Estas salidas fueron realizadas con el programa Gretl versión 2016b para MS Windows (X86_64).

Ejercicio 1 - Solución

Se cuenta con información proveniente del Economic Report of the President de 1997 que comprende los años 1948 hasta 2003 (INTDEF.RAW). Se desea analizar la relación entre el tipo de interés y la inflación en el largo plazo. Las variables disponibles son:

i3: tipo de interés de las letras del tesoro a 3 meses inf: tasa de inflación anual calculada sobre el IPC.

1) Analice gráficamente ambas series en niveles y en diferencias.

2) Determine el orden de integración de ambas series utilizando el test aumentado de Dickey - Fuller. Comience el contraste ADF con la especificación del modelo b.

Figura 3: Contraste ADF para i3 en niveles.

```
Contraste aumentado de Dickey-Fuller para i3
incluyendo 0 retardos de (1-L)i3
(el máximo fue 10, el criterio BIC)
tamaño muestral 55
hipótesis nula de raíz unitaria: a = 1
  contraste sin constante
                                                                                    contraste con constante
                                                                                    modelo: (1-L)y = b0 + (a-1)*y(-1) + \dots + e valor estimado de (a-1): -0.15136 Estadístico de contraste: tau_c(1) = -2.30706
  modelo: (1-L)y = (a-1)*y(-1) + e
valor estimado de (a-1): -0.0280539
Estadístico de contraste: tau_nc(1) = -0.876669
                                                                                    valor p asintótico 0.1697
  Coef. de autocorrelación de primer orden de e: 0.221
                                                                                    Coef. de autocorrelación de primer orden de e: 0.068
Regresión de Dickey-Fuller
                                                                                 Regresión aumentada de Dickey-Fuller
MCO, usando las observaciones 1949-2003 (T = 55)
                                                                                  MCO, usando las observaciones 1950-2003 (T = 54)
Variable dependiente: d_i3
                                                                                 Variable dependiente: d_i3
```

	Coeficiente	Desv. Típica	Estadístico t	Valor p		Coeficiente	Desv. Típica	Estadístico t	Valor p	
13_1	-0.0280539	0.0320005	-0.8767	0.3318	const i3 1	0.760134 -0.151360	0.375997 0.0656074	2.022 -2.307	0.0485	
					13_1 d 13 1		0.0656074	2.103	0.109/	

Figura 4: Contraste ADF para i3 en primera diferencia.

Contraste aumentado de Dickey-Fuller para d_i3 incluyendo un retardo de (1-L)d_i3 (el máximo fue 10, el criterio BIC) tamaño muestral 53 hipótesis nula de raíz unitaria: a = 1

contraste sin constante modelo: $(1-L)y = (a-1)*y(-1) + \ldots + e$ valor estimado de (a-1): -1.04597 Estadístico de contraste: tau_nc(1) = -6.1748 valor p asintótico 1.806e-009 Coef. de autocorrelación de primer orden de e: -0.023

Regresión aumentada de Dickey-Fuller MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_di

	Coeficiente	Desv. Típica	Estadístico t	Valor p
d_i3_1	-1.04597	0.169393	-6.175	1.81e-09 ***
d_d_i3_1	0.319328	0.135242	2.361	0.0221 **

Figura 5: Contraste ADF para inf en niveles.

Contraste aumentado de Dickey-Fuller para inf incluyendo 2 retardos de (1-L)inf (el máximo fue 10, el criterio BIC) tamaño muestral 53 hipótesis nula de raiz unitaria: a = 1

contraste sin constante modelo: $(1-L)y = (a-1)*y(-1) + \ldots + e$ valor estimado de (a-1): -0.0537011 Estadístico de contraste: $tau_nc(1) = -1.04371$ valor p asintórico 0.268 Coef. de autocorrelación de primer orden de e: 0.013 diferencias retardadas: F(2, 50) = 9.352 [0.0004]

Regresión aumentada de Dickey-Fuller MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_inf contraste con constante modelo: $(1-1)y = b0 + (a-1)*y(-1) + \dots + e$ valor estimado de (a-1): -0.163789 Estadístico de contraste: $tau_c(1) = -1.74585$ valor p asintótico 0.4081 Coef. de autocorrelación de primer orden de e: 0.032 diferencias retardadas: F(2, 49) = 7.471 [0.0015]

Regresión aumentada de Dickey-Fuller MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_i nf

	Coeficiente	Desv. Típica	Estadístico t	Valor p		Coeficiente	Desv. Típica	Estadístico t	Valor p
inf_1 d_inf_1 d_inf_2	-0.0537011 0.107604 -0.424372	0.0514522 0.119476 0.101659	-1.044 0.9006 -4.174	0.2680 0.3721 0.0001 **	const inf_1 * d_inf_1 d_inf_2	0.617390 -0.163789 0.156021 -0.369587	0.441718 0.0938164 0.123318 0.108063	1.398 -1.746 1.265 -3.420	0.1685 0.4081 0.2118 0.0013 ***

Figura 6: Contraste ADF para inf en primera diferencia.

Contraste aumentado de Dickey-Fuller para d_inf incluyendo un retardo de (1-L)d_inf (el máximo fue 10, el criterio BIC) tamaño muestral 53 hipótesis nula de raíz unitaria: a = 1

contraste sin constante modelo: $(1-L)y = (a-1)*y(-1) + \ldots + e$ valor estimado de (a-1): -1.36568 Estadístico de contraste: $tau_nc(1) = -8.85574$ valor p asintótico 2.469e-016 Coef. de autocorrelación de primer orden de e: 0.014

Regresión aumentada de Dickey-Fuller MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_d_inf

	Coeficiente	Desv. Típica	Estadístico t	Valor p
d_inf_1	-1.36568	0.154214	-8.856	2.47e-016 ***
d_d_inf_1	0.446036	0.0996047	4.478	4.26e-05 ***

3) Estime una regresión con i3 como variable dependiente e inf como regresor. Explique por qué la prueba de significación del coeficiente de inf en esta ecuación no tiene validez.

Modelo 1: MCO, usando las observaciones 1948-2003 (T = 56) Variable dependiente: i3

	Coeficiente	Desv.	Típica	Estadístico t	Valor p
const	2.42032	0.463	3285	5.224	2.88e-06 ***
inf	0.640561	0.094	12466	6.797	8.81e-09 ***
Media de la	vble. dep.	4.908214	D.T.	de la vble. dep.	2.868242
Suma de cuad	l. residuos	243.8621	D.T.	de la regresión	2.125080
R-cuadrado		0.461048	R-cua	drado corregido	0.451067
F(1, 54)		46.19446	Valor	p (de F)	8.81e-09
Log-verosimi	litud -	-120.6556	Crite	rio de Akaike	245.3112
Criterio de	Schwarz	249.3619	Crit.	de Hannan-Quinn	246.8816
rho		0.626334	Durbi	n-Watson	0.578943

- 4) Defina el concepto de cointegración y el de regresión espuria.
- 5) Indique si en base a la información disponible es posible afirmar que existe una relación de largo plazo entre el tipo de interés a 3 meses y la inflación. En caso contrario, haga las pruebas necesarias al 1 % de significación, teniendo especial cuidado en los valores críticos utilizados.

```
contraste con constante
 modelo: (1-L)y = b0 + (a-1)*y(-1) + e
valor estimado de (a - 1): -0.374724
  Estadístico de contraste: tau_c(1) = -4.0304
  Valor p 0.002571
 Coef. de autocorrelación de primer orden de e: 0.060
Regresión de Dickey-Fuller
MCO, usando las observaciones 1949-2003 (T = 55)
Variable dependiente: d uhat1
             Coeficiente Desv. Típica Estadístico t Valor p
                          0.192430
              0.0867649
                                               0.4509
                                                            0.6539
  const
                                                             0.0026 ***
  uhat1 1
           -0.374724
                            0.0929743
                                              -4.030
```

- 6) Explique que se denomina Modelo de Corrección del Error (MCE) y Término de Corrección del Error (TCE) y que aporta el TCE en una ecuación de predicción para el tipo de interés. ¿Existe alguna hipótesis respecto al signo del coeficiente asociado al TCE? Justifique.
- 7) Estime el MCE incluyendo dos retardos de cada una de las variables como regresores. Interprete la salida. Obtenga los residuos y estudie su comportamiento. ¿Son ruido blanco?

Figura 7: Estimación del MCE

Modelo 4: MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_i3 Modelo 5: MCO, usando las observaciones 1951-2003 (T = 53) Variable dependiente: d_i3 Coeficiente Desw Tipica Estadístico t Valor p

Coei	riciente	Desv. Tipio	a Estadistico t	valor p			Coeficiente	Desv. Tip	pica Estadistico t	Valor p	
const 0.6	652251	0.324298	2.011	0.0501	•	const	0.0516174	0.175840	0.2935	0.7704	
TCE -0.2	248163	0.105203	-2.359	0.0225	**	uhat1_1	-0.248163	0.10520	3 -2.359	0.0225	**
d_inf_1 -0.0	00306732	0.111510	-0.02751	0.9782		d inf 1	-0.00306738	0.11151	0 -0.02751	0.9782	
d_inf_2 -0.0	0256430	0.0825491	-0.3106	0.7574		d_inf_2	-0.0256431	0.08254	91 -0.3106	0.7574	
d_i3_1 0.3	307971	0.152037	2.026	0.0485	**	d_i3_1	0.307971	0.15203	7 2.026	0.0485	**
d_i3_2 -0.3	308305	0.150914	-2.043	0.0467	**	d_i3_2	-0.308305	0.15091	4 -2.043	0.0467	**
Media de la vble.	. dep0	.003774 D.:	Γ. de la vble. dep.	1.3934	08	Media de la	vble. dep0	0.003774	D.T. de la vble. dep.	1.39340	18
Suma de cuad. res	siduos 7	5.81536 D.1	C. de la regresión	1.2700	76	Suma de cuad	d. residuos 7	5.81536 I	D.T. de la regresión	1.27007	6
R-cuadrado	0	.249074 R-c	cuadrado corregido	0.1691	88	R-cuadrado	0	.249074	R-cuadrado corregido	0.16918	8
F(5, 47)	3.	.117872 Val	Lor p (de F)	0.0164	08	F(5, 47)	3	.117873	Valor p (de F)	0.01640	8
Log-verosimilitud	d -8	4.69098 Cr:	iterio de Akaike	181.38	20	Log-verosim	ilitud -8	84.69098	Criterio de Akaike	181.382	20
Criterio de Schwa	arz 1	93.2037 Cr:	it. de Hannan-Quinn	185.92	80	Criterio de	Schwarz 1	.93_2037 (Crit. de Hannan-Quinn	185.928	0
rho	-0	.024191 Du:	rbin-Watson	2.0220	32	rho	-0	0.024191	Durbin-Watson	2.02203	32

Sin considerar la constante, el valor p más alto fue el de la variable 8

(d_inf_1)

Figura 8: Correlograma de los residuos del MCE

FACP de uhat_MCE

retardo

Función de autocorrelación para uhat MCE ***, ** y * indica significatividad a los niveles del 1%, 5% y 10% Utilizando desviación típica $1/T^0.5$

ETARDO) FAC	FACP	Estad-Q.	[valor p]
1	-0.0237	-0.0237	0.0314	[0.859]
2	-0.0298	-0.0304	0.0821	[0.960]
3	-0.0524	-0.0539	0.2421	[0.971]
4	-0.1693	-0.1736	1.9468	[0.746]
5	0.0425	0.0297	2.0563	[0.841]
6	-0.0290	-0.0427	2.1084	[0.909]
7	-0.0069	-0.0262	2.1114	[0.953]
8	0.0576	0.0298	2.3261	[0.969]
9	-0.0105	-0.0011	2.3334	[0.985]
10	0.1236	0.1159	3.3692	[0.971]
11	0.1847	0.2041	5.7367	10.8901

Obtienen el mismo resultado estimando con el residuo uhat1 retardado un período, cambia constante en MCE.

8) ¿Cuál es la relación entre el MCE y el ADL(1,1)?

Figura 9: ADL(1,1) y MCE

Modelo 4: MCO, usando las observaciones 1949-2003 (T = 55) Variable dependiente: i3 $\,$

0.2 0.1 0 -0.1 -0.2 -0.3

		Coefficient	e Desv.	lipica	Estadistico t	valor p	
	const	0.407869	0.316	637	1.288	0.2035	
	inf	0.326117	0.074	11133	4.400	5.53e-05	**
	inf 1	-0.0673765	0.07	84216	-0.8592	0.3943	
	i3 1	0.721581	0.078	0064	9.250	1.72e-012	**
	Media de la	vble. dep.	4.978545	D.T. (de la vble. dep	. 2.845528	
	Suma de cuad	. residuos	67.32281	D.T. (de la regresión	1.148936	
	R-cuadrado		0.846028	R-cua	drado corregido	0.836970	
F(3, 51)		93.40941	Valor	p (de F)	1.02e-20		
Log-verosimilitud			-83.60118	Crite	rio de Akaike	175.2024	
	Criterio de	Schwarz	183.2317	Crit.	de Hannan-Quin	n 178.3074	
	rho		0.097309	h de l	Durbin	0.884744	

Modelo 5: MCO, usando las observaciones 1949-2003 (T = 55) Variable dependiente: d_13

	Coefficiente	Desv. I	ipica	Estadistico t	valor p	
const	0.688194	0.2504	 95	2.747	0.0082	***
d inf	0.281243	0.0677	452	4.151	0.0001	***
TCE	-0.266484	0.0783	187	-3.403	0.0013	***
Media de l	a vble. dep0	.000364	D.T.	de la vble. dep.	1.3674	88
Suma de cu	ad. residuos 7	0.00121	D.T. d	le la regresión	1.1602	49
R-cuadrado	0	.306790	R-cuad	irado corregido	0.2801	28
F(2, 52)	1	1.50665	Valor	p (de F)	0.0000	73
Log-verosi	militud -8	4.67405	Crite	rio de Akaike	175.34	81
Criterio d	le Schwarz 1	81.3701	Crit.	de Hannan-Quinn	177.67	69
rho	0	.140491	Durbir	-Watson	1.6898	35

Sin considerar la constante, el valor p más alto fue el de la variable 10 $(\inf_{-1}1)$