Возьмем формулу $(A \to P(y)) \to (A \to \forall x P(x))$

Она не общезначима: пусть не общезначима P(y), и $\exists x P(x)$ истинна. Возьмем в качестве оценки A истину, для y — такое значение, на котором P(y) истинна.

При такой оценке формула ложна, при этом ее можно вывести, если игнорировать ограничения в теореме о дедукции.

Введем допущение $(A \to P(y))$.

- 1. $\forall y P(y) \rightarrow P(x)$ (схема аксиом 11)
- 2. $\forall y P(y) \rightarrow \forall x P(x)$ (правило вывода, 1)
- 3. $A \rightarrow P(y)$ (допущение)
- 4. $A \rightarrow \forall y P(y)$ (правило вывода, 3)
- 5. $(\forall y P(y) \rightarrow \forall x P(x)) \rightarrow (A \rightarrow (\forall y P(y) \rightarrow \forall x P(x)))$ (схема аксиом 1)
- 6. $A \to (\forall y P(y) \to \forall x P(x))$ (MP 3, 5)
- 7. $(A \to \forall y P(y)) \to (A \to \forall y P(y) \to \forall x P(x)) \to (A \to \forall x P(x))$ (схема аксиом 2)
- 8. $(A \to \forall y P(y) \to \forall x P(x)) \to (A \to \forall x P(x))$ (MP 4, 7)
- 9. $A \rightarrow \forall x P(x) \text{ (MP 6, 8)}$

В этом выводе в 4 пункте используется правило для квантора, использующее свободное вхождение y.