高分子化学

第11回講義

担当:菊池明彦

E-mail: kikuchia@rs.tus.ac.jp

1

第11回講義

付加重合|| モノマーの構造と反応性 モノマーの構造単位の並び方

モノマーの構造と反応性

スチレンに反応性が近いグループ

スチレンに比べ反応性が低いグループ

3

共役型モノマーの反応性の高さは何による?

ラジカルの不対電子の共役系での非局在化とラジカルの安定化

4

非共役型モノマー: 置換基の関与によるラジカルの非局在化・安定化は起こらない
→ モノマーの反応性は低い

 $rac{1}{r_1} = rac{k_{12}}{k_{11}}$ ラジカル M_1 ulletに対するモノマー M_2 と M_1 の相対的な反応性

表5.2 ラジカルに対するモノマーの相対反応性(教科書p. 87)

モノマー ポリマーラジカル	スチレン	メタクリル 酸メチル	アクリロニ トリル	塩化ビニル	酢酸ビニル
スチレン	(1.0)	1.9	2.4	0.05	0.02
メタクリル酸メチル	2.2	(1.0)	0.75	0.07	0.05
アクリロニトリル	20	5.5	(1.0)	0.3	0.2
塩化ビニル	30	_	15	(1.0)	0.5
酢酸ビニル	50	70	18	3.5	(1.0)

共役型モノマー(スチレン、メタクリル酸メチル、アクリロニトリル)の相対的な反応性は 非共役型モノマー(塩化ビニル、酢酸ビニル)に比して大きい

5

予想: 共役型モノマーからできたラジカルは安定 この反応性は非共役型モノマーからできたラジカルに比して低い

→ モノマーに対する種々ラジカルの反応性を比較すればわかる

 $\frac{k_{11}}{k_{12}}$ と $\frac{k_{22}}{k_{21}}$ は実験的に求められる(それぞれ r_1 、 r_2)(ラジカルに対するモノマーの相対反応性)

 $\frac{k_{11}}{k_{21}} {\succeq} \frac{k_{22}}{k_{12}}$ は実験的に求められない(モノマーに対するラジカルの相対反応性)

単独重合の反応速度定数から k_{11} と k_{22} は実測可能 これと r_1 、 r_2 から k_{12} 、 k_{21} を求められる表5.3 モノマーに対するポリマーラジカルの反応性(成長速度定数/ 10^2 cm³ mol $^{-1}$ s $^{-1}$ (60° C))

ポリマーラジ かルモノマー	スチレン	メタクリル酸メチ ル	アクリル酸メチル	酢酸ビニル
ブタジエン	158	1547	40000	_
スチスチレンラジカルで	から種々モノマーへの	の反応性: 2.2~308	10000	290000
m酸ビニルラジカル → 酢酸ビニルラジ			480000 カル)の反応性は	
アクリロニトリル	308	286	-	480000
アクリル酸メチル	164	-	2090	26000
塩化ビニル	7.2	30	232	13000
酢酸ビニル	2.2	19	279	2900

1,2-二置換型モノマーの反応性

共役型モノマー

成長ラジカルとモノマーとの間で立体反発 同種モノマーが続く反応性低い:

$$r_2 = 0$$

表5.1 ラジカル共重合におけるモノマー反応性比 (教科書p.85を改変 データを抜粋)

No.	モノマー2	モノマー1 スチレン		
INO.	₹/ ∀ -2	r_1	r_2	
1	無水マレイン酸	0.04 ± 0.01	0	
8	桂皮酸メチル	1.9 ± 0.2	0	
10	クロトン酸	20	0	

7

相対的に反応性の高いモノマー間の共重合

例) スチレン-メタクリル酸メチル系

 $r_1 < 1, r_2 < 1$

ラジカルは同種モノマーより異種モノマーと反応しやすい 生成するラジカルの安定化、モノマーとラジカルの極性因子の寄与

スチレン:電子

メタクリル酸メチル:電子

ラジカルは自身の極性と異なる極性の モノマーと反応しやすい

 $M_1 \bullet l \sharp M_2 \succeq$

 $M_2 \bullet l \sharp M_1 \succeq$

反応する傾向がある

コポリマーの構造単位の並び方

CH₂-CH-CH-CH-

9

スチレン-酢酸ビニル系

 $r_1 = 55$, $r_2 = 0.01$

 $\cdots\cdots \mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\mathsf{M}_2\mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\mathsf{M}_1\cdots\cdots$

第11回講義のまとめ

付加重合II

モノマーの構造と反応性 モノマーの構造単位の並び方

第11回講義の質疑・コメントならびに課題について

LETUSに第11回講義のフォーラムを立ち上げています。質疑、コメント等はフォーラムに書き込んで相互理解を深められるようにしましょう。

第11回講義の課題をLETUSにアップロードしています。課題の解答を指定期日までにpdfフォーマットでアップロードしてください。

課題、ならびに皆さんの解答をSNS等にアップロードすることは違法行為です。

11