Market Making via Reinforcement Learning

Thomas Spooner
Department of Computer Science
University of Liverpool
t.spooner@liverpool.ac.uk

Rahul Savani
Department of Computer Science
University of Liverpool
rahul.savani@liverpool.ac.uk

John Fearnley
Department of Computer Science
University of Liverpool
fearnley@liverpool.ac.uk

Andreas Koukorinis Stratagem Technologies Ltd, and University College London andreas@stratagem.co

FD AOT

RL for Market Making

Markov Decision Process (MDP):

State space:

- Agent state: e.g., remaining position
- Environment state: market signals e.g., spread, LOB liquidity, price offsets, volatility

Action space:

- Limit order book levels at which market maker may choose to post liquidity *Transition probabilities* from one state to another under certain action:
 - Transition probabilities are implied by the **simulator**

Reward for taking action a at state 5

- Matched Order PnL + Inventory PnL
- Another version: Matched Order PnL + Inventory PnL max(0, α*Inventory PnL) encourage more spread capture and introduces risk-averse behavior

Objective:

Maximize expected cumulative rewards

Multi-Agent Simulation

Why multi-agent simulation?

- Development and test of new trading strategies (especially reinforcement learning strategies) with the goal of simulating market response to agent's actions
- Controlled trading strategy experiments
- Better understanding of rare events (e.g. flash crashes, market shocks) regulatory applications

Simulation Realism

- Simulation is intended to model counterfactual scenarios
- Needs to be responsive the experimental agent's actions
- Multi-agent simulation useful as it's natural bottom-up approach

- What does it mean to "calibrate" a multi-agent simulator?
 - "Get real paper": simulation with respect to stylized facts
- How to validate/apply simulation results in practice?
- What is multi-agent simulation realism?

NASDAQ Market Simulation, 2007

- Until 1997, tick size \$1/8
- In 1997, changed to \$1/16
- In 2001, changed further changed to \$.01

 Goal of research: understand how tick size reduction impacted the market

Market Model

- Exchange
- Agents:
 - Investors observe the noisy version fundamental price and the market and decide whether to buy/sell (informed) or trade randomly
 - Dealers (market maker) must post liquidity on both sides of the market
 - Variety of strategies
 - Of particular interest are parasitic dealers where liquidity is reposted inside the spread
 - Dealers can learn to make their strategies more profitable

Calibration

Statistical calibration:

- Confirm that stylized facts hold
- Make sure volume distribution in a particular time period historical

Behavioral calibration:

Calibrate dealer strategies to historical data (so that the composition is representative of the market over historical period)

Stock	Date	Time-	MM	Bid	Bid	Ask	Ask
		stamp			vol.		vol.
XYZ	970501	10:02:16	MMM1	14.625	10	15.125	10
					•••		
XYZ	970501	10:04:58	MMM1	14.25	10	15.125	10
XYZ	970501	10:05:00	MMM1	14.25	10	14.75	10

Results

- Price discovery is impeded for smaller tick sizes (i.e. mid price does not track the fundamental)
- Dealers learn parasitic strategies

 The above were confirmed in a variety of agent scenarios – both historical and uncalibrated (period of low and high volatility, etc), proportions of agent with different strategies

Results confirmed by NASDAQ report

Suggestions by authors:

Do NOT use multiagent simulation for price prediction

- Qualitative rather than quantitative use cases are more appropriate
- Multiagent simulation is most appropriate to study macroscopic structural effects