1

ASSIGNMENT11.15_13Q

EE22BTECH11219 - Sai Sujan Rada

QUESTION:

Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represents (a) travelling wave, (ii) a stationary wave or (iii) none at all:

(a)
$$y = 2\cos(3x)\sin(10t)$$

(b)
$$y = 2\sqrt{x - vt}$$

(c)
$$y = 3\sin(5x - 0.5t) + 4\cos(5x - 0.5t)$$

(d)
$$y = \cos x \sin t + \cos 2x \sin 2t$$

Fig. 1. DIPLACEMENT vs TIME-graph1

SOLUTION:

TRAVELLING WAVE	STATIONARY WAVE
$y(x,t) = A\sin(kx \pm \omega t)$	$y(x,t) = A\sin kx \cos \omega t$
PARAMETERS	DEFINITION
A	Amplitude
ω	Angular Velocity
x	Position
k	Wavenumber

Travelling wave vs Stationary wave

Let us assume an equation:

$$A(x)\cos(\omega t + \phi(x))$$

STATIONARY WAVE CONDITION	TRAVELLING WAVE CONDITION
$(1) A(x) = A_0 \sin(\omega t + \alpha)$	$(1) \ A(x) = constant$
(2) $\phi(x) = phase constant$	$(2) \ \phi(x) = kx + c$
TABLE II	

TRAVELLING WAVE VS STATIONARY WAVE

Fig. 2. DIPLACEMENT vs TIME-graph2

Fig. 3. DIPLACEMENT vs TIME-graph3

Fig. 4. DIPLACEMENT vs TIME-graph3