Homework 4 At

Due Apr 18 at 11pm

Points 10

Questions 10

Available Apr 12 at 8am - Apr 18 at 11pm

Time Limit None

Allowed Attempts Unlimited

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	51 minutes	10 out of 10

(!) Correct answers are hidden.

Score for this attempt: 10 out of 10

Submitted Apr 17 at 4:48pm This attempt took 51 minutes.

O d

Question 2

1 / 1 pts

Solve the following equation iteratively (first three terms only) y[k+1] + 2y[k] = f[k+1], with $f[k] = e^{-k} u[k]$ and y[-1] = 0

What is value of y[1]?

- a. 1
- b. 0
- c. -1.632 d. None of above

- () a
- 0 b
- C
- O d

Question 3

1 / 1 pts

1. Solve the following equation iteratively:

y[k] - 0.6 y[k-1] - 0.16 y[k-2] = 0 with y[-1] = -25, y[-2] = 0

What is value of y[2]?

- a. 0.76
- b. -15
- c. -10.2
- d. None of above

- O a
- O b

C

O d

Question 4

1 / 1 pts

Solve the following equation iteratively:

$$y[k+2] + 3y[k+1] + 2y[k] = f[k+2] + 3f[k+1] + 3f[k]$$

with
$$f[k] = 3^k u[k]$$
, y[-1] = 3, and y[-2] = 2.

What is value of y[2]?

a. -12

b. -63

c. 2

d. None of above

O a

b

О с

O d

Question 5

1 / 1 pts

Find out the system response equation for the following system equation:

$$y[k+2] + 3y[k+1] + 2y[k] = 0$$
, if $y[-1] = 0$, $y[-2] = 1$.

The system response solution is:

a.
$$y[k] = 2(-1)^k + (-4)(-2)^k, k \ge 0$$

b.
$$y[k] = 3(-1)^k + (-2)^k, k \ge 0$$

c.
$$y[k] = 3(-1)^k - (-2)^k$$
, $k \ge 0$

d. None of above

b		
С		
d		

1 / 1 pts **Question 6**

Using the classical method to find the total response of a system specified by the equation y[k + 2] - y[k+1] + 0.16 y[k] = f[k+1]

with the input f[k] is $f[k] = (0.5)^k u[k]$ and the auxiliary conditions

$$y[0] = -\frac{5}{9}, \ y[1] = -\frac{7}{9}.$$

- a. $3 \times (0.2)^k + 2 \times (0.8)^k 6 \times (0.5)^k$, $k \ge 0$ b. $\frac{10}{3} \times (0.2)^k + \frac{5}{3} \times (0.8)^k \frac{50}{9} \times (0.5)^k$, $k \ge 0$ c. $4 \times (0.2)^k + 3 \times (0.8)^k 8 \times (0.5)^k$, $k \ge 0$
- d. None of above
 - O a
 - b
 - О с
 - O d

1 / 1 pts **Question 7**

Calculate Laplace transform $F(s)=\int_0^\infty f(t)\,e^{-st}dt$ of the following equation and find the region of convergence (ROC).

$$f(t) = (e^{2t} - 2e^{-t}) u(t)$$

- a. $\frac{1}{s-2} \frac{2}{s+1}$, ROC: Re(s) > 2b. $\frac{2}{s-2} \frac{1}{s+1}$, ROC: Re(s) > 2
- c. None of above.
 - a
 - b
 - О с

Question 8

1 / 1 pts

Find the inverse (unilateral) Laplace transform of the following functions:

$$\frac{2s+5}{s^2+5s+6}$$

- a. $f(t) = (e^{-2t} + e^{-3t})u(t)$
- b. $f(t) = (e^{-5t} + e^{-6t})u(t)$
- $f(t) = (e^{-t} + 2e^{-5t})u(t)$ С.
- d.None of above

a

Оь

O c

O d

Find the inverse (unilateral) Laplace transform of the following functions:

$$\frac{3s+5}{s^2+4s+13}$$

- a. $f(t) = 3.018e^{-2t}\cos(3t + 6.34^{\circ})u(t)$
- b. $f(t) = 5e^{-3t}\cos(3t + 6.34^{\circ})u(t)$
- c. $f(t) = 5e^{-3t}\cos(4t)u(t)$
- d. None of above
 - a
 - O b
 - О с
 - 0 d

Question 10

1 / 1 pts

Find the inverse (unilateral) Laplace transform of the following functions:

$$\frac{s+2}{s(s+1)^2}$$

- a. $f(t) = (2 2e^{-t} t e^{-t})u(t)$
- b. $f(t) = (2 4e^{-t} 2t e^{-t})u(t)$
- c. $f(t) = (2 e^{-t} t e^{-t})u(t)$
- d. None of above

a

ОЬ

O c

Od				

Quiz Score: 10 out of 10