

Reinforcement Learning Gradients as Vitamin for Online Finetuning Decision Transformers

ILLINOIS

Kai Yan, Alexander G. Schwing, Yu-Xiong Wang NeurlPS 2024 Spotlight

arXiv: 2410.24108

Motivation

Goal: analyze and address Online Decision Transformer [1] (ODT)'s struggle during online finetuning upon pretraining with low-return data

Online finetuning after pretraining on MuJoCo random dataset; expert-level reward is 100

Case Study: Single-State MDP

ODT struggles to improve

Offline data

- When target Returns-To-Go
 (RTG) is close, ODT can
 improve via conditioning on
 high target RTG and
 entropy terms
- But this is **misleading** when pretrain on data where target RTG is too **out-of-distribution!**
- Worse still, ODT cannot improve in local action space because **ODT gives** $\frac{\partial a}{\partial RTG}$, **but** we need $\frac{\partial RTG}{\partial a}$!

Theoretical Analysis

How does out-of-distribution affect performance? We resort to Brandfonbrener et al.'s [2] tight bound:

Interesting fact: ODT's policy improvement resembles that of AWAC but requires better global RTG property. Check our paper for details!

Practical Solution

Action a

- ODT needs gradient of $\frac{\partial RTG}{\partial a}$ for policy improvement in local action space exactly what RL does!
- We train a MLP critic, and add to the ODT loss a downweighted RL actor loss, where the decision transformer serves as the actor
- We find TD3 to be the most effective RL loss choice

RL gradient helps to discover hidden reward peak

Results

We test our solution on adroit, MuJoCo, antmaze and maze2d with 30+ different datasets

Reward curves on adroit environments; ours illustrated in red (higher is better)

Reward curves on antmaze environments; ours illustrated in red (higher is better)

Check our paper for 10+ ablations!

Conclusion

Our key contribution:

- Study a largely underexplored problem of online finetuning decision transformers with low-return pretraining data
- Give theoretical analysis and simple but effective solution
- Conduct detailed and extensive empirical evaluations

• Limitation:

- ~20% extra computational cost
- Did not test on image-based environments

Key Papers

[1] Q. Zheng et al. Online Decision Transformer. In ICML, 2022.
[2] D. Brandfonbrener et al. When Does Return-Conditioned Supervised Learning Work for Offline Reinforcement Learning? In NeurIPS, 2022.