QMCPy Client for UM-Bridge

Aleksei G. Sorokin

Illinois Institute of Technology (IIT), Department of Applied Mathematics

QMCPy: A (Quasi-)Monte Carlo Software in Python

(Q)MC methods efficiently approximate the expectation of a random variable

$$(\mathsf{Exact}) \quad \mu = \mathbb{E}[g(\boldsymbol{T})] = \mathbb{E}[f(\boldsymbol{X})] = \int_{(0,1)^d} f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \quad \approx \quad \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}_i) = \hat{\mu} \quad \mathsf{(Approx)}$$

- ullet want the expectation of g WRT r.v. $oldsymbol{T}$
 - cantilevered beam displacement WRT uncertain material parameters
 - payoff of a financial option WRT Brownian motion
- ullet transform to equivalent expectation of f WRT $oldsymbol{X} \sim \mathcal{U}(0,1)^d$
- $x_1, \ldots, x_n \sim \mathcal{U}(0,1)^d$ sampling nodes
 - IID for Simple Monte Carlo: $\mathcal{O}(1/\sqrt{n})$ convergence
 - low discrepancy for Quasi-Monte Carlo: nearly $\mathcal{O}(1/n)$ convergence
- approximate the function average by the sample average

IID vs Low Discrepancy Points

QMCPy Components

$$(\mathsf{Exact}) \quad \mu = \mathbb{E}[g(\boldsymbol{T})] = \mathbb{E}[f(\boldsymbol{X})] = \int_{(0,1)^d} f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \quad \approx \quad \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}_i) = \hat{\mu} \quad \mathsf{(Approx)}$$

- generator of x_1, \ldots, x_n : Discrete Distribution
- ullet transform setting f so $\mathbb{E}[g(T)] = \mathbb{E}[f(X)]$ where $X \sim \mathcal{U}(0,1)^d$: True Measure
- model g: Integrand
- ullet stopping criterion algorithm adaptively determining n s.t.

approximation error = $|\mu - \hat{\mu}| \le \varepsilon$ = user error threshold

Keister Integral: $g(T) = \pi^{d/2} \cos(||T||_2)$, $T \sim \mathcal{N}(0, I/2)$

B. D. Keister. "Multidimensional Quadrature Algorithms". In: Computers in Physics 10 (1996), pp. 119–122. DOI: 10.1063/1.168565

References and Code Demo

- QMCPy ReadTheDocs UM-Bridge Demo: https://qmcpy.readthedocs.io/en/latest/demo_rst/umbridge.html
- QMCPy ReadTheDocs UMBridgeWrapper: https://qmcpy.readthedocs.io/en/latest/algorithms.html# module-qmcpy.integrand.um_bridge_wrapper
- UM-Bridge ReadTheDocs QMCPy Client: https://um-bridge-benchmarks.readthedocs.io/en/docs/umbridge/clients.html
- QMCPy Homepage: https://qmcpy.org/
- Sou-Cheng T. Choi et al. "Quasi-Monte Carlo Software". In: Monte Carlo and Quasi-Monte Carlo Methods. Ed. by Alexander Keller. Cham: Springer International Publishing, 2022, pp. 23–47. ISBN: 978-3-030-98319-2