TFY4195 H2020 - Assignment 3: to be handed in Oct8, 2020

A3-1. An electromagnetic wave is travelling in air/vacuum, specified by the following function:

$$\overline{E} = (-6\hat{x} + 3\sqrt{5}\hat{y})\cos\left[\frac{1}{3}(\sqrt{5}x + 2y) \cdot \pi \cdot 10^7 - 9.42 \cdot 10^{15}t\right] \cdot 10^2 \left[\frac{V}{m}\right]$$

The unit of length is [m] and time [s].

Find,

- a) the electric (E_0) and magnetic (B_0) field amplitudes,
- b) their directions (as unit vectors),
- c) the direction of propagation,
- d) the wavelength (λ) , propagation number (k) and frequency (ν) ,
- e) the speed,
- f) the irradiance (in W/m^2).

Draw a scheme that shows the directions of E_0 , B_0 and k (vector) in an xyz coordinate system.

A3-2. Analyze the polarization state of the following electromagnetic waves by plotting the electric field trace over a period $[0,2\pi]$ for ωt (for example at z = 0).

a)
$$\overline{E} = E_0 \cos\left(kz - \omega t + \frac{\pi}{4}\right) \cdot \hat{x} + E_0 \cos\left(kz - \omega t - \frac{\pi}{4}\right) \cdot \hat{y}$$

b) $\overline{E} = E_0 \cos\left(kz - \omega t + \frac{\pi}{4}\right) \cdot \hat{x} + 2E_0 \sin(kz - \omega t) \cdot \hat{y}$

b)
$$\overline{E} = E_0 \cos\left(kz - \omega t + \frac{\pi}{4}\right) \cdot \hat{x} + 2E_0 \sin(kz - \omega t) \cdot \hat{y}$$

c)
$$\overline{E} = \frac{1}{2}E_0\cos(kz - \omega t) \cdot \hat{x} + E_0\sin\left(kz - \omega t - \frac{\pi}{2}\right) \cdot \hat{y}$$