tro

·F

Date: 10th May 2019, Time: 180 Minutes, Marks: 30

Two numbers are selected independently at random in the interval [0,1]. You are told that the smaller one is less than $\frac{1}{3}$. The probability that the larger one is greater than $\frac{3}{4}$ is _____

(2 marks)

2. Consider the Rosenbrock function on \mathbb{R}^2 defined as

$$f(x,y) = 100(y - x^2)^2 + (1 - x)^2.$$

The Hessian (second derivative) of the function at the point (1, 1) is _____. (2 marks)

- 3. For a hypothesis set \mathcal{H} , let $d_{VC} = N$. Find all the correct statements from below:
 - (a) For any set of N points, we can get all dichotomies
 - (b) There is a set of N points for which we can get all dichotomies
 - (c) There are no set of N points for which we can get all dichotomies
 - (d) For any set of N+1 points, we can get all dichotomies
 - (e) There is a set of N+1 points for which we can get all dichotomies
 - (f) There are no set of N+1 points for which we can get all dichotomies
 - (g) The growth function $m_{\mathcal{H}}(N+1) = 2^{N+1}$
 - (h) The growth function $m_{\mathcal{H}}(N+1) < 2^{N+1}$

(2 marks)

- 4. Consider the "k positive intervals" hypothesis set \mathcal{H}_k , where $h : \mathbb{R} \to \{-1, +1\}$ and h(x) = +1 if the point falls inside any of k arbitrarily chosen intervals and -1 otherwise.
 - (a) For k = 1, the growth function $m_{\mathcal{H}_1}(N)$ is _____.
 - (b) For k = 2, the growth function $m_{\mathcal{H}_2}(N)$ is _____.
 - (c) The VC dimension of \mathcal{H}_k is _____.

(2+2+3=7 marks)

5. Consider the following data set of the classification problem with feature space \mathbb{R}^2 .

Example	X	У	Label
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

(a) The equation for the maximum margin classifier is _____.

K) The margin of the maximum margin classifier is _____.

The support vectors are _____.

$$(2+1+1+2=6 \text{ marks})$$

- Present a brief argument that the polynomial kernel defined as $K(x,y) = (1+x^Ty)^2$ is indeed a valid kernel. (3 marks)
 - 7. Consider Boolean functions taking input/output values as -1 and +1 (in place of the usual 0 and 1).

The "smallest" MLP that implements the function $f(x_1, x_2) = x_1.x_2$ is _____.

(k) The "smallest" MLP that implements the function $g(x_1, x_2) = x_1 \oplus x_2$ is _____

(2+2=4 marks)

8. Consider the following data set comprising of three binary input attributes (A, B, C).

Example	A	В	C	Label
1	1	1	I	1
2	1	0	0	1
3	1	1	0	0
4	0	0	1	0

- (a) The decision tree obtained by greedily growing till zero training error, while maximizing the information gain at each step is _____.
 - (b) The decision tree of smallest depth that has zero training error is _____

(2+2=4 marks)