curs 2

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

PRELIMINARII - CONTINUARE

Definiție.

O funcție este un triplet (A, B, R), unde A și B sunt mulțimi, iar $R \subseteq A \times B$ este o relație cu proprietatea că pentru orice $a \in A$ există un unic $b \in B$ cu $(a, b) \in R$.

Vom nota o funcție (A, B, R) prin $f: A \to B$, simbolul f având semnificația: fiecărui element $x \in A$ îi corespunde un singur element $f(x) \in B$ a.î. $(x, f(x)) \in R$.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numeşte domeniul de definiție al funcției f și B domeniul valorilor lui f.

Definiţie.

O funcție parțială de la A la B este o funcție $f:C\to B$, unde C este o submulțime a lui A.

Notaţie.

- · B^A este mulțimea funcțiilor de la A la B.
- · Fie $f: A \rightarrow B$ o funcţie, $X \subseteq A$ şi $Y \subseteq B$.
 - \cdot f(A) este imaginea lui f.
 - $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f(X)
 - $f^{-1}(Y) = \{x \in X \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.

3

Definiţie.

Fie $f: A \rightarrow B$ o funcţie.

- f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- · f este bijectivă dacă f este injectivă și surjectivă.

Definiție.

Fie $f: A \to B$ şi $g: B \to C$ două funcţii. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

Funcţia identitate a lui A este funcţia $1_A: A \to A$, $1_A(x) = x$.

4

Definiție.

O funcție $f:A\to B$ este inversabilă dacă există $g:B\to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

Exerciţiu.

O funcție este bijectivă ddacă este inversabilă.

Definiție.

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notăm acest fapt prin $A\sim B$.

Exerciţiu.

A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A şi B sunt echipotente.

FUNCŢIA CARACTERISTICĂ

Definiţie.

Fie A, T mulţimi a.î. $A \subseteq T$. Funcţia caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: T \to \{0,1\}, \quad \chi_A(x) = \begin{cases} 1, & \text{dacă } x \in A \\ 0, & \text{dacă } x \notin A \end{cases}$$

Proprietăți.

Dacă $A, B \subseteq T$ și $x \in T$ atunci

$$\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\} = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\} = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x).$$

FAMILII DE MULŢIMI

Fie I o mulţime nevidă.

Definiţie.

Fie A o mulţime. O familie de elemente din A indexată de I este o funcţie $f:I\to A$. Notăm cu $(a_i)_{i\in I}$ familia $f:I\to A$, $f(i)=a_i$ pentru orice $i\in I$. Vom scrie şi $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Definiție.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulţimi ale unei mulţimi T. Reuniunea şi intersecţia familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

PRODUSUL CARTEZIAN AL UNEI FAMILII DE MULŢIMI

Fie I o mulţime nevidă şi $(A_i)_{i \in I}$ o familie de mulţimi.

Definiție.

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Pentru orice $j \in I$, funcția $\pi_j : \prod_{i \in I} A_i \to A_j, \pi_j((x_i)_{i \in I}) = x_j$ se numește proiecție canonică a lui $\prod A_i$. π_j este surjectivă.

Exercițiu.

Fie I, J mulțimi nevide. Atunci

$$\bigcup_{i\in I}A_i\times\bigcup_{j\in J}B_j=\bigcup_{(i,j)\in I\times J}A_i\times B_j\ \text{si}\ \bigcap_{i\in I}A_i\times\bigcap_{j\in J}B_j=\bigcap_{(i,j)\in I\times J}A_i\times B_j.$$

Fie $n \ge 1$ un număr natural, $I = \{1, ..., n\}$ şi $A_1, ..., A_n \subseteq T$.

$$(x_i)_{i \in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\cdot \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ și } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A}_n$$

Definiţie.

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$. Dacă R este o relație n-ară, spunem că n este aritatea lui R.

O relație n-ară pe A este o submulțime a lui A^n .

BUNĂ ORDONARE ȘI INDUCȚIE

Principiul bunei ordonări.

Orice submulțime nevidă a lui N are un cel mai mic element.

Principiul inducției.

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ şi
- (ii) pentru orice $n \in \mathbb{N}$, dacă $n \in S$, atunci $n + 1 \in S$.

Atunci $S = \mathbb{N}$.

Demonstrație. Fie $S \subseteq \mathbb{N}$ a.î. (i) și (ii) sunt adevărate. Presupunem că $S \neq \mathbb{N}$, deci $\mathbb{N} \setminus S \neq \emptyset$. Fie n_0 cel mai mic element din $\mathbb{N} \setminus S$. Din (i) rezultă că $n_0 \neq 0$. Deoarece $n_0 - 1 \in S$, din (ii) rezultă că $n_0 \in S$. Am obținut o contradicție. Prin urmare, $S = \mathbb{N}$.

Observație.

Principul bunei ordonări și principiul inducției sunt echivalente.

PRINCIPIUL INDUCŢIEI (FORMA TARE)

Principiul inducției (forma tare).

Fie $S \subseteq \mathbb{N}$ astfel încât:

- (i) $0 \in S$ şi
- (ii) pentru orice $n \in \mathbb{N}$, dacă $\{0, 1, ..., n\} \subseteq S$, atunci $n + 1 \in S$. Atunci $S = \mathbb{N}$

Demonstrație. Aplicăm Principiul inducției pentru

$$S' = \{ n \in \mathbb{N} \mid \{0, \dots, n\} \subseteq S \}.$$

Obţinem $S' = \mathbb{N}$. Rezultă că, pentru orice $n \in \mathbb{N}$, $\{0, \dots, n\} \subseteq S$, deci $n \in S$. Prin urmare, $S = \mathbb{N}$.

_

PRINCIPIUL INDUCŢIEI

Fie $P: \mathbb{N} \to \{0,1\}$ un predicat (o proprietate). P(n) = 1 înseamnă că P(n) este adevărat.

Principiul inducției.

- · Pasul iniţial. Verificăm că P(0) = 1.
- · Ipoteza de inducție. Presupunem că P(n) = 1, unde $n \in \mathbb{N}$.
- · Pasul de inducție. Demonstrăm că P(n + 1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

Principiul inducției (forma tare).

- · Pasul iniţial. Verificăm că P(0) = 1.
- · Ipoteza de inducţie. Pres. că P(k) = 1 pentru orice $k \le n$, unde $n \in \mathbb{N}$.
- · Pasul de inducție. Demonstrăm că P(n + 1) = 1.

Concluzie: P(n) = 1 pentru orice $n \in \mathbb{N}$.

MULŢIMI NUMĂRABILE

Definiție.

O mulțime A este numărabilă dacă este echipotentă cu N.

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Propoziţie.

- (i) Orice submulţime infinită a lui № este numărabilă.
- (ii) Reuniunea unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.
- (iii) ℤ și ℚ sunt numărabile.
- (iv) Produsul cartezian al unei familii cel mult numărabile de mulțimi numărabile este mulțime numărabilă.

Demonstrație. Exercițiu.

PRINCIPIUL DIAGONALIZĂRII

Principiul diagonalizării.

Fie R o relație binară pe o mulțime A și $D \subseteq A$ definită astfel:

$$D = \{x \in A \mid (x, x) \notin R\}.$$

Pentru orice $a \in A$, definim

$$R_a = \{x \in A \mid (a, x) \in R\}.$$

Atunci D este diferit de fiecare R_a .

Demonstrație. Presupunem că există $a \in A$ astfel încât $D = R_a$. Sunt posibile două cazuri:

- · $a \in D$. Rezultă că $(a, a) \notin R$, deci $a \notin R_a = D$. Contradicție.
- · $a \notin D$. Rezultă că $(a, a) \in R$, deci $a \in R_a = D$. Contradicție.

Prin urmare, $D \neq R_a$ pentru orice $a \in A$.

ARGUMENTUL DIAGONAL AL LUI CANTOR

Teoremă Cantor.

Nu există o bijecție între $\mathbb N$ și mulțimea $2^{\mathbb N}$ a părților lui $\mathbb N$. În concluzie, $2^{\mathbb N}$ nu este mulțime numărabilă.

Demonstraţie. Presupunem că există o bijecţie $f: \mathbb{N} \to 2^{\mathbb{N}}$. Prin urmare, $2^{\mathbb{N}}$ poate fi enumerată ca $2^{\mathbb{N}} = \{S_0, S_1, \dots, S_n, \dots, \}$, unde $S_i = f(i)$ pentru orice $i \in \mathbb{N}$. Considerăm relaţia binară $R \subseteq \mathbb{N} \times \mathbb{N}$ definită astfel:

$$R = \{(i,j) \mid j \in f(i)\} = \{(i,j) \mid j \in S_i\}$$

și aplicăm Principiul diagonalizării. Astfel,

$$D = \{n \in \mathbb{N} \mid (n, n) \notin R\} = \{n \in \mathbb{N} \mid n \notin S_n\},\$$

$$R_i = \{j \in \mathbb{N} \mid (i, j) \in R\} = \{j \in \mathbb{N} \mid j \in S_i\} = S_i, \quad i \in \mathbb{N}.$$

Deoarece $D \subseteq \mathbb{N}$ și f este bijecție, există $k \in \mathbb{N}$ a.î. $D = f(k) = S_k = R_k$. Pe de altă parte, conform Principiului diagonalizării, $D \neq R_i$ pentru orice $i \in \mathbb{N}$. Am obținut o contradicție.

RELAŢII BINARE

Fie A o mulţime nevidă şi $R \subseteq A \times A$ o relaţie binară pe A.

Notaţie.

Scriem xRy în loc de $(x,y) \in R$ și $\neg (xRy)$ în loc de $(x,y) \notin R$.

Definiție

- · R este reflexivă dacă xRx pentru orice $x \in A$.
- · R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- · R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- · R este antisimetrică dacă pentru orice $x, y \in A$,

$$xRy$$
 şi yRx implică $x = y$.

· R este tranzitivă dacă pentru orice $x, y, z \in A$,

· R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

RELAŢII DE ECHIVALENŢĂ

Definiţie.

Fie A o mulţime nevidă. O relaţie binară $R \subseteq A \times A$ se numeşte relaţie de echivalenţă dacă este reflexivă, simetrică şi tranzitivă.

Exemplu.

Fie $n \in \mathbb{N}^*$. Definim relaţia $\equiv \pmod{n} \subseteq \mathbb{Z} \times \mathbb{Z}$ astfel:

$$\equiv \pmod{n} = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid n \text{ divide } (x-y)\}.$$

Relaţia $\equiv \pmod{n}$ se numeşte congruenţa modulo n. Folosim notaţia $x \equiv y \pmod{n}$ pentru $(x, y) \in \equiv \pmod{n}$.

Exemplu.

Fie $f: A \to B$ o funcţie. Definim relaţia $\ker f \subseteq A \times A$ astfel:

$$\ker f = \{(a_1, a_2) \in A \times A \mid f(a_1) = f(a_2)\}.$$

kerf se numeşte nucleul lui f.

RELAŢII DE ECHIVALENŢĂ

Notaţii.

Vom nota relațiile de echivalență cu \sim .

Scriem $x \sim y$ dacă $(x,y) \in \sim$ şi $x \not\sim y$ dacă $(x,y) \notin \sim$.

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiție.

Pentru orice $x \in A$, clasa de echivalență [x] a lui x este definită astfel:

$$[x] = \{ y \in A \mid x \sim y \}.$$

Definiție.

Mulţimea tuturor claselor de echivalenţă distincte ale elementelor lui A se numeşte mulţimea cât a lui A prin \sim şi se notează A/\sim .

Aplicaţia $\pi: A \to A/\sim$, $\pi(x) = [x]$ se numeşte funcţia cât.

RELAȚII DE ECHIVALENȚĂ

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2):

- $\cdot [0] = \{2n \mid n \in \mathbb{Z}\}\$
- $[1] = \{2n + 1 \mid n \in \mathbb{Z}\}$
- · [2n] = [0], pentru orice $n \in \mathbb{Z}$
- · [2n+1] = [1], pentru orice $n \in \mathbb{Z}$

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Propoziție.

Fie A o mulțime nevidă și $\sim \subseteq A \times A$ o relație de echivalență. Atunci

- $\cdot A = \bigcup_{x \in A} [x].$
- · [x] = [y] ddacă $x \sim y$.
- $\cdot [x] \cap [y] = \emptyset \text{ ddacă } x \not\sim y \text{ ddacă } [x] \neq [y].$

Demonstrație. Exercițiu.

RELAŢII DE ECHIVALENŢĂ

Fie A o mulţime nevidă şi $\sim \subseteq A \times A$ o relaţie de echivalenţă.

Definiţie.

Un sistem de reprezentanți pentru \sim este o submulțime $X \subseteq A$ care satisface: pentru orice $a \in A$ există un unic $x \in X$ a.î. $a \sim x$.

Exemplu.

Considerăm congruența modulo 2, \equiv (mod 2).

Mulţimea cât este $\mathbb{Z}_2 = \{[0], [1]\}.$

Sisteme de reprezentanți: $X = \{0, 1\}, X = \{2, 5\}, X = \{999, 20\}.$

Propoziție.

Fie X un sistem de reprezentanţi pentru \sim .

Atunci $A = \bigcup_{x \in X} [x]$ şi $A/\sim = \{[x] \mid x \in X\}.$

Demonstrație. Exercițiu.

PARTIŢII

Fie A o mulţime nevidă.

Definiție.

O partiție a lui A este o familie $(A_i)_{i \in I}$ de submulțimi nevide ale lui A care verifică proprietățile:

- $\cdot A = \bigcup_{i \in I} A_i$ şi
- $A_i \cap A_i = \emptyset$ pentru orice $i \neq j$.

Partiția $(A_i)_{i \in I}$ se numește finită dacă I este finită.

PARTIŢII

Fie A o mulţime nevidă.

Propoziție.

Există o bijecție între mulțimea relațiilor de echivalență pe A și mulțimea partițiilor lui A:

- · $(A_i)_{i \in I}$ partiție a lui $A \mapsto$ relația de echivalență pe A definită prin: $x \sim v$ ddacă există $i \in I$ a.î. $x, v \in A_i$.
- · ~ relaţie de echivalenţă pe $A \mapsto \text{partiţia } ([x])_{x \in X}$, unde $X \subseteq A$ este un sistem de reprezentanţi pentru ~.

Demonstrație. Exercițiu.

Beautiful Dance Moves

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de Logică Matematică și Computațională al prof. Laurențiu Leuștean din anul universitar 2017/2018.