Chapitre 16 Couples de variables aléatoires, indépendance

X	у ₁	y ₂	у ₃	Loi de X
X 1				$p[X = x_1]$
X ₂				$p[X = x_2]$
Loi de Y	$p[Y = y_1]$	$p[Y = y_2]$	$p[Y = y_3]$	1

Table des matières

Ι	Couples de variables aléatoires finies	1
	1) Généralités	1
	2) Loi conditionnelle	8
	3) Généralisation : vecteurs aléatoires	10
Π	Variables aléatoires indépendantes	11
	1) Indépendance d'un couple de variables aléatoires	11
	2) Espérance et variables indépendantes	15
	3) Variables aléatoires mutuellement indépendantes	18
	4) Sommes de lois de Bernoulli indépendantes	22
II	l Covariance et coefficient de corrélation linéaire	24
	1) Covariance de deux variables aléatoires	24
	2) Coefficient de corrélation linéaire de deux variables aléatoires	34

Dans ce chapitre, les variables aléatoires sont supposées finies, c'est-à-dire définies sur un **espace probabilisé fini** (Ω, \mathbb{P}) . L'espérance et de variance de telles variables aléatoires seront donc toujours bien définies.

I Couples de variables aléatoires finies

1) Généralités

Un couple de variables aléatoires est également une variable aléatoire, au sens suivant :

```
Définition 1 (Couple de variables aléatoires finies). Soient X et Y deux variables aléatoires réelles définies sur un même espace probabilisé fini (\Omega, \mathbb{P}). On appelle couple des variables aléatoires X et Y la variable aléatoire Z = (X, Y) : \Omega \to \mathbb{R}^2 définie par (X, Y)(\omega) = (X(\omega), Y(\omega)) La loi du couple (X, Y), notée \mathbb{P}_{(X,Y)}, est appelée loi conjointe de X et Y.
```

ATTENTION!

Un couple de variables aléatoires réelles est une variable aléatoire vectorielle.

2/35

```
Proposition 2 (Détermination de la loi conjointe).

La loi d'un couple (X,Y): \Omega \to \mathbb{R}^2 est entièrement déterminée par les valeurs :

\mathbb{P}_{(X,Y)}\{(x,y)\} = \mathbb{P}((X,Y) = (x,y)) = \mathbb{P}((X=x) \cap (Y=y))
pour (x,y) \in X(\Omega) \times Y(\Omega).
```

Preuve : Cela résulte du fait qu'une probabilité sur un ensemble E est entièrement déterminée par ses valeurs sur les singletons de E. Ici, on l'applique à l'ensemble des valeurs de (X,Y), c'est-à-dire l'ensemble des couples $(x,y) \in X(\Omega) \times Y(\Omega)$ (on rappelle que la loi d'une variable aléatoire Z est une probabilité sur l'image $Z(\Omega)$). \square

Remarque

Les événements élémentaires $((X,Y)=(x,y))=(X=x)\cap (Y=y)$, où (x,y) décrit $X(\Omega)\times Y(\Omega)$, forment un système complet d'événements.

Il est tout à fait possible que certains de ces événements soient vides.

Exemple (Deux lancers d'un dé)

On lance deux fois un dé équilibré. On a alors $\Omega = \{1, \dots, 6\}^2$.

On peut définir la variable aléatoire X qui donne le résultat du premier lancer et Ydonnant le résultat du deuxième lancer. La loi du couple (X,Y) est alors donnée par :

$$\forall (i,j) \in \{1,\cdots,6\}^2, \qquad \mathbb{P}((X,Y) = (i,j)) = \frac{1}{36}.$$

 $\forall (i,j) \in \{1,\cdots,6\}^2, \qquad \mathbb{P}((X,Y)=(i,j)) = \frac{1}{36}.$ La loi conjointe de X et Y est donc ici — la loi uniforme sur l'ensemble $\{1,\cdots,6\}^2$ —.

Exemple (Urne)

Une urne contient 2 boules blanches, 1 rouge et 1 noire, toutes indiscernables. On tire simultanément deux boules de cette urne et on nomme X la variable aléatoire donnant le nombre de boules blanches tirées et Y celle donnant le nombre boules rouges tirées.

- 1. Construire un espace probabilisé Ω qui modélise l'expérience aléatoire.
- 2. Déterminer la loi conjointe de X et Y.

4/35

- 1. Ici, le tirage se fait simultanément donc on peut définir Ω comme l'ensemble des parties à 2 éléments d'un ensemble à 4 éléments (puisque l'ordre ne compte pas). On a donc $\# \Omega = \binom{4}{2} = 6$.
- 2. On a $X(\Omega) = \{0, 1, 2\}$ et $Y(\Omega) = \{0, 1\}$, donc il suffit de calculer $\mathbb{P}((X,Y) = (a,b))$ pour tout $(a,b) \in \{0,1,2\} \times \{0,1\}.$ $\mathbb{P}((X,Y) = (0,0)) = 0$

$$\mathbb{P}((X,Y) = (0,1)) = \frac{1}{6}$$

$$\mathbb{P}((X,Y) = (1,0)) = \frac{2}{6}$$

$$\mathbb{P}((X,Y) = (1,1)) = \frac{2}{6}$$

$$\mathbb{P}((X,Y) = (2,0)) = \frac{1}{6}$$

$$\mathbb{P}((X,Y) = (1,0)) = \frac{2}{6}$$

$$\mathbb{P}((X,Y) = (2,0)) = \frac{1}{6}$$

$$\mathbb{P}((X,Y) = (2,1)) = 0$$

Définition 3 (Lois marginales).

```
Etant donné un couple de variables aléatoires réelles (X,Y) sur un espace
probabilisé fini (\Omega, \mathbb{P}), on appelle lois marginales les lois de X et Y,
La loi de X est appelée première loi marginale de (X,Y) et celle de Y
est appelée deuxième loi marginale de (X,Y)
```

Méthode (Déterminer les lois marginales à partir de la loi conjointe)

Si on connaît la loi du couple (X,Y), alors on peut retrouver celles de X et de Y. Par exemple, pour déterminer la loi de X : on a, pour tout $x \in X(\Omega)$,

$$\mathbb{P}(X=x) = \mathbb{P}\left(\bigcup_{y \in Y(\Omega)} ((X=x) \cap (Y=y))\right) = \sum_{y \in Y(\Omega)} \mathbb{P}((X,Y) = (x,y)) \quad ,$$

puisque $(Y=y)_{y\in Y(\Omega)}$ est un système complet d'événements.

6/35

On peut présenter cette idée sous forme d'un tableau.

En notant $X(\Omega) = \{x_1, \dots, x_m\}$ et $Y(\Omega) = \{y_1, \dots, y_n\}$, on forme un tableau à m lignes et n colonnes et dont les cases sont les probabilités $p_{i,j} = \mathbb{P}((X = x_i) \cap (Y = y_j))$. En sommant tous les éléments d'une même ligne, on obtient les probabilités $\mathbb{P}(X=x_i)$ et, en sommant tous les éléments d'une même colonne, on obtient les $\mathbb{P}(Y=y_i)$.

ATTENTION!

Les lois marginales ne suffisent pas en général à retrouver la loi conjointe! En effet si X peut prendre m valeurs différentes et Y peut en prendre n, alors les $p_{i,j} = \mathbb{P}((X = x_i) \cap (Y = y_j))$ sont au nombre de $m \times n$.

Or la connaissance des lois marginales, donc de $\mathbb{P}(X=x_i)$ et $\mathbb{P}(Y=y_i)$ pour $1 \leq i \leq m$

et
$$1 \le j \le n$$
 ne donnent que $m+n$ équations du type :
$$\sum_{i=1}^{m} p_{ij} = \mathbb{P}(Y=y_j), \qquad \sum_{j=1}^{n} p_{ij} = \mathbb{P}(X=x_i)$$

On a donc seulement un système linéaire de m+n équations à $m \times n$ inconnues, il ne possède donc pas une unique solution (puisque $m \times n > m + n$ en général), ce qui empêche la détermination des p_{ij} , et donc de la loi conjointe.

Exemple (Urne (suite))

Reprenons l'exemple précédent :

Une urne contient 2 boules blanches, 1 rouge et 1 noire, toutes indiscernables. On tire simultanément deux boules de cette urne et on nomme X la variable aléatoire donnant le nombre de boules blanches tirées et Y celle donnant le nombre boules rouges tirées.

Calculons les lois marginales à partir de la loi du couple (X,Y):

$X \setminus Y$	0	1	Loi de X
0	0	$\frac{1}{6}$	$\boxed{\mathbb{P}(X=0) = \frac{1}{6}}$
1	$\frac{2}{6}$	$\frac{2}{6}$	$\mathbb{P}(X=1) = \frac{4}{6}$
2	$\frac{1}{6}$	0	$\left \ \mathbb{P}(X=2) = \frac{1}{6} \ \right $
Loi de Y	$\mathbb{P}(Y=0) = \frac{1}{2}$	$\mathbb{P}(Y=1) = \frac{1}{2}$	

8/35

2) Loi conditionnelle

```
Définition 4 (Loi conditionnelle de Y sachant (X = x)).

Soient X et Y deux variables aléatoires réelles sur un espace probabilisé fini (\Omega, \mathbb{P}).

Pour tout x \in X(\Omega) tel que \mathbb{P}(X = x) \neq \mathbf{0}, on appelle loi conditionnelle

de Y sachant (X = x) la probabilité \mathbb{P}_{Y|(X=x)} : \mathcal{P}(Y(\Omega)) \to [0;1] définie par :

\forall B \subset Y(\Omega), \qquad \mathbb{P}_{Y|(X=x)}(B) = \mathbb{P}_{(X=x)}(Y \in B) = \frac{\mathbb{P}((Y \in B) \cap (X=x))}{\mathbb{P}(X=x)}.
```

Remarque

- On vérifie aisément que $\mathbb{P}_{Y|(X=x)}$ est une probabilité sur $Y(\Omega)$.
- On peut bien sûr définir de même $\mathbb{P}_{X|(Y=y)}$ (la loi conditionnelle de X sachant (Y=y).
- Etant donnée une partie $A \subset X(\Omega)$ telle que $\mathbb{P}(X \in A) \neq 0$, on peut également définir de manière générale la loi conditionnelle de Y sachant $(X \in A)$ par :

$$\mathbb{P}_{(X \in A)}(Y \in B) = \frac{\mathbb{P}((Y \in B) \cap (X \in A))}{\mathbb{P}(X \in A)}.$$

Exemple (Lancer de deux dés)

On lance deux dés équilibrés, X est la variable résultat du premier dé et Y celle du second dé. On note S = X + Y. On a, par exemple,

$$\mathbb{P}_{S|(X=1)}(\{4\}) = \mathbb{P}_{(X=1)}(S=4) = \frac{\mathbb{P}((X=1)\cap(S=4))}{\mathbb{P}(X=1)} = \frac{\mathbb{P}((X,Y)=(1,3))}{\mathbb{P}(X=1)} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6};$$

$$\mathbb{P}_{X|(S=4)}(\{1\}) = \mathbb{P}_{(S=4)}(X=1) = \frac{\mathbb{P}((X=1)\cap(S=4))}{\mathbb{P}(S=4)} = \frac{\mathbb{P}((X,Y)=(1,3))}{\mathbb{P}(S=4)} = \frac{\frac{1}{36}}{\frac{3}{36}} = \frac{1}{3}.$$

Méthode (Calcul de la loi de Y à l'aide des lois conditionnelles)

Grâce aux lois conditionnelles de Y sachant (X = x) (lorsque x décrit $X(\Omega)$), on peut calculer la loi de Y à l'aide de la formule des probabilités totales :

$$\forall y \in Y(\Omega), \quad \mathbb{P}(Y = y) = \sum_{x \in X(\Omega)} \mathbb{P}_{(X = x)}(Y = y) \times \mathbb{P}(X = x),$$

puisque les événements $(X=x)_{x\in X(\Omega)}$ forment un syst. complet d'événements de Ω .

10/35

3) Généralisation : vecteurs aléatoires

Définition 5 (Vecteur aléatoire).

Soient X_1, \ldots, X_n des variables aléatoires réelles sur l'espace probabilisé fini (Ω, \mathbb{P}) . On appelle **vecteur aléatoire discret** défini à partir de X_1, \ldots, X_n la variable aléatoire $Z: \Omega \to \mathbb{R}^n$ définie par : $\forall \omega \in \Omega, Z(\omega) = (X_1(\omega), \ldots, X_n(\omega))$.

La loi de Z est appelée **loi conjointe** des variables X_1, \ldots, X_n tandis que les lois de X_1, \ldots, X_n sont les **lois marginales** de Z.

Remarque

Bien sûr, comme dans le cas n = 2, la loi conjointe permet de déterminer la loi marginale (en sommant), mais les lois marginales ne déterminent pas en général la loi conjointe.

II Variables aléatoires indépendantes

1) Indépendance d'un couple de variables aléatoires

Définition 6 (Indépendance de deux variables aléatoires discrètes).

Deux variables aléatoires X et Y sur un même espace probabilisé fini (Ω, \mathbb{P}) sont dites indépendantes lorsque pour toutes parties $A \subset X(\Omega)$ et $B \subset Y(\Omega)$,

les événements $(X \in A)$ et $(Y \in B)$ sont indépendants , c'est-à-dire :

$$\mathbb{P}((X \in A) \cap (Y \in B)) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B).$$

On a comme résultat fondamental :

Proposition 7 (Caractérisation de deux VA indépendantes).

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé fini (Ω, \mathbb{P}) . Alors : X et Y sont indépendantes si et seulement si

$$\forall (x,y) \in X(\Omega) \times Y(\Omega), \qquad \mathbb{P}((X=x) \cap (Y=y)) = \mathbb{P}(X=x) \times \mathbb{P}(Y=y).$$

Remarque

X, Y indépendantes $\iff \forall (x, y) \in X(\Omega) \times Y(\Omega), (X = x)$ et (Y = y) indépendants.

12/35

Preuve: \Longrightarrow : Evident en choisissant $A = \{x\}$ et $B = \{y\}$.

 \Leftarrow : S'obtient en écrivant A et B comme réunions disjointes de leurs singletons :

$$\mathbb{P}((X \in A) \cap (Y \in B)) = \sum_{(x,y) \in A \times B} \mathbb{P}((X = x) \cap (Y = y)) = \sum_{(x,y) \in A \times B} \mathbb{P}(X = x) \mathbb{P}(Y = y).$$

On somme "par paquets":

$$\mathbb{P}((X \in A) \cap (Y \in B)) = \sum_{x \in A} \left(\sum_{y \in B} \mathbb{P}(X = x) \mathbb{P}(Y = y) \right) = \sum_{x \in A} \mathbb{P}(X = x) \underbrace{\left(\sum_{y \in B} \mathbb{P}(Y = y) \right)}_{=\mathbb{P}(Y \in B)},$$

donc

$$\mathbb{P}((X \in A) \cap (Y \in B)) = \left(\sum_{x \in A} \mathbb{P}(X = x)\right) \times \mathbb{P}(Y \in B) = \mathbb{P}(X \in A) \times \mathbb{P}(Y \in B).$$

Remarque

Contrairement au cas général, on constate que pour un couple de VA indépendantes, les lois marginales déterminent la loi conjointe.

Exemple (Deux lancers d'un dé)

Comme on peut s'en douter, lorsqu'on lance deux fois un dé équilibré, avec $\Omega = \{1, \dots, 6\}^2$, les variables aléatoires X = "résultat du premier lancer" et Y = "résultat du deuxième lancer" sont indépendantes.

En effet,
$$\forall (i,j) \in \{1,\cdots,6\}^2 : \mathbb{P}((X,Y)=(i,j)) = \frac{1}{36} = \frac{1}{6} \times \frac{1}{6} = \mathbb{P}(X=i)\mathbb{P}(Y=j).$$

Proposition 8 (Indépendances de VA composées).

Soient X,Y deux variables aléatoires réelles **indépendantes** sur un même univers fini (Ω,\mathbb{P}) . Pour toutes fonctions $f:X(\Omega)\to\mathbb{R}$ et $g:Y(\Omega)\to\mathbb{R}$,

les variables aléatoires f(X) et g(Y) sont indépendantes

Preuve: Soient $a \in f(X(\Omega))$ et $b \in g(Y(\Omega))$. Alors:

$$\mathbb{P}\big((f(X) = a) \cap (g(Y) = b)\big) = \mathbb{P}\big((X \in f^{-1}(\{a\})) \cap (Y \in g^{-1}(\{b\}))\big)$$
$$= \mathbb{P}\big(X \in f^{-1}(\{a\})\big) \times \mathbb{P}\big(Y \in g^{-1}(\{b\})\big),$$

14/35

par indépendance de X et Y, d'où :

$$\mathbb{P}((f(X) = a) \cap (g(Y) = b)) = \mathbb{P}(f(X) = a) \times \mathbb{P}(g(Y) = b),$$

ce qui montre que f(X) et g(Y) sont indépendantes.

Exemple

Si X et Y sont indépendantes, alors X^2 et Y^3 sont indépendantes.

2) Espérance et variables indépendantes

On rappelle que l'on peut définir le produit de deux variables aléatoires réelles par

$$\forall \omega \in \Omega, \qquad (XY)(\omega) = X(\omega) \times Y(\omega).$$

Théorème 9 (Produit de variables aléatoires indépendantes).

Soient X et Y deux variables aléatoires réelles sur un univers fini (Ω, \mathbb{P}) .

Si X et Y sont indépendantes, alors $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$

Preuve : Soit U = XY. On a $U : \Omega \to \mathbb{R}$. Par définition de l'espérance, on a

$$\mathbb{E}(X)\mathbb{E}(Y) = \left(\sum_{x \in X(\Omega)} x \mathbb{P}(X = x)\right) \times \left(\sum_{y \in Y(\Omega)} y \mathbb{P}(Y = y)\right) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy \mathbb{P}(X = x) \mathbb{P}(Y = y).$$

Par indépendance de X et Y, ceci se réécrit :

$$\mathbb{E}(X)\mathbb{E}(Y) = \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy \mathbb{P}((X,Y) = (x,y)).$$

16/35

On peut alors grouper les termes de la somme selon les valeurs du produit u = xy:

$$\mathbb{E}(X)\mathbb{E}(Y) = \sum_{u \in U(\Omega)} \left(\sum_{(x,y) \in X(\Omega) \times Y(\Omega), \ xy = u} \underbrace{xy}_{=u} \mathbb{P}((X,Y) = (x,y)) \right)$$

$$= \sum_{u \in U(\Omega)} u \left(\sum_{(x,y) \in X(\Omega) \times Y(\Omega), \ xy = u} \mathbb{P}((X,Y) = (x,y)) \right)$$

$$= \sum_{u \in U(\Omega)} u \mathbb{P}(U = u) = \mathbb{E}(U),$$

et donc $\mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(XY)$.

ATTENTION!

La réciproque est fausse en général.

Exemple

Soit $X \sim \mathcal{U}(\{-1, 0, 1\})$, et $Y = X^2$.

Montrer que X et Y ne sont pas indépendantes mais que $\mathbb{E}(XY) = 0$.

On a $\mathbb{E}(X) = 0$.

On pose $Y = X^2$. Les variables X et Y ne sont **pas indépendantes**, puisque : $\mathbb{P}(X =$

$$0 \cap Y = 0$$
 = $\mathbb{P}(X = 0) = \frac{1}{3} \neq \mathbb{P}(X = 0)\mathbb{P}(Y = 0) = \mathbb{P}(X = 0)^2 = \frac{1}{9}$.

Pourtant $\mathbb{E}(XY) = \mathbb{E}(X^3) = \mathbb{E}(X) = 0 = \mathbb{E}(X)\mathbb{E}(Y)$.

18/35

Corollaire 10.

Soient X, Y deux variables aléatoires réelles indépendantes sur un même univers fini (Ω, \mathbb{P}) . Pour toutes fonctions $f: X(\Omega) \to \mathbb{R}$ et $g: Y(\Omega) \to \mathbb{R}$, on a $\mathbb{E}(f(X)g(Y)) = \mathbb{E}(f(X))\mathbb{E}(g(Y)).$

Preuve: Vu que X et Y sont indépendantes, f(X) et g(Y) aussi (d'après la prop. 8), donc l'espérance de f(X)g(Y) vaut le produit $\mathbb{E}(f(X)) \times \mathbb{E}(g(Y))$.

3) Variables aléatoires mutuellement indépendantes

La notion d'indépendance se généralise à n variables aléatoires :

Définition 11 (Variables aléatoires mutuellement indépendantes).

On dit que des variables aléatoires réelles X_1, \cdots, X_n sur un même univers

 $fini \ (\Omega, \mathbb{P}) \ sont \ \textbf{mutuellement indépendantes} \ lorsque$

pour toutes parties
$$A_1 \subset X_1(\Omega), \ldots, A_n \subset X_n(\Omega)$$
:
$$\mathbb{P}((X_1 \in A_1) \cap \ldots \cap (X_n \in A_n)) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i).$$

i=1

On dispose de différentes propriétés, que nous admettrons :

```
Proposition 12 (Caractérisation de l'indépendance mutuelle de VA). 

Des variables aléatoires X_1, \ldots, X_n sur un même univers fini (\Omega, \mathbb{P}) 

sont mutuellement indépendantes ssi \forall (x_1, \ldots, x_n) \in X_1(\Omega) \times \cdots \times X_n(\Omega), 

\mathbb{P}((X_1 = x_1) \cap \ldots \cap (X_n = x_n)) = \mathbb{P}(X_1 = x_1) \times \cdots \times \mathbb{P}(X_n = x_n).
```

Remarque

Lorsqu'on répète une expérience et qu'on suppose que le résultat d'une expérience est sans effet sur les autres, cela signifie que les variables aléatoires X_1, \ldots, X_n associées respectivement aux expériences numéro $1, \ldots, n$ sont mutuellement indépendantes. C'est notamment le cas lorsqu'on lance plusieurs fois une même pièce de monnaie, lorsqu'on tire au hasard, **avec remise**, des boules dans une même urne ...

20/35

```
Proposition 13.

Si les variables X_1, \ldots, X_n sont mutuellement indépendantes, alors

pour tout m \in \{1, \ldots, n-1\} et toutes fonctions f: (X_1, \ldots, X_m)(\Omega) \to \mathbb{R}

et g: (X_{m+1}, \ldots, X_n)(\Omega) \to \mathbb{R}, les variables f(X_1, \ldots, X_m) et g(X_{m+1}, \ldots, X_n)

sont indépendantes.
```

Exemple

- 1. Si on a 3 variables indépendantes X, Y et Z, alors on en déduit notamment que Z est indépendante de X + Y, ou encore que Z^2 est indépendante de XY ...
- 2. Si on répète une expérience décrite par une suite de variables aléatoires $(X_n)_{n\geq 1}$ et que l'on suppose chaque réalisation d'une expérience indépendante des autres, alors on a en particulier, pour tout $n\geq 1$, X_{n+1} qui est indépendante de $X_1+\ldots+X_n$ ainsi que de $X_1\times\cdots\times X_n$.

On a enfin le résultat suivant, concernant l'espérance d'un produit de variables mutuellement indépendantes :

```
Proposition 14 (Espérance d'un produit de VA mutuellement indép.). Soient X_1, \ldots, X_n des variables aléatoires réelles sur un même espace probabilisé fini (\Omega, \mathbb{P}). Si X_1, \ldots, X_n sont mutuellement indépendantes, alors \mathbb{E}(X_1 \times \cdots \times X_n) = \mathbb{E}(X_1) \times \cdots \times \mathbb{E}(X_n).
```

Preuve: Par récurrence sur n: c'est vrai pour n=2 (cf. th 9), et si X_1, \dots, X_{n+1} sont mutuellement indépendantes, alors X_{n+1} est indépendante de $Y=X_1\times \dots \times X_n$ d'après ce qui précède, donc $\mathbb{E}(X_1\times \dots \times X_n\times X_{n+1})=\mathbb{E}(X_1\times \dots \times X_n)\times \mathbb{E}(X_{n+1})$, puis on utilise l'hypothèse de récurrence sur X_1, \dots, X_n qui sont mutuellement indépendantes. \square

22/35

4) Sommes de lois de Bernoulli indépendantes

On a le résultat important suivant :

```
Théorème 15 (Somme de lois de Bernoulli indépendantes). Soit p \in [0,1]. Si X_1, \dots, X_n sont des variables aléatoires mutuellement indépendantes sur un même univers fini (\Omega, \mathbb{P}), et suivant toutes la loi de Bernoulli \mathcal{B}(p), alors X_1 + \dots + X_n suit la loi binomiale \mathcal{B}(n,p)
```

Preuve: Les X_i sont à valeurs dans $\{0,1\}$ donc la variable aléatoire $S=X_1+\cdots+X_n$ est à valeurs dans $\{0,\ldots,n\}$. Ensuite, pour tout $k\in\{0,\cdots,n\}$, on a

$$(S = k) = \bigcup_{(x_1, \dots, x_n) \in A_k} ((X_1, \dots, X_n) = (x_1, \dots, x_n)),$$

(la réunion étant disjointe) où A_k est l'ensemble des listes binaires (x_1, \dots, x_n) qui comportent exactement k "1" et n-k "0". Il y a exactement $\binom{n}{k}$ suites de ce type, donc $\#A_k = \binom{n}{k}$. Par additivité de la probabilité \mathbb{P} , on en déduit que

$$\mathbb{P}(S=k) = \sum_{(x_1, \dots, x_n) \in A_k} \mathbb{P}((X_1, \dots, X_n) = (x_1, \dots, x_n)).$$

L'indépendance mutuelle de X_1, \cdots, X_n entraı̂ne alors :

$$\mathbb{P}(S=k) = \sum_{(x_1, \dots, x_n) \in A_k} \mathbb{P}(X_1 = x_1) \times \dots \times \mathbb{P}(X_n = x_n).$$

Or, on a $\mathbb{P}(X_i = 1) = p$ et $\mathbb{P}(X_i = 0) = 1 - p$ pour tout $i \in \{1, \dots, n\}$, donc

$$(x_1, \dots, x_n) \in A_k \implies \mathbb{P}(X_1 = x_1) \times \dots \times \mathbb{P}(X_n = x_n) = p^k (1 - p)^{n-k}$$

(puisqu'il y a exactement k "1" dans la liste (x_1, \dots, x_n)). Donc :

$$\mathbb{P}(S=k) = \sum_{(x_1, \dots, x_n) \in A_k} p^k (1-p)^{n-k} = \#A_k \times p^k (1-p)^{n-k} = \binom{k}{n} p^k (1-p)^{n-k},$$

ce qui montre que $S \sim \mathcal{B}(n, p)$.

24/35

III Covariance et coefficient de corrélation linéaire

On rappelle que si deux variables X et Y sont indépendantes, alors $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$. Mais qu'en est-il dans le cas général (si X et Y ne sont pas supposées indépendantes)?

1) Covariance de deux variables aléatoires

Définition 16 (Covariance).

Soient X et Y deux variables aléatoires réelles sur un même espace probabilisé fini (Ω, \mathbb{P}) . On appelle **covariance** de X et Y le nombre réel

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X)) \times (Y - \mathbb{E}(Y)))$$

Si on a Cov(X,Y) = 0, alors on dit que X et Y sont non corrélées.

Remarque

- On a $Cov(X, X) = \mathbb{E}((X \mathbb{E}(X))^2) = V(X)$.
- La covariance est faite pour être un indicateur de corrélation entre deux variables aléatoires.

Proposition 17 (Autre écriture de la covariance).

Preuve :
$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \mathbb{E}(XY - \mathbb{E}(X)Y - \mathbb{E}(Y)X + \mathbb{E}(X)\mathbb{E}(Y)) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) - \mathbb{E}(X)\mathbb{E}(Y) + \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y).$$

Remarque

Ainsi, Cov(X, Y) = 0 ssi $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

26/35

Proposition 18 (Covariance = forme bilinéaire symétrique positive). Fixons un espace probabilisé fini (Ω, \mathbb{P}) , et notons E l'espace vectoriel des variables aléatoires $\Omega \to \mathbb{R}$. La covariance $Cov: E \times E \longrightarrow \mathbb{R}$ est une forme bilinéaire symétrique SUF = SUF =

Preuve:

• Symétrie : on a XY = YX, donc

$$Cov(Y, X) = \mathbb{E}(YX) - \mathbb{E}(Y)\mathbb{E}(X) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = Cov(X, Y).$$

• Linéarité à gauche : on utilise la linéarité de l'espérance :

$$Cov(\lambda X_1 + X_2, Y) = \mathbb{E}((\lambda X_1 + X_2)Y) - \mathbb{E}(\lambda X_1 + X_2)\mathbb{E}(Y)$$

$$= \lambda \mathbb{E}(X_1Y) + \mathbb{E}(X_2Y) - (\lambda \mathbb{E}(X_1) + \mathbb{E}(X_2))\mathbb{E}(Y)$$

$$= \lambda (\mathbb{E}(X_1Y) - \mathbb{E}(X_1)\mathbb{E}(Y)) + (\mathbb{E}(X_2Y) - \mathbb{E}(X_2)\mathbb{E}(Y))$$

$$= \lambda Cov(X_1, Y) + Cov(X_2, Y)$$

• Positivité:

$$Cov(X, X) = V(X) \ge 0.$$

ATTENTION!

La covariance n'est pas "définie positive", car $Cov(X,X) = 0 \iff V(X) = 0 \iff X = \mathbb{E}(X)$ presque sûrement (cela n'implique pas X=0). La covariance n'est donc pas un produit scalaire.

28/35

Proposition 19 (Propriétés de la covariance).

Soient X et Y deux variables aléatoires réelles sur un univers fini (Ω, \mathbb{P}) .

- (i) On a V(X+Y)=V(X)+2Cov(X,Y)+V(Y) .

 On généralise : $V(X_1+\cdots+X_n)=\sum\limits_{i=1}^nV(X_i)+2\sum\limits_{1\leq i< j\leq n}Cov(X_i,X_j)$.
- (ii) Si X et Y sont indépendantes, alors Cov(X,Y) = 0
- (iii) Si X et Y sont indépendantes, alors V(X+Y) = V(X) + V(Y). On généralise : Si X_1, \ldots, X_n sont deux à deux indépendantes, alors $V(X_1+\cdots+X_n)=\sum\limits_{i=1}^n V(X_i)$.
- $(iv) \ \ On \ a \ \ \textbf{l'inégalit\'e} \ \ \textbf{de} \ \ \textbf{Cauchy-Schwarz} \ : \quad |Cov(X,Y)| \leq \sigma(X)\sigma(Y)$ $(où \sigma(X) = \sqrt{V(X)} \text{ désigne l'écart-type de } X).$

Preuve:

(i)

29/35

(ii)

30/35

(iii)

(iv) • Si $V(X) \neq 0$, examiner

$$T(\lambda) = V(\lambda X + Y) = \lambda^2 V(X) + 2\lambda Cov(X, Y) + V(Y).$$

C'est un trinôme du second degré en λ (car $V(X) \neq 0$), dont le discriminant est $4(Cov(X,Y)^2 - V(X)V(Y))$.

Puisque $T(\lambda) \geq 0$ pour tout $\lambda \in \mathbb{R}$ (c'est une variance), on en déduit que le discriminant est négatif ou nul, ce qui donne l'inégalité voulue.

• Si V(X) = 0, alors $X = \mathbb{E}(X)$ presque sûrement, et donc $Cov(X,Y) = 0 < \sigma(X)\sigma(Y)$.

Remarque

On a donc, pour tous réels a et b et toutes variables aléatoires X,Y:

$$V(aX + bY) = a^2V(X) + 2ab \ Cov(X, Y) + b^2V(Y).$$

32/35

ATTENTION!

On a $(X, Y \text{ indépendantes}) \implies (Cov(X, Y) = 0)$ mais la réciproque est fausse!

Contre-exemple: soit $X \sim \mathcal{U}(\{-1,0,1\})$ et définissons la variable aléatoire Y prenant la valeur 0 quand $X \neq 0$ et prenant la valeur 1 quand X = 0. X et Y ne sont pas indépendantes, car

$$\mathbb{P}((X=0)\cap (Y=0)) = 0 \neq \mathbb{P}(X=0)\mathbb{P}(Y=0) = \frac{1}{3} \times \frac{2}{3}.$$

 $\begin{aligned} & \text{Mais on a } \mathbb{E}(X) = 0 \text{ et } \mathbb{E}(XY) = \frac{1}{3}(-1\times 0) + \frac{1}{3}(0\times 1) + \frac{1}{3}(1\times 0) = 0, \text{ d'où } Cov(X,Y) = \\ \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = 0. \end{aligned}$

Remarque (Variance de la loi binomiale)

On sait que si les X_i sont des variables aléatoires mutuellement indépendantes suivant toutes la loi $\mathcal{B}(p)$, alors la variable aléatoire $X = \sum_{i=1}^{n} X_i$ suit la loi binomiale $\mathcal{B}(n,p)$. On retrouve alors, par ce qui précède (vu que l'indépendance mutuelle implique l'indépendance deux à deux), $V(X) = \sum_{i=1}^{n} V(X_i) = nV(X_1) = np(1-p)$. Au passage, on peut également retrouver l'espérance de la loi binomiale par cette mé-

thode : par linéarité

$$\mathbb{E}(X) = \mathbb{E}(X_1) + \dots + \mathbb{E}(X_n) = p + \dots + p = np,$$

mais ce calcul n'utilise pas l'indépendance des $(X_i)_{1 \le i \le n}$.

34/35

Coefficient de corrélation linéaire de deux variables aléa-2) toires

Définition 20 (Coefficient de corrélation linéaire).

Soient X et Y deux variables aléatoires réelles sur un même espace probabilisé fini (Ω, \mathbb{P}) , et de variance non nulle. On appelle coefficient de corrélation linéaire

du couple
$$(X, Y)$$
 le nombre $\rho(X, Y) = \frac{Cov(X, Y)}{\sigma(X)\sigma(Y)} = \frac{Cov(X, Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$

Remarque

- D'après l'inégalité de Cauchy-Schwarz, on a $|\rho(X,Y)| \le 1$, c'est-à-dire $-1 \le \rho(X,Y) \le 1$.
- Analogie avec la formule du cosinus de l'angle non orienté entre deux vecteurs non nuls du plan euclidien \mathbb{R}^2 : $\cos(\overrightarrow{u}, \overrightarrow{v}) = \frac{\langle \overrightarrow{u}, \overrightarrow{v} \rangle}{\|\overrightarrow{u}\| \|\overrightarrow{v}\|}$.
- Si X et Y sont indépendantes, alors $\rho(X,Y)=0$ (réciproque fausse).

Proposition 21 (Cas de corrélation maximale).

Soient X et Y deux variables aléatoires réelles sur un même espace probabilisé fini (Ω, \mathbb{P}) , et de variance non nulle. On a:

 $\rho(X,Y) = \pm 1 \iff il \text{ existe } a,b \in \mathbb{R} \text{ tels que } Y = aX + b \text{ presque sûrement}$ $(c'est-à-dire \quad \mathbb{P}(Y = aX + b) = 1 \quad).$

Preuve : On raisonne encore avec le trinôme du second degré

$$T(\lambda) = V(\lambda X + Y)$$

de discriminant $\Delta = 4(Cov(X,Y)^2 - V(X)V(Y))$ (on peut car $V(X) \neq 0$). On a

$$\rho(X,Y) = \pm 1 \iff |Cov(X,Y)| = \sqrt{V(X)V(Y)} \iff \Delta = 0.$$

Cela revient donc à dire que T possède une unique racine réelle :

$$\exists!\lambda_0 \in \mathbb{R}, \qquad T(\lambda_0) = 0,$$

c'est-à-dire $V(\lambda_0 X + Y) = 0$. Cela signifie que la variable aléatoire $\lambda_0 X + Y$ est presque sûrement constante. En posant $a = -\lambda_0$, on obtient donc qu'il existe $b \in \mathbb{R}$ tel que Y - aX = b presque sûrement.