(a) total time units (for/while loops)
$$= 1 + (n+1) + n$$

$$T(n) = 2n+2$$

5 total time units (nested loop)
=
$$1 + (n+1)((n+1)+n)$$

outside inside
loop toop
= $(n+1)(2n+4)+1$
 $T(n) = 2n^2+3n+2$

Where i ranges from values I to n. For purposes of calculation we will replace i with n, giving $T(n) = 2n^2 + 3n + 2 \quad \text{and} \quad O(n^2)$

= 1+ (logn+1)((n+1)+n)
outside inside

= (logn+1)(2n+1)+1

T(n)= 2 n logn + logn + 2n +.2 using coefficient rule and sum rule O(n logn)

(8) a) $C_1 \Omega \ge \frac{1}{2}C_1 \Omega$ for all values of $C_1 \Omega \le 2C_1 \Omega$ for all values of Ω so $C_1 \Omega = \Omega(n)$

b)
$$C_2 n^3 + C_3 \ge F_n^3$$
 (where $F = C_2 - C_3$)

 $SO C_2 n^3 + C_3 = SI(n^3)$
 $C_2 n^3 + C_3 \le G_1 n^3$ (where $G = C_2 + C_3$)

 $SO C_2 n^3 + C_3 = O(n^3)$

Cyn log
$$n + C_5n \ge F_n|_{Ogn}$$
 (where $F = C_4 - C_5$)

For all $n > 1$

So $C_4n|_{Ogn} + C_5n = \Omega(n|_{Ogn})$

Cyn log $n + C_5n \le G_n|_{Ogn}$ where $G = (C_4 + C_5)$

For all $n > 1$

So $C_4n|_{Ogn} + C_5n = O(n|_{Ogn})$

d)
$$C_6 2^n + C_7 n^6 \ge F_2^n$$
 where $F = C_6 - C_7$
 $50 C_6 2^n + C_7 n^6 = \Omega (2^n)$ for all values of n
 $C_6 2^n + C_7 n^6 \le G_2^n$ where $G = (C_6 + C_7)$
 $C_6 2^n + C_7 n^6 = O(2^n)$ for all values of n

$$\frac{(9)}{n \Rightarrow \infty} \frac{1}{g(n)}$$

$$\frac{(m)}{n \Rightarrow \infty} \frac{(og n^2)}{(og n + 5)} = 2$$

f(n) grows at
the same rate
as g(n)

f(n) is O(g(n))

b)
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 $\lim_{n\to\infty} \frac{f(n)}{\log n^2} = \infty$
 $\lim_{n\to\infty} \frac{f(n)}{\log n^2} = \infty$
 $\lim_{n\to\infty} \frac{f(n)}{\log n} = \infty$

f)
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$
 $\lim_{n\to\infty} \frac{f(n)}{\log^2(n)} = 0$
 $\lim_{n\to\infty} \frac{\log(n^2)}{\log^2(n)} = 0$
 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$
 $\lim_{n\to\infty} \frac{g(n)}{f(n)}$
 $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$
 $\lim_{n\to\infty} \frac{f(n)}{f(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{f(n)} = 0$
 $\lim_{n\to\infty} \frac{f(n)}{f(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{f(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$
 $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

 $\frac{1}{n > \infty} \frac{f(n)}{g(n)}$ $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

1/M 200 2 = 0

f(n) grows at
the same rate or
slower than g(n)
f(n) is O(g(n))

1
