

Content

目录

01 容器与沙箱介绍

02 安全容器现状与挑战

03 Kuasar 安全容器解决方案介绍

04 未来展望

Part 01 容器与沙箱介绍

云原生生态中的容器与沙箱

sandbox: 隔离运行程序的安全机制(VM/Seccomp/Wasm) https://en.wikipedia.org/wiki/Sandbox_(computer_security)

container: 内核用来隔离用户进程的技术(lxc/runc) https://en.wikipedia.org/wiki/OS-level_virtualization


```
// Sandbox operations.

rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {}

rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {}

rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {}

rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {}

rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {}

// Container operations.

rpc CreateContainer(CreateContainerRequest) returns (StartContainerResponse) {}

rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {}

rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {}

rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {}

rpc ListContainers(ListContainerSRequest) returns (ListContainerSResponse) {}

rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {}

...

}
```

K8s CRI RuntimeService 接口定义

K8s Pod 概念模型

新型沙箱隔离技术不断出现,沙箱技术进入百家争鸣时代

Hardware

Platform Isolation

Boundary

App App

library library

GuestOS GuestO

ViMiM (Hypervisor)

Host OS

Hardware

Runc 容器

microVM类

用户态内核类

WASM类

	Runc 容器	microVM类	用户态内核类	WASM类
技术原理	Linux容器+SELinux、AppArmor、 Seccomp等安全机制	轻量级虚拟化技术	拦截用户所有系统调用,进程级虚拟化技术	底层虚拟机抽象,Runtime虚拟化技术
特点	• 标准通用: 共享内核,方便易用 • 资源效率: 原生容器,高性能、低开销	• 安全隔离: 具备完整的OS 和内核,提供虚机级别的隔离性能 • 标准通用: 原生linux支持,应用兼容性优	• 资源效率:轻量级,启动性能接近Runc • 安全隔离:提供独立内核,隔离性好	• 资源效率:可以轻松实现毫秒级冷启动时间和极低的资源消耗
				• 标准通用问题: 缺乏标准化的网络访
缺点	• 安全隔离问题:无法有效防范内核安全问题;性能隔离不够健壮	• <mark>资源效率问题:容器的VMM和GuestOS</mark> 额外内存开销较大,启动速度相对较慢	• 标准通用问题:非标准linux,存在应用兼容的限制;不支持设备热插拔	问能力,仅能做一些计算类任务 • 安全隔离:部分WASM虚机无法对内存和CPU资源精确限制,无IO资源隔离能力

Part 02 安全容器现状与挑战

业界现状: shimv1 API导致shim进程数量爆炸

业界现状: shimv2 API优化了shim进程数量,但仍需要one-shim/per-pod

挑战:能否打破shim进程与Pod之间1:1的关系,进一步减少shim进程资源消耗?

不在包含Sandbox的概念

关键洞察: Sandbox在Containerd中不是一等公民,缺失了沙箱定义,导致Shimv2 API中**Sandbox操作与Container操作混淆交叉**,需要通过Shim进程根据元数据信息进行区分,增加了实现成本

Part 03 Kuasar 安全容器解决方案介绍

云原生多沙箱容器运行时 - Kuasar

痛点

云原生场景需求多

云原生场景不同,需求不同, 孵化出的沙箱容器运行时不同

运维操作复杂度高

太多的沙箱容器运行时需要运 维,复杂度极高

平滑迁移路径缺失

沙箱迁移成本高, 难以拥抱新 沙箱的出现

统一沙箱定义

多沙箱混部

极致框架优化

container 🖥

Container runtime

Kuasar 架构优化

当前 Shim v2 API 模型

Kuasar 的 Sandbox API 模型

CRI

Kuasar-task

container

Task API

2

4

containerd

1 Sandbox API

plugin

Kuasarsandboxer(resident)

1:N

sandbox 管理逻辑清晰

sandbox 管理逻辑和 container 管理逻辑完全分开,开发友好,语义清晰

高效的 sandboxer 进程

- a. Sandboxer 进程常驻减掉了冷启动 Shim 进程的耗时,Pod 启动速度加快
- b. 1:N 管理模型减少了进程数量,节省大量内存
- c. Rust 程序内存安全,相比 Golang 内存开销小

简化 container API 调用链

取消 Task API 到 Shim v2 API 的转化,链路简化,Pod 启动速度加快

pause 容器消失

创建 Pod 不再创建 pause 容器,不再需要准备pause容器镜像快照,Pod 启动速度加快

轻量级容器引擎 - iSulad

iSulad是面向端、边、云全场景的轻量级容器引擎,兼容云原生社区生态,具有轻、灵、巧、快的特点

轻量级虚拟化引擎 - StratoVirt

StratoVirt是面向云数据中心的企业级虚拟化平台,实现一套架构对虚拟机、容器、Serverless三种场景的统一支持

强安全性

采用Rust语言,支持seccomp,减小系统攻击面,实现多租户安全隔离

帩

轻量低噪

采用极简设备模型时,启动时间<50ms,内存底噪<4M,支持Serverless负载

极速伸缩

毫秒级设备扩缩能力, 为轻量化负载提供灵活的资源伸缩能力

品

软硬协同

同时支持x86的VT和鲲鹏的Kunpeng-V,实现多体系硬件加速

ಹೆ

高扩展性

设备模型可扩展,支持PCI等复杂设备规范,实现标准虚拟机

异构增强

除支持常用的硬件SR-IOV直通方案,结合昇腾软件定义能力,实现更灵活异构算力分配

iSulad + Kuasar + StratoVirt 安全容器沙箱解决方案

iSulad+Kuasar+StratoVirt 安全容器沙箱架构图

1. iSulad Sandbox Plugin: 容器引擎沙箱管理插件

iSulad容器引擎中新增sandbox沙箱对象管理模块,支持通过 sandbox API来管理sandbox对象的生命周期管理。

2. rust-extensions: 沙箱统一管理模块

rust-extensions是Kuasar容器运行时抽象出来统一对接Sandbox API的公共库模块,根据容器引擎层下发的Sandbox API请求调用相应的sandbox类型的sandboxer,完成相应具体sandbox对象的创建、删除等生命周期管理操作。

3. vmm-sandboxer: 轻量级虚拟机类型沙箱管理模块

提供了vmm类型sandbox生命周期管理、sandbox资源管理、sandbox网络管理以及sandbox存储管理的功能,通过VM API接口实现对虚拟机对象的生命周期管理,如创建/停止/删除虚拟机对象。

4. vmm-task: 沙箱任务管理模块

vmm-task 模块是虚拟机沙箱中1号进程,负责响应从iSulad容器引擎下发的Task API请求,对业务容器的生命周期和资源分配进行管理。

性能测试:管理面内存占用降低99%,并发启动速度提升2x 🖟 🗥 KC

Kata Kuasar 0.8 0.6 CDF 0.4 0.2 1000 1200 1400 1600 1800 2000 50-Parallel boot time (ms)

kuasar 管理面内存消耗降低99%

kuasar 并发启动速度提升2x

Part 04 未来展望

未来展望

2023 H1	2023 H2	2024	2025
 MicroVM沙箱 ✓ StratoVirt ✓ Cloud Hypervisor ✓ QEMU App Kernel沙箱 ✓ Quark Wasm 沙箱 ✓ WasmEdge 支持对接 iSulad 支持对接 containerd v1.7.0 	 Wasm 沙箱 ✓ Wasmtime 支持 aarch64 架构 Guest kernel 裁剪优化 	 支持 Runc 普通容器 支持对接 containerd v2.0 MicroVM沙箱 Firecracker App Kernel沙箱 gVisor 推出命令行工具 	● 支持机密容器 ● 镜像下载加速 ● eBPF 可观测

欢迎大家关注openEuler社区iSulad/Kuasar/StratoVirt项目

https://gitee.com/openeuler/iSulad

https://gitee.com/src-openeuler/kuasar https://github.com/kuasar-io/kuasar

https://gitee.com/openeuler/stratovirt

