What are we weighting for?

A mechanistic model for probability weighting

Ole Peters Alexander Adamou Yonatan Berman Mark Kirstein

D-TEA 2020, 16 June 2020

Mathematisches Institut

Main Resul

Location and

Ergodicity

Estimatio

Conclusion

- 1 generic inverse-S shape can be explained by difference in uncertainty
- process of estimation of this uncertainty generates inverse-S shape

► PW K&T 1979

Mark Kirstein

Main Res

Probability Weighting

Scale of PDF:

Ergodicity Question

Estimatio

Conclusio

9.0 0.2 0.4 0.8 0.2 0.6

(Tversky and Kahneman 1992, p. 310, Fig. 1, relabelled axes)

Probability Weighting (PW)

- overestimation of rare events → underestimation of common events
- stable empirical pattern: inverse-S shape

Received wisdom:

 PW = maladaptive irrational cognitive bias

In search of a mechanism

- \hookrightarrow How does this pattern emerge?

Set up: A Thought Experiment

Disinterested Observer (DO)

DO has a model of the random variable X, e.g. payout of a gamble probabilities p(x) CDF $F_p(x)$

Decision Maker (DM)

DM has a different model of the same random variable X with greater uncertainty decision weights w(x) CDF $F_w(x)$

Manta Minakata

Main Resi

Probabilit

Location and

ErgodicitQuestion

Estimation

Conclusion

Types of Different Uncertainties

Mark Kirsteir

Main Resu

Probabili

Location and

Ergodicity

Estimation

Conclusion

Transmission of Different Uncertainty from PDF in CDF

Main Resul

Probabilit

Location and

Ergodicit

Estimation

Conclusion

Combining Difference in Location and Scale leads to Inverse S

Mark Kirstei

Main Resu

Location and

Ergodicity

Estimatio

c . .

Interim conclusion

- greater scale used by DM reproduces inverse-S shape
- differences in location and scale reproduce asymmetric inverse-S shape
- inverse-S shape whenever DM's assumes greater scale for a unimodal distribution
- Probability Weighting is the effect of a difference in uncertainty

Job done. Thank you for your attention;)

► Functional Forms

Maia Danile

.....

Location and

Ergodicity Question

Estimatio

Conclus

Asking the Ergodicity Question

DO's concern

What happens on average to the ensemble of subjects?

DM's concern

What happens to me on average over finite time?

- DM's adaptive/ecological rationality = survival, i.e. evolutionary incentive to err on the side of caution
- ightarrow add more uncertainty to his model

Main Resu

Location and

Ergodicity Question

Estimatio

Conclusi

Extra Uncertainty is Part of DM's Inference Problem

- "probability" is polysemous (Gigerenzer 1991, 2018; Hertwig and Gigerenzer 1999)
- probabilities are not observable, but
- DM experiences a trajectory of events and
- counts of (rare) events are observable
- \hookrightarrow **DM's inference problem:** estimate probability p(x) from counts

Furthermore

- DM has no control over the experiment,
- DM's incomplete comprehension of the experiment/decision problem,
- DM needs to trust the DO
- uncertain outcome is consequential only to the DM,
- . . .

Question

Nature of Inference for Rare Events

Rare Event

- asymptotic probability p(x) = 0.001
- time series of 100 observations
- $\sim 99.5\%$ of such time series will contain 0 or 1 events
- Naïve estimation: $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.0$, *i.e.* either impossible or ten times more frequently than actual frequency

Common Event

- asymptotic probability p = 0.5
- time series of 100 observations
- \sim 99.5% of time series would contain between 35 and 65 events,
- leading to a much smaller relative error in probability estimates

- \hookrightarrow the smaller p(x) the smaller the count of it in a finite time series
- \hookrightarrow the bigger the relative estimation error

Main Resul Probability

Location and Scale of PDFs

Ergodicity Question

Estimatio

Relative Estimation Error is Larger for Rarer Events

relative estimation errors scales like $1/\sqrt{\text{count}}$

Asymptotic probability	Most likely count	Standard error in count	Standard error in probability	Relative error in probability
0.1	1000	32	0.003	3%
0.01	100	10	0.001	10%
0.001	10	3	0.0003	30%
0.0001	1	1	0.0001	100%

Table: This table assumes T=10000 observed time intervals. To be read as follows (first line): for an event of asymptotic probability 0.1, the most likely count in 10000 trials is 1000. Assuming Poisson statistics, this comes with an estimation error of $\sqrt{1000}=32$ in the count and 32/10000=0.003 in the probability, which is 0.003/0.1=3% of the asymptotic probability.

Probabilit

Location and Scale of PDF

Ergodicity Question

Estimatio

Conclusi

Ergodicity Economics explains probability weighting

- we find an inverse-S shape as a neutral indicator of a difference in opinion
- we find that quite generally the relative uncertainties are larger for rare events than for common events, which generates the inverse-S shape
- → Probability weighting is rational cautious behaviour under uncertainty
 - See full paper at bit.ly/lml-pw-r1
 - links to play with the code are inside

Reference

Thank you for your attention!

I'm looking forward to the discussion Comments & questions are very welcome, here or to

m.kirstein@lml.org.uk

@nonergodicMark

Submit an open peer review to this paper on bit.ly/lml-pw-r1

Back Up References

BACK UP

Back Up Reference

Probability Weighting as an Estimation Issue

"It is important to distinguish overweighting, which refers to a property of decision weights, from the overestimation that is commonly found in the assessment of the probability of rare events. [...] In many real-life situations, overestimation and overweighting may both operate to increase the impact of rare events." (Kahneman and Tversky 1979, p. 281)

- - uncertainty estimation and
 - "weighting"

we analyse the former and find very good agreement with the empirical inverse-S pattern

→ How big is the residual "probability weighting" after accounting for uncertainty estimation?

Estimation Error Explains 99% of Probability Weighting

0.2

0.4

 $CDF F_p$

• similar fits of our Gaussian & t-distributed model

0.6

0.8

Tversky & Kahneman (1992)

→ How big is the residual "probability weighting" after accounting for estimation errors?

1.0

0.0

0.0

Functional Forms Gaussian

Tversky and Kahneman (1992, $\gamma=0.68$)

$$\tilde{F}_{w}^{TK}\left(F_{\rho};\gamma\right) = \left(F_{\rho}\right)^{\gamma} \frac{1}{\left[\left(F_{\rho}\right)^{\gamma} + \left(1 - F_{\rho}\right)^{\gamma}\right]^{1/\gamma}} \tag{1}$$

Lattimore, Baker, and Witte (1992)

$$\tilde{F}_{w}^{L}\left(F_{p};\delta,\gamma\right) = \frac{\delta F_{p}^{\gamma}}{\delta F_{p}^{\gamma} + \left(1 - F_{p}\right)^{\gamma}}\tag{2}$$

We derive decision weight as a function of probability with $(\alpha\sigma)^2$ as the DM's scale

$$w(p) = \rho^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} , \qquad (3)$$

which is a power law in p with a pre-factor to ensure normalisation

Back Up

Different shapes

Numerically, our procedure can be applied to arbitrary distributions:

- construct a list of values for the CDF assumed by the DO, $F_p(x)$
- 2 construct a list of values for the CDF assumed by the DM, $F_w(x)$
- 3 plot $F_w(x)$ vs. $F_p(x)$
- inverse-S arises for all unimodal distributions
- To illustrate the generality of the procedure, we carry it out for Student's (power-law tailed) t-distributions, where DO and DM use different shape parameters and different locations

Effect of Different Scales with Heavy-Tailed t-Distributions Gaussian

Linking Probability Weighting to Relative Uncertainties

Decision weight w is the normalised sum of the probability p(x) and its uncertainty $\varepsilon[p(x)]$

$$w(x) = \frac{p(x) + \varepsilon \left[p(x) \right]}{\int_{-\infty}^{\infty} \left(p(s) + \varepsilon \left[p(s) \right] \right) ds} . \tag{4}$$

This can be expressed as

$$w(x) = p(x) \left(\frac{1 + \frac{\varepsilon[p(x)]}{p(x)}}{\int_{-\infty}^{\infty} p(s) \left\{ 1 + \frac{\varepsilon[p(s)]}{p(s)} \right\} ds} \right) , \qquad (5)$$

where $\frac{\varepsilon[p(x)]}{\rho(x)}$ is the relative error, which is large (small) for small (large) probabilities In the long-time limit $w(x) \rightarrow p(x)$

Gigerenzer, Gerd (2018). "The Bias Bias in Behavioral Economics". Review of Behavioral Economics 5 (3-4), pp. 303–336. DOI:10.1561/105.00000092 (cit. on p. 10).

Gigerenzer, Gerd (1991). "How to Make Cognitive Illusions Disappear: Beyond "Heuristics and

Hertwig, Ralph and Gerd Gigerenzer (1999). "The 'conjunction fallacy' revisited: how intelligent inferences look like reasoning errors". Journal of Behavioral Decision Making 12 (4), pp. 275–305. DOI:10.1002/(sici)1099-0771(199912)12:4;275::aid-bdm323;3.0.co;2-m (cit. on p. 10).

Kahneman, Daniel and Amos Tversky (1979). "Prospect Theory: An Analysis of Decision under Risk". Econometrica 47 (2), pp. 263-291. DOI:10.2307/1914185 (cit. on p. 16).

Lattimore, Pamela K., Joanna R. Baker, and A. Dryden Witte (1992). "Influence of Probability on Risky Choice: A Parametric Examination". Journal of Economic Behavior and Organization 17 (3). pp. 377-400. DOI:10.1016/S0167-2681(95)90015-2 (cit. on p. 18).

Tversky, Amos and Daniel Kahneman (1992). "Advances in Prospect Theory: Cumulative Representation of Uncertainty". Journal of Risk and Uncertainty 5 (4), pp. 297–323. DOI:10.1007/BF00122574 (cit. on pp. 3, 18).