Prénom:

Section:

EXAMEN ECRIT MATHÉMATIQUE APPLIQUEE 1 B. LE BAILLY

Bachelier en Informatique et Systèmes, Bloc 1 Bachelier en Electronique, Bloc 1 Bachelier en Biotechnique, Bloc 1

20/01/2017, Durée: 3h00, tous appareils électroniques interdits

Q1 /20	Q2 /30	Q3 /30	Q4/30	Q5 /20	Q6 /40	Q7 /30	Total /200	Total /20

Question 1 : Les expressions ci-dessous étant supposées bien définies, démontrer les égalités suivantes :

a)
$$\sqrt[6]{a}$$
 $\sqrt[12]{a^5}$ $\sqrt[8]{a^6}$ = $a^{\sqrt[3]{a}}$

b)
$$\frac{-\sqrt{3}}{3-\sqrt{3}} = -\frac{1}{2} - \frac{\sqrt{3}}{2}$$

c)
$$\frac{2^{n^2-1}}{4^{n+1}}$$
 : $\frac{(2^n)^{n-1}}{2^{n+1}}$ = $\frac{1}{4}$

Prénom:

Section:

Question 2 : Résoudre dans $\mathbb R$

a)
$$-x^4 + 3x^2 + 4 = 0$$

b)
$$\sqrt{x^2 + 8} = -\sqrt{3} x$$

c)
$$\frac{x^2-4x+3}{1-2x} < 0$$

d)
$$log (4 + 5x) + log 2 = log (-2x + 14)$$

e)
$$3^{x+1} + 2 \cdot 3^{-x} = 5$$

Question 3:

a) Quelle(s) est(sont) l'(les) intersection(s) de la fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = x^3 - 4x^2 + 4x$ avec l'axe Ox? Que peut-on en déduire par rapport au caractère injectif de cette fonction? Justifier.

b) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = e^{\sqrt{4+x^2}}$ est-elle surjective? Justifier.

c) La fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x) = \ln(-2x^2 + 8x - 6)$ est-elle une application? Justifier.

d) Représenter ci-dessous la fonction $f: \mathbb{R}^+ \to [-1, \to [; x \leadsto y = f(x) = x^2 - 1]$. Expliquer pourquoi cette fonction admet une fonction réciproque. Calculer graphiquement et analytiquement cette réciproque. Justifier.

Question 4:

a) Soit la fonction $f: \mathbb{R} \to \mathbb{R}$; $x \sim y = f(x)$ représentée par le graphe cartésien suivant :

- 1) Quelle est l'image de x = 5?
- 2) Quelle(s) valeur(s) de x est(sont) envoyée(s) sur y = 8?
- 3) Compléter le tableau suivant en justifiant :

La fonction <i>f</i> est-elle	
• Fonctionnelle ?	
• Impaire ?	
• Paire ?	
Partout définie ?	
Surjective ?	

4) Représenter ci-dessus, en expliquant la(les) manipulation(s) graphique(s) effectuée(s), le graphe cartésien de la fonction $g(x) = \frac{|f(x+3)|}{2}$.

b) Soit la relation binaire R définie de l'ensemble A vers l'ensemble B représentée ci-dessous. Compléter le tableau en justifiant.

A B

La relation R est-elle	
La relation R'est-elle	
• Fonctionnelle ?	
• Injective ?	
• Partout définie ?	
• Surjective ?	
• Bijective ?	

Question 5: Vrai ou Faux ? Justifier.

- a) Les droites $d_1 \equiv y = 3x 1$ et $d_2 \equiv y = -3x 1$ sont perpendiculaires.
- b) Les droites $d_3 \equiv y = 2x + 1$ et $d_4 \equiv y = -1 + 2x$ sont parallèles distinctes.

- c) Les droites $d_5 \equiv y = 3x + 1$ et $d_6 \equiv y = -2x + 6$ sont sécantes au point (1,4).
- d) $d_7 \equiv x = 2$ est une droite horizontale.
- e) La pente de la droite d_8 passant par les points (1,4) et (0,-1) vaut 5.
- f) L'axe de symétrie de la parabole $P_1 \equiv y = x^2 2x + 1$ est la droite verticale $d_9 \equiv y = 1$.
- g) La parabole $P_2 \equiv y = -x^2 + 2x + 3$ est concave.
- h) Le sommet de la parabole $P_3 \equiv y = 2x^2 4x + 4$ est (1,2).
- i) La parabole $P_4 \equiv y = x^2 x + 1$ coupe l'axe Oy au point (0,1) et ne coupe pas l'axe Ox.
- j) Un angle au centre d'un cercle de rayon 3cm et qui intercepte sur ce cercle un arc de longueur égale à 6cm mesure $\frac{1}{2}$ radian.

Prénom:

Section:

Question 6:

a) Représenter sur le cercle trigonométrique ci-dessous un angle α orienté positivement du quatrième quadrant dont la tangente vaut $-\frac{3}{4}$. Calculer les valeurs exactes des autres nombres trigonométriques de cet angle α .

b) Evaluer les expressions suivantes :

tg(420°) =	$arccotg(\sqrt{3}) =$
$\arcsin\left(\frac{-\sqrt{2}}{2}\right) =$	sin(120°) =
$cotg\left(\frac{-3\pi}{4}\right) =$	$\cos\left(\frac{17\pi}{6}\right) =$
cos (240°) =	$tg\left(\frac{7\pi}{6}\right) =$

c) Résoudre en radians, dans $\mathbb R$ et avec des angles orientés positivement les équations suivantes :

$tg^2(3x)$	=	1

$$sin^2x - cos^2x = 2 + 5 sin x$$

d) Représenter le graphe cartésien de la fonction $f: [-2\pi, 2\pi] \to \mathbb{R}, x \rightsquigarrow y = f(x) = \cos 2x$ dans le repère orthonormé ci-dessous.

Soit la fonction $g: [-2\pi, 2\pi] \to \mathbb{R}, x \leadsto y = g(x) = \frac{x}{2}$. Expliquer pourquoi la fonction $(f \circ g)(x)$ est bien définie et calculer son expression analytique. Représenter ci-dessus le graphe cartésien de la fonction ainsi obtenue.

Quelles sont les périodes et parités des fonctions f et f o g? Justifier.

Prénom:

Section:

e) La figure ci-dessous représente un téléphérique transportant des passagers d'un point A, qui se trouve à deux kilomètres du point B situé au pied de la montagne, à un point P au sommet de la montagne. Les angles d'élévation de P aux points A et B sont respectivement de 15° et 60°. Calculer la longueur du téléphérique et la hauteur à laquelle il se trouve quand il passe à la verticale du point B.

Question 7:

a) Calculer les domaines de définition des fonctions suivantes :

$$f(x) = \ln\left(\frac{e^x}{1+e^x}\right)$$

$$g(x) = \sqrt{2 - e^{3x}}$$

b) Calculer les valeurs exactes des expressions suivantes :

•
$$log_82 =$$

•
$$log_{10}1,25 + log_{10}80 =$$

$$\bullet \quad 2^{\log_2 3 + \log_2 5} =$$

•
$$log_6 \frac{1}{36} =$$

$$\bullet \quad e^{3 \ln 2} =$$

c) Déterminer, en justifiant, les expressions analytiques des fonctions f et g représentées ci-dessous.

- d) Un objet se trouve à 64 m d'un mur. Toutes les trois minutes, il parcourt la moitié de la distance qui l'en sépare.
 - Où se trouvera-t-il après 9 minutes?
 - Après t minutes?
 - Quelle distance aura-t-il parcouru au cours des 15 premières minutes?
 - Quand atteindra-t-il le mur?

Nom: Prénom: Section: