CO2 emissions in layered cranberry soils under simulated warming

Wilfried Dossou-Yovo, Ph.D.

13/02/2022

Contents

1	Obj	ective	2
2	Stat	tistical questions	2
3	Pac	kages	2
4	Imp	port data	2
5	Som	ne calculations	2
6	Exp 6.1 6.2 6.3	Histogram	3 4 5
7	What 7.1 7.2 7.3	at is the influence of soil depth and temperature on CO2 emission? Build model: linear regression	6 6 9
8	What 8.1 8.2 8.3	at is the temperature sensitivity across cranberry soil layers? Fit of Arrhenius equation	11 11 13 14
9	Soil 9.1	description Soil layers properties	15 15
10	C:N	ratio in alternate sublayers of sand and organic matter	18
pr	int(S	Sys.Date())	
##	[1]	"2023-01-08"	
a	<- li	ist(10, TRUE, 5.6)	
ls	(pat	= "^V")	
##	char	racter(0)	

1 Objective

This notebook generate the result of CO2 data analysis. Data set contains a collection of soil characteristics, measured co2 emission collected from incubation study. Soil samples was collected from two cranberry field stand of eastern Canada. Incubation study was carried out at Agriculture and Agri-food Canada(Sainte-foy, Quebec,qc) from February to Mai 2019. The aim of this study was to measure CO2 emission rates in cranberry soils of Eastern Canada as related to soil temperature and depth

2 Statistical questions

In addition to data exploration, this notebook will answer the following statistical questions.

- 1. What is the influence of soil depth and temperature on CO2 emission?
- 2. Can Arrhenius equation and Q10 be useful to describe temperature sensitivity of carbon decomposition across layers?

3 Packages

We need package tidyverse which loads a set of packages for easy data manipulation(Ex: dplyr) and visualization (ex: ggplot2). We also use ggpubr to customise publication ready plot, ggpmisc and grid are useful packages as extensions to ggplot2.

4 Import data

We load two data_pot and data_co2 involved in our anylisis. data_pot contained details about sites sampling, soil sampling(soil depth, weight, water content and bulk density), laboratory incubation temperature while data_co2 contained details about laboratory incubation time, co2 emission and jar masson details. data_co2 was combined with data_pot with left_join function

```
# A tibble: 72 x 12
##
       ID po~1 Sites Depth~2 Repet~3 Tempe~4 Pot w~5 Soil ~6 Water~7
                                                                            Water~8 Bulk ~9
##
         <dbl> <chr>
                        <dbl>
                                 <dbl>
                                          <dbl>
                                                   <dbl>
                                                            <dbl>
                                                                     <dbl>
                                                                              <dbl>
                                                                                       <dbl>
##
             6 A9
                           10
                                      1
                                             10
                                                    245.
                                                             110.
                                                                      42.1
                                                                               10.3
                                                                                        0.89
    1
    2
            21 A9
                            10
                                             20
                                                    251.
                                                             110.
                                                                      42.1
                                                                               10.3
                                                                                        0.89
##
                                      1
    3
                                                                                        0.89
##
            54 A9
                            10
                                      1
                                             30
                                                    250.
                                                             110.
                                                                      42.1
                                                                               10.3
##
    4
            18 A9
                            10
                                      2
                                             10
                                                    246.
                                                             125.
                                                                      27.5
                                                                               24.9
                                                                                        0.89
                                      2
##
    5
            59 A9
                            10
                                             20
                                                    248.
                                                             125.
                                                                      27.5
                                                                               24.9
                                                                                        0.89
##
    6
            60 A9
                            10
                                      2
                                             30
                                                    255.
                                                             125.
                                                                      27.5
                                                                               24.9
                                                                                        0.89
    7
                                      3
                                                                      35.5
                                                                                        0.89
##
            41 A9
                            10
                                             20
                                                    248.
                                                             117.
                                                                               16.9
                                      3
##
    8
            55 A9
                            10
                                             10
                                                    249.
                                                             117.
                                                                      35.5
                                                                               16.9
                                                                                        0.89
                           10
                                      3
    9
            61 A9
                                             30
                                                    249.
                                                             117.
                                                                      35.5
                                                                               16.9
                                                                                        0.89
##
## 10
            20 A9
                            10
                                      4
                                             10
                                                    245.
                                                             123.
                                                                      28.7
                                                                               23.7
                                                                                        0.89
     ... with 62 more rows, 2 more variables: `Carbone(%)` <dbl>, pHCaCl2 <dbl>,
       and abbreviated variable names 1: `ID pot`, 2: `Depth (cm)`, 3: Repetition,
           `Temperature (°C)`, 5: `Pot weight (g)`, 6: `Soil weight (g)`,
##
##
       7: `Water volume (ml)`, 8: `Water content (%)`, 9: `Bulk density (g/cm3)`
```

5 Some calculations

Several variables have been added to our data in order to proceed for analysis. The added variables are the following: Temperature (Kelvin), Molar Volume (L/mol), Headspace Volume (mL), Dry soil weight (g), CO2 emission (ug/h/g), CO2 emission (mg/kg), decomposition rate K, lnKand 1/T(T = Temperature(Kelvin))

6 Exploratory data analysis

6.1 Histogram

```
New.labs <- c("10°C", "20°C", "30°C") # Change labels
names(New.labs) <- c("10", "20", "30")

New.labs_b <- c("[0-10 cm]", "[10-20 cm]", "[20-30 cm]") # Change labels
names(New.labs_b) <- c("10", "20", "30")

library(plotly)
ggplotly(
    data_co2 |>
        ggplot() +
        geom_histogram(aes(x = log10(`CO2 emission (ug/h/g)`)), bins = 150)
)

## Warning in FUN(X[[i]], ...): NaNs produced

## Warning: Removed 37 rows containing non-finite values (`stat_bin()`).
```


Data contains some outliers, let remove them

```
data_co2_clean <- data_co2 |>
  mutate(log_tr = log10(`CO2 emission (ug/h/g)`)) |>
  filter(log_tr > -3.06 & log_tr < -0.33) |>
  drop_na()
```

Warning in mask\$eval_all_mutate(quo): NaNs produced

Now data look well distributed

```
ggplotly(
  data_co2_clean |>
    ggplot() +
    geom_histogram(aes(x = log10(`CO2 emission (ug/h/g)`)), bins = 100)
)
```


log10(`CO2 emission (ug/h/g)`)

6.2 Correlations

```
## Correlation computed with
## * Method: 'pearson'
## * Missing treated using: 'pairwise.complete.obs'
```


6.3 Boxplot

7 What is the influence of soil depth and temperature on CO2 emission?

7.1 Build model: linear regression

7.1.1 Fit model

```
model_fit <- model_spec |>
fit(`CO2 emission (ug/h/g)` ~ ., data_co2_preprocessed)
```

7.1.2 Exploring model results

tidy(model_fit) |> kableExtra::kable()

term	estimate	std.error	statistic	p.value
(Intercept)	-1.7027083	0.0098312	-173.193777	0.0000000
'Time (days)'	-0.1031241	0.0098514	-10.467956	0.0000000
'Depth (cm)'	-0.5785889	0.0099251	-58.295368	0.0000000
'Temperature (°C)'	0.2734538	0.0099223	27.559585	0.0000000
Sites_PF45	-0.0201526	0.0098450	-2.046996	0.0411002

glance(model_fit)|> kableExtra::kable()

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.residual
0.8677052	0.8668098	0.240011	969.074	0	4	7.357261	-2.714521	23.62692	34.04471	591

7.1.3 Inspect the model

Fitted values

Theoretical Quantiles stats::Im('CO2 emission (ug/h/g)' ~ .)

stats::Im('CO2 emission (ug/h/g)' ~ .)

Leverage stats::Im('CO2 emission (ug/h/g)' ~ .)

7.1.4 Prediction

prediction <- model_fit |> predict(data_co2_preprocessed)

7.1.5 collect Metrics

рх

```
rmse <- data_co2_preprocessed |>
  bind_cols(prediction) |>
  rmse(`CO2 emission (ug/h/g)`, .pred)
rmse |>
  kableExtra::kable()
         .estimator
 .metric
                     .estimate
                    0.2390021
         standard
 rmse
rmse <- round(as.numeric(rmse[1,3]), 2)</pre>
rsq <- data_co2_preprocessed |>
  bind_cols(prediction) |>
  rsq(`CO2 emission (ug/h/g)`, .pred)
rsq |>
  kableExtra::kable()
         estimator
 .metric
                     .estimate
         standard
                    0.8677052
 rsq
rsq <- round(as.numeric(rsq[1,3]), 2)
options(repr.plot.width = 4, repr.plot.height = 2)
px <- data_co2_preprocessed |>
  bind_cols(prediction) |>
  ggplot(aes(x = CO2 emission (ug/h/g), y = .pred)) +
  geom_point(size = 1, alpha = .3) +
  geom_label(aes(x = -3, y = -.6),
             vjust = 1, hjust = 0, size = 2, label.size = 0.1,
             label = paste("R2 =", rsq, "\nRMSE =", rmse)) +
  geom_abline() +
  scale_x_continuous(breaks = c(-3, -2, -1), labels = c("-3", "-2", "-1")) +
  scale_y = c(-3, -2, -1), labels = c("-3", "-2", "-1")) +
  theme pubr() +
  theme(axis.title=element_text(size=7),
       axis.line = element_line(size = 0.1),
       axis.ticks = element_line(size = 0.1),
        axis.text = element_text(size = 6)) +
  labs(x= bquote("Observed log"~CO[2]~
                   'emission rate ('*mu~'g'~ h^-1~g^-1*')'),
       y = bquote("Predicted log"~CO[2]~
```

'emission rate ('*mu~'g'~ h^-1~g^-1*')'))

7.2 Variable coefficient and confidence intervals

```
options(repr.plot.width = 8, repr.plot.height = 2)
term_rename <- tibble(term = c("`Time (days)`", "`Depth (cm)`",</pre>
                               "Temperature (°C)", "Sites_PF45"),
                      name_corrected = c("Elapsed time", "Layer", "Temperature", "Management"))
h <- broom::tidy(model_fit, conf.int = TRUE) |>
  dplyr::filter(term != "(Intercept)") |>
  left_join(term_rename, by = "term") |>
  mutate(term_rename = fct_reorder(name_corrected, estimate)) |>
  ggplot(aes(estimate, term_rename)) +
  geom_vline(xintercept = 0, linetype = 2) +
  geom_point() +
  geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0.1,
                 size=0.5) +
  scale_x_continuous(breaks = c(-0.6, -0.4, -0.2, 0.0, 0.2),
                     labels = c("-0.6", "-0.4", "-0.2", "0.0", "0.2")) +
  labs(x = "Coefficient", y = "") +
  theme light() +
  theme(axis.text=element_text(size=14),
        axis.title=element_text(size=14)) # Time (d)
```



```
ggsave("figures/Linear-model-Co2_with_site.png", width = 8,
    height = 2, dpi = 600)
```

7.3 Prediction model of CO2 emission in cranberry soils in three-layer positions (0-10 cm, 10-20 cm, 20-30 cm) and at three temperatures (10, 20 and 30oC).

```
New.labs <- c("10°C", "20°C", "30°C") # Change labels
names(New.labs) <- c("10", "20", "30")
New.labs_b <- c("[0-10 cm]", "[10-20 cm]", "[20-30 cm]") # Change labels
names(New.labs b) <- c("10", "20", "30")
options(repr.plot.width = 8, repr.plot.height = 6)
pl <- data_co2_clean |>
 bind_cols(10^prediction) |>
  ggplot(aes(x = Time (days)), y = CO2 emission (ug/h/g))) +
  geom_smooth(aes(x = `Time (days)`, y = `.pred`), color = "black", size = .5) +
  geom_point(size = 2, alpha = .3) +
  facet_grid(`Depth (cm)` ~ `Temperature (°C)`, scales = "free",
             labeller = labeller(`Depth (cm)` = New.labs_b,
                                 `Temperature (°C)` = New.labs)) +
  scale_y_log10() +
  theme_bw() +
  theme(strip.text = element_text(size = 12), axis.text=element_text(size=12),
       axis.title=element_text(size=14),
       axis.title.y = element_text(size=14)) +
```


8 What is the temperature sensitivity across cranberry soil layers?

8.1 Fit of Arrhenius equation

The Arrhenius equation has been used to describe temperature sensitivity to CO2 emission. The Arrhenius equation was computed as follows:

$$\begin{split} k &= A e^{\frac{-Ea}{RT}} \\ &log\left(k\right) = log\left(A e^{\frac{-Ea}{RT}}\right) \\ &log\left(k\right) = log\left(A\right) + log\left(e^{\frac{-Ea}{RT}}\right) \\ \\ &log\left(k\right) = log\left(A\right) - \frac{1}{T} \times \left(\frac{Ea}{R}\right) \end{split}$$

Where A is the pre-exponential factor and Ea is activation energy assumed to be independent of temperature, R is the universal gas constant and T is absolute temperature (Kelvin)

```
models_co2 <- data_co2 %>%
  group_by(`Depth (cm)`) %>%
  summarise(linmod = list(lm(lnK ~ `1/T`)))
models_co2
## # A tibble: 3 x 2
##
     `Depth (cm)` linmod
##
            <dbl> <list>
                10 <lm>
## 1
                20 <lm>
## 2
## 3
                30 < lm >
linmod_coef <- list()</pre>
for (i in seq_along(models_co2$linmod)) linmod_coef[[i]] <- models_co2$linmod[[i]]$coefficients</pre>
linmod_coef <- do.call(rbind.data.frame, linmod_coef)</pre>
names(linmod_coef) <- c("Intercept", "Slope")</pre>
linmod_coef <- bind_cols(unique(data_co2["Depth (cm)"]), linmod_coef)</pre>
linmod coef |>
  kableExtra::kable()
```

Depth (cm)	Intercept	Slope
10	11.60517	-6001.720
20	13.96191	-7052.007
30	18.53837	-8557.755

8.2 Activation Energy computation

```
Activation_energy <- tibble(
    Soil_layers = c("10", "20", "30"),
    intercept = NA,
    slope = NA,
    adj_r_sq = NA
)

lm_arrhenius <- for (i in 1:nrow(Activation_energy)) {

    lm_Activation_energy <- data_co2_clean %>%
        filter(`Depth (cm)` == Activation_energy$Soil_layers[i]) %>%
        lm(lnK ~ `1/T`, data = .)

# intercept
Activation_energy$intercept[i] <- coef(lm_Activation_energy)[1]

# Slope
Activation_energy$slope[i] <- coef(lm_Activation_energy)[2]

# statistics
Activation_energy$adj_r_sq[i] <- summary(lm_Activation_energy)$adj.r.squared
}</pre>
```

```
R = 8.3144621 / 1000 # Gas constant Kj/mol/K
Activation_energy <- Activation_energy %>%
  mutate(Ea = -slope * R) %>%
  select(Soil_layers, adj_r_sq, Ea)
Activation_energy |>
  flextable()
```

Soil_lay	vers adj_r_sq	Ea
10	0.4770485	47.49089
20	0.4015598	58.63364
30	0.5066868	64.90871

8.3 Computing K median in order to compute Q10 value accross soil depth

```
K_median <- aggregate(K ~ `Sites` + `Time (days)` + `Depth (cm)` +</pre>
                          `Temperature (°C)`, data = data_co2_clean, FUN = median)
K_median <- K_median %>%
  pivot_wider(names_from = `Temperature (°C)`, values_from = K)
K_median$Q_20_10 <- K_median$`20` / K_median$`10`</pre>
K_median Q_30_20 \leftarrow K_median ^30 \ / K_median ^20 \
K_median <- K_median %>%
  na.omit(K median)
data_Q10 <- gather(data = K_median, key = `Temperature range`,</pre>
                    value = Q10, c(^Q_{20_{10}}, ^Q_{30_{20}}),
                    factor_key=TRUE)
stat_Q10 <- data_Q10 |>
  group_by(`Depth (cm)`) |>
  get_summary_stats(Q10)
stat_Q10 |>
  kableExtra::kable()
```

Depth (cm)	variable	n	min	max	median	q1	q3	iqr	mad	mean	sd	se	ci
10	Q10	36	0.785	3.528	1.818	1.672	2.319	0.647	0.542	1.994	0.568	0.095	0.192
20	Q10	36	1.084	5.869	2.046	1.789	2.634	0.845	0.579	2.330	0.936	0.156	0.317
30	Q10	24	0.627	4.943	2.631	2.175	3.054	0.879	0.709	2.640	0.873	0.178	0.369

```
New.labs_c <- c("[10°C-20°C]", "[20°C-30°C]") # Change labels
names(New.labs_c) <- c("Q_20_10", "Q_30_20")

options(repr.plot.width = 8, repr.plot.height = 4)
data_Q10 |>
mutate(`Layers` = as.character(`Depth (cm)`)) |>
ggplot(aes(x = `Time (days)`, y = `Q10`)) +
facet_grid(`Temperature range`~`Depth (cm)`,
```



```
ggsave("figures/Variation of Q10 across layers.png", width = 8,
height = 4, dpi = 600)# export plot high resolution
```

9 Soil description

9.1 Soil layers properties

Import data

```
data_carbon_credit <- read_csv2('data/data_carbon_credit.csv')

## i Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more control.

## Rows: 24 Columns: 15

## -- Column specification ------

## Delimiter: ";"

## chr (3): Location, Layer (cm), 0_30_ID

## dbl (12): Sample, Site age, Repetition, Bulk density (kg m-3), pHCaCl2, Sand...

##</pre>
```

```
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
data_carbon_credit <- data_carbon_credit |>
      mutate(`C:N ratio` = `Carbone (%)` / `Nitrogen (%)`)
Some calculations
mean_sd_CoverN <- data_carbon_credit |>
      group_by(`Layer (cm)`) |>
      summarize(mean_C_over_N = mean(`C:N ratio`, na.rm = TRUE),
                                                                         se_C_over_N = sd(`C:N ratio`, na.rm = TRUE)/
                                          sqrt(length(!is.na(`C:N ratio`))))
mean_sd_CoverN
## # A tibble: 3 x 3
               `Layer (cm)` mean_C_over_N se_C_over_N
##
##
                                                                              <dbl>
## 1 [0-10]
                                                                               20.1
                                                                                                                      1.05
## 2 [10-20]
                                                                               16.0
                                                                                                                      1.91
## 3 [20-30]
                                                                                  9.02
                                                                                                                      1.96
data_carbon_credit |> get_summary_stats(`C stock (kg m-3)`)
## # A tibble: 1 x 13
           variable
                                                                           min
                                                                                             max median
                                                                                                                                        q1
                                                                                                                                                           q3 iqr
                                                                                                                                                                                           mad mean
##
               <fct>
                                                    <dbl> 
## 1 C stock (k~
                                                            24 1.67 30.9
                                                                                                                12.5 6.57 16.7 10.1 7.78 12.1 7.05 1.44
## # ... with 1 more variable: ci <dbl>
data carbon credit |>
      group by(`Layer (cm)`) |>
get_summary_stats(`C stock (kg m-3)`)
## # A tibble: 3 x 14
              Layer (~1 varia~2
                                                                                                               max median
                                                                                 n min
                                                                                                                                                          q1
                                                                                                                                                                            q3
                                                                                                                                                                                            iqr
                                                                                                                                                                                                              mad mean
               <chr>
##
                                                                     <dbl> 
                                            <fct>
## 1 [0-10]
                                            C stoc~
                                                                                 8 11.4
                                                                                                             22.2
                                                                                                                            16.2 15.1 17.4
                                                                                                                                                                                         2.35
                                                                                                                                                                                                        1.60 16.6
## 2 [10-20]
                                            C stoc~
                                                                                  8 6.52 30.9 11.8
                                                                                                                                                    6.74 17.1 10.4
                                                                                                                                                                                                           7.62 13.6
                                                                                                                                                                                                                                                8.35
## 3 [20-30]
                                            C stoc~
                                                                                 8 1.67 14.8
                                                                                                                                  5.36 3.31 7.42 4.11 3.04 6.09 4.06
## # ... with 2 more variables: se <dbl>, ci <dbl>, and abbreviated variable names
## # 1: `Layer (cm)`, 2: variable
data_carbon_credit |>
      group_by(`Layer (cm)`) |>
get_summary_stats(`C:N ratio`) |>
     kableExtra::kable()
                                                                                                                                                   iqr mad mean
Layer (cm) variable n min
                                                                          max median
                                                                                                                                      q3
                                                                                                                                                                                                  \operatorname{sd}
                                                                                                                                                                                                                                ci
                                                                                                                     q1
                              C:N ratio 8 15.0 23.333 | 20.909 17.778 | 22.500 4.722 | 2.976 | 20.088 | 2.970 1.050 | 2.483
[0-10]
[10-20]
                             C:N ratio 8 10.0 24.444 15.833 11.500 20.000 8.500 6.177 16.014 5.397 1.908 4.512
                             C:N ratio 8 2.5 20.000
                                                                                            8.333 5.962 10.625 4.663 4.324
[20-30]
                                                                                                                                                                            9.022 5.541 1.959 4.633
library(viridis)
plot_desc <- function(y, ylab){</pre>
     New.labs_c <- c("Site A9", "Site 45") # Change labels</pre>
```

```
names(New.labs_c) <- c("Belanger/ A9", "Fortier/ 45")</pre>
  ggplot(data_carbon_credit, aes(`Layer (cm)`, y, color = `Layer (cm)`)) +
    geom_boxplot(outlier.shape = NA) +
facet_grid( . ~ `Location`, scales = "free",
            labeller = labeller(`Location` = New.labs_c)) +
    theme_bw() +
    scale_color_viridis_d(option = "G", begin = .1, end = .8) +
    scale_x_discrete(labels = c("[0-10 cm]", "[10-20 cm]", "[20-30 cm]")) +
theme(strip.text = element_text(size = 11), axis.text=element_text(size=11),
      axis.text.x = element text(size = 8),
        axis.title=element_text(size=11), legend.position = "none") +
    labs(y = ylab)
plot1 <- plot_desc(data_carbon_credit$`C stock (kg m-3)`,</pre>
                    bquote("C stock (kg" ~m^-3~")"))
plot2 <- plot_desc(data_carbon_credit$`C:N ratio`, "C:N ratio")</pre>
plot3 <- plot_desc(data_carbon_credit$`Bulk density (kg m-3)`, # m-3</pre>
                    "Bulk density (kg"~m^-3~")")
plot4 <- plot_desc(data_carbon_credit$pHCaCl2, bquote(pHCaCl[2]))</pre>
plot5 <- plot_desc(data_carbon_credit$`Total porosity`, "Total porosity (%)")</pre>
plot6 <- plot_desc(data_carbon_credit$`Water content (%)`, "Water content (%)")</pre>
options(repr.plot.width = 8, repr.plot.height = 6)
figure <- ggarrange(plot1, plot2, plot3, plot4, plot5, plot6,</pre>
                     labels = c("A", "B", "C", "D", "E", "F"), label.x = 0.05,
                     label.y = 1.01,
                     ncol = 2, nrow = 3)
figure
```


10 C:N ratio in alternate sublayers of sand and organic matter

Data loading

```
Carbon_credit <- read_csv2('data/data_carbon_sublayer.csv')
Carbon_credit |>
  kableExtra::kable()
```

Projet	Site	Horizon	Depht (cm)	Thickness(cm)	Layers	Bulk density(kg m-3)	Soil texture	$Site_age$	${ m Munsell}_{_}$
Pedology	$ m_{Belanger/A9}$	H1	1.8	1.8	[0-1.8]	912.7	Sand	14	10YR - 5
Pedology	$_{ m Belanger/A9}$	H2	2.2	0.4	[1.8-2.2]	912.7	Organic matter	14	10YR - 4
Pedology	Belanger/A9	Н3	3.2	1.0	[2.2-3.2]	912.7	Sand	14	2,5Y - 5,
Pedology	Belanger/A9	H4	3.6	0.4	[3.2-3.6]	912.7	Organic matter	14	10YR - 3
Pedology	Belanger/A9	Н5	5.1	1.5	[3.6-5.1]	912.7	Sand	14	10YR - 4
Pedology	Belanger/A9	Н6	5.8	0.7	[5.1-5.8]	912.7	Organic matter	14	10YR - 3
Pedology	m Belanger/A9	Н7	9.5	3.7	[5.8-9.5]	912.7	Sand	14	2,5Y - 5,
Pedology	m Belanger/A9	Н8	12.0	2.0	[9.5-12]	1384.4	Organic matter	14	10YR - 2
Pedology	m Belanger/A9	Н9	12.5	0.5	[12-12.5]	1384.4	Sand	14	10YR - 4
Pedology	m Belanger/A9	H10	19.2	6.7	[12.5-19.2]	1384.4	Sand	14	10YR - 3
Pedology	m Belanger/A9	H11	27.7	7.7	[19.2-27.7]	1403.0	Sand	14	10YR - 4
Pedology	m Belanger/A9	H11	30.0	2.3	[27.7-30]	1403.0	Sand	14	1,25Y - 4
Pedology	Fortier/45	H1	2.0	2.0	[0-2]	906.1	Organic matter	19	10YR - 2
Pedology	Fortier/45	H2	5.0	3.0	[2-5]	906.1	Organic matter	19	7,5YR -
Pedology	Fortier/45	Н3	6.1	1.1	[5-6.1]	906.1	Sand	19	2,5Y - 5,
Pedology	Fortier/45	H4	6.4	0.3	[6.1-6.4]	906.1	Organic matter	19	10YR - 3
Pedology	Fortier/45	Н5	7.2	0.8	[6.4-7.2]	906.1	Sand	19	2,5YR -
Pedology	Fortier/45	Н6	7.5	0.3	[7.2-7.5]	906.1	Organic matter	19	10YR - 3
Pedology	Fortier/45	H7	8.6	1.1	[7.5-8.6]	906.1	Sand	19	2,5Y - 4,
Pedology	Fortier/45	Н8	8.9	0.3	[8.6-8.9]	906.1	Organic matter	19	2,5Y - 4,
Pedology	Fortier/45	Н9	14.8	4.8	[8.9-14.8]	1655.1	Sand	19	2,5Y - 4,
Pedology	Fortier/45	H10	20.0	5.2	[14.8-20]	1655.1	Sand	19	5Y - 5/2
Pedology	Fortier/45	H10	30.0	10.0	[20-30]	1655.1	Sand	19	5Y - 5/2

C:N ratio computation

```
Carbon_credit <- Carbon_credit %>%
mutate(`C/N` = C_pourc/N_pourc)
```

Generating the plots

```
options(repr.plot.width=8, repr.plot.height=4)
New.labs_d <- c("Site A9", "Site 45") # Change labels
names(New.labs_d) <- c("Belanger/A9", "Fortier/45")

ggplot(data=Carbon_credit, aes(x= `Depht (cm)`, y= `C/N`)) +
  facet_grid(.~Site, labeller = labeller(`Site` = New.labs_d)) +
  geom_line(linetype = "twodash") +
  geom_point(aes(shape = `Soil texture`, fill = `Soil texture`), size = 3) +</pre>
```

Warning: `expand_scale()` was deprecated in ggplot2 3.3.0.
i Please use `expansion()` instead.

ggsave("figures/(C_over_N).png", width = 8, height = 4, dpi = 800)