Théorème de Wedderburn

En utilisant les polynômes cyclotomiques, nous montrons que tout corps fini est commutatif.

Lemme 1. Soient \mathbb{K} et \mathbb{L} deux corps finis tels que \mathbb{K} est commutatif et $\mathbb{K} \subseteq \mathbb{L}$. Alors $\exists d \in \mathbb{N}^*$ tel que $|\mathbb{L}| = |\mathbb{K}|^d$.

[GOU21] p. 100

Démonstration. L est un espace vectoriel sur \mathbb{K} de dimension finie d (car \mathbb{L} est fini). Donc \mathbb{L} est isomorphe en tant que \mathbb{K} -espace vectoriel à \mathbb{K}^d . En particulier, $|\mathbb{L}| = |\mathbb{K}|^d$. □

Théorème 2 (Wedderburn). Tout corps fini est commutatif.

 $D\'{e}monstration$. Soit $\mathbb K$ un corps. L'idée va être de procéder par récurrence sur le cardinal du corps.

- Si $|\mathbb{K}| = 2$: alors $\mathbb{K} = \{0, 1\}$ est commutatif.
- <u>On suppose le résultat vrai pour tout corps fini de cardinal strictement inférieur à K.</u> On veut montrer que K est commutatif. Supposons par l'absurde que K ne l'est pas. On pose

$$Z = Z(\mathbb{K}) = \{x \in \mathbb{K} \mid \forall y \in \mathbb{K}, xy = yx\}$$

le centre de \mathbb{K} dont on note q le cardinal. C'est un sous-corps de \mathbb{K} qui est (par hypothèse) inclus strictement dans \mathbb{K} . Donc Z est commutatif, et par le Lemme 1, on peut écrire $|\mathbb{K}| = q^n$ où $n \in \mathbb{N}^*$. Si $x \in \mathbb{K}$, on pose

$$\mathbb{K}_{x} = Z_{\mathbb{K}}(\{x\}) = \{y \in \mathbb{K} \mid xy = yx\}$$

Montrons que

$$\exists d \mid n \text{ tel que } |\mathbb{K}_x| = q^d \tag{*}$$

Notons déjà encore une fois que \mathbb{K}_x est un sous-corps de \mathbb{K} .

- Si $\mathbb{K}_x = \mathbb{K}$, on a $|\mathbb{K}_x| = |\mathbb{K}| = q^n$. Il suffit donc de prendre d = n.
- Sinon, $\mathbb{K}_x \subseteq \mathbb{K}$, donc \mathbb{K}_x est commutatif par hypothèse. Par le Lemme 1, il existe $k \in \mathbb{N}^*$ tel que $|\mathbb{K}| = |\mathbb{K}_x|^k$.

Mais, Z est un sous-corps (commutatif) de \mathbb{K}_x , donc d'après le Lemme 1, il existe $d \in \mathbb{N}^*$ tel que $|\mathbb{K}_x| = |Z|^d$. Donc on a

$$q^{n} = |\mathbb{K}| = |\mathbb{K}_{x}|^{k} = (q^{d})^{k} = q^{dk}$$

d'où $d \mid n$.

On considère l'action par conjugaison de \mathbb{K}^* sur lui-même $(x,y) \mapsto xyx^{-1}$. Si $y \in \mathbb{K}^*$, alors

$$\mathrm{Stab}_{\mathbb{K}^*}(y) = \{x \in \mathbb{K}^* \mid x.y = y\} = \mathbb{K}_y^*$$

Soit Ω un système de représentants associé à la relation d'équivalence "être dans la même orbite". L'équation aux classes donne alors

$$|\mathbb{K}^*| = \sum_{\omega \in \Omega} \frac{|\mathbb{K}^*|}{|\operatorname{Stab}_{\mathbb{K}^*}(\omega)|}$$

Or,

$$\operatorname{Stab}_{\mathbb{K}^*}(\omega) = \mathbb{K}^* \iff \forall x \in \mathbb{K}^*, \, \omega x = x\omega \iff \omega \in \mathbb{Z}^*$$

donc en notant $\Omega' = \Omega \setminus Z^*$, on a :

$$|\mathbb{K}^*| = \sum_{\omega \in Z^*} \frac{|\mathbb{K}^*|}{|\operatorname{Stab}_{\mathbb{K}^*}(\omega)|} + \sum_{\omega \in \Omega'} \frac{|\mathbb{K}^*|}{|\operatorname{Stab}_{\mathbb{K}^*}(\omega)|} = |Z^*| + \sum_{\omega \in \Omega} \frac{|\mathbb{K}^*|}{|\mathbb{K}^*_{\omega}|}$$
 (**)

Soit $\omega \in \Omega'$. Par (*),

$$\exists d \mid n \text{ tel que } |\operatorname{Stab}_{\mathbb{K}^*}(\omega)| = |\mathbb{K}_{\omega}^*| = q^d - 1$$

De plus, $d \neq n$ (car $\omega \notin Z^*$). Si maintenant on pose

$$\forall d \mid n, \lambda_d = |\{\omega \in \Omega' \mid |\operatorname{Stab}_{\mathbb{K}^*}(\omega)| = q^d - 1\}|$$

on peut alors écrire en remplaçant dans (**):

$$q^{n} - 1 = |K^{*}| = (q - 1) + \sum_{d||n} \lambda_{d} \left(\frac{q^{n} - 1}{q^{d} - 1} \right)$$
 (* * *)

Si $d \parallel n$, on a

$$X^{n} - 1 = \prod_{k|n} \Phi_{k} = \Phi_{n} \left(\prod_{k|d} \Phi_{k} \right) \left(\prod_{\substack{k||n\\k \nmid d}} \Phi_{k} \right) = \Phi_{n} (X^{d} - 1) \left(\prod_{\substack{k||n\\k \nmid d}} \Phi_{k} \right)$$

Donc, $\Phi_n \mid \frac{X^n-1}{X^d-1}$ dans $\mathbb{Z}[X]$. Ceci étant vrai quelque soit d divisant strictement n, on en déduit

$$\Phi_n \mid \sum_{d \mid \mid n} \lambda_d \frac{X^n - 1}{X^d - 1}$$
 dans $\mathbb{Z}[X]$

Comme de plus, $\Phi_n \mid X^n - 1$ dans $\mathbb{Z}[X]$, on conclut que

$$\Phi_n \mid X^n - 1 - \sum_{d \mid \mid n} \lambda_d \frac{X^n - 1}{X^d - 1}$$
 dans $\mathbb{Z}[X]$

ce qui donne, une fois évalué en q :

$$\Phi_n(q) | q^n - 1 - \sum_{d \mid n} \lambda_d \frac{q^n - 1}{q^d - 1} \stackrel{(***)}{=} q - 1 \implies |\Phi_n(q)| \le q - 1$$

Mais $n \ge 2$, donc

$$|\Phi_n(q)| = \prod_{\xi \in \mu_n^*} |q - \xi|$$

$$> \prod_{i=1}^{\varphi(n)} |q - 1|$$

$$\ge |q - 1|$$

On peut en effet interpréter $|q - \xi|$ comme la distance du complexe q au complexe ξ ; le premier est sur l'axe réel et est supérieur ou égal à 2, le second est sur le cercle unité mais n'est pas sur l'axe réel :

cela nous permet de justifier l'inégalité stricte. On a donc une contradiction.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$