Autonomic Nervous System

Dr Richard Vickery

Dept of Physiology School of Medical Sciences, UNSW Richard.Vickery@unsw.edu.au 93851676

> COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

This material has been copied and communicated to you by or on behalf of the University of New South Wales pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act. Do not remove this notice.

Divisions of the nervous system

Human Nervous System

from Brown & Benchmark Introductory Psychology Image Bank copyright 1995 Times Mirror Higher Education Group, In

Objectives for this lecture on the ANS

- Outline the operation of reflex control in the autonomic nervous system.
- Describe the anatomical organization of the sympathetic and parasympathetic systems.
- List the neurotransmitters and receptor classes used by the sympathetic & parasympathetic systems at pre-ganglionic & post-ganglionic synapses.
- List the effects of the autonomic nervous system on three organs.

Roles of parasympathetic and sympathetic systems

Parasympathetic - dominant at rest

control in the ANS

eflex

Sympathetic - dominant for "fight or flight"

Enteric - autonomous 100 000 000 neurons

control gut motility and secretion

Parasympathetic and Sympathetic tend to work in opposition like a brake and accelerator in a car.

Sympathetic and parasympathetic nerves also carry sensory information: mainly pain sense in sympathetic, and visceral senses such as distension or blood chemistry in the parasympathetic.

ANS controls the four F's

from cartoonspot.net & www.acartoonchristmas.com

Reflex loops control autonomic function

ANS

Reflex control in the

Reflex control in the ANS

Sensory input leads to autonomic effects at local, and at higher, more integrated, levels.

- 1. enteric nervous system or effector organ
- 2. ganglion: integrate sensory, preganglionic, and interneurons
- 3. spinal cord: integrate across spinal levels
- 4. brain stem: integrate across organs
- higher centres: integrate with motivation and desires

from Medical Physiology by Boron and Boulpaep, Saunders, Philadelphia, 2003

The ANS, reflexes, and emotions

The ANS is intimately involved with our emotions: in their physical expression, and perhaps in their generation.

This also provides a path for conscious influence over the ANS.

from Levenson (2014) Emotion Review 6:100

Many brain regions including brain stem, are part of the autonomic nervous system

These regions integrate sensory inputs from diverse sources to produce a coordinated output. They usually influence sympathetic and parasympathetic systems in tandem.

Reflex loops depend on sensory input

Sensory input comes mainly from autonomic/ visceral afferents.

- 1. These afferents are mainly located in the innervated tissue and travel in the same nerve as efferents.
- 2. Higher centres integrate inputs from a broader region.
- 3. Somatic inputs are integrated to provide fast or predictive responses, like to posture adjustment.

from Germann and Stanfield, Benjamin Cummings, 2005

Basic plan of the efferent autonomic nervous system

ð

Organization of the ANS

Anatomical organization of the ANS

The enteric nervous system is a complex network of different neurons

A scanning electron micrograph of the myenteric plexus of the mouse large intestine. The plexus is the highly interconnected meshwork spreading over the deeper circular layer of muscle.

from Medical Physiology by Boron and Boulpaep Saunders, Philadelphia, 2003

Three divisions of the sympathetic system

Most sympathetic activity goes via the sympathetic chain, but more specific effects can be via collateral ganglia, whereas general effects can be produced by adrenaline released from the adrenal medulla.

Parasympathetic works on basically a collateral ganglion model.

from Germann and Stanfield, Benjamin Cummings, 2005

Organization of the sympathetic chain

Synaptic cleft may be wider than at somatic synapses

Autonomic synapses on target organ: each neuron makes many synapses

Copyright © 2002, Elsevier Science (USA). All rights reserve

The autonomic system is like the skeletal muscle system. It has axons that form synapses on the target tissue. Like the NMJ, these axons often produce strong effects by acting at a lot of release sites.

(G. Burnstock G, J. Anat 146: 1-30, 1986)

from *Medical Physiology* by Boron and Boulpaep. Saunders, Philadelphia, 2003

from Germann and Stanfield, Benjamin Cummings, 2005

ANS

Organization of the

ANS uses specific neurotransmitters

Norepinephrine is American for Noradrenaline.

Epinephrine is American for Adrenaline.

from *Medical Physiology* by Boron and Boulpaep, Saunders, Philadelphia, 2003

Iransmitters

receptors

∞

Transmitters

Receptor classes for Acetylcholine

otors				
Ö	Receptor type	Signal transduction mechanism	Target cell	Effect on target cell
rece	Nicotinic	Opens channels for sodium and potassium ions	Postganglionic cell body, chromaffin cells, skeletal muscle cells	Excitatory
∞ ∞	Muscarinic	G protein-coupled; opens or closes specific ion channel	Effector organs of parasympathetic nervous system	Excitatory or inhibitory

The autonomic nervous system uses ionotropic receptors in the ganglia, and then switches to metabotropic at the target organ.

from Germann and Stanfield, Benjamin Cummings, 2005

Receptor classes for Noradrenaline

Receptor type	Effector organ with receptor type	Relative affinities*	Signal transduction mechanism	Effect on effector organ [†]
α_1	Most vascular smooth muscle, pupils	NE > Epi	Activates IP ₃	Excitatory
α_2	CNS, platelets, adrenergic nerve terminals (autoreceptors), some vascular smooth muscle, adipose tissue	NE > Epi	Inhibits cAMP	Excitatory
β_1	CNS, cardiac muscle, kidney	NE = Epi	Activates cAMP	Excitatory
β_2	Some blood vessels, respiratory tract, uterus	Epi>>NE	Activates cAMP	Inhibitory
β_3	Adipose tissue	NE = Epi	Activates cAMP	Excitatory
*NE = norepinephrine; E *Effects are generalization	pi = epinephrine; > = greater than; >> = muo ns and not absolute.	ch greater than		

Multiple neurotransmitters are released

Synapses often release a variety of transmitters. These can produce different effects, and my be somewhat selectable based on the rate of axon activity.

from Medical Physiology by B

from *Medical Physiology* by Boron and Boulpaep, Saunders, Philadelphia, 2003

Autonomic control of organs - 1

		PARASYMPATHETIC NERVOUS SYSTEM*	SYMPATHETIC NERVOUS SYSTEM	
S	Organ system	Effect	Effect	Adrenergic receptor class
4	Heart			
\triangleleft	SA node	Decreases heart rate	Increases heart rate	β_1
۵۱	AV node	Decreases conduction velocity	Increases conduction velocity	β_1
=	Force of contraction	Decreases (small effect)	Increases	β_1
\pm	Blood vessels			
4	Arterioles to most of body	None	Vasoconstriction	α_1
0	Arterioles to skeletal muscle	None	Vasoconstriction Vasodilation (epinephrine)	α_1 β_2
45	Arterioles to brain	None	None	
Effects of the ANS	Veins	None	Vasoconstriction Vasodilation (epinephrine)	α_1 β_2
4	Lungs			
4	Bronchial muscle	Contraction	Relaxation	β_2
ш	Bronchial glands	Stimulates secretion	Inhibits secretion	α
	Digestive tract			
	Motility	Increased	Decreased	$\alpha_1, \alpha_2, \beta_2$
	Secretions	Stimulated	Inhibited	α_2
	Sphincters	Relaxation	Contraction	α_1

of the ANS

Effects

Autonomic control of organs - 2

		<u> </u>			
		PARASYMPATHETIC NERVOUS SYSTEM*	SYMPATHETIC NERVOUS SYSTEM		
	Organ system	Effect	Effect	Adrenergic receptor class	
Z	Urinary bladder				
\checkmark	Bladder wall	Contraction	Relaxation (small effect)	β_2	
1	Sphincter	Relaxation	Contraction	α_1	
ש	Male reproductive tract				
=	Blood vessels (erection)	Vasodilation	None		
บ = 5	Vas deferens and seminal vesicles (ejaculation)	None	Ejaculation	α_1	
ע	Female reproductive tract				
つ	Uterus, nonpregnant	Unknown	Relaxation	β ₂	
7	Uterus, pregnant	Unknown	Contraction	α_1	
ر ا	Skin				
ב	Sweat glands	Stimulates secretion	Stimulates secretion	α ₁ , muscarinic	
2001	Piloerector muscles	None	Contraction (hairs stand up)	α	
	Eye				
	Iris muscles (pupil size)	Contraction of circular muscle (pupillary constriction)	Contraction of radial muscle (pupillary dilation)	α_1	
	Ciliary muscles (accommodation)	Contraction for near vision	Relaxation for far vision (small effect)	β_2	