Problem Statement:

- 1. Identify Problem statement: 3 stages
 - 1. Machine Learning
 - 2. Supervised Learning (Requirement clear & I/p and O/P are also clear)
 - 3. Regression O/P labels are in numerical format

2. Tell basics about dataset:

Dataset have 5 input column (age,sex,children,bmi and smoker) and 1 output (charges). The columns (sex and smoker) are in categorical value, so we have to do some preprocessing.

3.PreProcessing method:

As mentioned above dataset have categorical value as input and it is nominal type , so we converting to 1 and 0. For that we using "One Hot Encoding" in the code.

4. Develop Model:

Developed MultipleLinearRegression, SVM, DecisionTree,RandomFactor to find the best model, which shows below.

5. Best Model

As per report of r_score value, Random Forest has chosen as best model and created deployment phase for the respective model. Why, because the r_score value is given as high accuracy for the given dataset, when compared to the other model.

Please find the report below,

Multi Linear Regression:

R_score value is 0.78

1.SVM – Support Vector Machine

Kernel	С	R_score
linear	0	-0.01
	10	0.46
	100	0.62
	1000	0.76
	10000	0.74
<mark>rbf</mark>	0	-0.08
	10	-0.03
	100	0.32
	1000	0.81
	<mark>10000</mark>	<mark>0.870</mark>
poly	0	-0.07
	10	0.03
	100	0.61
	1000	0.85
	10000	0.85
sigmoid	0	-0.07
	10	0.03
	100	0.52
	1000	0.28
	10000	-34.15

Hyper tuning parameter in SVM is kernel="rbf",c=10000 for given dataset

2. Decision Tree

criterion	splitter	R_score
squared_error (default)	best(default)	0.69
	<mark>Random</mark>	<mark>0.74</mark>
friedman_mse	best	0.69
	Random	0.68
absolute_error	best	0.67
	Random	0.72
poisson	best	0.72
	Random	0.71

Hyper tuning parameter in Decision tree is criterion =" squared_error", splitter=random for given dataset

3. Random Forest

criterion	max_features	R_score	
squared_error	<mark>sqrt</mark>	<mark>0.872</mark>	
	log2	0.866	
friedman_mse	sqrt	0.862	
	Log2	0.871	
absolute_error	Sqrt	0.870	
	Log2	0.871	
poisson	Sqrt	0.871	
	Log2	0.870	

Hyper tuning parameter in Decision tree is criterion ="squared_error", max_features=sqrt for given dataset

By analysing the above hyper tuning report **RandomForest** given **high** accuracy when compared to the other model for the given data set.

So we ${\bf saving} \ {\bf RandomForest} \ {\bf model}$ for the deployment

4. Gradient Boosting

criterion	Loss	R_score
squared_error (default)	absolute_error	0.80
	Squared_error	0.78
	quantile	0.63
	huber	0.86

friedman_mse	absolute_error	0.83
	Squared_error	0.76
	quantile	0.63
	huber	0.78

XGBoosting Algorithm:

R_score value = 0.866

LGBoosting Algorithm:

R_score value = 0.86