

MEEC/MEMN

2024 / 2025

Course: Electrónica de Rádio Frequência

Low Noise Amplifier - Part 1

Goal:

Analysis and design of a LNA with lumped and distributed elements.

http://moodle.fct.unl.pt

Version 1.0 Date: 6th April 2025 Author: Luís Oliveira 2024 / 2025 ERF- Final Project

Motivation

Modern telecommunications systems use high-frequencies with high data-rates. In the receiver path the critical block is the LNA, since, it needs to deal with very low amplitude signals. The LNA has stringent specifications in terns of gain, noise, IM3, P-1dB... In this Project it is expected that the students will understand in detail all these aspects designing an LNA for a ISM (industrial, scientific and medical) band.

Specifications

The LNA for ISM band should fulfill the following specifications:

- ➤ S11 < 10 dB (with Matching networks);
- ➤ S22 < -10 dB (with Matching networks);
- \triangleright F < 3 dB;
- ➤ Gain = MAG = S21 dB (with Matching networks);
- \triangleright 50 Ω load and source.
- \triangleright Characteristic impedance: 50 Ω
- Operation frequency: 3-6 GHz (Bipolar design) (check stability and available gain) please contact professor before start);

DEEC / FCT-UNL April 2025 2 / 4

2024 / 2025 ERF- Final Project

Project assignment

The students should form groups of three. All the groups will use the same transistor BPF420 (form Infineon), with different bias point. Therefore, each group will use a different S-parameter file.

Group	Transistor BFP420	Group	Transistor BFP420	Group	Transistor BFP420
P1G1	IC = 5 mA VCE = 3 V	P2G1	IC = 7 mA VCE = 4 V	P3G1	IC = 10 mA VCE = 5 V
P1G2	IC = 11 mA VCE = 3 V	P2G2	IC = 9 mA VCE = 4 V	P3G2	IC = 8 mA VCE = 5 V
P1G3	IC = 7 mA VCE = 3 V	P2G3	IC = 6 mA VCE = 4 V	P3G3	IC = 12 mA VCE = 5 V
P1G4	IC = 13 mA VCE = 3 V	P2G4	IC = 11 mA VCE = 4 V	P3G4	IC = 7 mA VCE = 5 V
P1G5	IC = 9 mA VCE = 3 V	P2G5	IC = 4 mA VCE = 4 V	P3G5	IC = 14 mA VCE = 5 V
P1G6	IC = 15 mA VCE = 3 V	P2G6	IC = 13 mA VCE = 4 V	P3G6	IC = 9 mA VCE = 5 V
P1G7	IC = 17 mA VCE = 3 V	P2G7	IC = 18 mA VCE = 4 V	P3G7	IC = 20 mA VCE = 5 V

Components

> Transistors

Documents about the BFP420 transistor: Datasheet, spice models are available in the moodle.

Design procedure

1- Project:

<u>LNA</u>

- a. Design the LNA according with the specifications, with a detailed explanation about:
 - i. Design Transistor Bias network;
 - ii. Obtain S-parameters with packaging effects;
 - iii. Transistor validation for the given bias point;
 - iv. Stability.
 - v. Design the input and output matching networks.
 - vi. Determine the gain and NF.

b. Simulation:

- i. Validate the LNA designs using LTSpice.
- ii. Investigate the possibility of changing the input matching, according with the previous specifications of Gain and NF.

2- Report

DEEC / FCT-UNL April 2025 3 / 4

2024 / 2025 ERF- Final Project

- a. The report should have:
 - i. Detailed justification about the options done during the project.
 - ii. Circuit schematics, simulations files, plot, simulation results.
- b. Structure:
 - i. First page with the group number and students identification.
 - ii. Introduction
 - 1. objective
 - iii. Main Body
 - 1. Design
 - 2. Simulations
 - 3. Final circuit
 - 4. Analysis of Results
 - iv. Conclusions

3- Delivery

a. Date: 10-05-2025

b. Place: upload in moodle

Contacts

Prof. Luís Oliveira: Room 3.19 Edif. X / l.oliveira@fct.unl.pt

http://moodle.fct.unl.pt

DEEC / FCT-UNL April 2025 4 / 4