

Non-Uniform Speaker Disentanglement for Depression Detection from Raw Speech Signals

Jinhan Wang, Vijay Ravi, Abeer Alwan

Dept. Electrical and Computer Engineering, University of California, Los Angeles, USA

I. Introduction

- Speech signals -> effective biomarkers in Major Depressive Disorder (MDD) detection.
 - Speaker-identity-related features (x-vector [21], speaker-embeddings [23]) have been used and result in good performance.
- Problem: Over-reliance on speaker-identity-related features raises privacy-preservation concern.
- Solution: A novel speaker-disentanglement method for depression detection from raw speech signals
 - Outperforms audio-only SOTA for MDD detection.
 - Reduced speaker ID accuracy.

II. Privacy Concern and Speaker Bias

A tSNE plot of embeddings for three female speakers taken from the DepAudioNet model. ND means 'non-depressed' class and D means 'depressed' class. Each point is a segment from target speaker's utterance.

- Higher intra-class separability than average inter-class separability.
- Model may tend to discriminate speakers instead of depression states.

III. Uniform Speaker Disentanglement

Uniform Speaker Disentanglement (USD[30]) minimizes the MDD prediction loss and maximize the speaker identification (SID) loss.

• USD loss is defined as:

$$L_{USD} = L_{MDD} - \lambda(L_{SPK})$$

 L_{MDD} : Depression Detection Loss

 L_{SPK} : SID Loss

 λ : Adversarial Loss Factor

• During training: θ_{ALL} : model parameters

$$\theta_{ALL} = \theta_{ALL} + \alpha \left(\frac{\partial L_{SPK}}{\partial \theta_{ALL}} - \frac{\partial L_{MDD}}{\partial \theta_{ALL}}\right)$$

• Better control over adversarial disentanglement applied to different layers might improve performance.

IV. Non-uniform USD (NUSD)

- Separate loss gradients of the auxiliary task (SID) into multiple components based on model layers.
- Applying different loss maximization strength on different components allows varying levels of disentanglement.
- As a preliminary study, models are split into:
 - Feature Extraction (FE): initial layers
 - Feature Processing (FP): final layers
- During Training:

$$\frac{\partial L_{SPK}(_{NUSD})}{\partial \theta_{ALL}} = \left[\frac{\partial (\lambda_1 L_{SPK})}{\partial \theta_{FE}}, \frac{\partial (\lambda_2 L_{SPK})}{\partial \theta_{FP}}\right]$$

 θ_{FE} : FE component parameters λ_1 : FE adversarial loss factor θ_{FP} : FP component parameters λ_2 : FP adversarial loss factor

$$\beta = \lambda_1/\lambda_2 \quad (\beta = 1 \rightarrow USD)$$

V. Experiments

- Dataset: DAIC-WoZ
 - 189 Speakers
- Input:
 - Raw Audio
 - 3.84s sample length
- Training and Evaluation:
- Random sampling
- 5 model averaging

- Models:
 - DepAudioNet
 - FE: 2x conv1d layers
 - FP: 2x LSTM layers
 - ECAPA-TDNN
 - FE:

Input and 3x SE-Res2 Blocks

• FP:

Aggregation ~ prediction layers.

Metrics: MDD Classification F1-Score & SID Accuracy

VI. Results

Depression detection performance for DepAudioNet and ECAPA-TDNN based on F1-AVG and Speaker ID accuracy using the DAIC-WoZ dataset. The symbols '\' and '\' indicate a higher or lower value is better, respectively. Best results are highlighted in bold.

Model Architecture	Disentanglement Method	Model Parameters	F1-AVG ↑	SID Accuracy \(\psi
DepAudioNet [37] (D1)	None	445k	0.6259	10.04%
DepAudioNet [30] (D2)	USD	459k	0.6830	8.91%
DepAudioNet (D3)	NUSD	459k	0.7086	8.05%
Δ (D3 vs D2) in %	=	-	3.75	-9.65
ECAPA-TDNN $(E1)$	None	595k	0.6329	42.33%
ECAPA-TDNN $(E2)$	USD	609k	0.7086	9.38%
ECAPA-TDNN $(E3)$	NUSD	609k	0.7349	4.68%
Δ (E3 vs E2) in %	-	-	3.70	-50.11

• NUSD achieves better MDD average F1 score and lower speaker accuracy than USD on two systems (D and E).

VII. Effect of β

A plot of F1-AVG versus NUSD β values for the ECAPA-TDNN and the DepAudioNet CNN-LSTM model.

- Higher weights on FE layers leads to better performance.
- Observation holds true for both ECAPA-TDNN and DepAudioNet models using RawAudio as input.

VIII. Conclusion

- NUSD shows promising results by utilizing a non-uniform mechanism of adversarial SID loss maximization.
- NUSD chieves an F1-Score of 0.7349 on the publicly available DAIC-WoZ dataset without any data augmentation, pre-training, or handcrafted features.
- Future Work Directions:
 - Examining the effect of number of speakers in the training set.
 - More fine-grained variants of NUSD.
 - Extension to other domains.
- Acknowledgement
 - Work funded by NIH award number R01MH122569

