Politecnico di Milano	Analisi Matematica II	25 g	giugno	2018			
Prof. E. Maluta							
Ing. Informatica e Ing. delle Telecomunicazioni	Prima Parte						
Cognome e Nome:	Matricola:	P	\mathbf{T}	1	2	3	4

Ogni risposta va scritta nello spazio sotto il quesito e motivata con calcoli o/e spiegazioni.

1. Disegnare il dominio della funzione f definita da $f(x,y) = \sqrt{(3-xy)}$ e stabilire se è aperto, chiuso, né aperto né chiuso, limitato o non limitato.

2. Calcolare $\lim_{(x,y)\to(0,1)} \left(xy \arctan \frac{1}{xy} + 3y\right)$.

3. Calcolare tutte le derivate direzionali della funzione f definita da $f(x,y)=2x+y-\pi^2$ nel punto (0,0).

4. Stabilire se la curva di equazione parametrica $\mathbf{r}(t) = ((\cos 2t)^3, \sin t), \cos t \in [0, \pi]$, è regolare e/o chiusa.

5. Determinare le curve di livello della funzione $f(x,y) = \sqrt[3]{\frac{x+y}{x^2+y^2}}$ e disegnarne due, a scelta.

6	Calcalara	$\int x dx dy$	ovo T –	((m m).	$x^2 + u^2$	<1 m>a	'n
о.	Calcolare	$\int_T x dx dy$	ove $T = 0$	$\{(x,y): x \in \{0,1\}$	$x^2 + y^2$	$\leq 1, x \geq y$	<i> </i>

7. Calcolare il volume di
$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + z^2 \le 9 \land -1 \le y \le 1\}.$$

8. Determinare l'insieme A di convergenza puntuale della serie
$$\sum_{1}^{+\infty} \frac{(2x)^n}{1+7^n}$$
.

$$\begin{cases} y' = 2ty \\ y(0) = 1. \end{cases}$$

10. Calcolare la divergenza del campo vettoriale
$$\mathbf{F}(x,y,z) = (\log(y\sqrt[3]{z}), y + \arctan(x^3e^z), xz)$$
.