

Моделирование канала передачи

Крюков Яков Владимирович к.т.н., доцент каф. ТОР, ТУСУР Email: kryukov.tusur@gmail.com

Канал передачи

<u>Канал передачи</u> — среда распространения радиоволн между передатчиком и приемником. Вносит самые большие искажения в сигнал и оказывает наибольшее влияние на передачу данных.

Описывается математическое моделью

Каналы передачи и их свойства

- 1) АБГШ
- 2) Затухание сигнала
- 3) Нелинейность
- 4) Межканальная интерференция

Свойственно для <u>проводного</u> канала:

- 1) Наводки из соседних каналов
- 2) Повреждение линии

Свойственно для <u>беспроводного</u> канала:

- 1) Многолучевость
- 2) Эффект Доплера

Системные искажения:

- 1) Ошибка частотной синхронизации
- 2) Ошибка временной синхронизации
- 3) Ошибка дискретизации

Проводные каналы (телефон)
Кабельные каналы (витая пара)
Коаксиальный кабель
Оптическое волокно
Радиорелейные каналы
Спутниковые каналы
Канал сотовой связи

$$Y = F(X)$$

Математическое описание канала точка-точка

• Входные данные:

 \mathbf{x} — переданный сигнал

 $oldsymbol{g}$ — канальный коэффициент

n – шум

Модель канала точка-точка

• Модель канала <u>точка-точка</u> для передачи на частоте f во временной интервал t

Составляющие: 1) Аддитивная помеха **n**

2) Мультипликативная помеха $oldsymbol{g}$

- Аддитивная помеха, это когда итоговый сигнал ${f y}$ является результатом <u>сложения</u> изначального сигнала ${f x}$ и помехи ${f n}$.
- Мультипликативная помеха, это когда итоговый сигнал ${f y}$ является результатом ${f nepemhowehun}$ изначального сигнала ${f x}$ и канального коэффициента ${f g}$.

Аддитивная помеха

- Причины возникновения ${f n}$:
 - Белый Гауссов шум (АБГШ)
 - Полосовой шум
 - Межканальная помеха
 - Импульсная помеха
 - Индустриальная помеха

$$y = x + n$$

Комплексные переменные

$$\mathbf{n} \sim N(0,1)$$

Шум $\mathbf{n}(N_0, \Delta f)$ характеризуется мощностью N_0 и полосой Δf

AБГШ:
$$\mathbf{n}(N_0 = \text{const}, \Delta f = \infty)$$

Остальные:
$$\mathbf{n}(N_0 \neq \text{const}, \Delta f \neq \infty)$$

Мат. ожидание

Сред. мощность

Плотность распределения вероятности

Мультипликативная помеха

• Мультипликативная помеха, это когда итоговый сигнал \mathbf{y} является результатом \mathbf{n} еремножения изначального сигнала \mathbf{x} и канального коэффициента \mathbf{g} . Процесс описывается выражением:

Приемник

- Канальный коэффициент многолучевого канала:
 - **L** количество путей

Передатчик

 $\pmb{\alpha}_i$ — затухание амплитуды сигнала на i-м пути

$$g = \sum_{i=1}^{L} \alpha_i e^{-j\varphi_i}$$

 d_L

Затухание сигнала

• Причины возникновения α — естественное ослабление сигнала в пространстве.

d – расстояние от излучателя до поверхности

Площадь поверхности сферы: $S=4\pi d^2$

Размер антенны:
$$S_{\rm rx}=rac{\lambda^2}{4\pi}$$

Отношение площадей:
$$\frac{\frac{\lambda^2}{4\pi}}{4\pi d^2} = \frac{\lambda^2}{(4\pi)^2} \cdot \frac{1}{d^2}$$

Ослабление по амплитуде [в разах]:

$$\alpha = X \frac{c}{4\pi df}$$

Ослабление по мощности [в разах]: $|\alpha^2|$

Х – коэффициент ослабления среды распространения

Коэффициент ослабления среды

• Коэффициент, показывающий во сколько раз уменьшилась мощность сигнала определенной частоты **f** при прохождении им какой-либо среды или вещества.

$$X(f) = \frac{P_1(f)}{P_2(f)}$$
 [разы или дБ]

 $P_1(f)$ - мощность сигнала на выходе среды

 $P_2(f)$ - мощность сигнала на входе среды

• В каждой системе связи свои особенности среды распространения.

• Тропосфера, стены, деревья, земля, вода, воздух, металлические конструкции, люди, осадки, горы, корпуса, ткань и т.д. и т.п.

Модели многолучевых каналов

- Модели каналов распространения:
 - 1. Модель Гаусса (один луч)

Спутники и сельская местность

- 2. Модель Релея (много лучей)
- 3. Модель Райса (много лучей без прямого луча)

Городская застройка

Городская застройка

Частотно-селективные замирания

- Замирания изменение амплитуды/фазы сигнала из-за многолучевости.
- При передаче широкополосного сигнала, эффект многолучеости проявляется неодинаково в полосе сигнала. Поэтому, на определенных частотах сигнала могут быть существенные провалы АЧХ.

Реальный канал

• Измерения реального канала передачи. Полоса сигнала 20 МГц.

Частотно-селективные замирания

Плоский канал

1
1
2
1
2
1
2
600
400
200
0
1
Символы
Поднесущие

Прямая видимость (коридор)

Прямая видимость (аудитория)

Конфигурация многолучевой модели

• Рекомендации моделей многолучевых каналов передачи, разработанные союзом электросвязи. Применяются для моделирования мобильных систем связи (4G LTE, 5G NR).

Типы каналов:

- EPA (Pedestrian) модель пешехода.
- EVA (Vehicular) модель автомобиля.
- ETU (Typical Urban) городская застройка.

A 4X EPA	A 4X EVA	AYX ETU			
5 0 -5 -10 -15 -20 0 10 20 30 40 50 60 70 80	6 4 2 0 -2 -4 -6 -8	-6 -8 -10 -12 0 10 20 30 40 50 60 70 80			
0 10 20 30 40 50 60 70 60	0 10 20 30 40 50 60 70 80	0 10 20 30 40 30 60 70 60			

	<i>EPA</i>		EVA		ETU	
L	т, нс	α, дБ	T, HC	а, дБ	т, нс	α, дБ
1	0	0.0	0	0.0	0	-1.0
2	30	-1.0	30	-1.5	50	-1.0
3	70	-2.0	150	-1.4	120	-1.0
4	90	-3.0	310	-3.6	200	0.0
5	110	-8.0	370	-0.6	230	0.0
6	190	-17.2	710	-9.1	500	0.0
7	410	-20.8	1090	-7.0	1600	-3.0
8	-	-	1730	-12	2300	-5.0
9	÷	-	2510	-16.9	5000	-7.0

Параметры

• Изменение изначальной частоты сигнала f_0 , воспринимаемое приемником, вследствие движения передатчика или приемника. Процесс описывается выражением:

 f_0 – изначальная частота,

v – скорость передатчика(приемника),

с – скорость света,

β – угол между направлением на источник и вектором скорости в системе отсчета приемника.

• Сигнал y(t) после смещения частоты сигнала x(t) на Δf :

$$\Delta f = f_0 \cdot \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c} \cdot \cos\beta}$$

$$y(t) = x(t) \cdot e^{-j2\pi\Delta ft}$$

- Причины возникновения:
 - 1) Передвижение абонента
 - 2) Передвижение БС
 - 3) Отражение от движущегося объекта

Искажение сигнала

$$y(t) = g(t)x(t) \cdot e^{-j2\pi\Delta ft} + n$$

$$g = \sum_{i=1}^L lpha_i e^{-jarphi_i(t)}$$
 многолучевость мине $n \sim \mathrm{CN}(M,N_0)$ $q_i = 2\pi rac{d_i - d_1}{\lambda}$