МІНІСТЕРСТВО ОСВІТИ ТИ НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА ФАКУЛЬТЕТ КОМП'ЮТЕРНИХ НАУК ТА КІБЕРНЕТИКИ КАФЕДРА ОБЧИСЛЮВАЛЬНОЇ МАТЕМАТИКИ

Звіт до лабораторної роботи №6 на тему: "Квадратурні формули"

> Виконав студент групи ОМ-3 Скибицький Нікіта

3M1CT		
1	Постановка задачі	2
2	Теоретичні відомості 2.1 Невласність 2.2 Квадратурні формули 2.2.1 Середніх прямокутників 2.2.2 Трапецій 2.2.3 Сімпсона (парабол) 2.3 Принцип Рунге і формула Річардсона	4 5 6
	2.4 Адаптивні квадратурні формули	8
3	Практична частина 3.1 Невласність 3.2 Квадратурні формули 3.3 Апріорні оцінки похибки 3.4 Принцип Рунге 3.5 Формула Річардсона 3.6 Адаптивні квадратурні формули 3.7 Програми-драйвери 3.8 Результати 3.8.1 Для формули середніх прямокутників 3.8.2 Для формули трапецій 3.8.3 Для формули Сімпсона (парабол)	9 10 11 12 13 14
1	Постановка задачі	
0	бчислити невласний інтеграл	
	$I(f) = \int_{-1}^{1} \frac{\ln(2 + \sqrt[3]{x})}{\sqrt[3]{x}} \mathrm{d}x. $ (1)	.0.1)
	з точністю $\varepsilon = 10^{-5}$.	
	Для обчислень використати:	

- 1. формули:
 - (а) середніх прямокутників;
 - (б) трапецій;
 - (в) Сімпсона (парабол).
- 2. прицип Рунге;
- 3. формулу Річардсона;
- 4. апріорні оцінки похибки;
- 5. адаптивні квадратурні формули.

Вивести:

- 1. кінцевий крок інтегрування h;
- 2. апріорну оцінку тчоності інтегрування;
- 3. наближені значення інтегралу I_h , $I_{h/2}$;
- 4. оцінку похибки інтегрування за принципом Рунге;
- 5. уточнене значення інтегралу за формулою Річардсона.

2 Теоретичні відомості

2.1 Невласність

Від невласності можна позбутися адитивним методом, тобто представивши підінтегральну функцію у вигляді суми функції з особливістю яку інтегруємо аналітично та не особливої функції яку інтегруємо чисельно:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} (x - x_{0})^{-\alpha} \varphi(x) dx =$$

$$= \int_{a}^{b} (x - x_{0})^{-\alpha} \sum_{k=0}^{\infty} c_{k}(x - x_{0})^{k} dx =$$

$$= \int_{a}^{b} (x - x_{0})^{-\alpha} \left(\sum_{k=0}^{n} c_{k}(x - x_{0})^{k} + \sum_{k=1}^{\infty} c_{n+k}(x - x_{0})^{n+k} \right) dx =$$

$$= \int_{a}^{b} (x - x_{0})^{-\alpha} \sum_{k=0}^{n} c_{k}(x - x_{0})^{k} dx + \int_{a}^{b} (x - x_{0})^{-\alpha} \sum_{k=1}^{\infty} c_{n+k}(x - x_{0})^{n+k} dx =$$

$$= \int_{a}^{b} g(x) dx + \int_{a}^{b} (x - x_{0})^{-\alpha} \sum_{k=1}^{\infty} c_{n+k}(x - x_{0})^{n+k} dx =$$

$$= \int_{a}^{b} g(x) dx + \int_{a}^{b} (x - x_{0})^{-\alpha} \left(\sum_{k=0}^{\infty} c_{k}(x - x_{0})^{k} - g(x) \right) dx =$$

$$= \int_{a}^{b} g(x) dx + \int_{a}^{b} (x - x_{0})^{-\alpha} (\varphi(x) - g(x)) dx =$$

$$= \int_{a}^{b} g(x) dx + \int_{a}^{b} \psi(x) dx,$$

далі

$$\int_{a}^{b} g(x) dx = \int_{a}^{b} (x - x_0)^{-\alpha} \sum_{k=0}^{n} c_k (x - x_0)^k dx$$
 (2.1.1)

беремо аналітично а

$$\int_{a}^{b} \psi(x) dx = \int_{a}^{b} \sum_{k=1}^{\infty} c_{n+k} (x - x_0)^{n+k-\alpha} dx$$
 (2.1.2)

— чисельно.

Такий підхід у нашому випадку працює погано, адже для апріорної оцінки похибки чисельного інтегрування необхідна принаймні скінченна друга похідна у ψ , а для цього в g доводиться брати багато (6) членів ряду Тейлора. А це у свою чергу призводить до малості ψ , що ускладнює точне обчислення її інтегралу за рахунок зростання відносної машинної похибки.

Тому ми просто зробимо заміну і зведемо інтеграл до власного.

2.2 Квадратурні формули

2.2.1 Середніх прямокутників

$$I_0 = (b-a) \cdot f(x_0), \quad x_0 = \frac{a+b}{2}$$
 (2.2.1)

Знайдемо алгебраїчну степінь точності цієї квадратурниої формули:

$$I_0(1) = (b-a) \cdot 1 = I(x), \tag{2.2.2}$$

$$I_0(x) = (b-a) \cdot \frac{a+b}{2} = I(x),$$
 (2.2.3)

$$I_0(x^2) = (b-a) \cdot \left(\frac{a+b}{2}\right)^2 \neq \frac{b^3 - a^3}{3} = \int_a^b x^2 dx = I(x^2),$$
 (2.2.4)

тому m=1.

Оцінимо для неї похибку. Взагалі для формули інтерполяційного типу:

$$R_n(f) = I(f) - I_n(f) = I(f) - I(L_n) = I(f - L_n) = I(r_n) = \int_a^b r_n(x) dx, \qquad (2.2.5)$$

де $r_n(x)$ — залишковий член інтерполяції. Далі

$$|R_n(f)| \le (b-a) \cdot \max_x |r_n(x)| \le (b-a) \cdot \frac{M_{n+1}}{n+1} \cdot \max_x |\omega_n(x)|.$$
 (2.2.6)

Для I_0 :

$$|R_0(f)| = \left| \int_a^n r_0(x) \, \mathrm{d}x \right| \le \int_a^b |r_0(x)| \, \mathrm{d}x \le \int_a^b \frac{M_1}{1!} |x - x_0| \, \mathrm{d}x =$$

$$= M_1 \int_a^b |x - x_0| \, \mathrm{d}x \le M_1 \cdot \frac{b^2 - a^2}{4}.$$
(2.2.7)

Але це погана оцінка, вона не використовує той факт, що квадратурна формула має степінь точності на одиницю вищу. Отримаємо кращу оцінку. Маємо при $f \in C^2([a,b])$:

$$f(x) = f(x_0) + (x - x_0) \cdot f'(x_0) + \frac{(x - x_0)^2}{2} \cdot f''(\xi), \tag{2.2.8}$$

де $x_0 \equiv \frac{a+b}{2}$, а $\xi \in [a,b]$. Тоді

$$R_{0}(f) = \int_{a}^{b} f(x) dx \int_{a}^{b} L_{0}(x) dx = \int_{a}^{b} (f(x) - f(x_{0})) dx =$$

$$= \int_{a}^{b} \left((x - x_{0})f'(x_{0}) + \frac{(x - x_{0})^{2}}{2} f''(\xi) \right) dx =$$

$$= \int_{a}^{b} \frac{(x - x_{0})^{2}}{2} \cdot f''(\xi) dx = f''(\eta) \int_{a}^{b} \frac{(x - x_{0})^{2}}{2} dx = \frac{f''(\eta)}{24} \cdot (b - a)^{3}.$$
(2.2.9)

Таким чином

$$|R_0(f)| \le \frac{M_2}{24} \cdot (b-a)^3 \tag{2.2.10}$$

Але тут у нас немає впливу на точність (величину похибки). Тому використовують формулу складеного типу. Якщо сітка рівномірна, то складена квадратурна формула прямокутників має вигляд

$$I(f) = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} f(x) dx \approx \sum_{i=1}^{N} h \cdot f(\bar{x}_i) = I_h(f),$$
 (2.2.11)

де $\bar{x}_i = x_{i-1/2} = x_i - h/2$.

Оцінимо похибку цієї квадратурної формули:

$$R_h(f) = I(f) - I_h(f) = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (f(x) - f(\bar{x}_i)) dx = \sum_{i=1}^{N} f''(\eta_i) \cdot \frac{h^3}{24},$$
 (2.2.12)

$$|R_h(f)| \le \frac{M_2}{24} nh^3 = \frac{M_2 h^2 (b-a)}{24}.$$
 (2.2.13)

Тобто ця формула має степінь точності p=2 по кроку h. (Не слід плутати з алгебраїчним степенем точності m=1 для цієї формули).

2.2.2 Трапецій

Нехай $x_0 = a, x_1 = b, L_1(x) = f(x)$. Тоді отримаємо формулу:

$$I_1(f) = \frac{b-a}{2} \cdot (f(a) + f(b)) \tag{2.2.14}$$

Формула має алгебраїчний степінь точності m=1, оскільки $I(x^2) \neq I_1(x^2)$. Це формула замкненого типу. Залишковий член:

$$R_1(f) = \int_{-\infty}^{b} \frac{f''(\xi)(x-a)(x-b)}{2} dx = -\frac{(b-a)^3}{12} \cdot f''(\xi).$$
 (2.2.15)

Оцінка залишкового члена:

$$|R_1(f)| \le M_2 \cdot \frac{(b-a)^3}{12}.$$
 (2.2.16)

З геометричної точки зору замінюється площа криволінійної трапецій площею звичайної трапеції.

Складена квадратурна формула трапецій:

$$I_h(f) = \sum_{i=1}^{N} \frac{h}{2} \cdot (f(x_{i-1}) + f(x_i)) =$$

$$= \frac{h}{2} \cdot f(a) + \sum_{i=1}^{N-1} h \cdot f(x_i) + \frac{h}{2} \cdot f(b),$$
(2.2.17)

де $x_i=a+ih,\ h=\frac{b-a}{N},\ i=\overline{0,N}$ та

$$|R_h(f)| \le M_2 \cdot \frac{b-a}{12} \cdot h^2, \quad f \in C^2([a,b]).$$
 (2.2.18)

2.2.3 Сімпсона (парабол)

Нехай $x_0 = a$, $x_1 = \frac{a+b}{2}$, $x_2 = b$. Замість f використовуємо $L_2(x)$. Тоді отримаємо квадратурну формулу:

$$I_2(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right). \tag{2.2.19}$$

Це квадратурна формула Сімпсона.

Алгебраїчна степінь точності квадратурної формули Сімпсона m=3.

Для $f \in C^4([a,b])$ залишковий член квадратурної формули Сімпсона має місце представлення:

$$R_2(f) = \frac{1}{24} \int_a^b (x-a) \left(x - \frac{a+b}{2} \right)^2 (x-b) f^{(4)}(\xi) dx = \frac{f^{(4)}(\xi)}{2880} \cdot (b-a)^5, \tag{2.2.20}$$

та вірна оцінка:

$$|R_2(f)| \le \frac{M_4}{2880} \cdot (b-a)^5. \tag{2.2.21}$$

Складена квадратурна формула Сімпсона має вигляд:

$$I_h(f) = \sum_{i=1}^{N} \frac{h}{6} \left(f(x_{i-1}) + 4f(x_{i-1/2}) + f(x_i) \right) =$$

$$= \frac{h}{6} (f(x_0) + 4f(x_{1/2}) + 2f(x_1) + \dots + 2f(x_{N-1}) + 4f(x_{N-1/2}) + f(x_N)).$$
(2.2.22)

Якщо $f \in C^4([a,b])$, то має місце оцінка:

$$|R_h(f)| \le \frac{M_4}{2880} \cdot (b-a) \cdot h^4, \quad p = 4.$$
 (2.2.23)

2.3 Принцип Рунге і формула Річардсона

Нехай задана деяка величина I (сіткова функція, інтеграл, неперервна функція). Нехай $I_h \approx I$ та $I_n \to I$ при $h \to 0$. Нехай похибка послідовності I_h представляється у вигляді:

$$R_h = I - I_h = \mathring{R}_h + \alpha(h), \tag{2.3.1}$$

де $\overset{\circ}{R}_h = C \cdot h^m$ — головний член похибки, C не залежить від $h, \ \alpha(h) = o(h^m)$. Обчислимо $I_{h/2}$. З (2.3.1) випливає, що

$$I = I_h + Ch^m + \alpha(h), \tag{2.3.2}$$

$$I = I_{h/2} + C \cdot \frac{h^m}{2^m} + \alpha(h). \tag{2.3.3}$$

Звідси

$$I_{h/2} - I_h = \frac{Ch^m}{2^m} \cdot (2^m - 1) + \alpha(h).$$
 (2.3.4)

3 (2.3.1):

$$\overset{\circ}{R}_{h/2} = \frac{Ch^m}{2^m} = \frac{I_{h/2} - I_h}{2^m - 1},\tag{2.3.5}$$

та

$$\mathring{R}_h = \frac{2^m}{2^m - 1} \cdot (I_{h/2} - I_h). \tag{2.3.6}$$

Формула (2.3.5) носить назву апостеріорної оцінки похибки обчислення I за допомогою наближення $I_{h/2}$. (Апріорні оцінки це оцінки отримані до обчислення величини I_h , апостеріорні оцінки — під час її обчислення).

З формули (2.3.5) впливає такий алгоритм обчислення інтегралу із заданою точністю ε :

- 1. обчислюємо I_h , $I_{h/2}$, $\overset{\circ}{R}_{h/2}$;
- 2. перевіряємо чи $\begin{vmatrix} \circ \\ R_{h/2} \end{vmatrix} < \varepsilon$.
- 3. Якщо так, то $I \approx I_{h/2}$;
- 4. Якщо ж ні, то:
 - (a) обчислюємо $I_{h/2}, I_{h/4}, \overset{\circ}{R}_{h/4};$
 - (б) перевіряємо $\left| \stackrel{\circ}{R}_{h/4} \right| < arepsilon$ і т. д.
- 5. Процес продовжуємо поки не буде виконана умова $\left| \stackrel{\circ}{R}_{h/2^k} \right| < arepsilon, \ k=1,2,\ldots$

Зауваження: Ми даємо оцінку не похибки, а її головного члена з точністю $\alpha(h)$, тому такий метод може давати збої, якщо не виконана умова

$$|\alpha(h)| \ll \left| \stackrel{\circ}{R}_{h/2^k} \right|. \tag{2.3.7}$$

За допомогою головного члена похибки можна отримати краще значення для I:

$$\tilde{I}_{h/2} = I_{h/2}^{(1)} = I_{h/2} + \mathring{R}_{h/2} = \frac{2^m}{2^m - 1} \cdot I_{h/2} - \frac{1}{2^m - 1} \cdot I_h. \tag{2.3.8}$$

Це екстраполяційна формула Річардсона: $I_h - \tilde{I}_{h/2} = \alpha(h)$.

Для квадратурної формули трапецій p=2 і

$$I - I_h = Ch^2 + O(h^4), (2.3.9)$$

$$\overset{\circ}{R}_{h/2} = \frac{I_{h/2} - I_h}{3}. (2.3.10)$$

Маємо

$$R_h = -\frac{h^2}{12} \int_a^b f''(x) \, \mathrm{d}x + O(h^4) = O(h^2). \tag{2.3.11}$$

Отже, якщо застосовувати екстраполяційну формулу Річардсона, то

$$\tilde{I}_{h/2} = \frac{4}{3} \cdot I_{h/2} - \frac{1}{3} \cdot I_h, \tag{2.3.12}$$

i
$$I_h - \tilde{I}_{h/2} = O(h^4)$$
.

Цей принцип застосовується і для формули Сімпсона m=4. Головна частина залишкового члена для цієї формули:

$$\overset{\circ}{R}_{h/2} = \frac{I_{h/2} - I_h}{15}. (2.3.13)$$

$$\tilde{I}_{h/2} = \frac{16}{15} \cdot I_{h/2} - \frac{1}{15} \cdot I_h, \tag{2.3.14}$$

$$I_h - \tilde{I}_{h/2} = O(h^6). \tag{2.3.15}$$

2.4 Адаптивні квадратурні формули

Розглянемо використання так званих *адаптивних квадратурних формул*, в яких змінний крок вибирається за принципом Рунге. Для цього запишемо формулу трапецій із змінним кроком:

$$I_h(f) = \sum_{i=1}^{N} \frac{h_i}{2} \cdot (f(x_{i-1}) + f(x_i)), \tag{2.4.1}$$

де $h_i = x_i - x_{i-1}$.

Оцінимо похибку на кожному інтервалі:

$$R_{h_{i}} = I_{i} - I_{h_{i}} =$$

$$= \int_{x_{i-1}}^{x_{i}} f(x) dx - \frac{h_{i}}{2} (f(x_{i-1}) + f(x_{i})) =$$

$$= -\frac{h_{i}^{3}}{6} \cdot f''(x_{i-1/2}) + O(h_{i}^{5}).$$
(2.4.2)

Таким чином p = 3 і головний член похибки:

$$\overset{\circ}{R}_{h/2} = \frac{I_{h_i/2} - I_{h_i}}{7}. (2.4.3)$$

Умова припинення ділення навпіл проміжку $[x_{i-1}, x_i]$:

$$\begin{vmatrix} \circ \\ R_{h_i/2} \end{vmatrix} \le \frac{\varepsilon \cdot h_i}{b-a}. \tag{2.4.4}$$

Це забезпечує точність на всьому інтервалі

$$\left| \stackrel{\circ}{R}_{h/2} \right| = \left| \sum_{i=1}^{N} R_{h_i/2} \right| \le \sum_{i=1}^{N} \frac{\varepsilon \cdot h_i}{b - a} = \varepsilon \cdot \frac{b - a}{b - a} = \varepsilon. \tag{2.4.5}$$

3 Практична частина

3.1 Невласність

Перш за все зробимо заміну:

$$\int_{-1}^{1} \frac{\ln(2+\sqrt[3]{x})}{\sqrt[3]{x}} dx = \left| t = \sqrt[3]{x}, x = t^3, dx = 3t^2 dt \right| = \int_{-1}^{1} 3t \ln(2+t) dt.$$
 (3.1.1)

Таким чином ми звели інтеграл до власного.

3.2 Квадратурні формули

Були написані наступні функції для обчислення квадратурних формул:

```
def rectangle(a: float, b: float, f: Callable[[np.array], np.array],
        h: float) -> float:
    return h * np.sum(f(np.arange(a + h / 2, b + h / 2, h)))

def trapezoid(a: float, b: float, f: Callable[[np.array], np.array],
        h: float) -> float:
    return h / 2 * (f(a) + 2 * np.sum(f(np.arange(a + h, b, h))) + f(b))

def simpson(a: float, b: float, f: Callable[[np.array], np.array],
        h: float) -> float:
    return h / 6 * (f(a) + 2 * np.sum(f(np.arange(a + h, b, h))) +
        4 * np.sum(f(np.arange(a + h / 2, b + h / 2, h))) + f(b))
```

3.3 Апріорні оцінки похибки

Були написані наступні функції для обчислення апріорних оцінок похибок:

```
def rectangle(a: float, b: float, M_2: float, h: float) -> float:
    return M_2 * h**2 * (b - a) / 24

def trapezoid(a: float, b: float, M_2: float, h: float) -> float:
    return M_2 * h**2 * (b - a) / 12
```

```
def simpson(a: float, b: float, M_4: float, h: float) -> float:
    return M_4 * h**4 * (b - a) / 2880
```

Тут нам знадобляться M_2 і M_4 , знайдемо їх:

$$M_2 = \max_{-1 \le t \le 1} \left| \frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} \right|, \quad M_4 = \max_{-1 \le t \le 1} \left| \frac{\mathrm{d}^4 f(t)}{\mathrm{d}t^4} \right|.$$
 (3.3.1)

Послідовно знаходимо:

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = 3\left(\frac{t}{t+2} + \ln(t+2)\right),\tag{3.3.2}$$

$$\frac{\mathrm{d}^2 f(t)}{\mathrm{d}t^2} = \frac{3(t+4)}{(t+2)^2},\tag{3.3.3}$$

$$\frac{\mathrm{d}^3 f(t)}{\mathrm{d}t^3} = -\frac{3(t+6)}{(t+2)^2},\tag{3.3.4}$$

$$\frac{\mathrm{d}^4 f(t)}{\mathrm{d}t^4} = \frac{6(t+8)}{(t+2)^4},\tag{3.3.5}$$

$$\frac{\mathrm{d}^5 f(t)}{\mathrm{d}t^5} = -\frac{18(t+10)}{(t+2)^5}.$$
(3.3.6)

Як бачимо $d^3f(t)/dt^3 < 0$ на [-1,1], тому M_2 досягається або в -1, або в 1. Підставляючи знаходимо f''(-1) = 9, f(1) = 5/3, тому $M_2 = 9$.

Як бачимо $\mathrm{d}^5 f(t)/\,\mathrm{d} t^5<0$ на [-1,1], тому M_4 досягається або в -1, або в 1. Підставляючи знаходимо $f^{(4)}(-1)=42,\,f^{(4)}(1)=2/3,\,$ тому $M_4=42.$

3.4 Принцип Рунге

Були написані наступні функції для обчислення похибки за принципом Рунге:

3.5 Формула Річардсона

Були написані наступні функції для обчислення уточненого значення інтегралу за екстраполяційною формулою Річардсона:

```
def rectangle(a: float, b: float, f: Callable[[np.array], np.array],
    h: float) -> float:
    I_h, I_half_h = integrate.rectangle(a, b, f, h), \
        integrate.rectangle(a, b, f, h / 2)
    return (4 * I_half_h - I_h) / 3

def trapezoid(a: float, b: float, f: Callable[[np.array], np.array],
        h: float) -> float:
    I_h, I_half_h = integrate.trapezoid(a, b, f, h), \
        integrate.trapezoid(a, b, f, h / 2)
    return (4 * I_half_h - I_h) / 3

def simpson(a: float, b: float, f: Callable[[np.array], np.array],
        h: float) -> float:
    I_h, I_half_h = integrate.simpson(a, b, f, h), \
        integrate.simpson(a, b, f, h / 2)
    return (16 * I_half_h - I_h) / 15
```

3.6 Адаптивні квадратурні формули

Були написані наступні функції для обчислення значення інтегралу за адаптивними формулами:

```
def rectangle(a: float, b: float, f: Callable[[np.array], np.array],
        eps: float) -> float:
    if runge.rectangle(a, b, f, b - a) < eps:
        return integrate.rectangle(a, b, f, b - a)
    else:
        m = (a + b) / 2
        return rectangle(a, m, f, eps / 2) + rectangle(m, b, f, eps / 2)
def trapezoid(a: float, b: float, f: Callable[[np.array], np.array],
        eps: float) -> float:
    if runge.trapezoid(a, b, f, b - a) < eps:
        return integrate trapezoid(a, b, f, b - a)
    else:
       m = (a + b) / 2
        return trapezoid(a, m, f, eps / 2) + trapezoid(m, b, f, eps / 2)
def simpson(a: float, b: float, f: Callable[[np.array], np.array],
        eps: float) -> float:
    if runge.simpson(a, b, f, b - a) < eps:
        return integrate.simpson(a, b, f, b - a)
```

```
else:
    m = (a + b) / 2
    return simpson(a, m, f, eps / 2) + simpson(m, b, f, eps / 2)
```

3.7 Програми-драйвери

```
Були написані наступні програми-драйвери:
```

```
def rectangle(a: float, b: float, f: Callable[[np.array], np.array], h: float,
        I_True: float, M_2: float) -> None:
        while runge.rectangle(a, b, f, h) > eps:
                h /= 2
       h /= 2
        I_h, I_half_h, I_richardson = integrate.rectangle(a, b, f, h), \
                integrate rectangle(a, b, f, h / 2), richardson rectangle(a, b, f, h)
        I_adaptive = adaptive.rectangle(a, b, f, eps)
def trapezoid(a: float, b: float, f: Callable[[np.array], np.array], h: float,
        I_True: float, M_2: float) -> None:
        while runge.trapezoid(a, b, f, h) > eps:
                h /= 2
       h /= 2
        I_h, I_half_h, I_richardson = integrate.trapezoid(a, b, f, h), \
                integrate.trapezoid(a, b, f, h / 2), richardson.trapezoid(a, b, f, h)
        I_adaptive = adaptive.trapezoid(a, b, f, eps)
def simpson(a: float, b: float, f: Callable[[np.array], np.array], h: float,
        I_True: float, M_4: float) -> None:
        while runge.simpson(a, b, f, h) > eps:
                h /= 2
       h /= 2
        I_h, I_half_h, I_richardson = integrate.simpson(a, b, f, h), \
                integrate simpson(a, b, f, h / 2), richardson simpson(a, b, f, h)
        I_adaptive = adaptive.simpson(a, b, f, eps)
if __name__ == '__main__':
        def f(t):
                return 3 * t * np.log(2 + t)
        a, b = -1, 1
        I_{true} = 6 - 9 / 2 * np.log(3)
```

```
M_2, M_4 = 9, 42
h = b - a
eps = 1e-5

rectangle(a, b, f, h, I_true, M_2)
trapezoid(a, b, f, h, I_true, M_2)
simpson(a, b, f, h, I_true, M_4)
```

3.8 Результати

Тут

- h кінцевий крок інтегрування;
- I_true справжиє значения інтегралу;
- I_h значення інтегралу за відповідною квадратурною формулою для кроку h;
- R_h_true відхилення I_h від I_true;
- I_half_h значення інтегралу за відповідною квадратурною формулою для кроку h/2;
- R_half_h_true відхилення I_half_h від I_true;
- R_runge оцінка відхилення I_h від I_true за принципом Рунге;
- I_richardson уточнене значення інтегралу за екстраполяційною формулою Річардсона;
- R_richardson_true відхилення I_richardson від I_true;
- apriori_error апріорна оцінка відхилення I_h від I_true;
- I_adaptive значення інтегралу обчислене за адаптивною квадратурною формулою;
- R_adaptive відхилення I_adaptive від I_true.

3.8.1 Для формули середніх прямокутників

h = 0.00390625I true = 1.0562447009935063Ιh = 1.0562400624293735R_h_true = 4.638564132797285e-06 I_half_h = 1.0562435413517188 R_half_h_true = 1.1596417874848441e-06 = 1.1596407817708136e-06 R_runge = 1.0562447009925007 I_richardson $R_{richardson_true} = 1.0056400157054668e-12$ = 1.1444091796875e-05 apriori_error I_apadtive = 1.0562229991183867 R_apadtive = 2.170187511962851e-05

3.8.2 Для формули трапецій

h = 0.00390625

I_true = 1.0562447009935063I_h = 1.0562539781252218R_h_true = 9.277131715501596e-06 = 1.0562470202772976I_half_h R_half_h_true = 2.3192837912411335e-06 = 2.319282641420154e-06 R_runge I_richardson = 1.0562447009946563 R_richardson_true = 1.1499690089067371e-12 apriori_error = 2.288818359375e-05 I_apadtive = 1.0562667298228325 = 2.2028829326226074e-05 R_apadtive

3.8.3 Для формули Сімпсона (парабол)

h = 0.125

I true = 1.0562447009935063= 1.0562459003461577 I_h R_h_true = 1.199352651415353e-06I_half_h = 1.056244776246562 R_half_h_true = 7.525305578681696e-08 R_runge = 7.49399730419024e-08I_richardson = 1.056244701306589 $R_{richardson_true} = 3.130826708996892e-10$ apriori_error = 7.120768229166667e-06 I_apadtive = 1.0562928260704325 R_apadtive = 4.812507692619761e-05