

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

DEPARTMENT OF MATHEMATICS I - Internal Assessment

II- Semester.

Sub. Name: Mathematics-II for computer science Engineering stream Sub Code: BMATS201

Date:08/05/2024
Total Marks: 30

Faculty: Dr. AM/Dr. RSI/SS/Dr. ACK/VB/ BK/BV/TNG/ND

Answer any one full question, select one full from each part.

Answer any one full question, select one full from each part.									
Q.N o		PART-A				М	BT L	CO s	
1	*	Use fourth order Runge- Kutta method to find $y(0.1)$ given $\frac{dy}{dx} = 3e^x + 2y, y(0) = 1, h = 0.1$				7	L2	1	
	سطر	Use Simpson's 3/8th rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 sub intervals.					8	L3	3
				OR					
2	а	Using Regula Falsi method to find the approximate root of the equation $\tan x + \tanh x = 0$, the root lies in between 2 and 3. Carryout upto 4 th approximation.					7	L2	1
		From the following data estimate the number of students scoring marks in between 40 and 45			ring			3	
	b	Marks 30 No.of students 3	0 - 40 40 - 5	50 - 60	60 – 70 35	70 - 80	8	1.2	
				0					
3	a	Given that $y' = x^2 + \frac{y}{2}$ and $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$. Evaluate $y(1.4)$ by Milne's method. Apply corrector formula twice.				7	1.2	. 1	
	b	If $f(0) = 2$, $f(1) = 3$, $f(2) = 12$, $f(5) = 147$, find $f(3)$ using Lagrange's interpolation formula				8	L2	3	
OR									
A	а	Using Newton-Raphson method, find a real root of $x\sin x + \cos x = 0$ near to π , correct to 4 decimal places					7	L2	1
	K	Use Newton's divided difference formula to find $f(4)$, given $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				8	1.2	_3	

250

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

DEPARTMENT OF MATHEMATICS II - Internal Assessment

II- Semester.

Sub. Name: Mathematics -II for CSE stream

Sub Code: BMATS201

Date:10-06-2024

Total Marks: 30

Faculty: Dr. AHS/Dr. AM/Dr. RSI/Dr. ACK/SS/MVS/VB/MRG/BK/TNG/HBB/BV/ND

Instructions to students Answer any one full question, select one full from each part.

Q.1	Q.No PART-A		M	BTL	COs			
1	7	Find $y(0.1)$, $y(0.2)$ by using Taylor's series method, given $\frac{dy}{dx} = y - x^2$, $y(0) = 1$ considering up to 4^{th} degree	. 7	L3	3			
	6	Define Triple integral, then Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dz dy dx$.	. 8	L3	2			
	OR							
2	a	Using Modified Euler's formula compute $y(0.4)$ given that $\frac{dy}{dx} = x + \sin y$, $y(0) = 1$	7	L3	3			
		by taking $h = 0.2$, carry out 2 modifications at each step (keep x in radian)						
	ь	Solve, by changing the order of integration $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$.	. 8	L3	2			
PART-B								
3	3	Obtain the directional derivative of $\emptyset = 4xz^3 - 3x^2y^2z$ at $(2, -1, 2)$ along $2i - 3j + 6k$.	7	L2	1			
	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$, Calculate div \vec{F} and curl \vec{F} . at (1,1,1).				2			
OR .								
4	a	Define irrotational vector use that Find a, b, c such that	. 7	L1	1			
		$\vec{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k.$. ′	Li	1			
	Ь	Show that cylindrical polar co-ordinate system is orthogonal.	8	L2	2			

MAHARAJA INSTITUTE OF TECHNOLOGY MYSORE

DEPARTMENT OF MATHEMATICS III - Internal Assessment

II - Semester.

Sub, Name:

Mathematics-II for CSE Stream

Sub Code: M23BMATS201

Date: 15/07/2024

Total Marks: 30

Faculty:Dr.AM/Dr.RSI/Dr.ACK/SS/MVS/ VB/MRG/BK/HBB/BV/ND

NOTE	. Auswer any IV	WO full questions, choosing at least ONE f	rom each PART
Q.N	No	PART-A	116

Q.No		PART-A MARTINE PART CONTRACTOR PART						
			M	BTL	Cos			
1	a	Find the volume of tetrahedral bounded by the planes $x = 0; y = 0; z = 0; \frac{x + y + z}{a + b + c}$	7	L2	2			
	þ	Find $\int_0^1 x^{\frac{3}{2}} (1-x)^{\frac{1}{2}} dx$	8	Li	1			
	OR							
2	a	Find the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.	7	LI	2			
	þ	Show that $\int_0^{\frac{\pi}{2}} \sqrt{\sin \theta} \ d\theta \ X \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$	8	L2	1			
PART-B								
		Define Subspace of a vector space						
	a ,	Show that W is a subspace of $V(R)$ where	7	Ļ2	2			
3		$W = \{x, y, z/x = y = z\} \text{ in } V_3(R)$						
		Verify the Rank-Nullity theorem for the linear						
1.0	b	transformation $T:R^3 \to R^3$ defined by $T(x, y, z) =$	8	L2	2			
		(x + y, x - y, 2x + z) and also find Range space and Null space.		LZ				
	OR							
12	a	Find the Basis and Dimension for the span	7		I			
		$S = \{(2,4,2), (1,-1,0), (1,2,1), (0,3,1)\}$ in $V_3(R)$		L2	2			
4	b 7	Find the matrix of the linear transformation	8					
		$T: V_3(R) \to V_2(R)$ defined by $T(x, y, z) = (x +$						
		$(y, y + z)$ relative to the bases $B_1 =$		L2	2			
		$\{(1,1,0),(1,0,1),(1,1,-1)\}, B_2 = \{(2,-3),(1,4)\}.$						