

Digital Arithmetic

Computer Systems 2016

Oleks

DIKU

September 14, 2016

Truth Tables

NO	TC
\boldsymbol{A}	\overline{A}
0	1
1	0

Truth Tables

N	1	ŊΤ
A		\overline{A}
0		1
1		0

	AN	ID		O	R
A	B	$A \cdot B$	\boldsymbol{A}	B	A+B
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

An **algebra** is a collection of functions adhering to **laws**.

The functions NOT, AND, and OR form a boolean algebra:

$$\textbf{NOT}: \mathbb{B}^1 \to \mathbb{B}$$

$$\textbf{AND}: \mathbb{B}^2 \to \mathbb{B}$$

$$\mathbf{OR}: \mathbb{B}^2 o \mathbb{B}$$

Boolean Algebra Laws - AND form

Name	AND Form
Identity Law	$1 \cdot A = A$
Null Law	$0 \cdot A = 0$
Idempotent Law	$A \cdot A = A$
Inverse Law	$A\cdot \overline{A}=0$
Commutative Law	$A \cdot B = B \cdot A$
Associative Law	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$
Distributive Law	$A + B \cdot C = (A + B) \cdot (A \cdot C)$
Absorption Law	$A \cdot (A + B) = A$
De Morgan's Law	$\overline{A \cdot B} = \overline{A} + \overline{B}$

Boolean Algebra Laws - OR form

Name	OR Form
Identity Law	0 + A = A
Null Law	1 + A = 1
Idempotent Law	A + A = A
Inverse Law	$A + \overline{A} = 1$
Commutative Law	A + B = B + A
Associative Law	(A+B)+C=A+(B+C)
Distributive Law	$A \cdot (B + C) = A \cdot B + A \cdot C$
Absorption Law	$A + A \cdot B = A$
De Morgan's Law	$\overline{A+B} = \overline{A} \cdot \overline{B}$

Truth Tables

N	1	ŊΤ
A		\overline{A}
0		1
1		0

	AN	ID		O	R
A	B	$A \cdot B$	\boldsymbol{A}	B	A+B
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

Gates

More Truth Tables

XOR			NA	ND	NOR			
A	B	$A \oplus B$	\boldsymbol{A}	В	$A \uparrow B$	\boldsymbol{A}	B	$A \downarrow B$
0	0	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1	0
1	0	1	1	0	1	1	0	0
1	1	0	1	1	0	1	1	0

More Truth Tables

XOR			NAND				NOR			
A	В	$A \oplus B$	\boldsymbol{A}	В	$A \uparrow B$		\boldsymbol{A}	B	$A \downarrow B$	
0	0	0	0	0	1		0	0	1	
0	1	1	0	1	1		0	1	0	
1	0	1	1	0	1		1	0	0	
1	1	0	1	1	0		1	1	0	

Do we add these as basic functions to our algebra?

More Truth Tables

XOR			NAND					NOR		
\boldsymbol{A}	В	$A \oplus B$	\boldsymbol{A}	В	$A \uparrow B$		\boldsymbol{A}	B	$A \downarrow B$	
0	0	0	0	0	1		0	0	1	
0	1	1	0	1	1		0	1	0	
1	0	1	1	0	1		1	0	0	
1	1	0	1	1	0		1	1	0	

Do we add these as basic functions to our algebra?

Do we need fancy new hardware?

Admissibility

A function is admissible if

it can be derived from other functions

Admissibility

A function is **admissible** if

it can be derived from other functions \equiv it does not contradict the laws of the algebra

XOR is admissible

— Proof by reading the truth table.

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$A \oplus B \equiv (\overline{A} \cdot B) + (A \cdot \overline{B})$$
 (read 1s)
 $\equiv \overline{(\overline{A} \cdot \overline{B}) + (A \cdot B)}$ (read 0s)

"A or B, but not both A and B"

NAND is admissible

— Proof by reading the truth table.

$$\begin{array}{c|cccc} A & B & A \uparrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$A \uparrow B \equiv (\overline{A} \cdot \overline{B}) + (A \cdot \overline{B}) + (\overline{A} \cdot B)$$
 (read 1s)
 $\equiv \overline{(A \cdot B)}$ (read 0s)

"not both A and B"

NOR is admissible

— Proof by reading the truth table.

$$\begin{array}{c|cccc} A & B & A \downarrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

$$A \downarrow B \equiv (\overline{A} \cdot \overline{B})$$
 (read 1s)
$$\equiv \overline{(A \cdot \overline{B}) + (\overline{A} \cdot B) + (A \cdot B)}$$
 (read 0s)

"neither A nor B"

More Gates

We like fancy new hardware!

only possible set of basic functions

is not the **only** possible set of basic functions for a boolean algebra.

{ AND, OR, NOT }

AND is admissible in { OR, NOT }

$$A \cdot B \equiv \overline{\overline{A} + \overline{B}}$$

AND is admissible in { OR, NOT }

$$A \cdot B \equiv \overline{\overline{A} + \overline{B}}$$

A	В	$A \cdot B$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$	$\overline{\overline{A}} + \overline{\overline{B}}$
0	0	0	1	1	1	0
0	1	Θ	1	0	1	0
1	0	0	0	1	1	0
1	1	1	0	0	0	1

OR is admissible in { AND, NOT }

$$A + B \equiv \overline{\overline{A} \cdot \overline{B}}$$

OR is admissible in { AND, NOT }

$$A + B \equiv \overline{\overline{A} \cdot \overline{B}}$$

A	В	A + B	\overline{A}	\overline{B}	$\overline{A} \cdot \overline{B}$	$\overline{\overline{A} \cdot \overline{B}}$
0	0	0	1	1	1	0
0	1	1	1	0	Θ	1
1	0	1	0	1	Θ	1
1	1	1	0	0	0	1

NOT is admissible in { NAND }
AND is admissible in { NAND }
OR is admissible in { NAND }

NOT is admissible in { NAND }
AND is admissible in { NAND }
OR is admissible in { NAND }

NOT is admissible in { NOR }
AND is admissible in { NOR }
OR is admissible in { NOR }

NOT is admissible in { NAND }
AND is admissible in { NAND }
OR is admissible in { NAND }

NOT is admissible in { NOR }
AND is admissible in { NOR }
OR is admissible in { NOR }

NAND is admissible in { NOR } NOR is admissible in { NAND }

NOT is admissible in { NAND }
AND is admissible in { NAND }
OR is admissible in { NAND }

NOT is admissible in { NOR }
AND is admissible in { NOR }
OR is admissible in { NOR }

NAND is admissible in { NOR } NOR is admissible in { NAND }

Conclusion: We can make due with different basic gates.

1-bit Addition

A	В	Carry	Resul
0	0	0	0
0	1	Θ	1
1	0	1	0
1	1	1	1

n-bit Addition

Given the bit-strings $x_{n-1}x_{n-2}\cdots x_0$ and $y_{n-1}y_{n-2}\cdots y_0$.

n-bit Addition

Given the bit-strings $x_{n-1}x_{n-2}\cdots x_0$ and $y_{n-1}y_{n-2}\cdots y_0$.

Show how to produce a bit-string $z_{n-1}z_{n-2}\cdots z_0$, and a carry- (overflow) bit c_n , such that

n-bit Addition

Given the bit-strings $x_{n-1}x_{n-2}\cdots x_0$ and $y_{n-1}y_{n-2}\cdots y_0$.

Show how to produce a bit-string $z_{n-1}z_{n-2}\cdots z_0$, and a carry- (overflow) bit c_n , such that

$$\sum_{i=0}^{n-1} z_i 2^i + c_n = \sum_{i=0}^{n-1} x_i 2^i + \sum_{i=0}^{n-1} y_i 2^i$$

Carry-Ripple Addition

Let $c_0 = 0$, and let z_i be given by the following truth table:

x_i	y_i	c_i	c_{i+1}	z_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Carry-Ripple Addition

Let $c_0 = 0$, and let z_i be given by the following truth table:

	z_i	$ c_{i+1} $	c_i	y_i	x_i
	0	0	0	0	0
	1	0	1	0	0
	1	0	0	1	0
/"Full Adder	0	1	1	1	0
	1	0	0	0	1
	0	1	1	0	1
	0	1	0	1	1
	1	1	1	1	1

Carry-Ripple Addition

Let $c_0 = 0$, and let z_i be given by the following truth table:

	z_i	c_{i+1}	c_i	y_i	x_i
	0	0	0	0	0
	1	0	1	0	0
	1	0	0	1	0
/ "Full Adder"	0	1	1	1	0
	1	0	0	0	1
	0	1	1	0	1
	0	1	0	1	1
	1	1	1	1	1

Area: O(n). Delay: O(n).