Q5: Let $f: C_{max} \to C_{int}$ by the identity function. It is clearly a bijection, since the sets C_{max} and C_{int} are identical as sets, only differing by the metric on them. We see f is also linear, since if $g, h \in C_{max}, \lambda \in \mathbb{R}$ we see $f(\lambda g + h) = \lambda g + h = \lambda f(g) + f(h)$. It remains to show that it is continuous. Let $\varepsilon > 0$, and take any $\delta < \varepsilon$. We see that

$$max(|f(x) - g(x)|) < \delta \implies \int_0^1 |f(x) - g(x)| \le \int_0^1 \delta = \delta < \varepsilon$$

Hence the identity mapping is continuous. We now claim that the inverse map $f^{-1}: C_{int} \to C_{max}$ is not continuous. Take $f = 0, g(x) = \frac{1}{(x+1)^n}$ for some $n \in \mathbb{N}$. Notice that f and g are both continuous on [0,1]. Take $\varepsilon = 1$, and $\delta > 0$ We notice that $\max(|f(x) - g(x)|) = 1$ regardless of our choice of n, with the maximum occurring at x = 0. Note as well that

$$\int_0^1 |0 - \frac{1}{(x+1)^n}| dx = \int_0^1 \frac{1}{(x+1)^n} dx$$
$$= \frac{2^n - 2}{(n-1)2^n}$$
$$= \frac{(1-2^{n-1})}{(n-1)}$$

We can make the quantity $\frac{(1-2^{n-1})}{(n-1)} < \delta$ for sufficiently large n. Hence f^{-1} is not continuous.