Mason Competitive Cyber

Cryptography

News since last meeting

- Equifax CEO Richard Smith "retires"
 - Massive Equifax Hack exposing a ton of PII
- Verizon accidentally exposed data on S3
 - Server logs
 - Credentials
- nRansomware
 - Send nudes instead of bitcoin

Upcoming CTFs & Events

- Sam (of Kudu Dynamics) on CSAW CTF 2017 problems
 - Guest speaking
 - Now
 - Johnson Center Meeting Room G
- DefCamp CTF Quals
 - September 30 8am to October 1, 8am
 - Online
- Capital One Wargame
 - October 3, 6pm to 9pm
 - 1680 Capital One Drive, McLean VA
 - In-person
 - teams?

Cryptography

- Way of securing information so it's only readable by intended recipient
- Category in almost every CTF
 - Simple ciphers
 - Related: steganography
 - XOR
 - RSA

Terms

- Plaintext, sometimes called clear text (p) = the message
- Ciphertext (c) = the disguised message
- Encrypt = plaintext -> ciphertext
- Decrypt = ciphertext -> plaintext
- Key (k) = in symmetric crypto, information needed to encrypt and/or decrypt

Codes

- Codes are made to present information differently, not meant to be secure
 - Binary 01
 - Morse . -
 - Hex 0-1 a-f
 - Base64 length divisible by 4, sometimes has "=" at the end
- In medium difficulty problems, could be multiple codes/ciphers
- In harder problems, data is often hex encoded

Simple Ciphers

- Ciphertool.py
 - Our tool to solve simple ciphers
 - On our github
- Caesar
 - Rotate letters in alphabet
 - a->c b->d c->e
- Breaking Caesar
 - Brute force (try all combinations) 25
 - ciphertool

Simple Ciphers

- Substitution cipher
 - Like caesar except no rotation
 - Pick randomly which letters to substitute
 a->z
 b->c
- Breaking substitution
 - can't brute force
 - frequency analysis
 - quipqiup

XOR

- Exclusive OR
- Used in One Time Pad (OTP)
 - p⊕k = c
 - c⊕k = p
 - Theoretically impossible to crack
 - Impractical

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS
А	В	Y=A⊕B
0	0	0 9
0	1	1
1	0	1
1	1	0

Super Fast Binary Refresher

- Bit = 0 or 1
- Byte = 8 bits

Bin	ary	Decimal
000	00000	0
000	00001	1
000	00010	2
000	00100	4
000	00011	3
000	00101	5
111	11111	255

Single Bit XOR

- Bit = 0 or 1
- Byte = 8 bits
- Key repeats if shorter than the message
- Single bit XOR (with k=1)

p: MCC

p: 01101101 01100011 01100011

k: 11111111 11111111 11111111

c: 10010010 10011100 10011100

 $p \oplus k = c$

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS
А	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Single Bit XOR

Breaking single bit XOR
 c: 10010010 10011100 10011100

$$p \oplus k = c$$

 $c \oplus k = p$

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS
А	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Breaking Single Bit XOR

 Since key is a bit, and bit can only be 0 or 1, brute force by trying k=0 and k=1

c: 10010010 10011100 10011100

k: 00000000 00000000 00000000

p: 10010010 10011100 10011100

p: 'œœ

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS	
А	В	Y=A⊕B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Breaking Single Bit XOR

 Since key is a bit, and bit can only be 0 or 1, brute force by trying k=0 and k=1

c: 10010010 10011100 10011100

k: 11111111 11111111 11111111

p: 01101101 01100011 01100011

p: MCC

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS	
А	В	Y=A⊕B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Single Byte XOR

- Byte = 8 bits
- Bit = 0 or 1
- Key repeats if shorter than the message
- Single byte XOR (with k=29)

p: MCC

p: 01101101 01100011 01100011

k: 00011101 00011101 00011101

c: 01110000 01111110 01111110

 $p \oplus k = c$

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS
А	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Breaking Single Byte XOR

- Byte = 8 bits
 - 255 possible keys
- Single byte XOR
 c: 01110000 01111110 01111110

c⊕**k** = **p**

Table 5.8: Truth table for XOR Gate

INPUTS		OUTPUTS	
А	В	Y=A⊕B	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Breaking Single Byte XOR

- Byte = 8 bits
 - 255 possible keys
- Single byte XOR
 c: 01110000 01111110 01111110
- Brute force (try all 255)
- Score plaintexts
 - Can't search for "ctf" or "flag"
 - Score = how many valid characters in p

Breaking Single Byte XOR


```
def main():
21
         best = ""
22
23
         b = 0
24
25
         # bruteforcing all possible values
         for i in range(1, 256):
26
             c = xor(sys.argv[1].decode('hex'), chr(i))
27
             if score(c) > b:
28
                 b = score(c)
29
30
                 best = c
31
         print "Plaintext: {}".format(best)
32
```

Challenges

- go.gmu.edu/basic 4
- Training CTF
 - Up all the time from now on
 - t2.micro instance (read: slow)
 - go.gmu.edu/tctf
 - flag format: masoncc{flag}

Proud Sponsors

Thank you to these organizations who give us their support:

It can be done™