

Internet of Things im Team

@andrelanger

@oliverlorenz

Herzlich willkommen

Wer sind wir?

André

Oliver

Kick-Off

Was haben wir heute vor?

- Kick-Off
- Einführung ins Thema IoT
- Microcontroller + Sensoren
- Development
- Showcase
- Retrospektive

Kurze Vorstellungsrunde

1. Was ist dein Nickname?

2. Was kannst du als Entwickler besonders gut?

3. Was sind deine Erwartungen an den Workshop?

Arbeitsmaterial

- Virtuelle Maschine
 - Ubuntu mit allerlei Tools
 - Benutzername iot, Passwort iot
- Lokales WLAN
 - SSID: IOT-WS, PW: Spartakiade2017
- Knowledge Base
 - http://192.168.30.10

Einführung

Gartner Hype Cycle (2011)

Gartner Hype Cycle (2016)

Source: Gartner (July 2016)

Ist das IoT?

Ein Video-Beispiel

Was assoziierst du mit IoT?

Anforderungen an IoT

- "Collect"
 - Datenerfassung über Sensor(en)
- 2. "Control"
 - Datenverarbeitung über IP-fähiges Gerät
- 3. "Communicate"
 - Datenweiterleitung und Kommunikation über das Internet

Immer kleiner, immer günstiger, ...

Aufgabe: Bringe eine WLANfähige Lampe dazu, aller 5 Sekunden ihre Farbe zu ändern

Erstes Beispiel: Lampensteuerung

https://developers.meethue.com/philips-hue-api

Erstes Beispiel: Lampensteuerung

RESTful Webservice

Address	http://192.168.30.110/api/bUGIwMH wOPzXVItpqnCgnpJF1gLVTKIVZ6CAjwu- /lights/1/state
Body	{"on":true, "sat":254, "bri":254,"hue":10000}
Method	PUT

http://<bridgeip>/debug/clip.html

Raspberry Pi

- Raspberry Pi 3
 Model B
- Raspbian Jessie OS
- Verbindung mittels
 SSH
- User: **pi**
- PW: raspberry

> ssh pi@192.168.30.xxx

Codebeispiel (Python)

```
import requests
 import ison
 url =
"http://[bridgeurl]/api/bUGIwMHwOPzXVItpqnCgnpJF1gLVTKIVZ6CAjwu-
/lights/1/state"
 data on = {"on":True, "sat":254, "bri":254, "hue":5000}
 data off = {"on":False}
 r = requests.put(url, json.dumps(data on), timeout=5)
```


Verschiedene Aufsätze möglich

Sensor Hats

ZigBee-Modul

Andere Erweiterungen

?

Ist das nicht mit Kanonen auf Spatzen geschossen?

Microcontroller

SeeedStudio Wio Family

Ehemaliges Kickstarter-Projekt

Hersteller-Video

Grove Sensoren

Zugriffsmöglichkeiten

Via Smartphone App

Via Cloud-basiertem RESTful Webservice

 Oder direkte Programmierung der Firmware

Via Cloud API

https://us.wio.seeed.io/v1/node/

Aufgabe: Bringe eine LED dazu, aller 5 Sekunden an/aus zu gehen

Via direkter Programmierung

Wir benötigen dazu:

Arduino IDE

 Einen USB-to-Serial-Wandler (FTDI-Adapter)

FTDI Verkabelung

Transfer auf Microcontroller

- Der Wio Node muss zuvor in den Konfigurationsmodus versetzt werden
- FUNC Taste für 4 Sekunden drücken
- Danach zusätzlich kurz RESET-Taste drücken
- Beide Tasten loslassen

- Korrekten seriellen Port und Baudrate einstellen
- ino-Sketch compilieren und übertragen

Zweites Beispiel: LED-Steuerung

Arduino sieht in einem ino-Sketch zwei Funktionen vor:

```
void setup() {
}
void loop() {
}
```


Zweites Beispiel: LED-Steuerung

Allgemeine Befehle

```
#define PORT 5
pinMode(PORT, OUTPUT);
Serial.begin(115200);
Serial.println("this is a string");
digitalWrite(PORT, HIGH);
delay(3000);
```

```
"board name": "Wio Node v1.0",
"board vendor": "seeedstudio",
"board flash map": 6,
"board flash spi speed": 40,
"board flash spi mode": "QIO",
"board builtin":
    "FUNCTION KEY": 0,
    "STATUS_LED": 2,
    "GROVE POWER SWITCH": 15
"interfaces":
    "D0": { "type": "GPIO", "pin": 3 },
    "D1": { "type": "GPIO", "pin": 5 },
    "A0": { "type": "ANALOG", "pin": 17 },
    "I2C0": { "type": "I2C", "pinsda": 1, "pinscl": 3 },
    "I2C1": { "type": "I2C", "pinsda": 4, "pinscl": 5 },
    "UARTO": { "type": "UART", "pintx": 1, "pinrx": 3 }
```


Was ist daran jetzt IoT?

Letztes Beispiel iotifizieren

Microcontroller mit WLAN verbinden

Aktuellen Status weiterkommunizieren, z.B. an einen MessageBroker

Arduino-Code zur WiFi-Verbindung

```
#include <ESP8266WiFi.h>
const char* ssid = "IOT-WS";
WiFiClient wifiClient;
WiFi.begin(ssid, password);
while (WiFi.status() != WL CONNECTED) {
  delay(500);
  Serial.print(".");
Serial.println("WiFi connected");
```


Sensoren vs. Aktoren

Subscriber (Aktor)

Publisher (Sensor)

Gruppierung gleicher Daten in Topics

MessageBroker

 Warum Messaging statt einfacher HTTP Requests?

Was ist ein MessageBroker?

Was ist MQTT?

Mosquitto MQTT Broker

Besonderheiten

Authentication & SSL

Retained Messages

QoS Levels

Arduino Code zum Pub

```
#include < PubSubClient.h >
const char* mgttServer = "192.168.30.10";
const char* mqttUsername = "spartakus";
const char* mqttPassword;
const int mattPort = 1883;
String clientName;
String topicName;
while (!mgttClient.connected()) {
  mgttClient.connect((char*) clientName.c str(), mgttUsername, mgttPassword);
mqttClient.loop();
mgttClient.publish(topicName, Message.c str(), true);
```


Arduino Code zum Sub

```
[...]
int subscriptionTopicLength = TopicName.length() + 1;
char subscriptionTopicCharArray[subscriptionTopicLength];
topicName.toCharArray(subscriptionTopicCharArray, subscriptionTopicLength);
if (mgttClient.subscribe(subscriptionTopicCharArray)) {
  Serial.print("Subscribed to ");
  Serial.println(topicName);
```


?

Was nützen uns diese Daten jetzt?

Development

IoT ist nicht nur Hardware, sondern vor allem Software und die Verbindung intelligenter Systeme

Aktionen

 Jede beliebige Software / App kann eingehende Nachrichten vom MQTT MessageBroker abonnieren und darauf aufbauend weitere Aktionen auslösen

Meist finden sich ähnliche Workflows

NodeRED

Tool von IBM

nodeJS Anwendung mit Web GUI

 Ein Werkzeug, um Hardware, APIs und Online-Dienste miteinander zu verbinden ("Baukasten")

NodeRED

\$ sudo npm install -g node-red \$ node-red

Default port 1880

http://localhost:1880

NodeRED

Showcase

Showcase

 Die restliche Zeit des Workshops wollen wir nutzen, um das Wissen anzuwenden und gemeinsam ein komplexeres Szenario umzusetzen

Nerfgun Battle

Zielsetzung: Heute Abend 17:00 Uhr sollen zwei Teams mit Nerfguns gegeneinander antreten können

Wir benötigen dazu

Spiel-Ideen

Eine gute Team-Organisation

Unterschiedliche Verantwortlichkeiten

Die Integration zu einem Gesamtsystem

Wir bieten Euch

Hardware-Equipment

Eine zentrale Server-Instanz

Ein NodeRED-Gaming-Framework

Rat bei Problemen

Gaming-Framework

Retro

Retrospektive

Was hast du heute Neues gelernt?

Bist du mit dem erreichten Stand zufrieden?

Was hätte besser laufen können?

Danke für den spannenden Tag

@andrelanger

@oliverlorenz

