THE CLOUD HUNTER'S PROBLEM

AN AUTOMATED DECISION ALGORITHM TO IMPROVE THE PRODUCTIVITY OF SCIENTIFIC DATA COLLECTION IN STOCHASTIC ENVIRONMENTS

Arthur Small

based on work with JASON B. STEFIK, JOHANNES VERLINDE, NATHANIEL C. JOHNSON

Decision Analysis

BEGINNINGS: PROBABILISTIC FORECASTING

FIGURE 4.2 Headline from The Forum newspaper, April 24, 1997. SOURCE: Forum Communications Company.

FIGURE 4.3 Left: Deterministic forecasts issued by NWS prior to the Red River flood of 1997. Right: Probabilistic river stage forecast from AHPS. SOURCE: NWS.

 ${
m Figure}\ 1:$ Communication of forecast information during the Red River Flood of 1997 in Grand Forks, North Dakota

THE PROMISE: DATA-DRIVEN DECISION MAKING

Data science hype: "Better information \rightarrow Better decisions!"

Claim: That's wrong.

Data-driven decision-making also requires complementary analytics and products:

- ullet Prediction: calibration of error, o probabilistic forecasts
- *Optimization*: application-specific models and tools, attention to user objectives
- *Visualization/communication* : intelligence *actionable* in terms of user's decision problem

REALIZING THE PROMISE OF DATA-DRIVEN DECISION-MAKING

On prediction, data science gallops along: machine learning, classification, prediction, inference...

Claim: The promise of data science to empower data-driven decision-making lags its potential, because of insufficient focus on *complementary* analytics:

- Rigorous quantification of uncertainty and error in outputs of predictive models
- Accurate formal representation of decision problems including decision-maker's objectives and tolerance for risk
- Appropriate use of optimization techniques
- Visualizations or other products customized to decision contexts

Goal: Identify good actions, conditional on predictions made with error

THE CLOUD HUNTER'S PROBLEM

MEET THE CLOUD HUNTER

The Cloud Hunter is an atmospheric scientist.

The Cloud Hunter wants to collect data from inside *liquid boundary layer* clouds.

That takes aircraft. Which are expensive.

THE CLOUD HUNTER'S DECISION PROBLEM

The Cloud Hunter's Problem concerns how to allocate a fixed budget of flight hours between dates over the course of a field season.

Fly/No-fly decisions must be made 1 day ahead, based on imperfect day-ahead forecasts of whether conditions are good or bad for collecting required data.

CURRENT DECISION-MAKING PROCESS:

PROPOSED DECISION-MAKING PROCESS:

FORMAL MODEL OF THE CLOUD HUNTER'S DECISION PROBLEM

MODEL SETUP: CONDITIONS FOR DATA COLLECTION OVER THE COURSE OF THE FIELD SEASON

D: length of the field season in days

 $d = D, \ldots, 1$: index of dates

 X_d : quality of conditions for data collection:

- $X_d = 1$ if conditions on date d are good, 0 otherwise
- ullet Each X_d a binary random state variable, i.e., a Bernoulli trial

A field season is a particular realization x_D, \ldots, x_1 of the stochastic process X_D, \ldots, X_1 .

Will assume the X_d are independent and identically distributed (i.i.d.).

Assumption not actually required, but keeps things simpler and clearer.

Vector notation: $\mathbf{X} = \langle X_D, \dots, X_1 \rangle$ denotes the stochastic process; $\mathbf{x} = \langle x_D, \dots, x_1 \rangle$ denotes a particular realization.

Model Setup: Decisions, resource constraints

 $F \leq D$: number of flights in the Cloud Hunter's budget.

 $f = F, \dots, 1$: index of flights remaining in budget

a_d: binary control variables ("actions")

• $a_d = 1$ iff they opt to fly on date d, 0 otherwise

 $\mathbf{a} = \langle a_D, \dots, a_1 \rangle$: actions chosen on dates $d = D, \dots, 1$

Resource constraint: $\sum_{d} a_{d} \leq F$.

PAYOFFS AND OBJECTIVES

Payoffs: For a given sequence of choices $\bf a$ and realizations $\bf x$, the realized amount of data collected $\bf U$ is given by

$$U = \mathbf{a} \cdot \mathbf{x} = \sum_{\mathbf{d}} \mathbf{a}_{\mathbf{d}} \mathbf{x}_{\mathbf{d}}$$

.

Assume: Flights left over at the end of the season have no residual value.

Decision-maker's objective: Choose a fly/no-fly decision rule to maximize data collected in expection, subject to the resource constraint on total allowable flights:

Choose **a** to $\max_{\mathbf{a}} E[\mathbf{a} \cdot \mathbf{X}]$, subject to $\sum_{d} a_{d} \leq F$.

Important: This is a *substantive assumption* about the decision-maker's goals.

Models a decision-maker with a high tolerance for risk.

FORECASTS

Decision taken on basis of a day-ahead forecast.

Before taking each decision, decision-maker receives a forecast signal $s_d \in \mathbb{S}$.

Calibration: map this signal to a probability of good conditions:

$$p(s) = \Pr\{X_d = 1 | s_d = s\}$$

.

(Will assume stationarity.)

DISTRIBUTION OF FORECAST SIGNALS

More than one day ahead, don't know which forecast signals $s \in \mathbb{S}$ will be received.

But, do know the the likelihood of receiving different signals.

- $\pi(s)$: probability that forecasting system will generate signal s.
- $\pi(\cdot)$ defines a probability distribution over the set $\mathbb S$ of possible forecast signals.

THE TASK OF THE DECISION ANALYST

Given this set-up, the job of the decision analyst is to devise an *optimal* decision rule $a^* = a(d, f|p)$ that delivers a recommended action—fly or no-fly—as a function of

- d the number of days left in the field season,
- f the number of flights left in the budget, and
- p(s) the forecast probability that a flight today would be successful.

DERIVING A SOLUTION

Intertemporal optimization via dynamic programming

FIGURE 2: Graphical representation of the decision algorithm.

PROBABILISTIC FORECASTING OF FAVORABLE CONDITIONS USING SELF-ORGANIZING MAPS

 $\ensuremath{\mathrm{Figure}}$ 3: 6 X 4 SOM grid for relative humidity profiles

13.3%	20.6%	4.4%	3.7%
1.5%	8.1%	1.5%	4.4%
0%	3.7%	4.4%	11.8%
2.9%	3.7%	7.4%	6.6%
0%	0%	0.7%	1.5%
0%	0%	0%	0%

 ${
m Figure}\ 4:$ Conditional probability distribution of SOM state realizations following a forecast of SOM state 1

FIGURE 5: Estimated probabilities of good conditions for data collection, as a function of day-ahead SOM forecast

24 / 28

RESULTS

RESULTS

FIGURE 6: Computed values for the value function V(d, f)

Dark line: simulated sequence of flight decisions

• Diagonal movements = fly dates, horizontal movements = no-fly dates

FIGURE 7: Results: the algorithm's simulated performance during 2009 field season, compared with realized performance of heuristic decision procedure.

The algorithm achieves a 21% increase in the number of successful flights.

	Heuristic procedure	Automated algorithm
Flights launched	56	66
Successes	28	34
Type I errors	28	32
Type II errors	17	11

 $FIGURE\ 8:\ \text{Summary of outcomes}$

Successes are flights launched on days with good conditions.

Type I errors are decisions to fly only to find no clouds.

Type II errors are decisions to stand down only to find that the desired conditions existed.