TRANSFER MATERIAL FOR THERMAL RECORDING

Patent number:

JP63319191

Publication date:

1988-12-27

Inventor:

HOSODA KIICHI; others: 01

Applicant:

SHOWA DENKO KK

Classification:

- international:

B41M5/26

- european:

Application number:

JP19870154311 19870623

Priority number(s):

Abstract of **JP63319191**

PURPOSE:To transfer images at high speed and with favorable resolution through using laser radiation, by providing on a base film a layer comprising a substance capable of generating heat when being irradiated with laser radiation and a layer comprising a sublimable dye.

CONSTITUTION:A layer comprising a substance capable of generating heat when being irradiated with laser radiation (heat generating layer) and a layer comprising a sublimable dye (coloring material layer) are provided in that order on a base film in a laminate form. An image-receiving sheet is set in close contact with the coloring material layer side of this transfer material, and they are irradiated with laser radiation from the base film side of the transfer material, whereby the dye in the coloring material layer is sublimed to be transferred onto the image-receiving sheet. When a semiconductor laser is used, the substance capable of generating heat is suitably a substance having characteristic absorption in a near infrared region. For instance, a cyanine dye or anthraquinone dye may be used. Such a near infrared-absorbing dye may be applied directly or by using a urea-melamine resin or the like as a binder.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁(JP)

⑩特許出願公開

四公開特許公報(A) 昭63-319191

@Int Cl.4 .

識別記号

厅内整理番号

❸公開 昭和63年(1988)12月27日

B 41 M 5/26

101

Q-7265-2H 7265-2H

審査請求 未請求 発明の数 1 (全9頁)

❷発明の名称 感熱記録用転写材料

> 创特 頤 昭62-154311

図出 **期 昭62(1987)6月23日**

73発 明 者 細 B

宣

神奈川県川崎市川崎区扇町5-1 昭和電工株式会社化学

品研究所内

@発 眀 者 村 州 男

神奈川県川崎市川崎区扇町5-1 昭和電工株式会社化学

品研究所内

①出 願 昭和電工株式会社 人

東京都港区芝大門2丁目10番12号

00代理 弁理士 育 木 外5名 朗

明

1. 発明の名称

感然配錄用転写材料

2. 特許請求の範囲

1. 支持フィルム上にレーザ光の照射により発 熟する物質を含む層と昇華性染料を含む層とを設 けてなる、感熱記録用転写材料。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、感熱記録用転写材料に関する。さら に詳しく述べるならば、本発明は、レーザ光照射 により染料を昇華させて、転写体に文字や画像を 記録するための昇華型感熱記録用転写材料に関す **る**。

(従来の技術)

従来、この分野の記録方法としては、染料を担 持した支持体(転写材料)と受像体(転写体)と を対向させ、サーマルヘッド等の、電気相号によ り制御される熱源を圧着して、文字もしくは画像

を転写記録する方法がある。しかし、この方法で は、転写に際して一般に高温を必要とするため、 サーマルヘッドを用いた場合に放熱時間等の制約 から、記録速度が遅くなるという問題点がある。

[発明が解決しようとする問題点]

本発明の目的は、従って、サーマルヘッドの代 りにレーザ光を用いた、高速でしかも解像度の良 好な転写画像を得ることのできる、昇華型感熱記 録用転写材料を提供することにある。

(問題点を解決するための手段)

本発明によれば、支持フィルム上にレーザ光の 照射により発熱する物質を含む層と昇雄性染料を 含む層とを設けてなる、感熱能録用転写材料が提 供される。

本発明の転写材料においては、通常、レーザ光 の照射により発熱する物質を含む層 (発熱層) と 昇華性染料を含む層(色材層)とは、この順に专 持フィルム上に積層されている。この転写材料、

好ましくはシート状の材料、の色材層側に受像シートを密着させ、転写シートの支持フィルム側からレーザ光を照射すると、色材層中の染料が昇難 して受像シート上に転写される。

照射されたレーザ光を吸収して発熱する物質は 任意に選ぶことが可能であるが、近年普及の著し い半導体レーザを用いる場合は、特に、近赤外領 域に特性吸収を持つ物質が適当である。例として は、シアニン系色素、スクワリリウム系色素、ナ フトキノン系色素、アントラキノン系色素等があ り、具体的には下記要1に示す化合物を挙げるこ とができる。

以下余白

(3)

麦 1

	構造式 (略 称)	ス (溶媒)	• × 1 0 -
	1. ニトロソ化合物		
	2. ポリメチン系色素(シアニン色素)		
1	(CH ²) ^x N (CB ² CH) ^z CH ² · N (CH ³) ^x C10 ⁴	735nm (ジクロルメタン)	35.3
2	(CH ₂) ₂ N — (CH ₂ CH) ₁ — CH — H(CH ₂) ₂ = 2	790	
	n = 3	883 (酢酸)	
3	N (CH ₂) ₂ (PNNA) R=H	833	20.8
	C=CH - CH=CH - C (TPMP) E=N(CH ₂);	810	18.3
.		708	
4	C ₂ H ₂ C ₃ H ₄ C ₃ H ₅ C ₃ H ₅ C ₃ H ₅	818	
5	$C_{\pi}H_{\alpha}-N$ C_{π	704	
	n - 2	810	ļ

_		襟	造	式	(略	称)	A=== (溶媒)	8 × 1 0 -4
	(CYS)			s 🛶	2	C10+	773	21.0
6	CH - (C	H=CB)		i j) .	1-	758	
	Ceff s		•	C = H *				
7	CH. CH.		B			C10+	755 (エタノール)	24.0
	OI N CH-(CH-	CR),~	₹ /	(9)				
	CH 3		CH .					
8	ÇHCH.		(CH. CH.		R = R ' = CH a	709	18.8
	CH-	(CH-CH	_			R = (CH ₂) ₄ SO ₃ Na ⁻	・ 782 (エタノール) 795 (DMSO)	19.6
	N I			B.	•	$\begin{cases} B' - (CH^2) * SO^2 - \\ & \end{cases}$	(ĎMŠO)	
	CH = CH =	<i>.</i>		CH. CH	<u>`</u>	C10.	787	34.0
9	CH-CH-	بار	B-CH-	\leq	9)	0.07	787 (ジクロルメタン)	
	C*H*OCH*	ĊI		Ϊ C±Ħ≠0	CH :			
	~~s>	,	$\overline{}$	٠	/s			
10	CH CH-	CH	4	- CH CH -		C1 C10	823 (DMSO)	15.6
	l C∗Hs	$\widehat{\bigcirc}$	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	5)	Ċ,	(JR-140)		
		0	, ()				
	1						•	

(5)

_	排 造 式 (略 弥)			ス*** (熔媒)	* × 1 0 - 4
11	アズレニウム系 (CH ₃) ₂ H CH ₃	1-		728 (ジクロルエタン)	16.9
12	ビリリウム、チオビリリウム系 ス CH - (CH=CH) n - (CH) n - (CH=CH) n - (CH) n - (n = 1 n = 2	X = S X = S X = 0 X = H - C = H =	755 879 798 748 (ニトロメタン)	
13	○		• .	749	
14	3. スクワリリウム系色素他 C(CH=)= CH C(CH=)= C(CH=)=	(505)	·	800	

	株 造 式 (略 称)	∤(溶媒)	e × 1 0 - 4
15	(CH ₂) ₂ N	· 700	·
16	クロコニウム系 OT CH CH CAH CAH CAH CAH CAH CAH	845	,
17	ジチオール諸塩 R S S R H N I R - C = H +	780 (ジクロルメタン)	1.9
18	R ' = OCH ; R ' = OCH ; R ' = OCH ;	866 925 802 (クロロホルム)	3.1 3.5 4.3

(7)

構造 式 (略 称)	λ _{вих} (溶媒)	4 × 1 0 - 4
$\begin{bmatrix} CI & CI & CI \\ CI & S & M & S & CI \\ CI & CI & CI \end{bmatrix}$ $H - MI$	885 .	1.57
S N S N (C*H*) * N (C*H*) * N = N1		
$0 \qquad 0 \qquad 0 \qquad N = Ni$ $N = Co$	984 1780 (ジクロルメタン)	1.46 0.56
$ \begin{array}{c} N = Ni \\ H = Co \\ H = Pt \end{array} $	1110 1150 1200	1.2 1.4 1.5

	構 造	式 (略 称)		A (溶媒)	s × 1 0 -
T	5. フタロシアニン系色素		•		
	R \	В — н	79 — H	(クロルベンセン) 790	17.0
23		*	n - Pb	790	
.3		*	n — Ti	/20	
-	H N N	$S = C(CB^2)^2$	n = H	702	1
		8 - (O)	м — РЪ	725	25.1
4	Znナフタロシアニン			. 760	14.1
	ナフタロシアニン モノ 6. トリアリルメタン来色索	フロロ証後体		730 (ピリジン)	
25	* (*H2) NO			716	5.4
26		CH =) =		715	

(9)

		排	遊	式	(略	称)	ス*** (溶媒)	a × 1 0 -4
27	(CH =) IN	Й (СН	·) ·				850 647 (酢酸)	
28	(CHa) a K	N (CH	2) z			酸性物質と接触し発色		
29	(GH =) = N	(H ₂):	*	(CH ₃) _E			770 (酢酸)	

	精 追 式 (略 称)	オニニ (溶媒)	8 × 1 0 -
30	(CH ₃) ₃ N N(CH ₃) ₂ 酸性物質と接触し発色後	850	
31	7. インモニウム、ジインモニウム系色素 (CH ₃) ₂ N	725(水)	
32	(CH,) N N (CH,) N	920	
	N(CR ₂):		

(11)

	構造式 (略称)		ス ₌▲ (溶媒)	E × 1 0 -4
33	(CaH ₁) = N	2C10. ⁻	1090 (ジクロルメタン)	10.2
34	(C _a H _a) _a N N (C _a H _a) _a	SbP.	980 (アセトン)	2.67

	構 造 式 (略称)	∤ ••≖ (溶媒)	e × 1 0 -4
	8. ナフトキノン系 アントラキノン系色 ナフトキノン系	*		
35	O CB O NH	R - B	768 774	1.52
36	0 -S -S -O - NH - O - NH - O - O - O - O - O - O - O - O - O -	B, - MHCH*	. 725 732 785	1.52 1.03 1.25
37	O N D N D D N B	x — a x = Br	750 785	3.2

(13)

	排 造 式 ()	路 称)	l (溶媒)	* × 1 0 -
7 7	トラキノン系他			
X	o HA			:
Y YOT	√√s.	X = E	712	1.5
x x	O HW	¥ = F	770	1.5
C.B., -0 (CH.) . H			705 (液晶)	2.4
	0 NH. O			
	0 NH: 0 NH: CR: CD - CH:		750 (キジレン)	2.2

	構 造 式 (略 称)	l (溶媒)	a × 1 0 -4
41	C*H*O NH*O	810 (後語)	
42	R N O NH O NH O N R		
43		748	6.7
44	O HM O	721	1.3

(15)

---600---

これらの近赤外線吸収色素は、直接塗布して適用してもよく、または尿素-メラミン樹脂、尿素-ホルマリン樹脂、エポキン樹脂、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリエーチル樹脂、ポリスルホン樹脂等をパインダーとして用いて適用してもよい。

色材層を構成する昇華性染料としては、 通常のポリエステル繊維材料の転写捺染用築料、昇華性の高いカラーフォーマーを含むイオン系染料、または特に昇華型転写用に開発された染料等が用いられる。これら染料を融点または軟化点の高い樹脂と溶剤又は水等の溶媒と混合することにより、色材層を構成するインクを調製することができる。また、色材層には、非昇華性の粒子、界面活性剤等を添加して用いることもできる。

上記インクを調製するための樹脂は通常の印刷インキに使用されるものであってよく、例えばロジン系、フェノール系、キシレン系、石油系、ビニル系、ポリイミド系、アルキッド系、ニトロセルロース系、アルキルセルロース系、エーテル系、

エステル系などの油性系の樹脂、またはマレイン酸系、アクリル酸系、カゼイン、シエラック、ニカワ等の水性系樹脂を使用することができる。 より具体的には、融点または軟化点の高いポリカーボネート、ポリスルホン、ポリフェニレンオキサイド、ポリアクリレート、セルロース誘導体等を挙げることができる。

これらの光-熱変換物質および昇率性染料は、 通常、プラスチックフィルム上に、光-熱変換物質から昇率性染料の順に堕布される。用いられる プラスチックフィルムとしては、例えば、ポリエステル、ポリイミド、ポリ塩化ビニル、ポリエチレン、ポリプロピレン等のフィルムを挙げることができるが、半導体レーザ光を透過するフィルムであれば、上記のものに限らず用いることが可能である。

転写体、特に受像シートとしては、紙、合成紙、 プラスチックフィルム等を挙げることができる。

(実施例)

以下に、実施例を挙げて、本発明をさらに説明 する。例中、「部」は重量部を示す。

実施例 1

フタロシアニンPb 錯体 2 0 部をポリイミドワニス8 0 部に分散させ、ワイヤーバーコーティングによりポリエステルフィルムにコートし、乾燥した。加熱硬化した後、得られる色剤層は 5 mの厚みを有していた。この後、さらにこの上にナフトキノン系の昇華性分散染料 5 部、ポリカーボネート 5 部、ジクロルメタン 100部およびシリカ粒子(平均粒径 5 m) 1 0 部からなる分散液を塗布して、厚み 3 mとなる様にした。

この転写フィルムとポリエステルラミネート紙とを重ね合せ、フィルム側より半導体レーザ (液長 830nm、出力 5 0 mW) を光学系を通して 2 5 m 径のスポット状として照射し、良好な転写像を得た。

結果を表2に示す。

(18)

けなかった以外は、同様にして、転写フィルムを 作成し、ポリエステルラミネート紙と重ね合せて、 サーマルヘッド(12 dot/m、0.7 mW/dot の ラインヘッド)を用いて、転写記録を行った。

結果を表2に示す。

妻 2

	実施例1	実施例 2	実施例3	比較例
記録方法	レーザ	レーザ	レーザ	サーマル ヘッド
印 加· エネルギー	1. 0 nJ/d	I. 0	1. 0 •J/d	0. 8 mJ/d
マクベス 反射濃度	1. 2	1. 2	1. 2	1. 0
解像性	4 0 本/=	4 0 本/==	40 本/m	12 本/mm

(発明の効果)

本発明によれば、レーザ光を照射することにより転写印字することのできる感熱記録用転写材料が提供され、解像度の良好な転写画像を高速で得ることができる。

実施例 2

フタロシアニンPb 錯体に代えて、下記式のポリメチン系色素

20部を用いた以外は、実施例1と同様な方法で、 転写材料を調製し、良好な転写像を得た。

結果を表2に示す。

実施例3

フタロシアニンPb 錯体の代りに、下記式、

のレーザ光吸収色素を用いた以外は、実施例1と 同様の方法で、転写材料を作成し、良好な転写像 を得た。

結果を表2に示す。

比較例

実施例1において、フタロシアニンPb 層を設

(19)