

Overview

The IObundle CACHE is an open-source pipelined-memory cache. It is a performance-wise and highly configurable IP core. The cache core is isolated from the processor and memory interfaces in order to make it easy to adopt new processors or memory controllers while keeping the core functionality intact. It implements a simple front-end native interface. It also implements an AXI4 interface with configurable data width which allows maximum use of the available memory bandwidth. The IObundle CACHE can be implemented as a Direct-Mapped cache or K-Way Set-Associative cache. It supports both fixed write-through not-allocate policy and write-back policy.

Features

- Pipelined-memory (1 request/clock-cycle)
- · AXI4 interface with configurable data width
- · Simple front-end native interface
- Direct-Mapped or K-Way Set-Associative
- · Fixed write-through not-allocate policy
- · Write-back policy

Benefits

- Compact and easy to integrate hardware and software implementation
- Can fit many instances in low cost FPGAs and ASICs
- Low power consumption

Deliverables

- ASIC or FPGA synthesized netlist or Verilog source code, and respective synthesis and implementation scripts
- ASIC or FPGA verification environment by simulation and emulation
- Bare-metal software driver and example user software
- · User documentation for easy system integration
- Example integration in IOb-SoC (optional)

Block Diagram

Figure 1: High-Level Block Diagram.

Implementation Results

Resource	Used
LUTs	2170
Registers	1229
DSPs	0
BRAM	0

Table 1: AMD Kintex Ultrascale FPGAs.

Resource	Used
ALM	823
FF	611
DSP	0
BRAM blocks	68

Table 2: Intel Cyclone V GT FPGAs.

No ASIC implementation results have been obtained for this IP core.