Portion Size Effect for Children at High and Low Familial Risk for Obesity (Food and Brain Study)

Contents

1		mographics
	1.1	CEBQ SR - t-test
2	CE	BQ - SR
3	Me	al Liking
	3.1	Overall
	3.2	Chicken Nuggets - Liking
	3.3	Mac and Cheese - Liking
	3.4	Grapes - Liking
	3.5	Broccoli - Liking
4	Me	al Ranking
	4.1	Rank - Portion Size 1
	4.2	Rank - Portion Size 2
	4.3	Rank - Portion Size 3
	4.4	Rank - Portion Size 4
	4.5	Frequency of Intake
5	Por	etion Size Effect
	5.1	Total Intake
	5.2	Intake by Food
	5.3	Base Model - Test Quadratic Effect
	5.4	Risk Status x Portion Size (linear effect)
6	Exp	ploratory Analyses: Individual Foods 28
	6.1^{-}	Chicken Nuggets
	6.2	Mac and Cheese
	6.3	Grapes
	6.4	Broccoli
7	Exp	ploratory Analyses: Mediated Moderation 44
	7.1	Grams
	7.2	kcal

1 Demographics

Table 1: Demographics

	Risk	Overall	
Characteristic	Low Risk, $N = 50$	High Risk, $N = 36$	N = 86
Sex			
Male	29 (58%)	16 (44%)	45 (52%)
Female	21 (42%)	20 (56%)	41 (48%)
Age, yr	7.8 (0.7)	7.7(0.5)	7.8 (0.6)
Ethnicity			
Not Hispanic/Lantinx	50 (100%)	36 (100%)	86 (100%)
Race			(
0	47 (94%)	36 (100%)	83 (97%)
2	3 (6.0%)	0 (0%)	3 (3.5%)
Income	, ,	, ,	, ,
< \$51,000	4 (8.2%)	7 (21%)	11 (13%)
>\$100,000	23 (47%)	7 (21%)	30 (36%)
\$51,000 - \$100,000	22 (45%)	20 (59%)	42 (51%)
Unknown	1	2	3
BMI %tile	41.2 (24.4)	56.1 (24.3)	47.4(25.3)
Fat Mass, g	6,786.4 (1,445.9)	8,123.4 (1,773.0)	7,346.1 (1,714.6)
Body Fat, %	27.0 (3.8)	30.8 (4.4)	28.6 (4.4)
Fat Mass Index (fat, kg/height, m2)	4.1 (0.8)	4.9 (1.0)	4.5 (0.9)
Satiety Responsiveness	2.8(0.6)	$3.1\ (0.6)$	2.9(0.6)
Mother's Education	,	,	,
> Bachelor Degree	21 (43%)	5 (14%)	26 (31%)
AA/Technical Degree	3 (6.1%)	6 (17%)	9 (11%)
Bachelor Degree	22 (45%)	19 (53%)	41 (48%)
High School/GED	3 (6.1%)	6 (17%)	9 (11%)
Unknown	1	0	1
Father's Education			
> Bachelor Degree	27 (54%)	3 (9.4%)	30 (37%)
AA/Technical Degree	3 (6.0%)	11 (34%)	14 (17%)
Bachelor Degree	14 (28%)	12 (38%)	26 (32%)
High School/GED	6 (12%)	5 (16%)	11 (13%)
Other/NA	0 (0%)	1 (3.1%)	1 (1.2%)
Unknown	0	4	4

¹ n (%); Mean (SD)

Age - t-test

Welch Two Sample t-test

data: age_yr by risk_status_mom

t = 0.50681, df = 82.343, p-value = 0.6136

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equal 95 percent confidence interval:

-0.1939215 0.3265215

sample estimates:

mean in group Low Risk mean in group High Risk 7.8138 7.7475

Welch Two Sample t-test

data: bmi_percentile by risk_status_mom t = -2.8105, df = 75.711, p-value = 0.006292

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-25.551839 -4.356339

sample estimates:

mean in group Low Risk mean in group High Risk 41.15980 56.11389

Low Risk High Risk 24.38858 24.30838

FMI - t-test

Welch Two Sample t-test

data: fmi by risk_status_mom

t = -4.1967, df = 65.514, p-value = 8.326e-05

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-1.2051372 -0.4280523

sample estimates:

mean in group Low Risk mean in group High Risk
4.131468
4.948062

Low Risk High Risk 0.7800754 0.9616947

1.1 CEBQ SR - t-test

Welch Two Sample t-test

data: cebq_sr by risk_status_mom

t = -1.7358, df = 76.432, p-value = 0.08663

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-0.51726301 0.03548524

sample estimates:

mean in group Low Risk mean in group High Risk 2.848000 3.088889

Low Risk High Risk 0.6421393 0.6296383

Sex - χ^2

Pearson's Chi-squared test with Yates' continuity correction

data: r01_intake\$sex and r01_intake\$risk_status_mom
X-squared = 1.0462, df = 1, p-value = 0.3064

Income - χ^2

Pearson's Chi-squared test

data: r01_intake\$income and r01_intake\$risk_status_mom
X-squared = 6.9633, df = 2, p-value = 0.03076

Mom Education - Fisher test

Fisher's Exact Test for Count Data

data: r01_intake\$mom_ed and r01_intake\$risk_status_mom

p-value = 0.01375

alternative hypothesis: two.sided

2 CEBQ - SR

```
Reliability analysis
Call: alpha(x = r01_intake[c("cebq3_rev", "cebq17", "cebq21", "cebq26",
   "cebq30")])
 raw_alpha std.alpha G6(smc) average_r S/N
                                           ase mean
                                                     sd median_r
      0.8
                0.8
                       0.8
                                0.45 4.1 0.035 2.9 0.64
                                                           0.39
lower alpha upper
                     95% confidence boundaries
0.73 0.8 0.87
Reliability if an item is dropped:
         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
cebq3_rev
             0.79
                       0.80
                              0.79
                                       0.50 4.0
                                                  0.038 0.0284 0.44
cebq17
             0.72
                                       0.40 2.7
                                                   0.049 0.0077 0.37
                       0.73
                               0.68
                                     0.39 2.6
cebq21
             0.72
                     0.72
                              0.66
                                                  0.049 0.0018 0.38
cebq26
             0.76
                     0.76
                              0.76
                                      0.45 3.3
                                                   0.044 0.0317 0.39
cebq30
             0.79
                       0.80
                              0.79
                                        0.49 3.9
                                                   0.038 0.0312 0.44
Item statistics
          n raw.r std.r r.cor r.drop mean
                              0.47 2.9 0.88
cebq3_rev 86 0.67 0.66 0.52
                              0.68 3.2 0.87
cebq17
         86 0.81 0.82 0.82
         86 0.82 0.83 0.84
                              0.71 3.1 0.76
cebq21
cebg26 86 0.75 0.75 0.65
                               0.58 2.9 0.90
cebq30 86 0.69 0.67 0.52
                              0.48 2.7 0.92
Non missing response frequency for each item
                2
                     3
                        4
cebq3_rev 0.06 0.27 0.45 0.20 0.02
cebq17
        0.01 0.22 0.40 0.33 0.05
         0.00 0.21 0.49 0.28 0.02
cebq21
cebq26
         0.07 0.23 0.47 0.21 0.02
cebq30
         0.08 0.34 0.40 0.16 0.02
```

3 Meal Liking

Table 2: Meal Liking

Group	Characteristic	PS-1, $N = 86$	PS-2, N = 86	PS-3, N = 86	PS-4, N = 86
Overall	avg_vas	3.8 (0.6)	3.8 (0.6)	3.8 (0.6)	3.9 (0.6)
	mac_vas	3.9(0.9)	3.8 (1.0)	3.8 (1.1)	3.8 (1.0)
	chnug_vas	4.2 (0.9)	4.3 (0.8)	4.2 (0.9)	4.2 (0.9)
	broc_vas	3.1 (1.4)	3.0 (1.3)	3.0 (1.3)	3.2 (1.4)
	$grape_vas$	4.2 (0.9)	4.3(0.9)	4.2 (1.0)	4.2 (1.0)
High-Risk	avg_vas	3.9 (0.6)	3.8 (0.7)	3.8 (0.7)	3.9 (0.6)
	mac_vas	4.2(0.8)	3.9(1.1)	3.9(1.1)	4.0 (1.0)
	chnug_vas	4.3 (1.0)	4.2 (1.0)	4.1 (1.2)	4.3 (0.9)
	broc_vas	2.9(1.7)	2.8(1.5)	2.8(1.5)	2.9(1.6)
	$grape_vas$	4.2(0.8)	4.4(0.9)	4.4(0.9)	4.4 (0.8)
Low-Risk	avg_vas	3.8 (0.6)	3.8 (0.6)	3.8 (0.6)	3.8 (0.7)
	mac_vas	3.6 (1.0)	3.7 (1.0)	3.8 (1.1)	3.7 (1.0)
	chnug_vas	4.1 (0.9)	4.3(0.7)	4.2(0.7)	4.2(0.9)
	broc_vas	3.2(1.2)	3.1 (1.1)	3.2(1.2)	3.3 (1.3)
	grape_vas	4.2(0.9)	4.2(1.0)	$4.1\ (1.1)$	4.1(1.0)

¹ Mean (SD)

3.1 Overall

Table 3: Regression Table: Portion Size for Liking

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	3.493	0.456	82.640	7.666	0.000
preFF	-0.002	0.001	307.991	-2.331	0.020
fmi	0.026	0.078	80.564	0.333	0.740
sexFemale	0.107	0.134	80.603	0.801	0.426
cebq _sr	0.061	0.101	80.499	0.604	0.547
meal_order	0.018	0.014	254.729	1.276	0.203
$risk_status_momHigh Risk$	0.010	0.145	80.904	0.066	0.948
g_served	0.000	0.000	254.760	0.521	0.603

3.2 Chicken Nuggets - Liking

Table 4: Regression Table: Portion Size for Liking of Chicken Nuggets

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.913	0.612	83.604	6.389	0.000
preFF	-0.002	0.001	321.752	-1.542	0.124
fmi	-0.037	0.105	80.752	-0.356	0.723
sexFemale	-0.142	0.179	80.803	-0.794	0.430
cebq _sr	0.152	0.136	80.670	1.118	0.267
meal_order	0.037	0.023	254.979	1.638	0.103
$risk_status_momHigh Risk$	0.105	0.195	81.190	0.537	0.593
g_served	0.000	0.000	255.018	0.420	0.674

3.3 Mac and Cheese - Liking

Table 5: Regression Table: Portion Size for Liking of Mac and Cheese

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	3.131	0.704	84.111	4.447	0.000
preFF	-0.002	0.001	325.306	-1.395	0.164
fmi	0.168	0.120	80.999	1.397	0.166
sexFemale	0.140	0.206	81.054	0.681	0.498
cebq _sr	-0.032	0.156	80.911	-0.203	0.840
meal_order	0.006	0.027	255.246	0.218	0.828
risk_status_momHigh Risk	0.117	0.224	81.466	0.521	0.604
g_served	0.000	0.000	255.288	-0.323	0.747

3.4 Grapes - Liking

Table 6: Regression Table: Portion Size for Liking of Grapes

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	3.293	0.640	83.974	5.145	0.000
preFF	-0.001	0.001	326.883	-1.062	0.289
fmi	0.017	0.109	80.739	0.158	0.875
sexFemale	0.170	0.187	80.795	0.911	0.365
cebq _sr	0.265	0.142	80.648	1.873	0.065
meal_order	0.009	0.026	254.996	0.336	0.737
$risk_status_momHigh Risk$	0.106	0.203	81.219	0.521	0.603
g_served	0.000	0.000	255.039	-0.056	0.955

3.5 Broccoli - Liking

Table 7: Regression Table: Portion Size for Liking of Broccoli

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	3.647	1.020	81.600	3.575	0.001
preFF	-0.002	0.001	293.472	-1.511	0.132
fmi	-0.044	0.175	80.163	-0.254	0.800
sexFemale	0.258	0.300	80.191	0.863	0.391
cebq _sr	-0.140	0.227	80.116	-0.618	0.538
meal_order	0.022	0.027	254.273	0.809	0.419
$risk_status_momHigh Risk$	-0.287	0.326	80.411	-0.879	0.382
g_served	0.000	0.000	254.296	1.147	0.252

4 Meal Ranking

4.1 Rank - Portion Size 1

Friedman rank sum test

data: rank and food and sub Friedman chi-squared = 35.988, df = 3, p-value = 7.531e-08

mac_rank chnug_rank grape_rank

chnug_rank 0.0673 - - - grape_rank 0.8694 0.3303 -

broc_rank 0.0041 3.3e-08 0.0002

Wilcoxon rank sum test with continuity correction

data: mac_rank by risk_status_mom

W = 383, p-value = 0.1812

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: chnug_rank by risk_status_mom

W = 319.5, p-value = 0.9345

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: grape_rank by risk_status_mom

W = 313.5, p-value = 0.984

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: broc_rank by risk_status_mom

W = 241.5, p-value = 0.117

alternative hypothesis: true location shift is not equal to 0

4.2 Rank - Portion Size 2

Friedman rank sum test

data: rank and food and sub Friedman chi-squared = 25.753, df = 3, p-value = 1.074e-05

Wilcoxon rank sum test with continuity correction

data: mac_rank by risk_status_mom
W = 345, p-value = 0.5591

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: chnug_rank by risk_status_mom
W = 280.5, p-value = 0.4964

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: grape_rank by risk_status_mom
W = 354.5, p-value = 0.4322

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: broc_rank by risk_status_mom
W = 257, p-value = 0.2337

alternative hypothesis: true location shift is not equal to 0

4.3 Rank - Portion Size 3

Friedman rank sum test

data: rank and food and sub
Friedman chi-squared = 33.941, df = 3, p-value = 2.039e-07

mac_rank chnug_rank grape_rank
chnug_rank 0.33034 - - -

grape_rank 0.90086 0.75109 broc_rank 0.00098 3.1e-07 5.1e-05

Wilcoxon rank sum test with continuity correction

data: mac_rank by risk_status_mom

W = 310.5, p-value = 0.9367

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: chnug_rank by risk_status_mom

W = 267.5, p-value = 0.3408

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: grape_rank by risk_status_mom

W = 361.5, p-value = 0.357

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: broc_rank by risk_status_mom

W = 328, p-value = 0.7864

alternative hypothesis: true location shift is not equal to 0

4.4 Rank - Portion Size 4

Friedman rank sum test

data: rank and food and sub

Friedman chi-squared = 29.776, df = 3, p-value = 1.538e-06

mac_rank chnug_rank grape_rank

chnug_rank 0.09779 - -

grape_rank 0.70559 0.60953

broc_rank 0.01869 1.1e-06 0.00039

Wilcoxon rank sum test with continuity correction

 ${\tt data:} \quad {\tt mac_rank} \ \, {\tt by} \ \, {\tt risk_status_mom}$

W = 390.5, p-value = 0.1629

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: chnug_rank by risk_status_mom

W = 278.5, p-value = 0.4183

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: grape_rank by risk_status_mom

W = 310, p-value = 0.8663

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

data: broc_rank by risk_status_mom

W = 288, p-value = 0.524

alternative hypothesis: true location shift is not equal to 0

Table 8: Meal Ranking

Group	Characteristic	PS-1, $N = 86$	PS-2, $N = 86$	PS-3, N = 86	PS-4, N = 80
Overall	mac_rank	11 (0004)	11 (0007)	15 (2004)	19 (0504)
	1	11 (22%)	11 (22%)	15 (29%)	13 (25%)
	2	16 (31%)	11 (22%)	10 (20%)	11 (22%)
	3	12 (24%)	15 (29%)	16 (31%)	14 (27%)
	4	12 (24%)	14 (27%)	10 (20%)	13 (25%)
	chnug_rank	94 (4707)	10 (2707)	20 (2007)	99 (4507)
	1	24 (47%)	19 (37%)	20 (39%)	23 (45%)
	2	15 (29%)	14 (27%)	18 (35%)	13 (25%)
	3 4	7 (14%) 5 (9.8%)	11 (22%) 7 (14%)	7 (14%) 6 (12%)	10 (20%) 5 (9.8%)
		0 (0.070)	(1170)	0 (1270)	0 (0.070)
	grape_rank 1	13 (25%)	17 (33%)	13 (25%)	14 (27%)
	$\overline{2}$	15 (29%)	19 (37%)	18 (35%)	16 (31%)
	3	18 (35%)	10 (20%)	15 (29%)	15 (29%)
	4	5 (9.8%)	5 (9.8%)	5 (9.8%)	6 (12%)
	broc rank				
	1	3 (5.9%)	4 (7.8%)	3 (5.9%)	1 (2.0%)
	2	5 (9.8%)	7 (14%)	5 (9.8%)	11 (22%)
	3	14 (27%)	15 (29%)	13 (25%)	12 (24%)
	4	29 (57%)	25 (49%)	30 (59%)	27 (53%)
High-Risk	mac_rank				
9	1	5 (24%)	5 (24%)	6 (29%)	7 (32%)
	2	8 (38%)	4 (19%)	4 (19%)	6 (27%)
	3	6 (29%)	8 (38%)	7 (33%)	5 (23%)
	4	2(9.5%)	4 (19%)	4 (19%)	4 (18%)
	chnug_rank				
	1	11 (52%)	7 (33%)	7 (33%)	9 (41%)
	2	4 (19%)	5 (24%)	7 (33%)	5 (23%)
	3	3 (14%)	6 (29%)	4 (19%)	5 (23%)
	4	3 (14%)	3 (14%)	3 (14%)	3 (14%)
	$grape_rank$				
	1	5 (24%)	7 (33%)	7 (33%)	6(27%)
	2	6 (29%)	10 (48%)	7 (33%)	6(27%)
	3	9 (43%)	3 (14%)	5 (24%)	8 (36%)
	4	1 (4.8%)	1 (4.8%)	2(9.5%)	2(9.1%)
	broc_rank				
	1	0 (0%)	2(9.5%)	1(4.8%)	0 (0%)
	2	3 (14%)	2(9.5%)	3 (14%)	5(23%)
	3	3 (14%)	4 (19%)	5 (24%)	4 (18%)
	4	15 (71%)	13~(62%)	12~(57%)	13~(59%)
Low-Risk	mac_rank				
	1	6 (20%)	6 (20%)	9 (30%)	6 (21%)
	2	8 (27%)	7 (23%)	6 (20%)	5 (17%)
	3	6 (20%)	7 (23%)	9 (30%)	9 (31%)
	4	10 (33%)	10 (33%)	6 (20%)	9 (31%)
	$chnug_rank$				
	1	13 (43%)	12 (40%)	13 (43%)	14 (48%)
	2	11 (37%)	9 (30%)	11 (37%)	8 (28%)
	3	4 (13%)	5 (17%)	3 (10%)	5 (17%)
	4	2 (6.7%)	4 (13%)	3 (10%)	2(6.9%)
	${\tt grape_rank}$				
	1	8 (27%)	10 (33%)	6 (20%)	8 (28%)
	2	9 (30%)	9 (30%)	11 (37%)	10 (34%)
	3	9 (30%)	7 (23%)	10 (33%)	7 (24%)
	4	4 (13%)	4 (13%)	3 (10%)	4 (14%)
	$broc_rank$	12			
	1	3 (10%)	2(6.7%)	2(6.7%)	1(3.4%)
	2	2(6.7%)	5 (17%)	2(6.7%)	6(21%)
	3	11 (37%)	11 (37%)	8 (27%)	8 (28%)
	4	14 (47%)	12 (40%)	18 (60%)	14 (48%)

¹ n (%)

4.5 Frequency of Intake

Table 9: Child Report - Typical Portion Selection and Intake

	Risk (Groups	Overall
Characteristic	Low Risk, N = 50	High Risk, $N = 36$	N = 86
Broccoli, eat			
N	31 (62%)	21 (66%)	52 (63%)
Y	19 (38%)	11 (34%)	30 (37%)
Broccoli, amount	58.3 (31.5)	60.0 (38.7)	58.9 (33.7)
Broccoli, like	66.6 (37.0)	59.9 (43.5)	64.1 (38.9)
Chicken Nugget, eat			
N	4 (8.0%)	1 (3.1%)	5 (6.1%)
Y	46 (92%)	31 (97%)	77 (94%)
Chicken Nugget, amount	39.9 (22.9)	47.3 (25.0)	42.9 (23.9)
Chicken Nugget, like	63.4 (28.2)	77.5 (28.7)	69.1 (29.1)
Grapes, eat			
N	6 (12%)	3 (9.4%)	9 (11%)
Y	44 (88%)	29 (91%)	73 (89%)
Grapes, amount	47.0 (21.0)	54.4 (29.7)	49.9 (24.9)
Grapes, like	72.4 (25.8)	68.7 (26.2)	71.0 (25.8)
Mac + Cheese, eat			
N	3 (6.0%)	3 (9.4%)	6 (7.3%)
Y	47 (94%)	29 (91%)	76 (93%)
Mac + Cheese, amount	49.7 (22.2)	64.0 (25.2)	55.1 (24.3)
Mac + Cheese, like	72.1 (24.2)	78.8 (23.0)	74.7 (23.8

¹ n (%); Mean (SD)

Broccoli - χ^2

 ${\tt Pearson's\ Chi-squared\ test\ with\ Yates'\ continuity\ correction}$

data: xtabs(~pss_broccoli_eat + risk_status_mom, data = r01_intake)
X-squared = 0.0094944, df = 1, p-value = 0.9224

Grapes - Fisher

Fisher's Exact Test for Count Data

data: xtabs(~pss_grapes_eat + risk_status_mom, data = r01_intake)
p-value = 1
pltorrotive hypothogia: true odds ratio is not equal to 1

alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval:

0.2557472 8.7593598

sample estimates:

odds ratio

1.313864

Mac and Cheese - Fisher

Fisher's Exact Test for Count Data

```
data: xtabs(~pss_mac_cheese_eat + risk_status_mom, data = r01_intake)
p-value = 0.6738
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.07782524     4.95038679
sample estimates:
odds ratio
    0.6208164

### Chicken Nuggets - Fisher

Fisher's Exact Test for Count Data
```

data: xtabs(~pss_chkn_nug_eat + risk_status_mom, data = r01_intake)
p-value = 0.6437
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.2483595 136.8733876
sample estimates:
odds ratio
 2.667579

Table 10: Parent Report - Typical Portion Selection and Intake

	Risk	Groups	Overall
Characteristic	Low Risk, $N = 50$	High Risk, N = 36	N = 86
Broccoli, eat			
N	14 (28%)	16 (44%)	30 (35%)
Y Dragonii fran	36 (72%)	20 (56%)	56 (65%)
Broccoli, freq Never - 1/month	6 (17%)	3 (15%)	9 (16%)
,	` '	, ,	, ,
$\frac{2-3}{\text{month}}$ $\frac{1-2}{\text{week}}$	9 (25%) 16 (44%)	6 (30%) 9 (45%)	15 (27%) 25 (45%)
3-4/week	5 (14%)	2 (10%)	7 (12%)
Broccoli, amount	42.1 (17.1)	49.4 (23.1)	44.7 (19.6)
Broccoli, like	58.3 (26.5)	59.4 (32.7)	58.7 (28.6)
Broccoli, portion	61.9 (28.7)	50.8 (36.6)	57.9 (31.9)
Broccoli, health	87.0 (12.0)	83.6 (12.3)	85.8 (12.1)
Chicken Nugget, eat	- (04)	. (~)	- (~()
N Y	5 (10%)	1(2.8%)	6 (7.0%)
	45 (90%)	35 (97%)	80 (93%)
Chicken Nugget, freq	1F (9907)	0 (0007)	00 (0007)
Never - 1/month 2-3/month	15 (33%) 19 (42%)	8 (23%) 11 (31%)	23 (29%) 30 (38%)
1-2/week	8 (18%)	13 (37%)	21 (26%)
3-4/week	3 (6.7%)	3 (8.6%)	6 (7.5%)
Chicken Nugget, amount	28.3 (12.7)	32.0 (11.1)	29.9 (12.1)
Chicken Nugget, like	76.2 (23.2)	81.3 (16.1)	78.4 (20.5)
Chicken Nugget, portion	67.4 (28.0)	63.8 (28.4)	65.8 (28.1)
Chicken Nugget, health	44.4 (18.5)	31.9 (19.8)	38.9 (19.9)
Grapes, eat			
N	6 (12%)	1(2.8%)	7 (8.1%)
Y	44 (88%)	35 (97%)	79 (92%)
Grapes, freq Never - 1/month	8 (18%)	3 (8.6%)	11 (14%)
2-3/month	14 (32%)	15 (43%)	29 (37%)
,	, ,		` '
1-2/week 3-4/week	16 (36%) 4 (9.1%)	15 (43%) 1 (2.9%)	31 (39%) 5 (6.3%)
5-6/week	2 (4.5%)	1 (2.9%)	3 (3.8%)
Grapes, amount	42.1 (16.2)	43.9 (16.8)	42.9 (16.4)
Grapes, like	73.2 (22.8)	79.6 (15.2)	$76.0\ (20.0)$
Grapes, poriton	50.1 (30.0)	47.9 (35.5)	49.1 (32.3)
Grapes, health	83.1 (18.8)	86.3 (14.3)	84.5 (16.9)
Mac + Cheese, eat	- (- (~)	(
N Y	8 (16%)	2 (5.6%)	10 (12%)
Y	42 (84%)	34 (94%)	76 (88%)
Mac + Cheese, freq	0 (1407)	F (4F04)	11 (1407)
Never - 1/month	6 (14%)	5 (15%) 18 (53%)	11 (14%)
$\frac{2-3}{\text{month}}$ $\frac{1-2}{\text{week}}$	23 (55%) 12 (29%)	18 (53%) 9 (26%)	41 (54%) $21 (28%)$
3-4/week	1 (2.4%)	2 (5.9%)	3 (3.9%)
1/day	0 (0%)	0 (0%)	0 (0%)
Mac + Cheese, amount	35.5 (10.3)	34.3 (14.0)	35.0 (12.0)
Mac + Cheese, like	76.9 (19.2)	76.4 (25.8)	76.7 (22.2)
Mac + Cheese, poriton	65.2 (26.5)	65.1 (33.0)	65.1 (29.4)
Mac + Cheese, nutrition	36.9 (18.1)	28.0 (22.9)	32.9 (20.7)

¹ n (%); Mean (SD)

```
Pearson's Chi-squared test with Yates' continuity correction
data: xtabs(~p_pss_broccoli_eat + risk_status_mom, data = r01_intake)
X-squared = 1.8204, df = 1, p-value = 0.1773
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_broccoli_freq + risk_status_mom, data = r01_intake)
p-value = 1
alternative hypothesis: two.sided
## Grapes - Fisher
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_grapes_eat + risk_status_mom, data = r01_intake)
p-value = 0.2307
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
  0.5321588 225.4437121
sample estimates:
odds ratio
  4.703046
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_grapes_freq + risk_status_mom, data = r01_intake)
p-value = 0.5283
alternative hypothesis: two.sided
## Mac and Cheese - Fisher
   Fisher's Exact Test for Count Data
data: xtabs(~p_pss_mac_cheese_eat + risk_status_mom, data = r01_intake)
p-value = 0.182
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.5841448 32.8789599
sample estimates:
```

Broccoli - χ^2

odds ratio 3.199433

Fisher's Exact Test for Count Data

data: xtabs(~p_pss_mac_cheese_freq + risk_status_mom, data = r01_intake)
p-value = 0.9375
alternative hypothesis: two.sided

Chicken Nuggets - Fisher

Fisher's Exact Test for Count Data

data: xtabs(~p_pss_chkn_nug_eat + risk_status_mom, data = r01_intake)
p-value = 0.3937
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.4028961 188.9209316
sample estimates:
odds ratio
 3.837976

Fisher's Exact Test for Count Data

data: xtabs(~p_pss_chkn_nug_freq + risk_status_mom, data = r01_intake)

p-value = 0.2423

alternative hypothesis: two.sided

5 Portion Size Effect

Note - Portion Size was coded in ps_prop as the proportion increase in amount served: Portion Size 1=0, Portion Size 2=0.33, Portion Size 3=0.66, and Portion Size 4=0.99. This means that a 1 unit increase is equal to a 100% increase in amount served – the difference between Portion Size 1 and Portion Size 4.

5.1 Total Intake

Table 11: Intake by Portion Size

	Risk	Groups	Overall
Characteristic	Low Risk, $N = 50$	High Risk, $N = 36$	N = 86
ps1_total_g	406.6 (170.2)	408.9 (165.6)	407.5 (167.3)
ps1_total_kcal	469.7 (201.2)	493.7 (197.2)	479.8 (198.7)
ps1_avg_vas	3.8 (0.6)	3.9 (0.6)	3.8 (0.6)
ps2_total_g	466.7 (174.3)	393.4 (160.9)	436.0 (171.8)
ps2_total_kcal	535.6 (208.9)	485.4 (217.3)	514.6 (212.7)
ps2_avg_vas	3.8 (0.6)	3.8 (0.7)	3.8 (0.6)
ps3_total_g	484.8 (191.5)	432.7 (189.3)	463.0 (191.2)
ps3_total_kcal	581.9 (239.1)	530.2 (287.2)	560.3 (260.0)
ps3_avg_vas	3.8 (0.6)	3.8 (0.7)	3.8 (0.6)
ps4_total_g	496.4 (192.8)	425.3 (168.4)	466.6 (185.4)
ps4_total_kcal	616.7 (249.1)	568.9 (253.5)	596.7 (250.6)
ps4_avg_vas	3.8 (0.7)	3.9 (0.6)	3.9 (0.6)

¹ Mean (SD)

5.2 Intake by Food

Table 12: High Risk: Intake by Portion Size

Characteristic	PS-1, $N = 36$	PS-2, $N = 36$	PS-3, $N = 36$	PS-4, N = 36
chnug_grams chnug_kcal mac_grams mac_kcal grape_grams	64.8 (45.8)	64.3 (54.0)	77.1 (62.2)	85.6 (65.3)
	162.1 (114.6)	160.7 (134.9)	192.7 (155.6)	214.1 (163.2)
	133.0 (106.3)	132.8 (112.4)	136.1 (132.4)	142.5 (125.3)
	226.1 (180.8)	225.7 (191.1)	231.4 (225.1)	242.2 (213.1)
	84.1 (65.6)	93.4 (76.2)	96.3 (88.7)	104.5 (91.4)
grape_kcal broc_grams broc_kcal mac_vas chnug_vas	58.4 (45.6)	64.9 (53.0)	66.9 (61.7)	72.6 (63.5)
	32.7 (53.7)	23.1 (29.3)	24.6 (38.1)	23.9 (37.6)
	32.8 (53.9)	23.1 (29.4)	24.7 (38.2)	24.0 (37.7)
	4.2 (0.8)	3.9 (1.1)	3.9 (1.1)	4.0 (1.0)
	4.3 (1.0)	4.2 (1.0)	4.1 (1.2)	4.3 (0.9)
broc_vas	2.9 (1.7)	2.8 (1.5)	2.8 (1.5)	2.9 (1.6)
grape_vas	4.2 (0.8)	4.4 (0.9)	4.4 (0.9)	4.4 (0.8)

¹ Mean (SD)

Table 13: Low Risk: Intake by Portion Size

Characteristic	PS-1, $N = 50$	PS-2,N=50	PS-3, $N = 50$	PS-4, N = 50
chnug_grams chnug_kcal mac_grams	68.1 (42.0)	80.3 (49.0)	91.4 (59.9)	104.0 (67.9)
	170.3 (104.9)	200.8 (122.6)	228.5 (149.8)	260.0 (169.7)
	115.2 (91.8)	129.7 (103.8)	139.8 (116.9)	133.3 (108.7)
mac_kcal	195.8 (156.1)	220.5 (176.5)	237.7 (198.7)	226.6 (184.7)
grape_grams	95.9 (82.5)	105.5 (87.4)	105.8 (93.5)	117.9 (105.2)
grape_kcal	66.7 (57.3)	73.3 (60.7)	73.5 (65.0)	81.9 (73.1)
broc_grams	27.2 (41.3)	29.9 (55.2)	30.0 (55.4)	36.2 (66.6)
broc_kcal	27.3 (41.4)	30.0 (55.4)	30.1 (55.6)	36.3 (66.8)
mac_vas	3.6 (1.0)	3.7 (1.0)	3.8 (1.1)	3.7 (1.0)
chnug_vas	4.1 (0.9)	4.3 (0.7)	4.2 (0.7)	4.2 (0.9)
broc_vas	3.2 (1.2)	3.1 (1.1)	3.2 (1.2)	3.3 (1.3)
grape_vas	4.2 (0.9)	4.2 (1.0)	4.1 (1.1)	4.1 (1.0)

¹ Mean (SD)

5.3 Base Model - Test Quadratic Effect

All intake models are currently controlling for: pre-meal Freddy Fullness, child BMI, average VAS liking rating for the meal foods conducted at each meal, and meal order.

5.3.1 Grams

```
Data: intake_long
```

Models:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Table 14: Regression Table: Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	610.538	243.366	84.190	2.509	0.014
preFF	-0.342	0.215	323.045	-1.587	0.113
fmi	28.280	17.427	78.116	1.623	0.109
sexFemale	-25.793	33.160	78.518	-0.778	0.439
age_yr	-17.505	25.802	78.104	-0.678	0.500
cebq _sr	-97.546	24.479	78.288	-3.985	0.000
avg_vas	36.599	15.013	328.020	2.438	0.015
$meal_order$	-5.970	4.136	252.664	-1.443	0.150
g_served	0.080	0.017	252.061	4.733	0.000

5.3.2 kcal

Data: intake_long

Models:

kcal_ps_mod 11 4456.9 4499.2 -2217.5 4434.9

kcal_psquad_mod 12 4458.9 4505.0 -2217.5 4434.9 0.0241 1 0.8767

Table 15: Regression Table: Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	841.643	297.094	85.106	2.833	0.006
preFF	-0.898	0.290	331.211	-3.096	0.002
$_{ m fmi}$	43.937	21.172	78.424	2.075	0.041
sexFemale	-40.363	40.299	78.890	-1.002	0.320
age_yr	-46.778	31.347	78.415	-1.492	0.140
cebq sr	-124.846	29.744	78.616	-4.197	0.000
avg_vas	56.425	19.851	311.118	2.842	0.005
$meal_order$	3.511	5.700	253.226	0.616	0.538
$kcal_served$	0.118	0.017	252.581	6.843	0.000

5.4 Risk Status x Portion Size (linear effect)

5.4.1 Grams

Adding an interaction between Risk Status and Portion Size significantly improved model fit.

Data: intake_long

Models:

grams_ps_mod: grams ~ preFF + fmi + sex + age_yr + cebq_sr + avg_vas + meal_order + g_served + (1 | sub grams_psxrisk_mod: grams ~ preFF + fmi + sex + age_yr + cebq_sr + avg_vas + meal_order + risk_status_mod npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

grams_ps_mod 11 4257.9 4300.2 -2117.9 4235.9

grams_psxrisk_mod 13 4253.1 4303.0 -2113.6 4227.1 8.8066 2 0.01224 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Table 16: Regression Table: Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	548.952	243.127	83.360	2.258	0.027
preFF	-0.355	0.214	320.876	-1.656	0.099
fmi	41.214	19.011	77.444	2.168	0.033
sexFemale	-26.320	32.829	77.764	-0.802	0.425
age_yr	-18.253	25.549	77.364	-0.714	0.477
$\operatorname{cebq_sr}$	-89.274	24.749	77.468	-3.607	0.001
avg_vas	35.732	14.872	325.594	2.403	0.017
meal_order	-5.801	4.097	251.936	-1.416	0.158
risk_status_momHigh Risk	-26.863	37.520	98.277	-0.716	0.476
g_served	0.115	0.022	251.441	5.225	0.000
$\underline{\hspace{1.5cm}} risk\underline{\hspace{1.5cm}} status\underline{\hspace{1.5cm}} momHigh \ Risk:\underline{\hspace{1.5cm}} g\underline{\hspace{1.5cm}} served$	-0.083	0.034	251.633	-2.441	0.015

Figure 1: Grams Consumed: Risk Status x Portion Size

Table 17: Estimated Simple Slopes: Risk Status x Linear Portion Size for Grams

risk_status_mom	$g_served.trend$	SE	$\mathrm{d}\mathrm{f}$	t.ratio	p.value
Low Risk High Risk	00	0.0==	$253.385 \\ 253.454$	00	$0.000 \\ 0.218$

Table 18: Estimated Marginal Means: Risk Status x Portion Size for Grams

	Low Risk	High Risk
0	421.420	403.317
242.4	448.356	410.773
485.8	476.945	414.579
730.2	507.692	431.542

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 0.55089, df = 78.669, p-value = 0.5833

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-47.30916 83.51479 sample estimates:

mean in group Low Risk mean in group High Risk
421.4203 403.3175

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.1378, df = 77.531, p-value = 0.2587

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-28.18194 103.34859

sample estimates:

mean in group Low Risk mean in group High Risk 448.3562 410.7728

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 1.8701, df = 76.98, p-value = 0.06528

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-4.042121 128.774554

sample estimates:

mean in group Low Risk mean in group High Risk 476.9452 414.5790

Welch Two Sample t-test

data: grams_pred_rxps by risk_status_mom
t = 2.34, df = 79.636, p-value = 0.02179

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

11.38357 140.91629

sample estimates:

mean in group Low Risk mean in group High Risk 507.6917 431.5418

5.4.1.1 No Plate Cleaners

Table 19: Regression Table: No Plate Cleaners - Risk x Portion Size for grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	450.615	249.506	80.741	1.806	0.075
preFF	-0.333	0.212	312.292	-1.570	0.117
fmi	38.422	19.043	75.372	2.018	0.047
sexFemale	-17.616	33.017	75.759	-0.534	0.595
age_yr	-8.789	25.996	75.299	-0.338	0.736
$\operatorname{cebq_sr}$	-75.867	25.823	75.423	-2.938	0.004
avg_vas	33.164	14.863	317.264	2.231	0.026
meal_order	-6.464	4.090	245.829	-1.580	0.115
risk_status_momHigh Risk	-31.755	37.803	95.247	-0.840	0.403
g_served	0.118	0.022	245.487	5.382	0.000
${\tt risk_status_momHigh~Risk:g_served}$	-0.079	0.034	245.697	-2.333	0.020

5.4.2 kcal

Adding an interaction between Risk Status and Portion Size (linear effect) significantly improved model fit.

Data: intake_long

Models:

kcal_ps_mod 11 4456.9 4499.2 -2217.5 4434.9

kcal_psxrisk_mod 13 4455.9 4505.8 -2214.9 4429.9 5.0904 2 0.07846.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Table 20: Regression Table: Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	795.876	300.061	84.191	2.652	0.010
preFF	-0.915	0.290	328.606	-3.155	0.002
fmi	52.682	23.358	77.722	2.255	0.027
sexFemale	-40.696	40.347	78.083	-1.009	0.316
age_yr	-47.276	31.389	77.629	-1.506	0.136
cebq _sr	-119.207	30.409	77.736	-3.920	0.000
avg_vas	55.276	19.786	309.778	2.794	0.006
meal_order	3.710	5.666	252.432	0.655	0.513
risk_status_momHigh Risk	-3.450	46.795	104.316	-0.074	0.941
kcal_served	0.148	0.022	251.899	6.577	0.000
$risk_status_momHigh~Risk:kcal_served$	-0.071	0.035	252.128	-2.046	0.042

Figure 2: kCal Consumed: Risk Status x Portion Size

Table 21: Estimated Simple Slopes: Risk Status x Linear Portion Size for kcal

risk_status_mom	kcal_served.trend	SE	df	t.ratio	p.value
Low Risk High Risk			253.453 253.556		0.000 0.004

Table 22: Estimated Marginal Means: Risk Status x Portion Size for kcal

	Low Risk	High Risk
0	477.859	481.352
328.8	525.858	506.562
658.6	577.043	524.942
989.4	623.169	565.408

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = -0.081698, df = 73.102, p-value = 0.9351

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-88.69351 81.70816 sample estimates:

mean in group Low Risk mean in group High Risk
477.8590 481.3516

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 0.4628, df = 73.864, p-value = 0.6449

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-63.78518 102.37781

sample estimates:

mean in group Low Risk mean in group High Risk 525.8583 506.5620

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.1831, df = 70.856, p-value = 0.2407

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-35.71301 139.91525

sample estimates:

mean in group Low Risk mean in group High Risk 577.0433 524.9422

Welch Two Sample t-test

data: kcal_pred_rxps by risk_status_mom
t = 1.3646, df = 75.687, p-value = 0.1764

alternative hypothesis: true difference in means between group Low Risk and group High Risk is not equa 95 percent confidence interval:

-26.54999 142.07215

sample estimates:

mean in group Low Risk mean in group High Risk 623.1687 565.4076

5.4.2.1 No Plate Cleaners

Table 23: Regression Table: No Plate Cleaners - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	708.654	309.664	81.498	2.288	0.025
preFF	-0.911	0.288	319.895	-3.158	0.002
fmi	50.283	23.539	75.641	2.136	0.036
sexFemale	-32.145	40.824	76.081	-0.787	0.433
age_yr	-38.120	32.132	75.557	-1.186	0.239
$\operatorname{cebq_sr}$	-106.486	31.921	75.689	-3.336	0.001
avg_vas	51.707	19.849	301.954	2.605	0.010
meal_order	1.655	5.672	246.312	0.292	0.771
risk_status_momHigh Risk	-6.669	47.400	100.851	-0.141	0.888
kcal_served	0.150	0.022	245.946	6.697	0.000
risk_status_momHigh Risk:kcal_served	-0.074	0.035	246.197	-2.128	0.034

6 Exploratory Analyses: Individual Foods

6.1 Chicken Nuggets

6.1.1 Grams

6.1.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_chnug_ps_mod: chnug_grams ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + g_ser
grams_chnug_ps_psquad_mod: chnug_grams ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order
                                       BIC logLik deviance Chisq Df
                               AIC
                         npar
grams_chnug_ps_mod
                           11 3510.5 3552.7 -1744.2
                                                     3488.5
grams_chnug_ps_psquad_mod 12 3512.2 3558.3 -1744.1
                                                      3488.2 0.2618 1
                         Pr(>Chisq)
grams_chnug_ps_mod
grams_chnug_ps_psquad_mod
                             0.6089
```

Table 24: Chicken Nugget - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	86.586	68.301	77.414	1.268	0.209
preFF	-0.218	0.074	334.458	-2.965	0.003
fmi	1.178	4.850	70.177	0.243	0.809
sexFemale	-13.638	9.229	70.549	-1.478	0.144
age_yr	-7.273	7.203	70.758	-1.010	0.316
cebq	-11.770	6.829	70.821	-1.724	0.089
$chnug_vas$	18.123	3.315	315.856	5.468	0.000
$meal_order$	1.308	1.490	244.590	0.878	0.381
g_served	0.041	0.006	243.494	6.637	0.000

6.1.1.2 Risk x Portion Size

Table 25: Chicken Nugget - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	72.688	68.790	76.467	1.057	0.294
preFF	-0.218	0.074	332.273	-2.957	0.003
fmi	3.897	5.331	69.241	0.731	0.467
sexFemale	-13.755	9.201	69.431	-1.495	0.139
age_yr	-7.432	7.182	69.638	-1.035	0.304
cebq _sr	-10.047	6.948	69.496	-1.446	0.153
chnug_vas	18.129	3.309	313.445	5.479	0.000
meal_order	1.342	1.487	243.443	0.903	0.368
g_served	0.048	0.008	242.373	6.063	0.000
$risk_status_momHigh~Risk$	-5.177	10.920	102.428	-0.474	0.636
g_served:risk_status_momHigh Risk	-0.019	0.012	242.677	-1.525	0.128

6.1.2 kcal

kcal_chnug_ps_psquad_mod

6.1.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_chnug_ps_mod: chnug_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + kcal_se
kcal_chnug_ps_psquad_mod: chnug_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + chnug_vas + meal_order + from the control of the cont
```

Table 26: Chicken - Nugget Portion Size for kcal

0.6062

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	216.453	170.753	77.415	1.268	0.209
preFF	-0.546	0.184	334.458	-2.965	0.003
$_{ m fmi}$	2.945	12.125	70.178	0.243	0.809
sexFemale	-34.095	23.073	70.550	-1.478	0.144
age_yr	-18.182	18.008	70.758	-1.010	0.316
cebq _sr	-29.424	17.072	70.821	-1.724	0.089
$chnug_vas$	45.309	8.286	315.854	5.468	0.000
$meal_order$	3.269	3.726	244.590	0.877	0.381
$kcal_served$	0.075	0.011	243.494	6.637	0.000

Table 27: Chicken - Nugget Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	181.709	171.976	76.467	1.057	0.294
preFF	-0.546	0.185	332.273	-2.957	0.003
fmi	9.742	13.327	69.241	0.731	0.467
sexFemale	-34.388	23.004	69.431	-1.495	0.139
age_yr	-18.580	17.956	69.638	-1.035	0.304
cebq _sr	-25.118	17.370	69.496	-1.446	0.153
chnug_vas	45.324	8.272	313.444	5.479	0.000
$meal_order$	3.353	3.717	243.443	0.902	0.368
kcal_served	0.089	0.015	242.373	6.063	0.000
risk_status_momHigh Risk	-12.936	27.303	102.453	-0.474	0.637
$\underline{\hspace{1cm}} kcal_served:risk_status_momHigh\ Risk$	-0.035	0.023	242.677	-1.525	0.128

6.1.2.2 Risk x Portion Size

6.2 Mac and Cheese

6.2.1 Grams

Data: intake_long

6.2.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 28: Mac and Cheese - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	266.161	138.494	77.812	1.922	0.058
preFF	-0.127	0.117	313.857	-1.085	0.279
fmi	30.598	10.149	76.899	3.015	0.003
sexFemale	-4.959	19.231	76.268	-0.258	0.797
age_yr	-26.733	14.975	76.017	-1.785	0.078
cebq	-51.617	14.197	76.054	-3.636	0.001
$\mathrm{mac}\mathrm{_vas}$	21.601	4.540	330.911	4.757	0.000
$meal_order$	2.287	2.222	249.471	1.029	0.304
g _served	0.022	0.009	249.530	2.393	0.017

Table 29: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	252.211	140.333	76.752	1.797	0.076
preFF	-0.125	0.117	311.416	-1.061	0.289
fmi	33.924	11.208	75.475	3.027	0.003
sexFemale	-5.074	19.301	75.122	-0.263	0.793
age_yr	-26.935	15.032	74.882	-1.792	0.077
$\operatorname{cebq_sr}$	-49.529	14.553	74.866	-3.403	0.001
mac_vas	21.491	4.575	329.351	4.698	0.000
meal_order	2.298	2.226	248.322	1.032	0.303
g_served	0.025	0.012	248.591	2.047	0.042
$risk_status_momHigh~Risk$	-12.268	21.927	92.817	-0.560	0.577
g_served:risk_status_momHigh Risk	-0.006	0.019	249.696	-0.348	0.728

6.2.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 30: Mac and Cheese - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	252.662	140.234	76.831	1.802	0.076
preFF	-0.122	0.117	312.203	-1.041	0.299
fmi	33.905	11.201	75.569	3.027	0.003
sexFemale	-5.082	19.289	75.219	-0.263	0.793
age_yr	-26.936	15.022	74.979	-1.793	0.077
$cebq_sr$	-49.528	14.543	74.963	-3.406	0.001
mac_vas	21.641	4.545	330.042	4.762	0.000
$meal_order$	2.285	2.223	249.412	1.028	0.305
g_served	0.022	0.009	249.469	2.394	0.017
$risk_status_momHigh\ Risk$	-14.677	20.791	75.456	-0.706	0.482

6.2.2 kcal

6.2.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Data: intake_long

Models:

kcal_mac_ps_mod 11 4210 4252.2 -2094.0 4188

kcal_mac_ps_psquad_mod 12 4211 4257.1 -2093.5 4187 0.9954 1 0.3184

Table 31: Mac and Cheese - Portion Size for kcal

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	452.468	235.439	77.812	1.922	0.058
preFF	-0.215	0.198	313.857	-1.085	0.279
fmi	52.017	17.254	76.899	3.015	0.003
sexFemale	-8.430	32.693	76.268	-0.258	0.797
age_yr	-45.446	25.458	76.017	-1.785	0.078
mac_vas	36.721	7.719	330.910	4.757	0.000
cebq	-87.748	24.135	76.054	-3.636	0.001
$meal_order$	3.887	3.778	249.471	1.029	0.305
$kcal_served$	0.027	0.011	249.530	2.393	0.017

Table 32: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	428.752	238.566	76.752	1.797	0.076
preFF	-0.212	0.200	311.415	-1.061	0.289
fmi	57.671	19.054	75.475	3.027	0.003
sexFemale	-8.626	32.813	75.122	-0.263	0.793
age_yr	-45.790	25.555	74.882	-1.792	0.077
cebq _sr	-84.200	24.740	74.866	-3.403	0.001
mac_vas	36.534	7.777	329.351	4.698	0.000
meal_order	3.907	3.785	248.322	1.032	0.303
kcal_served	0.031	0.015	248.591	2.048	0.042
risk_status_momHigh Risk	-20.851	37.277	92.830	-0.559	0.577
${\it kcal_served:} risk_status_momHigh~Risk$	-0.008	0.023	249.697	-0.348	0.728

6.2.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 33: Mac and Cheese - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	429.519	238.398	76.831	1.802	0.076
preFF	-0.207	0.199	312.203	-1.041	0.299
fmi	57.639	19.041	75.569	3.027	0.003
sexFemale	-8.639	32.791	75.219	-0.263	0.793
age_yr	-45.792	25.538	74.979	-1.793	0.077
$cebq_sr$	-84.198	24.724	74.963	-3.406	0.001
mac_vas	36.790	7.726	330.041	4.762	0.000
$meal_order$	3.884	3.778	249.412	1.028	0.305
kcal_served	0.027	0.011	249.469	2.394	0.017
$risk_status_momHigh Risk$	-24.951	35.345	75.456	-0.706	0.482

6.3 Grapes

6.3.1 Grams

6.3.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

```
Data: intake_long
Models:
grams_grape_ps_mod: grape_grams ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + g_ser
grams_grape_ps_psquad_mod: grape_grams ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order
                         npar
                                       BIC logLik deviance Chisq Df
                                AIC
                           11 3739.1 3781.3 -1858.5
grams_grape_ps_mod
                           12 3741.1 3787.2 -1858.5
grams_grape_ps_psquad_mod
                                                      3717.1 0.0108 1
                         Pr(>Chisq)
grams_grape_ps_mod
grams_grape_ps_psquad_mod
                             0.9171
```

Table 34: Grapes - Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	6.518	126.242	76.715	0.052	0.959
preFF	-0.052	0.099	306.576	-0.529	0.597
fmi	-14.144	9.238	75.411	-1.531	0.130
sexFemale	-2.797	17.566	75.676	-0.159	0.874
age_yr	20.048	13.679	75.430	1.466	0.147
$cebq_sr$	-11.169	13.022	76.519	-0.858	0.394
$grape_vas$	9.860	4.183	323.480	2.357	0.019
$meal_order$	-5.168	1.866	248.719	-2.769	0.006
g_served	0.025	0.008	248.715	3.304	0.001

Table 35: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	8.860	128.210	75.931	0.069	0.945
preFF	-0.055	0.100	303.903	-0.552	0.581
fmi	-14.943	10.234	74.490	-1.460	0.148
sexFemale	-2.786	17.666	74.730	-0.158	0.875
age_yr	20.097	13.759	74.493	1.461	0.148
$\operatorname{cebq_sr}$	-11.684	13.367	75.362	-0.874	0.385
grape_vas	9.921	4.218	321.972	2.352	0.019
meal_order	-5.159	1.870	247.767	-2.759	0.006
g_served	0.027	0.010	248.136	2.701	0.007
$risk_status_momHigh~Risk$	5.217	19.877	89.111	0.262	0.794
${\tt g_served:risk_status_momHigh~Risk}$	-0.005	0.016	248.780	-0.296	0.768

6.3.1.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 36: Grapes - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	10.013	128.270	75.889	0.078	0.938
preFF	-0.053	0.099	304.786	-0.535	0.593
fmi	-14.935	10.243	74.559	-1.458	0.149
sexFemale	-2.748	17.681	74.794	-0.155	0.877
age_yr	20.103	13.771	74.562	1.460	0.149
$cebq_sr$	-11.641	13.378	75.422	-0.870	0.387
grape_vas	9.752	4.188	322.458	2.328	0.021
$meal_order$	-5.167	1.866	248.839	-2.769	0.006
g_served	0.025	0.008	248.834	3.304	0.001
$risk_status_momHigh Risk$	3.526	19.052	74.945	0.185	0.854

6.3.2 kcal

kcal_grape_ps_psquad_mod

6.3.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

```
Data: intake_long
Models:
kcal_grape_ps_mod: grape_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + kcal_se
kcal_grape_ps_psquad_mod: grape_kcal ~ preFF + fmi + sex + age_yr + cebq_sr + grape_vas + meal_order + in the control of the contro
```

Table 37: Grapes - Portion Size for kcal

0.918

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	4.529	87.739	76.715	0.052	0.959
preFF	-0.036	0.069	306.576	-0.529	0.597
fmi	-9.830	6.420	75.411	-1.531	0.130
sexFemale	-1.944	12.208	75.676	-0.159	0.874
age_yr	13.934	9.507	75.430	1.466	0.147
$\operatorname{cebq}\operatorname{\underline{\hspace{1pt}-sr}}$	-7.762	9.050	76.519	-0.858	0.394
$grape_vas$	6.853	2.907	323.479	2.357	0.019
$meal_order$	-3.592	1.297	248.719	-2.770	0.006
$kcal_served$	0.013	0.004	248.715	3.304	0.001

Table 38: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	6.156	89.106	75.931	0.069	0.945
preFF	-0.038	0.069	303.903	-0.552	0.581
fmi	-10.386	7.113	74.490	-1.460	0.148
sexFemale	-1.936	12.278	74.729	-0.158	0.875
age_yr	13.967	9.562	74.492	1.461	0.148
cebq _sr	-8.120	9.290	75.362	-0.874	0.385
grape_vas	6.895	2.931	321.972	2.352	0.019
meal_order	-3.586	1.300	247.767	-2.759	0.006
kcal_served	0.014	0.005	248.136	2.701	0.007
$risk_status_momHigh Risk$	3.626	13.815	89.121	0.262	0.794
kcal_served:risk_status_momHigh Risk	-0.002	0.008	248.780	-0.296	0.768

6.3.2.2 Risk x Portion Size The interaction between Risk Status and Portion Size was not significant so it was removed from the model.

Table 39: Grapes - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	6.958	89.148	75.889	0.078	0.938
preFF	-0.037	0.069	304.786	-0.536	0.593
fmi	-10.380	7.119	74.559	-1.458	0.149
sexFemale	-1.910	12.288	74.794	-0.155	0.877
age_yr	13.971	9.571	74.562	1.460	0.149
$cebq_sr$	-8.090	9.297	75.422	-0.870	0.387
grape_vas	6.777	2.911	322.458	2.328	0.021
$meal_order$	-3.591	1.297	248.839	-2.769	0.006
kcal_served	0.013	0.004	248.834	3.304	0.001
$risk_status_momHigh Risk$	2.451	13.241	74.945	0.185	0.854

6.4 Broccoli

6.4.1 Grams

6.4.1.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget gram intake with linear effect.

Table 40: Broccoli - Portion Size for Grams

	Estimate	Std. Error	df	t value	$\Pr(> t)$
(Intercept)	-50.805	71.254	71.851	-0.713	0.478
preFF	0.009	0.066	322.980	0.133	0.894
fmi	-6.030	5.208	70.632	-1.158	0.251
sexFemale	12.860	9.906	70.947	1.298	0.198
age_yr	13.101	7.706	70.524	1.700	0.094
cebq	-1.238	7.316	70.829	-0.169	0.866
$broc_vas$	1.288	2.310	285.344	0.558	0.577
$meal_order$	-1.106	1.274	244.042	-0.868	0.386
g_served	0.002	0.005	244.316	0.330	0.742

Table 41: brocs - Risk x Portion Size for Grams

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-53.112	72.536	70.574	-0.732	0.466
preFF	0.000	0.066	319.246	0.006	0.995
fmi	-6.056	5.787	69.385	-1.046	0.299
sexFemale	12.887	9.999	69.773	1.289	0.202
age_yr	13.139	7.780	69.370	1.689	0.096
$\operatorname{cebq_sr}$	-1.262	7.537	69.471	-0.168	0.867
broc_vas	1.007	2.315	287.623	0.435	0.664
meal_order	-1.059	1.266	242.816	-0.837	0.404
g_served	0.011	0.007	243.262	1.553	0.122
$risk_status_momHigh~Risk$	7.686	11.459	89.845	0.671	0.504
${\tt g_served:risk_status_momHigh~Risk}$	-0.021	0.011	242.964	-2.005	0.046

6.4.1.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 42: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli grams

risk_status_mom g_	_served.trend	SE	d	f t.ratio	o p.value
Low Risk High Risk	0.011 -0.011			1.553 3 -1.309	_
contrast	estimate	SE	df	t.ratio	p.value
Low Risk - High Ris	sk 0.021	0.011	253.7	2.005	0.046

6.4.2 kcal

kcal_broc_ps_psquad_mod

6.4.2.1 Base Model The difference between models with and without quadratic effect was not significant indicating the added model parameters/complexity did not improve model fit. Should only model chicken nugget kcal intake with linear effect.

Table 43: Broccoli - Portion Size for kcal

0.3798

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-50.957	71.468	71.851	-0.713	0.478
preFF	0.009	0.066	322.981	0.133	0.894
fmi	-6.048	5.223	70.632	-1.158	0.251
sexFemale	12.898	9.936	70.947	1.298	0.198
$cebq_sr$	-1.242	7.338	70.829	-0.169	0.866
$broc_vas$	1.292	2.317	285.345	0.558	0.577
age_yr	13.140	7.729	70.524	1.700	0.094
$meal_order$	-1.109	1.278	244.042	-0.868	0.386
$kcal_served$	0.001	0.004	244.315	0.329	0.742

Table 44: brocs - Risk x Portion Size for kcal

	Estimate	Std. Error	df	t value	Pr(> t)
(Intercept)	-53.273	72.753	70.574	-0.732	0.466
preFF	0.000	0.066	319.246	0.006	0.995
fmi	-6.074	5.805	69.385	-1.046	0.299
sexFemale	12.925	10.029	69.773	1.289	0.202
age_yr	13.179	7.804	69.370	1.689	0.096
cebq _sr	-1.266	7.559	69.471	-0.168	0.867
broc_vas	1.010	2.322	287.624	0.435	0.664
meal_order	-1.062	1.270	242.816	-0.837	0.404
kcal_served	0.008	0.005	243.261	1.553	0.122
$risk_status_momHigh Risk$	7.713	11.493	89.860	0.671	0.504
kcal_served:risk_status_momHigh Risk	-0.016	0.008	242.964	-2.005	0.046

6.4.2.2 Risk x Portion Size Unlike other models, none of the control variables were associated with broccoli intake.

There was a significant interaction between Risk Status and Portion Size.

Table 45: Estimated Simple Slopes: Risk Status x Portion Size for Broccoli kcal

risk_status_mom	kcal_served.trend	SE		df t	t.ratio	p.value
Low Risk High Risk	0.000	0.005 0.006				$0.122 \\ 0.191$
contrast	estimate	SE	df	t.rat	io p.v	value
Low Risk - High	n Risk 0.016	0.008	253.7	2.00)5 (0.046

7 Exploratory Analyses: Mediated Moderation

Since broccoli was the only food showing a Risk Status x Portion Size interaction, I tested whether broccoli intake mediates the overall Risk x Potion Size interaction using a mediated moderation model.

7.1 Grams

lavaan 0.6-9 ended normally after 223 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	26
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	10.013	4.657
Degrees of freedom	3	3
P-value (Chi-square)	0.018	0.199
Scaling correction factor		2.150
Yuan-Bentler correction (Mplus variant)		

Parameter Estimates:

Standard errors	Robust.cluster
Information	Observed
Observed information based on	Hessian

Regressions:

		Estimate	Std.Err	z-value	P(> z)
grams ~					
sub		-0.397	0.323	-1.228	0.220
preFF		-1.030	0.306	-3.372	0.001
fmi		45.774	15.409	2.971	0.003
sex		-60.630	28.488	-2.128	0.033
age_yr		-37.981	20.214	-1.879	0.060
cebq_sr		-85.051	20.574	-4.134	0.000
avg_vas		57.960	23.145	2.504	0.012
${\tt meal_order}$		-4.634	4.362	-1.062	0.288
rsk_stts_m		-23.863	32.743	-0.729	0.466
g_served		0.102	0.020	5.044	0.000
psxrsk_nt_	(c)	-0.062	0.033	-1.871	0.061
broc_grams ~					
preFF		-0.083	0.069	-1.197	0.231
fmi		-5.858	4.482	-1.307	0.191
sex		9.623	9.647	0.998	0.318
age_yr		12.519	8.008	1.563	0.118
cebq_sr		0.364	3.666	0.099	0.921
broc_vas		11.975	2.847	4.207	0.000
meal_order		-1.258	1.467	-0.857	0.391

rsk_stts_m	11.828	8.601	1.375	0.169
g_served	0.009	0.008	1.134	0.257
psxrsk_nt_ (a)	-0.021	0.010	-2.055	0.040
grams ~				
broc_grams (b)	1.265	0.178	7.092	0.000
Intercepts:				
	Estimate	Std.Err	z-value	P(> z)
.grams	699.008	210.271	3.324	0.001
.broc_grams	-105.036	62.996	-1.667	0.095
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.grams	19368.496	1965.059	9.856	0.000
.broc_grams	2033.384	694.228	2.929	0.003
Defined Parameters:				
	Estimate	Std.Err	z-value	P(> z)
ab	-0.026	0.013	-1.978	0.048
total	-0.088	0.036	-2.442	0.015

There was a significant level indirect effect (p = 0.036) indicating that broccoli intake mediated the interaction between risk status and portion size for gram intake.

7.2 kcal

lavaan 0.6-9 ended normally after 214 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	26
Number of observations	344
Number of clusters [sub]	86

Model Test User Model:

	Standard	Robust
Test Statistic	18.154	8.740
Degrees of freedom	3	3
P-value (Chi-square)	0.000	0.033
Scaling correction factor		2.077
Yuan-Bentler correction (Mplus variant)		

Parameter Estimates:

Standard errors Robust.cluster
Information Observed
Observed information based on Hessian

Regressions:

Estimate Std.Err z-value P(>|z|)

kcal ~

sub		-0.228	0.453	-0.504	0.614
preFF		-1.637	0.351	-4.662	0.000
fmi		58.124	21.146	2.749	0.006
sex		-71.368	35.820	-1.992	0.046
age_yr		-65.990	28.517	-2.314	0.021
cebq_sr		-115.867	24.223	-4.783	0.000
avg_vas		76.010	26.394	2.880	0.004
meal_order		5.010	5.920	0.846	0.397
rsk_stts_m		-1.780	39.686	-0.045	0.964
kcal_servd		0.137	0.022	6.225	0.000
psxrsk_nt_	(c)	-0.055	0.037	-1.481	0.139
broc_kcal ~					
preFF		-0.083	0.070	-1.197	0.231
fmi		-5.875	4.496	-1.307	0.191
sex		9.652	9.676	0.998	0.318
age_yr		12.557	8.032	1.563	0.118
cebq_sr		0.365	3.677	0.099	0.921
broc_vas		12.011	2.855	4.207	0.000
meal_order		-1.262	1.471	-0.858	0.391
rsk_stts_m		11.867	8.628	1.375	0.169
kcal_servd		0.007	0.006	1.134	0.257
psxrsk_nt_	(a)	-0.015	0.008	-2.055	0.040
kcal ~					
broc_kcal	(b)	1.348	0.288	4.685	0.000
Intomonto					
Intercepts:		Estimate	Std.Err	z-value	P(> z)
.kcal		916.768	307.247	2.984	0.003
.broc_kcal		-105.355	63.185	-1.667	0.005
.broc_kcar		100.000	05.105	1.007	0.035
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.kcal		33277.547	3557.147	9.355	0.000
.broc_kcal		2045.600	698.399	2.929	0.003
Defined Parameters:					
		Estimate	Std.Err	z-value	P(> z)
ab		-0.021	0.011	-1.934	0.053
total		-0.075	0.038	-1.971	0.049

There was a significant level indirect effect (p = 0.048) indicating that broccoli intake mediated the interaction between risk status and portion size for kcal intake.