Examen_Correction

Exercice 1: (5pts)

1. Donner des grammaires pour exprimer les langages suivants :

L₁: ={
$$w \in \{a, b, c\}/w = a^{2n+1}b^{2n} \ n \ge 0$$
}
On'a $w = a^{2n+1}b^{2n} \ n \ge 0$
= $aa^{2n}b^{2n} \ n \ge 0$
= $a(aa)^n (bb)^n \ n \ge 0$
G(L₁) = ({S,A}, {a, b}, P, S) avec P = { $S \rightarrow aA \mid \varepsilon$, $A \rightarrow aaAbb \mid \varepsilon$ }:

- $L_2 := \{w \in \{a, b, c\}/w = ab^n ac \ n \ge 1\}$

$$G(L_1) = (\{S,A\}, \{a, b, c\}, P, S) \text{ avec } P = \{S \rightarrow aA, A \rightarrow bA | bac\}:$$

- 2. Pour chacune des grammaires suivantes, donner le type de celle-ci, puis trouver le langage engendré par chacune d'elles

L(G1)=
$$\{w \in \{a, b, c\}/w = a^nbcb^m \ n, m \ge 0\}$$

G2 = ({S,A,B}, {a,b}, P, S) avec P = {S → AB|ε; A→ aA|ε; B→ bBa|ε}. S → A.B (si on applique A→ aA n fois) alors A→ a^nA (si on applique A→ ε une fois) alors A→ $a^nn \ge 0$ (si on applique B→ bBa m fois) alors B→ b^mBa^m (si on applique B→ ε une fois) alors B→ $b^ma^m \ge 0$ Donc S → a^n . b^ma^m , $n \ge 0$, $m \ge 0$

L(G2)= $\{w \in \{a, b\}/w = a^n b^m a^m \ n, m \ge 0\}$

Exercice 2: (5pts)

1. Pour chacune des expressions régulières qui suivent, dessinez un automate (sans ε -transitions) reconnaissant le langage qu'elle dénote $E_1=a(b+ab)^*+ba^*(a+bb)$

$$E_2 = (b + c)^* (ab(b+c)^*)^*$$

	a	b	С
0	3	1	2
1	3	1	2
2	3	1	2
3	ı	4	ı
4	3	5	6
5	3	5	6
6	3	5	6

2. Donner l'expression régulière du langage reconnu par chacun des automates suivants :

E(A)=a*a(bb*b+a)

E(B)=?

on' a l'état 3 est inutile, donc on peut le supprime donc

 $L_1=bL_2=b((b+aa)L_1+\epsilon)=b(b+aa)L_1+b=(b(b+aa))*b$

 $L_2=bL_1+aL_4+\epsilon=bL_1+aaL_1+\epsilon=(b+aa)L_1+\epsilon$

 $L_4=aL_1$

Donc E(B)=(b(b+aa))*b

Exercice 3: (5pts)

Soit l'automate A suivant

В

1. Rendre cet automate déterministe

L'automate équivalent déterministe est le suivant :

L'état d'entré est : {1}

Les états finaux sont : {2,3},{1,2,3} et {3}

	a	b
{1}	{1,2}	{2,3}

{1,2}	{1,2,3}	{2,3}
{2,3}	{3}	{2,3}
{1,2,3}	{1,2,3}	{2,3}
{3}	-	{3}

Renommer les états : L'état d'entré est : A

Les états finaux sont : C,D et E

	a	b
Α	В	С
В	D	С
С	Е	С
D	D	С
Е	-	Е

2. Minimiser l'automate déterministe obtenu

	_	1.
	a	b
Α	B	С
В	D	С
С	Е	С
D	D	С
Е	-	Е

3. Rendre l'automate minimal obtenu complet

L'automate obtenu est un automate complet

Exercice 4: (5 pts)

- 1. Donner un automate qui accepte chacun des langages suivants:
- $L_1 = \{ w \mid w \in \{a, b\}^* \text{ et } w \text{ commence par } \boldsymbol{a} \text{ et contient '} \boldsymbol{ba'} \text{ comme } \underline{\text{sous-mot}} \}$
- $L_2 = \{ w \mid w \in \{a, b\}^* \text{ et } w \text{ commence par } \boldsymbol{a} \text{ et ne contient pas '} \boldsymbol{ba'} \}$
- L₃ le langage complémentaire de L₂.
- L4 le langage miroir de L3.
- **2.** Expliquez comment construire un automate (à nombre) d'états fini A qui reconnaît les mots sur l'alphabet $\{a, b, c\}$ qui contiennent b et qui contiennent la séquence ac ou la séquence ca.

Bon courage