Specyfikacja spi_exe_unit_3

Imię: Szymon

Nazwisko: Klimaszewski

Numer albumu: 310717

Opis

Sygnały wejściowe

i_rst

resetujący modułu spi_exe_unit.

i_sclk

zegar modułu spi_exe_unit, pochodzący z mastera.

i_mosi

dane od mastera.

i_cs

steruje komunikacją z slave z masterem.

Sygnały wyjściowe

o_miso

dane wyjściowe, pochodzące ze slave.

Sygnały pomocnicze

- **s_transfer** pozwalający na pracę shifter
- s_bit sygnał przechowujący pojedynczy bit, który jest podawany na wyjście slave
- **s_bit_next** sygnał przechowujący kolejną wartość s_bit
- **reg_argA** rejestr sygnału i_argA modułu exe_unit , przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.
- **reg_argB** rejestr sygnału i_argB modułu exe_unit, przechowujący wartość zmiennej, na której moduł exe_unit będzie wykonywał operacje.
- **reg_oper** rejestr sygnału i_oper modułu exe_unit, przechowujący numer operacji, którą ten moduł ma wykonać
- **reg_results** rejestr sygnału o_results modułu exe_unit, przechowujący wynik operacji wykonanej przez ten moduł
- **reg_flags** rejestr flag modułu exe_unit, w którym przechowywane są wartości poszczególnych flag zwracanych przez ten moduł
- **s_argA_next** sygnał przechowujący kolejną wartość sygnału s_argA
- **s_argB_next** sygnał przechowujący kolejną wartość sygnału s_argB
- **s_oper_next** sygnał przechowujący kolejną wartość sygnału s_oper
- **s_results_next** sygnał przechowujący kolejną wartość sygnału s_results
- **s_flags_next** sygnał przechowujący kolejną wartość sygnału s_flags
- s_argA sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg argA
- s_argB sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg argB
- **s_oper** sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg oper
- s_results przechowujący wartość, która ma zostać zapisana do rejestru reg_results
- **s_flags** sygnał przechowująca wartość, która ma zostać zapisana do rejestru reg_flags
- **s_wyniki** wyjście równoległe shiftera
- **s_watchdog_we** zezwolenie na wpis
- **s_wrt** sygnał na wpisanie równolegle/szeregowe shift'era
- **s_data** do zapisywania na niego po kolei rejestrów wyników i argumentów
- **s_state** sygnał przechowujący wartość mówiącą o aktualnym stanie slave
- **s_state_next** sygnał przechowujący wartość kolejnego stanu slave.

Parametry

NUM

pomocniczy, liczba bitów na których pracuje moduł watchdog.

BITS

liczba bitów, na których pracuje slave.

Stany

1

slave jest gotowy do otrzymania danych z mastera. W module watchdog wpisywana jest odpowiednia ilość cykli pobudzenia.

2

dane z zmiennej s_wyniki są przypisywane do zmiennych pomocniczych i następnie do rejestrów.

3

wartości sygnałów wyjściowych exe_unit przypisywane są do zmiennych pomocniczych, aby mogły potem trafić do rejestrów.

4

wartości z rejestrów są zapisywane równolegle na głównym rejestrze slave.

Instancjonowane moduły

shifter

odpowiedzialny za przesuwanie bitów otrzymanych z master'a. Slave otrzymuje kolejno pojedyncze bity od master'a i dzięki temu modułowi są one pojedynczo wsuwane i przypisywane do sygnału pomocniczego s_wyniki. Odgrywa rolę rejestru naszego slave'a

watchdog

pobudza slave do pracy na 20-bitowym ciągu. Watchdog ma 20 cykli, dzięki którym możliwe jest zapisanie danych do odpowiednich rejestrów i wykonanie na nich odpowiednich operacji.

exe_unit

wykonuje operacje na danych otrzymanych z master'a. Jego sygnały wejściowe to i_argA, i_argB, i_oper natomiast sygnały wyjściowe to o_result, o_flags. Szerszy opis modułu znajduje się w dokumentacji projektu 1.

Algorytm pracy spi_exe_unit_3

w pierwszym stanie pracy zapisywana jest odpowiednia ilość cykli do modułu watchdog sterującym tą jednostką. Dodatkowo ustawiane są odpowiednie wartości sygnałów zezwalające do transfer danych oraz zmianę stanu do stanu numer 2.

w kolejnym stanie pracy slave'a blokowany jest zapis nowej ilości cykli do modułu watchdog.

Dodatkowo do zmiennych pomocniczych s_argA_next, s_argB_next, s_oper_next, s_results_next, s_flags_next, przypisywane są dane otrzymane z master'a. Stan ten jest powtarzany do momenty, gdy watchdog zgłosi koniec pracy poprzez sygnał s_inter.

w kolejnym stanie pracy slave'a, wyniki z exe_unit przypisywane są do odpowiednich zmiennych pomocniczych s_flags_next, s_results.

ostatnim stanem pracy slave'a jest stan, w którym otrzymane wartości wyników oraz danych wejściowych są przypisywane do wyjścia równoległego i cała informacja jest zwracana do jednostki master.