

2. Eletroquímica

Introdução Equilibrio Potencial Taxa de reação Transporte

Introdução

I = V/R

Equilíbrio

Equilíbrio térmico: requere que fases adjacentes apresentem temperaturas iguais $T_i = T_j$

Equilíbrio mecânico: requere que fases adjacentes apresentem pressões iguais $P_i = P_j$

Equilíbrio químico: requere que as espécies A, B, C, ... presentes em fases adjacentes tenham o mesmo potencial químico $\mu_A^i = \mu_A^j$, $\mu_B^i = \mu_B^j$, $\mu_C^i = \mu_C^j$...

Equilíbrio eletroquímico: é o mesmo só que para espécies carregadas eletricamente

Controle das reações eletroquímicas

Cinético: controlado pela reação

Transporte de massa: controlado pelo transporte das espécies que devem reagir

Potenciais

Solução

Nível molecular vacante

Nível molecular ocupado

7

	-0
Meia-reação	E ⁰ /V
$Li^+(aq) + e^- \rightarrow Li(s)$	-3,05
K^+ (aq) + $e^- \rightarrow K$ (s)	-2,93
$Ba^{2+}(aq) + 2e' \rightarrow Ba(s)$	-2,90
$Sr^{2+}(aq) + 2e^{-} \rightarrow Sr(s)$	-2,89
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2,87
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2,71
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2,37
$Be^{2+}(aq) + 2e' \rightarrow Be(s)$	-1,85
$Al^{3+}(aq) + 3e^{*} \rightarrow Al(s)$	-1,66
Mn^{2+} (aq) + 2e [*] \rightarrow Mn (s)	-1,18
$2H_2O + 2e^* \rightarrow H_2(g) + 2OH^*(aq)$	-0,83
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0,76
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0,74
Fe^{2+} (aq) + 2e [*] \rightarrow Fe (s)	-0,44
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0,40
$PbSO_4(s) + 2e^* \rightarrow Pb(s) + SO_4^{2*}(aq)$	-0,31
Co^{2+} (aq) + 2e [*] \rightarrow Co (s)	-0,28
Ni^{2+} (aq) + 2e [*] \rightarrow Ni (s)	-0,25
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \to \operatorname{Sn}(\operatorname{s})$	-0,14
$Pb^{2+}(aq) + 2e^{*} \rightarrow Pb(s)$	-0,13
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0,00

$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0,00
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0,13
$Cu^{2+}(aq) + e^* \rightarrow Cu^+(aq)$	+0,15
SO_4^{2*} (aq) + 4H ⁺ (aq) + 2e' \rightarrow SO ₂ (g) + 2H ₂ O	+0,20
$AgCl(s) + e^{s} \rightarrow Ag(s) + Cl^{s}(aq)$	+0,22
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0,34
$O_2(g) + 2H_2O + 4e^* \rightarrow 4OH^*(aq)$	+0,40
$I_2(s) + 2e^{\cdot} \rightarrow 2I^{\cdot}(aq)$	+0,53
MnO_4 (aq) + $2H_2O$ + $3e^* \rightarrow MnO_2$ (s) + $4OH^*$ (aq)	+0,59
$O_2(g) + 2H^+(aq) + 2e^- \rightarrow H_2O_2(aq)$	+0,68
Fe^{3+} (aq) + e^{-} \rightarrow Fe^{2+} (aq)	+0,77
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0,80
Hg_2^{2+} (aq) + 2e [*] \rightarrow 2Hg (l)	+0,85
$2Hg^{2+}(aq) + 2e^{-} \rightarrow Hg_2^{2+}(aq)$	+0,92
NO_3 (aq) + $4H^+$ (aq) + $3e^- \rightarrow NO$ (g) + $2H_2O$	+0,96
$Br_2(l) + 2e^* \rightarrow 2Br^*(aq)$	+1,07
$O_2(g) + 4H^+(aq) + 4e' \rightarrow 2H_2O$	+1,23
$MnO_2(s) + 4H^+(aq) + 2e^- \rightarrow Mn^{2+}(aq) + 2H_2O$	+1,23
$Cr_2O_7^{2^*}(aq) + 14H^+(aq) + 6e^* \rightarrow Cr^{3+}(aq) + 7H_2O$	+1,33
$Cl_2(g) + 2e^2 \rightarrow 2Cl^2(aq)$	+1,36
$Au^{3+}(aq) + 3e^* \rightarrow Au(s)$	+1,50
$MnO_4^*(aq) + 8H^*(aq) + 5e^* \rightarrow Mn^{2+}(aq) + H_2O$	+1,51
Ce^{4+} (aq) + $e^{*} \rightarrow Ce^{3+}$ (aq)	+1,61
$H_2O_2(aq) + 2H^+(aq) + 2e^- \rightarrow 2H_2O$	+1,77
$\text{Co}^{3+}(\text{aq}) + e^{\cdot} \rightarrow \text{Co}^{2+}(\text{aq})$	+1,82
$O_3(g) + 2H^+(aq) + 2e^- \rightarrow O_2(g) + H_2O$	+2,07
$F_2(g) + 2e^- \rightarrow 2F^-(aq)$	+2,87

Estrutura microscópica da interfase

Dupla camada elétrica

Helmholtz (1853)

Modelo do capacitor de placas paralelas;

- O potencial da carga superficial é dissipado linearmente, a partir da superfície, pelos íons com cargas opostas acumulados do lado da solução;
- Espessura da camada de aproximadamente 1 nm.
- Falha capacitância não varia linearmente com o potencial.

Estrutura microscópica da interfase

Dupla camada elétrica

Gouy-Chapman (1910-13)

Modelo da dupla camada difusa

- Íons são considerados como cargas pontuais;
- A distribuição dos íons na camada difusa depende da flutuação térmica, obedece à lei de distribuição de energia de Boltzmann e a lei eletrostática de Poisson;
- A distribuição dos íons na camada difusa obedece à lei de Fick.
- Falha superestima a capacitância em soluções concentradas

Estrutura microscópica da interfase

Dupla camada elétrica

Stern (1924)

Combina os modelos das camadas compacta e difusa

- Aperfeiçoamentos os íons têm tamanho finito e incluem sua camada de solvatação;
- Admitiu que a carga do lado da solução está acumulada parcialmente em uma camada compacta (Helmholtz) e parcialmente em uma camada difusa (Gouy-Chapman);
- Dois capacitores em série definem a dupla camada.

Estrutura microscópica da interfase

Dupla camada elétrica

Grahame (19

- Plano de Helmholtz interno (IHP) plano de máxima aproximação com adsorção de moléculas de solvente e, possivelmente, de ânions especificamente adsorvidos potencial varia linearmente com a distância;
- Plano de Helmholtz externo (OHP) apresenta espécies hidratadas (normalmente cátions) – potencial varia linearmente com a distância;
- Camada difusa (Gouy-Chapman) possui excesso de cátions ou ânions potencial varia exponencialmente com a distância.

Estrutura microscópica da interfase

Modelo...

