

REPUBLIKA E SHQIPERISË

UNIVERSITETI POLITEKNIK I TIRANËS FAKULTETI I TEKNOLOGJISË SË INFORMACIONIT DEPARTAMENTI I INXHINIERISË INFORMATIKE

Punë Laboratori 1

Tema: Studimi eksperimental i diodës Zener si rregullator tensioni.

Lënda: Elementet dhe teknologjitë elektronike

Dega: Inxhinieri Informatike

Grupi: II-B

Punoi: Piro Gjikdhima Pranoi: Veranda Syla

VITI AKADEMIK: 2023 - 2024

Ushtrimi 1

Ndërtimi i qarkut në MULTISIM.

Parametrat e qarkut:

- Burim tensioni $V_1 = 10V$
- Rezistence $R_1 = 100\Omega$
- Multimetrat XMM1 dhe XMM2
- Diodë zener e tipit 1N4371A

Ushtrimi 2

Matja e vlerave të I_R dhe V_z me anë të multimetrave XMM1 dhe XMM2.

Pasi simulojmë qarkun marrim përkatësisht vlerat siç duken edhe në foto:

 $I_R=72.397\ mA\ dhe\ V_z=2.76\ V$

Ushtrimi 3

Matja e vlerës së tensionit te diodës zener (Vz) për rritje të tensionit të burimit me nga 1V.

<u>Tabela</u>

V_1	10V	11V	12V	13V	14V	15V	16V	17V	18V	19V	20V
$V_{\rm Z}$	2.76V	2.769V	2.777V	2.785V	2.792V	2.799V	2.807V	2.814V	2.82V	2.827V	2.834V

Për ndryshimet qe i bëjmë tensionit te burimit te vazhduar aq here simulojmë qarkun dhe marrim vlerat e V_z . Nga tabela qe marrim me vlera ndërtojmë grafikun.

Ushtrimi 4

Ndërtimi ne MULTISIM i qarkut me diodë Zener.

Parametrat e qarkut:

- Burim tensioni $V_1 = 15V$
- Burim sinjali $V_2 = 500 \text{mV}$
- Rezistence $R = 220\Omega$
- Rezistence $R_L = 220\Omega$
- Diodë zener e tipit 1N4371A
- Oshiloskopi XSC1

Ushtrimi 5

Krahasimi i valës ne hyrje me valën ne dalje te oshiloskopit dhe gjetja e vlerës së ripple-it te sinjalit ne dalje.

Prej grafikut dallohet qartë se sinjali në hyrje (Vala e kuqe) është më i madh sesa sinjali në dalje (Vale blu). Vera e ripple e V_S do të jetë $\Delta V_S \approx 500$ mV e cila sjell që $\Delta V_o \approx 2.5$ mV

Hapi 6 – Gjetja e r_z duke përdorur rregullimin e vijës.

$$\frac{\Delta Vo}{\Delta Vs} = \frac{r_z}{r_z + R}$$

$$r_z = \frac{\Delta VoR}{\Delta Vs - \Delta Vo} = \frac{2.5mV*220\Omega}{500mV - 2.5mv} \approx 1.10553\Omega$$