

Matrix Solvers for Stochastic Galerkin Schemes

Alexander Harvey

Submitted in accordance with the requirements for the degree of MSc Advanced Computer Science

2017/18

Contents

1	Intr	roduction	2
	1.1	Possion Equation	2
	1.2	Sylvester Equation	3
	1.3	Organisation	4
2	Sco	pe and Schedule	5
	2.1	Aim	5
	2.2	Objectives	5
	2.3	Deliverables	5
	2.4	Methodology	6
	2.5	Tasks, Milestones and Timeline	6
3	Mat	trix Solvers	8
	3.1	Direct Methods	11
		3.1.1 Kronecker Product	11
		3.1.2 Bartels-Stewart Algorithm	12
		3.1.3 Similarity Transformation	15
		3.1.4 Shifted System	18
	3.2	Iterative Methods	20
		3.2.1 Kronecker Product	20
		3.2.2 Gradient Based Method	21
		3.2.3 Modified Conjugate Gradient	21
		3.2.4 Preconditioned MCG	23
4	Uno	certainty	26
	4.1	Single Parameter	26
		4.1.1 Monte Carlo	28
		4.1.2 Stochastic Galerkin	29
	4.2	Multiple Parameters	36
		4.2.1 Monte Carlo	36
		4.2.2 Stochastic Galerkin	36
5	App	olication	37
6	Eva	luation	38
	6.1	Aims	38
	6.2	Extensions	38
	6.3	Conclusion	38

1 Introduction

1.1 Possion Equation

As an example, define spatial domain $\mathcal{D} = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$ and let $u : \mathcal{D} \to \mathbb{R}$ be the solution of Poisson's equation:

$$-u_{xx} - u_{yy} = f$$
 on \mathcal{D}
$$u = 0 \quad \text{on } \partial \mathcal{D}$$
 (1.1)

as shown in Figure 1.

Figure 1: Domain for $-u_{xx} - u_{yy} = f$.

The domain of this PDE can be discretised into a mesh with uniform spacing h using the centred finite difference approximations:

$$u_{xx} \approx \frac{u_{i-1j} - 2u_{ij} + u_{i+1j}}{h^2} \tag{1.2}$$

$$u_{yy} \approx \frac{u_{ij-1} - 2u_{ij} + u_{ij+1}}{h^2} \tag{1.3}$$

where $u_{ij} = u(x_i, y_j)$. The mesh is shown in Figure 2.

Figure 2: Discretised domain for $-u_{xx} - u_{yy} = f$.

The discretised form of this PDE can then be solved by computing the equation:

$$f_{ij} = -\frac{1}{h^2} \left(u_{i-1j} - 2u_{ij} + u_{i+1j} \right) - \frac{1}{h^2} \left(u_{ij-1} - 2u_{ij} + u_{ij+1} \right)$$
 (1.4)

at each internal grid point, meaning the system has n^2 unknowns with n = N - 2. The traditional approach to solving this discretised form would be to write (1.4) as:

$$f_{ij} = -\frac{1}{h^2} \left(u_{i-1j} + u_{ij-1} - 4u_{ij} + u_{i+1j} + u_{ij+1} \right)$$
(1.5)

and then stack all unknowns u_{ij} into a single vector U, resulting in the linear system AU = F. As stated previously, this ignores the underlying structure of the problem.

1.2 Sylvester Equation

A Sylvester equation is a matrix equation of the form AX + XB = C, where A is a $n \times n$ matrix, B is a $m \times m$ matrix, and X and C are $n \times m$ matrices. We can write (1.4) as a Sylvester equation in the form:

$$TU + UT = F (1.6)$$

where T, U and F are of size $n \times n$.

Let tridiag(j, i, k) be defined as a tridiagonal matrix with i on the main diagonal and j and k on the left and right diagonals, respectively. Then for (1.6) we have $T = -\frac{1}{h^2}$ tridiag(1, -2, 1) and $U_{ij} = u(x_i, y_j)$, where (x_i, y_j) are interior grid nodes for i, j = 1, ..., n. The system has n unknowns in each direction meaning there is a total of n^2 unknowns. The matrix equation is visualised below:

$$\frac{-1}{h^{2}} \begin{pmatrix}
-2 & 1 & 0 & \dots & 0 & 0 \\
1 & -2 & 1 & \dots & 0 & 0 \\
0 & 1 & -2 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & -2 & 1 \\
0 & 0 & 0 & \dots & 1 & -2
\end{pmatrix}
\begin{pmatrix}
u_{11} & u_{12} & \dots & u_{1j} & \dots & u_{1n} \\
u_{21} & u_{22} & \dots & u_{2j} & \dots & u_{2n} \\
\vdots & \vdots & \ddots & \vdots & \dots & \vdots \\
u_{n1} & u_{n2} & \dots & u_{nj} & \dots & u_{nn}
\end{pmatrix}$$

$$+ \begin{pmatrix}
u_{11} & u_{12} & \dots & u_{1j} & \dots & u_{1n} \\
u_{21} & u_{22} & \dots & u_{2j} & \dots & u_{2n} \\
\vdots & \vdots & \ddots & \vdots & \dots & \vdots \\
u_{n1} & u_{n2} & \dots & u_{nj} & \dots & u_{nn}
\end{pmatrix}$$

$$-1 \frac{1}{h^{2}} \begin{pmatrix}
-2 & 1 & 0 & \dots & 0 & 0 \\
1 & -2 & 1 & \dots & 0 & 0 \\
0 & 1 & -2 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \dots & -2 & 1 \\
0 & 0 & 0 & \dots & 1 & -2
\end{pmatrix} = F$$

There are a variety of methods that can be used to solve Sylvester equations. This project will explore and compare different methods for solving equations in this form.

1.3 Organisation

The organisation of this report is as follows. Section 2 sets out the objectives and planning of the project. Section 3 explores different methods for solving Sylvester equations. Section 4 explores ways of solving stochastic PDEs. Section 5 studies an application problem that combines the knowledge gained in the previous sections. Finally, Section 6 is an evaluation of the project's success.

2 Scope and Schedule

2.1 Aim

The aim of this project is to first study, implement and compare a range of matrix equation solvers. Following this, a specific problem will be derived with the help of my supervisor so that these solvers may be used and compared for a suitable application.

2.2 Objectives

The objectives of this project are as follows:

- To carry out an extensive, in-depth literature review on methods (both direct and iterative) for solving matrix equations from a wide range of sources. To decide which of these methods are appropriate to implement and to gain a solid understanding of how they work.
- To use and expand upon my programming experience to implement the chosen methods for solving matrix equations to solve the specified problem.
- To evaluate the implementation by comparing and contrasting the methods implemented to try to decide which is the best method for solving the given problem.
- To derive a suitable application equation so that the methods studied in this project can be applied to a specific problem.
- To clearly present the work carried out during the project by using and building upon my report writing skills.

2.3 Deliverables

The deliverables of this project include:

• The final report that will include the details of the matrix solvers that have been studied, how the solvers were implemented, an evaluation and comparison of the

implemented solvers, an analysis of how these solvers were used to solve the chosen application problem, and finally an evaluation of the success of the project.

• Code that successfully implements the chosen matrix solvers so that they solve the given problem.

2.4 Methodology

The methodology of this project will first involve studying academic publishings to gain an understanding of various methods for solving matrix equations. Python will be used as the programming language of choice for the implementation because of my familiarity with it, the extensive amount of documentation available for it and the excellent libraries it has available (e.g. NumPy and SciPy). GitHub will be used for version control and the final report will be written using LATEX.

2.5 Tasks, Milestones and Timeline

The steps of this project will be divided into iterations, with the problem in each iteration becoming successively more complex and difficult to solve. This is because understanding is a key part of this project, and so each iteration will build on the understanding of the last. Each iteration will consist of studying and applying matrix methods to the problem, implementing them in Python to solve the problem, evaluating the results and write up. Also rough deadlines will be given for when each iteration should be completed by, to ensure the project is on track at any given stage.

The iterations are as follows:

- Introductory problem: $-u_{xx}-u_{yy}=2\pi^2\sin{(\pi x)}\sin{(\pi y)}$ deadline June 1st
- Problem introducing uncertainty: $-\varepsilon u_{xx} \varepsilon u_{yy} = 2\pi^2 \sin(\pi x) \sin(\pi y)$ deadline June 22nd
- A Poisson equation on a surface defined by a height map (not yet derived) deadline July 13th
- Application reaction-diffusion equation (not yet derived) deadline August 3rd

If the project deadlines are met the remaining time will be dedicated to project evaluation, write up and any possible project extensions.

3 Matrix Solvers

This section explores different methods for solving a particular matrix equation in Sylvester form. For spatial domain $\mathcal{D} = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$ and $u : \mathcal{D} \to \mathbb{R}$, let $u(x,y) = \sin(\pi x)\sin(\pi y)$ be the exact solution of the equation:

$$-u_{xx} - u_{yy} = f$$
 on \mathcal{D}
 $u = 0$ on $\partial \mathcal{D}$ (3.1)

This gives:

$$u_{xx} = u_{yy} = -\pi^2 \sin(\pi x) \sin(\pi y)$$

$$\implies f = 2\pi^2 \sin(\pi x) \sin(\pi y)$$
(3.2)

The equation to be be solved is therefore:

$$-u_{xx} - u_{yy} = 2\pi^2 \sin(\pi x) \sin(\pi y) \quad \text{on } \mathcal{D}$$

$$u = 0 \quad \text{on } \partial \mathcal{D}$$
(3.3)

Using the centred finite difference approximations with uniform grid spacing h to discretise the domain of this system, we have:

$$-\frac{1}{h^2}(u_{i-1j}-2u_{ij}+u_{i+1j}) - \frac{1}{h^2}(u_{ij-1}-2u_{ij}+u_{ij+1})$$

$$= 2\pi^2 \sin(\pi x_i)\sin(\pi y_j)$$
(3.4)

to be solved at each grid point for i, j = 1, ..., n, where n is the total number of unknowns in each direction. The matrix form of this equation is therefore:

$$TU + UT = F (3.5)$$

where $T = -\frac{1}{h^2} \operatorname{tridiag}(1, -2, 1)$, $U_{ij} = u(x_i, y_j)$ and $F_{ij} = 2\pi^2 \sin(\pi x_i) \sin(\pi y_j)$ are all matrices of size $n \times n$ and (x_i, y_j) are interior grid nodes for $i, j = 1, \ldots, n$. This form allows us to explore different methods for solving this equation and compare them to the exact solution $u = \sin(\pi x) \sin(\pi y)$. A plot of the exact solution, with n = 1000, is given in Figure 3.

Figure 3: Plot of the solution with n = 1000.

Throughout the following section, each of the implemented methods will be given a maximum execution time of 6000 seconds to compute a solution. If a method does not compute a solution in this time for a certain problem size, then this will be specified in the results. If a method does not compute a solution because it needs more memory than is available, then this will also be specified. All tests in this section (and throughout the report) will be run on a DEC-10 computer with 32GB of RAM and 8 cores.

The following measurements will be given to evaluate the performance of each of the methods implemented:

- n: The number of unknowns in each direction for the system the total number of unknowns is n^2 . The mesh size will be continually refined by a factor of $\frac{1}{2}$, meaning the total number of unknowns in each direction will be doubled at each level, until either the time limit is reached or too much memory is used. The starting value will be n = 125, which will allow for a range of problem sizes to be tested without running more tests than necessary.
- Time(s): The time taken in seconds for the method to compute the solution to the problem. As previously stated the maximum time allowed will be 6000 seconds.
- $||u-u_h||_{L^{\infty}}$: An error measurement which measures the maximum difference between

the actual solution and computed solution for each u. Defined as:

$$||u - u_h||_{L^{\infty}} = \max_{ij} |u(x_i, y_i) - u_{ij}|$$

• $||u - u_h||_{L^2}$: An error measurement which measures the average difference between the actual solution and computed solution for all u, defined as:

$$||u - u_h||_{L^2} = \sqrt{h^2 \sum |u(x_i, y_j) - u_{ij}|^2}$$

• Experimental order of convergence (eoc): Measures the rate of convergence of a method as the problem size is increased, which should approach 2 as the step size is increased. Defined as:

$$eoc(i) = \frac{\log(E_i/E_{i-1})}{\log(h_i/h_{i-1})}$$

where E_i is the error (chosen here as $||u-u_h||_{L^{\infty}}$) and h_i is the mesh size at level i.

• Experimental order of growth (eog): Measures the order of growth of the execution time of an algorithm as the problem size is increased (that is, the approximate time complexity). Defined as:

$$eog(i) = \frac{\log(t_i/t_{i-1})}{\log(n_i/n_{i-1})}$$

where t_i is the total execution time and n_i is the problem size at level i.

• No. iters (iterative methods only): The number of iterations taken for the method to converge to the given convergence tolerance.

It is worth noting that as the total number of unknowns, and therefore the problem size, is n^2 , the best time complexity that an optimal solver can achieve is $O(n^2)$, as it must compute a solution for each unknown. Also, as each of the methods is solving the same equation, the differences in error for each of the methods should be small.

3.1 Direct Methods

3.1.1 Kronecker Product

A naive approach to solving this equation is to use the Kronecker product to rewrite (3.5) as a standard vector linear system. The Sylvester equation AX + XB = C can be written as the standard vector linear system:

$$Ax = c \tag{3.6}$$

with $A = I \otimes A + B^* \otimes I$, where I is the identity matrix, B^* denotes the conjugate transpose of B, x = vec(X) and c = vec(C).

The equivalent linear system for the matrix equation TU + UT = F is:

$$\mathcal{T}u = \mathcal{F} \tag{3.7}$$

where $\mathcal{F} = \text{vec}(F)$, $\mathcal{T} = I \otimes T + T \otimes I$ and u = vec(U).

This is the exact linear system that would be obtained from equation (1.5), that is, stacking all unknowns u_{ij} into a single vector in the first place. Since the matrix \mathcal{T} is sparse, this equation can be solved using a standard direct sparse solver. This approach provides a good base case for comparison. Results solving this linear system using the direct sparse solver sparse.linalg.spsolve from the SciPy library are shown in Table 1. As can be seen from the results, both errors decrease as the problem size n is increased. The eoc is close to 2 for all n, demonstrating the convergence of the algorithm. As n is increased the eog grows beyond 3, which shows this algorithm has worse than cubic time complexity for large n. For n = 4000, this method results in a memory error. This is because spsolve tries to compute a (incomplete) LU decomposition of \mathcal{T} which destroys the sparsity of the matrix and therefore requires much more memory to store it.

¹The vec operator reshapes a matrix into a vector by stacking the columns one after another.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog
125	0.18141	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.60371	1.3054×10^{-5}	6.5275×10^{-6}	2.0001	1.7346
500	4.1663	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	2.7868
1000	36.113	8.2082×10^{-7}	4.1041×10^{-7}	2.0000	3.1157
2000	404.48	2.0539×10^{-7}	1.0267×10^{-7}	2.0001	3.4855
4000		Mei	mory Error		

Table 1: Results obtained from solving the linear system Ax = c using the direct solver sparse.linalg.spsolve from the SciPy library.

3.1.2 Bartels-Stewart Algorithm

The Bartels-Stewart algorithm [1] can be used to solve the Sylvester equation AX + XB = C. This algorithm works by computing the Schur decompositions of the coefficient matrices A and B, which are used to transform the equation into an equivalent form which has coefficient matrices which are upper and lower triangular, meaning it can be solved one element at a time. The solution of this triangular system is then used to obtain the solution to the original equation.

In the general case the algorithm is as follows:

- 1. Compute the Schur forms $A^* = PRP^*$ and $B = QSQ^*$.
- 2. Solve $R^*Y + YS = \hat{C}$ for Y, where $\hat{C} = P^*CQ$.
- 3. Compute $X = PYQ^*$.

Here the matrices R and P are upper/lower triangular matrices with the eigenvalues of A and B on the diagonal, respectively. The matrices P and Q are the orthonormal sets of the eigenvectors of A and B, respectively.

By breaking this algorithm down into its component parts, we can examine each part to see which is the most costly. The first step of the algorithm can be computed using linalg.schur from the SciPy library, which uses the QR algorithm and has time complexity $O(n^3)$. For the second step, each entry of Y can be computed as:

$$Y_{ij} = \hat{C}_{ij} - \sum_{p=1}^{i-1} R_{ip} Y_{pj} - \sum_{q=1}^{j-1} Y_{iq} S_{qj}$$
(3.8)

for i, j = 1, ..., n. This also has time complexity $O(n^3)$, as it will have a for loop running from i = 1 to n, a nested for loop running from j = 1 to n and then two nested for loops which run from p = 1 and q = 1 to i - 1 and j - 1, respectively. The last step of the algorithm is a simple matrix multiplication, which has time complexity of at most $O(n^3)$. Therefore we can expect this algorithm to run in $O(n^3)$.

The algorithm simplifies for TU + UT = F. In this case the algorithm is as follows:

- 1. Compute the Schur form $T = PRP^*$.
- 2. Solve $R^*V + VR = \hat{F}$ for V, where $\hat{F} = P^*FP$.
- 3. Compute $U = PVP^*$.

The first step now only requires a Schur decomposition of one matrix to be computed. The matrix T is symmetric which means that its eigenvectors are orthogonal, which implies that R is now a diagonal matrix which has the eigenvalues of T on the diagonal. We can see this is true by examining the steps of the Schur decomposition. For a general matrix A, a Schur decomposition $A = PRP^*$ has 4 steps:

- 1. Find the eigenvalues of A.
- 2. Find the corresponding eigenvectors of A.
- 3. Compute an orthonormal set of eigenvectors using the eigenvectors of A, for example by using Gram-Schmidt orthogonalisation.
- 4. The eigenvectors found in Step 3 make up the columns of P. R can now be found as $R = P^*AP$.

As the eigenvectors of T are already orthogonal, they only need to be normalised in the 3rd step of the decomposition. This means that R will be a diagonal matrix with the eigenvalues of T on the diagonal.

This property reduces the complexity of the second step to $O(n^2)$, as only the diagonal elements need to be calculated and so the two summations are not necessary. We can therefore expect the algorithm to run faster than in the general case.

SciPy Solver

The SciPy library has a built in solver for solving Sylvester equations, linalg.solve_sylvester, which uses the Bartels-Stewart algorithm. We can use this to test the general algorithm. Results using this solver are given in Table 2.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u-u_h _{L^2}$	eoc	eog
125	0.059959	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.11421	1.3054×10^{-5}	6.5275×10^{-6}	2.0001	0.92964
500	1.9383	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	4.0850
1000	4.0920	8.2084×10^{-7}	4.1042×10^{-7}	2.0000	1.0780
2000	32.029	2.0503×10^{-7}	1.0259×10^{-7}	2.0027	2.9685
4000	279.95	4.9949×10^{-8}	2.4876×10^{-8}	2.0377	3.1277
8000	2812.2	8.6380×10^{-9}	4.1216×10^{-9}		
16000		Time	Limit Reached		

Table 2: Results using SciPy's linalg.solve_sylvester.

Simplified Implementation

Results using the simplified version of this algorithm are shown in Table 3, and results of each step of the algorithm are given in Table 4.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog
125	0.036654	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.084191	1.3054×10^{-5}	6.5275×10^{-6}		
500	0.35179	3.2766×10^{-6}	1.6383×10^{-6}		
1000	1.2846	8.2081×10^{-7}	4.1041×10^{-7}		
2000	7.3734	2.0531×10^{-7}	1.0265×10^{-7}		
4000	40.664	4.8578×10^{-8}	2.4421×10^{-8}		
8000	291.47	1.5975×10^{-8}	7.9337×10^{-9}		
16000	1974.6	1.6116×10^{-7}	9.0649×10^{-8}		
32000		Memor	y Error		

Table 3: Results using the simplified Bartels-Stewart algorithm.

n	1	2	3	Total
125				
250				
500				
1000				
2000				
4000				
8000				
16000				

Table 4: Timings for each step using the simplified Bartels-Stewart algorithm.

3.1.3 Similarity Transformation

A similarity transformation [5] can be used to solve the Sylvester equation AX + XB = C. Assuming that the coefficient matrices A and B can be diagonalised, this method uses an eigendecomposition to reform the equation so that the solution can be easily obtained. The method is as follows:

- 1. Compute the eigendecompositions $P^{-1}AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $Q^{-1}BQ = \operatorname{diag}(\mu_1, \dots, \mu_m)$:
 - (a) Compute the eigenpairs of A and B
 - (b) Compute the inverses of P and Q
- 2. Compute the solution $X = P\widetilde{X}Q^{-1}$, where $\widetilde{X}_{ij} = \frac{\widetilde{C}_{ij}}{\lambda_i + \mu_j}$ and $\widetilde{C} = P^{-1}CQ$.

Here $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, μ_1, \ldots, μ_m are the eigenvalues of B and the columns of P and Q are the eigenvectors of A and B, respectively. We can analyse the steps of this algorithm as done previously to obtain the time complexity. Step 1a consists of computing the eigenpairs of A and B, which in general is $O(n^3)$. Step 1b computes the inverse of P and Q which is greater than $O(n^2)$. The last step involves matrix multiplication which is at most $O(n^3)$. Therefore we can expect this algorithm in the general case to have approximately $O(n^3)$.

For TU + UT = F this method also simplifies. The steps are:

- 1. Compute the eigendecomposition $P^{-1}TP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$
 - (a) Compute the eigenpairs of T

(b) Compute the inverse of P

2. Compute the solution
$$U = P\widetilde{U}P^{-1}$$
, where $\widetilde{U}_{ij} = \frac{\widetilde{F}_{ij}}{\lambda_i + \lambda_j}$ and $\widetilde{F} = P^{-1}FP$

As before $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of T and the columns of P are the eigenvectors of T. The complexity of the first step can be drastically reduced. As T is a matrix in Toeplitz form, we can compute the eigenvalues and eigenvectors directly as:

$$\lambda_i = \frac{2}{h^2} \left(\cos \left(\frac{i\pi}{n+1} \right) - 1 \right) \tag{3.9}$$

and:

$$t_{ij} = \sqrt{\frac{2}{n+1}} \sin\left(\frac{ij\pi}{n+1}\right) \tag{3.10}$$

which reduces the time complexity to O(n) as T has n eigenpairs. Also, in this case the matrix P is unitary, which means that $P^{-1} = P^{T}$ and so calculating the inverse of P reduces to $O(n^{2})$. This should result in a significant speed up compared to the general version of this algorithm.

An interesting fact to note is that in this specific case the Schur decomposition and eigendecomposition of T are actually equivalent.

Numpy's linalg.eig function

In the general case of this method, the eigenpairs can be computed using NumPy's linalg.eig function. The results doing this are given in Table 5. The errors are again similar to the previous methods. However, here the eoc moves away from 2 as n is increased. This is likely due to the fact that there is no general formula for calculating eigenvalues and eigenvectors for an arbitrary matrix, meaning the eigenvalues and eigenvectors are most likely approximated by NumPy's linalg.eig. It is likely that the approximations become less accurate as n is increased. The eog here is however slightly better than the previous methods.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog
125	0.034534	5.1802×10^{-5}	2.5904×10^{-5}	-	-
250	0.13690	1.3054×10^{-5}	6.5275×10^{-6}	2.0000	1.9870
500	0.59718	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	2.1250
1000	2.2211	8.2086×10^{-7}	4.1043×10^{-7}	1.9999	1.8950
2000	11.571	2.0467×10^{-7}	1.0237×10^{-7}	2.0053	2.3812
4000	70.984	4.9966×10^{-8}	2.4876×10^{-8}	2.0350	2.6170
8000	466.83	8.6360×10^{-9}	4.1223×10^{-9}	2.5330	2.7173
16000		1.5711×10^{-7}	9.0192×10^{-8}		
32000		Mer	nory Error	•	

Table 5: Results using a similarity transformation, calculating the eigenvalues and eigenvectors using numpy.linalg.eig.

n	1	2	3	4	5	Total
125	0.013860	0.00042105	0.00075817	0.018881	0.00061440	0.034534
250	0.052402	0.00068998	0.0026329	0.078654	0.0025253	0.13690
500	0.25900	0.0020170	0.013870	0.30815	0.014147	0.59718
1000	0.91819	0.0011129	0.084650	1.1328	0.084323	2.2211
2000	5.8236	0.0035102	0.61534	4.5150	0.61360	11.571
4000	43.651	0.0074658	4.6290	18.071	4.6257	70.984
8000	325.30	0.027416	35.464	70.695	35.345	466.83

Table 6: Timing results for each step of the similarity transformation method, calculating the eigenvalues and eigenvectors using numpy.linalg.eig.

Calculating eigenpairs explicitly

As can be seen from the results in Table 6, the most costly part of this method is calculating the eigenvalues and eigenvectors. Results of doing so are given in Table 7, and timings for each step are given in Table 8.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog
125	0.028324	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.080759	1.3054×10^{-5}	6.5275×10^{-6}		
500	0.22574	3.2767×10^{-6}	1.6384×10^{-6}		
1000	0.87985	8.2082×10^{-7}	4.1041×10^{-7}		
2000	4.0533	2.0541×10^{-7}	1.0270×10^{-7}		
4000	15.696	5.1313×10^{-8}	2.5656×10^{-8}		
8000	73.321	1.2813×10^{-8}	6.4065×10^{-9}		
16000	428.46	7.7527×10^{-10}	3.8764×10^{-10}		
32000		Memor	y Error		

Table 7: Results using a similarity transformation, calculating the eigenvalues and eigenvectors explicity.

n	1	2	3	4	5	Total
125	0.057252	0.00025916	0.0045545	0.018010	0.00059748	0.080673
250	0.21954	0.00047016	0.0081279	0.073295	0.0025220	0.30396
500	0.88125	0.0012608	0.018555	0.28724	0.013819	1.2021
1000	3.7073	0.00096869	0.67056	1.1304	0.081200	5.5904
2000	13.812	0.0092294	1.3690	4.4495	0.60793	20.247
4000	54.907	0.0068946	4.9050	17.381	4.5936	82.243
8000	217.26	0.026015	35.357	71.581	36.129	360.35
16000	892.51	168.51	217.68	288.92	204.25	1771.9

Table 8: Timing results for each step of the similarity transformation method, calculating the eigenvalues and eigenvectors explicitly.

As can be seen from the results in Table 8, calculating the eigenvalues and eigenvectors explicitly outperforms calculating them using the NumPy library when n is large.

3.1.4 Shifted System

A projection method [5] can be used to solve AX + XB = C. This method works by computing the eigendecomposition of B to reform the problem as solving n independent linear systems. Each of these linear systems can be solved simultaneously to obtain the solution X. The steps of this method are as follows:

- 1. Compute $B = WSW^{-1}$, where $S = \text{diag}(s_1, \ldots, s_n)$ are the eigenvalues of B and the columns of W are the eigenvectors of B
- 2. Compute $\hat{C} = CW$
- 3. For i = 1 to n, solve the system $(A + s_i I)(\hat{X})_i = (\hat{C})_i$
- 4. Compute solution $X = \hat{X}W$

where $(\hat{X})_i$ denotes the i^{th} column of \hat{X} .

In the case of TU + UT = F, the steps are as follows:

- 1. Compute $T = WSW^{-1}$, where $S = \text{diag}(s_1, \dots, s_n)$ are the eigenvalues of T and the columns of W are the eigenvectors of T
- 2. Compute $\hat{F} = FW$
- 3. For i = 1 to n, solve the system $(T + s_i I)(\hat{U})_i = (\hat{F})_i$
- 4. Compute solution $U = \hat{U}W$

Results using this method are given in Table 9. The errors are approximately the same as the errors given previously. The eoc is approximately 2 and the eog is > 3 for large n demonstrating that this algorithm converges with a worse than cubic time complexity.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u-u_h _{L^2}$	eoc	eog
125	0.092085	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.43609	1.3054×10^{-5}	6.5274×10^{-6}	2.0001	2.2436
500	2.1851	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	2.3250
1000	19.498	8.2082×10^{-7}	4.1041×10^{-7}	2.0000	3.1576
2000	194.13	2.0541×10^{-7}	1.0271×10^{-7}	2.0000	3.3156
4000	2452.5	5.1347×10^{-8}	2.5674×10^{-8}	2.0009	3.6592
8000		Tir	ning error		

Table 9: Results using a projection method to solve n linear systems.

The steps of this method can also be broken down into component parts and each part timed. The results of doing so are given in Table 10. Unsuprisingly, the most costly part of the algorithm is solving the n linear systems.

n	1	2	3	4	Total
125	0.057421	0.0043032	0.3028	7.1764×10^{-7}	0.092085
250	0.23967	0.0041912	0.19177	0.00046206	0.43609
500	0.85408	0.0079994	1.3200	0.0030336	2.1851
1000	3.3709	0.026276	16.079	0.021675	19.498
2000	13.278	0.50065	180.81	0.16621	194.13
4000	53.300	1.8301	2396.1	1.2866	2452.5

Table 10: Timing results of each step using a projection method to solve n linear systems.

3.2 Iterative Methods

3.2.1 Kronecker Product

Similarly to Section 3.1.1, the Kronecker product can be used to write the matrix equation as a standard vector linear system. A a standard iterative solver can then be used to solve the system, which can provide a base case for comparison. Results using scipy.sparse.linalg.cg, which is a sparse solver that uses the conjugate gradient iterative method, are given in Table 11, using a convergence tolerance of 10^{-9} . The results show errors similar to all the direct methods. The eoc demonstrates that the algorithm converges very well. Although this algorithm is much faster than all the previous direct methods, the eog demonstrates that when n is significantly large, the algorithm exhibits a worse than cubic time complexity, which is shown here when n = 8000.

n	Time(s)	no. iters	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog		
125	0.014182	1	5.1807×10^{-5}	2.5904×10^{-5}	-	-		
250	0.042605	1	1.3054×10^{-5}	6.5275×10^{-6}	2.0001	1.5870		
500	0.14136	1	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	1.7303		
1000	0.54308	1	8.2082×10^{-7}	4.1041×10^{-7}	2.0000	1.9418		
2000	2.3162	1	2.0541×10^{-7}	1.0271×10^{-7}	2.0000	2.0925		
4000	9.8487	1	5.1379×10^{-8}	2.5689×10^{-8}	2.0000	2.0882		
8000	103.34	2	1.2848×10^{-8}	6.4239×10^{-9}	2.0000	3.3913		
16000	Memory Error							

Table 11: Results obtained from solving the linear system Ax = c using the iterative solver sparse.linalg.cg from the SciPy library.

3.2.2 Gradient Based Method

In [7] a gradient based method for solving Sylvester equations is given. The equation TU + UT = F can be written as two recursive sequences:

$$U_k^{(1)} = U_{k-1}^{(1)} + \kappa T(F - TU_{k-1}^{(1)} - U_{k-1}^{(1)}T)$$
(3.11)

$$U_k^{(2)} = U_{k-1}^{(2)} + \kappa (F - TU_{k-1}^{(2)} - U_{k-1}^{(2)} T)T$$
(3.12)

where κ represents the relative step size. The approximate solution U_k is taken as the average of these two sequences:

$$U_k = \frac{U_k^{(1)} + U_k^{(2)}}{2} \tag{3.13}$$

This solution only converges if:

$$0 < \kappa < \frac{1}{\lambda_{\max}(T^2)} \tag{3.14}$$

where $\lambda_{\text{max}}(T^2)$ denotes the maximum eigenvalue of T^2 . We can use the formula (3.8) to calculate the maximum eigenvalue of T^2 as:

$$\lambda_{\max}(T^2) = \frac{4}{h^4} \max\left(\left(\cos\left(\frac{i\pi}{n+1}\right) - 1\right)^2\right) \tag{3.15}$$

 $\lambda_{\text{max}}(T^2)$ therefore scales with $\frac{1}{h^4}$ meaning its reciprocal scales with h^4 . This implies that κ will need to be significantly small as n is increased for the solution to converge. Even for small values of n, this is impractical and therefore this method is not appropriate for solving this equation. This can be seen from the fact that, using this method with n=125 and a step size of $\kappa = 1/2\lambda_{\text{max}}(T^2)$, the method took longer than the maximum time of 6000 seconds allowed to compute a solution.

3.2.3 Modified Conjugate Gradient

In [4] a modified conjugate gradient (MCG) algorithm is proposed, which is adapted for solving Sylvester Equations. The general algorithm for solving AX + XB = C, where A, B, C and X are all $n \times n$ matrices, is as follows:

1. Choose initial guess $X^{(0)}$ and calculate:

•
$$R^{(0)} = C - AX^{(0)} - X^{(0)}B$$

$$Q^{(0)} = A^T R^{(0)} + R^{(0)} + R^{(0)} B^T$$

•
$$Z^{(0)} = Q^{(0)}$$

- 2. If $R^{(k)} < \text{tol or } Z^{(k)} < \text{tol, stop. Else, go to 3.}$
- 3. Calculate:

•
$$\gamma_k = \frac{[R^{(k)}, R^{(k)}]}{[Z^{(k)}, Z^{(k)}]}$$
, where $[R, R] = \operatorname{tr}(R^T R)$ is the trace of the matrix $R^T R$

•
$$X^{(k+1)} = X^{(k)} + \gamma_k Z^{(k)}$$

•
$$R^{(k+1)} = C - AX^{(k+1)} - X^{(k+1)}B$$

•
$$Q^{(k+1)} = A^T R^{(k+1)} + R^{(k+1)} + R^{(k+1)} B^T$$

and return to Step 2.

In the case of the matrix equation TU + UT = F, the algorithm is as follows:

1. Choose initial guess $U^{(0)}$ and calculate:

•
$$R^{(0)} = F - TU^{(0)} - U^{(0)}T$$

$$Q^{(0)} = TR^{(0)} + R^{(0)} + R^{(0)}T$$

•
$$Z^{(0)} = Q^{(0)}$$

- 2. If $R^{(k)} < \text{tol or } Z^{(k)} < \text{tol, stop. Else, go to 3.}$
- 3. Calculate:

•
$$\gamma_k = \frac{[R^{(k)}, R^{(k)}]}{[Z^{(k)}, Z^{(k)}]}$$

•
$$U^{(k+1)} = U^{(k)} + \gamma_k Z^{(k)}$$

•
$$R^{(k+1)} = F - TU^{(k+1)} - U^{(k+1)}T$$

•
$$Q^{(k+1)} = TR^{(k+1)} + R^{(k+1)} + R^{(k+1)}T$$

and return to Step 2.

Results using this algorithm with a convergence tolerance of 10^{-3} are given in Table 12. These results show that, even when using this relatively large convergence tolerance, this algorithm is slow. Also the errors does not always decrease as n is increased, which is reflected in the eoc. The errors here are also bigger than those for previous methods for large n, which is due to the large convergence tolerance. The eog demonstrates that this algorithm has a worse than cubic time complexity for large n.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u - u_h _{L^2}$	eoc	eog
125	11.006	1.1451×10^{-6}	5.7254×10^{-7}	-	-
250	53.234	3.7599×10^{-5}	1.8800×10^{-5}	-5.0662	2.2741
500	397.11	4.6673×10^{-5}	2.3337×10^{-5}	-0.31294	2.8991
1000	3865.5	3.3353×10^{-5}	1.6677×10^{-5}	0.48547	3.2830

Table 12: Results obtained using the MCG algorithm.

3.2.4 Preconditioned MCG

[4] also proposes a preconditioned version of the MCG algorithm which accelerates the speed of convergence. This version of the algorithm solves AX + XB = C by solving the equation $X^{(k+1)} = \widetilde{A}X^{(k)}\widetilde{B} + \widetilde{C}$, with:

$$\widetilde{A} = I + 2(\alpha A - I)^{-1}$$

$$\widetilde{B} = I + 2(\alpha B - I)^{-1}$$

$$\widetilde{C} = -2\alpha(\alpha A - I)^{-1}C(\alpha B - I)^{-1}$$

where α is a parameter that needs to be chosen and I is the identity matrix. [4] suggests choosing $\alpha = \pm \sqrt{n}/||A||_F$ or $\alpha = \pm \sqrt{n}/||B||_F$, where $||A||_F = \sqrt{[A,A]} = \sqrt{\operatorname{tr}(A^TA)}$, for good convergence. Once α has been chosen and \widetilde{A} , \widetilde{B} and \widetilde{C} have been calculated, the algorithm is as follows:

- 1. Choose initial guess $X^{(0)}$ and calculate:
 - $\bullet \ \ R^{(0)} = -\widetilde{C} + X^{(0)} \widetilde{A}X^{(0)}\widetilde{B}$
 - $Q^{(0)} = \widetilde{A}^T R^{(0)} \widetilde{B}^T + R^{(0)}$
 - $Z^{(0)} = Q^{(0)}$
- 2. If $R^{(k)} < \text{tol or } Z^{(k)} < \text{tol, stop. Else, go to 3.}$

3. Calculate:

•
$$\gamma_k = \frac{[R^{(k)}, R^{(k)}]}{[Z^{(k)}, Z^{(k)}]}$$

•
$$X^{(k+1)} = X^{(k)} + \gamma_k Z^{(k)}$$

$$\bullet \ R^{(k+1)} = -\widetilde{C} + X^{(k+1)} - \widetilde{A}X^{(k+1)}\widetilde{B}$$

•
$$Q^{(k+1)} = \widetilde{A}^T R^{(k+1)} \widetilde{B}^T - R^{(k+1)}$$

•
$$\eta_k = \frac{[R^{(k+1)}, R^{(k+1)}]}{[R^{(k)}, R^{(k)}]}$$

•
$$Z^{(k+1)} = Q^{(k+1)} + \eta_k Z^{(k)}$$

and return to Step 2.

To solve the matrix equation TU+UT=F, we instead solve the equation $U^{(k+1)}=\widetilde{T}U^{(k)}\widetilde{T}+\widetilde{F}$, with:

$$\widetilde{T} = I + 2(\alpha T - I)^{-1}$$

$$\widetilde{F} = -2\alpha(\alpha A - I)^{-1}C(\alpha B - I)^{-1}$$

Choosing $\alpha = \pm \sqrt{n}/||T||_F$ and calculating \widetilde{T} and \widetilde{F} , the algorithm proceeds as follows:

1. Choose initial guess $U^{(0)}$ and calculate:

$$\bullet \ R^{(0)} = -\widetilde{F} + U^{(0)} - \widetilde{T}U^{(0)}\widetilde{T}$$

•
$$Q^{(0)} = \widetilde{T}R^{(0)}\widetilde{T} + R^{(0)}$$

•
$$Z^{(0)} = Q^{(0)}$$

- 2. If $R^{(k)} < \text{tol or } Z^{(k)} < \text{tol, stop. Else, go to 3.}$
- 3. Calculate:

•
$$\gamma_k = \frac{[R^{(k)}, R^{(k)}]}{[Z^{(k)}, Z^{(k)}]}$$

•
$$U^{(k+1)} = U^{(k)} + \gamma_k Z^{(k)}$$

$$\bullet \ \ R^{(k+1)} = -\widetilde{F} + U^{(k+1)} - \widetilde{T}U^{(k+1)}\widetilde{T}$$

•
$$Q^{(k+1)} = \widetilde{T}R^{(k+1)}\widetilde{T} - R^{(k+1)}$$

•
$$\eta_k = \frac{[R^{(k+1)}, R^{(k+1)}]}{[R^{(k)}, R^{(k)}]}$$

•
$$Z^{(k+1)} = Q^{(k+1)} + \eta_k Z^{(k)}$$

and return to Step 2.

Results using the preconditioned MCG algorithm with a tolerance of 10^{-9} are given in Table 13. These results demonstrate that this method vastly outperforms the standard MCG algorithm. The errors are similar to previous methods (excluding the MCG algorithm) and the eoc is close to 2 in most cases demonstrating that this algorithm converges well apart from in the case where n = 8000, which could be because the error is approaching the convergence tolerance. The eog shows that although this algorithm is fast, for large n it has close to cubic time complexity.

n	Time(s)	$ u-u_h _{L^{\infty}}$	$ u-u_h _{L^2}$	eoc	eog
125	0.0010328	5.1807×10^{-5}	2.5904×10^{-5}	-	-
250	0.0040712	1.3054×10^{-5}	6.5275×10^{-6}	2.0001	1.9789
500	0.027955	3.2767×10^{-6}	1.6384×10^{-6}	1.9999	2.7796
1000	0.58508	8.2078×10^{-7}	4.1038×10^{-7}	2.0001	4.3875
2000	3.5886	2.0585×10^{-7}	1.0275×10^{-7}	1.9968	2.6167
4000	39.681	5.3078×10^{-8}	2.6012×10^{-8}	1.9561	3.4670
8000	336.49	1.7720×10^{-8}	6.6084×10^{-9}	1.5830	3.0840

Table 13: Results obtained using the preconditioned MCG algorithm.

[4] also proposes a parallel implementation of the preconditioned MCG algorithm, which would result in better performance than given above. However the parallel version of this algorithm goes beyond the scope of this project.

4 Uncertainty

Uncertainty can arise in PDEs if, for example, coefficients, boundary conditions or initial conditions are unknown. A solution to dealing with uncertainty is to model unknown parameters as random variables, and then appropriate methods can be used to solve the system.

4.1 Single Parameter

The simplest way to introduce uncertainty into a PDE is by introducing a single unknown parameter. Define the spatial domain \mathcal{D} as $\mathcal{D} = \{(x,y) : 0 \le x \le 1, \ 0 \le y \le 1\}$, and let Ω denote the sample space. We can introduce an unknown coefficient $\varepsilon(\omega)$, where $\omega \in \Omega$ denotes dependence on a random variable and $\varepsilon : \Omega \to \mathbb{R}$ is uniformly distributed over the interval [1,3]. Let $u(x,y,\varepsilon) = \sin(\pi x)\sin(\pi y) + \varepsilon\sin(3\pi x)\sin(5\pi y)$ be the exact solution of the equation:

$$-\varepsilon u_{xx} - \varepsilon u_{yy} = f \quad \text{on } \mathcal{D} \times \Omega$$

$$u = 0 \quad \text{on } \partial \mathcal{D} \times \Omega$$
(4.1)

which gives:

$$u_{xx} = -\pi^2 \sin(\pi x) \sin(\pi y) - 9\pi^2 \varepsilon \sin(3\pi x) \sin(5\pi y)$$

$$u_{yy} = -\pi^2 \sin(\pi x) \sin(\pi y) - 25\pi^2 \varepsilon \sin(3\pi x) \sin(5\pi y)$$

$$\implies f = 2\pi^2 \varepsilon \sin(\pi x) \sin(\pi y) + 34\pi^2 \varepsilon^2 \sin(3\pi x) \sin(5\pi y)$$
(4.2)

The equation to be solved is therefore:

$$-\varepsilon u_{xx} - \varepsilon u_{yy} = 2\pi^2 \varepsilon \sin(\pi x) \sin(\pi y) + 34\pi^2 \varepsilon^2 \sin(3\pi x) \sin(5\pi y) \quad \text{on } \mathcal{D} \times \Omega$$

$$u = 0 \quad \text{on } \partial \mathcal{D} \times \Omega$$
(4.3)

By discretising the domain using the centred finite difference approximations, (4.3) can be formed as a matrix equation:

$$TU + UT = F (4.4)$$

with $T = -\frac{\varepsilon}{h^2}$ tridiag(1, -2, 1), $U_{ij} = u(x_i, y_j)$ and $F_{ij} = 2\pi^2 \varepsilon \sin(\pi x_i) \sin(\pi y_j) + 34\pi^2 \varepsilon^2 \sin(3\pi x_i) \sin(5\pi y_j)$. This problem is significantly harder to solve accurately and efficiently than the problem in Section 3 due to the fact that ε is an unknown, random coefficient.

As ε is unknown, the exact solution to (4.3) cannot be computed and therefore solutions to (4.4) cannot be compared to the true solution. Instead, certain quantities of interest can be computed using the probability density function $\rho(\omega)$ of ε . Firstly, the expectation $\mathbb{E}[u]$ can be computed as:

$$\mathbb{E}[u] = \int_{\Omega} u(x, y, \varepsilon) \rho(\omega) d\omega \tag{4.5}$$

The variance Var[u] can also be computed as:

$$Var[u] = \int_{\Omega} (u(x, y, \varepsilon) - \mathbb{E}[u])^2 \rho(\omega) d\omega$$
 (4.6)

and the standard deviation as $Std[u] = \sqrt{Var[u]}$.

As ε is uniformly distributed over the interval [1, 3], it has a probability distribution function:

$$\rho(\omega) = \frac{1}{2} \tag{4.7}$$

The expectation is therefore:

$$\mathbb{E}[u] = \frac{1}{2} \int_{1}^{3} \sin(\pi x) \sin(\pi y) + \varepsilon \sin(3\pi x) \sin(5\pi y) d\omega$$

$$= \frac{1}{2} \left[\varepsilon \sin(\pi x) \sin(\pi y) + \frac{\varepsilon^{2}}{2} \sin(3\pi x) \sin(5\pi y) \right]_{1}^{3}$$

$$= \sin(\pi x) \sin(\pi y) + 2 \sin(3\pi x) \sin(5\pi y)$$
(4.8)

and the variance is:

$$\operatorname{Var}[u] = \frac{1}{2} \int_{1}^{3} \left(\left(\sin(\pi x) \sin(\pi y) + \varepsilon \sin(3\pi x) \sin(5\pi y) \right) - \left(\sin(\pi x) \sin(\pi y) + 2 \sin(3\pi x) \sin(5\pi y) \right) \right)^{2} d\omega$$

$$= \frac{1}{2} \int_{1}^{3} (\varepsilon - 2)^{2} \sin^{2}(3\pi x) \sin^{2}(5\pi y) d\omega$$

$$= \frac{1}{2} \left[\left(\frac{\varepsilon^{3}}{3} - 2\varepsilon^{2} + 4\varepsilon \right) \sin^{2}(3\pi x) \sin^{2}(5\pi y) \right]_{1}^{3}$$

$$= \frac{1}{3} \sin^{2}(3\pi x) \sin^{2}(5\pi y)$$

$$(4.9)$$

which gives the standard deviation as $Std[u] = \frac{1}{\sqrt{3}}\sin(3\pi x)\sin(5\pi y)$.

Methods can now be used which compute approximate solutions to these quantities of interest, which can then be compared to the known quantities above to give an estimation of the error.

4.1.1 Monte Carlo

A simple way of solving (4.4) is to use the Monte Carlo method. The Monte Carlo method works by taking M random samples of ε over its range, and then solves (4.4) for each of these samples. This allows the most effective method from Section 3 to be used as a 'black box' strategy. Once solved, the mean solution can be calculated as:

$$\mu = \frac{1}{M} \sum_{i=1}^{M} u_h(x, y, \varepsilon) \tag{4.10}$$

where M is the number of samples used in the Monte Carlo method and u_h is the solution obtained from the finite difference method using a mesh of size h. Similarly, the variance can also be computed as:

$$\sigma^2 = \frac{1}{M-1} \sum_{i=1}^{M} (u_h - \mu)^2 \tag{4.11}$$

and the standard deviation is σ . Any of these quantites can be calculated and compared to the known values as a measure of error for the problem. By choosing the mean we can

measure the error as:

$$Error = \left| \left| \mathbb{E}[u] - \mu \right| \right| \tag{4.12}$$

which can be evaluated using the L^{∞} and L^2 error measures as used in the previous section. As noted in [2], for the error to converge to 0 the mesh size must be decreased as the number of samples is increased. This is because the error depends both on the mesh size and the number of samples, so by changing only one of these factors the method will be converging to the error of the factor that is not being changed, rather than to 0.

It is also worth noting that as the solution and therefore the error is dependent on a random variable, the error is then itself a random variable and therefore not guaranteed to decrease at each level, as the samples are increased. However, the law of large numbers tells us that by taking more and more samples the mean solution should approximate the expected value and hence the error should tend towards 0.

Results using the Monte Carlo method, with a single uncertain parameter, are given in Table 14. As can be seen by these results, the error here is much bigger than the PDE without uncertainty.

n	M	Time(s)	Error
125	10	0.15511	0.071286
250	40	2.2698	0.19918
500	160	39.878	0.074265
1000	640	641.37	0.0050958
2000	2560	11957	0.0045691

Table 14: Results using the Monte Carlo method with a single uncertain parameter.

4.1.2 Stochastic Galerkin

The stochastic Galerkin method uses the properties of orthogonal polynomials to produce a functional approximation to the solution of a stochastic PDE (a PDE with some kind of random input). It does this by using a Galerkin projection to "discretise the random dimensions to allow computation" [3].

A set of polynomials $\{\Psi_n(x), n \in \mathbb{N}\}$, where $\Psi_n(x)$ is a polynomial of exact degree n, is

orthogonal if it satisfies the orthogonality condition:

$$\int_{\Omega} \Psi_n(x)\Psi_m(x)w(x)dx = h_n\delta_{nm}, \quad n, m \in \mathbb{N}$$
(4.13)

where Ω represents the support of $\{\Psi_n\}$ (the subset of the domain containing elements not mapped to zero), w(x) is a weight function, h_n are non-zero constants and δ_{nm} is the Kronecker delta ($\delta_{nm} = 1$ for n = m and 0 otherwise). This condition is used to define the inner product of two polynomial functions, f(x) and g(x), with respect to a weight function w(x), as:

$$\langle f, g \rangle = \int_{\Omega} f(x)g(x)w(x)dx$$
 (4.14)

As noted in [6], certain classes of orthogonal polynomials have the exact same weight function as the probability distributions of certain random variables. This property allows the solution u of a stochastic PDE to be approximated via a truncated polynomial chaos expansion using the distribution of the random variable, as:

$$u(x, y, \varepsilon) = \sum_{k=0}^{P} u_k(x, y) \Psi_k(\varepsilon)$$
 (4.15)

and can then be substituted into the PDE. Here $P+1=\frac{(K+N)!}{K!N!}$, where N is the number of random variables and K is a convergence parameter to be chosen. Any random quantities can be represented via a Karhunen-Loeve expansion as:

$$\alpha = \bar{\alpha} + \sum_{k=1}^{Q} \sqrt{\lambda_k} \phi_k \varepsilon_k \tag{4.16}$$

for a spatially varying random field α with mean $\bar{\alpha}$, where λ_k and ϕ_k are the eigenvalues and eigenfunctions of the covariance function C_{α} .

A Galerkin projection is then performed on the PDE by multiplying it by Ψ_k for $k = 0, \ldots, P$ and taking the inner product, which gives a system of coupled deterministic differential equations, which can then be discretised and solved via, for example, the finite difference method. The resulting solution matrix will be of size $n^2 \times (P+1)$, where n is the number of unknowns in each direction of the mesh and P is defined as above. The mean

and variance are then computed as:

$$\mu = u_0 \tag{4.17}$$

$$\sigma^2 = \sum_{k=1}^{P} u_k^2 \mathbb{E}[\Psi_k^2]$$
 (4.18)

For equation (4.4), ε is uniformly distributed over the interval [1,3]. We introduce the substitution $\varepsilon = \varepsilon_0 + 2$ into this equation, with $\varepsilon_0 \sim u(-1,1)$, so that the random variable in the equation has zero mean. We then use the Legendre polynomials, which have the same weighting function as the probability density function of the uniform distribution, to solve the equation. They are defined as the polynomials which solve the equation:

$$\frac{d}{d\varepsilon} \left[(1 - \varepsilon^2) \frac{d\Psi_n(\varepsilon)}{d\varepsilon} \right] + n(n+1)\Psi_n(\varepsilon) = 0$$
(4.19)

The SciPy library has a built in function, special.legendre, for calculating Legendre polynomials, which will be used along with the numerical integration function integrate.quad, to evaluate the inner product.

From equation (4.3), we now have:

$$(\varepsilon_0 + 2)(-u_{xx} - u_{yy}) = 2\pi^2(\varepsilon_0 + 2)\sin(\pi x)\sin(\pi y) + 34\pi^2(\varepsilon_0 + 2)^2\sin(3\pi x)\sin(5\pi y)$$
 (4.20)

Approximating the solution u using a polynomial chaos expansion and subtituting gives:

$$(\varepsilon_0 + 2) \sum_{i=0}^{P} (-(u_i)_{xx} - (u_i)_{yy}) \Psi_i = 2\pi^2 (\varepsilon_0 + 2) \sin(\pi x) \sin(\pi y) + 34\pi^2 (\varepsilon_0 + 2)^2 \sin(3\pi x) \sin(5\pi y)$$
(4.21)

Finally, we multiply both sides by Ψ_k and take the inner product, giving:

$$\sum_{i=0}^{P} (-(u_i)_{xx} - (u_i)_{yy}) \langle \Psi_k(\varepsilon_0 + 2) \Psi_i \rangle = 2\pi^2 \sin(\pi x) \sin(\pi y) \langle \Psi_k(\varepsilon_0 + 2) \rangle + 34\pi^2 \sin(3\pi x) \sin(5\pi y) \langle \Psi_k(\varepsilon_0 + 2)^2 \rangle \quad (4.22)$$

for k = 0, ..., P. The uncertainty has been removed from this PDE and we now have a system of coupled deterministic differential equations, which can be solved for u. The next step is to rewrite (4.22) in a form that can be easily solved.

Firstly, we can use the finite difference method to discretise the system in space and represent the unknowns u_i as a single vector²:

$$Lu_i = -(u_i)_{xx} - (u_i)_{yy} (4.23)$$

where L has dimension $n^2 \times n^2$ (the total number of unknowns) and u_i is a vector of length n^2 . We can also represent the inner product on the left-hand side as a $(P+1) \times (P+1)$ matrix:

$$P_{ij} = \langle \Psi_i(\varepsilon_0 + 2)\Psi_j \rangle \tag{4.24}$$

Finally, we represent the right-hand side of the system as a $n^2 \times (P+1)$ matrix:

$$F_k = 2\pi^2 \sin(\pi x_i) \sin(\pi y_i) \langle \Psi_k(\varepsilon_0 + 2) \rangle + 34\pi^2 \sin(3\pi x_i) \sin(5\pi y_i) \langle \Psi_k(\varepsilon_0 + 2)^2 \rangle$$
 (4.25)

where k = 0, ..., P represents the columns (the random discretisation) and i, j = 1, ..., n represent the rows (the vectorised spatial discretisation). We can now use these matrices to write (4.22) in a form that can be easily solved.

Linear System

The simplest way to solve (4.22) is to form the problem as a linear system. By reshaping F into a vector we can represent the problem in the form:

$$Au = f (4.26)$$

where $A = P \otimes L$ has dimension $n^2(P+1) \times n^2(P+1)$ and f = vec(F) and u are vectors of length $n^2(P+1)$. We can now use a standard sparse solver to solve the system. Results using the conjugate gradient method sparse.linalg.cg from the SciPy library, using a convergence tolerance of 10^{-9} , are given in Table 15.

Note that here $L = I \otimes T + T \otimes I$, where $T = -\frac{1}{h^2} \operatorname{tridiag}(1, -2, 1)$ and I is the identity matrix, because we are representing all unknowns in a single matrix, rather than using two matrices as before.

n	K	Time(s)	Error
125	1	0.014717	0.0021941
250	1	0.077675	0.00055263
500	1	0.52634	0.00013874
1000	1	3.7997	3.4817×10^{-5}
2000	1	33.354	8.7386×10^{-6}
4000	1	308.21	2.2358×10^{-6}
8000	1	3090.0	6.4883×10^{-7}
16000	Memory Error		

Table 15: Results using the stochastic Galerkin method with a single uncertain parameter by solving the linear system using sparse.linalg.cg.

Matrix Equation

An alternative approach to solving (4.22) is to rewrite it as a matrix equation, in the form:

$$LXP = F (4.27)$$

where u = vec(X) and L, P and F are defined as before.

One way to solve this is by using a variation of the Bartels-Stewart algorithm. The basic idea is the same as the standard Bartels-Stewart algorithm from Section 3.1.2. Firstly, the Schur decomposition of L and P is computed, so that the equation can be transformed into an equivalent upper-triangular system that can be solved element by element. The solution to the original equation is then easily obtained using the solution of the triangular system. The steps of this algorithm are as follows:

- 1. Compute the Schur forms $L = U\hat{L}U^*$ and $P = V\hat{P}V^*$, and let $\hat{F} = U^*FV$.
- 2. Solve $\hat{L}Y\hat{P} = \hat{F}$ for Y, where \hat{L} and \hat{P} are upper triangular.
- 3. Compute solution $X = UYV^*$.

The problem with this method is that the Schur forms in the first step are computed using the QR algorithm, which only works on dense matrices. Therefore a huge amount of memory is required to compute the Schur form of L (of size $n^2 \times n^2$), which is impractical even for a relatively small problem size. This method was tested on the problem with n = 125 and

K=1, and resulted in a memory error when computing the Schur forms, which confirms that this method is not appropriate for this problem.

Alternatively, we can right multiply by P^{-1} to obtain:

$$LX = FP^{-1} \tag{4.28}$$

The resulting right-hand side is a matrix, which means we can use sparse.linalg.spsolve from the SciPy library can be used to compute a solution. Results of doing so are given in Table 16.

n	K	Time(s)	Error
125	1	0.059279	0.0021941
250	1	0.25614	0.00055258
500	1	1.4756	0.00013872
1000	1	10.827	3.4752×10^{-5}
2000	1	76.430	8.6968×10^{-6}
4000	Memory Error		

Table 16

Sylvester Equation

The can instead be written as an alternative matrix equation in the form:

$$2LXG_0 + LXG_1 = F (4.29)$$

where u = vec(X), $(G_0)_{ij} = \langle \Psi_i \Psi_j \rangle$ and $(G_1)_{ij} = \langle \Psi_i \varepsilon_0 \Psi_j \rangle$. By left and right multiplying by L^{-1} and G_0^{-1} respectively, we obtain the equation in Sylvester form:

$$AX + XB = C (4.30)$$

where $A = L^{-1}2L$, $B = G_1G_0^{-1}$ and $C = L^{-1}FG_0^{-1}$. This can now be solved using any of the methods from Section 3, assuming that they can be adapted for sparse matrices. Results using the similarity transformation method, using sparse.linalg.eigs from the SciPy library to calculate the eigenpairs, are given in Table 17.

n	K	Time(s)	Error
125	1	0.011544	0.0021941
250	1	0.032874	0.00055258
500	1	0.11274	0.00013872
1000	1	0.70258	3.4752×10^{-5}
2000	1	5.8607	8.6968×10^{-6}
4000	1	52.552	2.1753×10^{-6}
8000	1	761.23	5.4395×10^{-7}
16000	Memory Error		

Table 17

4.2 Multiple Parameters

Multiple unknown parameters can be introduced into the PDE, which makes it significantly harder to solve. These are again modelled as random variables. Let ε now be defined as:

$$\varepsilon = (\varepsilon_0 + 2) + \sum_{p,q=1}^{N} \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y)$$
(4.31)

with $\varepsilon_0 \sim u(-1,1)$ and $\varepsilon_{pq} \sim \left(-2^{-\sqrt{p^2+q^2}}, 2^{-\sqrt{p^2+q^2}}\right)$. Then let $u = \sin(\pi x)\sin(\pi y) + \varepsilon$ be the solution of the PDE:

$$-\varepsilon u_{xx} - \varepsilon u_{yy} = f \quad \text{on } \mathcal{D} \times \Omega$$

$$u = 0 \quad \text{on } \partial \mathcal{D} \times \Omega$$
(4.32)

which gives:

$$u_{xx} = -\pi^{2} \sin(\pi x) \sin(\pi y) - \sum_{p,q=1}^{N} p^{2} \pi^{2} \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y)$$

$$u_{yy} = -\pi^{2} \sin(\pi x) \sin(\pi y) - \sum_{p,q=1}^{N} q^{2} \pi^{2} \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y)$$

$$\implies f = \varepsilon \left(2\pi^{2} \sin(\pi x) \sin(\pi y) + \pi^{2} \sum_{p,q=1}^{N} (p^{2} + q^{2}) \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y) \right)$$

$$= \left((\varepsilon_{0} + 2) + \sum_{p,q=1}^{N} \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y) \right)$$

$$\times \left(2\pi^{2} \sin(\pi x) \sin(\pi y) + \pi^{2} \sum_{p,q=1}^{N} (p^{2} + q^{2}) \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y) \right)$$

$$\times \left(2\pi^{2} \sin(\pi x) \sin(\pi y) + \pi^{2} \sum_{p,q=1}^{N} (p^{2} + q^{2}) \varepsilon_{pq} \sin(p\pi x) \sin(q\pi y) \right)$$

4.2.1 Monte Carlo

4.2.2 Stochastic Galerkin

5 Application

- 6 Evaluation
- **6.1** Aims
- 6.2 Extensions
- 6.3 Conclusion

References

- [1] R. H. Bartels and G. W. Stewart. Solution of the Matrix Equation AX + XB = C. Commun. ACM, 15(9):820–826, Sept. 1972.
- [2] J. Bishop and O. E. Strack. A statistical method for verifying mesh convergence in Monte Carlo simulations with application to fragmentation. 88:279 306, 10 2011.
- [3] P. Constantine. A Primer on Stochastic Galerkin Methods. 03 2007.
- [4] J. Hou, Q. Lv, and M. Xiao. A Parallel Preconditioned Modified Conjugate Gradient Method for Large Sylvester Matrix Equation. 2014:1–7, 03 2014.
- [5] V. Simoncini. Computational Methods for Linear Matrix Equations. 58:377–441, 01 2016.
- [6] D. Xiu and G. Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002.
- [7] J. Zhou, W. Ruirui, and Q. Niu. A Preconditioned Iteration Method for Solving Sylvester Equations. 2012, 07 2012.