## Inequations (Mathematics Extension 1)

## **Properties of Inequalities**

1. When taking reciprocals, the inequality sign is reversed if both sides have the same sign, but not if the signs are different:

$$4 < 7$$
 but  $\frac{1}{4} > \frac{1}{7}$   
 $5 > -3$  and  $\frac{1}{5} > -\frac{1}{7}$ 

- 2. After squaring, there will be positive numbers on both sides of the inequality. The direction of the inequality sign will depend on which original side had the larger magnitude.
- 3. The process of taking the square root is only defined if both sides are positive. The inequality sign remains the same.

$$a > b \Rightarrow \sqrt{a} > \sqrt{b}$$
 if a is positive and b is positive or zero

## **Examples**

1. For what values of x is  $\frac{x+1}{x-2} \ge 0$ ?

Multiply both sides by  $(x-2)^2$  since this is positive. Hence,  $(x+1)(x-2) \ge 0$  provided  $x \ne 2$ Sketch the graph of y = (x+1)(x-2):



Thus the required solution is  $x \le -1$  or x > 2.

Alternatively, sketch the graph of  $y = \frac{x+1}{x-2}$ 



The x intercepts can be easily found, and the solution corresponds to the parts of the graph above the x-axis. There is an asymptote where the denominator equals zero.

2. For what values of x is  $\frac{2x+3}{x-4} > 1$ ?

$$(2x+3)(x-4) > (x-4)^2$$
  
 $2x^2 - 5x - 12 > x^2 - 8x + 16$   
 $x^2 + 3x - 28 > 0$ 

$$\therefore (x+7)(x-4) > 0$$



Hence x < -7, x > 4

## **REMEMBER:**

- When dealing with fractional inequalities, multiply both sides by the square of the denominator.
- The denominator of the fraction cannot equal to zero, producing an asymptote.