

PALESTRA 5

21 de outubro de 2011

Jonathan D. Mahnken, Ph.D., PStat®

Esboço

- Analisando os dados do estudo
 - Coleta de dados
 - Qualidade dos dados
 - Análise estatística
- Dados faltantes
- Relatando resultados clínicos
 - Relatório de estudo clínico integrado
 - Apresentações científicas
 - Manuscritos para publicação

THE UNIVERSITY OF KANSAS Medical Center

Analisando Os Dados Do Estudo

Department of Biostatistics

- "Nenhum estudo é melhor que a qualidade de seus dados."
 - (Friedman et al., p 156)
- "Durante todas as fases de um estudo, deve ser feito um esforço suficiente para garantir que todos os dados principais cruciais à interpretação do ensaio clínico sejam de alta qualidade."
 - (Friedman et al., p 157)
- □ Auditorias do FDA de 1977-1988
 - 12% tinham sérias deficiências, tais como:
 - Consentimento do paciente
 - Prestação de conta sobre as medicações
 - Desvios de protocolo
 - Valores incorretos

Coleta De Dados

- Definição clara de todas as medidas (variáveis)
 - Variáveis resposta (resultados)
 - Pressão arterial sistólica; morte causada por câncer de pulmão
 - Variáveis explicativas (preditora)
 - Grupos de comparação primário
 - Medicamento A vs placebo; medicamento A versus padrão de assistência
 - Co-variáveis (variáveis de ajuste)
 - Fatores que podem influenciar resposta, mas n\u00e3o de interesse prim\u00e1rio
 - Idade; raça/etnia
- Pergunta da pesquisa e tipos de medidas determinam o tipo de análise estatística

- Definição clara de medidas é parte do controle de qualidade
 - Protocolo padronizado com definições
 - Resposta completa
 - Desaparecimento completo de todas as doenças mensuráveis e avaliáveis
 - Sem novas lesões
 - Sem evidência de doença não-avaliável
 - Resposta parcial...
 - Toxicidade
 - Critérios para determinar a gravidade da toxicidade são baseados no Instituto Nacional de Saúde Common Toxicity Criteria (CTC) versão 3.0

- □ Formulário de relatório de caso (CRFs)
 - Especificações do projeto
 - Variáveis do estudo
 - Formulários de eventos adversos

- Identificar os itens dos dados
 - CRFs devem ser o mais curtos e claros possíveis
 - A equipe que desenvolve os CRFs incluem:
 - Investigador principal
 - Estatístico do estudo
 - Equipe de informática
 - Equipe de Abstração de dados e/ou entrada (que registra dados)
- □ Finalizar (lock) Formulários CRF
 - Formulários CRFs e AE travados (locked)
 - Inicie a construção do banco de dados

- CRF deve ser preenchido completamente para todo sujeito aleatorizado para um tratamento
- Informações relacionadas a estudos pré-clínicos é transferida da documentação fonte para os CRFs
 - Resultados impressos de laboratório
 - Livros de laboratório
 - Notas
 - E-mails
 - Documentos fonte estão geralmente em forma de papel
- CRFs podem estar em papel ou em formato eletrônico
 - CRFs eletrônicos podem ser impressos para se manter uma cópia em papel da entrada de dados

Qualidade dos Dados

- Inserção de dados é uma parte importante da qualidade dos dados
 - Razões discutidas previamente
- Garantia de qualidade devem ser práticos
 - Maior insistência na precisão dos "dados principais" (Friedman et al., p 157)
 - Características da linha de base e elegibilidade dados principais
 - Medidas de resultados primárias e secundárias dados principais
 - Uma consideração de ordem prática deve ser dada ao equilíbrio entre custo de garantia de precisão vs custo de análise de resultados imprecisos

- Apenas membros do estudo aprovados podem completar CRFs
 - Registro de assinaturas para membros aprovados mantidos no local num Fichário do Estudo, o qual deve conter:
 - Informações regulamentares e histórico
 - As notificações de eventos adversos
 - Correspondência do patrocinador
 - Protocolo atual
 - Notificações e resoluções de desvios de protocolo
- CRFs devem ser terminadas dentro do prazo especificado (ex. 2 semanas) após a disponibilização de informações relevantes
- Informações sobre o CRF devem ser idênticas às do documento fonte

- □ CRFs a serem preenchidos à tinta (preto)
- Entrada consistente para:
 - Dados em falta: "ND"
 - Desconhecido: "UNK"
- lue Marque as caixas claramente com "X" or " $\sqrt{}$ "
- Correções também à tinta
 - Risque entradas incorretas com uma linha horizontal simples
 - Coloque a informação correta próxima ao erro
 - Inicial, dada e razão para mudar para o próximo erro
- Não retroaja

- Não use corretivo ou apague quaisquer entradas
- Insira informações adicionais na seção de "comentários" ou "notas de progresso"
 - Não escreva em margens
 - Não utilize abreviações
- CRF deve ser preenchido completamente por todo sujeito randomizado para o tratamento
- □ Ao se completar o CRF, o coordenador do estudo no local deve revê-lo tendo em mente:
 - Completude
 - Precisão
 - Consistência interna

"Pode haver mais de uma forma correta para se fazer algo na prática clínica, mas para propósitos relacionados ao estudo, só há uma forma."

--Friedman et al., p 161

- Verificações de valores válidos e amplitude
- Entrada de dados dupla
 - Duas (ou mais) equipes de entrada de dados independentes
 - Base de dados primária e secundária
 - Comparação de todos os dados
 - Discrepâncias verificadas com base nos CRFs
- Auditoria de dados
 - Amostra
 - Tamanho da amostra depende da certeza da precisão exigida
 - Para alguns dados, amostra de 100% (censo) pode ser apropriada
 - Se o limite de erros for excedido, então uma auditoria mais completa é conduzida

Análise Estatística

□ Análises uni variadas

- Estatísticas descritivas
 - Medidas contínuas
 - Média, mediana
 - Desvio Padrão, amplitude, amplitude interquartil
 - Medidas categóricas
 - Frequências
 - Porcentagens
- Plots
 - Medidas contínuas
 - Diagramas em caixa Box-plots
 - Histogramas

Análise Estatística (cont)

□ Análises Bivariadas

- Plots (Diagramas)
 - Diagrama de dispersão
 - Gráfico de bolhas
 - Diagramas em caixa Box-plots
 - Diagrama de barras
 - Gráfico de linha
- Tabelas de contingência
 - Frequências
 - Porcentagens de linha ou coluna

Análise Estatística (cont)

□ Histogramas

Department of Biostatistics

Análise Estatística (cont)

□ Diagrama de dispersão

Associations with Delta

Análise Estatística (cont) □ Diagramas em caixa - Box-plots

Treatment Group Comparisons

Análise Estatística (cont)

□ Gráfico de linha

Recovery Corves Group-RT Forced-Dae

Análise Estatística (cont)

Análises primária e secundária

- Acompanha plano de análise pré-planejada descrita no protocolo do estudo
 - Teste do qui-quadrado de Pearson
 - Teste-T de duas amostras
 - Regressão dos mínimos quadrados ordinários
 - Regressão logística não condicional
- Avalia suposições destes métodos
 - Tamanhos mínimos de amostras
 - Tamanhos de células esperados
 - Testes de Qualidade de ajustamento
 - Gráficos de resíduos
 - Análise de sensibilidade

Dados faltantes

- Nem todos sujeitos começando o estudo vão completar o estudo
 - Participantes podem sair, se mudar, morrer durante o estudo, etc.
 - Não é uma preocupação para estudos transversais (cross-sectional)
- Minimizar perdas para a taxa de follow-up pode exigir um esforço especial
 - "Um investigador precisa se esforçar muito para fazer com que os participantes venham nas suas visitas agendadas para manter mínimas as perdas de follow-up." (Friedman et al., p 294)
 - Isso pode afetar o projeto do estudo, ex., reduzindo o número de visitas para aumentar a probabilidade de comprometimento do participante

Dados faltantes (cont)

- Desequilíbrio entre grupos de tratamento poderiam enviesar a análise quando a falta (ou não) está relacionada ao tratamento
 - Ex., se aqueles que não melhoram com tratamento ativo são mais propensos a ter eventos adversos como uma desistência, um viés é introduzido
- Poderia ser enviesada sem o desequilíbrio portanto sempre minimize as perdas para follow-up

Dados faltantes (cont)

- Análises complicadas podem necessárias quando há dados faltantes
 - Análise de sensibilidade
 - Faz várias suposições sobre os dados faltantes para ver como os resultados são afetados
 - Imputação múltipla
 - Métodos de dados censurados
 - "Todas as análises deveriam ser apresentadas, não só aquela com os resultados preferíveis." (Friedman et al., p 295)
- Métodos estatísticos podem ser insuficientes para superar os vieses potenciais conduzindo os dados faltantes
 - Quando dados faltantes são inevitáveis, foque seus esforços na redução do número de desfechos primários faltantes

Relatando resultados clínicos

- □ "O ensaio funcionou como planejado?" (Friedman et al. p 333)
- □ "Como as descobertas se comparam com as de outros estudos?" (Friedman et al. p 333)
- "Quais são as implicações clínicas das descobertas?"
 (Friedman et al. p 333)
- "Os investigadores possuem a obrigação de revisar seu estudo e suas descobertas criticamente e apresentar informações suficientes para que os leitores possam avaliar o ensaio clínico apropriadamente." (Friedman et al., p 334)

Relatório de estudo clínico integrado

THE UNIVERSITY OF KANSAS Medical Center

Department of Biostatistics

■ Métodos

- Detalhes sobre o ensaio
 - Projeto
 - Dois-braços
 - Múltiplos centros (Multi-center)
 - Duplo-cego
 - Controlado por placebo
 - Randomização
 - Números aleatórios gerados por computador
 - Randomização bloqueada (Blocked randomization)
 - Envelopes selados
 - Quem gerou a lista?
 - Desvios de protocolo
- Detalhes sobre análise estatística
 - Altamente detalhada

Relatório de estudo clínico integrado Department of Biostatistics (cont)

- □ Resultados
 - Características de coorte
 - Médias, desvios padrão, amplitudes
 - Frequências e porcentagens
 - Comparações de grupos de tratamento
 - Avaliar equilíbrio alguns podem ser devido ao acaso
 - Quando há desequilíbrio importante, considere ambas as análises ajustadas e brutas
 - ENTRETANTO, a análise primária deve ser exatamente como planejada antes de que o estudo fosse conduzido
 - Intenção de tratar vs por análises de protocolo
 - Identificar claramente pré-planejado vs resultados geradores de hipóteses (multiplicidade)
 - Análise de sensibilidade para suposições e dados faltantes

Relatório de estudo clínico integrado Department of Biostatistics (cont)

- □ Cońclusão
 - NÃO super-interprete resultados
 - Ramificações do resultado piloto inicial diferentes do ensaio clínico definitivo
 - Generalizabilidade das descobertas do estudo
 - Inclui comparação com outros estudos
 - Razões potenciais para descobertas negativas
 - Dose não otimizada
 - Suposições anteriores não alcançadas (distribuição, tamanho do efeito)
 - Tamanho da amostra pequeno demais
 - Problemas de adesão
 - Acaso
 - Reconhecer limitações do estudo

Apresentações Científicas

- Informações similares apresentadas como relatório para o patrocinador
 - Muitas vezes, grandes limitações de espaço ou tempo
 - Destaques mais importantes descritos
- Bom descrever descobertas com fotos e gráficos sempre que possível
 - Deve ser capaz de se suportar sozinho
 - Leve tempo suficiente para descrever
 - Pessoas frequentemente apresentam estes rápidos demais e com informações insuficientes para o público entender
- Esquemas em vez de prosa
 - Não leia os slides na íntegra

Manuscritos para publicação

- Informações similares apresentadas como relatório para o patrocinador
 - Muitas vezes, grandes limitações de espaço
 - Destaques mais importantes descritos
- Use linguagem sucinta, clara e descritiva
 - Use frases curtas com um objetivo único
- Edite com cuidado
 - Leia o texto em voz alta para minimizar erros de digitação e seções confusas
 - Peça um colega para revisar—MAS somente se você estiver disposto a responder potencialmente às criticas dele
- Viés de publicação
 - A comunidade científica precisa estar ciente destes resultados também
 - Diferenças em estudos similares (positivas vs negativas) podem indicar subpopulações onde o tratamento é eficaz/não eficaz/prejudicial
 - Por exemplo, pode haver diferenças em critérios de elegibilidade

Referência

Friedman LM, Furberg CD, DeMets DL: Fundamentals of Clinical Trials, 3rd ed. Springer: New York, NY. 1998.