

AUTOMATED RAIN COVER SYSTEM FOR OUTDOOR DRYING CLOTHES

A PROJECT REPORT

Submitted by

R. SATHISH KUMAR (721220106080)

M. SIVASHANKAR (721220106083)

B. SHANKAR GANESH (721220106303)

In partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

KARPAGAM INSTITUTE OF TECHNOLOGY,
COIMBATORE-641 105
ANNA UNIVERSITY :: CHENNAI-600 025

MAY 2024

ANNA UNIVERSITY:: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "AUTOMATED RAIN COVER SYSTEM FOR OUTDOOR DRYING CLOTHES" is the bonafide work of, R. SATHISH KUMAR (721220106080), M. SIVASHANKAR(721220106083), B.SHANKAR GANESH (721220106303) who carried out projects undermy supervision.

SIGNATURE	SIGNATURE
Mr.G. MANISANKAR, M.E.,	Dr. S. GOPINATH, M.E., Ph.D.,
SUPERVISOR	HEAD OF THE DEPARTMENT
ASSISTANT PROFESSOR	Department of Electronics and
Department of Electronics and	Communication Engineering,
Communication Engineering,	Karpagam Institute of Technology
Karpagam Institute of Technology	Coimbatore – 641 105
Coimbatore – 641 105	

Submitted for the university project viva-voice Examination held on.....

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

With genuine humility, we are obediently thankful to God Almighty without him, this work would have never been a reality.

We express our profound gratitude to our respected chairman **Dr.R.Vasantha kumar**, for giving this opportunity to pursue this course. At this pleasing moment of having successfully completed the project work, we wish to acknowledge our sincere gratitude and heartfelt thanks to our respected Principal **Dr.P.Manimaran**, our respected vice-principal **Dr.D.Banu**, for having given us the adequate support and opportunity for completing this project work successfully.

We express our deep sense of gratitude and sincere thanks to our beloved Head of the Department, **Prof.Dr.S.Gopinath.**, who has been a spark for enlightening our knowledge. Our profound gratitude goes to project coordinators **Dr.T.Manojkumar Ph.D.**, **Dr.V.Vinothkumar Ph.D.**, **Mr.S.Pragadeswaran M.E.**, and our project guide **Mr.G.Manisankar M.E.**, review members and all the faculty members of Department of ECE for the invaluable knowledge they have imparted on us. Ourhumble gratitude and heartiest thanks goes to our family members and friends for their encouragement and support throughout the course of this project.

R.SATHISH KUMAR (721220106080)

M.SIVASHANKAR (721220106083)

B.SHANKAR GANESH (721220106303)

ABSTRACT

This project presents an innovative solution to the common problem of rain disrupting outdoor clothes drying. Through the development of an automated rain cover system, this project aims to provide users with a convenient and reliable method to ensure their laundry stays dry regardless of weather conditions. By incorporating weather sensors and a motorized cover mechanism, the system detects rain and deploys the cover automatically to protect the drying clothes. Extensive research, prototyping, and testing were conducted to refine the system's functionality and performance. Field trials demonstrated the system's effectiveness in accurately detecting rain and deploying the cover promptly. User feedback indicated high satisfaction with the system's convenience and reliability. Data analysis provided valuable insights for system optimization and future enhancements. Additionally, the automated rain cover system contributes to sustainability efforts by encouraging eco-friendly laundry practices and reducing energy consumption associated with indoor drying methods. This project sets the stage for further advancements in automated rain cover systems, with potential applications in residential, commercial, and industrial settings.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
NO		
	ABSTRACT	iii
	TABLE OF CONTENTS	iv
	LIST OF FIGURES	vi
	LIST OF ABBREVIATIONS	vii
1	INTRODUCTION	1
2	LITERATURE SURVEY	5
3	EXISTING SYSTEM	9
	3.1 LIMITATIONS OF EXISTING SYSTEM	10
4	PROPOSED SYSTEM	11
	4.1 INTRODUCTION	11
	4.2 BLOCK DIAGRAM DESCRIPTION	13
5	HARDWARE DESCRIPTION	15
	5.1 PIC MICROCONTROLLER	15
	5.1.1 DESCRIPTION	15
	5.1.2 MEMORY STRUCTURE	16
	5.1.3 I/O PORTS	17
	5.1.4 TIMERS	17
	5.1.5 A/D CONVETROR	17
	5.1.6 OSCILLATOR	18

		5.1.7 CCP MODULE	18
		5.1.8 APPLICATION	18
		5.2 GSM MODEM	20
		5.2.1 TECHNICAL DESCRIPTION	20
		5.2.2 GSM NETWORK	21
		5.3 LCD	22
		5.3.1 OVERVIEW	22
		5.3.2 PIN DESCRIPTION	23
		5.4 POWER SUPPLY	24
		5.5 MOTOR SETUP	25
		5.5.1 MOTOR	25
		5.5.2 KEY FEATURES	25
		5.6 COVERING MATERIAL	27
		5.7 MECHANICAL FRAME	27
		5.7.1 DIMENSIONS	29
6		SENSORS 6.1 RAIN DROP SENSOR	30 30
		6.1.1 DESCRIPTION	30
		6.1.2 OPERATION	31
		6.1.3 APPLICATION	32
	7	SOFTWARE REQUIREMENTS	33
		7.1 MPLAB® X IDE	33
		7.2 C AND EMBEDDED C	34
		7.2.1 EMBEDDED SYSTEM PROGRAMMING	36
		7.3 SOURCE CODE	39
	8	RESULT AND OUTPUT	47
	9	CONCLUSION	49
		REFERENCES	50

LIST OF FIGURES

FIGURE NO	FIGURE NAME	PAGE NO	
4.1	4.1 BLOCK DIAGRAM		
5.1	PIN DESCRIPTION OF ARDUINO UNO	17	
5.2	CIRCUIT DIAGRAM OF BUZZER	21	
5.3	GSM NETWORK ELEMENTS	23	
5.4	PIN DIAGRAM OF LCD	24	
5.5	BLOCK DIAGRAM OF POWER SUPPLY	26	
6.1	LM35 PIN DIAGRAM	27	
6.2	RAIN DROP SENSOR	30	
8.1	SYSTEM SETUP	48	
8.2	COMPONENT SETUP	48	
8.3	MOBILE NOTIFICATION	48	

LIST OF ABBREVIATIONS

RPM Rotations per Minute

DTH Direct-to-Home

IoT Internet of Things

ARCS Automated Rain Cover System

PWM Pulse Width Modulation

LDR Light Dependent Resistor

QFD Quality Function Deployment

PIC Peripheral Interface Microcontroller

UV Ultraviolet

GSM Global System for Mobile Communication

RISC Reduced Instruction Set Computing

SRAM Static Random Access Memory

ALU Arithmetic Logic Unit

PLC Programmable Logic Controller