# Novena ayudantía

### Autómatas finitos no deterministas

Teresa Becerril Torres terebece1508@ciencias.unam.mx

14 de marzo de 2023



## Autómata Finito no determinista - AFN

Un AFD es una 5-tupla  $A=(Q,\Sigma,\delta,q_0,F)$  donde:

- $Q = \{q_0, q_1, ..., q_n\}$  es un conjunto finito de estados.
- $\Sigma = \{a_1, a_2, ..., a_m\}$  es un conjunto finito de símbolos.
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$  es la función de transición, tal que  $\delta(q,a) \subseteq Q$ .
- $q_0 \in Q$  es el estado inicial.
- $F \subseteq Q$  es un conjunto de estados finales.



Considérese el autómata  $A=(Q,\Sigma,\delta,q_0,F)$  definido como  $\Sigma=\{0,1\},\ Q=\{q_0,q_1,q_2\},\ F=\{q_2\}$  y las transiciones dadas por:

$$\delta(q_0, 0) = \{q_0, q_1\} \ \delta(q_0, 1) = \{q_0\} \ \delta(q_1, 1) = \{q_2\}$$



Tabla de estados:

|                            | 0             | 1         |
|----------------------------|---------------|-----------|
| $\rightarrow \mathbf{q_0}$ | $\{q_0,q_1\}$ | $\{q_0\}$ |
| $\mathbf{q_1}$             | Ø             | $\{q_2\}$ |
| $*\mathbf{q_2}$            | Ø             | Ø         |

Extensión de la función de transición:

Aplicar a la cadena 01001 la función  $\hat{\delta}$ :

$$\begin{split} \hat{\delta}(q_0, \varepsilon) &= \{q_0\} \\ \hat{\delta}(q_0, 0) &= \delta(\hat{\delta}(q_0, \varepsilon), 0) = \delta(q_0, 0) = \{q_0, q_1\} \end{split}$$



$$\hat{\delta}(q_0, 01) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

$$\hat{\delta}(q_0, 010) = \delta(q_0, 0) \cup \delta(q_2, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, 0100) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\} \cup \emptyset = \{q_0, q_1\}$$

$$\hat{\delta}(q_0, 01001) = \delta(q_0, 1) \cup \delta(q_1, 1) = \{q_0\} \cup \{q_2\} = \{q_0, q_2\}$$

### Lenguaje generado por el autómata:

El autómata genera el lenguaje que contiene todas las cadenas que terminan con 01.

$$L(A) = \{ w \in \Sigma^* \, | \, w = (0+1)^*01 \}$$

Ya que 
$$\hat{\delta}(q_0, (0+1)^*01) \cap F \neq \emptyset$$
.



## Demostrar que el autómata en efecto acepta el lenguaje L:

 $\Rightarrow$ ] Si  $q_1 \in \hat{\delta}(q_0, w)$  entonces w termina en 0.

Supongamos que  $q_1 \in \hat{\delta}(q_0, w)$ , tenemos dos casos:

- Si |w|=1 entonces w=0.
- Si |w| > 1 entonces  $w = x \cdot a$ , pero como se pasa a  $q_1$  con 0, entonces a = 0 y  $x = (0+1)^+$ , por lo que  $w = (0+1)^+ \cdot 0$ .

 $\therefore$  Si  $q_1 \in \hat{\delta}(q_0, w)$  entonces w termina en 0.

 $\Leftarrow$ ] Si w termina en 0 entonces  $q_1 \in \hat{\delta}(q_0, w)$ .

Supongamos que w termina en 0. Tenemos dos casos:

• Si |w|=1 entonces w=0 y  $\hat{\delta}(q_0,w)=\{q_0,q_1\}.$  Por lo tanto  $q_1\in\hat{\delta}(q_0,w).$ 



- Si |w| > 1 entonces  $w = x \cdot 0$  y  $\hat{\delta}(q_0, x \cdot 0) = \{q_0\} \cup \{q_1\} = \{q_0, q_1\}.$
- $\therefore$  Si w termina en 0 entonces  $q_1 \in \hat{\delta}(q_0, w)$ .
- $\Rightarrow$ ] Si  $q_2 \in \hat{\delta}(q_0, w)$  entonces w termina en 01.

Supongamos que  $q_2 \in \hat{\delta}(q_0, w)$ , entonces  $|w| \geq 2$  por lo que tenemos dos casos:

- Si |w| = 2 entonces w = 01.
- Si |w| > 2 entonces  $w = x \cdot 01$ , ya que para pasar a  $q_2$  se necesita tener 0 y 1.
- $\therefore$  Si  $q_2 \in \hat{\delta}(q_0, w)$  entonces w termina en 01.



 $\Leftarrow$ ] Si w termina en 01 entonces  $q_2 \in \hat{\delta}(q_0, w)$ .

Supongamos que w termina en 01, entonces  $w=x\cdot 01$ . Descompóngase en  $w=y\cdot 1,\ y=z\cdot 0$ . Tenemos que y termina en 0 y por la demostración anterior sabemos que  $q_1\in \hat{\delta}(q_0,y)$  y por definición de la función de transición extendida tenemos:

$$\hat{\delta}(q_0,y\cdot 1)=\bigcup_{i=1}^k \delta(q_i,1)$$
 con  $q_i\in \hat{\delta}(q_0,y)$ 

De aquí tenemos que  $q_2 \in \delta(q_1, 1) \in \hat{\delta}(q_0, y \cdot 1)$ .

 $\therefore$  Si w termina en 01 entonces  $q_2 \in \hat{\delta}(q_0, w)$ .



## Autómata Finito no determinista con transiciones $\varepsilon$

Un AFD es una 5-tupla  $A = (Q, \Sigma, \delta, q_0, F)$  donde:

- $Q = \{q_0, q_1, ..., q_n\}$  es un conjunto finito de estados.
- $\Sigma = \{a_1, a_2, ..., a_m\}$  es un conjunto finito de símbolos.
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$  es la función de transición.
- $q_0 \in Q$  es el estado inicial.
- $F \subseteq Q$  es un conjunto de estados finales.



Considérese el autómata  $A=(Q,\Sigma,\delta,q_0,F)$  definido como  $\Sigma=\{0,1\}$ ,  $Q=\{q,\,r,\,s,\,t\}$ ,  $F=\{s\}$  y las transiciones dadas por:

$$\begin{split} \delta(q,\varepsilon) &= \{r\} & \delta(r,\varepsilon) = \{t\} & \delta(r,0) = \{q\} \\ \delta(r,1) &= \{s\} & \delta(s,0) = \{t\} & \delta(t,1) = \{r\} \end{split}$$



#### Tabla de estados:

|                    | $\varepsilon$ | 0       | 1   |
|--------------------|---------------|---------|-----|
| $ ightarrow {f q}$ | $\{r\}$       | Ø       | Ø   |
| $\mathbf{r}$       | $\{t\}$       | $\{q\}$ | {s} |
| $\mathbf{t}$       | Ø             | Ø       | {r} |
| *s                 | Ø             | {t}     | Ø   |

### Cerradura epsilon:

- $\mathsf{ECLOSE}(q) = \{q, r, t\}$
- $ECLOSE(r) = \{r, t\}$
- $ECLOSE(t) = \{t\}$
- $ECLOSE(t) = \{s\}$



### Función de transición extendida:

Aplicar a la cadena 010 la función  $\hat{\delta}$ :

- $\hat{\delta}(q,\varepsilon) = \mathsf{ECLOSE}(q) = \{q, r, t\}$
- $\delta(q,0) \cup \delta(r,0) \cup \delta(t,0) = \emptyset \cup \{q\} \cup \emptyset$  y  $\hat{\delta}(q,0) = \mathsf{ECLOSE}(q) = \{q, r, t\}$
- $$\begin{split} \bullet & \ \delta(q,1) \cup \delta(r,1) \cup \delta(t,1) = \emptyset \cup \{s\} \cup \{r\} \ \mathsf{y} \\ & \ \hat{\delta}(q,1) = \mathsf{ECLOSE}(s) \cup \mathsf{ECLOSE}(r) = \{s,\,r,\,t\} \\ & \ \delta(s,0) \cup \delta(r,0) \cup \delta(t,0) = \{t\} \cup \{q\} \cup \emptyset \ \mathsf{y} \\ & \ \hat{\delta}(s,0) = \mathsf{ECLOSE}(t) \cup \mathsf{ECLOSE}(q) = \{t,\,q,\,r\} \end{split}$$

Por tanto  $\hat{\delta}(q,010) = \{t, q, r\}$ 

