Preparado para:

REFORM/SC2022/126 **DELIVERABLE 4 MÓDULO 4 REGRESSÃO LINEAR**

DESIGNING A NEW VALUATION MODEL FOR RURAL PROPERTIES IN PORTUGAL

Parte III

Formador: Luís Teles Morais | Nova SBE Lisboa, 29 junho 2023

Programa

Módulos	Duração
 Módulo 1 - Introdução ao R: O que é o R? Como instalar e configurar o R. Sintaxe básica e comandos. Tipos de dados, objetos e classes. 	4 Horas
 Módulo 2 - Gestão e tratamento de dados em R: Carregar dados no R. Perceber as estruturas de dados e subsetting. Limpeza de dados: missing values, outliers e transformações Juntar bases de dados 	8 Horas
 Módulo 3 - Estatística básica em R: Estatísticas descritivas: medidas de dispersão central e variação. Distribuições probabilísticas: variáveis discretas e contínuas. Testes de hipóteses. 	8 Horas

Módulos	Duração
Módulo 4 - Regressão Linear: O modelo classico linear. Estimação de parametros segundo o MMQ. Testes de hipóteses: significância estatística e ajuste do modelo. Modelo de regressão múltipla.	12 Horas
 Testar as premissas: multicolinearidade, heteroscedasticidade e normalidade dos resíduos. Critérios de seleção dos modelos. 	
 Módulo 5 - O modelo: Estrutura do modelo e premissas - Perceber o modelo (4 Hours). Uso e tratamento dos dados (4 Hours). Descrição do modelo (4 Hours). Aplicação do modelo a cada piloto (12 Hours). Aplicação autónoma do modelo a uma região (8 Hours). 	32 Horas

Ciência de dados

lm() <u>l</u>inear <u>m</u>odel

Definição de um modelo linear

$$Y = \alpha + \beta X + \varepsilon$$

- Ex.: Y altura, X largura
- α constante (ordenada na origem
- β coeficiente de regressão / declive
- ε <u>erro</u> do modelo

Definição de um modelo linear

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

não observados 🧸

- Ex.: Y altura, X largura
- α constante (ordenada na origem)
- β coeficiente de regressão / declive
- ε erro do modelo

Estimar $\hat{\alpha} \hat{\beta}$

- Hip.: linearidade
- Parâmetros
 e estimativas
 a partir dos dados
 i = 1, 2, ..., N

Método dos mínimos quadrados (OLS)

Ordinary Least Squares: minimizar os <u>resíduos</u>

$$\min_{\hat{\alpha},\hat{\beta}} \sum_{i=1}^{n} \varepsilon_i^2 = \min_{\hat{\alpha},\hat{\beta}} \sum_{i=1}^{n} \left[Y_i - \left(\hat{\alpha} + \hat{\beta} X_i \right) \right]^2$$

Mostra-se que:

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X} \qquad \qquad \hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

Minimizar os resíduos

Minimizar os resíduos

"Bondade do ajustamento"

R2: medida de ajustamento do modelo aos dados

Fonte da variação	Soma dos quadrados
Variação explicada	$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$
Variação residual	$SSR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$
Variação total	$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{SSR}{TSS},$$
$$0 \le R^2 \le 1$$

- R2 = 1: toda a variação dos dados pode ser explicada pelo modelo
- R2 = 0: vice-versa

Hipóteses de um modelo OLS

Recorde: pelo CLT, para 1 variável a média da amostra é um bom estimados da média da população — ou seja, não é <u>enviesado.</u>

$$Y = \alpha + \beta X + \varepsilon \longrightarrow Y_i = \hat{\alpha} + \hat{\beta} X_i + e_i$$

Da mesma forma, os **estimadores OLS** são bons estimadores dos parâmetros, sob <u>certas hipóteses</u>.

Hip. OLS

- Linearidade
- Resíduos não correlacionados com a variável independente (<u>exogeneidade</u>)
- Amostra i.i.d. independente e identicamente distribuída

Hipóteses de um modelo OLS

Recorde: pelo CLT, para 1 variável a média da amostra é um bom estimados da média da população — ou seja, não é <u>enviesado.</u>

$$Y = \alpha + \beta X + \varepsilon \longrightarrow Y_i = \hat{\alpha} + \hat{\beta} X_i + e_i$$

Da mesma forma, os <u>estimadores</u> **OLS** são bons estimadores dos parâmetros, sob certas hipóteses.

$$Y$$
 , X variáveis aleatórias $lacksquare$

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2}$$

também são variáveis aleatórias, com a sua própria <u>distribuição</u>

Significância estatística

Sob estas hipóteses, podemos ter uma ideia da <u>significância</u> do coeficiente de declive: traduz ele realmente uma relação entre as variáveis?

$$H_0: \beta = 0$$

VS

$$H_1: \beta \neq 0$$

Sob hipóteses OLS, numa amostra grande:

- $\hat{\beta}$ acerta em média (é centrada)
- A variância, ou o erro padrão, de \hat{eta} tem uma distribuição Normal pelo T. do Limite Central

Podemos avaliar a <u>estatística-t</u>:

$$t = \frac{\hat{\beta}}{SE\left(\hat{\beta}\right)}$$

Hipóteses de um modelo OLS

https://www.econometrics-with-r.org/4.5-tsdotoe.html

Significância estatística

$$H_0: \beta = 0$$

VS

$$H_1: \beta \neq 0$$

Sob hipóteses OLS, numa amostra grande, mostra-se que

$$t = \frac{\hat{\beta}}{SE\left(\hat{\beta}\right)} \sim N(0, 1)$$

modelos: queremos erros-padrão pequenos em relação a ^β

Interpretação de

Quando | **t** | > **1.96** (= valor crítico):

- rejeita-se H0 (= β é diferente de zero)
- com um nível de significância de **5%**

Significância estatística

$$H_0: \beta = 0$$

vs
$$H_1: \beta \neq 0$$

Interpretação de modelos: queremos p-value pequenos

O mesmo teste pode ser visto rapidamente com **p-values**:

$$t = \frac{\hat{\beta}}{SE(\hat{\beta})} \sim N(0, 1)$$
 (para amostras grandes)

valor da **estatística** *t* **grande** <=> valor-p pequeno

- p-value = 2% < nível de significância = 5%
 - rejeita-se H0 => estimativa de β é significativa

Variáveis categóricas

Variável binária

```
## # A tibble: 3,393 × 3
##
                Height in landsALL
      name
                     <dbl>
                              <dbl>
##
      <chr>
   1 L1764-2
                        37
                        18
   2 L1764-3
   3 L1764-4
                        13
   4 L1764-5a
                        14
   5 L1764-5b
                        14
## 6 L1764-6
   7 L1764-7a
  8 L1764-7b
                        15
   9 L1764-8
## 10 L1764-9a
## 11 L1764-9b
## 12 L1764-10a
                        16
                        16
## 13 L1764-10b
## 14 L1764-10c
                        16
## 15 L1764-11
                        14
## 16 L1764-12a
                        14
## 17 L1764-12b
                        15
## 18 L1764-13a
## 19 L1764-13b
                        15
## 20 L1764-14
## # ... with 3,373 more rows
```

■landsall

- ■1: tem características de paisagem
- ■0: não tem qualquer característica de paisagem
- ■Qual seria outro tipo de dados no R (mais correcto) que esta variável poderia assumir?

```
modelo_bi <- pp_rect %>%
              lm(price ~ Surface + landsALL, data = .)
                Média de landsAll?
modelo_bi %>%
                                Como interpretar?
 tidy()
           est mate std.error straistic p.value
 term
              <dbl>
                   <dbl>
                                   <dbl>
 <chr>
                              <dbl>
                  51.1
1 (Intercept)
                              12.2 2.23e-33
            622.
            2 Surface
3 landsALL
            138.
                    73.3
                            1.88 6.00e- 2
```

■landsall (=1): Espera-se que um quadro com algumas características de paisagem tenha em média um preço superior em 138 Francos, a um quadro sem qualquer característica de paisagem e com idêntica área de superfície (tudo o resto constante...).

```
Preço médio estimado de um quadro paisagem:
price = 622 + 0.197 * Surface + 138 (ex.: Surface = 100 -> price = 780)
```

```
Preço médio estimado de um quadro não-paisagem (retrato?): price = 622 + 0.197 * Surface (ex: price = 780-138 = 642)
```

wages

wages						CHARACTER
income <dbl></dbl>	height <dbl></dbl>	weight <dbl></dbl>	age <dbl></dbl>	marital <chr></chr>	sex <chr></chr>	education

1–10 of 5,266 rows | 1–7 o... Previous 1 2 3 4 5 ... 100 Next

factors

Variável categórica: discreta/qualitativa, com uma certa ordem (dada pelos levels/níveis).

Pode sempre alterar-se os níveis recriando o factor:

```
sexes <- factor(sexes, levels = c("male", "female", "other"))</pre>
sexes
## male female male
Levels: female male other
unclass(sexes)
## 2 1 2
## attr(,"levels")
## "female" "male" "other"
```

```
wages <-
wages %>%
mutate(sex = factor(sex, levels = c("male", "female")))
```

income <dbl></dbl>	height <dbl></dbl>	weight <dbl></dbl>	age <dbl></dbl>	marital <chr></chr>	sex <fctr></fctr>	education <abl></abl>
19000	60	155	53	married	female	13
35000	70	156	51	married	female	10
105000	65	195	52	married	male FA	CTOR 16
40000	63	197	54	married	female	14
75000	66	190	49	married	male	14
102000	68	200	49	divorced	female	18
70000	64	160	54	divorced	female	12

Variável categórica (>2 níveis)

```
## # A tibble: 3,393 × 3
                Height_in school_pntg
      name
                    <dbl> <chr>
      <chr>
                       37 F
## 1 L1764-2
## 2 L1764-3
                       18 I
## 3 L1764-4
                       13 D/FL
## 4 L1764-5a
                       14 F
## 5 L1764-5b
                       14 F
## 6 L1764-6
                        7 I
## 7 L1764-7a
                        6 F
## 8 L1764-7b
                        6 F
## 9 L1764-8
                       15 I
## 10 L1764-9a
                        9 D/FL
## 11 L1764-9b
                        9 D/FL
## 12 L1764-10a
                       16 X
## 13 L1764-10b
                       16 X
                       16 X
## 14 L1764-10c
                       20 D/FL
## 15 L1764-11
## 16 L1764-12a
                       14 D/FL
                       14 D/FL
## 17 L1764-12b
                       15 D/FL
## 18 L1764-13a
## 19 L1764-13b
                       15 D/FL
## 20 L1764-14
                       37 F
## # ... with 3,373 more rows
```

■school_pntg

- **"F"**: França
- "!": Itália
- "D/FL": Alemanha/Flandres
- ■Como introduzir num modelo?

Variável categórica (>2 níveis)

school_pntg	D_FL	F	G	1	S	X
Α	0	0	0	0	0	0
D/FL	1	0	0	0	0	0
F	0	1	0	0	0	0
G	0	0	1	0	0	0
1	0	0	0	1	0	0
S	0	0	0	0	1	0
X	0	0	0	0	0	1

■1 variável para cada categoria?

Variáveis "dummy" (burras)

school_pntg	D_FL	F	G	1	S	X
А	0	0	0	0	0	0
D/FL	1	0	0	0	0	0
F	0	1	0	0	0	0
G	0	0	1	0	0	0
1	0	0	0	1	0	0
S	0	0	0	0	1	0 _
Χ	0	0	0	0	0	1

- Não! N.º categorias 1
- Definir categoria **baseline**
- Cada variável <u>dummy</u> representa o efeito dessa categoria por comparação com a baseline

O que aconteceria se colocássemos variáveis dummy para todas as categorias?

Experimente

- 1. Volte a estimar com os dados **pp_rect**, um modelo linear do preço de venda do quadro (**price**) com três variáveis explicativas: a altura, a área de superfície e o ano **year**.
- Agora estime o mesmo modelo mas acrescentando variáveis "dummy" para incorporar diferenças médias entre as diferentes escolas (school_pntg).
 - O que aconteceu ao R2?
 - Interprete as novas estimativas obtidas

```
# A tibble: 10 \times 6
                              estimate std.error statistic p.value
   term
   <chr>>
                                 <db1>
                                            <dbl>
                                                      <db1>
                                                               <db1>
 1 (Intercept)
                           -95306.
                                       12542.
                                                     -7.60 3.93e-14
 2 Surface
                               -0.0238
                                           0.0609
                                                     -0.390 6.96e- 1
 3 Height_in
                               26.7
                                           4.63
                                                      5.77 8.92e- 9
                               53.4
                                           7.00
                                                      7.63 3.21e-14
 4 year
 5 factor(school_pntg)D/FL
                             1407.
                                        1344.
                                                      1.05 2.96e- 1
 6 factor(school_pntq)F
                                                      0.400 6.89e- 1
                              538.
                                        1345.
 7 factor(school_pntg)G
                                                      0.157 8.75e- 1
                              249.
                                        1589.
 8 factor(school_pntg)I
                              537.
                                                      0.398 6.90e- 1
                                        1348.
 9 factor(school_pntg)S
                             2165.
                                        1525.
                                                      1.42 1.56e- 1
10 factor(school_pntg)X
                              384.
                                        1377.
                                                      0.279 7.80e- 1
```

Quando as hipóteses OLS falham

Hipóteses de um modelo OLS

$$Y = \alpha + \beta X + \varepsilon \longrightarrow Y_i = \hat{\alpha} + \hat{\beta} X_i + e_i$$

Os **estimadores OLS** são bons estimadores dos parâmetros, sob <u>certas hipóteses</u>.

Hip. OLS

- <u>Linearidade</u> nos parametros
- Resíduos não correlacionados com a variável independente (<u>exogeneidade</u>)
- Amostra i.i.d. independente e identicamente distribuída
- (Normalidade dos resíduos)

Analisar os resíduos

- Quando modelo é válido os resíduos devem ter distribuições
 (aproximadamente) normais com a mesma variância, e média zero
- Check: gráfico dos resíduos

Quando as hipóteses falham...

Experimente

- Volte a estimar (ou recupere o modelo já estimado) com os dados pp_rect, um modelo linear do preço de venda do quadro (price) com três variáveis explicativas: a altura, a área de superfície e o ano year.
 - Produza o gráfico de resíduos deste modelo

modelo_4 <- pp_rect %>% lm(price ~ Surface + Height_in + year, data = .)

pp_rect %>% ggplot(aes(x = price)) +
 geom_histogram(bins = 25)

geom_histogram(bins = 25)

pp_rect %>% ggplot(aes(x = price)) pp_rect %>% ggplot(aes(x = log(price))) + geom_histogram(bins = 25)

Linearidade

$$Y = \alpha + \beta X + \varepsilon$$

- Modelo linear nos parâmetros
- Exige relação de proporcionalidade entre Y e X
- Por vezes falha mas pode ser recuperado com transformações simples das variáveis de interesse
 - e.g. logaritmo

Linearidade

- Interpretação: variação percentual
- e.g. log-linear: + 1 unid. de X => + β (x 100) % de Y

Experimente

- 1. Volte a estimar com os dados **pp_rect**, um modelo linear do preço de venda do quadro (**price**) com três variáveis explicativas: a altura, a área de superfície e o ano **year**.
- 2. Agora estime o mesmo modelo mas numa versão log-linear, ou seja com **log(price)** como variável dependente.
 - Produza o gráfico de resíduos deste modelo
 - O que aconteceu ao R2?
 - Interprete as novas estimativas obtidas

```
modelo_4l <- pp_rect %>% lm(log(price) ~ Surface + Height_in + year, data
= .)
```



```
modelo_4l <- p_rect %>%
    lm(log(price) ~ Surface +Height_in + year, data = .)

modelo_4 %>% tidy() %>%
    cross_join((modelo_4 %>% glance %>% select(r.squared)))
```

```
# A tibble: 4 \times 6
 term
              estimate std.error statistic p.value r.squared
  <chr>
                   <db1>
                              <dbl>
                                    <dbl> <dbl>
                                                       <db1>
1 (Intercept) -<u>110</u>909.
                         12576.
                                      -8.82 1.90e-18
                                                        0.0373
2 Surface
                0.0392
                            0.0620 0.633 5.27e- 1
                                                        0.0373
3 Height_in
                 15.8
                         4.61
                                       3.43 6.04e- 4
                                                        0.0373
                 62.8
                            7.09 8.86 1.30e-18
                                                        0.037<u>3</u>
4 year
# A tibble: 4 \times 6
                 estimate std.error statistic p.value r.squared
  term
                    <dbl> <dbl>
                                    <dbl> <dbl>
  <chr>
                                                         <dbl>
                                     -15.5 6.36e-52
1 (Intercept) -178.
                         11.5
                                                        0.0825
2 Surface
               0.000<u>051</u>2 0.000<u>056</u>9 0.900 3.68e- 1 0.082<u>5</u>
                          0.004<u>24</u>
                                      2.96 3.10e- 3
3 Height_in 0.012<u>5</u>
                                                        0.0825
4 year
                0.103
                          0.006<u>51</u>
                                      15.9 1.25e-54
                                                        0.082<u>5</u>
```

Interpretação log/linear

■ Declive - Height_in: Tudo o resto constante (ceteris paribus), por cada polegada adicional em altura, espera-se que o preço do quadro seja, em média, 1.25% mais elevado.

Quadros maiores tendem a ter preços mais elevados.

Endogeneidade & variáveis omitidas

Violação da hipótese da exogeneidade:

• correlação entre X (variáveis independentes) e os resíduos

Caso típico:

- resíduos "escondem" uma variável omitida
 - correlacionada com X
 - importante para determinar variável dependente Y

Estimador de **β enviesado** ou descentrado: não acerta, em média, no parâmetro da população.

$$\hat{\beta}_1 \rightarrow \beta_1 + \rho_{Xu} \frac{\sigma_u}{\sigma_X}$$

Experimente

- 1. Carregue os dados wages.xlsx (processando corretamente quaisquer NAs).
- 2. Estime um modelo que explique o logaritmo do **income** com as variáveis **education** e o logaritmo de **weight**.
 - Como interpreta o coeficiente de weight? Os resultados fazem sentido?
 - Analise o gráfico de resíduos do modelo. As estimativas obtidas são confiáveis? Porquê?

Multicolinearidade

Quando as variáveis independentes estão fortemente correlacionadas:

- Estimativas instáveis
- Impossível distinguir efeito de diferentes variáveis

Forma fácil de inspecionar:

- Matriz de correlações
- -> Todos os coeficientes de correlação cruzados

```
pp_rect %>% select(Surface, Height_in, year) %>%
cor()
```

```
Surface Height_in year
Surface 1.0000000 0.8563879 -0.1130731
Height_in 0.8563879 1.0000000 -0.1611672
year -0.1130731 -0.1611672 1.0000000
```

- Multicolinearidade perfeita: male = 1 female
 - => estimadores <u>indefinidos</u>

```
\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X} wm <- wages_data %>%  lm(log(income) \sim (education) + log(weight) + \\ (sex == 'male') + (sex == 'female) - 1), data = .)  wm %>% tidy()
```

```
# A tibble: 4 \times 5
                            estimate std.error statistic p.value
             term
             <chr>
                             education
                             0.129
                                     0.005<u>21</u> 24.7 9.91e-128
intercept
             loa(weight)
                              0.079<u>6</u> 0.064<u>8</u> 1.23 2.19e- 1
           3 factor(sex)female 8.06 0.341 23.6 3.73e-117
                              8.47 0.352
           4 factor(sex)male
                                               24.0 5.23e-121
                              = 8.06 + 0.409
```

• "Dummies" redistribuem a constante por diferentes grupos

Obrigado e até à próxima!

luis.morais@novasbe.pt