POWERED BY Dialog

New isolated polynucleotide from coryneform bacteria, useful for increasing production of amino acids, comprises extended genes for 1- or 6- phosphofructokinase

Patent Assignee: BATHE B; BREHME J; DEGUSSA AG; FARWICK M; HUTHMACHER K

Inventors: BATHE B; BREHME J; FARWICK M; HUTHMACHER K

Patent Family (5 patents, 98 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
DE 10112992	Al	20020926	DE 10112992	A	20010317		
WO 2002074944	A1	20020926	WO 2002EP2830		20020314		
US 20030092137	A1	20030515	US 200298626	A	20020318	200335	E
AU 2002246112	A1	20021003	AU 2002246112	A	20020314	200432	E
US 6921651	B2	20050726	US 200298626	A	20020318	200549	E

Priority Application Number (Number Kind Date): DE 10112992 A 20010317

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
DE 10112992	Al	DE	14	0	
<u>WO</u> 2002074944	Al	EN			
National Designated States,Original	CA CI FI GB KP KI MK M SD SE	H CN CO CI GD GE GH R KZ LC LK IN MW MX	R CU CZ GM HF LR LS MZ NC SL TJ TI	Z DE DK D R HU ID IL LT LU LV NZ OM PI	G BR BY BZ M DZ EC EE ES IN IS JP KE KG MA MD MG I PL PT RO RU T TZ UA UG
Regional Designated States, Original	IE IT I	KE LS LU M	IC MW	ES FI FR (MZ NL OA	GB GH GM GR PT SD SE SL
AU 2002246112	A1	EN			Based on OPI patent WO 2002074944

Alerting Abstract: DE A1

NOVELTY - Isolated polynucleotide (I) from coryneform bacteria (CB) comprising a sequence that:

1.encodes 1- and/or 6- phosphofructokinase (1- or 6-PFK); and 2.is extended by up to 700 base pairs both before the start codon and aft er the stop codon, is new.

DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

1.fermentative production (M2) of L-amino acids (aa), particularly lysine, by fermenting an aaproducing strain of CB in which activity of the g ene for 1- and/or 6-PFK has been weakened; and 2.CB (II) in which at least one of the genes for 1- and/or 6-PFK has been weakened.

USE - CB containing (I) are useful for production of L-am ino acids, specifically lysine, useful in human medicine, in the pharma ceutical and food industries and particularly in animal nutrition.

ADVA NTAGE - Reducing the activity of the PFK genes improves production of a mino acids.

Technology Focus:

BIOTECHNOLOGY - Preferred Nucleic Acid: The extended genes are:

1.a 2160 base pairs sequence (S3) for 1PFK and 2.a 2234 base pairs sequence (S1) for 6PFK, where the extensions, relative to known sequences, are 1-508 and 1684-2234 in (S3) and 1-531 and 162 1-2160 in (S1).

Preferred Method: In (M1), the genes are weakened by inserting 300-800 base pairs fragments before the start codon and after the stop codon, specifically to produce sequences (1) and (3). Option ally the activity of other genes in the biosynthetic pathway to aa is increased, and pathways that reduce formation of aa are at least partly switched off. Reduction in PFK activity is by reducing expression or activity of the encoded enzyme. Particularly activity of at least one of the following genes is increased, particularly by overexpression: lysC (feedback-resistant aspartate kinase); dapA (dihydrodipicolinate synthase); gap (glyceraldehyde-3-phosphate dehydrogenase); pyc (pyruvate carb oxylase); mqo (malate:quinone oxidoreductase); zwf (glucose-6-phosphate dehydrogenase); lysE (lysine export); zwa1 (Zwa1 protein); tpi (triose phosphate isomerase) or pgk (3-phosphoglycerate kinase). Activity of on e or more of the following is reduced: pck (phosphoenolpyruvate carboxy kinase); pgi (glucose-6-phosphate isomerase); poxB (pyruvate oxidase); fda (fructose bisphosphate aldolase) and zwa2 (Zwa2 protein). The preferred CB is ~Corynebacterium glutamicum ~ and fermentation is at 20-45, preferably 25-40, (deg)C for 10-160 hours.

Preparation: Preparation of the extended sequences is not described. Once obtained, these can be int roduced into host cells by gene replacement, particularly essentially c onventional double cross-over homologous recombination.

International Classification (Main): C12N-015/55, C12N-009/12, C12P-013/04 (Additional/Secondary): C07H-021/04, C12N-001/21, C12N-015/54, C12N-015/74, C12P-013/08, C12P-021/02

US Classification, Issued: 435106000, 435069100, 435252300, 435320100, 536023200, 435194000, 435106000, 435115000

Original Publication Data by Authority

Australia

Publication Number: AU 2002246112 A1 (Update 200432 E)

Dialog Results Page 3 of 5

Publication Date: 20021003

Assignee: DEGUSSA AG (DEGS)

Inventor: BREHME J HUTHMACHER K FARWICK M BATHE B

Language: EN

Application: AU 2002246112 A 20020314 (Local application)

Priority: DE 10112992 A 20010317

Related Publication: WO 2002074944 A (Based on OPI patent)

Original IPC: C12N-9/12(A) C12N-1/21(B) C12N-15/54(B) C12P-13/04(B) C12P-13/08(B) Current IPC: C12N-9/12(A) C12N-1/21(B) C12N-15/54(B) C12P-13/04(B) C12P-13/08(B)

Germany

Publication Number: DE 10112992 A1 (Update 200314 B)

Publication Date: 20020926

**Verfahren zur fermentativen Herstellung von L-Aminosauren unter Verwendung coryneformer

Bakterien**

Assignee: Degussa AG, 40474 Dusseldorf, DE (DEGS)

Inventor: Farwick, Mike, Dr., 33615 Bielefeld, DE Bathe, Brigitte, Dr., 33154 Salzkotten, DE Brehme,

Jennifer, 33649 Bielefeld, DE Huthmacher, Klaus, Dr., 63571 Gelnhausen, DE

Language: DE (14 pages, 0 drawings)

Application: DE 10112992 A 20010317 (Local application)

Original IPC: C12N-15/55(A) C07H-21/04(B) C12N-1/21(B) C12P-13/04(B) C12P-13/08(B)

Current IPC: C12N-15/55(A) C07H-21/04(B) C12N-1/21(B) C12P-13/04(B) C12P-13/08(B)

Original Abstract: Die Erfindung betrifft ein Verfahren zur Herstellung von L-Aminosauren, bei dem man folgende Schritte durchfuhrt:a) Fermentation der die gewunschte L-Aminosaure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwacht,b) Anreicherung der gewunschten L-Aminosaure im Medium oder in den Zellen der Bakterien undc) Isolierung der L-Aminosaure,und gegebenenfalls Bakterien einsetzt, in denen man zusatzlich weitere Gene des Biosyntheseweges der gewunschten L-Aminosaure verstarkt, oder Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewunschten L-Aminosaure verringern.

Claim: * 1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend verl angerte für die 1-Phosphofruktokinase und/oder 6-Phosphofruktokinase ko dierende Polynukleotidsequenzen, **dadurch gekennzeichnet**, dass sie jeweils vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaaren verlangert sind.

United States

Publication Number: US 20030092137 A1 (Update 200335 E)

Publication Date: 20030515

Process for the preparation of L-amino acids by using coryneform bacteria

Assignee: Farwick, Mike, Bielefeld, DE (FARW-I) Bathe, Brigitte, Salzkotten, DE (BATH-I) Brehme,

Jennifer, Bielefeld, DE (BREH-I) Huthmacher, Klaus, Gelnhausen, DE (HUTH-I)

Inventor: Farwick, Mike, Bielefeld, DE Bathe, Brigitte, Salzkotten, DE Brehme, Jennifer, Bielefeld, DE

Huthmacher, Klaus, Gelnhausen, DE

Agent: SMITH, GAMBRELL RUSSELL, LLP, 1850 M STREET, N.W., SUITE 800, WASHINGTON,

DC, US

Language: EN

Application: US 200298626 A 20020318 (Local application)

Priority: DE 10112992 A 20010317

Original IPC: C12P-13/04(A) C07H-21/04(B) C12N-1/21(B) C12N-9/12(B) C12N-15/74(B) C12P-

21/02(B)

Current IPC: C12P-13/04(A) C07H-21/04(B) C12N-1/21(B) C12N-9/12(B) C12N-15/74(B) C12P-21/02(B)

Original US Class (main): 435106

Original US Class (secondary): 43569.1 435252.3 435320.1 53623.2 435194

Original Abstract: The invention relates to a process for the preparation of L-amino acids. The process includes fermenting the coryneform bacteria producing the desired L-amino acid, in which at least the gene coding for 6-phosphofructokinase and/or the gene coding for 1-phosphofructokinase are/is attenuated, enriching the desired L-amino acid in the medium or in the cells of the bacteria, and isolating the L-amino acid. Optionally bacteria are employed in which, in addition, further genes of the biosynthetic pathway of the desired L-amino acid are enhanced, or bacteria are employed in which the metabolic pathways that diminish the formation of the desired L-amino acid are at least partly switched off.

Claim: What is claimed is: 1.**1**. An isolated polynucleotide from coryneform bacteria, comprising an elongated sequence coding for 1-phosphofructokinase and/or 6-phosph ofructokinase, wherein said sequence is elongated in front of the start codon and behind the stop codon of the gene, in each instance by up to about 700 base-pairs. US 6921651 B2 (Update 200549 E)

Publication Date: 20050726

Process for the preparation of amino acids by using coryne form bacteria with attenuated 1-phosphofructokinase activity

Assignee: Degussa AG, Dusseldorf, DE (DEGS) Farwick, Mike, Bielefeld, DE Reside nce: DE Nationality: DE Bathe, Brigitte, Salzkotten, DE Residence: DE Nationality: DE Brehme, Jennifer, Bielefeld, DE Residence: DE Nationality: DE Huthmacher, Klaus, Gelnhausen, DE Residence: DE Nationality: DE

I nventor: Farwick, Mike, Bielefeld, DE Residence: DE Nationality: DE Bat he, Brigitte, Salzkotten, DE Residence: DE Nationality: DE Brehme, Jenn ifer, Bielefeld, DE Residence: DE Nationality: DE

Huthmacher, Klaus, Ge Inhausen, DE Residence: DE Nationality: DE

Agent: Smith, Gambrell Russ ell

Language: EN

Application: US 200298626 A 20020318 (Local application)

Priority: DE 10112992 A 20010317

Original IPC: C12P-13/04(A) Current IPC: C12P-13/04(A) Original US Class (main): 435106 Original US Class (secondary): 435115

Original Abstract: The invention relates to a proce ss for the preparation of L-amino acids. The process includes fermentin g the coryneform bacteria producing the desired L-amino acid, in which at least the gene coding for 6-phosphofructokinase and/or the gene coding for 1-phosphofructokinase are/is attenuated, enriching the desired L -amino acid in the medium or in the cells of the bacteria, and isolatin g the L-amino acid. Optionally bacteria are employed in which, in addit ion, further genes of the biosynthetic pathway of the desired L-amino a cid are enhanced, or bacteria are employed in which the metabolic pathw ays that diminish the formation of the desired L-amino acid are at leas t partly switched off.

Claim: 1.1. A process for the fermentative preparation of L-amino acids in ~Cor ynebacterium glutamicum~ bacteria, comprising: * a) fermenting the bacteria, in which at least the gene encoding 1-pho sphofructokinase is eliminated by a method of mutagenesis selected fr om the group consisting of insertion of at least one base pair, delet ion of at least one base pair, and transition or transversion mutagen esis with incorporation of a nonsense mutation, in a medium and for a time suitable for the formation of the L-amino acids; and * b) accumulating the produced L-amino acids in medium or in the cells of the bacteria.

WIPO

Publication Number: WO 2002074944 A1 (Update 200314 E)

Publication Date: 20020926

PROCESS FOR THE PREPARATION OF L-AMINO ACIDS BY USING CORYNEFORM BACTERIA PROCEDE DE PREPARATION D'ACIDES AMINES L A L'AIDE DE BACTERIES CORYNEFORMES

Assignee: DEGUSSA AG, Bennigsenplatz 1, 40474 Dusseldorf, DE Residence: DE Nationality: DE (DEGS)

Inventor: FARWICK, Mike, Gustav-Adolf-Strasse 11, 33615 Bielefeld, DE BATHE, Brigitte, Twieten

1, 33154 Salzkotten, DE BREHME, Jennifer, Kastanienstrasse 10, 33649 Bielefeld, DE

HUTHMACHER, Klaus, Larchenweg 18, 63571 Gelnhausen, DE

Language: EN

Application: WO 2002EP2830 A 20020314 (Local application)

Priority: DE 10112992 A 20010317

Designated States: (National Original) AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW (Regional Original) AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZM ZW

Original IPC: C12N-9/12(A) C12N-1/21(B) C12N-15/54(B) C12P-13/04(B) C12P-13/08(B) Current IPC: C12N-9/12(A) C12N-1/21(B) C12N-15/54(B) C12P-13/04(B) C12P-13/08(B)

Original Abstract: The invention relates to a process for the preparation of L-amino acids, wherein the following steps are implemented: a) fermentation of the coryneform bacteria producing the desired L-amino acid, in which at least the gene coding for 6-phosphofructokinase and/or the gene coding for 1-phosphofructokinase are/is attenuated, b) enrichment of the desired L-amino acid in the medium or in the cells of the bacteria, and c) isolation of the L-amino acid, and optionally bacteria are employed in which, in addition, further genes of the biosynthetic pathway of the desired L-amino acid are enhanced, or bacteria are employed in which the metabolic pathways that diminish the formation of the desired L-amino acid are at least partly switched off. L'invention concerne un procede de preparation d'acides amines L au cours duquel les etapes suivantes sont realisees: a) fermentation de bacteries coryneformes qui produisent l'acide amine L voulu, au cours de laquelle au moins le gene codant pour 6-phosphofructokinase et/ou le gene codant pour 1-phosphofructokinase sont/est attenue(s), b) enrichissement du milieu ou des cellules des bacteries en acide amine L et c) isolation de l'acide amine L, et eventuellement des bacteries, dans lesquelles d'autres genes de la voie de biosynthese de l'acide amine L voulu sont aussi renforces, sont utilisees, ou des bacteries, dans lesquels les voies metaboliques qui reduisent la formation de l'acide amine L voulu sont au moins partiellement eliminees, sont utilisees.

Derwent World Patents Index © 2006 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 13061839

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift ® DE 101 12 992 A 1

Aktenzeichen: Anmeldetag:

101 12 992.0 17. 3.2001

Offenlegungstag:

26. 9.2002

旬 Int. Cl.⁷:

C 12 N 15/55

C 12 N 1/21 C 07 H 21/04 C 12 P 13/04 C 12 P 13/08 // (C12N 1/21,C12R 1:15)(C12P 13/04, C12R 1:15)(C12P 13/08,C12R 1:15)

DE

(71) Anmelder:

Degussa AG, 40474 Düsseldorf, DE

Erfinder:

Farwick, Mike, Dr., 33615 Bielefeld, DE; Bathe, Brigitte, Dr., 33154 Salzkotten, DE; Brehme, Jennifer, 33649 Bielefeld, DE; Huthmacher, Klaus, Dr., 63571 Gelnhausen, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (4) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
- Die Erfindung betrifft ein Verfahren zur Herstellung von L-Aminosäuren, bei dem man folgende Schritte durchführt:
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwächt,
 - b) Anreicherung der gewünschten L-Aminosäure im Medium oder in den Zellen der Bakterien und
 - c) Isolierung der L-Aminosäure,
 - und gegebenenfalls Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt, oder Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.

Beschreibung

[0001] Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, unter Verwendung coryneformer Bakterien, in denen das pfkA-Gen kodierend für die 6-Phosphofruktokinase und/oder das pfkB-Gen kodierend für die 1-Phosphofruktokinase abgeschwächt ist.

Stand der Technik

[0002] L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung.

[0003] Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

[0004] Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie zum Beispiel das Lysin-Analogon S-(2-Aminoethyl)-Cystein oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Aminosäuren produzieren.

[0005] Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung L-Aminosäure produzierender Stämme von Corynebacterium glutamicum eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die L-Aminosäure-Produktion untersucht.

Aufgabe der Erfindung

[0006] Die Erfinder haben sich die Aufgabe gestellt, neue Grundlagen für verbesserte Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, mit coryneformen Bakterien bereitzustellen.

Beschreibung der Erfindung

[0007] Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.

[0008] Wenn im Folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern sind auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

[0009] Gegenstand der Erfindung ist ein Verfahren zur fermentativen Herstellung von L-Aminosäuren, unter Verwendung von coryneformen Bakterien, in denen man zumindest die für die 6-Phosphofruktokinase kodierende Nukleotidsequenz und/oder die für die 1-Phosphofruktokinase kodierende Nukleotidsequenz abschwächt, insbesondere ausschaltet oder auf niedrigem Niveau exprimiert.

[0010] Gegenstand dieser Erfindung ist weiterhin ein Verfahren zur fermentativen Herstellung von L-Aminosäuren in dem folgende Schritte durchführt werden:

- a) Fermentation der L-Aminosäure produzierenden coryneformen Bakterien, in denen zumindest die für die 6-Phosphofruktokinase kodierende Nukleotidsequenz und/oder die für die 1-Phosphofruktokinase kodierende Nukleotidsequenz abgeschwächt, insbesondere ausgeschaltet oder auf niedrigem Niveau exprimiert wird;
 - b) Anreicherung der L-Aminosäuren im Medium oder in den Zellen der Bakterien; und
- c) Isolierung der gewünschten L-Aminosäuren, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/ oder der Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben.

[0011] Die eingesetzten Stämme produzieren bevorzugt bereits vor der Abschwächung des für die 6-Phosphofruktokinase kodierenden pfkA-Gens und/oder des für die 1-Phosphofruktokinase kodierenden pfkB-Gens L-Aminosäuren, insbesondere L-Lysin.

55 [0012] Bevorzugte Ausführungsformen finden sich in den Ansprüchen.

25

30

45

50

[0013] Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

[0014] Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Aminosäuren aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

[0015] Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind besonders die bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032

Corynebacterium acetoglutamicum ATCC15806	
Corynebacterium acetoacidophilum ATCC13870	
Corynebacterium melassecola ATCC17965	
Corynebacterium thermoaminogenes FERM BP-1539	
Brevibacterium flavum ATCC14067	5
Brevibacterium lactofermentum ATCC13869 und	
Brevibacterium divaricatum ATCC14020	
und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme	
wie beispielsweise die L-Lysin produzierenden Stämme	••
Corynebacterium glutamicum FERM-P 1709 Brevibacterium flavum FERM-P 1708	10
Brevibacterium lactofermentum FERM-P 1712	
Corynebacterium glutamicum FERM-P 6463	
Corynebacterium glutamicum FERM-P 6464 und	
Corynebacterium glutamicum DSM 5715.	15
[0016] Es wurde gefunden, daß coryneforme Bakterien nach Abschwächung des für die 6-Phosphofruktokinase (EC:	
2.7.1.11) kodierenden Gens und/oder des für die 1-Phosphofruktokinase (EC 2.7.1.56) kodierenden Gens in verbesserter	
Weise L-Aminosäuren produzieren.	
[0017] Die Nukleotidsequenz des für die 6-Phosphofruktokinase von Corynebacterium glutamicum kodierenden Gens	
	20
den.	
[0018] Die Nukleotidsequenz des für die 1-Phosphofruktokinase von Corynebacterium glutamicum kodierenden Gens	
kann der Patentanmeldung WO 01/00844 unter dem Identification Code RXA01882 als SEQ ID No. 57 entnommen wer-	
den.	
	25
AX064931 hinterlegt.	
[0020] Die beanspruchten Nukleotidsequenzen der für die 1-Phosphofruktokinase und für die 6-Phosphofruktokinase	
kodierenden Gene, dargestellt in den SEQ ID No. 3 bzw. SEQ ID No. 1, sind gegenüber den aus dem Stand der Technik	
bekannten Sequenzen um jeweils bevorzugt bis zu 700 Basenpaare vor dem Startkodon und hinter dem Stopkodon des	30
Gens verlängert. [0021] Die Verlängerungen gegenüber der aus dem Stand der Technik bekannten Sequenz bestehen in der SEQ ID No.	30
3 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234.	
[0022] In SEQ ID No. 1 bestehen die Verlängerungen gegenüber der aus dem Stand der Technik bekannten Sequenz	
aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160.	
	35
stellt.	
[0024] Es wurde gefunden, daß mit Hilfe der so bereitgestellten verlängerten Sequenzen an sich bekannte Verfahren	
zur Abschwächung besonders erfolgreich eingesetzt werden können.	
[0025] Eine solches Verfahren ist die Methode des Genaustausches ("gene replacement"). Dabei wird eine Mutation	
5	40
Allel wird wiederum in einen für C. glutamicum nicht replikativen Vektor kloniert und dieser anschließend durch Trans-	
formation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination	
mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision be-	
wirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation bzw. des Allels. Diese Methode wurde beispielsweise in EP: 00110021.3 verwendet, um das secG-Gen von C. glutamicum auszu-	45
schalten.	43
[0026] Die Verlängerung der eingesetzten Sequenzen ist nicht auf 600 Basenpaare vor dem Startkodon und hinter dem	
Stopkodon beschränkt. Sie liegt bevorzugt im Bereich von 300 bis 700 Basenpaaren, kann aber auch bis zu 800 Basen-	
paaren betragen. Die Verlängerungen können auch unterschiedliche Mengen an Basenpaaren enthalten.	
	50
Phosphofruktokinase, können erfindungsgemäß verwendet werden. Weiterhin können Allele der 6-Phosphofruktokinase	
bzw. 1-Phosphofruktokinase verwendet werden, die sich aus der Degeneriertheit des genetischen Codes oder durch funk-	
tionsneutrale Sinnmutationen ("sense mutations") ergeben.	
[0028] Zur Erzielung einer Abschwächung können entweder die Expression des für die 6-Phosphofruktokinase kodie-	
renden Gens und/oder des für die 1-Phosphofruktokinase kodierenden Gens oder die katalytischen Eigenschaften der	55
Genprodukte herabgesetzt oder ausgeschaltet werden. Gegebenenfalls werden beide Maßnahmen kombiniert.	
[0029] Die Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung (Mutation) der Si-	
gnalstrukturen der Genexpression verringert werden.	
[0030] Signalstrukturen der Genexpression sind beispielsweise Repressorgene, Aktivatorgene, Operatoren, Promoto-	
ren, Attenuatoren, Ribosomenbindungsstellen, das Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z. B. in der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Vos-	60
kuil und Chambliss (Nucleic Acids Research 26: 3548 (1998), bei Jensen und Hammer (Biotechnology and Bioenginee-	
ring 58: 191 (1998)), bei Pátek et al. (Microbiology 142: 1297 (1996)) und in bekannten Lehrbüchern der Genetik und	
Molekularbiologie wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag,	
	65

3

[0031] Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen, sind aus dem Stand der Technik bekannt; als Beispiele seien die Arbeiten von Qiu und Goodman (Journal of Bio-

Deutschland, 1990).

logical Chemistry 272: 8611–8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760–1762 (1997)) und Möckel ("Die Threonindehydratase aus Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms", Berichte des Forschungszentrums Jülichs, Jül-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden. [0032] Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die Enzymaktivität wird von Fehlsinnmutationen ("missense mutations") oder Nichtsinnmutationen ("nonsense mutations") gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar in einem Gen führen zu Rasterverschiebungsmutationen ("frame shift mutations"), in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990) oder dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

[0033] Eine gebräuchliche Methode, Gene von C. glutamicum zu mutieren, ist die von Schwarzer und Pühler (Bio/Technology 9, 84–87 (1991)) beschriebene Methode der Gen-Unterbrechung ("gene disruption") und des Gen-Austauschs ("gene replacement").

[0034] Bei der Methode der Gen-Unterbrechung wird ein zentraler Teil der Kodierregion des interessierenden Gens in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pK18mobsacB oder pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-Patent 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534–541 (1993)) oder pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) in Frage. Der Plasmidvektor, der das zentrale Teil der Kodierregion des Gens enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756–759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356–362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067–1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343–347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross-over"-Ereignisses wird die Kodierregion des betreffenden Gens durch die Vektorsequenz unterbrochen und man erhält zwei unvollständige Allele, denen jeweils das 3'- bzw. das 5'-Ende fehlt. Diese Methode wurde beispielsweise von Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)) zur Ausschaltung des recA-Gens von 35 C. glutamicum verwendet.

[0035] Bei der Methode des Genaustausches ("gene replacement") wird eine Mutation wie z. B. eine Deletion, Insertion oder Basenaustausch in dem interessierenden Gen in-vitro hergestellt. Das hergestellte Allel wird wiederum in einen für C. glutamicum nicht replikativen Vektor kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau der Mutation bzw. des Allels. Diese Methode wurde beispielsweise von Peters-Wendisch et al. (Microbiology 144, 915–927 (1998)) verwendet, um das pyc-Gen von C. glutamicum durch eine Deletion auszuschalten.

[0036] In das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen kann auf diese Weise eine Deletion, Insertion oder ein Basenaustausch eingebaut werden.

[0037] Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, zusätzlich zur Abschwächung des für die 6-Phosphofruktokinase kodierenden Gens und/oder des für die 1-Phosphofruktokinase kodierenden Gens, eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken, insbesondere überzuexprimieren.

[0038] Der Begriff "Verstärkung" bzw. "Verstärken" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende
DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor
oder ein Gen verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und gegebenenfalls diese Maßnahmen kombiniert.

[0039] So kann für die Herstellung von L-Lysin neben der Abschwächung des für die 6-Phosphofruktokinase kodierenden Gens und/oder des für die 1-Phosphofruktokinase kodierenden Gens eines oder mehrere der Gene ausgewählt aus der Gruppe

- das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Accession No.P26512, EP-B-0387527; EP-A-0699759; WO 00/63388),
 - das für die Dihydrodipieolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
 - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992). Journal of Bacteriology 174: 6076–6086),
 - gleichzeitig das für die Pyruvat Carboxylase kodierende Gen pyc (DE-A-198 31 609),

- das für die Malat: Chinon Oxidoreduktase kodierende Gen mqo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),(Abschwächung oder Verstärkung???)
- das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf (JP-A-09224661),

- gleichzeitig das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222),
- das für das Zwa1-Protein kodierende Gen zwa1 (DE: 199 59 328.0, DSM 13115)
- das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086), und
- das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086),

verstärkt, insbesondere überexprimiert werden.

[0040] Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zur Abschwächung des für die 6-Phosphofruktokinase kodierenden Gens und/oder des für die 1-Phosphofruktokinase kodierenden Gens gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1, DSM 13047),
- das für die Glucose-6-Phosphat-Isomerase kodierende Gen pgi (US 09/396,478, DSM 12969),
- das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 199 51 975.7, DSM 13114),
- das für die Fruktose-Bisphosphat Aldolase kodierende Gen fda (Mol. Microbiol. 3 (11), 1625–1637 (1989); Genbank Accession Number X17313) und
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 199 59 327.2, DSM 13113)

abzuschwächen, insbesondere die Expression zu verringern.

[0041] Schließlich kann es für die Produktion von Aminosäuren, vorteilhaft sein, neben der Abschwächung des für die 6-Phosphofruktokinase kodierenden Gens und/oder des für die 1-Phosphofruktokinase kodierenden Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

[0042] Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch – Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

[0043] Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D. C., USA, 1981) enthalten.

[0044] Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

[0045] Als Stickstoffquelle können organische Stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.

[0046] Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden. [0047] Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoffhaltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht. [0048] Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustauschehromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167–1174) beschrieben.

[0049] Die vorliegende Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert.

65

60

15

20

SEQUENZPROTOKOLL

	<110> Degussa AG	
5	<120> Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien	
	<130> 010105 BT	
0	<140> <141>	
	<160> 4	
5	<170> PatentIn Ver. 2.1	
20	<210> 1 <211> 2234 <212> DNA <213> Corynebacterium glutamicum	
25	<220> <221> CDS <222> (632)(1660) <223> pfkA-Gen	
	<400> 1	
30	cctctaataa gagtcgcccc gataagtttt tttaccgtaa ttattactgg gagtcagata	
	ctgcgtaagc aatcgcagca gcgccagcgg tcacagtaag aactgcaggc cacgcgccaa	12
	tcttcttggc aagtgggtgg gacaggccaa atgcaccaac gtaggttgcc agcaggccag	18
35	tagctactgc aggaccette ttttcattcc agettegtge ageaageget eeggatgetg	24
	ccaatggaat ggtgcccagt gggcgaatgc cggattcacg ggcagtcaac caaccgccga	30
10	tcaaacctgc tgcgacgacg gtggcagtgc tgacctggga tgcctttttc aatttcattt	36
	ccatggtgag ccagtctaga gacaaaattt ttccgcgggg gttttcttga tctgatccga	42
	caacccaatg ggggcaaaaa tgtgtccgac caaaaattgt gcagcacacc acatgcccgc	48
15	tcggacaatg tcgatttgtt aatgaaactg cagctctggc gattaaataa gatggtcaga	540
	gacagttttt tggcctgtca acccctgtga ttctcttatt tttgggtgat tgttccggcg	600
50	cgggtgttgt gatgggttta atatggaaga c atg cga att gct act ctc acg Met Arg Ile Ala Thr Leu Thr 1 5	652
55	tca ggc ggc gac tgc ccc gga cta aac gcc gtc atc cga gga atc gtc Ser Gly Gly Asp Cys Pro Gly Leu Asn Ala Val Ile Arg Gly Ile Val 10 15 20	700
50	cgc aca gcc agc aat gaa ttt ggc tcc acc gtc gtt ggt tat caa gac Arg Thr Ala Ser Asn Glu Phe Gly Ser Thr Val Val Gly Tyr Gln Asp 25 30 35	748

ggt G1 ₃ 4(A TTF	g gaa o Glu	a gga ı Gly	a cto / Lei	g tta 1 Leu 45	a GI3	gat Asp	cgt Arg	cgo Arg	g gta g Val	l Gl	g cto n Le	g tai	t gad r Asj	c gat p Asp 55	796	
gaa Glu	a gat 1 Asp	att Ile	gac Asp	c cga Arç	1 TTE	cto Lev	ctt Leu	cga Arg	ggc Gly 65	/ Gl	c aco	c att	t tto	g ggo i Gly 70	c act y Thr	844	5
ggt Gly	cgo Arg	cto J Lei	cat His 75	Pro	gac Asp	aag Lys	ttt Phe	aag Lys 80	Ala	gga Gly	att / Ile	gat Asp	caç Glr 85	ıle	aag Lys	892	10
gcc Ala	aac Asn	tta Leu 90	і СТЛ	gac Asp	gco Ala	ggc Gly	atc Ile 95	Asp	gcc	ctt Leu	ato Ile	e cca Pro 100) Ile	ggt Gly	ggc Gly	940	15
gaa Glu	gga Gly 105	Int	ctg Leu	aag Lys	ggt	gcc Ala 110	Lys	tgg Trp	ctg Leu	tct Ser	gat Asp 115	Asn	ggt Gly	ato Ile	cct Pro	988	20
gtt Val 120	AGT	ggt Gly	gtc Val	cca Pro	aag Lys 125	Thr	att Ile	gac Asp	aat Asn	gac Asp 130	Val	aat Asn	ggc	act Thr	gac Asp 135	1036	25
ttc Phe	acc Thr	ttc Phe	ggt Gly	ttc Phe 140	Asp	act Thr	gct Ala	gtg Val	gca Ala 145	Val	gct Ala	acc Thr	gac Asp	gct Ala 150	gtt Val	1084	30
110p	мy	neu	155	rnr	Thr	Ата	Glu	Ser 160	His	Asn	Arg	Val	Met 165	Ile		1132	
Olu	AGT	170	GTÀ	Arg	HIS	val	GLy 175	Trp	Ile	Ala	Leu	His 180	Ala	Gly		1180	35
1114	185	GIY	MIG	nis	Tyr	acc Thr 190	val	lie	Pro	Glu	Val 195	Pro	Phe	Asp	Ile	1228	40
200	014	116	Cys	пÀ2	205	atg Met	GIU	Arg	Arg	Phe 210	Gln	Met	Gly	Glu	Lys 215	1276	45
- , ~	U1y	116	116	220	AGI	gcg Ala	GIU	GIÀ	A1a 225	Leu	Pro	Arg	Glu	Gly 230	Thr	1324	50
	01 4	Dea	235	GIU	GIÀ	cac His	116	240	GIn	Phe	Gly	His	Lys 245	Thr	Phe	1372	55
1111	O.L.y	250	GIĀ	GIII	GIN		A1a 255	Asp	Glu	Ile	His	Val 260	Arg	Leu	Gly	1420	
	gat Asp 265	gtt Val	cgt Arg	acg Thr	acc Thr	gtt Val 270	ctt Leu	ggc Gly	cac His	Ile	caa Gln 275	cgt Arg	ggt Gly	gga Gly	acc Thr	1468	60

_	cca act gct ttc gac cgt gtt ctg gcc act cgt tat ggt gtt cgt gca Pro Thr Ala Phe Asp Arg Val Leu Ala Thr Arg Tyr Gly Val Arg Ala 280 285 290 295	1516
5	gct cgt gcg tgc cat gag gga agc ttt gac aag gtt gtt gct ttg aag Ala Arg Ala Cys His Glu Gly Ser Phe Asp Lys Val Val Ala Leu Lys 300 305 310	1564
10	ggt gag agc att gag atg atc acc ttt gaa gaa gca gtc gga acc ttg Gly Glu Ser Ile Glu Met Ile Thr Phe Glu Glu Ala Val Gly Thr Leu 315 320 325	1612
15	aag gaa gtt cca ttc gaa cgc tgg gtt act gcc cag gca atg ttt gga Lys Glu Val Pro Phe Glu Arg Trp Val Thr Ala Gln Ala Met Phe Gly 330 335 340	1660
	tagtttttcg ggcttttatc aacagccaat aacagctctt tcgcccattg aggtggaggg	1720
20	gctgtttttt catgccgtaa ggaaagtgca agtaagtgaa atcaagtggc ctagatccat	1780
	tgacacttag actgtgacct aggcttgact ttcgtggggg agtggggata agttcatctt	1840
25	aaacacaatg caatcgattg catttacgtt ccttatccca caataggggt accttccaga	1900
	aagttggtga ggagatggct tccgaaacct ccagcccgaa gaagcgggcc accacgctca	1960
20	aagacatcgc gcaagcaaca cagctttcag tcagcacggt gtcccgggca ttggccaaca	2020
30	acgcgagcat tccggaatcc acacgcatcc gagtggttga agccgctcaa aagctgaact	2080
	accgtcccaa tgcccaagct cgtgcattgc ggaagtcgag gacagacacc atcggtgtca	2140
35	tcattccaaa cattgagaac ccatatttct cctcactagc agcatcgatt caaaaagctg	2200
	ctcgtgaagc tggggtgtcc accattttgt ccaa	2234
40	<pre><210> 2 <211> 343 <212> PRT <213> Corynebacterium glutamicum</pre>	
45	<400> 2	
	Met Arg Ile Ala Thr Leu Thr Ser Gly Gly Asp Cys Pro Gly Leu Asn 1 10 15	
50	Ala Val Ile Arg Gly Ile Val Arg Thr Ala Ser Asn Glu Phe Gly Ser 20 25 30	

55

35

Arg Val Gln Leu Tyr Asp Asp Glu Asp Ile Asp Arg Ile Leu Leu Arg 50 55 60

Thr Val Val Gly Tyr Gln Asp Gly Trp Glu Gly Leu Leu Gly Asp Arg

Gly Gly Thr Ile Leu Gly Thr Gly Arg Leu His Pro Asp Lys Phe Lys
60 65 70 75 80

65

Ala	Gly	Ile	Asp	Gln 85	Ile	Lys	Ala	Asn	Leu 90	Glu	Asp	Ala	Gly	Ile 95	Asp			
Ala	Leu	Ile	Pro 100	Ile	Gly	Gly	Glu	Gly 105	Thr	Leu	Lys	Gly	Ala 110		Trp		,	5
Leu	Ser	Asp 115	Asn	Gly	Ile	Pro	Val 120	Val	Gly	Val	Pro	Lys 125		Ile	Asp		10	0
Asn	Asp 130	Val	Asn	Gly	Thr	Asp 135	Phe	Thr	Phe	Gly	Phe 140		Thr	Ala	Val			
Ala 145	Val	Ala	Thr	Asp	Ala 150	Val	Asp	Arg	Leu	His 155	Thr	Thr	Ala	Glu	Ser 160		1.	5
His	Asn	Arg	Val	Met 165	Ile	Val	Glu	Val	Met 170	Gly	Arg	His	Val	Gly 175	Trp		24	^
Ile	Ala	Leu	His 180	Ala	Gly	Met	Ala	Gly 185	Gly	Ala	His	Tyr	Thr 190	Val	Ile		20	ט
Pro	Glu	Val 195	Pro	Phe	Asp	Ile	Ala 200	Glu	Ile	Cys	Lys	Ala 205	Met	Glu	Arg		2:	5
Arg	Phe 210	Gln	Met	Gly	Glu	Lys 215	Tyr	Gly	Ile	Ile	Val 220	Val	Ala	Glu	Gly			
Ala 225	Leu	Pro	Arg	Glu	Gly 230	Thr	Met	Glu	Leu	Arg 235	Glu	Gly	His	Ile	Asp 240		30	0
Gln	Phe	Gly	His	Lys 245	Thr	Phe	Thr	Gly	Ile 250	Gly	Gln	Gln	Ile	Ala 255	Asp		3:	5
			Val 260					265					270		_			
		275	Arg				280					285					41	0
	290		Gly			295					300						4:	5
305			Val		310					315					320			
Glu	Glu	Ala	Val	Gly 325	Thr	Leu	Lys	Glu	Val 330	Pro	Phe	Glu	Arg	Trp 335	Val		50	D
Thr	Ala	Gln	Ala 340	Met	Phe	Gly												
<210																	5:	5
<212	.> 21 ?> DN 3> Co	IA	ebact	eriu	um gl	.utam	icum	l									6	0
<220)>																	
																	6:	5

	<222	L> CI 2> (1 3> p:	609)	(15 Gen	598)												
5	<400	0> 3															
		-	gta	cgtct	cccc	cc to	egget	tgaaa	a cct	gcct	tgg	tta	aagg	aat	gcca	ccggaa	60
10	ccc	egtgi	ttt	tagaa	actt	gc a	gaaa	ctgca	a gtt	tcc	ctca	tca	cacc	tct	agca	cgcagc	120
10	attt	ttcci	tgg	attca	aggtt	t a	gcgt	gcac	g gc	gatto	gcca	cgg	tgtt	ggg	ggat	cctcca	180
	gaaq	gatgo	cca	ggtg	gacto	gt to	gtta	caagt	t tco	cccç	ggcg	ctg	tgat	tgc	cttg	tccgcg	240
15	acaç	gatgo	cca	cctc	cacg	gt g	gtgc	tgcad	s ggg	gcag	gttc	acg	gtaa	ttg	ttcti	tcaatc	300
	atto	gggt	cca	cggca	agtag	ga ca	atga	tttc	g cag	gttgo	cgcg	ctg	atat	cgc	cttc	gtggag	360
20	gtt	gatgo	cga	ttcaa	atcc	ga ta	acaa	gtct	g tgo	cacgt	ttt	tcc	cgga	gac	gatt	cccatc	420
	aago	caago	cca	tgato	caaaa	aa c	gcgg	ctttc	c aca	agtt	gctg	ttc	tcag	CCC	gagat	tctccc	480
25	caaq	gatca	aag	aactt	caad	et ti	ttgaa	agcad	c cct	cttt	cca	ccti	tggc	tga	tttt	gatgcc	540
25	ctt	gttad	ccg	atgad	ccaca	ac go	ctaga	atttt	t cca	agttt	tgc	ccga	acca	caa	cttt	caggtg	600
30	gtaa	accc	c at Me	g ato t Ile 1	c ato	e Thi	r Phe	c acc e Thi	c cca	a aad o Asr	e cce	g agt o Sei 10	r Ile	t ga e As	t tco p Sei	c acg r Thr	650
35	ctg Leu 15	tcg Ser	ctc Leu	ggc Gly	gaa Glu	gag Glu 20	ctc Leu	tcc Ser	cgt Arg	gga Gly	tcc Ser 25	gtc Val	caa Gln	cga Arg	ctt Leu	gat Asp 30	698
	tcc Ser	gtc Val	acc Thr	gct Ala	gtc Val 35	gca Ala	ggt Gly	ggt Gly	aaa Lys	ggc Gly 40	atc Ile	aat Asn	gtc Val	gcc Ala	cac His 45	gct Ala	746
40	gtc Val	ttg Leu	ctt Leu	gcg Ala 50	ggc Gly	ttt Phe	gaa Glu	acc Thr	ttg Leu 55	gct Ala	gtg Val	ttc Phe	cca Pro	gcc Ala 60	ggc Gly	aag Lys	794
45	ctc Leu	gac Asp	ccc Pro 65	ttc Phe	gtc Val	cca Pro	ctg Leu	gtc Val 70	Arg	gac Asp	atc Ile	ggc Gly	ttg Leu 75	ccc Pro	gtg Val	gaa Glu	842
50	act Thr	gtt Val 80	gtg Val	atc Ile	aac Asn	aag Lys	aac Asn 85	gtc Val	cgc Arg	acc Thr	aac Asn	acc Thr 90	aca Thr	gtc Val	acc Thr	gaa Glu	890
55	ccg Pro 95	gac Asp	ggc	acc Thr	acc Thr	acc Thr 100	aag Lys	ctc Leu	aac Asn	ggc	ccc Pro 105	ggc Gly	gcg Ala	ccg Pro	ctc Leu	agc Ser 110	938
60	gag Glu	cag Gln	aag Lys	ctc Leu	cgt Arg 115	agc Ser	ttg Leu	gaa Glu	aag Lys	gtg Val 120	ctt Leu	atc Ile	gac Asp	gcg Ala	ctc Leu 125	cgc Arg	986
	ccc Pro	gaa Glu	gtc Val	acc Thr	tgg Trp	gtt Val	gtc Val	ctg Leu	gcg Ala	ggc Gly	tcg Ser	ctg Leu	cca Pro	cca Pro	ggg Gly	gca Ala	1034

130 135 140		
cca gtt gac tgg tac gcg cgt ctc acc gcg ttg atc cat tca gca cgc Pro Val Asp Trp Tyr Ala Arg Leu Thr Ala Leu Ile His Ser Ala Arg 145 150 155	1082	5
cct gac gtt cgc gtg gct gtc gat acc tca gac aag cca ctg atg gcg Pro Asp Val Arg Val Ala Val Asp Thr Ser Asp Lys Pro Leu Met Ala 160 165 170	1130	10
ttg ggc gag agc ttg gat aca cct ggc gct gct ccg aac ctg att aag Leu Gly Glu Ser Leu Asp Thr Pro Gly Ala Ala Pro Asn Leu Ile Lys 175 180 185 190	1178	15
cca aat ggt ctg gaa ctg ggc cag ctg gct aac act gat ggt gaa gag Pro Asn Gly Leu Glu Leu Gly Gln Leu Ala Asn Thr Asp Gly Glu Glu 195 200 205	1226	
ctg gag gcg cgt gct gcg caa ggc gat tac gac gcc atc atc gca gct Leu Glu Ala Arg Ala Ala Gln Gly Asp Tyr Asp Ala Ile Ile Ala Ala 210 215 220	1274	20
gcg gac gta ctg gtt aac cgt ggc atc gaa cag gtg ctt gtc acc ttg Ala Asp Val Leu Val Asn Arg Gly Ile Glu Gln Val Leu Val Thr Leu 225 230 235	1322	25
ggt gcc gca gga gcg gtg ttg gtc aac gca gaa ggt gcg tgg act gct Gly Ala Ala Gly Ala Val Leu Val Asn Ala Glu Gly Ala Trp Thr Ala 240 245 250	1370	30
act tct cca aag att gat gtt gta tcc acc gtt gga gct gga gac tgt Thr Ser Pro Lys Ile Asp Val Val Ser Thr Val Gly Ala Gly Asp Cys 255 260 265 270	1418	35
gct ctt gca ggt ttt gtt atg gca cgt tcc cag aag aaa aca ctg gag Ala Leu Ala Gly Phe Val Met Ala Arg Ser Gln Lys Lys Thr Leu Glu 275 280 285	1466	40
gaa tot otg otg aat goo gtg tot tac ggc tog act gcg gcg tot ott Glu Ser Leu Asn Ala Val Ser Tyr Gly Ser Thr Ala Ala Ser Leu 290 295 300	1514	45
cct ggc act acc att cct cgt cct gac caa ctc gcc aca gct ggt gca Pro Gly Thr Thr Ile Pro Arg Pro Asp Gln Leu Ala Thr Ala Gly Ala 305 310 315	1562	45
acg gtc acc caa gtc aaa gga ttg aaa gaa tca gca tgaatagcgt Thr Val Thr Gln Val Lys Gly Leu Lys Glu Ser Ala 320 325 330	1608	50
aaataattcc tcgcttgtcc ggctggatgt cgatttcggc gactccacca cggatgtcat caacaacctt gccactgtta ttttcgacgc tggccgagct tcctccgccg acgcccttgc	•	55
caaagacgcg ctggatcgtg aagcaaagtc cggcaccggc gttcctggtc aagttgctat		
cccccactgc cgttccgaag ccgtatctgt ccctaccttg ggctttgctc gcctgagcaa	1848	60
gggtgtggac ttcagcggac ctgatggcga tgccaacttg gtgttcctca ttgcagcacc	1908	

	rgerggegge	ggcaaagagc	accigaagat	cctgtccaag	cttgctcgct	ccttggtgaa	1968
	gaaggatttc	atcaaggctc	tgcaggaagc	caccaccgag	caggaaatcg	tcgacgttgt	2028
5	cgatgccgtg	ctcaacccag	caccaaaaac	caccgagcca	gctgcagctc	cggctgcggc	2088
	ggcggttgct	gagagtgggg	cggcgtcgac	aagcgttact	cgtatcgtgg	caatcaccgc	2148
10	atgcccaacc	gg					2160

- <210> 4
- <211> 330
- 15 <212> PRT
 - <213> Corynebacterium glutamicum
 - <400> 4
- Met Ile Ile Thr Phe Thr Pro Asn Pro Ser Ile Asp Ser Thr Leu Ser 1 5 10 15
 - Leu Gly Glu Glu Leu Ser Arg Gly Ser Val Gln Arg Leu Asp Ser Val 20 25 30
- Thr Ala Val Ala Gly Gly Lys Gly Ile Asn Val Ala His Ala Val Leu
 35 40 45
- Leu Ala Gly Phe Glu Thr Leu Ala Val Phe Pro Ala Gly Lys Leu Asp 50 55 60
 - Pro Phe Val Pro Leu Val Arg Asp Ile Gly Leu Pro Val Glu Thr Val 65 75 80
- Val Ile Asn Lys Asn Val Arg Thr Asn Thr Thr Val Thr Glu Pro Asp 85 90 95
 - Gly Thr Thr Lys Leu Asn Gly Pro Gly Ala Pro Leu Ser Glu Gln
 100 105 110
 - Lys Leu Arg Ser Leu Glu Lys Val Leu Ile Asp Ala Leu Arg Pro Glu 115 120 125
- Val Thr Trp Val Val Leu Ala Gly Ser Leu Pro Pro Gly Ala Pro Val 130 135 140
 - Asp Trp Tyr Ala Arg Leu Thr Ala Leu Ile His Ser Ala Arg Pro Asp 145 150 155 160
- Val Arg Val Ala Val Asp Thr Ser Asp Lys Pro Leu Met Ala Leu Gly
 165 170 175
- Glu Ser Leu Asp Thr Pro Gly Ala Ala Pro Asn Leu Ile Lys Pro Asn 180 185 190
 - Gly Leu Glu Leu Gly Gln Leu Ala Asn Thr Asp Gly Glu Glu Leu Glu 195 200 205
- Ala Arg Ala Ala Gln Gly Asp Tyr Asp Ala Ile Ile Ala Ala Ala Asp 210 215 220

65

Ala Gly Ala Val Leu Val Asn Ala Glu Gly Ala Trp Thr Ala Thr Ser 255 Fro Lys Ile Asp Val Val Ser Thr Val Gly Ala Gly Asp Cys Ala Leu 260 Ala Gly Phe Val Met Ala Arg Sex Gln Lys Lys Thr Leu Glu Glu Ser 275 Leu Leu Asn Ala Val Ser Tyr Gly Ser Thr Ala Ala Ser Leu Pro Gly 280 Thr Thr Ile Pro Arg Pro Asp Gln Leu Ala Thr Ala Gly Ala Thr Val 305 Thr Thr Ile Pro Arg Pro Asp Gln Leu Ala Thr Ala Gly Ala Thr Val 305 Thr Gln Val Lys Gly Leu Lys Glu Ser Ala 320 Putentansprüche 1. Isolieries Polynuklooid aus corynuformen Bakterien, onthaltend verlängene für die 1-Phosphofruktokinase und oder 6-Phosphofruktokinase kodierende Polynukleoidsequenzen, dudurch gekennzeichnet, daß sie jeweils vor dem Starkdoon und hinter dem Stopkodon des Gens jeweils im bis 20 c. 700 Basenpaaren et Sol Masenpaaren bis 500 h. 3 und für das ein ver dem Starkdoon und hinter dem Stopkodon des Gens jeweils im bis 20 c. 700 Basenpaaren verlängert sind, wobel die verlängeren Aminosäinenseugenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 1 auf dem Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis v. 1648 bis 224 und in SEQ ID No. 1 auf sen Basenpaaren lis Sig Dis Sig Basenpaaren bis Sig Dis No. 1 daren der Be	Val 225	Leu	Val	Asn	Arg	Gly 230	Ile	Glu	Gln	Val	Leu 235	Val	Thr	Leu	Gly	Ala 240	
Ala GIP Phe Val Met Ala Arg Ser GIn Lys Lys Thr Leu Glu Glu Ser 275 280 28	Ala	Gly	Ala	Val		Val	Asn	Ala	Glu		Ala	Trp	Thr	Ala		Ser	5
Ala Gly Phe Val Met Ala Arg Ser Gln Lys Lys Thr Leu Glu Glu Ser 275 285 Leu Leu Asn Ala Val Ser Tyr Gly Ser Thr Ala Ala Ser Leu Pro Gly 290 295 300 Thr Thr Ile Pro Arg Pro Arg Gln Leu Ala Thr Ala Gly Ala Thr Val 305 310 310 315 320 Thr Gln Val Lys Gly Leu Lys Glo Ser Ala 325 Thr Gln Val Lys Gly Leu Lys Glo Ser Ala 3300 Patentanspriche 1. Isolicres Polynukleotid aus coryneformen Bakterien, enthaltend verlängerte für die 1-Phosphofruktokinase und oder 6-Phosphofruktokinase kodierende Polynukleotidsequenzen, dadurch gekennzeichnet, daß sie jeweils wor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaaren verlängerte nimensäurensequenzen für das 1-Phosphofruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaaren verlängerte nimensäurensequenzen für das 1-Phosphofruktokinase ein SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 and für das 6-Phosphofruktokinase-Gen das 33 bew. 1684 bis 2234 und in SEQ ID No. 1 aus den Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase-Gen das sen das 6-Phosphofruktokinase-Gen das 6-Phosphofruktokinase-Gen des 6-Phosphofruktokinase-Gen des 6-Phosphofruktokinase-Gen des 6-Phosphofruktokinase-Gen des 6-Phosphofruktokinase-Gen des 6-Phosphofruktokinase-Gen des 6-Phosphofr	Pro	Lys	Ile		Val	Val	Ser	Thr		Gly	Ala	Gly	Asp		Ala	Leu	10
Thr Thr IIe Pro Arg Pro Asp Gln Leu Ala Thr Ala Gly Ala Thr Val 305 310 315 320 Thr Gln Val Lys Gly Leu Lys Glu Ser Ala 325 Patentansprüche 1. Isolierus Polynukleotid aus coryneformen Bakterien, enthaltend verlängerte für die 1-Phosphofruktokinase und/ oder 6-Phosphofruktokinase kodierende Polynukleotidseguenzen. dadurch gekennzeichnet, daß sie jeweils vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ez. 700 Basenpaare verlängert sind. 2. Isolierus Polynukleotid gemäß Anspruch 1, enthaltend eine für die 1-Phosphofruktokinase und/oder 6-Phospho- fruktokinase kodierende Polynukleotidseguenzen, dadurch gekennzeichnet, daß sie jeweils vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ez. 700 Basenpaare verlängert sind, vebei die verlängerten Arminosäte- rensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in Gene Schritten der heimen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwächt. a) Fernentation der die gewünschte L-Aminosäture, produzierenden corynefornen Bakterien, und c) Isolierung der gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäture, webei gegebenenfalls Bestandieile der Fernentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesammtengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweiligen Gens um jeweils 500 bis 800 Basenpaare verlängert sind, 5. Verfahren gemäß Anspruch 3, d	Ala	Gly		Val	Met	Ala	Arg		Gln	Lys	Lys	Thr		Glu	Glu	Ser	
The Gln Val Lys Gly Leu Lys Glu Ser Ala 325 Patentansprüche 1. Isoliertes Polynukleotid aus eoryneformen Bakterien, enthaltend verlängerte für die 1-Phosphofruktokinase und/ oder 6-Phosphofruktokinase kodierende Polynukleotidsequenzen, dadurch gekennzeichnet, daß sie jeweills vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um bis zu ea. 700 Basenpaaren verlängert sind. 2. Isoliertes Polynukleotid gemisß Anspruch 1, enthaltend eine für rie 1-Phosphofruktokinase und/oder 6-Phospho- fruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um bis zu ea. 700 Basenpaare verlängert sind, wobei die verlängerten Aminosäu- rensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen gegenüber den aus dem Stand der Technik bekannten Sequenzen in SEQ ID No. 3 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 331 bzw. 1621 bis 2160 bestehen. 3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man Glogende Schritte durchführt, a) Fernentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase ko- dierende Gen absehwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fernentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Vertahren gemiß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Absehwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gein in SEQ ID No.	Let	Leu 290	Asn	Ala	Val	Ser		Gly	Ser	Thr	Ala		Ser	Leu	Pro	Gly	15
Patentansprüche 1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend verlängerte für die 1-Phosphofruktokinase und/ oder 6-Phosphofruktokinase kodierende Polynukleotidsequenzen, dadurch gekennzeichnet, daß sie jeweils vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um bis zu ea. 700 Basenpaaren verlängert sind 2. Isoliertes Polynukleotid gemäß Anspruch 1, enthaltend eine für die 1-Phosphofruktokinase und/oder 6-Phospho- fruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um bis zu ea. 700 Basenpaare verlängert sind, wobei die verlängerten Amniosäu- rensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen gegenüber den aus dem Stand der Technik bekannten Sequenzen in SEQ ID No. 3 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 331 bzw. 1621 bis 2160 bestehen. 3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schnitte durchführt, a) Fermentation der die gewünschten L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase ko- dierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandieile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Badgrodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängeren Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SE	Thr 305	Thr	Ile	Pro	Arg		Asp	Gln	Leu	Ala	_	Ala	Gly	Ala	Thr		20
1. Isolicrtes Polynukleotid aus coryneformen Bakterien, enthaltend verlängerte für die 1-Phosphofruktokinase und/ oder 6-Phosphofruktokinase kodierende Polynukleotidsequenzen, dadurch gekennzeichnet, daß sie jeweils vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaaren verlängert sind. 2. Isolicrtes Polynukleotid gemäß Anspruch 1, enthaltend eine für die 1-Phosphofruktokinase und/oder 6-Phosphofruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaare verlängert sind, wobei die verlängerten Aminosäurensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen gegenüber den aus dem Stand der Technik bekannten Sequenzen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 desentate verlängert sind. 45 verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man acoryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Starkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaaren verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 gege	Thr	Gln	Val	Lys		Leu	Lys	Glu	Ser								20
1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend ver längerte für die 1-Phosphofruktokinase kodierende Polynukleotidsequenzen, dadurch gekennzeichnet, daß sie jeweils vor dem Starkedon und hinter dem Stopkodon des Gens jeweils um bis zu e.a. 700 Basenpaaren verlängert sind. 2. Isoliertes Polynukleotid gemäß Anspruch 1, enthaltend eine für die 1-Phosphofruktokinase und/doef e-Phosphofruktokinase kodierende Polynukleotidsequenz, Adurben gekennzeichnet, daß sie vor dem Starkedon und hinter dem Stopkodon des Gens jeweils um bis zu e.a. 700 Basenpaaren verlängert sind, wobei die verlängerten Aminosäurensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 3 und sen Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt, a) Termentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca.									Pate	ntansp	rüche						
fruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaare verlängert sind, wobei die verlängerten Aminosäurensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen gegenüber den aus dem Stand der Technik bekannten Sequenzen in SEQ ID No. 3 und sen Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt, a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosynthotkokinase-Gen in SEQ ID No. 3 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch		oder 6 dem Si	-Phosp tartkoc	ohofrul Ion un	ktokin: d hinte	ase ko r dem	dieren Stopk	de Pol odon d	ynukle les Ge	eotidse ns jew	equenz cils un	en, da 1 bis z	durch u ca. 7	geke 00 Ba	nnzeic senpaa	chnet, daß sie jeweils vor aren verlängert sind.	25
in SEQ ID No. 3 aus den Basenpaaren 1 bis 508 bzw. 1624 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 3. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, daß man folgende Schritte durchführt, a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwedung der Polynukleotidsequenzen erzeilt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die kzaptsischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polypukleotide(e) aus SEQ ID No. 3 kodieren. 8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polypukleotide(e) aus SEQ ID No. 1 bzw. SEQ ID No. 3 kodieren. 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet (aß m		2. Isoliertes Polynukleotid gemäß Anspruch 1, enthaltend eine für die 1-Phosphofruktokinase und/oder 6-Phosphofruktokinase kodierende Polynukleotidsequenz, dadurch gekennzeichnet, daß sie vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um bis zu ca. 700 Basenpaare verlängert sind, wobei die verlängerten Aminosäurensequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ													30		
daß man folgende Schritte durchführt, a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des jeweiligen Gens um jeweils 300 bis 800 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen in SEQ ID No. 3 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (c), das (die) für die 6-Phosphofruktokinase und/oder für die 1-Phosphofruktokinase kodiert (en), verringert. 9. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (e), das (die) für die 6-Phosphofruktokinase und/oder für die 1-Phosphofruktokinase kodiert (en), verringert. 1		in SEQ ID No. 3 aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen.													35		
zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abschwächt, b) Anreicherung des gewünschten Produkts im Medium oder in den Zellen der Bakterien, und c) Isolierung der gewünschten L-Aminosäure, wobei gegebenenfalls Bestandteile der Fermentationsbrühe und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des jeweiligen Gens um jeweils 300 bis 800 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 4, daburch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen in SEQ ID No. 3 og gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure versärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringert. 8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polynukleotid(e) aus SEQ ID NO. 1 bzw. SEQ ID No. 3 kod		daß man folgende Schritte durchführt,															
und/oder Biomasse in Anteilen oder in ihren Gesamtmengen im Endprodukt verbleiben. 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des jeweiligen Gens um jeweils 300 bis 800 Basenpaare verlängert sind. 5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen in SEQ ID No. 3 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure versärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern. 8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (e), das (die) für die 6-Phosphofruktokinase undfoder für die 1-Phosphofruktokinase kodier (en), verringert. 9. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polynukleotid(e) aus SEQ ID NO. 1 bzw. SEQ ID No. 3 kodieren. 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin co		zi di b)	uminde erende) Anre	est das e Gen a eicheru	für die abschv ing des	e 6-Pho vächt, s gewü	osphof nschte	ruktok n Proc	inase i	kodier m Med	ende (ien und der in	d/oder den Ze	das fü ellen d	r die 1 er Bak	-Phosphofruktokinase ko- kterien, und	40
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß man coryneforme Bakterien einsetzt, in denen man die Abschwächung unter Verwendung der Polynukleotidsequenzen erzielt, die vor dem Startkodon und hinter dem Stopkodon des Gens jeweils um ca. 700 Basenpaare verlängert sind, wobei die verlängerten Nukleotidsequenzen für das 1-Phosphofruktokinase-Gen in SEQ ID No. 3 und für das 6-Phosphofruktokinase-Gen in SEQ ID No. 1 dargestellt sind und die Verlängerungen in SEQ ID No. 3 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 508 bzw. 1684 bis 2234 und in SEQ ID No. 1 gegenüber der aus dem Stand der Technik bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern. 8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (c), das (die) für die 6-Phosphofruktokinase und/oder für die 1-Phosphofruktokinase kodiert (en), verringert. 9. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polynukleotid(e) aus SEQ ID NO. 1 bzw. SEQ ID No. 3 kodieren. 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe 10.1 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 10.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 10.3 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,		ui 4. Ver die Λb	nd/ode fahren schwä	r Bion gemä	nasse i ß Ansp unter	n Ante oruch 3 Verwe	ilen oo 3, dadu ndung	der in i irch ge der Po	ihren (kennz olynuk	Jesam eichne leotids	tmenget, daß sequen	en im im im im iman contraction in the contraction	Endpro orynef zielt, d	odukt forme l lie vor	verblei Bakter dem S	iben. ien einsetzt, in denen man	45
bekannten Sequenz aus den Basenpaaren 1 bis 531 bzw. 1621 bis 2160 bestehen. 6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt. 7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern. 8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (e), das (die) für die 6-Phosphofruktokinase und/oder für die 1-Phosphofruktokinase kodiert (en), verringert. 9. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polynukleotid(e) aus SEQ ID NO. 1 bzw. SEQ ID No. 3 kodieren. 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe 10.1 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 10.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 10.3 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,		5. Ver die Ab Stopko für das gestell	fahren schwä odon d 1-Pho t sind i	gemällichung es Ger esphofi und die	ß Anspunterns jeweruktok	oruch 4 Verwe eils un inase-6 ngerur	I, dadung ndung n ca. 7 Gen in ngen in	der Po 00 Bas SEQ I SEQ I	kennz olynuk senpaa D No. ID No.	eichne leotids are ver 3 und 3 geg	et, daß sequen länger für da enüber	man cozen er sind, s 6-Phor der au	orynef zielt, d wobei osphof us dem	orme lie vor die v die v ruktole Stand	Bakter dem S erläng kinase- der Te	Startkodon und hinter dem erten Nukleotidsequenzen Gen in SEQ ID No. 1 dar-echnik bekannten Sequenz	50
8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die Expression des (der)Polynukleotides (e), das (die) für die 6-Phosphofruktokinase und/oder für die 1-Phosphofruktokinase kodiert (en), verringert. 9. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man die katalytischen Eigenschaften des (der) Polypeptid(s)e (Enzymprotein(s)e) verringert, für das das (die) Polynukleotid(e) aus SEQ ID NO. 1 bzw. SEQ ID No. 3 kodieren. 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe 10.1 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 10.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 10.3 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,		bekann 6. Ver weitere 7. Ver	nten Se fahren e Geno fahren	equenz gemä des B gemä	aus de Bans Bans Bans Bans	en Bas pruch hesew pruch (enpaai 3, dad eges d 3, dadu	en 1 b urch g er gew irch ge	is 531 ekenn ünsch ekennz	bzw. 1 zeichn ten L- eichne	1621 bet, das Aminc et, daß	is 2160 3 man säure man E	() beste Bakte verstär lakteri	chen. rien ei kt. en ein:	nsetzt setzt, i	, in denen man zusätzlich n denen die Stoffwechsel-	55
10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe 10.1 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 65 10.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 10.3 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,	,	8. Ver das (di 9. Ver peptido	fahren e) für fahren (s)e (E	gemä die 6-1 gemä	B Ansj Phosph B Ansp	pruch ofrukt oruch 3	3, dad okinas 3, dadu	urch g se und/ rch ge	ekenn: 'oder f kennze	zeichn ür die eichne	et, daß 1-Phos t, daß	man sphofr nan di	die Ex uktoki e katal	pressionase ko ytisch	on des odiert en Eig	(der)Polynukleotides (e), (en), verringert. enschaften des (der) Poly-	60
IVA (IAN III) UIC I VIUVALA AIDOXVIANE KONIECEIDE UTEN OVO		 10. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man für die Herstellung von L-Lysin coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe 10.1 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 6 10.2 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 10.3 das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap, 												65			

5

10

15

20

25

30

35

40

45

50

55

60

65

DE 101 12 992 A 1

- 10.5 das für die Malat: Chinon Oxidoreduktase kodierende Gen mgo,
- 10.6 das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf,
- 10.7 gleichzeitig das für den Lysin-Export kodierende Gen lysE,
- 10.8 das für das Zwal-Protein kodierende Gen zwal
- 10.9 das für die Triosephosphat Isomerase kodierende Gen tpi, und
- 10.10 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk, verstärkt insbesondere überexprimiert.
- 11. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 11.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende pck-Gen,
 - 11.2 das für die Glucose-6-Phosphat Isomerase kodierende pgi-Gen
 - 11.3 das für die Pyruvat-Oxidase kodierende Gen poxß,
 - 11.4 das für die Fruktose-Bisphosphat Aldolase kodierende Gen fda oder
- 11.5 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 12. Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 13. Coryneforme Bakterien, in denen zumindest das für die 6-Phosphofruktokinase kodierende Gen und/oder das für die 1-Phosphofruktokinase kodierende Gen abgeschwächt vorliegt.