

Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks

David Alvarez-Melis (MSR)

Yair Schiff (IBM Watson)

Youssef Mroueh (IBM Research AI)

OTML @ NeurlPS 2021

Motivation: Distribution fitting

Many problems in ML amount to optimizing over distributions.

E.g., generative modeling:

More generally:

Note we might not have samples of optimal ho^* , known only implicitly as minimizer of F

Approach: follow gradient flow of F using JKO scheme [Jordan et al. '98], parametrized via ICNN [Amos et al. '17]

Background:

Gradient Flows in Wasserstein Space

Gradient Flow: curve of steepest descent of some functional ${\it F}$

In probability space: [Ambrosio et al. '05; Santambrogio '17; Figalli; Villani; etc]

$$\begin{split} \partial_t \rho(t) &= - \nabla_{\mathbb{W}_2} F(\rho(t)) = - \nabla \cdot \left(\rho(t) \nabla \frac{\delta F}{\delta \rho}(\rho(t)) \right) \\ \rho(0) &= \rho_0 \end{split}$$

Class	PDE $\partial_t \rho =$	Flow Functional $F(\rho) =$		
Heat Equation	Δho	$\int \rho(x) \log \rho(x) dx$		
Advection	$\nabla \cdot (\rho \nabla V)$	$\int V(x)d\rho(x)$		
Fokker-Planck	$\Delta \rho + \nabla \cdot (\rho \nabla V)$	$\int \rho(x)\log \rho(x)dx + \int V(x)d\rho(x)$		
Porous Media	$\Delta(\rho^m) + \nabla \cdot (\rho \nabla V)$	$\frac{1}{m-1} \int \rho(x)^m dx + \int V(x) d\rho(x)$		
Adv.+Diff.+Inter.	$\nabla \cdot \left[\rho (\nabla f'(\rho) + \nabla V + (\nabla W) * \rho) \right]$	$\int V(x)d\rho(x) + \int f(\rho(x))dx + \frac{1}{2} \iint W(x - x')d\rho(x)d\rho(x')$		

Equivalence between PDE's and Gradient Flows

Our Approach: JKO-ICNN

Setting:
$$\min_{\rho \in \mathscr{P}(\mathscr{X})} F(\rho)$$
, one of: $\mathscr{V}(\rho) = \int V(x) d\rho$ (potential), $\mathscr{W}(\rho) = \frac{1}{2} \iint W(x - x') d\rho \otimes \rho$ (interaction), $\mathscr{F}(\rho) = \int f(\rho(x)) dx$ (internal energy)

Base: JKO scheme to discretize gradient flow in probability space: $\rho_{t+1}^{\tau} \in \arg\min_{\rho \in \mathbb{W}_2(\mathcal{X})} F(\rho) + \frac{1}{2\tau} \mathbf{W}_2^2(\rho, \rho_t^{\tau})$

From Measures to Convex Functions

Under some assumptions, Brenier theorem yields:

$$\left| \mathbf{W}_{2}^{2} \left(\alpha, (\nabla u)_{\sharp} \alpha \right) = \int_{\mathcal{X}} \|\nabla u(x) - x\|_{2}^{2} d\alpha, \quad u \in \text{CVX}(\mathcal{X}) \right|$$

So JKO scheme can be written as [Benamou et al. '14]:

$$\min_{u \in \text{CVX}(\mathcal{X})} F((\nabla u)_{\sharp} \rho_t^{\tau}) + \frac{1}{2\tau} \int_{\mathcal{X}} \|\nabla u(x) - x\|_2^2 d\rho_t^{\tau} \left\| \begin{array}{c} \mathcal{V}\big((\nabla_x u_{\theta})_{\sharp} \rho_t^{\tau}\big) = \mathbb{E}_{x \sim \rho_t^{\tau}} V(\nabla_x u_{\theta}(x)) \\ \mathcal{W}\big((\nabla_x u_{\theta})_{\sharp} \rho_t^{\tau}\big) = \frac{1}{2} \mathbb{E}_{x, y \sim \rho_t^{\tau}} W(\nabla_x u_{\theta}(x)) \end{array} \right)$$

Measures implicitly defined via $\rho_{t+1}^{\tau} = (\nabla u_{t+1}^{\tau})_{\#}(\rho_t^{\tau})$

From Convex Functions to ICNN

Parametrize CVX w/ input-convex neural nets [Amos et al. '17]:

$$\min_{u_{\theta} \in |\text{ONN}(\mathcal{X})} F((\nabla_{x} u_{\theta}(x))_{\sharp} \rho_{t}^{\tau}) + \frac{1}{2\tau} \int_{\mathcal{X}} \|\nabla_{x} u_{\theta}(x) - x\|_{2}^{2} d\rho_{t}^{\tau}$$

Simple form for potential/interaction functionals:

$$\mathcal{V}\left((\nabla_{x}u_{\theta})_{\sharp}\rho_{t}^{\tau}\right) = \mathbb{E}_{x \sim \rho_{t}^{\tau}}V(\nabla_{x}u_{\theta}(x))$$

$$\mathcal{W}\left((\nabla_{x}u_{\theta})_{\sharp}\rho_{t}^{\tau}\right) = \frac{1}{2}\mathbb{E}_{x,y \sim \rho_{t}^{\tau}}W(\nabla_{x}u_{\theta}(x) - \nabla_{x}u_{\theta}(y))$$

Surrogate objectives for certain internal energies

Evaluation:

Evolving PDEs with known solutions

Porous medium equation: $\partial_t \rho = \Delta \rho^m, m > 1$, corresponds to gradient flow of $\mathscr{F}(\rho) = \frac{1}{m-1} \int \rho^m(x) dx$ Family of exact solutions: Barenblatt profiles $\rho(x,t) = t^{-\alpha} \left(C - k \|x\|^2 t^{-2\beta} \right)_+^{\frac{1}{m-1}}, \quad x \in \mathbb{R}^d, t > 0$

JKO-ICNN flow tracks true solution, distributionally...

...and in objective value!

Application: Molecule Discovery

Goal: Transport molecular embeddings to areas with desirable properties (encoded via convex potential V) while staying close to original (feasible) distribution

Functional:

$$\min_{\rho \in \mathcal{P}(\mathcal{X})} F(\rho) := \lambda_1 \mathbb{E}_{\rho} V(x) + \lambda_2 D(\rho, \rho_0)$$

encodes 'drug-likeness' (QED)

enforce proximity to original molecules

	λ_2	LR	Validity	Uniqueness	QED Median	Final SD	
	$ ho_0 ho$ N/A	N/A	$ 100.000 \pm 0.000$	99.980 ± 0.045	0.630 ± 0.001	N/A	Our method provides a
	JKO - $1e^4$	$\frac{ICNN}{1e^{-4}}$	$ 93.940 \pm 0.336 $	100.000 ± 0.000	0.750 ± 0.001	0.620 ± 0.010	strictly better tradeoff between the two
"Direct" (particle) optimization of $oldsymbol{F}$	$0 \\ 1 \\ 1e^3$	$ine - SGD$ $5e^{-1}$ $5e^{-1}$ $5e^{-1}$ $ine - ADAM$ $1e^{-1}$ $1e^{-2}$ $1e^{-1}$ $1e^{-1}$ $1e^{-1}$	$ \begin{vmatrix} 43.440 \pm 1.092 \\ 49.440 \pm 1.128 \\ 87.240 \pm 0.777 \end{vmatrix} $ $ \begin{vmatrix} 92.080 \pm 0.973 \\ 93.900 \pm 0.781 \\ 91.200 \pm 0.539 \\ 99.980 \pm 0.045 \end{vmatrix} $	100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 100.000 ± 0.000 99.979 ± 0.048 99.978 ± 0.049 99.980 ± 0.045	0.772 ± 0.004 0.768 ± 0.006 0.767 ± 0.002 0.793 ± 0.005 0.758 ± 0.006 0.792 ± 0.005 0.630 ± 0.001	9792.93 ± 76.913 8881.38 ± 69.736 2515.08 ± 49.870 18.261 ± 0.134 1.650 ± 0.006 17.170 ± 0.097 0.077 ± 0.003	J between the two objectives

Wrap-Up and pointers

See the paper (arXiv:2106.00774) for more experiments ...

Aggregation/Fokker-Planck/Heat EQ. In 2D

... and implementation details

surrogate objectives

density estimation

out-of-sample mapping

efficient computation

Lots more experiments with molecule generation