Rappels du cours précédent

El-Gamal, Problèmes calculatoires (LD, CDH, DDH), Attaque = Objectif (TB, OW, IND) + moyen (CCA,CPA), résultats de sécurité sur El-Gamal.

2.3 Les algorithmes de calcul de log discret

 $G = \langle g \rangle$ cyclique d'ordre q

Problème du LD Étant donné $h \in G$, calculer x tq $g^x = h$.

Algo naïf:

- for $i = 0 \dots q$, tester $g^i == h$?
- Taille des entrées / sorties : $O(\log(q))$
- Complexité : O(q), exponentiel en la taille des E/S

2.3.1 Pohlig-Hellman

 $G = \langle g \rangle$ cyclique d'ordre g

Hypothèse: q n'est pas premier et on connait sa factorisation $q = \prod q_i$ avec q_i premiers entre eux.

Idées:

- 1. On va réduire le LD sur G à plusieurs LD sur des *petits* groupes d'ordre q_i .
- 2. Rappel : Définition : Ordre de $h \in G$, $ord(h) = min\{i > 0 | h^i = 1\}$.
- 3. g^{q/q_i} est d'ordre q_i (cf. racines de l'unité Cours FFT):

i.
$$(g^{q/q_i})^{q_i} = g^q = 1$$

ii. Si
$$0 < k < q_i$$
 alors $(g^{q/q_i})^k = g^{kq/q_i} \neq 1$ car $0 < kq/q_i < q_i$

- 4. Soit x = LD(h, g), i.e. $h = g^x$. Alors
 - i. Posons $g_i := g^{q/q_i}$ et $h_i := h^{q/q_i}$.
 - ii. Alors $h_i = g_i^x$: en effet $g_i^x = (g^{q/q_i})^x = (g^x)^{q/q_i} = h^{q/q_i} = h_i$
 - iii. Ce calcul de LD est plus simple car $ord(g_i) = q_i \ll ord(g) = q$.
 - iv. Mais on n'apprend pas tout à fait x!
- 5. Quelle information apprend-on sur x ? On apprend ($x \mod q_i$).
 - i. **Lemme:** Soit q = ord(g) alors $g^x = g^y \Leftrightarrow x = y \mod q$.
 - ii. Preuve:
 - \Leftarrow Comme $x = y \mod q$ alors $\exists k \in \mathbb{Z}, x = y + kq$. Puis $g^q = 1$ donc $g^x = g^{y+kq} = g^x(g^q)^k = g^y$.
 - \Rightarrow Supposons $y \ge x$.

Écrivons la division euclidienne (y - x) = kq + r avec $0 \le r < q$.

Notons que
$$g^x = g^y \Rightarrow 1 = (g^{-1})^x g^x = (g^{-1})^x g^y = g^{y-x}$$

Puis
$$1 = g^{y-x} = (g^q)^k g^r = g^r$$
.

Or
$$r < q = ord(g) = min\{i > 0 | g^i = 1\}$$
 donc nécessairement $r = 0$ et $x = y \mod q$.

6. Pour reconstruire $(x \mod q)$ à partir des $(x \mod q_i)$, nous allons utiliser le

Théorème des restes chinois : L'application φ est une bijection

$$\varphi: \frac{\mathbb{Z}/q\mathbb{Z} \to \mathbb{Z}/q_1\mathbb{Z} \times \cdots \times \mathbb{Z}/q_k\mathbb{Z}}{x \bmod q \mapsto (x \bmod q_1, \dots, x \bmod q_k)}$$

```
i. \varphi est injective:
```

```
Si \varphi(x) = \varphi(y) alors \varphi(x - y) = (0, \dots, 0) donc q_i | (x - y).
```

Comme les q_i sont premiers entre eux, alors $\prod q_i | (x - y)$ et $x = y \mod q$.

- ii. Les ensembles de départ et d'arrivée ont le même nombre d'éléments
- iii. Donc l'application est bijective.

Algorithme obtenu:

```
Algo LD-PH(h,g,[q_1,...,q_k])
# Où q := ord(g) = (\prod q_i) avec q_i premiers entre eux

1. Pour i=1..k

2. g_i = g^{q/q_i}

3. h_i = h^{q/q_i}

4. x_i = LD(h_i,g_i)

5. x = ResteChinois(x_1,...,x_k)
```

Complexité:

- Ligne 2, 3 : exponentiation rapide en $O(\log q)$
- On boucle *k* fois :
 - $\circ k \leq \log_2 q$ puisque $q = \prod_{i=1}^k q_i \geq \prod_{i=1}^k 2 = 2^k$.
 - donc coût cumulé $O(\log^2 q)$
- Ligne 4 : On va noter $\sum LD(q_i)$ les coûts à d'autres implémentations du LD.
- Ligne 5 : Polynomial en $\log q$ (admis).
- Total: $\sum LD(q_i) + Polynomial(\log q)$.

Exemples:

- 1. Si $q_1 \simeq q_2$ et algo LD naïf en ligne $4 \Rightarrow O(\sqrt{q})$
- 2. Si $q_1 \simeq q_2 \simeq q_3$ et algo LD na \ddot{q} en ligne 4 $\Rightarrow O(\sqrt[3]{q})$

Conséquence importante: Prendre q premier!

En pratique,

- si $G = (\mathbb{Z}/p\mathbb{Z})^*$ alors q = p 1 est pair et peut avoir beaucoup de facteurs.
- Prendre plutôt p de la forme p = 2p' + 1 avec p et p' premiers (ici $q = q_1q_2$ avec $q_1 = 2, q_2 = p'$).
- ullet Puis travailler dans un sous-groupe de G d'ordre p' premier :
 - \circ Si g générateur de G alors ord(g)=p-1=2p' et $ord(g^2)=p'$ (autrement dit $ord(g^{q/q_2})=q_2$).
 - ∘ Donc on travaille dans $G' \subset G$ avec G' engendré par g^2 .

2.3.1 Algo pas de bébé, pas de géant ou Baby Step Giant Step (BSGS) (Shanks 1971)

Valable pour tout groupe G, quelque soit son ordre q.

Idée:

1. Les puissances de g forment un cycle (= G) et h est dans le cycle. Mais calculer tous les points du cycle est trop coûteux : $\Omega(q)$ opérations dans G (cf. Algo LD naïf).

- 2. Au lieu de cela, on ne calcule que certains points
 - i. Pas de géant: $t = \lfloor \sqrt{q} \rfloor$ et on stocke $S = \{g^0, g^t, g^{2t}, \dots, g^{\lfloor q/t \rfloor t}\}$ les pas de géant. Ainsi h se trouve entre deux pas de géants g^{kt} et $g^{(k+1)t}$.

- ii. Pas de bébé: On teste si h est dans S, puis si h/g est dans S, puis $h/g^2 \dots$
 - Si on a une collision alors $h/g^i=g^{kt}$ et donc $h=g^{kt+i}$.
 - On trouvera toujours un collision : Écrivons la division euclidienne $x=x_1t+x_0$ avec $0 \le x_0 < t$. Alors $h=g^x=g^{x_1t+x_0}$ donc $h/g^{x_0}=g^{x_1t}$. Notons que $x_1=\lfloor x/t\rfloor \le \lfloor q/t\rfloor$.

Algorithme obtenu:

```
Algo LD-BSGS(h,g,q)
# Où q := ord(g)

1. S = new Dictionnaire();
2. t = floor(sqrt(q))
3. gg = g^t
4. gs = 1
5. Pour k=0..floor(q/t)
6. S.add(gs,k)
7. gs = gs * gg
8. gs = h
9. Pour i=0..t
10. if(S.contains(gs))
11. return S[gs] * t + i
11. gs = gs / g
```

Complexité:

- 1. g^t en $O(\log \sqrt{q}) = O(\log q)$ multiplications dans G
- 2. $g^{2t},\ldots,g^{\lfloor q/t\rfloor t}$ en $O(\sqrt{q})$ multiplications dans G
- 3. Chaque nouveau h/g^i coûte O(1) et test d'appartenance $h/g^i \in S$? en O(1) avec des tables de hachage. Donc $O(\sqrt{q})$ opérations pour tous les tests
- 4. Au final, $O(\sqrt{q})$ opérations arithmétiques dans G et mémoire $O(\sqrt{q})$.

Bonus

 $\mathbb{Z}/17\mathbb{Z}^*$ d'ordre 16 avec le générateur $\xi=3$.

Quel est l'ordre de $\xi^2, \xi^3, \xi^4, \xi^5, \xi^{-1}$?

