Orders

Alon Gurny

May 31, 2025

Contents

1	Preorders	2
2	Linear Orders	4
3	General Hausdorff Rank	9
4	ω -Hausdorff rank	11
5	Type Theory	13
6	Decidability of the rank	16
7	Everything Better	19

1 Preorders

We begin by studying the properties of preorders. Basically, we define a *property* as a class which is close under isomorphism. We then define the sum operation on preorders. This will be used to create new properties from old ones.

Definitions 1.1 (Preorder). A (labeled) preorder is a a set M together with a binary relation \leq on M such that \leq is reflexive and transitive, possibly endowed with monadic predicates (labels) over some first-order monadic signature.

Definition 1.2 (Property of preorders). A property **P** of preorders is a class of preorders which is closed under isomorphism.

Definition 1.3. A property \mathbf{P} of preorders is monotone if for every preorder $M, M \in \mathbf{P}$ implies that every suborder of M is in \mathbf{P} .

Definition 1.4. Let M be a preorder.

Then M^* is the dual/reverse preorder of M.

Definition 1.5 (Sum of preorders). Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders over a disjoint signature (i.e., for every $i \in I$, I and M_i have disjoint sets of labels).

have disjoint sets of labels). The sum $M = \sum_{i \in I} M_i$ is defined as follows:

The domain is $M = \biguplus_{i \in I} M_i$ (a disjoint union).

Let \leq_i be the preorder on M_i .

Let $x \in M_i$ and $y \in M_i$.

Then we define $x \leq y$ iff either i = j and $x \leq_i y$ or i < j.

The labels are inherited from either I or the M_i 's.

If I=2, we define $M_1+M_2:=\sum_{i\in 2}M_i$.

Lemma 1.6. Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders, over a disjoint signature.

Then $M = \sum_{i \in I} M_i$ is a preorder.

Proof. Reflexivity is clear.

For transitivity, suppose $x \leq y$ and $y \leq z$.

Suppose $x \in M_i$, $y \in M_j$, $z \in M_k$.

Then $i \le j$ and $j \le k$, so $i \le k$. If i = k, then necessarily i = j = k, and so $x \le_i y$ and $y \le_i z$, so $x \le_i z$, so $x \le_i z$, as required.

Otherwise, i < k, and thus $x \le z$, as required.

Definition 1.7. Let P_1 and P_2 be properties of preorders.

Then we define

$$\mathbf{P}_1 + \mathbf{P}_2 := \{ M_1 + M_2 : M_1 \in \mathbf{P}_1 \land M_2 \in \mathbf{P}_2 \}$$

The labels are inherited from either \mathbf{P}_1 or \mathbf{P}_2 .

Definition 1.8. A property \mathbf{P} of preorders is an additive property if for every preorders M_1 and M_2 , $M_1 + M_2 \in \mathbf{P}$ iff $M_1, M_2 \in \mathbf{P}$.

Definition 1.9 (Kleene plus). Let **P** be a property of preorders.

We define its Kleene plus as the smallest property of preorders \mathbf{P}^+ which contains \mathbf{P} and is closed under finite sums.

That is, $1^+ = \{1, 2, ...\}$, and $\mathbf{P}^+ = \sum_{1^+} \mathbf{P}$.

Definition 1.10 (Sum of a property over a preorder). Let I be a preorder.

Let **Q** be a property of preorders.

Then we define

$$\sum_{I} \mathbf{Q} := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q} \right\}$$

Definition 1.11 (Sum of a family of properties over a preorder). Let I be a preorder.

Let $\{Q_i\}_{i\in I}$ be a family of properties of preorders over a disjoint signature. Then we define

$$\sum_{i \in I} \mathbf{Q}_i := \left\{ \sum_{i \in I} M_i : \forall i \in I. M_i \in \mathbf{Q}_i \right\}$$

The labels are inherited from either I or the \mathbf{Q}_i 's.

Note 1.12. By the previous two definitions, if I has no labels,

$$\sum_{I} \mathbf{Q} = \sum_{i \in I} \mathbf{Q}$$

Definition 1.13 (Sum of a property over a property). Let **P** be a property of preorders.

Let **Q** be a property of preorders over a disjoint signature.

Then we define,

$$\sum_{\mathbf{P}} \mathbf{Q} := \left\{ \sum_{I} \mathbf{Q} : I \in \mathbf{P} \right\}$$

2 Linear Orders

Definitions 2.1 (Linear order). A linear order a preorder which is symmetric and total.

Definition 2.2 (Property of linear orders). A property \mathbf{P} of linear orders is a class of linear orders which is closed under isomorphism.

Definition 2.3. Subintervals Let M be a linear order, and let $x, y \in M$, such that $x \leq y$.

Then we define the bounded subintervals [x, y], (x, y], [x, y) and (x, y) as usual.

We also define the semi-bounded subintervals $(-\infty, x]$, $[x, \infty)$, $(-\infty, x)$ and (x, ∞) as usual.

We also define the unbounded subinterval $(-\infty, \infty)$ as the whole linear order M, as usual.

 $A \ {\rm subinterval} \ is \ either \ a \ bounded \ subinterval, \ a \ semi-bounded \ subinterval \ or \ the \ unbounded \ subinterval.$

If x > y then we define the intervals as follows:

$$[x, y] := [y, x]$$

 $(x, y] := (y, x]$
 $[x, y) := [y, x)$
 $(x, y) := (y, x)$

Definition 2.4. Let M be a linear order.

A set $A \subseteq M$ is left cofinal in M if for every $x \in M$, there exists $y \in A$ such that y < x.

A set $A \subseteq M$ is right cofinal in M if for every $x \in M$, there exists $y \in A$ such that x < y.

A set $A \subseteq M$ is bi-directionally cofinal in M if it is both left and right cofinal.

Lemma 2.5. Let P be an additive property of linear orders.

Let $M \in \mathbf{P}$ be a linear order.

Let $x, y \in M$ be any two points in a linear order M.

Then, $[x,y] \in \mathbf{P}$.

Proof. WLOG, suppose $x \leq y$.

Note that,

$$M = (-\infty, \infty) = (-\infty, x) + [x, y] + (y, \infty)$$

when $(-\infty, x)$ and/or (y, ∞) may be empty.

Since **P** is an additive property, we conclude that $[x, y] \in \mathbf{P}$.

Corollary 2.6. Let \mathbf{P} be a nontrivial additive property of linear orders. Then $1 \in \mathbf{P}$.

Proof. Let $M \in \mathbf{P}$ be any linear order and let $x \in M$ be any point in M.

Apply lemma 2.5 to the linear order M, and the points x and x, to conclude that $[x, x] \equiv 1 \in \mathbf{P}$.

Note 2.7. Note that corollary 2.6 is false if we do not restrict ourselves to linear orders.

For example, $(1 \uplus 1)^+$ is a property of preorders which is additive, but does not contain 1.

Corollary 2.8. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y \in M$ be any two points in a linear order M. Then the following are equivalent:

- 1. $(x, y) \in \mathbf{P}$
- 2. $(x,y] \in \mathbf{P}$
- 3. $[x,y) \in \mathbf{P}$
- 4. $[x, y] \in \mathbf{P}$

Proof. This is just applying the definition of an additive property to the orders [x, y] and 1.

Corollary 2.9. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y, z \in M$ be any three points in a linear order M, such that $[x, y] \in \mathbf{P}$ and $[y, z] \in \mathbf{P}$.

Then $[x,z] \in \mathbf{P}$.

Proof. If $y \in [x, z]$, then [x, z] = [x, y] + (y, z], and $(y, z] \in \mathbf{P}$ by corollary 2.8. Otherwise, either $x \in [y, z]$ or $z \in [x, y]$. WLOG, suppose $z \in [x, y]$. Then [x, y] = [x, z] + (z, y], so $[x, z] \in \mathbf{P}$ by the fact that \mathbf{P} is additive. \square

Definitions 2.10. Let **P** be a property of linear orders.

We define the following properties of linear orders:

- $\mathcal{B}[\mathbf{P}]$ is the class of linear orders M such that for every $x, y \in M$, the bounded subinterval [x, y] is in \mathbf{P} .
- $\mathcal{L}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the left-bounded ray $[x, \infty)$ is in \mathbf{P} .
- $\mathcal{R}[\mathbf{P}]$ is the class of linear orders M such that for every $x \in M$, the right-bounded ray $(-\infty, x]$ is in \mathbf{P} .

Definition 2.11. A property \mathbf{P} of linear orders is a star property if for every linear orders M, and every family $\mathcal{F} \subseteq \mathbf{P}$ of subintervals of M such that $J_1 \cap J_2 \neq \emptyset$ for every $J_1, J_2 \in \mathcal{F}$, we have that $\bigcup \mathcal{F} \in \mathbf{P}$.

Lemma 2.12. Let P be a star property.

Then for every linear order M, and every point $x \in M$, there exists a largest subinterval $J \subseteq M$ such that $J \in \mathbf{P}$.

Equivalently, we can define a convex equivalence relation $\sim_{\mathbf{P}}$ on M such that $x \sim_{\mathbf{P}} y$ iff $[x, y] \in \mathbf{P}$.

That is, $x \sim_{\mathbf{P}} y$ iff x and y are in the same largest **P**-subinterval.

Proof. Let $J \subseteq M$ be the union of all $\mathcal{B}[\mathbf{P}]$ -subintervals containing x. All such subintervals intersect at x.

Therefore, by the star lemma, J is in $\mathcal{B}[\mathbf{P}]$, and by definition J is the largest \mathbf{P} -subinterval containing x.

Thus we can define the equivalence relation $\sim_{\mathbf{P}}$ as above.

Lemma 2.13 (Star Lemma). Let P be an additive property of linear orders. Then the property $\mathcal{B}[P]$ is a star property.

Proof. Let M be a linear order, and let $\mathcal{F} \subseteq \mathcal{B}[\mathbf{P}]$ be a family of subintervals of M.

Let $[x, y] \subseteq \bigcup \mathcal{F}$ be any bounded subinterval. We need to prove it is in **P**. Suppose $x \in J_1$ and $y \in J_2$ for $J_1, J_2 \in \mathcal{F}$.

Since $J_1 \cap J_2 \neq \emptyset$, we can take $z \in J_1 \cap J_2$.

Then $[x, z] \subseteq J_1$ and $[z, y] \subseteq J_2$, and thus by the definition of $\mathcal{B}[\mathbf{P}]$, $[x, z], [z, y] \in \mathbf{P}$. Since \mathbf{P} is additive, by corollary 2.9, we have $[x, y] \in \mathbf{P}$.

Lemma 2.14. Let P be an additive property of linear orders.

Then,

- 1. $\mathcal{L}[\mathbf{P}] = \{M : M + 1 \in \mathcal{B}[\mathbf{P}]\}$
- 2. $\mathcal{R}[\mathbf{P}] = \{M : 1 + M \in \mathcal{B}[\mathbf{P}]\}$
- 3. $P = \mathcal{L}[P] \cap \mathcal{R}[P] = \{M : 1 + M + 1 \in \mathcal{B}[P]\}$

Proof. Let M be a linear order.

1. Suppose $M + \{\infty\} \in \mathcal{B}[\mathbf{P}]$. Then for every $x \in M$, we have $[x, \infty] \in \mathbf{P}$, and thus $[x, \infty) \in \mathbf{P}$. Therefore, $M \in \mathcal{L}[\mathbf{P}]$.

Conversely, if $M \in \mathcal{L}[\mathbf{P}]$, let $x, y \in M$ be any two points in M + 1.

If $y < \infty$, then $[x,y] \subseteq [x,\infty)$. Since $[x,\infty) \in \mathbf{P}$, we conclude that $[x,y] \in \mathbf{P}$. Otherwise, if $y = \infty$, then $[x,y] = [x,\infty] = [x,\infty) + \{\infty\}$, and thus $[x,y] \in \mathbf{P}$.

- 2. The second case is dual to the first case.
- 3. We will show a triple inclusion.

If $M \in \mathbf{P}$, then by additivity, $1 + M \in \mathbf{P}$ and $M + 1 \in \mathbf{P}$, and thus $M \in \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$.

If $M \in \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$, then by lemma 2.13, $1 + M + 1 \in \mathcal{B}[\mathbf{P}]$.

If $1 + M + 1 \in \mathcal{B}[\mathbf{P}]$, then M is a bounded subinterval of 1 + M + 1, so $M \in \mathcal{B}[\mathbf{P}]$.

Lemma 2.15. Let P be an additive property of linear orders. Then,

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \mathbf{P} \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Proof. By lemma 2.14, we conclude that $\mathcal{L}\left[\mathbf{P}\right]$, $\mathcal{R}\left[\mathbf{P}\right] \subseteq \mathcal{B}\left[\mathbf{P}\right]$, since $M+1 \in \mathbf{P}$ and $1+M \in \mathbf{P}$ both imply $1+M+1 \in \mathbf{P}$. Thus,

$$\begin{split} \mathcal{B}\left[\mathbf{P}\right] &= \left(\mathcal{L}\left[\mathbf{P}\right] \cap \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right) \\ & \uplus \left(\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right)\right) \end{split}$$

Since by lemma 2.14 $\mathbf{P} = \mathcal{L}[\mathbf{P}] \cap \mathcal{R}[\mathbf{P}]$, we conclude what we wanted to prove.

Lemma 2.16. Let P be an additive property of linear orders.

Let M, M_1, M_2 be linear orders such that $M = M_1 + M_2$. Then,

1.
$$M \in \mathcal{B}[\mathbf{P}] \iff M_1 \in \mathcal{L}[\mathbf{P}] \land M_2 \in \mathcal{R}[\mathbf{P}]$$

2.
$$M \in \mathcal{L}[\mathbf{P}] \iff M_1 \in \mathcal{L}[\mathbf{P}] \wedge M_2 \in \mathbf{P}$$

3.
$$M \in \mathcal{R}[\mathbf{P}] \iff M_1 \in \mathbf{P} \land M_2 \in \mathcal{R}[\mathbf{P}]$$

Proof. From lemma 2.14, we know that

1.

$$M \in \mathcal{B}[\mathbf{P}] \iff M_1 + M_2 \in \mathcal{B}[\mathbf{P}]$$

$$\iff M_1 + 1 \in \mathcal{B}[\mathbf{P}] \land 1 + M_2 \in \mathcal{B}[\mathbf{P}]$$

$$\iff M_1 \in \mathcal{L}[\mathbf{P}] \land M_2 \in \mathcal{R}[\mathbf{P}]$$

where the second transition follows from the star lemma lemma 2.13.

- 2. TBC.
- 3. TBC.

Corollary 2.17. Let P be an additive property of linear orders. Then,

$$\mathcal{B}\left[\mathbf{P}\right] \setminus \left(\mathcal{L}\left[\mathbf{P}\right] \cup \mathcal{R}\left[\mathbf{P}\right]\right) = \left(\mathcal{L}\left[\mathbf{P}\right] \setminus \mathcal{R}\left[\mathbf{P}\right]\right) + \left(\mathcal{R}\left[\mathbf{P}\right] \setminus \mathcal{L}\left[\mathbf{P}\right]\right)$$

Lemma 2.18 (Associativity of sum). Let \mathbf{P}_1 , \mathbf{P}_2 and \mathbf{P}_3 be properties. Then $\sum_{\mathbf{P}_1} \sum_{\mathbf{P}_2} \mathbf{P}_3 = \sum_{\sum_{\mathbf{P}_1} \mathbf{P}_2} \mathbf{P}_3$.

Proof. It follows directly from the associativity of the sum operation on linear orders. Actually, it generalizes to any algebraic equation which holds on linear orders. \Box

Lemma 2.19 (Sum and union commute). Let \mathcal{P} be a family of properties.

Let **Q** be a property.

Then
$$\sum_{\mathcal{U}\mathcal{P}} \mathbf{Q} = \bigcup_{\mathbf{P}\in\mathcal{P}} \sum_{\mathbf{P}} \mathbf{Q}$$
.

Proof. This is obvious from the definition of the sum operation. \Box

Definition 2.20. We define CNT as the class of all countable linear orders.

Definition 2.21. Let $\gamma \geq \omega$ be a limit ordinal.

We define
$$\Gamma_{\gamma} := \{\beta : \overline{\beta} \subseteq \gamma^* + \gamma\}^+$$
.
We define $\Omega := \Gamma_{\omega}$.

Example 2.22.

$$\Omega = \left\{1, \omega, \omega^*\right\}^+$$

Observation 2.23. Let $\gamma \geq \omega$ be a limit ordinal.

Then Γ_{γ} is a monotone, additive property of linear orders.

3 General Hausdorff Rank

Definition 3.1. Let \mathbf{Q} be a property of linear orders. We define a property $\mathbf{Q}^{<\alpha}$ for every ordinal α as follows:

- For $\alpha = 0$, $\mathbf{Q}^{<0} = \{1\}$.
- For $\alpha = \gamma + 1$,

$$\mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}} \mathbf{Q}^{<\gamma}$$

• For α a limit ordinal,

$$\mathbf{Q}^{<\alpha} = \bigcup_{\beta < \alpha} \mathbf{Q}^{<\beta}$$

Example 3.2. Let \mathbf{Q} be a property of linear orders. Then $\mathbf{Q}^{<1} = \mathbf{Q}$.

Lemma 3.3. Let \mathbf{Q} be a property of linear orders. Let α, δ be ordinals. Then,

$$\mathbf{Q}^{<\alpha+\delta} = \sum_{\mathbf{Q}<\delta} \mathbf{Q}^{<\alpha}$$

Proof. We shall prove this by induction on $\delta \geq 0$. For $\delta = 0$ we need to prove

$$\mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}^0} \mathbf{Q}^{<\alpha}.$$

Which is true by definition, since $\mathbf{Q}^0 = \{1\}$. For $\delta = \gamma + 1$, using the induction hypothesis,

$$\begin{aligned} \mathbf{Q}^{<\alpha+\delta} &= \mathbf{Q}^{<\alpha+\gamma+1} \\ &= \sum_{\mathbf{Q}} \mathbf{Q}^{<\alpha+\gamma} \\ &= \sum_{\mathbf{Q}} \sum_{\mathbf{Q}^{<\gamma}} \mathbf{Q}^{<\alpha} \\ &= \sum_{\sum_{\mathbf{Q}} \mathbf{Q}^{<\gamma}} \mathbf{Q}^{<\alpha} \\ &= \sum_{\mathbf{Q}^{<\gamma+1}} \mathbf{Q}^{<\alpha} \\ &= \sum_{\mathbf{Q}^{<\delta}} \mathbf{Q}^{<\alpha} \end{aligned}$$

For δ a limit ordinal, using the induction hypothesis,

$$\mathbf{Q}^{<\alpha+\delta} = \bigcup_{\gamma < \delta} \mathbf{Q}^{<\alpha+\gamma}$$

$$= \bigcup_{\gamma < \delta} \sum_{\mathbf{Q}^{<\gamma}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{Q}^{<\delta}} \mathbf{Q}^{<\alpha}$$

$$= \sum_{\mathbf{Q}^{<\delta}} \mathbf{Q}^{<\alpha}$$

Definition 3.4. Let \mathbf{Q} be a property of linear orders.

Let α, β be ordinals with $\alpha < \beta$. We define,

1.
$$\mathbf{Q}^{\leq \alpha} := \mathbf{Q}^{<\alpha+1}$$

2.
$$\mathbf{Q}^{=\alpha} := \mathbf{Q}^{\leq \alpha} \setminus \mathbf{Q}^{<\alpha}$$

3.
$$\mathbf{Q}^{[\alpha,\beta)} := \mathbf{Q}^{<\beta} \setminus \mathbf{Q}^{<\alpha}$$

Definition 3.5. Let **Q** be a property of linear orders.

Let M be a linear order, such that $M \in (\mathbf{Q}^{<\alpha})^+$ for some ordinal α . We define the **Q**-Hausdorff rank of M as

$$\mathbf{hrank}_{\mathbf{Q}}\left(M\right)=\sup\left\{ \beta:M\notin\left(\mathbf{Q}^{<\beta}\right)^{+}\right\}$$

where the supremum is taken over all ordinals β . (Recall that the supremum of the empty set is defined to be 0.)

ω -Hausdorff rank

Definitions 4.1. Let $\alpha > 0$ be an ordinal.

We define:

1.
$$\mathcal{S}^1_{\alpha} := \Omega^{<\alpha}$$

2.
$$\mathcal{S}^{\omega}_{\alpha} := \mathcal{R}\left[\Omega^{<\alpha}\right] \setminus \mathcal{L}\left[\Omega^{<\alpha}\right]$$

3.
$$S_{\alpha}^{\omega^*} := \mathcal{L}\left[\Omega^{<\alpha}\right] \setminus \mathcal{R}\left[\Omega^{<\alpha}\right]$$

4.
$$S_{\alpha}^{\omega^* + \omega} := \mathcal{B}\left[\Omega^{<\alpha}\right] \setminus \left(\mathcal{L}\left[\Omega^{<\alpha}\right] \cup \mathcal{R}\left[\Omega^{<\alpha}\right]\right)$$

The names will soon be justified.

Lemma 4.2. Let $\alpha > 0$ be an ordinal.

Then,

1.
$$\mathcal{R}\left[\Omega^{<\alpha}\right] = \sum_{\omega} \Omega^{<\alpha}$$
.

2.
$$\mathcal{L}\left[\Omega^{<\alpha}\right] = \sum_{\omega^*} \Omega^{<\alpha}$$
.

3.
$$\mathcal{B}\left[\Omega^{<\alpha}\right] = \sum_{\omega^* + \omega} \Omega^{<\alpha}$$
.

Proof. 1. Let us prove the first part. (\supseteq) Let $M \in \sum_{\omega} \Omega^{<\alpha}$ be a linear order.

Let $M = \sum_{i \in \omega} M_i$ be the decomposition of M, where $M_i \in \Omega^{<\alpha}$.

Let $x, y \in M$ be any two points in M. WLOG $x \leq y$.

Suppose $x \in M_i$ and $y \in M_j$ for $i, j \in \omega$.

Since i and j have a finite distance in ω , we conclude $[x,y] \subseteq M_i + \ldots + M_j$, and thus $[x,y] \subseteq (\Omega^{<\alpha})^+ = \Omega^{\alpha}$.

 (\subseteq) Let $M \in \mathcal{R}[\Omega^{\leq \alpha}]$ be a linear order.

Since M is countable, let $\{x_i\}_{i\in\omega} M$ be a right cofinal ω -sequence in M.

Let
$$M_0 = (-\infty, x_0]$$
 and and $M_i = (x_{i-1}, x_i]$ for $i > 0$.

Then
$$M = \sum_{i \in \omega} M_i$$

Then $M = \sum_{i \in \omega} M_i$. But M_i is a right-bounded interval and thus $M_i \in \Omega^{<\alpha}$, so $M \in \sum_{\omega} \Omega^{<\alpha}$.

- 2. The second part is symmetric.
- 3. The third part follows from corollary 2.17:

$$\begin{split} \mathcal{B}\left[\Omega^{<\alpha}\right] &= \mathcal{L}\left[\Omega^{<\alpha}\right] + \mathcal{R}\left[\Omega^{<\alpha}\right] \\ &= \sum_{\omega^*} \Omega^{<\alpha} + \sum_{\omega} \Omega^{<\alpha} \\ &= \sum_{\omega^* + \omega} \Omega^{<\alpha} \end{split}$$

An immediate corollary of lemma 4.2 is that:

Corollary 4.3. Let $\alpha > 0$ be an ordinal.

Then
$$\Omega^{\leq \alpha} = (\mathcal{B}[\Omega^{<\alpha}])^+$$
.

Lemma 4.4. Let $\alpha > 0$ be an ordinal.

Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$.

Suppose that $\alpha = \limsup_{i \in s} (\alpha_i + 1)$ for ordinals $\{\alpha_i\}_{i \in s}$.

Then, we have the following:

$$\mathcal{S}_{\alpha}^{s} = \sum_{i \in s} \Omega^{[\alpha_{i}, \alpha)}$$

Proof. It is enough to prove the case $s = \omega$, since $s = \omega^*$ follows by symmetry, and $s = \omega^* + \omega$ follows by adding the previous two cases.

 (\supseteq) Let $M \in \sum_{i \in \omega} \Omega^{[\alpha_i, \alpha)}$ be a linear order. Then obviously $M \in \sum_{\omega} \Omega^{<\alpha} =$ $\mathcal{R}\left[\Omega^{<\alpha}\right].$

Suppose for the contrary that $M \in \mathcal{L}[\Omega^{<\alpha}]$. TBC.

 (\subseteq) Let $M \in \mathcal{S}^{\omega}_{\alpha}$ be a linear order.

By lemma 4.2, $M = \sum_{\omega} M_i$ for some $M_i \in \Omega^{<\alpha}$.

We will define by induction a new sequence $\{N_i\}_{i\in\omega}$ such that $M=\sum_{i\in\omega}N_i$, where $N_i \in \Omega^{[\alpha_i,\alpha)}$.

Suppose that
$$N_j$$
 is defined for all $j < i$.
Since $M \notin \mathcal{L} [\Omega^{<\alpha}], [M_i, \infty) \notin \Omega^{<\alpha}$. TBC.

Note 4.5. For the proof of lemma 4.4, we actually use the fact that we work over Ω . This proof would not have worked over Γ_{β} for $\beta > \omega$.

Corollary 4.6. Let $\alpha, \delta > 0$ be limit ordinals.

Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$

Then,

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{\mathcal{S}^s_{\delta}} \Omega^{=\alpha}$$

Proof. Suppose that $\delta = \limsup_{i \in s} \delta_i$.

Then $\alpha + \delta = \limsup_{i \in s} (\alpha_i + \delta_i)$.

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{i \in s} \mathcal{S}^s_{\alpha+\delta_i} = \sum_{i \in s} \sum_{\Omega^{=\delta_i}} \Omega^{=\alpha} = \sum_{\sum_{i \in s} \Omega^{=\delta_i}} \Omega^{=\alpha} = \sum_{\mathcal{S}^s_{\delta}} \Omega^{=\alpha}$$

5 Type Theory

Definition 5.1. Let **P** be a property of preorders.

Let $n \in \mathbb{N}$.

We define $\mathbf{type}_n[\mathbf{P}]$ as the set of all n-types satisfiable in \mathbf{P} .

Definition 5.2. A property **P** of preorders is computable if $n \mapsto \mathbf{type}_n[\mathbf{P}]$ is a computable function.

Lemma 5.3. Let **Q** be a property of preorders.

There exists a computable function $f_{\mathbf{Q}} = f : \mathbb{N} \to \mathbb{N}$ such that for every $n \in \mathbb{N}$ and every ordinal $\alpha \geq f(n)$, $\mathbf{type}_n[\mathbf{Q}^{<\alpha}] = \mathbf{type}_n[\mathbf{Q}^{<f(n)}]$.

Proof. Since there are only finitely many n-types, and the ordinal sequence

$$\left\{ \mathbf{type}_{n} \left[\mathbf{Q}^{<\kappa} \right] \right\}_{\kappa}$$

is monotone, there must be some minimal $\kappa_0 \in \omega$ where the sequence stabilizes. This κ_0 is computable as a function of n, because $\mathbf{type}_n\left[\mathbf{Q}^{<\kappa}\right]$ is computable for every finite κ .

Lemma 5.4. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c_1}\right] = \mathbf{type}_n\left[\mathbf{Q}^{=c_2}\right]$$

Proof. Let $n \in \mathbb{N}$.

Since there are only finitely many sets of n-types, there exist (and can be computed) some $a(n) \ge f(n)$, a(n) + b(n) such that

$$\mathbf{type}_n \left[\mathbf{Q}^{=a(n)} \right] = \mathbf{type}_n \left[\mathbf{Q}^{=a(n)+b(n)} \right]$$

By induction if follows that for all $c \ge a(n)$,

$$\mathbf{type}_{n}\left[\mathbf{Q}^{=c}
ight] = \mathbf{type}_{n}\left[\mathbf{Q}^{=c+b(n)}
ight]$$

since
$$\mathbf{Q}^{=c+1} = \sum_{\mathbf{Q}} \mathbf{Q}^{=c}$$
.

Corollary 5.5. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

Then there exists a computable function b(n) such that for all $c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$, we have

$$\mathbf{type}_n\left[\mathcal{S}^s_{c_1}
ight] = \mathbf{type}_n\left[\mathcal{S}^s_{c_2}
ight]$$

Proof. For s=1, it follows from lemma 5.3, since $\mathcal{S}_c^1=\mathbf{Q}^{< c}$ and $c\geq a(n)\geq f(n)$ for $c\in\{c_1,c_2\}$.

For $s \in \{\omega, \omega^*, \omega^* + \omega\}$, it follows easily from lemma 4.4 and lemma 5.4. \square

Lemma 5.6. For every $n \in \mathbb{N}$ and for every ordinal $\alpha \geq \omega$,

$$\mathbf{type}_n\left[\mathbf{Q}^{=lpha}
ight] = \mathbf{type}_n\left[igcup_{c < b(n)} \mathbf{Q}^{=a(n)+c}
ight]$$

In particular, $type_n[\mathbf{Q}^{=\alpha}]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. By induction on $\alpha \geq \omega$.

Let $\{\alpha_i\}_{i\in\omega}$ be an ω -sequence of ordinals such that $a(n)\leq\alpha_i$ for all $i\in\omega$, and $\limsup_{i \in \omega} (\alpha_i + 1) = \alpha$. Then $\mathbf{Q}^{=\alpha} = \sum_{\mathbf{Q}} \bigcup_{i \in \omega} \mathbf{Q}^{=\alpha_i}$ and thus,

$$\begin{split} \mathbf{type}_n \left[\mathbf{Q}^{=\alpha} \right] &= \mathbf{type}_n \left[\sum_{\mathbf{Q}} \bigcup_{i \in \omega} \mathbf{Q}^{=\alpha_i} \right] \\ &= \mathbf{type}_n \left[\sum_{\mathbf{Q}} \bigcup_{i \in \omega} \bigcup_{c < b(n)} \mathbf{Q}^{=a(n) + c} \right] \\ &= \mathbf{type}_n \left[\sum_{\mathbf{Q}} \bigcup_{c < b(n)} \mathbf{Q}^{=a(n) + c} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \sum_{\mathbf{Q}} \mathbf{Q}^{=a(n) + c} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \mathbf{Q}^{=a(n) + c + 1} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \mathbf{Q}^{=a(n) + c} \right] \end{split}$$

where the last transition is because $\mathbf{type}_n\left[\mathbf{Q}^{=a(n)}\right] = \mathbf{type}_n\left[\mathbf{Q}^{=a(n)+b(n)}\right]$.

Corollary 5.7. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal. Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$ be a shape.

$$\mathbf{type}_n\left[\mathcal{S}^s_lpha
ight] = \mathbf{type}_n\left[\sum_s igcup_{c < b(n)} \Omega^{=a(n) + c}
ight]$$

In particular, $\mathbf{type}_n[S_\alpha^s]$ can be computed, and is independent of the choice of $\alpha \geq \omega$.

Proof. There exists a sequence $\{\alpha_i\}_{i\in s}$ such that $a(n)\leq \alpha_i$ for all $i\in s$, and $\limsup_{i \in s} (\alpha_i + 1) = \alpha.$ Then $S_{\alpha}^s = \sum_{i \in s} \Omega^{-\alpha_i}$, and thus,

$$\begin{split} \mathbf{type}_n \left[\mathcal{S}^s_{\alpha} \right] &= \mathbf{type}_n \left[\sum_{i \in s} \Omega^{=\alpha_i} \right] \\ &= \mathbf{type}_n \left[\sum_{s} \bigcup_{c < b(n)} \Omega^{=a(n)+c} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \sum_{s} \Omega^{=a(n)+c} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \mathcal{S}^s_{a(n)+c+1} \right] \\ &= \mathbf{type}_n \left[\bigcup_{c < b(n)} \mathcal{S}^s_{a(n)+c} \right] \end{split}$$

where the last transition is by corollary 5.5.

6 Decidability of the rank

Definition 6.1. Let **Q** be a property of linear orders.

Let M be a linear order.

We define the predicate $\mathbf{Int}_{\mathbf{Q}}\left(J\right)$ as true in M iff J is a \mathbf{Q} -subinterval of M.

Lemma 6.2. Let $\alpha > 0$ be an ordinal.

Then predicates $\operatorname{Int}_{\Omega^{\leq \alpha}}$, $\operatorname{Int}_{\Omega^{=\alpha}}$ are expressible in $\operatorname{MSO}[\operatorname{Int}_{\Omega^{<\alpha}}]$.

Proof. Obviously,

$$\mathbf{Int}_{\Omega^{=\alpha}} \iff \mathbf{Int}_{\Omega^{\leq \alpha}} \wedge \neg \mathbf{Int}_{\Omega^{<\alpha}}$$

So it is enough to express $\mathbf{Int}_{\Omega^{\leq \alpha}}$.

Now, J is a $\Omega^{\leq \alpha}$ -subinterval of M iff $J \in \sum_{\Omega} \Omega^{<\alpha}$.

But this can be expressed in MSO since it is expressible to check whether an arbitrary subset is in Ω .

Definition 6.3. Let $\alpha > 0$ be an ordinal.

Let M be a linear order and $x \in M$.

We define the convex equivalence relation:

$$\sim_{\alpha}:=\sim_{\mathcal{B}[\Omega^{<\alpha}]}$$

and $[x]_{\alpha} := [x]_{\mathcal{B}[\Omega^{<\alpha}]}.$

That is, $[x]_{\alpha}$ is the largest $\mathcal{B}[\Omega^{<\alpha}]$ -subinterval containing x in M.

We define $\sigma_{\alpha}(x)$ as the α -shape of $[x]_{\alpha}$.

We define $L_{\alpha}(x) = \mathbf{1}_{[x]_{\alpha} \in \mathcal{L}[\Omega^{<\alpha}]}$ and $R_{\alpha}(x) = \mathbf{1}_{[x]_{\alpha} \in \mathcal{R}[\Omega^{<\alpha}]}$.

Lemma 6.4. Let M be a linear order and $\alpha > 0$ an ordinal.

Let $J \subseteq M$ be an interval.

Then $J \in \Omega^{<\alpha}$ iff it is contained in a single \sim_{α} -equivalence class K, such that:

- Either $K \in \mathcal{L}[\Omega^{<\alpha}]$ or there exists some $x \in K$ such that x < J.
- Either $K \in \mathcal{R} [\Omega^{<\alpha}]$ or there exists some $x \in K$ such that x > J.

Proof. Suppose $J \in \Omega^{<\alpha}$. Then obviously J is contained in a single \sim_{α} -equivalence class K.

We will show the first condition, the second is symmetric.

Suppose that for all $x \in K$, $J \leq x$. Then we can write K = J + J'. Since $J \in \Omega^{<\alpha}$, it follows that $K \in \mathcal{L} [\Omega^{<\alpha}]$.

Corollary 6.5. Let $\alpha > 0$ be an ordinal.

The predicate $\operatorname{Int}_{\Omega^{<\alpha}}$ is MSO-expressible over MSO[$[\cdot]_{\alpha}$, L_{α} , R_{α}].

Theorem 6.6. Let P be a computable property of linear orders of some finite signature.

Let $\{\mathbf{Q}_i\}_{i\in I}$ be a finite family of computable properties of linear orders over some finite signature which is disjoint from the signature of \mathbf{P} .

Then $\bigcup_{I \in \mathbf{P}} \sum_{i \in I} \mathbf{Q}_i$ is a computable property of linear orders.

Proof. We will use the decomposition theorem. Let $\tau(X_1,\ldots,X_m)$ be an n-

Then we can compute a formula $\psi(\xi)$ (where ξ has the type of a coloring whose range is the set of *n*-types) such that for any linear order $M = \sum_{i \in I} M_i$, and any given $A_1, \ldots, A_m \subseteq M$,

$$M \models \tau(A_1, \dots, A_m) \iff I \models \psi(\Xi)$$

where Ξ is the coloring assigning $i \in I$ the *n*-type of M_i . TBC.

Lemma 6.7. Let α be an ordinal.

Let P, L and R be first-order unary predicates.

Let C be the class of all countable linear orders labeled with P, L and R, such that P represents \sim_{α} , $L_{\alpha}(x) \iff [x]_{\alpha} \in \mathcal{L}[\Omega^{<\alpha}]$ and $R_{\alpha}(x) \iff [x]_{\alpha} \in$ $\mathcal{R}\left[\Omega^{<\alpha}\right].$

Let G be the class of all countable linear orders I, labeled with a P, L and R, such that for every pair $i, i' \in I$ such that i' is the successor of $i, P(i) \neq P(i')$, and either R(i) = 0 or L(i') = 0.

Let $\sigma(i) \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be such that L(i) = 1 iff $\sigma(i) \in \{1, \omega\}$ and R(i) = 1 iff $\sigma(i) \in \{1, \omega^*\}$.

Then, $C = \bigcup_{i \in \mathbf{G}} \sum_{i \in I} \mathcal{S}_{\alpha}^{\sigma(i)}$.

Proof. (\subseteq) Let M be a countable linear order labeled with P, L and R as above.

Let $I = M/\sim_{\alpha}$ be the quotient of M by the equivalence relation \sim_{α} .

Then $M = \sum_{i \in I} M_i$, where $\{M_i\}_{i \in I}$ are the \sim_{α} -equivalence class of I. Then for each $i \in I$, $M_i \in \mathcal{B}\left[\Omega^{<\alpha}\right]$, and by definition $\sigma(i) = \sigma_{\alpha}\left(M_i\right)$.

Let i' be the successor of i in I.

Then $P(i) \neq P(i')$ since P represents \sim_{α} .

Furthermore, suppose R(i) = L(i') = 1 holds. Then $M_i \in \mathcal{R}[\Omega^{<\alpha}]$ and $M_{i'} \in \mathcal{L}[\Omega^{<\alpha}]$ so M_i and $M_{i'}$ are the same \sim_{α} -equivalence class of M, which is a contradiction.

Thus either R(i) = 0 or L(i') = 0.

 (\supseteq) Let $M = \sum_{i \in I} M_i$ be a linear order such that $I \in \mathbf{G}$ and $M_i \in \mathcal{S}_{\alpha}^{\sigma(i)}$ for each $i \in I$.

In particular $M_i \in \mathcal{B}[\Omega^{<\alpha}]$ for each $i \in I$, so it is contained in a single \sim_{α} -equivalence class of M.

Suppose that there exist distinct $j, k \in I$ such that j < k, and M_j, M_k are in the same \sim_{α} -equivalence class.

Let $x \in M_j$ and $y \in M_k$. Then $[x,y] \in \Omega^{<\alpha}$, and thus $[j,k] \in \Omega^{<\alpha}$, and in particular it is sparse.

Then there exist some $j', k' \in I$ such that j < j' < k' < k, and k' is the successor of j' in I.

Then $M_{i'}$ and $M_{k'}$ are in the same \sim_{α} -equivalence class. Thus it must be the case that $M_{j'} \in \mathcal{R}[\Omega^{<\alpha}]$ and $M_{k'} \in \mathcal{L}[\Omega^{<\alpha}]$, which implies R(j') = L(k') = 1, which is a contradiction.

Thus $\{M_i\}_{i\in I}$ are pairwise distinct \sim_{α} -equivalence classes, and obviously the conditions holds, so $M\in C$ and we are done.

Corollary 6.8. Let C be defined as in lemma 6.7.

Then C is a computable property.

Lemma 6.9. Let $\alpha_k > \ldots > \alpha_1 > 0$ be ordinals, such that $\alpha_{j+1} \geq \alpha_j + \omega$ for all j < k.

For each j = 1, ..., k, let P_j , L_j and R_j be first-order unary predicates, and let α_j be the corresponding ordinal.

Let C be the class of all countable linear orders labeled with P_j , L_j and R_j for j = 1, ..., k, such that P_j represents \sim_{α_j} , $L_j(x) \iff [x]_{\alpha_j} \in \mathcal{L}\left[\Omega^{<\alpha_j}\right]$ and $R_j(x) \iff [x]_{\alpha_j} \in \mathcal{R}\left[\Omega^{<\alpha_j}\right]$ for each j.

Let **G** be the class of all countable linear orders I, labeled with a P, L and R, such that for every pair $i, i' \in I$ such that i' is the successor of i, $P(i) \neq P(i')$, and either R(i) = 0 or L(i') = 0.

Let $\sigma(i) \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be such that L(i) = 1 iff $\sigma(i) \in \{1, \omega\}$ and R(i) = 1 iff $\sigma(i) \in \{1, \omega^*\}$.

Then,
$$C = \bigcup_{I \in \mathbf{G}} \sum_{i \in I} \mathcal{S}_{\alpha}^{\sigma(i)}$$
.

Proof. Actually the proof is the same as in lemma 6.7, as we may assume there that the classes come with labels, and the arguments carry over verbatim. \Box

Theorem 6.10. Let $\alpha > 0$ be an ordinal.

Satisfiability of $MSO[Int_{\Omega^{<\alpha}}]$ over all countable linear orders is decidable.

Proof. First, by corollary 6.5, we can convert any formula in $\mathbf{MSO}[\mathbf{int}_{\Omega^{<\alpha}}]$ to an equivalent formula φ in $\mathbf{MSO}[[\cdot]_{\alpha}, L_{\alpha}, R_{\alpha}]$.

Now, we shall replace every occurrence of $[\cdot]_{\alpha}$ in φ with P, every occurrence of L_{α} with L, and every occurrence of R_{α} with R, getting a new formula φ' .

Then, satisfiability of φ over all countable linear orders, amounts to satisfiability of φ' over C, which is computable by corollary 6.8.

Thus we can compute $\mathbf{type}_n[C]$ and $\mathbf{type}_n[\varphi']$, and thus we can compute whether φ is satisfiable over all countable linear orders, by seeing if these sets intersect.

7 Everything Better

Theorem 7.1. Let C be a computable property of linear orders, such that C is closed under taking subintervals, projections and inverse-projections (i.e, of one of the colors), and all finite-sums and C-sums.

Let $\mathbf{P}_1, \dots, \mathbf{P}_k \subseteq \mathcal{C}$ be computable properties of linear orders.

Let $MSO[P_1, ..., P_k]$ be monadic second order logic of order over C, with $P_1, ..., P_k$ as monadic predicates whose semantics are: $P_i(X)$ holds iff X is a subinterval which satisfies P_i .

Given ϕ a formula of $MSO[P_1, \dots, P_k]$ (possibly with free variables) we define

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

Then C_{ϕ} is a computable property of linear orders.

Proof. By structural induction on ϕ .

Suppose ϕ is an atomic formula. If ϕ is of the form $X \subseteq Y$ or $X \leq Y$,

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

and thus,

$$\mathbf{type}_n \left[\mathcal{C}_{\phi} \right] = \left\{ \tau \in \mathbf{type}_n \left[\mathcal{C} \right] : \tau \models \phi \right\}$$

which is computable since $\mathbf{type}_n[\mathcal{C}]$ is computable, and we can then compute whether $\tau \models \phi$ for each $\tau \in \mathbf{type}_n[\mathcal{C}]$.

If ϕ is of the form $P_i(X)$, then

$$C_{\phi} = \{ M \in \mathcal{C} : M \models P_i(X) \}$$

and thus,

$$\mathbf{type}_n\left[\mathcal{C}_{\phi}\right] = \mathbf{type}_n\left[\mathbf{P}_i\right]$$

which is computable since P_i is computable.

If $\phi = \neg \phi_1$, then

$$\mathcal{C}_{\phi} = \mathcal{C} \setminus \mathcal{C}_{\phi_1}$$