PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-254472

(43) Date of publication of application: 19.09.2000

(51)Int.CI.

B01F 13/08 B01F 7/00

(21)Application number: 11-067728 (71)Applicant: TOSHIBA CORP

(22)Date of filing:

15.03.1999

(72)Inventor: KIHASHI KOUZOU

(54) DEVICE AND METHOD FOR AGITATING

(57)Abstract:

PROBLEM TO BE SOLVED: To perform agitation in which the concentration of liquid to be agitated does not change without using an agitator element by providing a disposing means for disposing a vessel for housing material to be agitated and magnetic particles and a pair of magnetic means for alternately generating magnetic fields putting a vessel between them. SOLUTION: A sample container 210 is disposed between a pair of permanent magnets 12a, 13a and is installed in a magnetic field H1. Magnetic particles 212 in the sample container 210 are magnetized in a magnetic field H1 and are moved to one side face of the permanent magnets 12a. 13a. After the sample container 210 is moved to between permanent magnets 12b, 13b, it is made

to stand still, and by inertia following the movement, the magnetic particles 212 are shifted from the side face to which they have moved. Since at this time, the sample container 210 is installed in a separate magnetic field H2 made by separate permanent magnets 12b, 13b, the magnetic particles 212 are magnetized in the magnetic field H2 and are moved to one side face of the permanent magnets 12a, 13a again. In this way, the magnetic particles 212 agitate liquid to be agitated 211 in the sample container 210.

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-254472 (P2000-254472A)

(43)公開日 平成12年9月19日(2000.9.19)

(51) Int.Cl. ⁷		識別記号	FΙ		7	i-7]-ド(参考)
B01F	13/08		B 0 1 F	13/08	Z	2G058
	7/00			7/00	D	4G036
G01N	35/02		G01N	35/02	D	4G078

審査請求 未請求 請求項の数7 OL (全 8 頁)

(21)出願番号	特顧平11-67728	(71) 出願人 000003078		
		株式会社東芝		
(22)出願日	平成11年3月15日(1999.3.15)	神奈川県川崎市幸区堀川町72番地		
		(72)発明者 木橋 浩三		
		栃木県大田原市下石上1385番の1 株式会		
		社東芝那須工場内		
		(74)代理人 100058479		
		弁理士 鈴江 武彦 (外6名)		
		Fターム(参考) 20058 CB04 CD04 CE08 EA02 EA04		
		EDO3 FAO2 GAO1 HAOO		
		40036 AC25		
		4C078 AA30 AB20 CA17 DA30		

(54) 【発明の名称】 撹拌装置と撹拌方法

(57)【要約】

【課題】 攪拌対象液の濃度が変わらない攪拌を実行で きる攪拌方法及び攪拌装置の実現。

【解決手段】 攪拌対象物211と磁性粒子212を混 入した容器210を電磁石17、電磁石18の間に架設 し、当該電磁石17、電磁石18から交互に磁場を発生 させ容器210内の磁性粒子212を移動させ、攪拌対 象物211を攪拌する攪拌装置。

【特許請求の範囲】

【請求項1】 攪拌対象物と磁性粒子を入れる容器を架 設する架設手段と、

前記容器を挟み磁場を交互に発生する対の磁性手段と、 を具備する攪拌装置。

【請求項2】 攪拌対象物と磁性粒子を入れる容器を間 欠移動させる移動手段と、

前記容器が移動する移動経路を挟み互いに異なる磁性を 有して向かい合う磁極を、移動経路に沿って隣り合う磁 極の磁性が互いに異なるように複数並べて設けた磁性手 10 けられた攪拌装置がある。 段と.

を具備する攪拌装置。

【請求項3】 攪拌対象物と磁性粒子を入れる容器を移 動させる移動手段と、

前記容器の移動に伴い少なくとも一箇所異なる向きの磁 界中を容器が通過するように前記容器の移動経路の両側 若しくは片側に磁極を設けた磁性手段と、

を具備する攪拌装置。

【請求項4】 攪拌対象物と磁性粒子が混入された容器 の周りに磁場をかけ、当該磁場の向きを変動させて攪拌 20 が、各試薬容器51、61に格納されて設置されてい 対象物を攪拌する攪拌方法。

【請求項5】 攪拌対象物と磁性粒子が混入された容器 を交互に磁場を発生する対の磁極間に架設する工程と、 前記対の磁極から交互に磁場を発生させ前記容器内の攪 **拌対象物中の磁性粒子を移動させる工程と、**

を具備する攪拌方法。

【請求項6】 移動経路を挟み互いに異なる磁性を有し て向かい合う磁極を移動経路に沿って隣り合う磁極の磁 性が互いに異なるように複数並べて設けた磁性手段に、 攪拌対象物と磁性粒子が混入された容器を架設する工程 30

前記移動経路に沿って前記磁性手段に対して前記容器を 相対的に間欠移動させる工程と、

を具備する攪拌方法。

【請求項7】 容器の移動に伴い少なくとも一箇所異な る向きの磁界中を容器が通過するように前記容器の移動 経路の両側若しくは片側に磁極を設けた磁性手段に、攪 拌対象物と磁性粒子が混入された容器を架設する工程 ٤.

前記移動経路に沿って前記磁性手段に対して前記容器を 40 相対的に移動させる工程と、

を具備する攪拌方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、磁性を利用した攪 拌装置及び撹拌方法に関する。

[0002]

【従来の技術】医療を初め様々な分野の検査、研究にお いて、試薬や試料など異なる複数の液体を均一に混ぜる ため若しくは固体の溶解等のため、攪拌を必要とする場 50 とれが累積的に繰り返される。との結果、各液体の濃度

合がある。

【0003】との撹拌を行うには、主に撹拌子を利用し た攪拌方法で行われる。この方法は、複数の試料や試 薬、反応液等の攪拌対象液中に攪拌子を挿入し、当該攪 拌子で早い周期の振動、回転等を対象溶液に加えること により、均一な混ぜ合わせ、溶解等を実現するものであ る。

【0004】この攪拌子を利用して攪拌を行う装置の例 として、医療機関等で使用される自動分析装置に備え付

【0005】図5は、上述した攪拌装置を有する従来の 自動分析装置を示している。

【0006】図5において、まず、サンプラ2に架設さ れた試料容器210 (試験管等) 中の試料は、試料分注 機構3により定量取り出され、硬質ガラス等からなる複 数の反応管4へ分注される。反応管4は、例えば試料が 血清であれば、人体温度(約37℃)程度に保たれる状 態になっている。

【0007】次に、各試薬庫5、6中には、各種試薬 る。各試薬は、必要に応じ各分注機構7、8によって反 応管4に定量分注される。

【0008】試薬が分注された後、反応管4中の当該試 薬と試料とを均一に混ぜ合わせるため、攪拌子を有する 攪拌装置9により、試料と試薬を攪拌する。

【0009】すなわち、攪拌子91を反応管4中に挿入 し、当該攪拌子91を駆動させることにより試料と試薬 の攪拌を行う。

【0010】上記攪拌終了後、攪拌子91を反応管4か ら取り出し、当該攪拌子91を洗浄後、次の反応管4中 の試料と試薬の攪拌処理へ移行する。

【0011】そして、図示していない測光部により当該 反応管4内の試料の吸光度を測定し、試料の特定成分量 を分析する。

【0012】また、電解質測定部10により、反応管4 中の特定電解質の成分量を測定する。

【0013】上記特定成分量の分析及び特定電解質の測 定の後、洗浄部11により反応管4は洗浄される。

【0014】とのような一連の動作の繰り返しによっ て、各反応管4中の試料と試薬の攪拌、分析、洗浄等は 連続的に実行される。

[0015]

【発明が解決しようとする課題】上述のように、攪拌子 を利用する方法は、攪拌子を攪拌対象液中に挿入しなけ ればならない。また、作業性向上の観点から、自動分析 装置のように連続した作業が実行されるので、複数の攪 拌対象液について繰り返し攪拌が実行されることがあ る。従って、攪拌子に付着した前攪拌対象液が次の攪拌 作業にまで持ち込まれてしまい(キャリーオーバー)、

2

を変えてしまい、正確な検査を実行することができな い。

【0016】また、上記自動分析装置のように、攪拌子の繰り返し使用を考慮し、攪拌子洗浄部を設け各攪拌の度に洗浄水で洗う構成であっても、作業の迅速性から洗浄水の乾燥を待たずに次の攪拌処理に移行するので、当該洗浄水が次の攪拌対象液に持ち込まれることになり(キャリーオーバー)、本来の濃度より薄くなってしま

【0017】また、上記攪拌子を洗浄水で洗う構成であ 10 る場合、さらに当該洗浄による手間と時間がかかることになる。

[0018]

うという欠点があった。

【課題を解決するための手段】本発明は、上記事情に鑑みてなされたもので、撹拌子を使用せず撹拌対象液の濃度が変わらない撹拌を実行できる撹拌方法及び撹拌装置の実現を目的とし、以下に記す(1)~(3)の特徴を具備するものである。

【0019】(1)本発明は、攪拌対象物と磁性粒子を入れる容器を架設する架設手段と、前記容器を挟み磁場 20を交互に発生する対の磁性手段とを具備する攪拌装置である。

【0020】とのような構成によれば、磁性粒子は交互 に発生する磁場により容器中を移動する。その結果、攪 拌対象物は攪拌され、攪拌子を使用しないで均一な攪拌 を実行できる。

【0021】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0022】(2)本発明は、攪拌対象物を入れる容器を間欠移動させる移動手段と、前記容器が移動する移動経路を挟み互いに異なる磁性を有する対の磁極を、移動経路に沿って隣り合う磁極の磁性が互いに異なるように、複数並べて設けた磁性手段とを具備する攪拌装置である。

【0023】このような構成によれば、前記容器の間欠移動による慣性で当該容器中を動く磁性粒子を、さらに前記磁性手段の磁場により引き付けて容器中を移動させることができる。その結果、攪拌対象物は攪拌され、攪拌子を使用しないで均一な攪拌を実行できる。

【0024】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0025】また、本発明は、攪拌対象物と磁性粒子を入れる容器を移動させる移動手段と、前記容器の移動に伴い少なくとも一箇所異なる向きの磁界中を容器が通過するように前記容器の移動経路の両側若しくは片側に磁極を設けた磁性手段とを具備する攪拌装置である。

【0026】このような構成によれば、前記容器が移動 経路を相対的に移動することにより、磁性粒子は両側面 50 の磁性手段の磁場により交互に引き付けられ容器中を運動する。その結果、攪拌対象物は攪拌され、攪拌子を使用しないで均一な攪拌を実行できる。

【0027】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ととなく正確な検査を実現するととができる。

【0028】(3)本発明は、攪拌対象物と磁性粒子が 混入された容器の周りに磁場をかけ、当該磁場の向きを 変動させて攪拌対象物を攪拌する攪拌方法である。

【0029】とのような構成によれば、磁場の変動に従って磁性粒子が前記容器中を移動するので、攪拌対象物は攪拌され、攪拌子を使用しないで均一な攪拌を実行できる。

【0030】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0031】また、本発明は、攪拌対象物と磁性粒子が 混入された容器を交互に磁場を発生する対の磁極間に架 設する工程と、前記対の磁極から交互に磁場を発生させ 前記容器内の攪拌対象物中の磁性粒子を移動させる工程 とを具備する攪拌方法である。

【0032】とのような構成によれば、磁性粒子は交互 に発生する磁場により容器中を移動する。その結果、攪 拌対象物は攪拌され、攪拌子を使用しないで均一な攪拌 を実行できる。

【0033】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0034】また、本発明は、移動経路を挟み互いに異なる磁性を有する対の磁極を、移動経路に沿って隣り合う磁極の磁性が互いに異なるように複数並べて設けた磁性手段に攪拌対象物と磁性粒子が混入された容器を架設する工程と、前記移動経路に沿って前記磁性手段に対して前記容器を相対的に間欠移動させる工程とを具備する攪拌方法である。

【0035】とのような構成によれば、前記容器の間欠 移動による慣性で当該容器中を動く磁性粒子を、さらに 前記磁性手段の磁場により引き付けて容器中を移動させ ることができる。その結果、攪拌対象物は攪拌され、攪 40 拌子を使用しないで均一な攪拌を実行できる。

【0036】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0037】また、本発明は、容器の移動に伴い少なくとも一箇所異なる向きの磁界中を容器が通過するように前記容器の移動経路の両側若しくは片側に磁極を設けた磁性手段に、攪拌対象物と磁性粒子が混入された容器を架設する工程と、前記移動経路に沿って前記磁性手段に対して前記容器を相対的に移動させる工程とを具備する攪拌方法である。

【0038】 このような構成によれば、前記容器が移動 経路を相対的に移動することにより、磁性粒子は両側若 しくは片側の磁性手段の磁場により引き付けられ容器中 を運動する。その結果、攪拌対象物は攪拌され、攪拌子 を使用しないで均一な攪拌を実行できる。

【0039】従って、攪拌対象液キャリーオーバーや洗 浄水キャリーオーバーを防止し、各液体の濃度を変える ことなく正確な検査を実現することができる。

【0040】また、攪拌子を使用しないので、攪拌子洗 浄の手間を省くことができ、作業時間を短縮することが 10 移動による慣性が磁性粒子212に働き、磁性粒子は上 できる。

[0041]

【発明の実施の形態】以下、本発明の第1実施の形態~ 第3の実施の形態を図面に従って説明する。

【0042】(第1の実施の形態)図1は、第1実施形 態に係る攪拌装置の概略構成を示している。

【0043】図1(a)において、永久磁石列12と永 久磁石列13は、永久磁石を、所定の間隔を開けて他列 の向かい合う磁極及び同列の隣り合う磁極が反転するよ うに並べられている。

【0044】なお、図1 (a) では、永久磁石列12は N極から、永久磁石列13はS極から永久磁石を並べた 構成をしているが、上記のように並べられていれば特に 指定はない。

【0045】また、永久磁石列12の各磁極と永久磁石 列13の各磁極の移動経路に対向する面は、対となり完 全に向かい合う形態である必要はない。すなわち、永久 磁石列12の各磁極と永久磁石列13の各磁極を対とせ ず、一方の磁石列に対して他方の磁石列を移動経路方向 にずらして向かい合う配列であってもよい。

【0046】さらに、永久磁石列12の各磁極と永久磁 石列13の各磁極の移動経路に対向する面は、移動経路 に対して傾けられて向かい合う配列であってもよい。

【0047】永久磁石を並べた永久磁石列12と永久磁 石列13の間に、図示していない架設手段により試料容 器210が架設されている。この試料容器210には、 数種の試料や試薬等から成る攪拌対象液211と磁性粒 子212が混入されている。

【0048】また、試料容器210は、図示していない 移動手段により矢印の方向に間欠移動される。従って、 試料容器210は、図1(b)に示すように、点線で表 した各磁場を横切って移動する構成となる。

【0049】なお、磁性粒子212は、磁性を有し、か つ、前記試料や試薬と化学反応しないものである。ま た、磁性粒子の混入量や大きさは、攪拌対象液の液量や 粘性等によって適当に変えることが好ましい。

【0050】次に、上記構成を有する攪拌装置の動作説 明を以下に述べる。

【0051】まず、図示していない架設手段により、試 料容器210を永久磁石12aと永久磁石13aの中間 50 は、第1の実施の形態と同様である。

に架設する。すると、試料容器210は、永久磁石12 aと永久磁石13aにより作られた磁場H1(点線で示 す)中に置かれることになる。従って、各磁性粒子21 2は磁場H1により磁化され、試料容器210中の永久 磁石12a側の側面若しくは永久磁石13a側の側面へ と移動する。

【0052】次に、図示していない移動手段により、試 料容器210を永久磁石12bと永久磁石13bの間へ 移動させ、静止させる。すると、この試料容器210の 記移動した側面からずれる。

【0053】しかし、試料容器210は、永久磁石12 bと永久磁石13bにより作られた磁場H2(点線で示 す) に置かれるから、磁性粒子212は磁場H2により 磁化され、再び試料容器210中の永久磁石12a側の 側面若しくは永久磁石13a側の側面へと移動する。

【0054】以下同様に、永久磁石の磁場中の間欠移動 を繰り返して、磁性粒子212に試料容器210中を更 に移動させる。

【0055】とのような構成によれば、磁性粒子212 20 は、試料容器210の移動による慣性と永久磁石列12 と永久磁石列13との磁性により撹拌対象液211中を 移動することになり、その結果、攪拌対象液211は攪 拌される。

【0056】従って、攪拌子を使用する攪拌とは異な り、攪拌対象液キャリーオーバーや洗浄水キャリーオー バーを防止し、各液体の濃度を変えることなく正確な検 査を実行することができる。

【0057】また、攪拌子を使用しないので、攪拌子洗 30 浄の手間を省くことができ、作業時間を短縮することが できる。

【0058】(第2の実施の形態)図2は、第2の実施 の形態に係る攪拌装置の概略構成を示している。

【0059】図2(a)において、永久磁石列14と永 久磁石列15には、所定の間隔を開けて、かつ、他列の 永久磁石が向かい合わないように複数並べられている。 すなわち、第1の実施の形態において、永久磁石列12 と永久磁石列13のS極の永久磁石をすべて取り除いた 構成となっている。

【0060】このように永久磁石を並べた磁極の間に、 図示していない架設手段により試料容器210が架設さ れている。この試料容器210には、第1の実施の形態 と同様、数種の試料や試薬等から成る攪拌対象液211 と磁性粒子212を混入されている。

【0061】また、試料容器210は、図示していない 移動手段により矢印の方向に移動される。従って、試料 容器210は、図2(b)に示すように、点線で表した 各磁場を横切って移動する構成となる。

【0062】なお、磁性粒子212の性質、混入量等

【0063】次に、上記構成を有する攪拌装置の動作説 明を以下に述べる。

【0064】まず、図示していない架設手段により、試 料容器210を永久磁石14aの磁極の先端近傍に架設 する。すると、試料容器210は、永久磁石14aによ り作られた磁場H3 (点線で示す) に置かれることにな る。従って、磁性粒子212は磁場H3により磁化さ れ、試料容器210中の永久磁石14a側へ移動する。 【0065】次に、図示していない移動手段により、試 料容器210を永久磁石15a先端近傍へ移動させ、静 10 性を有する構成となる。 止させる。すると、永久磁石15aの磁力が磁性粒子2

【0066】以下、同様の過程を複数の永久磁石につい て行なえば、磁性粒子212を永久磁石の数だけ水平往 復運動させることができる。

12に働き、磁性粒子212は試料容器210中を永久

磁石15aへ移動する。

【0067】とのような構成によれば、磁性粒子212 は、永久磁石列14と永久磁石列15の各永久磁石の磁 力により攪拌対象液211中を移動する。その結果、攪 拌対象液211を攪拌することができる。

【0068】従って、攪拌子を使用する攪拌とは異な り、攪拌対象液キャリーオーバーや洗浄水キャリーオー バーを防止し、各液体の濃度を変えることなく正確な検 査を実行することができる。

【0069】また、攪拌子を使用しないので、攪拌子洗 浄の手間を省くことができ、作業時間を短縮することが できる。

【0070】なお、永久磁石の磁極はすべてN極として 説明したが、すべてN極であっても、N極とS極とが混 在していても同様の効果は期待できる。

【0071】(第3実施形態)図3(a)、(b)は、 第3の実施の形態に係る攪拌装置の概略構成を示してい

【0072】図3(a)において、鉄芯21にはコイル 23が、鉄芯22にはコイル24がそれぞれ多重に巻き 付けられている。そして、コイル23には電圧源25と スイッチ27が、コイル24には電圧源26とスイッチ 28がそれぞれ直列に接続されており電磁石17、電磁 石18を形成している。各スイッチを閉じた場合、コイ ル23、コイル24それぞれに電流が流れ、鉄芯21及 40 び鉄芯22は磁石となる。電磁石17と電磁石18は、 適当な間隔を開け鉄芯21と鉄芯22の中心軸が同一直 線上になるように設置されている。

【0073】試料容器210は、双方の電磁石の鉄芯間 に設置されており、当該試料容器中には、数種の試料や 試薬等から成る攪拌対象液211と磁性粒子212が混 入されている。この磁性粒子212は、磁性を有し、か つ、前記試料や試薬と化学反応しないものである。ま た、磁性粒子の混入量や大きさは、攪拌対象液の液量や・ 粘性、電磁石の磁力等によって適当に変えることが好ま 50 【0084】また、攪拌子を使用しないので、攪拌子洗

しい。

(5)

【0074】スイッチ27とスイッチ28は、図示して いないスイッチング制御部により、交互にON/OFF 動作を繰り返す。すなわち、例えば、スイッチ27が0 N状態であればコイル23に電流が流れ、鉄芯21が磁 性をもつ。一方、スイッチ27がON状態の間スイッチ 28はOFFになっており、鉄芯22は磁性を有しな い。従って、鉄芯21と鉄芯22は、スイッチ27とス イッチ28の交互のON/OFF動作に応じて交互に磁

【0075】次に、上記構成の第3実施形態の動作を、 図3(a)、(b)を参照して説明する。

【0076】まず、図3(a)において、図示していな いスイッチング制御部により、スイッチ27をON、ス イッチ28をOFF状態にして、鉄芯21のみ磁化させ る。このとき、電磁石17は、鉄芯21と鉄芯22との 間に点線で示した磁場 H5を作り、試料容器210はと の磁場H5中に置かれた状態になる。すると、磁性粒子 212は、磁場H5により磁化され、試料容器210中 20 を鉄芯21側へ移動する。

【0077】次に、図示していないスイッチング制御部 によりスイッチ27をOFF状態にしスイッチ28をO N状態にする。

【0078】このとき、図3(b)において、鉄芯21 は磁性を失って磁場H5はなくなり、鉄芯22のみが磁 化される。従って、電磁石18は鉄芯21と鉄芯22と の間に点線で示した磁場H6を作り、試料容器210は 点線で示した磁場H6中に置かれた状態になる。する と、磁性粒子212は磁場H6により磁化され、試料容 30 器210中を鉄芯22側へ移動する。

【0079】以下同様に、図示していないスイッチング 制御部により、スイッチ27とスイッチ28のON/O FFを交互に繰り返せば、磁性粒子212は攪拌対象液 211中の水平往復運動を繰り返す。

【0080】なお、攪拌性を更に上げる等の調節は、ス イッチングの周期を調節することにより可能である。

【0081】また、上記第3の実施の形態において、鉄 芯21及び鉄芯22の試料容器210側がN極となる構 成としたが、双方ともS極若しくは一方がN極となり他 方がS極となる構成であっても、同様の効果を得ること ができる。

【0082】とのような構成によれば、磁性粒子212 は、電磁石17と電磁石18の交互に発生する各磁力に より攪拌対象液211中を移動する。その結果、攪拌対 象液211を攪拌することができる。

【0083】従って、攪拌子を使用する攪拌とは異な り、攪拌対象液キャリーオーバーや洗浄水キャリーオー パーを防止し、各液体の濃度を変えることなく正確な検 査を実行することができる。

浄の手間を省くことができ、作業時間を短縮することが できる。

【0085】以上、本発明を第1~第3の実施の形態に 基いて説明したが、上記実施の形態に限定されるもので はなく、例えば以下(1)、(2)に示すように、その 要旨を変更しない範囲で種々変形可能である。

【0086】(1)第1、第2の実施の形態において は、試料容器210の移動経路の両側面に沿って一段に 永久磁石を並べた。これに対し、永久磁石を多段に並 べ、更なる攪拌性の向上や攪拌対象液211の増量等を 10 意図することも可能である。

【0087】図4は、第1若しくは第2の実施の形態に おいて、試料容器210の移動経路に沿った永久磁石の 並びを二段にした例を図示している。同図において、第 1段の永久磁石列30と第2段の永久磁石列31の上下 対応する各永久磁石は、異なる磁性になるように並べて ある。これは、磁性粒子212に水平移動に加えて上下 移動させるととを目的としている。さらに多段にする場 合においても、上下対応する各永久磁石は、異なる磁性 であることが好ましい。

【0088】とのような構成によれば、更なる攪拌性の 向上や攪拌対象液211の増量等を意図することも可能

【0089】(2)第1の実施の形態においては、図示 していない移動手段により、試料容器210を磁場中で 間欠移動させ、当該試料容器中210の磁性粒子212 を移動させる構成であった。

【0090】しかし、本発明は、試料容器210の加減 速移動による慣性の乱れと永久磁石による磁力によって 磁性粒子212を移動させ攪拌するものであるから、必 30 211…攪拌対象液 ずしも試料容器210は間欠移動する必要はない。

*【0091】すなわち、図示していない移動手段は、加 減速移動若しくは間欠移動と加減速移動を組み合わせ て、磁場中で試料容器210を移動させる構成であって もよい。

[0092]

【発明の効果】以上説明したように、磁性粒子を磁場に より移動させることで攪拌子を使用せずに攪拌を実行で きる。その結果、各液体の濃度を変えることなく正確な 検査を実現できる。

【図面の簡単な説明】

【図1】第1の実施の形態に係る攪拌装置の概略構成を 示す図。

【図2】第2の実施の形態に係る攪拌装置の概略構成を 示す図。

【図3】第3の実施の形態に係る攪拌装置の概略構成を 示す図。

【図4】第1及び第2の実施の形態の変形例を示す図。

【図5】従来の自動分析装置の外観図。

【符号の説明】

20 12、13、…永久磁石列

12a、12b、13a、13b…永久磁石

14、15…永久磁石列

14a、15a…永久磁石

17、18…電磁石

21、22…鉄芯

23、24…コイル

25、26…電圧源

27、28…スイッチ

30、31…永久磁石列

212…磁性粒子

【図4】

【図5】

【図3】

