

2021. 09.

변전소 종합예방진단 시스템

진단시스템 구성

변전소 종합예방진단 시스템

변전소 종합예방진단 시스템

1. GIS부분방전

Block diagram

GIS & UHF Sensor

User interface

PRPS (Phase Resolved Pulse Sequence)

1. GIS부분방전

PRPD로 본 부분방전 Pattern 과 설명고장유형(GIS)

2. M.Tr 부분방전

2. M.Tr 부분방전

PRPD로 본 부분방전 Pattern 과 설명고장유형 (M.Tr)

차단기 동작특성 진단장치

Target	Monitoring & Diagnosis element
Load Current	Interrupting time
Close & Trip coil	Condition of close/trip coil
C.B Contactor	Opening time . Closing time

3. 차단기 동작특성

▷ 여자(勵磁)

- 자기장(코일)이 자기를 가지는 현상 . Exciting

▷ 소호시간(消弧)

- ARC 가 사라지는 시간, 불꽃이 사라지는 시간.

▷ 개극(開極)시간

- 차단기가 폐로상태에 있을 때 트립기구가 동작한 순간부터 아크 접촉자 (아크 접촉자가 없는 경우에는 주 접촉자)가 열리기 시작할 때까지의 시간

▷ 차단시간

: Trip Coil 여자시간 + 개극시간 + 소호시간 / 여자에서 소호까지

* 3상의 전류가 모두 없어지는 시각까지로 할 수도 있다.

▷ 투입시간

- : Closing Coil 여자시간 + 접점 투입시간 (가장 늦은 상)
- * 3상의 전류가 모두 인가되는 시각까지로 할 수도 있다.

설계방침 : 동작책무를 고려하여 위 전 행정이 520mS이내에 이루어지는 것이 재 폐로의 정상적인 UI그래프 표현이다.

설계는 600mS안에 전 행정이 끝난다면, 한 장의 화면으로 보여지게 한다. (170kV 실제 동작 35→30 . 150 → 75~110 정도임)

** 345KV 단상 재 폐로까지는 1장에 표현하게 한다.

완전히 제거되지 못한 Chattering의 표현

4. OLTC진단

OLTC 진단장치

Target	Monitoring & Diagnostic element	
Diverter	Partial Discharge	
Motor	Inrush & Normal Current Condition of Contactor	
OF 적용제외	Pressure, Temperature, Moisture	

4. OLTC진단

OLTC 진단장치

4. OLTC진단

Inrush Current 와 동작전류 파형

- 1. Inrush Current 는 몇 Hz로 하는가?
- 2. 총 동작시간의 범위는?

4. OLTC진단

OLTC 제어회로 센서설치

4. OLTC진단

IED (Intelligent Electronic Device)

5. Bushing 진단장치

Bushing 절연열화 측정원리

□ Bushing 모니터링의 기본

- 단락 된 Capacitance는 전류의 증가로 검출될 수 있다.
- 습기나 다른 이물의 존재는 일반적으로 Tan-delta 증가로 검출 가능하다.

(지역에 따라 Power Factor 또는 Dissipation Factor로 표현한다)

Good Insulation:

Has a very low

power factor

• I_R<<I_C for most insulation systems, I_C – I_T

I_T=Total Current I_R=Resistive Current E=Applied Voltage

I_C=Capacitive Current

Watts =
$$E x I_R$$

Watts =
$$E \times I_{\tau} \times \text{Cosine } \theta$$

$$PF = Cosine \ \theta = \frac{Watts}{E \times I_{T}}$$

$$=\frac{E\times I_{R}}{E\times I_{T}}=\frac{I_{R}}{I_{T}}$$

Power Factor =
$$COS \Theta = \frac{I_{R}}{I_{T}}$$

Dissipation Factor =
$$TAN \delta = \frac{I_R}{I_C}$$

Θ°	% PF (% COS Θ)	δ°	% DF (% TAN Δ)
90	0	0	0
89.71	.500	.29	.500
84.26	10.00	5.74	10.05
O	100.00	90	INFINITY

6. 유중가스 분석장치

초기 설치모델 (현재 적용 않음)/H2

• Hydrogen (H₂), Carbon Monoxide (CO), Acetylene (C₂H₂), Moisture (H₂O)

DGA (Dissolved Gas Analysis) PAS (Photo-acoustic spectroscopy)

User interface

KEPCO 제시기준

- 1. 측정대상 Gas: H2. CO. C2H2. (H2O)
- 2. 오차 및 방식
 - 오차 :10%이내
 - PAS 방식

현재 KEPCO에 적용할 수 있는 DGA는 위 MINITRANS와 "한빛 EDS" 제품이 있다

감사합니다.