

House Price Prediction Capstone Project: Milestone 1

Vanika Hans

Introduction

Problem Statement:

- House prices are an indication of economic growth
- Important for executives to understand and predict the growth of the market to make future-proof business decisions

Need of the Present Study:

- House price analysis can be very complicated due to various features that contribute to the pricing of houses
- In order to predict the housing prices, we need to understand the features that influence current prices

Business/Social Opportunities:

 Understanding and predicting the housing market will put the company one step of competitors with a foresight on the economy and business decisions made based on predictions

Data Dictionary

Features that all may or may not contribute to house prices:

Remember when we said it can be complicated?

	Index	Attribute	Description	Count	Null	Type
	0	cid	a notation for a house	21613	non-null	int64
	1	dayhours	Date house was sold	21613	non-null	object
	2	price	Price is prediction target (in \$)	21613	non-null	int64
	3	room_bed	Number of Bedrooms per house	21505	non-null	float64
	4	room_bath	Number of bathrooms per bedrooms	21505	non-null	float64
	5	living_measure	square footage of the home	21596	non-null	float64
	6	lot_measure	square footage of the lot	21571	non-null	float64
	7	ceil	Total floors (levels) in house	21571	non-null	object
	8	coast	House which has a view to a waterfront (0 - No, 1 - Yes)	21612	non-null	object
	9	sight	Has been viewed	21556	non-null	float64
	10	condition	How good the condition is (Overall out of 5)	21556	non-null	object
	11	quality	Grade given to the housing unit, based on grading system	21612	non-null	float64
	12	ceil_measure	square footage of house apart from basement	21612	non-null	float64
	13	basement	square footage of the basement	21612	non-null	float64
	14	yr_built	Built Year	21612	non-null	object
	15	yr_renovated	Year when house was renovated	21613	non-null	int64
	16	zipcode	zip code	21613	non-null	int64
	17	lat	Latitude coordinate	21613	non-null	float64
	18	long	Longitude coordinate	21613	non-null	object
	19	living_measure15	Living room area in 2015 (implies some renovations) This might or might not have affected the lot size area	21447	non-null	float64
	20	lot_measure15	lotSize area in 2015 (implies some renovations)	21584	non-null	float64
	21	furnished	Based on the quality of room (0 - No, 1 - Yes)	21584	non-null	float64
	22	total_area	Measure of both living and lot	21584	non-null	object
-						

Data Report (Univariate): Ceil, Dayhours

- There were multiple entries for the same house (cid) that indicate 176 houses getting listed multiple times.
- House data was collected from May 2014 to May 2015. The least amount of houses in the dataset are in February 2015, January/May 2015

Data Report (Univariate): Room_bed

- * Highest count at 3 bedrooms
- * Lowest count at 9-33 bedroooms.

 These also are definitely the outliers of the dataset
 - * Skewed to the right.

Data Report (Univariate): Room_bath

- Highest count at 2.5 bathrooms
- Outliers from 4.25-7.5 bathrooms. Not as common in the dataset.

Data Report (Univariate): Ceil

* Observations:

* Visually confirmed that the total numbers of floors are overwhelmingly 1 and 2 is overwhelmingly high compared to the others.

Data Report (Univariate): Coast

* As expected, most properties in the dataset do not have a coast, and a couple do.

Data Report (Univariate): Coast

* Most of the properties in the dataset have not been viewed, and interestingly more properties have been viewed twice and three times more than once.

Data Report (Univariate): Condition

* Most of the houses are rated 3 stars, with some at 4 and 5.

Data Report (Univariate): Quality

- * The quality is based on a grading system that goes up to 13 need to understand this better.
- * But, the most of the houses have a quality of 7 and in the range of 6-10.

Data Report (Univariate): yr_built

- The yr_built is skewed to the left, indicating that most of the houses in the dataset are trending to be newer.
- The range of years shown is from 1900 to 2015.

Data Report (Univariate): yr_renovated

 * The year renovated is very much skewed to the left - which makes sense.
 Most of the renovations in the dataset are recent.

Data Report (Univariate): yr_renovated

* The zipcodes in the dataset are spread out pretty well - no one area was dominated. So we have a good spread of location in the dataset

zipcode

Data Report (Univariate): lat and long

* From latitude values above, we can see that 75% of the data lies within 47.47 to 47.67 and for the longitude values, 75% of the data lies between -122.51 to -122.125. Taking into account the minimum and maximum values as well, we can conclude that the dataset is mostly analyzing houses in the state of Washington.

Data Report (Univariate): Furnished

* The majority of the houses are unfurnished with a small but significant amount furnished.

Data Report (Univariate): Price

* House prices are skewed far to the right, with a ton of outliers at a high price

i]: <AxesSubplot:xlabel='price'>

Data Report (Univariate): Price

* Measurements of the house apart from the basement are skewed far to the right, with a ton of outliers of a very large size

57]: <AxesSubplot:xlabel='lot_measure'>

Data Report (Univariate): Basement

- * Measurements of lot sizes are skewed far to the right, with a ton of outliers of a very large size.
- * Measement sizes are trending to be very small

[58]: <AxesSubplot:xlabel='basement'>

Data Report (Univariate): living_measure and living_measure15

* Measurements of living spaces are skewed far to the right, with a ton of outliers of a very large size above ~4000

* Measurements of living room area in 2015 - slightly less skewed to the right with some outliers above \sim 3600.

Data Report (Univariate): lot_measure and lot_measure15

* Measurements of lot size and lot size in 2015 - very skewed to the right with some outliers above \sim 3600.

* both look very similar

Data Report (Univariate): total_area

* Skewed to the right with a large amount of outliers

[62]: <AxesSubplot:xlabel='total_area'>

Bivariate Analysis: Price vs Month_Year

- * Months where the house was sold for the highest price were June and July 2014 as well as April 2015
- * Months where the house was sold for the lowest prices were January 2015 and May 2015

Bivariate Analysis: Price vs Room_bed

* The price becomes higher in value up untl the number of rooms is at 8, for which then the price decreases for rooms with 9-13 rooms

Bivariate Analysis: Price vs Room_bed

• For the most part, the price trends upwards as the number of bathrooms increases

Bivariate Analysis: Price vs Ceil

 $\bullet\,$ The price increases as the number of floors increases, but briefly drops at 3 floors

Bivariate Analysis: Price vs Coast

• Undubiously, having a coast view increases the price

Bivariate Analysis: Price vs Sight

· having the house viewed increases the price

Bivariate Analysis: Price vs Condition

• the higher the condtiion, the higher the price

Bivariate Analysis: Price vs Quality

• the higher the quality, the higher the price

Bivariate Analysis: Price vs Year Built

· no specific pattern

Bivariate Analysis: Price vs Yr_renovated

• it does appear overall that houses renovated in more recent years have higher prices than those in years less than ~1978.

Bivariate Analysis: Price vs zipcode

• specific zip codes seem to shine: 99102 (Albion, WA), 98004 (Bellevue, WA), 98008 (King County, WA), 99039 (King County, WA), 99040 (King County, WA)

Bivariate Analysis: Price vs furnished

• not surprisingly, furnished houses have higher prices

Bivariate Analysis: Numerical

• visually, the strongest linear relationships are for ceil_measure (square footage not including basement) and living_rr (living room area in 2015).

