Stationarity ⇒ parameters sharing

$$oldsymbol{W} = \left[egin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}
ight]$$

Stationarity ⇒ parameters sharing

Convnet benefits

- Sparse connectivity
 - reduced amount of computation
- Weight sharing
 - better generalisation \leftarrow $abla_{u_1}L =
 abla_{w_{11}}L +
 abla_{w_{22}}L + \cdots$
 - not constrained to input size
 - kernel independence ⇒ high parallelisation

Kernels – 1D data

kernel size: $2 \times 7 \times 3$

$$oldsymbol{u} = \left(egin{array}{cccc} \left(oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_3 \end{array}
ight)_1 \ \left(oldsymbol{u}_1 & oldsymbol{u}_2 & oldsymbol{u}_3 \end{array}
ight)_2$$

$$u_1 = \begin{pmatrix} u_{11} \\ u_{21} \\ u_{31} \\ \vdots \\ u_{71} \end{pmatrix} \quad u_3 = \begin{pmatrix} u_{13} \\ u_{23} \\ u_{33} \\ \vdots \\ u_{73} \end{pmatrix}$$

Padding – 1D data

Standard spatial CNN

- Multiple layers
 - Convolution
 - Non-linearity (ReLU and Leaky)
 - Pooling
 - Batch normalisation
- Residual bypass connection

Pooling

$$\frac{n}{m}$$