Capitolul 3

Integrale curbilinii în raport cu coordonatele

3.1 Noţiuni teoretice

Curbe în plan

Fie $\gamma:[a,b]\to\mathbb{R}^2$, $\gamma(t)=(f(t),g(t))$, $t\in[a,b]$ un drum neted. Dacă funcțiile $P,Q,R:D\to\mathbb{R}$ sunt continue pe un domeniu $D\subset\mathbb{R}^2$ ce conține traiectoria (γ) , atunci are loc formula de calcul

$$\int_{\gamma} P(x,y) \, dx + Q(x,y) \, dy = \int_{a}^{b} [P(f(t),g(t)) \cdot f'(t) + Q(f(t),g(t)) \cdot g'(t)] \, dt.$$

Curbe în spațiu

Fie $\gamma:[a,b]\to\mathbb{R}^3$, $\gamma(t)=(f(t),g(t),h(t))$, $t\in[a,b]$ un drum neted. Dacă $P,Q,R:D\to\mathbb{R}$ sunt funcții continue pe un domeniu $D\subset\mathbb{R}^3$ ce conține traiectoria (γ) , atunci are loc formula de calcul

$$\int_{\gamma} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$\int_{a}^{b} [P(f(t), g(t), h(t)) \cdot f'(t) + Q(f(t), g(t), h(t)) \cdot g'(t) + R(f(t), g(t), h(t)) \cdot h'(t)] dt.$$

Fie $\vec{v}=P(x,y,z)\vec{i}+Q(x,y,z)\vec{j}+R(x,y,z)\vec{k}$ și $d\vec{r}=dx\vec{i}+dy\vec{j}+dz\vec{k}$. Atunci integrala curbilinie se scrie sub forma

$$\int_{\gamma} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{\gamma} \vec{v} d\vec{r},$$

caz în care valoarea integralei poartă numele de circulația vectorului \vec{v} de-a lungul curbei $\gamma.$

3.2 Exerciții

Problema 3.1. Să se calculeze $\int_{\gamma} \sqrt{y} \, dx - x \, dy$, unde γ are reprezentarea

$$\gamma: \left\{ \begin{array}{l} x = t - \sin t \\ y = 1 - \cos t \end{array} \right. \quad t \in [0, \pi].$$

Problema 3.2. Să se calculeze $\int_C (x+3y) dx + 4y dy$, unde C are reprezentarea vectorială

$$C : \vec{r} = (t^2 + 1)\vec{i} + (t^3 - t)\vec{j}, \quad t \in [0, 2].$$

Problema 3.3. Să se calculeze $\int_{\gamma} (5x^2 - xy) dx + (y^3 + 2xy) dy$, unde γ este curba $y = x^3$, cu originea în punctul A(-1,1) și extremitatea în B(1,1).

Problema 3.4. Să se calculeze $\int_{AB} \vec{v} \, d\vec{r}$, unde $\vec{v} = e^{x+2y} \vec{i} + (x^2 - y) \vec{j}$ și AB este segmentul cu originea în A(1,2) și extremitatea în B(3,-1).

Problema 3.5. Să se calculeze circulația vectorului $\vec{v} = y^2 \vec{i} - \frac{8x^2}{y} \vec{j}$ pe curba închisă aflată în primul cadran, parcursă în sens direct, obținută prin intersectarea dreptei 10x - 3y - 28 = 0 cu hiperbola xy = 2 și cu parabola de ecuație $y^2 = 4x$.

Problema 3.6. Să se calculeze $\int_C (x+y) dx - y dy$, unde C este curba închisă obținută prin intersecția curbelor

$$C: \begin{cases} xy = 2\\ y = 2x & x \ge 0,\\ y = \frac{x}{2} \end{cases}$$

iar sensul de parcurgere al curbei C este cel direct.

Problema 3.7. Să se calculeze $\int_{\gamma} y^2 dx - x^2 dy$, unde γ este cercul unitate, parcurs în sens trigonometric.

Problema 3.8. Să se calculeze $\int_{\gamma} y^2 dx - x^2 dy$, unde γ este cercul de rază 1 şi centru (1,1), parcurs în sens trigonometric.

Problema 3.9. Să se calculeze $\int_C \frac{dx}{y} - \sqrt{2x} \, dy$, unde C este curba de ecuație

$$C: \begin{cases} x^2 + y^2 - 2x = 0 \\ y \ge 0, \end{cases}$$

parcursă de la A(2,0) la B(0,0).

Problema 3.10. Să se calculeze

$$\int_C \frac{y \, dy - x \, dx}{x^2 + y^2},$$

unde C este partea astroidei $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, a > 0, cuprinsă între A(a,0) și B(0,a), curba fiind parcursă de la A la B pe drumul cel mai scurt.

3

Problema 3.11. Să se calculeze aria buclei foliului lui Descartes.

Problema 3.12. Să se calculeze aria domeniului mărginit de curba de ecuație $x^4 + y^4 - 2y^3 = 0$.

Problema 3.13. Să se calculeze aria trifoiului, reprezentat în coordonate polare prin ecuația $\rho = -\cos 3\varphi$, $\varphi \in [0, \pi]$.

Problema 3.14. Să se calculeze $\int_C (x-y) dx + (z+x) dy + 2y dz$, unde C este

$$\begin{cases} x = 2t - 1 \\ y = 2t^2 + 1 \\ z = t^2 - t \end{cases} \quad t \in [0, 1].$$

Problema 3.15. Să se calculeze $\int_{\Gamma} (yz+2x) dx + xz dy + (xy+2z) dz$, unde Γ este drumul de ecuație $\Gamma = \{ (x,y,z) \in \mathbb{R}^3 \mid x^2+y^2=1, z=1 \}$ parcurs de la A(1,0,1) la B(0,1,1).

Problema 3.16. Să se calculeze $\int_C (y^2 + z^2) dx + (x + y) dz$, unde C este curba

$$C: \left\{ \begin{array}{l} x^2 + y^2 + z^2 = 4ax \\ x^2 + y^2 = 2ax, \end{array} \right. \quad z \ge 0$$

parcursă în sens invers acelor de ceasornic, dacă este privită din partea pozitivă a axei Oz.

Problema 3.17. Să se calculeze circulația vectorului $\vec{v} = x^2\vec{\imath} + xy\vec{\jmath} - yz\vec{k}$ de-a lungul curbei de intersecție a conului $y^2 + z^2 = (x-2)^2$ cu planele de coordonate, situată în primul octant, având sensul de parcurgere al acelor de ceasornic, dacă este privită din originea axelor de coordonate.

Problema 3.18. Să se calculeze lucrul mecanic al forței $\vec{F} = y\vec{i} + z^2\vec{j} + x\vec{k}$, care acționează asupra unui punct ce se deplasează pe curba aflată la intersecția conului $z = \sqrt{x^2 + y^2}$ cu paraboloidul $z = 6 - (x^2 + y^2)$, în sensul acelor de ceasornic, dacă se privește din originea axelor de coordonate.

Problema 3.19. Să se afle lucrul mecanic efectuat de $\vec{F} = y\vec{i} - x\vec{j} + \frac{2}{9}(x+y)\vec{k}$, ce acționează asupra unei particule ce se mișcă pe curba de ecuație

C:
$$\begin{cases} x = 5\cos 2t + \cos 9t \\ y = 5\sin 2t + \cos 9t \\ z = \sin 9t \end{cases}$$

Problema 3.20. Să se calculeze

$$\int_C \frac{dx}{(y+x)(y+2x+1)},$$

unde C este arcul din primul cadran al parabolei $y^2 = x$.

Problema 3.21. Să se calculeze

$$\int_C \frac{\ln y \, dy}{\sqrt{y}(x^2 + y + 1)},$$

unde C este arcul de parabolă $y = x^2$ din primul cadran.

Problema 3.22. Să se calculeze

$$\int_{(0,0,0)}^{(1,2,5)} yz(2x+y+z) \, dx + zx(x+2y+z) \, dy + xy(x+y+2z) \, dz.$$

Problema 3.23. Să se determine $a, b \in \mathbb{R}$, astfel încât integrala

$$I = \int_{AB} 2x \ln z \, dx + \frac{1}{z} e^y \, dy + \frac{1}{z^2} (ax^2 z + be^y) \, dz,$$

să nu depindă de drum. Arcul AB este o curbă din semispațiul z > 0 cu extremitățile A(1,0,1) și B(-1,1,e). Determinați valoarea lui I.

Problema 3.24. Să se calculeze integrala

$$\int_C \frac{x \, dx + y \, dy}{x^2 + y^2},$$

pe o curbă care nu trece prin originea axelor de coordonate şi are ca origine punctul (0,4) şi ca extremitate punctul (3,0).

3.3 Soluții

Soluție 3.1. Se folosește formula de calcul a integralei curbilinii pentru curbe plane.

$$\begin{split} I &= \int_{\gamma} \sqrt{y} \, dx - x \, dy \\ &= \int_{0}^{\pi} \left[\sqrt{1 - \cos t} \cdot (t - \sin t)' - (t - \sin t) \cdot (1 - \cos t)' \right] \, dt \\ &= \int_{0}^{\pi} \left[\sqrt{2} \, \sin \frac{t}{2} \cdot (1 - \cos t) - (t - \sin t) \sin t \right] dt \\ &= \sqrt{2} \int_{0}^{\pi} \sin \frac{t}{2} \, dt - \sqrt{2} \int_{0}^{\pi} \sin \frac{t}{2} \cos t \, dt - \int_{0}^{\pi} t \sin t dt + \int_{0}^{\pi} \sin^{2} t \, dt. \end{split}$$

Folosind formulele

$$\sin\frac{t}{2}\cos t = \frac{1}{2}\left(\sin\frac{3t}{2} + \sin\frac{t}{2}\right) \text{ si } \sin^2 t = \frac{1}{2}(1 - \cos 2t)$$

obtinem
$$I = 2\sqrt{2} + 2\sqrt{2}/3 - \pi + \pi/2 = 8\sqrt{2}/3 - \pi/2$$
.

Soluție 3.2. Avem $x = t^2 + 1$ și $y = t^3 - t$. Obținem

$$\int_C (x+3y) \, dx + 4y \, dy = \int_0^2 (t^2 + 1 + 3t^3 - 3t) \cdot 2t + 4(t^3 - t)(3t^2 - 1) \, dt$$

$$= \int_0^2 (12t^5 + 6t^4 - 14t^3 - 6t^2 + 6t) \, dt$$

$$= 2t^6 \Big|_0^2 + \frac{6t^5}{5} \Big|_0^2 - \frac{7t^4}{2} \Big|_0^2 - 2t^3 \Big|_0^2 + 3t^2 \Big|_0^2 = \frac{532}{5}.$$

Soluţie 3.3.

$$I = \int_{\gamma} (5x^2 - xy) \, dx + (y^3 + 2xy) \, dy$$
$$= \int_{-1}^{1} [(5x^2 - x \cdot x^3) + ((x^3)^3 + 2x \cdot x^3) \cdot 3x^2] \, dx$$
$$= \int_{-1}^{1} (3x^{11} + 6x^6 - x^4 + 5x^2) \, dx.$$

Folosind paritatea funcției de sub integrală, obținem

$$I = 2\int_0^1 (6x^6 - x^4 + 5x^2) \, dx = 2\left(\frac{6}{7} - \frac{1}{5} + \frac{5}{3}\right) = \frac{488}{105}.$$

Soluție 3.4. Un segment MP, cu $M(x_M, y_M)$ și $P(x_P, y_P)$, parcurs de la M la P, se parametrizează în felul următor:

$$MP\colon \left\{ \begin{array}{l} x=(1-t)x_M+tx_P\\ y=(1-t)y_M+ty_P \end{array} \right. \ t\in [0,1]\,.$$

Segmentul din problema noastră are reprezentarea

$$AB: \begin{cases} x = 1 + 2t \\ y = 2 - 3t \end{cases} t \in [0, 1].$$

Valoarea integralei este

$$\int_{AB} e^{x+2y} \, dx + (x^2 - y) \, dy = \int_0^1 \left[2e^{5-4t} - 3(4t^2 + 7t - 1) \right] dt = \frac{e^5 - e - 23}{2}.$$

Soluție 3.5. Intersecția din primul cadran dintre dreaptă și hiperbolă este punctul $A(3, \frac{2}{3})$, intersecția din primul cadran dintre dreaptă și parabolă este

Figura 3.1: Curba ABCA

punctul B(4,4) și intersecția dintre hiperbolă și parabolă este punctul C(1,2), vezi Figura 3.1. Parametrizarea segmentului AB este

$$AB: \left\{ \begin{array}{ll} x = t + 3 \\ y = \frac{2}{3} + \frac{10}{3}t \end{array} \right. t \in [0, 1].$$

Porțiunea CBse parametrizează prin $x=\frac{y^2}{4},\,y\in[2,4]$ și atunci

BC:
$$\begin{cases} x = \frac{(6-t)^2}{4} \\ y = 6-t \end{cases} \quad t \in [2,4].$$

Arcul CA are reprezentarea parametrică

$$CA: \left\{ \begin{array}{ll} x=t \\ y=\frac{2}{t} \end{array} \right. t \in [1,3].$$

Circulația vectorului $\vec{v}=y^2\vec{\imath}-\frac{8x^2}{y}\vec{\jmath}$ pe curba $\gamma=ABCA$ se calculează prin

$$\begin{split} \int_{\gamma} \vec{v} \, d\vec{r} &= \int_{AB} y^2 \, dx - \frac{8x^2}{y} \, dy + \int_{BC} y^2 \, dx - \frac{8x^2}{y} \, dy + \int_{CA} y^2 \, dx - \frac{8x^2}{y} \, dy \\ &= \int_0^1 \left[\left(\frac{2}{3} + \frac{10}{3} t \right)^2 - \frac{40(t+3)^2}{5t+1} \right] dt + \int_2^4 0 \, dt + \int_1^3 \left(\frac{4}{t^2} + 8t \right) \, dt \\ &= \frac{64}{10} - \frac{8}{270} + 4 + \frac{232}{5} + \frac{1568}{25} \ln 6 - \frac{4}{3} + 36 \\ &= \frac{24688}{270} + \frac{1568}{25} \ln 6. \end{split}$$

Soluție 3.6. La intersecția hiperbolei xy = 2 cu dreapta y = x/2 se află punctul

A(2,1), iar la intersecția aceleași hiperbole cu dreapta y=2x se află punctul B(1,2). Curba C este curba OABO din Figura 3.2. Scriind parametrizările curbelor implicate

$$\begin{split} OA \colon & \left\{ \begin{array}{l} x = t \\ y = \frac{t}{2} \end{array} \right. t \in [0, 2] \,, \\ AB \colon & \left\{ \begin{array}{l} x = 3 - t \\ y = \frac{2}{3 - t} \end{array} \right. t \in [1, 2] \,, \\ BO \colon & \left\{ \begin{array}{l} x = 1 - t \\ y = 2(1 - t) \end{array} \right. t \in [0, 1] \,, \end{split}$$

Figura 3.2: Curba C

integrala curbilinie dată I, se reduce la o sumă de trei integrale

$$I = \int_0^2 \left(t + \frac{t}{2} - \frac{t}{4} \right) dt + \int_1^2 \left(t - 3 + \frac{2}{t - 3} - \frac{4}{(3 - t)^3} \right) dt + \int_0^1 (1 - t) dt,$$

având ca rezultat $-2 \ln 2$.

Soluție 3.7. Cercul γ de centru (0,0) și rază 1, are ecuația $x^2 + y^2 = 1$. Pentru a-l parametriza, folosim coordonatele polare

$$\begin{cases} x = \rho \cos \varphi, & \rho \ge 0 \\ y = \rho \sin \varphi, & \varphi \in [0, 2\pi]. \end{cases}$$

Înlocuind în ecuația cercului, obținem $\rho^2\cos^2\varphi+\rho^2\sin^2\varphi=1$, adică $\rho=1$. Curba γ are parametrizarea

$$\gamma \colon \left\{ \begin{array}{l} x = \cos \varphi \\ y = \sin \varphi \end{array} \right. \quad \varphi \in [0, 2\pi].$$

Acum putem calcula valoarea integralei

$$I = \int_{\gamma} y^{2} dx - x^{2} dy = \int_{0}^{2\pi} (-\sin^{3} \varphi - \cos^{3} \varphi) d\varphi = 0.$$

Soluție 3.8. Cercul γ de centru (1,1) și rază 1, are ecuația $(x-1)^2+(y-1)^2=1$. Pentru a-l parametriza, folosim coordonatele polare cu originea în (1,1)

$$\left\{ \begin{array}{ll} x-1=\rho\cos\varphi, & \rho\geq 0 \\ y-1=\rho\sin\varphi, & \varphi\in[0,2\pi]. \end{array} \right.$$

Înlocuind în ecuația cercului, obținem $\rho^2\cos^2\varphi + \rho^2\sin^2\varphi = 1$, adică $\rho = 1$. Cercul γ are parametrizarea

$$\gamma \colon \left\{ \begin{array}{l} x = 1 + \cos \varphi \\ y = 1 + \sin \varphi \end{array} \right. \quad \varphi \in \left[0, 2\pi\right].$$

Acum putem calcula valoarea integralei

$$I = \int_{\gamma} y^2 dx - x^2 dy = \int_0^{2\pi} (-(1+\sin\varphi)^2 \sin\varphi - (1+\cos\varphi)^2 \cos\varphi) d\varphi = -4\pi.$$

Soluție 3.9. Ecuația $x^2 + y^2 - 2x = 0$ se poate scrie sub forma echivalentă $(x-1)^2+y^2=1$, ceea ce împreună cu $y\geq 0$, reprezintă ecuația semicercului de rază 1 și centru (1,0). Vom rezolva problema în două feluri.

I. Folosim coordonatele polare cu originea în punctul (1,0) (vezi Figura 3.3)

$$\left\{ \begin{array}{lll} x-1 & = & \rho\cos\varphi, & \rho\geq 0 \\ y & = & \rho\sin\varphi, & \varphi\in[0,2\pi]. \end{array} \right. \quad \left\{ \begin{array}{lll} x=\rho\cos\varphi, & \rho\geq 0 \\ y=\rho\sin\varphi, & \varphi\in[0,2\pi]. \end{array} \right.$$

inea în punctul (0,0) (vezi Figura 3.4)

$$\begin{cases} x = \rho \cos \varphi, & \rho \ge 0 \\ y = \rho \sin \varphi, & \varphi \in [0, 2\pi]. \end{cases}$$

Figura 3.3: Metoda I

Figura 3.4: Metoda II

Înlocuind în ecuația semicercului dat, se obţine $\rho = 1$ şi $\varphi \in [0, \pi]$. Semicercul γ se parametrizează astfel:

$$\gamma \colon \left\{ \begin{array}{l} x = 1 + \cos \varphi \\ y = \sin \varphi \end{array} \right. \varphi \in [0, \pi].$$

Cu aceasta, integrala dată, devine

$$I = \int_0^{\pi} \left[-1 - \cos \varphi \sqrt{2(1 + \cos \varphi)} \right] d\varphi$$

$$= -\pi - \int_0^{\pi} 2 \left| \cos \frac{\varphi}{2} \right| \cos \varphi d\varphi$$

$$= -\pi - \int_0^{\pi} \left(\cos \frac{3\varphi}{2} + \cos \frac{\varphi}{2} \right) d\varphi$$

$$= -\pi - \frac{4}{3}.$$
fel:
$$I = \int_0^{\frac{\pi}{2}} \left[\frac{-4 \cos \varphi \sin \varphi}{2 \cos \varphi \sin \varphi} - 4 \cos^3 \varphi + 2 \cos \varphi \cdot 2 \sin^2 \varphi \right] d\varphi$$

$$= -\pi - \frac{4}{3}.$$

Înlocuind în ecuația semicercului dat, se obţine $\rho = 2\cos\varphi$ şi $\varphi \in [0, \pi/2]$. Parametrizarea semicercului este:

$$\gamma \colon \left\{ \begin{array}{l} x = 2\cos^2 \varphi \\ y = 2\cos \varphi \sin \varphi \end{array} \right. \varphi \in \left[0, \frac{\pi}{2}\right].$$

Cu aceasta, integrala se calculează ast-

$$I = \int_0^{\frac{\pi}{2}} \left[\frac{-4\cos\varphi\sin\varphi}{2\cos\varphi\sin\varphi} - 4\cos^3\varphi + 2\cos\varphi\cdot 2\sin^2\varphi \right] d\varphi$$
$$= -\pi - \frac{4}{3}.$$

Se observă că valoarea integralei este aceeași, indiferent de modul în care parametrizăm curba.

Soluție 3.10. Arcul AB se parametrizează în felul următor:

$$\gamma \colon \left\{ \begin{array}{l} x = a \cos^3 \varphi \\ y = a \sin^3 \varphi \end{array} \right., \varphi \in \left[0, \frac{\pi}{2}\right].$$

Cu aceasta, valoarea integralei este:

$$\begin{split} I &= \int_0^{\frac{\pi}{2}} \frac{3a^2 \cos \varphi \cdot \sin^5 \varphi + 3a^2 \sin \varphi \cdot \cos^5 \varphi}{a^2 \left(\cos^6 \varphi + \sin^6 \varphi\right)} \, d\varphi \\ &= 3 \int_0^{\frac{\pi}{2}} \frac{\cos \varphi \sin \varphi (\sin^4 \varphi + \cos^4 \varphi)}{\sin^4 \varphi - \sin^2 \varphi \cos^2 \varphi + \cos^4 \varphi} \, d\varphi \\ &= 3 \int_0^{\frac{\pi}{2}} \frac{\frac{\sin 2\varphi}{2} \left(1 - \frac{\sin^2 2\varphi}{2}\right)}{1 - 3\frac{\sin^2 2\varphi}{4}} \, d\varphi. \end{split}$$

Figura 3.5: Astroida

Prin schimbarea de variabilă $u=\cos 2\varphi,$ obținem

$$I = \frac{3}{2} \int_{-1}^{1} \frac{u^2 + 1}{3u^2 + 1} du = \int_{0}^{1} \frac{3u^2 + 1 + 2}{3u^2 + 1} du = 1 + \frac{2}{\sqrt{3}} \operatorname{arctg} u \sqrt{3} \Big|_{0}^{1} = 1 + \frac{2\pi}{3\sqrt{3}}.$$

Soluție 3.11. Foliul lui Descartes este curba de ecuație $x^3 + y^3 = 3axy$ și are reprezentarea grafică din Figura 3.6.

Pentru a parametriza această curbă fie y = tx. Pentru că t are semnificația de pantă a dreptei, iar bucla se găsește în primul cadran, rezultă că t aparține intervalului $[0, \infty)$. Reprezentarea parametrică a curbei va fi

$$C \colon \left\{ \begin{array}{l} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3} \end{array} \right. t \in [0, \infty).$$

Aria unui domeniu care are ca și frontieră curba ${\cal C}$ se poate calcula prin formula

Figura 3.6: Foliul lui Descartes

$$A = \frac{1}{2} \int_C x \, dy - y \, dx.$$

În cazul nostru, aria foliului lui Descartes va fi

$$\begin{split} A &= \frac{1}{2} \int_0^\infty \frac{3at}{1+t^3} \cdot \frac{3at(2-t^3)}{(1+t^3)^2} - \frac{3at^2}{1+t^3} \cdot \frac{3a(1-2t^3)}{(1+t^3)^2} \, dt \\ &= \frac{9a^2}{2} \int_0^\infty \frac{2t^2 - t^5 - t^2 + 2t^5}{(1+t^3)^3} \, dt = \frac{9a^2}{2} \int_0^\infty \frac{t^2}{(1+t^3)^2} \, dt \\ &= \frac{3a^2}{2} \cdot \frac{-1}{1+t^3} \bigg|_0^\infty = \frac{3a^2}{2}. \end{split}$$

Soluție 3.12. Considerăm y=tx. Parametrul t are semnificația de pantă și pentru că C se găsește în primele două cadrane, $t \in \mathbb{R}$. Se obține următoarea parametrizare a curbei date

C:
$$\begin{cases} x = \frac{2t^3}{1+t^4} \\ y = \frac{2t^4}{1+t^4} \end{cases} t \in (-\infty, \infty).$$

Figura 3.7: Curba $x^4 + y^4 = 2y^3$

Aria domeniului mărginit de curba C se poate calcula în felul următor

$$A = \frac{1}{2} \int_C x \, dy - y \, dx.$$

Avem

$$A = \frac{1}{2} \int_{-\infty}^{\infty} \frac{2t^3}{1+t^4} \cdot \frac{8t^3}{(1+t^4)^2} - \frac{2t^4}{1+t^4} \cdot \frac{6t^2 - 2t^6}{(1+t^4)^2} dt$$

$$= 4 \int_{0}^{\infty} \frac{t^6}{(1+t^4)^2} dt = 4 \int_{0}^{\infty} \frac{1}{(1+x^4)^2} dx$$

$$= 4 \int_{0}^{\infty} \frac{x^4 + 1 - x^4}{(x^4 + 1)^2} dx = 4 \int_{0}^{\infty} \frac{1}{x^4 + 1} dx - \int_{0}^{\infty} x \frac{4x^3}{(x^4 + 1)^2} dx$$

$$= 4 \int_{0}^{\infty} \frac{1}{x^4 + 1} dx + \int_{0}^{\infty} x \left(\frac{1}{1+x^4}\right)' dx$$

$$= 3 \int_{0}^{\infty} \frac{1}{x^4 + 1} dx.$$

În ultima integrală, facem schimbarea de variabilă u=1/x și obținem că

$$\int_0^\infty \frac{1}{x^4 + 1} \, dx = \int_0^\infty \frac{u^2}{u^4 + 1} \, du = \frac{1}{2} \int_0^\infty \frac{x^2 + 1}{x^4 + 1} \, dx = \frac{1}{2} \int_0^\infty \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} \, dx.$$

Acum dacă notăm $v = x - \frac{1}{x}$, obţinem

$$\int_0^\infty \frac{1}{x^4 + 1} \, dx = \frac{1}{2} \int_{-\infty}^\infty \frac{dv}{v^2 + 2} = \frac{\pi}{2\sqrt{2}}.$$

Cu aceasta, aria căutată este $\frac{3\pi}{2\sqrt{2}}$.

Soluție 3.13. Calculăm aria cu formula

$$A = \frac{1}{2} \int_C x \, dy - y \, dx.$$

Deducem că aria se exprimă cu formula

$$A = \frac{1}{2} \int_0^{\pi} \rho \cos \varphi (\rho' \sin \varphi + \rho \cos \varphi)$$
$$- \rho \sin \varphi (\rho' \cos \varphi - \rho \sin \varphi) d\varphi$$
$$= \frac{1}{2} \int_0^{\pi} \rho^2(\varphi) d\varphi.$$

Figura 3.8: Trifoiul

Cu această formulă obținem aria trifoiului

$$A = \frac{1}{2} \int_0^{\pi} \cos^2 3\varphi \, d\varphi = \frac{\pi}{4}.$$

Soluție 3.14. Integrala se calculează cu formula integralei curbilinii pentru curbe în spațiu

$$\int_C (x - y) dx + (z + x) dy + 2y dz$$

$$= \int_0^1 [(2t - 1 - 2t^2 - 1) \cdot 2 + (t^2 - t + 2t - 1) \cdot 4t + 2(2t^2 + 1)(2t - 1)] dt$$

$$= \int_0^1 (12t^3 - 4t^2 + 4t - 6) dt = -\frac{7}{3}.$$

Soluție 3.15. Intersecția dintre cilindrul $x^2 + y^2 = 1$ și planul z = 1 este un cerc, care se parametrizează prin

$$\Gamma \colon \left\{ \begin{array}{l} x = \cos t \\ y = \sin t \\ z = 1 \end{array} \right. \quad t \in \left[0, \frac{\pi}{2}\right].$$

Cu această parametrizare, integrala dată se calculează, astfel

$$\int_{\Gamma} (yz + 2x) \, dx + xz \, dy + (xy + 2z) \, dz$$

$$= \int_{0}^{\frac{\pi}{2}} \left[-(\sin t + 2\cos t)\sin t + \cos^{2} t + 0 \right] \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} (\cos 2t - \sin 2t) \, dt = \frac{\sin 2t}{2} \Big|_{0}^{\frac{\pi}{2}} + \frac{\cos 2t}{2} \Big|_{0}^{\frac{\pi}{2}} = -1.$$

Soluţie 3.16. Ecuaţia $x^2 + y^2 + z^2 = 4ax$ se rescrie $(x - 2a)^2 + y^2 + z^2 = 4a^2$ şi reprezintă o sferă cu centrul în (2a,0,0) şi rază 2a. Ecuaţia $x^2 + y^2 = 2ax$ se poate aduce la forma $(x - a)^2 + y^2 = a^2$, ecuaţie care descrie un cilindru. Curba aflată la intersecţia dintre sferă şi cilindru se numeşte curba lui Viviani, vezi Figura 3.9. Pentru a parametriza curba scriem $x = a + a \cos t$ şi $y = a \sin t$ şi obţinem $z = \sqrt{4a(a + a \cos t) - (a + a \cos t)^2 - (a \sin t)^2}$, adică

$$C: \left\{ \begin{array}{l} x = a + a\cos t, \\ y = a\sin t, \quad t \in [0, 2\pi]. \\ z = 2a\left|\cos\frac{t}{2}\right| \end{array} \right.$$

Integrala de calculat devine

Figura 3.9: Curba lui Viviani

$$I = \int_C (y^2 + z^2) \, dx + (x + y) \, dz = \underbrace{\int_0^{2\pi} [a^2 \sin^2 t + a^2 (2 + 2\cos t)] (-a\sin t) \, dt}_{= 0}$$
$$- \int_0^{\pi} (a + a\cos t + a\sin t) \cdot a\sin\frac{t}{2} \, dt + \int_{\pi}^{2\pi} (a + a\cos t + a\sin t) \cdot a\sin\frac{t}{2} \, dt,$$

de unde cu ajutorul formulelor

$$\cos a \sin b = \frac{\sin(a+b) - \sin(a-b)}{2} \qquad \qquad \sin a \sin b = \frac{\cos(a-b) - \cos(a+b)}{2},$$

obţinem

$$I = 2a^{2} \cos \frac{t}{2} \Big|_{0}^{\pi} + \frac{a^{2}}{2} \left(\frac{2}{3} \cos \frac{3t}{2} - 2 \cos \frac{t}{2} \right) \Big|_{0}^{\pi} - \frac{a^{2}}{2} \left(2 \sin \frac{t}{2} - \frac{2}{3} \sin \frac{3t}{2} \right) \Big|_{0}^{\pi}$$
$$- 2a^{2} \cos \frac{t}{2} \Big|_{\pi}^{2\pi} - \frac{a^{2}}{2} \left(\frac{2}{3} \cos \frac{3t}{2} - 2 \cos \frac{t}{2} \right) \Big|_{\pi}^{2\pi} + \frac{a^{2}}{2} \left(2 \sin \frac{t}{2} - \frac{2}{3} \sin \frac{3t}{2} \right) \Big|_{\pi}^{2\pi}$$

având rezultatul $I = -8a^2/3$.

Soluție 3.17. Vârful conului are coordonatele V(2,0,0). Intersecția conului cu planul YOZ este cercul de ecuație x=0 și $y^2+z^2=4$. Notăm cu A intersecția acestui cerc cu axa OY și cu B, intersecția cu axa OZ. Avem de calculat

Figura 3.10: Intersecția conului $y^2 + z^2 = (x - 2)^2$ cu planele de coordonate

integrala

$$I = \int_{VABV} \vec{v} \, d\vec{r} = \int_{VA} \vec{v} \, d\vec{r} + \int_{AB} \vec{v} \, d\vec{r} + \int_{BV} \vec{v} \, d\vec{r}.$$

Segmentul VA se parametrizează prin (x,y,z)=(1-t)(2,0,0)+t(0,1,0), cu $t\in[0,1].$ Astfel

$$\int_{VA} x^2 dx + xy dy - yz dz = \int_0^1 [4(1-t)^2(-2) + 2t(1-t)] dt = -\frac{7}{3}.$$

Arcul AB se parametrizează prin x = 0, $y = \cos \varphi$ și $z = \sin \varphi$ cu $\varphi \in [0, \frac{\pi}{2}]$.

$$\int_{AB} x^2 dx + xy dy - yz dz = \int_0^{\frac{\pi}{2}} -\cos^2 \varphi \sin \varphi d\varphi = -\frac{1}{3}.$$

Segmentul BV are reprezentarea (x, y, z) = (1-t)(0, 0, 1) + t(2, 0, 0), cu $t \in [0, 1]$.

$$\int_{BV} x^2 dx + xy dy - yz dz = \int_0^1 8t^2 dt = \frac{8}{3}.$$

Însumând, obținem că circulația vectorului dat pe curba considerată este 0.

Soluție 3.18. Rezolvând ecuația $\sqrt{x^2+y^2}=6-(x^2+y^2)$ se obține curba considerată, adică cercul $x^2+y^2=4,\ z=2,$ vezi Figura 3.11. Parametrizarea acestui cerc este

$$C: \left\{ \begin{array}{l} x = 2\cos\varphi \\ y = 2\sin\varphi \quad \varphi \in [0, 2\pi] \\ z = 2 \end{array} \right.$$

Figura 3.11: Intersecția conului $z=\sqrt{x^2+y^2}$ cu paraboloidul $z=6-(x^2+y^2)$

Lucrul mecanic se calculează prin integrala curbilinie

$$L = \int_C \vec{F} \, d\vec{r}.$$

Aşadar

$$L = \int_{C} y \, dx + z^{2} \, dy + x \, dz = \int_{0}^{2\pi} (-4\sin^{2}\varphi + 8\cos\varphi) \, d\varphi = -4\pi.$$

Soluție 3.19. Traiectoria particulei are forma unui nod toric, vezi Figura 3.12. Avem de calculat

Figura 3.12: Nod toric

$$L = \int_C \vec{F} \cdot d\vec{r} = \int_C y \, dx - x \, dy + \frac{2}{9} (x + y) \, dz$$

$$= \int_0^{2\pi} (5\sin 2t + \cos 9t)(-10\sin 2t - 9\sin 9t)$$

$$- (5\cos 2t + \cos 9t)(10\cos 2t - 9\sin 9t)$$

$$+ 2(5\cos 2t + 5\sin 2t + 2\cos 9t)\cos 9t \, dt$$

$$= \int_0^{2\pi} -50 + 4\cos^2 9t - 45\sin 9t(\sin 2t - \cos 2t) \, dt$$

Se obține $L=-96\pi$.

Soluție 3.20. Arcul parabolei $y^2=x$ situat în primul cadran are reprezentarea parametrică

$$C\colon \left\{ \begin{array}{ll} x=t^2 \\ y=t \end{array} \right. \ t\in (0,\infty)\,.$$

Valoarea integralei curbilinii este

$$\int_C \frac{dx}{(y+x)(y+2x+1)} = \int_0^\infty \frac{2t\,dt}{(t+t^2)(2t^2+t+1)} = \int_0^\infty \frac{2dt}{(t+1)(2t^2+t+1)}.$$

Descompunând în fracții simple, expresia de sub integrală

$$\frac{2}{(t+1)(2t^2+t+1)} = \frac{A}{t+1} + \frac{Bt+C}{2t^2+t+1},$$

se obțin $A=1,\,B=-2$ și C=1. Cu aceștia, rezultă

$$\int_{C} \frac{dx}{(y+x)(y+2x+1)}$$

$$= \lim_{u \to \infty} \int_{0}^{u} \frac{2dt}{(t+1)(2t^{2}+t+1)}$$

$$= \lim_{u \to \infty} \left(\int_{0}^{u} \frac{dt}{t+1} - \int_{0}^{u} \frac{2t-1}{2t^{2}+t+1} \right)$$

$$= \lim_{u \to \infty} \left(\ln(u+1) - \frac{1}{2} \ln(2u^{2}+u+1) + \frac{3}{4} \int_{0}^{u} \frac{dt}{(t+\frac{1}{4})^{2} + \frac{7}{16}} \right)$$

$$= \lim_{u \to \infty} \left(\ln \frac{u+1}{\sqrt{2u^{2}+u+1}} + \frac{3}{\sqrt{7}} \arctan \frac{t+\frac{1}{4}}{\frac{1}{\sqrt{7}}} \right|_{0}^{u} \right)$$

$$= \ln \frac{1}{\sqrt{2}} + \frac{3\pi}{2\sqrt{7}} - \frac{3}{\sqrt{7}} \arctan \frac{1}{\sqrt{7}}.$$

Soluție 3.21. Arcul din primul cadran al parabole
i $y=x^2$ se parametrizează prin

$$C \colon \left\{ \begin{array}{l} x = t \\ y = t^2 \end{array} \right. t \in (0, \infty) \, .$$

Cu aceasta, valoarea integralei este

$$\int_{C} \frac{\ln y \, dy}{\sqrt{y}(x^{2} + y + 1)} = \int_{0}^{\infty} \frac{\ln t^{2} \cdot 2t \, dt}{t(2t^{2} + 1)} = 4 \int_{0}^{\infty} \frac{\ln t \, dt}{2t^{2} + 1}$$

$$\stackrel{u = \sqrt{2}t}{=} 4 \int_{0}^{\infty} \frac{\ln \frac{u}{\sqrt{2}}}{u^{2} + 1} \frac{du}{\sqrt{2}}$$

$$= \frac{4}{\sqrt{2}} \int_{0}^{\infty} \frac{\ln u \, du}{u^{2} + 1} - \frac{4 \ln \sqrt{2}}{\sqrt{2}} \int_{0}^{\infty} \frac{du}{u^{2} + 1}$$

$$= I_{1} - I_{2}.$$

Făcând schimbarea de variabilă t = 1/u, integrala I_1 devine

$$I_1 = \int_{\infty}^{0} \frac{\ln \frac{1}{t}}{\left(\frac{1}{t}\right)^2 + 1} \frac{dt}{-t^2} = \int_{0}^{\infty} \frac{\ln \frac{1}{t} dt}{1 + t^2} = -I_1,$$

ceea ce arată că $I_1 = 0$. Integrala I_2 are valoarea

$$I_2 = \frac{4 \ln \sqrt{2}}{\sqrt{2}} \operatorname{arctg} u \bigg|_{0}^{\infty} = \frac{4 \ln \sqrt{2}}{\sqrt{2}} \cdot \frac{\pi}{2} = \frac{\pi \ln 2}{\sqrt{2}}.$$

Valoarea integralei curbilinii este $-\pi \ln 2/\sqrt{2}$.

Soluție 3.22. Pentru a arăta independența de drum a integralei considerate, calculăm rotorul lui $\vec{v} = yz(2x+y+z)\vec{i} + zx(x+2y+z)\vec{j} + xy(x+y+2z)\vec{k}$ cu formula

$$\operatorname{rot} \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \vec{k}$$

și obținem rot $\vec{v}=0$. Aceasta arată că integrala este independentă de drum. Calculăm

$$\phi(x,y,z) = \int_0^x P(t,0,0) dt + \int_0^y Q(x,t,0) dt + \int_0^z R(x,y,t) dt$$
$$= 0 + 0 + xy(xz + yz + z^2) = xyz(x + y + z).$$

Valoarea integralei este $\phi(1,2,5) - \phi(0,0,0) = 80$.

Soluție 3.23. Fie $P=2x\ln z,\ Q=\frac{1}{z}e^y$ și $R=\frac{1}{z^2}(ax^2z+be^y)$. Condițiile ca integrala considerată să fie independentă de drum sunt

$$\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, \ \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x} \text{ si } \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

Avem $\frac{\partial R}{\partial y} = \frac{be^y}{z^2}$, $\frac{\partial Q}{\partial z} = -\frac{e^y}{z^2}$, de unde b = -1. Avem $\frac{\partial P}{\partial z} = \frac{2x}{z}$ și $\frac{\partial R}{\partial x} = \frac{2axz}{z^2}$, de unde a = 1. Şi mai avem $\frac{\partial Q}{\partial x} = 0 = \frac{\partial P}{\partial y}$. Funcția ϕ se calculează prin

17

$$\phi(x,y,z) = \int_1^x P(t,0,1) dt + \int_0^y Q(x,t,1) dt + \int_1^z R(x,y,t) dt$$
$$= e^y - 1 + x^2 \ln z + \frac{e^y}{z} - e^y = x^2 \ln z + \frac{e^y}{z} - 1.$$

Valoarea integralei date este $I = \phi(-1, 1, e) - \phi(1, 0, 1) = 1$.

Soluție 3.24. Vom arăta că integrala dată este independentă de drum.

$$P = \frac{x}{x^2 + y^2} \text{ si } Q = \frac{y}{x^2 + y^2}, \text{ de unde } \frac{\partial P}{\partial y} = \frac{-2xy}{(x^2 + y^2)^2} \text{ si } \frac{\partial Q}{\partial x} = \frac{-2xy}{(x^2 + y^2)^2}.$$

Integrala dată se calculează prin intermediul funcției

$$\phi(x,y) = \int_0^x P(t,4) dt + \int_4^y Q(x,t) dt = \int_0^x \frac{t dt}{t^2 + 16} + \int_4^y \frac{t dt}{x^2 + t^2}$$
$$= \frac{1}{2} \ln \frac{x^2 + 16}{16} + \frac{1}{2} \ln \frac{x^2 + y^2}{x^2 + 16} = \ln \frac{\sqrt{x^2 + y^2}}{4}$$

astfel

$$\int_C \frac{x \, dx + y \, dy}{x^2 + y^2} = \phi(3, 0) - \phi(0, 4) = \ln \frac{3}{4}.$$