동적 데이터 기반 SW 유닛들 사이의 관련도 메트릭 활용

KAIST SWTV 연구실 김문주

Research Roadmap on Automated Testing and Debugging

Past: Runtime Verification and **Model Checking**

Current: Auto. Testing and Fault Localization (FL)

Better

Industrial

Application

4 Future: Data driven scalable SW analysis framework

Concolic Testing Cov-guided Fuzzing ML Engine SMT Solver Static Analysis

철학적 이야기. SW의 본질이란?

 SW analysis (static analysis, dynamic analysis, etc.) is to understand the "essence" of SW

- However, it is very difficult to define the essense of SW
 - Ex1. SW medium itself (e.g., CD/USB)
 - Ex2. Information in the SW medium (e.g., a sequence of bytes)
 - Ex3. Execution information of SW (e.g., execution traces, etc.)
- In process algebra community, the essence of an agent is indirectly defined by "equivalence" (or preorder) between agents.

Correlation can be Used to Identify Essense of Software

- <u>Correlation</u> between SW components (e.g., functions, classes, modules, etc.) can be obtained more easily than <u>causal-effect</u> relation between the SW components
- Correlation/grouping of SW components have been studied in SE for the following applications:
 - ex1. How to plan software releases
 - ex2. How to build SW developing team structure
 - ex3. How to organize SW segments for various purposes

Static Relevance between Functions (1/2)

- Until very recently, only static correlation between the SW components have been utilized
 - since researchers preferred stable (and easy to analyze) targets
- For example,
 - Li and Henry [43] proposed a message passing coupling metric which measures the number of method invocations in a class.
 - Chidamber and Kemerer [13] proposed a coupling metric of two classes using the number of accesses of field variables and invocations of the methods of another class.
 - Lee et al. [42] uses the number of method invocations of another class weighted by the number of arguments of the invoked methods.

Static Relevance between Functions (2/2)

- However, these metrics have limitations to apply to reduce false alarms in automated unit testing (i.e., these metrics are static ones and reports provide too imprecise coupling value)
 - Ex1. The metric using the number of accesses to the common class field variables [13] does not capture the relation constructed by passing arguments.
 - Ex2. Lee et al. [42] considered the number of arguments passed but the number of arguments is often not a good weight because one pointer argument can pass large data structure.

SW 테스팅 = SW 본질을 찾아가는 과정

- Concurrent programs have very high complexity due to non-deterministic scheduling
- Ex. int x=0, y=0, z =0;
 void Thread1() {x=y+1; y=z+1; z= x+1;}
 Void Thread2() {y=z+1; z=x+1; x=y+1;}
 - Total 20 interleaving scenarios = (3+3)!/(3!x3!)
 - However, only 11 unique outcomes
 - assert(x+y+z > 5)???
 - assert(x+y+z < 15)???

Trail1: 2,1,2 Trail2: 2,1,3 Trail3: 2,2,3 Trail4: 2,3,3 Trail5: 2,4,3 Trail6: 3,2,3	Trail7: 3,2,4 Trail8: 4,3,2 Trail9: 4,3,5 Trail10: 5,4,3 Trail11: 5,4,6
--	---

Static SW Code vs. Dynamic SW Executions

int x=0, y=0, z =0; void Thread1() {x=y+1; y=z+1; z= x+1;} void Thread2() {y=z+1; z=x+1; x=y+1;}

New Applications of Function Relevance

 Defining Extended Units for Unit Testing

Green: Target function *f*

Light green: Functions highly relevant to the

target

Grey: Functions not relevant to the target

Green + light green: Extended Unit of f

> False Alarm Filtering by Using Closely Relevant Contexts

Yellow & sky blue: a calling context of a target func. f

Unit Testing f without or with Contexts of f

Without Contexts of f

Pros: fast exploration of target unit execution paths
Cons: infeasible target unit executions

With Contexts of f

Pros: reduced infeasible target unit executions

Cons: slow exploration of target unit execution due to large cost of exploring context functions

Computing Function Relevance based-on System TCs

Phase1:

Defining extended units and calling contexts

analysis

Function call profile

TC1	TC2	TC3	
main	main	main	
a2	a1	a1	
Ψ	V	V	
T T		T T	
b	g	b	
		g h	

Relevance of f on other functions (Threshold $\tau = 0.6$)

$$P(b | f) = 0.66$$

 $P(g | f) = 0.66$
 $P(h | f) = 0.33$

Recent New Application of Func. Relevance for Fuzzing

A. Lee, I. Ariq, Y. Kim, and M. Kim, **POWER: Program Option-Aware Fuzzer for High Bug Detection Ability**, ICST, 2022

How to Select Command-line Option Configurations

Problem:

- There exist too many different command-line option configurations for a target program.
- We need to select far different option configurations only

Func. Relevance					
f1	f2	High			
f1	f3	Low			
f1	f4 Low				
f1	main	High			
f2	f3	Low			
f2	f4	Low			
f2	main	High			
f3	main	Low			
f3	f4	High			
f4	main	High			
•••					
(b)					

Improved Crash Bug Detection Ability by Selecting Option Configurations

- POWER found 2.15 (= 88/41) times more crashes than POWER_{Rnd}
 - For example, on tiffinfo, POWER found four times more crashes and covered 18.1% (=(3228.1-2732.4)/2732.4) more branches than POWER_{Rnd}.

THE TOTAL NUMBER OF CRASHES DETECTED AND THE AVERAGE NUMBERS OF BRANCHES COVERED BY THE VARIANTS OF POWER

Targets	POWER ^{Rnd}		$POWER^{KMO}$		POWER	₹
	#uniq.	#branch	#uniq.	#branch	#uniq.	#branch
	crash	covered	crash	covered	crash	covered
avconv	4	11709.6	7	17197.7	5	15006.2
bison	1	5728.0	3	6637.6	5	6138.0
cflow	3	1553.2	4	1689.1	2	1675.3
cjpeg	0	3920.1	0	4192.8	0	4086.7
djpeg	0	2598.1	0	2651.7	0	2513.7
dwarfdump	1	6565.5	4	7563.7	2	7240.6
exiv2	0	8679.3	0	9636.8	1	9567.0
ffmpeg	1	36252.6	1	48122.8	2	45392.8
gm	0	6492.3	0	9454.0	1	9710.1
gs	0	22586.2	1	24905.8	0	24161.6
jasper	0	3674.4	0	3660.1	0	4101.0
mpg123	0	3744.1	1	4006.3	1	3809.3
mutool	0	12423.8	0	15746.1	0	13647.7
nasm	4	6403.2	3	6578.8	4	6506.6
objdump	13	26237.9	8	24639.1	13	33070.5
pdftohtml	0	7184.0	0	8100.5	4	7600.7
pdftopng	0	7341.9	0	8947.8	9	8687.5
pdftops	0	8177.3	0	9719.0	9	9354.9
pngfix	0	1107.8	0	1191.2	0	1143.1
pspp	9	3389.2	7	4462.3	8	5650.0
readelf	0	9402.0	1	8799.3	8	10321.6
size	1	5078.7	4	7621.5	3	9054.8
tiff2pdf	0	4126.1	0	4226.8	0	4177.1
tiff2ps	1	2950.8	1	3274.1	0	3379.0
tiffinfo	1	2732.4	1	3060.9	4	3228.1
vim	0	39844.8	2	45466.5	5	45654.3
xmlcatalog	0	6598.8	0	6413.9	0	7598.9
xmllint	2	14245.7	2	14406.5	2	14420.5
xmlwf	0	3590.3	0	3733.0	0	3733.8
yara	0	3455.6	0	3954.2	0	3118.9
Total	41		50		88	 ;

On-going Work to Improve Dynamic Func. Relevance Metric (co-work w/ 김윤호 교수님)

• Before:

• 타겟 함수 f와 f와의 관련도를 측정할 다른 함수 g에 대해서, 얼마나 많은 테스트 입력 값이 두 함수 f,g를 같이 실행하는가를 측정

• After:

- 각 테스트에서 생성된 호출 시퀀스 (Call sequence)를 f를 기준으로 여러개의 조각 (segments) 으로 분할 하여, 얼마나 많은 f,g가 같은 조각에 포함되는지를 측정.
- 단순히 실행되었는가에서 더 나아가 호출 시퀀스를 비교하기 때문에, 더 정교하게 두 함수 사이의 관련도 측정이 가능

실험결과

		#bugs		#false alarms		F/T ratio	
	#target bugs	CONBRIO	Seg. Metric	CONBRIO	Seg. Metric	CONBRIO	Seg. Metric
Bash	6	5	4	18	17	3.6	4.3
Flex	2	1	1	6	5	6.0	5.0
Grep	5	4	4	13	14	3.3	3.5
Gzip	2	2	2	5	4	2.5	2.0
Make	3	3	3	9	10	3.0	3.3
Sed	2	2	2	5	7	2.5	3.5
Vim	6	5	5	25	25	5.0	5.0
Perl	6	6	6	57	24	9.5	4.0
Bzip2	2	2	2	10	8	5.0	4.0
Gcc	15	14	13	79	78	5.6	6.0
Gobmk	5	5	5	39	34	7.8	6.8
Hmmer	3	3	3	12	12	4.0	4.0
Sjeng	2	2	2	8	8	4.0	4.0
libquantum	3	3	3	5	3	1.7	1.0
h264ref	5	4	5	17	16	4.3	3.2
Sum	67	61	<mark>60</mark>				
Avg				20.5	<mark>17.7</mark>	4.5	<mark>4.0</mark>

Questions? Comments?