Домашня робота з курсу "Теоретична механіка"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 6

Випадок 1. Спочатку розглянемо випадок, коли OA направлено праворуч (див. рис. 1).

Рис. 1: Випадок з OA направленим праворуч. O' та A' є проекціями на горизонталь, вздовж якої рухається грузик

Швидкість точки A дорівнює $v_A = \omega r$ і в цьому випадку направлена вниз (будемо вважати, що OA рухається за годинниковою стрілкою). Швидкість точки B направлена праворуч та нехай дорівнює v_B .

Оскільки AB не деформується, то проєкції v_A та v_B на AB однакові, інакшими словами $(\boldsymbol{v}_A)_{AB}=(\boldsymbol{v}_B)_{AB}.$

Нехай кут ABA' дорівнює θ . Тоді $(\boldsymbol{v}_A)_{AB} = v_A \sin \theta$, а $(\boldsymbol{v}_B)_{AB} = v_B \cos \theta$. Звідси отримуємо, що $v_B = v_A \tan \theta$. З малюнку $\tan \theta = \frac{h}{\sqrt{l^2 - h^2}} = \frac{1}{\sqrt{(l/h)^2 - 1}}$. Таким чином:

$$v_B = \frac{\omega r}{\sqrt{l^2/h^2 - 1}}$$

Випадок 2. Нехай OA направлено вертикально вгору (див. рис. 2).

Рис. 2: Випадок з OA направленим вгору.

Оскільки v_A паралельно v_B , то ці вектори складають однакові кути з AB. Значить, щоб проєкції були рівними, рівними мають бути модулі. Отже $v_B = v_A = \omega r$.

Випадок 3. Нехай OA направлено ліворуч (див. рис. 3).

Рис. 3: Випадок з OA направленим ліворуч. A' та O' є проєкціями A, O на горизонтальну площину, вздовж якої рухається грузик.

Знову $v_A = \omega r$ і направлено вгору. Нехай кут BA'A дорівнює θ . В такому разі $(\boldsymbol{v}_B)_{AB} = v_B \cos \theta$, а $(\boldsymbol{v}_A)_{AB} = v_A \sin \theta$. Тому $v_B = v_A \tan \theta$. З малюнку видно, що $\tan \theta = \frac{h}{\sqrt{l^2 - h^2}} = \frac{1}{\sqrt{l^2/h^2 - 1}}$. Таким чином отримуємо результат, аналогічний $\varepsilon una\partial \kappa y$ 1.

Відповідь. У вертикальному положені швидкість є ωr , а у горизонтальних $\frac{\omega r}{\sqrt{l^2/h^2-1}}$.