$\sum_{p=1}^{\infty} \frac{1}{p} \text{ Grows Like log log } x$ From Primes To Riemann

Tariq Rashid

March 22, 2021

How Does $\sum \frac{1}{p}$ Grow?

- $\sum 1/n$ diverges
- $\sum 1/n$ grows like $\log n$
- $\sum 1/p$ diverges
- How does $\sum 1/p$ grow?

Euler's 1737 Assertion

"The sum of the reciprocals of the prime numbers,

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \dots$$

is infinitely great but is infinitely times less than the sum of the harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

And the sum of the former is the as the logarithm of the sum of the latter."

• Widely interpreted as meaning, for large x

$$\sum_{p \le x} \frac{1}{p} \approx \log \log x$$

Euler's 1737 Assertion

Theorema 19.
Summa seriei reciprocae numerorum primorum $\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{11} + etc.$ est insinite magna; infinities tamen minor, quam summa seriei barmonicae $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+etc$. Atque illius summa est buius summae quasi logarithmus.

https://scholarlycommons.pacific.edu/euler-works/72/

Pollack's Proof

- Paul Pollack's "Euler and the Partial Sums of the Prime Harmonic Series"
 - doesn't require advanced knowledge
 - but does require a bit of bookwork
- http://pollack.uga.edu/eulerprime.pdf

Proof Overview

- Find an $S_0 = \sum_{p \le x} 1/p$
- Find an $S_U \geq S_0$
- Find an $S_L \leq S_0$

Tarig Rashid

- Hopefully S_U and S_L are nice expressions for lower and upper bounds on $\sum_{p \leq x} 1/p$
- Trick is to find S that are easy (enough) to work with

$$S(\lambda, x) = \sum_{p} p^{-1 - \frac{1}{\log x}} \cdot \lambda(p^{-\frac{1}{\log x}})$$

- $S(\lambda,x)$ is a function of a function $\lambda(t)$ defined over a small domain $t\in[0,1]$
- Looks convoluted but can be simplified easily if we choose $\lambda(t)$ carefully

$$\lambda_0(t) = \begin{cases} 1/t & \text{if } 1/e \le t \le 1\\ 0 & \text{if } 0 \le t < 1/e \end{cases}$$

• Let's see what $1/e \le t \le 1$ means

$$1/e \le t \le 1$$

$$1/e \le p^{-\frac{1}{\log x}} \le 1$$

$$-1 \le -\frac{1}{\log x} \log p \le 0$$

$$-\log x \le -\log p \le 0$$

$$0 \le p \le x$$

- This is the range we're interested in for $\sum_{p < x} 1/p$.
- Checking $0 \le t < 1/e$ leads to $x which contibutes 0 to <math>S(\lambda_0, x)$

• This definition of $\lambda_0(t)$ reduces $S(\lambda_0, x)$ nicely:

$$S(\lambda_0, x) = \sum_{p} p^{-1 - \frac{1}{\log x}} \cdot \lambda(p^{-\frac{1}{\log x}})$$
$$= \sum_{p} p^{-1 - \frac{1}{\log x}} \cdot p^{+\frac{1}{\log x}}$$
$$= \left[\sum_{p} \frac{1}{p}\right]$$

for $0 \le p \le x$

• Let's try a linear form for $\lambda(t) = \alpha + \beta t$

$$S(\lambda, x) = \sum_{p} p^{-1 - \frac{1}{\log x}} \cdot \lambda \left(p^{-\frac{1}{\log x}} \right)$$
$$= \sum_{p} p^{-1 - \frac{1}{\log x}} \cdot \left(\alpha + \beta \cdot p^{-\frac{1}{\log x}} \right)$$
$$= \alpha \cdot P\left(1 + \frac{1}{\log x} \right) + \beta \cdot P\left(1 + \frac{2}{\log x} \right)$$

• We need something to help us with P(1+s).

Start with Euler product formula

$$\zeta(s) = \sum_{n} \frac{1}{n^{s}} = \prod_{n} \left(\frac{1}{1 - p^{-s}} \right)$$

• And take logs, legitimate because $\zeta(s)$ converges for s>1

$$\log \zeta(s) = -\sum_p \log(1-p^{-s})$$

• Use $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$ for |x| < 1

$$\log \zeta(s) = \sum_{p} \sum_{k} \frac{1}{kp^{ks}}$$
$$= P(s) + \sum_{p} \sum_{k>2} \frac{1}{kp^{ks}}$$

- We've isolated $P(s) = \sum 1/p^s$, a step in the right direction.
- Since s > 1 and $k \ge 2$, we have $1/kp^{ks} \le 1/2p^k$ so

$$0 < \sum_{p} \sum_{k > 2} \frac{1}{kp^{ks}} \le \frac{1}{2} \sum_{p} \sum_{k > 2} \frac{1}{p^k}$$

• Also, since $(1-x)^{-1} = 1 + x + x^2 + \dots$

$$\sum_{p} \sum_{k \ge 2} \frac{1}{kp^{ks}} \le \frac{1}{2} \sum_{p} \sum_{k \ge 2} \frac{1}{p^k}$$

$$= \frac{1}{2} \sum_{p} (\frac{1}{p^2} + \frac{1}{p^3} + \frac{1}{p^4} + \dots)$$

$$= \frac{1}{2} \sum_{p} \frac{1}{p} (\frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots)$$

$$= \frac{1}{2} \sum_{p} \frac{1}{p} (-1 + (1 - \frac{1}{p})^{-1})$$

$$= \frac{1}{2} \sum_{p} \frac{1}{p(p-1)}$$

• Since primes p are a subset of counting numbers n

$$\frac{1}{2} \sum_{p} \frac{1}{p(p-1)} < \frac{1}{2} \sum_{n \geq 2} \frac{1}{n(n-1)} = \frac{1}{2}$$

- Last step uses $\sum_{n\geq 2} \frac{1}{n(n-1)} = \sum_{n\geq 2} \frac{1}{n-1} \frac{1}{n} = 1$.
- Difference between $\log \zeta(s)$ the **prime zeta function** P(s) is bounded.

$$\boxed{0<\log\zeta(s)-P(s)<\frac{1}{2}}$$

• Not the prime harmonic series $\sum 1/p$ which would require s=1.

Second Result $1 < (s-1) \cdot \zeta(s) < s$

• We have previously used integreal tests to find:

$$\frac{1}{s-1}<\zeta(s)<\frac{1}{s-1}+1$$

• Re-arranging

$$\left| 1 < (s-1) \cdot \zeta(s) < s \right|$$

Third Result $\left|P(s+1) - \log \frac{1}{s}\right| < \frac{1}{2}$

• First result, for s > 1

$$0<\log\zeta(s)-P(s)<\frac{1}{2}$$

• Restricting $0 < s < \frac{1}{2}$, we have to rewrite s to s+1

$$-\frac{1}{2} < P(s+1) - \log \zeta(s+1) < 0$$

Third Result $\left|P(s+1) - \log \frac{1}{s}\right| < \frac{1}{2}$

• Second result, for s > 1

$$1 < (s-1) \cdot \zeta(s) < s$$

• Restricting $0 < s < \frac{1}{2}$, and rewriting s to s + 1

$$1 < s \cdot \zeta(s+1) < \frac{3}{2}$$

Taking logarithms

$$0<\log\zeta(s+1)-\log\frac{1}{s}<\log\frac{3}{2}<\frac{1}{2}$$

Third Result $\left|P(s+1) - \log \frac{1}{s}\right| < \frac{1}{2}$

Adding these two inequalities

$$-\frac{1}{2} < P(s+1) - \log \frac{1}{s} < \frac{1}{2}$$

$$|P(s+1)-\log\frac{1}{s}|<\frac{1}{2}$$

for $0 < s < \frac{1}{2}$.

• This can help with $S(\lambda, x) = \alpha \cdot P(1 + \frac{1}{\log x}) + \beta \cdot P(1 + \frac{2}{\log x})$

$$S(\lambda, x) = \alpha \cdot P(1 + \frac{1}{\log x}) + \beta \cdot P(1 + \frac{2}{\log x})$$

- Before we apply the third result, we need to ensure $0 < s < \frac{1}{2}$.
- That is, $\frac{2}{\log x} < \frac{1}{2} \implies x > e^4$

$$-\frac{1}{2} < P(1 + \frac{1}{\log x}) - \log \log x < \frac{1}{2}$$
$$-\frac{1}{2} < P(1 + \frac{2}{\log x}) - \log \log x + \log 2 < \frac{1}{2}$$

• Multiply by α and β , noting they could be negative

$$-\frac{|\alpha|}{2} < \alpha P(1 + \frac{1}{\log x}) - \alpha \log \log x < \frac{|\alpha|}{2}$$

$$-\frac{|\beta|}{2} < \beta P(1 + \frac{2}{\log x}) - \beta \log \log x + \beta \log 2 < \frac{|\beta|}{2}$$

$$-\frac{|\alpha|}{2} - \frac{|\beta|}{2} < S(\lambda, x) - \alpha \log \log x - \beta \log \log x + \beta \log 2 < \frac{|\alpha|}{2} + \frac{|\beta|}{2}$$

• Dealing with that $\beta \log 2$, following is true for both β positive or negative

$$-\frac{|\alpha|}{2} - |\beta| \big(\frac{1}{2} + \log 2\big) < S(\lambda, x) - \alpha \log \log x - \beta \log \log x < \frac{|\alpha|}{2} + |\beta| \big(\frac{1}{2} + \log 2\big)$$

• Using $\lambda(1) = \alpha + \beta$ to simplify

$$-\frac{|\alpha|}{2}-|\beta|(\frac{1}{2}+\log 2)< S(\lambda,x)-\lambda(1)\log\log x<\frac{|\alpha|}{2}+|\beta|(\frac{1}{2}+\log 2)$$

$$|S(\lambda,x)-\lambda(1)\log\log x|<rac{|lpha|}{2}+|eta|(rac{1}{2}+\log 2)$$

Two Specific Linear Forms For λ_U, λ_L

Upper bound

$$\lambda_U(t) = -et + (e+1) \ge \lambda_0(t)$$

Lower bound

$$\lambda_L(t) = \frac{e}{e-1}t - \frac{1}{e-1} \ge \lambda_0(t)$$

• Note that for both $\alpha + \beta = 1$

23 / 29

Two Specific Linear Forms For λ_U, λ_L

• We can see that $\lambda_L \leq \lambda_0 \leq \lambda_U$ for $t \in [0,1]$

Upper Bound For $\sum_{p \le x} 1/p$

• Since $\lambda_U(t) \ge \lambda_0(t)$ we can say $S(\lambda_U, x) \ge S(\lambda_0, x) = \sum_{p \le x} 1/p$

$$\sum_{p \le x} \frac{1}{p} < \log \log x + \frac{|\alpha|}{2} + |\beta| (\frac{1}{2} + \log 2)$$

$$= \log \log x + \frac{e+1}{2} + e(\frac{1}{2} + \log 2)$$

$$\sum_{p \le x} \frac{1}{p} < \log \log x + 6$$

25 / 29

Lower Bound For $\sum_{p \le x} 1/p$

• Since $\lambda_L(t) \leq \lambda_0(t)$ we can say $S(\lambda_L, x) \leq S(\lambda_0, x) = \sum_{p \leq x} 1/p$

$$\sum_{p \le x} \frac{1}{p} > \log \log x - \frac{|\alpha|}{2} - |\beta| (\frac{1}{2} + \log 2)$$

$$= \log \log x + \frac{e+1}{2} + e(\frac{1}{2} + \log 2)$$

$$\sum_{p \le x} \frac{1}{p} > \log \log x + 3$$

Lower & Upper Bounds For $\sum_{p \le x} 1/p$

Putting all this together

$$\log\log x + 3 < \sum_{p \le x} \frac{1}{p} < \log\log x + 6$$

Finaly we can say

$$\sum_{p \le x} \frac{1}{p} \text{ grows like } \log \log x$$

Visualising $\sum_{p \le x} 1/p$ and $\log \log x$

• Interesting that the differences appears $ightarrow rac{1}{2}$

Thoughts

• $\sum_{p \le x} 1/p$ grows very very slowly ... and still diverges!

X	log x	log log x
10	2.30	0.83
1,000	6.91	1.93
1,000,000	13.82	2.63
1,000,000,000	20.72	3.03
1,000,000,000,000	27.63	3.32