Lien entre la programmation linéaire tropicale, les jeux à paiement moyen et les jeux de parité

Mattéo Clémot

Juin-juillet 2020

Équipe d'accueil

- Encadré par Stéphane Gaubert et Xavier Allamigeon
- Équipe Tropical
- INRIA Saclay / CMAP (École Polytechnique)

- Contexte
 - Mathématiques tropicales
 - Jeux à paiement moyen et jeux de parité
- Liens et double déquantisation
 - Programmes linéaires tropicaux et jeux à paiement moyen
 - Vers un programme linéaire usuel
 - Double déquantisation
- Géométrie des jeux de parité
 - Position générale de l'arrangement d'hyperplans
 - Intérieur de l'intersection des demi-espaces

Mathématiques tropicales

- $(G, +, \leq)$ un groupe totalement ordonné
- $\mathbb{T} = G \cup \{0\}$ où \mathbb{O} nouvel élément inférieur à tous ceux de G
- Semi-anneau $(\mathbb{T}, \oplus, \odot)$ où $\oplus = \max$ et $\odot = +$
- Exemple : $\mathbb{R}_{max} = \mathbb{R} \cup \{-\infty\}$

Ensemble signé

- Ensemble signé \mathbb{T}_{\pm} : deux copies \mathbb{T} et $\ominus \mathbb{T}$ qui coı̈ncident en $\mathbb{O} = \ominus \mathbb{O}$
- Multiplication tropicale signée : x ⊙ y nombre tropical signé de module |x| + |y| et de signe sgn(x)sgn(y)
 Exemple : (→2) ⊙ 3 = →5, (→2) ⊙ (→3) = 5
- Addition tropicale signée : $x \oplus y$ nombre tropical signé de module $\max\{|x|,|y|\}$ et de signe le signe de l'élément maximal Exemple : $(\ominus 2) \oplus 3 = 3$, $2 \oplus (\ominus 3) = \ominus 3$

Séries formelles

- ullet $(G,+,\leq)$ un groupe abélien totalement ordonné, $\mathbb K$ un corps
- $\mathbb{K}[\![t^G]\!]$: séries de Hahn à exposants dans G et à coefficients dans \mathbb{K}

$$\mathbf{x} = \sum_{lpha \in \mathsf{\Lambda}} \mathbf{x}_lpha t^lpha$$

où l'opposé du support $\Lambda \subset G$ est bien ordonné

Addition et multiplication usuelles des séries formelles

Valuation

- Valuation : $val(\mathbf{x})$ pour $\mathbf{x} \neq 0$ est le plus grand exposant dans (G, \leq)
- On pose val(0) = 0
- On a :

$$val(\mathbf{x}\mathbf{y}) = val(\mathbf{x}) \odot val(\mathbf{y})$$
$$val(\mathbf{x} + \mathbf{y}) \le val(\mathbf{x}) \oplus val(\mathbf{y})$$

- Coefficient dominant $lc(\mathbf{x}) = \mathbf{x}_{val(\mathbf{x})}$: série positive si $lc(\mathbf{x}) \geq 0$
- Valuation signée :

$$\operatorname{sval}(\boldsymbol{x}) = \left\{ \begin{array}{ll} \operatorname{val}(\boldsymbol{x}) & \text{si } \boldsymbol{x} \geq 0 \\ \ominus \operatorname{val}(\boldsymbol{x}) & \text{sinon} \end{array} \right.$$

Jeux

- Deux joueurs J_0 , J_1
- Graphe orienté biparti $\mathcal{G} = (V_0 \sqcup V_1, E)$, V_i représente les états de J_i
- Un coup de J_i : peut se déplacer de $u \in V_i$ vers $v \in V_{i-1}$ si $(u, v) \in E$, c'est à l'autre de jouer
- Une partie : un chemin infini dans $\langle v_0, v_1, ... \rangle \in V^{\mathbb{N}}$ dans le graphe $\mathcal G$
- Hypothèse de non-blocage

Condition de victoire : jeux de parité

Figure: Jeu de parité

- Fonction de priorité sur les sommets $p: V \to \mathbb{N}$
- Parité de la plus grande priorité apparaissant une infinité de fois :

$$\max(\operatorname{Inf}(p(v_0),p(v_1),\ldots))$$

 J₀ gagne si et seulement si elle est paire

Condition de victoire : jeux à paiement moyen

Figure: Jeu à paiement moyen

- Fonction de coût sur les arêtes
 w : E → Z, représentant ce que
 chaque joueur gagne ou perd à
 chaque coup joué en empruntant
 une arête
- Paiement moyen

$$\liminf_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} (-1)^i w(v_i, v_{i+1})$$

 J₀ gagne si et seulement si le paiement moyen est positif

Réduction

- Marcin Jurdziński en 1998 : réduction des jeux de parité aux jeux à paiement moyen
- $\mathcal J$ jeu de parité sur le graphe $\mathcal G=(V_0\sqcup V_1,E)$ muni d'une fonction de priorité p
- \mathcal{K} jeu à paiement moyen sur le même graphe \mathcal{G} et de fonction de coût w donnée par

$$w((u,v)) = \left\{ \begin{array}{ll} (-s)^{p(u)} & \text{si } u \in V_0 \\ -(-s)^{p(u)} & \text{si } u \in V_1 \end{array} \right. \in \mathbb{R} \left\{ \left\{ s^{\mathbb{Q}} \right\} \right\}.$$

Réduction

Figure: Jeu de parité

Figure: Jeu à paiement moyen à paiements dans les séries formelles issu du jeu de parité

Complexité algorithmique

- Résolution d'un jeu à paiement moyen : $NP \cap coNP$; un algorithme pseudo-polynomial en temps est connu
- Calude et al. en 2017 : résolution d'un jeu de parité résolu en temps quasi-polynomial : $n^{\mathcal{O}(\sqrt{n})}$ vers $\mathcal{O}(n^{\log(m)+6})$ où m est le nombre de priorités distinctes

Cône tropical polyhédrique

- $A, B \in \mathbb{T}^{m \times n} : \{ x \in \mathbb{T}^n | A \odot x \le B \odot x \}$
- Exemple dans \mathbb{R}_{max} :

$$A = \begin{bmatrix} 3 & -\infty \\ 8 & -\infty \\ -\infty & 1 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 1 & -\infty \\ 5 & -1 \\ -\infty & 3 \end{bmatrix}$$

donnent

$$\begin{cases} 3 + x_1 \le 1 + x_1 \\ 8 + x_1 \le \max\{5 + x_1, -1 + x_2\} \\ 1 + x_2 \le 3 + x_2 \end{cases}$$

Jeu à paiement moyen associé

Figure: Jeu à paiement moyen associé à A et B.

- J₀ / Max possède m états, J₁ / Min possède n états
- Max peut jouer de i ∈ I vers j ∈ J si B_{ij} fini, et reçoit un paiement de B_{ij}
- Min peut jouer de j ∈ J vers i ∈ I si A_{ij} fini, et reçoit un paiement de A_{ij}

$$A = \begin{bmatrix} 3 & -\infty \\ 8 & -\infty \\ -\infty & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -\infty \\ 5 & -1 \\ -\infty & 3 \end{bmatrix}$$

Équivalence

Théorème

Dans un jeu à paiement moyen donné par deux matrices tropicales A et B, un état $j \in [n]$ est gagnant pour le joueur Max si et seulement s'il existe une solution $x \in \mathbb{T}^n$ du système d'inégalités $A \odot x \leq B \odot x$ telle que $x_i \geq 0$.

Programme linéaire tropical

Figure: Exemple de polyhèdre tropical $\mathcal{P}(A, b)$

Soit $\mathbb{T} = \mathbb{T}(G)$. Soient $A \in \mathbb{T}_{\pm}^{m \times n}$, $b \in \mathbb{T}_{\pm}^{m}$ et $c \in \mathbb{T}^{n}$. On considère un programme linéaire tropical LP(A, b, c) sur \mathbb{T}_{\pm} :

min
$$c \odot x$$

s.t. $x \in \mathcal{P}(A, b)$

Programme linéaire

Théorème

On peut trouver $\mathbf{A} \in \operatorname{sval}^{-1}(A)$, $\mathbf{b} \in \operatorname{sval}^{-1}(b)$, $\mathbf{c} \in \operatorname{sval}^{-1}(c)$ et former un programme linéaire usuel $\mathbf{LP}(\mathbf{A}, \mathbf{b}, \mathbf{c})$ sur $\mathbb{R}[t^G]$:

min
$$\mathbf{c} \cdot \mathbf{x}$$

 $\mathbf{s.t.} \quad \mathbf{x} \in \mathcal{P}(\mathbf{A}, \mathbf{b})$

où
$$\mathcal{P}(\mathbf{A}, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}[\![t^G]\!]^n | \mathbf{A}\mathbf{x} + \mathbf{b} \ge 0\}$$
, tels que :

- $\operatorname{sval}(\mathcal{P}(\mathbf{A}, \mathbf{b})) = \mathcal{P}(A, b)$. En particulier, $\mathcal{P}(\mathbf{A}, \mathbf{b}) \neq \emptyset$ si et seulement si $\mathcal{P}(A, b) \neq \emptyset$;
- la valuation d'une solution optimale du programme linéaire
 LP(A, b, c) dans les séries de Hahn est solution optimale du programme linéaire tropical LP(A, b, c).

Double déquantisation

Deux réductions successives

- jeux de parité $\stackrel{\mathrm{val}_1}{\longrightarrow}$ jeux à paiement moyen
- ullet programme linéaire tropical $\stackrel{\mathrm{sval}_2}{\longrightarrow}$ programme linéaire

Ensemble	$\left(\mathbb{R}\left[\!\left[t^{\mathbb{R}\left\{\!\left\{s^{\mathbb{Q}} ight\}\!\right\} ight]} ight] ight)_{\geq0}$	$\xrightarrow{\operatorname{val}_1}$	$\mathbb{T}\left(\mathbb{R}\left\{\!\left\{s^{\mathbb{Q}}\right\}\!\right\}\right)$	$\xrightarrow{\text{sval}_2}$	$\mathbb{S}(\mathbb{Q})$
Lois	$(+,\cdot)$		$(\oplus,\odot) = (max,+)$		$egin{aligned} igl(\oplus_2,\odot_2igr)\ &=igl(\oplus_2,\oplus_\mathbb{Q}igr) \end{aligned}$
Coefficients de	LP		MPG/TLP		PG

Permanent et position générale

Permanent d'une matrice tropicale :

$$tper(M) = \bigoplus_{\sigma \in \mathfrak{S}_n} \bigodot_{i=1}^n |M_{i\sigma(i)}| = \max_{\sigma \in \mathfrak{S}_n} \sum_{i=1}^n |M_{i\sigma(i)}|$$

- $M \in \mathbb{T}_{\pm}^{n \times n}$ tropicalement singulière lorsque $\operatorname{tper}(M) = \mathbb{O}$ ou lorsque le maximum est atteint au moins deux fois
- $M \in \mathbb{T}_{\pm}^{m \times n}$ est tropicalement générique lorsque pour toute sous-matrice carrée W de M, $\operatorname{tper}(W) = \mathbb{O}$ ou W est tropicalement non-singulière

Hyperplan tropical

• Hyperplan tropical déterminé par un vecteur $u \in \mathbb{T}^n - \{0\}$: ensemble des $x \in \mathbb{T}^n$ tels que le maximum

$$\max_{i\in[n]}(u_i+x_i)$$

est atteint au moins deux fois

• Famille de m hyperplans tropicaux $(H^1,...,H^m)$ dirigés par des vecteurs $(u^1,...,u^m) \in (\mathbb{T}^n)^m$ en position générale lorsque $[u^1|...|u^m] \in \mathbb{T}^{n \times m}$ tropicalement générique

Résultat

- Cône tropical polyhédrique $A \odot x \leq B \odot x$.
- On y associe les hyperplans tropicaux H^i associés aux c^i où $c^i_i = \max\{a_{ij}, b_{ij}\}$

Proposition

Si un jeu à paiement moyen est issu d'un jeu de parité avec des paiements tous distincts, alors l'arrangement d'hyperplans tropicaux associé est en position générale.

Décomposition en stratégie

Proposition

Soit un jeu à paiement moyen issu d'un jeu de parité, dont tous les paiements sont distincts. Alors le jeu est gagnant si et seulement si l'intersection des demi-espaces signés est d'intérieur non vide.

- Décomposition en stratégies $\sigma \in J^I$ pour Max
- Pour montrer que $V = \{x \in \mathbb{T}^n, x \leq Tx\}$ est d'intérieur non vide : montrer qu'il existe σ telle que $V_{\sigma} = \{x \in \mathbb{T}^n, x \leq T^{\sigma}x\}$ est d'intérieur non vide
- Inégalités dans \mathbb{T}_{\pm} de la forme $x \leq C \oplus y$

Figure: $x \ge y \oplus 3$ (vert) et $x \le y \oplus 4$ (rouge). L'intérieur de l'intersection, non vide, est colorié en jaune.

Figure: $x \ge y \oplus 3$ (vert) et $x \le y \oplus 2$ (rouge). Leur intersection (en noir) est non vide, mais son intérieur l'est.

Conclusion