Red-Black Trees (Part 2)

Red-black trees, more rotation cases, insertion, and complexity

Connor Baker

Red-Black Trees (Part 2)

Review

- Color properties
- Insertion: add new values as a red leaf
 - Black parent
 - Red parent and red uncle
 - * Recoloring
 - Red parent and black uncle
 - * Rotation and recoloring

Rotation General Cases

- The new node is red, the parent is red, and the uncle is black
 - Note: more black on the uncle's side of the tree
- Step 1: perform a rotation at the parent if needed
 - When do we do this? Why?

Figure 1: Step 1

- Step 2: perform a rotation at the grandparent
- Step 3: swap the old parent and the grandparent's colors

Connor Baker 1 of 9

Figure 2: Steps 2 and 3

- We could potentially need an additional step in certain cases
 - Consider the case where we need to use a left-rotation with the newly inserted node

Figure 3: An extra rotation may be needed

Problems with Red Subtree Roots

- Remaining issue: if a recolor makes a subtree root red, then we may have create two consecutive red nodes!
- Strategy one: detect and travel back up to perform additional fixes
 - We can always change the root to black for a final fix
 - We do however have to go up to fix the nodes with rotation or recoloring

Example

• Suppose we want to insert 45 into the following red-black tree.

Connor Baker 2 of 9

Figure 4: A red-black tree

- Trying to do so would land us with a red-red combo, where the uncle is also red
 - As such, we'd need to recolor them
 - This requires (possibly) more rotations and recoloring up the tree

Top-Down Approach

- Strategy two: down only (top-down insertion)
 - In a single downwards pass, recolor and rotate to ensure that the insertion will succeed without us having to walk back up the tree to fix it afterwards
- What might cause trouble for us so that we need to go back up the tree to fix it?
 - Black parent: easy, no issue there
 - Red parent
 - * Black uncle?
 - * Red uncle?

Connor Baker 3 of 9

Black Uncle

Figure 5: Cases with a black uncle

Red Uncle

Figure 6: Case with a red uncle

Connor Baker 4 of 9

Top-Down Insertion

- The fix: guarantee that the red parent does not have a red sibling
 - One the way down we need to check the (black) node n
 - If both children are red, chang ethe children to black and change n to red
 - * What if n is the root?
 - If the parent of n is red, use a single/double rotation and recoloring to fix, then continue down the tree
 - * Can n have a red uncle?
 - Ensure that after the red inserction, we only need to perform local adjustments
 - * There is no percolating back up

Example (Continued)

• Back to our previous example of trying to insert 45 into a red-black tree:

Figure 7: Top-down insertion with a red-black tree

Complexity

• A red-black tree which contains n nodes has a height of $O(\log(n))$

Connor Baker 5 of 9

- A detailed proof is available on Wikipedia's Red-Black Tree page
- Notes
- The black height (bh) of a node m counts the number of black nodes from n to a null link (not counting t if t is black)
 - Given bh(t), the shortest path from n to any null link has bh(t) edges: all of which are black nodes
 - Given bh(t), the longet path from t to any null link has 2 * bh(t) edges: the nodes alternate between red and black
 - bh(t) >= h(t) / 2, where h(t) is the height of t where 'h(null) = 0
 - The height of a nod t: h(t) is bounded above by 2 * bh(t)
 - Number of nodes rooted at t: bounded below by 2^bh(t) 1 <= N
 - * Proof by induction on height and bh
 - $h(t) \le 2 \log(2, N + 1)$ where N is the size of the tree

AVL Trees vs. Red-Black Trees

AVL Trees

- Pros
 - Simple(r) to implement
 - Faster lookup (maintains optimal height)
- Cons
 - Slower to insert or delete (because it must maintain optimall height)
 - Simple implementation is recursive and relies on down-up toslutions

Red-Black Trees

- Pros
 - Faster insert/delete (doesn't have to maintain optimal height)
 - Implementation tricks can do down-only insertion and deletion
- Cons
 - Complex algorithm
 - Slower lookup (doesn't have optimal height)
 - Implementation is complicated

Connor Baker 6 of 9

Balanced BST Benefits

- · Keep data in order
- Provided guarantee $O(\log(N))$ find/add/remove
- Reproduce sorted order via an in-order traversal
- Reproduce sorted slices of data
 - Locate a record in $O(\log(N))$ time
 - In-order traversa from that record

Sets and Maps Review

- · Closely related data structures
 - A collection of (usually distinct) values
 - Supports efficient look-up
 - * Do we have this value or not?
 - * Is there a value associated with this key>
- Conventions:
 - Do not allow keys to be null
 - Do not allow duplicate values for a key
 - * put(key1, val1) followed by put(key1, val2) sees val2 overwrite val1
 - Iteration is allowed on the keys
 - * We can the use the key to get the associated value

Maps and Sets Implementations

- Main concern: can we efficiently handle a large number of get operations after a large number of put or get operations?
- Naive implementations
 - Unordered linked list
 - Ordered array
- Trees
 - Binary search trees
 - Balanced binary search trees (AVL, Red-Black, AA)
- Hash tables

Connor Baker 7 of 9

${\bf Maps\ and\ Sets\ Big-}{\cal O}$

Connor Baker 8 of 9

Implementation	Worst Case	Worst Case	Average Case	Average Case	Ordered	Remarks
	Search	Insert	Search	Insert		
Unordered List	O(n)	$O(n)^1$	O(n)	$O(n)^1$	no	
Ordered List	$O(\log(n))$	O(n)	$O(\log(n))$	O(n)	yes	
HT Chaining	O(n)	O(n)	O(n/m)	O(n/m)	no	often used 2
HT Probing	O(n)	O(n)	O(1)	O(1)	no	
BSTs	O(n)	O(n)	$O(\log(n))$	$O(\log(n))$	yes	easy
AVLs	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	yes	easy
Red-Black Trees	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	yes	often used 2

- n: number of values
- m: number of entries
- 1 : O(n) to check for duplicates, O(1) if this is not needed for some reason
- ²: Good constants and relatively easy to implement; used in many libraries

Next Lecture

• Disjoint sets: union/find

• Reading: Chapter 24

Connor Baker 9 of 9