

#### FIRST SEMESTER 2022-2023

### **Course Handout Part II**

29-08-2022

In addition to part I (general handout for all courses appended to the timetable) this portion gives specific details regarding the course.

Course No. : CHEM F311

Course Title : Organic Chemistry III Instructor-in-charge : **KVG Chandra Sekhar** 

## 1. Course Description:

This course emphasizes on applications of important reagents and reactions in organic synthesis and disconnection or *synthon* approach. In *disconnection* or *synthon* approach the target molecule is broken down by a series of disconnections into possible starting materials followed by synthesis.

### 2. Scope and Objective of the Course:

The aim of this course is to familiarize students with various common organic reagents, expose them to some of the important transition metal catalyzed organic reactions and retrosynthetic analysis and enable the student to design the synthesis of various organic compounds using appropriate reagents.

#### 3. Text Book:

**TB1:** M. B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6<sup>th</sup> edition, 2012.

TB2: Stuart Warren: Organic Synthesis: The Disconnection Approach: John Wiley & Sons, 2004.

#### **Reference Books:**

**R1:** J. Clayden, Greeves, Warren & Wothers, Organic Chemistry, Oxford University Press, 1<sup>st</sup> edition, 2000.

**R2:** G. S. Zweifel and M. H. Nantz, The Modern Organic Synthesis: An Introduction. Wiley, 2<sup>nd</sup> edition, 2017.

**R3:** Carruthers and Coldham, Modern Methods of Organic Synthesis. Cambridge, 4<sup>th</sup> edition, 2004.

#### 4. Course Plan:

| Lec. | Learning | Topic(s) to be Covered | Learning Outcomes | Chapter in the Text Book |
|------|----------|------------------------|-------------------|--------------------------|
|------|----------|------------------------|-------------------|--------------------------|

| No.            | Objectives                                      |                                                                                                                                                                                                                                                          |                                                                                                                   |                                                               |
|----------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1              | Introduction                                    | Organic synthesis and its applications                                                                                                                                                                                                                   | Relate the importance of various organic compounds, their synthesis and uses                                      | Class notes                                                   |
| 2-5            | Common<br>organic<br>reagents                   | NaBH <sub>4</sub> , LAH, DIBAL, BH <sub>3</sub> , Birch reduction, Swern oxidation, OsO <sub>4</sub> , O <sub>3</sub> , DMP, <i>m</i> -                                                                                                                  | Define and consolidate new oxidative and reductive reagents to be                                                 | <b>TB1</b> : 15-13; <b>R2:</b> 4; Class notes                 |
|                |                                                 | CPBA, Ti(¹OPr) <sub>4</sub> , Lindlar<br>catalyst, NBS, NaIO <sub>4</sub>                                                                                                                                                                                | used in various organic<br>synthesis                                                                              |                                                               |
| 6-9            | Organometall ic reagents                        | Grignard reagents, organolithium reagents, organocuprates, organozinc reagents, organoboranes, organosilicon reagents, organotin compounds                                                                                                               | Define the various organometallic reagents to be used in organic synthesis                                        | R2: 7;<br>Class notes                                         |
| 10-12          | Transition metal catalyzed organic reactions    | C-C bond forming reactions (Suzuki, Heck, Negishi, Sonogashira, Stille reaction), C-N bond forming reactions (Buchwald-Hartwig reaction)                                                                                                                 | Define various bond<br>forming reactions and<br>their application based<br>name reactions in organic<br>synthesis | <b>TB1:</b> 13-12,<br>13-10,<br><b>R1:</b> 48;<br>Class notes |
| 13             | Introduction<br>of<br>disconnection<br>approach | Basic principles of disconnection approach in organic synthesis                                                                                                                                                                                          | Define reterosynthesis<br>and basis for<br>mathematical approach<br>towards synthesizing<br>organic compounds     | <b>TB2:</b> 1                                                 |
| 14-16          | Synthesis of aromatic Compounds                 | Basic Principles: Synthesis of<br>Aromatic Compounds, The<br>Order of Events                                                                                                                                                                             | Use retrosynthetic analysis to work out and compare alternative                                                   | <b>TB2:</b> 2, 3                                              |
| 17-24<br>25-31 | _                                               | One Group C-X Disconnections, Chemoselectivity Synthesis of Alcohols, General Strategy of Choosing Disconnection, Stereoselectivity, Synthesis of Carbonyl Compounds, Regioselectivity, Alkene Synthesis, Use of acetylenes for synthesis. Two Group C-X | 1 <sup>–</sup>                                                                                                    | <b>TB2:</b> 4, 5, 10-16 <b>TB2:</b> 6-9,                      |
|                | X and C-C disconnection                         | Disconnections, Reversal of Polarity, Cyclisation                                                                                                                                                                                                        | ,                                                                                                                 | 17-28. <b>SS</b> : self-                                      |

|       | I             | Ι                                     |                           | <u> </u>            |
|-------|---------------|---------------------------------------|---------------------------|---------------------|
|       | S             | Reactions, Summary of                 |                           | study               |
|       |               | Strategy, Amine Synthesis,            |                           |                     |
|       |               | Diels-Alder Reactions, 1,3-           |                           |                     |
|       |               | Difuntionalised Compounds             |                           |                     |
|       |               | and α,β-Unsaturated Carbonyl          |                           |                     |
|       |               | Compounds, Control in                 |                           |                     |
|       |               | Carbonyl Condensations, 1,5-          |                           |                     |
|       |               | Difuntionalised Compounds,            |                           |                     |
|       |               | Michael addition and                  |                           |                     |
|       |               | Robinson annelation, Use of           |                           |                     |
|       |               | Aliphatic Nitro Compounds in          |                           |                     |
|       |               | Synthesis, 1,2-Difuntionalised        |                           |                     |
|       |               | compounds, FGA and its                |                           |                     |
|       |               | Reverse, Reconnections, 1,4-          |                           |                     |
|       |               | and 1,6-Difuntionalised               |                           |                     |
|       |               | Compounds, Strategy of                |                           |                     |
|       |               | Carbonyl Disconnections <b>(SS)</b> . |                           |                     |
| 32-38 | Ring          | Introduction to Ring                  | Use disconnection         | <b>TB2:</b> 29, 30, |
|       | synthesis     | synthesis, Synthesis of three,        | approach for synthesis of | 34, 36, 37          |
|       | (saturated    | four, five and six membered           | ring compounds and        |                     |
|       | heterocycles) | Rings and general strategy of         | apply all the principles  |                     |
|       |               | Ring Synthesis                        | learnt already in         |                     |
| 39-40 | Synthesis of  | Aromatic Heterocycles                 | synthesizing various      | <b>TB2:</b> 39      |
|       | heterocyclic  |                                       | aromatic heterocycles     |                     |
|       | compounds     |                                       |                           |                     |
|       | 1             | I .                                   | I .                       | 1                   |

# **5**. Evaluation scheme:

| 0                       | Duratio  | Weightage (%)         | Date and Time    | Nature of                             |
|-------------------------|----------|-----------------------|------------------|---------------------------------------|
| Component               | n        |                       |                  | Component                             |
| Midsemester<br>Test     | 90 min.  | 30                    | 03/11 1:30 -3 PM | Closed Book                           |
| Class tests*            | 15 min.  | 20                    | Continuous       | Closed Book                           |
| Assignment <sup>#</sup> |          | 10                    |                  | Open Book                             |
| Comprehensive           | 180 min. | 20 % Closed book<br>+ | 26/12 AN         | Partially Open Book                   |
| Examination             |          | 20 % Open book        | ,                | , , , , , , , , , , , , , , , , , , , |

<sup>\*</sup>Six class tests will be conducted at regular intervals. Best five will be considered. **Make Up is** not permissible for class tests.

\*One home assignment would be given and each student is expected to submit **a handwritten**report (approx 8-10 pages) on the assigned topic.

Note: Active and regular participation in the class discussions is expected from each student.

- **6. Chamber Consultation Hour**: Friday, 09<sup>th</sup> hour (4-5 PM)
- 7. Make-up policy: Make up would be considered only for very genuine reasons (hospitalization with appropriate documentary proof), and any other extreme emergency situations.
- **8. Notice**: All notices concerning the course will be displayed on chemistry notice board / CMS.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all

the students throughout the semester and no type of academic dishonesty is acceptable.

**10. Final grading** will be done on the basis of the overall performance of a student in each of the components as listed in item no. 5. For **mid-semester grading**, progress made by a student up to that point of time would be evaluated.

Instructor-in-Charge

hukch

Organic Chemistry – III

