Introduction to Information Retrieval and Text Mining Assignment 4

Roman Klinger

Institute for Natural Language Processing, University of Stuttgart

2018-01-18

Klinger: Assignment 4 1 / 14

Task 1 (Naïve Bayes)

Train a Naïve Bayes given the following documents annotated with classes c_1 and c_2 . Use Add-One-Smoothing. Provide all parameters for a full model specification.

- c₁ "new year"
- c₁ "holiday year"
- c2 "work again"
- cy "never work"

Given the document

"never holiday"

Which class is assigned by the model?

Klinger: Assignment 4 3 / 14

Task 1 Solution

- c₁ "new vear"
- c₁ "holiday year"
- c₂ "work again"
- co "never work"
- Prior: $p(c_1) = p(c_2) = \frac{1}{2}$
- $p(\text{new}|c_1) = p(\text{holiday}|c_1) = \frac{1+1}{4+6}$; $p(\text{year}|c_1) = \frac{2+1}{4+6}$; $p(\text{work}|c_1) = p(\text{never}|c_1) = p(\text{again}|c_1) = \frac{0+1}{4+6}$
- $p(\text{work}|c_2) = \frac{2+1}{4+6}$; $p(\text{again}|c_2) = p(\text{never}|c_2) = \frac{1+1}{4+6}$; $p(\text{new}|c_2) = p(\text{holiday}|c_2) = p(\text{year}|c_2) = \frac{0+1}{4+6}$
- Classification: d = "never holiday"

 - $p(c_1|d) = \frac{1}{2} \frac{1}{10} \frac{2}{10} = \frac{1}{100}$ $p(c_2|d) = \frac{1}{2} \frac{2}{10} \frac{1}{10} = \frac{1}{100}$
 - ⇒ Undecidable.

Given the following features (without making a difference between upper and lower case) and documents:

weight	feature	
$\lambda_1 = 0.2$	$f_1(y,x) = 1$ if "\$" in x and y = SPAM	
$\lambda_2 = -0.1$	$f_2(y,x) = 1$ if "\$" in x and y = HAM	
$\lambda_3 = 0.5$	$f_3(y,x) = 1$ if "Nigerian" in x and y = SPAM	
$\lambda_4 = -0.2$	$f_4(y,x) = 1$ if "Nigerian" in x and y = HAM	
$\lambda_5 = -0.1$	$f_5(y,x) = 1$ if "you" in x and y = SPAM	
$\lambda_6 = 0.4$	$f_{\theta}(y,x) = 1$ if "you" in x and y = HAM	
$\lambda_7 = 0.1$	$f_7(y,x) = 1$ if $y = SPAM$	
$\lambda_8 = 0.0$	$f_7(y,x) = 1$ if $y = HAM$	

Class y	document	
SPAM	x ₁ = \$1 million from Nigerian defense minister	
SPAM	x ₂ = Please contact Nigerian finance minister	
SPAM	x ₃ = You won \$30,000!	
SPAM	x ₄ = Buy these Ginsu knifes now.	
НАМ	x ₅ = You should send the Nigerian wildlife report.	
НАМ	x ₆ = Thanks for great dinner. I owe you \$20.	

- What is $p(SPAM|x_1)$ given the maximum entropy classifier with the specified features and weights?
- Calculate the partial derivative of the log-likelihood of all documents with respect to λ_6 !

Klinger: Assignment 4 6 / 14

weight	feature	
$\lambda_1 = 0.2$	$f_1(y,x) = 1$ if "\$" in x and $y = SPAM$	
$\lambda_2 = -0.1$	$f_2(y,x) = 1$ if "\$" in x and y = HAM	
$\lambda_{3} = 0.5$	$f_3(y,x) = 1$ if "Nigerian" in x and y = SPAM	
$\lambda_4 = -0.2$	$f_4(y,x) = 1$ if "Nigerian" in x and y = HAM	
$\lambda_5 = -0.1$	$f_5(y,x) = 1$ if "you" in x and y = SPAM	
$\lambda_6 = 0.4$	$f_6(y,x) = 1$ if "you" in x and y = HAM	
$\lambda_7 = 0.1$	$f_7(y,x) = 1$ if $y = SPAM$	
$\lambda_8 = 0.0$	$f_7(y,x) = 1$ if $y = HAM$	

Class y	document
SPAM	$x_1 = 1 million from Nigerian defense minister
SPAM	x ₂ = Please contact Nigerian finance minister
SPAM	x ₃ = You won \$30,000!
SPAM	x ₄ = Buy these Ginsu knifes now.
HAM	x_5 = You should send the Nigerian wildlife report.
HAM	x_6 = Thanks for great dinner. I owe you \$20.

- Calculate $p(SPAM|x_1)$

■ Features hold:
$$f_1$$
, f_3 , f_7
■ $p(\mathsf{SPAM}|x_1) = \frac{e^{\lambda_1 + \lambda_3 + \lambda_7}}{e^{\lambda_1 + \lambda_3 + \lambda_7 + e^{\lambda_2 + \lambda_4 + \lambda_8}}} = \frac{e^{0.2 + 0.5 + 0.1}}{e^{0.2 + 0.5 + 0.1} + e^{-0.1 - 0.2 + 0.0}} = \frac{e^{0.8}}{e^{0.8 + e^{-0.3}}} \approx 0.75$

Klinger: Assignment 4 7 / 14

weight	feature
$\lambda_1 = 0.2$	$f_1(y,x) = 1$ if "\$" in x and y = SPAM
$\lambda_2 = -0.1$	$f_2(y,x) = 1$ if "\$" in x and y = HAM
$\lambda_{3} = 0.5$	$f_3(y,x) = 1$ if "Nigerian" in x and y = SPAM
$\lambda_4 = -0.2$	$f_4(y,x) = 1$ if "Nigerian" in x and y = HAM
$\lambda_5 = -0.1$	$f_5(y,x) = 1$ if "you" in x and y = SPAM
$\lambda_6 = 0.4$	$f_8(y,x) = 1$ if "you" in x and y = HAM
$\lambda_7 = 0.1$	$f_7(y,x) = 1$ if $y = SPAM$
$\lambda_8 = 0.0$	$f_7(y,x) = 1$ if $y = HAM$

Class	document	
SPAM	$x_1 = 1 million from Nigerian defense minister	
SPAM	x ₂ = Please contact Nigerian finance minister	
SPAM	x ₃ = You won \$30,000!	
SPAM	x ₄ = Buy these Ginsu knifes now.	
НАМ	x_5 = You should send the Nigerian wildlife report.	
НАМ	x_6 = Thanks for great dinner. I owe you \$20.	

- $\frac{\partial p_{\lambda}(Y|X)}{\partial \lambda_{\epsilon}}$ = "empirical feature count" "predicted feature count"
- Empirical: $\sum_{(y,\mathbf{x})\in(Y,X)} f_i(y,\mathbf{x}) = 2$
- Predicted:

$$\sum_{\substack{(y,\mathbf{x}) \in (Y,X) \\ p(\mathsf{HAM}|x_3) + p(\mathsf{HAM}|x_5) + p(\mathsf{HAM}|x_6)}} p_{\lambda}(y' \mid \mathbf{x}) f_i(y',\mathbf{x}) =$$

weight	feature	
$\lambda_1 = 0.2$	$f_1(y,x) = 1$ if "\$" in x and $y = SPAM$	
$\lambda_2 = -0.1$	$f_2(y,x) = 1$ if "\$" in x and y = HAM	
$\lambda_{3} = 0.5$	$f_3(y,x) = 1$ if "Nigerian" in x and y = SPAM	
$\lambda_4 = -0.2$	$f_4(y,x) = 1$ if "Nigerian" in x and y = HAM	
$\lambda_5 = -0.1$	$f_5(y,x) = 1$ if "you" in x and y = SPAM	
$\lambda_{6} = 0.4$	$f_6(y,x) = 1$ if "you" in x and y = HAM	
$\lambda_7 = 0.1$	$f_7(y,x) = 1$ if $y = SPAM$	
$\lambda_8 = 0.0$	$f_7(y,x) = 1$ if $y = HAM$	

Cla	ass /	document
SPA	MA	x ₁ = \$1 million from Nigerian defense minister
SPA	AM	x ₂ = Please contact Nigerian finance minister
SPA	AM	x ₃ = You won \$30,000!
SPA	AM	x_4 = Buy these Ginsu knifes now.
HAN	M	$x_5 = $ You should send the Nigerian wildlife report.
HAN	И	x_6 = Thanks for great dinner. I owe you \$20.
HAN	И	x_6 = Thanks for great dinner. I owe you \$20.

$$p(\mathsf{HAM}|x_3) + p(\mathsf{HAM}|x_5) + p(\mathsf{HAM}|x_6)$$

 $p(HAM|x_3) + p(HAM|x_5) + p(HAM|x_6)$ $= \frac{e^{-0.1+0.4}}{e^{-0.1+0.4} + e^{0.2-0.1+0.1}} + \frac{e^{-0.2+0.4}}{e^{-0.2+0.4} + e^{0.5-0.1+0.1}} + \frac{e^{-0.1+0.4}}{e^{-0.1+0.4} + e^{0.2-0.1+0.1}}$

$$= \frac{1}{e^{-0.1+0.4} + e^{0.2-0.1+0.1}} + \frac{1}{e^{-0.2+0.4} + e^{0.5-0.1+0.1}} + \frac{1}{e^{-0.1+0.4} + e^{0.2-0.1}}$$

 $\approx 0.52 + 0.43 + 0.52 = 1.48$

"empirical feature count"—"predicted feature count" = 2 - 1.48 = 0.52

Klinger: Assignment 4 9 / 14

Task 3 (Evaluation)

Explain in your own words what the difference between macro and micro averaging is, when calculating the F measure!

Please make an example with 10 instances and three different classes which shows a lower micro average F score than macro average F score.

It is sufficient to list ten combinations of gold and predicted

classes. Explain why your solution leads to the proposed

relationship between micro and macro F score.

Klinger: Assignment 4 11 / 14

Task 3 (Evaluation) Solution

- Explain in your own words what the difference between macro and micro averaging is, when calculating the F measure!
 - Both measures aggregate the results by F measures for two or more classes. Micro takes into account the distribution in the data and prediction, macro does not.

Klinger: Assignment 4 12 / 14

Task 3 (Evaluation) Solution

 Please make an example with 10 instances and three different classes which shows a lower micro average F score than macro average F score.

ID	Gold	Prediction
1	Α	Α
2	В	В
3	C	Α
4	C	Α
5	C	Α
6	C	Α
7	C	В
8	C	В
9	C	В
10	C	В

■ C:

■ Micro-average

$$P = \frac{\text{TP}}{\text{TP+FP}} = \frac{2}{2+4+4} = 0.2$$

$$R = \frac{TP}{TP + FN} = \frac{2}{2+8} = 0.2$$

$$F = \frac{2PR}{P+R} = \frac{2.0.2.0.2}{0.2+0.2} = 0.08/0.4 = 0.2$$

Overview

Task 1 (Naïve Bayes)

2 Task 2 (Maximum Entropy Classifier)

Task 3 (Evaluation)

Klinger: Assignment 4 14 / 14