Nombre: Héctor Castaños	Grupo:_ _{//
Nombre: Alicia Pallarol	
Hoja de respuesta al Estudio Previo	
1. Hacer "inlining" de una función significa:	
Sustituir el código de una función por el cuerpo de di	Namada a
función por el cuerpo de di	tha función.
2. La opción específica de compilación de <i>gcc</i> que permite al comp todas las funciones simples es (especifica si se activa o no al ac ra qué sirve la opción -finline-limit?:	
La opción - finline-limit sirve el tamaño de las funciones de las	
3. Explica una forma práctica de saber si en un programa ensar "Pepito" y cómo averiguar si, además de existir, esa función	
Para saber si existe la función "Pepito" hay	que buscarla en la
parte globly para saber si esta invocada hay g llamada a la función con "Call"	que buscar en el código una
4. El primer código ensamblador tiene:	
Instr. estáticas: 5 Instr. dinám	icas: 5. 10 4
Si la ejecución tarda 12 ms y 15000000 de ciclos:	
MIPS: 416,66 IPC: 0,33 Frecuencia: 1,25 бнг	:PI: <u>3</u>
5. El segundo código (compilado con -O) tiene:	
Instr. estáticas: 4 Instr. dinám	icas: 4 · 10 ⁶
Si la ejecución tarda 4 ms y 5000000 de ciclos:	1.22.0
MIPS: 1000 CPI: 125 Frecu Speedup: 3	encia: <mark>1, २५ ८६ इ</mark>
Las igualdades y diferencias observadas respecto al apartado	anterior se deben a:
El CPI es diferente debido a que co	
número de instrucciones como el tiem	
La frecuencia se mantière porque en récicles son proporcions	el t. ejecución y otro.

6. El programa total puede obtener un Speedup de:

Descartando los valores extremos su media es:

Geométrica:

8,62 ms

	Si el código es instantáneo: 4064 Si se compila con -O: 1021	
7. Una forma práctica para medir el rendimiento (MIPS e IPC) del programa en C que acabamos de ver es:		
	Para modir el rendimiento hay que contar las instrucciones	
	dinámicas del código del programa y usar las funciones	
	gettick y gettime para conseguir los datos necesorios	
	poura hacer los cálculos.	
8. Dadas 5 ejecuciones de 10 ms, 8ms, 13 ms, 8ms y 2ms. Su media:		
	Geométrica: 6,99ms Aritmética: 8,7ms	

Se observa que:

Se observa una gran diferencia entre la media aritmética y goornétrica en el caso de no descartar los valores extremos mientras que descartándolos se aproximan considerablemente.

Aritmética: 8,67ms