The Proof of Complex Analysis

Wen Songlin pinedog@sina.com

Contents

1	\mathbf{Pre}	eliminaries to Complex Analysis
	1	Complex number and the complex plane
		1.1 Basic properties
		1.2 Convergence
	2	Functions on the complex plane
		2.1 Continuous functions
2	Cau	uchy's Theorem and Its Applications
	1	Goursat's theorem

II CONTENTS

Chapter 1

Preliminaries to Complex Analysis

1 Complex number and the complex plane

1.1 Basic properties

1.2 Convergence

Theorem 1.1. \mathbb{C} , the complex numbers, is complete.

Proof. For a Cauchy sequence of complex numbers $\{z_n\}$, then

$$|z_n - z_m| \to 0$$
 as $n, m \to \infty$.

In other words, given $\epsilon > 0$ there exists an integer N > 0 so that $|z_n - z_m| < \epsilon$ whenever n, m > N. If assuming $z_n = x_n + iy_n, z_m = x_m + iy_m$, so we can get

$$|z_n - z_m| = \sqrt{(x_n - x_m)^2 + (y_n - y_m)^2}.$$

According to Cauchy's convergence theorem: every Cauchy sequence of real numbers converges to a real number. So we can get the Cauchy's convergence theorem of complex numbers. \Box

Theorem 1.2. The set $\Omega \subset \mathbb{C}$ is compact if and only if every sequence $\{z_n\} \subset \Omega$ has a subsequence that converges to a point in Ω .

Proof.

Theorem 1.3. A set Ω is compact if and only if every open covering of Ω has a finite subcovering.

Proof.

Proposition 1.4. if Ω_1

Proof.

2 Functions on the complex plane

2.1 Continuous functions

Theorem 2.1. A continuous function on a compact set Ω is bounded and attains a maximum and minimum on Ω .

Chapter 2

Cauchy's Theorem and Its Applications

1 Goursat's theorem

Theorem 1.1. If Ω is an open set in \mathbb{C} , and $T \subset \Omega$