

# INTRODUCTION to BLOCKCHAIN

CHAPTER3: CRYPTOCURRENCIES

Dr. Noureddine Lasla

## Chapter Overview

#### Objective:

Understanding Digital Assets and Their Role in Blockchain

#### **Key Areas of Focus:**

- ► Introduction to Money
- History of Money
- ► Introduction to Cryptocurrencies
- ► Types of Cryptocurrencies
- Key Features of Cryptocurrencies
- Bitcoin
- Altcoin

## What is Money?



Money is any item or medium of exchange that symbolize perceived VALUE.

## Functions of Money:

- Medium of exchange: Money eliminates the inefficiencies of barter systems by providing a commonly accepted method for exchanging goods and services.
- Unit of account: Money provides a standard measure of value, allowing people to compare the worth of different goods and services. (Abstract units of measure.)
- Store of value: Unlike perishable goods, which may deteriorate over time, money retains its value.
- Standard of Deferred Payment: It provides a mechanism for credit and financial contracts, making it possible to lend, borrow, and repay in a universally accepted medium.

## History of money



# History of money

| Monetary System                         | Examples                       | Backing                                | Main Feature                                      |
|-----------------------------------------|--------------------------------|----------------------------------------|---------------------------------------------------|
| Fiat Money                              | U.S. Dollar, Euro,<br>Yen      | No backing (trust-<br>based)           | Government-<br>issued currency                    |
| Commodity<br>Money                      | Gold Standard<br>(historical)  | Gold, Silver                           | Backed by physical commodities                    |
| Representative<br>Money                 | Gold certificates (historical) | Physical commodity (e.g., gold)        | Claims to a commodity                             |
| Digital/Cryptocurr encies               | Bitcoin, Ethereum              | Decentralized (peer-to-peer)           | Digital and decentralized                         |
| CBDCs (Central Bank Digital Currencies) | Digital Yuan, Sand<br>Dollar   | Government-<br>issued fiat<br>currency | Digital fiat<br>currency, central<br>bank control |

## Again..., what is money?

Units of currency are merely **abstract unit** of measurements.

Money is used to measure debt: It is an IOU (I owe you)

Technically any one can create money. But the hard part is to get that money accepted.

## Introduction to Cryptocurrencies

### What Are Cryptocurrencies?

- Digital or virtual currencies secured by cryptography.
- Operate on decentralized networks (blockchain).
- Enable peer-to-peer transactions without intermediaries (electronic cash).



## History of Cryptocurrencies



- ▶ 2008: Bitcoin whitepaper published by Satoshi Nakamoto.
- 2009: Bitcoin network launched; first block mined (Genesis Block) 03-01-2009.
- 2011: Emergence of altcoins (e.g., Litecoin).
- ▶ 2015: Ethereum introduced smart contracts.
- ▶ 2017: ICO (Initial Coin Offering) boom.
  - Filecoin ICO (2017) raised \$205 million
- ▶ 2020s: Rise of DeFi, NFTs, and institutional adoption.



## Types of Cryptocurrencies

Bitcoin (BTC): First cryptocurrency, store of value, Limited supply (21 million coins).



Altcoins: Ethereum (ETH), Litecoin (LTC), Ripple (XRP), etc.



- Reduce volatility and act as a bridge between crypto and traditional finance.
- Stablecoins: Pegged to fiat currencies (e.g., USDT, USDC).









Tokens: Used within specific ecosystems (e.g., Binance Coin, linkchain, etc.).

## Bitcoin



- Bitcoin transactions are transferred directly between users through a peer-to-peer network.
- Each transaction is recorded on the blockchain, ensuring that all Bitcoin exchanges are secure, transparent, and immutable.
- Bitcoin transactions rely on asymmetric cryptography for authentication and security.

## Bitcoin Wallet



Digital tool that allows users to store, send, and receive Bitcoin.

- Private key: proves ownership of Bitcoins.
- Public key: address linked to the private key, used to receive Bitcoin.
- ► Types of Bitcoin Wallets:
  - Hot Wallets (online, mobile, desktop wallets): connected to the internet, for quick transactions.
  - Cold Wallets (offline, Hardware, paper wallets): providing enhanced security for long-term storage of Bitcoin.

Bitcoin uses the **UTXO** (Unspent Transaction Output) model instead of a **balance-based** system.

In Bitcoin, every transaction consumes inputs (previously unspent outputs) and creates outputs (new UTXOs). These outputs can then be spent in future transactions.

Rather than maintaining a running balance for each address, Bitcoin tracks all individual UTXOs, each representing a specific amount of Bitcoin.

#### **UTXO (Unspent Transaction Output)**

**UTXO** represents the amount of Bitcoin that has not been spent from a transaction.

- Each Bitcoin transaction involves spending previously received UTXOs.
- Transaction Inputs: When you send Bitcoin, you are using one or more of your previous UTXOs as inputs.
- Transaction Outputs: The outputs are the new UTXOs created by the transaction. Any leftover Bitcoin after the transaction (i.e., change) is also returned as a new UTXO.



#### **How UTXOs Work:**

- When you receive Bitcoin, you are essentially receiving UTXOs associated with a specific amount.
- When you make a transaction, you use these UTXOs as inputs. Bitcoin's system doesn't allow spending fractions of a UTXO, so if you're sending less than the full amount, the remainder is sent back to you as a new UTXO (often called "change").
- A transaction can have multiple inputs (coming from different UTXOs) and multiple outputs (sending Bitcoin to one or more recipients).





#### What is Bitcoin script?

- Bitcoin Script is a stack-based programming language used to define the rules for how Bitcoin transactions are processed.
- ▶ It is **not** Turing-complete, meaning it's not designed for complex computations, but rather for simple transaction validation and authorization.
- Work with two types of instructions: data instructions and OP CODE.





#### Purpose of Bitcoin Script

- The goal is to define the conditions under which a Bitcoin transaction can be spent.
- ▶ It's a language for locking and unlocking Bitcoin during a transaction.
  - Lock script (scriptPubKey)
  - Unlock script (scriptSig).





#### Features of Bitcoin Script

- Stack-Based: uses a stack data structure where operations are performed by pushing and popping data to and from the stack.
- Non-Turing Complete: is **limited** in functionality to **prevent** complex operations that could cause security issues or make the system inefficient.
- Simple Operations: supports basic operations like addition, subtraction, comparison, and logical AND/OR operations.





#### **How Bitcoin Script Work**

- Locking Bitcoin:
  - When a Bitcoin is sent, the sender specifies conditions under which it can be spent by creating a scriptPubKey (a locking script).
- Unlocking Bitcoin:
  - When the recipient wants to spend the Bitcoin, they must provide an unlocking script (scriptSig) to satisfy the conditions in the scriptPubKey.

























| Type of Script                          | Description                                                                                                                                                                           | Example                                                                                                         |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Pay-to-PubKey-Hash<br>(P2PKH)           | The most common script type. The funds are locked to a public key hash (Bitcoin address). Only the owner of the private key corresponding to the public key hash can spend the funds. | scriptPubKey: OP_DUP OP_HASH160 <public_key_hash> OP_EQUALVERIFY OP_CHECKSIG</public_key_hash>                  |
| Pay-to-Script-Hash<br>(P2SH)            | The payer sends funds to a script hash, which can then be spent using any valid script matching the hash. Commonly used for multi-signature addresses and more complex scripts.       | scriptPubKey: OP_HASH160<br><script_hash> OP_EQUAL</script_hash>                                                |
| Multi-Signature (Multisig)              | A script type where multiple signatures are required to unlock the funds. Allows the creation of joint wallets, where several participants must sign to spend funds.                  | <pre>scriptPubKey: OP_2 <pubkey1> <pubkey2> <pubkey3> OP_3 OP_CHECKMULTISIG</pubkey3></pubkey2></pubkey1></pre> |
| Pay-to-Witness-PubKey-<br>Hash (P2WPKH) | A SegWit-based script where the funds are locked to a public key hash and spent using a <b>witness</b> . It reduces transaction size and improves efficiency.                         | <pre>scriptPubKey: 0 <public_key_hash></public_key_hash></pre>                                                  |
| Pay-to-Witness-Script-<br>Hash (P2WSH)  | A SegWit-based script that locks funds to a script hash. Similar to <b>P2SH</b> , but designed to take advantage of SegWit.                                                           | <pre>scriptPubKey: 0 <script_hash></script_hash></pre>                                                          |





#### Summary of Bitcoin Script opcodes

| Opcode           | Description                                                                                   |  |  |
|------------------|-----------------------------------------------------------------------------------------------|--|--|
| OP_DUP           | Duplicates the top item on the stack.                                                         |  |  |
| OP_HASH160       | Applies SHA-256 followed by RIPEMD-160 hashing to the top item.                               |  |  |
| OP_CHECKSIG      | Verifies that the digital signature is valid for the provided public key and data.            |  |  |
| OP_EQUAL         | Checks if the top two items on the stack are equal.                                           |  |  |
| OP_EQUALVERIFY   | Like <b>OP_EQUAL</b> , but also removes the top two items if they are equal.                  |  |  |
| OP_CHECKMULTISIG | Verifies multiple signatures for a multi-signature transaction.                               |  |  |
| OP_RETURN        | Marks a transaction output as <b>unspendable</b> . Used for embedding data in the blockchain. |  |  |
| OP_IF / OP_ELSE  | Conditional logic: executes script based on the truth value of the preceding condition.       |  |  |
| OP_VERIFY        | Verifies that the top stack item is <b>true</b> (non-zero). If not, the script fails.         |  |  |
| OP_NOP           | Does nothing, often used for backward compatibility or future extensions.                     |  |  |

## Bitcoin TX Example



How to transfer some BTC between Alice, Bob and Joe?

| i | TxID:42b6a77cf6096f52fc7513cfdf861bcc1e841d7b05eb48d095a764df79501c7d |            |               |                         |                    |
|---|-----------------------------------------------------------------------|------------|---------------|-------------------------|--------------------|
| į | INPUTS From                                                           |            |               | OUTPUTS To              |                    |
| i | (from previous transaction Alice has received):                       |            |               |                         |                    |
| ı | Alice                                                                 | 0.1005 BTC | $\Rightarrow$ | Output #0 Bob's address | 0.1000 BTC (spent) |
|   |                                                                       |            |               | Transaction fees        | 0.0005 BTC         |

- 1. Bob's address (receiver): hash(Bob's public key)
- 2. Proof of ownership: transaction signed by Alice's private key (unlock)
- 3. Propagate the transaction on the Bitcoin network
- 4. Validate the transaction (rules):
  - check syntax, size
  - check double spending
- 5. Mining: the transaction becomes part of the blockchain

## Bitcoin TX Example



Transfer from Bob to Joe

| Ì | TxID: 30076701180f4dd48a7f1bb37027c6e791e950eaa44b6449f6b5d660b523f967 |            |               |                                 |                      |
|---|------------------------------------------------------------------------|------------|---------------|---------------------------------|----------------------|
|   | INPUTS From                                                            |            |               | OUTPUTS To                      |                      |
| ı | 42b6a77cf6096f52fc7513cfdf861bcc1e841d7b05eb48d095a764df79501c7d:      |            |               |                                 |                      |
|   | Bob                                                                    | 0.1000 BTC | $\Rightarrow$ | Output #0 Joe's address         | 0.0150 BTC (spent)   |
| I |                                                                        |            |               | Output#1 Bob's address (change) | 0.0845 BTC (unspent) |
| Ì |                                                                        |            |               | Transaction fees                | 0.0005 BTC           |

#### Bitcoin uses a scripting language (Turing incomplete)

The script for a Bitcoin transfer to dest. Bitcoin address D simply encumbers future spending of the bitcoins with two things:

- the spender must provide a public key that, when hashed, yields destination address D embedded in the script, and
- a signature to prove ownership of the private key corresponding to the public key just provided.

## Altcoins



**Altcoins** are any cryptocurrencies that are not Bitcoin. The term "Altcoin" is short for "**alt**ernative **coin**," meaning they are alternatives to Bitcoin.

- Altcoins offer a wide range of applications and use cases.
  - Smart contracts (Ethereum), DeFi (Uniswap, Aave)
  - Privacy-focused transactions (e.g., Monero, Zcash)
  - Stable value (e.g., Tether, USDC)
- Many altcoins are at the forefront of blockchain innovation, exploring new consensus algorithms, scalability solutions, and other features.





## Popular Altcoins

| Altcoin            | Use Case                       | Blockchain    |
|--------------------|--------------------------------|---------------|
| Ethereum (ETH)     | Smart contracts, dApps         | Ethereum      |
| Binance Coin (BNB) | Exchange token, DeFi           | Binance Chain |
| Cardano (ADA)      | Scalable smart contracts       | Cardano       |
| Solana (SOL)       | High-speed transactions        | Solana        |
| Polkadot (DOT)     | Blockchain<br>interoperability | Polkadot      |
| Dogecoin (DOGE)    | Meme coin, payment method      | Dogecoin      |