Lecture 12: Sampling Distributions & Standard Errors

Chapter 4.1

1/19

Goals for Today

Start Chapter 4: Arguably the most important chapter as it goes to the heart of what statistical inference is. Three important definitions today:

- 1. point estimate
- 2. sampling distribution
- 3. standard error

Point Estimates

Definition 1: Point estimates are functions of a random sample of n observations x_1, \ldots, x_n . They estimate the value of some unknown population parameter.

Ex: the sample mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + \ldots + x_n}{n}$$

is a point estimate of the true population mean μ

Behavior of Point Estimates

Ex: Say we draw a random sample of size n=100 from a large population that is normally distributed with $\mu=5$ and $\sigma=2$.

Two Important Questions:

- 1. Is \overline{x} going to be exactly 5?
- 2. Say we get $\overline{x}=5.025$. If we repeat this procedure: i.e. generate a new sample of size n=100 and compute \overline{x}), will we get $\overline{x}=5.025$?

We need to characterize this random error.

Behavior of Point Estimates

Let's repeat this procedure, say, 1000 times:

 $\begin{array}{ll} \text{1st time} & \text{We get } \overline{x} = 4.831 \\ \text{2nd time} & \text{We get } \overline{x} = 5.104 \\ \text{3rd time} & \text{We get } \overline{x} = 4.965 \end{array}$

1000th time We get $\overline{x} = 4.957$

5/19

Sampling Distribution

This histogram is the 1000 instances of \overline{x} , where each \overline{x} is based on a sample of n = 100. This is the sampling distribution of \overline{x} :

6/19

Sampling Distributions

Definition 2: the sampling distribution is the distribution of point estimates based on samples of fixed size n.

Every instance of a point estimate can be thought of as a draw from the sampling distribution.

If the sampling is representative (unbiased) then the sampling distribution will be centered around the true population parameter (in our case μ).

7/19

Sampling Distributions

We can define the sampling distributions for any point estimate, not just \overline{x} :

- **▶** S
- ▶ the sample median
- ▶ etc

We will only focus on sample means, including the sample proportion $\widehat{\rho}.$

Measure of Spread

What about spread? [4.6, 5.4] contains roughly 95% of the data.

9/19

Standard Errors

Definition 3: The standard error is the standard deviation of the sampling distribution of a point estimate.

It describes the uncertainty/variability associated with the point estimate. In other words, the "typical" error.

Confusing: the standard error is a specific kind of standard deviation.

Standard Error of \overline{x}

Given n independent observations from a population with standard deviation σ , the standard error of the sample mean is

$$SE = \frac{\sigma}{\sqrt{n}}$$

Rule of thumb for independence: You need a simple random sample consisting of less than 10% of the population.

Notice: \sqrt{n} in the denominator: as n increases, SE decreases! This is why sample size matters.

11/19

Back to Histogram

Samples were of size n=100 with $\sigma=2$. We estimated that the SD of the sampling distribution was 0.2. Using the formula:

$$SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{100}} = \frac{2}{10} = 0.2$$

Standard Error of the Sample Mean \overline{x}

Compare 1000 instances of \overline{x} when

$$P = 100. SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{100}} = 0.2$$

$$n = 1000$$
. $SE = \frac{\sigma}{\sqrt{n}} = \frac{2}{\sqrt{1000}} = 0.0632$. Smaller!

Both are "accurate", but the estimates on the right are "more precise."

12 / 10

Repeated Sampling

Popular question: What's up with this "1000" instances? Why would you take 1000 different samples of size n?

Answer: No, in practice you would not sample repeatedly: you do this only once for the largest n possible.

Rather the 1000 instances of \overline{x} is a theoretical exercise to illustrate that \overline{x} 's are random and we characterize its randomness by its sampling distribution and its standard error.

14/19

Standard Error of the Sample Mean

In this example we knew σ ; typically we won't. However, when

- ▶ n > 30
- ▶ the distribution of the population is not strongly skewed

we can use the point estimate of σ . i.e. plug in s in place of σ :

$$SE = \frac{s}{\sqrt{n}}$$

15 / 10

Example

Say in you take a simple random sample of 100 runners in a race and you are interested in their ages:

- ► $\overline{x} = 35.05$
- ► s = 8.97

Assuming that the 100 runners consist of less than 10% of the population, the standard error of \overline{x} is

$$SE = \frac{s}{\sqrt{100}} = \frac{8.97}{10} = 0.897$$

Population Distribution vs Sampling Distribution

17 / 19

Recap

- ▶ Point estimates are based on a sample $x_1, ..., x_n$ and are used to estimate population parameters.
- ► The sampling distribution characterizes the (random) behavior of point estimates.
- The standard deviation of a sampling distribution is the standard error: it quantifies the uncertainty/variability of point estimates.

Next Time

- ► Confidence Intervals
- ▶ When quoting survey results, what does: "the results of this survey are estimated to be accurate within 3.1 percentage points, 19 times out of 20" mean?
- ▶ Big One: Central Limit Theorem

19 / 19