Cálculo I - agr. 4 2021/22

## Resolução - Questão 3 no exame de recurso (Questão 1 no segundo teste)

a) Para calcular os pontos de intersecção dos gráficos de  $y=\frac{x^2}{2}$  e  $y=\frac{1}{1+x^2}$  temos que resolver a equação

$$\frac{x^2}{2} = \frac{1}{1+x^2},$$

Dado que  $1+x^2\neq 0$  para todo o  $x\in\mathbb{R}$  esta condição é equivalente à equação bi-quadrática

$$x^4 + x^2 - 2 = 0.$$

Substituindo  $t=x^2$  obtemos a equação quadrática  $t^2+t-2=0$  cujas duas soluções são  $t_1=1$  e  $t_2=-2$ . No caso de  $x^2=t_2=-2$  obtemos as raízes imaginárias  $x_3=\sqrt{2}i$  e  $x_4=-\sqrt{2}i$  enquanto no caso de  $x^2=t_1=1$  obtemos as raízes reais  $x_1=1$  e  $x_2=-1$ . Assim, os pontos de intersecção são  $(1,\frac{1}{2})$  e  $(-1,\frac{1}{2})$ .

b) Representar geométricamente a região  $\mathcal{A}$  (em amarelo):



Notar que se tem  $\frac{x^2}{2} \leq \frac{1}{1+x^2}$  se e só se  $-1 \leq x \leq 1$ . O gráfico de  $y = \frac{x^2}{2}$  é conhecido. Para a segunda função, a primeira derivada  $y' = -\frac{2x}{(1+x^2)^2}$  indica esta cresce até x = 0 e decresce a partir daí. A segunda derivada  $y'' = -2\frac{1-3x^2}{(1+x^2)^3}$  resulta em dois pontos de inflexão, de abcissa  $\pm \frac{\sqrt{3}}{3}$ , e temos concavidade voltada para baixo se  $-\frac{\sqrt{3}}{3} \leq x \leq \frac{\sqrt{3}}{3}$ , e concavidade voltada para cima nos restantes valores de x.

c) Dada a simetria da região relativamente ao eixo dos y's temos para a área

$$A = 2\int_0^1 \left(\frac{1}{1+x^2} - \frac{x^2}{2}\right) dx = 2\left(\arctan(x)\big|_0^1 - \left.\frac{x^3}{6}\right|_0^1\right) = \frac{\pi}{2} - \frac{1}{3}.$$