# Deep Learning and Practice Lab 6 309552007

### 袁鈺勛

# A. A tensorboard plot shows episode rewards of at least 800 training episodes in LunarLander-v2



B. A tensorboard plot shows episode rewards of at least 800

### training episodes in LunarLanderContinuous-v2





Train



### C. Describe your major implementation of both algotithms

#### in detail.

#### 1. DON

With probability  $\varepsilon$  select a random action  $a_t$  otherwise select  $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$ 

```
# TODO

if random.random() > epsilon:
    state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
    self._behavior_net.eval()
    with torch.no_grad():
        action_values = self._behavior_net(state)
    self._behavior_net.train()
    return np.argmax(action_values.cpu().data.numpy())

else:
    return random.choice(np.arange(action_space.n))
```

上圖的程式碼便是根據上面的 algorithm 中的其中一段所做出來的,會根據當下 epsilon 的機率來選擇要採取 random action 還是從 behavior net 取得最好的 action。

$$\operatorname{Set} y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \max_{a'} \hat{Q}\left(\phi_{j+1}, a'; \theta^{-}\right) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on  $(y_j - Q(\phi_j, a_j; \theta))^2$  with respect to the network parameters  $\theta$ 

上面的程式碼也是根據上面的 algorithm 做出,會取得當下的 q value 和 target net 中的 q target 做 loss,並以此 loss 來更新 model。

Every C steps reset  $\hat{Q} = Q$ 

```
# TODO
self._target_net.load_state_dict(self._behavior_net.state_dict())
```

上面的程式碼也是根據上面的 algorithm 做出,他就是要將 target net 中的參數換成當下 behavior net 中的參數。

#### 2. DDPG

Select action  $a_t = \mu(s_t|\theta^{\mu}) + N_t$  according to the current policy and exploration noise

```
# TODO
state = torch.from_numpy(state).float().to(self.device)

self._actor_net.eval()
with torch.no_grad():
    action = self._actor_net(state).cpu().data.numpy()
self._actor_net.train()

if noise:
    action += self._action_noise.sample()
```

上面的程式碼是根據上面的 algorithm 所做出,他會從 actor net 取出 action,並且m上 noise。

Set 
$$y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss:  $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$ 

```
# Update critic
# critic loss
# | TODO
# q_value = ?
# with torch.no_grad():
# a_next = ?
# q_next = ?
# criterion = ?
# critic_loss = criterion(q_value, q_target)
q_value = critic_net(state, action)
with torch.no_grad():
    a_next = target_actor_net(next_state)
    q_next = target_critic_net(next_state, a_next)
    q_target = reward + (gamma * q_next * (1 - done))
critic_loss = nn.MSELoss()(q_value, q_target)
```

上面的程式碼也是根據上面的 algorithm 做出,他會從 critic net 取得 q value,然後將從 target actor net 取得的 action 放進 target critic net 進而取得 q target 並計算 loss,以此 loss 來更新 critic net。

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}}\mu|s_{i}\approx\frac{1}{N}\sum_{i}\nabla_{a}Q(s,a|\theta^{Q})|_{s=s_{i},a=\mu(s_{i})}\nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})|s_{i}$$

```
# Update actor
# actor loss
# TODO
# action = ?
# actor_loss = ?
action = actor_net(state)
actor_loss = -critic_net(state, action).mean()
```

上面的程式碼也是根據上面的 algorithm 做出,他是取得當下 state 要採取的 action,並且放入 critic net 來取得 actor net 的 loss,要加負號是因為要讓他反向去變化 parameter。

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
  
$$\theta^{\mu'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{\mu'}$$

```
for target, behavior in zip(target_net.parameters(), net.parameters()):
    # TODO
    target.data.copy_(tau * behavior.data + (1.0 - tau) * target.data)
```

上面的程式碼也是根據上面的 algorithm 做出,他會 soft update target net。

### D. Describe differences between your implementation and algorithms.

```
def _soft_update_target_network(self, tau=.005):
    """

Update target network by _soft_ copying from behavior network
:param tau: weight
:return: None
    """

for target, behavior in zip(self._target_net.parameters(), self._behavior_net.parameters()):
    target.data.copy_(tau * behavior.data + (1.0 - tau) * target.data)
```

因為要做 DDQN, 所以在 dqn.py 中多了一個 soft update, 在實驗 DDQN 的時候會採用, 在每次 update target net 時會小幅度的更新他。

# E. Describe your implementation and the gradient of actor updating.

Update the actor policy using the sampled gradient:

$$\nabla_{\theta^{\mu}}\mu|s_{i}\approx\frac{1}{N}\sum_{i}\nabla_{a}Q(s,a|\theta^{Q})|_{s=s_{i},a=\mu(s_{i})}\nabla_{\theta^{\mu}}\mu(s|\theta^{\mu})|s_{i}$$

```
# Update actor
# actor loss
# TODO
# action = ?
# actor_loss = ?
action = actor_net(state)
actor_loss = -critic_net(state, action).mean()
```

上面的程式碼便是更新 actor net,他會取得當下 state 要採取的 action,並且放入 critic net 來取得 actor net 的 loss,要加負號是因為要讓他反向去變化 parameter。

## F. Describe your implementation and the gradient of critic updating.

```
Set y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})
Update critic by minimizing the loss: L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2
```

```
# Update critic
# critic loss
# |TODO
# q_value = ?
# with torch.no_grad():
# a_next = ?
# q_next = ?
# criterion = ?
# critic_loss = criterion(q_value, q_target)
q_value = critic_net(state, action)
with torch.no_grad():
    a_next = target_actor_net(next_state)
    q_next = target_critic_net(next_state, a_next)
    q_target = reward + (gamma * q_next * (1 - done))
critic_loss = nn.MSELoss()(q_value, q_target)
```

上面的程式碼便是更新 critic net, 他會從 critic net 取得當下的 q value, 然 後將從 target actor net 取得的 action 放進 target critic net 進而取得 q next 並 進而得到 q target, 經由 q value 和 q target 便可以計算 loss,以此 loss 來更新 critic net。

#### G. Explain effects of the discount factor.

讓 model 用來決定要多在意愈遠的 future,如果 discount factor 愈大,代表愈要考慮較遠的 future,如果愈小,代表比較考慮較近的 future。

## H. Explain benefits of epsilon-greedy in comparison to greedy action selection.

如果只採用 greedy action selection 總是選擇最好的 action,有可能會找不到真正最好的,因為他可能會是要在某一步採取較不好的 action,所以用 epsilon-greedy 上 model 有時候會 random 選一個 action,以此達到 exploration 的功能。

### I. Explain the necessity of the target network.

如果有 target network 的話就可以根據過往的經驗來看現在 behavior network 在嘗試的新 action,才不會讓 behavior network 反而往不好的方向一直走下去,藉此讓 behavior network 會修正去往較好的 action 走。

### J. Explain the effect of replay buffer size in case of too large or too small.

如果 replay buffer 太小,那 model 只會考慮到最近的 data,那就有可能 overfit。如果 replay buffer 太大,那就會佔用太多的 memory 空間,同時也會拖慢 training。

### K. Implement and experiment on Double-DQN

```
# TODO DDON
q_value = self._behavior_net(state).gather(1, action.long())
with torch.no_grad():
    q_argmax = self._behavior_net(next_state).detach().max(1)[1].unsqueeze(1)
    q_next = self._target_net(next_state).detach().gather(1, q_argmax)
    q_target = reward + (gamma * q_next * (1 - done))

loss = nn.MSELoss()(q_value, q_target)
```

上面便是 DDQN 的實作,和 DQN 不同的是他會先經由 behavior net 取得 action 再帶到 target net 取得 q next,才以此取得 q target。

```
# TODO DDON
self._soft_update_target_network()

def _soft_update_target_network(self, tau=.005):
```

```
Update target network by _soft_ copying from behavior network

:param tau: weight

:return: None

"""

for target, behavior in zip(self._target_net.parameters(), self._behavior_net.parameters()):

target.data.copy_(tau * behavior.data + (1.0 - tau) * target.data)
```

上面便是在做 DDQN 的時候加上得 soft update 來提升 reward, 在每次 update target net 的時候都會小幅度更新他。

### L. LunarLander-v2 performance



psilon: 0.010 Start Testing Average Reward 267.1178147316768 上圖得到的結果是設定 capacity 為 100000, 並且利用 soft update, 但 tau 是

Total reward: -28.77

Total reward: 264.29

Total reward: 193.15

Ewma reward: 172.81

Ewma reward: 177.39

Ewma reward: 178.18 E

Length: 196

Length: 310

Length: 353

### M. LunarLanderContinous-v2 performance

Episode: 1197

Episode: 1198

Episode: 1199

Step: 614159 psilon: 0.010 Step: 614469

psilon: 0.010 Step: 614822

設定 0.9。



#### Train



Average Reward 270.2179943079367

上圖得到的結果是用預設的 hyperparameters。