Matricula(s): 14205353	Nome(s): Ale Chaito

TRABALHO 2

Questão 1 (3 pontos): Resolver por Gauss-Jacobi com 4 decimais e erro menor ou igual a 0,05 o sistema abaixo:

$${x_1 + 5x_2 - 10x_3 = 10\ 10x_1 - 2x_2 + x_3 = 5\ x_1 + 12x_2 + 5x_3 = 3}$$

Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir.

Tabela 1: Atribuição inicial

X ₁	\mathbf{X}_2	X_3
0	0	0

Tabela 2: Gauss-Jacobi

N	X ₁	X ₂	X ₃	error x ₁	error x ₂	error x ₃
0	0	0	0			
1	0.65	0.625	0.825	0.5	0.25	1.0
2	0.7075	0.5395	-0.6224	0.15	0.375	0.175
3	0.6701	0.4504	-0.6594	0.0574	0.0854	0.2025
4	0.6560	0.4689	-0.7077	0.03733	0.0891	0.03695
5	0.6645	0.4902	-0.6999	0.01413	0.01851	0.04831
6	0.6680	0.4862	-0.6884	0.0085	0.02131	0.0078
7	0.6680	0.4862	-0.6884	0.003477	0.003978	0.01150

Questão 2 (3 pontos):

Ajustar os pontos da tabela abaixo à equação $\phi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$ utilizando Método dos Quadrados Mínimos e fazendo ajuste polinomial.

i	1	2	3	4	5	6	7
X _i	-3	-1,7	-0,5	1	2,3	3,1	5,1
f(x _i)	-35	-20,5	-5,7	7,6	16,8	21,4	27,4

Calcular a soma dos quadrados dos resíduos e valor da função ϕ no ponto **x=4**. Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir com **4** decimais.

Tabela 3: Matriz A e vetor Y

	Υ		
7	6.3	54.05	12.3

6.3	54.05	143.571	394.51
54.05	143.571	887.2709	639.997

Tabela 4: Função φ

φ (x) =	-1.0233+9.3595*x+-0.7308*x*x
φ (4) =	27.7214

Tabela 5: Função φ e resíduos

i	1	2	3	4	5	6	7
φ(x _i)	-35.6796	-19.0467	-5.8858	7.6054	16.6375	20.9679	27.7012
r(x _i)	0.6796	-1.1532	0.1585	-0.0054	0.1624	0.4320	-0.3012
r ² (x _i)	0.4618	1.330	0.0345	2.9194	0.0263	0.1866	0.0907
Soma dos quadrad os dos resíduos	2.1303						

Questão 3 (4 pontos): Calcular uma aproximação com 4 casas decimais com arredondamento para

$$\int_{1}^{2} 2x + \frac{1}{x} dx$$

usando regra dos trapézios e a regra de Simpson com n = 10.

Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir.

Tabela 6: Regra dos trapézios

i	$\mathbf{X}_{\mathbf{i}}$	f(x _i)	C _i	c _i * f(x _i)
0	1	3	1	3
1	1.1	3.1090	2	6.2181
2	1.2	3.2333	2	6.4666
3	1.3	3.36923	2	6.7384
4	1.4	3.5142	2	7.0285
5	1.5	3.6666	2	7.3333
6	1.6	3.8250	2	7.65
7	1.7	3.9882	2	7.9764

8	1.8	4.155	2	8.3111		
9	1.9	4.3263	2	8.6526		
10	2.0	4.500	1	4.5000		
Soma						
T(h ₁₀)= 0.05 * 73.8754 = 3.6937						

Tabela 7: Regra de Simpson

i	X _i	f(x _i)	C _i	c _i * f(x _i)			
Soma							
S(h ₁₀)=							