Naive Bayes Theory and Example

Bayes Theorem

P(A|B) = 15/55 = (15/100)/(55/100) = P(A n B)/P(B)

 $P(A|B) = P(A \cap B)/P(B) \Rightarrow P(A \cap B) = P(A|B)xP(B)$

 $P(B|A) = P(A \cap B)/P(A) \Rightarrow P(A \cap B) = P(B|A)xP(A)$

 \Rightarrow P(A|B)xP(B) = P(B|A)xP(A) \Leftrightarrow P(A|B)/P(A) = P(B|A)/P(B)

Bayes Theorem

Independent Events

A independent of B means:

$$P(A|B) = P(A)$$
 also $P(B|A) = P(B)$

$$P(B|A) = P(A \cap B)/P(A) \Rightarrow P(A \cap B) = P(A)xP(B)$$

Note also holds when conditioning on a third event C

$$P((A n B)|C) = P(A|C)xP(B|C)$$

Naive Bayes

Want to estimate: P(H=h|E1 = e1,...,En=en)

Using bayes theorem

```
P(H=h|E1 = e1,....,En=en) =

P(E1=e1,....,En=en|H=h)xP(H=h)/P(E1=e1,....,En=en)
```

Difficult to estimate P(E1=e1,....,En=en|H=h), however if we assume the data is independent (naive) then

```
P(H=h|E1 = e1,...,En=en)
 \approx P(E1=e1|H=h)x,...,xP(En=en|H=h)xP(H=h)/P(E1=e1,...,En=en)
```

Don't worry about the denominator!!

Naive Bayes Example

H (0 or 1)	E1 (0 or 1)	E2 (0 or 1)
0	0	0
0	0	1
0	1	1
0	0	1
1	0	1
1	1	0

Estimate:

$$P(E1=0|H=0) = 3/4$$
 $P(E1=1|H=0) = 1/4$ $P(E1=0|H=1) = 1/2$ $P(E1=1|H=1) = 1/2$ $P(E2=0|H=0) = 1/4$ $P(E2=1|H=0) = 3/4$ $P(E2=0|H=1) = 1/2$ $P(E2=1|H=1) = 1/2$ $P(H=0) = 2/3$ and $P(H=1) = 1/3$

Naive Bayes Example

Given E1 = 0 and E2 = 1 what is more probably H = 0 or H = 1?

Which is higher P(H=1|E1 = 0,E2 = 1) or P(H=0|E1 = 0,E2 = 1)?

Applying estimate derived previously

$$P(H=1|E1 = 0,E2 = 1) = P(H=1)xP(E1 = 0|H=1)xP(E2 = 1|H=1)/P(E1 = 0,E2 = 1)$$

Similarly

$$P(H=0|E1=0,E2=1) = P(H=0)xP(E1=0|H=0)xP(E2=1|H=0)/P(E1=0,E2=1)$$

Plugging in the Numbers Gives

$$P(H=1|E1 = 0,E2 = 1) = (1/3x1/2 x \frac{1}{2})/P((E1 = 0,E2 = 1)) = (1/12)/P(E1 = 0,E2 = 1))$$

 $P(H=0|E1 = 0,E2 = 1)) = (2/3x3/4 x3/4)/P((E1 = 0,E2 = 1)) = (3/8)/P((E1 = 0,E2 = 1))$

As denominator the same for both H=0 is the most likely given the evidence