Univerzitet u Nišu, Elektronski fakultet Katedra za mikroelektroniku ELEKTRONSKE KOMPONENTE 31.8.2021.

ISPIT

1. (10 poena) U kolu na slici 1 upotrebljen je potenciometar ukupne otpornosti $R_{POT}=10\,\mathrm{k}\Omega$ koja se linearno menja od položaja 0 do položaja 1. Ako su $R_1=1\,\mathrm{k}\Omega,~R_2=47\,\mathrm{k}\Omega,~V_{CC}=5\,\mathrm{V},$ odrediti vrednost napona V_{OUT} kada je klizač potenciometra u položaju 0,4. Skicirati zavisnost napona V_{OUT} u funkciji položaja klizača potenciometra.

2. (15 poena) Šta su termistori? Koje vrste termistora postoje i po čemu se razlikuju? U kolu na slici 2 upotrebljen je termistor koji na temperaturi $T_0=25\,^{\circ}\mathrm{C}$ ima otpornost $R_{T0}=10\,\mathrm{k}\Omega$, dok mu je temperaturna osetljivost $B=5000\,\mathrm{K}$. Na nepoznatoj temperaturi izmerena vrednost napona V_{OUT} je 2,5 V. Odrediti vrednost nepoznate temperature ako je $R_1=10\,\mathrm{k}\Omega$ i $V_{IN}=10\,\mathrm{V}$. Otpornost termistora data je formulom:

$$R = R_{T0} exp \left[B \left(\frac{1}{T} - \frac{1}{T_0} \right) \right]. \tag{1}$$

- 3. (15 poena) U kolu na slici 3 kondenzator kapacitivnosti $C = 50\,\mathrm{nF}$ je pre zatvaranja prekidača P bio prazan. Nakon zatvaranja prekidača kondenzator počinje da se puni.
 - (a) Ako je $R = 200 \,\mathrm{k}\Omega$ odrediti za koje vreme t će napon na kondenzatoru v_c dostići vrednost $V_S/4$.
 - (b) Kolika treba da bude vrednost otpornosti R da bi vreme za koje vrednost napona na kondenzatoru dostigne $V_S/4$ bilo 250 µs.

Proces punjenja kondenzatora može se opisati izrazom

$$v_c = V_S \left(1 - e^{-\frac{t}{\tau}} \right) . (2)$$

- 4. (10 poena) U LC oscilatornom kolu upotrebljen je kalem induktivnosti $L = 1 \,\mu\text{H}$. Odrediti vrednost kapacitivnosti koju treba paralelno vezati sa kalemom tako da rezonantna frekvencija bude $f_r = 10 \,\text{kHz}$. Koliko puta se promeni rezonantna frekvencija ako se vrednost kapacitivnosti poveća 9 puta?
- 5. (10 poena) Na primar mrežnog transformatora dovodi se naizmenični napon sinusnog oblika efektivne vrednosti $230\,\mathrm{V}$ i frekvencije $50\,\mathrm{Hz}$. Ako je poznat odnos broja namotaja u primaru i sekundaru transformatora $N_1:N_2=23:1$, odrediti vrednost napona na sekundaru. Kolika je frekvencija napona na sekundaru? Kada se na sekundar datog transformatora, čiji je koeficijent korisnog dejstva $90\,\%$, priključi opterećenje od $10\,\Omega$, odrediti snagu gubitaka transformatora.
- 6. (15 poena) U kolu na slici 4 upotrebljene su Zener diode čiji je Zenerov napon 2,1 V. Skicirati strujno-naponsku karakteristiku date diode. Ulazni signal v_{in} je sinusnog oblika amplitude 5 V i frekvencije 1 Hz. Skicirati oblike ulaznog i izlaznog signala v_{out} .
- 7. (10 poena) Odrediti snagu koja se disipira na bipolarnom tranzistoru u kolu na slici 5. Poznato je: $V_{CC}=9\,\mathrm{V}$, $R_B=1\,\mathrm{M}\Omega,\,R_E=2,2\,\mathrm{k}\Omega,\,V_{BE}=0,7\,\mathrm{V}$, $\beta=100.$

Slika 6

8. (15 poena) U kolu sa slike 6 upotrebljen je NMOS tranzistor čiji je napon praga $V_T = 1$ V i parametar k = 1 mA V⁻². Poznato je $V_{DD} = 15$ V, $R_{G2} = 6.8$ M Ω . Odrediti vrednosti ostalih otpornosti u kolu tako da je struja drejna 0,5 mA i da su naponi na otpornicima R_D i R_S isti i iznose $V_{DD}/3$. Struja drejna može se opisati izrazom:

$$I_D = \frac{1}{2}k(V_{GS} - V_T)^2. (3)$$

Napomena: Pismeni deo ispita smatra se položenim ako student ostvari više od $50\,\%$ poena.