Selected Topics for Derivation

Robert Schmidt

Abstract

The following are notes on the key results from the **Elements of Statistical Learning** text. They were primarily derived from course notes and readings in the Stanford STATS 315: *Modern Applied Statistics* series.

Contents

1	Splines	2
	1.1 Derivation: piecewise polynomials and splines	2
	1.2 Interpolating natural spline minimizes smoothing spline problem	
2	Smoothing matrices	2
	2.1 Reinsch form and kernel matrix	2
	2.2 Proof of kernel trick	2
3	Semi-parametric linear modeling	2
	3.1 Formulation	2
	3.2 Solution	
	3.3 Solution properties	2
4	Trees	2
	4.1 Tree estimate	2
	4.2 Improvement in loss by splitting	2
5	Neural network backprop overview	2

- 1 Splines
- 1.1 Derivation: piecewise polynomials and splines
- 1.2 Interpolating natural spline minimizes smoothing spline problem
- 2 Smoothing matrices
- 2.1 Reinsch form and kernel matrix
- 2.2 Proof of kernel trick
- 3 Semi-parametric linear modeling
- 3.1 Formulation
- 3.2 Solution
- 3.3 Solution properties
- 4 Trees
- 4.1 Tree estimate
- 4.2 Improvement in loss by splitting
- 5 Neural network backprop overview