Intro to dplyr

Contents

Data Manipulation (data cleaning)
Filtering cases with filter()
Adding new variables with mutate()
Renaming variable with rename()
Recoding with case_when()
Sorting with arrange()
Selecting variables with select()
Descriptive statistics with summarize()
Grouping Data with group_by()
Grouped descriptives
Aggregating Variables
Pipelines
acitelli <- read.csv("acitelli.csv")

Data Manipulation (data cleaning)

We'll use the package dplyr. The dplyr package contains the functions for all of the data cleaning verbs: filter(), mutate(), rename(), arrange(), select(), summarize(), and group_by(). You can find a cheat sheet for dplyr here.

```
#install.packages("dplyr")
library(dplyr)
```

Filtering cases with filter()

First, let's filter cases. We can make a dataset of men only. Notice that we used a double equal sign, ==, instead of single, =. When you want to ask if something is equal to some value or another variable, that is, you want to use equal in a *logical statement*, you need the double equal. You can also use > < >= <= &, which means **AND**, and finally, | which means **OR**.

```
menOnly <- filter(acitelli, gender == 1)</pre>
```

We could also use the pipe, %>%.

```
menOnly <- acitelli %>%
  filter(gender ==1)
```

We can save this new data set in our files as a csv. This code will save in the same directory where your .Rmd file is saved. You could give a more specific file path.

```
write.csv(menOnly, "men.csv")
```

How about only the men who are above the median for Yearsmar. First, find the median years married.

```
#use a function in the mosaic package
```

Then, filter for men above that cut off point.

```
mature_hus <- menOnly %>%
filter(Yearsmar > -1.089)
```

Instead of first finding the median with favstats(), we could ask for the median inside of filter() with the Base R function, median(). Base R has all of the descriptive stats functions you'd expect, mean(), sd(), cor(), but be careful because if you have missing data you'll have to add rm.na = TRUE as an argument to the function. The syntax also differs from mosaic.

```
mature_hus <- menOnly %>%
filter(Yearsmar > median(Yearsmar))
```

Adding new variables with mutate()

Let's add a new categorical variable that marks the median split on Yearsmar. After you create it, take a look at it.

```
menOnly <- menOnly %>%
  mutate(mature_hus = Yearsmar > median(Yearsmar))
```

How would you get the frequencies on this variable?

```
#frequencies
```

Now for a sanity check, how would you get the descriptive stats split by mature and non-mature husbands?

```
#descriptives split
```

Renaming variable with rename()

We copy a variable and give it a new name with a function you already know, mutate().

```
menOnly <- menOnly %>%
  mutate(old_hus = mature_hus)
```

We can rename a variable without creating a new one with rename(new_name = old_name). This is handy if you forget to name variables in Qualtrics!

```
menOnly <- menOnly %>%
  rename(wise_hus = old_hus)
```

We can rename a bunch at the same time. This is handy if you forget to name variables in Qualtrics!

Recoding with case_when()

Let's say we want to take gender, which is currently effects coded (men = 1 and women = -1) and make it a dummy variable. We can use the ifelse() function in combination with mutate() to achieve this.

```
acitelli <- acitelli %>%
  mutate(man = ifelse(gender == 1, 1, 0))
```

But what if we wanted to slice up years married to create a string variable that indicated newlyweds, early marriage, and mature marriages? We could nest ifelse() statements, but a better idea is to use the case_when() function.

These nested ifelse() functions can get out of control. So case_when() to the rescue.

Sorting with arrange()

First, you should know that you can sort in the viewer by clicking the (faint) arrows just to the right of each variable name. Give it a try. It's often handy to have a sort command in your code, and/or you might want to sort by more than one variable.

```
head(acitelli)
     cuplid Yearsmar gender self pos other pos satisfaction tension simhob
##
## 1
             8.202667
                           -1
                                    4.8
                                               4.6
                                                       4.000000
                                                                     1.5
                                                                               0
## 2
             8.202667
                                    3.8
                                               4.0
                                                                     2.5
          3
                            1
                                                       3.666667
                                                                               1
## 3
         10 10.452667
                            -1
                                    4.6
                                                       3.166667
                                                                     4.0
                                                                               0
                                               3.8
                                    4.2
                                               4.0
                                                                     2.0
## 4
         10 10.452667
                                                       3.666667
                                                                               0
## 5
         11 -8.297333
                            -1
                                    5.0
                                               4.4
                                                       3.833333
                                                                     2.5
                                                                               0
                                    4.2
## 6
         11 -8.297333
                                               4.8
                                                       3.833333
                                                                     2.5
                                                                               0
                             1
##
     man
                  married
## 1
       0 mature marriage
## 2
       1 mature marriage
## 3
       0 mature marriage
## 4
       1 mature marriage
## 5
                 newlywed
## 6
       1
                 newlywed
Say we want to take a peak at the women with the bottom 6 self pos scores.
acitelli %>%
  arrange(gender, self pos) %>%
 head()
##
              Yearsmar gender self_pos other_pos satisfaction tension simhob
     cuplid
                                                                      4.0
## 1
        160
             8.7026667
                            -1
                                     3.2
                                                3.8
                                                         3.333333
                                                                                0
## 2
         52 13.1193333
                            -1
                                     3.4
                                                3.8
                                                         3.833333
                                                                      2.0
                                                                                1
        441
## 3
             0.1193333
                            -1
                                     3.4
                                                4.4
                                                        4.000000
                                                                      3.0
                                                                                0
## 4
        70 11.3693333
                            -1
                                     3.6
                                                4.4
                                                        3.833333
                                                                      1.5
                                                                                0
## 5
        116 4.7860000
                            -1
                                     3.6
                                                4.2
                                                        2.333333
                                                                      4.0
                                                                                0
## 6
        178 -7.0473333
                            -1
                                     3.6
                                                3.6
                                                        2.666667
                                                                      3.0
                                                                                0
##
                  married
     man
## 1
       0 mature marriage
## 2
       0 mature marriage
## 3
       0 mature marriage
       O mature marriage
## 4
## 5
       0 mature marriage
## 6
                 newlywed
We could also save the arranged dataset.
acitelli <- acitelli %>%
  arrange(gender, self pos)
head(acitelli)
##
     cuplid
              Yearsmar gender self pos other pos satisfaction tension simhob
```

3.8

3.333333

3.2

-1

1

8.7026667

160

```
2.0
## 2
         52 13.1193333
                             -1
                                      3.4
                                                 3.8
                                                         3.833333
                                                                                 1
## 3
                                      3.4
                                                 4.4
                                                                       3.0
                                                                                 0
             0.1193333
                             -1
                                                         4.000000
        441
## 4
         70 11.3693333
                             -1
                                      3.6
                                                4.4
                                                         3.833333
                                                                       1.5
                                                                                 0
## 5
        116
             4.7860000
                             -1
                                      3.6
                                                 4.2
                                                         2.333333
                                                                       4.0
                                                                                 0
## 6
        178 -7.0473333
                                      3.6
                                                 3.6
                                                         2.666667
                                                                                 0
                             -1
                                                                       3.0
##
     man
                  married
## 1
       0 mature marriage
## 2
       0 mature marriage
## 3
       0 mature marriage
## 4
       0 mature marriage
## 5
       0 mature marriage
## 6
       0
                 newlywed
```

What about the top 6? We can use the desc() function inside of arrange().

```
acitelli %>%
arrange(gender, desc(self_pos)) %>%
head()
```

```
##
             Yearsmar gender self_pos other_pos satisfaction tension simhob
     cuplid
## 1
         11 -8.297333
                            -1
                                       5
                                               4.4
                                                                      2.5
                                                        3.833333
## 2
         98 -9.214000
                            -1
                                       5
                                               4.2
                                                                      2.0
                                                                                1
                                                        4.000000
## 3
        114 12.619333
                            -1
                                       5
                                               3.4
                                                        3.666667
                                                                      2.5
                                                                                0
                                       5
## 4
                                               4.6
        127
              3.619333
                            -1
                                                        3.833333
                                                                      2.0
                                                                                0
## 5
        135
                                       5
                                               5.0
                                                        4.000000
                                                                      1.5
                                                                                0
             7.786000
                            -1
                                       5
## 6
        177 11.619333
                            -1
                                               5.0
                                                        4.000000
                                                                      1.0
                                                                                1
##
     man
                  married
## 1
       0
                 newlywed
## 2
                 newlywed
       0
## 3
       0 mature marriage
## 4
       0 mature marriage
## 5
       0 mature marriage
## 6
       0 mature marriage
```

Selecting variables with select()

Save a smaller subset of variables.

```
small <- acitelli %>%
select(cuplid, gender, satisfaction, self_pos)
```

We can also save everything but some variable(s).

```
no_tension <- acitelli %>%
select(-tension)
```

Descriptive statistics with summarize()

Grouping Data with group_by()

Grouped descriptives

We can split the file and view results grouped by some variable.

Aggregating Variables

You can use group_by() to create aggregated variables, this is handy if you have nested data. We actually do have married couples here, so let's create a dyad mean tension variable.

```
acitelli <- acitelli %>%
  group_by(cuplid) %>%
  mutate(tension_mean = mean(tension)) %>%
  ungroup()

#this last command is not entirely nessesary, but good practice
```

Pipelines

We now seen our first pipelines, using <code>group_by()</code>. Now we can make a pipeline of many of the commands I did above. The last thing I do is drop useless <code>gender</code> variable, because the resulting dataset if all men.

Save a dataset of women who are perceiving above the mean tension, and drop the simhob variable.

```
#above the mean
```

What are the couple ID's of the couples with the lowest 3 average satisfaction scores?

```
#3 lowest
```