Assignment 8

Yenigalla Samyuktha EE20MTECH14019

Abstract—This document lists out the axioms satisfied for a vector space.

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 8

1 Problem

On \mathbb{R}^n define two operations

$$\alpha \oplus \beta = \alpha - \beta \tag{1.0.1}$$

$$c \cdot \alpha = -c\alpha \tag{1.0.2}$$

The operations on the right are usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?

2 SOLUTION
Let $(\alpha, \beta, \gamma) \in \mathbb{R}^n$ and c, c_1, c_2 are scalars taken from the field \mathbb{R} where the vector space is defined on. Table below lists the axioms satisfied and not satisfied for $(\mathbb{R}^n, \oplus, \cdot)$.

UNSATISTIFD	SATISFIED
Associativity of addition	Additive identity
$\alpha \oplus (\beta \oplus \gamma) = \alpha - \beta + \gamma$	$\alpha \oplus \beta = \alpha - \beta = \alpha$
$(\alpha \oplus \beta) \oplus \gamma = \alpha - \beta - \gamma$	Additive identity is β
$\alpha \oplus (\beta \oplus \gamma) \neq (\alpha \oplus \beta) \oplus \gamma$	unique $\beta = (0, 0,0)$
Commutativity of addition	Additive inverse
$\alpha \oplus \beta = \alpha - \beta$	$\alpha \oplus \alpha = \alpha - \alpha = 0$
$\beta \oplus \alpha = \beta - \alpha$	Additive inverse is α
$\alpha \oplus \beta \neq \beta \oplus \alpha$	
Scalar multiplication with field multipli-	
cation	1
$(c_1c_2) \cdot \alpha = (-c_1c_2)\alpha$	1
$c_1 \cdot (c_2 \cdot \alpha) = c_1 c_2 \alpha$	1
$(c_1c_2)\cdot\alpha\neq c_1\cdot(c_2\cdot\alpha)$	1
Identity element of scalar multiplication	
$1 \cdot \alpha = -\alpha = \alpha$ for $\alpha = (0, 0,, 0)$	1
$1 \cdot \alpha = -\alpha \neq \alpha \forall \alpha \neq (0, 0,, 0)$	
Distributivity of scalar multiplication w.r.t	
vector addition	1
$c \cdot (\alpha \oplus \beta) = -c(\alpha - \beta)$	1
$c \cdot \alpha \oplus c \cdot \beta = -c\alpha - (-c\beta)$	1
$c \cdot (\alpha \oplus \beta) \neq c \cdot \alpha \oplus c \cdot \beta$	1
Distributivity of scalar multiplication w.r.t	
field addition	
$(c_1 + c_2) \cdot \alpha = -(c_1 + c_2)\alpha$	
$c_1 \cdot \alpha \oplus c_2 \cdot \beta = -c_1 \alpha - (-c_2 \beta)$	İ
$(c_1 + c_2) \cdot \alpha \neq c_1 \cdot \alpha \oplus c_2 \cdot \beta$	