WORKING WITH BIG DATA IN POLITICAL SCIENCE

An introduction to using Google's BigQuery with R

WHAT PROBLEM ARE WE SOLVING?

- Truly big data
 - Need to work outside of your computer's memory
- Need a tool that helps you store, manage, and work with these data
- Don't want to learn a whole new language

BIGQUERY

What is Google's BigQuery?

- Serverless data warehouse
- Built-in query engine

bigrquery

R package that allows you to work with data stored in BigQuery through R.

To install:

```
1 install.packages(c("bigrquery", "DBI", "dplyr"))
```

To load into your current session:

```
1 library(bigrquery)
2 library(DBI)
3 library(dplyr)
```

HOW TO STORE YOUR DATA

BigQuery is hierarchical:

- **Tables** are stored in:
 - Datasets, which are stored in:
 - Projects.

HOW TO STORE YOUR DATA

TABLES

TABLES

bilat_trade_hs	Q QUERY -	* SHARE	COPY	■ SNAPSHOT	DELETE	≜ EXPORT ▼	C
SCHEMA DETAILS	PREVIEW	LINEAGE	DATA PROFILE	DATA QUALIT	Υ		
Partitioned on field	year						
Partition expiration	Partitions do not expire)					
Partition filter	Not required						
Storage info @	000117001						
Number of rows	283,167,024						
Number of partitions	16						
Total logical bytes	23.06 GB						
Active logical bytes	0 B						
Long term logical bytes	23.06 GB						
Total physical bytes	5.31 GB						
Active physical bytes	0 B						
Long term physical bytes	5.31 GB						
Time travel physical bytes	0 B						

TABLES

⊞ bil	at_trade_hs	. Q QUERY -	+ SHARE	COPY	± SNAPSHOT i	DELETE 🗘	EXPORT ▼	G
SCHEMA DETAILS PREVIEW LINEAGE DATA PROFILE DATA QUALITY								
Row	year	cmd_code	flow_cod	е	reporter_code	partner_code	reporter_partner	partn
1	2020-01-01	999999	М		4	32	nuli	91
2	2020-01-01	240220	М		4	51	nuli	33:
3	2020-01-01	240399	М		4	51	nuli	
4	2020-01-01	854449	М		4	36	nuli	9
5	2020-01-01	180632	М		4	36	nuli	
6	2020-01-01	300510	М		4	36	nuli	4
7	2020-01-01	300650	М		4	36	nuli	
8	2020-01-01	300230	М		4	36	nuli	
9	2020-01-01	870899	М		4	36	nuli	
10	2020-01-01	950699	М		4	36	nuli	
11	2020-01-01	630790	М		4	36	nuli	
12	2020-01-01	630590	М		4	36	nuli	
13	2020-01-01	902519	М		4	36	nuli	
14	2020-01-01	902140	М		4	36	nuli	
15	2020-01-01	392330	М		4	36	nuli	
			1		1			
			I	Results per page:	50 ▼ 1 − 50 0	of 283167024	< >	>1

UPLOADING YOUR DATA

We will step through uploading your data to BigQuery


```
1 library(bigrquery)
2 library(DBI)
3 library(dplyr)
```

List useful information:

```
1 selected_project <- "trade-dependence"
2 selected_dataset <- "bilatal_trade_hs6"</pre>
```

First, check that the table does not already exist:

[1] FALSE

Next, create the (empty) table:

```
bq_table_create(
bq_gdp_current,
fields = gdp_current,
friendly_name = "GDP (current USD)",
description = "The data was extracted from the World Bank."

bq_table_exists(bq_gdp_current)
```

[1] TRUE

Next, upload your data to that empty table:

```
1 bq_table_upload(bq_gdp_current, gdp_df)
```

WORKING WITH YOUR DATA

We will now step through how to work with big data out of your computer's memory

Let's collect data on Australia's GDP.

These data are stored in the trade-dependence project and the country_annual_information dataset.

```
1 selected_project <- "trade-dependence"
2 selected_dataset <- "country_annual_information"
3
4 con <- dbConnect(
5  bigrquery::bigquery(),
6  project = selected_project,
7  dataset = selected_dataset,
8  billing = selected_project
9 )
10
11 con</pre>
```

```
<BigQueryConnection>
  Dataset: trade-dependence.country_annual_information
  Billing: trade-dependence
```

Create the connection to the reporter_gdp table:

```
gdp df <- tbl(con, "reporter gdp")</pre>
  2 gdp_df
# Source: table<reporter qdp> [?? x 3]
# Database: BigQueryConnection
          reporter code reporter gdp current
   year
   <date>
                       <int>
                                             <dbl>
 1 2003-01-01
                          92
                                                NA
 2 2003-01-01
                         136
                                                NA
 3 2003-01-01
                         531
                                                NA
 4 2003-01-01
                         292
                                                NA
 5 2003-01-01
                         408
                                                NA
 6 2003-01-01
                         NA
                                                NA
 7 2003-01-01
                         520
                                                NA
 8 2003-01-01
                         534
                                                NA
 9 2003-01-01
                         706
                                                NA
10 2003-01-01
                         728
                                                NA
# i more rows
```

Query that table:

```
aus gdp <- gdp df |>
     filter(reporter_code == 36) |>
      collect()
  4
    aus_gdp
# A tibble: 23 \times 3
   year reporter code reporter qdp current
   <date>
                       <dbl>
                                            <dbl>
 1 2002-01-01
                          36
                                          3.96e11
 2 2018-01-01
                          36
                                          1.43e12
 3 2009-01-01
                          36
                                          9.29e11
 4 2011-01-01
                         36
                                          1.40e12
 5 2004-01-01
                         36
                                          6.14e11
 6 2021-01-01
                          36
                                          1.55e12
 7 2017-01-01
                         36
                                          1.33e12
 8 2008-01-01
                         36
                                          1.06e12
 9 2001-01-01
                         36
                                          3.79e11
10 2012-01-01
                          36
                                          1.55e12
# i 13 more rows
```

MOVING BETWEEN R AND BIGQUERY

R will write your SQL queries for you:

```
1 gdp_df |>
2  filter(reporter_code == 36) |>
3  show_query()

<SQL>
SELECT `reporter_gdp`.*
FROM `reporter_gdp`
WHERE (`reporter_code` = 36.0)
```

MOVING BETWEEN R AND BIGQUERY

You can perform that query in BigQuery's in-built query engine:

MOVING BETWEEN R AND BIGQUERY

You can perform that query in BigQuery's in-built query engine:

PERFORMING COMPLEX QUERIES

```
munge_alt_trade_value
                                              SAVE QUERY ▼ + SHARE ▼
                                                                               This query will process 905.8 MB when run.
   1 INSERT INTO trade-dependence.bilatal_trade_hs6.bilateral_trade_alt_values
  2 SELECT
  3
        `year`,
  4
       `cmd_code`,
       `flow_code`,
       `reporter_code`,
       `partner_code`,
  8
       SUM('alt_reporter_partner_value') AS 'alt_reporter_partner_value'.
       SUM('alt_partner_reporter_value') AS 'alt_partner_reporter_value',
       SUM('alt_lower_reported_value') AS 'alt_lower_reported_value',
  10
       SUM('alt_higher_reported_value') AS 'alt_higher_reported_value'
  11
  12 FROM (
       SELECT
 13
  14
         'LHS'.'year' AS 'year',
  15
         'LHS'.'cmd_code' AS 'cmd_code'.
         'LHS'.'flow_code' AS 'flow_code',
  16
  17
         `reporter_code`,
  18
         `partner_code`,
  19
         `alt_partner_code`,
  20
         `alt_partner_partner_code`,
 21
         `alt_reporter_partner_value`,
  22
         `alt_partner_reporter_value`.
  23
         `alt_lower_reported_value`,
  24
         `alt_higher_reported_value
       FROM (
  25
  26
         SELECT *
 27
         FROM (
 28
         SELECT 'year', 'cmd_code', 'flow_code', 'reporter_code', 'partner_code'
  29
         FROM `trade-dependence.bilatal_trade_hs6.bilat_trade_hs6_all`
  30
         WHERE ('reporter_code' != 'partner_code') AND ('year' = '2005-01-01')
 31
  32
       ) 'LHS'
  33
       LEFT JOIN (
  34
        SELECT
 35
           `year`,
  36
            `cmd_code`
  37
           CASE WHEN ('flow_code' = 'M') THEN 'X' WHEN NOT ('flow_code' = 'M') THEN 'M' END AS 'flow_code'.
```

NEXT STEPS

- Partitioning and clustering your datasets
 - Great for yearly, country-level data
- Integrated ML model-building