SEMAINE DU 05/10 AU 09/10

1 Cours

Notion d'application

Définitions Ensembles d'arrivée et de départ, graphe, image.

Composition Définition, associativité, application identité.

Injectivité Définition. Composition et injectivité.

Surjectivité Définition. Composition et surjectivité.

Bijectivité Définition. Bijection réciproque. $f: E \to F$ est bijective **si et seulement si** il existe $g: F \to E$ telle que $g \circ f = \mathrm{Id}_E$ et $f \circ g = \mathrm{Id}_F$.

Image directe et réciproque Définitions. Image directe et réciproque d'une union, d'une intersection.

Restriction et prolongement Définitions. Bijection induite.

2 Méthodes à maîtriser

- ▶ Savoir prouver l'injectivité en pratique : « Soit (x, x') tel que $f(x) = f(x') \dots$ ».
- ► Savoir prouver la surjectivité en pratique : recherche d'un antécédent (résolution d'une équation).
- ► Savoir prouver la bijectivité en pratique :
 - Existence et unicité d'une solution de l'équation y = f(x) où y est fixé et x est l'inconnue.
 - Déterminer g telle que $g \circ f = Id$ et $f \circ g = Id$.
 - Montrer que f est injective et surjective.
- ► Automatismes :
 - $--y \in f(A) \iff \exists x \in A, y = f(x)$
 - $-x \in f^{-1}(B) \iff f(x) \in B$

3 Questions de cours

- ▶ Soient $f: E \to F$ et $g: F \to G$. Montrer que si f et g sont injectives (resp. surjectives) alors $g \circ f$ est injective (resp. surjective).
- ▶ Soient $f: E \to F$ et $g: F \to G$. Montrer que si $g \circ f$ est injective (resp. surjective) alors f est injective (resp. g est surjective).
- ightharpoonup Déterminer une bijection de \mathbb{N} sur \mathbb{Z} .
- $\blacktriangleright \ \, \text{Montrer que f}: \left\{ \begin{array}{ccc} \mathbb{C} \setminus \{1\} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & \frac{z+1}{z-1} \end{array} \right. \ \, \text{induit une bijection de i} \mathbb{R} \, \, \text{sur} \, \, \mathbb{U} \setminus \{1\}.$