Regime Switching, Learning, and the Great Moderation

James Murray
Dahl School of Business
Viterbo University

January 23, 2009

Time Varying Volatility

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

- How much does "bad luck" explain changing volatility when adaptive expectations react to suspicions of structural changes.
- Great Moderation: seemingly permanent reduction in macroeconomic volatility since approximately 1982.
- Bad Luck: volatile periods were hit with bad shocks.
- Adaptive Expectations:
 - Least squares learning agents run least-squares regressions
 - Predict output and inflation using lagged output, inflation, and interest rates as explanatory variables.

Good vs. bad policy.

- Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
- Milani (2005): accounting for learning, little evidence of a change in monetary policy.

Bad luck

- Sims and Zha (2006): evidence points in favor of bad shocks.
- ullet Bullard and Singh (2007): bad luck + Bayesian learning

Learning

- It is possible for learning alone to generate time-varying volatility.
- Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - Bullard and Singh (2007): bad luck + Bayesian learning
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - ullet Bullard and Singh (2007): bad luck + Bayesian learning
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - \bullet Bullard and Singh (2007): bad luck + Bayesian learning
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - \bullet Bullard and Singh (2007): bad luck + Bayesian learning
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - \bullet Bullard and Singh (2007): bad luck + Bayesian learning.
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - Bullard and Singh (2007): bad luck + Bayesian learning.
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - Bullard and Singh (2007): bad luck + Bayesian learning.
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Good vs. bad policy.
 - Lubik and Schorfheide (2004): find monetary policy was destabilizing pre-Volker.
 - Milani (2005): accounting for learning, little evidence of a change in monetary policy.
- Bad luck
 - Sims and Zha (2006): evidence points in favor of bad shocks.
 - Bullard and Singh (2007): bad luck + Bayesian learning.
- Learning
 - It is possible for learning alone to generate time-varying volatility.
 - Primiceri (2005), Oraphnides and Williams (2005): Monetary authority was optimizing, but mis-informed.

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change
 - Learning dynamics disappear over time
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long rur

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long run

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long rur

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long run

Learning Gain

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long run

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change
 - Learning dynamics persist in the long rur

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change.
 - Learning dynamics persist in the long run.

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change.
 - Learning dynamics persist in the long run.

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change.
 - Learning dynamics persist in the long run.

- Learning gain: how much weight is given to the last (most recent) observation.
- Decreasing learning gain
 - Ordinary least squares learning gain = 1/n.
 - As time progresses, sample size increases, learning gain decreases.
 - Implies agents do not suspect structural change.
 - Learning dynamics disappear over time.
- Constant learning gain
 - Gives more weight to most recent observations weight declines geometrically with time.
 - Agents have constant suspicion of structural change.
 - Learning dynamics persist in the long run.

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

Dynamic Learning Gain

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

Dynamic Learning Gain

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

Dynamic Learning Gain

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

- Dynamic Gain Learning: agents endogenously switch between decreasing and constant learning gain.
 - Agents use decreasing gain unless forecast errors exceed a threshold.
 - Threshold = historical average absolute value forecast error.
 - Agents only suspect structural change when forecast errors are exceptionally high.
- Milani (2007): generates ARCH time-varying volatility
- Marcet and Nicolini (2003): recurrent hyperinflations.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning
- Also estimate model under RE and constant gain learning
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances
 - Less volatile regime: shocks have relatively lower variances.
 - Economy switches between these two regimes by luck.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning
- Also estimate model under RE and constant gain learning
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances
 - Less volatile regime: shocks have relatively lower variances
 - Economy switches between these two regimes by luck.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning
- Also estimate model under RE and constant gain learning
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances
 - Less volatile regime: shocks have relatively lower variances
 - Economy switches between these two regimes by luck

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances
 - Less volatile regime: shocks have relatively lower variances
 - Economy switches between these two regimes by luck

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning.
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances
 - Less volatile regime: shocks have relatively lower variances
 - Economy switches between these two regimes by luck

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning.
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances.
 - Less volatile regime: shocks have relatively lower variances.
 - Economy switches between these two regimes by luck.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning.
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances.
 - Less volatile regime: shocks have relatively lower variances.
 - Economy switches between these two regimes by luck.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning.
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances.
 - Less volatile regime: shocks have relatively lower variances.
 - Economy switches between these two regimes by luck.

- Use a standard, commonly estimated monetary model: New Keynesian Model.
 - Three equation model with optimizing consumers, sticky prices, monetary policy.
 - Stochastic shocks: demand shock, cost-push shock, monetary policy shock.
- Augment the model with dynamic gain learning.
- Also estimate model under RE and constant gain learning.
- Augment the model with Markov switching process for volatility.
 - Volatile regime: shocks have high variances.
 - Less volatile regime: shocks have relatively lower variances.
 - Economy switches between these two regimes by luck.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Does the dynamic gain model predict a lower likelihood economy was in volatile regime?
 - Spoiler: No.
- When is the economy in the volatile regime?
 - Spoiler: All models predict dates surrounding NBER recessions of 1970s.
- Does the dynamic gain model predict lower variances for volatile regime shocks?
 - Spoiler: Yes.
- When are agents using larger learning gain?
 - Spoiler: During most of the 1970s.
- What expectations mechanism fits the data best?
 - Spoiler: Rational expectations, constant gain learning, decreasing learning have nearly identical fit.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save
- The size of this effect depends on the intertemporal **elasticity of substitution**, estimated in paper.
- As the expected inflation rate rises, expected real interest rate
- Habit formation: current consumption (current utility)
- **Degree of habit formation** is between 0 and 1, estimated in
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the **intertemporal elasticity of substitution**, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- Degree of habit formation is between 0 and 1, estimated in paper.
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the **intertemporal elasticity of substitution**, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- Degree of habit formation is between 0 and 1, estimated in paper.
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the **intertemporal elasticity of substitution**, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- **Degree of habit formation** is between 0 and 1, estimated in paper.
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the intertemporal elasticity of substitution, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- **Degree of habit formation** is between 0 and 1, estimated in
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the intertemporal elasticity of substitution, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- **Degree of habit formation** is between 0 and 1, estimated in paper.
- Consumption subject to a demand shock.

- Consumers maximize net present value of lifetime utility, subject to their budget constraint.
- As the real interest rate increases, consumers decide to save more, consume less.
- The size of this effect depends on the intertemporal elasticity of substitution, estimated in paper.
- As the expected inflation rate rises, expected real interest rate falls.
- Habit formation: current consumption (current utility) depends on past consumption.
- **Degree of habit formation** is between 0 and 1, estimated in paper.
- Consumption subject to a demand shock.

Monopolistically competitive firms.

- Exogenously sticky prices: it takes firms an uncertain amount
- Sticky prices enable monetary policy to have real effects on
- Price indexation: when firms cannot re-optimize prices, they
- **Degree of indexation** is between 0 and 1, estimated in the
- Inflation subject to a *cost shock*.

- Monopolistically competitive firms.
- Exogenously sticky prices: it takes firms an uncertain amount time to appropriately adjust prices to maximize profits.
- Sticky prices enable monetary policy to have real effects on short-run output.
- Price indexation: when firms cannot re-optimize prices, they raise their prices by the past period's rate of inflation.
- Degree of indexation is between 0 and 1, estimated in the paper.
- Inflation subject to a *cost shock*.

- Monopolistically competitive firms.
- Exogenously sticky prices: it takes firms an uncertain amount time to appropriately adjust prices to maximize profits.
- Sticky prices enable monetary policy to have real effects on short-run output.
- Price indexation: when firms cannot re-optimize prices, they raise their prices by the past period's rate of inflation.
- Degree of indexation is between 0 and 1, estimated in the paper.
- Inflation subject to a cost shock.

- Monopolistically competitive firms.
- Exogenously sticky prices: it takes firms an uncertain amount time to appropriately adjust prices to maximize profits.
- Sticky prices enable monetary policy to have real effects on short-run output.
- Price indexation: when firms cannot re-optimize prices, they raise their prices by the past period's rate of inflation.
- Degree of indexation is between 0 and 1, estimated in the paper.
- Inflation subject to a cost shock.

- Monopolistically competitive firms.
- Exogenously sticky prices: it takes firms an uncertain amount time to appropriately adjust prices to maximize profits.
- Sticky prices enable monetary policy to have real effects on short-run output.
- Price indexation: when firms cannot re-optimize prices, they raise their prices by the past period's rate of inflation.
- Degree of indexation is between 0 and 1, estimated in the paper.
- Inflation subject to a cost shock.

- Monopolistically competitive firms.
- Exogenously sticky prices: it takes firms an uncertain amount time to appropriately adjust prices to maximize profits.
- Sticky prices enable monetary policy to have real effects on short-run output.
- Price indexation: when firms cannot re-optimize prices, they raise their prices by the past period's rate of inflation.
- Degree of indexation is between 0 and 1, estimated in the paper.
- Inflation subject to a cost shock.

New Keynesian Model: Monetary Policy

- Fed adjusts Federal Funds Rate according to Taylor (1993) rule.
- Federal funds rate in response to:
- Federal funds rate is subject to a monetary policy shock.

- Fed adjusts Federal Funds Rate according to Taylor (1993) rule.
- Federal funds rate in response to:
 - output gap
 - inflation rate
 - past federal funds rate (Fed makes smooth adjustments)
- Federal funds rate is subject to a monetary policy shock.

- Fed adjusts Federal Funds Rate according to Taylor (1993) rule.
- Federal funds rate in response to:
 - output gap
 - inflation rate
 - past federal funds rate (Fed makes smooth adjustments)
- The response to these variables are estimated in paper
- Federal funds rate is subject to a *monetary policy shock*.

- Fed adjusts Federal Funds Rate according to Taylor (1993) rule.
- Federal funds rate in response to:
 - output gap
 - inflation rate
 - past federal funds rate (Fed makes smooth adjustments)
- The response to these variables are estimated in paper
- Federal funds rate is subject to a *monetary policy shock*.

New Keynesian Model: Monetary Policy

- Fed adjusts Federal Funds Rate according to Taylor (1993) rule.
- Federal funds rate in response to:
 - output gap
 - inflation rate
 - past federal funds rate (Fed makes smooth adjustments)
- The response to these variables are estimated in paper
- Federal funds rate is subject to a *monetary policy shock*.

New Keynesian Model: Monetary Policy

- Fed adjusts Federal Funds Rate according to Taylor (1993)
- Federal funds rate in response to:
 - output gap

rule.

- inflation rate
- past federal funds rate (Fed makes smooth adjustments)
- The response to these variables are estimated in paper.
- Federal funds rate is subject to a monetary policy shock.

- Fed adjusts Federal Funds Rate according to Taylor (1993)
- Federal funds rate in response to:
 - output gap

rule.

- inflation rate
- past federal funds rate (Fed makes smooth adjustments)
- The response to these variables are estimated in paper.
- Federal funds rate is subject to a monetary policy shock.

Maximum Likelihood

- Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

- Maximum Likelihood
 - Use Kim and Nelson (1999) method.
- Quarterly data from 1960:Q1 through 2008:Q1
 - Output gap: measured by Congressional Budget Office.
 - CPI inflation rate.
 - Federal funds rate.
- Pre-sample period to initialize expectations: 1954:Q3 -1959:Q4.
- Expectations are initialized to pre-sample VAR(1) results.

	Parameter	Rational Expectations	Dynamic Gain	Constant Gain
$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
PĹ	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
PH	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
g	Learning Gain	_	0.0045 (0.0007)	0.0000 (0.0018)

	Parameter	Rational Expectations	Dynamic Gain	Constant Gain
$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
PL	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
PH	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
g	Learning Gain	-	0.0045 (0.0007)	0.0000 (0.0018)

Expectations are not adaptive.

	Parameter	Rational Expectations	Dynamic Gain	Constant Gain
$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
PL	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
PН	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
g	Learning Gain	_	0.0045 (0.0007)	0.0000 (0.0018)

Regimes are highly persistent.

	Parameter	Rational Expectations	Dynamic Gain	Constant Gain
$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
PĹ	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
PH	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
g	Learning Gain	-	0.0045 (0.0007)	0.0000 (0.0018)

Learning predicts smaller variances of the natural rate shock.

		Parameter	Rational Expectations	Dynamic Gain	Constant Gain
	$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
	$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
	$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
	$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
	$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
	$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
	p_L	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
	PН	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
_	g	Learning Gain	_	0.0045 (0.0007)	0.0000 (0.0018)

Variances of cost push and monetary shock are similar.

	Parameter	Rational Expectations	Dynamic Gain	Constant Gain
$\sigma_{n,L}$	Nat. Rate (Low)	0.1768 (0.3720)	0.0454 (0.0217)	0.0931 (0.0572)
$\sigma_{u,L}$	Cost Push (Low)	0.0023 (0.0001)	0.0045 (0.0004)	0.0042 (0.0001)
$\sigma_{r,L}$	MP Shock (Low)	0.0013 (0.0001)	0.0012 (0.0000)	0.0012 (0.0000)
$\sigma_{n,H}$	Nat. Rate (High)	0.4295 (0.9056)	0.0966 (0.0485)	0.1794 (0.1144)
$\sigma_{u,H}$	Cost Push (High)	0.0044 (0.0004)	0.0092 (0.0010)	0.0085 (0.0005)
$\sigma_{r,H}$	MP Shock (High)	0.0070 (0.0005)	0.0064 (0.0003)	0.0056 (0.0002)
PL	P(Remain Low)	0.9609 (0.0224)	0.9724 (0.0097)	0.9780 (0.0109)
PH	P(Remain High)	0.8099 (0.0578)	0.8924 (0.0264)	0.9412 (0.0159)
g	Learning Gain	_	0.0045 (0.0007)	0.0000 (0.0018)

Variances of cost push and monetary shock are similar.

Rational Expectations Probability Economy is in the Volatile Regime

Expected 7.77 volatile years

Constant Gain Learning Probability Economy is in the Volatile Regime

Expected 12.26 volatile years

Dynamic Gain Learning
Probability Economy is in the Volatile Regime
and Evolution of the Learning Gain

Forecast Errors Comparison

	Rational Expectations	Dynamic Gain	Constant Gain
RMSE Output Gap	3.12	3.13	3.18
RMSE Inflation	4.41	4.69	4.69
RMSE Federal Funds Rate	5.01	5.05	5.09
AR(1) Output Variance	0.0904 (0.0730)	0.1715 (0.0722)	0.1240 (0.0728)
AR(1) Inflation Variance	0.1760 (0.0716)	0.1364 (0.0699)	0.1073 (0.0653)
AR(1) Fed Funds Variance	0.3851 (0.0670)	0.3798 (0.0659)	0.3798 (0.0636)

- Rational Expectations actually (very slightly) fits data better than learning models.
- All models show some persistence in volatility of forecast errors.
- Models especially fail to explain changing volatility of the federal funds rate.

Forecast Errors Comparison

	Rational Expectations	Dynamic Gain	Constant Gain
RMSE Output Gap	3.12	3.13	3.18
RMSE Inflation	4.41	4.69	4.69
RMSE Federal Funds Rate	5.01	5.05	5.09
AR(1) Output Variance	0.0904 (0.0730)	0.1715 (0.0722)	0.1240 (0.0728)
AR(1) Inflation Variance	0.1760 (0.0716)	0.1364 (0.0699)	0.1073 (0.0653)
AR(1) Fed Funds Variance	0.3851 (0.0670)	0.3798 (0.0659)	0.3798 (0.0636)

- Rational Expectations actually (very slightly) fits data better than learning models.
- All models show some persistence in volatility of forecast errors.
- Models especially fail to explain changing volatility of the federal funds rate.

Forecast Errors Comparison

	Rational Expectations	Dynamic Gain	Constant Gain
RMSE Output Gap	3.12	3.13	3.18
RMSE Inflation	4.41	4.69	4.69
RMSE Federal Funds Rate	5.01	5.05	5.09
AR(1) Output Variance	0.0904 (0.0730)	0.1715 (0.0722)	0.1240 (0.0728)
AR(1) Inflation Variance	0.1760 (0.0716)	0.1364 (0.0699)	0.1073 (0.0653)
AR(1) Fed Funds Variance	0.3851 (0.0670)	0.3798 (0.0659)	0.3798 (0.0636)

- Rational Expectations actually (very slightly) fits data better than learning models.
- All models show some persistence in volatility of forecast errors.
- Models especially fail to explain changing volatility of the federal funds rate.

Rational Exp. (1.0)

Constant Gain (0.86)

Dynamic Gain (0.82)

- (Correlation with Rational Expectations)
- All models made similar errors
- Most volatile during recessions in 1970s, early 1980s

Error Inflation -

Constant Gain (0.85)

Dynamic Gain (0.80)

- (Correlation with Rational Expectations)
- All models made similar errors.
- Most volatile during recessions in 1970s, early 1980s.

Rational Exp. (1.0)

Constant Gain (0.99)

Dynamic Gain (0.99)

- (Correlation with Rational Expectations)
- Essentially identical errors.
- Do not explain change in policy in early 1980s.

- When allowing for regime-switching volatility, there is little evidence of adaptive expectations.
- Constant gain learning and dynamic gain learning both produce less volatility for the natural rate shock.
- Learning frameworks actually deliver a higher prediction for the time spent in volatile regime.
- All models make similar forecast errors at similar points in sample.
- Rational expectations model actually yields smallest in-sample MSE.

- When allowing for regime-switching volatility, there is little evidence of adaptive expectations.
- Constant gain learning and dynamic gain learning both produce less volatility for the natural rate shock.
- Learning frameworks actually deliver a higher prediction for the time spent in volatile regime.
- All models make similar forecast errors at similar points in sample.
- Rational expectations model actually yields smallest in-sample MSE.

- When allowing for regime-switching volatility, there is little evidence of adaptive expectations.
- Constant gain learning and dynamic gain learning both produce less volatility for the natural rate shock.
- Learning frameworks actually deliver a higher prediction for the time spent in volatile regime.
- All models make similar forecast errors at similar points in sample.
- Rational expectations model actually yields smallest in-sample MSE.

Conclusions

- When allowing for regime-switching volatility, there is little evidence of adaptive expectations.
- Constant gain learning and dynamic gain learning both produce less volatility for the natural rate shock.
- Learning frameworks actually deliver a higher prediction for the time spent in volatile regime.
- All models make similar forecast errors at similar points in sample.
- Rational expectations model actually yields smallest in-sample MSE.

Conclusions

- When allowing for regime-switching volatility, there is little evidence of adaptive expectations.
- Constant gain learning and dynamic gain learning both produce less volatility for the natural rate shock.
- Learning frameworks actually deliver a higher prediction for the time spent in volatile regime.
- All models make similar forecast errors at similar points in sample.
- Rational expectations model actually yields smallest in-sample MSE.

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation
 - Consider role of investment / capital accumulation
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters)

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations
 - Henzel (2008): I ime-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters)

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters)

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters)

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

- Rational expectations fails to deliver widely cited behavior of expectations.
- New Keynesian model fails to deliver common features of data: persistence, volatility clustering, great moderation.
- My current papers: Empirical Examination of Learning.
 - Examine importance of choosing initial expectations.
 - Consider role of investment / capital accumulation.
 - Dynamic Gain.
- Future Consider more dynamic expectations.
 - Branch (2004): Heterogeneous expectations.
 - Henzel (2008): Time-varying monetary policy signal extraction learning.
 - Bullard, Evans, Honkapohja (2007): Near-rational exuberance.
 - Include survey forecasts (Michigan survey, Survey of Professional Forecasters).

Other Research Projects

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible

Other Research Projects

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible.

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible.

- Scholarship of teaching and learning
 - Does living in a dormitory improve student performance?
 - Through what channels?
 - Account for endogeneity.
- Policy to reduce spread of AIDS and risky behavior in Africa.
 - Developing a model of overlapping generations, risky behavior, short life expectancy, and life-insurance.
 - Calibrate model and ask if life-insurance plan is feasible.