Alcune definizioni IMPORTANTI

Alfabeto: è un insieme finito di elementi detti simboli. **ESEMPIO:** $\Sigma = \{0,1\}$ è un alfabeto denominato **binario**.

Stringa (o parola): è una sequenza di simboli $w:=w_1,\ldots w_n\in \sum$

Linguaggio: dato un alfabeto \sum definiamo come linguaggio di \sum , indicato come \sum^* , l'insieme delle stringhe di \sum .

Lunghezza di una Stringa: data una stringa $w \in \sum$, definiamo la lunghezza di w come |w| come la quantità di simboli presenti in w.

La Concatenazione tra una stringa $x:=x_1\dots x_n$ e una stringa $y:=y_1\dots y_m$ è la seguente operazione: $xy:=x_1\dots x_ny_1\dots y_m$. Essa NON gode della proprietà commutativa

Definiamo una **STRINGA VUOTA**, indicata con ϵ ossia l'unica stringa tale che:

$$egin{aligned} |\epsilon| = 0, \ orall w \in \sum^* \ w \cdot \epsilon = w \ \sum^*
otin 0, \ \epsilon \in \sum^* \end{aligned}$$

Operazioni sui linguaggi

Dati Linguaggi $L_1, L_2, L_3 \subset \sum^*$, definiamo le seguenti operazioni:

• UNIONE:

$$L_1 \cup L_2 = \left\{ w \in \sum
olimits^* \mid w \in L_1 \lor w \in L_2
ight.
ight\}$$

• INTERSEZIONE:

$$L_1\cap L_2=\left\{w\in \sum
olimits^*\mid w\in L_1\wedge w\in L_2
ight.
ight\}$$

• COMPLEMENTO:

$$eg L = \left\{ w \in \sum
olimits^* \mid w
otin L
ight\}$$

• CONCATENAZIONE:

$$L_1\circ L_2=\left\{xy\in \sum
olimits^*\mid x\in L_1,y\in L_2
ight\}$$

Esempio: $\sum=\{a,b\},\ L_1=\{a,ab,ba\},\ L_2=\{ab,b\}$ allora $L_1\circ L_2=\{aab,ab,abab,abb,baab,bab\}$

• POTENZA:

$$L^n = egin{cases} \{\epsilon\} & se \ n = 0 \ L \circ L^n = L^{n+1} & se \ n \geq 0 \end{cases}$$

DETERMINISMO

Un *AUTOMA* è una macchina progettata per eseguire una sequenza di operazioni o rispondere ad istruzioni predeterminate. Mantiene informazioni relative allo **stato** attuale dell'automa stesso ed agisce di conseguenza, passando da uno stato all'altro.

Uno Stato di ACCETTAZIONE è uno stato che accetta il risultato. Nell'esempio, q_2 , è lo stato di accettazione.

Deterministic Finite Automaton (DFA)

E' una quintupla $(Q, \sum, \delta, q_0, F)$ dove:

- ullet Q è l'insieme finito degli stati dell'automa
- \sum è l'alfabeto
- ullet $\delta \,:\, Q imes \sum o Q$ è la funzione di transizione degli stati
- ullet q_0 è lo stato iniziale dell'automa
- ullet $F\subseteq Q$ è l'insieme degli stati accettati dell'automa.

Consideriamo il seguente esempio:

In cui:

- ullet $Q=\{q_1,q_2,q_3\}$ è l'insieme degli stati
- $\sum = \{1,0\}$ è l'alfabeto
- ullet $\delta \,:\, Q imes \sum o Q$ è definita nel seguente modo:

δ	q_1	q_2	q_3
0	q_1	q_3	q_2
1	q_2	q_2	q_2

- q_1 è lo stato iniziale
- ullet $F=\{q_2\}$ è lo stato di accettazione

DEF: sia $D:=(Q,\ \sum,\ \delta,\ q_0,\ F)$ un DFA. Definiamo $\delta^*:Q imes\sum^* o Q$ come **funzione di transizione estesa** di D, la seguente funzione ricorsiva:

$$egin{cases} \delta^*(q,\epsilon) = \delta(q,\epsilon) = q \ \delta^*(q,aw) = \delta^*(\delta(q,\epsilon),w), \ dove \ a \in \sum, w \in \sum^* \end{cases}$$

DEF: sia $D:=(\,Q,\,\sum,\,\delta,\,q_0,\,F\,)$ un DFA. Data una stringa $w\in\sum^*$, si dice che w è **ACCETTATA** da D se $\delta^*(q_0,w)\in F$. Ovvero che l'interpretazione di w termina su uno stato accettante.

Il ${\it Linguaggio\ di\ un\ Automa}$ A, è indicato con L(A) ed è l'insieme di stringhe accettate da A.

$$L(A) = \{w \in \sum^* \mid A \ accetta \ w\}$$

La *Configurazione* di un DFA $D:=(Q,\ \sum,\ \delta,\ q_0,\ F)$, è la coppia $(q,w)\in Q\times \sum^*$. In pratica contiene lo stato attuale e lo stato successivo da visitare.

Relazione Estesa

Questa relazione binaria la posso **estendere** (\vdash_D^*) . Considerando la chiusura riflessiva e transitiva. Mettendo quindi nuove relazioni tra stati.

- $(p, aw) \vdash_D (q, w) \implies (p, aw) \vdash_D^* (q, w)$
- $\forall q \in Q, w \in \sum^* (q, w) \vdash_D^* (q, w)$
- $\bullet \ \, (p,abw) \vdash_D (q,bw) \land (q,bw) \vdash_D (r,w) \implies (p,abw) \vdash_D ^* (r,w)$

Il *Passo di Computazione* è la relazione Binaria: $(p,aw)=dash_D(q,w)\iff \delta(p,a)=q$. Porta da una configurazione all'altra.

Un LINGUAGGIO REGOLARE è una classe che contiene un insieme di linguaggi riconosciuti dal DFA.