Содержание

1.			ие операции		
	1.1.		ческое И		
			Таблица истинности		
		1.1.2.	Обозначения		 2
		1.1.3.	Свойства		 2
	1.2.	Логич	ческое ИЛИ		 3
		1.2.1.	Таблица истинности		 3
		1.2.2.	Обозначения		 3
		1.2.3.	Свойства		 3
	1.3.	Отриг	щание		 3
		1.3.1.	Таблица истинности		 3
		1.3.2.	Обозначения		 3
		1.3.3.	Свойства		 3
	1.4.	Импл	тикация		 4
		1.4.1.	Таблица истинности		 4
		1.4.2.	Обозначения		 4
		1.4.3.	Свойства		 4
	1.5.	Эквин	валенция		 4
		1.5.1.	Таблица истинности		 4
		1.5.2.	Обозначения		 4
		1.5.3.	Свойства		 4
	1.6.	Искли	почающее ИЛИ		 5
		1.6.1.	Таблица истинности		 5
			Обозначения		
			Свойства		
	1.7.	Практ	тическое применение		 5
\mathbf{C}	пис	ок та	аблиц		
1.	Лог	ическо	ре И		 2
2.	Лог	ическо	ре ИЛИ		 3
3.	Отр	ицание	te		 3
4.			ция		
			нция		
			ощее ИЛИ		
			е операции в языках программирования		

1. Логические операции

Определение 1. Будем говорить, что операция является **сильной относительно значения**, если она принимает это значение **реже**, чем противоположное.

Определение 2. Будем говорить, что операция является **слабой относительно значения**, если она принимает это значение **чаще**, чем противоположное.

Пример: операция конъюнкции является сильной относительно единицы, поскольку она принимает её лишь в одном случае из четырёх возможных.

1.1. Логическое И

1.1.1. Таблица истинности

\boldsymbol{x}	y	x&y
0	0	0
0	1	0
1	0	0
1	1	1

Таблица 1. Логическое И

1.1.2. Обозначения

Операция также называется **конъюнкцией**, обозначается через \bigwedge , AND, И. В С-подобных языыках и Java обозначается &.

Замечание 1. Не путать с обозначением **исключающего ИЛИ** (1.6) в Сподобных языках (и Java)!

1.1.3. Свойства

- 1. Данная операция полностью эквивалентна обыкновенному умножению, что легко проверяется подстановкой.
- 2. Данная операция является слабой относительно нуля.

1.2. Логическое ИЛИ

1.2.1. Таблица истинности

x	y	$x \bigvee y$
0	0	0
0	1	1
1	0	1
1	1	1

Таблица 2. Логическое ИЛИ

1.2.2. Обозначения

Операция также называется **дизъюнкцией**, обозначается через |, OR, ИЛИ. В С-подобных языыках и Java обозначается |.

1.2.3. Свойства

1. Данная операция является слабой относительно единицы.

1.3. Отрицание

1.3.1. Таблица истинности

Таблица 3. Отрицание

1.3.2. Обозначения

Операция также называется **инверсией**. Имеет место обозначение \overline{x} . В С-подобных языыках и Java обозначается \sim .

1.3.3. Свойства

- 1. Данная операция не является сильной или слабой.
- 2. Операция полностью эквивалентна арифметическому действию $\neg x := 1 x$, что легко проверяется подстановкой.

1.4. Импликация

1.4.1. Таблица истинности

x	y	$x \to y$
0	0	1
0	1	1
1	0	0
1	1	1

Таблица 4. Импликация

1.4.2. Обозначения

Операция также называется следованием.

1.4.3. Свойства

- 1. Данная операция является слабой относительно единицы.
- 2. Операция полностью эквивалентна $\neg x \lor y$.

1.5. Эквиваленция

1.5.1. Таблица истинности

x	y	$x \leftrightarrow y$
0	0	1
0	1	0
1	0	0
1	1	1

Таблица 5. Эквиваленция

1.5.2. Обозначения

Операция также называется **равносильностью**, **тождественным равенством**. В ЕГЭ имеет место обозначение ≡.

1.5.3. Свойства

- 1. Данная операция не является сильной.
- 2. Операция полностью эквивалентна $x \to y \& y \to x$.
- 3. Именование "тождественное равенство" дано неслучайно: в самом деле, операция эквивалентна обыкновенному равенству

1.6. Исключающее ИЛИ

1.6.1. Таблица истинности

x	y	$x +_2 y$
0	0	0
0	1	1
1	0	1
1	1	0

Таблица 6. Исключающее ИЛИ

1.6.2. Обозначения

Обозначается XOR (eXclusive OR). В С-подобных языыках и Java обозначается Λ .

1.6.3. Свойства

- 1. Операция также называется **сложением по модулю 2**, поскольку является семантически эквивалентной ей: $x +_2 y := (x + y) mod 2$.
- 2. Данная операция не является сильной.
- 3. Операция является обратной к эквиваленции.

1.7. Практическое применение

Замечание 2. Языки программирования различают битовые и логические операции И, ИЛИ, НЕ, чем вносят некоторую путаницу.

Название	Логическая	Битовая
И	&&	&
ИЛИ		
HE	~	!

Таблица 7. Некоторые операции в языках программирования

Так, с точки зрения языка Си, аргументы **логического И** обрабатываются следующим образом: если аргумент не равен нулю, он воспринимается как истинностное значение. Ноль — как ложное. **Логического И** всегда возвращает **логический** результат — истину или ложь (в языке Си это 1 или 0, по умолчанию тип int, в Java — true или false, тип boolean).

Битовое И, однако, ведёт себя абсолютно иным образом: команда представляет аргументы в двоичном виде, делает поразрядную (побитовую) конъюнкцию и полученный результат переводит обратно в десятичный вид. Конечно же,

это реализуется иным образом, иначе эффективность операций была неоправданно низкой, однако человек бы делал то, что делает машина, именно таким образом (по крайней мере, наивную реализацию). **Битовое И** всегда возвращает **целочисленный** результат — целое число из разрешённого диапазона.

Пример:

- 123 && 46 == ИСТИНА И ИСТИНА == ИСТИНА.
- 123 & 46 == 1111011₂ \upMathbb{H} 01011110₂ == 0101010₂ == 41

По аналогичному принципу работают остальные битовые операции.

Итого: **битовые** операции переводят целое число в двоичный формат и производят поразрядное применение **логической** операции в соответствии с построенными таблицами истинности.

Замечание 3. Всё вышесказанное в полной мере относится и к Java.

Замечание 4. Операция исключающего ИЛИ – только **битовая**! Операция имликации и иже с ними не реализована в языке, поскольку является выразимой через уже реализованные.

Замечание 5. Битовые операции поддерживаются подавляющим большинством современных процессоров на аппаратном уровне, поэтому их выполнение осуществляется очень быстро. В связи с этим многие операции, родственные битовым, такие как генерация подмножеств заданного множества, стараются осуществлять с помощью так называемых битовых хаков.