12. Sorting Algorithms:: Comparing Merge Sort to Insertion/Selection Sort

We have shown that the worst case time complexity of merge sort is $O(n \ lg \ n)$. How does this compare to the $O(n^2)$ time complexity of the insertion and selection sort algorithms? Let's assume for merge sort that an array access also takes 25 ns (the same time we assumed for a comparison in insertion/selection sort).

Selection/Insertion Sort

n	c(n)	t(n) sec	$t(n) \min$	$t(n) \operatorname{hr}$	t(n) day	t(n) years	t(n) millennia
10^6	10^{12}	2.5×10^4	4.2×10^2	6.9×10^{0}			
10^7	10^{14}	2.5×10^6	4.2×10^4	6.9×10^2	2.9×10^{1}		
10^8	10^{16}	2.5×10^8	4.2×10^6	6.9×10^4	2.9×10^3	$7.9\times10^{\scriptscriptstyle 0}$	
10^9	10^{18}	2.5×10^{10}	4.2×10^8	6.9×10^6	2.9×10^5	7.9×10^2	
10^{10}	10^{20}	2.5×10^{12}	4.2×10^{10}	6.9×10^8	2.9×10^7	7.9×10^{4}	7.9×10^{1}

Merge Sort