Aaron Panych RoboGarden Capstone Presentation

Universal ML Analysis Suite

From Data to Insights in Minutes

The Problem

Universal ML Analysis Suite

From Data to Insights in Minutes

Two-Step Workflow

 \rightarrow

CSV Upload

Any dataset

EDA First

Understand data

ML Analysis Next

15 algorithms

 \rightarrow

Professional Results

Ready to present

Suite Components

Exploratory Data Analysis (EDA)

Automatically generates correlation matrices, histograms, and pair plots to reveal what your data contains before any modeling. Shows which features matter most and uncovers hidden relationships.

- Diamonds: Size drives price more than cut quality
- Sales: Which factors predict customer spending
- Medical: Patient data patterns and outliers

Classification

Predicts categories or classes (like quality grades, customer types, or risk levels) by testing 6 different algorithms. Tells you which approach works best for your specific data.

- Diamonds: Predict cut quality (Fair to Ideal)
- Customers: Segment as high/medium/ low value
- Loans: Approve/review/reject applications

Regression

Predicts numerical values (like prices, sales forecasts, or scores) using 6 different models. Automatically finds the most accurate approach and shows you the prediction error.

- Diamonds: Predict price within ±\$542 accuracy
- · Real Estate: Estimate property values
- · Sales: Forecast monthly revenue

Clustering

Discovers natural groups in your data without being told what to look for (like customer segments or product categories). Shows how many groups exist and what makes them different.

- Diamonds: Two market segments (43.5% vs 56.5%)
- Customers: Natural buying behavior groups
- Products: Identify similar item categories

Diamond EDA Process

Diamond Dataset

53,940 samples

9 features: carat, cut, color, clarity, depth, table, price, x, y, z

Automated Analysis

5 minutes

Correlation analysis Distribution mapping Pattern detection

Key Discovery

Size = Price

0.92 correlation reveals carat weight drives pricing

Diamond Cut Classification

Predicting Quality Grades Automatically

Diamond Cut Classification

Predicting Quality Grades Automatically

Diamond Price Prediction

98.15% Accuracy • ±\$542 Average Error

Regression Challenge

Diamond Features

Physical & Quality

Carat, cut, color, clarity, depth, table, dimensions

6 ML Models

Automated Testing

Linear, KNN, Tree, Forest, SVR, Neural Network

Price Prediction

\$326 - \$18,823

Mean: \$3,933 53,940 diamonds

Diamond Price Prediction

98.15% Accuracy • ±\$542 Average Error

======================================	R ² Score	=== RMSE	Training Time
Status		N13L	
Linear Regression	0.8851	 1351.26	0:00:00
▼ Success	0.0031	1331120	0.00.00
Knn	0.9498	893.76	0:00:17
✓ Success Decision Tree	0.9666	729.03	0:00:40
Success	0.9000	729.03	0:00:40
Random Forest	0.9815	542.02	0:00:16
Success			2.22.32
Svr ✓ Success	0.5145	2778.03	0:00:48
Ann	0.9685	707.71	0:00:39
✓ Success	0.000		

Diamond Market Segmentation

Discovering Natural Customer Groups

Clustering Challenge

Diamond Market Segmentation

Discovering Natural Customer Groups

Algorithm Param Data Co 	Clusters overage Not	Silhouette es 	Optimal
 Kmeans 🛨	2	 0.3171	K=2
100.0%	Full da		
Agglomerative 18.5%	2 Sampled	-0.1183 data	N=2
Meanshift	12	-0.0596	BW=2.987
27.8%	Sampled	data	

Technology Stack

Tool Categories

Core Platform

Python + Scientific Stack

ML Algorithms

15 Models • 3 Categories

Visualization

5 Chart Types

Development

CLI + Web Interface

Python 3.12 pandas numpy scikit-learn

Logistic Regression Linear Regression K-Nearest Neighbors Decision Tree Random Forest SVC SVR

ANN

matplotlib seaborn Correlation Matrix Pair Plots Histograms Box Plots CLI interface argparse *Flask interface

Major Development Problems & Solutions

Marketing Strategies

