Summer 2013 Jim Fowler

I'll update the calendar soon to account for the changes in the schedule.

Remark 1. Our goal is to show that for $\alpha \in H^i(X)$ and $\beta \in H^j(X)$, show that the cup product satisfies

$$\alpha \smile \beta = (-1)^{ij}\beta \smile \alpha.$$

Definition 2. Let $\epsilon_n = (-1)^{n \cdot (n+1)/2}$.

Subproblem 3. Verify $\epsilon_{i+j} = (-1)^{ij} \epsilon_i \epsilon_j$.

Definition 4. Let $\tau: C_n(X) \to C_n(X)$ be the chain map which, on a simplex σ , is defined as

$$\tau(\sigma) = \epsilon_n(\sigma \circ \text{reverse}),$$

where reverse is the affine map $[v_0, \ldots, v_n] \to [v_n, \ldots, v_0]$.

Subproblem 5. Verify that τ is a chain map.

Subproblem 6. Verify $\tau^* \alpha \smile \tau^* \beta = \pm \tau^* (\beta \smile \alpha)$ and determine the sign.

Subproblem 7. Consider $X \times I$ as a simplicial complex; in particular, for $\Delta^n \times I$,

$$[v_0, \dots, v_n] = \Delta^n \times \{0\}$$

$$[w_0, \dots, w_n] = \Delta^n \times \{1\}$$

$$\Delta^n \times I = \bigcup [v_0, \dots, v_i, w_n, \dots, w_i].$$

Draw a picture to illustrate the resulting simplicial structure on the prism $\Delta^2 \times I$.

Subproblem 8. Recall, from Math 757, the **prism operator** $P: C_n(X) \to C_{n+1}(X)$ defined via

$$P(\sigma) = \sum_{i} (-1)^{i} \epsilon_{n-i}(\sigma \circ \operatorname{proj})|_{[v_0, \dots, v_i, w_n, \dots, w_i]},$$

where proj is the projection $\Delta^n \times I \to \Delta^n$. Show that $\partial \circ P + P \circ \partial = \tau - \mathrm{Id}$.

Subproblem 9. Conclude that \smile is (graded) commutative.

Problem 10. Let Σ_g be the oriented surface of genus g; describe a four-fold covering map $f: \Sigma_5 \to \Sigma_2$, and explain how the map f_* maps the ring $H^*(\Sigma_2)$ to the ring $H^*(\Sigma_5)$.

Problem 11. For which i and j are there maps $f: \Sigma_i \to \Sigma_j$ and $g: \Sigma_j \to \Sigma_i$ so that $f \circ g$ is the identity?