力学量算符(作业: 20230408)

- 1. 算符: 作用在一个函数上得出另一个函数的运算符号. 设某种运算把函数 u 变成 v, 用符号表示为 $\hat{F}u = v$;
 - (a) 算符相等: $\hat{F}u = \hat{G}u \Rightarrow \hat{F} = \hat{G}$;
 - (b) 算符的性质参考半群的性质或矩阵的性质;
 - i. 逆算符: $(\hat{F}\hat{G})^{-1} = \hat{G}^{-1}\hat{F}^{-1}$, 有的算符没有逆算符 (左右逆元 不相等, 需要与群区分);
 - (c) 算符的内积 (标量积): $(u,v) = \langle u|v \rangle = \int u^*vd\tau = (\int uv^*d\tau)^* = (v,u)^*$;
 - i. 算符的内积满足双线性: $\begin{cases} (u, c_1v_1 + c_2v_2) = c_1(u, v_1) + c_2(u, v_2) \\ (c_1u_1 + c_2u_2, v) = c_1^*(u_1, v) + c_2^*(u_2, v) \end{cases}$
 - (d) 复共轭算符: *Ŷ**;
 - i. $(\hat{F}\hat{G})^* = \hat{F}^*\hat{G}^*$;
 - (e) 转置算符: \hat{F} , 定义为 $\int u^* \hat{F} v d\tau = \int \hat{F} u^* v d\tau$ 或 $(u, \hat{F} v) = (v^*, \hat{F} u^*)$;
 - i. $\frac{\tilde{\partial}}{\partial x} = -\frac{\partial}{\partial x}$;
 - ii. $\widehat{\hat{F}}\widehat{\hat{G}} = \widehat{\hat{G}}\widehat{\hat{F}}$:
 - (f) 厄米共轭算符: \hat{F}^{\dagger} , 定义为 $\int u^* \hat{F} v d\tau = \int (\hat{F}^{\dagger} u)^* v d\tau$ 或 $(u, \hat{F}^{\dagger} v) = (\hat{F} u, v)$;
 - i. $\hat{F}^{\dagger} = \tilde{\hat{F}}^*;$
 - ii. $(\hat{F}\hat{G})^{\dagger} = \hat{G}^{\dagger}\hat{F}^{\dagger}$
 - (g) 线性算符: 若 $\hat{F}(c_1u_1 + c_2u_2) = c_1\hat{F}u_1 + c_2\hat{F}u_2$, 则称 \hat{F} 是线性算符:
- 2. 对易关系判别式: $[\hat{F}, \hat{G}] = \hat{F}\hat{G} \hat{G}\hat{F}$, 算符对易时 $[\hat{F}, \hat{G}] = 0$. 对易关系 没有传递性;
 - (a) 反对易判别式: $\{\hat{F}, \hat{G}\} = \hat{F}\hat{G} + \hat{G}\hat{F} = 0$;
 - i. 波色子算符满足对易关系, 费米子算符满足反对易关系;
- 3. 算符的函数: $F(\hat{A}) = \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} \hat{A}^n$, 或 $F(\hat{A}, \hat{B}) = \sum_{n,m=0}^{\infty} \frac{f^{(n,m)}(0,0)}{n!m!} \hat{A}^n \hat{B}^m$;

- 4. 厄米算符: $\hat{F}^{\dagger} = \hat{F}$;
 - (a) 两个厄米算符的和仍然是一个厄米算符;
 - (b) 厄米算符的幂也是厄米算符;
 - (c) 两个对易算符的积是厄米算符;
- 5. 力学量的算符: 表示力学量算符都是厄米算符(量子力学第二基本假定第一点);
 - (a) 力学量的算符应该满足态叠加原理, 因此必须为一个线性算符;
 - (b) 力学量算符的测量可能值必须是实数, 即期望值也必须是一个实数, 应该满足 < F > = < F > *;
- 6. 厄米算符的性质:
 - (a) 厄米算符的本征值是一个实数;
 - (b) 厄米算符的期望值是一个实数;
 - (c) 一个厄米算符属于不同本征值的本征函数相互正交; 属于同一本征值而线性无关的本征态可以相互正交;
 - i. 简并态的正交归一化常用方法: 施密特正交化;
 - (d) 一个厄米算符的本征函数系是完备的;
 - i. 完备: 任意波函数都可以用这个厄米算符的线性叠加表示;
- 7. 广义统计诠释:
 - (a) 广义统计诠释:
 - i. 离散谱的广义统计诠释: 如果测量一个处于 $\Psi(\vec{r},t)$ 态的粒子的可观测量 \hat{F} , 那么其结果一定是厄米算符 \hat{F} 的本征值中的一个,得到本征函数 ψ_n 对应的本征值 f_n 的概率是 $|c_n(t)|^2$, $c_n(t) = \int \psi_n^*(\vec{r}) \Psi(\vec{r},t) d\tau$. 测量之后, 波函数 $\Psi(\vec{r},t)$ 坍缩到对应的本征态 ψ_n 上;
 - A. 因为 $|c_n(t)|^2$ 具有概率的意义, 所以 $\sum_n |c_n(t)|^2 = 1$;
 - B. \hat{F} 的期望值应该是任何可能本征值与本征值出现概率乘 积的求和: $\langle F \rangle = \sum |c_n|^2 f_n$;

- ii. 连续谱的广义统计诠释: 如果测量一个处于 $\Psi(\vec{r},t)$ 态的粒子的可观测量 \hat{F} , 那么其结果一定是厄米算符 \hat{F} 的本征值中的一个, 得到结果在范围 df 的概率是 $|c(f,t)|^2 df$, $c(f,t) = \int \psi_f^*(\vec{r}) \Psi(\vec{r},t) d\tau$. 测量之后, 波函数 $\Psi(\vec{r},t)$ 坍缩到对应的本征态 ψ_n 上;
 - A. 因为 $|c(t)|^2$ 具有概率的意义, 所以 $\int |c(f,t)|^2 df = 1$;
 - B. \hat{F} 的期望值应该是任何可能本征值与本征值出现概率乘积的求和: $\langle F \rangle = \int f |c(f,t)|^2 df$;
- iii. 对于混合谱: 可以分解为离散谱与连续谱的和;
- 8. 厄米算符之间的对易关系:
 - (a) 若两个厄米算符 \hat{A} 和 \hat{B} 有完备的共同本征波函数系,则 \hat{A} 和 \hat{B} 一 定对易;
 - i. 若两个线性厄米算符 \hat{A} 和 \hat{B} 对易,则它们必有完备的共同本征波函数系;
 - ii. 两个厄米算符 \hat{A} 和 \hat{B} 的对易子 $i\hat{C} = [\hat{A}, \hat{B}]$ 是一个反厄米算符 (满足 $-i\hat{C}^{\dagger} = -i\hat{C}$);
 - A. 如果不对易的厄米算符 \hat{A} 和 \hat{B} 的对易子中有 0, 则它们有部分共同本征函数;
 - (b) 力学量完全集: 确定体系状态的力学量全体;
 - i. 守恒量完全集: 哈密顿量 \hat{H} 不显含时间的情况下, 力学量完全 集称为守恒量完全集;
 - (c) 自由度: 构成完全集的独立力学量的个数;
- 9. 不确定关系: 海森伯不确定关系 $\sigma_A^2 \sigma_B^2 \ge \left(\frac{1}{2i} < [\hat{A}, \hat{B}] > \right)^2$;
 - (a) 不对易的力学量一般有反对易关系 $[\hat{A}, \hat{B}] = ic$, 或 $[\hat{A}, \hat{B}]^{\dagger} = -[\hat{A}, \hat{B}]$;
 - i. 一对不对易算符的客观测量被称为不相容可观测量;
 - (b) 不确定关系也可以写为 $\sigma_A \sigma_B \ge \left| \frac{1}{2i} < [\hat{A}, \hat{B}] > \right|$, 不确定关系的下限被称为最小不确定性;
 - i. 坐标与动量满足 $[x, p_x] = i\overline{h}$, 即 $\sigma_x \sigma_{p_x} \geq \frac{\overline{h}}{2}$;
 - ii. 能量与时间也满足 $[\Delta E, \Delta t] = i\overline{h}$;

- (c) 对于不对易的 \hat{A} 和 $\hat{B}([\hat{A},\hat{B}] \neq 0)$, 无法同时唯一严格地确定它们的本征值;
- 10. 坐标算符: 坐标算符 \hat{x} 的本征值是 $\psi_{x'}(x) = \delta(x x')$;
- 11. 动量算符: 动量算符 $\hat{p_x}$ 的本征态是平面波 $\psi(x) = \frac{1}{\sqrt{2\pi\hbar}}e^{\frac{i}{\hbar}p_xx}$, 本征值是 p_x ;
- 12. 角动量算符: 轨道角动量算符 $\hat{\vec{L}}=\hat{\vec{r}}\times\hat{\vec{p}}$, 轨道角动量力学量的完全集 $\{H,L^2,L_z\}$;
 - (a) 角动量的分量彼此简并, 但是 $[\hat{L}^2, \hat{L}_x] = [\hat{L}^2, \hat{L}_y] = [\hat{L}^2, \hat{L}_z] = 0$;
 - (b) 球坐标下的分量:
 - i. 角动量的平方算符: $\hat{L}^2 = -\bar{h} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} \right]$;
 - ii. 角动量的 z 分量算符: $\hat{L}_z = -i\bar{h}\frac{\partial}{\partial \omega}$;
 - iii. 共同的本征函数: 球谐函数 $Y_{lm}(\theta,\varphi)=N_{lm}P_l^m(\cos\theta)e^{im\varphi}$, 其中 $N_{lm}=(-1)^m\sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}}$, 当 m<0 时, $(-1)^m$ 项取为 1;
 - A. 勒让德多项式: $P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 1)^l$;
 - B. 连带勒让德多项式: $P_m^l(x) = \sqrt{1 x^2}^m \frac{d^m}{dx^m} P_l(x)$;
 - C. 球谐函数的正交归一性: $\int_{-1}^{1} P_{l}^{|m|}(\xi) P_{l'}^{|m|}(\xi) d\xi = \frac{(l+|m|)!}{(l-|m|)!} \frac{2}{2l+1} \delta_{ll'}$;
 - (c) 角动量升降阶算符: $\hat{L}_{\pm} = \hat{L}_x \pm i\hat{L}_y$;
 - (d) 如果 Y 是 \hat{L}^2 和 \hat{L}_z 的共同本征函数, 那么 $\hat{L}_{\pm}Y$ 一定是 \hat{L}^2 和 \hat{L}_z 的共同本征函数;
 - i. $L^2Y_{lm}=l(l+1)\overline{h}^2Y_{lm}, L_zY_{lm}=m\overline{h}Y_{lm};$
- 13. 量子力学的几个绘景: 物理上可观测的物理量不会因为采用的绘景不同而改变;
 - (a) 薛定谔绘景: 体系的状态矢量即波函数随时间的演化;
 - i. 波函数遵从薛定谔方程: $i \overline{h} \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \hat{H} \Psi(\vec{r}, t)$;
 - ii. 时间演化算符: $\hat{U}(t)=e^{-i\frac{\hat{\mu}}{\hbar}t}$, 作用在波函数上使之随时间演化;
 - A. 时间演化算符是幺正的: $\hat{U}^{\dagger}(t) = \hat{U}^{-1}(t) = e^{i\frac{\hat{H}}{\hbar}t}$;
 - iii. 波函数的一般解: $\Psi(\vec{r},t)=\sum_n c_n e^{-i\frac{E_n}{\hbar}t}\psi_n(\vec{r})=e^{-i\frac{\hat{H}}{\hbar}t}\Psi(\vec{r},0)=$ $\hat{U}(t)\Psi(\vec{r},0)$ (利用本征方程);

- (b) 海森堡绘景: 波函数并不随时间演化, 体系的状态矢量即算符随时间的演化;
 - i. 力学量的期望值: $\langle F \rangle = \int \Psi^* \hat{F} \Psi d\tau = \int [\hat{U}\Psi]^* \hat{F} \hat{U} \Psi d\tau = \int \Psi^* \hat{U}^{\dagger} \hat{F} \hat{U} \psi = \int \Psi^* \hat{F}(t) \Psi d\tau;$
 - ii. 海森堡运动方程: $\hat{F}(t) = \hat{U}^{\dagger}(t)\hat{F}\hat{U}(t)$, 其时间导数 $\frac{\partial}{\partial t}\hat{F}(t) = \frac{i}{\hbar}[\hat{H},\hat{F}(t)] = \frac{i}{\hbar}\hat{U}^{\dagger}(t)[\hat{H},\hat{F}]\hat{U}(t)$;
- (c) 相互作用绘景: 体系的状态矢量即波函数和算符随时间演化的结果;
 - i. 相互作用的哈密顿量: $\hat{H} = \hat{H}_0 + \hat{H}'$, 其中 \hat{H}_0 不显含时间, \hat{H}' 描述体系与外界的相互作用;
 - ii. 相互作用的波函数: $\Psi(t) = e^{i\frac{\hat{H}_0}{\hbar}t}\Psi(t)$;
 - iii. 相互作用方程: $i\overline{h}\frac{\partial}{\partial t}\Psi(t)=\hat{H}'(t)\Psi(t)$, 其中 $\hat{H}'(t)=e^{i\frac{\hat{H}_0}{\hbar}t}\hat{H}'e^{-i\frac{\hat{H}_0}{\hbar}t}=\hat{U}_0^{\dagger}(t)\hat{H}'\hat{U}_0(t)$;
 - iv. 力学量算符: $\hat{F}(t) = \hat{U}_0^{\dagger}(t)\hat{F}\hat{U}_0(t), \frac{d}{dt}\hat{F}(t) = \frac{i}{\hbar}[\hat{H}_0, \hat{F}(t)];$

14. 力学量的变换:

- (a) 变换是可实现态的条件: 若对态 Ψ 进行变换 $\hat{T}\Psi$, 得到的态 $\hat{T}\Psi$ 可实现的条件是:
 - i. $\hat{T}\Psi$ 满足归一化条件 $\int (\hat{T}\Psi)^*\hat{T}\Psi d\tau=1$, 即 $\hat{T}^\dagger=\hat{T}^{-1}(\hat{T}$ 是幺正变换);
 - ii. 变换满足薛定谔方程: 变换与哈密顿量对易, $\hat{H}\hat{T} = \hat{T}\hat{H}([\hat{H},\hat{T}] = 0)$:
- (b) 守恒量条件: 如果变换 \hat{T} 是厄米算符 ($\hat{T}^{\dagger} = \hat{T}$), 则 \hat{T} 是守恒量;
 - i. 无穷小算子: 如果变换 \hat{T} 不是厄米算符, 则可以有 $\hat{T} = e^{i\epsilon \hat{G}}$, 其中 ϵ 为小的实数, \hat{G} 是厄米算符 (称为变换 \hat{T} 的无穷小算子); A. \hat{G} 也对哈密顿量对易, 因此 \hat{G} 是某种守恒量;
- (c) 常见对称性:
 - i. 动量守恒: 空间平移对称. 动量算符 $\hat{p} = -i\hbar\vec{\nabla}$, 平移算符 $\hat{D}(\delta\vec{r}) = e^{\delta\vec{r}\cdot\frac{\hat{p}}{k}}$;
 - ii. 角动量守恒: 空间旋转对称性. 角动量算符 $\vec{L} = -i \vec{h} \vec{r} \times \vec{\nabla} = \vec{r} \times \vec{p}$, 旋转算符 $\vec{R}(\delta \vec{\varphi}) = e^{\frac{1}{\hbar} \delta \vec{\varphi} \cdot \vec{L}}$;

- iii. 能量守恒: 时间平移对称性. 能量算符 \hat{H} , 时间平移算符 $\hat{D}(\delta t) = e^{\delta t \cdot \hat{H}}$:
- iv. 宇称守恒: 空间反演对称性. 空间反演运算 $\vec{r} \to -\vec{r}$, 宇称算符 $\vec{P}^2\Psi(\vec{r},t)=\vec{P}\Psi(-\vec{r},t)=\Psi(\vec{r},t)$;
- 15. 海尔曼-费曼定理: 设系统的哈密顿量 $\hat{H}(\lambda)$, λ 为某一参量 (如势阱宽度), 则 $\frac{\partial E_n}{\partial \lambda} = \left\langle \frac{\partial \hat{H}}{\partial \lambda} \right\rangle_n = \int \psi_n^* \frac{\partial \hat{H}}{\partial \lambda} \psi_n d\tau$;
- 16. 束缚态的维里定理:由 $\frac{d}{dt} < \hat{A}\hat{B} > = < \hat{A}\frac{d\hat{B}}{dt} > + < \frac{d\hat{A}}{dt}\hat{B} >$, 得 $\left\langle \frac{\vec{p}^2}{2m} \right\rangle_n = <\hat{T}>_n = \frac{1}{2} < \vec{r} \cdot \vec{\nabla} V>_n$;
- 17. 动量表象: $\hat{r} = i \bar{h} \frac{\partial}{\partial \vec{p}}, \hat{H} = \frac{\vec{p}^2}{2m} + V \left(i \bar{h} \frac{\partial}{\partial \vec{p}} \right);$
 - (a) 能量-时间不确定关系: $\Delta E \Delta t \geq \frac{\overline{h}}{2}$;
- 18. 埃伦费斯特定理: 动量算符平均值的时间导数等于作用力的平均值, 即 $m\frac{d^2 < x>}{dt^2} = \frac{d < p_x>}{dt} = < -\frac{\partial V}{\partial x} > = < F_x>$;
 - (a) 虽然埃伦费斯特定理与经典力学方程很相似,但不能认为 < x > = x,即与牛顿第二定律不同;