Clase: Tests de Hipótesis

Profesor: Ricardo Pasquini

Facultad de Ciencias Empresariales - Universidad Austral

8 de Abril de 2024

Qué sabemos sobre β poblacional?

- Nuestro interés es poder decir algo sobre β (i.e., el valor del coeficiente poblacional) usando los valores de $\hat{\beta}$ (valores de los coeficientes estimados).
- Propiedades de $\hat{\beta}$:
 - $ightharpoonup E[\hat{\beta}] = \beta$ (es *insesgado*)
 - $ightharpoonup Var[\hat{eta}] = rac{\sigma^2}{\sum (x_i \bar{x})^2}$, donde $\sigma^2 = Var(\epsilon)$

Qué sabemos sobre β poblacional? (cont.)

- Estimación de la $Var[\hat{\beta}]$:
 - $\hat{\sigma^2} = \frac{\sum e_i^2}{n-1}$
 - ► El error estándar: $\sqrt{\hat{Var[\hat{\beta}]}}$

Podemos decir algo más, por ejemplo, sobre un valor puntual de β en la población?

- ► Test de Hipótesis:
 - ightharpoonup Entender la distribución de \hat{eta}
 - Lógica del test e implementación

La distribución de $\hat{\beta}$

- Métodos para obtener la distribución de $\hat{\beta}$:
 - 1. Supuesto sobre la distribución del error
 - 2. Teoría asintótica (muestra grande)
 - 3. Métodos computacionales (Bootstrap)

El supuesto de normalidad

- Supuesto de normalidad del error.
- ▶ Implicaciones para la distribución de $\hat{\beta}$:
 - $ightharpoonup \hat{eta} \sim N(eta, Var(eta))$
 - Estándarización de $\hat{\beta}$: $Z = \frac{\hat{\beta} \beta}{\sqrt{Var(\beta)}} \sim N(0, 1)$

La lógica del Test de Hipótesis

- Lógica del Test de Hipótesis:
 - 1. Supuestos y distribución de $\hat{\beta}$
 - 2. Obtención del estimador y verificación de supuestos
 - 3. Rechazo del supuesto si se observa un valor improbable

El supuesto de normalidad

- ► El primer método consiste en hacer un supuesto sobre la distribución del error. Supondremos que se distribuye normalmente.
- Si el error se distribuye normalmente entonces $\hat{\beta}$ se distribuye normalmente con centro en el valor esperado de beta, y varianza dada por la varianza de beta.

$$\hat{\beta} \sim N(\beta, Var(\beta))$$

Por las propiedades de la Normal, sabemos que el valor estandarizado del coeficiente, sigue la distribución *Normal Estándar*

$$Z = rac{\hat{eta} - eta}{\sqrt{ extsf{Var}(eta)}} \sim extsf{N}(0,1)$$

- ► Es decir, podríamos usar la distribución normal estándar como base para entender el comportamiento del estimador.. pero hay un problema... hay dos cosas que necesitamos para estandarizar el coeficiente que no conocemos:
 - ▶ 1) el valor poblacional de beta, y
 - \triangleright 2), σ^2 (la varianza del error), que como vimos más arriba es

El supuesto de normalidad (cont.)

- Afortunadamente podemos solucionar los dos problemas:
 - 1) El valor poblacional de beta va a ser un supuesto que realizaremos usando la misma lógica del test de hipótesis (ver más adelante).
 - ightharpoonup 2) Más arriba ya vimos que podíamos estimar σ^2 en base a los datos.
 - ► Este último procedimiento, sin embargo, no es inocuo. Se puede demostrar (no lo hacemos) que cuando usamos el valor estimado, el coeficiente de beta ahora se distribuye T-student con n-1 grados de libertad:

$$T = \frac{\hat{\beta} - \beta}{\sqrt{Var(\beta)}} \sim T_{n-1}$$

La lógica del Test de Hipótesis

- La lógica del Test de Hipótesis es la siguiente:
 - Voy a realizar una serie de supuestos que me permitirán arribar a una distribución para el estimador. Es decir, me permitirán decir con qué probabilidad espero observar cada valor del estimador.
 - 2. Voy a ir a los datos, obtener el estimador, y ver si esa evidencia me permite rechazar los supuestos.
 - ► Todo lo que voy a poder hacer con el test es rechazar (o no rechazar) un supuesto, en particular, un supuesto que me sea de interés de investigación. Es decir, nunca voy a concluir que el supuesto es válido, sino, a lo sumo, que no tengo evidencia para rechazarlo.
 - 3. Pero cuando rechazamos los supuestos? La idea es rechazar si surge un valor del estimador que (de acuerdo con los supuestos) surge con muy baja probabilidad.

- En este contexto, el supuesto que voy a hacer es un valor determinado para β (en la población).
 - Por ejemplo, típicamente de interés es probar el supuesto de que β = 0.
 - La razón por la que este test es típicamente de interés es porque, si fuera válido, implicaría que, de acuerdo a nuestro modelo, X no tiene efecto sobre Y. Y en muchas circunstancias de investigación queremos saber si hay o no hay efecto!
 - ▶ Denotamos este test como H_0 : $\beta = 0$ versus H_a : $\beta \neq 0$.

- Pero también me podrían interesar otros valores ($\beta=1$ en el caso de que el modelo esté probando un efecto tipo elasticidad ver ejemplos práctica-).
- ▶ Una vez que hice ese supuesto, casi que cuento con una distribución para el estimador $\hat{\beta}$. Estrictamente cuento con una distribución para el valor de $\hat{\beta}$ transformado, \mathcal{T} , que me servirá para lo mismo. Veamos:
 - Para simplificar la exposición supongamos que queremos testear $H_0: \beta = 0$. Notemos que:
 - Por lo que dijimos anteriormente sabemos que T tiene distribución T-student:

$$\hat{T} = rac{\hat{eta} - 0}{\sqrt{\hat{Var}(eta)}} \sim T_{n-1}$$

- ightharpoonup ¿Cuándo rechazar el supuesto? La idea que propone el Test es la siguiente: Vamos a rechazar el supuesto, si observamos un valor de \hat{T} que ocurriría con muy poca probabilidad.
 - Veamos un ejemplo:
 - Supongamos que $\beta=0$. Si $\beta=0$ entonces lo que espero encontrar $\hat{\beta}$ muy cercano a 0 con alta probabilidad. Siguiendo la definición de \hat{T} esto también implica que espero encontrar T cercano a 0.

Supongamos adicionalmente que encontramos un valor de $\hat{\beta}=10$ y además medimos que $\sqrt{Var(\beta)}=2$, con n=100. Es decir $\hat{T}=5$. ¿Cuán probable es encontrar $\hat{T}=5$ en una distribución T-student con 99 grados de libertad? La respuesta rápida (ustedes pueden buscar ese valor) es que es muy improbable (ocurre con mucho menos del 1

- ► En general vamos a utilizar dos criterios para decidir cuándo un resultado es improbable:
 - Estableciendo una región de rechazo. Vamos a identificar en la distribución de T cuales son los valores a partir de los cuales ocurren resultados con menos de un *nivel de significancia* (por ejemplo, un valor usual es rechazar si el valor ocurre con menos de un 5
 - 2. Midiendo la probabilidad de ocurrencia del valor que obtuvimos para el valor que efectivamente medimos (\hat{T}) en la distribución. A esto se lo conoce como **P-valor** o **P-value**.

- Como la distribución de T es contínua lo que hacemos es medir la probabilidad de obtener un valor mayor a T (y si es un test a dos-colas miramos la probabilidad de obtener un valor mayor a \hat{T} y menor a - \hat{T}).
 - Por esta razón a veces encontrarán el P-valor denotado como:
 - ▶ $P(\hat{T} > T) \circ P(|\hat{T} > T|)$.

- Si el P-valor es muy bajo (por ejemplo menor al 5
- Para ver ejemplos gráficos de la distribución T, de las regiones de rechazo y de las mediciones de P-valor, no dejen de leer el capítulo 4 del libro de Wooldridge.