生态度(与克·尔···································				
一、填空题(每空 3 分,共 15 分) 1、二阶齐次线性微分方程 y"-2y'+y=0 的通解为				
2 、将 yoz 平面上的曲线 $\frac{y^2}{4} + \frac{z^2}{9} = 1$ 绕 y 轴旋转一周所生成的旋转曲面的方程为				
3、设 $e^z - xyz = 0$,则 $\frac{\partial z}{\partial x} = $				
4、 $\iint_D (x^2 + y^2) dx dy = $				
5、将函数 $f(x) = \frac{1}{1+2x}$ 展开成 x 的幂级数得				
二、单项选择题(请把下列各题答案的序号填入括号内,每空 3 分,共 15 分):				
1、二阶常系数非齐次线性微分方程 $y'' + y' - 6y = 2xe^{-3x}$ 的特解形式为().				
$(A) y^* = ae^{-3x};$		$(B) y^* = (ax+b)e^{-}$,	
(C) $y^* = x(ax+b)e^{-3x}$; (D)		$(D) y^* = x^2(ax + b)$	$)e^{-3x}$.	
2、直线 L_1 : $\frac{x-1}{-1} = \frac{y-1}{4} = \frac{x}{4}$	$\frac{x+2}{1}$ 与直线 $L_2:\frac{x}{-2}=$	$\frac{y+2}{2} = \frac{z}{-1} \text{ in } \text{ pipe } \theta$	=().	
$(A)-\frac{\pi}{4}$;	$(B)\frac{\pi}{4};$	$(C)\frac{3\pi}{4};$	$(D)\frac{5\pi}{4}.$	
$3, \lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sqrt{9 + xy} - 3}{xy} = ($).			
(A) 0;	(B) 1;	$(C) \infty$;	$(D)\frac{1}{6}.$	
4、平面 $z=x+y$ 含在圆柱体 $x^2+y^2=1$ 内的部分的面积为().				
$(A)\sqrt{3}$;	$(B) \pi;$	$(C)\sqrt{3}\pi$;	$(D) 2\pi$.	
5、数项级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n\sqrt{n}}$ ().				
(A) 发散		(B)收敛但是统	(B)收敛但是条件收敛	
(C)收敛而且是绝对收敛		(D)敛散性无流	(D) 敛散性无法确定	

三 (9分)、求过点P(1,2,1)及直线 $\frac{x-1}{1} = \frac{y}{-1} = \frac{z}{2}$ 的平面方程.

四 (9分)、设有二元函数 $z = \ln \sqrt{1 + x^2 + y^2}$,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及全微分dz.

五 (9分)、求二元函数 $f(x, y) = 3xy - x^3 - y^3$ 的极值.

六(9 分)、计算二重积分 $\iint_D \frac{x^2}{y^2} dxdy$,其中积分区域 D 是由直线 x=2, y=x 及曲线 $y=\frac{1}{x}$ 所 围成的区域.

七 (9 分)、求曲线 x = 2t, $y = \frac{1}{t} - 1$, $z = 2\sqrt{t}$ 在点 (2,0,2) 处的切线和法平面方程.

八(10 分)、设有幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\sqrt{n}} x^n$. (1) 求该幂级数的收敛半径; (2) 指出其收敛区间;

(3) 讨论幂级数在收敛区间端点处的敛散性,并确定其收敛域.

九(10 分)、设有一阶非齐次线性微分方程 $\frac{dy}{dx}$ + $2xy = e^{-x^2}$.(1)求对应的齐次线性微分方程的通解;(2)求该方程的通解;(3)求该方程满足初始条件 $y|_{x=0}=1$ 的特解.

十(5 分)、已知 $\alpha(x)$, $\beta(x)$ 均是微分方程 y''+py'+qy=f(x) 的解,证明 $\bar{y}=\frac{1}{3}\alpha(x)+\frac{2}{3}\beta(x)$ 也是该微分方程的解。