Courbes, repère de Frenet et surfaces définies par balayage

Objectif : Manipulation de courbes et exploitation du repère de FRENET

Exercice 1:

- 1. A partir de la donnée de :
 - ∘ n+1 points de contrôle,
 - o d'un degré d
 - et d'un vecteur nodal de $[t_0, t_1, ..., t_{n+d}]$ (n+d+1 noeuds)

écrivez un programme permettant de tracer la courbe B-Spline non-uniforme (NUBS) correspondante.

- 2. Ecrivez les fonctions qui retournent :
 - la dérivée, calculée par différences finies
 - o la dérivée seconde, calculée par différences finies
 - le repère de Frenet
 - o le rayon de courbure
- 3. Affichez le repère de Frenet pour une valeur t du paramètre de la courbe, faites varier cette valeur interactivement avec les touches + et du clavier.
- 4. Affichez le cercle osculateur en *t*.

- 5. En utilisant le repère de Frenet, afficher la surface obtenue par balayage d'un cercle suivant la courbe.
 - La courbe C(t) décrit le parcours du centre.
 - Le cercle doit être contenu dans le plan défini par la normale et la bi-normale du repère de Frenet.

