

English LATEXPPT Template

A simple PPT template for academic

Your name

South China University

April 17, 2024

- 1 LATEX Reltative
- 2 Beamer Reltative
- 3 Others

- 1 LATEX Reltative
 - List
 - Text
 - Figure and Table
 - Equation
- 2 Beamer Reltative
- 3 Others

Unordered List

- unordered list 1
 - unordered list 1.1
 - unordered list 1.2
 - unordered list 1.3
 - unordered list 1.3.1
 - unordered list 1.3.2
 - unordered list 1.3.3
- unordered list 2
- unordered list 3

Ordered List

- 1. ordered list 1
 - a ordered list 1.1
 - b ordered list 1.2
 - c ordered list 1.3
 - i ordered list 1.3.1
 - ii ordered list 1.3.2
 - ii ordered list 1.3.2
 - iii ordered list 1.3.3
- 2. ordered list 2
- 3. ordered list 3

Description List

word 1 description of world 1 word 2 description of world 2

- 1 LATEX Reltative
 - List
 - Text
 - Figure and Table
 - Equation
- 2 Beamer Reltative
- 3 Others

Font

- tiny
- scriptsize
- footnotesize
- normalsize
- large
- Large
- LARGE
- huge
- Huge

- normal
- italic
- slanted
- bold

- 1 LATEX Reltative
 - List
 - Text
 - Figure and Table
 - Equation
- 2 Beamer Reltative
- 3 Others

Figure

Figure 1: Logo of SCUT

Subfigure

Figure 2: subfigures

Table

Table 2: Paramter Value

Table 1: Paramter Value

Parameter	Value
α	1
β	1

Module	Parameter	Value
contrastive model	number of RBF centers, $k_{\rm rbf_c}$	\sqrt{n}
	number of hidden neurons, $k_{ m hidden}$	$\frac{\sqrt{n}}{2}$
	dropout rate	0.3
regression	repetition rate of offline data	10%
model	number of centers of one RBFN, $k_{\rm rbf_r}$	$\sqrt{\frac{1.1n}{3}}$
topological sorting	threshold thr	$0.3*nv_{ m remain}$
GA	distribution index η_c in SBX	15
	probability of crossover	100%
	distribution index η_m in PM	15
	probability of mutation	$\frac{1}{d}$

You take a screenshot, and throw the picture into the table environment, such as the table on the right.

- 1 LATEX Reltative
 - List
 - Text
 - Figure and Table
 - Equation
- 2 Beamer Reltative
- 3 Others

Equation

Interline Formula

$$a_n = a_{n-1} + 1$$

(1)

Inline Formula

This is a simple arithmetic progression formula $a_n = a_{n-1} + 1$.

- 1 LATEX Reltative
- 2 Beamer Reltative
 - Environment
 - Columns
 - Footnote
- 3 Others

block

title

The content of block. You can use hpsace $\{2em\}$ to indent two characters at the beginning of the line if the sentence is long.

Abstract

Abstract

The content of the abstract.

Math I

Theorem (title)	
body	
Lemma (title)	
body	
proof (title).	
body	
Corollary (title)	
body	

Math II

Example (title)

body

Definition (title)

body

alertblock

title

body

- 1 LATEX Reltative
- 2 Beamer Reltative
 - **■** Environment
 - Columns
 - Footnote
- 3 Others

Columns

The left side takes up 0.7 width.

The right side takes up 0.3 width.

- 1 LATEX Reltative
- 2 Beamer Reltative
 - **■** Environment
 - Columns
 - Footnote
- 3 Others

Footnote on Signle Column

It is a simple LATEX Beamer template for English. Please give me a start on Github ¹ if it helps you.

Of course, footnotes can also refer to papers².

¹https://github.com/h-hg

²K. He, X. Zhang, S. Ren, et al., "Deep residual learning for image recognition," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.

Footnote on Multiple Columns

Footnotes will not be displayed at the bottom of the page by default in the case of multiple columns, such as a.

Citations for papers^b are similar.

However, it can be solved with a [frame], e.g. 3 .

The citation of the paper ⁴ can be achieved with fullcite.

^athe default footnote position of multiple columns ^bK. He, X. Zhang, S. Ren, et al., "Deep residual learning for image recognition," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.

³footntoe with [frame]

⁴K. He, X. Zhang, S. Ren, *et al.*, "Deep residual learning for image recognition," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778

- 1 LATEX Reltative
- 2 Beamer Reltative
- 3 Others
 - Highlight
 - Pseudo-code

Short Codes


```
#include <iostream>
using namespace std;
int main() {
  cout << "Hello World" << endl;
return 0;</pre>
```

You can choose one of the following two methods if the code is long.

Two Columns

One is achieved through the multicols package and changing the font size of the code to put it on the same page of PPT.

```
while (arr[j] >= pivot && i < j)</pre>
     #include <algorithm>
                                                         14
     using namespace std;
                                                         1.5
                                                                     i--:
     void quickSort(int arr[],
                                                                   while (arr[i] <= pivot && i < i)
                                                         16
                    int begin,
                                                         17
                                                                     i++:
                    int end) {
                                                                   if (i < i)
 5
                                                         18
                                                                     swap(arr[i], arr[i]);
       int i, j, t, pivot:
                                                         19
       if (begin > end)
                                                         20
         return:
                                                         21
                                                                 arr[begin] = arr[i];
 9
                                                         22
10
       pivot = arr[begin];
                                                         23
                                                                 arr[i] = pivot:
       i = begin:
                                                                 quickSort(arr, begin, i - 1);
11
                                                         24
                                                                 quickSort(arr, i + 1, end);
12
       i = end:
                                                         25
       while (i != j) {
                                                         26
13
```

Multiple Pages I

Another is achieved by allowing the code to span multiple PPT pages.

```
#include <algorithm>
   using namespace std;
    void quickSort(int arr[],
                    int begin,
4
                    int end) {
5
      int i, j, t, pivot;
6
      if (begin > end)
        return;
9
      pivot = arr[begin];
10
      i = begin;
11
      j = end;
12
      while (i != j) {
13
        while (arr[j] >= pivot && i < j)</pre>
          j--;
15
        while (arr[i] <= pivot && i < j)</pre>
16
```

Multiple Pages II


```
i++;
17
        if (i < j)
18
          swap(arr[i], arr[j]);
19
20
21
      arr[begin] = arr[i];
22
      arr[i] = pivot;
23
      quickSort(arr, begin, i - 1);
24
      quickSort(arr, i + 1, end);
25
26
```


- 1 LATEX Reltative
- 2 Beamer Reltative
- 3 Others
 - Highlight
 - Pseudo-code

Pseudo-code I

Algorithm 1 KahnAlgorithm

```
Input: Graph G(\mathbb{V}, \mathbb{E})
Output: Sequence L
1: L \leftarrow an empty sequence
2: Q \leftarrow the vertices whose indegree is zero
3: while Q is not empty do
       u \leftarrow remove the top node of Q
5:
       add u to L
6:
7:
8:
9:
       for each node v with an edge e from u to v do
           remove edge e from graph G
          if indegree of v is 0 then
           push v to Q
10:
           end if
11.
        end for
12: end while
13: return L
```

Pseudo-code II

Algorithm 2 Framework

Input: Training data \mathbb{D} , Maximum generation g_{\max} , Population size n

Output: The best solution

- 1: Creating paired dataset \mathbb{D}_{cl}
- 2: Training contrastive model M_{con} from \mathbb{D}_{cl}
- 3: $i \leftarrow 0$
- 4: $P \leftarrow$ Latin hypercube sampling.
- 5: while $i < g_{\max}$ do
- 6: $C \leftarrow \text{apply SBX and PM on } P$
- 7: $P \leftarrow P \cup C$
- 8: $M_{\text{reg}} \leftarrow \text{BuildRegressionModel}(P, \mathbb{D})$
- 9: $L \leftarrow \text{TopologicalSort}(P, M_{\text{con}}, M_{\text{reg}}, n)$
- 10: $P \leftarrow P[L]$
- 11: $i \leftarrow i + 1$
- 12: end while
- 13: **return** P[0]

Pseudo-code III

You take a screenshot, and throw the picture into the algorithm environment, such as the algorithm aboved.

Reference I

 K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

Thanks for your listening!