Security on the Internet

Outline

- Internet security threats
- HTTP authentication
- Hash functions and encryption
- Public key encryption
- Pretty Good Privacy
- Transport Layer Security and HTTPS
- Digital certificates

Pervasive Computing

- social media
- phones
- cars
- medical devices
- cash
 - ▶ The Internet of Things (IoT)

Computer Security

- The engineering of systems that exhibit the following properties:
 - Confidentiality
 - Integrity
 - Availability

Confidentiality

Non-disclosure of information except to another authorised agent

Integrity

Every piece of data is as the last authorised modifier left it.

Data integrity:

ensuring that the data has not been deleted or altered without permission.

Software integrity:

ensuring that the software programs have not been altered, whether by an error, a malicious user, or a virus.

Availability

being accessible and usable upon demand by an authorized entity.

Computer Security and the Internet

The internet can make attacks easier because of:

- Action at a Distance
- Technique Propagation
- Automation, e.g. through harnessing distributed computation

Vulnerabilities and exploits

- Most software systems do not exhibit these properties.
- When a software system is not secure, it has one or more vulnerabilities.
- Malicious users attack vulnerable systems through exploits.
- There is a one-to-many mapping between vulnerabilities and exploits.
- An exploit is a piece of code, or a replicable procedure, which is able to exploit the vulnerability.
- A given vulnerability may have zero or more known exploits.

Vulnerability Announcements

- All software has vulnerabilities.
- Some of these vulnerabilities are known, others are not.
- Of the known vulnerabilities, different parties may have different knowledge.
- When a vulnerability is detected by the security community, e.g. CERT, software vendors are informed.
- ▶ There is a typically grace period before the vulnerability is announced to the general public.
 - https://www.us-cert.gov/ncas/alerts.xml
 - https://web.nvd.nist.gov/view/vuln/search

Zero-Day Vulnerabilities

- Vulnerabilities that have not been publicly unannounced are called "zero-day".
- Attackers users who have knowledge of a zero-day vulnerability and a corresponding exploit are in a very powerful position.
- Government agencies bid for zero-day vulnerabilities and exploits on the black market

Authentication

- In order to defend our system from unauthorised users, we must distinguish between authorised and unauthorised users.
- The process of determining the true identity of a user is called authentication.
- ▶ The simplest technique for authentication is to use a secret password or pass-phrase.

Access control

- Preventing illegitimate access can be split into two issues
 - Authentication: Determining who is trying to gain access to your host
 - Access Control: Determining whether that individual is allowed to access a resource on your host

Web Authentication

- Authentication mechanisms of web servers prevent illegitimate access to resources
- Resources are often grouped into named realms, which users can be allowed access to
- They require clients to demonstrate who they are, from extra data sent with their messages

Authentication HTTP status

If a client tries to access a secured web server with no authentication, it receives a response with status code:

401 Authentication Required

▶ This tells the client to supply identification

▶ The response will contain a field:

WWW-Authenticate:...

- specifying the authentication scheme required
- ▶ The client provides authentication in new request

Proof of identity

- Common forms of proof of identity are:
 - Username plus password
 - Public-Key Cryptography and Digital certificates
- Software applications (agents) must also authenticate themselves, and may have identities different from but based on that of their owner

HTTP basic authentication

Basic authentication is indicated by the Basic scheme being passed in the 401 response:

WWW-Authenticate: Basic realm="somerealm"

Basic secure request gives credentials as base64 encoding of text

username:password

Encoding put into Authorization request field:

Authorization: Basic QWxhZGR=

Hash functions

- A hash of some data is a transformation of that data into a fixed length string, from which the original cannot be deduced:
 - ▶ I.e. it is a one-way function
- Use a hash wherever data across places or times need to be compared to check they are the same: if hash values match this is almost proof
- Value of algorithm depends on:
 - Difficulty of deducing original from digest
 - Lack of collisions: 2 messages with same digests

Password Hashing

- When a server authenticates a user using a password, it compares the supplied password against a field stored in the database.
- If we store the original password, then if an attacker breaks into the server, they can steal all the users' passwords.
- Passwords are often reused across different servers.
- ▶ To prevent this, we store a hash of the password instead.
- We also include random salt (also called a nonce) to prevent rainbow attacks.
- On Unix, the file /etc/shadow contains hashed passwords.

Password authentication

- The client sends the username and password (in some form) with every request, and the web server matches against its list to see whether access is allowed.
- Eavesdropping is a problem with this if the authentication occurs over an unencrypted channel.

MD5

- ▶ MD5 is a hash function devised by Ronald L. Rivest
- ▶ MD stands for Message Digest (another word for hash).
- It takes an arbitrarily long string and produces a string of fixed length, the hash value or digest.
- Collisions are possible in MD5.
- ▶ Can try it out with UNIX command md5sum.

```
"digest" abfd2c0ecb4e9dec4a6b1159d5fea334
"digest" 5a20c77381e982467465dd18facf0807
"digest" e21681785dc42cfc30867e4fcf78edaf
```

SHA-2

- ▶ MD5 should *no longer used* for cryptographic applications, as it was shown to be insecure.
- ▶ The current standard is SHA 2
- MD5 is still considered to be secure for password hashing in the case of legacy applications
 - New applications should make use of SHA-2

HTTP digest authentication

- Client tries to access a realm on the server
- 2. Server responds asking for authentication (HTTP 401) using digests and providing a unique identifier, a number used once (nonce), for the request
- 3. Client sends a digest of the concatenation of:
 - username, realm, password, URL, request method and nonce id

HTTP digest authentication

Digest authentication is indicated by the Digest scheme passed in the 401 response:

WWW-Authenticate: Digest realm="somerealm" algorithm="MD5" nonce="564dsd" ...

- Create digest of password plus other data
- Digest put into Authorization request field:

Authorization: Digest Username="Simon", response="6629fae49393a053", realm="somerealm", nonce="564dsd" ...

Eavesdropping

- Eavesdropping is a problem on the internet:
 - Happens at any point in route between hosts
 - Whole physical network cannot (realistically) be secured
- Promiscuous Mode: Ethernet allows hosts to request that all data sent through a network be passed to it, even if not a router or destination.
- A sniffer is a device/program to monitor all data across a network, and so can be used to extract passwords etc.
- **Encryption** is the transformation of data to a form unreadable by anyone but the intended recipient.
- The algorithm for performing the transformation is called a **cryptographic cipher**.

Encryption types

- Encryption on the internet takes several forms:
 - Link encryption: Encrypts all communication across a physical link, but it is expensive and unrealistic over large scale
 - Document encryption: Documents encrypted, sent, then decrypted by document-handling applications
 - Transport Layer Security: TLS encrypts all messages at the TCP layer

Hashes and encryption

- Both a hash and an encryption of a message are a transformation of that message into some new data that gives no clue to the original.
- ▶ The original message can be computed from the encrypted data (decrypted) given the right information, but this is not true of a hash.

Ciphers

A cryptographic cipher provides an encryption

$$C = E(M, K)$$

And a decryption function:

$$M = D(C, K)$$

- The original message is called the plain-text.
- The encrypted message is called the cipher-text.
- ▶ The decryption function can only be computed if you have access to the correct secret key K.

Single-key encryption

- ▶ A **key** is a secret piece of data that sender and receiver use to encrypt and decrypt messages
- As no-one else knows the key, no-one else can decrypt the message
- In single key encryption, the same key is used by both parties to both encrypt and decrypt.
- Another name for single-key encryption is symmetric cryptography.
- An example of a symmetric cipher is the Advanced Encryption Standard (AES).

Key Sizes

- ▶ The space of possible keys must be large.
- This is in order to prevent an attacker simply trying every possible key
 - ▶ This is called a brute-force attack.
- ▶ For a symmetric cipher such as AES:
 - Maximum key size is 256 bits,

$$2^{256} =$$

11579208923731619542357098500868790785326998466564056 4039457584007913129639936 possible keys.

Key Generation

- Keys must be hard to guess.
- ▶ Therefore they should be randomly chosen.
- It is very hard to generate genuinely random data using a deterministic digital computer.
- Usually the best we can do is to use a Pseudo-Random Number Generator (PRNG).
- In cryptography we make use of external sources of randomness (entropy) such as heat in order to create Secure-Random Number Generators.
- ▶ On Unix, see /dev/urandom

Key Management

Problems with symmetric ciphers:

- We need a separate key for every possible pair of users.
- 2. We need to agree on a key with the other party.
- We cannot simply send the key, because of eavesdroppers.

Public key encryption

- In public key cryptography, each user has a pair of keys: a **public** one and a **private** one.
- ▶ These are called *asymmetric* ciphers.
- The public key can be made available to anyone wanting to send an encrypted message to the user
- Sender encrypts their messages with the public key: the algorithm ensures the message can only be decrypted with the private key
- On receiving an encrypted message, the user uses the private key to decrypt the messages

Scenario 1: Secret message

RSA

- One of the best known public key encryption algorithms is RSA, named after the inventors: Rivest, Shamir and Adleman
- The idea of RSA is to use two very large prime numbers for the keys

RSA key generation

- Generate two large primes: p, q
- 2. Calculate the product: n = pq
- 3. Calculate the totient: m = (p 1)(q 1)
- 4. Find a co-prime to totient m: e
- 5. Choose integers d, i so that: d = (1 + im) / e
- 6. The public key is (n, e)
- 7. The private key is (n, d)

1. Generate two large primes: 7, 11 (p, q)

1. Generate two large primes: 7, 11 (p, q)

2. Calculate the product: 77 (n = pq)

1. Generate two large primes: 7, 11 (p, q)

2. Calculate the product: 77 (n = pq)

3. Calculate the totient: 60 m = (p-1)(q-1)

1. Generate two large primes: 7, 11 (p, q)

2. Calculate the product: 77 (n = pq)

3. Calculate the totient: 60 m = (p-1)(q-1)

4. Find a co-prime to totient: 7

To find co-prime, count up each prime, and find

first not divisible into totient:

Is 60 divisible by 2? Yes

Is 60 divisible by 3? Yes

Is 60 divisible by 5? Yes

Is 60 divisible by 7? No

1. Generate two large primes: 7, 11 (p, q)

2. Calculate the product: 77 (n = pq)

3. Calculate the totient: 60 m = (p-1)(q-1)

4. Find a co-prime to totient: 7

5. Choose integers i, d: 5, 43

 $(1 + (5 \times 60)) / 7 = 43$ d = (1 + im) / e

To find i and d, count up i from 1 until find first

 $(1 + (i \times 60))$ divisible by 7:

 $(1 + (1 \times 60))$ divisible by 7? No

 $(1 + (2 \times 60))$ divisible by 7? No

• • •

 $(1 + (5 \times 60))$ divisible by 7? Yes, d = 43

1. Generate two large primes: 7, 11 (p, q)

2. Calculate the product: 77 (n = pq)

3. Calculate the totient: 60 m = (p-1)(q-1)

4. Find a co-prime to totient: 7

5. Choose integers i, d: 5, 43

 $(1 + (5 \times 60)) / 7 = 43$ d = (1 + im) / e

6. The public key is (n, e): (77, 7) (n, e)

7. The private key is (n, d): (77, 43) (n, d)

RSA encryption algorithm

1. Obtain receiver's public key

- (n, e)
- 2. Convert message to an array of bits representing a large integer $M < 2^n$
- 3. Compute encrypted values

$$C = M^e \mod n$$

1. Obtain receiver's public key

(77, 7)

2. Represent data as +ve integer

6

3. Compute encrypted value

 $6^7 \mod 77 = 41$

RSA decryption algorithm

1. Use private key (n, d)

2. Receive encrypted message

3. Calculate original value $M = C^d \mod n$

1. Use private key (77, 43)

2. Receive encrypted message 41

3. Calculate original value $41^{43} \mod 77 = 6$

RSA signing

- RSA can also be used to digitally sign a document.
- The signer uses their private key (n, d) to produce a signature.
- ▶ The verifier can check this using the signer's public key.
- ▶ The signature S of a message M is:

$$S = M^d mod n$$

▶ To verify the signature, the verifier checks that:

$$S^e = M \mod n$$

- We typically hash the message, and then sign the hash.
- ▶ MD5 is not suitable for digital signatures- use SHA-2 or SHA-3.

Hybrid crypto-systems

- ▶ For large messages RSA is typically used in combination with a symmetric cipher such as AES.
- RSA can be used encrypt messages containing the symmetric keys, which can then be distributed over a public channel.
- The symmetric key is typically a temporary key that it is only valid for a particular session.

Transport Layer Security

- Secure Socket Layer (SSL) was developed by Netscape Communications
- It operates between host-to-host protocols (TCP) and the application layer protocols (e.g. HTTP)
- For each communication, SSL uses the most recent secure communication protocol that both hosts can support
- Transport Layer Security (TLS) is a more recent variation on SSL, standardised by IETF

TLS negotiating protocol

- ► TLS initiates a cryptographic protocol between hosts with a Hello message
- Both parties declare what they can support and the strongest encryption available is chosen
- This allows for the change and development of encryption methods
- The client will choose the stronger of the two protocols

TLS sharing certificates

- ▶ The hosts then exchange certificates
- Digital certificates provide verifiable host data for authentication
- They also provide public keys for encrypting the communication
- We'll say more on certificates later
- The public keys in the certificates are used to encrypt communication over TLS

Man-in-the-middle attacks

- ▶ TLS tackles the problem of man-in-the-middle attacks
- A malicious host routes communication through itself, without being apparent to either sender or receiver
- Data can then be copied and, if not encrypted, read

TLS and the internet architecture

- TLS operates over TCP, but under HTTP or other application protocols
- Inserts a new layer into the four-layer internet layering model
- This layer deals with the issue of secure communication of application data

HTTPS

- HTTPS is HTTP over SSL/TLS
- Uses its own URI scheme
- https:...
- ▶ Has a different default TCP port (443)
- Otherwise the same as HTTP over TCP
- An HTTPS web server must have a digital certificate that it can use to authenticate itself with a client

Digital certificates

- A digital certificate is a block of data about a communicating host that is signed
- Signing a certificate means adding an encrypted hash of the host data, so that other hosts can check that:
 - You are who you say you are
 - The host data has not been tampered with

Host data

Host data can include:

- Public key
- Validity period of certificate
- URL of revocation centre
- Name, institution, email address of owning user
- Public key is used to secure communication to the host
- Certificates are revoked if they are suspected of being compromised (like credit cards)
- Revocation centres provide lists of revoked certificates to check against

Certification authorities

- A certification authority is an organisation responsible for issuing and verifying the correctness of certificates
- If a host's certificate is signed by a CA, then any other host trusting the CA may reliably know that the certificate's public key belongs to the host as stated
- Publicly trusted CAs exist, such as VeriSign and CertCA

Applying for a certificate

Applying for a certificate

Certificate Authority

X.509

- ▶ X.509 is a popular form of certificate
- ▶ An X.509 certificate consists of three parts:
 - The certificate details
 - ▶ The signature of the certificate
 - The algorithm used to sign the certificate
- ▶ The certificate details then include:
 - A unique serial number for the certificate
 - ▶ The period (from X to Y) that the certificate is valid
 - The name of the certificate's issuer
 - A unique identifier for the issuer
 - The name of the certificate's owner
 - The public key of the owner

What we've covered

- Internet security threats
- HTTP authentication
- Digests and encryption
- Public key encryption
- Transport Layer Security and HTTPS
- Digital certificates