

Identifying Genetic Variants that Influence Atopic Dermatitis

Lavinia Paternoster

Senior Lecturer in Genetic Epidemiology
MRC Integrative Epidemiology Unit, University of Bristol, UK

19th November 2018

Outline

- Atopic dermatitis as a complex genetic trait
- Statistical methods to identify associations
- How to conduct a Genome-Wide Association study (GWAS)
- What GWAS of AD have found
- Next steps

Complex Trait Genetic Associations

Monogenic

- Distinct model of inheritance
- Often rare
- Single gene high penetrance
- Limited environmental influences

Complex

- No distinct mode of inheritance
- Often common
- Multiple loci each with a small effect
- Important environmental factors

Complex Trait Genetic Associations

McCarthy, M. I. et al. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. *Nature Reviews Genetics* **9**, 367 (2009)

Atopic Dermatitis Heritability

 Risk of child developing eczema is higher if one or both parents have AD,OR=3.4 (Dold, 1992, AoDC)

Arch Dis Child. 1992 Aug; 67(8): 1018-1022.

PMCID: PMC1793604

Genetic risk for asthma, allergic rhinitis, and atopic dermatitis.

S Dold, M Wjst, E von Mutius, P Reitmeir, and E Stiepel

Twin studies suggest a heritability of >80% (Bataille, 2012, JEADV)

<u>J Eur Acad Dermatol Venereol.</u> 2012 Sep;26(9):1067-73. doi: 10.1111/j.1468-3083.2011.04444.x. Epub 2012 Jan 14.

The use of the twin model to investigate the genetics and epigenetics of skin diseases with genomic, transcriptomic and methylation data.

Bataille V1, Lens M, Spector TD.

Finding associated variants

Case/Control Study for a single SNP:

Statistical methods

- Logistic regression
 - Exposure = SNP coded as 0, 1, 2 (i.e. # of alt. alleles)
 - Outcome = Eczema (case/control) coded as 0,1 (binary)
 - Covariates = Age, Sex, Ancestry various coding

Disease =
$$\beta_0 + \frac{\beta_1}{SNP} + \beta_2 sex + \beta_3 age + \beta_4 ancestry PC1$$

- Extend to Genome-wide ---->>> Just repeat this simple statistical test for each SNP (>1 million times)
- Get 1 result per SNP tested

GWAS software — Plink (cog-genomics.org/plink/2.0)

Input:

ID	Ecz	sex	age	ancestryPC1	
001	0	0	6.3	0.987645	
002	0	1	7.5	0.874624	
003	1	0	3.2	0.967283	
004	1	1	0.8	0.123645	

ID	SNP1	SNP2	SNP3	SNP4	SNP
001	0	0	2	1.1	
002	2	1	2	1.9	
003	0	1	2	1.5	
004	1	1	2	0.1	

Output:

SNP	Effect Allele	Effect allele freq	OR	Lower CI	Upper CI	P-value
SNP1	А	0.54	1.00	0.90	1.10	0.998
SNP2	G	0.2	0.95	0.89	1.01	0.089
SNP3	Т	0.9	1.12	1.10	1.14	0.001

Study Design Issues

Genetic data – genotyping array and imputation

- Use genome-wide genotyping chip
- Every study <u>imputes</u> to same genetic reference

Confounders – only confounder is ancestry

- Calculate principal components of ancestry using genetic data (and software such as Eigenstrat or Plink)
- Adjust for these components in the analysis

Multiple testing

- Conducting >1 million tests p<0.05 is not sufficient evidence
- GWAS significance is p<5x10⁻⁸

Sample size

- To achieve required p-value, large sample sizes are needed
- Usual to conduct meta-analysis of several cohorts

Conducting a GWAS study

GWAS results summary

Manhattan plot

Results table

SNP	Effect Allele	Effect allele freq	OR	Lower CI	Upper CI	P-value
SNP1	А	0.54	1.00	0.90	1.10	0.998
SNP2	G	0.2	0.95	0.89	1.01	0.089
SNP3	Т	0.9	1.12	1.10	1.14	0.001

What have Atopic Dermatitis GWAS found?

EAGLE GWAS 2015: 21,399 cases, 95,464 controls all imputed to 1000 Genomes

What have Atopic Dermatitis GWAS found?

What have Atopic Dermatitis GWAS found?

Variant	Locus	Nearest gene ^a	EA/OA	European, fixed effects				All cohorts, MANTRA		Known atopy loci?	
				n (studies)	EAF	OR (95% CI)	P	n (studies)	log ₁₀ (BF)	Trait	Reference
Known loci											
rs61813875	1q21.3	CRCT1/ LCE3E (FLG) ^b	G/C	93,326 (18)	0.02	1.61 (1.48- 1.75)	5.6 × 10 ⁻²⁹	96,419 (20)	25.53	AD	3,4,5
rs10791824	11q13.1	OVOL1	G/A	102,761 (21)	0.57	1.12 (1.09- 1.15)	2.1 × 10 ⁻¹⁹	116,556 (25)	21.56	AD	9
rs12188917	5q31.1	RAD50/ IL13	C/T	102,761 (21)	0.21	1.14 (1.10- 1.17)	4.0 × 10 ⁻¹⁷	116,554 (25)	17.24	AD, A, IgE	9,18,58
rs6419573	2q12.1	IL18R1/ IL18RAP	T/C	102,760 (21)	0.26	1.11 (1.08- 1.14)	1.5 × 10 ⁻¹³	116,557 (25)	18.10	AD, A, AS, SRA	8,14,18,21
rs2212434	11q13.5	C11orf30 /LRRC32	T/C	102,761 (21)	0.45	1.09 (1.07- 1.12)	4.6 × 10 ⁻¹³	116,557 (25)	13.02	AD, AS, SRA, AR, A	11,14,15,21,5
rs4809219	20q13.33	RTEL1/TNFRSF6B	C/A	102,760 (21)	0.27	0.90 (0.87- 0.93)	7.0 × 10 ⁻¹³	116,555 (25)	11.98	AD	7,10
rs2918307	19p13.2	ADAMTS10/ACTL9	G/A	100,707 (20)	0.16	1.12 (1.08- 1.16)	4.6 × 10 ⁻¹²	114,504 (24)	12.98	AD	9
rs2041733	16p13.13	CLEC16A	C/T	103,066 (22)	0.55	0.92 (0.90- 0.94)	2.5 × 10 ⁻¹¹	116,862 (26)	10.11	AD, A+HF	7,53
rs12730935 ^c	1q21.3	IL6R	A/G	102,760 (21)	0.39	1.08 (1.05- 1.11)	6.1 × 10 ⁻¹¹	116,556 (25)	7.15	AD, A	12,15
4:123243592 ^d	4q27	KIAA1109 (IL2) ^b	R/I	102,761 (21)	0.37	1.08 (1.05- 1.10)	4.2 × 10 ⁻⁹	107,119 (24)	7.32	AD, AS, SRA	7,14,21
rs4713555	6p21.32	HLA-DRB1 /HLA- DQA1	T/G	91,217 (15)	0.27	0.91 (0.89- 0.94)	5.4 × 10 ⁻⁹	105,014 (19)	10.76	AD, AS, SRA, A	6,8,14,18,21
						/					

Some interesting observations

Some loci aren't associated in all ethnicities tested

- AD genetic loci overlap with autoimmune disease, such as inflammatory bowel disease
- GWAS loci are enriched for DNAse hypersensitivity in immune celltypes, especially T_H17

Next steps

GWAS identify loci not causal genes.....

In tomorrow's Bioinformatics session we'll discuss how to identify genes!

We can use the genetic data to cluster individuals.. using PCA

Principal components analysis (PCA) is a method for summarising high dimensional data

If you apply PCA to our genetic data it will take the 500,000 columns and turn them into far fewer columns

Those columns represent the main axes of variation that the SNPs share in common

PCs across Europe

agagttgagggaacctgagaatgagaatgagaacgagggaaattgagac tgcgacggtgattctccagac agcgacgatggtacttgatca taagttagtaattcccgagca tgcaatgagggaaattgttaa agagacggggaaattctgcc

g	а	g	g	t	a	a
g	C	t	a	t	t	C
a	t	g	g	t	t	а
g	C	g	g	C	а	a
g	C	t	g	t	t	C
g	C	g	g	C	а	a
g		g		t		
a	+	+	a	C	a	a

Reference haplotypes via sequencing studies eg. 1000 Genomes Project

Imputation of unobserved alleles via matching of shared haplotypes

Reference haplotypes via sequencing studies eg. 1000 Genomes Project

Imputation of unobserved alleles via matching of shared haplotypes