Contents

P	Preface x		
1	Ma	th review	1
	1.1	Some sets	1
	1.2	Pairs of reals	3
	1.3	Exponentials and logs	4
	1.4	Some handy functions	5
	1.5	Summations	6
	1.6	Strings	8
	1.7	Variation in notation	9
2	Log	ric	10
	2.1	A bit about style	10
	2.2	Propositions	11
	2.3	Complex propositions	11
	2.4	Implication	12
	2.5	Converse, contrapositive, biconditional	14
	2.6	Complex statements	15
	2.7	Logical Equivalence	16

COMMENIC	•
CONTENTS	1
COLLECTO	1

	2.8	Some useful logical equivalences	8
	2.9	Negating propositions	8
	2.10	Predicates and Variables	9
	2.11	Other quantifiers	20
	2.12	Notation	22
	2.13	Useful notation	22
	2.14	Notation for 2D points	23
	2.15	Negating statements with quantifiers	24
	2.16	Binding and scope	25
	2.17	Variations in Notation	26
3	Pro	o fa	27
3	Froc	DIS Z	1
	3.1	Proving a universal statement	27
	3.2	Another example of direct proof involving odd and even 2	29
	3.3	Direct proof outline	3 0
	3.4	Proving existential statements	31
	3.5	Disproving a universal statement	31
	3.6	Disproving an existential statement	32
	3.7	Recap of proof methods	33
	3.8	Direct proof: example with two variables	33
	3.9	Another example with two variables	34
	3.10	Proof by cases	35
	3.11	Rephrasing claims	86
	3.12	Proof by contrapositive	37
	3.13	Another example of proof by contrapositive	88

CONTENTS	iii

4	Nun	nber Theory	39
	4.1	Factors and multiples	39
	4.2	Direct proof with divisibility	40
	4.3	Stay in the Set	41
	4.4	Prime numbers	42
	4.5	GCD and LCM	42
	4.6	The division algorithm	43
	4.7	Euclidean algorithm	44
	4.8	Pseudocode	46
	4.9	A recursive version of gcd	46
	4.10	Congruence mod k \hdots	47
	4.11	Proofs with congruence mod k	48
	4.12	Equivalence classes	48
	4.13	Wider perspective on equivalence	50
	4.14	Variation in Terminology	51
5	Sets		52
	5.1	Sets	52
	5.2	Things to be careful about	53
	5.3	Cardinality, inclusion	54
	5.4	Vacuous truth	55
	5.5	Set operations	56
	5.6	Set identities	58
	5.7	Size of set union	58
	5.8	Product rule	59
	5.9	Combining these basic rules	60

CONTENTE	•
CONTENTS	1V
0011121110	

	5.10	Proving facts about set inclusion	61
	5.11	An abstract example	63
	5.12	An example with products	64
	5.13	A proof using sets and contrapositive	65
	5.14	Variation in notation	66
6	Rela	ations	67
	6.1	Relations	67
	6.2	Properties of relations: reflexive	69
	6.3	Symmetric and antisymmetric	70
	6.4	Transitive	71
	6.5	Types of relations	73
	6.6	Proving that a relation is an equivalence relation	74
	6.7	Proving antisymmetry	75
7	Fun	ctions and onto	7 6
	7.1	Functions	76
	7.2	When are functions equal?	78
	7.3	What isn't a function?	79
	7.4	Images and Onto	80
	7.5	Why are some functions not onto?	81
	7.6	Negating onto	81
	7.7	Nested quantifiers	82
	7.8	Proving that a function is onto	84
	7.9	A 2D example	85
	7.10	Composing two functions	86

CONTENTS	V
----------	---

	7.11	A proof involving composition
	7.12	Variation in terminology
8	Fun	ctions and one-to-one 89
	8.1	One-to-one
	8.2	Bijections
	8.3	Pigeonhole Principle
	8.4	Permutations
	8.5	Further applications of permutations
	8.6	Proving that a function is one-to-one
	8.7	Composition and one-to-one
	8.8	Strictly increasing functions are one-to-one
	8.9	Making this proof more succinct
	8.10	Variation in terminology
9	Gra	phs 99
	9.1	Graphs
	9.2	Degrees
	9.3	Complete graphs
	9.4	Cycle graphs and wheels
	9.5	Isomorphism
	9.6	Subgraphs
	9.7	Walks, paths, and cycles
	9.8	Connectivity
	9.9	Distances
	9.10	Euler circuits

CONTENTS	vi	

	9.11	Bipartite graphs
	9.12	Variation in terminology
10	2-wa	y Bounding 113
	10.1	Navigation
	10.2	Pigeonhole point placement
	10.3	Graph coloring
	10.4	Why care about graph coloring?
	10.5	Proving set equality
	10.6	Variation in terminology
11	Indu	action 121
	11.1	Introduction to induction
	11.2	An Example
	11.3	Why is this legit?
	11.4	Building an inductive proof
	11.5	Another example
	11.6	Some comments about style
	11.7	A geometrical example
	11.8	Graph coloring
	11.9	Postage example
	11.10	Nim
	11.11	Prime factorization
	11.12	Variation in notation
12	Rec	ursive Definition 136
	12.1	Recursive definitions

CONTENTS	vii
----------	-----

	12.2	Finding closed forms
	12.3	Divide and conquer
	12.4	Hypercubes
	12.5	Proofs with recursive definitions
	12.6	Inductive definition and strong induction
	12.7	Variation in notation
13	Tree	es 145
	13.1	Why trees?
	13.2	Defining trees
	13.3	m-ary trees
	13.4	Height vs number of nodes
	13.5	Context-free grammars
	13.6	Recursion trees
	13.7	Another recursion tree example
	13.8	Tree induction
	13.9	Heap example
	13.10	Proof using grammar trees
	13.1	Variation in terminology
14	Big-	O 165
	14.1	Running times of programs
	14.2	Function growth: the ideas
	14.3	Primitive functions
	14.4	Proving a primitive function relationship
	14.5	The formal definition

CON	NTE	NTS vi	iii
1	4.6	Applying the definition	70
1	4.7	Writing a big-O proof	71
1	4.8	Sample disproof	72
1	4.9	Variation in notation	73
15 A	Algo	orithms 17	' 4
1	5.1	Introduction	74
1	5.2	Basic data structures	74
1	5.3	Nested loops	76
1	5.4	Merging two lists	77
1	5.5	A reachability algorithm	78
1	5.6	Binary search	79
1	5.7	Mergesort	31
1	5.8	Tower of Hanoi	32
1	5.9	Multiplying big integers	34
16 N	NΡ	18	37
1	6.1	Finding parse trees	37
1	6.2	What is NP?	38
1	6.3	Circuit SAT	90
1	6.4	What is NP complete?)2
1	6.5	Variation in notation)3
17 F	Proc	of by Contradiction 19)4
1	7.1	The method)4
1	7.2	$\sqrt{2}$ is irrational) 5
1	7.3	There are infinitely many prime numbers)6

CONTENTS	ix	

	17.4	Lossless compression
	17.5	Philosophy
18	Sets	of Sets 199
	18.1	Sets containing sets
		Powersets and set-valued functions
		Partitions
		Combinations
		Applying the combinations formula
		Combinations with repetition
		Identities for binomial coefficients
		Binomial Theorem
		Variation in notation
	10.9	variation in notation
19	Stat	e Diagrams 210
	19.1	Introduction
	19.2	Wolf-goat-cabbage puzzle
	19.3	Phone lattices
		1 10110 101101000
	19.4	Representing functions
	19.5	Representing functions
	19.5 19.6	Representing functions
	19.5 19.6 19.7	Representing functions
	19.5 19.6 19.7	Representing functions
20	19.5 19.6 19.7 19.8 Cou	Representing functions
20	19.5 19.6 19.7 19.8 Cou	Representing functions

CONTENTS	Σ

	20.3	Cardinality	222
	20.4	Cantor Schroeder Bernstein Theorem	223
	20.5	More countably infinite sets	224
	20.6	$\mathbb{P}(\mathbb{N})$ isn't countable	225
	20.7	More uncountability results	226
	20.8	Uncomputability	227
	20.9	Variation in notation	229
21	Plar	nar Graphs	230
	21.1	Planar graphs	230
	21.2	Faces	231
	21.3	Trees	232
	21.4	Proof of Euler's formula	233
	21.5	Some corollaries of Euler's formula	234
	21.6	$K_{3,3}$ is not planar	235
	21.7	Kuratowski's Theorem	236
	21.8	Coloring planar graphs	239
	21.9	Application: Platonic solids	240
\mathbf{A}	Jarg	gon	243
	A.1	Strange technical terms	243
	A.2	Odd uses of normal words	244
	A.3	Constructions	246
	A.4	Unexpectedly normal	247
В	Ack	nowledgements and Supplementary Readings	249

CONTENTS	xi

C Where did it go?	25	5 2
C Where did it go?	25	