Diego DI CARLO November 27, 2020

PhD supervisors: Antoine Deleforge

Nancy BERTIN

Jury members: Laurent GIRIN (reviewer - president)

Simon Doclo (reviewer)

Fabio Antonacci (EXAMINER) Renaud Seguier (EXAMINER)

Université de Rennes 1, IRISA/INRIA, Panama research group

Introduction

Sound

produced by sources

- produced by sources
- recorded by microphones

- produced by sources
- recorded by microphones
- corrupted by noise

- produced by sources
- recorded by microphones
- corrupted by noise
- propagates in the space

- produced by sources
- recorded by microphones
- corrupted by noise
- propagates in the space
- interacts with the room
 - \hookrightarrow reverberation

Semantic information

on nature and content

Semantic information

on nature and content

Spatial information

on position and geometry

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Audio Scene Analysis

Extraction and organization of all the information in the sound

Semantic information

on nature and content

Spatial information

on position and geometry

Temporal information

on events activity

Audio Scene Analysis

Extraction and organization of all the information in the sound

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Some (inverse) problems

- Speaker Identification
- Sound Source Separation (SSS)
- Speech Enhancement (SE)
- Automatic Speech Recognition (ASR)

- Voice Activity Detection
- Diarization
- RT₆₀ estimation
- Acoustic Channel Estimation
- Wall Absorption Estimation

Signal Processing

Mathematical models, frameworks and tools to tackle and solve such problems

Some (inverse) problems

- Speaker Identification
- Sound Source Separation (SSS)
- Speech Enhancement (SE)
- Automatic Speech Recognition (ASR)

- Voice Activity Detection
- Diarization
- RT₆₀ estimation
- Acoustic Channel Estimation
- Wall Absorption Estimation

Sound interacts with environment

```
it is reflected (specularly and diffusely)

+ it is diffracted
+ it is absorbed and transmitted
+ other physical interaction
```

Acoustic Echoes

- Elements of reverberation
- Standing out for time and strength
- Repetition of a sound but after
 - time ⇔ distance
 - same content

Room coloration

Everyday examples:

Echo points Bat Typically sound propagation is

Dolphins

■ ignored ⇒ simple processing

hut reverberation — noise

Echo-aware methods

Thesis title:

Audio Scene Analysis

 $context\ and\ problems$

Thesis title:

Audio Scene Analysis

Signal Processing

context and problems models and frameworks

Thesis title:

Audio Scene Analysis

↓ and problem Signal Processing

context and problems models and frameworks

Echo-aware ↓

better processing

Thesis title:

Audio Scene Analysis

context and problems

Signal Processing

models and frameworks

Echo-aware

better processing

Thesis content

How to estimate them?

- Analytical method
- Learning-based method

How to use them?

- Source Separation
- Source Localization
- Speech Enhancement
- Room Geometry Estimation

Where to find them?

Echo-aware database for estimation and application

Problem Statement

Signal model

Sound propagation process \Leftrightarrow Source \rightarrow Filter \rightarrow Receiver model

$$\tilde{x}_i(t) = (\tilde{h}_i * \tilde{s})(t) + + \tilde{n}(t) \longrightarrow \text{noise term}$$
 noise term continuous-time convolution

-3mm

A continuous time

Room Impulse Response (RIR)

- linear filtering effect of the sound
- acoustic response of a room to a (prefect) impulsive sound
- depends on spatial properties (room geometry, mic/src position)

Echoes in the RIR

RIR model

$$\tilde{h}_i(t) = \frac{\tilde{h}_i^{\rm d}(t) + \tilde{h}_i^{\rm e}(t) + \tilde{h}_i^{\rm Irev}(t) + \varepsilon_i(t)}{$$

Echoes can be modeled as sum of Dirac's delta

$$\tilde{h}_i^{\text{echoes}} = \tilde{h}_i^{\text{d}}(t) + \tilde{h}_i^{\text{e}}(t) \approx \sum_{r=0}^R \alpha_i^{(r)} \delta(t - \tau_i^{(r)})$$

 $\textbf{Goal:} \ \text{estimated the} \ \tau_{i_{i,r}}$

Challenges:

- α distortion (even if we know it \implies labeling)
- $\alpha \to \alpha(t)$ (sum of diracs \to sum of filters)
- h_l reverberation is included in the noise term

References i