

Department of CSIT

Information Technology

Assessment Module-3

Rana, Karan

Instructor: Dr. G.E. Antoniou

1) Simplify, using algebraic manipulations, the following Boolean expression to a minimum number of terms and factors.

• XY Z +
$$\overline{X}$$
Y + XY \overline{Z}

$$= \mathsf{X}\mathsf{Y}\;\mathsf{Z} + \overline{X}\mathsf{Y} + \mathsf{X}\mathsf{Y}\;\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{X}Y$$

$$=XY + \overline{X}Y$$

$$=Y(X+\overline{X})=Y$$

2. Simplify, using algebraic manipulations, the following Boolean expression to a minimum number of terms and factors.

•
$$\overline{XY}$$
 (\overline{X} + Y)(\overline{Y} + Y)

$$=\overline{XY}(\overline{X}+Y)(\overline{Y}+Y)$$

$$=(\overline{X}+\overline{Y})(\overline{X}+Y)$$

$$=\overline{X} + \overline{XY} + \overline{XY} + \overline{YY}$$

$$=\overline{X}(1+\overline{Y}+Y)$$

$$=\overline{X}$$

3. Find the complement and simplify the following expression, to a minimum number of terms and factors.

•
$$X\overline{Y} + \overline{X}Y$$

$$=(\overline{XY})(\overline{XY})$$

$$=(\overline{X}+\overline{Y})(\overline{X}+\overline{Y})$$

$$= X + Y (\overline{X} + \overline{Y})$$

$$=X*\overline{X} + X\overline{Y} + Y\overline{X} + Y*\overline{Y}$$

$$=XY + \overline{XY}$$

4. Find the complement and simplify the following expression, to a minimum number of terms and factors.

$$\bullet$$
 \overline{XY} $+$ \overline{XY}

$$=(\overline{X}+\overline{Y})(\overline{X}+\overline{Y})$$

$$=(\overline{X}+\overline{Y})(X+Y)$$

$$= \! \mathsf{X}^* \mathsf{X} \! + \! \mathsf{X} \overline{Y} \! + \! \overline{X} \mathsf{Y} \! + \! \mathsf{Y} \overline{Y}$$

$$=X\overline{Y}+\overline{X}Y$$

5. Using DeMorgan's Theorem, simplify the following expression, to a minimum number of terms and factors.

•
$$F = \overline{AB} + A + \overline{A}B$$

=(A+A)
$$\overline{B}$$
 + AB
=BAB

6. Using DeMorgan's Theorem, simplify the following expression, to a minimum number of terms and factors.

7. Simplify the following expression by means of a three–variable K–Map, to a minimum number of terms and factors.

•
$$XY + Y \overline{Z} + \overline{X} \overline{YZ}$$

= $XY(Z+Z) + Y(X+X)+XYZ$
= $XY+Y+XYZ$
= $Y+Z$

8. Simplify the following expression by means of a four–variable K–Map, to a minimum number of terms and factors.

•
$$\overline{A}$$
D + BD + \overline{B} C + A \overline{B} D

CD/AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0101	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

9. Simplify the following expression by means of a four–variable K–Map, to a minimum number of terms and factors.

• ABC + CD +
$$B\overline{C}$$
D + \overline{B} C

CD/AB	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

10. Simplify the following expression by means of a four–variable K–Map, to a minimum number of terms and factors.

• ABC + CD +
$$B\overline{C}$$
D + \overline{B} C, with don't care condition: x = ABCD

Module 2

AB/CD	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010