Sample Drop Frame

A sample drop frame has always one byte payload, defined through

Bit	7	6	5	4	3	2	1	0
Content			reserved	aux_dro	reserve	acc_		
				р	d	drop		

Sample drop frame will be inserted after a Fifo_Input_Config frame at the ODR tick at which the sample was dropped and only if no other sensor provides a valid sample at this ODR tick. If another sensor provides valid data, the data of this sensor is just not included and the appropriate header bit of the data frame is not set.

Sample drop frames will be inserted only for transition phases after configuration changes, not for samples dropped between sensor enable and first valid sample. For a detailed description of configuration changes see Section 4.5, Subsection "Configuration Changes".

FIFO Partial frame reads

When a frame is only partially read through the Register FIFO_DATA_it will be repeated completely with the next access both in headerless and in header mode. In headermode, this includes the header. In the case of a FIFO overflow between the first partial read and the second read attempt, the frame may be deleted.

FIFO overreads

When more data are read from the FIFO than it contains valid data, 0x8000 is returned in headerless mode. While in header mode 0x0080 is returned, where 0x80 indicates an invalid frame.

4.6.3 FIFO data synchronization

All sensor data are sampled with respect to a common ODR time grid. Even if a different ODR is selected for the acceleration and the magnetic sensor the data remains synchronized:

If a frame contains a sample from a sensor element with ODR x, then it must contain also samples of all sensor elements with an ODR y>=x. This applies for steady state operation. In transition phases, it is more important not to lose data, therefore exceptions are possible if the sensor elements with ODR y>=x do not have data, e.g. due to a sensor configuration change.

FIFO Data Synchronization Scheme in the following figure illustrates the steady state and transient operating conditions.

4.6.4 FIFO synchronization with external interrupts

External interrupts may be synchronized into the FIFO data. For this operation mode the FIFO_CONFIG_1.fifo_tag_int1_en and/or FIFO_CONFIG_1.fifo_tag_int2_en need to be enabled, as well as INT1_IO_CTRL.input_en and/or INT2_IO_CTRL.input_en. The fh_ext field in FIFO header will then be set according to the signal at the INT1/INT2 inputs.

4.6.5 FIFO Interrupts

The FIFO supports two interrupts, a FIFO full interrupt and a watermark interrupt:

- The FIFO full interrupt is issued when the FIFO fill level is above the full threshold. The full threshold is reached just before the last two frames are stored in the FIFO.
- The FIFO watermark is issued when the FIFO fill level is equal or above a watermark defined in Register FIFO_WTM_0 and FIFO_WTM_1.

In order to enable/use the FIFO full or watermark interrupts map them on the desired interrupt pin via INT_MAP_DATA.

Both interrupts are suppressed when a read operation on the Register FIFO_DATA is ongoing. Latched FIFO interrupts will only get cleared, if the status register gets read and the fill level is below the corresponding FIFO interrupt (full or watermark).

4.6.6 FIFO Flush

The user can trigger a FIFO reset by writing the command fifo_flash (0xB0) in CMD. Automatic resets are only performed in the following cases:

- A sensor is enabled or disabled in headerless mode
- A transition between headerless and headermode or vice versa has occurred.
- Size of auxiliary sensor data in a frame changed in header or headerless mode

4.7 Integrated Features set:

4.7.1 Any Motion / No motion detection

Any-motion detection:

Any-motion detection uses the slope between current input and reference acceleration samples to detect the motion status of the device. Feature can be enabled by setting at least one of the following: FEATURES_IN.any_motion.settings_2.x_en, FEATURES_IN.any_motion.settings_2.y_en and FEATURES_IN.any_motion.settings_2.z_en, respectively for each axis.

Any-motion provides an interrupt when the absolute value of the slope exceeds the configurable FEATURES_IN.any_motion.settings_1.threshold for consecutive

FEATURES_IN.any_motion.settings_2.duration samples for at-least one of the enabled sensing axis. Reference acceleration sample is updated only when an any-motion interrupt is triggered. The interrupt status is reset as soon as the slope falls below the set

FEATURES_IN.any_motion.setings_1.threshold value. The signals and timings relevant to the anymotion interrupt functionality are depicted in the figure below:

Signal and timing diagram for any-motion interrupt detection

Configuration settings:

- 1. FEATURES IN.any motion.settings 1.threshold the slope threshold.
- 2. FEATURES_IN.any_motion.settings_2.duration the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. FEATURES_IN.any_motion.settings_2.x_en indicates if this feature is enabled for x axis
- 4. FEATURES_IN.any_motion.settings_2.y_en indicates if this feature is enabled for y axis
- 5. FEATURES_IN.any_motion.settings_2.z_en -indicates if this feature is enabled for z axis

No Motion Detection:

No-motion detection uses the slope between two consecutive acceleration signal samples to detect static state of the device. Feature can be enabled by setting at least one of the following flags: FEATURES_IN.no_motion.settings_2.x_en, FEATURES_IN.no_motion.settings_2.y_en and FEATURES_IN.no_motion.settings_2.z_en, respectively for each axis.

No-motion interrupt is triggered when the slope on all enabled sensing axis remains smaller than the configurable FEATURES_IN.no_motion.settings_1.threshold for the duration configured by FEATURES_IN.no_motion.settings_2.duration. No-motion interrupt is cleared as soon as the acceleration slope exceeds the set threshold. The signals and timings relevant to the no-motion interrupt functionality are depicted in the figure below.

Signal and timing diagram for no-motion interrupt detection

Register FEATURES_IN.no_motion.settings_2.duration defines the number of consecutive data points for which the slope of enabled axis must be smaller than the threshold for an interrupt to be asserted.

Configuration settings:

- 1. FEATURES_IN.no_motion.settings_1.threshold the slope threshold.
- 2. FEATURES_IN.no_motion.settings_2.duration the number of consecutive data points for which the threshold condition must be respected, for interrupt assertion.
- 3. FEATURES_IN.no_motion.settings_2.x_en indicates if this feature is enabled for x axis
- 4. FEATURES_IN.no_motion.settings_2.y_en indicates if this feature is enabled for y axis
- 5. FEATURES_IN.no_motion.settings_2.z_en -indicates if this feature is enabled for z axis

<u>Note</u>: The firmware image with any motion and no motion feature set mentioned in the section above is available for download under the following link

https://github.com/BoschSensortec/BMA490L-Sensor-API

4.8 General Interrupt Pin configuration

Electrical Interrupt Pin Behavior

Both interrupt pins INT1 and INT2 can be configured to show the desired electrical behavior. Interrupt pins can be enabled in INT1_IO_CTRL.output_en respectively INT2_IO_CTRL.output_en. The characteristic of the output driver of the interrupt pins may be configured with bits INT1_IO_CTRL.od and INT2_IO_CTRL.od. By setting these bits to 0b1, the output driver shows open-drive characteristic, by setting the configuration bits to 0b0, the output driver shows push-pull characteristic.

The electrical behavior of the Interrupt pins, whenever an interrupt is triggered, can be configured as either "active-high" or "active-low" via INT1_IO_CTRL.lvl respectively INT2_IO_CTRL.lvl.

Both interrupt pins can be configured as input pins via INT1_IO_CTRL.input_en respectively INT2_IO_CTRL.input_en. This is necessary when FIFO tag feature is used (see the respective FIFO chapter) If both are enabled, the input (e.g. marking FIFO) is driven by the interrupt output. BMA490L supports edge and level triggered interrupt inputs, this can be configured through INT1_IO_CTRL.edge_ctrl respectively INT2_IO_CTRL.edge_ctrl.

BMA490L supports non-latched and latched interrupts modes for data-ready, FIFO full and FIFO watermark. The mode is selected by INT_LATCH.int_latch. The feature interrupts described in chapter FIFO Interrupts, support only latched mode described below.

In latched mode an asserted interrupt status in INT_STATUS_0 or INT_STATUS_1 and the selected pin are cleared if the corresponding status register is read. If more than one interrupt pin is used in latched mode, all interrupts in INT_STATUS_0 should be mapped to one pin and all interrupts in INT_STATUS_1 should be mapped to the other pin. If just one interrupt pin is used all interrupts may be mapped to this pin. If the activation condition still holds when it is cleared, the interrupt status is asserted again when the interrupt condition holds again.

In the non-latched mode (only for data-ready, FIFO full and FIFO watermark) the interrupt status bit and the selected pin are reset as soon as the activation condition is not valid anymore.

Interrupt Pin Mapping

In order, for the Host to react to the features output, they can be mapped to the external pin INT1 or pin INT2, by setting the corresponding bits from the registers INT1_MAP, respectively INT2_MAP.

To disconnect the features outputs to the external pins, the same corresponding bits must be reset, from the registers, INT1_MAP, respectively INT2_MAP.

Once a feature triggered the output pin, the Host can read out the corresponding bit from the register, INT_STATUS_0 (Feature Interrupts) or INT_STATUS_1 (FIFO and data ready).

4.9 Auxiliary Sensor Interface

The auxiliary interface allows to attach one auxiliary sensor (e.g. magnetometer) on dedicated auxiliary sensor interface as shown below.

6 DOF Solution w/ BMA490L and BMM150

4.9.1 Structure and Concept

The BMA490L controls the data acquisition of the auxiliary sensor and presents the data to the application processor through the primary I2C or SPI interface. No other I2C master or slave devices must be attached to the auxiliary sensor interface.

The BMA490L autonomously reads the sensor data from a compatible auxiliary sensor without intervention of the application processor and stores the data in its data registers and FIFO. The initial setup of the auxiliary sensor after power-on is done through indirect addressing (in setup mode as described in following section).

The main benefits of the auxiliary sensor interface are

- Synchronization of sensor data of auxiliary sensor and accelerometer. This results in an improved sensor data fusion quality.
- Usage of the BMA490L FIFO for auxiliary sensor data (BMM150 does not have a FIFO). This is important for monitoring applications.

4.9.2 Interface Configuration

The configuration registers that control the auxiliary sensor interface operation, are only affecting the interface to the auxiliary sensor, not the configuration of the accelerometer sensor itself (this must be done in setup mode).

There are three basis configurations/modes of the auxiliary sensor interface:

- No auxiliary sensor access
- Setup mode: Auxiliary sensor access in manual mode
- Data mode: Auxiliary sensor access through hardware readout loop.

The setup of the auxiliary sensor itself must be done through the primary interface using indirect addressing in setup mode. When collecting sensor data, the BMA490L autonomously triggers the measurement of the auxiliary sensor using the auxiliary sensor forced mode and the data readout from the auxiliary sensor (data mode).

In setup mode, the auxiliary sensor may be configured and trim data may be read out from the auxiliary sensor. In the data mode the auxiliary sensor data are continuously copied into BMA490L registers and may be read out from BMA490L directly over the primary interface. For a BMM150 magnetometer, these are the auxiliary sensor data itself and Hall resistance, temperature is not required. The table below shows how to configure these three modes using the registers PWR_CONF, PWR_CTRL, and AUX_IF_CONF.aux_manual_en.

Mode	AUX_IF_CONF.aux_ manual_en	PWR_CONF.adv_powe r_save	PWR_CTRL.aux_en
No auxiliary sensor	1	1	0
access			
Setup mode	1	0	0
Data mode	0	x	1

The auxiliary sensor interface mode may be enabled by setting bit IF_CONF.if_mode according to the following table.

IF_CONF.if_mode	Result				
0	Secondary IF disabled (default)				
1	AuxIF enabled				

The auxiliary sensor interface operates at 400 kHz. This results in an I2C readout delay of about 250 us for 10 bytes of data.

The I2C slave address of the auxiliary sensor is defined in AUX_DEV_ID. i2c_device_addr.

4.9.3 Setup mode (AUX_IF_CONF.aux_manual_en =0b1)

Through the primary interface the auxiliary sensor may be accessed using indirect addressing through the AUX_* registers. AUX_RD_ADDR and AUX_WR_ADDR define the address of the register to read/write in the auxiliary sensor register map and triggers the operation itself, when the auxiliary sensor interface is enabled through PWR_CTRL.aux_en.

For reads, the number of data bytes defined in AUX_IF_CONF.aux_rd_burst are read from the auxiliary sensor and written into the BMA490L Register DATA_0 to DATA_7. For writes only single bytes are written, independent of the settings in AUX_IF_CONF.aux_rd_burst. The data for the I2C write to auxiliary sensor must be stored in AUX_WR_DATA before the auxiliary sensor register address is written into AUX_WR_ADDR.

When a read or write operation is triggered by writing to AUX_RD_ADDR and AUX_WR_ADDR, STATUS.aux_man_op is set and it is reset when the operation is completed. For reads the DATA_0 to DATA_7 contains the read data, for writes AUX_WR_DATA may be overwritten again.

Configuration phase of the auxiliary sensor.

Example: Read bytes 5 and 6 of auxiliary sensor

Example: Write 0xEF into register 3 of auxiliary sensor

4.9.4 Data mode (AUX_IF_CONF.aux_manual_en=0)

AUX_RD_ADDR.read_addr defines the address of the data register from which to read the number of data bytes configured in AUX_IF_CONF.aux_rd_burst from AUX_0... AUX_7 data of the auxiliary sensor. These data are stored in the DATA_0 up to DATA_7 register. The data ready status is set in STATUS.drdy_aux, it is typically cleared through reading one of the DATA_0 to DATA_7 registers. AUX_WR_ADDR.write_addr defines the register address of auxiliary sensor to start a measurement in forced mode in the auxiliary sensor register map. The delay (time offset) between triggering an auxiliary sensor measurement and reading the measurement data is specified in AUX_CONF.aux_offset. Reading of the data is done in a single I2C read operation with a burst length specified in AUX_IF_CONF.aux_rd_burst. For BMM150 AUX_IF_CONF.aux_rd_burst should be set to 0b11, i.e. 8 bytes. If AUX_IF_CONF.aux_rd_burst is set to a value lower than 8 bytes, the remaining auxiliary sensor data in the Register DATA_0 to DATA_7 and the FIFO are undefined.

It is recommended to disable the auxiliary sensor interface (IF_CONF.if_mode=0b0) before setting up AUX_RD_ADDR.read_addr and AUX_WR_ADDR.write_addr for the data mode. This does not put the auxiliary sensor itself into suspend mode but avoids gathering unwanted data during this phase. Afterwards the auxiliary sensor interface can be enabled (IF_CONF.if_mode=0b1) again.

4.9.5 Delay (Time Offset)

BMA490L supports starting the measurement of the sensor at the auxiliary sensor interface between 2.5 and 37.5 ms before the Register DATA are updated. This offset is defined in AUX_CONF.aux_offset. If set to 0b0, the measurement is done right after the last Register DATA update, therefore this measurement will be included in the next register DATA update.

4.10 Sensor Self-Test

The BMA490L has a comprehensive self test function for the MEMS element by applying electrostatic forces to the sensor core instead of external accelerations. By actually deflecting the seismic mass, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal.

Before the self-test is enabled the g-range should be set to 8g. The self-test is activated for all axes by writing ACC_SELF_TEST.acc_self_test_en = 1b1. The self-test is disabled by writing ACC_SELF_TEST.acc_self_test_en = 1b0. It is possible to control the direction of the deflection through bit ACC_SELF_TEST.acc_self_test_sign. The excitation occurs in positive (negative) direction if ACC_SELF_TEST.acc_self_test_sign= 1b1 ('b0). The amplitude of the deflection has to be set low by writing ACC_SELF_TEST.acc_self_test_amp = 1b0. After the self-test is enabled, the user should wait 50ms before interpreting the acceleration data.

In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both (positive and negative) directions and then to calculate the difference of the resulting acceleration values. The table below shows the minimum differences for each axis in order for the self test to pass. The actually measured signal differences can be significantly larger.

Self-test: Resulting minimum difference signal for BMA490L.

	x-axis signal	y-axis signal	z-axis signal
BMA490L	1800 mg	1800 mg	1800 mg

It is recommended to perform a reset of the device after a self-test has been performed. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation: disable interrupts, change parameters of interrupts, wait for at least 50ms, and enable desired interrupts.

The recommended self test procedure is as follows:

- 1. Enable accelerometer with register PWR_CTRL.acc_en=1b1.
- 2. Set ±8g range in register ACC_RANGE.acc_range
- 3. Set self test amplitude to low by setting ACC_SELF_TEST.acc_self_test_amp = 1b0
- 4. Set ACC_CONF.acc_odr=1600Hz, Continuous sampling mode, ACC_CONF.acc_bwp=norm_avg4, ACC_CONF.acc_perf_mode=1b1.
- 5. Wait for > 2 ms
- 6. Enable self-test and set positive self-test polarity (ACC SELF TEST.acc self test sign= 1b1)
- 7. Wait for > 50ms
- 8. Read and store positive acceleration value of each axis from registers DATA_8 to DATA_13
- 9. Enable self-test and set negative self-test polarity ACC SELF TEST.acc self test sign= 1b0)
- 10. Wait for > 50ms
- 11. Read and store negative acceleration value of each axis from registers DATA 8 to DATA 13
- 12. Calculate difference of positive and negative acceleration values and compare against threshold values

4.11 Offset Compensation

BMA490L offers manual compensation as well as inline calibration.

Offset compensation is performed with pre-filtered data, and the offset is then applied to both, pre-filtered and filtered data. If necessary the result of this computation is saturated to prevent any overflow errors (the smallest or biggest possible value is set, depending on the sign).

The public offset compensation Registers OFFSET_0 to OFFSET_2 are images of the corresponding registers in the NVM. With each image update the contents of the NVM registers are written to the public registers. The public registers can be overwritten by the user at any time.

The offset compensation registers have a width of 8 bit using two's complement notation. The offset resolution (LSB) is 3.9 mg and the offset range is +- 0.5 g. Both are independent of the range setting. Offset compensation needs to be enabled through NV_CONF.acc_off_en = 0b1

4.11.1 Manual Offset Compensation

The contents of the public compensation Register OFFSET_0 to OFFSET_2 may be set manually via the digital interface. After modifying the Register OFFSET_0 to OFFSET_2 the next data sample is not valid.

Offset compensation needs to be enabled through NV_CONF.acc_off_en.

4.11.2 Inline Calibration

For certain applications, it is often desirable to calibrate the offset once and to store the compensation values permanently. This can be achieved by using manual offset compensation to determine the proper compensation values and then storing these values permanently in the NVM.

Each time the device is reset, the compensation values are loaded from the non-volatile memory into the image registers and used for offset compensation.

4.12 Non-Volatile Memory

The registers NV_CONF and OFFSET_0 to OFFSET_2 have an NVM backup which are accessible by the user.

The content of the NVM is loaded to the image registers after a reset (either POR or softreset). As long as the image update is in progress, STATUS.cmd_rdy is 0b0, otherwise it is 0b1.

The image registers can be read and written like any other register.

Writing to the NVM is a 4-step procedure:

- Set PWR_CONF.adv_power_save = 0b0
- 2. Write the new contents to the image registers.
- 3. Write 0b1 to bit NVM_CONF.nvm_prog_en in order to unlock the NVM.
- 4. Write nvm prog to the CMD register to trigger the write process.
- 5. Write 0b0 to bit NVM_CONF.nvm_prog_en in order to lock the NVM, after the write process is completed

Writing to the NVM always renews the entire NVM contents. It is possible to check the write status by reading *STATUS.cmd_rdy*. While *STATUS.cmd_rdy* = 0b0, the write process is still in progress; when *STATUS.cmd_rdy* = 0b1, writing is completed. An NVM write cycle can only be initiated, if PWR CONF.adv power save = 0b0.

Until boot phase is finished (after POR or softreset), the serial interface is not operational. The NVM shadow registers must not be accessed during an ongoing NVM command (initiated through the Register CMD). In all other cases, register can be read or written.

As long as an NVM read (during sensor boot and soft reset) or an NVM write is ongoing, writes to sensor registers are discarded, reads return the Register STATUS independent of the read address.

4.13 Soft-Reset

A softreset can be initiated at any time by writing the command *softreset (0xB6)* to register CMD. The softreset performs a fundamental reset to the device which is largely equivalent to a power cycle. Following a delay, all user configuration settings are overwritten with their default state (setting stored in the NVM) wherever applicable. This command is functional in all operation modes but must not be performed while NVM writing operation is in progress.

5. Register Description

5.1 **General Remarks**

Registers can be read and written in all power configurations with the exception of FEATURES_IN and FIFO_DATA which need PWR_CONF.adv_power_save set to 0b0. The following chapter contains only the general register map, feature related registers are excluded.

5.2 **Register Map**

r	ead/write		rea	d only			write	only		reserved		
.		564			E	- [<u> </u>		ID:	
Register Address	Register Name	Default Value	7	6	5		4	3	2	1	0	
0x7E	CMD	0x00					C	md				
0x7D	PWR_CT RL	0x00		reserved acc_en					reserved	aux_en		
0x7C	PWR_CO NF	0x03		reserved						fifo_self _wakeu p	adv_po wer_sav e	
0x7B	-	-					res	erved				
	-	-					res	erved				
0x74	-	-					res	erved				
0x73	OFFSET 2	0x00					off_	acc_z				
0x72	<u>OFFSET</u> <u>1</u>	0x00		off_acc_y								
0x71	<u>OFFSET</u> <u>0</u>	0x00		off_acc_x								
0x70	NV_CONF	0×00		reserved acc_off_ en			i2c_wdt_ en	i2c_wdt_ sel	spi_en			
0x6F	-	-					res	erved				
0x6E	-	-					res	erved				
0x6D	ACC_SEL F_TEST	0x00		res	erved			acc_self _test_a mp	acc_self _test_si gn	reserved	acc_self _test_en	
0x6C	-	-					res	erved				
0x6B	IF_CONF	0x00		reserved			if_mode		reserved		spi3	
0x6A	NVM_CO NF	0x00			re	ese	erved			nvm_pro g_en	reserved	
0x69	-	-					res	erved				
	-	-					res	erved				
0x60	-	-					res	erved				
0x5F	INTERNA L_ERROR	0x00		reserved int_err_2					int_err_1	reserved		
0x5E	FEATURE S_IN	0x00		features_in								
0x5D	-	-	reserved									
	-	-					res	erved				
0x5A	-	-					res	erved				

0x59	INIT_CTR	0x90				init	:_ctrl			
	<u>L</u> INT_MAP			int2_dr	int2_fw			int1_drd	int1_fw	
0x58	_DATA	0x00	reserved	dy	m	int2_ffull	reserved	у	m	int1_ffull
0x57	INT2_MA P	0x00	error_int _out	no_mo tion_o ut	any_mot ion_out			reserved		
0x56	INT1_MA P	0x00	error_int _out	no_mo tion_o ut	any_mot ion_out			reserved		
0x55	INT_LATC H	0x00		reserved int_late					int_latch	
0x54	INT2_IO_ CTRL	0x00		reserved input_en output_e od lvl				lvl	edge_ctr I	
0x53	INT1_IO_ CTRL	0x00		reserved input_en output_e od lv				lvl	edge_ctr I	
0x52	-	-		reserved						
	-	-				res	erved			
0x50	-	-				res	erved			
0x4F	AUX_WR_ DATA	0x02				write	e_data			
0x4E	AUX WR ADDR	0x4C		write_addr						
0x4D	AUX_RD_ ADDR	0x42	read_addr							
0x4C	AUX_IF_C ONF	0x83	aux_ma nual_en	reserved aux rd burst					d_burst	
0x4B	AUX_DEV _ID	0x20			i2	2c_device_a	ddr			reserved
0x4A	-	-				res	erved			
0x49	FIFO_CO NFIG_1	0x10	reserved	fifo_ac c_en	fifo_aux _en	fifo_hea der_en	fifo_tag_ int1_en	fifo_tag_ int2_en	rese	erved
0x48	FIFO_CO NFIG_0	0x02		_	res	erved			fifo_time _en	fifo_stop _on_full
0x47	FIFO_WT M_1	0x02		reserved			fifo_v	vater_mark_		
0x46	FIFO_WT M_0	0x00				fifo_water	_mark_7_0			
0x45	FIFO DO WNS	0x80	acc_fifo _filt_dat a	ā	acc_fifo_dow	/ns		rese	rved	
0x44	AUX_CON F	0x46		aux	_offset			aux	_odr	
0x43	<u>-</u>	-				res	erved			
0x42	-	-	reserved							
0x41	ACC_RAN GE	0x01			res	erved			acc_	range
	ACC_CO	0xA8	acc_perf acc_bwp acc_odr							
0x40	<u>NF</u>		_mode	_mode reserved						

		-				roconied			
0x2B	-					reserved			
UX2B	INITEDNIA	-				reserved			
0.04	INTERNA	0.00		odr_5	axes_re				
0x2A	L_STATU	0x00	reserved	0Hz_e	map_err	message			
0.00	<u>S</u>			rror	or		_	_	
0x29	-	=				reserved			
	-	=				reserved			
0x27	- FIEO DAT	=				reserved			
0x26	FIFO_DAT A	0x00		fifo_data					
0x25	FIFO_LEN GTH_1	0x00	reser	reserved fifo_byte_counter_13_8					
0x24	FIFO_LEN GTH_0	0x00		fifo_byte_counter_7_0					
0x23	-	-				reserved			
0x22	TEMPERA TURE	0x00		temperature					
0x21	-	=		reserved					
	-	=	reserved						
0x1E	-	-				reserved			
0x1D	INT_STAT US_1	0x00	acc_drd y_int	reserv ed	aux_drd y_int	reserved	fwm_int	ffull_int	
0x1C	INT_STAT US_0	0x00	error_int _out	no_mo tion_o ut	any_mot	reserved			
0x1B	EVENT	0x01				reserved		por_dete cted	
0x1A	SENSORT IME_2	0x00				sensor_time_23_16			
0x19	SENSORT IME_1	0x00				sensor_time_15_8			
0x18	SENSORT IME_0	0x00				sensor_time_7_0			
0x17	DATA_13	0x00				acc_z_15_8			
0x16	DATA_12	0x00				acc_z_7_0			
0x15	<u>DATA_11</u>	0x00				acc_y_15_8			
0x14	<u>DATA_10</u>	0x00				acc_y_7_0			
0x13	DATA_9	0x00				acc_x_15_8			
0x12	DATA_8	0x00				acc_x_7_0			
0x11	DATA_7	0x00				aux_r_15_8			
0x10	DATA_6	0x00				aux_r_7_0			
0x0F	DATA_5	0x00				aux_z_15_8			
0x0E	DATA_4	0x00				aux_z_7_0			
0x0D	DATA_3	0x00				aux_y_15_8			
0x0C	DATA_2	0x00	aux_y_7_0						
0x0B	DATA_1	0x00	aux_x_15_8						
0x0A	DATA_0	0x00	aux_x_7_0						
0x09			reserved						
	-	-				reserved			
-									

0x04	-	Ī		reserved						
0x03	<u>STATUS</u>	0x10	drdy_ac c	reserv ed	drdy_au x	cmd_rdy reserved aux_ma n_op		reserved		
0x02	ERR_REG	0x00	aux_err	fifo_er r	reserved	error_code			cmd_err	fatal_err
0x01	-	-		reserved						
0x00	CHIP_ID	0x1A		chip_id						

FEATURES IN

FEATURES	_IIN	1	ı			1	1	1	ı	ı
Register	Registe	Default	7	6	5	4	3	2	1	0
Address	r Name	Value								
0x5E: 0x0B	settings. axes re mapping [1]	0x00				reserved				map_z_ axis_sig n
0x5E: 0x0A	general settings. axes re mapping [0]	0x88	map	_z_axis	map_y_ axis_sig n	map_	y_axis	map_x_ axis_sig n	map_	x_axis
0x5E: 0x09	general settings. Reserve d[1]	0×00				Res	served			
0x5E: 0x08	general settings. Reserve d[0]	0x00				Res	served			
0x5E: 0x07	no moti on.settin gs 2[1]	0x00	z_en	y_en	x_en			duration		
0x5E: 0x06	no_moti on.settin gs_2[0]	0x05				duı	ration			
0x5E: 0x05	no moti on.settin gs 1[1]	0x00			reserved				threshold	
0x5E: 0x04	no moti on.settin gs 1[0]	0xAA				thre	eshold			
0x5E: 0x03	any mot ion.setti ngs 2[1]	0x00	z_en	y_en	x_en			duration		
0x5E: 0x02	any mot ion.setti ngs 2[0]	0x05				duı	ration			
0x5E: 0x01	any_mot ion.setti ngs_1[1]	0x00			reserved				threshold	

0x5E: 0x00	any mot ion.setti ngs 1[0]	0xAA	threshold
---------------	----------------------------------	------	-----------

5.2.1 Register (0x00) CHIP_ID

DESCRIPTION: Chip identification code

RESET: 0x1A

DEFINITION (Go to register map):

Name	Register (0x00) CHIP_ID							
Bit	7	6	5	4				
Read/Write	R	R	R	R				
Reset Value	0	0	0	1				
Content	chip_id							
Bit	3	2	1	0				
Read/Write	R	R	R	R				
Reset Value	1	0	1	0				
Content	chip_id							

chip_id: Chip identification code for BMA490L

5.2.2 Register (0x02) ERR_REG

DESCRIPTION: Reports sensor error conditions

RESET: 0x00

DEFINITION (Go to register map):

Name		Register (0x02) ERR_REG								
Bit	7	6	5	4						
Read/Write	R	R	n/a	R						
Reset Value	0	0	0	0						
Content	aux_err	fifo_err	reserved	error_code						
Bit	3	2	1	0						
Read/Write	R	R	R	R						
Reset Value	0	0	0	0						
Content	error_	_code	cmd_err	fatal_err						

fatal_err: Fatal Error, chip is not in operational state (Boot-, power-system). This flag will be reset only by power-on-reset or softreset.

cmd_err: Command execution failed.

error_code: Error codes for persistent errors

error_code						
0x00	no_error	no error is reported				
0x01	acc_err	error in Register ACC_CONF				

fifo_err: Error in FIFO detected: Input data was discarded in stream mode. This flag will be reset when read.

aux_err: Error in I2C-Master detected. This flag will be reset when read.

5.2.3 Register (0x03) STATUS

DESCRIPTION: Sensor status flags

RESET: 0x10

DEFINITION (Go to register map):

Name	Register (0x03) STATUS			
Bit	7	6	5	4
Read/Write	R	n/a	R	R
Reset Value	0	0	0	1
Content	drdy_acc	reserved	drdy_aux	cmd_rdy
Bit	3	2	1	0
Read/Write	n/a	R	n/a	n/a
Reset Value	0	0	0	0
Content	reserved	aux_man_op	reserved	

aux_man_op: '1'('0') indicate a (no) manual auxiliary interface operation is ongoing.

cmd_rdy: CMD decoder status. '0' -> Command in progress '1' -> Command decoder is ready to accept

a new command

drdy_aux: Data ready for auxiliary sensor. It gets reset when one auxiliary DATA register is read out drdy_acc: Data ready for accelerometer. It gets reset when one accelerometer DATA register is read out

5.2.4 Register (0x0A) DATA_0

DESCRIPTION: AUX_X(LSB)

RESET: 0x00

Name	Register (0x0A) DATA_0			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_x_7_0		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_x_7_0			

5.2.5 Register (0x0B) DATA_1

DESCRIPTION: AUX_X(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0B) DATA_1			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_x_15_8			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_x_15_8			

5.2.6 Register (0x0C) DATA_2

DESCRIPTION: AUX_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0C) DATA_2			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_y_7_0		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_y_7_0			

5.2.7 Register (0x0D) DATA_3

DESCRIPTION: AUX_Y(MSB)

RESET: 0x00

Name		Register (0x0D) DATA_3			
Bit	7	7 6 5 4			
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_y	_15_8		
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content		aux_y_15_8			

5.2.8 Register (0x0E) DATA_4

DESCRIPTION: AUX_Z(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0E) DATA_4			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_z_7_0		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_z_7_0			

5.2.9 Register (0x0F) DATA_5

DESCRIPTION: AUX_Z(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x0F) DATA_5			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_z_15_8		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_z_15_8		

5.2.10 Register (0x10) DATA_6

DESCRIPTION: AUX_R(LSB)

RESET: 0x00

Name	Register (0x10) DATA_6					
Bit	7 6 5 4					
Read/Write	R	R	R	R		
Reset Value	0	0	0	0		
Content		aux_	r_7_0			
Bit	3	2	1	0		
Read/Write	R	R	R	R		
Reset Value	0	0	0	0		
Content		aux	r 7 0	aux r 7 0		

5.2.11 Register (0x11) DATA_7

DESCRIPTION: AUX_R(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x11) DATA_7			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		aux_r_15_8		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	aux_r_15_8			

5.2.12 Register (0x12) DATA_8

DESCRIPTION: ACC_X(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name		Register (0x12) DATA_8		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		acc_x_7_0		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		acc_x_7_0		

5.2.13 Register (0x13) DATA_9

DESCRIPTION: ACC_X(MSB)

RESET: 0x00

Name		Register (0x13) DATA_9		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		acc_x_15_8		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content		acc_x_15_8		

5.2.14 Register (0x14) DATA_10

DESCRIPTION: ACC_Y(LSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x14) DATA_10			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_7_0			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_7_0			

5.2.15 Register (0x15) DATA_11

DESCRIPTION: ACC_Y(MSB)

RESET: 0x00

DEFINITION (Go to register map):

Name	Register (0x15) DATA_11			
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_15_8			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	0	0	0	0
Content	acc_y_15_8			

5.2.16 Register (0x16) DATA_12

DESCRIPTION: ACC_Z(LSB)

RESET: 0x00

Name	Register (0x16) DATA_12				
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	acc_z_7_0				
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	0	0	0	0	
Content	acc_z_7_0				