

Set Theory, Probability, and Single Experiment

1. From Set to Probability (of the single experiment)

(a)

Set Theory	Probability
Element	Outcome
Subset	Event
Universal Set	Sample Space

- (b) Outcome and Event:
 - i. Outcomes are always Mutually Exclusive since there are the smallest units (i.e., Elements) in the Set.
 - ii. Event constitutes by different combinations of outcomes (through Union (∪) Operation).
- (c) $\mathbb{P}(\text{Event})$ is the possibility that the event appears in the sample space.
- (d) $\mathbb{P}(\emptyset) = 0$ since there is no element in *null set*, and $\mathbb{P}(\text{Sample Space}) = 1$.
- 2. From Set Operation to Probability Operation
 - (a) There are three Set Operations: $A \cup B$, $A \cap B$, A^{c} .
 - (b) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
 - (c) Union Bound: $\mathbb{P}(\bigcup_{i=1}^{N} A_i) \leq \sum_{i=1}^{N} \mathbb{P}(A_i)$.
 - (d) Mutually Exclusive: $\mathbb{P}(A \cap B) = 0$ so that $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
 - (e) Collectively Exhaustive: $\mathbb{P}(A \cup B) = 1$.
 - (f) Partitions (i.e., Mutually Exclusive & Collectively Exhaustive): $\mathbb{P}\left(\cup_{i=1}^N A_i\right) = \sum_{i=1}^N \mathbb{P}(A_i) = 1$.
- 3. Conditional Probability
 - (a) $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)}$.
 - (b) If A_i are Mutually Exclusive: $\mathbb{P}(A \mid B) = \mathbb{P}(\bigcup_{i=1}^N A_i \mid B) = \sum_{i=1}^N \mathbb{P}(A_i \mid B)$.

(c) If B_i are Partitions (Law of Total Number),

$$\mathbb{P}(A\mid B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} \qquad \qquad \text{(Definition of Conditional Probability)}$$

$$= \mathbb{P}(AB) \qquad \qquad (B \text{ is Collectively Exhaustive so } P(B) = 1)$$

$$= \mathbb{P}(A \cdot \cup_{i=1}^{N} B_i) \qquad \qquad (B \text{ is Mutually Exclusive})$$

$$= \sum_{i=1}^{N} \mathbb{P}(AB_i) \qquad \qquad (B \text{ is Partition})$$

$$= \sum_{i=1}^{N} \mathbb{P}(A\mid B_i)\mathbb{P}(B_i). \qquad \qquad \text{(Definition of Conditional Probability)}$$

- 4. Bayes' Theorem: $\mathbb{P}(A\mid B)=\frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$
- 5. Independent:
 - (a) $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
 - (b) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A)\mathbb{P}(B)$.
 - (c) $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(AB)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A).$

Sequential Experiments

- 1. Tree Diagrams
- 2. Counting Methods (Essentially the outcomes in each experiment (i.e., sample space) are equiprobable)
 - (a) Multiplication: $n \times k_1 \times k_2 \times \dots$
 - (b) Sampling without Replacement
 - i. Permutation: $\frac{n!}{(n-k)!}$.
 - ii. Combination: $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$.
 - iii. Combination is Permutation without order. Combination is also called n choose k.
 - (c) Sampling with Replacement: n^k
 - (d) Multiple Combination:
 - i. $\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \dots k_m!}$ where $n = \sum_{i=1}^m k_i$.
 - ii. For the two cases situation, $n = k_1 + k_2 \Rightarrow \binom{n}{k_1 k_2} = \frac{n!}{k_1! k_2!} \iff \binom{n}{k_1} \iff \binom{n}{k_2}$.
- 3. Independent Trails (Essentially the outcomes in each sample space are not necessarily equiprobable)
 - (a) Theorem 2.8: The Probability of k_0 failures and k_1 successes in $n = k_0 + k_1$ Independent Trails with success rate p is

$$\mathbb{P}(k_0, k_1) = \binom{n}{k_0} (1-p)^{k_0} p^{k_1} = \binom{n}{k_1} (1-p)^{k_0} p^{k_1}.$$

(b) Theorem 2.9: $n=k_1+k_2+\ldots+k_m$ and success rates are p_1,p_2,\ldots,p_m , where $\sum_{i=1}^m p_i=1$ has

$$\mathbb{P}(k_1, k_2, \dots, k_m) = \binom{n}{k_1, k_2, \dots, k_m} p_1^{k_1} p_2^{k_2} \dots p_m^{k^m}.$$

Discrete Random Variables

- 1. Discrete Random Variables: Assign numerical value to discrete outcomes
- 2. Probability Mass Function (PMF):

$$\sum_{x \in X} P_X(x) = 1.$$

- 3. Families of Discrete Random Variables and their PMF
 - (a) Bernoulli(p): **E.g.**, **Flip a coin**

$$P_X(x) = \begin{cases} 1 - p & x = 0, \\ p & x = 1, \\ 0 & otherwise. \end{cases}$$

(b) Binomial(n, p): Get **x** successes in **n** Bernoulli(p) experiments \iff independent trails

$$P_X(\mathbf{x}) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, \dots, n \\ 0 & otherwise. \end{cases}$$

Note: Bernoulli(p) \iff Binomial(1, p).

(c) Poisson(α): Binomial(n, p) with small p, large n, and $\alpha = np$

$$P_X(x) = \begin{cases} \frac{\alpha^x e^{-\alpha}}{x!} & x = 0, 1, \dots \\ 0 & otherwise. \end{cases}$$

(d) Geometric(*p*): Get the **1st** success at the **x-th** Bernoulli(*p*) experiment

$$P_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, \dots \\ 0 & otherwise. \end{cases}$$

(e) Pascal(k, p): Get the **k-th** success at the **x-th** Bernoulli(p) experiment

$$P_X(\mathbf{x}) = \begin{cases} \binom{x-1}{k-1} p^k (1-p)^{x-k} & x = k, k+1, k+2, \dots \\ 0 & otherwise. \end{cases}$$

Note: Geometric(p) \iff Pascal(1, p).

(f) Discrete Uniform(k, l): outcomes are uniformly distributed on range (k, l) E.g., Roll a Die

$$P_X(x) = \begin{cases} 1/(l-k+1) & x = k, k+1, k+2, \dots, l \\ 0 & otherwise. \end{cases}$$

4. Cumulative Distribution Function (CDF):

$$F_X(x) = P_X[X \le x] = \sum_{k=0}^x P_X(k).$$

$$F_X(b) - F_X(a) = \sum_{k=0}^b P_X(k) - \sum_{k=0}^a P_X(k) = \sum_{k=a+1}^b P_X(k) = P_X(a < X \le b).$$

The CDF of Geometric(p) is worth to remember

$$F_X(x) = P_X[X \le x]$$

$$= 1 - P_X[X > x]$$

$$= 1 - \sum_{i=x+1}^{\infty} p(1-p)^{i-1}$$

$$= 1 - (1-p)^x \sum_{i=1}^{\infty} p(1-p)^{i-1}$$

$$= 1 - (1-p)^x.$$

- 5. Average and Expectations
 - (a) In ordinary language, an Average is a single number taken as representative of a list of numbers.
 - i. Mode: The outcome appears the most often in the sample space

$$P_X(x_{mod}) > P_X(x)$$
.

ii. Median: The outcome which separates the higher half from the lower half of a sample space

$$P_X[X \le x_{med}] \ge 1/2,$$
 $P_X[X \ge x_{med}] \ge 1/2.$

iii. (Arithmetic) mean: The sum of all the outcomes divided by the number of outcomes

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

- (b) Expectation: Weighted (Arithmetic) mean
 - i. Definition:

$$\mu_x = \mathbb{E}[X] = \sum_{x \in S_X} x P_X(x). \tag{First Moment of } X)$$

$$\mathbb{E}\big[X^2\big] = \sum_{x \in S_X} x^2 P_X(x). \tag{Second Moment of } X)$$

- ii. Important Expectations
 - A. Bernoulli(p):

$$\mathbb{E}[X] = 0 \cdot P_X(0) + 1 \cdot P_X(1) = 0(1-p) + 1(p) = p.$$

B. Binomial(n, p):

$$\mathbb{E}[X] = np.$$

C. Poisson(α):

$$\mathbb{E}[X] = \alpha.$$

D. Geometric(p):

$$\mathbb{E}[X] = 1/p.$$

E. Pascal(k, p):

$$\mathbb{E}[X] = k/p.$$

F. Discrete Uniform(k, l):

$$\mathbb{E}[X] = (k+l)/2.$$

- (c) From an engineering perspective, **Mean (including Expectations, etc.)** is numerically easier to calculate, either using human brain or computers, than Mode and Median, when the sample space is humongous.
- (d) In most cases, average, mean and expectation refer to the same concept.
- 6. Derived Random Variable: Y = g(X)

(a)
$$P_Y(y) = P[Y = y] = P[Y = g(x)] = P[g^{-1}(Y) = g^{-1}(g(x))] = P[X = x] = P_X(x)$$

(b)
$$\mathbb{E}[Y] = \sum y P_Y(y) = \sum g(x) P_X(x)$$

(c)
$$\mathbb{E}[X - \mu_x] = \sum_{x \in S_X} (x - \mu_x) P_X(x) = \sum_{x \in S_X} x P_X(x) - \mu_x \sum_{x \in S_X} P_X(x) = \mathbb{E}[X] - \mu_x \cdot 1 = \mu_x - \mu_x = 0$$

(d)
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b \Rightarrow \mathbb{E}[b] = \mathbb{E}[0 \cdot X + b] = b$$

- 7. Variance(σ_x^2) and Standard Deviation(σ_x)
 - (a)

$$\begin{split} \sigma_{x}^{2} &= \mathrm{Var}(X) \\ &= \mathbb{E} \big[(X - \mu_{x})^{2} \big] \\ &= \mathbb{E} \big[X^{2} - 2\mu_{x}X + \mu_{x}^{2} \big] \\ &= \mathbb{E} \big[X^{2} \big] - 2\mu_{x}\mathbb{E}[X] + \mathbb{E} \big[\mu_{x}^{2} \big] \\ &= \mathbb{E} \big[X^{2} \big] - 2\mu_{x}^{2} + \mu_{x}^{2} \\ &= \mathbb{E} \big[X^{2} \big] - \mu_{x}^{2} \end{split}$$

- (b) $Var(X) \ge 0$
- (c) $Var(aX + b) = a^2 Var(X)$
- (d) Important Variance:
 - i. Bernoulli(p):

$$Var(X) = p(1 - p).$$

ii. Binomial(n,p):

$$Var(X) = np(1-p).$$

iii. Poisson(α):

$$Var(X) = \alpha$$
.

iv. Geometric(p):

$$Var(X) = (1 - p)/p^2$$
.

v. Pascal(k,p):

$$Var(X) = k(1-p)/p^2.$$

vi. Discrete Uniform(k,l):

$$Var(X) = (l - k)(l - k + 2)/12.$$

Continuous Random Variables

4.1 Continuous sample space

Axiom. A random variable X is continuous if the range S_X consists of one or more intervals. For each $x \in S_X$, $\mathbb{P}(X = x) = 0$.

4.2 The Cumulative Distribution Function

Definition (Cumulative Distribution Function (CDF)). The CDF of random variable X is

$$F_X(x) = \mathbb{P}(X \le x).$$

Theorem 4.2.1. For any random variable X,

- 1. $F_X(-\infty) = 0$
- 2. $F_X(\infty) = 1$
- 3. $\mathbb{P}(x_1 < X \le x_2) = F_X(x_2) F_X(x_1)$

4.3 Probability Density Function

Start with a continuous random variable X with CDF $F_X(x)$. The probability of "X with volumn \triangle " is defined as:

$$\mathbb{P}(x < X \le x + \triangle) = F_X(x + \triangle) - F_X(x)$$
$$= \frac{F_X(x + \triangle) - F_X(x)}{(x + \triangle) - x} \cdot \triangle.$$

Definition (Probability Density Function (PDF)).

$$f_X(x) = \lim_{\Delta \to 0} \frac{F_X(x + \Delta) - F_X(x)}{\Delta}$$
$$= \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}.$$

Theorem 4.3.1. For a continuous random variable X with PDF $f_X(x)$,

- 1. $f_X(x) \ge 0$ for all x
- 2. $F_X(x) = \int_{-\infty}^x f_X(u) du$
- 3. $\int_{-\infty}^{\infty} f_X(x) \, \mathrm{d}x = 1$

Theorem 4.3.2.

$$\mathbb{P}(x_1 < X \le x_2) = \int_{x_1}^{x_2} f_X(x) \, \mathrm{d}x.$$

4.4 Expected Value

Definition (Expected value).

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x.$$

Theorem 4.4.1 (Derived Random Variable).

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x.$$

Theorem 4.4.2. For any random variable X,

- 1. $\mathbb{E}[X \mu_x] = 0$,
- 2. $\mathbb{E}[aX + b] = a\mathbb{E}[X] + b,$
- 3. $Var[X] = \mathbb{E}[X^2] \mu_x^2$,
- 4. $\operatorname{Var}[aX + b] = a^2 \operatorname{Var}[X]$

4.5 Families of Continuous Random Variables

1. Continuous Uniform Unif(k, l): A continuous counterpart of Discrete Uniform

$$f_X(x) = \begin{cases} \frac{1}{l-k} & k \le x \le l\\ 0 & otherwise. \end{cases}$$

$$F_X(x) = \frac{x-k}{l-k}. \qquad x \in (k,l)$$

$$\mathbb{E}[X] = (l+k)/2.$$

$$\operatorname{Var}[X] = (l-k)^2/12.$$

2. Exponential $\text{Exp}(\lambda)$: A continuous counterpart of $\text{Geom}(1 - e^{-\lambda})$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise. \end{cases}$$

$$F_X(x) = 1 - e^{-\lambda x}.$$

$$\mathbb{E}[X] = 1/\lambda.$$

$$\text{Var}[X] = 1/\lambda^2.$$

3. Erlang Erlang (n, λ) : A continuous counterpart of Pascal $(n, 1 - e^{-\lambda})$

$$f_X(x) = \begin{cases} \frac{\lambda(\lambda x)^{n-1}e^{-\lambda x}}{(n-1)!} & x \ge 0\\ 0 & otherwise. \end{cases}$$

$$F_X(x) = 1 - \sum_{k=0}^{n-1} \frac{(\lambda x)^k e^{-\lambda x}}{k!} = \mathbb{P}_{\mathbf{poisson}}(k \ge n).$$

$$\mathbb{E}[X] = n/\lambda.$$

$$\operatorname{Var}[X] = n/\lambda^2.$$

4.6 Gaussian Random Variables

Theorem 4.6.1 (Gaussian Integral).

$$\int_{-\infty}^{\infty} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Definition (Gaussian Random Variable). X is a Gaussian (μ, σ) random variable if the PDF of X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

X is also called Normal(μ, σ) random variable. We will use N(μ, σ) in the following content.

Theorem 4.6.2 (The Expectation and Variance of $X \sim N(\mu, \sigma)$).

$$\mathbb{E}[X] = \mu, \quad \operatorname{Var}(X) = \sigma^2.$$

Theorem 4.6.3. If X is $N(\mu, \sigma)$, Y = aX + b is $N(a\mu + b, a\sigma)$.

Theorem 4.6.4 (Standard Normal Random Variable). The $N(\mu, \sigma)$ with $\mu = 0, \sigma = 1$ is called standard normal random variable $Z \sim N(0, 1)$. The PDF is,

$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}).$$

And the CDF is

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) \, \mathrm{d}u.$$

Theorem 4.6.5. If X is $N(\mu, \sigma)$, the CDF of X is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

The probability that X is in the interval (a, b] is

$$\mathbb{P}(a < X \le b) = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right).$$

Theorem 4.6.6. $\Phi(-z) = 1 - \Phi(z)$.

4.7 Delta Function, Mixed(Being Discrete and Continuous at the same time) Random Variable

Definition (Unit Impulse (Delta) Function). Let

$$d_{\epsilon}(x) = \begin{cases} 1/\epsilon & -\epsilon/2 \le x \le \epsilon/2\\ 0 & otherwise. \end{cases}$$

The unit impulse function is

$$\delta(x) = \lim_{\epsilon \to 0} d_{\epsilon}(x).$$

Since

$$\int_{-\infty}^{\infty} \delta(x) \, \mathrm{d}x = 1.$$

The $\delta(x)$ is indeed a PDF given it is also non-negative.

Theorem 4.7.1. For any continuous function g(x),

$$\int_{-\infty}^{\infty} g(x)\delta(x-x_0) \, \mathrm{d}x = g(x_0).$$

Definition (Unit Step Function). The unit step function is

$$u(x) = \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$

Theorem 4.7.2 (CDF of $\delta(x)$ and connection to the unit step function).

$$\int_{-\infty}^{x} \delta(v) \, \mathrm{d}v = u(x).$$

And thus

$$\delta(x) = \frac{\mathrm{d}u(x)}{\mathrm{d}x}.$$

Corollary 4.7.2.1. The theorem 4.7.2 allows us to define a generalized PDF that applies to discrete random variables as well as to continuous random variables. Consider the CDF of a discrete random variable, X. It is constant(let's say 0 for now) everywhere except at point $x_i \in S_X$, where it has jumps of height $P_X(x_i)$. Using the **unit step function**, the CDF of X is

$$F_X(x) = \sum_{x_i \in S_X} P_X(x_i) u(x - x_i).$$

And the PDF can be defined with $\delta(x)$ as

$$f_X(x) = \sum_{x_i \in S_X} P_X(x_i) \delta(x - x_i).$$

Then the Expectation will be

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \sum_{x_i \in S_X} P_X(x_i) \delta(x - x_i) \, dx$$

$$\mathbb{E}[X] = \sum_{x_i \in S_X} \int_{-\infty}^{\infty} x P_X(x_i) \delta(x - x_i) \, dx$$

$$= \sum_{x_i \in S_X} x_i P_X(x_i)$$

Theorem 4.7.3. For a random variable X (not specified whether it is discrete or continuous), we have

$$\begin{split} q &= \mathbb{P}(X = x_0) & (\textit{General expression}) \\ &= P_X(x_0) & (\textit{PMF}) \\ &= F_X(x_0^+) - F_X(x_0^-) & (\textit{CDF}) \\ &= f_X(x_0) = q\delta(0). & (\textit{PDF \& delta function}) \end{split}$$

Theorem 4.7.4. X is a **mixed** random variable if and only if $f_X(x)$ contains both impulses and nonzero, finite values.