

CFRM 410: Probability and Statistics for Computational Finance

Week 9 Estimation

Jake Price

Instructor, Computational Finance and Risk Management
University of Washington
Slides originally produced by Kjell Konis

Fundamental Ideas of Statistics

Statistical Models

Point Estimation

Evaluating Point Estimators

Interval Estimators

Outline

Statistical Models

Point Estimation

Evaluating Point Estimators

Interval Estimators

Goal: learn something about a population by looking at a subset of the population called a *sample*

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data x_1, \ldots, x_n are assumed to be a realization of the random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data x_1, \ldots, x_n are assumed to be a realization of the random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable $T = t(X_1, \dots, X_n)$

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data x_1,\ldots,x_n are assumed to be a realization of the random sample $X_1,\ldots,X_n\stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable $T = t(X_1, \ldots, X_n)$

Estimator Statistic used to estimate the parameter θ

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data x_1,\ldots,x_n are assumed to be a realization of the random sample $X_1,\ldots,X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable $T = t(X_1, \dots, X_n)$

Estimator Statistic used to estimate the parameter θ

Notation $T = t(X_1, ..., X_n)$ statistic (a random variable)

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data x_1, \ldots, x_n are assumed to be a realization of the random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable $T = t(X_1, \ldots, X_n)$

Estimator Statistic used to estimate the parameter θ

Notation $T = t(X_1, ..., X_n)$ statistic (a random variable) $t = t(x_1, ..., x_n)$ observed value of the statistic T

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data
$$x_1,\ldots,x_n$$
 are assumed to be a realization of the random sample $X_1,\ldots,X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable
$$T = t(X_1, \ldots, X_n)$$

Estimator Statistic used to estimate the parameter θ

Notation
$$T = t(X_1, \dots, X_n)$$

 $t = t(x_1, \dots, x_n)$
 $\hat{\theta}(X_1, \dots, X_n)$

Goal: learn something about a population by looking at a subset of the population called a *sample*

Probability Model Density $f_{X|\theta}$ is assumed to be a member of a known parametric family (parameter θ is unknown)

Data Set Data
$$x_1,\ldots,x_n$$
 are assumed to be a realization of the random sample $X_1,\ldots,X_n \stackrel{iid}{\sim} f_{X|\theta}$ (\Rightarrow representative)

Statistic Random variable
$$T = t(X_1, \ldots, X_n)$$

Estimator Statistic used to estimate the parameter θ

Notation
$$T = t(X_1, ..., X_n)$$

 $t = t(x_1, ..., x_n)$
 $\hat{\theta}(X_1, ..., X_n)$
 $\hat{\theta} = \hat{\theta}(x_1, ..., x_n)$

statistic (a random variable) observed value of the statistic T estimator of the parameter θ estimate of the parameter θ

Example Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

 $\blacktriangleright \ \hat{\mu} = \bar{X} \ \text{is an estimator of} \ \mu$

- $\blacktriangleright \ \hat{\mu} = \bar{X} \ \text{is an estimator of} \ \mu$
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}

- $ightharpoonup \hat{\mu} = \bar{X}$ is an estimator of μ
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}
- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is an estimator of σ^2

- $ightharpoonup \hat{\mu} = \bar{X}$ is an estimator of μ
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}
- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is an estimator of σ^2
- ▶ The observed value of the estimator $\hat{\sigma}^2$ is $\sum_{i=1}^n (x_i \bar{x})^2$

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

- $ightharpoonup \hat{\mu} = \bar{X}$ is an estimator of μ
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}
- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is an estimator of σ^2
- ▶ The observed value of the estimator $\hat{\sigma}^2$ is $\sum_{i=1}^n (x_i \bar{x})^2$

Remarks

Since a statistic T is a function of the random variables X_1, \ldots, X_n , T is itself a random variable

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

- $ightharpoonup \hat{\mu} = \bar{X}$ is an estimator of μ
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}
- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is an estimator of σ^2
- ▶ The observed value of the estimator $\hat{\sigma}^2$ is $\sum_{i=1}^n (x_i \bar{x})^2$

Remarks

- Since a statistic T is a function of the random variables X_1, \ldots, X_n , T is itself a random variable
- ▶ The distribution of T depends on the density of the X_i and is called the sampling distribution of T

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

- $\hat{\mu} = \bar{X}$ is an estimator of μ
- ▶ The observed value of the estimator $\hat{\mu}$ is \bar{x}
- $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is an estimator of σ^2
- ▶ The observed value of the estimator $\hat{\sigma}^2$ is $\sum_{i=1}^n (x_i \bar{x})^2$

Remarks

- Since a statistic T is a function of the random variables X_1, \ldots, X_n , T is itself a random variable
- ▶ The distribution of T depends on the density of the X_i and is called the sampling distribution of T
- ► E(X) and Var(X) provide partial information on the distribution of T and are particularly useful when the distribution of T can be approximated

Given a statistical model, might wish to:

Given a statistical model, might wish to:

▶ Estimate the parameters of the model

Given a statistical model, might wish to:

- ▶ Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?

Given a statistical model, might wish to:

- Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?
- Make predictions about future observations

Given a statistical model, might wish to:

- Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?
- ► Make predictions about future observations

There are several methods to estimate parameters, will discuss:

Given a statistical model, might wish to:

- Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?
- ▶ Make predictions about future observations

There are several methods to estimate parameters, will discuss:

▶ The method of *moments* (easy - almost always works)

Given a statistical model, might wish to:

- Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?
- ▶ Make predictions about future observations

There are several methods to estimate parameters, will discuss:

- ► The method of *moments* (easy almost always works)
- ► The method of *least squares* (easy)

Given a statistical model, might wish to:

- Estimate the parameters of the model
- Answer questions about the parameters of the model: for example, does $\theta=0$?
- Make predictions about future observations

There are several methods to estimate parameters, will discuss:

- The method of moments (easy almost always works)
- ► The method of *least squares* (easy)
- ► The method of maximum likelihood (more general optimal in many situations)

Outline

Statistical Models

Point Estimation

Evaluating Point Estimators

Interval Estimators

Let X_1, \ldots, X_n be a representative random sample from a population characterized by a distribution with density $f_{X|\theta}$

Let X_1,\ldots,X_n be a representative random sample from a population characterized by a distribution with density $f_{X|\theta}$

To compute the method of moments estimator, equate the *empirical* moments (calculated from the sample) and the *theoretical* moments (calculated from the population, i.e, $f_{X|\theta}$)

Let X_1,\ldots,X_n be a representative random sample from a population characterized by a distribution with density $f_{X|\theta}$

To compute the method of moments estimator, equate the *empirical* moments (calculated from the sample) and the *theoretical* moments (calculated from the population, i.e, $f_{X|\theta}$)

The k^{th} moments are:

Theoretical
$$M'_k = E(X^k)$$

Let X_1,\ldots,X_n be a representative random sample from a population characterized by a distribution with density $f_{X|\theta}$

To compute the method of moments estimator, equate the *empirical* moments (calculated from the sample) and the *theoretical* moments (calculated from the population, i.e, $f_{X|\theta}$)

The k^{th} moments are:

Theoretical
$$M'_k = E(X^k)$$

Empirical $m'_k = \frac{1}{n} \sum_{i=1}^k X_i^k$

Let X_1, \ldots, X_n be a representative random sample from a population characterized by a distribution with density $f_{X|\theta}$

To compute the method of moments estimator, equate the *empirical* moments (calculated from the sample) and the *theoretical* moments (calculated from the population, i.e, $f_{X|\theta}$)

The k^{th} moments are:

Theoretical
$$M'_k = E(X^k)$$

Empirical $m'_k = \frac{1}{n} \sum_{i=1}^k X_i^k$

Need one moment for each parameter in the model

Example: Method of Moments for uniform $(0, \theta)$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{uniform}(0, \theta)$

Example: Method of Moments for uniform $(0, \theta)$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{uniform}(0, \theta)$

Find the method of moments estimator of $\boldsymbol{\theta}$

Example: Method of Moments for uniform(0, θ)

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{uniform}(0, \theta)$

Find the method of moments estimator of θ

The first theoretical moment is: $M_1' = \mathsf{E}(X) = \frac{\theta+0}{2} = \frac{\theta}{2}$

Example: Method of Moments for uniform(0, θ)

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{uniform}(0, \theta)$

Find the method of moments estimator of θ

The first theoretical moment is: $M_1' = \mathsf{E}(X) = \frac{\theta + 0}{2} = \frac{\theta}{2}$

The first empirical moment is $m_1' = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$

Example: Method of Moments for uniform(0, θ)

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \operatorname{uniform}(0, \theta)$

Find the method of moments estimator of θ

The first theoretical moment is: $M_1' = \mathsf{E}(X) = \frac{\theta + 0}{2} = \frac{\theta}{2}$

The first empirical moment is $m_1' = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$

The method of moments estimator for θ is thus

$$\hat{\theta}(X_1,\ldots,X_n)=\frac{2}{n}\sum_{i=1}^nX_i=2\bar{X}$$

Example: Method of Moments for uniform $(0, \theta)$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{uniform}(0, \theta)$

Find the method of moments estimator of θ

The first theoretical moment is: $M_1' = \mathsf{E}(X) = \frac{\theta+0}{2} = \frac{\theta}{2}$

The first empirical moment is $m_1' = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$

The method of moments estimator for θ is thus

$$\hat{\theta}(X_1,\ldots,X_n)=\frac{2}{n}\sum_{i=1}^nX_i=2\bar{X}$$

Caveat: Suppose $\theta = 1$ and that $x_1 = 0.98$, $x_2 = 0.34$, $x_3 = 0.12$, $x_4 = 0.48$ and $x_5 = 0.08$ is a realization of a random sample. The method of moments estimate of θ is

$$\hat{\theta} = 2\bar{x} = 0.8$$

which is clearly not consistent with the model!

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the method of moments estimators of μ and σ^2

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the method of moments estimators of μ and σ^2

Theoretical moments

•
$$M_1' = E(X) = \mu$$

•
$$M_2' = E(X^2) = Var(X) + [E(X)]^2 = \sigma^2 + \mu^2$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the method of moments estimators of μ and σ^2

Theoretical moments

- $M'_1 = E(X) = \mu$
- $M'_2 = E(X^2) = Var(X) + [E(X)]^2 = \sigma^2 + \mu^2$

Empirical moments

- $m_1' = \frac{1}{n} \sum_{i=1}^n X_i$
- $m_2' = \frac{1}{n} \sum_{i=1}^n X_i^2$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the method of moments estimators of μ and σ^2

Theoretical moments

▶
$$M_1' = E(X) = \mu$$

•
$$M'_2 = E(X^2) = Var(X) + [E(X)]^2 = \sigma^2 + \mu^2$$

Empirical moments

$$M_1' = \frac{1}{n} \sum_{i=1}^n X_i$$

$$m_2' = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Method of moments estimators for μ and σ^2 :

$$\hat{\mu}(X_1,\ldots,X_n)=m_1'=\frac{1}{n}\sum_{i=1}^n X_i=\bar{X}$$

$$\hat{\sigma}^2(X_1,\ldots,X_n)=m_2'-(m_1')^2=\frac{1}{n}\sum_{i=1}^nX_i^2-\bar{X}^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$$

Let X_1, \ldots, X_n be a random sample

Let X_1, \ldots, X_n be a random sample

Want to estimate θ , the expected value of X_i

Let X_1, \ldots, X_n be a random sample

Want to estimate θ , the expected value of X_i

Each random variable X_i should be "close" to θ

Let X_1, \ldots, X_n be a random sample

Want to estimate θ , the expected value of X_i

Each random variable X_i should be "close" to θ

Each difference $|X_i - \theta|$ should be as small as possible

Let X_1, \ldots, X_n be a random sample

Want to estimate θ , the expected value of X_i

Each random variable X_i should be "close" to θ

Each difference $|X_i - \theta|$ should be as small as possible

A reasonable estimator for θ would be the value minimizing

$$S(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $\mathsf{E}(X_i) = \theta$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $E(X_i) = \theta$

Find the least squares estimator of $\boldsymbol{\theta}$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $\mathsf{E}(X_i) = \theta$

Find the least squares estimator of $\boldsymbol{\theta}$

$$S(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $E(X_i) = \theta$

Find the least squares estimator of θ

$$S(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2$$
$$= \sum_{i=1}^{n} (X_i - \bar{X} + \bar{X} - \theta)^2$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $E(X_i) = \theta$

Find the least squares estimator of θ

$$S(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X} + \bar{X} - \theta)^2$$

$$= \sum_{i=1}^{n} [(X_i - \bar{X}) + (\bar{X} - \theta)]^2$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f$ such that $\mathsf{E}(X_i) = \theta$

Find the least squares estimator of θ

$$S(\theta) = \sum_{i=1}^{n} (X_i - \theta)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X} + \bar{X} - \theta)^2$$

$$= \sum_{i=1}^{n} [(X_i - \bar{X}) + (\bar{X} - \theta)]^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2 \sum_{i=1}^{n} (X_i - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2 \sum_{i=1}^{n} (X_i - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^2$$

$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2 \sum_{i=1}^{n} (X_i - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^2$$
$$= \sum_{i=1}^{n} (X_i - \bar{X})^2 + 2(\bar{X} - \theta) \sum_{i=1}^{n} (X_i - \bar{X}) + \sum_{i=1}^{n} (\bar{X} - \theta)^2$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2 \sum_{i=1}^{n} (X_{i} - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \sum_{i=1}^{n} (X_{i} - \bar{X}) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \left[\left(\sum_{i=1}^{n} X_{i} \right) - n\bar{X} \right] + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2 \sum_{i=1}^{n} (X_{i} - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \sum_{i=1}^{n} (X_{i} - \bar{X}) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \left[\left(\sum_{i=1}^{n} X_{i} \right) - n\bar{X} \right] + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2 \sum_{i=1}^{n} (X_{i} - \bar{X})(\bar{X} - \theta) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \sum_{i=1}^{n} (X_{i} - \bar{X}) + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + 2(\bar{X} - \theta) \left[\left(\sum_{i=1}^{n} X_{i} \right) - n\bar{X} \right] + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} + \sum_{i=1}^{n} (\bar{X} - \theta)^{2}$$

$$\implies \hat{\theta}(X_1,\ldots,X_n) = \bar{X}$$

The joint density of a random sample from a parametric family with parameter $\boldsymbol{\theta}$ is

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

The joint density of a random sample from a parametric family with parameter $\boldsymbol{\theta}$ is

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

Let x_1,\ldots,x_n (the data) be the realization of a random sample $X_1,\ldots,X_n\stackrel{iid}{\sim} f_X(x|\theta)$

The joint density of a random sample from a parametric family with parameter $\boldsymbol{\theta}$ is

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

Let x_1, \ldots, x_n (the data) be the realization of a random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X(x|\theta)$

Definition The *likelihood* of the parameter θ is

$$L(\theta|x_1,\ldots,x_n)=f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

The joint density of a random sample from a parametric family with parameter $\boldsymbol{\theta}$ is

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

Let x_1, \ldots, x_n (the data) be the realization of a random sample $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X(x|\theta)$

Definition The *likelihood* of the parameter θ is

$$L(\theta|x_1,\ldots,x_n)=f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|\theta)=\prod_{i=1}^n f_X(x_i|\theta)$$

Definition The *maximum likelihood estimator* $\hat{\theta}_{ML}$ of a parameter θ is a value of θ giving the largest likelihood possible:

$$L(\hat{\theta}_{ML}|x_1,\ldots,x_n) \geq L(\theta|x_1,\ldots,x_n)$$

for all admissible values of the parameter θ

Calculation of $\hat{\theta}_{ML}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

Calculation of $\hat{\theta}_{ML}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

General algorithm for finding $\hat{\theta}$

Calculation of $\hat{\theta}_{ML}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

General algorithm for finding $\hat{ heta}$

1. Write down the likelihood function $L(\theta|x_1,\ldots,x_n)$

Calculation of $\hat{\theta}_{MI}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

General algorithm for finding $\hat{\theta}$

- 1. Write down the likelihood function $L(\theta|x_1,\ldots,x_n)$
- 2. Define $\ell(\theta|x_1,\ldots,x_n) = \log L(\theta|x_1,\ldots,x_n)$ (the log likelihood of θ)

Calculation of $\hat{\theta}_{MI}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

General algorithm for finding $\hat{\theta}$

- 1. Write down the likelihood function $L(\theta|x_1,\ldots,x_n)$
- 2. Define $\ell(\theta|x_1,\ldots,x_n) = \log L(\theta|x_1,\ldots,x_n)$ (the log likelihood of θ)
- 3. Find $\hat{\theta}_{ML}$ such that

$$\left. \frac{d}{d\theta} \ell(\theta|x_1,\ldots,x_n) \right|_{\hat{\theta}_{ML}} = 0$$

Calculation of $\hat{\theta}_{MI}$

Often, maximizing the log of the likelihood is easier than maximizing the likelihood itself

General algorithm for finding $\hat{\theta}$

- 1. Write down the likelihood function $L(\theta|x_1,\ldots,x_n)$
- 2. Define $\ell(\theta|x_1,\ldots,x_n) = \log L(\theta|x_1,\ldots,x_n)$ (the log likelihood of θ)
- 3. Find $\hat{\theta}_{ML}$ such that

$$\left. \frac{d}{d\theta} \ell(\theta|x_1,\ldots,x_n) \right|_{\hat{\theta}_{Ml}} = 0$$

4. Verify that $\hat{\theta}_{ML}$ is a maximum

Example: Find \hat{p}_{ML} for a Sequence of Bernoulli Trials

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample Find the maximum likelihood estimator of p

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample

Find the maximum likelihood estimator of p

$$L(p|x_1,\ldots,x_n) = f_{X_1,\ldots,X_n}(x_1,\ldots,x_n|p)$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample

Find the maximum likelihood estimator of p

$$L(p|x_1,...,x_n) = f_{X_1,...,X_n}(x_1,...,x_n|p) = \prod_{i=1}^n f_X(x_i|p)$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample

Find the maximum likelihood estimator of p

$$L(p|x_1,...,x_n) = f_{X_1,...,X_n}(x_1,...,x_n|p) = \prod_{i=1}^n f_X(x_i|p)$$
$$= \prod_{i=1}^n p^{x_i} (1-p)^{(1-x_i)}$$

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Bernoulli}(p)$ be a random sample

Find the maximum likelihood estimator of p

The likelihood function is

$$L(p|x_1,...,x_n) = f_{X_1,...,X_n}(x_1,...,x_n|p) = \prod_{i=1}^n f_X(x_i|p)$$
$$= \prod_{i=1}^n p^{x_i} (1-p)^{(1-x_i)}$$

$$\ell(p|x_1,...,x_n) = \log L(p|x_1,...,x_n) = \log \left[\prod_{i=1}^n p^{x_i} (1-p)^{(1-x_i)}\right]$$

$$= \sum_{i=1}^n \log \left[p^{x_i} (1-p)^{(1-x_i)} \right]$$

$$= \sum_{i=1}^{n} \log \left[p^{x_i} (1-p)^{(1-x_i)} \right]$$

$$= \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i)$$

$$= \sum_{i=1}^{n} \log \left[p^{x_i} (1-p)^{(1-x_i)} \right]$$

$$= \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i)$$

$$= \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \left[n - \sum_{i=1}^{n} x_i \right]$$

$$= \sum_{i=1}^{n} \log \left[p^{x_i} (1-p)^{(1-x_i)} \right]$$

$$= \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \sum_{i=1}^{n} (1-x_i)$$

$$= \log(p) \sum_{i=1}^{n} x_i + \log(1-p) \left[n - \sum_{i=1}^{n} x_i \right]$$

Take the derivative of the log likelihood wrt the parameter

$$\frac{d}{dp}\ell(p|x_1,...,x_n) = \frac{1}{p}\sum_{i=1}^n x_i - \frac{1}{1-p}\left[n - \sum_{i=1}^n x_i\right]$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_i - \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_i \right] \stackrel{\text{set}}{=} 0$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_i - \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_i \right] \stackrel{\text{set}}{=} 0$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_i = \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_i \right]$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_i - \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_i \right] \stackrel{\text{set}}{=} 0$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_i = \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_i \right]$$

$$(1 - \hat{\rho}_{ML}) \sum_{i=1}^{n} x_i = \hat{\rho}_{ML} \left[n - \sum_{i=1}^{n} x_i \right]$$

$$\frac{1}{\hat{p}_{ML}} \sum_{i=1}^{n} x_{i} - \frac{1}{1 - \hat{p}_{ML}} \left[n - \sum_{i=1}^{n} x_{i} \right] \stackrel{\text{set}}{=} 0$$

$$\frac{1}{\hat{p}_{ML}} \sum_{i=1}^{n} x_{i} = \frac{1}{1 - \hat{p}_{ML}} \left[n - \sum_{i=1}^{n} x_{i} \right]$$

$$(1 - \hat{p}_{ML}) \sum_{i=1}^{n} x_{i} = \hat{p}_{ML} \left[n - \sum_{i=1}^{n} x_{i} \right]$$

$$\sum_{i=1}^{n} x_{i} - \hat{p}_{ML} \sum_{i=1}^{n} x_{i} = n \hat{p}_{ML} - \hat{p}_{ML} \sum_{i=1}^{n} x_{i}$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_{i} - \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_{i} \right] \stackrel{\text{set}}{=} 0$$

$$\frac{1}{\hat{\rho}_{ML}} \sum_{i=1}^{n} x_{i} = \frac{1}{1 - \hat{\rho}_{ML}} \left[n - \sum_{i=1}^{n} x_{i} \right]$$

$$(1 - \hat{\rho}_{ML}) \sum_{i=1}^{n} x_{i} = \hat{\rho}_{ML} \left[n - \sum_{i=1}^{n} x_{i} \right]$$

$$\sum_{i=1}^{n} x_{i} - \hat{\rho}_{ML} \sum_{i=1}^{n} x_{i} = n \hat{\rho}_{ML} - \hat{\rho}_{ML} \sum_{i=1}^{n} x_{i}$$

$$\hat{\rho}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \bar{x}$$

Finally, verify that \hat{p}_{ML} is indeed a maximum

Finally, verify that \hat{p}_{ML} is indeed a maximum

$$\frac{d^2}{dp^2}\ell(p|x_1,\ldots,x_n) = -\frac{1}{p^2}\sum_{i=1}^n x_i - \frac{1}{(1-p)^2}\left[n - \sum_{i=1}^n x_i\right]$$

Finally, verify that \hat{p}_{ML} is indeed a maximum

$$\frac{d^2}{dp^2}\ell(p|x_1,\ldots,x_n) = -\frac{1}{p^2}\sum_{i=1}^n x_i - \frac{1}{(1-p)^2} \left[n - \sum_{i=1}^n x_i \right]$$
< 0 for all $p \in (0,1)$

Finally, verify that \hat{p}_{ML} is indeed a maximum

$$\frac{d^2}{dp^2}\ell(p|x_1,\ldots,x_n) = -\frac{1}{p^2}\sum_{i=1}^n x_i - \frac{1}{(1-p)^2}\left[n - \sum_{i=1}^n x_i\right]$$
< 0 for all $p \in (0,1)$

 $\implies \hat{p}_{ML}$ is indeed a maximum of the log likelihood

Finally, verify that \hat{p}_{ML} is indeed a maximum

$$\frac{d^2}{dp^2}\ell(p|x_1,\ldots,x_n) = -\frac{1}{p^2}\sum_{i=1}^n x_i - \frac{1}{(1-p)^2}\left[n - \sum_{i=1}^n x_i\right]$$
< 0 for all $p \in (0,1)$

 $\implies \hat{p}_{ML}$ is indeed a maximum of the log likelihood

Have shown that for every possible $(X_1 = x_1, \dots, X_n = x_n)$

$$\hat{p}_{ML} = \bar{x}$$

Finally, verify that \hat{p}_{ML} is indeed a maximum

$$\frac{d^2}{dp^2}\ell(p|x_1,\ldots,x_n) = -\frac{1}{p^2}\sum_{i=1}^n x_i - \frac{1}{(1-p)^2}\left[n - \sum_{i=1}^n x_i\right]$$
< 0 for all $p \in (0,1)$

 $\implies \hat{p}_{ML}$ is indeed a maximum of the log likelihood

Have shown that for every possible $(X_1 = x_1, \dots, X_n = x_n)$

$$\hat{p}_{ML} = \bar{x} \implies \hat{p}_{ML} = \bar{X}$$

Find \hat{p}_{ML} for a Sequence of Bernoulli Trials (illustration)

Let $X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$

Let
$$X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the maximum likelihood estimator of $\boldsymbol{\mu}$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the maximum likelihood estimator of μ

$$L(\mu, \sigma^2 | x_1, \dots, x_n) = f_{X_1, \dots, X_n}(x_1, \dots, x_n | \mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the maximum likelihood estimator of μ

$$L(\mu, \sigma^2 | x_1, \dots, x_n) = f_{X_1, \dots, X_n}(x_1, \dots, x_n | \mu, \sigma^2)$$
$$= \prod_{i=1}^n f_X(x_i | \mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find the maximum likelihood estimator of μ

$$L(\mu, \sigma^2 | x_1, \dots, x_n) = f_{X_1, \dots, X_n}(x_1, \dots, x_n | \mu, \sigma^2)$$

$$= \prod_{i=1}^n f_X(x_i | \mu, \sigma^2)$$

$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$\ell(\mu, \sigma^2 | x_1, \dots, x_n) = \log L(\mu, \sigma^2 | x_1, \dots, x_n)$$

$$\ell(\mu, \sigma^2 | x_1, \dots, x_n) = \log L(\mu, \sigma^2 | x_1, \dots, x_n)$$

$$= \log \left[\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$\ell(\mu, \sigma^2 | x_1, \dots, x_n) = \log L(\mu, \sigma^2 | x_1, \dots, x_n)$$

$$= \log \left[\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi}\sigma} + \sum_{i=1}^n \left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$\ell(\mu, \sigma^2 | x_1, \dots, x_n) = \log L(\mu, \sigma^2 | x_1, \dots, x_n)$$

$$= \log \left[\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi}\sigma} + \sum_{i=1}^n \left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= -n \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\ell(\mu, \sigma^2 | x_1, \dots, x_n) = \log L(\mu, \sigma^2 | x_1, \dots, x_n)$$

$$= \log \left[\prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right) \right]$$

$$= \sum_{i=1}^n \log \frac{1}{\sqrt{2\pi}\sigma} + \sum_{i=1}^n \left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= -n \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

$$\propto -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right]$$

Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right]$$
$$= \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)$$

Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right]$$
$$= \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \hat{\mu}_{ML}) \stackrel{\text{set}}{=} 0$$

Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right]$$
$$= \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)$$

Set the derivative equal to 0 and solve for $\hat{\mu}_{\textit{ML}}$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \hat{\mu}_{ML}) \stackrel{\text{set}}{=} 0$$

$$\sum_{i=1}^{n} x_i = n \hat{\mu}_{ML}$$

Take the derivative of the log likelihood

$$\frac{d}{d\mu}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2\right]$$
$$= \frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \hat{\mu}_{ML}) \stackrel{\text{set}}{=} 0$$

$$\sum_{i=1}^{n} x_i = n \hat{\mu}_{ML} \implies \hat{\mu}_{ML} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

Finally, need to verify that $\hat{\mu}_{\mathit{ML}}$ is indeed a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\right]$$

Finally, need to verify that $\hat{\mu}_{\mathit{ML}}$ is indeed a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\right]$$
$$= -\frac{n}{\sigma^2}$$

Finally, need to verify that $\hat{\mu}_{ML}$ is indeed a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\right]$$
$$= -\frac{n}{\sigma^2}$$
$$< 0$$

Finally, need to verify that $\hat{\mu}_{ML}$ is indeed a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\right]$$
$$= -\frac{n}{\sigma^2}$$
$$< 0$$

 $\implies \hat{\mu}_{ML}$ is a local maximum of the log likelihood

Finally, need to verify that $\hat{\mu}_{\mathit{ML}}$ is indeed a maximum

$$\frac{d^2}{d\mu^2}\ell(\mu,\sigma^2|x_1,\ldots,x_n) = \frac{d}{d\mu}\left[\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)\right]$$
$$= -\frac{n}{\sigma^2}$$
$$< 0$$

 $\implies \hat{\mu}_{ML}$ is a local maximum of the log likelihood

The maximum likelihood estimator of μ is

$$\hat{\mu}_{\mathit{ML}} = \bar{X}$$

Outline

Statistical Models

Point Estimation

Evaluating Point Estimators

Interval Estimators

The *bias* of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) - \theta$$

The *bias* of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{ heta}}(heta) = \mathsf{E}(\hat{ heta}) - heta$$

Interpretation of bias:

The bias of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) - \theta$$

Interpretation of bias:

▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) < 0$ then $\hat{\theta}$ tends to underestimate θ

The *bias* of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{ heta}}(heta) = \mathsf{E}(\hat{ heta}) - heta$$

Interpretation of bias:

- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) < 0$ then $\hat{\theta}$ tends to underestimate θ
- ▶ If $\operatorname{Bias}_{\hat{\theta}}(\theta) > 0$ then $\hat{\theta}$ tends to overestimate θ

The *bias* of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) - \theta$$

Interpretation of bias:

- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) < \mathsf{0}$ then $\hat{\theta}$ tends to underestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) > 0$ then $\hat{\theta}$ tends to overestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) \equiv 0$ then $\hat{\theta}$ is an *unbiased* estimator of θ

The bias of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) - \theta$$

Interpretation of bias:

- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) < 0$ then $\hat{\theta}$ tends to underestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) > 0$ then $\hat{\theta}$ tends to overestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) \equiv 0$ then $\hat{\theta}$ is an *unbiased* estimator of θ

A qualitative measure of an estimator $\hat{\theta}$ is the absence of a systematic relationship between $\hat{\theta}$ and θ

The bias of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{Bias}_{\hat{\theta}}(\theta) = \mathsf{E}(\hat{\theta}) - \theta$$

Interpretation of bias:

- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) < 0$ then $\hat{\theta}$ tends to underestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) > 0$ then $\hat{\theta}$ tends to overestimate θ
- ▶ If $\mathsf{Bias}_{\hat{\theta}}(\theta) \equiv 0$ then $\hat{\theta}$ is an *unbiased* estimator of θ

A qualitative measure of an estimator $\hat{\theta}$ is the absence of a systematic relationship between $\hat{\theta}$ and θ

Later: better measure is given by the average size of $(\hat{\theta} - \theta)^2$

Let
$$X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\mathsf{Bias}_{\hat{\mu}}(\mu) = \mathsf{E}(\bar{X}) - \mu$$

Let
$$X_1, \ldots, X_n \stackrel{\textit{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\mathsf{Bias}_{\hat{\mu}}(\mu) = \mathsf{E}(\bar{X}) - \mu$$
$$= \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$Bias_{\hat{\mu}}(\mu) = E(\bar{X}) - \mu$$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) - \mu$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$Bias_{\hat{\mu}}(\mu) = E(\bar{X}) - \mu$$

$$= E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) - \mu$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i}) - \mu$$

$$= \frac{1}{n}n\mu - \mu$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

$$\begin{split} \mathsf{Bias}_{\hat{\mu}}(\mu) &=& \mathsf{E}(\bar{X}) - \mu \\ &=& \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^n X_i\right) - \mu \\ &=& \frac{1}{n}\sum_{i=1}^n \mathsf{E}(X_i) - \mu \\ &=& \frac{1}{n}n\mu - \mu \\ &=& 0 \implies \bar{X} \text{ is an unbiased estimator of } \mu \end{split}$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$
$$= \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right)$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) \qquad (b/c \text{ the } X_{i} \text{ are independent})$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) \qquad (b/c \text{ the } X_{i} \text{ are independent})$$

$$= \frac{1}{n^{2}}n\sigma^{2}$$

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i}) \qquad (b/c \text{ the } X_{i} \text{ are independent})$$

$$= \frac{1}{n^{2}}n\sigma^{2}$$

$$= \frac{\sigma^{2}}{n}$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\operatorname{\mathsf{Bias}}_{\hat{\sigma}^2}(\sigma^2) = \operatorname{\mathsf{E}}\left(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\right) - \sigma^2$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\operatorname{Bias}_{\hat{\sigma}^{2}}(\sigma^{2}) = \operatorname{E}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) - \sigma^{2}$$
$$= \frac{n-1}{n}\operatorname{E}\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) - \sigma^{2}$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\operatorname{Bias}_{\hat{\sigma}^{2}}(\sigma^{2}) = \operatorname{E}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) - \sigma^{2}$$

$$= \frac{n-1}{n}\operatorname{E}\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right) - \sigma^{2}$$

$$= \frac{n-1}{n}\operatorname{E}(S^{2}) - \sigma^{2}$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\operatorname{Bias}_{\hat{\sigma}^{2}}(\sigma^{2}) = \operatorname{E}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right)-\sigma^{2}$$

$$= \frac{n-1}{n}\operatorname{E}\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right)-\sigma^{2}$$

$$= \frac{n-1}{n}\operatorname{E}(S^{2})-\sigma^{2}$$

$$= \frac{n-1}{n}\sigma^{2}-\sigma^{2}$$

Find the bias of
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\begin{aligned} \mathsf{Bias}_{\hat{\sigma}^2}(\sigma^2) &=& \mathsf{E}\left(\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2\right) - \sigma^2 \\ &=& \frac{n-1}{n}\mathsf{E}\left(\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2\right) - \sigma^2 \\ &=& \frac{n-1}{n}\mathsf{E}(S^2) - \sigma^2 \\ &=& \frac{n-1}{n}\sigma^2 - \sigma^2 \\ &=& \frac{-\sigma^2}{n} < 0 \ \Rightarrow \ \hat{\sigma}^2 \ \mathsf{tends} \ \mathsf{to} \ \mathsf{underestimate} \ \sigma^2 \end{aligned}$$

The *mean squared error* of an estimator $\hat{ heta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

The *mean squared error* of an estimator $\hat{ heta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

Bias-variance tradeoff: the mean squared error has the following decomposition

The mean squared error of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

 ${\it Bias-variance\ tradeoff:}\$ the mean squared error has the following decomposition

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

The mean squared error of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

Bias-variance tradeoff: the mean squared error has the following decomposition

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right] = \mathsf{E}\left[\left([\hat{\theta} - \mathsf{E}(\hat{\theta})] + [\mathsf{E}(\hat{\theta}) - \theta]\right)^2\right]$$

The mean squared error of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

Bias-variance tradeoff: the mean squared error has the following decomposition

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right] = \mathsf{E}\left[\left([\hat{\theta} - \mathsf{E}(\hat{\theta})] + [\mathsf{E}(\hat{\theta}) - \theta]\right)^2\right]$$
$$= \mathsf{E}[\hat{\theta} - \mathsf{E}(\hat{\theta})]^2 - 2\mathsf{E}\left[[\hat{\theta} - \mathsf{E}(\hat{\theta})][\mathsf{E}(\hat{\theta}) - \theta]\right] + \mathsf{E}[\mathsf{E}(\hat{\theta}) - \theta]^2$$

Mean Squared Error

The mean squared error of an estimator $\hat{\theta}$ is defined to be

$$\mathsf{MSE}(\hat{\theta}) = \mathsf{E}\left[(\hat{\theta} - \theta)^2\right]$$

Bias-variance tradeoff: the mean squared error has the following decomposition

$$\begin{aligned} \mathsf{MSE}(\hat{\theta}) &= \mathsf{E}\left[(\hat{\theta} - \theta)^2\right] = \mathsf{E}\left[\left([\hat{\theta} - \mathsf{E}(\hat{\theta})] + [\mathsf{E}(\hat{\theta}) - \theta]\right)^2\right] \\ &= \mathsf{E}[\hat{\theta} - \mathsf{E}(\hat{\theta})]^2 - 2\mathsf{E}\left[[\hat{\theta} - \mathsf{E}(\hat{\theta})][\mathsf{E}(\hat{\theta}) - \theta]\right] + \mathsf{E}[\mathsf{E}(\hat{\theta}) - \theta]^2 \\ &= \mathsf{Var}(\hat{\theta}) + [\mathsf{Bias}_{\hat{\theta}}(\theta)]^2 \end{aligned}$$

Bias-Variance Tradeoff (illustration)

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \ \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{\theta}_1$ is more <code>efficient</code> than $\hat{\theta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{ heta}_1$ is more *efficient* than $\hat{ heta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

In this case, the estimator $\hat{ heta}_1$ is preferable

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{ heta}_1$ is more *efficient* than $\hat{ heta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

In this case, the estimator $\hat{ heta}_1$ is preferable

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{ heta}_1$ is more *efficient* than $\hat{ heta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

In this case, the estimator $\hat{ heta}_1$ is preferable

Example Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

▶ Sampling distribution of the median M is $\approx \mathcal{N}(\mu, \frac{\sigma^2 \pi}{2n})$

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{ heta}_1$ is more *efficient* than $\hat{ heta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

In this case, the estimator $\hat{ heta}_1$ is preferable

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

- ▶ Sampling distribution of the median M is $\approx \mathcal{N}(\mu, \frac{\sigma^2 \pi}{2n})$
- ▶ Sampling distribution of the sample mean \bar{X} is $\mathcal{N}(\mu, \frac{\sigma^2}{n})$

Let $\hat{ heta}_1$ and $\hat{ heta}_2$ be two unbiased estimators of same parameter heta

- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_1) = \mathsf{Var}(\hat{\theta}_1) + [\mathsf{Bias}_{\hat{\theta}_1}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_1)$
- $\blacktriangleright \mathsf{MSE}(\hat{\theta}_2) = \mathsf{Var}(\hat{\theta}_2) + [\mathsf{Bias}_{\hat{\theta}_2}(\theta)]^2 = \mathsf{Var}(\hat{\theta}_2)$

 $\hat{ heta}_1$ is more *efficient* than $\hat{ heta}_2$ if

$$\mathsf{Var}(\hat{ heta}_1) \leq \mathsf{Var}(\hat{ heta}_2)$$

In this case, the estimator $\hat{ heta}_1$ is preferable

Example Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$

- ▶ Sampling distribution of the median M is $\approx \mathcal{N}(\mu, \frac{\sigma^2 \pi}{2n})$
- ▶ Sampling distribution of the sample mean \bar{X} is $\mathcal{N}(\mu, \frac{\sigma^2}{n})$
- ▶ Which estimator of μ is preferable, \bar{X} or M?

Let X_1, X_2, \ldots be a sequence of random variables

Let X_1, X_2, \ldots be a sequence of random variables

Let
$$\bar{X}_1 = X_1$$
, $\bar{X}_2 = (X_1 + X_2)/2$, $\bar{X}_3 = (X_1 + X_2 + X_3)/3$, ...

Let X_1, X_2, \ldots be a sequence of random variables

Let
$$\bar{X}_1 = X_1$$
, $\bar{X}_2 = (X_1 + X_2)/2$, $\bar{X}_3 = (X_1 + X_2 + X_3)/3$, ...

Call $\bar{X}_1, \bar{X}_2, \bar{X}_3, \ldots$ a sequence of estimators

Let X_1, X_2, \ldots be a sequence of random variables

Let
$$\bar{X}_1=X_1$$
, $\bar{X}_2=(X_1+X_2)/2$, $\bar{X}_3=(X_1+X_2+X_3)/3$, . . .

Call $\bar{X}_1, \bar{X}_2, \bar{X}_3, \ldots$ a sequence of estimators

A sequence of estimators $W_n = W_n(X_1, \dots, X_n)$ is a consistent sequence of estimators of the parameter θ if for every $\epsilon > 0$ and every θ

$$\lim_{n\to\infty} P(|W_n - \theta| < \epsilon) = 1$$

Let X_1, X_2, \ldots be a sequence of iid $\mathcal{N}(\theta, 1)$ random variables

Recall $\bar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$

Recall
$$ar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{x}_n - \theta)^2} d\bar{x}_n$$

Recall
$$\bar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{X}_n - \theta)^2} d\bar{X}_n$$
$$= \int_{-\epsilon}^{\epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)y^2} dy$$

Recall
$$\bar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{X}_n - \theta)^2} d\bar{X}_n$$

$$= \int_{-\epsilon}^{\epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)y^2} dy$$

$$= \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

Recall
$$\bar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{x}_n - \theta)^2} d\bar{x}_n$$

$$= \int_{-\epsilon}^{\epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)y^2} dy$$

$$= \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$= P(-\epsilon\sqrt{n} < Z < \epsilon\sqrt{n})$$

Recall
$$\bar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{x}_n - \theta)^2} d\bar{x}_n$$

$$= \int_{-\epsilon}^{\epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)y^2} dy$$

$$= \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$= P(-\epsilon\sqrt{n} < Z < \epsilon\sqrt{n})$$

$$\to 1 \text{ as } n \to \infty$$

Let X_1, X_2, \ldots be a sequence of iid $\mathcal{N}(\theta, 1)$ random variables

Recall
$$ar{X} \sim \mathcal{N}(\theta, \frac{1}{n})$$

$$P(|\bar{X}_n - \theta| < \epsilon) = \int_{\theta - \epsilon}^{\theta + \epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)(\bar{x}_n - \theta)^2} d\bar{x}_n$$

$$= \int_{-\epsilon}^{\epsilon} \left(\frac{n}{2\pi}\right)^{\frac{1}{2}} e^{-(n/2)y^2} dy$$

$$= \int_{-\epsilon\sqrt{n}}^{\epsilon\sqrt{n}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

$$= P(-\epsilon\sqrt{n} < Z < \epsilon\sqrt{n})$$

$$\to 1 \text{ as } n \to \infty$$

 $\implies ar{X}_n$ is a consistent sequence of estimators of heta

Let X_1, X_2, \ldots be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$

Let X_1, X_2, \ldots be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let $X_1, X_2, ...$ be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let g(t) = at + b be a linear function

Let $X_1, X_2, ...$ be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let g(t) = at + b be a linear function

$$\blacktriangleright \mathsf{E}\big(g(\bar{X}_n)\big) = \mathsf{E}\big(a\bar{X}_n + b\big) = a\,\mathsf{E}(\bar{X}_n) + b = a\mu + b$$

Let $X_1, X_2, ...$ be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let g(t) = at + b be a linear function

$$\blacktriangleright \ \mathsf{E}\big(g(\bar{X}_n)\big) = \mathsf{E}\big(a\bar{X}_n + b\big) = a\,\mathsf{E}(\bar{X}_n) + b = a\mu + b$$

$$\operatorname{Var}(g(\bar{X}_n)) = \operatorname{Var}(a\bar{X}_n + b) = a^2 \operatorname{Var}(\bar{X}_n) = \frac{a^2 \sigma^2}{n}$$

Let $X_1, X_2, ...$ be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let g(t) = at + b be a linear function

$$\blacktriangleright \ \mathsf{E}\big(g(\bar{X}_n)\big) = \mathsf{E}\big(a\bar{X}_n + b\big) = a\,\mathsf{E}(\bar{X}_n) + b = a\mu + b$$

$$Var(g(\bar{X}_n)) = Var(a\bar{X}_n + b) = a^2 Var(\bar{X}_n) = \frac{a^2 \sigma^2}{n}$$

Central Limit Theorem result for $g(\bar{X}_n)$

$$rac{\left(g(ar{X}_n)-g(\mu)
ight)}{a\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0,1)$$

Let $X_1, X_2, ...$ be iid random variables with $\mathsf{E}(X_i) = \mu$, $\mathsf{Var}(X_i) = \sigma^2$ Central Limit Theorem says

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}}
ightarrow Z \qquad Z \sim \mathcal{N}(0, 1)$$

Let g(t) = at + b be a linear function

$$\blacktriangleright \ \mathsf{E}\big(g(\bar{X}_n)\big) = \mathsf{E}\big(a\bar{X}_n + b\big) = a\,\mathsf{E}(\bar{X}_n) + b = a\mu + b$$

$$Var(g(\bar{X}_n)) = Var(a\bar{X}_n + b) = a^2 Var(\bar{X}_n) = \frac{a^2 \sigma^2}{n}$$

Central Limit Theorem result for $g(\bar{X}_n)$

$$rac{ig(g(ar{X}_n)-g(\mu)ig)}{a\sigma/\sqrt{n}}
ightarrow Z \qquad Z\sim \mathcal{N}(0,1)$$

Can write as

$$\sqrt{n} ig(g(ar{X}_{\! n}) - g(\mu) ig) o a \sigma Z$$

Now, suppose g(t) is a nonlinear function and that $g'(\mu)$ exists

Now, suppose g(t) is a nonlinear function and that $g'(\mu)$ exists

If \bar{X}_n is a consistent estimator of μ , then \bar{X}_n close to μ for large n

Now, suppose g(t) is a nonlinear function and that $g'(\mu)$ exists

If \bar{X}_n is a consistent estimator of μ , then \bar{X}_n close to μ for large n

Can approximate g(t) with a linear function

$$g(t) pprox g(\mu) + g'(\mu)(t-\mu)$$

Now, suppose g(t) is a nonlinear function and that $g'(\mu)$ exists

If \bar{X}_n is a consistent estimator of μ , then \bar{X}_n close to μ for large n

Can approximate g(t) with a linear function

$$g(t) pprox g(\mu) + g'(\mu)(t-\mu)$$

$$\sqrt{n}\big(g(\bar{X}_n)-g(\mu)\big)\to g'(\mu)\sigma Z\sim \mathcal{N}\big(0,\sigma^2[g'(\mu)]^2\big)$$

Let $X_n \sim \text{binomial}(n, p)$ (sum of n independent Bernoulli(p) trials)

Let $X_n \sim \text{binomial}(n, p)$ (sum of n independent Bernoulli(p) trials)

MLE $\frac{1}{n}X_n$ consistent, unbiased estimator of p

Let $X_n \sim \text{binomial}(n, p)$ (sum of n independent Bernoulli(p) trials)

MLE $\frac{1}{n}X_n$ consistent, unbiased estimator of p

Let
$$g(t) = t(1-t)$$

$$\implies$$
 $g\left(\frac{X_n}{n}\right) = \frac{X_n}{n}\left(1 - \frac{X_n}{n}\right) = \frac{X_n(n - X_n)}{n^2}$

an estimator for the variance p(1-p)

Let $X_n \sim \text{binomial}(n, p)$ (sum of n independent Bernoulli(p) trials)

MLE $\frac{1}{n}X_n$ consistent, unbiased estimator of p

Let
$$g(t) = t(1-t)$$

$$\implies$$
 $g\left(\frac{X_n}{n}\right) = \frac{X_n}{n}\left(1 - \frac{X_n}{n}\right) = \frac{X_n(n - X_n)}{n^2}$

an estimator for the variance p(1-p)

Since
$$g'(p) = 1 - 2p$$

$$\sqrt{n}\left(g\left(\frac{X_n}{n}\right)-p(1-p)\right)\to\mathcal{N}\left(0,p(1-p)(1-2p)^2\right)$$

Outline

Statistical Models

Point Estimation

Evaluating Point Estimators

Interval Estimators

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $T = q(\hat{\theta}, \theta)$ whose distribution is known and does not depend on θ

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $\mathcal{T}=q(\hat{\theta},\theta)$ whose distribution is known and does not depend on θ

Let $\alpha_1 + \alpha_2 = \alpha < 1$ an let a and b be constants such that

$$\alpha_1 = P(T < a)$$
 $\alpha_2 = P(T > b)$ (often $\alpha_1 = \alpha_2$)

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $\mathcal{T}=q(\hat{\theta},\theta)$ whose distribution is known and does not depend on θ

Let $\alpha_1 + \alpha_2 = \alpha < 1$ an let a and b be constants such that

$$\alpha_1 = P(T < a)$$
 $\alpha_2 = P(T > b)$ (often $\alpha_1 = \alpha_2$)

Then

$$P(a \le T \le b) = P(T \le b) - P(T < a) = (1 - \alpha_2) - \alpha_1 = 1 - \alpha$$

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $\mathcal{T}=q(\hat{\theta},\theta)$ whose distribution is known and does not depend on θ

Let $\alpha_1 + \alpha_2 = \alpha < 1$ an let a and b be constants such that

$$\alpha_1 = P(T < a)$$
 $\alpha_2 = P(T > b)$ (often $\alpha_1 = \alpha_2$)

Then

$$\mathsf{P}(\mathsf{a} \leq \mathsf{T} \leq \mathsf{b}) = \mathsf{P}(\mathsf{T} \leq \mathsf{b}) - \mathsf{P}(\mathsf{T} < \mathsf{a}) = (1 - \alpha_2) - \alpha_1 = 1 - \alpha$$

Isolate θ to find random variables I and S such that

$$P(I \le \theta \le S) = 1 - \alpha$$

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $\mathcal{T}=q(\hat{\theta},\theta)$ whose distribution is known and does not depend on θ

Let $\alpha_1 + \alpha_2 = \alpha < 1$ an let a and b be constants such that

$$\alpha_1 = P(T < a)$$
 $\alpha_2 = P(T > b)$ (often $\alpha_1 = \alpha_2$)

Then

$$\mathsf{P}(\mathsf{a} \leq \mathsf{T} \leq \mathsf{b}) = \mathsf{P}(\mathsf{T} \leq \mathsf{b}) - \mathsf{P}(\mathsf{T} < \mathsf{a}) = (1 - \alpha_2) - \alpha_1 = 1 - \alpha$$

Isolate θ to find random variables I and S such that

$$P(I \le \theta \le S) = 1 - \alpha$$

[I, S] is called a $100(1-\alpha)\%$ confidence interval for θ

Instead of estimating the parameter θ with only a number $\hat{\theta}$, consider a random interval that covers θ with high probability

Let $\hat{\theta}$ be an estimator of θ and suppose that there exists a function $\mathcal{T}=q(\hat{\theta},\theta)$ whose distribution is known and does not depend on θ

Let $\alpha_1 + \alpha_2 = \alpha < 1$ an let a and b be constants such that

$$\alpha_1 = P(T < a)$$
 $\alpha_2 = P(T > b)$ (often $\alpha_1 = \alpha_2$)

Then

$$\mathsf{P}(\mathsf{a} \leq \mathsf{T} \leq \mathsf{b}) = \mathsf{P}(\mathsf{T} \leq \mathsf{b}) - \mathsf{P}(\mathsf{T} < \mathsf{a}) = (1 - \alpha_2) - \alpha_1 = 1 - \alpha$$

Isolate θ to find random variables I and S such that

$$P(I \le \theta \le S) = 1 - \alpha$$

[I,S] is called a $100(1-\alpha)\%$ confidence interval for θ

The quantity $1-\alpha$ is called the *confidence coefficient*

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

Find a (1-0.05)100% symmetric confidence interval for the mean μ

• $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$
- $P(-1.96 \le \sqrt{n}(\bar{X} \mu) \le 1.96) = 0.95$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$
- $P(-1.96 \le \sqrt{n}(\bar{X} \mu) \le 1.96) = 0.95$
- ► Isolate the parameter:

$$\frac{-1.96}{\sqrt{n}} \le \bar{X} - \mu \le \frac{1.96}{\sqrt{n}}$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$
- $P(-1.96 \le \sqrt{n}(\bar{X} \mu) \le 1.96) = 0.95$
- ► Isolate the parameter:

$$\frac{-1.96}{\sqrt{n}} \le \bar{X} - \mu \le \frac{1.96}{\sqrt{n}}$$
$$-\bar{X} - \frac{1.96}{\sqrt{n}} \le -\mu \le -\bar{X} + \frac{1.96}{\sqrt{n}}$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

- $\alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$
- $P(-1.96 \le \sqrt{n}(\bar{X} \mu) \le 1.96) = 0.95$
- ▶ Isolate the parameter:

$$\begin{split} & \frac{-1.96}{\sqrt{n}} \leq \bar{X} - \mu \leq \frac{1.96}{\sqrt{n}} \\ & - \bar{X} - \frac{1.96}{\sqrt{n}} \leq -\mu \leq -\bar{X} + \frac{1.96}{\sqrt{n}} \\ & \bar{X} - \frac{1.96}{\sqrt{n}} \leq \mu \leq \bar{X} + \frac{1.96}{\sqrt{n}} \end{split}$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

Find a (1-0.05)100% symmetric confidence interval for the mean μ

- $\sim \alpha = 0.05$, symmetric $\implies \alpha_1 = \alpha_2 = 0.025$
- $ightharpoonup Z = \sqrt{n}(\bar{X} \mu) \sim \mathcal{N}(0, 1)$
- $\{\Phi(a) = 0.025, \ \Phi(b) = 0.975\} \Rightarrow \{a = z_{0.025}, \ b = z_{0.975}\}$
- $P(-1.96 \le \sqrt{n}(\bar{X} \mu) \le 1.96) = 0.95$
- Isolate the parameter:

$$\begin{split} & \frac{-1.96}{\sqrt{n}} \leq \bar{X} - \mu \leq \frac{1.96}{\sqrt{n}} \\ & - \bar{X} - \frac{1.96}{\sqrt{n}} \leq -\mu \leq -\bar{X} + \frac{1.96}{\sqrt{n}} \\ & \bar{X} - \frac{1.96}{\sqrt{n}} \leq \mu \leq \bar{X} + \frac{1.96}{\sqrt{n}} \end{split}$$

ightharpoons $\left[rac{ar{X}-1.96}{\sqrt{n}},\,rac{ar{X}+1.96}{\sqrt{n}}
ight]$ is a 95% confidence interval for μ

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

Find a (1-0.05)100% symmetric confidence interval for the mean μ

• $\alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

- $\alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$
- $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t_{n-1}$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

- $\alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$
- $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t_{n-1}$
- $P(t_{0.025,n-1} \le \frac{\bar{X}-\mu}{5/\sqrt{n}} \le t_{0.975,n-1}) = 0.95$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

- $ightharpoonup \alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$
- $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t_{n-1}$
- $P(t_{0.025,n-1} \le \frac{\bar{X}-\mu}{S/\sqrt{n}} \le t_{0.975,n-1}) = 0.95$
- Isolate the parameter:

$$\frac{S}{\sqrt{n}}t_{0.025,n-1} \le \bar{X} - \mu \le \frac{S}{\sqrt{n}}t_{0.975,n-1}$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

- $\sim \alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$
- $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t_{n-1}$
- $P(t_{0.025,n-1} \le \frac{\bar{X}-\mu}{5/\sqrt{n}} \le t_{0.975,n-1}) = 0.95$
- ► Isolate the parameter:

$$\frac{s}{\sqrt{n}}t_{0.025,n-1} \le \bar{X} - \mu \le \frac{s}{\sqrt{n}}t_{0.975,n-1}$$
$$-\bar{X} + \frac{s}{\sqrt{n}}t_{0.025,n-1} \le -\mu \le -\bar{X} + \frac{s}{\sqrt{n}}t_{0.975,n-1}$$

Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$$

- $\sim \alpha = 0.05$, symmetric $\Longrightarrow \alpha_1 = \alpha_2 = 0.025$
- $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t_{n-1}$
- $P(t_{0.025,n-1} \le \frac{\bar{X}-\mu}{S/\sqrt{n}} \le t_{0.975,n-1}) = 0.95$
- ► Isolate the parameter:

$$\frac{S}{\sqrt{n}}t_{0.025,n-1} \le \bar{X} - \mu \le \frac{S}{\sqrt{n}}t_{0.975,n-1}$$
$$-\bar{X} + \frac{S}{\sqrt{n}}t_{0.025,n-1} \le -\mu \le -\bar{X} + \frac{S}{\sqrt{n}}t_{0.975,n-1}$$
$$\bar{X} + \frac{S}{\sqrt{n}}t_{0.025,n-1} \le \mu \le \bar{X} + \frac{S}{\sqrt{n}}t_{0.975,n-1}$$

The parameter $\boldsymbol{\theta}$ is unknown but fixed

The parameter θ is unknown but fixed It is **NOT** random

The parameter θ is unknown but fixed It is **NOT** random

The confidence interval [I,S] is a random interval that covers θ with probability $(1-\alpha)$

The parameter θ is unknown but fixed It is **NOT** random

The confidence interval [I,S] is a random interval that covers θ with probability $(1-\alpha)$

Let A be the event $I \leq \theta$ and let B be the event $S \geq \theta$

$$P(A \cap B) = (1 - \alpha)$$

The parameter θ is unknown but fixed It is **NOT** random

The confidence interval [I,S] is a random interval that covers θ with probability $(1-\alpha)$

Let A be the event $I \leq \theta$ and let B be the event $S \geq \theta$

$$P(A \cap B) = (1 - \alpha)$$

Saying that $\theta \in [I, S]$ with probability $(1 - \alpha)$ is incorrect because it is I and S that are random (and not θ)

The parameter θ is unknown but fixed It is **NOT** random

The confidence interval [I,S] is a random interval that covers θ with probability $(1-\alpha)$

Let A be the event $I \leq \theta$ and let B be the event $S \geq \theta$

$$P(A \cap B) = (1 - \alpha)$$

Saying that $\theta \in [I, S]$ with probability $(1 - \alpha)$ is incorrect because it is I and S that are random (and not θ)

Figure: 30 repetitions of the confidence interval calculation

How can we ...

lacktriangledown . . . increase the probability that the confidence interval covers θ ?

How can we ...

- ightharpoonupincrease the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger

How can we . . .

- ightharpoonup increase the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger
- ... make the confidence interval shorter?

How can we ...

- ightharpoonup increase the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger
- ... make the confidence interval shorter?
 - Confidence intervals for the mean are always of the form

$$\bar{x} \pm \frac{c}{\sqrt{n}}$$

How can we . . .

- ightharpoonup increase the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger
- ... make the confidence interval shorter?
 - Confidence intervals for the mean are always of the form

$$\bar{x} \pm \frac{c}{\sqrt{n}}$$

▶ If *n* increases, then the confidence interval gets shorter

How can we ...

- ightharpoonup increase the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger
- ... make the confidence interval shorter?
 - Confidence intervals for the mean are always of the form

$$\bar{x} \pm \frac{c}{\sqrt{n}}$$

▶ If *n* increases, then the confidence interval gets shorter

One-sided confidence intervals

▶ Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$$

How can we . . .

- ightharpoonup increase the probability that the confidence interval covers θ ?
 - ▶ Make α smaller, then (1α) gets bigger making the confidence interval larger
- ... make the confidence interval shorter?
 - Confidence intervals for the mean are always of the form

$$\bar{x} \pm \frac{c}{\sqrt{n}}$$

▶ If *n* increases, then the confidence interval gets shorter

One-sided confidence intervals

- ▶ Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1^2)$
- ▶ A confidence interval of the form $\left(-\infty, \bar{X} + z_{(1-\alpha)}/\sqrt{n}\right]$ is a one-sided confidence interval for μ

Often construct confidence intervals based on maximum likelihood estimators

Often construct confidence intervals based on maximum likelihood estimators

Theorem Let $\hat{\theta}_{ML}$ the maximum likelihood estimator of θ , then for large n,

$$\hat{\theta}_{ML} \stackrel{.}{\sim} \mathcal{N}\left(\theta, J(\hat{\theta}_{ML})^{-1}\right)$$

Often construct confidence intervals based on maximum likelihood estimators

Theorem Let $\hat{\theta}_{ML}$ the maximum likelihood estimator of θ , then for large n,

$$\hat{\theta}_{\mathsf{ML}} \sim \mathcal{N}\left(\theta, J(\hat{\theta}_{\mathsf{ML}})^{-1}\right)$$

 $J(heta) = -rac{d^2}{d heta^2}\ell(heta)$ is the observed information for heta

Often construct confidence intervals based on maximum likelihood estimators

Theorem Let $\hat{\theta}_{ML}$ the maximum likelihood estimator of θ , then for large n,

$$\hat{ heta}_{\mathsf{ML}} \stackrel{.}{\sim} \mathcal{N}\left(heta, \, J(\hat{ heta}_{\mathsf{ML}})^{-1}
ight)$$

 $J(\theta) = -rac{d^2}{d heta^2}\ell(heta)$ is the *observed information* for heta

Can make a symmetric (1-lpha)100% confidence interval for heta

$$\left[\hat{\theta}_{ML}-z_{1-\frac{\alpha}{2}}J(\hat{\theta}_{ML})^{-\frac{1}{2}},\ \hat{\theta}_{ML}+z_{1-\frac{\alpha}{2}}J(\hat{\theta}_{ML})^{-\frac{1}{2}}\right]$$

COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON

Department of Applied Mathematics

http://computational-finance.uw.edu