Jonathan Valverde

<u>jonathan-valverde-l.github.io</u> • <u>linkedin.com/in/jonathanvalverde</u>

Valverde.L.Jonathan@gmail.com

EDUCATION

University of Maryland (UMD), College Park, MD

2022 (Expected)

M.S. in Computer Science

Select Coursework: Algorithms in Machine Learning: Guarantees and Analyses, Advanced Numerical Optimization, How and Why Artificial Intelligence Answers Questions, Applied Mechanism Design for Social Good

Princeton University, Princeton, NJ

2016

B.S.E. in Mechanical and Aerospace Engineering, magna cum laude

Certificates (Minors): *Applications of Computing, Robotics and Intelligent Systems.*

Select Coursework: Artificial Intelligence, Algorithms and Data Structures, Introduction to Graph Theory, Reasoning about Computation

RELEVANT PROFESSIONAL EXPERIENCE

Amazon, Seattle, WA (Remote)

Summer 2020, Summer 2021

Applied Scientist Intern - Prime Video Recommendations

- Completed two research projects to improve the quality of personalized recommendations provided to customers on Amazon Prime Video.
- Proposed, implemented, and tested alternate solutions to baseline algorithms by surveying literature and performing experiments using AWS platforms.
- Leveraged deep learning and recommender system algorithms.
- Developed modular, re-usable codebases. Revised them through code reviews.
- Presented results in final papers and oral presentations.

Intelligent Automation Inc. (IAI), Rockville, MD **Research Engineer**

2017-2020

- Contributed to research projects and proposals for government clients under the Small Business Innovation Research (SBIR) program.
- Conducted experiments, performed analyses, and developed code in support of multiple research projects involving machine learning, deep learning, and data analysis.
- Presented work to clients in written reports and periodic briefings.
- Projects included: a convolutional neural network for image recognition in non-visual spectrum, an automatic speech recognition module, and a machine learning classifier for detection of automated social media accounts.

CORE COMPETENCIES

Programming Languages: Python, Java, C, MATLAB

Python Libraries: PyTorch, Keras, TensorFlow, Scikit-learn, Pandas, NumPy

RESEARCH & PUBLICATIONS

Graduate Research Project: AutoML for Recommender Systems

2021-2022

- Research under Prof. John Dickerson (UMD) in collaboration with Colin White, Sujay Khandagale, and Duncan McElfresh (Abacus.AI).
- Work in progress targeting NIPS.

Master's Scholarly Paper: "Maximizing User Engagement in Social

2021

- Network Advertising" (Available on Request)
- Posed a multi-armed bandit problem on a graph structure to simulate the problem of choosing which advertisements to show to users on a social network, where some users are highly influential and must be prioritized, while others are followers.
- Designed and tested an algorithm to reduce regret on an influential node by gathering observations from its followers at the cost of using a biased estimator. Concluded that the total regret was lower when compared against existing unbiased algorithms.

Senior Thesis: "Exploring Multi-Armed Bandit Decision-Making Strategies in an Underwater Vehicle Teethod" (Available on Request)

2015-2016

- in an Underwater Vehicle Testbed" (Available on Request)
- Utilized multi-armed bandit algorithms to estimate the spatial distribution of a resource using an underwater robot.
- Explored the effects of variations in smoothness of the field and priors given to the algorithms using metrics such as distance traveled by the robot and expected cumulative regret.
- Discovered that slightly overestimating the field's smoothness resulted in shorter distances and reduced regret.

Jonathan Valverde, Nikhil Nigam, Ankit Tyagi, Junghsen Lieh, Matthew Nicholson, and Alireza Behbahani. Integrated Intelligent Control of Hybrid-Electric Unmanned Air Vehicles. In *AIAA Propulsion and Energy 2019 Forum*, Indianapolis, 2019. AIAA-2019-4349 (Restricted Access).

HONORS

2020
2016
2016
2016
2010
2015-2016
2014-2015
2014
•

Assessed a novel technique for phase retrieval by conducting experiments on optical testbed.