Regressions

Cause and Effect

Correlation: Two variables are correlated when changes in one variable occur in a pattern corresponding to changes in the other.

Cause and Effect

Causation: One variable moves, and the second variable changes because of the movement of the first.

Questioning Causality

When we suspect a causal relationship (that x causes y), it is important to ask ourselves several questions:

- 1. Is it possible that y causes x instead?
- 2. Is it possible that z (a new factor that we haven't considered before) is causing both x and y?
- 3. Could the relationship have been observed by chance?

Establishing Causality

In order to establish causality, we need to meet several conditions:

- ullet We can explain (or at lest hypothesize) why x causes y
- We can demonstrate that nothing else is driving the changes (within reason)
- ullet We can show that there is a **correlation** between x and y

Ceteris Paribus

ceteris paribus means "all else equal"

- Allows us to act as if nothing else were changing
- Mathematically isolates the effect of each individual variable on the outcome of interest
 - Variables are the factors that we want to include in our model

Think about it like a trend line!

Whoops! It turns out there is another variable. What now!?

Yikes....

Minimize Errors and Best Fit Lines

Minimize Errors and Best Fit Lines

Try it by hand!

Why LINEAR regression?

- Faster
- More honest

OLS in Python (with Statsmodels)

```
import pandas as pd
import statsmodels.formula.api as smf

data = pd.read_csv(
    "https://github.com/dustywhite7/pythonMikkeli/raw/master/exampleData/fishWeight.csv")

reg = smf.ols("Weight ~ Length1", data=data)

reg = reg.fit()

print(reg.summary())
```

In [5]: ▶ reg.summary()

Out[5]:

OLS Regression Results

Den Variable			· Weight			D squared	: 0.839
Dep. Variable:		: Weight			R-squared:		. 0.039
Model:			OLS		Adj. R-squared:		: 0.837
Method:			Least Squares			F-statistic	815.3
Date:			Tue, 09 Jun 2020		Prob (F-statistic):		: 4.75e-64
Time:			20	0:09:35	Log-Likelihood:		: -1015.1
No. Observations:				159 AIC :			: 2034.
Df Residuals:				157		: 2040.	
Df Model:				1			
Covariance Type: nonrobust							
	С	oef	std err	,	t P>	t [0.02	5 0.975]
Intercept	-462.3	751	32.243	-14.340	0.00	0 -526.06	1 -398.690
Length1	32.7	922	1.148	28.554	0.00	00 30.52	4 35.061
Omi	nibus:	9.3	85 D	urbin-Wa	atson:	0.369	
Prob(Omnibus):			09 Jar	que-Bera	a (JB):	9.768	
Skew:			89	Pro	b(JB):	0.00757	
Kui	rtosis:	3.7	21	Con	d. No.	79.2	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression Equations

```
dependent \sim x1 + x2 + x3 + \dots
```

We can force variables to be categorical:

```
dependent \sim x1 + x2 + C(x3) + \dots
```

Here, we make x3 categorical

Regression Equations

```
dependent ~ x1 + x2 + x3 + ...
```

We can use arithmetic transformations:

```
dependent \sim x1 + I(x2**2) + x3 + ...
```

Here, we square x2

When OLS Fails

OLS is typically considered an inappropriate model when you have a binary or discrete dependent variable (think "yes or no" questions)

In this case, you should use Logistic Regression instead. More details can be found in the class notes on Github.

Implementing Logistic Regressions

```
formula = "y ~ x1 + x2 + ..."

reg = smf.logit(formula, data)

reg = reg.fit()

reg.summary()
```

Lab Time!