110A HW9

Warren Kim

Winter 2024

Question 1

Let R be a Euclidean domain, and let $a, b \in R$, such that $b \neq 0$, and let d be a greatest common divisor of a and b. Show that $d' \in R$ is also a greatest common divisor of a and b if and only if d' is an associate of d.

[Hint: Your proof should also work for PIDs.]

Response

Proof: Let R be a Euclidean domain, $a, b \in R$ such that $b \neq 0$, and d be a greatest common divisor of a and b.

(\Longrightarrow) Suppose d' is another greatest common divisor of a and b. Then $d' \mid a$ and $d' \mid b$, so $d' \mid d$. Then d = d'x for some $x \in R$. But since $d \mid a$ and $d \mid b$, we have that $d \mid d'$, so d' = dy for some $y \in R$. Then d = d'x = (dy)x. Since $d \neq 0$, apply the cancellation property to get 1 = yx, which shows that x is a unit. This means that d' is an associate of d.

(\Leftarrow) Suppose d' is an associate of d'. Then d=d'x for some unit $x\in R$. Since d is a greatest common divisor of a and b, we have that $d\mid a$ and $d\mid b$, which can be written as a=dp, b=dq for some $p,q\in R$. Then a=dp=(d'x)p=d'(xp) and b=dq=(d'x)q=d'(xq). This shows that $d'\mid a$ and $d'\mid b$. Now suppose that $c\mid a$ and $c\mid b$. Then $c\mid a=d'(xp)$ and $c\mid d'(xq)$, so $c\mid d'$. Therefore, d' is another greatest common divisor of a and b.

Therefore, $d' \in R$ is also a greatest common divisor of a and b if and only if d' is an associate of d.

Let R be a Euclidean domain, and let N be a norm. Show that $N': R \to \mathbb{Z}$ given by $N'(a) = \min_{r \neq 0} N(ar)$ forms a norm. Moreover, show that $N'(a) \leq N'(ab)$ for nonzero $a, b \in R$

Response

Proof: \Box

Let F be a field. Show that the function $N: F \to \mathbb{Z}$ given by N(a) = 0 for all $a \in F$ gives a norm on F. Conclude that every field is a Euclidean domain. [we briefly discussed this in class.]

Let R be an integral domain. Suppose R[x] is a principal ideal domain. Show that R must be a field.

[Hint: Think about (x).]

Response

Proof: Let R be an integral domain and R[x] a principal ideal domain. Consider the principal ideal $(x) \subseteq R[x]$ and a function $f: R[x] \to R$ with f(p(x)) = p(0). Then

- f(p(x) + q(x)) = p(0) + q(0) = f(p(x)) + f(q(x)), so f is closed under addition.
- $f(p(x) \cdot q(x)) = p(0) \cdot q(0) = f(p(x)) \cdot f(q(x))$, so f is closed under multiplication.
- f(1(x)) = 1, so f preserves the multiplicative identity.

so f is a ring homomorphism. We have that $\ker(f) = \{p(x) : f(p(x)) = 0\} = (x)$, so $\ker(f) = (x)$. To show $\operatorname{Im}(f) = R$, take $a \in R$. Then consider $p \in R$ such that p(0) = a. Then $f(p(x)) = p(0) = a \in R$. Therefore, $\operatorname{Im}(f) = R$. Then by the **First Isomorphism Theorem**, we have that $R[x]/(x) \simeq R$.

Note that since $1 \notin (x)$, $(x) \neq R[x]$, so $(x) \subsetneq R[x]$ is a proper ideal. To show that (x) is maximal, consider $(y) \subseteq R[x]$ such that $(y) \supseteq (x)$. If $\deg(y) = 0$, then y is a unit, so (y) = R[x]. If $\deg(y) > 0$, then since $x \in (x) \subseteq (y)$, we can write x = fy for some $f \in R[x]$. Then since $\deg(x) = 1$, $\deg(y) \le \deg(x) = 1$, which means we necessarily have $\deg(y) = 1$. Then x and y are associates, so (x) = (y). Therefore, (x) is maximal, so R[x]/(x) is a field. But since $R[x]/(x) \simeq R$, we have that R is a field.

Let R be a PID, and let $I\subseteq R$ be a prime ideal. Show that R/I is a PID.

Let R be an integral domain. Prove that R is a PID if and only if (i) every ideal of R is finitely generated (i.e., every ideal $I \subseteq R$ can be written $I = (x_1, \dots x_n)$ for $x_i \in R$) and (ii) whenever $a, b \in R$, the ideal (a, b) is principal.

Let R be an integral domain, and let $I_1 \subseteq I_2 \subseteq \cdots$ be a chain of ideal in R. Show their union $\bigcup_j I_j$ is also an ideal.

Let R be a UFD, and let $a, b, c \in R$. Suppose a|c and b|c, and that 1 is a greatest common divisor of a and b. Show that ab|c.

Let R be an integral domain. Show that R is a UFD if and only if R satisfies the ascending chain condition on principal ideals and irreducible elements of R are prime.