Задание 13 (на 27.11.2013)

СС59. Покажите, что если PSPACE \subseteq P/poly, то PSPACE = MA.

[CC60.] Докажите, что если P = NP, то существует язык из EXP, схемная сложность которого не меньше $2^n/(10n)$.

СС61. Пусть есть оракул, который считает перманент матрицы $n \times n$ над полем $\mathbb F$ верно для доли матриц $1 - \frac{1}{3n}$. Пусть $|\mathbb F| > 3n$). Докажите, что используя этот оракул можно построить вероятностный полиномиальный по времени алгоритм, который для каждой матрицы с большой вероятностью находит ее перманент.

[CC 9.] Машина Тьюринга называется забывчивой, если положение головки в любой момент времени зависит только от длины входа. Докажите, что любую машину Тьюринга, работающую время T(n) можно промоделировать за время $O(T^2(n))$ на забывчивой одноленточной машине. б) А на забывчивой двухленточной за время O(T(n)) (1).

CC 23. Покажите, что каждый язык, который принимается k-ленточной недетерминированной машиной Тьюринга за время f(n) может быть принят 2-ленточной недетерминорованной машиной за время O(f(n)).

СС 45. Докажите, что если унарный язык NP-полный, то P = NP.

[CC 46.] Обозначим UCYCLE множество всех неориентрованных графов, в которых есть цикл. Докажите, что UCYCLE принадлежит классу L.

[CC 50.] ВРL_Н — это класс языков, для которых существует вероятностная машина Тьюринга M, которая использует логарифмическую память, останавливается с вероятностью 1, и для всех x выполняется, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$. Покажите, что $\Pr[M(x) = L(x)] \ge \frac{2}{3}$.

СС 56. Покажите, что AM[k] = AM при $k \ge 2$.

 $\lfloor \mathbf{CC} \ \mathbf{57.} \rfloor$ а) Докажите, что если $\mathrm{BPTime}[f(n)] = \mathrm{BPTime}[g(n)]$, то $\mathrm{BPTime}[f(h(n))] = \mathrm{BPTime}[g(h(n))]$, где f,g,h — конструктивные по времени, $f(n),g(n) \geq \log n,\ h(n) \geq n$ — возрастающая функция. 6) Покажите, что $\mathrm{DTime}[f(n)] \subseteq \mathrm{BPTime}[f(n)] \subseteq \mathrm{DTime}[2^{O(f(n))}]$. в) Покажите, что $\mathrm{BPP} \subseteq \mathrm{BPTime}[n^{\log n}] \subseteq \mathrm{BPTime}[2^n]$.

CC 58. Покажите, что существует такой оракул A и язык $L \in NP^A$, что L не сводится по Тьюрингу к 3SAT, даже если сведение может использовать оракул A.