Duality

Lecture 4

October 1, 2025

Consider an optimization problem

minimize $c^{\mathsf{T}}x$ such that $Ax \leq b$.

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in A$ are unknown parameters. How to find an x that is feasible for any $a_i \in A$?

Consider an optimization problem

minimize
$$c^{\mathsf{T}}x$$

such that $Ax \leq b$.

- 1. Given a feasible x, how can we know "how good" it is? Formally, how to quantify the gap $c^{T}x - p^{*}$ where p^{*} is the optimal value?
- 2. Without a feasible x, how to **certify** that $\{x : Ax \leq b\}$ is empty?
- 3. Suppose one constraint is: $a_i^T x \leq 0$ where $a_i \in A$ are unknown parameters. How to find an x that is feasible for any $a_i \in A$?
- 4. You are offered a bit more of b_i , for a "suitable price". Is the deal worthwhile?

Duality theory will provide answers to these questions (and more)

• Consider a **primal** optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ such that $Ax \leq b$.

• Consider a **primal** optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y < \tilde{b}$.

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$ such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y < \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{T}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• If (\mathcal{P}) has optimal solution x^* , then (\mathcal{D}) has optimal solution y^* and

$$c^{\mathsf{T}}x^{\star} = \tilde{r}^{\mathsf{T}}y^{\star}$$
 (strong duality)

• Consider a primal optimization problem:

(
$$\mathcal{P}$$
) minimize $c^{\mathsf{T}}x$
such that $Ax \leq b$.

• We will form a dual problem; also a linear program (LP):

(
$$\mathcal{D}$$
) maximize $\tilde{r}^T y$ such that $\tilde{A}y \leq \tilde{b}$.

• We will show that the dual provides lower bounds for the primal:

$$\tilde{r}^T y \leq c^T x$$
 for any x feasible for (\mathcal{P}) and y feasible for (\mathcal{D})

• If (\mathcal{P}) has optimal solution x^* , then (\mathcal{D}) has optimal solution y^* and

$$c^{\mathsf{T}}x^{\star} = \tilde{r}^{\mathsf{T}}y^{\star}$$
 (strong duality)

• In the process, will uncover some **fundamental ideas in optimization**:

separation of convex sets \implies Farkas Lemma \implies strong duality

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Consider a linear optimization problem in the most general form possible:

Note the mnemonic encoding...

Definition

We will refer to this as the **primal problem** or problem (\mathcal{P}) .

Let P denote its feasible set (a polyhedron), and p^* denote its optimal value.

Consider the primal problem:

$$\begin{aligned} (\mathcal{P}) \text{ minimize}_x & & c^\mathsf{T} x \\ \text{ such that} & & a_i^\mathsf{T} x \geq b_i, \quad \forall i \in I_{\mathrm{ge}}, \\ & & a_i^\mathsf{T} x \leq b_i, \quad \forall i \in I_{\mathrm{le}}, \\ & & a_i^\mathsf{T} x = b_i, \quad \forall i \in I_{\mathrm{eq}}, \\ & & x_j \geq 0, \quad \forall j \in J_p, \\ & & x_j \leq 0, \quad \forall j \in J_n, \\ & & x_j \text{ free}, \quad \forall j \in J_f \end{aligned}$$

 (\mathcal{P}) is a minimization; we seek **valid lower bounds** on (\mathcal{P}) . Any ideas?

Consider the primal problem:

$$\begin{aligned} (\mathcal{P}) & \text{minimize}_x & c^\mathsf{T} x \\ & \text{such that} & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathrm{ge}}, \\ & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathrm{le}}, \\ & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathrm{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \text{ free}, & \forall j \in J_f \end{aligned}$$

 (\mathcal{P}) is a minimization; we seek **valid lower bounds** on (\mathcal{P}) . Any ideas?

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{x} & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_\mathsf{ge}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_\mathsf{le}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_\mathsf{eq}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_i \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

For every constraint i, have a **penalty** λ_i

Construct the **lower bound** as the **Lagrangean**:

$$\mathcal{L}(x, \boldsymbol{\lambda}) = c^{\mathsf{T}}x - \sum_{i=1}^{m} \boldsymbol{\lambda}_{i} (a_{i}^{\mathsf{T}}x - b_{i}) = c^{\mathsf{T}}x - \boldsymbol{\lambda}^{\mathsf{T}} (Ax - b)$$

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_\mathsf{ge}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_\mathsf{le}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_\mathsf{eq}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_i \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

For every constraint i, have a **penalty** λ_i

Construct the **lower bound** as the **Lagrangean**:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}} x - \sum_{i=1}^{m} \lambda_{i} (a_{i}^{\mathsf{T}} x - b_{i}) = c^{\mathsf{T}} x - \lambda^{\mathsf{T}} (Ax - b)$$

Note: we relaxed the complicating constraints, $a_i^T x$? b_i , and used a linear penalty Not apriori clear that this will give us very good bounds...

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_{\mathsf{x}} & c^\mathsf{T} \mathsf{x} \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} \geq b_i, & \forall i \in I_{\mathsf{ge}}, \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} \leq b_i, & \forall i \in I_{\mathsf{le}}, \\ & (\lambda_i \to) & \mathsf{a}_i^\mathsf{T} \mathsf{x} = b_i, & \forall i \in I_{\mathsf{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathsf{ge}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathsf{le}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathsf{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

We must impose constraints on λ :

Consider the primal problem:

$$\begin{array}{lll} (\mathcal{P}) \ \mathsf{minimize}_x & c^\mathsf{T} x \\ & (\lambda_i \to) & a_i^\mathsf{T} x \geq b_i, & \forall i \in I_{\mathrm{ge}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x \leq b_i, & \forall i \in I_{\mathrm{le}}, \\ & (\lambda_i \to) & a_i^\mathsf{T} x = b_i, & \forall i \in I_{\mathrm{eq}}, \\ & x_j \geq 0, & \forall j \in J_p, \\ & x_j \leq 0, & \forall j \in J_n, \\ & x_j \ \mathsf{free}, & \forall j \in J_f. \end{array}$$

We want the Lagrangean to give us a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

We must impose constraints on λ :

$$\begin{vmatrix}
\lambda_{i} \geq 0, & \forall i \in I_{ge} \\
\lambda_{i} \leq 0, & \forall i \in I_{le} \\
\lambda_{i} \text{ free,} & \forall i \in I_{eq}.
\end{vmatrix} \Leftrightarrow \lambda \in \Lambda$$
(2)

Summarizing... any $\lambda \in \Lambda$ produces a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}} x - \lambda^{\mathsf{T}} (Ax - b) \le c^{\mathsf{T}} x, \, \forall x \in P.$$

How can we get a lower bound on the primal's **optimal value** p^* ?

Summarizing... any $\lambda \in \Lambda$ produces a valid lower bound:

$$\mathcal{L}(x, \lambda) = c^{\mathsf{T}}x - \lambda^{\mathsf{T}}(Ax - b) \le c^{\mathsf{T}}x, \, \forall x \in P.$$

How can we get a lower bound on the primal's optimal value p^* ?

Claim

The function $g: \Lambda \to \mathbb{R}$ defined as:

$$g(\lambda) := \min_{x} \mathcal{L}(x, \lambda)$$

$$s.t. \ x_{j} \ge 0, \ \forall j \in J_{p}$$

$$x_{j} \le 0, \ \forall j \in J_{n}$$

$$x_{j} \ free, \ \forall j \in J_{f}$$
(3)

satisfies $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

Note: including the sign constraints on x in this optimization improves the lower bound!

Let us analyze this further:

$$g(\lambda) = \min_{x} \mathcal{L}(x, \lambda) = \min_{x} \left[\lambda^{\mathsf{T}} b + (c^{\mathsf{T}} - \lambda^{\mathsf{T}} A) x \right]$$
s.t. $x_{j} \geq 0, \ \forall j \in J_{p},$ s.t. $x_{j} \geq 0, \ \forall j \in J_{p},$

$$x_{j} \leq 0, \ \forall j \in J_{n},$$

$$x_{j} \text{ free, } \forall j \in J_{f}$$

$$x_{j} \text{ free, } \forall j \in J_{f}$$

Let us analyze this further:

$$g(\lambda) = \min_{x} \mathcal{L}(x, \lambda) = \min_{x} \left[\lambda^{\mathsf{T}} b + (c^{\mathsf{T}} - \lambda^{\mathsf{T}} A) x \right]$$

$$\text{s.t. } x_{j} \geq 0, \ \forall j \in J_{p}, \quad \text{s.t. } x_{j} \geq 0, \ \forall j \in J_{p},$$

$$x_{j} \leq 0, \ \forall j \in J_{n}, \quad x_{j} \leq 0, \ \forall j \in J_{n},$$

$$x_{j} \text{ free, } \forall j \in J_{f} \quad x_{j} \text{ free, } \forall j \in J_{f}$$

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise}. \end{cases}$$

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise.} \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$\underset{\lambda \in \Lambda}{\text{maximize } g(\lambda)} \tag{4}$$

This is equivalent to the following optimization problem:

$$g(\pmb{\lambda}) = \begin{cases} \pmb{\lambda}^\mathsf{T} b, & \text{if } \pmb{\lambda}^\mathsf{T} A_j \leq c_j, \forall j \in J_p \text{ and } \pmb{\lambda}^\mathsf{T} A_j \geq c_j, \forall j \in J_n \text{ and } \pmb{\lambda}^\mathsf{T} A_j = c_j, \forall j \in J_f \\ -\infty, & \text{otherwise}. \end{cases}$$

is a valid lower bound on the primal optimal value: $g(\lambda) \leq p^*$ for any $\lambda \in \Lambda$.

How can we get the best lower bound?

$$\underset{\lambda \in \Lambda}{\operatorname{maximize}} g(\lambda) \tag{4}$$

This is equivalent to the following optimization problem:

Dual Problem

maximize
$$\lambda^{\mathsf{T}}b$$

subject to $\lambda_{i} \geq 0, \quad \forall i \in I_{\mathsf{ge}},$
 $\lambda_{i} \leq 0, \quad \forall i \in I_{\mathsf{le}},$
 λ_{i} free, $\forall i \in I_{\mathsf{eq}},$
 $\lambda^{\mathsf{T}}A_{j} \leq c_{j}, \quad \forall j \in J_{p},$
 $\lambda^{\mathsf{T}}A_{j} \geq c_{j}, \quad \forall j \in J_{n},$
 $\lambda^{\mathsf{T}}A_{j} = c_{j}, \quad \forall j \in J_{f}.$

(5)

Dual Problem			
maximize	$\lambda^{T}b$		
subject to	$\lambda_i \geq 0$,	$\forall i \in I_{ge},$	
	$\lambda_i \leq 0$,	$\forall i \in I_{le},$	
	λ_i free,	$\forall i \in I_{eq},$	(6)
	$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p,$	
	$\lambda^{T} A_j \geq c_j,$	$\forall j \in J_n$,	
	$\lambda^{T} A_j = c_j,$	$\forall j \in J_f$.	

Definition

This is the **dual** of (P), which we will also refer to as (D). We denote its feasible set with D and its optimal value with d^* .

Note: The dual is also a linear optimization problem!

Primal-Dual Pair of Problems					
$\begin{array}{c} P \\ \underset{\times}{\text{minimize}} \\ (\frac{\lambda_i}{\lambda_i} \to) \\ (\frac{\lambda_i}{\lambda_i} \to) \end{array}$	Primal (\mathcal{P}) $c^{T}x$ $a_i^{T}x \geq b_i,$ $a_i^{T}x \leq b_i,$ $a_i^{T}x \leq b_i,$	$orall i \in I_{ m ge}$ $orall i \in I_{ m le}$ $orall i \in I_{ m eq}$	maximize	Dual (\mathcal{D}) $\lambda^{T}b$ $\lambda_i \geq 0$, $\lambda_i \leq 0$, λ_i free,	$\forall i \in I_{ge}$ $\forall i \in I_{le}$ $\forall i \in I_{eq}$
variables	,		variables	$\lambda^{T} A_j \leq c_j, \ \lambda^{T} A_j \geq c_j, \ \lambda^{T} A_j = c_j, \ \lambda \in \mathbb{R}^m.$	$ \forall j \in J_p \\ \forall j \in J_n \\ \forall j \in J_f $

Recall the procedure for deriving the dual:

- a dual decision variable λ_i for every primal constraint (except variable signs)
- constrain λ_i to ensure lower bound: λ_i ? 0
- for every primal decision x_j , add a dual constraint in the form $\lambda^T A_j$? c_j (involving the column A_j and the objective coefficient c_j corresponding to λ_i)

Primal-Dual Pair of Problems					
P minimize	Primal (\mathcal{P}) $c^{T} x$		maximize	$\begin{array}{c} \mathbf{Dual} \ (\mathcal{D}) \\ \mathbf{\lambda}^T b \end{array}$	
$(\stackrel{\frown}{\lambda_i} \rightarrow)$	$a_i^T \mathbf{x} \geq b_i$,	$orall i \in I_{\scriptscriptstyle{ m ge}}$		$\lambda_i \geq 0$,	$orall i \in I_{ extsf{ge}}$
$(\frac{\lambda_i}{})$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{le}$		$\lambda_i \leq 0$,	$\forall i \in I_{le}$
$(\lambda_i ightarrow)$	$a_i^T x = b_i,$	$orall i \in I_{\scriptscriptstyle{ extsf{eq}}}$		λ_i free,	$orall i \in I_{\scriptscriptstyle{eq}}$
	$x_j \geq 0$,	$\forall j \in J_p$		$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p$
	$x_j \leq 0$,	$\forall j \in J_n$		$\lambda^{T} A_j \geq c_j$,	$\forall j \in J_n$
	x_j free,	$\forall j \in J_f$		$\lambda^{T} A_j = c_j,$	$\forall j \in J_f$
variables	$x \in \mathbb{R}^n$		variables	$\lambda \in \mathbb{R}^m$.	

Exercise

Rewrite the dual problem as a minimization problem and construct its dual.

Primal-Dual Pair of Problems					
Primal (\mathcal{P}) minimize $c^{T}x$		maximize	$\begin{array}{c} \mathbf{Dual} \ (\mathcal{D}) \\ \mathbf{\lambda}^T b \end{array}$		
	$a_i^T \mathbf{x} \geq b_i$,	$orall i \in I_{\scriptscriptstyle{ m ge}}$		$\lambda_i \geq 0$,	$orall i \in I_{ extsf{ge}}$
$(\frac{\lambda_i}{})$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{ ext{le}}$		$\lambda_i \leq 0$,	$\forall i \in I_{le}$
$(\lambda_i ightarrow)$	$a_i^T x = b_i,$	$orall i \in I_{\scriptscriptstyle{ extsf{eq}}}$		λ_i free,	$orall i \in I_{\scriptscriptstyle{eq}}$
	$x_j \geq 0$,	$\forall j \in J_p$		$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p$
		$\forall j \in J_n$		$\lambda^{T} A_j \geq c_j,$	$\forall j \in J_n$
	x_j free,	$\forall j \in J_f$		$\lambda^{T} A_j = c_j,$	$\forall j \in J_f$
variables	$x \in \mathbb{R}^n$		variables	$\lambda \in \mathbb{R}^m$.	

Exercise

Rewrite the dual problem as a minimization problem and construct its dual.

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{T}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T x = b_i)$. Otherwise: λ_i ? 0.

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T x = b_i)$. Otherwise: λ_i ? 0.

R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

- R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T = b_i)$. Otherwise: λ_i ? 0.
- R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .
- R3: To determine the signs ?, use this rule of thumb: the dual variable λ_i is the (sub)gradient of the optimal objective value with respect to the constraint's right-hand-side b_i

Rules for Constructing the Dual of Any LP

Consider any linear optimization problem (minimization/maximization):

minimize / maximize
$$c^{\mathsf{T}}x$$

$$(\lambda \to) \quad Ax \leq b$$

$$x \leq 0$$

$$(7)$$

- R1: A dual variable λ_i for every constraint, i.e., every row a_i^T of A. λ_i free for equality constraints $(a_i^T = b_i)$. Otherwise: λ_i ? 0.
- R2: In the dual, add a constraint for every primal variable x_j If x_j is **free**, write this as $\lambda^T A_j = c_j$. Otherwise: $\lambda^T A_j$? c_j .
- R3: To determine the signs ?, use this rule of thumb:

the dual variable λ_i is the (sub)gradient of the optimal objective value with respect to the constraint's right-hand-side b_i

- in a minimization, for a " \leq " constraint, the dual variable is \leq 0
- in a minimization, for a " \geq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \leq " constraint, the dual variable is ≥ 0
- in a maximization, for a " \geq " constraint, the dual variable is ≤ 0 .

Example 1

(
$$\mathcal{P}$$
) max $3x_1 + 2x_2$
s.t. $x_1 + 2x_2 \le 4$ (1)
 $3x_1 + 2x_2 \ge 6$ (2)
 $x_1 - x_2 = 1$ (3)
 $x_1, x_2 \ge 0$.

Some Quick Results

Theorem ("Duals of equivalent primals")

If we transform a primal P_1 into an equivalent formulation P_2 by:

- replacing a free variable x_i with $x_i = x_i^+ x_i^-$,
- replacing an inequality with an equality by introducing a slack variable,
- removing linearly dependent rows a^T_i for a feasible LP in standard form,

then the duals of (P_1) and (P_2) are **equivalent**, i.e., they are either both infeasible or they have the same optimal objective.

Weak duality

$Primal\;(\mathcal{P})$				$Dual\ (\mathcal{D})$	
minimize _x	$c^{T} x$		maximize	$\lambda^{T}b$	
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \geq b_i$,	$\forall i \in I_{ge},$		$\lambda_i \geq 0$,	$\forall i \in I_{ge},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} \leq b_i$,	$\forall i \in I_{le},$		$\lambda_i \leq 0$,	$\forall i \in I_{le},$
$(\lambda_i ightarrow)$	$a_i^T \mathbf{x} = b_i$,	$\forall i \in I_{eq},$		λ_i free,	$\forall i \in I_{eq},$
	$x_j \geq 0$,	$\forall j \in J_p,$	$(x_j o)$	$\lambda^{T} A_j \leq c_j,$	$\forall j \in J_p$,
	$x_j \leq 0$,	$\forall j \in J_n$,	$(x_j \rightarrow)$	$\lambda^{T} A_j \geq c_j$,	$\forall j \in J_n$,
	x_i free,	$\forall i \in J_f$.	$(x_i \rightarrow)$	$\lambda^{T} A_i = c_i$	$\forall i \in J_f$.

Weak duality

Theorem (Weak duality)

If x is feasible for (\mathcal{P}) and λ is feasible for (\mathcal{D}) , then $\lambda^T b \leq c^T x$.

Proof. Trivially true from our construction – omitted.

Cor	ollary
The	followi

The following results hold:

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

(a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.
- (b) If the optimal objective in (D) is $+\infty$, then (P) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \text{ and } d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Corollary

The following results hold:

- (a) If the optimal objective in (\mathcal{P}) is $-\infty$, then (\mathcal{D}) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \text{ and } d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$
- (d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

(c) and (d) provide (sub)optimality certificates, but...

Corollary

The following results hold:

- (a) If the optimal objective in (P) is $-\infty$, then (D) must be infeasible.
- (b) If the optimal objective in (\mathcal{D}) is $+\infty$, then (\mathcal{P}) must be infeasible.
- (c) If $x \in P$ and $\lambda \in D$, then: $c^{\mathsf{T}}x - p^* \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b \text{ and } d^* - \lambda^{\mathsf{T}}b \le c^{\mathsf{T}}x - \lambda^{\mathsf{T}}b.$
- (d) If $x \in P$, $\lambda \in D$, and $\lambda^T b = c^T x$, then x optimal for (\mathcal{P}) and λ optimal for (\mathcal{D}) .

(c) and (d) provide (sub)optimality certificates, but...

How do we know that the gaps in (c) are not very large?

Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and the optimal values are equal, $p^* = d^*$.

Strong duality

Theorem (Strong duality)

If (P) has an optimal solution, so does (D), and the optimal values are equal, $p^* = d^*$

Proof. Many proofs possible...

- See Bertsimas & Tsitsiklis for a proof involving the simplex algorithm
- We provide a more general proof (some ideas work for **convex** optimization)

Need a tiny bit of real analysis background...

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Proof.

- Consider $P = \{x \in \mathbb{R}^n \mid Ax \ge b\}$ (representation is w.l.o.g.)
- Suppose that $\{x_n\}_{n\geq 1}$ is a sequence with $x_n\in S$ for every n, and $x_n\to x^*$.
- For each k, we have $x_k \in P$, and therefore, $Ax_k \ge b$.
- Then, $Ax^* = A(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} Ax_k \ge b$, so x^* belongs to P.

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Is every **convex set** *closed?*

Definition (Closed Set)

A set $S \subseteq \mathbb{R}^n$ is called **closed** if it contains the limit of any sequence of elements of S. That is, if $x_n \in S$, $\forall n \geq 1$ and $x_n \to x^*$, then $x^* \in S$.

Theorem

Every polyhedron is closed.

Theorem (Weierstrass' Theorem)

If $f: \mathbb{R}^n \to \mathbb{R}$ is a continuous function, and if S is a nonempty, closed, and bounded subset of \mathbb{R}^n , then there exist $\underline{x}, \overline{x} \in S$ such that $f(\underline{x}) \leq f(\overline{x})$ for all $x \in S$.

i.e., a continuous function achieves its minimum and maximum

The first fundamental result in optimization

Theorem (**Simple** Separating Hyperplane Theorem)

Consider a point x^* and a polyhedron P. If $x^* \notin P$, then there exists a vector $c \in \mathbb{R}^n$ such that $c \neq 0$ and $c^T x^* < c^T y$ holds for all $y \in P$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^T x < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^T x > d\}$.

Proof.

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Proof. Consider ||x - y|| with $x \in S, y \in U$

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^\mathsf{T} x < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^\mathsf{T} x > d\}$.

Proof. Argue that the minimum is achieved, at x^*, y^*

Theorem (Separating Hyperplane Theorem for Convex Sets)

Let S and U be two nonempty, closed, convex subsets of \mathbb{R}^n such that $S \cap U = \emptyset$ and S is bounded. Then, there exists $c \in \mathbb{R}^n$ and $d \in \mathbb{R}$ such that $S \subset \{x \in \mathbb{R}^n : c^Tx < d\}$ and $U \subset \{x \in \mathbb{R}^n : c^Tx > d\}$.

Proof. Argue that $c=y^{\star}-x^{\star}$ and $d=\frac{c^{T}(x^{\star}+y^{\star})}{2}$ give strict separating hyperplane

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one bounded

Separating Hyperplane Theorem - Caveats!

Both conditions in the theorem needed: closed and at least one bounded

• Left: two convex sets that are not closed but are both bounded:

$$S = [-1, 1] \times [-1, 0) \cup \{(x, y) : x \in [-1, 0], y = 0\}, \quad U = [-1, 1]^2 \setminus S$$

• Right: two convex sets that are both closed but are unbounded

$$S = \{(x, y) : x \le 0\}, \quad U = \{(x, y) : x \ge 0, y \ge 1/x\}$$

Needed For Our Purposes

We proved the first fundamental result in optimization!

Corollary (Needed for our purposes...)

If P is a polyhedron and $x^* \notin P$, there exists a hyperplane that strictly separates x^* from P, i.e., $\exists c \neq 0$ such that $c^Tx^* < c^Tx$ for any $x \in P$.

Time for the second fundamental result in optimization!

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Proof. "(a) \Rightarrow not (b)."

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

Proof. "(a) \Rightarrow not (b)."

- (a) implies $\exists x \geq 0 : Ax = b$.
- (b) implies $\exists \lambda : \lambda^T A \geq 0$.

But then $\lambda^T b = \lambda^T Ax \ge 0$, so (b) cannot hold.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- *S* is convex.
- To apply separating hyperplane theorem, need S closed!

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- *S* is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S} := \{(x, y) : x \ge 0, y = Ax\}$ on the y variables.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- *S* is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S} := \{(x, y) : x \ge 0, y = Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- *S* is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S} := \{(x, y) : x \ge 0, y = Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.
 - Every polyhedron is closed.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." Want to use the separating hyperplane theorem.

$$S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}.$$

- *S* is convex.
- To apply separating hyperplane theorem, need S closed!
 - S is the projection of $\bar{S} := \{(x, y) : x \ge 0, y = Ax\}$ on the y variables.
 - The projection of a polyhedron is another polyhedron.
 - Every polyhedron is closed.
 - \Rightarrow *S* is closed.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists \lambda : \lambda^T b < \lambda^T y, \forall y \in S$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists \lambda \,:\, \lambda^T b < \lambda^T y, \forall y \in S.$
- $0 \in S \Rightarrow \lambda^{\mathsf{T}}b < 0$.

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists \lambda \,:\, \lambda^{\mathsf{T}} b < \lambda^{\mathsf{T}} y, \forall y \in \mathcal{S}.$
- $0 \in S \Rightarrow \lambda^{\mathsf{T}}b < 0$.
- Every column A_i of A satisfies $\lambda A_i \in S$ for every $\lambda > 0$, so

$$\frac{\lambda^{\mathsf{T}}b}{\lambda} < \lambda^{\mathsf{T}}A_i, \, \forall \lambda > 0$$

Theorem (Farkas' Lemma)

For $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, exactly one of the following two alternatives holds:

- (a) There exists some $x \ge 0$ such that Ax = b.
- (b) There exists some vector λ such that $\lambda^T A \geq 0$ and $\lambda^T b < 0$.

"not (a) \Rightarrow (b)." (cont'd)

- $S := \{Ax : x \ge 0\} = \{y : \exists x \ge 0 \text{ such that } y = Ax\}$ is convex and closed.
- Sep. Hyp. Thm. implies $\exists \lambda \,:\, \lambda^{\mathsf{T}} b < \lambda^{\mathsf{T}} y, \forall y \in \mathcal{S}.$
- $0 \in S \Rightarrow \lambda^{\mathsf{T}}b < 0$.
- Every column A_i of A satisfies $\lambda A_i \in S$ for every $\lambda > 0$, so

$$\frac{\lambda^{\mathsf{T}}b}{\lambda} < \lambda^{\mathsf{T}}A_i, \, \forall \lambda > 0$$

• Limit $\lambda \to \infty$ implies $\lambda^T A_i \ge 0$.