D256-100; :-1

STORAGE RELIABILITY OF CHIP AND BOND WIRE ELECTRONIC DEVICES

BLEe

KOT

VOLUME I - DATA ANALYSIS

DECEMBER 8, 1975

This document has been approved for public release and sale; its distribution is unlimited.

ARMY ONLY ON HUNTSVILLE OPERATIONS

79 11 -05 060

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

D256-1.9082-1

STORAGE RELIABILITY OF CHIP
AND BOND WIRE ELECTRONIC DEVICES •

VOLUME I - DATA ANALYSIS .

1 8 place 75,

(E) IHHHØ1-75-C-9835 (396)

410 955

PREFACE

This program was conducted by Boeing Aerospace Company's Army Systems Division in Huntsville, Alabama under Contract DAAHO1-75-C-0835, "Storage Reliability Retest Program for Minuteman Electronic Components." The study was directed by Rex Provence, U.S. Army Missile Command (MICOM). Larry McTigue was Boeing Program Manager. Testing and failure analysis was performed by the Boeing Minuteman Reliability Engineering Organization, with Robert Frank as Principal Investigator.

This study is part of MICOM's Storage Reliability Technology program. Materiel in the Army inventory - particularly missile systems - must withstand long periods of storage and "launch ready" non-activated dormancy. Within the Department of Defense, MICOM has lead responsibility to develop the Data Bank and supporting methodology required to design, manufacture and package hardware for this non-operating environment. The results contained herein will be incorporated into the Data Bank and used to predict storage reliability characteristics for electronic parts of chip and bond wire design.

We wish to acknowledge the contributions of the MICOM Technical Manager, Rex Provence, Product Assurance Directorate, whose direction and technical comments made the results of this study a more valuable part of the overall Storage Reliability Program.

Questions on the contents of this report should be directed to Larry McTigue, Boeing Aerospace Company, P. O. Box 1470, Huntsville, Alabama 35807, phone (205) 837-5520.

ABSTRACT

Storage reliability and parameter drift rates were measured on 10,027 Minuteman chip and bond wire Resistor-Transistor Logic (RTL) devices, which have been in storage since mid-1967 (eight years). Three parts failed as a result of the eight years of storage. Analysis of the failed parts showed all three were caused by oxide defects which allowed the deposited aluminum metalization to contact the active silicon of the die and short to ground. The 90% confidence level values for Failure Rate and Mean Tire Between Failure are 10.0035x10-0 failures/part-hr and 105x100 part-hrs/failure, respectively.

After eight years of storage, none of the parts experienced a single bond wire failure, no external leads were corroded or broken and there were no package problems. This is evidence of the high storage reliability that can be achieved with proper design, manufacturing and test procedures.

Parameter drift measurements showed the resistor elements virtually unchanged after 8 years of storage. However, the transistor elements showed a vignificant degradation in gain characteristics. The gain changes are attributed to migration of contaminants (which are always present in minute amounts), and/or to changes in the gold doping process used in the manufacture of the parts. The average rate of drift ranged from 1-2% per year, depending on the logic function circuit involved. Substantially higher rates of drift up to 7% per year - occurred in parts whose 1967 measured performance fell more than one standard deviation (-le) below the mean. About 2% of the parts measured had drifted close enough to specification limits to be classed as "incipient failures" (Parts that are likely to drift out of specified performance levels in 10 years of storage or less). With one exception, all/of these "incipient failures" were -lo parts or worse when tested in 1967. The strong correlation between original measured performance and drift rate suggests that storage life can be enhanced significantly by rejecting parts that fall below the -19 level during acceptance testing. Rejecting the 16% of the parts that fall outside the -lo value would reduce the number of parameter drift failures that could be expected during 10 years of storage from 2% of the population to less than 0.1%.

Study results are presented in two volumes. Volume I, <u>Data Analysis</u> (this volume) presents the findings, backed by summary plots and tables of reduced test data. Volume II, <u>Test Results</u>, tabulates all parameter measurements made on each part tested.

0256-1 1052-1

STORAGE RELIABILITY OF CHIP AND BOND WIRE ELECTRONIC DEVICES

VOLUME I, DATA ANALYSIS

PREFACE

	ABSTRACT	ii
	CONTENTS	iii
	FIGURES	iv
	TABLES	vii
1.0	INTRODUCTION AND SUMMARY	1-1
2.0	FAILURE RATE ANALYSIS	2-1
3.0	PARAMETER DRIFT ANALYSIS	3-1
4.0	PRODUCT IMPROVEMENT GUIDELINES	4-1
	VOI UPE 11, TEST RESULTS	
	ABSTRACT	i
	CONTENTS	ii
	FIGURES	iii
	TABLES	iv
5.0	INTRODUCTION	5-1
5.1	TWIN BUFFER TEST RESULTS	52
5.2	ADDER TEST RESULTS	5-19
5.3	DOUBLE GATE TEST RESULTS	5-31
5.4	4-INPUT GATE TEST RESULTS	5-63
5.5	HALF ADDER TEST RESULTS	5-78
5.6	REGISTER TEST RESULTS	5-90
5.7	EXPANDER TEST RESULTS	5-118
	APPENDIX: TEST CONDITION DEFINITION	A-1

r256-19982-1

FIGURES

-VOLUME I-

FIGURE		PAGE
1-1	PROGRAM OVERVIEW	1-1
1-2	HISTOGRAM COMPARISON OF IQUT(7)-DOUBLE GATE	1-4
1-3	HISTOGRAM COMPARISON OF VOUT(7-1)-DOUBLE GATE	1-5
1-4	LINEAR PARAMETER DRIFT MODEL FOR EXPANDER DEVICES	1-7
2-1	CIRCUIT SCHEMATICS FOR FAILED PARTS	2-1
3-1	LINEAR PARAMETER DRIFT MODEL FOR DOUBLE GATE PLUS REGISTER	3-10
3-2	V _{OUT} PARAMETER VS TRANSISTOR GAIN FOR DOUBLE GATE DEVICES	3-11
3-3	HISTOGRAM COMPARISON OF IIN(3) - TWIN BUFFER	3-16
3-4	HISTOGRAM COMPARISON OF IOUT(7) - TWIN BUFFER	3-17
3-5	HISTOGRAM COMPARISON OF VOUT (7-1) - TWIN BUFFER	3-18
3-6	HISTOGRAM COMPARISON OF VOL(7-1) - TWIN BUFFER	3-19
3-7	HISTOGRAM COMPARISON OF IRT(1-2) - TWIN BUFFER	3-20
3-8	HISTOGRAM COMPARISON OF IRT(3-5) - TWIN BUFFER	3-21
3-9	HISTOGRAM COMPARISON OF IL(8) - TWIN BUFFER	3-22
3-10	HISTOGRAM COMPARISON OF IIN(1) - ADDER	3-24
3-11	HISTOGRAM COMPARISON OF TOUT(6) - ADDER	3-25
3-11a	HISTOGRAM COMPARISON OF IOUT(7-1) - ADDER	3-26
3-12	HISTOGRAM COMPARISON OF VOL(7-1) - ADDER	3-27
3-13	HISTOGRAM COMPARISON OF IRT(1-2,3-5) - ADDER	3-28
3-14	HISTOGRAM COMPARISON OF IL(8) - ADDER	3-29
3-15	HISTOGRAM COMPARISON OF IIN(1) - DOUBLE GATE	3-31
3-16	HISTOGRAM COMPARISON OF IOUT(7) - DOUBLE GATE	3-32
3-17	HISTOGRAM COMPARISON OF VOUT(6-1) - DOUBLE GATE	3-33
3-18	HISTOGRAM COMPARISON OF VOIT (6-1) - DOUBLE GATE	3-34

D256-10082-1

FIGURES (Continued)

FIGURE					PAGE
3-19	HISTOGRAM COM GATE	PARISON (OF	V _{OL} (7-1) - DOUBLE	3-35
3-20	HISTOGRAM COM	PARISON	OF	IRT - DOUBLE GATE	3-36
3-21	HISTOGRAM COM	PARISON	OF	I _L (8) - DOUBLE GATE	3, 37
3-22	HISTOGRAM COM	PARISON (OF	IIN(1) - 4-INPUT GATE	3-39
3-23	HISTOGRAM COM	PARISON	OF	IOUT(7) - 4-INPUT GATE	3-40
3-24	HISTOGRAM COM GATE	PARISON	OF	V _{OUT} (6-1) - 4-INPUT	3-41
3-25	HISTOGRAM COM	PARISON	OF	VOL(6-1) - 4-INPUT GATE	3-42
3-26	HISTOGRAM COM	PARISON	OF	IRT - 4-INPUT GATE	3-43
3-27	HISTOGRAM COM	PARISON	OF	IL(8) - 4-INPUT GATE	3-44
3~28	HISTOGRAM COM	PARISON	OF	IIN(1) -HALF ADDER	3-46
3-29	HISTOGRAM COM	PARISON	OF	IIN(3) -HALF ADDER	3-47
3-30	HISTOGRAM COM	PARISON	GF	1 _{OUT} (7-1) - HALF ADDER	3-48
3-31	HISTOGRAM CON	IPARISON	of	VOL(6) - HALF ADDER	3-49
3-32	HISTOGRAM COM	PARISON	OF	IRT - HALF ADDER	3-50
3-33	HISTOGRAM COM	PARISON	OF	I _L (8) - HALF ADDER	3-51
3-34	HISTOGRAM CON	iparison	OF	I _{IN} (2) - REGISTER	3-53
3-35	HISTOGRAM COM	IPARISON	of	I _{OUT} (6-1) - REGISTER	3-54
3-36	HISTOGRAM COM	IPARISON	OF	VOUT (5-1) - REGISTER	3-55
3-37	HISTOGRAM CO	PARISON	of	VOL(6-1) - REGISTER	3-56
3-38	HISTOGRAM COM	MPARISON	OF	IRT - REGISTER	3-57
3-39	HISTOGRAM COM	MPARISON	OF	I _L (8) - REGISTER	3-58
3-40	HISTOGRAM CO	SPARISON	OF	IIN(1) - EXPANDER	3-60
3-41	HISTOGRAM COM	IPARTSON	OF	Vout(6-1) - EXPANDER	3-61
3-42	HISTOGRAM CU	JPARISON	OF	VOL(6-1) - EXPANDER	3-62
3-43	HISTOGRAM CO	MPARISON	OF	VOL(7-1) - EXPANDER	3-63

0256-10082-1

FIGURES (Continued)

FIGURE		PAGE
3-44	HISTOGRAM COMPARISON OF IRT - EXPANDER	3-64
3-45	HISTOGRAM COMPARISON OF $I_L(8)$ - EXPANDER	3-65
3-46	HISTOGRAM COMPARISON OF ICEX - EXPANDER	3-66
4-1	TYPICAL OUTPUT PARAMETER VS TRANSISTOR GAIN	4-2
	-VOLUME II-	
5-0	MATRIX OF TEST CONDITIONS	5-1
5-1	WIRING AND LOGIC DIAGRAMS FOR TWIN BUFFER	5-3
5-2	WIRING AND LOGIC DIAGRAMS FOR ADDER	5-20
5-3	WIRING AND LOGIC DIAGRAMS FOR DOUBLE GATE	5-32
5-4	WIRING AND LOGIC DIAGRAMS FOR 4-INPUT GATE	5-64
5-5	WIRING AND LOGIC DIAGRAMS FOR HALF ADDER	5-79
5-6	WIRING AND LOGIC DIAGRAMS FOR REGISTER	5-91
5-7	WIRING AND LOGIC DIAGRAMS FOR EXPANDER	5-119
A-1	TEST CONDITIONS FOR TWIN BUFFER	A-2 thru A-8
A-2	TEST CONDITIONS FOR ADDER	A-9 thru A-13
Λ-3	TEST CONDITIONS FOR DOUBLE GATE	۸-14 thru ۸-20
A-4	TEST CONDITIONS FOR 4-INPUT GATE	Λ-21 thru Λ-26
A-5	TEST CONDITIONS FOR HALF ADDER	A-27 thru A-32
A-6	TEST CONDITIONS FOR REGISTER	A-33 thru A-38
۸-7	TEST CONDITIONS FOR LAPANDER	A-39 thru A-45

0256-10002-1

TABLES

-VOLUME I-

TABLE		PAGE
1-1	INVENTORY OF PARTS BY LOGIC FUNCTION	1-2
1-11	FAILURE ANALYSIS SUMMARY	1-3
2-I	LEAK TEST RESULTS	2-2
2-11	FAILURE ANALYSIS REPORT FOR DOUBLE GATE PART NO. 1493	2-3
2-111	FAILURE ANALYSIS REPORT FOR EXPANDER PART NO. 228	2-3
2-IV	FAILURE ANALYSIS REPORT FOR EXPANDER PART NO. 561	2-4
3-1	PARAMETER DRIFT TEST MATRIX	3-1
3-11	SUMMARY OF IIN PARAMETER DRIFT	3-3
3-111	SUMMARY OF IQUT (RESISTOR PERFORMANCE) PARAMETER DRIFT	3-4
3-IV	SUMMARY OF V _{OUT} (TRANSISTOR PERFORMANCE) FARAMETER DRIFT	3-5
3-V	SUMMARY OF VOL PARAMETER DRIFT	3-6
3-VI	SUMMARY OF IRT PARAMETER DRIFT	3-7
3-VII	SUMMARY OF IL PARAMETER DRIFT	3-8
3-VIII	SUMMARY OF ICEX PARAMETER DRIFT	3-9
3~IX	INCIPIENT FAILURES	3-12
3-X	EVALUATION OF HISTOGRAM COMPARISONS FOR THE TWIN BUFFER	3-15
3-XI	EVALUATION OF HISTOGRAM COMPARISONS FOR THE ADDER	3-23
3-XII	EVALUATION OF HISTOGRAM COMPARISONS FOR THE DOUBLE GATE	3-30

0256-10082-1

TABLES (Continued)

TABLE		PAGE
3-XIII	EVALUATION OF HISTOGRAM COMPARISONS FOR THE 4-INPUT GATE	3-38
3-XIV	EVALUATION OF HISTOGRAM COMPARISONS FOR THE HALF ADDER	3-45
3-XV	EVALUATION OF HISTOGRAM COMPARISONS FOR THE REGISTER	3-52
3-XVI	EVALUATION OF HISTOGRAM COMPARISONS FOR THE EXPANDER	3-59
4-1	PRODUCT IMPROVEMENT RECOMMENDATIONS	4-1
	-VOLUME II-	
5- 1	TEST RESULTS FOR TWIN BUFFER	5-4
5-11	TEST RESULTS FOR ADDER	5-21
5-111	TEST RESULTS FOR DOUBLE GATE	5-33
5-IV	TEST RESULTS FOR 4-INPUT GATE	5-55
5-V	TEST RESULTS FOR HALF ADDER	5-80
5-VI	TEST RESULTS FOR REGISTER	5-92
5-VII	TEST RESULTS FOR EXPANDER	5-12

INTRODUCTION AND SUMMARY

1.0 INTRODUCTION

In July 1967, over eight years ago, 10,027 Motorola RTL electronic parts of chip and bond wire design were placed in room temperature storage. Prior to storage, each part was burned in (168 hours @ 125°C), then tested to record the performance of each parameter. Starting in July of 1975, the parts were removed from storage and the original test program repeated to obtain Storage Reliability data for chip and bond wire devices. As shown in Figure 1-1, the retest program consisted of the following two elements:

- 1) Measurement of storage failure rates, followed by analysis of the failures to identify failure modes and mechanisms and to establish product improvement guidelines.
- 2) Measurement of parameter drift characteristics and analysis of results to establish incipient failures, drift rates, and projected shelf life.

FIGURE 1-1. PROGRAM OVERVIEW

1.0 INTRODUCTION (CONTINUED)

All 10,027 parts were subjected to Go/No-Go testing to detect failed parts (parts showing one or more parameters outside of specification limits). These parts were then individually bench tested. Confirmed failed parts were analyzed to establish the failure modes and mechanisms.

A randomly selected sample of 2573 parts passing Go/No-Go testing were run through the Parameter Drift test program. Selected currents and voltages representing resistor characteristics, transistor gains and leakage rates were measured and recorded. Computer analysis was performed to compare the 1975 test values with those measured in 1967. For those parameters showing statistically significant performance changes, a linear drift rate model was fit to the test data and used to predict remaining storage life.

1.1 SUMMARY

While all parts were of similar chip and bond wire design, devices having seven different logic functions were included in the inventory of parts tested (Table 1-1):

TABLE 1-1. INVENTORY OF PARTS BY LOGIC FUNCTION

LOGIC FUNCTION	MOTOROLA PART NO.	NO. OF PARTS FOR FAILURE RATE EVALUATION	NO. OF PARTS FOR PARAMETER DRIFT EVALUATION
Win Buffer	SC 2207	1002	250
Adder	SC 2208	1002	250
Double Gate	SC 2210	2382	500
4-Input Gate	SC 2211	1250	348
Half-Adder	SC 2212	450	250
Register	SC 2213	2992	625 *
Expander	SC 2221	949	350
		10027	2573

A total of three parts failed as a result of the eight years of storage. Analysis of the failed parts showed all three were due to oxide defects which allowed the deposited aluminum metalization to contact the active silicon of the die and short to ground. Table 1-II summarizes the failures and the resulting failure rate statistics.

TABLE 1-II. FAILURE ANALYSIS SUMMÄRY

PART LOGIC PRICTION	PART SERIAL MANGER	FAILURE HODE/NECHANISM
DOUBLE GATE .	1493	SMORT CAUSED BY OXIDE DÉFECT UNDER AL STRIPE ON DIE CONNECTING TO-PIN 1
EXPANDER	228	SMORT CAUSED BY OXIDE DEFECT UNDER BOND PAD 3
,	561	SHORT CAUSED BY OXIDE DEFECT
TOTAL FAIL	.UNES - 3	
TOTAL PART	-HOURS OF STOMAGE .	703 x 10 ⁶ -
FAILURE N (FAILURES/	TE = {0.005 PART-HR} {0.009	9 x 10-6 (60% CONFIDENCE LEVÉL) 5 x 10-6 (90% CONFIDENCE LEVEL)
MEAN TIPE FAILURES (PART-HR/F	DETWEEN - 169 x (HTDF) 105 x (ALLUME)	106 (60% CONFIDENCE LEVEL)

Results from the Parameter Drift Evaluation are typified by Figures 1-2 and 1-3 which compare 1967 and 1975 test results for parameters representing resistor and transistor performance, respectively. The 1975 measurements taken on the resistor elements are virtually unchanged from the 1967 values. Note that the 1967 and 1975 histograms (Figure 1-2b) are almost identical in shape and only differ by a 4 microamp bias. This bias is attributed to a slight difference in test set-up and is not an indication of parameter drift. This conclusion is confirmed by Figure 1-2c, which shows the 1967-1975 change in the IQUT parameter. The near-normal distribution of this change is typical of scatter due to normal measurement error. It shows none of the skewness exhibited by true parameter drift.

The transistor elements did show a measurable loss of performance during the eight years of storage. Figure 1-3 is a typical comparison of changes in transistor gain. While the change in mean value is small (6 mv), the pronounced skewness of Figure 1-3c shows the changes are due to parameter drift rather than measurement error. There is significant performance loss in parts in the right hand tail of the distribution (parts whose original performance was more than one standard deviation below the 1967 mean). Degradation in the parts having the greatest rate of drift (parts occupying the shaded -2c tail in Figure 1-3d) is shown by the heavy arrows in Figure 1-3d. Note that all these parts were below average performers in 1967.

a. SCHEMATIC FOR IOUT (7) TEST (R) RESISTANCE CHECK)

NO. OF PARTS REPRESENTED BY HISTOGRAM 800

1(\$7	HEM	STO DEV.
1967	7679 ye	42.5 ye
1975	683 24	42.5 ya
1967-1978 DELTA	-4 +4	3,0 ya

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 1-2. HISTOGRAM COMPARISON OF IOUT (7)
- DOUBLE GATE -

a. Schematic for $v_{OUT}^{(6-1)}$ test 103 voltage drop at minimum "on" condition)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 - 1975 CHANGE IN V_{OUT}(6-I)
FIGURE 1-3. HISTOGRAM COMPARISON OF V_{OUT}(6-I)
- DOUBLE GATE -

d. DISTRIBUTION OF PARTS SHOWING GREATEST DEGRACATION

FIGURE 1-3. (CONTINUED)

The loss of performance in the transistor elements was significant enough to class 24 parts as incipient failures. These are parts whose performance has degraded near specification limits and could fall out of spec within the next few years of storage. Since the Parameter Drift study measured only one of the two output terminals on each part, and only 2573 of the 10,027 parts ($1/2 \times 2573/10027 \approx 1/8$ sample), it can be reasonably expected that $8x24\approx200$ of the 10,027 parts (approximately 2%) are likely incipient failures.

1.1 SUMMARY (CONTINUED)

The degradation in transistor performance as demonstrated by an increase in both mean and standard deviation, was statistically significant at the 99% confidence level for the Double Gate, Register and Expander devices. These devices showed drift rates of 0.5-1% per year in mean value and 2-4% per year in standard deviation. The lower figures apply to the Double Gate and Register, while the higher figures apply to the Expander. A linear model (constant rate of drift) was fit to the mean and standard deviation measured on these devices. Figure 1-4 below shows this model for the Expander. This linear model predicts that a part whose 1967 performance was more than 3 standard deviations below the mean would drift out of specification limits after 17 years of storage (by 1984).

FIGURE 1-4. LINEAR PARAMETER DRIFT MODEL FOR EXPANDER DEVICES

There were 14 incipient failures detected in the 350 Fxpander devices tested (4%). The drift in the six worst devices is shown by the heavy arrows in the figure. The drift rate in these occasional "bad actors" is obviously much faster than the linear model predicts.

1.1 (Continued)

Whether a linear model provides a useful projection of parameter drift characteristics can only be determined by future testing of the same parts. However, the general trend of increasing rate of drift for the higher negative o parts (poorer performer.) is clearly established by the data from the 1975 test. This trend leads to the conclusion that storage reliability of these chip and bond wire devices can be increased by simply rejecting the more marginal performers during initial acceptance testing. In the case of the Expander parts, all but one of the 14 incipient failures would have been eliminated by rejecting the 16% of the parts that fell more than one standard deviation (-10) below the mean following the 1967 acceptance testing. Eight of the 14 would have been eliminated by a -20 criterion, which would have required rejecting only 2.3% of the parts.

SECTION 2

FAILURE RATE ANALYSIS

2.0 INTRODUCTION

To determine the shelf-life failure rate of bond wire RTL Integrated Circuits (IC's), 10,027 such devices, stored for eight years, were retested to the 25°C parametric limits of the Boeing specifications. The parts were tested to these specifications by the supplier (Motorola) eight years ago. Retesting was done on a model J283C Teradyne Test Set, programmed, calibrated and maintained by the Boeing Advanced Electronic Design Group. Each of the 10,027 IC's was tested on a GO NO-GO basis to determine if one or more of its parameters had drifted outside specification limits. Those parts which failed the GO NO-GO testing on the Teradyne were carefully rechecked on the bench to verify their condition. Out of the more than 10,000 parts tested, only three defectives were found. The three were catastrophic failures with several parameters more than two orders of magnitude outside specification limits. The failures occurred in the Double Gate and Expander devices, whose circuit schematics are shown below.

FIGURE 2-1. CIRCUIT SCHEMATICS FOR FAILED PARTS

2.1 FAILURE ANALYSIS

The three catastrophic failures were subjected to analysis to determine the cause of failure. They were first given a hermetic seal test with the following results:

LOGIC FUNCTION	PART NO	GROSS LEAK	*FINE LEAK RATE	*SPECIFICATION VALUE
Double Gate	1493	No	3.6 x 10 ⁻⁸ cc/sec	<1x10-8 cc/sec
Expander	228	No	9.81 x 10 ⁻⁸ cc/sec	33
Expander	561	No	2.19 x 10 ⁻⁸ cc/sec	11

TABLE 2-I. LEAK TEST RESULTS

While the measured fine leak rates exceeded specification, they were still small enough to conclude that no significant breakdown had occurred in the hermetic seals. The defects identified by subsequent failure analyses were in no way aggrevated by leakage.

Curve tracer testing of the three parts [checking from each lead to the ground (GND) lead and to the power supply lead with a Tektronix 577 Curve Tracer Oscilloscope) found a low resistance path from pin 1 (input) to pin 4 (GND) on Part No. 1493, a 100 ohm "short" from pin 3 (input) to pin 4 on Part No. 228, and a 600 ohn path from pin 6 (output) to pin 4 (GND) on Part No. 561. Experience with transistor-transistor logic devices has shown that such low resistance paths to GNP (substrate of the die) occur because of oxide defects or because the part has been subjected to electrical overstress. To determine if the failures were due to oxide effects or electrical overstress, the three IC's were delidded and microscopically examined. No gross defects were observed such as might be caused by electrical overstress so the glassivation was removed from each die using buffered hydrofluoric acid. Next the aluminum metallization was removed with dilute sodium hydroxide. It was then easy to see that the failures were due to defects in the oxide which had allowed the metallization to short through to the active silicon of the dic. There was an oxide defect/pinhole under an aluminization stripe connected to the No. 1 bond pad on Part No. 1493, under the No. 3 bond pad on Part No. 228, and under the No. 6 bond pad on Part No. 561. Based on the above analyses, it was concluded that the three failures were the result of deficiencies within the parts and were not caused by externally applied overstress and therefore that the three failures had to be considered shelf-life failures. The failure analysis reports are shown in Tables 2-II through 2-IV.

^{*025°}C and one standard atmosphere

TABLE 2-11. FAILURE ANALYSIS REPORT FOR DOUBLE GATE PART NO. 1493 ANALYSIS REPORT NO. 125 25 E ASTRONED LINE LOATE VETE See Sand State East cope res 🔃 部口口 CONTLISION AS TO CALTE OF FALURCE IS THE A SHELF-LIGE FALUNE ? 23 E al. 24 . H. m. roung RESULTS OF FAVLURE ANALYSIS: CATASTROPHIC FAR. UPE And the contract of the second CHOSC LECK FALLARE FAT LEAN FARIANT RTL FAILURE TEST FALLO DON'T SECURIT PADAULTER, TER. ES. BRACH TEST PERSONS SEAL TEST RESATS ANALYS" 4 . 1.17.00 COOK PART TABLE 2-111. FAILURE ANALYSIS REPORT FOR EXPANDER PART NO. 228 Š. ٠: ٤<u>٠:</u> ٤ 2 REPORT ではして *III ANDLYSIS STRUCTURE AT 100 AND AND THE PARTIES. A BOUR SECTED THE PARTY AND THE PARTY AND THE EMPTY LEAK EA IN SERVICENTED BY Smile - til PTL FAILURE AT VA . Just MENTER OF STREET MARKET WENT WAS PREATE TOWN 1 SE FT BOOK AND IS THE A ANALYZT

TABLE 2-	·IV.	FALLURE	ANALYSIS	REPORT	FOR	EXPANDER	PART	NO.	561

SIS PEPORT NO. 31-702	000	300 C	enery) from pin 6 to pin 4 (Crowd) Fin £ Crowd box walt 28 Y "to Pin Holes - were tringled from the 410 Pin £ - were tringled from the 410 Pin Holes - were tringled from the 6 [02] E. mg part K	TES I NO DE CASE CASE
HTL FAILURE ANALYSIS	HENEM TEST RESALTS COME DART CANASTREPON FALURE DONET FALURE	SEAL TEST PESAL'S FPE LEAS FREUPE CROSS LEAS FARUTE	PESUTS OF FALIRE ANALYSIS: Ign 1 15 milliones fundid be a 17 microphylic ac 4 milliones fabrad be a 17 microphylic ac 4 milliones fabrad be a 17 microphylic ac 4 milliones fabrad be a 17 millione	ANALYST A SACLE-INC FALURE 7

Oxide defects in general result from manufacturing deficiencies during wafer fabrication and in some instances during die probe or during wire bonding. Such things as holes and/or tears in the masks used for exposing the photoresist or foreign particles on the wafer during oxide growth can cause defects in the oxide. These defects are harmful only when they occur under the metallization pattern and only if they allow the metal to short through the oxide to the active silicon beneath. Improvements in manufacturing techniques are possible which can reduce the number of oxide defects and therefore the number of failures. Very careful cleaning procedures before growing the oxides and a double mask set used during the exposure of the photoresist prior to etching the oxides will produce parts with fewer defects. Many manufacturers, though, are reluctant to change historic and generally accepted manufacturing techniques to attempt to produce defect-free parts. In most programs, the cost of such parts is prohibitive so there is little incentive to improve an already acceptable failure rate.

It is not possible to tell at what point in time the code defect failures occurred. Since the defects (holes) found in the oxide were relatively large, it is difficult to explain why the deposited aluminization did not make intimate contact with the substrate silicon when the wafer was metallized during manufacture. If a very thin layer of oxide existed to insulate the aluminum from the silicon substrate, what eventually occurred to cause the short? It is possible that a very thin layer of oxide could

2.1 (Continued)

sustain the burn-in and test voltage stresses at Motorola and then chemically change with age to become a low resistance path to substrate silicon. In any event, experience in Minuteman has shown that most oxide defect failures occur either in receiving inspection testing or in equipment test after the IC's are installed on circuit cards. Though oxide defects are the most prevalent cause of failure in the low power transistor-transistor logic (TTL) deviced used in Minuteman, the failures occur and are eliminated during receiving testing or during functional test at the circuit card level rather than during field operation of the equipment. Nearly 0.04% of the TTL devices obtained from four different suppliers fail due to oxide defects prior to field installation of the equipment, but with more than 200,000 TTL devices fielded, some for more than two years, the number of failures due to oxide defects is at least an order of magnitude less than during receiving/functional test. This means that in actual hardware applications, most oxide defect parts would be detected and eliminated prior to storage by assuring that adequate functional tests are carried out at the circuit card or subsystem level.

2.2 FAILURE RATE AND MTBF

Since there were no parameter drift failures in the 10,027 parts after eight years of storage, the three catastrophic failures were used to compute the failure rate statistics. The Chi Square (χ^2) distribution was used to determine the 60% and 90% confidence level for failure rate and MTBF. Use of the χ^2 distribution to establish confidence limits is treated in any standard text on statistics. The computations are presented in Equations 2-1 and 2-2.

FAILURE RATE

604 Confidence:

$$FR_{60\%} = \frac{x^2_{60\%} \times 3 \text{ failures}}{10,027 \text{ parts } \times 8 \text{ yrs/part } \times 8760 \text{ hr/yr}}$$

$$= \frac{4.175 \text{ failures}}{703 \times 106 \text{ hrs}} = 0.0059 \times 10^{-6} \text{ failures/hr} \qquad (2-1a)$$

$$FR_{90\%} = \frac{x^2_{90\%} \times 3 \text{ failures}}{703 \times 10^6 \text{ hrs}} = \frac{6.70 \text{ failures}}{703 \times 10^6 \text{ hrs}} = 0.0095 \times 10^{-6} (2-1b) \text{ failures/hr}$$

2.2 (Continued)

MEAN TIME BETWEEN FAILURES

MTBF_{60%} =
$$\frac{1}{FR_{60%}}$$
 = $\frac{1}{0.0059 \times 10^{-6}}$ = 169 x 10⁶ hrs (2-2a)

$$MTRF_{90\%} = \frac{1}{FR_{90\%}} = \frac{1}{0.0095 \times 10^{-6}} = 105 \times 10^{6} \text{ hrs}$$
 (2-2b)

The design, manufacture, and test procedures used to develop these parts has obviously produced IC's of very high storage reliability. After eight years of storage, there were no parameter drift failures, no bond wire failures, no external leads corroded or broken, and no package problems. As already discussed, in an actual hardware application the three exide defects that did occur would likely have been eliminated by assuring that normal functional tests were conducted following installation of the IC's on circuit cards.

SECTION 3

PARAMETER DRIFT ANALYSIS

3.0 INTRODUCTION

The Parameter Drift Test Program measured up to seven different parameters on each of the seven types of logic function devices. Table 3-I shows the 45 individual parameter tests that were performed on a total of 2573 parts. The physical characteristics associated with each parameter measurement (resistance, transistor voltage drop, leakage current) are defined in the right hand column of the table. The 2573 parts tested were selected at random in blocks of 20 or less from the total 10027 part inventory.

TABLE 3-1. PARAMETER DRIFT TEST MATRIX

		Los		and expending the color of the		4		
PARATER	IVIN POFICE (730 PAFIS)	ACCER (21RAS CCS)	COUNT CATE (500 PARTS)	4-INFUT CATE (MO PARIS)	HALF ADDER (250 FARTS)	RESISTER (625 PARIS)	(150 FARIS)	CHARACTERISTICS MEASURED
INDU GERRI	1 ₁₆ (3)	1 ¹⁸ (1)	138(1)	318(0)	i _{ja} (i) i _{ja} (si	128(2)	1 (1)	PESISTANCE PLUS DASC ENITTER PERFORMANCE AT SATURATION VOLTAGE
enter Correct Loui	1007(7)	1 ₀₀₁ (6)* 1 ₀₀₁ (2-1)	loui(1)	t _{pgt} (7)	105 (2:1)	1 ₀₀₇ (6-1)	ko 1651	PESISTANCE
on Vers Raki	4 ^{G/1} (3-3)	AD 1151	Y _[4] (6.1)	Y ₆₀₁ (E-1)	NO 1151	V _{OS} (5-1)	Y _{CUT} (6-1)	TRANSISTOR YOLFACE DROP AT MENIMAN "EN" BASE ENLITER VOLTAGE
Colors 10010-2 Tot	7 ₍₄ (>-)}	Y ₍₄ (1-1)	ra(1-1)	Y _{[X} (f-1)	Y ₍₁₆₎	102 (6-1)	a ^{Cr} (3+1) A ^{Cr} (€-1)	TRANSISTOR YOUTAGE DROP AT SATURATION VOLTAGE
It Arese	1 ₀₃ (1-2) 1 ₈₁ (3-5)	1,1(1,2,3,5)	lat	FRE	¹ 61	1 ₈₁	(_{\$1} (1,2,3,5)	BASE EMITTER MUNICION TEARAGE CHARACTERISTICS
likal i Ciryai I	i ₍ (g)	1, (0)	1,(2)	1, (9)	1, (8)	1, (4)	1 (6,2,8)	TRANSISTOR LEARNER CHARACTERISTICS AT 2010 BASE EMITTER YOUTAGE
Iface & Corners Corners	50 H51	A3 1651	10 T.51	ы 1(31	NO 1659	F23F C4	1((1)	translytor ecalani Characteristics at Hading Colp. Base initier you'as

hold by in baghthesis distralls bin sens single, and hist decentions a lat infield. These conditions are ceined in section 1 c

Section 3.1 summarizes Parameter Drift results with emphasis on pinpointing the physical elements within each device most susceptible to eglug. Section 3.2 provides a histogram comparison of the 1967 and 1975 test results for each of the 45 parameter tests defined above.

3.1 PARAMETER DRIFT SUMMARY

Tables 3-II through 3-VIII summarize the Test Results for the seven parameters that were measured to evaluate drift. Each table compares the 1967 and 1975 mean values and standard deviations for a single parameter, starting with ITN (Table 3-II). The 1967-1975 changes in the mean value and standard deviation were tested for statistical significance via the Student t and F-Distribution tests, respectively. These two tests are covered in all standard texts on Statistics. Tests of significance determine the likelyhood that the observed changes are due to random sampling differences (in this case, measurement errors) rather than to true drift. The conservative criterion of 99% confidence was adopted for these tests. This means that there is less than a one percent chance that the 1967-1975 change in any parameter that fails this criterion could be explained by measurement errors alone (or conversely, there is 99% confidence that parameter drift has occurred). The "Analysis of Change" columns at the right of each table show the results of these statistical tests of significance.

The two most useful parameters proved to be Iour (Table 3-III) and Voir (Table 3-IV), which directly measure changes in resistor and transistor characteristics, respectively. The Vour measurement is the most sensitive of the transistor measurements, since it dutermines voltage drop across the transistor under conditions of minimum "on" base emitter voltage. This "knee-of-the-curve" operational condition provided the clearest picture of storageinduced changes in the transistor elements. The IIN and VOL measurements (Tables 3-II and 3-V), while not as sensitive as the Voir measurements, also provided supportive data on transistor drift. Little quantitative information was obtained from the leakage current measurements, IRT, IL, and ICEX (Tables 3-VI thru 3-VIII), since the 1967 tests were not carried out to the nanoamp precision needed to define changes in these parameters. However, the 1975 measurements showed that leakage rates were insignificant compared with specification values and that drift in these parameters was negligible.

As discussed in Section 1, there was no measurable degradation in the resistor elements after eight years of storage. However, the degradation in transistor performance was significant at the 95% confidence level for all six logic function devices on which Vour measurements were taken. In three of these families, the Double Gate, the Register, and the Expander, changes were significant at the 99% confidence level, as indicated by the boxed-in values in Table 2-IV. The statistics for the Double Gate and Register were similar enough to combine these two families, which gives the bottom row in Table 3-III.

TABLE 3-11

SUPPARY OF IIN PARAMETER DRIFT

	1	T -							025	(11	1/1/13	·					
ANGE	F99																
9.	n _o	3.					 ,									-	•
ANALYSIS OF CHANGE	1 %															4	
WAX	Ϋ́	#.														-	
SPECIFICATION LIMIT (ua)		<250		<125						•						<166	
1967 - 1975 CHANGE (118)	8	\$-				, , , , , , , , , , , , , , , , , , ,							·			-	
1967	γV	\$-			***		نها و السبيط	*****		- No	*****					-	
(ue) TESI	0	9.5		6.3		5.4		3.8		4.7		4.4	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.2	**********	6.5	
EST 1 1975	×	181		4.98		95.2		82.5		89.0		9.88		91.3		122.9	
RED PERF	ь	10.0		6.4		6.4		3.8		4.9		4.6		6.3		6.3	
PEASUR 1967	×	185		88.0		98.2		83.5		8		89.7		76.4		114.8	
SAMPLE	×	250		250		200		348		250		520		625		350	
PARAMETER *(REF)		1 _{IN} (3)	(Fig. 3-3)	(L)N(1)	(Fig. 3-10)	I _{1K} (1)	(Fig. 3-15)	I _{TM} (1)	(Fig. 3-22)	I _{TM} (1)	(Fig. 3-28)	1 _{TM} (3)	(Fig. 3-29)	I _{TK} (2)	(F1g. 3-34)	[1 ₁₁₄ (3)	(Fig. 3-40)
LUGIC FUNCTION		THIN BUFFER		ADDER		DOUBLE GATE		4-INPUT CATE		HALF ADDER		•		REGISTER		EXPANDER	

* FIGURE NO. OF PLOTTED RESULTS

Ξ = MEAN

σ = STANDARD DEVIATION

ΔΞ = 1967-1975 CHANGE IN STANDARD DEVIATION

Δσ = 1967-1975 CHANGE IN STANDARD DEVIATION

CHANGE SIGNIFICANT AT 99% CONFIDENCE LEVEL $\frac{N}{t_{X}} = \Delta \tilde{x} / \frac{2}{\sigma_{e7}} + \frac{2}{\sigma_{75}}$ $t_{99} = 99% PRO$

t₉₉ = 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION

F99 = 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

* NO STATISTICALLY SIGNIFICANT CHANGE DIFFERENCES ATTRIBUTED TO NORMAL CASERVATION ERROR

67

*

4

SUMMARY OF I_{OUT} PARAMETER DRIFT (RESISTOR PERFORMANCE) TABLE 3-III

	•	-				025	á-19.132-	1		
	ANGE		F39	`						
	OF CHANGE	Ø	24	‡				The Management of the State of		
	ANALYSTS		£83							
	ANAL	×	ţ	*		ellenter madage, ann	many	a Win ylak didayyy - alaysiya dirik ya asa		
	SPECIFICATION	LIMIT(S) (La)		> 4030	× 513	>513	> 513 AVD < 780	> 513	> 405	> 405
a H		3£ (na)	57	*						
(RESISION PERFORMATICE)	1961	CHARGE	X7	*				Y		2
UK PEI	(ير:)	TEST	b	709	59	54	43	34	38	38
(PES 45	URED PERFORMANCE (La)	1975	×	19000	561	648	683	577	603	533
	IRED PERI	TEST	ħ	763	59	25	43	34	35	41
	MEASU	1967	×	18900	556	644	629	574	598	521
	SAMPLE	SIZE	Z=	250	250	250	500	348	250	625
	PARANETER	*(REF)		I _{OUT} (7) (Fig. 3-4)	I _{OUT} (6) (Fig. 3-11)	I _{OUT} (7-1) (Fig. 3-11a)	I _{OUT} (7) (Fig. 3-16)	I _{OUT} (7) (Fig. 3~23)	I _{QUT} (7-1) (Fig. 3-30)	I _{OUT} (6-1) (Fig. 3-35)
		LUGIC FUNCTION		TWIN BUFFER	ADDER		DOUBLE GATE	4-INPUT GATE	HALF ADDER	REGISTER

CHANGE SIGNIFICANT AT 99% CONFIDENCE LEVEL 290 × ∆x/ 290 075 m_o ţX Δσ = .1967-1975 CHANGE IN STANDARD DEVIATION * FIGURE NO. OF PLOTTED RESULTS AX = 1967-1975 CHANGE IN MEAN a = STANDARD DEVIATION X = 75公

t99 = 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION F₉₉ * 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

NO STATISTICALLY SIGNIFICANT CHANGE -DIFFERENCES ATTRIBUTED TO NORMAL OBSERVATION ERROR *

F₉₉ = 99% PROBABILITY LEVEL FROM F-01STRIBUTION

AG = 1967-1975 CHANGE IN STANDARD DEVIATION

£X = 1367-1975 CHANGE IN MEAN

	390	F99	4.	1.2	3.3	1.2	5.3	1.2		Æ O
	ANALYSIS OF CHANGE	L.	<u></u>	1.4	~	1.2	1.9	1.3	Æ	ZEL FR
	YSIS (£33	2.3	2.3	2.3	2.3	2.3	2.3	CE LE	TY LEI TRIBU
	ANAL	t	2.4	3.6	2.7	3.1	5.6	5.2	CONFIDENCE LEVEL	99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION
	SPECIFICATION					,			AT 99%	B
Ħ	SPECIF		> 300						T CHANG	[‡] 99
SUMMARY OF V _{OUT} PARAMETER DRIFT (TPANSISTOR PERFORMANCE)	- 1975 F (mv)		+ 2.4	+ 3.3	+ 1.6	+ 2.5	+ 8°9	÷ 5.9	SIGHLFICANT CHANGE	975
PARAK PERFOR	1967 - CHANGE	X.7	÷ 4	ις +	т +	4	+12	1 3	LLY SI	+
WARY OF Y _{OUT} PAPAMETER D (TRANSISTOR PERFORMANCE)	(12.7)	'n	20.1	23.6	19.6	24.2	32.4	24.0	STATISTICALLY	$t_{X}^{2} = \Delta \bar{X} \sqrt{g_{67}^{2}}$
SUMMARY (TRA)	ORMANCE 1975	×	107	117	97	114	150	116	STA	13. 1
	VEASURED PERFORMANCE (TV)	5 6	17.71	20.3	18.0	21.8	23.5	21.1		
3-17	MEASU	×	103	112	46	011	88	g-une g-une g-une		
TABLE 3	SAMPLE	¥ ≈	250	500	348	625	350	1125	ESULTS	WEAN
	PARAMETER */ pec)	ין אבין	Vour(7-1) (Fig. 3-5)	γ _{ουτ} (6-1) (۶ig. 3-17)	V _{OUT} (6-1) (Fig. 3-24)	V _{OUT} (5-1) (Fig. 3-36)	V _{0UT} (6-1) (Fig. 3-41)	V _{OUT} (6-1) +V _{OUT} (5-1)	* FIGURE NO. OF PLOTTED RESULTS	X = KEMI G = STANDARD DEVIATION SZ = 1967-1975 CHANGE IN MEAN
	10 tag #15 % tag .	ימון ביינים מו	TWIN BUFFER	DOUBLE GATE	4-IMPUT GATE	REGISTER	EXPANDER	DOUSLE GATE + REGISTER	* FIGURE NO.	x = κεκι σ = STANDA «\$ = 1967-1

TABLE 3-V

SUMMARY OF VOL PARAMETER DRIFT

	<u>.</u>						0::50-	10052-	1		
MGE	F99										
OF CH	πρ	*						·			
ANALYSIS OF CHANGE	[‡] 99										
ANAL	간x	‡	`					· · · · · · · · · · · · · · · · · · ·			
SPECIFICATION		<200		ž.							-
- 1975 F (nv)	Δσ	‡									
1967 - CHANGE	δ×	*							.,		1
(mv)	D	:	6.1	14.7	15.0	11.4	13.9	15.7	16.0	16.0	
OPM2XICE 1975	×	75.7	57.4	89.5	90.7	74.1	91.9	90.5	113.8	115.3	
NEASURED PERFORMANCE	0	10.8	7.7	14.0	14.1	7.	13.8	14.8	15.0	14.8	
VEASU 1967	×	77.7	54.3	88.8	89.5	73.9	93.5	89.2	3111.8	112.7	
SAMPLE	7 ×	250	250	500	200	348	250	625	350	350	
PARAMETER +/per/	f you	V _{OL} (7-1) Fig. 3-6	V _{OL} (7-1) Fig. 3-12	Val (6-1) Fig. 3-18	V _{OL} (7-1) F19. 3-19	V _{0L} (6-1) F1q. 3-25	V ₀₁ (6) Fíg. 3-31	V _{OL} (6-1) Fig. 3-37	V _{0L} (6-1)	V _{OL} (7-1) Fig. 3-43	T
מטבבטישייט טבטטי	יייייי אוריייייייייייייייייייייייייייייי	TWIN BUFFER	ADDER	DOUBLE GATE		4-INPUT GATE	HALF ADDER	REGISTER	EXPANDER		

* FIGURE NO. OF PLOTTED RESULTS a = STANDARD DEVIATION X = MEAN

Δσ = 1967-1975 CHANGE IN STANDARD DEVIATION

ΔX = 1967-1975 CHANGE IN MEAN

tx = 1 x / 067

CHANGE SIGNIFICANT AT 99% CONFIDENCE LEVEL

t₉₉ = 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION

F₉₉ = 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

** = NO STATISTICALLY SIGNIFICANT CHANGE - DIFFERENCES ATTRIBUTED TO NORMAL OBSERVATION ERROR

F₉₉ = 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

** = NO MEANINGFUL CHANGE - MEASURED CHANGES ATTRIBUTED TO DIFFERENCES IN TEST

967

Δσ = 1967-1975 CHANGE IN STANDARD DEVIATION

AX = 1967-1975 CHANGE IN MEAN

o = STANDARD DEVIATION

X = MAG

t₉₉ * 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION

+ 075

TABLE 3-7I

SUMMARY OF IRT PARAMETER DRIFT

The second secon

		1											1000
LOGIC FUNCTION	*(REF)	SIZE	1567	TEST	1975	TEST	CHANG	E (1,3)	LIMIT (na)	×		Ö	
		2	×	b	×	b	γV	ΔX ΔG		īχ	t ₉₉	Fa	F99
TWIN BUFFER	I _{RT} (1-2)	250	0.013	0.017	0.026	0.035	*-	* -	7	*		‡ -	
	(Fig. 3-7)												
	I _{RT} (3-5)	250	0.012	0.016	0.010	0.015							
	(Fig. 3-8)					***************************************	-						
ADDER	[1gr(1,2,3,5)]	250	0.012	0.017	0.022	0.622							
	(F/g. 3-13)							****			······································		
DOUBLE GATE	IXT	200	0.019	0.019	0.014	0.017						***************************************	
	(Fig. 3-20)							* **					
4-INPUT GATE	I I	348	0.005	0.005	300.0	0.004							
	(Fig. 3-26)											-	
HALF ADDER	Tal	250	0.018	0.021	0.019	0.024							
	(Fig. 3-32)												
REGISTER	Ipt	625	9.053	0.032	0.017	0.021							
	(Fig. 3-38)		(7-7-maps										
EXPANDER	In	350	0.006	200.0	0.001	0.001						·	-
	(Fig. 3-44)						-			->	· · · · · · · · · · · · · · · · · · ·	-	

•
-
_
3-
3
W
18
<

SURMARY OF IL PARAMETER DRIFT

			,						·····	1125	6-1	กาส	2-1				
NGE		F99															
OF CH	٥	π _o	*													->-	
ANALYSIS OF CHANGE		[£] 99															
AHAL	×	‡¥	*				-				ara di proc	***************************************				-	
SPECIFICATION	LIMIT (na)		<200		<100		<100		<100		<100		<100		<100		
3/61 -	E (na)	20	*-													-	
- 1961	CHAR	χŢ	‡ -			-										-	
(na)	TEST	ь	1.3		1.2		n.11		1.06		0.2		0.2		90.0		
ORMANCE	1975	×	2.3		1.92		1.52		1.61		0.2		0.2		0.13		
MEASURED PERFORMANCE (ua)	TEST	0	0.4		1.2		0.13		1.11		2.2		2.1		0.002		
MEASU	1967	×	0.4		09.0		6.30		0.41		0.7		1.4		0.30		
SAMPLE	SIZE	Z	250		250		200		348		250		625		350		
PARAMETER	*(REF)		1, (8)	(Fig. 3-9)	1, (8)	(Fig. 3-14)	I, (8)	(F1g. 3-21)	1, (8)	(Fig. 3-27)	1, (8)	(Fig. 3-33)	1, (8)	(Fig. 3-39)	I, (8)	(Fig. 3-45)	
we are analysis	LOSIC FUNCTION		TWIN BUFFER		ADDER		COUBLE GATE	and the second	4-INPUT GATE		HALF ADDER		REGISTER		EXPANDER		

* FIGURE NO. OF PLOTTED RESULTS

X = MEAN

σ = STANDARD DEVIATION

Δσ = 1967-1975 CHANGE IN STANDARD DEVIATION AX = 1967-1975 CHANGE IN MEAN

u^b

975 $t_{\bar{X}} = \delta \bar{x} /$

t₉₉ = 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION

F₉₉ = 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

** = NO MEANINGFUL CHANGE - MEASURED CHANGES
ATTRIBUTED TO DIFFERENCES IN TEST

TABLE 3-VIII SUMMAR

SUMMARY OF ICEX PARAMETER DRIFT

ANGE	F99	
OF CH	πp	*
ANALYSIS OF CHANGE	t ₉₉	
AWAL	tχ	‡
SPECIFICATION	1	
- 1975 3F (ua)	. Δσ	*
1967 - CHANGE	Vγ	*
(µa)	р	0.37
MEASURED PERFORMANCE (ua)	×	0.58
JRED PERF	ם	0.43
MEASI 1967	×	0.68
SAMPLE	z	350
PARAMETER *(BEE)		I _{CEX} (7) (F19. 3-46)
ו ספרה פומרדומא		EXPANDER

 $E_{\bar{X}} = \Delta \bar{X} / \frac{N}{\sigma_{67}^2 + \sigma_{75}^2}$ $F_{\sigma} = \frac{\sigma_{75}^2}{2}$

Δσ = 1967-1975 CHANGE IN STANDARD DEVIATION

 $\Delta \tilde{x} = 1967-1975$ CHANGE IN MEAN,

σ ≈ STANDARD DEVIATION

X = MEAN

* FIGURE NO. OF PLOTTED RESULTS

t₉₉ * 99% PROBABILITY LEVEL FROM STUDENT t DISTRIBUTION

F₉₉ * 99% PROBABILITY LEVEL FROM F-DISTRIBUTION

* = NO MEANINFGUL CHANGE - MEASURED CHANGES
ATTRIBUTED TO DIFFERENCES IN TEST

3.1 (Continued)

Linear parameter drift rate models were developed for the Double Gate plus Register combined and the Expander. The Expander model has already been discussed in Section 1.1, Figure 1-4. The Double Gate/Register Model is plotted in Figure 3-1. The linear drift rate predicted for an average part is 1/2% per year, and for a -30 part is 1% per year. These rates are about half those predicted for the Expander.

Figure 3-1. LINEAR PARAMETER DRIFT MODEL FOR DOUBLE GATE PLUS REGISTER

The four incipient failures from the Double Gate family are shown by the arrows in the figure. As was the case with the Expander, these incipient failures show a more rapid rate of drift than the linear model predicts for even a -4a part. Extrapolating the linear model suggests that a -4a part would not reach the 300mv specification limit until the turn of the century. The one -4a incipient failure (uppermost arrow in the figure) has almost reached this limit after only eight years of storage.

3.1 (Continued)

A reason why parts with high Vout measurements should show the highest rates of drift can be deduced from Figure 3-2, which is a plot of V_{OUT} vs transistor gain. For above average (high gain, low V_{OUT}) parts, V_{OUT} is relatively insensitive to changes in transistor gain. A +2 σ part (V_{OUT} < 71 MV) shows only a 4 MV (5%) change in V_{OUT} for a 10% change in gain. For below average parts, however, V_{OUT} becomes increasingly sensitive to changes in gain. A -4 σ part (V_{OUT} > 193 MV) shows a 36 MV (20%) change in V_{OUT} for a 10% change in gain. Transistor gain changes can occur because of growth of a "parasitic transistor" condition due to surface contamination, or to migration of the gold within the silicon lattice. Gold doping was used in those parts to suppress the parasitic transistor condition as well as to increase part reaction speed. These gain change mechanisms are discussed further in Section 4.

FIGURE 3-2. VOUT PARAMETER VS. TRANSISTOR GAIN FOR DOUBLE GATE DEVICES

There were 24 parts out of the 2573 parts tested that showed large enough increases in $V_{\rm GUT}$ to class them as incipient failures. These parts are identified in Table 3-IX. As noted in Section 1.1, the V_{OUT} tests were performed on a 1/8 sample of the total part - output terminal population. Consequently, it is likely that approximately 200 incipient failures exist in the total of 10,027 parts.

The criteria for identifying a part as an "incipient failure" are: (1) the 1975 Vour value must exceed 220mv, and (2) the 1967-1975 increase in Vour must exceed 25mv. Of these 24 parts, all but one fell outside the -lo limit during the 1967 tests. The lone exception is Part No. 1172 of the Expander family. Furthermore, all but 7 of the parts came from beyond the -2a limit. These seven exceptions are also from the Expander Family (Part Nos. 1027, 1055, 1129, 1147, 1155, 1172, and 1201). These statistics show that the shelf life of these parts could be significantly enhanced by rejecting parts whose performance fells more than one standard deviation below the mean. This would mean rejecting about 16% of the parts.

TABLE 3-IX. INCIPIENT FAILURES

3 - X

, , , , , , , , , , , , , , , , , , , ,			1(4) 14	1375	peprent charge	SPECIFICATION FUEL FOR
forte that that	OJ TRA1	PARAHETER	. w .	S un tax month		la e e e e e e e e e e e e e e e e e e e
THIN RUFTER	Jrd	Y ₀₄₎ †(7-1)	141	1554	17	3,761
	P15	*	120	251	6.7	
	A75		147	289	5.4	
	1945	r	172	102	70	!
	*1779	31	16%	231	₫¢.	1
ALM E P	NIGE		i .	• •		
THAT THERE	497	V ₀₀₁ (6:1)	169	23%	40	
	1631	Y _{0'1} , (7-1)	150	739	36	
	196A	V _(pri) (6-1)	127	, 250	85	
	+2452	A ⁶⁰¹⁴ (9-5)	204	282	38	
4 [አዋቧ፣ ሴላህ	+14.2	vontail)	17R	217	. 4%	
P科1 Aで使用	NAF			1		
PEGENT R	H25L			1		1
EXPAREER	1053	4 ⁶⁶⁴ {6-1}	112	214	16,	r mains throughour
	1055	A ^{UA1} (6-1)	124	264	52	
	•1643	A ^{t-51} (12-5)	177.5	226	14	
	1643	7013(6 1)	196	225	15	
	1123	•	187	247	n	
	1127		180	217	12	
	1147	•	128	724	76	
	1155	•	17.9	244	42	
	no	•	149	228	20	
	1177		104	274	280	
	1501	•	183	229	2%	1
	1220	•	135	232	18	
	1232		156	262	35	
	1367	•	192	749	25	î

^{*} PARTS REJECTED AS "TOOLAD", OPEN TAPPING COPAD-COLLEGE, BUT TOWN TO BE WITHIN SMELTS RISE TARREST OF CONTROLLED DENOR TEST. THESE PARKETAN PARTS WERE TOWN TO ART HIGHLY SINCETTY TO TENERATORE, WARMING BY FINGERS (SOUR AS COLD OFFICE HACLES FOR THE FER FARE THE CAPT PART IN THE TEST FERTING SMEC.

11-1 da -1

3.2 HISTOGRAM COMPARISONS

The results of the 1967 and 1975 Parameter Drift measurements have been plotted on cormon scales in Figures 3-5 through 5-16 for visual evaluation of storage induced changes. Each plot presents results from a single parameter test on a single Logic Function family of parts. For example, Figure 3-3 shows the IIN(3) measurements for the Twin Buffer devices. The remaining plots follow in the order defined in Table 3-1. Each figure contains the following information:

- a) a schematic showing the test conditions used to measure the parameter. The physical elements (specific resistors and transistors) being measured have been circled on the schematic.
- b) the 1967 measured performance distribution or histogram (dashed line) pletted on top of the histogram of 1975 test results (solid line). Appearing above this figure is a table of mean values and standard deviations associated with the 1967 and 1975 test results. The Belta values apply to item (c) described below.
- c) a histogram of the 1967-1975 changes in individual part performance. Parts that have drifted closer to specification limits (degraded) appear along the negative axis.

Each histogram comparison has been technically evaluated to determine whether the 1967-1975 changes can be attributed to normal measurement differences or whether parameter drift has actually occurred. Each of these leaves its own signature in the histograms. Measurement differences include: (1) a bias, or shift in mean value, due to a small difference in the test set up, and (2) random sampling errors due to the limited precision to which each parameter is measured. The latter will tend to have a normal, or bell-shaped distribution.

When measurement differences are present, the 1975 histogram will have a shape very similar to the 1967 histogram, but may be shifted to the right or left. The 1967-1975 change histogram will show a near-normal distribution about a mean value equal to the bias between the two test measurements.

Where significant parameter drift has occurred, the 1975 histogram will tend to be skewed, or stretched closer to the specification limit than the 1967 histogram. The mean value also may have shifted toward the spec limit although there may be little change in the above average parts. Since the below average parts tend to drift more rapidly than the better performers, the 1967-1975 change histogram will not be bell-shaped, but will show a pronounced skewness in the negative (degraded performance) direction.

The criteria discussed above have been used to evaluate the histogram comparisons. These evaluations appear in Tables 3-X through 3-XVI. These seven tables cover the seven families of logic function devices, starting with the Twin Buffer, Table 3-X. The remaining six tables irrediately preced the histogram plots for the other six logic function devices.

The histogram plots confirm the assessments already made from the Summary Tables (Tables 3-11 through 3-VIII). In fact, evaluation

3.2 HISTOGRAM COMPARISONS (Continued)

of the histograms sometimes shows that drift has occurred in parameters that did not exceed the conservative 99' confidence criterion used in the statistical tests. The long (Resistance) measurements still show no clear evidence of drift. The most sensitive transistor parameter, Vong, shows drift on each logic function device, with significant drift occurring on the Double Gate, Register, and Expander. These are the three devices that showed drift at the 99% confidence level. In all cases, drift is most pronounced in the below-average parts. The less sensitive transistor performance parameters, Inv, and Vol., suggest that drift has occurred on some of the devices, but the magnitude is small and difficult to separate from the measurement differences. The best indications of drift on these parameters appears in the below average parks from the Bouble Gate, Register, and Expander families.

The I_{L"} I_{RT}, and I_{CEX} measurements made in 1967 were not carried out to the nanoamp precision required to quantitatively evaluate leakage current drift. However, they were sufficiently accurate to state with confidence that significant drift in leakage characteristics did not occur. Because of their greater precision, the 1975 tests showed the leakage rates actually to be lower in some devices than the 1967 measurements indicated.

TABLE 3-X. EVALUATION OF HISTOGRAM COMPARISONS FOR THE TWIN BUFFER

MS	Cair.	TECHNICAL ASSESSMENT	155	NO KEASYRABLE DRIFT	MODERATE DRIFT	NO WEASURABLE ORIFT	NO SIGNIFICANT ORIFT	NO SIGNIFICENT ERIFT	RO SIGNIFICANT CRIFT
TRENDS OBSERVED IN HISTOGRAM COMPARISONS	TPICAL PARMETER D	Solved of the so			*				
IISTOGRAM	V-	ON THE STATE OF TH			`:				
RVED IN P	FIRENCES	21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			77	COCONTO			
ZENDS OBSE	KKUZIHCKI DIFIERKES			·		/4.4	`	- 4	>
17	3			3		,,	*>		`>
	CERCO			**		A.55 ·	•	`*	•
0N5937	SLIGHT TREND // MODERATE TREND /// PRONOUNCED TREN	PARAMETER (FIGURE NO.	In(3) (3-3)	I _{OUT} (7) (3-4)	V _{0U} (7-1) (3-5)	V _{QL} (7-1) (3-6)	I _{RT} (1-2) (3-7)	(1 _{RT} (3-5) (3-8)	I _L (3) (3-9)

CHECKS APPEARING IN FIRST THREE COLUMIS SUPPORT CONCLUSION THAT DIFFFALTCES ARE DUE TO NORMAL MEASUREMENT EPHORS; CHECKS IN LAST THREE COLUMIS STRIPS CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

a. Schea and for $F_{\rm IR}(t)$ testigh + 1% resistance + (t+t 19). Ase each the current samples for younger

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-3. HISTOSBYM COMPARISON OF I IN (2)

-T la luifer -

 \mathbf{a}_{t} -schematic for \mathbf{I}_{OUT} (7) Test in a resistance checks

b. LISTRIBUTION OF PARTS: 1973 VS 1967 TEST

c. 1967-1975 CHANGE IN TOUT(7)

FIGURE 3-4. HISTOGRAM COMPARISON OF LOUT(7) - TYIN SUFFER -

a. Schematic for v_{QUI} (7-1) Test (C3). We are drop at minimum "on" condition)

6. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

C. 1967 - 1975 CHANGE IN V_{OUT} (7-1) FIGURE 3-5 HISTOGRAM COMPARISON OF V_{OUT} (7-1) - TWIN BUFFER -3-15

8. SCHEMATIC FOR VOLTAGE DROP AT SATURATION

b. DISTRIBUTION OF PARIS: 1975 v3 1067 TEST

c. 1867 – 1875 Charge in v_{QL} (7-1) Figure 3-4. Histogram comparison of v_{QL} (7-1)

- Trin buffer -

a. SCHEMATIC FOR IRTH, 29 TEST (GI+G2+C4+C5 BASE FAMITIER JUNCTION LEAKAGE CURRENT)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

C 1967-1975 CHARGE IN 1870, 29
FIGURE 3-7 HISTOGRAM COMPARISON OF 1870, 29
TWIN COFFER
3-29

3 SCHEMATIC FOR $\mathbf{1}_{RT}(2,5)$ Test is 7+Cb+C9+G10 . A.Se emitter junction leakage current)

b. DISTRIBUTION OF PARTS: 1975 VS-1967 TEST

C. 1967-1975 CHANGE IN 1R₁13-5)
FIGURE 3-8 HISTOGRAM COMPARISON OF 1_{R1}13-5)
TWIN DUFFER

a. SCHEMATIC FOR ILIED TEST (G)+Q2+(4+Q5+Q7+QE+C9+G)D LEAKAGE CURRENT

C. 1967-1975 CHANGE IN ILISH FIGURE 3-9. HISTOGRAM COMPARISON OF ILISH TVIN BUFFER 3-22

TABLE 3-XI. EVALUATION OF HISTOGRAM COMPARISONS FOR THE ADDER

NS	XIT	53	000	F TECHNICAL ASSESSMENT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO SIGNIFICANT DRIFT	NO SIGNIFICANT DRIFT	
TRENDS OBSERVED IN HISTOGRAM COMPARISONS	TYPICAL PARMETER DRIFT	10	10 to 14	5 4 15 15 15 15 15 15 15 15 15 15 15 15 15				•			
HISTOGRAM	DIGYT	5/	00 10	\$\\\ \ \ \ \ \ \ \ \ \ \ \ \				1			
ERVED IN	FTERENCES	\$	5/6/					Å			
RENDS OBS	HEASUREHENT DIFFERENCES	7767	10 / ST. C.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11	*	11	11	1	1	
<u> -</u> *	אסומנו	30%	SA AND	3 (25 25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25) 3 (25)	//	//	//	111	<i>*</i>	`	
П	_	Q).	5.50) SEE (3 4	//	M	111	f.f	1	`	
LEGEND	4	W MODERATE TREND		PARAMETER (FIGURE NO.)	$I_{1n}^{(1)}$ (3-10)	Ι _{ουπ} (6) (3-11)	Ι _{Οιπ} (7-1) (3-11a)	V _{0L} (7-1) (3-12)	I _{RT} (1,2,3,5) (3-13)	I _L (8) (3-14)	

CHECKS APPEARING IN FIRST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO NORMAL MEASUREMENT ERRORS; CHECKS IN LAST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

a. Schematic for in test irt resistance and c3 base emitter check at saturation voltage)

b. DISTRIBUTION OF PARIS: 1975 VS 1967 TEST

c. 1667 - 1475 CHARGE IN $\Gamma_{1N}(0)$ Figure 3-12. Histogram comparison of $\Gamma_{1N}(0)$

- ACUFE -

a. SCHEMATIC FOR LOUTION TEST IR4 RESISTANCE CHECKI

c. 1967-1975 CHANGE IN IQUITO FIGURE 3-II. HISTOGRAM COMPARISON OF LOUTIO

∧ uder 3-25

a. SCHEMATIC FOR LOUTIF-IN TEST (R2 RESISTANCE CHECK)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN TOUT(7-I)
FIGURE 3-11 a. HISTOGRAM COMPARISON OF TOUT(7-I)

ADDFR

e. Schematic for v_{QL} (7-0 test ict voltage drop at saturation)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 IEST

c. 1967 - 1975 Change in $v_{Q_{\xi}}$ (7-1) Figure 3-12. Histogram comparison of $v_{Q_{\xi}}$ (7-1)

- Adder -3-27

SCIPA GIC FOR LATIFICACE TEST (Q3+Q4+Q7+QE TASE EMITTER JUNCTION LEAKAGE CURRENT)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-13. HISTOGRAM COMPARISON OF IRI (1 2,3-5)

ADDER

SCHEMATIC FOR ILIB) YEST IGI+QZ+Q5+Q6 LEAKAGE CURRENT JUST BELOW MAX "OFF" VOLTAGE

b. DISTRIBUTION OF PARTS: 1975 VS, 1967 TEST

C. 1967-1975 CHANGE IN ILIBI FIGURE 3-14, HISTOGRAM COMPARISON OF ILIBI

ADDER

EVALUATION OF HISTOGRAM COMPARISONS FOR THE DOUBLE GATE TABLE 3-XII.

SIS	נוונו	53	10 m	TECHNICAL	NO MEASURABLE ORIFT	NO MEASURABLE DRIFT	PRONOUNCED DRIFT	1:0 PEASURABLE DRIFT IN IN -0 PARTS	NO MEASURABLE DRIFT IN +9 PARTS; SLIGHT DRIFT IN -9 PARTS	NO SIGNIFICANT DRIFT	NO SIGNIFICANT DRIFT
COMPARIS	TYPICK PANETER	10	0 4013	Thomas and a			1111	*	*		
IISTOGRAM	סומת		5161 ×	15 (15 S S T 15 S T 15 S			111	• •	1		
*TRENDS CBSERVED IN HISTOGRAM COMPARISONS	IFFERENCES	*	resils str	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			111	. ,	**		
RENDS CBS!	KNSGENNT DIFFERNCES	256	25. 12.00	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	***	///		<i>*</i>	*	,	`,
*	18182	Jet,	AS SA		*	,		,	`	,	*
П		GN ON) siss (4)	*	121		11	**	,	`
LEGEND	SLIGHT TREND	// MODERATE TREND		PARAMETER (FIGURE NO.)	I _{IR} (1) (3-15)	Ι _{Ουτ} (7) (3-16)	V _{OUT} (6-1) (3-17)	V ₀₂ (6-1) (3-18)	V _{0L} (7-1) (3-19)	ⁱ RT (3–20)	I _L (8) (3-21)

CHECKS APPEARING IN FIRST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO NORMAL MEASUREMENT ERRORS; CHECKS IN LAST THREE . UMMS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

a. SCHEMATIC FOR I_{1N} ID TEST (R3 RESISTANCE + Q1 BASE EMITTER-CHECK AT SATURATION VOLTAGE)

b. MISTRIPUTION OF PARTS, 1875 VS.1967 TEST

c. 1967 - 1975 CHANGE IN L_{IN}III FIGURE 3-15. HISTOGRAM COMPARISON OF L_{IN}III-

- DOUBLE GATE -

SCHEMATIC FOR LOUT IT! TEST IN RESISTANCE CHECK!

MO. IN SMETS ALPERLATED BY HISTOGRAP SOO

1621	MA.	STO DEV.
1967	679 +	42.5 . 2
1975	£83 a	42.5 ca
1967-1975 PELTA	٠١ .*	3.0 .4

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN LOUT 171

FIGURE 3/36 HISTOGRAM COMPARISON OF IOUT (7)

- GOUBLE GATE -

3-32

a. SCHEMATIC FOR VOUT(6-1) TEST IC3 VOLTAGE DROP AT MINIMUM "ON" CONDITION)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 = 1975 CHANGE IN V_{OUT}(6-1) FIGURE 3-17, HISTOGRAM COMPARISON OF V_{OUT}(6-1)

- DOUBLE GATE -3-33

a. SCHEAVATIC FOR VOL16-II TEST 103 VOLTAGE DROP AT SATURATION)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-38 HISTOGRAM COMPARISON OF VOL16-1)

- DOUBLE GATE -3-34

a. Schematic for v_{ol} (7-1) test (CI voltage grop at saturation)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

- DOUBLE GATE -3-35

SCHEMATIC FOR IRT TEST (QI+Q2+Q3+Q4 BASE EAVITTER JUACTION LEAKAGE CURRENT

b. DISTRIBUTION OF PARTS: 1975 VS, 1967 TEST

a. SCHEMATIC FOR ILISI TEST (GI+Q2+G3+Q4 LEAKAGE CURRENT)

SOSE 20

COMMENT (PICALAPUS)

C. 1967-1975 CHANGE IN ILIB FIGURE 3-21. HISTOGRANI COMPARISON OF ILIB DOUBLE GATE

EVALUATION OF HISTOGRAM COMPARISONS FOR THE 4-INPUT GATE TABLE 3-XIII.

ONS	No.	TECHNICAL ASSESSMENT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	MODERATE DRIFT	NO MEASURABLE DRIFT	NO SIGNIFICANT DRIFT	NO SIGNIFICATI DRIFT	
COMPARIS	TYPICAL PABACETER DRIFT	SI DE SI	*	,	*	2			
ISTOGRAM	* :				**		1	4	~
TRENDS OBSERVED IN HISTOGRAM COMPARISONS	THE BOOK				***	*			
ENDS 08SE	PASSENCENT BATHERDOSS		`	///		3	•	, ,	
4 ₹ F	TO THE			*			`	*	
П		Selection in	*	1111		*	`	•	,
LEGEND	/ SLIGHT TREND // MODERATE TREND /// PRONOUNCED TREND	PARAMETER (FIGURE NO.)	I _{IN} (1) (3-22)	I _{OUT} (7) (3-23)	V _{0JT} (6-1) (3-24)	V _{OL} (6–1) (3–25)	І _{КТ} (3-26)	I _L (8) (3-27)	

CHECKS APPEARING IN FIRST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO NORMAL MEASUREMENT ERRORS; CHECKS IN LAST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

a. SCHEAPTIC FOR I IN THEST IRA RESISTANCE \times 12 LASSE IN LIGHTLY (Co. C. village of loss of

b. DISTRIBUTION OF PARTS: 1975 VS 1967 YEST

c 1957 - 1512 CHANGE IN I IN(I)

FIGURE ?- 22. HISTOGREM COMPARISON OF I IN III

- FOUR INPUTIGATE -

a SCHEMATIC FOR LOUTER TEST IR RESISTANCE CHECKIS

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN LOUTIN

FIGURE 3-23. HISTOGRAM COMPARISON OF LOUT(7)

4 - INPUT GATE 3-40

a. Schematic for v_{out} (6-1) test (Q2 voltage drop at annimum "on" condition)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1947 - 1975 CHANGE IN VOUT(6-1)

FIGURE 3-24. HISTOGRAM: COMPARISON OF V_{QUT}(6-1) - FOUR-INPUT GATE:-3-41

a. Schematic for $v_{\hat{o}\hat{c}}$ (6-II) test (C2 voltage grop F1-Sature 110N)

b. DISTRIBUTION OF PARTS: 1975 VS-1967 TEST

c. 1967 - 1975 CHANGE IN V_{OL}(6-1)

FIGURE 3-25, HISTOGRAM COMPARISON OF VOLT6-15

- FOUR-INPUT GATE -

a. SCHEMATIC: FOR I_{RT} TEST 102+03+04+65 dase emitter junction leakage current

b. DISTRIBUTION OF PARTS: 1975 VS. 1967 TEST

c. 1967-1975 CHANGE IN IRT FIGURE 3-26, HISTOGRAM COMPARISON OF IRT FOUR-PRPUT GATE

3 SCHEMATIC FOR ILIER TEST (C) LEAKAGE CURRENT AT JUST BELOW MAXIMUM "OFF" CONDITION:

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 (HANGE IN ILLIA)
FIGURE 3-27, HISTOGRAM COMPARISON OF ILLIA)
FOUR-INPUT GATE
3-44

TABLE 3-XIV. EVALUATION OF HISTOGRAM COMPARISONS FOR THE HALF ADDER

ONS	Total States	TECHNICAL ASSESSMENT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT	NO SIGNIFICANT DRIFT	NO SIGNIFICANT DRIFT	Ö °
COMPARIS	ا د					•		-	
ISTOGRAM									
TRENDS OBSERVED IN HISTOGRAM COMPARISONS	SDCHIMB SDCHIMB							<i>f</i>	
NOS OBSE	8		`	•	`	*	`	•	,
*TR	1		3	3	`	•	`	`	
			3	*	7	*	`	`	
LEGEND	SLIGHT TREND W HODERATE TREND W// PRONOUNCED TREN	PARAMETER (FIGURE NO.)	I _{IN} (1) (3-28)	1 _{1N} (3) (3-29)	1 ₀₍₁₇ (7-1) (3-30)	Vo. (6)	^I PT (3-32)	1 ₁ (8) (3-33)	

CHECKS APPEARING IN FIRST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO NORMAL MEASUREMENT ERRORS; CHECKS IN LAST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

4. Forestic focies we set by resists $\phi \mapsto \delta \omega$ seek the still corolly sequential voltages

b. LASTRI TUTLOS. DE PERISE RAS VS 106-TEST

- KALL , DOER -

SCHEMATIC FOR IINIB) TEST IRB RESISTANCE + Q5 BASE EMITTER JUNCTION LEAKAGE CHECK AT SATURATION VOLTAGE)

b. DISTRIBUTION OF PYRTS: 1075 VS 1567 TEST

FIGURE 3-28. HISTOGRAM COMPARISON OF I_{IN}(3)
- HALF AUGER 3-47

2. SCHEMATIC FOR LOUTH-1- TEST THE ACTISTANCE CHECKI

6 DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

C. 1957-197* CHANGE IN LOUIST-II FIGURE 3-30. HISTOGRAM COMPARISON OF LOUIST-II HALF ADDER 3-68

SCHEMATIC FOR IINIS) TEST (RE RESISTANCE + OS BASE EMITTER JUNCTION LEAKAGE CHECK AT SATURATION VOLTAGE)

b. DISTRIBUTION OF PARTS: 1875 VS 1567 TEST

Figure 3-2%. Histogr/M completison of $T_{1N}(3)$

- HALF + DLFR -

a. SCHEMATIC FOR LOUTIT-DITEST MY MESISTACE CHICAI

b distribution of parts: 1975 VS 1967 Test

c. 1957-197: CHANGE IN TOUT(7-1)
FIGURE 3-20. HISTOGRAM COMPARISON OF TOUT(7-1)
HALF ADDER
5-48

a. Schematic for \mathbf{v}_{OL} (6) Test (07 voltage drop at saturation)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1957 - 1975 CHANGE IN VOL66

FIGURE 3-31. HISTOGRAM COMPARISON OF VOLES

- HALF ADDER -

a. SCHEMATIC FOR IRT TEST (G3+Q4+Q5+Q6 BASE EMITTER JUNCTION LEAKAGE CHECK)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN I_{RT}
FIGURE 3-32 HISTOGRAM COMPARISON OF I_{RT}
HALF ADDER
3-50

3. SCHEMATIC FOR ILIB TEST (CI+Q2+Q7 LEAKAGE CURRENT AT JUST BELOW MAXIMUM "OFF" CONDITION)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

C. 1967-1975 CHANGE IN ILLIAN FIGURE 3-33. HISTOGRAM COMPARISON OF ILLIAN HALF ADDER

3-**5**1

TABLE 3-XV. EYALUATION OF HISTOGRAM COMPARISONS FOR THE REGISTER

*TRENDS OBSERVED IN HISTOGRAM COMPARISONS	Date of the state	TECHNICAL ASSESSMENT	NO MEASURABLE DRIFT	NO MEASURABLE DRIFT		NO MEASUKABLE DKIFT IN +0 PARTS; SLIGHT DRIFT IN -0 PARTS	NO SIGNIFICANT DRIFT	NO SIGNIFICANT ORIFT	
	Treice PARVETER			,	<i>^</i>	1			
ISTOGRAM			711	\	<i>\</i>	,	,		Ŷ.
RVED IN H	NITHERALS &				3	*		,	
RENDS OBSE			>	`		*	*	*	
*T	3		///	11.1		,	*		
П	9		*	///	ζ.		. **		·
LEGEND	SLIGHT TREND W MODERATE TREND W// PRONOUNCED TREND	PARAMETER (FIGURE NO.)	I _{IN} (2) (3-34)	Ι _{ουτ} (6-1) (3-35)	, V _{OUT} (5-1) (3-36)	V _{0L} (6-1) (3-37)	IRT (3-38)	I _L (8) (3-39)	-

CHECKS APPEARING IN FIRST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO NORMAL MEASUREMENT ERRORS; CHECKS IN LAST THREE COLUMNS SUPPORT CONCLUSION THAT DIFFERENCES ARE DUE TO PARAMETER DRIFT *NOTE:

*. SCHEMATIC FOR 11N(2) TEST IR RESISTANCE + QI5 BASE EMITTER CHECK AT SATURATION VOLTAGE)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-34. HISTOGRAM COMPARISON OF 1 IN 120

- REGISTER -

a. SCHEMATIC FOR IQUT(6-I) TEST IR RESISTANCE CHECK)

c. 1967-1975 CHANGE IN TOUT 16-11 FIGURE 3-35. HISTOGRAM COMPARISON OF IQUI(6-1) REGISTER 3-54

a. Schematic for v_{out} (5-1) test (G6 voltage drop at minimum "on" condition)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-36. HISTOGRAM COMPARISON OF YOUT (5-1)
- REGISTER:3-55

a. Schematic for $v_{ol}(\mathrm{d} d)$ test (q) voltage drop at saturation)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 - 1975 CHANGE IN V_{OL}16-II FIGURE 3-37. HISTOGRAM COMPARISON OF V_{OL}16-II - REL\ISTER -3-56

, SCHEMATIC FOR IRT TEST 101+Q6+q7+G12+Q15 BASE EMITTER JUNCATION LEAKAGE CHECK

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN IRT FIGURE 3-38. HISTOGRAM COMPARISON OF IRT

B. SCHEMATIC FOR ILIBI TEST (QZ+Q3+Q4+Q5+Q8+Q9+Q10+Q11+Q13+Q14 LEAKAGE CURRENT AT JUST BELOW MAXIMUM "OFF" CONDITION)

b. DISTRIBUTION OF PARTS: 1975 VS. 1967 TEST

C. 1967-1973 CHANGE IN 11181 FIGURE 3-59, HISTOSRAM COMPARISON OF ILIB

TABLE 3-XVI. EVALUATION OF HISTOGRAM COMPARISONS FOR THE EXPANDER

ONS	Dirth Control	TECHNICAL ASSESSMENT	NO MEASURABLE DRIFT	PRONOUNCE DRIFT, VERY PRONOUNCED IN -a PARTS	器	NO PEASURABLE DRIFT IN +0 PARTS: SLIGHT DIRFT IN -0 PARTS	NO SIGNIFICANT DRIFT	NO SIGNIFICANT DRIFT	NO SIGNIFICANT DRIFT
COPPARISO	Trates, minutes (2017)		,	111	*	1	4		
HISTOGRAM COMPARISONS			14	111	11	11		r.	,
RVED IN H	nineaus s			111	*			4.	
TRENDS COSERVED IN	100		*	Í	>	•	•		
11.*	PICE.		`		*	*	`	\	•
			*		*	`	`	`	*
LEGEND	Y SLIGHT TREND V/ MODERATE TREND V/V PRONGUNCED TREND	PARAMETER (FIGURE NO.)	¹ 1n(1) (3-40)	Vour(6-1)	V ₀₁ (6-1) (3-42)	(3-43)	(3-44)	1 _L (8) (3-45)	(3L/6)

. Schematic for Γ_{N} in test ir resistance + CI wase emitter check at saturation voltage)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

FIGURE 3-40. HISTOGRAM COMPARISON OF $I_{1N}(t)$

a. Schematic for $\dot{v}_{OUT}^{(6-1)}$ test (Q4 voltage drop at minimum "on" condition)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 - 1975 CHANGE IN VOUT(6-1)

FIGURE 3-41. HISTOGRAM COMPARISON OF VOLT (6-1)

a. Schematic for $v_{OL}^{(6-i)}$ test (c4 voltage drop at Saturation)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 - 1975 CHANGE IN V_{OL}16-II

FIGURE 3-42. HISTOGRAM COMPARISON OF $V_{OL}(6-1)$

a. SCHEMATIC FOR VOLTA-II TEST (OI VOLTAGE DROP AT SATURATION)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967 - 1975 CHANGE IN VOL⁽⁷⁻¹⁾ FIGURE 3-43. HISTOGRAM COMPARISON OF VOL (7-1)

a. SCHEMATIC FOR IRTII, 2, 3, 5) TEST (Q1+Q2+Q3+Q4 BASE EMITTER JUNCTION LEAKAGE CURRENT)

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN 1RT (1, 2, 3, 5)
FIGURE 3-44. HISTOGRAM COMPARISON OF 1RT (1, 2, 3, 5)
EXPANDER

. . .

7.75

a. SCHEMATIC FOR 11(6,7,8) TEST 101+Q2+Q3+Q4 LEAKAGE CURRENT AT MAXIMUM POWER SUPPLY VOLTAGE)

NO. OF PARTS REPRESENTED BY HISTOGRAM 350

b. DISTRIBUTION OF PARTS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN IL FIGURE 3-45. HISTOGRAM COMPARISON OF IL EXPÁNDER

3-65

3. SCHEMATIC FOR ICEXITI TEST 191+93 LEAKAGE CURRENT AT MAXIMUM "OFF" VOLTAGED

b. DISTRIBUTION OF PARYS: 1975 VS 1967 TEST

c. 1967-1975 CHANGE IN ICEX
FIGURE 3-46, HISTOGRAM COMPARISON OF ICEX
EXPANDER
3-66

SECTION 4

PRODUCT IMPROVEMENT GUIDELINES

4.0 PRODUCT IMPROVEMENT GUIDELINES

The results of this test program have been assessed to establish guidelines for increasing storage life. Recommendations are summarized in Table 4-1.

TABLE 4-1. PRODUCT IMPROVEMENT RECOMMENDATIONS

POTINTIAL FATURES	TEST BESILTS	MOCCHOMADATICHS A				
CATARTHOPHIC						
now with fallings	NO FAILMES	STORMES INTERSITY OF SOME WIRES, PACKAGES AND LEAGE CAN BE ASSESSITELY ASSESSED VIA THE				
PACLATZ, PROBLEMS	NO FAILINGS	POLLANING HILLTHAN SPECIFICATIONS AND STANDARD FOR MI-RE PARTS:				
FRYD CONNOCTON/SUCYTYCE.	PO FAILURES	MIL-STD-309, "TOST NETHODS FOR ELECTRONIC AND BLACTRICAL CONCREMY PARTS				
		• MIL-S-19109, "MILITARY SPECIFI- CATIONS, SOME CONDUCTOR SEVICES GRISAGE SPECIFICATIONS FOR" • RIL-S-48304, "GOLD PLATING, BLUCTHO- GROSSITES" • QR-S-571, "SOLDER; THE ALLOY, LEAD- TIM ALLOY, LEAD ALLOY!"				
OCTOR DOPACTS	3 PATLIMES; PATLIME BATE = 0.0005 g 10-0 PATLIMES/PART HR (906 COM ISSUEZ LLVRL)	STORAGE PHOLESO OR HE REPART PATLINES CAN HE ASSEMBLYSTANDAMS PLAS THE REQUIREMENTS THAT THERESES PERFORMS AT THE CINCUIT CAND LEVEL.				
MANUTER MIFT	`					
MESTANCE	NO SIGNIFICANT BAIFT	ASSURE COMPLIANCE WITH THE SPECIFICATIONS AND STANDARD CITED ABOVE				
TRANSISTOR LEAKAGE	MO SIGNIFICANT BRIFT	Simple Cities Albert				
TRANSISTOR CAIM	SHOUTESCANT ONLET	PERFORM "MORST CASE" CIRCUIT AMALYSIS TO BEPTING. OPERATING RANGE OF BACH GAIN-DEPRIMENT PARAMETER; ESTABLISM BESION SPECIPICATIONS AMO/OR SCREWNING- TEST CRITERIA TO MAINTAIN ALL PARAMETERS HITHIN RELATIVELY LIMMS OPERATING RANGE ASSUMING A JOA LOSS IN GAIN (1.0., AVOID ORIPTING INTO REGIONS CHARACTERIZED BY THE STEEP PART OF FIGURE 4-1, MIRRE A SMALL LOSS IN GAIN CAN CAMBE A LARGE CHARGE IN A CRITICAL PARAMETER).				

The parts were packaged, assembled, inspected and tested to Boeing specifications that closely followed the Military Standards and Specifications cited in Table 4-I. There were no bond wire failures, no package problems, and no lead corrosion/breakage after eight years of storage; the cited specifications provide adequate storage reliability for these potential

4.0 (Continued)

failures modes. The only source of storage-induced catastrophic failures in these parts - oxide defects - can be controlled in a hardware system. Minuteman experience has shown that most of the latent oxide defects that survive part level burn-in can be detected and eliminated by assuring that adequate functional tests are performed at the circuit card level.

Parameter drift proved negligible in the resistance and transistor leakage characteristics. Transistor gain was the only parameter that exhibited a significant loss of performance during the eight years of storage. This is the one parameter that may have to be controlled to obtain a 10-20 year shelf life on these RTL devices. Transistor gain was not measured directly. However, the transfer function relating Your to transistor gain was obtained from a special test of the Double Gate devices. The result is shown in Figure 4-1. Using this transfer function, and measured changes of Your, hand calculations were made of the gain changes in 20 of the parts. These parts included all of the Double Gate incipient failures plus other parts selected randomly from the -10 tail of the 1967 distribution. These parts showed reduction in gain ranging from 7 to 26%, with an average change of 13%.

FIGURE 4-1. TYPICAL OUTPUT PARAMETER VS TRANSISTOR GAIN

4.0 (Continued)

To achieve long shelf life, the design specifications for new parts, or the screening test specifications for existing parts, should prevent operating the part in a highly non-linear region such as shown in Figure 4-1.

If a new part is being developed, the diffusion profiles can be adjusted to obtain higher gain parts in which a small loss of gain does not cause a large degradation in one of the output parameters. Screening tests can also be used to reject the lower gain parts which could lead to the output parameter(s) drifting into the non-linear region. The circuit card designer can also limit fanout (the number of inputs driven by a single output) to less than the Manufacturer's rating to prevent operating on the steep part of the output-gain curve. The following approach is recommended to achieve adequate control of transistor gain drift during storage:

- 1) Perform analysis of design to determine worst case operating regions.
- 2) Determine the part gain and/or circuit card fanout limits required to keep the output parameters from drifting into the highly non-linear operating region assuming a 30% loss of gain (19 yr shelf life).
- 3) Establish design and/or screening test criteria to accomplish (2) above.

The screening tests could be imposed at the wafer level. Wafers that would yield high gain parts would be selected for long storage life applications, with the remainder going to commercial use.

As previously stated, rejecting the 16% (-10) of the parts with the highest VOUT Weasurements (lowest gain measurements) would have eliminated all but one of the incipient parameter drift failures. A worst case analysis of the Minuteman logic circuits was performed to evaluate the effect of VOUT drifting above the 300 mv specification. The analysis showed that these parts would still reliably perform their logic functions even when degraded well beyond the 300 mv limit. Consequently, these particular parts are deemed to have adequate storage life reliability without imposing more severe test criteria. However, other devices may be more dependent on the gain of their transistors and should be evaluated on a case-by-case basis.

4.1 TRANSISTOR GAIN DRIFT MECHANISMS

The shelf-life drift observed in transistor gain is attributed to one or a combination of the following mechanisms:

1) Changes in the gold doping process, which is used to control the "parasitic transistor" condition*, as well as to increase part switching speed.

*Refer to pp 222-226, Fundamentals of Silicon Integrated Device
Technology, Vol. II, Edited by R. M. Burger and R. P. Donovan,
Prentice-Hall, 1968, for an explanation of the "parasitic transistor" condition.

4.1 (Continued)

2) Growth of a "parasitic transistor" condition due to migration of contaminants, or to changes in the gold doping process.

In devices of this type, a parasitic base-to-substrate transistor can form due to migration of contaminants or gold. This parasitic transistor shunts part of the base current around the base emitter junction, effectively reducing transistor gain. The gold may also migrate within the silicon lattice structure, thereby reducing the gain directly. Since all of the incipient failure parts were operating in the non-linear region characterized by Figure 4-1, small gain changes were able to produce large increases in the Vout parameter. Selected incipient failures are being provided to Georgia Institute of Tachnology, who will attempt to determine the physical changes that are causing the observed drift.