第三节 函数极限

- 自变量趋向无穷大时函数的极限
- ·自变量趋向有限值时函数的极限
- ·函数极限的性质
- 函数极限与数列极限的关系
- ・小结

0 基本要求

基本要求:

- 1.理解函数在无穷大处的极限的概念.
- 2.理解函数在有限点处的极限的概念.
- 3. 理解左、右极限的定义.
- 4. 会利用定义来证明一些简单的函数极限.

0 问题引入

设上升的火箭与地心的距离为r,则地球对火箭的引力可表示成 $f(r) = G\frac{Mm}{r^2}$,M和m分别是地球和火箭的质量,G是万有引力常数。如果考虑火箭脱离地球的运动,这时r不断增大,f(r)则无限地变小。这个过程抽象成数学问题,即当 $r \to +\infty$ 时,f(r)的极限为0。

自变量的变化过程

对 y=f(x) 自变量变化过程的六种形式:

- 1. x 为任意实数,且 |x| 无限增大,记为 $x\to\infty$.
- 2. x>0, 且 x 无限增大, 记为 $x\to +\infty$.
- 3. x<0, 且 /x/ 无限增大, 记为 $x\to -\infty$.
- 4. x 无限接近于 x_0 , 且 $x \neq x_0$, 记为 $x \rightarrow x_0$.
- 5. $x < x_0$, 且 x 无限接近于 x_0 , 记为 $x \to x_0^-$.
- 6. $x > x_0$, 且 x 无限接近于 x_0 , 记为 $x \to x_0^+$.

问题: 函数 y = f(x) 在 $x \to +\infty$ 时, 对应函数值是否无限接近某个确定值 A?

设f(x)当x > a时有定义,(a为某一正数),如果当自变量x的绝对值无限增大时,对应的函数值f(x)无限接近于确定的常数A,那么A就叫做函数f(x)当 $x \to +\infty$ 时的极限.

"*ε*−*N*"定义:

如果对∀ ε > 0,∃N ∈ Z⁺,使当n > N时,恒有 $\left|x_{n}-a\right|$ < ε .

$$\iiint \lim_{n \to \infty} x_n = a$$

"ε-X"定义

1. x→ +∞时f(x)的极限

$$\lim_{x \to +\infty} f(x) = A \iff \begin{cases} \forall \varepsilon > 0, \exists X > 0, \exists x > X \text{ 时}, \\ \text{恒有} |f(x) - A| < \varepsilon. \end{cases}$$

2. x→-∞ 时f(x) 的极限

$$\lim_{x \to -\infty} f(x) = A \iff \forall \varepsilon > 0, \exists X > 0, \exists x < -X \text{时},$$
 恒有 | $f(x) - A \mid < \varepsilon$.

"ε-X"定义

$$\lim_{x \to \infty} f(x) = A \quad \Longleftrightarrow \quad$$

 $\forall \varepsilon > 0, \exists X > 0,$ 当|x| > X 时, 恒有 $|f(x) - A| < \varepsilon$.

注意:

$$|f(x)-A|<\varepsilon$$
表示 $|f(x)-A|$ 任意小;

|x| > X 表示 $x \to \infty$ 的过程.

$$"\varepsilon - X"$$
定义 $\lim_{x \to \infty} f(x) = A \iff$

 $\forall \varepsilon > 0, \exists X > 0,$ 当|x| > X时, 恒有 $|f(x) - A| < \varepsilon$.

$$x < -X$$
或 $x > X$

$$A - \varepsilon < f(x) < A + \varepsilon$$

 $\lim_{x\to\infty} f(x) = A$ 的几何意义:

当x < -X或x > X时,函数y = f(x)图形完全落在以直线y = A为中心线,宽为 2ε 的带形区域内.

y = f(x) $A - \varepsilon$ -X = 0 X

例1 证明
$$\lim_{x\to\infty}\frac{\sin x}{x}=0$$
.

if
$$|\sin x| < \frac{\sin x}{x} - 0 = \left| \frac{\sin x}{x} \right| < \frac{1}{|x|}$$

$$\forall \varepsilon > 0$$
,要使 $|f(x) - A| < \varepsilon$,只要 $\frac{1}{|x|} < \varepsilon$,即 $|x| > \frac{1}{\varepsilon}$

取
$$X = \frac{1}{\varepsilon}$$
, 则当 $|x| > X$ 时恒有

$$\left|\frac{\sin x}{x}-0\right|<\varepsilon,\qquad \text{it} \lim_{x\to\infty}\frac{\sin x}{x}=0.$$

例2 证明
$$\lim_{x\to +\infty} \frac{1}{\sqrt{x}} = 0$$
.

iE
$$|f(x)-A|=|\frac{1}{\sqrt{x}}-0|=\frac{1}{\sqrt{x}}$$

対
$$\forall \varepsilon > 0$$
要使 $|f(x)-A| < \varepsilon$, 只要 $\frac{1}{\sqrt{x}} < \varepsilon$, 即 $x > \frac{1}{\varepsilon^2}$,

$$\forall \varepsilon > 0$$
 取 $X = \frac{1}{\varepsilon^2} > 0$,则当 $x > X$ 时恒有

$$\left|\frac{1}{\sqrt{x}}-0\right|<\varepsilon,\quad \text{ it }\lim_{x\to+\infty}\frac{1}{\sqrt{x}}=0.$$

类似可证: **例3** 证明 $\lim_{x\to -\infty} a^x = 0$ (a > 1).

水平渐近线 (horizontal asymptote)

如果 $\lim_{x\to +\infty} f(x) = c$ 或 $\lim_{x\to -\infty} f(x) = c$,则称直线 y = c

是函数 y = f(x)的图形的 水平渐近线.

例如: $\lim_{x\to -\infty} a^x = 0 (a > 1),$

 $\therefore y = 0$ 是函数 $y = a^x$ 的图形的水平渐近线.

$$\therefore \lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}, \qquad \lim_{x \to +\infty} \arctan x = \frac{\pi}{2},$$

$$\therefore y = -\frac{\pi}{2} = \frac{\pi}{2}$$
 都是函数 $y = \arctan x$ 的图形

的水平渐近线.

问题: 函数 y = f(x) 在 $x \to x_0$ 的 过程中, 对应 函数值 f(x) 无限趋近于确定值 A.

$$|f(x)-A| < \varepsilon$$
 表示 $|f(x)-A|$ 任意小; $0 < |x-x_0| < \delta$ 表示 $x \to x_0$ 的过程.

点 x_0 的去心δ邻域, δ体现x接近 x_0 程度.

 $1.x \rightarrow x_0$ 时 f(x) 的极限

定义 设 f(x)在点 x_0 的某去心邻域有定义,若有常数 A,对 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists 0 < |x - x_0| < \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A是函数 f(x) 当 $x \to x_0$ 时的极限,简称 A是 f(x)在 x_0 处的极限。记为 $\lim_{x \to x_0} f(x) = A$,或者 $f(x) \to A(x \to x_0)$.

"ε-δ"定义

$$\lim_{x \to x_0} f(x) = A \iff \frac{\forall \varepsilon > 0, \exists \delta > 0, \exists 0 < |x - x_0| < \delta \text{时},}{\text{恒有} |f(x) - A| < \varepsilon}.$$

- 说明 1) δ 刻划x与 x_0 的接近程度,与 ε 有关.
 - 2) 定义中 $0 < |x-x_0|$ 是重要的,不能去掉.
 - 3)函数极限与f(x)在点 x_0 是否有定义无关.

几何意义:

当 $x \in \overset{\circ}{\mathrm{U}}(x_0,\delta)$ 时,

函数y = f(x)图形完全

落在以直线y = A为中心,

宽为 2ε 的带形区域内.

用定义证明 $\lim_{x\to x_0} f(x) = A$ 的过程:

- 1. 把 |f(x)-A| 化简为 $|f(x)-A| < k|x-x_0|$;
- 2. $\forall \varepsilon > 0$, 要 $|f(x) A| < \varepsilon$, 只要 $k|x x_0| < \varepsilon$;
- 3.取 $\delta = \frac{1}{k} \varepsilon$; 再用 $\varepsilon \delta$ 语言顺述结论.

例1 证明
$$\lim_{x\to x_0} x = x_0$$
.

例2 证明
$$\lim_{x\to 1} \frac{x^2-1}{x-1} = 2$$
.

例3 证明:
$$\lim_{x\to 0} e^x = 1$$

例4 证明: 当
$$x_0 > 0$$
时, $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

iE
$$|f(x)-A| = |\sqrt{x}-\sqrt{x_0}| = \left|\frac{x-x_0}{\sqrt{x}+\sqrt{x_0}}\right| \le \frac{1}{\sqrt{x_0}}|x-x_0|,$$

$$\forall \varepsilon > 0$$
, 要使 $|f(x) - A| < \varepsilon$, 只要 $|x - x_0| < \sqrt{x_0} \varepsilon$,

还需
$$x \ge 0$$
, 而 $x \ge 0$ 可用 $|x - x_0| \le x_0$ 保证,

$$\forall \varepsilon > 0$$
, 取 $\delta = \min\{\sqrt{x_0}\varepsilon, x_0\}$, 则当 $0 < |x - x_0| < \delta$ 时,

总有
$$|\sqrt{x}-\sqrt{x_0}|<\varepsilon$$
, $\lim_{x\to x_0}\sqrt{x}=\sqrt{x_0}$.

例5 证明:
$$\lim_{x\to 2} x^2 = 4$$
.

证 不妨先限制
$$|x-2| < 1(x \neq 2)$$
即 $1 < x < 3(x \neq 2)$
 $\Rightarrow 3 < x + 2 < 5$

我们先限制 $|x-2| < 1(x \neq 2)$ 来讨论,这实际上 就是先限定 δ 为某个恰当小的正数,这是允许 的. 因为在极限的 ε - δ 定义中, ε 给定后, δ 的 值不唯一. 如果找到某个符号要求的 δ_0 ,则比 δ_0 小的任一正数均可作为所求的 δ .这种先限 $\varepsilon \delta$ 为某个较小值的手法是经常采用. 当然最 后 δ 值应该取开始值与后来求出的值中的较小 者.

重要结论

幂函数,指数函数,对数函数,三角函数及反三角函数等基本初等函数,在其定义域内的每点处的极限都存在且等于函数在该点处的值.

2.单侧极限:

设
$$f(x) = \begin{cases} 1-x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$$

证明
$$\lim_{x\to 0} f(x) = 1$$
.

x从左侧无限趋近 x_0 ,记作 $x \to x_0 - 0$ 或 $x \to x_0^-$;

x从右侧无限趋近 x_0 ,记作 $x \to x_0 + 0$ 或 $x \to x_0^+$;

左极限定义

设 f(x)在 x_0 的某个左邻域内有定义,若对 $\forall \varepsilon > 0$, $\exists \delta > 0$,使当 $0 < x_0 - x < \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称A是f(x)在 x_0 处的左极限 (left limit).

记作
$$\lim_{\substack{x \to x_0 - 0 \\ (x \to x_0^-)}} f(x) = A$$
 或 $f(x_0 - 0) = A$.

右极限定义

设 f(x)在 x_0 的某个右邻域内有定义,对 $\forall \varepsilon > 0$, $\exists \delta > 0$, 使当 $0 < x - x_0 < \delta$ 时,恒有 $|f(x) - A| < \varepsilon$,则称常数 A 为 f(x) 在 x_0 处的右极限 (right limit).

记作
$$\lim_{\substack{x \to x_0 + 0 \\ (x \to x_0^+)}} f(x) = A$$
 或 $f(x_0 + 0) = A$.

定理:
$$\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0 - 0) = f(x_0 + 0) = A$$
.

由此有

一个在 x_0 某去心邻域内有定义的函数 f(x),若 $f(x_0-0)$ 与 $f(x_0+0)$ 都存在但不相等,或 $f(x_0-0)$ 与 $f(x_0+0)$ 中至少有一个不存在,则 f(x)在 x_0 处没有 极限或者说 $\lim_{x\to x_0} f(x)$ 不存在.

推论: $\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to +\infty} f(x) = A \perp \lim_{x \to -\infty} f(x) = A$.

证明
$$\lim_{x\to 0} f(x) = 1$$
.

例5: 验证
$$\lim_{x\to 0} \frac{|x|}{x}$$
 不存在.

if
$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x}$$

$$= \lim_{x \to 0^{-}} (-1) = -1$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$$

左右极限存在但不相等, $\lim_{x\to 0} f(x)$ 不存在.

注:分段函数在分界点处的两侧函数表达式不一致时,求在分界点处的极限应考虑左右极限.

例6: 设
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
, 求 $\lim_{x \to 1} f(x)$.

- 1. 极限的惟一性 定理1 若极限 $\lim_{x\to x_0} f(x)$ (或 $\lim_{x\to \infty} f(x)$)存在,则极限 是惟一的.
- 2. 有极限的函数的局部有界性

定理2 若极限 $\lim_{x\to x_0} f(x)$ 存在,则在点 x_0 的某个去心邻域内,函数 f(x) 有界.

定理2' 若极限 $\lim_{x\to\infty} f(x)$ 存在,则必存在 X>0,使得函数 f(x) 在无穷区间 $(X,+\infty)$ 和 $(-\infty,-X)$ 内均有界.

几何意义:

当 $x \in \overset{\circ}{\mathrm{U}}(x_0,\delta)$ 时,

函数y = f(x)图形完全 A 落在以直线y = A为中心,

宽为 2ε 的带形区域内.

$$"\varepsilon - X" 定义 \lim_{x \to \infty} f(x) = A \iff$$

 $\forall \varepsilon > 0, \exists X > 0,$ 当|x| > X时, 恒有 $|f(x) - A| < \varepsilon$.

$$x < -X 或 x > X$$

$$A - \varepsilon < f(x) < A + \varepsilon$$

 $\lim_{x \to \infty} f(x) = A$ 的几何意义:

当x < -X或x > X时,函数y = f(x)图形完全落在以直线y = A为中心线,宽为 2ε 的带形区域内.

3. 极限的局部保号性

定理3(局部保号性)

若
$$\lim_{x \to x_0} f(x) = A$$
,且 $A > 0$ ($A < 0$)

当 $x \in \bigcup (x_0, \delta)$ 时, f(x) > 0 (f(x) < 0).

证 由已知 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\exists x \in \bigcup (x_0, \delta)$ 时,

有
$$|f(x)-A|<\varepsilon$$
, 即 $A-\varepsilon< f(x)< A+\varepsilon$,

f(x) > 0.

3. 极限的局部保号性

定理3 (局部保号性) 若
$$\lim_{x\to x_0} f(x) = A$$
,且 $A > 0$ ($A < 0$),

则
$$\exists \delta > 0$$
, 当 $x \in \bigcup (x_0, \delta)$ 时 $, f(x) > 0$ ($f(x) < 0$).

定理3' 若
$$\lim_{x\to\infty} f(x) = A$$
,且 $A > 0$ ($A < 0$),则 $\exists X > 0$,

当
$$x \in (-\infty, -X) \cup (X, +\infty)$$
时, $f(x) > 0$ ($f(x) < 0$).

推论 若
$$\lim_{x\to x_0} f(x) = A$$
,且 $\exists \delta > 0$,当 $x \in \bigcup (x_0, \delta)$ 时,

$$f(x) \ge 0 (f(x) \le 0), \text{ M} A \ge 0 (A \le 0).$$

思考: 若推论中的条件改为f(x)>0, 是否必有A>0?

否! $\lim_{x\to 0} x^2 = 0$

4.函数极限的归并性 (函数极限与数列极限的关系)

定义设在过程 $x \to a$ 中有数列 $x_n(\neq a)$,使 $\lim_{n \to \infty} x_n = a$,

则称数列 $(f(x_n))_{n=1}^{\infty}$ 为函数 f(x) 当 $x \to a$ 时的子列.

定理

若 $\lim_{x \to x_0} f(x) = A$, $\{x_n\}$ 为函数f(x)的定义域内任一收敛于 x_0 的数列,且满足 $x_n \neq x_0$,那么相应的函数值数列 $\{f(x_n)\}$ 必收敛,且 $\lim_{n \to \infty} f(x_n) = \lim_{x \to x_0} f(x)$

4.函数极限的归并性(函数极限与数列极限的关系)

例如
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
取 $x_n = \frac{1}{n}$, 则 $x_n \to 0$, 故有 $\lim_{n\to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1$, 取 $x'_n = \frac{1}{\sqrt{n}}$, 则 $x'_n \to 0$, 故有 $\lim_{n\to \infty} \frac{\sin \frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = 1$,…

定理 (海涅定理): $\lim_{x\to x_0} f(x) = A \Leftrightarrow$ 对任意的数列 $\{x_n\}$,

$$x_n \neq x_0$$
,且 $\lim_{n\to\infty} x_n = x_0$,有 $\lim_{n\to\infty} f(x_n) = A$.

推论1: 若存在某个数列 $\{x_n\}, x_n \neq x_0$,且 $\lim_{n\to\infty} x_n = x_0$,而它的

函数值数列 $\{f(x_n)\}$ 不存在极限,则函数f(x)也不存在极限.

推论2: 若存在某两个数列 $\{x_n\}, \{y_n\}, x_n \neq x_{0,y_n} \neq x_{0,l} \lim_{n \to \infty} x_n = x_{0,l}$

 $\lim_{n\to\infty} y_n = x_{0,} \coprod \lim_{n\to\infty} f(x_n) = A, \lim_{n\to\infty} f(y_n) = B, \overline{m}A \neq B, 则函数f(x)$

 $在x_0$ 的极限不存在.

判别极限不存在的两个方法:

[方法一]

找出两个数列 $\{x_n\}: x_n \neq x_0$,且 $\lim_{n\to\infty} x_n = x_0$,

 $\{x_n'\}: x_n' \neq x_0, \coprod \lim_{n \to \infty} x_n' = x_0,$

数列 $f(x_n)$ 和 $f(x'_n)$ 有不同极限.

[方法二] 找出一个数列 $\{x_n\}: x_n \neq x_0$,且 $\lim_{n\to\infty} x_n = x_0$,数列 $f(x_n)$ 发散;

例1 证明
$$\lim_{x\to 0} \sin \frac{1}{x}$$
 不存在.

证 取
$$x_n = \frac{1}{n\pi}, (n = 1, 2, 3, \dots)$$
 则 $\lim_{n \to \infty} x_n = 0$,

取
$$x'_n = \frac{1}{2n\pi + \frac{1}{2}\pi}, (n = 1, 2, 3, \dots)$$
 则 $\lim_{n \to \infty} x'_n = 0$,

$$\overline{\mathbb{II}} \lim_{n\to\infty} \sin\frac{1}{x_n} = \lim_{n\to\infty} \sin n\pi = 0,$$

$$\lim_{n\to\infty}\sin\frac{1}{x'_n}=\lim_{n\to\infty}\sin(2n\pi+\frac{1}{2}\pi)=1,$$

故
$$\lim_{x\to 0}\sin\frac{1}{x}$$
不存在.

注意:

也可以取
$$\{x_n\} = \left\{\frac{1}{2n\pi + \frac{\pi}{2}}\right\},$$

$$\lim_{n \to \infty} x_n = 0, \quad \coprod x_n \neq 0;$$

$$\mathbb{R}\{y_n\} = \left\{\frac{1}{2n\pi - \frac{\pi}{2}}\right\}, \quad \lim_{n \to \infty} y_n = 0, \quad \coprod y_n \neq 0;$$

例2 证明: 当 $x \to +\infty$ 时, $\cos x^3$ 没有极限.

证 取
$$x_n = \sqrt[3]{2n\pi}, (n = 1, 2, 3, \dots), 则 \lim_{n \to \infty} x_n = +\infty.$$

取
$$x'_n = \sqrt[3]{(2n+1)\pi}, (n=1,2,3,\cdots), \quad 则 \lim_{n\to\infty} x'_n = +\infty.$$

$$\overline{\prod} \lim_{n\to\infty} \cos x_n^3 = \lim_{n\to\infty} \cos 2n\pi = 1,$$

$$\lim_{n\to\infty}\cos x_n^{\prime 3}=\lim_{n\to\infty}\cos(2n+1)\pi=-1\,,$$

 $\therefore \lim_{r \to +\infty} \cos x^3$ 不存在.

四四

函数极限的运算

设 $\lim f(x) = A, \lim g(x) = B, 则$

- (1) $\lim[f(x) \pm g(x)] = A \pm B$
- (2) $\lim[f(x).g(x)] = A \cdot B;$
- (3) $\lim \frac{f(x)}{g(x)} = \frac{A}{B}, \quad \sharp \oplus B \neq 0.$

伍小结

函数极限的统一定义

$$\lim_{n\to\infty} f(n) = A;$$

$$\lim_{x\to\infty} f(x) = A; \quad \lim_{x\to+\infty} f(x) = A; \quad \lim_{x\to-\infty} f(x) = A;$$

$$\lim_{x \to x_0} f(x) = A; \quad \lim_{x \to x_0^+} f(x) = A; \quad \lim_{x \to x_0^-} f(x) = A.$$

(五) 小结

过 程	$n \to \infty$	$x \to \infty$	$x \to +\infty$	$x \to -\infty$	
时 刻		N			
从此时刻以	后 $n>N$	x > N	x > N	x < -N	
$ f(x)-A <\varepsilon$					

过程	$x \to x_0$	$x \rightarrow x$	$x_0^+ \qquad x \rightarrow x_0^-$	
时 刻		δ		
从此时刻以	以后 $ 0< x-x_0 $	$\delta = 0 < x - x_0$	$ -\delta < x - x_0 < 0 $	
f(x)	$ f(x)-A <\varepsilon$			

