Distributed Information Systems: Spring Semester 2016 Quiz 3 Date: 7 Apr 2016

${\tt Student}$	Name:		Date:	7 Apr 2016	
${\tt Student}$	ID:		Time:	11:15AM to	11:30AM
		Total manusham of acceptions.	0		

Total number of questions: 8 Each question has a single answer!

1	TT71 · 1	c	C 11				1 /	1 /	• 1 0
Ι.	w nich	Οİ	TOLLC	wing	1S	wrong	about	data	guide?

- \square a) The data guide summarizes the data in a concise way (i.e., every path occurs only once)
- \square b) The nodes in a data guide define classes of nodes in the data graph
- \square c) The data guide is a deterministic schema graph
- $\boxtimes d$) The dataguide can never have cycles
- 2. Given the transactions in the following table, which of the following statements is **true**?

Transaction ID	Purchased Items
1	A,B,C
2	A,C
3	A,D
4	B,E

$\Box a)$	A	\Longrightarrow	C wi	th unkno	own suppo	ort and \approx	≈ 66.67%	confidence
$\Box b$)	C	\Longrightarrow	A wi	th 100%	support a	and 50%	confidenc	e

- $\boxtimes c$) $A \implies C$ with 50% support and $\approx 66.67\%$ confidence
- $\Box d$) $C \implies A$ with unknown support and 50% confidence
- 3. Given a frequent itemset T of size $k \geq 2$, computed from a database of shopping transaction with a given minimum support, which of the following is **true**:
 - $\boxtimes a$) There exist at least k frequent itemsets of size k-1.
 - \Box b) Using the apriori algorithm, the database has been scanned k+1 times to find T.
 - \Box c) We can build at least k-1 association rules with confidence 100%.
 - \square d) If another frequent itemset T' differs from T by exactly one element, then $T \cup T'$ is a k+1 frequent itemset.
- 4. For schema integration we constructed a Naive Bayes classifier that determines with which probability a data instance i with features T_i belongs to a class A.

Which of the following probabilities is **not** used to train the classifier

$\Box a)$	P(A), the probability that an instance belongs to class A
$\Box b)$	$P(t A)$, the probability that a feature $t \in T_i$ occurs for an instance of class A
$\boxtimes c)$	$P(A T_i)$, the probability that an instance belongs to class A given its features
$\Box d$)	all the three probabilities are used

- 5. When integrating heterogeneous databases (e.g. in healthcare environments), the constituents of different schemas need to be related to each other according to semantic similarity. This activity is called:
 - \square a) Schema analysis \square b) Schema extraction \boxtimes c) Schema matching
 - $\Box d$) Schema subsumption

6. Which of the following is false in the context of the Apriori algorithm for association rule mining:
\Box a) The PRUNE step removes all k-itemsets that contain a non frequent $(k-1)$ -itemset.
 △ b) After the JOIN and PRUNE step, all remaining k-itemsets are frequent k-itemsets. □ c) The Apriori algorithm reduces the number of database accesses compared to a brute a next step that filters even further □ d) Identifying frequent itemsets in partitions of the database can improve the algorithm is performance in large datasets.
7. Given sets $A = \{a, b, c, d, f\}$ and $B = \{a, b, c, d, e\}$, the Jaccard similarity between A and B is:
□ a) 5 □ b) 4 / 25 $\boxtimes c)$ 2 / 3 □ d) 4 / 5
8. Given an association rule $I \implies J$. Confidence is the probability $\Box \ a) \ P(I,J)$ $\boxtimes \ b) \ \begin{picture}(P(J I))$
$\Box c) \ P(I J)$ $\Box d) \ P(I J) - P(J)$