





# Hurtownie Danych - laboratorium Lista 3

# Podstawy SQL: funkcje grupujące i okienkowe

# Wstęp teoretyczny

# Funkcje grupujące

Klauzula instrukcji SELECT dzieli wynik zapytania na grupy wierszy, zwykle w celu wykonania jednej lub więcej agregacji dla każdej grupy. Polecenie SELECT – GROUP BY zwraca jeden wiersz wyniku na grupę.

Stosuje się następującą składnię polecenia GROUP BY:

```
SELECT ...
FROM ...
WHERE ...
GROUP BY {
        column-expression
        | ROLLUP ( <group_by_expression> [ , ...n ] )
        | CUBE ( <group_by_expression> [ , ...n ] )
        | GROUPING SETS ( <grouping_set> [ , ...n ] )
        | () --calculates the grand total
} [ , ...n ]
```

Różnice pomiędzy ROLLUP, CUBE i GROUPING SETS:

# **GROUP BY ROLLUP**

#### **GROUP BY CUBE**

```
GROUP BY CUBE (col<sub>1</sub>, col<sub>2</sub>, col<sub>3</sub>, col<sub>4</sub>, ..., col<sub>n</sub>)
Wynik - podsumowania dla wszystkich możliwych kombinacji
kolumn
Ile jest możliwych podzbiorów zbioru n-elementowego?
```







# **GROUP BY GROUPING SETS**

```
GROUP BY GROUPING SETS (...)

Wynik - podsumowania dla wszystkich wymienionych kombinacji kolumn
```

# Funkcje okienkowe

Klauzula OVER określa podział i kolejność zestawu wierszy przed zastosowaniem powiązanej funkcji okna. Klauzula OVER definiuje okno (określony przez użytkownika zestaw wierszy), a następnie wylicza wartość dla każdego wiersza w oknie.

Klauzulę OVER stosuje się do obliczania wartości zagregowanych, np. średnie ruchome, sumy bieżące, wyniki dla ostatnich *n* wierszy w każdej grupie.

# PARTITION BY clause

Dzieli zbiór wyników zapytania na określone podgrupy. Funkcja okna jest stosowana do każdej podgrupy osobno i obliczenia uruchamiane są ponownie dla każdej podgrupy.

#### ORDER BY clause

Definiuje logiczną kolejność wierszy w każdej podgrupie wynikowego zbioru. Dla każdej podgrupy określa logiczną kolejność wykonywania obliczeń funkcji okna.

# ROW or RANGE clause

Ograniczają wiersze w partycji, określając granice:

- ROWS fizyczne ograniczenie liczby wierszy, np.
  - BETWEEN 2 PRECEEDING AND CURRENT ROW
- RANGE logiczne ograniczenie liczby wierszy, np.
- BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING Obie klauzule wymagają klauzuli ORDER BY i na podstawie ustalonej kolejności determinują wynik.







Funkcje szeregujące pozwalają tworzyć ranking, przypisując odpowiednie miejsca kolejnym wynikom. Najczęściej stosowane są następujące funkcje szeregujące:

- ROW NUMBER nr pozycji
- RANK ranking (to samo miejsce dla tych samych wartości)
- DENSE RANK ranking, numerowanie ciągłe
- NTILE grupuje rekordy poprzez przypisanie tej samej wartości szeregującej członkom grupy

# Źródła:

https://docs.microsoft.com/en-us/sql/t-sql/queries/select-group-by-transact-sql?view=sql-server-ver15 https://docs.microsoft.com/en-us/sql/t-sql/queries/select-over-clause-transact-sql?view=sql-server-ver15

# Zadania do wykonania

Baza danych: AdventureWorks

# Zad. 1. Wykorzystanie funkcji grupujących (rollup, cube, grouping sets)

1. Przygotować zestawienie przedstawiające, ile pieniędzy wydali klienci na zamówienia na przestrzeni poszczególnych lat.

Wykonaj zestawienie przy użyciu poleceń rollup, cube, grouping sets.

|    | Klient      | Rok  | Kwota          |
|----|-------------|------|----------------|
| 1  |             | 2013 | 48965887,9632  |
| 2  |             | 2014 | 22419498,3157  |
| 3  |             | 2011 | 14155699,525   |
| 4  |             | 2012 | 37675700,312   |
| 5  |             |      | 123216786,1159 |
| 6  | A. Leonetti | 2013 | 1814,1819      |
| 7  | A. Leonetti | 2014 | 1586,6583      |
| 8  | A. Leonetti |      | 3400,8402      |
| 9  | Aaron Adams | 2013 | 130,3458       |
| 10 | Aaron Adams |      | 130,3458       |

Przykładowe rozwiązanie

2. Przygotować zestawienie przedstawiające łączną kwotę zniżek z podziałem na kategorie, produkty oraz lata.

|   | Kategoria   | Produkt                | Rok  | Kwota  |
|---|-------------|------------------------|------|--------|
| 1 | Accessories | All-Purpose Bike Stand | 2013 | 0.00   |
| 2 | Accessories | All-Purpose Bike Stand | 2014 | 0.00   |
| 3 | Accessories | All-Purpose Bike Stand |      | 0.00   |
| 4 | Accessories | Bike Wash - Dissolver  | 2013 | 79.92  |
| 5 | Accessories | Bike Wash - Dissolver  | 2014 | 26.94  |
| 6 | Accessories | Bike Wash - Dissolver  |      | 106.87 |
| 7 | Accessories | Cable Lock             | 2012 | 19.89  |
| 8 | Accessories | Cable Lock             | 2013 | 3.41   |
| 9 | Accessories | Cable Lock             |      | 23.30  |

Przykładowe rozwiązanie







# Zad. 2. Wykorzystanie funkcji okienkowych (over, over partition by, row\_number, rank, dense\_rank, ntile)

1. Dla kategorii 'Bikes' przygotuj zestawienie prezentujące procentowy udział kwot sprzedaży produktów tej kategorii w poszczególnych latach w stosunku do łącznej kwoty sprzedaży dla tej kategorii. W zadaniu wykorzystaj funkcje okna.

|   | Nazwa | Rok  | Procent |
|---|-------|------|---------|
| 1 | Bikes | 2011 | 7.94    |
| 2 | Bikes | 2012 | 34.51   |
| 3 | Bikes | 2013 | 42.57   |
| 4 | Bikes | 2014 | 14.98   |
| 5 |       |      | 100.00  |

Przykładowe rozwiązanie

Wykonaj podobne zestawienia dla pozostałych kategorii.

2. Przygotuj zestawienie dla sprzedawców z podziałem na lata i miesiące prezentujące liczbę obsłużonych przez nich zamówień w ciągu roku, w ciągu roku narastająco oraz sumarycznie w obecnym i poprzednim miesiącu. W zadaniu wykorzystaj funkcje okna.

|   | lmię i nazwisko | Rok  | Miesiąc | W miesiącu | W roku | W roku narastająco | Obecny i poprzedni miesiąc |
|---|-----------------|------|---------|------------|--------|--------------------|----------------------------|
| 1 | Amy Alberts     | 2012 | 6       | 3          | 7      | 3                  | 3                          |
| 2 | Amy Alberts     | 2012 | 9       | 2          | 7      | 5                  | 5                          |
| 3 | Amy Alberts     | 2012 | 12      | 2          | 7      | 7                  | 4                          |
| 4 | Amy Alberts     | 2013 | 1       | 1          | 29     | 1                  | 1                          |
| 5 | Amy Alberts     | 2013 | 2       | 1          | 29     | 2                  | 2                          |
| 6 | Amy Alberts     | 2013 | 3       | 1          | 29     | 3                  | 2                          |

Przykładowe rozwiązanie

- 3. Przygotuj ranking klientów w zależności od liczby zakupionych produktów. Porównaj rozwiązania uzyskane przez funkcje rank i dense\_rank.
- 4. Przygotuj ranking produktów w zależności od średniej liczby sprzedanych sztuk. Wyróżnij 3 (prawie równoliczne) grupy produktów: sprzedających się najlepiej, średnio i najsłabiej.

# Zad. 3. Ocena jakości danych – profilowanie danych

- 1. Przeanalizować, scharakteryzować i ocenić dane znajdujące się w pliku *dane\_lista3.csv* wykorzystując wybrane oprogramowanie, np. Python, R, Matlab, Integration Services Project w Visual Studio, itp.
- 2. W przypadku wyboru Visual Studio należy utworzyć projekt *Integration Services Project*. Z menu bocznego *SSIS Toolbox* należy:
  - a. wybrać bloczek Data Profiling Task (przeciągnąć na kanwę projektu),
  - b. określić dane w sekcji *Destination*,
  - c. skonfigurować Quick Profile,
  - d. uruchomić pakiet (Run);
  - e. aby obejrzeć wynik należy użyć *Data Profile Viewer* lub ponownie edytując bloczek *Data Profiling Task* użyć opcji *Open Profile Viewer*.







| -   | •         | •    |  |  |
|-----|-----------|------|--|--|
| ĸ   | związ     | ania |  |  |
| 17( | JL YY IAL | ama. |  |  |

Wnioski: