IP Adressing

Subnets and Supernets

Classful IP Address

Key Facts for Classes A, B, and C

	Class A	Class B	Class C
First octet range	1 – 126	128 – 191	192 – 223
Valid network numbers	1.0.0.0 – 126.0.0.0	128.0.0.0 – 191.255.0.0	192.0.0.0 – 223.255.255.0
Total networks	$2^7 - 2 = 126$	$2^{14} - 2 = 16,384$	$2^{21} - 2 = 2,097,152$
Hosts per network	$2^{24} - 2$	$2^{16} - 2$	$2^8 - 2$
Octets (bits) in network part	1 (8)	2 (16)	3 (24)
Octets (bits) in host part	3 (24)	2 (16)	1 (8)
Default mask	255.0.0.0	255.255.0.0	255.255.255.0

Classless IP Address

Classless IP addressing is a modern method of assigning IP addresses that **doesn't rely on predefined classes (A, B, C)**. Instead, it uses **CIDR (Classless Inter-Domain Routing)** notation to allocate IPs based on actual need.

Key Features:

- Uses **prefix length** (e.g., /27) to define the network portion
- Supports Variable Length Subnet Masking (VLSM)
- Enables efficient IP allocation and route aggregation

CIDR notation looks like this: 192.168.1.0/27

- 192.168.1.0 → Network address
- /27 → First 27 bits are the **network prefix**, remaining 5 bits are for **hosts**
- Total IPs = 25=322^5 = 32 (30 usable after subtracting network & broadcast)

Scenario: You Need 300 IP Addresses

Classful Addressing

- You'd be forced to choose a Class B block:
 - o Range: 128.0.0.0 191.255.255.255
 - Subnet Mask: 255.255.0.0
 - o Total IPs: **65,536**
- You get your 300 IPs...
- But you waste **65,236 IPs** that you don't need!
- Class C networks cannot be used because Class C has only 8 bits for the host **Total IPs**: 2⁸=256

Classless Addressing

CIDR lets you go beyond rigid class boundaries:

- /23 subnet so 9 host bits and 23 network bits
- Number of host IPs = $2^9=512$
- Usable IPs = 510
- Wasted IP = 210
- Example: $192.168.1.0/23 \rightarrow \text{Covers} \ 192.168.1.0 \text{ to}$ 192.168.2.255

CIDR gives you just enough IPs with minimal waste and better routing

Subnetting

- You borrow bits from the host portion of the IP address.
- This creates **multiple subnets** within the same class.

Example:

- Class C network: 192.168.1.0/24
- Subnet into:
 - \circ 192.168.1.0/26 \rightarrow 64 IPs
 - \circ 192.168.1.64/26 \rightarrow 64 IPs
 - \circ 192.168.1.128/26 \rightarrow 64 IPs
 - \circ 192.168.1.192/26 \rightarrow 64 IPs

Subnet	IP Range Start	IP Range End	Usable IPs	Broadcast Address
192.168.1.0/26	192.168.1.0	192.168.1.63	192.168.1.1 - 192.168.1.62	192.168.1.63
192.168.1.64/26	192.168.1.64	192.168.1.127	192.168.1.65 - 192.168.1.126	192.168.1.127
192.168.1.128/26	192.168.1.128	192.168.1.191	192.168.1.129 - 192.168.1.190	192.168.1.191
192.168.1.192/26	192.168.1.192	192.168.1.255	192.168.1.193 - 192.168.1.254	192.168.1.255

What Is a Subnet Mask?

A **subnet mask** is a 32-bit number that tells devices which part of an IP address is the **network** and which part is the **host**.

- It works like a filter:
 - 1s in the mask = network bits
 - 0s in the mask = host bits

Example:

Let's say we have:

• IP Address: 192.168.1.10

Subnet Mask: 255.255.255.0 → /24 in CIDR notation

IP Address: 11000000.10101000.00000001.00001010 Subnet Mask: 11111111.1111111.11111111.00000000

Given an IP Address and Subnet Mask, You Can Find:

1. Network Address

- It's the starting point of the subnet.
- Use bitwise AND between IP and subnet mask.

Example: IP: 192.168.1.10 Subnet Mask: 255.255.255.0 → Network Address: 192.168.1.0

2. Broadcast Address

- It's the last address in the subnet.
- Used to send messages to all hosts in the subnet.

Formula: Broadcast = Network Address **OR** Inverse Subnet Mask → 192.168.1.255

Given an IP Address and Subnet Mask, You Can Find:

3. Usable Host IP Range

- These are IPs that can be assigned to devices.
- Range: From Network Address + 1 to Broadcast Address 1

```
\rightarrow 192.168.1.1 to 192.168.1.254
```

4. Total IPs in Subnet

Calculated using host bits:

 $2n2^n$ where n = number of host bits

For /24 (8 host bits): \rightarrow 2^8=256 total IPs \rightarrow 254 usable (excluding network & broadcast)

VPC

A **VPC** is a logically isolated section of a cloud provider's network (like AWS, Azure, or GCP) where you can launch and manage resources such as virtual machines, databases, and storage.

Key Features:

- Custom IP address ranges (CIDR blocks)
- Public and private subnets
- Route tables and internet gateways
- Security groups and network ACLs
- VPN or Direct Connect options

How to Set up VPC

CIDR Block: $10.0.0.0/16 \rightarrow$ defines the IP range **Subnets**:

- 10.0.1.0/24 → Public Subnet (for web server)
- 10.0.2.0/24 → Private Subnet (for database)

Internet Gateway: Attached to the VPC for public access **NAT Gateway**: Allows private subnet to access the internet securely **Security Groups**:

- Web server allows HTTP/HTTPS from anywhere
- Database only allows access from the web server