

Universidade Tecnológica Federal do Paraná Departamento Acadêmico de Computação Bacharelado em Ciência da Computação

Sistemas Operacionais

Impasse e Inanição

Prof. Rodrigo Campiolo

23/10/19

Introdução

Recursos

- Exemplos de recursos: área de memória, impressora, estrutura de dados.
- Processos precisam de acesso a recursos em uma determinada ordem.
- Exemplo de problema:
 - Processo P está usando um recurso A.
 - Processo Q está usando um recurso B.
 - Processo Q solicita o recurso A e é bloqueado.
 - Processo P solicita o recurso B e é bloqueado.

Introdução

- Definições
 - Impasse (**Deadlock**)
 - Dois ou mais processos aguardam eventos que dependem dos outros processos.
 - Inanição ou adiamento indefinido (Starvation)
 - Um processo é negligenciado continuamente pelo escalonador, assim não consegue proceder sua execução.

Livelock

 Dois ou mais processos alteram seus estados continuamente sem fazer trabalho útil em função de alterações de outros processos.

Definição formal (Tanenbaum):

Um conjunto de processos estará em situação de impasse se cada processo no conjunto estiver esperando por um evento que apenas outro processo no conjunto pode causar.

• Exemplo:

Impasse na transferência entre contas

Fonte: Maziero

- Quatro condições obrigatórias:
 - Exclusão mútua
 - Todo recurso está associado exclusivamente a um processo.
 - Posse e espera
 - Processos podem manter recursos e solicitar novos recursos.
 - Não preempção
 - Recursos não podem ser preemptados, isto é, tomados de um processo.
 - Espera circular
 - Processos formam uma cadeia circular de posse e espera por um recurso.

Grafo de Alocação de Recursos

Grafos de alocação de recursos:

- (a) processo de posse de um recurso.
- (b) Solicitação de um recurso.
- (c) Impasse.

Fonte: Tanenbaum

Impasses - Questão?

Observando o grafo, há um impasse?

t: tarefa

r: recurso

- Técnicas de tratamento de impasses
 - Algoritmo do Avestruz
 - Prevenção de impasses
 - Negar ao menos uma das condições de impasse.
 - Evitação de impasses
 - Alocar cuidadosamente os recursos para evitar impasses.
 - Detecção e recuperação de impasses
 - Detectar o impasse e aplicar medidas para resolvê-lo.

- Algoritmo do Avestruz
 - Ignora a existência do problema de impasses.
 - Unix e Windows adotam essa técnica para lidar com os impasses.
 - Poucos impasses x custo de prevenção.

Fonte: pitangua.com.br

- Prevenção de impasses
 - Negar a exclusão mútua.
 - Exemplo: técnica de spooling.
 - Negar a posse e espera.
 - Usar apenas um recurso por vez.
 - Obter todos os recursos antes de executar.
 - Estabelecer um limite de tempo para posse e espera.

- Prevenção de impasses
 - Negar a não-preempção.
 - Retirar um recurso de um processo.
 - Interessante para situações que o estado do processo pode ser salvo e restaurado.
 - Negar a espera circular.
 - Ordenação de todos os recursos do sistema.
 - Processos solicitam recursos somente nessa ordem.

- Evitação de impasses
 - Consiste em evitar o impasse pela alocação cuidadosa de recursos.
 - Estado seguro x estado inseguro.
 - Um estado é seguro se a partir dele é possível realizar a alocação de recursos aos processos e evitar assim o impasse.

Estado Seguro

	posse	total
P _A	3	9
P _B	2	4
P_{c}	2	7

Disponível: 3 recursos

Estado Inseguro

	posse	total
P _A	3	9
P _B	2	4
P _c	2	7

Disponível: 2 recursos

- Evitação de impasses
 - Algoritmo do Banqueiro
 - Criado por Dijkstra (1965)
 processos = clientes de banco recursos = créditos
 banqueiro = SO
 - Decidir a alocação de créditos para manter em um estado seguro.
 - Na prática é de difícil implementação, pois necessita conhecer previamente os recursos e ordem das solicitações.

Algoritmo do Banqueiro

Situações:

- **P3** solicita 1 plotter.
- **P1** solicita 1 fita.

Matriz alocação atual Matriz de requisições

$$C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{bmatrix} \qquad R = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}$$

E: recursos existentes A: recursos disponíveis

Matrizes: cada linha representa os recursos para um processo.

- Detecção e Recuperação
 - Detecção por inspeção ao grafo de alocação de recursos.
 - O grafo deve ser mantido pelo sistema, isto é, atualizado nas alocações e liberações de recursos.
 - Executar periodicamente um algoritmo para detecção de ciclos no grafo.
 - Problema: custo computacional do algoritmo.

- Detecção e Recuperação
 - Recuperação
 - Eliminar tarefas:
 - Eliminar todas ou selecionar tarefas.
 - Critérios para eliminar tarefas.
 - Reversão de estado:
 - Gravar o estado periodicamente dos processos e retomar a partir de um estado seguro.

Impasses - Conclusões

- Custo x Correção
- Impasses na comunicação
- Pesquisas na área

Referências

- OLIVEIRA, R. S. et al. Sistemas operacionais. 4ª Edição e Slides online.
 Bookman. 2010.
- SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Fundamentos de sistemas operacionais. 9. ed. LTC, 2015.
- TANENBAUM, Andrew S. BOSS Helbert. Sistemas operacionais modernos. 4. ed. São Paulo, Pearson Education do Brasil, 2016.
- MAZIERO, Carlos A. Sistemas operacionais: conceitos e mecanismos.
 Online. 2019.

Referências

- OLIVEIRA, R. S. et al. Sistemas operacionais. 4ª Edição e Slides online.
 Bookman. 2010.
- SILBERSCHATZ, A.; GALVIN, P. B.; GAGNE, G. Fundamentos de sistemas operacionais. 9. ed. LTC, 2015.
- TANENBAUM, Andrew S. BOSS Helbert. Sistemas operacionais modernos. 4. ed. São Paulo, Pearson Education do Brasil, 2016.
- MAZIERO, Carlos A. Sistemas operacionais: conceitos e mecanismos.
 Online. 2019.