

Métricas de Similitud

Programa:	
-----------	--

11/Septiembre/2025

Convenciones $(2 \times 2 \text{ de contingencia})$

Dados dos vectores binarios o conjuntos X y Y, definimos:

$$\begin{array}{ll} a=|X\cap Y| & \text{(coincidencias 1-1)}\\ b=|X\setminus Y| & \text{(1 en }X,\,0\text{ en }Y)\\ c=|Y\setminus X| & \text{(0 en }X,\,1\text{ en }Y)\\ d=\text{coincidencias }0\text{--}0=n-(a+b+c)\\ n=a+b+c+d & \end{array}$$

1. Tabla de contingencia (2×2)

Dados dos vectores binarios X y Y, de longitud n, construimos la tabla de contingencia:

	Y = 1	Y = 0
X = 1	a (coincidencias 1–1)	b (1 en X, 0 en Y)
X = 0	c (0 en X, 1 en Y)	d (coincidencias 0–0)

Donde:

$$\begin{split} a &= \#\{i: X_i = 1 \land Y_i = 1\},\\ b &= \#\{i: X_i = 1 \land Y_i = 0\},\\ c &= \#\{i: X_i = 0 \land Y_i = 1\},\\ d &= \#\{i: X_i = 0 \land Y_i = 0\},\\ n &= a + b + c + d. \end{split}$$

2. Ejemplo paso a paso

Sea X = [1, 0, 1, 0, 0] y Y = [1, 0, 0, 0, 0]. Calculamos:

- \bullet Posición 1: $X=1, Y=1 \implies a=1.$
- Posición 2: $X = 0, Y = 0 \implies d = 1$.
- Posición 3: $X = 1, Y = 0 \implies b = 1$.
- Posición 4: $X = 0, Y = 0 \implies d = 2$.
- Posición 5: $X = 0, Y = 0 \implies d = 3$.

Por tanto: a = 1, b = 1, c = 0, d = 3, n = 5.

1. Métricas comunes

- Jaccard / Tanimoto (similitud): $S_J = \frac{a}{a+b+c}$.
- Sørensen-Dice (similitud): $S_D = \frac{2a}{2a+b+c}$.
- Simple Matching / Sokal–Michener (similitud): $S_{SM} = \frac{a+d}{n}$.
- Hamming (distancia): $D_H = \frac{b+c}{n}$; Hamming (similitud): $1 D_H$.
- Russell–Rao (similitud): $S_{RR} = \frac{a}{n}$.
- Hamann (similitud): $S_{Ha} = \frac{a+d-b-c}{n}$.
- Gower (binaria simétrica, similitud): $S_{Go} = \frac{a+d}{n}$.

2. Métricas menos comunes

- Baroni–Urbani & Buser (similitud): $S_{BUB} = \frac{\sqrt{ad} + a}{\sqrt{ad} + a + b + c}$.
- Kulczynski (K1, similitud): $S_{Ku} = \frac{1}{2} \left(\frac{a}{a+b} + \frac{a}{a+c} \right)$.
- Rogers–Tanimoto (similitud): $S_{RT} = \frac{a+d}{a+d+2(b+c)}$.

3. Familia Sokal & Sneath

- SS1 (similitud): $S_{SS1} = \frac{a}{a + 2(b+c)}$.
- SS2 (similitud): $S_{SS2} = \frac{2(a+d)}{2(a+d)+(b+c)}$.
- SS4 (similitud, Anderberg): $S_{SS4} = \frac{1}{4} \left(\frac{a}{a+b} + \frac{a}{a+c} + \frac{d}{b+d} + \frac{d}{c+d} \right)$.
- SS5 (similarity 2): $S_{SS5} = \frac{a(a+b+c)}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$.

Nota. SS3 La variante SS3 tiene definiciones divergentes en la literatura. Para evitar ambigüedad, no se incluye.

4. Ejemplo numérico

Sea la tabla con a = 5, b = 3, c = 2, d = 10 (n = 20). En la Tabla 1 se listan los valores de cada métrica.

Métrica	Valor
Jaccard / Tanimoto	0.5000
Sørensen–Dice	0.6667
Simple Matching / Sokal–Michener	0.7500
Hamming (distancia)	0.2500
Hamming (similitud)	0.7500
Russell–Rao	0.2500
Hamann	0.5000
Gower (binaria simétrica)	0.7500
Baroni–Urbani & Buser	0.7071
Kulczynski (K1)	0.6696
Rogers-Tanimoto	0.6000
Sokal–Sneath #1	0.3333
Sokal–Sneath #2	0.8571
Sokal–Sneath $\#4$ / Anderberg	0.7355
Sokal–Sneath #5 / Gower sim. 2	0.5350

Cuadro 1: Valores de similitud/distancia para el ejemplo (a = 5, b = 3, c = 2, d = 10).

Consideraciones

- \blacksquare Muchas similitudes se relacionan por transformaciones simples: p.ej., la distancia de Hamming es 1-SMC (simple matching), y Hamann es $2\,SMC-1$.
- \blacksquare Para variables binarias asim'etricas (la coausencia d no aporta), se recomienda usar Jaccard/Tanimoto o Sørensen–Dice.
- \blacksquare Para binarias sim'etricas (la coausencia d sí aporta), SMC / Gower binaria y Rogers—Tanimoto son opciones comunes.