Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный нефтяной технический университет» Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке

«ОБРАЗОВАНИЕ И НАУКА В СОВРЕМЕННЫХ УСЛОВИЯХ»

Сборник материалов Внутривузовской научно-практической конференции 15-16 февраля 2016 г.

УДК 661.124; 628.54; 67.08; 54.574 ББК 72 О23 **ISBN**

О23 Образование и наука в современных условиях: Сборник материалов Внутривузовской научно-практической конференции. – Стерлитамак: Изд-во «ПОЛИГРАФИЯ», 2016. – **411** с. ISBN

Сборник научных статей включает в себя материалы Внутривузовской научно-практической конференции «Образование и наука в современных условиях», прошедшей в ФГБОУ ВПО «Уфимский государственный нефтяной технический университет», филиал в г. Стерлитамаке 15-16 февраля 2016 г.

Издание предназначено для научных работников, преподавателей и студентов.

Материалы публикуются в авторской редакции.

Авторы несут ответственность за достоверность материалов, изложенных в сборнике.

ISBN

© Уфимский государственный нефтяной технический университет, 2016

Р.Т. Ишмуратова, А.Н. Иванов, А.А. Исламутдинова

ПРИМЕНЕНИЕ ПОЛИМЕРОВ В КАЧЕСТВЕ ДОБАВОК К ГИДРОИЗОЛЯЦИОННОМУ БИТУМУ

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г. Стерлитамаке

Современные темпы и огромный размах строительства в нашей стране требуют производства таких строительных материалов, которые соответствовали бы условиям эксплуатации в самых различных климатических регионах, обеспечивая надежность и долговечность зданий и сооружений. Между тем выпускаемые в настоящее время гидроизоляционные и кровельные материалы не отвечают этим условиям [1-2].

Полимербитумные материалы позволили расширить температурный интервал работоспособности за счет повышения теплостойкости и морозостойкости, обеспечить надежность и долговечность сооружений [3].

Целью нашей работы является получение высокоплавкого гидроизоляционного битума путем компаундирования его с различными полимерными добавками, а также исследование зависимости его свойств от соотношения компонентов добавки [4-7].

В металлическую емкость поместили 100 г битума и добавки НМПЭ и ДФНФ в соотношении 1:1, 1:2 и 2:1, предварительно приготовленные методом компаундирования при температуре 210^{0} С в течение 2-3 часов, туда же поместили мешалку и перемешивали в течение 1 часа, после отбирали пробу для анализов.

Результаты исследований с комбинированной добавкой НМПЭ:ДФНФ представлены в таблице 1.

Таблица 1 – Результаты исследований комбинированной добавки НМПЭ: ДФНФ при различных соотношениях

	F I					
Соотно-	Концен-	Температура	Пенетра-	Пенетра-	Адгези	Теплостой
шение	трация,	размягчения	ция при	ция при	я кгс/см	-кость, %
	%	0 C	25°C, мм	0°С, мм		
1:1	7	160	5,5	6	8	14,3
	10	169	2	4	12,5	12,5
1:2	7	164	5,7	6,6	2,5	10
1.2	10	162	Не гомогенная смесь			
2:1	7	156	1	5	12,5	5
	10	155	Не гомогенная смесь			

Из таблицы видно, что наилучшими свойствами обладает битум с комбинированной добавкой при соотношении НМПЭ : ДФНФ = 1 : 1 с концентрацией в битуме 7% масс.

Эти образцы имеют гомогенную структуру, высокую температуру размягчения и достаточно хорошие адгезионные свойства. С увеличением содержания в добавке НМПЭ или ДФНФ происходит дестабилизация дисперсной структуры битума.

Список использованных источников:

- 1. Гун Р.Б. Нефтяные битумы –М.: Химия, 1983.-504c.
- 2. Грудников И.Б. Производство нефтяных битумов –М.: Химия, 1983.-223с.
- 3. Калимуллин Л.И., Исламутдинова А.А. Модифицирование битумов добавками класса ПАВ. печ.ISSN 2072-0831 Научный журнал «В мире научных открытий», Красноярск, Изд-во НИЦ, № 6.1(12), 2010. с.236-237 .
- 4. Калимуллин Л.И. Гайдукова И.В., Исламутдинова А.А. Утилизация отработанного катализатора марки К-24«И» введением в битум в качестве наполнителя. II Международная конференция молодых ученых «Актуальные проблемы науки и техники». Сборник трудов. Уфа: Нефтегазовое дело, 2010 С.113-114.
- 5. Калимуллин Л.И., Исламутдинова А.А. Ресурсосберегающий метод модифицирования дорожных битумов.Современные проблемы естествознания: сборник научных статей/Чуваш. гос. пед. ун-т; под ред. Ю.Ю.Пыльчиковой. Чебоксары: Чуваш. гос. пед. ун-т, 2011. –С.32-34.
- 6. Калимуллин Л.И., Исламутдинова А.А. Утилизация отработанных катализаторов введением в высокоокисленный дорожный битум в качестве наполнителей XII международная молодежная научная конференция «Севергеоэкотех-2011». Материалы конференции. Часть IV. Ухта, 2011. С.293-296.
- 7. Ишмуратова Р.Т., Калимуллин Л.И., Исламутдинова А.А. Исследование влияния отработанных катализаторов в высокоокисленном дорожном битуме. Фундаментальные и прикладные исследования в технических науках в условиях перехода предприятий на импортозамещение: проблемы и пути решения: Сборник материалов Всероссийской научнотехнической конференции с международным участием. В 2 т. Т.1. Уфа: 2015 г Издательство УГНТУ. С. 335-338.

ТЕРМОКАТАЛИТИЧЕСКОГО ГИДРИР	ОВАНИЯ ЖИДКИХ ПРО	ОДУКТОВ
ПИРОЛИЗА		

Т.В. Григорьева, Т.Г. Белобородова, О.А. Ермолаева КЕЙС ТЕХНОЛОГИЯ КАК СРЕДСТВО ПОВЫШЕНИЯ КОМПЕТЕНТНОСТИ БУДУЩИХ БАКАЛАВРОВ ТЕХНОЛОГИЧЕСКОГО ПРОФИЛЯ	36
В.Ф. Галиев, А.А. Исламутдинова СПОСОБ ТЕРМОКАТАЛИТИЧЕСКОГО ГИДРИРОВАНИЯ ЖИДКИХ ПРОДУКТОВ ПИРОЛИЗА	39
Р.Р. Даминев, Е.Ю. Шарыгина УСОВЕРШЕНСТВОВАНИЕ ПРОИЗВОДСТВА КАТАЛИЗАТОРОВ ПУТЁМ УВЕЛИЧЕНИЯ СКОРОСТИ ФИЛЬТРАЦИИ СУСПЕНЗИИ ЦЕОЛИТА В ПРОЦЕССЕ ЕГО ПРОИЗВОДСТВА НА РАЗЛИЧНЫХ СТАДИЯХ	41
Ю.К. Дмитриев, К. Г. Александрова, А.Н. Иванов СИНТЕЗ ИНГИБИТОРА КОРРОЗИИ КОНДЕНСАЦИЕЙ ПОЛИЭТИЛЕНПОЛИАМИНА И 1,2 –ДИХЛОРЭТАНА	43
А.Б. Жалгасбаев, Р.Р. Даминев НАУЧНЫЕ ОСНОВЫ СЕРООЧИСТКИ НЕФТЕПРОДУКТОВ С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОГЕННЫХ КАТАЛИЗАТОРОВ	45
А.Б. Жалгасбаев, Р.Р. Даминев СЕРООЧИСТКА БЕНЗИНОВОЙ ФРАКЦИИ С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОГЕННЫХ КАТАЛИЗАТОРОВ	47
А.Б. Жалгасбаев, Р.Р. Даминев СПОСОБ ДЕМЕРКАПТАНИЗАЦИИ БЕНЗИНОВОЙ ФРАКЦИИ С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОГЕННЫХ КАТАЛИЗАТОРОВ	48
Р.А. Зайнуллин, Л.Р. Асфандиярова ИЗУЧЕНИЕ УСЛОВИЙ СИНТЕЗА ПОЛИЭЛЕКТРОЛИТА ИЗ ЭПИХЛОРГИДРИНА И ДИМЕТИЛАМИНА	50
Р.Т. Ишмуратова, А.Н. Иванов, А.А. Исламутдинова ПРИМЕНЕНИЕ ПОЛИМЕРОВ В КАЧЕСТВЕ ДОБАВОК К ГИДРОИЗОЛЯЦИОННОМУ БИТУМУ	52
А.Н. Иванов, И.Р. Хамзин, П.С. Сайтмуратов КОМПЛЕКСНАЯ ОЦЕНКА ИСПОЛЬЗОВАНИЯ НЕФТИ И ПРОДУКТОВ ЕЁ ПЕРЕРАБОТКИ В ПРОМЫШЛЕННОСТИ	54
А.А. Карпова МОДЕРНИЗАЦИЯ ТЕХНОЛОГИИ ДЕГИДРИРОВАНИЯ ИЗОАМИЛЕНОВ	56
А.А. Карпова РАЗВИТИЕ ПРОМЫШЛЕННОГО ПРОЦЕССА ДЕГИДРИРОВАНИЯ ОЛЕФИНОВ	58