

Target
Marketing for
Canadian
Bank

Scenario and Objective

Scenario:

In order to increase deposit balances, Bank "A" is looking to execute a marketing campaign. The campaign will target existing clients and will offer them promotional interest rates to attract deposit balance.

Objective:

The task is to predict which customers who are most likely to respond to the campaign.

Dataset Overview

The dataset provided is split into Training data and Testing data.

Training data contains 64,000 observations with 37 variables from previous campaigns. The actual responses are in the variable called 'Target'.

Testing data contains 1478 observations with 36 variables and no labels.

Data Preparation

Checking the dataset for:	Results
Null or N/A values in the dataset	No N/A or Null values were identified. > # of N/As: No N/A
Customer_id duplicates	No duplicates were identified for 'Customer_id' df.loc[df.Customer_id.duplicated(),:].shape[0]
Train 'Target' (potential skewness), where: 0 = no response from the customer 1 = response from the customer	Target Value Counts > Responding Rate% Target

Heatmaps for Target Correlation

Transactions and Target

Competitive

Feature Engineering

Instead of looking at each column for ExternalAccounts and Products, the sum can be taken to get the total number of External Accounts and Products (e.g., customer A has 4 Products and 2 ExternalAccounts).

ExternalAccount1	ExternalAccount2	ExternalAccount3	ExternalAccount4	ExternalAccount5	ExternalAccount6	ExternalAccount7
0	0	0	0	0	0	0
0	0	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	1	0
0	1	0	0	0	0	0

Product1	Product2	Product3	Product4	Product5	Product6
0	0	0	0	0	0
0	0	0	0	0	0
1	1	0	0	0	0
0	0	0	0	0	0
1	0	0	0	0	0

Feature Engineering

Taking the sum, mean, median, std, Min, Max, and Count of the Transactions

Transaction1	Transaction2	Transaction3	Transaction4	Transaction5	Transaction6	Transaction7	Transaction8	Transaction9
0.00	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0
0.00	0.0	0.0	8525.0	0.0	0.00	0.0	0.0	0.0
13422.35	800.0	0.0	0.0	0.0	13123.28	0.0	0.0	0.0
0.00	0.0	0.0	1000.0	23900.0	0.00	0.0	0.0	0.0
0.00	0.0	0.0	0.0	2000.0	27629.11	0.0	0.0	0.0

It was observed that 'CompetitiveRate6' has the same data as 'RateBefore' (1-1 Correlation). Therefore, to improve model accuracy, CompetitiveRate6 was dropped from the DF.

Created new feature called 'Rate_Drop', which takes the difference between 'RateBefore' and 'ReferenceRate'.

Distribution of Features

Feature Importance

Top features for both LR and RFC include new features that were engineered from 'Transactions'.

Models

```
classifiers = {
    "DT": tree.DecisionTreeClassifier()
    ,"KNN": KNeighborsClassifier()
    ,"SVC": svm.SVC()
    ,"ADA": AdaBoostClassifier()
    ,"XGB": GradientBoostingClassifier()
    ,"LR": LogisticRegression()
    ,"RFC": RandomForestClassifier()
    ,"NN":keras.wrappers.scikit_learn.KerasClassifier(build_model)
}
```

Based on the accuracy scores generated by the models above, the following were deemed as the best combination of features:

Balance_Bin ActivityIndicator_Bin Transaction4_Bin Transaction_Max_Bin Transaction_Median_Bin Transaction_Mean_Bin Transaction_Sum_Bin

Transaction_Std_Bin Transaction6_Bin RegularInteractionIndicator Transaction5_Bin ExternalAccount_Sum Transaction_Count Product_Sum

Confusion Matrix

Model Performance Summary

Precision	Recall	F1-Score	Support	Algorithm/Model
63.62%	63.59%	63.59%	1920	Vote
62.63%	62.60%	62.57%	1920	NN
59.51%	59.43%	59.36%	1920	RFC
63.39%	63.39%	63.38%	1920	LR
60.63%	60.63%	60.62%	1920	XGB
63.47%	63.44%	63.42%	1920	ADA
62.80%	62.76%	62.74%	1920	SVC
58.09%	58.07%	58.06%	1920	KNN
61.08%	60.94%	60.84%	1920	DT

Model Performance – Kaggle Score

Based on the scores obtained from the Training Dataset, the following submissions were made on Kaggle for the Test Dataset. At the end the voting classifier had the best prediction using all the other trained models.

Model	Best Public Score
Voting	66.55%
XGB	64.19%
SVC	62.16%
NN	61.82%

Challenges

Challenge/Observation	Solution
Models take a long time to run. Encountered incidences where Google-collab timed out.	Select smaller percentage of test_size using StratifiedShuffleSplit sss = StratifiedShuffleSplit(n_splits=1, test_size=0.3, random_state=random_seed) for train_index, test_index in sss.split(df_x, df_y): df_x, df_y = df_x.iloc[test_index,:], df_y.iloc[test_index] df_x.reset_index(drop=True, inplace=True) df_y.reset_index(drop=True, inplace=True) df_x.shape
Re-engineer features to improve model performance/ accuracy.	Testing all possible new features and check for model performance/accuracy (e.g., taking the sum, mean, of Transactions). There is no real solution until all possibilities are tried and assessed.
Accuracy variation with Kaggle submission scores (Best performing model from the train data-set did not result in the best score from Kaggle submission).	Given the Kaggle competition environment, it is hard to predict which model would result in the best score. Thus, multiple submissions were made with different models, rather than submitting multiple times for the same model.

Lessons Learnt/ Recommendations

Findings:

Through the modeling process it was discovered that the Voting Classifier and Logistic Regression had the best results in terms of accuracy. The Logistic Regression is more preferable as it is easier to implement and has faster performance. While working with the data it observed that the features were not very informative and this greatly limited the accuracy of the prediction.

Recommendation:

A recommendation to the bank would be to collect more features that have a stronger correlation to the target (e.g. more identity related features that personalize the dataset and give insight into customer inclinations).