Projet 9 : Prédisez la demande électricité

Année 2020-2021

Présentation des données

Notre consommation

Janvier 2009 à Juin 2021

2 colonnes et 110 lignes

	Mois	Consommation_totale
0	2012-02-01	54476
1	2012-03-01	43156
2	2012-04-01	40176
3	2012-05-01	35257
4	2012-06-01	33219

Jeu de météo

Les données météo qui sont utilisées pour corriger l'effet température proviennent de : CEGIBAT

île de France

Chauffage Janvier 2009 à Juin 2021 Climatisation Janvier 2009 à Juin 2021

Création d'un nouveau Jeu de données

But : avoir les données dans un même data frame

	Année	01	02	03	04	05	06	07	08	09	10	11	12	Total
0	2021	0	0	0.2	0.9	5.1	47.6	0.0	0.0	0.0	0.0	0.0	0	53.8
1	2020	0	0	0.0	11.5	28.6	57.5	96.6	157.0	72.3	0.0	0.0	0	423.4
2	2019	0	0	0.0	5.7	3.2	100.1	152.3	115.6	22.6	4.0	0.0	0	403.3
3	2018	0	0	0.0	16.1	42.9	74.6	198.7	126.3	33.2	17.0	0.0	0	508.7
4	2017	0	0	0.0	0.0	47.2	111.9	108.3	80.5	8.5	2.7	0.0	0	358.9
5	2016	0	0	0.0	0.0	8.5	37.0	105.6	121.4	59.1	0.0	0.0	0	331.5
6	2015	0	0	0.0	2.3	2.8	64.8	139.1	122.4	1.0	0.0	0.3	0	332.6
7	2014	0	0	0.0	0.0	2.2	41.3	101.1	35.7	45.8	7.1	0.0	0	233.0
8	2013	0	0	0.0	3.8	0.0	29.9	152.1	89.2	27.1	4.3	0.0	0	306.2
9	2012	0	0	0.0	0.0	30.1	25.6	60.4	117.9	20.4	1.4	0.0	0	255.6
10	2011	0	0	0.0	12.6	21.6	54.1	30.8	74.7	49.8	10.9	0.0	0	254.5
11	2010	0	0	0.0	3.3	16.1	64.3	134.7	59.2	8.0	4.3	0.0	0	289.7
12	2009	0	0	0.0	0.0	12.3	45.1	86.7	117.9	15.2	4.8	0.0	0	281.9

```
meteo_newformat={'mois':[],'climatisation':[]}

for Année in meteo.index.values:
    for mois in meteo.columns:
        meteo_newformat['mois'].append(f"{Année}-{mois}-01")
        meteo_newformat['climatisation'].append(meteo.loc[Année,mois])

meteo_newformat=pd.DataFrame(meteo_newformat)
meteo_newformat['mois']=pd.to_datetime(meteo_newformat['mois'])
```

Climatisation

Degré Jour Unifié : est la différence entre la température extérieure et une température de référence qui permet de réaliser des estimations de consommations d'énergie

	ju['dju']= ju.head()	dju['chauff	age']+dju	[ˈcli
	mois	climatisation	chauffage	dju
0	2019-01-01	0.0	466.9	466.9
1	2019-02-01	0.0	324.3	324.3
2	2019-03-01	0.0	295.1	295.1
3	2019-04-01	0.7	223.5	224.2

176.8 176.8

111	2019-04-01	38078	2019-04-01	0.7	223.5	224.2
112	2019-05-01	35599	2019-05-01	0.0	176.8	176.8
113	2019-06-01	32571	2019-06-01	9.6	26.0	35.6
114	2019-07-01	34606	2019-07-01	0.0	0.0	0.0

115 rows × 6 columns

Nettoyage Du jeu de données

0.0

4 2019-05-01

Coeffietient de Pearson

La Courbe entre Dju et consommation

Comparaison

Consommation totale et DJU

Une forte corrélation

Correction de la DJU

Correction de l'effet température

L'effet température va influencer notre consommation donc nous allons corriger nos données températures grâce à la régression

x=nos variables explicatives t (temps) et dju

```
y=Elec['Consommation totale']
x=Elec.drop(columns=['Consommation totale'])
reg = linear model.LinearRegression(fit intercept=True)
reg.fit(x, y)
regression=reg.fit(x, y)
regression
LinearRegression()
print(reg.coef ,reg.intercept )
#Ici nous avons le coefficient du dju et le 2ème coeff correspond à t=temps
#les coeff sont affichés ds cette ordre puisque ils sont ds cet ordre ds le dataset
 60.35192562 -14.68978545] 28433.900809390787
#le coefficient du dju
c = reg.coef [0]
60.351925623451834
# calcule de serie corrigée
serie corrigee = Elec['Consommation totale'] - Elec['dju']*c
```

Après notre régression

	Consommation_totale	dju	t
Mois			
2010-01-01	56342	561.2	1
2010-02-01	48698	427.4	2
2010-03-01	48294	356.5	3
2010-04-01	38637	222.6	4
2010-05-01	37284	201.6	5

Test de nos résidus

H0: nos résidus suivent une loi

normale: 0,05<p-value

H1 : les résidus ne suivent pas une

loi normale : 0,05>p-value

from scipy.stats import shapiro
shapiro(reg_multip.resid)

(0.9929186701774597, 0.8298814296722412)

Nos résidus sont assez bien répartis

Les valeurs sont sur la bissectrices

Notre modèle

Modèle additif

Les deux droites sont parallèles

Modèle multiplicatif

Les deux droites sont sécantes

Modèle additif

Les deux droites sont parallèles

Moyennes mobiles

Moyenne mobile: modèle additif

Moyenne mobile

lci nous pouvons voir notre série de base corrigée avec le DJU

lci nous pouvons voir qu'il n'y a pas de tendance globale qui semble se dessiner, la série n'est pas en augmentation ou en baisse constante régulière, il n'y a donc pas de tendance

Moyenne mobile

lci nous pouvons voir que une période ce dessiner pour la saisonnalité qui est d'un carreau soit 12 mois. Donc nous avons une période de 12 mois.

periode =S

Résidus (le reste) = série observée - (tendance + saisonnalité

Moyenne mobile

serie_corr_Elec['corrigee-saison']=serie_corrigee.values-decomp_x.seasonal.values

Méthodologie pour nos modèles

Holt-Winter

Modèle additif

Prédiction année -1

```
MAE=np.abs(x_a_prevoir['corrigee']-x_a_prevoir['prediction']).mean()
MAE
1620.9409644067662
```

Prévision de consommation

SARIMA

Sarima: (p,d,q)(P,D,Q) [S] S S=notre période d D q Q

Tests

kpss(serie_corr_df['corrigee'])[1]

/anaconda3/lib/python3.6/site-packag behavior of using lags=None will cha as lags='legacy', and so a sample-si t will change to be the same as lags od. To silence this warning, either warn(msg, FutureWarning)

0.08517684021448321

du seuil critique

KPSS : H0 la série est stationnaire
P_values>5% : accepte H0
Ici on accepte H0 mais la P-value très proche

adfuller(serie_corr_df['corrigee'])[1]
0.3682866645959178

AD Fuller: H0 la série n'est pas stationnaire P_values>5%: accepte H0 lci on accepte H0 donc notre série n'est pas stationnaire

adfuller(y_dif1[12:])[1]
#adfuller : H0 la serie n'est pas stationnaire'

0.005691344568372587

AD Fuller : H0 la série n'est pas stationnaire

P_values<5% : accepte H1

lci on accepte H1 donc notre série est

stationnaire

kpss(y_dif1[12:])[1]

/anaconda3/lib/python3.6/s
behavior of using lags=Nor
as lags='legacy', and so a
t will change to be the sa
od. To silence this warni
warn(msg, FutureWarning)
/anaconda3/lib/python3.6/s
g: p-value is greater thar
warn("p-value is greater

0.1

KPSS: H0 la série est stationnaire
P_values>5%: accepte H0
Ici on accepte H0 donc la série est stationnaire

Sarima paramètre : d

Décroissante lente au niveau des lags 12, on n'effectue pas de différentiation en tendance donc d=0 mais une différenciation en saisonnalité donc D=1

Sarima paramètre : D

Sarima paramètre : p

premier lag où le PACF dépasse le seuil de significativité

Sarima paramètre : q

premier lag où l'ACF dépasse le seuil de significativité

Sarima paramètre : P

On regarde les lags saisonniers qui sortent du seuil de significativité sur le PACF

Sarima paramètre : Q

On regarde les lags saisonniers qui sortent du seuil de significativité

SARIMA: modèle 1

```
from statsmodels.tsa.statespace.sarimax import *
from statsmodels.stats.diagnostic import acorr ljungbox
model1 = SARIMAX(np.asarray(x tronc["corrigee"]), order=(1,0,1), seasonal order=(1,1,1,12))
results1 = model1.fit()
print(results1.summary())
#print('Retard : p-value')
#for elt in [6, 12, 18, 24, 30, 36]:
    #print('{}: {}'.format(elt, acorr ljungbox(results1.resid, lags=elt)[1].mean()))
                                 Statespace Model Results
Dep. Variable:
                                                    No. Observations:
                                                                                        102
Model:
                   SARIMAX(1, 0, 1)x(1, 1, 1, 12)
                                                    Log Likelihood
                                                                                   -766.227
Date:
                                 Sat, 14 Dec 2019
                                                                                   1542.454
                                                    AIC
Time:
                                         10:18:06
                                                    BIC
                                                                                   1554.953
Sample:
                                                    HOIC
                                                                                   1547.494
                                            - 102
Covariance Type:
                                              opq
                                                 P> z
                 coef
                         std err
                                                             [0.025
                                                                         0.9751
ar.L1
               0.9489
                           0.031
                                     30.241
                                                 0.000
                                                             0.887
                                                                         1.010
ma.L1
              -0.9064
                           0.036
                                    -25.291
                                                 0.000
                                                            -0.977
                                                                        -0.836
ar.S.L12
             0.3682
                       0.131
                                      2.815
                                                 0.005
                                                             0.112
                                                                        0.625
ma.S.L12
             -0.6148
                           0.166
                                     -3.710
                                                 0.000
                                                            -0.940
                                                                        -0.290
sigma2
            1.719e+06
                      2.35e-09
                                    7.3e + 14
                                                 0.000
                                                          1.72e+06
                                                                       1.72e+06
Ljung-Box (Q):
                                     48.39
                                             Jarque-Bera (JB):
                                                                                0.92
Prob(Q):
                                      0.17
                                             Prob(JB):
                                                                                0.63
Heteroskedasticity (H):
                                      0.74
                                             Skew:
                                                                               -0.22
                                                                                2.77
Prob(H) (two-sided):
                                      0.42
                                             Kurtosis:
```


Modélisation du


```
pred_model2tronc = results1.get_forecast(12)
pred_tronc = pred_model2tronc.predicted_mean
MAE_sarima_model2=np.abs(x_a_prevoir['corrigee']-pred_tronc).mean()
MAE_sarima_model2

1976.4174959276188
```

Sarima N°2

```
Dep. Variable:
                                          y No. Observations:
                                                                    102
         Model: SARIMAX(1, 0, 0)x(0, 1, 0, 12)
                                                Log Likelihood -772.426
                            Sat, 14 Dec 2019
           Date:
                                                          AIC 1550.853
          Time:
                                   10:18:12
                                                          BIC 1558.352
        Sample:
                                          0
                                                        HQIC 1553.877
                                      - 102
Covariance Type:
                                       opg
                       std err
                                   z P>|z|
                                                [0.025
                                                          0.975]
               coef
intercept
           -71.7965
                      138.702 -0.518 0.605
                                             -343.648
                                                         200.055
             0.1588
   ar.L1
                        0.099
                               1.605 0.108
                                                -0.035
                                                           0.353
 sigma2 1.684e+06 2.58e+05
                               6.536 0.000 1.18e+06 2.19e+06
       Ljung-Box (Q): 64.54 Jarque-Bera (JB): 0.00
             Prob(Q):
                       0.01
                                     Prob(JB): 1.00
Heteroskedasticity (H):
                       0.83
                                        Skew: 0.01
  Prob(H) (two-sided):
                       0.61
                                     Kurtosis: 2.98
```

```
MAE_sarima_model_optim=np.abs(x_a_prevoir['corrigee']-pred_tronc).mean()
MAE_sarima_model_optim

1246.9854384675446
```

Comparaison de nos modèles

Modèle additif

HOLT-WINTERS

MAE=np.abs(x_a_prevoir['corrigee']-x_a_prevoir['prediction']).mean()
MAE

1620.9409644067662

SARIMA

```
pred_model2tronc = results1.get_forecast(12)
pred_tronc = pred_model2tronc.predicted_mean
MAE_sarima_model2=np.abs(x_a_prevoir['corrigee']-pred_tronc).mean()
MAE_sarima_model2
```

1976.4174959276188

Holt-Winter: année+1

