## MCAC 201: Design and Analysis of Algorithms

Neelima Gupta

ngupta@cs.du.ac.in

April 17, 2023

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n > n_o$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be  $\infty$ .

Notation:  $f(n) \le g(n)$  asymptotically.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be  $\infty$ .

Notation:  $f(n) \le g(n)$  asymptotically. Note: By asymptotically we mean within constant multiplicative factor and for large n

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

- Notation:  $f(n) \le g(n)$  asymptotically. Note: By asymptotically we mean within constant multiplicative factor and for large n
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{2}} = \frac{7}{5}$$
.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

- Notation:  $f(n) \le g(n)$  asymptotically. Note: By asymptotically we mean within constant multiplicative factor and for large n
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{2}} = \frac{7}{5}$$
.

2. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0$$
.



Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = O(g(n)) iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \le cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

- Notation:  $f(n) \le g(n)$  asymptotically. Note: By asymptotically we mean within constant multiplicative factor and for large n
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{2}} = \frac{7}{5}$$
.

2. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0$$
.



Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

▶  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n > n_o$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \Omega(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \Omega(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

c is a (non zero) positive constant. It can be  $\infty$  but not 0.

Notation:  $f(n) \ge g(n)$  asymptotically.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \Omega(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

- Notation:  $f(n) \ge g(n)$  asymptotically.
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2 + 3n + 10}{7n^2 - 2n - 5} = \lim_{n\to\infty} \frac{5 + \frac{3}{n} + \frac{10}{n^2}}{\frac{7}{n^2} - \frac{5}{n^2}} = \frac{5}{7}$$
.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \Omega(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

- Notation:  $f(n) \ge g(n)$  asymptotically.
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2 + 3n + 10}{7n^2 - 2n - 5} = \lim_{n\to\infty} \frac{5 + \frac{3}{n} + \frac{10}{n^2}}{7 - \frac{2}{n} - \frac{5}{n^2}} = \frac{5}{7}$$
.

2. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2 - 100}{n + 10} = \infty$$
.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \Omega(g(n))$  iff  $\exists$  constants  $c > 0, n_o > 0 : f(n) \ge cg(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \Omega(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

- Notation:  $f(n) \ge g(n)$  asymptotically.
- Examples:

1. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2 + 3n + 10}{7n^2 - 2n - 5} = \lim_{n\to\infty} \frac{5 + \frac{3}{n} + \frac{10}{n^2}}{7 - \frac{2}{n} - \frac{5}{n^2}} = \frac{5}{7}$$
.

2. 
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2 - 100}{n + 10} = \infty$$
.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

►  $f(n) = \theta(g(n))$  iff  $\exists$  constants  $c_1, c_2 > 0, n_o > 0$ :  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n \ge n_o$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \theta(g(n))$  iff  $\exists$  constants  $c_1, c_2 > 0, n_o > 0$ :  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \theta(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor  $\infty$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \theta(g(n))$  iff  $\exists$  constants  $c_1, c_2 > 0, n_o > 0$ :  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n \ge n_o$ .
- ▶ Equivalent Definition:  $f(n) = \theta(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor  $\infty$ .

Notation: f(n) = g(n) asymptotically.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \theta(g(n))$  iff  $\exists$  constants  $c_1, c_2 > 0, n_o > 0$ :  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n \ge n_o$ .
- **Equivalent Definition**:  $f(n) = \theta(g(n))$  iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor  $\infty$ .

- Notation: f(n) = g(n) asymptotically.
- Example:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

▶ f(n) = o(g(n)) iff for every constant  $c > 0 \exists n_c > 0$ : f(n) < cg(n) for all  $n \ge n_c$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = o(g(n)) iff for every constant  $c > 0 \exists n_c > 0$ : f(n) < cg(n) for all  $n \ge n_c$ .
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = o(g(n)) iff for every constant  $c > 0 \exists n_c > 0$ : f(n) < cg(n) for all  $n \ge n_c$ .
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

▶ Notation: f(n) < g(n) asymptotically.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ▶ f(n) = o(g(n)) iff for every constant  $c > 0 \exists n_c > 0$ : f(n) < cg(n) for all  $n \ge n_c$ .
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- Notation: f(n) < g(n) asymptotically.
- Example:  $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0$ .

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

►  $f(n) = \omega(g(n))$  iff for every constant  $c > 0 \exists n_c > 0$ : f(n) > cg(n) for all  $n \ge n_c$ 

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \omega(g(n))$  iff for every constant  $c > 0 \exists n_c > 0$ : f(n) > cg(n) for all  $n \ge n_c$
- **Equivalent Definition**:  $f(n) = \omega(g(n))$  iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \omega(g(n))$  iff for every constant  $c > 0 \exists n_c > 0$ : f(n) > cg(n) for all  $n \ge n_c$
- **Equivalent Definition**:  $f(n) = \omega(g(n))$  iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Notation: f(n) > g(n) asymptotically.

Consider a set  $\mathcal{F}$  of functions  $f: \mathbf{I}^+ \to \mathbf{R}$ . Let  $f, g \in \mathcal{F}$ .

- ►  $f(n) = \omega(g(n))$  iff for every constant  $c > 0 \exists n_c > 0$ : f(n) > cg(n) for all  $n \ge n_c$
- **Equivalent Definition**:  $f(n) = \omega(g(n))$  iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

- Notation: f(n) > g(n) asymptotically.
- ► Example:  $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-100}{n+10} = \infty$ .

# Some easy to prove Observations

1.  $f(n) \le g(n)$  iff either f(n) < g(n) or f(n) = g(n) is true.

## Some easy to prove Observations

- 1.  $f(n) \le g(n)$  iff either f(n) < g(n) or f(n) = g(n) is true.
- 2.  $f(n) \leq g(n)$  iff  $g(n) \geq f(n)$ .

# Some easy to prove Observations

- 1.  $f(n) \le g(n)$  iff either f(n) < g(n) or f(n) = g(n) is true.
- 2.  $f(n) \leq g(n)$  iff  $g(n) \geq f(n)$ .
- 3. f(n) = g(n) iff  $f(n) \le g(n)$  and  $f(n) \ge g(n)$ .

#### Let's do it

1. 
$$f(n) = 6n^3 + 7n + 100$$
,  $g(n) = 8n^2 + 20$ .

#### Let's do it

1. 
$$f(n) = 6n^3 + 7n + 100$$
,  $g(n) = 8n^2 + 20$ .

2. 
$$f(n) = \log^2 n$$
,  $g(n) = (1/2) sqrt(n)$ .

#### Let's do it

1. 
$$f(n) = 6n^3 + 7n + 100$$
,  $g(n) = 8n^2 + 20$ .

2. 
$$f(n) = \log^2 n$$
,  $g(n) = (1/2) sqrt(n)$ .

3. 
$$f(n) = 2^n$$
,  $g(n) = 3^n$ .

#### **Practice Questions**

Use the equivalent definitions (limits) to prove the following:

- 1. Show that a polynomial of degree d, with positive leading coefficient is  $\Theta(n^d)$ .
- 2. For g(n) = f(n) + o(f(n)), show that  $g(n) = \Theta(f(n))$ .
- 3. Show that
  - a.  $\log^M n = o(n^{\epsilon})$  where M and  $\epsilon$  are positive constants.
  - b.  $\log n = o(n)$ .
- 4.  $a^n = o(b^n)$  for all a < b.