

Technische Informatik: Abgabe 5

Michael Mardaus

Andrey Tyukin

21. November 2013

Exercise 5.1 (Quine McClusky and K-Maps)

	#(0)	decimal	$x_1 x_2 x_3 x_4 x_5$	Reduction-Links						
	1	15	01111							
		30	11110	\star^1	\star^2					
		29	11101			\star^3	\star^4	\star^5		
	2	28	11100	\star^1		*3			* ⁶	
		25	11001			*8	\star^4			★ ⁷
a)		22	10110		\star^2					
u,		21	10101	⋆ ⁹				\star^5		
	3	24	11000		* ¹⁰				* ⁶	*7
		17	10001	* ⁹		*8				
		9	01001			\star^{11}				
	4	8	01000	* ¹²	* ¹⁰	* ¹¹				
		2	00010		\star^{13}					
	5	0	00000	* ¹²	* ¹³					

			•			
#(0)	decimal	$x_1x_2x_3x_4x_5$	Reduction-I		on-Li	nks
1	15	01111				
	28,30	111*0				
	22,30	1*110				
	28,29	1110*	\star^1			
	25,29	11*01		\star^2	* ³	
	21,29	1*101				\star^4
2	24,28	11*00		*2		
	24,25	1100*	\star^1			
	17,25	1*001				\star^4
	17,21	10*01			*3	
3	8,24	*1000				
	8,9	0100*				
4	0,8	0*000				
	0,2	000*0				
	,					

#(0)	decimal	$x_1x_2x_3x_4x_5$
1	15	01111
	28,30	111*0
	22,30	1*110
	24,25,28,29	11*0*
	17,21,25,29	1**01
3	8,24	*1000
	8,9	0100*
4	0,2	000*0
	ll l	·

Primimplicant	0	2	8	9	15	17	21	22	24	25	28	29	30	
01111					1									
111*0											1		1	reduced r 4
1*110								1					1	
11*0*									1	1	1	1		
1**01						1	1			1		1		
*1000			1						1					reduced r 4
0100*			1	1										
000*0	1	1												
reduced b/c			с9				c17			c17		c17	c22	

...here lives the big table for row and column cheating...

$$\Longrightarrow f = \neg x_1 x_2 \neg x_3 \neg x_4 + \neg x_1 \neg x_2 \neg x_3 \neg x_5 + \neg x_1 x_2 x_3 x_4 x_5 + x_1 x_2 \neg x_4 + x_1 \neg x_4 x_5 + x_1 x_3 x_4 \neg x_5$$

b) Use K-Maps to find a cost-minimal DNF.

	x_1	$_{1}=0$				x_1	$_{1} = 1$		
		x_4	x_5				x_4	x_5	
x_2x_3	00	01	11	10	x_2x_3	00	01	11	10
00	1			1	00		1		
01					01		1		1
11			1		11	1	1		1
10	1	1			10	1	1		

which yields: $f = \neg x_1 x_2 \neg x_3 \neg x_4 + \neg x_1 \neg x_2 \neg x_3 \neg x_5 + \neg x_1 x_2 x_3 x_4 x_5 + x_1 x_2 \neg x_4 + x_1 \neg x_4 x_5 + x_1 x_3 x_4 \neg x_5$ The same result as in part a).

Exercise 5.2 (Row and Column-Rules are no function)

Primimplic.	$C_1 = 0$	$C_2 = 1$	$C_3=2$
$R_1 = 01$		1	
$R_2 = 0*$	1	1	
$R_3 = *0$	1		1

We deleted Column C_1 with the Column-Rule, because $C_3 \leq C_1$ and overlaps it. Now we can either use $R_3 + R_2 = \neg x_2 + \neg x_1$ or $R_3 + R_1 = \neg x_2 + \neg x_1 x_2$ as our minimal solution.

Exercise 5.3 (?)

i	x_1	x_2	x_3	x_4	f_1	f_{2a}	f_{2b}
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0	1 (B ₂)		
3	0	0	1	1	1 (<i>B</i> ₃)	1	1
4	0	1	0	0			
5	0	1	0	1	1 (<i>B</i> ₃)	1	1
6	0	1	1	0			
7	0	1	1	1		1	1
8	1	0	0	0	1 (<i>B</i> ₁)		
9	1	0	0	1	0 $(B_1 + B_3)$		
10	1	0	1	0	1 (<i>B</i> ₁)		D
11	1	0	1	1	1 (B_1)		D
12	1	1	0	0			D
13	1	1	0	1			D
14	1	1	1	0			D
15	1	1	1	1		1	D

a1) $f_1=1\Leftrightarrow B_1.\neg B_2.\neg B_3+\neg B_1.B_2.\neg B_3+\neg B_1.\neg B_2.B_3$ where

- $B_1 = 1 \Leftrightarrow x_1. \neg x_2 = 1$
- $B_2 = 1 \Leftrightarrow \neg x_1. \neg x_2. x_3. \neg x_4 = 1$
- $B_3 = 1 \Leftrightarrow x_4$.only one of $(x_1, x_2, x_3) = 1$

brings us to column f_1 in the table above and leeds to the Karnaugh table:

	$x_{3}x_{4}$							
x_1x_2	00	01	11	10				
00		1	1					
01		1						
11								
10	1		1	1				

which yields: $f_1 = x_1 \neg x_2 x_3 + \neg x_1 \neg x_3 x_4 + \neg x_1 \neg x_2 x_4 + x_1 \neg x_2 \neg x_3 \neg x_4$

a2) $f_{2a} = 1 \Leftrightarrow (x_1 x_2 x_3 x_4)_2 |1101001 \text{(in decimal } 105 = 3 \times 5 \times 7)$

brings us to column f_{2a} in the table above and leeds to the Karnaugh table:

	$x_{3}x_{4}$						
x_1x_2	00	01	11	10			
00			1				
01		1	1				
11			1				
10							

which yields $f_{2a} = \neg x_1 x_2 x_4 + \neg x_1 x_3 x_4 + x_2 x_3 x_4$

b)

 $f_{2b}=1\Leftrightarrow 0000\leq (x_1x_2x_3x_4)_2\leq 1001|1101001$ gives column f_{2b} in the table above, Karnaugh table:

<i>0</i> = 0		_ `		J 1/2				
		$x_{3}x_{4}$						
x_1x_2	00	01	11	10				
00			1					
01		1	1					
11	D	D	D	D				
10			D	D				

which yields $f_{2b} = \frac{\mathbf{x_2}\mathbf{x_4}}{\mathbf{x_2}} + \neg x_1x_3x_4$