Chapitre 9 : Suites arithmétiques et géométriques

1 Suites arithmétiques

1.1 Définition

Définition 1 (Suite arithmétique)

On dit que la suite (u_n) est **arithmétique** s'il existe un réel r tel que, pour tout entier $n \in \mathbb{N}$

$$u_{n+1} = u_n + r.$$

Le nombre r est appelé la **raison** de la suite.

Remarque

- Pour passer d'un terme à l'autre, on ajoute la raison r, on a donc $\forall n \in \mathbb{N}, r = u_{n+1} u_n$.
- La raison r ne dépend pas de n.

Application 1

Pour chacune des suites suivantes, déterminer si elles sont arithmétiques ou non. Si oui, déterminer la raison et le premier terme.

- 1. La suite (a_n) définie sur \mathbb{N} par $a_0=1$ et $a_{n+1}=a_n-8$.
- 2. La suite (b_n) définie sur \mathbb{N} par $b_n = n^2 + 2n + 4$.
- 3. La suite (c_n) définie sur \mathbb{N} par $c_n = 3n + 1$.

1.2 Expression

Propriété 1

Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 . Pour tout entier $n \in \mathbb{N}$, on a $u_n = u_0 + n \times r$.

Plus généralement, on a

$$\forall p, n \in \mathbb{N}, u_n = u_p + (n - p) \times r.$$

Application 2

Soit (u_n) une suite arithmétique de raison 0,5 et de premier terme $u_0 = 2$.

- 1. Exprimer u_{n+1} en fonction de u_n .
- 2. Calculer u_1 et u_2 .
- 3. Déterminer l'expression de u_n en fonction de n, pour tout entier naturel n.
- 4. En déduire la valeur de u_{50} .
- 5. Déterminer la plus petite valeur de n telle que $u_n \ge 8$.

1.3 Représentation graphique

Propriété 2

Soit (u_n) une suite arithmétique de raison r et de premier terme u_0 . Les points de sa représentation graphique se situent sur la droite d'équation $y = r \times x + u_0$. On parle d'évolution linéaire.

Exemple 3

Soit u la suite arithmétique de premier terme u(0)=2 et de raison r=3. On a donc

$$u(n) = 2 + 3n,$$

et les termes de la suite sont sur la droite d'équation y = 3x + 2.

1.4 Sens de variation

Propriété 3

Soit (u_n) une suite arithmétique de raison r.

- Si r > 0, alors la suite est strictement **croissante**.
- Si r < 0, alors la suite est strictement **décroissante**.
- Si r = 0, alors la suite est **constante**.

Application 4

Soit u la suite définie par $u_0 = -1$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 5$. Soit également w la suite définie, pour tout $n \in \mathbb{N}$, par $w_n = 8 - 7n$. Déterminer la nature de chaque suite, puis en déduire son sens de variation.

1.5 Suite auxiliaire et suite arithmétique

Application 5

Soit la suite numérique (u_n) définie sur \mathbb{N} par $u_0 = 1$ et, pour tout entier naturel n, par $u_{n+1} = \frac{2u_n}{2+3u_n}$. On désigne par (w_n) la suite définie sur \mathbb{N} par $v_n = \frac{2}{u_n}$.

- 1. Démontrer que la suite w est une suite arithmétique dont on précisera la raison.
- 2. En déduire l'expression de w, puis celle de (u_n) en fonction de n.

2 Suites géométriques

2.1 Définition

Définition 2 (Suites géométriques)

On dit qu'une suite (u_n) est **géométrique** s'il existe un réel $q \in \mathbb{R}$ tel que, pour tout entier naturel $n \in \mathbb{N}$

$$u_{n+1} = q \times u_n.$$

Le nombre q est appelé la **raison** de la suite.

Remarque

- Pour passer d'un terme à l'autre, on multiplie par la raison q, on a donc $\forall n \in \mathbb{N}, q = \frac{u_{n+1}}{u_n}$.
- La raison q ne dépend pas de n.

Application 6

Pour chacune des suites suivantes, dire si elles sont géométriques ou non. Si oui, déterminer la raison et le premier terme.

- 1. La suite (a_n) définie sur \mathbb{N} par $a_0 = 12$ et $a_{n+1} = \frac{1}{2}a_n$.
- 2. La suite (b_n) définie sur \mathbb{N} par $b_n = \frac{7}{2^n}$.
- 3. La suite (c_n) définie sur \mathbb{N} par $c_n = \frac{3n+2}{n+1}$.