Московский Физико-Технический Институт (государственный университет)

Лабораторная работа 5.4.2

Исследование энергетического спектра β-частиц и определение их максимальной энергии при помощи магнитного спектрометра

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Теоретические сведения	3
Экспериментальная установка	4
Ход работы	5
Вывол	9

Цель работы: с помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

Теоретические сведения

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами.

В данной работе мы будем иметь дело с электронным распадом

$$_{Z}^{A}X \longrightarrow _{Z+1}^{A}X + e^{-} + \widetilde{\nu},$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии — от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = \sqrt{(pc)^2 + (mc^2)^2} - mc^2. \tag{1}$$

В нерелятивистском приближении формула, выражающая форму β -спектра приобретает вид:

$$\frac{dN}{dE} = \sqrt{E}(E_e - E)^2, \tag{2}$$

где E_e — максимальная энергия электрона.

Выражение (2) приводит к спектру, имеющему вид широкого колокола (см. рис. 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается

Рис. 1. Форма спектра β -частиц при разрешенных переходах

оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной — по ней можно оценить разрешающую силу спектрометра.

Экспериментальная установка

Рис. 2. Схема β -спектрометра с короткой магнитной линзой

Энергию β -частиц определяют с помощью β -спектрометров. В работе используется магнитный спектрометр с «короткой линзой». Электроны, испускаемые радиоактивным источником (рис. 2), попадают в магнитное поле катушки, ось которой параллельна оси OZ (оси симметрии

прибора). Траектории электронов в магнитном поле представляют собой схематически показанные на рисунке сложные спирали, сходящиеся за катушкой в фокусе, расположенном на оси OZ. В фокусе установлен детектор электронов. Чувствительным элементом сцинтилляционного счетчика является тонкий кристалл полистирола. При попадании электрона в кристалле возникает световая вспышка — сцинтилляция, регистрируемая фотоумножителем.

При заданной силе тока на входное окно счетчика фокусируются электроны с определенным импульсом. Электроны, обладающие другими значениями импульса, при этом не сфокусированы и в основном проходят мимо окна (штриховой луч). При изменении тока в катушке на счетчик последовательно фокусируются электроны с разными импульсами. Так как геометрия прибора в течение всего опыта остается неизменной, импульс сфокусированных электронов пропорционален величине тока I:

$$p_e = kI. (3)$$

Из-за конечных размеров источника, диафрагм и окна счетчика, а также вследствие аберраций при заданной величине фокусного расстояния на счетчик попадают электроны с импульсами, лежащими внутри некоторого интервала от $p_e - \Delta p_e/2$ до $p_e + \Delta p_e/2$. Величина Δp_e — ширина интервала импульсов, регистрируемых при заданном значении тока, — называется разрешающей способностью β -спектрометра.

Ширина интервала Δp_e , регистрируемого спектрометром, пропорциональна величине импульса.

В результате попадания электронов в сцинтиллятор на выходе фотоумножителя появляются электрические импульсы, которые заносятся в память персонального компьютера и выводятся на экран монитора. Давление в спектрометре поддерживается на уровне около 0,1 Тор и измеряется термопарным вакуумметром. Лучший вакуум в приборе не нужен, поскольку уже при этом давлении потери энергии электронов малы и их рассеяние незначительно. Откачка осуществляется форвакуумным насосом. Магнитная линза питается постоянным током от выпрямителя. Высокое напряжение на ФЭУ или газоразрядный счетчик подается от стабилизированного выпрямителя.

Ход работы

- 1. Откачаем воздух из полости спектрометра.
- 2. Включим формирователь импульсов, питание магнитной линзы и уменьшим ток через нее до нуля.

3. Приступим к подробному измерению β -спектра. Результаты запишем в таблицу 1.

Рис. 3. Картина спектра на компьютере

Рис. 4. β -спектр за вычетом фона

4. Измерим фон. В нашем случае он получился $N_{\rm ф}=0{,}929~{\rm c}^{-1}$. Эту информацию тоже занесем в таблицу 1.

I, A	$N c^{-1}$	$N - N_{\Phi}, c^{-1}$
0,2	1,579	0,650
0,4	1,699	0,770
0,6	1,609	0,680
0,8	2,039	1,110
1,0	2,049	1,120
1,2	2,209	1,280
1,4	2,819	1,890
1,6	3,039	2,110
1,8	3,429	2,500
2,0	3,489	2,560
2,2	3,649	2,720
2,4	3,779	2,850
2,6	3,319	2,390
2,8	3,079	2,150
3,0	2,649	1,720
3,2	2,619	1,690
3,4	2,839	1,910
3,5	3,659	2,730
3,6	3,884	2,955
3,7	3,649	2,720
3,8	3,289	2,360
3,9	2,382	1,453
4,0	2,089	1,160
4,1	1,882	0,953
4,2	1,130	0,201

Таблица 1. Экспериментальные данные

5. По конверсионному пику определим константу пропорциональности k из уравнения (3). Величина произведения импульса конверсионного электрона на скорость света равна 1013,5 кэВ. Откуда:

$$k = 281.5 \cdot \frac{1}{c} \frac{\text{kpB}}{\text{A}},$$

где c — это скорость света, а не секунды.

6. Теперь, зная эту калибровочную константу, построим график Ферми-Кюри, то есть зависимость величины $\frac{\sqrt{N}}{p^{3/2}}$ от энергии электрона E. Из него, по пересечению с осью абсцисс можно определить максимальную энергию β -частиц.

I, A	N, c^{-1}	$N - N_{\rm ch}, {\rm c}^{-1}$	$p=k\cdot I$, кэ $\mathrm{B/c}$	$\sqrt{N}/p^{3/2}, c^{3/2} \cdot 10^{-6} \text{ cek}^{-1/2} \cdot \text{ kgB}^{-3/2}$	E, кэ B
0,2	1,579	0,650	56,3	1908,51	3,09
0,4	1,699	0,770	112,6	734,41	12,26
0,6	1,609	0,680	168,9	375,67	27,19
0,8	2,039	1,110	225,2	311,75	47,42
1,0	2,049	1,120	281,5	224,07	72,41
1,2	2,209	1,280	337,8	182,23	101,56
1,4	2,819	1,890	394,1	175,72	134,32
1,6	3,039	2,110	450,4	151,97	170,16
1,8	3,429	2,500	506,7	138,63	208,63
2,0	3,489	2,560	563,0	119,77	249,32
2,2	3,649	2,720	619,3	107,01	291,90
2,4	3,779	2,850	675,6	96,14	336,09
2,6	3,319	2,390	731,9	78,08	381,64
2,8	3,079	2,150	788,2	66,26	428,35
3,0	2,649	1,720	844,5	53,44	476,07
3,2	2,619	1,690	900,8	48,08	524,65
3,4	2,839	1,910	957,1	46,67	573,97
3,5	3,659	2,730	985,3	53,43	598,88
3,6	3,884	2,955	1013,4	53,29	623,95
3,7	3,649	2,720	1041,6	49,06	649,15
3,8	3,289	2,360	1069,7	43,91	674,49
3,9	2,382	1,453	1097,9	33,14	699,95
4,0	2,089	1,160	1126,0	28,51	725,53
4,1	1,882	0,953	1154,2	24,90	751,21
4,2	1,130	0,201	1182,3	11,03	777,00

Рис. 5. График Ферми-Кюри

Для построения графика не использовались первые 4 точки, поскольку они давали слишком большие значения по ординате из-за чего главную часть графика не было хорошо видно.

Также, мы видим, что сам график хоть и напоминает прямую, однако все же он не линеен. Именно поэтому строим аппроксимирующую прямую лишь по линейному участку.

Получаем следующие коэффициенты для аппроксимации прямой вида y = Ax + B:

•
$$A = (-0.33 \pm 0.02) c^{3/2} \cdot 10^{-6} \text{ cek}^{-1/2} \cdot \text{ kgB}^{-5/2}$$

•
$$B = (210 \pm 5) c^{3/2} \cdot 10^{-6} \text{ cek}^{-1/2} \cdot \text{ kgB}^{-3/2}$$

Максимальная энергия β -частиц определяется пересечением прямой с осью абсцисс:

$$E_{
m max}=-rac{B}{A}$$
 $E_{
m max}=(640\pm30)$ кэ ${
m B}$

Относительная погрешность составляет $\sim 5\%$.

В принципе, значение недалеко от правды: $E_{\rm max}^{\rm истин} \simeq 634~{\rm кэ}{\rm B}.$

Вывод

В данной работе мы исследовали спектр β -частиц при распаде цезия $^{137}\mathrm{Cs.}$ Также, была определена максимальная энергия β -частиц при данном распаде: $E_{\mathrm{max}} = (640 \pm 30)$ кэВ. Относительная погрешность составляет $\sim 5\%$. Причем истинное значение находится близко к найденному нами: $E_{\mathrm{max}}^{\mathrm{истин}} \simeq 634$ кэВ. Хоть ошибки и есть, но достаточно малы.