DISC Course on Linear Matrix Inequalities in Control

Siep Weiland Department of Electrical Engineering Eindhoven University of Technology

Course 2004 - Class 3

 \blacktriangleleft \blacktriangle \blacktriangleright \blacktriangleright

Dissipative systems

Given a system Σ described by

We call the system Σ dissipative with respect to the supply function $s: W \times Z \to \mathbb{R}$ if there exists a storage function $V: X \to \mathbb{R}$ such that

$$V(x(t_0)) + \int_{t_0}^{t_1} s(w(t), z(t))dt \ge V(x(t_1)) \tag{1}$$

for all $t_0 \leq t_1$ and (w, x, z) in system behavior.

Interpretation:

s: supply delivered to system; V(x): internally stored "energy". In any experiment, final storage can be at most initial storage plus supplied energy over a time interval

- system is **conservative** if = in (I)
- system is **strictly dissipative** if ">" in (I)

Example: mechanical systems

Modelled by differential equation

$$ky + b\dot{y} + m\ddot{y} = F$$

Let force F be input, velocity $v = \dot{y}$ output.

This defines a dissipative system with supply s(F, v) = Fv and storage function:

$$V(y,v) = \frac{1}{2}mv^2 + \frac{1}{2}ky^2$$

Example: electrical networks

- ullet Electrical network with voltages w as input, currents z as output.
- State $x = \operatorname{col}_i(V_{C_i}, I_{L_i})$, stacked capacitor voltages and inductance currents of components.
- External ports $w = \operatorname{col}(V_1, V_2)$, $z = \operatorname{col}(I_1, I_2)$.
- Supply $s(w, z) = w^{\top}z$ (power).
- Storage function is electrical energy

$$V(x) = \sum_{i} C_i V_{C_i}^2 + \sum_{j} L_j I_{L_j}^2$$

Example: thermodynamics

Variables: T temperature, Q heating rate, W rate of mechanical work.

• First law of thermodynamics

$$E(x(t_0)) + \int_{t_0}^{t_1} (W(t) + Q(t))dt = E(x(t_1))$$

Second law of thermodynamics

$$S(x(t_0)) + \int_{t_0}^{t_1} \frac{Q(t)}{T(t)} dt \ge S(x(t_1))$$

Other common supply functions

- $\bullet \ s(w,z) = z^\top w$
- $s(w, z) = ||w||^2 + ||z||^2$
- $s(w, z) = ||z||^2 ||w||^2$

Equivalent local characterization

Theorem: If storage function $V(\cdot)$ is differentiable, then the dissipation inequality is equivalent to the differential dissipation inequality

$$V_x(x)f(x,w) \le s(w,g(x,w)),$$
 for all $x \in X$ and $w \in W$.

Here, V_x is the gradient of V:

$$V_x = \begin{pmatrix} \frac{\partial V}{\partial x_1} & \cdots & \frac{\partial V}{\partial x_n} \end{pmatrix}$$

This is easily seen: for all $t_1 > t_0$:

$$\frac{1}{t_1 - t_0} \left(V(x(t_1)) - V(x(t_0)) \right) \le \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} s(w(t), z(t)) dt$$

Let $t = t_1 \rightarrow t_0$. Then

- left-hand side converges to $\frac{d}{dt}V(x(t))=V_x(x(t))\dot{x}(t)=V_x(x(t))f(x(t),w(t)).$
- right-hand side converges to s(w(t), z(t)) = s(w(t), g(x(t), w(t))).

Strict dissipativity

The system $\dot{x}=f(x,w)$, z=g(x,w) with supply rate s is said to be **strictly dissipative** if there exists a storage function $V:X\to\mathbb{R}$ and an $\varepsilon>0$ such that

$$V(x(t_0)) + \int_{t_0}^{t_1} s(w(t), z(t)) dt - \varepsilon^2 \int_{t_0}^{t_1} \|w(t)\|^2 dt \ge V(x(t_1))$$

for all $t_0 \leq t_1$ and all trajectories (w, x, z).

This implies that the dissipation inequality holds with >.

Other refinements:

- time-varying systems
- uncertain systems
- discrete time systems (???)
- conditions on periodic trajectories only.

Classifying all storage functions

Assume $x^* \in X$ point of neutral storage $V(x^*) = 0$. Defines set of normalized storage functions

$$\mathcal{V}(x^*) := \{ V \mid V(x^*) = 0, \quad V \text{ satisfies dissipation inequality} \}.$$

What can $V(x^*)$ be ???

Classifying all storage functions

Assume $x^* \in X$ point of neutral storage $V(x^*) = 0$. Defines set of normalized storage functions

$$\mathcal{V}(x^*) := \{ V \mid V(x^*) = 0, \quad V \text{ satisfies dissipation inequality} \}.$$

What can $\mathcal{V}(x^*)$ be ???

Introduce available storage $V_{\text{av}}: X \to \mathbb{R} \cup \{\infty\}$ and required supply $V_{\text{req}}: X \to \mathbb{R} \cup \{-\infty\}$:

$$V_{\text{av}}(x_0) := \sup\left\{-\int_0^{t_1} s(w(t), z(t)) dt \mid t_1 \ge 0; \ x(0) = x_0\right\}$$
 (AV)

$$V_{\text{req}}(x_0) := \inf \left\{ \int_{t_{-1}}^0 s(w(t), z(t)) \, dt \mid t_{-1} \le 0; \ x(0) = x_0 \right\} \tag{RQ}$$

Classifying all storage functions

Theorem: Suppose that Σ is controllable. Then (Σ, s) is dissipative if and only if

$$-\infty < V_{av}(x) < \infty$$
 for all $x \in X$

if and only if

$$-\infty < V_{\text{reg}}(x) < \infty$$
 for all $x \in X$

In that case:

- $\bullet V_{av}, V_{req} \in \mathcal{V}(x^*).$
- $V \in \mathcal{V}(x^*)$ implies $V_{av}(x) \leq V(x) \leq V_{reg}(x)$ for all x.
- $\mathcal{V}(x^*)$ is convex set.

Thus:
$$V_{\alpha} := \alpha V_{av} + (1 - \alpha) V_{req} \in \mathcal{V}(x^*)$$
 for all $\alpha \in (0, 1)$.

Interpretation:

A dissipative system can neither supply nor store an infinite amount of energy.

Sketch of proof

(only if) Run a loop: let $x_0 \in X$, $t_{-1} \le 0 \le t_1$ and (w, x, z) a trajectory with

$$x(t_{-1}) = x^*$$
 $x(0) = x_0$ $x(t_1) = x^*$.

Then

$$-\infty < -\int_0^{t_1} s(t)dt \le \int_{t_{-1}}^0 s(t)dt < +\infty.$$

Now take

• supremum over $t_1 > 0$:

$$-\infty < V_{av}(x_0) < \infty$$

• infimum over $t_{-1} < 0$:

$$-\infty < V_{\text{reg}}(x_0) < \infty$$

(if) Available storage at $x(t_0)$ is more than available storage at $x(t_1)$ while passing from $x(t_0)$ to $x(t_1)$ in arbitrary way. Hence $V_{\rm av}(x_0)$ is a storage function.

Linear dissipative systems

Consider the **linear system** Σ :

$$\dot{x} = f(x, w) = Ax + Bw; \quad z = g(x, w) = Cx + Dw$$

with quadratic supply function

$$s(w, z) = \begin{pmatrix} w \\ z \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} w \\ z \end{pmatrix} =$$

$$= \begin{pmatrix} x \\ w \end{pmatrix}^{\top} \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} 0 & I \\ C & D \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$$

Then for quadratic storge functions $V(x) = x^{T}Kx$ the differential dissipation inequality reads

$$2x^{\top}K(Ax + Bw) \le s(w, Cx + Dw)$$
 for all x and w

This is equivalent to an LMI condition!!

Main result for dissipative systems

Theorem: Suppose Σ is controllable, s quadratic. Equivalent are

- I. (Σ, s) is dissipative.
- 2. (Σ, s) admits a quadratic storage function $V(x) := x^{\top} K x$
- 3. There exists a symmetric K such that

$$\underbrace{\begin{pmatrix} A^{\top}\boldsymbol{K} + \boldsymbol{K}A & \boldsymbol{K}B \\ B^{\top}\boldsymbol{K} & 0 \end{pmatrix} - \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}}_{F(\boldsymbol{K})} \, \leq \, 0.$$

Moreover, $V(x) = x^{\top} K x$ is a quadratic storage function in $\mathcal{V}(0)$ if and only if

$$F(K) \prec 0$$
.

- F(K) is called the **dissipation matrix**.
- Characterizes all normalized storage functions as LMI feasibility set.

Relation to frequency domain inequality

Associate with state space system its transfer function

$$\dot{x} = Ax + Bw, \quad z = Cx + Dw \quad \longleftrightarrow \quad T(s) = C(Is - A)^{-1}B + D$$

Theorem: Suppose Σ is controllable. Then there exists $K = K^{\top}$ with

$$\begin{pmatrix} A^{\top} \mathbf{K} + \mathbf{K} A & \mathbf{K} B \\ B^{\top} \mathbf{K} & 0 \end{pmatrix} - \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} 0 & I \\ C & D \end{pmatrix} \preceq 0$$

if and only if

T satisfies the **frequency domain inequality** (FDI)

$$0 \preceq \begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} Q & S \\ S^\top & R \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \text{ for all } \omega \in \mathbb{R} \cup \{\infty\}, \ i\omega \not\in \lambda(A)$$

Provides a frequency domain test.

Trajectory based proof: LMI implies FDI

Take a $\tau = 2\pi/\omega$ periodic input $w(t) = \exp(i\omega t)w_0$. Then

$$x(t) = \exp(i\omega t)(i\omega I - A)^{-1}Bw_0$$

$$z(t) = \exp(i\omega t)T(i\omega)w_0$$

are τ periodic trajectories of the system and

$$s(w(t), z(t)) = \exp(-i\omega t) w_0^* \left(\frac{I}{T(i\omega)}\right)^* P\left(\frac{I}{T(i\omega)}\right) w_0 \exp(i\omega t)$$

is **constant** for all t.

But then, integrating over k periods:

$$\int_0^{k\tau} s(w(t), z(t))dt = k\tau \ w_0^* \left(\frac{I}{T(i\omega)}\right)^* P\left(\frac{I}{T(i\omega)}\right) w_0 \ge 0$$

which holds for any w_0 and any $k\tau > 0$.

This gives

$$\binom{I}{T(i\omega)}^* P \binom{I}{T(i\omega)} \succeq 0.$$

Main result for strictly dissipative systems

Theorem: Suppose A no eigenvalues $i\omega$ and s is quadratic. Equivalent are

- 1. (Σ, s) is strictly dissipative.
- 2. (Σ, s) admits a quadratic storage function $V(x) := x^{\top} K x$.
- 3. There exists a symmetric K such that

$$F(K) \prec 0.$$

4. For all $\omega \in \mathbb{R} \cup \{\infty\}$ with $i\omega \notin \lambda(A)$:

$$0 \prec \begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} Q & S \\ S^\top & R \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix}$$

Moreover, $V(x) = x^{\top} K x$ is a quadratic storage function in $\mathcal{V}(0)$ if and only if

$$F(K) \prec 0$$
.

The pair (A, B) may be non-controllable here!

Equivalent representations

Note:

$$F(\mathbf{K}) = \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^{\top} \begin{pmatrix} 0 & \mathbf{K} \\ \mathbf{K} & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} - \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} 0 & I \\ C & D \end{pmatrix}$$

$$= \begin{pmatrix} I & 0 \\ A & B \\ \hline 0 & I \\ C & D \end{pmatrix}^{\top} \begin{pmatrix} 0 & \mathbf{K} & 0 & 0 \\ \hline \mathbf{K} & 0 & 0 & 0 \\ \hline 0 & 0 & -Q & -S \\ 0 & 0 & -S^{\top} & -R \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \\ \hline 0 & I \\ C & D \end{pmatrix}$$

$$= \begin{pmatrix} A^{\top}\mathbf{K} + \mathbf{K}A - C^{\top}RC & \mathbf{K}B - (SC)^{\top} - C^{\top}RD \\ B^{\top}\mathbf{K} - SC - D^{\top}RC & -Q - SD - (SD)^{\top} - D^{\top}RD \end{pmatrix}$$

Let $T := Q + SD + (SD)^{\top} + D^{\top}RD$. Using a Schur complement: $F(K) \prec 0$ if and only if $T \succ 0$ and

$$A^{\top} \mathbf{K} + \mathbf{K} A + C^{\top} R C + (\mathbf{K} B + (SC)^{\top} + C^{\top} R D) T^{-1} (B^{\top} \mathbf{K} + SC + D^{\top} R C) \prec 0$$

The KYP Lemma (continuous time)

Theorem: There exists symmetric K such that

$$\begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^{\top} \begin{pmatrix} 0 & \mathbf{K} \\ \mathbf{K} & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} + M \prec 0$$

if and only if south-east block of M is negative definite and for all $\omega \in \mathbb{R}$

$$(A - i\omega I \ B)\underbrace{\begin{pmatrix} x \\ w \end{pmatrix}}_{z_0} = 0$$
 implies $\begin{pmatrix} x \\ w \end{pmatrix}^* M \begin{pmatrix} x \\ w \end{pmatrix} < 0.$

If A has no eigenvalues on imaginary axis, the latter condition is equivalent to

$$\binom{(i\omega I-A)^{-1}B}{I}^*M\binom{(i\omega I-A)^{-1}B}{I}\prec 0\quad \text{ for all }\omega\in\mathbb{R}.$$

The KYP Lemma (discrete time)

Theorem: There exists symmetric K such that

$$\begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^{\top} \begin{pmatrix} -\mathbf{K} & 0 \\ 0 & \mathbf{K} \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} + M \prec 0$$

if and only if for all $z \in \mathbb{C}$ with |z| = 1,

$$(A - zI \ B)\underbrace{\begin{pmatrix} x \\ w \end{pmatrix}}_{\neq 0} = 0$$
 implies $\begin{pmatrix} x \\ w \end{pmatrix}^* M \begin{pmatrix} x \\ w \end{pmatrix} < 0.$

If A has no eigenvalues on unit circle, the latter condition is equivalent to

$$\binom{(zI-A)^{-1}B}{I}^* M \binom{(zI-A)^{-1}B}{I} \prec 0 \quad \text{ for all } z \in \mathbb{C}, |z| = 1.$$

Proof only if part

Let $w \in \mathbb{C}^m$ and $x \in \mathbb{C}^n$ be such that

$$(A - i\omega I \ B)\underbrace{\begin{pmatrix} x \\ w \end{pmatrix}}_{\neq 0} = 0$$

Then

$$\begin{pmatrix} x \\ w \end{pmatrix}^* \begin{bmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^\top \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} + M \end{bmatrix} \begin{pmatrix} x \\ w \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}^* \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^\top \begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix}$$

$$= \begin{pmatrix} x \\ w \end{pmatrix}^* M \begin{pmatrix} x \\ w \end{pmatrix}.$$

will not depend on K.

The positive real lemma

Theorem: Equivalent statements are:

- 1. System is strictly dissipative with respect to $s(w,z)=z^{\intercal}w$
- 2. There exists a symmetric K such that

$$\begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}^{\top} \begin{pmatrix}
0 & K & 0 & 0 & 0 \\
K & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & -I & 0
\end{pmatrix} \begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}
\prec 0$$

3. For all $\omega \in \mathbb{R}$ with $\det(i\omega I - A) \neq 0$ one has

$$T(i\omega)^* + T(i\omega) \succ 0.$$

4. All system trajectories (w,z) satisfy $\int_0^\infty z^\top(t)w(t)dt > 0$.

Towards nominal performance

Consider the stable system

$$\dot{x} = Ax + Bw, \quad z = Cx + Dw, \quad \longleftrightarrow \quad T(s) = C(Is - A)^{-1}B + D$$

With w a disturbance, minimize effect of w on output z.

With suitable signal norms, the system gain is defined as

$$||T|| := \sup_{0 \neq ||w|| < \infty} \frac{||z||}{||w||}$$

or, equivalently, system gain is at most γ if

$$||z|| \le \gamma ||w||$$
 for all $w \ne 0$

- Reflects maximal amplification of disturbance.
- small gain means good disturbance attenuation.

With \mathcal{L}_2 norm $\|w\|_2^2 := \int_0^\infty \|w(t)\|^2 dt$ this yields

$$||T||_{2,2} < \gamma$$

With \mathcal{L}_2 norm $\|w\|_2^2 := \int_0^\infty \|w(t)\|^2 dt$ this yields

$$||T||_{2,2} < \gamma$$

if and only if for some $\varepsilon > 0$

$$||z||_2^2 \le (\gamma^2 - \varepsilon^2) ||w||_2^2$$
 for all $w \ne 0$

With \mathcal{L}_2 norm $\|w\|_2^2 := \int_0^\infty \|w(t)\|^2 dt$ this yields

$$||T||_{2,2} < \gamma$$

if and only if for some $\varepsilon > 0$

$$||z||_2^2 \le (\gamma^2 - \varepsilon^2) ||w||_2^2$$
 for all $w \ne 0$

$$\int_0^\infty \begin{pmatrix} w(t) \\ z(t) \end{pmatrix}^\top \begin{pmatrix} -(\gamma^2 - \varepsilon^2) & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} w(t) \\ z(t) \end{pmatrix} dt \le 0 \quad \text{ for all } w \ne 0$$

With \mathcal{L}_2 norm $\|w\|_2^2 := \int_0^\infty \|w(t)\|^2 dt$ this yields

$$||T||_{2,2} < \gamma$$

if and only if for some $\varepsilon > 0$

$$||z||_2^2 < (\gamma^2 - \varepsilon^2) ||w||_2^2$$
 for all $w \neq 0$

if and only if

$$\int_0^\infty {w(t) \choose z(t)}^\top \begin{pmatrix} -(\gamma^2 - \varepsilon^2) & 0 \\ 0 & I \end{pmatrix} {w(t) \choose z(t)} dt \le 0 \quad \text{ for all } w \ne 0$$

if and only if for all $\hat{w}(i\omega)$

$$\int_{-\infty}^{\infty} \hat{w}(i\omega)^* \begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -(\gamma^2 - \varepsilon^2)I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \hat{w}(i\omega)d\omega \leq 0$$

With \mathcal{L}_2 norm $\|w\|_2^2 := \int_0^\infty \|w(t)\|^2 dt$ this yields

$$||T||_{2,2} < \gamma$$

if and only if for some $\varepsilon > 0$

$$||z||_2^2 \le (\gamma^2 - \varepsilon^2) ||w||_2^2$$
 for all $w \ne 0$

if and only if

$$\int_0^\infty {w(t) \choose z(t)}^{\perp} \begin{pmatrix} -(\gamma^2 - \varepsilon^2) & 0 \\ 0 & I \end{pmatrix} {w(t) \choose z(t)} dt \le 0 \quad \text{for all } w \ne 0$$

if and only if for all $\hat{w}(i\omega)$

$$\int_{-\infty}^{\infty} \hat{w}(i\omega)^* \begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -(\gamma^2 - \varepsilon^2)I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \hat{w}(i\omega)d\omega \leq 0$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -(\gamma^2 - \varepsilon^2)I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \preceq 0 \quad \text{for all } \omega \in \mathbb{R}$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{ for all } \omega \in \mathbb{R}$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{for all } \omega \in \mathbb{R}$$

$$T(i\omega)^*T(i\omega) < \gamma^2 I \text{ for all } \omega \in \mathbb{R}$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{for all } \omega \in \mathbb{R}$$

if and only if

$$T(i\omega)^*T(i\omega) < \gamma^2 I \text{ for all } \omega \in \mathbb{R}$$

$$||T||_{H_{\infty}} := \sup_{\omega} \sigma_{\max} T(i\omega) < \gamma$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{ for all } \omega \in \mathbb{R}$$

if and only if

$$T(i\omega)^*T(i\omega) < \gamma^2 I \text{ for all } \omega \in \mathbb{R}$$

if and only if

$$||T||_{H_{\infty}} := \sup_{\omega} \sigma_{\max} T(i\omega) < \gamma$$

if and only if

there exists a symmetric $K = K^{\top}$ such that

$$\begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}^{\top} \begin{pmatrix}
0 & K & 0 & 0 & 0 \\
K & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & -\gamma^{2}I & 0 \\
0 & 0 & 0 & I
\end{pmatrix} \begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{ for all } \omega \in \mathbb{R}$$

if and only if

$$T(i\omega)^*T(i\omega) < \gamma^2 I \text{ for all } \omega \in \mathbb{R}$$

if and only if

$$||T||_{H_{\infty}} := \sup_{\omega} \sigma_{\max} T(i\omega) < \gamma$$

if and only if

there exists a symmetric $K = K^{\top}$ such that

$$\begin{pmatrix} A^{\top} \mathbf{K} + \mathbf{K} A + C^{\top} C & \mathbf{K} B + C^{\top} D \\ B^{\top} \mathbf{K} + D^{\top} C & D^{\top} D - \gamma^{2} I \end{pmatrix} \prec 0$$

$$\begin{pmatrix} I \\ T(i\omega) \end{pmatrix}^* \begin{pmatrix} -\gamma^2 I & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I \\ T(i\omega) \end{pmatrix} \prec 0 \quad \text{for all } \omega \in \mathbb{R}$$

if and only if

$$T(i\omega)^*T(i\omega) < \gamma^2 I \text{ for all } \omega \in \mathbb{R}$$

if and only if

$$||T||_{H_{\infty}} := \sup_{\omega} \sigma_{\max} T(i\omega) < \gamma$$

if and only if

there exists a symmetric $K = K^{\top}$ such that

$$\begin{pmatrix} A^{\top} \mathbf{K} + \mathbf{K} A & \mathbf{K} B & C^{\top} \\ B^{\top} \mathbf{K} & -\gamma^{2} I & D^{\top} \\ C & D & -I \end{pmatrix} \prec 0$$

The bounded real lemma

Theorem: Take $s(w,z) = \gamma^2 w^\top w - z^\top z$ and assume A Hurwitz. Then equivalent are:

I. there exists a symmetric K such that

$$\begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}^{\top} \begin{pmatrix}
0 & K & 0 & 0 & 0 \\
K & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & -\gamma^{2}I & 0 \\
0 & 0 & 0 & I
\end{pmatrix} \begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}
\prec 0$$

- 2. For all $\omega \in \mathbb{R}$ one has $T(i\omega)^*T(i\omega) < \gamma^2I$.
- 3. The H_{∞} norm $||T||_{\infty} < \gamma$.

Crucial result!!

Relates bound on H_{∞} norm of transfer function T to an LMI feasibility test!

Frequency domain test

Bode diagram

Nyquist diagram

$$||T||_{H_{\infty}} = \sup_{\omega} \sigma_{\max} T(i\omega)$$

Quadratic performance

Quadratic performance with symmetric P_p : exists $\varepsilon > 0$ such that

$$\int_0^\infty \begin{pmatrix} w(t) \\ z(t) \end{pmatrix} P_p \begin{pmatrix} w(t) \\ z(t) \end{pmatrix} \leq -\varepsilon \int_0^\infty w(t)^\top w(t) dt \quad \text{ for all } w$$

Theorem: System satisfies quadratic P_p performance if and only if

$$\binom{I}{T(i\omega)}^* P_p \binom{I}{T(i\omega)} \prec 0 \text{ for all } \omega \in \mathbb{R} \cup \{\infty\}$$

$$\begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}^{\top} \begin{pmatrix}
0 & K & 0 & 0 & 0 \\
K & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & Q_p & S_p \\
0 & 0 & S_p^{\top} & R_p
\end{pmatrix} \begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}
\prec 0; \quad P_p = \begin{pmatrix}
Q_p & S_p \\
S_p^{\top} & R_p
\end{pmatrix}$$

H_2 nominal performance

Suppose (A, B, C, D) system is stable. Its H_2 norm is defined as

$$||T||_{H_2} := \sqrt{\frac{1}{2\pi}}\operatorname{trace}\int_{-\infty}^{\infty} T(i\omega)^*T(i\omega)d\omega$$

Interpretations:

• sum of L_2 norms of impulse responses in each channel

$$||T||_{H_2}^2 = \sum_k ||z_k||^2$$
 z_k impulse response from k th input

ullet Asymptotic output variance: w white noise

$$||T||_{H_2} = \lim_{t \to \infty} \mathcal{E}\left(z(t)^{\top} z(t)\right)$$

How to compute H_2 nominal performance?

If *A* is stable and D = 0:

$$||T||_{H_2}^2 = \operatorname{trace}(CP_0C^{\top}) < \gamma^2 \quad \text{for } AP_0 + P_0A^{\top} + BB^{\top} = 0$$
$$= \operatorname{trace}(B^{\top}Q_0B) < \gamma^2 \quad \text{for } A^{\top}Q_0 + Q_0A + C^{\top}C = 0$$

if and only if there exists $X \succ 0$ with

$$\operatorname{trace} CXC^{\top} < \gamma^2 \quad \text{and} \quad AX + XA^{\top} + BB^{\top} \prec 0$$

Theorem: Suppose A is stable. Then $||T||_{H_2} < \infty$ iff D = 0. In that case $||T||_{H_2} < \gamma$

if and only if there exists $X \succ 0$ such that

$$\operatorname{trace}(CXC^{\top}) < \gamma^2$$
 and $AX + XA^{\top} + BB^{\top} \prec 0$.

if and only if there exists $Y \succ 0$ such that

$$\operatorname{trace}(B^{\top} \mathbf{Y} B) < \gamma^2 \quad \text{and} \quad A^{\top} \mathbf{Y} + \mathbf{Y} A + C^{\top} C \prec 0.$$

Generalized H_2 nominal performance

With supply rate $s(w,z)=\gamma\|w\|^2$, x(0)=0, D=0, the dissipation inequality reads

$$\gamma \int_0^t w^\top(\tau) w(\tau) d\tau \ge V(x(t)) = x^\top(t) K x(t) \ge x^\top(t) C^\top C x(t) = z^\top(t) z(t)$$

provided $K \succ C^{\top}C$. Hence, with amplitude norm

$$||z||_{\infty}^2 := \sup_{t \ge 0} z^{\mathsf{T}}(t) z(t)$$

we get that the energy to peak norm

$$||T||_{2,\infty} := \sup_{0 < ||w||_2 < \infty} \frac{||z||_{\infty}}{||w||_2} \le \gamma$$

For systems with scalar valued output variables

$$||T||_{2,\infty} = ||T||_{H_2}$$

Theorem: Suppose A is stable. Equivalent are

I.
$$||T||_{2,\infty} := \sup_{0 < ||w||_2 < \infty} \frac{||z||_{\infty}}{||w||_2} < \gamma$$

2. D=0 and there exists $K=K^{\top}$ such that

$$\begin{pmatrix} A^{\top}K + KA & KB \\ B^{\top}K & -\gamma I \end{pmatrix} \prec 0 \quad \text{ and } \begin{pmatrix} K & C^{\top} \\ C & \gamma I \end{pmatrix} \succ 0$$

Remarks:

Also called the energy-to-peak gain of the system.

Summary

- Notion of dissipative system very useful for specifying performance
- For linear systems with quadratic supply functions, dissipativity has been characterized in terms of LMI's and FDI's
- Equivalence of LMI and FDI: the KYP lemma
- We considered nominal performance specifications:
 - $\diamond H_{\infty}$ performance
 - $\diamond H_2$ performance
 - ♦ Quadratic perforance
 - \diamond Generalized H_2 or energy-to-peak gain
 - all characterized as LMI feasibility tests.

Discrete time systems

As for stability, we can often obtain discrete time results from continuous time counterparts by substitution

$$\begin{pmatrix} 0 & K \\ K & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -K & 0 \\ 0 & K \end{pmatrix}$$

Indeed, with $\dot{x} = Ax + Bw$ differentiating $V(x) = x^{\top}Kx$ along solutions gives

$$\frac{d}{dt}V(x(t)) = \begin{pmatrix} x(t) \\ \dot{x}(t) \end{pmatrix} \begin{pmatrix} 0 & \mathbf{K} \\ \mathbf{K} & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \end{pmatrix}$$

whereas with x(t+1) = Ax(t) + Bw(t), $V(x) = x^{\top}Kx$ along solutions gives

$$V(x(t+1)) - V(x(t)) = \begin{pmatrix} x(t) \\ x(t+1) \end{pmatrix} \begin{pmatrix} -K & 0 \\ 0 & K \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} \begin{pmatrix} x(t) \\ w(t) \end{pmatrix}$$

Quadratic performance (discrete time)

Quadratic performance with symmetric P_p : exists $\varepsilon > 0$ such that

$$\sum_{0}^{\infty} \binom{w(t)}{z(t)} P_p \binom{w(t)}{z(t)} \leq -\varepsilon \sum_{0}^{\infty} w(t)^\top w(t) \quad \text{ for all } w$$

Theorem: System satisfies quadratic P_p performance **if and only if**

$$\binom{I}{T(z)}^* P_p \binom{I}{T(z)} \prec 0 \text{ for all } z \in \mathbb{C}, \quad |z| = 1$$

if and only if

$$\begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}^{\top} \begin{pmatrix}
-K & 0 & 0 & 0 \\
0 & K & 0 & 0 \\
\hline
0 & 0 & Q_p & S_p \\
0 & 0 & S_p^{\top} & R_p
\end{pmatrix} \begin{pmatrix}
I & 0 \\
A & B \\
\hline
0 & I \\
C & D
\end{pmatrix}
\prec 0; \quad P_p = \begin{pmatrix}
Q_p & S_p \\
S_p^{\top} & R_p
\end{pmatrix}$$

Next class