

ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN Vietnam - Korea University of Information and Communication Technology

GIÀI TÍCH 1

GV: NGUYỄN QUỐC THỊNH

ĐẠI HỌC ĐÀ NẪNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Vietnam - Korea University of Information and Communication Technology

Chuong 1.

HÀM SỐ MỘT BIỂN GIỚI HẠN & LIÊN TỤC ĐẠO HÀM & VI PHÂN

Bài 1. TẬP HỢP

I. Tập hợp

- 1. Định nghĩa: Tập hợp là khái niệm cơ bản của toán học, như tập hợp các sinh viên trong lớp, tập hợp các số tự nhiên...
- + Nếu a là phần tử của tập X, ta viết : $a \in X$. (đọc a thuộc X).
- + Nếu a không là phần tử của tập X, ta viết : $a \notin X$.(đọc a không thuộc X).
- + Tập hợp không có phần tử nào được gọi là tập rỗng, k/h: \emptyset

2. Tập con

$$A \subset B \Leftrightarrow \big\{ x \in A \Rightarrow x \in B \big\}$$

II. Các phép toán về tập hợp

l. Giao của hai tập hợp

$$|A \cap B = \{x \mid x \in A \& x \in B\}|$$

VD: *Cho*
$$A = \{1; 2; 3; 4; 5\} \& B = \{0; 2; 4; 5; 8\}$$

 $A \cap B = \{2; 4; 5\}$

2. Hợp của hai tập hợp

$$|A \cup B = \{x | x \in A \lor x \in B\}|$$

$$VD:Cho \quad A = \{a;b;c;d\} \& B = \{a;c;e;f;g\}$$

$$A \cup B = \{a;b;c;d;e;f;g\}$$

3. Hiệu của hai tập hợp

$$A \setminus B = \{x \mid x \in A \& x \notin B\}$$

$$VD:Cho$$
 $A = \{0;1;2;3;4;5\} \& B = \{0;2;4;6;8\}$
 $A \setminus B = \{1;3;5\}$

4. Tích Decart

$$A \times B = \{(a,b) \mid a \in A, b \in B\}$$

$$VD: A = \{1; 2\}, B = \{a; b; c\}$$

 $A \times B = \{(1, a); (1, b); (1, c); (2, a); (2, b); (2, c)\}$

BÀI TẬP

Bài 1: Cho $A = \{1, 2\}, B = \{1, 2, 3, 4\}$. Tìm X sao cho $A \cup X = B$.

Bài 2: Cho $X = \{a, b, c, d, e, g\}$.

- a) Tìm Y thoả $Y \subset X \& X \setminus Y = \{b, c, e\}$
- b) Tìm A,B thoả: $A \cup B = X$, $B \setminus A = \{d,e\}$, $A \setminus B = \{a,b,c\}$

Bài 2. ÁNH XẠ

I. Định nghĩa: Cho hai tập $X, Y \neq \emptyset$.

$$\mathbf{f} : \mathbf{X} \longrightarrow \mathbf{Y}$$
$$\mathbf{x} \longrightarrow \mathbf{y} = \mathbf{f}(\mathbf{x})$$

X: tập hợp nguồn, Y: tập hợp đích.

II. Các loại ánh xạ

1. Đơn ánh

Ánh xạ f: $X \to Y$ gọi là đơn ánh nếu $\forall x_1, x_2 \in X, x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.

2. Toàn ánh

Ánh xạ $f: X \to Y$ gọi là toàn ánh nếu với mọi $y_0 \in Y$, tồn tại $x_0 \in X$ sao cho $y_0 = f(x_0)$.

3. Song ánh

Ánh xạ f : X → Y gọi là *song ánh* nếu f vừa đơn ánh vừa toàn ánh

III. Ánh xạ ngược

Tho $f: X \to Y$ là một song ánh. Ánh xạ ngược, kí hiệu f^{-1}

$$f^{-1}: Y \to X$$

 $y \longmapsto f^{-1}(y) \text{ v\'oi } y = f(x).$

Ví dụ: Tìm ánh xạ ngược của song ánh

a)
$$y = 2x + 3$$

Giải: Ta có
$$y = 2x + 3 \Rightarrow x = \frac{y - 3}{2}$$

Vậy ánh xạ ngược là: $y = \frac{x - 3}{2}$

$$b)y = e^{2x} + 5$$

Áp dụng t/c: $a = e^b \iff b = \ln a$

Giải:

IV. Tích (hợp) của hai ánh xạ

Cho f: X
$$\rightarrow$$
 Y và g: Y \rightarrow Z
x \mapsto y = f(x) y \mapsto z g(y) = g[f(x)]

Như vậy tồn tại
$$h: X \to Z$$

 $x \vdash Z = h(x) = g[f(x)]$

Khi đó, h gọi là *ánh xạ họp (tích)* của hai ánh xạ f và g. Kí hiệu $h = g_0 f$

Ví dụ:

a) Cho hai ánh xạ: f(x) = 2x + 3 và $g(x) = \ln(x)$.

Tìm ánh xạ tích g_0f

Ta có:
$$(g_0f)(x) = g[f(x)] = g(2x+3) = \ln(2x+3)$$

- b) Cho hai ánh xạ: f(x) = 3x + 5 và $g(x) = \sin(2x 3)$
 - + Tìm ánh xạ tích **g**₀**f**
 - +Tìm ánh xạ tích g_0f^{-1}

HAN SỐ MỘT BIỂN GIỚI HẠN CỦA HÀM SỐ

I. Định nghĩa hàm số một biến số

1. Định nghĩa

Cho $\emptyset \neq X \subset R$.

Ánh xạ: $f: X \to R$ là hàm số một biến số xđ trên X.

$$x \mapsto y = f(x)$$

2. Tập xác định của hàm số

Tìm tập xác định của các hàm số sau:

a)
$$y = \sqrt{x^2 - 6x + 5}$$

b)
$$y = \sqrt{-x^2 + 4x - 3} + \sqrt[4]{2x - 4}$$

II. Hàm số đơn điệu - Hàm số chẵn, hàm số lẻ

1. Hàm số đơn điệu

a) Hàm số y = f(x) được gọi là tăng (đồng biến) trong khoảng (a,b), nếu:

$$\forall x_1, x_2 \in (a, b): x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$$

b) Hàm số y = f(x) được gọi là giảm (nghịch biến) trong khoảng (a, b), nếu:

$$\forall x_1, x_2 \in (a, b): x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$$

2. Hàm số chẵn - hàm số lẻ

a) Hàm số y = f(x) được gọi là chẵn nếu:

$$\forall x \in (-a, a), f(-x) = f(x)$$

b) Hàm số y = f(x) được gọi là lẻ nếu:

$$\forall x \in (-a, a), f(-x) = -f(x)$$

III. Hàm số ngược

1. Định nghĩa

Cho hàm số $\mathbf{f}: \mathbf{X} \to \mathbf{Y}$ là song ánh. Khi đó, ánh xạ ngược $\mathbf{f}^{-1}: \mathbf{Y} \to \mathbf{X}$ gọi là hàm số ngược của f.

2. Hàm ngược của hàm số lượng giác

Hàm ngược của hàm $y = \sin x$, ký hiệu $y = \arcsin x$

Hàm ngược của hàm $y = \cos x$, ký hiệu $y = \arccos x$

Hàm ngược của hàm y = tanx, ký hiệu y = arctanx

Hàm ngược của hàm $y = \cot x$, ký hiệu $y = \operatorname{arccot} x$

IV. Giới hạn của hàm số

1. Định nghĩa (giới hạn tại 1 điểm)

Hàm số f(x) có giới hạn là A (A hữu hạn) khi x dần tới a nếu:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ sao cho } 0 < |x - a| < \delta : |f(x) - A| < \epsilon$$

Kí hiệu:

$$\lim_{x \to a} f(x) = A$$

Ví dụ:

2. Chú ý

Khi x → a và x luôn nhỏ hơn a gọi là giới hạn trái tại a,
 kí hiệu:

$$\lim_{x \to a-0} f(x) \quad hay \quad \lim_{x \to a^{-}} f(x)$$

Khi x → a và x luôn lớn hơn a gọi là giới hạn phải tại a,
 kí hiệu:

$$\lim_{x \to a+0} f(x) \quad hay \quad \lim_{x \to a^+} f(x)$$

V. Các phép toán về giới hạn

1. Định lý 1

$$\lim_{x \to a} f(x) = A \Leftrightarrow \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = A$$

2. Định lí 2

Giả sử
$$\lim_{x\to a} f(x) = A$$
 & $\lim_{x\to a} g(x) = B$. Khi đó:

$$a)\lim_{x\to a} [f(x) + g(x)] = A + B$$

$$b)\lim_{x\to a} [f(x).g(x)] = A.B$$

$$c)\lim_{x\to a}\frac{f(x)}{g(x)} = \frac{A}{B}, \ B\neq 0$$

3. Chú ý

*Khi tính giới hạn ta thường gặp các dạng vô định sau:

$$\infty - \infty$$
; $\frac{\infty}{\infty}$; $\frac{0}{0}$; $0.\infty$

Giới hạn dạng vô định $\frac{0}{2}$

1.Phương pháp:

$$\lim_{x \to a} \frac{A(x)}{B(x)} = \lim_{x \to a} \frac{(x-a)P(x)}{(x-a)Q(x)} = \lim_{x \to a} \frac{P(x)}{Q(x)}$$

*Trường hợp có chứa căn thức, ta nhân lượng liên hợp

$$*(A-B)(A+B) = A^2 - B^2$$

$$*(A-B)(A^2+A.B+B)=A^3-B^3$$

2. Ví dụ:
a)
$$\lim_{x \to -1} \frac{x^2 - 1}{x^2 + 3x + 2}$$

b)
$$\lim_{x \to 2} \frac{3 - \sqrt{1 + 4x}}{x^2 - 4}$$

c)
$$\lim_{x \to -2} \frac{2 - \sqrt{-2 - 3x}}{\sqrt{x + 11} - 3}$$

Giới hạn dạng vô định $\frac{\infty}{\infty}$ 1. Phương pháp:

*Nếu $\lim_{x\to ?} \frac{A(x)}{B(x)}$ có dạng $\frac{\infty}{\infty}$, ta đặt lũy thừa cao nhất ở tử và mẫu làm

nhân tử chung và rút gọn (khử dạng vô định) *Chú ý:

$$1)\lim_{x\to\infty}\frac{c}{x^{\alpha}}=0(\alpha>0) \qquad 2)\sqrt{x^2}=|x|$$

2. Ví dụ:

a)
$$\lim_{x \to +\infty} \frac{(x-1)^2 (7x^2 + 2)}{(x+4)^4}$$

b)
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 2x + 4x}}{3x - 4}$$

c)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 4x + 5}}{3x - 4}$$

Tìm giới hạn dạng $\infty - \infty$

1. Phương pháp:

*Nếu có chưa căn ta nhân lượng liên hợp

để đưa về dạng
$$\frac{0}{0}$$
 hoặc $\frac{\infty}{\infty}$

2. Ví dụ:

a)
$$\lim_{x \to +\infty} \left(2x - \sqrt{4x^2 + 5x} \right);$$

b)
$$\lim_{x \to -\infty} \left(\sqrt{x^2 - 2x} - \sqrt{x^2 + 6x - 3} \right)$$

2. Hệ quả

1.
$$\lim_{x \to 0} \frac{\sin ax}{ax} = 1 \quad hay \quad \lim_{x \to 0} \frac{ax}{\sin ax} = 1$$

2.
$$\lim_{u \to \pm \infty} \left(1 + \frac{1}{u} \right)^{u} = e \quad \text{hay } \lim_{u \to 0} (1 + u)^{\frac{1}{u}} = e$$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^{x} = e^{a}$$

VD:

a)
$$\lim_{x\to 0} \frac{\tan x}{x}$$

c)
$$\lim_{x\to\infty} \left(1+\frac{4}{x}\right)^x$$

b)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 3x}$$

d)
$$\lim_{x\to\infty} \left(\frac{x+5}{x+2}\right)^{x+2}$$

VÔ CUNG BE & VÔ CUNG LỚN

I. Định nghĩa

1. Vô cùng bé

+ Hàm số f(x) được gọi là **VCB** khi $x \to a(\infty)$ nếu:

$$\lim_{x \to a(\infty)} f(x) = 0$$

2. Vô cùng lớn

+ Hàm số F(x) được gọi là **VCL** khi $x \to a(\infty)$ nếu:

$$\lim_{x \to a(\infty)} F(x) = \infty$$

3. Chú ý

♦ Nếu f(x) là một **VCB** thì $\frac{1}{f(x)}$ là một **VCL**

♦ Nếu F(x) là một VCL thì $\frac{1}{F(x)}$ là một VCB

II. Tính chất

1. Nếu $f_1(x)$, $f_2(x)$ là hai **VCB** thì:

$$f_1(x) \pm f_2(x), f_1(x).f_2(x)$$

cũng là VCB

2. Nếu $f_1(x)$, $f_2(x)$ là hai VCL cùng dấu thì:

$$f_1(x) + f_2(x)$$
 cũng là **VCL**

3. Tích của hai VCL cũng là một VCL

III. So sánh các VCB

1. Bậc của các VCB:

Giả sử $\alpha(x)$, $\beta(x)$ là 2 VCB khi $x \rightarrow a$

- Nếu $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$ thì f(x) là VCB bậc cao hơn g(x).
- Nếu $\lim_{x \to a} \frac{f(x)}{g(x)} = \infty$ thì f(x) là VCB bậc thấp hơn g(x).
- Nếu $\lim_{x \to a} \frac{f(x)}{g(x)} = A(\neq 0, \neq \infty)$ thì f(x) và g(x) là hai VCB cùng bậc.
- Nếu $\lim_{x \to a} \frac{f(x)}{g(x)}$ không tồn tại, ta nói *không thể so sánh* hai VCB f(x) và g(x).

2. Vô cùng bé tương đương

a) Định nghĩa

Nếu
$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1$$

thì f(x), g(x) là 2 VCB tương đương

Kí hiệu: $f(x) \sim g(x)$

b) Chú ý: Nếu $\alpha(x)$ là VCB khi $x \rightarrow a$ thì:

1.
$$\sin \alpha(x) \sim \alpha(x)$$

2.
$$\arcsin \alpha(x) \sim \alpha(x)$$

3.
$$\tan \alpha(x) \sim \alpha(x)$$

4.
$$\arctan \alpha(x) \sim \alpha(x)$$

$$5. \quad 1 - \cos \alpha(x) \sim \frac{\alpha^2(x)}{2}$$

6.
$$e^{\alpha(x)} - 1 \sim \alpha(x)$$

7.
$$\ln [1 + \alpha (x)] \sim \alpha(x)$$

8.
$$[1+\alpha(x)]^n - 1 \sim n.\alpha(x)$$

c) Dùng VCB tương đương để tính giới hạn

Nếu $\alpha(x)$, $\beta(x)$ là hai **VCB** và $\alpha(x) \sim \alpha_1(x)$; $\beta(x) \sim \beta_1(x)$ thì:

$$\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)}$$

VD:Tính các giới hạn sau:

a)
$$\lim_{x\to 0}\frac{1-\cos x}{1-\cos 2x}$$

b)
$$\lim_{x\to 0} \frac{\tan x}{\ln(1+3x)}$$

c)
$$\lim_{x\to 0} \frac{\sqrt{x^2-x+1-1}}{\sin 2x}$$

$$d) \lim_{x\to 0} \frac{\ln(\cos x)}{\sqrt{x^2+1}-1}$$

IV. So sánh các VCL

1. Bậc của VCL: Giả sử F(x), G(x) là hai VCL khi $x \rightarrow a$.

• Nếu
$$\lim_{x\to a} \frac{F(x)}{G(x)} = \infty$$
 thì $F(x)$ là VCL bậc cao hơn $G(x)$

•Nếu
$$\lim_{x\to a} \frac{F(x)}{G(x)} = 0$$
 thì $F(x)$ là VCL bậc thấp hơn $G(x)$

• Nếu
$$\lim_{x \to a} \frac{F(x)}{G(x)} = A$$
 thì $F(x)$ và $G(x)$ là hai VCL cùng bậc

• Nếu
$$\lim_{x\to a} \frac{F(x)}{G(x)} = 1$$
 thì $F(x)$ và $G(x)$ là hai VCL tương đương

Kí hiệu: $F(x) \sim G(x)$

2. Dùng VCL tương đương để tính giới hạn

Nếu F(x), G(x) là hai VCL và $F(x) \sim F_1(x)$; $G(x) \sim G_1(x)$ thì:

$$\lim_{x \to a} \frac{F(x)}{G(x)} = \lim_{x \to a} \frac{F_1(x)}{G_1(x)}$$

3. Quy tắc ngắt bỏ VCL bậc thấp

Nếu F(x), G(x) là hai VCL và G(x) là VCL bậc thấp hơn F(x) thì: $F(x) + G(x) \sim F(x)$

VD: Tính
$$\lim_{x \to \infty} \frac{x^5 + 100x^4 - 9x^3 + 2}{3x^5 + 80x^4 + x^3}$$

HAM SÓ LIEN TỤC

I. Định nghĩa

1. Định nghĩa

$$f(x)$$
 liên tục tại $x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = f(x_0)$ (*)

2. Nhận xét

Các hàm số sơ cấp liên tục trên tập xác định của nó.

3. Ví dụ

a) Cho hàm số
$$f(x) = \begin{cases} \frac{x^2 - 5x + 4}{x^2 - 1}; & x \neq 1 \\ 2x - 4; & x = 1 \end{cases}$$

Xét tính liên tục của hàm số tại x = 1.

b) Cho hàm số:
$$f(x) = \begin{cases} \frac{x^3 + 3x^2 - 4}{x^2 - 1}; & x > 1\\ 4x + 2; & x \le 1 \end{cases}$$

Xét tính liên tục của hàm số tại x = 1.

4. Ý nghĩa hình học

Nếu hàm số y = f(x) liên tục trên đoạn [a, b] thì đồ thị của nó là một đường nét liền nối từ điểm A(a, f(a)) đến điểm B(b, f(b)).

II. Điểm gián đoạn của hàm số

1. Định nghĩa

Hàm số f(x) gọi là *gián đoạn* tại x_0 nếu nó không liên tục tại x_0 .

- 2. Nhận xét: x_0 là điểm gián đoạn của hàm số f(x) nếu một trong các trường hợp sau xảy ra:
 - f(x) không xác định tại x_0
 - không tồn tại $\lim_{x \to x_0} f(x)$
 - $-\lim_{x\to x_0} f(x) \neq f(x_0)$

3. Phân loại điểm gián đoạn

a. Nếu f(x) không xác định tại x₀, nhưng

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$$

thì x_0 gọi là điểm gián đoạn bỏ được.

b. Nếu $\lim_{x \to x_0^-} f(x)$ và $\lim_{x \to x_0^+} f(x)$ tồn tại <u>hữu hạn</u> nhưng

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$
 thì x_0 gọi là điểm gián đoạn loại 1.

$$\left| \lim_{x \to x_0^-} f(x) - \lim_{x \to x_0^+} f(x) \right| : \text{bước nhảy của f tại } \mathbf{x}_0.$$

Những điểm gián đoạn không thuộc 2 loại trên được gọi là điểm gián đoạn loại 2.

Ví dụ 1: Cho hàm số:

$$f(x) = \begin{cases} \frac{x^3 + 3x^2 - 4}{x^2 - 1}; & x > 1\\ 4x + a; & x \le 1 \end{cases}$$

a) Tính
$$\lim_{x \to 1^{-}} f(x) \& \lim_{x \to 1^{+}} f(x)$$

b) Tìm a để x = 1 là điểm gián đoạn loại 1 của hàm số với bước nhảy là 3.

Ví dụ 2: Cho hàm số:

$$f(x) = \begin{cases} \frac{\sqrt{x+3} - \sqrt{3x+1}}{x-1}; & x > 1\\ 2x+a; & x \le 1 \end{cases}$$

- a) Tính $\lim_{x \to 1^{-}} f(x) \& \lim_{x \to 1^{+}} f(x)$
- b) Tìm a để x = 1 là điểm gián đoạn loại 1 của hàm số với bước nhảy là 5.

DAO HAM

I. Bảng đạo hàm của các hàm số sơ cấp cơ bản

•
$$(C)' = 0$$
 ; $(x)' = 1$

$$\left(x^{n}\right)'=n.x^{n-1}$$

$$\bullet \ \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

$$\left(e^{x}\right)^{\prime}=e^{x}$$

•
$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$\left(\cot x\right)' = -\frac{1}{\sin^2 x}$$

•
$$(\ln x)^{\prime} = \frac{1}{x}$$

$$\left(\log_a^x\right)' = \frac{1}{x \cdot \ln a}$$

II. Đạo hàm của tổng, tích, thương của hai hàm số

$$(u + v)' = u' + v'$$

 $(u - v)' = u' - v'$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

III. Đạo hàm của hàm số hợp

Hàm hợp y = f[u(x)] có đạo hàm đối với x

$$y'(x) = y'(u).u'(x).$$

Ví dụ:

Cho $y = \sin(\ln x)$. Tính y'

IV. Đạo hàm của hàm số ngược

1. Định lí

Nếu hàm số y = f(x) có hàm số ngược $x = \phi(y)$ thì hàm hàm ngược $x = \phi(y)$ có đạo hàm

$$\varphi'(y) = \frac{1}{f'(x)}$$

2. Hệ quả

$$(arcsinx)' = \frac{1}{\sqrt{1 - x^2}}$$
 $(arccosx)' = \frac{-1}{\sqrt{1 - x^2}}$
 $(arctanx)' = \frac{1}{1 + x^2}$ $(arccotx)' = \frac{-1}{1 + x^2}$

3. Ví dụ: Tính đạo hàm của các hàm số sau:

a)
$$f(x) = e^{\frac{\sin x - \cos x}{1 + \tan x}}$$

b)
$$f(x) = \arctan \frac{3x}{x^2 - 1}$$

V. Đạo hàm cấp cao

$$f''(x) = [f'(x)]'$$

$$f'''(x) = [f''(x)]'$$

$$f^{(n)}(x) = [f^{(n-1)}(x)]$$

Ví dụ

1. Cho
$$y = 3x^3 + 5x + \sin x$$
. Tinh y""

2. Tính y⁽ⁿ⁾ của :

$$y = e^x$$

$$y = \sin x$$

$$y = \cos x$$

$$y = \ln(1 + x)$$

Chú ý

Các hàm số có dạng $y = [u(x)]^{v(x)}$; với u(x) > 0:

Phương pháp:

- * Lấy ln hai vế ta được: $lny = ln[u(x)]^{v(x)} = v(x)$. lnu(x)
- * Lấy đạo hàm hai vế theo biến x ta được:

$$(\ln y)' = [v(x).\ln u(x)]'$$

$$\Rightarrow \frac{y'}{y} = v'(x) . \ln u(x) + v(x) . \frac{u'(x)}{u(x)}$$

$$\Rightarrow y' = y \left[v'(x) . \ln u(x) + v(x) . \frac{u'(x)}{u(x)} \right]$$

Bài 7 CÁC ĐỊNH LỊ VỀ HÀM KHẢ VỊ

I. Các định lí về giá trị trung bình

1. Định lí 1 (Định lí Rolle)

Nếu hàm số f(x) thỏa mãn các điều kiện sau:

- a. Liên tục trên đoạn [a, b];
- **b.** Khả vi trên khoảng (a,b);
- c. Thỏa mãn điều kiện f(a) = f(b)

thì tồn tại ít nhất một điểm $c \in \mathbb{R}$ sao cho f'(c) = 0.

2. Định lí 2 (Định lí Lagrange)

Nếu hàm số f(x) thỏa mãn các điều kiện sau:

a. Liên tục trên đoạn [a, b];

b. Khả vi trên khoảng (a,b);

thì tồn tại ít nhất một điểm $c \in (a, b)$ sao cho:

$$f(b) - f(a) = f'(c) (b - a)$$

II. Công thức taylor

1. Công thức Taylor

a. Định lí

Nếu hàm số f(x) thỏa mãn các điều kiện sau:

- i. Có đạo hàm cấp n trên đoạn [a, b];
- ii. Có đạo hàm cấp (n+1) trên khoảng (a, b);

thì tồn tại $c \in (a, b)$ sao cho với $x_0 \in (a, b)$ và với mọi $x \in (a, b)$ ta có:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

 $(c \circ given x_0 va x)$

* Nếu $x_0 = 0 \in (a, b)$ thì công thức Taylor gọi là công thức *Maclaurin* của hàm f(x):

b. Công thức Maclaurin

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + ... + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$

(c ở giữa 0 và x).

2. Khai triển Maclaurin của một số hàm số

a. Hàm
$$y = f(x) = e^x$$

Khai triển MacLaurin của hàm số $f(x) = e^x$ là:

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + \frac{e^{c}}{(n+1)!} x^{n+1}$$

(c ở giữa 0 và x).

III. Quy tắc L'Hospital - Cách khử các dạng vô định

Nhắc lại một số kết quả về giới hạn

$$\lim_{x \to 0^+} \ln x = -\infty \qquad \lim_{x \to +\infty} \ln x = +\infty \qquad \lim_{x \to 1} \ln x = 0$$

$$\lim_{x \to \frac{\pi}{2}} \tan x = \infty \qquad \lim_{x \to 0} \tan x = 0$$

$$\lim_{x \to 0} \cot x = \infty \qquad \lim_{x \to \frac{\pi}{2}} \cot x = 0$$

1. Dạng vô định $\frac{0}{0}$; $\frac{\infty}{\infty}$

a. Quy tắc L'hospital

Nếu
$$\lim_{x\to ?} \frac{f(x)}{g(x)}$$
 có dạng $\frac{0}{0}; \frac{\infty}{\infty}$

thì
$$\lim_{x \to ?} \frac{f(x)}{g(x)} = \lim_{x \to ?} \frac{f'(x)}{g'(x)} = A \quad \text{(tổn tại)}$$

b. Ví dụ. Tính các giới hạn sau:

a)
$$\lim_{x\to 2} \frac{x^2-4}{3x^2-2x-8}$$
, $\left(\frac{0}{0}\right)$

Áp dụng quy tắc L'hospital, ta có

$$\lim_{x \to 2} \frac{x^2 - 4}{3x^2 - 2x - 8} = \lim_{x \to 2} \frac{2x}{6x - 2} = \frac{4}{10} = \frac{2}{5}$$

b. Ví dụ. Tính các giới hạn sau:

b)
$$\lim_{x\to 0^+} \frac{\ln(\sin 2x)}{\ln(\sin x)}, \left(\frac{\infty}{\infty}\right)$$

Giải.

c. Chú ý:

i) Quy tắc L'hospital chỉ được ứng dụng để khử các dạng vô định $\frac{0}{0}$ & $\frac{\infty}{\infty}$, còn những dạng vô định khác nếu muốn khử thì phải đưa về hai dạng vô định trên.

ii) Nếu $\lim_{x \to ?} \frac{f'(x)}{g'(x)}$ vẫn có dạng $\frac{0}{0}$ hay $\frac{\infty}{\infty}$, quy tắc

ta vẫn có thể áp dụng quy tắc L'hospital một lần nữa.

2. Dạng vô định $\infty - \infty$, $0.\infty$

a. Dang ∞ - ∞

Ví dụ:

a.
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{1}{\cos x} - \tan x \right), (\infty - \infty)$$

Giải:

b. Dang $0.\infty$

$$b. \quad \lim_{x \to 0^+} x. \ln x; \quad (0.\infty)$$

Giải:

Bài tập. Áp dụng quy tắc L'Hospital tính các giới hạn

a)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{x}{x - 1} \right)$$

$$b) \quad \lim_{x \to 1} \left[\ln x \cdot \ln(x - 1) \right]$$

3. Các dạng vô định 0^0 , 1^{∞} , ∞^0

Xét hàm số
$$[f(x)]^{g(x)}$$
. $(f(x) > 0)$

Muốn tính $\lim_{x\to ?} [f(x)]^{g(x)}$ có dạng vô định $0^0, 1^\infty, \infty^0$

• Đặt
$$y = [f(x)]^{g(x)}$$

$$=> lny = ln[f(x)]^{g(x)} = g(x).lnf(x)$$
 (*)

• Tính

$$\lim_{x \to ?} \ln y = \lim_{x \to ?} [g(x).\ln f(x)] = k$$

• Suy
$$ra: \lim_{x \to ?} y = e^k$$

$$a. \lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}, (1^{\infty})$$

Giải.

$$b. \lim_{x \to 0^+} x^{\sin x}, \quad \left(0^0\right)$$

Giải.

Bài tập: Áp dụng quy tắc L'Hospital tính các giới hạn

$$a) \quad \lim_{x \to 0^+} \left(1 + \sin 4x\right)^{\cot x}$$

$$b) \quad \lim_{x \to 0^+} x^{\left(\frac{1}{\ln(e^x - 1)}\right)}$$

$$c) \quad \lim_{x \to 0} (\cos 2x)^{\frac{3}{x^2}}$$

$$d) \quad \lim_{x \to 0^+} \left(\cot x\right)^{\frac{1}{\ln x}}$$

IV. Ứng dụng đạo hàm khảo sát hàm số

1. Chiều biến thiên của hàm số

a. Định lý 1:

- i) Nếu f'(x) > 0 với mọi $x \in (a, b)$ thì f(x) tăng trên (a, b)
- ii) Nếu f'(x) < 0 với mọi x \in (a, b) thì f(x) giảm trên (a, b)

b. Các bước xét chiều biến thiên của hàm số y = f(x)

- + Tìm MXĐ
- +Tính y', giải pt y'=0 tìm nghiệm rồi xét dấu y'
- + Dựa vào ĐL1, kết luận

c. Ví dụ: Xét sự biến thiên của các hàm số sau

a)
$$y = x^4 - 2x^2 + 100$$

$$b) \quad y = 3x^4 - 4x^3 - 12x^2 + 5$$

c)
$$y = \frac{x^2 + 1}{(x-1)^2}$$

2. Cực trị của hàm số

- a. Định nghĩa: Gọi \mathbf{K} là một lân cận của \mathbf{x}_0
 - i) Nếu $f(x_0) \ge f(x)$ với mọi $\mathbf{x} \in \mathbf{K}$ thì hàm số f(x) được gọi là đạt <u>cực đại</u> tại x_0 ,
 - ii) Nếu $f(x_0) \le f(x)$ với mọi $\mathbf{x} \in \mathbf{K}$ thì hàm số f(x) được gọi là đạt <u>cực tiểu</u> tại \mathbf{x}_0 .

b. Định lý 2: Giả sử f(x) xác định tại $x_0 \in (a, b)$

- i) Nếu f'(x) đổi dấu từ **dương sang âm** khi x đi qua x_0 thì f(x) đạt **cực đại** tại x_0
- ii) Nếu f'(x) đổi dấu từ $\hat{a}m$ sang dương khi x đi qua x_0 thì f(x) đạt $\underline{cực}$ tiểu tại x_0 .

VD: Tìm cực trị của các hàm số sau:

a)
$$y = 2x^3 + 3x^2 - 12x + 7$$

b)
$$y = x.\sqrt{1-x^2}$$

c. Định lý 3

Nếu f(x) có đạo hàm cấp 2 liên tục trong lân cận điểm x_0

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) > 0 \end{cases} \Rightarrow f(x) \text{ dat cực tiểu tại } x_0$$

$$\begin{cases} f'(x_0) = 0 \\ f''(x_0) < 0 \end{cases} \Rightarrow f(x) \text{ dat cực đại tại } x_0$$

Các bước áp dụng định lý 3

B1: Tìm tập xác định.

B2: Tính f'(x). Giải y' = 0 tìm nghiệm x_0

B3: Tính f "(x).

- Nếu f'' $(x_0) > 0$ thì f(x) đạt cực tiểu tại x_0 .
- Nếu f''(x_0) < 0 thì f(x) đạt cực đại tại x_0

VD: Tìm điểm cực trị của các hàm số sau:

$$y = x^{2}.e^{x}$$

3. Giá trị lớn nhất và giá trị nhỏ nhất

- a. Định nghĩa
- b. Các bước tìm GTLN GTNN của hàm số f(x) liên tục trên đoạn [a, b]
 - **B1.** Tìm các điểm tới hạn $x_i \in (\mathbf{a}, \mathbf{b})$ (giải f'(x) = 0) và tính $f(x_i)$, f(a), f(b).
 - B2. Từ kết quả tính được ở B1, kết luận GTLN- GTNN
- c. VD: Tìm GTLN -GTNN của hàm số sau:

a)
$$y = x^4 - 2x^2 + 3$$
 trên $[-3,2]$ b) $y = x + \sqrt{4 - x^2}$

c)
$$y = \sqrt{x-1} + \sqrt{3-x}$$
 d) $y = \sin x - \cos^2 x$ trên $[0, \pi]$

4. Sự lồi, lõm và điểm uốn

a. Định nghĩa:

b. Định lý 4:

- i) Nếu f "(x) > 0 với mọi $x \in (a, b)$ thì (C): y = f(x) lõm trên khoảng (a, b).
- ii) Nếu f "(x) < 0 với mọi x \in (a, b) thì (C): y = f(x) lồi trên khoảng (a, b).
- •Nếu f(x) xác định tại x_0 và f "(x) đổi dấu khi x đi qua x_0 thì (x_0,y_0) là tọa độ điển uốn.

c) Xét sự lồi lõm và điểm uốn của hàm số y = f(x).

B1. Tim TXĐ

B2. Tính y" và xét dấu y"

B3. Kết luận

VD: Xét sự lồi – lõm và tìm điểm uốn

a)
$$y = x^3 - 3x^2 + 2x - 1$$

b)
$$y = x^4 - 6x^2 + 1$$

5. Tiệm cận

a. Định nghĩa

b. Tiệm cận đứng – Tiệm cận ngang

- Nếu $\lim_{x\to a} f(x) = \infty$ thì x = a là $\underline{\mathit{TCP}}$ của đồ thị y = f(x).
- Nếu $\lim_{x\to\infty} f(x) = b$ thì y = b là \underline{TCN} của đồ thị y = f(x).

VD: Tìm TCĐ – TCN của đồ thị

$$y = \frac{3x^2 - 2x + 4}{x^2 - 6x + 5}$$

c. Tiệm cận xiên:

• Đường thẳng $y = kx + b \ (k \neq 0)$ gọi là **TCX**:

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} [f(x) - kx]$$

VD: Tìm TCX của đồ thị

$$y = \frac{x^3 + 4x^2 + 5}{x^2 - 2x + 1}$$

6. Khảo sát và vẽ đồ thị của hàm số y = f(x)

Sơ đồ khảo sát:

- B1. Tìm miền xác định.
- B2. Xét tính chẵn, lẻ, tính tuần hoàn (nếu có).
- B3. Tìm giao điểm của đường cong với các trục tọa độ.
- B4. Tìm các đường tiệm cận.
- **B5.** Xét sự tăng giảm, cực trị của hàm số; xét sự lồi lõm và tìm điểm uốn của đường cong.

Lập bảng biến thiên.

B6. Vẽ đồ thị

Het chudng 1