Heuristics Analysis

For Logistics Planning Problems for an Air Cargo Transport System using a planning search agent

Problems:

This analysis report details out the set of problems in PDDL (Planning Domain Definition Language) for Air Cargo domains and provides experimentation metrics and analysis for various search algorithms.

• Air Cargo Action Schema:

```
Action(Load(c, p, a),

PRECOND: At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)

EFFECT: \neg At(c, a) \land In(c, p))

Action(Unload(c, p, a),

PRECOND: In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)

EFFECT: At(c, a) \land \neg In(c, p))

Action(Fly(p, from, to),

PRECOND: At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)

EFFECT: \neg At(p, from) \land At(p, to))
```

Problem 1 initial state and goal:

```
Init(At(C1, SFO) \( \Lambda \text{ At(P2, JFK)} \)
\( \Lambda \text{ At(P1, SFO)} \( \Lambda \text{ At(P2, JFK)} \)
\( \Lambda \text{ Cargo(C2)} \)
\( \Lambda \text{ Plane(P1)} \( \Lambda \text{ Plane(P2)} \)
\( \Lambda \text{ Airport(JFK)} \( \Lambda \text{ Airport(SFO))} \)

Goal(At(C1, JFK) \( \Lambda \text{ At(C2, SFO))} \)
```

Problem 2 initial state and goal:

```
Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL)

\land At(P1, SFO) \land At(P2, JFK) \land At(P3, ATL)

\land Cargo(C1) \land Cargo(C2) \land Cargo(C3)

\land Plane(P1) \land Plane(P2) \land Plane(P3)

\land Airport(JFK) \land Airport(SFO) \land Airport(ATL))

Goal(At(C1, JFK) \land At(C2, SFO) \land At(C3, SFO))
```

Problem 3 initial state and goal:

```
Init(At(C1, SFO) \land At(C2, JFK) \land At(C3, ATL) \land At(C4, ORD) \land \text{At}(P1, SFO) \land \text{At}(P2, JFK)
\land \text{Cargo}(C1) \land \text{Cargo}(C2) \land \text{Cargo}(C3) \land \text{Cargo}(C4)
\land \text{Plane}(P1) \land \text{Plane}(P2)
\land \text{Airport}(JFK) \land \text{Airport}(SFO) \land \text{Airport}(ATL) \land \text{Airport}(ORD))
\text{Goal}(\text{At}(C1, JFK) \land \text{At}(C3, JFK) \land \text{At}(C2, SFO) \land \text{At}(C4, SFO))
```

Part 1: Planning problems:

The non-heuristics planning was done with below search algorithms and the respective results were shown in the table.

- Bread-First Search
- Depth-First Search
- Uniform-Cost-Search

Experiment Metrics:

Problem	Search Type	Plan Length	Expansion	Goal Tests	Time elapsed (s)	Optimality
P1	breadth_first_search	6	43	56	0.0432	Υ
P1	depth_first_graph_search	12	12	13	0.0133	N
P1	uniform_cost_search	6	55	57	0.0541	Υ
P2	breadth_first_search	9	3343	4609	19.3146	Υ
P2	depth_first_graph_search	575	582	583	4.1984	N
P2	uniform_cost_search	9	4834	4836	17.7042	Υ
Р3	breadth_first_search	12	14663	18098	123.9184	Υ
Р3	depth_first_graph_search	195	3664	3665	20.981	N
Р3	uniform_cost_search	12	18167	18169	67.8777	Υ

Comparison Insights:

- 1. **Time:** The time taken to get to the goal state by Depth-First Search was considerably less than other two searches in all three Problems.
- 2. **Nodes Expanded:** The nodes expanded to get to the goal state by Depth-First Search was considerably less than other two searches in all three Problems.
- **3. Plan Length:** The plan length to get to the goal state by Depth-First Search was considerably more in all problems than other two searches. And also the plan length is exactly same for Breadth-First search and Uniform-First Search in all three problems.

- **4. Optimality:** Looking at the nodes expanded, it is obvious that Depth-First Search is not optimal compared t other two search algorithms.
- **5. Goal Tests:** Looking at the goal test, both Breadth-First Search and Uniform Cost Search take about the same range steps and Depth-First Search is lower than the other two.

Algorithm Analysis:

Breadth-First Search:

- Produces optimal plan but consumes more time and more expansion as the problem complexity increases.
- Reference: Lecture → Lesson 8: Search 15. Breadth-First Search

Depth-First Search:

- Produces higher plan length in less time. As the problem complexity grows, this is not guaranteed to produce optimal results at all.
- Reference: Lecture → Lesson 8: Search 25. Search Comparison

Uniform-First Search:

- Produces optimal plan in terms of time consumption and node expansion but performs not so good as breadth-First search as it keeps expanding even after reaching the goal for cheapest path.
- Reference: Lecture → Lesson 8: Search 21. Uniform Cost Search

Part 2: Domain-Independent Heuristics

The heuristics planning was done with below heuristics functions and the respective results were shown in the table.

- h 1
- h_ignore_preconditions
- h pg levelsum

Experiment Metrics:

Problem	Search Type	Plan Length	Expansion	Goal Tests	Time elapsed (s)	Optimality
P1	astar_search-h_1	6	55	57	0.054	Υ
P1	astar_search-h_ignore_preconditions	6	41	43	0.0401	Υ
P1	astar_search-h_pg_levelsum	6	55	57	1.8947	Υ
P2	astar_search-h_1	9	4834	4836	17.0342	Υ
P2	astar_search-h_ignore_preconditions	9	1450	1452	5.1977	Υ
P2	astar_search-h_pg_levelsum	9	4834	4836	1041.1107	Υ
Р3	astar_search-h_1	12	18167	18169	67.2693	Υ
Р3	astar_search-h_ignore_preconditions	12	5035	5037	19.7384	Υ
Р3	astar_search-h_pg_levelsum	12	388	390	562.5685	Y

Comparison Insights:

1. **Time:** The time taken to get to the goal state by h_ignore_preconditions heuristic was greatly less than other two heuristics.

2. **Nodes Expanded:** The nodes expanded to get to the goal state by h_ignore_preconditions was considerably less than other two heuristics in problem 1 and 2 but pg_lelvel_sum was really low in problem 3 compared to other two heuristics.

3. Plan Length: The plan length to get to the goal state by all three heuristics was exactly the same in three problems.

4. Optimality: Looking at the nodes expanded, it is obvious that all three heuristics are optimal and better than non-heuristics searches.

5. **Goal Tests:** Looking at the goal test, h_ignore_preconditions heuristic was greatly less than other two heuristics in problem 1 and 2 but pg_lelvel_sum heuristics was really low in problem 3 compared to other two heuristics.

P1, P2
$$\rightarrow$$
 h_ignore_preconditions < h_1 = h_pg_levelsum
P3 \rightarrow h_pg_levelsum < h_ignore_preconditions < h_1

Heuristics Analysis:

Heuristic - 1:

- Simple heuristic as it always returns constant 1 as the estimated distance to goal on any given state. Not useful.

Heuristic – ignore precondition:

 Produces best results in terms of time and node expansion as it ignores the preconditions for actions to be executed. Great results as the problem complexity increases.

Heuristic – pg levelsum:

- Takes too much time to execute as it takes all preconditions into consideration and uses planning representation to sum of all actions to the goal state. Execution time exponentially grows as the problem complexity increases.

Part 3: Written Analysis

Below sections explains the best heuristics and the optimal plan obtained from it.

Best Heuristics:

Looking at the time taken to get the goal state and the nodes expanded, we can conclude that the heuristic h_ignore_preconditions is the best heuristics among all heuristics and non-heuristics searches in all three problems. The reasons this heuristic function is better than other two are,

- Time to get to goal is less
- Number of nodes expanded is less (though pg_levelsum takes less nodes but time taken was huge)

In the non-heuristics searches, Breadth-First search shows better results in terms of less time taken to achieve goal, even though Depth-First search was less time but plan length is high in all three problems.

Optimal plan:

Below is the optimal plan described using h_ignore_preconditions heuristics approach for all three problems.

Problem 1 using h_ignore_preconditions:

```
Solving Air Cargo Problem 1 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
41 43 170

Plan length: 6 Time elapsed in seconds: 0.04016264993697405

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)
```

Problem 2 using h_ignore_preconditions:

```
Solving Air Cargo Problem 2 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
1450 1452 13303

Plan length: 9 Time elapsed in seconds: 5.197764916811138

Load(C3, P3, ATL)

Fly(P3, ATL, SFO)

Unload(C3, P3, SFO)

Load(C2, P2, JFK)

Fly(P2, JFK, SFO)

Unload(C2, P2, SFO)

Load(C1, P1, SFO)

Fly(P1, SFO, JFK)

Unload(C1, P1, JFK)
```

Problem 3 using h_ignore_preconditions:

```
Solving Air Cargo Problem 3 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
5035 5037 44722

Plan length: 12 Time elapsed in seconds: 19.738405549898744

Load(C2, P2, JFK)
Fly(P2, JFK, ORD)

Load(C4, P2, ORD)
Fly(P2, ORD, SFO)
Unload(C4, P2, SFO)
Load(C1, P1, SFO)
Fly(P1, SFO, ATL)
Load(C3, P1, ATL)
Fly(P1, ATL, JFK)
Unload(C3, P1, JFK)
Unload(C2, P2, SFO)
Unload(C1, P1, JFK)
```