Решение задачи выполнено на сайте www.matburo.ru

Переходите на сайт, смотрите больше примеров или закажите свою работу

https://www.matburo.ru/ex_dm.php?p1=dmist

©МатБюро. Решение задач по математике, экономике, программированию

Задача. Построить таблицу истинности, найти СДНФ, СКНФ и многочлен Жегалкина булевой функции, заданной формулой

$$\left[x_2 \cdot \overline{(x_1 \approx x_3)}\right] \vee \left[(x_1 \downarrow x_2) \cdot x_3\right].$$

Решение. Построим таблицу истинности для функции $f = \left[x_2 \cdot \overline{(x_1 pprox x_3)}\right] \lor \left[(x_1 \downarrow x_2) \cdot x_3\right]$:

x_1	x_2	x_3	$x_1 \approx x_3$	$\overline{(x_1 \approx x_3)}$	$x_2 \cdot \overline{(x_1 \approx x_3)}$	$x_1 \downarrow x_2$	$(x_1 \downarrow x_2) \cdot x_3$	f
0	0	0	1	0	0	1	0	0
0	0	1	0	1	0	1	1	1
0	1	0	1	0	0	0	0	0
0	1	1	0	1	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	0	0	0
1	1	0	0	1	1	0	0	1
1	1	1	1	0	0	0	0	0

По таблице истинности запишем:

СДНФ =
$$\overline{x_1} \cdot \overline{x_2} \cdot x_3 \vee \overline{x_1} \cdot x_2 \cdot x_3 \vee x_1 \cdot x_2 \cdot \overline{x_3}$$
 .

$$\mathsf{CKH}\Phi = (x_1 \vee x_2 \vee x_3) \cdot (x_1 \vee \overline{x_2} \vee x_3) \cdot (\overline{x_1} \vee x_2 \vee x_3) \cdot (\overline{x_1} \vee x_2 \vee \overline{x_3}) \cdot (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}).$$

Построим многочлен Жегалкина путем преобразования СДНФ:

Решение задачи выполнено на сайте www.matburo.ru

Переходите на сайт, смотрите больше примеров или закажите свою работу

https://www.matburo.ru/ex_dm.php?p1=dmist

©МатБюро. Решение задач по математике, экономике, программированию

$$f = \overline{x_1 \cdot x_2} \cdot x_3 \vee \overline{x_1} \cdot x_2 \cdot x_3 \vee x_1 \cdot x_2 \cdot \overline{x_3} = \overline{x_1} \cdot x_3 \vee x_1 \cdot x_2 \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_3} \cdot \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_1} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_1} = \overline{x_1} \cdot \overline{x_2$$