Cheat Sheet Elektrotechnik

Definitionen

Atomare Einheiten

Länge	l	Meter: m
Masse	m	Kilogramm: kg
Zeit	t	Sekunde: s
Stromstärke	I	Ampere: A
Temperatur	T	Kelvin: K
Stoffmenge	N	Mol: mol
Lichtstärke	I_V	Candela: cd

Grössenordnungen

Faktor	Präfix	Zeichen	Faktor	Präfix	Zeichen
10^{1}	Deka	da	10^{-1}	Dezi	d
10^{2}	Hekto	h	10^{-2}	Zenti	c
10^{3}	Kilo	k	10^{-3}	Milli	m
10^{6}	Mega	M	10^{-6}	Mikro	μ
10^{9}	$_{ m Giga}$	$^{\mathrm{G}}$	10^{-9}	Nano	n
10^{12}	Tera	T	10^{-12}	Piko	p
10^{15}	Peta	P	10^{-15}	Femto	f
10^{18}	$\operatorname{Ex} a$	E	10^{-18}	Atto	a
10^{21}	Yotta	\mathbf{Z}	10^{-21}	$_{ m Zepto}$	${f z}$
10^{24}	Yotta	Y	10^{-24}	Yocto	y

Konstanten

${\rm Dielekt rizit\"{a}tskonstant e}$	ε_0	$8,85 \cdot 10^{-12} \frac{\mathrm{C}^2}{\mathrm{N}} \mathrm{m}^2$
Coulomb Konstante $(\frac{1}{4\pi\varepsilon_0})$	k	$8,99 \cdot 10^9 \mathrm{N} \frac{\mathrm{m}^2}{\mathrm{C}^2}$

Elektrische Ladung

Elektrische Ladung ist eine intrinsische Eigenschaft elementare Bauelemente

Positive Ladung (q+) bezeichnet einen Überschuss an positiv geladenen Teilen (Elektronenunterschuss)

Negative Ladung (q**-)** bezeichnet eine Überschuss an negativ geladenen Teilen (Elektronenüberschuss)

Leiter bezeichnet Stoffe, in denen sich Elektronen (relativ) frei bewegen können

Nichtleiter sind Stoffe, in denen sich Elektronen nicht bewegen

Ladungen mit gleichem Vorzeichen stossen einander ab, Ladungen entgegengesetzten Vorzeichens ziehen einander an

Coulomb

Ein Coulomb (C) ist die Ladungsmenge, die durch einen Draht, in dem Strom der Stärke 1 A in 1 s fliesst:

$$dq = idt$$
 $[q] = C = As$

Die Kraft zwischen zwei Ladungen q_1 und q_2 mit dem Abstand d ist definiert als:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{|q_1| \cdot |q_2|}{r^2} \qquad [F] = N = \frac{\text{kgm}}{\text{s}^2}$$

Die Richtung der Kraft ist entlang der Verbindungslinie von q_1 und

Die Kraft zwischen n Ladungen ist die Summe der Kräfte zwischen allen Ladungspaaren.

Kugelschalentheorem

- Eine homogen geladene Kugelschale verhält sich so, als sei die gesamte Ladung im Zentrum vereinigt
- Innerhalb einer homogen geladenen Kugelschale ist die elektrostatische Kraft null

Elektrische Felder

Elektrische Felder sind Vektorfelder. Es wird definiert durch die Kraft \vec{F} , die auf eine positive Punktladung q_0 wirkt:

$$\overrightarrow{E} = \frac{\overrightarrow{F}}{q_0}$$
 $[E] = \frac{N}{C}$

$$[E] = \frac{N}{C}$$

Elektrische Feldlinien (aka Kraftvektoren im Feld) zeigen in Richtung der negativen Ladung!

Das elektrische Feld einer Ladung q ist:

$$E = \frac{F}{q} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{|q|}{d^2}$$

Das elektrische Feld von n Ladungen ist die Summe der elektrischen Felder jeder Einzelladung.

Dipol

Für einen Dipol mit dem Ladungsabstand d zweier Ladungen vom Betrag q ist das elektrische Feld \overrightarrow{E} an einem Punkt mit dem Abstand z vom Mittelpunkt des Dipols gilt:

$$\overrightarrow{E} = \frac{1}{2\pi\varepsilon_0} \cdot \frac{dq}{z^3}$$

Dabei ist dq das Dipolmoment \overrightarrow{p} des Dipols.

Elektrisches Potenzial

Die Änderung ΔU der elektrischen potentiellen Energie einer Punktladung, die sich von a nach b bewegt ist:

$$\Delta U = U_b - U_a = -W \qquad [U] = [W] = J$$

Die Potentialdifferenz (U) ist entsprechend

$$\Delta V = V_b - V_a = -\frac{W}{q}$$
 $[V] = \frac{J}{C} = V$

In Bezug auf eine Ladung $q: U = V \cdot q$

Äquipotenzialfläche

Ein elektrisches Feld ist in jedem Punkt senkrecht zu einer Äquipotenzialfläche

Copyright © 2013 Constantin Lazari Revision: 1.0, Datum: 4. November 2013