Zillow Case

Predict the "LogError" Kaggle / Zillow Challenge

What are we predicting? This ...

$$logerror = log(Zestimate) - log(SalePrice)$$

$$logerror = log \left(\frac{Zestimate}{SalePrice} \right)$$

$$e^{logerror} = \frac{Zestimate}{SalePrice}$$

General Overview

- Initial Exploratory Data Analysis
- Data Cleaning/Imputation
- Further Exploratory Data Analysis
- Modeling

Missingness & Imputation

Missingness Percent:			
1 1 1			
airconditioningtypeid	architecturalstyletypeid	basementsqft	bathroomcnt
72.8154101	99.7969662	99.9454646	0.3839587
bedroomcnt	buildingclasstypeid	buildingqualitytypeid	calculatedbathnbr
	99.5769487	35.0637491	4.3183460
decktypeid	finishedfloor1squarefeet	calculatedfinishedsquarefeet	finishedsquarefeet12
99.4273113	93.2093044	1.8613387	9.2466645
finishedsquarefeet13	finishedsquarefeet15	finishedsquarefeet50	finishedsquarefeet6
99.7430003	93.6085718	93.2093044	99.2630017
fips	fireplacecnt	fullbathcnt	garagecarcnt
0.3831212	89.5271600	4.3183460	70.4119667
garagetotalsqft	hashottuborspa	heatingorsystemtypeid	latitude
70.4119667	97.6881413	39.4884526	0.3831212
longitude	lotsizesquarefeet	poolcnt	poolsizesum
0.3831212	9.2488754	82.6634379	99.0633847
pooltypeid10	pooltypeid2	pooltypeid7	propertycountylandusecode
98.7626025	98.9255387	83.7378991	0.4112599
propertylandusetypeid	propertyzoningdesc	rawcensustractandblock	regionidcity
0.3831212	33.7190898	0.3831212	2.1052071
regionidcounty	regionidneighborhood	regionidzip	rooment
1	61.2623806	0.4683077	0.3843942
storytypeid	threequarterbathnbr	typeconstructiontypeid	unitcnt
99.9455986	89.5608594	99.7739863	33.7572444
yardbuildingsqft17	yardbuildingsqft26	yearbuilt	numberofstories
1 97.3082359	99.9113297	2.0074923	77.1517782
fireplaceflag	structuretaxvaluedollarcnt	taxvaluedollarcnt	assessmentyear
99.8270477	1.8418092	1.4253570	0.3831882
landtaxvaluedollarcnt	taxamount	taxdelinquencyflag	taxdelinquencyyear
2.2689473	1.0468251	98.1086132	98.1085462
censustractandblock			
2.5166010			

Is Anything Not Missing Values?

Missingness & Imputation md.package() relationships

```
full %>% select(regionidcity, latitude, longitude, fips,
                regionidcounty, regionidneighborhood, regionidzip) %>% md.pattern() #
                              fips regionidcounty regionidzip regionidcity regionidneighborhood
           latitude longitude
## 1156377
## 1765541
                                                                                                         1
     49444
       496
      1966
     11437
                        11437 11437
                                             11437
                                                          13980
                                                                       62847
                                                                                           1828884 1951459
              11437
```

	calculatedfinishedsquarefeet	finishedsquarefeet12	finishedsquarefeet50	fi ni shedsquarefeet15	logerror	finishedsquarefeets f	finishedsauarefeet13	
5	1	a cresciz	1	1	1	a a	a second	3
5054	1		:	1				3
6851	1	1	1	0	1	0	0	3
4	1	1	1	1	2	0	9	3
421	1	0	2	0	1	1	9	4
3559	1	0	8	1	1	0	9	4
33	1	0	2	0	1	ø	1	4
78745	1	1	2	9	1	0	9	4
370	1	Ø	1	1	8	0	9	4
195493	1	1	1	0	8	ø	а	4
21582	1	0	2	0	0	1	9	5
186869	1	0	3	1	8	Ø	9	5
7639	1	Ø	8	9	8	Ø	1	5
2428202	1	1	8	0	8	ø	9	5
661	0	0	8	0	1	0	9	6
			-					

Missingness & Imputation Correlations - Visually

Missingness & Imputation Correlations - Visually

Looks Correlated - LM() Imputations?

```
fips.impute.model <- lm(fips ~ regionidcity, data=full)
summary(fips.impute.model)
## Call:
## lm(formula = fips ~ regionidcity, data = full)
## Residuals:
     Min
             10 Median
                                 Max
## -11.72 -11.54 -10.88 10.64 63.28
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.049e+03 1.443e-02 419197.17 <2e-16 ***
## regionidcity -1.985e-05 2.341e-07
                                         -84.76 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20.3 on 2922493 degrees of freedom
     (62847 observations deleted due to missingness)
## Multiple R-squared: 0.002452, Adjusted R-squared: 0.002452
## F-statistic: 7185 on 1 and 2922493 DF, p-value: < 2.2e-16
fips.impute.model <- lm(latitude ~ regionidcity, data=full)</pre>
summary(fips.impute.model)
## Call:
```

lm(formula = latitude ~ regionidaity data = full)

- P-Values looked good
- R^2 usually crap:

R-squared: 9.404e-07

Looks Correlated - LM() Imputations?

- Tax amount ~ taxvaluedollarcnt
- R^2 about 90%

```
100
332
    #An imputation for taxamount from taxvaluedollarcnt (may include landvaluedollarcnt later)
    lm1 = lm(formula = taxamount ~ taxvaluedollarcnt, data = full)
334
335
    ## test results for above model:
336
    # Call:
337
        lm(formula = taxamount ~ taxvaluedollarcnt, data = full)
38
    # Residuals:
339
        Min
                 1Q Median
                                 30
                                        Max
340
    # -862470
                 -349
                         -134
                                 103 1871995
341
    # Coefficients:
342
    # Estimate Std. Error t value Pr(>|t|)
343
    # (Intercept)
                        2.411e+02 1.957e+00 123.2
344
   # taxvaluedollarcnt 1.229e-02 2.368e-06 5192.8 <2e-16 ***
345
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
B46
847
    # Residual standard error: 2883 on 2930063 degrees of freedom
348
    # (55152 observations deleted due to missingness)
    # Multiple R-squared: 0.902, Adjusted R-squared: 0.902
349
B50
    # F-statistic: 2.697e+07 on 1 and 2930063 DF, p-value: < 2.2e-16
```

Looking At The "Log" in LogError

Logerror

exp(logerror)

log(logerror)

The real relationship:

Missingness as an explanatory variable?

Year Built vs Absolute Value of Log Error

Multivariate Outliers/ Inaccurate Data

- Even when values were NOT missing, many of them were baffling- to the point of seeming wildly inaccurate (or being extreme outliers.)
- IF these values can be eliminated from the training process, maybe predictive accuracy will increase?
- Examples?

Multivariate Outliers/ Inaccurate Data

	parcelid [‡]	$bathroomcn\hat{t}$	bedroomcnît	logerror
1	12325767	20	0	NA
2	12875313	20	0	NA
3	10875978	20	0	NA
4	11843438	20	0	NA
5	12718575	20	0	NA

20 bathrooms 0 bedrooms

	parcelid [‡]	bathroomcnt	bedroomcnt	roomcnt	fireplacecnt	$poolcn \hat{\bar{t}}$	taxamount	$land tax value dollar cn \hat{\overline{t}}$	logerror
1	14167696	0	0	0	1	1	97.7	11151	NA
2	14167459	0	0	0	1	1	97.7	6700	NA

Who needs rooms when you have a fireplace AND a pool??

Uni Plot

(Univariate Presentation of Multivariate Outliers)

The Models

- Linear
- Linear with transformation (Yeo-Johnson)
- Regularization (Ridge / Lasso / Elastic Net)
- RandomForest
- Gradient Boosting
- XGBoost

Will's "Stupid Regression"

Will's "Stupid Regression"

```
Residuals:

Min 1Q Median 3Q Max
-4.6189 -0.0368 -0.0057 0.0270 4.7176

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.272e-01 4.499e-02 -2.827 0.0047 **

calculatedfinishedsquarefeet 6.333e-06 5.881e-07 10.770 <2e-16 ***

yearbuilt 6.474e-05 2.296e-05 2.820 0.0048 **
---

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1

Residual standard error: 0.1595 on 89503 degrees of freedom
```

Multiple R-squared: 0.001597, Adjusted R-squared: 0.001575 F-statistic: 71.6 on 2 and 89503 DF, p-value: < 2.2e-16

Linear Models

- Linearity violated
- Constant variance violated
- Normality violated

What about transformation?

We have negative values, and Box-Cox cannot take those

.

Yeo-Johnson Transformation

- Works very similarly to Box-Cox but CAN handle negative values
- Slight improvement, but still not great (did not improve the "stupid regression")

Regularization Regressions

- Performed Ridge, Lasso, and Elastic Net Regressions (mix of L1 and L2 penalties)
- n-folds = 10 for cross-validation
- Elastic Net, (after multiple "R-bombs"), yielded an optimal α of ~0.01 through cross-validation, which is essentially Ridge.

Ridge Regression

Optimal $\lambda \sim 0.446$

n-folds = 10

One of the better Kaggle Scores!!

(Did not top Will's "stupid multi regression")

MAE = 0.0649250

4

Random Forest

GBM Caret Tune

```
gridSearch <- trainControl(method = "cv",</pre>
                            number = 3,
                            summaryFunction = maeSummary,
                           verboseIter = TRUE)
gbmGrid <- expand.grid(interaction.depth = c(11,15,19),
                      n.trees = (11:20)*50,
                        shrinkage = c(.001),
                        n.minobsinnode = c(5,10)
set.seed(0)
gbmFit4 <- train(logerror ~ . - propertycountylandusecode,</pre>
                 data = full.train1,
                 method = "gbm",
                 preProcess = c("center", "scale"),
                 metric = "MAE",
                 maximize = FALSE,
                 tuneGrid = gbmGrid,
                 trControl = gridSearch,
                 verbose = FALSE)
```



```
n.trees interaction.depth shrinkage n.minobsinnode
57 850 19 0.001 10
```

Gradient Boosted Model

submit_7.csv

3 days ago by WillMarkowitz

GBM

0.0649035

XGBoost Caret Tune

```
cv.ctrl <- trainControl(method = "cv", number = 4,</pre>
                        classProbs = TRUE,
                        summaryFunction = maeSummary,
                        verboseIter = TRUE,
                        allowParallel-T)
ntrees - 100
xgbGrid <- expand.grid( #Owen Zhang parameter tuning slides</pre>
  eta = (2:10)/ntrees, #learning rate
 max_{depth} = c(4,6,8,10),
 nrounds = ntrees,
                           #default=0
  gamma = 0,
 colsample bytree = c(.4, .6, .8, 1),
                                         #default=1
 min_child_weight = c(1,3,5), #default=1
  subsample - c(.5, .75, 1)
set.seed(45)
xgb_tune <-train(logerror ~ . -propertycountylandusecode-numberofstories,</pre>
                 data=small.full.train1,
                 method="kgbTree",
                 trControl=cv.ctrl,
                 tuneGrid=xgbGrid,
                 verbose-T.
                 verboseIter - T.
                 #preProcess = c("center", "scale"),
                 metric="MAE",
                 maximize = FALSE
                 #objective = 'reg:linear',
```

XGBoost Importance

submit_xgb_2.csv

0.0649232

12 hours ago by WillMarkowitz

add submission details

Best Kaggle Score

```
#stupid multi regression
lr1 <- lm(logerror ~ calculatedfinishedsquarefeet + yearbuilt, data=full)
```

+ GBM

=

1297 **A** 82 **WillMarkowitz** 0.0648091 8 ~10s

Your Best Entry ↑

You advanced 95 places on the leaderboard!

Your submission scored 0.0648091, which is an improvement of your previous score of 0.0648835. Great job!

Future Work

- Explore why Linear Model did so well
- Run XGBoost on columns with less imputation
- Model Ensembling
- Techniques that require more computing power (ex: KNN, LOESS)