

抓石子游戏中的数学问题

张神星 (合肥工业大学)

河南师范大学•新乡

zhangshenxing@hfut.edu.cn

• 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1 \sim 3$ 个石子,最终谁把最后一颗石子取走,谁就获得了游戏的胜利.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1\sim3$ 个石子,最终谁把最后一颗石子取走,谁就获得了游戏的胜利.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1\sim3$ 个石子,最终谁把最后一颗石子取走,谁就获得了游戏的胜利.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1 \sim 3$ 个石子, 最终谁把最后一颗石子取走, 谁就获得了游戏的胜利.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1 \sim 3$ 个石子, 最终谁把最后一颗石子取走, 谁就获得了游戏的胜利.

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1 \sim 3$ 个石子, 最终谁把最后一颗石子取走, 谁就获得了游戏的胜利.

• 如果一开始石子的个数是 4 的倍数. 那么每次 A \mathbf{N} x 个之后, B 只需要 \mathbf{N} \mathbf{N}

- 幼儿园里有两个小朋友 Alice 和Bob, 他们从地上抓起一把石子, 然后从 Alice 开始, 轮流从石子堆中取走石子.
- 每个人每次可以取走 $1\sim3$ 个石子, 最终谁把最后一颗石子取走, 谁就获得了游戏的胜利.

- 如果一开始石子的个数是 4 的倍数. 那么每次 A \mathbf{n} \mathbf{n} 个之后, B 只需要 \mathbf{n} \mathbf{n} 个,就可以保证必胜.
- 如果一开始石子的个数不是 4 的倍数, 那么 A 只需要取 $1\sim3$ 个石子, 使得剩下的石子个数是 4 的倍数即可获胜.

必胜条件

• 可以看出, 只要 A 能将游戏状态变成后手必胜, 那么原来的游戏就是先手必胜.

必胜条件

- 可以看出, 只要 A 能将游戏状态变成后手必胜, 那么原来的游戏就是先手必胜.
- 如果无论 A 怎么操作,都不能将游戏变成先手必胜,那么这个游戏就是后手必 胜的.

必胜条件

- 可以看出, 只要 A 能将游戏状态变成后手必胜, 那么原来的游戏就是先手必胜.
- 如果无论 A 怎么操作,都不能将游戏变成先手必胜,那么这个游戏就是后手必 胜的.
- 如果初始有 n 个石子, 令

$$\mathcal{P}(n) = \begin{cases} 1, & \text{先手必胜}; \\ 0, & \text{后手必胜}. \end{cases}$$

- 可以看出, 只要 A 能将游戏状态变成后手必胜, 那么原来的游戏就是先手必胜.
- 如果无论 A 怎么操作,都不能将游戏变成先手必胜,那么这个游戏就是后手必 胜的.
- 如果初始有 n 个石子, 令

$$\mathcal{P}(n) = \begin{cases} 1, & \text{先手必胜}; \\ 0, & \text{后手必胜}. \end{cases}$$

那么

$$\mathcal{P}(n) = 1 - \mathcal{P}(n-1)\mathcal{P}(n-2)\mathcal{P}(n-3) = \begin{cases} 1, & 4 \nmid n; \\ 0, & 4 \mid n. \end{cases}$$

- 可以看出, 只要 A 能将游戏状态变成后手必胜, 那么原来的游戏就是先手必胜.
- 如果无论 A 怎么操作,都不能将游戏变成先手必胜,那么这个游戏就是后手必 胜的.
- 如果初始有 n 个石子, 令

$$\mathcal{P}(n) = \begin{cases} 1, & \text{先手必胜}; \\ 0, & \text{后手必胜}. \end{cases}$$

那么

$$\mathcal{P}(n) = 1 - \mathcal{P}(n-1)\mathcal{P}(n-2)\mathcal{P}(n-3) = \begin{cases} 1, & 4 \nmid n; \\ 0, & 4 \mid n. \end{cases}$$

这个序列 (n ≥ 0) 形如:

0111 0111 0111 ...

• 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 S 中的最小元还要小,所以我们将游戏规则改成 成 成本不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 S 中的最小元还要小,所以我们将游戏规则改成 成 成本不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 S 中的最小元还要小,所以我们将游戏规则改成 成 成本不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 S 中的最小元还要小,所以我们将游戏规则改成 成 成本不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 S 中的最小元还要小,所以我们将游戏规则改成 成 成本不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

- 我们将这个游戏记为 SUB(S), 其中 $S \subset \mathbb{N}$ 表示每次可以取的石头个数.
- 由于有可能最后剩下的石子数量比 *S* 中的最小元还要小, 所以我们将游戏规则改成谁不能取谁算输更为合理.

可以变成 $0 \sim m-1$ 级必胜点的点, 叫做 m 级必胜点.

Sprague-Grundy 序列

• 如果 n 个石子情形是 m 级必胜点, 定义 $\mathcal{G}_S(n) = m$,

Sprague-Grundy 序列

• 如果 n 个石子情形是 m 级必胜点, 定义 $\mathcal{G}_S(n) = m$, 并称该序列为 Sprague-Grundy 序列 (或 Nim 序列).

Sprague-Grundy 序列

• 如果 n 个石子情形是 m 级必胜点, 定义 $\mathcal{G}_S(n) = m$, 并称该序列为 Sprague-Grundy 序列 (或 Nim 序列). 那么

$$\mathcal{G}_S(n) = \max\{\mathcal{G}_S(n-s) : s \in S\},\$$

mex 是指不属于后面集合的最小的非负整数 (Minimal EXcept).

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

• 有多个石子堆;

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

- 有多个石子堆;
- 有无穷多种取法 (S 无限);

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

- 有多个石子堆;
- 有无穷多种取法 (S 无限);
- 高维情形 (n 是向量, S 是向量集合) 等等.

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

- 有多个石子堆;
- 有无穷多种取法 (S 无限);
- 高维情形 (n 是向量, S 是向量集合) 等等.

subtraction game

我们今天只讨论 S 有限的一维一堆情形.

Nim 游戏及其变种

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

- 有多个石子堆;
- 有无穷多种取法 (S 无限);
- 高维情形 (n 是向量, S 是向量集合) 等等.

subtraction game

我们今天只讨论 S 有限的一维一堆情形.

注意到
$$\mathcal{G}_{dS}(n) = \mathcal{G}_{S}(\left[\frac{n}{d}\right])$$
.

Nim 游戏及其变种

实际上 Nim 游戏 (抓石子游戏) 有相当多的变种, 例如

- 有多个石子堆;
- 有无穷多种取法 (S 无限);
- 高维情形 (n 是向量, S 是向量集合) 等等.

subtraction game

我们今天只讨论 S 有限的一维一堆情形.

注意到 $\mathcal{G}_{dS}(n)=\mathcal{G}_S(\left[\frac{n}{d}\right])$. 因此我们只需考虑 S 的所有元素公因子为 1 的情形.

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 那么 $\mathcal{G}(n) \leqslant k$.

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 那么 $\mathcal{G}(n) \leq k$. 于是 S-G 序列中连续 s_k 项形成的序列只有 $(k+1)^{s_k}$ 种可能, 从而由抽屉原理可知, 存在两个相同的 s_k 项序列.

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 那么 $\mathcal{G}(n) \leq k$. 于是 S-G 序列中连续 s_k 项形成的序列只有 $(k+1)^{s_k}$ 种可能, 从而由抽屉原理可知, 存在两个相同的 s_k 项序列. 而 $\mathcal{G}(n)$ 仅由它之前的 s_k 项决定, 所以我们得到:

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 那么 $\mathcal{G}(n) \leq k$. 于是 S-G 序列中连续 s_k 项形成的序列只有 $(k+1)^{s_k}$ 种可能, 从 而由抽屉原理可知, 存在两个相同的 s_k 项序列. 而 $\mathcal{G}(n)$ 仅由它之前的 s_k 项决定, 所以我们得到:

命题

ultimately periodic

序列 $\mathcal G$ 是最终周期的, 即存在整数 $p\geqslant 1, \ell\geqslant 0$ 使得 $\mathcal G(n+p)=\mathcal G(n), \forall n\geqslant \ell.$

• 我们将集合 S 中的元素从小到大排列, 即

$$S = \{s_1, s_2, \dots, s_k\}, \quad s_1 < s_2 < \dots < s_k.$$

• 那么 $\mathcal{G}(n) \leq k$. 于是 S-G 序列中连续 s_k 项形成的序列只有 $(k+1)^{s_k}$ 种可能, 从 而由抽屉原理可知, 存在两个相同的 s_k 项序列. 而 $\mathcal{G}(n)$ 仅由它之前的 s_k 项决定, 所以我们得到:

命题

ultimately periodic

序列 $\mathcal G$ 是最终周期的, 即存在整数 $p\geqslant 1, \ell\geqslant 0$ 使得 $\mathcal G(n+p)=\mathcal G(n), \forall n\geqslant \ell$.

period pre-period

• 将最小的 p 称为 (\mathcal{G}_S 或 $\mathrm{SUB}(S)$ 的)周期, 最小的 ℓ 称为预周期.

• 于是

$$\mathcal{G} = \mathcal{G}(0)\mathcal{G}(1)\mathcal{G}(2)\cdots = \mathcal{G}(0)\cdots\mathcal{G}(\ell-1)\mathcal{G}(\ell)\cdots\mathcal{G}(\ell+p-1).$$

这里 $\underline{\mathcal{H}} = \mathcal{H}\mathcal{H} \cdots$ 表示无穷多个 \mathcal{H} 重复得到的序列.

于是

$$\mathcal{G} = \mathcal{G}(0)\mathcal{G}(1)\mathcal{G}(2)\cdots = \mathcal{G}(0)\cdots\mathcal{G}(\ell-1)\mathcal{G}(\ell)\cdots\mathcal{G}(\ell+p-1).$$

这里 $\underline{\mathcal{H}} = \mathcal{H}\mathcal{H} \cdots$ 表示无穷多个 \mathcal{H} 重复得到的序列.

• 不难说明, 满足 $\mathcal{G}(n) = \mathcal{G}(n+p), \ell \leqslant \forall n \leqslant \ell + s_k$ 的最小的 p 和 ℓ 就是周期和预周期.

于是

$$\mathcal{G} = \mathcal{G}(0)\mathcal{G}(1)\mathcal{G}(2)\cdots = \mathcal{G}(0)\cdots\mathcal{G}(\ell-1)\mathcal{G}(\ell)\cdots\mathcal{G}(\ell+p-1).$$

这里 $\underline{\mathcal{H}} = \mathcal{H}\mathcal{H} \cdots$ 表示无穷多个 \mathcal{H} 重复得到的序列.

- 不难说明, 满足 $\mathcal{G}(n) = \mathcal{G}(n+p), \ell \leqslant \forall n \leqslant \ell + s_k$ 的最小的 p 和 ℓ 就是周期和预周期.
- 因此对于任意集合 S, 很容易通过计算机来计算它的周期和预周期, 从而得到整个 S-G 序列.

于是

$$\mathcal{G} = \mathcal{G}(0)\mathcal{G}(1)\mathcal{G}(2)\cdots = \mathcal{G}(0)\cdots\mathcal{G}(\ell-1)\mathcal{G}(\ell)\cdots\mathcal{G}(\ell+p-1).$$

这里 $\mathcal{H} = \mathcal{H}\mathcal{H} \cdots$ 表示无穷多个 \mathcal{H} 重复得到的序列.

- 不难说明, 满足 $\mathcal{G}(n) = \mathcal{G}(n+p), \ell \leqslant \forall n \leqslant \ell + s_k$ 的最小的 p 和 ℓ 就是周期和预周期.
- 因此对于任意集合 S, 很容易通过计算机来计算它的周期和预周期, 从而得到整个 S-G 序列.
- 显然 $p, \ell \leq (k+1)^{s_k}$.

当 $k = \#S \leq 2$ 时, p 和 ℓ 都是已知的.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道.

当 $k = \#S \le 2$ 时, p 和 ℓ 都是已知的. 而即使是 k = 3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

• $\mathcal{G}_{\{1\}} = \underline{01}$.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

- $\mathcal{G}_{\{1\}} = \underline{01}$.
- $1 \in S$ 不含偶数 $\iff \mathcal{G}_S = \underline{01}$.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

- $\mathcal{G}_{\{1\}} = \underline{01}$.
- $1 \in S$ 不含偶数 $\iff \mathcal{G}_S = \underline{01}$.
- 事实上, 如果 $S' = S \cup \{x + pt\}$, 其中 $x \in S, p$ 是 \mathcal{G}_S 周期, 则 $\mathcal{G}_{S'} = \mathcal{G}_S$.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

- $\mathcal{G}_{\{1\}} = \underline{01}$.
- $1 \in S$ 不含偶数 $\iff \mathcal{G}_S = \underline{01}$.
- 事实上, 如果 $S' = S \cup \{x + pt\}$, 其中 $x \in S, p$ 是 \mathcal{G}_S 周期, 则 $\mathcal{G}_{S'} = \mathcal{G}_S$.
- \mathfrak{P} \mathfrak{P} $S = \{a, c = at + r\}, 0 \leqslant r < a, \mathbb{N}$

$$\mathcal{G}_S = \begin{cases} \frac{(0^a 1^a)^{t/2} 0^r 2^{a-r} 1^r}{(0^a 1^a)^{(t+1)/2} 2^r}, & 2 \mid t; \\ & 2 \nmid t, \end{cases}, \quad \ell = 0, p = c + a \ \vec{\mathbf{x}} \ 2a.$$

这里 $\mathcal{H}^t = \mathcal{H} \cdots \mathcal{H}$ 表示 $t \cap \mathcal{H}$ 重复得到的序列.

当 $k=\#S\leqslant 2$ 时, p 和 ℓ 都是已知的. 而即使是 k=3 的情形, p 和 ℓ 依然还不是完全知道. 我们将回顾已知的并给出一些新的结果.

- $\mathcal{G}_{\{1\}} = \underline{01}$.
- $1 \in S$ 不含偶数 $\iff \mathcal{G}_S = \underline{01}$.
- 事实上, 如果 $S' = S \cup \{x + pt\}$, 其中 $x \in S, p$ 是 \mathcal{G}_S 周期, 则 $\mathcal{G}_{S'} = \mathcal{G}_S$.
- \mathfrak{P} \mathfrak{P} $S = \{a, c = at + r\}, 0 \leqslant r < a, \mathbb{N}$

$$\mathcal{G}_S = \begin{cases} \frac{(0^a 1^a)^{t/2} 0^r 2^{a-r} 1^r}{(0^a 1^a)^{(t+1)/2} 2^r}, & 2 \mid t; \\ 0 \nmid t, & \ell = 0, p = c + a \neq 2a. \end{cases}$$

这里 $\mathcal{H}^t = \mathcal{H} \cdots \mathcal{H}$ 表示 t 个 \mathcal{H} 重复得到的序列. 注意 $2 \nmid t$ 时这里未必是最小循环节.

三元集合: a = 1, b 奇

例

设 $S=\{1,b,c\},2 \nmid b$. 注意到 $\mathcal{G}_{\{1,b\}}=\underline{\mathcal{H}},\mathcal{H}=01$. 我们有

c	\mathcal{G}_S	ℓ	p
奇数	$\underline{\mathcal{H}}$	0	2
偶数	$\frac{\mathcal{H}^{c/2}(23)^{(b-1)/2}2}{2}$	0	c+b

例

设 $S = \{1, 2, 3t + r\}, 0 \leqslant r < 3$. 注意到 $\mathcal{G}_{\{1,2\}} = \underline{\mathcal{H}}, \mathcal{H} = 012$. 我们有

r	\mathcal{G}_S	ℓ	p
0	$(012)^t 3$	0	c+1
1, 2	012	0	3

三元集合: a = 1, b = 4

例

设 $S = \{1, 4, c = 5t + r\}, 0 \leqslant r < 5$. 注意到 $\mathcal{G}_{\{1,4\}} = \underline{\mathcal{H}}, \mathcal{H} = 01012$. 我们有

r, c	\mathcal{G}_S	ℓ	p
r = 0, c = 5	$\underline{\mathcal{H}323}$	0	8
r = 0, c > 5	$\mathcal{H}^t 323013 \underline{\mathcal{H}^{t-1}012012}$	c+6	c+1
r = 1, 4	$\underline{\mathcal{H}}$	0	5
r = 2	$\underline{\mathcal{H}^t012}$	0	c+1
r = 3	$\underline{\mathcal{H}^{t+1}32}$	0	c+4

命题

设 $S = \{1, b, c\}$, 其中 $b \ge 6$ 是偶数, $c = t(b+1) + r, 0 \le r \le b$.

命题

设 $S = \{1, b, c\}$, 其中 $b \ge 6$ 是偶数, $c = t(b+1) + r, 0 \le r \le b$. 我们有

	r	ℓ	p
	1, b	0	b + 1
	[3, b-1] 是奇数	0	c+b
	b-2	0	c+1
	c = b + 1	0	2b
	r > b - 2t - 2	$(\frac{b-r}{2} - 1)(c+b+2) - b$	c+1
$c>b+1$ $r\leqslant b-4$ 偶	r = b - 2t - 2	t(c+b+2)-b	b-1
	r < b - 2t - 2	t(c+b+2)-b	c+b

命题

设 $S = \{1, b, c\}$, 其中 $b \ge 6$ 是偶数, $c = t(b+1) + r, 0 \le r \le b$. 我们有

	r	ℓ	p
	$\overline{1,b}$	0	b + 1
	[3, b-1] 是奇数	0	c+b
	b-2	0	c+1
	c = b + 1	0	2b
	r > b - 2t - 2	$(\frac{b-r}{2}-1)(c+b+2)-b$	c+1
> b+1 《 $b-4$ 偶	r = b - 2t - 2	t(c+b+2)-b	b-1
₹ 0 ± 4	r < b - 2t - 2	t(c+b+2)-b	c+b

• 可以看出在带 1 的三元集情形, p 和 ℓ 的形式与 c 模 $\{1,b\}$ 的周期的同余类有关.

命题

设 $S = \{1, b, c\}$, 其中 $b \ge 6$ 是偶数, $c = t(b+1) + r, 0 \le r \le b$. 我们有

	r	ℓ	p
	1, b	0	b+1
	[3,b-1] 是奇数	0	c+b
	b-2	0	c+1
	c = b + 1	0	2b
	r > b - 2t - 2	$\left(\frac{b-r}{2}-1\right)(c+b+2)-b$	c+1
+1 -4 偶	r = b - 2t - 2	t(c+b+2)-b	b-1
I 11-41	r < b - 2t - 2	t(c+b+2)-b	c+b

- 可以看出在带 1 的三元集情形, p 和 ℓ 的形式与 c 模 $\{1,b\}$ 的周期的同余类有关.
- 除去有限多种情形外, c 在每一个同余类中, p 和 ℓ 是 c 的一次函数.

三元集合: $S = \{1, b, c\}$ 的复杂情形

此时 G 已经较为复杂.

三元集合: $S = \{1, b, c\}$ 的复杂情形

此时 $\mathcal G$ 已经较为复杂. 例如: 若 0 < r = 2v < b - 2t - 2, 则

i	$\mathcal{G}((c+1)i+j), 0 \leqslant j \leqslant c$
0	$\mathcal{H}^t\left(01\right)^v 2$
1	$(32)^{k-v-1}(01)^{v+1}2, \mathcal{H}^{t-1}(01)^v0$
2	$1(01)^{k-v-2}2(01)^{v+1}2, (32)^{k-v-2}(01)^{v+2}2, \mathcal{H}^{t-2}(01)^{v}0$
i	$1(01)^{k-v-2}2(01)^{v+1}0, \dots, 1(01)^{k-v-i+1}2(01)^{v+i-2}0,$
i	$1(01)^{k-v-i}2(01)^{v+i-1}2, (32)^{k-v-i}(01)^{v+i}2, \mathcal{H}^{t-i}(01)^{v}0$
+ 1	$1(01)^{k-v-2}2(01)^{v+1}0, \dots, 1(01)^{k-v-t+2}2(01)^{v+t-3}0,$
t-1	$1(01)^{k-v-t+1}2(01)^{v+t-2}2, (32)^{k-v-t+1}(01)^{v+t-1}2, \mathcal{H}^1(01)^v0$
+	$1(01)^{k-v-2}2(01)^{v+1}0, \dots, 1(01)^{k-v-t+1}2(01)^{v+t-2}0,$
t	$1(01)^{k-v-t}2(01)^{v+t-1}2, (32)^{k-v-t}(01)^{v+t}2, (01)^{v}0$
+ + 1	$1(01)^{k-v-2}2(01)^{v+1}0,\ldots,1(01)^{k-v-t+1}2(01)^{v+t-2}0,$
t+1	$1(01)^{k-v-t}2(01)^{v+t-1}0, 1(01)^{k-v-t-1}2(01)^{v+t}2, (32)^{k-v-t-1}01\cdots$

更多的例子

命题

设 $S = \{a, 2a, c = 3at + r\}, 0 \leqslant r < 3a$,则

$$\ell = \begin{cases} c+a-r, & 0 < r < a; \\ 0, & \texttt{其它情形}, \end{cases} \quad p = \begin{cases} 3a/2, & r=a/2; \\ 3a, & a/2 < r \leqslant 2a; \\ c+a, & \texttt{其它情形}. \end{cases}$$

更多的例子

命题

设 $S = \{a, 2a, c = 3at + r\}, 0 \leqslant r < 3a$,则

$$\ell = egin{cases} c + a - r, & 0 < r < a; \ 0, &$$
 其它情形, $& p = egin{cases} 3a/2, & r = a/2; \ 3a, & a/2 < r \leqslant 2a; \ c + a, &$ 其它情形.

命题

设 $S = \{a, a+1, \dots, b-1, b, c = t(a+b) + r\}, 0 \leqslant r < a+b$, 则

$$\ell = 0, \quad p = \begin{cases} a+b, & a \le r \le b; \\ c+a, & r = 0 \ \mathbf{x} > b; \\ c+b, & 0 < r < a. \end{cases}$$

五元集合的例子

例

设 $S = \{2,3,5,7\}$, 则 $\mathcal{G}_S = \underline{0^2 1^2 2^2 3^2 4}$ 周期为 9. 对于 $11 \leqslant c \leqslant 500$, $\mathrm{SUB}(S \cup \{c\})$ 的 预周期和周期为

$$\ell_c = \begin{cases} 2c-4, & c \equiv 1 \bmod{18}; \\ c+5, & c \equiv 10 \bmod{18}; \\ 0, & \sharp 它情形, \end{cases} \quad p_c = \begin{cases} c+2, & c \equiv 0, 8, 9, 10, 17 \bmod{18}; \\ 4, & c \equiv 1 \bmod{18}; \\ 9, & \sharp 它情形. \end{cases}$$

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q, N 以及 $\alpha_r, \beta_r, \lambda_r, \mu_r, 0 \leq r < q$, 使得当 $c \geq N$ 且 $c \equiv r \mod q$ 时, $SUB(S \cup \{c\})$ 的预周期和周期分别是 $\alpha_r c + \beta_r$ 和 $\lambda_r c + \mu_r$.

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q,N 以及 $\alpha_r,\beta_r,\lambda_r,\mu_r,0\leqslant r< q$, 使得当 $c\geqslant N$ 且 $c\equiv r \bmod q$ 时, $\mathrm{SUB}(S\cup\{c\})$ 的预周期和周期分别是 $\alpha_r c+\beta_r$ 和 $\lambda_r c+\mu_r$.

定理

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q,N 以及 $\alpha_r,\beta_r,\lambda_r,\mu_r,0\leqslant r< q$, 使得当 $c\geqslant N$ 且 $c\equiv r \bmod q$ 时, $SUB(S\cup\{c\})$ 的预周期和周期分别是 $\alpha_r c+\beta_r$ 和 $\lambda_r c+\mu_r$.

定理

上述猜想在如下情形成立:

(1) $1 \in S$ 且 S 所有元素均为奇数;

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q,N 以及 $\alpha_r,\beta_r,\lambda_r,\mu_r,0\leqslant r< q$, 使得当 $c\geqslant N$ 且 $c\equiv r \bmod q$ 时, $\mathrm{SUB}(S\cup\{c\})$ 的预周期和周期分别是 $\alpha_r c+\beta_r$ 和 $\lambda_r c+\mu_r$.

定理

- (1) $1 \in S$ 且 S 所有元素均为奇数;
- (2) $S = \{1, b\};$

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q,N 以及 $\alpha_r,\beta_r,\lambda_r,\mu_r,0\leqslant r< q$, 使得当 $c\geqslant N$ 且 $c\equiv r \bmod q$ 时, $SUB(S\cup\{c\})$ 的预周期和周期分别是 $\alpha_r c+\beta_r$ 和 $\lambda_r c+\mu_r$.

定理

- (1) $1 \in S$ 且 S 所有元素均为奇数;
- (2) $S = \{1, b\};$
- (3) $S = \{a, 2a\};$

根据这些结论,我们猜想 $\mathrm{SUB}(S \cup \{c\})$ 周期和预周期关于 c 是最终逐剩余类线性的:

猜想

固定集合 S. 存在正整数 q,N 以及 $\alpha_r,\beta_r,\lambda_r,\mu_r,0\leqslant r< q$, 使得当 $c\geqslant N$ 且 $c\equiv r \bmod q$ 时, $SUB(S\cup\{c\})$ 的预周期和周期分别是 $\alpha_r c+\beta_r$ 和 $\lambda_r c+\mu_r$.

定理

- (1) $1 \in S$ 且 S 所有元素均为奇数;
- (2) $S = \{1, b\};$
- (3) $S = \{a, 2a\};$
- (4) $S = \{a, a+1, \dots, b-1, b\}$.

这个猜想可以指导我们寻找特定周期的 S-G 序列.

这个猜想可以指导我们寻找特定周期的 S-G 序列. 如果 \mathcal{G}_S 的周期为 2, 称 $\mathrm{SUB}(S)$ ultimately bipartite 是最终二分的.

这个猜想可以指导我们寻找特定周期的 S-G 序列. 如果 \mathcal{G}_S 的周期为 2, 称 $\mathrm{SUB}(S)$ ultimately bipartite

是最终二分的. 可以证明如果 SUB(S) 是最终二分的,则 S 不含偶数.

这个猜想可以指导我们寻找特定周期的 S-G 序列. 如果 \mathcal{G}_S 的周期为 2, 称 $\mathrm{SUB}(S)$ ultimately bipartite 是最终二分的. 可以证明如果 $\mathrm{SUB}(S)$ 是最终二分的. 则 S 不含偶数.

— 例

设 $a \ge 3$ 是奇数. 如果 S 是如下情形之一:

- $S = \{3, 5, 9, \dots, 2^a + 1\};$
- $S = \{3, 5, 2^a + 1\};$
- $S = \{a, a+2, 2a+3\};$
- $S = \{a, 2a + 1, 3a\}$,

则 SUB(S) 是最终二分的.

根据上面的例子和猜想的启发,我们发现了如下三元最终二分 SUB(S).

根据上面的例子和猜想的启发,我们发现了如下三元最终二分 SUB(S).

定理

设 $a \ge 3$ 是奇数, $t \ge 1$. 如果 S 是如下情形之一:

- (1) $S = \{a, a+2, (2a+2)t+1\};$
- (2) $S = \{a, 2a + 1, (3a + 1)t 1\};$
- (3) $S = \{a, 2a 1, (3a 1)t + a 2\}$,

则 SUB(S) 是最终二分的.

例如情形 (1) 的 G-S 序列开头为:

i	$\mathcal{G}((a+1)(2t))$	+1)	$(i+j), 0 \leqslant j < j$	(a+1)(2t+1)	c) = c	+a	
0	$0^{a}1$	[$1^{a-1}22$	$0^{a}1$	$]^{t-1}$	$1^{a-1}22$	$02^{a-3}331$
1	$030^{a-2}1$	[$01^{a-2}21$	$020^{a-2}1$	$]^{t-1}$	$01^{a-2}21$	$0202^{a-5}321$
i	$(01)^{i-1}030^{a-2}$	$^{2i}1[(0$	$(01)^{i-1}01^{a-2i}21$	$(01)^{i-1}020^{a-2i}$	$1]^{t-1}$	$(01)^{i-1}01^{a-2i}2i$	$1(01)^{i-1}0202^{a-2i-3}321$
k-1	$(01)^{k-2}030^3$	1 [$(01)^{k-2}01^321$	$(01)^{k-2}020^31$	$]^{t-1}$	$(01)^{k-2}01^321$	$(01)^{k-2}020321$
k	$(01)^{k-1}0301$. [$(01)^{k-1}0121$	$(01)^{k-1}0301$	$]^{t-1}$	$(01)^{k-1}0101$	$(01)^{k-1}0101$

潮潮

师范大学