

Proposta de teste de avaliação	
Matemática A	
11.º ANO DE ESCOLARIDADE	
Duração: 90 minutos Data:	

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- Seja r a reta de equação y = 2x 3. 1.
 - **1.1.** Seja α a inclinação da reta r. Qual é o valor de $\cos(\alpha - \pi)$?

(A)
$$-\frac{\sqrt{10}}{10}$$
 (B) $-\frac{\sqrt{10}}{10}$ (C) $\frac{\sqrt{5}}{5}$ (D) $-\frac{\sqrt{5}}{5}$

(B)
$$-\frac{\sqrt{10}}{10}$$

(C)
$$\frac{\sqrt{5}}{5}$$

(D)
$$-\frac{\sqrt{5}}{5}$$

Sejam A e B dois pontos de r. 1.2.

Sabe-se que 1 é a abcissa de A e também a ordenada de B.

Determine a amplitude do ângulo AOB.

Apresente o resultado, em graus, arredondado às unidades.

- 1.3. Determine a equação reduzida da reta perpendicular a r que a interseta no ponto de coordenadas da forma (k-1, 3k), com $k \in \mathbb{R}$.
- Na figura está representada, em referencial o.n. xOy, a circunferência trigonométrica, quatro pontos 2. que lhe pertencem, A, B, C e D e ainda o triângulo ACD.

Sabe-se que:

- A, B e C pertencem a um dos eixos coordenados;
- D é um ponto do segundo quadrante;
- α é a amplitude do ângulo BOD.

Qual é, em função de α , a área do triângulo [ACD]?

- **(A)** $\cos \alpha$
- **(B)** $-\cos\alpha$
- **(C)** $\sin \alpha$
- **(D)** $-\sin \alpha$

3. Seja f a função definida em \mathbb{R} por:

$$f(x) = 2\tan\left(-\frac{9\pi}{4}\right) - \sin(2\pi - x) + 2\cos\left(x - \frac{3\pi}{2}\right) + \sin^2\left(x + \frac{\pi}{2}\right) + 3\sin^2\left(x + \pi\right)$$

- **3.1.** Mostre que $f(x) = 2\sin^2(x) \sin(x) 1$, $\forall x \in \mathbb{R}$.
- 3.2. A que é igual a imagem de 2π por f?

$$(\mathbf{A}) \quad \frac{f(\pi)}{2} + f\left(\frac{\pi}{2}\right)$$

(B)
$$2f(\pi) \times f\left(\frac{\pi}{2}\right)$$

(C)
$$f\left(\frac{\pi}{2}\right) - f(\pi)$$

(D)
$$f\left(\frac{\pi}{2}\right) + f\left(\pi\right)$$

Quais são os zeros de f em $]0, 2\pi[?]$

(A)
$$\frac{\pi}{2}, \frac{4\pi}{3}, \frac{5\pi}{6}$$

(A)
$$\frac{\pi}{2}, \frac{4\pi}{3}, \frac{5\pi}{6}$$
 (B) $\frac{3\pi}{2}, \frac{4\pi}{3}, \frac{5\pi}{6}$

(C)
$$-\frac{\pi}{6}, \frac{\pi}{2}, \frac{7\pi}{6}$$

(C)
$$-\frac{\pi}{6}, \frac{\pi}{2}, \frac{7\pi}{6}$$
 (D) $\frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$

Para um determinado valor real de $\,c\,$, considere a função $\,f\,$, de domínio $\,\mathbb{R}\,$, definida por: 4.

$$f(x) = 3\cos(2x+c) - 1$$

4.1. Sabe-se que $\frac{\pi}{2}$ é um maximizante de f.

Justifique que o menor valor positivo de $c \in \pi$.

- 4.2. Considere $c = \pi$.
 - Estude a paridade de f. a)
 - Existem dois pontos do gráfico de f, A e B, com abcissa pertencente ao intervalo b) $[0, \pi]$, tais que a sua distância à origem do referencial é igual a 2.

Recorrendo às capacidades gráficas da calculadora, determine as coordenadas de A e B.

Na sua resposta deve:

- apresentar uma equação que lhe permita resolver o problema;
- reproduzir, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permita(m) resolver a equação;
- apresentar as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas;
- apresentar a resposta pedida com as coordenadas arredondadas às décimas.

5. De uma função f, de domínio \mathbb{R} , sabe-se que tem período fundamental igual a 2.

Qual é o período fundamental da função g , de domínio $\mathbb R$, definida por:

$$g(x) = 3f(2x-1) + 4$$
?

- **(A)** 1
- (B)
- **(C)** 3
- **(D)** 4

Sabe-se que:

- P é a interseção da altura do triângulo relativa a A com a base [BC];
- Q é a interseção da altura do triângulo relativa a B
 com a base [AC];
- H é a interseção das alturas do triângulo relativas
 a A e B.

6.1. Mostre que $\overrightarrow{HP} \cdot \overrightarrow{HA} = \overrightarrow{HQ} \cdot \overrightarrow{HB}$.

Sugestão: Comece por escrever \overrightarrow{HP} e \overrightarrow{HA} como soma de dois vetores.

6.2. Sabendo que:

•
$$\overline{AB} = \overline{CA} - 1 = 5$$

$$\bullet \quad C\hat{B}A = \frac{\pi}{3}$$

Determine a amplitude do ângulo BAC, em radianos?

Apresente resposta arredondada às centésimas.

Nos cálculos intermédios conserve, no mínimo, três casas decimais.

FIM

COTAÇÕES

ſ	Item													
	Cotação (em pontos)													
	1.1.	1.2.	1.3.	2.	3.1.	3.2.	3.3.	4.1.	4.2.a)	4.2.b)	5.	6.1.	6.2.	Total
	10	20	20	10	20	10	10	15	15	20	10	20	20	200

SUGESTÃO DE RESOLUÇÃO

- 1. Seja r a reta de equação y = 2x 3.
 - **1.1.** $m = \tan \alpha = 2$

Queremos $\cos(\alpha - \pi) = -\cos\alpha$

$$\tan^{2}(\alpha) + 1 = \frac{1}{\cos^{2}(\alpha)}$$
$$2^{2} + 1 = \frac{1}{\cos^{2}(\alpha)}$$

$$\cos^2(\alpha) = \frac{1}{5}$$

$$\cos(\alpha) = \pm \sqrt{\frac{1}{5}} = \pm \frac{1}{2\sqrt{5}} = \pm \frac{\sqrt{5}}{5}$$

Como m > 0, α é agudo, pelo que $\cos(\alpha) > 0$. Logo, $\cos(\alpha) = \frac{\sqrt{5}}{5}$.

Assim,
$$-\cos\alpha = -\frac{\sqrt{5}}{5}$$
.

Resposta: (D)

- 1.2. y = 2x 3
 - Ponto *A*:

$$y = 2 \times 1 - 3 = -1$$

$$A(1,-1)$$

• Ponto *B*:

$$1 = 2x - 3 \Leftrightarrow x = 2$$

• Ponto O: O(0,0)

Quer-se determinar $A\hat{O}B$:

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \times \overrightarrow{OB} \times \cos(A\hat{O}B)$$
$$1 = \sqrt{2} \times \sqrt{5} \times \cos(A\hat{O}B)$$

$$\cos\left(A\hat{O}B\right) = \frac{1}{\sqrt{2} \times \sqrt{5}} = \frac{1}{\sqrt{10}}$$

$$A\hat{O}B = \cos^{-1}\left(\frac{1}{\sqrt{10}}\right) \approx 72^{\circ}$$

Resposta: $A\hat{O}B \approx 72^{\circ}$

Cálculos auxiliares:

$$\overrightarrow{OA} = A - O = (1, -1)$$

$$\overrightarrow{OB} = B - O = (2, 1)$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = (1, -1) \cdot (2, 1) = 2 - 1 = 1$$

$$\|\overrightarrow{OA}\| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$

$$\|\overrightarrow{OB}\| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

1.3.
$$m = -\frac{1}{m_r} = -\frac{1}{2}$$
 $m_r \in 0$ declive da reta r

• Ponto de interseção, *I* :

$$y = 2x - 3$$
$$3k = 2 \times (k - 1) - 3$$

O ponto (k-1, 3k) pertence a r.

$$3k = 2k - 2 - 3$$

$$k = -5$$

$$I(k-1, 3k) = (-5-1, 3\times(-5)) = (-6, -15)$$

• Equação da reta pedida:

$$y = -\frac{1}{2}x + b$$
 $y = mx + b \text{ e } m = -\frac{1}{2}$
 $-15 = -\frac{1}{2} \times (-6) + b$ $x = -6 \text{ e } y = -15$
 $-15 = 3 + b \Leftrightarrow b = -18$

Resposta:
$$y = -\frac{1}{2}x - 18$$

2. Seja x_D a abcissa de D. $x_D < 0$

 $-x_D$ é a altura do triângulo relativa á base [AC].

$$\text{Área} = \frac{\overline{AC} \times (-x_D)}{2} = \frac{2 \times (-\cos \alpha)}{2} = -\cos \alpha$$

Resposta: (B)

3.

3.1.
$$f(x) = 2\tan\left(-\frac{9\pi}{4}\right) - \sin(2\pi - x) + 2\cos\left(x - \frac{3\pi}{2}\right) + \sin^2\left(x + \frac{\pi}{2}\right) + 3\sin^2(x + \pi)$$
$$= 2 \times (-1) + \sin(x) - 2\sin(x) + \cos^2(x) + 3\sin^2(x) =$$
$$= -2 - \sin(x) + \cos^2(x) + \sin^2(x) + 2\sin^2(x) =$$
$$= -2 - \sin(x) + 1 + 2\sin^2(x) = 2\sin^2(x) - \sin(x) - 1, \ \forall x \in \mathbb{R}$$

Cálculos auxiliares:

•
$$\tan\left(-\frac{9\pi}{4}\right) = -\tan\left(\frac{9\pi}{4}\right) = -\tan\left(\frac{8\pi}{4} + \frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$$

•
$$\sin(2\pi - x) = \sin(-x) = -\sin(x)$$

$$\cos\left(x - \frac{3\pi}{2}\right) = -\sin(x)$$

•
$$\sin^2\left(x + \frac{\pi}{2}\right) = \cos^2\left(x\right)$$

•
$$\sin^2(x+\pi) = (-\sin(x))^2 = \sin^2(x)$$

3.2.
$$f(2\pi) = 2\sin^2(2\pi) - \sin(2\pi) - 1 = -1$$

 $f(\pi) = 2\sin^2(\pi) - \sin(\pi) - 1 = -1$

$$f\left(\frac{\pi}{2}\right) = 2\sin^2\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{2}\right) - 1 = 2 \times 1^2 - 1 - 1 = 0$$

(A)
$$\frac{f(\pi)}{2} + f(\frac{\pi}{2}) = -\frac{1}{2} + 0 = -\frac{1}{2} \neq f(2\pi)$$

(B)
$$2f(\pi) \times f\left(\frac{\pi}{2}\right) = 2 \times (-1) \times 0 = 0 \neq f(2\pi)$$

(C)
$$f\left(\frac{\pi}{2}\right) - f(\pi) = 0 + 1 = 1 \neq f(2\pi)$$

(D)
$$f\left(\frac{\pi}{2}\right) + f(\pi) = 0 - 1 = -1 = f(2\pi)$$

Resposta: (D)

3.3.
$$2\sin^2(x) - \sin(x) - 1 = 0 \Leftrightarrow$$

$$\Leftrightarrow \sin x = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 2 \times (-1)}}{2 \times 1} \Leftrightarrow \sin x = 1 \vee \sin x = -\frac{1}{2} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{\pi}{2} + 2k\pi \vee x = -\frac{\pi}{6} + 2k\pi \vee x = \pi + \frac{\pi}{6} + 2k\pi, k \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{\pi}{2} + 2k\pi \vee x = -\frac{\pi}{6} + 2k\pi \vee x = \frac{7\pi}{6} + 2k\pi, k \in \mathbb{Z}$$

Atribuindo valores a k, temos:

$$k = 0; x = \frac{\pi}{2} \lor x = -\frac{\pi}{6} \lor x = \frac{7\pi}{6} -\frac{\pi}{6} \notin]0, 2\pi[$$

$$k = 1; x = \frac{\pi}{2} + 2\pi \lor x = -\frac{\pi}{6} + 2\pi x = \frac{7\pi}{6} + 2\pi \Leftrightarrow$$

$$\Leftrightarrow x = \frac{5\pi}{2} \lor x = \frac{11\pi}{6} \lor x = \frac{19\pi}{6} \frac{5\pi}{2} \notin]0, 2\pi[, \frac{19\pi}{6} \notin]0, 2\pi[$$

Os valores obtidos para outros valores de $\,k\,\,$ não pertencem ao intervalo $\,\,\big]0\,,\,2\pi\big[\,\,$

Zeros de
$$f$$
 em $]0, 2\pi[:\frac{\pi}{2}, \frac{7\pi}{6}] = \frac{11\pi}{6}$

Resposta: (D)

Máximo Matemática A

4.

4.1. Máximo de f

$$-1 \le \cos(2x+c) \le 1$$
$$-3 \le 3\cos(2x+c) \le 3$$

$$-4 \le 3\cos(2x+c)-1 \le 2$$
, $\forall x \in \mathbb{R}$

O máximo absoluto de f é 2.

$$f\left(\frac{\pi}{2}\right) = 2 \Leftrightarrow 3\cos\left(2 \times \frac{\pi}{2} + c\right) - 1 = 2 \Leftrightarrow \cos\left(\pi + c\right) = 1 \Leftrightarrow -\cos\left(c\right) = 1 \Leftrightarrow \cos\left(c\right) = -1 \Leftrightarrow c = \pi + 2k\pi, \ k \in \mathbb{Z}$$

Assim, o menor valor positivo de $c \in \pi$, quando k = 0.

4.2.
$$f(x) = 3\cos(2x + \pi) - 1 = -3\cos(2x) - 1$$
.

a)
$$D_f=\mathbb{R} \text{ . Logo, se } x\in D_f \text{ então } -x\in D_f \text{ .}$$

$$f\left(-x\right)=-3\cos\left(2\times\left(-x\right)\right)-1=-3\cos\left(-2x\right)-1=-3\cos\left(2x\right)-1=f\left(x\right), \, \forall x\in\mathbb{R}$$
 Logo, f é par.

b) Seja
$$P(x, f(x))$$
, com $x \in]0, \pi[$.

Quer-se determinar $x \in]0,\pi[$ tal que $\overline{PO} = 2$, ou seja,

$$\sqrt{x^2 + \left(-3\cos(2x) - 1\right)^2} = 2$$

Recorrendo à calculadora gráfica, fazendo

$$y_1 = \sqrt{x^2 + (-3\cos(2x) - 1)^2}$$
 e $y_2 = 2$,

determinaram-se, no intervalo referido, as soluções da equação.

Foi obtido o seguinte resultado:

$$x_A \approx 0.63 \text{ e } x_B \approx 1.29$$

$$f(x_A) \approx -3\cos(2 \times 0.63) - 1 \approx -1.9$$

$$f(x_B) \approx -3\cos(2\times1,29) - 1\approx1,5$$

Resposta: A(0,6;-1,9) e B(1,3;1,5)

- 5. O período fundamental de f é 2.
 - $\bullet \quad y = f(x)$

O período é 2.

• $y_1 = f(2x) \rightarrow \text{contração horizontal do gráfico de } f$ de coeficiente $\frac{1}{2}$.

O período passa para metade, p = 2:1=1

• $y_2 = f(2x-1) \rightarrow \text{translação do gráfico de } y_1 \text{ de vetor } (1,0)$.

O período não é alterado.

• $y_3 = 3f(2x-1) \rightarrow \text{dilatação do gráfico de } y_2 \text{ de coeficiente } 3.$

O período não é alterado.

g(x)=3f(2x-1)+4→ translação do gráfico de y₃ de vetor (0, 4).
 O período não é alterado.

Resposta: (A)

6.

6.1.
$$\overrightarrow{HP} \cdot \overrightarrow{HA} = (\overrightarrow{HB} + \overrightarrow{BP}) \cdot (\overrightarrow{HQ} + \overrightarrow{QA}) =$$

$$= \overrightarrow{HB} \cdot \overrightarrow{HQ} + \overrightarrow{HB} \cdot \overrightarrow{QA} + \overrightarrow{BP} \cdot \overrightarrow{HQ} + \overrightarrow{BP} \cdot \overrightarrow{QA} =$$

$$= \overrightarrow{HB} \cdot \overrightarrow{HQ} + 0 + \overrightarrow{BP} \cdot (\overrightarrow{HQ} + \overrightarrow{QA}) = \qquad \overrightarrow{HB} \cdot \overrightarrow{QA} = 0, \text{ porque}$$

$$= \overrightarrow{HB} \cdot \overrightarrow{HQ} + \overrightarrow{BP} \cdot \overrightarrow{HA} =$$

$$= \overrightarrow{HB} \cdot \overrightarrow{HQ} + 0 = \qquad \overrightarrow{BP} \cdot \overrightarrow{HA} = 0,$$

$$\overrightarrow{BP} \cdot \overrightarrow{AP} = 0,$$

$$\overrightarrow{AP} =$$

6.2.

•
$$\overline{CA} - 1 = 5$$
, logo, $\overline{CA} = 5 + 1 = 6$

 $= \overrightarrow{HO} \cdot \overrightarrow{HB}$

•
$$\sin \frac{\pi}{3} = \frac{\overline{AP}}{5} \Leftrightarrow \frac{\sqrt{3}}{2} = \frac{\overline{AP}}{5} \Leftrightarrow \overline{AP} = \frac{5\sqrt{3}}{2}$$

•
$$\sin \alpha = \frac{5\sqrt{3}}{\frac{2}{6}} = \frac{5\sqrt{3}}{12}$$
, logo, $\alpha = \sin^{-1}\left(\frac{5\sqrt{3}}{12}\right) \approx 0,806$

•
$$B\hat{A}C = \pi - \frac{\pi}{3} - \alpha \approx \frac{2\pi}{3} - 0,806 \approx 1,29 \,\text{rad}$$

Resposta: $\hat{BAC} \approx 1,29 \,\text{rad}$.