Computer Problem Set 2.2

Girsanov Theorem

The present problem set is attached to Chapter 7, Section 7.2 of the lectures notes. Given a scalar Brownian motion B, we consider the Black-Scholes model

$$dS_t = S_t(rdt + \sigma dB_t),$$

with positive parameters r, σ . Our objective is the numerical approximation of

$$\Delta_0 := \mathbb{P}[S_T \ge K], \quad \text{for large} \quad K > 0,$$
(1)

for some given maturity T > 0. By the Girsanov theorem, we may introduce for all $\theta \in \mathbb{R}$ a probability measure \mathbb{Q}^{θ} , under which $\{B_t^{\theta} := B_t - \theta t, t \geq 0\}$ is a Brownian motion, and so that:

$$\Delta_0 = \mathbb{E}^{\mathbb{Q}^{\theta}} \left[\left(Z^{\theta} \right)^{-1} \mathbf{1}_{\{S_T \ge K\}} \right] \quad where \quad \frac{d\mathbb{Q}^{\theta}}{d\mathbb{P}} = Z^{\theta} := e^{\theta B_T - \frac{1}{2}\theta^2 T}. \tag{2}$$

Although Δ_0 is independent of θ , various values of θ induce different Monte Carlo approximations of Δ_0 . We then introduce the variance of the Monte Carlo estimator based on the last representation

$$V^{\theta} := \mathbb{E}^{\mathbb{Q}^{\theta}} \left[\left(Z^{\theta} \right)^{-2} \mathbf{1}_{\{S_T \ge K\}} \right] - \Delta_0^2.$$

- 1. Build a program which produces a Monte Carlo approximation of Δ_0 based on the original representation (1) and a sample of M independent copies of S_T .
- 2. Build a program which produces an M-sample Monte Carlo approximation of Δ_0 based on the representation (2) for some value of the parameter θ .
- 3. Consider the parameters values $S_0 = 100$, K = 150, r = 0.02, $\sigma = 0.4$, T = 2, and let θ be ranging in the set [-3,3]. Plot a graph with the difference between the Monte Carlo estimator and the true value of Δ_0 (which can be computed explicitly in terms of the cumulative distribution of the $\mathcal{N}(0,1)$ distribution).
- 4. Build a program which produces a Monte Carlo approximation of the variance V^{θ} for each given value of the parameter θ .
- 5. Using the values of the parameters of Question 3, plot the Monte Carlo approximation of the variance V^{θ} in terms of θ . Investigate the stability of the results in terms of the sample size M. Comment the findings.