$\{f(x_n)\}$, клоняща към f(a), не изменя сходимостта на тази редица и границата йе / (а).

Определение 1' (испрекъснатост в точка а по Коши). Финкложително число в съществува покова положително число 8, че за всички стойности на аргумента x, удовлетворяващи условието $|x-a| < \delta$, е изпълнено неравенството $|f(x)-f(a)| < \varepsilon$. цията ј се нарича непрекъсната в точката а, ако за всяко по-

воряват неравенството 0<|x-a|, т. с. да са различни от x. Това е така, защото за стейности x = a разликата f(x) - f(a) с равна на Забележка 2. В сравнение с определение 1' за граница на функция по Коши (вж. 3.4.2) в определението за непрекъснатост по Коши не се иска всички стейности на аргумента и да удовлетнула и удовлетворява неравенството $|f(x)-f(a)| < \varepsilon$ при всяко $\varepsilon > 0$.

Условисто за непрекъснатост на функцията / в точката а се

 $\lim f(x) = f(a).$

Тъй като а=1іт х, то това равенство се записва и във формата

 $\lim_{x\to a}f(x)=f(\lim x).$

Следователно за непрекъсната в точката а функция символът "Пт" за граничен преход и символът "/" за характеристиката на функцията могат да сменят местата си.

за непрекъснатост на функция по Хайне и по Коши (определения по Хайне и по Коши (вж. теорсма 3.19) следва, че определенията От теоремата за сквивалентност на определенията за граница 1 и 1') са еквивалентии.

Ще формулираме сега определение за едностранна испрекъснатост на функция / в точката а, т. е. непрекъснатост на / в точката а или само отдясно, или само отляво.

От множеството {x}, което с дефиниционна област на функцията /, ще трябва да поискаме този път да включва точката а и за всяко 5>0 да има поне един елемент от интервала (а, а+5) (CEOTECTHO OT (a-5, a)).

Формално определение за непрэкъснатост в точка а отдясно ката и отдясно (отляво), ако дясната (лявата) граница на функцията в точката а съществува и е равна на стойността f (a) (отляво). Функцията ј се нарича непрекъсната на функцията / (х) в точката а.

Като използваме определенията за дясна (лява) граница на функция f(x) в точка a по Хайне и по Коши, идраме до опредеденията за непремъснатост на функция / в точка а отдясно (отляво) по Хайне и по Коши.

4. Непрекъснатост на функция

прекъснатост ще бъде въведено в общия случай на изображение функция f на една реална променлива. В глава 12 повятието ненатост на функция. При това, както ив глава 3, ще разглеждаме В тази глава ще бъде разгледано важното понятие пепрекъсна едно метрично пространство в друго.

4.1. Понятие за непрекъснатост на функция

4.1.1. Определение за непрекъснатост на функция. Нека точката а принадлежи на дефиниционната област на функцията f и всяка 5-околност на точката а съдържа точки от дефиниционната област

формално определение за непрекъснатост в точката а. Функцията ј се нарича **непрекъсната в точката** и, ако в тази точка тя има граница и тази граница е равна ни стойността f (а) на функцията [в точката а. на /, различни от и.

Като използваме определенията за граница на функцията / в точката а по Хайне и по Коши, ще стигнем до определение за непрекъспатост на функции в дадена точка по Хайнс и по Копи-

редица {f[xn]} от стойности на функцията е сходяща и има Определение 1 (непрекъспатост в точка а по Хайне). Функцията f(x) се нарича **непрекъсната** в точката а, ако за всяка клоняща към а редица {хл} от стойности нааргумента, съответната

функция по Хайпе (вж. 3.4.2) в определението за пепрекъснатост по Хайне ияма изискване всички членове на редицата {xn} да бъдат Забележка 1. В сравнение с определение 1 за гранина на различни от а. Това е така, защото прибавянето на произволен брой пови членове, равии на f(a), към членовете на редината граници [(а).

HEMPEKBCHATOCT

ω 4

ROHATHE

но (отляво) по Хайне). Функцията ј се нарича непрекъсната в точката а отдясно (отляво), ако за веяка клоняща към а редица от стойности на аргумента {x_,}, членовете на която удовлетиоряват условието $x_n > a$ $(x_n < a)$, съответната редица от стой-Определение 2 (непрекъснатост на функция в точка и отдясности на функцията {{ (хл)} е сходяща и клони към F(a).

може да се замени с по-слабото условие $x_n \ge a$ $(x_n \le a)$, тъй като, ако добавим към релицита $\{f(x_n)\}$, клоняща към f(a), произволен брой нови членове, ранни на f(a), ще получим редица, която също Ще отбележим, че в тона определение условнето $x_n > a \ (x_n < a)$

клони към Г(а).

точката в отдясно (отляво), ако за венко положително число ности на аргумента х, които удовлетворяват условието a<x<a+5 Определение 2' (непрекъснатост на функция в точка а отдясно (отляво) по Коши). Функцията † се нарича непрекъсната в в съществуви такова положително число 5, че за всички стой-(а-5<х<а), да е изпълнено неравенството

$$|f(x)-f(a)| < \varepsilon$$
.

(a-b< x< a) може да се замени с по-слабото условие $a\leq x< a+$ Ще отбележим, че и в това определение условието a < x < a + $(a-3 < x \le a)$.

Еквивалентността на определения 2 и 2' следва от еквивалентността на съответните определения за граница на функция.

Непрекъснатостта на функцията / в точка а отдясно (отляво)

се записва така:

$$\lim_{x\to a+0} f(x) = \dot{f}(a) \quad \text{или} \quad \dot{f}(a+0) = \dot{f}(a)$$

$$\lim_{x\to a-0} \dot{f}(x) = \dot{f}(a) \quad \text{или} \quad \dot{f}(a-0) = \dot{f}(a)].$$

а отляво и отлясно, то тя е непрекъсната в тази точка. Действи-телно съгласно твърденистэ, доказано в 3.4.2, в този случай Забележка 3. Ако функцията / с пепрекъсната в точката съществува граница на функцията в точката a и тя е равна на / (a). Точки, в които функцията не притежива свойството непрекъснатэст, се наричат точки на прекъсване за тази функция.

Примери:

1. Степенната функция /(х)=ха, където и е естествено число. е непрекъсната във всяка точка а на безкрайната права -- го < х Наистина в глава 3 беше установено, че границата на гази функция във всяка точка a от безкрайната права е равна на a^a . 2. Поликомите и рационалните дроби имат граница във всяка точка от дефиниционната си област, равна на стойпостта им в тазн

точка (вж. 3.4,3), Затова те са непрекъснати функции във всяка точка от дефиниционната си област.

3. Функцията sgn е прекъсната в точката x = 0 и непрекъсната х=0, както беше помазано в глава 3, съществуват дисна граница (рапия на +1) и лява граница (равна на -1) на функцията sgn. Тъй като тези елнострании граници не са равни помежлу си, функвъв венчки останали гочки от числовата ос. Наистина в точката цията ѕgп х е прекъсната в точката нула. В останалите точки от числовата ос тя притежава граница, равна съответно на стойността й в тези точки, и следователно е непрекъсната,

4. Функцията на Дирихле D (вж. 3.4.1) е прекъсната във всяка точка от числовата ос, понеже няма граница в нито една TOWKS. Ше отбележим обаче, че функцията f(x) = xD(x), където D е Φ ункцията на Дирихле, е непрекъсната в точката x=0 и прекъстостта на / във исяка точка х_а+0 се установява също както за ната във всички останали точки от безкрайната права. Прекъспа- Φ ункинята D (за всяка сходяща към x_0 редица $\{x_n\}$ от рационални точки съответната редица $\{f(x_n)\}$ клони към $x_0 + 0$, а за всяка сходяща към x_0 редица $\{x_n^*\}$ от ирационални точки съответната ре-Дица $\{f(x_n)\}$ клони към нула).

Ще се убедим, че функцията f(x) = xD(x) е непремъсната в точката x=0. За всяка безкрайно малка редица от стойности на аргумента $\{x_n\}$ редицата $\{D(x_n)\}$ е ограничена и затова (според теорсма 3 от глава 3) редицата $f(x_n) = x_n D(x_n)$ е безкрайно малка, с. нма за граница числото нула, равно на f (0).

Ше казваме, че дадена функция е непрекъсната в множеството (х), ако тя е непрекъсната във всика точка на тава множество. Папример функция, непрекъсната във всяка точка на даден интервал, се нарича непрекъсната в този интервал.

Специално ще наричаме функцията ј непрекъсната в сегмента [а, ь], ако е непрекъсната във осяка въпрешна точка на този сегмент, непрекъсната отдясно в точката а и непрекъсната отляво в точката b.

По-рапо, когато дадохме определение за непрекъснатост на функция / в точката а, предположихме, че във всяка 5-околност на точката а се съдържат точки от дефинционната област на функцията, различни от а. Формално можехме да минем без това околност на точката а не се съдържат точки от дефиниционната област на функцията, различни от а. В този случай можем да приємем, че f е непрекъсната в точката а. Разбира се, понятието непрекъснатост на функция е съдържателно, когато и е точка на предположение, т. е. да включим и случая, когато в някоя дсгъстяване за дефиниционната област на функцията,

Определението за непрекъснатост на функция може да се даде

и в следната еквивалентна форма.

Определение 1". Функцията ј се нарича непрекъсната в точката а, ако за всяка околност на точката f(a) съществува околност на точката а, образът на която при изображениеть 🖡 се съдържа в избраната околност на точката f(a).

В глава 12 ще бъде показано (даже и в по-общи случаи), че последното определение за непрекъснатост е еквивалентно на предишните. За упражнение читателят може сам да провери това, Като използваме въведението в 3.5 общо определение за граница на функция по база, можем да обединим понятията непрекъснатост в точката а, непрекъснатост в точката а отдясно и непрекъснатост в точката а отляво.

съдържа точката a и има база B от вида $x \rightarrow a$, $x \rightarrow a + 0$ или Нека функцията f е дефинирана в множеството $\{x\}$, което x→a-0.

Функцията f се нарича непрекъсната в точката a, ако граниравна на /(а).

4.1.2. Аритметични операции с непрекъснати функции. В сила е следната теорема:

Основна теорема 4.1. Нека функциите ј и g имат една и съща дефиниционна област и са непрекъснати о точката а. Тогава и функциите f+g, f-g, $f\cdot g$ и f/g са непрекъснати в точката а (в случая на частно е нужно допълнителното изискване $g(a){\pm}0$).

g(a) и съгласно теорема 3.21 границите на функциите f+g, f-g, f g и f/g съществуват и са съответно равни на f(a)+g(a), f(a) -g(a), f(a), g(a) и f(a)/g(a). Но тъй като тега са стойностите Доказателство. Тъй като функциите / и g са непрекъснати в точката а, границите им в тази точка са съответно /(а) в на тези функции в точката а, то по определение те са пепрекъснати в тази точка.

4.1.3. Сложна функция. Непрекъснатост. Функция, получена в резултат от супернозиция на две или новече функции, ще наричаме сложна (съставна) функция.

Ще определим понятието суперпозкция на две функции, тъй като обобщението за суперпозиция на повече функции е очевидно.

Нека функцията $x = \varphi(t)$ е дефинирана в множеството $\{t\}$ и нека $\{x\}$ е множеството от стойностите ѝ, а функцията y=f(x) е дефинирана в множеството $\{x\}$. Тогава функцията $y=f(\varphi(t))=F(t)$ е суперпозиция на функциите f(x) и $\varphi(t)$, т. е. $f(\varphi(t))$ е сложна (съставна) функция.

свойства на монотонните функции 133

В сила е следната теорема. Теорема 4.2. Нека функцията ф е непрекъсната в точката а, а функцията [е непрекъсната в точката b=ф(a). Тогава сложната функция $F(t)=f(\phi(t))$ в непрекъсната в точката а.

ности на функцията $x_a = \varphi(t_n)$ е сходяща с граница $b = \varphi(a)$. Но функцията f е непрекъсната в точката $b = \varphi(a)$, а редидата $\{x_n\}$ от Доказателство. Нека {tn} е произволна клоняща към а редица от стойности на аргумента на сложната функция. Тъй като функцията $x = \varphi(t)$ е непрекъсната в точката a, то (според определение 1 за непрекъснатост по Хайне) съответната редица от стойстойности на аргумента ѝ клони към $b = \varphi(a)$. Следователно съогветната редица от стойностите на функцията

 $f(x_n)=f(\varphi(t_n))=F(t_n)$

(според определение 1 за непрекъснатост по Хайне) клони към $f(b)=f(\varphi(a))=F(a).$

те на функцията $\{f(\varphi(t_n))\} = \{F(t_n)\}$ е сходяща и има за граница числото $f(\varphi(a)) = F(a)$. Съгласно определение 1 за непрекъснатост по Хайне сложната функция е непрекъсната в точката a. И така за всяка редица {tn}, клоняща към а, от стойности на аргумента на сложната функция съответната редица от стойности-

4.2. Свойства на монотонните функции

4.2.1. Монотонии функции. Ще далем следното определение: Определение 1. Функцията f се нарича ненамаляваща (не-растяща) в жножеството {x}, ако за произволни точки x1 и x3 от това множество, такива, че х1<х2, е изпълнено неравенството

 $f(x_1) \le f(x_2)$ $(f(x_1) \ge f(x_2))$. Ценамаляващите и нерастящите функции се наричат момотомни финкции.

Определение 2. Функцията ј се нарича растяща (нажаляваща) в множеството {х}, ако за произволни точки х1 и х2 от това множество, такива, че $x_1 < x_2$, е изпълнено неравенството $f(x_1)$

 $< f(x_2) (f(x_1) > f(x_2)).$ Растящите и намаляващите функции се наричат строго мо-HOMOTONILL.

Примери:

1. Функцията f(x) = x е строго монотония, по-точно растяща върху цялата числова ос.

2. Функцията $i(x)=x^2$ е растяща върху полуоста $x\ge 0$ и намаляваща за х ≤ 0.

3. Функцията / (x) = sgn x е ненамаляваща върху цялата числова ос. 4. Функцията f(x)=1/x е намаляваща при x<0 и x>0.

4.2.2. Понятието обратна функция. Нека функцията ј е дефини-рана в сегмента [а, b] и нека множеството {v} от стойностите може да се дефинира функция, компо на всяко у от $[\alpha, \beta]$ съпо-ставя тази спойност на x от [a, b], за компо f(x)=y. Тази функция се означава със символи f^{-1} и се нарича obpamna функна тази функция е сегментът [а,]]. Нека освен това на всяко у мента [а, b], за която f (х)=у. При тези условия в сегмента [а, β] от сегмента [а, β] съответствува само една стойност на х от сегция на функцията f.

значно изображение, иж. 2.7). Тогаза може да се определи обрат-В този случай уравнението y = f(x) има, и то единствено решение Нека (x) и (y) са произдолни мпожества и f с взаимно еднопото на / изображение /-1 на множествого $\{y\}$ в множеството $\{x\}$.

относно х, т. е. за даден елемент у еднозначно се определя х и f^{−1}. Ще отбележим, че ако х = f^{−1} е обратната функция на f, то очевидно функцията f е обратна на функцията f^{−1}. Затона функтинте f и f^{−1} се наричат взацмно обратни. Очевидно е, че

$$f(f^{-1}(y)) = y, f^{-1}(f(x)) = x.$$

Примери:

Функцията $x = f^{-1}(y) = \frac{1}{2}$ y, дефинирана в сегмента [2a, 2b], ще Нека функцията у=2х е дефинирана в сегмента [a, b]. Миожеството от стойности на тази функция е сегментът [2u, 2b].

бъде обратна на дадената функция y = 2x.

2. Да разгледаме функцията $y = x^2$ и сегмента [0, 2]. Множеството от стойности на тази функция е сегментът [0, 4]. В този сегмент е дефинирана функцията $x=\sqrt{y}$, обратна на дадената функция.

3. Да разгледаме в сегмента [0, 1] функцията

$$y = \begin{cases} x, & \text{ако } x \text{ е рационално число,} \\ 1-x, & \text{ако } x \text{ е ирационално число.} \end{cases}$$

Не е трудно да се убедим, че дефиппрапата в сегмента функция

$$= \begin{cases} y, \text{ ако } y \text{ е рационално число,} \\ 1-y, \text{ ако } y \text{ е нрационално число} \end{cases}$$

е обратна на дадената функция.

Ще докажем няколко твърдения за монотонни функции.

Ше започнем с доказателство на една лема, която е вярна ва всяка монотонна (не е задължително строго монотонна) функция.

Лема. Ако функцията f е монотонна в сегменти [a, b], то тя има дясни и ляви граница във всяки въпрешна точка на сегмента

свойства на монотопните функции 135

[а, b] и освен това има дясна граница в точката а и яява грани-

Токазателство. За доказателството на лемата е доста-тъчно да се докаже: 1) съществуването на дясна граница във всяка точка с при $a \le c < b$; 2) съществуването на лява граница във всяка точка с при $a < c \le b$.

Ще докажем само първото твърдение, тъй като второто се доказва аналотично. При това ще разгледаме случая, когато функдията f е ненамаляваща в сстмента [и, b] (случаят на перастяща

функция се разглежла аналогично).

празно (тъй като c < b) и е ограничено отдолу (понеже функцията f е ненамаляваща в полусетмента $c < x \le b$ и f(c) ще бъде долната удовлетиориващи перавенствата $c < x \le b$. Множеството $\{ \hat{l}(x) \}$ не eданото множество има точна долна траница, която ще означим с ү. Ще докажем, че ү с дясна граница на функцията / в точката И така нека функцията f е пенамаляваща в [а, b] и с е производна точка, за която $a \le c < b$. Разглежнаме множеството $\{i(x)\}$ от венчки стойности на функцията / за стойности на аргумента х, граница на това множество). От теорема 2.1 следва, че разглежc, T. e. ue 7=/(c+0).

Избираме произволно положително число в. От определението на точна долна граница следва, че същестнува такова положително число 5, ненадминаващо b-c, че стойността $f(c+\delta)$ на функцията да удовлетнорява перавенството $f(c+\delta) < \gamma + \epsilon$.

x от този интервал е изпълнено и неравенството $\gamma \le f(x)$, то за всяко x от интервала $c < x < c + \delta$ ще са изпълнени и неравенствата Но тогада порачи монотояността на функцията / за всяко ж OT HIITEDBAJJA c < x < c + 3 III. IMAMO $/(x) < \gamma + \varepsilon$. This Kato 3a RCRKO

$$\gamma \leq f\left(x\right) < \gamma + \varepsilon \text{ with } |\gamma - f\left(x\right)| < \varepsilon,$$

а това означива (според определението за дисна граница по Кошп),

че числото у с дасна граница на функцията / в точката с. □ Забедежка към демата. При предположенията на лемата и при условие, че / е ненамаляваща функция, за псяко с и всяко x, уловлетнориващи съотношенията $a \le c < x \le b$, ще са изпълнови перавенствата

$$j(a) \le j(c) \le j(c+0) \le j(x) \le f(b),$$

а за всяко с и всяко х, удовлетвориващи съотношенията и < x<с ≤ b, ще бъдат изпълнени

$$f(a) \le f(x) \le f(c-0) \le f(c) \le f(b)$$

При условие, че функцията f е нерастяща, знаците в неравеист-вата (4.1) и (4.2) се сменят с противоположни.

Нека папример f е ненамаляваща в [a,b] и $a \le c < x \le b$. Тогава $f(a) \le f(c) \le f(x) \le f(b)$. От последните неравенства веднага следва, че $f(a) \le f(c) \le f(c+0) \le f(b)$. За да завършим доказателството на неравенствата (4.1), трябва да се убедим, че $f(c+0) \le f(x)$ $\leq f(b)$ as всяко x от полусегмента $c < x \leq b$, но то следва непосредствено от това, че числого $\gamma = f(c+0)$ е (както е доказано в лемата) точна долна граница на множеството от стойности на функцията f в полусетмента $c < \kappa \le b$. Верността на неравенствата (4.2) се проверява аналогично.

Сега ще докажем три теореми за строго монотолии функции.

ности на функцията е сегментът [а, β] (съотвятно сегментът [в, а]), то в сегмента [а, β] е дефинирана функцията [-1, обрат-Теорема 4.3. Некл функцията ў расте (намалява) в сегмента на на функцията f, която е също растяща (намаляваща) в този [a, b] u heka $\alpha = f(a)$, $\beta = f(b)$. And mhowesemed om scurku smoŭ-

предположението, че функцията f е растяща в сегмента [a, b] (за Доказателство. Ще проведем всички разсъждения при намаляваща функция разсъжденията са аналогични).

между сегментите $a \le x \le b$ и $\alpha \le y \le \beta$. Наистина това, че на всяко x от [a, b] съответствува само една стойност y от $[\alpha, \beta]$, следва от определението на функция, а това, че на всяко у от $[\alpha, \beta]$ chornercrays cano exuo x or [a, b], cheres of yelloshero, we Функцията / осъществява взаимно еднозначно съотретствие функцията f е растяща.

Да покажем сега, че ако f расте в [a, b], то н f^{-1} също расте в $[\alpha, \beta]$. Нека $y_1 < y_2$, където y_1 н y_2 са произволни числа от $[\alpha, \beta]$. Тогава $x_1 = f^{-1}(y_1) < x_2 = f^{-1}(y_2)$, тъй като в противен случай при $x_1 \ge x_2$ от това, че функцията y = f(x) е растяща, ще следва, че у₁≥у, което противоречи на условието у₁<у₂. □

жеството $\{x\}$, а $\{y\}$ е множеството от всички стойности на функ-цията. Тогава в множеството $\{y\}$ е дефинирана функцията f^{-1} , обратна на функциита f, и тя е също растяща (намаляваща) в Забележка 1. Съвсем аналогично се доказва едно по-общо твърдение: Нека / е дефинирана и растяща (намаляваща) в мно-MHOWECTROTO { y}.

Теорема 4.4. Нека функцията f е растяща (намаляваща) в сегмента [a,b] и нека $\alpha = f(a)$, $\beta = f(b)$. Необходимо и достатъчно условие функцията f да бъде непрекъсната в сегмента [a,b] е всяко число у, заключено между α и β , да бъде стойност на тази

растяща функция, тъй като за намаляваща функция те са ана-Доказателство. Всички разсъждения ще проведем за

I. Необходимост. Нека функцията f е растяща и непрекъсната в сегмента [a, b]. Трябва да се локаже, че всяко число γ , удовлетворяващо условията $\alpha < \gamma < \beta$, е стойност на функцията в някоя 137 СВОЙСТВА НА МОНОТОННИТЕ ФУНКЦИИ

Нека $\{x\}$ е множеството от онези стойности на x от сегмента [a, b], за които $f(x) \le \gamma$. Множеството $\{x\}$ не е празно (то съдържа точката a, понеже $f(a) = \alpha < \gamma$) и е ограничено отгоре (например от числото b). Според основната теорема 2.1 множеството $\{x\}$ нма точна гориа граница, която ще означим с c: c=sup $\{x\}$. Остава точка с от сегмента [а, b].

да се докаже, че $f(c) = \gamma$. Най-няпред ще се убедим, че $f(x) \le \gamma$ за всяко x от [a, b],

лежащо наляво от c, и $f(x) > \gamma$ за всяко x, лежащо падясно от c. Действително, ако x < c, то според определението на точна горна гранина съществува x' от полуинтервала $x < x' \le c$, принадлежащо на множеството $\{x\}$, т. е. такова, че $f(x') \le \gamma$. Но понеже f е растища, ще следва, че $f(x) \le \gamma$ (тъй като f(x) < f(x')).

Освен това всяко х, лежащо надясно от с, не принадлежи на множеството $\{x\}$ и затова за него ще 6ьле изпълнено неравенст-BOTO $f(x) > \gamma$.

те ѝ членовс x_n са надяво от c, то $f(x_n) \le \gamma$ за всеки номер n и (теорсма 3.13) Іїт $f(x_n) \le \gamma$. Но понеже функцията f е непрекъс-Сега ще се убедим, че c е вътрешна точка на сегмента [a, b]. Ще докажем, че c < b. Да предположим, че това не е така, т. е. допускаме, че $c\!=\!b$. Да вземем произволна клоняща към $c\!=\!b$ растяща редица $\{x_n\}$ от точки на сегмента [a, b]. Тъй като всичкината в точката c=b, то $\lim f(x_n)=f(b)=\beta$. Така получаваме не-

равенството β < у, което противоречи на условието ү < β. Полученото противоречие доказва, че с<b 2-100

Съвършено аналогично се доказва, че a < c.

За да докажем, че $f(c) = \gamma$, ще разгледаме две клонящи към И така доказахме, че с е въгрешна точка на сегмента [а, b]. с от различни страни редици от точки на сегмента [a, b] — растяща рединца $\{x_n^*\}$ и намаляваща рединца $\{x_n^*\}$. Тъй като функцията f е непрекъсната в тотката c, то

$$\lim_{n\to\infty} f(x_n') = \lim_{n\to\infty} f(x_n'') = f(c).$$

От друга страна, тъй като $x_n' < c < x_n''$ за всеки номер n, то $f(x_n') \le \gamma$, $f(x_n'') \ge \gamma$ (за всеки номер n). Но тогава от теорема 3.13

$$\lim_{n\to\infty} f(x_n') = f(c) \le \gamma, \lim_{n\to\infty} f(x_n'') = f(c) \ge \gamma,$$

ОСНОВНИ ЕЛЕМЕНТАРНИ ФУНКЦИИ

функция. Ще докажем, че функцията f е непрекъснята в сегмента [a,b]. Достатъчно е да докажем, че f е непрекъснята отдясно във 2. Достатъчност. Нека функцията f е растяща в сегмента [a,b] и нека всико число γ от сегмента [a,b] е стойност на тази всяка точка c, удовлетворяваща условнята $a \le c < b$, и непрекъсната отляво във всяка точка с, удовлетноряваща условията $a < c \le b$. Ще се ограничим с доказателството за непрекъснатост отдясно

във всяка точка c, които удовлетворива условията $a {\le} c {<} b$, тъй като втората част на твърдението се доказва апалотично,

доказаната по-горе лема, ще се различава от стойността f(c) и съгласно забележката към същата лема неравенствата (4.1) ще нейната дясва граница f(c+0), комто съществува въз основа на в някоя точка c, удовлетворяваща условията $a \le c < b$. Тогава Да предположим, че функцията f не е непрекъсията отдясно присмат вида

$\alpha = f(\alpha) \leq f(c) < f(c+0) \leq f(x) \leq f(b) = \beta$

(за всички x от полуинтервала $c < x \le b$).

което противоречи на това, че исяко число у от сегмента [а, β] е Неравенствата (4.27) показват, че съдържащият се в $[\alpha, \beta]$ сегмент [f(c), f(c+0)] не съдържа стойности на функцията f(x). стойност на тази функция.

непрекъсната в сегмента [a, b] и нека $\alpha = f(a), \beta = f(b)$. Тогава в сегмента [а, В] (съответно в [в, а]) е дефинирана функцията [-1, обратни на функцията ї, и тя е също растяща (намаляваща) и Теорема 4.5. Нека функцията Г с растяща (намалявица) и непрекъсната в посочения сегмент.

Накратко от строгата монотопност и непрекъснатост на една функция в сегмента [а, в] следва съществуването на строго монотоння и непрекъсната обратна функция в съответния сегмент.

Доказателство. Ще проведем всички разсъждения за растяща функция, тъй като за намаляваща функция те са ана-

логичии.

функция $\not\vdash$ 1 е сегментът [a, b], където $a=\not\vdash$ 1(a) и $b=\not\vdash$ 1(β). \Box Забележка 2. Може да се докаже, че от същеструването необходимост). Но тогава от теорема 4.3 следва, че в сегмента Остава да се докаже, че обратната функция е непрекъсната в сегмента [а, в]. Това следва непосредствено от теорема 4.4, като се вземе пред вид, че множествого от всички стойности на обратната Тъй като f е растяща и непрекъсната в сегмента [а, b], множеството от всичките ѝ стойности е сегментът [а, [3] (теорема 4.4, $[\alpha,\ \beta]$ съществува обратната ѝ функция /--, която е растяща.

на обратна функция на функцията f, непрекъсната в сегмента [a, b], следва, че f(x) е строго монотонна в този сегмент (вж. 4.6.2).

4.3. Основни елементарни функции

Основни елементирни функции се наричат функциите : $y = x^a$, $y = a^x$, $y = \log_x x$, $y = \sin x$, $y = \cos x$, y = tgx, y = ctgx, $y = arc \sin x$, y=arccos x, y=arctg x, y=arcctg x.

Ще разгледаме въпроса за непрекъспатост на основните сленентарии функции, като се спрем на въпросите за дефинирането и мякон свойства на тези функции.

ното число х в цяла положителна степен и, трябва да се умножи 4.3.1. Показателна функция. Ще започнем с дефинирането на рационална степен на положително число. За да се повдигне реалтова число само на себе си и пъти.

Следователно при цяло и можем да считаме, че функцията $y=x^n$ е определена за всяко реално число x. Ще установим иякои от най-простите спойства на тази функции.

(Лема 1. Степенната функция $y=x^n$ при $x\ge 0$ и цяло положително п е растяща и непрекъсната.

+х7-1). Двата множителя в дясната страна са положителни поради избора на х1 и х2. Затова и лявата страна наравенството е положителна, т. е. $x_2^n>x_1^n$, а тона означива, че функцията $y=x^n$ е рас-Доказателство. Ще покажем, че функцията у=х" е растяща. Нека $0 \le x_1 < x_2$. Тогара $x_2^n - x_1^n = (x_2 - x_1)(x_2^{n-1} + x_2^{n-2}x_1 + \cdots$

Непрекъснатостта на функцията $y=x^n$ във всяка точка a на безкрайната праза — $\cos < x < + \infty$ беше установена в пример 1 на тяща при $x \ge 0$.

Да разгледаме степенната функция $y=x^n$ в сегмента [0, N], където N е произволно положително число. Тъй като функцията която ще означим с $x=y^{1/n}$. Тъй като N може да се избере гроиз-волно голямо, то и N^n може да се награви произволно голямо. Следователно функцията х-уіл е дефинираца за венчки неотрицателни стойности на у. Ако сменим в тази функция означението тя има непрекъспата и растяща обратиз функция в сегмента [0, N"], е непрекъсната и растина в този сегмент, то според теорема 4.5 на аргумента у с х, а означението на функцията х с у, ще получим степенната функция $y=x^{1/n}$, дефинирана за всяко ревлио $x\geq 0$.

ложителното число а. Определяме най-напред а^{1/а} като реално Сега можем да дефинираме всяка рационална степен г на почисло b, равно на стойността на функцията $y=x^{1/n}$ в точката a. По-нататък, ако r=m/n, където m и n са цели положителни числа, полагаме

$$a^* = a m / n = 0$$

основни елементарни функции

Освен това по определение полагаме

$$a^{0} = 1$$
, $a^{-r} = (1/a)^{r}$ (npu $r > 0$).

Така дефинирахме произволна рационална степен на положително

Рационалните степени на положителните реални числа имат следните свойства:

$$(a')^s = a^{rs}, \ a' \cdot b' = (ab)^r, \ a' \ a^s = a^{r+s}.$$

като лявата и дясната му страна се получават чрез умножаванена Ще докажем най-напред първото свойство. Ще отбележим, че при цяло положително p равенството $(a^{m(n)})^p = a^{mp(n)}$, където m в л са произволни цели положителни числа, е очевидно вярно, тъй числото а^{1/п} само на себе си тг.р пъти.

Ще докажем равенството $(a^r)^r = a^{rs}$ за всички положителни рационални r и s. Нека $r=m_1/n_1$ и $s=m_2/n_2$. Полагаме $c_1=(a^{m_1n_1})^{m_2^2n_3}$, $c_s = a^{m_1 m_b n_1 n_b}$. Ako Johychem, we $c_1 + c_2$, to κ $c_1^{n_b} + c_2^{n_b}$, the kato ϕ yhkцията y=x е растяща и оттук поради верността на равенството

 $(a^{m/n})^p = a^{mp/n}$ за цели стойности на p ще получим $(a^{m_i l n_i})^{m_i + a} a^{m_i m_i l n_i}$. Но това противоречи на доказапото вече равенство (атыл)т = ст.т. при цели та, па и та. Така с1=с2, с което първото спойство е до казано за произволни положителни рационални числа г и s.

неположителни г и S, като се има пред вид, че по определение Валидността на това равенство лесно може да се разшири за

$$a^0 = 1$$
, $a^{-r} = (1/a)^r$ npu $r > 0$.

където т н п са цели положителни числа. Ще отбележим, че е достатъчно да се докаже равенството $a^{1/n}b^{1/n}=(a.b)^{1/n}$, тъй като Второто равенство a'.b' = (ab)' е също така достатъчно да се докаже само за положителни рационални числа г. Полагаме г=т/п, общото равенство $a^r,b^r = (a,b)^r$ се получава от това чрез умножаването му само на себе си т пъти.

вид, че от свойствата на взанмно обратните функции $\mathbf{y}=x^{1/n}$ и $\mathbf{x}=\mathbf{y}^n$ следва $(b^{1/n})^n=b$, $(a^{1/n})^n=a$, $((ab)^{1/n})^n=ab$. Ако положим c_1 За доказване на равенството $a^{1/n}$. $b^{1/n} = (a.b)^{1/n}$ ще вземем пред $=a^{1/n}$. $b^{1/n}$, $c_2 = (ab)^{1/n}$ и предположим $c_1 + c_2$, ще получим, че $c_1^n + c_2^n$,

което противоречи на равенството ab=ab.

тогава $r = m_1 \, n_2/n_1 \, n_2$, $s = m_2 n_1/n_1 \, n_2$ и стигаме до следните равенства : Ще докажем сега последното свойство a' a'=a'+', отчитайки, че първите две са вече доказани. Нека $r=m_1/n_1$, $s=m_2/n_3$;

$$a^r \, a^z = (a^{1/n_1 n_2})^{m_1 n_2} \, (a^{1/n_1 n_2})^{m_2 n_1} = (a^{1/n_1 n_2})^{m_1 n_2} + m_1 n_2$$

Последното равенство е вярно, защото $m_1 n_2$ и $m_2 n_1$ са цели числа-

По такъв начин

$$a^r \cdot a^s = a \left(m_1 r_2 + m_2 r_1 \right) (r_3 r_3 = a^m_1 / r_1 + m_2 / r_3 = a^r + s^r_1 + a^r_2 + a^r_3 + a^r_3 + a^r_4 + a^r_3 + a^r_3 + a^r_4 + a^r_3 + a^r$$

което трябваше да докажем.

При a>1 и рационално r>0 е изпълнено неравенството a'>1. Наистина нека f=m/n и $a'=a^{m/n}\leq 1$. Умножавайки почленно и пъти тиворечи на неравенството ат>1, получено от почленното умногорното неравенство, ще получим а™≤1. Но това неравенство прожение на неравенството а>1 само на себе си т пъти.

нечетен знаменател п, то определението за рационална степен може Ще отбележим също, че ако рационалната дроб r=m/n има да се разшири и за отрицателни числа, като при a>0 положим

$$(-a)'=a'$$
, ako m e четно,

$$(-a)' = -a'$$
, ako m e нечетно.

Да се убедим, че функцията $y=a^x$ при a>1, дефинирана в множеството на рационалните числа, е монотонно растяща в това MHOMECTEO.

Наистина нека г, и г, са две такива рационални числа, чеr₁>r₁. Torana

$$a^{r_1} - a^{r_1} = a^{r_1} (a^{r_1} - 1).$$

Понеже $r_2 - r_1 > 0$ и a > 1, от доказаното по-рано имаме $a^{r_1 - r_1} > 1$, така че дясната страна на равенството (4.3) е положителна. Следователно

което трябваше да докажем.

Ше дефинираме накрая функцията $y = a^x$ не само за рационалпроизволно реално число. Ще разгледаме всички двойки рацио-нални числа α и β, които удовлетворяват перавенствата

Ще дефинираме а* за а>1 като реално число у, удовлетворяващо неравенствата

$$a^a \leq y \leq a^{\beta}$$

конто удовлетворяват за всички двойки рационални числа и в, неравенствата (4.4).

Оназва се, че такова число съществува и то е само едно. Следователно функцията $y=a^x$ ще бъде дефинирана в множеството на всички реалки числа х. EMEHTAPHH ФУНКЦИИ

EI

OCHOBHH

Ще покажем, че тази функция е растяща и непрекъсната върху цялата реална права. Тези тиърдения се съдържат в следващите

всички възможни двойки рационални числа а и В, удовлетворяващи неривенствата (4.4), съществува, и то само едно реално число У, Лема 2. За всеки дзе фиксирани реални числа х и а>1 и

което удовлетворня неравенствата (4.5).

кажем, че у удовлетиоряна нераченствата (4.5). От определението а верността на дясното неравенство (4.5) следва от това, че a^{β} е Тогава множеството $\{a^{\mu}\}$ е ограничено отгоре и числото a^{μ} е негова горна граница. От основната теорема 2.1 следва, че множестза точна горна граница следва верността на лявото исравенство (4.5), вото $\{a^{\alpha}\}$ има точна гориа гранцца, която ще означим с y. Ще поедна горна граница и у е точпата горна граница за множеството {a*}. така че да удовлетворяна дясното неравенство (4.4), и разглеждаме равенство (4.4). Тъй като и< в и показателната функция, дефинирана и множеството на рационалните числа, е растяща, то $a^a < a^{\beta}$. Доказателство. Ще покажем най-напред съществувансто всевъзможните рационални числа с, удовлетворяващи лявото нена такона число у. Фиксираме произволно рационалното число в,

числа α и β , удовлетворяващи неравенствата (4.4), за конто $\alpha^{\beta} = \alpha^{\alpha} < \epsilon$. Тогава всеки две числа y_1 и y_2 , удовлетноряващи нетях по абсолютна стойност е по-малка от всяко отнапред избрано Ще докажем сега, че това число у е само сдио. За това е достатъчно да се покаже, че за всяко в>0 съществуват рационални равенствата (4.5), трябна да съвнадат, тъй като разликата между

Фиксираме произволно положително число в и рационално число ро, удовлетворяващо дясното неравенство (4.4). Тогава, тъй Karo $a^a < a^{h_0}$, to чнсло в>0.

 $a^{\beta}-a^{\alpha}=a^{\alpha}\left(a^{\beta-\alpha}-1\right)< a^{\beta_0}\left(a^{\beta-\alpha}-1\right).$

Неравенството $a^{\mu}-a^{a}<\varepsilon$ ще бъде доказано, ако установим съществуването на такива рационални α и β , че $\mu^{\beta-n}-1<\varepsilon/\mu^{\beta_0}$.

то 8, е положително. Използвайки първите два члена в развитието Следователно достатьчно е да се докаже съществуването на такова естествено число n, че $a^{1/n}-1< \epsilon^{\pmb{\ell}_e}$. Нека $a^{1/n}-1+\delta_n$. Тъй като $a^{1/n}>1$, В глава 2 беще доказано, че за всяко естествено число п съществуват такива рационални числа се и р., удовлетворяващи неравенството (4.4), че разликата им $\beta-\alpha$ да е по-малка от 1/n. на бинома на Нютоп, получаваме

$$a = (a^{1/n})^n - (1 + \delta_n)^n > 1 + n \delta_n$$
.

Да изберсм сега естествено число и, което да удовлетворява не-Оттук a-1>n . δ_{ϵ_1} т. е. $0<\delta_n<(a-1)/n$. И така $a^{1/n}-1=\delta_n<(a-1)/n$.

равенството $(a-1)/n < \varepsilon |u^{\mu}$, т. е. $n > (a-1) |a^{\mu}| \varepsilon$. Тогава $a^{1/n} - 1 < (a-1)/n < \varepsilon u^{\mu}$. С това доназателството за слинстиеността на числото у. удовлетворяващо неравенствата (4.5), е завършено. 🗆

дефинирана само в множеството на рационалните числа, то a^{x} е Ше отбележим, че ако х с рационално число и а* е стойпървоначално това единствено число у, косто удовлетворява неравенствата (4.5). ността на показателната функция в точката ж,

Лема 3. Показателната функция у=а* при а>1 є растяща

върху цялата безкрайна права.

от определението на показателната функция следват перавенствата ағі≤а" да ≤ат. От друга страна, тъй като и<β и показателната функция е растяща в множеството на рационалните числа, е изпълнено неравенството $a^a < a^{\beta}$. Отнеравенствата $a^{\kappa_1} < a^a$, $a^a < a^{\beta}$, $a^\mu < a^{x_b}$ и снойството транзитивност на знаците < и = полу-Доказателство. Нека x_1 и x_2 са такива произволии числа, че $x_1 < x_2$. Винаги съществуват такива рационални числа α и β , че $x_1 < a < \beta < x_2$ (вж. лема 2 от 2.3). Тъй като $x_1 < \alpha$ и $\beta < x_2$, то чаваме $a^{z_i} {<} a^{z_i}$, а това показва, че функцията $y = a^x$ е растяща. \square

Лема 4. Показателната функция у=a*(a>1) е непрекъсната във всяка точки на безкрайната права.

съществува такъв номер N, че $|\alpha^*\pi-\alpha^*|<\varepsilon$ за всяко $n{\simeq}N$. Избираме произволно $\varepsilon{>}0$ и такива рационални числя α и β , че Доказателство. Нека х е произволно реално число, а къснатост по Хайне е достатъчно да се докаже, че за всяко с>0 $a < x < \beta$ и $a^{\beta} - a^{\alpha} < \varepsilon$. Възможността за всяко $\varepsilon > 0$ да се изберат такива числа и и в беше доказана в лема 2. Тъй като редицата $\{x_n\}$ клони към х и $\alpha < x < \beta$, то съществува такъв номер N, че за всяко п≥Л да са изпълнени неравенствата α<хл<β. Понеже по-{x_n} е клоняща към х редица. Съгласно определението за непреказателната функция е монотонно растяща, то $u^a < a^x < a^\mu$, a^a $\langle a^{\epsilon}n \langle a^{\beta} | \text{при всички } n \geq N.$

Следователно двете числа а* и а*п при п > N са заключени между числата а° и ай, разликата между които ай-а° е по-малка от в. Оттук следва, че при п≥N е изпълнено неравенството $|a^{r_n}-a^r|<\varepsilon$, което показва, че показателната функция с непрекъсната в произволна точка х. □

Ще получим сега някои следствия от доказаните свойства на показателната функции. Преди това ще отбележим, че ако 0 < a < 1, то a = 1/b, където b > 1. Затова функцията $y = a^x$ при 0 < a < 1 може да се дефинира като функция $y=h^{-x}$ при b>1.

Следствие 1. Показателната функция у=а* е положителна за всички стойности ни х.

Ако и е произволна точка от числовата ос, а г е такова рапоказател ционално число, че г<х, то според определението на ЕЛЕМЕНТАРНИ ФУНКЦИИ

OCHOBILI

ната функция в множеството на рационалните числа имаме $a\!>\!0,$ а от лема 3 — че $a^r < a^r$. Следователно $a^r > 0$.

Следствие 2. Показателната функция $y=a^x$ при a>1 удовлет-

ворява условията: $\lim a^x = 0$, $\lim a^x = +\infty$.

Наистина, тъй като a>1, то $a=1+\delta$, където $\delta>0$ и $a^n=(1+\delta)^n>1+n\delta$. Следователно lim $a^n=+\infty$. От монотонността на функцията $y=a^*$ получаваме, че и lim $a^*=+\infty$. Понсже $a^{-n}=1/a^n$,

To $\lim a^n = 0$, otkehæto $\lim a^n = 0$.

Следствие 3. Стойностите на функцията $y = a^{\pm}$ запълват изцяло

на функцията а* и от теорема 4.4 следва, че всяко положително ности (следствие 1) — както произволно малки, така и произволно големи (следствие 2). От непрекъснатостта и строгата монотонност Действително функцията $y=a^x$ приема само положителни стойчисло е стойност на функцията у-а", положителната полуправа у>0.

Следствие 4. За всеки две реални числа х, и х, са изпълнени

$$(\alpha^{x_1})^{x_1} = \alpha^{x_1x_1}, \ \alpha^{x_1}, \ b^{x_1} = (a \cdot b)^{x_1}, \ \alpha^{x_1}, \ \alpha^{x_2} = \alpha^{x_1 + x_2}.$$

ние. Нека $\{r_n'\}$ и $\{r_n'\}$ са редици от рационални числа, клонящи Наистина тези съотношения вече бяха установени при рационални показатели. Оттук следва и верността им при произволни реални показатели. Ще се убедим в това например за първото съотноше-

съответно към
$$x_1$$
 и x_2 . Тогава $(a'^a)'^{a'} = a'^{r'}{}^{r'}$.

Граничният преход при п→∞, като използваме свойството непремъснатост на показателната функция, ни дава $(a^{x_1})^{x_2} = a^{x_1 x_2}$. Аналогично се установява верността и на останалите съотношения.

Ако 0 < a < 1, като положим b = 1/a, то b > 1 и определяме

крайната права. Следствия 1, 3 и 4 са верни и за функцията у=а* натостта ѝ следна от самото определение. От определението следва Ще отбележим, че досега фактически изучихме и свойствата на показателната функция $y=a^x$ при 0 < a < 1. Наистина непрекъссъщо така, че тази функция е монотоино намаляваща върху безпри 0 < a < 1, а следствие 2 очевидно ще изглежда така: $a^x = b^{-x}$

$$\lim_{x \to -\infty} a^x = +\infty, \lim_{x \to +\infty} a^x = 0.$$

На фиг. 4.1 и 4.2 са изобразсни графиките на функцията $y = a^*$ sa chyqante a>1 n 0 < a < 1.

Забележка. Поназателната функция може да се определи и като решение на функционално уравнение, уловлетворяващо опребезкрайната права и удовделени условии. Може да се докаже, че съществува, и то един ствена функция /, дефинирана върху детворяваща следните три условия:

1) за всеки две реални числа х₁ и х₂ е изпълнено равенството

 $f(x_1 + x_2) - f(x_1)$. $f(x_2)$; 2) f(0) - 1. f(1) = a при a > 1; 3) функцията f(x) е непрекъсната в точката x = 0. Такава функция е построената по-горе функция a^x

делим като обратна на показателната. Пека [с, d] е произволен сегмент от безкрайната права. В този сегмент функцията у-а* при а>1 с непрекъсната и растица. Затова според теорема 4.5 функцията $y = f(x) = a^x$ има растяща и непрекъсната обратня функцвя $x=f^{-1}(y)$ в сегмента [a^{ϵ} , a^{ϵ}], която се нарича логаритмична 4.3.2. Логаритмична функция. Логаритмичната функция ще опрефункция и се означара така:

$$x=i^{-1}(y)=\log_{x}y$$
.

Като заменим означението на аргумента у с х, а означението на функцията х с у, ще залишем функцията в обичайния й вид

$$y = \log_2 x$$
.

Случаят 0 < a < 1 се разглежда аналогично. Ще отбележим някои свойства на логаритмичната функция, следващи непосредствено от определението ѝ.

1. Логаритмичнита функция е дефинирана за всички положителни стойности на х. Нанстина стейности на аргумента на лога-

 $^{\circ}$ Може да се докаже, че условнето I(0)=1 е следствие от останалите (и затова може да се илиусне).

30 Математически сислиз, Г ч.

ОСНОВНИ ЕЛЕМЕНТАРНИ ФУНКЦИИ

конто, както видяхме, са само положителни и запълват полупрафункция, ритмичната функция са стойностите на показателната

 Догаритмичната функция е непрекъсната и растяща върху цялата полуправа х>0 при а>1 и непрекъсната и намаляваща върху цилата полуправа x>0 при 0<a<1; при това

$$\lim_{x\to 0+0} \log_a x = -\infty, \lim_{x\to +\infty} \log_a x = +\infty \text{ npu } a>1;$$

$$\lim_{x\to 0+0} \lim_{x\to +\infty} \log_a x = +\infty, \lim_{x\to +\infty} \log_a x = -\infty \text{ npu } 0 < a<1.$$

Тези свойства следват от свойствата на показателната функция.

3. За произволни положителни числа х, и х,

$$\log_a(x_1 x_2) = \log_a x_1 + \log_a x_3.$$

Гова свойство също така следва от свойствата на показателната функция.

Забележка. Специално ще отделим логаритмичната функция $y = \log_e x$, където $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. За тази функция се използва

На фиг. 4.3 и 4.4 са дадени графиките на логаритмичната функция $\log_a x$ за случаите a>1 и 0<a<1. означението у=In х. Логаритъм при основа е се нарича натурален

логаритмична и показателна функция. Нека х>0. Тогава степенната 4.3.3. Степенна функция. Степенната функция при произволен реален показател и може да се дефинира и като суперпозиция на функция се представя така;

$$y = x^{\alpha} = (a^{\log_{\alpha} x})^{\alpha} = a^{\min_{\delta_{\alpha} x}}$$

където а е произполно фиксирано число и за определеност ще го вземем по-голямо от единица.

От това представяне и от факта, че при а>1 логаритмичната функция с растяща върху цялата полуправа х>0, а показаче степенната функции $y=x^*=a^{a\log_3 x}$ е растяща при $\alpha>0$ и намателната функция е растяща върху пялата безкрайна права следва, ляваща при $\alpha < 0$ върху полуправата x > 0.

Степенната функция има следните свойства:

 $\lim_{x\to 0+0} x^n = 0$ при a>0, $\lim_{x\to 0+0} x^n = +\infty$ при a<0. Наистина нека $\{x_n\}$ е За степенната функция са изпълнени съотношенияти произволна клоняща отдясно към нула редица от стойности на аргумента х". Тъй като lim log_а х"= — ∞, то от свойствата на по-

казателната функция следва, че $\lim a^{a \log_a x_n} = 0$ при a > 0 и $\lim \alpha^{a \log_a x_n} = + ∞$ при α<0. По дефиниция полагаме 0^a =0 при α>0 и ще считаме този израз за неопределен при α≤0. Степенната функция у=х⁴ = а^{4 log a x} е непрекъсната във всяка точка x на отворената полуправа x>0,

на сложив функция, като се вземе пред вид, че функцията $u\!=\!\alpha\log_a\!x$ Това следва непосредствено от теорема 4.2 за непрекъснатост е непрекъсната във всяка точка x>0, а функцията $y=a^{a}$ е непрекъсната във всяка точка от безкрайната права.

Забележка, Ако показателят и на степенната функция с рационално число m/n, където n е нечетно цяло число, то степенната функция $y=x^a$ може да се дефинира върху цялата числова ос чрез формулите;

 $y=-|x|^{\alpha}$, ako $\alpha=m/n$ и m е нечетно. $y=[x]^a$, ako a=m/n n m e четно,

На фиг. 4.5 и 4.6 са дадени графиките на степенната функция $y = x^{\alpha}$ за различни стойности на α .

гонометричните функции у=sin x, у=cos x и функциите, които се 4.3.4. Тригонометричии функции. Вече имаме представа за тринзразяват чрез тях;

$$y = \lg x = \frac{\sin x}{\cos x}$$
, $y = \operatorname{clg} x = \frac{\cos x}{\sin x}$, $y = \sec x = \frac{1}{\cos x}$,

се докаже следното твърдение: Съществува и при това един-ствена двойка функции ј и g, определени за всички реилни стой-ности на аргумента х и удовлетворяващи условияти: решения на система функционални уравнения. По-точно може да $y=\cos cx=\frac{1}{\sin x}$. Определенията на функциите $y=\sin x$ и $y=\cos x$ Логически безупречно тези функции могат да се определят като чрез нагледни геометрични съображения е логически иссъвършено.

1)
$$f(x_1+x_2)=f(x_1)g(x_2)+g(x_1)f(x_2),$$

 $g(x_1+x_2)=g(x_1)g(x_2)-f(x_1)/(x_2),$

$$f^2(x) + g^2(x) = 1;$$

$$f^{2}(x)+g^{2}(x)=1;$$

2) $f(0)=0, g(0)=1, f(\pi/2)=1, g(\pi/2)=0;$

Първата от тези функции наричаме синус и я означаваме ako $0 < x < \pi/2$, to $0 < f(x) < x < f(x)/g(x)^*$

със символа sin, а втората — косинус и я означаваме със сим-

пълнението към глава 4 на книгата на В. А. Ильин и Э. Г. Поз-Цоказателството на това твърдение може да се види в доняк "Основы математического анализа, І".

циите sin и соs, известни от средния курс по математика и докаствена двойка функции f и g и че въведените в срединя курс чрез нагледни геометричии съображения функции $f(x) = \sin x$ и чем то следра от това, че свойствата 1), 2) и 3) определят единда се получат като следствия всички други свойства на функзани там с помощта на нагледни геометрични съображения. Впро-Не е трудно да се докаже, че от свойствата 1), 2) и 3) $g(x) = \cos x$ притежават тези свойства.

някон свойства на функциите $f(x) = \sin x$ и $g(x) = \cos x$, конто За пример ще установим с помощта на свойствата 1), 2) и 3) ще ни бъдат необходими при доказателството на непрекъснатостта на тези функции и при определяне на интервалите им на моноa) Or третото равенство на 1), а именно sin² $x + \cos^{2} x = 1$, непосредствено следва, че $\sin^2 x \le 1$ и $\cos^2 x \le 1$, т. е.

$$|\sin x| \le 1$$
, $|\cos x| \le 1$.

б) С помощта на първите две равенства от 1) и първите две равенства от 2) получаваме

$$\sin 0 = \sin (x + (-x)) = \sin x \cdot \cos (-x) + \cos x \cdot \sin (-x) = 0$$
,
 $\cos 0 - \cos (x + (-x)) = \cos x \cdot \cos (-x) - \sin x \cdot \sin (-x) = 1$.

Получените две равенства са система от две уравнения от-носно двете неизвестии $\cos{(-x)}$ и $\sin{(-x)}$. Като решим тази система и вземем пред вид, че $\sin^2 x + \cos^2 x = 1$, получаваме

4.8)
$$\cos(-x) = \cos x$$
, $\sin(-x) = -\sin x$,

т. е. $g(x) = \cos x$ е четна функция, а $f(x) = \sin x$ е нечетна функция.

в) От равенствата в 1) на свой ред следват равенствата

(9)
$$\sin(x_1 - x_2) = \sin(x_1 + (-x_2)) = \sin x_1 \cdot \cos(-x_2) + \cos x_1 \cdot \sin(-x_2) = \sin x_1 \cdot \cos x_2 - \cos x_1 \cdot \sin x_2$$

* Верността на неравенството x < f(x)/g(x) за $0 < x < \pi/2$ следва от остапа-

лите условия, $\overset{\text{det}}{=} \Phi_{\text{уницията}}$ h, дофинирана за всички реални стойности на x, се наримя четма, ако h (-x)=b (x) (за неяка стойност на x), и нечетна ако h (-x)=-h (x)

 $-\sin x_1 \cdot \sin(-x_2) = \cos x_1 \cdot \cos x_2 + \sin x_1 \cdot \sin x_2$ $\cos(x_1-x_2) = \cos(x_1+(-x_2)) = \cos x_1 \cdot \cos(-x_2)$

г) От. впървото равенство на 1) и първото равенство на (4.9)

$$\sin x_2 = \sin\left(\frac{x_2 + x_1}{2} + \frac{x_2 - x_1}{2}\right) = \sin\frac{x_2 + x_1}{2} \cdot \cos\frac{x_2 - x_1}{2} + \cos\frac{x_2 + x_1}{2} \cdot \sin\frac{x_3 - x_1}{2} \cdot$$

$$\sin x_1 = \sin\left(\frac{x_2 + x_1}{2} - \frac{x_2 - x_1}{2}\right) = \sin\frac{x_2 + x_1}{2} \cdot \cos\frac{x_2 - x_1}{2} - \cos\frac{x_2 - x_1}{2}.$$

Като съберсм и извадим получените две равенства, намиръме

(10)
$$\sin x_2 + \sin x_1 = 2 \sin \frac{x_2 + x_1}{2} \cdot \cos \frac{x_2 - x_1}{2},$$
$$\sin x_2 - \sin x_1 = 2 \cos \frac{x_2 + x_1}{2} \cdot \sin \frac{x_2 - x_1}{2}.$$

д) По-нататък от първото равенство на (4.9) и от последните две равенства на 2) получавама

$$\sin(\pi/2 - x) = \sin\frac{\pi}{2} \cdot \cos x - \cos\frac{\pi}{2} \cdot \sin x = \cos x$$

$$\cos x = \sin(\pi/2 - x)$$
.

е) Ще се убедим накрая в периодичността на функциите $g(x) = \cos x$ и $f(x) = \sin x$ с период 2π . От първите две равенства Ha I) npu $x=x_1-x_2$ me nonyunn 4.11)

 $\sin 2x = 2 \sin x$, $\cos x$, $\cos 2x = \cos^2 x - \sin^2 x$.

От 2) имаме sin $\frac{\pi}{2} = 1$, $\cos \frac{\pi}{2} = 0$. Използваме (4.12) при $x = \pi/2$ и получаваме, че $\sin \pi = 0$, $\cos \pi = -1$. Като взползваме повторно (4.12), при $x=\pi$ имаме $\sin 2\pi = 0$, $\cos 2\pi = 1$.

От последните две равенства и първите две равенства на 1)

 $\sin(x+2\pi)$ =sin x. cos 2π +cos x. sin 2π =sin x,

 $\cos(x+2\pi)=\cos x$. $\cos 2\pi-\sin x$. $\sin 2\pi=\cos x$,

основни елементлрни функции

а това означава, че функциите $\sin x$ и $\cos x$ са периодични с пернод 2т.

ловие 3). Ще установим налидността на следното по-общо нераж) В заключение ше усилим малко неравенствата от ус-BEHCTBO:

 $|\sin x| \le |x|$

При 0<x<=/2 неравенството (4.13) следва от неравенството

При $-\pi/2 < x < 0$ неравенството (4.13) следва от $\sin{(-x)} = -\sin{x}$ и от неравенствата в условие 3).

 $0 < \sin(-x) < -x \text{ при } -\pi/2 < x < 0,$

а тези перавенства са изнълнени вследствие на това, че (--х) е в интервала $(0,\pi/2)$. При x=0 имаме $\sin x=x$.

При $\pi/2 \le |x|$ имаме $|\sin x| \le 1 < \pi/2 \le |x|$, т. е. $|\sin x| \le |x|$. Це преминем към установяване на две основни свойства на

1°. Функциите sin x и соs x са непрекъснати във всяка точка х ϕ ункциите f(x)=sin x и g(x)=cos x.

на безкрайната права.

Доказателство. Достатьчно е да установим непрекъснатостта на функцията f(x)=sinx във всяка точка x, тъй като непрекъснатостта на функцията $\mathcal{g}(x) = \cos x$ във всяка точка x ще

дението за непрекъснатост по Хайне е достатъчно да докажем, че за всяка безкрайно малка редица $\{x_n\}$ съответнята редица от стойности на функцията $\{\sin x_n\}$ е също безкрайно малка. От неравенството $\{\sin x_n\}$ и от условието $|\sin x| \ge 0$ имаме Най-папред ще докажем, че функцията $\sin x$ е непрекъсната x=0. Понеже съгласно 2) $\sin 0=0$, то според опредеследва от (4.11).

$$(4.13')$$
 $0 \le |\sin x| \le |x|$;

следователно

$$0 \le |\sin x_n| \le |x_n|$$

От последното неравенство (вж. теорема 3.14) следва, че реди-цата (|sin xa|), а оттук и редицата {sin xa} с безкрайно малка. Непрекъснатостта на функцията sin в точката x=0 е доказана.

Ще докажем сега, че функцията sin с непрекъсната във всяка клоняща към х. Трябва да докажем, че съответната редица (sin x) точка x на безкранната права. Нека $\{x_n\}$ е произволна редица, клони към sin х. ФУНКЦИИ

OCHOBHH EJEMENTAPHH

използваме второто равенство от (4.10) при $x_1 = x$ и х==хи, получаваме

14)
$$\sin x_n - \sin x = 2\cos \frac{x_n + x}{2} \cdot \sin \frac{x_n - x}{2}$$
.

Остава да покажем, че дясната страна на (4.14) е член на безкрайно малка редица, което непосредствено следва от това, че редицата { $\sin \frac{x_n - x}{2}$ е безкрайно малка поради непрекъснатостта

на синуса в точката нула, а редицата $\{2\cos\frac{\kappa_n+\kappa}{2}\}$ е ограничена

 $[2k\pi - \pi/2, 2k\pi + \pi/2]$ и намаляваща във всеки от сегментите $[(2k+1)\pi - \pi/2, (2k+1)\pi + \pi/2]$, а функцията соз е намаляваща във всеки от сегментите $[2k\pi, 2k\pi + \pi]$ и растяща във всеки от сег- $[2k\pi - \pi, 2k\pi]$ (Harchielde Tyr $k = 0, \pm 1, \pm 2, \ldots$). 2°. Функцията sin е растяща еъв всеки от сегментите ментите

съждения само за функцията sin, тъй като след памирансто на венчки интервали на моногонност на функцията sin интерпалите Доказателство. Достатьчно е да проведем всички разна монотопност на функцията соз могат да бъдат получени от равенствата (4.11).

пример за сегмента $[-\pi/2, 2\pi - \pi/2]$. Най-напред ще докажем, че функцията sin расте в сегмента $[0, \pi/2]$. Нека x_1 и x_2 са произволин числа от този сегмент и х₂>х₁. Тогава очевидно числата $\frac{x_2+x_1}{2}$ н $\frac{x_2-x_1}{2}$ принадлежат на интервала (0, $\pi/2$) и от второто Понеже sin е нериодична функция с период 2т, ще намерим интервалите на монотонност само в рамките на един период наравенство на (4.10) следва

15)
$$\sin x_2 - \sin x_1 - 2\cos^{x_2 + x_1}, \sin \frac{x_2 - x_1}{2}$$
.

Но функцията sin има в интервала (0, л./2) положителни стойности (условие 3)). Функцията соз има също положителни стойности в интервала (0, π/2) (следва от (4.11)). Следователно дясната страна на (4.15) е положително число. И така доказахме, че функцията sin е растяща в сегмента [0, π/2]. От нечетността на функцията sin (съотношение (4.81)) следва, че тя е растяща и в сегмента [-π/2, 0].

С това е доказано, че функцията sin е растяща в сегмента совят - 1, а оттук и от първото равенство на 1) следва sin(x [-π/2, π/2]. Остава да се изследва поведението на функцията sin $+\pi$)= $\sin x$, $\cos \pi + \cos x$, $\sin \pi = -\sin x$. Or nonyvenoro pareneted в сегмента $[\pi/2, \pi + \pi/2]$. В точка е) се убедихме, че $\sin \pi = 0$, заключаваме, че функцията sin е намаляваща в сегмента [π/2, $\pi+\pi/2$], понеже е растящи в сегмента $[-\pi/2, \pi/2]$. \square

прекъспата във всяка точка к, различна от $\hbar\pi + \pi/2$, а функцията ctg е дефинирана и непрекъсната във всяка точка х+kπ. Като Remonstrate parchetrate $\sin(x+\pi)$ —— $\sin x$, $\cos(x+\pi)$ —— $\cos x$, \sin за случая на частно следва, че функцията ід е дефинирана и нсполучим $\operatorname{tg}(x+\pi) = \frac{\sin x}{\cos x} - \operatorname{tg} x$ и аналогично $\operatorname{ctg}(x+\pi) = \operatorname{ctg} x$. Това покезва, че tg и ctg са перноличии функции с период т. За да От представянията $\lg x = \frac{\sin x}{\cos x}$, $\cot x = \frac{\cos x}{\sin x}$ и от теорема 4.1

ЕЛЕМЕНТАРНИ ФУНКЦИИ

определим областите на монотонност на тези функции, достатьчно е да изследваме интервал с дължина т. От равсиствата

(4.16)
$$\lg x_2 - \lg x_1 - \frac{\sin x_2}{\cos x_2} - \frac{\sin x_1}{\cos x_2} - \frac{\sin (x_2 - x_1)}{\cos x_2 \cdot \cos x_1}$$

и от това, че sin има също положителни стойности в интервала $(0, \pi)$, $\pi/2$), следва, че функцията tg е растяща в интервала $(-\pi/2, \pi/2)$, (При всеки x_1 и x_2 от интервала $(-\pi/2, \pi/2)$, за конто $x_2 > x_3$, дясната страна на (4.16) е положителна величина.)

дясната страна на (4.10) е положителна вели.
Аналогично се установява, че функцията etg е намаляваща в интервала (0, π).

Няма да се спираме на функциите sec $x=\frac{1}{\cos x}$ и соsес $x=\frac{1}{\sin x}$ Графиките на всички тригонометрични функции са дадени на фиг. 4.8—4.13.

4.3.5. Обратни тригонометрични функции. Ще дефинираме обратните тригонометрични функции и ще се спрем на въпроса за тяжната непрекъснатост и монотонност.

За дефиниране на функцията агсѕіп ще разгледаме функцията sin в сегмента [— п./2, п./2]. В този сегмент функцията sin е растята и непрекъсната (вж. 4.3.4). Множеството от стойностите й е сегментът [—1, 1]. Според теорема 4.5 съществува непрекъсната, растяща обратна функция в сегмента [—1, 1], приемаща стойности — п./2 в точката —1 и п./2 в точката I. Тази функция се означава със символа агсѕіп. По същия начин в сегмента [—1, 1] се дефинира функцията агссоз — обратна на функцията соз, намаляваща и непрекъсната в сегмента [0, п].

а непреводита в сегмента $\Phi_{\rm VHR}$ и приема в точките x=-1 и x=1 съответно стойностите

Функциите агеtg и агсеtg се дефинират като обратни функции на тангенс и котацгенс, разглеждани в интервалите $(-\pi/2, \pi/2)$ и $(0, \pi)$. Тези функции са дефинирани и монотонни върху цялата безкрайна права. На фиг. 4.14—4.17 са изобразени графиките на обратните тригонометрични функции.

4.3.6. Хиперболични функции. Функциите $\frac{e^x+e^{-x}}{2}$ и $\frac{e^x-e^{-x}}{2}$ се наричат съответно *хиперболичен косимус* и *хиперболичен синус* и се означават сh и sh:

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \text{ sh } x = \frac{e^x - e^{-x}}{2}.$$

две забележителни грапици

Хиперболичиият тангеас и хиперболичният котангенс се определят съответно от формулите

От определението за хиперболични функции следва, че хиперболичният косинус, хиперболичният синус и хиперболичният тангенс са дефинирани върху цялата числова ос, а хиперболичният котангенс — върху цялата числова ос с изключение на точката x = 0. На фиг. 4.18 а) — 4.18 г) са дадени графиките на тези функции.

Хиперболичиите функции са непрекъснати във всяка точка от дефиниционната си област (това следва от непрекъснатостта на показателната функция и от теорема 4.1).

Те притежават редица свойства, аналогични на свойствата на тригономстричните функции. Например за хиперболичните функции са в сила теореми за събиране, аналогични на теоремите за събиране при тригонометричните функции:

sh
$$(x+y)$$
=sh x . ch y +ch x . sh y ,
ch $(x+y)$ =ch x . ch y +sh x . sh y .

Непосредствено се проверяват и формулите $\sin 2x = 2 \sin x$, $\cot x_x$ $\cosh^2 x - \sin^2 x = 1$. Епитетът "хиперболичен" с свързан с обстоятелствого, че формулите $x - a \cot t$, $y = a \sin t$ определят хипербола, както формулите $x - a \cos t$, $y = a \sin t$ определят окръжност. Наистина и първия случай имаме $x^2 - y^2 = a^2$, τ . е. уравнение на хипербола, а във втория $x^2 + y^2 = a^2$ — уравнение на окръжност.

4.4. Две забележителни граници

4.4.1. Първа забележителна граница. Най-напред ще докажем една теорема, функционален аналог на теорема 3.14.

Теорема 4.6 (функционален аналог на принципа за двустранните ограничения). Нека в някоя прободена ъоколност Q на точката а са зададени функциите f, h и g, двете от които f и g имат в тенката а обща граница, равни на b. Тогши, ака за всяко х € Q са изпълнени неравенствата

(1.17)
$$f(x) \le h(x) \le g(x)$$
,

то и функцията ѝ има граница в точката а, равна на ъ.

Доказателство. Пека $\{x_n\}$ е произволна клоняща към a редица от стойности на аргумента, всички членове на която са различии от a. Тогава събласно определението на граница по Хайне двете редици от съответните стойности на функциите $\{f(x_n)\}$

ГРАНИЦИ

$$f(x_n) \le h(x_n) \le g(x_n).$$

Сътласно теорема 3.14 редицата $\{h(x_n)\}$ е сходяща и клони също към в. Това означава, че числого в с граница на функцията h в точката а.

Те орема 4.7. Границата на функцията $h(x) = \frac{\sin x}{x}$ в точката x=0 confermenta u

$$\lim_{x\to 0} \frac{\sin x}{x} = 1.$$

Доказателство. Ще тръгнем от неравенствата

.18)
$$0 < \sin x < x < \operatorname{tg} x$$
 (npn $0 < x < \pi/2$),

разгледзни в 4.3.4. Чрез деление на $\sin x>0$ от (4.18) получаваме следните исравенства:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$
 irph $0 < x < \pi/2$.

За реципрочните величини очевидно са изпълнени обратните не-

$$\cos x < \frac{\sin x}{x} < 1$$
 nph $0 < x < \pi/2$.

Ще отбележим, че (4.19) са напълнени и при $-\pi/2 < x < 0$, понеже функциите $\cos x$, $\frac{\sin x}{x}$ и 1 са четии.

ката x=0 еднаква граница, равна на сдиница, то от теорема 4.6 x=0. Тъй като двете функции $f(x)=\cos x$ и g(x)=1 имат в точ-Установихме, че неравенствата (4.19) са изпълнени за всички ката x=0, т. е. навсякъде в една прободена 5-околност на точката стойности на x от интервала $-\pi/2 < x < \pi/2$ с изключение на точследва, че и функцията $h(x) = \frac{\sin x}{x}$ има в точката x = 0 граница, равна из единица. 🗆

4.4.2. Втора забележителна граница.

Теорема 4.8. Границата на функцията $f(x) = (1+x)^{1/x}$ в точката х=0 съществува и е равна на числото г.*

Доказателетво. Достатъчно е да се докаже, че дясната н дявата граница на функцията $f(x) = (1+x)^{1/x}$ в точката x = 0 съществуват и са равин на е. * Числото е бе въведено в 3.2.3 като граннца на редицата ((1+1/n)"), ко-4210 7 + 80.

3 A B E JI E X N T E J H H

ш

1. Първо ще докажем, че дясната граница на тази функция в точката х=0 съществува и е равна на е.

Ще използваме определението за дясна граница по Коши и ще покажем, че за всяко в>0 съществува такова б>0, че за всяко х ((0, б) да е изпълнено неравсиството

$$f(1+x)^{1/x} - e \mid \langle \varepsilon \rangle$$

Избираме произволно $\epsilon>0$ и разглеждаме двете редици $\{a_n\}$ и $\{b_n\}$ с членове $a_n=(1+1/(1+n))^n$, $b_n=(1+1/n)^{n+1}$. Ще се убедим, че тези две редици клонят към ϵ . Като използваме, че lim $(1+1/n)^n$

=е, и теоремите за граница на частно и произведение на две сходящи редици, получаваме

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(1+1/(n+1))^{n+1}}{1+1/(n+1)} = \frac{\lim_{n \to \infty} (1+1/(n+1))}{\lim_{n \to \infty} (1+1/(n+1))} = \frac{e}{1} = e,$$

 $\lim b_n = \lim ((1+1/n)^n (1+1/n)) = \lim (1+1/n)^n \lim (1+1/n) = e.1 = e.$

по-горе $\varepsilon > 0$ съществуват такива номера N_1 и N_2 , че $|a_n - \varepsilon| < \varepsilon$ при $n>N_1$, $|b_h-e|<\varepsilon$ при $n\ge N_2$. Нека N с по-голямото от чис-Тъй като редиците {а,} и {b,} клонят към е, то за избраното лата № и №. Тогава при п≥N ще са изпълнени и двете нера-**Венства**

$$|a_n-e| < \varepsilon \ \text{ii} \ |b_n-e| < \varepsilon.$$

Нека x е произволно число от интервала $0 < x < \delta = 1/N$. Тогава 1/x > N. Означаваме с n цялата част на числото 1/x, т. е. полагаме n = [1/x]. Поряди 1/x > N имаме $n \ge N$ и са изпълнени неравен-

$$(4.22)$$
 $n \le 1/x < n+1$.

От (4.22) следват неравенствата

$$(23) 1 + \frac{1}{n+1} < 1 + x \le 1 + \frac{1}{n}.$$

От неравенствата (4.22), (4.23) и от това, че показателната функция е растяща при основа по-голяма от единица, следва

$$(1+1/(n+1))^n < (1+x)^{1/x} < (1+1/n)^{n+1}$$
, вли $a_n < (1+x)^{1/x} < b_n$.

И така доказахме, че за всяко x от интервала $0 < x < \delta = 1/N$ при някое л≥N (зависещо, разбира се, от х) са изпълнени неравен∗ ствата $a_n < (1+x)^{1/x} < b_n$ и неравенствата

4.24)
$$a_n - e < (1+x)^{Ux} - e < b_n - e$$
.

Като съпоставии (4.24) с неравенствата (4.21), взрии за всяко $n{\ge}N$,

окончателно се убеждаваме, че за всяко x от интервала $0 < x < \delta$ =1/N са изиълнени неравенствата (4.20),

2. Ще докажем сега, че и лявата граница на функцията f(x) $=(1+x)^{1/x}$ в точката x=0 съществува и е равна на е.

Сътласно определението за лява гранца по Хайпе достатъчно е да докажем, че за всяка безкрайно малка редица от отрицателня числа {xn} съответната редица от стойности на функцията / (xn) $=(1+x_n)^{1/x_n}$ kjohn kem ε .

Нека $\{x_n\}$ е безкрайно малка редица от отрицателни числа, Ще разглеждаме иленовете на редицата от гози номер И нататък, от който всички елементи хя са по модул по-малки от единица.

Полагаме $y_n = -x_n/(1+x_n)$. Тогава $x_n = -y_n/(1+y_n)$. Очевидно {у_n} ще е безкрайно малка редица, състояща се само от положи-

$$\tilde{f}(x_n) = (1 + x_n)^{1/x_n} = (1 - y_n/(1 + y_n))^{-(1 + y_n)/y_n} = (1/(1 + y_n))^{-(1/y_n + 1)} = (1 + y_n)^{1+1/y_n}.$$

(4.25)
$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} (1+y_n)^{1/2n} \cdot \lim_{n\to\infty} (1+y_n) = e \cdot 1 = e.$$

Тъй като редината $\{y_n\}$ клони към нула и има само положителни членове, то $\lim (1+y_a)^{1/p}a=e$ (вече доказахме съществувансто на дясна граница, равна на c), а lim $(1+y_a)=1$. \square

Следствие. Границата на функцията $f(t) = (1+1/t)^\mu$ при $t \to \infty$ съществува и е равна на е.

с номер N нататък, от който всички нейни членове t_n са по мо-Съгласно определението на граница при t→∞ по Хайне трябва да се докаже, че за исяка безкрайно голяма релица {t,,} съответната редица от стойности на функцията $/(t_a) - (1+1)t_a)^{\epsilon_a}$ илони към e. Ще разгледаме безкрайно голямата редица $\{t_n\}$ от този член дул по-големи от единица. Полагаме $x_n=1/t_n$, така че $t_n=1/x_n$. Спорел теорема 3.6 редицата $\{x_n\}$ е безирайно малка и $f(t_n)$ $=(1+1/t_n)^{t_n}-(1+x_n)^{1/s_n}$

Остава да отбележим, че съглясно теорема 4,8

$$\lim_{n\to\infty}\int (t_n)-\lim_{n\to\infty}(1+x_n)^{1/x}n=\ell.$$

ТОЧКИ НА ПРЕКЪСВАИЕ НА ФУНКЦИЯ

4.5. Точки на прекъсване на функция и тяхната класификация

4.5.1. Класификация на точките на прекъсване на функция. В 1 нарекохме точки на прекъсване на функцията f онези точки, в които функцията не е непрекъсната. Предполагахме, че функцията е дефинирана в разглежданите точки.

Ще разширим нашите разглеждания, като включим и тези точки, в които функцията / не е дефинирана, но те са точки на стъстяване за дефиниционната област на функцията,

Ще изясиим възможните видове точки на прекъсване.

отстранимо прекъсване на функцията 1, ако съществува 11т 1(х), 19. Отстранимо прекъсване. Точката а се нарича точка на

но или функцията I не е дефинирана в точката а, или е дефинирама, но $\lim f(x) + f(a)$.

Пример: Функцията

$$f(x) = \begin{cases} x^{-1} \sin x & \text{при } x = 0, \\ 0 & \text{при } x = 0. \end{cases}$$

вма в точката x=0 отстранимо прекъсване.

Наистина границата на функцията в точката $\kappa = 0$, както по-казахме в 4.4.1, е равна на 1, но стойността й f(0) в точката 0 е

Ако функцията ј има в точката а отстранимо прекъсвине, това прекъсване може да се отстрани, без да се изменят стойностите на функцията в точките, различии от а. Достатьчно е да положим стойността на функцията в точката а равна на граничната ѝ стойност в тази точка. Така в разгледания пример трябва да положим f(0)=1 и тогава Ііт $x^{-1}\sin x - f(0) = 1$, τ . е. функцията f ще бъде

непрекъсната в точката x=0.

на прекъсване от първи род на функцията [, ако в тази точка функцията ј има дясна и лява граница, но различни една от друга ; 2. Прекъсване от първи род. Точката а се нарича точка

$$\lim_{x\to a+0} f(x) = \lim_{x\to a\to 0} \dot{f}(x).$$

Образно казано, прекъсването от първи род може да се нарече краен скок,

Примери:

TOYKH HA HPEKTCBAHE HA OVHKUNA

I. Фупкцията

$$f(x) = \text{sgn } x = \begin{cases} 1 & \text{npu } x > 0, \\ 0 & \text{npu } x = 0, \\ -1 & \text{npu } x < 0. \end{cases}$$

нма в точката х=0 прекъсване от първи род. Действително

$$\lim_{x\to 0+0} sgn x - 1$$
, $\lim_{x\to 0+0} sgn x = -1$.

2. За функцията $f(x) = |x|^{-1} \sin x$ имаме

$$\lim_{x \to 0+0} |x|^{-1} \sin x - 1, \quad \lim_{x \to 0+0} |x|^{-1} \sin x = -1.$$

Точката x=0 с точка на прекъсване от първи род.

3. Функцията $f(x)=1/(1+2^{1/(x-1)})$, дефинирана навсякъде освен в точката x-1, има в точката x-1 прекъсване от първи род. Действително, ако $\{x_n\}$ клони към 1 и се състои от членове $x_n>1$, Затова $\{1+2^{j/(x_n-1)}\}$ е безкрайно голяма редица и следователно редицата с общ член $f(x_n)-1/(1+2^{j/(x_n-1)})$ е безкрайно малка, т. с. то {1/(хл-1)} е безкрайно голяма редица с положителни членове. $\lim_{x \to 1+0} f(x) = 0.$

Ако пък $\{x_n\}$ клони към I и се състои от членове $x_n < 1$, то $\{1/(x_n-1)\}$ е безкрайно голяма редица с отрицателни членове. Затова (21/1/ки-1) клони към нула и следователно редицата с общ член $f(x_n)=1/(1+2^{1/(3}+2^{1/(3}-1))$ клони към едиппъа, т. е. lim f(x)=1.

39. Прекъсване от втори род. Точката а се нарича точка на прекъсване от втори род на функцията 1, ако функцията 1 няма поне една от едностринните граници в тази точка или поне

една от едностранните граници е безкрайна.

Примери:

1. Фушкцията

$$f(x) = \begin{cases} x \cos x^{-1} & \text{npn } x < 0, \\ 0 & \text{npn } x = 0, \\ \cos x^{-1} & \text{npn } x > 0. \end{cases}$$

има дява граница в точката x=0, равна на нуда: $\lim_{x\to 0^{-0}} f(x)=0$.

Наистина, ако {хл} е редица, клоняща към нула с членове хл<0, то

$$0 \le |f(x_n)| = |x_n| \cos x_n^{-1}| \le |x_n|.$$
 If hohese $|x_n| \to 0$ for $n \to \infty$, to $\lim_{x \to 0 \to 0} f(x_n) = 0$.

Наистина да вземем две редици с положителни членове, клонящи към нула: $x_n = 1/(\pi/2 + \pi n)$ и $x_n' = 1/2\pi n$. Ако функцията имаше Разглежданата функция няма дясна граница в точката х=0.

дясна граница в точката x=0, двете редици $\{f(x_n)\}$ и $\{f(x_n')\}$ щяха да клонят към едно и също число.

Obaye $f(x_n') = \cos 2\pi n - 1$, a $f(x_n) = \cos (\pi/2 + \pi n) = 0$, τ . $1 = \lim f(x_{\pi}) + \lim f(x_{\pi}) = 0.$ Следователно разглежданата функция има в точката x=0 прекъсване от втори род.

2. Функцията $f(x)=\operatorname{tg} x$ очевидно има прекъсване от втори род във всяка точка $x_k=\pi/2+k\pi$, където $k=0,\pm 1,\pm 2,\cdots$, тъй като във всяка такава точка

$$\lim_{x\to x_R\to 0} f(x) = +\infty, \quad \lim_{x\to x_R\to 0} f(x) = -\infty.$$

Образно, казано, функцията tg х има във всяка точка х, безкрасн скок.

3. Функцията

$$f(x) = \begin{cases} \sin x^{-1} & \text{при } x \neq 0, \\ 1 & \text{при } x = 0 \end{cases}$$

говарят съответно редиците от стойности на функцията $f(x_a)$ = $\sin \pi \, n = 0$ и $f(x_a)$ = $\sin (\pi/2 + 2\pi \, n) = 1$, първата от които клони има прекъсване от втори род в точката x=0, тъй като в тази в точката х=0, коего следва непосредствено от това, че на двете редици от стойности на аргумента $x_n = 1/\pi n$ и $x_n' = 1/(\pi/2 + 2\pi n)$ отточка тя ияма нито дясна, нито лява граница. Понеже sin(--1/x) $=-\sin(1/x)$, достатьчно е да покажем, че тя ияма дяспа граница към пула, а вгората — към единица.

Ще въведем понятието частично непрекъсната функция, което често се среща в математиката и нейните приложения.

Една функция се нарича частично непрекъсната в сегмента [а, b], ако е дефимирана навсякъде в този сегмент, непрекъсната е във всяка вътрешна точка с изключение евентуално на краен брой точки, в които има прекъсване от първи род, и има дясна граница в точката а и лява граница и точката b.

Една функция се нарича частично непрекъсната в интервал (или върху безкрайната права), ако е цастично непрекъсната въз всеки сегмент, принадлежащ на интервала (безкрайната Например функцията f(x) = [x] е частично непрекъсната както въз всеки сегмент, така и върху безкрайната права. 4.5.2. За точките на прекъсване на монотонна функция. Следващото твърдение хвърля светлина върху характера на точките на прекъсване на монотонните функции.

късване от първи род и множеството от точките ѝ на прекъс-Теорема 4.9. Ако функцията [, дефинирана в сегмента [а, b], е монотонна в този сегмент, тя може да има само точки на преване е най-много изброимо множество.

Доказателство. Според лемата, доказана в 4.2.1, едня монотонна функция има крайни десни и леви граници във всички вътрешни точки на сегмента [а, b] и освен това крайна дясна граница в гочката а и крайна лява граница в точката b. Оттук следва, че точките на прекъсване на монотонна функция могат да бъдат само от първи род.

най-много изброимо много. Ще отбележим, че във всяка такава точка на прекъсване х за дясната и ливата граница е изпълнено по-горе лема). Според лема 2 от глава 2 за всеки две различни Достатьчно е да се докаже, че точките на прекъсване в интервала $(a,\ b),\ au.$ е. точките, които са вътрешни за сегмента $[a,\ b],$ са неравенството f(x+0) > f(x-0) (вж. забележката към посочената За да докажем втората част на теоремата — че точките на прекъсване са пай-много изброимо множество, -- ще приемем за реални числа съществува рационално число, заключено между тях. определеност, че функцията f е ненамаляваща в сегмента [a, b].

Тъй като във всяка точка на прекъсване х е изпълнено неравенството f(x+0) > f(x-0), то на всяка точка на прекъсване xможе да се съпостави едно рационално число г(х), удовлетворяващо неравенствата f(x+0) > r(x) > f(x-0).

Ще отбележим, че при това на различните точки на прекъсване ще бъдат съпоставени различни рационални числа. Наистина, ако x_1 и x_2 са две точки на прекъсване, за конто $x_1 < x_2$, то понеже функцията е ненамаляваца, имаме $f(x_1+0) \le f(x_2-0)$, от-Kbaero $r(x_1) < r(x_2)$.

По такъв вачин множеството от всички точки на прекъсване на функцията f, разположени вътре в сетмента [a, b], е подмножество на множеството на рационалните числа, което, както выдяхме в 2.7, е изброимо.

4.6. Локални и глобални свойства на непрекъснатите функции

Локални свойства на една функция са тези, които са валидни в достатьчно малки околности на дадена точка от дефинционната й област. Тезн свойства характеризират поведението на функцията, когато аргументът се приближава към изследивната точка. Например непрекъснатостта на функция в иякоя точка на дефиниционната ѝ област е локално свойство на тази функция.

Глобални свойства са тези свойства, които функцията притежава в цялата си дефиниционна област. Например монотонността на функцията f в сегмента [а, b] е нейно глобално свойство. локални и глобални свояства

4.6.1. Локадня свойства на непрекъснати функции. Ще въведем някои нови понятия. Нека функцията f е дефинирана в множеството {x}-

ло M (реално число m), че за всяко $x \in \{x\}$ е изпълнено неравенството $f(x) \le M(f(x) \ge m)$. Числото M (числото m) се нарича горна (долна) граница на функцията f в множеството $\{x\}$. Определение 1. Функцията f се нарича ограничена отгоре (отдолу) в множеството {x}, ако съществува такова реално чис-

това множество тя е ограничена и отгоре, и отдолу, т. е. ако те страни (или просто ограничена) в множеството {x}, ако в съществуват такива реални числа т и М, че за всяко х Е {x} е из-Определение 2. Функцията ј се нарича ограничена от двепълнено неравенствто $m \le f(x) \le M$.

Ограничеността на функцията / в множеството (х) фактически означава ограниченост на множеството $\{f(x)\}$ от всички стойности на тази функция (отговарящи на стойностите на аргумента от множеството {x}).

долу (за долна граница може да се вземе число $m \leq 0$) и неогра-1. Функцията $f(x)=\lg x$ в интервала (0, $\pi/2$) е ограничена отничена отгоре.

2. Функцията на Дирихле, равна на нула в прационалните точки и на единица в рационалните точки, е ограничена (от двете страни) върху всяко множество {x}.

В сила е следната теорема за локална ограничесност на функции с крайни граници:

крайна граница). Нека функцията ј. дефинирана в множеството {х}, има крайна граница в точката а. Тогава съществува такова положително число 8, че функцията [е ограничена в множеството Георема 4.10 (за локалната ограниченост на функции, имащи $B_{\mathbf{i}} = \{x\} \bigcap (a - \delta, a + \delta).$

оказателство. Нека границата на / в точката и е равиа на в. Според определението на граница по Коши за положителното число є=1 съществува такова положително число 5, че за всички стойности на аргумента к от прободената 6-околност на точката a е изпълнено неравенството |f(x)-b|<1, или

b-1 < f(x) < b+1.

за всяка точка от множеството B_s стойностите на функцията f са звилючени между числата $m\!=\!b\!-\!1$ и $M\!=\!b\!+\!1$. Ако миожеството {x} не съдържа точката а, теоремата е доказана, тъй като в този случай перавенствата (4.26) показват, че

JOKAJIIN W LJOBAJIIN CBORCTBA

Фиг. 4.19

Ако множествого $\{x\}$ съдържа точката a и стойността на функцията в тази точка е f(a), то, като означим с m по-малкото от длете числа b-1 и f(a), а с M по-голямото от b+1 и f(a), ше получим, че за всички точки от множеството $B_{\bf z}$ са изпълнени нерависиствата

 $m \le f(x) \le M$

жонто показват, че функцията f с ограничена в множеството B_t . \square

Фиг. 4.19 илюстрира доказаната теорема.

Слекствие. Ако функцията f в непрекосната в точката а, тя в ограничена върху множеството от всички стойности на иргумента си, принадлежаци на някоя 8-околност на точката а.

Достатъчно е да отбележим, че функция, непрекъсната в точ-

ката a_1 има в тази точка крайна граница. Теорема 4.11 (за неизменността на знака на функция, непрежъсната в точка). Нека функцияма f е дефинирана в множеството $\{x\}$, непрекъсната в точката $a \in \{x\}$ и стойността $a \mid f(a) \in a$ положителна (отрицателна). Тогава съществува такова положително число $a \in a$ не дункцията $a \in a$ положителна (отрицателна) на-

всякъде в множеството $B_{\delta} = \{x\} \cap (a-\delta, a+\delta)$. Показателство, Според определението за иепрекъспатост по Коши, каквото и да е положителното число ϵ , съществува такова положително число δ , че за всички етойности на аргумента x от δ -околността на точката a да е изпълнено неравенството $\uparrow(x) - \dot{\uparrow}(a) | < \epsilon$, или

$$f(a) - \varepsilon < f(x) < f(a) + \varepsilon$$
.

Ако за ϵ вземем положителното число |f(a)|/2, то двете числа $f(a)-\epsilon$ и $f(a)+\epsilon$ ще са положителни при $f(a)>a\mathbf{0}$ и отрипателни при f(a)<0.

Затова неравенствата (4.28) означават, че за всички стойности да аргумента от 5-околността на точката a функцията f с положителна при f(a) > 0 л отрищателна при f(a) < 0.

Фиг. 4.20 илюстрира теорема 4.11.

Теорема 4,11 лесно може да се формулира и за случанте, котато функцията, f е пепрекъсната в точката а само отдясно илв само отдяно. Ще се уговорим да наричаме получетмента [a, a+b] дясна b-b дасна b-b получетмента b-b a-b a-b a-b a-b a-b a-b a-b a-b a-b a-b

Теорема 4.11'. Нека функцията f е дефинирана в множеството {x}, непрекъсната отдясно (отляво) в точката а от това множество и спойността û f(a) с различна от нула. Тогава съществува такова положително число ∂>0, че функцията f е раззична от нула и има същия знак, както в точката а, зи всички спойности на x от множеството {x}, принадлежаци на дясната (лявата) 2-полуголност на течката а.

За докраятелството на тази теорема трябва дословно да се повтори доказателството на теорема 4.11, като се смени терминът "В околност на точката с" с термина "дясна (дява) 8-полуоколност на точката с"

Забележка З. Към локалните свойства на непрекъснатите в дадена точка функции спадат и доказаните теореми 4.1 н 4.2 за непрекъснатост в дадена точка на сума, разлика, произве-дение и частно на две непрекъснати в тази точка функции и за вепрекъснатост на сложна функция.

4.6.2. Глобални свойства на непрекъснати функции.

Теорема 4.12 (анулиране на непрекъсната функция при смяна ва знака). Неки функцията f е непрекъсната в сегмента [a,b] и стойностите d в краищата на този сегмент f (a) и f (b) са числа с различни знаци. Тогава бътре в сегмента [a,b] съществува точка ξ , за която $f(\xi)$ =0.

Доказателство. Без ограничение на общността можем ка смятаме, че f(a)<0, f(b)>0. Нека $\{x\}$ е множеството от всички стойности на x от сегмента [a,b], за които f(x)<0. Това мно-

ЛОКАЛНИ И ГЛОБАЛНИ СВОЙСТВА

жество не е празно (негов елемент е например точката x = a) и

ограничено отгоре (например от числото x=b). Съгласно теорема 2.1 множеството $\{x\}$ има точна горна гра-

ница, която ще означим с 5.

Точката ; е вытрешна точка за сегмента [а, b], тъй като от f(b)>0 според теорема 4.11' следва, че съществува дясна δ -полуоколност на точката a, в която f(x) < 0, и лява δ -полуоколност непрекъснатостта на функцията f в [a, b] и от условията f(a) < 0,

на точката b, в която f(x)>0. Ще се убедим, че $f(\xi)=0$. Ако това не е така, според теорсма 4.11 ще съществува δ -околност $\xi=\delta< x<\xi+\delta$ на точката ξ , в която f(x)<0, а за всяка стойност x от интервала $\xi< x<\xi+\delta$ имаме $f(x)\ge 0$. Полученото противоречие доказва, че $f(\xi)=0$. \square която функцията / има един и същ знак. Но това е невъзможно, вува поне една стойност на х от полусегмента ξ-6<x≤ξ, за тъй като съгласно определението на точна горна граница същест-

Фиг. 4.21 илюстрира теорема 4.12.

всяка междинна стойност). Нека функцията $\mathfrak f$ с непрекъсната $\mathfrak o$ сегмента [a,b] и $\mathfrak f(a)=\alpha$. $\mathfrak f(b)=\beta$. Нека $\mathfrak r$ е произволно число между α и β . Тогава съществува точка ξ от сегмента [a,b], за Теорема 4.13 (преминаване на непрекъснатата функция през

Доказателство. Очевидно от доказателство се нуждае само случаят, когато $\alpha + \beta$ (в противен случай $\gamma = \alpha - \beta$ и например $\xi\!=\!a$). По същите причини отпадат и случанте, когато γ съвпада с

 $\alpha < \gamma < \beta$. Да разгледаме функцията $\phi(x) = f(x) - \gamma$. Тази функция е едно от числата α или β. Без ограничаване на общността можем да считаме, че α<β. непрекъсната в сегмента [а, b] (като разлика на непрекъснати функции) и има в кранщата му стойности с различни знали:

$$\varphi\left(a\right) \! = \! f\left(a\right) \! - \! \gamma \! = \! \alpha \! - \! \gamma \! < \! 0, \ \varphi\left(b\right) \! = \! f\left(b\right) \! - \! \gamma \! = \! \beta \! - \! \gamma \! > \! 0.$$

Според теорема 4.12 в сегмента [a, b] съществува такава вътреш-на точка ξ , че $\varphi(\xi) = f(\xi) - \gamma = 0$, т. е. $f(\xi) - \gamma$. Теорема е доказана.

Като използваме току-що доказаната теорема, ще се убедим във верността на забележка 2 от 4,2.2.

Нека функцията f е непрекъсната в сегмента [a, b] и съще-ствува обратна функция на функцията f. Тогава f е строго мо-

нотонна в сегмента [а, b]. Доказателство. От съществуването на обратна функция на f следва, че f(a) + f(b). Нека f(a) < f(b) (f(a) > f(b)). Ще покажем, че / строго монотонно расте (намалява) в сегмента [a, b]. Ще разгледаме случая f(a) < f(b). (Ако f(a) > f(b), разсъжденията са аналогични.) Най-напред ще установим верността на неравен-

= f(b) с перъзможно поради съществуването на обратиа функция че съществува такова $x_1 \xi(a,b)$, че $f(x_1) > f(b)$. (Равенството $f(x_1)$ $\mathbf{u}_1[x_1,b]$ и използваме следващите от $f(a) < f(b) < f(x_1)$ неравенства ството f(x) < f(b) за всяко $x \in (a, b)$. Да допуснем противното на функцията f.) Като приложим теорема 4.13 за сегментите [а, х,]

$$f(a) < \frac{1}{2} (f(x_1) + f(b)) < f(x_1),$$

$$f(x_1) > \frac{1}{2} (f(x_1) + f(b)) > f(b),$$

= f(ξ₁), което противоречи на съществуването на обратна функция 38 КОНТО $f(\xi_i) = f(\xi_i) = \frac{1}{2} (f(x_1) + f(b))$. И така $\xi_i = \xi_i$, по $f(\xi_i)$ ce убеждаваме в съществуването ня числа $\xi_1 \in (a, x_1)$ и $\xi_2 \in (x_1, b)$. на функцията f в сегментя [а, b].

Ще установим сега, че функцията f(x) е строго монотонно растяща в сегмента [a,b]. Да допуснем противното — че съществуват две числа $x_1 < x_2$ от полусегмента [a,b], за конто $f(x_1) > f(x_2)$. Ще покажем, че това допускане води до противоречие. Като приложим теорема 4.13 за сегментите $[x_1, x_2]$ и $[x_2, b]$ и наполяваме следващите от $f(x_1) > f(x_2)$, $f(x_1) < f(b)$ неравенства

$$f(x_1) > \frac{1}{2} (f(x_1) + f(x_2)) > f(x_2),$$

 $f(x_2) < \frac{1}{2} (f(x_1) + f(x_2)) < f(b).$

 $\xi_{4} \in (x_{2}, b)$, we $f(\xi_{3}) - f(\xi_{4}) = \frac{1}{2} (f(x_{1}) + f(x_{2}))$. M $\tan \xi_{3} + \xi_{4}$, a $f(\xi_{3})$ на функцията f в сегмента [a,b]. Повеже условието $f(x_1) - \mathring{f}(x_2)$ за $x_1 < x_2$ е също невъзможно, стигаме до извода, че $f(x_1) < f(x_2)$ за всеки $x_1 < x_2$ от сегмента [a, b]. \square = f(ξ4), косто противоречи на съществуването на обратна функция се убеждаваме в съществуването на такива числа Езе (х,, х, и

Теорема 4.14 (теорема на Вайсршрас). Ако функцията f в не-прекъсната в сегмента [a, b], тя е ограничена в този сегмент. До казателство. Ще докажем, че функцията f е ограни-чена отгоре в сегмента [a, b] (ограничеността отдолу се доказва аналогично).

Тогава за всяко естествено число и съществува поне една точка x_n от $[a,\ b]$, за които $f(x_n)>n$. (В противен случай f би била отраничена в сетмента $[a,\ b]$.) Да допуснем, че / не е ограничена отгоре в сегмента [а, b].

Намерихме такана редица $\{x_d\}$ от сегмента [a, b], че съответ-ната редица от стойности на функцията $\{f(x_\pi)\}$ е безкрайно голя-

BOKAJHH H FJOBAJBH CBORCTBA

то и точката ξ принадлежи на този сегмент. От непремъснатостта на функцията f в точката ξ следва, че подредицата от стойности на функцията $\{f(x_{k_n})\}$ клони към $f(\xi)$. Но това ни води до противоречие, тъй като редицата $\{f(x_{t_n})\}$ е безкрайно голяма като ствие 3 от теорема 3.16) от редипата $\{x_n\}$ може да се избере сходяща подредица $\{x_{k_n}\}$ $(n=1,\ 2,\ 3,\dots)$ с граница някакво число ма. Според теоремата на Болцано — Вайерщрас (вж. 3.3.1, след- ξ . Тъй като всички членове на редицата $\{x_{k_n}\}$ са от сегмента [a,b],подредица на безкрайно голямата редица {f(xn)}.

Забележка 1. За интервал (или полусегмент) твърдението от теорема 4.14 не е вярно, т. е. от непрекъснатостта на функция в интервал (или полусстмент) не следва нейната ограниченост.

редицата от стойности на функцията $\{f(x_n)\} = \{n\}$ е безкрайно Пример: Функцията f(x)=1/x в интервала (0,1) (или в полусетмента (0, 1]). Тази функция с непрекъсната в посочените мно-4,..., принадлежи на интервала (0, 1) (полусетмента (0, 1]), а жества, по не е ограничена. Наистина редицата $x_n=1/n$, n=2, 3,

изпълнени двете условия; 1) за всяка стойност на х от мнажеството {х}, че за съответната стойност на функцията ј е изпъл-Определение. Числото М (т) се нарича точна горна (точна долна) граница на функцията [в множеството {x}, ако са вото $\{x\}$ е изпълнено неравенството $f(x) \le M$ $(f(x) \ge m)$; 2) за всяко число в>0 съществува такава стойност на х от множестнеко неравенството

$$f(x) > M - \varepsilon$$
 $(f(x) < m + \varepsilon)$.

в множеството {x}, а условието 2) означана, че тази граница с В даденото определение условието 1) означава, че числото М (числого т) е една от горинте (долните) граници за функцията най-малката (най-голямата).

Точната горна граница М на функцията / в мпожестного {x}

Ce OSHAHADA

$$M = \sup_{\{x\}} f(x) - \sup\{f(x) : x \in \{x\}\}.$$

Аналогично точпата долна гранца т на функцията f(x) в множеството {x} се означава със символа

$$m = \inf\{f(x) - \inf\{f(x) : x \in \{x\}\}\}.$$

По-специално точната горна граница на функцията f в сегмента $[a,\ b]$ се означава по един от следните четири начина:

$$\sup_{a \le x \le b} f(x) = \sup_{x \in [a, b]} f(x) = \sup\{f(x) : a \le x \le b\} = \sup\{f(x) : x \in [a, b]\}.$$

Анвлотично за точната долна граница:

$$\inf_{0 \le x \le b} f(x) = \inf_{x \in [a, b]} f(x) = \inf\{f(x) : a \le x \le b\} = \inf\{f(x) : x \in [a, b]\}.$$

В сила са следните твърдения:

1. Ако функцията / е ограничена отгоре (отдолу) в множеството $\{x\}$, то тя има в това множество точна горна (точна долна) граница,

жеството {x}, то тя има в това множество както точна гориа, 2. Ако функцията f е ограничена (от двете страни) в мнотака и точна долна граница.

Тези твърдения са пряко следствие от теорема 2.1, тъй като означава, че множеството от всички стойности на тази функция е ограничеността отгоре (отдолу) на функцията f в множеството $\{x\}$ ограничено отгоре (отмолу).

Следващият пример показва, че точните граници на една ограничена върху дадено множество функция в общия случай не се MOCTHFAT.

Да разгледаме функцията / (вж. фиг. 4.22) :

$$\dot{f}(x) = \begin{cases} x^2 & \text{nps } 0 < x < 1, \\ 1/2 & \text{nph } x = 0, x = 1. \end{cases}$$

Тази функция е ограничена върху сегмента [0, 1] и има в Обаче тези граници не се достигат; сред точките на сегмента [0, 1]. няма точки, в които стойностите на функцията да са равни на пето точна горна граница M=1 и точна долна граница m=0. нула или единица.

Ще отбележим, че рязглежданата функция f не е непрекъс-Оказва се, че това обстоятелство не е случайно, тъй като е в сила ната в сегмента [0, 1] (та има точки на прекъсване x=0 и x=1). следното твърдение: ЛОКАЛНИ И ГЛОБАЛНИ СВОЙСТВА

mочки x_1 и x_2 от сегмента [a,b], че спойността $f(x_1)$ е равни на точнита горна граннца на f в сегмента [a,b], а стойността Теорема 4.15 (втора теорема на Вайерщрас). Ако функцията ј е непрекъсната в сегмента [а, b], тя доспига в този сегмент точната си горна и точната си долна граница, т. е. има такива

 $f(x_2)$ е равна на точната долна граница на f в сегмента [a,b]. Доказателство. Според първата теорема на Вайерщрас 4.14 функцията f с ограничена в сегмента [a, b] и затова тя яма в този сегмент точна горна граница М и точиа долна гра-

Ще се спрем на доказателството за достигане на точната гориа граница М. тъй като достигането на точната долна гра-

пица т се доказва зналогично.

цията f има стойности, строго по-малки от М. Тогава да разгле-Да предположим, че функцията / не достига точната си горна граница, т. е. че във всички точки от сегмента [а, b] функ-

даме функцията

$$F(x) = 1/(M-f(x)).$$

Знаменателят $M = \{e$ непрекъсната и строго положителна в сегмента [a,b] функция. Затова съгласно теорема 4.1 (за случая на частно) функцията F ще бъде непрекъсната в сег [а, b]. Но според първата георема на Вайерщрас 4.14 функдията F е ограничена в сегмента [a,b], т. е. съществува такова положително число A, че F(x)=1/(M-f(x)) $\le A$ за всички x от сегмента [a,b]. Тъй като функцията M-f е строго положителна в [a,b], то последното перавенство е еквивалентно на неравенстречи на гова, че М с точна горна граница, т. е. най-малката от вото $f(x) \le M-1/A$ за всички x от [a, b]. Но последното противовсички горин граници на функцията f в сегмента [a, b].

Тъй като получихме противоречие, направеното предположе-

Максималната стойност на функцията f в сегмента $[a,\ b]$ се M максималия стойност, а точната долна граница m — минимална стойност на функцията f в сегмента $[a,\ b]$. Теорема 4.15 може да ние, че точната горна граница не се достига, не е вярно. 🗆 Забележка 2. След като доказахме, че всяка непрекъсната си долна граница, можем да наречем точната гориа граница се формулира и така: Всяка непрекъсната в сегмента [а, b] функната в сегмента [а, b] функция достига точпата си горна и точдня ј вма в този сегмент максимална и минцмалиа стойност.

$$\max_{a \le x \le b} f(x) = \max_{x \in [a, b]} f(x)$$

$$= \max\{ f(x) : a \le x \le b \} = \max\{ f(x) : x \in [a, b] \}.$$

 $\min f(x) = \min f(x)$ Аналогично за минималната стойност:

 $= \min\{ \{ f(x) : a \le x \le b \} = \min\{ \{ f(x) : x \in [a, b] \} .$

Дирикле D, чинто стойности са равни на нула за всички прационалви х и на единица за всички рационални стойности на х. Тази функция с прекъсната във всяка точка на сегмента [0, 1], но очевилно Забележка 3. Функция, която не с непрекъсната в дадев сегмент, може да достигне в този сегмент точнат? си горна и точната си долна граница. Като пример може да се взсме функцията на достига в този сегмент точната си горна граница, равна на единица, и точната си долна граница, равна на пула.

Забележка 4. Твърдението в теорема 4.15 не е вярно, ако във формулировката и заменим термина "сегмент" с термина "ин-

Така функцията f(x) = x е непрекъснята в интервала (0, 1) нли в полусегмента [0,1], но не достига точната си горна граница M=1 в този интервал или полусетмент. тервал" или "полусетмент".

Трябва да добавим, че за функция, която е непрекъсната в нитервал или полусегмент, точните граници могат дори да не съществуват, тъй като тя може да не е ограничена в този интервал или полусетмент (вж. забележка 1). 4.6.3. Понятие за равномерна непрекъснатост на функция. Нека функцията f е дефинирана в множество {x}, всяка точка на което е точка на сгъстяване за това множество. Примери за такова множество са сегмент, интервал, полусегмент, полуправа, безкрайната права и множеството на всички рационални числа, принадлежащи на всяко от изброените по-горе множества.

ната в множеството {х}, ако за всяко положително число є същестува такова положително число 5, че за всеки две точки х' и x'' от множеството $\{x\}$, за които |x'-x''|<5, е изпълмено нв-Определение. Функцията f се нарича равномерно непрекъс-

$$|j(x')-j(x'')| < \epsilon$$
.

в множеството $\{x\}$, то тя е непрекъсната във всяка точка x_0 на това множество. Наистина при $x''=x_0$ получаваме определението Забележка 1. Ако функцията ј е равномерно непрскъсната за непрекъснатост по Коши в точката хо-

сално 5>0, за което да е изпълнено неравенството (4.29) за всяка тост е основно изискването за всяко є>0 да съществува универ-Забележка 2. В определението за равномерна испрекъснаЛОКАЛНИ И ГЛОБАЛНИ СВОЙСТВА

двойка точки x' и x'' от множеството $\{x\}$, удовлетворяващи усло-

всички точки x_0 на множеството $\{x\}$, т. е. равномерната непрежъснатост на функция върху множеството $\{x\}$ не следва от не- $-|(x_0)|<arepsilon$ за всички x от множествого $\{x\}$, които удовлетворяствува положителна точна долна граница на числата δ(ε, х₀) по прекъснатостта на тази функция във всяка точка хо от множеточка x_0 от множеството $\{x\}$, то за всяко $\epsilon > 0$ и за всяка точка x_0 на множеството $\{x\}$ се гарантира съществуването на "собствено" положително число $\delta = \delta (\varepsilon, x_0)$, което зависи не само от. ϵ_{r-110} и от x_{n} и осигурява верността на неравенството $\dot{f}(x)$ ват условието $|x-x_0|<\delta(\varepsilon,\ x_0)$. При това може и да не съще- Λ ко поискаме непрекъснатост на функцията f във всяка

мерно непрекъсната върху множеството $\{x\}$, то тя е равномерно Забележка 3. От даденото определение за равномерна непрекъсилтост непосредствено следва, че ако функцията / е равнонепрекъсната и върху всяко подмиожество на множеството {x}.

1. Функцията f(x)=1/x е равномерно непрекъсната върху полуправата $x{\geq}1$. Наистина за всеки две точки x' и x'' от тази полуправа е изпълнено

|f(x')-f(x'')| = |1/x'-1/x''| = |(x''-x')/x'x''| $=|x'-x''|/x'|x'' \le |x'-x''|.$

x' и x'' от полуправата [1, + ∞), удовлетворяващи условието | x' — -x'' | $< \delta$, е изпълнено неравелството | f(x') — f(x'') | $\le \delta$ — ϵ . Ако за всяко €>0 вземем б-е, ще получим, че за всеки две точки

интервала (0, 1), въпреки че е непрекъсната във всяка точка на интервала (0, 1). За да се убедим и това, е достатъчно да докажем, че за някое $\epsilon>0$ и за произволно малко $\delta>0$ съществува поне едиа двойка точки x' и x'' от интервала (0,1), за конто 2. Функцията f(x)— $\sin x^{-1}$ не е равномерно непрекъсната в $\mid x' - x'' \mid < \delta$, Ho $\mid f(x') - f(x'') \mid \geq \varepsilon$.

. Да разгледаме две редици от точки $\{x_n'\}$ и $\{x_n''\}$, принадлежащи на интервала (0,1), с иленове $x_n'=1/\pi n,$ $x_n''=1/(2\pi n+\pi/2),$

ществува такъв помер и, че $|x_n'-x_n''|<\delta$. Заедно с това за всеки Тези две редици, а така и също и тяхната разлика са безкрайно малки редици. Затова за всяко произволно малко 8>0 съ-

$$|f(x_n') - f(x_n'')| = |\sin \pi n - \sin (2\pi n - \pi/2)| = 1.$$

Следователно за $\epsilon=1/2$ и произволно малко $\delta>0$ съществува двойка точки x_n' и x_n' от интервала $(0,\ 1),$ за конто

$$|x_n'-x_n''|<\delta$$
 if $|f(x_n')-f(x_n'')|=1>\epsilon=1/2$,

а това означава, че разглежданата функция не е равномерно непрекъспата в интервала (0, 1).

Ще отбележим, че ако разгледаме същата функция $f(x) = \sin x^{-1}$ не в интервала (0, 1), а в интервала (у. Г). където у е произволно число от интервала (0, 1), проведените разсъждения всче не са валидни. По-нататък ще покажем, че тази функция е равномерно непрекъсната в интервала (ү, 1) за 0<7<1.

3. Функцията $f(x) - x^2$ не е равномерно непремъспата върху

Ще покажем, че не само за иякое є>0, а за всяко є>0 и за всяко произволно малко 6>0 съществува такава двойка точки , x'' or nonympasara $x \ge 1$, sa която $|x'-x''| < \delta$, но |f(x')|

За всяка двойка точки х', х" от полуправата х 21 имаме

Фиксираме произволни $\varepsilon > 0$ и $\delta > 0$, вземаме за x' произволно число, по-голямо от единица и от $2\varepsilon/\delta$, и полагаме $x'' = x' + \delta/2$. $(4.30) |f(x') - f(x'')| = |(x')^2 - (x'')^2| - |x' - x''| \cdot |x' + x''| > |x' - x''| x'.$ От друга страна, според (4.30) за същите х' их" ще бъде изпълнено За такива x' и x'' е изпълнено неравенството |x''-x'|=5/2<5. в перавенството

$$|f(x') - f(x'')| \ge (3/2)(2\varepsilon/8) - \varepsilon$$
.

Ако разглеждаме обаче функцията $f(x) = x^3$ не върху полупревата $[1, +\infty)$, а в произволен сегмент [1, b]. Където b>1 с произволно число, проведените разсъждения иямат място.

Това ще стане ясно от следната основна теорема:

f в непрекъсната в сегмента [a, b], тя е равномерно непрекъсната Основна теорема 4.16 (теорема на Кантор*). Ако функцията

телни числа $\delta_n = 1/n$, $n = 1, 2, 3, \cdots$ Можем да твърдим, че за нзбраното $\epsilon > 0$ и за всеки номер n съществуват точки x_n и x_n' от Тогара за някое є>0 и за произволно малко б>0 съществуват две такива точки x' и x'' от сегмента [a, b], че $[x'-x'']<\delta$, но $|f(x')-f(x'')| \ge \varepsilon$. Да изберем безкрайно малка редица от положи-Доказателство. Да предголожим, че функцията f е непрекъсната в сегмента [а, b], но не е равномерно испрекъсната. сегмента [а, b], за които

Реорг Кантор — немски математих (1845 — 1918).

$|x_n'-x_n''| < 1/n$, Ho $|f(x_n')-f(x_n'')| \ge \epsilon$.

ствие 3 от георема 3.16) от нея може да се избере сходяща подредниа $\{x_{k_n}\}$ $(n=1,\ 2,\ 3,\ \cdots)$. Границата ξ на тази подредниа (епоред следствие 2 от теорема 3.13) също принадлежи на сегмента [а, b]. Лявото неравенство (4.31) показва, че съответната Тъй като $\{x_n'\}$ е редица от точки на сегмента [a,b], тя е ограничена и съгласно теоремата на Болцано — Вайерщрас (вж. следподредица $\{x_{k_n}''\}$ е също сходяща и има за граница гочката ξ .

мента $\{u, v_h, v_h\}$ на непрекъснатост по Хайне двете подреднии от съответните стойности на функцията $\{f(x_h)\}$ и $\{f(x_h)\}$ са сходящи Понеже функцията / е непрекъспата във всяка точка на сегмента [и, b], тя е непрекъсната и в точката Е. "Но тогава според

речи на дменото перавенство (4.31), което е изпълнено за всички подредици $\{f(x_{k_n}')-f(x_{k_n}')\}$ е безкрайно малка редица. Това противос граница f(ξ), т. е. разликата на тези номера и и следователно и за всички помера ћи.

Полученото противоречие показва, че нашето допускане ие е

вярно.

вала $(\gamma, 1)$ при всяко γ от интервала (0, 1). Действително при всяко такова γ функцията f(x)— $\sin x^{-1}$ е непрекъсцята в сегмента [т. 1]. Следователно по теоремата на Кантор тя е равномерно не-прекъсната в сегмента [т. 1]. Съгласно забележка 3 към определението за равномерна непрекъснатост функцията $f(x) = \sin x^{-1}$ е равномерно непрекъсната и в питервала (т. 1), който е подмно-Ще се върнем сега към разгледания пример 2 и ще покажем, че функцията f(x) — $\sin x^{-1}$ е равномерно непрекъсната в интер-

жество на сегмента [7, 1]. Теоремата на Кантор се формулира удобно чрез понятнето

оспилация на функция.

лация на функцията f в сегмента [с, d] ще наричаме разлика-та w=M-т между точната горна и точната долна граница на Нека функцията / е ограничена върху сегмента [с, а]. Осцифункцията [в този сегмент.

За непрекъсната функция / в сегмента [с, d] осцилацията е равна на разликата между максималната и минималната ѝ стойност

B TO3H Cel'MCHT.

От теоремата на Кантор 4.16 непосредствено се получава след-

 $^+$ Ако ξ съвпада с един от кранцата на сегмента $[a,\,b]$, под непрекъснатост трябва да се разбира сдностранна непрекъснатост.

ЛОКАЛНИ И ГЛОБАЛНИ СВОЙСТВА

Следствие от теорема 4.16. Ако функцията ј е непрекасната в сегмента [a, b], то за всяко положително число в съществува такова положително число 5, че осцинацията на функцията f(x) във всеки сегмент с дължина, по-малка от д, съдържащ се в сегмента [a, b], е по-малка от є.

ремите 4.14 и 4.15 на Вайерщрас и 4.16 на Кантор, не е трудно да забележим, че в тези три теореми вместо сегмента [а, b] може съдържа всичките си точки на сгъстяване (такова множество се Забележка 4. Като анализираме доказателствата на теода се вземе произволно множество $\{x\}$, което удовлетворява условията: 1) множеството $\{x\}$ е ограничено; 2) множеството $\{x\}$

нарича затьорено).

ще наричаме компактно множество или компакт. Следователно посочените три теореми (двете теореми на Вайершрас и теоремата на Кантор) са в сила не само за функции, непрекъснати в сегмент, Множество {x}, което удовлетворява посочените две условия, но и за функции, непрекъснати върху произволен компакт.

4.6.4. Модул на непрекъснатост на функция. Нека функцията / е дефинирана и непрекъсната в някакво множество (х), всяка точка на което е точка на сгъстяване.

дрункцията f(x) в множеството $\{x\}$ ще наричаме точната горна граница на разликата |f(x')-f(x'')| по всички точки x' и x'' от множеството $\{x\}$, за които $|x'-x''| \le \delta$. Определение. За всяко б>0 модул на непрекъснатост на

Модулът на непрекъснатост на функцията / в множеството $\{x\}$ е прието да се означава със символа $\mathbf{w}(f; \delta)$, т. е.

(4.32)
$$\omega(f; \delta) = \sup \{|f(x') - f(x'')| : |x' - x''| \le \delta, x', x'' \in \{x\} \}.$$

Ще отбележим две свейства на модула на непрекъснатост

Модулът на непрекъснатост w (f; 5) е винаги неотрица-

Това свойство следва непосредствено от определението за модул 20. Модулът на непрекъснатост ю (/; 8) е ненамаляваща функна непрекъснатост (4.32).

Действително при намаляване на в множеството, по което ция на 6 върху полуправата 6>0.

се взема супремумът (4.32), се стеснява, а супремум върху част от множество не надминава супремума върху цялото множество.

Примери:

1. Ще сметнем модула на непрекъснатост на функцията $f(x) = x^2$ Ще пресметием модулите на непрекъснатост на някои функции. сегмента [0, 1].

Нека x' и x'' са такива две произволни точки от сегмента [0,1], че $|x'-x''| \le \delta$, където $0 < \delta < 1$. Тогава очевидно $x' - \delta \le x''$ ≤х'+8 и получаваме

$$|f(x')-f(x'')| = |(x')^2 - (x'')^3| \le (x')^3 - (x'-5)^2 = 25 x' - 5^3$$

$$|f(x')-f(x'')| = |(x')^2 - (x'')^3| \le (x')^3 - (x'-5)^3 = 25 x' - 5^3$$

От последното неравенство имаме

 $\omega(f;\delta) = \sup\{|f(x') - f(x'')|: |x' - x''| < \delta, x', x'' (\{x\}) \le 2\delta - \delta^3.$

От друга страна, като вземем x'=1 и $x''=1-\delta$, подучаваме

$$f(x')-f(x'')=1-(1-\delta)^2=2\delta-\delta^2$$
.

Следователно $\omega(f; \delta) = \omega(x^2; \delta) = 2\delta - \delta^2 \le 2\delta$.

2. Ще сметием модула на пепрекъспатост на функцията f(x) $=\sin x^{-1}$ в интервала (0, 1).

 $|f(x')-f(x'')|=|\sin(1/x')-\sin(1/x'')|\leq |\sin(1/x')|+|\sin(1/x'')|\leq 2,$

От друга страна, като вземем две безкрайно малки редици $\{x_n^*\}$ н $\{x_n^{**}\}$ от точки в интервала (0, 1) от вида

 $x'_n = 1/(2\pi n + \pi/2), \ x''_n = 1/(2\pi n - \pi/2),$

където $n=1,\ 2,\ 3,\ \cdots$, за всяко $\delta>0$ можем да изберем такъв номер κ , че $0< x_n'<\delta,\ 0< x_n'<\delta$ и $|x_n'-x_n'|\leq\delta$, при което

$$f(x_n') - f(x_n'') = \sin(1/x_n') - \sin(1/x_n'') = 2.$$

3. Модулът на непрекъспатост на функцията f (x)=1/x в интер-OTTYK CACABA, We $\omega(f; \delta) = \omega(\sin x^{-1}; \delta) = 2$.

Фиксираме произволно 5>0 и разглежламе само тези точки x' н x'', конто удовлетворяват съотношенията $0 < x' \le 5$, x'' = 5, гака че $|x' - x''| \le 5$. Очевидно

вала (0, 1) е равен на +∞.

$$\omega(x^{-1}; \delta) \ge \sup\{1/x' - 1/\delta : 0 < x' < \delta\} = +\infty,$$

Ще докажем една теорема, която свързва рацномерната непрекъснатост на функцията f върху множеството $\{x\}$ с модула на пепрекъснатост на тази функция върху същото множество.

Теорема 4.17. За да бъдг функцията в равномерно непрекъсната в множеството {х}, е необходимо и достатъчно модулът й на непрекъсматост $\omega(f; \delta)$ в това множество да удовлетворява

съотношениелю

$$\lim_{t \to 0} \omega(f; \delta) = 0.$$

HOHMTHETO KOMBAKTHOCT

номерно непрекъсната в множеството $\{x\}$. Трябва да се докаже, че е изпълнено съотношението (4.33), т. е. че за всяко $\epsilon>0$ може да се намери такова число $\delta_\epsilon>0,$ че за всяко $\delta,$ удовлетворяващо Доказателство. Необходимост. Нека функцията f с рав-

 $\{x\}$, за които $|x'-x''|<\delta_{\rm e}$, с изпълнено неравенството $|f(x')-f(x'')|<\epsilon_{\rm e}/2$. Но това означава, че за всяко δ от интервала $0<\delta<\delta_{\rm e}$, е из-Според определението за равномерна непрекъснатост за всяко $\epsilon > 0$ съществува такова $\delta_{\epsilon} > 0$, че за всички x' и x'' от множеството условието $0 < \delta < \delta_s$, дя е изпълнено неравенството $\omega(f;\delta) < \epsilon_s$. пълнено неравенството

$$\omega(f;\delta) = \sup\{|f(x') - f(x'')| : |x' - x''| \le \delta, x', x'' \in \{x\}\} \le \epsilon/2 < \epsilon.$$

за всяко в>0 съществува такола 5.>0, че за всяко 3. удовлетворя-Достатъчност. Нека е изпълнено съотношението (4.33), т. е. ващо условието $0 < \delta < \delta_{\epsilon}$, да е изпълнено нерапенството $\omega\left(f;\,\delta\right) < \epsilon$.

всички x' и x'' от множеството $\{x\}$, за които $|x'-x''| \le \delta < \delta_\epsilon$, о изпълнено неравенството $|f(x')-f(x'')| < \epsilon$, а това означава, че От определението на модул на непрекъснатост следва, че за функцията f е равномерно непрекъсната в множеството $\{x\}$. \square

функции: функцията х² в сегмента [0, 1], и функциите sin x⁻¹ и

теорема 4.17 следва, че функцията x^2 с равномерно непрекъсната в сегмента [0,1], а функциите $\sin x^{-1}$ и 1/x не са равномерно 1/x в интервала (0,1). 7 1/x в интервала (0,1) 1/x 1/x в 1/x в интервала (0,1) 1/x 1/непрекъснати в интервала (0, 1).

4.7. Понятието компактност на множество

4.7.1. Отворени и затворени множества. Пека {x} е произволно

Определение 1. Точкати х на множеството {x} се нарича множество от реалии числа.

положително число 8, че 5-околността на точката х да се съдържа вътрешна точка за това множество, ако съществува такова

Определение 2. Множествота $\{x\}$ се нарича **отворено**, ако в множество {x}.

Примерн за отворени множества са интервалите, отворсната полуправа, безкрайната правз и обединепието на няколко непревсяка негова точка в вътрещна точка за множеството.

Определение 3. Множеството {x} се нирича затворено, ако неговото допълнение (т. е. разликата $(-\infty,+\infty)\backslash\{x\}$) в отворено сичания се интернала.

MHONCECTIBD.

NOHRIBETO KOMBAKTHOCT

Определение 3'. Множеството $\{x\}$ се нарича затворено, ако

съдържа всичките си точки на сгъстявине. Ще се убедим, че за произволни числови множества опреде-

ленията 3 и 3' са сквивалентии.

1. Нека множеството $\{x\}$ с допълнение на отворено множество. Ще докажем, че всяка точка на състяване на това множество $\{x\}$

Наистина, ако предположим, че точката на стъстяване x не принадлежи на множеството $\{x\}$, то x ще принадлежи на допълнението на множеството $\{x\}$, косто е отворено множество. Но тогава x ще принадлежи на това отворено множество. Заедно c някоя своя b-околност, c накоя своя c-околност, c накоя c-околност на точката c нама да c-ража точки от множеството $\{x\}$. Последното противоречи на това, че c е точка на стъстяване за множеството $\{x\}$.

това, че x е точка на стретиване за миожеството $\{x\}$ принадлежи на това множество. Ще докажем, че множеството $\{x\}$ е допълнение на отворено мпожество. Нека x е произволна точка от допълнението на мпожеството $\{x\}$. Трябъз да се докаже, че в допълнението се съдържа и иякоя δ -околност на точката x.

Ако това не е така, то всяка 8-околност на точката x ще съдържа точки от миожеството $\{x\}$, т. с. точката x ше бъде точка на сгъстяване за множеството $\{x\}$ и по условне принадлежи към него, което противоречи на това, че x е точка от допълнението на множеството $\{x\}$.

4.7.2. Покритие на множество със система от отворени множества

Определение 1. Ще казваме, че системата $\{\Sigma_a\}$ от множества Σ_a е покритие на множеството $\{x\}$, ако всяко от множествата Σ_a е отворено и всяка точка x от множеството $\{x\}$ принадлежи на поне едно от множествата на системата $\{\Sigma_a\}$.

Ще докажем две забележителни леми за покритие на мно-

жество със системи от отворени множества.

Лема на Хайне — Борел* за сегмент. От всяко покритие на сегмента [а, b] може да се избере крайна подсистема, която също е покритие на този сегмент.

Доказателство. Ако системата $\{\Sigma_a\}$ е покритие на сегмента [a,b] и не е безкрайна, лемата е доказана. Нека системата

 $\{\Sigma_a\}$ е покритие на сегмента [a,b] и е безкрайна. Допускаме, че системата I = [a,b] не може да се покрие от краен брой множества на системата $\{\Sigma_a\}$. Ако разделим този сегмент наполовина, поне една от двете му половини също не може да се покрие с краен брой множества от системата $\{\Sigma_a\}$. Да означим тази половина с I_1 . Разделяме I_1 наполовина и получаваме,

Емнл Борел — френски математик (1871—1956).

, не поне едната от двете половини на I_1 (означаваме я с I_2) не може да се покрие с краен брой множества от системата $\{\Sigma_{\bf a}\}$.

Продължавайки така, ще получим система от включващи се сетменти $\{I_n\}$, всеки от конто не може да се покрие с краен брой миожества от системата $\{\Sigma_n\}$. Дължината на n-тия сегмент I_n е 2^{-n} -та част от дължината на основния сегмент и клони към нула при $n \to \infty$.

Съгласно следствието от теорема 3.15 (вж. 3.2.2) съществува, и то единствена точка с, съдържаща се във всички сегменти $I_{\mathbf{a}}$. Понеже тязи точка c се съдържа и всегмента I = [a, b], то в системата $\{\Sigma_a\}$ има множество Σ_{a_b} , което съдържа точката c. От това, че множеството Σ_{a_b} е отворено, следва съществуването на такова $\delta > 0$, че δ -околността на точката c, τ . е. интервалът $(c - \delta, c + \delta)$, също принадлежи на множеството Σ_{a_b} .

Тъй като всички сегменти I_n съдържат точката c и дължината им клони към нула при $n \longrightarrow \infty$, можем да твърдим, че съществува такъв номер n_0 , че при $n \ge n_0$ всички сегменти I_n се съдържат в нитервала $(c-\delta, c+\delta)$.

Но това означава, че всеки сегмент I_n при $n \ge n_0$ може да 5bнахме до противоречие с това, че инто един от сегментите I_n не
може да се покрие с краен 5b06 множества от системата $\{\Sigma_a\}$. \square Ще докажем сега едно по-общо твърдение.

Лема на Хайне — Борел за затворено ограничено множество. От всяко покритие на затворено ограничено множество $\{x\}$ може да се избере крайна подсистема, също образуваща покритие на множеството $\{x\}$.

Доказателство. Нека $\{x\}$ е затворено ограничено множество, а $\{\Sigma_a\}$ — система от отворени множества, образуваща покритие на множествого $\{x\}$.

критие на множеството $\{x\}$. Гограничено, има сегмент [a,b], който го съдържа. Означаваме със Σ_{β} отвореното множество, което с допълнение на затвореното множество $\{x\}$. Тогава обединението на системата $\{\Sigma_{\alpha}\}$ с отвореното множество Σ_{β} образува покритие на сегмента [a,b]. Според лемата на Хайне — Борел за сегмент от това покритие може да се избере крайна подсистема, образуваща покритие на сегмента [a,b].

Ако множеството Σ_s влиза в тази крайна подсистема, като го изключим от нея, ще получим крайна подсистема на системата $\{\Sigma_a\}$, образуваща покритие на множеството $\{x\}$.*

Ако множеството Σ_{μ} не влиза в крайната подсистема, образуваща покритие на сетмента [a,b], то тази крайна подсистема

^{*} Множеството Σ_{ρ} е допълнение към множеството $\{x\}$ и не съдържи нито

ГОРНА И ДОЛНА ФУНКЦИЯ НА БЕР

системата (У., в ще образува крайно покритие на множеството $\{x\}$, което се съдържа в сегще се състои от множества Σ_a на мента [а, b]. □

4.7.3. Понятието компактност на множество. Нека {x} е произволно множество от реални числа.

Определение 1. Множеството {x} се нарича компактно множество (нли компакт), ако от всяка система, образуваща покритие на множеството {x}, може да се избере крайна подсистема, която е също покритие на множеството {x}.

В забележка 4 на 6,3 беше дадено друго определение за компактно множество. Ще напомним неговата формулировка.

Определение 1'. Множеството {x} се нарича компактно, ако е затворено и ограничено.

Ще докажем, че за произволни числови множества определе-

жеството {x} може да се избере крайна подсистема, образуваща 1. Нека множеството {x} е затворено и ограничено. Тогава от лемата на Хайне — Борел следва, че от всяко покритие на мнонията 1 и 1' са еквипалентии.

кригие да може да се избере крайна подсистема, образуваща също покритие на множеството $\{x\}$. 2. Нека множеството $\{x\}$ е такова, че от всяко негово по-

Достатьчно е да се докаже, че допълнението D на множеството $\{x\}$ е отворено множество. Ще докажем, че множествого {x} е затворено и ограничено. Най-папред ще докажем затвореността на множеството {x} покритие на $\{x\}$.

Нека у е произволия точка от допълнението В. Трябва да се докаже, че съществува 8-околност на точката у, която се съ-

Нека x е произволна точка на множеството $\{x\}$. Тъй като $x \neq y$, то числото $\delta(x) = |x-y|/2$ е положително и $\delta(x)$ -околносдържа в допълнението D.

 $\Sigma_x \! = \! (x \! - \! \delta(x), \ x \! + \! \delta(x)), \ \Psi_x \! = \! (y \! - \! \delta(x), \ y \! + \! \delta(x))$ тите на точките х и у

не се пресичат.

Понеже системата от отворени множества $\{\Sigma_k\}$, съответствуващи на всички точки x от множеството $\{x\}$, образува покритие на множеството {x}, то от тази система може да се избере крайна подсистема Σ_{x_1} , Σ_{x_2} , . . . , Σ_{x_n} , образуваща покритие на мно-

Означаваме с Ψ_{x_1} , Ψ_{x_2} , . . . , Ψ_{x_n} съответната крайна подсинстема от 8-околности на точката у. Най-малката от тези 8-околности ще се съдържа във всички множества $\Psi_{x_1}, \Psi_{x_2}, \cdots, \Psi_{x_n}$ и няма да има общи точки инто с едно от множествата Σ_{s_1} , Σ_{s_2}

разува покритие на множеството $\{x\}$, посочената най-малка δ -окол-ност на точката у изма да съдържа точки от множеството $\{x\}$, \dots, Σ_{r_n} . Ho totaba, teň kato nojichetemata $\Sigma_{s_1}, \Sigma_{s_2}, \dots, \Sigma_{s_n}$ oбт. е. изияло ще се съдържа в допълнението D на множеството $\{x\}$.

С това е доказано, че множеството D е отворено, и следователно множеството {x} е затворено.

Сега ще докажем, че множеството $\{x\}$ е ограничено. Ако това не е така, ще съществува редина $\{x_n\}$ от точки на множеството {х},удовлетворяващи условието

$$|x_a| > n, n=1, 2, 3, \dots$$

Гъй като тази редина няма крайна точка на стъстиване, то всяка точка хл има д-околност 2, песьдържаща други точки от редицата {xn}.

Очевилно, че от системата отворени множества {2x,,}, образуваща покритие на множеството от точки $\{x_n\}$, не може да се избере крайна подсистема, образуваща покритие на всички точки {xn}.

Тъй като множеството $\{x_n\}$ е полиножество на $\{x\}$, то няма да може и от всяка система отворени множества, образуващи покритие на множеството $\{x\}$, да се избере крайна подсистема, по-криваща множеството $\{x\}$. Полученото противоречие доказва ограничеността на множеството {x}.

4.8. Горна и долна функция на Бер*

Нека в сегмента [a, b] е дефинирана функцията f, която приема както крайни, така и безкрайни стойности.

положително число 8 и означаваме с $m_{\delta}(x_0)$ и $M_{\delta}(x_0)$ съответно точната долна и точната горна граница функцията f в множествого Избираме произволна точка х₀ от сегмента [a, b] и произволно от тези точки на сегмента [a, b], които принадлежат на интервала $(x_0-\delta, x_0+\delta), \text{ r. e. nonarame}$

$$m_{\delta}(x_0) = \inf\{f(x) : x \in [a, b], x_0 - \delta < x < x_0 + \delta\},$$

 $M_{\delta}(x_0) = \sup\{f(x) : x \in [a, b], x_0 - \delta < x < x_0 + \delta\}.$

Очевилно, че за всяко 6>0

34)
$$m_a(x_0) \le f(x_0) \le M_a(x_0)$$
.

Ако положителното число δ намалява, то $m_{\delta}\left(x_{0}\right)$ по намалява а $M_{\delta}\left(x_{0}\right)$ не нараства. Затова съществуват границите

$$m(x_0) = \lim_{\theta \to 0} m_{\theta}(x_0), M(x_0) = \lim_{\theta \to 0} M_{\theta}(x_0),$$

Вер — френски математив (1874 — 1932).

при това очевидно са изпълнени неравенствата

 $m_3(x_0) \le m(x_0) \le f(x_0) \le M(x_0) \le M_3(x_0)$.

Определение 1. Функциите М и т се наричат съответно горна долна дбункция на Бер за функцията f.

Теорема. Нека функцията f е крайна (т. с. приема крайна стойност) в точката x_0 . Тогава, за да бъде функцията f непреказна в точката x_0 , е необходимо и достатъчно да е изпълнено равенството

$$M(x_0) = m(x_0)$$
.

Доказателство. 1. Heoбxodumocm. Нека функцията f в непрекъсната в точката x_0 . Избираме произволно $\varepsilon>0$ и намидуми, ако $x\in(x_0-\xi,x_0+\xi)$, то

$$f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

Но оттук следва, че

$$f(x_0) - \varepsilon \le m_\delta(x_0) \le M_\delta(x_0) \le f(x_0) + \varepsilon$$

(тъй като m_3 (x_0) и M_3 (x_0) са точната долна и точната горна граница на функцията f в интервала (x_0 — δ , x_0 + δ)).

Следователно

$$f(x_0) - \varepsilon \le m(x_0) \le M(x_0) \le f(x_0) + \varepsilon$$
.

От последните неравенства поради произволния избор на £>0

$$M(x_0) = m(x_0) = f(x_0)$$
.

2. Достаточност. Ако $M(x_0) = m(x_0)$, то очевнино $M(x_0) = m(x_0) = f(x_0)$ и общата стойност на функцинге на Бер в точ-ката x_0 е крайна.

Избираме произволно є>0 и вземаме такова 5>0, че

$$m(x_0) - \varepsilon < m_3(x_0) \le m(x_0), M(x_0) \le M_3(x_0) < M(x_0) + \varepsilon.$$

Тези неравенства показват, че

$$f(x_0) - \varepsilon < m_\delta(x_0), M_\delta(x_0) < f(x_0) + \varepsilon.$$

Ако точката x принадлежи на $(x_0-\delta, x_0+\delta)$, то, както видяхме, стойността f(x) лежи мужту $m_s(x_0)$ и $M_s(x_0)$. Затова, ако x принадлежи на $(x_0-\delta, x_0+\delta)$, то

$$f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

| С други думи, за всички x от [a, b], за конто $|x-x_0| < \delta$, е изпълнено неравеиството $|f(x)-f(x_0)| < \varepsilon$, т. с. функцията f е непрежесната в точката x_0 .

ГОРНА И ДОЛНА ФУНКЦИЯ НА БЕР

Забележка. За дефиниционна област на функцията f вместо сермента [a, b] може да се вземе произволно миожество $\{x\}$, за което точката x, е точка на стъстиване

което точката x_0 в точка на сгъстяванс, Определение 2. Функцията f, дефинирана в сегменти [a, b], се нарича полунепрекъсната отгоре (отдолу) в точкита x_0 от сегмента [a, b], ако*

$$\lim_{x \to x_0} f(x) = f(x_0) \quad (\lim_{x \to x_0} f(x) = f(x_0)).$$

В това определение не се предполага крайност на функцията f(x) нито в точката x_0 , нито в другите точки от сегмента [a,b]. По-специално функцията f(x) е полунепрекъсната отгоре (отдолу) във всяка точка x_0 , където

$$f(x_0)=M(x_0)$$
 $[f(x_0)=m(x_0)].$

Ако функцията f(x) е непрекъсната в точката x_0 , то тя е и полунепрекъсната и отгоре, и отдолу в тази точка. Обратно, ако функцията е крайна в точката x_0 и полунепрекъсната както отгоре, така и отдолу в точката x_0 , тя е непрекъсната в тази точка

горе, така и отдолу в точката x_0 , тя с непремъсната в тази точка. Тези твърдения са друга формулировка на твърденията, съдържащи се в доказаната по-рано теорема за горната и долната функция на Бер.

* За всяка редина (x_n) от стойности на аргумента, различия от x_0 , която клони въм x_0 , разглеждане $\lim_{n\to\infty} f(x_n)$. Най-голямата от $\lim_{n\to\infty} f(x_n)$ означаваме с $\lim_{n\to\infty} f(x)$. Аналогично се определя $\lim_{n\to\infty} f(x)$. Папример

 $\limsup_{x \to 0} x^{-1} = 1, \limsup_{x \to 0} x^{-1} = -1,$ $\lim_{x \to 0} (x^{-2} \sin x^{-1}) = +\infty, \lim_{x \to 0} (x^{-2} \sin x^{-1}) = -\infty.$