Estimates on the convergence of expansions at finite baryon chemical potentials

Shi Yin

Justus-Liebig-Universität Gießen Institut für Theoretische Physik

Based on arXiv:2403.06770

Outline

- Introduction
 - QCD phase structure
 - Extrapolation to finite density
- EoS from fRG
 - Polyakov-Quark-Meson (PQM) Model
 - Comparison of different Expansion methods
- Summary

QCD phase structure

Experiments:

- LHC Experiments at low density
- RHIC Beam Energy Scan at finite density
- ...

Goals:

- Location of Critical End Point (CEP)
- New phases at high density region
- EoS
- ...

Nucl. Tech. 46 (2023) 04, 040002-040002

Theoretical predictions

- Lattice QCD (at vanishing chemical potential)
- Dyson-Schwinger Equations (DSE)
- Functional renormalization group (fRG)

•

QCD phase diagram (fQCD 2025)

Well known Advantages & Disadvantages

Lattice:

- Reliable at 0 chemical potential
- Expansion methods are needed to reach finite density

- Making reasonable use of reliable vanishing chemical potential results
- Attempt to reach higher chemical potentials

Functional methods:

- Can compute at finite density
- Have to use truncations to prevent an infinite number of loop diagrams

Extrapolation to finite density

Taylor Expansion of the pressure:

$$\frac{p(T,\hat{\mu}_B) - p(T,0)}{T^4} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \chi_{2n}^B(T,0) \,\hat{\mu}_B^{2n} \tag{1}$$

HotQCD:

WB:

180 200 220 240

Extrapolation to finite density

Padé approximation:

$$P[m,n] = \frac{p(T,\hat{\mu}_B) - p(T,0)}{T^4} = \frac{\sum_{i=1}^{n/2} a_i \; \hat{\mu}_B^{2i}}{1 + \sum_{i=1}^{m/2} b_i \; \hat{\mu}_B^{2j}}$$
(2)

Here the coefficients a_i and b_i are determined by

$$\frac{\partial^{i} P[m, n]}{\partial \hat{\mu}_{B}^{i}} = \chi_{i}^{B} \tag{3}$$

- When m = 0 the Padé approximation will go back to Taylor expansion
- The poles of Padé approximation can be used to estimate the convergence radius of Taylor expansion

Extrapolation to finite density

Ratio estimator: (the pole of P[2,n])

$$r_{c,2n}^{\text{ratio}} = \left| \frac{(2n+1)(2n+2)\chi_{2n}^B}{\chi_{2n+2}^B} \right|^{\frac{1}{2}}$$
 (4)

Mercer-Roberts estimator: (the pole of P[4,n])

$$r_{c,2n}^{\text{MR}} = \left| \left[\frac{\chi_{2n+2}^B \chi_{2n-2}^B}{(2n+2)!(2n-2)!} - \left(\frac{\chi_{2n}^B}{(2n)!} \right)^2 \right] \right|^{\frac{1}{4}} \left| \left[\frac{\chi_{2n}^B \chi_{2n+4}^B}{(2n)!(2n+4)!} - \left(\frac{\chi_{2n+2}^B}{(2n+2)!} \right)^2 \right] \right|^{-\frac{1}{4}}$$
(5)

- The estimators are given by the poles of the Padé approximation
- They can give a approximation convergence radius of Taylor expansion

4 D > 4 A > 4 E > 4 E > 5 E = 4 O O O

Extrapolation to finite density

T' expansion:

$$\frac{\chi_1^B(T,\hat{\mu}_B)}{\hat{\mu}_B} = \chi_2^B(T',0)$$
 (6)

$$T'(T, \hat{\mu}_B) = T\left(1 + \kappa_2(T)\,\hat{\mu}_B^2 + \kappa_4(T)\,\hat{\mu}_B^4 + \mathcal{O}(\hat{\mu}_B^6)\right) \tag{7}$$

Outline

- Introduction
 - QCD phase structure
 - Extrapolation to finite density
- EoS from fRG
 - Polyakov-Quark-Meson (PQM) Model
 - Comparison of different Expansion methods
- Summary

Polyakov-Quark-Meson (PQM) Model

Effective action:

$$\Gamma_{k} = \int_{x} \left\{ Z_{q} \,\bar{q} \left[\gamma_{\mu} \partial_{\mu} - \gamma_{0} (\mu + igA_{0}) \right] q + \frac{1}{2} Z_{\phi} \left(\partial_{\mu} \phi \right)^{2} + h \,\bar{q} (T^{0} \sigma + i \gamma_{5} \,\vec{T} \cdot \vec{\pi}) + V_{k}(\rho) - c\sigma + V_{\text{glue}}(L, \bar{L}) \right\}$$
(8)

Here we use Local potential approximation (LPA):

$$\partial_t Z_{q/\phi} = 0 \tag{9}$$

$$\partial_t h = 0 \tag{10}$$

We only consider a simple computation of the Grand potential.

S. Yin (JLU) EoS from fRG Polyakov-Quark-Meson (PQM) Model

Effective potential

Flow equation of effective potential:

$$\partial_t V_k(\rho) = \frac{k^4}{4\pi^2} \left[3 l_0^{(B)}(m_\pi^2; T) + l_0^{(B)}(m_\sigma^2; T) - 4N_c N_f l_0^{(F)}(m_f^2; \mu, T) \right]$$
(11)

The fermion loop for real and imaginary chemical potential

$$I_0^{(F)}(m_f^2; \mu, T) = \frac{k}{3\sqrt{k^2 + m_f^2}} \left(1 - n_F(m_f^2; \mu, T; L, \bar{L}) - \bar{n}_F(m_f^2; -\mu, T; L, \bar{L}) \right)$$
(12)

$$=\frac{k}{3\sqrt{k^2+m_e^2}}\left(1-2\operatorname{Re}\left(n_F(m_f^2;\mu,T;L,\bar{L})\right)\right) \tag{13}$$

S. Yin (JLU) EoS from fRG Polyakov-Quark-Meson (PQM) Model

Equation of State

Pressure and Baryon number fluctuations:

$$p(T, \mu) = -\Omega(\mu, T) \tag{14}$$

$$\chi_n^B = \frac{\partial^n}{\partial \hat{\mu}_B^n} \frac{p}{T^4}, \qquad \hat{\mu}_B = \frac{\mu_B}{T}$$
 (15)

$$R_{m,n}^B = \frac{\chi_m^B}{\chi_n^B} \tag{16}$$

 The baryon number fluctuations at vanishing chemical potential can be used as Taylor coefficients

Phys.Rev.D 104 (2021) 9, 094047

S. Yin (JLU) EoS from fRG Polyakov-Quark-Meson (PQM) Model

Equation of State

• The baryon number fluctuations can be computed up to (at least) the 10th order

Phys.Rev.D 104 (2021) 9, 094047

Comparison of different Expansion methods

- Direct calculation vs. Taylor expansion of R_{42}^B
- The R_{42}^B around T_{pc} exhibits strong fluctuations at high chemical potential, which are difficult to capture with a finite-order Taylor expansion.

Comparison of different Expansion methods

- arXiv: 2403.06770
- Directly compute at imaginary chemical potential
- Apply the T' expansion to perform extrapolation

Comparison of different Expansion methods

T' Expansion

$$T' = T \left(1 + \kappa_2^B(T) \,\hat{\mu}_B^2 + \kappa_4^B(T) \,\hat{\mu}_B^4 + \kappa_6^B(T) \,\hat{\mu}_B^6 + \cdots \right)$$
(17)

arXiv: 2403.06770

Comparison of different Expansion methods

Comparison of different Expansion methods

Comparison of different Expansion methods

arXiv: 2403.06770

FoS from fRG

Outline

- Introduction
 - QCD phase structure
 - Extrapolation to finite density
- EoS from fRG
 - Polyakov-Quark-Meson (PQM) Model
 - Comparison of different Expansion methods
- Summary

Mention your findings here.

Happy TEXing!

Mention your findings here.

Happy TEXing!

References I

Outline

Appendix I

6 Appendix II

Appendix I: Title

Remark

This is what an appendix would look like. It utilises the same structure as the rest of the presentation (section, subsection, subsubsection, etc).

Example

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Outline

4 Appendix I

6 Appendix II

Appendix II: Title

Relevant Title

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi.

Example of Appendix II

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.