1906003132015

Doğal Dil İşleme

BAİBÜ Bilgisayar Müh.

Dr. Öğr. Üyesi İsmail Hakkı Parlak

ismail.parlak@ibu.edu.tr

Oda: 335

Negatif Olmayan Matris Çarpanlarına Ayırma

- Negatif olmayan matris çarpanlarına ayırma (Nonnegative matrix factorization - NMF), n x m boyutlarındaki bir matrisi (A), n x k (W) ve k x m (H) boyutlarında 2 matrisin çarpımı haline getirmedir.
- $k << min(m, n), W \ge 0, H \ge 0$
- Elimizde bir A matrisi varken, W x H = A eşitliğini sağlayabilecek, elemanları negatif olmayan W ve H matrislerini direkt (analitik) hesaplamanın bir yolu yoktur. W ve H matrisleri nümerik yakınsama metotları ile yaklaşık olarak hesaplanabilir.

Negatif Olmayan Matris Çarpanlarına Ayırma

m x n kadar veri ile ifade edilen bir sistem, $(m \times k) + (k \times n) = k \times (m + n)$ kadar veri ile yaklaşık olarak ifade edilebilir hale gelir.

Negatif Olmayan Matris Çarpanlarına Ayırma

 $||A - W \times H||^2$ diye gösterilen hatayı en aza indirgeyerek W ve H çarpanları elde edilir.

Ancak W ve H matrislerinin tüm elemanlarının ≥ 0 olması gerektiği unutulmamalıdır.

	F_1	F2	F3	F4	F5
K_1	٠٠	2	٠٠	2	0
K ₂	3	2	1	?	
K ₃	?	4	2	2	?
K ₄	?	2	?	2	?

K_i: Kullanıcılar

F*j*: Filmler

A_{ij}: K_i kullanıcısının F_i filmine verdiği puan

	F_1	F2	F3	F4	F5
K_1	?	2	٠٠	2	0
K ₂	3	2	1	?	
K ₃	?	4	2	2	5
K ₄	?	2	?	2	?

2	0		0	2		3	2	1	1	2
?	٠.	~	1	0	X	0	1	2	1	0
2	?	≈	2	0						
2	?		0	2						

	F_1	F2	F3	F4	F5		
K_1	0	2	4	2	0		0
K_2	3	2	1	1	2	~	1
K_3	6	4	2	2	4	~	2
K_4	0	2	4	2	0		0
						_	

0	2
1	0
2	0
0	2

X

3 2 1 1 2 0 1 2 1 0 H

W

	N_1	N_2		
K_1	0	2		
K ₂	1	0		
K ₃	2	0		
K ₄	0	2		
!	W			

	F ₁	F ₂	F ₃	F ₄	F ₅
N_1	3	2	1	1	2
N_2	0	1	2	1	0
			Н		

W: Kullanıcıların film nitelikleri (N₁, N₂) ile ilişkileri

H: Filmlerin nitelik değerleri

N_i: Örtük nitelikler (Latent Features)

Konu Modelleme

- Konu modelleme (Topic modeling), derlem (corpus) içerisindeki metinlerde geçen konuları keşfedebilen bir kavramdır.
- Sınıflandırma algoritmalarının tersine, denetimsiz (unsupervised) olarak çalışır.
- Konu modelleme teknikleri ile bir dokümanlar havuzunda geçen konular keşfedilir ve havuzdaki dokümanlar bu otomatik keşfedilmiş konulara göre kümelendirilir (clustering).

Konu Modelleme

d: dokümanlar

w: kelime dağarcığı

k: konular