E-R model

Jiří Zacpal

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI

KMI/DATAB Databáze

Abstrakce pohledu na data

P

- Konceptuální úroveň zabývá se modelováním reality (ER model)
- Logická úroveň vztahuje se ke konkrétnímu datovému modelu (relační model)
- Fyzická úroveň řeší fyzické uložení dat

Principy konceptuálních modelů

- oddělení konceptuální a interní úrovně
- orientace na objekty, entity ne na záznamy a soubory
- bohatší koncept, v relačním modelu jsou relace využívány na "všechno", reprezentují entity, vícehodnotové atributy, asociace, agregace, dědičnost, …
- možnost využít úrovně abstrakce v komplexních objektech k zakrytí detailů, možnost modelovat přímo aplikační objekty.
- funkcionální podstata vztahů (atribut nebo funkce je jediným konstruktem)
- ISA hierarchie (práce s nadtypy a podtypy)
- hierarchický mechanismus (objekty lze konstruovat z jiných objektů, formou agregace, seskupováním do množin, tříd)

Program Ertos

P

- Spuštění
- Práce s programem

Vytvoření ER modelu

- Vytvořit databázi pro knihovnu. Databáze by měla splňovat tyto požadavky:
 - Evidovat knihy
 - Evidovat čtenáře
 - Evidovat výpůjčky

Entitní typy (množiny)

Entitní typy (množiny)

- Kniha
- Autor
- Vztah
 - JeAutorem

Entity

- Entity odpovídají objektům reálného světa (osoba, věc, ...), popsány pomocí hodnot svých vlastností.
- Entita musí být rozlišitelná od ostatních entit a existovat nezávisle na nich.
- Silný entitní typ Entitní typ existenčně nezávislý na jiném entitním typu.

Silný entitní typ

Slabý entitní typ – Někdy nejsou dvě instance jednoho entitního typu rozlišitelné pomocí svých atributů, jsou rozlišitelné až pomocí toho, že jsou povinně v identifikačním vztahu k další entitě jiného typu (silné, regulární).

Příklad - Knihovna

Kniha

Atributy

Atributy

atribut je funkce, která přiřazuje entitám nebo vztahům hodnotu vlastnosti, doménu

atributu tvoří přípustné hodnoty atributu

jednoduché (jedna atomická hodnota)

Atribut

skupinové (strukturované, kompozitní, složené)

Atributy

nepovinný - název není tučný

povinný – název tučným písmem

primární klíč

Příklad - Kniha

Entitní množina Kniha

Vztahy

Vztahy

vztah

- vazba mezi dvěma nebo více entitami.
- množina smysluplných asociací mezi entitními typy v informačním systému
- vztahová množina R je určena:

$$R \subset E_1 \times \cdots \times E_n = \{(e_1, \dots, e_n) | e_1 \in E_1 \dots e_n \in E_n\},\$$

- e_i je entita,
- E_i je entitní typ,
- n je stupeň vztahu.

Příklad – Vztah kniha autor

Příklad - Výpůjčka

Integritní omezení

Integritní omezení

- jsou logická omezení na typy a hodnoty atributů, entit a vazeb taková, aby konceptuální schéma co nejlépe a nerozporně odpovídalo zobrazované realitě.
- kardinalita vztahu udává kolikrát se entita může účastnit vztahu (1,...,N)
- parcialita vztahu udává, zda se entita musí účastnit vztahu

Kardinalita vztahu

- Binární vztah typů entit E_1 a E_2 může mít jeden ze tří poměrů:
 - 1:1 jedné $e_1 \in E_1$ odpovídá ve vztahu nejvýše jedna $e_2 \in E_2$ a naopak, jedné $e_2 \in E_2$ odpovídá nejvýše jedna $e_1 \in E_1$

Kardinalita vztahu

■ 1:N - jedné $e_1 \in E_1$ odpovídá ve vztahu obecně několik $e_2 \in E_2$, ale jedna $e_2 \in E_2$ má vztah pouze k jedna $e_1 \in E_1$

■ M:N - jedné $e_1 \in E_1$ odpovídá ve vztahu obecně několik $e_2 \in E_2$, a naopak jedna $e_2 \in E_2$ má vztah k několika entitám $e_1 \in E_1$

Parcialita (členství) ve vztahu

- vyjadřuje možnost samostatné existence entity (nepovinné, fakultativní členství)
- případ, kdy jsou entity existenčně svázány ve vztahu (povinné, obligatorní členství)
- přitom může mít jedna entita povinné členství, druhá nepovinné.
- alternativně zaznamenáváme graficky v ER diagramu značkou(např. plným kroužkem na straně příslušného entitního typu, nepovinnost prázdným kroužkem),
- nebo společně s kardinalitou

```
(E1:(min,max),E2:(min,max)), nebo (min,max):(min,max)
```

Příklad – Vztah mezi autorem, knihou a výtiskem

Příklad – Vztah mezi autorem, knihou a výtiskem

Vztah JeAutorem

Slabá entitní množina Vytisk

Ternární vztah

Postup vytvoření diagramu

Postup sestavení diagramu případů užití

- Jako příklad vezmeme ER diagram pro vysokou školu.
- Diagram by měl obsahovat tyto entity:
 - Student.
 - Kurz.
 - Rozvrh.
 - Vyucujici.

RozvrhHodin

Postup sestavení diagramu případů užití

Dalším krokem je přidání atributů k jednotlivým entitním typům.

Postup sestavení diagramu případů užití

Posledním krokem je vytvoření vztahů mezi entitními typy.

Převod ER modelu do relačního modelu

Postup převod

- Entitní typy (množiny) převedeme jako tabulky s atributy.
- Vztahy:
 - 1:1 oba entitní typy sloučíme do jedné tabulky.
 - 1:N do tabulky na straně N umístíme primární klíč z tabulky na straně 1.
 - M:N vytvoříme novou tabulku, do které vložíme primární klíče z obou tabulek, které jsou ve vztahu.

Příklad

Příklad


```
CREATE TABLE Autor (
DatumNarozeni Integer,
DatumUmrti Integer,
Jmeno Char NOT NULL,
Prijmeni Char NOT NULL,
CONSTRAINT pk_Autor PRIMARY KEY (ID_Autor));
CREATE TABLE Kniha (
ISBN Varchar(10) NOT NULL,
Nazev Varchar(20) NOT NULL,
Vydavatel Varchar(20),
Rok Integer,
Stran Integer,
CONSTRAINT pk Kniha PRIMARY KEY (ISBN));
```

Jiří Zacpal (Univerzita Palackého v Olomouci)