Module 4 (Lecture – 4)

(Network Layer: Router architecture; Internet Protocol (IP) - Forwarding and Addressing in the Internet; Routing algorithms - Link-state routing, Distance vector routing, Hierarchical routing; Routing in the Internet - RIP, OSPF, BGP; Broadcast & multicast routing; ICMP; Next Generation IP - IPv6)

Dr. Nirnay Ghosh

Assistant Professor

Department of Computer Science & Technology IIEST, Shibpur

Dynamic Host Configuration Protocol (DHCP)

- Dynamic Host Configuration Protocol (DHCP)
 - Allows a host to obtain (be allocated) IP address automatically – removes overhead of manual configuration
 - DHCP server configured by the network administrator such that a host:
 - receives the same IP address every time it connects to the network
 - receives temporary IP address that will be different each time the host connects to the network
 - Additional information given to the host: subnet mask, the address of its first-hop router (often called the default gateway), and the address of its local DNS server
 - Ideal use-case: many users joining and leaving the network; addresses are needed for only a limited amount of time
- DHCP server: updates its list of available IP addresses as users join and leave
 - Host joining: arbitrary address from current pool of

DHCP Client-Server Scenario

- Client-server protocol: arriving hosts act as clients
- DHCP server: typically configured for each subnet
- Otherwise router relays the DHCP request to the remote DHCP server hosted in another subnet
- available addresses is allocated

 Flost leaving: address is returned to the pool of available address is allocated

 Example: DHCP configured for subnet 223.1.2.0/24; Router acts as relay for subnets 223.1.1.0/24 and 223.1.3.0/24 (no local DHCP server)

DHCP Protocol: 4 steps

DHCP discovery

- Client needs to find a DHCP server (multiple DHCP servers may be present in a subnet)
- It sends UDP packet to port 67 (port number for DHCP)
 - Destination IP address: 255.255.255.255 (broadcast address); source IP address: 0.0.0.0 ("this" host)
- Passes the packet to the link layer broadcasts the frame to all stations attached to the subnet

DHCP Offer

- Server broadcasts (using destination address: 255.255.255.255) its offer to all stations in the subnet
- Contents of the message: transaction ID of the received discover message, the proposed IP address for the client, the network mask, and an IP address lease time
- Lease time: several hours or days

DHCP Request

- Client chooses from among one or more server offers
- Respond to its selected offer with a DHCP request message
- Echoes back the configuration parameters

DHCP ACK

- Server responds to the DHCP Request message
- Confirms the requested parameters

Network Address Translation (NAT)

- Emergence of hundreds of thousands of small office, home office subnets
- Possibility of address space collision if ISP continues allocating contiguous address blocks
- Observation: fraction of stations in a small network need Internet access simultaneously
 - Private block addresses can be used for internal communication
 - Four blocks of private addresses: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16, and 169.254.0.0/16
 - Few universal/public addresses can be assigned by the ISP for accessing the global Internet
- Network Address Translation (NAT)
 - Supports mapping between private and universal addresses

Network Address Translation

- NAT-enabled router: runs the NAT software; connects the networked hosts to the global Internet
- Private network: invisible to the rest of the Internet
- Only NAT-router (with universal/public address) is visible to the rest of the Internet

Network Address Translation (NAT)

- Address Translation at NAT-router
 - Outgoing packet: source address is replaced with the global NAT address
 - Incoming packet: global NAT address is replaced with appropriate private address
 - Tens or hundreds of private IP addresses belonging to specific host – which one to be mapped?
 - Mapping done by translation table
- Using one global NAT address
 - Translation table: two columns source (private) address & destination (external) address
 - Request packet from private network: router stores the address pair in the table during translation
 - Response packet to private network: router uses the source (external) address to find the destination (private) address
 - Communication to be initiated by private network
 - Only one private-network host can access external server at a time (one-to-one connection)

Site using private addresses

Address Translation

Translation with One Global NAT Address

Network Address Translation (NAT)

- Using a pool of global NAT address
 - NAT-router uses multiple global addresses
 - Each address pair (global NAT address, external host address) defines a separate connection
 - Enables multiple private-network host to communicate with multiple external hosts at the same time
 - Drawbacks:
 - Connections to the same destination is limited by the number of global NAT addresses
 - No private-network host can access two external server programs (e.g., HTTP and TELNET) at the same time

- Using both IP addresses and Port numbers
 - Allow a many-to-many relationship between private-network hosts and external server programs
 - Translation table has five columns: private address, private port, external address, external port, and protocol
 - Request packet from the private network: NAT router maps the combination of source (private) address and source (private) port to destination (external) address and destination (external) port
 - Response packet to the private network: NAT router uses the combination of source (external) address and destination (private) port
 - Determines the private-network host's address eliminates ambiguity even if two hosts access the same external server program

Five Column Translation Table

Private address	Private port	External address	External port	Transport protocol
172.18.3.1	1400	25.8.3.2	80	TCP
172.18.3.2	1401	25.8.3.2	80	TCP
:	:	:	:	:

Internet Control Message Protocol (ICMP)

- IPv4 has no error-reporting or error-correction mechanism
- It also lacks a mechanism for host and management queries (e.g., if a host or router is alive)
- ICMP: used by hosts and routers to communicate network-layer information
- ICMP message carried inside IP datagram (similar to TCP or UDP segments)
- Value of the protocol field in the IP datagram is set to 1
- Two broad categories:
 - Error-reporting massages: report problems that a router or a host (destination) may encounter when it processes an IP packet
 - Query messages: occurs in pairs help a host or network manager to get specific information from another router or host
- 8-byte header and a variable size data section
 - Common fields: type, code, checksum

Query messages

General Format of ICMP Message

ICMP Type	Code	Description	
0	0	echo reply (to ping)	
3	0	destination network unreachable	
3	1	destination host unreachable	
3	2	destination protocol unreachable	
3	3	destination port unreachable	
3	6	destination network unknown	
3	7	destination host unknown	
4	0	source quench (congestion control)	
8	0	echo request	
9	0	router advertisement	
10	0	router discovery	
11	0	TTL expired	
12	0	IP header bad	

ICMP Message Type

ICMP: Error Reporting Messages

- ICMP reports errors that may occur during processing of the IP datagram
- Error messages: sent back to the source
- No ICMP error message for the following datagrams containing:
 - Multicast address
 - ICMP error message
 - Fragmented datagram that is not the first fragment
- Data section of ICMP message:
 - IP header
 - First 8 bytes of IP data: port numbers (UDP and TCP) and sequence number (TCP)
- ICMP forms the error packet which is then encapsulated in an IP datagram

Contents of Data Fields for the Error Messages

Type and code values

Error-reporting messages

03: Destination unreachable (codes 0 to 15)

04: Source quench (only code 0)

05: Redirection (codes 0 to 3)

11: Time exceeded (codes 0 and 1)
12: Parameter problem (codes 0 and 1)

Query messages

08 and 00: Echo request and reply (only code 0)

13 and 14: Timestamp request and reply (only code 0)

Types of ICMP error message

- Destination Unreachable: most widely used error message – this may happen when we use the HTTP protocol to access a web page, but the server is down
- Source Quench: performs congestion control used by a congested router to a host to force it to reduce its transmission rate
- Redirection Message: used when the source uses a wrong router to send out its message - router redirects the message to the appropriate router - informs the source the IP address of the default router
- Parameter Problem Message: sent when either there is a problem in the header of a datagram or some options
 Computer Networks (Mod are missing or cannot be interpreted

ICMP: Query Messages

- Usages:
 - Used to probe or test the liveliness of hosts or routers in the Internet
 - Find the one-way or the round-trip time for an IP datagram between two devices.
- Comes in pairs: request and reply
- Used by debugging tools: ping and traceroute
- Ping program
 - Sends ICMP echo request (type 8, code
 0) and receives ICMP echo reply (type
 0, code 0) from the remote host
 - Ping server: most TCP/IP implementation support it directly in the Operating system
 - Client program needs to be able to instruct the OS to generate an ICMP message of type 8 code 0.

Traceroute program

- Traces a route from source to destination
- Enables the source to learn the number and identities of intermediate routers and the RTT to the destination
- Source sends a series of ordinary datagram to determine the names and addresses of the intermediate routers
- Client program: instructs the OS to generate UDP segments with specific TTL values
 - The datagrams contain UDP segments with an unlikely port numbers have increasing TTL values – source starts the timer for each datagram
- When the n^{th} datagram arrives at the n^{th} router, the TTL of the datagram expires
 - The router discards the datagram and sends an ICMP warning message (type 11, code 0) to the source
 - The warning message includes the name and IP address of the router
 - Source obtains the RTT from the timer
- OS notifies the client program about the arrival of the ICMP message
- Source stops sending the UDP segments after it receives port unreachable ICMP message (type 3, code 3) from the destination