Distribución a priori y Estimación

Monografía de Estadística Bayesiana, Arturo Erdely Ruiz y Eduardo Gutiérrez Peña

- 1. Información subjetiva. Sea T la temperatura máxima (en grados Celsius) que se registrará en el sur de la Ciudad de México el día de mañana.
 - (a) Determine subjetivamente (pero lo más honestamente posible) el valor de a tal que, en t'u opini'on, $\mathbb{P}[T \leq a] = 0.10$ (primer decil).
 - (b) De la misma manera, determine el valor de b tal que $\mathbb{P}[T \leq b] = 0.50$ (valor mediano).
 - (c) Finalmente, determine el valor de c tal que $\mathbb{P}[T \leq c] = 0.75$ (tercer cuartil).
 - (d) Usando solamente las respuestas de los incisos (a) y (b), encuentre la distribución Normal que mejor se ajuste a tus asignaciones. Calcule el valor de $\mathbb{P}[T \leq c]$ bajo esta distribución.
 - (e) Comparando (c) con (d), ¿hay concordancia? En caso negativo, ¿cuál crees que sea la causa?
- 2. Invarianza de la distribución inicial de Jeffreys ante reparametrizaciones. Suponga que Y_1, \ldots, Y_n es una muestra de v.a.i.i.d. Exponencial (θ) , donde $\mathbb{E}[Y_i] = \theta$. Obtenga la distribución inicial de Jeffreys para θ .
- 3. Estimación puntual. Obtenga el estimador puntual $\hat{\theta}^* \in \Theta \subset \mathbb{R}$ bajo la siguiente función de utilidad:

$$U(\widehat{\theta}, \theta) = -\left(\frac{\widehat{\theta} - \theta}{\widehat{\theta}}\right)^2$$

- **4.** Sea X_1, \ldots, X_n una muestra de n v.a.i.i.d. $Normal(\mu, \sigma^2)$, con σ^2 conocida. Suponga que la distribución inicial de μ es $\mu \sim Normal(\eta, \tau^2)$ con η y τ^2 conocidas.
 - (a) Construya un intervalo de credibilidad Bayesiano HPD (highest posterior density) del $100(1-\alpha)\%$ para μ .
 - (b) Construya un intervalo de predicción del 100(1 α)% para X_{n+1} .
 - (c) Considere una distribución inicial uniforme para μ , haciendo $\tau^2 \to \infty$, obtenga (a) y (b).

1