Problema 1 (2 puntos)

Se ha construido una fuente de bits \mathcal{X} a partir de un dodecaedro tal que en 6 de sus caras aparece escrito el 00, en 3 el 11, en 2 el 01 y en una el 10 (se transmite en primer lugar el MSB). Calcula:

- 1) (1 punto) $H(X_{LSB})$, $H(X_{MSB})$ y H(X)
- 2) (1 punto) ¿Cómo cambiarías las etiquetas de las caras del dado (manteniendo que 6 son iguales, etc.) para minimizar el número de bits emitidos?, ¿ha mejorado la *H(X)*?

Problema 2 (8 puntos)

Aldous no confía en la transmisión telemática de un mensaje S_I para Simon. Por ello decide enviarlo a través de emisarios cada uno con una información parcial calculada a partir de S_I : $U_j = S_I \mod p_j$. Asimismo ha modelado la fidelidad de cualquier emisario con una probabilidad igual a 0.7.

- 1) **(1 punto)** ¿Cuál es el valor mínimo y máximo de S_1 para que únicamente sea posible encontrarlo con 3 o más de 3 informaciones parciales?, ¿con qué probabilidad ocurre?
- 2) (0.5 puntos) Calcula el mensaje S_{12} enviado cuando Simon recibe U_1 y U_2
- 3) (1punto) Encuentra S_{12-3} a partir de S_{12} y U_3 , ¿es el S_1 enviado?

 S_I es el último de varios mensajes recibidos por Simon. Concatenados (S_2 =933080 || 15400 || 20120 || S_I) son en realidad un sobre digital donde los 6 dígitos de menor peso identifican a la clave del cifrador simétrico del resto de dígitos de S_2 . Aldous ha cifrado esta clave con un doble RSA de parámetros e_I =510047, e_2 =969091=31*43*727 y n_I =1009*1013=1022117 que junto a los U_j son los únicos valores públicos del algoritmo. Una vez Simon la descifra encuentra K, diferente de 0, y calcula $K^i \mod n_2$, $K^{2i} \mod n_2$,... para indexar una memoria de n_2 =999983 registros con texto aleatorio. La concatenación de estos textos (más antiguo en la izquierda) conforma la clave de Vigenère para descifrar el mensaje del resto de dígitos de S_2 aún no considerados, dado que éstos indican por pares las posiciones de las letras del alfabeto (debe añadirse un cero en la izquierda si es necesario) tal como sigue:

00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22
Α	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V/W	X/Y/Z

Responde a las siguientes cuestiones:

- 4) (0.5 puntos) ¿Es más robusto el doble RSA que el RSA convencional? Razona la respuesta
- 5) **(1 punto)** Encuentra la clave *K* del algoritmo simétrico
- 6) (1.25 puntos) Si el orden de $K \mod n_2$ es r, encuentra una expresión para calcular el orden de $K^i \mod n_2$ función del mcd(i,r), i qué relación tienen con la función phi?
- 7) (1.25 puntos)¿Qué condición debe cumplir K para que sus sucesivas potencias indexen el máximo número de registros de la memoria?, ¿ K^i cumple esa condición si K la cumple?, ¿cuántas K diferentes cumplen esa condición (utiliza el resultado del apartado 6)?
- 8) **(0.75 puntos)** Si los registros pueden tener hasta 4 letras, ¿cuál es el tamaño equivalente en bits del número de claves diferentes del cifrado de Vigenère que pueden utilizar Aldous y Simon?
- 9) **(0.75 puntos)** Descifra el mensaje cuando el valor de *i* es 3

DATOS:

Todos los valores se presentan factorizados, en otro caso son primos

 $(U_1 = 3, p_1 = 99 = 3*3*11), (U_2 = 5, p_2 = 100 = 2*2*5*5), (U_3 = 47, p_3 = 103), (U_4 = 80, p_4 = 107), (U_5 = 75, p_5 = 109)$

 $\mathbf{j}(n_1) = 1020096 = 2^6 * 3^2 * 7 * 11 * 23, \mathbf{I}(n_1) = 255024 = 2^4 * 3^2 * 7 * 11 * 23$

 $j(n_2)=999982=2*79*6329$

Utiliza S_1 =41279 en el caso de no haberlo encontrado en el apartado 3)

Memoria: el #registro mod 23 tiene la mis ma codificación que el alfabeto salvo los siguientes

#11144=2 ³ ·7·199	TGE
#28034=2·107·131	LSCA
$#97336=2^3\cdot 23^3$	LG
#100005=3.5.59.113	X
$#168336=2^4\cdot 3^2\cdot 7\cdot 167$	HI

#168338=2.73.1153	MQ
#229810=2·5·7 ³ ·67	CJK
#307941=3.102647	RCSY
#308003	QW
$#343000=2^3\cdot5^3\cdot7^3$	DTR

$#395791=11^2\cdot 3271$	Z
#457954=2·7 ² ·4673	UNFJ
$#523036=2^2 \cdot 229 \cdot 571$	UK
#604738=2.83.3643	MJFY
$\#609579=3^3\cdot107\cdot211$	SDWI

#686531=739-929	QBH
#690429=3.230143	L
$\#826605=3^{4}\cdot 5\cdot 13\cdot 157$	HG
$\#874305=3^2\cdot 5\cdot 19429$	CVJX
#981374=2.541.907	KJDC