

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Linear Temporal Logic –Temporal Operators:

Adequate Sets

28-11-2018 Sundar B. CS&IS, BITS Pilani 0

Formulas and Interpretation

- Semantics of binary temporal operators:
 - Let $M = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow s_2 \rightarrow$ be a path in M.
 - Then define the <u>satisfaction relation</u> |= as follows:
 - $\pi \mid = \phi \cup \psi$ iff there is some i such that $\pi^i \mid = \psi$ and for all $j = 1,..., i-1, \pi^j \mid = \phi$
 - $\pi \mid = \phi W \psi$ iff there is some i such that $\pi^i \mid = \psi$ and for all $j = 1,..., i-1, \pi^j \mid = \phi$; or all k>=1 $\pi^k \mid = \phi$
 - $\pi \mid = \phi R \psi$ iff for some i>=1 $\pi^i \mid = \phi$ and for all j = 1,..., i, $\pi^j \mid = \psi$; or all k>=1 $\pi^k \mid = \psi$
- Q:
 - Is there a relation between U and R?
 - Do we need all three (of U, W, and R)?
 - Do we need all three unary operators?

- Q: Do we need all three binary operators?
 - Weak-until can expressed using until :

$$\phi W \psi \equiv (\phi U \psi) \vee (G \phi)$$
and vice-versa
$$\phi U \psi \equiv (\phi W \psi) \wedge (F \psi)$$

• Release is the dual of until:

$$\phi \cup \psi \equiv \neg (\neg \phi R \neg \psi)$$

- Q: Do we need all three unary operators?
 - G and F are duals (of each other):
 - $G \phi \equiv \neg (F \neg \phi)$
 - Can X be expressed using the other operators?
 - No. How do you argue (or prove) this?
- X is a dual of itself:

- Q: Do we need any unary operators?
 - X cannot be expressed in terms of other operators.
 - What about F?
 - $\mathbf{F} \phi \equiv \mathbf{True} \ \mathbf{U} \ \phi$
 - Use this to derive G in terms of the binary operators!

- Thus each of the following sets would be adequate:
 - {X, U}
 - {X, R}
 - {X, W}

CS/IS F214 Logic in Computer Science

MODULE: TEMPORAL LOGICS

Linear Temporal Logic – Temporal Operators:Properties

28-11-2018 Sundar B. CS&IS, BITS Pilani 6

Distributive Properties

- $F(\phi \lor \psi) \equiv (F \phi) \lor (F \psi)$
 - Prove this.
 - = denotes semantic equivalence
- $F(\phi \wedge \psi) \not\equiv (F\phi) \wedge (F\psi)$
 - Prove this:
 - $F(\phi \wedge \psi) \longrightarrow (F \phi) \wedge (F \psi)$ is always TRUE

but

- $(F \phi) \wedge (F \psi) --> F (\phi \wedge \psi)$ is not always TRUE
 - Provide a counter-example.

Distributive Properties

- Since
 - $G \phi \equiv \neg (F \neg \phi)$
- we can derive this:

•
$$G (\phi \land \psi) \equiv \neg F(\neg(\phi \land \psi))$$

 $\equiv \neg F(\neg \phi \lor \neg \psi))$
 $\equiv \neg ((F \neg \phi) \lor (F \neg \psi))$
 $\equiv \neg (F \neg \phi) \land \neg(F \neg \psi)$
 $\equiv (G \phi) \land (G \psi)$

