Krivulje drugega reda

1. Krožnica ima enačbo $(x-2)^2 + (y-1)^2 = 50$. Ugotovi, katera od naslednjih točk leži na krožnici, katera leži v notranjosti kroga in katera v zunanjosti: A(3,8), B(9,3), C(7,6), D(-1,7).

Rešitev: A leži na krožnici, B leži zunaj kroga, C leži na krožnici, D leži v notranjosti kroga.

2. Zapiši enačbo krožnice, ki ima središče S(5, -2) in poteka skozi točko T(-1, 6).

Rešitev:
$$(x-5)^2 + (y+2)^2 = 100$$

3. Točki A(-2, 8) in B(16, 4) sta krajišči premera krožnice K. Zapiši enačbo krožnice in preveri, če ta krožnica poteka skozi izhodišče koordinatnega sistema.

Rešitev.
$$\mathcal{K}$$
: $(x-7)^2 + (y-6)^2 = 85$. Poteka skozi izhodišče.

4. Zapiši enačbo krožnice, ki poteka skozi točke A(1, -1), B(3, 3) in C(4, 2).

Rešitev:
$$(x-2)^2 + (y-1)^2 = 5$$

5. Krožnica poteka skozi točke A(-2, -3), B(10, 3) in C(1, 12). Zapiši središče in polmer te krožnice.

Rešitev:
$$S(2,4), r = \sqrt{65}$$

6. Trikotnik ima oglišča A(-3,6), B(-2,-1) in C(6,3). Zapiši enačbo krožnice, ki je očrtana temu trikotniku.

Rešitev:
$$(x-1)^2 + (y-3)^2 = 25$$

7. Zapiši polmer in koordinati središča krožnice \mathcal{K} : $x^2 + y^2 - 10x + 8y + 3 = 0$. Rešitev: r = 6, S(5, -4)

8. Nariši krožnico z enačbo:
$$x^2 + y^2 + 2 = 6(x - y - 2)$$

Rešitev: Krožnica ima S(3, -3), r = 2.

- 9. Dana je krožnica $x^2 + y^2 2x 8y 48 = 0$. Izračunaj:
 - (a) točki A in B, v katerih krožnica seka abscisno os,
 - (b) točki C in D, v katerih krožnica seka ordinatno os,
 - (c) točki E in F, v katerih krožnica seka simetralo lihih kvadrantov.

Rešitev: (a)
$$A(-6,0)$$
, $B(8,0)$; (b) $C(0,-4)$, $D(0,12)$; (c) $E(-3,-3)$, $F(8,8)$

10. Dana je krožnica \mathcal{K} : $(x-2)^2+(y-1)^2=10$. Izračunaj presečišča krožnice \mathcal{K} z naslednjimi premicami:

(a)
$$v = 3x + 5$$

(b)
$$x - 2y - 5 = 0$$

(c)
$$\frac{x}{7} - \frac{y}{5} = 1$$

Rešitev: (a)
$$P(-1,2)$$
; (b) $P_1(1,-2)$, $P_2(5,0)$; (c) Se na sekata.

- 11. Dani sta krožnici \mathcal{K}_1 : $(x+2)^2 + (y-5)^2 = 25$ in \mathcal{K}_2 : $(x-4)^2 + (y-3)^2 = 5$. Izračunaj:
 - (a) presečišči krožnic,
 - (b) dolžino skupne tetive (rezultat naj bo točen).

Rešitev: (a)
$$P_1(2,2)$$
, $P_2(3,5)$; (b) $t = \sqrt{10}$

12. Krožnica se dotika obeh koordinatnih osi in poteka skozi točko A(9, 2). Zapiši enačbo te krožnice.

Rešitev:
$$\mathcal{K}_1$$
: $(x-5)^2 + (y-5)^2 = 25$, \mathcal{K}_2 : $(x-17)^2 + (y-17)^2 = 289$

13. Krožnica s polmerom r = 5 poteka skozi točki A(1, 3) in B(8, 4). Zapiši enačbo te krožnice.

Rešitev:
$$\mathcal{K}_1$$
: $(x-4)^2 + (y-7)^2 = 25$, \mathcal{K}_2 : $(x-5)^2 + y^2 = 25$

14. Krožnici \mathcal{K}_1 in \mathcal{K}_2 se sekata v točkah A(3,0) in B(5,6). Zapiši središči teh dveh krožnic, če veš, da sta oba polmera enaka $r_1=r_2=2\sqrt{5}$.

Rešitev:
$$S_1(1,4), S_2(7,2)$$

15. Krožnica \mathcal{K} poteka skozi točki A(-7,2) in B(1,-10). Središče krožnice leži na premici $y=-\frac{1}{2}x+5$. Zapiši enačbo te krožnice.

Rešitev:
$$\mathcal{K}$$
: $(x-6)^2 + (y-2)^2 = 169$

16. Premica z enačbo y=2x-11 poteka skozi središče krožnice \mathcal{K} . Premica z enačbo y=3x-2 pa seka krožnico v presečiščih $P_1(-1,-5)$ in $P_2(4,10)$. Izračunaj koordinati središča krožnice \mathcal{K} .

Rešitev:
$$S(6, 1)$$

17. Krožnica se dotika premice y = 3 v točki z absciso x = 6. Središče krožnice leži na premici $y = \frac{1}{2}x + 2$. Zapiši enačbo te krožnice.

Rešitev:
$$(x-6)^2 + (y-5)^2 = 4$$

18. Krožnica se dotika premice y = -3x + 8 v točki T(1, 5). Premica y = x + 2 poteka skozi središče te krožnice. Zapiši enačbo krožnice.

Rešitev:
$$(x-4)^2 + (y-6)^2 = 10$$

19. Elipsa ima enačbo
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
. Nariši to elipso in zapiši koordinate temen in gorišč.

Rešitev: Temena:
$$T_1(5,0)$$
, $T_2(0,3)$, $T_3(-5,0)$, $T_4(0,-3)$; gorišči: $G_1(4,0)$, $G_2(-4,0)$

20. Elipsa ima enačbo
$$x^2 + \frac{y^2}{4} = 1$$
. Nariši to elipso in zapiši (s koordinatami) obe gorišči. Na tri mesta natančno izračunaj numerično ekscentričnost.

Rešitev: Gorišči:
$$G_1(0, \sqrt{3})$$
, $G_2(0, -\sqrt{3})$; numerična ekscentričnost: $\varepsilon \doteq 0.866 = 86.6\%$

21. Določi središče in obe polosi ter nariši elipso, ki ustreza enačbi:

(a)
$$x^2 + 9y^2 - 2x + 54y + 73 = 0$$

(b)
$$9x^2 + 4y^2 + 16y - 20 = 0$$

(c)
$$2x^2 + 8y^2 + 4x - 16y - 22 = 0$$

Rešitev: (Oznaka a pomeni vodoravno, oznaka b pa navpično polos.)

(a)
$$S(1, -3)$$
, $a = 3$, $b = 1$; (b) $S(0, -2)$, $a = 2$, $b = 3$; (c) $S(-1, 1)$, $a = 4$, $b = 2$

22. Nariši elipso z enačbo $16x^2 + 7y^2 = 56y$. Zapiši tudi numerično ekscentričnost te elipse.

Rešitev:
$$S(0,4), a = \sqrt{7}, b = 4, \varepsilon = \frac{3}{4}$$

23. Nariši elipso z enačbo $16x^2 + 25y(y - 4) = 0$. Zapiši tudi koordinate gorišč.

Rešitev:
$$S(0,2)$$
, $a = \frac{5}{2}$, $b = 2$, $G_1(\frac{3}{2},2)$, $G_2(-\frac{3}{2},2)$

24. Elipsa ima dve od temen v točkah $T_1(8,0)$ in $T_2(-8,0)$. Elipsa poteka tudi skozi točko $A(6,\frac{7}{2})$. Zapiši enačbo te elipse in izračunaj njeno numerično ekscentričnost.

Rešitev:
$$\frac{x^2}{64} + \frac{y^2}{28} = 1$$
, $\varepsilon = \frac{3}{4}$

25. Elipsa ima gorišči v točkah $G_1(-6,3)$ in $G_2(4,3)$, eno od temen pa v točki $T_1(6,3)$. Zapiši enačbo te elipse.

Rešitev:
$$\frac{(x+1)^2}{49} + \frac{(y-3)^2}{24} = 1$$

26. Elipsa ima dve od temen v točkah $T_1(0,0)$ in $T_2(12,0)$, eno od gorišč pa v točki $G_1(6,3)$. Zapiši enačbo te elipse in izračunaj njeno numerično ekscentričnost.

Rešitev:
$$\frac{(x-6)^2}{36} + \frac{y^2}{45} = 1$$
, $\varepsilon = \frac{\sqrt{5}}{5}$

- 27. Nariši hiperbolo z enačbo $\frac{x^2}{16} \frac{y^2}{9} = 1$. Zapiši tudi koordinate temen in gorišč. <u>Rešitev</u>: Hiperbola I. tipa; temeni: $T_1(4,0)$, $T_2(-4,0)$; gorišči: $G_1(5,0)$, $G_2(-5,0)$
- 28. Nariši hiperbolo z enačbo $\frac{x^2}{16} \frac{y^2}{9} = -1$. Zapiši tudi koordinate temen in gorišč. Hiperbola II. tipa; temeni: $T_1(0,3)$, $T_2(0,-3)$; gorišči: $G_1(0,5)$, $G_2(0,-5)$
- 29. Določi središče in obe polosi ter nariši hiperbolo, ki ustreza enačbi:

(a)
$$4x^2 - 9y^2 - 16x + 18y - 29 = 0$$

(b)
$$x^2 - 4y^2 - 2x - 24y - 31 = 0$$

Rešitev: (Oznaka a pomeni vodoravno, oznaka b pa navpično polos.)

(a)
$$S(2, 1)$$
, $a = 3$, $b = 2$ (I. tip); (b) $S(1, -3)$, $a = 2$, $b = 1$ (II. tip)

30. Nariši hiperbolo z enačbo
$$4x(x + 4) = y^2$$
. Zapiši tudi enačbi obeh asimptot. Rešitev: $\frac{(x+2)^2}{4} - \frac{y^2}{16} = 1$; asimptoti: $y = 2x + 4$ in $y = -2x - 4$

31. Zapiši enačbo hiperbole, ki ima gorišči $G_1(-7,-1),\ G_2(13,-1)$ in temeni

$$T_1(-3, -1), T_2(9, -1).$$
Rešitev: $\frac{(x-3)^2}{36} - \frac{(y+1)^2}{64} = 1$

32. Hiperbola z numerično ekscentričnostjo $\varepsilon=2$ ima gorišči $G_1(3,-3)$ in $G_2(3,5)$. Zapiši enačbo te hiperbole.

Rešitev:
$$\frac{(x-3)^2}{12} - \frac{(y-1)^2}{4} = -1$$

33. Hiperbola ima asimptoti y = x + 2 in y = -x + 2. Zapiši enačbo te hiperbole, če veš, da poteka skozi izhodišče koordinatnega sistema.

Resitev:
$$\frac{x^2}{4} - \frac{(y-2)^2}{4} = -1$$

34. Hiperbola ima asimptoti $y = \frac{1}{2}x$ in $y = -\frac{1}{2}x$. Zapiši enačbo te hiperbole, če veš, da poteka

skozi točko
$$A(10, 4)$$
.
Rešitev: $\frac{x^2}{36} - \frac{y^2}{9} = 1$

35. Elipsa ima enačbo $\frac{(x-3)^2}{64} + \frac{(y-1)^2}{39} = 1$. Hiperbola ima isti gorišči kot elipsa, numerična ekscentričnost hiperbole pa je dvakrat tolikšna kot numerična ekscentričnost elipse. Nariši to hiperbolo in zapiši njeno enačbo.

Rešitev: Hiperbola:
$$\frac{(x-3)^2}{16} - \frac{(y-1)^2}{9} = 1$$

36. Nariši parabolo z enačbo $y^2 = 6x$. Zapiši tudi gorišče in enačbo premice vodnice.

Rešitev: Gorišče:
$$G(\frac{3}{2}, 0)$$
, vodnica v: $x = -\frac{3}{2}$

37. Določi teme, gorišče in vodnico ter nariši parabolo z enačbo:

(a)
$$y^2 = 4(x+2)$$

(b)
$$(y-1)^2 = -2x$$

(c)
$$(x-3)^2 = 6(y+2)$$

Rešitev: (a)
$$T(-2,0)$$
, $G(-1,0)$, v : $x = -3$; (b) $T(0,1)$, $G(-\frac{1}{2},1)$, v : $x = \frac{1}{2}$;

(c)
$$T(3, -2)$$
, $G(3, -\frac{1}{2})$, $v: y = -\frac{7}{2}$

38. Nariši parabolo z enačbo $y^2 - 8y - 4x + 12 = 0$. Izračunaj tudi koordinate presečišč parabole s koordinatnima osema.

Rešitev: Parabola:
$$(y-4)^2 = 4(x+1)$$
; presečišča: $A(0,2)$, $B(0,6)$ in $C(3,0)$

39. Nariši parabolo z enačbo $y = \frac{1}{2}x^2 - 2x + 3$. Zapiši tudi koordinate temena in gorišča.

Rešitev: Parabola:
$$(x-2)^2 = 2(y-1)$$
; $T(2,1)$, $G(2,\frac{3}{2})$

40. Parabola ima teme T(1, 2) in gorišče G(-1, 2). Nariši to parabolo in zapiši njeno enačbo.

Rešitev: Parabola:
$$(y - 2)^2 = -8(x - 1)$$

41. Razcepi levo stran enačbe na produkt dveh faktorjev in nariši ustrezno množico točk:

(a)
$$x^2 - xy - 2x + 2y = 0$$

(b)
$$x^2 - 4x + 4 - y^2 = 0$$

(c)
$$x^2 - 2xy + y^2 - 4 = 0$$

Rešitev: (a)
$$(x-2)(x-y) = 0$$
; (b) $(x-2-y)(x-2+y) = 0$; (c) $(x-y-2)(x-y+2) = 0$

42. Razcepi enačbo in nariši ustrezno množico točk:

(a)
$$x^2 + 2xy - 8y^2 = 0$$

(b)
$$3x^2 + 5xy - 2y^2 = 0$$

(c)
$$2x^2 + xy - y^2 - 7x + 5y - 4 = 0$$

Rešitev: (a)
$$(x-2y)(x+4y) = 0$$
; (b) $(x+2y)(3x-y) = 0$; (c) $(2x-y+1)(x+y-4) = 0$

43. Nariši množico točk, ki ustrezajo enačbi:

(a)
$$9x^2 - 4y^2 + 18x + 24y + 9 = 0$$

(b)
$$4x^2 + 9y^2 - 24x + 36y + 72 = 0$$

(c)
$$9x^2 + 9y^2 + 18x - 12y + 4 = 0$$

(d)
$$2x^2 + 3xy - 2y^2 - 3x + 4y - 2 = 0$$

(e)
$$3x^2 + 4y^2 - 12x - 8y - 32 = 0$$

(f)
$$x^2 - 4x + 2y + 8 = 0$$

(g)
$$x^2 + y^2 = 8x$$

(h)
$$4x^2 + y^2 = 4xy + 1$$

(i)
$$5x(x-4) = 4y^2$$

(j)
$$y^2 = 4(x+y)$$

(k)
$$4x^2 + 8x = y^2 - 4y$$

(1)
$$x^2 + y^2 + 1 = 6(x - 2)$$

(m)
$$16x^2 = 4y - y^2$$

(n)
$$(x - y)(x + y) = 2x$$

Rešitev.

(a) hiperbola:
$$\frac{(x+1)^2}{4} - \frac{(y-3)^2}{9} = -1$$

(b) točka: T(3, -2) (izrojena elipsa)

(c) krožnica:
$$(x+1)^2 + (y-\frac{2}{3})^2 = 1$$

(d) dve premici:
$$y = 2x + 1$$
, $y = -\frac{1}{2}x + 1$ (razcepna enačba)

(e) elipsa:
$$\frac{(x-2)^2}{16} + \frac{(y-1)^2}{12} = 1$$

(f) parabola:
$$(x-2)^2 = -2(y+2)$$

(g) krožnica:
$$(x-4)^2 + y^2 = 16$$

(h) dve premici:
$$y = 2x - 1$$
, $y = 2x + 1$ (razcepna enačba)
(i) hiperbola: $\frac{(x-2)^2}{4} - \frac{y^2}{5} = 1$

(i) hiperbola:
$$\frac{(x-2)^2}{4} - \frac{y^2}{5} = 1$$

(j) parabola:
$$(y-2)^2 = 4(x+1)$$

(k) dve premici:
$$y = -2x$$
, $y = 2x + 4$ (izrojena hiperbola/razcepna enačba)

(m) elipsa:
$$\frac{x^2}{1/4} + \frac{(y-2)^2}{4} = 1$$

(n) hiperbola: $(x-1)^2 - y^2 = 1$

Powered by MathJax