-uple di $\pi_{X_1}(r)$ per le quali un qualche "completamento" con r_2 non compare in r
 - Togliendo queste ultime n-uple a $\pi_{X_1}(r)$ otteniamo le n-uple di $\pi_{X_1}(r)$ che si "combinano" con tutte le n-uple di r_2 , cioè il risultato della divisione