Matriz de Confusão e Normalização

Matriz de Confusão

Uma matriz de confusão é uma tabela utilizada para descrever a performance de um classificador binário ou multiclasse. Ela mostra quantas vezes cada classe foi prevista corretamente ou incorretamente. A matriz de confusão é composta por quatro elementos principais: verdadeiros positivos (VP), falsos positivos (FP), verdadeiros negativos (VN) e falsos negativos (FN).

		Valores Reais	
		Positivo	Negativo
Valores Preditos	Positivo	Verdadeiros Positivos (VP) Ex.: Modelo previu chuva e choveu	Falsos Positivos (FP) Ex.: Modelo previu chuva mas não choveu
	Negativo	Falsos Negativos (FN) Ex.: Modelo previu sem chuva, mas choveu	Verdadeiros Negativos (VN) Ex.: Modelo previu sem chuva e não choveu

A matriz de confusão é usada para avaliar a precisão de um classificador, pois ela permite calcular métricas como a acurácia, precisão, revocação e F1-score.

A matriz de confusão é preenchida com base nos dados de teste e nas previsões do classificador. O número de VP é o número de instâncias que foram classificadas corretamente como positivas. O número de FP é o número de instâncias que foram classificadas incorretamente como positivas. O número de VN é o número de instâncias que foram classificadas corretamente como negativas. E o número de FN é o número de instâncias que foram classificadas incorretamente como negativas.

ROC / AUC

A curva ROC (Receiver Operating Characteristic) é uma técnica utilizada para avaliar a performance de classificadores binários. Ela permite visualizar a relação entre a taxa de verdadeiros positivos (sensibilidade) e a taxa de falsos positivos para diferentes pontos de corte do classificador (no sigmóide). A área sob a curva (AUC) é utilizada como uma medida de desempenho global do classificador.

A ROC é útil principalmente quando há desequilíbrio entre as classes, onde uma classe é muito menor do que a outra. Nestes casos, a acurácia (proporção de acertos) pode não ser

uma boa medida de desempenho, pois o classificador pode simplesmente rotular todas as instâncias como pertencentes à classe majoritária e ainda assim obter uma alta taxa de acerto. A ROC permite avaliar o desempenho do classificador considerando tanto a sensibilidade quanto a especificidade, o que é mais indicativo do desempenho real do classificador.

A função sigmóide é utilizada para calcular os valores de sensibilidade e especificidade através do processo de escolha de um ponto de corte para a probabilidade de uma instância pertencer à classe positiva. O ponto de corte é escolhido de acordo com a necessidade específica do problema e pode ser variado para obter diferentes pontos na curva ROC.

Uma vez que a saída do classificador é transformada em uma probabilidade através da função sigmóide, o valor é comparado com o ponto de corte escolhido. Se a probabilidade for maior que o ponto de corte, a instância é classificada como pertencente à classe positiva, caso contrário, é classificada como pertencente à classe negativa.

A sensibilidade é calculada como a proporção de verdadeiros positivos (VP) entre o total de positivos reais (VP + FN), enquanto que a especificidade é calculada como a proporção de verdadeiros negativos (VN) entre o total de negativos reais (VN + FP). Esses cálculos são feitos para diferentes pontos de corte do classificador, e o resultado é plotado no gráfico ROC, com a sensibilidade no eixo y e a especificidade no eixo x.

A AUC (Área Sob a Curva) é uma medida de desempenho global do classificador, que varia entre 0 e 1, sendo que quanto maior a AUC, melhor é a performance do classificador. A AUC é calculada como a área sob a curva ROC. Valores próximos a 1 indicam que o classificador é capaz de distinguir com sucesso entre as classes, enquanto valores próximos a 0 indicam que o classificador não é capaz de distinguir entre as classes.

Em resumo, a curva ROC é uma técnica utilizada para avaliar a performance de classificadores binários, permitindo visualizar a relação entre a sensibilidade e a especificidade para diferentes pontos de corte do classificador. A AUC é uma medida global de desempenho, calculada como a área sob a curva ROC, e varia entre 0 e 1, sendo que quanto maior a AUC, melhor é a performance do classificador. A função sigmoide é uma ferramenta comumente utilizada para transformar a saída do classificador em uma probabilidade, e é usada para calcular a sensibilidade e a especificidade necessárias para construir a curva ROC.

Normalização

A normalização de dados é o processo de ajustar os valores de um conjunto de dados para que eles estejam dentro de um determinado intervalo. Isso é comumente feito para preparar os dados para algoritmos de aprendizado de máquina que se beneficiam de uma escala comum.

Existem várias técnicas de normalização, incluindo:

MinMaxScaler: Essa função padroniza os dados entre dois parâmetros estipulados, da seguinte forma:

$$x_{std} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

$$x_{scaled} = x_{std} \times (max - min) + min$$

, onde x é o valor a ser normalizado, x_{min} e x_{max} são os valores mínimo e máximo da determinada coluna do dataset e os valores min e max definem os extremos dos parâmetros estipulados.

StandartScaler: Normaliza os dados a partir da fórmula:

 $Z=rac{x-u}{s}$, onde x é o valor a ser normalizado, u é a média e s o desvio padrão da determinada coluna.

MaxAbsScaler: Normaliza os dados a partir da fórmula:

 $x' = \frac{x}{M}$, onde $x \in X$ é o valor a ser normalizado e X é o valor máximo da determinada coluna.

Normalize: Realiza a normalização de cada linha da matriz (o cálculo é feito, por padrão, linha por linha em vez de coluna por coluna). possui três parâmetros possíveis: '11', '12' ou 'max'.

• L1:
$$z = ||x||_1 = \sum_{i=1}^{n} |x_i|$$

• L2:
$$z = ||x||_i = \sqrt{\sum_{i=1}^n (x_i)^2}$$

• Max: $z = max(x_i)$

• Max:
$$z = max(x)$$

 $x' = \frac{x}{z}$, onde x é o valor a ser normalizado e z é um dos parâmetros acima.