Assignment 6: Several variables calculus & differential geometry (MTH305A) Bidyut Sanki

(1) Calculate the torsion of the curve $\alpha: \mathbb{R} \to \mathbb{R}^3$ defined by

$$\alpha(t) = \left(\frac{1}{\sqrt{3}}\cos t + \frac{1}{\sqrt{2}}\sin t, \frac{1}{\sqrt{3}}\cos t, \frac{1}{\sqrt{3}}\cos t - \frac{1}{\sqrt{2}}\sin t\right).$$

(2) Consider the space curve $\alpha: \mathbb{R} \to \mathbb{R}^3$, defined by

$$\alpha(t) = (3t - t^3, 3t^2, 3t + t^3).$$

- (a) Compute curvature and torsion of the curve α
- (b) Show that there exists a unit vector $A \in \mathbb{R}^3$, such that the tangent vectors T(t) make a constant angle with A. Find such a vector and compute the fixed angle for A
- (3) Let α be a unit-speed curve with non-vanishing curvature $\kappa(s)$.
 - (a) If the tangent vector T(s) to the curve α make a constant angle with a fixed unit vector, show that $\frac{\tau(s)}{\kappa(s)}$ is a constant, where $\tau(s)$ is the torsion of the curve α .
 - (b) If $\frac{\tau(s)}{\kappa(s)}$ is constant, where $\tau(s)$ is the torsion of α , then show that the tangent vectors T(s) to the curve α make a constant angle with a fixed unit vector.
- (4) Compute curvature of $\gamma(t) = (\cos^3 t, \sin^3 t)$.
- (5) Consider the circular helix

$$\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta),$$

where a, b are constants not both zero. Compute curvature of γ .

- (6) Show that $\gamma(s) = \left(x_0 + R\cos\frac{s}{R}, y_0 + R\sin\frac{s}{R}\right)$ is unit-speed curve. Compute the curvature of γ .
- (7) Let $\gamma(t) = ((1 + a\cos t)\cos t, (1 + a\cos t)\sin t)$, where a is a constant. Show that

1

- (a) γ is a simple closed curve if |a| < 1.
- (b) For |a| > 1, γ is not a simple closed curve.
- (c) What if, |a| = 1?

- (8) Let $\gamma:[a,b]\to\mathbb{R}^2$ be a simple closed curve and $M:\mathbb{R}^2\to\mathbb{R}^2$ be an isometry. Show that
 - (a) $\operatorname{lenght}(\gamma) = \operatorname{length}(M \circ \gamma)$ and
 - (b) $\operatorname{area}(\gamma) = \operatorname{area}(M \circ \gamma)$.