LINEAR AND INTEGER PROGRAMMING

The Simplex Method: A tutorial in three acts.

Three to Simplex

1. The Standard Form Linear Program.

2. "Dictionaries".

3. Pivoting.

Putting it all together in an example.

ACT I: THE STANDARD FORM.

Revision of material covered under LP formulations.

Some words of wisdom

If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?

- George Pólya (How to Solve It?)

George Pólya (source: mactutor)

Linear Program

```
maximize c_1x_1 + \ldots + c_nx_n

subj.to. a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1

a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2

\vdots

a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m
```

Linear Program in Matrix Form

```
\begin{array}{llll} \text{maximize} & c_1x_1+\ldots+c_nx_n \\ \text{subj.to.} & a_{11}x_1+\ldots+a_{1n}x_n & \leq & b_1 \\ & a_{21}x_1+\ldots+a_{2n}x_n & \leq & b_2 \\ & & \ddots & \vdots \\ & a_{m1}x_1+\ldots+a_{mn}x_n & \leq & b_m \end{array}
```

maximize $\mathbf{c}^{\mathsf{T}} \mathbf{x}$ subj.to $A \mathbf{x} \leq \mathbf{b}$

Standard Form (Definition)

```
maximize
              c_1x_1 + \ldots + c_nx_n
 subj.to. a_{11}x_1 + ... + a_{1n}x_n \le b_1
             a_{21}x_1 + \ldots + a_{2n}x_n \leq b_2
             a_{m1}x_1 + \ldots + a_{mn}x_n
                 x_1, x_2, \dots, x_n > 0
```

Standard Form (Matrix Notation)

maximize
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subj.to. $\mathbf{A}\ \mathbf{x} \leq \mathbf{b}$ $\mathbf{x} > 0$

Standard Form LP (Example)

maximize
$$-5x_1 + 4x_2 - 3x_3$$

s.t. $2x_1 - 3x_2 + x_3 \le 5$
 $4x_1 + x_2 + 2x_3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

Converting LPs to Standard Form

Converting to Standard Form

minimize
$$-5x_1 + 4x_2 - 3x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 5$
 $4x_1 + x_2 + 2x_3 \ge 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1 \ge 0$

Objective Direction

$$\begin{array}{ccc} \text{minimize } \mathbf{c}^\intercal \mathbf{x} & \xrightarrow{\text{change to}} & \text{maximize } (-\mathbf{c}^\intercal \mathbf{x}) \end{array}$$

$$\min -5x_1 + 4x_2 - 3x_3 \rightarrow \max 5x_1 - 4x_2 + 3x_3$$

Equality Constraints

$$\mathbf{a_i}^\mathsf{T} \mathbf{x} = b_i \quad \xrightarrow{\text{change to}} \quad \begin{cases} \mathbf{a_i}^\mathsf{T} \mathbf{x} \le b_i \\ \mathbf{a_i}^\mathsf{T} \mathbf{x} \ge b_i \end{cases}$$

$$2x_1 - 3x_2 + x_3 = 5 \quad \xrightarrow{\text{change to}} \quad \begin{cases} 2x_1 - 3x_2 + x_3 \le 5 \\ 2x_1 - 3x_2 + x_3 \ge 5 \end{cases}$$

Missing Non-Negative Constraint

Problem: missing constraint $x_i \ge 0$

- Introduce two fresh variables: x_i^+, x_i^-
- Replace every occurrence of x_i with $x_i^+ x_i^-$
- Add the constraints $x_i^+ \ge 0, x_i^- \ge 0$

Converting to Standard Form

minimize
$$-5x_1 + 4x_2 - 3x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 5$
 $4x_1 + x_2 + 2x_3 \ge 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1 \ge 0$

Conversion to Standard Form (Result)

$$\begin{array}{lllll} \max & 5x_1 - 4x_2^+ + 4x_2^- + 3x_3^+ - 3x_3^- \\ \text{s.t.} & 2x_1 - 3x_2^+ + 3x_2^- + x_3^+ - x_3^- & \leq & 5 \\ & -2x_1 + 3x_2^+ - 3x_2^- - x_3^+ + x_3^- & \leq & -5 \\ & -4x_1 - x_2^+ + x_2^- - 2x_3^+ + 2x_3^- & \leq & -11 \\ & 3x_1 + 4x_2 - 4x_2^- + 2x_3^+ - 2x_3^- & \leq & 8 \\ & x_1, x_2^+, x_2^-, x_3^+, x_3^- & \geq & 0 \end{array}$$

Transform Solutions Back

minimize
$$-5x_1 + 4x_2 - 3x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 5$
 $4x_1 + x_2 + 2x_3 \ge 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1 \ge 0$

$$(x_1 = 3.43, x_2^+ = 0.143, x_2^- = 0, x_3^+ = 0, x_3^- = 1.43)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$