ATT note: (9/16/21)

(

- Assume scalar external probe as in Didhoff (7.6):

$$\rho(\vec{a}) = \sum_{\vec{p}} \alpha_{\vec{p}}^{\dagger} \alpha_{\vec{p}-\vec{q}} \qquad (t=1) \qquad (1)$$

Assume $|\Psi_i\rangle = |\Psi_0^A\rangle$ (grand state of A-body nucley) and $|\Psi_f\rangle = |\Psi_0^A|\Psi_0^{A-1}\rangle$ (excited state of A-1 nules and free proton / No FSI's). Transition matrix element for a particular of is

$$= \left\langle \psi_{\alpha}^{A-1} \middle| \Omega_{\vec{p}-\vec{q}} \middle| \psi_{\alpha}^{A} \right\rangle + \left\langle \psi_{\alpha}^{A-1} \middle| \Omega_{\vec{p}}^{+} \Omega_{\vec{p}-\vec{q}} \Omega_{\vec{p}} \middle| \psi_{\alpha}^{A} \right\rangle \tag{1}$$

$$-\left|V_{\alpha}^{A-1}\right| = \left|\left(V_{\alpha}^{A}\right|A_{\alpha}^{\dagger}\right| \tag{3}$$

$$\Rightarrow = \langle \psi_{\alpha}^{A} | \alpha_{\alpha}^{\dagger} \alpha_{\vec{p}-\vec{q}}^{\dagger} | \psi_{\alpha}^{A} \rangle + \sum_{p'} \langle \psi_{\alpha}^{A} | \alpha_{\alpha}^{\dagger} \alpha_{\vec{p}'}^{\dagger} G_{\vec{p}'-\vec{q}}^{\dagger} \alpha_{\vec{p}}^{\dagger} | \psi_{\alpha}^{A} \rangle \qquad (4)$$

Then use
$$a(\vec{r}) = \sum_{\alpha} \phi_{\alpha}(\vec{q}') a_{\alpha} \Rightarrow a_{\alpha} = \int \partial^{3} q' \phi_{\alpha}(\vec{q}') a(\vec{q}')$$

Expand $U_{\lambda} = I + \frac{1}{4} \sum_{\mathbf{r}, \mathbf{r}', \mathbf{k}} SV(\mathbf{r}', \mathbf{r}') \alpha_{\mathbf{r}'}^{\dagger} + \mathcal{L} \alpha_{\mathbf{r}'}^{\dagger} - \mathcal{L} \alpha_{\mathbf{r}'}^{\dagger} - \mathcal{L} \alpha_{\mathbf{r}'}^{\dagger} + \mathcal{L} \alpha_{\mathbf$

ad Ux = I + + \(\sum_{\mathbb{E}'} \sum_{\mathbb{E

where SU is entisymmetrized.

Substitute (8) and (9) into (7) and split into eight terms of the following form:

- (1) I (at, Ap.] I
- (2) SO (94, A7-4) I
- (3) I (at 1/2 = 3) 80+
- (Q+, Qp-3) SU+
- (5) I (at, at, ap, ap) I
- 6 SO (at , at , ap , ap) I
- @ I (at, at, ap, q ap) 604
- (8) SU (at, at, ap, q ap) SUT

Strategy: Evaluate operator at 2-body level by applying wich's theorem with respect to the vacuum 10%. This gives only 2-body terms atataa.

Then evaluate I(# | at at a a april 2) as before

(1) \(\frac{1}{4}\)\(\frac{1}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\frac{1}{4}\)\(\fr

Two possible contractions wird (a). But gives identical contribution in the end since SO is antisymmetrized.

Take first contraction (atatacata) and multiply by 2.

(shipping dateils which are currently in handwritten notes)

$$= 8 \sum_{k} \Phi_{\alpha}(\vec{p}-\vec{q}) \delta \tilde{U}(\vec{k},\vec{k}) \Theta(k_{F}-|\vec{p}-\vec{q}|) \Theta(k_{F}-|\vec{p}-\vec{q}-2\vec{k}|) \qquad (12)$$

3 + 5 (at c"c"k", \$\partition (at) & State", c") (\varepsilon | at, at a \varepsilon (\varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon \varepsilon (\varepsilon \varepsilon \va

[= 8 \ \tau_{\sigma}(\varphi-\varphi)\) \(\tau_{\sigma}(\varphi'',\varphi'')\) \(\tau_{\sigma}(\varphi-\varphi-\varphi')\) \((14)\)

$$= \int_{\vec{q},c} \sum_{\vec{p}} \phi_{\alpha}(\vec{p}) G(h_{\vec{p}} - p) G(h_{\vec{p}} - p')$$

$$- \phi_{\alpha}(\vec{p} - \vec{q}) G(h_{\vec{p}} - p') G(h_{\vec{p}} - p')$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(19)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$

$$(119)$$