

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Syntax – Grammar, Parsing, and Parse Trees.

05-09-2018 Sundar B. CS&IS, BITS Pilani 0

Propositional Logic – Well-Formed Formulas

- A propositional formula is formed and therefore known to be well-formed – by the rules below and only by the rules below:
 - i. every *propositional atom* p is well-formed
 - II. If φ is well-formed, then so is $\neg \varphi$
 - **III.** if φ and ψ are well-formed, then so is $\varphi \vee \psi$
 - **IV.** if φ and ψ are well-formed, then so is $\varphi \wedge \psi$
 - **V.** if ϕ and ψ are well-formed, then so is $\phi \longrightarrow \psi$

Propositional Logic – Well-Formed Formulas

- Rules for well-formed formulas in propositional logic:
 - . every *propositional atom* **p** is well-formed
 - **II.** If φ is well-formed, then so is $\neg \varphi$
 - **III.** if ϕ and ψ are well-formed, then so is $\phi \vee \psi$
 - **IV.** if ϕ and ψ are well-formed, then so is $\phi \wedge \psi$
 - **V.** if φ and ψ are well-formed, then so is $\varphi \longrightarrow \psi$
- Note that this definition is inductive:
 - i.e. larger (i.e. <u>structurally more complex</u>) formulas are formed out of smaller (i.e. simpler) formulas.

This form of <u>induction</u> (<u>on syntactic terms</u>) is referred to as a **structural induction**.

Propositional Logic – Grammar

Well-formed formulas (φ , ψ) can be defined formally using a context free grammar:

2.
$$\phi --- > \neg \phi$$

3.
$$\phi \longrightarrow \phi \lor \psi$$

4.
$$\phi \longrightarrow \phi \wedge \psi$$

5.
$$\phi ---> \phi --> \psi$$

(Informal) Definition:

- i. every *propositional atom***p** is well-formed
- ii. If ϕ is well-formed, then so is $\neg \phi$
- iii. if ϕ and ψ are well-formed, then so is $\phi \lor \psi$
- iv. if ϕ and ψ are well-formed, then so is $\phi \wedge \psi$
- v. if ϕ and ψ are wellformed, then so is ϕ --> ψ

Since ϕ and ψ denote well-formed formulas in this grammar

- 1. φ ---> p
- **2.** φ ---> ¬φ
- 3. $\phi \longrightarrow \phi \lor \psi$
- 4. $\phi \longrightarrow \phi \wedge \psi$
- 5. $\phi ---> \phi --> \psi$

we can rewrite the rules to use only **φ**

Grammar Gr-PropL-AMB:

(φ is a well-formed formula):

- 1. φ ---> p
- **2.** φ ---> ¬φ
- 3. $\phi \longrightarrow \phi \lor \phi$
- 4. $\phi \longrightarrow \phi \wedge \phi$
- 5. $\phi ---> \phi --> \phi$

Note that parsing refers to:

- verifying that a given sentence (in this case **a formula**)
 - belongs to the language (defined by the given grammar)

Grammar Gr-PropL-AMB:

(φ is a well-formed formula):

3.
$$\phi \longrightarrow \phi \lor \phi$$

4.
$$\phi \longrightarrow \phi \wedge \phi$$

5.
$$\phi ---> \phi --> \phi$$

Parse the following formula using the given grammar:

$$p1 \land p2 --> p3 \lor p4$$

Parsing p1 \land p2 --> p3 \lor p4

Parsing Step	Rule
p1 ∧ p2> p3 ∨ p4	
φ ∧ p2> p3 ∨ p4	R1
φ ∧ φ > p3 ∨ p4	R1
φ > p3 ∨ p4	R4
••••	

and the parse tree so far:

Grammar:

- 1. φ ---> p
- **2.** φ ---> ¬φ
- 3. $\phi \longrightarrow \phi \lor \phi$
- **4.** φ ---> φ ∧ φ
- 5. $\phi ---> \phi --> \phi$

Parsing p1 \land p2 --> p3 \lor p4

Parsing Step	Rule
p1 ∧ p2> p3 ∨ p4	
φ ∧ p2> p3 ∨ p4	R1
φ ∧ φ > p3 ∨ p4	R1
φ > p3 ∨ p4	R4
φ> φ ∨ p4	R1
φ ∨ p4	R5

and the parse tree so far:

Grammar:

- 1. φ ---> p
- **2.** φ ---> ¬φ
- 3. $\phi \longrightarrow \phi \lor \phi$
- 4. $\phi \longrightarrow \phi \wedge \phi$
- 5. $\phi ---> \phi --> \phi$

Parsing p1 \wedge p2 --> p3 \vee p4

Parsing Step	Rule
p1 ∧ p2> p3 ∨ p4	
φ ∧ p2> p3 ∨ p4	R1
φ ∧ φ > p3 ∨ p4	R1
φ > p3 ∨ p4	R4
$\phi \longrightarrow \phi \lor p4$	R1
φ ∨ p4	R5
φνφ	R1
φ	R3

and the final parse tree:

Grammar:

1.
$$\phi ---> p$$

2.
$$\phi --- > \neg \phi$$

3.
$$\phi \longrightarrow \phi \lor \phi$$

4.
$$\phi \longrightarrow \phi \wedge \phi$$

5.
$$\phi ---> \phi --> \phi$$

Example 1 – Parsing Alternative

Parsing p1 \land p2 --> p3 \lor p4

Parsing Step	Rule
p1 ∧ p2> p3 ∨ p4	
φ ∧ p2> p3 ∨ p4	R1
$\phi \wedge \phi \longrightarrow p3 \vee p4$	R1
φ> p3 ∨ p4	R4
$\phi \longrightarrow \phi \lor p4$	R1
φ> φ ∨ φ	R1
φ> φ	R3
φ	R5

Grammar:

3.
$$\phi \longrightarrow \phi \lor \phi$$

4.
$$\phi \longrightarrow \phi \land \phi$$

5.
$$\phi ---> \phi --> \phi$$

and the alternative parse tree:

CS/IS F214 Logic in Computer Science

MODULE: PROPOSITIONAL LOGIC

Syntax – Order of Evaluation

Propositional Logic – Parsing

- Example
 - Parse (i.e. verify) the following formula
 - ¬p1 ∧ p2
 - using the grammar Gr-PropL-AMB in two different ways and
 - draw the corresponding parse trees!

Propositional Logic – Order of Evaluation

- The grammar discussed (Gr-PropL-AMB) does not capture precedence rules (or <u>order of evaluation</u>) and therefore results in ambiguity:
 - e.g. \neg p1 \land p2 may be treated as
 - NOT (p1 AND p2) or as
 - (NOT p1) AND p2

Syntax: Order of Evaluation: Associativity

- Associativity:
 - Some operators are associative:
 - e.g. x * (y * z) is the same as (x * y) * z
 - * is multiplication of integers; OR
 - * is multiplication of matrices
 - e.g. $(p \land q) \land r$ is the same as $p \land (q \land r)$
 - but others are not:
 - e.g. (p --> q) --> r is not the same as p --> (q --> r)
 - Why not?

Order of Evaluation: Left-Associativity vs. Right-Associativity

- Example:
 - Assignment operator in C:

•
$$x = y = z + 2$$
;

- = is a right-associative operator
- Division:
 - x/y/z
 - / is usually considered left-associative

Addressing ambiguity – Order of Evaluation

- One way of addressing such ambiguity in specification (i.e. in grammars):
 - *leave it to the user* (i.e. who is writing the formulas) to specify an order or evaluation
 - for instance, parenthesize all expressions to avoid ambiguity

Grammar

(Gr-PropL-OE-1):

$$\phi ---> p$$
 $\phi ---> ((' ' \neg ' \phi ')')$
 $\phi ---> '(' \phi ' \lor ' \phi ')')$
 $\phi ---> '(' \phi ' \land ' \phi ')')$
 $\phi ---> '(' \phi ' -->' \phi ')')$

Exercises:

Specify the two forms of
 ¬ p1 ∧ p2
 using this grammar.

[Hint: You need to add a pair of (outermost) parentheses that is redundant. End of Hint.]

- **2.** Show how those two forms can be parsed.
- 3. (Trivial) Question: What is the drawback of this approach?