Numer indeksu:	

Logika dla informatyków

Egzamin końcowy (pierwsza część)

	2 lutego 2016 czas pisania: 80 min
Zadanie 1 (2 punkty). Podaj formulę	równoważną formule $p \Leftrightarrow (\neg q \land r)$ i mającą:
(a) koniunkcyjną postać normalną	
(b) dysjunkcyjną postać normalną	
	rmuła równoważna z $p \Leftrightarrow (\neg q \land r)$ i zbudowana tylko ze zmieniasów) to w prostokąt poniżej wpisz dowolną taką formułę. W
	$\Leftrightarrow (q \land r)$ i $(p \Leftrightarrow q) \land (p \Leftrightarrow r)$ są równoważne to w prostokąt w przypadku wpisz odpowiedni kontrprzykład.
jeśli jest postaci $Q_1x_1 \dots Q_nx_n\psi$, gdzie x_i $i=1,\dots,n$), a formuła ψ nie zawiera k	rmuła φ logiki I rzędu jest w preneksowej postaci normalnej, i są zmiennymi, Q_i są kwantyfikatorami (czyli $Q_i \in \{\forall, \exists\}$ dla kwantyfikatorów. Jeśli istnieje formuła w preneksowej postaci relacją równoważności to w prostokąt poniżej wpisz dowolną wpisz słowo "NIE".
Zadanie 5 (2 punkty). Różnicę symetr	$ycznq$ $\dot{-}$ zbiorów A i B definiujemy następująco:
	$B = (A \setminus B) \cup (B \setminus A)$
Jeśli dla wszystkich zbiorów A,B,C zach	odzi równość
$(A \doteq B) \doteq C = (A \setminus$	$(B \cup C)) \cup (B \setminus (A \cup C)) \cup (C \setminus (A \cup B))$
to w prostokąt poniżej wpisz słowo "TAK	". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

JISZ Wai tosciowan	ie, przy którym ta	formuła jest fa	dszywa.		
	a kty). Jeśli zbiór k jny dowód sprzecz or				
	· ·				
adanie 8 (2 pun	\mathbf{kty}). Dla $n \in \mathbb{N}$ r	$niech A_n = \{i \in$	$\mathbb{N} \mid i \leq n$ }. Jeśli	zbiór \bigcap^{42} \bigcap^{m+1}	$\stackrel{.0}{A_n}$ ma najmnie
	rostokąt poniżej w			m=17 $n=5$	5
	akty). Niech $R = \langle \varphi \rangle \in \mathbb{R} \times \mathbb{R} \mid \varphi \rangle$ jest				poniżej wpisz tal

Daniéd Waér	$a \in T$ B_t .	our alama amt]; aaláámas á				7 4.6.
Dowód. Weźr	ny dowon	iy element			i załóżmy, ż	е			. Z defin
cji sumy inde	eksowanej	rodziny z	biorów	wiem	y, że istnieje	taki indeks t_o	, że		, czy
	oraz		Ponov	vnie k	orzystając z o	lefinicji sumy	indeksow	vanej rodz	iny zbioróv
otrzymujemy dowód.			oraz			, czyli $x \in \bigcup$	$\int_{t\in T}A_t\cap$	$\bigcap \bigcup_{t \in T} B_t$, co kończ
podzbiorów 2	X zbioru $\mathbb I$	\mathbb{R} zachodzi	równoś		$\int_{1}^{1} [\sin[X]] = X$ kontrprzykład	yczną sin : R to w prostoka	ąt poniże	j wpisz sło	owo "TAK'
	.	4) D	ożmy f	unkcie					
Zadanie 12	ſ	f: $(A \times A \times A \times A)$	$B)^C$ –	$\rightarrow (A \times$	$(C)^B$,	g : C -	$\rightarrow A \times B$,		
oraz elementy nżytej w nim Np. wyrażeni typ rozumien t(a,b) jest (A	f g	$f: (A \times A \times A)$ $f: A \times A$ $f: $	$B)^C - B \rightarrow (A \cup B)^C + (A \cup B)^C$	$A \times (A \times C)$ V tyme biorów bo $a \in C$ V elem i typ v	$(C)^B$, zadaniu uzn w $A, B \in C$) j $\not\in (A \times B)^C$. ant oznaczan wyrażenia w p	g: C- amy wyrażenie ej argument n Jeśli wyrażenie y przez to wy- prostokąty obo- słowo "NIE".	e za popr ależy do e jest pop rażenie. I	dziedziny prawne, to Np. typem	tej funkcj o przez jeg n wyrażeni
oraz elementy nżytej w nim Np. wyrażeni yp rozumien h(a,b) jest (A	f g	$f: (A \times A \times A)$ $f: A \times A$ $f: $	$B)^C - B \rightarrow (A \cup B)^C + (A \cup B)^C$	$A \times (A \times C)$ V tyme biorów bo $a \in C$ V elem i typ v	$(C)^B$, zadaniu uzn w $A, B \in C$) j $\not\in (A \times B)^C$. ant oznaczan wyrażenia w p	amy wyrażenie ej argument n Jeśli wyrażenie y przez to wy rostokąty obo	e za popr ależy do e jest pop rażenie. I	dziedziny prawne, to Np. typem	tej funkcj o przez jeg n wyrażeni
oraz elementy iżytej w nim Np. wyrażenie $h(a,b)$ jest (Awyrażeń, któr	f h f g	$f: (A \times A \times A)$ $f: A \times A$ $f: $	$B)^C - B \rightarrow (A \cup B)^C + (A \cup B)^C$	$A \times (A \times C)$ V tyme biorów bo $a \in C$ V elem i typ v	$(C)^B$, zadaniu uzn w $A, B \in C$) j $\not\in (A \times B)^C$. ant oznaczan wyrażenia w p	amy wyrażenie ej argument n Jeśli wyrażenie y przez to wy prostokąty obo słowo "NIE".	e za popr ależy do e jest poprażenie. I k tych sp	dziedziny prawne, to Np. typem	tej funkcj o przez jeg n wyrażeni
praz elementy nżytej w nim Np. wyrażeni (yp) rozumien (a,b) jest (A wyrażeń, któr (f(g)) (h(a,b))	f h g $a \in A$, funkcji (e $f(a)$ nic ny zbiór, $A \times C)^B$. The sap population $f(b)$	$f: (A \times A $	$B)^C - B \rightarrow (A \in C)$ $E \in C$	$A \times A \times C$ V tymer type type type type type type type type	$(C)^B$, zadaniu uzn w $A, B \in C$) j $\not\in (A \times B)^C$. ant oznaczan wyrażenia w p	amy wyrażenie ej argument n Jeśli wyrażenie y przez to wy- prostokąty obo- słowo "NIE".	e za poprależy do e jest poprażenie. I k tych sp $h(g(c))$	dziedziny prawne, to Np. typem	tej funkcj o przez jeg n wyrażeni

Numer indeksu:

Zadanie 14 (2 p zbiór \mathcal{F} ma moc $F: \mathcal{F} \to \mathbb{N}$. Jeśli różnowartościową	nie większą n zbiór ${\cal F}$ ma mo	iż \aleph_0 to voc co najm	v prostol miej cont	kąt poniżej inuum, to w	wpisz dow prostokąt	olną funkc poniżej wj	ję różnowartoś pisz dowolną fu	ciową nkcję
	, , ,		·			, <u>, , , , , , , , , , , , , , , , , , </u>	,	
Zadanie 15 (2 p w prostokąt ponie								;ji, to
Zadanie 16 (2 ₁	ounkty). Wpi	sz w puste	e pola po	niższej tabe	lki moce o	dpowiednic	h zbiorów.	
$\mathbb{R} \times \{0,1\}^{\mathbb{N}}$	$\{1,2,3\} \times (\{4,2,3\})$	$\{1,5\}^{\{6,7\}}$	$\mathbb{Q}\setminus\mathbb{N}$	$\mathcal{P}(\mathbb{N}^{\{0,1\}})$	$\mathbb{R}^{\{2016\}}$	$(\mathbb{N}\setminus\mathbb{Q})^{\mathbb{N}}$	$\{0,1,2\}^{\{2,3,4\}}$	}
Zadanie 17 (2 $_{ m I}$ $\langle \mathbb{R}_+ \cup \{0\}, \leq \rangle$ lub czywistych).								
Zadanie 18 (2 j	ounkty) Pow	iomy żo sł	owo w ie	st nadslavven	o słowa w i	osli w możn	a otravmać a u	
wykreślenie niekt ściowego porządk wtedy, gdy w jest słowo "REGULA	órych liter. Np u na zbiorze sk t podsłowem v	. słowo <i>pre</i> cończonych . Jeśli porz	qd jest po ciągów z z ądek $\langle\{0\}$	odsłowem słozero-jedynko $(0,1)^*, \sqsubseteq\rangle$ jes	owa <i>porzą</i> wych {0, 1 et regularn	dek. Niech []* taką, że y to wpisz	$v \sqsubseteq v$ wtedy i w prostokąt po	ą czę- tylko oniżej
Zadanie 19 (2 j ków.	ounkty). W p	rostokąt p	oniżej wp	oisz przykłac	l trzech pa	rami nieizo	morficznych po	rząd-
Zadanie 20 (2 p natomiast x, y i unifikowalne, wpi unifikowalne, wpi	z są zmiennyr isz najogólniejs	ni. W pro sze unifika	stokąty	obok tych s	spośród p	odanych pa	r termów, któ	re są
f(g(x,y), a	$f(z,z) \stackrel{?}{=} f(z,z)$				$(x,y),z) \stackrel{?}{=}$			
$f(g(x,y),a) \stackrel{?}{=}$	f(g(z,y),x)			f(x, g)	$q(y,z)) \stackrel{?}{=}$	f(z,z)		

	Numer indeksu:	
Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część druga)

2 lutego 2016

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów¹.

We wszystkich zadaniach poniżej V jest ustalonym zbiorem zmiennych zdaniowych zawierającym zmienne $p, q, X_0, \ldots, X_{63}, Y_0, \ldots, Y_{63}$.

Zadanie 21. Na zbiorze $W = \{\mathsf{T}, \mathsf{F}\}^V$ wartościowań zmiennych ze zbioru V definiujemy relację binarną \preceq wzorem

$$\sigma_1 \preceq \sigma_2 \iff \forall v \in V \ \sigma_1(v) = \mathsf{T} \Rightarrow \sigma_2(v) = \mathsf{T}.$$

Udowodnij, że \preceq jest relacją porządku częściowego na zbiorze W. Czy porządek $\langle W, \preceq \rangle$ jest izomorficzny z porządkiem $\langle \mathcal{P}(V), \subseteq \rangle$? Uzasadnij odpowiedź.

Zadanie 22. Na zbiorze wartości boolowskich $\{T,F\}$ wprowadzamy porządek liniowy \sqsubseteq w taki sposób, że $F \sqsubseteq T$. Powiemy, że formuła φ jest *monotoniczna* jeśli dla wszystkich wartościowań σ_1, σ_2 zachodzi warunek

$$\sigma_1 \preceq \sigma_2 \Rightarrow \hat{\sigma}_1(\varphi) \sqsubseteq \hat{\sigma}_2(\varphi)$$

gdzie ≤ jest porządkiem z poprzedniego zadania.

- (a) Czy formuła $p \Rightarrow q$ jest monotoniczna? Uzasadnij odpowiedź.
- (b) Udowodnij indukcyjnie, że wszystkie formuły zbudowane ze zmiennych zdaniowych z V oraz spójników \land,\lor są monotoniczne.

Zadanie 23. Kontekst zadania. Rozważmy sumator 64-bitowy, czyli układ elektroniczny, który dla zadanych ciągów bitów $\vec{x} = \langle x_0, \dots, x_{63} \rangle$ i $\vec{y} = \langle y_0, \dots, y_{63} \rangle$ oblicza ciąg bitów $\langle z_0, \dots, z_{64} \rangle$ będący reprezentacją binarną sumy liczb reprezentowanych przez ciągi \vec{x} i \vec{y} . Ustalmy przy tym, że bit o numerze 0 jest najmniej znaczący, czyli że liczbą reprezentowaną przez ciąg \vec{x} jest $\sum_{i=0}^{63} x_i \cdot 2^i$. Chcemy pokazać, że części sumatora obliczającej bit z_{17} nie da się zbudować tylko z bramek and i or.

Zadanie. Udowodnij, że nie istnieje formuła φ zbudowana ze zmiennych zdaniowych $X_0, \ldots, X_{63}, Y_0, \ldots, Y_{63}$ i spójników \land, \lor o takiej własności, że jeśli wartościowanie σ spełnia warunek

$$\bigwedge_{i=0}^{63} bit(\sigma(X_i)) = x_i \wedge bit(\sigma(Y_i)) = y_i$$

to $bit(\hat{\sigma}(\varphi)) = z_{17}$. Tutaj $bit : \{\mathsf{T},\mathsf{F}\} \to \{0,1\}$ jest funkcją konwertującą wartości boolowskie na bity zdefiniowaną wzorem $bit(v) = \begin{cases} 1, & \text{gdy } v = \mathsf{T}, \\ 0, & \text{wpp.} \end{cases}$

Wskazówka: Możesz skorzystać z zadań poprzednich, nawet jeśli ich nie rozwiązaleś.

¹ Algorytm oceniania jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.