Math 239 - Lecture 3

Graham Cooper

May 11th, 2015

Combinatoial Proofs

Recal
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

 $\binom{7}{4} = \binom{6}{3} + \binom{6}{4}$
 $= \binom{6}{3} + \binom{5}{3} + \binom{5}{4}$
 $= \binom{6}{3} + \binom{5}{3} + \binom{4}{3} + \binom{3}{3}$

Identity: $\binom{n+k}{n} = \sum_{i=0}^{k} \binom{n+i-1}{n-1}$

Combinatorial proof: Let S be the set of all subsets of [n+k] of size n. So $|S| = \binom{n+k}{n}$.

[IMAGE 1]

For i = 0, k, let S_i be all subsets of [n + k] of size n whose largest element is n+i. Then each element of S_i consists of n+k-i together with:

$$\begin{split} & \left[\left\{ \begin{array}{l} -, -, \dots \\ n-1 s p o t s \end{array} \right] \text{ n spots} \right] \text{ in } \left[n+\mathrm{i}-1\right] \\ & \text{So } \left|S_i\right| = \binom{n+i-1}{n-1} \\ & \text{Since } S = S_0 \cup S_1 \cup \dots \cup S_k \text{ is a disjoint union} \\ & \therefore \left|S\right| = \sum_{i=0}^k \text{ Identity holds.} \end{split}$$

Hockey stick identity with pascal's triangle.

Generating Series

Example: How many subsets of [3] have size k? Let S be all subsets of [3].

Give each element δ of S a weight w where $w(\delta) = |\delta|$ (Related to the counting problem)

Our problem becomes "How many elements of S have weight k?"

δinS	$W(\delta)$	$x^{W(\delta)}$
θ	0	1
{1}	1	X
{2}	1	X
{3}	1	X
$\{1,2\}$	2	x^2
$\{1,3\}$	2	x^2
$\{2,3\}$	2	x^2
$\{1,2,3\}$	3	x^3

For each element δ , contribute $x^{W(\delta)}$ to the "generating series" of S. Sum $3x^2 + x^3 = (1+x)^3$

The coeff of x^k records the answer to our counting problem.

Definition: Given set S where each eleent $\delta \in S$ is given a non-negative integer weight $W(\delta)$, the generating series for S with respect to w is $\Phi_s(x) =$ $\sum_{\delta \in S} x^{w(\delta)}.$

Let a_k be the number of elements in S of weight k.

Then $\Phi_s(x) = \sum_{k \ge 0} a_k x^k$

Example: How many subsets of [n] have size k? Let S be all subsets of [n]. For any $\delta \in S$, define $w(\delta) = |\delta|$

The number of elements in S of weight k is $\binom{n}{k}$: The generating series for S is $\Phi_s(x) = \sum_{k=0} n \binom{n}{k} x^k = (1+x)^n$ The answer is coeff of x^k in $(1+x)^n$

Example: How many ways can we throw 2 6-sided dice to get a sum of k?

Let $S = [6] \times [6]$

For each $(a, b) \in S$, define w(a, b) = a + b.

$$\Phi_s(x) = x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 + 6x^7 + 5x^8 + 4x^9 + 3x^10 + 2x^11 + x^12$$

= $(x + x^2 + x^3 + x^4 + x^5 + x^6)^2$