

Research Seminar

Ranking Explanations via Query Reformulation for Web Search

April 24, 2024 Justin Löscher

Betreut von Maik Fröbe und Lukas Gienapp

Motivation

Neuronale Ranking-Modelle (NRMs)

Einsatz von neuronalen Netzwerken:

- Generieren von Query- und Dokumentrepräsentation
- Relevanzfunktion

Neuronale Ranking-Modelle (NRMs)

Vorteil:

- haben semantisches Verständnis, indem sie Terme, die in einem Kontext stehen, miteinander assozieren können
- gut gegen vocabulary mismatch

Beispiele:

- "australia" → "australia sydney kangaroo"
- "how many people live in germany?" → "population germany"

Neuronale Ranking-Modelle (NRMs)

Nachteile:

- sind schwer interpretierbar
- Overfitting
- empfindlich für adversariale Fehler

Traditionelle Ranking-Modelle wie BM25 haben diese Probleme nicht

Lokale Approximation via Query Reformulation

Idee: Approximiere top-k NRM-Ranking mit einfachen Ranker und reformulierter Query

- liefert interpretierbares Ersatzmodell
- reformulierte Query verbessert Effektivität von einfachen Rankern

Verwandte Arbeiten: BFS-Algorithmus

Llordes et al. [2023]

Gegeben:

- Korpus D, Query q
- NRM Θ
- NRM-Ranking $L_k(q, \Theta)$
- Einfaches Ranking-Modell ϕ (z.B. BM25)
- Ähnlichkeitsmaß ω (z.B. Jaccard-Distanz)

Ziel: Finde eine Query $q^+ \subset V(L_k(q,\Theta))$, sodass $\omega(L_k(q,\Theta),L_k(q^+,\phi))$ maximal ist

Ranking Explanations via Query Reformulation for Web Search | Verwandte Arbeiten

Verwandte Arbeiten: BFS-Algorithmus

Llordes et al. [2023]

- Finden einer reformulierten Query q^+ ist die Suche nach einer optimalen Teilmenge aus $V(L_k(q,\Theta)$
- Teilmenge über Traversierung eines Baumes finden
- Anwendung eines Best-First-Search-Algorithmus

- Ein Knoten ist genau eine mögliche Teilmenge von $V(L_k(q,\Theta))$
- Ausgehend von der aktuell besuchten Query werden b Kindknoten generiert
- Entweder wird ein Term hinzugefügt, oder ein Term wieder entfernt
- Die Kindknoten, die den besten Korrelationswert ω erreichen, werden zu einer Priority Queue hinzugefügt

- Algorithmus startet bei einer leeren Query und terminiert, sobald eine optimale Query q^+ gefunden wurde oder keine Elemente mehr in der queue sind
- Hinzufügen eines Terms orientiert sich an der RM3-Gewichtung
- Entfernen von Termen orientiert sich an TF-IDF-Gewicht

Methodik: BFS-Algorithmus

Query q = "lebenserwartung katze"

NRM-Ranking:

docno	text
d ₁	"Wie alt werden Katen? Im Durchschnitt werden Katzen 15 Jahre alt."
d ₂	"Das Alter einer Hauskatze, hängt von der Pflege und Lebensumständen ab."
d ₃	"Die durchschnittliche Lebenserwartung von Katzen liegt bei etwa 15 Jahren."
d ₄	"Im Allgemeinen werden Katzen im Durchschnitt 14 bis 16 Jahre alt."
d ₅	"Katzen können ziemlich alt werden. Die derzeit älteste Katze ist 27 Jahre alt."

Methodik: BFS-Algorithmus

Ziel: Reformuliere Query q so, dass das Top-3-Ranking von BM25 mit dem des NRM übereinstimmt.

NRM(q)	BM25(q)	
d ₁	d ₂	
d_2	d ₄	
d_3	d ₁	
d_4	d_5	
d ₅	d_3	

Methodik: BFS-Algorithmus

docno	text
d ₁	"Wie alt werden Katen? Im Durchschnitt werden Katzen 15 Jahre alt."
d ₂	"Das Alter einer Hauskatze, hängt von der Pflege und Lebensumständen ab."
d_3	"Die durchschnittliche Lebenserwartung von Katzen liegt bei etwa 15 Jahren."

 $V({d_1,d_2,d_3}) = {\text{"katze", "lebenserwartung", "alter", "durchschnitt", "15",...}$

Methodik: Eigener Ansatz

Problem

- BFS-Ansatz bisher nur auf MS-MARCO Passage Ranking Collection angewendet
- Webdokumente enthalten deutlich mehr Terme als Passagen
- Query q^+ mit guter Korrelation wird schnell gefunden und viele weitere Queries, die danach generiert wurden, sind auf dem selben Niveau
- Folge: Länge der queue steigt immer weiter, was enorme Kosten verursacht

Lösung: Terminiere Algorithmus sobald queue eine Maximallänge erreicht hat

Methodik: Eigener Ansatz

Varianten

- 1. Starte mit leerer Query
- 2. Starte mit RM3-expanded Query

Experiment: Forschungsfragen

- 1. Wie gut lassen sich NRM-Rankings mit dem BFS-Algorithmus approximieren?
- 2. Kann die Effektivität von einfachen Rankern mit den reformulierten Queries verbessert werden?
- 3. Inwiefern variiert die Effektivität der reformulierten Queries unter sich verändernden Datensätzen?

Experiment: Daten

MS-MARCO passage ranking collection

- 8.8 Millionen Passagen
- TREC DL 2019 topic set (43 Queries)

TREC Robust 2004

- 528.155 Dokumente (Zeitungsartikel)
- 250 Queries

Experiment: Setup

Neuronales Ranking-Modell: MonoT5

Baselines

- BM25
- Bo1
- RM3

Eigene Ansätze

- BFS I = Start mit leerer Query
- BFS II = Start mit RM3-expanded Query (6 Terme)

Experiment: Setup

BFS-Parameter

Einfacher Ranker: BM25

Rankinglänge: 10

- Anzahl generierter Kindknoten: 30

Maximale Query-Terme: 10

Maximale Queue-Länge: 1000

Experiment: Setup

Ähnlichkeit

- Jaccard-Distanz
- RBO

Effektivität

- nDCG₁₀
- MAP

Experiment: Ergebnisse

RQ1

	MS-MARCO		Robust04		
	Jaccard	RBO	Jaccard	RBO	
BM25	0.1914	0.2049	0.2642	0.3303	
Bo1	0.3069	0.4333	0.3328	0.4791	
RM3	0.3144	0.4126	0.3440	0.5001	
BFS I	0.6149	0.4810	0.4535	0.3579	
BFS II	0.6197	0.4762	0.5819	0.4553	

Table 1: Durchschnittliche Korrelationen aller Queries der top-10 Rankings

Experiment: Ergebnisse

RQ2

	MS-MARCO		Robust04	
	nDCG ₁₀	MAP	nDCG ₁₀	MAP
MonoT5	0.7238	0.5246	0.5450	0.3121
BM25	0.4795	0.3700	0.4244	0.2369
Bo1	0.6352	0.4847	0.5114	0.3018
RM3	0.6363	0.4732	0.5087	0.2966
BFS I	0.6463	0.3658	0.5104	0.2521
BFS II	0.6598	0.3915	0.5277	0.2745

Experiment: Beispiel-Queries

Query	Beispiel-Queries	Jaccard	RBO	nDCG ₁₀
Тур	Beispiel-Queries	Jaccaru	NBO	
Original	school prayer banned	0.4286	0.7457	0.7460
BFS	school prayer ban court footbal	0.8182	0.8793	0.8764
ыз	vote georgia religi legal	0.0102	0.0793	0.0704

Experiment: RQ3

LongEval

- Dokumentkollektionen erfasst zu verschiedenen Zeitpunkten
- 3 Datensätze aus Webdokumenten aus den Monaten Juni, Juli und September (jeweils ca. 1 Mio Dokumente)
- 129 Queries

Vorgehen

- 1. Reformuliere Queries mit MonoT5-Rankings auf Datensatz von Juni
- 2. Evaluiere Effektivität der Queries auf Datensätzen von Juli und August

Experiment: Ergebnisse

RQ3

	Juni	Juli	September
BFS I	0.1612	0.1472	0.1330
BFS II	0.1770	0.1566	0.1493

Table 2: Effektivität der reformulierten Queries mit nDCG₁₀

Fazit

- Approximation der Rankings klappt für manche Queries sehr gut, bei anderen aber auch eher schlecht
- Effektiv sind sie trotzdem mit bis zu 97% der Effektivität von MonoT5
- Über einen längeren Zeitraum verlieren die reformulierten Queries an Effektivität