Todoy's Quote

Consistency is one of the biggest factors to accomplishment and success.

Content - Basics of Bit Manipulation.

Number System,

Decimal Number System
$$\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 6, 7, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 6, 7, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 6, 7, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 7, 8, 9\}$ Ruse $\Rightarrow \{0, 1, 2, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4,$

111-7

$$[0|0]_{2} = (22)_{10}$$

$$([011010]_{3} = (90)_{10}$$

$$(011010)_{\mathfrak{g}} = (\mathfrak{g}_{\mathfrak{o}})_{\mathfrak{o}}$$

Decimal to Binary

$$2^{4} + 2^{2} = 16 + 4 = 20$$

$$(45)_{10} = (101101)_{343210}$$

Addition.

$$0+0 \to 0$$
 $0+1 \to 1$
 $1+0 \to 1$
 $1+1 \to 10$

$$(2)_{10} = (10)_{2}.$$

$$\frac{6}{2}$$
:

 $\frac{1}{1}$:

 $\frac{1}$

Bitwise Operators

$$(42)_{6} \rightarrow (101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)_{2}$$

$$(101010)$$

A	В	A & B	AB	A 18	_
0	O	0	0	O	0 - (unset) 1 - (set)
O	1	O	t	1	1 - (set)
1	0	O	1	1	
+	1	1	1	O	
		' '		Log sa	me same ? suppy shome?

Bitwise operations on numbers

$$A = 20$$
, $8 = 45$
 $A \mid B = 61$
 $A \Rightarrow 0 \mid 0 \mid 0 \mid 0$
 $B \Rightarrow 10 \mid 1 \mid 0 \mid 1$
 $A \mid B \Rightarrow 1 \mid 1 \mid 1 \mid 0 \mid 1$
 $A \mid B \Rightarrow 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{6} = 61$

$$A = 20$$
, $B = 45$
 $A^{B} = 57$
 $A = 0 | 0 | 0 0$
 $B \rightarrow | 0 | 1 0 |$
 $A^{B} \rightarrow | 1 | 0 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 | 0 |$
 $S = 4 | 2 | 2 |$
 $S = 4 |$

Properties

$$A = 10$$
 1010 $A = 9 - 1001$ 0001

Conclusion.

$$2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2} + 2^{1}$$

$$129 + 64 + 32 + 16 + 8 + 4 + 2$$

$$G \quad A \mid O = A \qquad A \rightarrow \mid O \mid$$

Le ror of two same values = 0.

Break till 10:42

A- 101

@ Commutative Property.

$$a \& b = b \& a$$

$$(a \& b) \& c = c \& (a \& b)$$

$$a | b = b | a$$

$$a \wedge b = b \wedge a \qquad x & c = c & x$$

$$\begin{bmatrix} c | a | b = b | a | c \\ = c | b | a = a | b | c = b | c | a \end{bmatrix}$$

(a) Associative Property

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \& (b \& c)$$

$$(a \& b)\&c = a \&$$

(a) Given an integer arr [N]. All the nois are present twice in the array except only one, find the no. which is only present once.

arr [N]; [6 9 6 5 9 8 5]

beendo code ->

z

$$anr = \begin{cases} 6, 9, 9, 8, 6 \end{cases}$$
 $0^6 = 6$
 $6^9 = 15$
 $15^9 = 6$
 $6^8 = 14$
 $14^6 = 8$

Assumption Sint - & bits. 3, just for explaination.

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0 = 45$$

$$0$$

$$(a < n) = a * a^n$$

$$(1 < n) = a^n$$

360 is too lorge to be stored in 8-bits-

= Overflow condition

Capacity + 10 et.

Right Shift operator

a/2n

=

a >> n

No overflow condition.

Double.

Long a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1

loy a = (loy) a [i] o (i+1) o (N-i).

overflow for ind.

fake long dato-type instead.

long tong = value

$$2^{31}-1+1 = 2^{31}$$

