Neural Tree Expansion for Prioritized Multi-Agent Path Deconfliction

Khushal Brahmbhatt Andrew Festa Kavinda Senewiratne

Kavi - outline of slides

Problem:

picture of wildland fire

Consequences of wildfires - lives lost, assets destroyed, getting worse every year (global warming) why monitoring fronts is important (high risk decision making - minimal error, latest info needed) Current methods and why they are insufficient (satellite - low temporal res, terrestrial - no communication) Related Work (method and issues with them)

Heuristic based methods - prioritization heuristics (path known before hand, priority assigned on capability of robot and not the task)

Conflict based search - fail to consider priority, centralized Mixed integer solutions

Solution NTE - imitation learning

Pictorial algo

Explain each component

Briefly touch on what we are changing in NTE and why - path confliction

Contributions Reward function

Try get it down to 3:30

Background - Wildland Fires

- Countless civilian and firefighter lives lost.
- \$10Bn in assets damaged in the US.
- Destruction of natural habitats.

Problem - Monitoring Firefronts with Multiple Robots

- Fire Fronts help predict spread of fire.
- Decision making under extreme conditions.
- Paths could conflict.

Path Confliction

Our Focus

- 1. Decentralization
- 2. Focus on priority

Related Work (Multi-Agent Path Deconfliction)

- Heuristic based methods
 - Path known beforehand
 - Priority assigned on capability of robot and not the task
- Conflict based search
 - Fail to consider priority
 - Centralized Mixed integer solutions

Neural Tree Expansion for Multi-Robot Planning in Non-Cooperative Environment

Benjamin Riviere, Wolfgang Hoenig, Matthew Anderson, and Soon-Jo Chung

(Imitation Learning)

Our Contribution - Reward Function

Approach

- PUCT search
- Agents trained with local knowledge (sensing radius)
- Polar representation for surroundings and movement
- Explicit agent prioritization in reward function

Polynomial Upper Confidence Trees (PUCT)

- Used in AlphaZero
- Variant of MCTS
 - Selection
 - Expansion
 - Simulation
 - Backpropagation
- Think MiniMax

State Representation

$$s_t = \langle x_{ri}, y_{ri}, p_{ri}, x_{gi}, y_{gi}, [d_1 \dots d_8], [p_1 \dots p_8] \rangle$$

- x_{ri} x-coordinate of robot i
- y_{ri} y-coordinate of robot i
- p_{ri} priority of robot i
- y_{qi} x-coordinate of the goal of robot i
- y_{qi} y-coordinate of the goal of robot *i*
- [d₁...d₈] distance to the closest agent in each octant [o₁...o₈]
- [p₁...p₈] priority of the closest agent in each octant [o₁...o₈]

State Examples

- X_{ri}
- y_{ri} 0
- p_{ri} ´
- x_{gi} 6
- y_{gi} 1
- [d₁...d₈] [2.8, 4, 1.3, 4, 1, 0.9, 1.1, 1.2]
- [p₁...p₈] [1, 0, 0.4, 0, 0.2, 0.6, 0.5, 0.5]

State Examples

- X_{ri}
- y_{ri} 0
- p_{ri} 1
- x_{gi} 8
- y_{gi} 1
- [d₁...d₈] [0.3, 0.7, 1.3, 4, 1, 0.9, 1.1, 1.2]
- [p₁...p₈] [2, 2, 0.4, 0, 0.2, 0.6, 0.5, 0.5]

State Examples

- Information in each octant considers closest agent in that octant
- Regions with no agents?
- Regions with an obstacle?

Reward Function

$$R_{x} = \frac{1}{d_{g}} + \sum_{i=1}^{8} (P_{x} - P_{i}) \left(1 - \frac{d_{xi}}{r_{x}}\right)$$

- R_x reward for agent x
- d_a distance between agent x and its goal
- P_x priority for agent x
- P_i closest agent in octant i
- d_{xi} distance between agent \$x\$ and the closest agent in octant i
- r_x sensing range of agent x

But that's just math

- Incentivize moving towards goal
- Yield right of way when approaching another agent with a higher priority
- Continue with current trajectory if approaching agent with lower priority
- Avoid obstacles

Reward Examples

- a_0 1
- a₁ 1
- a₂ 1
- a₃ 1
- a₄ 1
- a₅ ′
- a₆ 1
- a₇ 1
- a₈

Reward Examples

- a₀ 1
- a₁ 1
- a₂ 1
- a₃ 1
- a₄ 1
- a₅ 1
- a₆ 1
- \bullet a₇ 1
- a₈

Reward Examples

- Move towards goal
- Move in direction with no agents
- Move away from agents with high priority
- Avoid obstacles!

Experiments

- Training iterations: 10/50
 - Expert demos epochs: 100
 - Expert demos iterations: 100
 - Search depth : 25

Learning rate: 0.001

Experiments

Results - Trajectories

Results - Value Learning curves

Current Limitations and Next Steps

- Priority weightage
- All agents have the same speed
- All agents have the same sensing range

More! More! More!

- Scale up number of agents
- Larger map with obstacles
- System throughput?
- Common goals?
- Variable speeds/Continuous action space?

Questions?