Inteligência Artificial

Algoritmos Genéticos

José Luis Seixas Junior

Índice

- Genética e Evolução;
- Princípios Básicos;
 - Seleção;
 - Cruzamento;
 - Mutação;
- Algoritmos;

Evolução

- A Teoria Sintética da Evolução trabalho com contribuição de Wallace e Darwin, durante anos de estudos e experimentos;
 - Indivíduo transmite características;
- A combinação gera uma evolução quando a característica implica em uma vantagem reprodutiva do descendentes;
 - Seleção natural;

Genética e Evolução

- Os pares reprodutores geram variações de seus atributos (genes);
- Os descendentes recebem uma combinação dessas variações;

Algoritmo

- Simples:
 - Gerar população inicial;
 - Selecionar indivíduos mais aptos;
 - Aplicar reprodução;
 - Aplicar mutação;
 - Testar convergência;
 - Se converge → continua;
 - Se não → descartar;
 - Se obteve valor satisfatório → Fim.
 - Se não → Selecionar novos indivíduos;

- Indivíduo:
 - Um componente da população;
 - Uma possível solução para o problema;
 - Conjunto de parâmetros:
 - Características de solução do problema;

Genes:

- Também referido como cromossomo;
- Valor de um determinado parâmetro de solução do problema;
- Uma parte do vetor componente de um indivíduo;

População:

Conjunto de indivíduos de possíveis soluções do problema;

Geração:

- Conjunto de indivíduos de possíveis soluções do problema geradas a partir da mesma base;
- Na primeira: Possíveis soluções empíricas (ou aleatórias);
- Posteriormente: Geradas pelos indivíduos promissores;

Seleção:

- Escolha dos valores que mais se aproximam da resolução ótima do problema;
- Escolha randômica com favorecimento do melhor indivíduo com base na função-objetivo;
- Função-Objetivo:
 - Valor que se espera alcançar de execução ao fim do algoritmo genético;

Cruzamento:

- Escolhidos os pais são selecionados seções de cromossomos que serão inteligados;
- Produção de novos indivíduos;
- Toda geração é construída com pedaços da anterior;

Mutação:

Antes da Mutação: 11100

- Aplicação individual de uma alteração na combinação produzida;
- Alteração aleatório;
- Porcentagem definida de possível alteração, dentro do alcance da variável;
- Assegura uma formação que seria determinada "impossível" dependendo da população inicial;

Algoritmo

- Simples:
 - Gerar população inicial;
 - Selecionar indivíduos mais aptos;
 - Aplicar reprodução;
 - Aplicar mutação;
 - Testar convergência;
 - Se converge → continua;
 - Se não → descartar;
 - Se obteve valor satisfatório → Fim.
 - Se não → Selecionar novos indivíduos;

Maximizar a função:

$$f(x)=x^2$$

• Sobre o conjunto de inteiros [1, 2, ..., 32];

	População Inicial	Valor de x	<i>f(x)</i> valor da função de Adaptação	f(x)/S(x) Probabilidade da Seleção
1	01101	13	169	0.14
2	11000	24	576	0.49
3	01000	8	64	0.06
4	10011	19	361	0.31
Soma			1.170	
Média			293	
Melhor			576	

Indivíduo Selecionado	Descendentes	População Após Mutação	X Valor Genótipo	f(x) Função de Adaptação
11000	11011	11010	26	676
10011	10000	11000	24	576
01101	01100	11100	28	784
11000	11001	11101	29	841
Soma				2.877
Média				719,25
Melhor				841

Problemas

- População:
 - Muito pequena:
 - Qualidade;
 - Muito Grande
 - Custo computacional;

Problemas

- Cruzamento:
 - Muito pequena:
 - Convergência demorada;
 - Muito Grande
 - Perda de material genético;

Problemas

- Mutação:
 - Muito pequena:
 - Máximos Locais;
 - Muito Grande
 - Aleatório;

Aplicação

- *n*-rainhas;
- Robótica;
- Dobramento de proteínas
- Configuração temporal para mercado financeiro;
- Sequênciamento;
- Ajuste paramétrico;

Referências

- Fernandes, A. M. Da R., "Inteligência Artificial, noções gerais". Visual Books, 2003;
- Rezende, S. O., "Sistemas Inteligentes, Fundamentos e Aplicações". Manole, 2005;
- Russell, S.; Norvig, P., "Inteligência Artificial". Elsevier, 2010.

Alternativas

- Indivíduos:
 - Na representação dos indivíduos e formação dos cromossomos;
- Seleção:
 - Alternativas de quais indivíduos terão os materiais genéticos usados;
- Operadores Genéticos:
 - Cruzamento;
 - Mutação;

• Binária:

- Representação entre séries de 0s e 1s, onde, pode ser represetado um único valor ou séries intercaldas;
- Fácil de manipular, mas nem sempre é possível para muitos tipos de problemas;
- Exemplos:
 - Indivíduo 1: 101010100011010101110110101;
 - Indivíduo 2: 010010100011111111111101011100;

- Permutação:
 - Represetação por número ou letras, onde estes demonstrem uma correlação lógica de ordem;
 - Geralmente numérica e não híbrida;
 - Muito útil para problemas de ordenação, mas requer consistência para situações reais;
 - Exemplo:
 - Indivíduo: ABCDEFGH;
 - Indivíduo: 123456789;;
 - Indivíduo: 1351949875689;

- Valores:
 - Sequências de letras, símbolos, comandos, etc...;
 - Pode requerer métodos complexos para mutação e cruzamentos;
 - Exemplo:
 - Indivíduo 1: ABJPJEWBFPAWURUDSGASGFALBGI;
 - Indívíduo 2: $\rightarrow \downarrow \rightarrow \uparrow \downarrow \rightarrow \leftarrow \uparrow \rightarrow \leftarrow \downarrow \uparrow$;

- Real:
 - Valores reais, sem alteração, do problema;
 - Muito utilizada para problemas de otimização;
 - Exemplo:
 - Indivíduo: 1.5659 5.6486 9.4891 5.2415;
 - Indivíduo: 15967;
 - Indivíduo: 0.24918 0.64486 0.55477 0.32146 0.25698;

Seleção

- Roleta:
 - Ordenação das aptidões;

- Primeiro elemento maior que um número aleatório

com aptidão acumulada;

Seleção

- Torneio:
 - *n* indivíduos;
 - Seleciona-se o de maior aptidão;
 - Iteração deste com outros presentes nos n indivíduos;
 - Até número de população atingido;

Operadores Genéticos

- Cruzamento:
 - Modificações sobre a escolha e troca do material genético;
- Mutação:
 - Modificações na variabilidade da população;

- Single-point:
 - Um único ponto aleatório de corte;

- Multi-point:
 - Vários pontos aleatórios de corte;

• Uniform:

- Cruzamento feito com os pontos determinados por

uma máscara; **Pais** Máscara de Cruzamento **Filhos**

- Média Aritmética:
 - Filho obtido pela cálculo matemático da média aritmética entre os pais;

$$\forall i, Filho[i] = \frac{(Pai_1[i] + Pai_2[i])}{2}$$

- Média Geométrica:
 - Filho obtido pela cálculo matemático da média geométrica entre os pais;

$$\forall i$$
, $Filho[i] = \sqrt{Pai_1[i] * Pai_2[i]}$

- Operador BLX α:
 - Filho obtido pela cálculo matemático de uma expressão composta pelos pais que indica o nível de semelhança com os pais:

$$\forall i$$
, $Filho[i] = Pai_1[i] + \beta * (Pai_2[i] - Pai_1[i])$

- Onde $\beta = [-\alpha, 1+\alpha]$;

Offspring Initial strings Crossover Mask Single-point crossover: Two-point crossover: Uniform crossover: Point mutation: 111010<u>1</u>1000

- Reciprocidade:
 - Dois genes sorteados trocam de posição;

- Inversão:
 - A ordem de um segmento é invertida;

- Deformação:
 - Um valor selecionado aleatoriamente é modificado de acordo com uma razão pequena positiva ou negativamente;

- Gaussiana:
 - Um valor selecionado aleatoriamente é modificado de acordo com uma razão pequena positiva ou negativamente;
 - A distribuição normal afeta os valores vizinhos;

 Encontre o caminho mais curto passando um dado número de cidades, sendo que só é permitido passar por cada cidade uma vez;

- Cruzamento:
 - Posição e não repetição;

- Mutação:
 - Reciprocidade;

Referências

- C.M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- R. Duda, P. Hart, D. Stork, "Pattern Classication", 2nd ed., 2000.
- T. Hastie, R. Tibshurani, and J.H. Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Spinger Series in Statistics, 2001.
- B. D. Ripley, "Pattern Recognition and Neural Networks", Cambridge University Press, 1996.

Atividade 12/1

- Implemente o Algoritmo Genético Clássico:
 - Data entrega: 30/11.
 - Geração inicial randômica;
 - Intervalo 0 100;
 - Indivíduos valores (números inteiros);
 - Mínimo sete cromossomos;
 - Seleção torneio;
 - Cruzamento single point;
 - Mutação por deformação (10% do intervalo);
 - Cada um vai criar a própria função-objetivo:
 - Não maximizar ou minimizar;
 - Função NÃO linear;

Obrigado.

Dúvidas?