Primzahlen

Zahlentheorie

Ursprünglich ist die Zahlentheorie ein Teilgebiet der Mathematik, welches sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen von Gleichungen in den ganzen Zahlen beschäftigt.

Aus moderner Sicht umfasst sie alle mathematischen Theorien, die sich historisch aus diesen Fragestellungen entwickelt haben.

Elementare Zahlentheorie

Von der Antike bis in das siebzehnte Jahrhundert behauptete sich die Zahlentheorie als eigenständige Disziplin. Ihre Hilfsmittel waren die Eigenschaften der ganzen Zahlen, insbesondere Primfaktorzerlegung, Teilbarkeit und das Rechnen mit Kongruenzen.

Wichtige Resultate: kleiner Satz von Fermat und dessen Verallgemeinerung, der Satz von Euler, der Chinesische Restsatz, der Satz von Wilson und der Euklidische Algorithmus.

Analytische Zahlentheorie

Euler benutzte als erster Methoden der Analysis und Funktionentheorie, um zahlentheoretische Fragestellungen zu lösen.

Wichtige Probleme betreffen statistische Fragen nach der Verteilung von Primzahlen, wie zum Beispiel der Primzahlsatz von Gauß und der dirichletsche Satz über Primzahlen in arithmetischen Progressionen. Im Zusammenhang mit dem Primzahlsatz tauchten auch die Zeta-Funktionen auf. Die wohl berühmteste Zeta-Funktion ist die Riemannsche Zeta-Funktion, Ausgangspunkt der Riemannschen Vermutung.

Algebraische Zahlentheorie und arithmetische Geometrie

Sehr bedeutend war die Entdeckung des quadratischen Reziprozitätsgesetzes. Es zeigte, dass man Fragen der Lösbarkeit diophantischer Gleichungen in den ganzen Zahlen durch den Übergang zu anderen Zahlbereichen einfacher lösen kann. Hierzu betrachtet man endliche Erweiterungen der rationalen Zahlen, sogenannte algebraische Zahlkörper.

Höhepunkte der algebraischen Zahlentheorie sind die Klassenkörpertheorie und die Iwasawa-Theorie. Es zeigte sich, dass die Zahlentheorie als ein Spezialfall der algebraischen Geometrie betrachtet werden kann. Die moderne algebraische Zahlentheorie wird daher auch als arithmetische Geometrie bezeichnet.

Algorithmische Zahlentheorie

Dieser Zweig der Zahlentheorie beschäftigt sich damit, wie zahlentheoretische Probleme algorithmisch effizient umgesetzt werden können.

Primzahl Definition

Eine ganze Zahl p>1 heißt Primzahl genau dann, wenn sie genau 2 Teiler besitzt, nämlich sich selbst und 1. Primzahlen werden auch irreduzible Zahlen genannt. Die Eigenschaft Primzahl zu sein, wird oft auch mit "die Zahl ist prim" ausgedrückt.

Die Eins ist nach Definition keine Primzahl!

Aus dem Griechischen $\pi\rho\omega\tau\sigma\zeta$ $\alpha\rho\iota\vartheta\mu\sigma\zeta$ wörtlich übersetzt, bedeutet Primzahl "erste Zahl". 1202 verwendete Fibonacci den Begriff "nichtzusammengesetzte Zahl", der sich aber nicht durchsetzen konnte.

```
Beispiele für große Primzahlen: 10^{506} - 10^{253} - 1, 2^{2976221} - 1 und 2^{1398269} - 1 Primzahlzwilling ... Paar zweier Primzahlen p, p+2 Primzahlvierling ... Primzahlfolge p, p+2, p+6, p+8 Primzahlachter ... 2 Vierlinge mit Abstand 22
```

Während die Unendlichkeit der Primzahlen bewiesen ist, ist dies für Primzahlzwillinge und -vierlinge noch nicht sicher.

Titan-Primzahlen

Ein Titan-Primzahl ist eine Primzahl mit mehr als 1000 Ziffern (nach Yates).

Gigant-Primzahlen

Eine Gigant-Primzahl ist eine Primzahl mit mehr als 10000 Ziffern.

```
Merkwürdige Primzahlen sind zum Beispiel
```

```
Ziffernfolge: 123456789 siebenmal hintereinander und die Ziffern 1234567 10^{506} - 10^{253} - 1 = 999...9998999...999
```

Primzahl - Geschichte

Eine Primzahl ist eine natürliche Zahl, welche genau 2 Teiler besitzt, d.h. diese Zahl p ist nur durch 1 und sich selbst ohne Rest teilbar. Per Definition ist die 1 keine Primzahl. Die einzige gerade Primzahl ist 2.

Schon Euklid von Alexandria (um 365-300 v.Chr.) bewies, dass unendlich viele Primzahlen existieren müssen. Im Buch VII der "Elemente" begründet Euklid auch die Bezeichnung

πρωτος αριθμος

(lateinisch: numerus primus; deutsch: erste Zahl) indem er alle anderen Zahlen als aus Primzahlen, den ersten, grundlegenden Zahlen, zusammengesetzt erklärt.

Primzahlen wurden schon auf Kerbhölzern aus Knochen der Altsteinzeit gefunden. siehe Knochen von Ishango

Indirekter Beweis nach Euklid:

Angenommen es gäbe nur endlich viele Primzahlen $p_1, p_2, ..., p_k$ und es sei $n = p_1 * p_2 * ... * p_k$.

Dann kann keine der k Primzahlen p_1 , p_2 , ..., p_k ein Teiler der Zahl n+1 sein. D.h. entweder ist n+1 selbst Primzahl oder es muss noch eine andere Primzahl außer den k angenommen existieren. In beiden Fällen tritt ein Widerspruch auf, d.h. es muss unendlich viele Primzahlen geben.

Neben zahlentheoretischen Untersuchungen erhalten diese Zahlen immer stärkere Bedeutung, da mit Hilfe besonders großer Primzahlen schwer zu entschlüsselnde Codierungen aufgebaut werden können.

Primzahlbegriff in Euklids "Elementen"

Im ersten der drei Bücher zur Arithmetik (Buch VII-IX) der "Elemente" gibt Euklid mehrere Definitionen:

Definition 1: Einheit ist das, wonach jedes Ding eines genannt wird.

Definition 2: Zahl ist die aus Einheiten zusammengesetzte Menge.

Definition 3: Primzahl ist eine Zahl, die sich nur durch die Einheit messen lässt.

aufweisen. Diese Zahlen nennt er "zweite Zahlen" (δευτερος αριθμος, numerus secundus)

Damit ist die 1 für Euklid keine Zahl, sondern eben die "Einheit". Als besonders sieht er außerdem die Primzahlen ("ersten Zahlen") an.

Durch Nikomachos wurde die Einteilung Einheit-Primzahl-nicht Primzahl erweitert, indem er die geraden Zahlen in vollkommene (Vollkommene Zahlen), in überschießende (Abundante Zahlen) und in mangelhafte (Defiziente Zahlen) einteilte.

Die ungeraden Zahlen wurden in die Klassen Primzahlen, relativ prime Zahlen und zusammengesetzte Zahlen unterschieden. Dabei verstand Nikomachos unter den relativ primen Zahlen solche, welche zwar nicht prim sind aber nur einen Primfaktor besitzen, d.h. also alle Potenzen von Primzahlen. Zusammengesetzte Zahlen sind nach seiner Meinung nur die, welche mindestens zwei Primteiler

Primzahlbeweis in Euklids "Elementen"

Im Buch IX, 20 führt Euklid seinen historischen Beweis zur Unendlichkeit der Primzahlen. In deutscher Übersetzung lautet er:

Es gibt mehr Primzahlen, als jede vorgelegte Anzahl von Primzahlen.

Die vorgelegten Primzahlen seien a, b, c. Ich behaupte, dass es mehr Primzahlen gibt als a,b,c.

Man bilde zunächst die kleinste von a, b, c gemessene Zahl (VII, 36); sie sei DE, und man füge zu DE die Einheit DF hinzu. Entweder ist EF dann eine Primzahl, oder nicht.

Zunächst sei es eine Primzahl. Dann hat es mehr Primzahlen als a, b, c gefunden, nämlich a, b, c, EF. Zweitens sei EF keine Primzahl. Dann muss es von irgendeiner Primzahl gemessen werden (VII, 31); es werde von der Primzahl g gemessen. Ich behaupte, dass g mit keiner der Zahlen a, b, c zusammenfällt. Wenn möglich tue es dies nämlich. a, b, c messen nun De; auch g müsste dann DE messen. Es misst aber auch EF. g müsste also auch den Rest, die Einheit DF messen, während es eine Zahl ist; dies wäre Unsinn. Also fällt g mit keiner der Zahlan a, b, c zusammen; und es ist Primzahl nach Voraussetzung. Man hat als mehr Primzahlen als die vorgelegte Anzahl a, b, c gefunden, nämlich a, b, c, g.

Hauptsatz der Zahlentheorie

Hauptsatz: Jede natürliche Zahl n mit $n \ge 2$ lässt sich auf eindeutige Weise als Produkt von Primzahlpotenzen darstellen:

$$n = p_1^{\alpha} 1 \cdot p_2^{\alpha} 2 \cdot \dots \cdot p_r^{\alpha} r$$

wobei für die Primzahlen $p_1, p_2, ..., p_r$ gilt: $p_1 < p_2 < ... < p_r$. Die α_i sind natürliche Zahlen.

Beweis:

Induktionsanfang für n = 2: Da 2 eine Primzahl ist, gilt offenbar n = 2.

Induktionsannahme: für alle natürlichen Zahlen n mit 2 n k-1 gilt der Satz.

Induktionsschritt:

Für n = k sind zwei Fälle möglich.

Fall 1: k ist Primzahl; dann gilt offenbar der Satz

Fall 2: k ist keine Primzahl

In diesem Fall existieren natürliche Zahlen a und b mit

$$k = a \cdot b$$
, $1 < a < k$ und $1 < b < k$.

Für a und b existieren laut Annahme Darstellungen in Form von Produkten aus Primzahlpotenzen. Wegen $k = a \cdot b$ besitzt dann auch k eine Darstellung als Produkt von Primzahlpotenzen.

Die Eindeutigkeit der Darstellung lässt sich durch einen indirekten Beweis zeigen.

Angenommen, für eine gewisse natürliche Zahl n existieren zwei verschiedene Darstellungen der im Satz angegebenen Art. Durch Division von gemeinsamen Potenzen gelangt man dann zu einem Widerspruch.

Sieb des Eratosthenes von 1 bis 100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Primzahlsieb, Sieb des Eratosthenes

Das berühmteste Verfahren zur Bestimmung von Primzahlen ist das durch den griechischen Mathematiker Eratosthenes von Kyrene, welcher 235 v.Chr. Vorsteher der Bibliothek in Alexandria wurde, entwickelte Primzahlsieb. Es ermittelt Primzahlen in einem vorgegebenen Intervall, indem alle zusammengesetzten Zahlen ausgesiebt werden: "... Man denke sich die Folge der natürlichen Zahlen hingeschrieben und streiche, zunächst von 2 ausgehend, jede zweite Zahl, also, 4,6,8,..., dann von 3 ausgehend, jede dritte Zahl, also 6,9,12,..., dann von 5 ausgehend, jede fünfte Zahl, usw... Die 4 wurde als Ausgangszahl übergangen, weil sie als Vielfaches von 2 bereits gestrichen war... Übrig bleiben augenscheinlich nur die Primzahlen..."

("Über Zahlen und Überzahlen", von Krbek)

Pascaltext zum Sieb des Eratosthenes

Der Quelltext ermöglicht die Berechnung aller Primzahlen bis 1000 mit Hilfe des Siebes des Eratosthenes: program sieb;

```
zahl:array[1..1000] of boolean;
var
                                               i,j,grenze:integer;
       grenze:=1000;
                                               fillchar(zahl,sizeof(zahl),true);
begin
       i:=2; //erste Streichzahl
       repeat
                       j:=i+i; //erste zu streichende Zahl
                       zahl[j]:=false; j:=j+i; until j>grenze;//nächste zu streichende Zahl
       repeat
       inc(i);
                       while zahl[i]=false do inc(i);
       until i>sqrt(grenze);
       for i:=2 to grenze do if zahl[i] then write(i:8);
end.
```

Anwendung des Primzahlsiebs

Das Primzahlsieb des Eratosthenes wurde in der Geschichte mehrfach zum Aufstellen neuer Rekorde genutzt.

Alle Primzahlen im Bereich von 1 bis 10 Millionen wurden durch den US-amerikanischen Mathematiker D.Lehmer berechnet. Außer der Berechnung bedurfte es einer sorgfältigen Nachprüfung und der Herausgabe dieser Tabelle, die 1914 veröffentlicht wurde.

Zwanzig Jahre vor Lehmer stellte ein Autodidakt auf dem Gebiet der Mathematik, der russische Priester I.M.Perwuschin, eine Tabelle der Primzahlen gleichen Umfangs; bis 10 Millionen; auf und übergab sie als Geschenk der Nationalen Akademie der Wissenschaften Russlands. Die Tabellen Perwuschins wurden später im Archiv der Akademie der Wissenschaften der UdSSR im Manuskript aufbewahrt und sind bis in unsere Tage noch nicht veröffentlicht worden.

Eine noch gewaltigere Rechenarbeit vollbrachte der Professor der Prager Universität J.F.Kulik. Er führte die Tabelle der Primzahlen bis zu 100 Millionen fort (6 Bände der Primzahlen und der Teiler der zusammengesetzten Zahlen).

Seit 1867 sind die Tabellen Kuliks im Besitz der Bibliothek der Wiener Akademie der Wissenschaften. Ein Band ist jedoch spurlos verschwunden, und zwar derjenige, der die Zahlen im Bereich von der 13. bis zur 23. Million enthielt.

Der sowjetische Mathematiklehrer W.A.Golubew (Kuwschinowo) arbeitete für die Aufstellung der Tabellen der Primzahlen ein System von "Schablonen" aus, das die Rechenarbeit vereinfacht und die Möglichkeit von Fehlern fast ausschließt. Mit Hilfe seiner "Schablonen" ermittelte W.A.Golubew 1939 die Primfaktoren aller Zahlen der 11.Million und 1941 der 12. Million. Seine Tabellen überbrachte er traditionsgemäß der Akademie der Wissenschaften der UdSSR als Geschenk.

Anmerkung: Das Programm benötigt zur Berechnung der Primzahlen bis 1 Million wenige Sekunden, bis 10 Millionen eine knappe Minute, wobei die Anzeige der Primzahlen die längste Zeit benötigt. Auch wenn die Entwicklung der Computertechnik die Berechnungsmöglichkeit gigantisch erweitert hat, darf man nie vergessen, dass die oben genannten Leistungen (ohne elektronische Unterstützung) zu den beeindruckendsten menschlichen Rechenleistungen gehören.

Besonders für die Berechnung von Primzahlen können die schnellen CPU-Funktionen genutzt werden. Der nachfolgende Text enthält als Kernroutine das Sieb des Eratosthenes im Assembler-Code (Autor: Siegfried Beyer, 2016).

```
VAR i,m,n: integer; z: array[0..30000] of byte;
procedure primes (n,m: word); assembler; // n wird in AX, m in DX übergeben
    PUSH ebx // Register retten
    MOV esi, OFFSET z
                            // ESI zeigt auf das Feld z
    XOR ecx, ecx
    MOV cx, ax
                     // i := n
 @I: MOV BYTE PTR [esi+ecx],1
                                 // z[i] := 1
    DEC ecx //i := i - 1
    JNZ @I
    MOV ecx, 2
                     // i := 2
 @i: CMP BYTE PTR [esi+ecx],1
                                   // z[i] = 1?
                     // Wenn schon gestrichen, dann nächstes i
    JNE @next
    MOV ebx, ecx
                     //j := i
 @j: ADD bx, cx
                     // j := j + i
    MOV BYTE PTR [esi+ebx],0
                                    // j streichen
    CMP bx, ax
                     // j <= n ?
    JB @i
@next: INC cx//i := i + 1
    CMP cx, dx
                    // i <= m ?
    JNA @i
    POP ebx // Register wiederherstellen
end:
BEGIN Eingabe n ... m:=trunc(sqrt(n)); primes (n,m); for i:=2 to n do if z[i] = 1 then ... Ausgabe i END
```

Sieb von Sundaram

Im Laufe der 2000 Jahre wurden einige Vervollkommnungen des Primzahlsiebes von Eratosthenes vorgenommen. Der indische Mathematikstudent S.P.Sundaram gab 1934 eine originelle Variante an:

4	7	10	13	16	19
7	12	17	22	27	32
10	17	24	31	38	45
13	22	31	40	49	58
16	27	38	49	60	71

Dieses Sieb ist eine Tabelle, die aus einer unendlichen Anzahl unendlicher arithmetischer Folgen besteht, wobei jedes Glied der ersten Folge 4, 7, 10, 13, 16, 19, ... den Beginn einer neuen Folge darstellt. Alle Differenzen der Folgen sind ungerade Zahlen, beginnend mit 3: $d_1 = 3$, $d_2 = 5$, $d_3 = 7$, $d_4 = 9$ usw. Tritt eine beliebige Zahl n in dieser Tabelle auf, dann ist 2n + 1 eine zusammengesetzte Zahl. Wenn es die Zahl n in der Tabelle nicht gibt, dann ist 2n + 1 eine Primzahl.

Beispiele: In der Tabelle gibt es die Zahl n=3 nicht. Folglich ist 2n+1=7 eine Primzahl. In der Tabelle gibt es die Zahl n=5 nicht. Folglich ist 2n+1=11 eine Primzahl. Die Zahl n=7 tritt in der Tabelle auf, womit 2n+1=15 eine zusammengesetzte Zahl ist, usw. Wenn man n in der Formel 2n+1 nacheinander durch alle Zahlen ersetzt, die nicht in der Tabelle stehen, die durch das Sieb hindurchgefallen sind, können alle Primzahlen außer 2 ermittelt werden.

Beweis des Siebes von Sundaram

Das allgemeine Glied a_n einer arithmetischen Folge mit dem Anfangsglied a_1 und der Differenz d ist $a_n = a_1 + d(n-1)$.

Das n-te Glied der k-ten Folge sei a_{nk} und k die Differenz der k-ten Folge. Für die erste Folge der Tabelle ist $a_{11} = 4$, $d_1 = 3$, folglich:

```
\begin{array}{lll} a_{n1} = 4 + 3(n-1) = 1 + 3n. \\ & \text{Für die zweite Folge ist } a_{12} = 7, \ d_2 = 5, \ \text{folglich} & a_{n2} = 7 + 5(n-1) = 2 + 5n. \\ & \text{und für die dritte Folge } a_{n3} = 10 + 7(n-1) = 3 + 7n. \\ & \text{Für die k-te Folge ist} & a_{1k} = 1 + 3k, \ d_k = 1 + 2k, \ \text{und somit} \\ & a_{nk} = 1 + 3k \ (1 + 2k)(n-1) = k + (2k + 1) \ n. \end{array}
```

Die letzte Gleichung, in der $k = 1, 2, 3, 4 \dots$ und unabhängig davon $n = 1, 2, 3, 4 \dots$ sein können, gibt ein beliebiges Glied der Tabelle an. Wenn irgendeine beliebige Zahl N in der Tabelle enthalten ist, dann ist sie gleich einer von den Zahlen ank, das heißt

```
N = k + (2k + 1) n. Dann ist 2 N + 1 = 2 [k + (2k + 1) n] + 1 = 2k + 1 + 4kn + 2n = 2k + 1 + 2 n (2k + 1) (2k + 1)(2 n + 1),
```

d.h., die Zahl 2N + 1 besteht aus dem Produkt von wenigstens zwei Faktoren, von denen keiner gleich 1 ist: sie ist notwendigerweise eine zusammengesetzte Zahl.

Umaekehrt sei 2N + 1 eine beliebige zusammengesetzte ungerade Zahl; folglich kann sie in zwei ungerade Faktoren zerlegt werden, von denen keiner gleich 1 ist: 2N + 1 = (2k + 1)(2n + 1), wobei k und n irgendwelche natürliche Zahlen sind. Auflösen der Gleichung nach N ergibt

$$N = ((2k + 1)(2n + 1) - 1)/2 = k + (2k + 1) n = a_{nk}$$

d.h., N muss in diesem Falle eine von den Zahlen der Tabelle sein.

Alle Primzahlen, außer 2, sind ungerade, und jede ungerade Zahl, außer 1, ist entweder eine zusammengesetzte oder eine Primzahl. Hieraus folgern wir, dass eine ungerade Primzahl von der Form 2N + 1 keine entsprechende auf sie hinführende Zahl N im Bereich der Tabelle hat, ged Quelle: B.A. Kordemski "Köpfchen, Köpfchen", Urania-Verlag Leipzig/Jena/Berlin, 1974

Sieb von Atkin

Das Sieb von Atkin ist ein schneller, moderner Algorithmus zur Bestimmung aller Primzahlen bis zu einer vorgegebenen Grenze. Es ist eine optimierte Version des Siebes von Eratosthenes. Das Atkin-Sieb streicht nach Vorüberlegungen alle Vielfachen von Primzahlguadraten.

Dieser Algorithmus wurde von A.O.L. Atkin und Daniel J. Bernstein entwickelt.

Algorithmus: Alle Reste sind Reste modulo 60. Alle Zahlen, auch x und y, seien positive ganze Zahlen. "Invertieren" eines Eintrags der Siebliste bedeutet, dass dessen Markierung (prim oder nicht-prim) zum Gegenteil wechselt.

- 1) Erstelle eine mit 2, 3 und 5 gefüllte Ergebnisliste.
- Erstelle eine Siebliste mit einem Eintrag für jede positive ganze Zahl; alle Einträge dieser Liste werden am Anfang als nicht-prim markiert. Für jeden Eintrag in der Siebliste führe folgendes aus:
- Falls der Eintrag eine Zahl mit Rest 1, 13, 17, 29, 37, 41, 49, oder 53 enthält, invertiere ihn für jede mögliche Lösung der Gleichung: $4x^2 + y^2 = \text{Eintragszahl}$.

 4) Falls der Eintrag eine Zahl mit Rest 7, 19, 31, oder 43 enthält, invertiere ihn für jede mögliche
- Lösung der Gleichung: $3x^2 + v^2 = Eintragszahl$.
- Falls der Eintrag eine Zahl mit Rest 11, 23, 47, oder 59 enthält, invertiere ihn für jede mögliche Lösung der Gleichung: $3x^2 - v^2 = \text{Eintragszahl}$, wobei x > v.
- Beginne mit der niedrigsten Zahl in der Siebliste. 6)
- 7) Nimm die nächste Zahl in der Siebliste, die immer noch als prim markiert ist.
- 8) Füge die Zahl in die Ergebnisliste ein.
- 9) Quadriere die Zahl und markiere alle Vielfachen von diesem Quadrat als nicht-prim.
- Wiederhole die Schritte 5 bis 8. 10)

Grafisches Primzahlsieb

Durch die beiden sowietischen Mathematiker Juri Matiasewitsch und Boris Stechkin wurde 1971 (Zeitschrift Ouant 5/1971, Seite 25) ein grafisches Primzahlsieb vorgeschlagen.

In einem Koordinatensystem werden Strecken zwischen den Punkten (i^2 , -i) und (j^2 , j) für i,j = 2, 3, ..., gezeichnet. Diese Eckpunkte liegen auf der Parabel $x = y^2$ und schneiden die x-Achse in den Abszissen ij. Damit werden alle zusammengesetzten Zahlen auf der Abszissenachse gestrichen, wodurch nur die Primzahlen übrig bleiben.

Die ersten Primzahlen

2	3	5	7	11	13	17	19	23	29	31	37	41
43	47	53	59	61	67	71	73	79	83	89	97	101
103	107	109	113	127	131	137	139	149	151	157	163	167
173	179	181	191	193	197	199	211	223	227	229	233	239
241	251	257	263	269	271	277	281	283	293	307	311	313
317	331	337	347	349	353	359	367	373	379	383	389	397
401	409	419	421	431	433	439	443	449	457	461	463	467
479	487	491	499	503	509	521	523	541	547	557	563	569
571	577	587	593	599	601	607	613	617	619	631	641	643
647	653	659	661	673	677	683	691	701	709	719	727	733
739	743	751	757	761	769	773	787	797	809	811	821	823
827	829	839	853	857	859	863	877	881	883	887	907	911
919	929	937	941	947	953	967	971	977	983	991	997	1009

```
      1013
      1019
      1021
      1031
      1033
      1039
      1049
      1051
      1061
      1063
      1069
      1087
      1091

      1093
      1097
      1103
      1109
      1117
      1123
      1129
      1151
      1153
      1163
      1171
      1181
      1187

      1193
      1201
      1213
      1217
      1223
      1229
      1231
      1237
      1249
      1259
      1277
      1279
      1283

      1289
      1291
      1297
      1301
      1303
      1307
      1319
      1321
      1327
      1361
      1367
      1373
      1381

      1399
      1409
      1423
      1427
      1429
      1433
      1439
      1447
      1451
      1453
      1459
      1471
      1481

      1483
      1487
      1489
      1493
      1499
      1511
      1523
      1531
      1543
      1549
      1553
      1559
      1567

      1571
      1579
      1583
      1597
      1601
      1607
      1609
      1613
      1619
      1621
      1627
      1637
      1657

      1663
      1667
      1669
      16
```

Primzahlunendlichkeit: Euler-Beweis

Durch Leonhard Euler wurde ein sehr eleganter Beweis der Unendlichkeit der Primzahlmenge gegeben: Annahme: Es gibt nur endlich viele, z.B. k, Primzahlen. Dann ist auch das Produkt der Doppelbrüche $1/(1-1/p_i)$, i=1,...,k, endlich. Entwickelt man jeden der Doppelbrüche in eine geometrische Reihe $1+1/p_i+1/p_i^2+1/p_i^3+...$, so ist das Produkt der k Reihen aber auch jede Reihe einzeln konvergent. Das Produkt liefert jedes reziproke Potenzprodukt $1/(p_m^a_m p_n^a_n...p_s^a_s)$ genau einmal. Das heißt, dass in den Nennern der Summanden der Produktreihe tritt jede natürliche Zahl genau einmal auf. Die Produktreihe ist damit die harmonische Reihe. Diese ist aber divergent, womit ein Widerspruch vorliegt, d.h. die Annahme endlich vieler Primzahlen ist falsch.

Beweis von Auric (1915)

Angenommen es würden nur r Primzahlen $p_1 < p_2 < ... < p_r$ existieren. Sei t dann eine natürliche Zahl mit t > 0 und $N = p_r^t$. Nach dem Hauptsatz der Zahlentheorie lässt sich jede natürliche Zahl m, mit m > 0 und $m \le N$ folgendermaßen schreiben:

```
m = p_1^f_1 * p_2^f_2 * ... * p_r^f_r
```

und die Folge der natürlichen Zahlen f_1 , f_2 , ..., f_r ist dabei eindeutig definiert.

Daraus folgt also: $p_1^f \le m \le N \le p_t^t$

Sei dann: $E = log p / log p_1$, denn ist $f_i \le t$ E. Die Zahl N als Anzahl der Zahlen m mit m > 0 und $m \le N$ ist dann eine obere Grenze für die möglichen Folgen $f_1, f_2, ..., f_r$.

Daraus folgt: $p_r^t = N \le (t E + 1)^r \le t^r (E + 1)^r$

Wird diese Beziehung unter dem Gesichtspunkt betrachtet, dass t immer größer wird, dann ist es offensichtlich, dass es nicht nur endlich viele Primzahlen geben kann.

Beweis von Aigner (1998)

Angenommen die Menge der Primzahlen wäre endlich und p die größte Primzahl. Dann betrachtet man zu dieser Primzahl p die dazugehörige Mersenne-Zahl 2^p - 1. Sei q nun ein beliebiger Primteiler dieser Mersenne-Zahl, dann gilt 2^p ist kongruent 1 modulo q. Da p eine Primzahl ist, folgt dass die 2 in der multiplikativen Gruppe $\mathbf{Z}_q \setminus \{0\}$ des Körpers \mathbf{Z}_q die Ordnung p hat. Die Anzahl der Elemente dieser Gruppe ist q - 1. Nach dem Satz von Lagrange teilt die Ordnung eines jeden Elementes die Gruppengröße und somit gilt p | q - 1. Also ist q eine Primzahl, welche größer ist als p und die Annahme einer endlichen Primzahlmenge mit einer größten Primzahl p ist widerlegt.

Hinweis: Die verschiedenen Beweise zur Primzahlunendlichkeit stammen aus dem Werk "Paulo Ribenboim, The Book of Prime Number Records, Springer-Verlag 1989, 2. Auflage"

Beweis von Kummer (1878)

Aus der endlichen Menge der verschiedenen Primzahlen $\{p_1, p_2, ..., p_r\}$ bildet man die Zahl $n=p_1*p_2*...*p_r$. Die Zahl n-1 hat dann unter der Annahme einer endlichen Primzahlmenge einen gemeinsamen Primteiler p_i mit n. Daraus folgt unmittelbar, dass p_i den Term n-(n-1)=1 teilt. Da keine Primzahl die 1 teilt, folgt die Aussage, dass es unendlich viele Primzahlen gibt.

Beweis von Thomas Jean Stieltjes (1890)

Angenommen $\{p_1, p_2, ..., p_r\}$ ist die endliche Menge der verschiedenen Primzahlen. Dann bildet man das Produkt $n = p_1 * p_2 * ... * p_r$. Zerlegt man diese Zahl n in ein Produkt der Form n = u * v, so gilt, dass sämtliche Primfaktoren der Summe u + v verschieden von den Primfaktoren der Zahl n sind. Würde ein Primteiler q von u + v unter den $p_1, p_2, ..., p_r$ vorkommen, so müsste q u oder v teilen und somit auch u + v - v = u und u + v - u = v. Daraus folgt, dass q sowohl u als auch v teilt und somit v0 ein Teiler von v1 ist. Dieser Widerspruch zur Annahme zeigt dann die Unendlichkeit der Primzahlmenge.

Beweis von Goldbach (1730)

Der Beweis von Goldbach benutzt folgende Idee: Es reicht aus, eine unendliche Sequenz 1, a_1 , a_2 , a_3 , ... natürlicher Zahlen zu finden, die paarweise relativ prim sind, das heißt, sie besitzen keinen gemeinsamen Primteiler. Daraus folgt, wenn p_1 eine Primzahl ist, die a_1 teilt und p_2 ist eine Primzahl, die a_2 teilt und ..., dann sind die p_1 , p_2 , ... alle verschieden.

In diesem Beweis werden für die a_n die Fermatschen Zahlen benutzt, die folgendermaßen definiert sind: $F_n = 2^2 + 1$.

Wie man mit Induktion über m leicht zeigen kann, gilt für diese Zahlen die folgende Beziehung F_m - 2 = $F_0 * F_1 * ... * F_{m-1}$. Daraus folgt für die Wahl von n < m, dass F_n die Zahl F_m - 2 teilt. Angenommen die Primzahl p würde sowohl F_n als auch F_m teilen, dann würde p auch F_m - 2 und F_m teilen, also auch die 2, und damit wäre p = 2. Wenn aber F_n ungerade ist, folgt keine Teilbarkeit mit der 2 und das zeigt, dass die Fermatschen Zahlen paarweise relativ prim sind und die Aussage, dass es unendlich viele Primzahlen gibt, ist damit bewiesen.

Beweis von Richard Bellman (1947)

Der Beweis zeigt eine allgemeine Vorschrift zur Generierung von Polynomen, mit welchen man unendliche Zahlenfolgen mit paarweisen relativ primen Zahlen erzeugen kann. Der Gedanke bezüglich der Unendlichkeit der Primzahlmenge ist also dem Beweis von Goldbach mit den Fermat Zahlen äquivalent und enthält diesen auch als Spezialfall.

Satz 1: Keine zwei Zahlen der Form $2^{2n} + 1$ mit n = 1, 2, ... haben einen gemeinsamen Teiler größer als 1.

Die Zahlen $2^{2n}+1$ mit n=1,2,... sind bekannt als Fermat Zahlen, die mit dem quadratischen Polynom $f(x)=(x-1)^2+1$ iterativ generiert werden können, wenn x=3 gewählt wird. Dies folgt mittels Induktion, sei $f_1(x)=f(x)$ der Induktionsanfang und $f_{n+1}=f(f_n(x))$ der Induktionsschritt. Aus $f_n(x)=2^{2n}+1$ folgt dann $f_{n+1}(x)=2^{2n+1}+1$. Diese Erkenntnis führt dann direkt zum Satz 2, welcher den Satz 1 als Spezialfall enthält.

Satz 2: Sei f(x) ein Polynom mit ganzahligen Koeffizienten mit folgenden Eigenschaften: 1. $f_n(0) = f(0)$, n > 0, f(0) ungleich 0, 2. ggT[x, f(0)] = 1 => ggT[f(x), f(0)] = 1. Dann haben für den Fall, dass x eine ganze Zahl ist und ggT[x, f(0)] = 1, keine zwei Zahlen der Folge x, $f_1(x)$, $f_2(x)$, $f_3(x)$, ... einen gemeinsamen Teiler größer als 1, das heißt, diese Zahlen sind paarweise relativ prim.

Beweis: Angenommen Satz 2 ist falsch, so dass für einige m>1, n>m gilt $ggT[f_n(x), f_m(x)]>1$. Für $ggT[f_n(x), f_m(x)]>1$ und $ggT[f_n(x), f(0)]>1$ folgt $f_n(x)=f_{n-m}(f_m(x))$ ist kongruent zu $f_{n-m}(0)$ mod $f_m(x)$ ist kongruent zu f(0) mod $f_m(x)$. Aus ggT[x, f(0)]=1 folgt ggT[f(x), f(0)]=1 und daher $ggT[f_n(x), f(0)]=1$ und dieser Widerspruch zur Annahme zeigt den Satz 2. Ein weiteres Beispiel für ein zulässiges Polynom ist $(x-2)^4-12$, wenn x>6 und ggT[x,4]=1 gewählt wird.

Beweis von A. Hurwitz (1891)

Betrachtet man die unendliche Zahlenfolge w_n mit der Definition

```
\begin{array}{l} w_1 = 2 \\ w_2 = w_1 + 1 = 3 \\ w_3 = w_1w_2 + 1 = 7 \\ w_4 = w_1w_2w_3 + 1 = 43 \\ w_5 = w_1w_2w_3w_4 + 1 = 1.807 \\ w_6 = w_1w_2w_3w_4w_5 + 1 = 3.263.443 \\ w_7 = w_1w_2w_3w_4w_5w_6 + 1 = 10.650.056.950.807 \\ w_8 = w_1w_2w_3w_4w_5w_6w_7 + 1 = 113.423.713.055.421.844.361.000.443 \\ w_9 = w_1w_2w_3w_4w_5w_6w_7w_8 + 1 = 12.864.938.683.278.671.740.537.145.998.360.961.546.653.259.485.195.807 \dots, of foliate datased discontinuous and way to the parameters relative prime sind, does holds to the content of the parameters and the point of the parameters and the point of the parameters and the parameters are lative prime sind, does holds to the parameters are lative prime sind, does holds to the parameters are lative prime sind, does holds to the parameters are lative prime sind, does holds to the parameters are lative prime sind, does holds to the parameters are lative prime sind, and the parameters are lative prime sind, does holds to the parameters are lative prime sind, does holds to the parameters are lative prime sind.
```

so folgt, dass diese Zahlen w_1 , w_2 , w_3 , ... paarweise relativ prim sind, das heißt, je zwei beliebige Zahlen w_i und w_j haben keinen gemeinsamen Primfaktor. Da es unendlich viele Zahlen w_n gibt, existieren auch unendlich viele Primzahlen.

Das hier benutzte Verfahren, um die w_n rekursiv mit Multiplikation der Vorgänger und Addition der 1 zu definieren, erinnert an den Beweis von Euclid, und der Gedanke einer unendliche Zahlenfolge von paarweisen, relativ primen Zahlen als Beweis für die Unendlichkeit der Primzahlmenge ist auch durch Goldbach bekannt.

Beweis von Axel Thue (1897)

Thue benutzt in seinem Beweis den Hauptsatz der Zahlentheorie, also die Eindeutigkeit der Zerlegung der natürlichen Zahlen in ihre Primfaktoren. Dieser Beweis gibt sogar als quantitatives Resultat eine untere Schranke für die Anzahl der Primzahlen an.

```
Seien n und k natürliche Zahlen größer Null, so dass folgendes gilt: (1+n)^k < 2^n Weiterhin seien nun p_1 = 2, p_2 = 3, ..., p_r alle Primzahlen, die p \le 2^n erfüllen. Weiterhin sei r \le k Nach dem Hauptsatz der Zahlentheorie lässt sich jede natürliche Zahl m mit 1 < m \le 2^n folgendermaßen eindeutig als Produkt darstellen m = 2^{e1} \ 3^{e2} \dots p_r^{er} Dabei ist 0 < e_1 \le n, \ 0 < e_2 \le n, \dots, \ 0 < e_r \le n. Werden in dieser Darstellung alle Möglichkeiten gezählt, dann folgt: 2^n \le (n+1) \ nr-1 < (n+1)^r \le (n+1)^k < 2^n und dies ist unmöglich, deshalb folgt r \ge k+1. Wird nun r = 2^k gewählt, dann folgt aus
```

 $1+ 2 k^2 < 2^{2k}$ für jedes $k \ge 1$, dass $(1 + 2k^2)$

 $(1 + 2k^2)^k < 2^{2k^2} = 4^{k^2}$

ist. Es gibt also mindestens k+1 Primzahlen p mit $p < 4^{k^2}$. Wird k unendlich groß gewählt, dann folgt sofort, dass es unendlich viele Primzahlen gibt.

Primzahlunendlichkeit: Beweis von Schorn

Wenn n eine natürliche Zahl ist und $1 \le i < j \le n$, dann gilt ggT((n!) i + 1, (n!) j + 1) = 1

Denn wenn man j = i + d setzt, dann ist $1 \le d$ < n und daher

ggT(n! i + 1, n! j + 1) = ggT(n! i + 1, n! d) = 1,

weil jede Primzahl p, die n! d teilt, höchstens gleich n ist.

Falls nun die Anzahl der Primzahlen m wäre und man n = m + 1 wählt, folgt aus obiger Bemerkung, dass die m+1 Zahlen (m+1)! i+1; $1 \le i \le m+1$; paarweise teilerfremd sind, so dass es mindestens m+1 verschiedene Primzahlen geben muss, ein Widerspruch zur Annahme.

Primzahlunendlichkeit: Beweis von Perott (1881)

Bekanntlich konvergiert die Reihe $\Sigma_{n=1}^{\infty}$ 1/n² mit einer Summe kleiner als 2; genau gegen π^2 /6. Nehmen wir an, es gäbe nur r Primzahlen $p_1 < p_2 < ... < p_r$. Es sei N eine beliebige ganze Zahl mit $p_1p_2...p_r < N$. Die Anzahl derjenigen $m \le N$, die nicht durch ein Quadrat teilbar sind, ist 2^r , weil jede Zahl in eindeutiger Weise das Produkt von Primzahlen ist.

Da nur höchstens N/p_i^2 Zahlen $m \le N$ durch p_i^2 teilbar sind, ist die Anzahl derjenigen $m \le N$, die sich durch irgendein Quadrat teilen lassen, höchstens gleich $\Sigma_{i=1}^r (N/p_i^2)$.

Daher ist $n \le 2^r + \sum_{i=1}^r (N / p_i^2) < 2^r + N (-1 + \sum_{i=1}^r 1/n^2) = 2^r + N (1 - \delta)$

für ein $\delta > 0$.

Wenn man N so wählt, dass $N\delta \ge 2^r$ wird, führt dies zu einem Widerspruch.

Primzahlunendlichkeit: Beweis von Hermite

1915 wurde von H.Brocard in "Intermédiare des Mathématiciens 22" ein Primzahlbeweis veröffentlicht, den er Hermite zuschreibt:

Es genügt zu zeigen, dass für jede natürliche Zahl n eine Primzahl p existiert, die größer als n ist.

Dazu wird die Zahl n! + 1 konstruiert und ein beliebiger Teiler p dieser Zahl betrachtet.

Dieses p ist mit n und allen vorhergehenden natürlichen Zahlen teilerfremd, d.h. garantiert größer als n selbst.

Heute weiß man, durch intensiven Computereinsatz, dass für folgende n die Zahl n! + 1 prim ist (getestet bis 7000), für die anderen n einen Primteiler größer als n besitzt:

n = 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6917, ...

Primzahlunendlichkeit: Beweis von Erdös (1938)

Im Beweis wird mittels Widerspruch die Divergenz der Reihe der Reziproken der Primzahlen gezeigt. Der erste Beweis dieser Aussage wurde von Leonhard Euler gegeben, der Beweis von Paul Erdös ist genau so schön und klar.

Dass daraus unmittelbar folgt, dass es unendlich viele Primzahlen gibt, ist offensichtlich. Eine Reihe, die nicht konvergiert, hat auch unendlich viele Summanden.

Sei nun p_1 , p_2 , p_3 , ... die Folge der Primzahlen in aufsteigender Ordnung und angenommen die folgende Reihe konvergiert $\Sigma_{p \in P} 1/p$

Dann muss es eine natürliche Zahl k geben, so dass folgendes gilt $\Sigma_{i>k} 1/p_i < 1/2$ Weiterhin gilt dann für alle natürlichen Zahlen N $\Sigma_{i>k} 1/p_i < 1/2$

Festlegung: Kleine Primzahlen := Primzahlen der Menge $\{p_1, ..., p_k\}$, Große Primzahlen := Primzahlen der Menge $\{p_1, ..., p_k\}$, Große Primzahlen := Primzahlen der

 $\begin{array}{l} \text{Menge p_{k+1}, p_{k+2}, ...} \\ \text{N}_b := \text{Anzahl der positiven ganzen Zahlen n} \in \text{N, die durch mindestens eine große Primzahl teilbar sind} \end{array}$

 $N_s:=$ Anzahl der positiven Zahlen $n\in N$, die nur kleine Primteiler besitzen

Nach der Definition von N_b und N_s gilt die Gleichung $N = N_b + N_s$. Zur Abschätzung von N_b lässt sich überlegen, dass $[N/p_i]$ die Vielfachen von p_i zählt. d.h. $N_b \le \Sigma_{i>k}$ $[N/p_i] < N/2$

Um N_s abzuschätzen werden die Zahlen n als Produkt der Form $n=a_nb_n^2$ betrachtet. In der Primfaktorzerlegung von n bezeichnet a_n den quadratfreien Teil und besteht aus verschiedenen kleinen Primzahlen. Daher gibt es für den quadratfreien Teil 2^k Möglichkeiten. Wegen $b_n \leq \sqrt{n} \leq \sqrt{N}$ gibt es höchstens \sqrt{N} verschiedene Quadratteile. Daraus folgt $N_s \leq 2^k \sqrt{N}$.

Da die echte Ungleichung für N_b für alle N gilt und die Gleichung $N_b + N_s = N$ somit nur gelten kann, wenn $N_s > N/2$ gilt, reicht es aus eine Zahl N zu finden, für die $2_k \sqrt{N} \le N/2$ gilt, was gleichbedeutend mit $2^{k+1} \le \sqrt{N}$ ist.

Die Zahl N = 2^{2k+2} ist so eine Zahl.

Damit ist der gesuchte Widerspruch gefunden, so dass die Annahme der Konvergenz der untersuchten Reihe nicht mehr zu halten ist. Die Reihe ist divergent und damit die Menge der Primzahlen unendlich.

Primzahlspirale, Ulam-Spirale

1963 wurde eine interessante Primzahlspirale von Stanislaw Ulam entdeckt, die jetzt als "Ulamspirale" bezeichnet wird. Sie enthüllt eine seltsame Eigenschaft der Primzahlen.

Die Ulamspirale lässt sich wie folgt konstruieren: Man beginnt mit einem Punkt im Zentrum und ordnet die positiven ganzen Zahlen in einer Spiralform (gegen den Uhrzeigersinn) an. Die Primzahlen werden dann farbig markiert. Es gibt eine Tendenz der Primzahlen diagonale Linien zu bilden.

"Dass die Aufgabe, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der gesamten Arithmetik gehört und die Bemühungen und den Scharfsinn sowohl der alten wie auch der

neueren Geometer in Anspruch genommen hat, ist so bekannt, dass es überflüssig wäre, hierüber viele Worte zu verlieren."

Gauß 1889 in "Disquisitiones Arithmeticae"

Primzahlfraktal

Folgender Algorithmus erzeugt eine merkwürdige, heute (2006) noch nicht verstandene, grafische Veranschaulichung der Primzahlen.

Ausgehend vom Koordinatenursprung mit den Koordinaten x=0, y=0 wird die aufeinanderfolgenden Primzahlen modulo 5 gerechnet. Für die verschiedenen Reste wird gerechnet:

Die Farbe des Bildpunktes mit den neuen Koordinaten wird um einen gewissen Betrag dunkler oder heller gesetzt. Mit den neuen Koordinaten und der nächsten Primzahl wird der Vorgang wiederholt.

Als Ergebnis entsteht die abgebildete Grafik. Die Punkte der Ebene werden sehr ungleichmäßig verändert. Außerdem ist eine Tendenz in Richtung negativer x- und y-Achse festzustellen.

Das Gebilde sieht fraktalen Strukturen ähnlich; daher der Name. Allerdings ist völlig unklar, ob dies tatsächlich ein Fraktal ist. Analoge Strukturen ergeben sich, wenn modulo einer anderen Primzahl p gerechnet wird.

Conway-Primzahlsieb

Durch John Horton Conway wurde folgendes, verbüffendes Primzahlsieb angegeben, mit dem schrittweise alle Primzahlen berechnet werden können. Dieses Sieb ist ein deterministischer Algorithmus! Beginnend mit einer natürlichen Zahl >1, z.B. z=2 werden die Brüche

17/91; 78/85; 19/51; 23/38; 29/33; 77/29; 95/23; 77/19; 1/17; 11/13; 13/11; 15/14; 15/2; 55/1

solange multipliziert, bis eine ganze Zahl z^* entsteht. Mit dieser ganzen Zahl z^* wird wieder beim 1.Bruch begonnen usw. Ist das ganzzahlige Ergebnis z^* eine Zweierpotenz, so gibt der Exponent die gefundene Primzahl an.

Wiederholt man nun den Algorithmus mit z*, so ist der Exponent der nächsten Zweierpotenz auch die nächste Primzahl usw.

Startet man mit z=2, so ergibt sich nach 19 Durchläufen der Brüche $z^*=4=2^2$, d.h. die Primzahl 2. Nach 50 weiteren Durchläufen wird $z^*=2^3$, nach 211 Schritten $z^*=2^5$, nach 427 Schritten $z^*=2^7$, ... Leider ist der Algorithmus uneffektiv. Zum einen steigt die Zahl der notwendigen Schritte sehr schnell an, zum anderen werden die bei der Berechnung entstehenden Zwischenergebnisse schnell extrem groß, so dass mit einer "normalen" Computerarithmetik nur die ersten vier Primzahlen derart berechnet werden können.

Dennoch ist das Verfahren überraschend. Mit nur 14(!) Brüchen können alle(!) Primzahlen ermittelt werden.

Die Tabelle enthält die notwendigen Durchläufe der 14 Brüche und das auftretende größte Zwischenergebnis für die Berechnung der ersten Primzahlen (Polster 2004):

Durchläufe	gefundene Primzahl	größte auftretende Zahl
19	2	2275
50	3	79625
211	5	97 540625
427	7	119487 265625

1656	11	179305 577978 515625
1513	13	219 649333 023681 640625
4192	17	329 611280 368662 261962 890625
3251	19	403773 818451 611270 904541 015625
7882	23	605913 086313 949163 401126 861572 265625
17665	29	1113 829198 308590 705077 799595 892429 351806 640625
8685	31	1 364440 767928 023613 720304 504968 225955 963134 765625
29673	37	2.50820456*10 ⁵⁷

ARIBAS-Programm zum Conway-Primzahlsieb

function conway(a,c:integer); var bruchx,bruchy:array[15] of integer; maxx,minn,prim,anz,z,i:integer; totalgefunden,gefunden;boolean;

```
begin bruchx[1]:=17; bruchy[1]:=91; bruchx[2]:=78; bruchy[2]:=85;
                                                                      bruchx[3]:=19:
bruchy[3]:=51;
  bruchx[4]:=23; bruchy[4]:=38; bruchx[5]:=29; bruchy[5]:=33; bruchx[6]:=77; bruchy[6]:=29;
  bruchx[7]:=95; bruchy[7]:=23; bruchx[8]:=77; bruchy[8]:=19; bruchx[9]:=1; bruchy[9]:=17;
  bruchx[10]:=11; bruchy[10]:=13; bruchx[11]:=13; bruchy[11]:=11; bruchx[12]:=15;
bruchy[12]:=14;
  bruchx[13]:=15; bruchy[13]:=2; bruchx[14]:=55; bruchy[14]:=1;
  z:=2**a;
            writeln(" z ",1.0*z); anz:=0; maxx:=0; minn:=z;
                                                                  totalgefunden:=false;
 while totalgefunden=false do gefunden:=false; i:=1; inc(anz);
 while gefunden=false do
  if ((z*bruchx[i]) mod bruchy[i]) = 0 then
                                               aefunden:=true;
      z:=(z*bruchx[i]) div bruchy[i];
       if z>maxx then maxx:=z; end;
                                            if z<minn then minn:=z; end;
      totalgefunden:=true;
      if z <> 2**c then totalgefunden:=false; end; end;
   inc(i);
  end; end;
if maxx>10**50 then writeln(anz,chr(9),c,chr(9),1.0*maxx,chr(9),1.0*minn)
 else writeln(anz,chr(9),c,chr(9),maxx,chr(9),minn) end; end;
```

Primzahlsuche durch Testdivisionen

... das einfachste Verfahren zum Nachweis einer Primzahl p sind Testdivisionen mit allen natürlichen Zahlen n>1 bis zum ganzzahligen Anteil von \sqrt{p} . Tritt in keinem Fall ein Rest 0 auf, so ist p Primzahl. In der Praxis erweist sich das Verfahren zur vollständigen Faktorisierung großer Zahlen als zeitaufwendig und evtl. unbrauchbar.

Die Probedivision ist nur dann schnell, wenn man schnell die richtigen Zahlen geraten hat. Da jede zweite Zahl durch zwei teilbar ist, jede dritte durch drei, jede fünfte durch fünf, usw., empfiehlt es sich, die Probedivision beginnend mit der 2 in aufsteigender Reihenfolge vorzunehmen.

Es ist also vorteilhaft, mit der Probedivision jeweils den kleinsten Primfaktor einer Zahl zu ermitteln, die Zahl durch diesen Primfaktor zu dividieren und das Verfahren dann fortzusetzen, bis das Quadrat des betrachteten Primfaktors die Zahl überschreitet (und die Zahl daher prim ist).

Man sollte dabei allerdings beachten, nach Abdividierung einer Primzahl den Test erneut mit dieser Primzahl fortzusetzen, damit man keine Primzahlpotenzen als Teiler übersieht.

Da die Ermittlung von Primzahlen allerdings ebenfalls Zeit benötigt, die u.U. länger dauert als Probedivisionen mit zusammengesetzten Zahlen, kann es vorteilhaft sein, eine Zahlenfolge zu verwenden, die neben den Primzahlen auch zusammengesetzte Zahlen enthält, die sich aber schneller berechnen lässt.

Bewährt hat es sich z.B., zunächst auf Teilbarkeit von 2 und 3 zu testen und anschließend die Probedivision sukzessive für alle Zahlen der Form 6*n±1 fortzuführen. Für das Finden größerer Primteiler braucht man allerdings sehr viel Geduld.

Komplementärteiler

Ist a ein Primteiler der Zahl n mit a $< \sqrt{n}$, so ist der Komplementärteiler b = n / a Teiler der Zahl n mit b $> \sqrt{n}$.

Ist der kleinste Primfaktor p einer Zahl n größer als die dritte Wurzel $\sqrt[3]{n}$, so ist der Komplementärteiler m, mit n = p*m, Primzahl.

Zusammengesetzte Zahl ... eine Zahl > 1, welche keine Primzahl ist, heißt zusammengesetzte Zahl. Jede zusammengesetzte Zahl n besitzt einen Primteiler $p \le \sqrt{n}$.

Teilerfremde Zahlen

Zahlen, die keinen gemeinsamen echten Teiler (keinen gemeinsamen Primfaktor) besitzen, werden teilerfremde Zahlen genannt.

Zwei positive natürliche Zahlen m und n sind genau dann teilerfremd, wenn es natürliche Zahlen x und y gibt mit $x \cdot m - y \cdot n = 1$. Wenn eine natürliche Zahl k dass Produkt $m \cdot n$ teilt und zu m teilerfremd ist, dann ist k Teiler von n.

Die Wahrscheinlichkeit aus den natürlichen Zahlen zufällig zwei teilerfremde Zahlen zu ermitteln, beträgt $6/\pi^2 = 60,79271 \%$

d.h. werden zwei natürliche Zahlen zufällig bestimmt, so haben diese mit rund 61 % Warscheinlichkeit einen ggT von 1.

Nachweis: Die Wahrscheinlichkeit, dass eine bestimmte natürliche Zahl d Teiler einer natürliche Zahl a ist, ist 1/d.

Da die zwei Zahlen a und b unabhängig voneinander sind, ist die Wahrscheinlichkeit, dass d ein gemeinsamer Teiler von a und b ist, genau 1/d².

Der größte gemeinsame Teiler von a und b ist entweder 1 oder 2 oder 3, ...

Die Wahrscheinlichkeit, dass ggT(a,b) = d ist, ist somit $1/d^2 \cdot P$, wobei P die Wahrscheinlichkeit ist, dass a/d und b/d teilerfremd sind.

Da für d jede Zahl > 0 möglich ist, eine davon sicher, und alle Fälle alle paarweise disjunkt sind, dann wird

```
1 = 1/1^2 \cdot P + 1/2^2 \cdot P + 1/3^2 \cdot P + ...
```

P ausklammern und dividieren ergibt

$$1/P = 1/1^2 + 1/2^2 + 1/3^2 + ...$$

Die Summe ist die Summe über die Reziproken der Quadratzahlen.

Diese Summe ist der Funktionswert $\zeta(2)$ der Riemannschen Zeta-Funktion $\zeta(n)$. Für $\zeta(2)$ findet man $\pi^2/6$. Damit ergibt sich für zwei teilerfremde Zahlen die gesuchte Wahrscheinlichkeit $6/\pi^2$.

Homogene Zahlen

Als homogene Zahlen werden natürliche Zahlen bezeichnet, die identische Primfaktoren besitzen. Zum Beispiel sind 6 und 72 homogen, da sie die Primfaktoren 2 und 3 haben.

Zu jeder Zahl a existieren unendlich viele homogene Zahlen, da automatisch alle Potenzen a^n , n > 0, zu a homogen sind.

"Dass die Aufgabe, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der gesamten Arithmetik gehört und die Bemühungen und den Scharfsinn sowohl der alten wie auch der neueren Geometer in Anspruch genommen hat, ist so bekannt, dass es überflüssig wäre, hierüber viele Worte zu verlieren."

Gauß 1889 in "Disquisitiones Arithmeticae"

Euler-Faktorisation

Kann eine Zahl z auf zweifache Art als Summe von Quadraten dargestellt werden, so kann z nach Euler in zwei Faktoren zerlegt werden. $z = a^2 + b^2 = c^2 + d^2$, k sei der ggT von a-c und d-b. Dann wird aus a-c = k*I und d-b = k*m und somit a+c = m*n $z = (I^2 + m^2)(k^2/4 + n^2/4)$

Fermat-Methode, Fermat-Faktorisierung

Das Produkt zweier Zahlen $p \cdot q$ lässt sich als $(a+b) \cdot (a-b)$ notieren. Die Zahl a ist dabei der Mittelwert von p und q, b die halbierte Differenz von p und q.

Wenn die zu faktorisierende Zahl ungerade ist, ist sicher, dass a und b ganzzahlig sind.

Alle Faktoren müssen dann ebenfalls ungerade sein, und da die Differenz zweier ungerader Zahlen immer gerade ist, lässt sie sich halbieren.

Solange die zu faktorisierende Zahl gerade ist, dividiert man die 2 als Primteiler heraus; übrig bleibt dann immer eine ungerade Zahl. Ausmultiplizieren ergibt $(a+b)\cdot(a-b) = a^2-b^2$. Alle Zahlen, die sich so darstellen lassen, können also auch als Differenz zweier Quadrate dargestellt werden.

Für eine gegebene Zahl N setzen man $N = (a+b) \cdot (a-b) = a^2-b^2$ an und formt dies zu $a^2-N = b^2$ um.

Nun kann man für verschiedene a, beginnend mit dem aufgerundeten Wert von \sqrt{N} , testen, ob der Ausdruck a²-N eine Quadratzahl ergibt.

Falls dies der Fall sein sollte, ist das gesuchte b die entsprechende Wurzel. Eine Zerlegung von N; nicht notwendigerweise in Primfaktoren; ergibt sich dann durch die Teiler (a+b) sowie (a-b).

Leider ist das Verfahren nicht effizienter als die Probedivision. Annähernd gleichgroße Faktoren findet man damit allerdings recht schnell.

Ein zeitraubendes Wurzelziehen kann man häufig dadurch vermeiden, in dem man vorher testet, ob eine Zahl überhaupt eine Quadratzahl sein kann. Beispielsweise können nur solche Zahlen Quadratzahlen sein, deren Rest bei der Division durch 8 entweder 0, 1 oder 4 ergibt.

Quelle: Uni Passau, Reinecke

Pascal-Programm zur Fermat-Methode

program ferprim;

```
uses crt;
var r,w,x,y,n:longint;
begin repeat {Eingabe der Zahl} write('Zahl '); readln(n);
  {Wurzel bestimmen} w:=trunc(sqrt(n));
  {Anfangsinitialisierung} x:=2*w+1; y:=1; r:=w*w-n;
  {Iterative Suche nach Teilern absteigend, beginnend ab Wurzel von n}
  while r<>0 do begin
    while r>0 do begin r:=r-y; y:=y+2 end;if r<0 then begin r:=r+x; x:=x+2 end;
  end; writeln('Teiler ',(x-y) div 2); until false; end.</pre>
```

Lehman-Algorithmus, Lehman-Faktorisierung

1974 wurde durch R.S.Lehman in "Factoring Large Integers", Mathematics of Computation 28, eine Kombination von Probedivision und Fermat-Algorithmus beschrieben.

Grundlage ist der Satz von Lehman:

Ist n = pq ungerade mit den Primzahlen p, q und ist $1 \le r < \sqrt{n}$, wobei $\sqrt{(n/(r+1))} \le p \le \sqrt{n}$ ist, so gibt es natürliche Zahlen x, y und k mit den Eigenschaften

```
1. x^2 - y^2 = 4kn
```

2. $x \equiv 1 \mod 2$, falls k gerade und $x \equiv k+n \mod 4$, falls k ungerade ist

3. $\sqrt{(4kn)} \le x \le \sqrt{(4kn)} + 1/(4r+4) \sqrt{(n/k)}$

Ist n prim, gibt es solche Zahlen nicht.

Für den Algorithmus von Lehman sollte man $r=3\sqrt{n}$ wählen. Zuerst werden bis r Probedivisionen durchgeführt. Findet sich kein Teiler, sind die Voraussetzungen für den Satz erfüllt. Anschließend wird für alle Paare (k, x), die den Satz erfüllen, und $1 \le k \le r$, geprüft, ob x^2 - 4kn Ouadratzahl ist.

Wenn ja, so sind ggT(x-y, n) und ggT(x+y, n) die gesuchten Teiler p und q.

Algorithmus

```
1. Probedivision bis <sup>3</sup>√n
```

```
2. Für k = 1 bis \sqrt[3]{n}

Für x = \sqrt{(4kn)} bis \sqrt{(4kn)} + \sqrt[6]{n} / (4\sqrt{k})

z = x<sup>2</sup> - 4kn

falls z = y<sup>2</sup> dann Abbruch
```

3. Ausgabe ggT(x-y, n)

Die Laufzeit des Verfahrens leigt bei $\Theta(\sqrt[3]{n})$ und ist damit besser als bei der Probedivision.

Kraitchik-Verfahren

1926 stellte Maurice Kraitchik zwei neue Ideen zur Optimierung der Fermat-Methode zur Faktorisierung von Zahlen vor.

Zum einen muss n nicht selbst die Differenz von zwei Quadraten sein, sondern kann auch Vielfaches davon sein. Das führt zu Kongruenzen der Form $x^2 \equiv y^2 \mod n$

Aus der Kongruenz ergibt sich ein Faktor von n, indem man ggT(x - y, n) berechnet, bzw. ggT(x + y, n)). Beispiel: Für die Kongruenz $106^2 \equiv 17^2 \mod 3649$ wird ggT(106 - 17, 3649) = 89. 89 ist somit der gesuchte Faktor: 3649 = 41.89.

Leider können sich nun auch triviale Teiler ergeben, allerdings nur in maximal der Hälfte aller Fälle.

Die zweite neue Idee verändert das Verfahren zur Konstruktion dieser Kongruenz. Einfacher ist es, Kongruenzen der Form $x^2 \equiv y \mod n$ zu finden, indem man die bei Fermat autretenden Gleichungen $Q(x) = x^2 - n$ in $x^2 \equiv Q(x)$ mod n umwandelt.

Aus hinreichend vielen dieser Kongruenzen, bei denen y sich leicht faktorisieren lässt, kombiniert man diese Kongruenzen zu der gesuchten.

```
Beispiel: Um 1909 zu faktorisieren berechnet man der Reihe nach, jeweils modulo 1909:
```

```
44^2 \equiv 3^3 ; 45^2 \equiv 2^2 \cdot 29 ; 46^2 \equiv 3^2 \cdot 23 ; 47^2 \equiv 2^3 \cdot 3 \cdot 5
```

Die zweite und die dritte Kongruenz sind nicht geeignet, da zu große Primzahl in der Faktorisierung auftreten. Aus der ersten und der letzten Kongruenz ergibt sich durch Multiplikation

```
(44 \cdot 47)^2 \equiv 2^2 \cdot 3^4 \cdot 5^2 \equiv (2 \cdot 3^2 \cdot 5)^2 \equiv 90^2 \mod 1909
```

Daraus ermittelt man den Teiler $ggT(44 \cdot 47 - 90, 1909) = 23$

p-1-Methode

Die (p-1)-Methode nutzt die im Kleinen Fermatschen Satz' bekannte Tatsache aus, dass für jede Primzahl p der Ausdruck a^{p-1} -1 durch p teilbar ist,

unabhängig davon, welchen Wert wir für a einsetzen (sofern a und p teilerfremd sind).

Wenn nun p ein Teiler der zu faktorisierenden Zahl N ist und (p-1) seinerseits ausschließlich in kleine Teiler zerlegbar ist, so lässt sich ein Potenzgesetz ausnutzen: $a^{t1*t2*...*tk} = (...((a^{t1})^{t2})...)^{tk}$

Zunächst wählt man einen Startwert für die Basis a (z.B. a=2) und potenziert den Term mit einer kleinen Zahl b. Es wird $a=a^b$.

Besitzt das um 1 verminderte Ergebnis einen gemeinsamen Teiler mit N, also $ggT(a-1,N) \neq 1$ ist, so ist ein Faktor gefunden.

Falls nein, wählt man ein neues zufälliges b und wiederholt den Vorgang mit der neuen Basis. Damit die Zahlen durch die Exponentiation nicht explosionsartig anwachsen, rechnet man in der Moduloklasse von N. Falsch geratene b, die keine Teiler von unserem p-1 sind, schaden bei der Methode nicht (allenfalls kosten sie unnötige Zeit), da der Kleine Fermatsche Satz unabhängig von der gewählten Basis gilt.

Fast alle Primteiler beliebiger Zahlen lassen sich so finden, sofern sie um eins vermindert in nicht allzugroße Teiler zerfallen.

Algorithmus zur p-1-Methode:

- 1) Eingabe der zu faktorisierenden Zahl n
- 2) Wähle 1 < a < n-1 und ein natürliches b
- 3) Für alle Primzahlen $q \le b$ (kleine q mehrfach):

```
a := a^q \mod n; p := ggT(a-1, n); falls p \mid n dann Abbruch
```

4) Ausgabe p

Beispiel: n = 90044497

Gewählt wird b = 50. Begonnen wird mit $a_0 = 2$. Potenziert wird mit alle Primzahlen $\le b = 50$, mit den Primzahlen 2 und 3 dreifach, mit 5 und 7 zweifach:

```
a_k = a_{k-1}^{q(k)} \mod n
k
                                      qqT(a_k-1, n)
1
       23
               256
                       1
2
       33
               27611727
                              1
       52
3
               38291456
                              1
       72
4
               6393722
                              1
5
       11
               44197845
                              1
6
       13
               53185607
                              1
7
       17
               72650205
                              1
8
       19
               69088449
                              1
9
       23
               1465908
10
       29
               32373292
                              5743
```

Daraus ergibt sich n = $5743 \cdot 15679$.

Die Faktorisierung war erfolgreich, da p-1 = $2 \cdot 3 \cdot 3 \cdot 11 \cdot 29$ ist. Damit war die mehrfache Berücksichtigung kleiner Primzahlen wichtig.

Verbesserter Algorithmus zur p-1-Methode:

- 1) Eingabe der zu faktorisierenden Zahl n
- 2) Wähle 1 < a < n-1 und zwei natürliche Schranken b_1 , b_2 mit b_1 < b_2
- 3) Phase 1: Für alle Primzahlen $q \le b_1$ (kleine q mehrfach):
 - $a := a^q \mod n$; p := ggT(a-1, n); falls $p \mid n$ dann Abbruch
- 4) q_0 = kleinste Primzahl > b_1 , $b := a^q 0 \mod n$
- 5) Phase 2: Für alle Primzahlen $q_0 < q_k \le b_2$ (k = 1, 2, ...):
 - $b := b a^{(q}k^{-q}k-1) \mod n$; p := ggt (b-1,n); falls $p \mid n$ dann Abbruch
- 6) Ausgabe p

Die Werte a^2 , a^4 , ..., die $a^{(q}k^{-q}k-1)$ annehmen kann, werden vor Schritt 5 berechnet und gespeichert. Neben der Bedingung der Originalversion $p_1 \le b_2$ muss zusätzlich $p_2 \le b_1$ gelten, da sonst der Algorithmus versagt.

Durch Pollard wurde zusätzlich Phase 2 beschleunigt.

Die gesuchte Primzahl p_1 lässt sich eindeutig mit $p_1 = vw$ - u darstellen, wenn u < w, $v \le w$ und $w = [\sqrt{b_2}]$ sind. Ist p ein Teiler von b^p1-1 , so auch von b^{vw} - b^u .

Pollard definiert ein Polynom $h(x) = \Pi_{u < w} (x - b^u) \mod n$ und berechnet $b = ggT (\Pi_{u \le w} h (b^{vw), n})$ Dazu wird ein schneller Multiplikationsalgorithmus für Polynome verwendet.

Pollard-Rho-Methode

... probabilistisches Verfahren

```
Ziel ist es, schnell zu großen Zahlen zu gelangen, die sehr viele Teiler besitzen. Grundlage ist die binomische Formel. Mit dem Startwert a_0 und der Rekursionsformel a_{k+1} = a_k^2 + k, wobei k eine festgelegte Konstante ist (z.B. k=1), ergibt sich für dem Term a_{2n}-a_n: a_{2n}-a_n = (a_{2n-1}^2 + k)-(a_{n-1}^2 + k) = a_{2n-1}^2 - a_{n-1}^2 = (a_{2n-1} + a_{n-1})^*(a_{2n-1} - a_{n-1}) = (a_{2n-1} + a_{n-1})^*((a_{2n-2}^2 + k) - (a_{n-2}^2 + k)) = (a_{2n-1} + a_{n-1})^*(a_{2n-2} - a_{n-2}) = (a_{2n-1} + a_{n-1})^*(a_{2n-2} - a_{n-2}) = (a_{2n-1} + a_{n-1})^*(a_{2n-2} + a_{n-2})^*(a_{2n-2} - a_{n-2}) = \dots = (a_{2n-1} + a_{n-1})^*(a_{2n-2} + a_{n-2})^* \dots^*(a_n + a_0)^*(a_n - a_0) = (a_n - a_0)^* P(a_{n+i} + a_i); Produktbildung für i = 0 bis n-1 Die Berechnungen von a_{2n} und a_n führt man parallel durch. Abgebrochen wird, wenn der ggT(a_{2n} - a_n, N) \neq 1 ist. Dann haben a_{2n} und a_n in Bezug auf den gesuchten Teilers p von p den gleichen Rest. Dies ergibt den gesuchten Teiler p. Dieser ist allerdings nicht unbedingt eine Primzahl. Um zu große Zwischenwerte zu vermeiden erfolgt die Rechnung in der Moduloklasse von n.
```

Methode der elliptischen Kurven, Faktorisierung mit elliptischen Kurven, ECF-Verfahren

Durch Lenstra wurde ein hoch interessantes Faktorisierungsverfahren entwickelt.

Um einen Primteiler p zu finden, betrachtet man Punkte (x, y) der Form $v^2 = x^3 + ax + b$ wobei x, y aus dem Restklassenring modulo p und a, b ganze Zahlen sind. Man kann zeigen, dass diese elliptische Kurve eine abelsche Gruppe ist, d.h. es ist möglich, beliebige Punkte auf der Kurve zu addieren bzw. zu invertieren.

Um einen Primteiler p zu finden, wird nun versucht, das neutrale Element O₀ durch Punktadditionen zu konstruieren. Ob das gelingt, hängt entscheidend von der Gruppenordnung ab. Sind alle ihre Primteiler kleiner als eine Schranke b, so hat man eine Chance. Über die Kurvenparameter kann auf die Ordnung Einfluss genommen werden, wobei der Effekt nicht vorhersagbar ist.

Die optimalen Werte für die genutzten Schranken hängen von der Größe des zu findenden Primteilers p ab, der allerdings nicht bekannt ist. Daher ist das Auffinden eines Primteilers nicht sicher.

Obwohl die Methode der elliptischen Kurven asymptotisch langsamer ist, als das Faktorisieren mit einem quadratischen Sieb, ist das Lenstra-Verfahren wesentlich effektiver als das Pollard-Faktorisierungsverfahren.

Quelle: "Matroids Matheplanet"

Gegeben sei eine natürliche Zahl N und ein zu findender Primfaktor p von N. Über dem Restklassenkörper F_n sollen auf einer elliptischen Kurve E Punktadditionen durchgeführt werden.

Da p nicht bekannt ist, werden die Operationen Addition, Multiplikation und Inververtierung der x/y-Werte auf der elliptischen Kurve modulo n ausgeführt. Da N Vielfaches von p ist, sind die Operationen konform zu den Berechnungen modulo p.

Das Ziel ist, eine Operation P + Q = 0 auszuführen. Ist P = (x_1, y_1) und Q = (x_2, y_2) , so folgt P = -Q und folglich

 $x_1 = x_2 \mod p$ (II) $y_1 = -y_2 \mod p$

Sollen P und Q addiert werden, so sind nach den Rechenregeln der elliptischen Kurven die Inversen (x2- $(x_1)^{-1} \mod N \pmod {f\ddot{u}r} = Q (2 y_1)^{-1} \mod N$ bilden.

Da (I) und (II) gelten, existieren die Inversen nicht und es ergibt sich mit großer Wahrscheinlichkeit mit $ggT(x_2-x_1, N)$ und $ggT(2y_1, N)$

der gesuchte Primfaktor p.

Leider funktioniert dies nicht, wenn die zwei Kongruenzen (I) und (II) auch für andere Primfaktoren q von N aelten.

ECM-Algorithmus

- 1. Eingabe N
- 2. Wähle eine elliptische Kurve E und einem Punkt P auf E; außerdem die natürlichen Schranken b₁ < b₂
- 3. Für alle Primzahlen $q \le b_1$ (kleine q mehrfach)
 - P = q P; falls dabei Addition bzw. Verdopplung nicht möglich ist:
 - $p = ggT(x_2-x_1, N)$ bzw. $ggT(2y_1, N)$... Abbruch
- 4. q_0 = kleinste Primzahl > b_1 ; $Q = q_0 P$
- 5. Für alle Primzahlen $q_0 < q_k \le b_2$ (k = 1, 2, ...)
 - $Q = Q + (q_k q_{k-1}) P$; falls dabei Addition bzw. Verdopplung nicht möglich ist:
 - $p = ggT(x_2-x_1, N)$ bzw. $ggT(2y_1, N)$... Abbruch
- 6. bei Misserfolg weiter mit Schritt 2

Beispiel zur Methode der elliptischen Kurven

Gegeben sei N = 373935877613. Als elliptische Kurve werden $y^2 = x^3 + 11x - 11$ und der Startpunkt P (1, 1) gewählt. Betrachtet wird hier auch nur die Schranke $b_1 = 15$. Eine geeignete Zahl, die alle Primzahlen bis b₁ als Teiler enthält, ist z.B.

```
m = 360360 = 2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13
```

m wird als Summe von Zweierpotenzen dargestellt

```
besser m = 2^3 + 2^5 - 2^7 + 2^{15} + 2^{16} + 2^{18}
m = 2^3 + 2^5 + 2^7 + ... + 2^{16} + 2^{18}
```

Die Punktverdopplung ergibt

```
2^{1} P = (47, 373935877290)
```

 $2^2 P = (227972965300, 183442291117) ...$

 $2^{17} P = (280318713435, 342677737184)$

 $2^{18} P = (268323296538, 16670570674)$

Diese Zweierpotenzen werden addiert

$$2^{3} P + 2^{5} P - 2^{7} P = (34669084331, 321123021245)$$

$$2^{3} P + 2^{5} P = (70097302030, 311003332604)$$

 $2^{3} P + 2^{5} P - 2^{7} P = (34669084331, 321123021245)$
 $2^{3} P + 2^{5} P - 2^{7} P + 2^{15} P = (317161257334, 188842975469)$

$$2^{3} P + 2^{5} P - 2^{7} P + 2^{15} P + 2^{16} P = (120533742333, 164980145780)$$

Die Addition mit 2^{18} P ist nicht mehr möglich, da 268323296538 - 120533742333 = 147789554205 mod N nicht ausführbar ist.

Mit qqT(147789554205, N) = 157559 erhält man einen Primfaktor von N.

Ouadratisches Sieb

Das Quadratische Sieb ist geeignet zur Faktorisierung von Zahlen, die aus großen Faktoren (mehr als 30 Stellen) zusammengesetzt sind.

- 1. Die Rechenzeit ist dabei nicht abhängig vom kleinsten Faktor sondern von n selbst.
- 2. Dabei muss ein lineares Gleichungssystem gelöst werden, das sehr viele Gleichungen enthalten kann (bei 120-stelligem n 245000 Gleichungen mit 245000 Unbekannten)

Idee

Nach der dritten binomischen Formel entspricht $X^2 - Y^2 = (X + Y) (X - Y)$.

Gesucht sind nun zwei Zahlen X, Y, so dass n ein Teiler von $X^2 - Y^2$ ist. n darf dabei nicht Teiler einer der Faktoren (X + Y) bzw. (X - Y) sein. Dann ist jeweils der größte gemeinsame Teiler von n und (X + Y), bzw. n und (X - Y), ein echter Teiler von n, also einer der gesuchten Faktoren.

```
Beispiel n = 221 = 13 * 17, X = 154, Y = 50

(X + Y) (X - Y) = (154 + 50) (154 - 50) = 104 * 204 = 21216 = n * 96

n ist nicht Teiler einer der beiden Faktoren (X + Y) bzw. (X - Y)

→ (X + Y) bzw. (X - Y) sind jeweils Vielfache der Faktoren von n:

ggt((X - Y), n) = ggt(104, 221) = 13

ggt((X + Y), n) = ggt(204, 221) = 17
```

In den Achtzigerjahren vermutete man, dass Methoden, die auf der Idee des quadratischen Siebs von Kraitchik basieren, nicht substantiell schneller als das quadratische Sieb sein können. Diese Vermutung wurde dadurch gestützt, dass es mittlerweile etliche Verfahren mit ähnlichen Laufzeiten gab und durch ein Ergebnis aus der analytischen Zahlentheorie über glatte Zahlen.

Anfang der Neunzigerjahre wurde diese Vermutung eindrucksvoll durch das Zahlkörpersieb widerlegt. Das Zahlkörpersieb wurde 1988 von John Pollard für spezielle Zahlen vorgeschlagen und danach so verändert, dass es für beliebige Zahlen anwendbar wurde. Durch den Übergang zu algebraischen Zahlkörpern war es möglich geworden, die während der Rechnung benutzten Zahlen deutlich kleiner zu halten und damit die erwähnte Beschleunigung zu erreichen. Insbesondere gelang damit 1990 die vollständige Faktorisierung der 155-stelligen Fermat-Zahl F_9 .

Mit dem Gittersieb; einer von Pollard vorgeschlagenen Variante des Zahlkörpersiebs; gelang am 3. Dezember 2003 die Faktorisierung der bisher größten "schwer faktorisierbaren" Zahl RSA-576, die 174 Dezimalstellen besitzt.

Spezielles Zahlenfeldsieb (special number field sieve)

Die Siebverfahren (SNFS) ist ein Speziallfall der Faktorisierungsverfahren. Dieses Verfahren ist effizient für Zahlen der Form $r^e \pm s$, wobei r und s klein sein müssen. Zum Beispiel eignet es sich sehr gut zur Zerlegung von Fermat-Zahlen. Das Laufzeitverhalten Θ (exp((32/9 ln n)^{1/3} (ln ln n)^{2/3})).

Das SNFS besteht aus zwei Schritten:

Zuerst wird eine große Zahl von multiplikativen Beziehungen in einer Faktorbasis der Elemente von Z/nZ gesucht, so dass deren Anzahl größer als die Anzahl der Elemente in der Faktorbasis sind Zweitens werden Teilmengen dieser Beziehungen multipliziert, so dass im Ergebnis eine Kongruent der Form $a^2 \equiv b^2 \pmod{n}$ entsteht. Diese führt zu $n: n = \gcd(a+b,n) \times \gcd(a-b,n)$, mit dem gewünschten Ergebnis.

Der zweite Schritt stimmt mit dem eines rationalen Zahlensiebs überein. Dagegen ist der erste Schritt oft effizienter durchführbar.

Quadratisches Sieb, Grundlagen

Die Fermat-Faktorisierungsmethode bildet die Grundlage des Quadratischen Siebs. Sie geht auf Pierre de Fermat zurück und versucht, die zu zerlegende Zahl n als Differenz zweier Quadrate zu schreiben. Falls $n=a^2-b^2$

gilt, lässt sich n als Produkt (a - b)(a + b) darstellen. Gilt zusätzlich (a - b) > 1 bzw. (a + b) > 1, so ist die Faktorisierung nichttrivial.

Eine solche Faktorisierung existiert für jede ungerade Zahl n. Gilt nämlich n = uv, so wählt man a = 1/2 (u + v) und b = 1/2 | u - v|

und hat $n = a^2 - b^2$. Der schlechteste Fall hierbei

tritt ein, wenn n = 3p gilt, p prim. Dann muss a den Wert (n+9)/6 annehmen, damit man einen nichttrivialen Faktor von n erhält. Die Laufzeit ist in diesem Fall schlechter als die der Probedivision.

Die Methode ist effizient, falls u und v nahe beieinander liegen. Dann nämlich ist b klein und beginnend ab \sqrt{n} ist nach kurzer Zeit ein Wert a gefunden, für den $\sqrt{a^2 - n}$ ganzzahlig ist, d.h. b ist eine perfekte Wurzel. Die Idee der Fermat-Methode lässt sich verallgemeinern:

Findet man eine Kongruenz der Form $a^2 \equiv b^2 \pmod{n}$ mit $a \neq _b \pmod{n}$, so kann man einen nichttrivialen Faktor von n bestimmen, indem man den größten gemeinsamen Teiler von $a + b \pmod{a}$ und n bestimmt.

Beweisidee: n|(a + b)(a - b), aber n teilt nicht (a + b) und $(a - b) \Rightarrow (a + b; n)$ bzw. (a - b; n) ist ein echter Teiler von n.

Wie bestimmt man derartige Kongruenzen?

Angenommen, man will die Zahl 209 faktorisieren und bemerkt, dass 15² ≡ 16 = 42 (mod 209) gilt. Dann liefert (15 + 4; 209) = 19 einen echten Teiler von 209. Daraus ergibt sich ein Ansatz zur Lösung des obigen Problems.

Man wählt beliebige x und prüft, ob x^2 (mod n) jeweils ein perfektes Quadrat ist. Dies wäre jedoch zu ineffizient. Deshalb geht man wie folgt vor:

Man wählt verschiedene x mit der Eigenschaft, dass x² (mod n) jeweils ein Produkt über Primzahlen ist, welche kleiner sind als eine obere Schranke B. Ein solches x² (mod n) wird B-glatt genannt.

Anschließend wird versucht, die x so zu kombinieren, dass im Produkt über die x^2 (mod n) alle $(\Pi_i \ X_i)^2 \equiv \Pi_{j=1}^h \ p_j^{(\Sigma_i \ \alpha_{ij})} \ (\text{mod } n)$ $(\Pi_i \ X_i)^2 \equiv \Pi_{j=1}^h \ p_j^{(1/2 \ \Sigma_i \ \alpha_{ij})} \ (\text{mod } n)$ Primzahlen in gerader Anzahl auftreten. Dann gilt:

 $\Sigma_i \alpha_{ii}$ ist gerade d.h.

Somit ist eine Kongruenz der Form $a^2 \equiv b^2 \pmod{n}$ gefunden und man kann versuchen, über den ggT einen Faktor von n zu bestimmen. Hierbei sei h die Anzahl der Primzahlen, die \leq B sind und zusätzlich die Bedingung $\binom{n}{p} = 1$ erfüllen.

Das Praktische an diesem Verfahren ist, dass sich die geeigneten x über die Methoden der Linearen Algebra auswählen lassen. Dazu stellt man die Exponenten der Primfaktorzerlegung eines x² (mod n) als Vektor über F₂^h dar, indem man jeden Exponenten modulo 2 rechnet.

Diese Vektoren schreibt man als Zeilen in eine Matrix. Hat man h + 1 Vektoren, ist eine $(h + 1 \times h)$ -Matrix entstanden. Der Hintergrund, warum man dies macht, ist, dass man mit Hilfe der Gauß-Elimination in einer (h + 1 $\dot{}$ h)-Matrix eine lineare Abhängigkeit bestimmen kann.

Eine solche Abhängigkeit ist eine Zeile mit ausschließlich Nullen, d.h. alle Exponenten der einzelnen Primzahlen sind gerade. Man hat also die Zeilen und somit die x² (mod n) so kombiniert, dass im Produkt über letztere alle Primzahlen in gerader Anzahl auftreten.

Anfangs wurde erwähnt, dass ein nichttrivialer Teiler von n nur dann gefunden wird, wenn a ≠ _b (mod n) gilt. Insgesamt erhält man daher eine solche Kongruenz in 50 % der Fälle!

Insgesamt hat man also mit einer Wahrscheinlichkeit von 1 - 2^k nach k Versuchen einen nichttrivialen Faktor von n gefunden.

Bisher wurde noch nicht erklärt, wie groß die Schranke B sein sollte. Wählt man sie klein, braucht man nicht viele B-glatte Reste x² (mod n) um eine Abhängigkeit zu finden. Jedoch wird die Eigenschaft, Bglatt zu sein, dann so selten, dass man eventuell überhaupt keine Werte mehr findet.

Typischerweise sollte für ein n mit 50 bis 150 Stellen B im Bereich von 104 bis 107 liegen. Da diese Größe jedoch stark von n abhängt, probiert man in der Praxis am Besten verschiedene Werte aus, um einen optimalen zu finden.

Es bleibt noch zu klären, wie man x wählt, so dass x² (mod n) B-glatt ist. Für einen kleinen Wert ist diese Eigenschaft mit höherer Wahrscheinlichkeit erfüllt als für einen großen.

Deshalb beginnt man für x bei $\lceil \sqrt{n} \rceil$ und geht von diesem Wert aus weiter, bis man ausreichend viele Bglatte Reste gefunden hat.

Zusammenfassung:

- 1) Man wählt ein geeignetes B und bestimmt alle Primzahlen ≤ B.
- 2) Beginnend bei $x = [\sqrt{n}]$ prüft man, ob $f(x) = x^2 n$ B-glatt ist.
- 3) Von $x = \lceil \sqrt{p} \rceil$ aus wird sukzessive in beide Richtungen weitergesucht, d.h. geprüft, ob der Wert von f(x) B-glatt ist. Dies wird solange gemacht, bis h + 2 viele solche Werte gefunden sind.
- 4) Anschließend nimmt man die zu den f(x)-Werten korrespondierenden Exponentenvektoren modulo 2 als Zeilen einer Matrix und sucht eine lineare Abh angigkeit.
- 5) Dann berechnet man $x = \prod x_i \pmod{n}$ und $y = \prod p_j^{(1/2)} i^{\alpha} ij^{\beta} \pmod{n}$.
- 6) Falls $x \neq \pm y$ gilt, berechnet man d = (x y; n), einen nichttrivialen Faktor von n.

Andernfalls muss man eine andere Abhängigkeit suchen oder, falls eine solche nicht existiert, weitere Bglatte Werte von f(x) bestimmen.

Agrawal-Kayal-Saxena-Test

Bis 2002 existierte kein Primzahltest mit einer deterministisch polynomialen Laufzeit. Z.B. ist der Miller-Primzahltest ist nur unter der Bedingung der noch nicht bewiesenen Riemannschen Vermutung polynomial. Daher war es eine absolute Sensation, dass 2002 Agrawal, Kayal und Saxena einen in seiner Struktur "einfachen" polynomialen Primzahltest bewiesen haben:

Sind a und p zueinander relativ prime natürliche Zahlen mit p > 1, so ist p genau dann Primzahl, wenn $(x - a)^p = (x^p - a) \pmod{p}$

Gegenwärtig besteht noch die Schwierigkeit, dass für große p auch sehr viele relativ prime Zahlen a zu testen sind. Ein nichtdeterministischer Test auf der Grundlage des neuen Theorems ist:

```
Input: Integer n>1 if (n has the form a^b with b>1) then output COMPOSITE r:=2 while (r<n) { if (\gcd(n,r) \text{ is not 1}) then output COMPOSITE if (r is prime greater than 2) then { let q be the largest factor of r-1 if (q>4\text{sqrt}(r)\log n) and (n^{(r-1)/q} \text{ is not 1 (mod r)}) then break } r:=r+1 } for a=1 to 2\text{sqrt}(r)\log n { if ((x-a)^p \text{ is not } (x^p-a) \text{ (mod } x^r-1,p)) then output COMPOSITE } output PRIME; Den Originaltext der Veröffentlichung findet man unter
```

ECPP-Test (Elliptic Curve Primality Proof)

Der exakte Nachweis, dass eine vorgelegte Zahl Primzahl ist, kann für kleinere Zahlen durch Probedivisionen durchgeführt werden.

http://www.cse.iitk.ac.in/users/manindra/algebra/primality_original.pdf

Besitzt die Zahl allerdings schon 50 oder mehr Ziffern, keine spezielle Struktur wie die Mersenneschen Primzahlen und lässt sie sich nicht durch spezielle Tests wie zum Beispiel die Pollard-Rho-Methode oder ein Quadratisches Sieb zerlegen, so ist der Nachweis der Primzahleigenschaft nur mit großem Aufwand möglich.

Ein Fortschritt wurde erzielt, als 1986 S.Goldwasser, J. Kilian und A.O.L.Atkin das ECPP-Verfahren (Elliptic Curve Primality Proof) einführten. Diese Methode ist von der Ordnung O((log n)^{5+ ϵ}), wobei $\epsilon > 0$ ist. Eine spezielle Version von J.O.Shallit erreicht sogar O((log n)^{4+ ϵ}).

Im ECPP-Verfahren werden die klassischen Gruppen der Ordnung n-1 und n+1 durch eine Vielzahl von Gruppen höherer Ordnung ersetzt und mit sehr anspruchsvollen Operationen untersucht. Das ECPP-Verfahren ist ein strenges Primzahltestverfahren und keine probabilistisches. Durch Franke, Kleinjung und Wirth wurde 2003 "fastECPP" entwickelt. Damit ist es jetzt möglich, auch Zahlen mit mehr als 10000 Ziffern auf einem schnellen Computer in vertretbarer Zeit zu testen.

Die größten damit nachgewiesenen Primzahlen sind:

```
((((((25210088873+80)^3+12)^3+450)^3+894)^3+3636)^3+70756)^3+97220, 20562 Ziffern, Juni
2006 FCPP
        2638<sup>4405</sup>+4405<sup>2638</sup>
2
                                                                               15071 Ziffern, Juli 2004
        1234^{3265} + 3265^{1234}
                                                                               10094 Ziffern, August 2005
3
        2739<sup>2930</sup>+2930<sup>2739</sup>
4
                                                                               10073 Ziffern, Januar 2005
        648^{3571} + 3571^{648}
5
                                                                               10041 Ziffern, Dezember 2003
         109999+33603
6
                                                                               10000 Ziffern, August 2003
```

Ein Probelauf auf einem Pentium-PC mit 2,8 GHz ergab für eine 500stellige Zahl eine Testzeit von 98s, für eine 750stellige Zahl 13 min und für eine 1000stellige Zahl rund 45 Minuten. Damit kann innerhalb eines Tages jede 2000stellige Zahl auf Primzahleigenschaft untersucht werden. Allerdings entzieht sich der Test einer 10000stelligen Zahl noch den Möglichkeiten. Hochrechnungen schätzen als Testzeit etwa 16 Jahre(!).

Faktorisierung der ersten natürlichen Zahlen

Angegeben werden nur Primfaktoren größer als 7

n	Р	IN	р	n	р	n	р	n	Ρ	IN	р
121	11, 11	143	11, 13	169	13, 13	187	11, 17	209	11, 19	221	13, 17
247	13, 19	253	11, 23	289	17, 17	299	13, 23	319	11, 29	323	17, 19
341	11, 31	361	19, 19	377	13, 29	391	17, 23	403	13, 31	407	11, 37
437	19, 23	451	11, 41	473	11, 43	481	13, 37	493	17, 29	517	11, 47
527	17, 31	529	23, 23	533	13, 41	551	19, 29	559	13, 43	583	11, 53
589	19, 31	611	13, 47	629	17, 37	649	11, 59	667	23, 29	671	11, 61
689	13, 53	697	17, 41	703	19, 37	713	23, 31	731	17, 43	737	11, 67
767	13, 59	779	19, 41	781	11, 71	793	13, 61	799	17, 47	803	11, 73
817	19, 43	841	29, 29	851	23, 37	869	11, 79	871	13, 67	893	19, 47
899	29, 31	901	17, 53	913	11, 83	923	13, 71	943	23, 41	949	13, 73
961	31, 31	979	11, 89	989	23, 43	1003	17, 59	1007	19, 53	1027	13, 79
103	17, 61	106	11, 97	1073	29, 37	1079	13, 83	1081	23, 47	1111	11,
7		7									101
112	19, 59	113	11,	1139	17, 67	1147	31, 37	1157	13, 89	1159	19, 61
1		3	103								
117	11,	118	29, 41	1199	11,	1207	17, 71	1219	23, 53	1241	17, 73
7	107	9			109						
124	11,	124	29, 43	1261	13, 97	1271	31, 41	1273	19, 67	1313	13,
3	113	7									101
133	11, 11,	133	31, 43	1339	13,	1343	17, 79	1349	19, 71	1357	23, 59
1	11	3			103						
136	29, 47	136	37, 37	1387	19, 73	1391	13,	1397	11,	1403	23, 61
3		9					107		127		

141 1	17, 83	141 7	13, 109	1441	11, 131	1457	31, 47	1469	13, 113	1501	19, 79
150 7	11, 137	151 3	17, 89	1517	37, 41	1529	11, 139	1537	29, 53	1541	23, 67
157 3	11, 11, 13	157 7	19, 83	1591	37, 43	1633	23, 71	1639	11, 149	1643	31, 53
164 9	17, 97	165 1	13, 127	1661	11, 151	1679	23, 73	1681	41, 41	1691	19, 89
170 3	13, 131	171 1	29, 59	1717	17, 101	1727	11, 157	1739	37, 47	1751	17, 103
176 3	41, 43	176 9	29, 61	1781	13, 137	1793	11, 163	1807	13, 139	1817	23, 79
181 9	17, 107	182 9	31, 59	1837	11, 167	1843	19, 97	1849	43, 43	1853	17, 109
185 9	11, 13, 13	189 1	31, 61	1903	11, 173	1909	23, 83	1919	19, 101	1921	17, 113
192 7	41, 47	193 7	13, 149	1943	29, 67	1957	19, 103	1961	37, 53	1963	13, 151
196	11,	199	11,								
9	179	1	181								

Faktorisierungsbeispiel

Im Rahmen des Jahres der Mathematik 2000 wurde in der Londoner U-Bahn eine Plakatreihe gezeigt. Auf dem Plakat des Monats Oktober wurde auf die Bedeutung der Mathematik bei der Verschlüsselung von Daten hingewiesen.

Abbildung: Kodierung (London Underground: Jahr der Mathematik 2000 - Oktober)

Am unteren Rand findet sich die Faktorisierungsaufgabe einer 49stelligen Zahl

? · ? =

8577912293265445403162361462162997220043102876199

Mit etwas Aufwand ermittelt man mit Hilfe moderner Faktorisierungsverfahrens als Zerlegung $8577912293265445403162361462162997220043102876199 = 12764 78784 63584 41471 \cdot 67199 80305 59713 96836 16669 35769$

Im Teilprogramm ist dieses Faktorisierungsproblem in 13s lösbar, wenn die Methode der elliptischen Kurven genutzt wird.

Satz von Pocklington

Für verschiedene Anwendungen werden sehr große Primzahlen benötigt, u.a. für die RSA-Verschlüsselung. Damit ergibt sich die Frage, wie man auf möglichst effiziente Weise große Primzahlen bestimmen kann. Dazu nutzt man den Satz von Pocklington:

Sei $n \in \mathbb{N}$ und s|(n-1) mit $s > \sqrt{n}$. Wenn es ein $a \in \mathbb{N}$ gibt, so dass $a^{n-1} = 1 \mod n$ und $ggT(a^{(n-1)/q} - 1, n) = 1$ für jeden Primteiler q von s ist, dann ist n Primzahl.

Nachweis: Angenommen, n sei zusammengesetzt. Dann existiert ein Primfaktor $p \le \sqrt{n}$ von n. Es sei $b = a^{(n-1)/s}$ mod n. Dann ist $b^s = (a^{(n-1)/s})^s = a^{n-1} = 1$ mod n

Daraus folgt, dass $b^s = 1 \mod p$ ist. Für alle Primteiler q von s gilt aber $b^{s/q} \neq 1 \mod p$, denn falls ein solches q' mit $b^{s/q'} = 1 \mod p$ gäbe, dann wäre p ein Teiler von $b^{s/q'} - 1 = a^{(n-1)/q'} - 1$, was der Voraussetzung widerspricht. Nach dem kleinen Satz von Fermat ist nun $b^{p-1} = 1 \mod p$ Daraus ergibt sich $s \mid (p-1)$, was der Voraussetzung $s > \sqrt{n}$ widerspricht, denn $p \leq n$.

Die Schwierigkeit bei diesem Verfahren ist es nicht mehr p als Primzahl nachzuweisen, sondern vielmehr ein passendes a mit $a^{n-1} = 1 \mod n$ zu finden und $ggT(a^{(n-1)/q} - 1, n) = 1$ für alle q zu testen.

Rekordprimzahlen

Weltweit beteiligen sich Mathematiker und Informatiker an der Suche nach besonders großen Primzahlen. Diese Suche wird von Professor Chris K. Caldwell, University of Tennessee at Martin http://www.utm.edu/~caldwell

koordiniert. Unter der WWW-Adresse http://www.utm.edu/research/primes/largest.html ist ständig die aktuelle Rekordliste der 5000 größten bekannten Primzahlen abrufbar.

Liste der größten bekannten Primzahlen

Nr.	Zahl	Ziffern	Entdecker, Jahr, Anmerkung
1	2^57885161-1	17425170	Cooper, 2013
2	2^43112609-1	12978189	Smith, 2008
3	2^42643801-1	12837064	Strindmo, 2009
4	2^37156667-1	11185272	Elvenich, 2008
5	2^32582657-1	9808358	Cooper, 2006
6	2^30402457-1	9152052	Cooper, 2005
7	2^25964951-1	7816230	Novak, 2005
8	2^24036583-1	7235733	Findley, 2004
9	2^20996011-1	6320430	Shafer, Valor, Mayer 2003
10	2^13466917-1	4053946	Cameron, Woltman, Kurowski 2001
11	19249-2^13018586+1	3918990	Agafonov 2007
12	3.2^10829346+1	3259959	Tang 2014
13	475856^524288+1	2976633	Kumagai 2012
14	356926^524288+1	2911151	McArdle 2012
15	341112^524288+1	2900832	Hayslette 2012
16	27653.2^9167433+1	2759677	Gordon 2005
17	90527-2^9162167+1	2758093	Salah 2010
18	75898^524288+1	2558647	Goetz 2011
19	28433·2^7830457+1	2357207	Team Prime Rib 2004
20	3.2^7033641+1	2117338	Herder 2011

Näherungsformel nach Knuth

 $\pi(x) = \sum (i! x)/(\log_{i+1} x) \text{ mit } i=0...r$

Definition: $\pi\pi(x) = \pi(x) \mod 2$. Dann gilt: Eine Zahl n ist genau dann Primzahl, wenn $\pi\pi(n) + \pi\pi(n-1) = 1$ ist.

Entwicklung Primzahlrekorde

Entwicklung der größten bekannten Primzahl im Laufe der Jahre (auf der Ordinatenachse ist der Logarithmus der größten Primzahl angetragen)

Primzahl-Anzahl

Die Verteilung der Primzahlen ist sehr unregelmäßig. Für die Bestimmung der Anzahl der Primzahlen bis zu einer natürlichen Zahl x wird die Eulersche Funktion $\pi(x)$ genutzt.

$$\Rightarrow \pi(x) \approx \text{Li}(x) \text{ und } \lim (\pi(x) / [x / \ln x]) = 1$$

 $\Rightarrow \pi(x) \approx x / \ln x$

Legendre-Näherung 1778:

Abschätzung nach unten $\Rightarrow \pi(x) \ge \ln 2 (x - 2) / \ln x$

Der Primzahlsatz wurde erst 1896 von Hadamard und de la Vallée Poussin unabhängig voneinander bewiesen.

Verteilung der Primzahlen

 $\pi(x)$... Anzahl der Primzahlen von 1 bis $x \Rightarrow \pi(x) \approx \text{Li}(x)$ und $\lim_{x \to \infty} (\pi(x) / [x / \ln x]) = 1$

Verteilungstabelle

VCI CCIIG	mgstabene			
X	$\pi(X)$	x/ln x	Li(x)	$\pi(x)$ -Li(x)
10 ⁵	9593	8685	9630	-37
10 ⁶	78499	72382	78628	-129
10 ⁷	664579	620420	664918	-339
10 ⁸	5761455	5428681	5762209	-754
10^{9}	50847534	48254942	50849235	-1701
10 ¹⁰	455052511	434294481		
10 ¹¹	4118054813	3948131653		
10 ¹²	37607912018	36191206825		
10^{13}	346065536839	334072678387		
10^{14}	3204941750802	3102103442166		
10^{15}	29844570422669	28952965460216		

10 ¹⁶	279238341033925	271434051189532
10^{17}	2623 557157 654233	2554673422960304
10^{18}	24739 954287 740860	24127471216847323
10^{19}	234057 667276 344607	228576043106974646
10^{20}	2 220819 602560 918840	2171472409516259138
10^{21}	21127 26948 60187 31928	
10 ²²	2 01467 28668 93159 06290	
10^{23}	19 25320 39160 68039 68923	; Oliveira da Silva 7.April 2008

Es fällt auf, dass $\pi(x)$ -Li(x) in der Tabelle stets negativ ist. Mit der Absicht, dies allgemein zu beweisen, konnte das Gegenteil gezeigt werden. Allerdings wird die Differenz erst bei unvorstellbar großen x erstmals positiv, oszilliert aber dann unendlich oft zwischen positiven und negativen Werten.

Verteilung der Primzahlen

 $\pi(x)$... Anzahl der Primzahlen von 1 bis $x \Rightarrow \pi(x) \approx \text{Li}(x)$

Eine Primzahl p > 3 ist entweder von der Form 4n+1 oder der Form 4n+3. Die Wahrscheinlichkeit einer Primzahl, die Struktur 4n+1 zu besitzen, ist 50 %, d.h. beide Primzahlarten p_{4n+1} und p_{4n+3} sind gleich häufig.

Bis n = 1000 treten mehr Primzahlen der Form 4n+3 auf. Die absolute Häufigkeit der Primzahlen p_{4n+3} ist stets größer als die Häufigkeit der p_{4n+1} . Mit $\Delta_n = H(p_{4n+3}) - H(p_{4n+1})$

nimmer Δ_n mit wachsenden n = 1,2,3, ... die Werte an

0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 2, 3, ...

Die Vermutung, dass stets $\Delta_n \geq 0$

ist, ist falsch. Von n = 6708 bis n = 158469 gilt $\Delta_n \leq 0$. Für noch höhere Werte wurde bewiesen, dass Δ_n unendlich oft das Vorzeichen wechselt.

Entwicklung der Primzahlhäufigkeit

Verteilungstabelle für Primzahlen, -zwillinge und -vierlinge

... Liste enthält die bis zur Grenze n auftretende Anzahl von Primzahlen; n in Millionen Gesamtergebnis bis 2,104 Milliarden (St.Polster 2003):

4.8989 % der Zahlen sind Primzahlen

aller 20.4 Zahlen ist eine Primzahl zu erwarten

aller 314 Zahlen ist ein Zwilling zu erwarten

aller 41076 Zahlen ist ein Vierling zu erwarten

Für n = 0,1,2,3,... findet man zwischen n*10000 und (n+1)*10000 genau a(n) Primzahlen:

a(n) = 1229, 1033, 983, 958, 930, 926, 902, 876, 879, 861, 848, 858, 849, 838, 835, 814, 845, 828, 814, 823, 811, 819, 784, 823, 793, 805, 790, 792, 773, 803, 808 ...

Für n = 1,2,3,... findet man zwischen 1 und n*10000 genau a(n) Primzahlen:

a(n) = 1229, 2262, 3245, 4203, 5133, 6057, 6935, 7837, 8713, 9592, 10453, 11301, 12159, 13010, 13848, 14683, 15497, 16342, 17170, 17984, 18807, 19618, 20437, 21221, 22044, 22837, 23642, 24432, 25224, 25997, 26800, 27608

Entwicklung der Primzahlhäufigkeit (n in Millionen)

N	Primzahlen	Zwillinge	Vierlinge
1	78498	8169	167
2	148933	14871	296
3	216816	20932	398
4	283146	26860	468
5	348513	32463	547
6	412849	37916	607
7	476648	43259	696
8	539777	48618	773
9	602489	53867	837
10	664579	58980	900
12	788060	69011	1014
14	910077	78784	1140
16	1031130	88534	1258
18	1151367	98106	1368
20	1270607	107407	1469
50	3001134	239101	2848
100	5761455	440312	4769
500	26355867	1840170	16332
1000	50847534	3424506	28389
1500	74726528	4929508	39164
2000	98222287	6388041	49263
2107	103212965	6694804	51273

n.te Primzahl

Da für die Verteilung der Primzahlen bis heute (2004) nur stochastische Gesetze gefunden wurden, existiert noch keine explizite Gleichung, mit der das n.te Glied der Folge der Primzahlen, also die n.te Primzahl berechnet werden kann.

Sucht man die n.te Primzahl, so müssen alle vorhergehenden Primzahlen berechnet werden.

```
n 10 100 1000 10000 100000 1 Million 10 Millionen
Primzahl 29 541 7919 104729 1299709 15485863 179424673
```

Gilbreaths Vermutung

Gilbreaths Vermutung ist eine noch nicht bewiesene zahlentheoretische Behauptung, die Norman L.Gilbreath (geb. 1936) 1958 veröffentlichte.

Allerdings gab François Proth 1878 die Vermutung schon an und glaubte, diese irrtümlich bewiesen zu haben.

Man schreibe in einer ersten Zeile die Folge der Primzahlen:

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, ...
```

Dann berechne man den Absolutwert der Differenz zwischen zwei aufeinander folgenden Folgegliedern und notiere so die zweite Zeile. Genauso bilde man die dritte und alle folgenden Zeilen:

```
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, ...
1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, ...
1, 0, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, ...
1, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, ...
1, 2, 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, ...
1, 2, 0, 0, 2, 2, 0, 0, 2, 2, ...
1, 2, 0, 0, 2, 2, 0, 0, 2, 2, ...
1, 2, 0, 2, 0, 2, 0, 2, 0, ...
1, 2, 2, 2, 2, 2, 2, ...
1, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, ...
```

Gilbreaths Vermutung lautet, dass der erste Wert jeder Zeile außer der ersten Zeile 1 beträgt. Andrew Odlyzko überprüfte die Aussage mit Computerhilfe für 3·10¹¹ Zeilen.

Goldbach-Vermutung

Goldbach (1690-1764) am 7.6.1742 an Euler:

"Es scheinet wenigstens, dass eine jede Zahl, die größer ist als 2, ein aggregatum trium numerorum primorum sei." (d.h. eine Summe von 3 Primzahlen)

Dies ist äquivalent zur Vermutung, dass sich jede gerade Zahl > 4 als Summe zweier Primzahlen schreiben lässt, was heute als binäre Goldbachsche Vermutung bezeichnet wird.

Die schwächere, ternäre Form besagt, dass man jede ungerade Zahl > 5 als Summe dreier Primzahlen darstellen kann. Obwohl man allgemein davon ausgeht, dass die binäre Vermutung stimmt, konnte noch immer kein Beweis gefunden werden.

Aktueller Nachweisstand:

- 1. für genügend große ungerade Zahlen (Matveevic)
- 2. jede natürliche Zahl ist als Summe von höchstens 27 Primzahlen darstellbar

Anmerkung: Schnizel wies nach, dass die Aussage

Jede natürliche Zahl n größer 17 ist als Summe von drei verschiedenen Primzahlen darstellbar. äquivalent zur Goldbachschen Vermutung ist.

Einige Zahlen können auf mehrfache Weise als Summe zweier Primzahlen dargestellt werden, z.B.

```
88 = 83 + 5 = 71 + 17 = 59 + 29 = 47 + 41
```

Die kleinsten Zahlen, welche auf n verschiedene Arten so darstellbar sind:

```
n
1
      4 = 2+2, 6 = 3+3, 8 = 3+5, 12 = 5+7
2
      10 = 5+5 = 3+7, 18 = 5+13 = 7+11
3
      22 = 3+19 = 5+17 = 11+11, 24 = 5+19 = 7+17 = 11+13
4
      34 = 3+31 = 5+29 = 11+23 = 17+17, 42 = 5+37 = 11+31 = 13+29 = 19+23
5
      48 = 5+43 = 7+41 = 11+37 = 17+31 = 19+29
6
      60 = 7+53 = 13+47 = 17+43 = 19+41 = 23+37 = 29+31
7
      78 = 5 + 73 = 7 + 71 = 11 + 67 = 17 + 61 = 19 + 59 = 31 + 47 = 37 + 41
      84 = 5 + 79 = 11 + 73 = 13 + 71 = 17 + 67 = 23 + 61 = 31 + 53 = 37 + 47 = 41 + 43
```

Das erste Mal genau n Zerlegungen mit n = 8,9,...,19 treten bei den Zahlen 84,90,114,144,120,168,180,234,246,288,240,210 auf. Für die 300 existieren 21 verschiedene Goldbachsche Zerlegungen. Da es bisher noch nicht gelungen ist, die Goldbachsche Vermutung zu beweisen, wird mit Einsatz von Computertechnik die Aussage für große Zahlen getestet. Nachdem 1855 Desboves alle Zahlen bis 10000 prüfte, testeten Deshouillers, te Riele und Saouter 1998 alle geraden Zahlen bis $4*10^{14}$; unter Verwendung eines optimierten, segmentierten Siebverfahrens und eines effizienten Prüfalgorithmus. Das

Programm wurde auf eine Vielzahl von Workstations verteilt. Die maximalen Werte der kleineren Primzahlen in der Minimalpartition (= (p,q): 2n = p+q mit 2n - p' zerlegbar für alle p' < q) wurden gesammelt.

Die maximale Primzahl p, die für eine minimale Partition notwendig war, ist 9341 und trat in der Partition 906030579562279642 = 9341 + 906030579562270301 auf. 2011 erweiterte Oliveira e Silva die Grenze auf $26 \cdot 10^{17}$.

Schwache Goldbach-Vermutung

" Jede ungerade Zahl größer als 9 ist als Summe von höchstens 3 ungeraden Primzahlen darstellbar."

Beweisstand:

- nach Winogradow ... Satz gilt für hinreichend große natürliche Zahlen mit N $\geq 3^{315}$ = e^{e16573}
- 1989 ermittelten Chen und Wang die unterste Grenze zu $N = e^{e11503}$
- sollte die schwache Goldbach-Vermutung falsch sein, so nur für endliche viele natürliche Zahlen

- Zinoviev bewies, dass unter der Vorraussetzung der Gültigkeit der verallgemeinerten Riemannschen Vermutung die Grenze N $< 10^{20}$ ist
- Schoenfeld, Deshoulliers, Effinger, Te Riele und Zinoviev reduzierten unter der Bedingung der Riemannschen Vermutung 1997 die Grenze auf $1,615\cdot 10^{12}$ und testeten mit Computereinsatz die Allgemeine Goldbachsche Vermutung für alle in Frage kommende Zahlen
- damit sind sowohl die allgemeine als auch die schwache Goldbach-Vermutung heute unter Voraussetzung der verallgemeinerten Riemannschen Vermutung bewiesen und ohne Zusatzbedingung für nur endlich viele Zahlen unbewiesen
- im Mai 2013 veröffentlichte der peruanische Mathematiker Harald Andres Helfgott einen Beweis der ternären Goldbach-Vermutung siehe http://arxiv.org/abs/1305.2897 siehe auch Schnizel-Vermutung und Vermutung von Eaton

Da es bisher noch nicht gelungen ist, die Goldbachsche Vermutung zu beweisen, wird mit Einsatz von Computertechnik die Aussage für große Zahlen getestet. Bei einem Test stellt man fest, dass mit steigender Zahl n auch der kleinste, mögliche Primsummand unregelmäßig wächst. Die Liste enthält die Zahlen und ihre Zerlegung, für welche ein neuer, größerer erster Primsummand notwendig ist.

Zahl	1.Primsumm	and 2.Summand
4	2	2
6	3	3
12	5	7
30	7	23
98	19	79
220	23	197
308	31	277
556	47	509
992	73	919
2642	103	2539
5372	139	5233
7426	173	7253
43532	211	43321
54244	233	54011
335070838	1427	335069411
419911924	1583	419910341

Schnizel-Vermutung

Durch Schnizel wurde folgende Aussage als äquivalent zur Goldbachschen Vermutung nachgewiesen. Es gilt: Jede natürliche Zahl n größer 17 ist als Summe von drei verschiedenen Primzahlen darstellbar.

Vermutung von Eaton, Eaton-Zerlegung

Jede ungerade natürliche Zahl > 5 ist als Summe einer Primzahl und dem Zweifachen einer Primzahl darstellbar. (überprüft für alle $z < 10^9$ durch Corbit)

Alle Zerlegungen einer natürlichen Zahl im Sinne Eatons können auf der rechten Seite berechnet werden. Die Zahl n muss kleiner als 1 Milliarde und größer als 9 sein.

Nach einer bisher unbewiesenen Vermutung können alle geraden Zahlen, mit Ausnahme von endlich vielen, auch als Summe zweier Primzahlen dargestellt werden, wobei jede dieser Primzahlen Teil eines Primzahlzwillings ist.

Die ersten Zahlen, für die es keine solche Zerlegung gibt, sind 2, 4, 94, 96, 98, 400, 402, 404, 514, 516, 518, ...

Rummler-Zerlegung

Durch Rummler und Minnich wurde bewiesen, dass jede gerade natürliche Zahl größer 38 als Summe von zwei ungeraden Nichtprimzahlen darstellbar ist.

Für alle geraden Zahlen größer 68 gibt es sogar mindestens zwei verschiedene Summen.

Die kleinsten natürlichen Zahlen n für die es genau k = 1, 2, 3, ... verschiedene Rummler-Zerlegungen gibt, sind

40, 50, 42, 54, 60, 78, 84, 108, 90, 114, 132, 120, 144, 156, 226, 150, 168, 186, 180, 216, ...

gerade Zahl x ist

Satz von Chen (1973)

Jede hinreichend große natürliche, gerade Zahl größer N ist als Summe von einer Primzahl und dem Produkt von maximal zwei Primzahlen darstellbar. 1965 hatte Chen in einer chinesischen Fachzeitschrift angekündigt, er habe einen Beweis für seinen Satz, was aber in der westlichen Fachwelt stark bezweifelt wurde. Offenbar hielt es auch kein westlicher Mathematiker für nötig, mit ihm Kontakt aufnehmen. Nach der Öffnung Chinas gegen Ende der Kulturrevolution erschien 1973 der komplette Beweis in "Scientia Sinica". Die Ungleichung auf der Briefmarke hat folgende Erklärung: Sie ist eine quantitative Form des Satzes von Chen:

$$P_x(1,2) = |\{p: p \le x, x - p = P_2\}|$$

steht für die Anzahl der Darstellungen der geraden Zahl x als Summe einer Primzahl p und einer Zahl mit höchstens 2 Primfaktoren P₂, C_x für das Produkt

$$C_x = \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) \cdot \prod_{2 < p|x} \frac{p-1}{p-2}$$

aus einem konvergenten unendlichen Produkt, erstreckt über alle ungeraden Primzahlen und einem Produkt, erstreckt über alle ungeraden Primteiler von x. Die Aussage auf der Briefmarke heißt also ausführlich so: Für jede genügend große 哥德巴赫 的 最佳

 $P_x(1,2) \ge 0.67 \cdot \prod_{p>2} \left(1 - \frac{1}{(p-1)^2}\right) \cdot \prod_{2$

Die Zeichen oben auf der Briefmarke bedeuten

(gelesen: gē dé bā hè " Goldbach hedeuten

Vermutuna davon

Optimierungs- Ergebnis "

Unten steht noch "Chinesische Post".

Durch den chinesischen Mathematiker Chen wurde nicht nur nachgewiesen, dass

- jede gerade Zahl > 2 als Summe von einer Primzahl und dem Produkt von maximal zwei Primzahlen darstellbar ist sondern auch, dass
- jede gerade Zahl als Differenz einer Primzahl und dem Produkt von maximal zwei Primzahlen dargestellt werden kann.

Mit beiden Sätzen ist ein wesentlicher Beitrag zum endgültigen Beweis der Goldbachschen Vermutung geleistet worden.

Goldbachsche Zerlegung

388, 428, 458, 488

Die nachfolgende Tabelle listet alle Zahlen auf, für die genau n verschiedene Goldbachsche Zerlegungen existieren.

Zahlen n 6, 8, 12 1 2 10, 14, 16, 18, 20, 28, 32, 38, 68 3 22, 24, 26, 30, 40, 44, 52, 56, 62, 98, 128 4 34, 36, 42, 46, 50, 58, 80, 88, 92, 122, 152 5 48, 54, 64, 70, 74, 76, 82, 86, 94, 104, 124, 136, 148, 158, 164, 188 6 60, 66, 72, 100, 106, 110, 116, 118, 134, 146, 166, 172, 182, 212, 248, 332 78, 96, 112, 130, 140, 176, 178, 194, 206, 208, 218, 224, 226, 232, 272, 278, 326, 398 7 8 84, 102, 108, 138, 142, 154, 160, 184, 190, 200, 214, 242, 256, 266, 284, 292, 296, 308, 362, 368 90, 132, 170, 196, 202, 220, 230, 236, 238, 244, 250, 254, 262, 268, 302, 314, 338, 346, 356, 9

```
10 114, 126, 162, 260, 290, 304, 316, 328, 344, 352, 358, 374, 382, 416, 542, 632
11 144, 156, 174, 192, 222, 274, 298, 320, 322, 334, 376, 392, 394, 404, 412, 418, 422, 436, 478, 482, 512, 518, 524, 548, 554, 556, 572, 668, 692
12 120, 150, 228, 286, 310, 386, 424, 446, 452, 454, 464, 578, 584, 596, 602, 626
13 168, 186, 198, 216, 340, 350, 380, 406, 410, 434, 442, 448, 466, 472, 494, 496, 500, 536, 544, 566, 568, 586, 608, 656, 992
14 180, 204, 258, 280, 364, 370, 400, 430, 440, 476, 484, 508, 514, 530, 538, 562, 604, 634, 662, 698, 716, 722, 752, 782, 796, 808, 878
```

Die nachfolgende Tabelle listet die Zahlen z auf, für die eine größere Anzahl n verschiedener Goldbachscher Zerlegungen existieren.

z	Anzahl n						
6	1	10	2	22	3	34	4
48	5	60	6	78	7	84	8
90	9	114	10	120	12	168	13
180	14	210	19	300	21	330	24
390	27	420	30	510	32	630	41
780	44	840	51	990	52	1050	57
1140	58	1260	68	1470	73	1650	76
1680	83	1890	91	2100	97	2310	114
2730	128	3150	138	3570	154	3990	163
4200	165	4410	171	4620	190	5250	198
5460	218	6090	222	6510	241	6930	268
7980	274	8190	292	9030	303	9240	329
10290	330	10710	340	10920	362	11550	393
210210	4273	219450	4311	232050	4470	235620	4594
240240	4738						

Satz von Brun

Vigo Brun (1920): Jede genügend große gerade Zahl 2n lässt sich in der Form 2n = r + s schreiben, wobei r aus höchstens a und s aus höchstens b Primfaktoren besteht. Brun konnte den Fall (9; 9), d.h. a = 9, b = 9; nachweisen.

Weitere Ergebnisse:

```
1924 H.Rademacher (7, 7)
1932 Th.Estermann (6, 6)
                   (5,7)(4,9)(3,15)(2,336)
1936 G.Ricci
1940 A.A.Buchstab (4,4)
1948 A.Rényi
                   Existenznachweis für (1, b)
1959
      Wang Yuan
                   (2, 3)
1965
      A.A. Buchstab (1,3)
      H.-E.Richtert (1,3) einfacherer Beweis
1971
      Chen Jing-run (1,2)
1973
```

Satz von Yitang

Durch den chinesischen Mathematiker Zhang Yitang wurde 2013 bewiesen, dass es für einige n < 70 Millionen unendlich viele Primzahlpaare gibt, die sich genau um n unterscheiden. Bis Dezember 2013 konnte die Obergrenze von 70 Millionen unter 300 gesenkt werden. Könnte gezeigt werden, dass zu diesen n die 2 gehört, wäre die starke Goldbach-Vermutung

nachgewiesen.

Sand-Vermutung

Durch Werner Sand wurde eine zur Goldbachschen Vermutung ähnliche Vermutung aufgestellt. Jede natürliche Zahl n>2 ist die Summe eines Quadrates $m^2>0$ und einer Primzahl p oder die Summe eines Quadrates, einer Primzahl und der 1.

```
n = m^2 + p + d; d ist 0 oder 1
```

Da die Dichte der Quadratzahlen geringer ist als die Dichte der Primzahlen, treten weniger Sand-Zerlegungen einer Zahl n als Goldbachsche Zerlegungen auf.

Zum Beispiel existieren für n=1 Million über 5000 Goldbach-Zerlegungen aber nur 63 Sand-Zerlegungen.

Eine Verschärfung der Vermutung ist die Forderung eine Zerlegung $n=m^2+p$ zu finden. Bisher ist bekannt, dass eine solche Zerlegung für alle Quadratzahlen > 9, außer wenn n-m = 1 und n+m prim, und folgende 35 Werte von n nicht existiert:

n = 5, 10, 13, 31, 34, 37, 58, 61, 85, 91, 127, 130, 214, 226, 370, 379, 439, 526, 571, 706, 730, 771, 829, 991, 1255, 1351, 1414, 1549, 1906, 2986, 3319, 3676, 7549, 9634, 21679

Es ist nicht bekannt, ob 21679 die größte derartige Zahl ist. Durch James Van Buskirk wurden alle n bis 3 Milliarden geprüft.

Rivera-Vermutung, Rivera-Zerlegung

1949 bewies Richert, dass jede natürliche Zahl n > 6 als Summe von verschiedenen Primzahlen dargestellt werden. Schinzel gelang es 1959 unter der Annahme, dass die Goldbachsche Vermutung korrekt ist, zu zeigen, dass dann jede natürliche Zahl n > 17 sogar Summe von drei verschiedenen Primzahlen ist.

Im Jahr 2000 stellte Rivera die Vermutung auf, dass jedes natürliche n > 5 als Summe bzw. Differenz von aufeinanderfolgenden Primzahlen gebildet werden kann. Eine solche Zerlegung wird Rivera-Zerlegung genannt.

Zum Beispiel erhält man für n = 14 die Darstellung

```
14 = 11 + 7 - 5 + 3 - 2
```

Je größer n wird, desto mehr Zerlegungen werden im Allgemeinen gefunden, z.B. für n = 60 zehn verschiedene, darunter

```
60 = 59 + 53 - 47 - 43 + 41 - 37 + 31 + 29 - 23 - 19 + 17 - 13 + 11 + 7 - 5 - 3 + 2

60 = 37 + 31 - 29 + 23 - 19 + 17

60 = 31 + 29 usw.
```

Als optimale Zerlegung wird die Darstellung bezeichnet, die aus der kleinsten Anzahl Primzahlen besteht. Optimale Lösungen sind zum Beispiel

```
21 = 17 + 13 - 11 + 7 - 5
32 = 19 + 17 - 13 + 11 - 7 + 5
111 = 101 + 97 - 89 + 83 - 79 - 73 + 71
```

Satz von Scherk, Scherk-Zerlegung

Der deutsche Mathematiker Heinrich Ferdinand Scherk untersuchte die Darstellung einer Primzahl als Summe bzw. Differenz aller vorhergehenden Primzahlen inklusive der 1.

Es gilt: Jede Primzahl, welche in der Primzahlfolge einen geradzahligen Index hat, lässt sich aus allen kleineren Primzahlen sowie der 1 durch bloße Addition und Subtraktion gewinnen, wobei jede kleinere Primzahl genau einmal berücksichtigt wird.

Jede Primzahl, welche in der Primzahlfolge einen ungeradzahligen Index hat, lässt sich aus allen kleineren Primzahlen sowie der 1 durch bloße Addition und Subtraktion gewinnen, wobei jede kleinere Primzahl genau einmal berücksichtigt wird, mit Ausnahme der nächstkleineren Primzahl, welche genau zweimal berücksichtigt wird.

```
Zum Beispiel wird: P6: 13 = 1 + 2 - 3 - 5 + 7 + 11 P7: 17 = 1 + 2 - 3 - 5 + 7 - 11 + 2 \cdot 13 Ein möglicher Algorithmus zur Konstruktion einer solchen Zerlegung ist folgender. Beginnend ab 1 erhalten alle Primzahlen alternierende Vorzeichen. Die entstehende Summe wird im
```

Allgemeinen nicht die Gesuchte sein, sie ist zu groß!

Als Korrekturmöglichkeit kann man erstens zwei Vorzeichen - und + tauschen, wobei das - bei der kleineren Primzahl steht. Gibt es keine Lösung, so werden jeweils drei Primzahlen betrachtet. Ist deren vorzeichenbehaftete Summe die Hälfte des Überschusses zur Zielsumme, wird getauscht. Heinrich Scherk gab noch keinen Beweis. Der erste Beweis des Satzes wurde 1928 von S.S.Pillai gefunden.

Adrian Stoica-Vermutung

Durch Adrian Stoica wurde im November 2004 folgende Vermutung aufgestellt:

Für jede ungerade natürliche Zahl n > 1 existieren zwei natürliche Zahlen x und y, so dass gilt

$$x + y = n$$

 $x^2 + y^2$ ist Primzahl

Erste Beweisversuche verschiedener Mathematiker deuten daraufhin, dass diese Vermutung wahrscheinlich nicht einfach zu beweisen ist. Eng verbunden mit der Hypothese ist:

Ist k eine natürliche Zahl, dann existieren für jedes n eine natürliche Zahl f(k) mit $n \ge f(k)$ und ein kleinstes x mit $\ge n$, so dass $x^2 \wedge k + (2n+1-x)^2 \wedge k$ Primzahl ist.

Die Stoica-Vermutung ergibt sich dabei mit f(1) = 1.

Die Vermutung ist ebenso äquivalent zu der Behauptung, dass zwischen n^2 -2 + 2 und $(n^2 + 1)/2$ stets eine Primzahl auftritt.

Unerreichbare Zahl

Eine unerreichbare Zahl (engl. untouchable number) ist eine natürliche Zahl, die nicht die Summe der echten Teiler und der 1 einer anderen natürlichen Zahl ist.

Die ersten unerreichbaren Zahlen sind 2, 5, 52, 88, 96, 120, 124, 146, ...

Durch Erdös wurde bewiesen, dass es unendlich viele unerreichbare Zahlen gibt.

Die 5 ist die einzige ungerade unerreichbare Zahl. Dies folgt aus der starken Goldbachschen Vermutung, d.h. der Vermutung, dass jede gerade Zahl n > 6, die Summe von zwei verschiedenen Primzahlen ist. Angenommen 2n+1 sei eine ungerade Zahl größer als 7. Dann hat 2n nach der Goldbachschen Vermutung die Zerlegung 2n = p + q wobei p und q verschiedene Primzahlen sind. Die echten Teiler von pq sind dann p und q. Damit wird 1 + p + q = 2n+1 und 2n+1 ist nicht unerreichbar.

Schicksalszahl

Eine Schicksalszahl oder auch merkwürdige Zahl (engl. weird number) ist eine Zahl, die abundant ist und sich nicht als Summe von Zahlen aus einer Teilmenge ihrer Teiler darstellen lässt. Damit sind solche Zahlen nicht semivollkommen.

Die kleinste Schicksalszahl ist die 70. Deren Teiler lauten: 1-2-5-7-10-14-35. Zusammen ergeben sie 74, weshalb 70 abundant ist. Es gibt aber keine Teilmenge dieser Teilermenge, die sich zu 70 aufaddieren würde.

Diese Schicksalszahlen sind selten und deren Berechnung ist zeitintensiv, da mitunter Millionen von Teilmengen der Teiler geprüft werden müssen. Unter 10000 gibt es nur 6 merkwürdige Zahlen. Die Schicksalszahlen bis 42000 sind

```
70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290, 24430, 24710, 25130, 25690, 26110, 26530, 26810, 27230, 27790, 28070, 28630, 29330, 29470, 30170, 30310, 30730, 31010, 31430, 31990, 32270, 32410, 32690, 33530, 34090, 34370, 34930, 35210, 35630, 36470, 36610, 37870, 38290, 38990, 39410, 39830, 39970, 40390, 41510, 41930, ...
```

```
Eine ungerade Schicksalszahl muss, wenn sie überhaupt existiert, größer als 2^{32} \approx 4 \cdot 10^9 sein. Ist k eine natürliche Zahl, q eine Primzahl und r = (2^k \ q - (q+1)) \ / \ ((q+1) - 2^k) ebenfalls Primzahl, dann ist n = 2^{k-1} \ qr eine Schicksalszahl. Die größte bekannte Schicksalszahl ist
```

2⁵⁶·(2⁶¹ - 1)·153722867280912929 = 255 41592 34776 48141 06588 25108 47677 72206 40653 29039 93344

Moser-Problem

Ist n eine natürliche Zahl, so existiert evtl. eine Darstellung als Summe aufeinander folgender Primzahlen, z.B. 36 = 5+7+...+13 = 17+18+19. Dabei sei f(n) = k die Anzahl der verschiedenen Darstellungsmöglichkeiten für n. Auf Leo Moser geht nun die Frage zurück, ob für jedes f(n) = k ein n existiert.

Die nachfolgende Liste enthält die jeweils kleinsten geraden und ungeraden n für k = 0,1,...,5 sowie weitere bekannte n für höheres k. (kleinste Lösungen mit * gekennzeichnet; St.Polster 2004)

```
Darstellung als Summe von ... bis ( » )
k
   n
0
   9
   4
                 3=3
1
   3
   2
                 2=2
2
   5
                 5, 2 » 3
   36
                 5 » 13, 17 » 19
3
   41
                 41, 2 » 13, 11 » 17
   240
                 17 » 43, 53 » 67, 113 » 127
                 1151, 7 » 101, 223 » 239, 379 » 389
  1151
                 29 » 103, 97 » 139, 281 » 307, 577 » 587
   1164
  311
                 311, 11 » 47, 31 » 59, 53 » 71, 101 » 107
                 863, 29 » 89, 41 » 97, 107 » 139, 163 » 181
   863
   14369
                 14369, 53 » 409, 173 » 443, 491 » 647, 4787 » 4793
                 107 » 499, 151 » 509, 761 » 929, 1217 » 1307, 10133 » 10139
   20272
6 34421
                 34421, 269 » 709, 1429 » 1571, 3793 » 3853, 4889 » 4937, 11467 » 11483
   130638
                 29 » 1319, 461 » 1439, 2113 » 2551, 10847 » 10939, 13009 » 13109, 16273 »
                 16363
                 442019, 419 » 2621, 7529 » 8017, 13229 » 13567, 17569 » 17807, 49069 »
7 442019
                 49157, 147331 » 147347
   218918
                 3301 » 3769, 4561 » 4957, 5623 » 5897, 7691 » 7937, 9851 » 10069, 13619 »
                  13729, 18199 » 18289
                 3634531, 313 » 7877, 977 » 7937, 31567 » 32713, 70997 » 71483,
   36334531 *
                 73897 » 74419, 172969 » 173191, 519161 » 519257
             * 439 » 12853, 18433 » 22871, 52501 » 54371, 84443 » 85667,
   9186778
```

```
176413 » 176951, 218513 » 218971, 353149 » 353501, 4593377 » 4593401
9 48205429 * 48205429, 46507 » 56611, 124291 » 128749, 176303 » 179461, 331537 » 333397,
433577 » 434939, 541061 » 542149, 2536943 » 2537323, 16068461 » 160668499
```

Liste zum Moser-Problem

Die Liste enthält die jeweils ersten bekannten Zahlen die bei dem Moser-Problem k > 3 verschiedene Summendarstellungen besitzen. Geteste wurde vollständig bis n = 250000 (St.Polster, April 2006).

```
n k

4 1151 1164 1320 1367 1650 1854 1951 2393 2647 2689

5 311 863 14369 14699 15329 16277 19717 20272 25416 28500

6 34421 130638229841235493

7 218918
```

Allgemeines Moser-Problem

Verallgemeinert man das Moser-Problem auf die Darstellung einer natürlichen Zahl n als Summe aufeinanderfolgender natürlicher Zahlen (nicht notwendig Primzahlen), so ergeben sich auch für kleine n eine Vielzahl von Möglichkeiten. Die kleinsten n für welche genau a verschiedene derartige Summen existieren, sind:

n	a	n	a	n	a
1	1	9	2	15	3
81	4	45	5	729	6
105	7	225	8	405	9
59049	10	315	11	531441	12
3645	13	2025	14	945	15
43046721	16	1575	17	387420489	18
2835	19	18225	20	295245	21
31381059609	22	3465	23	50625	24
2657205	25	11025	26	25515	27

Sicher ist, dass 3^a genau auf a verschiedene Arten darstellbar ist. Jedoch muss dies nicht die kleinste dieser Zahlen sein.

Allgemeine Lösung: z sei eine natürliche Zahl und f(z) die Anzahl der verschiedenen Möglichkeiten, z als Summe aufeinanderfolgender natürlicher Zahlen darzustellen.

Die Summe der natürlichen Zahlen von 1 bis n ist n(n+1)/2, d.h. es wird die Anzahl aller möglichen Gleichungen der Form z = n(n+1)/2 - m(m+1)/2

gesucht, für natürliche n und m.

```
Auflösung ergibt m = 1/2 (-1 + \sqrt{(1 - 4(2z - n(n+1)))}
```

wobei der Radikand eine Quadratzahl sein muss. Damit gibt es eine ganze Zahl u mit

 $4n^2 + 4n + 1 - 8z - u^2 = 0$

u muss ungerade sein. Erneutes Lösen liefert

 $n = 1/2 (-1 + \sqrt{8z + u^2})$

Da der Radikand wieder Quadratzahl sein muss, gibt es eine ganze Zahl v, so dass gilt

 $8z = v^2 - u^2 = (v-u)(v+u)$

 $\mbox{\rm Da}$ u ungerade ist, muss es auch v sein. Damit kann man umschreiben zu

2z = [(v-u)/2][(v+u)/2]

Die Aufgabe besteht folglich darin, 2z in zwei Faktoren A = (v-u)/2 und B = (v+u)/2 zu zerlegen. A und B müssen entgegengesetzte Parität besitzen, eine ist ungerade, eine gerade. Ist d ein beliebiger

Teiler von z, kann man A = d und B = 2z/d setzen bzw. umgekehrt.

Insgesamt bedeutet dies: Die Anzahl der verschiedenen Möglichkeiten, z als Summe

aufeinanderfolgender natürlicher Zahlen darzustellen, ist gleich der Anzahl ungerader Teiler von z.

Zum Beispiel hat z = 9 genau drei ungerade Teiler 1, 3 und 9. Für A = 1, B = 18 wird z = 9, für A = 3, B = 6 wird z = 2 + 3 + 4 und für den dritten Teiler A = 2, B = 9 ergibt sich z = 4 + 5

Primzahlen der Form 4n+3

In der Menge der Zahlen 4n+3 (n natürlich) existieren unendliche viele Primzahlen.

Der Nachweis erfolgt nach der Idee des Euklidischen Primzahlbeweises, allerdings mit dem Ansatz

 $2^2 \cdot 3 \cdot 5 \cdot \dots \cdot p - 1 = 4 (3 \cdot 5 \cdot \dots \cdot p - 1) + 3 = 4 n + 3$

Beweis: Wir nehmen an, dass es nur endlich viele Primzahlen p_1 , p_2 , ..., p_m der Form 4n+3 gibt. Die Zahl M = 4 p_1 p_2 ... p_m - 1

ist von der Form 4n+3, lässt sich aber durch keine der Zahlen p_1 , p_2 , ..., p_m teilen.

Es können nicht alle Primteiler von M die Form 4n+1 haben, da ein Produkt solcher Zahlen wieder die 4n+1 hat. Sie hat daher mindestens einen Primteiler p_{m+1} der Form 4n+3, der nicht zu $\{p_1, ..., p_m\}$ gehört, womit ein Widerspruch vorliegt.

Primzahlen der Form 4n+1

Wie Primzahlen der Form 4n+3 existieren ebenso unendlich viele Primzahlen der Form 4n+1.

Beweis:

Hilfslemma: Teilt eine Primzahl p der Form 4n+3 eine darstellbare Zahl k, dann ist p^2 ein Teiler von k. Wir nehmen wieder an, dass es nur endlich viele Primzahlen p_1 , p_2 , ..., p_m der Form 4n+1 gibt. Die Zahl $N = (p_1 \ p_2 \ ... \ p_m)^2 + 2^2$

lässt sich durch keine der Zahlen p_1 , p_2 , ..., p_m teilen. Sie hat keine Primteiler der Form 4n+3, denn nach dem Hilfslemma müsste ein solcher beide Quadrate teilen, insbesondere 2^2 .

Sie hat daher einen Primteiler p_{m+1} der Form 4n+1, der wieder nicht zur Ausgangsmenge der Primzahlen gehört. Widerspruch!

Primzahlintervalle

Nach Euler (1707-1783) extistiert im Intervall p ... 2*3*5*7*...*p+1; p ... Primzahl; mindestens eine Primzahl.

Nach Dirichlet (1805-1859) existieren in jeder Zahlenfolge (a+kd), in der a, d und k natürliche Zahlen und qqT(a,d)=1 unendlich viele Primzahlen.

Nach Legendre (1752-1833) existiert in jedem Intervall $[x,x+2\sqrt{x}]$, x>1, mindestens eine Primzahl. Nach Tschebyschow (1821-1894) existiert in jedem Intervall [x,2x], x>1, mindestens eine Primzahl.

Satz von Winogradow (1937):

Fast alle ungeraden Zahlen können als Summe von drei Primzahlen dargestellt werden. Winogradow erhielt 1941 für den Beweis einen Preis, der mit 100000 Rubel dotiert war.

Lifschitz-Theorem

Ist $p \ge 5$ eine Primzahl, so ist q = 2p+1 genau dann Primzahl, wenn q den Term 3^p-1 teilt.

Tschebyschow-Delta-Netz, Primzahl-Delta-Netz

Nach dem der russische Mathematiker Tschebyschow die Bertrandsche Vermutung, dass in jedem Intervall [x,2x], x>1, mindestens eine Primzahl existiert, beweisen konnte, entwickelte er Delta-Netze, die kleinere Intervalle angeben, in denen mindestens eine Primzahl eixstiert.

Primzahlsatz von Tschebyschow: Für jedes n > 3 gilt: Zwischen n und 2n-2 befindet sich stets eine Primzahl.

Allgemeines δ -Netz von Tschebyschow:

Zu jeder beliebig kleinen positiven reellen Zahl $1/\delta < 1$ existiert eine Zahl n_{δ} , so dass gilt: Für alle $n \ge n_{\delta}$ befindet sich zwischen n und $n + \lceil 1/\delta \ n \rceil$ mindestens eine Primzahl.

Dabei ist unter $[1/\delta n]$ die größte ganze Zahl kleiner gleich $1/\delta n$ zu verstehen ist. Die Randwerte des Intervalls werden nicht betrachtet.

Zum Beispiel ist für $\delta = 4$ $n_{\delta} = 24$ und für $\delta = 5$ $n_{\delta} = 32$, ...

Ramanujan-Primzahl

1919 veröffentlichte Ramanujan einen neuen Beweis der Bertrandschen Primzahlvermutung. In diesem zeigt er, dass mit der Primzahlzählfunktion $\pi(x)$

$$\pi(x)-\pi(x/2) \ge 1, 2, 3, 4, 5, ...$$

für alle $x \ge 2$, 11, 17, 29, 41, ...

gilt. Da alle diese x Primzahlen sind, nannte Sondow 2005 diese Ramanujan-Primzahlen, d.h. die n-te Ramanujan-Primzahl ist die kleinste natürliche Zahl R_n für welche $\pi(x) - \pi(x/2) \ge n$ für alle $x \ge R_n$ gilt.

Legendresche Vermutung

Die Legendresche Vermutung, nach dem französischen Mathematiker Adrien Marie Legendre, besagt, dass für natürliche Zahlen n zwischen n^2 und $(n + 1)^2$ mindestens eine Primzahl existiert. Zum Beispiel erhält man für n = 1, 2, 3, 4, 5 die Primzahlen 2, 5, 11, 17 und 29.

Diese Vermutung konnte bisher nicht bewiesen werden und gehört zu den wichtigen, ungelösten Problemen der Zahlentheorie. 1975 konnte der chinesische Mathematiker Chen zeigen, dass zwischen n^2 und $(n+1)^2$ eine Primzahl oder eine aus zwei Primzahlen zusammengesetzte Zahl, d.h. eine semiprime Zahl, liegt.

1882 verschärfte Opperman die Legendresche Vermutung:

"Gibt es zwischen zwei aufeinander folgenden Quadratzahlen immer mindestens zwei Primzahlen?" Bisher konnte nur eine schwache Form der Oppermanschen Vermutung gezeigt werden. Es gilt, dass zwischen hinreichend großen benachbarten Kubikzahlen mindestens 2 Primzahlen existieren.

Intensive Berechnungen unter Computereinsatz bestätigen die Legendresche Vermutung, sind aber kein Beweis. Die Anzahl der Primzahlen zwischen n^2 und $(n+1)^2$ steigt schnell an. Für n=1, 2, ... findet man im Intervall $[n^2, (n+1)^2]$ als Anzahl von Primzahlen

```
2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13, ...
```

Brocards Vermutung

1904 vermutete Brocard folgende Beziehung über Primzahlintervalle

für $n \ge 2$ gilt: $\pi(p_{n+1}^2) - \pi(p_n^2) \ge 4$

Dies bedeutet, dass im Intervall der Quadratzahlen zweier aufeinanderfolgender Primzahlen stets mindestens vier weitere Primzahlen liegen müssen. Die Vermutung konnte bis heute weder bewiesen noch widerlegt werden.

Zweite Hardy-Littlewood-Vermutung

Die 2.Hardy-Littlewood-Vermutung gibt eine Aussage über die Primzahlanzahl in einem Intervall.

Für alle natürlichen x und y größer gleich 2 gelte: $\pi(x+y) \le \pi(x) + \pi(y)$

Die Primzahlfunktion $\pi(x)$ gibt die Anzahl der Primzahlen bis einschließlich x an.

Wahrscheinlich gilt die Vermutung nicht für alle x und y, da dies im Widerspruch zur vermuteten Unendlichkeit der Primzahlzwillinge steht. Bis heute (2014) ist kein Paar (x,y) bekannt, für die die Vermutung nicht gilt.

Die Vermutung ist korrekt für ...

- 1) x = y, da $\pi(2x) < 2\pi(x)$ gilt
- 2) für alle (2, p) bzw. (p, 2), bei denen p eine Primzahl eines Primzahlzwillings ist

Schinzel-Vermutung

Durch den polnischen Mathematiker Andrzej Schinzel wurde eine weitere Abschätzung von Primzahlintervallen angegeben.

Die Schinzel-Vermutung besagt, dass für alle x > 8 im Intervall $[x ; x + ln^2 x]$ mindestens eine Primzahl liegen muss.

Die Vermutung konnte bis heute weder bewiesen noch widerlegt werden.

Dirichletscher Primzahlsatz

Der Dirichletsche Primzahlsatz besagt, dass eine arithmetische Folge im Allgemeinen unendlich viele Primzahlen enthält.

Es sei m eine natürliche Zahl und a eine zu m teilerfremde natürliche Zahl. Dann enthält die arithmetische Folge

a, a+m, a+2m, a+3m, ...

unendlich viele Primzahlen, d.h. es gibt unendlich viele Primzahlen, die kongruent zu a modulo m sind. Sind a und m nicht teilerfremd und g>1 ein gemeinsamer Teiler, so ist jedes Folgenglied durch g teilbar; zwei verschiedene Primzahlen können aber nicht beide durch g teilbar sein. Deshalb ist die Teilerfremdheit von a und g notwendig.

Jede ungerade Zahl hat die Form 4k + 1 oder 4k + 3 mit einer nichtnegativen ganzen Zahl k. Nach dem Dirichletschen Primzahlsatz existieren von beiden Formen unendlich viele Primzahlen. Ebenso existieren in jeder der primen Restklassen modulo m gleich viele Primzahlen.

Quelle http://de.wikipedia.org/wiki/Dirichletscher Primzahlsatz

Satz von Green-Tao

2004 bewiesen Ben Green und Terence Tao, dass es für jedes natürliche k eine arithmetische Folge gibt, so dass alle a, a+m, a+2m, a+3m, ..., a+(k-1)m

Primzahlen sind. Der Existenzbeweis gibt aber keine Berechnungsvorschrift an.

Am 18.Januar 2007 fand Jaroslaw Wroblewski die erste arithmetische Folge von 24 Primzahlen:

 $468395662504823 + 205619 \cdot 23# \cdot n$, mit n = 0 bis 23 (23# = 223092870)

Eulers 6n+1-Theorem

Jede Primzahl der Form 6n+1 kann als Summe $x^2 + 3$ y^2 geschrieben werden.

```
7 = 2^2 + 3 * 1^2
                                               19 = 4^2 + 3 * 1^2
                                                                        31 = 2^2 + 3 * 3^2
                       13 = 1^2 + 3 * 2^2
                                                                        67 = 8^2 + 3 * 1^2
37 = 5^2 + 3 * 2^2
                       43 = 4^2 + 3 * 3^2
                                               61 = 7^2 + 3 * 2^2
73 = 5^2 + 3 * 4^2
                       79 = 2^2 + 3 * 5^2
                                               97 = 7^2 + 3 * 4^2
                                                                       103 = 10^2 + 3 * 1^2
                       127 = 10^2 + 3 * 3^2
109 = 1^2 + 3 * 6^2
                                               139 = 8^2 + 3 * 5^2
                                                                        151 = 2^2 + 3 * 7^2
157 = 7^2 + 3 * 6^2
                       163 = 4^2 + 3 * 7^2
                                               181 = 13^2 + 3 * 2^2
                                                                        193 = 1^2 + 3 * 8^2
                       211 = 8^2 + 3 * 7^2
                                               223 = 14^2 + 3 * 3^2
199 = 14^2 + 3 * 1^2
                                                                        229 = 11^2 + 3 * 6^2
241 = 7^2 + 3 * 8^2
                       271 = 14^2 + 3 * 5^2
                                               277 = 13^2 + 3 * 6^2
                                                                        283 = 16^2 + 3 * 3^2
307 = 8^2 + 3 * 9^2
                       313 = 11^2 + 3 * 8^2
                                               331 = 16^2 + 3 * 5^2
                                                                        337 = 17^2 + 3 * 4^2
349 = 7^2 + 3 * 10^2
                       367 = 2^2 + 3 * 11^2
                                               373 = 19^2 + 3 * 2^2
                                                                        379 = 4^2 + 3 * 11^2
                                               421 = 11^2 + 3 * 10^2 	 433 = 1^2 + 3 * 12^2
397 = 17^2 + 3 * 6^2
                       409 = 19^2 + 3 * 4^2
                                               463 = 10^2 + 3 * 11^2 \quad 487 = 22^2 + 3 * 1^2
439 = 14^2 + 3 * 9^2
                       457 = 5^2 + 3 * 12^2
```

Primzahlgesetz

Jones, Sato, Wada und Wiens (Alberta Kanada) entwickelten ein Polynom F, dessen positive Funktionswerte durchweg Primzahlen sind, falls die 26 Variablen durchweg mit natürlichen Zahlen belegt werden:

```
\begin{split} F(a,b,c,d,e,f,...,x,y,z) &= (k+2) * \{1 - (wz + h + j - q)^2 - (2n + p + q + z - e)^2 - (a^2y^2 - y^2 + 1 - x^2)^2 \\ &- [(e^4 + 2e^3)*(a - 1)^2 - o^2]^2 - [16 (k + 1)^3 (k + 2)(n + 1)^2 + 1 - f^2]^2 \\ &- [[(a + u^4 - u^2a^2)^2 - 1]*(n + 4dy)^2 + 1 - (x + cu)^2]^2 - (ai + k + 1 - l - i)^2 \\ &- [(gk + 2g + k + 1)(h + j) + h - z]^2 - [16 r^2y^4 (a^2 - 1) + 1 - u^2]^2 \\ &- [p - m + l(a - n - 1) + b(2an + 2a - n^2 - 2n - 2)]^2 - [z - pm + pla - p^2l + t(2ap - p^2 - 1)]^2 \\ &- [q - x + y(a - p - 1) + s(2ap + 2a - p^2 - 2p - 2)]^2 - (a^2l^2 - l^2 + 1 - m^2)^2 - (n + l + v - y)^2 \} \\ &- Aus \ dieser \ Gleichung \ folgt \ u.a. \ die \ Unendlichkeit \ der \ Primzahlmenge. \end{split}
```

Die besondere Bedeutung besteht aber auf dem Gebiet der theoretischen Informatik und zeigt die Darstellung der Primzahlmenge als rekursiv aufzählbare Menge mittels einer diophantischen Gleichung.

Bislang wurde keine der unendlich vielen Lösungen gefunden (Wissensstand 2011).

Primzahlformeln

Es existieren Formeln, die für jeden Wert n > 0 eine Primzahl ergeben. So ergibt wobei [x] die größte ganze Zahl kleiner x darstellt, stets eine Primzahl. Die Konstante

1.306377883863080690468614492602605712916784585156713644368053759966434...

heißt Mill-Konstante und ist noch nicht genauer bekannt. Für $n=1,2,\ldots$ ergeben sich die Primzahlen 2, 11, 1361, 2521008887, 16022236204009818131831320183,

411310114921510480003052953791595317048613962353975993313594999488277040407483256849 9, 695838043769627416085392765735385928648359 ... (254 Ziffern) ...

257390268487534179757699110378097045955949,

336918228195740742277307753365919464724735980446 ... (762 Ziffern) ...

405013138097469593692676561694614253113386536243, ...

Es ist nicht bekannt, ob θ irrational ist. Ebenso wurden für größere n die zugehörigen Primzahlen noch nicht ermittelt (und damit θ genauer), da diese extrem schnell anwachsen.

Mit der Konstante ω = 1.9287800... erhält man mit

wobei genau n mal eine Zwei auftritt, ebenfalls für n>0 immer Primzahlen. Die ersten derartigen sind 3, 13, 16381, ...

Primwörter

Primzahlen geben viele Möglichkeiten zu verschiedensten Spielereien. So kann man Wörter der deutschen Sprache, zum Beispiel APFELMUS, in eine Zahl transformieren und prüfen, ob dabei eine Primzahl entsteht.

Dabei gibt es mehrere Varianten der Transformation:

1) 26er-System

Hier wird das Wort als Zahl in einem speziellen 26er-System betrachtet. Der Buchstabe A entspricht der Ziffer 1, B der 2, C der 3, usw. Für APFELMUS wird dann

```
APFELMUS = A \cdot 26^7 + P \cdot 26^6 + F \cdot 26^5 + E \cdot 26^4 + L \cdot 26^3 + M \cdot 26^2 + U \cdot 26 + S
= 1 \cdot 26^7 + 16 \cdot 26^6 + 6 \cdot 26^5 + 5 \cdot 26^4 + 12 \cdot 26^3 + 13 \cdot 26^2 + 21 \cdot 26 + 19 =
= 13048255993
```

und diese Zahl ist prim. Damit liegt ein "Primwort" vor.

2) 36er-System

Hier wird das Wort als exakte Zahl im 36er-System angesehen. Der Buchstabe A entspricht der Ziffer 10, B der 11, C der 12, usw. Bei diesem System sind u.a. DIFFERENZ = 38118567271679 oder SALZ = 1320119 Primwörter.

3) Hexadezimalsystem

In dieser Variante werden nur Wörter betrachtet, die im Hexadezimalsystem ein Zahl ergeben, d.h. nur die Buchstaben A bis F enthalten. Im Deutschen konnte hier noch kein sinnvolles Primwort gefunden werden.

Eine englische Primwortliste findet man unter http://primes.utm.edu/notes/words.html

Capelle-Vermutung

Durch Patrick Capelle wurde folgende Vermutung über aufeinanderfolgende Primzahlen aufgestellt: Wenn p, q, r drei aufeinanderfolgende Primzahlen sind mit p > q > r und r ist verschieden von 2, 3, 5, 7, 11, 13, 19, 23, 31, 47, 83, 89, 113, 199, 1327, so gilt

 $[p \cdot q / r] = p + q - r$

wobei unter [] der ganzzahlige Anteil des Quotienten zu verstehen ist.

Der Term p·q/r kann in der Form $p \cdot q/r = p+q-r + ((q-r)^2 + (q-r)\cdot(p-q))/r$

geschrieben werden, d.h. die Vermutung gilt, wenn $((q-r)^2 + (q-r)\cdot(p-q))/r$ kleiner als 1 ist. Bisher ist kein Nachweis gelungen.

Gilt p > q > r > 1327 ergeben sich noch weitere Beziehungen

```
[p \cdot q / r] = p + q - r
                                                             [q \cdot r / p] = q + r - p
[r \cdot p / q] = r + p - q - 1
                                                             [p \cdot q / r + q \cdot r / p] = 2q
[p \cdot q / r + r \cdot p / q] = 2p
                                                             [q \cdot r / p + r \cdot p / q] = 2r
[p \cdot q / r - r \cdot p / q] = 2 \cdot (q - r)
                                                             [q \cdot r / p - r \cdot p / q] = 2 \cdot (q - p)
[p \cdot q / r + q \cdot r / p + r \cdot p / q] = p + q + r
[p \cdot q / r] + [q \cdot r / p] = 2q
                                                             [p \cdot q / r] + [r \cdot p / q] = 2p - 1
[q \cdot r / p] + [r \cdot p / q] = 2r - 1
                                                             [p \cdot q / r] - [q \cdot r / p] = 2(p - r)
                                                             [q \cdot r / p] - [r \cdot p / q] = 2(q - p) + 1
[p \cdot q / r] - [r \cdot p / q] = 2(q - r) + 1
[p \cdot q / r] + [q \cdot r / p] + [r \cdot p / q] = p + q + r - 1
[p \cdot q / r] \cdot [q \cdot r / p] = q^2 - (p - r)^2
[p \cdot q / r] \cdot ([r \cdot p / q] + 1) = p^2 - (q - r)^2
                                                                          [q \cdot r / p] \cdot ([r \cdot p / q] + 1) = r^2 - (p - q)^2
[p \cdot q / r + q \cdot r / p] = [p \cdot q / r] + [q \cdot r / p]
[p \cdot q / r + r \cdot p / q] - [q \cdot r / p + r \cdot p / q] = [p \cdot q / r] - [q \cdot r / p]
[p \cdot q / r - r \cdot p / q] = [p \cdot q / r + q \cdot r / p] - [q \cdot r / p + r \cdot p / q]
[q \cdot r / p - r \cdot p / q] = [p \cdot q / r + q \cdot r / p] - [p \cdot q / r + r \cdot p / q]
[p \cdot q / r + q \cdot r / p] + [p \cdot q / r + r \cdot p / q] + [q \cdot r / p + r \cdot p / q] = 2 [p \cdot q / r + q \cdot r / p + r \cdot p / q]
```

Offene Fragen über Primzahlen

Noch offene Probleme über Primzahlen sind z.B.:

- 1. Existieren unendliche viele Primzahlen der Form n²+1?
- 2. Existieren unendlich viele Primzahlzwillinge?
- 3. Die Anzahl Fermatscher Primzahlen ist endlich ? (Hardy und Wright untermauerten diese Vermutung, konnten sie aber nicht restlos beweisen.)
- 4. Existiert zwischen n² und (n+1)² stets eine weitere Primzahl?
- 5. Oppermansche Vermutung (1882): Für n>1 gilt: $p(n^2-n) < p(n^2) < p(n^2+n)$, wobei p(x) die Anzahl der Primzahlen bis x angibt.
- 6. Polignacsche Vermutung (1849): Für jede gerade Zahl 2n existieren unendlich viele Paare aufeinanderfolgender Primzahlen, welche sich gerade um 2n unterscheiden.

Primzahl-Anekdote

Im 18.Jahrhundert hielt man Primzahltabellen für vollkommen unwichtig. Die im Jahre 1776 von Antonio Felkel berechneten Primzahltabellen galten als derart nutzlos, dass sie von den Österreichern im Krieg gegen die Türken als Pulvertüten benutzt wurden.

2⁶⁷-1 ist die 67. Mersenne-Zahl. Sie ist zusammengesetzt. E.T. Bell schreibt dazu:

"Das Oktobertreffen der American Mathematical Society im Oktober 1903 enthielt einen Vortrag von Frank Nelson Cole, dem dieser den bescheidenen Titel "On the Factorisation of Large Numbers" gegeben hatte.

Als der Vorsitzende den Vortrag von Cole aufrief, trat dieser - der stets ein Mann weniger Worte gewesen war - an die Tafel und begann ohne Worte, den Wert von 2 hoch siebenundsechszig auszurechnen. Dann zog er sorgfältig eins ab. Wiederum ohne ein Wort zu sagen, suchte er sich ein freies Plätzchen an der Tafel und fing an, schriftlich die Multiplikation 193 707 721 · 761 838 257 287 auszuführen. Die beiden Ergebnisse stimmten überein. Zum ersten und einzigen Mal brach das Publikum einer Versammlung der American Mathematical Society in Applaus aus. Cole nahm seinen Platz wieder ein, ohne irgend etwas zu sagen. Niemand stellte eine Frage."

Auf eine spätere Frage sagte Cole, dass er drei Jahre, jeden Sonntag, für diese Lösung brauchte.

Anmerkung: Das Teilprogramm "Faktorisieren einer Zahl" benötigt zum Auffinden eines Teilers von 2⁶⁷-1 nur knapp 0,5 Sekunden. Wenn man sich überlegt, dass Coles Leistung ohne irgendwelche elektronische Hilfsmittel erbracht wurde, ist dies umso bewundernswerter.

Anmerkung 2: Das esoterische Musical "The five hysterical girls theorem" im Jahr 2000 würdigte die Leistung Coles. Eines der "hysterischen Mädchen" knackt gerade Coles Zahl. In diesem Musical spielen Primzahlen eine große Rolle. Mädchen im Alter von 17 gelten dort als "schwierig", da 17 eine Primzahl ist und nicht wie die 18 durch 4 Zahlen teilbar ist.

Andricasche Vermutung

Für zwei aufeinanderfolgende Primzahlen p_n und p_{n+1} gilt stets: $\sqrt{p_{n+1}}$ - $\sqrt{p_n}$ < 1

Anmerkung: Der Wert von $\sqrt{p_{n+1}}$ - $\sqrt{p_n}$ fällt asymptotisch. Der bisher gefundene Höchstwert ist $\sqrt{11}$ - $\sqrt{7}$ = 0,670873...

Das Diagramm veranschaulicht die Andricasche Vermutung für die ersten 400 Primzahlen.

Durch Ghory wurde 2000 nachgewiesen, dass die Vermutung bis 2^{53} korrekt ist.

Durch Clark wurde 2005 eine Liste der fallenden Differenzen $\sqrt{p_{n+1}}$ - $\sqrt{p_n}$ für wachsende n berechnet:

Bonsesche Ungleichung

In der Folge der Primzahlen ist für jede Primzahl ab der fünften Primzahl p_5 = 11 das jeweilige Quadrat kleiner als das Produkt aller vorherigen Primzahlen

$$p_{i}^{2} < 2 \cdot 3 \cdot 5 \cdot 7 \cdot ... \cdot p_{i-1}$$

Entwicklung des maximalen Primzahlabstandes

Primzahllücke ... Intervall, in welchem keine Primzahl auftritt **großes Intervall z.B.** mit einer Länge von 651 ab 2 614 941 710 599

Eine Lücke der Länge n-1 findet man spätestens zwischen n!+1 und n!+n+1; evtl. ist dieses in Abhängigkeit von der Zerlegbarkeit der Intervallgrenzen sogar größer.

Entwicklung des maximalen Primzahlabstandes

Abstand	Intervall ab		
1	2		
2	3		
4	7		
6	23		
8	89		
14	113		
18	523	20	887
22	1129	34	1327
36	9551	44	15683
52	19609	72	31397
86	155921	96	360653
716	13828048559701	766	19581334192423
778	42842283925351	804	90874329411493

Rekordintervalle ohne Primzahlen (die Grenzen sind Primzahlen)

Abstand	Intervall von	bis
105088	10 ⁹⁹⁹⁹ +131673	10 ⁹⁹⁹⁹ +236761 (Polster 2002)
82332	10 ⁹⁹⁹⁹ -11333	10 ⁹⁹⁹⁹ +70999
60674	10 ⁹⁹⁹⁹ +70999	10 ⁹⁹⁹⁹ +131673
45336	10 ⁹⁹⁹⁹ +236761	10 ⁹⁹⁹⁹ +282097
33220	10 ¹⁹⁹⁹ +18027	10 ¹⁹⁹⁹ +51247

Primzahlabstandwert

Große Lücken zwischen aufeinanderfolgenden Primzahlen treten sehr unregelmäßig auf. Aus dem Primzahlsatz folgt, dass die durchschnittliche Lücke zwischen Primzahlen in der Nähe von p etwa gleich In p ist.

Der "Wert" einer solchen Lücke wird daher mit dem Quotienten aus der Lückengröße und dem In p berechnet. Die bekannten, ungewöhnlich großen Lücken sind (2014)

Lücken	größe Anfangsprimzahl	Wert Entdec	ker
66520	1931*1933#/7230 - 30244	35.4245	Michiel Jansen 2012
1476	1425172824437699411	35.3103	Tomás Oliveira e Silva 2009
1442	804212830686677669	34.9757	Tomás Oliveira e Silva 2005
1550	18361375334787046697	34.9439	Bertil Nyman 2014
1530	17678654157568189057	34.5225	Bertil Nyman 2014
1454	3219107182492871783	34.1189	Tomás Oliveira e Silva 2011
1370	418032645936712127	33.7652	Donald E. Knuth 2006
1490	17849040361018364489	33.6127	Bertil Nyman 2011
1440	4253027105513399527	33.5710	Leif Leonhardy 2014
1356	401429925999153707	33.4536	Donald E. Knuth 2006
1358	523255220614645319	33.2853	Tomás Oliveira e Silva 2007
1476	18227591035187773493	33.2811	Bertil Nyman 2013
1380	1031501833130243273	33.2710	Tomás Oliveira e Silva 2007
1392	1480032037939634731	33.2707	Tomás Oliveira e Silva 2009
1410	2635281932481539903	33.2425	Tomás Oliveira e Silva 2011
1418	3725235533504101511	33.1605	Tomás Oliveira e Silva 2012
1416	3750992529339978877	33.1084	Tomás Oliveira e Silva 2012
2412	513653080073142980229394444806	71 33.033	Helmut Spielauer 2011
1398	2424708729726767749	33.0245	Tomás Oliveira e Silva 2011
1364	1051140888051230423	32.8703	Tomás Oliveira e Silva 2007

Primzahlabstände (2)

Der Abstand zweier unmittelbar aufeinanderfolgender Primzahlen p und q kann jede beliebige gerade natürliche Zahl n = q - p annehmen.

Allerdings treten diese Abstände für n = 2, 4, ... nicht in natürlicher Reihenfolge auf. Die Tabelle enthält alle möglichen Abstände n bis 1998, den Erstentdecker, das Entdeckungsjahr und die Größe und die Anzahl der Ziffern der Primzahl, ab der dieser Abstand zur nachfolgenden Primzahl erstmals auftritt.

Ausgewählte Abstände

Abstan	d Entdecker	Jahr	Ziffern	ab Primzahl
1	Euklid	-300	1	2
2	AEWestrn	1934	1	3
10	DHLehmer	1957	3	139
20	Glaisher	1877	3	887
50	DHLehmer	1957	5	31907
100	Glaisher	1877	6	396733
200	LndrPrkn	1967	9	378043979
500	RP.Brent	1973	12	303371455241
1000	Be.Nyman	2001	17	22439962446379651
1500	Spielaur	2009	29	6755540400000002129301595639
1998	Spielaur	2008	35	4122964900000000000002959457742369

Einsame Primzahl

Unter einer einsamen Primzahl versteht man eine Primzahl p, deren Summe s der Abstände zur vorhergehenden und zur nachfolgenden Primzahl größer ist, als bei jeder vorhergehenden Primzahl. Zum Beispiel ist die 211 eine einsame Primzahl. Die vorhergehende Primzahl ist 199, die nachfolgende 223. Deren Abstand ist mit 24 so groß, wie bei keiner Primzahl < 211.

Die erste Tabelle enthält die kleinsten, bekannten Primzahlen mit einer Abstandssumme n zur vorhergehenden und zur nachfolgenden Primzahl.

Die Abstandssumme s liegt mit zunehmendem p in der Größenordnung $s \approx 36,6117 \; p^{0.102722}$ d.h. für die $p \approx 1$ Billion ist s mit 625 zu erwarten, für 10^{13} s ≈ 792 , für 10^{14} etwa s ≈ 1000 .

Abstand	einsame Primzahl	[vorhergehende-nachfolgende Primzahl]
4	5	[3-7]
6	7	[5-11]
10	23	[19-29]
12	53	[47-59]
14	89	[83-97]
18	113	[109-127]
24	211	[199-223]
28	1129	[1123-1151]
40	1327	[1321-1361]
42	2179	[2161-2203]
44	2503	[2477-2521]
48	5623	[5591-5639]
50	9587	[9551-9601]
56	14107	[14087-14143]
58	19609	[19603-19661]

Lonely Prime, Einsame Primzahl

In der "The On-Line Encyclopedia of Integer Sequences" wird für "lonely primes" = "einsame Primzahlen" eine etwas abweichende Definition gegeben. siehe http://oeis.org/A087770

Dort versteht man unter einer lonely prime eine Primzahl a, deren Abstände zur vorhergehenden und nachfolgenden Primzahl streng monoton steigen.

Damit gibt es wesentlich weniger derartige Primzahlen, als die auf der vorhergehenden Seite besprochenen einsamen Primzahlen.

```
Beispiel: a(0) = 2 und a(1) = 3 gilt, da 3 - 2 = 1 und 5 - 3 = 2 a(2) = 7, da 7 - 5 = 2 (und 2 > 3 - 2) und 11 - 7 = 4 (und 4 > 5 - 3) a(3) = 23, da 23 - 19 = 4 ( 23 - 19 > 7 - 5) und 29 - 23 = 6 (29 - 23 > 11 - 7) usw.
```

Die 54 ist keine lonely prime, da zwar 53 - 47 = 6 > 23 - 19, allerdings 59 - 53 = 6 nicht größer als 29 - 23 ist.

Abst	inde	lonely prime	[vorhergehende-nachfolgende Primzahl]
1,	2	3	[2;5]
2,	4	7	[5;11]
4,	6	23	[19;29]
6,	8	89	[83;97]
12,	12	211	[199;223]

```
16, 14
                    1847
                                  [1831;1861]
18, 24
                    2179
                                  [2161;2203]
20, 36
                    14107
                                  [14087;14143]
                                  [33223;33287]
24, 40
                    33247
40, 42
42, 58
                    38501
                                  [38461;38543]
                                  [58789;58889]
                    58831
46, 60
                    268343
                                  [268297;268403]
70, 62
                    1272749
                                  [1272679;1272811]
72, 80
                    2198981
                                  [2198909;2199061]
```

Größe der n.ten Primzahl

Rosser/Schoenfeld (1962) $n(\ln n + \ln \ln n - 3/2) < p_n < n (\ln n + \ln \ln n - 1/2)$

Knuth: $p_n \sim n^*[\ln n + \ln \ln n - 1 + (\ln \ln n - 2)/(\ln n) - [0.5(\ln \ln n)^2 - 3 \ln \ln n]/(\ln n)^2 - 5/(\ln n)]$

Fehler $\sim (\ln \ln n^3)/(\ln n)$

Primzahlerzeugende Terme, Primzahlpolynome

 $\begin{array}{lll} \mbox{Polynom nach G.Fung} & 47 \ x^2 - 1701 \ x + 10181, \ \mbox{für} \ 0 \le x \le 42 \\ \mbox{Polynom nach C.Rivera} & 36 \ x^2 - 810 \ x + 2753, \ \mbox{für} \ 0 \le x \le 44 \\ \mbox{Polynom nach Ruby} & 36 \ x^2 - 2358 \ x + 36809, \ \mbox{für} \ 0 \le x \le 44 \\ \end{array}$

Polynom nach Euler $x^2 + x + 41$, für $0 \le x \le 39$

... liefert im Bereich von $0 \le x \le 10^7$ mit einer Wahrscheinlichkeit 1/3 eine Primzahl

Euler-Polynom

nach Leonhard Euler

```
x^2 + x + (p+1)/4, mit p = 3 \mod 4 und p = 11,19,43,67,163

und 0 \le x \le (p-3)/4 - 1

p = 11 \ x^2 + x + 3 \ ; \ 0 \le x \le 1

p = 19 \ x^2 + x + 5 \ ; \ 0 \le x \le 3

p = 43 \ x^2 + x + 11 \ ; \ 0 \le x \le 9

p = 67 \ x^2 + x + 17 \ ; \ 0 \le x \le 15

p = 163 \ x^2 + x + 41 \ ; \ 0 \le x \le 39
```

Primzahlerzeugende Terme der Form a $x^2 + b x + c$ mit $0 \le x \le g$. Die Tabelle enthält die Tripel (a,b,c) für verschiedene g > 24.

```
Tripel
                                                             Tripel
25
       (1,29,251); (2,12,47); (6,42,103); (8,88,43); (9,21,53)
26
       (1,27,223); (2,8,37); (6,30,67); (9,3,41)
27
       (1,25,197); (2,4,31); (6,18,43)
                                                      28
                                                             (1,23,173); (6,6,31)
29
       (1,21,151)
                                                      30
                                                             (1,19,131)
31
       (1,17,113)
                                                      32
                                                             (1,15,97)
33
       (1,13,83)
                                                      34
                                                             (1,11,71)
                                                             (1,7,53)
35
                                                      36
       (1,9,61)
37
                                                      38
                                                             (1,3,43)
       (1,5,47)
39
                                                      40
       (1,1,41)
```

Primzahlerzeugende Terme der Form a $x^2 + b x + c$ mit $0 \le x \le g$, mit -2000 < b < 2000 und 0 < c < 5000. Die Tabelle enthält für verschiedene a die Tripel (a,b,c) mit den größten g. Dabei werden nur solche Terme genannt, für welche die Termwerte im Bereich 0 bis g nichtnegativ sind:

Term	g	Term	g	Term
x ² -79x+1601	79	x ² -77x+1523	78	x ² -75x+1447
x ² -73x+1373	57	2x ² -112x+1597	56	x ² -108x+1487
2x ² -104x+1381	54	2x ² -100x+1279	44	3x ² -129x+1409
3x ² -123x+1283	42	3x ² -117x+1163	41	3x ² -111x+1049
4x ² -158x+1601	40	4x ² -154x+1523	39	4x ² -152x+1607
4x ² -150x+1447	58	6x ² -342x+4903	57	6x ² -330x+4567
6x ² -318x+4243	55	6x ² -306x+3931	32	7x ² -217x+1697
7x ² -203x+1487	30	7x ² -189x+1291	40	9x ² -231x+1523
9x ² -213x+1301	38	9x ² -195x+1097	37	9x ² -417x+4871
10x ² -360x+3259	36	10x ² -340x+2909	35	10x ² -320x+2579
10x ² -300x+2269	30	14x ² -378x+4931	31	16x ² -292x+1373
16x ² -300x+1447	30	16x ² -260x+1097	30	17x ² -493x+4177
	x ² -79x+1601 x ² -73x+1373 2x ² -104x+1381 3x ² -123x+1283 4x ² -158x+1601 4x ² -150x+1447 6x ² -318x+4243 7x ² -203x+1487 9x ² -213x+1301 10x ² -360x+3259 10x ² -300x+2269	x ² -79x+1601 79 x ² -73x+1373 57 2x ² -104x+1381 54 3x ² -123x+1283 42 4x ² -158x+1601 40 4x ² -150x+1447 58 6x ² -318x+4243 55 7x ² -203x+1487 30 9x ² -213x+1301 38 10x ² -360x+3259 36 10x ² -300x+2269 30	x²-79x+1601 79 x²-77x+1523 x²-73x+1373 57 2x²-112x+1597 2x²-104x+1381 54 2x²-100x+1279 3x²-123x+1283 42 3x²-117x+1163 4x²-158x+1601 40 4x²-154x+1523 4x²-150x+1447 58 6x²-342x+4903 6x²-318x+4243 55 6x²-306x+3931 7x²-203x+1487 30 7x²-189x+1291 9x²-213x+1301 38 9x²-195x+1097 10x²-360x+3259 36 10x²-340x+2909 10x²-378x+4931	x²-79x+1601 79 x²-77x+1523 78 x²-73x+1373 57 2x²-112x+1597 56 2x²-104x+1381 54 2x²-100x+1279 44 3x²-123x+1283 42 3x²-117x+1163 41 4x²-158x+1601 40 4x²-154x+1523 39 4x²-150x+1447 58 6x²-342x+4903 57 6x²-318x+4243 55 6x²-306x+3931 32 7x²-203x+1487 30 7x²-189x+1291 40 9x²-213x+1301 38 9x²-195x+1097 37 10x²-360x+3259 36 10x²-340x+2909 35 10x²-300x+2269 30 14x²-378x+4931 31

Die nachfolgende Tabelle enthält weitere Polynome, die Primzahlen für n = 0 bis n = k-1 erzeugen.

```
Nr.
         Primzahlen k Polynom
                                                        Nr.
                                                                  Primzahlen k Polynom
                                                                            50·n² - 3154·n + 3109
1
          5
                   37 \cdot n^2 - 3187 \cdot n + 6229
                                                         2
                                                                  6
          7
                                                                            220·n<sup>2</sup> - 4984·n + 16421
3
                   110 \cdot n^2 - 3994 \cdot n + 14221
                                                         4
                                                                  9
5
          10
                   144 \cdot n^2 - 4014 \cdot n + 10753
                                                         6
                                                                  12
                                                                            518·n<sup>2</sup> - 9740·n + 39799
7
                                                         8
          13
                   326·n<sup>2</sup> - 7216·n + 31567
                                                                   14
                                                                            1225·n<sup>2</sup> - 14035·n + 36551
9
                   2233·n<sup>2</sup> - 23079·n + 56599
                                                         10
                                                                   17
                                                                            100·n<sup>2</sup> - 4280·n + 22091
```

```
20
11
                     55·n<sup>2</sup> - 4045·n + 34961
                                                               12
                                                                          21
                                                                                    11 \cdot n^2 - 229 \cdot n + 1201
                     193·n<sup>2</sup> - 4757·n + 28283
13
          23
                                                               14
                                                                          24
                                                                                    n^2 - 49 \cdot n + 431
15
          30
                     12·n<sup>2</sup> - 438·n + 3797
                                                               16
                                                                          30
                                                                                    12·n<sup>2</sup> - 258·n + 1187
17
          30
                     23·n<sup>2</sup> - 709·n + 5437
                                                               18
                                                                          30
                                                                                    9·n<sup>2</sup> - 267·n + 1871
                     9 \cdot n^2 - 255 \cdot n + 1697
19
          30
                                                               20
                                                                          30
                                                                                    8·n<sup>2</sup> - 414·n + 4259
```

Primzahlerzeugende Terme können auch für höhere Potenzen als 2 konstruiert werden. Die Tabelle enthält einige der besten Polynome, bei deren Belegung mit aufeinanderfolgenden Zahlen n verschiedene Primzahlen entstehen:

```
Polynom
                      Entdecker
44546738095860x + 56211383760397
                                             23
                                                    Frind, Joblina
x^2 - x + 41
               40
                      Euler
36x^2 - 810x + 2753
                              Rivera, Fung, Ruby
                      45
47x^2 - 1701x + 10181 43
                              Fung, Ruby
3x^3 - 183x^2 + 3318x - 18757 43
                                     Ruiz
42x^3 + 270x^2 - 26436x + 250703
                                     40
                                            Wroblewski, Meyrignac
66x^3 - 3845x^2 + 60897x - 251831
                                            Kazmenko, Trofimow
                                     46
45x^4 - 3416x^3 + 96738x^2 - 1212769x + 5692031
                                                    42
                                                           Kazmenko, Trofimow
(x^4 - 18x^3 + 655x^2 - 22278x + 197462)/2
                                            43
                                                    Bevleveld
x^4 - 97x^3 + 3294x^2 - 45458x + 213589
                                                    Beyleveld
(3x^4 - 386x^3 + 14301x^2 - 191518x + 738676)/4
                                                    49
                                                            Wroblewski, Meyrignac
x^5 - 61x^4 + 1339x^3 - 12523x^2 + 42398x + 11699
                                                    41
                                                            Wroblewski, Mevrianac
(x^5 - 107x^4 + 4133x^3 - 71925x^2 + 559858x - 1612972)/4
                                                            50
                                                                   Wroblewski, Meyrignac
x^5 - 99x^4 + 3588x^3 - 56822x^2 + 348272x - 286397
                                                           Wroblewski, Mevrianac
(x^5 - 133x^4 + 6729x^3 - 158379x^2 + 1720294x - 6823316)/4 57
                                                                   Shyam Sunder Gupta
x^6 - 119x^5 + 5850x^4 - 152072x^3 + 2205416x^2 - 16929506x + 53822339
                                                                                  Wroblewski,
Meyrignac
(x^6 - 153x^5 + 9157x^4 - 272619x^3 + 4271674x^2 - 33605316x + 104903892)/36
                                                                                  52
                                                                                         Wroblewski,
Meyrignac
x^6 - 107x^5 + 4697x^4 - 108362x^3 + 1387098x^2 - 9351881x + 25975867
                                                                          44
                                                                                  Wroblewski,
Mevrianac
(x^6 - 126x^5 + 6217x^4 - 153066x^3 + 1987786x^2 - 13055316x + 34747236)/36
                                                                                  55
                                                                                         Wroblewski,
Meyrignac
```

1857 veröffentlichte Bunjakowski folgende Vermutung: Ist f(x) ein irreduzibles(!) Polynom, dann erzeugt das Bunjakowski-Polynom f(x) / ggT(f(0), f(1)) unendlich viele Primzahlen. Bis heute (2008) gibt es keine Aussicht auf Beweis oder Widerlegung der Vermutung. Bekannt sind primzahlarme und -reiche Polynome. x^{12} + 488669 erzeugt keine Primzahl bis x = 616980; der Term x^2 + 1151x - 1023163 dagegen 699 Primzahlen im Bereich von 0 bis 1000.

Im genialen Buch "The little book of bigger primes" schreibt Paulo Ribenboim über einen speziellen Wettbewerb.

Gesucht werden quadratische Terme der Form $x^2 + x + a$,

mit ungeraden a, die für die Belegung von x mit 0 bis 1000 entweder besonders viele Primzahlen erzeugen oder möglichst wenige. Die Tabelle die Werte von a für die neue Rekordwerte für viele oder wenige Primzahlen gefunden wurden.

•	a	Primzahlanzahl	a	Primzahlanzahl
	1	189	9525	35
	7	192	9933	34
	11	288	10515	
	17	366	18963	31
	41	582	25005	29
	27941	600	55335	28
	41537	606	57183	25
	55661	621	79275	24
	115721	627	323475	22
	247757	657	361305	21
	811965	20		
	1194765	19		
	1488093	18		
	3369723	17		
	3634575	15		
	6341235	13		
	21575853	11		
	37498305	9		
	92286045	8		

98178375 7 436357845 6

gesucht bis 500002001, August 2014, Polster

Primzahlarme Terme

Während man vor allem nach Polynomen sucht, die für verschiedene Belegungen mit natürlichen Zahlen möglichst viele Primzahlen liefern, kann man auch nach Termen fragen, die für Belegungen mit x = 1, 2, ..., n keine Primzahlen ergeben.

Setzt man zum Beispiel in $x^2 + 8876$ die natürlichen Zahlen x von 1 bis 158 ein, so erhält man eine zusammengesetzte Zahl. Erst für 159 entsteht mit 34157 eine Primzahl.

Die Tabelle enthält die Summanden a, für die das quadratische Polynom $x^2 + a$ eine neuen Maximalwert für n ergibt, so dass $x^2 + a$ für x = 1, ..., n nur zusammengesetzte Zahlen liefert (gesucht bis a = 100 Millionen: November 2010):

a	n	a	n	a	n
3	1	5	5	24	6
26	8	29	11	41	23
290	26	314	44	626	68
1784	92	6041	113	7556	128
7589	131	8876	158	26171	209
52454	224	153089	269	159731	293
218084	356	576239	401	1478531	413
2677289	419	2934539	431	3085781	473
3569114	584	3802301	629	4692866	650
24307841	743	25051934	854	54168539	1007

Mittelwertprimzahl

Unter einer Mittelwertprimzahl MWP(k) (engl. average prime number) versteht man eine natürliche Zahl (nicht notwendig Primzahl!), die das arithmetische Mittel der ersten k Primzahlen ist.

Wie zu erwarten, gibt es derartige Primzahlen nur sehr wenige.

Die ersten Mittelwertprimzahlen sind

k	k.te Primzahl	Summe	Mittel	wertprimzahl	Entdecker
1	2	2	2		
23	83	874	38		
53	241	5830	110		
853	6599	2615298	3066		
11869	126551	712377380	60020		
117267	154479	86810649294	740282	Jo Yeong Uk	
339615	4864121	794712005370	2340038	Jo Yeong Uk	
3600489	60686737	105784534314378	29380602	Jo Yeong Uk	
96643287	1966194317	92542301212047102	957565746	Jack Brennen	
2664167025	63481708607	827045670795499857	700	Giovanni Resta	ì
43435512311	116146889195	53 24733255676	526572596026	Giovanni Resta	ì
Bis zur Primza	hl 40112013924	113 wurden keine weite	ren Zahlen gefu	nden.	

Satz von el Aidi

Durch Carl Pomerance wurde 1999 festgestellt, dass für n=210 die Differenz n-p mit einer Primzahl n/2 n stets prim ist, d.h. subtrahiert man von 210 die Primzahlen p p = 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 und 199 erhält man stets eine Primzahl.

Als Verallgemeinerung fand 2000 der marokkanische Mathematiker Said El Aidi den Satz:

Für jede natürliche Zahl $n \ge 210$ ist z = n - p

Primzahl für alle Primzahlen p mit $n \cdot [n/p^2_{k+1}] / ([n/p^2_{k+1}]+1) wenn für <math>n = 2 \cdot 3 \cdot 5 \cdot 7 \cdot ... \cdot p_k$ gilt. Dabei ist [x] der ganzzahlige Anteil von x.

Als Spezialfälle ergeben sich damit

- 1. für n = p_4 # = 210 ist 210-p Primzahl für die primen p mit n/2 < p < n-1. (19 Werte)
- 2. für n = p_5 # = 2310 ist 2310-p Primzahl für die primen p mit 13n/14 < p < n-1. (18 Werte)
- 3. für $n = p_6 \# = 30030$ ist 30030-p Primzahl für die primen p mit 103n/104 . (24 Werte)
- 4. für n = p_7 # = 510510 ist 510510-p Primzahl für die primen p mit 1414n/1415 < p < n-1. (26 Werte) usw.

Primzahlzwillinge

Gilt für zwei aufeinanderfolgende Primzahlen p_1 und p_2 : $p_1 + 2 = p_2$ so heißen diese Primzahlzwillinge. Das kleinste Paar von Primzahlzwillingen ist (3; 5). Ob es unendlich viele Primzahlzwillinge gibt, ist heute

(2004; siehe Beweis des Zwillingstheorems) noch nicht sicher. Der Begriff "Primzahlzwilling" wurde erstmals von Paul Stäckel genutzt.

Anmerkung: 1995 entdeckte Nicely den Arithmetik-Fehler im Intel-Pentium-Prozessor bei der Berechnung der Reziproken des Primzahlzwillings 824633702441 und 824633702443.

Die ersten Primzahlzwillinge

3	5	5	7	11	13	17	19	29	31	41	43
59	61	71	73	101	103	107	109	137	139	149	151
179	181	191	193	197	199	227	229	239	241	269	271
281	283	311	313	347	349	419	421	431	433	461	463
521	523	569	571	599	601	617	619	641	643	659	661
809	811	821	823	827	829	857	859	881	883	1019	1021
1031	1033	1049	1051	1061	1063	1091	1093	1151	1153	1229	1231
1277	1279	1289	1291	1301	1303	1319	1321	1427	1429	1451	1453
1481	1483	1487	1489	1607	1609	1619	1621	1667	1669	1697	1699
1721	1723	1787	1789	1871	1873	1877	1879	1931	1933	1949	1951
1997	1999	2027	2029	2081	2083	2087	2089	2111	2113	2129	2131
2141	2143	2237	2239	2267	2269	2309	2311	2339	2341	2381	2383
2549	2551	2591	2593	2657	2659	2687	2689	2711	2713	2729	2731
2789	2791	2801	2803	2969	2971	2999	3001	3119	3121	3167	3169
3251	3253	3257	3259	3299	3301	3329	3331	3359	3361	3371	3373
3389	3391	3461	3463	3467	3469	3527	3529	3539	3541	3557	3559
3581	3583	3671	3673	3767	3769	3821	3823	3851	3853	3917	3919
3929	3931	4001	4003	4019	4021	4049	4051	4091	4093	4127	4129
4157	4159	4217	4219	4229	4231	4241	4243	4259	4261	4271	4273
4337	4339	4421	4423	4481	4483	4517	4519	4547	4549	4637	4639
4649	4651	4721	4723	4787	4789	4799	4801	4931	4933	4967	4969
5009	5011	5021	5023	5099	5101	5231	5233	5279	5281	5417	5419
5441	5443	5477	5479	5501	5503	5519	5521	5639	5641	5651	5653
5657	5659	5741	5743	5849	5851	5867	5869	5879	5881	6089	6091
6131	6133	6197	6199	6269	6271	6299	6301	6359	6361	6449	6451
6551	6553	6569	6571	6659	6661	6689	6691	6701	6703	6761	6763
6779	6781	6791	6793	6827	6829	6869	6871	6947	6949	6959	6961
7127	7129	7211	7213	7307	7309	7331	7333	7349	7351	7457	7459
7487	7489	7547	7549	7559	7561	7589	7591	7757	7759	7877	7879
7949	7951	8009	8011	8087	8089	8219	8221	8231	8233	8291	8293
8387	8389	8429	8431	8537	8539	8597	8599	8627	8629	8819	8821
8837	8839	8861	8863	8969	8971	8999	9001	9011	9013	9041	9043
9239	9241	9281	9283	9341	9343	9419	9421	9431	9433	9437	9439
9461	9463	9629	9631	9677	9679	9719	9721	9767	9769	9857	9859
9929	9931										

Primzahlzwillinge-Liste

Gilt für zwei aufeinanderfolgende Primzahlen p_1 und p_2 : $p_1 + 2 = p_2$ so heißen diese Primzahlzwillinge. Die Liste enthält die gegenwärtig größten bekannten Zwillinge, deren Ziffernzahl und den Entdecker.

Rekordliste der bekannten Primzahlzwillinge

Ziffern Zwillinge

Entdecker und Entdeckungsjahr

200700)3756801695685·2^666669 ± 1	Winslow, 2011
100355	565516468355·2^333333 ± 1	TIPS, 2009
58711	2003663613·2^195000 ± 1	TIPS, 2007
51780	194772106074315·2^171960 ± 1	Járai, 2006
51780	$100314512544015 \cdot 2^{171960} \pm 1$	Járai, 2006
51779	16869987339975·2^171960 ± 1	Járai, 2005
51090	33218925·2^169690 ± 1	Papp, 2002
45917	22835841624·7^54321 ± 1	Kaiser, 2010
42155	12378188145·2^140002 ± 1	Urushi, 2010
42155	$23272426305 \cdot 2^{140001} \pm 1$	Urushi, 2010
37936	8151728061·2^125987 ± 1	Augustin, 2010
35825	598899·2^118987 ± 1	Wu, 2010
34808	307259241·2^115599 ± 1	Tornberg, 2009
34533	60194061·2^114689 ± 1	Underbakke, 2002
33341	5558745·10^33334 ± 1	Urso, 2011
33222	108615·2^110342 ± 1	Chatfield, 2008
32376	1765199373·2^107520 ± 1	McElhatton, 2002
32220	$318032361 \cdot 2^{107001} \pm 1$	Underbakke, 2001
30115	4501763715·2^100006 ± 1	Urushi, 2009

30114 $34776437961 \cdot 2^{100001} \pm 1$ Urushi, 2009 30113 $156733989 \cdot 2^{100007} \pm 1$ Urushi, 2009 30113 $1046619117 \cdot 2^{100000} \pm 1$ Barnes, 2007

Am 10.0ktober 2000 gelang es mit $10^{999} + 1975082 \pm 1$ den kleinsten 1000stelligen Primzahlzwilling nachzuweisen (Polster 2000).

Theorem von Clement 1949

Zwei Primzahlen n und n+2 sind dann und nur dann Primzahlzwillinge, wenn gilt:

 $4[(n-1)!+1] = -n \pmod{n(n+2)}$

Anzahl von Primzahlzwillingen bis x (Hardy, Littlewood)

$2 \prod_{p \ge 3} \frac{p(p-2)}{(p-1)^2} \int_{2}^{n} \frac{dx}{(\log x)^2} =$

1.320323632 $\int_{2}^{\pi} \frac{dx}{(\log x)^2}$

Anzahl von Primzahlzwillingen bis N

N	Aktuell	Erwartet	N	Aktuell	Erwartet
10^{6}	8169	8248	10 ⁸	440312	440368
10^{10}	27412679	27411417	10^{12}	1870585220	
10^{14}	1357803216	65	10^{18}	80867588857	7436

Unendlich viele Zwillinge

Existieren unendlich viele Primzahlzwillinge so gilt für den Grenzwert: $E = \lim_{n\to\infty}\inf\left(p_{n+1} - p_n\right) / \ln p_n = 0$ Die kleinste nachgewiesene obere Schranke für E ist: $E \le 1/4 + \pi/16 = 0.44634$... (nach Huxley 1977)

Primzahlzwilling Verteilung

Fillizanizwining	vertenung			
X	pi_2(x)	L_2(x)	$pi_2(x)/L_2(x)$	$pi_2(x)-L_2(x)$
10	2	5	0,4	-3
10 ²	8	14	0,5714285	-6
10 ³	35	46	0,7608695	-11
10 ⁴	205	214	0,9579439	-9
10 ⁵	1224	1249	0,9799839	-25
10 ⁶	8169	8248	0,9904219	-79
10 ⁷	58980	58754	1,0038465	226
10 ⁸	440312	440368	0,9998728	-56
10 ⁹	3424506	3425308	0,9997658	-802
10 ¹⁰	27412679	27411417	1,0000460	1262
10 ¹¹	224376048	224368865	1,0000320	7183
10 ¹²	1870585220	1870559867	1.0000135	25353
10 ¹³	15834664872	15834598305	1.0000042	66567
10 ¹⁴	135780321665	135780264894	1.0000004	56771
10 ¹⁵	1177209242304			
10 ¹⁶	10304195697298			

Erklärung: $pi_2(x)$ Anzahl der Primzahlzwilling bis x, $L_2(x)$ theoretische erwartete Anzahl von Primzahlzwillingen. Im Jahre 2000 ermittelte Fry $pi_2(10^{16})$.

n.ter Primzahlzwilling

Da für die Verteilung der Primzahlzwillinge bis heute (2014) nur stochastische Gesetze gefunden wurden, existiert noch keine explizite Gleichung, mit der das n.te Primzahlzwillingspaar berechnet werden kann. Sucht man das n.te Primzahlzwillingspaar, so müssen alle vorhergehenden Primzahlen berechnet werden.

n Primzahlzwilling 10 107, 109 100 3821, 3823 1000 79559, 79561 10000 1260989, 1260991 100000 18409199, 18409201

1 Million 252428549, 252428551

Geschichte der Primzahlzwillinge

Am 29.September 2002 entdeckte Daniel Papp 51090 ziffrige Primzahlzwillinge: 33218925 * 2¹⁶⁹⁶⁹⁰+/-1. Der vorhergehende Rekord wurde am 17.Mai 2001 von David Underbakke und Phil Carmody aufgestellt. Járai übertraf dies in den Jahren 2005 und 2006 mit zwei neuen Rekord-Zwillingen.

Historische Entwicklung

Jahr	Primzahl	Ziffern	Entdecker
	$65516468355 \cdot 2^{333333} \pm 1$	100355	TIPS
	$2003663613 \cdot 2^{195000} \pm 1$	58711	TIPS
2006	$100314512544015 \cdot 2^{171960} \pm 1$	51780	Járai
2005	$16869987339975 \cdot 2^{171960} \pm 1$	51779	Járai
2002	33218925 * 2 ¹⁶⁹⁶⁹⁰ +/- 1	51090	Papp

2001	318032361 * 2 ¹⁰⁷⁰⁰¹ +/- 1	32220	Underbakke
2001	1807318575 * 2 ⁹⁸³⁰⁵ +/- 1	29603	Underbakke
2000		24099	Underbakke
2000	1693965 * 2 ⁶⁶⁴⁴³ +/- 1	20008	La Barbera
2000		19562	Underbakke
2000	4648619711505 * 2 ⁶⁰⁰⁰⁰ +/- 1	18075	Indlekofer
2000	2409110779845 * 2 ⁶⁰⁰⁰⁰ +/- 1	18075	Indlekofer
1999	361700055 * 2 ³⁹⁰²⁰ +/- 1	11755	Lifchitz
1998	835335 * 2 ³⁹⁰¹⁴ +/- 1	11751	Ballinger
	242206083 * 2 ³⁸⁸⁸⁰ +/- 1	11713	Járai, Indlekofer
1995	570918348 * 10 ⁵¹²⁰ +/- 1	5129	Dubner
1994		4932	Járai, Indlekofer
	1692923232 * 10 ⁴⁰²⁰ +/- 1	4030	Dubner
	4655478828 * 10 ³⁴²⁹ +/- 1	3439	Dubner
1989	1706595 * 2 ¹¹²³⁵ +/- 1	3389	Brown, Noll

Beweis des Zwillingstheorems

Ob es unendlich viele Primzahlzwillinge gibt, ist heute (2004) noch nicht sicher. Am 9.Juni 2004 veröffentlichte http://mathworld.com:

Der Vanderbilt Universitäts-Mathematiker R. F. Arenstorf scheint den Beweis der Unendlichkeit der Primzahlzwillinge gefunden zu haben. Die Schwierigkeit besteht unter anderem darin, dass 1919 Brun nachwies, dass die Summe aller reziproken Primzahlzwillinge konvergiert. Diese Brun-Konstante ist etwa gleich 1.902160583104. Vor Arenstorf hatten sich bedeutende Mathematiker wie Hardy, Littlewood und Wright vergeblich am Beweis versucht.

Arenstorf ist es aber wahrscheinlich gelungen, den Nachweis zu führen, dass in speziellen arithmetischen Folgen beliebiger Differenz d immer wieder Primzahlzwillinge auftreten. Der Beweis verwendet Methoden der klassischen analytischen Zahlentheorie, einschließlich der Eigenschaften der Riemannschen Zeta-Funktion und des sogenannten Tauberian Theorems.

Allerdings wurde durch den Mathematiker Gérald Tenenbaum des Institut Élie Cartan in Nancy im Lemma 8 auf Seite 35 des Beweises eine Ungenauigkeit entdeckt. Während andere Mathematiker hoffnungsvoll bleiben, dass alle Schwierigkeiten beseitigt werden, meint Tenenbaum, dass dieser bestimmte Fehler ernste Konsequenzen für die Vollständigkeit des gesamten Beweises haben kann. Zusätzliche Analysen anderer Mathematiker werden in den kommenden Wochen und Monaten zeigen, ob der Arenstorfsche Beweis anerkannt wird.

Stand März 2006: Der Fehler konnte bisher nicht behoben werden. Arenstorf zog deshalb seine Veröffentlichung vorerst zurück.

2003 veröffentlichten die Mathematiker Dan Goldston und Cen Yildirim, dass es in der unendlichen Folge der Primzahlen immer wieder kleine Abstände zwischen zwei aufeinander folgenden Primzahlen gibt. Im Mai 2005 konnten beide Fehler in ihrem Beweis beseitigen. Der Beweis benutzt eine neue Methode, die es ermöglichen soll, den endgültigen Beweis zur Anzahl der Primzahlzwillinge abzuschließen.

Primzahlzwillinge

Das Programm enthält durch den Programmautor gefundene Primzahlzwillinge der Form $k*2^n +/-1$ (je n maximal 8 Zwillinge) für den vollständig getesteten Bereich

a) $1 \le n \le 31452$, 60000...235, 121001...067, 175837 mit $3 \le k \le 500000$

n	Faktor	en k						
1	3	9	15	21	51	69	75	99
2	3	15	27	45	57	87	105	165
3	9	39	75	129	165	201	261	339
4	15	27	93	117	195	267	327	345
5	81	99	105	129	165	321	489	591
6	3	33	75	117	465	513	525	537
7	9	21	141	231	561	645	741	1029
8	57	87	105	195	417	423	525	867
9	45	51	201	261	429	459	465	555
10	15	57	93	135	273	357	603	765

Satz von Chris Nash (1998)

Es sei k=237. Dann sind $k*2^n-1$ und $k*2^n+1$ für kein natürliches n Primzahlzwillinge.

Vermutung von Darren Smith (27.9.1998)

Für jedes k, welches ungerades Vielfaches von 3 und kleiner 237 ist, existiert mindestens ein natürliches n, so dass

k*2ⁿ-1 und k*2ⁿ+1

ein Primzahlzwilling darstellt.

Am Nachweis des Vermutung beteiligen sich gegenwärtig etwa 30 Mathematiker (Dez 1999). Für alle k < 237, außer den Werten 111, 123, 153, 159, 171, 183, 189, 219 und 225, konnte die Vermutung bestätigt werden.

Primzahlzwilling-Abstand

Der Abstand zwischen zwei aufeinander folgenden Primzahlzwillingen nimmt mit wachsenden Werten zu. Die Tabelle enthält die Entwicklung des maximalen Abstandes für steigende Primzahlzwillinge (vollständig gesucht bis 2000004551; Januar 2006 Polster):

A	bstand	ab p	Abstand	ab p	Abstand	ab p	Abstand	ab p
2		3	6	5	12	17	18	41
3	0	71	36	311	72	347	150	659
1	.68	2381	210	5879	282	13397	372	18539
4	.98	24419	630	62297	924	187907	930	687521
1	.008	688451	1452	850349	1512	2868959	1530	4869911
1	722	9923987	1902	14656517	2190	17382479	2256	30752231
2	832	32822369	2868	96894041	3012	136283429	3102	234966929
3	180	248641037	3480	255949949	3804	390817727	4770	698542487

Hinweis: Für die angegebenen p bilden p, p+2 und p+Abstand, p+2+Abstand aufeinanderfolgende Zwillinge.

In der ersten Tabelle können zwischen den zwei aufeinanderfolgenden Zwillingen weitere "Einzel"-Primzahlen stehen. Schließt man dies zusätzlich aus, ergibt sich für die Entwicklung des maximalen Abstandes für aufsteigende Primzahlzwillinge (vollständig gesucht bis 2000004551):

Abstand	ab p	Abstand	ab p	Abstand	ab p	Abstand	ab p
2	3	6	5	12	137	18	1931
30	2969	36	20441	54	48677	72	173357
102	838247	108	4297091	126	14982551	132	30781187
138	34570661	150	43891037	186	79167731	198	875971469
210	120926680	1					

Kleinste n-stellige Primzahlzwillinge

Die Liste enthält eine Auswahl der jeweils kleinsten Primzahlzwillinge der n-stelligen natürlichen Zahlen. Angegeben werden die jeweils kleinsten Summanden a, so dass $10^{(Stellenzahl-1)}+a$ und $10^{(Stellenzahl-1)}+a+2$ Zwilling sind (gesucht Juli 2005, St.Polster):

Kleinste n-stellige Primzahlzwillinge 10^{n-1} +a und 10^{n-1} +a+2

Stellen	n	Summa	nden a									
1		3		5								
2		1		7	19	31	49	61				
3		1		7	37	49	79	91		97	127	
4		19		31	49	61	91	15	1	229	277	
5		7		37	67	91	139	27		301	331	
100		6001		28441	60337				3827	250159	300601	•••
150		181627		20111	00337	00101	11370	,, 15.	3027	230133	300001	
1000		197508	1	3142729)							
1000		137300	-	J1 12/23	•							
n	а	n	а	n	а	n	а	n	а	n	а	
 181	8547		41929		198841			 185	7587		31267	
187	1158		18310		54151		136561		1789		5107	
193		31 194	15727		236887		251881		3955		62497	
199	7729	200	62209		168961		132121			51 204	73219	
205		99 206	31185		580801		357901			291210	9091	
211		91212	19045		141049		158389			51 216	237877	
217	1591	218	73383		459781		209011	213	0120	. 210	237077	
<u>-</u> - '		2.0	, 5505	,,			200011					

Primzahlzwillingabstandrekord

Während der Suche nach den kleinsten n-stelligen Primzahlzwillingen traten große Abstände zwischen aufeinanderfolgenden Zwillingen auf.

Die Tabelle enthält die größten gefundenen Abstände. Angegeben werden die ersten Primzahlen p und q der Zwillinge p, p+2 und q, q+2. Dabei ist zu beachten, dass zwischen den Zwillingen weitere einzelne Primzahlen auftreten können. (Stand Mai 2007)

Abstand	р	q
1167648	10^999+1975081	10^999+3142729
697440	10^189+340357	10^189+1037797
696504	10^202+881557	10^202+1578061
686742	10^196+39559	10^196+726301

673242	10^207+462739	10^207+1135981
629712	10^197+456217	10^197+1085929
593670	10^193+608419	10^193+1202089
551112	10^178+639739	10^178+1190851
527388	10^188+54151	10^188+581539

Summe aller reziproken Primzahlen

Die Summe aller reziproken Primzahlen divergiert, jedoch die Summe aller reziproken Primzahlzwillinge konvergiert! Die Divergenz geschieht aber noch wesentlich langsamer als bei der harmonischen Reihe. Die Aufstellung enthält die Anzahl von zu summierenden Gliedern der zwei Reihen, um jeweils einen Zahlenwert zu überschreiten:

letztes Glied Wert der Partialsumme der reziproken Primzahlen

5	1.0333333332557231187820434570312500000000000000000000000000000000000
29	1.53343877179442180759143542877393493098242310323576192
277	2.00235015137268324092292365139226078388071145699510790
1013	2.20005837420617427660362597949144193389249255056690063
4789	2.40009083810426122830367381400501828112931829225553325
11789	2.50002069118469466155809308679136738066562918109383487
5195977	3.00000003084974060901076424247848158481583865088883567
26429281	3.10000001484739763531160873882685664456652848467165163
159490147	3.20000000222126306895386130796714619159764255805158651

Die Summe aller reziproken Primzahlen bis 1 Milliarde ergibt

3.29275571872136075428622662799774080744761629818277269.

letztes Glied Wert der Partialsumme der reziproken Primzahlzwillinge

31	1.02221857544098562245819559707688023252520010183323738
61	1.10320722846223671996952610626067222617314888448021012
181	1.20805909461049076341041199047791527785875766966553487
643	1.30308587573505695662528510919329462471059919478908411
5851	1.40026596958448297640573039295184596898835910292008713
476028	1.50000024720196880847037026667455010490443139543211522

Die Summe aller reziproken Primzahlenzwillinge bis $1\ Milliarde$ ergibt

1.57473595756092658611630354102710280603897667653.

Zwillingsreihe

```
... Folge von Primzahlzwillingen der Form (n-1, n+1) und (2n-1, 2n+1)
```

Eine verallgemeinerte Zwillingsreihe der Länge i liegt vor, wenn i+1 Paare von Primzahlzwillingen der Form

```
(n-1, n+1), (2n-1, 2n+1) ... (2^i n-1, 2^i n+1)
```

existieren. 1999 fand P.Jobling die bisher längste Zwillingsreihe mit n=0,...,6 337190719854678690 * $2^n \pm 1$

Bekannte Zwillingsreihen sind:

Länge **Primzahlen** 2 211049, 211051, 422099, 422101, 844199, 844201 248639, 248641, 497279, 497281, 994559, 994561 253679, 253681, 507359, 507361, 1014719, 1014721 410339, 410341, 820679, 820681, 1641359, 1641361 507359, 507361, 1014719, 1014721, 2029439, 2029441 605639, 605641, 1211279, 1211281, 2422559, 2422561 1121189, 1121191, 2242379, 2242381, 4484759, 4484761 1138829, 1138831, 2277659, 2277661, 4555319, 4555321 1262099, 1262101, 2524199, 2524201, 5048399, 5048401 2162579, 2162581, 4325159, 4325161, 8650319, 8650321 3 253679, 253681, 507359, 507361, 1014719, 1014721, 2029439, 2029441 1138829, 1138831, 2277659, 2277661, 4555319, 4555321, 9110639, 9110641 58680929, 58680931, 117361859, 117361861, 234723719, 234723721, 469447439, 469447441 90895769, 90895771, 181791539, 181791541, 363583079, 363583081, 727166159, 727166161

Zwillingskette

Eine verallgemeinerte Zwillingskette der Länge a liegt vor, wenn a Paare von Primzahlzwillingen der Form (n-1 , n+1), (2n-1, 2n+1) (3n-1, 3n+1) ... (a*n-1, a*n+1)

```
existieren. Bekannte Zwillingsketten sind:
```

```
Länge Startzahl n
5 ?
4 21968100, 37674210, 81875220, 356467230, 416172330, 750662640, 1007393730, 1150070040
```

Doppel-Primzahlzwilling

... eine Zwillingsreihe der Länge 1, d.h. vier Primzahlen der Form

P1 = n-1, P2 = n+1 und P3 = 2n-1, P4 = 2n+1

Damit sind die Paare P1, P2 und P3, P4 Primzahlzwillinge, P1 und P3 sind Sophie-Germain-Zahlen und P2, P4 bilden eine Cunningham-Reihe der 1.Art. Die Primzahlen müssen dabei (mit Ausnahme des ersten Doppel-Primzahlzwillings) die Form

```
P1 = 30 a - 1; P2 = 30 a + 1; P3 = 60 a - 1; P4 = 60 a + 1
```

haben. Die ersten 4-Tupel, welche Doppel-Primzahlzwillinge darstellen, sind (Auswahl):

5	7	11	13
29	31	59	61
2003999	2004001	4007999	4008001
431999999	432000001	863999999	864000001
855*2^10-1	855*2^10+1	855*2^11-1	855*2^11+1
54645*2^20-1	54645*2^20+1	54645*2^21-1	54645*2^21+1

Brun-Konstante

Während die Summe der reziproken Primzahlen divergiert, konvergiert die Summe der reziproken Primzahlzwillinge gegen die Brun-Konstante.

Aus dieser Tatsache kann man allerdings nicht schließen, ob es endlich oder unendlich viele Primzahlzwillinge gibt.

```
NäherungswerteAddtion bis<br/>100*10^9Brun-Konstante<br/>1.90216054Mathematiker<br/>Brent 1976<br/>Nicely 1996<br/>1.902160583104...
```

Durch Thomas R. Nicely wurden von August 1999 bis März 2007 alle Primzahlvierlinge (p, p+2, p+6, p+8), bis $1,6\cdot10^{15}$ und die Summe deren Reziproken bestimmt.

Die zur Brun-Konstanten analoge Größe für Vierlinge ist damit B_4 = 0,8705883800 ± 0,0000000005

Zwillingscluster

Unter einem Zwillingscluster der Ordnung n versteht man eine Menge von 2n aufeinanderfolgender Primzahlen, von denen jeweils zwei aufeinanderfolgende Zahlen einen Primzahlzwilling bilden. Erstmals wurde der Begriff 1995 von Mudge geprägt.

Die kleinsten Zwillingscluster der Ordnung n = 1, 2, ... beginnen ab

3, 5, 5, 9419, 909287, 325267931, 127397154761, 1107819732821, 170669145704411, ... Die Cluster der Ordnung 7 wurden 2001 von Carmody, der Ordnung 8 und 9 von DeVries gefunden. Zwillingscluster der Ordnung 9:

```
170669145704411 ; 170669145704413 ; 170669145704501 ; 170669145704503  
170669145704507 ; 170669145704509 ; 170669145704591 ; 170669145704593  
170669145704639 ; 170669145704641 ; 170669145704669 ; 170669145704671  
170669145704747 ; 170669145704749 ; 170669145704807 ; 170669145704809  
170669145704819 ; 170669145704821
```

Die ersten Cluster der Länge 4, 5 und 6 findet man ab (gesucht bis 463289441):

4: 9419, 62969, 72221, 392261, 495569, 663569, 1006301, 1138367, 1159187, 1173539, 1322147

5: 909287, 2596619, 9617981, 12628337, 18873497, 21579629, 25739771, 34140077, 39433367

6:325267931,412984667

Häufigkeit von Primzahlzwillingen

Wahrscheinlichkeit für Primzahleigenschaft im Intervall [x , x+a] a / $\log x$ Wahrscheinlichkeit im Intervall [x , x+a] auftretende Primzahlzwillinge (Näherung) a / $\log^2 x$ Heuristische Wahrscheinlichkeit für Primzahlzwillinge $C * a / \log^2 x$, C = 1,3203236316...

Primzahlen	gefunden	Primzahlzwillinge	gefunden
erwartet		erwartet	
8142	8154	584	601
7238	7242	461	466
5922	5974	309	276
5429	5433	259	276
5011	5065	221	208
	erwartet 8142 7238 5922 5429	erwartet 8142 8154 7238 7242 5922 5974 5429 5433	erwartet erwartet 8142 8154 584 7238 7242 461 5922 5974 309 5429 5433 259

$[10^{14}, 10^{14} +$	4653	4643	191	186
150000]				
$[10^{15}, 10^{15}+$	4343	4251	166	161
150000]				

12n-Primzahlvermutung

Durch Werner D.Sand wurde folgende 12n-Primzahlvermutung aufgestellt: Jede natürliche Zahl 12n, mit Ausnahme von $n \in \{1, 16, 67, 86, 131, 151, 186, 191, 211, 226, 541, 701\}$, ist als Summe von zwei Paaaren (p,q) und (r,s) von Primzahlzwillingen darstellbar.

Durch Computereinsatz konnte diese Vermutung für alle $n < 10^{10}$ nachgewiesen werden. Von einem analytischen Beweis ist man 2009 noch weit entfernt. Berücksichtigt man die Ausnahmen, gilt damit, dass jede Zahl 60n als Summe von 4 Primzahlzwillingen geschrieben werden kann.

Goldbachsche Zwillingsvermutung

In Analogie zur klassischen Goldbachschen Vermutung kann man auch nach Zerlegungen positiver Zahlen in eine Summe von zwei Primzahlzwillingen fragen.

Zum Beispiel ergibt sich 42 = 31 + 11 oder 1000 = 821 + 179, wobei die Summanden stets Teile eines Zwillings sind. Durch Computereinsatz findet man schnell, dass derartige Summen für folgende natürliche Zahlen nicht existieren:

94, 96, 98	400, 402, 404
514, 516, 518	784, 786, 788
904, 906, 908	1114, 1116, 1118
1144, 1146, 1148	1264, 1266, 1268
1354, 1356, 1358	3244, 3246, 3248
4204 4206 4208	

Merkwürdig ist, dass die Ausnahmezahlen stets in Dreiergruppen auftreten. Außerdem haben diese Zahlen, mit Ausnahme der Dreierfolge 400, 402, 404, stets die Form 30n + 4, 30n + 6 und 30n+8. Bis 19 Millionen findet man keine weitere Zahl ohne Darstellung als Summe von Primzahlzwillingen. Bis heute (2011) ist unklar, ob es weitere Ausnahmezahlen gibt.

Jeder natürliche Zahl größer 4208 kann nach der Goldbachschen Zwillingsvermutung in eine Summe von zwei Primzahlen, die jeweils Primzahlzwilling sind, zerlegt werden.

Für einige natürliche Zahlen existieren mehr als eine derartige Zerlegung. Die ersten Zahlen, die auf k verschiedene Arten in eine Summe von zwei Primzahlzwillingen zerlegt werden können, sind:

```
k
                                      Zerlegungen
                                      6 = 3+3
1
2
                                      10 = 7 + 3 = 5 + 5
3
                                      22 = 19+3 = 17+5 = 11+11
                                      48 = 43+5 = 41+7 = 31+17 = 29+19
5-6
                                      114 = 109 + 5 = 107 + 7 = 103 + 11 = 101 + 13 = 73 + 41 = 71 + 43
                                      210 = 199 + 11 = 197 + 13 = 193 + 17 = 191 + 19 = 181 + 29 = 179 + 31 = 151 + 59 = 149 + 61 =
 7-12
 139+71 = 137+73 = 109+101 = 107+103
                                       300 = 283 + 17 = 281 + 19 = 271 + 29 = 269 + 31 = 241 + 59 = 239 + 61 = 229 + 71 = 227 + 73 =
199+101 = 197+103 = 193+107 = 191+109 = 151+149
14 - 16 \quad 660 = 643 + 17 = 641 + 19 = 619 + 41 = 617 + 43 = 601 + 59 = 599 + 61 = 523 + 137 = 521 + 139 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 641 + 19 = 64
463+197 = 461+199 = 433+227 = 431+229 = 421+239 = 419+241 = 349+311 = 347+313
17-18 1290 = 1279+11 = 1277+13 = 1231+59 = 1229+61 = 1153+137 = 1151+139 = 1093+197 = 1291+111 = 1277+13 = 1231+59 = 1229+61 = 1153+137 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1093+197 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1151+139 = 1
1091+199 = 1063+227 = 1061+229 = 1051+239 = 1049+241 = 1021+269 = 1019+271 = 859+431 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 = 1049+241 =
857+433 = 829+461 = 827+463
19-20 1332 = 1321+11 = 1319+13 = 1303+29 = 1301+31 = 1291+41 = 1289+43 = 1231+101 =
1229+103 = 1153+179 = 1151+181 = 1093+239 = 1091+241 = 1063+269 = 1061+271 = 1051+281
  = 1049 + 283 = 1021 + 311 = 1019 + 313 = 811 + 521 = 809 + 523
21-24 1890 = 1879+11 = 1877+13 = 1873+17 = 1871+19 = 1789+101 = 1787+103 = 1699+191 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 = 1879+101 
1697+193 = 1621+269 = 1619+271 = 1609+281 = 1607+283 = 1429+461 = 1427+463 = 1321+569
 = 1319+571 = 1291+599 = 1289+601 = 1231+659 = 1229+661 = 1063+827 = 1061+829 =
 1033+857 = 1031+859
25-32 2310 = 2269+41 = 2267+43 = 2239+71 = 2237+73 = 2131+179 = 2129+181 = 2113+197 =
2111+199 = 2083+227 = 2081+229 = 2029+281 = 2027+283 = 1999+311 = 1997+313 = 1879+431
  = 1877+433 = 1789+521 = 1787+523 = 1669+641 = 1667+643 = 1489+821 = 1487+823 =
 1483+827 = 1481+829 = 1453+857 = 1451+859 = 1429+881 = 1427+883 = 1291+1019 =
 1289+1021 = 1279+1031 = 1277+1033
```

Chen-Primzahl

Eine Chen-Primzahl ist eine Primzahl p, für die p+2 wieder Primzahl oder halbprim ist. Halbprim ist eine Zahl, wenn sie das Produkt von genau zwei Primzahlen ist. Die erste Zahl eines Primzahlzwillings ist damit automatisch Chen-Primzahl.

Die Chen-Primzahlen wurden nach Jing Run Chen benannt, der 1966 bewies, dass es unendliche viele derartige Zahlen gibt. Im Zusammenhang mit der Goldbachschen Vermutung sagt der Satz von Chen aus, dass jede hinreichend große natürliche, gerade Zahl als Summe von einer Primzahl und dem Produkt von maximal zwei Primzahlen darstellbar ist.

Die ersten Chen-Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...

Die ersten Primzahlen, die nicht Chen-Primzahl sind, sind

43, 61, 73, 79, 97, 103, 151, 163, 173, 193, 223, 229, 241, 271, 277, 283, 313, 331, 349, 367, 373, 383, 397, 421, 433, 439, 457, 463, 523, 547, 593, 601, 607, 613, 619, 643, 661, 673, 691, 709, 727, 733, 739, 757, 773, 823, 853, 859, 883, 907, 929, 967, 997, ...

Bekannt ist, dass es unendlich viele Tripel von Chen-Primzahlen in arithmetischen Zahlenfolgen ist. Die größte bekannte Chen-Primzahl ist $65516468355 \cdot 2^{333333}$ -1 mit 100355 Ziffern.

Spezielle Primzahlen

Isolierte Primzahl

277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, ...

Minimale k-distante Primzahlen

Zwei natürliche Zahlen n und m mit

(1) n,m sind prim, alle Zahlen n+1, ..., m-1 sind nicht prim

(2) m-n=k und für alle Zahlenpaare a,b mit (1), welche kleiner sind als n, gilt b-a ungleich k Die Abstände aufeinanderfolgender Primzahlen werden beliebig groß.

Beispiele:	1-dist	ant 2, 3	2-distant	3, 5 Primzahlzwillinge
3-dist	tant	existieren nicht!	4-distant	7, 11 Cousin-Primzahlen
5-dist	tant	existieren nicht!	6-distant	23, 29 Sexy-Primzahlen
7-dist	tant	existieren nicht!	8-distant	89, 97
9-dist	tant	existieren nicht!	10-distant	139,149
12-di	stant	199.211	14-distant	113.127

Bis heute (2008) existiert kein Beweis dafür, dass jede beliebige gerade Zahl als Abstand zweier aufeinanderfolgender Primzahlen auftreten kann. Mittels intensivem Computereinsatz wurden die kleinsten Primzahlen ermittelt, ab denen ein Abstand von 2, ..., 1998 zur nächsten Primzahl eintritt.

Cousin-Primzahlen ... Primzahlpaar der Form (p , p+4). Die ersten derartigen Paare sind (3,7), (7,11), (13,17), (19,23), (37,41), (43,47), ...

Die Dichte der Cousin-Primzahlen nähert sich asymtotisch

 $P_x(p,p+4) \sim 2 \; \Pi_{p \geq 3} \; p(p-2)/(p-1)^2 \; {_2} \int^x \; dx \; / \; (ln \; x)^2 = 1.320323632 \; {_2} \int^x \; dx \; / \; (ln \; x)^2$ In Analogie zur Brun-Konstante gilt hier: $B_4 = (1/7 + 1/11) + (1/13 + 1/17) + (1/19 + 1/23) + (1/37 + 1/41) + \dots \qquad B_4 \approx 1.1970449 \text{(Auswertung aller Primzahlen} < 2^{42} \text{)}$

Liste der ersten Cousin-Primzahlen

7	11	13	17	19	23	37	41	43	47	67	71	79
83	97	101	103	107	109	113	127	131	163	167	193	197
223	227	229	233	277	281	307	311	313	317	349	353	379
383	397	401	439	443	457	461	463	467	487	491	499	503

Häufigkeit der Cousin-Primzahlen

Überraschend ist, dass die Häufigkeit der Cousin-Primzahlen mit der Häufigkeit der Primzahlzwillinge übereinstimmt. Sind $\pi_2(n)$ und $\pi_4(n)$ die Anzahl von Primzahlzwillingen und Cousin-Primzahlen bis n, so erhält man

n 2 ¹⁸ 2 ²⁰ 2 ²² 2 ²⁴ 2 ²⁶ 2 ²⁸ 2 ³⁰	π ₂ (n) 2679 8535 27995 92246 309561 1056281	π ₄ (n) 2678 8500 27764 91995 309293 1057146	$\pi_2(n) / \pi_4(n)$ 1,00037 1,00412 1,00832 1,00273 1,00087 0,99918
2^{30}	3650557	3650515	1,00001

```
2^{32}
                                         0.99994
        12739574
                         12740283
2<sup>34</sup>
        44849427
                                         1.00016
                         44842399
2<sup>36</sup>
        159082253
                         159089620
                                         0.99995
2^{38}
        568237005
                         568225073
                                         1,00002
2<sup>40</sup>
        2042054332
                         2042077653
                                         0.99999
2^{42}
                                         0,999999
        7378928530
                         7378989766
2^{44}
        26795709320 26795628686 1,00000
Ein Beweis für \pi_2(n) \sim \pi_4(n) existiert noch nicht.
```

Sexy-Primzahlen

Zwei Primzahlen mit einer Differenz von 2 heißen Primzahlzwillinge, mit einer Differenz von vier Cousin-Primzahlen und in logischer Folge bei einer Differenz von 6 ... Sexy-Primzahlen.

Die ersten Paare sind : (5,11) ; (7,13) ; (11,17) ; (13,19) ; (17,23) ; (23,29) ; (31,37) ; (37,43) ; (41,47) ; (47,53) ...

Darüber hinaus existieren auch Tripel (7,13,19); (17,23,29); (31,37,43); (47,53,59); Quadrupel (11,17,23,29); (41,47,53,59); (61,67,73,79); (251,257,263,269) und nur ein einziges Quintupel (5,11,17,23,29).

In Analogie zur Brun-Konstante gilt hier: $B_6 = (1/5 + 1/11) + (1/7 + 1/13) + (1/11 + 1/17) + (1/13 + 1/19) + ...$ $B_6 > 2.13746189434218...$ (in Auswertung aller Primzahlen $< 2^{25}$; Polster 2000) betrachtet man nur die Sexy-Primzahl-Tripel wird: $B_{6;3} > 1.59718995$ (in Auswertung aller Primzahlen $< 2^{23}$; Polster 2000)

Anmerkung: Der merkwürdige Name dieser Zahlen wurde wahrscheinlich von T.Trotter gegeben und bezieht sich auf "sex" dem lateinischen Wort für "sechs".

Liste der ersten Sexy-Primzahlen (P ... Paare, T ... Tripel, Q ... Quadrupel)

P 5,11	T 5,11,17	Q 5,11,17,23	P 7,13	T 7,13,19
P 11,17	T 11,17,23	Q 11,17,23,29	P 13,19	P 17,23
T 17,23,29	P 23,29	P 31,37	T 31,37,43	P 37,43
P 41,47	T 41,47,53	Q 41,47,53,59	P 47,53	T 47,53,59

Primzahlvierlinge

Haben vier aufeinanderfolgende Primzahlen die Abstände 2, 4 und 2, d.h. p, p+2, p+6 und p+8 sind Primzahlen, so heißen diese Primzahlvierlinge. Das kleinste Paar von Primzahlzwillingen ist (5, 7, 11, 13). Alle anderen Vierlinge befinden sich innerhalb eines "Zehners", z.B. (101, 103, 107, 109). Ob es unendlich viele Primzahlvierlinge gibt, ist heute (2013) noch nicht sicher.

Die Summe der reziproken Primzahlvierlinge konvergiert gegen die Brunsche Konstante für Primzahlvierlinge $B_4 = 0.8705883800 \pm 0.0000000005$.

Primzahlvierlinge bestehen aus zwei Primzahlzwillingspaaren im Abstand 4, d.h. aus vier Primzahlen der Form p, p+2, p+6, p+8. Die Zahl, die genau in der Mitte liegt, ist immer durch 15 teilbar und die Summe der Primzahlen des Quadrupels ist immer durch 60 teilbar.

Daher lässt sich jedes Quadrupel auch in der Form (15n-4, 15n-2, 15n+2, 15n+4) schreiben; Ausnahme das kleinste Quadrupel (5, 7, 11, 13).

Die Tabelle enthält die gegenwärtig größten bekannten Vierlinge, deren Ziffernzahl und deren Entdecker; für Stellenzahlen kleiner 300 nur die jeweils kleinste der entsprechenden Art.

Die ersten 166 Primzahlvierlinge

Die Tabelle enthält die ersten Primzahlvierlinge. Angegeben ist jeweils nur das N des Vierlings N,N+2,N+6,N+8.

5 11 101 191 821 1481 1871 2081 3251 3461 5651 13001 15641 15731 16061 18041 18911 19421 21011 22271 25301 31721 34841 43781 51341 55331 62981 67211 69491 72221 77261 79691 81041 82721 88811 97841 99131 101111109841116531119291122201135461144161157271165701166841 171161 187631 194861 195731 201491 201821 217361 225341 240041 243701 247601 247991 257861 260411 266681 268811 276041 284741 285281 294311 295871 299471 300491 301991 $326141\,334421\,340931\,346391\,347981\,354251\,358901\,361211\,375251\,388691\,389561\,392261$ 394811 397541 397751 402131 402761 412031 419051 420851 427241 442571 444341 452531 463451465161467471470081477011490571495611500231510611518801536441536771 $539501\,549161\,559211\,563411\,570041\,572651\,585911\,594821\,597671\,607301\,622241\,626621$ $632081\,632321\,633461\,633791\,654161\,657491\,661091\,663581\,664661\,666431\,680291\,681251$ 691721705161715151734471736361739391768191773021795791803441814061822161 823721829721833711837071845981854921855731857951875261876011881471889871 907391930071938051946661954971958541959471976301978071983441

Rekordliste der bekannten Primzahlvierlinge

Ziffern	Vierlinge	Entdecker
3360	722047383902589*2^11111 + -1,1,5,7	Keiser 2013
3024	43697976428649*2^9999 + -1.1.5.7	Kaiser 2012

2500	46359065729523*2^8258 + -1,1,5,7	Keiser 2011
2401	1367848532291*5591#/35 + -1,1,5,7	Luhn 2011
2135	25796119248*4987#/35 + -1,1,5,7	Chaffey 2011
2058	4104082046*4800# + 5651 + 0,2,6,8	Luhn 2005
1519	65034205799*3547#/35 + -1,1,5,7	Chaffey 2011
1491	11024895887*3500# + 855731 + 0,2,6,8	Luhn 2003
1314	3602504035296*24321 + -1,1,5,7	Stocker 2010
1284	10271674954*2999# + 3461 + 0,2,6,8	Bell 2002
1068	109267227191*2500# + 10531091 + 0,2,6,8	Luhn 2001
104	$10^{103} + 29093071 + 0,2,6,8$	Polster 03

Primzahlvierling-Abstand

Der Abstand zwischen zwei aufeinander folgenden Primzahlvierlingen nimmt mit wachsenden Werten zu. Die Tabelle enthält die Entwicklung des maximalen Abstandes für steigende Primzahlvierlinge (vollständig gesucht bis 5 Milliarden; St.Polster):

Abstand	ab p						
6	5	90	11	630	191	660	821
1170	2081	2190	3461	3780	5651	6420	25301
8940	34841	9030	88811	13260	122201	16470	171161
24150	301991	28800	739391	29610	1410971	39990	1468631
56580	2990831	56910	3741161	71610	5074871	83460	5527001
94530	8926451	114450	17186591	157830	21872441	159060	47615831
171180	66714671	177360	76384661	190500	87607361	197910	122033201
268050	132574061	315840	204335771	395520	628246181	435240	1749443741
440910	2115383651	l 513570	2128346411	536010	2625166541	L 539310	2932936421
557340	3043111031	l 635130	3593321651	[

Hinweis: Für die angegebenen p bilden p, p+2, p+6, p+8 und p+Abstand, p+2+Abstand, p+6+Abstand, p+8+Abstand aufeinanderfolgende Vierlinge.

In der ersten Tabelle können zwischen den zwei aufeinanderfolgenden Vierlingen weitere ("Einzel")-Primzahlen stehen. Schließt man dies zusätzlich aus ergibt sich für den maximalen Abstand für steigende Primzahlvierlinge (vollständig gesucht bis 7,8 Milliarden; 7814593931; St.Polster):

```
Abstand ab p...

5
30 1006301, 10531061, 108816311, 131445701, 255352211, 267587861, 557458631, 685124351, 821357651, 871411361, 1030262081, 1103104361, 1282160021, 1381201271, 1432379951, 1948760081, ...

90 1154454311, 3119449511, 3995488241, 5060648051, 5225914781, 7680881771, 8750771501, 15901706831, 21044193341, 29342823311, 34529213351, 39601843901, 40870708511, 45125715821, 50897919971, 53217252371, 59350558271, 65128543301, 70915447781, ...

120 15702325151, 25707225491, 38189847341, 52831536221

180 ?
```

Offensichtlich sind Intervalle, deren Ränder von Primzahlvierlingen gebildet werden und sonst keinerlei Primzahlen enthalten, sehr selten. Trotz intensiver Suche wurden nur wenige derartige Intervalle mit einer Länge größer 30 gefunden. Dieser Abstand 30 ist übrigens der kleinstmögliche Abstand zweier Vierlinge (Ausnahme der Sonderfall der Vierlinge 5,7,11,13 und 11,13,17,19).

Die zweite Tabelle enthält Startprimzahlen für zwei aufeinanderfolgende Vierlinge mit möglichst kleinem Abstand (zwischen den Vierlingen können weitere Primzahlen auftreten!). Für einen Abstand 30 handelt es sich um die weiter unten erwähnten Primzahlachter (gesucht bis 200 Millionen; St.Polster): Abstand ab p...

```
6
        5
30
        1006301, 2594951, 3919211, 9600551, 10531061, 108816311, 131445701, 152370731,
        157131641, 179028761, ...
90
        11, 101, 15641, 3512981, 6655541, 20769311, 26919791, 41487071, 71541641,
        160471601, 189425981
        1022381, 1246241, 13266431, 39293201, 40079321, 141623561, 175854191, 182614511,
120
        189943211, 199414211
180
        3512051, 16198991, 32980301, 33231041, 58008101, 72578741, 75079001, 114986561,
        120910871, 154281551, 159338141, 172539791
        1871, 3251, 397541, 1117601, 1954151, 2731691, 2927591, 14059811, 34852241,
210
        38035421, 69816281, 70334051, 104754101, 114556361, 116699831, 137194691,
        138843161, 144410471, 157131431
240
        632081, 5381861, 12978611, 14290271, 14816951, 53856371, 85555661, 91172111,
```

```
125095301, 145168781, 174459581
300 1121831, 2007611, 34313891, 37672631, 38172551, 39659231, 46403171, 59098841, 61993361, 62946041, 86748911, 176021471, 187773191, 195983861
```

Kleinste n-stellige Primzahlvierlinge

Die Liste enthält den jeweils kleinsten Primzahlvierlinge der n-stelligen natürlichen Zahlen. Angegeben werden, soweit schon berechnet, die jeweils 5 kleinsten Summanden a, a+2, a+6 und a+8, so dass

```
10<sup>(Stellenzahl-1)</sup>+a bis 10<sup>(Stellenzahl-1)</sup>+a+8
```

Vierling ist (Polster, Oktober 2014). Ein Tabelleneintrag ? > xxxx bedeutet, dass der noch nicht gefundene Summand größer als xxxx ist. Der größte gefundene Primzahlvierling mit 292 Stellen ist damit $10^{291} + 38618869111 + 0,2,6,8$

```
Kleinste n-stellige Primzahlvierlinge 10<sup>n-1</sup>+a, 10<sup>n-1</sup>+a+2, 10<sup>n-1</sup>+a+6 und 10<sup>n-1</sup>+a+8
```

```
Stellen Primzahlvierlinge ab a = ...
       38618869111 ? > 52677165931
292
291
       28888516231 ? > 77074318651
290
       38266901491 63713425531 81374688571 102927419881 170168809231
       111683606491 274583088811 275818091851 283060128541 304253276371
289
       33260186971 33260186971 57705131971 228977017351 283197951181 52750232401 60497441401 209519227771 236141497471 237231389731
288
287
286
       45951967591 53842388611 80938153111 113232902101 122805138181
285
                     41899495171 60175794301 63925328791 225751654051
       59922633091 138663326431 179340577051 184853129161 250001824471
284
      16090761661 100462623691 138419052361 199143452971 212186906941 95119790161 100199892421 149486736901 195066643741 208755090661
283
282
       45880278031 102753000691 125365508401 281148690661 293696783491
281
       81084120031 139378878061 148890748081 172307551861 183632443921
280
279
       45536796391 48732725581 52824603211 93406384261 146213208001
       23338352821 96577196281 117434664061 156990632821 186441601381
278
       11217172591 37527518491 54119989801 179217571261 210691697071
277
276
       71836366621 100219863931 140394029761 142999314841 146524748851
275
       28147445641 44372321251 192392472691 220973356891 229742700781
274
       75641200171 88303302391 150358897861 173191126531 190880625661
```

Primzahlvierling-Abstand

Bei der Suche nach n-stelligen Primzahlvierlingen traten sehr große Abstände zwischen unmittelbar aufeinanderfolgenden Vierlingen auf. Die größten Abstände größer als 20 Milliarden ergaben sich für nachfolgende Werte. Angegeben wird der Abstand zwischen den ersten Zahlen der Vierlinge (Polster, Mai 2014):

Abstand	1.Vierling ab	2.Vierling ab
166640961390	10^267 + 972840691	10^267 + 167613802081
148020151440	10^274 + 44372321251	10^274 + 192392472691
125097581460	10^276 + 54119989801	10^276 + 179217571261
118566797400	10^270 + 77400441301	10^270 + 195967238701
107782063620	10^263 + 191934052741	10^263 + 299716116361
105374272800	10^247 + 62572876171	10^247 + 167947148971
99553284900	10^268 + 63825828121	10^268 + 163379113021
95848549680	10^238 + 20154983161	10^238 + 116003532841
92355326250	10^263 + 47498143321	10^263 + 139853469571
87780361500	10^246 + 27268627501	10^246 + 115048989001
82837236180	10^272 + 105088278961	10^272 + 187925515141
77491557060	10^266 + 102913396741	10^266 + 180404953801
75569016630	10^270 + 208179779641	10^270 + 283748796271
75538736280	10^253 + 17896332511	10^253 + 93435068791
73238843460	10^277 + 23338352821	10^277 + 96577196281
65946844530	10^256 + 50652151291	10^256 + 116598995821
65326530390	10^255 + 12801489151	10^255 + 78128019541
64756871940	10^254 + 14467739071	10^254 + 79224611011
62809822740	10^231 + 26523061771	10^231 + 89332884511
62483765190	10^272 + 42604513771	10^272 + 105088278961
62055595470	10^273 + 88303302391	10^273 + 150358897861
60150360360	10^267 + 167613802081	10^267 + 227764162441
59643867960	10^252 + 9954311251	10^252 + 69598179211

Kleinste n-stellige Primzahlvierlinge $10^{n-1} + a$, $10^{n-1} + a + 2$, $10^{n-1} + a + 6$ und $10^{n-1} + a + 8$

Stellen	Primza	hlvierlin	ge ab a	=	•	Stellen	Primza	hlvierlin	ge ab a	=	
2	1					3	1	91	721		
4	481	871	1081	2251	2461	5	3001	5641	5731	6061	8041
6	1111	9841	16531	19291	22201	7	2341	3361	6301	6331	8851
8	13951	18031	35161	37381	39451	9	5461	10500	1112891	l 117931	l 180271
10	25261	52561	116581	L 212461	l 395491	11	57421	57931	67921	195811	L236221

Stellen	ab a						
51	107187571	52	93990811	53	6564481	54	4908271
55	70632901	56	17645971	57	1554001	58	52799491
59	27052681	60	108560281	61	272737531	62	88205221
63	101279731	64	46716001	65	96300631	66	296047771
67	37078231	68	135052651	69	139333321	70	6290401
74	17295391	99	153482191				

Primzahlmehrlinge

Die Konstruktion von Primzahlzwillingen, -drillingen und -vierlingen kann forgesetzt werden. Dabei entstehen dann Primzahlmehrlinge. Mögliche Definitionen sind:

Primzahlfünfling, Primzahlquintupel ... von sieben aufeinanderfolgenden ungeraden Zahlen sind fünf prim Primzahlsechsling ... von neun aufeinanderfolgenden ungeraden Zahlen sind sechs prim

Primzahlfünflinge gibt es in zwei verschiedenen Typen: p, p+4, p+6, p+10, p+12 und p, p+4, p+6, p+8, p+12. Die ersten p dieser Fünflinge sind:

```
Typ p, p+4, p+6, p+10, p+12
7 97 1867 3457 5647 15727 16057 19417
43777 79687 88807 101107

Typ p, p+4, p+6, p+8, p+12
5 11 101 1481 16061 19421 21011 22271
43781 55331 144161165701166841

Primzahlsechslinge, Typ p, p+4, p+6, p+10, p+12, p+16
7 97 16057 19417 43777 1091257 1615837 1954357
2822707 2839927
```

Primzahlachter

... 8 Primzahlen der Form p, p+2, p+6, p+8, p+30, p+32, p+36 und p+38. Die ersten Achter sind zu finden ab p =

```
2594951
                        3919211
1006301
                                     9600551
                                                 10531061
                                                              108816311
131445701
            152370731
                                     179028761
                        157131641
                                                 211950251
                                                              255352211
267587861
            557458631
                        685124351
                                     724491371
                                                 821357651
                                                             871411361
1030262081
            1103104361
                        1282160021
                                     1381201271
                                                 1427698631
                                                              1432379951
1443994001
            1596721331
                        1948760081
                                     2267091941
                                                 2473387121
                                                              2473836941
2574797801
            2768715371
                        2838526511
                                     3443520131
                                                 3501128171
                                                              4184384591
4212028361
            4261365341
                        4334286161
                                     4733406281
                                                 4967697401
                                                              5008732871
5018508791
            5074178531
                        5742636041
                                     5797952981
                                                 5974467011
                                                              6535814861
6650694101
                        7036740671
                                     7384583411
                                                 7503957281
            6697423091
                                                             7561533401
7588230701
            7610843291
                        7806668291
                                     7814593901
                                                 8562231281
                                                             9209265641
9350906231
            9792265751
                        9812361071
                                     9970720181
```

Achtung! Unter einem Primzahlachter werden in der Fachliteratur auch 8-Tupel von Primzahlen der Form

```
p + 0, 2, 6, 12, 14, 20, 24, 26
p + 0, 2, 6, 8, 12, 18, 20, 26
p + 0, 6, 8, 14, 18, 20, 24, 26
```

diskutiert. Andererseits auch Konstruktionen der Form: Primzahl-Zwilling + Primzahl-Vierling + Primzahl-Zwilling. Man findet die beiden benachbarten Zwillinge eines Vierlings symmetrisch angeordnet mit den Mittenabständen plus 15 bzw. minus 15.

Erste Vierlings-Mittenzahlen: 663585, 10187925, 11495595, 18873525, 93956115, 180929715

Vierlingscluster

In Analogie zum Zwillingscluster versteht man unter einem Vierlingscluster der Ordnung n eine Menge von 4n aufeinanderfolgender Primzahlen, von denen jeweils vier aufeinanderfolgende Zahlen einen Primzahlvierling bilden.

Da ein Vierlingscluster die Struktur a, a+2, a+6, a+8; b, b+2, b+6, b+8; c, c+2, c+6, c+8; ... gekennzeichnet ist, kann er durch das Tupel (a,b-a,c-b,...) eindeutig gekennzeichnet werden. Primzahlachter und Vierlingscluster der Ordnung 2 unterscheiden sich dadurch, dass bei Vierlingsclustern auch b-a > 30 sein kann.

Bisher sind nur Cluster der Ordnung 2 bekannt (gesucht bis 1595384471): Cluster der Ordnung 2 mit b-a = 30 ab ...

1006301, 10531061, 108816311, 131445701, 255352211, 267587861, 557458631, 685124351, 821357651, 871411361, 1030262081, 1103104361, 1282160021, 1381201271, 1432379951

Primzahlsechslinge

Primzahlvierlinge der Form z-4, z-2, z+2, z+4 können auch als Folge von Primzahlen in der Form $z-2^2$, $z-2^1$, $z+2^1$, $z-2^2$

betrachtet werden. Erweitert man auf

$$z-2^3$$
, $z-2^2$, $z-2^1$, $z+2^1$, $z+2^2$, $z+2^3$

so entsteht ein Primzahlsechsling. Diese sind logischer Weise wesentlich seltener als Vierlinge. Die nachfolgende Tabelle enthält die zentrale Zahl z derartiger Sechslinge. Steht hinter der angegebenen Zahl n in Klammern eine Zahl, so bedeutet dies, dass auch höhere Exponenten der Potenzen entweder als Subtrahend (negative Zahl) oder als Summand (positive Zahl) Primzahlen liefern. Eine Verallgemeinerung führt zur Frage, ob es auch längere dieser Folgen mit

```
z-2^{n}, ..., z-2^{3}, z-2^{2}, z-2^{1}, z+2^{1}, z+2^{2}, z+2^{3}, ..., z+2^{n}
```

gibt. Primzahlachtlinge finden Sie auf der nächsten Lexikonseite.

Ketten mit n=3 sind in der Tabelle enthalten. Die nachfolgende Tabelle enthält die zentrale Zahl z derartiger Tupel. Steht hinter der angegebenen Zahl n in Klammern eine Zahl, so bedeutet dies, dass auch höhere Exponenten der Potenzen entweder als Subtrahend (negative Zahl) oder als Summand (positive Zahl) Primzahlen liefern.

Gesucht wurde bis 10 Milliarden (August 2005, St.Polster). Eine weitere Verallgemeinerung führt zum Begriff der Primzahl-Potenztupel.

```
n = 3 (+9)
            19425
n = 3 (-8)
            105
n = 3(-7)
            1464975435
                        7735759395
n = 3 (+6)
            15
                         1638495495
                                     2169562395
                                                  8300787495
                                                               3979977645
n = 3(-6)
            236608785
                         1056605655
                                     1613552535
                                                  3845259705
                                                                            6632355555
n = 3 (+5)
            3400215
                         6005895
                                                  360876075
                                                               563681475
                                                                            1343141205
                                     56431935
n = 3 (-5)
            7187775
                         75085605
                                     119732025
                                                  190504755
                                                                            687979215
                                                               226901115
n = 3 (+4)
            43785
                         2839935
                                                  14812875
                                                               16025835
                                     6503595
                                                                            16094715
                                     14856765
                                                                            41763435
n = 3 (-4)
            1954365
                         8741145
                                                  31563945
                                                               36319185
n = 3
            16065
                         1091265
                                     1615845
                                                  2822715
                                                               3243345
                                                                            7641375
```

Primzahlachtlinge

Eine Verallgemeinerung des Begriffs der Primzahlsechslinge führt zur Frage, ob es auch längere dieser Folgen mit

```
z-2^{n}, ..., z-2^{3}, z-2^{2}, z-2^{1}, z+2^{1}, z+2^{2}, z+2^{3}, ..., z+2^{n}
```

gibt. Ketten mit n = 4 liefern sogenannte Primzahlachtlinge; höhere Werte für n entsprechende Tupel; d.h. n = 5 ergibt einen Primzahlzehnling.

Ketten mit n = 4 und 5 sind in der Tabelle enthalten. Die nachfolgende Tabelle enthält die zentrale Zahl z derartiger Tupel. Steht hinter der angegebenen Zahl n in Klammern eine Zahl, so bedeutet dies, dass auch höhere Exponenten der Potenzen entweder als Subtrahend (negative Zahl) oder als Summand (positive Zahl) Primzahlen liefern.

Für n > 5 wurden noch keine Zahlen gefunden. Gesucht wurde bis 1,20 Billion (November 2005, St.Polster). Eine weitere Verallgemeinerung führt zum Begriff der Primzahl-Potenztupel.

n = 5	40874929095				
n = 4 (-8)	437226260835				
n = 4 (+7)	343807936185				
n = 4 (+6)	13967430015	550176593505	562186630005	597589320405	683240978595
n = 4 (-6)	1789459035	19038901245	71330701365	93649607415	793184544075
n = 4 (+5)	542460555	1356784065	9135251685	10844041845	12591774195
n = 4 (-5)	587191605	2384023005	9052625505	28917960435	39338293995
n = 4	50943795	246843135	507420375	545170185	1040321205

Primzahl-n-Tupel

Durch Tony Forbes wird im World wide web unter der Adresse

http://www.ltkz.demon.co.uk/ktuplets.htm

eine Liste der größten bisher entdeckten Primzahl-n-Tupel für n=3,...,17 geführt. Dabei wird definiert (alle genannten Zahlen müssen prim sein):

```
Primzahldrilling ... Tupel {p, p+2, p+4} , {p, p+2, p+6} bzw. {p, p+4, p+6}
```

Primzahlvierling... Tupel {p, p+2, p+6, p+8}

Primzahlquintupel ... Tupel {p, p+2, p+6, p+8, p+12} bzw. {p, p+4, p+6, p+10, p+12}

Die Liste enthält die jeweils größten bekannten (Juni 2000) n-Tupels, deren Ziffernzahl und den Entdecker.

Ziffern Entdecker Zah

Rekordprimzahldrillinge

2720 2001 1281774717*2⁹⁰⁰⁴ -1, +1, +5

```
2568
       2001 81333879*6000#+10114033337 + 0, 2, 6
Rekordprimzahlfünfling
       2001 L 63687452535*1000# + 1002054791 + 0, 2, 6, 8, 12
427
384
              3242281037*900#+1867 + 0, 4, 6, 10, 12
Rekordprimzahl-6-Tupel
       2001 L 110282080125*700# + 6005887 + 0, 4, 6, 10, 12, 16
301
290
       2001 B 97953153175*670# + 16057 + 0, 4, 6, 10, 12, 16
Rekordprimzahl-7-Tupel
173
       2001 L 497423806097*400# + 380284918609481 + 0, 2, 6, 8, 12, 18, 20
152
       2001 B 60922342070*350# + 5639 +0, 2, 8, 12, 14, 18, 20
Rekordprimzahl-8-Tupel
       2001 B 243551752728*320# + 1277 + 0, 2, 6, 12, 14, 20, 24, 26
142
110
       2001 L 388793398651*250# + 1042090781 + 0, 2, 6, 8, 12, 18, 20, 26, 30
Rekordprimzahl-9-Tupel
       2001 L 388793398651*250# + 1042090781 + 0, 2, 6, 8, 12, 18, 20, 26, 30
       2001 L 354919631791*120# + 10527733922591 + 0, 2, 6, 8, 12, 18, 20, 26, 30
Rekordprimzahl-10-Tupel
       2001 L 172831780223*120# + 10527733922591 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32
58
50
                     390868699256 * 101# + 258101 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32
       1999 RN
Rekordprimzahl-11-Tupel
       2001 L 3676296453875*80# + 10527733922591 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36
42
       2001 L 5027317106963 * 75# + 1418575498567 + 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 42
Rekordprimzahl-12-Tupel
42
       2001 L 5027317106963 * 75# + 1418575498567 + 0, 6, 10, 12, 16, 22, 24, 30, 34, 36, 40, 42
33
       1999 RN
                     244057739913 * 59# + 15840941 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42
Rekordprimzahl-13-Tupel
              1000000008282508019026959814211 + 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50
       2000
              1000000008282508019026959814211 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48
31
       2000
Rekordprimzahl-14-Tupel; x = +0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50
              1000000008282508019026959814211 + x
31
       2000
31
       2000
              1000000007541367760266886291861 + x
Rekordprimzahl-15-Tupel; x = +0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56
              9999999962618227626700812281 + 0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50,
56
25
       2000
             2845372542509911868266817 + x
Rekordprimzahl-16-Tupel
25
       2000 V 2845372542509911868266817 + 0, 2, 6, 12, 14, 20, 26, 30, 32, 36, 42, 44, 50, 54, 56,
60
25
       2001 V 1906230835046648293290043 + 0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58,
60
Rekordprimzahl-17-Tupel
25
       2000 V 2845372542509911868266811+ 0, 6, 8, 12, 18, 20, 26, 32, 36, 38, 42, 48, 50, 56, 60,
62, 66
25
       2000 V 2845372542509911868266807+ 0, 4, 10, 12, 16, 22, 24, 30, 36, 40, 42, 46, 52, 54, 60,
64,66
Rekordprimzahl-18-Tupel
25
       2000 V 2845372542509911868266807+ 0,4,10,12,16,22, 24, 30, 36, 40, 42, 46, 52, 54, 60, 64,
66, 70
25
       2001 V 1906230835046648293290043+ 0,4,6,10,16,18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60,
66, 70
Primzahldrillinge
Ohne den Sonderfall (3; 5; 7) existieren zwei Arten von Primzahldrillingen, Tripel der Form {p, p+2,
p+6} bzw. {p, p+4, p+6}. Die ersten Tripel beider Art bis 5000 sind in der Tabelle aufgelistet.
Angegeben wird nur die erste Primzahl p.
Typ p, p+4, p+6
7
                                           193
       13
              37
                     67
                            97
                                    103
                                                  223
```

```
277
      307
             457
                           823
                                  853
                                                1087
                    613
                                         877
1297
      1423
             1447
                    1483
                           1663
                                  1693
                                         1783
                                                1867
1873
      1993
             2083
                    2137
                           2377
                                  2683
                                         2707
                                                2797
                    3463
                           3847
3163
      3253
             3457
                                  4153
                                         4513
                                                4783
Typ {p, p+2, p+4}
             17
                    41
                           101
                                  107
                                         191
                                                227
      11
311
      347
             461
                    641
                           821
                                  857
                                         881
                                                1091
      1301
                    1481
                           1487
                                  1607
                                                1997
1277
             1427
                                         1871
2081
      2237
             2267
                    2657
                           2687
                                  3251
                                         3461
                                                3527
```

```
3671 3917 4001 4127 4517 4637 4787 4931
4967
```

Bis 10 Millionen existieren 8543 Tripel des Typs {p, p+2, p+4} und 8677 Tripel der Art {p, p+4, p+6}. Es wird vermutet, dass beide Arten gleichhäufig auftreten.

Zählt man die Anzahl beider Typen, so überwiegt bis 166973 Typ $\{p, p+2, p+4\}$. Danach werden es kontinuierlich immer mehr vom Typ $\{p, p+4, p+6\}$. Die Vermutung, dass bleibe so, ist falsch. Ab 91715291 sind es wieder mehr Drillinge des ersten Typs.

Primzahlfolgen

In Erweiterung der Begriffe Primzahlzwilling, -vierling usw. können auch endliche arithmetische Folgen von Primzahlen gesucht werden. Dabei existieren Folgen der Form a+kd (k natürlich) beliebiger Länge. Sucht man z.B. eine Folge der Länge 7, muss die Differenz der arithmetischen Zahlenfolge aber mindestens dem Kleinsten Gemeinschaftlichen Vielfachen aller Primzahlen bis 7, d.h. 210, entsprechen. Die Tabelle enthält ausgewählte arithmetische Zahlenfolgen, deren Anfangsglied a, Differenz d und Länge. Die in diesen Folgen enthaltenen Glieder sind Primzahlen.

```
Länge a (d)
```

```
3 (2), 3 (4), 3 (8), 3 (10), 3 (14), 3 (20)
3
4
       5 (18), 59 (24), 31 (36), 5 (54), 37 (120), 59 (180)
5
       5 (6), 5 (12), 5 (42), 5 (48), 29 (120), 101 (180)
6
       7 (30), 11 (60), 239 (120), 397 (180), 13 (210), 23 (240)
7
       7 (150), 47 (210), 193 (420), 1061 (840), 53 (1050), 359 (1260)
8
       2239 (420), 1637 (630), 6883 (840), 8837 (1050), 3323 (1260), 8191 (1470)
       3499 (210), 279857 (630), 6043 (840), 2063 (1260), 101027 (1470), 31333 (1680)
9
       199 (210), 52879 (420), 964417 (630), 915611 (840), 6722909 (1260), 2534561 (1470)
10
       60858179 (2310), 11022827 (4620), 3811547 (23100), 241907 (25410), 53173 (30030)
11
       110437 (13860), 23143 (30030), 1498141 (30030), 5806111 (510510), 11961407 (510510)
12
       14933623 (30030), 766439 (510510), 20357629 (9699690), 90296663 (9699690)
13
       72697309 (9699690)
14
15
       62997619 (9699690)
       53297929 (9699690)
16
```

Die Tabelle enthält ausgewählte arithmetische Zahlenfolgen, deren Anfangsglied a, Differenz d und Länge. Die in diesen Folgen enthaltenen Glieder sind Primzahlen.

Startzahlen für unterschiedliche Differenzen und Längen der arithmetischen Zahlenfolge von Primzahlen; (vollständig getestet bis 116 Millionen; jede Folge wird nur einmal mit ihrer maximalen Länge genannt)

```
D
            Länge Startzahlen
210
                   3499, 10859, 564973, 1288607, 1302281, 2358841, 3600521, 4047803,
17160749.
            10
2310
                   3823, 60317, 80761, 563117, 574813, 1215583, 1603079, 1937833, 2025791,
4568209,
            10
                   2564251, 7245143, 15898823, 34834237, 51404371, 81985259, 92094011,
99442157.
                   60858179
            11
30030
            10
                   6007, 516449, 667673, 1123739, 1195123, 1337431, 1955957, 2562619,
2626837,
            11
                   53173, 75307, 820793, 3199051, 7026821
            12
                   23143, 1498141
            13
                   14933623
                   380929, 981311, 1814233, 4285201, 4682791, 6031789, 6618569, 7018579,
510510
            10
7334219.
                   1889429, 2021879, 3009541, 5417411, 10650331, 31105201, 32939899,
            11
34309283,
            12
                   5806111, 11961407, 41963681, 106774831
            13
                   766439
9699690
                   6110567, 6248609, 11245021, 15297881, 16631039, 18486269, 26567291,
            11
27344323,
            12
                   8691751, 22038259, 34616171, 41079469, 71409893, 78208241,
            13
                   20357629, 90296663
            14
            15
                   53297929
            16
223092870
            11
                   6308189, 9838207, 11045117, 17768683, 25741841, 27476041, 37958611,
43192997,
            12
                   83956937 (bis 2537978507), 86883721 (bis 2540905291), 88869943 (bis
2542891513),
```

```
13 ?
6469693230 11 31284889, 46723951, 62424337, 63559537, 80465197, 87641843
12 67901107 (bis 71234526637)
13 ?
```

Primzahlfolgen (3)

Auch für relativ kleine Startprimzahlen entstehen Primzahlfolgen der Form $a_n = p + d$ n mit Längen über 11, d.h. n > 11. Die ersten dieser Folgen sind

```
Länge 14
       a_n = 62897 + 500579100 n
                                    a_n = 146141 + 54444390 n
Länge 13
       a_n = 4943 + 60060 n
                                    a_n = 57689 + 11771760 n
                                                                 a_n = 61673 + 540876840 n
       a_n = 70589 + 8408400 n
                                                                 a_n = 95063 + 500176320 n
                                    a_n = 70769 + 570413550 n
       a_n = 96461 + 930930 n
                                    a_n = 106787 + 468539610 \text{ n} a_n = 118127 + 478458330 \text{ n}
Länge 12
       a_n = 157 + 203032830 \text{ n}
                                    a_n = 1289 + 502117980 n
                                                                 a_n = 13007 + 488934600 n
                                    a_n = 19213 + 277980780 n
                                                                 a_n = 19889 + 10984050 n
       a_n = 18439 + 33273240 n
                                                                 a_n = 26729 + 505455510 n
                                    a_n = 25889 + 506464140 n
       a_n = 23143 + 30030 n
       a_n = 29717 + 558947340 n
                                    a_n = 31981 + 8415330 n
                                                                 a_n = 33211 + 47750010 n
       a_n = 34961 + 66093720 n
                                    a_n = 36073 + 97927830 n
                                                                 a_n = 36187 + 83723640 n
       a_n = 38783 + 185134950 n
                                    a_n = 40787 + 236377680 n
                                                                 a_n = 41039 + 503482770 n
       a_n = 45589 + 196846650 n
                                    a_n = 50723 + 564481260 n
                                                                 a_n = 51521 + 58362150 n
       a_n = 58231 + 116934510 n
                                    a_n = 59219 + 431698680 n
                                                                 a_n = 61511 + 185014830 n
       a_n = 61781 + 233303070 n
                                    a_n = 65003 + 60060 n
                                                                 a_n = 65123 + 564575550 n
                                                                 a_n = 70313 + 559487880 n
       a_n = 65921 + 2538690 n
                                    a_n = 68279 + 601256040 n
                                                                 a_n = 74551 + 14506800 n
       a_n = 71333 + 185359020 n
                                    a_n = 74101 + 312138750 n
                                                                 a_n = 79817 + 194723760 n
       a_n = 77069 + 504042630 n
                                    a_n = 78989 + 443457210 n
                                                                 a_n = 90379 + 28738710 n
       a_n = 84179 + 129577140 n
                                    a_n = 89521 + 9059820 n
                                                                 a_n = 98377 + 367518690 n
       a_n = 91493 + 102365340 n
                                    a_n = 92369 + 6754440 n
       a_n = 99767 + 609941640 n
```

Primzahl-Konstellation

Unter einer Primzahl-Konstellation versteht man ein Quadrupel von Primzahlen p_1 , p_2 , p_3 , p_4 für die $p_1 + 3k = p_2 + 2k = p_3 + k = p_4$

mit einer natürlichen Zahl k gilt, d.h. die vier Primzahlen bilden eine arithmetische Folge der Differenz k. Dabei wird; im Gegensatz zu den Primzahlfolgen; zusätzlich gefordert, dass diese Primzahlen aufeinanderfolgend sind.

Die ersten derartigen Konstellationen für verschiedene k, die Vielfache von 6 sein müssen, sind (Polster, September 2006; gesucht bis 1 Milliarde):

```
k
       erste Primzahl der Konstellation
6
       251, 1741, 3301, 5101, 5381, 6311, 6361, 12641, 13451, 14741, 15791, 15901, 17471, ...
       111497, 258527, 286777, 318407, 332767, 341827, 358447, 439787, 473887, 480737, ...
12
       74453, 76543, 132893, 182243, 202823, 297403, 358793, 485923, 655453, 735883, ...
18
       1397609, 1436339, 2270459, 4181669, 4231919, 4425599, 4650029, 4967329, 7124099, ...
24
30
       642427, 1058861, 3431903, 4176587, 4560121, 4721047, 5072269, 5145403, 5669099, ...
36
       5321191, 8606621, 9148351, 41675791, 43251251, 49820291, 51825461, 57791281, ...
42
       23921257, 32611897, 33215597, 35650007, 44201617, 49945837, 51616717, 70350487, ...
48
       55410683, 102291263, 141430363, 226383163, 280064453, 457433213, 531290533, ...
54
       400948369, 473838319, 583946599, 678953059, 816604199, 972598819
       253444777, 271386581, 286000489, 415893013, 475992773, 523294549, 620164949, ...
60
66
72
       491525857
78
       998051413
```

Es wird vermutet, dass für jedes natürliche k, dass Vielfaches von 6 ist, unendlich viele Primzahl-Konstellationen existieren. 1973 wurde aber von D.Hensley und I.Richard bewiesen, dass diese Vermutung mit der Vermutung über die Abnahme der Primzahldichte nicht vereinbar ist. In der englischen Fachliteratur werden auch die allgemeinen Primzahlfolgen als "constellations" bezeichnet.

Primzahl-Potenztupel

```
Primzahlvierlinge der Form z-4, z-2, z+2, z+4 können auch als Folge von Primzahlen in der Form z-2^2, z-2^1, z+2^1, z-2^2 betrachtet werden. Für die Primzahlen 97, 101, 103, 107, 109, 113 kann die Folge auf z-2^3, z-2^1, z+2^1, z+2^2, z+2^3
```

erweitert werden. Verallgemeinerung führt zur Frage, ob es auch längere dieser Folgen für eine beliebige natürliche Basis b mit

```
z-b^{n}, ..., z-b^{3}, z-b^{2}, z-b^{1}, z+b^{1}, z+b^{2}, z+b^{3}, ..., z+b^{n}
```

gibt. Solche Folgen werden Primzahl-Potenztupel genannt, die Zahl z Mittelzahl, n der Grad des Tupels. Die nachfolgende Liste enthält Mittelzahlen z für verschiedene Basen b von 2 bis 33, wenn das Primzahl-Potenztupel mindestens die Länge 10, d.h. $n \ge 5$, aufweist. Steht hinter der Mittelzahl in Klammern eine Zahl, so bedeutet dies, dass auch höhere Potenzen entweder als Subtrahend (negative Zahl) oder als Summand (positive Zahl) Primzahlen liefern. Die Tupel sind in diesem Fall streng genommen länger als 10. Für Basen ohne Tupel der Länge 10 wird eines der längsten bekannten genannt.

Interessant ist, dass für die Basis 21 außergewöhnlich viele Tupel gefunden wurden und das ebenso für 21 Primzahlpotenztupel mit Grad 6 berechnet wurden.

```
Für n = 6:
Basis 8 =
              137465295
                                                 Basis 12 =
                                                               218364055
Basis 21 =
              40263698; 58357682; 198220598 (-7)
Für n = 5:
Basis 2 =
              40874929095
                                                               20 (-6); 70 (-6)
                                                 Basis 3 =
Basis 6 =
              1700765; 8242883 (+6); 40579033
                                                 Basis 8 =
                                                               165; 212175645 (-6)
Basis 10 =
              987; 1113; 60627 (-6); 400953; 546609; 15878289 (-8); 31056207 (-6); 57497979 (-6)
Basis 11 =
              274092 (+7); 3114552; 43681092 (-7)
Basis 12 =
              665; 5019175; 22395835; 88575515, 128264815
Basis 13 =
              851400 (+7)
Basis 14 =
              11558217 (-6); 30933573; 34259907 (-7); 92598165; 100105335; 176793177
Basis 15 =
              9654722; 48791248; 198566302
Basis 16 =
              13672197 (+6); 205216473 (+7)
Basis 18 =
              10778075
Basis 19 =
              28283178 (-6); 59417358
Basis 20 =
              263043; 9172383; 34543509
Basis 21 =
              15628 (+7); 23312 (-6); 24040; 78280 (+7); 275108; 298282 (+6); 334640 (-6);
541678;
Basis 22 =
              50791275; 85474995; 93277485; 103949475 (-6); 130960785; 151442085; 155040645
Basis 23 =
              20908860
Basis 26 =
              62160945; 177170763; 206006493
Basis 27 =
              27209270 (-6); 205596380; 229761070 (+7)
Basis 28 =
              48985365
Basis 29 =
              75782718 (-7); 163407288 (+7)
Basis 30 =
              18785921; 44430001 (+6); 67454849
Basis 31 =
              5246472 (+6); 115162278
Basis 32 =
              135544395 (+6)
Für n = 4:
Basis 4 =
              483 (-8)
                                                        Basis 5 =
                                                                       2350404 (+7)
Basis 7 =
                                                               2419802 (-7)
              1935000 (-5)
                                                 Basis 9 =
Basis 17 =
              11364990 (+5)
                                                 Basis 24 =
                                                                3697057 (-6)
Basis 25 =
              9834846 (-6)
```

Umkehrbare Primzahlfolge

1998 wurde eine Folge zehn aufeinanderfolgender Primzahlen gefunden, die alle umkehrbar sind, d.h. dreht man die Ziffern der Zahlen, so entstehen ebenfalls Primzahlen:

```
1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259
```

Derartige Folgen mit zehn oder mehr Gliedern sind relativ selten. Bekannt sind heute (2010): Felice Russo (Mai 1999):

{91528739, 91528777, 91528807, 91528817, 91528819, 91528823, 91528837, 91528841, 91528903, 91528939}

Jud McCranie (Mai 1999):

```
{302706311, ..., 302706493}; 10 Glieder {1477271183, ..., 1477271387}; 11 Glieder {1801280717, ..., 1801280867}; 10 Glieder {1811906567, ..., 1811906743}; 10 Glieder {7060718569, ..., 7060718747}; 10 Glieder {9338212141, ..., 9338212381}; 10 Glieder {9387802769, ..., 9387803033}; 12 Glieder {9427522387, ..., 9427522603}; 11 Glieder
```

Im März 2011 gab Giovanni Resta die Entdeckung von 13gliedrigen Folgen bekannt:

{15423094826093 - 15423094826389}, {16624937940797 - 16624937941187}

{78862056635899 - 78862056636373}, {99994515721939 - 99994515722411}, {100352695899791 - 100352695900157}

Eine umkehrbare Primzahlfolge mit 14 Gliedern ist noch nicht bekannt.

Weitere 10gliedrige umkehrbare Primzahlfolgen beginnen mit 777528457, 778286917, 924408493 und 1177842077. (gesucht bis 3,3 Milliarden, August 2012)

Faktorprimzahlen der Form n!+1 oder n!-1

Rekordzahlen Ziffern Entdecker

Rekordzahlen Ziffern Entdecker

34790!-1	142891 Marchal 2002	26951!+1	107707 DavisK 2002
21480!-1	83727 DavisK 2001	96743! ₇ -1	62904 Dohmen 2002
92288! ₇ -1	59738 Dohmen 2002	91720! ₇ -1	59335 Dohmen 2002
27056!!-1	54087 Kuosa 2001	34706!!!-1	47505 Harvey 2000

Erweiterung des Begriffes der Faktorprimzahl

```
Definition: S_k^{\pm}(n) = (n!)^k \pm 1

Zahl erste Werte Primzahlen für n=...
S_2^+(n) 2, 5, 37, 577, 14401, 518401, ... 1, 2, 3, 4, 5, 9, 10, 11, 13, 24, 65, 76, ... S_2^-(n) 0, 3, 35, 575, 14399, 518399, ... nur für 2, da (n!)^2 - 1 = (n!-1)(n!+1)
S_3^+(n) 2, 9, 217, 13825, 1728001, ... S_3^-(n) 0, 7, 215, 13823, 1727999, ... S_4^+(n) 2, 3, 4, 13, ... S_8^+(n) 2, 58, 75, ... S_{16}^+(n) 2, ... und (2!)^3-1, (2!)^5-1, (2!)^7-1
```

Faktorzahlen

Zahlen der Form n!+1 oder n!-1 können prim sein (siehe Faktorprimzahl), müssen es aber nicht. Während n!+1 und n!-1 Primzahlen sein können, sind dagegen alle n!+2, n!+3, n!+4, ..., n!+n zusammengesetzte Zahlen, da

```
n! + 2 = (1 * 2 * ... * n) + 2 = 2 * (1 * 3 * 4 * ... * n + 1)

n! + 3 = (1 * 2 * ... * n) + 3 = 3 * (1 * 2 * 4 * 5 * ... * n + 1)

n! + n = (1 * 2 * ... * n) + n = n * (1 * 2 * 3 * ... * (n-1) + 1)
```

Die Liste enthält zwei Tabellen, welche die Zerlegung einiger Faktorzahlen angeben. Der Eintrag *** in der Liste bedeutet, dass diese Zahl zusammengesetzt und noch nicht in ihre Primfaktoren zerlegt wurde. Unter Zxx ist eine xx-stellige zusammengesetzte Zahl zu verstehen.

Zerlegungstabelle Faktorzahlen n!+1 und n!-1

```
Zerlegung
2
       +1: 3 ... Primzahl
3
       +1: 7 ... Primzahl
                                                -1: 5 ... Primzahl
4
       +1: 25 = 5 * 5
                                                -1: 23 ... Primzahl
5
       +1: 121 = 11 * 11
                                                -1: 119 = 7 * 17
6
       +1:721 = 7 * 103
                                                -1: 719 ... Primzahl
7
       +1:5041 = 71 * 71
                                                -1: 5039 ... Primzahl
8
       +1: 40321 = 61 * 661
                                                -1:40319 = 23 * 1753
                                                -1: 362879 = 11 * 11 * 2999
9
       +1: 362881 = 1349 * 269
                                                -1: 3628799 = 29 * 125131
       +1: 3628801 = 11 * 329891
10
                                                -1: 39916799 = 13 * 17 * 23 * 7853
       +1: 39916801 ... Primzahl
11
      +1: 479001601 = 169 * 2834329
                                                -1: 479001599 ... Primzahl
12
       +1: 6227020801 = 83 * 75024347
                                                -1: 6227020799 = 1733 * 3593203
13
14
       +1: 87178291201 = 23 * 3790360487
                                                -1: 87178291199 ... Primzahl
       +1: 1307674368001 = 28261 * 46271341
15
                                                -1: 1307674367999 = 17 * 31 * 31 53 * 1510259
       +1: 20922789888001 = 19747591 * 1059511-1: ... = 3041 * 6880233439
16
```

Multifaktorprimzahlen

Außer Zahlen der Form n!+1 oder n!-1 können auch die Multifaktorzahlen n!!+1, n!!!+1, usw. prim sein, müssen es aber nicht. (vereinfachte Schreibweise z.B. n(7)!+1 für n!!!!!!+1) Die Liste enthält für die Multifaktorzahlen der Ordnung 3 bis 12 die ersten bekannten n, für welche die Zahlen prim sind. Zahlstruktur Primzahl für $n=\dots$

```
1, 2, 4, 5, 6, 7, 9, 10,11,17, 24, 29, 39, 40, 57, 58, 59, 91, 155, 175, 245, 359, 372, 597
n!!!+1
               1, 3, 4, 6, 8, 20, 26, 36, 50, 60, 114, 135, 138, 248, 315, 351, 429, 642, 5505, 8793
n!!!-1
               1, 2, 4, 6, 18, 38, 56, 94, 118, 148, 286, 1358, 1480, 1514, 2680, 2846, 4078, 4288
n(4)!+1
               1, 3, 4, 6, 8, 12, 16, 22, 24, 54, 56, 98, 152, 156, 176, 256, 454, 460, 720, 750, 770, 800 2, 4, 6, 9, 11, 13, 15, 17, 23, 26, 31, 32, 35, 36, 49, 52, 89, 92, 106, 120, 141, 149, 173
n(4)!-1
n(5)!+1
               3, 4, 6, 7, 8, 12, 13, 14, 27, 28, 33, 35, 44, 50, 62, 64, 74, 88, 114, 140, 142, 242, 248
n(5)!-1
n(6)!+1
               2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 28, 40, 42, 44, 52, 66, 68, 78, 80, 92, 100, 102, 106
               3, 4, 6, 12, 14, 54, 74, 102, 114, 302, 318, 366, 614
n(6)!-1
n(7)!+1
               9, 10, 12, 13, 24, 25, 26, 29, 31, 35, 36, 47, 49, 57, 58, 64, 71, 73, 75, 78, 80, 97, 123
n(7)!-1
              8, 9, 10, 11, 12, 14, 17, 20, 24, 30, 31, 32, 46, 52, 54, 59, 98, 104, 143, 145, 160, 174
               28, 30, 46, 60, 72, 86, 90, 112, 154, 162, 206, 280, 354, 400, 512, 606, 614, 678, 790
n(8)!+1
n(8)!-1
               10, 12, 14, 16, 18, 22, 28, 30, 42, 48, 58, 68, 80, 86, 92, 108, 110, 112, 130, 198, 220
n(9)!+1
               1, 2, 4, 6, 10, 11, 12, 13, 14, 16, 17, 18, 19, 21, 24, 25, 32, 40, 43, 48, 49, 50, 57, 60
n(9)!-1
               3, 4, 6, 8, 15, 20, 23, 27, 30, 44, 51, 62, 80, 90, 95, 114, 129, 138, 150, 152, 156, 182
               1, 2, 4, 6, 10, 16, 34, 46, 94, 146, 156, 166, 170, 194, 198, 206, 308, 456, 610, 614, 734
n(10)!+1
               3, 4, 6, 8, 12, 20, 40, 48, 60, 62, 70, 84, 88, 168, 240, 258, 372, 760, 932, 1010, 2110
n(10)!-1
               12, 14, 15, 17, 18, 20, 21, 23, 25, 27, 28, 30, 31, 35, 40, 42, 56, 65, 86, 87, 89, 90, 95
n(11)!+1
               12, 14, 15, 16, 17, 19, 20, 22, 25, 26, 32, 35, 36, 37, 41, 44, 50, 52, 54, 55, 57, 60, 71
n(11)!-1
              1, 2, 4, 6, 10, 12, 14, 18, 34, 36, 54, 58, 70, 84, 108, 142, 160, 162, 166, 208, 262, 268 3, 4, 6, 8, 12, 18, 26, 32, 48, 50, 60, 74, 78, 84, 126, 128, 288, 300, 342, 344, 368, 378
n(12)!+1
n(12)!-1
```

Quadratische Faktorprimzahlen

Zahlen der Form $(n!)^2 \pm 1$

heißen quadratische Faktorzahlen. Während $(n!)^2-1$ für n>2 stets zusammengesetzt sind, da $(n!)^2-1=(n!-1)(n!+1)$

ist, findet man für $(n!)^2+1$ auch Primzahlen. Die ersten derartigen Primzahlen findet man für n=1,2,3,4,5,9,10,11,13,24,65 und 76

(76!)²+1 hat 223 Stellen und ist gleich

P-Primzahlen, primordiale Primzahlen

```
n# ... Primzahlprodukt aller Primzahlen < n, d.h. 2*3*4*...*p mit p<n

n# = 2*3*5*7*11*...*p, mit p≤n

Beispiel: 3# = 6, 5# = 30, 13# = 30030, Struktur p# + 1 oder p# - 1

p# + 1 ist prim für

p = 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113 (169966 Ziffern)

p# - 1 ist prim für p = 3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093, 4297, 4583, 6569, 13033, 15877 (6845 Ziffern), 843301 (365851 Ziffern); beide getestet bis p < 637000 (nach J.Sun)
```

Zahl	Ziffern Entdecker	Zahl	Ziffern Entdecker
392113#+1	169966Heuer 2001	366439#+1	158936 Heuer 2001
145823#+1	63142 Anderson 2000	24029#+1	10387 Caldwell 1993
23801#+1	10273 Caldwell 1993	18523#+1	8002 Dubner 1989
4*16001#+1	6905 Demichel 1996	15877#-1	6845 Caldwell 1992
13649#+1	5862 Dubner 1987	4*13109#+1	5643 Demichel 1996

Primoriale Primzahlvermutung

Es sei p# das Produkt aller Primzahlen kleiner gleich der Primzahl p, d.h. p# = $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot ... \cdot p$ P sei weiterhin die nächste auf p# + 1 folgende Primzahl. Dann wird vermutet, dass P - p# stets Primzahl ist. Sicher ist, dass P - p# > p gilt. Zum Beispiel wird

р	#p+1	Р	P-p#
2	3	5	3
3	7	11	5
5	31	37	7
7	211	223	13
11	2311	2333	23
13	30031	30047	17
17	51011	510529	19
19	9699691	9699713	23

Fibonacci-Faktorzahl

```
Unter einer Fibonacci-Faktorzahl (engl. Fibonorial) n|_{F} = F!(n) versteht man das Produkt der Fibonacci-
Zahlen F(n), F(n-1), ..., F(1).
Beispiele: F!(1) = 1
       F!(2) = F(2) F(1) = 1 \cdot 1 = 1
       F!(3) = F(3) F(2) F(1) = 2 \cdot 1 \cdot 1 = 2
       F!(4) = F(4) F(3) F(2) F(1) = 3 \cdot 2 \cdot 1 \cdot 1 = 6
       F!(5) = F(5) F(4) F(3) F(2) F(1) = 5 \cdot 3 \cdot 2 \cdot 1 \cdot 1 = 30
Diese sind, auf Grund ihrer Konstruktion, mit Ausnahme der 2, niemals Primzahl.
Bis n < 500 finden sich unter den F!(n)+1 (Quasi-Fibonorial) und F!(n)-1 (Fast-Fibonorial) folgende
Primzahlen:
                       F!(4)+1=7
F!(3)+1=3
F!(5)+1 = 31
                       F!(6)+1 = 241
F!(7)+1 = 3121
                       F!(8)+1 = 65520
F!(22)+1 = 1879127177606120717127879344567470740879360001
F!(28)+1 = 1 41956 44638 63171 50757 64081 04556 96400 80243 75775 79670 46454 30601 38867
09760 00001
F!(4)-1 = 5
                       F!(5)-1 = 29
F!(6)-1 = 239
                       F!(7)-1 = 3119
F!(8)-1 = 65519
                      F!(14)-1 = 137 93207 36137 34399
F!(15)-1 = 84138 56490 43779 83999
```

Euklidische Zahlen, Euklidische Primzahlen

Der Euklidische Unendlichkeitsbeweis für Primzahlen konstruiert das Produkt der ersten n Primzahlen + 1. $p\# + 1 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot ... \cdot p_n + 1$

Eine Primzahl wird Euklidische Primzahl genannt, wenn sie in dieser Form oder in der Form $p\# - 1 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot ... \cdot p_n - 1$

geschrieben werden kann.

Zahlen der Form $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot ... \cdot p_n \pm 1$ können prim, aber auch zusammengesetzt sein. Der Eintrag Z[] in der Liste bedeutet, dass diese Zahl zusammengesetzt und noch nicht in ihre Primfaktoren zerlegt wurde. Pxx bedeutet, dass eine xx-stellige Primzahl als Faktor auftritt.

Zerlegungstabelle Euklidischer Zahlen p# + 1 und p# -1

```
entstehende Zahl und deren Zerlegung
р
       +1: 7 ... Primzahl
3
                                                            -1: 5 ... Primzahl
       +1: 31 ... Primzahl
5
                                                            -1: 29 ... Primzahl
7
       +1: 211 ... Primzahl
                                                            -1: 209 = 11 \cdot 19
       +1: 2311 ... Primzahl
                                                            -1: 2309 ... Primzahl
11
13
       +1:30031 = 59 \cdot 509
                                                            -1: 30029 ... Primzahl
       +1:510511 = 19 \cdot 97 \cdot 277
17
                                                            -1: = 61 \cdot 8369
                                                           -1: = 929 \cdot 10441
       +1:9699691 = 347 \cdot 27953
19
       +1: 223092871 = 317 \cdot 703763
23
                                                           -1: = 4847 \cdot 46027
29
       +1:6469693231 = 331 \cdot 571 \cdot 34231
                                                           -1: = 79 \cdot 81894851
31
       +1: 200560490131 ... Primzahl
                                                            -1: = 228737 · 876817
                                                            -1: = 38669 · 191904061
37
       +1:7420738134811 = 181 \cdot 60611 \cdot 676421
41
       +1: 304250263527211 = 61 \cdot 450451 \cdot 11072701
                                                           -1: 304250263527209 ... Primzahl
       +1: 13082761331670031 = 167 · 78339888213593    -1: = 141269 · 92608862041
43
47
       +1: 614889782588491411 = 953 · 46727 · 13808181181
                                                                 -1: = 191 · 53835557 · 59799107
53
                                                           -1: = 87337 · 326257 · 1143707681
       +1: = 73 \cdot 139 \cdot 173 \cdot 18564761860301
59
       +1: = 277 · 3467 · 105229 · 19026377261
                                                           -1: = 27600124633 \cdot 69664915493
                                                           -1: = 1193 · 85738903 · 1146665184811
61
       +1: = 223 · 525956867082542470777
       +1: = 54730729297 · 143581524529603
                                                           -1: = 163 · 2682037 ·
17975352936245519
```

Nichteuklidische Primzahl

Durch Luis Rodríguez wird eine alternative Definition der Euklidischen Primzahl gegeben: Eine Primzahl z heißt Euklidische Primzahl, wenn z - 1 oder z + 1 in der Form $p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_n$ dargestellt werden können. Dabei darf keine Primzahl p_i zweimal auftreten, d.h. z - 1 oder z + 1 sind quadratfrei.

Eine Primzahl, die nicht in diesem Sinne euklidisch ist, heißt nichteuklidische Primzahl. Die ersten dieser Primzahlen sind 17, 19, 53, 89, 97, 127, 149, 151, 163, 197, 199, 233, 241, 251

Minimale primoriale Partition

Versteht man unter $p(n) = p_n \#$ das Produkt der ersten n Primzahlen, so wird nach Faktorisierungen in zwei Faktoren x und y gesucht, für die $x \cdot y = p(n)$ und (x-y) = minimal mit x > y gilt. Die ersten Werte für n = 1, 2, ... sind

n	p(n)	x	у	min(x-y)
1	2	2	1	2-1 = 1
2	6	3	2	3-2 = 1
3	30	6	5	$2 \cdot 3 - 5 = 1$
4	210	15	14	3.5-2.7 = 1
5	2310	55	42	$5 \cdot 11 - 2 \cdot 3 \cdot 7 = 13$
6	30030	165	182	17
7	510510	714	715	1
8	9699690	3094	3135	41
9	223092870	14858	15015	157
10	6469693230	79534	81345	1811
11	200560490130	447051	448630	1579
12	7420738134810	2714690	2733549	18859
13	304250263527210	17395070	17490603	95533
14	13082761331670030	114371070	114388729	17659
15	614889782588491410	783152070	785147363	1995293

John Harvester vermutete, dass stets $min(x-y) < e^n$ gilt. 2000 wurde durch Jud McCranie nachgewiesen, dass für n = 18 dies nicht korrekt ist. Durch Erdös wird vermutet, dass min(x-y) = 1 ausschließlich für n= 1, 2, 3, 4, 7 gilt. Durch Chris Nash wurde dies bis n = 600000 geprüft.

Faktorzahlen (2)

Wenn z = n! ist, so können n!+1 und n!-1 Primzahlen sein, müssen es aber nicht.

Dagegen sind aber alle z+2, z+3, z+4, ..., z+n zusammengesetzte Zahlen, da

```
z + 2 = (1 \cdot 2 \cdot ... \cdot n) + 2 = 2 \cdot (1 \cdot 3 \cdot 4 \cdot ... \cdot n + 1)

z + 3 = (1 \cdot 2 \cdot ... \cdot n) + 3 = 3 \cdot (1 \cdot 2 \cdot 4 \cdot 5 \cdot ... \cdot n + 1)
z + n = (1 \cdot 2 \cdot ... \cdot n) + n = n \cdot (1 \cdot 2 \cdot 3 \cdot ... \cdot (n-1) + 1)
```

P-Zahlen

Zahlen, welche das Produkt aufeinanderfolgender Primzahlen sind $p_1p_2p_3...p_n$

Auch diese Zahlen ± 1 können Primzahlen sein.

Vermutung von Guy (1981): Ist $z = p_1p_2p_3...p_n + 1$ Primzahl und q die nächste auf z folgende Primzahl, so ist auch $q - p_1p_2...p_n + 1$ eine Primzahl.

Compositorial-Primzahlen

In Analogie zu den primorialen Primzahlen, oder P-Primzahlen, werden auch sogenannte Compositorial-Primzahlen betrachtet. Der Begriff geht auf Robert G.Wilson zurück. Eine deutsche Bezeichnung für "Compositorial" wurde bisher nicht geprägt.

Unter einem Compositorial C(n), n zusammengesetzte Zahl, versteht man das Produkt aller zusammengesetzten Zahlen kleiner gleich n, d.h. zum Beispiel $C(9) = 4 \cdot 6 \cdot 8 \cdot 9 = 1728$

C(n) + 1 = n! / n# + 1

Eine Compositorial-Primzahl ist nun eine Primzahl P der Form C(n) - 1 = n! / n# - 1

Die kleinsten C(n)+1 - Primzahlen ergeben sich für

n = 4, 8, 14, 20, 26, 34, 56, 104, 153, 182, 194, 217, 230, 280, 462, 529, 1445, 2515 (6402 Ziffern) ... (gesucht bis 4764, März 2014, Polster) und sind

5, 193, 2903041, 250822656001, 1807729046323200001, 1472038679443987759104000001, 21817028147643299474152432146548259236610048000000000001, ...

Die kleinsten C(n)-1 - Primzahlen ergeben sich für

n = 4, 6, 8, 16, 21, 34, 39, 45, 50, 72, 76, 133, 164, 202, 216, 221, 280, 496, 605, 2532, 3337 (8897)Ziffern) ...

und sind

3. 23. 191. 696729599. 5267275775999. 1472038679443987759103999999.

2748767266899347222330081279999999, 914349943661398860035878236979199999999,

109750810606531114047245808811149031084346149365694966838329343999999999999999999

Kleinste n-stellige Primzahlen

Die Liste enthält die jeweils kleinsten n-stelligen Primzahlen der Form 10ⁿ⁻¹ + a. Angegeben werden die Stellenzahl n, der erste Summand für die kleinste n-stellige Zahl sowie der Summand für die zweitkleinste. Die Zeile

bedeutet daher, dass die kleinste 4-stellige Primzahl die Zahl $10^3 + 9 = 1009$ und die zweitkleinste 1013

StellenSummand a nächster Summand StellenSummand a nächster Summand 2 3 Z 7 3 3 Z 1 1

4	9	13	19	5	7	9 Z	37
6	3	19	43	7	3	33	
8	19	79		9	7	37	
10	7	9 Z	Primzahlzwilling	100	289	303	
200	153	513		500	153	2439	
1000	7	663					

Kleinste n-stellige Primzahlen auf k endend

Die Liste enthält die jeweils kleinsten n-stelligen Primzahlen der Form $10^{(n-1)}$ + k, d.h. die kleinsten Primzahlen, die auf k enden. Angegeben werden der Summand k und die Stellenzahlen n für die entsprechenden n-stelligen Zahlen.

k	Stelle	nzahl r	1									
1	2	3										
3	2	3	6	7	12	18	19	40	57	102	106	108
7	2	3	5	9	10	25	61	111	135	223	413	701
9	4	5	10	19	23	46	50	57	70	147	203	273
13	4	18	26	82	141	143	153	281	292	407		
19	4	6	8	11	12	60	82	109	574	629	1070	
21	56	78	134	196	358							
27	84	168	243									
31	15	45	55	90	470							
33	7	11	32	48	71	282	367	520	533	776		
37	5	9	14	16	40	170	185	229	256	280	633	
39	13	21	73	197	677							
43	2	6	38	254	1130	1442						
49	2	3	4	6	8	9	18	25	33	66	67	68
51	2	3	4	14	20	82	659	1010	1071			

Kleinste (n+1)-stellige und größte n-stellige Primzahlen

Addiert man zu Zehnerpotenzen 10^n eine natürliche Zahl b, d.h. 10^n +b, so ergibt das kleinste b, für das 10^n +b Primzahl ist, die kleinste (n+1)-stellige Primzahl.

Subtrahiert man eine natürliche Zahl a, so erhält man analog mit primen 10ⁿ-a die größte n-stellige Primzahl.

Zum Beispiel erhält man für prime Ergebnisse:

n	a	b	Differenz
1	-3	+1	4
2	-3	+1	4
3	-3	+9	12
4	-27	+7	34
5	-9	+3	12
6	-17	+3	20
7	-9	+19	28
8	-11	+7	18
9	-63	+7	70
10	-33	+19	52
11	-23	+3	26
12	-11	+39	50
13	-29	+37	66

1000-stellige Primzahlen

Die Liste enthält die ersten 1000stelligen Primzahlen. Aufeinanderfolgende 1000stellige Primzahlen ab 10^{999} +k : Summanden k ...

10 TK,	Julillialiaeli k .	••			
7	663	2121	2593	3561	4717
5863	9459	11239	14397	17289	18919
19411	21667	25561	26739	27759	28047
28437	28989	35031	41037	41409	41451
43047	43269	43383	50407	51043	52507
55587	59877	61971	62919	63177	69229
70777	71893	73203	73209	75301	76447
76969	78463	79923	82243	85837	85971
90079	91737	94281	94699	96081	97807

10000-stellige Primzahlen

Die Liste enthält die ersten 10000stelligen Primzahlen (Polster, Mai 2015). In dem getesteten Bereich von rund 360000 aufeinanderfolgenden Zahlen wurden nur 8 Primzahlen gefunden. Offenbar sind derartige

Zahlen im Bereich von 10⁹⁹⁹⁹ tatsächlich eine Rarität. Die Primzahltests sind nur mit moderner Technik möglich. Mit einem Intel i5-3230M-4Kern-Prozessor mit 2,6 GHz werden unter Windows 8.1 trotz Assemblerprogrammierung und FFT immerhin 20 Sekunden je Test benötigt. Dies entspricht für den untersuchten Bereich 15 Tage Rechenzeit.

Mit einer Primzahlwahrscheinlichkeit von

51789 137211941292195*2^171960-1

60940331*2^29439+1

ist im Mittel aller 23025 Zahlen mit einer Primzahl zu rechnen.

Aufeinanderfolgende 10000stellige Primzahlen ab 109999+k

-11333 33603 70999 131673 236761 282097 333811 342037 355651 (> 386450)

Sophie Germain-Primzahlen

... Primzahlen p, für welche 2p+1 ebenfalls Primzahl ist. Die kleinsten Sophie-Germain-Primzahlen sind 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113 und 131. 1825 bewies Sophie Germain, dass derartige Primzahlen den Großen Satz von Fermat erfüllen. Legendre bewies später, dass alle Primzahlen p, für die auch k*p+1 Primzahl ist, mit k=4, 8, 10, 14 und 16, den Satz von Fermat erfüllen.

Nach Ribenboim sind bis zu einer Zahl N rund C N / \log^2 N Primzahlen p zu erwarten, für die auch kp+a prim ist, insbesondere 2 C N / \log^2 N Sophie-Germain-Primzahlen. Es ist noch nicht sicher, dass unendlich viele existieren. Bis 10 Milliarden kennt man 26569515 solche Primzahlen.

Euler: Ist p eine Primzahl mit p = 3 (mod 4) und p > 3, so ist 2p+1 genau dann prim, wenn 2p+1 die Mersennesche Zahl M_p teilt.

Die Liste enthält die gegenwärtig größten bekannten Sophie-Germain-Primzahlen p mit mehr als 1000 Ziffern, deren Ziffernzahl und den Entdecker.

Ziffern Primzahl p

8870

Entdecker und Entdeckungsjahr Jarai 2006 2005

36532 7068555*2^121.301-1 24432 1213822389*2^81131-1 Angel 02 20013 109433307*2^66452-1 Underbakke 01 20011 984798015*2^66444-1 Underbakke 01 18075 3714089895285*2^60000-1 Indlekofer 00 10008 305686839*2^33216-1 Rouse 02 10007 26702697*2^33216-1 Rouse 02 9853 18131*22817#-1 Lifchitz 00 9825 18458709*2^32611-1 Kerchner 99 9053 415365*2^30052-1 Scott 99

Die folgende Liste enthält die 190 Sophie-Germain-Primzahlen unterhalb von 10000:

```
23
                              41
                                         83
                                                                   179
2
          5
               11
                         29
                                    53
                                              89
                                                   113
                                                        131
                                                             173
                                                                        191
                                                                             233
     3
                              431
239
     251
          281
               293
                    359
                         419
                                    443
                                         491
                                              509
                                                   593
                                                        641
                                                             653
                                                                   659
                                                                        683
                                                                             719
                         1013 1019 1031 1049 1103 1223 1229 1289 1409 1439 1451
743
    761
          809
               911
                    953
1481 1499 1511 1559 1583 1601 1733 1811 1889 1901 1931 1973
                                                             2003 2039
                                                                        2063
               2339
                    2351
                         2393 2399 2459 2543 2549
                                                   2693
                                                        2699
                                                             2741
                                                                   2753
2129 2141 2273
                                                                        2819
                         3329 3359 3389 3413 3449 3491
2939 2963 2969 3023
                    3299
                                                        3539 3593
                                                                   3623
                                                                        3761
3803 3821 3851
               3863 3911 4019 4073 4211 4271 4349 4373 4391 4409 4481 4733 4793
4871 4919 4943 5003 5039 5051 5081 5171 5231 5279 5303 5333 5399 5441 5501 5639
5711 5741 5849 5903 6053 6101 6113 6131 6173 6263 6269 6323 6329 6449 6491 6521
6551 6563 6581 6761 6899 6983 7043 7079 7103 7121 7151 7193 7211 7349 7433 7541
7643 7649 7691 7823 7841 7883 7901 8069 8093 8111 8243 8273 8513 8663 8693 8741
8951 8969 9029 9059 9221 9293 9371 9419 9473 9479 9539 9629 9689 9791
```

Saridis 02

Eine Sophie-Germain-Primzahl kann niemals die Endziffer 7 haben.

Nachweis: Sei p eine Primzahl mit Endziffer 7. Dann kann man p darstellen als p = 10k + 7. Dann gilt: 2p + 1 = 20k + 14 + 1 = 20k + 15 = 5 (4k + 3). Das bedeutet, 2p + 1 ist durch 5 teilbar und daher nicht prim

Multipliziert man eine Sophie-Germain-Primzahl p mit der Primzahl 2p+1, die zeigt, dass p eine Sophie-Germain-Primzahl ist, so erhält man als Produkt eine Dreieckszahl p \cdot (2p+1).

Die größte zur Zeit bekannte Sophie-Germain-Primzahl ist 7068555 2¹²¹³⁰¹ -1, eine Zahl mit 36.523 Stellen, entdeckt 2005.

Sei q=2k+1 eine Primzahl und p>q ebenfalls prim mit $p=k \mod q$, d.h. p-k=n*q. Dann hat p+1=2(n*q+k)+1=2nq+2k+1=(2n+1)q den Primteiler q und folglich ist p keine Germainsche Primzahl. Ist umgekehrt die Primzahl p keine Germainsche Primzahl, so besitzt die ungerade Zahl 2p+1 einen kleinsten Primteiler q, der ebenfalls ungerade sein muss, also von der Form q=2k+1 ist. Es gilt daher 2p+1=q(2n+1)=2nq+2k+1=2(nq+k)+1, also p=nq+k oder p=k mod q=2k+1 ist. Folgerung: Sei q=2k+1 ist. Für q=2k+1 is

Cunningham-Kette

Bei einer Cunningham-Kette der ersten Art handelt es sich, mit Ausnahme der letzten Zahl, um eine Folge von Sophie-Germain-Primzahlen. Ein Beispiel für eine solche Kette ist die Folge: 2, 5, 11, 23, 47.

Man vermutet, dass es unendlich viele Sophie-Germain-Primzahlen gibt, aber ein Beweis dafür wurde bis heute (Juli 2006) nicht gefunden.

Sophie Germain-Primzahlen 2.Art

Sophie Germain-Primzahlen 2.Art sind Primzahlen p, für welche 2p-1 ebenfalls Primzahl ist. Die kleinsten Sophie-Germain-Primzahlen dieser Art sind

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, 547, 577, 601, 607, 619, 661, 691, 727, 811, 829, 877, 937, 967, 997, ...

Starke Primzahl

Sophie Germain-Primzahlen sind Primzahlen p, für welche 2p+1 ebenfalls Primzahl ist. In diesem Fall heißt die Primzahl 2p+1 eine starke Primzahl.

Derartige Primzahlen sind besonders bei dem asymmetrischen Public-Key-Verfahren RSA sehr beliebt.

Die ersten starken Primzahlen sind 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, ...

Primzahlen 4n+1

Primzahlen der Form p = 4n+1 sind eindeutig in die Summe zweier Quadratzahlen $p = a^2 + b^2$ zerlegbar. Diese Darstellung entspricht der Primfaktorzerlegung p = (a + bi)(a - bi) im Ring der ganzen gaußschen Zahlen.

Beispiel: $233 = 8^2 + 13^2$ $1900000129 = 33352^2 + 28065^2$

Eine derartige Zerlegung existiert jeweils mit Sicherheit. Dabei kann aber auch der kleinere Summand große Werte erreichen. Die Tabelle enthält die Entwicklung des Wachstums der Basis a² des kleineren Quadrates und die Primzahl p, bei welcher dieses Quadrat erstmals in der Summendarstellung auftritt:

a	p	a	p	a	p	a	p
2	5	16	257	30		44	2017
3	13	17	293	31	977	45	2029
4	17	18	349	32	1033	46	2141
5	29	19	397	33	1093	47	2213
6	37	20	401	34	1181	48	
7	53	21	457	35	1229	49	2417
8	73	22	509	36	1297	50	2549
9	97	23		37	1373	51	2617
10	101	24	577	38	1453	52	2713
11	137	25	641	39		53	2909
12		26	677	40	1601	54	2917
13	173	27	733	41	1697	55	3041
14	197	28	809	42	1789	56	3137
15	229	29	857	43	1913	57	3253

Wie aus der Tabelle ersichtlich, werden im Wachstum der Basis a einige, wenige Werte übersprungen. Die ersten sind (in Klammern steht die Primzahl, bei welcher a übersprungen wird):

12 (173), 23 (577), 30 (977), 39 (1601), 48 (2417), 63 (4177), 83 (7057), 105 (11261), 114 (13229), 141 (20173), 152 (23473), 186 (35069), 196 (38873), 408 (167317), 459 (211681), 592 (351653), 651 (425273), 811 (659353), ...

Aus der Tabelle der vorhergehenden Seite ergeben sich die Fragen:

Gibt es eine größte übersprungene Zahl?

Werden die Abstände zwischen den übersprungenen Zahlen im Mittel immer größer ? Werden im Laufe der Entwicklung einmal mindestens zwei aufeinanderfolgende natürliche Zahlen

übersprungen ?

Die übersprungenen Zahlen a treten für größere Primzahlen p aber dennoch als Basis eines Quadrates der Summe auf. In der Tabelle sind in Klammern die kleinsten derartigen p angegeben:

12 (193), 23 (593), 30 (1021), 39 (1621), 48 (2473), 63 (4993), 83 (7213), 105 (11701), 114 (14221), 141 (21481), 152 (23633), 186 (35221), 196 (39041), 408 (168673), 459 (212281), 592 (352489), 651 (426301), 811 (659657), 921 (850177), 1173 (1385929), 1284 (1651681)

In den berühmten Bemerkungen Fermats zu den Schriften Diophants (Max Miller, Ostwald's Klassiker der Exakten Wissenschaften. 1932, Akademische Verlagsgesellschaft, MBH Leipzig), wo sich auch die Fermatsche Vermutung findet, stellt er diese Eigenschaft der Primzahlen 4n+1 eindrucksvoll dar (siehe Abbildung).

VII

Eine Primzahl von der Form 4n+1 ist nur auf eine einzige Art Hypotenuse eines rechtwinkligen Dreiecks, ihr Quadrat ist auf 2 Arten, ihr Kubus auf 3 Arten, ihr Biquadrat auf 4 Arten Hypotenuse eines rechtwinkligen Dreiecks; usw. in inf.

Eine solche Primzahl und ihr Quadrat sind nur auf eine einzige Art Summen von 2 Quadraten; ihr Kubus und ihr Biquadrat auf 2 Arten, ihre fünfte und sechste Potenz auf 3 Arten; usw. in inf.

Wird eine Primzahl, die eine Summe von 2 Quadraten ist, mit einer anderen Primzahl von derselben Beschaffenheit multipliziert, so ist das Produkt auf 2 Arten Summe von 2 Quadraten; wird sie mit dem Quadrat einer solchen Primzahl multipliziert, so ist das Produkt auf 3 Arten Summe von 2 Quadraten; wird sie mit dem Kubus einer solchen Primzahl multipliziert, so ist das Produkt auf 4 Arten Summe von 2 Quadraten; usw. in inf.

Hieraus ist es leicht, zu bestimmen, wie oft eine gegebene Zahl Hypotenuse eines rechtwinkligen Dreiecks ist.

Man nehme hierzu alle Primzahlen von der Form 4n + 1, die in der gegebenen Zahl als Teiler enthalten sind; z. B. 5, 13, 17.

Sollte die gegebene Zahl durch Potenzen von Primzahlen besagter Art teilbar sein, so lasse man diese an die Stelle der Grundzahlen treten; so sei z. B. die gegebene Zahl teilbar durch

5 im Kubus, 13 im Quadrat und 17 in der ersten Potenz. Man nehme nun die Exponenten aller Teiler; in unserem Beispiel ist 3 der Exponent der Zahl 5, da diese in der dritten Potenz vorkommt, ferner ist 2 der Exponent von 13, da diese Zahl im Quadrat vorkommt, die Zahl 17 endlich hat als Exponenten nur die Einheit.

Quartan-Primzahlen

Primzahlen der Form $x^2 + y^2$ mit natürlichen x und y sind nach dem Fermatschen Satz stets Primzahlen der Form 4n+1 und umgekehrt. Primzahlen der Form $x^4 + y^4$, x > 0 und y > 0, bilden eine Teilfolge aller Primzahlen 4n+1 und werden Quartan-Primzahlen genannt. Die ersten derartigen Primzahlen sind

2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, 121937, ...

Die größte bekannte Quartan-Primzahl wurde 2001 von Ricky L.Hubbard gefunden, hat 1353265 Ziffern und beträgt $145310^{262144}+1=(145310^{65536})^4+1^4$ eine verallgemeinerte Fermat-Primzahl.

Satz von Steven Whitaker (1998)

Es sei k=807. Dann sind $k*2^{n-1}$ und $k*2^{(n+1)}-1$ niemals gleichzeitig Primzahlen, d.h. Sophie Germain-Primzahlen. **Vermutung von Smith und Whitaker (Sep 1998)** Für jedes k, welches ungerades Vielfaches von 3, keine Quadratzahl und kleiner 807 ist, existiert mindestens ein natürliches n, so dass $k*2^{n-1}$ und $k*2^{(n+1)}-1$

ein Paar Sophie Germain Primzahlen darstellen. Am Nachweis des Vermutung beteiligen sich gegenwärtig etwa 30 Mathematiker (2002).

Cunningham-Reihe der 2.Art

... Folge von Primzahlen. Man unterscheidet

1.Art p, 2p+1, 4p+3 2.Art p, 2p-1, 4p-3 usw...

Die Liste enthält die Rekordfolgen beider Arten, Angegeben wird jeweils die erste Primzahl p und der Typ.

Ziffern Zahl Entdecker, Typ

 10264
 16769025*2^34071+1
 g2 1998, p ... 2p-1

 7840
 405519*2^26025+1
 SP 2002, p ... 2p-1; Rekord des Autors

 7190
 15015*2^23870+1
 SP 2003, p ... 2p-1

 7071
 2371105815*2^23456+1
 x10, 00, p ... 2p-1

 7071
 2362762041*2^23456+1
 x10, 00, p ... 2p-1

... Folge von Primzahlen der Form $k*2^n + 1$, $k*2^{n+1} + 1$, $k*2^{n+2} + 1$ usw...

Unter der Länge der Cunningham-Reihe versteht man die Anzahl aufeinanderfolgender Primzahlen der obigen Form.

Cunningham-Reihe der 2.Art mit Länge 5 (jede genannte Zahl ist Primzahl): $60855*2^{42} + 1$, $60855*2^{43} + 1$, $60855*2^{44} + 1$, $60855*2^{45} + 1$, $60855*2^{46} + 1$

Cunningham-Reihe höherer Länge

Betrachtet man eine allgemeine Cunningham-Reihe der Form p, 2p+1, 4p+3, ... so findet man schnell auch Reihen der Längen 4,5,6,... Die Liste enthält die jeweils ersten Anfangsglieder solcher Cunningham-Reihen.

Länge Anfangsglieder

3	11	41	719	1019
4	5	359	509	1229
5	179	53639	53849	61409
6	89	63419	127139	405269
7	1122659	2164229	2329469	10257809
8	19099919	52554569	171729539	226366139
9	85864769	198479579	305192579	

Cunningham-Reihe 1.Art

Unter einer Cunningham-Reihe der 1.Art versteht man die Folge von Primzahlen der Form

```
p, 2p-1, 4p-3, 8p-7, ...
```

Eine Reihe der Länge 6 fand im Oktober 1999 Dirk Augustin mit: 620060805*2n-1 ist prim für n = 252, 253, 254, 255, 256 und 257. Die Liste enthält die jeweils ersten Anfangsglieder solcher Cunningham-Reihen ab der Länge 3.

Länge Anfangsglieder

3	19	79	331	439
4	2131	2311	3061	6211
5	1531	6841	15391	44371
6	33301	331801	385591	445741
7	16651	165901	1768441	2240941
8	15514861	62573941		

Die Tabelle enthält die vom Autor gefundenen, zwanzig größten Cunnigham-Reihen 1.Art mit einer Mindestlänge von 3, der Struktur $k*2^n-1$. Angegeben wird dabei das erste Glied der Reihe

k*2ⁿ-1, k*2ⁿ⁺¹-1, k*2ⁿ⁺²-1, ...

Kontinuierlich gesucht für 310 < n \le 1240 (0 < k < 1 Million), 1240 < n \le 4500 (0 < k < 500000):

Ziffern	Primzahl k*2 ⁿ -1	Ziffern	Primzahl k*2 ⁿ -1	
1309	115566729*2 ⁴³¹⁹ -1	1213	384205437*2 ⁴⁰⁰⁰ -1	
1100	737803545*2 ³⁶²² -1	1000	651358155*2 ³²⁹¹ -1	
509	188559*2 ¹⁶⁷¹ -1	253	499539*2 ⁸¹⁹ -1	
236	863799*2 ⁷⁶³ -1	224	383907*2 ⁷²⁴ -1	
222	74865*2 ⁷¹⁸ -1	217	4893*2 ⁷⁰⁶ -1	
200	355515*2 ⁶⁴³ -1	199	9423795*2 ⁶³⁷ -1	Reihe der Länge 4
196	285645*2 ⁶³¹ -1	193	253995*2 ⁶²⁰ -1	
177	460155*2 ⁵⁶⁸ -1	172	519945*2 ⁵⁵¹ -1	
170	22347*2 ⁵⁴⁸ -1	167	541425*2 ⁵³³ -1	
165	117015*2 ⁵²⁸ -1	163	949815*2 ⁵²¹ -1	

2D-Primzahlen

... gesucht sind arithmetische Zahlenfolgen, welche sowohl "horizontal" als auch "vertikal" Primzahlpaare liefern, welche spezielle Eigenschaften besitzen.

2D-Primzahlzwillinge

Beispiel: In jedem 3 x 3 Feld bilden die horizontalen Zeilen eine arithmetische Zahlenfolge mit d = 42, die vertikalen Zeilen mit d = 90. Gleichliegende Primzahlen im linken und rechten Feld sind Primzahlzwillinge.

17	59	101	19	61	103
107	149	191	109	151	193
197	239	281	199	241	283

Primzahldreieck

Ein Dreieck, dessen Zeilen {1, 2, ..., n} mit einer 1 beginnen und auf n enden,

heißt Primzahldreieck, wenn die Summe benachbarter Zahlen stets eine Primzahl bildet. Dabei darf jede der Zahlen {1, 2, ..., n} genau einmal in der Zeile auftreten.

Für die Zeilen 2 bis 6 existiert nur jeweils eine Belegung (siehe Abbildung).

Für die siebente Zeile sind zwei verschiedene Ziffernfolgen möglich: $\{1, 4, 3, 2, 5, 6, 7\}$ bzw. $\{1, 6, 5, 2, 3, 4, 7\}$. Für die n.Zeilen n = 2, 3, ..., kennt man Anzahl = 1, 1, 1, 1, 1, 2, 4, 7, 24, 80, 216, 648, 1304, ... verschiedene Möglichkeiten.

Obwohl scheinbar die Anzahl der möglichen Ziffernfolgen schnell ansteigt, ist noch nicht exakt bewiesen, ob für jedes n eine solche Belegung gefunden werden kann.

Primzahldreieck n = 8

1,2,3,4,7,6,5,8 1,2,5,6,7,4,3,8 1,4,7,6,5,2,3,8 1,6,7,4,3,2,5,8 Primzahldreieck n = 9

1,2,3,4,7,6,5,8,9 1,2,3,8,5,6,7,4,9 1,2,5,6,7,4,3,8,9 1,4,7,6,5,2,3,8,9 1,4,7,6,5,8,3,2,9 1,6,7,4,3,2,5,8,9 1,6,7,4,3,8,5,2,9 Primzahldreieck n = 10 (24 Zeilen) 1,2,3,4,7,6,5,8,9,10 1,2,3,4,9,8,5,6,7,10 1,2,3,8,5,6,7,4,9,10 1,2,5,6,7,4,3,8,9,10 1,2,5,6,7,4,9,8,3,10 1,2,9,4,7,6,5,8,3,10 1,2,9,4,3,8,5,6,7,10 1,2,9,8,5,6,7,4,3,10 1,4,3,2,9,8,5,6,7,10 1,4,7,6,5,2,3,8,9,10 1,4,7,6,5,2,9,8,3,10 1,4,3,8,9,2,5,6,7,10 1,4,7,6,5,8,3,2,9,10 1,4,7,6,5,8,9,2,3,10 1,4,9,2,3,8,5,6,7,10 1,4,9,8,3,2,5,6,7,10 1,6,5,2,3,8,9,4,7,10 1,6,5,2,9,8,3,4,7,10 1,6,5,8,3,2,9,4,7,10 1,6,5,8,9,2,3,4,7,10 1,6,7,4,3,2,5,8,9,10 1,6,7,4,3,8,5,2,9,10 1,6,7,4,9,2,5,8,3,10 1,6,7,4,9,8,5,2,3,10

Algorithmus von Rivera

In einem Primzahldreieck wird nach Zeilen {1, 2, ..., n} gesucht, die mit einer 1 beginnen und auf n enden, und die Summe benachbarter Zahlen stets eine Primzahl bildet. Dabei darf jede der Zahlen {1, 2, ..., n} genau einmal in der Zeile auftreten.

Durch Rivera wurde ein schneller Algorithmus entwickelt, der wenigstens eine solche Zeile für beliebiges n ermittelt. Alle anderen bekannten Algorithmus zur Berechnung der Zeilen des Dreiecks basieren auf Versuch und Irrtum und sind sehr zeitintensiv.

Algorithmus: 1) der erste Eintrage der Zeile ist n

2) jedes nachfolgende Glied ist die größte noch nicht verwendete Zahl der Menge {1, 2, ..., n}, die andere Parität (gerade, ungerade) besitzt und mit der vorhergehenden Zahl als Summe eine Primzahl ergibt Bis heute (2009) ist nicht bekannt, of dieser sehr einfache und elegante Algorithmus stets eine korrekte Zeile des Primzahldreiecks liefert. 2000 testete Jud McCranie erfolgreich alle n bis 25000. Durch Imran Ghory wurde eine Modifizierung des Algorithmus vorgeschlagen. Hier wird gefordert, dass die Primzahlsumme ein Teil eines Primzahlzwillings sein soll.

4 1 2 7 3 6 5 8 6 1 2 7 5 4 3 8

8

Primzahlkreis

Unter einem Primzahlkreis der Ordnung 2n versteht man eine zyklische Permutation der Zahlen 1 bis 2n, so dass die Summen benachbarter Zahlen auf dem Kreis Primzahlen bilden.

Der Begriff des Primzahlkreises wurde von Antonio Filz eingeführt.

Für n = 1, 2, ..., existieren 1, 1, 1, 2, 48, 512, 1440, 40512, 385072, 3154650, 106906168, 3197817022, 82924866213, ... verschiedene Möglichkeiten.

Ordnung 2n Lösungen 2 {1,2} 4 {1,2,3,4} 6 {1,4,3,2,5,6} {1,2,3,8,5,6,7,4}, {1,2,5,8,3,4,7,6}

10 u.a. {1,2,3,8,5,6,7,4,9,10} 12 u.a. {1,2,3,8,5,6,11,12,7,4,9,10}

Wahrscheinliche Primzahl

Unter einer wahrscheinlichen Primzahl (engl. probable prime) versteht man eine natürliche Zahl, die durch probabilistische Primzahltests als eine Zahl erkannt wurde, die mit höchster Wahrscheinlichkeit Primzahl ist.

Derartige Zahlen besitzen keine kleinen Primteiler bis 2³² bzw. eine besondere Struktur. Sie sind im Moment (2007) zu groß, um sie einem exakten Primzahltest zu unterziehen. Mit der Weiterentwicklung der Theorie und der Computertechnik werden einige von diesen Zahlen als "richtige" Primzahlen nachgewiesen werden.

Unter der Adresse http://www.primenumbers.net/prptop/prptop.php

werden von Henri Lifchitz und Renaud Lifchitz Listen der größten wahrscheinlichen Primzahlen verwaltet. Die nachfolgende Tabelle enthält die im November 2007 größten bekannten wahrscheinlichen Primzahlen:

Wahrscheinliche Primzahl	Ziffern Entdecker	Wann
(2^1148729+2^574365+1)/5	345802 Borys Jaworski	03/2007
(2^1127239+2^563620+1)/5	339333 Borys Jaworski	11/2006
10^282493-9^282493	282493 Jean-Louis Charton	03/2007
(10^270343-1)/9	270343 Maksym Voznyy	07/2007
Phi(180181,18)	226176 Andy Steward	04/2007
4^341233-3^341233	205443 Jean-Louis Charton	01/2006
2^678561+678561	204268Henri Lifchitz	05/2006
(2^148330+1)^4-2	178608 Cletus Emmanuel	12/2003
2^566496+7	170533 Donovan Johnson	07/2006
2^551542+19249	166031 Payam Samidoost	08/2002
9^170099-8^170099	162316Jean-Louis Charton	05/2005
3^336353-2^336353	160482Mike Oakes	10/2007

Antiprime Zahl

Eine natürliche Zahl n ist antiprim, wenn jeder Primfaktor p von n mindestens in zweiter Potenz Teiler von n ist. Damit sind alle Primzahlpotenzen p^k , k > 1, antiprime Zahlen.

Echt antiprim wird eine antiprime Zahl genannt, wenn sie mindestens zwei verschiedene Primfaktoren besitzt.

Die kleinsten echt antiprimen Zahlen sind

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 900, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, ...

Zwei aufeinanderfolgende Zahlen können echt antiprim sein; derartige Paare sind aber selten, bis 50 Millionen:

675, 676 | 9800, 9801 | 235224, 235225 | 465124, 465125 | 11309768, 11309769 Ob drei aufeinanderfolgende Zahlen antiprim sein können, weiß man 2011 noch nicht. Vier aufeinanderfolgende antiprime Zahlen können nicht existieren.

Kleiner Satz von Fermat

```
Sind a,m teilerfremde natürliche Zahlen \Rightarrow beliebige Potenzen von a sind relativ prim zu m \Rightarrow a<sup>n</sup> \equiv 1 (mod m)
```

Ist m Primzahl und ggT(a,m) = 1 \Rightarrow für jedes a: $a^{m-1} \equiv 1 \pmod{m}$

Spezialfall 1: ist n Primzahl, so ist 2ⁿ-2 ein Vielfaches von 2n

Spezialfall 2: ist n Primzahl und p ein Primteiler von 2^n -1, dann ist p-1 ein Vielfaches von n

Die Umkehrung gilt nicht!

Zahlen, die die Umkehrung erfüllen, aber keine Primzahlen sind, heißen Pseudoprimzahlen.

Kontraposition:

Gilt für irgendeine Zahl n mit ggT(a,n)=1 $a^{n-1} \neq 1 \mod n$, so ist n zusammengesetzte Zahl

Berechnung von a^b mod p

function modpot(a,b,p:integer):integer;

var f:integer;

```
begin f:=1; while b>0 do begin if (b \mod 2 = 1) then f:=(f*a) \mod p; b:=b \operatorname{div} 2; a:=(a*a) \operatorname{mod} p; end; \operatorname{modpot}:=f; end;
```

Kleiner Satz von Fermat $(a^{p-1}-1) \mod p = 0 \Leftrightarrow (a^{p-1}) \mod p = 1$

Beispiel: Nachweis, dass p = 71 Primzahl sein kann mit a = 2:

 $(2^{71-1}) \mod 71 = 2^{70} \mod 71 = ((2^7 \mod 71)^2 \mod 71)^5 \mod 71 = (57^2 \mod 71)^5 \mod 71 = 54^5 \mod 71 = 1$ q.e.d.

Test von 3 * 7 = 21 auf Primzahleigenschaft ergibt (p = 21; a = 2):

 $(2^{21-1}) \mod 21 = 2^{20} \mod 21 = (2^{10} \mod 21)^2 \mod 21 = 4 \neq 1 \Rightarrow 21$ ist nicht prim

Test von p = 341 = 11 * 31 auf Primzahleigenschaft mit a = 2:

 $(2^{341-1}) \mod 341 = 2^{340} \mod 341 = (2^{10} \mod 341)^{34} \mod 341 = 1^{34} \mod 341 = 1$

 \Rightarrow 341 ist prim oder pseudo-prim. Hier handelt es sich um eine Pseudoprimzahl, da 341 das Produkt aus 11 und 31 ist und somit laut Definition keine Primzahl sein kann.

Der ARCL-Test modifiziert diese Anwendung des Fermatschen Gesetzes soweit, dass Pseudo-Primzahlen erkannt und ausgeschlossen werden können.

Reste bei a^{p-1} mod p für p = 2, ..., 16, a = 2, ..., 30

In den Spalten mit einer Primzahl p erkennt man deutlich, dass nach dem Kleinen Satz von Fermat für Nichtvielfache von p stets ein Rest = 1 entsteht:

a\p	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	0	1	0	1	2	1	0	4	2	1	8	1	2	4	0
3	1	0	3	1	3	1	3	0	3	1	3	1	3	9	11
4	0	1	0	1	4	1	0	7	4	1	4	1	4	1	0
4 5 6	1	1	1	0	5	1	5	7	5 6	1	5	1	5	10	13
6	0	0	0	1	0	1	0	0	6	1	0	1	6	6	0
7	1	1	3	1	1	0	7	4	7	1	7	1	7	4	7
8	0	1	0	1	2	1	0	1	8	1	8	1	8	4	0
9	1	0	1	1	3	1	1	0	9	1	9	1	9	6	9
10	0	1	0	0	4	1	0	1	0	1	4	1	10	10	0
11	1	1	3	1	5	1	3	4	1	0	11	1	11	1	3
12	0	0	0	1	0	1	0	0	2	1	0	1	12	9	0
13	1	1	1	1	1	1	5	7		1	1	0	13	4	5
14	0	1	0	1	2	0	0	7	4	1	8	1	0	1	0
15	1	0	3	0	3	1	7	0	5	1	3	1	1	0	15
16	0	1	0	1	4	1	0	4	6	1	4	1	2	1	0
17	1	1	1	1	5	1	1	1	7	1	5	1	3	4	1
18	0	0	0	1	0	1	0	0	8	1	0	1	4	9	0
19	1	1	3	1	1	1	3	1	9	1	7	1	5	1	11
20	0	1	0	0	2	1	0	4	0	1	8	1	6	10	0
21	1	0	1	1	3	0	5	0	1	1	9	1	7	6	13
22	0	1	0	1	4	1	0	7	2	0	4	1	8	4	0
23	1	1	3	1	5	1	7	7		1	11	1	9	4	7
24	0	0	0	1	0	1	0	0	4	1	0	1	10	6	0
25	1	1	1	0	1	1	1	4	5	1	1	1	11	10	9
26	0	1	0	1	2	1	0	1	6	1	8	0	12	1	0
27	1	0	3	1	3	1	3	0	7	1	3	1	13	9	3

28	0	1	0	1	4	0	0	1	8	1	4	1	0	4	0
29	1	1	1	1	5	1	5	4	9	1	5	1	1	1	5
30	0	0	0	0	0	1	0	0	0	1	0	1	2	0	0

Lucas-Test

Obwohl die direkte Umkehrung des kleinen Satzes von Fermat nicht gilt, wurden von Lucas Tests mit Zusatzbedingungen angegeben, mit denen Primzahlen nachgewiesen werden können. Allerdings sind die Berechnungen oft sehr aufwendig oder erfordern die vollständige Zerlegung benachbarter Zahlen.

Lucas-Test (1876)

Es sei n>1. Angenommen, es existiert eine ganze Zahl a>1 mit den Eigenschaften $a^{n-1}\equiv 1 \mod n \ a^m \ne 1 \mod n$, für $m=1,\,2,\,...,\,n-2$ Dann ist n prim.

Lucas-Test (1891)

Es sei n > 1. Angenommen, es existiert eine ganze Zahl a > 1 mit den Eigenschaften $a^{n-1} \equiv 1 \mod n$ $a^m \ne 1 \mod n$, für m < n, das Teiler von n-1 ist Dann ist n prim.

Brillhart-Lehmer-Selfridge-Test (1967)

Es sei n > 1. Angenommen, für jeden Primfaktor q von n-1 existiert eine ganze Zahl a = a(q) > 1 derart, dass

 $a^{n-1} \equiv 1 \mod n \quad a^{(n-1)/q} \neq 1 \mod n$

Dann ist n prim.

Pseudoprimzahlen

Erfüllt eine Nichtprimzahl n den Fermattest zu einer Basis a, so heißt diese pseudoprim zu a.

Kleinste pseudoprime Zahlen zu 2 bis 7

 $2^{341-1} \equiv 1 \mod 341$ $3^{91-1} \equiv 1 \mod 91$ $5^{217-1} \equiv 1 \mod 217$ $7^{25-1} \equiv 1 \mod 25$

Häufigkeit bis 25 Milliarden

 Basis
 Anzahl
 Basis
 Anzahl
 Basis
 Anzahl
 Basis
 Anzahl

 2
 21583
 2,3
 4709
 2,3,5
 2552
 2,3,5,7
 1770

Kleinste pseudoprime Zahlen zu verschiedenen Basen a

```
Basis a pseudoprime Zahlen
```

- 341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371 91, 121, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751 3 5 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5731, 6601, ... 7 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, ... 11 15, 133, 259, 305, 481, 645, 703, 793, 1105, 1729, 2047, 2257, ... 13 21, 85, 105, 231, 357, 427, 561, 1099, 1785, 1891, 2465, 3605, ... 9, 45, 91, 145, 261, 781, 1111, 1305, 1729, 1885, 2149, 2821, ... 17 9, 15, 45, 49, 153, 169, 343, 561, 637, 889, 905, 1035, ... 19 23 33, 91, 165, 169, 265, 341, 385, 451, 481, 553, 561, 1027, ... 29 15, 21, 35, 91, 105, 231, 341, 469, 481, 561, 651, 793, ... 15, 49, 65, 133, 185, 451, 481, 561, 637, 931, 1105, 1221, ... 31 9, 45, 57, 133, 171, 217, 285, 301, 451, 469, 561, 589, ... 37 15, 21, 35, 105, 145, 231, 561, 609, 645, 671, 703, 841, ... 41 21, 25, 33, 77, 91, 105, 165, 185, 231, 325, 385, 425, ... 43 47 65, 69, 85, 221, 259, 341, 345, 427, 481, 561, 645, 703, ... 9, 27, 39, 45, 65, 91, 117, 153, 351, 561, 585, 703, ... 53 15, 87, 145, 435, 451, 561, 645, 1015, 1105, 1141, 1247, 1541, ... 59 15, 91, 93, 155, 217, 341, 403, 465, 561, 679, 1105, 1261, ... 61 33, 49, 51, 85, 165, 187, 217, 385, 561, 637, 703, 1045, ... 67 71 9, 15, 21, 35, 45, 63, 105, 231, 315, 435, 561, 703, ... 9, 45, 65, 111, 117, 185, 205, 259, 333, 369, 481, 533, ... 73
- Kleinste Pseudoprimzahlen zu mehreren Basen

Basen pseudoprime Zahlen

2,3 1105, 1729, 2465, 2701, 2821, 6601, 8911, 10585, 15841, 18721, 29341, 31621, 41041, 46657 2,3,5 1729, 2821, 6601, 8911, 15841, 29341, 41041, 46657, 52633, 63973, 75361, 101111, 115921 2,3,5,7 29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001 2...11 29341, 46657, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041 2...13 162401, 252601, 294409, 334153, 399001, 410041, 488881, 512461, 1024651, 1152271 2...17 252601, 294409, 334153, 399001, 410041, 488881, 512461, 1024651, 1152271, 1193221 2...19 252601, 294409, 399001, 410041, 488881, 512461, 1152271, 1193221, 1461241, 1615681

Pseudoprimzahl (2)

Eine Fermatsche Pseudoprimzahl q ist mindestens zu einer Basis a mit a > 1 pseudoprim.

Wenn eine ungerade Fermatsche Pseudoprimzahl q zu einer Basis a mit a < q pseudoprim ist, so ist q auch zu der Basis q-a pseudoprim.

Wenn eine Fermatsche Pseudoprimzahl q zu einer Basis a mit a < q pseudoprim ist, so ist q auch zu der Basis aⁿ mit einer natürlichen Zahl n > 0 pseudoprim.

Wenn eine Fermatsche Pseudoprimzahl q zu einer Basis der Form a pseudoprim ist, so ist q auch pseudoprim zu einer Basis a + ng mit einer natürlichen Zahl n.

Demzufolge ist eine Fermatsche Pseudoprimzahl q zu jeder Basis b pseudoprim, zu der eine der folgenden drei Bedingungen zutrifft:

$$b \equiv a \mod q$$
 $b \equiv 1 \mod q$ $b \equiv q-1 \mod q$

wobei a eine Basis sein muss, zu der q pseudoprim ist.

Beispiel: 15 ist eine fermatsche Pseudoprimzahl, die zu folgenden Basen Pseudoprim ist: 4, 11, 19, 26, ... Jede natürliche, zusammengesetzte Zahl n ist eine fermatsche Pseudoprimzahl zu Basen der Form m⋅n +1 mit

$$(m \cdot n + 1)^{n-1} \equiv 1 \mod n$$

Die Fermatschen Pseudoprimzahlen lassen sich in zwei Mengen aufteilen; in die, die zugleich auch Eulersche Pseudoprimzahlen sind, und solche die keine Eulerschen Primzahlen sind. Zu den ersteren gehören die Fermatschen Pseudoprimzahlen zur Basis 2, die Carmichael-Zahlen und absoluten Eulerschen Pseudoprimzahlen.

{absolute Eulersche Primzahlen} \subset {Carmichael-Zahlen} \subset {Eulersche Pseudoprimzahlen} \subset {Fermatsche Pseudoprimzahlen}

Gerade Pseudoprimzahlen

Normalerweise heißt eine zusammengesetzte Zahl n pseudoprim, wenn sie Teiler von 2^{n-1} - 1 ist.

Erweitert man die Bedingung auf n ist Teiler von 2ⁿ - 2

so können auch gerade Pseudoprimzahlen auftreten, die allerdings sehr selten sind.

Die kleinste gerade Pseudoprimzahl wurde 1950 von Lehmer entdeckt: 161038 = 2 * 73 * 1103

Liste gerader Pseudoprimzahlen zur Basis 2

161038 215	326 2568226	3020626	7866046	9115426
49699666 143	742226 161292286	196116194	209665666	213388066
293974066 336	408382 377994926	410857426	665387746	667363522
672655726 760	569694 1066079026	1105826338	1423998226	1451887438
Eine Rekordpseudo	primzahl zu 46(!) versch	iedenen Basen wu	rde von Françoi	s Arnault ange

80 38374 57453 63949 12570 79614 34194 21081 38837 68828 75581 45837 48891 75222 97427 37653 33652 18650 23361 63960 04545 79150 42023 60320 87665 69966 76098 72840 43965 40823 29287 38791 85086 91668 57328 26776 17710 29389 69773 94701 67082 30428 68710 99974 39976 54414 48453 41155 87245 06334 09279 02227 52962 29414 98423 06881 68540 43264 57534 01832 97861 11298 96064 48452 16191 65287 25975 34901

9/801 11298 90004 48452 10191 05287 25975 34901

Offenes Problem: Existieren nur endlich viele gerade Pseudoprimzahlen?

Schwache Pseudoprimzahlen

In Erweiterung des Begriffs der geraden Pseudoprimzahlen definiert man:

Eine natürliche, zusammengesetzte Zahl n heißt schwache Pseudoprimzahl zur Basis a, wenn n Teiler von a^n -a ist.

Zur Basis 2 kennt man noch keine ungerade schwache Pseudoprimzahl. Die erste gerade Pseudoprimzahl zur Basis 2, 161038, wurde 1950 von Lehmer entdeckt.

Die nachfolgende Tabelle enthält einige schwache Pseudoprimzahlen.

a schwache Pseudoprimzahlen

2 2, 161038, 215326, 2568226, 3020626, 7866046, 9115426, 49699666, 143742226, 161292286, 196116194, 209665666, 213388066, 293974066, 336408382, 377994926, 410857426, 665387746, 667363522, 672655726, 760569694, 1066079026, 1105826338, ...

3 6, 66, 561, 726, 7107, 8205, 8646, 62745, 100101, 140097, 166521, 237381, 237945, 566805, 656601, 876129, 1053426, 1095186, 1194285, 1234806, 1590513, 1598871, 1938021, 2381259, 2518041, 3426081, 4125441, 5398401, 5454681, 5489121, 5720331, 5961441, 6498426, 7107171, 7252521, 7876506, 7912311, 8078961, 8141001, 8873565, 8968065, 10367841, 11845761, 11921001, 12225585, 13297197, 14664729, 15358641, ...

4 4, 6, 12, 28, 66, 186, 276, 532, 946, 1068, 2044, 2046, 2926, 8196, 8614, 8646, 11476, 15996, 24564, 25156, 34716, 38836, 40132, 45676, 66788, 67166, 76798, 80476, 91636, 106926, 141526, 144886, 161038, 173482, 180246, 188508, 199606, 215326, 242506, 243156, 251252, 256026, 265826, 266476, 275466, 276396, 383846, 427636, 489958, 501796, 504274, 531586, 540606, 541486, 565516, 596926, 621754, 729444, 819996, 880716, 922006, 971836, 988012, 1005466, ...

5 10, 15, 20, 65, 190, 310, 435, 1105, 2465, 3565, 3820, 4495, 6735, 8290, 10585, 20345, 20710, 26335, 41665, 51490, 62745, 69595, 72010, 120205, 125420, 157510, 168545, 191890, 193285, 195315, 215605, 238855, 278545, 292965, 384865, 446755, 449065, 451905, 465310, 566805, 570865, 583185, 709435, 746785, 790210, 825265, 830705, 903610, 918205, 924265, 984385, 1050985, ...

6, 10, 15, 21, 30, 105, 190, 231, 430, 435, 561, 777, 1221, 1866, 2121, 2553, 2955, 3885, 5061, 5565, 5662, 6531, 15051, 20554, 23331, 24670, 26746, 28810, 30970, 32865, 34521, 42801, 56001, 62745, 71841, 72010, 76798, 85695, 86961, 88689, 98385, 101386, 106491, 123321, 135201, 136185, 142401, 147201, 227217, 245805, 265881, 294261, 302253, 323121, 360465, 369370, 435711, 468730, 511161, 583185, 656601, 659631, 697971, 744051, 839805, 987735, 1007769, ...

Eulersche Pseudoprimzahlen

Die Menge der Eulerschen Pseudoprimzahlen ist eine Teilmenge der Fermatschen Pseudoprimzahlen. Eine ungerade zusammengesetzte natürliche Zahl n wird Eulersche Pseudoprimzahl zur Basis a genannt, wenn a und n teilerfremd zueinander sind und entweder

 $a^{(n-1)/2} \equiv 1 \mod n$ oder $a^{(n-1)/2} \equiv -1 \mod n$ bzw. $a^{(n-1)/2} \equiv n-1 \mod n$

gilt. Die ersten Eulerschen Pseudoprimzahlen zur Basis 2 sind

341, 561, 1105, 1729, 1905, 2047, ...

Eine Eulersche Pseudoprimzahl ist auch eine Fermatsche Pseudoprimzahl. Aus $a^{(n-1)/2} \cdot a^{(n-1)/2} = a^{(n-1)}$ folgt, dass wenn n eine Eulersche Pseudoprimzahl ist, n auch eine Fermatsche Pseudoprimzahl sein muss. Da es aber auch möglich sein kann, dass es für $a^{(n-1)/2}$ einen Rest geben kann, der nicht 1 oder (n-1) ist, aber dennoch zum Quadrat als Rest ein 1 mod n zurückliefert, kann man nicht sagen, dass wenn n eine Fermatsche Pseudoprimzahl ist, sie auch zwangsläufig eine Eulersche Pseudoprimzahl sein muss. Eine Fermatsche Pseudoprimzahl muss keine Eulersche Pseudoprimzahl sein.

Carmichael-Zahlen, die zu allen teilerfremden Basen eine Eulersche Pseudoprimzahl darstellen, nennt man absolute Eulersche Pseudoprimzahlen.

Super-Eulersche Pseudoprimzahl

Eine Super-Eulersche Pseudoprimzahl ist eine Eulersche Pseudoprimzahl zur Basis a, deren sämtliche Teiler ausschließlich aus der 1, Primzahlen, anderen Eulersche Pseudoprimzahlen der gleichen Basis a und sich selbst bestehen.

Alternativ lässt sich auch sagen, eine Super-Eulersche Primzahl $n=m_1\cdot m_2$ ist eine zusammengesetzte Zahl, für die gilt, gleichgültig, in welche zwei Faktoren m_1 und m_2 man die Zahl aufteilt, für beide Faktoren

 $a^m i - a \equiv 0 \mod m_i$

gilt. Super-Eulersche Pseudoprimzahlen zur Basis 2 nennt man auch Super-Poulet-Zahlen. Alle Teiler einer Super-Eulerschen Pseudoprimzahl, einschließlich 1 und der Super-Eulerschen Pseudoprimzahl haben die folgenden Eigenschaft: a^d - a ist durch d teilbar, d. a^{d-1} -1 ist durch d teilbar.

Beispiel: 294409 ist eine Super-Eulersche Pseudoprimzahl zur Basis 2. Ihre Teiler sind 1, 37, 73, 109, 2701, 4033, 7957 und 294409. 37, 73 und 109 sind Primzahlen, 2701, 4033 und 7957 sind selbst Super-Eulersche Pseudoprimzahlen zur Basis 2.

Es ist relativ einfach, eine Super-Eulersche Pseudoprimzahl zur Basis a mit drei Primfaktoren zu konstruieren. Man muss dazu drei Eulersche Pseudoprimzahlen zur Basis a finden, die zusammen drei gemeinsame Primfaktoren besitzen. Das Produkt dieser drei Primzahlen ist dann wiederum eine Eulersche Pseudoprimzahl, und damit eine Super-Eulersche Primzahl.

Super-Poulet-Zahlen mit bis zu 7 Primfaktoren kann man aus den folgenden vier Mengen konstruieren: 103, 307, 2143, 2857, 6529, 11119, 131071 ; 709, 2833, 3541, 12037, 31153, 174877, 184081 ; 1861, 5581, 11161, 26041, 37201, 87421, 102301 ; 6421, 12841, 51361, 57781, 115561, 192601, 205441

Diese wurden von Gerard Michon angegeben.

So ist

1 118 863 200 025 063 181 061 994 266 818 401 = $6421 \cdot 12841 \cdot 51361 \cdot 57781 \cdot 115561 \cdot 192601 \cdot 205441$

eine Super-Poulet-Zahl mit sieben Primfaktoren, deren Teiler aus Primzahlen, Poulet-Zahlen und Super-Poulet-Zahlen besteht; es sind insgesamt 120 Poulet-Zahlen.

Super-Poulet-Zahlen mit 3 Primfaktoren

•	Faktorisierung	Basen	Teiler
1105	$5 \cdot 13 \cdot 17$	18, 21, 38, 47, 103, 1	18, 1, 5, 13, 17, 56, 85, 221, 1105
1885	$5 \cdot 13 \cdot 29$	12, 57, 86, 99, 157, 2	78, 10321, 5, 13, 29, 65, 145, 377, 1885
3913	$7 \cdot 13 \cdot 43$	79	1, 7, 13, 43, 91, 301, 559, 3913
4505	$5 \cdot 17 \cdot 53$	242	1, 5, 17, 53, 85, 265, 901, 4505
7657	$13 \cdot 19 \cdot 31$	37, 191	1, 13, 19, 31, 247, 403, 589, 7657

294409	37 · 73 · 109 2	1, 37, 73, 109, 2701, 4033, 7957, 294409
1398101	23 · 89 · 683 2	1, 23, 89, 683, 2047, 15709, 60787, 1398101
1549411	31 · 151 · 331 2	1, 31, 151, 331, 4681, 10261, 49981, 1549411
1840357	43 · 127 · 337 2	1, 43, 127, 337, 5461, 14491, 42799, 1840357
12599233	97 · 193 · 673 2	1, 97, 193, 673, 18721, 65281, 129889, 12599233
13421773	53 · 157 · 16132	1, 53, 157, 1613, 8321, 85489, 253241, 13421773
15162941	59 · 233 · 11032	1, 59, 233, 1103, 13747, 65077, 256999, 15162941
15732721	97 · 241 · 673 2	1, 97, 241, 673, 23377, 65281, 162193, 15732721

Abgespeckte Super-Poulet-Zahlen

Wenn man auf die Bedingung verzichtet, dass zu den Teilern von Super-Poulet-Zahlen auch andere Poulet-Zahlen als die Super-Poulet-Zahl selbst gehören müssen, kann man auch die Poulet-Zahlen dazu rechnen die, abgesehen von der 1 und sich selbst, nur aus zwei Primzahlen bestehen.

Die kleinste, solchermaßen abgespeckte Super-Poulet-Zahl ist die 341 mit den Primteilern 11 und 31.

Carmichael-Zahlen

Zahlen, welche den kleinen Satz von Fermat für jede beliebige Basis erfüllen, aber keine Primzahlen sind, heißen absolut pseudoprim oder Carmichael-Zahlen.

Dies bedeutet, dass nach dem Kleinen Satz von Fermat b^{m-1} und die Zahl m für alle b < m den ggT 1 besitzen.

Es gilt: Eine zusammengesetzte Zahl ist Carmichael-Zahl, wenn für alle Primteiler p von n gilt: p-1 teilt n/p-1.

R.D.Carmichael wies 1911 deren Existenz durch Berechnung von 15 derartigen Zahlen nach. Carmichael-Zahlen besitzen mindestens 3 Primfaktoren.

kleinste und einzige unter 1000: 561 = 3 * 11 * 17

größte bekannte Carmichael-Zahl der Form (6k+1)(12k+1)(18k+1) (Dubner, Januar 1999): $133752260*3003*10^{1604}$

Diese 4848 ziffrige Zahl hat drei Primteiler mit 1616, 1616 und 1617 Ziffern.

Zahlen der Form (6k+1)(12k+1)(18k+1) sind genau dann Carmichael-Zahlen, wenn alle 3 Faktoren selbst Primzahl sind. D.h., eine solche Carmichael-Zahl n hat die Struktur $n=1296\ k^3+396\ k^2+36\ k+1$

Für k = 1,6,34,45,51,55,56,... ergeben sich 1729, 294409, 56052361, 118901521, ...

Tabelle der Carmichael-Zahlen

Eine Zahl p heißt Carmichael-Zahl, wenn sie bzgl. jeder Basis b pseudoprim ist, d.h. nach dem Kleinen Satz von Fermat b^{m-1} und m den ggT 1 besitzen.

Carmichael-Zahl	Primfaktoren	Carmichael-Zahl	Primfaktorer
561	3 11 17	1105	5 13 17
1729	7 13 19	2465	5 17 29
2821	7 13 31	6601	7 23 41
8911	7 19 67	10585	5 29 73
15841	7 31 73	29341	13 37 61
46657	13 37 97	52633	7 73 103
115921	13 37 241	162401	17 41 233
252601	41 61 101	294409	37 73 109
314821	13 61 397	334153	19 43 409
399001	31 61 211	410041	41 73 137

Kleinste Carmichael-Zahlen mit k Faktoren:

K	Zahl	Ziffernzahl der großten bekannten
3	561 = 3 * 11 * 17	10200
4	41041 = 7 * 11 * 13 * 41	2467
5	825625	1015
6	321197185	827

Bis n existieren Carmichael-Zahlen der Anzahl

	n	Anzahl	n	Anzahl	n	Anzahl	n	Anzahl
	10^{6}	561	25*10 ⁹	2163	10^{15}	105212	10^{16}	246683
Als Näl	heruna a	ıilt für aroße n >	> 10 ⁷	Anzahl $\approx n^{2/7}$				

Sätze

- 1. Teilt eine Primzahl p die Carmichael-Zahl n, so folgt aus $n \equiv 1 \pmod{p-1}$ $n \equiv p \pmod{p(p-1)}$
- 2. Jede Carmichael-Zahl ist quadratfrei.
- 3. Eine ungerade zusammengesetzte, quadratfreie Zahl n ist genau dann Carmichael-Zahl, wenn n den Nenner der Bernoulli-Zahl B_{n-1} ohne Rest teilt.

Lucas-Carmichael-Zahl

Eine Lucas-Carmichael-Zahl ist eine zusammengesetzte, natürliche Zahl, die ähnlichen Kriterien wie eine Carmichael-Zahl unterliegt.

Eine quadratfreie ungerade natürliche Zahl n heißt Lucas-Carmichael-Zahl, wenn sie mindestens drei Primteiler besitzt, und für jeden Primteiler p der Zahl n gilt: p + 1 teilt n + 1.

```
Ein Beispiel ist 3 \cdot 7 \cdot 19 = 399. (3+1) teilt (399+1), (7+1) teilt (399+1), (19+1) teilt (399+1), d.h. 399
eine Lucas-Carmichael-Zahl. Die kleinsten Lucas-Carmichael-Zahlen sind
399 = 3 \cdot 7 \cdot 19
                                       935 = 5 \cdot 11 \cdot 17
                                                                               2015 = 5 \cdot 13 \cdot 31
2915 = 5 \cdot 11 \cdot 53
                             4991 = 7 \cdot 23 \cdot 31
                                                           5719 = 7 \cdot 19 \cdot 43
7055 = 5 \cdot 17 \cdot 83
                             8855 = 5 \cdot 7 \cdot 11 \cdot 23 \ 12719 = 7 \cdot 23 \cdot 79
18095 = 5 \cdot 7 \cdot 11 \cdot 4720705 = 5 \cdot 41 \cdot 101 \quad 20999 = 11 \cdot 23 \cdot 83
22847 = 11 \cdot 31 \cdot 67 \quad 29315 = 5 \cdot 11 \cdot 13 \cdot 41
                                                                     31535 = 5 \cdot 7 \cdot 17 \cdot 53
46079 = 11 \cdot 59 \cdot 71 \quad 51359 = 7 \cdot 11 \cdot 23 \cdot 29
                                                                     60059 = 19 \cdot 29 \cdot 109
63503 = 11 \cdot 23 \cdot 251 \ 67199 = 11 \cdot 41 \cdot 149 \ 73535 = 5 \cdot 7 \cdot 11 \cdot 191
Die kleinste Lucas-Carmichael-Zahl mit fünf Primfaktoren ist 588455 = 5 \cdot 7 \cdot 17 \cdot 23 \cdot 43
Aufgrund der Identität n+1 = -(n/p - 1) + (p-1) n/p gilt für jeden Primteiler p einer natürlichen Zahl n
          n+1 \equiv -(n/p - 1) \mod p+1
```

Damit ist eine ungerade quadratfreie Zahl n genau dann eine Lucas-Carmichael-Zahl, wenn für alle Primteiler p von n gilt: p + 1 teilt n/p - 1.

Es existieren Pseudoprimzahlen unter den Lucas-Carmichael-Zahlen. Es ist nicht bekannt, ob eine Lucas-Carmichael-Zahl existiert, die gleichzeitig eine Carmichael-Zahl ist.

Giuga-Zahlen

... nach dem Mathematiker Giuseppe Giuga benannte natürliche Zahlen mit speziellen Eigenschaften. Sie sind im Zusammenhang mit einer von ihm vermuteten Charakterisierung der Primzahlen von Bedeutung. Verwandt zu den Giuga-Zahlen sind die Carmichael-Zahlen.

Giugas Vermutung

1950 G.Giuga: Eine natürliche Zahl n ist genau dann eine Primzahl, wenn Σ kⁿ⁻¹ = -1 mod n (Summenbildung k=1,...,n-1) gilt.

Für Primzahlen folgt diese Eigenschaft aus dem kleinen Satz von Fermat. Bis heute ist ungeklärt, ob auch die umgekehrte Schlussrichtung gilt. Es ist nicht bekannt, ob es auch zusammengesetzte Zahlen mit dieser Eigenschaft gibt. Nach einem Ergebnis aus dem Jahr 1994 müsste eine solche Zahl mehr als 10.000 Dezimalstellen haben.

Giugas Vermutung ist äquivalent zu folgender Aussage: Keine natürliche Zahl ist zugleich Giuga- und Carmichael-Zahl.

Eine zusammengesetzte Zahl n heißt Giuga-Zahl, wenn für alle Primteiler p von n gilt: p teilt n/p - 1. Sei n eine zusammengesetzte Zahl und P die Menge der Primteiler von n. Dann gilt:

Die Zahl n ist genau dann eine Giuga-Zahl, wenn gilt: Σ $k^{\phi(n)} \equiv -1 \mod n$ (Summenbildung k=1,...,n-1). Die Zahl n ist genau dann eine Giuga-Zahl, wenn gilt: n ist quadratfrei und Σ 1/p - Π 1/p \in N, wobei die Summen- und Produktbildung über alle p \in P erfolgt.

Ähnlich erklärt sind die primär pseudovollkommenen Zahlen, die durch Σ 1/p + P 1/p = 1 charakterisiert sind

Die Zahl n ist genau dann eine Giuga-Zahl, wenn gilt: n $B_{\phi(n)} \equiv -1 \mod n$, wobei $\phi(n)$ die Eulersche ϕ -Funktion und B die Bernoulli-Zahlen sind.

Bekannte Giuga-Zahlen

```
30 = 2 * 3 * 5
3 Faktoren:
             858 = 2 * 3 * 11 * 13
4 Faktoren:
                                                1722 = 2 * 3 * 7 * 41
             66198 = 2 * 3 * 11 * 17 * 59
5 Faktoren:
             2214408306 = 2 * 3 * 11 * 23 * 31 * 47057
6 Faktoren:
             423128562 = 2 * 3 * 7 * 43 * 3041 * 4447
             432.749.205.173.838 = 2 * 3 * 7 * 59 * 163 * 1381 * 775807
7 Faktoren:
              14.737.133.470.010.574 = 2 * 3 * 7 * 71 * 103 * 67213 * 713863
             550843391309130318 = 2 * 3 * 7 * 71 * 103 * 61559 * 29133437
             244197000982499715087866346 = 2 * 3 * 11 * 23 * 31 * 47137 * 28282147 *
8 Faktoren:
3892535183
554079914617070801288578559178 = 2 * 3 * 11 * 23 * 31 * 47059 * 2259696349 * 110725121051
1910667181420507984555759916338506 = 2 * 3 * 7 * 43 * 1831 * 138683 * 2861051 *
1456230512169437
10 Faktoren:
420001794970774706203871150967065663240419575375163060922876441614255721158209843254
5190323474818 = 2 * 3 * 11 * 23 * 31 * 47059 * 2217342227 * 1729101023519 *
8491659218261819498490029296021 * 5825448056911973412354129897655403
```

Alle Giuga-Zahlen sind quadratfrei. Alle Giuga-Zahlen sind abundant. Es existieren nur endlich viele Giuga-Zahlen mit einer vorgegebenen Anzahl von Primfaktoren. Es ist nicht bekannt, ob es unendlich viele Giuga-Zahlen gibt. Alle bekannten Giuga-Zahlen sind gerade. Eine ungerade Giuga-Zahl müsste aus

mindestens 14 Primfaktoren bestehen. Da alle Carmichael-Zahlen ungerade sind, wäre auch Giugas Vermutung bewiesen, wenn man beweisen könnte, dass alle Giuga-Zahlen gerade sind.

Poulet-Zahlen

... zusammengesetzte Zahlen n, welche zur Basis 2 pseudoprim sind, d.h. n teilt den Term 2ⁿ - 2 ohne Rest, heißen Poulet-Zahlen. Die kleinste derartige Zahl ist 341.

Lehmann-Algorithmus

Der Lehmann-Algorithmus ist ein probabilistischer Primzahltest auf der Basis des kleinen Satzes von Fermat und der Lehmer-Primzahltests.

Gegeben ist ein ungerade Zahl p, die auf Primzahleigenschaft getestet werden soll. Man wählt eine Zufallszahl a kleiner als p und berechnet $a^{(p-1)/2} \mod p$

Ist $a^{(p-1)/2}$ mod p verschieden 1 und -1, so ist p nicht prim.

Ist a^{(p-1)/2} mod p gleich 1 oder -1, so liegt die Wahrscheinlichkeit, dass p nicht prim ist bei höchstens 50

Diesen Test wiederholt man mit verschiedenen Werten für a n-mal. Liefert die Berechnung 1 oder -1, aber nicht immer den Wert 1, so ist p wahrscheinlich prim und die Fehlerwahrscheinlichkeit liegt bei 1 zu

Miller-Rabin-Test, auch SPRP-Test

Eine natürliche, nichtprime Zahl n mit der Zerlegung

```
n = 2^s * t + 1, t = | 0 \mod 2
```

heißt starke Pseudoprim-Zahl zur Basis a, wenn $a^t \equiv 1 \mod n$ oder $a^{2r*t} \equiv -1 \mod n$ für ein beliebiges $0 \le 1 \mod n$

Bei Gültigkeit der Riemannschen Vermutung gilt für die obere Grenze: 0 < a < 4 lg² n

Nach Miller existieren dann höchstens 70(In n)² verschiedene Basen, zu welchen eine zusammengesetzte Zahl pseudoprim sein kann. Starke Pseudoprimzahlen sind sehr selten. Zur Basis 2,3,5 und 7 existiert bis 25 Milliarden nur eine

```
3215031751 = 151 * 751 * 28351
```

Tests zu den Basen 2 bis 5 erkennen unter 25 Milliarden die zusammengesetzten Zahlen mit nur 13 Ausnahmen. Bis 10¹² existieren 101 starke Pseudoprimzahlen zu den Basen 2 bis 5, nur 7 für a=2,3,5,7 und keine für a=2,3,5,7,11.

Wahrscheinlichkeit des Bestehens des Miller-Rabin-Tests für beliebiges n und a ist kleiner 0.25.

Ein Äguivalent zu den Carmichael-Zahlen bzgl. der pseudoprimen Zahlen gibt es für Starke

Pseudoprimzahlen nicht, d.h. es existieren keine zusammengesetzten Zahlen, welche zu jeder beliebigen Basis stark pseudoprim sind.

1980 hat Pomerance einen Preis von 620 Dollar für die erste zusammengesetzte Zahl ausgeschrieben, welche die Kombination von Starken Pseudoprimzahltest und Lucas-Pseudoprimzahltest besteht.

Starke Pseudoprimzahlen

Beispiele:

2047 = 23 * 89 ist stark pseudoprim zu 2 121 = 11 * 11 ist stark pseudoprim zu 3 781 = 11 * 71 ist stark pseudoprim zu 5 25 = 5 * 5 ist stark pseudoprim zu 7

Miller-Test Abbruchkriterien

n-SPRP ... stark pseudoprim zu n eine Zahl n ist prim, wenn

n < 1373653 und 2-SPRP und 3-SPRP n < 25326001 und 2-, 3-, 5-SPRP

n < 118670087467 und n≠3215031751 und 2-, 3-, 5-, 7-SPRP

n < 2152302898747 und 2,3,5,7,11-SPRP

n < 3474749660383 und 2 ... 13-SPRP n < 341550071728321 und 2 ... 17-SPRP

n < 9080191 und 31- und 73-SPRP n < 4759123141 und 2-, 7-, 61-SPRP

n <10¹² und 2-, 13-, 23-, 1662803-SPRP

starke Pseudoprimzahlen

2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581 2 3

121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, 18721, 19345, 23521, 31621, 44287

781, 1541, 5461, 5611, 7813, 13021, 14981, 15751, 24211, 25351, 29539, 38081, 40501

7 25, 325, 703, 2101, 2353, 4525, 11041, 14089, 20197, 29857, 29891, 39331, 49241, 58825

11 133, 793, 2047, 4577, 5041, 12403, 13333, 14521, 17711, 23377, 43213, 43739, 47611, 48283

85, 1099, 5149, 7107, 8911, 9637, 13019, 14491, 17803, 19757, 20881, 22177, 23521, 26521 91, 145, 781, 1111, 2821, 4033, 4187, 5365, 5833, 6697, 7171, 15805, 19729, 21781, 22791 13

17

9, 49, 169, 343, 1849, 2353, 2701, 4033, 4681, 6541, 6697, 7957, 9997, 12403, 13213, 13747 19

169, 265, 553, 1271, 2701, 4033, 4371, 4681, 6533, 6541, 7957, 8321, 8651, 8911, 9805 23

91, 341, 469, 871, 2257, 4371, 4411, 5149, 6097, 8401, 11581, 12431, 15577, 16471, 19093 15, 49, 133, 481, 931, 6241, 8911, 9131, 10963, 11041, 14191, 17767, 29341, 56033, 58969 29

31

9, 451, 469, 589, 685, 817, 1333, 3781, 8905, 9271, 18631, 19517, 20591, 25327, 34237 37

231, 671, 703, 841, 1281, 1387, 1417, 2701, 3829, 8321, 8911, 10933, 13019, 14091, 20591 41

5

- 43 21, 185, 925, 1541, 1807, 3281, 3439, 3781, 4417, 7081, 8857, 10609, 11989, 14089, 18721
- 47 65, 85, 221, 341, 703, 721, 1105, 1891, 2257, 2465, 5461, 9361, 9881, 15769, 19669, 21953
- 53 91, 1405, 1441, 1541, 2209, 2863, 3367, 3481, 5317, 6031, 9409, 11359, 14833, 17141, 17461
- 59 451, 1141, 1247, 1541, 1661, 1991, 2413, 3097, 4681, 5611, 6191, 7421, 8149, 9637, 10081
- 61 15, 217, 341, 1261, 2701, 3661, 6541, 6697, 7613, 13213, 16213, 22177, 23653, 23959, 31417
- 67 33, 49, 217, 703, 1519, 2209, 2245, 6119, 8371, 11521, 12403, 14981, 18721, 29185, 29891
- 71 35, 1387, 1921, 2071, 2209, 2321, 6541, 7957, 8365, 8695, 9809, 10349, 11041, 13747, 16589
- 73 9, 205, 259, 533, 1441, 1921, 2665, 3439, 5257, 15457, 23281, 24617, 26797, 27787, 28939
- 79 39, 49, 91, 301, 559, 637, 1649, 2107, 2701, 3913, 6533, 7051, 8321, 9881, 12001, 14491
- 83 231, 265, 689, 703, 1241, 3445, 4411, 6973, 8421, 12871, 15883, 18721, 20191, 22261, 24727

Basen stark pseudoprime Zahlen

- 2,3 1373653, 1530787, 1987021, 2284453, ...
- 3,5 112141, 432821, 1024651, ...
- 2,3,5 25326001, ...
- 2,3,5,7 3215031751, ...
- 2...11 2152302898747, ...
- 2...13 3474749660383, ...
- 2...17 341550071728321, ...
- 2...19 341550071728321, ...
- 2...23 kleinste unbekannt aber $\leq 41234316135705689041$
- 2...29 kleinste unbekannt aber $\leq 1553360566073143205541002401$
- 2...31 kleinste unbekannt aber ≤ 56897193526942024370326972321

Kleinste zu zwei Basen starke Pseudoprimzahlen

Basen	2	3	5	7	11	13	17	19
2	2047	1373653	1907851	314821	2047	514447	4033	4033
3		121	112141	703	12403	8911	31621	12403
5			781	79381	416641	561601	781	146611
7	•	•		25	88831	377719	88831	2353
11					133	86347	88831	12403
13	•	•				85	35371	610021
17	•	•					91	4033
19								9

Perrin-Zahlen

Perrin-Zahlen sind natürliche Zahlen der Form

A(0) = 3; A(1) = 0; A(2) = 2, A(n+1) = A(n-1) + A(n-2)

Die Rekursionsvorschrift ist der der Fibonacci-Zahlen ähnlich, jedoch unterscheiden sich die Startwerte und die Indizees der Rekursionsformel.

Besonderes Interesse weckten diese Zahlen, weil P(n) von n restlos geteilt wird, wenn n Primzahl ist. Zusammengesetzte Zahlen n, die ebenfalls P(n) teilen, existieren ebenfalls und sind sehr selten. Derartige Zahlen heißen Perrin-Pseudoprimzahlen. Die erste, 271441, wurde erst 1991 gefunden. Das zugehörige Glied P(271441) ist eine 33150-stellige Zahl!

Die ersten Glieder der Perrin-Folge sind ...

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, ...

Sind a, b und c die drei Nullstellen der kubischen Gleichung $x^3 - x - 1 = 0$, so gilt $A(n) = a^n + b^n + c^n$

Perrin-Folge

Perrin-Zahlen sind natürliche Zahlen der Form

A(0) = 3; A(1) = 0; A(2) = 2, A(n+1) = A(n-1) + A(n-2)

Die Zahlen der entstehenden Folge bilden die Perrin-Folge. Diese werden auch für andere Startwerte A(0), A(1), A(2) betrachtet. Insbesondere ergibt sich für A(0) = A(1) = A(2) = 1 die Folge der Padovan-Zahlen.

Die ersten Primzahlen der Folge sind 2, 3, 2, 5, 5, 7, 17, 29, 277, 367, 853, ... Für folgende Indizees n sind die A(n) prim bzw. wahrscheinlich prim

3, 4, 5, 6, 7, 10, 12, 20, 21, 24, 34, 38, 75, 122, 166, 236, 355, 356, 930, 1042, 1214, 1461, 1622, 4430, 5802, 9092, 16260, 18926, 23698, 40059, 45003, 73807, 91405, 263226, 316872, 321874, 324098, 581132, ...

Perrin-Pseudoprimzahlen

Perrin-Folge A(0) = 3; A(1) = 0; A(2) = 2, A(n+1) = A(n-1) + A(n-2)Die ersten Glieder sind ... 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, ... Ist n eine Primzahl, so teilt n die Perrin-Zahl A(n); nach Lucas 1899. Zusammengesetzte Zahlen n, die ebenso die Perrin-Zahl ohne Rest teilen, werden Perrin-Pseudoprimzahlen genannt, sind selten und auf Grund der schnell wachsenden Perrin-Folge schwierig nachzuweisen.

1991 wurde durch Steven Arno die erste und kleinste derartige Zahl für n=271441 gefunden. Das Glied der Perrin-Zahlenfolge A(271441) ist eine 33150stellige Zahl.

Gegenwärtig kennt man etwa 150 Perrin-Pseudoprimzahlen. Die ersten sind:

```
PPP(1): 271441 = 521 * 521
PPP(3): 16532714 = 2 * 11 * 11 * 53 * 1289
PPP(4): 24658561 = 19 * 271 * 4789
PPP(5): 27422714 = 2 * 11 * 11 * 47 * 2411
PPP(6): 27664033 = 3037 * 9109
PPP(7): 46672291 = 4831 * 9661
PPP(9): 130944133 = 6607 * 19819
PPP(11): 214038533 = 8447 * 25339
PPP(12): 517697641 = 6311 * 82031
PPP(13): 545670533 = 13487 * 40459
PPP(15): 855073301 = 16883 * 50647
PPP(17): 970355431 = 22027 * 44053
```

Padovan-Zahlen

Padovan-Zahlen sind natürliche Zahlen der Form P(0) = P(1) = P(2) = 1, P(n+1) = P(n-1) + P(n-2) Damit ist die Padovan-Folge der Perrin-Folge sehr ähnlich, besitzt jedoch veränderte Anfangswerte. Mitunter wird die Folge auch mit den Startwerten 1, 0, 0 begonnen.

Die ersten Glieder sind ...

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, ...

Ein Glied der Folge kann mit

$$P_n = (1+r_1) / (r_1^{n+2} (2+3r_1)) + (1+r_2) / (r_2^{n+2} (2+3r_2))$$

direkt berechnet werden, wobei r_i die i-te Wurzel von $x^3 + x^2 - 1 = 0$ ist.

Die ersten primen Padovan-Zahlen sind

 $2,\,3,\,5,\,7,\,37,\,151,\,3329,\,23833,\,13091204281,\,3093215881333057,$

1363005552434666078217421284621279933627102780881053358473, ...

Jacobi-Symbol J_(a,n)

Das Jacobi-Symbol ist ein mathematisches Symbol, das für alle ganzen Zahlen a und alle ungeraden ganzen Zahlen n definiert ist.

Es ist eine Verallgemeinerung des Legendre-Symbols. Zur Unterscheidung vom Legendre-Symbol wird das Jacobi-Symbol auch mit J(a,n) bezeichnet.

Ist n Primzahl, so verhält sich das Jacobi-Symbol exakt wie das Legendre-Symbol

```
 J(a,n) = 1 \text{ , wenn a quadratischer Rest modulo n ist } \\ = -1 \text{ , wenn a kein quadratischer Rest modulo n ist } \\ = 0 \text{ , wenn a und n nicht teilerfremd sind}  Ist die Primfaktorzerlegung von n = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_k^{e_k}, so gilt  J(a,n) = J(a,p_1)^{e_1} \cdot J(a,p_2)^{e_2} \cdot \dots \cdot J(a,p_k)^{e_k}
```

Algorithmus zur rekursiven Berechnung des Jacobi-Symbols

```
\begin{array}{l} J_{(1,n)} = 1 \\ J_{(a \cdot b, n)} = J_{(a,n)} \cdot J_{(b,n)} \\ J_{(2,n)} = 1, \text{ falls } (n^2 - 1)/8 \text{ gerade ist, sonst -1} \\ J_{(a,n)} = J_{((a \text{ mod } n),n)} \\ J_{(a,b1 \cdot b2)} = J_{(a,b1)} \cdot J_{(a,b2)} \\ \text{Ist } \text{ggT}(a,b) = 1 \text{ und a und b sind ungerade, so gilt} \\ J_{(a,b)} = J_{(b,a)}, \text{ falls } (a - 1)(b - 1)/4 \text{ gerade ist} \\ J_{(a,b)} = -J_{(b,a)}, \text{ falls } (a - 1)(b - 1)/4 \text{ ungerade ist} \end{array}
```

Solovay-Strassen-Algorithmus

- ... probabilistischer Primzahltest von Robert Solovay und Volker Strassen
- ... Grundlage ist das Jacobi-Symbol $J_{(a,p)}$ um zu testen, ob p prim ist.

Solovay-Strassen Primzahltest

- 1. Wähle eine ungerade Zufallszahl als Kandidat für die Primzahl.
- 2. Wähle eine Zufallszahl a kleiner als p.
- 3. Falls $ggT(a,p) \neq 1$, ist p keine Primzahl.
- 4. Berechne $j = a(p-1)/2 \mod p$
- 5. Berechne das Jacobi-Symbol $J_{(a,p)}$.

Falls $j \neq J_{(a,p)}$, so ist p definitiv nicht prim, sonst liegt die Wahrscheinlichkeit, dass p nicht prim ist, bei höchstens 50 Prozent.

Prothsches Theorem

... nach François Proth; 1852-1879

Gegeben: $N = h*2^k + 1 \text{ mit } 2^k > h$

Existiert ein a mit $a^{(N-1)/2} = -1 \mod N$, so ist N Primzahl.

Dieses Theorem wurde von dem französischen Mathematiker Yves Gallot in einem genialen Freeware-Windows'95-Programm "Proth" umgesetzt. Dieses ist gegenwärtig (2006) die Grundlage für die meisten gefundenen Rekord-Primzahlen.

Sierpinski Problem

Sierpinski Theorem : $78557 \cdot 2^n + 1$ ist zusammengesetzte Zahl für alle n > 1. bzw. 78557 ist die kleinste Zahl, für welche $k \cdot 2^n + 1$ stets zusammengesetzt ist.

Die Überdeckungsmenge der 78557 ist $\{3, 5, 7, 13, 19, 37, 73\}$, d.h. jede Primzahl der 78557 · 2^n +1 ist durch eine der Primzahlen dieser Menge teilbar.

1967 konnte John Selfridge zeigen, dass 78557 eine Sierpinski-Zahl ist. Es ist jedoch noch nicht bekannt, ob 78557 die kleinste Sierpinski-Zahl ist. Um den Beweis durchzuführen, muss für jedes k kleiner als 78557 eine Zahl n gefunden werden, so dass die resultierende Proth-Zahl $N = k \cdot 2^n + 1$ eine Primzahl ist.

Aktueller Untersuchungsstand (Oktober 2007)

Ein Primzahl wurde für alle k < 78557 gefunden, außer für k = 10223, 21181, 22699, 24737, 55459, 67607

Für diese k wurden alle Prothschen Zahlen bis n = 10 Millionen getestet.

Am 17.Oktober 2007 wurde durch Sturle Sundle die Primzahl $3\overline{3}661 \cdot 2^{7031232} + 1$ gefunden. Das Sierpinski-Problem wurde damit auch für k = 33661 gelöst. Die berechnete Primzahl hat 2 Millionen 116 Tausend 617 Ziffern.

Sierpinski-Zahl

Eine Sierpinski-Zahl (nach dem polnischen Mathematiker Waclaw Sierpinski) ist damit eine natürliche, ungerade Zahl k, deren Folge aus Zahlen der Form $k \cdot 2^n + 1$ mit $n \ge 1$ keine Primzahlen enthält.

Rekordprimzahlen des Autors

Die Liste enthält die vom Autor mit Hilfe des Programms "Proth" entdeckten 1000 größten Primzahlen.

Ziffern	Primzahl	Anfangsziffern,Bemerkung
36449	400719*2^121061+1	3.93682
36449	439215*2^121059+1	1.07875
36447	237825*2^121054+1	1.82538
36446	391455*2^121051+1	3.75567
36444	206613*2^121046+1	6.19459
36442	129195*2^121040+1	6.05231
15641	10^(2*7820)+3*10^7820+1	, Palindrom
14342	12509*14^12509+1	1.02996, verallgemeinerte Cullen-Zahl
9331	249435*2^30977+1	Primzahlzwilling
9331	249435*2^30977-1	Primzahlzwilling

Riesel-Zahl

Eine Riesel-Zahl (nach dem schwedischen Mathematiker Hans Riesel) ist eine natürliche, ungerade Zahl k, deren Folge aus Zahlen der Form $k \cdot 2^n - 1$ mit $n \ge 1$ keine Primzahlen enthält. Zum Beispiel ist die Zahl k = 23 keine Riesel-Zahl, da in der Folge $23 \cdot 2^n - 1$ wenigstens eine Primzahl

auftritt: 45, 91, 183, 367. Riesel selbst fand 1956 mit 509203 eine Riesel-Zahl. Es ist jedoch noch nicht bekannt, ob 509203 die kleinste Riesel-Zahl ist.

Brier-Zahl

Eine Sierpinski-Zahl ist eine natürliche Zahl k, für die $k \cdot 2^n + 1$ für jedes n zusammengesetzte Zahl ist. 1962 entdeckte John Selfridge die erste Sierpinski-Zahl k = 78557, welche wahrscheinlich die kleinste ist. Eine Riesel-Zahl ist eine natürliche Zahl k, für die $k \cdot 2^n - 1$ für alle n nicht prim ist. 1956 zeigte Riesel, dass k = 509203 diese Eigenschaft besitzt.

Durch Eric Brier wurde nun nach Zahlen k gesucht, die gleichzeitig Sierpinski- und Riesel-Zahl sind, d.h. $k\cdot 2^n+1$ und $k\cdot 2^n-1$ sind stets zusammengesetzt. Solche Zahlen heißen Brier-Zahlen.

Eine Brier-Zahl (1998) ist 29364695660123543278115025405114452910889 (41 Ziffern)

Durch Yves Gallot wurden 2000 eine 30stellige Brier-Zahl und weitere gefunden:

623506356601958507977841221247 3872639446526560168555701047 (28 Ziffern) 878503122374924101526292469 (27 Ziffern)

Auf der Suche nach der kleinsten Brier-Zahl wurde systematisch mit Computereinsatz nach Faktoren k gesucht, für die beginnend ab n = 1 möglichst lange Folgen zusammengesetzter Zahlen $k \cdot 2^n + 1$ und $k \cdot 2^n - 1$

auftreten. Gegenwärtig kennt man

k	nicht prim bis n=	erste prime Zahl	Entdec	ker
13	1	13·2² +1	Rivera	
47	3	47·2 ⁴ -1	Rivera	
59	4	59·2 ⁵ +1	Rivera	
109	5	109·2 ⁶ +1	Rivera	
241	10	241·2 ¹¹ -1	Rivera	
335	17	335·2 ¹⁸ -1	Rivera	
1109	19	1109·2 ²⁰ -1	Rivera	
1373	27	1373·2 ²⁸ -1	Rivera	
1447	69	1447·2 ⁷⁰ +1	Rivera	
14893	105	14893·2 ¹⁰⁶ +1	Rivera	
52267	149	52267·2 ¹⁵⁰ +1	Rivera	
56543	725	56543·2 ⁷²⁶ -1	Rivera	
649603	2905	$649603 \cdot 2^{2906} + 1$	Rivera	
838441	7430	838441·2 ⁷⁴³¹ -1	Rivera	
8840101	14072	8840101·2 ¹⁴⁰⁷³ -1	Rivera	
16935761	22393	16935761·2 ²²³⁹⁴ -1	Rivera	
100604613	41421	100604613·2 ⁴¹¹⁴²² -1	Keller	
118373279	82586	$118373279 \cdot 2^{82587} + 1$	Keller	
270704167	85460	270704167·2 ⁸⁵⁴⁶¹ -1	Keller	
1355477231	356980	$1355477231 \cdot 2^{356981} +$	1	107472 Ziffern, Keller 2002

Ballinger-Beobachtung

Während der Suche nach Prothschen Primzahlen der Form $k \cdot 2^n + 1$ wurde durch Ray Ballinger beobachtet, dass für einige k sehr viele Primzahlen gefunden werden könenn. Zum Beispiel ergibt k = 12909 bis n = 73000 für 81 verschiedene n eine Primzahl. Folgende k führen zu überdurchschnittlich vielen primen Prothschen Primzahlen:

k	Primzahlen	maximales n	P/In(n)	Entdecker
2863575	81	56729	7,437	Brennen
12909	81	73000	7,444	Ballinger, Keller
28995	90	30000	8,785	Keller
577294575	113	41312	10,631	Brennen
945561887392230553	3579269135	142	110000	Smith, Carmody

Primzahlen ergeben sich für k=577294575 zum Beispiel für folgende n $n=31,\,38,\,39,\,40,\,43,\,50,\,53,\,58,\,60,\,67,\,72,\,82,\,99,\,108,\,119,\,126,\,151,\,171,\,174,\,179,\,255,\,263,\,270,\,310,\,330,\,355,\,357,\,387,\,419,\,511,\,571,\,612,\,647,\,650,\,685,\,804,\,833,\,879,\,898,\,923,\,992,\,1079,\,1100,\,1202,\,1286,\,1320,\,1364,\,1395,\,1411,\,1600,\,1618,\,1647,\,1722,\,1768,\,1772,\,1854,\,2025,\,2130,\,2664,\,2884,\,2905,\,3050,\,3390,\,3405,\,3437,\,3589,\,3646,\,3659,\,3966,\,4732,\,5276,\,5429,\,6517,\,6604,\,6914,\,7140,\,7232,\,7724,\,8102,\,8196,\,10086,\,10530,\,11795,\,12715,\,13398,\,14665,\,16755,\,19156,\,19542,\,20511,\,20694,\,21671,\,22455,\,26292,\,29767,\,30862,\,31279,\,\dots$

Auch für Primzahlen der k · 2ⁿ-1 findet man "sehr produktive" Werte für k

	k	Primza	hlen	maximales n	P/In(n)	Entdecker	
	81555	66		28033	6,543	Ballinger, Keller	
	22932195	92		27490	9,083	Jack Brennen	
	147829610027	'385	97	21493	9,7238	Robert Smith	

Riesel-Liste

In dem Buch "Prime Numbers and Computer Methods for Factorization" begründete 1994 Hans Riesel die nach ihm benannte Liste von Primzahlen, welche im WWW durch Ray Ballinger und Wilfrid Keller fortgesetzt wird. Diese Liste enthält alle bekannten Prothschen Primzahlen $k*2^n+1$ (März 2000) mit k<300. Ein Tabelleneintrag der Form

k a, b, ... [xxxx]

bedeutet dabei, dass die Zahlen k^2^a+1 , k^2^b+1 , ... als prim erkannt wurden und alle Exponenten n < xxxx getestet wurden.

Liste der bekannten Prothschen Primzahlen k*2^n+1

k	n						
1	1	2	4	8	16	[167]	77215]
3	1	2	5	6	8	12	18
5	1	3	7	13	15	25	39
7	2	4	6	14	20	26	50
9	1	2	3	6	7	11	14
11	1	3	5	7	19	21	43
11	1	3	5	7	19	21	43

13	2	8	10	20	28	82	188
15	1	2	4	9	10	12	27
17	3	15	27	51	147	243	267
19	6	10	46	366	1246	2038	4386
21	1	4	5	7	9	12	16
23	1	9	13	29	41	49	69
25	2	4	6	10	20	22	52
27	2	4	7	16	19	20	22
29	1	3	5	11	27	43	57
31	8	60	68	140	216	416	1808

Diese Liste enthält alle bekannten Prothschen Primzahlen k*2^n-1 (März 2000) mit k<300. Ein Tabelleneintrag der Form

k a, b, ... [xxxx]

bedeutet dabei, dass die Zahlen k^*2^a-1 , k^*2^b-1 , ... als prim erkannt wurden und alle Exponenten n < xxxx getestet wurden.

Liste der bekannten Prothschen Primzahlen k*2^n-1

k		n					
1	2	3	5	7	13	17	19
3	1	2	3	4	6	7	11
5	2	4	8	10	12	14	18
7	1	5	9	17	21	29	45
9	1	3	7	13	15	21	43 T
11	2	26	50	54	126	134	246
13	3	7	23	287	291	795	2203
15	1	2	4	5	10	14	17
17	2	4	6	16	20	36	54
19	1	3	5	21	41	49	89
21	1	2	3	7	10	13	18
23	4	6	12	46 GW	72	244	264
25	3	9	11	17	23	35	39
27	1	2	4	5	8	10	14
29	4	16	76	148	184	11008	147316
31	1	5	7	11	13	23	33

Besondere Rekordprimzahlen

Auf Grund der Existenz des Prothschen Theorems und des Lucas-Lehmer-Kriteriums erweist es sich einfacher, Primzahlen der Struktur b $*a^n \pm 1$ für a=2 nachzuweisen als für eine von 2 abweichende Basis oder eine völlig abweichende Struktur der Primzahl.

Die Tabelle enthält die größten bekannten (14.Dezember 1998) Primzahlen, welche nicht mit Hilfe einer Zweierpotenz dargestellt werden können und eine besondere Eigenschaft aufweisen.

Zweierpotenz dargestene werden konnen und eine besondere zigensendre darweisen.					
Zahl	Ziffern	Entdecker, Jahr und Besonderheit			
6917!-1	23560	Caldwell 98, Faktorzahl			
6380!+1	21507	Caldwell 98, Faktorzahl			
2*3 ⁴³⁹⁵⁶ +1	20973	Galloth 98, Generalized Cullen			
72020*3 ³⁸⁵¹⁷ +1	18383	Ball 98			
$10^{16360} + 3644463 * 10^{8177} + 1$	16361	Dubner 97, Palindrome			
8*R(12600)*10 ³⁷⁰⁵ +1	16305	Dubner 97, Most leading 8's			
$10^{15550} + 7410147 * 10^{7772} + 1$	15551	Dubner 97, Palindrome			
$10^{15550} + 7105017*10^{7772} + 1$	15551	Dubner 97, Palindrome			
$10^{15550} + 4260624 \times 10^{7772} + 1$	15551	Dubner 97, Palindrome			
$10^{15550} + 3698963 * 10^{7772} + 1$	15551	Dubner 97, Palindrome			
$10^{15550} + 1216121 * 10^{7772} + 1$	15551	Dubner 97, Palindrome			
69945111	15053	Mihailescu 98, Cyclotomy			
134088*10 ¹⁵⁰³⁰ +1	15036	Dubner 94			
11406780*17 ¹²¹⁰⁵ +1	14902	Brennen 98			
30*71 ⁸⁰³⁹ +1	14884	Hartman 98			

Repitition-Unit-Zahlen

- ... Zahl bestehend aus einer Folge von Ziffern 1
- \Rightarrow Tritt in der Primfaktorzerlegung der n.ten Repitition-Unit-Zahl R_n ein Faktor k auf, so hat der Stammbruch 1/k die Periodenlänge n.
- \Rightarrow R_n kann nur für primes n selbst Primzahl sein, da (10^{pq} 1)/9 = (10^{p-1}) (10^{pq-p} +10^{pq-2p} +...+1)/9
- \Rightarrow Bekannte R_n-Primzahlen R₂, R₁₉, R₂₃, R₃₁₇, R₁₀₃₁
- \Rightarrow 1985 wies H.Dubner nach, dass R_{1031} prim ist. Dies wurde schon 1979 von H.C.Williams vermutet

 \Rightarrow die Suche nach der $6.R_n$ -Primzahl wurde 1998 von Granlund auf einem Parallelrechner ohne Erfolg bis n=45000 durchgeführt

 \Rightarrow für die 6.R_n-Primzahl wurde am 9.9.1999 durch H.Dubner n = 49081 als wahrscheinlich nachgewiesen.

 \Rightarrow am 26.0ktober 2000 entdeckte Lew Baxter die nächste wahrscheinliche Repunit-Primzahl für n = 86453.

Repitition-Unit-Zahlen ... Zahl bestehend aus einer Folge von Ziffern 1. Bekannte R(n)-Primzahlen = R2, R19, R23, R317, R1031 Für Zahlen 10^n - 1 mit geradem n=2*k gilt 10^n - $1=(10^k$ - $1)*(10^k$ + 1).

Zahl n Teiler (ohne kleinere R-Zahlen als Teiler)

0 Primzahl 3 37 5 41, 271 7 239, 4649 9 333667 11 21649, 513239 13 53, 79, 265371653 31, 2906161 15 17 2071723, 5363222357 19 Primzahl 21 43, 1933, 10838689 23 Primzahl 25 21401, 25601, 182521213001 27 757, 440334654777631 3191, 16763, 43037, 62003, 77843839397 29 31 2791, 6943319, 57336415063790604359 67, 1344628210313298373 33 35 71, 123551, 102598800232111471 37 2028119, 247629013, 2212394296770203368013

Verallgemeinerte Repitition-Unit-Zahlen

... Struktur $(b^n-1)/(b-1)$, b>1

399

- ... für b=2 entsprechen diese Zahlen den Mersenneschen Zahlen
- \dots für b=10 entsprechen diese Zahlen den eigentlichen Repitition-Unit-Zahlen
- ... verallgemeinerte Repitition-Unit-Zahlen haben im Zahlensystem zur Basis b eine Darstellung, welche nur aus Ziffern 1 besteht

Liste der bekannten verallgemeinerten RepUnit-Primzahlen mit mehr als 1000 Ziffern

6316969, 34282879, 1473464802559, 7459654752238258604700923083, P162

Zifferr		Entdecker	Ziffern Zahl	Entdecker
	$(11^{10867}-1)/10$	Sloane 98	10510 (12 ⁹⁷³⁹ -1)/11	Sloane 98
	(6 ¹⁰⁶¹³ -1)/5	Sloane 98	7653 (5 ¹⁰⁹⁴⁹ -1)/4	Sloane 98
5925	(1956 ¹⁸⁰¹ -1)/1955	Dubner, Brent 94	5626 (86 ²⁹⁰⁹ -1)/85	Steffen Polster 99
5576	$(98^{2801}-1)/97$	Steffen Polster 99	$5366 (11^{5153}-1)/10$	Sloane 98
5356	$(6^{6883}-1)/5$	Sloane 98	5205 (83 ²⁷¹³ -1)/82	Steffen Polster 99

Trügerische Zahlen

Jede ungerade Primzahl p teilt, die aus n-1 Einsen bestehende Repunit-Zahl R_{n-1}.

Durch R.Francis und T.Ray werden zusammengesetzte Zahlen n trügerisch (engl. deceptive) genannt, wenn n ebenfalls die Repunit-Zahl R_{n-1} teilt.

Zum Beispiel ist die 91 trügerisch, da 91 = $7 \cdot 13$ und 91 Teiler von R_{90} ist.

Francis und Ray bewiesen, dass es unendlich viele trügerische Zahlen gibt, da für jedes trügerische n auch R_{n} trügerisch ist.

Die ersten trügerischen Zahlen sind 91, 259, 451, 481, 703, 1729, 2821, 2981, 3367, 4141, 4187, 5461, 6533, 6541, 6601, 7471, 7777, 8149, 8401, ...

Fibonacci-Primzahlen

Primzahlen der Folge $F_{n+2}=F_n+F_{n-1},\,F_0=0,\,F_1=1$ prim für $n=3,\,4,\,5,\,7,\,11,\,13,\,17,\,23,\,29,\,43,\,47,\,83,\,131,\,137,\,359,\,431,\,433,\,449,\,509,\,569,\,571,\,2971,\,4723,\,5387,\,9311,\,9677,\,14431,\,25561,\,30757,\,35999,\,37511,\,50833,\,81839$ Die Fibonacci-Zahlen mit dem Index n=1

n = 104911, 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721

sind bisher nur als wahrscheinlich prim nachgewiesen worden.

Hohle Primzahl

Eine Primzahl p wird hohl (engl. holey prime) genannt, wenn jede ihrer Ziffern ein "Loch" besitzt, d.h. nur aus den Ziffern 0, 4, 6, 8 und 9 besteht. Die kleinste hohle Primzahl ist 89, gefolgt von 409, 449, 499, 809, 4409, ...

Palindrom-Primzahl

Bei einer Palindrom-Primzahl ist die Ziffernfolge umkehrbar; Beispiel: 122333221, 5932112395

Repunit-Primzahl

Repunit-Primzahlen sind von der Struktur (b^n-1)/(b-1), b=10; prim für n=2, 19, 23, 317, 1031; getestet bis 30000

Allgemeine Repunit Primzahl

Eine allgemeine Repunit-Primzahl hat die Struktur (b^n-1)/(b-1), $b\ne 10$.

Biest Palindrom Primzahl

Eine Biest Palindrom Prinzahl ist ein primes Palindrom, welches in der Mitte die Ziffernfolge 666 ("the number of the beast") enthält. Die ersten Biest-Palindrom-Primzahlen (engl.: Beast Palindrom Prime) sind:

16661, 76667, 3166613, 3466643, 7466647, 7666667, 145666541, 148666841, 152666251, 155666551, 169666961, 176666671, 181666181, 304666403, 305666503, 307666703, 308666803, 329666923, 347666743, 349666943, ...

Reflektierbare Primzahlen

Eine Primzahl p wird nach Chris Caldwell reflektierbar (engl. reflectable prime) genannt, wenn diese an der Grundlinie gespiegelt sich selbst ergibt, d.h. invariant bei einer derartigen Spiegelung ist. Wird die Ziffer 1 als I geschrieben, so kann eine reflektierbare Primzahl damit nur die Ziffern 0, 1, 3 oder 8 enthalten.

Die ersten reflektierbaren Primzahlen sind

Triadische Primzahlen

Eine Primzahl p wird nach Charles W.Trigg triadische Primzahl oder reflektierbare Palindromprimzahl genannt, wenn diese an der Grundlinie gespiegelt sich selbst ergibt, d.h. invariant bei einer derartigen Spiegelung ist, und zusätzlich eine Palindromprimzahl (umkehrbare Primzahl) ist.

Wird die Ziffer 1 als I geschrieben, so kann eine triadische Primzahl damit nur die Ziffern 0, 1, 3 oder 8 enthalten.

Die ersten triadischen Primzahlen sind

3, 11, 101, 131, 181, 313, 383, 10301, 11311, 13331, 13831, 18181, 30103, 30803, 31013, 38083, 38183, 1003001, 1008001, 1180811, 1183811, 1300031, 1303031, 1311131, 1333331, 1338331, 1831381, 1880881, 1881881, 1883881, ...

Uhr-Primzahl

... Primzahl, deren Ziffern eine der Uhrzeigerrichtung entsprechende aufsteigende Ziffernfolge darstellt Beispiele: 2, 3, 5, 7, 11, 23, 67, 89, 4567, 23456789, 23456789101112123, 891011121234567891011, 234567891011121234567891011121234567891011121234567891011121234567891011, ... (nach Patrick de Geest 1998)

Beispiele gegen den Uhrzeigersinn: 2, 3, 5, 7, 11, 43, 109, 10987, 76543, 6543211211, 4321121110987, ...

Spezielle Primzahlen

die größte "gewöhnliche" Primzahl (2¹¹²⁷⁹+1)/3 (3395 Ziffern)

... gefunden durch P. Mihailescu, Januar 1998

die längste arithmetische Zahlenfolge von Primzahlen 11410337850553 + 4609098694200 i, mit i=0..21

... gefunden durch Paul Pritchard und Anthony Thyssen, 17.3.1993

Wilson Primzahlen

Primzahlen mit $(p-1)! = -1 \mod p^2$

Es sind nur 5, 13 und 563 bekannt. (Suche bis 5*108)

Gute Primzahlen

Die n.te Primzahl p_n wird gut genannt, wenn für alle Paare $p_{n-1} \cdot p_{n+1}$ gilt.

Es gibt unendlich viele derartige Primzahlen, von denen die ersten sind:

Diese Definition geht auf Paul Erdös und Ernst Gabor Straus zurück. In einer alternativen Definition heißt eine Primzahl gut, wenn sie größer als das geometrische Mittel des benachbarten Primzahlpaares ist, d.h. $p_n^2 > p_{n-1} \cdot p_{n+1}$. Die erste Primzahl, die abweichend von der obigen Definition, nun gut ist, ist die 79.

Wieferich Primzahlen

Wieferich-Primzahlen sind spezielle Primzahlen p mit $2^{p-1} = 1 \mod p^2$.

Man kennt bisher nur 2 Wieferich-Primzahlen: 1093 (gefunden im Jahr 1913 von W.Meissner) und 3511 (gefunden im Jahr 1922 von N.G.W.H.Beeger). Mit Computerhilfe wurden bis Juni 2003 alle Zahlen bis $1,25 \cdot 10^{15}$ untersucht (McIntosh 2004). Weitere Wieferich-Primzahlen fand man nicht.

Interessant ist, dass die Wieferich-Primzahlen - 1 eine erstaunlich symmetrische Binärdarstellung besitzen (Johnson 1977):

```
1092 = 10001000100_2

3510 = 110110110110_2
```

Benannt wurden diese Primzahlen nach dem deutschen Mathematiker Arthur Wieferich.

Wieferich beschäftigte sich mit dem großen Satz von Fermat. 1909 veröffentlichte er den folgenden Satz:

Sei $x^p + y^p + z^p = 0$ wobei x, y, z ganze Zahlen sind und p eine ungerade Primzahl ist. Weiterhin sei das Produkt $x \cdot y \cdot z$ nicht teilbar durch p. Dann ist p eine Wieferich-Primzahl, d.h. $a^{p-1} - 1$ ist teilbar durch p^2 mit a = 2.

1910 zeigte der Mathematiker Mirimanoff, dass dieser Satz auch für a = 3 gilt. Inzwischen weiß man, dass es keine Primzahlen gibt, die die Voraussetzungen des Satzes erfüllen.

Eigenschaften

Es ist nicht bekannt, ob es unendlich viele Wieferich-Primzahlen gibt. Man vermutet, dass dies nicht der Fall ist. 1988 bewies J.H.Silverman, dass es unendlich viele Primzahlen gibt, die keine Wieferich-Primzahlen sind.

Aus der Wieferich-Primzahl w kann die Zahl

$$M_n = M_{w-1} = 2^{w-1} - 1 = x w^2$$

konstruiert werden. n = w-1 ist somit nicht prim, und M_n keine Mersenne-Primzahl.

Offen ist, ob es Mersennesche Primzahlen $M_p < M_{w-1}$ gibt, die durch w^2 teilbar sind. Dabei muss p ein Teiler von w-1 sein, wenn M_p durch w teilbar sein soll.

A. Wieferich: "Zum letzten Fermat'schen Theorem." Journal für Reine Angewandte Math., 136 (1909) 293-302

Wieferich-Primzahlpaar

Ein Paar (p; q) wird Wieferich-Primzahlpaar genannt, wenn

$$p^{q-1} = 1 \pmod{q^2}$$
 und $q^{p-1} = 1 \pmod{p^2}$ gilt.

Die einzigen bekannten Paare sind (2, 1093), (3, 1006003), (5, 1645333507), (83, 4871), (911, 318917) und (2903, 18787).

Besitzt die Diophantische Catalansche Gleichung

$$x^p - y^q = \pm 1$$

nicht triviale Lösungen x, y und sind p und q Primzahlen größer als 3, dann muss (p, q) ein Wieferich-Primzahlpaar sein. Im Jahr 2000 wurde dies durch Mihailescu bewiesen.

Wall-Sun-Sun-Primzahl

Eine Wall-Sun-Sun-Primzahl ist eine Primzahl p > 5, für die p^2 ein Teiler der durch p teilbaren Zahl $F(p - (p^2 - p_3))$

ist. Dabei ist F(n) die n.te Fibonacci-Zahl und (a-- b) das Legendre-Symbol von a und b.

Wall-Sun-Sun-Primzahlen sind nach D.D.Wall, Zhi Hong Sun und Zhi Wei Sun benannt. Z.H.Sun und Z.W.Sun zeigten 1992, dass p eine Wall-Sun-Sun-Primzahl ist, wenn der erste Fall der Fermatschen Vermutung für p falsch ist, d.h. wenn zu p teilerfremde ganze Zahlen x,y,z existieren mit $x^p + y^p + z^p = 0$.

Es handelt sich um ein Analogon zu den Wieferich-Primzahlen. Die Gültigkeit der Fermatschen Vermutung impliziert, dass die Voraussetzung des obigen Satzes nie erfüllt ist.

Bis heute (2007) sind keine Wall-Sun-Sun-Primzahlen bekannt. Wenn eine existiert, so muss sie größer als 10^{14} sein. Es wird vermutet, dass unendlich viele Wall-Sun-Sun-Primzahlen existieren.

Wolstenholme-Primzahl

Satz von Wolstenholme 1862 (nach Joseph Wolstenholme, 1829-1891):

Ist p > 4 eine Primzahl, so ist der Zähler der rationalen Zahl 1 + 1/2 + 1/3 + ... + 1/(p-1) durch p² teilbar.

Dieser Satz ist äquivalent zu der Aussage, dass der Zähler von $1 + 1/2^2 + 1/3^2 + ... + 1/(p-1)^2$ durch p teilbar ist.

Eine Zahl p ist dann eine Wolstenholme-Primzahl, wenn sie eine stärkere Fassung des Satzes von Wolstenholme erfüllt, d.h. eine der nachfolgenden Bedingungen

Der Zähler von 1 + 1/2 + 1/3 + ... + 1/(p-1)

ist durch p³ teilbar.

 $1 + 1/2^2 + 1/3^2 + ... + 1/(p-1)^2$ Der Zähler von

ist durch p² teilbar.

Der Zähler der Bernoulli-Zahl B_{p-3} ist durch p teilbar.

Die beiden bisher einzigen bekannten Wolstenholme-Primzahlen sind 16843 und 2124679. Jede weitere Wolstenholme-Primzahl müsste größer als 6,4·10⁸ sein.

McIntosh vermutet, dass es unendlich viele solcher Primzahlen gibt. Allgemein geht man davon aus, dass dies korrekt ist. Ein Beweis ist aber im Moment noch undenkbar.

Diese Primzahlen sind mit den Wieferich-Primzahlen verwandt.

Yarborough-Primzahl

Unter einer Yarborough-Primzahl p versteht man eine Primzahl, die keine Ziffern '0' und '1' enthält. Die ersten derartigen Primzahlen sind

```
2, 3, 5, 7, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 223, 227, 229, 233, 239, 257, 263, 269,
277, 283, 293, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 433, 439, 443, 449, 457, 463,
467, 479, 487, 499, 523, 547, 557, 563, 569, 577, 587, 593, 599, 643, 647, 653, 659, 673, 677, 683, 727, 733, 739, 743, 757, 769, 773, 787, 797, 823, 827, 829, 839, 853, 857, 859, 863, 877, 883, 887,
929, 937, 947, 953, 967, 977, 983, 997,
```

Anti-Yarborough-Primzahl

Eine Anti-Yarborough-Primzahl enthält ausschließlich die Ziffern 0 und 1. Diese Primzahlen sind relativ selten. Die ersten sind

```
11, 101, 10111, 101111, 1011001, 1100101, 10010101, 10011101, 10100011, 10101101, 10110011,
10111001, 11000111, 11100101, 11110111, 11111101, 100100111, 100111001, 101001001,
111000101, 111001001, 111010111, 1000001011, ...
```

Zeigerprimzahl

Eine Primzahl p heißt Zeigerprimzahl, wenn die Summe aus p und den einzelnen Ziffern von p den Wert der nachfolgenden Primzahl angibt, d.h. so auf diese "zeigt".

Im Englischen wird von "a-pointer prime" gesprochen. Das "a" steht dabei für "additive".

Zum Beispiel ist die 293 eine Zeigerprimzahl, da

293 + 2 + 9 + 3 = 307

und 307 die nächste Primzahl nach 293 ist.

Quelle: http://www.numbersaplenty.com/set/a-pointer prime/

Die ersten Zeigerprimzahlen sind:

```
11, 13, 101, 103, 181, 293, 631, 701, 811, 1153, 1171, 1409, 1801, 1933, 2017, 2039, 2053, 2143,
2213, 2521, 2633, 3041, 3089, 3221, 3373, 3391, 3469, 3643, 3739, 4057, 4231, 5153, 5281, 5333, 5449, 5623, 5717, 6053, 6121, 6301, 7043, 7333, 8101, ...
```

Ausbalancierte Primzahl

Unter einer ausbalancierten Primzahl p versteht man eine Primzahl, die das arithmetische Mittel der vorherigen und nachfolgenden Primzahl ist.

Die ersten derartigen Primzahlen sind 5, 53, 157, 173, 211, 257, 263, 373, ...

2006 entdeckten David Broadhurst und François Morain mit Hilfe des Programms PrimeForm mit $197418203 \cdot 2^{25000} - 1$

die bis heute größte bekannte ausbalancierte Primzahl.

Primzahlen der Form 999...999z

Für den Bereich 1 < n < 4616 (Polster, Juni 2006) wurden alle Zahlen der Form 10^{n} -10+z mit z = 1, 7auf Primzahleigenschaft getestet. Dabei wurden nur relativ wenige gefunden: endend auf

```
3, 5, 7, 33, 45, 105, 197, 199, 281, 301, 317, 1107, 1657, 3395
1
       1, 2, 3, 17, 140, 990, 1887, 3530
```

Die größte gefundene derartige Primzahl besteht damit aus 3529 Ziffern '9' und einer Ziffer '7'.

Primzahlen der Form 10¹⁰⁰⁰ - k*10ⁿ -1

```
Für n < 1000 und k = 1, 2, ..., 9 existieren nur die 1000stelligen Primzahlen:
       für k = 1 ... n = 308, 748, 832
                                               für k = 2 ... n = 302, 793
       für k = 5 ... n = 5, 313
                                               für k = 7 ... n = 332, 414, 978
       für k = 8 ... n = 81, 177, 603
```

Primzahlen der Form 10²ⁿ - k*10ⁿ -1

Für den Bereich n = 1, ..., 1753; k = 1, ..., 8 wurden folgende Zahlen als Primzahlen nachgewiesen (Polster, Juni 2006):

```
k
        Primzahlen für n ...
```

- 1 1, 6, 9, 154, 253, 1114, 1390
- 2 1, 8, 21, 123
- 1, 4, 11, 532, 1105 4, 5, 6, 34, 478 4
- 5
- 7 1, 26, 206
- 8 1, 2, 3, 12, 87, 560, 1202, 1618

Diese Primzahlen sind Fast-Palindrome mit einer Ziffernfolge von (n-1) Ziffern '9' einer anderen Ziffer '9k' und erneut n Ziffern '9'.

Primzahlen der Form $10^{(2n+1)}$ - $k*10^n$ -1

Für den Bereich n = 1, ..., 1012; k = 1, ..., 9 wurden folgenden Zahlen als Primzahlen nachgewiesen:

- Primzahlen für n ...
- 26, 378, ..., 23034
- 2 118
- 4 88, 112, 198, 622, ..., 10052
- 5 14, 22, 36, 104, ..., 17864, 25448
- 7 1, 8, 9, 352, 530, 697
- 8 1, 5, 13, 43, 169, 181, ..., 18077, 22652

Diese Primzahlen sind Palindrome mit einer Ziffernfolge von n Ziffern '9' einer anderen Ziffer '9-k' und erneut n Ziffern '9'.

Primzahlen der Form 10²ⁿ + k*10ⁿ +1

Für den Bereich n = 1, ..., 8531; k = 1, ..., 9 wurden folgenden Zahlen als Primzahlen nachgewiesen:

- Primzahlen für n ...
- 1, 2, 3, 4, 11, 14, 16, 92, 133, 153, 378, 448, 785, 1488, 1915, 2297, 3286, 4755, 7820, 34442, 3 34941
- 5 1, 2, 4, 5, 8, 27, 165, 230, 237, 369, 485, 628, 875, 964, 1419
- 2, 4, 24, 32, 34, 72, 75, 164, 532, 1335, ..., 29762 6
- 1, 3, 6, 9, 13, 17, 29, 63, 90, 531, ..., 14286, 30617 8
- 1, 5, 71, 311

Diese Primzahlen sind Palindrome mit einer Ziffernfolge von einer Ziffer '1', (n-1) Ziffern '0' einer anderen Ziffer 'k', erneut (n-1) Ziffern '0' und einer abschließenden Ziffer '1'. Der Primzahl-Palindrom $10^{2*7820} + 3*10^{7820} + 1$ hat immerhin 15641 Ziffern.

Primzahlen der Form 9*10²ⁿ + k*10ⁿ +9

Für den Bereich n = 1, ..., 5084; k = 1, ..., 9 wurden folgenden Zahlen als Primzahlen nachgewiesen:

- k Primzahlen für n ...
- 1 1, 4, 17, 26, 28, 47, 70, 91, 1129
- 2 1, 3, 5, 13, 17, 171, 255, 441, 1443, 1747, 2755, 3195, 4299
- 5 4, 6, 16, 318, 2960
- 2, 6, 138, 666, 1350, 1438, 1968
- 8 10, 28, 46, 74

Diese Primzahlen sind Palindrome mit einer Ziffernfolge von einer Ziffer '9', (n-1) Ziffern '0' einer anderen Ziffer 'k', erneut (n-1) Ziffern '0' und einer abschließenden Ziffer '9'.

Primzahlen der Form 1000...000z

Für den Bereich 0 < n < 12647 (Stand: Juli 2013, Polster) wurden alle Zahlen der Form $10^n + z$ mit z = 1, 3, 7, 9 auf Primzahleigenschaft getestet.

endend auf

- 1 1, 2 ... [getestet bis 22335]
- 1, 2, 5, 6, 11, 17, 18, 39, 56, 101, 105, 107, 123, 413, 426, 2607, 10470, 11021, 17753, 26927 3
- 7 1, 2, 4, 8, 9, 24, 60, 110, 134, 222, 412, 700, 999, 1383, 5076, 5543, 6344, 14600, 15093, 21717, 23636, 30221, 50711
- 1, 2, 3, 4, 9, 18, 22, 45, 49, 56, 69, 146, 202, 272, 2730, 2841, 4562, 31810, 43186, 48109 Die größte gefundene derartige Primzahl besteht damit aus einer Ziffer '1', 10469 Ziffern '0' und einer Ziffer '3'.

Weiterhin enden Primzahlen der Form 10^n+z auf z=13, 19, 21, 27, 31 bzw. 33 (gesucht 0 < n < 11147, Mai 2015, Polster):

endend auf

- 2, 3, 17, 25, 81, 140, 142, 152, 280, 291, 406, 4209, 4785, 8474, 9550, 9596 3, 5, 7, 10, 11, 17, 59, 81, 108, 574, 629, 1069, 1759, 2063, 2682, 9174 13
- 19
- 21 1, 3, 9, 17, 55, 77, 133, 195, 357, 1537, 2629, 3409, 8007
- 27 1, 2, 83, 167, 242
- 1, 2, 3, 14, 18, 44, 54, 89, 469, 2060, 2985, 6197 31
- 1, 3, 6, 9, 10, 31, 47, 70, 281, 366, 519, 532, 775, 1566, 1627, 2247, 2653, 4381, 4571 33

Im Englischen werden Primzahlen der Form $10^n \pm z$ Randprimzahlen genannt. Ist z < n so wird die Primzahl defiziente Randprimzahl genannt, für z = n effiziente Primzahl und für z > n suffiziente Randprimzahl.

Effiziente Primzahl, Effiziente Randprimzahl

Primzahlen der Form $10^n \pm n$ mit n = 1, 2, 3, ... werden effiziente Primzahl bzw. effiziente Randprimzahl genannt. Dabei ist es möglich, auch auf andere Basen zu erweitern.

Für den Bereich $1 \le n \le 10200$ (Mai 2015, Polster) wurden alle Zahlen der Form a^n - n mit a=2,3,...,11 auf Primzahleigenschaft getestet; für den Bereich $1 \le n \le 10200$ die entsprechenden Zahlen der Form a^n + n:

Primzahlen der Form an-n

```
2
        2, 3, 9, 13, 19, 21, 55, 261, 3415, 4185, 7353, ...
3
        1, 2, 8, 20, 40, 104, 110, 208, 472, 832, 1982, ...
4
        1, 3, 5, 35, 95, 1323, ...
5
        2, 6, 12, 362, 884, 9722, ...
        1, 19, 43, 607, 889, 3727, ...
6
7
        2, 6, 8, 12, 44, 48, 512, 1088, 1104, 6038, ...
8
        1, 3, 37, 45, 597, 1131, ...
9
        2, 70, 88, 6562, 9100, ...
10
        3, 23, 171, 903, 9911, ...
11
        18, 38, 360, 480, 740, 1368, ...
Primzahlen der Form an+n
а
        1, 3, 5, 9, 15, 39, 75, 81, 89, 317, 701, 735, 1311, 1881, 3201, 3225, ...
2
        2, 8, 34, 1532, ...
3
        1, 3, 9, 15, 37, 85, 133, 225, 1233, ...
4
5
        7954, ...
        1, 305, 761, 1357, 3793, 4027, ...
6
        34, 48, ...
7
8
        101, ...
        2, 76, ...
9
10
        1, 9, 69, 313, 451, ...
```

Primzahlen der Form bⁿ+1

Primzahlen der Form $b^n + 1$ können für Basen b = 2, 4, 6, ... nur auftreten, wenn n eine Zweierpotenz ist. Andernfalls ist $b^n + 1$ zusammengesetzte Zahl.

```
Für b = 2 ergeben sich die Fermatschen Primzahlen. Man kennt nur fünf Primzahlen dieser Art 2^1 + 1 = 3 2^2 + 1 = 5 2^4 + 1 = 17 2^8 + 1 = 257 2^{16} + 1 = 65537
```

Für die Basis 10 kennt man bisher nur die Primzahlen

```
10^1 + 1 = 11 \quad 10^2 + 1 = 101
```

Für andere Zweierpotenzen als Exponenten findet man die Zerlegung

```
10^4 + 1 = 73 \cdot 137

10^8 + 1 = 17 \cdot 5882353

10^{16} + 1 = 353 \cdot 449 \cdot 641 \cdot 1409 \cdot 69857

10^{32} + 1 = 19841 \cdot 976193 \cdot 6187457 \cdot 83442 74065 78561

10^{64} + 1 = 1265011073 \cdot 153 43168 18888 91378 18369 \cdot 515 21752 52652 13267 44786

99068 15873

10^{128} + 1 = 257 \cdot 15361 \cdot 453377 \cdot P116

10^{256} + 1 = 10753 \cdot 8253953 \cdot ???

10^{512} + 1 = 302078977 \cdot ???
```

Mit Aribas wurde getestet, dass bis n = 16 die Zahl $10^{2n} + 1$ (65537 Ziffern) zusammengesetzte Zahl ist.

Primzahlen als Summen von Fakultäten

```
2!
81
       7!
              6!
                     5!
                             4!
                                    3!
                                                   1!
                                                          = Primzahl
              +1
       2
                      = 3
       6
              -2
                      +1
                             = 5
       6
              +2
                      -1
                             = 7
       24
              -6
                      +2
                             -1
                                    = 19
               +6
                                    = 29
       24
                      -2
                             +1
                                            = 101
       120
              -24
                      +6
                             -2
                                    +1
       120
              +24
                      -6
                             +2
                                    -1
                                            = 139
       720
              -120
                      +24
                             -6
                                    +2
                                           -1
                                                   = 619
       720
               +120
                     -24
                             +6
                                    -2
                                            +1
                                                   = 821
                                           -2
       5040
              -720
                                                          = 4421
                     +120
                             -24
                                    +6
                                                   +1
```

```
5040 +720 -120
               +24
                      -6
                           +2
                                       = 5659
                                 -1
                           -6
40320 -5040 +720 -120 +24
                                 +2
                                       -1
                                            = 35899
40320 +5040 -720
               +120 -24
                            +6
                                 -2
                                       +1
                                             = 44741
```

Primes Wort PRIME

Setzt man 1 = A, 2 = B, 3 = C, ..., 26 = Z, so ist das englische Wort PRIME für Primzahl selbst prim, da P + R + I + M + E = 16 + 18 + 9 + 13 + 5 = 61

Prime Summen aufeinanderfolgender Primzahlen

```
5 + 7 + 11 + 13 + 17 = 53

7 + 11 + 13 + 17 + 19 = 67

11 + 13 + 17 + 19 + 23 = 83

13 + 17 + 19 + 23 + 29 = 101

17 + 19 + 23 + 29 + 31 + 37 + 41 = 197

19 + 23 + 29 + 31 + 37 + 41 + 43 = 223

23 + 29 + 31 + 37 + 41 + 43 + 47 = 251

29 + 31 + 37 + 41 + 43 + 47 + 53 = 281

31 + 37 + 41 + 43 + 47 + 53 + 59 = 311
```

Primzahlen der Form n²+1

Durch den russischen Mathematiker V.E. Govorov wurde im Februar 2008 der Text "Prime numbers of a kind $n^2 + 1$ " veröffentlicht. In diesem gibt er einige neue Aussagen über Primzahlen $n^2 + 1$ gegeben, insbesondere über deren Unendlichkeit.

Es sei S die Menge der Zahlen n^2+1 , mit n > 0:

```
S=2,\,5,\,17,\,37,\,65=5\cdot13,\,101,\,145=5\cdot29,\,197,\,257,\,325=52\cdot13,\,401,\,485=5\cdot97,\,577,\,677,\,785=5\cdot157,\,901=17\cdot53,\,1025=52\cdot41,\,1157=13\cdot89,\,1297,\,1445=5\cdot172,\,1601,\,1765=5\cdot353,\,1937=13\cdot149,\,2117=29\cdot73,\,2305=5\cdot461,\,2501=41\cdot61,\,2705=5\cdot541,\,2917,\,3137,\,3365=5\cdot673,\,3601=13\cdot277,\,\dots
```

 $In\ dieser\ finden\ sich\ die\ Primzahlen\ 2,\ 5,\ 17,\ 37,\ 101,\ 197,\ 257,\ 401,\ 577,\ 677,\ 1297,\ 1601,\ 2917,\ 3137,$

Es gilt

- 1) Die Teilermenge der Zahlen aus S ist gleich der Menge aller Zahlen, die aus Primzahlen der Form 4k+1 gebildet werden.
- 2) Ist S_n eine Zahl der Folge S und zu jeder vorhergehenden Zahl in S teilerfremd, so ist S_n prim.
- 3) Ist p eine Primzahl die S_n teilt, so teilt sie auch S_{n+kp} und S_{kp-n} für natürliche k.
- 3) Die Menge der Primzahlen in S ist unendlich.

Primzahlen der Form nn+1

Durch Craig Johnston wurde 1999 die Vermutung ausgesprochen, dass für alle n>4 die Zahlen der Form n^n+1

stets zusammengesetzte Zahl ist. Für n = 1, 2, 4 ergeben sich Primzahlen, sogenannte Fermatsche Primzahlen.

Mittels Computerprogramm "Primeform" wurde intensiv bis n=2750 getestet (Juni 2010). Alle untersuchten Zahlen erwiesen sich als nicht prim.

Gilt die Johnston-Vermutung, so folgt daraus automatisch, dass alle Fermat-Zahlen $2^{2^n}+1$ für n>4 zusammengesetzte Zahlen sind.

Primzahlen der Form nⁿ-1

Während Zahlen der Form $n^n + 1$ für n > 4 nach der Vemutung von Johnston nur wahrscheinlich alle zusammengesetzt sind, sind dies Zahlen der Art $n^n - 1$ für n > 2 garantiert.

Für gerade Expoenten n = 2k, k > 1, wird nach der dritten binomischen Formel $n^{2k} - 1 = (n^k + 1)(n^k - 1)$

Für ungerade Exponenten ist nⁿ - 1 eine gerade Zahl und damit mindestens durch 2 teilbar.

Primzahlen der Form mⁿ+n

Nach Johnston sind Zahlen der Form $m^m + 1$ für alle m > 4 zusammengesetzte Zahlen.

Verallgemeinert kann nach Primzahlen der Form $m^n + n$

gesucht werden. Die größte bisher ermittelte Primzahl dieser Form ist 99¹⁰⁰⁴²+10042 mit 20041 Ziffern.

```
m
       3, 5, 9, 15, 39, 75, 81, 89, 317, 701, 735, 1311, 1881, 3201, 3225
2
3
       2, 8, 34, 1532
       3, 9, 15, 37, 85, 133, 225, 1233
4
5
       7954
6
       305, 761, 1357, 3793, 4027
7
       34, 48, 8578
8
       101
       2, 76, 9602
9
       9, 69, 313, 451
10
```

```
12
       23, 35, 319, 7969
13
       54
       17, 185, 279, 299
14
       2, 26, 44
15
       3, 7, 793
16
       1080, 1960
17
       35, 4015, 7541
18
       9, 17, 123, 3891
20
21
22
       3, 15, 19, 315
23
       202, 1588, 3100
       2075
```

Primzahlen der Form n^m+m^n

In der Zeitschrift "Monoid 91" wurden die Leser aufgefordert, nach Primzahlen der Form $n^m + m^n$ zu suchen. Auf Grund der eingesetzten Hilfsmittel enthielten die Zuschriften nur wenige nicht triviale Fälle. Trivial ist der Fall für n = 1 und m = p-1, wobei p eine Primzahl ist.

Primzahlen der Form $n^m + m^n$ sind für n > 1 sehr selten. Mittels Primzahltestprogramm "Primeform" von Yves Gallot konnten bisher folgende 75 Lösungen (m < n, m < 126, 1 < n < 5237) gefunden werden (August 2015, Polster):

Die größte bisher gefundene Primzahl dieser Form ist 9³¹⁴⁷³⁸+314738⁹ mit 300337 Ziffern. siehe auch http://www.leyland.vispa.com/numth/primes/xyyx.htm

```
m
       3, 9, 15, 21, 33, 2007, 2127, 3759, 29355, 34653, 57285, 99069
2
3
       56, 10112, 63880, 78296, 125330, 222748
5
       24, 1036, 104824
7
       54, 3076, 11796
       69, 519, 2385, 11889, 26205
8
9
       76, 122, 422, 2300, 5090, 7166, 58046, 91382, 234178, 314738
       3100, 37951
11
       47489
12
14
       2763
15
       32, 15044
20
       357, 471
21
       68, 782
29
       6886
32
       135, 717
33
       38
       75, 773, 7035
34
36
       185
```

Primzahlpotenzsumme

Unter einer Primzahlpotenzsumme sei hier eine Zahl verstanden, die durch Aufsummierung von Potenzen entsteht, deren Basen und Exponenten nacheinanderfolgende Primzahlen darstellen. Diese Zahlen wachsen sehr schnell. Bisher kennt man nur eine derartige Primzahl.

Zerlegungstabelle

```
= 2^3 + 5^7 = 78133 = 11 \cdot 7103
p(1)
        = 2^3 + 5^7 + 11^{13} = 3452\ 27122\ 22064 = 2^4 \cdot 3 \cdot 11 \cdot 37 \cdot 97 \cdot 18217867
p(2)
        = 2^{3} + 5^{7} + 11^{13} + 17^{19} = 239072435719674037069217 = 71 \cdot 33672174045024512
p(3)
26327
        = 2^3 + 5^7 + 11^{13} + 17^{19} + 23^{29} = 30910 58643 09353 77618 71981 55821 40804 08280 = 2^3 \cdot
5 · 50159 · 324750607 · 47440 40764 09394 70700 57439
        = 2^{3} + 5^{7} + 11^{13} + 17^{19} + 23^{29} + 31^{37} = 151489548726468501965571524276048936
85308 87702 22603 48791 = Primzahl
        = 2^{3} + 5^{7} + 11^{13} + 17^{19} + 23^{29} + 31^{37} + 41^{43} = 22372\ 05297\ 09360\ 40187\ 92096\ 77090\ 95816
13464707568895420630337579160419312 = 2^4 \cdot 13451 \cdot 10851021599153 \cdot 11499424462699 \cdot
3 28743 77995 12637 • 253 41190 07603 11157 64563
        = 2^{3} + 5^{7} + 11^{13} + 17^{19} + 23^{29} + 31^{37} + 41^{43} + 47^{53} = 4180\ 09806\ 65437\ 01924\ 22184\ 76282
33841 16517 28477 96820 80387 46247 37551 62190 92336 31027 86386 46239 = 3 · 131 · 6343 ·
167 68692 80894 16833 21526 71606 58915 58706 38927 48545 74331 40267 12043 43478 59267
28590 14561
        = 2^{3} + 5^{7} + 11^{13} + 17^{19} + 23^{29} + 31^{37} + 41^{43} + 47^{53} + 59^{161} = 105189577360983968183669
24760 07000 76385 01722 87845 21457 61762 65181 05901 98259 23706 39276 49213 79286 55102
06403\ 01898 = 2 \cdot 11 \cdot 67 \cdot 367 \cdot 23561 \cdot 74\ 11974\ 28793 \cdot 11\ 13477\ 73933\ 36250\ 56778\ 13862
```

71045 49058 19755 98101 41423 54841 27524 21606 48565 98019 83435 82347

 $p(9) = 2^3 + 5^7 + 11^{13} + 17^{19} + 23^{29} + 31^{37} + 41^{43} + 47^{53} + 59^{161} + 67^{71} = 44803 \ 40197 \ 68325 \\ 73089 \ 80928 \ 70063 \ 10373 \ 44732 \ 69006 \ 88766 \ 95306 \ 39532 \ 37609 \ 71164 \ 25542 \ 46310 \ 44817 \ 52824 \\ 10437 \ 41604 \ 02377 \ 80625 \ 60959 \ 18112 \ 53620 \ 79381 = 3 \cdot 67 \cdot 107 \cdot 1283 \cdot 77369 \cdot 593213 \cdot 12491197 \cdot 7105$

Pillai-Primzahl

Unter einer Pillai-Primzahl vesteht man eine Primzahl p, für die es ein natürliches n > 0 gibt, so dass n Fakultät minus 1 ein Vielfaches von p ist, aber die Primzahl p kein Vielfaches +1 von n ist, d.h.

 $n! \equiv -1 \mod p \pmod p \neq 0 \mod n$

Die ersten Pillai-Primzahlen sind

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499, 503, 521, 557, 563, 569, 571, 577, 593, 599, 601, 607, ...

Die Pillai-Primzahlen wurden nach dem indischen Mathematiker Subbayya Sivasankaranarayana Pillai (1901-1950) benannt, der diese als Erster bei zahlentheoretischen Fragen einführte.

Die Unendichkeit dieser Primzahlart wurde durch Subbarao, Erdös und Hardy bewiesen.

James-Bond-Primzahl

Durch den dänischen Mathematiker Jens Ramskov wurde im November 2006 in "Primtal: Fakta og Formodninger", Ingeniøren, nummer 47, die Frage nach sogenannten James-Bond-Primzahlen aufgeworfen. Darunter versteht er, in Anlehnung an den berühmtesten Agenten ihrer Majestät, Primzahlen die auf die Ziffern '007' enden.

Die ersten derartigen sind:

7, 4007, 6007, 9007, 10007, 12007, 13007, 16007, 24007, 36007, 45007, 61007, 64007, 78007, 82007, 88007, 90007, 94007, 97007, 103007, 108007, 121007, 123007, 135007, 138007, 142007, 145007, 151007, 156007, 157007, 162007, 169007, 171007, 174007, 177007, 180007, 184007, 186007, 192007, 201007, 204007, 211007, 214007, 222007, 223007, 226007, 232007, 234007, 235007, 247007, 250007, ...

Radieschen-Primzahl

Durch Willi Botta wurde im Juli 2006 im "Spektrum der Wissenschaft" der Begriff der Radieschenprimzahl geprägt.

Eine Radieschenprimzahl ist eine Primzahl, bei der alle Teilzahlen zusammengesetzte Zahlen sind, d.h. keine Primzahlen oder 1.

Zum Beispiel ist die 60649 eine Radieschenprimzahl, da die Zahl selbst zwar prim ist, aber alle Teilzahlen 6, 60, 606, 6064, 64, 649, 4, 49 und 9 zusammengesetzt sind.

Diese Eigenschaft erinnert an das Radieschen, bei dem nur die äußere Haut rot, die Schnittflächen dagegen weiß sind.

Eine Radieschenprimzahl kann nur mit einer der Ziffern 4, 6, 8 oder 9 beginnen oder enden. Andernfalls wäre die Teilzahl aus der ersten Ziffer oder letzten Ziffer zusammengesetzt oder gleich 1.

Da die Zahl auch nicht auf 2, 4, 6 und 8 enden kann (Primzahl!), haben alle Radieschenprimzahlen als letzte Ziffer die 9. 89 ist die kleinste Radieschenprimzahl.

Die ersten Radieschenprimzahlen sind

89, 409, 449, 499, 809, 4049, 4649, 4909, 4969, 6469, 6869, 6949, 8009, 8069, 8669, 8669, 8699, 8849, 9049, 9649, 9949, ...

Stutzbare Primzahlen

Die stutzbaren Primzahlen (engl. truncatable primes) sind Primzahlen, die sich in die linksstutzbaren und die rechtsstutzbaren Primzahlen einteilen lassen. Welche Primzahlen zu diesen Gruppen gehören, hängt vom zur Darstellung verwendeten Zahlensystem ab.

Rechtsstutzbare Primzahlen sind Primzahlen, in denen an keiner Stelle die Ziffer Null steht und bei denen das Weglassen einer beliebigen Anzahl der letzten Stellen wieder zu einer Primzahl führt.

Im Dezimalsystem erfüllt zum Beispiel die Zahl 317 diese Eigenschaft: 317, 31 und 3 sind Primzahlen. Im Dezimalsystem gibt es genau 83 rechtsstutzbare Primzahlen. Die ersten sind 2, 3, 5, 7, 23, 29. Die größte im Dezimalsystem ist die Zahl 73939133.

27 der 83 dezimalen rechtsstutzbaren Primzahlen lassen sich nicht durch Anhängen einer weiteren Ziffer zu einer größeren Primzahl verlängern, die übrigen 56 gehen durch Abschneiden von Ziffern aus ihnen hervor.

Linksstutzbare Primzahlen sind Primzahlen, in denen an keiner Stelle die Zahl Null steht und bei denen das Weglassen einer beliebigen Anzahl führender Stellen wieder zu einer Primzahl führt.

Im Dezimalsystem hat zum Beispiel 632647 diese Eigenschaften, da 632647, 32647, 2647, 647, 47 und 7 Primzahlen sind. Im Dezimalsystem existieren genau 4260 linksstutzbare Primzahlen; die größte ist 357 686 312 646 216 567 629 137.

Im Dezimalsystem sind 2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797 und 739397 die einzigen sowohl links- als auch rechtsstutzbaren Primzahlen.

Illegale Primzahl

Das Computerprogramm DeCSS umgeht den auf DVDs integrierten Kopierschutz. Dieses Programm wurde in den USA für illegal erklärt und zum Beispiel der DeCSS-Mitautor Jon Lech Johansen strafrechtlich verfolgt.

Um das Verbreitungsverbot zu umgehen, wurde im März 2001 durch Phil Carmody eine 1401-stellige Primzahl veröffentlicht. Dekomprimiert man die hexadezimale Darstellung dieser Zahl mit Gzip, so ergibt sich der C-Quellcode des Computerprogramms DeCSS.

4 8565078965 7397829309 8418946942 8613770744 2087351357 9240196520 7366869851 3401047237 4469687974 3992611751 0973777701 0274475280 4905883138 4037549709 9879096539 5522701171 2157025974 6669932402 2683459661 9606034851 7424977358 4685188556 7457025712 5474999648 2194184655 7100841190 8625971694 7970799152 0048667099 7592359606 1320725973 7979936188 6063169144 7358830024 5336972781 8139147979 5551339994 9394882899 8469178361 0018259789 0103160196 1835034344 8956870538 4520853804 5842415654 8248893338 0474758711 2833959896 8522325446 0840897111 9771276941 2079586244 0547161321 0050064598 2017696177 1809478113 6220027234 4827224932 3259547234 6880029277 7649790614 8129840428 3457201463 4896854716 9082354737 8356619721 8622496943 1622716663 9390554302 4156473292 4855248991 2257394665 4862714048 2117138124 3882177176 0298412552 4464744505 5834628144 8833563190 2725319590 4392838737 6407391689 1257924055 0156208897 8716337599 9107887084 9081590975 4801928576 8451988596 3053238234 9055809203 2999603234 4711407760 1984716353 1161713078 5760848622 3637028357 0104961259 5681846785 9653331007 7017991614 6744725492 7283348691 6000647585 9174627812 1269007351 8309241530 1063028932 9566584366 2000800476 7789679843 8209079761

9859493646 3093805863 3672146969 5975027968 7712057249 9666698056 1453382074 1203159337 7030994915 2746918356 5937621022 2006812679 8273445760 9380203044 7912277498 0917955938 3871210005 8876668925 8448700470 7725524970 6044465212 7130404321 1826101035 9118647666 2963858495 0874484973 7347686142 0880529443

Abbildung: DeCSS-Programm

Damit ist die Weitergabe dieser Primzahl praktisch ein Verstoß gegen US-amerikanisches Recht. Eine solche Primzahl wird illegal genannt. Die Zahl selbst ist natürlich nicht illegal, allerdings die Anwendung des daraus entstehenden Programms.

Primzahl-Palindrome

... Primzahlen, die vorwärts und rückwärts gelesen eine gleiche Ziffernfolge haben. Die Tabelle enthält spezielle Palindrome bis 500 Stellen Länge:

```
void CSSdescramble(unsigned char *sec,unsigned char *key) {
    unsigned int t1,t2,t3,t4,t5,t6;
    unsigned char *end=sec+0x800;
    t1=key[0]^sec[0x54]|0x100;
    t2=key[1]^sec[0x54]|0x100;
    t2=key[1]^sec[0x55];
    t3=(*((unsigned int *)(key+2)))^(*((unsigned int *)(sec+0x56)));
    t4=t367;
    t3=t3*2+8-t4;
    sec+=0x80;
    t5=0;
    white(sec!=end) {
        t4=CSSt2[t2]^CSSt3[t1];
        t2=t1>>1;
        t1=((t161)<<8)^t4;
        t4=CSSt5[t4];
        t6=(((((((t3>>3)^*)^*t3)>>1)^*t3)>>8)^*t3)>>5)&0xff;
        t3=(t3<<8)|t6;
        t6=CSSt4[t6];
        t5+=t6+t4;
        *sec++=CSSt1[*sec]^(t5&0xff);
        t5>>=8;
    }
}
```

Ziffernfolge	Primzahlen für Länge	Ziffernfolge	Primzahlen für Länge
111111	19, 23, 317	121121	7, 11, 43, 139
131131	3, 25,	141141	11, 277, 479
151151	3, 15, 63, 89, 245	161161	7, 55, 109, 145, 229
171171	31, 37	181181	3, 5, 77, 163
191191	3, 33, 133	313313	3, 51, 83, 225
323323	5, 9, 11	353353	3, 5, 23
373373	3, 21, 27, 81, 315	383383	3, 9, 15, 17, 21, 57
727727	3, 5, 9, 17, 71, 99, 243	737737	15, 39
747747	5, 17	757757	3, 17, 77, 143, 149
787787	3, 5, 21, 27, 95	797797	3, 357
919919	3, 9, 11, 17, 23	929929	3, 9, 195
949949	5, 17, 65, 143	959959	5, 17, 209
979979	9, 27, 45, 237	989989	9, 161, 219

Zweiziffern-Palindrom-Primzahlen

Unter einer Zweiziffern-Palindrom-Primzahlen (engl. Smoothly Undulating Palindromic Prime) versteht man eine Primzahl, die zum einen Palindrom ist und zum anderen eine Ziffernfolge aufweist, die abwechselnd aus zwei Ziffern gebildet wird abab...ababa

Trennt man die erste Ziffer a ab, so kann eine solche Zahl zusammengesetzt aus a und einer n-fachen Wiederholung der Ziffern ba angesehen werden. Als Schreibweise wird daher $a(ba)_n$ verwendet. Zum Beispiel ergibt

 $3(23)_{1507} = (32 * 10^{3015} - 23)/99 = 3232323...2323 \text{ mit } 1507 \text{ mal } "23"$

Die nachfolgende Tabelle enthält für verschiedene a und b die Anzahl von Ziffern w, für die eine Zweiziffern-Palindrom-Primzahl gefunden wurde. Zahlen, die bisher nur wahrscheinlich als Primzahl nachgewiesen wurden, sind in Klammern gesetzt.

```
b
a
       0
1
1
       2
               3, 5, 21, 69, 313, 699, 798, 989, (3904), (7029)
1
       3
               1, 12
       4
1
               5, 138, 239, 291, 815, 3171, (7344)
       5
1
               1, 7, 31, 44, 122, 291, 895, 1061, (3616), (12393)
       6
               3, 27, 54, 72, 114, 480
1
       7
1
               15, 18, 2442
       8
1
               1, 2, 38, 81, 739, 1828, 2286, (4157), (15129), (15531), (15927), (18457)
       9
1
               1, 16, 66, 984, 1167
       1
3
               1, 25, 41, 112, 280, (5209), (9127)
       2
               2, 4, 5, 1507, 1703, 3479, (4799), (5699), (8296), (12941)
3
3
       5
               1, 2, 11, 1088, 1573, 2078, (11356), (14192)
3
       7
               1, 10, 13, 40, 157, 424, 946, 1441, (4795), (7345)
3
       8
               1, 4, 7, 8, 10, 28, 2116, 2167, (6610), (13223), (14948)
7
       2
               1, 2, 4, 8, 35, 49, 121, (3797), (4636), (26923)
7
       3
               7, 19, 283, 1264, (7168)
7
       4
               2, 8, 1034, (3407), (10208), (12872)
7
       5
               1, 8, 38, 71, 74, 256, 539, 707, 3124, (6632), (7289), (7646)
7
       6
               immer zusammengesetzte Zahl
7
       8
               1, 2, 10, 13, 47, 1037, 1082, 1523, 1751, (8395), (17441)
7
       9
               1, 178, 268, 838, 1528
9
       1
               1, 4, 5, 8, 11, (12614)
9
       2
               1, 4, 97, 257, 428, (5696)
9
       4
               2, 8, 32, 71, 275
9
       5
               2, 8, 104, 647
       7
9
               4, 13, 22, 118
9
               4, 80, 109, 2429, (10994)
```

Palindromic-Wing-Prime (PW-Primzahl)

Unter einer PW-Primzahl (engl. Palindromic-Wing-Prime) versteht man eine Primzahl, die zum einen Palindrom ist und zum anderen einer Ziffernfolge a.....aba.....a aufweist, wobei links von b gleichviele Ziffern a wie rechts stehen, z.B. jeweils w Ziffern. Als abkürzende

Schreibweise für eine solche Zahl wird (a)_wb(a)_w

verwendet. Nicht alle Kombinationen von a und b können Primzahlen liefern. Zum Beispiel gilt für alle w:

```
 (1)_{w}0(1)_{w} = (10^{w+1} + 1)(10^{w} - 1)/9 
 (3)_{w}2(3)_{w} = (5 * 10^{w} + 1)(2 * 10^{w} - 1)/3 
 (1)_{w}2(1)_{w} = (10^{w+1} - 1)(10^{w} + 1)/9 
 (3)_{w}4(3)_{w} = (5 * 10^{w} - 1)(2 * 10^{w} + 1)/3
```

Die nachfolgende Tabelle enthält für verschiedene a und b die Anzahl von Ziffern w, für die eine PW-Primzahl gefunden wurde. PW-Zahlen, die bisher nur wahrscheinlich als Primzahl nachgewiesen wurden, sind in Klammern gesetzt.

```
b
               w
а
       0
1
               1
1
       3
               1, 2, 19, 97, (9818)
1
       4
               2, 3, 32, 45, (1544)
       5
               1, 7, 45, 115, 681, 1248, (2481), (2689), (6198), (13197)
1
1
       6
               10, 14, 40, 59, 160, 412, 560, 1289, (1846)
       7
1
               3, 33, 311, 2933
       8
               1, 4, 6, 7, 384, 666, 675, (3165)
1
       9
1
               1, 4, 26, 187, 226, 874, (13309)
3
       1
               1, 3, 7, 61, 90, 92, 269, 298, 321, 371, 776, 1567, 2384, (2566), (3088), (5866), (8051)
               1, 2, 17, 79, 118, 162, 177, 185, 240, 824, (1820), (2354)
3
       5
       7
               1, 3, 7, 11, 13, 17, 29, 31, 33, 77, 933, (1555), (11758)
3
3
       8
               1, 7, 85, 94, 273, 356, 1077, (1797), (6758)
7
       1
7
       2
               1, 3, 7, 10, 12, 480, 949, (1945), (7548), (8923)
7
       3
7
               2, 3, 6, 23, 36, 69, 561, 723, (3438), (4104), (9020), (13977), (19655)
       4
7
       5
               1, 7, 13, 58, 129, 253, (1657), (2244), (2437), (7924), (9903), (11899), (18157),
(18957)
```

```
7
        6
                 4, 5, 8, 11, 1244, (1685), (2009), (14657), (15118)
7
        8
                 1, 3, 39, 54, 168, 240, (5328), (6159)
7
        9
                 1, 2, 8, 19, 20, 212, 280, 887, 1021, (5515), (8116), (11852)
                 1, 5, 13, 43, 169, 181, 1579, 18077, 22652
1, 8, 9, 352, 530, 697, 1315, 1918, 2874, 5876, 6768
9
        1
9
        2
9
        4
                 14, 22, 36, 104, 1136, 17864, 25448
9
        5
                 88, 112, 198, 622, 4228, (10052)
        7
9
                 118
9
        8
                 26, 378, 1256, 1798, 2917, 23034, 47509, 52140
```

Cullen-Primzahl

Cullen-Primzahl (nach Reverend Cullen , 1905) $n*b^n +1, b=2$

Prim für n = 1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419, 361275, 481899 Allgemeine Cullen-Primzahl $n*b^n + 1$, $b \ne 2$

Cullen selbst fand nur die nach ihm benannten Primzahl für n=1 und vermutete für n=53 Primzahleigenschaft. Kurze Zeit später wies Cunningham nach, dass 5591 die Cullen-Zahl C53 teilt. Mit Ausnahme von C141 wies er alle Cn mit 1 < n < 201 als zusammengesetzt nach. 10 Jahre später gelang Robinson der Primzahlnachweis für n=141.

Ziffern	Primzahl	Entdeckung		eckung
145072	481899*2 ⁴⁸¹⁸⁹⁹ +1	Morii 98	108761361275*2 ³⁶¹²⁷⁵ +1	Smith 98
79002	262419*2 ²⁶²⁴¹⁹ +1	Smith 98	27347 90825*2 ⁹⁰⁸²⁵ +1	Young 97
17964	59656*2 ⁵⁹⁶⁵⁶ +1	Young 97		
Allgemeine Cu	llen-Primzahlen k*b ^k +	1; b<>2		
123729	82960*31 ⁸²⁹⁶⁰ +1	g157 2002	112465117852*9 ¹¹⁷⁸⁵² +1	g157 2002
106000	105994*10 ¹⁰⁵⁹⁹⁴ +1	g157 2000	91241 3*2 ³⁰³⁰⁹³ +1	Y 98
64217	$3*2^{213321}+1$	Y 97		

Zahlen der Form n*2ⁿ +1

Cullen-Zahlen sind durch p=2n-1 teilbar, wenn p Primzahl der Form $8k\pm 3$ ist. Diese Zahlen können prim sein (siehe vorhergehende Seite), sind es aber in der Mehrheit nicht.

Nach dem Kleinen Satz von Fermat teilt jede ungerade Primzahl p die Cullen-Zahlen C_{p-1} und C_{p-2} und allgemein jede $C_{m(k)}$ mit $m(k) = (2^k - k)(p-1)-k$, $k \le 0$. Weiterhin ist p Teiler von $C_{(p+1)/2}$, wenn das Jacobi-Symbol (2|p) = -1 ist, und $C_{(3p-1)/2}$, wenn (2|p) = 1.

Trotz der Tatsache, dass fast alle C_n zusammengesetzt sind, vermutet man dennoch, dass es unendliche viele prime C_n gibt.

Die 8 größten vollständig faktorisierten Cullen-Zahlen

```
Primfaktoren
      3, 3, 7, 403391, 437723955883305643, 303719311081127531540813, P253
992
987
      199, 1973, 62946942748526423, P278
986
      3, 5, 211, 60289, 40786761527924869, P275
      211, 971, 1129, 1187, 999337127581766201069, P263
969
963
      31, 3947, 24323142361789, 63568881091579, 2277615256784599, P245
960
950
      3, 7, 1237, 31074429561806112319, P266
      197724478669, P273
933
```

Anmerkung: Cullen-Zahlen der 2.Art sind Woodall-Zahlen.

Zerlegung von Cullen-Zahlen 1. und 2.Art

```
Cullen-Zahl 1.Art ... = n*b^n + 1; Cullen-Zahl 2.Art ... = n*b^n - 1;
Für alle natürlichen b > 1 gilt stets
         4b^4 + 1 = (2b^2 + 2b + 1)(2b^2 - 2b + 1)
         27 b^{27} + 1 = (3 b^9 + 1)(9 b^{18} - 3 b^9 + 1)
         64 b^{64} + 1 = (8 b^{32} + 4 b^{16} + 1)(8 b^{32} - 4 b^{16} + 1)
         216 b^{216} + 1 = (6 b^{72} + 1)(36 b^{144} - 6 b^{72} + 1)
         729 b^{729} + 1 = (9 b^{243} + 1)(81 b^{486} - 9 b^{243} + 1)
         1024 b^{1024} + 1 = (32 b^{512} + 8 b^{256} + 1)(32 b^{512} - 8 b^{256} + 1)
         1728 b^{1728} + 1 = (12 b^{576} + 1)(144 b^{1152} - 12 b^{576} + 1)
         19683 b^{19683} + 1 = (3 b^{2187} + 1)(9 b^{4374} - 3 b^{2187} + 1)(729 b^{13122} - 27 b^{6561} + 1)
         n^2 b^{n^2} - 1 = (n b^n + 1)(n b^n - 1)
         16 b^{16} - 1 = (2 b^4 + 1)(2 b^4 - 1)(4 b^8 + 1)
         27 b^{27} - 1 = (3 b^{9} - 1)(9 b^{18} + 3b^{9} + 1)
         216 b^{216} - 1 = (6 b^{72} - 1)(36 b^{144} + 6 b^{72} + 1)
         256 b^{256} - 1 = (2 b^{32} + 1)(2 b^{32} - 1)(4 b^{64} + 1)(16 b^{128} + 1)
         729 b^{729} - 1 = (9 b^{243} - 1)(81 b^{486} - 9 b^{243} + 1)
         1728 b^{1728} - 1 = (12 b^{576} - 1)(144 b^{1152} + 12 b^{576} + 1)
```

```
19683 \, b^{19683} - 1 = (3 \, b^{2187} - 1)(9 \, b^{4374} + 3 \, b^{2187} + 1)(729 \, b^{13122} + 27 \, b^{6561} + 1)
```

Woodall-Primzahl

3548

Woodall-Primzahl (auch Cullen-Primzahl 2.Art genannt) $n*b^{n} -1, b=2$ Prim für n = ..., 5312, 7755, 9531, 12379, 15822, 18885, 22971, 23005, 98726, 143018, 151023Primzahl **Entdeckung** Spezielle Woodall-Primzahlen k*2^k - 1 667071*2⁶⁶⁷⁰⁷¹-1 200815 Toplic 2000 151023*2¹⁵¹⁰²³-1 45468 O'Hare 98 143018*2¹⁴³⁰¹⁸-1 Ballinger 98 43058 98726*2⁹⁸⁷²⁶-1 29725 Young 97 23005*2²³⁰⁰⁵-1 6930 Young 97 Allgemeine Woodall-Primzahlen $k*b^k - 1$; b < > 229978*777²⁹⁹⁷⁸-1 86654 q267 2002 3*2⁵¹³⁸⁷-1 15470 g2 98 3*2⁴¹⁶²⁸-1 12532 g2 98 20747*4²⁰⁷⁴⁷-1 12496 g2 98 $8*10^{11336}-1$ 11337 D 94 1403*336¹⁴⁰³-1

SP 02; Rekord des Programmautors Die Woodall-Zahlen können prim sein, sind es aber in der Mehrheit nicht.

Die 10 größten vollständig faktorisierten Woodall-Zahlen

```
Primfaktoren
n
       3, 3, 5, 19, 31, 5663071, 60320128763, 531675180131724193, P263
994
       2017, 4253, 1344561707, 71195919702119, P272
992
       7, 661, 59887, 229232303, P285
991
       3, 7, 3357769, P293
989
       3, 3, 19, 120900732249024653, P280
983
971
       3, 19, 83, 211, 4807877, P283
       7, 173, 1679297, 4780931, 319876843786853, P262
960
       3, 11, 5683, 61943122889, 737228779460764039723, 7046284188501691209167759, P230
959
957
       13, 113, 1913, P285
956
       5, 223, 1235276743, P279
```

Thâbit ibn Kurrah - Primzahl

Eine Thâbit ibn Kurrah Zahl hat die Form $K_n = 3 \cdot 2^n - 1.$ Die ersten dieser Zahlen für n = 0, 1, 2, ... sind 2, 5, 11, 23, 47, 95, 191, 383, 767, ... Die Indizees der ersten Thâbit ibn Kurrah - Primzahlen sind: 0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458, 470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628, 51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987, ... dies entspricht den Primzahlen 2, 5, 11, 23, 47, 191, 383, 6143, ...

1969 untersuchte Riesel alle Zahlen dieser Form bis n = 1000. Mittlerweile sind alle K_n bis n = 2 Millionen auf Primzahleigenschaft getestet. Die größte prime Thâbit ibn Kurrah - Zahl wurde am 20.Dezember 2005 von P. Underwood mit n = 2312734 nachgewiesen. Diese Primzahl hat 696203 Ziffern.

Thabit ibn Qurra-Primzahl 2.Art

 $K_n = 3 \cdot 2^n + 1.$ Eine Thabit ibn Qurra Zahl der 2.Art hat die Form Die ersten dieser Zahlen für n = 0, 1, 2, ... sind 4, 7, 13, 25, 49, 97, 193, 385, 769, ...Die ersten Thabit ibn Qurra - Primzahlen 2.Art sind: 7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657, ... mit den Indizees 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, ...

Markowsche Primzahl

Unter einer Markowschen Primzahl p versteht man eine natürliche Zahl p, für die ganze Zahlen x und y $x^2 + y^2 + p^2 = 3xyp$ existieren, so dass gilt. Die ersten Markowschen Primzahlen sind 2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561, 28657, 33461, 43261, 96557, 426389, 514229, ... Allgemein versteht man unter einer Markowschen Zahl z eine Zahl, für die ein ganzzahliges Paar (x, y) mit

```
x^2 + y^2 + z^2 = 3xyz
```

existiert. Diese Folge der z beginnt mit 1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, 985, 1325, 1597, 2897, 4181, 5741, 6466, 7561, 9077, 10946, 14701, 28657, 33461, 37666, 43261, 51641, 62210, 75025, 96557, 135137, 195025, 196418, 294685, 426389, 499393, 514229, 646018, 925765, ...

Dabei werden beliebige Produkte der Matrizen A und B gebildet. Das Produkt wird links- und rechtsseitig mit der Matrix b multipliziert. Dann ist die linke obere Zahl der Ergebnismatrix eine Markow-Zahl.

Zum Beispiel ergibt bABAABAb die Matrix.

(^{7561 2923} 2923 1130)

7561 ist somit Markow-Zahl.

Alle Permutationen von auftretenden A und B ergeben assoziierte Markow-Zahlen, zum Beispiel

 bAAAABBb : 7825
 bAAABABb : 7661
 bAABAABb : 7639

 bABAAABb : 7649
 bBAAAABb : 7741
 bAAABBAb : 7729

 bAABABAb : 7571
 bABABABAb : 7561
 bBAAABAb : 7649

 bABBAAAb : 7717
 bABABAAAb : 7571
 bBAABAAb : 7639

 bABBAAAb : 7729
 bBABAAAb : 7661
 bBBAAAAb : 7825

Kubische Primzahlen

Als kubische Primzahl (engl. cuban prime) bezeichnet man eine Primzahl p, die Differenz zweier aufeinanderfolgender natürlicher Zahlen x und y ist, d.h. $p = x^3 - y^3$; x = y + 1

Die ersten kubischen Primzahlen sind

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, ...

Alle kubischen Primzahlen sind zentrierte Sechseckzahlen.

Die Anzahl kubischer Primzahlen kleiner 1, 10, 10², 10³, ... ist

0, 1, 4, 11, 28, 64, 173, 438, 1200, 3325, 9289, 26494, 76483, 221530, 645685, ...

Eingeführt wurden die Zahlen von A.J.C.Cunningham in seiner Arbeit "On quasi-Mersennian numbers". Im Januar 2006 wurde durch Jens Kruse Andersen die bisher größte derartige Primzahl mit 65537 Ziffern für $y = 100000845^{4096}$ gefunden.

Eine zweite Art kubischer Primzahlen wird für $p = (x^3 - y^3) / 2$; x = y + 2 betrachtet. Deren Folge beginnt mir 13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 2016, 201

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249, 129793, 139969, ...

Higgs-Primzahl

Eine Higgs-Primzahl ist eine Primzahl p, deren Eulersche Funktion $\phi(p) = p-1$ ein Teiler des Quadrates des Produkts aller kleineren Higgs-Primzahlen ist.

Die ersten Higgs-Primzahlen sind

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349, 367, 373, 383, 397, 419, 421, 431, 461, 463, 491, 509, 523, 547, 557, 571, ...

13 ist Higgs-Primzahl, da das Quadrat des Produktes 5336100 der kleineren Higgs-Primzahlen ein Vielfaches von 12 ist. Dagegen ist 17 keine Higgs-Primzahl, da das Produktquadrat 901800900 bei Division mit 16 den Rest 4 lässt.

Das Prinzip des Quadrates des Produkts kann auf Kuben, 4.Potenzen, ..., k-te Potenzen usw. erweitert werden und ergibt Higgs-Primzahlen k-ter Ordnung. Die kleinsten Primzahlen, die keine Higgs-Primzahlen k-ter Ordnung darstellen, sind

```
k Nicht-Higgs-Primzahl
```

2 17, 41, 73, 83, 89, 97, 103, 109, 113, 137, 163, 167, 179, 193, 227, 233, 239, 241, 251, 257, 271, 281, 293, 307, 313, 337, 353, 359, 379, 389, 401, 409, 433, 439, 443, 449, 457, 467, 479, 487, 499, 503, 521, 541, 563, 569, 577, 587, 593, 601, 613, 617, 619, 641, 647, 653, 673, 719, 739, 751, 757, 761, 769, 773, 809, 811, 821, 823
3 17, 97, 103, 113, 137, 163, 193, 227, 239, 241, 257, 307, 337, 353, 389, 401, 409, 433, 443,

4 97, 193, 257, 353, 389

5 193, 257

6 257

7 257

Es ist unbekannt, ob es unendlich viele Higgs-Primzahlen k-ter Ordnung (k > 1) für jede Ordnung k gibt. Für k = 1 existieren nur die Higgs-Primzahlen 1.Ordnung: 2, 3, 7 und 43.

Fermatsche Primzahlen

... Primzahlen der Form 2²ⁿ +1

für n = 0, 1, 2, 3, 4 ergeben sich die bis heute einzigen bekannten Primzahlen dieser Art: 3, 5, 17, 257, 65537

 $F_5 = 4294967297 = 641 * 6700417$

 $F_6 = 18446744073709551617 = 274177 * 67280421310721$

 $F_7 = 59 649 589 127 497 217 * 5 704 689 200 685 129 054 721$

 $F_8 = 1$ 238 926 361 552 897 * 93 461 639 715 357 977 769 163 558 199 606 896 584 051 237 541 638 188 580 280 321

 $F_9: 37*2^{16}+1$

F₁₆: 825753601, 188981757975021318420037633

F₁₇: 31065037602817

F₁₈: 13631489

F₁₉: 70525124609, 646730219521

F₇₃: hat Teiler 188 894 559 314 785 808 547 841

bis $n \le 32$ sind alle Fermat-Zahlen als nicht prim nachgewiesen

Euler:

wenn F_n einen Teiler hat, ist dieser von der Struktur $2^{m+2}*k+1$, k natürlich

Proth'sches Theorem für Fermatteiler

 F_n ist Primzahl $\Leftrightarrow 3^{[(F_n^{-1})/2]} = -1 \pmod{F_n}$

Verallgemeinerte Fermat-Zahlen

Die Fermat-Zahlen $2^{2n} + 1$ können auf eine beliebige Basis b mit $b^{2n} + 1$ erweitert werden. Die Liste enthält die gegenwärtig (15.Dezember 1998) größten bekannten Verallgemeinerten Fermat-Zahlen, deren Ziffern und Entdecker.

		Entdecker	Zifferr	n Primzahl	Entdecker
13050	1534 ⁴⁰⁹⁶ +1	Dubner 94	10861	$200944^{2048} + 1$	Dubner 92
10071	$82642^{2048} + 1$	Dubner 89	9404	39056 ²⁰⁴⁸ +1	Hartman 98
9403	$39020^{2048} + 1$	Hartman 98			

Fermatsche Zahlen

... Zahlen der Form 2²ⁿ +1

Die Liste enthält die bekannten Prothschen Primzahlen der Form $k*2^n + 1$ welche als Teiler von Fermatzahlen Fm nachgewiesen wurden. Angegeben ist jeweils die Nummer m der Fermatzahl sowie die Parameter k und n der Prothschen Zahl, das Entdeckungsjahr und der Entdecker.

Zerlegungstabelle der Fermatschen Zahlen

Primzahlen $k*2^n + 1$ als Teiler von Fermatzahlen Fm

Prime Fermatzahlen F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537

Vollständig faktorisierte Fermatzahlen

Vollstä	Vollständig faktorisierte Fermatzahlen						
m	k	n	Jahr	Entdecker			
5	5	7	1732	Euler			
	52347	7	1732	Euler			
6	1071	8	1880	Landry			
	262814145745	8	1880	Landry & Le Lasseur			
7	116503103764643		9	1970 Morrison & Brillhart			
	111419710950881426	85	9	1970 Morrison & Brillhart			
8	604944512477	11	1980	Brent & Pollard			
	[59 Ziffern]	11	1980	Brent & Pollard			
9	37	16	1903	Western			
	[46 Ziffern]	11	1990	Lenstra, Manasse			
	[96 Ziffern]	11	1990	Lenstra, Manasse			
10	11131	12	1953	Selfridge			
	395937	14	1962	Brillhart			
	[37 Ziffern]	12	1995	Brent			
	[248 Ziffern]	13	1995	Brent			
11	39	13	1899	Cunningham			
	119	13	1899	Cunningham			
	10253207784531279	14	1988	Brent			
	434673084282938711	13	1988	Brent			
	[560 Ziffern]	13	1988	Brent & Morain			
Unvoll	ständig bekannte Zerleg	ung von					
m	k	n	Jahr	Entdecker			
12	7	14	1877	Lucas & Pervushin			
	397	16	1903				
	973	16	1903	Western			
	11613415	14	1974	Hallyburton & Brillhart			
	76668221077	14	1986	Baillie			
13	41365885	16	1974	Hallyburton & Brillhart			
	20323554055421		17	1991 Crandall			
	6872386635861		19	1991 Crandall			
	609485665932753836	099	19	1995 Brent			

15	579	21	1925	Kraitchik
	17753925353	17	1987	Gostin
	128760388969052	86589281	01555 1	.7 1997 Crandall, Dilcher & van Halewyn
16	1575	19	1953	Selfridge
	180227048850079	840107	20	1996 Crandall & Dilcher
17	59251857	19	1978	Gostin
18	13	20	1903	Western
	968869813726669	7 23	1999	Crandall, McIntosh
19	33629	21	1962	Riesel
	308385	21	1963	Wrathall
21	534689	23	1963	Wrathall
23	5	25	1878	Pervushin
Zusam	nmengesetzte Ferma	tzahlen oh	ne expliz	rit bekannten Teiler
m	Jahr Entdecker			
14	1963 Selfridge &	Hurwitz		
20	1987 Buell & You	ng		
22	1993 Crandall, D	oenias, No	orrie & Yo	oung
24	1999 Mayer, Pap	adopoulos	& Crand	all

Primfaktoren k*2ⁿ + 1 größerer Fermatzahlen

i i iiiii a	Rediction 2 1 1 grober	C1 1 C11110	aczannen	•
m	k	n	Jahr	Entdecker
25	48413	29	1963	Wrathall
	1522849979	27	1985	Gostin
	16168301139	27	1987	McLaughlin
26	143165	29	1963	Wrathall
27	141015	30	1963	Wrathall
	430816215	29	1985	Gostin
28	25709319373	36	1997	Taura
29	1120049		31	1980 Gostin & McLaughlin
30	149041	32	1963	Wrathall
	127589	33	1963	Wrathall
31	5463561471303		33	2001 Kruppa & Forbes
32	1479	34	1963	Wrathall
36	5	39	1886	Seelhoff
	3759613		38	1981 Gostin & McLaughlin
37	1275438465	39	1991	Gostin
38	3	41	1903	Cullen, Cunningham & Western
	2653	40	1963	Wrathall
39	21	41	1956	Robinson
42	43485	45	1963	Wrathall
43	212675402445	45	2000	Samidoost & Durman
48	2139543641769		50	2001 Bodschwinna & Durman

Für alle nicht genannten Fermatzahlen Fm ($m \ge 33$) ist es noch unbekannt, ob diese zusammengesetzt oder prim sind.

Vollkommene Zahlen

Wie das Schöne und Erhabene selten sind und leicht zu zählen, das Hässliche und Böse aber zahlreich, so sind auch der überflüssigen und minderwertigen Zahlen viele und wild verteilt, so wie sie halt gefunden werden. Die vollkommenen aber sind wenige an der Zahl, leicht zu zählen und aufgereiht in perfekter Ordnung.

Nikomachos von Gerasa, 100 n.Chr.

Eine natürliche Zahl z heißt vollkommen, wenn sie mit der Summe aller ihrer von ihr selbst verschiedenen Teiler übereinstimmt. Heute (Februar 2006) sind genau 43 derartige Zahlen bekannt.

Schon Euklid wusste, dass Zahlen der Form $z = 2^{n-1} * (2^n - 1)$

vollkommen sind, wenn 2ⁿ - 1 eine Primzahl ist.

Augustinus in "Gottesstaat":

"Die 6 ist an und für sich eine vollkommene Zahl, doch nicht weil Gott alle Dinge in sechs Tagen erschaffen hätte. Das Gegenteil ist wahr: Gott schuf alle Dinge in sechs Tagen, weil diese Zahl vollkommen ist. Und sie würde vollkommen bleiben, selbst wenn das Werk der sechs Tage nicht existierte."

Erste vollkommene Zahlen

n z 2 6 3 28

```
5
       496
7
       8128
13
       33 550336
17
       8589 869056
19
       137438 691328
       2 305843 008139 952128
31
       2 658455 991569 831744 654692 615953 842176
61
       191651 942608 236107 294793 378084 303638 130997 321548 169216
89
107
       131164 036458 569648 337239 753460 458722 910223 472318 386943 117783 728128
127
       14474 011154 664524 427946 373126 085988 481573 677491 474853 889066 354349 131199
       152128
weitere vollkommene Zahlen für
n = 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,
86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593,
13466917, 20996011, 24036583, 25964951, 30402457
erste vollkommene Zahlen als Summe ihrer Teiler:
6 = 1 + 2 + 3,
28 = 1 + 2 + 4 + 7 + 14
496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248
8128 = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064
```

Satz: $2^{n-1} * (2^n - 1)$ ist vollkommen, wenn $2^n - 1$ eine Primzahl ist.

Diese Primzahlen heißen Mersennesche Primzahlen. Gegenwärtig (2003) sind nur 40 derartige Zahlen bekannt. Man kennt noch keine ungerade vollkommene Zahl. Diese müsste größer 10²⁰⁰ sein (Tuckermann 1973).

Nach neuesten Erkenntnissen muss sie sogar mindestens 300 Stellen und einen Primteiler größer 1 Million aufweisen (Guy 1994). Auf jeden Fall muss sie bei Division durch 12 den Rest 1 oder bei Division durch 36 den Rest 9 ergeben, mindestens 6 Primzahlfaktoren besitzen und durch die 6.Potenz einer Primzahl teilbar sein, wenn sie kleiner als 10^{9118} ist.

```
Nach Euler hat jede ungerade vollkommene Zahl die Form (4n+1)^{4k+1} b², wobei 4n+1 prim sein muss. Beispiel: 1+2+4=7 ist Primzahl, d.h. 4*7=28 ist vollkommen 1+2+4+8=15 ist keine Primzahl, d.h. 8*15=120 ist nicht vollkommen 1+2+4+8+16=31 ist Primzahl, d.h. 16*31=496 ist vollkommen Jede vollkommene Zahl 2^{n-1}*(2^n-1) größer 6 lässt sich als Summe von 2^{(n-1)/2} ungeraden Kubikzahlen darstellen. (nach Heath) z.B. 8128=1^3+3^3+5^3+7^3+9^3+11^3+13^3+15^3 Die Summe der Reziproken aller Teiler einer vollkommenen Zahl ist gleich 2^n z.B. für 2^n Alle geraden vollkommenen Zahlen enden auf 2^n 2^
```

Sublime oder erhabene Zahlen

Eine Zahl, deren Teilersumme aber auch deren Teilerzahl vollkommene Zahlen sind, wird sublim oder erhaben genannt. Bisher kennt man nur zwei derartige Zahlen, die 12 und

6 08655 56702 38378 98967 03717 34243 16962 26578 30773 35188 59705 28324 86051 27916 91264.

Die Primfaktoren der zweiten Zahl sind 2^{126} , 7, 31, 127, 524287, 2147483647, 2305843009213693951. Dieser Zahl hat 8128 (vollkommen!) Teiler und eine Teilersumme (vollkommen) von 2^{126} (2^{127} -1) = 14474 011154 664524 427946 373126 085988 481573 677491 474853 889066 354349 131199 152128

Für die 12 findet man 6 Teiler und eine Teilersumme von 28.

Nikomachos-Vermutungen (100 n.Chr.)

- 1. die n.te vollkommene Zahl hat n Ziffern
- 2. alle vollkommenen Zahl sind gerade
- 3. alle vollkommenen Zahlen enden abwechselnd auf 6 oder 8
- 4. jede vollkommene Zahl ist von Euklidischer Struktur 2ⁿ⁻¹ * (2ⁿ -1)
- 5. es gibt unendlich viele vollkommene Zahlen

Während die 1. und 3. Vermutung falsch sind, ist die Beantwortung der 2., 4. und 5. These auch heute noch offen.

Zeitpunkt Ereignis

- 300 v.Z. Euklid erkennt, das Zahlen der Form $2^{n-1} * (2^n 1)$ vollkommen sind, wenn $2^n 1$ prim ist
- 100 Nikomachos erstellt Thesen zu den vollkommenen Zahlen
- 10. Jh. Thabit ibn Qurra schreibt ein Buch über befreundete Zahlen, in dem er den Euklidschen Satz heweist
- 1458 die 5. und 6. vollkommene Zahl finden sich in einem lange Jahre verschollenen Dokument
- 1461 wird die 5.vollkommene Zahl wieder entdeckt und von Regiomontanus veröffentlicht
- 1509 Pacioli veröffentlicht ein Buch über vollkommene Zahlen
- Hudlarichus Regius faktorisiert 2^{11} -1 = 2047 = 23 * 89 und findet damit die erste Primzahl, für welche keine vollkommene Zahl der Euklidischen Struktur existiert; da er 2^{13} -1 als prim nachweist, findet er erneut die 5.vollkommene Zahl und zeigt, dass die 1.Nikomachos-Vermutung falsch ist
- J.Scheybl nennt die 6.vollkommmene Zahl in seiner Übersetzung der Euklidischen Elemente. Dieser Fakt wird erst 1977 (!) festgestellt
- 1603 Cataldi entdeckt die 6.vollkommene Zahl und zeigt damit, dass die 3.Nikomachos-Vermutung falsch ist. Mit dem Nachweis, dass 219-1 prim ist, findet er auch die 7.Zahl
- Descartes schreibt an Mersenne, dass er glaubt, beweisen zu können, dass es keine ungeraden, vollkommenen Zahlen gibt
- 1640 Fermat findet seinen wichtigen "Kleinen Satz von Fermat" beim Studium vollkommener Zahlen / damit weist er 2²³-1 und 2³⁷-1 als zusammengesetzt nach
- Mersenne veröffentlicht in Cogitata physica mathematica, dass 2^p -1 für $p=2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 prim ist. Heute werden Primzahlen der Form <math>2^p$ -1 Mersennesche Zahl genannt
- Euler findet die vollkommene Zahl für p=31, welche 150 Jahre lang, die größte bekannte Primzahl ist. Für p=29 beweist er, dass die Mersennesche Zahl zusammengesetzt ist. Für p=41 und 47 vermutet er Primzahleigenschaft, findet aber 1753 seinen Fehler selbst.
- Peter Barlow schreibt in "A new mathematical and philosophical dictionary", dass die von Euler gefundene Mersennesche Zahl die größte jemals auffindbare Primzahl sei
- Lucas ermittelt für 2⁶⁷-1 Primteiler und widerlegt damit die Mersennesche Vermutung. Dagegen findet er aber mit p=127 die nächste Mersennesche Primzahl. Er entwickelt ein (1930 von Lehmer modifiziertes) schnelles Verfahren zum Nachweis Mersennescher Primzahlen
- Catalan vermutet, dass: Ist $m=2^p-1$ Primzahl, so ist auch 2^m-1 prim. Sollte die heute noch nicht widerlegte oder bestätigte These richtig sein, so gibt es unendlich viele Mersenne Primzahlen und damit auch unendlich viele vollkommene Zahlen. Die Catalan-Reihe lautet $p=3,7,127,170141183460469231731687303715884105727,\ldots$ Der Test, ob 2^p-1 für die 4.Primzahl tatsächlich prim ist, übersteigt heute die Möglichkeiten, trotz modernster Computer, noch gewaltig
- Pervusin entdeckt die vollkommene Zahl 2⁶⁰ (2⁶¹-1). Drei Jahre später findet Seelhoff dies unabhängig von Pervusin. Einige Mathematiker glauben nun, dass im Mersenneschen Werk die 67 ein Druckfehler war und 61 gemeint war
- Sylvester beweist, dass eine ungerade vollkommene Zahl wenigstens vier verschiedene Primfaktoren besitzen muss
- Cole gelingt die Faktorisierung von 2^67-1 . Berühmt wurde die Form der Veröffentlichung. Während eines Treffens der US-Amerikanischen Mathematischen Gesellschaft schritt er zur Tafel, schrieb 2^{67} 1 = 147573952589676412927 sowie 761838257287 und 193707721 an diese. Ohne ein Wort zu sprechen multiplizierte er beide Zahlen schriftlich, setzte sich und genoss den Applaus der Anwesenden
- Powers ermittelt vollkommene Zahlen für p=89 und p=101
- 1922 Kraitchik bestätigt 2²⁵⁷ 1 als zusammengesetzt
- die New York Herald Tribune veröffentlicht am 27.März, dass mit 2²⁵⁶ (2²⁵⁷-1) eine neue vollkommene Zahl entdeckt wurde, obwohl Powers schon Jahre vorher das Gegenteil zeigte. Der Bericht löst einen ziemlichen Skandal auf Grund der Sensationslust der Medien aus
- Heute die weitere Entwicklung entspricht der Entdeckungsgeschichte der Mersenneschen Primzahlen

Abundante, defiziente Zahlen

Eine Zahl n heißt (nach Nikomachos "Arithmetica"; um 100) ...

defizient ⇔ Teilersumme kleiner n

abundant \Leftrightarrow Teilersumme größer $n \Leftrightarrow s(n) = \sigma(n) - n > n$

wobei $\sigma(n)$ die Teilersumme ist. Die Differenz $\sigma(n)$ – 2n wird Abundanz genannt.

Unter 100 existieren nur 21 abundante Zahlen, die erste ungerade abundante Zahl ist 945 (Teilersumme 975). Abundante Zahlen werden auch überschießende Zahlen genannt.

Das Produkt einer abundanten mit einer vollkommenen Zahl ist abundant. Jede natürliche Zahl größer 20161 kann als Summe von zwei abundanten Zahlen dargestellt werden.

Jedes Vielfache von 12 bzw. 495 ist abundant, außerdem jedes Vielfache einer abundanten Zahl. Jedes Produkt von mindestens drei aufeinanderfolgenden natürlichen Zahlen ist abundant. Die kleinsten abundanten Zahlen sind 12, 18, 20, 24, 30, 36, ...

Unter 10000 gibt es nur 23 ungerade abundante Zahlen: 945, 1575, 2205, 2835, 3465, 4095, 4725 , 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765. Die erste ungerade, nicht auf 5 endende, abundante Zahl ist 81081.

Jede Primzahlpotenz p^k (k>0) ist defizient. Außerdem ist jeder Teiler t (1 < t < n) einer vollkommenen Zahl defizient.

Nach einer Abschätzung von Deléglise (1998) liegt der Anteil der abundanten Zahlen im Bereich von 24,74 % bis 24,80 %. Eine abundante Zahl, deren sämtliche eigentliche Primteiler defizient sind, heißt primitive abundante Zahl.

Während die Teilersumme bei vollkommenen Zahlen gleich der Zahl selbst sein muss, betrachtet man auch Paare von Zahlen, welche "über Kreuz" der Teilersumme entsprechen. Defiziente Zahlen werden auch mangelhaft genannt.

Tabelle der ersten natürlichen Zahlen, mit der Differenz d der Teilersumme zur Zahl selbst. Der Wert d wird Abundanz genannt. Negative d kennzeichnen defiziente Zahlen, positive d abundante (Suche bis 13,2 Millionen):

d kleinste Zahlen

```
-10 11, 21, 26, 68, 656, 2336, 8768, 133376, 528896
```

- -8 22, 130, 184, 1012, 2272, 18904, 33664, 70564, 85936, 100804, 391612, 527872, 1090912
- -7 50
- -6 7, 15, 52, 315, 592, 1155, 2102272
- -5 9
- -4 5, 14, 44, 110, 152, 884, 2144, 8384, 18632, 116624, 8394752
- -2 3, 10, 136, 32896
- -1 alle Zweierpotenzen 2^n , n = 1,2,3,...
- 0 vollkommene Zahlen: 6, 28, 496, 8128
- +2 20, 104, 464, 650, 1952, 130304, 522752, 8382464
- +3 18
- +4 12, 70, 88, 1888, 4030, 5830, 32128, 521728, 1848964, 8378368
- +6 8925, 32445, 442365
- +7 196
- +8 56, 368, 836, 11096, 17816, 45356, 77744, 91388, 128768, 254012, 388076, 2087936, 2291936
- +10 40, 1696, 518656

Unter den getesteten Zahlen bis 600000 finden sich 463826 defiziente Zahlen ; 4 vollkommene Zahlen ; 173700 abundante Zahlen. Nach einer Vermutung von Kravitz existieren keine Zahlen mit einem ungeraden Ouadrat als Abundanz.

Die kleinsten abundanten Zahlen, in deren Primfaktorzerlegung bestimmte Primzahlen nicht auftreten, sind

Primfaktoren kleinste abundante Zahl

- 2 945
- 3 20
- 5 12
- 2.3 5391411025
- 2.5 81081
- 3.5 56
- 2.3.5 20169691981106018776756331

Für mehr fehlende Faktoren wachsen die Zahlen aber sehr schnell. Jeder natürliche Zahl größer 991 kann als Summe abundanter Zahlen dargestellt werden. Zwei abundante Summanden genügen für jede Zahl größer 20161 sowie für jedes gerade Zahl größer als 46.

Abundante Zahlen können auch unmittelbar aufeinanderfolgen. Das kleinste Paar abundanter Zahlen ist (5775, 5776). Das erste Tripel beginnt bei 171078830, das kleinste bekannte Quadrupel, gefunden von Bruno Mishutka, startet bei 141363708067871564084949719820472453374.

Ist eine natürliche Zahl n = 6k (k>1) ein Vielfaches von 6, so wird

```
\sigma(n) >= 1 + k + 2k + 3k + 6k > 12k = 2n
```

Damit ist n abundant.

Hochabundante Zahl

Ein hochabundante Zahl ist eine natürliche Zahl, bei der die Summe ihrer Teiler, inklusive der Zahl selbst, größer als die analoge Teilersumme jeder kleineren natürlichen Zahl ist. Der Begriff der hochabundanten Zahl wurde 1943 von Pillai eingeführt und vor allem von Alaoglu und Erdös untersucht (1944).

Alaoglu und Erdös bestimmten diese Zahlen bis 10^4 und zeigten, dass die Anzahl hochabundanter Zahlen bis N proportional zu \log_2 N ist. 7200 ist die größte hochabundante, starke Zahl. Die ersten hochabundanten Zahlen sind:

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980, 2100, 2160, 2340, 2400, ... Zum Beispiel ist 5 nicht hochabundant, da $\sigma(5) = 5+1 = 6$ kleiner ist als $\sigma(4) = 4 + 2 + 1 = 7$.

In einigen Veröffentlichungen wird ausgeführt, dass alle Faktorzahlen hochabundant sind. Dies ist nicht korrekt, da

```
\sigma(9!) = \sigma(362880) = 1481040, aber \sigma(360360) = 1572480
```

Alaoglu und Erdös bewiesen, dass alle superabundanten Zahlen auch hochabundant sind. 1969 zeigte Nicolas, dass es unendlich viele hochabundante Zahlen gibt.

Obwohl die Begriffsbildung vortäuscht, dass hochabundante Zahlen auch abundant sind, gilt dies nicht! Die ersten 7 hochabundanten Zahlen sind nicht abundant!

Superabundante Zahl

Eine natürliche Zahl n heißt superabundant, wenn für alle natürlichen m < n $\sigma(m) / m < \sigma(n) / n$ gilt, wobei σ die Teilersummenfunktion; inklusive der Zahl selbst; ist. Die ersten superabundanten Zahlen sind

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 10080, 15120, 25200, 27720, 55440, 110880, 166320, 277200, 332640, 554400, 665280, 720720, 1441440, 2162160, 3603600, 4324320, 7207200, 8648640, 10810800, 21621600, ...

Jede superabundante Zahl ist auf hochabundant. Die Umkehrung gilt nicht, da zum Beispiel 7560 zwar hochabundant aber nicht superabundant ist. Der Begriff der superabundanten Zahlen wurde erstmals 1944 von Alaoglu und Erdös geprägt.

Leonidas Alaoglu and Paul Erdös bewiesen, dass für jede superabundante Zahl n Zahlen $a_2, ..., a_p$ existieren, so dass $n = \prod_{i=2}^p i^a i$ und $a_2 \ge a_3 \ge ... \ge a_p$ gilt.

Mit Ausnahme von 4 von 36 ist a_n stets gleich 1. Superabundante Zahlen sind Harshad-Zahlen.

Kolossalabundante Zahl

Eine Erweiterung des Begriffes sind die kolossalabundanten Zahlen. Eine Zahl n heißt kolossalabundant genau dann, wenn ein $\epsilon>0$ existiert, dass für alle k>1 $\sigma(n) / n^{1+\epsilon} \geq \sigma(k) / k^{1+\epsilon}$ gilt, wobei σ erneut die Teilersummenfunktion ist.

Die ersten kolossalabundanten Zahlen sind

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 6064949221531200, 224403121196654400, ...

Jedes kolossalabundante Zahl ist superabundant, die Umkehrung gilt nicht.

Fast vollkommene Zahlen

... Zahlen n, deren Teilersumme gleich n-1 ist

16 ist fast vollkommen, weil sich ihre Teiler zu 16-1 aufaddieren. Alle Zweierpotenzen sind fast vollkommen. Ob es auch ungerade fast vollkommene Zahlen gibt, ist unbekannt, da die Existenz von Vollkommenheit aller Art bei ungeraden Zahlen fast immer unbekannt ist.

Quasi-vollkommene Zahlen

Ergeben die Faktoren einer Zahl zusammengezählt (die Zahl selbst ausgeschlossen) eine Summe, die um eins größer ist als die fragliche Zahl, nennt man diese quasi-vollkommen.

Jede quasi-vollkommene Zahl ist Quadrat einer ungeraden Zahl, ist also selbst ungerade. Es ist aber bis jetzt keine quasi-vollkommene Zahl bekannt. Wenn es eine quasi-vollkommene Zahl gibt, dann muss sie sehr groß sein (größer als 10^{35}) und mindestens sieben Primfaktoren besitzen.

Unitäre vollkommene Zahl

Eine unitäre vollkommene Zahl ist eine natürliche Zahl n deren Summe der unitären Teiler, ohne die Zahl selbst, gleich n ist. Ein unitärer Teiler t von n ist ein Teiler für den t und n/t teilerfremd sind. 60 ist eine unitäre vollkommene Zahl da ihren unitären Teiler 1, 3, 4, 5, 12, 15 und 20 in der Summe gerade 1+3+4+5+12+15+20=60. ergeben. Die ersten unitären vollkommenen Zahlen sind: 6, 60, 90, 87360, 146361946186458562560000

Ungerade unitäre vollkommene Zahlen kann es nicht geben.

Harmonische Teilerzahl

Eine natürliche Zahl n, für die das harmonische Mittel H(n) der Anzahl der Teiler d(n) und der Summe der Teiler $\sigma(n)$ eine ganze Zahl ist. $H(n) = n \ d(n) \ / \ \sigma(n)$

Zum Beispiel hat die 140 die Teiler 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70 und 140, d.h. d(n) = 12 und $\sigma(n) = 336$ und es gilt 140 $d(140) / \sigma(140) = 5$

Äquivalente Eigenschaft ist, dass der Mittelwert der Teiler die Zahl selbst teilt.

Eine harmonische Teilerzahl wird auch Ore-Zahl genannt.

1954 ermittelte Garcia 45 derartige Zahlen kleiner als 10^7 . Die ersten harmonischen Teilerzahlen sind 1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720, ...

Jede vollkommene Zahl ist harmonische Teilerzahl, damit ist die 140 die kleinste nichttriviale Zahl diesen Typs.

Harmonische Zahl

```
Ausgehend von der harmonischen Reihe 1 + 1/2 + 1/3 + 1/4 + ...
werden ihre Partialsummen harmonische Zahlen genannt. Die nite Partialsumme H
```

werden ihre Partialsummen harmonische Zahlen genannt. Die n.te Partialsumme H_n der harmonischen Reihe heißt die n.te harmonische Zahl: $H_n = 1 + 1/2 + 1/3 + 1/4 + ... + 1/n$

Die ersten harmonischen Zahlen sind

```
H_1 = 1 H_2 = 3/2 = 1,5 H_3 = 11/6 = 1,8(3) H_4 = 25/12 = 2,08(3) H_6 = 49/20 = 2,45 H_7 = 363/140 = 2,59(285714) H_8 = 761/280 = 2,717(857142) H_9 = 7129/2520 = 2,828(968253) H_{10} = 7381/2520 = 2,928(968253)
```

Antiharmonische Zahl

Eine antiharmonische Zahl (oder kontraharmonische Zahl) ist eine natürliche Zahl, deren Summe aller positiver Teiler die Summe der Quadrate dieser Teiler teilt.

Zum Beispiel ist die 4 antiharmonisch, da mit

```
s_1 = 1 + 2 + 4 = 7 s_2 = 21 = 1^2 + 2^2 + 4^2
```

s₁ ein Teiler von s₂ ist.

Eine Zahl ist antiharmonisch, wenn das kontraharmonische Mittel ihrer positiven Teiler eine ganze Zahl ist.

Die ersten antiharmonischen Zahlen sind

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225, 242, 256, 289, 324, 325, 361, 400, 441, 450, 468, 484, 500, 529, 576, 578, 605, 625, 650, 676, 729, 784, 800, 841, 900, 961, 968, 980, 1024, 1025, 1058, 1089, 1156, 1225, 1280, 1296, ...

Mersennesche Primzahlen

Primzahlen der Form $M_n = 2^n - 1$

... benannt nach dem französischen Mathematiker Mersenne

Zahlen der Form 2ⁿ-1 können nur dann prim sein, wenn n selbst Primzahl ist, müssen es aber nicht.

- $\begin{array}{ccc} n & M_n \\ 2 & 3 \\ 3 & 7 \\ 5 & 31 \\ 7 & 127 \\ 13 & 8191 \end{array}$
- 17 131071
- 1/ 1310/1
- 19 524287
- 31 2147 483647 61 2 305843 009
- 61 2 305843 009213 693951 89 618 970019 642690 137449 562111
- 107 162 259276 829213 363391 578010 288127
- 127 170 141183 465460 231731 687303 715884 105727
- 521 6 864797 660130 609714 981900 799081 393217 269435 300143 305409 394463 459185 543183 397656 052122 559640 661454 554977 296311 391480 858037 121987 999716 643812 574028 291115 057151
- 607 531 137992 816767 098689 588206 552468 627329 593117 727031 923199 444138 200403 559860 852242 739162 502265 229285 668889 329486 246501 015346 579337 652707 239409 519978 766587 351943 831270 835393 219031 728127

n	Ziffernzahl					
2203	664	1952, Robinson				
2281	687	1952, Robinson				
3217	969	1957,Riesel				
4253	1281	1961,Hurwitz				
4423	1332	1961,Hurwitz				
9689	2917	1963,Gillies				
9941	2993	1963,Gillies				
11213	3376	1963,Gillies				
19937	6002	1971,Tuckerman				
21701	6533	1978, Noll & Nickel				

23209	6987	1979,NoII
44497	13395	1979, Nelson & Slowinski
86243	25962	1982,Slowinski
110503	33265	1988,Colquitt & Welsh
132049	39751	1983,Slowinski
216091	65050	1985,Slowinski
756839	227832	1992,Slowinski & Gage
859433	258716	1994,Slowinski & Gage
1257787		1996,Slowinski & Gage
1398269	420921	1996,Armengaud, Woltman
2976221	895932	,,,
3021377	909526	1998, Clarkson, Woltman, Kurowski
6972593	2098960	1999, Hajratwala, Woltman, Kurowski
13466917	4053946	2001, Cameron, Woltman, Kurowski
		2003, Shafer, Valor, Mayer
		2004, Findley
		Novak, 2005
30402457	9152052	Cooper, 2005

Durch das internationale Projekt der Suche nach großen Mersenneschen Primzahlen werden immer wieder neue derartige Primzahlen gefunden. Die ab dem Jahr 2006 gefundenen primen M_n erhält man für $n=\dots$

n	Ziffern	Entdeckung
32582657	9808358	Cooper, 2006 4.September
37156667	11185272	Hans-Michael Elvenich, 2008 6.September
42643801	12837064	Odd Magnar Strindmo, 2009 12.Juni
43112609	12978189	Edson Smith, 2008 23.August
57885161	17425170	Curtis Cooper, 2013 25.Januar
74207281	22338618	Curtis Cooper, 2016 7.Januar

Die im Moment drittgrößte bekannte Mersennesche Primzahl beginnt mit der Ziffernfolge 31647026933025592314... und endet mit ...80022181166697152511.

Nachdem Edson Smith diese Primzahl gefunden hatte, wurde sie durch Tom Duell und Rob Giltrap auf Hochleistungsrechnern geprüft. Der eingesetzte Computer war ein 8 Dual-Core SPARC64 VI 2,15 GHz CPUs eines Sun SPARC Enterprise M5000 Servers. Die Überprüfung benötigte 13 Tage.

Die Entdeckung der einzelnen Primzahlen erfolgt nicht kontinuierlich mit steigendem n. So konnte erst im Dezember 2011 gezeigt werden, dass für n = 24036583 die 41.Mersennesche Primzahl vorliegt. siehe http://www.mersenne.org/

Mersennesche Primzahlrekorde

Nachdem an der Universität von Illinois die 23.Mersennesche Primzahl gefunden wurde, gab die ortsansässige Postbehörde einen Sonderstempel aus.

2004 machte Liechtenstein mit dieser Briefmarke den Freunden der mathematischen Philatelie eine Freude. gemacht. Die Marke weist einen hohen mathematischen Gehalt auf und zeigt neben einer logarithmischen Spirale die 39.Mersennesche Primzahl. Diese Mersenne-Primzahl auf der Briefmarke wurde von Michael Cameron am 14.11.2001 gefunden. Sie ist bis heute die größte Mersenne-Primzahl, deren Nummer bekannt ist.

Suche nach Mersenne-Primzahlen, GIMPS

Bisher (2013) kennt man 48 Mersenne-Primzahlen. Mit Computerhilfe versucht man, weitere Mersenne-Primzahlen zu finden. Da es sich um sehr große Zahlen handelt; die 48.Mersenne-Primzahl hat mehr als 17 Millionen Ziffern im Dezimalsystem; sind die Berechnungen sehr zeitaufwendig.

Rechenoperationen mit derart großen Zahlen müssen in großen Feldern abgespeichert und mit speziellen Methoden der FFT durchgeführt werden. Dies ergibt lange Programmlaufzeiten.

GIMPS (Great Internet Mersenne Prime Search) versucht daher, weltweit möglichst viele Computer an den Berechnungen zu beteiligen und stellt die erforderliche Software (Prime95) für eine Reihe von Plattformen (Windows, Unix, Linux ...) zur Verfügung.

Jeder kann mitmachen, sofern er einen Rechner mit zeitweise freien CPU-Kapazitäten besitzt. Nach der Softwareinstallation und der Anmeldung bei GIMPS erhält man die zu untersuchende Zahl.

Das Projekt wurde 1997 von dem US-amerikanischen Mathematiker George Woltman gegründet. Von ihm und Scott Kurowski stammt auch die Software sowie deren Netzwerkanbindung. Das Projekt ist äußerst

erfolgreich. Mittlerweile wurden mehrere Mersennesche Primzahlen gefunden, die größte im Januar 2013 mit $2^{57885161}$ - 1.

Im September 2008 konnte vermeldet werden, das die weltweit verteilten am Projekt beteiligten Computer eine Rechenleistung von 36 TFLOPS (TeraFLOPS) aufbringen, d.h. 36 Billionen Fließkommaoperationen je Sekunde.

Allerdings sind die internationalen Projekte BOINC (1000 TFLOPS) und SETI@Home (265 TFLOPS) noch erfolgreicher. Zum Vergleich: Ein normaler Heim-PC (2011) hat eine Leistung von etwa 30 GigaFLOPS. siehe http://www.mersenne.org/prime.htm

Lucas-Lehmer-Kriterium

Hinreichendes und notwendiges Kriterium für die Primzahleigenschaft einer Mersenneschen Zahl: M_n ist genau dann Primzahl \Leftrightarrow U(n-2) = 0 mit U(0) = 4 und U(k+1) =[U(k)^2 - 2] mod M_n Ist q ein Teiler der Mersenneschen Zahl $M_p = 2^p$ -1, so gilt $q \equiv \pm 1 \mod 8$ und q = 2kp+1, wobei k eine ganze Zahl ist

Zerlegung von Mersenneschen Zahlen

Zahlen der Form 2^n - 1 sind nur sehr selten prim. Die Zerlegungstabelle der Mersenneschen Zahlen enthält die bekannten Faktoren von Mersenneschen Zahlen. Für Zahlen 2^n - 1 mit geradem n=2*k gilt stets 2^n - 1 = $(2^k$ - 1) * $(2^k$ +1).

Mersenne-Zahlen der Form 2ⁿ-1

U(0) = 4

	inic Edinon doi 101111 E E		
Zahl n	Teiler (ohne kleinere Zahlen 2 ⁿ - 1 als Teiler	r)Zahl n	Teile
9	73	11	23, 89
15	151	21	337
23	47, 178481	25	601, 1801
27	262657	29	233, 1103, 2089
33	599479	35	71, 122921
37	223, 616318177	39	79, 121369
41	13367, 164511353	43	431, 9719, 2099863
45	631, 23311	47	2351, 4513, 13264529
49	4432676798593	51	103, 2143, 11119
53	6361, 69431, 20394401	55	881, 3191, 201961
57	32377, 1212847	59	179951, 3203431780337
63	92737, 649657	65	145295143558111
67	193707721, 761838257287	69	10052678938039
71	228479, 48544121, 212885833	73	439, 2298041, 9361973132609

Edouard Lucas entwickelte 1876 ein Testverfahren auf Grund höchst komplexer Überlegungen, das trotzdem einfach anzuwenden ist. 1930 verbesserte Derrick Lehmer diese Methode zur Erkennung Mersennescher Primzahlen. Heutzutage ist dieses Verfahren unter dem Namen Lucas-Lehmer-Test bekannt.

```
U(2) = [14^2 - 2] \mod 127 = 67
                                                U(3) = [67^2 - 2] \mod 127 = 42
        U(4) = [42^2 - 2] \mod 127 = 111
                                                U(5) = [111^2 - 2] \mod 127 = 0
\Rightarrow M<sub>7</sub> = 127 ist prim.
Nicht prime Mersennesche Zahl M 11 = 2047 = 23 * 89
       U(0) = 4
                      U(1) = [4^2 - 2] \mod 2047 = 14
        U(2) = [14^2 - 2] \mod 2047 = 194
                                                U(3) = [194^2 - 2] \mod 2047 = 788
        U(4) = [788^2 - 2] \mod 2047 = 111
                                                U(5) = [111^2 - 2] \mod 2047 = 119
        U(6) = [119^2 - 2] \mod 2047 = 1877 U(7) = [1877^2 - 2] \mod 2047 = 240
        U(8) = [240^2 - 2] \mod 2047 = 282
                                                U(9) = [282^2 - 2] \mod 2047 = 1736 \neq 0
\Rightarrow M<sub>11</sub> = 2047 = 23 * 89 ist nicht prim.
Offene Probleme:
1. Ist jede Mersennesche Zahl quadratfrei?
```

```
2. Es sei C(0) = 2 und C(1) = 2^{C(0)}-1, C(2) = 2^{C(1)}-1, C(3) = 2^{C(2)}-1, ... usw. Catalan vermutete 1876, dass alle Zahlen dieser Folge prim sind.
```

 $U(1) = [4^2 - 2] \mod 127 = 14$

```
C(0) = 2 prim

C(1) = 3 prim

C(2) = 7 prim

C(3) = 127 prim

C(4) = 170141183460469231731687303715884105727 prim

C(5) > 10^{51217599719369681879879723386331576246} ist C(5) prim?
```

Nach Guy's Gesetz der kleinen Zahlen vermutet die Mehrzahl der Zahlentheoretiker, dass C(5) doch nicht prim ist. Curt Noll wies bisher nach, dass C(5) keine Teiler $< 5*10^{50}$ besitzt.

Die Liste enthält die jeweils kleinsten Teiler der Mersenneschen Zahlen 2ⁿ - 1.

Zahl n	Teiler	Zahl n	Teiler	Zahl n	Teiler
11	23	23	47	29	233
37	223	41	13367	43	431
47	2351	53	6361	59	179951
67	193707721	71	228479	73	439
79	2687	83	167	97	11447
101	7432339208719	103	2550183799	109	745988807
113	3391	131	263	137	32032215596496435569
139	5625767248687	149	866562685662821831	.51	151 18121

Doppelte Mersennesche Zahlen

 $M_{Mn} = 2^{(2n-1)} - 1$ Zahlen der Form

Diese Zahlen wachsen für größere n extrem schnell an, so dass nur von wenigen Teiler oder Primzahleigenschaft bekannt sind:

```
Primteiler
                     Entdecker
2
       Primzahl
3
       Primzahl
4
       7, 31, 151
5
       Primzahl
6
       7, 7, 73, 127, 337, 92737, 649657
7
       Primzahl
       7, 31, 103, 151, 2143, 11119, 106591, 131071, 949111, 9520972806333758431,
8
       5702451577639775545838643151
9
       127, 439, 15212471, 2298041
       7, 23, 89, 599479, 2147483647
10
       47, 131009, 178481, 724639
11
       338193759479 Wilfrid Keller 1976
13
                      Raphael Robinson 1957
17
       231733529
19
       62914441
                      Raphael Robinson 1957
31
       295257526626031
                             Guy Haworth 1983
Ob außer den genannten vier Primzahlen dieser Form weitere existieren, ist unklar. Tony Forbes leitet
gegenwärtig ein Projekt zur Suche eines Primteilers für M<sub>M61</sub>.
                             M_{Mn} = 2^{(2n-1)} - 1
Zahlen der Form
```

können auf die Form $M_{Mn} = b^{(bn-1)} - 1$

erweitert werden. Die Tabelle enthält die ersten Zahlen dieser Struktur und deren Faktorisierung. (Markierung * ... noch nicht vollständig faktorisiert)

```
Primteiler
        n
3
        2
                2, 2, 2, 2, 5, 41
3
        3
                2, 2, 2, 398581, 797161
                2, 2, 2, 2, 2, 5, 5, 11, 11, 17, 41, 61, 193, 1181, 14401, 42521761, 128653413121 2, 2, 2, 23, 67, 661, 727, 2179, 3851, 11617, 74779, 3981923614021
3
        4
        5*
3
        2*
                2, 2, 2, 2, 2, 3, 3, 7, 13, 31, 313, 601, 390001
5
        3*
5
                2, 2, 2, 3, 13, 1303, 1861, 21207101, 28086211607
                2<sup>6</sup>, 3<sup>2</sup>, 7, 13, 13, 17, 31, 53, 79, 157, 313, 601, 1249, 1873, 3121, 5227, 11489, 38923,
5
        4*
                51169, 305175781, 390001, 8684521, 152587500001, 31308249137777, 2220784177
6
        2
                5, 5, 71, 311, 55987, 37863211, 1469029031
        3*
                5, 5, 173, 311, 431, 1291
6
        4*
                5, 5, 71, 149, 311, 2591, 7919, 12211, 55987
6
7
        2
                2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5, 13, 17, 19, 43, 73, 181, 193, 409, 1201, 169553,
                33232924804801
7
        3*
                2, 2, 2, 3, 3, 3, 19, 19, 37, 43, 419, 457, 1063, 2053, 6841, 19609, 538309, 117307,
                351121
```

Erweiterte Mersennesche Zahl

Primzahlen der Form $M_n = 2^n - 1$ sind Mersennesche Zahlen, die nur für wenige n prim sind. Eine Erweiterung dieser Zahlen ist die Frage nach Zahlen der Form 2ⁿ - n die prim sind.

Derartige Zahlen können nur für ungerade n Primzahl sein, mit der Ausnahme n = 2. Die ersten Primzahlen dieser Form sind zu finden für n = 2, 3, 9, 13, 19, 21, 55, 261, 3415, 4185, 7352, 12212, ... gesucht bis n = 14800

Erdös-Borwein-Konstante

Die Erdös-Borwein-Konstante (nach Paul Erdös und Peter Borwein) ist die Summe der Reziproken der Mersenneschen Zahlen:

 $E = \sum_{n=1}^{\infty} 1/(2^n - 1) =$

= 1,60669 51524 15291 76378 33015 23190 92458 04805 79671 50575 64357 78079 55369 14184 20743 48669 05657 11801 67015 55758 9704 ...

Die Kettenbruchdarstellung von E ist

E = [1, 1, 1, 1, 1, 5, 2, 1, 2, 29, 4, 1, 2, 2, 2, 2, 6, 1, 7, 1, 6, 1, 2, 1, 1, 1, 1, 1, 1, 1, 417, 1, 8, 2, 1, 37, 1, 1, 1, 8, 1, 3, 1, 4, 2, 2, 5, 1, 3, 1, 2, 1, 1, 2, 2, 1, 10, 1, 1, 16, 1, 1, 1, 2, 3, 3, 1, 9, 3, 2, 1, 6, 7, 2, 7, 20, 1, 2, 2, 2, 2, 2, 10, 1, 2, 2, 3, 1, 2, 63, 1, 5, 1, 4, 2, 20, 18, 2, 1, 2, ...]

Weiterhin gilt: $E = \sum_{n=1}^{\infty} 1/(2^{n+1})$

$$\begin{array}{ll} E = \sum_{n=1}^{\infty} \frac{1}{(2^{n+2})} (2^n + 1)/(2^n - 1) & E = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(2^{mn-1})} \\ E = \sum_{n=1}^{\infty} \frac{\sigma(n)}{(2^n)} & C = C \end{array}$$

wobei $\sigma(n) = d(n)$ die Anzahl der positiven Teiler von n ist.

Die Erdös-Borwein-Konstante wurde erstmals 1749 von Euler untersucht. 1948 gelang es Erdös, die Irrationalität der Konstanten nachzuweisen.

Verallgemeinert zeigte 1992 Borwein, dass alle Zahlen

$$\Sigma_{n=1}^{\infty} 1/(q^n - 1)$$
 und $\Sigma_{n=1}^{\infty} (-1)^n/(q^n - 1)$

für jede ganze, von 0, 1 und -1 verschiedene Zahl q und jede von Null und q^n verschiedene rationale Zahl r irrational sind.

Kynea-Zahl

Eine Kynea-Zahl ist ein natürliche Zahl der Form $4^n + 2^{n+1} - 1$ bzw. $(2^n + 1)^2 - 2$ Damit ist eine Kynea-Zahl die n.te Potenz von 4 plus die (n+1).te Mersennesche Zahl. Die ersten Kynea-Zahlen sind 7, 23, 79, 287, 1087, 4223, 16639, 66047, 263167, 1050623, 4198399, 16785407, ...

In der Binärdarstellung der n.ten Kynea-Zahl tritt eine führende 1 auf, gefolgt von n-1 Nullen und n+1 Einsen, zum Beispiel $[23]_{10} = [10111]_2$ und $[79]_{10} = [1001111]_2$

Beginnend mit 7 ist jede dritte Kynea-Zahl ein Vielfaches von 7. Prime Kynea-Zahlen können somit keinen Index n = 3x+1 mit x > 0 besitzen. Die ersten primen Kynea-Zahlen sind

7, 23, 79, 1087, 66047, 263167, 16785407, ...

Weitere prime Kynea-Zahlen ergeben sich für n = 1070, 1650, 2813, 3281, 4217, 5153, 6287, 6365, ... 2006 wurde durch Cletus Emmanuel für n = 281621 die bisher größte, bekannte prime Kynea-Zahl nachgewiesen

 $5,455289117190661 \cdot 10^{169552}$

Dies ist die 46.prime Kynea-Zahl.

Kynea-Zahlen wurden durch Cletus Emmanuel in die Mathematik eingeführt. Den Namen gab er zu Ehren von Kynea R.Griffith. In einem Internet-Forum schrieb er, u.a. auch über die von ihm eingeführten Carol-Zahlen:

"Carol G.Kirnon is my best female friend in the whole wide world. She was the first girl to steal my heart when we were in high school. Therefore, since math is my love and she is my love, I named the first set of numbers after her. The second set, and really the second set, because I encountered them days after is named for the baby girl that had the greatest inpact on my life so far, Kynea R. Griffith.

I hope some day when people talk about Carol and Kynea numbers, they will know a little bit about the two."

Carol-Zahl

Eine Carol-Zahl ist eine natürliche Zahl der Form $4^n - 2^{n+1} - 1$ bzw. $(2^n - 1)^2 - 2$

Die ersten Carol-Zahlen sind -1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, ...

Die Differenz der n.ten Mersenneschen Zahl und der n.ten Carol-Zahl ist 2^{n+1} . In der Binärdarstellung der n.ten Carol-Zahl (n > 2) treten n-1 führende Einsen auf, gefolgt von einer Null und n+1 Einsen, zum Beispiel [47]₁₀ = [1011111]₂ und [223]₁₀ = [11011111]₂

Beginnend mit 7 ist jede dritte Carol-Zahl ein Vielfaches von 7. Prime Carol-Zahlen können somit keinen Index n = 3x+2 mit x > 0 besitzen.

Die ersten primen Carol-Zahlen sind 7, 47, 223, 3967, 16127, 1046527, 16769023, ...

Weitere prime Carol-Zahlen ergeben sich für n = 1459, 1707, 2923, 6462, ... (gesucht bis n = 9420, Oktober 2010)

Im Juli 2007 wurde durch Cletus Emmanuel für n = 253987 die bisher größte, bekannte prime Carol-Zahl nachgewiesen. Dies ist die 40.prime Carol-Zahl.

Carol-Zahlen wurden durch Cletus Emmanuel in die Mathematik eingeführt.

Kerstin-Zahl

Da es heutzutage scheinbar üblich ist, neue Zahlen in die Mathematik einzuführen und sie nach geliebten Menschen zu benennen (siehe Carol-Zahl, Kynea-Zahl, Ruth-Aaron-Paar, Maris-McGwire-Sosa Zahlen, ...), macht auch der Programmautor davon Gebrauch und benennt eine Zahlenart nach seiner Ehefrau.

Eine Kerstin-Zahl ist eine natürliche Zahl der Form $14^n + 8^n + 3^n$

Die ersten Kerstin-Zahlen sind damit 25, 269, 3283, 42593, 570835, 7702409, ...

Kerstin-Zahlen sind stets ungerade, aber nie durch 3, 11, 13 oder 19 teilbar. Für n = 1 + 4k, $k \in N$, sind die Zahlen durch 5 teilbar, für n = 3 + 6k sind sie durch 7 teilbar.

Die ersten primen Kerstin-Zahlen sind 269, 4 26896 86860 95336 45129, 59 76448 07413 81525 14523,

•••

Für die Exponenten n = 2, 18, 19, 20, 23, 31, 48, 68, 84, 222, 8707, 15624, 23610 und 24468 wurden Primzahlen gefunden. Dass 18, 19 und 20 hintereinander prime Werte liefern, ist schon überraschend. Weitere prime Kerstin-Zahlen sind nicht bekannt. Da bis n = 44603 gesucht wurde (September 2013), sind sie also sehr selten. Vielleicht gibt es nur endlich viele?

Ob Kerstin-Zahlen je in der Mathematik Bedeutung erlangen werden, wird natürlich die Zeit zeigen :-) Auf der rechten Seite können Kerstin-Zahlen bis zu einem Index n von 6000 berechnet werden.

Stephen-Zahl

Und weil es so viel Spaß macht, neue Zahlen zu definieren (siehe Kerstin-Zahl) wird hier, zu Ehren aller die Stephen (Stephen Hawking!), Steve, Stefan, Steffen, ... heißen, festgelegt:

Eine Stephen-Zahl ist eine natürliche Zahl der Form $16^n - 3.9^n + 4^n$

Die ersten Stephen-Zahlen sind damit -7, 29, 1973, 46109, 872453, 15186989, ...

Stephen-Zahlen sind stets ungerade, aber nie durch 3, 5, 11, 13, 17, 19 oder 23 teilbar. Für n = 1 + 3k, $k \in N$, sind die Zahlen durch 7 teilbar.

Die ersten primen Stephen-Zahlen sind -7, 29, 1973, 872453, 17498047059893, ...

Weitere prime Stephen-Zahlen finden sich für n = 2475, 2775, 3383, 3435, 3515, 9962. Da bis n \leq 13411 gesucht wurde (Juli 2013, Polster), sind auch sie sehr selten.

Potenzsummenprimzahlen

Gegeben seien drei natürliche Zahlen a, b, c. Ist für ein natürliches n die Zahl $a^n + b^n + c^n$ Primzahl, so nennt man diese Potenzsummenprimzahl n.ter Ordnung. Damit sind Kerstin-Primzahlen ebenso Potenzsummenprimzahlen.

Ja nach Wahl von a, b und c sind Potenzsummenprimzahlen in unterschiedlicher Häufigkeit zu finden. Eine höhere Anzahl solcher Primzahlen findet man für

```
a, b, c
2, 3, 6
1, 3, 9, 13, 25, 27, 29, 95, ...
2, 5, 24
1, 4, 5, 7, 36, 43, 45, 49, 55, 71, 85, ...
2, 30, 35
1, 2, 5, 6, 9, 11, 12, 16, 19, 21, 70, ...
3, 5, 33
1, 2, 5, 6, 7, 9, 12, 13, 23, 31, 38, ...
3, 12, 14
1, 2, 4, 6, 7, 10, 11, 20, 45, 52, 69, 95, ...
2, 6, 23
1, 2, 3, 4, 6, 12, 13, 16, 19, 24, 34, 46, 73, 171, 187, 333, 1069, 1165, 2196, ...
```

Hurwitz-Zahlen

Beweis für die Unendlichkleit der Primzahlmenge (nach A.Hurwitz 1891):

Betrachtet man die unendliche Zahlenfolge h(n) mit der Definition

```
h(1) = 2
h(2) = h(1) + 1 = 3
h(3) = h(1)h(2) + 1 = 7
h(4) = h(1)h(2)h(3) + 1 = 43
h(5) = h(1)h(2)h(3)h(4) + 1 = 1.807
h(6) = h(1)h(2)h(3)h(4)h(5) + 1 = 3.263.443
h(7) = h(1)h(2)h(3)h(4)h(5)h(6) + 1 = 10.650.056.950.807
h(8) = h(1)h(2)h(3)h(4)h(5)h(6)h(7) + 1 = 113.423.713.055.421.844.361.000.443
... h(n+1) = (h(n) - 1)*h(n) + 1
so folds das diese 7ahlen h(1) h(2) h(3) paarweise relativ prim sind das heißt
```

so folgt, das diese Zahlen h(1), h(2), h(3), ... paarweise relativ prim sind, das heißt, je zwei beliebige Zahlen h(i) und h(j) haben keinen gemeinsamen Primfaktor. Da es unendlich viele Zahlen h(n) gibt, existieren auch unendlich viele Primzahlen. Die h(i) heißen Hurwitz-Zahlen.

Tabelle der Hurwitz-Zahlen

```
2 ... prim
h(1)
                                                            h(3)
                                                                   7 ... prim
                                 h(2)
                                        3 ... prim
h(4)
      43 ... prim
                                        1807 = 13 * 139
                                 h(5)
h(6)
      3263443 ... prim
h(7)
      10650056950807 = 547 * 607 * 1033 * 31051
h(8)
      113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481
      12864938683278671740537145998360961546653259485195807
h(9)
       = 5295435634831 * 31401519357481261 * 77366930214021991992277
h(10) 16550664732451996419846819544443918001751315270637749784185138876...
      ...6535868639572406808911988131737645185443 = 181 * 1987 * 114152531605972711 *
112374829138729 * P68
h(11) = 2287 * 2271427 * Z184
```

Besondere Zahlen

Glatte Zahl

Eine natürliche Zahl n heißt glatt bezüglich einer Schranke S, wenn in ihrer Primfaktorzerlegung nur Primzahlen kleiner oder gleich S vorkommen. Mitunter spricht man auch von S-glatt.

Eine natürliche Zahl heißt potenzglatt bezüglich einer Schranke S, wenn in ihrer Primfaktorzerlegung nur Primpotenzen kleiner oder gleich S vorkommen.

D.h., für einen Primfaktor q, der a mal vorkommt gilt $q^a \le S$.

Die Zahl $720 = 2^4 \cdot 3^2 \cdot 5$ ist glatt bezüglich jeder Schranke größer als 4, da nur Primzahlen kleiner oder gleich 5 auftreten. Jede Zweierpotenz ist glatt bezüglich einer Schranke S größer oder gleich 2, da in der Primfaktorzerlegung nur der Primfaktor 2 vorkommt.

Binomialzahl

Unter einer Binomialzahl (engl. binomial number) versteht man eine Zahl der Form $a^n \pm b^n$ wobei a und b ganze Zahlen sind. Diese Zahlen sind nicht mit dem Binomialkoeffizienten zu verwechseln. Binomialzahlen sind sehr oft zusammengesetzte Zahlen. Es gilt für alle natürlichen n

```
a^n - b^n = (a - b) (a^{n-1} + a^{n-2} b + ... + a b^{n-2} + b^{n-1})

a^n + b^n = (a + b) (a^{n-1} - a^{n-2} b + ... - a b^{n-2} + b^{n-1}); für ungerades n
```

wobei der zweite Faktor mitunter weiter zerlegt werden kann.

```
a^{2} - b^{2} = (a - b) (a + b)
a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})
a^{4} - b^{4} = (a - b) (a + b) (a^{2} + b^{2})
a^{5} - b^{5} = (a - b) (a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + b^{4})
a^{6} - b^{6} = (a - b) (a^{2} + ab + b^{2}) (a^{2} - ab + b^{2})
a^{7} - b^{7} = (a - b) (a^{6} + a^{5}b + a^{4}b^{2} + a^{3}b^{3} + a^{2}b^{4} + ab^{5} + b^{6})
a^{2} + b^{2} = a^{2} + b^{2}
a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})
a^{4} + b^{4} = a^{4} + b^{4}
a^{5} + b^{5} = (a + b) (a^{4} - a^{3}b + a^{2}b^{2} - ab^{3} + b^{4})
a^{6} + b^{6} = (a^{2} + b^{2}) (a^{4} - a^{2}b^{2} + b^{4})
a^{7} + b^{7} = (a + b) (a^{6} - a^{5}b + a^{4}b^{2} - a^{3}b^{3} + a^{2}b^{4} - ab^{5} + b^{6})
```

Die Anzahl der Faktoren in der Zerlegung von aⁿ - bⁿ ist für steigendes n:

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8, ... und analog für $a^n + b^n$:

```
1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8, ...
```

Für Binomialzahlen der Form $a^n \pm b^n$

wobei a und b ganze Zahlen sind, werden auch Primfaktoren gesucht. Dazu sei a $> b \ge 1$ und ggT(a,b) = 1.

Ist eine Primzahl p ein Teiler von a^n - b^n für ein $n \ge 1$, so ist p kein Teiler von $a \cdot b$. Umgekehrt gilt: Wenn p kein Teiler von $a \cdot b$ ist und $b \cdot b' \equiv 1 \mod p$ und n ist die Ordnung von $a \cdot b' \mod p$, so teilt p auch a^n - b^n .

Primitiver Primfaktor

Falls $n \ge 1$ die kleinste Zahl ist, für die p die Binomialzahlen a^n - b^n bzw. a^n + b^n teilt, dann heißt p primitiver Primfaktor der Folge von Binomialzahlen.

Ausgehend vom kleinen Satz von Fermat zeigte Legendre, dass dann n ein Teiler von p-1 ist. Damit ist jede Primzahl p, die kein Teiler von a·b ist, für irgendein n primitiver Primfaktor. Für die Umkehrung gilt des Satz von Zsigmondy (1892):

Es sei $a > b \ge 1$ und ggT(a,b) = 1. Dann hat jede Zahl a^n - b^n einen primitiven Primfaktor, mit den Ausnahmen a-b = 1, n = 1 oder 63; und a^2 - b^2 , wobei a, b ungerade sind und a+b einer Zweierpotenz ist.

Zahlen der Form $a^n + b^n$ haben einen primitiven Primfaktor mit der einzigen Ausnahme $2^3 + 1 = 9$. Den Spezialfall für b = 1 hatte 1886 schon Bang bewiesen und wird daher Bangs Spezialfall genannt.

Pierpont-Primzahl

Eine Pierpont-Primzahl ist eine Primzahl der Form $p = 2^k \cdot 3^l + 1$ Die ersten Pierpont-Primzahlen sind damit 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, ...

Pierpont-Primzahlen spielen eine Rolle bei der Beantwortung der Frage, welche regelmäßigen n-Ecke allein mit Zirkel, Lineal und zusätzlich einem Winkeldreiteilungsgerät konstruiert werden können. Es zeigt $n = 2^r \cdot 3^s \cdot p_1 \cdot p_2 \cdot ... \cdot p_k$ sich, dass für die Eckenzahl n gelten muss

wobei p_1 , p_2 , ..., p_k verschiedene Pierpont-Primzahlen sind und n > 3 gilt. (Gleason 1998)

Die Anzahl von Pierpont-Primzahlen bis 10¹, 10², ... ist 4, 10, 18, 25, 32, 42, 50, 58, 65, 72, 78, 83, 93, 106, 114, 125, 139, 143, 149, 157, 167, 176, 183, 194, 198, 209, 219, 221, 229, 237, 243, 250, 260, 270, 273, 278, 286, 294, 304, 314, 317, 323, 327, 337, 342, 352, 362, 371, 377, 394, 399, 405, 414, 420, ...

 $3 \cdot 2^{7033641} + 1$ 2011 wurde mit

die größte bekannte Pierpont-Primzahl durch Michael Herder nachgewiesen. Die Zahl hat über 2 Millionen Stellen.

Cunningham-Zahl

... Zahlen der Form $C^{\pm}(b,n) = b^{n} \pm 1$

Prime Cunningham-Zahlen C⁺ sind sehr selten. Bekannt sind:

$$C^{+}(2,1) = 3$$
, $C^{+}(2,2) = 5$, $C^{+}(2,4) = 17$, $C^{+}(2,8) = 257$, $C^{+}(2,16) = 65537$
 $C^{+}(6,2) = 37$, $C^{+}(6,4) = 1297$, $C^{+}(10,2) = 101$

dabei sind die ersten 5 Cunningham-Zahlen gleichzeitig Fermat-Zahlen, da $C^+(2,2^m) = F_m$ Cunningham-Primzahlen $C^{-}(2,n) = 2^{n}-1$ sind Mersennesche Primzahlen, von denen heute 39 bekannt sind. Für $b \le 20$ und $2 \le n \le 1000$ sind keine weiteren primen Zahlen C bekannt.

Cunningham-Projekt

Im Jahr 1925 veröffentlichte Cunningham erstmals allgemeine Faktorisierungstabellen der Zahlen $b^{n} \pm 1$, wobei b=2, 3, 5, 6, 7, 10, 11 und 12 sein kann.

Diese Arbeit wird ständig fortgesetzt und ist unter ftp://sable.ox.ac.uk/pum/math/cunningham abrufbar.

Zerlegung 2ⁿ + 1

In der Zerlegungstabelle der Zahlen $2^n + 1$ befinden sich alle Primfaktoren dieser Zahlen. Legende: N** ... noch nicht vollständig zerlegt, Z[] ... zusammengesetzte Zahl, Zn ... n-stellige zusammengesetzte Zahl, Pn ... n-stellige Primzahl

n	Primfaktoren	'n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	3	2	5	3	3	4	17
5	11	6	13	7	43	8	257
9	19	10	41	11	683	12	241
13	2731	14	113, 29	15	331	16	65537
17	43691	18	37, 109	19	174763	20	61681
21	5419	22	397, 2113	23	2796203	24	97, 673
25	251, 4051	26	1613, 53, 157	27	87211	28	15790321
29	59, 3033169	30	61, 1321	31	715827883	32	641, 6700417
33	67, 20857	34	137, 953, 263	17			
35	281, 86171	36	433, 38737				

Zerlegung $3^n + 1$

In der Zerlegungstabelle der Zahlen $3^n + 1$ befinden sich alle Primfaktoren dieser Zahlen. Legende: N** ... noch nicht vollständig zerlegt, Z[] ... zusammengesetzte Zahl, Zn ... n-stellige zusammengesetzte Zahl. Pn . n-stellige Primzahl

Zasammengesetzte Zam, i m			II steinge i ii	IIIZUIII			
n	Primfaktoren	n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	2, 2	2	5	3	7	4	41
5	61	6	73	7	547	8	17, 193
9	19, 37	10	1181	11	67, 661	12	6481
13	398581	14	29, 16493	15	31, 271	16	21523361
17	103, 307, 102	118	530713	19	2851, 101917	20	42521761
21	43, 2269	22	5501, 570461	23	23535794707	24	97, 577, 769
25	151, 2299665	1 26	53, 479597326	51			
27	19441, 19927	28	430697, 6477!	53			
29	523, 6091, 53	85997	30 47763	361			

Zerlegung 3ⁿ - 1

In der Zerlegungstabelle der Zahlen 3ⁿ - 1 befinden sich alle Primfaktoren dieser Zahlen. (ohne kleinere Zahlen 3^n - 1 als Teiler). Für Zahlen 3^n - 1 mit geradem n=2*k gilt 3^n - 1 = $(3^k$ - 1) * $(3^k$ + 1)

n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
3	Primzahl = 13	5	11, 11	7	Primzahl = 1093
9	757	11	23, 3851	13	Primzahl = 797161
15	4561	17	1871, 34511	19	1597, 363889
21	368089	23	47, 1001523179	25	8951, 391151
27	109, 433, 8209	29	59, 28537, 20381027	31	683, 102673, 4404047

Zerlegung 5ⁿ + 1

In der Zerlegungstabelle der Zahlen $5^n + 1$ befinden sich alle Primfaktoren dieser Zahlen. Legende: N^{**} ... noch nicht vollständig zerlegt, Z[] ... zusammengesetzte Zahl, Zn ... n-stellige zusammengesetzte Zahl, Pn ... n-stellige Primzahl

n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	2, 3	2	13	3	7
4	313	5	521	6	601
7	29, 449	8	17, 11489	9	5167
10	41, 9161	11	23, 67, 5281	12	390001
13	5227, 38923	14	234750601	15	61, 7621
16	2593, 29423041	17	3061, 41540861	18	37, 6597973
19	761, 19609, 213029	20	241, 632133361	21	43, 127, 7603
22	89, 1030330938209	23	47, 42272797713043	24	152587500001
25	1901, 50150933101	26	53, 83181652304609	27	163,487,16018507
28	59509429687890001	29	5096867, 6090817323	763	30 2281, 69566521

Zerlegung 5ⁿ - 1

In der Zerlegungstabelle der Zahlen 5^n - 1 befinden sich alle Primfaktoren dieser Zahlen. (ohne kleinere Zahlen 5^n - 1 als Teiler)

n	Primfaktoren r	n	Primfaktoren	n	Primfaktoren
3	Primzahl = 31	5	11, 71	7	Primzahl = 19531
9	19, 829	11	Primzahl = 12207031	13	Primzahl
15	181, 1741	17	409, 466344409	19	191,6271,3981071
21	379, 519499	23	8971, 332207361361	25	101, 251, 401, 9384251
27	109, 271, 4159, 310512	29	59, 35671, 221259964	144329	
31	1861, 62555250847358	38471			

Zerlegung 6ⁿ + 1

In der Zerlegungstabelle der Zahlen $6^n + 1$ befinden sich alle Primfaktoren dieser Zahlen. Legende: N^{**} ... noch nicht vollständig zerlegt, Z[] ... zusammengesetzte Zahl, Zn ... n-stellige zusammengesetzte Zahl, Pn ... n-stellige Primzahl

n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	7	2	37	3	31
4	1297	5	11, 101	6	13, 97
7	29, 197	8	17, 98801	9	46441
10	241, 6781	11	51828151	12	1678321
13	53, 937, 37571	14	421, 5030761	15	1950271
16	353, 1697, 4709377	17	190537, 12690943	18	73, 541, 55117
19	1787, 48713705333	20	41, 68754507401	21	2527867231
22	58477, 70489, 86301	7 23	113958101, 99000073		24 5953, 473896897

Zerlegung 6ⁿ - 1

In der Zerlegungstabelle der Zahlen 6^n - 1 befinden sich alle Primfaktoren dieser Zahlen. (ohne kleinere Zahlen 6^n - 1 als Teiler). Für Zahlen 6^n - 1 mit geradem n=2*k gilt 6^n - 1 = $(6^k$ - 1) * $(6^k$ +1)

n	Primfaktoren	n	Primfaktoren	n	Primfa	ktoren
3	5, 43	5	311	7	55987	
9	19, 2467	11	23, 3154757	13	3433,	760891
15	1171, 1201	17	239, 409, 1123, 3083	3919	191, Z	12
21	1822428931	23	47, 139, 3221, 75059	944891	25	18198701, 40185601
27	163, 623067280651	29	73691306573577785	96659		
31	5333, 497447409834	7647280	07			

Zerlegung 7ⁿ + 1

In der Zerlegungstabelle der Zahlen $7^n + 1$ befinden sich alle Primfaktoren dieser Zahlen.

n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	2, 2, 2	2	5, 5	3	43
4	1201	5	11, 191	6	13, 181
7	113, 911	8	17, 169553	9	117307
10	281, 4021	11	23, 10746341	12	73, 193, 409
13	53, 228511817	14	13564461457	15	6568801
16	353, 47072139617	17	29078814248401	18	13841169553
19	351121, 4058036683	20	41, 810221830361	21	51031, 309079
22	661, 1409, 839603853	89	23 342109341751	L011454	3 24 33232924804801

Zerlegung 7ⁿ - 1

In der Zerlegungstabelle der Zahlen 7ⁿ - 1 befinden sich alle Primfaktoren dieser Zahlen. (ohne kleinere Zahlen $7^n - 1$ als Teiler). Für Zahlen $7^n - 1$ mit geradem n=2*k gilt $7^n - 1 = (7^k - 1)*(7^k + 1)$

	,		3		, , ,
n	Primfaktoren	n	Primfaktoren	n	Primfaktoren
1	2, 3	3	19	5	2801
7	29, 4733	9	37, 1063	11	1123, 293459
13	16148168401	15	31, 159871	17	14009, Z10
19	419, 4534166740403	21	11898664849	23	47, 3083, 31479823396757
25	2551, 3128067978895	51	27 109, 811, 237	7, 2583	253
29	59, 127540261, 71316	5922984	1999		

Zerlegung 10ⁿ + 1

In der Zerlegungstabelle der Zahlen $10^{n} + 1$ befinden sich alle Primfaktoren dieser Zahlen.

n	Primfaktoren	n	Primfaktoren
1	11	2	101
3	7, 13	4	73, 137
5	9091	6	9901
7	909091	8	17, 5882353
9	19, 52579	10	3541, 27961
11	23, 4093, 8779	12	99990001
13	859, 1058313049	14	29, 281, 121499449
15	211, 241, 2161	16	353, 449, 641, 1409, 69857
17	103, 4013, 21993833369	18	99999000001
19	9090909090909091	20	1676321, 5964848081
21	127, 2689, 459691	22	89, 1052788969, 1056689261
23	47, 139, 2531, 549797184491917	24	999999900000001
25	251, 5051, 78875943472201	26	521, 1900381976777332243781
27	70541929, 14175966169	28	7841, 127522001020150503761
29	59, 154083204930662557781201849	30	61, 4188901, 39526741
31	90909090909090909090909091	32	19841, 976193, 6187457, 834427406578561
33	599144041, 183411838171	34	28559389, 1491383821, 2324557465671829
35	4147571, 265212793249617641		
36	3169, 98641, 3199044596370769		
37	7253, 422650073734453, 296557347	313446	299
38	722817036322379041, 136977818749	905924	51
39	157, 6397, 216451, 388847808493		
40	5070721, 19721061166646717498359	9681	

Aurifeuille-Faktorzerlegung

```
... Zerlegung von Aurifeuille entdeckt und von Lucas für den allgemeinen Fall bewiesen. Es gilt: 2^{4n+2}+1=\left(2^{2n+1}-2^{n+1}+1\right)\left(2^{2n+1}+2^{n+1}+1\right) \qquad \qquad 2^{2h}+1=L_{2h}\ M_{2h}
                                                                                                                             2^{2h} + 1 = L_{2h} M_{2h}

5^{5h} - 1 = (5^h - 1) L_{5h} M_{5h}
               3^{3h} + 1 = (3^h + 1) L_{3h} M_{3h}
mit h = 2k-1 und
               L_{2h} = 2^h + 1 - 2^k M_{2h} = 2^h + 1 + 2^k L_{5h} = 5^{2h} + 3*5^h + 1 - 5^k (5^h + 1)
                                                                                                                             L_{3h} = 3^h + 1 - 3^k M_{3h} = 3^h + 1 + 3^k M_{5h} = 5^{2h} + 3*5^h + 1 + 5^k (5^h + 1)
```

Das durch Prof. Otto Forster entwickelte Freeware-Programm ARIBAS enthält das modernste und schnellste Faktorisierungsverfahren über mehrfache quadratische Primzahlsiebe. Die nachfolgende Tabelle enthält die größten mit diesem Programm durch den WinFunktion-Autor ermittelten Primteiler; der jeweils gleichzeitig ermittelte Komplementteiler ist größer! Überlegt man sich, dass noch vor wenigen Jahren, die Faktorisierung 40stelliger Zahlen am PC als reine Utopie galt, ist die Entwicklung der Faktorisierungsverfahren und der Computertechnik imposant.

Ziffern	Primteiler	Teiler von	Ziffern der untersuc	hten Zahl
34	1459879476771247347961031	445001033 E	(58)	58
32	5616523498188647939419209	4297061 1 ₋	4 ⁷¹ +1	71
32	1481141830986715608697856	9321161 6	2!-1	64
31	8191311934539574527053950	908881 1	4 ⁵⁶ +5	64
31	2516066164220253191649971	614939 1	4 ⁶⁷ -1	64
30	6828074275884313794943446	07469 1	$7^{59} + 1$	66
30	3769644658322500997194692	93587 H	I(320)	65
30	1897928679171606551123229	71437 H	I(320)	71
29	1231857395131723681816952	4329 5	4! + 1	72 (Rekord!)

Weitere Informationen zu diesem Programm sind über http://www.mathematik.unimuenchen.de/~forster/ im Internet zu erhalten

E(58) ist die 57.te Eulersche Zahl. Weitere Informationen zu diesem Programm sind über http://www.mathematik.uni-muenchen.de/~forster/ im Internet zu erhalten.

Primzahlen und SETI

1974 wurde die erste Radiosignalbotschaft mit dem Radioteleskop in Arecibo/Puerto Rico in Richtung des aus ca. 1 Million Sternen bestehenden offenen Sternhaufens M13 im Sternenbild des Herkules gesendet, die dieses System nach 21000-27000 Jahren erreichen wird.

Die Nachricht hatte eine Sendelänge von drei Minuten und enthielt eine mit 1679 Pulsen binär codierte Nachricht mit Informationen zu unserer Zivilisation und dem Leben auf der Erde.

Es lässt sich entschlüsseln, indem zu erkennen ist, dass 1679 das Produkt der Primzahlen 23 und 73 ist. Diese Zahlen wurden gewählt, da auch einer außerirdischen Intelligenz die Besonderheit der Primzahlen bewusst sein wird und der Wert von 1679 so "ungewöhnlich" ist, dass mit etwas Überlegung nur eine Zerlegung in 23 und 73 erfolgen kann.

Werden die Impulse in einem solchen Rechteck von 23 mal 73 Pixel aufgetragen, so ergibt sich das nebenstende Bild mit seinen Bedeutungen:

- 1.) Zahlen von 1-10 im Binärcode
- 2.) Ordnungszahlen der chemischen Elemente Phosphor, Sauerstoff, Stickstoff, Kohlenstoff und Wasserstoff, die für den Aufbau organisch-biologischer Verbindungen notwendig sind.
- 3.) Verhältnisse von Zuckern, Phosphaten und Nukleotiden in der DNA-Struktur
- 4.) Aufbauschema der DNA-Doppelhelix
- 5.) stilisiertes Abbild eines Menschen mit Größenangabe der Weltbevölkerung und durchschnittlicher Körpergröße eines Menschen
- 6.) Aufbau unseres Planetensystems
- 7.) stilisiertes Abbild des Arecibo-Teleskops mit Abstrahlungsskizze der Radiowellen

Auch bei einem zweiten Experiment zur Abstrahlung einer Nachricht in die Weiten des Alls wurde wieder auf Primzahlen zurückgegriffen.

Im Sommer 1999 wurde von einem Radioteleskop in der Ukraine als erster Teil nebenstehende Nachricht in Richtung des Kugelsternhaufens M 13 gesendet. Zuerst werden die Zahlen im Dezimal- und Dualsystem übermittelt. Im unteren Teil findet man die Primzahlen 2, 3, 5, ... In der untersten Zeile findet man dann die von Clarkson, Woltman und Kurowski 1998 entdeckte Mersennesche Primzahl

2³⁰²¹³⁷⁷ - 1, zum Zeitpunkt der Nachricht die größte bekannte Primzahl. Was werden die außerirdischen Empfänger wohl denken? :-)

Übrigens: Primzahlen sollen beruhigend wirken. Das behaupten jedenfalls die Autoren des DDR-Science Fiction-Films "Signale" von 1970. Als eine junge Kosmonautin einen kleinen Unfall hat, wird sie aufgefordert, zur Beruhigung alle Primzahlen bis 10000(!) aus dem Kopf heraus aufzusagen;

und es hilft!

Primzahlen und Zikaden

In den USA leben Singzikaden, die sich nur alle 13 oder 17 Jahre paaren. Beispielsweise verlässt die Siebzehnjahr-Zikade (Magicicada septendecim) erst nach genau 17 Jahren ihr unterirdisches Versteck, um sich in einem Zeitraum von etwa drei Wochen zu vermehren.

Die aus den Eiern schlüpfenden Larven leben unterirdisch, bis sie wiederum in 17 Jahren fast taggleich an die Erdoberfläche kriechen.

Warum sie erst nach 17 Jahren aus ihrem unterirdischen Versteck krabbeln, hat ein chilenisch-deutsches Forscherteam herausgefunden. 13 und 17 sind Primzahlen.

Da ihre Feinde und Konkurrenten meist in 2-, 4- oder 6-Jahres-Rhythmen leben, können die Zikaden ihre Überlebenschancen steigern, indem sie sich in den geburtenschwachen Jahrgängen ihrer Fressfeinde fortpflanzen. Während ihres kurzen oberirdischen Lebens von Mitte Mai bis in den Juni richten die Zikaden trotz ihres massenhaften Auftretens keine Schäden an.

Bemerkenswert an diesen Tieren ist ihre Pünktlichkeit; die Prognosen liegen höchstens eine Woche daneben; ihre Lautstärke von 100 Dezibel, ihre Anziehungskraft für Touristen und Journalisten und ihre Menge von einigen Millionen Tieren je Hektar.

Von jeder Art existieren Unterarten, die um Jahre versetzt erscheinen. Zuletzt schlüpfte 2007 die "17-year-Brood XIII" in Iowa, Illinois, Wisconsin, Michigan und Indiana. 2012 wird die "17-year-Brood I" in Virginia erwartet.

Interessant ist auch, dass sich die Lebensräume der 13- bzw. 17-Jahreszikaden kaum überschneiden. In der nachfolgenden Darstellung ist der Lebensraum der 17-Jahreszikaden blau, der 13-Jahreszikaden rot dargestellt.

Abbildung: Lebensräume der Zikaden

Primzahlen 43 und 61

Durch den Dipl. Math. Klaus Lange wurde Folgendes im Internet veröffentlicht:

"In der Chemie wurde entdeckt, dass die Eigenschaften eines Elements mit der Anzahl der Protonen dieses Elements verknüpft sind. Daher wurden den chemischen Elementen Ordnungszahlen gegeben, die nichts anderes als die Anzahl der Protonen des Elements sind: Ordnungszahl = Anzahl der Protonen im chemischen Element.

So hat beispielsweise Wasserstoff im Atomkern ein Proton und damit die Ordnungszahl 1. Oder Gold im Atomkern 79 Protonen und somit die Ordnungszahl 79.

Die kleinste Protonenanzahl in einem stabilen Element ist die 1 und die größte Ordnungszahl eines stabilen Elements ist die 83.

Oft wird übersehen, dass es nicht als selbstverständlich angesehen werden darf, einen fortlaufenden Verlauf von Ordnungszahlen von 1 über 2 und 3 und so weiter bis zur 83 zu haben. Eher würde man doch chaotische Prozesse bei der Materieentstehung vermuten, die dann eine unzusammenhängende Ordnungszahlenverteilung bei den stabilen Elementen hervorrufen. Dies ist aber nicht gegeben. Vielmehr sind die chemischen Elemente mit aufeinanderfolgenden natürlichen Zahlen geordnet. Würde man die stabilen Elemente nicht mit Namen identifizieren, sondern nur anhand ihrer Ordnungszahl, dann wäre das wohl schon eher aufgefallen.

Es wäre dann auch aufgefallen, dass es bei den stabilen Elementen zwei Ordnungszahlen von 1 bis 83 nicht gibt. Das sind die Ordnungszahlen 43 und 61. Es gibt keine stabilen Elemente, die 43 oder 61 Protonen im Kern besitzen.

Somit gibt es insgesamt 81 stabile Elemente. Diese haben die Ordnungszahlen 1 bis 83, wobei die 43 und die 61 fehlt. Da die Ordnungszahlen so dicht und fortlaufend von 1 bis 83 beieinander liegen, stellt sich nun die Frage, warum ausgerechnet die 43 und 61 als Ordnungszahlen stabiler Elemente nicht vorhanden sind."

Perfekte Zahlen

Unter einer k-perfekten bzw. k-fach vollkommenen (engl. k-multiperfect) Zahl p versteht man eine Zahl deren vollständige Teilersumme s das k Vielfache von p ist. k heißt dann die Klasse P_k der k-perfekten Zahl. Eine vollkommene Zahl ist 2-perfekt, d.h. P_2 ist die Menge der vollkommenen Zahlen.

Ist n aus P_6 und nicht durch 3 teilbar, so ist 3n eine P_4 -Zahl. Ist 3n eine P_{4k} -Zahl und n nicht durch 3 teilbar, so ist n eine P_{3k} -Zahl.

Ist n eine P₄-Zahl und n durch 3 aber nicht durch 5 und 9 teilbar, dann ist 45n eine P₄-Zahl. Beispiele (vollständig getestet bis 350000):

- k kleinste Zahlen
- 3 120, 672, 523776, 459818240, 1476304896, 51001180160
- 4 30240, 32760, 2178540, 23569920, ...
- 5 14182439040, 31998395520, 518666803200, ...
- 6 154345556085770649600, 9186050031556349952000, ...
- 7 141310897947438348259849402738 485523264343544818565120000, ...

Die 4-fach perfekte Zahl 30240 wurde 1638 von René Descartes gefunden. Ebenso wies er 14182439040 nach. Die kleine 6-fach perfekte Zahl wurd 1907 von Robert Daniel Carmichael gefunden, die 7-fach perfekte Zahl 1911 von Mason.

1901 bewies Lehmer, dass Zahlen aus P_3 mindestens 3, aus P_4 mindestens 4, aus P_5 6, aus P_6 9 und aus P_7 14 Primteiler besitzen.

1911 kannte man 251 k-perfekte Zahlen (Carmichael), 1929 schon 334 (Poulet). Durch Franqui und Garcia (1953), Brown (1954) erhöhte sich die Zahl auf 539, darunter 2 aus P_8 . Schroeppel veröffentlichte später 2094 derartige Zahlen. Gegenwärtig glaubt man alle k-perfekten Zahlen für k=3,4,5,6 und 7 zu kennen. Die Anzahl der bekannten k-perfekten Zahlen ist für k=3,4,5,... heute 6, 36, 65, 245, 516, 1130, 1818, 133, 0, 0, ... Die größte k-perfekte Zahl beträgt rund 7.3 * 10^{1345} (Moxham, 13.2.2000).

Liste der Faktorisierung der jeweils kleinsten bekannten, k-perfekten Zahl

Index 1: 1
Index 2: 2 3
Index 3: 2³ 3 5
Index 4: 2⁵ 3³ 5 7

Index 5: 2⁷ 3⁴ 5 7 11² 17 19

```
Index 6: 2^{15} 3^5 5^2 7^2 11 13 17 19 31 43 257

Index 7: 2^{32} 3^{11} 5^4 7^5 11^2 13^2 17 19^3 23 31 37 43 61 71 73 89 181 2141 599479

Index 8: 2^{62} 3^{15} 5^9 7^7 11^3 13^3 17^2 19 23 29 31^2 37 41 43 53 61^2 71^2 73 83 89 97^2 127

193 283 307 317 331 337 487 521<sup>2</sup> 601 1201 1279 2557 3169 5113 92737 649657

Index 9: 2^{104} 3^{43} 5^9 7^{12} 11^6 13^4 17 19^4 23^2 29 31^4 37^3 41^2 43^2 47^2 53 59 61 67 71^3 73 79^2

83 89 97 103<sup>2</sup> 107 127 131<sup>2</sup> 137<sup>2</sup> 151<sup>2</sup> 191 211 241 331 337 431 521 547 631 661 683 709 911 ...

Index 10: 2^{209} 3^{77} 5^{23} 7^{26} 11^{14} 13^{11} 17^9 19^{12} 23^4 29^3 31^9 37^4 41^5 43^7 47 53 59 61^3 67 71^3 73 79^2 83

89<sup>2</sup> 97<sup>2</sup> 101 103 107 109<sup>2</sup> 113<sup>2</sup> 127 ...
```

Hyperperfekte Zahlen

Definition: Eine natürliche Zahl n > 1 heißt k-hyperperfekt, wenn sie das k-fache der Summe aller ihrer echten Teiler und der 1 ist. k heißt Perfektionsindex.

 $n = k(\sigma(n)-n-1)+1$; $\sigma(n)$... Summe aller Teiler von n

Bis 10¹¹ sind heute (Oktober 2001) genau 2190 hyperperfekte Zahlen mit 1932 verschiedenen k bekannt. Nur 85 dieser Zahlen haben einen ungeraden Perfektionsindex (80 verschiedene k).

Mit Ausnahme der 1-hyperperfekten Zahlen; die vollkommenen Zahlen; sind alle anderen ungerade.

Tabelle der k-hyperperfekten Zahlen kleiner 1 Million

n	k	n	k	n	k	n	k	n	k	n	k
6	1	21	2	28	1	301	6	325	3	496	1
697	12	1333	18	1909	18	2041	12	2133	2	3901	30
8128	1	10693	11	16513	6	19521	2	24601	60	26977	48
51301	19	96361	132	130153	3132	159843	110	163201	l 192	176661	12
21427	331	25032	1168	275833	3108	296343	166	306183	135	389593	3252
48687	778	495529	9132	542413	3342	808863	1366				

Die Liste enthält die ersten k-hyperperfekten Zahlen für aufsteigende k.

k k-hyperperfekte Zahlen

- 1 6, 28, 496, 8128, und alle weiteren vollkommenen Zahlen
- 2 21, 2133, 19521, 176661, 129127041
- 3 325
- 4 1950625, 1220640625
- 6 301, 16513, 60110701, 1977225901
- 10 159841
- 11 10693
- 12 697, 2041, 1570153, 62722153, 10604156641, 13544168521

Superperfekte Zahl

Eine superperfekte Zahl ist eine natürliche Zahl n mit $\sigma^2(n) = \sigma(\sigma(n)) = 2n$

wobei σ die Teilersummenfunktion ist. Superperfekte Zahlen sind eine Verallgemeinerung der vollkommenen Zahlen. Die ersten superperfekten Zahlen sind

2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976

Ist n eine gerade superperfekte Zahl, dann muss n eine Zweipotenz 2^k sein und 2^{k+1} -1 eine Mersennesche Primzahl.

Es ist nicht bekannt, ob es ungerade superperfekte Zahlen gibt, wenn ja, muss diese größer als $7 \cdot 10^{24}$ sein (Guy).

Vollkommene und superperfekte Zahlen sind eine Verallgemeinerung der m,k-perfekten Zahlen, für die gilt: μ ,k-perfekte Zahl $\sigma^m = k \cdot n$

Vollkommene Zahlen sind 1,2-perfekt und superperfekte Zahlen (2,2)-perfekt. Beispiele für m,k-perfekte Zahlen sind

m	k	m,k-perfekte Zahlen
2	3	8, 21, 512
2	4	15, 1023, 29127
2	6	42, 84, 160, 336, 1344, 86016, 550095, 1376256, 5505024
2	7	24, 1536, 47360, 343976
2	8	60, 240, 960, 4092, 16368, 58254, 61440, 65472, 116508, 466032, 710400, 983040,
1864	1128, 393	32160, 4190208, 67043328, 119304192, 268173312, 1908867072
2	9	168, 10752, 331520, 691200, 1556480, 1612800, 106151936
2	10	480, 504, 13824, 32256, 32736, 1980342, 1396617984, 3258775296
2	11	4404480, 57669920, 238608384
2	12	2200380, 8801520, 14913024, 35206080, 140896000, 459818240, 775898880,
2253	3189120	

Haus-Primzahl (Home Prime)

Unter der Hausprimzahl HP(n) einer natürlichen Zahl n versteht man die erste Primzahl, welcher in der nachfolgenden Zahlenfolge auftritt.

- 1. die Zahl n wird faktorisiert
- 2. die Primfaktoren werden der Größe nach geordnet
- 3. die Ziffernfolge dieser Primfaktoren bildet eine neue Zahl n und weiter mit 1.

Beispiel: $9 = 3 * 3 \rightarrow 33 = 3 * 11 \rightarrow 311 \dots \text{ Primzahl, d.h. HP}(9) = 311$

Nach Conway und Sloane ist die Wahrscheinlichkeit, dass für eine Startzahl der Algorithmus nicht bei einer Primzahl endet, gleich 0. Ein exakter mathematischer Beweis existiert noch nicht. Etwa für 50 Startzahlen zwischen 100 und 1000 konnte die Hausprimzahl noch nicht ermittelt werden. Die Liste enthält für die ersten natürlichen Zahl deren Hausprimzahl (Stand August 2005).

```
Zahl
      Schritte Hausprimzahl
n
4
      3
               211 = H(22)
6
      2
8
      14
               3331113965338635107
9
      3
               311 = H(33)
      5
10
               773 = H(25)
      2
12
               223
      6
14
               13367 = H(14)
15
      5
               1129 = H(35)
16
      5
               31636373
18
      2
               233
20
      16
               3318308475676071413
              unbekannt [ Z 203 ] = H(77)
49
65
      20
               1381321118321175157763339900357651
      32
80
               313169138727147145210044974146858220729781791489
```

Armstrong-Zahlen

Ein n-stellige natürliche Zahl, welche gleich der Summe der n.ten-Potenzen ihrer Ziffern ist, heißt Armstrong-Zahl oder Plusperfekte Zahl. z.B.: $153 = 1^3 + 5^3 + 3^3$ Die ersten plusperfekten Zahlen sind: 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474,

Die ersten plusperfekten Zahlen sind: 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 8208, 9474, 54748, 92727, 93084, 548834, 1741725, 4210818, 9800817, 9926315, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153, 4679307774, ...

Es existieren im Dezimalsystem nur 88 solcher Armstrongzahlen, da selbst mit Ziffern Neun ab einer gewissen Stellenzahl keine genügend große Potenzsumme mehr erzielt werden kann.

Die zwei größten dezimalen Armstrong-Zahlen mit 39 Stellen sind

115132219018763992565095597973971522400

115132219018763992565095597973971522401

Armstrongzahlen können auch in anderen Positionssystemen betrachtet werden.

Armstrong-Folgen

Ein n-stellige natürliche Zahl, welche gleich der Summe der n.ten-Potenzen ihrer Ziffern ist, heißt Armstrong-Zahl oder plusperfekte Zahl. z.B.: $153 = 1^3 + 5^3 + 3^3$ Dies kann verallgemeinert werden:

Gegeben ist eine beliebige natürliche Zahl. Man bildet die 3.Potenzen der Ziffern der Zahl und addiert sie. Mit der erhaltenen Zahl verfährt man genauso und so fort. Die auf diese Weise entstehende Armstrong-Zahlenfolge führt je nach Ausgangszahl entweder auf einen konstanten Wert oder auf zweizahlige bzw. dreizahlige Perioden.

Beispiel: $z_1 = 3$, $z_2 = 3^3 = 27$, $z_3 = 2^3 + 7^3 = 351$, $z_4 = 3^3 + 5^3 + 1^3 = 153$...

Narzisstische Zahl

Die narzisstischen Zahlen sind eine ganze Gruppe von Zahlen, die durch bestimmte Rechenvorschriften ihrer Ziffern sich selbst erzeugen. Sie spielen in der reinen Mathematik gegenwärtig nur eine geringe Rolle, da sie stark vom verwendeten Zahlensystem; in der Regel vom Dezimalsystem; abhängen. Die plusperfekten Zahlen oder Armstrong-Zahlen (siehe dort); engl. PPDI; sind narzisstische Zahlen, deren Summe ihrer Ziffern, potenziert mit der Stellenanzahl der Zahl, wieder die Zahl selbst ergibt.

Narzisstische Zahlen mit steigender Potenz

Narzistische Zahlen mit steigender Potenz sind Zahlen, deren Summe ihrer Ziffern, potenziert mit deren Stelle in der Zahl, die Zahl selbst ergibt, d.h. eine Zahl der Form abc = $a^1 + b^2 + c^3$. Dabei ist die Anzahl der Stellen nicht auf 3 beschränkt. Es gibt zum Beispiel auch 9- und mehrstellige narzisstische Zahlen. Beispiel: $2427 = 2^1 + 4^2 + 2^3 + 7^4 = 2 + 16 + 8 + 2401$ Folgende Zahlen sind in diesem Sinne narzisstisch: 89, 135, 175, 518, 598, 1306, 1676, 2427, 2646798,

Narzisstische Zahlen mit konstanter Basis

Narzistische Zahlen mit konstanter Basis sind Zahlen, bei denen die Basis konstant ist und die Exponenten den Ziffern der Zahl entsprechen.

```
Beispiel: 4624 = 4^4 + 4^6 + 4^2 + 4^4 = 256 + 4096 + 16 + 256
```

Wilde narzisstische Zahlen

Wilde narzistische Zahlen sind Zahlen deren Art, auf die sie sich selbst aus ihren Ziffern erzeugen, nicht einheitlich ist. Beispiel: $24739 = 2^4 + 7! + 3^9 = 16 + 5040 + 19683$

Münchhausen-Zahl

2009 wurde durch Daan van Berkel der Begriff der Münchhausen-Zahl eingeführt.

Darunter versteht man eine m-stellige natürliche Zahl n für deren Ziffernfolge $c_{m-1}c_{m-2}...c_1c_0$ im Stellenwertsystem zur Basis b n = $c_{m-1}{}^cm-1+c_m{}^cm+...+c_1{}^c1+c_0{}^c0$ gilt. Zum Beispiel ist 3435 eine Münchhausen-Zahl im Dezimalsystem: 3435 = $3^3+4^4+3^3+5^5$

Trivialerweise ist die 1 in jedem Positionssystem eine Münchhausen-Zahl.

Der Name Münchhausen-Zahl (engl. Munchausen number) wurde gewählt, da der berühmte Baron sich an seinen eigenen Haaren aus dem Wasser ziehen konnte und diese Zahlen sich aus ihren eigenen Ziffern erzeugen können.

Van Berkel konnte zeigen, dass es in jedem Positionssystem zur Basis b nur endlich viele Münchhausen-Zahlen geben kann. Folgende Münchhausen-Zahlen existieren:

Basis Münchhausen-Zahl Darstellung im System zur Basis b

```
2
       1, 2
                              1, 10
3
       1, 5, 8
                              1, 12, 22
4
       1, 29, 55
                              1, 131, 313
5
6
       1, 3164, 3416
                              1, 22352, 23452
7
       1, 3665
                              1, 13454
8
       1
                              1
       1, 28, 96446, 923362 1, 31, 156262, 1656547
9
       1, 3435
10
                              1, 3435
```

438579088 ist keine Münchhausen-Zahl, obwohl es immer wieder behauptet wird, denn es gilt 438579088 = $4^4 + 3^2 + 8^8 + 5^5 + 7^7 + 9^9 + 0^0 + 8^8 + 8^8$

nur dann, wenn $0^0 = 0$ gesetzt wird, was eine willkürliche Festlegung ist.

Potenzquersummenzahl

Natürliche Zahlen n, für die eine Potenz ihrer Quersumme gleich der Zahl selbst ist, heißen Potenzquersummenzahlen.

Zum Beispiel findet man

```
= (8+1)^2
                  = 9^{2}
81
      = (5+1+2)^3 = 8^3
512
4913 = (4+9+1+3)^3 = 17^3
17576 = (1+7+5+7+6)^3
                         = 26^3
234256 = (2+3+4+2+5+6)^4 = 22^4
1679616
            = (1+6+7+9+6+1+6)^4
                                      = 36^4
                                      = 28^5
            = (1+7+2+1+0+3+6+8)^5
17210368
205962976 = (2+0+5+9+6+2+9+7+6)^5 = 46^5
8303765625 = (8+3+0+3+7+6+5+6+2+5)^6
                                            = 45^6
24794911296 = (2+4+7+9+4+9+1+1+2+9+6)^6
271818611107 = (2+7+1+8+1+8+6+1+1+1+0+7)^{7} = 43^{7}
6722988818432
                 = (6+7+2+2+9+8+8+8+1+8+4+3+2)^7
                                                         = 68^7
                   = (7+2+3+0+1+9+6+1+3+3+9+1+3+6)^8
72301961339136
                   = (2+4+8+1+5+5+7+8+0+2+6+7+5+2+1)^8 = 63^8
248155780267521
```

Es gibt unendliche viele Potenzquersummenzahlen. Eine große ist zum Beispiel auch 1291 90988 13258 72348 91373 04573 77063 02951 56693 04327 48306 45763 58953 74059 85306 75243 55983 05385 61902 93552 01124 29443 71585 36851 29710 06243 26937 73227 99860 92553 69808 94047 16963 33472 98020 52566 62730 42332 79861 90575 14879 60821 55082 42077 69104 75674 01422 91983 98944 17107 14722 18619 98481 29205 71168 00619 20638 53659 09747 75945 87364 10193 22976 40977 34113 21640 72081 43807 75133 67552 = 1562^{109} Durch J.S.Madachy ("Mathematics On Vacation p.167 - 170") wurden 432 solche Zahlen bis p¹⁰¹ angegeben. Die nachfolgende Tabelle enthält alle solchen Zahlen bis zu einer Potenz von 125 und einer

Potenzquersummenzahl 2.Art

Im Gegensatz zur Defintion der Potenzquersummenzahl der vorigen Seite, kann man auch definieren: Natürliche Zahlen n, für die die Quersumme einer ihrer Potenzen gleich der Zahl selbst ist, heißen Potenzquersummenzahlen 2.Art.

Zum Beispiel ist

Basis p bis 10000.

```
9^2 = 81 mit der Quersumme 8+1 = 9
80^{19} = 1 441 151 880 758 558 720 000 000 000 000 000 mit der Quersumme 80
```

Apocalypse-Zahl

... Zahl, welche 666 Ziffern besitzt (geht auf die biblische Zahl 666, als Zahl des Antichristen zurück) Die Fibonacci-Zahl F₃₁₈₄ ist eine Apocalypse-Zahl.

apokalyptische Zahl

... eine Zahl der Form 2ⁿ, welche die Ziffernfolge 666 enthält.

Erste Zahlen für n = 157, 192, 218, 220, 222, 224, 226, 243, 245, 247, 251, 278, 285, 286, 287, 312, 355, 361, 366, 382, 384, 390, 394, 411, 434, 443, 478, 497, 499, ...

Wie zu erwarten treten auch Ziffernfolge 6 der Länge I > 3 auf. Die ersten sind

Länge I erste n der Zweierpotenzen

- 4 220, 222, 243, 662, 838, 840, 842, 844, 857, 867, 869, 871, 925, 927, 929, 975, 1056, 1058, ...
- 5 220, 838, 840, 869, 1887, 1889, 2269, 2271, 2273, 2275, 2812, 2866, 2868, 2870, 2872, ...
- 6 2269, 2271, 2868, 2870, 2954, 2956, 5485, 5651, 6323, 7244, 7389, 8909, 9195, 9203, ...
- 7 > 11000

Glückliche Zahl

Eine glückliche Zahl ist eine Zahl die, ähnlich der Primzahl, mit einem Siebprinzip ähnlich dem Sieb des Eratosthenes gefunden wird. Die glücklichen Zahlen wurden 1955 von Stanislaw Ulam nach der Idee des Josephus-Problems benannt.

Wie bei dem Sieb des Eratosthenes sind alle natürlichen Zahlen gegeben:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ...

Die Zahl 1 ist die erste Zahl, und damit eine glückliche Zahl. Nun werden alle geraden Zahlen entfernt: 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 ...

Die Zahl 3 ist die nächste, noch nicht gestrichene Zahl, und damit die zweite glückliche Zahl. Nun wird jede dritte Zahl entfernt:

1 3 7 9 13 15 19 21 25 27 31 33 37 39 43 45 49 51 55 57 ...

Wiederholt man dies ständig; zuerst mit der 7.Zahl; ergibt sich auf diese Weise die Folge der glücklichen Zahlen:

1 3 7 9 13 15 21 25 31 33 37 43 49 51 63 67 69 73 75 79 87 93 99 ...

zu glücklichen Primzahlen siehe

Glückliche Primzahl

Primzahlen, die glückliche Zahlen sind, nennt man nach Stanislaw Ulam glückliche Primzahlen: Die ersten sind 3 7 13 31 37 43 67 73 79 127 151 163 193 211 223 241 283 307 331 349 ... Es ist unbekannt, ob unendlich viele glückliche Primzahlen existieren.

Happy-Zahl

Eine Happy-Zahl (engl. happy number) oder glückliche Zahl in diesem Sinne ist eine natürliche Zahl n, für die folgender Algorithmus bis zur 1 führt: Die einzelnen Ziffern der Zahl werden quadriert und die Summe gebildet. Mit der Summe erneut so verfahren, usw. ...

Zum Beispiel ist 7 Happy-Zahl, da $7 \rightarrow 49 \rightarrow 97 \rightarrow 130 \rightarrow 10 \rightarrow 1$.

Die ersten Happy-Zahlen sind

7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176,

Die Happy-Zahl darf nicht mit der glücklichen Zahl nach Ulam verwechselt werden.

In der Episode 3.7: 42 (2007) der Serie "Doctor Who" muss die Folge der Zahlen 313, 331, 367 um eine vierte ergänzt werden. Andernfalls kann eine Tür nicht geöffnet werden.

Der Doktor erkennt, dass dies 379 ist, da er "sieht", dass die Folge aus glücklicken Primzahlen besteht: "It's a sequence of happy primes ... Any number that reduces to 1 when you take the sum of the square of its digits and continue iterating until it yields 1 is a happy number... A happy prime is a number that is both happy and prime. Now type it in! I dunno, talk about dumbing down. Don't they teach recreational mathematics anymore?".

Soziale oder befreundete Zahlen

Unter einem Paar sozialer bzw. befreundeter Zahlen versteht man zwei natürliche Zahlen a und b, bei welchen die Summe ihrer echten Teiler und der 1 gerade die andere Zahl ergibt.

Im Englischen heißen befreundete Zahlen "amicable", vollkommene Zahlen "perfect". Vollkommene Zahlen sind zu sich selbst sozial.

Sind $p = 3*2^{n-1}$ -1, $q = 3*2^n$ -1 und $r = 9*2^{2n-1}$ -1 gleichzeitig Primzahlen, so sind

 $A = 2^n$ pq und $B = 2^n$ r befreundet. (Ibn al-Bani)

Leider liefert dieser Satz für $n < 20\,000$ nur in den Fällen n = 2, n = 4 und n = 7 die erforderlichen drei Primzahlen.

kleinstes Paar sozialer Zahlen ist (220; 284).

sehr großes bekanntes Paar sozialer Zahlen

 $A = 90\ 2364653062\ 3313066515\ 5201592687\ 0786444130\ 4548569003\ 8961540360\ 5363719932\ 5828701918$

5759580345 2747004992 7532312907 0333233826 7840675607 3892061566 6452384945 B = 86 2593766501 4359638769 0953818787 1666597148 4088835777 4281383581 6831022646 6591332953

3162256868 3649647747 2706738497 3129580885 3683841099 1321499127 6380031055 Derzeit sind nach Pedersen über 733950 (Dez. 2000) befreundete Zahlenpaare bekannt. Nicht alle wurden aufgefunden, die meisten von ihnen wurden auf der Basis bekannter Zahlenpaare konstruiert. Das Untersuchungsintervall ist $[1, 10^{300}]$ mit einigen Erweiterungen in $[10^{300}, 10^{5577}]$. Bis nahezu 10^{13} ist die Liste vollständig und die einzelnen Zahlenpaare mit den Entdeckerangaben können eingesehen werden.

Nach Pomerance (1991) existieren bis n maximal $n e^{-[\ln(n)]1/3}$ befreundete Paare.

Paare befreundeter Zahlen

Zahl 1	Zahl 2	Entdecker	Zahl 1	Zahl 2	Entdecker		
6	6	vollkommene Zahl	28	28	vollkommene Zahl		
220	284	kleinstes Paar befreundeter Zahlen, Pythage	oras				
496	496	vollkommene Zahl					
1184	1210	Paganini 1866	2620	2924	Euler 1747		
5020	5564	Euler 1747	6232	6368	Euler 1750		
8128	8128	vollkommene Zahl	10744	10856	Euler 1747		
12285	14595	Brown 1939					
17296	18416	Ibn-al-Bani um 1300 (2.entdecktes Paar, wiederentdeckt von Fermat)					
63020	76084	Euler 1747	66928	66992	Euler 1747		
936358	34	9437056	Descart	es (3.en	tdecktes Paar)		

Euler kannte um 1750 etwa 60 befreundete Zahlenpaare. Kurios ist, dass der sechzehnjährige Paganini im Jahre 1866 als Erster auf das Paar (1184, 1210) stieß. Euler hatte es einfach übersehen und andere nicht mehr gesucht. Wer wollte schon an Euler zweifeln?

Verteilung der Befreundeten Zahlen

```
... bekannt sind unter 10^8 236 befreundete Paare bis 10^{10} 1427 befreundete Paare unter 10^{11} 3340 befreundete Paare (Moews 1993) unter 2.01*10^{11} 4316 befreundete Paare unter 3.06*10^{11} 5001 befreundete Paare
```

Paarsumme

Wenn s(n) die Summe der Teiler n (mit Ausnahme von n selbst) und $\sigma(n)$ die Summe aller Teiler von n sind, so gilt für das befreundete Paar (m,n): $\sigma(m) = \sigma(n) = s(m) + s(n) = m + n$ m + n nennt man dann die Paarsumme des befreundeten Paares.

1986 fand te Riele befreundete Paare mit der gleichen Paarsumme: (609928, 686072) und (643336, 652664) mit Paarsumme 1296000. Moews gab 1993 ein Tripel, te Riele 1995 ein 4-Tupel und im November 1997 sogar 6 befreundete Paare mit gleicher Paarsumme an.

Verhältnis befreundeter Zahlen

Für das maximale und minimale Verhältnis zweier befreundeter Zahlen m und n ermittelte Riele (1986)

Minimalwert 938304290 / 1344480478 = 0.697893577 ... Maximalwert 4000783984 / 4001351168 = 0.9998582518 ...

Eulersche Regel für befreundete Zahlen

```
... die natürlichen Zahlen 2^n pq und 2^n r sind befreundete Zahlen, wenn die drei ganzen Zahlen p=2^m (2^{n-m}+1)-1 q=2^m (2^{n-m}+1)-1 r=2^{n+m} (2^{n-m}+1)^2-1 Primzahlen sind, für ein Paar positive ganzer Zahlen m,n mit 1 \le m \le n-1. Die Eulersche Regel ist
```

hinreichend aber nicht notwendig.

In "Opuscula varii argumenti 2" erklärt Leonhard Euler 1750 befreundete Zahlen wie folgt und gibt auch ein Beispiel:

"Bini Numeri vocantur amicabiles, si ita sint comparati, ut summa partium aliquotarum unius aequalis sit alteri numero, & vicissim summa partium aliquotarum alterius priori numero aequetur. Sic isti numeri 220 & 284 sunt amicabiles; prioris enim 220 partes aliquotae junctim sumtae: 1+2+4+5+10+11+20+22+44+55+110 faciunt 284: & hujus numeri 284 partes aliquotae: 1+2+4+71+141 producunt priorem numerum 220."

Sehr großes Paar befreundeter Zahlen

```
3<sup>4</sup>*5*11*5281<sup>19</sup>*29*89(2*1291*5281<sup>19</sup>-1) und 3<sup>4</sup>*5*11*5281<sup>19</sup>*(2<sup>3</sup>*3<sup>3</sup>*5<sup>2</sup>*1291*5281<sup>19</sup>-1)
```

Beide Partner befreundeter Zahlen dürfen bei gerade-gerade Paaren nicht durch drei teilbar sein. Bisher waren alle Paare gerade-gerade oder ungerade-ungerade.

Es gibt aber keinen Beweis, dass es keine gerade-ungerade Paare gibt. Die Summe jedes geradebefreundeten Paares ist durch neun teilbar.

Größtes bekanntes befreundetes Paar (Oktober 1997, Garcia)

```
\begin{array}{lll} & A = C * M [(P + Q) P^{89} - 1] & B = C * Q [(P - M) P^{89} - 1] \\ \text{mit} & C = 2^{11} P^{89} & M = 287155430510003638403359267 \\ & P = 574451143340278962374313859 \ Q = 136272576607912041393307632916794623 \end{array}
```

Satz von Borho

Weitere befreundete Zahlen findet man mit Hilfe des Satzes von Walter Borho (Universität Wuppertal): Seien A und B befreundete Zahlen mit $A = a \cdot u$ und $B = a \cdot s$, wobei s eine Primzahl ist, und sei weiter p = u+s+1 eine Primzahl und p kein Teiler von a.

```
Dann gilt: Sind für eine feste natürliche Zahl n q_1 = (u+1)p^n - 1 prim und q_2 = (u+1)(s+1)p^n - 1 prim, dann sind q_1 = a p^n q_1 und q_2 = a p^n q_2
```

befreundete Zahlen.

Beispiel: A = $220 = 2^2 \cdot 55$ und B = $284 = 2^2 \cdot 71$ sind befreundet mit a = 4, u = 55 und s = 71, wobei s prim ist. p = 127 ist prim und nicht Teiler von a = 4.

n = 1: q_1 = 56 \cdot 127 - 1 = 7111 = 13 \cdot 547 ist nicht prim. Für n = 1 erhält man keine neuen befreundeten Zahlen.

```
n=2: q_1=903223 und q_2=65032127 sind beide prim. Daraus folgt:
```

 $A_1 = 220 \cdot 127^2 \cdot 903223$ und $B_1 = 4 \cdot 127^2 \cdot 65032127$

sind befreundete Zahlen.

Mit Hilfe dieses Satzes fand Borho weitere 10455 befreundete Zahlen.

Befreundete Tripel

In Erweiterung des Begriffs der befreundeten Zahlen definierte Dickson 1913 sogenannte befreundete Tripel.

Drei natürliche Zahlen a, b und c heißen befreundetes Tripel, wenn

```
s(a) = b + c s(b) = a + c s(c) = a + b
```

gilt. Dabei versteht man unter s(n) die Summe aller Teiler von n mit Ausnahme der Zahl n selbst. Die kleinsten befreundeten Tripel sind:

```
123228768, 103340640, 124015008

s(123228768) = 103340640 + 124015008 = 227355648

s(103340640) = 123228768 + 124015008 = 247243776

s(124015008) = 123228768 + 103340640 = 226569408

1945330728960, 2324196638720, 2615631953920
```

Ein abweichende Definition der befreundeten Tripel stammt von Guy (1994). Er versteht darunter ein Tripel natürlicher a, b und c mit $\sigma(a) = \sigma(b) = \sigma(c) = a + b + c$ wobei $\sigma(n)$ die Summer aller Teiler von n ist.

Befreundetes Quadrupel

```
Entsprechend definiert man eine befreundetes Quadrupel (a, b, c, d) mit \sigma(a) = \sigma(b) = \sigma(c) = \sigma(d) = a + b + c + d
```

Ketten sozialer Zahlen, Gesellige Zahlen

Ist a_2 die Teilersumme von a_1 , a_3 die von a_2 , ..., und a_1 die von a_r , so bilden diese r Zahlen eine rgliedrige Kette von sozialen Zahlen. (englisch "sociable numbers")

1969 entdeckte Henri Cohen sieben Ketten der Ordnung 4 und später fand Steve Root sechs weitere dieser Ketten. Insgesamt kennt man heute nach Moews 95 Ketten geselliger Zahlen:

88 der Länge 4, 1 der Länge 5,2 der Länge 6, 2 der Länge 8, 1 der Länge 9, 1 der Länge 28. Man kennt nur genau eine 5 gliedrige Kette (Poulet, 1918)

```
12496, 14288, 15472, 14536, 14264, 12496 ...
```

und eine 28gliedrige Kette sozialer Zahlen:

14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 46946, 22976, 22744, 19916, 17716, 14316, ...

Länge Kette

```
4 1264460, 1547860, 1727636, 1305184
4 2115324, 3317740, 3649556, 2797612
4 2784580, 3265940, 3707572, 3370604
```

- 9 805984760, 1268997640, 1803863720, 2308845400, 3059220620, 3367978564, 2525983930, 2301481286, 1611969514
- 8 1095447416, 1259477224, 1156962296, 1330251784, 1221976136, 1127671864, 1245926216, 1213138984
- 8 1276254780, 2299401444, 3071310364, 2303482780, 2629903076, 2209210588, 2223459332, 1697298124
- 6 21548919483, 23625285957, 24825443643, 26762383557, 25958284443, 23816997477
- 6 90632826380, 101889891700, 127527369100, 159713440756, 129092518924, 106246338676

Teilersummenfolge

Zur Konstruktion sozialer, befreundeter und geselliger Zahlen wird die Teilersumme aller echter Teiler und der Zahl 1 einer natürlichen Zahl n gebildet.

Ist a_2 die Teilersumme von a_1 , a_3 die von a_2 , ..., und a_1 die von a_r , so bildeten diese r Zahlen eine r-gliedrige Kette von sozialen Zahlen.

Ist die Länge r=2 liegen befreundete Zahlen vor, für r=1 ist die Zahl vollkommen. Interessant ist nun, die Folge dieser Teilersummen zu betrachten. Für n=30 ergibt sich

42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 1

d.h. die Folge endet bei 1.

Bei Untersuchung der ersten natürlichen Zahlen zeigt sich nun, dass

- 1. die Folge nach Erreichen einer Primzahl anschließend bei 1 endet
- 2. die Folge zyklisch wird (vollkommene, befreundete oder gesellige Zahlen oder in der Teilersumme treten solche Zahlen auf)
- 3. das Verhalten der Folge noch nicht bekannt ist, evtl. wächst die Folge über alle Grenzen, sie divergiert

Zu vermuten ist, dass der 3.Fall, stets in den ersten oder zweiten einmündet. Da es wesentlich mehr defiziente als abundante Zahlen gibt, ist eine divergente Teilersummenfolge unwahrscheinlich. Allerdings ist diese Vermutung, die Catalansche Vermutung, heute noch nicht bewiesen. Derartige Folgen, deren Verhalten noch nicht bekannt ist, werden Offenendketten genannt. Startzahlen, welche bei der gleichen Primzahl enden, werden Primzahlfamilie genannt.

Die Tabelle enthält die ersten natürlichen Zahlen, deren Teilersummenfolge a Glieder bis zum Erreichen des Wertes 1 benötigen. Ist n Primzahl, so endet die Folge stets nach dem ersten Glied. Primzahlen werden in der Tabelle nicht betrachtet. (Test bis n < 320)

```
untersuchte Zahl n
a
?
       Länge unbekannt: 276, 306
0
       endet nicht bei 1: 6, 25, 28, 95, 119, 143, 220, 284
       4, 8, 21, 27, 32, 35, 39, 50, 55, 57, 63, 65, 77, 85, 98, 111, 115, 125, 128, 129, 155, 161, 171,
2
175, 185
       9, 10, 18, 36, 40, 49, 51, 58, 64, 69, 91, 93, 94, 99, 117, 133, 145, 159, 162, 177, 183, 196,
3
200, 217
       14, 15, 24, 44, 56, 68, 74, 75, 76, 81, 100, 116, 122, 140, 141, 176, 215, 255, 267, 287, 289,
4
297, 301
        16, 22, 33, 48, 70, 82, 84, 92, 106, 124, 130, 142, 146, 147, 153, 169, 184, 194, 195, 213,
226, 256
        12, 20, 26, 38, 45, 80, 87, 88, 104, 110, 134, 158, 164, 178, 206, 208, 231, 236, 238, 247,
254, 278
7
       34, 46, 105, 121, 123, 136, 154, 156, 202, 214, 225, 228, 249, 259, 262, 268
       52, 62, 72, 86, 96, 112, 135, 144, 165, 170, 172, 182, 207, 230, 243, 266, 300, 302, 303
8
9
       90, 108, 118, 166, 190, 204, 216, 218, 288, 310
10
       60, 78, 132, 148, 160, 212, 232, 240, 244, 250, 260, 286
11
       66, 120, 152, 188, 248, 272, 290, 314, 316
       54, 192, 270, 298, 304, 308
12
13
       42, 198, 258, 320
14
       30, 186, 246
15
       126, 174, 280, 294
16
       114, 224, 252, 282
17
        102
Kettenlängen über 20 haben unter den ersten Zahlen (Eintrag Zahl (Länge)):
138 (177), 150 (176), 168 (174), 180 (51), 210 (51), 222 (175), 234 (174), 264 (30), 312 (173),
318 (34), 330 (33), 354 (51), 360 (29), 366 (50), 378 (49), 408 (27), 456 (29), 480 (65), 498 (33)
Eine besonders lange Kette mit 177 Gliedern tritt bei der 138 auf. Eine sehr lange bei 1 abbrechende
```

Folge entsteht für n = 840 (747 Glieder). Die Folge mit der Startzahl 17490 mündet nach 249 Gliedern in

1547860, 1727636, 1305184, 1264460, 1547860, ... ein.

die zyklische Kette

Teilersummenfolge für 17490

17490, 29166, 29178, 34080, 74784, 136896, 253248, 417312, 1046304, 2461536, 6731424, 16732170, 38885238, 59871882, 76978230, 136395210, 237717942, 356714058, 356714070, 499399770, 737825190, 1071696666, 1096528614, 1096858506, 1104781398, 1420433322, 2144168022, 2152101210, 3750805542, 5073710298, 5075028582, 5858545818, 5860806918, 6477734202, 6563533830, 11780361210, 16605164742, 16610157930, 24532658070, 37444584810, 52422418806, 61746195594, 61746195606, 61746195618, 84730316382, 107938108578, 107942541342, 115408625538, 116790766782, 116790766794, 157659409206, 238887790794, 285661135926, 333344927178, 410238212022, 483264916938, 568153784538, 665672617998, 824786166258, 1000373810382, 1378043604018, 1607717538060, 2948714444532, 4114110925068, 6324873253716, 9227568423084, 14512351028052, 20482681630380, 36869303166804, 56328305575980, 101391279966420, 183003241792620, 329405835226884, 508809597514236, 825801608667108, 1101225835114332, 1468301113485804, 2223844194478036, 1990274759852186, 1345473222483814, 672748725628226, 415735102840174, 295351519703186, 153911553361774, 94714802068826, 47360693606758, 33991737439898, 24334733830246, 17381952735914, 10767921255766, 5500472555834, 2809593895846, 1601074220954, 1055177814574, 649340193626, 385218165070, 308174532074, 154259953114, 90293401382, 45497080858, 28715965646, 15528843634, 7765567034, 4262163142, 2131850858, 1085074294, 564550106, 282275056, 342762816, 646581408, 1219053216, 1985969472, 3272293824, 5929313376, 12250684320, 31851791328, 74225290272, 157518586848, 330002467872, 750334837728, 1542323828976, 3021482949648, 4800042446640, 12987619070160, 33031196108592, 61102651975248, 112321596912432, 178291004762064, 282294090873392, 316500221754448, 298049151357380, 327854066493160, 410263420342760, 524513993103640, 685459200641480, 857468498803120, 1156740096283568, 1246316395668112, 1169129132915948,932248509066916, 700041879920972, 525031409940736, 628325206801664, 652555833152320, 901354072051880, 1145591096326120, 1460950443075680, 2038172331140704, 2366515468474784, 3114808911892576, 3379663127326112, 3878931543863680, 5394151245798800, 7565297122233778, 3782651459226062, 2044676464446634, 1024368023555894, 517731131039914, 387143985550166, 275033336713354, 137516986655126, 84631232927674, 49671244752326, 25008492138778, 12505753345562, 6710569501222, 3740807377178, 1870403688592, 1918054816688, 1798176390676, 1369751815424, 1431087903316, 1205165855564, 1096126113412, 996478285004, 748278925444, 561738725400, 1179651325200, 2599165090368, 6905208581568, 15240283647552, 28443237711926, 16590068059738, 9155765412518, 5174997841930, 6038150092790, 5088260190730, 4082245864790, 3367833784618, 1683925657142, 900704421394, 450995883806, 279521044258, 139870264442, 71324572390, 58383208442, 35928128314, 23344465094, 11672232550, 12536218010, 10128384646, 5129397218, 3335020702, 2096587298, 1314813058, 820243838, 410810482, 223570790, 183952090, 195899174, 97949590, 78727610, 73883086, 36941546, 18838198, 9500210, 7650406, 3892058, 1946032, 2167544, 1991776, 1992344, 1759456, 1704536, 1491484, 1118620, 1230524, 922900, **1264460**, 1547860, 1727636, 1305184, 1264460

Lehmer-Five

Für mehrere n treten sehr interessante Folgen (im Moment noch unbekannter Länge) auf. Diese 5 Startzahlen unterhalb 1000 werden die "Lehmer-Five" genannt. Die ursprüngliche 6.Zahl der "Lehmer-Six" n = 840 wurde mittlerweile gelöst (siehe oben).

Die Folge für n = 396 hängt unmittelbar von den Ergebnissen bei 276 ab, da 396 deren erstes Glied ist. In der Teilersummenfolge von 306 ist 396 ebenfalls als 1.Glied enthalten. Unterhalb von 100000 existieren im Moment noch 934 ungeklärte Startzahlen, bis 1 Million noch 9696 (nach Creyaufmüller). Bis 2000 sind unbekannt:

276, 552, 564, 660, 966, 1074, 1134, 1464, 1476, 1488, 1512, 1560, 1578, 1632, 1734, 1920, 1992.

Offenendketten

Durch Wolfgang Creyaufmüller wird eine internationale Untersuchung der verbleibenden Offenendketten organisiert. Im Rahmen dieser Berechnungen wurden interessante Ergebnisse (Stand 21.8.2000) gefunden:

Rekordlänge einer OE-Kette ... für n = 921232 : 5326 Folgenglieder

längste terminierte Kette ... für n = 43230 : 4356 Glieder enden bei 101

längste Seitenkette ... für n=732530 entspricht das 3353.Glied dem 32.Glied für die Startzahl n=4116 das maximale Folgenglied aller terminierten Ketten ist das 967.Glied für n=43230 mit einem Logarithmus von 90,13

das bisher untersuchte größte Glied bei den Offenendketten ist 127 stellig

Mit zunehmernden n kann die Länge I der Folgen immer größere Werte erreichen. Die Entwicklung des ersten Auftretens neuer maximaler Folgenlänge:

	n	I	n		n	l	n
1	2	2	4	3	9	6	12
14	30	17	102	177	138		

Dabei treten in den Folgen auch maximale Folgenglieder a auf:

	a	n	a	n
	3	4	7	8
;	8	10	16	12
	21	18	22	20
	55	24	259	30
	759	102	32571	120
	179931	895322	138	

Befreundete Harshad-Zahlen

Eine Harshad- oder Niven-Zahl ist eine natürliche Zahl, die durch die Summe ihrer Ziffern teilbar ist. Zum Beispiel ist, da 1729 = 19.91 und 1+7+2+9 = 19, die 1729 eine Harshad-Zahl.

Unter einem Paar befreundeter Harshad-Zahlen versteht man dann befreundete Zahlen, bei der jede der beiden Harshad-Zahlen ist.

Zum Beispiel gilt für das befreundete Paar (2620, 2924):

 $2620 = 262 \cdot 10$, 2+6+2+0 = 10 und $2924 = 17 \cdot 172$, 2+9+2+4 = 17

Weitere solche Paare sind (10634085,14084763), (23389695, 25132545), (34256222, 35997346), ... Unter den ersten 5000 befreundeten Paaren sind 192 befreundete Harshad-Zahlen.

Glückliche befreundete Zahlen

Gegeben sei eine natürliche Zahl. Deren einzelne Ziffern werden quadriert und die Summe gebildet. Wird mit der Summe erneut so verfahren, usw., und endet der Prozess bei 1 spricht man mitunter von einer glücklichen Zahl (engl. happy number). Zum Beispiel ist 7 glücklich, da $7 \rightarrow 49 \rightarrow 97 \rightarrow 130 \rightarrow 10 \rightarrow 1$. Sind zwei befreundete Zahlen jeweils glücklich, so liegt ein Paar glücklicher, befreundeter Zahlen vor. Zum Beispiel: (10572550, 10854650) mit $10572550 \rightarrow 129 \rightarrow 86 \rightarrow 100 \rightarrow 1$ und $10854650 \rightarrow 167 \rightarrow 86 \rightarrow 100 \rightarrow 1$. Weitere Beispiele sind (32685250, 34538270), (35361326, 40117714), (35390008, 39259592) etc.

Unter den ersten 5000 befreundeten Paaren sind 111 befreundete glückliche Zahlen.

Quasibefreundete Zahlen

Als Erweiterung des Begriffes der befreundeten Zahlen werden auch quasibefreundete Paare betrachtet. Dabei gilt:

Wenn s(n) die Summe der Teiler n (mit Ausnahme von n selbst) und σ (n) die Summe aller Teiler von n sind, so gilt für das quasibefreundete Paar (m,n): $\sigma(m) = \sigma(n) = m+n+1$ Die 35 kleinsten derartigen Paare sind nach Polster 2003 (gesucht bis 3,0 Million): (48,75), (140,195), (1050,1925), (1575,1648), (2024,2295), (5775,6128), (8892,16587), (9504,20735), (62744,75495), (186615,206504), (196664,219975), (199760,309135), (266000,507759), (312620,549219), (526575,544784), (573560,817479), (587460,1057595), (1000824,1902215), (1081184,1331967), (1139144,1159095), (1140020,1763019), (1173704,1341495), (1208504,1348935), (1233056,1524831), (1236536,1459143), (1279950,2576945), (1921185,2226014), (2036420,2681019), (2102750,2142945), (2140215,2421704), (2171240,3220119), (2198504,3123735), (2312024,3010215), (2580864,5644415), (2958500,3676491)... Die Dichte der quasibefreundeten Paare ist geringer als die der befreundeten Paare.

Überbefreundete Zahlen

Als Erweiterung des Begriffes der befreundeten Zahlen werden auch überbefreundete Paare betrachtet. Dabei gilt:

Wenn s(n) die Summe der Teiler n (mit Ausnahme von n selbst) und $\sigma(n)$ die Summe aller Teiler von n sind, so gilt für das überbefreundete Paar (m,n): $\sigma(m) = \sigma(n) = m + n - 1$ Die 20 kleinsten derartigen Paare sind nach Polster 2003 (gesucht bis 3,0 Million):

(6160, 11697), (12220, 16005), (23500, 28917), (68908, 76245), (249424, 339825), (425500, 570405), (434784, 871585), (649990, 697851), (660825, 678376), (1017856, 1340865), (1077336, 2067625), (1238380, 1823925), (1252216, 1483785), (1568260, 1899261), (1754536, 2479065), (2166136, 2580105), (2362360, 4895241), (2482536, 4740505), (2537220, 5736445), (2876445, 3171556)...

Jede Zweierpotenz ist zu sich selbst überbefreundet. Die Dichte der überbefreundeten Paare ist geringer als die der befreundeten Paare.

Znam-Problem

1972 veröffentlichte der slowakische Mathematiker Stefan Znám das nach ihm benannte Problem: Gesucht ist für alle ganzen Zahlen k > 1 eine Menge von k ganzen Zahlen $x_1, x_2, ..., x_k$ größer 1, sodass jedes x_i eine echter Teiler von $x_1 x_2 ... x_k / x_i + 1$ ist.

1978 zeigten Jának und Skula für 1 < k < 5 keine Lösung existiert. Für die Mengen $\{2, 3\}, \{2, 3, 7\}$ und $\{2, 3, 7, 43\}$ sind die x_i zwar Teiler aber nicht alle echte. 1983 bewies Sun Qi, dass es für k > 4 stets Lösungen gibt.

Erfüllen x_1 , x_2 , ..., x_k das Znam-Problem, so ist $1/x_1 + 1/x_2 + ... + 1/x_k + 1/(x_1 x_2 ... x_k) = 1$ eine ägyptische Zerlegung der 1 in Stammbrüche.

Bezeichnet man für ein k mit Z(k) die Anzahl bekannter Lösungen des Znam-Problems, so weiß man heute für k = 5, 6, ..., dass Z(k) = 2, 5, 15, 96, ?, ?, ... gilt. Bekannt sind u.a. folgende Lösungen:

Ruth-Aaron-Paare

Unter einem Ruth-Aaron-Paar versteht man zwei natürliche Zahlen n und n+1, deren Summe der Primteiler gleich ist.

Zum Beispiel gilt für 20772199 und 20772200:

```
20772199 = 7 \cdot 41 \cdot 157 \cdot 461 \text{ und } 7 + 41 + 157 + 461 = 666
20772200 = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 283 \cdot 367 \text{ und } 2 + 2 + 2 + 5 + 5 + 283 + 367 = 666.
Die Tabelle enthält die jeweils kleinere Zahl n aller Ruth-Aaron-Paare bis 4 Millionen.
8 \quad 15 \quad 77 \quad 125 \quad 714 \quad 948 \quad 1330 \quad 1520 \quad 1862 \quad 2491 \quad 3248 \quad 4185 \quad 4386 \quad 1866 \quad 1866
```

```
8 15 77 125 714 948 1330 1520 1862 2491 3248 4185 4191 5405 5560 5959 6867 8280 8463 10647 12351 14587 16932 17080 18490 20450 24895 26642 26649 28448 28809 33019 37828 37881 41261 42624 43215 44831 44891 47544 49240 52554 53192 57075 63344 63426 68264 68949 70356 72500 81175 89979 95709 98119 98644 99163 106799
```

Maris-McGwire-Sosa Zahlen

Gegeben seien die aufeinanderfolgenden ganzen Zahlen 273 und 274. Für jede der Zahlen wird die Summe der Ziffern der Zahl und ihrer Primteiler bestimmt:

```
273 = 3 \times 7 \times 13 und (2 + 7 + 3) + (3 + 7 + 1 + 3) = 26 274 = 2 \times 137 (2 + 7 + 4) + (2 + 1 + 3 + 7) = 26
```

Ein Paar natürlicher Zahlen (n, n+1), für das beide Summen gleich sind, wird Maris-McGwire-Sosa Paar genannt. Der von einem US-Amerikaner gegebene Name bezieht sich darauf, dass 61 und 62 ein derartiges Paar sind und Mark McGwire und Sammy Sosa in der Baseball-Saison 1998 mit 62 Homeruns den Rekord eines Roger Maris (61 Homeruns) brachen. Amerikaner spinnen offensichtlich nicht nur in der Politik.

Unter 1000 sind folgende n das erste Glied eines Maris-McGwire-Sosa Paars:

```
7, 14, 43, 50, 61, 63, 67, 80, 84, 118, 122, 134, 137, 163, 196, 212, 213, 224, 241, 273, 274, 277, 279, 283, 351, 352, 373, 375, 390, 398, 421, 457, 462, 474, 475, 489, 495, 510, 516, 523, 526, 537, 547, 555, 558, 577, 584, 590, 592, 616, 638, 644, 660, 673, 687, 691, 731, 732, 743, 756, 774, 787, 797, 860, 871, 878, 895, 907, 922, 928, 944, 949, 953, 965, 985, 997
```

Außer Paaren sind auch größere Tupel möglich, zum Beispiel (212, 213, 214), was das kleinste MMS-Tripel darstellt:

```
212 = 2 \times 2 \times 53 und (2 + 1 + 2) + (2 + 2 + 5 + 3) = 17

213 = 3 \times 71 (2 + 1 + 3) + (3 + 7 + 1) = 17

214 = 2 \times 107 (2 + 1 + 4) + (2 + 1 + 0 + 7) = 17
```

Unter 10^9 findet man 32023033 Paare, 1258453 Tripel, 53143 Quadrupel, 2243 5-Tupel, 92 6-Tupel und 2 7-Tupel. Die kleinsten derartigen k-Tupel, k = 2,3,4,... sind 7, 212, 8126, 241995, 1330820, 1330820, 3249880870, 3249880870... Die Tabelle enthält weitere erste Zahlen dieser Tupel

```
3 212, 273, 351, 474, 731, 1247, 1296, 1634, 1988, ...
```

- 4 8126, 16657, 16675, 19665, 23714, 41885, 49449, ...
- 5 241995, 349856, 694746, 797181, 1330820, ...
- 6 1330820, 1330821, 3539990, 19415425, 20976927, ...
- 7 1330820, 829885449, 3249880870, 3249880871, ...
- 8 3249880870, 3249880871, 12222533493, ...
- 9 3249880870, ...

Für diese Zahlen gibt es einige noch nicht bewiesene Vermutungen:

- 1. Die Wahrscheinlichkeit, dass eine Zahl kleiner 10^m MMS-Zahl ist, beträgt $1/\sqrt{(33 \text{ } \pi\text{m})}$.
- 2. Die Anzahl der MMS-Zahlen unter N nähert sich für wachsende N dem Wert N/ $\sqrt{(33~\pi~lg~N)}$ an. Das größte bisher gefundene MMS-Paar ist

```
12345678901234567890123456 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 17 x 71 x 218107 x 244251294564157
```

12345678901234567890123457 = 211 x 15887 x 3682905932280190901

Primzahlenthaltende Zahlen

Gegeben sei die Zahl 1379. Aus deren Ziffern sollen möglichst viele verschiedene Primzahlen erzeugt werden. Man findet: 3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173, 9371

d.h. in 1379 sind 31 verschiedenen Primzahlen "enthalten". Untersucht man kontinuierlich alle natürlichen Zahlen n, so erhält man, dass mit wachsenden n auch die Anzahl a der enthaltenen Primzahlen unstetig zunimmt:

n	Anzahl a						
2	1	13	3	37	4	107	5
113	7	137	11	1013	14	1037	19
1079	21	1237	26	1367	29	1379	31
10079	33	10123	35	10136	41	10139	53
10237	55	10279	60	10367	64	10379	89
12379	96	13679	106				

Die kleinsten n-stelligen natürlichen Zahlen, welche die für n Stellen maximal mögliche Anzahl von Primzahlen enthalten, sind für n = 1,2,3,... die Zahlen 2, 37, 137, 1379, 13679, ... Die enthaltene Maximalzahl ist 1, 4, 11, 31, 106, ... Allerdings sind theoretisch 1, 4, 15, 64, 325, ... Primzahlen maximal möglich. Dieser Wert wird aber nicht erreicht. Es gilt: 73 ist die größte natürliche Zahl mit der Eigenschaft, dass alle ihrer Ziffernpermutationen und Permutationen von Teilziffern prim sind.

Halbprime Zahlen

Definition (Sloane): Eine natürliche Zahl z heißt fastprim n.Grades, wenn die Summe der Exponenten ihrer Primfaktorzerlegung gleich n ist, d.h. wenn $z=p_1{}^a1*p_2{}^a2*...*p_r{}^ar=\Pi\;p_i{}^ai\;\;(i=1,...,r)$ die Primfaktorzerlegung ist, gilt $n=\Sigma\;a_i\;\;(i=1,...,r)$.

Eine fastprime Zahl 2.Grades heißt auch halbprim.

Beispiele:

halbprim 4, 6, 9, 10, 14, 15, 21, 22, ...

fastprim 3.Grades 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98,

. . .

fastprim 4.Grades 16, 24, 36, 40, 54, 56, 60, 81, 84, 88, 90, 100, ...

fastprim 5.Grades 32, 48, 72, 80, ...

Alle Quadratzahlen und Zahlen, welche genau aus zwei Primfaktoren zusammengesetzt sind, sind halbprim bzw. semiprim. Primzahlen sind nach der Definition "fastprime Zahlen 1.Grades".

Brillante Zahl

Unter einer brillanten Zahl der Ordnung n versteht man eine zusammengesetzte natürliche Zahl z, die aus n Primfaktoren besteht, die in Dezimalschreibweise gleiche Größenordnung besitzen.

Brillanten Zahlen wurden erstmals von Peter Wallrodt definiert und untersucht. Diese Zahlen sind für kryptografische Untersuchungen, insbesondere zum Test von Faktorisierungsprogrammen, von großer Bedeutung.

Zum Beispiel sind 989 = $23 \cdot 43$ und $1003 = 17 \cdot 59$ brillante Zahlen der Ordnung 2.

Von besonderem Interesse sind die kleinsten brillanten Zahlen z mit gerader Stellenzahl m und die größten brillanten Zahlen z mit ungerader Stellenzahl m. Die Tabelle enthält die ersten dieser Zahlen

```
m brillante Zahlen
```

```
1
        9 = 3 \cdot 3
                        10 = 2 \cdot 5
        989 = 23 \cdot 43 \ 1003 = 17 \cdot 59
2
        99973 = 257 \cdot 389
                              100013 = 103 \cdot 971
3
        10^{7}-189 = 1583 · 631710<sup>7</sup>+43 = 2089 · 4787
4
        10^9 - 137 = 25303 \cdot 39521
                                      10^9 + 81 = 26881 \cdot 37201
5
        10^{11}-357 = 231571 · 431833 10^{11}+147 = 281683 · 355009
6
        10^{13}-77 = 1380163 \cdot 7245521 \cdot 10^{13}+73 = 1857929 \cdot 5382337
7
                                               10^{15} + 3 = 14902357 \cdot 67103479
        10^{15}-261 = 18874013 · 52982903
8
        10^{17}-297 = 150425719 · 664779937 10^{17}+831 = 158267567 · 631841393
9
                                                        10^{19} + 49 = 1172005397 \cdot 8532383917
        10^{19}-533 = 1809444697 · 5526557411
10
                                                        10^{21} + 987 = 10119972739 \cdot 98814495433
        10^{21} - 353 = 21942092327 \cdot 45574505161
11
        10^{23}-587 = 198168943561 · 504619937933 10^{23}+691 = 253850475563 · 393932687257
12
        10^{25}-113 = 2701224339427 \cdot 370202498698110^{25}+183 = 1634713216901 \cdot 6117280937483
13
        10^{27}-281 = 16816039284931 · 59467035195149
14
        10^{27} + 4153 = 10594044136579 \cdot 94392659413907
        10^{29} - 93 = 273350346504617 \cdot 365830888011371
15
        10^{29} + 279 = 262922036885471 \cdot 380340884258249
```

Idoneale Zahlen, bequeme Zahlen, geeignete Zahlen

Eine idoneale Zahl auch bequeme oder geeignete Zahl, ist eine natürliche Zahl D, für die es nur eine Art der Darstellung $x^2 \pm Dy^2$

gibt, mit x^2 relativ prim zu Dy², so dass eine Primzahl, Primzahlpotenz oder deren Doppeltes entsteht. Diese Zahlen wurden durch Euler eingeführt und idoneal genannt.

Eine einfachere Definition ist:

Eine natürliche Zahl n ist idoneal genau dann, wenn sie nicht in der Form ab + bc + ac mit verschiedenen natürlichen a, b, c dargestellt werden kann.

Carl Friedrich Gauß und Leonhard Euler fanden genau 65 derartige Zahlen:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365 und 1848

1973 bewies Weinberger, dass es höchstens eine weitere idoneale Zahl gibt. Sollte die verallgemeinerte Riemannsche Vermutung gelten, gibt es keine weitere.

Für nicht-idoneale Zahlen gibt es nur eine Darstellung der Art ab + bc + ac, zum Beispiel:

$$36 = 2.3 + 2.6 + 3.6$$

Mehrere Darstellungen ergeben sich zum Beispiel für

$$41 = 1.2 + 1.13 + 2.13 = 1.5 + 1.6 + 5.6 = 2.3 + 2.7 + 3.7$$

Die größte nicht-idoneale Zahl für die nur eine Zerlegung existiert ist die 193 mit (a, b, c) = (4, 7, 15). Nur eine Darstellung gibt es für

11, 14, 17, 19, 20, 27, 32, 34, 36, 43, 46, 49, 52, 64, 67, 73, 82, 97, 100, 142, 148, 163, 193 Nur zwei Darstellungen gibt es für

23, 26, 29, 31, 35, 38, 39, 50, 51, 53, 54, 55, 61, 63, 65, 66, 69, 75, 77, 81, 84, 90, 91, 96, 106, 109, 114, 115, 117, 118, 121, 123, 132, 138, 141, 145, 147, 150, 154, 157, 160, 162, 169, 187, 192, 198, 202, 205, 213, 214, 217, 225, 228, 235, 238, 258, 262, 265, 267, 277, 282, 298, 301, 310, 322, 333, 340, 352, 358, 372, 397, 403, 418, 427, 438, 442, 445, 448, 498, 505, 522, 532, 553, 598, 658, 697, 708, 742, 793, 928, 1012

Teilerzahl

- Primfaktorzerlegung $n = p_1^{a1} p_2^{a2} \dots p_n^{an}$ \Rightarrow Teilerzahl $t = (a_1 + 1) (a_2 + 1) \dots (a_n + 1)$ \Rightarrow Teilerprodukt $p = n^{t/2}$

 - \Rightarrow Teilersumme $s = (p_1^{a_1+1} 1) / (p_1 1) *...* (p_n^{a_n+1} 1) / (p_n 1)$

Die Menge $T_n = \{x \mid x \text{ ist Teiler von n}\}$ heißt "Teilermenge" von n.

Primzahlkriterium nach Wilson

Eine natürliche Zahl n ist Primzahl ⇔ n teilt (n-1)! + 1

n	(n-1)! +1	((n-1)!+1) / n	n	(n-1)! +1	((n-1)!+1) / n
2	2	1	3	3	1
5	25	5	7	721	103
11	3628801	329891	13	479001601	36846277

Zahlen gleicher Teilerzahl

Aufeinanderfolgende Zahlen können die gleiche Anzahl d(n) von Teilern besitzen, zum Beispiel d(243) = d(244) = 6. Nach einer Vermutung von Erdös existiert für jedes natürliche k eine Menge von k aufeinanderfolgenden natürlichen Zahlen mit der gleichen Teilerzahl. Durch R.K.Guy wurde dieses Problem in "Unsolved Problems in Number Theory" in die Liste der noch nicht bewiesenen Aufgaben der Zahlentheorie aufgenommen.

Bisher wurden für einige k folgende kleinste Zahlen n gefunden, ab denen die gesuchte Menge existiert:

```
d
2
                  2 \rightarrow 3
         2
3
                  33 \rightarrow 35, Guy
         4
4
         6
                  242 \rightarrow 245, Guy
5
                  11605 \rightarrow 11609, Rivera
         8
6
         7
                  28374 \rightarrow 28379, Rivera
7
         8
                  180965 \rightarrow 180971, McCranie
8
         24
                  1043710445721 \rightarrow ..., McCranie
9
         48
                  17796126877482329126044 \rightarrow 17796126877482329126052
10
         24
                  14366256627859031643 → ...
11
         48
                  193729158984658237901148 \rightarrow ...
12
         24
                  1284696910355238430481207644 \rightarrow ...
```

Sätze zur Teilersumme $\sigma(n)$

- 1. Sind p Primzahl und r natürliche Zahl, so gilt σ (p^r) < $2 \cdot p^r$.
- 2. Gilt für zwei Primzahlen p, q : 2<p<q, so ist $\sigma(pq)$ < 2pq.
- 3. Für zwei Primzahlen p und q gilt: $\sigma(p^r \cdot q^s) = \sigma(p^r) \cdot \sigma(q^s)$ und $\sigma(p^r \cdot q^s) < 2 \cdot (p^r \cdot q^s)$
- 4. Es sei n vollkommene Zahl, also $\sigma(n)=2n$, mit $T_n=\{1,\,t_2,\,t_3,\,...,\,t_r\}$.

Dann hat ein echtes Vielfaches $k \cdot n$ von n mindestens die Teiler k, kt_2 , kt_3 , ..., kt_r . Und es gilt:

$$\sigma(kn) \ge 1 + k + kt_2 + ... + kt_r = 1 + k(1 + t_2 + ... + t_r) = 1 + k \cdot \sigma(n) > k \cdot \sigma(n) = k \cdot 2n = 2 \cdot kn$$

Folgerung: Aus jeder abundanten bzw. vollkommenen Zahl können durch Vielfachbildung unendlich viele abundante Zahlen konstruiert werden.

A-Wurzel

Zu jeder abundanten Zahl n existiert eine kleinste abundante oder vollkommene Zahl, deren Vielfaches n ist. Diese abundante Zahl heißt A-Wurzel von n.

kleinste A-Wurzeln: 6, 20, 28, 70, 88, 104 ...

kleinste ungerade A-Wurzeln: 945, 1575, 2205, 2835, 3465, ...

Folgerung: n ist abundant, wenn die Primfaktorzerlegung von n die Faktoren $2 \cdot 3$, $2^2 \cdot 5$, $2^2 \cdot 7$, $2 \cdot 5 \cdot 7$, $2^3 \cdot 11$ oder $2^3 \cdot 13$ enthält.

Gleichgewichtige Zahlen

Zwei Zahlen a und b heißen gleichgewichtig, wenn deren echte Teilersummen (ohne a und b selbst und der 1) gleich sind:

```
\sigma^*(a) = \sigma^*(b); Schreibweise a \diamond b
```

Beispiel: 34 \Diamond 361, da $\sigma^*(34) = 19 = \sigma^*(361)$; 155 \Diamond 203 \Diamond 299 \Diamond 323

Sätze

- 1. $a \diamond b \Leftrightarrow \sigma(a) \sigma(b) = a b$
- 2. Sind p_1 , p_2 , q_1 und q_2 prim mit $p_1 \neq p_2$ und $q_1 \neq q_2$ und gilt $p_1 + p_2 = q_1 + q_2$, so sind $a = p_1 \cdot p_2$ und $b = q_1 \cdot q_2$ gleichgewichtig
- 3. Es seien p und q Primzahlzwillinge mit p < q (d.h. q = p + 2). Dann sind $a = q^2$ und b = 2p gleichgewichtig.
- 4. Sind p und q prim mit $q=(2^n-1)p+2^{n+1}-4$, $n\geq 2$, so sind $a=2^n\cdot p$ und b=2q gleichgewichtig

Für die Werte a = 4, 51, 87 und 95 existieren keine natürlichen Zahlen n mit $\sigma^*(n)$ = a.

Einsame Zahl

Eine einsame Zahl (engl. solitary number) ist eine natürliche Zahl, welche keine andere natürliche Zahl als Bekannte hat. Dabei gelten zwei natürliche Zahlen als Bekannte oder als miteinander bekannt, wenn für beide die aus der Teilersumme der Zahl $\sigma(n)$ und der Zahl n selbst gebildeten Quotienten $\sigma(n)/n$ identisch sind.

Bekannte einer Zahl

Zu den einsamen Zahlen gehören alle Primzahlen. Damit ist eine natürliche Zahl n_0 einsam, genau dann wenn

$$\sigma(n_0)/n_0 <> \sigma(n)/n$$

für alle von n_0 verschieden von n gilt.

Jede natürliche Zahl n, welche mit ihrer Teilersumme $\sigma(n)$ außer der 1 keinen Teiler gemeinsam hat, ist eine einsame Zahl. Daher gehören zu den einsamen Zahlen alle Primzahlen und Primzahlpotenzen. Der Beweis der Einsamkeit einer Zahl ist für eine zusammengesetzte Zahl sehr anspruchsvoll. Zum Beispiel ist die kleinste Bekannte der 24 die Zahl 91963648.

Unter 100 existieren 53 natürliche Zahlen unterhalb 100, für die nachgewiesen ist, dass sie einsam sind. Die Einsamkeit konnte u.a. für 18, 45, 48, 52, 136, 148, 160, 162, 176, 192, 196, 208, 232, 244, 261, 272, 292, 296, 297, 304, 320, 352, 369 bewiesen werden.

Vermutet, aber nicht bewiesen, ist dies z.B. für

10, 14, 14, 20, 22, 26, 33, 34, 38, 44, 46, 51, 54, 58, 62, 68, 69, 70, 72, 74, 76, 82, 86, 87, 88, 90, 91, 92, 94, 95, 99, 104, 105, 106, ...

Teilerprodukt

... Produkt $\pi(n)$ aller Teiler einer natürlichen Zahl n, inklusive n.

Für n = 1,2,3,... wird $\pi(n)$ = 1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, ... Die ersten n, für welche $\pi(n)$ die p.te Potenz von n ist ($\pi(n) = n^p$):

p1, 6, 8, 10, 14, 15, 16, 21, 22, 24, 26, ...
1, 4, 8, 9, 12, 18, 20, 25, 27, 28, 32, ...
1, 24, 30, 40, 42, 54, 56, 66, 70, 78, ...

1, 16, 32, 48, 80, 81, 112, 144, 162, ...

Partitionen

Partition bzw. Zerfällung ... Zerlegung einer natürlichen Zahl in Summanden größergleich 1. Anzahl der Partitionen p(n) (Abschätzung): $p(n) \le 5^{n/4}$, nach Krätzel

 $p(n) \approx e^{\pi \sqrt{(2n/3)}} / (4\sqrt{3} \text{ n}), \text{ nach Ramanujan}$ p(n) = p(n) p(n)

n	p(n)	n	p(n)	n	p(n)
2		3	3	4	5
5	7	6	11	7	15
8	22	9	30	10	42
11	56	12	77	13	101
14	135	15	176	16	231

17	297	18	385	19	490
20	627	21	792	22	1002
23	1255	24	1575	25	1958

Partition in verschiedene Summanden

Neben der Zerlegung einer natürlichen Zahl n in beliebig viele Summanden größergleich 1, den eigentlichen Partitionen, fragt man auch nach Summendarstellungen mit paarweise verschiedenen Summanden. Mitunter schränkt man auch die Anzahl der Summanden ein.

Für positive natürliche Zahlen n und k sei dann $p_k(n)$ die Anzahl der möglichen Darstellungen von n als Summe von k untereinander verschiedenen Summanden.

Zum Beispiel erhält man für n = 12 und k = 3

$$12 = 1 + 2 + 9 = 1 + 3 + 8 = 1 + 4 + 7 = 1 + 5 + 6 = 2 + 3 + 7 = 2 + 4 + 6 = 3 + 4 + 5$$

genau sieben Möglichkeiten, d.h. $p_3(12) = 7$.

Im Allgemeinen gilt für natürliches j:

$$p_1(n) = 1$$

 $p_3(1 + 6j) = 3j^2 - 2j$
 $p_3(3 + 6j) = 3j^2$
 $p_3(5 + 6j) = 3j^2 + 2j$

$$p_2(1 + 2j) = p_2(2 + 2j) = j$$

$$p_3(2 + 6j) = 3j^2 - j$$

$$p_3(4 + 6j) = 3j^2 + j$$

$$p_3(6 + 6j) = 3j^2 + 3j + 1$$

Partitionsfunktion

Die Partitionsfunktion gibt die Anzahl der Möglichkeiten an, natürliche Zahlen in Summanden zu zerlegen. Im Allgemeinen betrachtet man die Zerlegungen ohne Berücksichtigung der Reihenfolge.

Die Partitionsfunktion P(n), manchmal auch p(n), ist die einfachstmögliche Zerlegungsfunktion. Die ersten Funktionswerte für n = 0, 1, 2, ... sind

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, ...

Es werden auch spezielle Partitionsfunktionen betrachtet. p(k,n) ist eine Abwandlung, in der verlangt wird, dass der kleinste Summand

größergleich k ist.

Beispiel: p(1, 4) = 5; p(2, 8) = 7; p(3, 12) = 9; p(4, 16) = 11; ...

Eine erzeugende Funktion für p(n) ist $f(x) = \sum_{k=0}^{\infty} p(n) x^{n}$

d.h. die Koeffizienten der formalen Potenzreihe f(x) entsprechen den Werten von p(n). Eine direkte Berechnung ergibt $p(n) = 1/(\pi \sqrt{2}) \sum_{k=1}^{\infty} A_k(n) \sqrt{k} \ d/dn \ (\sinh(\pi/k \sqrt{(2/3 \ (n-1/24))}) / \sqrt{(n-1/12)})$ mit $A_k(n) = \sum_{0 \le m < k, ggT(m,k)=1} e^{\pi i \ (s(m,k) - 2nm/k)}$

die Hans Rademacher, aufbauend auf Erkenntnissen von Ramanujan und Godfrey Harold Hardy, fand.

Multiplikative Partition

Eine multiplikative Partition, oder ungeordnete Faktorisierung, einer natürlichen Zahl n>1 ist eine Darstellung dieser Zahl als Produkt natürlicher Zahlen größer als 1.

Zwei Faktorisierungen sind gleich, wenn jeder Faktor einer Faktorisierung auch in der anderen vorkommt und sie sich nur in der Reihenfolge unterscheiden. Die Zahl n ist selbst eine Partition.

Multiplikative Partitionen ("factorisatio numerorum") werden seit 1923 untersucht. 1983 veröffentlichten Jeffrey Shallit und John F.Hughes einen Artikel über dieses Thema.

Beispiele: Die Zahl 20 hat 4 multiplikative Partitionen: $20 = 2 \cdot 10 = 4 \cdot 5 = 2 \cdot 2 \cdot 5$.

30 hat 5 multiplikative Partitionen: $30 = 2 \cdot 15 = 3 \cdot 10 = 5 \cdot 6 = 2 \cdot 3 \cdot 5$. Die Zahl 30 ist quadratfrei.

81 hat 5 multiplikative Partitionen: $81 = 3 \cdot 27 = 9 \cdot 9 = 3 \cdot 3 \cdot 9 = 3 \cdot 3 \cdot 3 \cdot 3$.

Die Zahl 109 hat nur eine multiplikative Partition, sich selbst. Sie ist Primzahl.

Ist a(n) die Anzahl aller multiplikativen Partitionen von n, so sind die ersten Werte

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, ...

Ist n quadratfrei, so ist die Anzahl der multiplikativen Partitionen $B_{\omega(n)}$, wobei B_i die i-te Bellsche Zahl und $\omega(n)$ die Anzahl der verschiedenen Primfaktoren von n ist.

Praktische Zahl

Eine positive ganze Zahl m wird praktische Zahl (engl. practical number) genannt, wenn jede natürliche Zahl n < m als Summe von verschiedenen, positiven Teilern von m dargestellt werden kann. Der Begriff wurde 1958 von Srinivasan eingeführt. Mitunter spricht man auch von panarithmetischen Zahlen. Zum Beispiel ist 12 mit der Teilermenge $\{1, 2, 3, 4, 6, 12\}$ praktische Zahl, da gilt: 1 = 1; 2 = 2; 3 = 1+2; 4 = 4; 5 = 1+4; 6 = 6; 7 = 3+4; 8 = 2+6; 9 = 3+6; 10 = 4+6 und 11 = 1+4+6

Allgemein gilt: Eine ganze Zahl m > 1, mit der Primfaktorzerlegung $m = p_1^a 1 p_2^a 2 \dots p_k^a k$

mit den Primzahlen $p_1 < p_2 < ... < p_k$ and allen $a_i > 0$ ist genau dann praktische Zahl, wenn $p_1 = 2$ ist und für alle i = 2, 3, ..., k $p_i \le \sigma(p_1^{\ a}1 \ p_2^{\ a}2 \ ... \ p_{i-1}^{\ a}i-1) + 1$

qilt. Dabei ist $\sigma(n)$ die Summe der positiven Teiler von n.

Durch Tenenbaum wurde gezeigt, dass Konstante c_1 , c_2 existieren, so dass für die Anzahl P(x) der praktischen Zahlen bis x gilt: $c_1 \times p(x) < c_2 \times p(x) < c_3 \times p(x) < c_4 \times p(x) < c_5 \times p(x) < c_6 \times p($

Melfi zeigte, dass jede gerade natürliche Zahl sich als Summe von zwei praktischen Zahlen darstellen lässt, sowie dass unendliche viele Tripel m-2, m, m+2 von praktischen Zahlen existieren. Die ersten praktischen Zahlen sind

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200. ...

Die Zahl 2^{n-1} ($2^n - 1$) ist für alle n = 2, 3, ... praktisch.

Mit Hilfe praktischer Zahlen gelingt es effektive Algorithmen zur Zerlegung in ägyptische Brüche zu konstruieren.

Praktische Zahlen haben u.a. bei ägyptischen Zahlen Bedeutung.

Liegt ein Bruch p/q vor, dessen Nenner q praktische Zahl ist und p < q, so kann schnell eine Zerlegung in ägyptische Brüche angegeben werden.

Zum Beispiel ist 20 ein praktische Zahl und damit

$$9/20 = (4+5)/20 = 1/5 + 1/4$$

 $17/20 = (1+2+4+10)/20 = 1/20 + 1/10 + 1/5 + 1/2$

Ist n eine praktische Zahl und q < 2n eine zu n relativ prime Zahl, dann ist auch $q \cdot n$ praktisch.

Hat eine Zahl n eine Teilmenge von Teilern $1 = t_1, t_2, ..., t_k = n$, in der jeder Teiler höchstens doppelt so groß ist, wie der vorhergehende, so ist n praktische Zahl. (Robinson 1979)

Ist n praktische Zahl und $m \le n$, dann ist $m \cdot n$ praktisch. $m^p n^q$ ist dann ebenfalls praktisch. (Heyworth 1980)

Ist n praktisch und die Teilersumme von n mindestens n+k, wobei k eine natürliche Zahl ist, dann ist n(2n+k+1) praktisch.

Hochzusammengesetzte Zahl

Eine hochzusammengesetzte Zahl (engl. highly composite number; HC-Number; HC-Zahl) ist eine natürliche Zahl, die mehr Teiler als jeder kleinere natürliche Zahl besitzt.

Die ersten hochzusammengesetzte Zahlen mit der Anzahl ihrer Teiler sind:

n	Teilerzahl	n	Teilerzahl	n	Teilerzahl	n	Teilerzahl
1	1	2	2	4	3	6	4
12	6	24	8	36	9	48	10
60	12	120	16	180	18	240	20
360	24	720	30	840	32	1260	36
1680	40	2520	48	5040	60	7560	64

Die weitere Folge (in Klammern Teilerzahl) lautet

10080 (72), 15120 (80), 20160 (84), 25200 (90), 27720 (96), 45360 (100), 50400 (108), 55440 (120), 83160 (128), 110880 (144), 166320 (160), 221760 (168), 277200 (180), 332640 (192), 498960 (200), 554400 (216), 665280 (224), 720720 (240), 1081080 (256), 1441440 (288), 2162160 (320), ... Diese Folge ist eine Teilfolge der kleinsten Zahlen mit exakt k Teilern.

Es existieren unendlich viele hochzusammengesetzte Zahlen. Dies folgt sofort aus der Tatsache, dass eine Zahl 2n mehr Teiler besitzt als die Zahl n.

eine Zahl 2n mehr Teiler besitzt als die Zahl n. Hat eine hochzusammengesetzte Zahl die Primfaktorzerlegung $n = p_1^c 1 p_2^c 2 \dots p_k^c k$

mit $p_1 < p_2 < ... < p_k$, so müssen die p_i die ersten Primzahlen 2, 3, 5, ... sein. Die Folge der Exponenten $c_1 \ge c_2 \ge ... \ge c_k$

muss dann fallen.

Außer in den zwei Spezialfällen n=4 und n=36 ist $c_k=1$. Alle hochzusammengesetzten Zahl größer 6 sind abundant und Harshad-Zahlen.

Ist Q(x) die Anzahl der hochzusammengesetzten Zahlen kleiner gleich x, dann existieren zwei Konstanten a und b größer 1, so dass gilt $(\ln x)^a \le Q(x) \le (\ln x)^b$

Die linke Seite der Ungleichung wurde 1944 von Paul Erdös beweisen, die rechte 1988 von Jean-Louis Nicolas.

Mirp-Zahlen

"Mirp" ist rückwärts "prim" gelesen. Eine Mirp-Zahl ist eine mindestens zweistellige Primzahl, die wieder eine andere Primzahl liefert, wenn die Ziffernfolge in umgekehrter Reihenfolge gebildet wird. Eine "Nonrep"-Mirp-Zahl enthält nur verschiedene Ziffern.

kleinste Nonrep-Mirpzahl = 13

größte Nonrep-Mirpzahl = 987 653 201

Weitere Nonrep-Mirpzahlen (bis 1000)

17 31 37 71 73 79 97 107 149 157 167 179 347 389 701 761 359 709 739 743 751 769 907 937 941 953 971 967 983

bis 3 Milliarden: Mirp-Zahl = 1 999 998 701; Mirp-Zahlzwilling = [999 993 899; 999 993 901] Im Oktober 2007 wurde durch Jens Kruse Andersen die heute (2011) größte bekannte Mirp-Zahl gefunden:

 $10^{10006} + 941992101 \cdot 10^{4999} + 1$

Mirp-Zwilling

Unter einem Mirp-Zwilling versteht man ein Paar Primzahlzwillinge, von denen beide Primzahlen Mirp-Zahlen sind.

Die kleinsten Mirp-Zwillinge sind

11, 13, 71, 73, 149, 151, 179, 181, 311, 313, 1031, 1033, 1151, 1153, 1229, 1231, 3299, 3301, 3371, 3373, 3389, 3391, 3467, 3469, 3851, 3853, ...

k-morphe Zahlen

Eine natürliche Zahl n heißt k-morph bzgl des Dezimalsystems, wenn die Dezimalziffernfolge der Zahl nk mit der Zahl n selbst endet. Trivialerweise ist jede Zahl natürlich 1-morph bzgl. jedes Zahlensystems. Die ersten bezüglich des Dezimalsystems k-morphen Zahlen:

- Zahlen ... k
- 5, 6, 25, 76, 376, 625 2
- 3 4, 9, 24, 49, 51, 75, 99, 125, 249, 251, 375, 499, 501, 624, 749, 751, 875, 999, 1249
- 2, 3, 7, 8, 32, 43, 57, 68, 93, 193, 307, 432, 443, 557, 568, 693, 807, 943, 1251 5
- 6
- 11
- 16, 21, 36, 41, 56, 61, 81, 96, 176, 201, 401, 576, 601, 776, 801, 976, 1376 11, 19, 29, 31, 39, 44, 59, 64, 69, 71, 79, 84, 89, 91, 101, 149, 151, 199, 224, 299, 301, 349 12, 13, 17, 23, 27, 28, 33, 37, 47, 48, 52, 53, 63, 67, 72, 73, 77, 83, 87, 88, 92, 97, 107, 143 21
- 121, 136, 161, 216, 241, 256, 281, 296, 321, 336, 361, 416, 441, 456, 481, 496, 521, 536, 561 26
- 104, 109, 111, 119, 129, 131, 139, 141, 144, 159, 169, 171, 179, 181, 184, 189, 191, 209, 211. 51
- 103, 112, 113, 117, 123, 127, 128, 133, 137, 147, 152, 153, 163, 167, 173, 177, 183, 187, 192 101
- 126 1041, 1056, 1121, 1136, 1216, 1281, 1296, 1361, 1441, 1456
- 251 1009, 1031, 1039, 1071, 1079, 1081, 1089, 1104, 1111, 1119, 1129, 1159, 1161, 1169, 1184

Guy's Gesetz der kleinen Zahlen

Richard Guy: "Es existieren nicht genügend kleine Zahlen, um alle mit diesen formulierten Regeln hinreichend zu beweisen"

Beispiel 1: Folge der Reste aller Primzahlen bei Divison durch 4

2, 3, 1, 3, 3, 1, 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, ... Untersucht man die ersten 25000 Terme dieser Folge, so treten die 3 und 1 gleich oft auf. Es ist aber bewiesen, dass man keine Regel angeben kann, welche der beiden Ziffern unter den ersten n Gliedern häufiger auftritt.

Beispiel 2: Lösung der Gleichung $qqT(n^{17}+9, (n+1)^{17}+9) \neq 1$

Bei dieser einfach formulierten Gleichung sind schon kleine n als Lösung zu vermuten. Diese Vermutung ist aber falsch. Das erste n ist 8424432925592889329288197322308900672459420460792433.

Beispiel 3: Riemannsche Funktion Li(x)

Die Gauß-Riemann-Funktion Li(x) nähert die Funktion $\pi(x)$; Anzahl der Primzahlen bis x; sehr gut an. Dabei stellt man fest, dass für alle vollständig bekannten Primzahlbereiche stets $\pi(x) < Li(x)$ ist. Tests bis x = 1 Billion bestätigten dies. Aber! Skews bewies, dass unendlich oft auch $\pi(x) > \text{Li}(x)$ gelten kann. Dies geschieht erstmals bei einem riesigen $x < 10^10^10^34$. Diese Zahl wird deshalb Skews Zahl genannt.

Fazit: Alle Untersuchungen offener mathematischer Probleme mit intensivem Computereinsatz können die Wahrscheinlichkeit der Vermutung etwas vergrößern, aber niemals beweisen! (z.B. Collatz-Problem, Goldbach-Vermutung, ...)

Quadratfreie Zahlen

Eine ganze Zahl n heißt quadratfrei, wenn sie nicht durch eine Quadratzahl > ohne Rest teilbar ist. A(n) sei die Anzahl der quadratfreien Zahlen von 1 bis n. $\lim_{n\to\infty} A(n)/n = 1/\zeta(2) = 6/\pi^2$ Die Wahrscheinlichkeit aus den natürlichen Zahlen zufällig zwei teilerfremde Zahlen zu ermitteln, beträgt ebenfalls (erstaunlicherweise!) $6/\pi^2 = 60.79271 \%$

Quadratfreie Zahlen stellen etwa 60 % aller natürlicher Zahlen, exakt $6/\pi^2$. Insbesondere bei kleineren Zahlen sind quadratfreie Zahlen sehr häufig.

Durch Erich Friedmann und Patrick De Geest werden in der Folge der quadratfreien Zahlen Lücken gesucht, die aus aufeinanderfolgenden, nicht quadratfreien Zahlen bestehen. Für k aufeinanderfolgende, quadrathaltige Zahlen wurden bisher gefunden

quadratfreie Lücke ab ... k k quadratfreie Lücke ab ...

1	4	2	8
3	48	4	242
5	844	6	22020
7	217070	8	1092747
9	8870024	10	221167422
11	221167422	12	47255689915
13	82462576220	14	1043460553364
15	79180770078548	16	3215226335143218
17	23742453640900972	18	125781000834058568

Größere Lücken wurden bis n = $1,258 \times 10^{17}$ nicht gefunden. Die Startzahl für k = 19 ist kleiner oder gleich 31 310 794 237 768 728 712 sein.

siehe http://www.marmet.org/louis/sqfgap/index.html

Kubenfreie Zahlen

Eine ganze Zahl n heißt kubenfrei, wenn sie nicht durch eine Kubikzahl ohne Rest teilbar ist. z.B.: 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...

Die Dichte der kubenfreien Zahlen beträgt $1/\zeta(3)=0.831907...$, wobei $\zeta(x)$ die Riemannsche Zeta Funktion ist.

Biquadratfreie Zahlen

Eine ganze Zahl n heißt biquadratfrei, wenn sie nicht durch ein Biquadrat ohne Rest teilbar ist. Die Dichte der biquadratfreien Zahlen beträgt $1/\zeta(4) = 90/\pi^4 = 0.923938$

Die Dichte ganzer Zahlen, die nicht durch eine ganzzahlige Potenz a^k , k=2,3,4,..., teilbar sind, ist $1/\zeta(k)$. Für k=5,6,7,... wird $1/\zeta(k)=0.964387...$, 0.982952..., 0.991719..., 0.995938...

Starke Zah

Eine starke Zahl (engl. powerful number, franz. nombre puissant) ist eine natürliche Zahl m, für die mit jedem Primteiler p auch p² die Zahl m teilt. Damit ist eine starke Zahl das Gegenstück zu einer quadratfreien Zahl.

Vor allem die ungarischen Mathematiker Paul Erdös und George Szekeres untersuchten diese Zahlen. Ihren Namen erhielten sie von Solomon W.Golomb.

Die ersten starken Zahlen bis 1000 sind:

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 216, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 864, 900, 961, 968, 972, 1000

Die Summe aller Reziproken starken Zahlen konvergiert gegen $\zeta(2) \zeta(3) / \zeta(6) = 315/(2\pi^4) \zeta(3)$ wobei $\zeta(x)$ die Riemannsche Zetafunktion und $\zeta(3)$ die Apéry-Konstante sind.

Ist k(x) die Anzahl der starken Zahlen im Intervall [1,x], dann ist nach Golomb (1970) k(x) proportional zu \sqrt{x} , exakter $c\sqrt{x} - 3^3\sqrt{x} \le k(x) \le c\sqrt{x}$; $c = \zeta(3/2) / \zeta(3) = 2,173...$

Die ersten Zahlen von unmittelbar aufeinander folgenden starken Zahlen sind

8, 288, 675, 9800, 12167, 235224, 332928, 465124, 1825200, 11309768, 384199200, 592192224, 4931691075, 5425069447, 13051463048, 221322261600, 443365544448, 865363202000, 8192480787000, 11968683934831, 13325427460800, ...

Jede ungerade Zahl kann mit $2k+1 = (k+1)^2 - k^2$ als Differenz zweier Quadrate dargestellt werden. Jedes Vierfache ist die Differenz von Quadraten zweier Zahlen mit dem Abstand 2, ... In Analogie fragt man nach Möglichkeiten gerade Zahlen als Differenz zweier starker Zahlen zu schreiben. Durch Golomb wurden einige Beispiele gegeben:

```
2 = 3^3 - 5^2; 10 = 13^3 - 3^7; 18 = 19^2 - 7^3 = 3^3(3^3 - 5^2)
```

Er vermutete, dass eine solche Darstellung für die 6 und weitere unendliche viele gerade Zahlen nicht existiert. Allerdings fand Narkiewicz $6 = 5^47^3 - 463^2$,

und McDaniel bewies 1982, dass jede natürliche Zahl auf unendlich vielen Arten als Differenz zweier starker Zahlen dargestellt werden kann. Bei Untersuchung der ersten 120 Billionen natürlichen Zahl wurden für folgende n < 1038 noch keine Differenzen gefunden (November 2009):

66, 78, 110, 130, 182, 210, 258, 322, 390, 402, 410, 462, 494, 538, 570, 642, 658, 662, 690, 714, 770, 798, 858, 910, 942, 966, 978

Auf Erdös geht die Vermutung von 1934 zurück, dass jede hinreichend große natürliche Zahl als Summe von drei starken Zahlen geschrieben werden kann. Dies wurde 1987 von Roger Heath-Brown bewiesen. Keine derartigen Zerlegungen findet man nur für n = 7, 15, 23, 87, 111 und 119.

Verlangt man, dass nur verschiedene starke Zahlen als Summanden auftreten, so gibt es für n = 2, 3, 6, 7, 11, 15, 19, 22, 23, 55, 87, 102, 111 und 119 keine Zerlegung.

Achilles-Zahl

Eine Achilles-Zahl ist eine natürliche Zahl, die starke Zahl ist, jedoch keine vollkommene Potenz. Jede natürliche Zahl ist Achilles-Zahl n, wenn mit ihrem Primteiler p auch p² Teiler der Zahl n ist, mindestens zwei Primteiler vorliegen und der ggT der Häufigkeit der Primteiler 1 ist. Der Name Achilles-Zahl wurde gewählt, da Achilles zwar "stark" aber eben nicht "vollkommen" war.

Die ersten Achilles-Zahlen sind

72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, ...

Das kleinste magische Quadrat der Ordnung 3 mit Achilles-Zahlen ist

912600	1825200	109512
146016	949104	1752192
1788696	73008	985608
23.33.52.132	$2^4 \cdot 3^3 \cdot 5^2 \cdot 13^2$	2 ³ ·3 ⁴ ·13 ²
2 ⁵ ·3 ³ ·13 ²	$2^4 \cdot 3^3 \cdot 13^3$	$2^{7}\cdot 3^{4}\cdot 13^{2}$
23.33.72.132	$2^4 \cdot 3^3 \cdot 13^2$	2 ³ ·3 ⁶ ·13 ²
	146016 1788696 2 ³ ·3 ³ ·5 ² ·13 ² 2 ⁵ ·3 ³ ·13 ²	146016 949104 1788696 73008 2 ³ ·3 ³ ·5 ² ·13 ² 2 ⁴ ·3 ³ ·5 ² ·13 ² 2 ⁵ ·3 ³ ·13 ² 2 ⁴ ·3 ³ ·13 ³

Sichtbare ganzzahlige Punkte

Zwei Punkte (x,y) und (x',y') mit ganzzahligen Koordinaten heißen zueinander sichtbar, wenn auf der Strecke zwischen beiden Punkten kein anderer Punkt liegt, der ganzzahlige Koordinaten besitzt. Dies ist

erfüllt, wenn der größte gemeinsame Teiler von x'-x und y'-y gleich 1 ist, d.h. x'-x und y'-y zueinander teilerfremd sind. Bezüglich des Koordinatenursprungs sind damit alle Punkte mit ggt(x,y) = 1 sichtbar. Dargestellt in einem Koordinatensystem ergibt sich die linke Abbildung. Wird ein beliebiger ganzzahliger Punkt gewählt, so ist die Wahrscheinlichkeit, dass er vom Ursprung aus sichtbar ist, gleich $6/\pi^2$, d.h. gleich der Wahrscheinlichkeit, dass die Punktkoordinaten zueinander relativ prim sind. Überträgt man das Problem auf einen n-dimensionalen Raum, so beträgt die Wahrscheinlichkeit der Sichtbarkeit vom Ursprung aus $1/\zeta(n)$, wobei $\zeta(n)$ die Riemannsche Zeta-Funktion darstellt.

Bernoullische Zahlen

... treten als Koeffizienten der unendlichen Reihe t / (e^t -1) = 1 + B₁ t/1! + B₂ t²/2! + B₃ t³/3! + ... auf. Es ist: B₀ = 0, B₁ = -1/2 und alle anderen B_k = 0 für ungerades k . Durch B₀ = 1 und $\binom{k+1}{1} B_k + \binom{k+1}{2} B_{k-1} + ... + \binom{k+1}{k} B_1 + B_0 = 0$

können die Bernoullischen Zahlen rekursiv definiert werden. Bernoullische Zahlen sind

 $\zeta(-n) = \frac{B_{n+1}}{n+1}$ gebrochene Zahlen. Alle Bernoullischen Zahlen mit ungeradem Index sind gleich 0. Die ersten von Null verschiedenen sind $B_0 = 1$, $B_1 = -1/2$, $B_2 = 1/6$, $B_4 = -1/30$, $B_6 = 1/42$, $B_8 = -1/30$ und $B_{10} = 5/66$. Diese Zahlen können auch über die Riemannsche Zeta-Funktion mit ... definiert

werden. Nach der Stirlingschen Formel gilt außerdem

Die Bernoullischen Zahlen wurden erstmals von Jakob Bernoulli in dem Buch "Ars conjectandi" (1713) zur Untersuchung von Potenzsummen natürlicher Zahlen genutzt.

In der Liste wird für den Index n ein Näherungswert sowieder exakte Zähler und der Nenner des Bruches getrennt durch | angegeben.

Tabelle der Bernoullische Zahlen

n	Näherungswert Zähler und Nenner	n	Näherungswert Zähler und Nenner
2	1.6666·10^-1 1 6	4	
6	2.3809·10^-2 1 42	8	-3.3333·10^-2 -1 30
10	7.5757·10^-2 5 66	12	-2.5311·10^-1 -691 2730
14	1.1667·10^0 7 6	16	-7.0921·10^0 -3617 510
18	5.4971·10^1 43867 798	20	-5.2912·10^2 -174611 330
22	6.1921·10^3 854513 138	24	-8.6580·10^4 -236364091 2730
26	1.4255·10^6 8553103 6	28	-2.7298·10^7 -23749461029 870
30	6.0158·10^8 8615841276005 14322		

Pascal-Programm zur Berechnung der Bernoullische Zahlen

program bernoulli;

uses crt;

var n,z:array[1..200] of comp; {erweiterter Datentyp comp n ... Nenner der Zahlen z ... Zähler der Zahlen }

x,y,nn,zz,f,g: comp; k,i:integer;

function koeff(k,i:integer):comp; {Berechnung der Koeffizienten}

var j:integer; zw:comp;

begin zw:=1; for j:=1 to i do begin zw:=zw*(k-j+1); zw:=zw/j; end; koeff:=zw; end;

function ggt(a,b:comp):comp; {Ermittlung des größten gemeinsamen Teilers mittels Euklidischen Algorithmus}

var r:comp;

begin if a < b then begin r:=a; a:=b; b:=r end; repeat r:=b*frac(a/b); a:=b; b:=r; until b=0; ggt:=a; end:

procedure add(a,b:comp); {Addition zweier gebrochener Zahlen mit Zähler und Nenner}

```
var g,p,q:comp;
begin q:=nn*y; p:=x*nn+y*zz; g:=ggt(abs(p),q);
                                                     {Hauptnenner bestimmen}
  p:=p/g; q:=q/g; {Kürzen!}
                                 x:=p; y:=q;
end;
begin {Hauptprogramm }
  n[1]:=2; z[1]:=-1; n[2]:=6; z[2]:=1; {Initialisierung der ersten zwei Bernoulli-Zahlen }
  k:=5; {Index der nächsten Zahl festlegen}
 repeat
                                  {bisher ermittelte Bernoulli-Zahlen addieren}
      x:=2-k; y:=2; i:=2;
       repeat f:=koeff(k,i); g:=ggt(f,n[i]); f:=f/g; nn:=n[i]/g; zz:=z[i]*f; add(zz,nn); i:=i+2;
       until i>=k-1;
                             {Zahlausgabe vorbereiten}
      x := -x; y := k*y;
       g:=ggt(x,y); x:=x/g; y:=y/g; writeln(k-1:2,' Z:',x:20:0,' N:',y:20:0);
       n[k-1]:=y; z[k-1]:=x; k:=k+2; {Zahlindex erhöhen}
 until k>=34; {Abbruch, andernfalls Bereichsüberschreitung}
end.
```

Satz von Staudt

Durch den deutschen Mathematiker Christian Staudt (1798-1867) wurde eine interessante Eigenschaft der Bernoullischen Zahlen entdeckt.

Gegeben sei die k-te Bernoullische Zahl B_k . Betrachtet werden alle Primzahlen p kleiner k+1 und von denen diejenigen, für die p-1 ein Teiler von k ist.

Die Summe Σ 1/p dieser Primzahlen ist ein endlicher Wert. Dann gilt: $B_k + \Sigma$ 1/p ist ganzzahlig. Kennt man die Größenordnung einer Bernoullischen Zahl B_k , kann deren Berechnung damit vereinfacht werden.

Beispiele: Die Zahl B_6 liegt zwischen 0 und 1. Die Teiler von 6 sind 1, 2, 3 und 6. Die um 1 vermehrten Teiler sind Primzahlen für 2, 3 und 7. Die Summe der Primzahlen ist dann

```
\Sigma 1/p = 1/2 + 1/3 + 1/7 = 41/42
```

```
Da 0 < B_6 < 1 gilt, muss B_6 + \Sigma 1/p = 1 sein und es wird
```

 $B_6 = 1/42$

Die Zahl B_{12} liegt zwischen -1 und 0. Die Teiler von 12 sind 1, 2, 3, 4, 6 und 12. Die um 1 vermehrten Teiler sind Primzahlen für 2, 3, 5, 7 und 13. Die Summe der Primzahlen ist dann

```
\Sigma 1/p = 1/2 + 1/3 + 1/5 + 1/7 + 1/13 = 3421/2730
```

```
Da -1 < B_{12} < 0 gilt, muss B_{12} + \Sigma 1/p = -1 sein und es wird
```

 $B_{12} = -691/2730$

Für B_k mit k > 16 wird diese Berechnung etwas unhandlich, da die Ermittlung des Intervalls, in dem B_k liegt, schwieriger ist.

Bernoullische Zahlen (2)

Ende Mai 2009 meldeten deutschen Medien (AFP, Heise online, taz, Berliner Zeitung, B.Z., Welt-online, ...), dass ein 16jähriger irakischer Einwanderer in Schweden ein Jahrhunderte altes Problem gelöst hätte. Er habe eine "Formel für die Bernoulli-Zahlen" gefunden und sofort einen Studienplatz in Uppsala erhalten. AFP meldete "Junger Iraker knackt Jahrhunderte altes Mathe-Rätsel", die taz "Jahrhunderträtsel gelöst" und Welt Online, dass für die "Bernolli-Zahlen bisher keine Formal existierte". (die zwei Fehler wurden so gemeldet!)

Wie zu erwarten, war dies wieder einmal eine Lüge der Medien. Der Jugendliche hatte nichts gefunden, was nicht schon lange bekannt war und die Universität von Uppsala sah sich gezwungen, einen Kommentar zu veröffentlichen:

"No new mathematical solution by Swedish Teen 2009-06-01 | News item

Swedish and international media have recently reported that a 16-year old Swede has presented the solution to the Bernoulli numbers. This is not correct. The solution was previously known to the mathematical community.

The young student, from the Swedish province of Dalarna, turned to Uppsala University with his formula, claiming that it was the solution to the complex Bernoulli numbers. Senior Lecturer Lars-Åke Lindahl verified the formula, but added that although correct, it was well known and readily available in several databases.

Dr Lindahl found the student to be very talented in the field of mathematics and provided him with reading material. The student, however, has not been admitted to Uppsala University, as claimed by some news outlets.

The Bernoulli numbers were introduced by Jakob Bernoulli in the book Ars Conjectandi, published posthumously in 1713."

Eulersche Zahlen Ek

Die Eulerschen Zahlen E, können durch folgende Potenzreihenentwicklung erklärt werden:

 $1/\cosh x = 2/(e^x + e^{-x}) = \Sigma (E_n/n! x^n)$, Summenbildung von n = 0, 1, ... Alle Eulerschen Zahlen mit ungerader Nummer sind gleich 0.

Tabelle der Eulerschen Zahlen

k	Näherungswert Zahl	k	Näherungswert	Zahl
2	-1	4	5	
6	-61	8	1385	5
10	-5.0521·10^4 -50521	12	2.7028·10^6 2702	2765
14	-1.9936·10^8 -199360981	16	1.9391.10^10 1939	91512145
18	-2.4049·10^12-2404879675441	20	3.7037.10^14 3703	371188237525
22	-6.9349·10^16-69348874393137901	24	1.5514.10^19 1551	.4534163557086905
26	-4.0871·10^21-4087072509293123892361	28	1.2522·10^24	
	1252259641403629865468285			
30	-4.4154·10^26-44154389324902310455368	32821		

Alle Eulerschen Zahlen mit ungerader Nummer sind gleich 0. Es ist $E_0=1$. Zu den Bernoullischen Zahlen besteht die Beziehung $E_{2n}=4^{2n+1}/(2n+1)$ $(B_n-1/4)^{2n+1}$, n=1,2,...

Catalansche Zahl

Für jede natürliche Zahl n gibt die Catalansche Zahl C(n) die Anzahl der Möglichkeiten an, ein Produkt von n Zahlen zu klammern. Daraus folgt

$$C(n) = \sum_{k=1}^{n-1} C(k) C(n-k)$$
 mit $C(0) = 0$ und $C(1) = 1$.

 $C(n) = 1/(n+1) * (^{2n}_n) = (2n)! / [(n+1)! n!]$; Bis $n = 2^{15}-1$ sind C(2)=2 und C(3)=5 die einzigen Primzahlen.

Anwendung:

Auf wieviel verschiedene Arten kann ein regelmäßiges N-Eck in n-2 Dreiecke zerlegt werden ?

Lösung (siehe Abbildung): C(n-2)

Für ein N-Eck mit n=3,4,5,6,... ergeben sich damit 1,2,5,14,42,132,429,1430,4862,16796,...

Tabelle der Catalan-Zahlen

I abci	ic dei Catalali Zaille	•••			I / N W / IN W - IN / I / II
Nr.	Zahl	Nr.	Zahl		
1	1	2	2		
3	5	4	14		
5	42	6	132		
7	429	8	1430		
9	4862	10	16796	11	58786
12	208012	13	742900	14	2674440
15	9694845	16	35357670	17	129644790
18	477638700	19	1767263190	20	6564120420
21	24466267020	22	91482563640	23	343059613650
24	1289904147324	25	4861946401452	26	18367353072152
27	69533550916004				

Catalansches Dreieck

Das Catalansche Dreiecke ist ein Zahlendreieck, dessen Einträge die Zahlen

 $c_{n;m} = (n+m)! (n-m+1) / (m! (n+1)!)$

mit $0 \le m \le n$ sind. Damit ergibt sich

			_				
S	palte	0	1				
Zeile 0	1						
Zeile 1	1	1					
	1	2	2				
	1	3	5	5			
	1	4	9	14	14		
	1	5	14	28	42	42	
	1	6	20	48	90	132	132

Jedes Element des Dreiecks ist gleich der Summe des links stehenden und darüberliegenden Elements. Jede Zeilensumme ist gleich dem letzten Element der nächsten Zeile und gleich der Catalan-Zahl C_n.

weitere Interpretation für die Catalan-Zahlen

 C_n ist auch die Anzahl der möglichen Beklammerungen eines Produktes, in dem n Multiplikationen vorkommen, also n+1 Faktoren, so dass immer nur die Multiplikation von zwei Faktoren durchzuführen ist.

Es ist $C_3 = 5$, denn alle möglichen Beklammerungen von $x_1 x_2 x_3 x_4$ sind

$(x_1 x_2)(x_3 x_4)$	$(x_1 (x_2 x_3)) x_4$	$x_1 ((x_2 x_3) x_4)$	010101	001101	010011
$((x_1 x_2) x_3) x_4$	$X_1 (X_2 (X_3 X_4))$		00101011	00011011	00100111
auch die Anzahl der m	öglichen Binärhäume.	die sich aus n Knoten	(x(x(xx)))	((rr)(rr))	(x((xx)x))

 C_n ist auch die Anzahl der möglichen Binärbäume, die sich aus n Knoter bilden lassen.

x(x(xx))) ((xx)(xx)) (x((xx)x))

Catalan-Zahl (2)

Folgende Anzahlen werden durch die Catalan-Zahl c_n gegeben:

- (1) die Folgen aus je n Nullen und Einsen, so dass jedes Anfangsstück mindestens so viele Nullen wie Einsen enthält
- (2) die Folgen aus je n + 1 Nullen und Einsen, so dass jedes Anfangsstück der Länge ungleich 0 oder 2n + 2 mehr Nullen als Einsen enthält
- (3) die vollständigen Klammerungen eines Produkts aus n + 1 Faktoren
- (4) die ebenen Setzbäume mit n + 2 Knoten und damit n + 1 Kanten
- (5) die ebenen binären Setzbäume mit n+1 Blättern, ungleich der Wurzel
- (6) die Zerlegungen eines konvexen (n + 2)-Ecks in Dreiecke durch sich nicht schneidende Diagonalen
- (7) die Möglichkeiten, 2n auf einem Kreis gelegene Punkte paarweise durch n sich nicht überschneidende Strecken zu verbinden.

Figurierte Zahlen

... Zahlen, welche als Summe von Eckpunkten einer Folge von gleichliegenden Punkten von N-Ecken gebildet werden können

... sind die N-Ecke regulär, so spricht man von Polygon-Zahlen

Für die n.te reguläre r-Polygon-Zahl gilt

$$P(r,n) = n((r-2)n + 4 - r)/2$$

Spezielle Polygon-Zahlen

Dreieckszahlen $P_2(n) = n/2 (n+1)$ Tetraederzahlen $P_3(n) = n/6 (n+1) (n+2)$ Pentatop-Zahlen $P_4(n) = n/24 (n+1) (n+2) (n+3)$ Biquadratzahlen Zentrierte Kubikzahlen $= (2n-1) (n^2-n+1)$ $= (3n^2 - 3n + 2) / 2$ Zentrierte Dreieckszahlen $= (5n^2 + 5n + 2) / 2$ Zentrierte Fünfeckzahlen $= n^2 + (n-1)^2$ Zentrierte Quadratzahlen = n/2 (3n-1)Fünfeckzahlen Sechseckzahlen = n (2n-1)Siebeneckzahlen = n/2 (5n-3)Achteckzahlen = n/2 (6n-1)**Quadrat-Pyramidenzahlen** = n/6 (n+1) (2n+1)Zehneckzahlen $= 4n^2 - 3n$ Zwölfeckzahlen $= 5n^2 - 4n$

Tetraederzahlen $P_3(n) = n/6 (n+1) (n+2)$

Man kann Kugeln zu immer größer werdenden Tetraedern aufschichten. Die Anzahl der Kugeln in einer Schicht ist 1, 3, 6, 10, ..., allgemein n(n+1)/2.

Figurierte Zahlen, Polygonzahlen

Zahl Formel erste Zahlen $1,\,3,\,6,\,10,\,15,\,21,\,28,\,36,\,45,\,55,\,66,\,78,\,91,\,...$ Dreieckszahl $\frac{1}{2}n(1n + 1)$ Quadratzahl $\frac{1}{2}n(2n - 0)$ 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ... 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, ... 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, ... ½n(3n - 1) ½n(4n - 2) Fünfeckzahl Sechseckzahl 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, ... Siebeneckzahl ½n(5n - 3) ½n(6n - 4) 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, ... Achteckzahl ½n(7n - 5) 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, ... Neuneckzahl 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, ... ½n(8n - 6) Zehneckzahl 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, 606, 715, ... Elfeckzahl $\frac{1}{2}n(9n - 7)$ 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, ... Zwölfeckzahl $\frac{1}{2}n(10n - 8)$ $\frac{1}{2}n(11n - 9)$ 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, 738, 871, ... 13-Eckzahl 14-Eckzahl ½n(12n - 10) 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, ... ½n(13n - 11) 1, 15, 42, 82, 135, 201, 280, 372, 477, 595, 726, 870, 1027, ... 15-Eckzahl ½n(14n - 12) 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, ... 16-Eckzahl ½n(15n - 13) 1, 17, 48, 94, 155, 231, 322, 428, 549, 685, 836, 1002, 1183, ... 17-Eckzahl

```
18-Eckzahl
               ½n(16n - 14) 1, 18, 51, 100, 165, 246, 343, 456, 585, 730, 891, 1068, 1261, ...
19-Eckzahl
               ½n(17n - 15) 1, 19, 54, 106, 175, 261, 364, 484, 621, 775, 946, 1134, 1339, ...
                             1, 20, 57, 112, 185, 276, 385, 512, 657, 820, 1001, 1200, 1417, ...
20-Eckzahl
               ½n(18n - 16)
21-Eckzahl
                             1, 21, 60, 118, 195, 291, 406, 540, 693, 865, 1056, 1266, 1495, ...
               ½n(19n - 17)
                             1, 22, 63, 124, 205, 306, 427, 568, 729, 910, 1111, 1332, 1573, ...
22-Eckzahl
               ½n(20n - 18)
                             1, 23, 66, 130, 215, 321, 448, 596, 765, 955, 1166, 1398, 1651, ...
23-Eckzahl
               ½n(21n - 19)
                             1, 24, 69, 136, 225, 336, 469, 624, 801, 1000, 1221, 1464, 1729, ...
24-Eckzahl
               ½n(22n - 20)
               ½n(23n - 21)
                             1, 25, 72, 142, 235, 351, 490, 652, 837, 1045, 1276, 1530, 1807, ...
25-Eckzahl
               ½n(24n - 22) 1, 26, 75, 148, 245, 366, 511, 680, 873, 1090, 1331, 1596, 1885, ...
26-Eckzahl
27-Eckzahl
               ½n(25n - 23) 1, 27, 78, 154, 255, 381, 532, 708, 909, 1135, 1386, 1662, 1963, ...
               ½n(26n - 24) 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, ...
28-Eckzahl
29-Eckzahl
               ½n(27n - 25) 1, 29, 84, 166, 275, 411, 574, 764, 981, 1225, 1496, 1794, 2119, ...
               ½n(28n - 26) 1, 30, 87, 172, 285, 426, 595, 792, 1017, 1270, 1551, 1860, 2197, ...
30-Eckzahl
```

Figurierte Zahlen, Zentrierte Polygonzahlen

Zahl	Formel erste Zahlen
Zentr.Dreieckszahl	3/2 n (n-1)+1 1, 4, 10, 19, 31, 46, 64, 85,
Zentr.Quadratzahl	2n (n-1)+1 1, 5, 13, 25, 41, 61, 85, 113,
Zentr.Fünfeckzahl	5/2 n (n-1)+1 1, 6, 16, 31, 51, 76, 106, 141,
Zentr.Sechseckzahl	3n (n-1)+1 1, 7, 19, 37, 61, 91, 127, 169,
Zentr.Siebeneckzahl	7/2 n (n-1)+1 1, 8, 22, 43, 71, 106, 148, 197,
Zentr.Achteckzahl	4 n (n-1)+1 1, 9, 25, 49, 81, 121, 169, 225,
Zentr.Neuneckzahl	9/2 n (n-1)+1 1, 10, 28, 55, 91, 136, 190, 253, 325, 406,
Zentr.Zehneckzahl	5 n (n-1)+1 1, 11, 31, 61, 101, 151, 211, 281, 361, 451,
Zentr.Elfeckzahl	11/2 n (n-1)+11, 12, 34, 67, 111, 166, 232, 309, 397, 496,
Zentr.Zwölfeckzahl	6 n (n-1)+1 1, 13, 37, 73, 121, 181, 253, 337, 433, 541,
Zentr.13-Eckzahl	13/2 n (n-1)+11, 14, 40, 79, 131, 196, 274, 365, 469, 586,
Zentr.14-Eckzahl	7 n (n-1)+1 1, 15, 43, 85, 141, 211, 295, 393, 505, 631,
Zentr.15-Eckzahl	15/2 n (n-1)+11, 16, 46, 91, 151, 226, 316, 421, 541, 676,
Zentr.16-Eckzahl	8 n (n-1)+1 1, 17, 49, 97, 161, 241, 337, 449, 577, 721,
Zentr.17-Eckzahl	17/2 n (n-1)+11, 18, 52, 103, 171, 256, 358, 477, 613, 766,
Zentr.18-Eckzahl	9 n (n-1)+1 1, 19, 55, 109, 181, 271, 379, 505, 649, 811,
Zentr.19-Eckzahl	19/2 n (n-1)+11, 20, 58, 115, 191, 286, 400, 533, 685, 856,
Zentr.20-Eckzahl	10 n (n-1)+1 1, 21, 61, 121, 201, 301, 421, 561, 721, 901,
Zentr.21-Eckzahl	21/2 n (n-1)+11, 22, 64, 127, 211, 316, 442, 589, 757, 946,
Zentr.22-Eckzahl	11 n (n-1)+1 1, 23, 67, 133, 221, 331, 463, 617, 793, 991,
Zentr.23-Eckzahl	23/2 n (n-1)+11, 24, 70, 139, 231, 346, 484, 645, 829, 1036,
Zentr.24-Eckzahl	12 n (n-1)+1 1, 25, 73, 145, 241, 361, 505, 673, 865, 1081,
Zentr.25-Eckzahl	25/2 n (n-1)+11, 26, 76, 151, 251, 376, 526, 701, 901, 1126,
Zentr.26-Eckzahl	13 n (n-1)+1 1, 27, 79, 157, 261, 391, 547, 729, 937, 1171,
Zentr.27-Eckzahl	27/2 n (n-1)+11, 28, 82, 163, 271, 406, 568, 757, 973, 1216,
Zentr.28-Eckzahl	14 n (n-1)+1 1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261,
Zentr.29-Eckzahl	29/2 n (n-1)+11, 30, 88, 175, 291, 436, 610, 813, 1045, 1306,
Zentr.30-Eckzahl	15 n (n-1)+1 1, 31, 91, 181, 301, 451, 631, 841, 1081, 1351,

Figurierte Zahlen, Polygonzahlen (2)

nach Hypsikles (2.Jh. v.u.Z.) gilt:

Die Summe einer arithmetischen Reihe von n Gliedern ist das halbe Produkt aus n und der Summe des ersten und letzten Gliedes.

Für eine Polygonzahl $P_n(p)$, n.te p-Eckszahl, gilt dann $P_n(p) = 1/2$ (n² (p-2) - n (p-4))

Diophant (um 250 u.Z.) fand weiter:

Jede Polygonzahl, mutipliziert mit dem 8-fachen der um 2 verminderten Eckenzahl, gibt, wenn man das Quadrat der um 4 verminderten Eckenzahl addiert, ein Quadrat.

$$\begin{array}{ll} P_n(p)\cdot 8\cdot (p-2)+(p-4)^2=q^2\\ \text{es ist} & q=(2n-1)\,(p-2)+2 & n=(q+p-4)\,/\,(2p-4)\\ \text{Mittels dieser Formeln kann man, wenn n und p gegeben sind, } P_n(p) \text{ finden,}\\ \text{wenn } P_n(p)=z \text{ und p gegeben sind, und wenn z wirklich eine p-Eckzahl ist, die}\\ \text{Seite n finden.} \end{array}$$

Polygonalzahlen wurden wahrscheinlich schon von den Pythagoreern eingeführt. Ausführlich wurden diese Zahlen von Hypsikles und Nikomachos von Gerasa (um 100 u.Z.) untersucht.

Fermatscher Polygonalzahlensatz

Der Fermatsche Polygonalzahlensatz besagt, dass jede natürliche Zahl als

Summe von höchstens n n-Eckszahlen (Polygonalzahlen) darstellbar ist.

$$P_r(n) = \binom{n+r-1}{n} = 1/r! \ n^{(r)}$$

Ein bekannter Spezialfall ist der Vier-Quadrate-Satz, demzufolge jede Zahl als Summe vierer Quadratzahlen geschrieben werden kann.

Beispiel: $310 = 17^2 + 4^2 + 2^2 + 1^2 = 289 + 16 + 4 + 1$

Der Fermatsche Polygonalzahlensatz ist nach Pierre de Fermat benannt, von dem folgendes Zitat stammt:

"Ich war der erste, der den sehr schönen und vollkommen allgemeinen Satz entdeckt hat, dass jede Zahl entweder eine Dreieckszahl oder die Summe von zwei oder drei Dreieckszahlen ist; jede Zahl eine Quadratzahl oder die Summe von zwei, drei oder vier Quadratzahlen ist; entweder eine Fünfeckszahl oder die Summe von zwei, drei, vier oder fünf Fünfeckszahlen; und so weiter bis ins Unendliche, egal ob es ein Frage von Sechsecks-, Siebenecks- oder beliebigen Polygonalzahlen ist.

Ich kann den Beweis, der von vielen und abstrusen Mysterien der Zahlen abhängt, hier nicht angeben; dewegen beabsichtige ich diesem Subjekt ein ganzes Buch zu widmen und in diesem Teil arithmetisch erstaunliche Fortschritte gegenüber den vorhergehenden bekannten Grenzen zu erbringen."

Joseph Louis Lagrange bewies den Spezialfall des Vier-Quadrate-Satzes 1770 und Carl Friedrich Gauß 1796 den Spezialfall für Dreieckszahlen. Der Beweis des vollständigen Satzes gelang erst Augustin Louis Cauchy im Jahr 1813.

Polygonalzahltest

Zahlen

k

1

2

Mit einem einfachen Test kann geprüft werden, ob eine natürliche Zahl z eine Polygonalzahl eines nseitigen Polygons ist.

Dazu ist der Wert von $z (8n-2) + (n-4)^2$

zu berechnen. Ist das Ergebnis eine Quadratzahl, so ist z eine n-Polygonalzahl.

3, 4, 5, 8, 11, 14, 17, 20, 23, 29, 32, 38, 41, 44, 47, 53, 59, 62, 68, 71 6, 7, 9, 12, 13, 18, 19, 24, 26, 30, 31, 37, 42, 43, 48, 54, 60, 61, 67, 72

Jede natürliche Zahl z ist per Definition z-Polygonalzahl. Die kleinsten natürlichen Zahlen, die k-fach Polygonalzahl sind, sind

3 10, 16, 27, 33, 34, 35, 39, 50, 52, 58, 65, 69, 82, 87, 93, 94, 116, 118 4 15, 22, 25, 28, 46, 49, 57, 63, 75, 77, 88, 92, 112, 135, 147, 166, 172 5 21, 40, 51, 56, 64, 106, 117, 130, 148, 155, 160, 161, 186, 187, 201, 209 6 66, 70, 76, 96, 99, 111, 115, 121, 141, 153, 169, 189, 220, 221, 243, 285 45, 55, 78, 81, 156, 165, 204, 205, 208, 256, 260, 265, 295, 361, 370 7 8 36, 85, 133, 144, 145, 162, 175, 176, 216, 232, 235, 246, 288, 297, 306 100, 120, 126, 154, 171, 217, 316, 364, 396, 465, 477, 511, 568, 589 9 10 91, 105, 136, 261, 273, 276, 301, 330, 378, 435, 469, 476, 481, 484, 505 Dreieckszahlen Quadratzahlen Pentagonalzahlen Hexagonalzahlen Quadratzahlen $D_1 = 1$ $Q_1 = 1$ $P_1 = 1$ $H_1 = 1$ $Q_n = n + 2 \cdot D_{n-1}$ $D_2 = 1+2=3$ $Q_2 = 1 + 3 = 4$ $H_2 = 1+5 = 6$ $P_2 = 1+4 = 5$ $= n+(n-1)\cdot n$ $H_3 = 1+5+9 = 15$ $D_3 = 1+2+3=6$ $Q_3 = 1 + 3 + 5 = 9$ $P_3 = 1+4+7 = 12$ $Q_4 = 1+3+5+7$ $H_4 = 1+5+9+13$ $D_4 = 1+2+3+4$ $P_4 = 1+4+7+10 =$ =10=16 22 Pentagonalzahlen Haxagonalzahlen Zentrierte Hexzahlen $P_n = n + 3 \cdot D_{n-1}$ $H_n = n + 4 \cdot D_{n-1}$ Quadratzahlen $Hex_1 = 1$ $ZQ_1 = 1$ $Hex_2 = 1+6 = 7$ $ZQ_2 = 4 + 1 = 5$ $Hex_3 = 1+6+12 =$ $ZQ_3 = 9 + 4 = 13$ 19 $ZQ_4 = 16 + 9 = 25$ Hex₄

=1+6+12+18=37

Dreieckszahl

Dreieckszahlen sind Zahlen, welche durch Abzählen von Punkten, die in Form eines gleichseitigen Dreiecks angeordnet sind, entstehen, d.h. also Zahlen der Form T(n) = 1 + 2 + ... + n.

Dreieckszahlen hatten in der Zahlenmystik und Mathematik der Antike und des Mittelalters besondere Bedeutung. Die ersten sind

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, ...

Sechs ist die einzige Dreieckszahl außer Eins mit weniger als 660 Stellen, deren Quadrat wieder eine Dreieckszahl ist. 1, 36, 1225, 41 616, 1 413 721 usw. sind Zahlen, die Quadrat- sowie auch Dreieckszahlen sind. Im Bereich bis zu 10^7 gibt es 40 palindromische Dreieckszahlen. Die kleinsten sind neben 1, 3 und 6 die Zahlen 55, 66, 171, 595, 666 und 3003.

Die 2662.te Dreieckszahl ist 3544453, so dass die Zahl als auch ihr Index palindromisch sind. Analoges gilt für die 1111.te und 111111.te Dreieckszahl, die 617716 und 6172882716 betragen.

Am 10.7.1796 schrieb Gauß in sein "Mathematisches Tagebuch"

$$num = \Delta + \Delta + \Delta,$$

als Umschreibung seiner Entdeckung, dass sich jede natürliche Zahl als Summe von höchstens drei Dreieckszahlen schreiben lässt.

Dreieckszahlen sind auch im Pascalschen Dreieck zu finden. Auf Grund ihrer Bildungsvorschrift

$$1 + 2 + ... + n = n (n+1)/2$$

können sie auch als Binomialkoeffizienten geschrieben werden

$$\binom{2}{2}$$
, $\binom{3}{2}$, $\binom{4}{2}$, $\binom{5}{2}$, ...

Abbildung: Pascalsches Dreieck

Es gilt der Satz: Die Summe zweier aufeinanderfolgender Dreieckszahlen ist eine Quadratzahl. Zum Beweis rechnet man $d_n + d_{n+1}$ aus und erhält $(n+1)^2$.

Für zwei aufeinanderfolgende Dreieckszahlen ist $T_{n+1}^2 - T_n^2 = (n+1)^3$, d.h. die Summe der ersten Kubikzahlen ist gleich dem Quadrat der n.ten Dreieckszahl. Weiterhin findet man

$$\begin{split} T_1 + T_2 + T_3 &= T_4 \\ T_5 + T_6 + T_7 + T_8 &= T_9 + T_{10} \\ T_{11} + T_{12} + T_{13} + T_{14} + T_{15} &= T_{16} + T_{17} + T_{18} \end{split}$$

Jede Zahl der Form 500...00500...00, bei der hinter jeder "5" gleich viele Nullen folgen ist Dreieckszahl. Wie schon erwähnt, wurden Dreieckszahlen in der Zahlenmystik besonders geschätzt. Das berühmteste Beispiel ist folgendes:

Die Jünger Simon, Jakobus und Johannes warfen auf Jesus' Geheiß das Netz auf der rechten (richtigen) Seite im See Genezareth aus und fingen genau 153 Fische (Johannnes 21, 10). Es gilt 153 = 1 + 2 + ... + 17. Das Summieren der Zahlen von 1 bis 17 ergibt sich aus der hebräischen Zahlenmystik. Das Wort "tow" = "gut, richtig, rechtens" entspricht gerade dem Zahlenwert 17.

Dreieckszahlen enden niemals auf die Ziffern 2, 4, 7 oder 9. Die digitale Wurzel einer Dreieckszahl ist stets 1, 3, 6 oder 9.

Für die Dreieckszahlen der Form $T_n = T(n) = 1 + 2 + ... + n$ findet man eine Vielzahl von Beziehungen. Es ailt

$$T_n = 1 + 2 + ... + n = n (n+1)/2 \qquad T_n = \binom{n+1}{2}$$
 Rekursionsformel
$$T^2_{n+1} - T^2_n = (n+1)^3 \qquad 3 T_n + T_{n-1} = T_{2n} \qquad 3 T_n + T_{n+1} = T_{2n+1}$$

Die Summe zweier aufeinanderfolgender Dreieckszahlen ist eine Quadratzahl:

$$T_n + T_{n-1} = 1 + 3 + 5 + ... + 2n-1 = n^2$$

Acht gleich große Dreieckszahlen plus 1 ergeben immer einer Quadratzahl:

$$8 T_n + 1 = (2n+1)^2$$
 $9 T_n + 1 = T_{3n+1}$

Da 1 + 9 $T_n = T_{3n+1}$, erzeugt folgende Formel weitere Dreieckszahlen:

$$\begin{array}{l} 9(9(9...9(9T_n+1)+1)+1)+...+1)+1 \\ \Sigma_{i=1}^{2n-1} \; (-1)^i \; T_i = n^2 \\ T_1 \; - \; T_2 \; + \; T_3 \; - + \; ... \; + \; T_{2n-1} = n^2 \end{array}$$

Das Quadrat einer n.Dreieckszahl ist die Summe der ersten n Kuben

$$T_{n}^{2} = 1 + 2^{3} + 3^{3} + ... + n^{3}$$

Eine Dreieckszahl größer als 1 ist niemals Kubikzahl, vierte oder fünfte Potenz einer natürlichen Zahl. Alle vollkommenen Zahlen sind Dreieckszahlen.

1, 3, 21 und 55 sind die einzigen Zahlen die zugleich Dreieckszahlen und Fibonacci-Zahlen sind. Die einzige prime Dreieckszahl ist die 3.

Für die Anzahl der Dreieckszahlen \leq x gilt, da $T_n \leq$ x \Leftrightarrow 2n+1 \leq $\sqrt{(8x + 1)}$:

Anzahl =
$$[(\sqrt{8x + 1}) - 1)/2]$$

wobei [a] hier die größte ganze Zahl ≤ a ist.

Für Zahlenmystiker: Die 666 ist Dreieckszahl und die 666. Dreieckszahl ist 222111.

15 und 21 sind das kleinste Dreieckszahlenpaar, bei dem sowohl die Summe als auch die Differenz wieder Dreieckszahlen sind. Das nächste Paar ist 780 und 990, das dritte 1747515 und 2185095. Eine Dreieckszahl, die gleichzeitig Quadratzahl ist, hat die Form $((17+12\sqrt{2})^n+(17-12\sqrt{2})^n-2)/32$ Die ersten dieser Zahlen sind 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, ...

Im Positionssystem zur Basis 9 sind alle Zahlen der Folge 1, 11, 111, 1111, 11111, ... Dreieckszahlen. Nach Leibniz ist die Summe der reziproken Dreieckszahlen gleich S = 1 + 1/3 + 1/6 + 1/10 + ... = 2

Umkehrbare Dreieckszahl

Einige Dreieckszahlen bleiben Dreieckszahl, wenn deren Ziffernfolge gedreht wird. Die ersten derartigen Zahlen sind:

1, 3, 6, 10, 55, 66, 120, 153, 171, 190, 300, 351, 595, 630, 666, 820, 3003, 5995, 8778, 15051, 17578, 66066, 87571, 156520, 180300, 185745, 547581, 557040, 617716, 678030, 828828, 1269621, 1461195, 1680861, 1851850, 3544453, 5073705, 5676765, 5911641, 6056940, 6295926, 12145056, 12517506, 16678200, 35133153, 56440000, 60571521, 61477416, 65054121, 157433640, 178727871, 188267310, 304119453, 354911403, 1261250200, 1264114621, 1382301910, 1634004361, 1775275491, 1945725771, ...

Palindrome Dreieckszahlen sind ein Spezialfall der umkehrbaren Dreieckszahlen.

Palindromdreieckszahl

Im Bereich bis zu 10^7 gibt es 40 palindromische Dreieckszahlen. Bei der palindromischen Dreieckszahl 354453 ist auch ihr Index 2662 ein Palindrom. Die Tabelle enthält alle palindomischen Dreieckszahlen bis Index 50 Millionen.

2 3 3 6	ahl
10 55 11 66	
18 171 34 595	
36 666 77 3003	
109 5995 132 8778	
173 15051 363 66066	
1111 617716 1287 828828	
1593 1269621 1833 1680861	
2662 3544453 3185 5073705	
3369 5676765 3548 6295926	
8382 35133153 11088 61477416	
18906 178727871 50281 1264114621	
57166 1634004361 102849 5289009825	
111111 6172882716 167053 13953435931	
179158 16048884061 246642 30416261403	
337650 57003930075 342270 58574547585	
365436 66771917766 417972 87350505378	
1620621 1313207023131 3240425 5250178710525	
3457634 5977618167795 3707883 6874200024786	
6307938 19895044059891 11111111 61728399382716	
11631048 67640644604676 12812392 82078700787028	
15126258 114401848104411 26743422 357605323506753	
31643910 500668535866005 32850970 539593131395935	
33062934 546578818875645 34456434 593622939226395	
34705171 602224464422206 35670391 636188414881636	
36545436 667784464487766 36929908 681909070909186	
36979108 683727232727386 37009916 684866959668486	

Bei Dreieckszahlen findet man einige interessante Spezialfälle.

Einige Dreieckszahlen sind Produkt von drei aufeinanderfolgenden Zahlen. Man kennt bisher genau sechs dieser Zahlen: $1 \cdot 2 \cdot 3 = 6 = T_3$ $4 \cdot 5 \cdot 6 = 120 = T_{15}$

```
5 \cdot 6 \cdot 7 = 210 = T_{20} \quad 9 \cdot 10 \cdot 11 = 990 = T_{44}

56 \cdot 57 \cdot 58 = 185136 = T_{608} \quad 636 \cdot 637 \cdot 638 = 258474216 = T_{22736}
```

Die Dreieckszahl 120 kann auch als Produkt von vier und fünf aufeinanderfolgenden Zahlen geschrieben werden

$$4 \cdot 5 \cdot 6 = 2 \cdot 3 \cdot 4 \cdot 5 = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$$

Man kennt keine weitere Dreieckszahl mit dieser Eigenschaft.

Dreieckszahlen mit zwei Faktoren, die aufeinanderfolgende natürliche Zahlen sind, kennt man einige:

$$2 \cdot 3 = 6 = T_3$$

 $14 \cdot 15 = 210 = T_{20}$
 $84 \cdot 85 = 7140 = T_{119}$
 $492 \cdot 493 = 242556 = T_{696}$

```
\begin{array}{l} 2870 \cdot 2871 = 8239770 = T_{4059} \\ 16730 \cdot 16731 = 279909630 = T_{23660} \\ 97512 \cdot 97513 = 9508687656 = T_{137903} \\ 568344 \cdot 568345 = 323015470680 = T_{803760} \\ 3312554 \cdot 3312555 = 10973017315470 = T_{4684659} \\ 19306982 \cdot 19306983 = 372759573255306 = T_{27304196} \end{array}
```

Ist eine Dreieckszahl das Produkt zweier Primzahlen, so wird diese halbprime Dreieckszahl genannt. Die ersten derartigen Zahlen sind

10, 15, 21, 55, 91, 253, 703, 1081, 1711, 1891, 2701, 3403, 5671, 12403, 13861, 15931, 18721, 25651, 34453, 38503, 49141, 60031, 64261, 73153, 79003, 88831, 104653, 108811, 114481, 126253, 146611, 158203, 171991, 188191, 218791, 226801, 258121, 269011, 286903, 351541, 371953, 385003, 392941, 482653, 497503, ...

Quadratische Dreieckszahl

Unendlich viele Dreieckszahlen sind gleichzeitig Quadratzahlen. Die ersten sind 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, ...

Für die n-te quadratische Dreieckszahl K_n gilt $K_n = 34 K_{n-1} - K_{n-2} + 2$

Ausgehend von den ersten zwei quadratischen Dreieckszahlen K_1 = 1 und K_2 = 36 ergeben sich so alle Weiteren K_3 = 34 K_2 - K_1 + 2 = 34 \cdot 36 - 1 + 2 = 1225 usw.

Ebenso existiert eine expilizite Darstellung $K_n = (((1+\sqrt{2})^{2n}-(1-\sqrt{2})^{2n})/(4\sqrt{2}))^2$ Die digitale Wurzel aller geraden quadratischen Dreieckszahlen 36, 41616, 48024900, 55420693056, ... ist immer 9, die der ungeraden quadratischen Dreieckszahlen 1, 1225, 1413721, 1631432881, ... stets 1. Quadratische Dreieckszahlen enden niemals auf die Ziffern 2, 3, 4, 7, 8 oder 9.

Sätze über Dreieckszahlen

Durch Zhi-Wei Sun, Nanjing Universität, wurden im April 2008 einige Sätze und Hypothesen über Dreieckszahlen T_x veröffentlicht:

Es sein c, $d \in N^+ = \{1, 2, 3, \ldots\}$ and $r \in Z$. Dann existieren nur endlich viele natürliche Zahlen, die nicht in der Form $c \cdot p + T_x$ geschrieben werden können, wobei p Null oder eine Primzahl der Restklasse r (mod d) ist und x eine ganze Zahl. Dann sind c und d Zweierpotenzen.

Für beliebige natürliche a, b und ungerade ganzzahlige r können alle hinreichend großen ganzen Zahlen in der Form $2^ap + T_x$, $x \in Z$

geschrieben werden, wobei p Null oder Primzahl kongruent zu r mod 2^b ist.

Es sei p eine ungerade Primzahl. Dann gilt $|\{T_n \mod p: n \in Z\}| = (p+1)/2$

Zhi-Wei Sun-Vermutung

Jede natürliche Zahl n \neq 216 kann als Summe p + T_x, mit p ist Null oder Primzahl, dargestellt werden. Diese Vermutung wurde bisher für alle n \leq 17 Millionen gestestet. Ein Beweis existiert noch nicht. Diese Vermutung ist unmittelbar mit der Goldbachschen Vermutung verbunden.

Vermutungen über Dreieckszahlen

Jede natürliche Zahl kann als Summe von zwei geraden Quadratzahlen und einer Dreieckszahl geschrieben werden, mit Ausnahme der 19 Zahlen

2, 12, 13, 24, 27, 34, 54, 84, 112, 133, 162, 234, 237, 279, 342, 399, 652, 834, 864 Weiterhin kann jede natürliche Zahl n>2577 in der Form $(4x)^2+(2y)^2+T_n$ mit $x,y,n\in Z$ angegeben werden.

Jede natürliche Zahl n ∉ E ist entweder Dreieckszahl oder die Summe einer Dreieckszahl und zwei ungerader Quadrate. Die 25 Ausnahmen sind die Elemente der Menge E:

 $E = \{4, 7, 9, 14, 22, 42, 43, 48, 52, 67, 69, 72, 87, 114, 144, 157, 159, 169, 357, 402, 489, 507, 939, 952, 1029\}$

Jede natürliche Zahl n > 88956 kann als Summe der Form p + T_n mit n \in Z geschrieben werden, wobei p entweder 0 oder eine Primzahl kongruent 1 mod 4 ist. Die Ausnahmen sind: 2, 4, 7, 9, 12, 22, 24, 25, 31, 46, 48, 70, 75, 80, 85, 87, 93, 121, 126, 135, 148, 162, 169, 186, 205, 211, 213, 216, 220, 222, 246, 255, 315, 331, 357, 375, 396, 420, 432, 441, 468, 573, 588, 615, 690, 717, 735, 738, 750, 796, 879, 924, 1029, 1038, 1080, 1155, 1158, 1161, 1323, 1351, 1440, 1533, 1566, 1620, 1836, 1851, 1863, 1965, 2073, 2118, 2376, 2430, 2691, 2761, 3156, 3171, 3501, 3726, 3765, 3900, 4047, 4311, 4525, 4605, 4840, 5085, 5481, 5943, 6006, 6196, 6210, 6471, 6810, 6831, 6840, 7455, 7500, 7836, 8016, 8316, 8655, 8715, 8991, 9801, 10098, 10563, 11181, 11616, 12165, 12265, 13071, 14448, 14913, 15333, 15795, 17085, 18123, 20376, 27846, 28161, 30045, 54141, 88056

Für $r \in \{1, 3, 5, 7\}$ ist eine natürliche Zahl $n > N_r$ in der Form $p + T_x$ darstellbar, wobei p entweder 0 oder eine Primzahl kongruent r mod 8 ist, und es gilt $N_1 = 1004160$, $N_3 = 1142625$, $N_5 = 779646$, $N_7 = 893250$.

Jede natürliche Zahl n > 90441 kann als Summe der Form $p + T_n$ mit $n \in Z$ geschrieben werden, wobei p entweder 0 oder eine Primzahl kongruent 3 mod 4 ist. Die Aussnahmen bis 4000 sind:

2, 5, 16, 27, 30, 42, 54, 61, 63, 90, 96, 129, 144, 165, 204, 216, 225, 285, 288, 309, 333, 340, 345, 390, 405, 423, 426, 448, 462, 525, 540, 556, 624, 651, 705, 801, 813, 876, 945, 960, 1056, 1230, 1371, 1380, 1470, 1491, 1827, 2085, 2157, 2181, 2220, 2355, 2472, 2562, 2577, 2655, 2787, 2811, 2826, 2886, 3453, 3693, 3711, 3735, 3771, 3840, 3981 und über 4000:

4161, 4206, 4455, 4500, 4668, 4695, 4875, 6111, 6261, 7041, 7320, 7470, 8466, 8652, 8745, 9096, 9345, 9891, 9990, 10050, 10305, 10431, 11196, 13632, 13671, 14766, 15351, 16191, 16341, 16353, 16695, 18480, 18621, 19026, 19566, 22200, 22695, 22956, 27951, 35805, 43560, 44331, 47295, 60030, 90441

Jede natürliche Zahl n>43473 kann als $2p+T_n$ mit $n\in Z$ geschrieben werden, wobei p Null oder Primzahl ist.

Ist p nicht Null, so gilt $p \equiv 1 \pmod{4}$ für n > 636471, und $p \equiv 3 \pmod{4}$ für n > 719001. Die Ausnahmen sind hier:

2, 8, 18, 30, 33, 57, 60, 99, 108, 138, 180, 183, 192, 240, 243, 318, 321, 360, 366, 402, 421, 429, 495, 525, 546, 585, 591, 606, 693, 696, 738, 831, 840, 850, 855, 900, 912, 945, 963, 1044, 1086, 1113, 1425, 1806, 1968, 2001, 2115, 2190, 2550, 2601, 2910, 3210, 4746, 5013, 5310, 5316, 5475, 5853, 6576, 8580, 9201, 12360, 13335, 16086, 20415, 22785, 43473

Jede natürliche Zahl n>849591 besitzt die Form $4p+T_n$ mit $n\in Z$, und jedes n>3527 370 die Form $8p+T_n$ mit $n\in Z$, wobei p wieder Null oder Primzahl ist.

Jedes n > 6276705 tritt $4p + T_n$ mit $n \in Z$ p als Null oder Primzahl konkruent zu 1 mod 4 auf, für n > 7718511 als Primzahl kongruent 3 mod 4.

Pythagoreische Dreieckszahl

Durch Leonid Durman wurden folgende zwei, bis heute ungelöste, Probleme gestellt:

- 1. Gesucht ist ein Pythagoreisches Tripel (a, b, c), d.h. $a^2 + b^2 = c^2$, für das a, b und c Dreieckszahlen sind.
- 2. Gesucht ist ein Pythagoreisches Tripel (a, b, c), d.h. $a^2 + b^2 = c^2$, für das a, b und c Dreieckszahlen sind und zusätzlich Umfang und Flächeninhalt des pythagoreischen Dreiecks ebenso Dreieckszahlen sind.

Für das erste Problem fand K.Zarankiewicz die Lösung a=8778, b=10296, c=13530 Das zweite Problem ist ungleich schwieriger zu lösen. Bis heute kennt man nur zwei Lösungen

a = 14091, b = 3312 , c = 14475

a = 8013265, b = 3405996, c = 8707079Durch Yves Gallot wurde bis zum Dreiecksumfang u < 930000000 gesucht.

Dreieckszahlfaktoren

Die ersten Dreieckszahlen 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

sind, bis auf 3, keine Primzahlen und können daher in Primfaktoren zerlegt werden.

 1:
 1
 3:
 1,3

 6:
 1,2,3,6
 10:
 1,2,5,10

 15:
 1,3,5,15
 21:
 1,3,7,21

28: 1,2,4,7,14,28

Die 7.Dreieckszahl ist die kleinste Dreieckszahl mit mehr als 5 Faktoren. Im Allgemeinen steigt die Zahl der Primfaktoren stark an.

Doppel-Dreieckszahl

Eine Doppel-Dreieckszahl ist von der Struktur T(T(n)) mit T(n) = 1 + 2 + ... + n Es ist $T(T(n)) = n/8 (n + 1) (n^2 + n + 2)$ Deren ersten Zahlen sind 1, 6, 21, 55, 120, 231, 406, 666, 1035, ...

Dreifach-Dreieckszahlen

Dreifach-Dreieckszahlen ergeben sich analog mit

 $T(T(T(n))) = 1/128 \text{ n (n + 1) (n}^2 + \text{n + 2) (n}^4 + 2\text{n}^3 + 3\text{n}^2 + 2\text{n + 8)}$

Zentrierte Dreieckszahlen

 $= (3n^2-3n+2)/2$

Erste zentrierte Dreieckszahlen ... 1, 4, 10, 19, 31, 46, 64, ... Erzeugende Funktion ... $x (x^2 + x + 1) / (1 - x)^3 = x + 4 x^2 + 10 x^3 + 19 x^4 + ...$ Rechts werden jeweils 100 zentrierte Dreieckszahlen ab dem Index n (maximal 1 Milliarde) berechnet.

Quadratzahl

Quadratzahl ... natürliche Zahl der Form a²

Man erhält die Quadratzahlen, wenn man die natürlichen Zahlen mit sich selbst

multipliziert. Die Quadratzahlen lassen sich durch Quadrate aus aleichen Figuren darstellen.

Jede Quadratzahl ist gleich der Summe zweier Dreieckszahlen.

Formel: $n^2 = (1+2+3+...+n) + (1+2+3+...+(n-1))$

Jede Quadratzahl n^2 ist gleich der Summe der n ersten ungeraden Zahlen.

Formel: $n^2 = 1+3+5+...+(2\cdot n-1)$

Ein Quadrat kann in zwei kleinere Quadrate und zwei gleiche Rechtecke zerlegt werden.

Es gilt die erste binomische Formel $(a+b)^2 = a^2+2 \cdot a \cdot b + b^2$.

Ein Quadrat kann man in Streifen in Diagonalrichtung zerlegen.

Es ailt $1+2+3+...+n+...3+2+1 = n^2$

Zentrierte Quadratzahlen = $n^2 + (n-1)^2$

Erste zentrierte Quadratzahlen ... 1, 5, 13, 25, 41, ... Erzeugende Funktion ... $x (x + 1)^2 / (1 - x)^3 = x + 5 x^2 + 13 x^3 + 25$

x⁴ + ...

Zentrierte Quadratzahlen entstehen, in dem um einen einzelnen Punkt ein Quadrat angelegt wird und jeder Eckpunkt zählt. Um dieses Quadrat (und alle weiteren) werden weitere Quadrate positioniert und außer den Eckpunkten auf jeder Quadratseite immer 1 Punkt mehr als auf dem inneren Quadrat markiert.

Rechteckzahlen Neben Quadratzal

6

Neben Quadratzahlen werden auch Rechteckzahlen (engl. oblong numbers) betrachtet. Dabei hat es sich eingebürgert, nur die jenigen Zahlenfolge als Rechteckzahlenfolge zu bezeichnen, bei der die Zahlen in Form eines Rechtecks so angeordnet werden können,

dass Breite und Höhe des Rechtecks sich nur um 1 unterscheiden.

Damit ergibt sich als Folge 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, ... d.h. Rechteckzahlen $R_n = n (n+1)$

Jede Rechteckzahl kann als das Doppelte einer Dreieckszahl dargestellt werden $R_{\rm n}$ = 2 $T_{\rm n}$

Für die Summe der ersten Rechteckzahlen wird somit $S = \sum_{i=1}^{n} R_i = n/3 (n+1) (n+2)$

Die Rechteckzahlen wurden bei den antiken Griechen Heteromeken (ετερομεκες) genannt.

Erste zentrierte Fünfeckzahlen ... 1, 6, 16, 31, 51, 76, ...

Erzeugende Funktion ... $x (x^2 + 3x + 1) / (x-1)^3 = x + 6 x^2 + 16 x^3 + 31 x^4 + ...$

Erste Fünfeckzahlen ... 1, 5, 12, 22, 35, 51, 70, ...

Erzeugende Funktion ... x $(2x + 1) / (1 - x)^3 = x + 5 x^2 + 12 x^3 + 22 x^4 + ...$

Jede Fünfeckzahl ist ein Drittel einer Dreieckszahl, es gilt aber $F_n = T_n + 2 T_{n-1}$.

Für die Summe der ersten Fünfeckzahlen erhält man

$$S = \sum_{i=1}^{n} F_i = n^2/2 (n+1)$$

Kartenhaus-Zahl, Fünfeckzahl 2.Ordnung

Setzt man in die Gleichung der Fünfeckzahlen

Fünfeckzahl = n (3n - 1)/2

für n eine negative ganze Zahl ein, so bekommt man Fünfeckzahlen zweiter Art, negative Fünfeckzahlen oder auch Kartenhauszahlen.

Diese Zahlen werden Kartenhauszahlen genannt, da sie die Zahlen angeben, wieviele Karten benötigt werden, um ein Kartenhaus mit Etagen zu bauen. Zum Beispiel benötigt man für ein Kartenhaus mit 5 Stockwerken gerade 40 Karten oder Bierdeckel.

0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301,

2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, ... Die Kartenhauszahlen lassen sich als Summe von Dreieckszahlen erzeugen

m (3m + 1)/2 = 2 m(m+1)/2 + m(m-1)/2

Die ersten Hexagonalzahlen sind

$$H_1 = 1$$
, $H_2 = 1 + 5 = 6$, $H_3 = 1 + 5 + 9 = 15$


```
H_4 = 1 + 5 + 9 + 13 = 28
Allgemein H_n = n + 4 \cdot T_{n-1} = n (2n - 1)
Die ersten Sechseckszahlen sind 0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, ...
```

Die Sechseckszahlen sind abwechselnd ungerade und gerade. Jede Zahl lässt sich nach dem Fermatschen Polygonalzahlensatz als Summe von sechs Sechseckszahlen darstellen. Adrien-Marie Legendre bewies 1830, dass jede Zahl, die größer als 1792 ist, sogar als Summe von vier Sechseckszahlen geschrieben werden kann.

Unter den kleineren Zahlen gibt es 13 Zahlen, die nicht Summe von vier Sechseckszahlen sind:

```
5, 10, 11, 20, 25, 26, 38, 39, 54, 65, 70, 114, 130
```

Davon sind 11 und 26 die einzigen Zahlen, die nicht als Summe von fünf Sechseckszahlen dargestellt werden können. 11 = 1 + 1 + 1 + 1 + 1 + 6 26 = 1 + 1 + 6 + 6 + 6 + 6

Die Summe der ersten k Sechseckszahlen ist = $(4k^3 + 3k^2 + 5k)/6$

Die Summe der Kehrwerte aller Sechseckszahlen ist 2 In 2.

Zentrierte Sechseckzahlen, Hexzahlen H. = 1 + 6 T. = 2 H. + H. 2 + 6 =

 $H_n = 1 + 6 T_n = 2 H_{n-1} + H_{n-2} + 6 = 3n^2 - 3n + 1$ $T_n ... n.te Dreieckszahl$

Erste zentrierte Sechseckzahlen: 1, 7, 19, 37, 61, 91, 127, 169, ...

Die n.te zentrierte Sechseckzahl entspricht allen Zellen, die vom Zentrum höchstens n Schritte entfernt sind. Eine solche Menge bezeichnet man als Nexus; die zentrierten Hexagonalzahlen sind die zweidimensionalen Nexuszahlen. Die eindimensionalen Nexuszahlen sind die ungeraden Zahlen.

Für die Summe der ersten zentrierten Sechseckzahlen wird $\Sigma_{i=1}^{n} H_{n} = n^{3}$

 $\dots = 1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, 4446390382511295358038307980025$

Siebeneck-Zahlen

Eine Siebeneck-Zahl ist eine figurierte Zahl der Form n (5n-3)/2. Die ersten derartigen Zahlen sind ... 1, 7, 18, 34, 55, 81, 112, ...

Sechseck-Fünfeckszahl

000

... eine Zahl z, welche gleichzeitig Sechseckszahl und Fünfeckszahl ist, d.h. z=n/2 (3n - 1) = m (2m - 1) Die ersten Sechseck-Fünfeckszahlen z (n,m) sind

 z
 n und m
 z
 n und m

 1
 1, 1
 40755
 165, 143
 1533776805
 31977, 27693

 57722156241751
 6203341, 5372251

Siebeneck-Fünfeckszahl

... eine Zahl z, welche gleichzeitig Siebeneckszahl und Fünfeckszahl ist, z = n/2 (5n-3) = m/2 (3m-1) Die ersten Siebeneck-Fünfeckszahlen z (n,m) sind 1 (1,1); 4347 (42, 54); 16701685 (2585, 3337); 246532939589097 (9930417, 12820113) ...

Siebeneck-Sechseckszahl

... eine Zahl z, welche gleichzeitig Siebeneckszahl und Sechseckszahl ist, d.h. z=n/2 (5n-3) = m (2m-1) Die ersten Siebeneck-Sechseckszahlen z (n,m) sind 1 (1,1) ; 121771 (221, 247) ; 12625478965 (71065, 79453) ; 1309034909945503 (22882613, 25583539) ...

Siebeneck-Dreieckszahl

... eine Zahl z, welche gleichzeitig Siebeneckszahl und Dreieckszahl ist, d.h.

z = n/2 (5n - 3) = m/2 (m + 1)

Bei Substitution x = 10n - 3 und y = 2m + 1 ergibt sich die "Pell"-ähnliche diophantische Gleichung $x^2 - 5$ $y^2 = 4$,

welche z.B. die Lösungen (x,y) = (3,1), (7,3), (18,8), ... besitzt.

Die ersten Siebeneck-Dreieckszahlen z (n,m) sind

 z
 n und m
 z
 n und m
 z
 n und m

 1
 1, 1
 55
 5, 10
 121771221, 493

 5720653
 1513, 3382
 12625478965
 71065, 158905

Siebeneck-Quadratzahl

... eine Zahl z, welche gleichzeitig Siebeneckszahl und Quadratzahl ist, d.h.

$$z = n/2 (5n - 3) = m^2$$

Erste Werte (m,n) = z: (1,1) = 1, (6, 9) = 81, (49, 77) = 5929, (961, 1519) = 2307361, 168662169, 12328771225, ...

Pyramidalzahlen

Das Konzept der figurierten Zahlen kann auf den Raum erweitert werden. Zum Beispiel können aufeinanderfolgende Polygone zu Pyramiden aufgestapelt werden. Werden aufeinanderfolgende Dreieckszahlen addiert, ergeben sich die Tetraederzahlen:

$$T_1 = 1$$
 $T_2 = 1 + 3 = 4$ $T_3 = 1 + 3 + 6 = 10$ $T_4 = 1 + 3 + 6 + 10 = 20$

Die n.te Tetraederzahl ist $T_n = n/6 (n+1)(n+2)$.

Diese Zahlen stehen in der 3. Spalte des Pascalschen Dreiecks.

Ebenso können quadratische oder fünfeckige, sechseckige ... Pyramiden gebaut werden. Es ergeben sich z.B. quadratischen Pyramidalzahlen:

$$Pyr_1 = 1$$
 $Pyr_2 = 1 + 4 = 5$
 $Pyr_3 = 1 + 4 + 9 = 14$ $Pyr_4 = 1 + 4 + 9 + 16 = 30$

Die n.te quadratische Pyramidalzahl erhält man z.B. aus

$$Pyr_n = D_n + 2 \cdot T_{n-1} = n/6 (n+1) (2n+1)$$

Beispiel:
$$Pyr_5 = 15 + 2.20 = 55$$

oder
$$Pyr_n = T_n + T_{n-1}$$

Beispiel: $Pyr_5 = 35 + 20 = 55$

Kubikzahlen

Kubikzahlen sind Zahlen der Form $n^3 = K_n = n + 6 \cdot T_{n-1}$ Die ersten Zahlen der Folge sind damit 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... Für die Summe der ersten Kubikzahlen erhält man

$$S = \sum_{i=1}^{n} K_i = n^2/4 (n+1)^2$$

Diese Kubikzahlensummen sind damit die Quadrate der Dreieckszahlen T_n .

Die kleinsten Kubikzahlen, welche genau n=1,2,3,... Ziffern '1' enthalten, sind: 1, 1331, 195112, 1191016, 302111711, 1128111921, 1017501115112, 11540111711192, 3110921146111141,

111121611171697125, 13131411119181123391, ...

Zahlenfolge: a(n+1) ist die nächste Kubikzahl, welche auf a(n) endet, beginnend bei 1: 1, 1331, 1003303631331, 1000000003003300003006603631003303631331

Ein zentriertes Sechseck kann so umgeformt werden, dass es drei Seitenflächen eines Würfels bildet. In dieses "Nest" fügt man das nächstkleinere Sechseck ein, bis der ganze Würfel ausgefüllt ist. (mittlere Abbildungen)

Erzeugende Funktion: $x (x^2 + 4x + 1) / (x - 1)^4 = x + 8 x^2 + 27 x^3 + ...$

Zentrierte Kubikzahlen

Wird in jeden Zwischenraum eines Würfels noch ein Steinchen eingebaut, ergeben sich die zentrierten Kubikzahlen. Diese Anordnung der Steinchen bezeichnet man als kubisch-raumzentriertes Gitter.

$$ZK_n = (2n-1) (n^2-n+1)$$

$$ZK_n = K_n + K_{n-1} = n + 6 \cdot T_{n-1} + (n-1) + 6T_{n-2} = 2n - 1 + 6 \cdot Pyr_{n-1}$$
Beispiel: $ZK_5 = (4 + 5) + 6 \cdot (10 + 20) = 189$

Erste zentrierte Kubikzahlen: 1, 9, 35, 91, 189, 341, ...

Erzeugende Funktion: $x(x^3 + 5x^2 + 5x + 1) / (x - 1)^4 = x + 9x^2 + 35x^3 + ...$

Für die Summe der ersten zentrierten Kubikzahlen erhält man S = $\Sigma_{i=1}^{n}$ ZK_i = $n^{2}/2$ ($n^{2}+1$)

Oktaederzahlen

Addition aufeinanderfolgender zentrierter Quadratzahlen ergibt die Oktaederzahlen. Die "äußeren" Quadrate bilden dabei eine Pyramide und die "inneren" eine etwas kleinere Pyramide. Diese beiden Pyramiden können wir zu einem Oktaeder zusammengesetzt werden.

$$Oct_1 = 1$$
 $Oct_2 = 5 + 1 = 6$
 $Oct_3 = 14 + 5 = 19$ $Oct_4 = 30 + 14 = 44$

Die Rechenvorschrift für die Oktaederzahlen lautet:

$$Oct_n = Pyr_n + Pyr_{n-1} = n/3 (2n^2 + 1)$$
 $Oct_n = n + 4 \cdot T_{n-1}$

Beispiel: Oct₅ =
$$5 + 4.20 = 85$$

Rhombische Dodekaederzahlen

Setzt man auf jede Seitenfläche eines zentrierten Würfels noch eine quadratische Pyramide, so ergibt sich ein Rhombendodekaeder (untere Abbildung).

$$Rho_1 = 1$$
 $Rho_2 = 9 + 6 \cdot 1 = 15$ $Rho_3 = 35 + 6 \cdot 5 = 65$ $Rho_4 = 91 + 6 \cdot 14 = 175$

Die rhombischen Dodekaederzahlen berechnen sich zu:

$$Rho_n = 2n - 1 + 12 \cdot Pyr_{n-1} = 4n^3 - 6n^2 + 4n - 1$$

Beispiel: Rho₅ = $(4 + 5) + 12 \cdot (10 + 20) = 369$

Wenn die Steinchen in einem kubisch-raumzentrierten Gitter angeordnet sind, bilden alle Punkte, die vom Zentrum höchstens n Einheiten entfernt sind, ein Rhombendodekaeder.

Die rhombischen Dodekaederzahlen sind daher dreidimensionale Nexuszahlen.

Pentatopzahlen

Würde man aufeinanderfolgende Tetraeder in der 4.Dimension aufeinanderstapeln, so erhält man den einfachsten vierdimensionalen Körper, ein sogenanntes Pentatop. Die zugehörigen Pentatopzahlen sind

 $Ptop_1 = 1$

$$Ptop_1 = 1$$
 $Ptop_2 = 1 + 4 = 5$ $Ptop_3 = 1 + 4 + 10 = 15$ $Ptop_4 = 1 + 4 + 10 + 20 = 35$

Die Folge der Pentatopzahlen beginnt mit 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365 ...

Die n.te Pentatopzahl ergibt sich zu $Ptop_n = n/24 (n+1) (n+2) (n+3)$

Diese Zahlen stehen in der 4. Spalte des Pascalschen Dreiecks.

Hyperwürfelzahlen

Auf analoge Weise kann man aufeinanderfolgende Pyramiden, Würfel usw. addieren. Für die rhombischen Dodekaederzahlen als Grundlage ergibt sich zum Beispiel

$$Hyp_1 = 1$$
 $Hyp_2 = 1 + 15 = 16$ $Hyp_3 = 1 + 15 + 65 = 81$ $Hyp_4 = 1 + 15 + 65 + 175 = 256$

Das sind die vierten Potenzen! $Hyp_n = n^4$

In der 4.Dimension kann man also aufeinanderfolgende Rhombendodekaeder zu Hyperwürfeln zusammenbauen. Die zugehörigen Zahlen sind Hyperwürfelzahlen. siehe auch http://mathworld.wolfram.com/FigurateNumber.html

Rechteck-Gitterzahl

Gegeben ist Raster aus vier Quadraten, die ein einziges großes Quadrat bilden. Die Frage ist, wie viele Rechtecke und Quadrate in dieser Figur enthalten sind.

ſ	1	2	Neben den vier Quadraten, mit den Ziffern 1 bis 4, findet man zwei horizontale Rechtecke 12
ſ	3	4	und 34, zwei vertikale 13 und 24 und das ganze Quadrat. Insgesamt gibt es also 9
•		•	vierseitige Gehiete in dem großen Quadrat

Die Rechteck-Gitterzahl für ein 2x2-Gitter ist damit gleich 9, G(2) = 9.

Allgemein findet man für ein nxn-Gitter als Rechteck-Gitterzahle $G(n) = n^2 (n+1)^2/4 = ((n^2 +$

und somit für n = 1, 2, ... die ersten G(n) = 1, 9, 36, 100, 225, 441, ... die alle Quadratzahlen darstellen. Ein Vergleich mit den Dreieckszahlen T(n) zeigt, dass gerade $G(n) = (T(n))^2$ gilt.

Überträgt man das Problem auf den dreidimensionalen Raum, d.h. ein Gitter bestehend aus Würfeln, so $G_3(n) = n^3 (n+1)^3/8$

Für die ersten n wird damit $G_3(n) = 1, 27, 216, 1000, 3375, ...$ Durch Tim Greer wurde die Gleichung dieser Gitterzahl für den k-dimensionalen Raum bewiesen $G_{\nu}(n) = n^{k} (n+1)^{k} / 2^{k} = (T(n))^{k}$ Die Gitterzahlen wachsen sehr schnell. In einem 50-dimensionalen Gitter der Ordnung n = 9 sind 4.57747·10⁸² 50-dimensionale Quader enthalten. Würde man jeden dieser Quader mit einem Proton, Elektron, Neutron oder anderem Teilchen füllen, so wäre das ganze beobachtbare Weltall untergebracht.

Traversen-Zahl

Die Diagonalen sowie die Verbindungsstrecken von Seitenmittelpunkten eine N-Ecks werden Traversen, d.h. "Durchquerende", genannt.

Die Abbildung zeigt die 15 Traversen im Fünfeck und die 8 Traversen im Viereck. Für verschiedene N-Ecke mit n = 3, 4, 5, ... ergibt sich als Anzahl T(n) der Traversen 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, 195, ...

Der Zuwachs der Traversenzahl wächst jeweils um 2. Damit liegt eine arithmetische Zahlenfolge 2.Ordnung vor.

Mit den Anfangsgliedern T(1) = 3, T(2) = 8 und T(3) = 15 wird für das allgemeine Glied dieser arithmetischen Zahlenfolge 2.Ordnung T(n)

$$T(n) = (T(3) - 2T(2) + T(1)) n^2/2 + (8T(2) - 3T(3) - 5T(1)) n/2 - (3T(2) - T(3) - 3T(1)) = n^2 + 2n$$

Quadratzahlquersumme

Gegeben ist eine natürliche Zahl n, g sei ihre Quadratzahl und s deren Quersumme. Dann ist 9 die einzige Zahl n > 1, bei der die Quersumme s des Quadrates gleich n ist: $9^2 = 81$; 8 + 1 = 9. Untersucht man verschiedene n, so zeigt sich schnell, dass s fast immer kleiner als n ist. Nur für n = 1, 2, ..., 9, 13, 14, 17 ist s größer gleich n mit den Werten s = 1, 4, 9, 7, 7, 9, 13, 10, 9, 16, 16, 19.

Die nachfolgende Tabelle zeigt die n an, für die s ein neues Maximum erreicht (gesucht bis 100 Millionen):

n	S	n	S	n	S
2	4	3	9	7	13
13	16	17	19	43	22
63	27	83	31	167	34
264	36	313	40	707	43
836	46	1667	49	2236	52
3114	54	4472	55	6833	58
8167	61	8937	63	16667	64
21886	67	29614	70	41833	73
74833	76	89437	79	94863	81
134164	82	191833	85	298327	88
545793	90	547613	91	947617	94
987917	97	1643167	100	3143167	103
3162083	106	5477133	108	9272917	109
9893887	112	19672313	115	20736417	117
24060133	118	29983327	121	44271886	124
60827617	127	99477133	130		

Kubikzahlquersumme

Gegeben ist eine natürliche Zahl n, k sei ihre Kubikzahl und s deren Quersumme. Dann ist nur für die n = 8, 17, 18 und 26, l n > 1, die Quersumme s der 3.Potenz gleich n.

Untersucht man verschiedene n, so zeigt sich, dass s für hinreichend große n immer kleiner ist. Nur für n = 1, 2, ..., 9, 12, ..., 19, 26, 27 ist s größer gleich n mit den Werten s = 1, 8, 9, 10, 8, 9, 10, 8, 18, 18, 19, 17, 18, 19, 17, 18, 28, 26, 27.

Die nachfolgende Tabelle zeigt die n an, für die s ein neues Maximum erreicht (gesucht bis 100 Millionen):

n	S	n	S	n	S
2	8	3	9	4	10
9	18	13	19	19	28
53	35	66	36	76	37
92	44	132	45	157	46
353	53	423	54	559	55
842	62	927	63	1192	64
1966	73	4289	80	5826	81
8782	82	12116	89	12599	98
30355	100	63413	107	66942	108
99829	109	138899	116	215083	118
341075	125	506499	126	573859	127
947229	135	989353	136	2131842	144
3656299	145	4081435	154	14390229	162
20632999	163	40796513	170	40992999	171
43967926	172	80925089	179	88316866	181

Potenzquersumme

Gegeben ist eine natürliche Zahl n, z sei ihre p-te Potenz und s deren Quersumme. Dann existieren im Allgemeinen Zahlen n > 1, für welche die Quersumme s gleich n ist. Die nachfolgende Tabelle zeigt die natürlichen Zahlen n an, für die eine der p-ten Potenzen eine Quersumme s gleich n besitzen:

Potenz p Zahlen n 2 1, 9, 3 1, 8, 17, 18, 26, 27, 1, 7, 22, 25, 28, 36, 4 5 1, 28, 35, 36, 46, 6 1, 18, 45, 54, 64, 7 1, 18, 27, 31, 34, 43, 53, 58, 68, 8 1, 46, 54, 63, 1, 54, 71, 81, 9 1, 82, 85, 94, 97, 106, 117, 10 1, 98, 107, 108, 11 1, 108, 12 1, 20, 40, 86, 103, 104, 106, 107, 126, 134, 135, 146, 13 14 1, 91, 118, 127, 135, 154, 1, 107, 134, 136, 152, 154, 172, 199, 15 1, 133, 142, 163, 169, 181, 187, 16

```
17
       1, 80, 143, 171, 216,
18
       1, 172, 181,
19
       1, 80, 90, 155, 157, 171, 173, 181, 189, 207,
20
       1, 90, 181, 207,
21
       1, 90, 199, 225,
       1, 90, 169, 193, 217, 225, 234, 256,
22
23
       1, 234, 244, 271,
24
       1, 252, 262, 288,
25
       1, 140, 211, 221, 236, 256, 257, 261, 277, 295, 296, 298, 299, 337,
```

Congruum-Problem

Im Congruum-Problem ist eine Quadratzahl x^2 gesucht, so dass mit einer vorgegebenen natürlichen Zahl h, Congrua genannt, sowohl x^2 + h als auch x^2 - h wieder Quadratzahlen sind, d.h.

```
x^2 + h = a^2 x^2 - h = b^2
```

Dieses Problem wurde 1225 erstmals von Théodore und Jean de Palerma auf einem von Frederic II. in Paris druchgeführen Mathematikwettkampf gestellt.

Fibonacci bewies, dass alle möglichen Werte für h durch 24 teilbar sein müssen. Die allgemeine Lösung ist: $x = m^2 + n^2$ $h = 4 \text{ mn } (m^2 - n^2)$

wobei m und n natürliche Zahlen sind.

Heitere Zahlen

Eine Zahl z>1 heißt "heiter", wenn die Folge der Summe der Quadrate der Ziffern auf 1 endet.

kleinste heitere Zahl = $7 \rightarrow 49 \rightarrow 97 \rightarrow 130 \rightarrow 10 \rightarrow 1$

kleinster Zwilling: 31, 32 kleinster Drilling: 1880, 1881, 1882

kleinster Vierling ab 7839 kleinster Fünfling ab 44488

Entweder ist ein Zahl heiter, oder die Folge endet in einer Periode von 8 Zahlen: 4, 16, 37, 58, 89, 145, 42, 20, 4

3-fach-heiter

Eine Zahl z>1 heißt "3fach-heiter", wenn die Folge der Summe der Kuben der Ziffern auf 1 endet.

Die Folge endet entweder konstant bei 1, 153, 370, 371 oder 407

bzw. pendelt in 4 verschiedenen Perioden:

55, 250, 133, 55 160, 217, 352, 160 136, 244, 136 919, 1459, 919

kleinste nichttriviale 3fach-heitere Zahl = 112

Vierfach-heitere Zahl

Eine Zahl z>1 heißt "4fach-heiter", wenn die Folge der Summe der Biquadrate der Ziffern auf 1 endet.

Die Folge endet entweder konstant bei 1 oder 1634, 8208, 9474 bzw. pendelt in zwei Perioden:

13139, 6725, 4338, 4514, 1138, 4179, 9219, 13139 6514, 2178, 6514

Folge endet auf erste Ausgangszahlen

```
1 1, 10, 100, 1000, 10000, 11123, 11132, 11213, 11231, 11312, ...
1634 1346, 1364, 1436, 1463, 1634, 1643, 3146, 3164, 3416, 3461, ...
8208 12, 17, 21, 46, 64, 71, 102, 107, 120, 137, 145, 154, 170, 173, 201, 210, ...
9474 4479, 4497, 4688, 4749, 4794, 4868, 4886, 4947, 4974, 5567, ...
```

Fünffach-heitere Zahl

Eine Zahl z>1 heißt "5fach-heiter", wenn die Folge der Summe der 5.Potenzen der Ziffern auf 1 endet. Die Folge endet entweder konstant bei 1 oder 4150 (kleinste Startzahl 145), 4151 (1145), 54748 (247), 92727 (22779), 93084 (888), 194979 (147999) bzw. pendelt in neun Perioden:

76438, 58618, 76438

157596, 89883, 157596

24584, 37973, 93149, 119366, 74846, 59399, 180515, 39020, 59324, 63473, 26093, 67100, 24584 9045, 63198, 99837, 167916, 91410, 60075, 27708, 66414, 17601, 24585, 40074, 18855, 71787,

83190, 92061, 66858, 84213,

34068, 41811, 33795, 79467, 101463, 9045

10933, 59536, 73318, 50062, 10933

83633, 41273, 18107, 49577, 96812, 99626, 133682, 41063, 9044, 61097, 83633

70225, 19996, 184924, 93898, 183877, 99394, 178414, 51625, 14059, 63199, 126118, 40579, 80005,

35893, 95428, 95998, 213040, 1300, 244, 2080, 32800, 33043, 1753, 20176, 24616, 16609, 74602,

25639, 70225

44155, 8299, 150898, 127711, 33649, 68335, 44155

92873, 108899, 183635, 44156, 12950, 62207, 24647, 26663, 23603, 8294, 92873

Die kleinste nichttriviale 5fach-heitere Zahl ist 1111222.

Belgische Zahl

Durch Éric Angelini wurde folgende Zahlenfolge eingeführt:

Gegeben ist eine natürliche Zahl, zum Beispiel n = 176. Die Ziffern der Zahl geben die Summanden an, die beginnend bei 0 kontinuierlich addiert werden.

Im Beispiel werden abwechselnd 1, 7, 6 addiert, was zur Zahlenfolge 0, 1, 8, 14, 15, 22, 28, ..., 176, ... führt.

Eine solche Zahlenfolge heißt belgische Zahlenfolge. Tritt die Ausgangszahl in der von ihr erzeugten Zahlenfolge selbst auf, so heißt die Zahl belgisch. Belgische Zahlen wurden früher auch Eric-Zahlen genannt.

Die ersten belgischen Zahlen sind

```
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 33, 35, 36, 39, 40, 42, 44,
45, 48, 50, 53, 54, 55, 60, 62, 63, 66, 70, 71, 72, 77, 80, 81, 84, 88, 90, 93, 99, 100, 101, 102, 106,
108, 110, 111, 112, 114, 117, 120, 121, 123, 126, 131, 132, 133, 135, 140, 144, 145, 148, 150, 152,
153, 155, 156, 157, 161, 162, 171, 173, 176, 180, 181, 188, 189, 190, 192, 195, 197, 198, 200, 201,
202, 204, 205, 207, 209, 210, 211, 212, 213, 216, 219, 220, 222, 224, 225, 228, 230, 234, 235, 236,
240, 242, 243, 246, 247, ...
```

Es gilt: Eine natürliche Zahl ist belgische Zahl, wenn sie bei Division mit ihrer Quersumme den Rest 0 lässt oder einen Rest r ergibt, der gleich der Quersumme von Zahlen ist, die aus der Ausgangszahl durch Wegstreichen von Ziffern von rechts(!) entstehen.

Zum Beispiel ist die 2462 belgisch, da 2462 ≡ 12 (mod 14) und 12 die Quersumme von 246 ist.

Belgische k-Zahl

Eine Verallgemeinerung der belgischen Zahlen stellen die belgischen Zahlen der Ordnung k, bzw. belgischen k-Zahlen, dar.

Eine belgische 0-Zahl, d.h. Ordnung 0, entsteht wie folgt:

Gegeben ist eine natürliche Zahl, zum Beispiel n = 176. Die Ziffern der Zahl geben die Summanden an, die beginnend bei k = 0 kontinuierlich addiert werden.

Im Beispiel werden abwechselnd 1, 7, 6 addiert, was zur Zahlenfolge 0, 1, 8, 14, 15, 22, 28, ..., 176, ...

Bei einer belgischen k-Zahl beginnt die Addition bei k.

```
Die ersten k-Zahlen sind
        k-Zahlen
        0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 20, 21, 22, 24, 26, 27, 30, 31, 33, 35, 36, 39,
40, 42, 44, 45, 48, 50, 53, 54, 55, 60, 62, 63, 66, 70, 71, 72, 77, 80, 81, 84, 88, 90, 93, 99, 100, 101,
102, 106, 108, 110, 111, 112, 114, 117, 120, ...
        1, 10, 11, 13, 16, 17, 21, 23, 41, 43, 56, 58, 74, 81, 91, 97, 100, 101, 106, 110, 111, 113, 115,
121,\,122,\,130,\,131,\,137,\,142,\,155,\,157,\,161,\,170,\,171,\,172,\,178,\,179,\,181,\,184,\,188,\,193,\,201,\,...
        2, 10, 11, 12, 15, 16, 20, 22, 25, 26, 32, 38, 41, 42, 46, 67, 72, 82, 86, 91, 95, 100, 101, 102,
103, 105, 107, 110, 111, 112, 113, 115, 116, 120, 121, 122, 123, 124, 125, 130, 131, 132, 134, 136,
138, 142, 143, ...
        3, 10, 11, 12, 14, 15, 21, 23, 30, 31, 33, 34, 35, 39, 47, 51, 52, 59, 63, 69, 73, 75, 78, 94, 100,
101, 102, 103, 104, 105, 107, 110, 111, 112, 113, 115, 116, 120, 123, 133, 141, 146, 147, 151, 153,
154, 158, 159, 163, 164, 166, 168, 183, 185, 191, 196, ...
```

Belgische Selbstzahl

Unter einer belgischen Selbstzahl der Ordnung 1 versteht man eine natürliche Zahl, die belgische k-Zahl ist und der Startwert k von der ersten Ziffer der Zahl gebildet wird.

Zum Beispiel ist die 179 belgische Selbstzahl, da die Folge der 1-Zahlen (1.Ziffer ist 1)

1, 2, 9, 18, 19, 26, 35, 36, 43, 52, 53, 60, 69, 70, 77, 86, 87, 94, 103, 104, 111, 120, 121, 128, 137, 138, 145, 154, 155, 162, 171, 172, 179 ist.

Die ersten belgischen Selbstzahlen sind

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17, 20, 22, 25, 26, 30, 31, 33, 34, 35, 39, 40, 43, 44, 50, 52, 53, 55, 60, 61, 62, 66, 68, 70, 71, 77, 80, 86, 88, 90, 93, 99, 100, 101, 106, 110, 111, 113, 115, 121, 122, 130, 131, 137, 142, 155, 157, 161, 170, 171, 172, 178, 179, 181, 184, 188, 193, 201, ...

Unter einer belgischen Selbstzahl 2.Ordnung versteht man eine mehrstellige belgische Selbstzahl, bei der in der Ziffernfolge der Glieder sie selbst am Anfang auftritt. Zum Beispiel wird für die 61 6, 12, 13, 19, 20, 26, 27, 33, 34, 40, 41, 47, 48, 54, 55, 61

Diese Zahlen sind selten. Bis 125 Millionen kennt man nur die belgischen Selbstzahlen 2.Ordnung 61, 71, 918, 3612, 5101, 8161, 12481, 51011, 248161, 361213, 5101111, 7141519, 8161723

Kaprekar-Zahl

(Abbildung: Shri Dattathreya Ramachandra Kaprekar, 1905-1986)

Die Ziffern einer dreistelligen Zahl (nicht alle Ziffern gleich) ordne man einmal ab- und einmal aufsteigend. Mit der Differenz beider entstandener Zahlen (als dreistellige Zahl angesehen, evtl. mit führenden Nullen) verfahre man ebenso. Nach endlich vielen Schritten entsteht stets die

Kaprekar-Zahl 495

für vierstellige Zahlen ... Kaprekar-Zahl 6174

für zweistellige Zahlen endet die Rechnung in dem Zyklus 09, 81, 63, 27, 45, 09, \dots

für fünfstellige Zahlen endet die Rechnung in den Zyklen

63954, 61974, 82962, 75933, 63954, ... oder

83952, 74943, 62964, 71973, 83952, ...

Beispiele für vierstellige Kaprekar-Zahl 6174:

Gegeben ist die Zahl 1746. → 1.Schritt: 7641 - 1467 = 6174

Gegeben ist die Zahl 5644. → 1.Schritt: $6544-4456=2088 \rightarrow 2.$ Schritt: $8820-0288=8532 \rightarrow 3.$ Schritt: 8532-2358=6174

Gegeben ist die Zahl 7652. → 1.Schritt: $7652-2567=5085 \rightarrow 2.$ Schritt: $8550-0558=7992 \rightarrow 3.$ Schritt: $9972-2799=7173 \rightarrow 4.$ Schritt: $7731-1377=6354 \rightarrow 5.$ Schritt: $6543-3456=3087 \rightarrow 6.$ Schritt: $8730-0378=8352 \rightarrow 7.$ Schritt: 8532-2358=6174

Kaprekar-Zyklen zweistelliger Zahlen

Die Startzahlen mit vertauschten Ziffern haben das gleiche Kaprekar-Verhalten haben. Nach einem oder zwei Schritten gelangt man zu einer Zahl des Kaprekar-Zyklus oder zur Null.

```
00 -> 00;
                      01 -> 09;
                                             02 -> 18 -> 63;
                                                                   03 -> 27:
04 -> 36 -> 27;
                      05 -> 45;
                                             06 -> 54 -> 09;
                                                                   07 -> 63;
08 -> 72 -> 45;
                      09 -> 81;
                                             11 -> 00;
                                                                    12 -> 09:
13 -> 18 -> 63;
                      14 -> 27;
                                             15 -> 36 -> 27;
                                                                    16 -> 45;
17 -> 54 -> 09;
                      18 -> 63;
                                             19 -> 72 -> 45;
                                                                   22 -> 00;
23 -> 09;
                      24 -> 18 -> 63;
                                             25 -> 27;
                                                                   26 -> 36 -> 27;
27 -> 45;
                      28 -> 54 -> 09;
                                             29 -> 63;
                                                                   33 -> 00;
                      35 -> 18 -> 63;
                                             36 -> 27;
                                                                   37 -> 36 -> 27;
34 -> 09:
38 -> 45:
                      39 -> 54 -> 09;
                                             44 -> 00:
                                                                   45 -> 09:
46 -> 18 -> 63;
                      47 -> 27:
                                             48 -> 36 -> 27:
                                                                   49 -> 45;
55 -> 00;
                      56 -> 09;
                                             57 -> 18 -> 63;
                                                                   58 -> 27;
59 -> 36 -> 27;
                      66 -> 00;
                                             67 -> 09;
                                                                   68 -> 18 -> 63;
69 -> 27;
                      77 -> 00;
                                             78 -> 09;
                                                                    79 -> 18 -> 63;
88 -> 00;
                      89 -> 09;
                                             99 -> 00;
```

Kaprekar-Zahl (2)

Die Kaprekar-Zahl ergibt sich auch für beliebige vierstellige Zahlen außer für 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, wenn man Zahlen mit Vornullen wie 0234 oder 0056 zulässt. Von den vierstelligen Zahlen enden

Schrittzahl 5 6 1 2 519 2124 1124 1379 1508 Anzahl Zahlen 357 1980 Von den dreistelligen Zahlen enden auf 495 6 Schrittzahl 1 2 3 4 198 51 Anzahl Zahlen 139 131 246 126

Eine Kaprekar-Konstante existiert nur für dreistellige Zahlen, die 495, und für vierstellige, die 6174. Für zweistellige oder mehr als vierstellige Zahlen ergeben sich im Allgemeinen Zyklen. Allerdings existieren auch weitere Konstanten.

für achtstellige Startzahlen 63317664, 97508421 für neunstellige Startzahlen 554999445, 864197532

für zehnstellige Startzahlen 6333176664, 9753086421, 9975084201

Fünfstellige Zahlen enden bei der Rechnung in drei verschiedenen Kaprekar-Zyklen

- 1. 53955, 59994
- 2. 63954, 61974, 82962, 75933, 63954, ...
- 3. 83952, 74943, 62964, 71973, 83952, ...

Von allen fünfstelligen Zahlen erreichen 3002 den 1.Zyklus, 43770 den 2. und 43219 den 3.Zyklus. Die Berechnung erreicht einen Endzyklus

Schrittzahl 1 2 3 4 5 6 7 Anzahl Zahlen 9694 9596 11664 24194 21604 9190 4049

Sechsstellige Zahlen enden bei der Rechnung in einem Kaprekar-Zyklus oder zwei Fixzahlen 420876, 860832, 862632, 642654

1.Fixzahl = 549945

2.Fixzahl = 631764

Von allen sechsstelligen Zahlen erreichen 841996 den Zylus, 1815 die 1.Fixzahl und 56180 die 2.Fixzahl.

Die Berechnung erreicht den Zyklus bzw. die Zahl

1 2 3 4 6 8 Anzahl Zahlen 17195 26900 78090 67600 67091 11261010625510730078846 Schrittzahl 10 12 13 14 15 16 17 11 Anzahl Zahlen 48486 39390 18835 10830 21100 23850 29875116502 30360

Quelle: Siegfried Beyer

Steinhaus-Zyklus

Der Steinhaus-Zyklus heißt 145, 42, 20, 4, 16, 37, 58, 89 und wird mit folgenden Verfahren erzeugt:

- (1) Gegeben ist eine beliebige vierstellige Zahl (abcd).
- (2) Man berechnet die Summe der Quadrate ihrer Ziffern ($a^2+b^2+c^2+d^2$).
- (3) Mit dieser Summe verfährt man ebenso und wiederholt die Rechnung.

Dieses Verfahren führt entweder auf 1 oder man gelangt unweigerlich zur Zahl 145. Dann wiederholt sich der Zyklus 42, 20, 4, 16, 37, 58, 89, 145.

Beispiel 1: Gegeben ist die Zahl 4363. Die Folge ist 70, 49, 97, 130, 10, 1, 1, 1, 1, 1, ...

Beispiel 2: Gegeben ist die Zahl 9583. Die Folge ist 179, 131, 11, 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, 145, 42, 20, 4, 16, 37, 58, 89, ...

Dieser Satz wird im Buch "Hugo Steinhaus, 100 Aufgaben, Urania-Verlag Leipzig, Jena, Berlin 1968" auf 3 ½ Seiten bewiesen.

Für das Erreichen der 1 oder des Steinhaus-Zyklus muss die Anfangszahl nicht vierstellig sein.

Die kleinsten Startzahlen n, für die k Schritte bis zur 1 oder 145 benötigt werden, sind für k = 1, 6, 8, 10, 11, 12, 13: n = 1, 2, 3, 6, 88, 269, 15999

14 Schritte sind erstmals für das n notwendig, dessen Summe der Quadrate der Ziffern mindestens 15999 ist, d.h. n muss mehr als 197 Stellen besitzen.

Kaprekar-Zahlen

Unter Kaprekar-Zahlen (nach D.R. Kaprekar) werden; neben den Kaprekar-Konstanten; auch Zahlen folgender Struktur verstanden:

Eine Kaprekar-Zahl zu einer Basis b ist eine natürliche Zahl n, deren Quadratziffernfolge in zwei Zahlen zerlegt werden kann, so dass die Summe dieser zwei Zahlen im Positionssystem zur Basis b wieder n ergibt.

Zum Beispiel ist die 297 eine Kaprekar-Zahl im Dezimalsystem, da $297^2 = 88209$ und 88 + 209 = 297 gilt. Beide Summanden müssen positiv sein. Daher ist 100 keine Kaprekar-Zahl, da hier nur $100^2 = 10000$ und 100 + 00 = 100 gilt.

Die ersten Kaprekar-Zahlen zur Basis 10 sind:

1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4879, 4950, 5050, 5292, 7272, 7777, 9999, 17344, 22222, 38962, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170

In jedem Zahlensystem zur Basis b sind Zahlen der Form bⁿ - 1 Kaprekar-Zahlen.

Die nachfolgende Tabelle enthält die kleinsten Kaprekar-Zahlen bis 160 Millionen im Dezimalsystem und deren Summendarstellung.

```
9^2 = 81 = 8 + 1
1 »
       1^2 = 1 = 1
                                               9 »
45 »
       45^2 = 2025 = 20 + 25
                                               55 »
                                                      55^2 = 3025 = 30 + 25
                                               297 » 297<sup>2</sup> = 88209 = 88 + 209
99 »
       99^2 = 9801 = 98 + 1
703 \gg 703^2 = 494209 = 494 + 209
                                              999 \gg 999^2 = 998001 = 998 + 1
2223 » 2223<sup>2</sup> = 4941729 = 494 + 1729
                                              2728 » 2728<sup>2</sup> = 7441984 = 744 + 1984
4879 \times 4879^2 = 23804641 = 238 + 4641
                                              4950 \gg 4950^2 = 24502500 = 2450 + 2500
5050 \gg 5050^2 = 25502500 = 2550 + 2500
                                              5292 \gg 5292^2 = 28005264 = 28 + 5264
```

Selbstzahl

Der Begriff der Selbstzahl (engl. self number) wurde 1949 von dem indischen Mathematiker D.R.Kaprekar eingeführt. Eine natürliche Zahl n ist Selbstzahl zur Basis b, wenn n nicht als Summe einer anderen natürlichen Zahl m und deren Ziffern erzeugt werden kann.

Zum Beispiel ist 21 nicht Selbstzahl, da 21 von 15 erzeugt werden kann mit 21 = 15 + 1 + 5. Dagegen ist die 20 eine Selbstzahl. Die ersten Selbstzahlen zur Basis 10 sind 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 108, 110, 121, 132, 143, 154, 165, 176, 187, 198, 209, 211, 222, 233, 244, 255, 266, 277, 288, 299, 310, 312, 323, 334, 345, 356, 367, 378, 389, 400, 411, 413, 424, 435, 446, 457, 468, 479, 490, 501, 512, 514, 525 Allgemein sind alle ungeraden Zahlen n bis zur Basis b Selbstzahlen.

Die rekursive Vorschrift $C_k = 8 \cdot 10^{k-1} + C_{k-1} + 8$; $C_1 = 9$ erzeugt im Dezimalsystem ausschließlich Selbstzahlen.

Selbstprimzahl

Eine Selbstprimzahl ist eine prime Selbstzahl. Die ersten Selbstprimzahlen sind 3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 409, 457, 479, 499, 547, 569, 587, 607, 613, 659, 677, 701, 727, 769, 787, 809, 811, 839, 857, 859, 877, 881, 883, 929, 947, 967, 971, 983, 991, ... Im Oktober 2006 gelang es Luke Pebody zu zeigen, dass die bis dahin größte bekannte Mersennesche Primzahl $2^{24036583}$ -1 Selbstzahl ist. Dies ist damit 2006 die größte bekannte Selbstprimzahl.

Nichtselbstzahl

Der Begriff der Selbstzahl (engl. self number) wurde 1949 von dem indischen Mathematiker D.R.Kaprekar eingeführt. Eine natürliche Zahl n ist Selbstzahl zur Basis b, wenn n nicht als Summe einer anderen natürlichen Zahl m und deren Ziffern erzeugt werden kann.

Unter einer Nichtselbstzahl versteht man dann eine natürliche Zahl, die nicht Selbstzahl ist, zum Beispiel die 21, da 21 von 15 erzeugt werden kann mit 21 = 15 + 1 + 5.

Die ersten Nichtselbstzahlen sind

2, 4, 6, 8, 10 bis 19, 21 bis 30, 32 bis 41, 43 bis 52, 54 bis 63, 65 bis 74, 76 bis 85, 87 bis 96, 98, 99, 100, ...

Für Nichtselbstzahlen kann es auch mehr als eine Möglichkeit geben, diese aus einer anderen Zahl zu erzeugen. Zum Beispiel findet man

```
111 = 105 + 1 + 0 + 5 = 96 + 9 + 6 oder 4826 = 4807 + 4 + 8 + 0 + 7 = 4798 + 4 + 7 + 9 + 8
```

Ducci-Problem

Das Problem geht auf den italienischen Mathematiker E.Ducci zurück, der es in den 1930iger Jahren entdeckte.

Man wählt vier beliebige natürliche Zahlen und schreibt sie nebeneinander. Dann bildet man den Betrag der Differenz jeder Zahl zur nächsten; bei der vierten Zahl zur ersten. Mit den vier Ergebniszahlen wird das Verfahren immer wieder wiederholt.

Beispiel 93 5 21 50 88 16 29 43 72 13 14 45 59 1 31 27 58 30 4 32 28 26 28 26 2 2 2 2 0 0 0 0

Führt man das Verfahren oft genug, so entstehen nur Nullen. Die Frage ist, ob dies für alle Ausgangszahlen gilt.

Nachweis: (a, b, c, d) sei das Ausgangsquadrupel. Wird mit f(a, b, c, d) die Bildung des neuen 4-Tupels bezeichnet, so gilt f(2a, 2b, 2c, 2d) = 2 f(a, b, c, d)

Vielfache von ganzen Zahlen können ausgeklammert werde.

Nach spätestens 4 Schritten sind alle Zahlen des Quadrupels durch 2 teilbar sind. Dies ergibt sich aus dem Test aller 16 Möglichkeiten für "gerade" und "ungerade" der Ausgangszahlen.

Damit kann eine 2 ausgeklammert werden. Die verbleibenden Zahlen (a, b, c, d) sind nach spätestens vier Schritten wieder durch 2 teilbar usw.

Da die Abbildung f beliebig oft angewendet werden kann, müssen nach hinreichend vielen Schritten alle Zahlen des 4-Tupels durch jede beliebig vorgegebene Potenz von 2 teilbar sein.

Da wir bei jedem Schritt die Differenz von positiven Zahlen bilden, können die Zahlen in unseren 4-Tupeln nicht anwachsen, wohl aber abnehmen. Nach genügend vielen Schritten müssen damit alle Zahlen im 4-Tupel zu Nullen geworden sein.

Multiplikative Beharrlichkeit

Man nehme eine Zahl und bilde das Produkt ihrer Ziffern. Dies wiederholt man, falls möglich, mit der resultierenden Zahl, bis man bei einer einstelligen Zahl angelangt ist.

Die Anzahl der Schritte wird

multiplikative Beharrlichkeit

der Ausgangszahl genannt.

Zehn ist die kleinste natürliche Zahl, deren multiplikative Beharrlichkeit gleich 1 ist.

Man nimmt an, dass es für die multiplikative Beharrlichkeit der natürlichen Zahlen eine Obergrenze gibt.

Additive Beharrlichkeit

In Analogie zur multiplikativen Beharrlichkeit definiert man die additive Beharrlichkeit. Ausgehend von einer mehrstelligen Zahl addiert man deren Ziffern, vom Ergebnis wieder die Ziffern usw. bis eine einstellige Zahl übrig bleibt. Diese Zahl nennt man Ziffernwurzel und die Anzahl der Schritte additive Beharrlichkeit.

Die kleinsten natürlichen Zahlen mit einer Beharrlichkeit von 0, 1, 2, ... sind 0, 10, 19, 199, 1999 999999 999999, ...

Zuckerman-Zahl

Eine Zuckerman-Zahl ist eine positive ganze Zahl, die durch ihr Querprodukt teilbar ist.

Beispiel: 128, sie besitzt das Querprodukt $1 \cdot 2 \cdot 8 = 16$ und 16 teilt 128.

Aus der Definition folgen direkt zwei einfache Eigenschaften:

- 1) Jede einstellige positive Zahl ist eine Zuckerman-Zahl
- 2) Jede Zahl, deren Darstellung die Ziffer 0 enthält, ist keine Zuckerman-Zahl

Die ersten Zuckerman-Zahlen sind:

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 36, 111, 112, 115, 128, 132, 135, 144, 175, 212, 216, 224, 312, 315, 384, 432, 612, 624, 672, 735, 816, 1111, 1112, 1113, 1115, 1116, 1131, 1176, 1184, 1197, 1212, 1296, 1311, 1332, 1344, 1416, 1575, 1715, 2112, 2144, ...

Unter einer allgemeinen Zuckerman-Zahl zur Basis b versteht man ein positive ganze Zahl, die im Zahlensystem der Basis b die beschriebene Eigenschaft besitzt.

Die Folge der ersten, mehrstelligen Zuckerman-Zahlen n mit steigender Quersumme $q=11,\,13,\,15,\,18,\,21,\,24,\,27,\,36,\,45,\,54$ ist $n=128,\,175,\,384,\,1197,\,8832,\,12768,\,34992,\,139968,\,1886976,\,78962688$ (gesucht bis 251111111, März 2009)

Waring-Problem

E.Waring (1734-1798)

Jede natürliche Zahl n ist Summe von höchstens g(k) k-ten Potenzen natürlicher Zahlen.

Dieses Probleme ist auch heute nur teilweise gelöst. 1909 konnte Hilbert mit Hilfe eines 25fachen Integrals zwar allgemein nachweisen, dass so ein g(k) stets existiert, aber es blieb unklar, wie das g(k) zu berechnen ist. Es ist

Lagrange ... g(2) = 4 (Vier-Quadrate-Satz)

... für Zahlen der Form $4^{n}(8k+7)$ gilt g(2) = 3 (Legendre 1798)

weiterhin bis heute bekannt:

q(3)=9 (Dickson), q(4)=19 (Balasubramanian 1986), q(5)=37 (Chen 1964)

1939 bewies Dickson, dass nur für 23 und 239 neun Kuben benötigt werden. Acht Kuben sind nur für 15, 22, 50, 114, 167, 175, 186, 212, 231, 238, 303, 364, 420, 428 notwendig. 8042 ist die größte mit einer Summe von 7 Kuben. 7373170279850 ist die größte natürliche Zahl, die bei der Waring-Dastellung mehr als vier Kuben benötigt. In den Tabellen sind für die ersten Zahlen die Basen der Waring-Summanden angegeben:

```
Waring-Problem für k = 2
10 ... 3; 1;
14 ... 3; 2;
                                           12 ...
                                                                 13 ... 3; 2;
                      11 ...
                             3; 1; 1;
                                                  3; 1; 1; 1;
       3; 2; 1;
                      15 ...
                             3; 2; 1; 1;
                                            16 ...
                                                  4;
                                                                 17 ...
                                                                        4; 1;
      4; 1; 1;
                                                                 21 ...
18 ...
                     19 ...
                             4; 1; 1; 1;
                                           20 ...
                                                  4; 2;
                                                                        4; 2; 1;
22 ... 4; 2; 1; 1;
                                                  4; 2; 2;
                     23 ...
                             3; 3; 2; 1;
                                           24 ...
                                                                 25 ...
                                                                        5;
26 ... 5; 1;
                     27 ... 5; 1; 1;
                                           28 ...
                                                  5; 1; 1; 1;
                                                                 29 ...
                                                                        5; 2;
Waring-Problem für k = 3
10 ... 2; 1; 1;
                                                  2; 1; 1; 1; 1; 13 ... 2; 1; 1; 1; 1; 1;
                     11 ... 2; 1; 1; 1;
                                           12 ...
14 ... 2; 1; 1; 1; 1; 1; 1;
                                            15 ...
                                                  2; 1; 1; 1; 1; 1; 1; 1;
16 ... 2; 2;
                                                                19 ... 2; 2; 1; 1; 1;
                     17 ... 2; 2; 1;
                                           18 ...
                                                  2; 2; 1; 1;
20 ... 2; 2; 1; 1; 1; 1;
                                           21 ...
                                                  2; 2; 1; 1; 1; 1; 1;
238 ... 6; 2; 2; 1; 1; 1; 1; 1; 1;
                                           239 ... 5; 3; 3; 2; 2; 2; 2; 1;
Waring-Problem für k = 4
10 ... 1; 1; 1; 1; 1; 1; 1; 1; 1;
                                            11 ... 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
12 ... 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
                                           13 ... 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
14 ... 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
                                                  16 ... 2;
                                                  2; 1;
                                           17 ...
18 ... 2; 1; 1;
                                            19 ... 2; 1; 1; 1;
20 ... 2; 1; 1; 1; 1;
                                           21 ... 2; 1; 1; 1; 1; 1;
23 ... 2; 1; 1; 1; 1; 1; 1; 1;
                                           25 ... 2; 1; 1; 1; 1; 1; 1; 1; 1;
                                           27 ... 2; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;
```

Eulersche Vermutung

Für die Zahl g(k) vermutet Euler (bis heute weder bewiesen noch widerlegt): $g(k) = 2^k + [(3/2)^k] - 2$ wobei [x] der ganzzahlige Anteil von x ist.

Damit ergeben sich für k = 2,3,4,... die Werte g(k) = 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, ... Furthermore und Mahler beweisen 1957, dass, wenn überhaupt, nur eine endliche Zahl von k die Eulersche Vermutung nicht erfüllen. 1990 gelang der Nachweis, dass für alle 5 < n < 471600000 die Eulersche Vermutung korrekt ist.

Vier-Quadrate-Satz

Unmittelbar mit dem Waring-Problem ist der Vierquadratesatz von Lagrange verbunden. Danach ist jede Primzahl der Form 4n+3 als Summe von vier Quadraten darstellbar.

Beispiele: 3 = 1 + 1 + 1 + 0; 31 = 25 + 4 + 1 + 1; 310 = 289 + 16 + 4 + 1

Es gibt Zahlen, für die es mehrere Darstellungen als Summe von vier Quadratzahlen gibt, z.B. für die 310 = 225 + 81 + 4 + 0.

Die Aussage des Satzes von Lagrange wurde bereits 1621 von Bachet und 1640 von Pierre de Fermat vermutet. Joseph Louis Lagrange veröffentlichte im Jahre 1770 den ersten Beweis. Dieser wurde drei Jahre später von Leonhard Euler wesentlich vereinfacht.

Der Satz wurde 1798 von Adrien-Marie Legendre erweitert. Nach ihm ist jede natürliche Zahl aus maximal drei Quadratzahlen zusammensetzbar, wenn sie nicht die Form $4^k(8m + 7)$ besitzt.

Legendre-Quadrate-Satz

Nach dem Waring-Problem für k = 2 und dem Vierquadratesatz von Lagrange kann jede natürliche Zahl als Summe von maximal vier Quadraten natürlicher Zahlen dargestellt werden.

Beispiele: 3 = 1 + 1 + 1 + 0; 31 = 25 + 4 + 1 + 1; 310 = 289 + 16 + 4 + 1

Der Satz wurde 1798 von Adrien-Marie Legendre erweitert. Nach ihm ist jede natürliche Zahl aus maximal drei Quadratzahlen zusammensetzbar, wenn sie nicht die Form $4^k(8m + 7)$ besitzt. Die ersten Zahlen dieser Art sind

7, 15, 23, 28, 31, 39, 47, 55, 60, 63, 71, 79, 87, 92, 95, 103, 111, 112, 119, 124, 127, 135, 143, ...

Fünf-Kuben-Satz (Hardy, Wright)

Es ist im Waring-Problem g(3)=5, wenn auch Potenzen rationaler Zahlen zugelassen werden :

```
n = n^3 - 6 * x = n^3 - (x+1)^3 - (x-1)^3 + x^3 + x^3
```

Einfachste Zerlegung in Kuben mit mindestens einer Basis größer als 5 und keiner Basis kleiner 3:

```
12 = -11^3 + 10^3 + 7^3
                               21 = 16^3 - 14^3 - 11^3
                                                                  31 = 52^3 - 44^3 - 44^3 + 31^3
39 = -159.380^3 + 134.476^3 + 117.367^3
41 = 8^3 - 7^3 - 4^3 - 4^3
                                44 = 8^3 - 7^3 - 5^3
                                                                  47 = -8^3 + 7^3 + 6^3
50 = -49^3 + 41^3 + 29^3 + 29^3 51 = -796^3 + 659^3 + 602^3
                                                                  70 = -21^3 + 20^3 + 11^3
76 = -11^3 + 10^3 + 7^3 + 4^3 78 = -55^3 + 53^3 + 26^3
                                                                  79 = 35^3 - 33^3 - 19^3
82 = 14^3 - 11^3 - 11^3
                                86 = -31^3 + 29^3 + 14^3 + 14^3 87 = 4.271^3 + 4.126^3 - 1.972^3
                                                                  96 = -22^3 + 20^3 + 14^3
89 = -7^3 + 6^3 + 6^3
                                93 = 7^3 - 5^3 - 5^3
100 = 7^3 - 6^3 - 3^3
```

Alle anderen Zahlen kleiner 100 sind relativ einfach zerlegbar.

Zyklische Zahlen, Generatorzahl

... natürliche Zahl mit n-1 Ziffern, welche bei Multiplikation mit 1, 2, 3, ..., n-1 wieder die gleichen n-1 Ziffern ergibt, jedoch in einer anderen Reihenfolge, z.B.

Zyklische Zahlen können durch Stammbrüche 1/n mit maximaler Periodenlänge; d.h. Periodenlänge von n-1; erzeugt werden. Die Periode des Stammbruches bildet dann eine zyklische Zahl, n heißt dann Generatorzahl, z.B. 7, 17, 19, 23, 29, 47, 59, 61, 97, ...

Es ist bewiesen, dass es unendlich viele zyklische Zahlen gibt. Nach einer (noch nicht bewiesenen) Abschätzung konvergiert der Anteil der Primzahlen, welche zyklische Zahlen generieren, gegen 3/8. Das Produkt einer zyklischen Zahl mit ihrer Generatorzahl ergibt stets eine Ziffernfolge, welche ausschließlich aus Ziffern 9 besteht.

Die Folge der Generatorzahlen: 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, ... wird auch Whitechapel-Folge genannt.

p Periode

- 07 0.142857
- 17 0.0588235294117647
- 19 0.052631578947368421
- 23 0.0434782608695652173913
- 29 0.0344827586206896551724137931
- 47 0.0212765957446808510638297872340425531914893617
- 59 0.0169491525423728813559322033898305084745762711864406779661
- 61 0.016393442622950819672131147540983606557377049180327868852459

Generatorzahlen

Die Liste enthält die ersten Generatorzahlen:

7	17	19	23	29	47	59	61	97	109	113	131	149
167	179	181	193	223	229	233	257	263	269	313	337	367
379	383	389	419	433	461	487	491	499	503	509	541	571
577	593	619	647	659	701	709	727	743	811	821	823	857
863	887	937	941	953	971	977	983	1019	1021	1033	1051	1063
1069	1087	1091	1097	1103	1109	1153	1171	1181	1193	1217	1223	1229
1259	1291	1297	1301	1303	1327	1367	1381	1429	1433	1447	1487	1531
1543	1549	1553	1567	1571	1579	1583	1607	1619	1621	1663	1697	1709
1741	1777	1783	1789	1811	1823	1847	1861	1873	1913	1949	1979	

Dezimalbruchzyklen

Die Dezimalbruchentwicklung von Brüchen der Form n/7 liefert als Perioden

 $1/7 = 0.142857 142857 \dots 2/7 = 0.285714 285714 \dots$

 $3/7 = 0.428571 428571 \dots 4/7 = 0.571428 571428 \dots usw.$

Da 7 eine zyklische Zahl ist, sind die entstehenden Zyklen gleich.

Bei 1/13 ist dies anders

1/13 = 0,076923 076923 ... 2/13 = 0,153846 153846 ...

 $3/13 = 0.230769 230769 \dots usw.$

Insgesamt findet man zwei verschiedene Dezimalbruchzyklen für die 13: 076923 und 153846

1/3 liefert auch zwei Zyklen 3 und 6

1/11 ergibt fünf Zyklen 09, 18, 27, 36 und 45

Allgemein gilt: Für eine Primzahl p, außer 2 und 5, haben alle Zyklen die gleiche Länge.

Die Länge eines Zyklus ist die kleinste natürliche Zahl m, für die 10^m modulo p den Rest 1 lässt.

Die Länge m eines Zyklus ist ein Teiler von p-1.

Eine Primzahl p, die nur einen Zyklus besitzt, der Länge p-1, heißt lange Primzahl.

Harshad-Zahl, Niven-Zahl

Eine Harshad-Zahl oder Niven-Zahl ist eine natürliche Zahl, die durch ihre Quersumme, d.h. die Summe ihrer Ziffern im Dezimalsystem, teilbar ist. Beispielsweise ist 777 durch 7 + 7 + 7 = 21 teilbar: 777 = 21 \cdot 37. Einstellige Zahlen sind trivialerweise Harshad-Zahlen.

Die ersten mehrstelligen Harshad-Zahlen sind: 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, ...

Das Beispiel der Zahl 777 lässt sich auf alle 3-stelligen natürlichen Zahlen desselben Typs verallgemeinern.

Jede natürliche Zahl der Form nnn, wobei n eine beliebige Ziffer von 0 bis 9 darstellen kann, ist eine Harshad-Zahl, also lässt sich durch ihre Quersumme teilen.

Nachweis: $nnn = n \cdot 10^2 + n \cdot 10 + n = n (100 + 10 + 1) = n \cdot 101 = 3n \cdot 37$

Damit ist jede natürliche Zahl der Form nnn das 37-fache ihrer Quersumme, also eine Harshad-Zahl.

1994 bewies H.G.Grundman, dass es keine 21 aufeinanderfolgenden ganzen Zahlen gibt, die alle Harshad-Zahlen sind. Außerdem gab er die kleinste Folge 20 aufeinanderfolgender Harshad-Zahlen an. Deren erste Zahl ist größer als $10^{44363342786}$.

Überträgt man das Konzept der Harshad-Zahlen auf Positionssysteme mit beliebiger Basis b, so zeigte Cai 1996, dass es im Dualsystem unendlich oft vier aufeindanderfolgende Harshad-Zahlen gibt, im Ternärsystem unendlich oft sechs solche Zahlen.

Abgerundete Zahlen

... sind Zahlen, die dadurch entstanden sind, dass am niederwertigen Ende der Zahlen eine oder mehrere Grundziffern der Zahl durch Nullen ersetzt wurden.

Die Nullen hinter einem Komma werden in der Darstellung der abgerundeten Zahlen dann weggelassen. Beispielsweise entsteht durch Abrunden der Zahl 3,14 die Zahl 3,10, die dann als 3,1 geschrieben wird.

Absolute PSP-Zahlen

... sind eine spezielle Art der Pseudoprimzahlen, die als zusammengesetzte Zahlen den kleinen Fermatschen Satz als Primzahltest unerkannt für alle Basen a überstehen.

Eine andere und geläufigere Bezeichnung für eine absolute PSP-Zahl ist Carmichael-Zahl. Dass unendlich viele Carmichaelzahlen existieren, ist erst 1994 bewiesen worden.

Arme Zahlen ... auch als defizient oder mangelhaft bezeichnet, sind natürliche Zahlen, deren Summe ihrer positiven Teiler kleiner ist als das Doppelte der Zahlen selbst

Assoziierte Zahlen ... sind Zahlen, welche dieselben Teiler und Vielfachen besitzen. Im Zahlenbereich der natürlichen Zahlen gibt es keine assoziierten Zahlen, im Zahlenbereich der ganzen Zahlen haben die assoziierten Zahlen die Form a und -a.

Aufgerundete Zahlen ... sind Zahlen, die dadurch entstanden sind, dass am niederwertigen Ende der Zahlen eine oder mehrere Grundziffern der Zahl durch Nullen ersetzt wurden und zusätzlich zu der ersten Stelle links neben den durch Nullen ersetzten Ziffern eine Eins addiert wurde.

Basiszahl ... wenn man Dreieckszahlen nach der Vorschrift d = 1 + 2 + 3 + ... + n berechnet, dann ist n die Basiszahl zur Dreieckszahl d.

BCD-Zahlen ... (binary coded decimal numbers) sind Dezimalzahlen, deren einzelne Ziffern durch Binärzahlen dargestellt werden, die 42 beispielsweise wird dann als BCD-Zahl wie folgt geschrieben: 0100 0010

Befriedigende Zahl

... ist die Bezeichnung für eine Beschreibungszahl, die eine zirkelfreie Maschine beschreibt. Dabei ist es unentscheidbar, ob eine Zahl befriedigend ist oder nicht, das heißt, diese Eigenschaft einer Zahl beschreibt mit anderen Worten gerade das Halteproblem für die Turing-Maschine

Bellzahl

... (benannt nach Eric Temple Bell). Die Bellzahl bezeichnet die Anzahl möglicher Partitionen über eine Menge mit n Elementen. Beispielsweise ist die Bellzahl für eine 3-elementige Menge die 5, da sich die Menge {a,b,c} in folgende 5 Möglichkeiten partitionieren lässt:

1. {a,b,c}; 2. {a,b} und {c}; 3. {a,c} und {b}; 4. {b,c} und {a}; 5. {a} und {b} und {c}. Die ersten Bell-Zahlen sind

1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057, 51724158235372, 474869816156751, 4506715738447323, 44152005855084346, 445958869294805289, 4638590332229999353, ...

Binärzahlen ... auch als Dualzahlen oder dyadische Zahlen bezeichnet, sind Zahlen aus dem Binärsystem, das heißt, Binärzahlen sind Zahlen mit der Basis Zwei

Dekadische Zahlen ... auch als Dezimalzahlen bezeichnet, sind Zahlen aus dem dekadischen Zahlensystem, das heißt, dekadische Zahlen sind Zahlen mit der Basis Zehn

Delianzahl ... ist die Bezeichnung für die dritte Wurzel aus Zwei.

Drehzahlen ... sind konkrete Zahlen, die für rotierende Objekte die Umdrehungen pro Zeiteinheit angeben.

Duodezimalzahlen ... sind Zahlen aus dem Duodezimalsystem, das heißt, Duodezimalzahlen sind Zahlen mit der Basis Zwölf.

D-Zahl ... Zahl n > 3, für welche n ein Teiler von (a^{n-2} -a) für alle a < n mit ggT(a,n)=1 ist. Es existieren unendlich viele. Die ersten D-Zahlen sind 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 693, 699, 717, 723, 753, 771, 789, 807, 813, 819, 831, 843, 849, 879, 921, 933, 939, 951, 993, ...

Echte Zufallszahlen

- ... (truly random numbers) sind Zufallszahlen, die von einem Generator mit folgenden Eigenschaften erzeugt werden:
- 1. Der Generator scheint zufällig zu sein. Das bedeutet, dass die erzeugten Zahlen sämtliche bekannten statistischen Zufallstests bestehen.
- 2. Die erzeugten Zahlen sind nicht voraussagbar. Es ist unmöglich zu berechnen, welche Zufallszahl als nächstes kommt, selbst wenn der Algorithmus oder die Hardware, die die Zahlen erzeugen, sowie alle vorhergehenden Zahlen bekannt sind.
- 3. Der Generator ist nicht zuverlässig reproduzierbar. Wenn man den Generator zweimal mit exakt derselben Eingabe, soweit dies möglich ist, laufen lässt, erhält man zwei Zufallsfolgen, die keinerlei Ähnlichkeiten aufweisen.

Elementezahl ... auch als Kardinalzahl bezeichnet, gibt die Anzahl der Elemente einer Menge an. Diese Zahl wird auch als Kardinalität der Menge bezeichnet.

Fortunate Zahlen, Fortune Zahlen

Fortune Zahlen, benannt nach Reo Franklin Fortune 1903-1979, sind Zahlen der Form q - P. Dabei ist P das Produkt der ersten n Primzahlen und q die kleinste Primzahl größer als P + 1.

Ist beispielsweise n = 4, so ist $P = 2 \cdot 3 \cdot 5 \cdot 7 = 210$ und q = 223 und damit ist die 4. Fortune Zahl 223 - 210 = 13. Die Folge der Fortune Zahlen lautet:

5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167, 439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331, 283, 277, 271, 401, 307, 331, 379, 491, 331, 311, 397, 331, 353, 419, 421, 883, 547, 1381, 457, 457, 373, 421, 409, 1061, 523, 499, 619, 727, 457, 509, 439, 911, 461, 823, 613, 617, 1021, 523, 941, 653, 601, 877, 607, 631, 733, 757, 877, 641, 877, 1423, 929, 839, 641, 839, 971, 859, 1019, 643, 733, 743, 653, 1031, 1069, 983, 653, 769, ...
Fortune vermutete, dass alle Fortunate-Zahlen Primzahlen sind. Bis 2008 wurden keine

Gemischte Zahlen ... sind Zahlen, deren ganzzahliger und echt gebrochener Anteil getrennt dargestellt werden. Dabei ist zu beachten, dass hier keine Multiplikation in der Darstellung ausgedrückt wird.

Gezeichnete Zahlen ... ist die Bezeichnung für die bildliche Darstellung von Zahlen durch Strecken, Flächen, Prozentstreifen, Prozentkreise, Symbole oder Diagramme.

Gödel Zahlen

zusammengesetzten Zahlen dieser Art gefunden.

Gödel-Zahlen sind natürliche Zahlen, welche eindeutig Zeichenketten zugeordnet werden. Eine Abbildung von Zeichenketten in die natürlichen Zahlen wird Gödelisierung genannt, wenn die Abbildung total, injektiv, berechenbar, der Wertebereich entscheidbar und auch die Umkehrung berechenbar ist. Es gibt mehrere Gödelisierungsabbildungen. Die bekannteste ist die von Gödel selbst im Jahre 1931 eingeführte Abbildung, welche den Hauptsatz der Zahlentheorie benutzt.

Eine Möglichkeit der Kodierung wäre, den Buchstaben fortlaufende Nummern zuzuweisen. Ein "a" entspricht der 1, ein "b" der 2 und ein "c" der 3, ...
Die Gödel-Nummerierung ("man gödelisiert") erhält man, indem man die dem Buchstaben

entsprechenden Potenzen der fortlaufenden Primzahlen 2, 3, 5, 7, ... miteinander multipliziert:

Für das Wort "abccba" ergibt sich: für das "a" an 1.Stelle $2^1=2$; für das "b" an 2.Stelle $3^2=9$; für das "c" an 3.Stelle $5^3=125$, und für die folgenden Buchstaben $7^3=343$, $11^2=121$ und $13^11=13$. Die Gödelnummer für "abccba" ist dann $2\cdot 9\cdot 125\cdot 343\cdot 121\cdot 13=1213962750$ Aufgrund der Eindeutigkeit der Primfaktorzerlegung lässt sich aus jeder Gödelzahl das Wort rekonstruieren.

Heegner Zahlen

... (benannt nach Kurt Heegner) sind die Zahlen -1, -2, -3, -7, -11, -19, -43, -67 und -163. Genau diese neun Zahlen führen als Diskriminante in einem imaginären quadratischen Zahlkörper zu einer eindeutigen Zerlegung in Primelemente.

H-Zahlen ... sind Zahlen der Form 3n + 1, dabei ist n eine nichtnegative ganze Zahl. Das Produkt zweier H-Zahlen ergibt wieder eine H-Zahl. Die Bezeichnung dieser Zahlen als H-Zahlen, lässt sich darauf zurückführen, dass diese Zahlen auf ein Beispiel von David Hilbert beruhen.

H-Primzahlen

... sind die H-Zahlen n, die größer als 1 sind und in ihrer multiplikativen Zerlegung in H-Zahlen nur die Faktoren 1 und n besitzen. Die Folge der H-Zahlen lautet also 4, 7, 10, 13, 19, 22, 25, Die Primfaktorzerlegung der H-Zahlen ist übrigens nicht eindeutig, so ist beispielsweise 100 = 10 * 10 = 4 * 25.

Inkommensurable Zahlen

... auch als teilerfremde Zahlen bezeichnet, sind ganze Zahlen, die, außer 1 und -1, keinen gemeinsamen ganzzahligen Teiler besitzen, also Zahlen, deren Zerlegung in ihre Primfaktoren disjunkte Mengen von Primzahlen erzeugt.

Irreguläre Primzahlen

... sind die Primzahlen, die nicht regulär sind, also beispielsweise die Zahlen 37, 59 und 67 als einzige zweistellige irreguläre Primzahlen. Seit 1915 ist bekannt, dass es unendlich viele irreguläre Primzahlen gibt.

Die ersten irregulären Primzahlen sind:

37, 59, 67, 101, 103, 131, 149, 157, 233, 263, 271, 283, 307, 379, 409, 463, 467, 541, 577, 587, 593, 617, 631, 653, 683, 691, 827, 839

Kennzahl

Es gilt $a = m*10^k$ mit a > 0, m ist Element von dem rechtsoffenen Intervall [1,10), k ist Element von Z und lg a = lg m + k mit m = Mantisse, lg m ist Element von dem rechtsoffenen Intervall [0,1). Die Kennzahl k des Logarithmus ist dann die Zahl, die in etwa gleich dem Exponenten des Stellenwertes der führenden Ziffer des Numerus ist und gleich der Stellenzahl der Mantisse vor dem Komma minus 1

bzw. bei echten Dezimalbrüchen negativ gleich der Anzahl der Nullen bis zur ersten von der Null verschiedenen Ziffer.

Beispiele: $27.900 = 2,79 * 10^4$ und lg 27.900 = 1g 2,79 + 4 = 4,44560 $0,00549 = 5,49 * 10^{-3}$ und lg 0,00549 = 1g 5,49 - 3 = -2,26043

Knödel Zahlen

 \dots sind Zahlen der unendlichen Mengen C_k . Dabei ist k eine natürliche Zahl und C_k bezeichnet diejenigen zusammengesetzten Zahlen n>k, für die gilt

1 < a < n ggT(a, n) = 1 a^{n-k} ist kongruent zu 1 (mod n)

Für k = 1 wird die Menge der Carmichael Zahlen definiert.

Kommensurable Zahlen

... sind ganze Zahlen, die, außer 1 und -1, mindestens noch einen weiteren gemeinsamen ganzzahligen Teiler besitzen, also Zahlen, in deren Zerlegung in ihre Primfaktoren gemeinsame Primzahlen auftreten.

Nichtnegative Zahlen ... sind positive Zahlen und die 0

Nichtverschwindende Zahlen ... sind variable Zahlenwerte, die den Wert 0 nicht annehmen.

NSW-Zahlen

Diese Zahlen wurden 1981 zuerst von Morris Newman, Daniel Shanks und Hugh C.Williams bei der Untersuchung endlicher einfacher Gruppen mit quadratischer Ordnung eingeführt.

NSW-Zahlen sind Zahlen der Zahlenfolge {1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, ...}

Setzt man für m nichtnegative, ganze Zahlen ein, ergeben sich diese Zahlen mit der Bildungsvorschrift $S_{2m+1}=1/2\;((1+\sqrt{2})^{2m+1}+(1-\sqrt{2})^{2m+1})$

Rekursion $S_0 = 1$; $S_1 = 1$ $S_n = 2 S_{n-1} + S_{n-2}$

NSW-Primzahl ... ist eine Zahl, die NSW-Zahl und gleichzeitig Primzahl ist. Bis zum Index m = 20000 existieren nur fünf NSW-Primzahlen: 7, 41, 239, 9369319, 1855077821

Parasitenzahl

Parasitenzahlen sind Zahlen, die eine spezielle Eigenschaft bei der Multiplikation mit 7 aufweisen. Multipliziert man die Zahl mit 7, so ergibt sich das Ergebnis auch dadurch, dass die 1.Ziffer der Zahl an die letzten Stelle geschoben wird.

Zum Beispiel ergibt 1 014 492 753 623 188 405 797 bei der Multiplikation mit 7 als Ergebnis 7 101 449 275 362 318 840 579.

Pell Zahlen ... sind Zahlen, der Pell Folge. Das ist eine Lucas Folge der Form $U_n(2, -1)$. Die Folge lautet ... 0, 1, 2, 5, 12, 29, 70, 169, 408, ...

Pell Zahlen 2. Art ... sind Zahlen, der Pell Folge. Das ist eine Lucas Folge der Form $V_n(2, -1)$. Die Folge lautet ... 2, 2, 6, 14, 34, 82, 198, 478, 1154, ...

Permutierbare Primzahlen

Permutierbare Primzahlen sind Primzahlen mit mindestens 2 Stellen, die immer eine weitere Primzahl ergeben, wenn man ihre Ziffern willkürlich vertauscht.

Ein einfaches Beispiel ist die 13, ein anderes Beispiel die 337, da auch 733 und 373 Primzahlen sind. Zur Basis 10 sind die ersten permutierbaren Primzahlen 13, 17, 37, 79, 113, 199, 337, ... deren Permutationen sowie die Repunit-Primzahl 11.

Richert, der diese Zahlen 1951 untersuchte, nannte sie permutierbare Primzahlen. Später wurde auch der Name absolute Primzahl verwendet.

Offensichtlich können solche Primzahlen keine Ziffern 2, 4, 6, 8 oder 5 enthalten. Auf Grund der Teilbarkeitsregel mit der Zahl 7 gilt:

Jede permutierbare, n-stellige Primzahl ist eine Fast-Repdigit-Zahl, d.h. eine Permutation der ganzen Zahl

 $B_n(a,b) = aaa...aab$

wobei a und b verschiedene Ziffern aus der Menge {1, 3, 7, 9} sind. Durch A.Slinko wurde sogar gezeigt, dass für (a,b) nur die Paare (1,3), (1,9), (3,1), (3,7), (7,3) und (7,9) möglich sind. Weiterhin gilt:

Es sei $B_n(a,b)$ eine permutierbare Primzahl und p eine Primzahl mit p > n. Wenn 10 eine Primitivwurzel von p ist, p die Ziffer a nicht teilt, dann ist n ein Vielfaches von p-1.

Fordert man nicht, dass a verschieden von b ist, so sind Repunit-Primzahlen trivialerweise permutierbar. Ob es unendlich viele Repunit-Primzahlen gibt, ist nicht bekannt.

Ebenso ist nicht bekannt, ob die Anzahl der echt permutierbaren Primzahlen unendlich ist. Zumindest weiß man, dass die Ziffernzahl n einer permutierbaren Primzahl mit mehr als 6 Ziffern, ein Vielfaches von 11088 sein muss. Durch Richert wurde 1951 vermutet, dass $n > 6 \cdot 10^{175}$ sein muss.

Perrin-Pseudoprimzahlen ... sind zusammengesetzte, natürliche Zahlen n, die A(n) teilen. Dabei ist A(n) wie folgt definiert:

A(0)=3, A(1)=0, A(2)=2 und für n>2 ist A(n)=A(n-3)+A(n-2).

Proniczahlen ... sind Zahlen, die aus Addition einer Dreieckszahl mit sich selbst oder durch Multiplikation zweier aufeinanderfolgender natürlicher Zahlen entstanden sind

Quinärzahlen ... sind Zahlen aus dem Quinärsystem, das heißt, Quinärzahlen sind Zahlen mit der Basis Fünf.

Reguläre Primzahlen

Reguläre Primzahlen sind die Primzahlen p, die keinen Zähler der rationalen Bernoulli-Zahlen B_2 , B_4 , ..., B_{p-3} in ihrer gekürzten Darstellung teilen. Die Primzahlen 3, 5, 7, 11, 13, 17 und 19 sind beispielsweise regulär.

Ob es unendlich viele reguläre Primzahlen gibt, ist unbekannt. Die ursprüngliche Regularitätsdefinition von Kummer erfordert umfangreiche algebraische Vorkenntnisse. Motivation für diese Definition war die Fermatsche Vermutung. Kummer bewies 1850, dass für jede reguläre Primzahl p die Gleichung $a^p + b^p = c^p$ keine nichttriviale, ganzzahlige Lösung besitzt.

Untersucht man die Zähler der ersten 150 Bernoulli-Zahlen, so ergeben sich folgende irreguläre Primzahlen < 1000:

37, 59, 67, 101, 103, 131, 149, 157, 233, 263, 271, 283, 307, 379, 409, 463, 467, 541, 577, 587, 593, 617, 631, 653, 683, 691, 827, 839

Die nachfolgende Tabelle enthält die Primteiler der Zähler der ersten Bernoulli-Zahlen B_n (August 2007). Ein Eintrag ??? weist auf eine mehr als 60stellige zusammengesetzte Zahl hin. Alle Primteiler kleiner als 1 Million sind angegeben. Eine ausführliche Liste irregulärer Primzahlen finden Sie unter

n	Teiler		
10	5	12	691
14	7	16	3617
18	43867	20	283, 617
22	11, 131, 593	24	103, 2294797
26	13, 657931	28	7, 9349, 362903
30	5, 1721, 1001259881	32	37, 683, 305065927
34	17, 151628697551	36	26315271553053477373
38	19, 154210205991661	40	137616929, 1897170067619
42	1520097643918070802691		

Tabelle der irregulären Primzahlen

Eine Primzahl p ist irregulär, wenn sie einen Zähler der rationalen Bernoulli-Zahlen B_2 , B_4 , ..., B_{p-3} in ihrer gekürzten Darstellung teilt. Durch Jensen wurde 1915 bewiesen, dass es unendlich viele irreguläre Primzahlen der Form $p \equiv 3$ modulo 4 gibt. Metsänkylä bewies später, dass auch unendliche viele irreguläre Primzahlen der Form $p \equiv 1$ modulo 3 und $p \equiv 1$ modulo 4 existieren.

Es wird vermutet (nach Ribenboim), dass $1/\sqrt{e} \approx 60$ % aller Primzahlen regulär sind.

Die Tabelle enthält die irregulären Primzahlen bis 100000:

37	59	67	101	103	131	149	157
233	257	263	271	283	293	307	311
347	353	379	389	401	409	421	433
461	463	467	491	523	541	547	557
577	587	593	607	613	617	619	631
647	653	659	673	677	683	691	727
751	757	761	773	797	809	811	821
827	839	877	881	887	929	953	971
1061	1091	1117	1129	1151	1153	1193	1201
1217	1229	1237	1279	1283	1291	1297	1301
1307	1319	1327	1367	1381	1409	1429	1439
1483	1499	1523	1559	1597	1609	1613	1619
1621	1637	1663	1669	1721	1733	1753	1759
1777	1787	1789	1811	1831	1847	1871	1877
1879	1889	1901	1933	1951	1979	1987	1993
1997	2003	2017	2039	2053	2087	2099	2111
2137	2143	2153	2213	2239	2267	2273	2293
2309	2357	2371	2377	2381	2383	2389	2411

```
2423
      2441
             2503
                    2543
                           2557
                                 2579
                                        2591
                                               2621
2633
      2647
             2657
                    2663
                           2671
                                 2689
                                        2753
                                               2767
                    2833
                           2857
                                 2861
                                        2909
                                               2927
2777
      2789
             2791
2939
      2957
             2999
                    3011
                           3023
                                 3049
                                        3061
                                               3083
```

Im Rahmen der Suche nach den größten bekannten Primzahlen wurden auch sehr große irreguläre Primzahlen gefunden. Die Rekordliste von August 2007 ist

```
irreguläre Primzahl Stellen
1
       33957462 · B(2370)/40685
                                    5083
2
       276474 · B(2030)/(19426085 · 24191786327543)
                                                          4200
3
       -2730 · B(1884)/100983617849
                                            3844
4
       2840178 · B(1870)/85 3821
5
       -197676570 · 18851280661 · B(1836)/(59789 · 3927024469727)
6
       642 · B(1802)/15720728189 3641
       -2090369190 · B(1236)/(103 · 939551962476779 · 157517441360851951) 2276
7
8
       -36870 · B(1228)/1043706675925609 2272
       -54570 · B(848)/(428478023 · 5051145078213134269)
9
       138 \cdot B(814)/(28409964671 \cdot 335055893 \cdot 351085907 \cdot 520460183 \cdot 30348030379 \cdot
10
17043083582983)
                      1311
       354 · B(754)/(377 · 883462452530494157)
11
                                                  1225
       \textbf{-690} \cdot \text{B(748)/(720511} \cdot 138192830377045750339532383)}
12
                                                                  1201
13
       6 · B(734)/(377231593 · 75401119 · 170508089)
                                                          1178
14
       -88230 · B(688)/(465776197109 · 1913589601207) 1088
15
       6 · B(674)/337 1077
```

Die größte durch vollständiges Faktorisieren der Zähler von Bernoullischen Zahlen gefundene irreguläre Primzahl ist

 $-2 \cdot 3 \cdot 5 \cdot 23 \cdot B(748)/(11 \cdot 17 \cdot 3853 \cdot 138192830377045750339532383)$

Die Zahl ergab sich bei der Untersuchung der 2000. Bernoullischen Zahl.

Euler-irreguläre Primzahlen

In Analogie zu den irregulären Primzahlen bezüglich der Bernoullischen Zahlen können auch Eulerirreguläre Primzahlen in Bezug auf die Eulerschen Zahlen betrachtet werden.

Eine Primzahl p heißt Euler-irregulär, wenn sie eine Eulersche Zahl E(n); mit 1 < 2n < p-1; teilt. Euler-irreguläre Primzahlen sind z.B. 19 und 61.

Untersucht man die ersten 100 Euler-Zahlen, so ergeben sich folgende Euler-irreguläre Primzahlen < 1000:

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 193, 277, 307, 311, 349, 353, 587, 967 Im Rahmen der Suche nach den größten bekannten Primzahlen wurden auch sehr große Euler-irreguläre Primzahlen gefunden. Die Rekordliste von August 2007 ist

```
Platz Euler-irreguläre Primzahl Stellen
```

```
-E(2762)/2670541
1
                             7760
       E(1736)/(55695515 \cdot 75284987831 \cdot 3222089324971117)
2
3
       E(1468)/(95 \cdot 217158949445380764696306893 \cdot 597712879321361736404369071)
                                                                                          3671
4
       -E(1078)/361898544439043 2578
5
       E(1028)/(6415 \cdot 56837916301577)
                                           2433
       E(1004)/(579851915 · 80533376783) 2364
6
7
       -E(902)/(9756496279 · 314344516832998594237)
                                                          2069
8
       -E(886)/68689 2051
       -E(638)/(7235862947323 \cdot 11411779188663863 \cdot 526900327479624797)
9
                                                                                1343
10
       -E(510)1062
       -E(526)/(5062100689 \cdot 71096484738291757946225730043997)
                                                                        1060
E(xxx) bedeutet dabei die xxx.te Eulersche Zahl.
```

Reiche Zahlen ... sind abundante Zahlen

Schnapszahl ... ist eine mehrstellige Zahl, bei der an jeder Stelle die gleiche Ziffer steht **Schwere Zahlen** ... sind Zahlen, die keine kleinen Faktoren besitzen und auch nicht von besonderer Struktur sind, so dass sie sich leicht faktorisieren lassen

Smith-Zahlen

Smith-Zahlen sind Zahlen deren Quersumme gleich der Summe der Quersummen ihrer Primfaktoren ist. Primzahlen werden nicht betrachtet, da sie diese Bedingung stets erfüllen.

Beispiel: 4 937 775 = 3.5.5.65837. Die Ziffern der Zahl wie auch ihrer Primfaktoren summieren sich zu 42.

Die ersten Smith-Zahlen im Dezimalsystem sind

4, 22, 27, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 378, 382, 391, 438, 454, 483, 517, 526, 535, 562, 576, 588, 627, 634, 636, 645, 648, 654, 663, 666, 690, 706, 728, 729, 762, 778, 825, 852, 861, 895, 913, 915, 922, 958, 985, 1086, ...

1987 bewies W.L.McDaniel, dass es unendlich viele Smith-Zahlen gibt. Bis 1 Million existieren 29928 Smith-Zahlen, bis 10^{10} 2,41%.

Ihren Namen erhielten die Smith-Zahlen von Albert Wilansky, der diese nach seinem Schwager Harold Smith benannte, dessen Telefonnummer 4937775 die erste bekannte Smith-Zahl war.

Smith-Zahlen lassen sich aus Repunit-Zahlen, die prim sind, konstruieren. R_n ist die Repunit-Zahl mit n Stellen. Ist R_n prim, so ist 3304· R_n eine Smith-Zahl. 3304 ist dabei nur der kleinste Multiplikator, der zum Ziel führt.

Palindrome Smith-Zahlen

Smith-Zahlen werden auf verschiedene Eigenschaften untersucht.

Smith-Zahlen mit genau zwei Primteilern werden Smith-Halbprimzahlen genannt. Die ersten sind 4, 22, 58, 85, 94, 121, 166, 202, 265, 274, 319, 346, 355, 382, 391, 454, 517, 526, 535, 562, 634, 706, 778, ...

Smith-Zahlen können auch palindromisch sein.

4, 22, 121, 202, 454, 535, 636, 666, 1111, 1881, 3663, 7227, 7447, 9229, 10201, 17271, 22522, 24142, 28182, oder umgekehrbar, d.h. auch die Ziffernumkehrung ist Smith-Zahl 4, 22, 58, 85, 121, 202, 265, 319, 454, 535, 562, 636, 666, 913, 1111, 1507, 1642, 1881, 1894, 1903,

2461, 2583, 2605, 2614, 2839, 3091, 3663, 3852, 4162, 4198, 4369, 4594, 4765, 4788, 4794, 4954, 4974, 4981, ...

Bisher kennt man drei Fibonacci-Zahlen die auch Smith-Zahlen sind:

 $F_{31} = 1346269 = 557 \cdot 2417$

 $F_{77} = 5527939700884757 = 13 \cdot 89 \cdot 988681 \cdot 4832521$

 $\begin{aligned} F_{231} &= 844617150046923109759866426342507997914076076194 = 2 \cdot 13 \cdot 89 \cdot 421 \cdot 19801 \cdot 988681 \cdot \\ &4832521 \cdot 9164259601748159235188401 \end{aligned}$

Smith-Quadratzahlen: 4, 121, 576, 729, 6084, 10201, 17424, 18496, 36481, 51529, 100489, 124609, 184041, 195364, 410881, ...

Smith-Kubikzahlen: 27, 729, 19683, 474552, 7077888, 7414875, 8489664, 62099136, 112678587, 236029032, ...

Smith-Dreieckszahlen: 378, 666, 861, 2556, 5253, 7503, 10296, 16653, 27261, 28920, 29890, 32896, 46056, 72771, 84255, 85905, ...

Smith-Paare, -Tripel, ...

Aufeinanderfolgende Smith-Zahlen 728 und 729 oder 2964 und 2965 werden Smith-Brüder (engl. Smith brothers) genannt. Es ist unbekannt, ob es unendliche viele dieser Paare gibt. Die ersten sind

(728, 729), (2964, 2965), (3864, 3865), (4959, 4960), (5935, 5936), (6187, 6188), (9386, 9387), (9633, 9634), (11695, 11696), (13764, 13765), (16536, 16537), (16591, 16592), (20784, 20785), (25428, 25429), (28808, 28809), (29623, 29624), (32696, 32697), (33632, 33633), (35805, 35806), (39585, 39586), (43736, 43737), (44733, 44734), (49027, 49028), ...

Bis 10⁹ gibt es 615885 Smith-Brüder.

Der aufeinanderfolgende Smith-Zahlen sind Smith-Tripel. Die ersten sind

(73615, 73616, 73617), (209065, 209066, 209067), (225951, 225952, 225953), (283745, 283746, 283747), ...

Bis 10⁹ gibt es 15955 Tripel.

Die Anfangszahlen der ersten Smith-Quadrupel sind (384 bis 10⁹)

4463535, 6356910, 8188933, 9425550, 11148564, 15966114, 18542654, 21673542, 22821992, 23767287, ...

Die Anfangszahlen der Smith-Quintupel bis 10⁹ sind

15966114, 75457380, 162449165, 296049306, 296861735, 334792990, 429619207, 581097690,

581519244, 582548088, 683474015, 809079150, 971285861 und 977218716

Bisher kennt man bis 10¹⁰ nur ein Smith-6-Tupel, welches mit 2050918644 beginnt.

Smith-Tupel höher als 6.Grades wurden bis 10¹⁰ nicht gefunden.

k-Smith-Zahlen

In Verallgemeinerung der Smith-Zahlen definierte McDaniel die k-Smith-Zahlen als die Zahlen, deren Ziffernsuche der Primteiler ein k-Vielfaches der eigenen Ziffernsumme sind. Es ist bewiesen, dass es für jedes natürliche k unendlich viele k-Smith-Zahlen existieren.

Zum Beispiel ist die 42 eine 2-Smith-Zahl. Es sind S(42) = 4 + 2 = 6 und die Summe der Ziffern der Primfaktoren $Sp(42) = Sp(2\cdot3\cdot7) = 12$. Es ist $Sp(42) = 2\cdot S(42)$.

Die ersten k-Smith-Zahlen sind

2-Smith-Zahlen

32, 42, 60, 70, 104, 152, 231, 315, 316, 322, 330, 342, 361, 406, 430, 450, 540, 602, 610, 612, 632, 703, 722, 812, 1016, 1027, 1029, 1108, 1162, 1190, 1246, 1261, 1304, 1314, 1316, 1351, 1406, 1470, 1510, 1603, ...

3-Smith-Zahlen

402, 510, 700, 1113, 1131, 1311, 2006, 2022, 2130, 2211, 2240, 3102, 3111, 3204, 3210, 3220, 4031, 4300, ...

4-Smith-Zahlen

2401, 5010, 7000, 10005, 10311, 10410, 10411, 11060, 11102, 11203, 12103, 13002, 13021, 13101, 14001. ...

5-Smith-Zahlen

2030, 10203, 12110, 20210, 20310, 21004, 21010, 24000, 24010, 31010, 41001, 50010, 70000, 100004, ...

Inverse k-Smith-Zahlen

In Verallgemeinerung der Smith-Zahlen definierte McDaniel die inversen k-Smith-Zahlen als die Zahlen, deren eigene Ziffernsumme ein k-Vielfaches der Ziffernsuche der Primteiler sind. Es wird vermutet, dass es für jedes natürliche k unendlich viele inverse k-Smith-Zahlen existieren. Einen Beweis gibt es noch nicht.

Zum Beispiel ist die 88 eine inverse 2-Smith-Zahl. Es sind S(88) = 16 und die Summe der Ziffern der Primfaktoren $Sp(88) = Sp(11\cdot 2\cdot 2\cdot 2) = 8$. Es ist $S(88) = 2\cdot Sp(88)$.

Die ersten inversen k-Smith-Zahlen sind

Inverse 2-Smith-Zahlen

88, 169, 286, 484, 598, 682, 808, 844, 897, 961, 1339, 1573, 1599, 1878, 1986, 2266, 2488, 2626, 2662, 2743, 2938, 3193, 3289, 3751, 3887, 4084, 4444, 4642, 4738, 4804, 4972, 4976, 4983, 5566, 5665, 5764, ...

Inverse 3-Smith-Zahlen

6969, 19998, 36399, 39693, 66099, 69663, 69897, 89769, 99363, 99759, 109989, 118899, 181998, 191799, ...

Inverse 4-Smith-Zahlen

19899699 , 36969999 , 36999699 , 39699969 , 39999399 , 39999993 , 66699699 , 66798798 , 67967799 , ...

Inverse 5-Smith-Zahlen

39996663, 666609999, 669969663, 690696969, 699966663, ...

Størmer-Zahlen

Als Størmer-Zahl oder Arkuskotangens-irreduzible Zahl wird eine natürliche Zahl n bezeichnet, für die gilt:

Der größte Primfaktor von $(n^2 + 1)$ ist größer oder gleich 2n.

Diese Zahlen werden nach dem norwegischen Mathematiker Carl Størmer (1874-1957) benannt. Zum Beispiel ist n=33 eine Størmer-Zahl, da der größte Primfaktor von $(n^2+1)=1090$ die 109 größer als 2n=66 ist.

Die ersten Størmer-Zahlen sind:

1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 48, 49, 51, 52, 53, 54, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 74, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 92, 94, 95, 96, ...

siehe auch https://oeis.org/A005528

Størmer-Zahlen sind relativ häufig. Auf der rechten Seite werden ab dem eingegebenen Wert n die nächsten 20 Nicht-Størmer-Zahlen berechnet.

Strobogrammatische Zahl

... ist eine ganze Zahl, die um 180 Grad rotiert wieder die gleiche Zahl ergibt, beispielsweise die 619, wobei es von der benutzten Schriftart abhängt, ob die 1 strobogrammatisch ist oder nicht.

Totient ... Der Totient (auch Indikator) einer Zahl ist die Anzahl der Primzahlen, die kleiner als die gegebene Zahl sind

Überimaginäre Zahlen ... sind Zahlen, der über die komplexen Zahlen hinausgehende Zahlenbereiche und werden heute Algebren genannt

Unberührbare Zahlen ... sind Zahlen, die niemals Summe der echten Teiler einer anderen natürlichen Zahl sind. Die ersten unberührbaren Zahlen sind

2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, 238, 246, 248, 262, 268, 276, 288, 290, 292, 304, 306, 322, 324, 326, 336, 342, 372, 406, 408, 426, 430, 448, 472, 474, 498, 516, 518, 520, 530, 540, 552, 556, 562, 576, 584, 612, 624, 626, 628, 658, 668, 670, 708, 714, 718, 726, 732, 738, 748,

750, 756, 766, 768, 782, 784, 792, 802, 804, 818, 836, 848, 852, 872, 892, 894, 896, 898, 902, 926, 934, 936, 964, 966, 976, 982, 996, 1002

Vampir-Zahl

Durch Clifford A.Pickover wurden 1994 sogenannte Vampir-Zahlen eingeführt.

Ein Vampir-Zahl ist eine natürliche Zahl $n = a \cdot b$, für die zwei Faktoren a und b existieren, so dass gilt:

a und b haben gleich viele Ziffern

die Ziffern von a und b ergeben zusammen die Ziffern von n

a und b dürfen nicht gleichzeitig durch 10 teilbar sein, d.h. nicht beide Zahlen enden auf '0' a und b werden dann die "Fänge" der Vampirzahl n genannt. Haben a und b nicht gleichviele Ziffern, wird n Pseudovampirzahl genannt.

Durch intensiven Computereinsatz wurden zum Beispiel als Vampirzahlen ermittelt:

V₂: zweiziffrige Vampirzahlen existieren nicht

V₄: es gibt 7 vierziffrige Vampirzahlen

 $15 \cdot 93 = 1395$, $21 \cdot 60 = 1260$, $21 \cdot 87 = 1827$, $27 \cdot 81 = 2187$, $30 \cdot 51 = 1530$, $35 \cdot 41 = 1435$, $80 \cdot 86 = 6880$

 V_6 : es gibt 148 Vampirzahlen mit 6 Ziffern, davon 1 mit zwei Darstellungen

 $204 \cdot 615 = 246 \cdot 510 = 125460$

V₈: es gibt 3228 Vampirzahlen mit 8 Ziffern, davon 13 mit zwei Darstellungen, z.B.

 $2886 \cdot 9300 = 3900 \cdot 6882 = 26839800, 22569480, 12054060, 13002462, 12600324, 61360780, 26373600, 12827650, 26198073, 11930170, 12417993, 23287176, 46847920$

und eine vierzehnte Zahl mit 3 Darstellungen

 $1620 \cdot 8073 = 1863 \cdot 7020 = 2070 \cdot 6318 = 13078260$

 V_{10} : es gibt 16670 Vampirzahlen mit 10 Ziffern, 24 mit 2 Darstellungen, z.B.

 $10130 \cdot 99701 = 1009971130$, $21474 \cdot 57636 = 1237675464$, $11009 \cdot 99110 = 11990 \cdot 91001 = 1091101990$, $14150 \cdot 83027 = 14315 \cdot 82070 = 1174832050$

Weitere Beispiele

 V_{12} : 183758 · 569204 = 104595788632

 V_{14} : $4044918 \cdot 4076682 = 16489844402076$

 V_{16} : 73824690 · 74058441 = 5467341448708290

Vampir-Zahlen können auch in Positionssystemen zu anderen Basen als der 10 betrachtet werden.

• ap	Zamen komien daen in i obitionobjetemen za t	anderen Basen als der 10 betrachtet i
Basis	Beispiele für Vampirzahlen	
2	$10110 \cdot 11101 = 10011111110$	$10111 \cdot 11001 = 1000111111$
	$11001 \cdot 11100 = 1010111100$	$11001 \cdot 11110 = 1011101110$
	$11010 \cdot 11011 = 10101111110$	
3	$200000 \cdot 200011 = 110002200000$	$200002 \cdot 212120 = 120202202010$
	222011 · 222011 = 221022201121	
4	$113 \cdot 302 = 101332$	$201 \cdot 210 = 102210$
	$201 \cdot 300 = 120300$	
5	$100201 \cdot 444400 = 100140424400$	$144221 \cdot 400303 = 124404320013$
6	$101021 \cdot 553345 = 100353154125$	$111101 \cdot 533423 = 104153113123$
8	$21 \cdot 50 = 1250$	$21 \cdot 66 = 1626$
	$30 \cdot 41 = 1430$	
12	828 · B77 = 7B7828	850 · 969 = 685990
16	$21 \cdot 90 = 1290$	$21 \cdot EA = 1E2A$
	$30 \cdot 81 = 1830$	
20	$1A \cdot H5 = 15HA$	$21 \cdot B0 = 12B0$
	$21 \cdot IC = 1I2C$	

Vampirguadratzahl

Unter einer Vampirquadratzahl versteht man eine Vampirzahl, die Quadratzahl ist und deren Wurzel gerade in Sinne der "Vampirzahleigenschaft" die Ausgangszahl erzeugt, d.h. eine Vampirzahl n der Form $n = z \cdot z = z^2$.

Beispiele für Vampirquadratzahlen sind

 $72576^2 = 5267275776$; die kleinste im Dezimalsystem

Vampirquadratzahlen sind sehr selten. Für verschiedene Positionssysteme zur Basis b kennt man heute a-ziffrige Vampirquadratzahlen:

Basis	b Ziffe	ern a	2	4	6	8	10	12	14	16	18	20
2	0	0	1	1	7	9	29	46	101	213		
3	0	0	0	0	2	9	9	23	79	250		
4	0	0	1	1	2	9	45	153	475	1756		
5	0	0	0	0	0	9	34	203	749	3104		
6	0	0	0	0	5	18	54	220	1018	4721		

7	0	1	0	0	2	9	33	143	865	4471
8	0	0	3	2	11	12	33	165	777	4187
9	0	0	0	1	0	5	14	75	508	3067
10	0	0	0	0	1	4	14	82	418	2795

Prime Vampirquadratzahl

Fordert man zusätzlich noch, dass die Wurzel z der Vampirquadratzahl $n=z^2$ eine Primzahl ist, so spricht man von einer primen Vampirquadratzahl, die natürlich selbst nicht Primzahl ist. Die kleinsten derartigen Zahlen im Dezimalsystem sind

2459319153459529 = 49591523 ²	$2512099504480801 = 50120849^2$
3395758728913321 = 58273139 ²	3893627338729969 = 62398937 ²
5129508768706921 = 71620589 ²	8186379410403769 = 904786132
$170147428389340249 = 412489307^2$	$189598345243224241 = 435428921^2$
271971550510512889 = 5215089172	334573968623758249 = 5784236932
571691675535320209 = 756102953 ²	577337986280725609 = 759827603 ²
842769461809107121 = 9180247612	918564378413675449 = 9584176432
968781726110944201 = 9842671012	

Vigesimalzahlen ... sind Zahlen aus dem Vigesimalsystem, das heißt, Vigesimalzahlen sind Zahlen mit der Basis Zwanzig

Wundersame Zahlen

... sind die natürlichen Zahlen, bei denen der folgende erkennende Algorithmus terminiert: Ist die Zahl eine 1, dann ist die Zahl, mit der begonnen wurde, eine wundersame Zahl. Ist die Zahl ungerade, dann wird sie verdreifacht und um 1 erhöht. Ist die Zahl gerade, wird sie halbiert. Auf die so entstandenen neuen Zahlen wird der Algorithmus erneut angewandt. (Collatz-Folge!)

A-lose Zahlen

Unter einer A-losen Zahl versteht man eine Zahl, die in der deutschen Schreibweise des Zahlwortes kein "a" enthält. Im Englischen werden diese Zahlen aban numbers genannt.

Die ersten derartigen Zahlen sind (Umlaute werden berücksichtigt!):

1 eins, 2 zwei, 3 drei, 4 vier, 5 fünf, 6 sechs, 7 sieben, 9 neun, 10 zehn, 11 elf, 12 zwölf, 13 dreizehn, ... Da nur die Ziffer 8 im Deutschen ein "a" enthält, sind hier viele Zahlen A-los.

In der englischen Sprache sind es alle Zahlen 1-999, 1000000-1000999, 2000000-2000999, ... aban numbers.

```
Analog betrachtet man auch E-lose, I-Lose, O-Lose und U-lose Zahlen: E-Lose Zahlen: 5, 8, 12, 20, 25, 28, 50, 55, 58, 80, 85, 88, 5000000, ... I-Lose Zahlen: 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 19, 500, 505, 506, 508, ... O-Lose Zahlen: 1-999999, ... U-Lose Zahlen: 1-8, 10-18, 20, 30, 40, 50, 60, 70, 80, 1000000, 1000001, ...
```

Rare Zahlen

Eine rare Zahlen oder seltene Zahl (engl. rare number) ist eine natürliche Zahl n, für die $\,n+n^*\,$ und $\,n-n^*\,$

Quadratzahlen sind und n* aus den Ziffern der Zahl n in umgekehrte Reihenfolge besteht. Dabei soll n keine Palindrom-Zahl sein. Dieser Zahlenbegriff 1998 von dem indischen Mathematiker Shyam Sunder Gupta in "Systematic computations of rare numbers" (The Mathematics Education, Vol. XXXII, No. 3, Sept. 1998) geprägt.

```
Zum Beispiel ist 65 rar, da 65 - 56 = 9 = 3^2 und 65 + 56 = 121 = 11^2 gilt. Die ersten rare Zahlen sind:
```

65, 621770, 281089082, 2022652202, 2042832002, 868591084757, 872546974178, 872568754178, 6979302951885, 20313693904202, 20313839704202, 20331657922202, 20331875722202, 20333875702202, 40313893704200, ...

Bis 10¹⁹ kennt man 75 rare Zahlen. Von diesen sind nur 14 ungerade. Über 10¹⁸ sind nur zwei ungerade rare Zahlen bekannt: 6531727101458000045 und 8200756128308135597. Bis jetzt konnte keine rare Zahl, die auf "3" endet, gefunden werden. Bis heute weiß man nicht, ob es unendlich viele rare Zahlen gibt. Ebenso kennt man keinen effektiven Algorithmus zu deren Konstruktion.

Shyams Vermutung

Es gibt keine rare Primzahl.

Lässt man palindrome Zahlen n zu, so gibt es mit Sicherheit unendliche viele rare Zahlen. Zum Beispiel ergibt die Folge 242, 20402, 2004002, ... rare Palindrom-Zahlen.

Rare Zahlen

65	621770	281089082
2022652202	2042832002	868591084757
872546974178	872568754178	6979302951885
20313693904202	20313839704202	20331657922202
20331875722202	20333875702202	40313893704200
40351893720200	200142385731002	204238494066002
221462345754122	244062891224042	245518996076442
248359494187442	403058392434500	441054594034340

Primzahlwürfel

Durch Jaime Ayala wurde 2008 folgendes Problem gestellt:

- 1) Gesucht sind zwei Würfel mit je sechs Zahlen, so dass bei einem Wurf die Augensumme stets eine Primzahl ergibt.
- 2) Gesucht sind derartige Würfel, so dass die 36 erzeugten Primzahlen unterschiedlich sind.

Lösung: 1) Es existieren zwei kleinste Lösungen

```
{0,6,12,26,56,62} und {5,11,17,41,47,101}
```

{0,6,12,36,42,96} und {5,11,17,31,61,67}

so dass die Gesamtaugensumme 384 ist.

2) und für das 2.Problem die kleinsten Lösungen mit der Augensumme 774

{0,6,30,96,126,210} und {13,31,41,53,67,101}

{0,18,28,40,54,88} und {13,19,43,109,139,223}

Eine Lösung für 1) ergibt sich aus jeder arithmetischen Folge a + k b, bei der für k = 0, ..., 11 nur Primzahlen auftreten.

Zum Beispiel werden für 23143 + 30030k (k=0 bis 11)

Würfel 1 = 23143, $23143+30030\cdot1$, $23143+30030\cdot2$, $23143+30030\cdot3$, $23143+30030\cdot4$, $23143+30030\cdot5$ Würfel 2 = 0, $30030\cdot1$, $30030\cdot2$, $30030\cdot3$, $30030\cdot4$, $30030\cdot5$

Zirkulare Primzahlen

... sind Primzahlen, aus denen wieder Primzahlen entstehen, wenn man die erste Ziffer streicht und hinter die letzte Ziffer schreibt und dies so oft machen kann, wie man möchte, ohne je eine zusammengesetzte Zahl zu erzeugen. Beispielsweise ist die Primzahl 3779 zirkular, da auch 7793, 7937 und 9377 Primzahlen sind.

Zu den zirkularen Primzahlen gehören nach Definition als Sonderfall auch alle Repitition-Unit-Primzahlen. Die ersten zirkularen Primzahlen sind (Primzahlen, die durch Rotation der Ziffern entstehen wurden weggelassen):

11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933 Bis zum Dezember 2002 wurde durch Walter Schneider nachgewiesen, dass es unter 10^{24} , außer den Repitition-Unit-Primzahlen, keine anderen zirkularen Primzahlen gibt. Es ist eine noch offene Frage, ob überhaupt noch weitere existieren.

siehe auch http://www.wschnei.de/digit-related-numbers/circular-primes.html

Die größte bekannte "fast" zirkulare Primzahl ist 913311913. Während die durch Ziffernvertauschung entstehenden Zahlen

133119139, 331191391, 311913913, 119139133, 191391331, 913913311, 139133119 prim sind, wird allerdings 391331191 = 29 * 131 * 239 * 431

Periodenlängen der Stammbrüche 1/p

- \Rightarrow Gebrochene Zahlen sind in der Dezimaldarstellung entweder endlich oder besitzen eine wiederkehrende Periode.
- \Rightarrow Für einen Stammbruch (Zähler = 1) der Form 1/p, wobei p eine Primzahl ist, ist die Länge I dieser Periode ein Teiler von p-1, d.h. I kann maximal gleich p-1 werden.
- \Rightarrow Besitzt die Periode eines Stammbruch 1/p die Länge I, so ist p ein Teiler der n.ten Repitition-Unit-Zahl R(n).

 \Rightarrow die Periodenlänge I ist ein Teiler von $\phi(p)$, wobei $\phi(n)$ die Eulersche Funktion ist Die Liste enthält die Perioden, deren Länge (maximal 225 Stellen) von Stammbrüchen 1/p, wobei p Primzahl ist.

n	Länge	Periode
7	6	142857
11	2	09
13	6	076923
17	16	0588235294117647
19	18	052631578947368421
23	22	0434782608695652173913
29	28	0344827586206896551724137931
31	15	032258064516129
37	3	027

```
41 5 02439
```

43 21 023255813953488372093

Stammbruchperioden ... die Periodenlänge I(p) tritt nur für die Stammbrüche der Primzahlen p auf ...

l(p)	p	l(p)	р	l(p)	p
2	11	3	37	4	101
5	41, 271	6	7, 13	7	239, 4649
8	73, 137	9	333667	10	9091
11	21649, 513239	12	9901	13	53, 79, 265371653
14	909091	15	31, 2906161	16	17, 5882353
17	2071723, 536322235	7 18	19, 52579	19	11111111111111111111
20	3541, 27961				

Periodenlängen I(p) von 1 bis 225 der Stammbrüche 1/p

p	l(p)	р	l(p)	р	l(p)	р	l(p)
109517	131	111149	148	123551	35	148721	220
153469	108	206209	96	210631	51	216451	78
226549	84	238681	45	257489	209	274187	121
275521	205	290249	142	300977	208	307627	79
329401	61	333667	9	338669	172	351391	159
392263	214	459691	42	471241	165	493121	67
497867	89	513239	11	538987	41	590437	154
618049	116	648961	208	795653	214	909091	14
923441	119	974293	61	976193	64	999809	107
1192679	109	1246477	209	1403417	152	1458973	114
1527791	43	1577071	135	1580801	104	1594093	213
1634881	160	1659431	53	1676321	40	1811791	123
2028119	37	2049349	124	2071723	17	2253079	199
2462401	81	2520277	183	2823679	143	2906161	15
3471301	140	3565183	166	3662093	217	3762091	90
4147571	70	4188901	60	4262077	91	4715467	147
5051749	212	5070721	80	5274739	126	5882353	16
5969449	204	6187457	64	6943319	31	7019801	100
7034077	103	7444361	154	9605671	145	9885089	107
10100113	176	10749631	57	10838689	21	11910133	153

Periodenlängen von 226 bis 250 der Stammbrüche 1/p

р	Länge	р	Länge	р	Länge	р	Länge
691	230	739	246	1483	247	1489	248
2281	228	2311	231	4357	242	4483	249
4789	228	4973	226	9161	229	25169	242
47533	233	148339	246	162251	250	355193	232
461917	234	1485397	242	1587221	244	4426889	226
16419517	246	22187551	231	43544351	229	60034573	234
90758677	237	142847911	239	304077901	228	336737801	245

Einmalige Primzahlen

Für jede Primzahl p, außer 2 und 5, wird der Dezimalbruch 1/p periodisch mit einer bestimmten Periodenlänge.

Nach Samuel Yates heißt eine Primzahl einmalig (engl. unique prime), wenn sie die einzige Primzahl ist, die eine bestimmte Periodenlänge besitzt.

Zum Beispiel sind 3, 11, 37 und 101 die einzigen Primzahlen mit den Periodenlängen 1, 2, 3 bzw. 4, wodurch sie einmalig sind. 41 und 271 haben die Periodenlänge 5, für 7 und 13 hat die Periode 6 Stellen und für 239 und 4649 sieben Stellen. Diese Primzahlen sind nicht einmalig.

Einmalige Primzahlen sind sehr selten. Bis 10^{50} existieren 10^{47} Primzahlen, jedoch nur 18 einmalige. Eine Primzahl p ist genau dann einmalig, wenn $\Phi_n(10)$ / ggT($\Phi_n(10)$, n) eine Potenz von p ist, wobei $\Phi_n(x)$ das n-te zyklotomische Polynom darstellt.

Periodenlänge	einmalige Primzahl	Periodenlän	ge einmalige Primzahl
1	3	2	11
3	37	4	101
10	9091	12	9901
9	333667	14	909091
24	99990001	36	99999900001
48	9999999900 000001	38	9090909090 90909091
19	11111111111 11111111	11 23	1111111111 1111111111 111

39	9009009009 0099099099 0991
62	909090909 9090909090 9090909091
120	1000099999 9989998999 900000010 001
150	1000009999 9999989999 8999990000 0000010000 1

Reziprok-Pseudoprimzahlen

Für eine Primzahl p ist die Länge I der Periode ihres Stammbruchs 1/p ein Teiler von p-1. Nicht-Primzahlen, deren Periodenlänge ebenfalls ein Teiler von p-1 ist, sind selten und werden Reziprok-Pseudoprimzahlen genannt.

Die Tabelle enthält die ersten dieser Reziprok-Pseudoprimzahlen inklusive der Periodenlänge des zugehörigen Stammbruchs. (Test bis 3057601; Polster 2002) Nicht enthalten sind alle Zahlen, deren Periodenlänge = 1 ist bzw. die Zahlen, welche durch 2 oder 5 teilbar sind.

Periodenlänge Reziprok-Pseudoprimzahl

```
2
       33, 99
4
       909, 3333
5
       11111
6
       91, 259, 481, 3367
7
       1111111
8
       657, 1233, 2409, 4521, 10001, 90009, 330033
10
       451, 2981, 100001, 122221, 372731, 2463661
12
       7777, 101101, 128713, 287749, 366337
13
       4187
14
       23661, 460251
15
       8401
16
       561, 11169, 20961, 170017
18
       703, 1729, 63973, 999001, 1945423
20
       4141, 145181, 301081, 357641, 1146401, 2824061
21
       83119
22
       94139, 201917, 497927
24
       35113, 137137, 179881, 390313, 511969, 567721
26
       45527, 67861
28
       8149, 96657, 134821, 686169, 936573, 1306369
30
       2821, 6541, 7471, 13981, 14911, 19201, 21931, 24661, 41041, 50851, 57181, 65311, 66991,
95161, ..
32
       11649, 14817, 21153, 46497, 158497, 226273, 287809, 497377, 632641, 903169, 2305281
33
       1450483
34
       413339
40
       185361, 410041
       102173
```

Doppelt pseudoprime Zahl

Natürliche Zahlen, die sowohl Reziprok-Pseudoprimzahlen als auch pseudoprim zur Basis 2, entsprechend des Kleinen Satzes von Fermat, sind in zweifacher Hinsicht pseudoprim. Derartige Zahlen sind selten, die kleinste sind 561, 1729, 2821, 5461, ... Zu diesen doppelt pseudprimen Zahlen gehören alle Carmichael-Zahlen. Die Tabelle enthält die ersten Zahlen dieser Art, die nicht Carmichael-Zahlen aber pseudoprim zur Basis 2 sind.

5461	12801	13981	41041	63973	68101	75361	10110	11320	12621	13714	17208
							1	1	7	9	1
18846	34056	40140	48999	55272	64200	65660	65880	66540	67003	71053	72180
1	1	1	7	1	1	1	1	1	3	3	1
74175	74865	83820	85284	87318	91598	97687	99763	10336	10828	11411	11685
1	7	1	1	1	1	3	3	69	09	41	13
12519	13981	14196	14637	15694	17113	17196	17732	18096	18763	19078	
49	01	07	49	57	81	01	89	97	93	51	

Zahlentheorie-Aufgaben

- 1) Beweis: Sind x, y, z positive, ganze Zahlen, so ist (xy+1)(yz+1)(zx+1) ein vollständiges Quadrat genau dann, wenn xy+1, yz+1 und zx+1 vollständige Quadrate sind.
- 2) Finde unendlich viele Tripel (a, b, c) positiver ganzer Zahlen, so dass a, b, c eine arithmetische Zahlenfolge bilden und ab+1, bc+1 und ca+1 vollständige Quadrate sind.

Die Pellsche Gleichung v^2 - $3u^2$ = 1 besitzt unendliche viele Lösungen. Mit a = v + 2u, b = -v + 2u, c = 2u wird

```
ab + 1 = 4u^2 - v^2 + 1 = u^2; bc + 1 = (u-v)^2 und ac + 1 = (u+v)^2
```

3) a und b seien positive ganze Zahlen mit ab+1 teilt a^2+b^2 . Zu zeigen ist, dass dann $(a^2+b^2)/(ab+1)$ das Quadrat einer ganzen Zahl ist.

- 4) Sind a, b, c positive ganze Zahlen mit $0 < a^2 + b^2 abc \le c$, dann ist $a^2 + b^2 abc$ Quadratzahl.
- 5) Sind x und y positive ganze Zahlen, so dass xy Teiler von $x^2 + y^2 + 1$ ist, dann gilt $(x^2+y^2+1)/(xy) = 3$
- 6) n sei natürliche Zahl, so dass $2 + 2\sqrt{(28n^2 + 1)}$ ebenfalls ganzzahlig ist. Zu zeigen ist, dass dann $2 + 2\sqrt{(28n^2 + 1)}$ Quadratzahl ist.
- 7) Für beliebige ganze Zahlen a, b, c, d ist das Produkt (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) stets durch 12 teilbar.
- 8) Wenn m und n natürliche Zahlen sind, mn+1 ein Vielfaches von 24 ist, so ist auch m+n ein Vielfaches von 24.

Analytische Zahlentheorie

Die analytische Zahlentheorie verwendet Methoden der Analysis und der Funktionentheorie. Sie befasst sich mit der Bestimmung der Anzahl aller Zahlen unterhalb einer gegebenen Schranke, die eine bestimmte Eigenschaft haben, sowie mit der Abschätzung von Summen zahlentheoretischer Funktionen.

Theorie der Dirichletreihen

Zu einer Summe $\Sigma_{n \le x} f(n)$

die man untersuchen möchte, betrachtet man ihre erzeugende Dirichletreihe $F(s) = \sum_{n=1}^{\infty} f(n) \, n^{-s}$ Diese Summe lässt sich näherungsweise als Integral über F(s) ausdrücken. Mitunter ergibt sich ihr Grenzwert für x gegen unendlich als Grenzwert von F(s) für s gegen 0 durch einen Taubersatz. Die Untersuchung von Dirichletreihen und ihren Verallgemeinerungen, s. B. der Hurwitzschen Zetafunktion, ist ein Teilgebiet der Zahlentheorie.

Multiplikative Zahlentheorie

Die Betrachtung des Sonderfalls f = 1 und der zugehörigen Dirichletreihe, der Riemannschen Zetafunktion, führt zum Primzahlsatz, der die Anzahl der Primzahlen unterhalb einer gegeben Schranke angibt.

Die Untersuchung des Fehlerterms ist ein offenes Problem, da die Lage der Nullstellen der Zetafunktion unbekannt ist; Riemannsche Vermutung.

Additive Zahlentheorie

Die additive Zahlentheorie beschäftigt sich mit der Darstellung von Zahlen als Summen. Ältestes Teilgebiet ist die Theorie der Partitionen. Berühmte Probleme sind das Waringsche Problem und die Goldbachsche Vermutung, die mit Vermutung über Primzahlzwillinge verwandt ist.

Zahlen - Literaturhinweise

Mit dem Begriff der Zahl, ihren speziellen Eigenschaften und deren Geschichte beschäftigen sich eine Vielzahl von Büchern. Achtung! Dabei treten auch zahlenmystische und esoterische Ansichten auf. Paulo Ribenboim The New Book of Prime Number Records, Springer-Verlag 1996, 3. Auflage V

Peter Bundschuh Einführung in die Zahlentheorie, Springer-Verlag 1998, 4. Auflage

Herbert Pieper Zahlen aus Primzahlen - Eine Einführung in die Zahlentheorie, Birkhäuser Verlag 1984, 2. Auflage

John H. Conway, Richard K. Guy The Book of Numbers, Springer-Verlag (Copernicus) 1996

Georges Ifrah Universalgeschichte der Zahlen, Campus Verlag 1991, 2. Auflage

Marcus du Sautoy Die Musik der Primzahlen, Verlag C.H.Beck, München 2004, 3.Auflage

Franz Carl Endres Das Mysterium der Zahl - Zahlensymbolik im Kulturvergleich Eugen Diederichs Verlag 1997, 10. Auflage IX

Jürgen Werlitz Das Geheimnis der heiligen Zahlen, Marixverlag 2004

Lancelot Hogben Die Entdeckung der Mathematik - Zahlen formen ein Weltbild Chr. Belser Verlag

Stuttgart 1963

Lancelot Hogben Mathematik für alle - Einführung in die Wissenschaft der Zahlen und Figuren

Verlag Kiepenheuer, Köln 1953

Gerhard Kowol Primzahlen - Mathematischer Zugang zu ihren Qualitäten, Philos.-Antropos. Verlag am Goetheanum 1995

Die Musik der Primzahlen. Auf den Spuren des größten Rätsels der Mathematik

von Marcus du Sautoy

Preis: EUR 12,50 Broschiert: 398 Seiten ISBN-13: 978-3423342995

Produktbeschreibung von Amazon.de:

"Seit Jahrhunderten haben sich die brillantesten mathematischen Köpfe mit verschiedenen Aspekten der Primzahlen beschäftigt und sowohl geniale neuartige Ansätze als auch Lösungen für grundlegende Fragen gefunden.

Marcus du Sautoy, Mathematikprofessor in Oxford und bekannter populärwissenschaftlicher Autor, stellt uns in seinem Buch diese ungewöhnlichen Menschen vor. Von Gauß über Euler und Riemann (dessen "Riemannsche Vermutung" noch immer auf ihren Beweis wartet) bis zu Ramanujan, Gödel und Connes: du Sautoy erzählt die Geschichten ihres Lebens und ihrer bahnbrechenden mathematischen Entdeckungen wie einen guten Roman.

Dabei gelingt es ihm, nicht nur die Wissenschaftler und ihre Leistungen verständlich und anschaulich darzustellen. Er vermittelt auch tiefe Einblicke in das Denken von Mathematikern. Vor allem aber vermag er uns ihre Faszination und Begeisterung für die oft so unverständlich und abstrakt scheinende Welt der Mathematik verständlich zu machen. - du Sautoy ist ein spannendes, aufregendes Buch gelungen über Mathematik und die außergewöhnlichen Menschen, die sich ihr verschrieben haben. Nicht nur für Mathematiker empfehlenswert!" Gabi Neumayer

Algorithmische Zahlentheorie

von Otto Forster

Gebunden: 278 Seiten, mit CD ISBN-13: 978-3528065805

Produktbeschreibung von Amazon.de:

"Das Buch gibt eine Einführung in die elementare Zahlentheorie bis hin zu den quadratischen Zahlkörpern. Existenzsätze (z.B. Primitivwurzeln) sind durch Algorithmen zur Konstruktion ergänzt.

Damit der Benutzer die Algorithmen auch konkret testen kann auf seinem PC, werden auf beiliegender Diskette der pascal-ähnliche Multipräzisions-Interpreter ARIBAS sowie die Quelltexte aller im Buch besprochenen Algorithmen mitgeliefert.

Angesprochen werden in dem Buch auch die Faktorisierung mit elliptischen Kurven sowie die Multiplikation großer ganzer Zahlen mittels der schnellen Fourier-Transformation."

Weitere Primzahlen

Die Tabelle enthält die ersten bekannten n für die der in der 1. Spalte angegebene Term eine Primzahl wird. Die Angabe \rightarrow [>xxxx] bedeutet, dass die nächste derartige Primzahl erst für n > xxxx zu finden ist:

Term	n
(570*10 ⁿ +33)/9	0, 2, 3, 4, 5, 9, 12, 57, 95, 177, 359, 419, 454, 1007, 1516 → [>2000]
(660*10°-21)/9	$[0, 2, 3, 4, 5, 8, 11, 30, 58, 68, 73, 286, 488, 591, 633, 1088, 1606 \rightarrow [>2000]$
(n!) ² +1	
$n^2 - n + 1$	$0, 1, 2, 3, 4, 5, 9, 10, 11, 13, 24, 65, 76 \rightarrow [>600]$
1111 + 1	2, 3, 4, 6, 7, 9, 13, 15, 16, 18, 21, 22, 25, 28, 34, 39, 42, 51, 55, 58, 60, 63, 67, 70, 72, 76, 78, 79, 81, 90, 91, 100, 102, 106, 111, 112, 118, 120, 132, 139, 142, 144, 148, 151, 154,
	156, 162, 163, 165, 168, 169, 174, 177, 189, 190, 193, 195, 204, 207, 210, 216, 219, 232,
	$ 130, 102, 103, 103, 106, 109, 174, 177, 189, 190, 193, 193, 204, 207, 210, 210, 219, 232, 237, 246 \rightarrow [>250]$
2 ⁿ + Prime(n)	[2, 3, 4, 5, 12, 13, 14, 23, 57, 106, 226, 227, 311, 373, 1046, 1298, 1787, 1952, 2130, 2285,
2 + Prime(ii)	
2 ⁿ + 3	2670, 3254, 3642, 4369, 13559, 33418
2 + 3	1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390, 784, 1110, 1704, 2008, 2139,
	2191, 2367, 2370, 4002, 4060, 4062, 4552, 5547, 8739, 17187, 17220, 17934, 20724, 22732,
2 ⁿ + 5	25927, 31854, 33028, 35754, 38244, 39796, 40347, 55456, 58312, 122550
$2^{n}(2^{n}+1)-1$	1, 3, 5, 11, 47, 53, 141, 143, 191, 273, 341 → [>2000]
2 (2 +1)-1	1, 2, 3, 4, 6, 10, 16, 24, 26, 35, 52, 55, 95, 144, 379, 484, 939, 1284, 1300, 2651, 3644, 3979, 7179, 8304
$2^{n} + 3^{n} + 4^{n}$	$2, 4, 6, 8, 108, 144, 334, 1422 \rightarrow [>2000]$
$3^{n} + 4^{n} + 5^{n} + 1$	
$3^{n} + 4^{n} + 5^{n} - 1$	1, 7, 11, 47, 67, 77, 113 → [>2000]
(2n+1) ² - 2	1, 5, 22, 25, 37, 262, 958) [>2000]
(211+1)2	1, 2, 3, 4, 6, 7, 9, 10, 13, 14, 16, 17, 18, 21, 23, 24, 27, 30, 31, 34, 35, 37, 38, 44, 46, 51, 53, 58, 59, 60, 63, 65, 67, 69, 72, 77, 80, 84, 86, 88, 91, 95, 102, 105, 108, 111, 115, 116,
	118, 119, 123, 126, 128, 129, 132, 133, 136, 139, 142, 146, 149, 150, 151, 154, 156, 157
2*n² - 1	2, 3, 4, 6, 7, 8, 10, 11, 13, 15, 17, 18, 21, 22, 24, 25, 28, 34, 36, 38, 39, 41, 42, 43, 45, 46,
2 11 - 1	
	49, 50, 52, 56, 59, 62, 63, 64, 69, 73, 76, 80, 81, 85, 87, 91, 92, 95, 98, 102, 108, 109, 112,
2*6 ⁿ -1	113, 115, 118, 125, 126, 127, 132, 134, 137, 140, 141, 143, 153, 154, 155 1, 2, 3, 4, 5, 12, 16, 26, 27, 36, 40, 45, 49, 52, 53, 75, 140, 150, 167, 245, 250, 755, 785,
2.0 -1	825, 970, 1235, 1289, 1477
3*n! - 1	0, 1, 2, 3, 4, 5, 9, 12, 17, 26, 76, 379, 438, 1695
3*n! + 1	2, 3, 4, 6, 7, 9, 10, 13, 23, 25, 32, 38, 40, 47, 96, 3442, 4048
$3^{n}-2^{n-1}$	1, 2, 3, 4, 5, 9, 10, 13, 23, 23, 32, 36, 40, 47, 96, 3442, 4046 1, 2, 3, 4, 5, 9, 10, 11, 12, 16, 29, 34, 41, 61, 73, 186, 191, 241, 282, 1075, 1404, 1991,
J -2	1, 2, 3, 4, 5, 9, 10, 11, 12, 16, 29, 34, 41, 61, 73, 186, 191, 241, 282, 1073, 1404, 1991, 2116, 3399, 3935, 4924, 5353, 7660, 8645
3 ⁿ +2 ⁿ⁻¹	2, 3, 4, 6, 7, 8, 10, 15, 21, 24, 36, 49, 51, 86, 116, 134, 176, 284, 345, 498, 544, 649, 844,
3 12	1051, 1171, 1384, 1497, 1514, 1638, 1856, 2860, 2890, 3235, 3584, 4047, 5990
3*2 ⁿ - 1	0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, 64, 76, 94, 103, 143, 206, 216, 306, 324, 391, 458,
	470, 827, 1274, 3276, 4204, 5134, 7559, 12676, 14898, 18123, 18819, 25690, 26459, 41628,
	51387, 71783, 80330, 85687, 88171, 97063, 123630, 155930, 164987
3*2 ⁿ + 1	$1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534 \rightarrow [>2000]$
J	1, 2, 3, 6, 6, 12, 16, 36, 36, 41, 66, 163, 261, 263, 276, 333, 466, 436, 334 7 [22000]

	-
3*2 ⁿ - 7	2, 3, 4, 5, 8, 12, 15, 17, 20, 21, 45, 48, 87, 97, 113, 120, 172, 217, 228, 276, 312, 580, 692, 1132, 1588, 1668, 2576, 2591
2*n2 2n 1	1, 2, 3, 4, 6, 9, 10, 11, 13, 14, 17, 23, 24, 25, 27, 28, 30, 32, 34, 37, 38, 41, 42, 45, 48, 49,
$3*n^2 + 3n + 1$	
	52, 55, 58, 62, 63, 66, 67, 74, 80, 81, 86, 88, 90, 91, 93, 95, 105, 108, 119, 123, 125, 128,
	129, 136, 140, 142, 147, 153, 156, 157, 158, 164, 165, 170, 171, 172, 175
4*10 ⁿ -11	1, 2, 3, 4, 5, 15, 35, 61, 256, 357, 628, 767, 1064, 1096
$4^{n}+3^{n-1}$	1, 2, 3, 4, 6, 8, 10, 12, 15, 19, 27, 30, 32, 34, 43, 48, 51, 72, 88, 106, 906, 963, 1328, 1336,
	1611, 1664, 2680, 3122, 3267
6n+5	0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 16, 17, 18, 21, 22, 24, 27, 28, 29, 31, 32, 37, 38, 39, 41,
	42, 43, 44, 46, 48, 51, 52, 57, 58, 59, 63, 64, 66, 69, 71, 73, 74, 76, 77, 79, 81, 83, 84, 86,
	92, 93, 94, 97, 98, 99, 102, 106, 107, 108, 109, 112, 113, 116, 119, 123, 126
6 ⁿ - 5 ⁿ⁻¹	1, 2, 3, 4, 5, 12, 16, 18, 21, 42, 66, 69, 123, 132, 165, 204, 397, 401, 486, 657, 1005, 1050,
6 - 5	
an =n 1	1882 → [>2000]
$6^{n} + 5^{n-1}$	$1, 2, 3, 8, 9, 15, 26, 30, 69, 212, 318, 909, 1224, 1946 \rightarrow [>2000]$
$(6n-3)^2+2$	1, 2, 3, 4, 6, 7, 8, 10, 14, 17, 18, 19, 20, 21, 25, 29, 37, 38, 40, 41, 42, 43, 46, 50, 51, 52,
	54, 58, 59, 61, 62, 63, 65, 70, 71, 72, 74, 75, 76, 80, 84, 86, 92, 93, 94, 96, 101, 102, 109,
	113, 114, 117, 119, 126, 130, 135, 137, 140, 145, 148, 150, 151, 152, 156, 160
9*10 ⁿ +11	2, 3, 4, 6, 8, 16, 20, 27, 115, 180, 274, 576, 1111, 2404
$9*10^{n} + 7$	1, 2, 3, 4, 5, 15, 19, 20, 46, 52, 53, 192, 380, 588, 776, 906, 1350, 1736, 2914, 7508
$10*2^{n} + 3$	0, 1, 2, 3, 4, 6, 7, 10, 11, 17, 19, 25, 27, 31, 33, 42, 43, 49, 51, 57, 64, 65, 106, 139, 196,
10 2 3	273, 279, 379, 392, 505, 663, 737, 874, 943, 1015
$(10^{n}+2)/6$	1, 2, 3, 4, 6, 10, 12, 15, 33, 55, 56, 61, 154, 201, 462, 570, 841, 848, 1297, 1357, 2008,
(10 +2)/0	
11*12" . 2	2628, 2848, 3111
$11*13^{n} + 2$	0, 2, 3, 4, 6, 8, 19, 98, 174, 578, 678, 966, 1792, 4132, 5772
(14*10 ⁿ -11)/3	1, 2, 3, 4, 6, 7, 8, 12, 23, 59, 75, 144, 204, 268, 760, 1216, 1430, 1506, 1509, 2804, 2924,
	3201, 3305, 5753, 9268
207*2 ⁿ +1	2, 3, 4, 6, 7, 10, 14, 15, 16, 34, 42, 44, 46, 62, 66, 106, 127, 130, 171, 202, 231, 232, 238,
	248, 256, 296, 314, 412, 604, 956, 1023, 1287, 1454, 1564, 1766, 2036, 5215, 5911, 6092,
	9190, 9916, 10410, 13456, 14336, 14444, 15490, 30835, 32558, 34770
255*2 ⁿ -1	1, 2, 3, 4, 6, 11, 12, 24, 40, 41, 61, 75, 86, 95, 158, 207, 223, 242, 276, 338, 390, 488, 673,
	804, 1084, 1332, 1467, 1588, 2894, 3650, 4367, 6001, 6372, 10162, 10235, 10660, 12988
$n^{n+1}+(n+1)^n+n(n+1)$	
n! + n# - 1	2, 3, 4, 5, 8, 17, 23, 26, 35, 82, 97, 100, 147, 183, 271, 492, 708, 1116, 1538, 2491, 4207,
	4468
n! + n# + 1	$1, 2, 3, 4, 5, 6, 8, 17, 18, 24, 95, 96, 142 \rightarrow [>500]$
n!! + n# - 1	$[2, 4, 8, 10, 18, 22, 28, 36, 38, 48, 104, 114, 174, 184, 588, 652, 902 \rightarrow [>2000]$
	$[2, 4, 8, 10, 16, 22, 28, 36, 38, 48, 104, 114, 174, 184, 388, 632, 902 \rightarrow [>2000]$ $[1, 2, 6, 10, 14, 16, 26, 42, 82, 126, 304 \rightarrow [>2000]$
n!! + n# + 1	
$n#*2^{n} - 1$	1, 2, 3, 4, 6, 7, 8, 15, 19, 31, 68, 69, 78, 82, 162, 210, 524
(n# + 4)/2	1, 2, 3, 4, 6, 10, 11, 12, 15, 17, 29, 48, 63, 77, 88, 187, 190, 338
(n!!+(n+1)!!-1)/2	2, 3, 4, 5, 28, 35, 61, 75, 218, 267, 395, 844, 1509, 2122, 4157
n.te Euklid-Zahl + 1	1, 2, 3, 4, 5, 11, 75, 171, 172, 384, 457, 616, 643, 1391, 1613, 2122, 2647, 2673, 4413,
	13494, 31260, 33237
n + sigma(n)	1, 2, 3, 4, 5, 8, 11, 16, 21, 23, 27, 29, 35, 36, 41, 53, 55, 57, 63, 64, 65, 75, 77, 83, 85, 89,
	98, 100, 111, 113, 119, 125, 128, 131, 133, 143, 144, 155, 161, 171, 173, 179, 183, 189,
	191, 203, 205, 209, 215, 233, 235, 237, 239, 242, 243, 245, 251, 253, 259, 275
sigma(n²)	2, 3, 4, 5, 8, 17, 27, 41, 49, 59, 64, 71, 89, 101, 125, 131, 167, 169, 173, 256, 289, 293, 383,
1 3	512, 529, 677, 701, 729, 743, 761, 773, 827, 839, 841, 857, 911, 1091, 1097, 1163, 1181,
	1193, 1217, 1373, 1427, 1487, 1559, 1583, 1709, 1811, 1847, 1849, 1931
L	1133, 1217, 1373, 1727, 1707, 1333, 1303, 1703, 1011, 1077, 1073, 1331