Fenômenos de Transporte Aula 1 – Propriedades

Dirceu S. Reis Jr.

Departmento de Engenharia Civil e Ambiental Universidade de Brasília

Date / Occasion

Tópicos

- Grandezas, Unidades e Dimensões
- O que é um Fluido?
- Hipótese do Meio Contínuo
- Medidas de Massa e Peso
 - Massa específica/Volume específico
 - Peso específico
 - densidade/gravidade específica
- Viscosidade
- Lei dos Gases Perfeitos
- Pressão de vapor
- Tensão superficial

Grandezas, Unidades e Dimensões

- Tipos de grandezas
 - Geométrica: ângulo, comprimento, área, volume
 - Cinemática: velocidade, aceleração, descarga
 - Dinâmica: massa, força, pressão, trabalho, potência
- Grandezas podem ser:

Fundamentais

Independentes de outras grandezas

Derivadas

Dependem de grandezas fundamentais

Unidade: forma de atribuir número à grandeza

Grandezas Fundamentias

Grandeza	Símbolo	Unidades SI
Massa	M	Kg (quilograma)
Comprimento	L	M (metro)
Tempo	Т	S (segundo)
Temperatura	theta	K (kelvin)
Corrente elétrica	I	A (ampere)
Quantidade de luz	С	Cd (candela)
Quantidade de matéria	N	mol (mol)

Grandezas Derivadas

•
$$[A] = L^2$$

•
$$[Vol] = L^3$$

•
$$[V] = LT^{-1}$$

•
$$[a] = LT^{-2}$$

•
$$[Q] = L^3 T^{-1}$$

•
$$[\rho] = ML^{-3}$$

•
$$[\gamma] = ML^{-2}T^{-2}$$

•
$$[F] = [m \times a] = MLT^{-2}$$

•
$$[\tau] = [F/A] = ML^{-1}T^{-2}$$

•
$$[E] = ML^2T^{-2}$$

Princípio da Homogeneidade Dimensional

Todos os termos de soma de uma equação precisam ter as mesmas dimensões!!!!

$$z + \frac{p}{\gamma} + \frac{V^2}{2g} = \text{constante} \tag{1}$$

Verificação da dimensão

$$[z] = L$$

$$\left[\frac{p}{\gamma}\right] = \frac{ML^{-1}T^{-2}}{ML^{-2}T^{-2}} = L$$

$$\left[\frac{V^2}{2g}\right] = \frac{L^2T^{-2}}{LT^{-2}} = L$$

Princípio da Homogeneidade Dimensional

Todos os termos de soma de uma equação precisam ter as mesmas dimensõesIIII

$$z + \frac{p}{\gamma} + \frac{V^2}{2g} = \text{constante} \tag{1}$$

Verificação da dimensão

$$[z] = L$$

$$\left[\frac{\rho}{\gamma}\right] = \frac{ML^{-1}T^{-2}}{ML^{-2}T^{-2}} = L$$

$$\left[\frac{V^2}{2g}\right] = \frac{L^2T^{-2}}{LT^{-2}} = L$$

Definição de um fluido

O que é um fluido? Qual é a diferença entre um fluido e um sólido?

Principais diferenças

Sólido

- espaço intermolecular pequeno
- forças intermoleculares intensas e coesivas
- difícil de deformar
- capaz de manter sua forma

Líquido

- espaçamento maior entre moléculas
- forças intermoleculares fracas (em relação ao sólido)
- facilmente deformável

Gases

- espaçamento ainda maior entre moléculas
- forças intermoleculares desprezíveis
- facilmente deformável e compressível

Comportamento – tensão de cisalhamento

Sólidos

Deforma mas não escoa: tensão \propto deformação

Fluidos

Deforma continuamente: tensão \propto taxa de deformação

Hipótese do Meio Contínuo

Estrutura molecular

Apesar da estrutura molecular de um fluido explicar muio do seu comportamento, não é possível analisar o escoamento de um fluido por meio do comportamento de suas moléculas.

Estratégia

O comportamento do fluido é caracterizado através de valores médios (num dado volume pequeno), também chamado de macroscópicos da quantidade de interesse (massa, velocidade, energia etc).

Hipótese do Meio Contínuo

Vantagens

- Permite relacionar a propriedade como função do ponto
- Variação da propriedade é suave (sem saltos)

Premissa

Sistema precisa ser muito maior do que o espaçamento entre moléculas. Exemplo:

- diâmetro da molécula de oxigênio: $3.0 \times 10^{-6} \ m$
- distância entre moléculas $\approx 6.3 \times 10^{-8} \ m$
- Há 2.5×10^6 moléculas em 1mm^3 .

Massa específica (ρ)

Massa específica

- Massa da substância contida numa unidade de volume.
- Caracteriza a massa de um sistema fluido

$$\rho = \frac{\mathsf{massa}}{\mathsf{vol}} \; (\mathsf{kg/m^3} \; \mathsf{no} \; \mathsf{SI})$$

Volume específico (ν)

- Volume ocupado por uma unidade de massa da substância.
- Volume específico é o iinverso da massa específica

$$\nu = \frac{\text{vol}}{\text{massa}} \ (m^3/kg \ no \ SI)$$

- Quem possui maior massa específica (líquidos)?
 - Álcool etílico
 - Gasolina
 - Mercúrio
 - Óleo SAE 30
 - Água do mar
- Quem possui maior massa específica (gases)?
 - Ar padrão
 - Dióxido de Carbono
 - Hélio
 - Hidrogênio
 - Metano
 - Nitrogênio
 - Oxigênio

Fluido	Temperatura (C)	Massa específica (kg/m3)
Álcool etílico	20	789
Gasolina	15.6	680
Glicerina	20	1260
Mercúrio	20	13600
Óleo SAE 30	15.6	912
Água do mar	15.6	1030
Água	15.6	999

Fluido	Temperatura (C)	Massa específica (kg/m3)
Ar padrão	15	1.23
Dióxido de carbono	20	1.83
Hélio	20	1.66E-1
Hidrogênio	20	8.38E-2
Metano	20	6.67E-1
Nitrogênio	20	1.16
Oxigênio	20	1.33

Peso Específico (γ)

Peso específico

- Peso da substância contida numa unidade de volume.
- Caracteriza o peso de um sistema fluido

$$\gamma = \rho g \, (N/m^3 \, no \, SI)$$

Densidade ou gravidade específica

densidade

É a razão entre a massa específica de um fluido e a massa específica da água a 4°C.

$$\mathsf{densidade} = \frac{\rho}{\rho_{\textit{H}_2\textit{O}\,\textit{a}\,4^\circ\textit{C}}}$$

Mais uma propriedade

- Mover-se no ar é mais fácil do que mover-se na água;
- Mover-se no óleo é ainda mais difícil do que mover-se na água;
- Fluidos com massa específica similares podem ter resistência ao escoamento bem diferentes;
- Que propriedade é essa relacionada com resistência ao escoamento???

Veja os vídeos

Equacionamento

Fluidos Newtonianos

Viscosidade depende:

- do fluido
- e da temperatura

Taxa de deformação por cisalhamento , $\frac{du}{dy}$

Fluidos não Newtonianos

- Dilatante: viscosidade aparente aumenta com a taxa de deformação
- Pseudoplástico: viscosidade aparente diminui com a taxa de deformação
- Plástico de Bingham: Comporta-se como sólidos para pequenos valores de tensão de cisalhamento, e a partir de um dado valor, comporta-se como fluido.

Viscosidade vs Temperatura

Viscosidade cinemática

Viscosidade cinemática (ν)

$$\bullet$$
 $\nu = \mu/\rho$

•
$$[\mu] = ML^{-1}T^{-1}$$

•
$$[\rho] = ML^{-3}$$

•
$$[\nu] = \frac{ML^{-1}T^{-1}}{MI^{-3}} = L^2T^{-1} (m^2/s \text{ no SI})$$

Viscosímetro

- Ver vídeos
- Exercício relacionado com viscosímetro

Lei dos gases perfeitos

Diferentes expressões

$$PV = nR_uT$$

$$PV = NkT$$

$$P = \frac{nR_u}{V}T = \rho RT$$

P = pressão (Pascal); V = volume (m3)

n = número de moles (1 mol contém 6.022×10^{23} moléculas)

 R_u = constante universal dos gases ($R_u = 8.3 J/mol.K$)

T = temperatura em graus Kelvin (K)

$$k = nR_u/N = R_u/N_a = 1.38 \times 10^{-23} \text{ kg}$$

 $R = R_u/M$ depende do gás

M = massa molar

Tensão de vapor

Diagrama de fase

Definição

- Líquido num compartimento fechado
- Moléculas com energia se soltam do líquido
- Moléculas de gás podem voltar para o líquido
- no equilíbrio:
 - moléculas que se soltam do líquido são iguais a
 - moléculas de gás que voltam para o líquido
 - pressão do gás = pressão de vapor

Fatores que afetam a pressão de vapor

- temperatura do líquido:
 Quanto maior a temparatura, mais facilmente a molécula se desprende
- pressão:
 Quanto menor a pressão, mais facilmente a molécula se desprende

Relação entre pressão de vapor e ponto de ebulição

• se P = 1 atm \rightarrow ebulição ocorre quando $T = 100^{\circ}C$

Relação entre pressão de vapor e ponto de ebulição

- se P = 1 atm \rightarrow ebulição ocorre quando $T = 100^{\circ}C$
- Nesse caso, $P_{\nu}(T = 100) = 101.3kPa$
- Ebulição ocorre quando $P_v = P_{ambiente}$
- Em locais de grande elevação, ebulição ocorre a temp menores que 100 C.

Table A.8
Properties of Water (SI Units)

Temperature, $T(^{\circ}C)$	Density, ρ(kg/m ³)	Dynamic Viscosity, μ (N · s/m ²)	Kinematic Viscosity, ν (m ² /s)	Surface Tension, σ(N/m)	Vapor Pressure, $p_v(kPa)$	Bulk Modulus, $E_v(GPa)$
0	1000	1.76E-03	1.76E-06	0.0757	0.661	2.01
5	1000	1.51E-03	1.51E-06	0.0749	0.872	
10	1000	1.30E-03	1.30E-06	0.0742	1.23	
15	999	1.14E-03	1.14E-06	0.0735	1.71	
20	998	1.01E-03	1.01E-06	0.0727	2.34	2.21
25	997	8.93E-04	8.96E-07	0.0720	3.17	
30	996	8.00E-04	8.03E-07	0.0712	4.25	
35	994	7.21E-04	7.25E-07	0.0704	5.63	
40	992	6.53E-04	6.59E-07	0.0696	7.38	
45	990	5.95E-04	6.02E-07	0.0688	9.59	
50	988	5.46E-04	5.52E-07	0.0679	12.4	2.29
55	986	5.02E-04	5.09E-07	0.0671	15.8	
60	983	4.64E-04	4.72E-07	0.0662	19.9	
65	980	4.31E-04	4.40E-07	0.0654	25.0	
70	978	4.01E-04	4.10E-07	0.0645	31.2	
75	975	3.75E-04	3.85E-07	0.0636	38.6	
80	972	3.52E-04	3.62E-07	0.0627	47.4	
85	969	3.31E-04	3.41E-07	0.0618	57.8	
90	965	3.12E-04	3.23E-07	0.0608	70.1	2.12
95	962	2.95E-04	3.06E-07	0.0599	84.6	
100	958	2.79E-04	2.92E-07	0.0589	101	

Definição

Quando um líquido escoa, é possível que a pressão fique abaixo da pressão de vapor do líquido a uma dada temperatura. Há formação de bolhas no escoamento. Quando as bolhas entram em uma região de maior pressão, entram em colapso, podendo causar danos à estrutura.

(b) A nonwetted surface

(a) Capillary rise ($\theta < 90^{\circ}$)

(b) Capillary depression ($\theta > 90^{\circ}$)

Surface Tension of Common Liquids at 20°C

	Surface Tension,		
Liquid	$\sigma (mN/m)^a$	Contact Angle, θ (degrees)	
(a) In contact with air		Air Liquid θ	
Benzene	28.9		
Carbon tetrachloride	27.0		
Ethanol	22.3		
Glycerin	63.0		
Hexane	18.4		
Kerosene	26.8		
Lube oil	25-35		
Mercury	484	140	
Methanol	22.6		
Octane	21.8		
Water	72.8	~0	