Comparaison de moyennes

I – Comparer une moyenne à une valeur donnée

1 – Test de statistique

Echantillon E de taille n

de moyenne m de variance s²

Population \mathcal{G} de moyenne μ

Question : l'échantillon E provient-il de la population \mathcal{G} ? = Existe-t-il une différence significative entre m et μ ?

Hypothèses:

 H_0 : hypothèse nulle = E provient de \mathcal{G}

 H_1 : hypothèse alternative = E ne provient pas de $\mathcal {P}$

a - Comment faire un test statistique?

- 1. Choisir le risque α = risque de première espèce, c'est le risque de rejeter H_0 alors que H_0 est vraie. Généralement α = 5%, parfois α = 1%
- 2. Poser H₀ et H₁
- 3. Sous H_0 , on calcule un paramètre (U_c) dont on connaît la distribution, pour pouvoir comparer m et μ :

$$U_{c} = \frac{m - \mu}{\frac{S}{\sqrt{n}}}$$

- 4. Chercher dans la table U_{α}
- 5. Comparer $|U_c|$ et U_α :
 - Si $|U_c| > U_\alpha$: au risque α on rejette H_0 et on accepte H_1
 - Si $|U_c| < U_\alpha$: au risque α on accepte H_0

1 – Pour les grands échantillons (n \geq 30)

Si on connait m, s^2 , μ :

 H_0 : il n'existe pas de différence significative entre l'échantillon et la population H_1 : il existe une différence significative entre l'échantillon et la population

Sous
$$H_0$$
: $U_C = \frac{m - \mu}{\frac{S}{\sqrt{n}}}$ suit une loi normale
Si $\alpha = 5\%$, $U_t = 1,96$ / Si $\alpha = 1\%$, $U_t = 2,57$

Comparaison:

- Si $|U_c| > U_t$: au risque α on rejette H_0 et on accepte H_1
- Si $|U_c|$ < U_t : au risque α on accepte H_0 (sans certitude que H_0 est vraie), donc on ne met pas en évidence une différence significative

Si on connaît l'écart-type σ de \mathcal{G} :

Si on connait l'écart-type
$$\sigma$$
 de θ :

Même procédure sauf que $U_C = \frac{m - \mu}{\frac{\sigma}{\sqrt{n}}}$

2 – Pour les petits échantillons (n < 30)

Si on connait \sigma : cf. grands échantillons

Si σ inconnu:

Sous H_0 , $t_C = \frac{m - \mu}{\frac{S}{m}}$ suit une loi de Student à (n-1) ddl (degré de liberté)

On trouve le t_t dans la table de Student

Comparaison:

- Si $|t_c| > t_t$: au risque α on rejette H_0 et on accepte H_1
- Si $|t_c| < t_t$: au risque α on accepte H_0

b - Exemple

On mesure le temps de réaction chez des souris exposées à une stimulation au médicament X.

$$\mu$$
 = 23,7 s

$$n = 100$$

$$m = 22,9 s$$

$$s^2 = 13,98 s^2$$

- 1. Est-ce que le médicament X modifie le temps de réaction des souris ?
- 2. Pour n=16?
- **1.** H_0 = le médicament ne modifie pas le temps de réaction

 H_1 = le médicament modifie le temps de réaction

$$U_c = \frac{m - \mu}{\frac{s}{\sqrt{n}}} = \frac{22,9 - 23,7}{\frac{\sqrt{13,98}}{\sqrt{100}}} = -2,14$$

$$\alpha = 5\% \rightarrow U_t = 1,96$$

 $|U_c| > U_t$: au risque 5%, on rejette H_0 , donc le médicament modifie le temps de réaction.

2. n=16, H_0 et H_1 sont les mêmes

$$t_{c} = \frac{m - \mu}{\frac{S}{\sqrt{n}}} = \frac{22,9 - 23,7}{\frac{\sqrt{13,98}}{\sqrt{16}}} = -0.86$$

$$\alpha$$
 = 5% et ddl = (n-1) = (16-1) = 15 \rightarrow t_t = 2,13

 $|t_c| < t_t$: au risque 5%, on accepte H_0 , donc on ne montre pas que le médicament modifie le temps de réaction.

II – Comparer les moyennes observées sur des échantillons indépendants

1 – Deux grands échantillons

$$E_1 : m_1, s_1^2, n_1$$

 $E_2 : m_2, s_2^2, n_2$
 $\mathcal{P} : \mu$

Si n_1 et $n_2 \ge 30$:

- H₀: les 2 échantillons sont de la même population, il n'y a pas de différence significative entre les 2 moyennes
- H₁: les 2 échantillons ne sont pas de la même population, il existe une différence significative entre les 2 moyennes

Sous H₀,

$$m_1$$
 et m_2 suivent une loi normale $\mathcal{N}(\mu; \frac{\sigma^2}{n})$
 m_1 suit une loi normale $\mathcal{N}(\mu; \frac{{S_1}^2}{n_1})$
 m_2 suit une loi normale $\mathcal{N}(\mu; \frac{{S_2}^2}{n_2})$

$$d = m_1 - m_2$$

$$E(d) = \mu - \mu = 0$$

$$s_d^2 = \frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}$$

$$U = \frac{d-0}{s_d} \text{ suit une loi } \mathcal{N}(0; 1) \qquad \text{d'où } U_C = \frac{m_1 - m_2}{\sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}}$$

Soit α = 5% \rightarrow U_t = 1,96

Comparaison:

- Si $|U_c| > U_t$: au risque α on rejette H_0 et on accepte H_1 : les 2 moyennes proviennent de 2 populations différentes, il existe une différence significative entre les 2 moyennes
- Si |U_C| < U_t: au risque α on accepte H₀

Exemple

Poids des nouveau-nés dans une maternité :

$$n_1 = 41$$
 $m_1 = 3.4 \text{ kg}$ $s_1 = 0.385 \text{ kg}$ $n_2 = 65$ $m_2 = 3.36 \text{ kg}$ $s_2 = 0.363 \text{ kg}$

 H_0 , H_1 Sous H_0 :

$$U_{c} = \frac{m_{1} - m_{2}}{\sqrt{\frac{{S_{1}}^{2}}{n_{1}} + \frac{{S_{2}}^{2}}{n_{2}}}} = \frac{3,4 - 3,36}{\sqrt{\frac{0,385^{2}}{41} + \frac{0,363^{2}}{65}}} = 0,54$$

 $\alpha = 5\% \rightarrow U_t = 1,96$

 $|U_c|$ < U_t : au risque 5%, on ne montre pas de différence significative entre les poids des nnés \circlearrowleft et \circlearrowleft

2 – Deux petits échantillons

2 échantillons:

 $E_1: m_1, s_1^2, n_1$ $E_2: m_2, s_2^2, n_2$

a – Les deux échantillons ont une distribution normale

On compare alors les variances :

H₀: égalité des variances H₁: inégalité des variances

Test de Snédécor ou test F:

Paramètre

$$F_C = \frac{S_1^2}{S_2^2}$$

$$F_C = \frac{S_1^2}{S_2^2}$$
 $\text{si } s_1 > s_2$ ou $F_C = \frac{S_2^2}{S_1^2}$ $\text{si } s_1 < s_2$

Sous H_0 et $\alpha = 5\% \rightarrow p = \alpha/2 = F_T$

Table de Snédécor:

 v_1 = nombre ddl au numérateur : $(n_1 - 1)$ si $s_1 > s_2$ ou $(n_2 - 1)$ si $s_1 < s_2$ v_2 = nombre ddl au dénominateur : $(n_2 - 1)$ si $s_1 > s_2$ ou $(n_1 - 1)$ si $s_1 < s_2$

Comparaison:

- Si $F_C > F_T$: au risque α on rejette H_0 donc les variances ne sont pas égales \rightarrow test de Cochran
- Si $F_C < F_T$: au risque α on accepte H_0 donc les variances sont égales \rightarrow test T de Student

1 – Les variances ne sont pas égales

On s'arrête là, on ne sait pas faire après.

2 – Les variances sont égales, on compare les moyennes

Il faut trouver une variance commune (puisqu'elles sont égales) : s² commune.

$$s^{2} = \frac{(n_{1}-1) s_{1}^{2} + (n_{2}-1) s_{2}^{2}}{n_{1}+n_{2}-2}$$

H₀: pas de ≠ significative entre les moyennes = les échantillons proviennent de la même population H₁: il existe une ≠ significative entre les moyennes = les 2 échantillons proviennent de populations ≠ Sous H₀:

$$t_{\text{C}} = \frac{m_1 - m_2}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}} = \frac{m_1 - m_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \text{ suit une loi de Student à } (n_1 + n_2 - 2) \ ddl$$

On pose α et t_t à $(n_1 + n_2 - 2)$ ddl

Comparaison:

- Si $|t_c| > t_t$: au risque α on rejette H_0 et on accepte H_1 : il existe une différence significative entre les movennes
- Si $|t_c| < t_t$: au risque α on accepte H_0 : on ne montre pas de différence significative entre les moyennes

b – Les 2 échantillons n'ont pas une distribution normale : test non paramétrique de Mann et Whitney (rangs : distribution free)

Exemple:

Comparaison des notes obtenues aux tests psychomoteurs pour des patients atteints par la maladie A ou par la maladie B.

Maladie A: 48, 60, 42, 58, 50, 31, 42 $n_A = 7$ Maladie B: 31, 41, 23, 28, 42 $n_{B} = 5$

H₀: pas de différence significative

H₁: il existe une différence significative

On classe les données par ordre croissant :

A =			31	41		48	50	58	60
Rangs	: 1	2	3,5	5	7	9	10	11	12

$$T_A = 3.5 + 7x2 + 9 + 10 + 11 + 12 = 59.5$$

 $T_B = 1 + 2 + 3.5 + 5 + 7 = 18.5$

Pour vérifier si on n'a pas fait d'erreur, on calcule $T_A + T_B$ et ça doit être égal à $\frac{(n_A + n_B)(n_A + n_B + 1)}{2}$.

Paramètres:

$$U_A = n_A \times n_B + \frac{n_A (n_A + 1)}{2} - T_A = 3.5$$
 et $U_B = n_A \times n_B + \frac{n_B (n_B + 1)}{2} - T_B = 31.5$
$$1 - \text{Si } n_A \text{ ou } n_B < 10$$

 $U_C = \min (U_A; U_B)$ (ici, U_A) Table: $n = min(n_A; n_B)$ $m = max (n_A; n_B)$ lci : n = 5,m = 7, $m-n = 2, \qquad \alpha = 5\%$

Comparaison:

- Si $|U_c| < U_t$: au risque α on rejette H_0 et on accepte H_1 : il existe une différence significative
- Si $|U_c| > U_t$: au risque α on accepte H_0 : on ne montre pas de différence significative

Ici, $U_C = 3.5$ $U_t = 5$ $\rightarrow U_C < U_t$: au risque 5%, on rejette H_0 : il existe une différence significative

$$2 - Si n_A \underline{et} n_B \ge 10$$

On montre que U_A et U_B suivent une loi normale $\mathcal{N}(\frac{(n_A.n_B)}{2}$; $\frac{(n_A.n_B)(n_A+n_B+1)}{12})$.

$$U_{\text{C}} = \frac{U_{\text{A}} - \frac{n_{\text{A}} \cdot n_{\text{B}}}{2}}{\sqrt{\frac{n_{\text{A}} \cdot n_{\text{B}} \cdot (n_{\text{A}} + n_{\text{B}} + 1)}{12}}} \qquad \text{ou} \qquad U_{\text{C}} = \frac{U_{\text{B}} - \frac{n_{\text{A}} \cdot n_{\text{B}}}{2}}{\sqrt{\frac{n_{\text{A}} \cdot n_{\text{B}} \cdot (n_{\text{A}} + n_{\text{B}} + 1)}{12}}} \qquad \text{selon que } U_{\text{A}} < U_{\text{B}} \text{ ou non.}$$

On pose α , U_t

Comparaison:

- Si $|U_c| > U_t$: au risque α on rejette H_0 et on accepte H_1 : il existe une différence significative
- Si $|U_c| < U_t$: au risque α on accepte H_0 : on ne montre pas de différence significative

c - Exercice

N° ampoule	1	2	3	4
	10	13	13	7
	11	13	13	11
	11	14	14	12
Ø induration	13	18	19	13
	14	18	22	13
	15	21		14
	17			

					Totaux
n _i	8	7	6	7	28
Σx_{ij}	103	111	98	82	394
m _i	12,87	15,86	18,33	11,71	
$(\Sigma x_{ij})^2$	10 609	12 321	9 604	6 724	
$\frac{(\Sigma x_{ij})^2}{n_i}$	1 326,12	1 760,14	1 600,66	960,57	5 647,49
Σx_{ij}^2	1 365	1 819	1 668	992	5 844

$$M = \frac{8 \cdot 12,87 + 7 \cdot 15,86 + \dots}{28} = \frac{394}{28} = 14,07$$

$$\sum_{i=1}^{4} n_i (m_i - M)^2 = \sum_{i=1}^{4} \frac{(\sum xij)^2}{n_i} - MN^2$$

$$= 5 \cdot 647,49 - \frac{(\sum xij)^2}{N}$$

$$= 5 \cdot 647,49 - \frac{394^2}{28}$$

$$\sum_{i} \sum_{j} (x_{ij} - m_i)^2 = \sum_{i} [\sum_{j} x_{ij}^2 - n_i m_i^2]$$
= 5 844 - 5 647,49
= 196,51

1^e estimation =
$$\frac{196,51}{24}$$
 = 8,19
2^e estimation = $\frac{103,35}{4-1}$ = 34,45

$$\Rightarrow$$
 $F_C = \frac{34,45}{8,19} = 4,2$

$$\alpha$$
 = 2% \rightarrow p = 1%

 $F_T = 4,72$

 $v_1 = 3ddI$

 $v_2 = 24 \, ddl$

 $F_C < F_T$: au risque 2%, on ne montre pas de différence significative entre les vaccins.

III – Séries appariées

1 – Test paramétrique t

di = différence entre valeur mesurée avant et après un traitement

TA = tension artérielle

Patients: Ν

TA avant : 18 16
TA après : 16 17
Différence : 2 -1 15 ... 14 ... } Pas indépendantes car réalisées sur

mêmes patients

Différence moyenne : $\overline{d} = \frac{\sum di}{N}$

$$S_d^2 = \frac{\Sigma di^2}{N-1} - \frac{(\Sigma di)^2}{N(N-1)}$$

H₀: pas de différence significative entre TA avant et TA après

H₁: il existe une différence significative

Sous H₀:

$$t_c = \frac{\overline{d} - 0}{\frac{s_d}{\sqrt{n}}}$$

suit une loi de Student à (N-1) ddl : $- \quad \text{si N} \ge 30$

si N < 30 mais d_i suivent une loi \mathcal{N} ormale

sinon: Wilcoxon

Comparaison:

- Si $|t_c| > t_t$: au risque α on rejette H_0 et on accepte H_1 : il existe une différence significative
- Si $|t_c| < t_t$: au risque α on accepte H_0 : on ne montre pas de différence significative

2 – Test de Wilcoxon

 H_0, H_1

Calculer les di

 $|d_i|$: les classer par ordre croissant en éliminant les $d_i = 0$, et leur donner des rangs

 R^+ : somme des rangs des $d_i > 0$ R: somme des rangs des d_i < 0 N': nombre des d_i non nuls

Si N' \leq 25 \rightarrow table de Wilcoxon

R table

α

Comparaison:

- Si $R_{table} > min(R^+; R^-)$: au risque α on rejette H_0 et on accepte H_1 : il existe une différence
- Si R_{table} < min (R^+ ; R^-): au risque α on accepte H_0 : on ne montre pas de différence significative

Si N' > 25:

On ne sait pas faire.

3 – Exercice

Patient	Antalgique 1	Antalgique 2	di	di ²
1	260	250	+10	100
2	248	240	+8	64
3	270	240	+30	900
4	320	310	+10	100
5	270	240	+30	900
6	310	210	+100	10 000
7	332	260	+72	5184
8	240	290	-50	2500
9	250	260	-10	100
10	380	220	+160	25600
11	290	330	-40	1600
12	220	210	+10	100
13	280	300	-20	400
14	400	380	+20	400
15	370	300	+70	4900
16	284	230	+54	296
17	340	220	+120	14400
Totaux:			574	70 164

Sous H₀,

$$t_c = \frac{\overline{d} - 0}{\frac{S_d}{\sqrt{n}}}$$

$$\overline{d} = \frac{\sum di}{N} = \frac{574}{17} = 33,76$$

$$s_d^2 = \frac{70164}{16} - \frac{574^2}{16.17} = 3173,94$$

$$s_d = 56,34$$

$$t_{c} = 2,47$$

$$\alpha$$
 = 5% \rightarrow t_t = 2,12

t_c > t_t donc au risque 5% il existe une ≠ significative d'efficacité entre les 2 antalgiques

$$\alpha$$
 = 1% \rightarrow t_t = 2,92

t_c < t_t donc au risque 1% on ne montre pas de ≠ significative d'efficacité entre les 2 antalgiques

Avec Wilcoxon:

```
Rangs - = 31
Rangs + = 122
\alpha = 5% \rightarrow R table = 35
R_{c} = min(R^{-}; R^{+}) = 31
R table > R_C: au risque 5%, on conclue à une différence significative
\alpha = 1% \rightarrow R table = 23
R_C = min(R^-; R^+) = 31
```

R table < R_C : au risque 5%, on ne montre pas de différence significative