<u>ບົດລາຍງານ</u>

ວິຊາ: Engineering Materials

ສອນໂດຍ : ອຈ ສຸວັນນີ້ ວິລະຈິດ

2TC/B

ລາຍງານຫົວຂໍ້ (ວັດສະດູເຄິ່ງຕົວນຳ)

ກຸ່ມທີ 2

- ນ. ປິ່ນແກ້ວ ເຂັມຄຳພູມີ ທ. ສຸດທະວິໄລ ພົມຈິດຕິ ທ. ຄຳພຸດ ພົນພິລາ

- ນ. ສຸລິຕຳ ແກ້ວວອນທອງ

1. ວັດສະດູເຄິ່ງຕົວນຳ (Semiconductor)

ວັດສະດຸເຄິ່ງຕົວນຳ semiconductor ເປັນວັດສະດຸທີ່ມີຄຸນສົມບັດໃນການນຳໄຟຟ້າຢູ່ລະຫວ່າງ ຕົວນຳ ແລະສະນວນ ຖືກນຳໄປໃຊ້ກັບອຸປະກອນໄຟຟ້າທຸກຊະນິດນັບຕັ້ງແຕ່ ໂທລະທັດ ວິທະຍຸ ໂທລະສັບ ຄອມພິວເຕີ ຯລຯ ແລະທີ່ເຮົາຄຸ້ນເຄີຍແມ່ນ chip ທີ່ເປັນຕົວປະມວນຜົນທີ່ສຳຄັນຂອງຄອມພິວ ເຕີທີ່ມີການນຳໃຊ້ວັດສະດຸເຄິ່ງຕົວນຳໃນການຜະລິດ

semiconductor chip credit: iqsdirectory

Microcontroller credit: passionate

ວັດສະດຸເຄິ່ງຕົວນຳຖືກນຳໃຊ້ໃນ Rectifier (ວົງຈອນດັດກະແສ)ຕັ້ງແຕ່ປີ ຄສ 1847 ອີກໜຶ່ງສະຕະວັດຕໍ່ມາ Bardeen ,Brattain ແລະ Shockley ຄິດຄົ້ນທຣານຊິສເຕີໄດ້ສຳເລັດໃນປີ 1947 ສານເຄິ່ງຕົວນຳກໍໄດ້ຮັບຄວາມນິຍົມ ຖືກນຳມາໃຊ້ຢ່າງກ້ວາງຂວາງ ແລະເປັນບາດກ້າວໜຶ່ງແຫ່ງຄວາມກ້າວ ໜ້າໃນວົງການເອເລັກໂຕຣນິກ

William Shockley

John Bardeen

Walter Houser Brattain

credit: EDN

ທຣານຊິສເຕີອັນທຳອິດຈາກ

Bell Lab

ນ. ປິ່ນແກ້ວ ເຂັມຄຳພູມີ

ທຣານຊິສເຕີອັນທຳອິດ

credit: ExtremeTech

ວັດສະດຸເຄິ່ງຕົວນຳເຮັດມາຈາກທາດທີ່ມີ ຈຳນວນ **ເອເລັກຕຣອນອິດສະຫຼະ** ຢູ່ໜ້ອຍ ທີ່ນິຍົມໃຊ້ແມ່ນທາດ ຊິລິຄອນ **Si** (silicon) ແລະ ເຈິມານຸງມ **Ge** (Germanium)

ຕາຕະລາງທາດມູນເຄມີ

credit: geslab

						18 VIIIA 8A
:S	13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	Helium
	5 B Boron 10.811	6 Carbon 12.011	Nitrogen 14.007	8 Oxygen 15.999	Fluorine 18.998	Ne Neon 20.180
	Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	16 S Sulfur 32.066	Chlorine 35.453	Argon 39.948
1	Gallium 69.723	Germanium 72.631	AS Arsenic 74.922	Se Selenium 78.972	Bromine 79.904	Kr Krypton 84.798
m 1	49 In Indium 114.818	50 Sn Tin 118.711	Sb Antimony 121.760	Tellurium 127.6	53 lodine 126.904	Xe Xenon 131.294
J	81 TI Thallium 204.383	Pb Lead 207.2	Bi Bismuth 208.980	Po Polonium [208.982]	At Astatine 209.987	86 Rn Radon 222.018
)	Ununtrium unknown	Flerovium [289]	Uup Ununpentium unknown	Lv Livermorium [298]	117 Uus Ununseptium unknown	Ununoctium unknown

credit: geslab

ນ. ປິ່ນແກ້ວ ເຂັມຄຳພູມີ

ກຸ່ມສານທີ່ໃຊ້ໃນການສ້າງວັດສະດຸເຄິ່ງຕົວນຳ

ขาด silicon

ທາດ Germanium

credit:mindat.org credit: wikipedia

ຍ້ອນຫຍັງຈຶ່ງໃຊ້ຊິລິຄອນ ແລະເຈີມານຸງມ?

ຊິລິຄອນ ແລະ ເຈີມານງຸມມີ **ວາເລັນອີເລັກຕຣອນ** 4 ຕົວ ແຕ່ອີເລັກຕຣອນທັງໝົດຈະບໍ່ເທົ່າກັນໂດຍຊິລິຄອນ ຈະມີອີ

ເລັກຕຣອນທັງໝົດ 14 ຕົວ ສ່ວນເຈີມານຸງມມີ 32 ຕົວ

ໂຄງສ້າງອາໂຕມຂອງ Ge ແລະ Si

credit: Popular science

ວັດສະດຸເຄິ່ງຕົວນຳ ຖືກນຳໄປໃຊ້ໃນການສ້າງອຸປະກອນເອເລັກໂຕຣນິກແທກ ການໃຊ້ຫຼອດ **ສູນຍາກາດ**

ຂໍ້ດີຂອງການໃຊ້ສານເຄິ່ງຕົວນຳໃນການຜະລິດອຸປະກອນເອເລັກໂຕຣນິກແມ່ນ ເຮັດໃຫ້ອຸປະກອນມີຂະໜາດນ້ອຍ ນ້ຳໜັກເບົາ ບໍ່ຕ້ອງໃຊ້ຄວາມຮ້ອນໃນການ ອຸ່ນໃສ້ຫຼອດ ມີຄວາມທຶນທານ ກິນໄຟໜ້ອຍ ແລະລາຄາຖືກ

ຫຼອດສູນຍາກາດ credit: QuantumDay

ນ. ປິ່ນແກ້ວ ເຂັມຄຳພູມີ

ວັດສະດຸເຄິ່ງຕົວນຳ (ທຣານຊິສເຕີ, ໄດໂອດ, ໄອຊິຣິກູເລເຕີ, ຕົວໜ່ຽວນຳ)

ວັດສະດຸເຄິ່ງຕົວນຳ (microprocessor, LED diode, IC)

credit : BTech

ນ. ປິ່ນແກ້ວ ເຂັມຄຳພູມີ

2. ປະເພດຂອງວັດສະດຸເຄິ່ງຕົວນຳ

ປະເພດຂອງສານເຄິ່ງຕົວນຳ

ສານເຄິ່ງຕົວນຳມີ 2 ປະເພດຄື:

- 1. Single-crystal: ສານເຄິ່ງຕົວນຳບໍລິສຸດເຊັ່ນ Si ແລະ Ge 2. Compound-crystal: ສານເຄິ່ງຕົວນຳບໍບໍລິສຸດ ເຊັ່ນ GaAS(gallium arsenide), CdS(Cadmium sulfide)...

ສານເຄິ່ງຕົວນຳບໍລິສຸດ ບໍ່ສາມາດນຳໄຟຟ້າໄດ້ດີເທົ່າກັບຕົວນຳ ຈຶ່ງໄດ້ ມີການປຸງແຕ່ງທາດເຄມີເພື່ອໃຫ້ໄດ້ສານເຄິ່ງຕົວນຳທີ່ມີຄຸນສົມບັດນຳ ໄຟໄດ້ຂຶ້ນ

covalent bond of Ge and Si credit: wikimedia commons

ສານເຄິ່ງຕົວນຳບໍ່ບໍລິສຸດແບ່ງອອກເປັນສອງຊະນິດຄື

• - ຊະນິດ N

ເປັນສານເຄິ່ງຕົວນຳທີ່ມີການເຈື້ອປົນສານ ໃນກຸ່ມຕົວນຳຂ້າງຄຸງໆຊະນິດທີ່ມີ valence electron 5 ຕົວເຊັນ: As (Arsenic), Sb (Stibium), P (Phosphorus) ຈະເຮັດໃຫ້ມີເລັກຕຣອນຕົວທີ 5 ທີ່ເກີດຈາກ ການເກາະກ່ຽວແບບ covalent bond ກາຍເປັນອີເລັກຕຣອນອິດສະຫຼະ ແລະ ສາມາດນຳກະແສໄດ້ ແລະສະແດງປະຈຸ ໄຟຟ້າລົບອອກມາ

ການເກາະກ່ຽວຂອງອາຕອມ Si and Sb credit: inst

ການເກາະກຸ່ງວຂອງອາຕອມ Si and B

credit: inst

- ຊະນິດ P

ເປັນສານເຄິ່ງຕົວນຳທີ່ມີການເຕີມສານເຈືອປົນໃນກຸ່ມສານ ຕົວນຳຂ້າງຄງງຊະນິດທີ່ມີ valence electron 3 ຕົວ ເຊັ່ນ: B (boron) Ga (gallium) In (Indium) ເຮັດໃຫ້ເກີດມີ bond ທີ່ບໍ່ສົມບູນຂຶ້ນ

ເປັນສາເຫດເຮັດໃຫ້ເກີດ hole ອິດສະຫຼະ ແລະສາມາດນຳ ກະແສໄຟຟ້າໄດ້ ແລະສະແດງປະຈຸໄຟຟ້າບວກອອກມາ

3.ຄຸນສົມບັດ

ໄດໂອດ (diode) ເປັນອຸປະກອນເອເລັກໂທນິກມີ 2ຂົ້ວຄື : A (Anode) ແລະ ຂົ້ວ K (Cathode) ມີ

ຄຸນສົມບັດຍອມໃຫ້ກະແສໄຟ້າໄຫລຈາກຂົ້ວ A ໄປຫາຂົ້ວ K ເທົ່ານັ້ນ ແລະ ບໍ່ຍອມໃຫ້ກະແສໄຟ້າໄຫລ

ຈາກຂົ້ວ K ໄປຫາ A ຂົ້ວ

ເມື່ອກ່າວເຖິງໄດໂອດມັກຈະຫມາຍເຖິງໄດໂອດທີ່ເຮັດມາຈາກສານເຄິ່ງ ຕົວນຳທີ່ຕໍ່ກັນໄດ້ຂົ້ວທາງໄຟ້າສອງ

ຂົ້ວ ສ່ວນໄດໂອດແບບຫລອດສູດອາກາດ (Vacuum tube diode) ຖືກ ໃຊ້ສະເພາະທາງໃນເທັກໂນໂລຊີ້

ໄຟ້າແຮງສູງບາງປະເພດເປັນຫລອດອາກາດທີ່ປະກອບດ້ວຍຂົ້ວອີເລັກ ໂທນິກສອງຂົ້ວເຊີ່ງກໍ່ ຄື ແຜ່ນຕົວນຳ

C plate ແລະ ເຄໂທດ (Cathode)

ໄດໂອດ (diode)

4. ການໃຊ້ງານທີ່ວໄປ

ເມື່ອເວົ້າເຖິງ ວັດສະດຸເຄິ່ງຕົວນຳ ໃຊ້ງານທົ່ວໄປເຊັ່ນ:ສະວິດໄຟແມ່ນອຸປະກອນ ໄຟຟ້າຊະນິດໜຶ່ງທີ່ໃຊ້ໃນການຄວບຄຸມວົງຈອນໄຟຟ້າ ຮັບໃຊ້ການເປີດໄຟຟ້າ ຫຼື ຕັດກະແສໄຟຟ້າບໍ່ໃຫ້ໄຫຼເຂົ້າໄປໃນເຄື່ອງໃຊ້ໄຟຟ້າ, ດອກໄຟ, ເຄື່ອງມືຕ່າງໆ.

ເຄື່ອງຈັກໄຟຟ້າ ສະຫຼັບພະລັງງານໄດ້ຖືກອອກແບບມາຕິດຕັ້ງງ່າຍ, ໃຊ້ງ່າຍ, ສາມາດຕອບສະໜອງຄວາມຕ້ອງການຂອງທ່ານໄດ້.

ວັດສະດຸເຄີ່ງຕົວນຳ ຍັງນຳໃຊ້ເຂົ້າໃນອຸປະກອນອີ່ເລັກໂທນິກຕ່າງເຊັ່ນ: ຄອມພິວ ເຕີ, ໂນດບຸກ, ໂທລະທັດ, ວິທະຍຸ ແລະ ເຄືອງໃຊ້ໄຟຟ້າຕ່າງໆເຂົ້າໃຊ້ໃນຊິວິດ ປະຈຳວັນ.

ສະວິດໄຟ (Switch Lights)

ໄມໂຄຣໂປຣເຊເຊີນ (microprocessor)

+ ໄມໂຄຣໂປຣເຊເຊີນ (microprocessor) ເຊິ່ງໃຊ້ໃນການທຳ ງານຄວບຄຸມ ຄອມພິວເຕີ້,ໂທລະສັບ,ໄມໂຄເວບເຄືອງໃຊ້ອີເລັກ ໂທນິກຕ່າງໆໃນບ້ານເມືອງ ແລະ ໃຊ້ເປັນໝ່ວຍປະມວນຜົນ ກາງຂອງເຄືອງໄມໂຄຣຄອມພິວເຕີ.

+ ທານຊີດເຕີ (transistor) ເປັນອຸປະກອນສານຕົວນຳທີ່ໃຊ້ໃນ ເຄືອງອິເລັກໂທນິກທົ່ວໄປ ເຊັ່ນ: ວິທະຍຸ,ໂທລະທັດ,ກ່ອງວາຍຟາຍ ແລະ ມັນຈະຂະຫຍາຍສັນຍານ ສະຫລັບສັນຍານໄຟຟ້າ ພະລັງງານໄຟຟ້າ

ທານຊີດເຕີ (transistor)

5. ການໃຊ້ງານຊິວິດປະຈຳວັນ

ເມືອເວົ້າເຖີງວັດສະດຸເຄີ່ງຕົວນຳໃຊ້ໃນຊິວິດປະຈຳວັນເຊັ່ນ: ຜະລິດຕະພັນຢູ່ໃນຫ້ອທຳງານຈະມີ ຄອມພິວເຕີ, ເຄື່ອງພີມເອກກະສານ, ກ່ອງວາຍຟາຍ ແລະ ເຄືອງອິ ເລັກໂຕນິກຕ່າງໆ.

ຄອມພິວເຕີ (Computer)

ເຄື່ອງພີມເອກກະສານ (Printer)

ກ່ອງວາຍຟາຍ (Router Wifi)

+ ເຄື່ອງໃຊ້ໃນຊິວິດປະຈຳວັນໃນເຮືອນຈະ ມີ :
 ຕູ້ເຢັນ, ຕູ້ຊັກເຄື່ອງ, ເຕົາໄມໂຄເວຟ,
ໂທລະທັດ, ໂນ້ດບຸກ ແລະ ວັດສະດຸເຄີ່ງຕົວນຳຍັງນຳໃນທາງການແພດ ອີກດ້ວຍ.

ຕູ້ຊັກເຄືອງ (Laundry Cabinet)

เติาไมโถเอฟ (Microwave)

ຂໍຂອບໃຈ 🙂