Sketching functions using calculus tools

Math 102 Section 102 Mingfeng Qiu

Oct. 3, 2018

Exercise

Q1. Inflection points are extrema of the first derivative.

A. True

B. False

Each of the following functions have a critical point at x = 0. Match the derivatives with their graphs.

- (a) f'(x) negative when x < 0 f'(x) negative when x > 0
- (c) f'(x) negative when x < 0 f'(x) positive when x > 0

- (b) f'(x) positive when x < 0 f'(x) positive when x > 0
- (d) f'(x) positive when x < 0 f'(x) negative when x > 0

Example 1: solution

Each of the following functions have a critical point at x = 0. Match the derivatives with their graphs.

- (a) f'(x) negative when x < 0 f'(x) negative when x > 0
- (c) f'(x) negative when x < 0 f'(x) positive when x > 0

- (b) f'(x) positive when x < 0 f'(x) positive when x > 0
- (d) f'(x) positive when x < 0 f'(x) negative when x > 0

Match the second derivatives with their graphs.

- (a) f''(x) negative
- (c) f''(x) negative when x < 0 f''(x) positive when x > 0

- (b) f''(x) positive
- (d) f''(x) positive when x < 0 f''(x) negative when x > 0

Example 2: solution

Match the second derivatives with their graphs.

- (a) f''(x) negative
- (c) f''(x) negative when x < 0 f''(x) positive when x > 0

- (b) f''(x) positive
- (d) f''(x) positive when x < 0 f''(x) negative when x > 0

Suppose x=a is a critical point of the function f(x). Match the following statements.

- a. f'(x) changes from to + at a
- b. f'(x) changes from + to at a
- c. f''(a) = 0
- d. f''(x) changes from to + at a
- e. f''(x) changes from + to at a
- f. f''(a) > 0 and f'(a) = 0
- g. f''(a) < 0 and f'(a) = 0

- i. inflection point
- ii. local max
- iii. local min
- iv. not a local extremum
 - v. could be local max, local min or neither

Solution:

- a. iii
- b. iii
- C. V
- d. i
- e. i
- f. iii
- g. ii

Sketch the function

$$f(x) = \frac{1}{4}x^4 - \frac{1}{4}x^3 - 3x^2$$

- Step 0: asymptotics
- Step 1: identify zeros
- ► Step 2: first derivative: identify CPs
- Step 3: second derivative: identify potential IPs
- ► Step 4: make a table: classify all the special points and characterize the shape of the function
- Step 5: sketch

Sketch the function

$$f(x) = \frac{(x-1)^2}{x^3}$$

- Step 0: asymptotics and discontinuities
- Step 1: identify zeros
- Step 2: first derivative: identify CPs
- Step 3: second derivative: identify potential IPs
- ▶ Step 4: make a table: classify all the special points and characterize the shape of the function
- Step 5: sketch

Answers

Q1. True

Related Exam Problems

1. Sketch the graph of the following function using calculus

$$Q(x) = \frac{x^2}{4} + \frac{2}{x}.$$