计算机组成原理

翁睿

哈尔滨工业大学

第四章 存储系统

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

- 4.1 概 述
- 一、存储器分类
 - 1. 按存储介质分类
 - (1) 半导体存储器 速度快、功耗低

容量大、速度慢、体积大

- (2) 磁表面存储器
- (3) 磁芯存储器
- (4) 光盘存储器 廉价,易于保存

TTL、MOS、电容PROM、FLASH磁头、载磁体硬磁材料、环状元件激光、磁光材料

易失

2. 按存取方式分类

- (1) 存取时间与物理地址无关(随机访问) e.g. 磁芯、半导体存储器等
 - 随机存储器 在程序的执行过程中可读可写
 - 只读存储器 在程序的执行过程中只读
- (2) 存取时间与物理地址有关(串行访问)
 - 顺序存取存储器 磁带
 - 直接存取存储器 磁盘

4. 按在计算机中的作用分类

4.1

二、存储器的层次结构

1. 存储器三个主要特性的关系

2. 缓存一主存层次和主存一辅存层次 '

4.2 主存储器

一、概述

1. 主存的基本组成

2. 主存和 CPU 的联系

4. 主存中存储单元地址的分配

高位字节 地址为字地址

低位字节 地址为字地址

字地址		字节地址				
0	0	1	2	3		
4	4	5	6	7		
8	8	9	10	11		

字地址	字节地址		
0	1	0	
2	3	2	
4	5	4	

设地址线 24 根

按字节寻址 2²⁴ = 16 M

存储体 容量不变 的前提下 若字长为16位

若字长为32位

按 字 寻址

按 字 寻址

8 M

4 M

4. 主存的技术指标

- (1) 存储容量 主存 存放二进制代码的总数量 (地址空间×存储字长)
- (2) 存储速度
 - 存取时间 存储器的 访问时间 读出时间 写入时间
 - 存取周期 连续两次独立的存储器操作 (读或写)所需的最小间隔时间 读周期 写周期
- (3) 存储器的带宽 位/秒

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

地址线(单向)	数据线(双向)	芯片容量
10	4	1K × 4位
14	1	16K×1位
13	8	8K×8位

4.2

二、半导体存储芯片简介

1. 半导体存储芯片的基本结构

片选线 CS CE

读/写控制线 WE (低电平写 高电平读)

 \overline{OE} (允许读) \overline{WE} (允许写)

2023/3/15

存储芯片片选线的作用

用 16K×1位的存储芯片组成 64K×8位的存储器 8片 8片 8片 8片 32片 16K×1位 16K×1位 16K×1位 16K×1位

当地址为65535时,此8片的片选有效

2. 半导体存储芯片的译码驱动方式 **4.2** (1) 线选法

1. 静态 RAM (SRAM)

(1) 静态 RAM 基本电路

① 静态 RAM 基本电路的 读 操作

② 静态 RAM 基本电路的 写 操作

(2) 静态 RAM 芯片举例

① Intel 2114 外特性

(3) 动态 RAM 时序

行、列地址分开传送

读时序	写时序	
行地址 RAS 有效	行地址 RAS 有效	
写允许 WE 有效(高)	写允许 WE 有效(低)	
列地址 CAS 有效	数据 \mathbf{D}_{IN} 有效	
数据 D _{OUT} 有效	列地址 CAS 有效	

刷新与行地址有关

①集中刷新(存取周期为0.5µs)以32×32矩阵为

"死时间率"为 32/4000 × 100% = 0.8%

② 分散刷新(存取周期为1µs)

以 128×128 矩阵为例

$$t_{\rm C} = t_{\rm M} + t_{\rm R}$$
 无 "死区"
 ↓ ↓ ↓
 读写 刷新 (存取周期)

(存取周期为 $0.5 \mu s + 0.5 \mu s$)

③分散刷新与集中刷新相结合

对于 128×128 的存储芯片(存取周期为 0.5μs)

若每隔 2 ms 集中刷新一次

"死区"为64 µs

若每隔 15.625 μs 刷新一行

而且每行每隔 2 ms 刷新一次 "死区" 为 0.5 μs

将刷新安排在指令译码阶段,不会出现"死区"

4. 动态 RAM 和静态 RAM 的比较

主存	DRAM	SRAM	
存储原理	电容	触发器	缓存
集成度	高	低	
芯片引脚	少	多	
功耗	小	大	
价格	低	高	
速度	慢	快	
刷新	需要	不需要	

四、只读存储器(ROM)

掩膜 ROM (MROM)
行列选择线交叉处有 MOS 管为"1"
行列选择线交叉处无 MOS 管为"0"

2. PROM (一次性编程)

熔丝断 为"0"

熔丝未断 为"1"

PD/Progr 编程控制信号输入端 读出时为 低电平

4. EEPROM (多次性编程)

电可擦写

局部擦写

全部擦写

5. Flash Memory (快擦型存储器)

EPROM

价格便宜 集成度高

EEPROM

电可擦除、重写

比 E²PROM快 具备 SRAM 接口(NOR Flash)

五、存储器与 CPU 的连接

4.2

- 1. 存储器容量的扩展
- (1) 位扩展(增加存储字长)

10根地址线

用 2片 1K×4位 存储芯片组成 1K×8位 的存储器

8根数据线

(2) 字扩展(增加存储字的数量)

4.2

11根地址线

用 2片 1K×8位 存储芯片组成 2K×8位 的存储器

4.2

用 8片 1K×4位 存储芯片组成 4K×8位 的存储器

12根地址线

8根数据线

2. 存储器与 CPU 的连接

- (1) 地址线的连接
- (2) 数据线的连接
- (3) 读/写线的连接
- (4) 片选线的连接
- (5) 合理选用芯片
- (6) 其他 时序、负载

已知某CPU的地址总线宽度为16位,数据总线宽度为8位,CPU采用MREQ信号控制访问存储器。

要求从0x6000起的2K地址空间为系统程序区,相邻的1K地址空间为用户程序区。

请画出存储器与CPU的连接图。要求使用74138译码器实现地址译码,可附加适当的逻辑门电路。

备选的存储芯片如下:

ROM: 1K×8位; 2K×8位; 4K×8位

RAM: 1K×1位; 1K×4位; 4K×8位