Dénombrement

1. Principes additif et multiplicatif

Principe Additif

Soient A et B deux ensembles de Ω

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

En particulier si A et B sont disjoints :

$$Card(A \cup B) = Card(A) + Card(B)$$

Produit Cartésien

Le produit cartésien de deux ensembles E et F, noté E x F est défini par : $E \times F = \{(x,y) \mid x \in E, y \in F\}$

Le produit Cartésien peut toujours être représenté par un arbre :

Principe multiplicatif

Soient E et F deux ensemble finis. On a:

$$Card(E \times F) = Card(E) \times Card(F)$$

Exemple:

Un restaurant propose des menus ou il faut choisir entre 5 entrées, 2 plats principaux et 3 desserts. le nombre de menus différents possible est $5 \times 2 \times 3=30$

Le principe multiplicatif est le principe fondamental du dénombrement.

De façon générale dans une situation de dénombrement qui contient k choix. Si le 1er choix se réalise de n_1 façons distinctes. Et le 2ème choix se réalise de n_2 façons distinctes.

. . .

Et le p-ieme choix se réalise de n_p façons distinctes. Alors le nombre de possibilité en tout est égal à $n_1 \times n_2 \times ... \times n_p$

Nombre de parties d'un ensemble

soit E un ensemble de n éléments, alors l'ensemble des parties de E noté $\wp(E)$ possède 2^n éléments :

$$Card(\wp(E)) = 2^n$$

2. Arrangements et combinaisons

k-uplet d'un ensemble E

un k-uplet d'éléments de E est une liste **ordonnée**, d'éléments avec ou sans répétition. mathématiquement ,un k-uplet est un élément de E^k .

un k-uplet correspond à un tirage **successif**, **avec remise** d'éléments de E.

successif -> Il y'a un ordre et donc on parle de liste et non pas d'ensembles.

avec remise -> Il y'a répétition c'est-à-dire qu'un élément peut être présent plusieurs fois dans la liste.

Théorème

le nombre de k-uplets dans un ensemble de n éléments est n^k

Ceci correspond au nombre d'arrangement de k éléments parmi n éléments **avec répétition**

Exemple:

un mot de 5 lettres peut être vu comme un 5-uplet de l'ensemble de l'alphabet

Avec 5 lettres on peut donc constuire 26⁵ mots.

Arrangements

Un arrangement **sans répétition** d'un ensemble de k éléments parmi n éléments est un k-uplet d'éléments distincts.

un arrangement sans répétition correspond à un tirage successif, sans remise d'éléments de E.

successif -> Il y'a un ordre et donc on parle de liste et non pas d'ensemble.

sans remise -> Il y'a pas répétition c'est-à-dire qu'un élément ne peut être présent plusieurs fois dans la liste.

Théorème

le nombre d'arrangement sans répétition de k éléments parmi n éléments est donnée par la formule :

$$A_n^k = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Cas particulier: Permutations

une permutation d'un ensemble de n éléments est un arrangement sans répétition de n éléments parmi les n éléments

le nombre de permutation d'un ensemble de n éléments est égal à $A_n^n = n!$

Combinaisons

Une combinaison de k éléments parmi les n éléments de E est un sous-ensemble de k éléments de E

une combinaison de k éléments correspond à un tirage simultané de k éléments de E.

simultané -> Il y'a pas d'ordre et donc on parle d'ensemble et non pas de liste. et vu que c'est un ensemble il y'a pas de répétition.

Théorème

Le nombre d'arrangement de k éléments parmi n éléments est égal à

$$A_n^k = n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

et vu que chaque ensemble de k éléments se décline en k! permutations, le nombre de combinaisons de k éléments parmi n éléments est donnée par :

$$C_n^k = \binom{n}{k} = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Récapitulatif

On tire k éléments parmi n éléments.

Type de tirage	Nombre des possibilités	Ordre
Simultanément	$C_n^k = {n \choose k} = \frac{n!}{k! (n-k)!}$	Pas importantC'est une combinaison
Successivement et sans remise	$A_n^k = n \cdot (n-1) \cdots (n-k+1)$ $= \frac{n!}{(n-k)!}$	Important C'est un arrangement sans répétition
Successivement et avec remise	n ^k	ImportantC'est un arrangement avec répétition

3. Propriétés des coefficients binomiaux

Pour tout n et p tel que $0 \le k \le n$ on a :

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
; $\binom{n}{1} = \binom{n}{n-1} = n$

- $\binom{n}{k} = \binom{n}{n-k}$ faire un choix \Leftrightarrow choisir ce qu'on va éliminer
- Relation de Pascal : $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$
- $\bullet \quad \sum_{k=0}^{n} \binom{n}{k} = 2^n$