Frankie Gillis

fotg1@st-andrews.ac.uk | linkedin.com/in/frankie-gillis

Education

BSc (Hons) Mathematics | University of St Andrews

Sept 2024 - May 2027

- Sub-honours average: 19.75/20
- Received the Tullis Medal and Prize for Pure Mathematics.
- **Grades**: Linear Mathematics (20), Combinatorics and Probability (20), Analysis (20), Vector Calculus (20), Abstract Algebra (20), Mathematical Modelling (20), Multivariate Calculus (19), Statistical Inference (19).

Research Experience

Research Intern | Laidlaw Scholar | Combinatorics

June 2025 - Aug 2025

- Completed a summer research internship in Combinatorics under the supervision of Dr Thomas Coleman in the School of Mathematics and Statistics, researching algebraic graph theory using methods from inverse semigroup theory.
- Proved a correspondence between pseudo-similar vertices in graphs and Green's relations on the graph's inverse monoid of partial automorphisms. Used this to derive a new upper bound on the size of a set of mutually pseudo-similar vertices in a graph of a given order.
- Funded through the Laidlaw Scholars Leadership and Research Programme. Produced both an academic poster and research essay, which I presented at the Laidlaw Scholars Conference at Durham University.
- Research poster was 'Highly Commended' by a commissioning editor at the publishing group Taylor and Francis Group, and shortlisted for their F1000Research publication.

Contributor | Computational Mathematics

Feb 2025 – Present

- Contributed to the development of the Digraphs package for the GAP computer algebra system, for computing with directed graphs. Part of the vertically-integrated project in computational mathematics supervised by Prof James Mitchell.
- Designed and implemented an algorithm to determine if a digraph is 2-edge transitive. Reduced the time complexity of enumerating the 2-edges from $\mathcal{O}(n^3)$ to $\mathcal{O}(n^2+m)$ for a digraph with n vertices and m edges. Utilised the Orbit-Stabiliser theorem in computing the final step. A note on how Is2EdgeTransitive works in available on my github.
- Implemented the method DigraphMinimumCutSet to find the minimal cut of a network using the max-flow min-cut theorem from combinatorial optimisation, utilising the existing method DigraphMaximumFlow.

Mathematical Writings

"A Note on Is2EdgeTransitive", explanatory note and derivation of my implementation of Is2EdgeTransitive in GAP, October 2025.

"Understanding Pseudo-similarity in Graphs: a Path to Proving the Reconstruction Conjecture", research essay summarising the main findings of my summer research project, Laidlaw Scholars Network, September 2025.

Conference Presentations

"Understanding Pseudo-similarity in Graphs: a Path to Proving the Reconstruction Conjecture" (poster), Laidlaw Scholars Conference, Durham University, October 2025.