MATH241

Aiden Sirotkine

Fall 2023

Contents

1	Calc I Review	4
2	3D Coordinates	5
3	Reviewing all of Calc 3	6
4	11 Basic Vectors 4.0.1 cross and dot product	7 7 8
5	12 3D Shenanigans 5.1 12.1 5.2 More Surfaces 5.3 12.2 Vectors	9 9 9
6	13 Vector Functions 6.1 Unit Tangent Vector 6.2 Arc Length and Curvature 6.2.1 Curvature 6.2.2 Binormal Vector 6.2.3 Torsion	11 12 12

CONTENTS

7	14 l	Partial Derivatives	13
		7.0.1 higher order notation	13
		7.0.2 Partial Derivative Problem	14
	7.1	Limits	14
		7.1.1 Limit Practice Problem	15
	7.2	Tangent Planes and Linear Approximations	15
	7.3	Differentials	16
		7.3.1 Clairaut's Theorem	16
	7.4	Chain Rule for Partial Derivatives	16
		7.4.1 Chain Rule Problem	17
		7.4.2 Implicit Differentiation	17
	7.5	Directional Derivatives and Gradients	18
	7.6	Extrema	18
	7.7	Tangent Planes to Level Surfaces	18
	7.8	Extrema	19
		7.8.1 Second Derivatives Test	19
		7.8.2 Extrema Problem	20
	7.9		21
		7.9.1 Two contraints	21
	7.10	Lagrange Multipliers Example Problems	22
		7.10.1 pg 1061 # 7	23
8	15 I	Multiple Integrals	25
	8.1	Iterated Integrals	25
	8.2	Average Value	26
	8.3	Integrating Over General Regions	26
		8.3.1 Changing Order of Integration	27
	8.4	15.5 Surface Area	27
	8.5	15.6 Triple Integrals	27

CONTENTS

9	16	Vector Calculus	28
		9.0.1 Dfn: Conservative	28
	9.1		29
		9.1.1 Line Integral Problem	29
		9.1.2 Integrating Over a Vector Field	30
	9.2	The Fundamental Theorem For Line Integrals .	31
		9.2.1 Independence of Path Theorem	31
	9.3	16.4 Green's Theorem	31
	9.4	Curl	32
	9.5	Divergence	32
	9.6	Vector Forms of Green's Theorem	33
	9.7	Parametric Surfaces	33
		9.7.1 Tangent Planes	33
		9.7.2 Surface Area	33
	9.8	Surface Integrals	34
		9.8.1 Graphs of Functions	34
	9.9	Oriented Surfaces	34
	9.10	Flux	34
	9.11	Stoke's Theorem	35
	9.12	Divergence Theorem	36
4.0	.		0.
ΤÛ		ras: Cylindrical and Spherical Coordinates	
		Polar Coordinates	37
		Cylindrical Coordinates	37
		Spherical Coordinates	38
	10.4	Jacobians	38
11	Tes	t Problems	39
		Midterm 2 2012 #4	39

Calc I Review

- \bullet derivative \rightarrow rate of change
- $\int_b^a g(x)dx$ = area under g(x) from a to b
- FUNDAMENTAL THEOREM OF CALCULUS

$$\int_{b}^{a} f'(x)dx = f(b) - f(a)$$

3D Coordinates

• x, y, AND z crazy, I know

12.2 Vectors

A vector is a quantity that has magnitude and direction. A scalar is a quantity that has only magnitude.

Reviewing all of Calc 3

11 Basic Vectors

3D coordinates are goofy but I know just about everything for em

4.0.1 cross and dot product

goofy properties

$$u \cdot (v \times w) = (u \times w) \cdot v$$
$$u \times u = 0$$
$$u \times v = -(v \times u)$$

 $u \times v$ is orthogonal to both u and v

 $u \times v = 0$ if u and v are scalar multiples

 $u \cdot v = ||u||||v||\cos(\theta) = 0$ if u and v are orthogonal

$$\mathrm{proj}_v u = \frac{|v \cdot u|}{||v||}$$

4.1 11.5 planes

Given 3 points $A, B, C, AB \times BC = \text{normal vector for the plane}$

given normal vector $n = \langle a, b, c \rangle$ and points $P(x_1, y_1, z_1)$

$$x = x_1 + at, y = y_1 + bt, z = z_1 + zt$$

$$a(x - x_1) + b(y - y_1) + z(z - z_1) = 0 \text{ or}$$

$$ax + by + zc + d = 0$$

Distance Formula

Let Q be a point and P any point on a plane and n the normal vector of said plane.

$$d = \frac{|\vec{PQ} \cdot \vec{n}|}{||n||} = \text{proj}_n PQ$$

Angle between two planes given their normal vectors n_1 and n_2

$$\cos(\theta) = \frac{n_1 \cdot n_2}{||n_1|| ||n_2||}$$

other distance shit that I need to probably look at later

plane and point, plane and plane, line and point

12 3D Shenanigans

5.1 12.1

I remember how to graph shit in 3D

Practice Question:

$$x^2 + z^2 = 9$$

It is a cylinder of radius 3 parallel to the y-axis Surfaces in space eh you understand

5.2 More Surfaces

Look at revolutions?

5.3 12.2 Vectors

Goofy parallelogram addition

vectors are built of components

$$\vec{v} = \langle x, y, z \rangle$$

$$\operatorname{Proj}_v u = \left(\frac{\vec{u} \cdot \vec{v}}{||v||^2}\right) \vec{v} = \operatorname{projection of } v \text{ onto } u = \vec{v} cos(\theta)$$

$$cos(\theta) = \left|\left|\frac{\operatorname{proj}_v u}{||u||}\right|\right| = \frac{\vec{u} \cdot \vec{v}}{||u||||v||}$$

13 Vector Functions

6.1 Unit Tangent Vector

13.2

$$\mathbf{T}(t) = \frac{r'(t)}{|r'(t)|}$$
 where r is a vector function $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$ Normal unit vector

6.2 Arc Length and Curvature

13.3

$$L = \int_a^b \sqrt{\left(\frac{dx}{dt}\right) + \left(\frac{dy}{dt}\right) + \left(\frac{dz}{dt}\right)} dt = \text{arclength from a to b}$$

$$L(t) = \int_{a}^{t} \sqrt{\left(\frac{dx}{du}\right) + \left(\frac{dy}{du}\right) + \left(\frac{dz}{du}\right)} du = \text{arc length parameter}$$

$$\frac{ds}{dt} = |r'(t)|$$

if ||r'(t)|| = 1, then t is the arc length parameter. That is, t = s(t).

6.2.1 Curvature

$$K = \frac{|y|}{(1+(y')^2)^{3/2}} = \left|\frac{d\mathbf{T}}{ds}\right| = \frac{d\mathbf{T}/ds}{ds/dt} = \frac{|\mathbf{T}'(t)|}{r'(t)} = \frac{|r' \times r''|}{|r'|^3}$$
$$a(t) = \frac{d^2(x)}{dt^2}T + K\left(\frac{ds}{dt}\right)^2 N \text{ where } \frac{ds}{dt} = \text{speed}$$

6.2.2 Binormal Vector

perpendicular to both T and N

$$\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$$

6.2.3 Torsion

$$\tau(t) = -\frac{d\mathbf{B}}{ds} \cdot \mathbf{N} = -\frac{\mathbf{B}'(t) \cdot \mathbf{N}(t)}{|r'(t)|} = \frac{[r'(t) \times r''(t)] \cdot r'''(t)}{|r'(t) \times r''(t)|^2}$$

14 Partial Derivatives

Literally just think of the numbers you're not deriving as a constant Let $f(x,y) = 3x - x^2y^2 + 2x^3y$

$$f_x(x,y) = z_x = \frac{\partial z}{\partial x} = \frac{\partial}{\partial x} f(x,y) = 3 - 2xy^2 + 6x^2y$$
$$f_y(x,y) = z_y = \frac{\partial z}{\partial y} = \frac{\partial}{\partial y} f(x,y) = 2x^2y + 2x^3$$

7.0.1 higher order notation

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y} = f_{yx}(x, y)$$
 notice the subscript order

7.0.2 Partial Derivative Problem

14.3 #6

Estimate $f_x(2,1)$ and $f_y(2,1)$ in the following contour map.

(2, 1) is on the contour line z = 10. Because the 12 contour line is as about (2.66, 1), $f_x(2, 1)$ will probably have a value of about 3. $f_y(2, 1)$ will be about -2 because of where the 8 contour line is located.

$$f_x(2,1) \approx 3$$
 $f_y(2,1) \approx 2$

Quizlet+ give or take agrees phew

7.1 Limits

Basically set one of the numbers to a constant or the other variable and see what happens.

7.1.1 Limit Practice Problem

2012 practice midterm 1 problem

Exactly one of the two limits exists, show which and why.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} \qquad \qquad \lim_{(x,y)\to(0,0)} \frac{xy}{(x^2 + y^2)^2}$$

I can factor the first one

$$\frac{\sqrt{x^2 + y^2}\sqrt{x^2 - y^2}}{\sqrt{x^2 + y^2}} = \sqrt{x^2 - y^2} = 0$$
 definitely exists

Now I'll prove the other one doesn't exist just for funsies.

line y = 0, $\lim = 0$

line y = x, lim DNE

7.2 Tangent Planes and Linear Approximations

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

Calculate the differential and then replace dx and dy with Δx and Δy

Yea I was basically right. Use the tangent plane as an approximation

$$f(x_0, y_0) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

7.3 Differentials

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = f_x(x,y)dx + f_y(x,y)dy$$

Theorem

If f_x and f_y are are continuous, then f is differentiable.

7.3.1 Clairaut's Theorem

Suppose f is defined on a disk D that contains the point (a, b). If f_{xy} and f_{yx} are both continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$

7.4 Chain Rule for Partial Derivatives

14.5

page 1020
Let
$$w = f(x, y)$$
 where $x = g(t)$ and $y = h(t)$. Then
$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

7.4.1 Chain Rule Problem

2012 Practice Midterm 1 #11

An exceptionally tiny spaceship positioned as shown is travelling so that its x-coordinate increases at a rate of 1/2 m/s and y-coordinate increases at a rate of 1/3 m/s. Use the Chain Rule to calculate the rate at which the distance between the spaceship and the point (0, 0) is increasing.

$$\frac{\partial x}{\partial t} = \frac{1}{2}t, \frac{\partial y}{\partial t} = \frac{1}{3}t, w = \sqrt{x^2 + y^2}$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t}$$

$$\frac{\partial w}{\partial x} = \frac{1}{2}(x^2 + y^2)^{-1/2}2x \qquad \frac{\partial w}{\partial y} = \frac{1}{2}(x^2 + y^2)^{-1/2}2y$$

Just plug the numbers in, I don't have the actual answer for this one but this looks correct.

7.4.2 Implicit Differentiation

Let
$$F(x,y) = 0$$
 and let $y = f(x)$

$$\frac{dy}{dx} = -\frac{F_x(x,y)}{F_y(x,y)}$$

7.5 Directional Derivatives and Gradients

If f is a differentiable function of x and y, and f has a directional derivative in the direction of any unit vector $\vec{u} = \langle a, b \rangle$, then

$$D_u f(x, y) = f_x(x, y)a + f_y(x, y)b$$

Gives the slope of the function in the direction of \vec{u}

$$\nabla f(x,y) = f_x(x,y)\mathbf{i} + f_y(x,y)\mathbf{j} = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

The gradient exists such that $\nabla f(x,y) \cdot \mathbf{u} = D_u f(x,y)$

7.6 Extrema

The maximum possible directional derivative is $||\nabla f(\vec{x})||$, and it occurs when \vec{u} is in the direction of $\nabla f(\vec{x})$

$$D_u f = \nabla f \cos(\theta)$$

7.7 Tangent Planes to Level Surfaces

Let S be a surface with the equation F(x, y, z) = k. Let $P = (x_0, y_0, z_0)$ be a point on S. Let C be a curve on S that

passes through P. C has the equation $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$. Let t_0 correspond to P, meaning $r(t_0) = P$.

We can derive F to get

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0 = \nabla F \cdot \mathbf{r}'(t)$$

We can use this and dot product properties to show that the gradient of F is orthogonal to the tangent vector of C.

Therefore, the gradient can be the normal vector for a plane tangent to S. So our tangent plane equation will be

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

7.8 Extrema

14.7

If f(a,b) has a local extrema at (a,b) and the first order partial derivatives of f(a,b) exist, then $f_x(a,b) = 0$ and $f_y(a,b) = 0$

7.8.1 Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that (a, b) is a critical point of f. Let

$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

1. If D > 0 and $f_{xx}(a, b) > 0$ then f(a, b) is a local minimum

- 2. If D > 0 and $f_{xx}(a, b) < 0$ then f(a, b) is a local maximum
- 3. If D < 0, them f(a, b) is a saddle point

7.8.2 Extrema Problem

14.7 #5

Find the extrema of $f(x,y) = x^2 + xy + y^2 + y$

$$f_x = 2x + y|f_y = 2y + x + 1|f_{xx} = 2|f_{yy} = 2|f_{xy} = 1$$

Critical points uhh somewhere

$$2x = -y$$

$$-4x + x + 1 = 0 \to x = 1/3, y = -2/3$$

$$D = f_{xx}f_{yy} - (f_{xy})^2 = 2 * 2 - 1 = 3$$

D < 0 = saddle point else

 $f_{xx} > 0 = \min$

 $f_{xx} < 0 = \text{maximum}$

Minimum at (1/3, -2/3)

7.9 Lagrange Multipliers

How to find all the maximum and minimum values of f(x, y, z) under the constraints that g(x, y, z) = k for some equation g. Step 1: Find all values such that

$$\nabla f(x,y,z) = \lambda \nabla g(x,yz)$$
 and $g(x,y,z) = k$ for some scalar λ

Step 2: Evaluate at all points, the biggest is a maximum, the smallest is a minimum.

7.9.1 Two contraints

Let g(x, y, z) = k and h(x, y, z) = c

$$\nabla f(x,y,z) = \lambda g(x,y,z) + \mu h(x,y,z)$$

Find the components to get enough equations to solve for the 7 billion variables.

7.10 Lagrange Multipliers Example Problems

pg 1061 #6

$$f(x,y) = xe^{y} g(x,y) = x^{2} + y^{2} = 2$$

$$\nabla g(x,y) = (2x)\vec{i} + (2y)\vec{j} \nabla f(x,y) = (e^{y})\vec{i} + (xe^{y})\vec{j}$$

$$2x = \lambda e^{y}$$

$$2y = \lambda xe^{y}$$

$$x^{2} + y^{2} = 2$$

$$2x = \lambda e^{y}$$

$$y = x^{2}$$

$$x^{4} + x^{2} - 2 = 0 \to x = \frac{-1 \pm 3}{2} \to x^{2} = -2, 1, x = \pm 1$$

x = -2, y = 4nopenotactually allowed $-4 = \lambda e^4 \rightarrow \lambda = -4/e^4$ I don't think this is necessary (1, 1) is a maximum this was a waste of my time (-1, 1) is a minimum lets fucking go I actually did it right omg

$7.10.1 \quad \text{pg } 1061 \ \# \ 7$

$$f(x,y) = 2x^{2} + 6y^{2}, g(x,y) = x^{4} + 3y^{4} = 1$$

$$\nabla f(x,y) = 4x\mathbf{i} + 12y\mathbf{j}, \nabla g(x,y) = 4x^{3}\mathbf{i} + 12y^{3}\mathbf{j}$$

$$4x = \lambda 4x^{3}$$

$$12y = \lambda 12y^{3}$$

$$x^{4} + 3y^{4} = 1$$

$$\lambda = 1/x^2$$

$$1 = y^2/x^2 \to \pm x = \pm y$$

$$4x^4 = 1 \to x = \pm 1/\sqrt{2}, y = \pm 1/\sqrt{2}$$
time to figure out all the sets of points that work
$$(1/\sqrt{2}, 1/\sqrt{2})$$

$$(-1/\sqrt{2}, 1/\sqrt{2})$$

$$(1/\sqrt{2}, -1/\sqrt{2})$$

$$(-1/\sqrt{2}, -1/\sqrt{2})$$

All these points have the exact same f(x, y) values so theyre all maximums?

Ah damn I missed one. the minimums are $(\pm 1,0)$ but I give or take understand

pg 1062 # 33

$$f(x, y, z) = yz + xy \qquad xy = 1 \qquad y^2 + z^2 = 1$$

$$f_x = y = \lambda y$$

$$f_y = z + x = \lambda x + \mu 2y$$

$$f_z = y = \mu 2z$$

$$xy = \lambda$$

$$y^2 + z^2 = 1$$

$$\lambda = 1$$

$$z = \mu 2y$$

$$y = \mu 2z$$

$$z = y/(2\mu)$$

$$4\mu^2 = 1 \rightarrow \mu = \pm 1/2 \text{ IMPORTANT}$$

$$y^2 = z^2 = \pm 1/\sqrt{2}$$

$$x = \pm \sqrt{2}$$

$$\begin{array}{l} (\sqrt{2},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) \\ (-\sqrt{2},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}) \\ (-\sqrt{2},-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}) \\ (\sqrt{2},\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}) \end{array}$$

$$f(x, y, z) = 3/2 = \text{maximum}$$

 $f(x, y, z) = 1/2 = \text{minimum}$

Okay I think I understand this shit assuming I'm given a g(x, y, z)

15 Multiple Integrals

$$\iint\limits_{R} f(x,y)dA = V$$

8.1 Iterated Integrals

Just consider whatever you aren't integrating as constant

$$\int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x, y) \, dy \, dx$$

Example

$$\int_{1}^{2} \int_{0}^{3} x^{2}y \, dx \, dy \to \int_{1}^{2} \frac{x^{3}y}{3} \Big|_{0}^{3} dy \to \int_{1}^{2} 9y \, dy$$
$$4.5y^{2} \Big|_{1}^{2} \to 18 - 4.5 = 13.5$$

Fubini's Theorem

If f(x, y) is continuous on a rectangle R, then

$$\iint\limits_{R} f(x,y) \, dA = \int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x,y) \, dx \, dy = \int_{x_0}^{x_1} \int_{y_0}^{y_1} f(x,y) \, dy \, dx$$

If f(x, y) can be factored into 2 functions multiplying each other, meaning f(x, y) = g(x)h(y), then

$$\iint\limits_{R} f(x,y) dA = \int_{y_0}^{y_1} \int_{x_0}^{x_1} g(x) h(y) \, dx \, dy = \int_{x_0}^{x_1} g(x) \, dx \int_{y_0}^{y_1} h(y) \, dy$$

8.2 Average Value

$$f_{avg} = \frac{1}{A(R)} \iint_{R} f(x, y) dA$$

8.3 Integrating Over General Regions

$$\iint\limits_{D} f(x,y) = \int_{x_0}^{x_1} \int_{g(x)_0}^{g(x)_1} f(x,y) dy dx$$

8.3.1 Changing Order of Integration

Just fucking floop the shit

$$\int_0^1 \int_x^1 f(x,y) dy dx \longrightarrow \int_0^1 \int_0^y f(x,y) dx dy$$

y = x so x = y and y = 1 where x = 0

Think of it in picture, thats like literally the only way to do it

8.4 15.5 Surface Area

$$A(S) = \iint_{D} \sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} \, dA$$

8.5 15.6 Triple Integrals

It's like a double integral but another one.

I skipped a bunch of shit but I also dont give a shit I can figure it out fuck you

16 Vector Calculus

Vector Fields

$$\mathbf{F}(a,b) = P(a,b)\mathbf{i} + Q(a,b)\mathbf{j} = \langle P(a,b), Q(a,b) \rangle$$

Gradient is a vector field

9.0.1 Dfn: Conservative

A vector field \mathbf{F} is conservative if it acts as the gradiant for some scalar function. That is, there exists a function f(x,y) such that

$$\mathbf{F} = \nabla f(x, y)$$

9.1 16.2 Line Integrals

Integrate over a line instead of a regular region

arclength
$$L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right) + \left(\frac{dy}{dt}\right)} dt$$

$$\int_{C} f(x, y) ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right) + \left(\frac{dy}{dt}\right)} dt$$

Integrating over x and y

$$\int_C f(x, y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$

$$\int_C f(x, y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

9.1.1 Line Integral Problem

$$16.2 \# 9 \int_{c} x^{2}y \, ds \qquad C = \langle \cos(t), \sin(t), t \rangle (0 < t < \pi/2)$$

$$\int_{0}^{\pi/2} \cos^{2}(t) \sin(t) \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2} + (\frac{dz}{dt})^{2}} \, dt$$

$$\int_{0}^{\pi/2} \cos^{2}(t) \sin(t) \sqrt{(-\sin(t))^{2} + (\cos(t))^{2} + 1} \, dt \rightarrow$$

$$\sqrt{2} \int_{0}^{\pi/2} \cos^{2}(t) \sin(t) \, dt \qquad u = \cos(t), -du = \sin(t) dt$$

$$-\sqrt{2}\int_{1}^{0}u^{2}\,du = -\sqrt{2}u^{3}/3\bigg|_{1}^{0} = \sqrt{2}/3$$

9.1.2 Integrating Over a Vector Field

Let \mathbf{F} be integrated over a smooth curve C.

Let
$$F = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$$

$$\int_{C} \mathbf{F} \cdot dr = \int_{a}^{b} \mathbf{F}(r(t)) \cdot r'(t) dt = \int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{C} P dx + Q dy + R dz$$

9.2 The Fundamental Theorem For Line Integrals

$$\int_{C} \nabla f(x, y) \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

also shows how conservative fields get the same shenanigans independent of path

9.2.1 Independence of Path Theorem

 $\int_C \mathbf{F} \cdot dr$ is independent of the path taken iff $\int_C \mathbf{F} \cdot dr = 0$ for every closed path C (every loop)

9.3 16.4 Green's Theorem

relationship between a double integral of a region and a line integral over the border of that region.

Let C be a positively oriented (meaning counterclock-wise), piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$\int_{C} P \, dx + Q \, dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

9.4 Curl

Curl is associated with rotation around a point. The magnitude of curl is the speed of rotation, and the direction of curl is the axis of rotation.

curl
$$\mathbf{F} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\mathbf{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\mathbf{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\mathbf{k}$$

Imagine it as a cross product

$$\nabla \times \mathbf{F} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
$$\operatorname{curl}(\nabla f) = 0$$

Theorem

If \mathbf{F} is function whose components have continuous partial derivatives and $\operatorname{curl}(\mathbf{F}) = 0$, then \mathbf{F} is a conservative vector field.

9.5 Divergence

$$\operatorname{div} \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = \mathbf{\nabla \cdot F}$$
$$\operatorname{div} \operatorname{curl} \mathbf{F} = 0$$

9.6 Vector Forms of Green's Theorem

$$\oint_{C} \mathbf{F} \cdot dr = \oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \iint_{D} (\mathbf{\nabla} \times \mathbf{F}) \cdot \mathbf{k} \, dA$$

also

$$\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D (\mathbf{\nabla} \cdot 2\mathbf{F}(x, y)) \, dA$$

9.7 Parametric Surfaces

$$\mathbf{r}(u,v) = x(u,v)\mathbf{i} + y(u,v)\mathbf{j} + z(u,v)\mathbf{k}$$

9.7.1 Tangent Planes

$$r_u \times r_v = n$$

9.7.2 Surface Area

$$A(S) = |r_u \times r_v| dA$$

Surface Area of Graphs of Functions

$$x=x, y=y, z = f(x, y)$$

$$A(S) = \iint_{D} \sqrt{[f_x(x,y)]^2 + [f_y(x,y)]^2 + 1} \, dA$$

9.8 Surface Integrals

$$\iint\limits_{S} f(x, y, z) d\mathbf{S} = \iint\limits_{D} f(r(u, v)) |r_u \times r_v| dA$$

9.8.1 Graphs of Functions

$$x=x, y=y, z=f(x, y)$$

$$\iint_{S} f(x,y,z)d\mathbf{S} = \iint_{D} f(x,y,f(x,y))\sqrt{[f_{x}(x,y)]^{2} + [f_{y}(x,y)]^{2} + 1} dA$$

Similar vibes as line integrals using arclength

9.9 Oriented Surfaces

the unit vector for certain surfaces can be either n or -n. Let S be a surface given by the vector function r(u, v)

$$n = \frac{r_u \times r_v}{|r_u \times r_v|}$$

Yea I don't actually entirely know how the orientation changes things I'll be honest

9.10 Flux

if \mathbf{F} is a continuous vector field over a surface S with a normal vector \mathbf{n} , then the Surface Integral of \mathbf{F} over S, or the Flux of

 \mathbf{F} over S, is:

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} d\mathbf{S} = \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r_{u}} \times \mathbf{r_{v}}) dA$$

Where D is the parameter domain.

if S is given by g(x, y) = z

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{D} \langle P, Q, R \rangle \cdot \langle -\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1 \rangle \, dA$$

9.11 Stoke's Theorem

let \mathbf{F} be a piecewise smooth surface bounded by S, a region with a boundary C with positive (counterclockwise) orientation

$$\int_C \mathbf{F} d\mathbf{r} = \iint_S \text{ curl } \mathbf{F} \cdot d\mathbf{S}$$

Literally just generalized Green's Theorem for higher dimensions.

9.12 Divergence Theorem

Green's Theorem Extended to Vector Fields

Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let Fbe a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint\limits_{E} \mathbf{\nabla} \cdot \mathbf{F} \, dV$$

Extras: Cylindrical and Spherical Coordinates

10.1 Polar Coordinates

$$\iint_{S} f(x,y)dA = \iint_{D} f(r\cos(\theta), r\sin(\theta)r \, dr \, d\theta)$$

10.2 Cylindrical Coordinates

instead of (x, y, z), you got (r, θ, z) , where θ is counter-clockwise relative to the +x line

$$\iiint_A f(x, y, z) dA = \iiint_A f(r\cos(\theta), r\sin(\theta), z) r dz dr d\theta$$

10.3 Spherical Coordinates

instead of (x, y, z), you got (r, θ, ϕ) , where ϕ goes down from the +z line

$$\iiint_A f(x, y, z)dV =$$

 $\iiint_A f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\psi)) \rho^2 \sin(\phi) d\rho d\theta d\phi$

10.4 Jacobians

A 1D Jacobian is just a u-sub.

Let x = g(u, v) and y = h(u, v). The Jacobian is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Change of Variables

$$\iint\limits_{R} f(x,y) dA = \iint\limits_{S} f(g(u,v),h(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du \, q dv$$

3 variables

$$\iiint\limits_R f(x,y,z)dV = \iiint\limits_S f(x(),y(),z()) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du \, dv \, dw$$

(3d determinant)

$$a\begin{bmatrix} e & f \\ h & i \end{bmatrix} - b\begin{bmatrix} d & f \\ g & i \end{bmatrix} + c\begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

Test Problems

11.1 Midterm 2 2012 #4

Let C be the curve in \mathbb{R}^3 parameterized by $r(t) = \langle \sin(t), 2t, \cos(t) \rangle$ Compute the length of C over $0 < t < \pi/2$.

$$\operatorname{arclength}(C) = \int_0^{\pi/2} \sqrt{\frac{dx}{dt} + \frac{dy}{dt} + \frac{dz}{dt}} dt$$