Lecture 4: Probability

Jacob M. Montgomery

Quantitative Political Methodology

Lecture 4

CLass business

- PROBLEM SET 1 IS DUE RIGHT NOW
- ▶ Problem set 2 will be distributed today via the syllabus

Facebook and survey

- Sign up for our Facebook group: https://www.facebook.com/groups/1071702902960687/
- ► Take the class survey! Can't assign teams until you all do.

https:

//wustl.az1.qualtrics.com/jfe/form/SV_6rpSYD3xxmbRe5v

Roadmap

Last time:

- Visualizing data
- Measures of central tendency and spread

This time:

- Understand core concepts of probability
- Understanding concept of a "parameter"
- Introduce some probability distributions

Why are we studying this?

Probability defined

Imagine tossing a coin...

► Can you predict the outcome of a single coin toss?

Probability defined

Imagine tossing a coin...

- ► Can you predict the outcome of a single coin toss?
- ► Can you predict the *overall* outcome of 100 coin tosses?

Probability defined

Imagine tossing a coin...

- Can you predict the outcome of a single coin toss?
- Can you predict the overall outcome of 100 coin tosses?

AF p. 73: "For a particular possible outcome for a random phenomenon, the probability of that outcome is the proportion of times that the outcome would occur in a very long sequence of observations."

Example

Imagine you were rolling two six-sided dice.

- 1. Write down all possible scores.
- 2. Calculate the probability of each score
 - ▶ What is the probability of rolling a 2?

36 possible outcomes for the two dice:

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6

6,1 6,2 6,3 6,4 6,5 6,6

How many outcomes will generate a total score of 2?

5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6

$$P(roll=2) = \frac{1}{36} = 0.028.$$

Putting this all togetheer

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36

Putting this all togetheer

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

More formal definition

Probability is the relative frequency of occurrence for some particular outcome if a process is repeated a large number of times under similar conditions

More formal definition

Probability is the relative frequency of occurrence for some particular outcome if a process is repeated a large number of times under similar conditions

- ▶ If I flip a coin three times, what is the probability that I will get exactly two heads?
- ▶ If I roll two dice, what is the probability of getting a two?
- ▶ If I take a random sample of 100 Wash U students, what is the probability that less than 40% of the sample will be male?

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes,

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

- ▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.
- ▶ Then, $p(y_k) = Pr(Y = y_k)$, where
- ▶ $0 \le p(y_k) \le 1 \ \forall \ k$

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

- ▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.
- ▶ Then, $p(y_k) = Pr(Y = y_k)$, where
- ▶ $0 \le p(y_k) \le 1 \ \forall \ k$

$$\sum_{k=1}^K p(y_k) = 1$$

We already made one of these

Уk	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

We already made one of these

Уk	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

▶
$$p(y_k) = Pr(Y = y_k)$$
▶ $0 \le p(y_k) \le 1 \ \forall \ k$
▶ $\sum_{k=1}^{K} p(y_k) = 1$

$$\sum_{k=1}^{K} p(y_k) = 1$$

Parameters of distributions

▶ In probability theory we often wish to identify two important characteristics of distribution.

Parameters of distributions

- In probability theory we often wish to identify two important characteristics of distribution. - We wish to know the mean (μ), which is sometimes called the expected value.
 - We wish to know the variance (σ^2)
- ▶ NOTE: This is **not** the same as \bar{x} and s^2 .

Parameters of distributions

- In probability theory we often wish to identify two important characteristics of distribution. - We wish to know the mean (μ), which is sometimes called the expected value.
 - We wish to know the variance (σ^2)
- NOTE: This is **not** the same as \bar{x} and s^2 . Why are these greek letters?

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k)$$

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{n} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36)$$

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36) = 7$$

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36) = 7$$

The variance of a distribution

Уk	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
_12	1/36

$$\sigma^2 = E(Y - \mu)^2$$

The variance of a distribution

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\sigma^2 = E(Y - \mu)^2$$
 requires extra calculations

A little simulation

```
posVal<-c(1,2,3,4,5,6)
numRoll<-10
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-100
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-1000
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-10000
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```


End of part 1

- ► What is a probability?
- What is a frequency distribution?
- ► What are the two most important parameters for characterizing a distribution?

Example: The Binomial Distribution

Imagin tossing a fair coin in the air three times, where we are interested in the number of heads.

Coin 1	Coin 2	Coin 3	# Heads
Н	Н	Н	3
Т	Н	Н	2
Н	Т	Н	2
Т	Т	Н	1
Н	Н	Т	2
Т	Н	Т	1
Н	Т	Т	1
Т	Т	Т	0

This can be re-written as

$Pr(Y = y_k)$
1/8
3/8
3/8
1/8

This can be re-written as

y_k	$Pr(Y = y_k)$
0	1/8
1	3/8
2	3/8
3	1/8

- ▶ This table represents a *binomial distribution* where we have n = 3 trials and the probability of success is p = 0.5.
- ▶ We can make similar tables for any value of *n* or *p*.

Parameters of the binomial distribution

- ightharpoonup p = Probability of "success"
- ightharpoonup n = # of "trials"

Parameters of the binomial distribution

- p = Probability of "success"
- ightharpoonup n = # of "trials"

Mean and variance of the binomial

$$\mu = np$$
 $\sigma^2 = np(1-p)$

Example: Calculating the expected value of a binomial distribution

Уk	$Pr(Y=y_k)$
0	1/8
1	3/8
2	3/8
3	1/8

$$\mu = \sum_{k=1}^{K} y_k \Pr(Y = y_k)$$

Example: Calculating the expected value of a binomial distribution

Уk	$Pr(Y = y_k)$
0	1/8
1	3/8
2	3/8
3	1/8

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 0(1/8) + 1(3/8) + 2(3/8) + 3(1/8)$$

Example: Calculating the expected value of a binomial distribution

$$\begin{array}{c|c}
y_k & Pr(Y = y_k) \\
\hline
0 & 1/8 \\
1 & 3/8 \\
2 & 3/8 \\
3 & 1/8
\end{array}$$

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 0(1/8) + 1(3/8) + 2(3/8) + 3(1/8)$$
$$= 12/8 = 1.5 = np$$

▶
$$Pr(Y = a) = 0$$

•
$$Pr(Y = a) = 0$$

►
$$Pr(Y = a) = 0$$

► $Pr(a \le Y \le b) = \int_{b}^{a} f(y)dy$

▶
$$Pr(Y = a) = 0$$

$$Pr(a \le Y \le b) = \int_{b}^{a} f(y) dy$$

▶
$$f(y) \ge 0 \ \forall \ y$$

▶
$$Pr(Y = a) = 0$$

$$Pr(a \le Y \le b) = \int_b^a f(y) dy$$

$$f(y) \ge 0 \ \forall \ y$$

$$\int_{Y} f(y) = 1$$

▶
$$Pr(Y = a) = 0$$

$$ightharpoonup Pr(a \le Y \le b) = \int_{b}^{a} f(y) dy$$

▶
$$f(y) \ge 0 \ \forall \ y$$

$$\int_{Y} f(y) = 1$$

$$\mu = E(Y) = \int_{Y} y \ f(y) dy$$

▶
$$Pr(Y = a) = 0$$

$$Pr(a \le Y \le b) = \int_{a}^{a} f(y) dy$$

▶
$$f(y) \ge 0 \ \forall \ y$$

$$\int_{Y} f(y) = 1$$

$$\mu = E(Y) = \int_{Y} y \ f(y) dy$$

$$\sigma^2 = \dots$$

- Symmetric
- ► Bell shaped

- Symmetric
- Bell shaped
- ▶ It's just a function

- Symmetric
- Bell shaped
- It's just a function

Normal distribution

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2\sigma^2}(y-\mu)^2}$$

- Symmetric
- Bell shaped
- It's just a function

Normal distribution

$$f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-1}{2\sigma^2}(y-\mu)^2} = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(\frac{-1}{2\sigma^2}(y-\mu)^2\right)$$

• Usually denoted $Y \sim \textit{N}(\mu, \sigma^2)$

- ▶ Usually denoted $Y \sim N(\mu, \sigma^2)$
 - ▶ (note the two parameters)

- ▶ Usually denoted $Y \sim N(\mu, \sigma^2)$
 - ▶ (note the two parameters)
- ▶ This distribution is the basis of the "empirical rule."

- ▶ Usually denoted $Y \sim N(\mu, \sigma^2)$
 - ▶ (note the two parameters)
- This distribution is the basis of the "empirical rule."
- ▶ It is the one we teach you for reasons covered in the next several lectures (e.g., sampling distributions, Central Limit Theorem)

- ▶ Usually denoted $Y \sim N(\mu, \sigma^2)$
 - ▶ (note the two parameters)
- ▶ This distribution is the basis of the "empirical rule."
- ▶ It is the one we teach you for reasons covered in the next several lectures (e.g., sampling distributions, Central Limit Theorem) We cannot solve the integrals, but
 - tables will help you on exams
 - ▶ and R will help you on the homework.

T-Distribution

T-Distribution

- ▶ 1908 invented by william gosset
- wanted to quickly test the quality of raw materials, testing small batches

- ▶ It has "thicker" tails than the normal distribution.
- Symmetric and bell-shaped

- ▶ It has "thicker" tails than the normal distribution.
- Symmetric and bell-shaped
- ▶ Dispersion depends on degrees of freedom, sometimes listed as df or DOF. If there is notation it is often v or v.

- ▶ It has "thicker" tails than the normal distribution.
- Symmetric and bell-shaped
- ► Dispersion depends on degrees of freedom, sometimes listed as *df* or *DOF*. If there is notation it is often *v* or *v*.
- As $\nu \to \infty$ the t-distribution becomes essentially the normal distribution.

- ▶ It has "thicker" tails than the normal distribution.
- Symmetric and bell-shaped
- ▶ Dispersion depends on degrees of freedom, sometimes listed as df or DOF. If there is notation it is often v or v.
- As $\nu \to \infty$ the t-distribution becomes essentially the normal distribution.
- ► NOTE: The use of the t-distribution is **not** related to the CLT. We are assuming the data is normally distributed.

▶ What is the binomial distribution, and when would we use it?

- ▶ What is the binomial distribution, and when would we use it?
- What is a probability distribution, and how is it different than a frequency distribution?

- ▶ What is the binomial distribution, and when would we use it?
- What is a probability distribution, and how is it different than a frequency distribution?
- ▶ What are the important properties of a normal distribution?

- ▶ What is the binomial distribution, and when would we use it?
- What is a probability distribution, and how is it different than a frequency distribution?
- ▶ What are the important properties of a normal distribution?
 - Symmetric
 - ▶ Bell shaped
 - Empirical rule

- ▶ What is the binomial distribution, and when would we use it?
- What is a probability distribution, and how is it different than a frequency distribution?
- ▶ What are the important properties of a normal distribution?
 - Symmetric
 - Bell shaped
 - Empirical rule
- What is the t-distribution, and how is it different than a normal distribution?

- ▶ What is the binomial distribution, and when would we use it?
- What is a probability distribution, and how is it different than a frequency distribution?
- ▶ What are the important properties of a normal distribution?
 - Symmetric
 - Bell shaped
 - Empirical rule
- What is the t-distribution, and how is it different than a normal distribution?
 - Thicker tails
 - ▶ Degrees of freedom instead of σ^2

 Sometimes we will talk about how certain statistic are distributed

- Sometimes we will talk about how certain statistic are distributed
 - ► Sampling distribution
- Sometimes we will talk about assumptions we make about how the **population** is distributed

- Sometimes we will talk about how certain statistic are distributed
 - Sampling distribution
- Sometimes we will talk about assumptions we make about how the **population** is distributed
 - This can sometimes influence which sampling distribution we use

- Sometimes we will talk about how certain statistic are distributed
 - Sampling distribution
- Sometimes we will talk about assumptions we make about how the **population** is distributed
 - ► This can sometimes influence which sampling distribution we use
- ▶ Try to keep it straight, although we will work on it

Class business

- Problem set 2 is now posted
- Review the online materials for lab (VERY IMPORTANT)
- ► The reading and online content for Wednesday is *absolutely essential**
- Questions or concerns?