Aplicaciones medibles

Sésar

1. Integral de funciones simples

Definition 1. Sea $\varphi = \sum c_i \chi_{E_i} : X \to [0, \infty)$ una función simple. Definimos la **integral** de φ como

$$\int \varphi \, d\mu = \sum_{i=1}^{n} c_i \mu(E_i).$$

Remark 1. Si $c_i = 0$ y $\mu(E_i) = \infty$, entonces $0 \cdot \infty = 0$. Por otro lado, se puede comprobar que el valo de la integral es independiente de la representación de la función simple.

Example 1. Tomando en \mathbb{R} la medida de Lebesgue, se obtiene que la función de Dirichlet $\chi_{\mathbb{Q}}$ es integrable en sentido de Lebesgue y

$$\int \chi_{\mathbb{Q}} d\mu = 1 \cdot \mu(\mathbb{Q}) = 0.$$

Proposition 1 (Propiedades elementales). Sean $\varphi, \psi : X \to [0, \infty)$ funciones elementales positivas y $k \in [0, \infty)$.

1.
$$\int k\varphi \, d\mu = k \int \varphi \, d\mu.$$

2.
$$\int \varphi + \psi \, d\mu = \int \varphi \, d\mu + \int \psi \, d\mu.$$

3. Si
$$\varphi \leq \psi$$
, entonces $\int \varphi \, d\mu \leq \int \psi \, d\mu$.

2. Integral de funciones positivas

Definition 2. Sea $f: X \to [0, +\infty]$ medible. Definimos la **integral** de f como

$$\int f \, d\mu := \sup \left\{ \int \varphi \, d\mu \mid 0 \le \varphi \le f, \ \varphi \text{ simple} \right\}.$$

- 1. Decimos que f es **integrable** si $\int f d\mu < \infty$.
- 2. Definimos la **integral** de f en $A \in \mathcal{A}$ como $\int_A f d\mu := \int f \chi_A d\mu$.

Theorem 1 (de la Convergencia Monótona de Lebesgue). Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones medibles tales que $0 \le f_1 \le f_2 \le \dots$ y denotemos por $f = \lim_{n\to\infty} f_n$. Entonces

$$\lim_{n\to\infty} \int f_n \, d\mu = \int f \, d\mu.$$

Demostraci'on. Por un lado, por ser una sucesi\'on creciente de funciones, el límite f componente a componente existe. Además, como la integral es monótona creciente, se tiene que $\int f \, d\mu$ es una cota superior de la sucesi\'on $\left\{\int f_n \, d\mu\right\}_{n\in\mathbb{N}}$. Por lo tanto,

$$\lim_{n \to \infty} \int f_n \, d\mu \le \int f \, d\mu.$$

Por otro lado, \Box

Sea $f: X \to \overline{\mathbb{R}}$ medible. Entonces podemos descomponer esta función en suma de dos positivas. Denotemos por $f^+ := \max\{f,0\}$ y $f^- : \max\{-f,0\}$. Entonces $f^+, f^- \ge 0$ y $f = f^+ - f^-$. Por otro lado, $|f| = f^+ + f^-$.

Definition 3. Sea $f: X \to \overline{\mathbb{R}}$ medible y supongamos que al menos f^+ o f^- es integrable. Definimos la **integral** de f como

$$\int f d\mu := \int f^+ d\mu : - \int f^- d\mu :$$

- 1. Decimos que f es **integrable** si f^+ y f^- son integrables.
- 2. Definimos la **integral** de f en $A \in \mathcal{A}$ como $\int_A f d\mu := \int f \chi_A d\mu$.

Remark 2. Que f sea integrable es equivalente a decir que $\int f d\mu < \infty$ y es a su vez equivalente a $\int |f| d\mu < \infty$. Las funciones integrables evita el problema de la indefinición de la expresión $\infty - \infty$.

Proposition 2. La integral es un operador lineal y monótono tal que

$$\left| \int f \, d\mu \right| \le \int |f| \, d\mu.$$

Proposition 3. Toda función integrable es finita c.t.p.

Corollary 1. Supongamos que f es integrable. $\int f d\mu = 0 \Leftrightarrow f = 0$ c.t.p.

Proposition 4. Supongamos que f es interable. Para todo $\varepsilon > 0$, existe un $\delta > 0$ tal que si $\mu(A) < \delta$, entonces

$$0 \le \int_A |f| \, d\mu < \varepsilon$$

3. Teoremas de Convergencia

Proposition 5. Si f_n converge uniformemente a f y X tiene medida finita, entonces

$$\int f_n d\mu \to \int f d\mu.$$

Theorem 2 (Lema de Fatou). Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones medibles positivas. Entonces

$$\int \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int f_n \, d\mu.$$

Theorem 3 (de la Convergencia Dominada de Lebesgue). Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones medibles. Si $f_n \to f$ componente a componente y $|f_n| \le g$, donde g es integrable, entonces

$$\int f_n d\mu \to \int f d\mu.$$

Theorem 4 (Egórov). Sea X un espacio de medida finita y sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones medibles. Si $f_n \to f$ componente a componente c.t.p., entonces para todo ε , existe un $E \in \mathcal{A}$ tal que $\mu(X \setminus E) < \varepsilon$ y f_n converge uniformemente a f