TD 1 : Régression linéaire simple

Exercice 1. Rappels de cours

- 1. Rappeler le principe d'une régression linéaire simple. Préciser les hypothèses.
- 2. Rappeler les définitions des quantités suivantes : x_i , y_i , β_0 , β_1 , \bar{x} , \bar{y} , β_0 , β_1 , ϵ_i , $\hat{\epsilon}_i$. On indiquera en particulier si ces quantités sont déterministes ou aléatoires.
- 3. Faire un schéma pour donner une interprétation géométrique à la régression linéaire simple.
- 4. Donner la définition du coefficient de détermination \mathbb{R}^2 et son interprétation. Montrer que ce coefficient s'écrit

$$R^{2} = \frac{\left[\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})\right]^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} =: \frac{s_{xy}^{4}}{s_{x}^{2} s_{y}^{2}} = \rho(x, y)^{2}.$$

où $\rho(x,y)$ est le coefficient de corrélation empirique entre x et y.

5. Donner les hypothèses supplémentaires dans le cas d'une régression linéaire gaussienne. Quelles informations a-t-on en plus dans ce contexte ?

Exercice 2. L'étude statistique ci-dessous porte sur les poids (en kg) respectifs des pères p_i , et ceux de leurs fils aînés f_i avec $i=1,\cdots,12$. Les résultats sont tracés sur le graphique suivant

On donne quelques résultats numériques :

$$\sum p_i = 800, \sum p_i^2 = 53418, \sum p_i f_i = 54107, \sum f_i = 811, \sum f_i^2 = 54849$$

- 1. Calculer la droite des moindres carrés du poids des fils en fonction du poids des pères.
- 2. Calculer la droite des moindres carrés du poids des pères en fonction du poids des fils.
- 3. Les deux droites de régression sont-elles identiques ? Identifiez-les sur le graphique.
- 4. En quel point se coupent ces deux droites? Que vaut le produit des pentes des deux droites?
- 5. Estimer σ^2 dans le premier modèle de régression. Un père pèse 70 kilos, peut-il raisonnablement espérer que son fils aîné en pèse 80 ?

Exercice 3. Dans de nombreux cas, lorsque l'on étudie le lien entre Y et X nous savons que si X=0, alors Y=0. On peut alors simplifier le modèle linéaire en cherchant juste à ajuster les points sur une droite d'ordonnée à l'origine nulle. On étudie la régression linéaire $y_i=\beta x_i+\varepsilon_i$, où les ε_i sont centrées, non corrélées et de même variance σ^2 .

1. Montrez que l'estimateur des moindres carrés s'écrit dans ce cas :

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

2. Une autre manière de construire un estimateur est de trouver la droite qui passe à la fois par l'origine et par le point de gravité (\bar{x}, \bar{y}) . Montrez qu'alors l'estimateur de la pente s'écrit :

$$\tilde{\beta} = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i}$$

- 3. Montrer que $\hat{\beta}$ et $\tilde{\beta}$ sont des estimateurs non biaisés de β .
- 4. Montrer que la variance de $\hat{\beta}$ est strictement plus grande que la variance de $\hat{\beta}$, sauf dans le cas où les x_i sont tous égaux. (On pourra utiliser l'inégalité de Cauchy-Schwarz.) Ce résultat était-il prévisible?
- 5. Redémontrer le théorème de Gauss-Markov dans ce cas particulier.

Exercice 4. On suppose que le modèle de régression linéaire simple de Y en fonction de X, avec des erreurs centrées et non corrélées, est valide :

$$Y = \beta_0 + \beta_1 X + \varepsilon.$$

Montrer qu'alors il en est de même pour le modèle de régression linéaire de X en fonction de Y. Quels sont les paramètres de ce modèle ?

Exercice 5. On considère un produit dont le coût de fabrication est x_0 . Supposons que le nombre de produits vendus en une semaine, y dépend du prix de vente x selon un modèle linéaire simple.

- 1. Quel est le prix de vente maximisant la marge de l'entreprise?
- 2. Sur les trois dernières semaines, un industriel a fait varier le prix du produit. On dispose des données suivantes.

Sachant que le coût de fabrication est de 100 euros, quel prix de vente lui conseillez-vous?

Exercice 6.* Soit y_1, \ldots, y_n des réels. Pour mesurer l'écart d'un réel x à l'ensemble des y_i , on peut utiliser la distance $D(x) = \sum_{i=1}^n f(y_i - x)$ où f est une fonction positive, paire, s'annulant en 0, continue et croissante sur les réels positifs.

- 1. Montrer que le réel qui minimise cette distance lorsque $f(t) = t^2$ est la moyenne des y_i .
- 2. On suppose maintenant que f(t) = |t|. Montrer que le réel qui minimise la distance D(x) est la médiane des y_i .

Indication : considérer que $y_1 \leq \cdots \leq y_n$, réécrire D(x) sur l'intervalle $[y_j, y_{j+1}]$, puis tracer D(x). On traitera le cas où n = 2p + 1, puis le cas où n = 2p.

- 3. Soient w_1, \ldots, w_n des poids positifs tels que $\sum_{i=1}^n w_i = 1$. Quel est le réel qui minimise la distance $D(x) = \sum_{i=1}^n w_i (y_i x)^2$?
- 4. On définit la médiane pondérée des y_i comme l'élément y_k tel que $\sum_{i=1}^{k-1} w_i \leq \frac{1}{2}$ et $\sum_{i=k+1}^n w_i \leq \frac{1}{2}$. Montrez que la médiane pondérée est le réel qui minimise la distance : $D(x) = \sum_{i=1}^n w_i |y_i x|$.

Exercice 7.* Soit y_1, \ldots, y_n et x_1, \ldots, x_n des réels. Dans le modèle linéaire simple $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, on considère la somme des erreurs en valeur absolue

$$S(\beta_1, \beta_2) = \sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i|$$
.

et on notera $\tilde{\beta}_0$ et $\tilde{\beta}_1$ les estimateurs des moindres valeurs absolues, *i.e.* les valeurs de β_0 et β_1 minimisant la fonction $S(\cdot, \cdot)$. On cherche une stratégie pour obtenir $\tilde{\beta}_0$ et $\tilde{\beta}_1$.

- 1. La valeur de β_1 étant fixée, quelle est la valeur de β_0 qui minimise la fonction $g(\beta_0) = \sum_{i=1}^{n} |y_i \beta_0 \beta_1 x_i|$?
- 2. En déduire un algorithme pour obtenir $\tilde{\beta}_0$ et $\tilde{\beta}_1$.

Exercice 8. Retour sur le cas gaussien

Dans le modèle linéaire simple, si on considère la normalité des ε_i , alors

$$y_i \sim \mathcal{N}\left(\beta_0 + \beta_1 x_i, \sigma^2\right), \quad i = 1, \dots, n.$$

- 1. Exprimer la vraisemblance $L(\beta_0, \beta_1, \sigma^2)$ des observations.
- 2. Quelles sont les valeurs de β_0 et β_1 maximisant cette vraisemblance?
- 3. Quelle est la valeur de σ^2 maximisant cette vraisemblance ? Que peut-on alors dire de l'estimateur du maximum de vraisemblance de σ^2 ?

Exercice 9. Fréquence Cardiaque On s'intéresse à la fréquence cardiaque de sportifs amateurs mesurée après trois quarts d'heure d'un effort soutenu. On veut déterminer si l'âge du sportif a une influence sur sa fréquence cardiaque après un effort soutenu. On dispose de n=40 observations du couple $(y_i;x_i)$ où y_i est la fréquence cardiaque et x_i l'âge du sportif i. On suppose un modèle linéaire gaussien classique entre y et x, d'intercept β_0 et de pente β_1 . On donne :

$$\bar{y} = 171.3 \; ; \; \bar{x} = 38.4 \; ; \; \sum_{i=1}^{40} (x_i - \bar{x})^2 = 4381 \; ; \; \sum_{i=1}^{40} (y_i - \bar{y})^2 = 424 \; ; \; \sum_{i=1}^{40} (x_i - \bar{x})(y_i - \bar{y}) = -961$$

- 1. Donnez l'expression de $\hat{\beta}_0$ et $\hat{\beta}_1$, et calculez leur valeur.
- 2. Calculez le coefficient de détermination \mathbb{R}^2 . Interprettez.
- 3. Donnez la loi de $\hat{\beta}_1$ en fonction de σ^2 .
- 4. Donnez la définition de \hat{y}_i et $\hat{\epsilon}_i$. Que représente cette quantité ? On donne :

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 213.3.$$

En déduire un estimateur $\hat{\sigma}^2$ sans bias pour la variance, puis un estimateur $\hat{\sigma}_1^2$ pour la variance de $\hat{\beta}_1$.

- 5. Testez l'hypothèse $H_0: \beta_1 = 0$ v.s. $H_1: \beta_1 \neq 0$. On donne le quantile de la loi de Student à 38 degrés de libertés à 97.5%: $q_{t,38}(97.5\%) = 2.024394$. Interpettez.
- 6. Pouvez-vous prédire la fréquence cardiaque d'un sportif de 57 ans ? De 0 ans ? De 817 ans ? Donnez les intervalles de prédictions. Interpettez.

Exercice 10. Intervalles de confiance vs région de confiance

On considère le modèle de régression linéaire simple $y = \beta_0 + \beta_1 x + \varepsilon$. Soit un échantillon $(x_i, y_i)_{i=1}^{100}$ de statistiques résumées

$$\sum_{i=1}^{100} x_i = 0 \quad \sum_{i=1}^{100} x_i^2 = 400 \quad \sum_{i=1}^{100} x_i y_i = 100 \quad \sum_{i=1}^{100} y_i = 100 \quad \hat{\sigma}^2 = 1.$$

- 1. Exprimer les intervalles de confiance à 95% pour $\hat{\beta}_0$ et $\hat{\beta}_1$. On admet que le quantile d'ordre 0.975 d'une loi de Student à 98 degrés de liberté vaut environ 2.
- 2. Donner l'équation de la région de confiance à 95% de $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$. On admet que le quantile d'ordre 0.975 d'une loi de Fisher à (2,100) degrés de liberté vaut 3. Rappelons que l'ensemble des points (x,y) tels que $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} \leq 1$ est l'intérieur d'une ellipse centrée en (x_0, y_0) dont les axes sont parallèles à ceux des abscisses et des ordonnées, et de sommets $(x_0 \pm a, 0)$ et $(0, y_0 \pm b)$.
- 3. Représenter sur un même graphique les résultats obtenus.