Semana 3 (23/09/2020)

Problemas (Tema 1)

3. De entre los siguientes sistemas de propulsión:

Motor cohete	ELECTROSTÁTICO	ELECTROMAGNÉTICO	QUÍMICO
$\rho_P (\text{kg/m}^3)$	13000	3000	150
I_{sp} (s)	5000 - 20000	500 – 4000	150 - 550
$\alpha_M + \alpha_{PP} (kg/kW)$	60	30	(-) *
η_C	0,65	0,35	0,9
k	0,01	0,02	0,2

Donde es:

- ρ_P = densidad del propulsante
- $\alpha_{()} = M_{()} / W_{motor}$
- η_C = rendimiento motor
- $k = M_T / M_P$
- M_P = masa del propulsante; M_T = masa de los tanques de propulsante; M_{PP} = masa de la planta de potencia; M_M = masa del motor; M_{PL} = masa de la carga de pago; M_0 = masa total inicial del satélite;
- (*) Para el motor cohete químico, considérese la relación: $E/M_M = 100$ mN/kg y $M_{PP} = 0$.

Seleccionar el sistema de motor cohete más adecuado (mínima masa del sistema de propulsión: $M_{SP} = M_P + M_T + M_{PP} + M_M$) para una misión de control de actitud de un satélite con empuje E = 15 mN y tiempo de funcionamiento de 3 horas/día durante 10 años de misión.