座位号

国家开放大学(中央广播电视大学)2016年秋季学期"开放本科"期末考试

土木工程力学(本) 试题(半开卷)

2017年1月

题	号	_	=	三	总	分
分	数					

得	分	评卷人

一、单项选择题(每小题 3 分,共 30 分)

(在所列备选项中,选1项正确的或最好的作为答案填入括弧)

- 1. 结构位移计算公式利用什么推导的()。
 - A. 功的互等定理

B. 虚位移原理

) 。

C. 虚功原理

- D. 反力互等定理
- 2. 超静定结构的超静定次数等于结构中(
 - A. 刚结点数

- B. 独立的结点角位移数
- C. 独立的结点线位移数
- D. 多余约束的数目
- 3. 用力法计算超静定结构时,其基本未知量为()。
 - A. 杆端弯矩

B. 结点角位移

C. 结点线位移

- D. 多余未知力
- 4. 图示超静定结构用位移法计算时,独立的结点角位移个数是()
 - A. 2
 - B. 3
 - C. 4
 - D. 5

5.	用力矩分配法计算时,结点的不平衡力矩等	等于()。
	A. 固端弯矩	B. 传递弯矩
	C. 分配弯矩	D. 附加刚臂中的约束反力矩
6.	超静定结构在荷载作用下产生的内力与刚]度()。
	A. 无关	B. 相对值有关
	C. 绝对值有关	D. 相对值绝对值都有关
7.	根据影响线的定义,图示悬臂梁 A 截面的	剪力影响线在 B 点的纵坐标为()。
	A. 1	$F_P = 1$
	B4	$A \longrightarrow B$
	C. 4	 4m
	D1	
8.	对称结构在正对称荷载作用下,内力图中	()。
	A. 轴力图反对称	B. 剪力图反对称
	C. 弯矩图反对称	D. 剪力图正对称
9.	反映结构动力特性的重要物理参数是().
	A. 初相角	B. 初位移
	C. 自振频率	D. 振幅
10	. 在图示结构中,为使体系自振频率 ω 减小	N,可以()。
	A. 减小 F _P	$F_{ extsf{Psin}} \; heta_t$
	B. 减小 m	
	C. 减小 EI	m m

D. 减小 l

得	分	评卷人

二、判断题(每小题3分,共30分)

(将判断结果填入括弧,以\表示正确,以×表示错误)

11. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的水平位移。()

- 12. 在温度变化或支座位移因素作用下,静定结构有内力产生。()
- 13. 静定多跨梁中基本部分、附属部分的划分与杆件的刚度有关。()
- 14. 实际桁架结构的杆件只有轴力产生。()
- 15. 同一结构选不同的力法基本体系,所得到的力法方程代表的位移条件不相同。()
- 16. 位移法典型方程中的主系数恒为正值,副系数恒为负值。()
- 17. 用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总是大于 1,所以计算结果是收敛的。()
 - 18. 在结构动力计算中,振动体系的质点数目与振动自由度不一定相等。()
 - 19. 影响线的纵坐标是移动的单位荷载的位置。()
 - 20. 超静定结构由于支座位移可以产生内力。()

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示刚架,各杆EI=常数,不计杆件轴向变形。列出位移法方程,求出系数项和自由项。(14分)

国家开放大学(中央广播电视大学)2016年秋季学期"开放本科"期末考试

土木工程力学(本) 试题答案及评分标准(半开卷)

(供参考)

2017年1月

一、单项选择题(每小题 3 分,共 30 分)

(在所列备选项中,选1项正确的或最好的作为答案填入括弧)

1. C

2. D

3. D

4. B

5. D

6. B

7. A

8. B

9. C

10. C

二、判断题(每小题3分,共30分)

(将判断结果填入括弧,以√表示正确,以×表示错误)

11. \times

12. \times

13. \times

 $14. \times$

15. 🗸

16. \times

 $17. \times$

18. √

19. \times

20. 🗸

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

解:

图形正确(6分);数值正确。(4分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

解:基本体系及未知量如图(a)所示。

(a)基本体系 (2分)

$$(b)\overline{M}_1$$
 (2分)

 $(c)M_P$ (2分)

$$\delta_{11}X_1 + \Delta_{1P} = 0 \quad (1 \text{ } \text{β})$$

$$\delta_{11} = \sum \int \frac{\overline{M}_{1}^{2}}{EI} d_{s} = \frac{1}{EI} \times \frac{1}{2} \times l \times l \times l \times \frac{2}{3} = \frac{l^{3}}{3EI}$$
 (2 $\%$)

$$\Delta_{1P} = \sum \int \frac{\overline{M}_1 M_P}{EI} d_S = -\frac{1}{EI} \times \frac{1}{2} \times l \times l \times F_P l \times \frac{1}{2} = -\frac{F_P l^3}{4EI}$$
 (2 分)

$$X_1 = \frac{3F_P}{4}$$
 (2 分)

M图 (3分)

23. 用位移法计算图示刚架,各杆 EI = 常数,不计杆件轴向变形。列出位移法方程,求出系数项和自由项。(14分)

解:

$$k_{11}\Delta_1 + F_{1P} = 0$$
 (2分)
 $k_{11} = 11i$ (3分)
 $F_{1P} = -3kN \cdot m$ (3分)

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

土木工程力学(本) 试题(半开卷)

2017年6月

题	号	 = .	Ξ	总分	7
分	数				

得	分	评卷人

一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正 确的或最好的作为答案填入括弧)

- 1. 静定结构产生内力的原因是()
 - A. 荷载作用

B. 支座位移

C. 温度变化

- D. 制造误差
- 2. 图示简支梁中间截面的剪力为(

A. ql

C. $\frac{ql}{2}$

D. 0

- 3. 力法典型方程是根据以下哪个条件得到的?(
 - A. 结构的平衡条件
 - B. 结构的物理条件
 - C. 多余约束处的位移协调条件
 - D. 同时满足 A、B 两个条件

4. 力法的基本体系是()	
A. 一组单跨度超静定梁	B. 瞬变体系
C. 可变体系	D. 几何不变体系
5. 超静定结构的超静定次数等于结构。	‡ ()
A. 约束的数目	B. 多余约束的数目
C. 结点数	D. 杆件数
6. 对称结构在正对称荷载作用下,内力	7图中()
A. 轴力图反对称	B. 剪力图反对称
C. 弯矩图反对称	D. 剪力图正对称
7. 用位移法计算超静定刚架时,独立的]结点角位移数等于()
A. 铰结点数	B. 多余约束数
C. 刚结点数	D. 不确定
8. 用位移法求解图示结构时,基本未知	1量的个数是()
	7377. V.
A. 2	B. 3
C. 4	D. 5
9. 用力矩分配法计算超静定结构时,图	结点的不平衡力矩等于()
A. 外力矩	
B. 附加刚臂中的约束反力矩	
C. 杆端固端弯矩	
D. 杆端传递弯矩	
10. 机动法作静定梁影响线应用的原理	里为()
A. 变形体虚功原理	B. 互等定理
C. 刚体虚功原理	D. 叠加原理

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以 √表示正确,以 ×表示错误)

- 11. 基本附属型结构力的传递顺序是:从附属部分到基本部分。()
- 12. 用平衡条件能求出全部内力的结构是静定结构。()
- 13. 桁架结构在结点荷载作用下,杆内只有剪力。()
- 14. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的水平位移。

()

15. 图示结构的超静定次数是 n=3。()

16. 力法典型方程中的系数项 Δ_{iP} 表示基本结构在荷载作用下产生的沿 X_i 方向的位移。

()

- 17. 用力矩分配法计算结构时,传递系数与该杆件的远端支承条件有关。()
- 18. 力矩分配法适用于连续梁和有侧移刚架。()
- 19. 影响线的横坐标是移动的单位荷载的位置。()
- 20. 反映结构动力特性的参数是振动质点的自振频率。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,并作弯矩图。EI=常数。(16分)

23. 用位移法计算图示刚架,求出系数项及自由项。EI=常数。(14分)

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

土木工程力学(本) 试题答案及评分标准(半开卷)

(供参考)

2017年6月

一、单项选择题(每小题3分,共30分)

1. A 2. D

3. C 8. B 4. D 9. B 5. B 10. C

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以/表示正确,以×表示错误)

11. 🗸

6. B

12**.** 🗸

7. C

13. ×

14. X

15. √ 20. √

 $16.\checkmark$ $17.\checkmark$ $18.\times$ $19.\checkmark$

- 三、作图与计算题(共40分)
 - 21. 作图示结构的弯矩图。(10分)

解:

图形正确(6分);数值正确(4分)

22. 用力法计算图示结构,并作弯矩图。EI=常数。(16分)

解:基本体系及未知量如图(a)所示。

- (a) 基本体系 (2分) (b) \overline{M}_1 (2分)
- (c) M_P (2分)

(3分)

23. 用位移法计算图示刚架,求出系数项及自由项。EI=常数。(14分)

解:

$$i = \frac{EI}{l}$$

典型方程 $k_{11}\Delta_1 + F_{1P} = 0$ (1分)
 $k_{11} = 11i$ (2分)
 $F_{1P} = -5kN \cdot m$ (2分)

国家开放大学(中央广播电视大学)2017年秋季学期"开放本科"期末考试

土木工程力学(本) 试题(半开卷)

2018年1月

题	号	 	 总	分
分	数			

得	分	评卷人

一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正 确的或最好的作为答案填入括弧)

- 1. 静定结构由于支座位移,将()
 - A. 发生变形和位移
 - B. 不发生变形和位移
 - C. 发生变形,但不产生位移
 - D. 不发生变形,但产生位移
- 2. 图示简支梁中间截面的弯矩为()

- D. ql^2
- 3. 超静定结构在荷载作用下产生的内力与刚度()
 - A. 无关

B. 相对值有关

C. 绝对值有关

D. 相对值绝对值都有关

- 4. 力法典型方程中的系数项 Δ_{iP} 表示基本结构在()
 - A. 荷载作用下产生的 X_i 方向的位移
 - B. 荷载作用下产生的 X_i 方向的位移
 - C. $X_i = 1$ 作用下产生的沿荷载作用方向的位移
 - D. 荷载作用下产生的沿荷载作用方向的位移
- 5. 对称结构在反对称荷载作用下,内力图中(
 - A. 剪力图反对称

B. 弯矩图反对称

C. 弯矩图正对称

- D. 轴力图正对称
- 6. 位移法典型方程是根据()列出的。
 - A. 反力互等定理

B. 附加约束的位移条件

C. 外力与内力的关系

- D. 附加约束的平衡条件
- 7. 影响线的纵坐标是(
 - A. 固定荷载的数值

B. 移动荷载的数值

C. 不同截面的某一量值

- D. 指定截面的某一量值
- 8. 图示结构杆件 BA 的 B 端转动刚度 S_{BA} 为(

A. 2

C. 4

- D. 6
- 9. 反映结构动力特性的重要物理参数是(
 - A. 质点的质量

B. 自振频率

C. 振幅

- D. 干扰力的大小
- 10. 在图示结构中,为使体系自振频率减小,可以(

A. 减小 F_P

C. 减小 EI

D. 减小 l

得 分 评卷人

二、判断题(每小题 3 分, 共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. 一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。()
- 12. 当结构中某个杆件的 EI 为无穷大时,其含义是这个杆件无弯曲变形。()
- 13. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的转角。()

14. 某荷载作用下桁架可能存在零杆,它不受内力,因此在实际结构中可以将其去掉。

()

- 15. 用力法解超静定结构时,基本结构是唯一的。(
- 16. 位移法的基本未知量与超静定次数有关。()
- 17. 力矩分配法只能计算连续梁。()
- 18. 结构的自振频率与干扰力无关。()
- 19. 静定结构的内力与材料的性质无关。()
- 20. 超静定结构由于支座位移可以产生内力。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构并作弯矩图,EI=常数。(16分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。EI = 常数。(14分)

国家开放大学(中央广播电视大学)2017年秋季学期"开放本科"期末考试

土木工程力学(本) 试题答案及评分标准(半开卷)

(供参考)

2018年1月

一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

- 1. D
- 2. A
- 3. B
- 4. A
- 5. B

- 6. D
- 7. D
- 8. B
- 9. B
- 10. C

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

- $11. \times$
- 12**.** √
- 13. × 18. √
- 14. × 19. √
- 15. × 20. √

- 16. × 17. ×
- 三、作图与计算题(共 40 分) 21. 作图示结构的弯矩图。(10 分)

解:

图形正确(6分);数值正确(4分)

22. 用力法计算图示结构并作弯矩图, EI=常数。(16分)

解:基本体系及未知量如图(a)所示(2分)

 \overline{M}_1 图如图(b)所示。 (2分)

 M_P 图如图(c)所示。 (2分)

 $\delta_{11}X_1 + \Delta_{1P} = 0$ (1 分)

 $\delta_{11} = 7l^3/3EI$, $(2 \%)\Delta_{1P} = -2Pl^3/EI$ (2 %)

 $X_1 = 6F_P/7$ (2 分)

作后弯矩图如图(d)所示。(3分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。EI=常数。(14分)

(d)M图 $(\times F_P l/7)$

解:

典型方程
$$k_{11}\Delta_1 + F_{1P} = 0$$
 (2分)
 $k_{11} = 8i$ (2分)
 $F_{1P} = -F_P l$ (2分)

疝	位	므		
淫	177	7		

国家开放大学(中央广播电视大学)2018年春季学期"开放本科"期末考试

土木工程力学(本) 试题(半开卷)

2018年7月

题	号	 =	Ξ	总	分
分	数				

得 分 评卷人

一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正 确的或最好的作为答案填入括弧)

- 1. 力法典型方程是()
 - A. 结构的物理方程

B. 多余约束处的位移协调条件

C. 力的平衡条件

D. $A \setminus B$ 两个条件

2. 用力法求解图示结构时,基本未知量的个数是()

- A. 3
- C. 5
- 3. 图乘法的使用条件为()
 - A. M_P 及 \overline{M} 图中至少有一图是由直线组成
 - B. 杆件 EI 为常量
 - C. 杆件为直杆
 - D. 同时满足以上条件
- 4. 位移法典型方程的物理意义是()
 - A. 附加约束上的平衡方程
- B. 附加约束上的位移条件
- C. 外力与内力的关系

- D. 反力互等定理
- 5. 用位移法计算超静定刚架时,独立的结点角位移数等于()
 - A. 铰结点数

B. 多余约束数

C. 刚结点数

D. 不确定

6. 图示对称结构杆件 EI 为常量,利用对称性简化后的一半结构为()

- 7. 受弯杆件截面内力有(
 - A. 弯矩

B. 剪力

C. 轴力

- D. 以上三种
- 8. 根据影响线的定义,图示悬臂梁 A 截面的剪力影响线在 B 点的纵坐标为()

9. 图示结构杆件 BA 的 B 端转动刚度 S_{BA} 为()

10. 在图示结构中,为使体系自振频率ω增大,可以()

A. 增大 P

C. 增大 l

得	分	评卷人

二、判断题(每小题 3 分, 共 30 分。将判断结果填入括弧,以√表示 正确,以×表示错误)

11. 某荷载作用下桁架可能存在零杆,它不受内力,因此在实际结构中可以将其去掉。

()

- 12. 静定多跨梁中基本部分、附属部分的划分与杆件的刚度有关。()
- 13. 位移法的基本结构是超静定结构。()
- 14. 力法计算超静定结构时,可选的基本结构是唯一的。()
- 15. 图示梁 AB 在所示荷载作用下 A 截面的弯矩值为 $2ql^2$ 。()

16. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的转角。()

- 17. 超静定结构的内力与材料的性质无关。()
- 18. 影响线的横坐标是指定截面的某一量值。()
- 19. 在多结点结构的力矩分配法计算中,可以同时放松所有不相邻的结点以加速收敛速度。()
 - 20. 反映结构动力特性的参数是振动质点的自振频率。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示连续梁,求出系数项和自由项。EI=常数。(14分)

国家开放大学(中央广播电视大学)2018 年春季学期"开放本科"期末考试 土木工程力学(本) 试题答案及评分标准(半开卷) (供参考)

2018年7月

一、单项选择题(每小题 3 分,共 30 分)

1. B 2. A 3. D 4. A 5. C 6. A 7. D 8. C 9. B 10. D

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

11. \times 12. \times 13. \checkmark 14. \times 15. \times 16. \times 17. \times 18. \times 19. \checkmark 20. \checkmark

- 三、作图与计算题(共40分)
 - 21. 作图示结构的弯矩图。(10分)

解:

图形正确(6分);数值正确(4分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16 分)

解:基本体系及未知量如图(a)所示。(2分)

(a) 基本体系

(b)
$$\overline{M}_{1}$$
 (2分) (c) M_{P} (2分)

$$\delta_{11} X_1 + \Delta_{1P} = 0$$
 (1 分)

$$\delta_{11} = \sum \int \frac{\overline{M}_{1}^{2}}{EI} d_{s} = \frac{1}{EI} \times l \times l \times l \times \frac{2}{3} = \frac{l^{3}}{3EI}$$
 (2 $\frac{2}{3}$)

$$\Delta_{1P} = \sum \int \frac{\overline{M}_1 M_P}{EI} d_S = -\frac{1}{EI} \times \frac{1}{2} \times l \times l \times F_P l \times \frac{1}{2} = -\frac{F_P l^3}{4EI} \qquad (2 \%)$$

$$x_1 = \frac{3F_P}{4} \qquad (2 \text{ }\%)$$

M图(3分)

23. 用位移法计算图示连续梁,求出系数项和自由项。EI=常数。(14分)

解:

典型方程 $k_{11}\Delta_1 + F_{1P} = 0$ (2分)

座位号

国家开放大学(中央广播电视大学)2018年秋季学期"开放本科"期末考试

土木工程力学(本) 试题(半开卷)

2019年1月

题	号	 11	三	总	分
分	数				

得 分 评卷人

一、单项选择题(每小题 3 分, 共 30 分。在所列备选项中, 选 1 项正确的或最好的作为答案填入括弧)

- 1. 结构位移计算公式利用什么推导的(
 - A. 功的互等定理

B. 虚位移原理

C. 虚功原理

- D. 反力互等定理
- 2. 图示悬臂梁中间截面的弯矩为()

A. $\frac{ql^2}{16}$

B. $\frac{qt^2}{8}$

C. $\frac{ql^2}{4}$

D. $\frac{ql^2}{2}$

)

- 3. 超静定结构产生内力的原因有()
 - A. 荷载作用

B. 支座位移

C. 温度变化

- D. 以上原因都可以
- 4. 超静定结构的超静定次数等于结构中(
 - A. 刚结点数

B. 独立的结点角位移数

C. 独立的结点线位移数

- D. 多余约束的数目
- 5. 用力法计算超静定结构时,其基本未知量为()
 - A. 杆端弯矩

B. 结点角位移

C. 结点线位移

D. 多余未知力

6. 图示对称结构杆件 EI 为常量,利用对称性简化后的一半结构为()

- 7. 位移法典型方程的物理意义是()
 - A. 附加约束上的平衡方程
 - B. 附加约束上的位移条件
 - C. 外力与内力的关系
 - D. 反力互等定理
- 8. 根据影响线的定义,图示悬臂梁 A 截面的弯矩影响线在 B 点的纵坐标为()

- 9. 对称结构在反对称荷载作用下()
 - A. 弯矩图正对称

A. 3 C. -3

B. 轴力图正对称

C. 剪力图正对称

- D. 剪力图反对称
- 10. 在图示结构中,为使体系自振频率ω减小,可以(

- A. 减小 F_P
- C. 减小 EI

得	分	评卷人

- 二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)
- 11. 图示为梁的虚设力状态,按此力状态及位移计算公式可求出梁铰 B 两侧截面的相对转角。()

- 12. 在温度变化或支座位移的作用下,静定结构有内力产生。()
- 13. 桁架结构在结点荷载作用下,杆内只有剪力。()
- 14. 力法典型方程是根据平衡条件得到的。()
- 15. 位移法的基本结构是超静定结构。()
- 16. 用力矩分配法计算结构时,传递系数与该杆件的远端支承条件有关。()
- 17. 超静定结构的内力状态与刚度有关。()
- 18. 影响线的横坐标是指定截面的某一量值。()
- 19. 一般情况下,振动体系的振动自由度与超静定次数无关。()
- 20. 结构的自振频率与结构中某杆件的刚度无关。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项和自由项。(14分)

国家开放大学(中央广播电视大学)2018 年秋季学期"开放本科"期末考试

土木工程力学(本) 试题答案及评分标准(半开卷)

(供参考)

2019年1月

一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

- 1. C
- 2. B
- 3. D
- 4. D
- 5. D

- 6. C
- 7. A
- 8. D
- 9. C
- 10. C

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. √
- 12. \times
- $13. \times$
- $14. \times$
- 15. \/

- 16. √
- 17. √
- 18. \times
- 19. √
- $20. \times$

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

解:

图形正确(6分);数值正确(4分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

解:

基本体系 2分

 \overline{M}_1 图 2分

M_P图 2分

$$\Delta_1 = \delta_{11} X_1 + \Delta_{1P} = 0 \qquad 2 \text{ 分}$$

$$64 \qquad 64q$$

$$\delta_{11} = \frac{64}{3EI}$$
,2分, $\Delta_{1P} = -\frac{64q}{EI}$,2分

$$X_1 = 3q$$
, 2 \mathcal{G}

M 图 2 分

23. 用位移法计算图示刚架,列出典型方程,求出系数项和自由项。(14分)

解:

$$k_{11}\Delta_1 + F_{1P} = 0 \qquad 2 分$$

$$k_{11} = 12i \qquad 3 分$$

$$F_{1P} = -\frac{Pl}{8} \qquad 3 分$$

国家开放大学2019年春季学期期末统一考试

土木工程力学(本) 试题(半开卷)

2019年7月

题	号	 =	=	总	分
分	数				

得	分	评卷人

- 一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)
- 1. 计算超静定结构时,常引入轴向刚度条件,即"受弯直杆在变形前后两端距离保持不变"。此结论是由下述假定导出的()。
 - A. 忽略受弯直杆的轴向变形和剪切变形
 - B. 弯曲变形是微小的
 - C. 轴向变形和剪切变形是微小的
 - D. 假定 A 与 B 同时成立
 - 2. 图示简支梁中间截面的剪力为()。

A. 0

C. $\frac{ql}{2}$

D. ql

3.	结构位移计算公式利用什么原理推导的()。
	A. 位移互等原理	B. 虚位移原理
	C. 虚功原理	D. 反力互等原理
4.	图乘法的假设为()。	
	A. M_p 及 \overline{M} 图中有一图是由直线组成	B. 杆件 EI 为常量
	C. 杆件为直杆	D. 同时满足以上条件
5.	超静定结构产生内力的原因()。	
	A. 荷载作用	B. 支座位移
	C. 温度变化	D. 以上原因都可以
6.	用位移法求解图示结构时,基本未知量的	个数是()。
		
		V ,
		
		•
	A. 2	B. 3
	C. 4	D. 5
7.	位移法典型方程的物理意义是()。	
	A. 附加约束上的平衡方程	B. 附加约束上的位移条件
	C. 外力与内力的关系	D. 反力互等定理
8.	用力矩分配法计算超静定结构时,刚结点的	的不平衡力矩等于()。
	A. 外力矩	B. 附加刚臂中的约束反力矩
	C. 杆端固端弯矩	D. 杆端传递弯矩
9.	影响线的横坐标是()。	
	A. 固定荷载的位置	B. 移动荷载的位置
	C. 截面的位置	D. 单位移动荷载的位置
10). 反映结构动力特性的重要物理参数是()。
	A. 初相角	B. 初位移
	C. 自振频率	D. 振幅

得	分	评卷人

二、判断题(每小题 3 分,共 30 分)(将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. 一般来说,静定多跨梁的计算顺序是先基本部分后附属部分。()
- 12. 依据静力平衡条件可对静定结构进行受力分析,这样的分析结果是唯一正确的结果。

()

- 13. 静定结构的内力与材料的性质无关。()
- 14. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的水平位移。

()

15. 图示结构的超静定次数是 n=3。()

- 16. 超静定结构的力法基本结构是唯一的。()
- 17. 位移法典型方程中的主系数恒为正值,副系数恒为负值。()
- 18. 用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为 1,则表明分配系数的计算无错误。()
 - 19. 图示结构 A 截面剪力影响线在 B 处的纵坐标为 1。()

20. 在结构动力计算中,振动体系的振动自由度等于质点的数目。() 352

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 计算图示结构,并作弯矩图。各杆 EI=常数。(16 分)

23. 用位移法计算图示刚架,求出系数项及自由项。各杆 EI=常数。(14分)

国家开放大学2019年春季学期期末统一考试 土木工程力学(本) 试题答案及评分标准(半开卷) (供参考)

2019年7月

一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

- 1. D
- 2. A
- 3. C
- 4. D
- 5. D

- 6. B
- 7. A
- 8. B
- 9. D
- 10. C

二、判断题(将判断结果填入括弧,以\表示正确,以×表示错误)(每小题 3 分,共 30 分)

- 11. ×
- 12. √
- 13. \
- $14. \checkmark$
- 15. √

- 16. X
- 17. ×
- $18. \times$
- 19. √
- 20. \times

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

图形正确 (6分);数值正确(4分)

354

22. 计算图示结构,并作弯矩图。各杆 EI=常数。(16 分)

解:利用对称性结构简化为如图

作出一半刚架弯矩图,然后作出最后整个体系的弯矩图

此题如其他方法解出,答案正确也可给分。

23. 用位移法计算图示刚架,求出系数项及自由项。各杆 EI=常数。(14分)

基本体系 (2分)

$$k_{11}\Delta_1 + F_{1P} = 0$$
 (2 β)

$$i = EI/6$$
 (2分)

$$k_{11} = 11i$$
 (2分)

 $F_{1P} = -3KN \cdot m \quad (2 \text{ 分})$

国家开放大学2019年秋季学期期末统一考试

土木工程力学(本) 试题(半开卷)

2020年1月

题	号	 =	Ξ	总	分
分	数				

得	分	评卷人

一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

1. 图示简支梁中间截面的剪力为().

C.
$$\frac{ql}{2}$$

A. ql

D. 0

2. 求图示梁铰 B 左侧截面的转角时,其虚设力状态应取图()。

- 3. 对称结构在正对称荷载作用下()。
 - A. 弯矩图反对称

B. 轴力图反对称

C. 剪力图反对称

- D. 剪力图正对称
- 4. 超静定结构在荷载作用下产生的内力与刚度()。
 - A. 无关

B. 相对值有关

C. 绝对值有关

- D. 相对值绝对值都有关
- 5. 力法典型方程中的系数 δ, 代表基本结构在()。
 - A. $X_i = 1$ 作用下产生的 X_i 方向的位移
 - B. $X_i = 1$ 作用下产生的 X_i 方向的位移
 - C. $X_i = 1$ 作用下产生的 X_i 方向的位移
 - D. $X_i = 1$ 作用下产生的 X_i 方向的位移
- 6. 用位移法计算结构时,规定正的杆端弯矩是()。
 - A. 绕结点顺时针转动

B. 绕杆端顺时针转动

C. 绕杆端逆时针转动

- D. 使梁的下侧受拉
- 7. 图示超静定结构独立结点角位移的个数是()。

A. 2

B. 3

C. 4

- D. 5
- 8. 图示结构杆件 BC 的 B 端转动刚度 S_{BC} 为()。

- A. 2
- C. 6

- D. 8
- 9. 静定结构内力与反力影响线的形状特征是()。
 - A. 直线段组成

B. 曲线段组成

C. 直线曲线混合

D. 变形体虚位移图

- 10. 在动力计算中,体系自由度数 N 与质点个数 M())。
 - A. 总是相等

B, N 总是大于 M

C. M 总是大于 N

D. 不确定

二、判断题(每小题 3 分,共 30 分)(将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. 桁架结构在结点荷载作用下,杆内只有剪力。()
- 12. 当结构中某个杆件的 EI 为无穷大时,其含义是这个杆件无弯曲变形。()
- 13. 静定结构由于温度变化可以产生内力。()
- 14. 计算受弯杆件时不考虑其轴向变形,则杆件轴力为0。()
- 15. 图 a 为一对称结构,利用对称性时简化的半边结构如图 b 所示。()

- 16. 力法典型方程是根据平衡条件得到的。()
- 17. 超静定结构的位移法基本结构是唯一的。()
- 18. 用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总是小于 1,所以计算结果是收敛的。()
 - 19. 图示结构 A 截面弯矩影响线在 A 处的竖标为 l。()

20. 结构的自振频率与结构中某杆件的刚度无关。(

得	分	评卷人

三、作图与计算题(共 40 分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。各杆EI=常数。

(14分)

国家开放大学2019年秋季学期期末统一考试

土木工程力学(本) 试题答案及评分标准(半开卷)

(供参考)

2020年1月

一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

- 1. D
- 2. C
- 3. C
- 4. B
- 5. C

- 6. B
- 7. A
- 8. D
- 9. A
- 10. D

二、判断题(每小题 3 分,共 30 分)(将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. ×
- 12. 🗸
- $13. \times$
- $14. \times$
- 15. ×

- 16. \times
- 17. √
- 18. 🗸
- $19. \times$
- 20. ×

- 三、作图与计算题(共40分)
 - 21. 作图示结构的弯矩图。(10分)

图形正确 (6分);数值正确 (4分)

22. 用力法计算图示结构,作弯矩图。各杆 EI=常数。(16 分)

基平平示 (4 刀)

M₁图 (2分)

M,图 (2分)

M图(kN·m) (2分)

$$\delta_{11} X_1 + \Delta_{1P} = 0$$
 (2 分)

$$\delta_{11} = \sum \int \frac{\overline{M}_{1}^{2}}{EI} d_{s} = \frac{1}{EI} \times (\frac{1}{2} \times 4 \times 4 \times 4 \times \frac{2}{3} + 4 \times 4 \times 4) = \frac{256}{3EI} \quad (2 \%)$$

$$\Delta_{1P} = \sum \int \frac{\overline{M}_{1} M_{P}}{EI} d_{s} = -\frac{1}{EI} \times \frac{1}{2} \times 2 \times 20 \times 4 = -\frac{80}{EI} \quad (2 \%)$$

$$X_{1} = \frac{15}{16} \text{kN} \quad (2 \%)$$

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。各杆 EI=常数。

(14分)

典型方程 $k_{11}\Delta_1+F_{1P}=0(2 分)$

座位号

国家开放大学2020年春季学期期末统一考试

土木工程力学(本) 试题

2020年7月

题	号	 -	=	总	分
分	数				

得 分 评卷人

一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填入括弧)

- 1. 结构位移计算公式利用什么推导的?()
 - A. 功的互等定理

B. 虚位移原理

C. 虚功原理

D. 反力互等定理

2. 图示悬臂梁中间截面的弯矩为()。

C. $\frac{ql^2}{4}$

A. $\frac{ql^2}{16}$

D. $\frac{ql}{2}$

- 3. 静定结构产生内力的原因是()。
 - A. 荷载作用

B. 支座位移

C. 温度变化

- D. 制造误差
- 4. 超静定结构的超静定次数等于结构中(
-).

A. 约束的数目

B. 多余约束的数目

C. 结点数

D. 杆件数

- 5. 对称结构在反对称荷载作用下()。
 - A. 弯矩图反对称

B. 轴力图正对称

C. 剪力图反对称

D. 以上三种结论都对

- 6. 力法典型方程中的自由项 Δ_{iP} 表示基本结构在()
 - A. 荷载作用下产生的 X_i 方向的位移
 - B. 荷载作用下产生的 X, 方向的位移
 - C. $X_i=1$ 作用下产生的沿荷载作用方向的位移
 - D. 荷载作用下产生的沿荷载作用方向的位移
- 7. 图示超静定结构独立结点位移的个数是()。

A. 2

B. 3

C. 4

A.0

C. 4m

- D. 5
- 8. 一般情况下,结点的不平衡力矩等于(
-).
- A. 汇交于该结点的固端弯矩之和
- B. 传递弯矩之和
- C. 结点上作用的外力矩

- D. 附加刚臂中的约束反力矩
- 9. 根据影响线的定义,图示悬臂梁 A 截面的弯矩(下侧受拉为正)影响线在 B 点的纵坐标为()。

10. 图示 a,b 两体系的 EI 相同,其自振频率 ω_a 与 ω_b 的关系为()

得	分	评卷人

二、判断题(每小题 3 分,共 30 分)(将判断结果填入括弧,以√表示正确,以×表示错误)

- 11. 基本附属型结构力的传递顺序是:从附属部分到基本部分。()
- 12. 某种荷载作用下桁架可能存在零杆,因此在实际结构中可以将零杆去掉。()
- 13. 图示为梁的虚设力状态,按此力状态及位移计算公式可求出 AB 两点的相对竖向线位移。()

14. 图(a) 所示对称结构利用对称性可简化为图(b) 所示结构来计算。()

- ► (b)
 15. 同一结构选不同的力法基本体系,所得到的力法方程代表的位移条件相同。()
- 16. 图示悬臂梁截面 A 的弯矩值是 gl^2 。()

- 17. 位移法的基本未知量与超静定次数有关。()
- 18. 力矩分配法只能计算连续梁。()
- 19. 静定结构弯矩影响线是由直线段组成的。()
- 20. 反映结构动力特性的参数是振动质点的振幅。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项和自由项。各杆 EI=常数。

(14分)

注:位移法解题中用到的形常数和载常数见表1

表 1 单跨超静定梁杆端弯矩和杆端剪力

编号	简图	杆端	弯矩	杆端	剪力
細写	间区	M_{AB}	M_{BA}	F_{QAB}	F_{QBA}
1	A B B B B B B B B B B B B B B B B B B B	4i	2 <i>i</i>	$-\frac{6i}{l}$	$-\frac{6i}{l}$
2	$ \begin{array}{c c} F \\ \hline & I/2 \\ \hline & I/2 \end{array} $	$-\frac{Fl}{8}$	<u>Fl</u> 8	$\frac{F}{2}$	$-\frac{F}{2}$

国家开放大学2020年春季学期期末统一考试 土木工程力学(本) 试题答案及评分标准

(供参考)

2020年7月

一、单项选择题(每小题 3 分,共 30 分)(在所列备选项中,选 1 项正确的或最好的作为答案填

入括弧)

1. C

2. B

3. A

4. B

5. A

6. A

7. B

8. D

9. B

10. D

二、判断题 (每小题 3 分,共 30 分)(将判断结果填入括弧,以√表示正确,以×表示错误)

 $11.\sqrt{}$

12. \times

13. 🗸

 $14. \times$

 $15. \times$

 $16. \times$

 $17. \times$

18. X

19. $\sqrt{ }$

20. \times

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

图形正确 (6分); 数值正确 (4分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16 分)

解:(1)一次超静定,基本体系和基本未知量,如图(a)所示 (2分)

(2) 列力法方程

$$\delta_{11}X_1 + \Delta_{1P} = 0$$
 (2 β)

(3) 作 M₁ 图, 见图(b) (2 分)

作 \overline{M}_P 图,见图(c) (2分)

(4) 计算 δ₁₁、Δ_{1P}

$$\delta_{11} = \sum \int \frac{\overline{M}_1^2}{EI} d_s = \frac{1}{EI} \times \frac{1}{2} \times 4 \times 4 \times \frac{8}{3} + \frac{1}{EI} \times 4 \times 4 \times 4 = \frac{256}{3EI} \quad (2 \%)$$

$$\Delta_{1P} = \sum \int \frac{\overline{M}_1 M_P}{EI} d_s = -\frac{1}{EI} \times \frac{1}{2} \times 20 \times 2 \times \frac{10}{3} - \frac{1}{EI} \times 20 \times 4 \times 4 = -\frac{1160}{3EI}$$
 (2 分)

$$X_1 = \frac{145}{32}$$
(kN) (2分)

(5) 作 M 图

23. 用位移法计算图示刚架,列出典型方程,求出系数项和自由项。各杆 EI=常数。

(14分)

解:

$$k_{11}\Delta_1 + F_{1P} = 0$$
 (2 分)

$$i = EI/4$$
 (2分)

$$k_{11} = 8i$$
 (2分)

$$F_{1P} = 4$$
kN·m (2分)

座位号

国家开放大学2020年春季学期期末统一考试

土木工程力学(本) 试题

2020年9月

题	号	_	 =	总	分
分	数				

得	分	评卷人

- 一、单项选择题(每小题 3分,共 30分)(在所列备选项中,选 1项正 确的或最好的作为答案填入括弧)
- 1. 图示简支梁中间截面的弯矩为()。

- 2. 位移法基本方程中的自由项 F_{iP} ,代表基本结构在荷载单独作用下产生的(
 - A. Δ_i

- B. Δ_i
- C. 第i个附加约束中的约束反力 D. 第j个附加约束中的约束反力
- 3. 求图示结构 AB 两点的相对线位移,虚设力状态为图(

- 4. 静定结构由于温度变化,()。
 - A. 发生变形和位移

- B. 不发生变形和位移
- C. 不发生变形,但产生位移
- D. 发生变形,但不产生位移
- 5. 力法典型方程是根据以下哪个条件得到的()。
 - A. 结构的物理方程

- B. 结构的变形条件
- C. 多余约束处的位移协调条件 D. 同时满足 A、B 两个条件
- 6. 用力法计算超静定结构时,其基本未知量为()。
 - A. 杆端弯矩

B. 结点角位移

C. 结点线位移

- D. 多余未知力
- 7. 用位移法计算超静定结构,其基本未知量的数目等于()。
 - A. 超静定次数

B. 刚结点数目

C. 线位移数目

- D. 独立的结点位移数目
- 8. 机动法作静定梁影响线应用的原理为(
 - A. 变形体虚功原理

B. 刚体虚功原理

C. 互等定理

D. 叠加原理

).

9. 图示结构杆件 BA 的 B 端转动刚度 S_{BA} 为()。

A. 2

B. 3

C. 4

D. 6

The state of the s

10. 在图示结构中,为使体系自振频率 ω 增大,可以()。

A. 增大 F_P

C. 增大 m

- 二、判断题(每小题 3 分,共 30 分)(将判断结果填入括弧,以 表示 正确,以 ×表示错误)
- 11. 用平衡条件能求出全部内力的结构是静定结构。()
- 12. 静定多跨梁中基本部分、附属部分的划分与杆件的刚度有关。()
- 13. 支座位移时静定结构发生的是刚体位移。()
- 14. 图示结构的超静定次数是 n=2。()

15. 图 a 为一对称结构作用正对称荷载,利用对称性时简化的半边结构如图 b 所示。

- 16. 用力法解超静定结构时,选取的基本结构是唯一的。()
- 17. 位移法的基本结构是超静定结构。()
- 18. 在力矩分配法中,同一结点各杆端分配系数之和恒等于1。()

)

19. 图示结构 A 截面剪力影响线在 B 处的竖标为 0。()

$$\begin{array}{ccc}
& & & & F_{p}=1 \\
& & & & I \\
& & & & & A
\end{array}$$

20. 在结构动力计算中,1个质点的振动体系,其振动自由度一定为1。()

得	分	评卷人

三、作图与计算题(共40分)

21. 作图示静定梁的弯矩图。(10分)

$$F_{p} \downarrow F_{p} \downarrow$$

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。各杆 EI=常数。(14分)

注:位移法解题中用到的形常数和载常数见表1

表 1 单跨超静定梁杆端弯矩和杆端剪力

编号	简图	杆端弯矩		杆端剪力	
細ち	[FL] [S]	$M_{\scriptscriptstyle AB}$	$M_{\scriptscriptstyle BA}$	F_{QAB}	$F_{\scriptscriptstyle QBA}$
1	1 1 = 1	4i	2i	$-\frac{6i}{l}$	$-\frac{6i}{l}$
2	F $l/2$ $l/2$	$-\frac{Fl}{8}$	$\frac{Fl}{8}$	$\frac{F}{2}$	$-\frac{F}{2}$

国家开放大学2020年春季学期期末统一考试

土木工程力学(本) 试题答案及评分标准

(供参考)

2020年9月

一、单项选择题(每小题 3分,共 30分)(在所列备选项中,选 1项正确的或最好的作为答案填

入括弧)

1. A

2. C

4. A

5. C

6. D

7. D

8. B

3. A

9. B

10. B

二、判断题(将判断结果填入括弧,以、表示正确,以×表示错误)(每小题 3 分,共 30 分)

 $11.\sqrt{}$

 $12. \times$

13. √

 $14. \times$

 $15.\sqrt{}$

 $16. \times$

17. \/

18. \/

19. \/

 $20. \times$

三、作图与计算题(共40分)

21. 作图示静定梁的弯矩图。(10分)

图形正确 (6分); 数值正确 (4分)

22. 用力法计算图示结构,列出典型方程,并作弯矩图。各杆 EI=常数。(16分)

$$\delta_{11} = \frac{1}{EI} \times (\frac{1}{2} \times 4 \times 4 \times 4 \times 4 \times \frac{2}{3} + 4 \times 4 \times 4) = \frac{256}{EI} \quad (2 \ \%)$$

$$\Delta_{1P} = -\frac{1}{EI} \times \frac{1}{2} \times \frac{4}{2} \times \frac{20 \times 4}{2} \times 4 = -\frac{160}{EI}$$
 (2 分)

$$X_1 = \frac{15}{8} \text{kN}$$
 (2 $\%$)

M图(kN·m) (2分)

23. 用位移法计算图示刚架,列出典型方程,求出系数项及自由项。各杆 EI = 常数。

(14分)

座位号

国家开放大学2020年秋季学期期末统一考试

土木工程力学(本) 试题

2021年1月

题	号	_	 ==	总 分
分	数			

得	分	评卷人

- 一、单项选择题(每小题 3 分,共 30 分。在所列备选项中,选 1 项正 确的或最好的作为答案填入括弧)
- 1. 图示梁 AB 在所示荷载作用下 A 截面的剪力值为(

A. 2ql

B. ql

C. 3ql

D. 0

- 2. 静定结构产生变形的原因有(
 - A. 荷载作用和温度变化

B. 支座位移

C. 制造误差

D. 以上四种原因

3. 用力法求解图示结构时,基本未知量的个数是(

A. 5

C. 7

D. 8

4. 力法的基本体系是()。	
A. 一组单跨超静定梁	B. 瞬变体系
C. 几何不变体系	D. 可变体系
5. 用位移法计算超静定结构时,基本未知	量的数目等于()。
A. 多余约束数	B. 刚结点数
C. 铰结点数	D. 独立的结点位移数
6. 用位移法计算结构时,规定正的杆端弯	短是()。
A. 绕杆端顺时针转动	B. 绕结点顺时针转动
C. 绕杆端逆时针转动	D. 使梁的下侧受拉
7. 一般情况下结点的不平衡力矩等于() 。
A. 外力矩	B. 附加刚臂中的约束反力矩
C. 杆端固端弯矩	D. 杆端的传递弯矩
8. 超静定结构的超静定次数等于结构中(().
A. 刚结点数	B. 支座的数目
C. 多余约束的数目	D. 支座的链杆数
9. 超静定结构产生内力的原因有()。	· Andrew State of the State of
A. 荷载作用	B. 支座位移
C. 温度变化	D. 以上原因都可以
10. 在结构动力计算中,体系振动自由度势	数 n 与质点个数 m 的关系是()。

得	分	评卷人

A. n 大于 m

C. n=m

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

B. n 小于 m

D. 不确定

- 11. 结构位移计算利用的是虚功原理中的虚力原理。()
- 12. 图示为刚架的虚设力状态,按此力状态及位移计算公式可求出 A 处的竖向位移。()

- 13. 基本附属型结构的计算顺序是: 先计算附属部分后计算基本部分。()
- 14. 图示桁架结构中有 3 个杆件轴力为 0。()

- 15. 用平衡条件能求出全部内力的结构是静定结构。()
- 16. 力矩分配法适用于所有超静定结构的计算。()
- 17. 图示结构的超静定次数是 n=3。()

- 18. 超静定结构的内力状态与刚度有关。()
- 19. 图示结构 A 截面弯矩影响线在 A 处的竖标为 l。()

$$F_{p} = 1$$

20. 影响线的横坐标是指定截面的某一量值。(

得	分	评卷人
		· · · · · · · · · · · · · · · · · · ·

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

22. 计算图示结构,并作弯矩图。各杆 EI=常数。(16 分)

23. 用位移法计算图示刚架,求出系数项及自由项。各杆 EI=常数。(14分)

注:位移法解题中用到的形常数和载常数见表1

表 1 单跨超静定梁杆端弯矩和杆端剪力

编号	简图	杆端弯矩		杆端剪力	
姍亏	N 区 N C N C	M_{AB}	$M_{\it BA}$	F_{QAB}	F_{QBA}
1	A R B B B B B B B B B B B B B B B B B B	4i	2 <i>i</i>	$-\frac{6i}{l}$	$-\frac{6i}{l}$
2	$ \begin{array}{c c} F \\ \hline A \\ l/2 \\ \hline l/2 \end{array} $	$-\frac{Fl}{8}$	$\frac{Fl}{8}$	$\frac{F}{2}$	$-\frac{F}{2}$

国家开放大学2020年秋季学期期末统一考试

土木工程力学(本) 试题答案及评分标准

(供参考)

2021年1月

一、单项选择题(每小题 3 分,共 30 分)

1. A

2. D

D 3. B

4. C

5. D

6. A

7. B

8. C

9. D

10. D

二、判断题(每小题 3 分,共 30 分。将判断结果填入括弧,以√表示正确,以×表示错误)

11. √ 16. ×

12. √ 17. × 13. √ 18. √ 14. × 19. × 15. √ 20. ×

三、作图与计算题(共40分)

21. 作图示结构的弯矩图。(10分)

解:

图形正确(5分);数值正确。(5分)

22. 计算图示结构,并作弯矩图。EI=常数。(16分)

解:利用对称性荷载分组如图(a)、(b)所示。(2×3分)

图(a)简化一半刚架如图(c)所示。(3分) 一半刚架弯矩图如图(d)所示。(3分) 作弯矩图如图(f)所示。(4分)

注:此题用其他方法求解,如答案正确也给分。

23. 用位移法计算图示刚架,求出系数项及自由项。EI=常数。(14分)

解:典型方程 $k_{11}\Delta_1+F_{1p}=0$ (2分)

i = EI/4 $k_{11} = 8i$ $F_{1p} = -5kN \cdot m(2 \, \text{$\%$} \times 3)$

本の数据を重要等への の数数性を目標を の