CORRECTION MIDTERM S1

Exercice 1

Dans \mathbb{R} , on définit la relation suivante :

$$\forall (x,y) \in \mathbb{R}^2, \ x \mathcal{R} y \iff x^2 \le y^2$$

Citer les différentes propriétés (avec les quantificateurs) qui définissent une relation d'ordre. Pour chacune d'entre elles, dire si la relation \mathcal{R} ci-dessus la vérifie en justifiant votre réponse.

• On dit que \mathcal{R} est réflexive si $\forall x \in \mathbb{R}, x \mathcal{R} x$.

Soit $x \in \mathbb{R}$. Comme $x^2 \leq x^2$, on a $x \mathcal{R} x$. Notre relation est donc réflexive.

• On dit que \mathcal{R} est antisymétrique si $\forall (x,y) \in \mathbb{R}^2$, $x \mathcal{R} y$ et $y \mathcal{R} x \implies x = y$.

Prenons x=-1 et y=1. Comme $x^2=y^2=1$, on a $x\mathcal{R}y$ et $y\mathcal{R}x$. Pourtant, $x\neq y$. Notre relation n'est donc pas antisymétrique.

• On dit que \mathcal{R} est transitive si $\forall (x, y, z) \in \mathbb{R}^3$, $x \mathcal{R} y$ et $y \mathcal{R} z \implies x \mathcal{R} z$.

Soit $(x, y, z) \in \mathbb{R}^3$ tel que $x \mathcal{R} y$ et $y \mathcal{R} z$. On a alors $x^2 \leq y^2$ et $y^2 \leq z^2$. Ainsi, $x^2 \leq z^2$ d'où $x \mathcal{R} z$. Notre relation est donc transitive.

Notre relation n'est pas une relation d'ordre....

Exercice 2

Traduire les propriétés suivantes en syntaxe mathématique (avec les quantificateurs).

1. Tout réel positif est le carré d'un réel.

$$\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}, \ x = y^2$$

2. Si le produit de deux réels est nul alors l'un au moins de ces réels est nul.

$$\forall (x,y) \in \mathbb{R}^2, \ xy = 0 \implies (x = 0 \text{ ou } y = 0)$$

3. Tout entier naturel est pair ou impair. (Il est interdit dans cette question d'utiliser la notion de congruence).

$$\forall n \in \mathbb{N}, \exists p \in \mathbb{N}, \ n = 2p \text{ ou } n = 2p+1$$

Exercice 3

1. Calcular directement $I = \int_0^1 (x^2 + 1)\sqrt{x^3 + 3x + 1} dx$

On a $I = \frac{1}{3} \int_0^1 (3x^2 + 3)\sqrt{x^3 + 3x + 1} \, dx$. On reconnait alors la forme $u'u^{\alpha}$ avec $\alpha = \frac{1}{2}$.

Ainsi,
$$I = \frac{1}{3} \left[\frac{(x^3 + 3x + 1)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right]_0^1 = \frac{1}{3} \left[\frac{2}{3} (x^3 + 3x + 1)^{\frac{3}{2}} \right]_0^1 = \frac{1}{3} \left(\frac{2}{3} 5^{\frac{3}{2}} - \frac{2}{3} \right) = \frac{2}{9} \left(5\sqrt{5} - 1 \right)$$

2. Calculer, en intégrant par parties, $J = \int_0^1 (2x+1)e^{2x} dx$

On pose u = 2x + 1 et $v' = e^{2x}$ de sorte que u' = 2 et $v = \frac{e^{2x}}{2}$. Ainsi.

$$J = \left[\left(\frac{2x+1}{2} \right) \times e^{2x} \right]_0^1 - \int_0^1 e^{2x} \, \mathrm{d}x = \frac{3}{2} e^2 - \frac{1}{2} - \left[\frac{e^{2x}}{2} \right]_0^1 = \frac{3}{2} e^2 - \frac{1}{2} - \frac{e^2}{2} + \frac{1}{2} = e^2$$

3. À l'aide du changement de variable x = 2t + 1, calculer $K = \int_{1}^{2\sqrt{3}+1} \frac{1}{(x-1)^2 + 4} dx$ $x = 2t + 1 \iff t = \frac{x-1}{2}$. Ainsi, dx = 2 dt. De plus, si x = 1, on a t = 0 et si $x = 2\sqrt{3} + 1$, on a $t = \sqrt{3}$. Ainsi, $K = \int_{0}^{\sqrt{3}} \frac{1}{4t^2 + 4} \times 2dt = \frac{1}{2} \int_{0}^{\sqrt{3}} \frac{1}{t^2 + 1} dt = \frac{1}{2} \left[\arctan(t) \right]_{0}^{\sqrt{3}} = \frac{1}{2} \left(\frac{\pi}{3} - 0 \right) = \frac{\pi}{6}$

Exercice 4

On considère la fonction $f: \mathbb{N} \longrightarrow \mathbb{N}$ définie par

$$f(n) = \frac{n}{2}$$
 si n est pair et $f(n) = n$ sinon

1. f est-elle injective? Justifiez votre réponse.

On a f(1) = 1 = f(2) et $1 \neq 2$. f n'est donc pas injective.

2. f est-elle surjective? Justifiez votre réponse.

Soit
$$n \in \mathbb{N}$$
. On a $f(2n) = \frac{2n}{2} = n$. Ainsi,

$$\forall n \in \mathbb{N}, \exists m = 2n \in \mathbb{N} \ n = f(m)$$

f est donc surjective.

3. On suppose, dans cette question que l'on restreint le domaine de départ de f à $E = \{0, 1, 2, 3, 4, 5, 6\}$. Donner $f(\{0, 1, 2, 3\}), f^{-1}(\{1, 3\})$ et $f^{-1}(\{4\})$.

On a

D'où :
$$f(\{0,1,2,3\}) = \{0,1,3\}, f^{-1}(\{1,3\}) = \{1,2,3,6\} \text{ et } f^{-1}(\{4\}) = \emptyset.$$

Exercice 5

Dans une urne, il y a n boules indiscernables au toucher et numérotées de 1 à n. Pour un entier naturel $k \le n$, on tire simultanément k boules de l'urne.

1. Quel est le nombre de tirages possibles? Justifiez brièvement.

Notons $E = \{\text{tirages possibles}\}.$

Comme le tirage est simultané, cela revient à prendre k éléments parmi n éléments. D'où, $Card(E) = \binom{n}{k}$.

2. Quel est le nombre de tirages ayant la boule numérotée 1 ? Justifiez brièvement.

Notons $F = \{ \text{tirages ayant la boule numérotée } 1 \}.$

Il n'y a qu'une seule façon de prendre la boule 1. Il reste ensuite à prendre k-1 boules parmi n-1.

D'où,
$$\operatorname{Card}(F) = 1 \times \binom{n-1}{k-1} = \binom{n-1}{k-1}$$
.

3. Quel est le nombre de tirages n'ayant pas la boule numérotée 1 ? Justifiez brièvement.

Notons $\overline{F} = \{ \text{tirages n'ayant pas la boule numérotée 1} \}.$

Cela revient à prendre k boules parmi n-1. D'où, $Card(\overline{F}) = \binom{n-1}{k}$.

4. Expliquez en quoi les résultats précédents permettent de montrer la formule (P) suivante :

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

On a $E = F \cup \overline{F}$ et cette union est disjointe. D'où, $Card(E) = Card(F) + Card(\overline{F})$.

Par conséquent,
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

 $5. \ \textit{Red\'emontrer la formule } (P) \ \textit{en utilisant l'expression des coefficients binomiaux avec les factoriels}.$

$$\binom{n-1}{k} + \binom{n-1}{k-1} = \frac{(n-1)!}{k!(n-k-1)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-1)! \times (n-k)}{k!(n-k-1)! \times (n-k)} + \frac{(n-1)! \times k}{(k-1)!(n-k)! \times k}$$

$$= \frac{(n-1)!(n-k)}{k!(n-k)!} + \frac{(n-1)!k}{k!(n-k)!}$$

$$= \frac{(n-1)!(n-k) + (n-1)!k}{k!(n-k)!}$$

$$= \frac{(n-1)!(n-k) + (n-1)!k}{k!(n-k)!}$$

$$= \frac{(n-1)!(n-k+k)}{k!(n-k)!}$$

$$= \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Exercice 6

On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6.

1. Proposer une expérience simple qui amène à la création d'une variable aléatoire X suivant une loi de Bernoulli de paramètre $p=\frac{1}{6}$. Rappeler l'espérance et la variance de X en fonction de p.

On lance une fois le dé. Soit X la variable aléatoire égale à 1 si le résultat du dé est 1, égale à 0 sinon.

On a
$$P(X = 1) = \frac{1}{6}$$
 et $P(X = 0) = \frac{5}{6}$.

X suit donc une loi de Bernoulli de paramètre $p = \frac{1}{6}$.

On sait alors que
$$E(X) = p = \frac{1}{6}$$
 et que $V(X) = p(1-p) = \frac{5}{36}$.

2. Proposer une expérience simple qui amène à la création d'une variable aléatoire Y suivant une loi binomiale de paramètres n=10 et $p=\frac{1}{6}$. Rappeler l'espérance et la variance de Y en fonction de n et de p.

On répète l'expérience précédente 10 fois, en supposant les lancers indépendants. Soit Y la variable égale au nombre de fois que le dé a amené 1 au cours de ces 10 lancers. Y est la somme de 10 épreuves de Bernoulli de même paramètre $p=\frac{1}{6}$. Y prend donc ses valeurs dans $\llbracket 0,10 \rrbracket$ et, pour tout $k \in \llbracket 0,10 \rrbracket$, on a

$$P(Y=k) = \binom{10}{k} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{10-k}$$

Y suit une loi binomiale de paramètres n = 10 et $p = \frac{1}{6}$.

On sait alors que
$$E(Y) = np = \frac{10}{6} = \frac{5}{3}$$
 et que $V(Y) = np(1-p) = \frac{25}{18}$.

3. On lance le dé une seule fois. On gagne 5 points si le dé amène un multiple de 3, 3 points si le dé amène 1 ou 2 et zéro point dans les autres cas. Soit G la variable égale au nombre de points marqués. Donner le loi de G et calculer son espérance et sa variance.

La variable G prend les valeurs 5, 3 et 0.

Entre 1 et 6, il y a 2 multiples de 3 (le 3 et le 6). D'où, $P(G=5)=\frac{2}{6}=\frac{1}{3}$.

De plus, $P(G=3) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$.

G=0 quand le dé a amené 4 ou 5. D'où, $P(G=0)=\frac{2}{6}=\frac{1}{3}.$

On sait alors que

- $E(G) = 0 \times P(G = 0) + 3 \times P(G = 3) + 5 \times P(G = 5)$. Ainsi, $E(G) = \frac{8}{3}$.
- $E(G^2) = 0^2 \times P(G=0) + 3^2 \times P(G=3) + 5^2 \times P(G=5) = \frac{34}{3}$. Ainsi, $V(G) = E(G^2) (E(G))^2 = \frac{38}{9}$.

Exercice 7

Imaginons qu'un virus touche les habitants du monde entier. Des tests de dépistages du virus sont alors mis en vente. Le mode d'emploi précise que

- Si un individu n'est pas malade, le test est fiable dans 80% des cas.
- Si un individu est malade, le test est fiable dans 99% des cas.

On suppose que le virus touche 25% de la population française. On tire un habitant au hasard et on lui fait passer le test.

On note M : « L'habitant est malade » et T : « Le test est positif »

1. Donner une partition de l'événement T en fonction de M. Donner alors la formule littérale qui permet de calculer P(T). Préciser alors las valeurs numériques de chacune des probabilités y apparaissant (sans finaliser les calculs).

 $\{M,\overline{M}\}$ forment une partition de l'univers. Ainsi, $T=(T\cap M)\cup \left(T\cap \overline{M}\right)$ et cette union est disjointe. D'où

$$P(T) = P(T \cap M) + P(T \cap \overline{M}) = P(T \mid M)P(M) + P(T \mid \overline{M})P(\overline{M})$$

Par conséquent, $P(T) = 0.99 \times 0.25 + 0.2 \times 0.75 \simeq 0.40$

2. Expliquer comment calculer la probabilité qu'un habitant soit malade sachant que le test est positif (la valeur finale n'est pas demandée).

On cherche $P(M \mid T)$. On a

$$P(M \mid T) = \frac{P(T \cap M)}{P(T)} = \frac{P(T \mid M)P(M)}{P(T)} = \frac{0,99 \times 0,25}{0,3975} \simeq 0,62$$

Exercice 8

Soit $q \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on considère la somme

$$S_n = \sum_{k=0}^n q^k = q^0 + q^1 + q^2 + \ldots + q^n$$

1. Que vaut S_n dans le cas où q=1?

$$S_n = 1 + 1 + \ldots + 1$$
 et il y a $n + 1$ termes. Donc, $S_n = n + 1$.

- 2. On suppose que $q \neq 1$. Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $S_n = \frac{1 q^{n+1}}{1 q}$.
 - n=0: On a $S_0=q^0=1$ et $\frac{1-q^{0+1}}{1-q}=1$. La propriété est vraie au rang 0.
 - \bullet Supposons la propriété vraie au rang n et montrons la au rang n+1. On a

$$S_{n+1} = \sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1}$$

$$= \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \text{ par l'hypothèse de récurrence}$$

$$= \frac{1 - q^{n+1} + q^{n+1}(1 - q)}{1 - q} = \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q}$$

$$= \frac{1 - q^{n+2}}{1 - q}$$

La propriété est donc vraie au rang n+1.

• Conclusion : pour tout $n \in \mathbb{N}, S_n = \frac{1 - q^{n+1}}{1 - q}$.