QU12 #2 Let (X,d_X) & (Y,d_Y) be metric spaces with d_X being the discrete metric. When is a function $f:X\to Y$ continuous? Answer: ALWAYS. To show this you may employ any of the equivalent definitions for continuity. ether 1) The E-S defin... To show continuity at $\alpha \in X$, given E>0, choose S>0 such that $f(B_s(\alpha)) \subset B_E(f(\alpha))$. Simply choose any δ in (0,1). In that case $B_{\delta}(\alpha)$ is the singleton $\{\alpha\}$ and $f(B_{\delta}(\alpha)) = f(\alpha) \in B_{\epsilon}(f(\alpha))$. or (2) Defin via sequences... For any $(x_i)_{i=1}^{\infty}$ in X with limit α , show $f(x_j) \xrightarrow{j \to \infty} f(x)$. Let (x_j) be such a sequence. Then (x_j) is ultimately the constant sequence (x_j) [We've proven this. Reprove it.] Then $f(x_j) = f(x_j) = f(x_j) \xrightarrow{j \to \infty} f(x_j)$. or 3 Every open in Y has open preimage in X... Let $U \subset Y$ be open. Then $f^{-1}(U)$ is open in Xlemma: (i) Any singleton is open in X. (Reprove!)
(ii) Any subset A=X is open in X. Pf. A = U {a}, By (i), each {a} is open, Since union of open sets are open, A is open.