Discrete Mathematics

Relations

Dr. Mohammad Salah Uddin Assistant Professor Department of CSE East West University, Bangladesh

Cartesian product (review)

Let $A = \{a_1, a_2, ... a_k\}$ and $B = \{b_1, b_2, ... b_m\}$.

The Cartesian product A x B is defined by a set of pairs $\{(a_1 b_1), (a_1, b_2), \dots (a_1, b_m), \dots, (a_k, b_m)\}.$

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

Binary relation

Definition: Let A and B be two sets. A binary relation from A toB is a subset of a Cartesian product A x B.

- Let $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$.
- We use the notation a R b to denote (a,b) ∈ R and a R b to denote (a,b) ∉ R. If a R b, we say a is related to b by R.

Example: Let $A = \{a,b,c\}$ and $B = \{1,2,3\}$.

- Is $R = \{(a,1),(b,2),(c,2)\}$ a relation from A to B? Yes.
- Is $Q=\{(1,a),(2,b)\}$ a relation from A to B? No.
- Is $P=\{(a,a),(b,c),(b,a)\}$ a relation from A to A? Yes

Representing binary relations

- We can graphically represent a binary relation R as follows:
 - if **a R b** then draw an arrow from a to b.

$$a \rightarrow b$$

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Note: $R \subseteq A \times B$.
- Graph:

Representing binary relations

• We can represent a binary relation R by a **table** showing (marking) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}, B = \{u,v\}$ and $R = \{(0,u), (0,v), (1,v), (2,u)\}$
- Table:

R	u	V	or	.	•	
				<u>R</u>	u	V
0	X	X		0	1	1
1		X		1	0	1
2	X			2	1	0

Relations and functions

• Relations represent **one to many relationships** between elements in A and B.

• Example:

• What is the difference between a **relation and a function from** A to B?

Relations and functions

• Relations represent **one to many relationships** between elements in A and B.

• What is the difference between a **relation and a function from**A to B? A function defined on sets A,B A → B assigns to each element in the domain set A exactly one element from B. So it is a **special relation.**

Relation on the set

Definition: A relation on the set A is a relation from A to itself.

Example 1:

- Let $A = \{1,2,3,4\}$ and $R_{div} = \{(a,b)| \text{ a divides b}\}$
- What does R_{div} consist of?

•
$$R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

•	R	1	2	3	4
	1	X	X	X	X
	2		X		X
	3			X	
	4				X

Relation on the set

Example:

- Let $A = \{1,2,3,4\}$.
- Define a R_{\neq} b if and only if $a \neq b$.

$$R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$$

•	R	1	2	3	4
	1		X	X	X
	2	X		X	X
	3	X	X		X
	4	X	X	X	

Binary relations

• Theorem: The number of binary relations on a set A, where |A| = n is: 2^{n^2}

- Proof:
- If |A| = n then the cardinality of the Cartesian product $|A \times A| = n^2$.
- R is a binary relation on A if $R \subseteq A \times A$ (that is, R is a subset of A x A).
- The number of subsets of a set with k elements : 2^{k}
- The number of subsets of A x A is : $2^{|AxA|} = 2^{n^2}$

Definition (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 1:

- Assume relation $R_{div} = \{(a b), if a | b\}$ on $A = \{1,2,3,4\}$
- Is R_{div} reflexive?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- **Answer:** Yes. (1,1), (2,2), (3,3), and $(4,4) \in A$.

Reflexive relation

Reflexive relation

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

• A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

Definition (reflexive relation): A relation R on a set A is called reflexive if $(a,a) \in R$ for every element $a \in A$.

Example 2:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} reflexive?
- No. It is not reflexive since $(1,1) \notin R_{\text{fun}}$.

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 1:

- Assume relation R_{\neq} on $A=\{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is \mathbf{R}_{\neq} irreflexive?
- R_≠= ...

Definition (irreflexive relation): A relation R on a set A is called
irreflexive if (a,a) ∉ R for every a ∈ A.

Example 1:

- Assume relation R_{\neq} on $A=\{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is \mathbf{R}_{\neq} irreflexive?
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- **Answer:** Yes. Because (1,1),(2,2),(3,3) and $(4,4) \not\in R_{\neq}$

Irreflexive relation

Irreflexive relation

- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

<u>Definition</u> (irreflexive relation): A relation R on a set A is called irreflexive if $(a,a) \notin R$ for every $a \in A$.

Example 2:

- R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} irreflexive?
- Answer: No. Because (2,2) and (3,3) $\in R_{\text{fun}}$

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \quad (a,b) \in R \rightarrow (b,a) \in R.$$

Example 1:

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- Is R_{div} symmetric?
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Answer: No. It is not symmetric since $(1,2) \in \mathbb{R}$ but $(2,1) \notin \mathbb{R}$.

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \quad (a,b) \in R \rightarrow (b,a) \in R.$$

Example 2:

- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- Is R_{\neq} symmetric?
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Answer: Yes. If $(a,b) \in R_{\neq} \rightarrow (b,a) \in R_{\neq}$

Symmetric relation

Symmetric relation:

- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$

• A relation R is symmetric if and only if $m_{ij} = m_{ji}$ for all i,j.

Definition (symmetric relation): A relation R on a set A is called symmetric if

$$\forall a, b \in A \ (a,b) \in R \rightarrow (b,a) \in R.$$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} symmetric?
- Answer: No. For $(1,2) \in R_{\text{fun}}$ there is no $(2,1) \in R_{\text{fun}}$

Anti-symmetric relation

Definition (anti-symmetric relation): A relation on a set A is called anti-symmetric if

• $[(a,b) \in R \text{ and } (b,a) \in R] \rightarrow a = b \text{ where } a,b \in A.$

Example 3:

- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} anti-symmetric?
- Answer: Yes. It is anti-symmetric

Anti-symmetric relation

Antisymmetric relation

• relation $R_{\text{fun}} = \{(1,2),(2,2),(3,3)\}$

$$0 1 0 0$$

$$0 1 0 0$$

$$MR_{fun} = 0 0 1 0$$

$$0 0 0$$

• A relation is **antisymmetric** if and only if $m_{ij} = 1 \rightarrow m_{ji} = 0$ for $i \neq j$.

Definition (transitive relation): A relation R on a set A is called **transitive** if

• $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$

• Example 1:

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer:

Definition (transitive relation): A relation R on a set A is called **transitive** if

• $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$

• Example 1:

- $R_{div} = \{(a b), if a | b\} \text{ on } A = \{1,2,3,4\}$
- $R_{div} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- Is R_{div} transitive?
- Answer: Yes.

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_≠ transitive ?
- Answer:

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 2:
- \mathbf{R}_{\neq} on $\mathbf{A} = \{1,2,3,4\}$, such that $\mathbf{a} \ \mathbf{R}_{\neq} \mathbf{b}$ if and only if $\mathbf{a} \neq \mathbf{b}$.
- $R_{\neq} = \{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)\}$
- Is R_≠ transitive?
- Answer: No. It is not transitive since $(1,2) \in R$ and $(2,1) \in R$ but (1,1) is not an element of R.

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer:

- $[(a,b) \in R \text{ and } (b,c) \in R] \rightarrow (a,c) \in R \text{ for all } a,b,c \in A.$
- Example 3:
- Relation R_{fun} on $A = \{1,2,3,4\}$ defined as:
 - $R_{fun} = \{(1,2),(2,2),(3,3)\}.$
- Is R_{fun} transitive?
- Answer: Yes. It is transitive.

Exercise: Let $A = \{1,2,3\}$ and R be the relation on A whose matrix is

$$\mathbf{M}_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Show that R is transitive. (Hint: Check if $(\mathbf{M}_R)_{\odot}^2 = \mathbf{M}_R$)

Equivalence relation

Definition: A relation R on a set A is called an **equivalence** relation if it is reflexive, symmetric and transitive.

**Refer the book for more details