Deep Learning 101

The Basics

Schedule

week	Date	Topic
9	10.27	The Setup, Python & TensorFlow overview
10	11.03	Training and testing
11	11.11	CNN
12	11.18	RNN
13	11.24	Autoencoder & GAN

Today's Agenda

- Goals
- Concepts:
 - Al, Machine Learning, Deep Learning
 - Supervised, Unsupervised, and Reinforcement
 - Structured vs. Unstructured
 - Deep Learning vocabulary
- Setup
- Lab time

Goals

- Conceptual understanding of Deep Learning: to understand how an Al system works 'under the hood'
 - Model, training, inference, etc.
- Knowledge about various Deep Learning algorithms
 - Regression, Artificial Neural Networks, CNN, RNN, GAN, etc.
- Basic technical skills for developing AI models
 - Python, Jupyter notebooks, TensorFlow

What is AI?

- AI (인공지능): 기계로 하여금 사람 같은 지능으로 인지하고 행동
- Machine Learning (기계 학습): 경험을 통해 자동으로 학습
- Deep Learning (심층 학습): Artificial Neural Network 기반 학습

AI, Machine Learning, & Deep Learning

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Al in the wild

A Brief History of Machine Intelligence

Neural Network

Perceptron

Developed by Frank Rosenblatt at the Cornell Aeronautical Laboratory in 1958 (https://en.wikipedia.org/wiki/Perceptron)

Perceptron for classification problems

$$f(\mathbf{x}) = egin{cases} 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$$

XOR problem

Input1	input2	Output
0	0	0
1	0	1
0	1	1
1	1	0

- Minksy and Papert (1969)
- Solution: Multilayer NN + Backpropagation

Structured vs. Unstructured

- Structured: Arranged in columns of features
- Unstructured: no structure

	STRUCTURED DATA					
id	age	gender	height (cm)	location		
0001	54	М	186	London		
0002	35	F	166	New York		
0003	62	F	170	Amsterdam		
0004	23	М	164	London		
0005	25	М	180	Cairo		
0006	29	F	181	Beijing		
0007	46	М	172	Chicago		

What is Deep Learning?

Layers of Neural Networks

Scalar, Vector, Matrix, & Tensor

- Scalar: a single number
 - 7, -2.4
- Vector: a list of numbers
- Matrix: a 2-dimensional array of numbers
- Tensor: an n-dimensional array of objects

* These are practical definitions.

Tensors, TensorFlow, and Keras

- Tensor: multi-dimensional arrays with a uniform type (called a dtype)
- TensorFlow: an open-source Python library for machine learning
 - Manipulates tensors
- Keras: high level API for machine learning libraries
 - Supports TensorFlow, Microsoft Cognitive Toolkit, R, Theano, and PlaidML
- Reference: https://www.tensorflow.org

Rank, dimension, axes, and shape

- Rank: number of dimensions
- Dimension: 2D, 3D, etc.
- Axes: indices of a dimension
- Shape: number of elements in each dimension
 - a scalar has a rank 0 and an empty shape ()
 - a vector has rank 1 and a shape of (D0)
 - a matrix has rank 2 and a shape of (D0, D1) and so on

What is Keras?

- <u>Keras</u> is an open source library that provides python interface for machine learning libraries
 - TensorFlow is one of the libraries supported by Keras
 - Easier and simpler to use than TensorFlow
 - Will learn both
- Sequential:
 - One layer follows immediately from the previous without any branching
- Functional API:
 - To create a model with multiple input and output layers

Setup

- Chrome browser
- PyCharm
- (optional) Google account: to run the code in colab

Development Environment

Programming Language: <u>Python</u>

- Editor: <u>IDE (Integrated Development Environment)</u>
 - PyCharm Community Version
 - <u>Jupyter</u> notebook
- https://github.com/changsin/DeepLearning-101

Resources

- Al with Python tutorial:
 - https://www.tutorialspoint.com/artificial_intelligence_with_python/index.htm
- 모두를 위한 머신러닝 (in Korean):
 - https://hunkim.github.io/ml/
- And many more...

Lab time

- To clone: from your terminal
 - >git clone https://github.com/changsin/DeepLearning-101.git
- Or use google colab to point to the git hub repository
- Git is an open source version control system
 - Github is a host service using git.