- 1. Ein Auto legt in einer Zehntel Sekunde 4 m zurück.
 - (a) Wie groß ist seine Geschwindigkeit in $\frac{m}{s}$?

Lösung:

geg.: Δt ; Δs

ges.: v

Die Geschwindigkeit v ist der zurückgelegte Weg Δs geteilt durch die verstrichtene Zeit Δt :

$$v = \frac{\Delta s}{\Delta t} = \frac{4 \text{ m}}{0.1 \text{ s}} = 40 \frac{\text{m}}{\text{s}}$$

Antwort: Die Geschwindigkeit ist $40 \frac{\text{m}}{\text{s}}$.

(b) Wie groß ist seine Geschwindigkeit in $\frac{km}{h}?$

Lösung:

geg.: v in $\frac{m}{s}$

ges.: v in $\frac{km}{h}$

$$v = 40 \frac{\text{m}}{\text{s}} = 40 \cdot 3.6 \frac{\text{km}}{\text{h}} = 144 \frac{\text{km}}{\text{h}}$$

Antwort: Die Geschwindigkeit ist $144\,\frac{\mathrm{km}}{\mathrm{h}}.$

(c) Wie lange braucht das Auto für $28.8 \,\mathrm{km}$?

Lösung:

geg.: v in $\frac{km}{h}$

ges.: Δt

$$\begin{split} v &= \frac{\Delta s}{\Delta t} \quad \big| \, \cdot \Delta t \\ v \Delta t &= \Delta s \quad \big| \, : v \\ \Delta t &= \frac{\Delta s}{v} = \frac{28,8 \, \mathrm{km}}{144 \, \frac{\mathrm{km}}{\mathrm{h}}} = 0,2 \, \mathrm{h} = 12 \, \mathrm{min} \end{split}$$

(d) Um auf die in Aufgabe 1a berechnete Geschwindigkeit zu beschleunigen, braucht dieses Auto 20 s. Wie groß ist seine Beschleunigung?

Lösung:

geg.: Δv ; Δt

ges.: a Für die Beschleunigung a gilt:

$$a = \frac{\Delta v}{\Delta t} = \frac{40 \frac{\text{m}}{\text{s}}}{20 \text{ s}} = 2 \frac{\text{m}}{\text{s}^2}$$

Antwort: Die Beschleunigung beträgt $2 \frac{m}{s^2}$.

(e) Vergleichen sie diesen Wert mit der Erdbeschleunigung: Welche der beiden Beschleunigungen ist (ungefähr) wieviel mal größer als die andere?

Lösung:

geg.: Beschleunigung a und Erdbeschleunigung $g = 9.81 \frac{\text{m}}{\text{s}^2}$

ges.: Das Verhältnis der beiden.

Antwort: Die Erbeschleunigung ist $g=9.81\,\frac{\rm m}{\rm s^2}\approx 10\,\frac{\rm m}{\rm s^2}.$ Das heisst,

das Verhältnis der beiden Größen ist $g/a \approx \frac{10 \frac{ph}{2}}{2 \frac{ph}{2}} = 5$. Das heißt, die

Erdbeschleunigung ist 5 mal größer als die Beschleunigung des Autos.

- 2. Eine Kalaschnikov verschießt Munition mit einer Geschwindigkeit von etwa $700\,\frac{\rm m}{\rm s}$. Nehmen Sie an, dass diese Geschwindigkeit über die gesamte Schussweite erhalten bleibt. Es wird auf eine Schießscheibe in $200\,\rm m$ Entfernung geschossen.
 - (a) Wie schnell fliegt die Kugel ausgedrückt in $\frac{km}{h}$?

Lösung:

geg.: v in $\frac{m}{s}$

ges.: v in $\frac{km}{h}$

Da $1\frac{\rm m}{\rm s}=3.6\frac{\rm km}{\rm h}$, sind $700\frac{\rm m}{\rm s}=700\cdot 3.6\frac{\rm km}{\rm h}=2520\frac{\rm km}{\rm h}$.

Antwort: Die Geschwindigkeit beträgt $2520 \frac{\text{km}}{\text{h}}$.

(b) Wie lange braucht das Geschoss, bis es die Zielscheibe erreicht?

Lösung:

geg.: Δs ; v

ges.: Δt

Wir lösen die Formel für die Geschwindigkeit nach Δt auf und setzen ein

$$\begin{split} v &= \frac{\Delta s}{\Delta t} \quad \big| \, \cdot \Delta t \\ v \Delta t &= \Delta s \quad \big| \, : v \\ \Delta t &= \frac{\Delta s}{v} = \frac{200 \, \mathrm{m}}{700 \, \frac{\mathrm{m}}{\mathrm{s}}} = 0,\!286 \, \mathrm{s} \end{split}$$

Antwort: Das Geschoss braucht $0{,}286\,\mathrm{s}$ oder ungefähr eine Viertel Sekunde.

(c) Der Schall ist $340 \, \frac{\text{m}}{\text{s}}$ schnell. Wie lange, nachdem die Kugel die Scheibe durchschlagen hat, kann man dort den Schall hören?

Lösung:

Der Schall braucht für die selbe Strecke $\Delta t_{Schall}=\frac{200\,\mathrm{m}}{340\,\frac{\mathrm{m}}{\mathrm{s}}}=0,588\,\mathrm{s}$. Der Schall kommt also um $\Delta t=\Delta t_{Schall}-\Delta t_{Kugel}=0,588\,\mathrm{s}-0,286\,\mathrm{s}=0,303\,\mathrm{s}$ später an.

3. Sie fahren auf der Landstraße mit $v_1=100\,{\rm \frac{km}{h}}.$ Vor Ihnen, oh Graus, fährt jemand nur $v_2=90\,{\rm \frac{km}{h}}.$

Sie überholen und fahren 10 min friedlich vor sich hin.

(a) Dann müssen Sie pinkeln. Wie weit hinter Ihnen ist jetzt der überholte Wagen?

Lösung:

geg.: v_1 ; v_2

ges.: Abstand beider Fahrzeuge nach $t_1=10\,\mathrm{min}$

Sie sind $t_1=10\,\mathrm{min}=\frac{1}{6}\,\mathrm{h}$

$$\Delta v = v_1 - v_2 = 10 \, \frac{\mathsf{km}}{\mathsf{h}}$$

schneller gefahren. In dieser Zeit haben Sie sich also um

$$s_1 = t_1 \Delta v = \frac{1}{6} \, \mathrm{M} \cdot 10 \, \frac{\mathrm{km}}{\mathrm{M}} = 1{,}67 \, \mathrm{km}$$

vom überholten Fahrzeug entfernt.

Antwort: Der überholte Wagen ist 1,67 km hinter uns.

(b) Ihr Stop dauert 5 min. Dann fahren Sie weiter. Wo ist jetzt der überholte Wagen?

Lösung:

In dieser Zeit $\Delta t_2=5\,\mathrm{min}$ hat sich das überholte Fahrzeug mit der Geschwindigkeit $v_2=90\,\frac{\mathrm{km}}{\mathrm{h}}\,$ um $s_2=\Delta t_2\,v_2=5\,\mathrm{min}\cdot 90\,\frac{\mathrm{km}}{\mathrm{h}}=5\,\mathrm{min}\cdot \frac{90\,\mathrm{km}}{60\,\mathrm{min}}=7,5\,\mathrm{km}$ fortbewegt. Es ist also $\Delta s=s_2-s_1=5,83\,\mathrm{km}$ vor Ihnen.

(c) Wie lange brauchen Sie, bis Sie ihn wieder eingeholt haben? Sie fahren wieder mit $100\,\frac{\rm km}{\rm h}$.

Lösung:

Sie müssen Δs mit der Differenzgeschwindigkeit $\Delta v=10\,\frac{\rm km}{\rm h}$ aufholen. Dafür brauchen Sie $\Delta t_3=\frac{\Delta s}{\Delta v}=\frac{5.83\,{\rm km}}{10\,\frac{\rm km}{\rm h}}=0,\!583\,{\rm h}=35\,{\rm min}.$

(d) Wie weit von Ihrem Pinkelplatz sind Sie dann entfernt?

Lösung:

In dieser Zeit $\Delta t_3=35\,\mathrm{min}=0.583\,\mathrm{h}$ sind sie ja mit $v_1=100\,\mathrm{\frac{km}{h}}$ gefahren, Sie sind also $s_3=v_1\Delta t_3=100\,\mathrm{\frac{km}{y}}\cdot 0.583\,\mathrm{M}=58.3\,\mathrm{km}$ weit gekommen.