Formation de Data Science - Openclassrooms Formation Ouverte et à Distance – FOAD par Pôle Emploi Solutions 100% à distance

Projet 3 : Concevez une application au service de la santé publique

Étudiant : Maria Daniela Barrios

Mentor: Dan Slama

Idée d'une application qui classe et montre les produits low sodium selon leur utilisation ou leur catégorie (ex. entrées, sauces, desserts, boissons, etc.) et donne le classement nutri-score.

Les régimes à low sodium sont couramment prescrits aux personnes souffrant d'une maladie rénale, d'une maladie cardiaque ou d'une hypertension artérielle, afin de gérer les symptômes et de prévenir les complications.

Les données sont extraites de **Open Food Facts** (<u>see https://world.openfoodfacts.org/data</u>)

Stratégie pour accomplir notre mission

- → Analyse exploratoire
- Décrire les informations sur le nombre de lignes et de colonnes des données
- → Sélection de variables ou d'indicateurs importants
 - Filtrage des données en fonction des variables importantes
- → Nettoyage des données
 - Révision des valeurs manquantes et des doublons
- → Validation des données
 - Traitement des valeurs aberrantes
- → Analyse exploratoire des données : analyse univariée, multivariée et bivariée
 - Détermination des ordres de grandeur, des distributions, des relations entre les variables

Analyse exploratoire

Le fichier de données contient 2054909 lignes et 187 colonnes

Informations générales :

- Les champs qui se terminent ou commencent par un code de deux lettres de la langue (par exemple, fr pour le français) correspondent à l'ensemble des balises de cette langue
- Les champs qui finissent par "_100g" correspondent à la quantité d'un nutriment (en g, ou en kJ pour l'énergie) pour 100g ou 100ml de produit
- Les champs terminés par "_serving" correspondent à la quantité d'un nutriment (en g, ou en kJ pour l'énergie) pour 1 portion du produit
- Nutrition_grade_fr : note nutritionnelle ("a" à "e") : https://fr.openfoodfacts.org/nutriscore
- Nutrition-score-fr_100g: Nutri-Score Score nutritionnel dérivé du score UK FSA et adapté au marché français (formule définie par l'équipe du Professeur Hercberg). Les champs sont numériques allant de -15 à 40. Plus le score est bas, meilleur est le produit
- Code : code-barres du produit (peut être EAN-13 ou des codes internes pour certains magasins d'alimentation)

Analyse exploratoire

160 colonnes sur 187 ont plus de 40% de valeurs manquantes

Sélection de variables ou d'indicateurs importants

Valeurs manquantes et doublons

Il y avait 319 valeurs doublées pour la variable 'Code' sur 2054909 lignes

- → Nous avons éliminé ces valeurs dupliquées
- → Nous gardons 2054590 lignes et 22 colonnes
- → Compte tenu de la nature de nos données, aucun remplacement des valeurs NaN par 0, la moyenne ou la médiane n'a été effectué
- → Nous ne pouvons pas ajouter de valeurs aux produits qui pourraient modifier les statistiques et les distributions
- → D'autres filtres ont été appliqués pour la validation des données

Validation des données

	salt_100g	sodium_100g	cholesterol_100g	saturated-fat_100g	fat_100g	trans-fat_100g	sugars_100g	carbohydrates_100g	proteins_100g	fiber_100g	energy_100g	nutrition-score-fr_100g
count	1.523258e+06	1.523255e+06	268984.000000	1,573472e+06	1.621962e+06	264954.000000	1.600814e+06	1.621548e+06	1.623261e+06	5.185520e+05	1.630186e+06	730993.000000
mean	6.560690e+04	2.624281e+04	0.055349	6,351608e+04	7.330625e+07	0.150308	6.253066e+07	6.165679e+04	6.157176e+04	1.892438e+41	4.088833e+36	9.113163
std	8.096942e+07	3.238780e+07	1.759469	7.966696e+07	8.664786e+10	29.553317	7.903688e+10	7.847708e+07	7.843566e+07	1.362755e+44	5.220571e+39	8.850129
min	0.000000e+00	0.000000e+00	0.000000	0.000000e+00	0.000000e+00	0.000000	-1.000000e+00	-1.000000e+00	-5.000000e+02	-2.000000e+01	0.000000e+00	-15.000000
25%	8.000000e-02	3.200000e-02	0.000000	1.000000e-01	8.000000e-01	0.000000	6.000000e-01	3.500000e+00	1.300000e+00	0.000000e+00	4.180000e+02	1.000000
50%	5.800000e-01	2.320000e-01	0.000000	1.800000e+00	7.000000e+00	0.000000	3.570000e+00	1.510000e+01	6.000000e+00	1.600000e+00	1.079000e+03	10.000000
75%	1.400000e+00	5.600000e-01	0.022000	7.100000e+00	2.120000e+01	0.000000	1.750000e+01	5.300000e+01	1.250000e+01	3.600000e+00	1.674000e+03	16.000000
max	9.993273e+10	3.997309e+10	362.000000	9.993273e+10	1.100000e+14	14800.000000	1.000000e+14	9.993273e+10	9.993273e+10	9.813275e+46	6.665559e+42	40.000000

Pour valider les données afin qu'elles correspondent à la réalité, quelques règles simples ont été appliquées :

- La quantité en grammes de glucides doit être supérieure à celle du sucre.
- La quantité en grammes de graisses doit être supérieure à celle des graisses saturées et trans.
- La somme des lipides, glucides, protéines, fibres et sel doit être inférieure ou égale à 100 grammes.
- Nous ne garderons que les lignes où par exemple sucre_100g et les autres sont positives.

Validation des données

	salt_100g	sodium_100g	cholesterol_100g	saturated-fat_100g	fat_100g	trans-fat_100g	sugars_100g	carbohydrates_100g	proteins_100g	fiber_100g	energy_100g	nutrition-score-fr_100g
count	213996.000000	213996.000000	212254.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213601.000000	193907.000000
mean	1.238011	0.495207	0.039663	4.075873	10.715881	0.033794	14.329648	32.021267	7.242566	1.851611	1054.881900	8.556679
std	3.725091	1.490036	1.113710	6.299592	13.521522	0.410913	19.087392	27.762173	8.060134	2.662877	687.390436	9.080842
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-14.000000
25%	0.137160	0.054864	0.000000	0.000000	0.220000	0.000000	1.300000	7.140000	1.639344	0.000000	403.000000	1.000000
50%	0.720000	0.288000	0.000000	1.250000	5.360000	0.000000	5.000000	22.350000	4.710000	1.000000	1046.000000	10.000000
75%	1.422400	0.568960	0.026000	6.160000	17.020000	0.000000	21.840000	56.250000	10.000000	2.900000	1586.000000	16.000000
max	100.000000	40.000000	116.915000	100.000000	100.000000	35.710000	100.000000	100.000000	90.910000	72.500000	13213.000000	38.000000

- → Le cadre de données avec les variables pertinentes contient maintenant 213996 lignes et 22 colonnes
- → Une observation intéressante est que la valeur maximale de cholesterol_100g est supérieure à 100
- → Il serait pratique de vérifier les valeurs de cholestérol et de sodium en fonction de leurs unités Les étiquettes des produits pourraient indiquer les valeurs de cholestérol et de sodium en mg par 100g de produit
- → Si une valeur de cholestérol ou de sodium est supérieure à 100, cela reste logique si ses unités sont des mg Cependant, il n'est pas précisé quelles sont les unités de ces valeurs

Validation des données

	salt_100g	sodium_100g	cholesterol_100g	saturated-fat_100g	fat_100g	trans-fat_100g	sugars_100g	carbohydrates_100g	proteins_100g	fiber_100g	energy_100g	nutrition-score-fr_100g
count	213996.000000	213996.000000	212254.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000	213601.000000	193907.000000
mean	1.238011	0.495207	0.039663	4.075873	10.715881	0.033794	14.329648	32.021267	7.242566	1.851611	1054.881900	8.556679
std	3.725091	1.490036	1.113710	6.299592	13.521522	0.410913	19.087392	27.762173	8.060134	2.662877	687.390436	9.080842
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-14.000000
25%	0.137160	0.054864	0.000000	0.000000	0.220000	0.000000	1.300000	7.140000	1.639344	0.000000	403.000000	1.000000
50%	0.720000	0.288000	0.000000	1.250000	5.360000	0.000000	5.000000	22.350000	4.710000	1.000000	1046.000000	10.000000
75%	1.422400	0.568960	0.026000	6.160000	17.020000	0.000000	21.840000	56.250000	10.000000	2,900000	1586.000000	16.000000
max	100.000000	40.000000	116,915000	100.000000	100.000000	35.710000	100.000000	100.000000	90.910000	72.500000	13213.000000	38.000000

Validation des données

Cholesterol_100g et sodium_100g

	product_name	brands	categories	stores	countries	additives_en	main_category	salt_100g	sodium_100g	cholesterol_100g
2045201	Ayam brand, sardines in extra virgin olive oil	Ayam Brand	Canned foods, Seafood, Fishes, Sardines	NaN	France, United States	NaN	en:sardines	0.8925	0.357	0.036

	product_name	brands	categories	stores	countries	additives_en	main_category	salt_100g	sodium_100g	cholesterol_100g
240519	Red onion and thyme fresh spreadable cheese	Norseland Inc	Dairies, Fermented foods, Fermented milk produ	Whole Foods	United States	NaN	en:cheeses	1.34	0.536	53.571

https://world.openfoodfacts.org/product/9556041600293/ayam-brand-sardines-in-extra-virgin-olive-oil

- La valeur du cholestérol pour 100g de produit est de 36 mg. Dans les données nous avons 0,036, ce qui signifie que les valeurs originales ont été divisées par 1000.
- Le sodium pour 100 g de produit selon nos données, a une valeur de 0,357. La valeur indiquée sur l'étiquette est de 257 mg pour 100 g de produit et n'est pas exactement la même que la précédente.

https://world.openfoodfacts.org/product/0075501246202/red-onion-and-thyme-fresh-spreadable-cheese-norseland-inc

- La valeur du cholestérol pour 100g de produit est de 53.6mg et dans nos données nous avons la même valeur.
- Le sodium pour 100g de produit dans nos données est de 0,536. Selon une source de données externe :

 https://www.instacart.com/products/3198219-snofrisk-red-onion-and-thyme-fresh-spreadable-cheese-4-4-oz nous avons constaté que le sodium par portion (28g) est de 150mg. Si l'on fait le calcul pour 100g de produit, on obtient exactement 536 mg.

Analyse univariée

Distribution: nutrition-score-fr_100g

	nutrition-score-fr_100g
count	193907.000000
mean	8.556679
std	9.080842
min	-14.000000
25%	1.000000
50%	10.000000
75%	16.000000
max	38.000000

Distribution : salt_100g

	salt_100g
count	213996.000000
mean	1.238011
std	3.725091
min	0.000000
25%	0.137160
50%	0.720000
75%	1.422400
max	100.000000

Analyse univariée

Distribution: saturated-fat_100g

	saturated-fat_100g
count	213996.000000
mean	4.075873
std	6.299592
min	0.000000
25%	0.000000
50%	1,250000
75%	6.160000
max	100.000000

Distribution : fat_100g

	fat_100g
t	213996.000000
1	10.715881
d	13.521522
1	0.000000
5	0.220000
5	5.360000
6	17.020000
(100.000000

Analyse univariée

Distribution : trans-fat_100g

	trans-fat_100g
count	213996.000000
mean	0.033794
std	0.410913
min	0.000000
25%	0.000000
50%	0.000000
75%	0.000000
max	35.710000

Distribution: carbohydrates_100g

	carbohydrates_100g
count	213996.000000
mean	32.021267
std	27.762173
min	0.000000
25%	7.140000
50%	22.350000
75%	56.250000
max	100.000000

Analyse univariée

Distribution: proteins_100g

	proteins_100g
count	213996.000000
mean	7.242566
std	8.060134
min	0.000000
25%	1.639344
50%	4.710000
75%	10.000000
max	90.910000

Distribution: fiber_100g

	fiber_100g			
count	213996.000000			
mean	1.851611			
std	2.662877			
min	0.000000			
25%	0.000000			
50%	1.000000			
75%	2.900000			
max	72.500000			

Analyse univariée

Distribution: energy_100g

	energy_100g
count	213601.000000
mean	1054.881900
std	687.390436
min	0.000000
25%	403.000000
50%	1046.000000
75%	1586.000000
max	13213.000000

Distribution: sugars_100g

	sugars_100g				
count	213996.000000				
mean	14.329648				
std	19.087392				
min	0.000000				
25%	1.300000				
50%	5.000000				
75%	21.840000				
max	100.000000				

Analyse univariée

Produits les plus signalés par nom de produit

Analyse univariée

Marques de produits les plus signalées

Analyse univariée

Principales catégories de produits les plus signalées

Analyse univariée

Les additifs les plus signalés

Analyse multivariée et bivariée

Matrice de corrélation

Méthode de Kendall : le coefficient de corrélation mesure la relation monotone entre deux variables. Il n'est pas nécessaire que les variables soient normalement distribuées

Analyse multivariée et bivariée

Disponibilité des produits : le top 20 du nombre de pays où un produit est disponible

Analyse multivariée et bivariée

Disponibilité des produits : le top 20 du nombre de magasins où un produit est disponible

Analyse multivariée et bivariée

Top 20 des produits les plus signalés avec leur teneur en sel

Analyse multivariée et bivariée

Nutriscore_grade et sel et graisses pour 100g

Analyse multivariée et bivariée

Nutriscore_grade et sel et graisses pour 100g

Analyse multivariée et bivariée

Nutriscore_grade et pays et magasins

Analyse multivariée et bivariée

Analyse ACP

Nous avons d'abord remplacé les valeurs NaN des variables numériques par 0 et nous n'avons conservé que le sous-ensemble de variables suivant pour l'analyse ACP

	saturated-fat_100g	fat_100g	carbohydrates_100g	energy_100g	sugars_100g
count	213996.000000	213996.000000	213996.000000	213996.000000	213996.000000
mean	4.075873	10.715881	32.021267	1052.934768	14.329648
std	6.299592	13.521522	27.762173	688.246798	19.087392
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.220000	7.140000	402.000000	1.300000
50%	1.250000	5.360000	22.350000	1046.000000	5.000000
75%	6.160000	17.020000	56.250000	1582.000000	21.840000
max	100.000000	100.000000	100.000000	13213.000000	100.000000

Analyse multivariée et bivariée

Analyse ACP

- → Aucun cluster n'a été observé, mais une certaine tendance dans F1 est observée
- → La première composante seule capture 50.64% de la variabilité de l'ensemble de données et la deuxième composante seule capture 34.83% de la variabilité de l'ensemble de données

Analyse multivariée et bivariée

Analyse ACP

→ Aucun cluster n'a été observé, mais une certaine tendance dans F1 est observée. Selon la classification des couleurs nutriscore, F1 a tendance à séparer les données, c'est-à-dire que plus la valeur de F1 est grande, plus le nutriscore est grand, et plus la valeur de F1 est petite, plus le nutriscore est petit

Analyse multivariée et bivariée

Analyse Anova

Distributions de "Fat par 100g" de produit pour les grades "a" et "e" de nutriscore

- L'analyse de variance à sens unique (ANOVA) est utilisée pour déterminer s'il existe des différences statistiquement significatives entre les moyennes de trois groupes indépendants (non liés) ou plus
- La différence entre une statistique d'échantillon et une valeur hypothétique est statistiquement significative si un test d'hypothèse indique qu'elle est trop improbable pour être le fruit du hasard
- En quoi cela est-il pertinent dans les données d'Open Food Facts ? L'utilité de l'ANOVA est de voir si H0 est vrai : La teneur en graisses est égale entre les produits des groupes "a" et "e" des classifications nutriscore la valeur p confirmera ou écartera H0

https://www.technologynetworks.com/informatics/articles/one-way-vs-two-way-anova-definition-differences-assumptions-and-hypotheses-306553

https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/anova/how-to/one-way-anova/interpret-the-results/key-results/

Analyse multivariée et bivariée

Analyse Anova

Fat per 100g of product for the nutriscore grades "a" and "e"

Valeur P ≤ "significance level α = 0.05" : Les différences entre certaines des moyennes sont statistiquement significatives

Valeur P > "significance level α = 0.05" : Les différences entre les moyennes ne sont pas statistiquement significatives

pingouin.anova

pingouin. anova (data=None, dv=None, between=None, ss_type=2, detailed=False, effsize='np2')
One-way and N-way ANOVA.

Returns:

aov : pandas.DataFrame

ANOVA summary:

- 'source': Factor names
- · 'ss': Sums of squares
- 'pF': Degrees of freedom
- 'Ms': Mean squares
- 'F': F-values
- 'p-unc': uncorrected p-values
- 'np2': Partial eta-square effect sizes

Quelques conclusions

→ Les données proviennent d'un projet de collaboration avec des utilisateurs du monde entier

→ Une idée pour corriger les données sur le sodium et le cholestérol serait de trouver tous ces produits dans l'image d'information nutritionnelle et d'appliquer un algorithme de reconnaissance d'image pour obtenir les

bonnes valeurs de sodium et de cholestérol

Il est dangereux de développer une application pour les utilisateurs qui suivent un régime low sodium et dont les valeurs du contenu de ces produits sont erronées, car cela pourrait mettre leur vie en danger

- → Nous avons trouvé des indicateurs et des variables intéressants qui ont été classés par lieux de vente ou par catégories
- Afin d'effectuer des analyses multivariées telles que l'ACP ou l'ANOVA, nous pouvons aussi classer les produits par catégories, comme les snacks, les biscuits, les boissons, etc. pour voir s'il existe des regroupements