Algorithms & Data Structures, Class № 3

Time complexity and Big-Oh notation

Problem 1

Work out the computational complexity of the following piece of code:

Problem 2

Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

Expression	Dominant term(s)	O(n)
$5 + 0.001n^3 + 0.025n$		
$\boxed{500n + 100n^{1.5} + 50n \log_{10} n}$		
$0.3n + 5n^{1.5} + 2.5n^{1.75}$		
$n^2 \log_2 n + n(\log_2 n)^2$		
$nlog_3n + nlog_2n$		
$3log_8n + log_2log_2log_2n$		
$100n + 0.01n^2$		
$0.01n + 100n^2$		
$2n + n^{0.5} + 0.5n^{1.25}$		
$0.01nlog_2n + n(log_2n)^2$		
$100nlog_3n + n^3 + 100n$		
$0.003log_4n + log_2log_2n$		

Class № 3 Page 1

Problem 3

The statements below show some features of "Big-Oh" notation for the functions $f\equiv f(n)$ and $g\equiv g(n)$. Determine whether each statement is TRUE or FALSE and correct the formula in the latter case.

Statement	TRUE or FALSE?	If it is FALSE then write the correct formula
O(f+g) = O(f) + O(g)		
$O(f \cdot g) = O(f) \cdot O(g)$		
$\boxed{ \text{ Jeżeli } g = O(f) \text{ i } h = O(f) \text{ to } g = O(h) }$		
$5n + 8n^2 + 100n^3 = O(n^4)$		
$5n + 8n^2 + 100n^3 = O(n^2 \log n)$		

Problem 4

Prove that $T(n)=a_0+a_1n+a_2n^2+a_3n^3$ is $O(n^3)$ using the formal definition of the Big-Oh notation.

Hint: Find a constant c and threshold n_0 such that $cn^3 \ge T(n)$ for $n \ge n0$.

Class № 3 Page 2