

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

204574299

CHEMISTRY 9701/02

Paper 2 Structured Questions AS Core

October/November 2008

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

At the end of the examination, fasten all your work securely together.

For Examiner's Use		
1		
2		
3		
4		
5		
Total		

This document consists of 10 printed pages and 2 blank pages.

Answer all the questions in the space provided.

For Examiner's Use

1 Most submarines travel under water using electrical power from batteries. The German engineer Helmut Walter designed a diesel engine that could be used to propel a submarine beneath the surface of the sea. Instead of taking air from above the surface of the sea, Walter's engine used hydrogen peroxide, H₂O₂, to provide oxygen for a conventional diesel engine.

eng	ine.	
Нус	droge	n peroxide may be catalytically decomposed to give water and oxygen.
(a)	(i)	What is meant by the term catalyst?
	(ii)	Construct a balanced equation for the decomposition of H ₂ O ₂ .
		[3]
Die	sel fu	uel may be considered to consist of the hydrocarbon C ₁₅ H ₃₂ which reacts completely
with	ı oxy	gen according to the following equation.
		$C_{15}H_{32} + 23O_2 \rightarrow 15CO_2 + 16H_2O$
(b)	(i)	To which homologous series does C ₁₅ H ₃₂ belong?
	(ii)	Use the equation above and your answer to (a)(ii) to calculate the amount, in moles, of H_2O_2 , that will provide sufficient oxygen for the complete oxidation of one mole of $C_{15}H_{32}$.
		amount of H ₂ O ₂ = mol
		[3]
		r.,

© UCLES 2008

unc	lerwa	arine equipped with a Walter engine used 212 tonnes of diesel fuel during an iter voyage. The submarine also carried concentrated aqueous H_2O_2 . = 10^6 g]
(c)	(i)	Calculate the amount, in moles, of diesel fuel used during the underwater voyage.
		amount of diesel fuel = mol
	(ii)	Use your answers to (b)(ii) and (c)(i) to calculate the mass, in tonnes, of hydrogen peroxide used during the underwater voyage.
		mass of $H_2O_2 = \dots tonnes$ [4]
(d)	The	exhaust products of the Walter engine were passed into the sea.
	Wh	at would happen to them?
		[1]
		[Total: 11]

	Ketene, $\mathrm{C_2H_2O}$, is a member of a class of unsaturated organic compounds that is widely used in pharmaceutical research for the synthesis of organic compounds.				
	CH ₂ =C=O				
	ketene				
(a) (i)	Suggest values for the H-C-H and C=C=O bond angles in ketene.				
	H-C-H C=C=O				
(ii)	By considering the structure of the molecule, suggest why the name <i>ketene</i> is used.				
	[3]				
(b) Ket	ene burns completely in air to form carbon dioxide and water.				
(i)	Write a balanced equation for this reaction.				
(ii)	Use your equation to calculate the volume of $\rm CO_2$, in dm ³ , measured at room temperature and pressure, which will be formed when 3.5 g of ketene are burned in an excess of air.				
	Give your answer to two significant figures.				
	volume of $CO_2 = \dots dm^3$ [4]				

© UCLES 2008

2

(i)	Define	the term standard enthalpy chang	ge of formation.	
(ii)			andard enthalpy ch	ange of formation of
			$\Delta H^{\rm e}/{\rm kJ~mol^{-1}}$	
		standard enthalpy change of formation of CO ₂	-395	
		standard enthalpy change of combustion of H ₂	-286	
		standard enthalpy change of combustion of CH ₂ =C=O	-1028	
				[6]
			noic acid, CH ₃ CO ₂ F	H, by reaction with a
Sug	gest the	identity of A.		
				[1]
				[Total: 14]
	(ii) Kete com Sug	(ii) Use the ketene. Ketene can compound A Suggest the	(ii) Use the data below to calculate the st ketene. standard enthalpy change of formation of CO ₂ standard enthalpy change of combustion of H ₂ standard enthalpy change of combustion of CH ₂ =C=O	(ii) Use the data below to calculate the standard enthalpy chatetene. ΔHe/kJ mol ⁻¹ standard enthalpy change of formation of CO ₂ standard enthalpy change of combustion of H ₂ standard enthalpy change of combustion of CH ₂ =C=O standard enthalpy change of combustion of CH ₂ =C=O Sta

Chl	orine gas is manufactured by the electrolysis of brine using a diaphragm cell.	
(a)	Write half-equations, including state symbols, for the reactions occurring at electrodes of a diaphragm cell.	each of the
	anode	
	cathode	[2]
(b)	In the diaphragm cell, the anode is made of titanium and the cathode is mad	e of steel.
	Suggest why steel is never used for the anode.	
		[1]
(c)	One important product made in the diaphragm cell is formed in aqueous solu	ution.
	(i) What substance is produced in aqueous solution in the diaphragm cell?	
	(ii) Explain, with the aid of appropriate half-equation(s), how this compound by electrolysis.	d is formed
		[3]
(d)	Chlorine is very reactive and will form compounds by direct combination elements.	with many
	Describe what you would see when chlorine is passed over separate heated sodium and phosphorus. In each case write an equation for the reaction.	samples of
	sodium	
	phosphorus	
		[4]

3

e)	Magnesium chloride, $\mathrm{MgC}l_2$, and silicon tetrachloride, $\mathrm{SiC}l_4$, each dissolve in or react with water.	For Examiner's Use
	Suggest the approximate pH of the solution formed in each case.	
	$\operatorname{MgC} l_2$ $\operatorname{SiC} l_4$	
	Explain, with the aid of an equation, the difference between the two values.	
	[5]	
	[Total: 15]	

BLANK PAGE

4 Organic chemistry is the chemistry of carbon compounds. The types of organic reactions that you have studied are listed below.

For Examiner's Use

addition elimination hydrolysis

oxidation reduction substitution

Addition and substitution reactions are further described as follows.

electrophilic nucleophilic free radical

Complete the table below.

Fill in the central column by using **only** the types of reaction given in the lists above. Use **both** lists when appropriate.

In the right hand column give the name(s) or formula(e) of the reagent(s) you would use to carry out the reaction given.

organic reaction	type of reaction	reagent(s)
CH ₃ CHO → CH ₃ CH(OH)CN		
$\label{eq:ch3CH2CH3} \begin{split} CH_3CH_2CH_2CH_3 \rightarrow \\ CH_3CH_2CHBrCH_3 \end{split}$		
$\label{eq:ch3CH3CH2} \begin{split} CH_3CH(OH)CH_3 \rightarrow \\ CH_3CH=CH_2 \end{split}$		
$\label{eq:ch3CH=CH2} \begin{split} CH_3CH=CH_2 &\to \\ CH_3CH(OH)CH_2OH \end{split}$		

[Total: 10]

5	An coll	n organic ester, ${\bf B}$, has the empirical formula ${\rm C_2H_4O}$. An experiment by a student in a ollege gave a value of 87.5 for $M_{\rm r}$ of ${\bf B}$.						
	(a)	What is the molecular formula of B ?						
				[1]				
	(b)	In the boxes below, draw the structural	formulae of four isomers of B that are est	ers.				
	Γ							
		W	X					
			7.					
		Υ	z	[4]				

© UCLES 2008 9701/02/O/N/08

The student hydrolysed his sample of $\bf B$ by heating with aqueous mineral acid and then separating the alcohol, $\bf C$, that was formed. He heated the alcohol $\bf C$ under reflux with acidified dichromate(VI) ions and collected the product $\bf D$.

For Examiner's Use

A sample of **D** gave an orange precipitate with 2,4-dinitrophenylhydrazine reagent. A second sample of **D** gave no reaction with Tollens' reagent.

(c)	(i)	What group does the reaction with 2,4-dinitrophenylhydrazine reagent show to present in D ?	be
	(ii)	What does the result of the test with Tollens' reagent show about D ?	
	(iii)	What is the structural formula of the alcohol C?	
	(iv)	Which of your esters, W , X , Y , or Z has the same structure as that of the ester E	3 ?
			[4]
(d)	Wh	nich, if any of your esters, W , X , Y , or Z is chiral? Explain your answer.	
			[1]
		[Total:	10]

© UCLES 2008 9701/02/O/N/08

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.