TAREA 1

Fecha de entrega: 15/04/19 23:59 hrs

Problema

En una región del litoral central Chileno se planea construir una planta industrial destinada a la refinación del petróleo. El diseño propuesto considera una gran emisión de calor a la atmósfera, por lo cual en la evaluación de impacto ambiental se le pide a usted, como alumno del curso de computación gráfica, modelar el comportamiento térmico de la atmósfera con la planta en operación.

Se le pide modelar un perfil del litoral (corte transversal en dirección Este-Oeste) de 4 [km] de ancho y 2 [km] de alto parecido al de la figura. La planta se ubicará en la playa (entendida como el borde entre el mar y las montañas; en la figura se indica por una franja roja).

Por simplicidad consideraremos que la temperatura de la atmósfera cumple la ecuación de Poisson:

$$\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} = \rho(x,y)$$

En donde $\rho(x,y)$ es una función cualquiera que depende de la distancia (x,y) con respecto al centro de la planta. Nótese que si $\rho(x,y) = 0$ se tiene la ecuación de Laplace vista en clases.

Condiciones de borde

La temperatura de la superficie del mar varía a lo largo del día de acuerdo a la siguiente receta: $T = 4^{\circ}\text{C}$ entre las 00:00 y las 08:00 hrs; luego T aumenta linealmente hasta alcanzar los 20°C a las 16:00; y finalmente T decrece linealmente hasta alcanzar $T=4^{\circ}\text{C}$ a las 24:00 (Ver figura del anexo). Para el problema asumiremos que la temperatura superficial del mar varía en la forma descrita independiente de la temperatura atmosférica.

La temperatura de la atmósfera (en ausencia de fuentes de calor que no sean la superficie del mar) varía en el tiempo igual que la temperatura en la superficie del mar pero además decae linealmente en 6°C cada 1000 [m]. Asumiremos que nuestra caja es suficientemente grande para que los bordes de nuestro perfil no se vean afectados por la planta industrial.

Por su parte, la temperatura del suelo en la región continental es constante e igual a 20° C todo el día, excepto por sobre los 1800 [m], donde hay nieve (que consideraremos a 0° C).

En cuanto a la planta, esta tiene chimeneas que cubren un ancho de 120 [m] ubicada al nivel del mar. El comportamiento térmico de la chimenea a lo largo del día esta descrito por la siguiente expresión (como función de la hora t):

$$T = 450 \left(\cos\left(\frac{\pi}{12} \cdot t\right) + 2\right)$$
 [°C]; $t \in [0, 24]$

Geografía

El perfil geográfico a estudiar está detallado en la figura y contiene algunos elementos aleatorios que dependen de RRR (los últimos 3 dígitos de su RUT, antes del dígito verificador). En particular:

- Partiendo del Oeste, la superficie del mar cubre $1200 + 400 \times 0$.RRR [m].
- A partir del borde costero, la planta industrial tiene chimeneas cubriendo un ancho plano de 120 [m] (la región roja de la figura).
- Luego de la planta hay una inclinación suave que aumenta 100 [m] de altura por cada 300 [m] que se recorre hacia el Este. Esta inclinación llega hasta 400 [m] a partir del borde costero.
- Luego de la pequeña inclinación, viene la cordillera de la costa que caracterizamos por dos cimas triangulares. La primera tiene una altura máxima de $1500 + 200 \times 0.RRR$ [m], la cual se ubica a 1200 [m] de la orilla del mar.
- A continuación hay un punto de menor altura: $1300 + 200 \times 0$. RRR [m], el cual se ubica a 1500 [m] de la orilla del mar.
- Luego viene una segunda cima, más alta que la primera que alcanza $1850 + 100 \times 0.RRR$ [m] a 2000 [m] desde la orilla del mar. Recuerde que todos los puntos de la superficie que están a más de 1800 [m] están cubiertos de nieve a 0 °C.
- Decida Ud. qué hacer con el tramo que falta.

Requerimientos específicos

A continuación una lista de requerimientos mínimos para su informe:

- Describa su estrategia de discretización del espacio.
- Describa qué tipo de condiciones de borde se necesitan de acuerdo a la descripción del problema. ¿Cómo las implementó en su solución?
- Determine la temperatura atmosférica para t = 0, 8, 12, 16, 20 [hrs].
- Resuelva el problema usando el método de la sobre-relajación sucesiva. Explore el valor más óptimo para el parámetro w.

Instrucciones Importantes

- Al hacer el informe usted debe decidir qué es interesante y agregar las figuras correspondientes. No olvide anotar los ejes, las unidades e incluir una caption o título que describa el contenido de cada figura.
- No olvide indicar su RUT en el informe.
- Repartición de puntaje: 50 % implementación y resolución del problema; 50 % calidad del reporte entregado: demuestra comprensión del problema y su solución, claridad del lenguaje, calidad de las figuras utilizadas.

■ IMPORTANTE. En esta tarea nos importa mucho su análisis del problema. Del 45 % contenido en el ítem "calidad del reporte", 15 % corresponde a su introducción, descripción del problema, descripción de su implementación, ortografía, etc., el otro 30 % corresponden a su análisis del resultado: ¿Tienen sentido sus resultados? ¿Por qué sí, o por qué no? ¿Cuál es el efecto del mar en el sistema? ¿A qué horas se obtiene la menor temperatura media del sistema? ¿Cuál podría ser una estrategia para reducir el impacto de la planta en el medio ambiente?

Anexos

Figura 1: Variación de temperatura del sistema

Código 1: Ejemplo paso función por argumento

```
def rho(x, y):
    return x * y

def iniciarIteracion(f):
    ...
    matriz[i][j] = f(i/h, j/h) # h dimension grilla

iniciarIteracion(rho) # Se pasa la funcion rho por variable
```