Digital Design and Computer Organization Laboratory UE19CS206

3rd Semester, Academic Year 2020-21

Date:10-10-2020

RESUBMISSION DATE:26-10-2020

NAME: SUHAN B REVANKAR SRN: PES2UG19CS412 Section: G

Experiment Number: 5
Week# :5

Title of the Program:

Integration of alu and reg_file to form reg_alu.

Aim of the Program:

To connect the two read outputs and the write input of the of the register file implemented in the previous lab assignment (WEEK 4) to the two inputs and one output of the ALU implemented in the previous assignment (WEEK3)

Code (reg_alu.v)

```
// Write code for modules you need here
module dfrl_16 (input wire clk, reset, load, input wire [0:15] in, output wire [0:15] out);
 dfrl dfrl_0(clk, reset, load, in[0], out[0]);
 dfrl dfrl_1(clk, reset, load, in[1], out[1]);
dfrl dfrl_2(clk, reset, load, in[2], out[2]);
dfrl dfrl_3(clk, reset, load, in[3], out[3]);
dfrl dfrl_4(clk, reset, load, in[4], out[4]);
dfrl dfrl_5(clk, reset, load, in[5], out[5]);
dfrl dfrl_6(clk, reset, load, in[6], out[6]);
dfrl dfrl_7(clk, reset, load, in[7], out[7]);
dfrl dfrl_8(clk, reset, load, in[8], out[8]);
dfrl dfrl_9(clk, reset, load, in[9], out[9]);
dfrl dfrl_10(clk, reset, load, in[10], out[10]);
dfrl dfrl_11(clk, reset, load, in[11], out[11]);
dfrl dfrl_12(clk, reset, load, in[12], out[12]);
dfrl dfrl_13(clk, reset, load, in[13], out[13]);
dfrl dfrl_14(clk, reset, load, in[14], out[14]);
dfrl dfrl_15(clk, reset, load, in[15], out[15]);
 endmodule
module mux8_16 (input wire [0:15] i0, i1, i2, i3, i4, i5, i6, i7, input wire [0:2] j,
output wire [0:15] o);
 \max 8 \max 8 - 0(\{i0[0], i1[0], i2[0], i3[0], i4[0], i5[0], i6[0], i7[0]\}, j[2], j[1], j[0], o[0]); \\
 \max 8 \max 8 - 1(\{i0[1], i1[1], i2[1], i3[1], i4[1], i5[1], i6[1], i7[1]\}, j[2], j[1], j[0], o[1]); \\
 \max 8 \max 2(\{i0[2], i1[2], i2[2], i3[2], i4[2], i5[2], i6[2], i7[2]\}, j[2], j[1], j[0], o[2]); 
 \max 8 \ \max 8 \ 3(\{i0[3],\ i1[3],\ i2[3],\ i3[3],\ i4[3],\ i5[3],\ i6[3],\ i7[3]\},\ j[2],\ j[1],\ j[0],\ o[3]); 
mux8 mux8_4({i0[4], i1[4], i2[4], i3[4], i4[4], i5[4], i6[4], i7[4]}, j[2], j[1], j[0], o[4]);
mux8 mux8_5({i0[5], i1[5], i2[5], i3[5], i4[5], i5[5], i6[5], i7[5]}, j[2], j[1], j[0], o[5]);
 \max 8 \max 8_6(\{i0[6], i1[6], i2[6], i3[6], i4[6], i5[6], i6[6], i7[6]\}, j[2], j[1], j[0], o[6]); 
 \max 8 \max_7(\{i0[7], i1[7], i2[7], i3[7], i4[7], i5[7], i6[7], i7[7]\}, j[2], j[1], j[0], o[7]); 
 \max 8 = 8(\{i0[8], i1[8], i2[8], i3[8], i4[8], i5[8], i6[8], i7[8]\}, j[2], j[1], j[0], o[8]); \\
 \max 8 \max 8 - 9(\{i0[9], i1[9], i2[9], i3[9], i4[9], i5[9], i6[9], i7[9]\}, j[2], j[1], j[0], o[9]); \\
\max 8\_10(\{i0[10],\ i1[10],\ i2[10],\ i3[10],\ i4[10],\ i5[10],\ i6[10],\ i7[10]\},\ j[2],\ j[1],\ j[0],\ o[10]);
\max 8 \ \max 8 \ 11(\{i0[11], \ i1[11], \ i2[11], \ i3[11], \ i4[11], \ i5[11], \ i6[11], \ i7[11]\}, \ j[2], \ j[1], \ j[0], \ o[11]);
 \max 8 \max 8 - 12(\{i0[12], i1[12], i2[12], i3[12], i4[12], i5[12], i6[12], i7[12]\}, j[2], j[1], j[0], o[12]); 
 \max 8 \max 8 - 13(\{i0[13], i1[13], i2[13], i3[13], i4[13], i5[13], i6[13], i7[13]\}, j[2], j[1], j[0], o[13]); \\
 \max 8 \max 8 - 15(\{i0[15], i1[15], i2[15], i3[15], i4[15], i5[15], i6[15], i7[15]\}, j[2], j[1], j[0], o[15]); \\
endmodule
```

```
module reg_file (input wire clk, reset, wr, input wire [0:2] rd_addr_a, rd_addr_b, wr_addr, input wire [0:15] d_in, output wire [0:15] d_out_a, d_out_b);
// Declare wires here
wire [0:7] load;
wire [0:15] dout_0, dout_1, dout_2, dout_3, dout_4, dout_5, dout_6, dout_7;
dfrl_16 dfrl_16_0(clk, reset, load[0], d_in, dout_0);
dfrl_16 dfrl_16_1(clk, reset, load[1], d_in, dout_1);
dfrl_16 dfrl_16_2(clk, reset, load[2], d_in, dout_2);
dfrl_16 dfrl_16_3(clk, reset, load[3], d_in, dout_3);
dfrl_16 dfrl_16_4(clk, reset, load[4], d_in, dout_4);
dfrl_16 dfrl_16_5(clk, reset, load[5], d_in, dout_5);
dfrl_16 dfrl_16_6(clk, reset, load[6], d_in, dout_6);
dfrl_16 dfrl_16_7(clk, reset, load[7], d_in, dout_7);
demux8 demux8_0(wr, wr_addr[0], wr_addr[1], wr_addr[2], load);
mux8_16_mux8_16_9(dout_0, dout_1, dout_2, dout_3, dout_4, dout_5, dout_6, dout_7, rd_addr_a, d_out_a);
mux8_16_mux8_16_10(dout_0, dout_1, dout_2, dout_3, dout_4, dout_5, dout_6, dout_7, rd_addr_b, d_out_b);
module mux2_16 (input wire [15:0] i0, i1, input wire j, output wire [15:0] o);
             mux2_0 (i0[0], i1[0], j, o[0]);
    mux2
    mux2
            mux2_1 (i0[1], i1[1], j, o[1]);
    mux2
             mux2_2 (i0[2], i1[2], j, o[2]);
             mux2_3 (i0[3], i1[3], j, o[3]);
    mux2
    mux2
            mux2_4 (i0[4], i1[4], j, o[4]);
             mux2_5 (i0[5], i1[5], j, o[5]);
    mux2
             mux2_6 (i0[6], i1[6], j, o[6]);
    mux2
             mux2_7 (i0[7], i1[7], j, o[7]);
    mux2
             mux2_8 (i0[8], i1[8], j, o[8]);
mux2_9 (i0[9], i1[9], j, o[9]);
    mux2
    mux2
             mux2_10 (i0[10], i1[10], j, o[10]);
    mux2
             mux2_11 (i0[11], i1[11], j, o[11]);
    mux2
    mux2
             mux2_12 (i0[12], i1[12], j, o[12]);
    mux2
             mux2_13 (i0[13], i1[13], j, o[13]);
             mux2_14 (i0[14], i1[14], j, o[14]);
mux2_15 (i0[15], i1[15], j, o[15]);
    mux2
    mux2
endmodule
module reg_alu (input wire clk, reset, sel, wr, input wire [1:0] op, input wire [2:0] rd_addr_a, rd_addr_b, wr_addr, input wire [15:0] d_in, output wire [15:0] d_out_a, d_out_b, output wire cout);
wire [15:0] d_in_alu, d_in_reg;
 wire cout_0;
alu alu_0 (op,d_out_a,d_out_b,d_in_alu,cout_0);
reg_file reg_file_0 (clk,reset,wr,rd_addr_a,rd_addr_b,wr_addr,d_in_reg,d_out_a,d_out_b);
mux2_16 mux2_16_0 (d_in,d_in_alu,sel,d_in_reg);
dfr dfr_0 (clk,reset,cout_0,cout);
endmodule
```

TABLE

<u>sel</u>	wr	ор	rd addr a	rd Addr b	wr addr	<u>d_in</u>	ALU output
<u>27</u>	<u>27</u>	<u>26</u> <u>25</u>	<u>24</u> <u>23</u> <u>22</u>	<u>21</u> <u>20</u> <u>19</u>	<u>18</u> <u>17</u> <u>16</u>	<u>15-0</u>	
0	1	хх	ххх	Ххх	011	CDEF	in[15:0] of REG3=CDEF
0	1	XX	ххх	Ххх	111	3210	in[15:0] of REG7=3210
0	1	xx	011	111	101	4567	in[15:0] of REG5=4567 d_out_a:CDEF d_out_b:3210
0	1	хх	001	101	001	BA98	in[15:0] of REG1=BA98 d_out_a:BA98 d_out_b:4567
0	0	xx	001	101	001	хххх	in[15:0]:xxxx d_out_a=BA98 d_out_b=4567
1	1	00	001 (BA98)	101 (4567)	010	хххх	=d_in_reg =d_out_a+d_out_b BA98+4567=FFFF
1	1	01	010	111	100	хххх	=d_in_reg =d_out_a - d_out_b =FFFF-3210=CDEF
1	0	01	100	100	XXX	хххх	=d_in_reg =d_out_a - d_out_b =CDEF-CDEF=0000

Output waveform

SCREENSHOT1

CASE1: WRITE OPERATION

sel	wr	ор		rd_addr_a			rd_Addr_b			wr_addr			d_in	ALU output
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
0	1	хх		ххх		Xxx			011			CDEF	in[15:0] of REG3=CDEF	

CASE 2: WRITE OPERATION

<u>sel</u>	<u>wr</u>	op rd addr a		<u>a</u>	<u>rd Addr b</u>			wr_addr			<u>d in</u>	ALU output		
<u>28</u>	<u>27</u>	<u>26</u>	<u>25</u>	<u>24</u>	<u>23</u>	<u>22</u>	<u>21</u>	<u>20</u>	<u>19</u>	<u>18</u>	<u>17</u>	<u>16</u>	<u>15-0</u>	
0	1	хх		xxx		Ххх			111			3210	in[15:0] of REG7=3210	

CASE 3:WRITE OPERATION

sel	wr	ор		rd_addr_a		rd_Addr_b			wr_addr			d_in	ALU output	
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
0	1	XX		011			111			101			4567	in[15:0] of REG5=4567 d_out_a:CDEF d_out_b:3210

CASE 4:WRITE OPERATION

sel	wr	ор	p rd_addr_a		rd_Addr_b			wr_addr			d_in	ALU output		
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
0	1	xx		001			101			001			BA98	in[15:0] of REG1=BA98 d_out_a:BA98 d_out_b:4567

CASE 5:READ OPERATION

sel	wr	ор		rd_a	addr_	_a	rd_	Addr	_b	wr_	addr		d_in	ALU output
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
0	0	XX		001			101			001			XXXX	in[15:0]:xxxx d_out_a=BA98 d_out_b=4567

CASE 6: WRITE OPERATION, ADDITION RESULT

sel	wr	ор		rd_a	addr_	_a	rd_	Addr	_b	wr_	addr		d_in	ALU output
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
1	1	00		001			101			010			XXXX	=d_in_reg =d_out_a+d_out_b =BA98+4567=FFFF

CASE 7: WRITE OPERATION, SUBTRACTION RESULT

sel	wr	ор		rd_addr_a		rd_Addr_b			wr_addr			d_in	ALU output	
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0	
1	1	01		010			111			100			хххх	=d_in_reg =d_out_a-d_out_b =FFFF-3210=CDEF

CASE 8: WRITE OPERATION, SUBTRACTION

sel	wr	ор	ор		rd_addr_a			rd_Addr_b			wr_addr			ALU outpu	ut
28	27	26	25	24	23	22	21	20	19	18	17	16	15-0		
1	0	01		100			100			ххх			XXXX	=d_in_reg =d_out_a =CDEF-CDI	- d_out_b

Disclaimer:

- The programs and output submitted is duly written, verified and executed my me.
- I have not copied from any of my peers nor from the external resource such as internet.
- If found plagiarized, I will abide with the disciplinary action of the University.

Name: SUHAN B REVANKAR

SRN: PES2UG19CS412

Section: G

Date: 10-10-2020