CODE: 18EST101 SET-1 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

BASIC ELECTRICAL ENGINEERING (Common to CE, CSE, IT Branches)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

1. a) Calculate the equivalent resistance *Rab* in the circuit in Fig. 1.

Fig. 1.

b) State and explain KCL and KVL

6M

6M

(OR)

2. a) Find voltage across the 25Ω in the circuit shown in Fig.2

6M

1of 2

b) Calculate the equivalent resistance R_{ab} in the circuit in Fig. 3

6M

UNIT-II

- 3. a) A resistance R, an inductance L=0.01 H, and a capacitance C are connected in 8M series. When a voltage v= 400 COS(3000t -10) volts is applied to the series combination, a current flowing is i= 10 COS(3000t 55) amperes. Find R and C values.
 - b) Define the following i) RMS value, ii) Average value

4M

(OR)

- 4. a) In a series RL circuit R= 5 ohms and L= 0.06H and the voltage applied to the 4M circuit is 100 V, 50Hz supply. Find the current and total impedance.
 - b) Determine Average value, RMS value for the sinusoidal waveform?

8M

UNIT-III

5. a) Explain the principle operation of DC Motor?

6M

b) Derive the EMF equation of a DC generator?

6M

(OR)

- 6. a) Describe the speed control of dc motor using Armature circuit resistance?
- 6M
- b) A 4-pole lap-connected dc generator has no-load generated e.m.f. of 500 V when 6M driven at 1200 rpm. Calculate the flux per pole if the armature has 120 slots with 6 conductors per slot.

UNIT-IV

7. Explain the principle operation of Single Phase Transformer and derive the EMF 12M equation.

(OR)

8. Draw and explain a circuit diagram to perform O.C and S.C Tests of Single Phase 12M Transformer.

UNIT-V

- 9. a) Draw and explain torque-speed characteristics of three phase induction motor?
 - b) A 3-phase, 50Hz induction motor has a full-load speed of 1440 r.p.m. For this 4M motor, calculate the following:
 - (i)Number of Poles (ii)Full-Load Slip

(OR)

- 10. a) Explain principle of operation of three phase induction motor. 8M
 - b) A 3-phase, 4 poles, 60Hz induction motor has a full-load slip of 4%. For this 4M motor, calculate the Full-Load speed?

CODE: 18EET102 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

ELECTRIC CIRCUIT THEORY

(Electrical and Electronics Engineering)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

UNIT-I

- 1. a) Define Capacitor and derive the expression for the energy stored 4 M in a capacitor.
 - b) Use node voltage method to find power in 5Ω and 7Ω resistor

2A WW 4W 4Ω 5Ω 7Ω 4Ω 1Ω \$2Ω \$3Ω 5∨ 1

(OR)

- 2. a) Define Inductor and derive the expression for the energy stored in 4 M an inductor.
 - b) Determine the current drawn by the circuit.

8 M

8 M

UNIT-II

- 3. a) Derive the expression for resonant frequency for a series RLC 4M circuit
 - b) A series RLC circuit has R=5 Ω , L=40 H, C = 1 F. Calculate, 8 M Q factor of the circuit, separation between $(f_2 f_1)$ and resonant frequency

(OR)

4. a) Define band width and Q factor 4 M b) For the circuit shown below determine the impedance at resonant 8 M frequency, 10Hz above resonant frequency and 10Hz below the resonant frequency. **UNIT-III** 5. State and explain super position theorem with an example. 12M (OR) State and explain the reciprocity theorem. 4 M Find the voltage drop 8 M b) across 12 Ω resistance Using Norton's theorem for the circuit shown below. **UNIT-IV** 7. State and explain maximum power transfer theorem with an 12M example (OR) State and explain Tellegen's theorem with an example. 8. 12 M **UNIT-V** 9. Derive the relation between line and phase voltages and currents 12M in star connection. (OR) Show that the total power in a three phase three wire system 10. 12 M using the two wattmeter method of measurement is given by the sum of the wattmeter readings. Also derive the expression for power factor of a three phase system using only the wattmeter readings.

CODE: 18EST105 SET-1

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

(AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

BASIC ELECTRONICS

(Mechanical Engineering)

Time: 3 Hours Max Marks: 60

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

		<u>UNIT-I</u>	
1.	a) b)	Explain the working of p-n diode in forward and reverse bias conditions . Compare and contrast Zener breakdown and Avalanche breakdown	(6M) (6M)
2.	a) b)	(OR) Explain the operation of the Full wave rectifier with necessary diagrams Explain how the zener diode acts as voltage regulator	(6M) (6M)
		<u>UNIT-II</u>	
3.	a)	Explain about input and output characteristics of a transistor when it is connected in common base configuration.	(6M)
	b)	Compare CB,CE,CC configurations (OR)	(6M)
4.	a) b)	Explain construction and operation of n channel JFET with neat diagram What are the differences between BJT and FET	(6M) (6M)
		<u>UNIT-III</u>	
5.		Explain the operation of CE amplifier in detail.	(12M)
6.		(OR) Draw the AC equivalent circuit of CE amplifier and explain the concepts of coupling and bypass capacitors	(12M)
		<u>UNIT-IV</u>	
7.	a)	With a neat block diagram explain the operation of current series feedback amplifier	(6M)
	b)	What are the advantages of negative feedback amplifier (OR)	(6M)
8.	a) b)	Explain Hartley oscillator using transistor with circuit diagram Explain the operation of RC phase shift oscillator using circuit diagram	(6M) (6M)
		<u>UNIT-V</u>	
9.	a) b)	Explain about Op-amp along with block diagram in detail. Explain virtual ground concept and write the gain expressions of three op_amp configurations	(6M) (6M)
10.	a)	(OR) Define i) CMRR ii) PSRR iii) SlewRate	(6M)
	b)	Draw the Pin configuration of 741 OP-AMP and explain function of each pin	(6M)

1 of 1

CODE: 18ECT103 **SET-1**

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Regular/Supplementary Examinations, November-2020

		1 B. 1 ech 11 Semester Regular/Supplementary Examinations, November-2020	
		ELECTRONIC CIRCUITS	
		(Electronics and Communication Engineering)	
Time: 3	Hou		s: 60
		Answer ONE Question from each Unit	
		All Questions Carry Equal Marks	
		All parts of the Question must be answered at one place	
		An parts of the Question must be answered at one place	
		<u>UNIT-I</u>	
1.	a)	With the help of a circuit diagram and wave forms explain the operation of a half wave rectifier.	6M
	b)	A PN junction diode having internal resistance r_f =20 ohms is used for half wave rectification. If the applied voltage is V=V _m sin ω t and load resistance is 800 ohms, find a) I_m b) I_{dc} c) I_{rms} d) P_{ac} e) P_{dc} f) efficiency.	6M
2.		(OR) Derive the expression for average voltage and RMS voltage of a full wave rectifier.	12M
		<u>UNIT-II</u>	
3.	a)	Describe in detail about what is a C section filter.	8M
5.			4M
	b)	Derive the ripple for C section filter.	41VI
4	۵)	(OR)	41.4
4.	a) b)	What is the need for voltage regulation. Explain in detail about transistor series regulator.	4M 8M
		<u>UNIT-III</u>	
5.	a)	Explain the terms thermal runaway, thermal stability and stabilization against	8M
	1 \	variations in base-emitter voltage.	43.6
	b)	Explain the need for biasing a transistor.	4M
6.		(OR) Explain fixed Biasing of a Bipolar Junction Transistor and derive the expression for stability factor.	12M
		<u>UNIT-IV</u>	
7.		Derive the h-parameter equivalent circuit of transistor in any one configuration. (OR)	12M
8.	a) b)	Write the comparison of transistor amplifier configurations Draw and brief about various elements of AC equivalent circuit of transistor amplifier.	6M 6M
		<u>UNIT-V</u>	
9.	a) b)	Draw and explain the block diagram of current shunt feedback amplifiers. How are feedback amplifiers classified? explain	6M 6M
10	`	(OR)	0.1

1 of 1

6M

6M

Write the differences between positive and negative feedback in amplifiers.

Write about the effect of feedback on input and output resistances

10. a)

b)