

Diagrammi polari, di Nyquist e di Nichols

Diagramma polare

Diagramma polare

La risposta in frequenza si analizza tramite

$$|G(s)|_{s=j\omega} = |G(j\omega)| \cdot |G(j\omega)| \cdot |e^{j\angle G(j\omega)}| = |G(s)| \cdot |e^{j\triangle G(j\omega)}| = |G(s)| \cdot |e^{j\triangle G(s)}| = |G(s)| \cdot |e^{j\triangle G(s)}| = |G(s)| \cdot |e^{j\triangle G(s)}| = |e$$

▶ Un'altra rappresentazione grafica di G(jω) si ottiene riportando M(ω) e φ(ω) su un riferimento polare del piano complesso

Diagramma polare di G(jω)

Rappresentazione polare per $\omega = \omega^*$ (1/2)

$$\mathbf{G}(j\omega)\big|_{\omega=\omega^*} = \left|\mathbf{G}(j\omega^*)\right| \cdot e^{j\angle \mathbf{G}(j\omega^*)} =$$

$$= \mathbf{M}(\omega^*) \cdot e^{j\varphi(\omega^*)} =$$

$$= \mathbf{M}^* \cdot e^{j\varphi^*}$$

Punto sul piano complesso

Rappresentazione polare per $\omega = \omega^*$ (2/2)

Rappresentazione polare per $\omega=\omega^*$ (2/2)

Rappresentazione polare per $\omega \in (0,\infty)$ (1/2)

$$\mathbf{G}(j\omega) = |\mathbf{G}(j\omega)| \cdot e^{j\angle \mathbf{G}(j\omega)} =$$

$$= \mathbf{M}(\omega) \cdot e^{j\varphi(\omega)} \text{ per } \omega \in (0,\infty)$$

Luogo di punti sul piano complesso

Rappresentazione polare per $\omega \in (0,\infty)$ (2/2)

Proprietà importanti (1/4)

- Per sistemi senza poli nell'origine il diagramma polare parte (ω→0+) da un punto sull'asse reale; la fdt in BF è infatti approssimabile con una costante
- Per sistemi con "i" poli nell'origine il diagramma polare parte da un punto infinitamente lontano dall'origine, con fase

$$\phi|_{\omega\to 0^+} = i \cdot \frac{-\pi}{2} + \arg(K)$$

la fdt in BF è infatti approssimabile con

K sⁱ

Proprietà importanti (2/4)

Per sistemi con poli nell'origine:

$$G_{a}(j\omega)|_{\omega\to 0^{+}} = \Re(\omega)|_{\omega\to 0^{+}} + j\Im(\omega)|_{\omega\to 0^{+}} \cong \frac{K_{\Re}}{\omega^{n}} + j\frac{K_{\Im}}{\omega^{m}}$$

$$con \ n \ge 0, \ m > 0 \ oppure \ n > 0, \ m \ge 0$$

■ Il quadrante di partenza (ω →0⁺) dipende dai segni di K₃ e di K₃

Proprietà importanti (3/4)

- Per sistemi con poli nell'origine il diagramma polare per $\omega \rightarrow 0^+$ assume un particolare andamento asintotico. Esempi:
 - n=0, m>0 \rightarrow asintoto=retta verticale, $\Re = K_{\Re}$
 - n>0, m=0 \rightarrow asintoto=retta orizzontale, $\mathfrak{T} = K_{\mathfrak{T}}$
 - n=4, m=2 \rightarrow asintoto=parabola, $\Re = \frac{K_{\Re}}{K_{\Im}^2} \Im^2$
 - forma generale dell'asintoto: $\Re = H\mathfrak{I}^{n/m}$ o $\Im = \overline{H}\Re^{n/m}$

Proprietà importanti (4/4)

Per sistemi strettamente propri il diagramma polare termina (ω→∞) nell'origine (modulo nullo) con fase multipla di ±90°; la fdt in AF è infatti approssimabile con

$$\frac{H}{s^k}$$
, $k = n.o poli - n.o zeri > 0$

Per sistemi non strettamente propri il diagramma polare termina (perpendicolarmente) in un punto sull'asse reale diverso dall'origine; in tal caso la fdt in AF è infatti approssimabile con una costante

Tracciamento qualitativo (1/3)

- È possibile tracciare qualitativamente l'andamento del diagramma polare a partire dai DdB della funzione:
 - Si determina il comportamento iniziale del diagramma polare per $\omega \rightarrow 0^+$:
 - tenendo conto dell'eventuale presenza di poli nell'origine
 - calcolando la fase iniziale
 - in caso di poli nell'origine, determinando il quadrante di partenza (senza calcolare esplicitamente l'asintoto) dal comportamento della fase in BF (crescente o decrescente rispetto al valore asintotico iniziale)

Tracciamento qualitativo (2/3)

- Si determina il comportamento finale del diagramma polare per ω→∞
 - per i sistemi strettamente propri il diagramma termina nell'origine con fase corrispondente al valore per $\omega \rightarrow \infty$, calcolabile anche come:

$$\phi\big|_{\omega\to\infty} = \phi\big|_{\omega\to0^+} - 90^{\circ}\cdot\left(n_n + m_p\right) + 90^{\circ}\cdot\left(n_p + m_n\right)$$

ove:

 $n_n = \#$ poli a parte reale ≤ 0 (esclusi poli nell'origine) $n_p = \#$ poli a parte reale > 0

 $\dot{m_n} = \#$ zeri a parte reale ≤ 0

 $m_p = \#$ zeri a parte reale > 0

Tracciamento qualitativo (3/3)

• Si completa l'andamento qualitativo del diagramma polare da $\omega \rightarrow 0^+$ a $\omega \rightarrow \infty$, sulla base del comportamento di modulo e fase riportato nei DdB

Esempio (1/4)

•
$$G(s) = \frac{10(s+1)}{s^2(s+2)(s+4)}$$

•
$$G(s)|_{BF} \cong \frac{1.25}{s^2} \to (-j)^2 \frac{1.25}{\omega^2}$$

$$G(s)|_{AF} \cong \frac{10}{s^3} \to (-j)^3 \frac{10}{\omega^3}$$

Esempio (2/4)

$$\mathbf{G}(s)|_{BF} \cong \frac{1.25}{s^2} \to (-j)^2 \frac{1.25}{\omega^2} + j \frac{-1}{3.2\omega} \to \begin{cases} n = 2 \\ m = 1 \\ K_{\Re} = -1.25 \\ K_{\Im} = -1/3.2 \end{cases}$$

 $\mathfrak{R}=-12.8\,\mathfrak{I}^2$

asintoto = parabola

Esempio (4/4)

Diagrammi polari, di Nyquist e di Nichols

Diagramma di Nyquist

Dominio della variabile s (1/3)

Il diagramma di Nyquist (**DdN**) di una fdt consiste nella rappresentazione grafica sul piano C di $G(s)|_{s=i\omega} = G(j\omega)$ per $\omega \in (-\infty, +\infty)$

Variazione della variabile indipendente:

Dominio della variabile s (2/3)

- Problema: presenza di poli sull'asse immaginario
- Soluzione:

Naturalmente

$$s = \lim_{\rho \to 0} (j\omega_o + \rho e^{j\alpha}), \ \alpha \in (-\pi/2, \pi/2) \implies G(s) \to \infty$$

Dominio della variabile s (3/3)

s varia su un "percorso chiuso"

▶ Il DdN della G(s) consiste in un luogo di punti anche esso chiuso

Poli sull'asse immaginario (1/3)

- Particolare attenzione ai punti in cui $G(j\omega) \rightarrow \infty$ (presenza di poli sull'asse immaginario)
- Se s varia da j ω_0^- a j ω_0^+ percorrendo una semicirconferenza di raggio infinitesimo in verso antiorario, allora ...
- **▶** G(s) varia da G(j ω_o^-) a G(j ω_o^+) percorrendo una semicirconferenza di raggio infinito in verso orario
- Se il polo in jω_o ha molteplicità i allora da G(jω_o⁻) a G(jω_o⁺) verranno percorse, sempre in verso orario, i semicirconferenze di raggio infinito

Poli sull'asse immaginario (2/3)

- **NB**: il percorso orario di una semicirconferenza di raggio infinito, per ω da ω_o^- a ω_o^+ , equivale a una rotazione di fase di −180° in un intervallo infinitesimo di ω ⇒ la fase di G(j ω) presenta una discontinuità di −180° in ω_o
- È facile dimostrare infatti che in presenza di fattori con poli sull'asse immaginario, del tipo

$$\frac{1}{s}\left(=\frac{1}{s+\omega_o} \text{ per } \omega_o=0\right) \text{ oppure } \frac{1}{s^2+\omega_o^2} \text{ per } \omega_o\neq 0,$$

la fase presenta una discontinuità di -180° da ω_{o}^{-} a ω_{o}^{+}

Poli sull'asse immaginario (3/3)

- Se il polo in $j\omega_0$ ha molteplicità i allora la fase presenterà una discontinuità di $-i180^\circ$ in ω_0
- Per ciò che è stato fin qui detto valgono ovviamente le seguenti eguaglianze: $\lim_{\omega \to \omega_0^-} |G(j\omega)| = \lim_{\omega \to \omega_0^+} |G(j\omega)| = \infty$

Zeri sull'asse immaginario

La presenza di i zeri sull'asse immaginario (in $j\omega_o$) induce in $\omega=\omega_o$ una discontinuità di $+i180^\circ$ nella fase e un modulo nullo ($-\infty$ dB) \Rightarrow il DdN attraversa l'origine del piano complesso proprio per $\omega=\omega_o$

Costruzione del DdN (1/4)

Risultato importante:

sia definito $\bar{x} = coniugato(x)$

$$\begin{aligned} G(\overline{s}) &= \overline{G(s)} = \overline{G}(s) \Rightarrow \\ \Rightarrow G(-j\omega) &= \overline{G}(j\omega) \Rightarrow \begin{cases} |G(-j\omega)| = |G(j\omega)| \\ \angle G(-j\omega) = -\angle G(j\omega) \end{cases} \end{aligned}$$

Costruzione del DdN (2/4)

■ $G(j\omega)$ per $\omega \in (-\infty,0)$ coincide con

 $G(-j\omega)$ per $\omega \in (\infty,0)$ ovvero con

 $\overline{\mathsf{G}}(\mathsf{j}\omega)$ per $\omega \in (\infty,0)$

- Sia ω∈(0,∞); il luogo dei punti G(-jω) sul piano complesso e è il luogo simmetrico, rispetto all'asse reale, a quello dei punti G(jω)
- NB: non è difficile dimostrare che G(-j∞)≡G(j∞)

Costruzione del DdN (3/4)

- Per tracciare il DdN di una fdt G(s) è sufficiente seguire poche regole pratiche
 - tracciare il diagramma polare di G(jω)
 - tracciare il diagramma simmetrico al precedente rispetto all'asse reale (basta "ribaltare" il diagramma polare rispetto all'asse reale)
 - nel caso siano presenti rami all'infinito ovvero poli sull'asse immaginario, congiungere i rami all'infinito con un opportuno numero di semicirconferenze orarie di raggio R→∞ così come illustrato nelle diapositive precedenti

- mettere in evidenza il verso di percorrenza (da $\omega=0^+$ a $\omega=+\infty/-\infty$ a $\omega=0^-$)
- verificare che il DdN sia costituito da una curva chiusa

Esempio (1/2)

$$G(s) = \frac{10(s+1)}{s^2(s+2)(s+4)}$$

Esempio in Matlab (1/3)

I comandi Matlab che permettono di tracciare il DdN nel modo più semplice sono i seguenti:

```
>> s=tf('s')
>> G=10*(s+1)/s^2/(s+2)/(s+4)
>> nyquist(G)
>> axis equal
```

Esempio in Matlab (2/3)

```
>> s=tf('s')
Transfer function:
>> G=10*(s+1)/s^2/(s+2)/(s+4)
Transfer function:
      10 s + 10
s^4 + 6 s^3 + 8 s^2
                                                                   >> nyquist(G)
                                   Figure No. 1
                                   File Edit Wew Insert Tools Window Help
>> axis equal
                                    DEBB NAZIBBO
>>
```

Esempio in Matlab (3/3)

Anche in questo caso il DdN non è completo perché mancante delle semicirconferenze all'infinito

I dettagli del DdN possono essere meglio analizzati con successive operazioni di zoom sul diagramma

stesso

