Point Operation Histogram Modification

김성영교수 금오공과대학교 컴퓨터공학과

학습 내용

- HISTOGRAM
- HISTOGRAM MODIFICATION

HISTOGRAM

- A simple datum that gives the number of pixels that
 a given value in an image
- Ex) a 8bit gray-scale image

count	
	= Normalized hist
sum of count	

Normalized hist

Bin	Counts	Prob.
0	163	0.005
1	77	0.003
255	1561	0.051

number of pixels

gray level

in color images

Color Quantization

HISTOGRAM MODIFICATIONS

Improving image contrast and brightness based on **histogram**

→ Focus on the histogram shape and range

Scaling

$$(100-50)$$
: $(x-50) = (210-10)$: $(y-10)$

$$(y-10)*(100-50) = (x-50)*(210-10)$$

$$y = \frac{(x-50)*(210-10)}{(100-50)} + 10 = \frac{(210-10)}{(100-50)}(x-50) + 10$$

$$I'(x, y) = \frac{(S_{\text{max}} - S_{\text{min}})}{(I_{\text{max}} - I_{\text{min}})} (I(x, y) - I_{\text{min}}) + S_{\text{min}}$$

$$\mathbf{O}(x,y) = \left[\frac{S_{max} - S_{min}}{I_{max} - I_{min}}\right] \left[\mathbf{I}(x,y) - I_{min}\right] + S_{min}$$

 I_{max} : largest gray-level value in the image $\mathbf{I}(x,y)$

 I_{min} : smallest gray-level value in $\mathbf{I}(x,y)$

 S_{\max} : maximum gray-level values possible

 S_{min} : minimum gray-level values possible

Image after histogram stretching

Histogram of image after stretching

Histogram of original image

Histogram of shrinked image

Sliding

$$\mathbf{O}(x,y) = \mathbf{I}(x,y) + offset$$

offset: amount to slide the histogram

Equalization

높은 contrast

좋은 contrast

Aim to change a picture in such a way as to produce a picture with *flatter* histogram, where all levels are equiprobable

Deriving Algorithm (1)

I(l) and O(l) $(0 \le l < L)$: for the input and output image, the number of pixels per level

$$\sum_{l=0}^{L-1} \mathbf{I}(l) = \sum_{l=0}^{L-1} \mathbf{O}(l)$$

for an arbitrarily chosen level p in the input image

$$\sum_{l=0}^{p} \mathbf{I}(l) = \sum_{l=0}^{q} \mathbf{O}(l)$$

Deriving Algorithm (2)

Since the output histogram is uniformly flat (*T*: total number of pixels in the image)

$$\mathbf{O}(l) = \frac{T}{N_{\text{max}} - N_{\text{min}}}$$

So the cumulative histogram of the output image

$$\sum_{l=0}^{q} \mathbf{O}(l) = q \times \frac{T}{N_{\text{max}} - N_{\text{min}}} = \sum_{l=0}^{p} \mathbf{I}(l)$$

Deriving Algorithm (3)

Output pixels at level q is given by $E(q,\mathbf{I}) = q = \frac{N_{\max} - N_{\min}}{T} \times \sum_{l=0}^{p} \mathbf{I}(l)$

Equalizing function (E) of the level (q) and the image (I)

The output image is then

$$\mathbf{O}_{x,y} = E(\mathbf{I}_{x,y}, \mathbf{I})$$

algorithm

- ① 입력 영상의 히스토그램의 값을 누적시켜 각 레벨에서의 히스토그램 누적 합 계산
- ② 히스토그램의 누적 합을 전체 픽셀의 개수로 나누어 값을 정규화함
- ③ 정규화된 값에 최대 gray level 값을 곱한 후 반올림을 수행
- ④ 입력 영상의 각 gray level에 대해 변환 값으로 대응

LUT

4	5	3	6	7
4	2	2	4	6
0	2	2	5	7
0	0	2	3	5
0	1	2	4	4

입력레벨	개수	누적값	균일화	결과레벨
→ O	10	10	1.37	1
1	8	18	2.47	2
2	9	27	3.71	4
3	2	29	3.98	4
4	14	43	5.90	6
5	1	44	6.04	6
6	5	49	6.73	7
7	2	51	7.00	7

	6	6	4	7	7
1	6	4	4	6	7
	1	**	4	6	7
	1	1	4	4	6
	1	2	4	6	6

histogram

x=y

Histogram normalization vs. equalization

equalization

normalization

DISADVANTAGE

- Background noise can be increased
- The image quality in a near-constant region may be degraded

REFERENCE

- R. Gonzalez, R. Woods, Digital Image Processing (2nd Edition), Prentice Hall, 2002
- Scott E Umbaugh, Computer Imaging, CRC Press, 2005
- Mark Nixon and Alberto Aguado, Feature Extraction & Image Processing, ELSEVIER, 2008
- Frank SHIH, Image Processing and Pattern
 Recognition, IEEE Press, 2010