# Programowanie w R i wizualizacja danychprojekt zaliczeniowy- sprawozdanie.

#### Damian Gortych 402663 IiAD

### 1. Przygotowanie danych

Dane na temat zaludnienia do pracy nad projektem pobrałem ze strony <a href="https://data.world/">https://data.world/</a> .

Ich początkową formę zamieszczam w pliku Gortych dane surowe.

Projekt rozpocząłem od wczytania danych.

Kolejnym krokiem było usunięcie niepełnych oraz niepotrzebnych danych z plików.

Następnie wykonałem statystyki opisowe dla każdego z plików.

```
### Statystyki opisowe
class(data1)
str(data1)
typeof(data1)
summary(data1)
class(data2)
str(data2)
typeof(data2)
summary(data2)
class(data3)
str(data3)
typeof(data3)
summary(data3)
class(data4)
str(data4)
typeof(data4)
summary(data4)
```

Ostatnim krokiem było zapisanie przekształconych danych.

Formę tych danych zamieszczam w pliku Gortych\_dane\_przeksztalcone

## 2. Praca z pakietem tidyverse oraz wizualizacja.

Dane nie wymagały wstępnej pracy, natomiast konieczne było ich przekształcenie w celu wykonania konkretnych wizualizacji.

1. Wykres Stopnia dochodu w zależności od regionu.

Pierwszą wizualizacją jest wykres stopnia dochodu w zależności od regionu. W celu jego wykonania posłużyłem się danymi z pliku data1.xls. Zawiera on miedzy innymi informacje o grupie dochodowej oraz regionie położenia dla każdego kraju.

Posługują się faktorem oraz pakietem tidyverse przygotowałem dane potrzebne do wykonania wizualizacji.

```
### 1) wykres Stopnia dochodu w zaleznosci od regionu

"{r}

income_faktor<-factor(data1$IncomeGroup)
levels(income_faktor)<-c(5,5,1,2,3)

income_vector<-as.numeric(as.character(income_faktor))
data1 <- data1 %% add_column(income_vector)

newdata<-data1 %% select(income_vector,Region) %>% group_by(Region) %>% summarise(income=mean(income_vector))
newdata <- arrange(newdata,income)

ggplot(data=newdata,aes(Region,income)) + geom_bar(aes(fill='#A4A4AA4', color="darkred"),stat="identity",show.legend = FALSE) + ggtitle("Region's income comparison") + theme(plot.title = element_text(hjust = 0.5)) + ylab("Income scale") + geom_text(aes(label=sprintf("%0.2f", round(income, digits = 2)),vjust=1.5))
```



Jak widać na wykresie zdecydowanie dominuje region Północnej Ameryki. Regionami najbiedniejszymi pod względem ekonomicznym są natomiast Południowa Azja oraz Afryka Subsaharyjska.

#### 2. Wykres zmiany populacji na przestrzeni lat dla 3 krajów z jej największa liczbą w roku 1960.

W celu wykonania drugiej wizualizacji posłużyłem się danymi na temat liczby populacji dla danego kraju na przestrzeni lat począwszy od roku 1960. Zdecydowałem się na przestawienie zmian dla 3 krajów dla których liczba populacji była największa w tymże roku.



Z wykresu można wyczytać, że zdecydowanie najszybszy wzrost populacji wystąpił w Indiach, natomiast w przypadku USA był on bardzo łagodny.

#### 3. Wykres zamiany średniego współczynnika dzietności na przestrzeni lat.

Trzecia wizualizacja ma na celu przedstawienie zamiany średniego współczynnika dzietności na przestrzeni lat. Bardzo ważną informacją jest sposób w jaki został on obliczony, ponieważ z tego powodu można dojść do błędnych wniosków.

Mianowicie, wykorzystałem pakiet tidyverse do obliczenia średniej arytmetycznej współczynnika dla wszystkich krajów bez uwzględnienia ich populacji. Zatem nie można z niego wyczytać zmiany tego współczynnika dla ogółu ludzkości, jednakże można dojść do innych ciekawych wniosków.

```
### 3) wykres zamiany sredniegowspolczynnika dzietności na przestrzeni lat
```{r}

newdata3 <- data3[ , -c(1:4)] |

means <- data.frame(colMeans(newdata3))
means <- data.frame(years = row.names(means), means)

plot(y=means$colMeans.newdata3.,x=means$years,xlab="Year",ylab="Fertility-Rate",type = "p", pch=16, col="red")
title("Fertility-Rate change over time")</pre>
```

#### Fertility-Rate change over time



Jak widać wskaźnik znacząco spada na przestrzeni lat. Znając jego sposób obliczenia, możemy stwierdzić, że spada on dla większości krajów świata, natomiast rośnie w przypadku krajów o dużej liczbie populacji. Dodatkowe wnioski na ten temat przytoczę przy okazji wizualizacji nr 5.

4. Wykres różnicy średniej długości życia miedzy Polską a Niemcami.

Czwartą wizualizacją jest porównanie zmiany różnicy miedzy średnią długością życia dla Polski i Niemiec na przestrzeni lat.

W celu jej utworzenia wybrałem dane dla obu krajów i obliczyłem różnice miedzy wartościami.

```
### 4) Wykres rożnicy sredniej dlugosci zycia miedzy Polska a Niemcami
```{r}

newdata4 <- filter(data4,data4$`Country Name` == "Poland" | data4$`Country Name` == "Germany")
newdata4 <- newdata4[, -c(1:4)]
newdata4 <- t(newdata4)
newdata4 <- data.frame(years = row.names(newdata4), newdata4)
newdata4 <- mutate(newdata4,diff=x1 - x2)

plot(y=newdata4$diff,x=newdata4$years,xlab="Year",ylab="Life-expectancy-difference",type = "p", pch=16, col="blue")
title("Life-expectancy-difference between Poland and Germany")
lines(newdata4$years,newdata4$diff,type="l")</pre>
```

#### Life-expectancy-difference between Poland and Germany



Jak widać na wykresie miedzy rokiem 1974 a 1990 wystąpił duży skok różnicy który w przypadku kolejnych lat delikatnie wygasał.

## 5. Wykresy porównawcze zmiany populacji i współczynnika dzietności.

Ostatnią wizualizacją są dwa wykresy służące do porównania zmian liczby populacji i średniego współczynnika dzietności o którym była mowa w przypadku wizualizacji nr 3. W celu wykonania połączyłem dwie data frames i wykonałem wykresy.



Jak widać pomimo znaczącego spadku współczynnika dzietności, liczba populacji stale rośnie, a nawet zauważalna jest lekka tendencja wzrostowa. Pokazuje to błąd w sposobie liczenia współczynnika, jednakże wiedząc jak zmienia się liczba populacji, można stwierdzić, że dla większości krajów o małej liczbie zaludnienia, współczynnik spada, natomiast rośnie dla krajów o dużej liczbie populacji.