Branch: main 2024-01-21 17:01:07+01:00

Subgroups

Domenico Zambella

Let \mathcal{U} be a monster model. We confuse formulas $\varphi(x) \in L(\mathcal{U})$ with the subset of $\mathcal{U}^{|x|}$ that they define. If $\mathcal{D} = \varphi(\mathcal{U})$, we may write $x \in \mathcal{D}$ for $\varphi(x)$. Unless stated otherwise, calligraphic capital letters denote definable sets (with parameters). If $p \in S_x(\mathcal{U})$ we write $p \in \mathcal{D}$ for $p(x) \to x \in \mathcal{D}$.

Let κ be the cardinality of \mathcal{U} . For $\mu(x) \subseteq L(\mathcal{U})$ we denote by 1_{μ} the filter generated by $\{\varphi(\mathcal{U}) : \varphi(x) \in \mu\}$. We write 0_{μ} for the corresponding ideal, the ideal generated by $\{\neg \varphi(\mathcal{U}) : \varphi(x) \in \mu\}$.

We say that μ is κ -prime if for every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ of definable sets such that $\mathcal{D}_i \cup \mathcal{D}_j \in 1_{\mu}$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 1_{\mu}$. The dual version of this property sounds: for every sequence $\langle \mathcal{D}_i : i < \kappa \rangle$ of definable sets such that $\mathcal{D}_i \cap \mathcal{D}_j \in 0_{\mu}$ for every $i < j < \kappa$, there is an $i < \kappa$ such that $\mathcal{D}_i \in 0_{\mu}$.

Example 1. Assume there is a finitely additive probability measure on the definable subsets of and let μ be the set of formulas of measure 1. Then μ is κ -prime.

Proof. ??? Assume for a contradiction that the sets $\langle \mathcal{D}_i : i < \kappa \rangle$ have positive measure but that $\mathcal{D}_i \cap \mathcal{D}_j$ has measure 0 for every $i < j < \kappa$. We can assume that for some $\varepsilon > 0$ all sets have measure $< 1 - \varepsilon$. Up to a set measure 0, the sets \mathcal{D}_i are pairwise disjoint and \mathcal{D}_i contains $\neg \mathcal{D}_j$ for every $j \neq i$. This is clearly a contradiction.

We say that μ is S1 if for every A-indiscernible sequence $\langle \mathcal{D}_i : i < \omega \rangle$

$$\mathcal{D}_0 \cup \mathcal{D}_1 \in \mu \implies \mathcal{D}_0 \in \mu$$
.

The terminology originated in some obscure corner of Hrushovski's mind.

Fact 2. For any A-invariant filter μ the following are equivalent

- 1. μ is κ -prime;
- 2. μ is S1.

Proof. ...

Example 3. Let
$$1_{\mu} = \{ \mathfrak{X} \subseteq \mathcal{U}^{|x|} : A^{|x|} \subseteq \mathfrak{X} \}$$
. Then μ is S1.

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in \mu$, where $\mathcal{D}_0, \mathcal{D}_1$ start a sequence of *A*-indiscernibles. Then $a \in \mathcal{D}_0 \cup \mathcal{D}_1$ for every $a \in A^{|x|}$. By indiscernibility, $a \in \mathcal{D}_0$ holds for every $a \in A^{|x|}$. Hence $\mathcal{D}_0 \in \mu$.

Example 4. Let $\mu = \{ \mathcal{D} \subseteq \mathcal{U}^{|x|} : p \in \mathcal{D} \text{ for every } A\text{-invariant } p \in S_x(\mathcal{U}) \}$. Then μ is κ -prime.

Proof. Assume $\mathcal{D}_0 \cup \mathcal{D}_1 \in \mu$, where $\mathcal{D}_0, \mathcal{D}_1$ are conjugate over A. By invariance $p \in \mathcal{D}_0$ if and only if $p \in \mathcal{D}_1$. Therefore $\mathcal{D}_0 \in \mu$.

Example 5. We say that \mathcal{D} is A-generic if finitely many A-translates of \mathcal{D} cover $\mathcal{U}^{|x|}$. Then the filter generated by the A-generic definable sets is the filter μ in Example 4.

Proof. It is easy to see that if \mathbb{D} is A-generic then $\mathbb{D} \in \mu$. Vice versa, assume that there are no A-generic sets \mathbb{B}_i such that

$$\bigcap_{i=1}^{n} \mathcal{B}_{i} \subseteq \mathcal{D}$$

By taking complements, for any C_i such that

$$\neg \mathcal{D} \subseteq \bigcup_{i=1}^{n} \mathcal{C}_{i}$$

there is at least one i such that the A-orbit of \mathcal{C}_i has the finite intersection property. By a standard argument we obtain that there is an A-invariant type $p \in \mathcal{D}$. Therefore $\mathcal{D} \notin \mu$

Proof. Let $\langle \mathcal{D}_i : i < \kappa \rangle$ be a sequence of definable sets such that $\mathcal{D}_i \cup \mathcal{D}_j \in \mu$ for every $i < j < \kappa$

Definition 6. Let $p(x) \subseteq L(\mathcal{U})$. If $\mu(x) \cup p(x)$ is finitely consistent, then we say that p(x) is wide.

Example 7. If μ is as in Example 3 then the following are equivalent

- 1. p(x) is wide;
- 2. p(x) is finitely satisfied in B.

Proof. $(1\Rightarrow 2)$ If $\varphi(x)$ is not finitely satisfiable in B, then $\neg \varphi(x)$ is in μ and p(x) is not consistent with $\mu(x)$. $(2\Rightarrow 1)$ If $p(x) \rightarrow \neg \varphi(x)$ for some $\varphi(x) \in \mu$, ten p(x) is not finitely satisfied in B.

SUBGROUPS 3

Theorem 8. Let $p(x;z), q(x;z) \subseteq L(A)$. Let μ be a k-prime and A-invariant. Then $R(a,b) \quad \Leftrightarrow \quad p(x;a) \cup q(x;b) \text{ is wide}$ is a stable relation.

Proof. Let $\langle a_i, b_i : i < \omega \rangle$ be a sequence of *A*-indiscernibles such that $p(x; a_0) \cup q(x; b_1)$ is wide. By κ -primality, also $[p(x; a_0) \cup q(x; b_1)] \cup [p(x; a_2) \cup q(x; b_3)]$ is wide. A fortiori $p(x; a_2) \cup q(x; b_1)$ is wide and, by indiscernibility, so is $p(x; a_1) \cup q(x; b_0)$.

Definition 9. The nonforking filter v is the filter generated by the sets \mathcal{D} such that some $\mathcal{D} = \mathcal{D}_1, \dots, \mathcal{D}_n$ that starts a sequence of indiscernibles cover \mathcal{U} .