Sommaire

1	Primitive d'une fonction	1
2	Propriétés de l'intégrale	3
3	Intégrales et primitives	3
4	Calcul d'intégrale	4
	4.1 Valeur moyenne	7
	4.2 Étude de suite	7
	4.3 Intégration par parties	8
	4.4 Changement de variables	10
	4.5 Calculs d'aire et de volumes	10
	4.5.1 Calculs d'aires	10
	4.5.2 Calculs de volumes	12
	4.5.3 Longueur d'arc	13

1 Primitive d'une fonction

Exercice 1

Déterminer une primitive des fonctions suivantes :

$$f(x) = 3x^2 + x - 6$$
 $g(x) = \frac{1}{x^2}$ $h(x) = \frac{2x}{(x^2 + 1)^2}$ $k(x) = 2x + \sin(x)$

Exercice 2

Soit f la fonction définie sur $I = [0; +\infty[$ par $f(x) = \frac{3x^2 + 6x + 4}{(x+1)^2}.$

- 1. Vérifier que la fonction F définie sur I par $F(x)=\frac{3x^2+4x}{x+1}$ est une primitive de f sur I.
- 2. La fonction G définie sur I par $G(x) = \frac{3x^2 x 5}{x + 1}$ est-elle une autre primitive de f sur I?

Exercice 3

- 1. Déterminer la primitive F de $f: x \mapsto x^2 4x + 2$ telle que F(1) = 0.
- 2. Déterminer la primitive G de $g: x \mapsto 12x^5 9x^2 + 6x 3$ telle que G(0) = 4.
- 3. Déterminer la primitive H de $h: x \mapsto \frac{4}{(2x+1)^2}$ telle que $H\left(\frac{1}{2}\right) = 2$.

Exercice 4

Soit f la fonction définie sur \mathbb{R} par l'expression f(x) = 4x - 3.

Déterminer de façon explicite, pour tout réel $t \ge 1$, la fonction $F(t) = \int_1^t f(x) \, dx$.

Déterminer les primitives des fonctions suivantes :

1.
$$f(x) = x^4 - 4x^3 - 5x^2 + \frac{7}{3}x$$

2.
$$f(x) = -\sin(x) + 2\cos(x)$$
 3. $f(x) = 2x - 4 + \frac{3}{x^2}$

3.
$$f(x) = 2x - 4 + \frac{3}{x^2}$$

Exercice 6 (Reconnaissance de formes)

Déterminer toutes les primitives des fonctions suivantes :

$$f(x) = \frac{x}{1 + x^2}$$
$$g(x) = \frac{e^{3x}}{1 + e^{3x}}$$

$$h(x) = \frac{\ln x}{x}$$
$$k(x) = \cos(x)\sin^2(x)$$

$$l(x) = \frac{1}{x \ln x}$$
$$m(x) = 3x\sqrt{1 + x^2}$$

Exercice 7 (Fraction rationnelle avec décomposition en éléments simples)

Soit
$$f(x) = \frac{5x^2 + 21x + 22}{(x-1)(x+3)^2}, x \in]1, +\infty[$$
.

- 1. Démontrer qu'il existe trois réels a, b et c tels que $\forall x \in]1, +\infty[, f(x) = \frac{a}{x-1} + \frac{b}{x+3} + \frac{c}{(x+3)^2}.$
- 2. En déduire la primitive de f sur $]1, +\infty[$ qui s'annule en 2.

Exercice 8 (Primitive de fractions rationnelles)

Déterminer une primitive des fractions rationnelles suivantes :

1. Soit
$$f(x) = \frac{2x^2 - 3x + 4}{(x - 1)^2}$$
 sur $]1, +\infty[$

- (a) Déterminer trois réels a, b et c tels que $f(x) = a + \frac{b}{x-1} + \frac{c}{(x-1)^2}$
- (b) Déterminer une primitive de f.

2. Soit
$$f(x) = \frac{2x-1}{(x+1)^2}$$
 sur $]-1,+\infty[$

- (a) Déterminer deux réels a, b tels que $f(x) = \frac{a}{x+1} + \frac{b}{(x+1)^2}$
- (b) Déterminer une primitive de f.
- 3. Déterminer une primitive de $f(x) = \frac{x}{(x^2 4)^2}$ sur $]2, +\infty[$

4. Soit
$$f(x) = \frac{24x^3 + 18x^2 + 10x - 9}{(3x - 1)(2x + 1)^2}$$
 sur $] - 1/2, 1/3[$

- (a) Déterminer quatre réels a, b, c et d tels que $f(x) = a + \frac{b}{3x-1} + \frac{c}{2x+1} + \frac{d}{(2x+1)^2}$
- (b) Déterminer une primitive de f.
- 5. Déterminer une primitive de $f(x) = \frac{2x+1}{x^2+x-3}$

Exercice 9

Donner une primitive des fonctions suivantes :

1.
$$x \mapsto \sin^5 x$$

2.
$$x \mapsto \cos^4(x)\sin^2(x)$$

3.
$$x \mapsto \cos(3x)\cos^3 x$$

2 Propriétés de l'intégrale

Exercice 10

- 1. Démontrer que pour tout réel t de [0;1], on a $\frac{t}{1+t^2} \le t$.
- 2. En déduire que $\int_0^1 \frac{t}{1+t^2} dt \le \frac{1}{2}$.

Exercice 11

f est la fonction définie sur [1;2] par $f(x) = \frac{e^x}{x^2}$.

- 1. Étudier les variations de f sur [1; 2].
- 2. Démontrer que pour tout x de [1;2], $\frac{e^2}{4} \leqslant \frac{e^x}{x^2} \leqslant e$.
- 3. En déduire un encadrement de $\int_1^2 \frac{e^x}{x^2} dx$.

Exercice 12

Soit f définie sur [-3;3] par $f(x)=E(x^2)$ où E désigne la fonction partie entière.

- 1. Montrer que f est une fonction paire, et tracer sa représentation graphique sur l'intervalle [0;3].
- 2. Calculer $\int_0^3 f(x) dx$. En déduire $\int_{-3}^3 f(x) dx$.

3 Intégrales et primitives

Exercice 13

Soit F la fonction définie par $F(x) = \int_0^x \frac{1}{1+t^2} dt$.

Déterminer le sens de variation de F.

Exercice 14

Soit f la fonction définie sur \mathbb{R} par l'expression f(x) = 2x + 1.

Déterminer de façon explicite, pour tout réel $t \ge 0$, la fonction $F(t) = \int_0^t f(x) dx$.

Exercice 15

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{2x}{2x^2 + 1}$.

Déterminer une expression de la fonction F définie par $F(t) = \int_0^t f(x) \, dx$.

- 1. On considère la fonction g définie sur $]0; +\infty[$ par $g(x)=1-2\ln x.$ On note \mathcal{C}_g sa courbe représentative.
 - a La courbe C_g coupe l'axe des abscisses en un point d'abscisse α .

Déterminer la valeur exacte du réel α .

- b Calculer la fonction dérivée g' de g et dresser le tableau de variation de g.
- c Déduire de ce qui précède le signe de g(x) pour x > 0.
- 2. Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{2 \ln x + 1}{x}$.
- 3. Déterminer $\lim_{x\to 0} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- 4. Calculer f'(x) et montrer que $f'(x) = \frac{f(x)}{x^2}$.

En déduire le sens de variation de f.

- 5. (a) Déterminer une primitive F de la fonction f sur $]0; +\infty[$. (Indication : on pourra écrire $f(x) = 2 \times \frac{1}{x} \times \ln x + \frac{1}{x}$).
 - (b) Soit $I = \int_1^5 f(x) dx$. Calculer I, et en donner une valeur approchée au centième

4 Calcul d'intégrale

Exercice 17

Pour chaque affirmation proposée, dire si elle est vraie ou fausse. Justifier.

Soit f une fonction continue et positive sur $[0; +\infty[$, et soit F et G les fonctions définies $[0; +\infty[$ par $F(x) = \int_1^x f(t) dt$ et $G(x) = x \int_1^x f(t) dt$. Soit de plus C_f la courbe représentative de f dans un repère.

- 1. G(0) = G(1)
- 2. G est dérivable sur $[0; +\infty[$, et pour tout $x \in [0; +\infty[$, G'(x) = F(x) + xf(x).
- 3. On ne peut pas prévoir le sens de variation de G avec les seules informations de l'énoncé.
- 4. L'aire de la surface délimitée par les droites d'équations x = 0, x = 2, y = 0 et la courbe C_f se calcule par F(2) + F(0).

Exercice 18

Calculer les intégrales
$$I = \int_1^3 (2x-1) dx$$
 et $J = \int_{-1}^1 (-2t+3) dt$.

Exercice 19

Calculer les intégrales suivantes :
$$I = \int_0^1 x \, dx$$
, $J = \int_1^3 (2t+1) \, dt$, et $K = \int_{-2}^3 |x| \, dx$.

Exercice 20

Calculer l'intégrale $I = \int_0^4 E(x) dx$, où E(x) désigne la partie entière de x.

Soit f la fonction définie sur $I = [0; +\infty[$ par $f(x) = \frac{3x^2 + 6x + 4}{(x+1)^2}.$

- 1. Vérifier que la fonction F définie sur I par $F(x) = \frac{3x^2 + 4x}{x+1}$ est une primitive de f sur I.
- 2. En déduire la valeur de l'intégrale $\int_0^1 f(x) dx$.

Exercice 22

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = x \ln x - x.$

- 1. Déterminer la fonction dérivée f' de f.
- 2. En déduire l'intégrale $I = \int_1^e \ln x \, dx$.

Exercice 23

- 1. Montrer que la fonction F définie sur $]0; +\infty[$ par $F(x) = \frac{1}{2}x^2 \ln x \frac{1}{4}x^2$ est une primitive de la fonction $f: x \mapsto x \ln x$.
- 2. En déduire $\int_{1}^{\sqrt{e}} x \ln x \, dx$.

Exercice 24

On considère la fonction f définie sur \mathbb{R} par $f(t) = (2t+1)e^{-t}$.

- 1. Vérifier que la fonction F définie sur \mathbb{R} par $F(t)=(-2t-3)e^{-t}$ est une primitive de f sur \mathbb{R} .
- 2. Calculer la valeur exacte de l'intégrale $I = \int_0^1 f(t) dt$.
- 3. On définie la fonction G pour $x \ge 0$ par $G(x) = \int_0^x f(t) dt$.
 - (a) Déterminer la limite de f en $+\infty$.
 - (b) Dresser le tableau de variation de la fonction f.
 - (c) Tracer dans un repère l'allure de la courbe représentative de la fonction f, et interpréter à l'aide de ce graphique la valeur G(x) pour un nombre $x \ge 0$.
 - (d) Déterminer la limite de G en $+\infty$.

Exercice 25

 $\text{Calculer les intégrales} : I = \int_0^2 2x \, dx \; \; , \; \; J = \int_1^3 (2x-1) \, dx \; \; , \; \; K = \int_{-1}^1 (2t+3) \, dt \; \; , \; \; L = \int_0^2 x^2 \, dx \; \; , \; \; M = \int_0^1 e^x \, dx \; , \; M = \int_0^1 e^x \,$

Déterminer les intégrales suivantes :

1.
$$I = \int_0^1 x^2 (x^3 - 1)^5 dx$$

$$3. K = \int_0^{\frac{1}{2}} \frac{3x}{\sqrt{1 - x^2}}$$

2.
$$J = \int_0^1 \frac{x}{(x^2 - 4)^2} \, dx$$

4.
$$L_n = \int_1^n \frac{1}{x^2} e^{\frac{1}{x}} dx$$
 puis $\lim_{n \to +\infty} L_n$

Exercice 27

Calculer
$$I = \int_{1}^{2} \left(x^{3} + \frac{2}{x} \right) dx$$
 et $J = \int_{1}^{2} \left(\frac{3}{x^{2}} - \frac{2}{2x+1} \right) dx$

Exercice 28

Calculer les intégrales :

Exercice 29 (Intégrale d'une fraction rationnelle avec décomposition en éléments simples)

1. Démontrer qu'il existe deux réels a et b tels que, pour tout $x \in \mathbb{R} \setminus \{-1\}$,

$$\frac{x}{x+1} = a + \frac{b}{x+1}.$$

2. En déduire la valeur de $\int_1^2 \frac{x}{x+1} dx$.

Exercice 30

Soit f la fonction définie sur]1; $+\infty$ [par $f(x) = \frac{4x-2}{x^2-1}$.

- 1. Vérifier que, pour tout x de $]1; +\infty[$, on a $f(x) = \frac{3}{x+1} + \frac{1}{x-1}$.
- 2. En déduire la valeur de l'intégrale $I = \int_2^4 \frac{4x-2}{x^2-1}$.

Exercice 31

Soit f la fonction définie sur \mathbb{R} par l'expression $f(x) = \frac{e^x - 1}{e^x + 1}$.

Déterminer deux nombres réels a et b tels que, pour tout réel x, $f(x) = a + \frac{be^x}{1 + e^x}$.

En déduire $\int_0^2 f(x) dx$.

4.1 Valeur moyenne

Exercice 32

Calculer la valeur moyenne de chaque fonction sur l'intervalle donné :

$$f(x) = (2-x)(x-1)$$
 sur $I = [-1; 0]$ $g(x) = e^{-3x+1}$ sur $I = [-1; 1]$

Exercice 33 (Hauteur moyenne)

La hauteur, en métres, d'une ligne électrique de 160m peut être modélisée par la fonction h définie sur [-80; 80] par $h(x) = 10 \left(e^{x/40} + e^{-x/40}\right)$. Quelle est la hauteur moyenne de cette ligne électrique?

Exercice 34

Calculer la valeur moyenne de chaque fonction sur l'intervalle donné :

a)
$$f(x) = x^2 \text{ sur } [0;1]$$
 b) $g(x) = (2-x)(x-1) \text{ sur } [-1;0]$ c) $h(x) = e^x \text{ sur } [0;1]$

d)
$$k(x) = e^{-3x+1} \text{ sur } [-1;1]$$
 e) $l(x) = \frac{2}{3x+1} \text{ sur } [0;3]$ f) $m(x) = \frac{5}{(2x+3)^2} \text{ sur } [0;1]$

Exercice 35

Une tension alternative est donnée, en fonction du temps, par $u(t)=283\cos{(\omega t)}$, avec la pulsation $\omega=2\pi f$ et la fréquence f=50 hertz.

- 1. Calculer la valeur moyenne de la tension sur une demi-période : sur [0; 0, 01].
- 2. Calculer la tension efficace, notée \hat{U} , est définie comme la valeur moyenne sur une période de $(u(t))^2$.

4.2 Étude de suite

Exercice 36

On considère la fonction f définie sur [0;1] par $f(x)=e^{-x^2}$ et on définit la suite (u_n) par :

$$u_0 = \int_0^1 f(x) dx$$
 et, pour tout entier $n \ge 1$, $u_n = \int_0^1 x^n f(x) dx$

- 1. a Démontrer que, pour tout réel x de l'intervalle $[0;1], \frac{1}{e} \leqslant f(x) \leqslant 1$.
 - b En déduire que $\frac{1}{e} \leqslant u_0 \leqslant 1$.
- 2. Calculer u_1 .
- 3. a Démontrer que, pour tout entier naturel n, $0 \le u_n$.
 - b Étudier les variations de la suite (u_n) .

En déduire que la suite (u_n) est convergente.

- 4. a Démontrer que, pour tout entier naturel n, $u_n \leqslant \frac{1}{n+1}$.
 - b En déduire la limite de la suite (u_n) .

 $J_n = \int_1^n e^{-t} \sqrt{1+t} \, dt$. On considère la suite numérique (J_n) définie, pour tout entier naturel n non nul, par :

- 1. Démontrer que la suite (J_n) est croissante.
- 2. On définit la suite (I_n) , pour tout entier naturel n non nul, par : $I_n = \int_1^n (t+1) e^{-t} dt$.
 - a Justifier que, pour tout $t \ge 1$, on a $\sqrt{t+1} \le t+1$.
 - b En déduire que $J_n \leq I_n$.
 - c Déterminer deux réels a et b tels que la fonction $t \mapsto (at+b)e^{-t}$ soit une primitive de la fonction $t \mapsto$ $(t+1)e^{-t}$.

Exprimer alors I_n en fonction de n.

- d En déduire que la suite (J_n) est majorée par un nombre réel.
- e Que peut-on en conclure pour la suite (J_n) ?

Intégration par parties

Exercice 38 (Reconnaissance de formes)

Déterminer une primitive des fonctions suivantes sur l'intervalle considéré :

1.
$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3$$
, $I = \mathbb{R}$

3.
$$f(x) = \frac{(x-1)}{\sqrt{x(x-2)}}, I =]-\infty, 0[$$

2.
$$f(x) = \frac{1 - x^2}{(x^3 - 3x + 1)^3}, I =]-\infty, -2[$$

4.
$$f(x) = \frac{1}{x \ln(x^2)}$$
, $I =]1, +\infty[$

Exercice 39

 ${\it Calculer}\ {\it les\ int\'egrales\ suivantes}:$

$$1. I = \int_0^1 x e^x \ dx$$

1.
$$I = \int_0^1 x e^x dx$$
 2. $K = \int_0^1 \frac{x \ln x}{(x^2 + 1)^2} dx$

Exercice 40

Calculer l'intégrale suivante : $I = \int_0^x t^2 e^t dt$.

Plus généralement donner une méthode permettant de calculer les primitives de fonctions de la forme $t \longmapsto p(t)e^t$ où p est un polynôme

Exercice 41

Calculer l'intégrale suivante : $I = \int_0^x t^2 \sin(t) dt$.

Plus généralement donner une méthode permettant de calculer les primitives de fonctions de la forme $t \mapsto p(t)\sin(t)$ ou $t \longmapsto p(t)\cos(t)$ où p est un polynôme

Exercice 42 (Fraction rationnelle puis intégration par parties)

On considère la fonction $f(x) = \frac{1}{x(x+1)}$.

- 1. Déterminer deux réels a et b tels que, pour tout $x \in [1,2]$, on $a: f(x) = \frac{a}{x} + \frac{b}{x+1}$.
- 2. Déduire de la question précédente la valeur de l'intégrale $J = \int_{1}^{2} \frac{1}{x(x+1)} dx$.
- 3. Calculer l'intégrale $I = \int_{1}^{2} \frac{\ln(1+t)}{t^2} dt$.

Calculer les intégrales suivantes :

$$1. I = \int_0^\pi x \sin(x) dx$$

3.
$$K = \int_0^3 x e^x dx$$

5.
$$M = \int_0^{\pi} (2 - 2x) \sin(x) dx$$

2.
$$J = \int_3^3 \frac{x}{\sqrt{2x-3}} dx$$

4.
$$L = \int_0^{\frac{\pi}{2}} x \cos(2x) dx$$

Exercice 44

I et J sont les intégrales définies par $I = \int_0^{\frac{\pi}{2}} e^x \sin(x) dx$ et $J = \int_0^{\frac{\pi}{2}} e^x \cos(x) dx$.

- 1. En appliquant de deux façons différentes à l'intégrale I la méthode d'intégration par parties, trouver deux relation entre I et J.
- 2. Calculer alors les intégrales I et J.

Exercice 45

Pour tout entier naturel n, on pose $I_n = \int_0^{\pi} x^2 \cos(nx) dx$. À l'aide d'une double intégration par parties, calculer I_n en fonction de n.

Exercice 46

Soit I la suite définie pour tout entier $n \ge 1$ par $I_n = \int_0^1 t^n e^{-t} dt$.

- 1. Calcul des premiers termes de la suite
 - a Calculer $I_1 = \int_0^1 t e^{-t} dt$ à l'aide d'une intégration par parties.
 - b Avec la méthode d'intégration par parties, exprimer I_2 en fonction de I_1 . En déduire I_2 .
 - c Exprimer I_3 en fonction de I_2 , puis calculer I_3 .
- 2. Étude de la suite
 - a) Démontrer que, pour tout entier $n \ge 1$, $I_n \ge 0$.
 - b) Étudier le sens de variation de la suite I.
 - c) Démontrer que la suite I est convergente.
- 3. Calcul de la limite de la suite
 - a À l'aide d'une intégration par parties, exprimer I_{n+1} en fonction de I_n .
 - b Démontrer que, pour tout entier $n \ge 1$, $I_n \le \frac{1}{ne}$.
 - c En déduire la limite de la suite I.

Exercice 47

Calculer les intégrales suivantes :

1.
$$\int_0^1 e^x (2x^3 + 3x^2 - x + 1) dx$$

2.
$$\int_0^{2\pi} e^{-x} \sin^2(x) dx$$

4.4 Changement de variables

Exercice 48 (Changements de variables - Recherche de primitives)

En effectuant un changement de variables, donner une primitive des fonctions suivantes :

1.
$$x \mapsto \frac{\ln x}{x}$$

2.
$$x \mapsto \cos(\sqrt{x})$$

Exercice 49

En effectuant le changement de variable indiqué, calculer

1.
$$\int_{1}^{4} \frac{1 - \sqrt{t}}{\sqrt{t}} dt \text{ en posant } u = \sqrt{t}.$$

3.
$$\int_{e}^{e^3} \frac{1}{x \ln(x)} dx \text{ en posant } x = e^t.$$

2.
$$\int_{1}^{2} \frac{e^{x}}{1+e^{x}} dx \text{ en posant } u = e^{x}.$$

4.
$$\int_0^{\frac{\pi}{4}} \cos^3(t) \sin^2(t) dt$$
 en posant $u = \sin(t)$.

BTS ATI

Exercice 50

En effectuant le changement de variable indiqué puis une intégration par partie, calculer $\int_0^1 e^{\sqrt{t}} dt$ en posant $u = \sqrt{t}$.

Exercice 51

En effectuant un changement de variables, calculer $\int_1^e \frac{(\ln x)^n}{x} dx$, $n \in \mathbb{N}$

Exercice 52 (Fonction avec un axe de symétrie)

Soit $f:[a,b]\to\mathbb{R}$ continue telle que, pour tout $x\in[a,b]$, on a f(a+b-x)=f(x). Montrer que

$$\int_{a}^{b} x f(x) dx = \frac{a+b}{2} \int_{a}^{b} f(x) dx.$$

4.5 Calculs d'aire et de volumes

4.5.1 Calculs d'aires

Exercice 53

Soit f la fonction définie sur \mathbb{R} par f(x) = 2x. Représenter \mathcal{C}_f et calculer $\int_0^2 f(x) dx$.

Exercice 54

Soit la fonction f définie par $f(x) = 3x^2 - 4$. Calculer l'intégrale $\int_0^2 f(x) dx$.

Représenter l'allure de la courbe représentative de f et interpréter graphiquement le résultat précédent.

Exercice 55

Dans un repère orthonormé, on considère le domaine \mathcal{D} compris entre les courbes d'équations $y = \sqrt{x}$ et $y = x^2$.

Déterminer l'aire du domaine \mathcal{D} .

On pourra se rappeler que $\sqrt{x} = x^{1/2}$)

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2 - 2x - 3$, et on note \mathcal{C}_f sa courbe représentative dans un repère orthonormé.

- 1. Donner le tableau de signes de f(x).
- 2. Calculer l'aire du domaine hachuré sur la figure ci-contre.

Exercice 57

Calculer l'aire du domaine, hachuré sur la figure ci-contre, délimité par les courbes représentatives des fonctions f et g définies par $f(x) = x^3 + 4$ et $g(x) = 3x^2$.

Exercice 58

Calculez l'aire des régions ombrées suivantes.

Exercice 59

Calculez l'aire de la (ou des) région(s) délimitée(s) par les courbes :

1.
$$y + x^2 = 6$$
 et $y + 2x = 3$

2.
$$y = 3 + x$$
 et $x + y^2 = 3$

3.
$$y = x^2 - x$$
 et $y = x^3 - 4x^2 + 3x$

Soit R la région qui est bornée par les courbes $y=x^2$ et y=x+2.

- 1. Déterminez le nombre a tel que la droite x = a divise la région R en deux régions de même aire.
- 2. (Difficile) Déterminez le nombre b tel que la droite y = b divise la région en deux régions de même aire.

Exercice 61 (Aire de la surface comprise entre deux courbes)

Soit f et g les fonctions définies sur [0;1] par $f(x)=\frac{1}{1+x}$ et $g(x)=\frac{1}{1+x^2}$. On munit le plan d'un repère orthonormé (O;I;J) tel que OI=5cm.

- 1. Représenter les courbes représentatives de f et de g dans ce repère. En particulier, on étudiera leurs positions relatives.
- 2. Déterminer l'aire, en unités d'aires, de la surface S comprise entre les deux courbes et les droites d'équations x = 0 et x = 1.
- 3. En déduire l'aire de S en cm².

4.5.2 Calculs de volumes

Exercice 62

Soit R la région du premier quadrant délimitée par la parabole d'équation $y = 4 - \frac{4x^2}{9}$ et S le solide engendré par la révolution de R autour de l'axe des x.

- 1. Illustrez la région R et le solide S.
- 2. Si l'on calcule le volume de S à l'aide de la méthode des disques, les disques seront-ils horizontaux ou verticaux?
- 3. Calculez le volume du solide S.

Exercice 63

Dessinez la région R délimitée par les courbes $y=x^2$ et y=4 et trouvez le volume du solide engendré par la rotation de R autour de la droite d'équation donnée.

2. y = 5

1.
$$y = 4$$

Exercice 64

Calculez le volume du solide engendré par la révolution autour de l'axe y=7 de la région R délimitée par les courbes y=x+3 et $y=\frac{x^2}{2}+\frac{3}{2}$.

Faites d'abord un dessin de la région.

Exercice 65

Calculez le volume du solide engendré par la révolution de la région donnée autour de l'axe mentionné.

- 1. Région bornée par y = 1 x, y = x 1 et l'axe des y. Axe de rotation : y = 1
- 2. Région bornée par $y = \frac{1}{x}$, l'axe des x et situé à droite de x = 1 et à gauche de x = 10. Axe de rotation : l'axe des x

- 3. Région bornée par $y = x^2 4$, et l'axe des x. Axe de rotation : l'axe des x.
- 4. (Difficile) Région bornée par : $y=\sqrt{x}$, l'axe des y et y=1. Axe de rotation : l'axe des y.

Déterminez, en utilisant une (ou des) intégrale(s) définie(s), le volume du solide décrit ci-dessous

- 1. Un cône circulaire droit de rayon r et de hauteur h.
- 2. Une sphère de rayon r.
- 3. Une calotte de hauteur h d'une sphère de rayon r .
- 4. Un tore obtenu en faisant tourner un disque de rayon a centré en (b;0) (avec a < b) autour de l'axe des y.

4.5.3 Longueur d'arc

Exercice 67 (Longueur d'une chaînette)

Une chaînette est la courbe suivant laquelle se tend un fil homogène suspendu par ses extrémités à deux points fixes.

On admet que que la chaînette est la courbe représentative de la fonction f définie sur [-1;1] par $f(x) = \frac{e^{2x} + e^{-2x}}{4}$.

- 1. a Calculer la fonction dérivée f' de f.
 - b Étudier alors le signe de f'(x) et dresser le tableau de variation de f.
 - c Tracer l'allure de la chaînette.
- 2. On admet que la longueur L de la chaînette (déformée et étirée sous l'action de son poids) est égale à l'intégrale $L = \int_{-1}^{1} \sqrt{1 + \left[f'(x)\right]^2} \, dx.$
 - (a) En les calculant séparemment, montrer que les deux expressions $1 + [f'(x)]^2$ et $[2f(x)]^2$ sont égales.
 - (b) En déduire la longueur L de la cahînette.