آشنایی با چندجملهایها جبر مقدماتی

آريا افروز

تابستان ۱۴۰۰

چندجملهای

تعريف

منظور از چندجملهای عبارت جبریای به شکل

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

میباشد که در آن a_n,\dots,a_n ضرایب چندجملهای نامیده میشوند. ضرایب چندجملهای n اعدادی حقیقی هستند و $a_n \neq a_n$ (به استثنای چندجملهای ثابت صفر). همچنین $a_n \neq a_n$ درجهی چندجملهای عددی صحیح نامنفی است. برای راحتی چندجملهایها را با حروف بزرگ نشان می دهیم.

$$P(x) = \sum_{i=\circ}^{n} a_i x^i \quad \deg(P) = n$$

به ضریب a_n ضریب ثابت چندجملهای میگویند. اگر a_n برابر یک باشد چندجملهای، چندجملهای تکین نامیده می شود.

تساوي چندجملهايها

دو چندجملهای با هم برابرند اگر درجهی آنها با هم برابر باشد و تک تک ضرایب نظیر به نظیر با هم برابر باشند.

$$P(x) = \sum_{i=\circ}^m a_i x^i \quad \ Q(x) = \sum_{i=\circ}^n b_i x^i$$

$$\left. \begin{array}{l} \deg(P) = \deg(Q) \\ a_i = b_i, \circ \leq i \leq n \end{array} \right\} \iff P = Q$$

تعريف

به عددی مانند r که P(r)=P شود، ریشه چندجملهای P(x)=P میگویند. در واقع جوابهای معادله P(x)=P ریشههای چندجملهای نام دارند.

مثال

$$P(x) = x^{7} - \frac{\Delta}{7}x + 1 \implies P\left(\frac{1}{7}\right) = 0$$

$$Q(x) = x^{7} - 7x + 7 \implies Q(1) = 0$$

چندجملهایهای درجه صفر و یک

چندجملهایهای درجه صفر به فرم زیر میباشند

$$P(x) = a$$

که a
eq a عددی ثابت میباشد. این چندجملهایها فاقد ریشه میباشند.

چندجملهایهای درجه یک به فرم

$$P(x) = ax + b$$

می باشد که $a \neq \circ, b$ ضرایب چندجملهای میباشند. این چندجملهایها دارای یک ریشه هستند.

$$P(x) = \circ \implies ax + b = \circ \implies x = -\frac{b}{a}$$

چندجملهایهای درجه دو

.a eq a میباشند که $P(x) = ax^{\gamma} + bx + c$ میباشند که $P(x) = ax^{\gamma} + bx + c$ میباشند که $P(x) = ax^{\gamma} + bx + c$ میتوانند دارای صفر، یک و یا دو ریشه محقیقی باشند.

$$P(x) = \circ \implies ax^{r} + bx + c = \circ \implies a\left(x^{r} + \frac{b}{a}x + \frac{c}{a}\right) = \circ$$

$$\implies a\left(x^{r} + \frac{b}{a}x + \frac{b^{r}}{\epsilon a^{r}} - \frac{b^{r}}{\epsilon a^{r}} + \frac{c}{a}\right) = \circ$$

$$\implies a\left(x^{r} + \frac{b}{a}x + \frac{b^{r}}{\epsilon a^{r}}\right) = \frac{b^{r}}{\epsilon a} - c \implies a\left(x + \frac{b}{ra}\right)^{r} = \frac{b^{r} - \epsilon ac}{\epsilon a}$$

$$\implies \left(x + \frac{b}{ra}\right)^{r} = \frac{b^{r} - \epsilon ac}{\epsilon a^{r}}$$

در ادامه ابتدا برای راحتی تغییر متغیر $\Delta = \mathbf{b}^\intercal - \mathbf{fac}$ را اعمال میکنیم

$$\implies \left(x + \frac{b}{\mathsf{Y}a}\right)^{\mathsf{Y}} = \frac{\Delta}{\mathsf{Y}a^{\mathsf{Y}}}$$

چندجملهایهای درجه دو

حال بسته به مقدار Δ صفر، یک و یا دو ریشه ی حقیقی را می باییم

$$\begin{cases} \Delta > \circ \implies x + \frac{b}{\gamma_a} = \pm \sqrt{\frac{\Delta}{\gamma_a^{\gamma}}} \implies x = \frac{-b \pm \sqrt{\Delta}}{\gamma_a} \\ \Delta = \circ \implies x + \frac{b}{\gamma_a} = \circ \implies x = -\frac{b}{\gamma_a} \\ \Delta < \circ \implies x \not\in \mathbb{R} \end{cases}$$

مثال

$$\begin{split} P(x) &= x^{\intercal} - \frac{{\red}^{\intercal}}{{\red}^{\red}} x + \frac{{\red}^{\red}}{{\red}^{\red}} \quad r_{1} = {\red}^{\red}, r_{\red} &= \frac{{\red}^{\red}}{{\red}^{\red}} \\ P(x) &= {\red}^{\red} x^{\red} + {\red}^{\red} x + \Delta \circ \quad r = -\Delta \\ P(x) &= {\red}^{\red} x^{\red} + x + 1 \quad r \not \in \mathbb{R} \end{split}$$

اعمال روى چندجملهايها

تعريف

ضرب عدد در چندحملهای:

$$P(x) = \sum_{i=\circ}^n a_n x^n \implies \lambda P(x) = \sum_{i=\circ}^n \lambda a_n x^n$$

در واقع ضرایب λ برابر می شوند. $n \geq m$ جمع دو چندجملهای: فرض کنید

$$\begin{array}{l} P(x) = \sum_{i=\circ}^n a_i x^i \\ Q(x) = \sum_{i=\circ}^m b_i x^i \end{array} \} \implies \big(P+Q\big)(x) = \sum_{i=m+1}^n a_i x^i + \sum_{i=\circ}^m (a_i+b_i) x^i$$

در واقع ضرایب همدرجه با هم جمع میشوند و بقیه ضرایب ثابت میمانند. درجهی چندجملهای حاصل حداکثر n می بآشد.

$$P(\mathbf{r}\mathbf{x}) = \mathbf{r}P(\mathbf{x})$$
 تمام چندجملهایهای P را بیابید که

$$P(x) = a_n x^n + \dots + a_\circ \implies \begin{cases} P(\mathsf{r} x) = a_n (\mathsf{r} x)^n + \dots + a_\circ \\ \mathsf{r} P(x) = \mathsf{r} a_n x^n + \dots + \mathsf{r} a_\circ \end{cases}$$
 $\stackrel{P(\mathsf{r} x) = \mathsf{r} P(x)}{\Longrightarrow} a_n \mathsf{r}^n x^n = \mathsf{r} a_n x^n \implies n = 1$ $\stackrel{P(x) = ax + b}{\Longrightarrow} a(\mathsf{r} x) + b = \mathsf{r} ax + \mathsf{r} b \implies b = \circ$ $p(x) = ax$ پس جوابها به فرم $p(x) = ax$ هستند که $p(x) = ax$ عددی ثابت است.

اعمال روى چندجملهايها

تعريف

ضرب دو چندجملهای: اگر درجهی چندجملهای اول n و درجهی چندجملهای دوم m باشد. آنگاه درجهی چندجملهای حاصل جمع برابر $\mathbf{m} + \mathbf{n}$ می شود

$$\begin{array}{l} P(x) = \sum_{i=\circ}^n a_i x^i \\ Q(x) = \sum_{i=\circ}^m b_i x^i \end{array} \} \implies \big(P.Q\big)(x) = \sum_{i=\circ}^{m+n} c_i x^i$$

ضرایب چندجملهای حاصل از رابطهی زیر بدست میآیند

$$c_k = \sum_{i+j=k} a_i b_j$$

اعمال روى چندجملهايها

 $Q \neq 0$ را در نظر بگیرید. با فرض $Q \neq 0$ را در نظر بگیرید. با فرض میتوآن چندجملهای P را بر Q تقسیم کرد و خواهیم داشت:

$$P(x) = S(x)Q(x) + R(x)$$

در عبارت بالا S خارج قسمت و R باقیمانده میباشد، هر دو منحصر به فرد هستند و داريم:

$$\deg(R) < \deg(Q)$$

در حالت خاصی که P = R باشد، میگوییم P بر Q بخش پذیر است. به عنوان تمرین ثابت کنید S,R یکتا هستند.

مثال

$$x^{r} + rx^{r} + \Delta x + r = (x^{r} + x + r)(x + r) + (rx - r)$$

P(c) برابر است با x-c برابر است با باقی مانده چند جمله ای

اثبات.

کافیست رابطهی تقسیم چندجملهای P بر x-c بنویسیم:

$$P(x) = (x - c)S(x) + R(x)$$

با توجه به رابطهی بین درجه چندجملهایها، میتوان تحقیق کرد که درجهی R صفر است.

$$P(x) = (x - c)S(x) + k$$

و در نهایت اگر در معادلهی بالا به جای c ، x قرار دهیم خواهیم داشت

$$P(c) = (c - c)S(c) + k = k$$

قضيه

P(c) باقیمانده چندجملهای P(c) بر ابر است با

اگر r ریشه چندجملهای P باشد، آنگاه P بر x-r بخش پذیر است

$$P(r) = \circ \implies P(x) = (x-r)Q(x)$$

مثال

عبارت زیر را تجزیه کنید

$$x^{4} - \Delta x^{7} + 4$$

به راحتی میتوان دید
$$P(1) = P(-1) = P(1)$$
 پس

$$x^{4} - \Delta x^{7} + 4 = (x - 1)(x + 1)(x^{7} - 4) = (x - 1)(x + 1)(x - 4)(x + 4)$$

مثال

ثابت کنید چندجملهای زیر بر
$$(x-a)^{\gamma}$$
 بخشپذیر است $x(x^{n-\gamma}-na^{n-\gamma})+a^n(n-\gamma)$

$$x\left(x^{n-1}-na^{n-1}
ight)+a^{n}(n-1)=x^{n}-a^{n}-nxa^{n}+na^{n}$$
 $=\left(x^{n}-a^{n}
ight)-na^{n-1}(x-a)=(x-a)\left(x^{n-1}+ax^{n-7}+\dots+a^{n-1}-na^{n-1}
ight)$ $x-a$ بر $P(x)=x^{n-1}+ax^{n-7}+\dots+a^{n-1}-na^{n-1}$ برخشپذیر است. برای این کار از قضیه بزو استفاده میکنیم و نشان می دهیم $P(a)=a^{n}n-1+aa^{n-7}+\dots+a^{n-1}-na^{n-1}=na^{n-1}-na^{n-1}=0$

پس

$$x(x^{n-1} - na^{n-1}) + a^n(n-1) = (x-a)^{\mathsf{T}}Q(x)$$

قضیه اساسی جبر

قضىه

هر چند جملهای از درجه n دقیقا n ریشه دارد.(لزوما همه ریشهها حقیقی نیستند)

نتيجه

تنها چندجملهای که دارای نامتناهی ریشه میباشد چندجملهای صفر میباشد.

ىتىجە

به راحتی با چند بار استفاده از قضیه بزو، برای هر چندجملهای درجه n میتوان نوشت:

$$P(x) = c(x - r_1)(x - r_2) \dots (x - r_n) = c \prod_{i=1}^{n} (x - r_i)$$

مثال

دو چندجملهای P,Q را در نظر بگیرید. به ازای هر عدد طبیعی مانند n داریم

$$P(n) = Q(n) \\$$

ثابت كنيد

$$P = Q$$

چندجملهای جدید R را به شکل زیر تعریف میکنیم

$$R(x) = P(x) - Q(x)$$

مطابق فرض مسئله هر عدد طبیعی ریشه ی چندجملهای R می شود. پس طبق قضیه اساسی جبر داریم

$$R=\circ\implies P=Q$$

با استفاده از دانستههای فعلی می دانیم که هر چندجملهای درجه $\mathbf n$ را می توان به دو صورت نوشت:

$$P(x) = c \prod_{i=1}^n (x-r_i) = \sum_{i=\circ}^n a_n x^n$$

حال با استفاده از تعمیم اتحاد جمله مشترک و برابر قرار دادن ضرایب به اتحاد ویت می رسیم:

$$\begin{cases} r_1+r_7+\cdots+r_{n-1}+r_n=-\frac{a_{n-1}}{a_n}\\ r_1r_7+\cdots+r_1r_n+r_7r_7+\cdots+r_7r_n+\cdots+r_{n-1}r_n=\frac{a_{n-7}}{a_n}\\ \vdots \\ r_1r_7\ldots r_n=(-1)^n\frac{a_\circ}{a_n}. \end{cases}$$

به عبارت دیگر مجموع تمام حاصل ضربهای k تایی n ریشه برابر است با $(-1)^k rac{a_{n-k}}{a_n}$ به عبارت دیگر مجموع تمام حاصل ضربهای k

اگر
$$P(x) = ax + b$$
 باشد خواهیم داشت

$$r = -\frac{b}{a}$$

اگر
$$P(x) = ax^{\intercal} + bx + c$$
 باشد خواهیم داشت

$$\begin{cases} r_1 + r_7 = -\frac{b}{a} \\ r_1 r_7 = \frac{c}{a} \end{cases}$$

اگر
$$P(x) = ax^{\mathsf{T}} + bx^{\mathsf{T}} + cx + d$$
 باشد خواهیم داشت

$$\begin{cases} r_1 + r_Y + r_Y = -\frac{b}{a} \\ r_1 r_Y + r_Y r_Y + r_Y r_1 = \frac{c}{a} \\ r_1 r_Y r_Y = -\frac{d}{a} \end{cases}$$

مثال

تمام جوابهای دستگاه معادلات زیر را بدست آورید

$$\begin{cases} a+b+c=9\\ a^{\gamma}+b^{\gamma}+c^{\gamma}=1 \\ abc=9 \end{cases}$$

$$(a+b+c)^{\Upsilon}=a^{\Upsilon}+b^{\Upsilon}+c^{\Upsilon}+\Upsilon ab+\Upsilon bc+\Upsilon ca\implies ab+bc+ca=11$$
 حال می توان a,b,c را ریشه های چند جمله ای درجه سه در نظر گرفت که ضرایب این چند جمله ای را با استفاده از اتحاد ویت داریم

$$\begin{split} P(x) &= x^{\mathsf{r}} - \mathcal{F}x^{\mathsf{r}} + \mathsf{I}\,\mathsf{I}x - \mathcal{F} = (x-\mathsf{I})(x-\mathsf{f})(x-\mathsf{f}) \\ (a,b,c) &\in \big\{(\mathsf{I},\mathsf{f},\mathsf{f}),(\mathsf{I},\mathsf{f},\mathsf{f}),(\mathsf{f},\mathsf{I},\mathsf{f}),(\mathsf{f},\mathsf{f},\mathsf{I}),(\mathsf{f},\mathsf{f},\mathsf{f}),(\mathsf{f},\mathsf{f},\mathsf{f}),(\mathsf{f},\mathsf{f},\mathsf{f}),(\mathsf{f},\mathsf{f},\mathsf{f},\mathsf{f})\big\} \end{split}$$

دجملهایهای با ضرایب صحیح

چندجملههایی که ضرایب آنها اعداد صحیح باشند

فرض کنید P چندجملهای ای با ضرایب صحیح باشد و m, n دو عدد صحیح باشند. آنگاه:

$$m - n | P(m) - P(n)$$

$$P(m) - P(n) = a_k \big(m^k - n^k\big) + \dots + a_1 (m-n)$$

$$P(m)-P(n)=(m-n)\sum_{i=1}^k a_i \frac{m^k-n^k}{m-n} \implies m-n\big|P(m)-P(n)$$

چندجمله آیهای با ضرایب صحیح

مثال

ثابت کنید چندجملهای ای با ضرایب صحیح وجود ندارد که برای x=19 مقدارش برابر واحد و برای $x = \mathcal{F} Y$ مقدارش Y شود.

فرض كنيد P چندجملهاى با ضرايب صحيح باشد. از قضيه اسلايد قبل مىدانيم:

$$\mathcal{F} \mathsf{Y} - \mathsf{I} \mathsf{Q} \big| \mathsf{P} (\mathcal{F} \mathsf{Y}) - \mathsf{P} (\mathsf{I} \mathsf{Q}) \implies \mathsf{Y} \mathsf{T} \big| \mathsf{I}$$

که تناقض است پس هیچ چندجملهایای با ضرایب صحیح نمی توان پیدا کرد.