Непараметрическое оценивание

Малов Сергей Васильевич

Санкт-Петербургский государственный электротехнический университет

19/26 сентября 2020 г.

План

1 Выборочное распределение

2 Выборочные характеристики

3 Непараметрическая оценка плотности распределения

Пусть X_1, X_2, \dots, X_n – выборка из распределения $\mathbb{P}_{\theta}, \ \theta \in \Theta$.

- Истинное значение \mathbb{P}_{θ} будем называть теоретическим распределением.
- Никаких априорных предположений о виде теоретического распределения не делают
- Распределение характеризуется функцией распределения $F(x) = P(X_1 < x), \ x \in \mathbb{R}$
- В качестве параметра можно использовать теоретическую функцию распределения $\theta \equiv F$

По исходной выборке построим дискретное распределение \mathbb{P}_n , имеющее атомы 1/n в точках X_1, X_2, \ldots, X_n

- данное распределение называется эмпирическим
- ullet соответствующая функция распределения F_n называется эмпирической
- эмпирическая функция распределения имеет вид

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n 1_{X_i < X},$$

где

$$1_A = \begin{cases} 1, & \text{если } A \text{ выполнено;} \\ 0, & \text{в остальных случаях.} \end{cases}$$

Примеры построения графиков выборочных функций распределения:

Порядковые статистики

Порядковые статистики и ранги:

- Упорядоченный набор наблюдений $X_{(1)} \leq \ldots \leq X_{(n)}$ вариационный ряд
 - Элементы вариационного ряда порядковые статистики
 - Переход от исходного набора наблюдений к порядковым статистикам необратим
- Для восстановления исходного набора наблюдений требуются ранги R_1, \dots, R_n
 - Ранг і-го наблюдения R_i его номер в вариационном ряду
 - При наличии повторных наблюдений ранги определены неоднозначно
- В выборочной модели
 - набор порядковых статстик достаточная статистика
 - ранги не несут информации о распределении выборки

Пусть $X_{(1)}^* < \ldots < X_{(k)}^*$ – элементы вариационного ряда без повторений

• Таблица эмпирического распределения:

Значение	$X_{(1)}^*$	 $X_{(k)}^*$
Вероятность	$\frac{\#\{i: X_i = X_{(1)}^*\}}{n}$	 $\frac{\#\{i:X_i=X_{(n)}^*\}}{n}$

- Эмпирические распределения, построенные по исходной выборке и по соответствующему вариационному ряду, совпадают
- Эмпирическая функция распределения является статистикой, ее используют в качестве оценки для теоретической функции распределения

Теорема Гливенко-Кантелли

Теорема (Гливенко-Кантелли)

Пусть X = (X_1, X_2, \dots, X_n) — выборка из распределения P_{θ} , $\theta \in \Theta$; F(x) и $F_n(x)$ — теоретическая и эмпирическая функции распределения соответственно. Тогда с вероятностью 1

$$\lim_{n\to\infty} D_n(\mathbf{X}) = \lim_{n\to\infty} \sup_{-\infty < x < \infty} |F_n(x) - F(x)| \underset{n\to\infty}{\longrightarrow} 0.$$

Идея доказательства. Поточечная сходимость получается непосредственно из усиленного закона больших чисел в схеме Бернулли с вероятностями успеха F(x), а равномерная получается, поскольку значения на $\pm \infty$ у функций F(x) и $F_n(x)$ совпадают и конечны.

- Эмпирическая функция распределения статистика, использующаяся в качестве оценки теоретической функции распределения
- С ростом размера выборки эмпирическая функция распределения приближается к теоретической (состоятельность)

Теорема Гливенко-Кантелли

Теорема (Гливенко-Кантелли)

Пусть X = $(X_1, X_2, ..., X_n)$ – выборка из распределения P_{θ} , $\theta \in \Theta$; F(x) и $F_n(x)$ – теоретическая и эмпирическая функции распределения соответственно. Тогда с вероятностью 1

$$\lim_{n\to\infty} D_n(X) = \lim_{n\to\infty} \sup_{-\infty < x < \infty} |F_n(x) - F(x)| \xrightarrow[n\to\infty]{} 0.$$

Идея доказательства. Поточечная сходимость получается непосредственно из усиленного закона больших чисел в схеме Бернулли с вероятностями успеха F(x), а равномерная получается, поскольку значения на $\pm \infty$ у функций F(x) и $F_n(x)$ совпадают и конечны.

- Эмпирическая функция распределения статистика, использующаяся в качестве оценки теоретической функции распределения
- С ростом размера выборки эмпирическая функция распределения приближается к теоретической (состоятельность)

Теорема Гливенко-Кантелли

Теорема (Гливенко-Кантелли)

Пусть X = (X_1, X_2, \dots, X_n) – выборка из распределения P_{θ} , $\theta \in \Theta$; F(x) и $F_n(x)$ – теоретическая и эмпирическая функции распределения соответственно. Тогда с вероятностью 1

$$\lim_{n\to\infty} D_n(X) = \lim_{n\to\infty} \sup_{-\infty < x < \infty} |F_n(x) - F(x)| \xrightarrow[n\to\infty]{} 0.$$

Идея доказательства. Поточечная сходимость получается непосредственно из усиленного закона больших чисел в схеме Бернулли с вероятностями успеха F(x), а равномерная получается, поскольку значения на $\pm \infty$ у функций F(x) и $F_n(x)$ совпадают и конечны.

- Эмпирическая функция распределения статистика, использующаяся в качестве оценки теоретической функции распределения
- С ростом размера выборки эмпирическая функция распределения приближается к теоретической (состоятельность)

Теорема Колмогорова

Отклонение теоретической функции распределения от эмпирической

$$D_n(\mathbf{X}) = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|$$

называется статистикой Колмогорова

Теорема (Колмогоров)

Если F(x) непрерывна, то для любого положительного значения t

$$\lim_{n\to\infty} \mathbb{P}(\sqrt{n}D_n \le t) = K(t) = \sum_{j=-\infty}^{\infty} (-1)^j e^{-2j^2t^2}.$$

- Доказательство основано на преобразовании Смирнова
- Существует точное распределение статистики Колмогорова при фиксированном n
- ullet Функция K(t) называется функцией распределения Колмогорова.
- На практике данная теорема дает хорошее приближение уже при $n \ge 20$.

Теорема Колмогорова

Построение доверительной области с использованием Теоремы Колмогорова.

- Задаемся малым числом $\alpha > 0$
- Находим такое \mathbf{z}_{α} , что $\mathbf{K}(\mathbf{z}_{\alpha})$ = 1 α
- Если выборка имеет объем n, то $\mathbb{P}(\sqrt{n}D_n \le z_\alpha) \ge 1 \alpha$ означает, что неравенство

$$F_n(x) - z_\alpha / \sqrt{n} < F(x) < F_n(x) + z_\alpha / \sqrt{n}$$

выполняется одновременно для всех ${\it X}$ с вероятностью не менее ${\it 1}-\alpha$

 Совокупность всех функций распределения F, удовлетворяющих условию

$$F_n(x) - z_\alpha / \sqrt{n} < F(x) < F_n(x) + z_\alpha / \sqrt{n}$$

при всех $\mathbf{x} \in \mathbb{R}$, является доверительной уровня доверия $\mathbf{1} - \alpha$

• Аналогично, доверительная область может быть построена исходя из точного распределения D_n

Теорема Колмогорова

Доверительная область, полученная с использованием точного распределения статистики Колмогорова

- Теоретическое распределение нормальное $\mathcal{N}(0,1)$
- Размер выборки n = 50

План

Выборочное распределение

2 Выборочные характеристики

3 Непараметрическая оценка плотности распределения

Выборочные числовые характеристики

Пусть $\alpha:\mathcal{C} \to \mathbb{R}$ — числовая характеристика, \mathcal{C} — класс распределений

- ullet $\alpha(F)$ теоретическое значение числовой характеристики, $F\in\mathcal{C}$
- статистика $\alpha(F_n)$ (если $F_n \in \mathcal{C}$) выборочный аналог числовой характеристики

Некоторые примеры:

Название	Теоретическая характеристика	Выборочная характеристика
Мат. ожидание	$E_F X = \int x dF(x)$	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
k-й момент	$E_F X^k = \int x^k dF(x)$	$\overline{X^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$
g-момент	$E_F g(X) = \int g(x) dF(x)$	$\overline{g(X)} = \frac{1}{n} \sum_{i=1}^{n} g(X_i)$
Дисперсия	$D_F X = \int x^2 dF(x) - (E_F X)^2$ $= \int (x - E_F X)^2 dF(x)$	$s^{2} = \overline{X^{2}} - \overline{X}^{2}$ $= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$
<i>р</i> -квантиль	$ \zeta_p : \mathbb{P}(\xi \le \zeta_p) \ge p $ $ \mathbb{P}(\xi \ge \zeta_p) \ge 1 - p $	$Z_{n,p} = \begin{cases} X_{(\lceil np \rceil + 1)}, & \text{если } np \notin \mathbb{Z}; \\ [X_{(\lceil np \rceil + 1)}, X_{(\lceil np \rceil + 1)}], & np \in \mathbb{Z}. \end{cases}$

Квантили, графическое представление

Абсолютно непрерывные распределения

ζ_p определена однозначно

ζ_ρ – любая точка интервала

Дискретные распределения

Рассмотрим числовые характеристики двух типов

• І тип: числовые характеристики, представимые в виде

$$\alpha(F) = H(\mathbb{E}_F g_1(X), \dots, \mathbb{E}_F g_k(X))$$

- \bullet H непрерывная функция k аргументов
- $F \in C = \{F : \mathbb{E}_F | g_i(X) | < \infty, i = 1, ..., k \}.$
- II тип: $\alpha(F)$ непрерывный функционал в равномерной метрике
 - Для любой последовательности функций распределения $\{F_n^*\}_{n=1}^\infty\colon F_n^*\in\mathcal{C},$

$$\sup_{x} |F_{n}^{*}(x) - F(x)| \xrightarrow[n \to \infty]{} 0 \quad \Rightarrow \quad \alpha(F_{n}) \xrightarrow[n \to \infty]{} \alpha(F)$$

Теорема (состоятельность)

Пусть X_1, X_2, \ldots, X_n – выборка из распределения F. Если при каждом $\mathbb{P}_{\theta} \in \mathcal{C}$ числовая характеристика $\alpha(F)$ первого или второго типа существует, то с вероятностью 1 с ростом размера выборки

$$\alpha(F_n) \xrightarrow[n\to\infty]{} \alpha(F).$$

Идея доказательства

Для статистик I типа выражение $\frac{1}{n}\sum_{i=1}^n g_j(X_i)$ представляет собой сумму независимых одинаково распределенных случайных величин с математическим ожиданием $\mathbb{E}_F g_j(X) = \int_{-\infty}^\infty g_j(x) \, dF(x), \ j=1,\ldots,k$. Используя усиленный закон больших чисел, и непрерывность функции H получаем требуемое утверждение.

Для статистик II типа утверждение теоремы следует непосредственно из теоремы Гливенко – Кантелли. \blacksquare

- Числовые характеристики І типа
 - Математическое ожилание
 - Дисперсия
 - ullet Моменты (центральные, абсолютные, g-моменты)
 - Асимметрия, эксцесс
- Числовые характеристики II типа:
 - ζ_{ρ} (квантиль порядка ρ), если \mathcal{C} класс абсолютно непрерывных распределений: $F(\zeta_{\rho})$ строго возрастает в окрестности ζ_{ρ}
 - p = 1/2 медиана
 p = 1/4 и p = 3/4 квартили
 - точная верхняя (нижняя) грань носителя $\sup\{\sup(X)\}$ (inf $\{\sup(X)\}$), если \mathcal{C} класс абсолютно непрерывных распределений

Идея доказательства

Для статистик I типа выражение $\frac{1}{n}\sum_{i=1}^n g_j(X_i)$ представляет собой сумму независимых одинаково распределенных случайных величин с математическим ожиданием $\mathbb{E}_F g_j(X) = \int_{-\infty}^\infty g_j(x) \, dF(x), \ j=1,\ldots,k$. Используя усиленный закон больших чисел, и непрерывность функции H получаем требуемое утверждение.

Для статистик II типа утверждение теоремы следует непосредственно из теоремы Гливенко – Кантелли. ■

- Числовые характеристики І типа
 - Математическое ожидание
 - Дисперсия
 - Моменты (центральные, абсолютные, g-моменты)
 - Асимметрия, эксцесс
- Числовые характеристики II типа:
 - ζ_{p} (квантиль порядка p), если \mathcal{C} класс абсолютно непрерывных распределений: $F(\zeta_{p})$ строго возрастает в окрестности ζ_{p}
 - p = 1/2 медиана
 - p = 1/4 и p = 3/4 квартили
 - точная верхняя (нижняя) грань носителя $\sup\{\sup(X)\}\$ (inf $\{\sup(X)\}$), если \mathcal{C} класс абсолютно непрерывных распределений

Теорема (Асимптотическая нормальность)

Пусть X_1, X_2, \dots, X_n – выборка из распределения F; α – числовая характеритика I типа:

- (i) $\mathbb{E}_F |g_i(X)|^2 < \infty, i = 1, ..., n$
- (ii) H непрерывно дифференцируемая функция к переменных с ненулевым дифференциалом в точке ($\mathbb{E}_F g_1(X), \ldots, \mathbb{E}_F g_k(X)$)

Тогда

$$\sqrt{n}(\alpha(F_n) - \alpha(F)) \Rightarrow \mathcal{N}(0, \sigma_\alpha^2)$$
 (*)

Ипед показательства

Отметим, что ξ_1, \ldots, ξ_n — независимые и одинаково распределенные случайные векторы, $\xi_j = (\xi_{1j}, \ldots, \xi_{kj}), \ \xi_{ij} = g_i(X_j)$. Используя ЦПТ в векторной форме получаем.

$$\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\mathbb{E}_{F}\xi_{1})\Rightarrow \mathcal{N}(0,\Sigma)$$

где Σ – матрица ковариации ξ_1 . По формуле Тейлора

$$\sqrt{n}(\alpha(F_n) - \alpha(F)) = \sum_{i=1}^k \frac{\partial}{\partial x_i} H(x_1^*, \dots, x_k^*) \sqrt{n}(\mathbb{E}_{F_n} \xi_i - \mathbb{E}_F \xi_i)$$

 (x_1^*,\ldots,x_k^*) – точка на отрезке, соединяющим (ξ_1,\ldots,ξ_n) и $\mathbb{E}_F(\xi_1,\ldots,\xi_n)$. Далее, с учетом теоремы о состоятельности и непрерывности H получаем сходимость (*), где $\sigma_{\sim}^2 = \nabla H(\mathbb{E}_F\xi_{11},\ldots,\mathbb{E}_F\xi_{k1})' \Sigma \nabla H(\mathbb{E}_F\xi_{11},\ldots,\mathbb{E}_F\xi_{k1})$.

Теорема (Асимптотическая нормальность)

Пусть X_1, X_2, \dots, X_n – выборка из распределения F; α – числовая характеритика I типа:

- (i) $\mathbb{E}_F |g_i(X)|^2 < \infty, i = 1, ..., n$
- (ii) H непрерывно дифференцируемая функция к переменных с ненулевым дифференциалом в точке ($\mathbb{E}_F g_1(X), \ldots, \mathbb{E}_F g_k(X)$)

Тогда

$$\sqrt{n}(\alpha(F_n) - \alpha(F)) \Rightarrow \mathcal{N}(0, \sigma_\alpha^2)$$
 (*)

Идея доказательства

Отметим, что ξ_1,\dots,ξ_n – независимые и одинаково распределенные случайные векторы, $\xi_j=(\xi_{1j},\dots,\xi_{kj}),\ \xi_{ij}=g_i(X_j).$ Используя ЦПТ в векторной форме получаем, что

$$\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\mathbb{E}_{F}\xi_{1})\Rightarrow \mathcal{N}(0,\Sigma),$$

где Σ – матрица ковариации ξ_1 . По формуле Тейлора

$$\sqrt{n}(\alpha(F_n) - \alpha(F)) = \sum_{i=1}^k \frac{\partial}{\partial x_i} H(x_1^*, \dots, x_k^*) \sqrt{n}(\mathbb{E}_{F_n} \xi_i - \mathbb{E}_F \xi_i)$$

 (x_1^*,\ldots,x_k^*) – точка на отрезке, соединяющим (ξ_1,\ldots,ξ_n) и $\mathbb{E}_F(\xi_1,\ldots,\xi_n)$. Далее, с учетом теоремы о состоятельности и непрерывности H получаем сходимость (*), где $\sigma_\Omega^2 = \nabla H(\mathbb{E}_F\xi_{11},\ldots,\mathbb{E}_F\xi_{k1})' \Sigma \nabla H(\mathbb{E}_F\xi_{11},\ldots,\mathbb{E}_F\xi_{k1})$.

Асимптотическая нормальность выборочных квантилей

Теорема

Пусть X_1, X_2, \ldots, X_n – выборка из абсолютно непрерывного распределения F с плотностью распределения f, дифференцируемой в точке ζ_ρ : $f'(\zeta_\rho) > 0$;

$$\eta_n = \sqrt{\frac{n}{p(1-p)}} f(\zeta_p) (Z_{n,p} - \zeta_p),$$

 $p \in (0,1)$. Тогда при $n \to \infty$ имеет место сходимость по распределению $\eta_n \Rightarrow N(0,1)$, т. е.

$$\mathbb{P}_F(\eta_n < X) \underset{n \to \infty}{\longrightarrow} \Phi(X), \ X \in \mathbb{R},$$

где

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-t^2/2) dt$$

есть функция стандартного нормального распределения N(0,1).

Асимптотическая нормальность выборочных квантилей

Доказательство

Пусть k=np, если np — целое, и k=[np]+1 в остальных случаях. Рассмотрим случайные величины

$$Y_i = \sqrt{\frac{n}{\rho q}} \ f(\zeta_\rho)(X_i - \zeta_\rho), \qquad J_i(t) = \mathbbm{1}_{\left\{Y_i < t\right\}},$$

 $i=1,2,\ldots,n$, где $1_A=1$, если событие A произошло, и $1_A=0$ в противном случае. Очевидно, что $\eta_n=Y_{(k)}$. При этом $\mathbb{P}_F(Y_{(k)}< t)=\mathbb{P}_F(\sum_{i=1}^n J_i(t)\geq k)$. Отметим, что $J_1(t),\ldots,J_n(t)$ – испытания Бернулли с вероятностью успеха

$$\mathbb{P}_F(J_i(t)=1)=\mathbb{P}_F(Y_i< t)=\mathbb{P}_F\bigg(X_i<\zeta_p+\sqrt{\frac{pq}{n}}\frac{t}{t(\zeta_p)}\bigg)=F\bigg(\zeta_p+\sqrt{\frac{pq}{n}}\frac{t}{t(\zeta_p)}\bigg).$$

Используя разложение Тейлора в окрестности ζ_D получаем

$$a = \mathbb{E}_F J_i = \mathbb{P}_F (J_i(t) = 1) = F(\zeta_p) + f(\zeta_p) \frac{t\sqrt{pq}}{\sqrt{n}f(\zeta_p)} + o(1/\sqrt{n}) = F(\zeta_p) + t\sqrt{pq/n} + o(1/\sqrt{n}),$$

$$\mathbb{D}_F J_i = a(1-a).$$

Рассмотрим

$$\mathbb{P}_F\Big(\sum_{i=1}^n J_i \ge k\Big) = \mathbb{P}_F\Bigg(\frac{\sum_{i=1}^n J_i - na}{\sqrt{na(1-a)}} \ge \frac{k - na}{\sqrt{na(1-a)}}\Bigg).$$

Остается отметить, что

$$\frac{k - np - t\sqrt{np(1-p)} + o(\sqrt{n})}{\sqrt{np(1-p)(1+o(1))}} \xrightarrow[n \to \infty]{} - t.$$

Используя центральную предельную теорему и симметричность стандартного нормального распределения, получаем:

$$\mathbb{P}_F\left(\sum_{i=1}^n J_i \geq k\right) \xrightarrow[n\to\infty]{} 1 - \Phi(-t) = \Phi(t).$$

План

Выборочное распределение

2 Выборочные характеристики

3 Непараметрическая оценка плотности распределения

Гистограмма частот

Гистограмма: дискретное распределение выборки

- Эмпирическое распределение может использоваться для оценивания дискретной плотности распределения.
 - введем частоты $\nu(x)/n$, где $\nu(x)$ число наблюдений, имеющих значение x.
 - с ростом n, согласно закону больших чисел, частоты будут сходиться к теоретическим значениям $q_{\theta}(x) = \mathbb{P}_{\theta}(X_1 = x)$.
- Приближая распределения дискретными и используя частоты в качестве оценок вероятностей, мы получаем наглядный способ представления данных
- Для наглядного представления данных часто используют значения $\nu(x)$ без нормировки на число наблюдений

Гистограмма частот

Гистограмма: абсолютно непрерывное распределение выборки

- вещественную прямую разбивают на интервалы $\{I_i\}_{i\in\mathbb{N}}$ (их счетное число) одинаковой длины h>0
- вычислим выборочные аналоги вероятностей попадания в соответствующие интервалы ν_i/n , где ν_i число наблюдений попавших в i-й интервал
- Функция $H(x)=\nu_j/(nh),\ x\in I_j,\ j\in\mathbb{N}$ называется гистограммой
 - площадь подграфика H(x;h) равна единице при любом h>0
 - $\nu_i/n \xrightarrow[n \to \infty]{} \mathbb{P}_{\theta}(X_1 \in I_i)$ по вероятности (и с вероятностью 1) при каждом фиксированном θ
 - если плотность непрерывна, то $H(x;h), x \in I_j$ является оценкой некоторого среднего значения плотности на интервале I_j

Оценивание плотности распределения

Пусть X_1, X_2, \dots, X_n – выборка из абсолютно непрерывного распределения с плотностью распределения p

- Уменьшая подходящим образом $h = h_n \ (nh_n \xrightarrow[n \to \infty]{} \infty, \ h_n \to 0),$ получаем оценку теоретической плотности распределения
- При наличии производной p' в окрестности точки x граница среднеквадратической ошибки (риска) локальной оценки p(x) с помощью гистограммы задается соотношением

$$\mathbb{E}_F(H(x;h) - p(x))^2 \le d^2h^2 + p_{\text{max}}/(nh) + p_{\text{max}}^2/n$$

- $d = \sup_{x \in I_x} (|p'(x)|); p_{\max} = \sup_{x \in I_x} (p(x))$
- I_X интервал разбиения, содержащий точку X
- Оптимизация правой части неравенства дает

$$h_{\text{opt}} = (p_{\text{max}}/(nd^2))^{1/3}$$

- При больших *п* разумно использовать шаг $h_n = c \, n^{-1/3}$
 - c > 0 некоторая константа

Оценивание плотности распределения

Использование свойств непрерывности и гладкости плотности ρ

- Если функция плотности непрерывная, то ломанными ее можно приблизить лучше, чем ступенчатыми функциями
 - полигон частот кусочно-линейная непрерывная функция, совпадающая с гистограммой в середине каждого интервала
 - площадь подграфика полигона частот тоже равна единице
 - для оценки непрерывных плотностей целесообразно использовать полигон частот вместо гистограммы
- Современные методы оценивания гладкой плотности распределения основаны на построении ядерных оценок

$$f_n(x) = (nh_n)^{-1} \sum_{i=1}^n K((x - X_i)/h_n)$$

- К неотрицательная функция ограниченной вариации («ядро»)
- обычно К симметрична отностительно нуля

Оценивание плотности распределения

Примеры построения графиков оценок плотности распределения:

- Нормальное распределение $\mathcal{N}(0,1)$
- Размер выборки n=500
- Плотность распределения гладкая

- Экспоненциальное распределение
- Размер выборки n=500
- Плотность расперделения имеет разрыв в нуле