Understanding Large Language Models

Carsten Eickhoff, Michael Franke and Polina Tsvilodub

Session 02: PyTorch, Optimization, ANNs, LMs & RNNs

Main learning goals

1. PyTorch

- simple optmization problems with stochastic gradient descent (SGD)
- basic usage of nn.Module and Dataset classes

2. Optimization (via Backpropagation)

- basic concepts: loss function, gradients, brackpropagation, SGD
- anatomy of update step & training loop (in PyTorch)

3. Artificial Neural Networks (specifically: Multi-Layer Perceptrons)

- definitions of ANNs & MLPs, mathematical notation in matrix-vector form
- concepts: weights & biases (slopes & intercepts), activation (function),
 hidden layers, score, prediction (sample, probability)

4. Language Models

· definition of (autoregressive) language models, loss functions, decoding

5. Recurrent Neural Networks

· definition & example (character-level RNN for surname generation)

PyTorch

Key features

- high-level framework for ML
 - especially for artificial neural networks
- efficient tensor algebra
 - ability to run on GPUs
- pre-defined building blocks for ANNs
 - standard layers, data handling etc.
- automatic differentiation
 - enables efficient optimization

Optimization

Models, parameters, predictions & loss

Optimization

for probabilistic models

- given:
 - data $D = \langle X, Y \rangle$
 - probabilistic model $M: \Theta, X \to \Delta(Y)$
 - loss function $L : \Theta, X, Y \to \mathbb{R}$
 - most commonly used is negative log likelihood:

$$L(\theta, x, y) = -\log P_{M(\theta, x)}(y)$$

find parameters that minimize loss for data:

$$\hat{\theta} = \arg \max_{\theta \in \Theta} = \sum_{x \in X, y \in Y} L(\theta, x, y)$$

Stochastic gradient descent

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

```
egin{aligned} \mathbf{for} \ t = 1 \ \mathbf{to} \ \dots \ \mathbf{do} \ & g_t \leftarrow 
abla_{	heta} f_t(	heta_{t-1}) \ & \mathbf{if} \ \lambda 
eq 0 \ & g_t \leftarrow g_t + \lambda 	heta_{t-1} \ & \mathbf{if} \ \mu 
eq 0 \end{aligned}
```

 $\mathbf{if}\ t > 1$ $\mathbf{b}_t \leftarrow \mu \mathbf{b}_{t-1} + (1- au)g_t$ \mathbf{else} $\mathbf{b}_t \leftarrow g_t$ $\mathbf{if}\ nesterov$ $g_t \leftarrow g_t + \mu \mathbf{b}_t$ \mathbf{else} $g_t \leftarrow \mathbf{b}_t$

$$heta_t \leftarrow heta_{t-1} - \gamma g_t$$

 $\mathbf{return}\, \mathbf{ heta_t}$

from this paper

Stochastic gradient descent

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay),
          \mu (momentum), \tau (dampening), nesterov, maximize
```

```
for t = 1 to ... do
       g_t \leftarrow 
abla_{	heta} f_t(	heta_{t-1})
       if \lambda \neq 0
             oldsymbol{g_t} \leftarrow oldsymbol{g_t} + \lambda 	heta_{t-1}
       if \mu \neq 0
             if t > 1
                     \mathbf{b}_t \leftarrow \mu \mathbf{b}_{t-1} + (1-	au)g_t
              else
                     \mathbf{b}_t \leftarrow g_t
              if nesterov
                    g_t \leftarrow g_t + \mu \mathbf{b}_t
              else
                     g_t \leftarrow \mathbf{b}_t
       if maximize
             	heta_t \leftarrow 	heta_{t-1} + \gamma g_t
             	heta_t \leftarrow 	heta_{t-1} - \gamma g_t
```


from this paper

Common optimization algorithms

STOCHIASTIC _____

Anatomy of a training step

CSP-Subheading

1. compute predictions

what do we predict in the current state?

2. compute the loss

how good is this prediction (for the training data)?

3. backpropagate the error

• in which direction would we need to change the relevant parameters to make the prediction better?

4. update the parameters

 change the parameters (to a certain degree, the so-called learning rate) in the direction that should make them better

5. zero the gradients

 reset the information about "which direction to tune" for the next training step

Artificial Neural Networks

Units neurons

input vector:

$$\mathbf{x} = [x_1, \dots, x_n]^{\mathsf{T}}$$

weight vector:

$$\mathbf{w} = [w_1, \dots, w_n]^{\mathsf{T}}$$

- bias:
 - b

score:

$$z = b + \sum_{j=1}^{n} w_j x_j = b + \mathbf{w} \cdot \mathbf{x}$$

- activation level:
 - a = f(z), where f is the activation function

Common activation functions

perceptron:

$$f(z) = \delta_{z>0}$$

sigmoid:

$$f(z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$$

hyperbolic tangent:

$$f(z) = \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

rectified linear unit:

$$f(z) = \text{ReLU}(z) = \max(z,0)$$

Matrix multiplication

recap

Matrix-vector multiplication

recap

think of matrix **A** with dimensions (n, m) as a linear mapping $f_{\mathbf{A}} : \mathbb{R}^n \to \mathbb{R}^m$ from vectors of length m to vectors for length n, so that with $\mathbf{x} = [x_1, \dots, x_m]$:

$$f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

Feed-forward neural network

one layer

input:

$$\mathbf{x} = [x_1, ..., x_{n_x}]^T$$

weight matrix:

$$\mathbf{W} \in \mathbb{R}^{n_k \times n_x}$$

bias vector:

$$\mathbf{b} = [b_1, ..., b_{n_k}]^T$$

activation vector hidden layer:

$$\mathbf{h} = f(\mathbf{W}\mathbf{x} + \mathbf{b})$$
, with $f \in \{\sigma, \tanh, \dots\}$

weight matrix:

$$\mathbf{U} \in \mathbb{R}^{n_y \times n_k}$$

prediction vector:

$$\mathbf{y} = g(\mathbf{U}\mathbf{h})$$
, with $g \in \{\sigma, \text{soft-max}, \dots\}$

Feed-forward neural network

multi-layer perceptron

anchoring in input:

$$\mathbf{a}^{[0]} = \mathbf{x} = [x_1, ..., x_{n_r}]^T$$

activation at layer n:

$$\mathbf{a}^{[n]} = f^{[n]} \left(\mathbf{W}^{[n]} \mathbf{a}^{[n-1]} + \mathbf{b}^{[n]} \right)$$

- with $f^{[n]} \in \{\sigma, \tanh, \dots\}$ if n is a hidden layer, or
- with $f^{[n]} \in \{\sigma, \text{soft-max}, \dots\}$ if n is the output layer

Language Models

Language model

high-level definition

- let \(\mathcal{V} \) be a (finite) vocabulary, a set of tokens
 - tokens can be characters, sub-words, phrases, ...
- let $w_{1:n} = \langle w_1, ..., w_n \rangle$ be a finite sequence of tokens
 - it is still common to use w (reminiscent of "words") for tokens
- let S be a the set of all (finite) sequences of tokens
- let X be a set of input conditions
 - e.g., images, text in a different language ...
- ▶ a **language model** *LM* is function that assigns to each input *X* a probability distribution over *S*, given parameters $\theta \in \Theta$:

$$LM_{\theta}: X \mapsto \Delta(S)$$

- if there is only one input in set *X*, the LM is just a probability distribution over all sequences of words
- LMs originally meant to capture the true occurrence frequency
- a neural language model is an LM realized as a neural network
- in the following we skip the dependence on X

Language model

left-to-right / autoregressive / causal model

a causal language model is defined as a function that maps an initial token sequence to a next-token distribution:

$$LM: w_{1:n} \mapsto \Delta(\mathcal{V})$$

- we write $P_{LM}(w_{n+1} \mid w_{1:n})$ for the next-token probability
- the surprisal of w_{n+1} after sequence $w_{1:n}$ is $-\log\left(P_{LM}(w_{n+1}\mid w_{1:n})\right)$
- the sequence probability follows from the chain rule:

$$P_{LM}(w_{1:n}) = \prod_{i=1}^{n} P_{LM}(w_i \mid w_{1:i-1})$$

- measures of **goodness of fit** for observed sequence $w_{1:n}$:
 - perplexity:

$$PP_{LM}(w_{1:n}) = P_{LM}(w_{1:n})^{-\frac{1}{n}}$$

average surprisal:

Avg-Surprisal__
$$(w_1) = -\frac{1}{2} \log P_{TM}(w_1)$$

 $\log PP_{M}(w_{1:n}) =$ $Avg-Surprisal_{M}(w_{1:n})$

Autoregressive generation

left-to-right / causal model

Predictions from different decoding schemes

based on next-token probability $P(w_{i+1} \mid w_{1:i})$

pure sampling

• next token is sampled from NTP distribution: $w_{i+1} \sim P(\cdot \mid w_{1:i})$

greedy decoding

• next token is the one with the highest NTP: $w_{i+1} = arg \max_{w'} P(w' \mid w_{1:i})$

softmax sampling

• next token is sampled from softmax of NTP distribution: $w_{i+1} \sim SM_{\alpha} \left(P(\cdot \mid w_{1:i}) \right)$

top-k sampling

 next token is sampled from NTP distribution after restricting to the k most likely words

top-p sampling

 next token is sampled from NTP distribution after restricting to the smallest set of the most likely tokens which together comprise at least NTP p

beam search

frequently use, if relevant we will cover it later

from OpenAI's Playground

Training RNNs

using teacher forcing & next-word surprisal

- teacher forcing
 - predict each next token given the preceding input (not the modelgenerated sequence)
- next-work surprisal
 - loss function is (average) nexttoken surprisal

Excursion: Different training regimes

teacher forcing

- LM is fed true word sequence
- training signal is next-word assigned to true word
- autoregressive training (aka free-running mode)
 - LM autoregressively generates a sequence
 - training signal is next-word probability assigned to true word
- curriculum learning (aka scheduled sampling)
 - combine teacher-forced and autoregressive training
 - · start with mostly teacher forcing, then increase amount of autoregressive training

professor forcing

- combines teacher forcing with adversarial training
- generative adversarial network GAN is trained to discriminate (autoregressive) predictions from actual data
- LM is trained to minimized this discriminability

decoding-based

· use prediction function (decoding scheme) to optimize based on actual output

Plain causal LMs in a nutshel

definition

 sequence probabilities given by product of next-word probabilities

training

minimize next-word surprisal

prediction

sample auto regressively, using next-word probabilities

evaluation

- perplexity or average surprisal
- consistent def-train-pred-eval scheme

Dirty reality

definition

- usually only implicit, often unclear
- task-dependent

training

- usually based on next-word surprisal
- other (mixed) training regimes exist

prediction

whole battery of decoding strategies

evaluation

- baseline: perplexity or average surprisal
- additional measure of text quality
- possibly inconsistent

Recurrent Neural Networks

Recurrent neural networks

RNN-based language model

one of many similar architectures

dimensions:

- n_V : # of tokens in vocabulary
- n_h : # units in hidden layer
- n_x : length of input **x** (token embedding)

what is what?

- $\mathbf{w}_t \in \mathbb{R}^{n_V}$: one-hot vector representing token \mathbf{w}_t
- $\mathbf{x}_t \in \mathbb{R}^{n_x}$: word embedding of token \mathbf{w}_t
- $\mathbf{h}_t \in \mathbb{R}^{n_h}$: hidden layer activation at time t (with $\mathbf{h}_0 = 0$)
- $\mathbf{y}_t \in \Delta(\mathcal{V})$: probability distribution over tokens
- $f \in \{\sigma, \tanh, \ldots\}$: activation function (as usual)
- $\mathbf{U} \in \mathbb{R}^{n_h \times n_h}$: mapping hidden-to-hidden
- $\mathbf{V} \in \mathbb{R}^{n_V \times n_h}$: mapping hidden-to-word
- $\mathbf{E} \in \mathbb{R}^{n_x \times n_V}$: mapping word-to-embedding
- $\mathbf{W} \in \mathbb{R}^{n_h \times n_x}$: mapping embedding-to-hidden

- definition (forward pass):
 - $\mathbf{x}_t = \mathbf{E}\mathbf{w}_t$
 - $\cdot \mathbf{h}_t = f \left[\mathbf{U} \mathbf{h}_t + \mathbf{W} \mathbf{x}_t \right]$
 - $\mathbf{y}_t = \operatorname{softmax}(\mathbf{V}\mathbf{h}_t)$

Custom RNN

```
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(n_categories + input_size + hidden_size,
                             hidden_size)
        self.i2o = nn.Linear(n_categories + input_size + hidden_size,
                             output_size)
        self.o2o = nn.Linear(hidden_size + output_size,
                             output_size)
        self.dropout = nn.Dropout(0.1)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, category, input, hidden):
        input_combined = torch.cat((category, input, hidden), 1)
        hidden = self.i2h(input_combined)
        output = self.i2o(input_combined)
        output_combined = torch.cat((hidden, output), 1)
        output = self.o2o(output_combined)
        output = self.dropout(output)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
```


Homework for next week

- solve exercises in worksheets from section 2
 - · just for yourself; no submission, no grading
- ask questions
 - moodle, tutorial, class

