Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans

Hosam Elhalis, Julian Cox, Damian Frank, Jian Zhao

PII: S0023-6438(20)31418-3

DOI: https://doi.org/10.1016/j.lwt.2020.110430

Reference: YFSTL 110430

To appear in: LWT - Food Science and Technology

Received Date: 5 August 2020 Revised Date: 12 October 2020

Accepted Date: 20 October 2020

Please cite this article as: Elhalis, H., Cox, J., Frank, D., Zhao, J., Microbiological and biochemical performances of six yeast species as potential starter cultures for wet fermentation of coffee beans, *LWT* - *Food Science and Technology*, https://doi.org/10.1016/j.lwt.2020.110430.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Credit author statement

HE designed and conducted experiments, performed the data analysis and wrote the manuscript. JZ and DF supervised the experiments, interpreted the scientific values of the obtained data and edited the manuscript. JC supervised work. All authors read and approved the manuscript.

1	Microbiological and biochemical performances of six yeast species as potential starter
2	cultures for wet fermentation of coffee beans
3	
4	Hosam Elhalis ¹ , Julian Cox ¹ , Damian Frank ² , Jian Zhao ¹ ,*
5	¹ Food Science and Technology, School of Chemical Engineering, The University of New South
6	Wales, Sydney, NSW 2052, Australia
7	² Commonwealth Scientific Industry and Research Organisation (CSIRO), 11 Julius Ave, North
8	Ryde, NSW 2113, Australia
9	
LO	
l1	*Corresponding author: Jian Zhao
12	Email address: jian.zhao@unsw.edu.au
L3	Telephone: +61 2 93854304

Abstract

This study investigated the microbiological and biochemical characteristics of six endogenous yeast species isolated from spontaneous wet coffee fermentation for their potential as starter cultures. The yeasts were cultured under elevated temperature, osmotic pressure, ethanol and acid concentrations to assess their tolerance to these coffee fermentation-related stress conditions. Their ability to produce hydrolytic enzymes for pectin, protein, cellulose and starch were evaluated using plate assays. *Hanseniaspora uvarum* and *Pichia kudriavzevii* were the most stress-tolerant species and also exhibited high pectinase, amylase, cellulase and protease activities compared with *P. fermentans*, *Candida railenensis*, *C. xylopsoci* and *Wickerhamomyces anomalus*. When the yeasts were inoculated in a synthetic coffee pulp extract medium all the isolates grew and produced several important aromatic compounds, including isoamyl alcohol, 2-phenylethyl alcohol, ethanol, ethyl acetate, acetaldehyde, and 2-propanone. The concentrations of these volatiles produced by the yeast species differed significantly. *H. uvarum* and *P. kudriavzevii* produced significantly higher concentration of total alcohols (42.5, 57.6 mg/l), esters (31.0, 33.7 mg/l) and aldehydes (0.7, 1.9 mg/l). Overall, *H. uvarum* and *P. kudriavzevii* demonstrated the strongest potential as starter cultures for wet coffee fermentation.

Keywords: Coffee, *Hanseniaspora uvarum*, *Pichia kudriavzevii*, Flavour, Pectinase.

1..Introduction

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Coffee is one of the most popular non-alcoholic beverages consumed worldwide, with an estimated annual consumption of over 148 million cups (International Coffee Organization, 2018). The quality of coffee beverages is influenced by both of pre-harvest factors such as genotype, geographic location, climate, and agronomic practices, and post-harvest factors including primary processing, drying, roasting and storage conditions (Pereira et al., 2017b). Wet fermentation of coffee beans is one of the major primary processing methods and, if done properly, can produce coffee of high sensory qualities (Agate & Bhat, 1966; Amorim & Amorim, 1977; Evangelista et al., 2015; Goto & Fukunaga, 1986; Pereira et al., 2015; Pereira et al., 2014; Silva, 2014). Wet coffee fermentation involves submerging de-pulped coffee beans underwater and subjecting them to microbial fermentation for 24-48 h (Cleves, 2009; Gonzalez-Rios et al., 2007; Schwan & Wheals, 2004). Despite the large volume of coffee production, the fermentation is still performed in traditional, uncontrolled processes where indigenous microorganisms originated from the beans, environment and processing equipment perform spontaneous fermentation (Selvamurugan et al., 2010). To transform the fermentation process to a controlled, industrial process, it is crucial to develop microbial starter cultures with appropriate microbial and biochemical properties that can perform the fermentation efficiently and produce coffee with consistent high quality.

50

51

52

53

54

55

Wet coffee fermentation involves a complex microbiological ecology that includes yeasts, bacteria and filamentous fungi (Avallone et al., 2001a; Elhalis et al., 2020a; Evangelista et al., 2015; Silva et al., 2008). Microorganisms are believed to perform at least two crucial functions in the fermentation. The first is the breakdown of the mucilage layer of coffee beans as the mucilage components negatively affect coffee quality (Agate & Bhat, 1966; Masoud &

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Jespersen, 2006). The mucilage of coffee beans consists mainly of proteins (14.2%), sugars (50%), cellulose (9.1%) and pectic substances (32.2%) (Avallone et al., 2001a). Mucilage degradation during wet fermentation is closely related to the capacity of the microbes to produce extracellular mucilage degrading enzymes such as pectinase, protease and cellulase (Haile & Kang, 2019; Pereira et al., 2014; Silva et al., 2013). The second function is the production of microbial metabolites which can migrate into the interior of the bean and contribute to the taste and aroma characteristics of coffee products. Microbial metabolites such as higher alcohols, esters, aldehydes, ketones and organic acids have been identified in coffee beans and are believed to be important to the sensory quality of coffee beverages (Evangelista et al., 2015; Pereira et al., 2015; Pereira et al., 2014). Yeasts are a major group of microorganisms in the microbial ecology of wet coffee fermentation and are believed to play a critical role in both mucilage degradation and production of desirable metabolites (Evangelista et al., 2014a; Martins et al., 2019; Pereira et al., 2015). The most frequently isolated yeasts during the fermentation were Saccharomyces cervices, Pichia kluyveri, P. anomala, Hanseniaspora uvarum, and Debaryomyces hansenii delbrueckii (Masoud et al., 2004; Silva et al., 2008; Vilela et al., 2010). In previous studies we have investigated the microbial ecology of wet coffee fermentation under Australian conditions and demonstrated the crucial roles of years in the process, including their contributions to coffee taste and aroma (Elhalis et al., 2020a; Elhalis et al., 2020b). These findings confirmed similar conclusions reported for coffee fermentation conducted in other regions of the world (Avallone et al., 2001b; Masoud et al., 2004; Pereira et al., 2014). Several studies have used yeasts isolated from spontaneous fermentations of coffee beans to conduct inoculated fermentations (Evangelista et al., 2014a; Martins et al., 2019; Pereira et al., 2015; Ribeiro et al., 2017). However, there is generally a lack of systematic examination of the microbiological and biochemical properties of yeasts for their suitability as potential starter cultures for wet coffee fermentation. In this study, we systematically evaluated six yeast species, isolated from natural wet coffee fermentation, for their tolerance to fermentation stresses and capacity to produce mucilage degrading enzymes and desirable non-volatile and volatile metabolites. The objective of the study was to find the yeast species with optimum microbiological and biochemical characteristics that can be developed into starter cultures for wet coffee fermentation.

86

87

79

80

81

82

83

84

85

2. Materials and methods

This study was divided into three steps, to evaluate yeasts growth under coffee fermentation related stresses, to conduct basic plate enzyme assays and to identify the metabolite profiles produced during synthetic coffee pulp extract medium fermentations.

91 2.1. Yeast cultivation

Yeasts were isolated from the spontaneous wet fermentation of coffee beans by plating the 92 93 fermenting mass on yeast extract agar (YEA) and identified by genetic sequencing. Details of yeast isolation and identification were described in Elhalis et al. (2020a). Inocula of 94 Hanseniaspora uvarum (accession No. MF574306.1), Pichia kudriavzevii (accession No. 95 CP021092.1), P. fermentans (accession No. KM402059.1), Candida railenensis (accession No. 96 97 HQ438305.1), C. xylopsoci (accession No. KJ706861.1) and Wickerhamomyces anomalus (accession No. KY587120.1) were prepared individually by selecting one pure colony for each 98 yeast from YEA and transferring it aseptically into 50 ml YE broth, which was incubated at 30 99 100 °C for 24 h in a shaking water bath. The broth was transferred to 100 ml YE broth and grown for another 24 h under the same incubation conditions. Yeast cells were harvested by centrifugation 101 (10 min at 10, 000 g) and washed twice with sterile physiological saline. 102

2.2. Evaluation of yeasts growth under stress factors

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Yeasts were evaluated for their capability to grow under individual stress conditions following the method described by Pereira et al. (2014) with some modifications. The harvested yeast cells were re-suspended and diluted in physiological saline to a cell concentration of 10⁴ CFU /ml, determined by using a Neubauer chamber, and confirmed by plate counting on YEA. Aliquots (5 μl) of the cell suspensions of each strain was spot inoculated on the surface of the stress test agar plates, and after the required incubation time, the plates were visually checked to see if colonies appeared or not. Appearance of colonies indicated positive growth and if no colonies developed, this was considered as negative growth. All the test plates had a basal medium consisting of 5% glucose, 0.3% peptone, 0.05% beef extract and 2% agar. For the sugar stress plates, the sugar concentration of the medium was adjusted by adding glucose and fructose to the basal medium to 15, 30, and 50% (w/w) hexose equivalent. Acid stress was imposed by adjusting the pH of the basal medium to 6.0, 4.0 and 2.0 with 1 M H₂SO₄. Tolerance to acetic acid was tested by adding acetic acid to the basal medium to a final concentration of 1.0, 2.0, and 3.0%, while ethanol tolerance was performed by adjusting the ethanol concentration of the basal medium to 2.0, 4.0, 8.0, and 10.0%. These plates were incubated at 30 °C for 36 h. Thermotolerance test was performed by incubating the inoculated plates of basal medium at 25, 30, 35 and 40 °C for 36 h. Furthermore, yeasts were assessed under combined stresses of temperature, sugar, ethanol, pH and acetic acid. A control was included where the basal medium plates were inoculated with the yeasts and incubated at 30 °C for 36 h. All operations were done aseptically. All tests were conducted in triplicate, and the results were expressed as average with standard deviations of less than 0.05.

2.3. Enzymatic assays

126	The yeast isolates were screened for pectinase, protease, lipase, amylase and cellulase activities
127	using plate assays as follow.
128	2.3.1. Assay of pectinolytic activity
129	Pectinolytic activity of the yeast isolates was assayed according to the method of the
130	Compendium of Methods for Microbiological Examination of Foods (Speck, 1984). Pectin was
131	added to the basal medium (0.5 %, w/v), as described above, and the pH of the medium was
132	adjusted to 5.0. All the plates were surface spotted with 10 μ l of 10 ⁴ CFU/ml of each isolate and
133	incubated at 30 °C for 48 h. After incubation, the plates were flooded with 50 mM potassium
134	iodide-iodine solution and the hydrolysis zone surrounding the colonies, which appeared as a
135	clear halo around the colonies, was measured and used as an indication of the yeast's pectinase
136	activity.
137	2.3.2. Assay of cellulolytic activity
137 138	2.3.2. Assay of cellulolytic activity Cellulolytic activities of the yeast isolates were assayed following the method in the
138	Cellulolytic activities of the yeast isolates were assayed following the method in the
138 139	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984).
138 139 140	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the
138 139 140 141	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the medium was adjusted to pH 7.0. The plates were surface spot inoculated and incubated as
138 139 140 141 142	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the medium was adjusted to pH 7.0. The plates were surface spot inoculated and incubated as described above. After incubation, the plates were flooded with 7 N hydrochloric acid, and the
138 139 140 141 142 143	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the medium was adjusted to pH 7.0. The plates were surface spot inoculated and incubated as described above. After incubation, the plates were flooded with 7 N hydrochloric acid, and the clear zone surrounding the colonies measured which indicated the yeast's cellulolytic activity.
138 139 140 141 142 143	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the medium was adjusted to pH 7.0. The plates were surface spot inoculated and incubated as described above. After incubation, the plates were flooded with 7 N hydrochloric acid, and the clear zone surrounding the colonies measured which indicated the yeast's cellulolytic activity. 2.3.3. Proteolytic activity
138 139 140 141 142 143 144 145	Cellulolytic activities of the yeast isolates were assayed following the method in the Compendium of Methods for Microbiology Examination of Foods (Speck, 1984). Carboxymethylcellulose was added to the basal medium at a concentration of 0.2% and the medium was adjusted to pH 7.0. The plates were surface spot inoculated and incubated as described above. After incubation, the plates were flooded with 7 N hydrochloric acid, and the clear zone surrounding the colonies measured which indicated the yeast's cellulolytic activity. 2.3.3. Proteolytic activity Proteolytic activity of the yeast isolates was determined according to the method described in

determined by measuring the clear zone around the colonies.

148

2.3.4. Amylase activity

Amylolytic activity of the yeast isolates was determined according to the method described in Harrigan and McCance (2014) with some modifications. Starch was added to nutrient agar (1%, pH 5), and the plates were surface inoculated and incubated as described above. Amylase activity was determined by measuring the clear zone surrounding the colonies after flooding with 50 mM potassium iodide-iodine solution.

2.4. Assessment of yeast metabolism on artificial coffee pulp medium

Yeast isolates were evaluated for their capability to produce non-volatile and volatile metabolites in synthetic coffee pulp extract medium (SCM) following the method of Pereira et al. (2014) with slight modifications. The SCM was made by adding pectin (2 g/l), fructose (10 g/l) and glucose (10 g/l) to coffee cheery pulp extract, pH 4.7. The coffee pulp extract was prepared by boiling 400 g of coffee cherry pulp in 1 L Milli-Q water for 1 h, which was then filtrated through glass wool. The SCM was autoclaved at 121 °C for 15 min, and after cooling to ambient temperature, inoculated with yeast inoculums at 10⁴ cells/ml. The inoculated media were allowed to ferment at 25 °C for 36 h. Samples (20 ml) were taken every 12 h for microbiological and chemical analyses. Yeasts in the fermenting mass were enumerated by spread plating on YEA and the pH of the fermenting mass was measured using a portable pH meter (pH Cube, TPS Pty Ltd, Brisbane, QLD, Australia). The analysis of each sample was performed in triplicate and the results were expressed as an average.

2.4.1. Chemical analyses

The samples taken during fermentation were centrifuged at 18,920 x g for 15 min at 4 °C using an Avanti J-E Centrifuge (Beckman Coulter, Indianapolis, IN, USA), and the supernatant was retained and stored at -20 °C until analysis. Sugars, glycerol and organic acids were determined by a Shimadzu High-Performance Liquid Chromatography (HPLC) system as described in

Elhalis et al. (2020a). The non-volatile metabolite concentrations were calculated by comparison with standard curves constructed from standard solutions of known concentrations of glucose, sucrose, fructose, mannitol, glycerol, citric, lactic, malic, acetic, quinic and succinic acids Volatiles were analyzed using head space solid phase microextraction gas chromatography mass spectrum (HS-SPME/GCMS) as described in Elhalis et al. (2020b). In brief, 4 ml of the samples with 4-methyl-1-pentanol as an internal standard (IS) was placed in 20 ml gas-tight vials. The headspace was extracted using DVB/Carboxen/PDMS solid-phase microextraction (SPME) fibers (50/30 μm, 23-gauge, 2 cm, Sigma-Aldrich, Castle Hill, Australia) for 40 min at 40 °C. The SPME was performed using an autosampler (Shimadzu AOC-5000, Rydalmere, Australia). The fiber was desorbed into an injector in splitless mode for at 250 °C for 5 min and analysed by a Shimadzu QP-2010-Plus GC-MS system. Samples were separated on a Sol-Gel Wax column (30 m ×0.25 mm id, 0.25 μm film, SGE, Ringwood, Australia). Linear retention indices (LRI) were calculated using a standard alkane mix (C7-C40, Supleco) and volatiles were identified by comparing linear retention indices with published values in the NIST and PubChem websites. Further confirmation was done by matching their electron impact mass spectra with those of reference compounds in the NIST mass spectral library and, in some cases, using pure reference standards. The concentration of the volatiles was determined semi-quantitatively using the Shimadzu proprietary software "LabSolutions" (Version 2.53). The analysis of each sample was performed in triplicate and the results were expressed as an average.

2.5. Statistical analysis

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

- One-way ANOVA was carried out to compare means between samples and Tukey's HSD post-
- 194 hoc test was used to separate means of significant differences. Differences were regarded as

- statistically significant at P < 0.05. All statistical analyses were performed with GenStat® (16th
- 196 Edition, VSN International, Hemel Hempstead, UK),

197 **3. Results**

198

3.1. Growth of yeasts under different stress conditions

The growth and survival of the different yeast species under individual and combined stressors 199 are given in Table 1. As expected, the viability of the yeast species was affected by the degree of 200 the stresses. All the yeasts grew at pH 4 and 6; however, at pH 2, only some of the isolates of 201 Hanseniaspora uvarum, Pichia kudriavzevii and P. fermentans grew while no isolates of 202 203 Candida or Wickerhamomyces species were able to grow. Similarly, under osmotic pressure induced by high concentrations of glucose and fructose, the growth of C. railenensis, C. 204 xylopsoci and W. anomalus were suppressed, while H. uvarum, P. kudriavzevii and P. 205 fermentans were more resistant. All the isolates, except some of C. xylopsoci and W. anomalus, 206 tolerated high ethanol stresses. Acetic acid at the concentration of 3% strongly inhibited the 207 growth of P. fermentans, C. xylopsoci and W. anomalus, while H. uvarum, P. kudriavzevii and P. 208 fermentans were tolerant. Growth was observed with all the yeasts at the temperature range 25-209 35 °C but their growth was inhabited at 40 °C, except H. uvarum and P. kudriavzevii which 210 continued to grow at this temperature. Regarding their tolerance to combined stresses, the 211 highest tolerance was observed with H. uvarum and P. kudriavzevii, followed by P. fermentans 212 213 and C. railenensis, while C. xylopsoci and W. anomalus showed the lowest tolerance as no growth was detected for these two yeasts under the combined stresses. 214

215 3.2. Enzymatic activities of yeasts for degrading macromolecules

The pectinolytic, cellulolytic, proteolytic and amylase activities of the yeast species were investigated using the plating technique and the results are shown in Table 2. The data showed that *H. uvarum* and *P. kudriavzevii* were the species with the highest pectinolytic activities (p < 0.05), *C. xylopsoci*, *W. anomalus* and *C. railenensis* showed low pectinase activities, while all *P. fermentans* isolates had no pectinolytic activities. High levels of protease and cellulase activities were detected with *W. anomalus* (p < 0.05), followed by *H. uvarum* and *C. xylopsoci*, while such activities were absent with *P. fermentans* and *C. railenensis*. Amylase activity was also relatively high with *W. anomalus*, *H. uvarum* and *C. xylopsoci* compared to the other yeast species (p < 0.05).

3.3. Yeast growth and pH changes during SCM fermentation

Figure 1 shows the changes in pH values and the growth of yeasts during fermentations with SCM. The initial pH value of the fermenting mass was 5.6 which gradually declined with fermentation to pH 3.8 at the end after 36 h. No significant differences in the final pH values were observed among the fermentations with different yeast species. *H. uvarum* showed an initial population of 4.7 log CFU/ml which grew to a maximum population of 11.6 log CFU/ml in 36 h. All the remaining yeast species showed similar growth behavior with approximately 1 log difference in the population.

3.4. Changes in non-volatile metabolites during SCM fermentation

As expected, glucose and fructose were the main reducing sugars found in the SCM medium with an initial concentration of 16.9 and 13.4 g/l, respectively (Table 3). During fermentations with P. kudriavzevii and P. fermentans, glucose declined to about 3.0 g/l while it was almost totally consumed with the remaining yeasts (p < 0.05). Fructose concentration also decreased, but with slower rates leaving high levels of fructose residues in the medium with all the yeast species except P. kudriavzevii, in which fructose was totally used up. Glycerol was not detected initially in any of the fermentations, but subsequently identified with a maximum concentration

of about 0.13 g/l without significant differences among the fermentations with different yeasts (p > 0.05). Five main organic acids were identified during the fermentations, namely citric, gluconic, pyruvic, succinic and fumaric acids. Citric acid was the most abundant acid detected with an initial concentration of 4.01 g/l which declined significantly to 0.03-0.06 g/l among fermentations with all the yeasts. Gluconic, pyruvic and fumaric were not identified initially in all fermentations but detected in fermentations with C. railenensis and C. xylopsoci in the concentration range of 0.01- 0.20 g/l at the end. In terms of succinic acid, it was detected at the start of fermentation at 0.06 g/l, which varied after fermentation with different yeasts as its level increased by more than 2-fold with P. kudriavzevii, C. railenensis and C. xylopsoci (p < 0.05), declined with *H. uvarum* and *P. fermentans* and was not detected with *W. anomalus* at the end.

251 252

257

258

259

260

261

262

263

264

241

242

243

244

245

246

247

248

249

250

3.5. Changes in volatiles during SCM fermentation

- 253 A total of 27 volatiles were detected using the HS-SPME-GC-MS method during the fermentations. The most significant compounds were shown in Table 4 and 5 where they were 254 grouped according to their chemical class: alcohols, aldehydes, ketones, esters, phenols and 255 organic acids. 256
- 3.5.1. Alcohols
 - At the start of fermentation, five main alcohols were identified at low concentrations, which were ethanol, isoamyl alcohol, 3-methyl-2-butanol, 1- nonanol and phenylethyl alcohol. After fermentation, a huge increase in the concentration of alcohols, i.e., 700-1200-fold higher than the initial level (p < 0.05), was observed. The highest total amount was found in fermentation with P. fermentans, followed by P. kudriavzevii and H. uvarum. Isoamyl alcohol was the most abundant alcohol in all the fermentations with similar concentrations in P. fermentans, P. kudriavzevii and C. xylopsoci fermentations, which were approximately two-fold higher than in

- those of other yeasts (p < 0.05). The highest level of ethanol was detected in *P. fermentans* and 265 P. kudriavzevii fermentations, followed by C. xylopsoci and H. uvarum fermentations. 266 Furthermore, significant accumulations of 2-phenylethyl alcohol were observed in all the 267 fermentations, where the highest levels were found in fermentations with P. kudriavzevii and P. 268 fermentans, followed by C. xylopsoci, which were about 2-3 times higher than those with the 269 others fermentations (p < 0.05). 1-Nonanol was detected in the fermentations of H. uvarum and 270 271 W. anomalus with a maximum concentration of 100.4 and 81.4 µg/kg, respectively, while its concentration was low in fermentations with the remaining yeasts (p < 0.05). 272
- 273 **3.5.2. Aldehydes**
- Prior to fermentation, low concentrations of aldehydes were detected with a maximum 274 concentration of 93.4 µg/kg, which subsequently increased by more than 20-fold after 275 fermentations with P. kudriavzevii and P. fermentans, but smaller increases with the other yeasts. 276 Acetaldehyde was the most abundant aldehyde, with the highest concentration detected in 277 fermentations with P. fermentans and P. kudriavzevii (p < 0.05), followed by Candida species. 278 Low levels of 3-methylbutanal and benzaldehyde were found in the medium before fermentation 279 at 8.9 and 77.3 µg/kg, respectively. After fermentation, the level of 3-methylbutanal remained 280 relatively unchanged, while the concentration of benzaldehyde declined. Furthermore, 2,2-281 dimethylhexanal was tentatively identified after fermentation with the highest concentration 282 found with H. uvarum (p < 0.05), followed by P. fermentans, P. kudriavzevii and 283
- 285 **3.5.3. Esters**

284

Wickerhanomyces anomalus.

Two main ester compounds were detected initially, ethyl acetate and methyl butanoate, with a concentration of 14.5 and 33.7 μ g/kg, respectively. A substantial increase in the level of ethyl

acetate was observed after all fermentations, most notably for C. xylopsoci fermentation which
produced the highest concentration, \sim 3000-fold higher than the initial amount ($p < 0.05$). The
levels of ethyl acetate detected after fermentation with H. uvarum, P. kudriavzevii, P. fermentans
and W. anomalus were similar ($p > 0.05$), and ~ 2000 times higher than the initial concentration,
while a lower concentration was found with C. railenensis fermentation. In contrast, methyl
butanoate declined to about half of its initial concentration in all the fermentations ($p > 0.05$).

3.5.4. Acids and phenols

The main volatile acid detected initially and after fermentation was acetic acid with an initial concentration of 136.9 μ g/kg. After the completion of fermentation, the level of acetic acid increased ~ 7-10 times with higher concentrations in fermentations with *C. railenensis*, *H. uvarum* and *W. anomalus* than the other yeasts (p < 0.05). 2-Methoxy-4-vinylphenol (4-vinylguaiacol) was the main phenolic compound identified with an initial concentration of 3.7 μ g/kg that increased slightly (p < 0.05) during fermentation without significant differences between the yeasts (p > 0.05).

3.5.5. Ketones

The main ketone detected at the start of the fermentation was 2-propanone with an average concentration of 7.4 μ g/kg. After fermentation, the concentration increased ~ 400 times with *P. fermentans*, *P. kudriavzevii* and *C. xylopsoci*, which were almost 10 times higher than with the remaining yeasts (p < 0.05).

4. Discussion

In this study, we assessed six yeast species for their potential as starter cultures for coffee wet
fermentation by evaluating their performance in a number of criteria. The yeasts were isolated
from spontaneous wet coffee fermentations conducted in our laboratory (Elhalis et al., 2020a).
The mucilage layers of the coffee bean contain about 30% reducing sugars, mainly glucose and
fructose (Avallone et al., 2001a; Murthy & Naidu, 2011). During coffee fermentation, the sugars
are consumed by microorganisms, producing secondary metabolites such as organic acids, and
alcohols, which leads to a decline in pH and rise in temperature (Avallone et al., 2001a; Elhalis
et al., 2020a). These stressful environmental conditions can strongly affect the growth and
metabolic activities of microflora during coffee fermentation. Thus, selecting yeasts that have the
capability to survive and adapt to such environmental stresses is vital for them to become
successful starter cultures. Our data showed that acetic acid was the most potent growth inhibitor
among the tested stress factors, followed by osmotic pressure. Among the isolates tested, H.
uvarum and P. kudriavzevii were able to tolerate most of the stressful conditions, whereas
Candida species and W. anomalus displayed weak tolerance. H. uvarum and P. kudriavzevii have
been found in relatively high counts during the fermentation of several foods and beverages such
as coffee, cocoa, cheese, bread and wine (del Monaco et al., 2014; Fleet, 1993; Pereira et al.,
2017b; Pereira et al., 2014; Verheyen et al., 2015; Zheng et al., 2018). Yeast cells were reported
to response to these stresses by activating different stress regulatory genes, most of the studies
were conducted on Saccharomyces cerevisiae. For example, hyperosmotic stress induces high
osmolarity glycerol response pathway and accumulate either glycerol or trehalose as a
compatible solute (Babazadeh et al., 2017; Hohmann, 2009; Saito & Posas, 2012). High
temperature and ethanol induce heat shock proteins (HSP), which facilitate disaggregation of the
denatured protein and synthesis of membrane-associated protein capable of protecting the

integrity of liposomal membrane against heat and ethanol, in addition to increases in the rate of
ATP, trehalose and NADPH synthesis (Glover & Lindquist, 1998; Pereira et al., 2018; Sales et
al., 2000). One of the most adaptive mechanisms of tolerance to acids is by reducing their the
cell wall and /or plasm membrane permeability by altering their chemical structure and, thereby
reducing their acid diffusion (Guerreiro et al., 2016; Simoes et al., 2006), in addition to the
catabolism of the acids by yeast cells in some cases (Casal et al., 1996; Vilela-Moura et al.,
2011). Adaptation to low pH may occur by changes in gene expression in membrane
conductivity to $H^{\scriptscriptstyle +}$ and extrusion of protons through changing fatty acid profile of the cell
membrane (Brandao et al., 2014; Chen et al., 2009; Eraso & Gancedo, 1987; Kawahata et al.,
2006). The high viability of <i>H. uvarum</i> and <i>P. kudriavzevii</i> and their stress responses in our study
might also be regulated by similar mechanisms.
There is a general agreement that during coffee fermentation microbial activities contribute to
the breakdown of mucilage components such as polysaccharides (pectin), proteins, cellulose and
starch, thus facilitating their removal (Agate & Bhat, 1966; Avallone et al., 2001a; Frank &
Cruz, 1964; Masoud & Jespersen, 2006; Pereira et al., 2014; Silva, 2014). Thus, the enzymatic
capability of the selected isolates to hydrolyze such components is an important indicator of their
suitability as starter cultures as mucilage removal is one of the key functions of coffee wet
fermentation. Of the tested isolates, P. fermentans and C. railenensis showed poor enzymatic
activities, especially for protease, cellulase and pectinase. C. xylopsoci and W. anomalus showed
relatively high activities for protease, amylase and cellulose, but poor pectinolytic activity. In
contrast, <i>H. uvarum</i> and <i>P. kudriavzevii</i> displayed good activities on all the enzymes. This agrees
with literature reports that H. uvarum exhibits activities for several enzymes such as protease,
lipase glucosidase and xylosidase (Capece et al., 2005; Charoenchai et al., 1997; Manzanares et

355	al., 1999), while <i>P. kudriavzevii</i> has $\beta\Box$ galactosidase, aminopeptidase, lipase, xylanase and
356	pectinase activities (Amoikon et al., 2019; Elahi & Rehman, 2018; Haile & Kang, 2019;
357	Verheyen et al., 2015; Zheng et al., 2018). Overall, based on these observations, H. uvarum and
358	P. kudriavzevii have shown a superior potential as starter cultures for coffee fermentation in both
359	their tolerance to environmental stresses and production of mucilage degrading enzymes,
360	compared to the other yeast species tested.
361	The assessment of the selected yeasts to produce desirable metabolites was achieved by
362	conducting inoculated fermentations using SCM, an approach that has been used by other
363	researchers (Hibbing et al., 2010). All the yeast species grew substantially during the
364	fermentation, thus, demonstrating that the medium was able to support their growth.
365	Furthermore, all treatments exhibited reduction in pH values at the end of the fermentation,
366	which was in line with the growth and metabolic activities of the inoculated yeasts. This shifting
367	in pH to a more acidic value was most likely related to sugar fermentation, mainly glucose and
368	fructose, into organic acids. The sugar consumption was accompanied by accumulation of
369	secondary metabolites such as glycerol and organic acids. Glycerol was the most abundant
370	metabolite detected during the fermentations with similar concentrations among all the species.
371	Glycerol was identified during the yeast fermentation of several food and beverage products,
372	including coffee beans, and was characterized by a sweet taste and smooth mouthfeel (Swiegers
373	et al., 2005). Regarding the production of organic acids, C. railenensis was the only species that
374	produced fumaric acid, while succinic acid was generated by P. kudriavzevii, C. railenensis and
375	C. xylopsoci. In contrast, citric acid was consumed by all the yeasts during the fermentations.
376	The levels and types of the organic acids present in green coffee beans might affect the sensory
377	quality of the final products. For instance, organic acids interfere with the perceived acidity and

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

sweetness of coffee beverages (Oestreich-Janzen, 2013; Ribeiro et al., 2017). Furthermore, the level of these acids in the green beans may affect the formation of important volatiles during the roasting of coffee beans such as pyrazines and furans (Liu et al., 2019; Yu & Zhang, 2010). Succinic acid is one of the main end metabolites produced by yeasts in alcoholic fermentations such as wine production (Boulton & Singleton, 1998; Webb et al., 1964). It has a potential impact on the final product acidity and is involved in the formation of ester compounds such as ethyl succinate (Webb et al., 1964). Gluconic, pyruvic and fumaric acids are well known microbial metabolites that may strongly affect the final product quality if present in green coffee beans (Lee et al., 2016a; Yeretzian et al., 2002). Isoamyl alcohol, 2-phenylethyl alcohol, ethanol, ethyl acetate, acetaldehyde, 2-propanone and acetic acid were the major volatiles identified from the fermenting mass. Overall, these volatiles are known yeast derived metabolites produced during fermentations (Evangelista et al., 2015; Gonzalez-Rios et al., 2007; Sauer, 2016). 2-Phenylethyl alcohol, isoamyl alcohol and ethanol are characterized by their desirable sweet, alcoholic and fruity flavors and impact on the viscosity of coffee beverages (Carballo, 2012; Gamero et al., 2019; Tamang & Fleet, 2009). The presence of esters such as ethyl acetate, even at low concentrations, can impart fruity aromas to the final coffee products (Saerens & Swiegers, 2016). Similarly, acetaldehyde and 2-propanone were related to floral and fruity aromas (Nollet & Toldrá, 2010; Sanz et al., 2002). Low concentrations of acetic acid contribute to a pleasant clean and sweet taste, while high levels (more than 1 mg/ml) give a undesirable vinegary taste (Bertrand et al., 2012). The data showed that *Pichia* species produced relatively high levels of total alcohols and aldehydes while greater amounts of esters were found with C. xylopsoci, Pichia species and H. uvarum. In addition, H. uvarum produced relatively high levels of 1-nonanol, ethanol and acetic acid. The total concentrations of such volatiles were higher with C. railenensis, C. xylopsoci, P. fermentans and W. anomalus than with other yeasts; however, their fermentation power was weak as discussed above. It should be mentioned that the concentration of volatile compounds was obtained by the internal standard method in the present study. As different types of volatile compounds may have different response factors to that of the internal standard in the MS detector, caution should be taken in interpreting data on the absolute concentrations of the volatiles although comparison of the data between different treatments should still be valid. Previous reports indicated that *H. uvarum* was one of the dominate yeasts in several food and beverage products, and produced ethanol (Caridi & Ramondino, 1999), primary metabolites such as acetaldehyde, glycerol (Ciani & Maccarelli, 1997; Romano et al., 1992), and secondary metabolites such as ethyl acetate (Romano et al., 1997). Similarly, *P. kudriavzevii* was reported to improve the sensory quality of fermented foods and beverages by increasing the level of volatile compounds such as higher alcohols and esters (del Monaco et al., 2014; Pereira et al., 2017a; Shi et al., 2019; Zheng et al., 2018). These findings agree with our observations. Pereira et al. (2014) tested nine endogenous yeast strains to be used as starter cultures in coffee fermentation. Saccharomyces sp. was found to be the highest pectinase producing strain, while high concentrations of flavour compounds, such as isoamyl acetate, ethyl acetate, were detected with P. fermentans, which lead the authors to recommend using co-culture of both strains in the inoculation. However, when the mixed culture was inoculated into the synthetic coffee extract medium, the growth rate of P. fermentans was reduced. The current study showed that H. uvarum and P kudriavzevii exhibited high production features of both pectinases and aromatic metabolites in single strain inoculation, which would make them more promising candidates for inoculated coffee fermentation.

423

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

5. Conclusion

This study investigated six yeast species isolated from spontaneous coffee fermentations for their potential as stater cultures for wet fermentations of coffee beans. *H. uvarum* and *P. kudriavzevii* were found to be the most promising candidates as they were tolerant to temperature, pH and acid stresses, exhibited high pectinase, protease, lipase and amylase activities that will enable them to facilitate mucilage degradation of the beans. They also produced a high mount of desirable primary and secondary metabolites such as organic acids, glycerol, alcohols, esters and aldehydes which are important to the sensory quality of coffee, during inoculated fermentation using coffee pulp medium. Further research should evaluate the suitability of these two yeasts as starter cultures in inoculated coffee fermentation and their impact on the sensory characteristics of coffee beverages.

Conflict of Interest

HE declares that he has no conflict of interest. JC declares that he has no conflict of interest. DF declares that he has no conflict of interest. JZ declares that he has no conflict of interest.

Compliance with ethics requirements

"This article does not contain any studies with human participants or animals performed by any of the authors."

Authors' contribution statement

145	HE designed and conducted experiments, performed the data analysis and wrote the manuscript.
146	JZ and DF supervised the experiments, interpreted the scientific values of the obtained data and
147	edited the manuscript. JC supervised work. All authors read and approved the manuscript.
148	Funding
149	This research did not receive any specific grant from funding agencies in the public, commercial,
450	or not-for-profit sectors.
451	Acknowledgement
152	Not applicable.
453	
154	References
455	Agate, A. D., & Bhat, J. V. (1966). Role of pectinolytic yeasts in the degradation of mucilage
456	layer of Coffea robusta cherries. Applied and Environmental Microbiology, 14(2), 256-
157	260.
158	
159	Amoikon, T. L. S., Aké, M. D. F., Djéni, N. T., Grondin, C., Casaregola, S., & Djè, K. M.
460	(2019). Diversity and enzymatic profiles of indigenous yeasts isolated from three types of
461	palm wines produced in Côte d'Ivoire. Journal of Applied Microbiology, 126(2), 567-579.
162	
463	Amorim, H. V., & Amorim, V. L. (1977). Coffee enzymes and coffee quality. In R. L. O. A. J.
164	StAngelo (Ed.), Enzymes in food and beverages processing (Vol. 47, pp. 27-56).
165	American Chemical Society, https://doi.org/10.1021/bk-1977-0047.ch003

466	
467	Avallone, S., Guiraud, J. P., Guyot, B., Olguin, E., & Brillouet, J. M. (2001a). Fate of mucilage
468	cell wall polysaccharides during coffee fermentation. Journal of Agricultural and Food
469	Chemistry, 49(11), 5556-5559.
470	
471	Avallone, S., Guyot, B., Brillouet, JM., Olguin, E., & Guiraud, JP. (2001b). Microbiological
472	and biochemical study of coffee fermentation. Current Microbiology, 42(4), 252-256.
473	
474	Babazadeh, R., Lahtvee, PJ., Adiels, C. B., Goksör, M., Nielsen, J. B., & Hohmann, S. (2017).
475	The yeast osmostress response is carbon source dependent. <i>Scientific reports</i> , 7(1), 1-11.
	y
476	
477	Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T.
478	(2012). Climatic factors directly impact the volatile organic compound fingerprint in
479	green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4),
480	2575-2583.
481	
482	Boulton, R. B., & Singleton, V. L. (1998). The role of sulfur dioxide in wine. In <i>Principles and</i>
483	Practices of Winemaking (pp. 448-473). Springer US.
404	
484	Prendes P. I. Poss I. C. C. Nigeli, I. P. Almeida M. V. S. de Cormo, A. D. Oueiros, H. T.
485	Brandao, R. L., Rosa, J. C. C., Nicoli, J. R., Almeida, M. V. S., do Carmo, A. P., Queiros, H. T.,
486	& Castro, I. M. (2014). Investigating acid stress response in different Saccharomyces
487	strains. Journal of Mycology, 2014.

488	
489	Capece, A., Fiore, C., Maraz, A., & Romano, P. (2005). Molecular and technological approaches
490	to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. Journal of
491	Applied Microbiology, 98(1), 136-144.
492	
493	Carballo, J. (2012). The role of fermentation reactions in the generation of flavor and aroma of
494	foods. In A. KE. Bhavbhuti M. Mehta, Robert Z. Iwanski (Ed.), Fermentation: Effects
495	on food properties (pp. 51-83). CRC Press Boca Raton, Florida.
496	
497	Caridi, A., & Ramondino, D. (1999). Biodiversità fenotipica in ceppi di <i>Hanseniaspora</i> di
737	
498	origine enologica. <i>L'Enotecnico</i> , 35, 71-76. http://hdl.handle.net/20.500.12318/53991
499	
500	Casal, M., Cardoso, H., & Leao, C. (1996). Mechanisms regulating the transport of acetic acid in
501	Saccharomyces cerevisiae. Microbiology, 142(6), 1385-1390.
502	
503	Charoenchai, C., Fleet, G. H., Henschke, P. A., & Todd, B. (1997). Screening of non-
504	Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes.
505	Australian Journal of Grape and Wine Research, 3(1), 2-8.
506	
507	Chen, A. KL., Gelling, C., Rogers, P. L., Dawes, I. W., & Rosche, B. (2009). Response of
508	Saccharomyces cerevisiae to stress-free acidification. The Journal of Microbiology,
509	<i>47</i> (1), 1-8.

510	
511	Ciani, M., & Maccarelli, F. (1997). Oenological properties of non-Saccharomyces yeasts
512	associated with wine-making. World Journal of Microbiology and Biotechnology, 14(2),
513	199-203.
514	
515	Cleves, S. (2009). Ecological processing of coffee and use of byproducts. In Wintgens J. N.
516	(Ed.), Coffee: growing, processing, sustainable production. A guidebook for growers,
517	processors, traders and researchers (pp. 724-738). Wiley-VCH.
518	
519	del Monaco, S. M., Barda, N. B., Rubio, N. C., & Caballero, A. C. (2014). Selection and
219	dei Moliaco, S. M., Baida, N. B., Rubio, N. C., & Caballeto, A. C. (2014). Selection and
520	characterization of a Patagonian <i>Pichia kudriavzevii</i> for wine deacidification. <i>Journal of</i>
521	Applied Microbiology, 117(2), 451-464.
522	
523	Elahi, A., & Rehman, A. (2018). Bioconversion of hemicellulosic materials into ethanol by
524	yeast, Pichia kudriavzevii 2-KLP1, isolated from industrial waste. Revista Argentina de
525	microbiologia, 50(4), 417-425.
526	
527	Elhalis, H., Cox, J., & Zhao, J. (2020a). Ecological diversity, evolution and metabolism of
528	microbial communities in the wet fermentation of Australian coffee beans. <i>International</i>
529	Journal of Food Microbiology, 321, 108544.
530	

531	Elhalis, H., frank, D., Cox, J., & Zhao, J. (2020b). The crucial role of yeasts in the wet
532	fermentation of coffee beans and quality. International Journal of Food Microbiology.
533	https://doi.org/10.1016/j.ijfoodmicro.2020.108796
534	
535	Eraso, P., & Gancedo, C. (1987). Activation of yeast plasma membrane ATPase by acid pH
536	during growth. FEBS Letters, 224(1), 187-192.
537	
538	Evangelista, S. R., Miguel, M. G. d. C. P., de Souza Cordeiro, C., Silva, C. F., Pinheiro, A. C.
539	M., & Schwan, R. F. (2014a). Inoculation of starter cultures in a semi-dry coffee (Coffea
540	arabica) fermentation process. Food Microbiology, 44, 87-95.
541	
542	Evangelista, S. R., Miguel, M. G. d. C. P., Silva, C. F., Pinheiro, A. C. M., & Schwan, R. F.
543	(2015). Microbiological diversity associated with the spontaneous wet method of coffee
544	fermentation. International Journal of Food Microbiology, 210, 102-112.
545	
546	Fleet, G. M. (1993). Yeasts-growth during fermentation. In Wine microbiology and
547	biotechnology (pp. 27-54). Harword Academic Publishers.
548	
549	Frank, H. A., & Cruz, A. S. D. (1964). Role of incidental microflora in natural decomposition of
550	mucilage layer in Kona coffee cherries. Journal of Food Science, 29(6), 850-853.
551	

552	Gamero, A., Ren, X., Lamboni, Y., de Jong, C., Smid, E. J., & Linnemann, A. R. (2019).
553	Development of a low-alcoholic fermented beverage employing cashew apple juice and
554	non-conventional yeasts. Fermentation, 5(3), 71.
555	
556	Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that
557	rescues previously aggregated proteins. <i>Cell</i> , 94(1), 73-82.
558	
559	Gonzalez-Rios, O., Suarez-Quiroz, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, JP., &
560	Schorr-Galindo, S. (2007). Impact of "ecological" post-harvest processing on the volatile
561	fraction of coffee beans: I. Green coffee. The Journal of Food Composition and Analysis,
562	20(3-4), 289-296.
563	
564	Goto, Y. B., & Fukunaga, E. T. (1986). Coffee: harvesting and processing for top quality coffee.
565	A cup of Aloha: The Kona coffee epic. University of Hawaii Press. Hawaii Agricultural
566	Experiment Station, University of Hawaii.
567	
568	Guerreiro, J. F., Muir, A., Ramachandran, S., Thorner, J., & Sá-Correia, I. (2016). Sphingolipid
569	biosynthesis upregulation by TOR complex 2–Ypk1 signaling during yeast adaptive
570	response to acetic acid stress. <i>Biochemical Journal</i> , 473(23), 4311-4325.
571	
572	Haile, M., & Kang, W. H. (2019). Isolation, identification, and characterization of pectinolytic
573	yeasts for starter culture in coffee fermentation. <i>MicroorganismS</i> , 7(10), 401.

574	
575	Harrigan, W. F., & McCance, M. E. (2014). Laboratory methods in microbiology. Academic
576	press.
577	
578	Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition:
579	surviving and thriving in the microbial jungle. <i>Nature Reviews Microbiology</i> , 8(1), 15-25.
580	
581	Hohmann, S. (2009). Control of high osmolarity signalling in the yeast <i>Saccharomyces</i>
582	cerevisiae. FEBS Letters, 583(24), 4025-4029.
583	
584	International Coffee Organization. (2018). Total production by all exporting countries (In
585	thousand 60 kg bags). Retrieved 23 December 2019 from http://www.ico.org/prices/po-
586	production.pdf
587	
588	Kawahata, M., Masaki, K., Fujii, T., & Iefuji, H. (2006). Yeast genes involved in response to
589	lactic acid and acetic acid: acidic conditions caused by the organic acids in
590	Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism
591	genes regulated by Aft1p. FEMS Yeast Research, 6(6), 924-936.
592	
593	Lee, L. W., Cheong, M. W., Curran, P., Yu, B., & Liu, S. Q. (2016a). Modulation of coffee
594	aroma via the fermentation of green coffee beans with Rhizopus oligosporus: I. Green
595	coffee. Food Chemistry, 211, 916-924.

596	
597	Liu, C., Yang, Q., Linforth, R., Fisk, I. D., & Yang, N. (2019). Modifying Robusta coffee aroma
598	by green bean chemical pre-treatment. Food Chemistry, 272, 251-257.
599	
600	Manzanares, P., Ramón, D., & Querol, A. (1999). Screening of non-Saccharomyces wine yeasts
601	for the production of β -D-xylosidase activity. <i>International Journal of Food</i>
602	Microbiology, 46(2), 105-112.
603	
604	Martins, P. M. M., Ribeiro, L. S., Miguel, M. G. d. C. P., Evangelista, S. R., & Schwan, R. F.
605	(2019). Production of coffee (Coffea arabica) inoculated with yeasts: impact on quality.
606	Journal of the Science of Food and Agriculture, 99(13), 5638-5645.
607	
608	Masoud, W., Bjørg Cesar, L., Jespersen, L., & Jakobsen, M. (2004). Yeast involved in
609	fermentation of Coffea arabica in East Africa determined by genotyping and by direct
610	denaturating gradient gel electrophoresis. Yeast, 21(7), 549-556.
611	
612	Masoud, W., & Jespersen, L. (2006). Pectin degrading enzymes in yeasts involved in
613	fermentation of Coffea arabica in East Africa. <i>International Journal of Food</i>
614	Microbiology, 110(3), 291-296.
615	
616	Murthy, P. S., & Naidu, M. M. (2011). Improvement of robusta coffee fermentation with
617	microbial enzymes. European Journal of Applied Sciences, 3(4), 130-139.

618	
619	Nollet, L. M. L., & Toldrá, F. (2010). Sensory analysis of foods of animal origin. CRC press.
620	383-398.
621	
622	Oestreich-Janzen, S. (2013). Chemistry of coffee. In Reference module in chemistry, molecular
623	sciences and chemical engineering (pp. 1-28). Elsevier.
624	https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.02786-4
625	
626	Pereira, G. V. d. M., Alvarez, J. P., Neto, D. P. d. C., Soccol, V. T., Tanobe, V. O. A., Rogez, H.,
627	Góes-Neto, A., & Soccol, C. R. (2017a). Great intraspecies diversity of Pichia
628	kudriavzevii in cocoa fermentation highlights the importance of yeast strain selection for
629	flavor modulation of cocoa beans. LWT-Food Science and Technology, 84, 290-297.
630	
631	Pereira, G. V. d. M., Neto, E., Soccol, V. T., Medeiros, A. B. P., Woiciechowski, A. L., &
632	Soccol, C. R. (2015). Conducting starter culture-controlled fermentations of coffee beans
633	during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food
634	Research International, 75, 348-356.
635	
636	Pereira, G. V. d. M., Soccol, V. T., Brar, S. K., Neto, E., & Soccol, C. R. (2017b). Microbial
637	ecology and starter culture technology in coffee processing. Critical Reviews in Food
638	Science and Nutrition, 57(13), 2775-2788.
639	

640	Pereira, G. V. d. M., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Lara, J. M. R. A., Gollo, A.
641	L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in
642	fermentation of coffee beans by the wet process. International Journal of Food
643	Microbiology, 188, 60-66.
644	
645	Pereira, T., Vilaprinyo, E., Belli, G., Herrero, E., Salvado, B., Sorribas, A., Altés, G., & Alves,
646	R. (2018). Quantitative operating principles of yeast metabolism during adaptation to
647	heat stress. Cell reports, 22(9), 2421-2430.
648	
649	Ribeiro, L. S., Miguel, M. G. d. C. P., Evangelista, S. R., Martins, P. M. M., van Mullem, J.,
043	
650	Belizario, M. H., & Schwan, R. F. (2017). Behavior of yeast inoculated during semi-dry
651	coffee fermentation and the effect on chemical and sensorial properties of the final
652	beverage. Food Research International, 92, 26-32.
653	
654	Romano, P., Suzzi, G., Comi, G., & Zironi, R. (1992). Higher alcohol and acetic acid production
655	by apiculate wine yeasts. Journal of Applied Bacteriology, 73(2), 126-130.
656	
657	Romano, P., Suzzi, G., Comi, G., Zironi, R., & Maifreni, M. (1997). Glycerol and other
658	fermentation products of apiculate wine yeasts. <i>Journal of Applied Microbiology</i> , 82(5),
659	615-618.
660	

661	Saerens, S., & Swiegers, J. H. (2016). Production of low-alcohol or alcohol-free beer with <i>Pichia</i>
662	kluyveri yeast strains" U.S. Patent No. 10,415,007. 17 Sep. 2019.
663	
664	Saito, H., & Posas, F. (2012). Response to hyperosmotic stress. <i>Genetics</i> , 192(2), 289-318.
665	
666	Sales, K., Brandt, W., Rumbak, E., & Lindsey, G. (2000). The LEA-like protein HSP 12 in
667	Saccharomyces cerevisiae has a plasma membrane location and protects membranes
668	against desiccation and ethanol-induced stress. Biochimica et Biophysica Acta (BBA)-
669	Biomembranes, 1463(2), 267-278.
670	
671	Sanz, C., Maeztu, L., Zapelena, M. J., Bello, J., & Cid, C. (2002). Profiles of volatile compounds
672	and sensory analysis of three blends of coffee: influence of different proportions of
673	Arabica and Robusta and influence of roasting coffee with sugar. Journal of the Science
674	of Food and Agriculture, 82(8), 840-847.
675	
676	Sauer, M. (2016). Industrial production of acetone and butanol by fermentation—100 years later.
677	FEMS Microbiology Letters, 363(13), fnw134.
678	
679	Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in
680	chocolate quality. Critical Reviews in Food Science and Nutrition, 44(4), 205-221.
681	

682	Selvamurugan, M., Doraisamy, P., & Maheswari, M. (2010). An integrated treatment system for
683	coffee processing wastewater using anaerobic and aerobic process. Ecological
684	Engineering, 36(12), 1686-1690.
685	
686	Shi, WK., Wang, J., Chen, FS., & Zhang, XY. (2019). Effect of <i>Issatchenkia terricola</i> and
687	Pichia kudriavzevii on wine flavor and quality through simultaneous and sequential co-
688	fermentation with Saccharomyces cerevisiae. LWT-Food Science and Technology, 116,
689	108477.
690	
691	Silva, C. (2014). Microbial activity during coffee fermentation. In <i>Cocoa and Coffee</i>
692	Fermentations (pp. 368-423). CRC Press Boca Raton, FL, USA.
602	
693	
694	Silva, C., Batista, L. R., Abreu, L. M., Dias, E. S., & Schwan, R. F. (2008). Succession of
695	bacterial and fungal communities during natural coffee (Coffea arabica) fermentation.
696	Food Microbiology, 25(8), 951-957.
697	
698	Silva, C., Vilela, D. M., de Souza Cordeiro, C., Duarte, W. F., Dias, D. R., & Schwan, R. F.
699	(2013). Evaluation of a potential starter culture for enhance quality of coffee
700	fermentation. World Journal of Microbiology and Biotechnology, 29(2), 235-247.
701	
702	Simoes, T., Mira, N. P., Fernandes, A. R., & Sá-Correia, I. (2006). The SPI1 gene, encoding a
703	glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the

704	development of yeast resistance to lipophilic weak-acid food preservatives. Applied and
705	Environmental Microbiology, 72(11), 7168-7175.
706	
707	Speck, M. L. (1984). Compendium of methods for the microbiological examination of foods.
708	American Public Health Association.
709	
710	Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. S. (2005). Yeast and bacterial
711	modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research,
712	11(2), 139-173.
713	
714	Tamang, J. P., & Fleet, G. H. (2009). Yeasts diversity in fermented foods and beverages. In
715	Yeast Biotechnology: Diversity and Applications (pp. 169-198). Springer.
716	
717	Verheyen, C., Albrecht, A., Elgeti, D., Jekle, M., & Becker, T. (2015). Impact of gas formation
718	kinetics on dough development and bread quality. Food Research International, 76, 860-
719	866.
720	
721	Vilela-Moura, A., Schuller, D., Mendes-Faia, A., Silva, R. D., Chaves, S. R., Sousa, M. J., &
722	Côrte-Real, M. (2011). The impact of acetate metabolism on yeast fermentative
723	performance and wine quality: reduction of volatile acidity of grape musts and wines.
724	Applied Microbiology and Biotechnology, 89(2), 271-280.
- 0-	
725	

726	Vilela, D. M., Pereira, G. V. d. M., Silva, C. F., Batista, L. R., & Schwan, R. F. (2010).
727	Molecular ecology and polyphasic characterization of the microbiota associated with
728	semi-dry processed coffee (Coffea arabica L.). Food Microbiology, 27(8), 1128-1135.
729	
730	Webb, A. D., Kepner, R. E., & Galetto, W. G. (1964). Comparison of the aromas of flor sherry,
731	baked sherry, and submerged-culture sherry. American Journal of Enology and
732	Viticulture, 15(1), 1-10.
733	
734	Yeretzian, C., Jordan, A., Badoud, R., & Lindinger, W. (2002). From the green bean to the cup
735	of coffee: investigating coffee roasting by on-line monitoring of volatiles. European
736	Food Research and Technology, 214(2), 92-104.
737	
738	Yu, AN., & Zhang, AD. (2010). The effect of pH on the formation of aroma compounds
739	produced by heating a model system containing L-ascorbic acid with L-threonine/L-
740	serine. Food Chemistry, 119(1), 214-219.
741	
742	Zheng, X., Li, K., Shi, X., Ni, Y., Li, B., & Zhuge, B. (2018). Potential characterization of yeasts
743	isolated from Kazak artisanal cheese to produce flavoring compounds.
744	MicrobiologyOpen, 7(1), e00533.
745	

747	Figure 1. Changes in pH values (a), and yeast species growth rates (b) during SCM
748	fermentations. Hanseniaspora uvarum (, Pichia kudriavzevii (, P. fermentans (,),
749	Candida railenensis (→), C. xylopsoci (→), Wickerhamomyces anomalus (→). Data are
750	the means of triplicate analyses with $\pm~0.03$ for pH values and $\pm~0.05$ CFU/ml for year
751	populations.

Figure caption

Table 1 Growth and survival of yeast isolates under individual and combined fermentation stress conditions

Growth at	Y1*	Y2	Y3	Y4	Y5	Y6
pH 6	+	+	+	+	+	+
pH 4	+	+	+	+	+	+
pH 2	1/5#	2/5	1/5	-	-	-
Ethanol (10%)	+	+	+	+	3/5	2/4
Ethanol (8%)	+	+	+	+	+	+
Ethanol (4%)	+	+	+	+	+	+
Ethanol (2%)	+	+	(+)	+	+	+
Glucose (50%)	2/5	2/5	1/5	-	-	-
Glucose (25%)	+	+	+	+	+	+
Glucose (15%)	+	(+)	+	+	+	+
Fructose (50%)	3/5	2/5	2/5	-	-	-
Fructose (25%)	+	+	+	+	+	+
Fructose (15%)	+	+	+	+	+	+
40 °C	+	+	1/5	-	-	-
35 °C	+	+	+	+	+	3/5
30 °C	+	+	+	+	+	+
25 °C	+	+	+	+	+	+
Acetic acid (3%)	3/5	1/5	-	4/5	-	-
Acetic acid (2%)	+	3/5	1/5	+	1/5	2/5
Acetic acid (1%)	+	+	+	+	+	-
Combined stresses	+	+	1/5	1/5	-	-

^{*}Y1 Hanseniaspora uvarum; Y2 Pichia kudriavzevii; Y3 P. fermentans; Y4 Candida railensis; Y5 C. xylopsoci; Y6 Wickerhamomyces anomalus.

^{+,} all isolates showed positive growth; -, all isolates showed negative growth; #, figures indicate number of isolates that showed positive growth /number of isolates tested, Combined stresses: ethanol 8%, pH 4, acetic acid 2%, glucose/fructose 25%, 37 °C. Values are means of triplicate.

Table 2 Production of pectinase, cellulase, amylase and protease by yeast species on plate assays

Enzymes	Y1	Y2	Y3	Y4	Y5	Y6
Protease	++ (5)	+ (4)	-	-	+++ (4)	++++
						(5)
Cellulase	+++ (5)	+ (4)	-	-	+ (2)	+++ (5)
Amylase	+++ (5)	++ (4)	++	+ (5)	+++ (5)	++++
			(4)			(5)
Pectinase	++++(5)	++++ (5)		+ (5)	++ (2)	+ (1)

++++ high enzyme activity (hydrolysis zone >5 mm); +++ good enzyme activity (hydrolysis zone 3-5 mm); ++ average enzyme activity (hydrolysis zone 2-3 mm); + low enzyme activity (no or 1-2 mm hydrolysis zone); – no enzyme activity (no hydrolysis halos). Data in parentheses indicate the number of isolates giving reaction. Abbreviations; Y1 *Hanseniaspora uvarum*; Y2 *Pichia kudriavzevii*; Y3 *P. fermentans*; Y4 *Candida railensis*; Y5 *C. xylopsoci*; Y6 *Wickerhamomyces anomalus*.

Table 3 Changes in the concentrations of non-volatile metabolites during fermentation of different yeasts with synthetic coffee pulp extraction medium (SCM).

Comp. (g/l)	Initial	Y1*	Y2	Y3	Y4	Y5	Y6
Glucose	16.90 ^a	ND^{d}	3.52 ^b	3.10 ^b	ND^{d}	0.06^{c}	ND^{d}
Fructose	13.40 ^a	4.71°	ND^e	2.30^{d}	7.12 ^b	4.56 ^c	6.23 ^b
Citric	4.01 ^a	0.03^{b}	0.05^{b}	0.03^{b}	0.06^{b}	0.03^{b}	0.06^{b}
Gluconic acid	ND^b	ND^b	0.13^{a}	ND^b	0.17^{a}	0.17^{a}	ND^b
Pyruvic acid	ND^b	ND^b	0.01^{a}	ND^b	0.02^{a}	0.02^{a}	0.03^{a}
Succinic acid	0.06^{b}	0.04^{b}	0.16 ^a	0.03 ^b	0.18^{a}	0.16^{a}	ND^c
Fumaric acid	ND^b	ND^b	ND^b	ND^b	0.01^{a}	ND^b	ND^b
Glycerol	ND^b	0.13 ^a	0.14^{a}	0.12 ^a	0.13 ^a	0.15 ^a	0.15^{a}

Values are means of three replicates. Data in each row with different lower-case letters (a–e) indicate significant differences among the yeast species (*p*<0.05). Abbreviations: Y1 *Hanseniaspora uvarum*; Y2 *Pichia kudriavzevii*; Y3 *Pichia fermentans*; Y4 *Candida railensis*; Y5 *Candida xylopsoci*; Y6 *Wickerhamomyces anomalus*, Comp. compounds; ND not detected.

 Table 4 Analytical parameters for target volatiles in coffee beans

Volatiles	Functional group	m/z	LRI	Sensory descriptors*	Identification method	
Acetic acid	Acid	43	1458	Vinegar, pungent	L, MS, ST	
Ethanol	Alcohol	45	948	Alcoholic	L, MS, ST	
Isoamyl alcohol	Alcohol	55	1226	Banana and pear	L, MS, ST	
3-Methyl-2-buten-1-ol	Alcohol	71	1330	Fruity	L, MS	
1-Nonanol	Alcohol	70	1652	Floral	L, MS	
2-Phenylethyl alcohol	Alcohol	91	1933	Floral, fruity	L, MS, ST	
Acetaldehyde	Aldehyde	44	701	Fruity, pungent	L, MS, ST	
2-Methyl		4.4	021	C	I MG CT	
Butanal	Aldehyde	44	921	Coffee-like	L, MS, ST	
2,2-dimethyl hexanal	Aldehyde	57	1456		L, MS	
Benzaldehyde	Aldehyde	77	1534	Fatty almond	L, MS, ST	
Ethyl acetate	Ester	43	893	Fruity	L, MS, ST	
Methyl butanoate	Ester	74	992	Fruity	L, MS, ST	

2-Propanone	Ketone	86	1477	Fruity	L, MS
2-Methoxy-4-vinylphenol	Phenol	135	2192	Clove	L, MS, ST

RT, retention time; LRI = linear retention index; Identification method (MS = mass spectrum compared to NIST database, L = literature LRI; ST = standard compound). literature LRI and Sensory descriptors are taken from (Czerny & Grosch, 2000; Febrianto et al., 2016; Flament et al.; Liu et al., 2019; Mottram, 2005; G. V. d. M. Pereira et al., 2014; Sunarharum et al., 2014).

Table 5 Changes in the volatile concentrations in fermentation of synthetic coffee pulp extraction medium (SCM) with different yeasts

Volatile (µg/l)		Fermentation (25 °C for 36 h)						
	Initial (0 h)	Y1*	Y2	Y3	Y4	Y5	Y6	
Acetic acid	136.9 ^d	1,293.7 ^a	458.3°	404.0°	1,298.2ª	673.1°	998.7 ^b	
Total acids	136.9 ^d	1,293.7 ^a	458.3°	404.0°	1,298.2 ^a	673.1°	998.7 ^b	
Ethanol	17.1 ^d	3,3640.4 ^b	37,347.5 ^a	37,719.4 ^a	27,831.8°	35,632.4 ^b	31,234.3 ^b	
Isoamyl alcohol	1.8 ^c	4,944.5 ^b	10,848.3 ^a	11,020.6 ^a	5455.8 ^b	10844.4 ^a	4,377.3 ^b	
2-Butanol, 3-methyl-	4.0^{b}	14.1 ^a	14.2 ^a	13.7 ^a	19.4 ^a	15.8 ^a	12.7 ^a	
1-Nonanol	2.8 ^e	100.4 ^a	31.1°	41.2°	10.9 ^d	15.1 ^d	81.4 ^b	
Phenylethyl Alcohol	22.8^{d}	3,658.8°	9,387.0 ^a	9,117.0°	2,838.9°	7,881.1 ^b	2,507.8°	
Total alcohols	48.5 ^e	42,358.2°	57,628.1 ^a	57,911.9 ^a	36,156.8 ^d	54,388.8 ^b	38,213.6 ^d	
Acetaldehyde	7.3 ^d	573.2°	1,775.0 ^a	2,176.3 ^a	1,304.7 ^b	1,091.0 ^b	347.3°	
3-Methylbutanal	8.9 ^a	18.6 ^a	2.4^{a}	4.5 ^a	15.7 ^a	9.1 ^a	11.2 ^a	
2,2-Dimethyl hexanal	ND^e	72.4 ^a	54.0 ^b	55.7 ^b	9.4 ^d	37.5°	52.8 ^b	
Benzaldehyde	77.3 ^a	19.6 ^b	19.2 ^b	13.3 ^b	11.5 ^b	19.5 ^b	18.2 ^b	

Total aldehydes	93.4 ^d	683.9°	1,850.6 ^a	2,249.9 ^a	1,341.3 ^b	1,157.2 ^b	429.5°
Ethyl acetate	14.5 ^e	30,968.5 ^b	33,631.2 ^b	32,719.4 ^b	1,278.8 ^d	40,691.4 ^a	26,175.9°
Methyl butanoate	33.7 ^a	13.1 ^b	19.2 ^b	15.9 ^b	14.0 ^b	14.8 ^b	13.1 ^b
Total esters	48.3 ^e	30,981.7 ^b	33,650.5 ^b	32,735.3 ^b	1,292.8 ^d	40,706.2 ^a	26,189.0°
2-Propanone	7.4 ^e	253.7°	2,837.7 ^a	2,977.2 ^a	67.7 ^d	2,073.3 ^b	189.2 ^c
Total ketones	7.4 ^e	253.7°	2,837.7 ^a	2,977.2 ^a	67.7 ^d	2,073.3 ^b	189.2 ^c
4-Vinylguaiacol	3.7 ^b	10.4 ^a	12.0 ^a	10.7 ^a	6.9 ^a	10.9 ^a	9.8 ^a
Total phenols	3.7 ^b	10.4 ^a	12.0 ^a	10.7 ^a	6.9 ^a	10.9 ^a	9.8 ^a

Data are the means of three replicates at the start and end of fermentations. Mean values in each row with different lower-case letters (a–c) indicate significant differences among the yeast species (*p*<0.05). Abbreviations: Y1 *Hanseniaspora uvarum*; Y2 *Pichia kudriavzevii*; Y3 *P. fermentans*; Y4 *Candida railensis*; Y5 *C. xylopsoci*; Y6 *Wickerhamomyces anomalus*. ND not detected.

Figure 1 Changes in pH values (a), and yeast species growth rates (b) during SCM fermentations. Hanseniaspora uvarum (), Pichia kudriavzevii (), P. fermentans (), Candida railenensis (), C. xylopsoci (), Wickerhamomyces anomalus (). Data are the means of triplicate analyses with ± 0.03 for pH values and ± 0.05 CFU/ml for yeat populations.

1 Highlights

- Six endogenous yeasts isolated from a coffee fermentation were tested as starter
 cultures.
- Their viability, enzymatic activities and production of desirable volatiles were
 evaluated.
- *H. uvarum* and *P. kudriavzevii* had high viability and pectinolytic activities.
- Both yeasts produced high amounts of organic acids, alcohols, esters and aldehydes.
- Both yeasts had the potential to be developed into starter cultures for coffee
- 9 fermentation.

1 Conflict of Interest:

- 2 HE declares that he has no conflict of interest. JC declares that he has no conflict of
- 3 interest. DF declares that he has no conflict of interest. JZ declares that he has no conflict

4 of interest.

5