09/10(一)浙江工业大学高等数学期中考试试卷 A

学院	•	 班级	:	 姓名:	<u>بر</u>	学号	3	
					1		4	

题号	 	 四	五	六	七	总分
得分						

一、填空题(每小题4分):

1.
$$\lim_{x \to \infty} (1 + \frac{2}{x})^{2x} = \frac{e^4}{x^2}$$

4. 设
$$y = e^{-\sin x^2}$$
 ,则 $dy = -2 \times \cos x^2 e^{-\frac{x}{2}x^2}$

5.
$$\forall y = \left(\frac{2x}{1+x}\right)^x, \quad y' = \frac{2x}{1+x} \cdot \left[\frac{2x}{1+x} + \frac{1}{1+x} \right]$$

6. 曲线
$$y = x^5 + 5x^3 - x - 2$$
 的拐点坐标是 $(0, -2)$

7. 曲线
$$e^{xy} - 2x - y = 3$$
 在点(-1,0)处的切线方程是______。

二、选择题(每小题 4 分):

1. 设
$$f(x) = (x^2 - 3x + 2)\sin x$$
,则方程 $f'(x) = 0$ 在 $(0,\pi)$ 内有 (A) 至少 3 个根; (B) 至多 2 个根; (C) 0 个根; (D) 1 个根。

2. 设
$$f(x) = \begin{cases} \frac{2}{3}x^3, & x > 1 \\ x^2, & x \le 1 \end{cases}$$
 则 $f(x)$ 在 $x = 1$ 处的 ()

- (A) 左、右导数都存在;
- (B) 左导数存在、右导数不存在;
- (C) 左导数不存在、右导数存在; (D) 左、右导数都不存在;

- 4. 若函数 f(x) 在 a 的一个邻域 U(a) 内有定义,则 $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{h}$ 存在是 f(x) 在 x = a 点可导的 (
 - (A) 充分; (B) 必要;

 - (C) 充分必要; (D) 既非充分也非必要;

三、试解下列各题(每小题6分):

2.
$$\vec{x} : \lim_{x \to 0} \frac{1 - x^{2} - e^{-x^{2}}}{\sin^{4} 2x}$$

$$= \lim_{x \to 0} \frac{1 - x^{2} - e^{-x^{2}}}{\sin^{4} 2x}$$

$$= \lim_{x \to 0} \frac{1 - x^{2} - e^{-x^{2}}}{2^{4} \chi^{4}} = \lim_{x \to 0} \frac{-2\chi + 2\chi e^{-\chi^{2}}}{2^{4} \cdot 4\chi^{3}} = \lim_{x \to 0} \frac{2\chi (e^{-\chi^{2}} - 1)}{2^{4} \cdot \chi^{3}} = \lim_{x \to 0} \frac{-2\chi^{3}}{2^{6} \cdot \chi^{3}} = -\frac{1}{3^{2}}$$

$$= \lim_{x \to 0} \frac{1 - \chi^{2} - (1 - \chi^{2} + \frac{\chi^{4}}{2} + 0)\chi^{4})}{2^{4} \cdot \chi^{4}} = \lim_{x \to 0} \frac{2\chi (e^{-\chi^{2}} - 1)}{2^{4} \cdot \chi^{3}} = \lim_{x \to 0} \frac{-2\chi^{3}}{2^{6} \cdot \chi^{3}} = -\frac{1}{3^{2}} = -\frac{1}{3^{$$

3.
$$\frac{dy}{dx} = \frac{2te' + 1}{y = t^2 + 2t}, \quad \vec{x} : \quad \frac{dy}{dx}, \quad \frac{d^2y}{dx^2}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dt}} = \frac{2t + 2}{2e^t + 2te^t} = e^t$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dx}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{-e^{-t}}{2e^t + 2te^t} = -\frac{1}{2t+2}e^t$$

四、(14 分)设函数 $f(x) = \left|xe^{-x}\right|$,求:(1) f(x) 的连续、可导、单调、凹凸区间;

(2) f(x) 的极值点、拐点; (3) f(x) 的渐近线。

五、 $(8 \, \mathcal{O})$ 设 f(x) 在 x = 0 的某个邻域内有定义,且 $\lim_{x \to 0} \frac{\sqrt{1 + \frac{1}{x} f(x) - 1}}{x^2} = 2$,求常数 τ 和 k,使当 $x \to 0$ 时, $f(x) \sim \tau x^k$ 。

$$\frac{\int \frac{f(x)}{x^{3}}}{x^{3}} = \frac{1}{x^{3}} = \frac{f(x)}{x^{3}} = \frac{f(x)}{x^{3$$

六、(6 分)设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(1)=0 ,证明存在一个点 $\xi \in (0,1)$,使 $f(\xi)+\xi f'(\xi)=0$

七、(6 分)设 f(x) 是 $(-\infty, +\infty)$ 上二阶可导的凹弧(曲线),且在 x=0 的某个邻域内满足关系式 f(x)=x+o(x),试证: $f(x)\geq x$ $x\in (-\infty, +\infty)$ 。

ising
$$f(x) = x + o(x)$$

$$f(x) = x + o(x)$$

$$f(x) = 0 \quad f'(0) = 1$$

$$f(x) = f(x) - x$$

$$f(x) = f(x) - x$$

$$f'(x) = f'(x) - 1 \quad f'(x) = f'(x) \ge 0$$

$$f(x) = f(x) - 1 \quad f'(x) = f'(x) \ge 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$

$$f(x) \ge f(0) = 0 \quad f(x) \ge f(0) = 0$$