CRITTOGRAFIA: raccolta di esercizi (ECC).

Esercizio 1

Il punto P = (4, 7) appartiene alla curva ellittica $y^2 = x^3 - 5x + 5$ sui numeri reali?

Esercizio 2

Nella curva ellittica sui reali $y^2 = x^3 - 36x$, siano P = (-3, 9) e Q = (-2, 8). Trovare P + Q e 2P.

Esercizio 3

La curva ellittica di equazione $y^2 = x^3 + 10x + 5$ definisce un gruppo su \mathbb{Z}_{17} ?

Esercizio 4

Determinare i punti appartenenti alla curva ellittica $E_{11}(1, 6)$.

Esercizio 5

Calcolare gli opposti dei seguenti punti su curva ellittica su Z_{17} : P = (5, 8), Q = (3, 0), R = (0, 6).

Esercizio 6

Nella curva ellittica $E_{17}(1, 7)$, siano P = (1, 3) e Q = (2, 0). Trovare P + Q e 2P.

Esercizio 7

Nella curva ellittica $E_{23}(14, 12)$, sia P = (1, 2). Calcolare 11 P.

Esercizio 8

Impiegando una curva ellittica $E_p(a,b)$ su un campo finito:

- 1. Spiegare come si esegue in modo efficiente la moltiplicazione di un punto P per una costante intera k.
- 2. Spiegare cosa si intende per "logaritmo discreto" (se esiste) di un punto R in base P.
- 3. Descrivere un algoritmo di scambio di chiavi basato sulla crittografia ellittica e spiegare perché può ritenersi sicuro.

Esercizio 9

Impiegando una curva ellittica prima su un campo finito:

- 1. Spiegare come trasformare un numero intero in un punto della curva.
- 2. **Descrivere** un algoritmo di scambio di messaggi cifrati e **spiegare** perché può ritenersi sicuro.
- 3. **Trasformare** il messaggio m = 5 in un punto della curva prima $E_{23}(1,1)$, usando il parametro h = 3.