

Fig. 2

Diffusing angle, α Property April 1997

Development angle, φ_o 43

WHIRLPOOL PATENTS COMPANY Docket No. US20020126 Inventor: Yuqi Chen Sheet 3 of 5

FIG. 4A

WHIRLPOOL PATENTS COMPANY Docket No. US20020126 Inventor: Yuqi Chen Sheet 4 of 5

WHIRLPOOL PATENTS COMPANY Docket No. US20020126 Inventor: Yuqi Chen Sheet 5 of 5

50 Determine air flow requirements (CFM) 51 Determine blower wheel and blower housing dimensions: $(R_{wheel} \times blower \text{ wheel depth})$, shaft location and blower housing dimensions Calculate ρ_o using the formula: $\rho_o = \text{Rwheel} + \delta$, where $10 \text{mm} \le \delta \le 20 \text{mm}$ 53 Determine ρ_e and calculate b using the formula $b = \rho_e - \rho_o$ Select a diffusing angle α from the range of: $8^{\circ} \le \alpha \le 13^{\circ}$ Calculate a development angle using the formula: $\varphi_o \tan \alpha = (180/\pi) (b/\rho_o)$ Plot scroll cage profile on polar coordinates starting at the discharge point using the formula: $\rho = \rho_o + (\varphi q - \varphi) b/\varphi_o$ (for $0 \le \varphi \le \varphi_o$) Run a simulation of blower performance 58 Confirm blower wheel produces required CFM at design blower wheel rotation speed Modify the diffusing angle α , calculate a new development angle φ_o 60 Plot a new scroll cage profile using the formula: $\rho = \rho_o + (\varphi o - \varphi) b/\varphi_o \text{ (for } 0 \le \varphi \le \varphi_o)$ Run a simulation of the new scroll cage profile to determine which scroll cage profile performs best 621 Iteratively repeat steps of modifying the diffusing angle α , calculating a new development angle φ_o , plotting a new scroll cage profile and running a simulation of blower performance of new scroll cage profiles until optimum profile is determined