Disciplina: Matemática Especial

Profs.: Eduardo Negri, Alexandre Fernandes, Victor D'Ávila

Tema 7 - Pandas, Matplotlib e Seaborn

A utilização conjunta das bibliotecas **Pandas**, **Matplotlib**, e **Seaborn** (http://seaborn.pydata.org/tutorial.html) potencializam a análise e visualizam dos do conjunto de dados contidos nos DataFrames.

Nessa secção iremos retornar ao projeto SIMCOSTA (http://www.simcosta.furg.br/home), visto no **Tema 5**, para compreender um pouco melhor e exercitar as ferramentas disponíveis nessas três bibliotecas.

Basicamente, vamos apreender como:

- combinar dataframes,
- realizar estatística básica de correlação cruzada,
- plotar os resultados.

7.1 Combinando Dataframes

Os objetos **Series** e **DataFrame** são ferramentas poderosas para explorar e analisar dados. Parte dessa capacidade vem de uma abordagem multifacetada para combinar conjuntos de dados isolados.

Com o **Pandas**, você pode mesclar (*merge*), juntar (*join*) e concatenar (*concatenate*) conjuntos de dados, permitindo unificar e entender melhor os dados à medida que são analisados.

Há três formas disponíveis para combinar dados no **Pandas**:

- merge () para combinar dados em colunas ou índices comuns
- .join () para combinar dados em uma coluna-chave ou índice
- concat () para combinar DataFrames em linhas ou colunas

Uma visão completa para utilização dessas funcionalidades do Pandas pode ser obtida no *site*: https://pandas.pydata.org/pandas-docs/stable/user-quide/merging.html

Aqui vamos tecer algumas considerações sobre a função **concat ()**, uma vez que iremos utilizá-la em nosso programa do projeto *SimCosta*.

A sintax da função *concat()* está descrita abaixo, observe que há várias *keywords* que poderão ser utilizadas, por exemplo: *axis* e *join*.

Os exemplos abaixo foram coletados do *site*: https://pandas.pydata.org/pandas-docs/stable/user-guide/merging.html

Uma concatenação simples dos DataFrames utilizando a *keyword axis=0* pode ser observada abaixo. Nesse caso, o alinhamento se dá pela sobreposição das linhas, uma vez que **axis=0** diz respeito às linhas. Note que as colunas dos DataFrames (df1, df2 e df3) tem o mesmo nome: A, B, C e D.

		df1			pd.concat([df1,df2,df3], axis=0)									
	Α	В	С	D	_									
0	A0	В0	co	D0		Α	В	С	D					
1	A1	B1	C1	D1	0	A0	B0	ω	D0					
2	A2	B2	C2	D2	1	A1	B1	CI	D1					
3	A3	В3	C3	D3	2	A2	B2	(2	D2					
		df2			_									
A B C D					3	A3	B3	СЗ	D3					
4	A4	B4	C4	D4	4	A4	B4	C4	D4					
5	A5	B5	C5	D5	5	A5	B5	C5	D5					
6	Аб	B6	C6	D6	6	A6	B6	C6	D6					
7	A7	B7	C7	D7	7	A7	B7	C7	D7					
		df3												
	Α	В	С	D	8	A8	B8	C8	DB					
8	A8	B8	C8	DB	9	A9	B9	C9	D9					
9	A9	B9	C9	D9	10	A10	B10	C10	D10					
10	A10	B10	C10	D10	11	A11	B11	C11	D11					
11	A11	B11	C11	D11						1				

A seguir fazemos uso das *keywords axis* e *join* para realizar a concatenação. Observe que escolhendo o *axis=1* e *join='outer'*, houve um alinhamento das colunas dos dataframes, uma vez que estamos utilizando o *axis=1*. Onde não houve correspondência entre os índices dos DataFrames, os valores foram preenchidos com **NaN**, ou seja, com *join='outer'* nenhuma linha é descartada.

		df1			df4					pd.concat([df1,df4], axis=1, join='outer								
										Α	В	С	D	В	D	F		
	Α	В	С	D		В	D	F	0	A0	В0	œ	D0	NaN	NaN	NaN		
0	A0	B0	co	D0	2	B2	D2	F2	1	Al	B1	Cl	D1	NaN	NaN	NaN		
1	A1	B1	CI	D1	3	В3	D3	F3	2	A2	B2	C2	D2	B2	D2	F2		
2	A2	B2	C2	D2	6	B6	D6	F6	3	A3	В3	СЗ	D3	В3	D3	F3		
3	A3	В3	C3	D3	7	B7	D7	F7	6	NaN	NaN	NaN	NaN	B6	D6	F6		
									7	NaN	NaN	NaN	NaN	B7	D7	F7		

A concatenação realizada no exemplo abaixo, é igual a anterior, porém agora com a keyword *join='inner'*. Note que houve um alinhamento das colunas do dataframes levando em consideração os índices, porém agora foram

descartadas as linhas onde os índices não tiveram correspondência entre os DatasFrames.

			df1			df4					pd.concat([df1,df4], axis=1, join='inner')								
		A B C D				B D F			•										
	0	A0	BO	α	D0	(2	B2	D2	F2		Α	В	С	D	В	D	F		
Ī	1	Al	B1	CI	D1	(3)	B3	D3	F3	2	A2	B2	Q	D2	B2	D2	F2		
Ī	2	A2	B2	Q	D2	6	B6	D6	F6	3	A3	В3	З	D3	B3	D3	F3		
Ī	3	A3	B3	З	D3	7	B7	D7	F7									,	

(abaixo DataFrames para a prática do exposto acima)

Execute

7.2 Status Atual do Nosso Código (SIMCOSTA)

Nesse momento, o nosso programa deve estar como apresentado no código abaixo. Observe que:

- dessa vez vamos trabalhar com a boia RJ-4 (Boia Axys)
- utilizaremos os parâmetros Oceanográficos e Meteorológicos contidos nos arquivos .csv

```
SIMCOSTA_RJ-4_OCEAN_2017-08-28_2020-11-16.csv
SIMCOSTA_RJ-4_MET_2017-08-28_2020-11-16.csv
```

- não removeremos as linhas que estão marcadas com nan (deixaremos o Pandas lidar com essa condição).
- Os dados plotados tiveram reamostragem diária.

```
import pandas as pd
import numpy as np
import copy
import matplotlib.pyplot as plt
diretorio = 'C:/Negri/UERJ-AULAS/UERJ-2013/UERJ -aulas-2013/Aulas-MatematicaEspecial/TURMA 2020.1/'
mydict = dict() #dicionario vazio
'''========== ACESSO PARAMETROS OCEANOGRÁFICOS =========='''
nome_file = 'SIMCOSTA_RJ-4_OCEAN_2017-08-28_2020-11-16.csv'
df = pd.read csv(diretorio+nome file, header=34, sep=',')
lista = ['YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', 'SECOND',
         'Hsig','Hmax','Avg_W_Tmp1','Avg_W_Tmp2','Avg_Sal']
dfocean = copy.deepcopy(df[lista]) # subset DataFrame
dfocean['Avg Sal'].values[dfocean['Avg Sal'] < 30.0] = np.nan</pre>
dfocean.interpolate(method='linear', limit=7, inplace=True) # interpola
# recorde das colunas
df_recorte = dfocean.loc[:,['YEAR','MONTH','DAY','HOUR','MINUTE','SECOND']]
# indice formato timestamp (datetime)
dfocean.index = pd.to_datetime(df_recorte)
# remover as colunas
dfocean.drop(['YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', 'SECOND'],
             axis=1, inplace=True)
mydict['dfocean'] = dfocean.copy() # armazero no dicionario
'''========== ACESSO PARAMETROS METEOROLOGICOS =========='''
nome_file = 'SIMCOSTA_RJ-4_MET_2017-08-28_2020-11-16.csv'
df = pd.read_csv(diretorio+nome_file, header=21, sep=',')
lista = ['YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', 'SECOND',
         'Avg_Air_Press','Avg_Air_Tmp','Avg_Hmt','Avg_Wnd_Sp',
         'Avg_Wnd_Dir_N', 'Avg_Sol_Rad']
dfmeteo = copy.deepcopy(df[lista]) # subset DataFrame
# verificar se há outras pendências, por exemplo, 'None'
print (dfmeteo[dfmeteo.values == 'None'])
dfmeteo['Avg_Wnd_Dir_N'].replace('None', np.nan, inplace=True)
print (dfmeteo.dtypes) # verifica os tipos dos dados
#transforma para float
dfmeteo['Avg Wnd Dir N']=dfmeteo['Avg Wnd Dir N'].astype(float)
dfmeteo.interpolate(method='linear', limit=7, inplace=True) # interpola
```

```
# recorde das colunas
df_recorte = dfmeteo.loc[:,['YEAR','MONTH','DAY','HOUR','MINUTE','SECOND']]
# indice formato timestamp (datetime)
dfmeteo.index = pd.to datetime(df recorte)
# remover as colunas
dfmeteo.drop(['YEAR','MONTH','DAY','HOUR','MINUTE','SECOND'],
             axis=1, inplace=True)
mydict['dfmeteo'] = dfmeteo.copy() # armazero o dataframe no dicionario
# plotagem dos dataframes: dfocean e dfmeteo
for i in mydict.keys():
   df = mydict[i]
   nlinhas, ncolunas = 5, 1
   if i == 'dfmeteo': nlinhas, ncolunas = 6, 1
   fig, axes = plt.subplots(nlinhas, ncolunas, figsize=(11, 10), sharex=True)
   parametros = df.columns
   tit_graficos = df.columns
   for param, titulo, ax in zip(parametros,tit_graficos,axes):
       ax.plot(df[param], marker='.', markersize=3, color='0.8',
               linestyle='None', label='Nativo')
       ax.plot(df[param].resample(rule='D').mean(), color='blue',
               linewidth=2, label='Diário')
       ax.set_title(titulo)
   plt.legend()
                                                      PARÂMETROS METEOROLÓGICOS
              PARÂMETROS OCEANOGRÁFICOS
```


Como é possível observar nas figuras acima, temos os dados oceanográficos e meteorológicos. Nosso objetivo agora é concatenar esses dois

conjuntos de dados em um único DataFrame e realizar as operações estatísticas e plotar as informações.

Para **concatenação** dos DataFrames (*dfocean* e *dfmeteo*) faremos uso do método **df.concat()** visto anteriormente.

Observe e execute o código abaixo.

Atenção: o código abaixo é continuação do código acima, portanto, é necessário primeiro executar o código acima para depois continuar com o código abaixo.

```
# OBS: como alterar a visualização dos data frames no console
pd.set_option('max_columns', None) # para mostrar todas as colunas do DataFrame
pd.set_option('max_columns', 10) # para mostrar 10 colunas
pd.reset_option('max_columns') # para voltar a posição default
# primeiro um teste, para visualizar o resultado da concatenação
dfocean s = dfocean.iloc[0:200,0:2].resample(rule='D').mean()
dfmeteo_s = dfmeteo.iloc[0:200,0:2].resample(rule='D').mean()
# preserva as colunas e combina os indices
df = pd.concat([dfocean_s, dfmeteo_s], axis=1)
print (df)
# agora é pra valer!!!
dfocean s = dfocean.resample(rule='D').mean()
dfmeteo_s = dfmeteo.resample(rule='D').mean()
df = pd.concat([dfocean_s, dfmeteo_s], axis=1)
print (df.head)
# plotagem do dataframe resultante da concatenação
fig, axes = plt.subplots(6, 2, figsize=(11, 10), sharex=True)
axes = np.ravel(axes) # lineariza os array com objetos eixos
parametros = df.columns
tit graficos = df.columns
for param, titulo, ax in zip(parametros, tit graficos, axes):
    ax.plot(df[param], color='blue', linewidth=2)
   ax.set_title(titulo)
# rotaciona o label de todos os eixos da figura
# https://stackoverflow.com/questions/10998621/rotate-axis-text-in-python-matplotlib
fig.autofmt xdate(rotation=45)
fig.suptitle('Reamostragem Diária', fontsize=16)
'''========== fim - CONCATENAÇÃO DOS DATAS FRAMES ==========='''
```

gráfico abaixo evidencia os parâmetros meteorológicos oceanográficos, reamostrados com frequência temporal diária, que compõem o dataframe concatenado 'df'.

Reamostragem Diária (Oceanograficos e Meteorologicos)

Agora que temos um único DataFrame com os parâmetros oceanográficos e meteorológicos. Vamos utilizar a biblioteca Seaborn para visualizar as informações.

O Seaborn é uma biblioteca de visualização que fica apoiada na biblioteca mais básica Matplotlib, e pessui funções gráficas eficientes que facilitam a elaboração de figuras e gráficos.

No plotagem do tipo boxplot código abaixo temos uma (https://seaborn.pydata.org/generated/seaborn.boxplot.html).

Execute

import seaborn as sns # plotagem do dataframe resultante da concatenação fig, axes = plt.subplots(6, 2, figsize=(11, 10), sharex=True)

BoxPlot: Amostragem Mensal

No código abaixo, primeiramente utilizamos o método .corr para calcular a correlação cruzada dos parâmetros meteorológicos e oceanográficos presentes no DataFrame.

Em seguida, foi gerado o gráfico heatmap do Seaborn: (https://seaborn.pydata.org/generated/seaborn.heatmap.html)

Observe que *cmap* é uma das *keywords* possíveis de serem utilizadas no comando *sns.heatmap*. Essa keyword permite que façamos escolha **da tabela de cores** que vamos utilizar para plotagem do **heatmap**. O **Seaborn** suporta diversas tabelas de cores:

https://seaborn.pydata.org/tutorial/color_palettes.html https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html

```
'''======== Plotagens Seaborn: Heatmap (Correlação) =========='''
# correlação entre as colunas (crosscorrelation)
# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
df_correl = df.corr(method='spearman')
fig, ax = plt.subplots(figsize=(8,6))
#https://seaborn.pydata.org/generated/seaborn.heatmap.html
shm = sns.heatmap(df_correl, cmap='RdYLGn', # cmpa é referente à tabela de cores (colormap))
                  linewidths=0.5, annot=True, ax=ax,
                  vmin = -1, vmax = 1, center = 0, fmt='.2f',
                  annot_kws={'size':12},
                  cbar_kws={'label': 'Spearman Correlation'})
# poderia mudar a tabela de cores do heatmap para 'cmap='Spectral'
shm.set_xticklabels(shm.get_xticklabels(), rotation = 90, fontsize = 12)
shm.set_yticklabels(shm.get_yticklabels(), rotation = 0, fontsize = 12)
cbar = ax.collections[0].colorbar # seleciona a tabela de cores
cbar.ax.tick_params(labelsize=12) # altera o size dos labels numericos da colorbar
ax.set_title('Titulo do Eixo', fontsize=10)
fig.suptitle('CrossCorrelation (Heatmap) - Titulo da Figura', fontsize=14)
ax.invert yaxis() # inverte o eixo Y
# posso mudar os labels dos eixos X e Y, caso necessário
ax.set xticklabels(np.arange(11))
ax.set_yticklabels(np.arange(11))
'''======== fim - Plotagens Seaborn: Heatmap (Correlação) ==========='''
'''========= Plotagens Seaborn: Heatmap <mark>Masked</mark> (Correlação) ==========='''
# construindo uma máscara (nova plotagem)
fig1, ax1 = plt.subplots(figsize=(8,6))
mask = np.zeros(df_correl.shape, dtype=bool)
mask[np.triu_indices(len(mask))] = True
shm1 = sns.heatmap(df_correl, cmap = 'coolwarm',
                   linewidths=0.5, annot=True, ax=ax1,
```

```
vmin = -1, vmax = 1, center = 0, fmt='0.2f',
                             annot_kws={'size':12},
                             cbar kws={'label': 'Spearman Correlation'},
                             mask = mask)
ax1.invert yaxis() # inverte o eixo Y
plt.tick_params(axis='both', which='major', labelbottom = False, bottom=False,
top = False, labeltop=True)
shm1.set xticklabels(shm1.get xticklabels(), rotation = 90, fontsize = 12)
fig1.suptitle('CrossCorrelation (Heatmap-Masked)', fontsize=14)
plt.tight layout() # fixa apropriadamente a diagramação da figura
#plt.savefig(indir1+'heatmap_correl_', dpi = 300, bbox_inches='tight')
'''========= fim Plotagens Seaborn: Heatmap <mark>Masked</mark> (Correlação) ============'''
                            CrossCorrelation (Heatmap)
                                 Titulo do Eixo
                                                                    1.00
  Avg_Sol_Rad --0.28 -0.28 0.03 0.07 -0.34 -0.32 0.35 -0.09 -0.17 -0.21 1.00
Avg Wnd Dir N - 0.01 0.01 -0.07 -0.13 -0.07 -0.16 -0.10 0.38 0.04 1.00 -0.21
  Avg Wnd Sp - 0.12 0.13 -0.02 0.01 0.32 0.09 -0.06 -0.36 1.00 0.04 -0.17
                                                                   0.50
     Avg_Hmt --0.09 -0.09 -0.07 -0.10 -0.39 -0.15 -0.06 1.00 -0.36 0.38 -0.09
                                                                   0.25
  Avg_Air_Tmp --0.46 -0.46 0.42 0.67 -0.39 -0.60 1.00 -0.06 -0.06 -0.10 0.35
 Avg Air Press - 0.38 0.38 0.05 -0.16 0.45 1.00 -0.60 -0.15 0.09 -0.16 -0.32
                                                                   - 0.00
     Avg Sal - 0.10 0.09 -0.24 -0.22 1.00 0.45 -0.39 -0.39 0.32 -0.07 -0.34
                                                                    -0.25
 Avg W Tmp2 --0.10 -0.10 1.00 1.00 -0.22 -0.16 0.67 -0.10 0.01 -0.13 0.07
                                                                    -0.50
  Avg W_Tmp1 - 0.01 0.01 1.00 1.00 -0.24 0.05 0.42 -0.07 -0.02 -0.07 0.03
       Hmax - 1.00 1.00 0.01 -0.10 0.09 0.38 -0.46 -0.09 0.13 0.01 -0.28
                                                                    -0.75
        Hsig - 1.00 | 1.00 | 0.01 | -0.10 | 0.10 | 0.38 | -0.46 | -0.09 | 0.12 | 0.01 | -0.28
                                                                    -1.00
                      Ng_W_Tmp1
                           Wg_W_Tmp2
                               Avg
                                                          Avg_Sol_
                     CrossCorrelation (Heatmap-Masked)
                                                                      1.00
  Avg Sol Rad --0.28 -0.28 0.03 0.07 -0.34 -0.32 0.35 -0.09 -0.17 -0.21
Avg_Wnd_Dir_N - 0.01 0.01 -0.07 -0.13 -0.07 -0.16 -0.10 0.38 0.04
                                                                     - 0.75
  Avg_Wnd_Sp - 0.12  0.13 -0.02  0.01  0.32  0.09 -0.06 -0.36
                                                                     0.50
    Avg_Hmt --0.09 -0.09 -0.07 -0.10 -0.39 -0.15 -0.06
                                                                     0.25
  Avg_Air_Tmp --0.46 -0.46 0.42 0.67 -0.39 -0.60
 Avg Air Press - 0.38 0.38 0.05 -0.16 0.45
                                                                     0.00
     Avg_Sal - 0.10 0.09 -0.24 -0.22
  Avg_W_Tmp2 --0.10 -0.10 1.00
                                                                      -0.50
  Avg_W_Tmp1 - 0.01 0.01
      Hmax - 1.00
```

Outra plotagem interessante do Heatmap com anotações pode ser encontrada nesse *site*: https://seaborn.pvdata.org/examples/spreadsheet heatmap.html

Hsia -

Uma função bastante interessante do Seaborn é a .pairplot (https://seaborn.pydata.org/generated/seaborn.pairplot.html). A invocação mais simples usa o gráfico de dispersão scatterplot() para cada par de variáveis, e gráfico de histograma histplot() para os gráficos marginais ao longo da diagonal.

```
'''=========== Plotagens Seaborn: PairPlot =========='''
# simples plotagem (média semanal)
lista = ['Hsig', 'Avg W Tmp2', 'Avg Sal', 'Avg Wnd Sp']
sns.pairplot(df[lista].resample(rule='W').mean()) # reamostragem semanal
plt.tight_layout()
# separado por mês (média semanal)
dfx = df[lista].resample(rule='W').mean() # reamostragem semanal
dfx['meses'] = dfx.index.month #vamos criar uma coluna com os meses
sns.pairplot(dfx, hue="meses", palette='gist_ncar') #palette='nipy_spectral'
# terceiro (dados diários, porém plota mês a mês)
lista = ['Hsig', 'Avg_W_Tmp2', 'Avg_Sal', 'Avg_Wnd_Sp']
for i in np.arange(1,13): # array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
   dfx = df[df.index.month == i]
   sns.pairplot(dfx[lista])
plt.tight_layout()
'''========= fim - Plotagens Seaborn: PairPlot ========='''
```