Ringen en Lichamen

Luc Veldhuis

11 December 2017

Herhaling

- F/\mathbb{F}_p , $[F:\mathbb{F}_p]=d$, F is een d dimensionale \mathbb{F}_p vectorruimte. $F\cong \mathbb{F}_p^d$. $|F|=|\mathbb{F}_p^d|=p^d$.
- $F[X]/(f(x)) = \{\overline{a_0 + a_1x + \dots + a_{d-1}x^{d-1}}\}.$ $d = \deg(f(x)) \text{ met alle } a_i \in F.$

Idee

Als F een lichaam is met $q=p^d$ elementen p een priemgetal en $d\geq 1$ en $a\in F^*$, dan is $a^{q-1}\equiv 1$ (Lagrange voor groep F^*). a is nulpunt van $x^{q-1}-1$.

F is de nulpuntsverzameling van $x^q - x$.

Vandaag: draai dit om. Maak een eindig lichaam met q elementen als de nulpuntsverzameling van $x^q - x$.

Stelling 3.1

Als F een lichaam is en f(x) een polynoom met coëfficiënten in F[X] en graad ≥ 1 heeft, dan bestaat er een eindige uitbreiding E/F zodat f(x) een product is van lineaire factoren in E[X]. f(x) splitst volledig in E[X].

Bewijs

Inductie naar deg(f(x)) (en alle F)

Als deg(f(x)) = 1, neem E = F.

Als $deg(f(x)) = d \ge 2$, neem aan dat de bewering geldt voor alle F, alle g(x) in F[x] met graad $1, 2, \ldots, d-1$.

Schrijf f(x) = g(x)h(x) in F[x] met g(x) irreducibel in F[x] (want ontbindingsring).

Laat y een andere variabele zijn en F' = F[x]/g(y).

F' is een lichaam, want g(y) is irreducibel in F[y].

We hebben $F \subseteq F'$ als deellichaam en $[F' : F] = \deg(g(x))$.

Bewijs (vervolg)

Zij a de kasse van y in F'. Dan is g(a) = 0 in F'. In F'[x] hebben we $g(x) = (x - a)\widetilde{g}(x)$ voor een $\widetilde{g}(x)$ in F'[x]. $f(x) = (x - a)\widetilde{g}(x)h(x)$ in F'[x]. Hierin heeft $\widetilde{g}(x)h(x)$ graad d-1 in F'[x]. Volgens de inductie (voor $\widetilde{g}(x)h(x)$ en lichaam F') is er een eindige uitbreiding E/F' zodat $\widetilde{g}(x)h(x)$ volledig splitst in E[x]. $a \in F' \subseteq E \Rightarrow f(x) = (x - a)\widetilde{g}(x)h(x)$ splitst volledig in E[x]. E/F is eindig: $[E:F] = [E:F'][F':F] < \infty$.

Voorbeeld

$$F=\mathbb{Q},\ f(x)=x^4-2$$
 irreducibel (Eisenstein met (2)). $F'=\mathbb{Q}[y]/(y^4-2)\cong\mathbb{Q}(\sqrt[4]{2})\subseteq\mathbb{R}.$ In $F'[x]$ hebben we $x^4-2=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x^2+\sqrt[4]{2}).$ $(x^2+\sqrt[4]{2})$ heeft geen reëele wortels, dus ook niet in $F\subseteq\mathbb{Q}.$ Als we wel imaginaire getallen mee nemen krijgen we: $x^4-2=(x-\sqrt[4]{2})(x+\sqrt[4]{2})(x-i\sqrt[4]{2})(x+i\sqrt[4]{2}).$ Dit geeft $F=\mathbb{Q}\subseteq F'=\mathbb{Q}(\sqrt[4]{2})\subseteq E=\mathbb{Q}(\sqrt[4]{2},i\sqrt[4]{2})=\mathbb{Q}(\sqrt[4]{2},i).$ Het minimum polynoom van $i\sqrt[4]{2}$ over F' deelt $x^2+\sqrt[4]{2}.$ Geen nulpunt in $F'\Rightarrow$ minimum polynoom is $x^2+\sqrt[4]{2}.$

Stelling

Als p een priemgetal is, $d \ge 1$, $q = p^d$ dan:

- Er bestaat een lichaam met *q* elementen.
- Elk tweetal lichamen met *q* is isomorf.

Bewijs

• Neem een eindige lichaamsuitbreiding E/\mathbb{F}_p zodat x^q-x volledig splitst in E[x], dus $x^q-x=\prod_i=1^q(x-q_i)$ in E[x]. Zij $F=\{a_1,\ldots,a_q\}$.

Claim: F is een deellichaam van E. met q elementen (dat wil zeggen a_1, \ldots, a_q zijn verschillend.).

Bewijs claim

- We gaan na (Exercise 1.11?) Gebruik voor $\alpha \in F$ geldt $\alpha \in F \Leftrightarrow \alpha^q = \alpha$.
 - $1 \in F$ want $1^q = 1$
 - als $a,b \in F$, dan ook $a-b_i$, $ab \in F$. Neem $a,b \in F$ dus $a^q=a,b^q=b$ dan geldt $(ab)^q=a^qb^q=ab$ dus $ab \in F$. Als Fr_p de Frobenius in karakteristiek p is, dus $Fr_p(\beta)=\beta^q$ en $Fr_p(\beta+\gamma)=(\beta+\gamma)^p=\beta^p+\gamma^p=Fr(\beta)+Fr(\gamma)$ want p termen vallen weg en $p^d=q$. $Fr(\beta\gamma)=Fr(\beta)Fr(\gamma)$. $(a-b)^q=Fr_p^d(a-b)=Fr_p^d(a)-Fr_p^d(b)=a^q-b^q=a-b \in F$.
 - Als $a \in F$, $a \neq 0$ dan a^{-1} in F. $(a^{-1})^q = a^{-q} = (a^q)^{-1} = a^{-1}$, dus $a \in F$.
- Stel dat niet alle a_i verschillend zijn. Dan is er een i met $(x - a_i)^2 | x^q = x \in E[x]$. Met y een andere variabele, vul $x = y + a_i$ in, dan zou $y^2 | (y + a_i)^q - (y + a_i) = y^q + a_i^q - y - a_i = y^q - y$ in E[y] want $a_i^q = a_i \in F$.

Bewijs (vervolg)

• Zij K een lichaam met q elementen, volstaat te bewijzen: K is isomorf met F.

We hebben
$$\mathbb{F}_p \subseteq F \subseteq E$$
 en $\mathbb{F}_p \subseteq \mathbb{F}_p[x]/(m_b(x)) \subseteq \mathbb{F}_p[x]$. $K = \mathbb{F}_p(b)$ voor een $b \in K$, bijvoorbeeld als $K^* = \langle b \rangle$. Dan is $K \cong \mathbb{F}_p[x]/(m_b(x))$ met $(m_b(x))$ in $\mathbb{F}_p[x]$ het minimumpolynoom van b over \mathbb{F}_p . Idee vind $\phi : \mathbb{F}_p[x] \to F$ met $Ker(\phi) = (m_b(x))$.

Merk op: b is nulpunt van $x^q - x$, dus $m_b(x)$ deelt $x^q - x$ in $\mathbb{F}_p[x]$.

Dan zijn er d elementen in F met

$$m_b(x) = (x - a_{i_1}) \dots (x - a_{i_d})$$
 in $F[x]$.

$$x^q - x = \prod_{i=1}^q (x - a_i) \text{ in } E.$$

Bewijs (vervolg)

Laat c = 1 van die a_{i_j} .

Definieer $\phi: \mathbb{F}_p[x] \to \mathbb{F}_p$ met $g(x) \to g(c)$, dan geldt $(m_b(x)) \in Ker(\phi) \subsetneq \mathbb{F}_p[x]$ want $m_b(c) = 0$ en $(m_b(x))$ is maximaal (want $m_b(x)$ is irreducibel.

Dus $(m_b(x)) = Ker(\phi)$.

Dus in totaal:

$$K \cong \mathbb{F}_p[x]/(m_b(x)) \cong Im(\phi)$$
 $f(b) \longleftrightarrow \overline{f(x)} \mapsto f(c)$

Dus
$$K \cong Im(\phi) \subseteq F$$
, $b \mapsto c$.
 $|K| = |Im(\phi)| = q = |F|$, dus $Im(\phi) = F$.

Opmerking

Als $K = \mathbb{F}_p(b)$ en $m_b(x) \in \mathbb{F}_p[x]$ minimumpolynoom van b over \mathbb{F}_p en F/\mathbb{F}_p met $c \in F$ en $m_b(c) = 0$ dan krijg je:

$$\mathcal{K} \cong \mathbb{F}_p[x]/(m_b(x)) \cong \mathbb{F}_p(c) \subseteq F$$
 $f(b) \longleftrightarrow \overline{f(x)} \mapsto f(c)$

met $b \mapsto c$.

Voorbeeld

$$F = \mathbb{F}_7[x]/(x^2+1)$$
, $E = \mathbb{F}_7[y]/(y^2+y+3)$.
 x^2+1 irreducibel in $\mathbb{F}_7[x]$, y^3+y+3 irreducibel in $\mathbb{F}_7[y]$.
 E,F zijn lichamen met 7^2 elementen.

Zij $b \in F$ de klasse van $x, c \in E$ de klasse van y.

Minimumpolynoom van b over \mathbb{F}_7 is $x^2 + 1$.

Voor isomorfisme $f: F \to E$ vind een element d in E met $d^2+1=0$.

Probeer
$$d = a_0 + a_1c$$
 met $a_0, a_1 \in \mathbb{F}_7$. We zien $c^2 = 6c + 4$. $(a_0 + a_1c)^2 + 1 = 4a_1^2 + a_0^2 + 1 + 2a_1(3a_1 + a_0)$.

Dit is
$$0 \Leftrightarrow \begin{cases} 4a_1^2 + a_0^2 + 1 = 0 \\ 2a_1(3a_1 + a_0) = 0 \end{cases} \Leftrightarrow \begin{cases} a_0 = 4 \\ a_1 = 1 \end{cases} \text{ of } \begin{cases} a_0 = 3 \\ a_1 = 6 \end{cases}$$

Dus
$$c = 4 + a$$
 of $3 + 6c = -(4 + a)$.

Dan geeft
$$f: F \to E$$
 met $a_0 + a_1 b \mapsto a_0 + a_1 d = a_0 + a_1 (3 + 6c) = (a_0 + 3a_1) + 6a_1 c$ met alle $a_i \in \mathbb{F}_7$