PROJECTILE MOTION & VECTORS

Time of flight:
$$T = \frac{2u\sin\theta}{g}$$

Horizontal range:
$$R = \frac{u^2 \sin 2\theta}{g}$$

Maximum height:
$$H = \frac{u^2 \sin^2 \theta}{2g}$$

Trajectory equation (equation of path):

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta} = x \tan \theta (1 - \frac{x}{R})$$

Projection on an inclined plane

	Up the Incline	Down the Incline
Range	$\frac{2u^2 \sin \alpha \cos(\alpha + \beta)}{g \cos^2 \beta}$	$\frac{2u^2 \sin \alpha \cos(\alpha - \beta)}{g \cos^2 \beta}$
Time of flight	2usinα gcosβ	2u sin α gcosβ
Angle of projection with incline plane for maximum range	$\frac{\pi}{4} - \frac{\beta}{2}$	$\frac{\pi}{4} + \frac{\beta}{2}$
Maximum Range	$\frac{u^2}{g(1+\sin\beta)}$	$\frac{u^2}{g(1-\sin\beta)}$