Univerzita Karlova v Praze Matematicko-fyzikální fakulta

MATEMATIKA

Martin Brajer

Matematická analýza

bakalářské studium v letech 2009 až 2012

Přednášející: doc. Mgr. Petr Kaplický, Ph.D.

Studijní program: Fyzika

Studijní obor: FOF

Praha 2020

Obsah

Ú۶	vod		1
	0.1	Diferenciální počet	1
	0.2	Integrální počet	1
1	Úvo	od, základní pojmy	2
	1.1	Reálná čísla	3

Obsah vět a definic

1.1	Lemma (Čtverec lichého čísla)	2
A	Věta (Reálná čísla)	3
A1	Vlastnost (Algebraická struktura)	Ş

$\mathbf{\acute{U}vod}$

Přednášející:

- Petr Kaplický, KMA
- kaplicky@karlin.mff.cuni.cz
- www.karlin.mff.cuni.cz/~kaplicky

Literatura:

- J. Kopáček: Matematická analýza (nejen) pro fyziky I (II) + příklady
- J. Souček: www.karlin.mff.cuni.cz/soucek
- V. Jarník: Diferenciální počet I
- V. Jarník: Integrální počet I
- W. Rudin: Principles of MA
- I. Černý, M. Rokyta: Differential and integral calculus of one real variable

0.1 Diferenciální počet

Mějme funkci f(t) vyjadřující pozici bodu v čase. Základní úloha:

průměrná rychlost:
$$\frac{f(t) - f(t_0)}{t - t_0}$$
 (1)

okamžitá rychlost:
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = f'(t_0)$$
 (2)

0.2 Integrální počet

Plocha pod grafem. Interval [a,b] rozdělme na n částí délky Δ_n v bodech a_n . Označme $a_0=a,\ a_n=b.$

přibližně:
$$f(a_0)\Delta_1 + f(a_1)\Delta_2 + ... + f(a_{n-1})\Delta_n =$$

= $S(\Delta) = \sum_{j=1}^n f(a_{j-1})\Delta_j$ (3)

přesně:
$$\lim_{\Delta \to 0} S(\Delta) = \int_a^b f(x) dx$$
 (4)

1. kapitola: Úvod, základní pojmy

Výrok - má pravdivostní hodnotu 0 nebo 1. Mějme A, B výroky:

		$A \wedge B$			$(A \Rightarrow B) \land (A \Leftarrow B)$	
A	B	A&B	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$	$\neg A$
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Obrázek 1.1: Tabulka pravdivostních hodnot

Důkaz implikace $A \Rightarrow B$:

- 1. přímý: ukážeme, že když A=1, pak B=1
- 2. nepřímý: plyne z $\neg B \Rightarrow \neg A$
- 3. sporem: předpokládáme, že $A=1 \wedge B=0$ a odvodíme spor (např.: 1=2)

Lemma 1.1 (Čtverec lichého čísla). $(tvrzení) \ \forall n \in \mathbb{N} : n^2 \ liché \Rightarrow n \ liché$

 $D\mathring{u}kaz$ 1. Fixuj $n \in \mathbb{N}$. Prvočíselný rozklad:XXX

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \tag{1.1}$$

$$n^2 = p_1^{2\alpha_1} \cdot \dots \cdot p_k^{2\alpha_k} \tag{1.2}$$

$$\forall j \in \{1, \dots, k\} : 2 \neq P_j \tag{1.3}$$

V rozvoji n^2 není 2, tak v rozvoji n také není (liší se pouze mocninou). QED

 $D\mathring{u}kaz$ 2. Chci: $\forall n \in \mathbb{N} : n \text{ sud\'e} \Rightarrow n^2 \text{ sud\'e}$

$$n = 2k, k \in \mathbb{N} \tag{1.4}$$

$$n^2 = 4k^2 = 2(2k^2) (1.5)$$

QED

Důkaz 3. Předpokládejme: n^2 liché a n sudé. Pak:

$$n^2 + n$$
 liché (1.6)

$$n(n+1)$$
 liché a sudé zároveň (spor) (1.7)

QED

O čem budou výroky? O definovaných pojmech:

- množina: soubor prvků (př.: množina mužů, žen)
- $x \in A$ x je prvkem
- $x \notin A \quad \neg(x \in A)$
- $A \subset B$ A je podmnožinou $B: \forall x \in A: x \in B$
- Ø prázdná množina
- množinové operace:

$$\circ \ A \cup B = \{x; (x \in A) \lor (x \in B)\}\$$

$$\circ \ A \cap B = \{x; (x \in A) \land (x \in B)\}$$

$$\circ A - B = \{x; (x \in A) \lor (x \notin B)\}$$

- kvantifikátory:
 - $\circ \ \forall x$ pro všechna x
 - $\circ \exists y$ existuje y
 - o př.: V(x,y) je vlastnost, že y je matka x. M je množina mužů, Z je množina žen.
 - * $\forall x \in M \ \exists y \in Z : V(x,y)$
 - * $\exists y \in Z : \forall x \in M : V(x, y)$

1.1 Reálná čísla

Věta A (Reálná čísla). Existuje množina \mathbb{R} s operacemi \oplus a \otimes a relací < tak, že splňuje vlastnosti A_1 až A_4 .

Vlastnost A1 (Algebraická struktura). Vlastnosti:

I Komutativita: $\forall x, y \in \mathbb{R} : x + y = y + x; \ x \cdot y = y \cdot x$

II Asociativita:
$$\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z; (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

III Nulový prvek \oplus , jednotka \otimes : $\exists 0 \in \mathbb{R}, \exists 1 \in \mathbb{R} : \forall x \in \mathbb{R} : 0 + x = x; 1 \cdot x = x$

IV Inverzní prvek: $\forall x \in \mathbb{R}, \forall z \in \mathbb{R} \exists ! y : x + y = z \ (právě jedno; ozn. \ y = z - x)$ $\forall x, z \in \mathbb{R}, x \neq 0 \exists ! y \in \mathbb{R} : x \cdot y = z \ (ozn. \ y = z/x)$

V Distributivita: $\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$

VI Násobení nulou: $\forall x \in \mathbb{R} : 0 \cdot x = 0$

$$\forall x, y \in \mathbb{R} : x \cdot y = 0 \Rightarrow ((x = 0) \lor (y = 0))$$

Další vlastnosti lze odvodit:

$$-(-x) = x \tag{1.8}$$

$$-(x \cdot y) = (-x) \cdot y \tag{1.9}$$

Další značení:

$$x^n = x \cdot x \cdot \dots \cdot x(n-\text{krát}) \tag{1.10}$$

$$-x = 0 - x \tag{1.11}$$

$$\forall x \neq 0 : x^{-1} = \frac{1}{x} \tag{1.12}$$

$$\forall x \neq 0 : x^{-1} = \frac{1}{x}$$

$$\forall x \neq 0 : x^{-n} = \left(\frac{1}{x}\right)^n$$

$$(1.12)$$

I. - IV. říká $(\mathbb{R},+)$ a $(\mathbb{R}-\{0\},\cdot)$ jsou grupy.

I. - VI. říká $(\mathbb{R}, +, \cdot)$ je těleso.

Ověřte, že $Vlastnost\ A1$ platí pro $\mathbb C$ (komplexní čísla).