1203 Last Day Basis & Dimension

A basis of a Vspace is a Linearly Independent & Spanning Set of the space.

=> each basis of a vspace gives a co-ordinate system in which vedors can be expressed uniquely

All bases of a given vspace one same size for a space V this is din (V) the dimension (can be a #, can be a)

(Size of LI sets) & dim V & (Size of span) & if U is a subspace of V $\dim(u) \leq \dim(V) & U = V$ $iff \dim(u) = lin(v)$ Also last day showed if any two of 1) Spans, (2) (I (3) # vectors = dim (V) are true => all 3 are true => we have a basis

 $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\} = S$ Is the a hosis of M22 (2x2 matrices) 1) dim (M22) = 4 = # of vector = n (S) Check L.I. L?. iff $a \ddot{u}_1 + b \ddot{u}_2 + c \ddot{u}_3 + d \ddot{u}_4 = 0$ iff a > b = c = d = 0

that now
$$a = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

only for $a = b = c = d = 0$

$$a + c = 0 \qquad b + d = 0$$

$$b - d = 0 \qquad a - c = 0$$

$$could solve!$$

$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.

$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.
$$1 + a = b - c = d = 0$$
only $\Rightarrow l.7$.

The Wronsteian

Detect. L.I. functions

bronskian of n function is an nxn matrix determinant

$$\frac{1}{\int_{0}^{2} (x)} \int_{0}^{2} (x) \int_{0}^{2} (x) \int_{0}^{2} (x) \int_{0}^{2} (x)$$

Orthogonality & Basis

We need to working in an "inna product space"

ic. we need a real vspace & an inna product <4,0>.

Remember
$$\langle \vec{u}, \vec{v} \rangle = input$$
: 2 vector in V

Output: $\# \in IR$

Proparia: (1) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$

2) $\langle \vec{k}, \vec{v} \rangle = \langle \vec{v}, \vec{v} \rangle$

3) $\langle \vec{u} + \vec{w}, \vec{v} \rangle = \langle \vec{u}, \vec{v} \rangle + \langle \vec{w}, \vec{v} \rangle$

4) $\langle \vec{u}, \vec{u} \rangle > 7,0$ ($||\vec{u}||^2 = \langle \vec{u}, \vec{u} \rangle$

5) $\langle \vec{u}, \vec{u} \rangle = 0$ iff $\vec{u} = \vec{0}$

IL U, U to but <u, v>=0 (=) orthogoral Veda,

An orthogonal set is a set of non-zero vector that are pairwise orthogonal

ie. {\vec{v}_i - \vec{v}_n} such that \vec{v}_i \vec{v}_j = 0

iff iff

An orthonormal set is a orthogonal set where all vector have length 1

ic. $\{\vec{v}_i, -\vec{v}_n\}$ such that $\vec{v}_i \cdot \vec{v}_j = \{0 \ i \neq j \}$

Note any orthogoral set is automatically L.I

Proof

Say $a_i \vec{v}_i + --- a_n \vec{v}_n = \vec{o}$ dot with any \vec{v}_i , say \vec{v}_i $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$ $a_i \vec{v}_i \cdot \vec{v}_i + a_2 \vec{v}_2 \cdot \vec{v}_i + --- a_n \vec{v}_n \cdot \vec{v}_i = \vec{o}_i \cdot \vec{v}_i$

by same lugic, any ai = 0 => (V's L.I (only!) If I have an orthogond basis, is n (set) = dim V => vary pretty co-ordinate calculatin! If " e Span ({ i, in }) $\vec{u} = a_i \vec{v_i} + \cdots = a_n \vec{v_n}$ $\langle \vec{u}, \vec{v}_i \rangle = q_i \langle \vec{v}_i | \vec{v}_i \rangle + \dots \qquad q_r \langle \vec{v}_r, \vec{v}_i \rangle$ = 9:117,112 9; = < 0, v.>/110,11

d V's ore orthoround

a: = < U, V; >

•