Lösung 14. Übung AuD

Dominic Deckert

3. Februar 2017

a)

▶
$$V = \{S, A, C\}$$

$$R = \{S ::= (aSdd)A(c)d), A ::= (aAb)ab)\}$$

$$f(\varrho)(X) = \{\varepsilon\} \cup (\{a\} \circ \varrho(Y)), f(\varrho)(Y) = (\varrho(X) \circ \{b\}) \cup (\varrho(X) \circ \{bb\})$$

$$\begin{pmatrix} X \\ Y \end{pmatrix} : \begin{pmatrix} \emptyset \\ \emptyset \end{pmatrix} \rightarrow \begin{pmatrix} \{\varepsilon\} \\ \emptyset \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \{\varepsilon\} \\ \{b, bb\} \end{pmatrix} \rightarrow \begin{pmatrix} \{\varepsilon, ab, abb\} \\ \{b, bb\} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \{\varepsilon, ab, abb\} \\ \{b, bb, abb, abbb, abbb, ab^4\} \end{pmatrix} \rightarrow \begin{pmatrix} \{\varepsilon, ab, abb, aabb, aabbb, aab^4\} \\ \{b, bb, abb, abbb, ab^4\} \end{pmatrix}$$

c)

$$W(\mathcal{E}) = \{a^n b^{n+m} | 0 \le m \le n\}$$

Anfang

mehrere Lösungen möglich

a), b)

Knoten	Distanz	Pfad
1	0	[1]
2	3	[1, 3, 2]
3	2	[1, 3]
4	6	[1, 3, 4]
5	12	[1, 3, 6, 5] oder [1, 3, 4, 7, 6, 5]
6	9	[1, 3, 6] oder [1, 3, 4, 7, 6]
7	7	[1, 3, 4, 7]
8	16	[1, 3, 6, 5, 8] oder [1, 3, 4, 7, 6, 5, 8]

a)

Objekt	Bereich				
g	3-36				
f	5-36				
a, b	5-16				
С	6-16				
d, e	18-26				
main	28-36				
m, n	29-36				

Haltepunkt	RM	1	2	3	4	5	6	7	8	9	10
7	-	m	n								
		2	4								
1	3			а	b	С					
				#1	#2	2					
2	3			а	b	С					
				#1	#2	3					
4	1:3						d	е			
							3	#2			

Haltepunkt	RM	1	2	3	4	5	6	7	8	9	10
5	1:3						d	е			
			3				3	#2			
1	2:1:3								а	b	С
									#6	#2	3
6	1:3						d	е			
							3	e#2			
3	3			а	b	С					
		3		#1	#2	3					

Haltepunkt	RM	1	2	3	4	5	6	7	8	9	10
3	-	m	n								
		3	3								

a)

Position	0	1	2	3	4	5	6	7
Pattern	а	а	b	а	а	а	b	b
Verschiebetabelle	-1	-1	1	-1	-1	2	1	3

Position	0	1	2	3	4	5
Pattern	b	b	а	b	b	С
Verschiebetabelle	-1	-1	1	-1	-1	2

a)

```
A("A \ gewinnt") = \{(1,2),(2,1),(2,3)\}\

A("B \ gewinnt") = \{(1,1),(1,3),(2,2)\}\

h("A \ gewinnt") = 60

h("B \ gewinnt") = 27
```


Durch Multiplikation der Einzelwahrscheinlichkeiten, bsp. $q_0(1,2)=q_0^x(1)\cdot q_0^y(2)$

c)

Errechnet durch Aufteilen des Korpus mit der bedingten Wahrscheinlichkeit, bsp.

$$h_1(1,2) = h(\text{``Agewinnt''}) \cdot rac{q_0(1,2)}{q_0(1,2) + q_0(2,1) + q_0(2,3)}$$

c)

Errechnet durch Addieren aller "günstigen" Fälle, bsp.

$$h_1^{\mathsf{x}}(1) = h_1(1,1) + h_1(1,2) + h_1(1,3)$$

$$\begin{array}{c|ccccc}
x & 1 & 2 \\
\hline
h_1^x & 44 & 43 \\
y & 1 & 2 & 3 \\
\hline
h_1^y & 16 & 23 & 48
\end{array}$$

d)

X	1	2	
$q_1^{\scriptscriptstyle X}$	44/87	43/87	
у	1	2	3
q_1^y	16/87	23/87	48/87