SHARNBASVA UNIVERSITY

Faculty of Engineering and Technology **Engineering Mathematics-IV(18MAT41)**

Module I: Fourier Series

Neither Even nor Odd

- 1. Definition of periodic function of period 2π
- 2. Obtain the Fourier Series of $f(x) = \frac{\pi x}{2}$ in $0 < x < 2\pi$. Hence deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots \cdots = \frac{\pi}{4}$
- 3. If $f(x) = x(2\pi x)$ in $0 \le x \le 2\pi$ show that
- $(x) = \frac{2\pi^2}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ 4. Obtain the Fourier Series for the function $(x) = \{ x \mid in \pi < x < 0 \}$ $(x) = \frac{2\pi^2}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ $(x) = \frac{\pi}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ $(x) = \frac{\pi}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ $(x) = \frac{\pi}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ $(x) = \frac{\pi}{3} 4\left(\frac{\cos x}{1^2} + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + ---\right)$ $(x) = \frac{\pi}{3} \frac{\sin \pi}{3} \frac{\sin \pi}{$

Fourier Series of Even & odd functions of $(0,\pi)$ and $(0,2\pi)$ & arbitrary

- 5. Find Fourier Series of $f(x) = \begin{cases} 1 + \frac{2x}{\pi} & in \pi < x \le 0 \\ 1 \frac{2}{\pi} & in \ 0 \le x < \pi \end{cases}$ & hence deduce that $\frac{\pi^2}{2} = \frac{1}{12} + \frac{1}{2} + \frac{1}{5^2} + \dots - \dots$
- 6. Obatin the Fourier series expansion of the function $f(x) = \{ x & in \ 0 < x < \pi \\ x 2\pi & i < x < 2\pi \}$ Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$
- 7. Obtain the F.S for the function $(x) = 2x x^2$ in $0 \le x \le 2$.

Half Range Fourier Series

- 1. Find the cosine half range series for the function $f(x) = lx x^2$ in 0 < x < l
- 2. Expand (x) = 2x 1 as a cosine half range Fourier series in 0 < x < 1.
- 3. Find sine half range series of $(x) = x^2$ in $0 < x < \pi$.
- 4. If $f(x) = \begin{cases} x & \text{in } 0 < x < \frac{\pi}{2} \\ \pi x & \text{in } \frac{\pi}{2} < x < \pi \end{cases}$ Show that $f(x) = \frac{4}{\pi} [sinx \frac{sin3x}{3^2} + \frac{sin5x}{5^2} - - -]$

Practical Harmonic Analysis:

1. Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data

X 0	0	45	90	135	180	225	270	315
y	2	3/2	1	1/2	0	1/2	1	3/2

2. The turning moment T on the crank shaft of a steam engine for the crank angle θ is given as follows.

$ heta^\circ$	0	30	60	90	120	150	180	210	240	270	300	330
T	0	2.7	5.2	7	8.1	8.3	7.9	6.8	5.5	4.1	2.6	1.2

3. Express y as F.S upto the 2nd harmonic given that

X	0	$\pi/3$	$2\pi/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
Y	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

4. Obtain the constant term and the coefficients of the first cosine and sine terms in the Fourier expansion of y from the table

X	0	1	2	3	4	5
Y	9	18	24	28	26	20

Module III: Numerical Methods

Numerical solution of ODE of first order and first degree.

Taylor's series method:

- 1. Use Taylor's series method to find y at x = 0.1,0.2,0.3 considering terms upto third degree given that $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1
- 2. Find y at x = 1.02 correct to five decimal places given dy = (xy 1)x and y = 2 at x = 1applying Taylor's series method.
- 3. Use Taylor's series method to obtain a power series in (x-4) for the equation $5x\frac{dy}{dx} + y^2 -$ 2 = 0; $x_0 = 4$, $y_0 = 1$ and use it to find y at x = 4.1, 4.2, 4.3 correct to four decimal places.

Modified Euler's Method:

- 1. Given dy $\frac{1}{dx} = 1 + \frac{1}{x}$ $y_0 = 2$ at $x_0 = 1$, find the approximate value of y at x = 1.4 by taking
- step size h = 0.2 applying modified Euler's method 2. Using Modified Euler's Method to find y(20.2) given that $\frac{dy}{dx} = \log {x \choose y}$ with y(20) = 5taking h = 0.2.

3. Using Euler's predictor and corrector formula compute y(1.1) correct to five decimal places given that $\frac{and}{dx} + \frac{1}{x} = \frac{and}{x^2}$ y = 1 at x = 1.

Runge Kutta Method of 4th order:

- 1. Use fourth order Runge Kutta method to solve $(x + y) \frac{dy}{dx} = 1$, y(0.4) = 1 at x = 0.5 correct to four decimal places.
- 2. Use fourth order Runge Kutta method to find y at x = 0.1 given that $\frac{dy}{dx} = 3e^x + 2y$, (0) = 0 and h = 0.1.
- 3. using Runge Kutta Method of 4th order Solve $\frac{dy}{dx} + y = 2x$ at x = 1.1 given that y = 3 at x = 1 initially.

Milne's and Adams - Bashforth predictor and corrector method:

- 1. Apply Milne's method to compute y(1.4) correct to four decimal places given $\frac{dy}{dx} = x^2 + \frac{y}{2}$ and the following data: y(1) = 2, y(1.1) = 2.2156, y(1.2) = 2.4649, y(1.3) = 2.7514.
- 2. The following table gives the solution of $5xy' + y^2 2 = 0$. Find the value of y at x = 4.5 using Milne's predictor and corrector formulae. Use the corrector formula twice.

X	4	4.1	4.2	4.3	4.4
Y	1	1.0049	1.0097	1.0143	1.0187

- 3. Apply Adams Bashforth method to solve the equation $(y^2 + 1)dy x^2dx = 0$ at x = 1given y(0) = 1, y(0.25) = 1.0026, y(0.5) = 1.0206, y(0.75) = 1.0679.
- 4. Solve the differential equation $y' + y + xy^2 = 0$ with the initial values of y: $y_0 = 1$, $y_1 = 0$ $0.9008, y_2 = 0.8066, y_3 = 0.722$ corresponding to the values of $x : x_0 = 0, x_1 = 0.1, x_2 = 0.000$ 0.2, $x_3 = 0.3$ by computing the value of y corresponding to x = 0.4 applying Adams – Bashforth predictor and corrector formula.

Module - IV: Numerical Methods:

Numerical solution of Second order ODE by Runge-Kutta method of 4th order:

- 1. Given y'' xy' y = 0 with the initial conditions y(0) = 1, y'(0) = 0, compute y(0.2)
- and y'(0.2) using fourth order Runge-Kutta method. 2. Compute y(0.1) given $\frac{d^2y}{dx^2} = y^3$ and y = 10, $\frac{dy}{dx} = 5$ at x = 0 by Runge-Kutta method of fourth order.
- 3. Obtain the values of $x \& \frac{dx}{dt}$ when t=0.1 given that x satisfies the equation $\frac{d^2x}{dt^2} = t \frac{dx}{dt}$ $4x \& x = 3, \frac{dx}{dt} = 0$ when t = 0 initially. Use 4th order Runge Kutta Method.

Milne's Method

1. Apply Milne's method solve $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ given the following table of initial values.

X	0	0.1	0.2	0.3
Y	1	1.1103	1.2427	1.399
Y'	1	1.2103	1.4427	1.699

Compute (0.4) numerically and also theoretically.

2. Given the ODE y'' + xy' + y = 0 and the following table of initial values, compute (0.4) by applying Milne's method.

X	0	0.1	0.2	0.3
Y	1	0.995	0.9801	0.956
Y'	0	-0.0995	-0.196	-0.2867

3. Apply Milne's method to compute y(0.4) given the equation $y'' + y' = 2e^x$ and the following table of initial values. Compare the result with theoretical value

X	0	0.1	0.2	0.3
у	2	2.01	2.04	2.09
y	0	0.2	0.4	0.6

Numerical solution of Heat equation

- 1. Solve $u_{xx} = 32u_t$ subject to the conditions (0,t) = 0, u(1,t) = t and u(x,0) = 0. Find the values of u upto t=5 by Schmidt's process taking h=1/4. Also extract the following values: a) u(0.75,4) b) u(0.5,5) c) u(0.24,4)
- 2. Find the numerical solution of the parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ when u(0, t) = 0 = (4, t) and u(x, 0) = x(4 x) by taking h = 1 Find the values upto t=5.

Numerical solution of Wave equation

- 1. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u = (0, t) = 0, u(4, t) = 0, $u_t(x, 0) = 0$ and u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps.
- 2. Solve the wave equation $u_{xx} = 0.0625u_{tt}$ subject to the conditions

$$u(0,t) = \frac{1}{\partial u} = \frac{1}{\partial u} u(5,t), u(x,0) = x^2(x-5) & u_t(x,0) = 0 \text{ by taking } h = 1 \text{ for } 0 \le t \le 1.$$
3. Solve:
$$\frac{1}{\partial u^2} = \frac{1}{\partial u^2} u(5,t), u(x,0) = 0, u(x,0) = 0, u(x,0) = 0 \text{ and } u(0,t) = 0.$$

 $\sigma t^2 - \sigma x^2$ (1, t) = $100 \sin(\pi t)$ in the range $0 \le t \le 1$ by taking h = 1/4.

Module V: Joint Probability Distribution

1. The joint distribution of two random variable x & y is as follows

XX	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

compute the following a) E(X) & E(Y) b) E(XY) c) $\sigma_x \& \sigma_y$ d) COV(X,Y) e) $\rho(X,Y)$.

- 2. X And Y are Independent random variables.X take values 2,5,7 with probability ½,1/4,1/4 respectively Y take the values 3,4,5 with probability 1/3,1/3,1/3. Find the joint probability distribution of X and Y.
- 3. Suppose X and Y are independent random variables with the following respective distribution find the joint distribution of X and Y also verify that COV(X,Y)=0

x_i	1	2
$f(x_i)$	0.7	0.3

y_j	-2	5	8
$g(y_j)$	0.3	0.5	0.2

4. The joint distribution table for two random variables X and Y is as follows

х У	-2	-1	4	5
1	0.1	0.2	0	0.3
2	0.2	0.1	0.1	0

Also compute E(X), E(Y), E(XY), COV(XY), S.D. of X, Y

5. If X & Y are Independent random variables, Prove the following results. a)
$$E(XY) = E(X).E(Y)$$
 b) $COV(X,Y) = 0$ c) $\sigma^2_{x+y} = \sigma^2_x + \sigma^2_y$.

Stochastic process:

- 1. Definition: i) Stochastic process ii) Stochastic matrix and iii) Regular stochastic matrix.

 2. If $A = \begin{bmatrix} a_1 \\ b_2 \end{bmatrix}$ is a stochastic matrix & $V = \begin{bmatrix} v \\ 1 \end{bmatrix}$ is a probability vector, show that VA is also a probability vector.
- 3. Prove with reference to two second order stochastic matrices that their product is also a stochastic matrix.
- 4. If A is a square matrix of order n whose rowsare each the same vector a = (a1, a2, ...an)and if $v = (v1, v2, \dots, vn)$ is a probability vector P.T vA = a
- 5. Find the Unique fixed probability vector of the regular stochastic matrix $A = \begin{bmatrix} 4 & 4 \end{bmatrix}$
- 6. Find the Unique fixed probability vector of the regular stochastic matrix

$$P = \begin{bmatrix} 1/2 & 1/4 & 1/4 \\ 1/2 & 0 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \end{bmatrix}$$

Markov Chains:

- 1. Definition: Markov Chains

Transition probability matrix (t.p.m)

- 1. P.T the markov chain whose t.p.m.is $P = \begin{bmatrix} 1/2 & 0 & 1/2 \end{bmatrix}$ is irreduciable find the 1/2 & 1/2 & 0 corresponding stationary probability vector.
- 3. A student study habits are as fallows. If he studies one night, he is 70% sure not to study the next night, on the other hand if he does not study one night, he is 60% sure not to study the next night. In the long run how often does he study.