Modélisation de l'effet de l'humidité : chaleur latente

1. Principe physique

Lorsque de l'eau s'évapore à la surface de la Terre, elle absorbe une quantité importante d'énergie thermique, appelée chaleur latente de vaporisation, sans changement de température. Cette chaleur est ensuite restituée à l'air lors de la condensation, par exemple dans la formation des nuages.

La chaleur latente de vaporisation de l'eau vaut :

$$L_v = 2.26 \times 10^6 \text{ J/kg}$$

2. Formule de puissance thermique

On peut modéliser cette énergie par une puissance surfacique liée à l'évaporation (ou à la condensation):

$$P_{\text{latente}} = L_v \cdot \phi_{\text{evap}}$$

où:

- P_{latente} est la puissance thermique surfacique (W/m²),
- L_v est la chaleur latente de vaporisation (J/kg),
- ϕ_{evap} est le flux massique d'eau évaporée (kg/m²/s).

3. Ordres de grandeur de ϕ_{evap}

- Zone humide (forêt, océan tropical) : $\phi_{\rm evap} \approx 1 \times 10^{-5}$ à 3×10^{-5} kg/m²/s
- Zone tempérée : $\phi_{\text{evap}} \approx 2 \times 10^{-6}$ à 1×10^{-5} kg/m²/s Désert : $\phi_{\text{evap}} \approx 1 \times 10^{-7}$ à 5×10^{-7} kg/m²/s