Московский Физико-Технический Институт (Национальный исследовательский университет)

Лабораторная работа

Автоэлектронная эмиссия

Выполнили студенты группы Б04-005 Назарова Анна Сергеевна Спирандэ Екатерина Константиновна Юн Максим Игоревич Ярышева Ирина Михайловна

Аннотация

В данной работе проводятся исследования автоэмиссионных свойств вольфрамового острия и катодов, изготовленных из углеродных волокон. Исследуются механизмы нестабильности автоэмиссионного тока на примере углеродных трубок.

Цель работы: исследование автоэмиссионных свойств и механизмов нестабильности автоэмиссионного тока на примере катода, изготовленного из углеродных волокон. Получение ВАХ с помощью электронного осциллографа.

Оборудование: источник напряжения, стрелочный амперметр, вольтметр, электронный осциллограф, резистор, игла из вольфрама, катод из углеродных трубок.

1. Теоретическая часть

1.1. Автоэлектронная эмиссия металлов

При наличии электрического поля над поверхностью металла наблюдается внешняя автоэлектронная эмиссия (автоэмиссия, холодная эмиссия, туннельная эмиссия). **Автоэлектронная эмиссия** - явление испускания электронов в вакуум с поверхности твердого тела или другой среды под действием очень сильного электрического поля напряженностью $10^7-10^8~\mathrm{B/cm}$.

Автоэлектронная эмиссия является эмиссией, не требующей возбуждения электронов. Суть явления состоит в туннелировании электронов сквозь потенциальный барьер на поверхности тела. Такое туннелирование становится возможным за счет искривления потенциального барьера при приложении внешнего поля. При этом появляется область пространства вне тела, в которой электрон может существовать с той же полной энергией, которой он обладает, находясь в теле. Таким образом, автоэлектронная эмиссия обусловлена волновыми свойствами электронов.

Впервые такое объяснение автоэмиссии было предложено в 1928 году Фаулером и Нордгеймом. Ими впервые была получена формула, описывающая взаимосвязь плотности автоэлектронного тока j с напряженностью электрического поля E:

$$j = \frac{e^3}{4\pi^2\hbar} \frac{E_f^{1/2}}{W_a \varphi^{1/2}} E^2 \exp(-\frac{4}{3e} \frac{\sqrt{2m}}{\hbar} \cdot \frac{\varphi^{3/2}}{E}), \tag{1}$$

где $\varphi = W_a - E_f$ – работа выхода, E_f – энергия Ферми, W_a – уровень вакуума (все энергии отсчитываются от дна зоны проводимости).

Эта формула получена для полубесконечного металла с плоской поверхностью, подчиняющегося модели Зоммерфельда и находящегося при температуре T=0K. При выводе этой формулы Фаулер и Нордгейм предположили, что потенциальный барьер на поверхности тела имеет вид, показанный на рис.1 (кривые A и B):

Позднее в 1929 году Нордгейм предложил ввести в рассмотрение силы электростатического изображения рис.1 (кривые C и D). Это привело к выражению:

$$j = A \frac{E^2}{\varphi} \exp B \frac{\varphi^{3/2}}{E} \theta(y), \tag{2}$$

где $A\equiv\frac{e^3}{16\pi^2\hbar},\ B\equiv\frac{4\sqrt{2m}}{3e\hbar},\ \theta(y)$ - спецфункция, которая была табулирована Нордгеймом, и получила название «функция Нордгейма». При не очень близких к 0 или 1 значениях аргумента функция Нордгейма хорошо приближается аналитическим выражением $\theta(y)=0.965-0.739y^2.$

Рис 1. Поверхностный потенциальный барьер на границе металлвакуум в присутствие сильного электрического поля. Волинстой линией показан эффект тупнелирования электронов сквозь барьер.

Е - напряженность электрического поля;

e – заряд электрона;

ф – работа выхода электронов

Подставив $\theta(y)$ в (2), получим:

$$j = A' \frac{E^2}{\varphi} exp(-B' \frac{\varphi^{3/2}}{E}), \tag{3}$$

где $A'=\frac{e^3}{8\pi h}e^{0.739\cdot\frac{8\pi}{3e}(2m\phi^3)^{1/2}},~B'\equiv0.965\cdot\frac{8\pi}{3e}(2m\phi^3)^{1/2}},~y\equiv\frac{\sqrt{e^3E}}{\phi},~\alpha$ - - угол наклона получившейся кривой.

Строго говоря, теория Фаулера-Нордгейма применима только при температуре T=0K. Однако, так как незначительное увеличение температуры мало меняет распределение электронов в металле, лишь размывая его на величину порядка kT вблизи уровня Ферми, то выводы теории остаются качественно верны при температурах, определяемых условием $kT\ll\varphi$. При комнатной температуре, например, $kT=2.6\cdot 10^{-2}$ эВ, в то время как характерное значение работы выхода $\varphi=3...6$ эВ.

Если построить график зависимости $\ln(\frac{j}{E^2})$ от $\frac{1}{E}$, то соответствующая кривая окажется практически прямой линией в узкой области напряженности поля, которая характерна для типичного автоэмиссионного эксперимента. Эта прямая называется графиком Фаулера-Нордгейма, а соответствующие координаты - координаты Фаулера-Нордгейма $(\ln(\frac{j}{E^2}), \frac{1}{E})$.

Наклон графика выржается формулой:

$$S_{FN} = \frac{d \ln \frac{j}{E^2}}{d \frac{1}{E}} = -0.683 \cdot s(\frac{3.79\sqrt{E}}{\varphi}) \cdot \varphi^{\frac{3}{2}}$$

где s(y):

s(y) в узкой области напряжённости поля можно считать константой. В рабочем диапазоне токов и напряжений, эту функцию можно приближённо считать равной 1.

1.2. Одноэмитттерные системы

$$E = \beta U \tag{4}$$

$$I = S_e j, (5)$$

где S_e – площадь поверхности эмиттера, β – форм-фактор острия. Таким образом, если построить график зависимости $\ln(\frac{I}{U^2})$, то мы получим прямую (прямая Фаулера-Нордгейма для полного тока и напряжения), тангенс угла наклона которой будет определяться выражением:

$$\tan(\alpha) = -0.683 \cdot s(\frac{3.79\sqrt{\beta \cdot U}}{\phi}) \cdot \frac{\phi^{\frac{3}{2}}}{\beta}$$
 (6)

Принимая во внимание, что s(y) можно считать равной 1:

$$\tan(\alpha) = -0.683 \cdot \frac{\varphi^{\frac{3}{2}}}{\beta} \tag{7}$$

1.3. Многоэмитттерные системы

Формула (7) справедлива для одноэмиттерных систем - когда имеется одно эмитирующее острие с форм-фактором β . Однако, если имеется несколько эмиссионых центров, то, пренебрегая в простейшем случае взаимным влиянием центров (экранировкой), получим выражение:

$$I = \sum_{i} I_{i}$$

Анализ этого выражения в общем случае не представляется возможным, тем не менее для реального катода часто выполняется условие малого разброса значений форм-фактора от центра к центру. В этом случае форм-фактор каждого центра можно заменить средним значением. Имеем:

$$I = S \frac{A}{t^2(y_0)} \frac{\beta^2 U^2}{\phi} exp(-\beta \frac{\phi^{3/2}}{\beta U} \nu(y_0))$$
 (8)

где $y_0=3.79\frac{\sqrt{\beta U}}{\varphi},$ А и В - константы Суммарная площадь рабочей поверхности S определяется выражением:

$$S = NS_0 = N\alpha r^2,$$

где α - коэфицент формы эмиссионного центра, r - характерный размер центра Форм-фактор центра можно выразить формулой:

$$\beta = \frac{1}{kr \ln(\frac{R}{r})},\tag{9}$$

1.4. Нестабильность эмиссионого тока

Основные причины нестабильности тока автоэлектронных катодов:

- 1) Разрушение поверхности под действием ионной бомбардировки остаточных газов: приводит к нестабильности микрогеометрии катода
- 2) Адсорбция и десорбция атомов остаточных газов: вызывает изменение локальной работы выхода
- 3) Разрушение или изменение геометрии эмиссионных центров под действием пондеромоторных нагрузок
- 4) Разрушение центров из-за нарушения теплового режима катода при больших плотностях тока

В результате эксперимента получается набор точек, которые апроксимируются:

$$\ln(\frac{I}{U^2}) = A - B\frac{1}{U}$$

Зависимость A от $\ln B$ позволяет качественно определить причину нестабильности тока.

- ullet Изменение числа эмиссионных центров: A изменяется, $\ln B$ постоянный
- \bullet Изменение работы выхода: A линейно зависит от $\ln B$ с работой выхода 1.5
- Изменение размеров центра: $A + 2 \ln B$ линейно от $\exp(-\frac{A}{2})$

2. Техника автоэлектронной микроскопии

2.1. Конструкция прибора

Для получения автоэмиссионного тока необходимо приложить к поверхности образца сильное электрическое поле. Проще всего это сделать на поверхности с большой кривизной. На прозрачное покрытие, служающее анодом, подается высокое положительное напряжение, объект исследования - острие крепится в специальной трубке.

Электроны, эмитированные с острия, ускоряются приложенным напряжением и, попадая на люминофор, вызывают его свечение. Создаются автоэлектронное изображение эмиттирующей поверхности.

2.2. Увеличение и разрешение автоэлектронного микроскопа

Эмиттированные электроны покидают острие практически перпендикулярно его поверхности, поэтому увелечение микроскопа может быть записано в виде:

$$M = \frac{R}{\gamma^2 r},$$

где R - растояние эмиттер-экран, γ - фактор сжатия (обычно 1.5-1.9), r - радиус острия. Разрешение микроскопа выражается следующим образом:

$$\delta = C_1 \sqrt{r} \sqrt{\left(\frac{C_2}{\sqrt{V}} + \frac{C_3}{\sqrt{\phi}}\right)}$$

2.3. Углеродные материалы и катоды на их основе

Среди известных углеродных материалов наиболее полходящим для создания катода является графит и полиакрилонитрильные углеродные волокна.

Слои атомов углерода такого волокна образуют фибриллы, которые в зависимости от условий и температуры нагрева в процессе получения имеют размер по большой оси 1000 нм, и диаметр 50 нм. Фибриллы связаны между собой аморфными областями. Такая связь обеспечивает эластичность углеродных волокон. Эмиссионными центрами у такого вида катода являются многочисленные микровыступы, образованные выходящими на торцевую поверхность волокна фибриллами. Катод такой структуры обладает высокой стабильностью тока и большим сроком службы.

Однако, в ходе работы с катодами на основе волокон было установлено, что у автоэмиссионного катода, состоящего из пучка углеродных волокон, происходит отклонение периферийных волокон под действием электростатических сил. Для уменьшения влияния этого эффекта пучки вытравливают спцеаильным образом, придавая им оптимальную форму.

3. Экспериментальная установка

Экспериментальная часть исследования автоэмиссионных свойств вольфрамового острия проводится с вакуумным стендом, где внутри вакуумной камеры размещен исследуемый образец. Схематическая блок-схема представлена на рис. 1

Рис. 1: Блок-схема установки

В нашей работе исследуются автоэмиссионные свойства и механизмы нестабильности автоэмиссионного тока на примере катодов, изготовленных из углеродных волокон. Исследуемые автокатоды находятся в отпаянной стеклянной лампе, схема которой представлена на рис. 2

Рис. 2: Конструкция автоэмиссионной лампы на основе углеродных волокон, для исследования автоэмиссионных свойств углеродных волокон

4. Практическая часть

4.1. Исследование автоэмиссионных свойств вольфрамового острия

Снимем вольт-амперную характеристику катода. В качестве катода выступает очищенное вольфрамовое острие. На основании полученных данных построим график зависимости I=f(U).

Таблица 1. Данные для построения вольт-амперной характеристики вольфрамового острия

I, MKA	1,5	2,1	3	3,75	
U, B	1996	2328	2892	2914	

В ходе эксперимента не удалось снять экспериментальные данные для вольфрамовой иглы, так как установка не поддерживала ток. Полученные экспериментальные данные не позволяют дать никакой аналитической оценки зависимости.

4.2. Исследование автоэмиссионных свойств углеродных материалов

Снимем вольт-амперную характеристику углеродных трубок. На основании полученных данных построим график зависимости I = f(U).

Таблица 2. Данные для построения вольт-амперной характеристики углеродных трубок

I, MKA	3	5	8,25	15	21	25,5	30	35	45	51	55	62	69
U, B	580	640	690	766	813	844	856	901	935	950	958	979	993
I, MKA	75	80	87,5	93,5	97,5								
U, B	1004	1018	1037	1051	1062								

Построим вольт-амперную характеристику катода в координатах Фаулера - Нордгейма $\ln(I/U^2) = f(1/U)$.

Видим, что график аппроксимируется прямой y=kx+b, где $k=-3,02\pm0,08,\ b=-6,57\pm0,09.$

По полученным данным можно заметить, что зависимость смещения кривой b от логарифма коэффициента наклона $\ln(k)$ принимает вид прямой. Тогда можно предположить, что флуктуация тока определяется изменением работы выхода, то есть имеет место адсорбция и десорбция атомов остаточных газов.

4.3. Получение ВАХ с помощью электронного осциллографа

Чтобы получить ВАХ при увеличении напряжения с нуля, мы подсоединяем к системе резистор с сопротивлением 26.86 кОм. Мы выбрали резистор с большим сопротивлением, так как в этом случае мы увеличим точность наших измерений и увеличим значение напряжения на данном резисторе. После подключения генератора к каналу 1 (желтая линия) и резистор к каналу 3 (синия линия), снимаем их зависимость от времени.

Повторяем данное измерение несколько раз, однако форма кривых практически не изменяется, поэтому не будем рассматривать каждый случай. Учитывая смещения и масштаб графиков построим ВАХ для обоих случаев:

Заметим, что зависимость не становится линейной в координатах Фаулера - Нордгейма. Это подтверждает предположение, что в установке вольфрамовый катод работает неправильным образом.

5. Выводы

В данной лабораторной работе мы изучили особенности автоэлектронной эмиссии и её применения. Исследовали автоэмиссионные свойства вольфрамового острия и катодов, изготовленных из углеродных волокон. Построили вольтамперные характеристики. Как и ожидалось, зависимость в координатах Фаулера - Нордгейма описывается прямой, что подтверждает теорию. Исследовали механизмы нестабильности автоэмиссионного тока на примере углеродных трубок, в нашем случае получили, что имеет место адсорбция и десорбция остаточных газов. Также получили ВАХ с помощью электронного осциллографа.