SMITHSONIAN CONTRIBUTIONS

to

ASTROPHYSICS

Smithsonian Institution Astrophysical Observatory Volume 8, Number 9 (End of Volume)

Static Diffusion Models of the Upper Atmosphere With Empirical Temperature Profiles

by Luigi G. Jacchia

Washington, D.C.

Smithsonian Contributions to Astrophysics

Volume 8, Number 9

STATIC DIFFUSION MODELS OF THE UPPER ATMOSPHERE WITH EMPIRICAL TEMPERATURE PROFILES

by Luigi G. Jacchia

SMITHSONIAN INSTITUTION
Washington, D.C.
1965

Publications of the Astrophysical Observatory

This series, Smithsonian Contributions to Astrophysics, was inaugurated in 1956 to provide a proper communication for the results of research conducted at the Astrophysical Observatory of the Smithsonian Institution. Its purpose is the "increase and diffusion of knowledge" in the field of astrophysics, with particular emphasis on problems of the sun, the earth, and the solar system. Its pages are open to a limited number of papers by other investigators with whom we have common interests.

Another series is Annals of the Astrophysical Observatory. It was started in 1900 by the Observatory's first director, Samuel P. Langley, and has been published about every 10 years since that date. These quarto volumes, some of which are still available, record the history of the Observatory's researches and activities.

Many technical papers and volumes emanating from the Astrophysical Observatory have appeared in the Smithsonian Miscellaneous Collections. Among these are Smithsonian Physical Tables, Smithsonian Meteorological Tables, and World Weather Records.

Additional information concerning these publications may be secured from the Editorial and Publications Division, Smithsonian Institution, Washington, D.C.

Fred L. Whipple, Director, Astrophysical Observatory, Smithsonian Institution.

Cambridge, Mass.

Static Diffusion Models of the Upper Atmosphere with Empirical Temperature Profiles¹

Luigi G. Jacchia²

1. Static and time-dependent models

The first multitemperature models of the atmosphere above 120 km, based on diffusion equilibrium were produced by Nicolet (1961, 1963). These models proceed from a fixed set of boundary conditions, temperature and partial densities, at 120 km. Above this height the partial densities vary according to diffusion theory, except for hydrogen for which diffusion equilibrium is reached only at greater heights (Kockarts and Nicolet, 1962, 1963); thermal diffusion is taken into account for helium. The vertical temperature distribution is computed for the "hottest" model, i.e., the one with the highest exospheric temperature, assuming thermal equilibrium; the other models are obtained from this model by conduction cooling of the atmosphere in the absence of external energy sources. The temperatures which are obtained in this manner at the height of 150 km. (a nearly isopycnic layer) are linearly connected with the constant temperature at 120 km. Models can be computed by this procedure for conveniently spaced values of the exospheric temperature. These quasistatic models have proved very practical as a background for deriving and analyzing atmospheric

densities from satellite drag (Jacchia and Slowey, 1963).

Atmospheric models can be constructed only at the expense of oversimplifications. Such are, for example, the invariance of the boundary conditions at 120 km. and the constant temperature gradient between 120 and 150 km. found in Nicolet's models. Another serious limitation is the assumption of static equilibrium in an atmosphere which is subject to large day-to-night temperature variations, with a period which is not much longer than conduction time in the lower thermosphere.

Atmospheric models which attempt to take into account the diurnal variation at low latitudes have been computed by Harris and Priester (1962a, 1962b). They also assumed fixed boundary conditions at 120 km. and diffusion above this height, but the hydrostatic equation and the heat-conduction equation were integrated simultaneously and the heat input varied with a 24 hour cycle. Since the amount of solar EUV necessary to maintain the heat balance gave diurnal density oscillations much in excess of those observed, Harris and Priester (1962 a, b) were obliged to introduce a second source of heat with a maximum at a different hour. This device may perhaps have a counterpart in the actual heating process, but doubts have been voiced that it may mostly re flect the inadequacy of an oversimplified theory. By suitably varying the "second heat source," the Harris-Priester models can be made to fit the densities from satellite drag with almost any degree of accuracy, and their new version, prepared for the new COSPAR International Reference Atmosphere (CIRA 1965) to be published shortly, is remarkably successful in this respect.

[!] This work was supported in part by grant NsG
87-60 of the National Aeronauties and Space Administration. A preprint of this paper has appeared as
Smithsonian Astrophysical Observatory Special Report
No. 170. Owing to an imperfection in the numericalintegration program, table 1 in that publication is
affected by a small systematic error, whose maximum
value, 0.011 in log \(\rho\), occurs at a height around 200 km,
when T_{\(\rightarrow\)} is large. For normal satellite heights and
temperatures the error amounts to only 0.006 in log \(\rho\), oo its practical effect can be considered to be negligible.

² Physicist, Smithsonian Astrophysical Observatory.

To analyze or predict the motion of satellites under the influence of drag, one requires models which represent atmospheric variations above all points of the globe in a continuous manner. For this purpose, models of the Nicolet type have a considerable advantage over those of Harris and Priester, because with a suitable model for the geographic temperature distribution above the thermopause they can yield atmospheric densities at any given location and height. The Harris-Priester model is confined to low latitudes and does not account for the seasonal migrations of the diurnal bulge: its extension to higher latitudes would engender gross errors and even a discontinuity at the poles. For this reason, it was deemed advisable to produce a set of atmospheric models patterned after those of Nicolet, but based on the most recent data on composition at the boundary level and density at satellite heights. The result is the present tables.

2. Boundary conditions

The boundary conditions selected for the CIRA 1964 tables are the result of a careful weighing of recent data from instrumented rockets and satellites, and it would be difficult to improve on them at this date. Therefore, we have taken them as the basis for our tables with only one change, namely, the helium concentration which was increased by 40 percent to account for the densities derived from satellites at heights greater than 600 km. at times of low solar activity. There is a distinct possibility that these densities, using a constant value, $C_D=2.2$, of the drag coefficient, are actually overestimated by some 10 to 15 percent, since the drag coefficient should increase as the molecular weight of the atmospheric gas decreases (Izakov, 1965; Cook, 1965). In such case the excess helium required to account for these densities could be somewhat reduced.

At z=120 km.

$$T=355^{\circ}$$
 K,
 $n(N_2)=4.0\times10^{11}$,
 $n(O_2)=7.5\times10^{10}$,
 $n(O)=7.6\times10^{10}$,
 $n(He)=3.4\times10^7$.

Argon was neglected since its contribution to the total density is only 1 percent at 120 km. and becomes rapidly negligible at greater heights. For hydrogen we have followed Kockarts and Nicolet (1962) and fitted the following equation

$$\log_{10} n(H)_{500} = 73.13 - 39.40 \log_{10} T_{\infty} +5.5 (\log_{10} T_{\infty})^{2}$$
 (1)

to their concentrations at 500 km., which were used as boundary for the computation of concentrations at greater heights.

Starting from the boundary conditions, the concentrations n_i of each constituent i were computed as a function of the geometric height z by integrating the diffusion equation

$$\frac{dn_i}{n_i} = -\frac{dz}{H_i} - \frac{dT}{T} (1 + \alpha). \tag{2}$$

Here, T is the temperature, α the thermal-diffusion factor, and H_4 is the scale height of the individual constituent, defined as

$$H_i = \frac{kT}{m_i a'}$$
 (3)

where k is the Boltzmann constant, m_4 the molecular (or atomic) mass of the constituent, and g the acceleration of gravity.

For helium, following Nicolet, we used $\alpha = -0.38$; for N₂, O₂, and O, $\alpha = 0$.

3. Temperature profiles

To compute the vertical distribution of temperature on the basis of theory alone, we must know, among many other things, how the heating-energy input varies with height. Since solar EUV is radiated in a discrete number of spectral lines, each of which is absorbed at a different height (Hinteregger, 1962) and each of which varies in intensity with time in a different manner (Purcell et al., 1964), the problem is complicated enough even when we ignore energy sources other than solar EUV. As to temperature and density observations, the lower thermosphere, from 100 to 150 km., is practically terra incognita (or, rather, aer incognitus). Any present-day atmospheric model must introduce a considerable degree of empiricism in constructing temperature profiles in that region; this is also the case of Nicolet's profiles.

Since an inadequate theory may be worse than none when it must fit a great many accurate observations, as is our case, we decided to abandon theory entirely in constructing our temperature profiles. A survey of Nicolet's and of the Harris-Priester temperature profiles showed at once that they can all be represented, with a remarkable degree of approximation, by exponential curves of the form

$$T = T_{\infty} - (T_{\infty} - T_{120}) \exp[-s(z - 120)],$$
 (4)

where T_{120} is the temperature at 120 km. and T_{∞} the asymptotic (exospheric) temperature;

Frouse I.—The coefficient s of equation (4), which determines the vertical temperature distribution, as a function of the exospheric temperature T_m . Curve I gives the temperature profiles of Nicolet's (1961) models. Curves 2a and 2b are those pertaining to the Harris-Pister models in the COSPAR International Reference Atmosphere 1965 (2a for 4 a.m., 2b for 2 p.m.). Curve 3 gives the temperature profiles of the present tables.

z is expressed in kilometers and s is a constant different for each profile. If we decide to use equation (4) to represent our temperature profiles, the problem is reduced to finding the value of s appropriate to each value of T_{ev} or better, an analytical expression for $s(T_{ev})$ which will generate temperature profiles capable of reproducing the observed variations of density with height for any stage of solar activity. For example, Nicolet's (1961) densities are reproduced within a few percent with temperature profiles generated by equation (4), with

$$s\!=\!34.586\,T_{\scriptscriptstyle \varpi}^{^{-1}}\!-\!4.414\!\times\!10^{-3}\!+\!5.714\!\times\!10^{-7}T_{\scriptscriptstyle \varpi} \\ (1000^\circ\!<\!T_{\scriptscriptstyle \varpi}\!<\!2000^\circ\!).$$

After a considerable amount of trial-anderror work, we found that the densities derived from satellite drag (Jacchia and Slowey, 1963, plus up-to-date unpublished data) can be satisfactorily represented using temperature profiles generated by the equation

$$\begin{cases} s\!=\!0.0291 \exp\left(-\frac{x^2}{2}\right) & (5) \\ x\!=\!\frac{T_{\varpi}\!-\!800}{750\!+\!1.722\!\times\!10^{-4}(T_{\varpi}\!-\!800)^2}. \end{cases}$$

The present tables were computed by the numerical integration of equation (2) starting from the boundary conditions given in section 2 and following the temperature profiles generated by equation (4) with s given by equation (5). In figure 1 these values of s are compared with those which are obtained from the temperature profiles of Nicolet's and the CIRA 1964 models. For the latter, we have selected the curves for 4h and 14h local solar time, i.e., the hours of the minimum and of the maximum of the diurnal temperature variation. Since there is no variation of s with the hour of the day in our static models, our s curve must represent an average over the day with a possible drift toward the morning value at the low-temperature end and toward the afternoon values at the hightemperature end.

4. Comparison with Nicolet's models

A revised version (Nicolet II) of Nicolet's original (1961) models, provided to us by the author, has been used by us for the past two years to convert atmospheric densities from satellite drag data into temperatures which are better suited for analysis than the original densities (Jacchia and Slowey, 1963, and various more recent papers). Different temperatures are obtained from the same densities if we use the present models; the corrections to the system of Nicolet II to obtain the temperatures given by our models are plotted in figure 2. As we can see, the correction curves show a systematic negative trend with increasing temperature in the range between 800° and 1700° K. This is equivalent to saying that if we consider a certain density variation within these general temperature limits, this variation corresponds to a somewhat smaller temperature range in the present models. For satellites at heights between 350 and 750 km. (i.e., for

all the satellites analyzed in Jacchia and Slowey, 1963) we obtain temperature variations which are, on the average, smaller by 6 percent.

It should be remembered, of course, that a comparison between temperatures becomes impossible in atmospheric regions where the density is nearly independent of temperature. This situation occurs for heights lower than

FIGURE 2.—Correction to the exospheric temperatures obtained from densities by use of the Nicolet II models to reduce them to temperatures obtained using the present models.

200 km. at sunspot minimum; at sunspot maximum, however, the nearly isopycnic layer extends much higher, to about 300 km. At these heights and in these conditions even a minuscule difference in density corresponds to enormous temperature differences.

5. Formulae for the systematic temperature variations

Formulae for the variation of the exospheric temperature for use with Nicolet's models were given by Jacchia (1964). These formulae necessitate some revision if we want to use the present atmospheric models.

a. Variation with the solar cycle.—The relation between the exospheric temperature $T_{\rm e}$ and the 10.7 cm. solar flux $F_{\rm 10.7}$, both smoothed over two or three solar rotations, shows practically no departure from linearity in the new temperature system. In figure 3 we have plotted revised values of the nighttime minimum and daytime maximum temperature from satellite drag data covering the years 1958–1964. As

can be seen, the smoothed nighttime minima \overline{T}_0 can be represented by

$$\overline{T}_0 = 418^{\circ} + 3^{\circ}_{10}60\overline{F}_{10}$$
, (6)

The bar indicates averages over two or three solar rotations. The daytime maxima are represented by

$$T_M = 1.28T_0$$
. (7)

The smaller range of the diurnal variation (by a factor of 1.28 instead of 1.30) reflects the overall smaller temperature ranges explained in section 4. It should be recalled that the same diurnal density variation requires a much larger temperature oscillation according to the time-dependent models of Harris and Priester. Although the latter are probably closer to reality, the density variations are represented equally well with the present static models.

Equation (6) is valid for average quiet geomagnetic conditions $(K_p=2, a_p=7)$. To reduce it to $a_p=0$ the absolute term should read 357° instead of 418°.

b. Variation within one solar rotation.—We can use

$$T'_{0} = \overline{T}_{0} + 1^{\circ}_{0} 8(F_{10}, -\overline{F}_{10}, 7),$$
 (8)

i.e., the same equation as given by Jacchia (1964), but with the numerical coefficient changed from 1°9 to 1°8. There is some indication that this coefficient might be somewhat smaller (1°5 or so) near sunspot minimum and larger (possibly 2°4) near sunspot maximum.

c. Semiannual variation.—We can use the formula of Jacchia (1964), with a 6 percent reduction in the amplitudes:

$$T_0 = T_0' + \left(0.37 + 0.14 \sin 2\pi \frac{d - 151}{365}\right)$$
 (9)

$$\overline{F}_{10.7} \sin 4\pi \frac{d-59}{365}$$

(d in days counted from January 1).

d. Diurnal variation.—The same parameters as those found in Jacchia (1964) can be used, except for R, which should be changed from 0.30 to 0.28. For convenience we shall repeat the equations with their explanations.

Let the temperature maximum occur at a point on the globe which has the same latitude as the subsolar point, and let the minimum nighttime temperature on the globe be T_0 and the maximum daytime temperature on the globe be RT_0 . We shall assume that the daytime maxima T_D and nighttime minima T_N at any point on the globe are given by the equations

 $T_N = T_0(1 + R \sin^m \theta)$.

$$T_D = T_0(1 + R \cos^m \eta),$$
 (10)

where

$$\eta = \frac{1}{2}(\varphi - \delta_{\odot}),$$
 $\theta = \frac{1}{2}(\varphi + \delta_{\odot}).$

where φ is the geographic latitude and δ_{\odot} the declination of the sun.

The temperature T at this given point can be expressed as a function of the hour angle Hof the sun (the local solar time). Let us write

$$T = T_N \left(1 + A \cos^n \frac{\tau}{2} \right), \tag{11}$$

with

$$A = \frac{T_D - T_N}{T_N} = R \frac{\cos^m \eta - \sin^m \theta}{1 + R \sin^m \theta},$$

and

$$\tau = H + \beta + p \sin (H + \gamma)$$
 $(-\pi < \tau < \pi)$ (12)

where β , γ , and p are constants, and H=0 corresponds to the sun's upper culmination.

The constant β determines the lag of the temperature maximum with respect to the sun's culmination, while ρ introduces in the temperature curve an asymmetry whose location is determined by γ . Replacing T_D and T_N from equation (10), we can write

$$T = T_0(1 + R \sin^m \theta)$$

$$\left(1 + R \frac{\cos^m \eta - \sin^m \theta}{1 + R \sin^m \theta} \cos^n \frac{\tau}{2}\right).$$
(13)

Although in these equations the exponents m and n, which determine the mode of the longitudinal and the latitudinal temperature variations respectively, are kept distinct, we find that in practice we can take m=n. There is a distinct possibility that the common value of these coefficients might turn out to be a little smaller than 2.5, the previously assumed value, somewhere between 2.0 and 2.5. We

shall adopt the following constants: R=0.28, m=n=2.5, $\beta=-45^{\circ}$, $p=12^{\circ}$, $\gamma=+45^{\circ}$.

e. Variation with geomagnetic activity.—After the publication of Jacchia (1964), it was found that the relation between the exospheric temperature and the 3 hour geomagnetic index a_p shows a strong departure from linearity for small values of a_p (Jacchia and Slowey, 1964a). The formula given in the last reference can be used without alterations. The increase of temperature with a_p is then

$$\Delta T = 1^{\circ}.0 \ a_n + 125^{\circ} [1 - \exp(-0.08 \ a_n)].$$
 (14)

 ΔT represents the atmospheric heating above the level corresponding to $a_p=0$. During

Figure 3.—Daytime maximum and nighttime minimum temperatures above the thermopause as a function of the 10.7 cm. solar flux, in units of 10⁻²² watts/m²/cycle/sec. bandwidth. Data are averaged over two or three solar rotations. The temperatures in this diagram must be considered as referred to average quiet geomagnetic conditions (K_p= 2 or a_p=7). (Open circles: individual maxima deduced from satellite drag curves. Circled dots: individual minima deduced from satellite drag curves. Dots: temperatures reduced to the nighttime minimum at times when the curve of the semiannual temperature variation was close to the annual average.)

magnetic storms the temperature variations lag about 6 hours behind the variations in a_p (Jacchia and Slowey, 1964b). There is evidence that $\Delta T/a_p$ is somewhat larger in high geomagnetic latitudes (Jacchia and Slowey, 1964c).

6. Limitations of the present models

As we stated in section 1, atmospheric models must suffer from the oversimplified assumptions one is obliged to make to construct them. Our models share with those of Nicolet the limitations imposed by the invariance of the temperature profiles and of the boundary conditions; this latter limitation is common also to the Harris-Priester models.

A consequence of the fixed boundary conditions is a nearly isopycnic layer at 200 km. at times of moderate to high solar activity. At such times, according to the models (ours, Nicolet's, and the Harris-Priester models), the density at 200 km. should not show appreciable variations when the exospheric temperature varies. This condition is nearly fulfilled by the diurnal variation which practically disappears at heights lower than 200 km. On the other hand, density variations at the 200 km. level have been observed at times of high solar activity in correspondence with geomagnetic storms, and also of the erratic ("27 day") component of the 10.7 cm. flux (Jacchia, 1959).

The different response of the density at 200 km. to different types of heating could be explained by assuming that the temperature at 120 km. is not subject to a diurnal variation. but increases in correspondence with geomagnetic storms and transient enhancements of solar EUV radiation. If we increase the temperature at 120 km. by 50° without changing the composition, the density at 200 km. will increase, according to our models, by a little over 30 percent when the exospheric temperature is about 1400° K. This is just about the order of magnitude of the erratic density changes observed in Sputnik 2 and 3. At greater heights the density change is more or less the same, decreasing only slightly with height, but its relative importance becomes smaller because of the increased response of the density to changes in the exospheric temperature (or, to be more accurate, to changes in the corresponding temperature gradient above 120 km.).

Satellites at heights as low as 160 km. have recently shown that the density changes during magnetic storms are in phase with those at greater heights (Zirm, 1964). This indicates that most of the heating during these storms must occur at heights considerably lower than 160 km. It therefore looks highly probable that the temperature at 120 km. must undergo changes during a magnetic storm.

If we assume that also the erratic changes in solar EUV affect the temperature at 120 km., it is difficult to see how the much larger variations of EUV in the course of the 11 year solar cycle could leave the temperature at 120 km. undisturbed. Perhaps there is such a change and the construction of better models will be possible when this change becomes known.

7. Comparison with recent satellite-drag data at heights below 200 km.

A valuable collection of drag data on satellites with low perigee heights has been recently presented by Small (1964). These data extend in an unbroken series to heights as low as 160 km., and for one satellite (1962 βσ) to 126 km. Apart from the assumed boundary conditions, our atmospheric models are based on drag data from satellites with perigee mainly above 250 km, and were completed before we had knowledge of Small's densities. It was gratifying to find that the agreement of these densities with our models is excellent, as can be seen from figure 4. In this plot we divided the data into three groups according to the mean exospheric temperature prevalent at the pertinent time, in addition we have separately marked the points derived from Sputnik 3 (1958 δ2), which are particularly numerous and may be affected by a small systematic error.

According to our models log ρ (ρ =density) at 180 km. varies by about 0.2 from sunspot maximum to sunspot minimum. Since the residuals in log ρ for the three temperature groups do not show any clear evidence of systematic differences, we must conclude that our models represent rather well not only the average densities, but also their variations. Since, however, the density variations below 200 km. are relatively small, the agreement with observations in this region must be ascribed mainly to the boundary conditions, which are obviously satisfactory. The increase in scatter

FIGURE 4.—Comparison of the Lockheed densities (Small, 1964) from the drag of low-orbiting satellites with the present tables.

The residuals in log ρ are taken in the sense Lockheed minus present models.

that is observed in figure 4 as one proceeds to greater heights is due to the increase in amplitude of the various types of density variations, which—for reasons stated in section 6—we did not attempt to remove Above 200 km. the systematic density variations (diurnal, semiannual, geomagnetic, etc.) become so large that no serious comparison can be made without taking them into account, and a check on the validity of the models is in the inner agreement of temperatures derived from densities determined over a wide range of heights, such as in figure 3.

8. The tables

Detailed data on composition and density are given in table 1 for 30 temperature profiles ending in exospheric temperatures 50° apart and ranging from 650° K to 2100° K. Table 2 gives a summary of the density data only.

The boundary conditions and the temperature profiles are specified in section 3. For the acceleration of gravity we used the formula

$$g=980.665(1+Z/R)^{-2}$$
 cm/sec⁻²,

with $R = 6.35677 \times 10^8$ cm.

Hydrogen concentrations are given only above 500 km., as in the CIRA 1965 tables, since hydrogen cannot be considered to be in diffusion equilibrium at lower heights (Kockarts and Nicolet, 1962).

Although the tables extend to a height of 1000 km., the data above 800 km. must be considered as theoretical extrapolations since accurate satellite drag data are not available at those heights. For high exospheric tempera-

tures (above, say, 1300°K) at which atomic oxygen is still the major constituent between 800 and 1000 km., the densities should still be reliable; however, the same cannot be said for lower exospheric temperatures.

The generation of individual densities for given values of z and T_{∞} from equations (4) and (5) is so simple that prospective users of these models may deem it preferable to use the formulae rather than the tables to obtain atmospheric densities in electronic-computer programs. In such a case, the extrapolation of the tables to heights above 1000 km., which may be necessary for the sake of continuity in numerical integrations along satellite orbits, is automatic, and the density approaches zero when z increases beyond any limit. If the tables are used and it is desired to have the density \rho approach a limiting value \rho_\infty rather than zero, we can recommend the procedure we have been using for some time in our numericalintegration programs. Compute $b=dln \rho/dz=$ $(\ln 10) d \log_{10} \rho/dz$ at 1000 km, from the tabular values of $\log \rho$ and use

$$\rho = \rho_{\infty} + (\rho_{1000} - \rho_{\infty}) \exp \left[b(z - 1000) \right].$$
(2>1000 km.)

Acknowledgment

The invaluable help of Mr. Jack Slowey in preparing these tables for computation and for publication is gratefully acknowledged.

References

CIRA

1965. COSPAR International Reference Atmosphere. North-Holland, Amsterdam (in press).

COOK, G. E.

1965. Private communication.

HARRIS, I., and PRIESTER, W.

1962a. Time-dependent structure of the upper atmosphere. Journ. Atmosph. Sci., vol. 19, pp. 286-301.

1962b. Theoretical models for the solar-cycle variations of the upper atmosphere. Journ. Geophys. Res., vol. 67, pp. 4585-4591.

HINTEREGGER, H. E.

1962. Absorption spectrometric analysis of the upper atmosphere in the E.U.V. region. Journ. Atmosph. Sci., vol. 19, pp. 351–368.

IZAKOV, M. N.

1965. Some problems of investigating the structure of the upper atmosphere and constructing its model. In P. Muller, ed., Space Research V, North-Holland, Amsterdam, pp. 1191-1213.

JACCHIA, L. G.

1959. Corpuscular radiation and the acceleration of artificial satellites. Nature, vol. 183, pp. 1662-1663.

1964. The temperature above the thermopause. Smithsonian Astrophys. Obs. Spec. Rep., no. 150, 32 pp.

JACCHIA, L. G., and SLOWEY, J.

1963. Accurate drag determinations for eight artificial satellites; atmospheric densities and temperatures. Smithsonian Contr. Astrophys., vol. 8, no. 1, pp. 1-99.

1964a. Temperature variations in the upper atmosphere during geomagnetically quiet intervals. Journ. Geophys. Res., vol. 69, pp. 4145–4148. 1964b. An analysis of the atmospheric drag of the Explorer IX satellite from precisely reduced photographic observations. In P. Müller, ed., Space Research IV, North-Holland, Amsterdam, pp. 257-270.

1964c. Atmospheric heating in the auroral zones: a preliminary analysis of the atmospheric drag of the Injun 3 satellite. Journ. Geophys. Res., vol. 69, pp. 905-910.

KOCKARTS, G., and NICOLET, M.

1962. Le problème aéronomique de l'hélium et de l'hydrogène neutres. Ann. de Géophys., vol. 18, pp. 269–290.

1963. L'hélium et l'hydrogène atomique au cours d'un minimum d'activité solaire. Ann. de Géophys., vol. 19, pp. 370-385.

NICOLET, M.

 Density of the heterosphere related to temperature. Smithsonian Astrophys. Obs. Spec. Rep., no. 75, 30 pp.

1963. La constitution et la composition de l'atmosphère supérieure. In C. DeWitt, J. Hieblot, and A. Lebean, eds., Geophysics, The Earth's Environment, Gordon and Breach, Science Publishers, New York.

PURCELL, J. D.; GARRETT, D. L.; and TOUSEY, R. 1964. Spectroheliograms in the extreme ultraviolet (abstract). Astron. Journ., vol. 69, p. 147.

SMALL, H. W.

1964. Atmospheric density between 70 and 200 nautical miles from satellite observations. Lockheed Missiles and Space Company, Tracking Note no. 23.

ZIRM. R. R.

1964. Variations in decay rate of satellites. Journ. Geophys. Res., vol. 69, pp. 4696–4697.

Abstract

Tables of atmospheric density and composition are computed for a wide range of exospheric temperatures, starting from a fixed set of boundary conditions at 120 km. The diffusion equation is integrated following empirical temperature profiles of exponential form capable of reproducing the densities derived from satellite drag over the years. Formulae are given which relate the exospheric temperature to solar and geomagnetic activity and allow for the diurnal and semiannual variations. The different response of the density at the 200 km. level to different types of heating is briefly discussed.

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature

EXOSPHERIC TEMPERATURE = 2100 CEGREES

HEIGHT	TEMP	LOG N(02)	LOG N(D)	LOG NINZ)	LOG NUHE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.699
130.0	573.0	10.3227	10.5007	11.0926	7.3595		26.33	19.21	0.7715E-11	-11.113
140.0	763.7	9.9618	19.2579	10.7611	7.2526		25.88	26.13	0.3651E-11	-11.438
150.0	930.6	9.6908	10.0794	10.5132	7.1762		25.49	32.43	0.2096E-11	-11.679
160.0	1076.7	9.4719	9.9383	10.3136	7.1174		25.14	38.16	0.1346E-11	-11.871
170.0	1204.5	9.2866	9.8213	10.1454	7.0702		24.81	43.39	0.9290E-12	-12.032
180.0	1316.4	9.1249	9.7212	9.9990	7.0308		24.51	48.16	0.6748E-12	-12.171
190.0	1414.3	8.9805	9.6334	9.8686	6.9973		24.22	52.52	0.5088E-12	-12.293
200.0	1499.9	8.8491	9.5549	9.7504	6.9683		23.94	56.53	0.3947E-12	-12.404
210.0	1574.9	8.7279	9.4837	9.6417	6.9426		23.66	60.21	0.3132E-12	-12.504
220.0	1640.5	8.6148	9.4183	9.5405	6.9197		23.40	63.62	0.2530E-12	-12.597
230.0	1697.9	8.5082	9.3576	9.4453	6.899C		23.15	66.77	0.2074E-12	-12.683
240.0	1748.1	8.4071	9.3037	9.3552	6.8821		22.90	69.71	0.1721E-12	-12.764
250.0	1792.1	8.3105	9.2470	9.2693	6.8626		22.65	72.45	0.1443E-12	-12.841
230.0	1772.1	0.3103	7.2410	7.2073	0.0020		22.03	12.45	0.14436-12	-12.041
260.0	1830.5	8,2176	9.1959	9.1869	6.8465		22.41	75.03	0.12216-12	-12.913
270.0	1864.2	8.1280	9.1471	9,1074	6.8313		22.18	77.45	0.1040E-12	-12.983
280.0	1893.6	8.3410	9.1003	9.0304	6.8171		21.95	79.73	0.8924E-13	-13.049
290.0	1919.4	7.9564	9.0550	8.9556	6.8036		21.72	81.90	0.7700E-13	-13.114
300.0	1942.0	7.8738	9,0112	8 - 88 26	6.7937		21.50	83.97	0.6677E-13	-13.175
320.0	1979.0	7.7136	8.9273	8.7414	6.7666		21.08	87.83	0.5089E-13	-13.293
340.0	2007.3	7.5589	8.8465	8.6051	6.7442		20.67	91.39	0.3936E-13	-13.405
360.0	2029.0	7.4083	8.7689	8.4727	6.7231		20.28	94.72	0.30816-13	-13.511
380.0	2045.7	7.2611	9.6935	8.3434	6.7029		19.91	97.86	0.2438E-13	-13.613
400.0	2058.4	7.1166	A.6199	8.2166	6.6835		19.55	100.84	0.1946E-13	-13.711
/20 0	20/0 1	4 0743	0 5/70	0.0010			10.00	122 40	0.15455.10	12 005
420.0 440.0	2058.1	6.9743	8.5478	8.0918 7.9687	6.6647		19.22	103.68	0.1565E~13	-13.805
460.0	2075.6	6.6952	8.4068	7.8471	6.6463		18.91	106.41	0.12688-13	-13.897
480.0							18.61		0.1034E-13	-13.985
500.0	2085.7	6.5579	8.3377	7.7267	6.6107	2 0151	18.33	111.59	0.8479E-14	-14.072
500.0	2089.0	6.4218	8.2693	7.6075	6.5934	2.9454	18.97	114.05	0.69896-14	-14.156
520.0	2091.6	6.2868	8 - 20 16	7.4893	6.5762	2,9406	17.82	116.45	0.5789E-14	-14.237
540.0	2093.6	6.1530	9.1344	7.3720	6,5593	2,9360	17,59	118.78	0.4816E-14	-14.317
560.0	2095.1	6.0201	8.0678	7.2556	6.5425	2,9315	17.37	121.06	0.4022E-14	-14.396
580.0	2096.2	5.8881	9,0017	7.1401	6.5258	2 + 9271	17.17	123.29	Q.3373E-14	-14,472
600.0	2097.1	5.7570	7.9361	7.0252	6.5093	2,9228	16.97	125.49	0.2838E-14	-14.547
620.0	2097.8	5.6267	7.8709	6.9112	6.4930	2.9185	16.78	127.65	0.2396E-14	-14.621
640.0	2098.3	5.4972	7.8061	6.7979	6.4767	2.9144	16.60	129.80	0.2028E-14	-14.693
660.0	2098.7	5.3686	7.7417	6.6852	6.4606	2.9102	16.43	131.94	0.1723E-14	-14.764
680.0	2099.0	5.2407	7.6777	6.5732	6.4446	2.9061	16.26	134.09	D.1467E-14	-14.834
700.0	2099.2	5.1135	7.6141	6.4619	6.4286	2.9021	16.10	136.23	0.1252E-14	-14.902
750.0	2099.6	4.7989	7.4568	6.1864	6.3892	2.8921	15.70	141.75	0.8516E-15	-15.070
800.0	2099.8	4.4888	7.3017	5.9149	6.3504	2.8823	15.29	147.63	0.5869E-15	-15.231
850.0	2099.9	4.1830	7.1488	5.6472	6.3121	2.8726	14.85	154.07	0.4093E-15	-15.388
900.0	2099.9	3.8814	6.9980	5.3832	6.2744	2.8631	14.38	161.33	0.28868-15	-15.540
950.0	2100.0	3.5839	6.8493	5.1228	6.2372	2.8538	13.87	169.66	0.2056E-15	-15.687
		3.70037	0.0475	2.12.20		2.0000			0.20002-19	134007
1000.0	2100.0	3.2906	6.7026	4.8659	6.2005	2.8445	13.30	179.35	0.1480F-15	-15.830

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 2000 EEGREES

HE1GHT	TEMP	LCG N(C2)	LOG NED)	LOC N(N2)	LOG N(HE)	LOS N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/ CM3	/CM3	/C M 3	MOT, WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10,9751	10.9808	11,6021	7.5215		26.90	11.62	0.2461E-10	-10.609
130.0	572.2	10.3231	10.5011	11.0930	7.3558		26.33	19.19	0.7722F-11	-11.112
140.0	761.6	9.9624	10.2587	10.7617	7.2532		25.88	26.96	0.3657E-11	-11.437
150.0	926.7	9.6914	10.0806	13.5139	7.1771		25.49	32.30	0.2130E-11	-11.678
13000	7.000	7.0714	10.0000	10.5157	7.1771		23.47	12.30	0.21996-11	-11.014
160.0	1373.7	9.4722	9.9397	10.3142	7.1187		25.13	37.96	0.1348E-11	-11.870
170.0	1196.2	9.2867	9.8229	10.1458	7.0717		24.81	43.10	0.9303E-12	-12.031
180.0	1305.6	9.1246	9.7228	9.9992	7.0326		24.50	47.78	0.6754E-12	-12-170
190.0	1401.0	8.9797	9.6350	9.8685	6.9993		24.20	52.05	0.5090F-12	-12.293
200.0	1484.2	8.8477	9.5565	9.7498	6.9704		23.92	55.97	0.39465-12	-12.494
210.0	1556.7	8,7258	9.4852	9.6405	6.9449		23.65	59.56	0.3128E-12	-12.505
220.0	1619.9	8:6120	9.4197	9.5387	6.9221		23.38	62.88	0.2524E-12	-12.598
230.0	1675.0	8,5047	9.3587	9.4430	6.9014		23.12	65.95	0.2067E-12	-12.695
240.0	1723.1	8.4027	9.3016	9.3522	6.8826		22.87	68.80	0.17135-12	-12.766
250.0	1765.0	8.3052	9.2476	9.2654	6.8652		22.62	71.47	0.1/13E-12 0.1435E-12	
23040	110340	0.00.2	7.2410	7.2034	0.0032		22.02	11.41	0.14556-12	-12.843
260.0	1801.5	8.2113	9.1962	9 - 1822	6.8491		22.37	73.96	0.1212E-12	-12.917
270.0	1833.3	8.1206	9.1471	9.1018	6.8340		22.14	76.31	0.10315-12	-12.987
280.0	1861.1	8.0326	9.0998	9.0239	6.8197		21.90	78.53	0.48835€-13	-13.054
290.0	1885.3	7.9468	9.0541	8.9481	6.8062		21.67	80.63	0.7611F-13	-13.119
300.0	1306.4	7.8630	9.0098	8 - 8742	6.7933		21.45	82.63	0.6590F-13	-13.181
				0.00772	0.,,,,,		210.15	72 40 1	0.007701-13	-13.101
320.0	1940.9	7.7003	3.9246	8.7308	6.7691		21.02	86.39	0.5006€-13	-13.371
340.0	1967.9	7.5429	9.9430	8.5923	6.7466		20.60	89.84	0.3859E-13	-13.414
360.0	1986.9	7.3896	8.7641	8.4575	6.7252		20.21	93.09	0.3011E-13	-13.521
380)	2002.1	7.2396	3.6874	8.3257	6.7048		19.93	96.14	0.2374E-13	-13.625
400.0	2013.6	7.9922	8.6125	8.1964	6.6851		19.47	99.05	0.1888€-13	-13.724
420+ U	2022.3	6.9469	8.5389	8.0690	6.6660		19.14	131.83	0.1514E-13	-13,820
440.0	2029.0	6.8035	8 • 46 65	7.9433	6.6474		19.82			
460.0	2034.0	6.6617	8,3951	7.8190	6.6291			104.50	0.1223F-13	-13.913
480.0	2037.8	6.5213	8.3244				18.52	107.08	0.9936E-14	-14.003
500.0				7.6959	6.6111		19.24	109.57	0.81218-14	-14.090
500.0	2040.8	6.3821	8 - 25 4 5	7.5740	6.5934	2.9752	17.98	111.98	0.6672E-14	-14.176
520.0	2043.0	6.2440	8.1853	7.4531	6.5759	2.9704	17.73	114.32	0.5509E-14	-14.259
540.0	2044.7	6.1370	8.1166	7.3331	6.5586	2.9657	17.50	116.61	0.4568E-14	-14.340
560.0	2045.9	5.9710	8.0484	7.2139	6.5414	2.9612	17.28	118.84	0.3804E-14	-14.420
580.0	2046.9	5.8358	7.9808	7.0956	6.5244	2.9567	17.97	121.03	0.3189F-14	-14.498
600.0	2047.7	5.7016	7.9136	6.9781	6.5075	2.9523	16.88	123.19	0.2667E-14	-14.574
620.0	2048.2	5.5682	7.8468	6.8613	6.4908	2.9480	16.69	125.32	0+2245E-14	-14.649
640.0	2048.6	5.4356	7.7895	6.7452	6.4742	2.9437	16.51	127.43	0.1895F-14	
660.0	2049.0	5.3038								-14.722
680.0	2049.0	5.1729	7.7146 7.6490	6.6298	6.4576	2.9355	16.34	129.55	0.1605E-14	-14.795
				6.5151	6.4412	2.9353	16.17	131.67	0.1363E-14	-14.866
700.0	2049.4	5.9426	7.5839	6.4011	6.4249	2.9312	16.90	133.81	0.1160E-14	-14.936
750.0	2049.7	4.7204	7.4227	6.1190	6.3846	2.9210	15.59	139.34	0.7833E-15	-15,106
800.0	2049.8	4.4027	7.2639	5.8409	6.3448	2.9109	15+16	145.28	0.5360E-15	-15.271
850.0	2049.9	4.3894	7.1072	5.5666	6.3056	2.9011	14.71	151.87	0.3713F-15	-15.430
900.0	2050.0	3.7805	6.9528	5.2961	6,2669	2.8913	14.21	159.38	0.2601E-15	-15.585
950.0	2050.0	3.4758	6.8004	5.0294	6.2288	2.8817	13.66	168.10	0.18426-15	-15.735
1000 0	2050 0	2 1765			. 1016					
1000.0	2050.0	3.1753	6.6502	4.7663	6.1912	2.8722	13.05	178.32	0.1318E-15	-15.880

 $\textbf{Table 1.-Detailed atmospheric data as a function of height and exospheric temperature} - Continued \\ \texttt{Exospheric} \ \texttt{Temperature} = \texttt{2000} \ \texttt{Cegrees}$

HEIGHT	TEMP	LOS N(02)	LOC NOT	LOG MENZI	LOS V(HE)	LOG V(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM 3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
K M	OE3 K	7603	7 6 11 3	7 GH 3	7643	76713	MOL WI	HI K	907003	OH/ CH3
120.J	355.0	13.8751	10.4808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	571.7	13.3234	10.5015	11.0933	7.3601		26.33	19.17	0.7728E-11	-11.112
140.9	759.8	9.9629	1).2595	10.7623	7.2538		25.88	26.33	0.3662E-11	-11.436
150.0	923.1	9.6+19	17.0817	10.5146	7.1781		25.48	32.19	0.2103F-11	-11.677
160.0	1065.9	9.4727	3.9411	10.3149	7.1199		25.13	37.76	0.1350E-11	-11.870
170.0	1188.1	9.2870	9.8245	10.1464	7.0731		24.80	42.82	0.9319E-12	-12.031
180.0	1295.1	9.1246	9.7245	9.9996	7.0343		24.49	47.41	0.6764E-12	-12.170
190.0	1387.9	8.9792	9.6368	9.8685	7.0012		24.19	51.59	0.5095E-12	-12.293
200.0	1468.5	9.8466	9.5583	9.7495	6.9725		23.90	55.41	0.3947E-12	-12.434
210.3	1538.5	8.7241	9.4869	9.6397	6.9472		23.63	58.22	0.3126E-12	-12.505
220.0	1599.3	8.6296	9.4212	9.5373	6.9245		23.36	62.14	0.25206-12	-12.599
230.0	1652.1	8.5015	9.3601	9.4409	6.9040		23.09	65.12	0.2062E-12	-12.686
240.0	1697.9	9.3986	7.3027	9.3493	6.8853		22.84	67.99	0.17075-12	-12,768
250.0	1737.7	8.3331	7.2435	9.2618	6.8680		22.58	70.47	0.14275-12	-12.845
260.0	1772.2	8.2052	9.1967	9.1777	6.8519		22.34	72.89	0.12048-12	-12.919
270.0	1832.2	8.1134	9.1472	9.3965	6.9368		22.10	75-15	0.1023E-12	-12.993
280.0	1828.3	8.3242	9.3995	9.0176	6.8225		21.86	77.30	0.8751F-13	-13.058
290.0	1850.9	7.9373	9.0533	8.9408	6.809C		21.63	79.34	0.7527E-13	-13.123
300.0	1870.5	7.8523	9.0085	8.8658	6.7961		21.40	81.28	0.6507E-13	-13.187
320.0	1902.4	7.6870	8.9222	8.7202	6.7718		20.96	94.91	J.4926E-13	-13.308
340.0	1926.4	7.5268	8.8394	8.5793	6.7490		20.53	88.28	0.3793E-13	-13.622
360.0	1944.5	7.3706	8.7593	8.4420	6.7275		20.13	91.43	0.2942E-13	-13.531
380.0	1958.2	7.2176	8.6813	8.3077	6.7068		19.75	94.41	0.23116-13	-13.636
400.0	1768.5	7.3671	8.6049	8.1756	6.6869		19.33	97.24	0.1832E-13	-13.737
400.0	1 100.0	1.0011	0.0047	0.1/20	0.0007		17.77	71.24	3.10326-13	-13.737
			8.5298		6.6675		19.05	99.96	0.1464E-13	-13.835
420.0	1976.2	6.9187		8.0455						
440.0	1982.1	6.7721	8.4559	7.9170	6.6495		18.73	102.57	0.1178E-13	-13.929
460.J	1986.5	6.6273	8.3829	7.7899	6.6259		18.43	105.09	0.9536E-14	-14.021
480.0	1989.8	6.4834	8.3107	7.6640	6.6115		18.15	107.52	0.7767E-14	-14.110
500.0	1992.3	6.3409	9.2392	7.5392	6.5934	3.0070	17.89	109.88	0.6360E-14	-14.197
520.0	1994.2	6.1995	8.1683	7.4154	6.5755	3.0021	17.64	112.18	0.5234E-14	-14.281
540.0	1995.6	6.3592	8.3980	7.2925	6.5578	2.9974	17.41	114.41	0.4326E-14	-14.364
560.0	1996.7	5.9199	8.0282	7,1705	6.5403	2,9928	17.19	116.60	0.3591E-14	-14.445
580.0	1997.5	5.7814	7.9599	7.0493	6.5229	2.9883	16.98	118.75	0.2992E-14	-14.524
603.0	1998.1	5.6439	7.8900	6.9289	6.5056	2.9838	16.79	120.87	0.2502E-14	-14.602
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
620.0	1998.6	5.5072	7.8216	6.8092	6.4884	2.9794	16.60	122.97	0.2099E-14	-14.678
640.0	1998.9	5.3714	7.7537	6+6903	6.4714	2.9751	16.42	125.05	0.1767E-14	-14.753
		5.2363	7.6861	6.5720	6.4545	2.9707	16.24	127.15	0.14918-14	-14.826
660.0	1999.2					2.9665	16.24	127.15	0.12625-14	-14.820
680.0	1999.4	5.1021	7.6190	6.4545	6.4377					
700.0	1999.5	4.9696	7.5522	6.3377	6.4210	2.9622	15.90	131.38	0.1071E-14	-14.970
									0 01000	
750.0	1999.8	4.6383	7.3871	6.0485	6.3796	2.9518	15.48	136.93	0.7180E-15	-15.144
0.008	1999.9	4.3127	7.2243	5.7634	6.3388	2.9415	15.03	142.96	0.4878E-15	-15.312
850.0	1999.9	3.9916	7.9637	5.4823	6.2987	2.9314	14.55	149.74	0.3355E-15	-15.474
900.0	2000.0	3.6750	6.9054	5.2051	6.2590	2.9214	14.03	157.55	0.2334E-15	-15.632
950.0	2000.0	3.3627	6.7492	4.9317	6.2200	2.9115	13.44	166.71	0.1643E-15	-15.784
1000.0	2000.0	3.0546	6.5952	4.6620	6.1814	2.9018	12.79	177.55	0.1169E-15	-15.932
		,								

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1950 CEGREES

HE 1 SH T	TEMP	LOG N(02)		LOG N(N2)		LDG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	OEG K	/CM3	/ CM 3	/ C M 3	/CM3	/CM3	MOL WI	HT KM	CW/CM3	GM/CM3
120.0	355.0	10.8751	13.8808	11.6021	7.5315		26.90	11.62	0.2461F-10	-10.609
130.0	571.3	10.3236	10.5018	11.0935	7.3602		26.33	19.16	0.7732E-11	-11-112
140.0	758.2	9,9634	10.2602	13.7629	7.2543		25.88	25.95	0.3667E-11	-11.436
150.0	919.9	9.6926	10.0828	10.5154	7.1789		25.48	32.06	0.2107E-11	-11.676
160.0	1059.5	9.4734	9.9425	10.3158	7.1211		25.13	37.57	0.1353E-11	-11.869
170.0	1190.2	9.2875	9.8261	10.1472	7.0746		24.79	42.55	0.9339E-12	-12.030
180.0	1284.6	9.1247	9.7264	10.0002	7.0361		24.48	47.75	0.6777E-12	-12.169
190.0	1374.8	8.9789	9.6387	9.8689	7.0032		24.18	51.13	0.5132E-12	-12.292
200.0	1452.8	8.9459	9.5602	9.7493	6.9747		23.89	54.95	0.3950E-12	-12.403
210.0	1520.2	8.7227	3.4888	9.6391	6.9496		23.61	58.26	0.3126E-12	-12.505
220.0	1578.5	8.5074	9.4230	9.5361	6.9271		23.34	61.39	0.2518E-12	-12.599
230.0	1629.9	8,4985	9.3617	9.4390	6.9067		23.07	64.28	0.2057E-12	-12.687
240.0	1672.4	8.3947	9.3041	9.3467	6.8880		22.81	66.95	0.1701E-12	-12.769
250.0	1710.1	8.2952	9.2495	9.2584	6,8708		22.55	69.45	0.1421E-12	-12.848
230.0	1.10+1	1142732	7.2473	7423114	0.00		22.00	07.43	0.14216-12	-12+040
260.0	1742.6	8.1992	9.1974	9.1734	6.8547		22.30	71.78	0.1196F-12	-12.922
270.0	1770.7	8.1363	9.1475	9.0912	6.8397		22.05	73.98	0.1015E-12	-12.993
280.0	1795.0	8.0159	9.0993	9.0113	6.8254		21.81	76.06	2.8669E-13	-13.062
290.0	1816.0	7.9277	9.0527	8,7335	6.9119		21.57	78.02	0.7444E-13	-13.128
300.0	1834.2	7.9414	9.0074	8.8573	6.7989		21.34	79.90	0.6424E-13	-13.192
320.0	1863.5	7.6733	8.9199	8.7094	6.7745		20.89	83.42	0.4846E-13	-13.315
340.0	1885.3	7.5103	8.8358	8.5660	6.7516		20.47	86.68	0.3708E-13	-13.431
360.0	1901.7	7.3510	8.7543	8.4261	6.7298		20.06	89.75	0.2872E-13	-13.542
380.0	1913.9	7.1948	8 • 6748	8.2890	6.7089		19.67	92.65	0.2248E-13	-13.648
400.0	1923.0	7.0410	8.5969	8.1541	6.6886		19.31	95.41	0.1775E-13	-13.751
420.0	1929.9	6.9893	8.5203	8.0211	6.6689		18.96	98.06	0.1413E-13	-13.850
440.0	1934.9	6.7394	8 . 44 47	7.8897	6.6496		18.64	100.61	0.1133E-13	-13.946
460.0	1938.7	6.5909	8 - 3701	7.7596	6.63(6		18.34	193.07	0.9138E-14	-14.039
480.0	1941.6	6.4437	8.2962	7.6307	6.6118		18.26	105.45	0.7416E-14	-14.130
500.0	1941.0	6,2978	8.2230	7.5029	6.5933	3.0409	17.79	107.76	0.6051E-14	-14.130
300.0	194341	0.27/0	0.2230	1.3927	0.3923	3.0909	11.19	107.70	0.60316-14	-14.210
520.0	1945.3	6.1530	9.1504	7.3760	6.575C	3.0360	17.55	110.01	0.4962E-14	-14.304
540.0	1946.5	6.1092	8 • 07 84	7.2501	6.5569	3.0313	17.31	112.20	0.4087E-14	-14.389
560.0	1947.4	5.8663	8.3068	7.1250	6.5390	3.0266	17.10	114.34	0.3381E-14	-14.471
580.0	1948.0	5.7244	7.9358	7.0008	6.5211	3.0219	16.89	116.45	0.2808E-14	-14.552
600.0	1949.5	5.5834	7.8653	6.8773	6.5034	3.9174	16.69	118.53	0.2340E-14	-14.631
620.0	1948.9	5.4433	7.7951	6.7546	6.4859	3.0129	16.50	120,60	0.1957E-14	-14.708
640.0	1949.2	5.3040	7.7255	6.6326	6.4684	3.0085	16.32	122.66	0.1642E-14	-14.785
660.0	1949.4	5.1655	7,6562	6.5114	6.4510	3.0041	16.14	124.73	0.1381E-14	-14.860
680.0	1949.5	5.0279	7.5874	6.3909	6.4338	2.9997	15.97	126.93	0.1165E-14	-14.934
700.0	1949.7	4.8910	7.5189	6.2711	6.4167	2.9953	15.80	128.96	0.9858E-15	-15.006
750.0	1949.8	4.5523	7.3495	5.9745	6.3743	2.9846	15.36	134.54	0.6556E-15	-15.183
800.0	1949.9	4.2183	7 - 18 25	5.6921	6.3325	2.9741	14.99	140.69	0.4420E-15	-15.355
850.0	1950.0	3.8890	7.0179	5.3938	6.2913	2.9637	14.39	147.69	0.3018E-15	-15.520
900.0	1950.0	3.5642	6.8555	5.1095	6.2506	2.9535	13.82	155.86	0.2085E-15	-15.681
950.0	1950.0	3.2439	6.6953	4.8291	6.2105	2.9434	13.20	165.53	0.1459E-15	-15.836
							10.61	100.00		16.007
1000.0	1950.9	2.9280	6.5374	4.5525	6.1710	2.9334	12.51	177.07	0.10316-15	-15.987

 $TABLE \ 1.--Detailed \ atmospheric \ data \ as \ a \ function \ of \ height \ and \ exospheric \ temperature — Continued \ EXOSPHERIC TEMPERATURE = 1930 \ OBGREES$

HETGHT	TEMP	LOG N(C2)			FOC ALHE)	LOS V(H)	MEAN	SCALE	OENSITY	LOG CEN
KM	OES K	/CM3	/ CM3	/ CM 3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	13.8838	11.6021	7.5315		26.90	11.62	0.24616-10	-10.609
130.0	571.0	10.3238	10.5020	11.0937	7.3604		26.33	19.15	0.7735E-11	-11-112
140.0	756.8	9,9639	10.2609	10.7625	7.2548		25.88	25.90	0.3672F-11	-11.435
150.∪	916.6	9.6933	12.0840	13.5162	7.1797		25.48	31.96	0.2111E-11	-11.675
160.0	1054.1	9.4741	0.0110	1 . 21/7	7 1722					
			9.9440	10.3167	7.1223		25.12	37.39	0.1356E-11	-11.868
170.0	1172.4	9.2881	9.8279	10.1481	7.0762		24.79	42.27	0.9362E-12	-12.029
180.3	1274.1	9.1251	9.7283	10.0009	7.0379		24.47	46.68	0.6792E-12	-12.168
190.3	1361.6	8.9789	9.6408	9.9693	7.0053		24.17	50.66	0.51116-12	-12.291
200.0	1436.9	8,8453	9.5623	9.7494	6.977C		23.98	54.28	0.3955F-12	-12.403
210.0	1501.6	8.7215	9.4908	9.6386	6.9521		23.59	57.59	0.3127F-12	-12.505
220. U	1557.3	8.6354	9.4249	9.5351	6.9297		23.31	60.62	0.2516E-12	-12.599
230.0	1605.2	8.4956	9.3634	9.4373	6.9095		23.04	63.41	0.2053E-12	-12+688
240.0	1646.4	8.3998	9.3055	9.3442	6.8909		22.78	66.00	0.1696E-12	-12.771
250.0	1681.9	8.2903	9.2506	9.2550	6.8737		22.52	68.41	0.1414E-12	-12.850
260.0	1712.4	8.1932	9.1982	9.1691	6.8577		22.26	70.66	0.1189E-12	-12.925
270.0	1738.6	8,0991	9.1478	9.0858	6.8427		22.01	72.78	0-1007E-12	-12.997
280.0	1761.2	8.0374	9.3992	9.0049	6.9284		21.76	74.78	0.8588E-13	-13.066
290.0	1780.6	7.9179	9.0521	8.9259	6.8149		21.52	76.68	0.7361E-13	-13.133
300.0	1797.3	7.8302	9.0062	8.8486	6.8019		21.29	78.50	0.6341E-13	-13,198
,	117117	1.0000	7.0002	0.114.0	C		21.27	10130	0:03416-13	-13.170
320.0	1824.0	7.6592	8.9175	8.6981	6.7773		20.83	81.90	0.4765E-13	-13.322
340.0	1843.8	7.4930	8.8320	8.5521	6.7542		20.39	85.07	0.36325-13	-13,440
360.0	1858.4	7.3305	8.7491	8.4094	6.7322		19.98	88.04	0.2802E-13	-13.553
380.0	1869.2	7.1709	8.6680	8.2693	6.7110		19.59	90.87	0.2184E-13	-13.661
400.0	1877.2	7.3137	8.5885	8.1315	6.6904		19.22	93.56	0.1718E-13	-13.765
420.0	1883.1	6.8585	9.5102	7.9954	6.6703		18.87	96.15	0.1362E-13	-13.866
440.0	1887.5	6.7049	8.4329	7.8609	6.6506		18.55	98.64	0.1087F-13	-13.964
460.J	1890.8	6.5528	8,3565	7,7276	6.6312		19.24	101.04	0.8739E-14	-14.059
480.0	1893.2	6.4020	8.2898	7.5955	6.6120		17.96	193.37	0.7066E-14	-14.151
500.3	1894.9	6.2524	8 . 20 58	7.4645	6.5931	3.0772	17.70	105.63	0.7000E-14	-14.241
520.0	1896.3	6.1039	8.1314	7.3345	6.5744	3.0722	17.45	107.82	0.4692F-14	-14.329
540.0	1897.2	5.9564	8.3576	7.2053	6.5558	3.0674	17.22	109.97	0.3851E-14	-14.414
560.0	1898.0	5.8399	7.9842	7.0770	6.5374	3.0626	17.00	112.07	0.3174E-14	-14.498
580.0	1898.5	5.6644	7.9114	6.9496	6.5151	3.3579	16.79	114.14	J.2627E-14	-14.581
600.0	1898.9	5.5197	7.8390	6.8229	6.5010	3.0533	16.60	116.18	0.2182E-14	-14.661
620.0	1899.2	5.3759	7.7671	6.6970	6.4830	3.0487	16.41	118.22	0.1818E-14	-14-740
640.0	1899.4	5.2330	7.6956	6.5719	6.4651	3.3441	16.22	120.26	0.1520F-14	-14.818
663.0	1877.5	5.3909	7.6245	6.4475	6.4473	3.0396	16.04	122.32	0.1274F-14	-14.895
680.0	1899.7	4.9496	7.5539	6.3238	6.4256	3.9351	15.86	124.41	0.1072E-14	-14.970
700.0	1899.R	4.8092	7.4836	6.2008	6.4120	3.0307	15.69	126.54	0.9034E-15	-15.044
750.0	1899.9	4.4615	7,3098	5.8965	6.3685	3.0197	15.23	132.18	0.5959E~15	-15.225
800.0	1899.9	4.1188	7.1384	5.5964	6.3256	3,0089				
850.0	1930.3	3.7808	6.9694	5.3005	6.2833	2.9982	14.74	139.48	0.3985E-15	-15 - 400
900.0	1900.0	3.4475	6.8028	5.0087	6.2416	2.9877		145.76	0.2700E-15	-15.569
950.U	1900.0	3.1188	6.6384	4.7209		2.9774	13.60		0.1852E-15	-15.732
77000	1743.4	3.1100	0.0304	4.7209	6.2025	2.7/14	12.93	164.61	0.1286E-15	-15.891
1000.J	1900.0	2.7945	6.4763	4.4371	6.1559	2.9672	12.19	176.95	0.9046E-16	-16.044

NO. 9

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1850 CEGREES

HE IGH T	TEMP	LOS N(02)		LOC N(N2)		LOS MIII)	MEAN	SCALF	DENSITY	LOG BEN
KM	DEG K	/CM3	/ CM 3	/ CM 3	\C₩3	/C M 3	MOF MI	HI KM	SW/CM3	GM/CM3
120.J	355.2	10.8751	10.8808	11.6921	7.5315		26.95	11.62	0.2461E-10	-10.609
130.0	570.8	10.3239	10.5021	11.0939	7.3604		26.33	19.14	0.7738E-11	-11.111
140.0	755.5	9.9645	10.2615	10.7640	7.2552		25.88	25.86	0.3676F-11	-11.435
150.)	913.5	9.6941	10.0851	10.5171	7.1806		25.49	31.25	0.21166-11	-11.675
160.)	1048.7	9.4750	7.9456	13.3174	7.1235		25.12	37.27	0.136JE-11	-11.866
170.0	1164.4	9.2889	9.8798	10.1492	7.9717		24.78	41.99	0.9387E-12	-12.027
180.0	1253.3	9.1256	9.7304	10.0018	7.0398		24.46	46.33	0.6809E-12	-12.167
190.0	1348.3	8.9789	9 • 64 30	9.9699	7.0075		24.16	56.18	0.5122E-12	-12.291
200.0	1420.5	8.8448	9.5646	9.7496	6.9794		23.96	53.73	0.3962F-12	-12.402
210.0	1482.5	8.7203	9.4930	9.6383	6.9547		23.57	56.90	0.3129E-12	-12,535
220.0	1535.6	8.6034	9.4270	J. 5341	6.7325		23.29	59.83	0.25156-12	-12.599
230.0	1580.9	8.4927	9.3653	9.4356	6.3124		23.02	62.53	0.2050E-12	-12,689
240.0	1619.8	8.3869	7.3071	9.3416	6.9935		22.75	65.02	0.1690E-12	-12.772
250.0	1653.0	8.2852	9.2519	9.2515	6.8768		22.48	67.34	0.14076-12	-12.952
250.3	1603.0	8.2832	4.6219	7.2713	0.0100		22.40	01.34	0.14376-12	-12.552
260.J	1681.5	8.1869	9.1999	9.1646	6.9609		22.22	69.51	0.1182E-12	-12.927
270.0	1705.8	8.3915	7.1482	9.0803	6.8458		21.97	71.55	0.9993E-13	-13.000
280.0	1726.6	7,9985	9.0991	8.9982	6.8316		21.71	73.49	0.8593E-13	-13.070
290.J	1744.4	7.9275	9.3513	8.9180	6.8183		21.47	75.32	0.7275E-13	-13,138
300.0	1759.7	7.8183	9.0048	8.9394	6.9050		21.23	77.07	0.62545-13	-13.204
320.ŭ	1783.9	7.6442	8.9148	8.6863	6.7803		20.76	80.36	0.468DE-13	-13.330
340.3	1801.6	7.4747	8.8279	9.5373	6.7569		20.32	83.42	0.3553E-13	-13.449
360. €	1814.5	7.3387	8.7434	8.3916	6.7346		19.90	86.31	0.2729E-13	-13.564
380.J	1824.0	7.1456	8,6697	8.2485	6.7131		19.50	89.96	0.2118E-13	-13.674
400.0	1831.0	6.9847	8.5794	8.1074	6.6921		19.13	91.69	3.1659€-13	-13.780
420.0	1836.1	6,8257	8.4933	7.9681	6.6716		18.78	94.21	0.1310E-13	-13.883
440.0	1839.8	6.6683	8.4202	7.8302	6.6515		18.45	96.64	0.10416-13	-13.982
460.0	1842.5	6,5124	8.3419	7.6936	6.6317		18.15	98.97	0.83366-14	-14.079
480.J	1844.5	6.3578	8.2643	7,5582	6.6121		17.86	131.26	0.6713E-14	-14.173
500-9	1846.0	6.2043	8.1874	7.4238	6.5927	3.1160	17.60	103.47	0.54355-14	-14.265
520.0	1847.1	6.0519	8.1111	7.2903	6.5735	3.1109	17.35	135.62	0.44236-14	-14.354
540.0	1847.9	5.9005	8.3353	7.1578	6.5545	3.1060	17.12	107.72	0.3617E-14	-14.442
560.J	1848.4	5.7531	7.9601	7.0261	6.5356	3.1011	16.90	109.78	0.2970F-14	-14.527
580.0	1848.9	5.6007	7.8853	6.8952	6.5169	3.0963	16.69	111.81	0.2448E-14	-14.611
600.0	1849.2	5.4521	7.8110	6.7652	6.4983	3. 1915	16.50	113.83	0.2026F-14	-14.693
620.0	1849.4	5.3045	7.7371	6.6359	6.4758	3.2868	16.31	115.84	0.1682E-14	-14.774
640.0	1849.5	5.1577	7.6637	6.5374	6.4614	3.0822	16.12	117.86	0.14315-14	-14.853
660.0	1847.7	5,3119	7.5907	6.3797	6.4431	3.0775	15.94	119.90	0.11716-14	-14.932
680.0	1849.8	4.8667	7.5182	6.2527	6,4249	3,0730	15.75	121.99	0.9809E-15	-15.008
760.0	1849.9	4.7225	7.4461	6.1264	6.4069	3.0684	15.57	124.13	0.8249E-15	-15.084
.03.0	10+7+5	1223		0.1204	0.4007	7.3004			0.05/06-17	120004
750.0	1849.9	4.3655	7.2676	5.8138	6.3622	3.2571	15.10	129.96	0.5387€-15	-15.269
800.0	1850.0	4.0135	7.0916	5.5057	6.3182	3.0460	14.58	136.36	0.3573E-15	~15.447
850.0	1850.0	3.6664	6.9189	5.2018	6.2747	3.0351	14.00	143.96	0.2401E-15	-15.620
900.0	1950.0	3.3241	6.7469	4.9021	6.2319	3.0243	13.36	153.03	0.1635E-15	-15.787
950.0	1850.0	2.9865	6.5780	4.6065	6.1896	3.0137	12.64	164.30	0.1128€-15	-15.948
1000.0	1850.0	2.6534	6.4115	4.3150	6.1480	3.0032	11.85	177.26	0.7886E-16	-16.193

Table 1.-- Detailed atmospheric data as a function of height and exospheric temperature -- Continued exospheric Temperature = 1830 CEGREES

HEIGHT	TEMP	LOG N(DZ)	LOC NOOL	106 N(N2)	LDG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	OEG K	/CM3	/ CM3	/CM3	/CH3	/CM3	MOL HT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	570.7	10.3241	10.5022	11.0940	7.3605		26.33	19.14	0.7740F-11	-11.111
140.0	754.2	9.9650	10.2622	13.7646	7.2557		25.87	25.81	0.3681E-11	-11.434
150.0	910.3	9.6950	10.0863	10.5180	7.1815		25.48	31.74	0.21216-11	-11.674
160.0	1043.1	9.4759	9.9472	10.3189	7.1248		25.12	37.00	0.1364E-11	-11.865
170.0	1156.0	9.2897	9.8318	10.1503	7.0794		24.78	41.70	0.9414E-12	-12.026
180.0	1252.2	9.1262	9.7326	10.0028	7.0417		24.46	45.90	0.6828E-12	-12.166
190.0	1333.9	8.9790	9.6454	9.8706	7.0097		24.15	49.68	0.5134E-12	-12.290
200.0	1403.5	8.8443	9.5669	9.7498	6.9820		23.85	53.09	0.3967E-12	-12.402
20010	. 10313	0.0113	,,,,,,,,	,			22402	,,,,,,	***************************************	
210.0	1462.7	8.7190	9.4953	9.6379	6.9574		23.55	56.19	0.3131E-12	-12.504
220.0	1513.0	8.6013	9.4291	9.5330	6.9354		23.27	59.01	0.2513E-12	-12.600
230.0	1555.9	8.4895	9.3672	9.4337	6.9154		22.99	61.61	0.2046E-12	-12.689
240.0	1592.3	8.3827	9.3087	9.3389	6.8971		22.71	64.01	0.1685E-12	-12.774
250.0	1623.3	8.2798	9 • 25 31	9.2478	6.8801		22.44	66.24	0.1400E-12	-12.854
260.0	1649.7	8.1802	9.1998	9.1597	6.8641		22.18	68.33	0.1174E-12	-12.930
270.0	1672.1	8.0834	9.1485	9.0743	6.8491		21.92	70.29	0.9907E-13	-13.004
280.0	1691.2	7.9889	9.0988	8.9909	6.8349		21.66	72.15	0.8413E-13	-13.075
290.0	1707.4	7.8964	9.0504	8.9094	6.8212		21.41	73.92	0.7183E-13	-13.144
300.0	1721.3	7.8056	9.0033	8.8295	6.8081		21.17	75.60	0.6162E-13	-13.210
300.0	1/21.5	7.0030	7.0033	0.0273	0.0001		21.11	7,5.00	0101022-13	-13+210
320.0	1743.0	7.6282	8.9118	8.6734	6.7832		20.69	78.78	0.4591E-13	-13.338
340.0	1758.7	7.4551	8.8233	8.5214	6.7596		20.24	81.76	0.3469E-13	-13.460
360.0	1770.1	7.2854	8.7371	8 + 3725	6.7370		19.81	84.56	0.2653E-13	-13.576
380.0	1778.4	7.1184	8.6526	8.2260	6.7151		19.41	87.24	0.2050E-13	-13.688
400.0	1784.4	6.9536	8.5694	8.0816	6.6938		19.03	89.80	0.1598E-13	-13.796
420.0	1788.7	6.7906	8.4874	7.9388	6.6729		18.68	92.26	0.1256E-13	-13.901
440.0	1791.8	6.6292	8.4063	7.7974	6.6523		18.35	94.63	0.9944E-14	-14.002
460.0	1794.1	6.4692	8.3261	7.6572	6.6320		18.05	96.92	0.7926E-14	-14.101
480.0	1795.7	6.3104	8.2465	7.5182	6.6119		17.76	99.15	0.6356E-14	-14.197
500.0	1796.9	6.1528	8.1675	7.3802	6.5921	3.1574	17.50	101.30	0.5125E-14	-14.290
300.0	1770.7	0.1320	0.10/3	7.5002	0.3721	341314	17430	101130	0.51250-14	-14.270
520.0	1797.8	5.9963	8.0892	7.2431	6.5724	3.1522	17.25	103.40	0.4154E-14	-14.382
540.0	1798.4	5.8408	8.0114	7.1070	6.5529	3.1472	17.02	105.46	0.3383E-14	-14.471
560.0	1798.8	5.6863	7.9340	6.9717	6.5335	3.1422	16.80	107.48	0.2767E-14	-14.558
580.0	1799.1	5.5327	7.8572	6.8372	6.5142	3.1373	16.59	109.47	0.2272E-14	-14.644
600.0	1799.4	5.3801	7.7809	6.7036	6.4951	3.1324	16.39	111.46	0.1873E-14	-14.728
620.0	1799.6	5.2284	7.7050	6.5708	6.4761	3.1276	16.20	113.45	0.1549E-14	-14.810
640.0	1799.7	5.0776	7.6296	6.4387	6.4572	3.1228	16.01	115.46	0.1285E-14	-14.891
660.0	1799.8	4.9276	7.5546	6.3074	6.4384	3.1181	15.82	117.50	0.1289E-14	-14.971
680.0	1799.8	4.7785	7.4800	6.1769	6.4198	3.1134	15.64	119.59	0.8929E-15	-15.049
700.0	1799.9	4.6303	7 - 40 59	6.0471	6.4012	3.1087	15.45	121.76	0.7473E-15	-15.126
750.0	1799.9	4.2634	7.2225	5.7259	6.3553	3.0971	14.95	127.60	0.4842E-15	-15.315
800.0	1800.0	3.9016	7.0416	5.4092	6.3100	3.0857	14-40	134.33	0.3183E-15	-15.497
850.0	1800.0	3.5449	6.8632	5.0969	6.2654	3.0745	13.78	142.32	0.2121E-15	-15.673
900.0	1800.0	3.1931	6.6873	4.7889	6.2214	3.0634	13.09	151.99	0.1433E-15	-15.844
950.0	1800.0	2.8461	6.5138	4.4851	6.1780	3.0525	12.31	163.76	0.9819E-16	-16.008
1000.0	1800.0	2.5038	6.3427	4.1854	6.1351	3.0417	11.48	178.08	0.6828E-16	-16.166
* 2000 * 0	4000.0	2.0000	0.3721	4.1034	0.1351	3.0411	******	210000	0.0020E-10	10.100

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1750 CEGREES

HEIGHT	TEMP	LOG N(O2)	LOG N(O)	LOG NIN2)	LOG N(PE)	LDG N(H)	MEAN	SCALE	DENS1TY	LDG DEN
KM	DEG K	/CM3	/ CM3	/CM3	/CM3	/C M 3	MOL WY	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	570.5	10.3242	10,5024	11.0941	7.3606		26.33	19.13	0.7743E-11	-11.111
140.0	752.7	9.9657	10,2629	10.7653	7.2562		25.87	25.76	0.3687E-11	-11.433
150.0	906.8	9.6959	10.0876	10.5190	7.1824		25.48	31.62	0.2126E-11	-11.673
	1007.	0.4740	9.9490	10 2201	7.1261		25 11	36.80	0.1368E-11	11 0//
160.0	1037.1	9.4769		10.3201			25.11			-11.864
170.0	1147.2	9.2906	9.8339	10.1515	7.0811		24.77	41.39	0.9443E-12	-12.025
180.0	1240.3	9.1267	9.7350	10.0038	7.0438		24.45	45.49	0.6847E-12	-12.164
190.0	1319.1	8.9791	9 • 64 78	9.8712	7.0122		24.13	49.15	D.5145E-12	-12.289
200.0	1385.6	8.8437	9.5694	9.7500	6.9846		23.83	52.45	0.3973E-12	-12.401
210.0	1441.9	8.7176	9.4977	9.6375	6.9603		23.53	55.44	0.3132E-12	-12,504
220.0	1489.5	8.5989	9.4313	9.5318	6.9385		23.24	58.16	0.2511E-12	-12,600
230.0	1529.8	8.4861	9.3691	9.4316	6,9186		22.96	60.66	0.2041E-12	-12.690
240.0	1563.8	8.3780	9.3103	9.3358	6.9004		22.68	62.96	0.1678E-12	-12,775
250.0	1592.6	8.2738	9.2542	9.2436	6.8834		22.40	65.11	0.1392E-12	-12.856
0.40		8.1728	9.2005	9.1543	6.8675		22.13	67.11	0.1165E-12	-12.934
260.0	1616.9							69.00	0.9810E-13	-13.008
270.0	1637.4	8.0745	9.1486	9.0676	6.R525		21.87			
280.0	1654.8	7.9784	9.0982	8.9829	6.8382		21.61	70.79	0.8313E-13	-13.090
290.0	1669.5	7.8843	9.0492	8.9000	6.8245		21.35	72.48	0.7082E-13	-13.150
300.0	1682.0	7.7917	9.0013	8.8186	6.8114		21.10	74.11	0.6061E-13	-13.217
320.0	1701.4	7.6106	8.9083	8.6594	6.7862		20.62	77.18	0.4495E-13	-13.347
340.0	1715.2	7.4337	8.8181	8.5040	6.7623		20.16	80.96	0.338DE-13	-13.471
360.0	1725.1	7.2600	8.7300	8.3517	6.7394		19.72	82.79	0.2572E-13	-13.590
380.0	1732.2	7.0889	8.6435	8.2016	6.7171		19.32	85.39	0.1978E-13	-13.704
400.0	1737.3	6.9199	8.5584	8.0535	6.6953		18.93	87.89	0.1535€-13	-13.814
420.0	1740.9	6.7526	8.4743	7.9070	6.6739		18.58	90.29	0.1200E-13	-13.921
440.0	1743.5	6.5869	8 - 39 11	7.7618	6.6529		18.25	92.60	0.9461E-14	-14.024
460.0	1745.4	6.4225	8.3087	7.6179	6+6321		17.94	94.84	0.7507E-14	-14.125
480.0	1746.7	6.2594	8.2270	7.4750	6.6115		17.66	97.01	0.5993E-14	-14.222
500.0	1747.6	6.0974	8.1459	7.3332	6.5911	3,2016	17.39	99.12	0.4811E-14	-14.318
520.0	1748.3	5.9365	8.0654	7.1923	6.5709	3.1964	17.15	101.18	0.3883E-14	-14.411
540.0	1748.8	5.7767	7.9854	7.0523	6.5509	3.1912	16.91	103.19	0.3149E-14	-14.502
560.0	1749.1	5.6178	7.9059	6.9132	6.53C9	3.1862	16.69	195.17	0.2565E-14	-14.591
580.0	1749.4	5.4599	7.8269	6.7750	6.5111	3.1811	16.49	107.13	0.2097E-14	-14.678
600.0	1749.6	5.3029	7.7484	6.6376	6.4915	3.1761	16.29	109.09	9.17228-14	-14.764
620.0	1749.7	5.1469	7.6704	6.5010	6.4719	3.1712	16.09	111.06	0.1418E-14	-14.848
640.0	1749.8	4.9918	7.5928	6.3652	6.4525	3.1663	15.90	113.06	0.1172E-14	-14.931
660.0	1749.8	4.8376	7.5157	6.2301	6.4332	3.1614	15.70	115.11	0.9717E-15	-15.012
680.0	1749.9	4.6842	7.4390	6.0959	6-4140	3.1566	15.51	117.22	0.8078E-15	-15.093
700.0	1749.9	4.5318	7.3628	5.9624	6.3950	3.1517	15.31	119.41	0.6735E-15	-15.172
.00.0	. 147.9	4.5518	1 + 30 20	3.7024	0.5750	3.1317	23.32	217.41	310/376-13	17.112
750.0	1750.0	4.1544	7.1741	5.6320	6.3477	3.1398	14.79	125.41	0.4321E-15	-15.364
800.0	1750.0	3.7823	6.9880	5.3063	6.3012	3.1281	14.20	132.44	0.2815E-15	-15.551
850.0	1750.0	3.4154	6.8046	4.9850	6.2553	3.1166	13.53	140.90	0.1860E-15	-15.731
900.0	1750.0	3.0535	6.6236	4.6682	6.2100	3.1052	12.78	151.26	0.1247E-15	-15.904
950.0	1750.0	2.6966	6.4452	4.3558	6.1653	3.0939	11.96	163.97	0.8486E-16	-16.071
1000.0	1750.0	2.3445	6.2691	4.0476	6.1213	3.0828	11.07	179.51	0.5869E-16	-16.231
1000+0	1170.0	2.3443	0.2071	7.0410	0.1213	2.0020	11101	*	0.000,000	10.6231

HEIGHT	TEMP	LOS N(C2)	LCC NICOL	100 01021	LOG NIRE)	LOC MIN	MEAN	SCALE	DENSITY	LOS DEN
KM	DEG K	/CM3	/CM3	/CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
K.76	DEG K	7673	/ LM3	7 CM 3	7 CM 3	7653	FUE WI	ELL K.	ONA CL 3	1377 6173
		10 0761	10 0000	11 (021	7,5315		26.90	11.62	0.2461E-10	-10,609
120.0	355.0	10.8751	10.8808	11.6021						
130.0	570.3	10.3244	10.5026	11.0943	7.3607		26.33	19.12	0.77476-11	-11.111
140.3	751.1	9.9663	10.2637	19.7660	7.2567		25.87	25.71	0.3693E-11	-11.433
150.)	903.0	9.6968	10.0890	10.5201	7.1834		25.47	31.47	0.2131F-11	-11.671
160.0	1030.5	9.4779	9.9508	10.3213	7.1276		25.11	36.57	0.1372E-11	-11.863
170.0	1137.7	9.2914	9.8361	10.1526	7.0930		24.76	41.06	0.9472E-12	-12.024
180.0	1227.7	9.1272	9.7374	10.0047	7.2461		24.44	45.04	J.6866E-12	-12-163
190.0	1303.3	8,9790	9,6504	9.8718	7.0147		24.12	48.59	0.5157E-12	-12,288
200.0	1366.8	8.8428	9.5719	9.7500	6.9875		23.81	51.79	0.39776-12	-12.400
200.0	1,00.0	0.0420	7.3117	9.7300	6.9013		53.01	31.17	0.59//6-12	-12.400
	1.20.1	0.7150	0.5001	0 (2/3	. 0		22 61	54.65	0.3132F-12	-12.504
210.0	1420.1	8.7158	9.5001	9.6367	6.9633		23.51			
220.0	1464.9	8.5960	9.4335	9.5302	6.9417		23.21	57.27	0.2508E-12	-12.601
230.0	1502.5	8.4820	9.3710	9.4290	6.9220		22.92	59.66	0.20356-12	-12.691
240.0	1534.1	8.3726	9.3118	9.3321	6.9038		22.64	61.88	0.1679E-12	-12.777
250.0	1560.7	8.2669	9.2552	9.2386	6.8869		22.36	63.93	0.1383F-12	-12.859
260.0	1583.0	8.1644	9.2009	9.1481	6.871C		22.08	65.85	0.1154E-12	-12.938
270.0	1601.7	8.0644	9.1483	9.0600	6.8560		21.81	67.66	0.9699F-13	-13.013
280.0	1617.4	7.9666	9.0973	8.9738	6.8416		21.55	69.38	0.82005-13	-13.086
		7.8707	9.0475	8.8893	6.8279		21.28	71.02	0.6968E-13	-13.157
290.0	1630.7									
300.0	1641.8	7.7762	8.9989	8.8963	6.8146		21.03	72.59	0.5949E-13	-13.226
					4 7000		38.51	36.55	0.43896-13	-13,358
320.0	1658.9	7.5912	8.9041	8 - 6437	6.7892		23.54	75.55		
340.0	1671.0	7.4101	8.8120	8.4848	6.765C		20.07	78.34	0.3284E-13	-13.484
360.0	1679.5	7.2321	8.7219	8.3287	6.7416		19.63	80.99	0.2486E-13	-13.604
380.0	1685.6	7.0566	8.6333	8.1748	6.7189		19.22	83.53	0.1902E-13	-13.721
400.0	1689.8	6.8830	8.5460	8.0228	6.6967		18.83	85.96	0.1468E-13	-13.833
420.0	1692.8	6.7112	8.4597	7.8723	6.6748		18.47	88.31	O+1143E-13	-13,942
440.0	1694.9	6.5409	8.3743	7.7231	6.6532		18.14	90.57	0.8962E-14	-14.048
460.0	1696.4	6,3719	8.2896	7.5751	6.6319		17.83	92.75	0.7077E-14	-14.150
480.0	1697.5	6,2041	8.2056	7.4282	6.6107		17.55	94.87	0.5623E-14	-14.250
					6.5958	3 34.00	17,28	96.93	0.4494E-14	-14.347
500.0	1698.2	6.0375	8.1221	7 - 28 2 3	0.0090	3 - 2490	11.20	90.93	0.44946-14	-14.547
520.0	1698.7	5.8720	8.0393	7.1373	6.5690	3 - 24 36	17.04	98.94	0.3611E-14	-14-442
						3.2384			0.2915E-14	-14.535
540.0	1699.1	5.7075	7.9570	6.9933	6.5484		16.80	100.91		
560.0	1679.4	5.5440	7.8752	6.8501	6.5279	3.2331	16.58	102.85	J.2364E-14	-14.626
580.0	1699.6	5.3815	7.7940	6.7079	6.5075	3.2280	16.38	104.79	0.1925E-14	-14.716
600.0	1699.7	5.2199	7.7132	6.5664	6.4873	3.2229	16.17	106.72	0.1573E-14	-14.833
620.0	1699.8	5.0593	7.6329	6.4258	6.4672	3.2178	15.97	108.68	0.1290E-14	-14.889
640.0	1699.8	4,8996	7.5530	6.2860	6.4472	3.2127	15.77	110.68	0.1062E-14	-14.974
660.0	1699.9	4.7409	7.4736	6.1471	6,4273	3.2077	15.58	112.74	0.8766E-15	-15.057
680.0	1699.9	4.5830	7.3947	6.0089	6.4076	3.2027	15.37	114.98	0.7257E-15	-15 - 139
700.0	1699.9	4.4261	7.3162	5.8715	6.3880	3,1978	15.17	117.12	0.6025E-15	-15.220
	10,717			3.0113	0.000	,,,,,,	22211			
750.9	1700.0	4.0376	7.1220	5.5314	6.3393	3.1855	14.61	123.32	0.3827E-15	-15.417
800.0	1700.0	3.6546	6.9305	5.1960	6.2914	3,1735	13,98	130.71	0.2469E-15	-15.607
									0.24696-15	-15.791
850.0	1700.0	3.2769	6.7416	4.8654	6.2442	3.1616	13.26	139.75		
900.0	1700.0	2.9044	6.5554	4.5392	6.1975	3.1498	12.45	150.92	0.1076E-15	-15.968
950.0	1700.0	2.5370	6.3717	4.2176	6.1516	3.1383	11.56	164.73	0.72735-16	-16.138
1000.0	1700.0	2.1745	6.1904	3.9003	6.1062	3.1268	10.63	181.65	0.5036E-16	-16.301

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1650 CEGREES

HEIGHT	TEMP	LOG N(02)	LOG N(O)	LOG N(N2)	LOG VIPE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/ CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.3	10.8751	13,9808	11.6021	7.5315		26.90	11.62	0.04415.10	-10.609
130.0	569.9	10.3247	10.5028						0.2461E-10	
				11.3946	7.3609		26.33	19.11	0.77515-11	-11.111
140.0	749.1	9.9671	10.2647	10.7668	7.2574		25.87	25.64	0.37908-11	-11.432
150.0	898.6	9.6978	10.9905	10.5212	7.1846		25.47	31.34	0.2137E-11	-11.670
160.3	1023.2	9.4789	9.9529	10.3225	7.1293		25.10	36.32	0.13768-11	-11.861
170.0	1127.2	9.2922	9.8385	10.1538	7.0851		24.76	40.70	0.9501E-12	-12.022
180.0	1214.0	9.1274	9.7400	10.0056	7.0486		24.42	44.56	0.6885E-12	-12.162
190.0	1286.3	8.9785	9 . 65 30	9.8721	7.9175		24.10	47,99	0.5166E-12	-12.287
200.0	1346.7	8.8415	9.5745	9.7496	6.9905		23.79	51.06	0.3980E-12	-12.400
210.0	1397.0	8.7135	9.5025	9.6356	6.9666		23.48	53.92	0.3130E-12	-12.504
220.0	1439.0	8.5925	9.4356	9.5280	6.9451		23.18	56.33	0.2502E-12	-12.602
230.0	1474.0	8.4771	9.3727	9.4257	6.9255		22.89	58.63	0.2326E-12	-12.693
240.0	1503.2	8.3662	9.3130	9.3276	6.9074		22.60	60.74	0.1659E-12	-12.780
250.0	1527.5	8.2589	7.2559	9.2328	6.8905		22.31	62.71	0.1371 E-12	-12.863
260.0	1547.9	8.1547	9.2009	9.1408	6.8746		22.03	64.55	0.1142E-12	12 0/2
270.0	1564.8	8.3529	9.1476	9.0511	6.8595					-12.943
280.0	1578.9	7.9532					21.75	66.29	0.9570E-13	-13.019
			9.3958	8.9633	6.8451		21.48	67.94	0.8069E-13	-13.093
290.0	1590.7	7.8552	9.3452	8.8772	6.8313		21.21	69.51	0.6839E-13	-13.165
300.0	1600.6	7.7588	9.9956	8.7924	6.8179		20.95	71.93	0.5823E-13	-13.235
320.0	1615.6	7.5694	8.8989	8.6261	6.7922		20.45	73.90	0.4273E-13	-13,369
340.0	1626.1	7,3838	9.8047	8.4633	6.7676		19.97	76.61	0.3179F-13	-13,498
360.J	1633.4	7.2012	8.7125	8.3032	6.7438		19.53	79.18	0.2393E-13	-13.621
380.0	1638.4	7.0209	8,6216	8.1452	6.7295		19.11	81.65	0.1821E-13	-13.740
400.0	1641.9	6.8426	8.5320	7.9889	6.6978		18.72	84.03	0.1398F-13	-13.854
							10012	01405	011330. 13	234034
420.0	1644.4	6.6658	8.4433	7.8341	6.6753		18.36	86.31	0.1083E-13	-13.966
440.0	1646.1	6.4906	8,3555	7.6806	6.6532		18.02	88.52	0.8446E-14	-14.073
460.0	1647.3	6.3166	8 - 2683	7.5283	6.6313		17.72	90.65	0.6636E-14	-14.178
480.0	1648.1	6.1439	8.1819	7.3770	6.6095		17.43	92.72	0.5247E-14	-14.280
500.0	1648.7	5.9723	8.0960	7.2268	6.5880	3.2996	17.17	94.73	0.4173E-14	-14.380
520.0	1649.1	5.8018	8.9107	7.0775	6.5666	3.2942	16.92	96.69	0.3337E-14	-14.477
540.0	1649.4	5.6324	7.9259	6.9292	6.5454	3.2888	16.69	98.62	0.2681E-14	-14.572
560.0	1649.6	5.4640	7 - 84 17	6.7818	6.5243	3.2834	16.47	100.53	0.2164E-14	-14.665
580.0	1649.7	5.2966	7.7580	6.6352	6.5033	3.2781	16.26	102.44	0.1754E-14	-14.756
600.0	1649.8	5.1302	7.6748	6.4895	6.4825	3.2728	16.05	194.36	0.1427E-14	-14.846
620.0	1649.9	4.9647	7.5920	6.3446	6.4618	3.2676	15.85	106.32	0.1165E-14	-14.934
640.0	1649.9	4.8002	7,5098	6.2006	6.4412	3.2624	15.64	108.33	0.9547E-15	-15.020
660.0	1649.9	4,6367	7.4280	6.0574	6.4207	3.2572	15.44	119.41	0.7846E-15	-15 - 105
680.0	1649.9	4.4740	7.3467	5.9151	6.4004	3.2521	15.23	112.59	0.6468E-15	-15.105
700.0	1650.0	4.3124	7.2658							
100.0	1000.0	4.3124	1.2698	5.7735	6.39G1	3 + 2470	15.01	114.89	0.5346E-15	-15.272
750.0	1650.0	3.9121	7.3657	5.4231	6.3301	3.2344	14.41	121.35	0.3360E-15	-15.474
800.0	1650.0	3.5175	6.8684	5.0776	6.2807	3.2220	13.72	129.19	0.2146E-15	-15.668
850.0	1650.0	3.1283	6.6738	4.7369	6.2320	3.2097	12.94	138.91	0.1393E-15	-15.856
900.0	1650.0	2.7445	6.4819	4.4009	6.1840	3.1976	12.07	151.05	0.9194E-16	-16.037
950.0	1650.0	2.3660	6.2926	4.0695	6.1366	3.1857	11.12	166.15	0.6178E-16	-16.209
1000.0	1650.0	1.9926	6.1059	3.7426	6.2859	3.1739	10.16	104 44	0 42255 14	14 272
10004.0	1030.0	1.4450	0 + 10 29	3+1420	0 + 7577	2+1139	10.15	184.64	0.4235E-16	-16.373

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued Exospheric temperature = 1600 Cegrees

HEIGHT	TEMP	LOG N(G2)	LOG N(D)	LDG N(N2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LDG DEN
KM	DEG K	/CM3	/ CM 3	/CM3	/CM3	/CM3	MOL WT	HT KM	GM/GM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	569.2	19,3259	10.5033	11.0950	7.3612		26.33	19.09	0.7758E-11	-11,110
140.0	746.6	9.9679	10.2658	10.7676	7.2582		25.87	25.56	0.3708F-11	-11.431
150.0	893.5	9.6988	10.3923	10.5224	7.1859		25.47	31.16	0.21436-11	-11.669
							22.11	,,,,,	3.61436 11	11.00
160.0	1015.0	9.4798	9.9551	10.3238	7.1311		25.10	36.04	0.1380E-11	-11.860
170.0	1115.7	9.2927	9.8410	10.1548	7.2874		24.75	40.23	0.95296-12	-12.021
180.0	1199.0	9.1274	9.7427	13.0062	7.0512		24.41	44.04	0.6900E-12	-12.161
190.0	1269.0	8.9777	9.6557	9.8721	7.0205		24.08	47.35	0.5172E-12	-12.286
200.0	1325.2	8.8396	9.5771	9.7488	6.9937		23.77	50.29	0.3172E-12	-12.430
200.0	136306	0 + 0 3 7 0	7.5111	9.1400	0.7731		23.11	50.29	0.14406-15	-12.430
210.0	1372.4	8.7103	9.5048	9.6339	6.9700		23.45	52.94	0.3124E-12	-12.505
220.0	1411.6	8.5880	9.4375	9.5251	6.9486		23.15	55.35	0.2492E-12	
230.0	1444.0	8.4711	9.3741	9.4216	6.9291					-12.603
							22.84	57.54	0.2014E-12	-12.696
240.0	1473.9	8.3585	9.3139	9.3220	6.9111		27.55	59.56	0.1645E-12	-12.794
250.0	1473.1	8.2495	9.2561	9.2257	6.9942		22.75	61.45	0.13566-12	-12.868
260.0	1511.5	8.1433	9 . 20 04	9.1321	6.8783		21 27	(2.21	0 110/5 10	10.0/0
		8.0395					21.97	63.21	0.1126F-12	-12.948
270.0	1526.7		9.1463	9.0407	6.8632		21.68	64.88	0.9416E-13	-13.026
280.0	1539.3	7.9377	9.0936	8.9512	6.8487		21.40	66.46	0.7917E-13	-13.101
290.0	1549.8	7.8376	9.0421	8.8631	6.8347		21.13	67.98	0.6691E-13	-13.175
300.0	1558.4	7.7389	8.9915	8.7764	6.8211		20.87	69.44	0.5680E-13	-13.246
320.3	1571.5	7.5448	8.8926	8.6061	6.7951		20.35	72.22	0.4143E-13	-13.383
340.0	1580.5	7.3544	8.7962	8.4390	6.7700		19.87	74.85	0.30646-13	-13.514
360.0	1586.6	7.1667	8.7015	8 - 2745	6.7457		19.41	77.36	J. 2293E-13	-13.640
380.0	1590.8	6.9813	8.6082	8.1121	6.7219		18.99	79.76	0.1734E-13	-13.761
400.0	1593.7	6.7978	8.5161	7.9513	6.6986					
400.5	1975.7	0.1710	0.0101	1.7513	0.0900		18.60	82.08	0.13246-13	-13.878
420.0	1595.7	6-6158	8.4248	7.7919	6.6755		18.24	84.31	0.1020E-13	-13.992
440.0	1597.0	6.4353	8.3344	7.6338	6.6528		17.90	86.46	0.7914E-14	-14.102
460.0	1598.9	6.2560	8 - 2446	7.4769	6.6302		17.60	88.54	0.6185E-14	-14.209
480.0	1598.6	6.0780	8,1555	7.3210	6,6079		17.31	90.56	0.4865E-14	-14.313
500.0	1599.0	5.9012	8.0670	7.1662	6.5857	3.3539	17.05	92.52	0.3850E-14	-14.415
,,,,,	137767	3.7312	11.50115	7.1002	0.5051	3.3337	17.05	72.32	0.74706-14	-14.415
520.0	1599.3	5.7254	7,9791	7.0123	6.5636	3.3482	16.80	94.44	0.3063E-14	-14.514
540.0	1599.6	5.5507	7.8918	6.8593	6.5418	3.3427	16.57	96.33	0.2449E-14	-14.611
560.0	1599.7	5.3771	7,8049	6.7073	6.5200	3.3372	16.35	98.22	0.1967E-14	-14.706
580.0	1599.8	5.2345	7.7186	6.5562	6.4984	3.3317	16.13	100.10	0.1587E-14	-14.800
600.0	1599.9	5.9328	7.6328	6.4059	6.4769	3.3263	15.92	102.02	0.12856-14	-14.891
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		041037	0.1107	343203	17172	102402	0.12.75. 14	14.071
620.0	1599.9	4.8622	7.5475	6.2566	6.4556	3.3209	15.71	103.98	0.1044E-14	-14.981
640.0	1599.9	4.6926	7.4626	6.1081	6.4343	3.3156	15.50	106.00	0.8512E-15	-15.070
660.0	1600.0	4.5239	7,3783	5.9604	6.4132	3.3102	15.29	108,13	0.6963E-15	-15,157
680.0	1600.0	4,3562	7.2945	5.8136	6.3922	3.3050	15.06	110.36	0.5712E-15	-15.243
700.0	1600.0	4.1895	7.2111	5.6676	6.3714	3.2997	14.83	112.75	0.4700E-15	-15.328
750.0	1600.0	3.7768	7.9347	5.3063	6.3197	3.2867	14.18	119.55	0.29226-15	-15.534
800.0	1600.0	3.3698	6.8012	4.9500	6.2688	3.2739	13.44	127.94	0.1847E-15	-15.734
850.0	1600.0	2.7685	6.6006	4.5986	6.2186	3.2612	12.59	138.49	0.1188E-15	-15.925
900.0	1600.0	2.5727	6 - 40 27	4.2521	6.1691	3.2488	11.65	151.78	0.7781E-16	-16.109
950.0	1600.0	7.1823	6.2075	3.9104	6.1202	3.2365	10.65	168.35	0.51996-16	-16.284
1000.0	1600.0	1.7972	6.0150	3.5733	6.0721	3.2243	9.63	188.60	0.35526-16	-16.449

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1550 CEGREFS

HE 1SH T	TEMP	LOS N(02)	LOG N(O)	LOG 3(N2)	LOG N(PE)	LOG V(H)	MEAN	SCALF	DENSITY	LOS DEN
KW	DES K	/ CM3	/CM3	VCM3	\ C \ 3	/CM3	MOL WT	HT K™	GM/CM3	GM/CM3
120.0	355.0	10.9751	10.9839	11,6021	7.5315		26.70	11.62	0.24615-10	-10.639
130.0	569.3	13.3255	12,5239	11.0955	7.3616		26.33	19.56	0.7769E-11	-11.110
140.0	743.5	7,7688	13.2672	11.7697	7.2592		25.87	25.45	0.37175-11	-11.430
150.0	887.4	9,6998	12.2942	1,.5236	7.1875		25.46	30.96	0.2150E-11	-11,668
150.5	007.4	7.0770	1343942	13.72.70			27640	700 /17	0.2130111	-11.003
160.3	1005.7	9.4896	9.9575	10.3249	7.1332		25.09	35.72	0.13858-11	-11.859
170.0	1132.9	9.2930	7.8436	10.1557	7.9859		24.74	39.85	0.9554E-12	-12.323
180.7	1182.7	9.1269	9.7454	10.0065	7.0541		24.39	43.46	0.6912E-12	-12.160
190.3	1248.2	8.7762	9.6583	9.8716	7.3237		24.36	46.65	0.51745-12	-12.286
200.0	1302.1	8.8369	9.5795	9.7474	6.9971		23.74	49.48	0.39755-12	-12.401
210.0	1346.3	8.7062	2.5069	9.6312	6,9736		23.42	52.01	0.3114E-12	-12.507
220.3	1382.7	8.5923	9,4392	9.5213	6.9524		23.11	54.31	0.2479E-12	-12.636
230.3	1412.5	8.4636	9.3752	9.4163	6.9329		22.80	56.47	0.1999F-12	-12,699
240.0	1437.1	8.3492	9.3143	7.3151	6,9149		22,49	58.34	0.1628E-12	-12.788
250.0	1457.2	8.2382	9.2557	9.2172	6.8980		22.19	50.14	0.1338E-12	-12.974
250.3	1457.	8 . 2 3 8 2	4.2331	9.2112	0.4980		22.17	50+14	U+1338E=12	-12.574
260.0	1473.8	8.1299	9.1991	9.1218	6.9821		21.90	61.83	0.1108E-12	-12.955
270.0	1487.4	R.9239	9.1441	9.0285	6.8668		21.61	63.43	0.9235E-13	-13.035
280.0	1498.6	7.9198	9.0904	8.9369	6.8522		21.32	64.95	C.7740E-13	-13.111
290.J	1507.7	7.9172	9.3378	8,9468	6.9380		21.04	66.42	2.6521E-13	-13.186
300.0	1515.3	7.7160	9.9862	8.7579	6.8243		22.77	67.83	9.5518F-13	~13.258
220	1004 4	7 5140		0.5000	/ 7070		20.25	70.50	0.3999E-13	12 200
320.0	1526.6	7.5169	8.8850	8.5832	6.7978		20.25	70.52		-13.398
340.0	1534.2	7.3212	8.7860	8.4116	6.7722		19.75	73.08	0.2938E-13	-13.532
360.0	1539.3	7.1281	9.6888	8.2423	6.7474		19.29	75.52	0.2185F-13	-13.660
380.0	1542.8	6.9371	9,5928	8.0751	6.723C		18.87	77.87	0.1643E-13	-13.784
400.0	1545.1	6.7480	8.4979	7.9094	6.6990		18.47	80.12	0.1247E-13	-13.904
420.0	1546.7	6.5604	8 - 40 39	7.7451	6.6753		18.11	82.30	0.9544E-14	-14.020
440.0	1547.8	6.3742	9.3107	7.5821	6.6519		17.78	84.47	0.7365E-14	-14.133
460.0	1548.5	6.1893	9.2181	7.4202	6.6286		17.47	86.43	0.5724E-14	-14.242
480.0	1549.0	6.0057	8.1262	7.2594	6.6056		17.19	88.33	0.4478E-14	-14.349
500.0	1549.3	5.8232	8.0349	7.0996	6.5827	3.4119	16.92	97.31	0.35258-14	-14.453
520.0	1549.5	5.6418	7.9442	6.9408	6.5600	3.4062	16.68	92.19	0.2789E-14	-14.554
540.0	1549.7	5.4615	7.8540	6.7829	6.5374	3.4004	16.44	94.35	0.2219E-14	-14.654
560.J	1549.9	5.2823	7.7644	6.6260	6.5150	3.3948	16.22	95.93	0.1773E-14	-14.751
580.0	1549.9	5.1041	7.6753	6.4701	6.4927	3.3891	16.00	97.78	9.1423E-14	-14.847
600.0	1549.9	4.9270	7.5867	6.3150	6.4705	3.3836	15.79	99.69	0.1146E-14	-14.941
620.0	1549.9	4.7509	7.4987	6.1609	6.4484	3.3780	15.57	101.67	0.9265E-15	~15.033
640.0	1552.2	4.5758	7.4111	6.0075	6.4265	3,3725	15.35	103.73	0.7517E-15	-15-124
660.0	1550.0	4,4017	7.3241	5.8551	6.4047	3.3670	15.12	105.91	0.61186-15	-15.213
680.0	1553.0	4.2286	7.2375	5.7035	6.3831	3.3615	14.88	108.23	0.4995E-15	-15.301
								113.72	0.4090E-15	-15.388
700.0	1550.0	4.0565	7.1515	5.5529	6.3616	3.3561	14.63	110.12	3.40476-15	-13.348
750.0	1550.9	3.6304	6.9384	5.1799	6.3092	3.3427	13.93	117.94	0.2513E-15	-15.600
800.0	1550.0	3.2103	6.7284	4.8121	6.2557	3.3294	13.11	127.02	0.1572E-15	-15.803
850.0	1550.0	2.7960	6.5213	4.4494	6.2038	3.3164	12.19	138.57	0.1002E-15	-15.999
900.0	1550.0	2.3875	6.3170	4.0917	6.1527	3.3035	11.18	153.21	0.6516E-16	-16.186
950.0	1550.0	1.9845	6.1155	3.7389	6.1023	3.2908	10.13	171.48	0.43346-16	-16.363
1000.0	1550.0	1.5870	5,9167	3,3909	6.0526	3,2783	9.09	193.67	0.29555-16	-16.529

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1500 DEGREES

HE 1 GHT	TEMP	LOG N(02)	LOG N(0)	LOG N(N2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/ CM 3	/CM 3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
				,					017 0113	0117 0113
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	566.9	10.3262	12.5048	11.0963	7.3622		26.33	19.01	0.7781E-11	-11.109
140.0	739.6	9.9698	10.2688	10.7698	7.2605		25.87	25.32	0.3727E-11	-11.429
		9.7008	10.2865							
150.0	880.4	9.1008	10.0963	13.5249	7.1894		25.46	30.72	0.2156E-11	-11.666
160.0	995.0	9.4812	9.9601	10.3260	7.1356		25.08	35.35	0.1389E-11	-11.857
170.0	1088.5	9.2928	9.8464	10.1563	7.0927		24.72	39.35	0.9574E-12	-12.019
180.0	1164.7	9.1257	9.7482	10.0063	7.0573		24.37	42.84	0.6918E-12	-12.160
190.0	1226.7	8.9738	9.6609	9.8705	7.0271		24.04	45.89	0.5170E-12	-12.286
200.0	1277.3	8.8331	9.5818	9.7451	7.0038		23.71	48.60	0.3963E-12	-12.402
210.0	1318.5	8.7008	9.5088	9.6276	6.9774		23.38	51.03	0.3098E-12	-12.509
220.0	1352.1	8.5751	9.4404	9.5162	6.9563		23.06	53.22	0.2460E-12	-12.609
230.0	1379.5	8.4545	9.3758	9.4095	6.9369		22.74	55.22	0-1977E-12	-12.704
240.0	1401.8	8.3379	9.3140	9.3066	6.9189		22.43	57.97	0.1606E-12	-12.794
250.0	1420.0	8.2246	9.2546	9.2067	6.9019		22.12	58.79	0.1316E-12	-12.881
2,000	142000	0.2240	7.2740	7.2001	0.019		22.12	20+17	0.13106-12	-12.001
260.0	1434.8	8.1140	9.1970	9.1093	6.8858		21.82	60.41	0.1086E-12	-12.964
270.0	1446.9	8.0055	9.1409	9.0139	6.8705		21.52	61.95	0.9021E-13	-13.045
280.0	1456.7	7.8988	9.0861	8.9201	6.8557		21.23	63.41	0.7535E-13	-13.123
290.0	1464.7	7.7937	9.0324	8.8277	6.8413		20.94	64.83	0.6326E-13	-13.199
300.0	1471.2	7.6898	8.9794	8.7365	6.8274		20.67	66.19	0.5334E-13	-13.273
320.0	1480.9	7.4850	8.8757	8.5570	6.8CC3		20.13	68.80	0.3839E-13	-13.416
340.0	1487.3	7.2836	8.7740	8.3893	6.7742		19.63	71.29	0.2801E~13	-13.553
360.0	1491.6	7.0846	8 - 6739	8.2060	6.7487		19.16	73.67	0.2069E-13	-13.684
380.0	1494.4	6.8877	8.5750	8.0335	6.7237		18.73	75.96	0.1545E-13	-13.811
400.0	1496.3	6,6925	8 . 47 72	7.8626	6.6990		18.34	78.17	0.1166E-13	-13.933
				140020			20034		0111001 13	130,733
420.0	1497.5	6.4989	8.3802	7.6930	6.6746		17.97	80.29	0.8868E-14	-14.052
440.0	1498.4	6.3067	8 . 28 39	7.5247	6.6504		17.64	82.33	0.6802E-14	-14.052
460.0										
	1498.9	6.1157	8.1884	7.3575	6.6264		17.33	84.30	0.5256E-14	-14.279
480.0	1499.3	5.9260	8.0935	7.1914	6.6026		17.05	86.22	0.4089E-14	-14.388
500.0	1499.5	5.7375	7.9992	7.0263	6.5790	3.4742	16.79	88.09	0.3200E-14	-14.495
520. U	1499.7	5.5501	7.9054	6.8623	6.5555	3.4682	16.55	89.93	0.2518E-14	-14.599
540.0	1499.8	5.3638	7.8123	6.6992	6.5322	3.4623	16.31	91.76	0.1992E-14	-14.701
560.0	1499.9	5.1786	7.7197	6.5371	6.5090	3.4565	16.08	93.60	0.1583E-14	-14.801
580.0	1499.9	4.9945	7.6276	6.3759	6.4860	3.4507	15.86	95.47	0.1263E-14	-14.899
600.0	1499.9	4.8115	7.5361	6.2157	6.4631	3.4449	15.64	97.40	0.1012E-14	-14.995
620.0	1500.0	4.6295	7.4451	6.0563	6.4463	3.4392	15.41	99.40	0.8139E-15	-15.089
640.0	1500.0	4.4486	7.3547	5.8979	6.4177	3.4335	15.18	101.52	0.6568E-15	-15.183
660.0	1500.0	4.2687	7.2647	5.7405	6.3952	3.4278	14.93	103.78	0.5318E-15	-15-274
680.0	1500.0	4.0898	7.1753	5.5839	6.3728	3-4221	14.67	196.21	0.4319E-15	-15.365
700.0	1500.0	3.9120	7.0863							
100+0	1500.0	3.7120	1.0863	5.4282	6.3505	3.4165	14.40	108.85	0.3519E-15	-15.454
750 0	1500 -	2 (717		5 0427	. 205	2 4007	12.65	111 12	0.010/5.5	15 / 75
750.0	1500.0	3.4717	6.8662	5.0427	6.2954	3.4027	13.63	116.60	0.2136E-15	-15.670
800.0	1500.0	3.0376	6.6492	4.6627	6.2411	3.3890	12.74	126.52	0-1322E-15	-15.879
850.0	1500.0	2.6096	6.4351	4.2879	6.1876	3.3755	11.74	139.27	0.8352E-16	-16.978
900.0	1500.0	2.1874	6.2240	3.9183	6.1347	3.3622	10.66	155.51	0.5396E-16	-16.268
950.0	1500.0	1.7710	6.0158	3.5538	6.0826	3.3491	9.56	175.70	0.3577E-16	-16.447
1000.0	1500.0	1.3602	5.8105	3.1942	6.0312	3.3361	8 + 52	199.97	0.2439E-16	-16.613

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1450 CEGREES

HEIGHT	TEMP	LOG N(G2)	1.06 N.(03	LOG N(N2)	LOG NUREL	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM 3	/ CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.3	10.8751	10.8808	11-6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	565.1	10.3271	10.5059	11.0972	7.3630		26.33	18.95	0.7799E-11	-11.108
140.0	734.8	9.9709	10.2708	10.7712	7.2620		25.86	25.16	0.3739E-11	-11.427
150.0	872.0	9.7017	10.0990	10.5262	7.1915		25.45	30.44	0.2163E-11	-11.665
150.0	872.0	9.7017	10.0990	10.5262	7.1915		20.40	30.44	0.210.5-11	-11.005
160.0	982.9	9.4814	9.9629	13.3269	7.1382		25.C7	34.94	0.1392E-11	-11.856
170.0	1072.5	9.2921	9.8493	10.1565	7.0958		24.70	38,80	0.9588E-12	-12.018
180.0	1144.9	9.1238	9.7509	10.0056	7.0607		24.35	42.15	0.6916E-12	-12.160
190.0	1203.4	8.9705	9.6634	9.8686	7.2308		24.01	45.08	0.51585-12	-12.288
200.0	1250.7	8.8280	9.5838	9.7418	7.0047		23.67	47.67	0.3944E-12	-12.404
210.0	1289.0	8.6939	9.5102	9.6228	6.9814		23.33	49.98	0.3075E-12	-12.512
220.0	1319.9	8.5661	9.4412	9.5096	6.9603		23.00	52.07	0.2434E-12	-12-614
230.0	1344.8	8.4432	9.3757	9.4010	6.9409		22.68	53.98	0.1950E-12	-12.710
240.0	1365.0	8.3242	9.3130	9,2961	6,9229		22.36	55.75	0.1578E-12	-12.832
250.0	1381.3	8.2084	9.2525	9.1940	6.9058		22.04	57.40	0.1289E-12	-12.890
			9.1938	9.0943	6.8896		21.73	58.95	0.1060E-12	-12.975
260.0	1394.5	8.0952							0.1060E-12	-13.057
270.0	1405.1	7.9840	9.1365	8.9966	6.8741		21.42	60.43		
280.0	1413.7	7.8745	9.0804	8.9004	6.859C		21.13	61.85	0.7298E-13	-13.137
290.0	1420.7	7.7664	9.0253	8.8055	6.8445		20.83	63.21	0.6103E-13	-13.214
300.0	1426.3	7.6595	8.9710	8.7117	6.8302		20.55	64.53	0.5127E-13	-13.290
320.0	1434.5	7.4487	8.8644	8.5268	6.8026		20.C0	67.07	0.3662E-13	-13.436
340.0	1439.9	7.2410	8.7597	8.3448	6.7758		19.50	69.50	0.2653E-13	-13.576
360.0	1443.4	7.0356	8,6565	8.1649	6.7496		19.02	71.82	0.1946E-13	-13.711
380. ∪	1445.7	6.8323	8.5545	7.9868	6.7238		18.59	74.06	0.1443E-13	-13.841
400.0	1447.2	6.6306	8.4535	7.8102	6.6584		18.19	76.20	0.1081E-13	-13.966
420.0	1448.2	6.4305	8 - 35 32	7.6349	6.6732		17.83	78,27	0.8173E-14	-14.088
440.0	1448.8	6.2317	8.2538	7.4609	6.6482		17.50	80.25	0.6230E-14	-14.206
460.0	1449.2	6.0343	8.1550	7.2880	6.6235		17.19	82.18	0.4784E-14	-14.320
		5.8381	8.0568	7.2000	6.5989		16.91	84.04	0.3699E-14	-14.432
480.0	1449.5				6.5745	3.5409	16.65	85.87	0.2878E-14	-14.541
500.0	1449.7	5.6431	7.9593	6.9455	0.0740	1.5409	10.00	03.01	0.20105-14	-14.541
520.0	1449.8	5.4493	7.8624	6.7758	6.5502	3.5348	16.41	87.68	0.2251E-14	-14.648
540.0	1449.9	5.2566	7.7660	6.6072	6.5261	3.5287	16.17	89.49	0.1770E-14	-14.752
560.0	1449.9	5.0650	7.6702	6.4395	6.5021	3.5226	15.94	91.31	0.1399E-14	-14.854
580.0	1449.9	4.8746	7.5750	6.2727	6.4783	3.5166	15.71	93.19	0.1110E-14	-14.955
600.0	1450.0	4.6853	7.4804	6.1070	6.4546	3.5107	15.47	95.14	0.8840E-15	-15.054
620.0	1450.0	4.4970	7.3862	5.9422	6.4310	3.5047	15.23	97.20	0.7068E-15	-15.151
640.0	1450.0	4.3099	7,2927	5.7783	6.4076	3.4988	14.98	99.40	0.5672E-15	-15.246
660.0	1450.0	4.1238	7.1996	5.6154	6.3843	3.4930	14.72	101.77	0.4567E-15	-15.340
680.0	1450.0	3.9387	7.1071	5.4534	6.3612	3.4871	14.44	104.34	0.3689E-15	-15.433
700.0	1450.0	3.7548	7.0151	5.2923	6.3381	3.4813	14.14	107.17	0.2990E-15	-15.524
100.0	1470.0	3+1340		3.2723	0.3301	3.4013		10.11		
750.0	1450.0	3.2993	6.7874	4.8936	6.2812	3.4670	13.29	115.59	0.1793E-15	-15.746
800.0	1450.0	2.8503	6.5628	4.5005	6.2250	3.4528	12.31	126.54	0.1098E-15	-15.960
850.0	1450.0	2.4074	6.3414	4 - 1128	6.1696	3.4389	11.23	140.75	0.6875E-16	-16.163
900.0	1450.0	1.9707	6.1231	3.7304	6.1149	3.4251	10.09	158.84	0.4419E-16	-16.355
950.0	1450.0	1.5399	5.9077	3.3533	6.0610	3.4116	8.97	181.16	0.2924E-16	-16.534
1000-0	1450.0	1.1150	5.6952	2.9813	6.0078	3.3982	7.93	207.55	0.1999E-16	-16.699
10000	1420.0	1.11.30	2.0772	E + 10 I J	0.0010	201102				

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIG TEMPERATURE = 1400 CEGREES

HEISHT	TEMP	LOG NICEL	1.00 N(0)	LOC NINZI	LOG N(HE)	1.0G N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM.	DEG K	/GM3	/ GM3	/GM3	/CM 3	/GM3	MOL WT	HI KM	GM/GM3	GM/GM3
	1,00	, 05	, ,,,,	, 013	7 61.5	7073	HOL WI		000000	0117 01-3
120.0	355.0	13.8751	10.8808	11,6021	7.5315		26.90	11.62	0.2461F-10	-10,609
130.0	562.6	10.3283	10.5074	11.0985	7.3641		26.33	18.87	0.7822E-11	-11.137
140.0	729.0	9.9722	10.2731	10.7727	7.2639		25.86	24.96	0.3753E-11	-11.426
150.0	862.3	9.7025	10.1018	10.5275	7.1940		25.44	30.11	9.2171E-11	-11.663
150.5	002.7	7.1323	17.1710	10.9213	1.1790		23.44	30.11	9.21/16-11	-11.003
160.0	969.1	9,4813	9.9659	10.3276	7.1413		25.05	34.47	0.1396E-11	-11.855
170.0	1054.7	9.2908	9.8522	15.1562	7.0992		24.68	39.19	0.9594E-12	
										-12.018
180. U	1123.3	9.1210	9.7536	10.0041	7.3644		24.32	41.41	0.6905E-12	-12.161
190.0	1178.3	8.9658	9.6657	9.8657	7.0348		23.97	44.21	0.5136E-12	-12.289
200.0	1222.3	8.8214	9.5855	9.7373	7.0088		23.62	46.68	0.3916E-12	-12.407
210.0	1257.6	8.6853	9.5111	9.6164	6.9856		23.28	48.89	0.3343E-12	-12.517
220.0	1285.9	8.5548	9.4412	9.5012	6.9645		22.94	50.87	0.2400E-12	-12.620
230.0	1308.6	8.4294	9.3747	9.3904	6.9451		22.61	52.69	0.1916E-12	-12.718
240.0	1326.7	8.3378	9.3109	9.2832	6.9269		22.28	54.38	0.1545F-12	-12.811
250.3	1341.3	8.1891	9.2492	9.1787	6.9097		21.95	55.96	0.1256E-12	-12.901
260.0	1353.0	8.7729	9.1892	9.0765	6.8923		21.63	57.46	0.1029E-12	-12.998
270.3	1362.3	7.9587	7.1306	8.9761	6.8775		21.32	58.88	0.8479E-13	-13.072
280.0	1369.8	7.9460	9.3731	8.8772	6.8623		21.01	60.25	0.70275-13	-13.153
290.0	1375.8	7.7348	9.9165	8.7796	6.8474		20.71	61.58	0.5853F-13	-13.233
300.0	1390.6	7.6246	8.9607	8.6830	6.8329		20.42	62.86	0.4897E-13	~13.310
320.0	1387.5	7.4372	8.8539	8,4923	6.8046		19.86	65.34	9.3469E-13	-13,460
340.0	1392.0	7.1926	8.7429	8.3043	6.7771		19.35	67.70	0.2494E-13	-13.603
360.0	1394.9	6.9804	8.6363	8.1184	6.7501		18.87	69.97	0.18156-13	-13,741
380.0	1396.7	6.7701	8.5309	7.9342	6.7235		18.43	72.14	0.1337E-13	-13.874
400.0	1397.9	6.5614	8.4264	7.7515	6.6972		18.04	74.23	0.9942E-14	-14,003
10000		0.001	0.1001		0.00					
420.0	1398.6	6.3543	8.3227	7.5701	6.6711		17.68	76.24	0.74658-14	-14.127
440.0	1399.1	6.1485	8.2197	7.3899	6.6453		17.35	78.18	0.5652F-14	-14-248
460.0	1399.4	5,9441	8.1175	7+2110	6.6197		17.05	80.04	0.4312E-14	-14.365
480.0	1399.6	5.7409	9.0159	7.0331	6.5942		16.77	81.86	0.3313E-14	-14.480
500.0	1399.8	5.5390	7.9149	6.8563	6.5690	3.6126	16.51	83.65	0+2561E-14	-14.592
300.0	1399411	3.3370	147177	0.000	0.3030	3.0120	10.51	03.03	3+23011-14	-14.372
520.0	1399.9	5.3383	7.8145	6.6806	6.5438	3.6362	16.26	85.43	0.1991E-14	-14.701
540.0	1399.9	5.1387	7.7147	6.5059	6.5189	3,5999	16.02	87.22	0.1556F-14	-14.808
560.0	1397.9	4.9403	7.6155	6.3322	6.494C	3,5937	15.78	89.05	3-1221E-14	-14.913
580.0	1400.0	4.7431	7.5169	6.1595	6.4693	3.5874	15.54	90.95	0.9631E-15	-15.016
600.3	1430.0	4.5473	7.4188	5.9978	6.4448	3.5813	15.29	92.95	0.7625E-15	-15.118
000.3	1430.9	4.3410	1.4100	9.7310	0.4440	3.9013	13.67	76.77	0.70296-19	-15.110
620.0	1420.0	4.3521	7.3214	5.8172	6.4234	3.5751	15.04	95.09	0.6060E-15	-15.218
640.0	1470.2	4.1582	7.2244	5.6475	6.3962	3.5690	14.76	97.39	0.4834F-15	-15.316
660.0	1400.0	3.9655	7.1281	5.4787	6.3720	3.5629	14.48	99.91	0.3869E-15	-15.412
680.0	1400.0	3.7738	7.0322	5.3109	6.3481	3,5569	14.17	102.69	0.3108E-15	-15.508
700.0								105.74		
700.0	1400.0	3.5833	6.9370	5.1441	6.3242	3.5509	13.83	105.74	0.2505E-15	-15.601
750.0	1400.0	3.1116	6.7011	4.7312	6.2652	3,5360	12.90	115.02	0.1483E-15	-15.829
800.0	1400.0	2.6465	6.4686	4.3240	6.2070	3.5214	11.82	127.24	0.8986E-16	-16.046
850.0	1400.0	2.1878	6.2392	3.9224	6.1496	3.5069	10.66	143.17	0.55876-16	-16.253
900.0	1400.0	1.7355	6.0131	3.5264	6.0930	3.4927	9.47	163.38	0.3578E-16	-16.446
950.0	1400.0	1.2894	5.7900	3.1358	6.0372	3.4786	8.34	187.98	0.2369E-16	-16.625
1000 0	1400 0	0.0402	6 6700	3 7501	F 0021	2 4442	7 25	214 22	0.14205.14	14 700
1000.0	1400.0	0.8493	5.5700	2.7506	5.9821	3.4648	7.35	216.39	0.16288-16	-16.788

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1350 CEGREES

HEIGHT	TEMP	LOG N(02)	LOG NIDI	LOG N(N2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	OEG K	/ C M3	/ CM3	/ CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	559.5	10.3298	10.5094	11.1001	7.3655		26.32	18.76	0.7851E-11	-11.105
140.0	721.9	9.9736	10.2759	10.7745	7.2661		25.85	24.73	0.3769E-11	-11.424
150.0	851.0	9.7031	10.1050	10.5288	7.1969		25.43	29.72	0.2178E-11	-11.662
160.0	953.5	9.4807	9.9691	10.3279	7.1447		25.04	33.94	0.1398E-11	-11.855
170.0	1035.0	9.2887	9.8553	10.1553	7.1030		24.66	37.52	0.9589E-12	-12.018
180.0	1099.7	9.1170	9.7562	10.0018	7.0685		24.29	40.59	0.6882E-12	-12.162
190.0	1151.2	8.9597	9.6677	9.8616	7.0390		23.93	43.27	0.5103E-12	~12.292
200.0	1192.0	8.8129	9.5867	9.7312	7.0131		23.57	45.62	0.3877E-12	-12.412
210.0	1224.5	8.6740	9.5114	9.6081	6.9900		23,22	47.72	0.3001E-12	-12.523
220.0	1250.3	8.5410	9.4404	9.4906	6.9689		22.87	49.62	0.2357E-12	-12.628
230.0	1270.8	8.4127	9.3727	9.3774	6.9493		22.52	51.36	0.1874E-12	-12.727
240.0	1287.1	8.2880	9.3076	9.2675	6.9310		22.18	52.98	0.1504E-12	-12.823
250.0	1300.0	8.1662	9.2445	9.1603	6.9136		21.85	54.50	0.1218E-12	-12.914
250.0	1300+0	8+1002	9.2445	9.1003	0.9130		21.00	34.50	J.1210E-12	-12.714
260.0	1310.3	8.0467	9.1831	9.0553	6.8969		21.52	55.94	0.9929E-13	-13.003
270.0	1318.4	7,9291	9.1229	8.9520	6.8809		21.19	57.32	0.8146E-13	-13.089
280.0	1324.9	7.8130	9.0638	8.8501	6.8653		20.88	58.64	0.6721E-13	-13.173
290.0	1330.1	7.6982	9.0056	8.7494	6.8501		20.57	59.93	0.5573E-13	-13.254
300.0	1334.2	7.5845	8.9480	8.6497	6.8352		20.28	61.18	0.4642E-13	-13.333
30000	133442				04.1332					
320.0	1340.0	7.3597	R.8347	8.4527	6.8062		19.71	63.59	0.3261E-13	-13.487
340.0	1343.7	7.1378	8.7231	8.2582	6.7778		19.19	65.90	0.2324E-13	-13.634
360.0	1346.0	6.9180	8 - 6129	8.0657	6.7459		18.71	68.11	0.1678E-13	-13.775
380.0	1347.5	6.7002	8.5037	7.8749	6.7224		18.27	70.23	0.1226E-13	-13.911
400.0	1348.4	6.4840	8.3955	7.6856	6.6952		17.87	72.26	0.9054E-14	-14.043
420.0	1349.0	6.2693	8.2880	7.4976	6.6683		17.52	74.21	0.6749E-14	-14.171
440.0	1349.4	6.0560	8.1813	7.3109	6.6415		17.19	76.09	0.5074E-14	-14.295
460.0	1349.6	5.8440	8.0753	7.1253	6.6150		16.89	77.91	0.3845E-14	-14.415
480.0	1349.7	5.6334	7.9700	6.9409	6.5886		16.61	79.68	0.2934E-14	-14.533
500.0	1349.8	5.4240	7.8653	6.7576	6.5624	3.6895	16.35	81.43	0.2253E-14	-14.647
520.0	1349.9	5.2159	7.7612	6.5754	6.5363	3.6830	16.10	83.19	0.1739E-14	-14.760
540.0	1349.9	5.0089	7.6577	6.3942	6.5104	3.6764	15.85	84.98	0.1350E-14	-14.870
560.0	1350.0	4.8032	7.5548	6.2141	6.4847	3.6700	15.61	86.83	0.1053E-14	-14.978
580.0	1350.0	4.5987	7,4526	6.0350	6.4591	3.6635	15.35	88.77	0.8248E-15	-15.084
600.0	1350.0	4.3953	7.3509	5.8570	6.4336	3.6571	15.09	90.85	0.6488E-15	-15.188
600.0	1350+0	4.3733	7.3509	5.0570	0.4330	3.03/1	13.07	90.03	0.04006-15	-13.100
620.0	1350.0	4.1931	7.2498	5.6800	6.4083	3.6507	14.81	93.09	0.5123E-15	-15.290
640.0	1350.0	3.9921	7.1493	5 - 50 40	6.3832	3.6444	14.51	95.55	0.4061E-15	-15.391
660.0	1350.0	3.7922	7.0494	5.3290	6.3582	3,6381	14.19	98.26	0.3231E-15	-15.491
680.0	1350.0	3.5935	6.9500	5.1550	6.3323	3.6318	13.85	101.27	0.2579E-15	-15.588
700.0	1350.0	3.3959	6.8512	4.9820	6.3086	3.6256	13.48	104.65	0.2067E-15	-15.685
750.0	1350.0	2.9067	6.6066	4.5538	6.2474	3.6102	12.44	114.99	0.1208E-15	-15.918
800.0	1350.0	2.4244	6.3654	4.1315	6.1870	3.5950	11.27	128.77	0.7250E-16	-16.140
850.0	1350.0	1.9488	6.1276	3.7151	6.1275	3.5800	10.03	146.74	0.4481E-16	-16.349
900.0	1350.0	1.4797	5.8931	3 - 30 4 4	6.0688	3.5652	8.81	169.31	0.2866E-16	-16.543
950.0	1350.0	1.0170	5.6617	2.8994	6.0139	3.5507	7.71	196.20	0.1905E-16	-16.720
1000	1250.0	0.5101	E (22E	2 (000	5.9538	3.5363	6.77	226.31	0.1321E-16	-16.879
1000.0	1350.0	0.5606	5.4335	2.4998	9.9538	3. 3303	0.77	220.31	0.13216-10	-10+014

HE 1GHT KM	TEMP DEG K	LOG N(C2) /CM3	LNG N(0) /CM3	LOG N(N2) /CM3	LOG N(HE) /CM3	LOG N(H) /CM3	MEAN MOL NT	SCALE HT KM	DENSITY GM/CM3	LOG OEN GM/CM3
120.0	355.0	10.8751	10.8898	11.6021	7.5315		26,90	11.62	0.2461E-10	-10.609
130.0	555.6	10.3316	10.5118	11.1020	7.3672		26.32	18.63	0.7887E-11	-11-103
140.0	713.5	9.9751	10.2792	10.7764	7.2688		25.85	24.45	0.7887E-11	-11.422
		9.7035		10.5299	7.2003		25.42			
150.0	838.0	9.1035	10.1085	10.5299	7.2003		23.42	29.29	0.2186E-11	-11.660
160.0	936.1	9.4795	9.7725	10.3279	7.1485		25.01	33.34	0.1399E-11	-11.854
170.0	1013.3	9.2855	9.8583	10.1537	7.1072		24.63	36.78	0.9570E-12	-12.019
180.0	1074.1	9.1116	9.7586	9.9983	7.0729		24.25	39.72	0.6845E-12	-12.165
190.0	1122.1	8.9517	9.6693	9.8560	7.0435		23.87	42.26	0.5056E-12	-12.296
200.0	1159.8	8.8022	9.5873	9.7233	7.0177		23.51	44.51	0.3825E-12	-12.417
210.0	1189.6	8,6603	9.5109	9.5977	6.9945		23.14	46.51	0.2947E-12	-12.531
220.0	1213.0	8.5242	9.4386	9.4775	6.9733		22.78	48.32	0.2304E-12	-12.637
230.0	1231.5	8.3926	9.3695	9.3615	6,9535		22.43	49,99	0.1823E-12	-12.739
240.0	1246.0	8.2645	9.3029	9.2486	6.9350		22.07	51.54	0.1456E-12	-12.837
250.0	1257.5	8.1391	9.2382	9.1384	6.9173		21.73	53.00	0.11736-12	-12.931
230+0	1231.03	0.1371	7+2302	741304	0.7175		21+13	23.00	0.11/36-12	-12 0731
260.0	1266.5	8.0159	9,1751	9.0302	6.9004		21.39	54.39	0.9518E-13	-13.021
270.0	1273.6	7.8946	9.1132	8.9236	6.8840		21.06	55.73	0.7771E-13	-13.110
280.0	1279.2	7.7747	9.0523	8 + 8185	6.8681		20.73	57.02	0.6380E-13	-13.195
290.0	1293.6	7.6560	8.9922	8.7144	6 - 8525		20.42	58.27	0.5264E-13	-13.279
300.0	1287.1	7.5384	8.9328	8 - 6112	6.8372		20.12	59.49	0.4364E-13	-13.360
320.0	1292.0	7.3056	8.8156	8.4073	6.8072		19.54	61.84	0.3037E-13	-13.518
340+0	1295.0	7.0756	8.7001	8 - 20 58	6.7779		19.01	64.09	0.2146E-13	-13.668
360.0	1296.9	6.8477	8 - 58 58	8.0062	6.7491		18.53	66.25	0.1537E-13	-13.813
380.0	1298.1	6.6217	8.4726	7.8083	6.7206		18.09	68.31	0.1114E-13	-13.953
400.0	1298.8	6.3973	8.3603	7.6118	6.6924		17.70	70.28	0.8158E-14	-14.088
400.0	1270+0	0.3713	0.3003	7.0110	0.0724		11.10	10.20	0.01305-14	-14.000
420.0	1299.3	6.1745	8.2488	7.4167	6.6645		17.35	72.17	0.6035E-14	-14.219
440.0	1299.5	5.9530	8.1380	7.2228	6.6367		17.02	73.99	0.4504E-14	-14.346
460.0	1299.7	5.7330	8.0280	7.0301	6.6092		16.73	75.76	0.3388E-14	-14.470
480.0	1299.8	5.5143	7.9186	6.8386	6.5818		16.45	77.50	0.2566E-14	-14.591
500.0	1299.9	5.2968	7.8099	6.6483	6.5546	3.7724	16.19	79.22	0.1956E-14	-14.709
520.0	1299.9	5.0807	7.7018	6.4591	6.5275	3.7655	15.93	80.97	0.1500E-14	-14.824
540.0	1300.0	4.8658	7.5943	6.2709	6.5006	3.7588	15.67	82.77	0.1156E-14	-14.937
560.0	1300.0	4.6522	7.4875	6.0839	6 - 4739	3.7520	15.41	84.66	0.8949E-15	-15.048
580.0	1320.0	4,4398	7.3813	5.8980	6.4473	3.7453	15.14	86.67	0.6961E-15	-15 - 157
600.0	1300.0	4.2286	7.2757	5.7131	6.4209	3.7387	14.86	88.86	0.5437E-15	-15.265
620.0	1300.0	4.0187	7.1708	5.5293	6.3946	3.7321	14.55	91.25	0.4264E-15	-15.370
640.0	1300.0	3.8099	7.0664	5.3465	6.3685	3.7255	14.22	93.91	0.3357E-15	-15.474
660.0	1300.0	3.6023	6.9626	5.1648	6.3425	3.7189	13.86	96.88	0.2654E-15	-15.576
680.0	1300.0	3.3960	6.8594	4.9841	6.3167	3.7124	13.48	100.22	0.2106E-15	-15.677
700.0	1300.0	3.1907	6.7568	4.8045	6.2910	3.7060	13.06	103.99	0.1678E-15	-15.775
750.0	1300.0	2.6828	6.5028	4.3597	6.2275	3.6900	11.91	115.68	0.9688E-16	-16.014
800.0	1330.0	2.1819	6.2524	3.9212	6.1648	3.6742	10.64	131.35	0.5762E-16	-16.239
850.0	1300.0	1.6879	6.0054	3.4888	6.1030	3.6586	9.34	151.68	0.3548E-16	-16.450
900.0	1300.0	1.2008	5.7618	3.0623	6.0421	3.6433	8.13	176.75	0.2274E-16	-16.643
950.0	1300.0	0.7204	5.5216	2.6417	5.9819	3.6281	7.08	205.74	0.1523F-16	-16.817
1000.0	1300.0	0.2464	5.2846	2.2268	5.9226	3.6132	6.23	236,91	0.1069E-16	-16.971
			222010							

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1250 CEGREES

HE ISH I	TEMP	LOS N(02)	LCC MICH	100 111121	LOC N(HE)	1.30 11.011	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/ C M3	/ CM3	/ CM 3	/ CM 3	/CM3	MOL WT	H1 K™	GM/CM3	GM/CM3
120.0	355.0	10.8751	10.8808	11.6321	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	550.8	10.3337	13.5148	11.1344	7.3653		26.32	18.49	0.7930E-11	-11.101
140.0	703.9	9.3767	13.2830	10.7786	7.2720		25.84	24.12	0.3807E-11	-11.419
150.0	823.3	9.7036	12.1124	10.5310	7.2041		25.40	28.79	0.2193E-11	-11.659
150.0	450.0	4.7030	17.1124	10.0010	7.4.2341		27.40	20019	0.21936-11	-11.0099
160.0	916.6	9.4776	9.9761	10.3274	7.1528		24.99	32.69	0.1430F-11	-11.854
170.0	989.6	9.2812	9.8613	10.1512	7.1117		24.59	35.97	0.9535E-12	-12.021
180.0	1046.5	9.1045	9.7608	9,9935	7.0776		24.20	38.77	0.6791F-12	-12.168
190.0	1091.1	8.9417	9,6703	9.8487	7.0483		23.82	41.20	0.49925-12	-12.302
200.)	1125.8	8.7889	9.5871	9.7123	7.0224		23.43	43.33	0.3758E-12	-12.425
200.0	1123.0	0 . 1 0 0 7	7.2011	7 4 1 1 2 3	1.07.24		73.43	43.33	0.01345-15	-15.453
		0.4.24	0.5000	9.5848	6.2291			45.24	0.2891E-12	-12.540
210.0	1153.0	8.5436	2.5093				23.06			
220.0	1174.2	8.5039	9.4355	9.4615	6. →777		22.68	46.98	0.2241E-12	-12.650
230.9	1190.8	8.3686	9.3648	9.3423	6.9578		22.32	48.57	0.1763F-12	-12.754
240.0	1203.7	8.2356	9.7964	9.2261	6.9389		21.95	50.07	0.1401E-12	-12.854
250.0	1213.9	8.1073	9.2299	9.1124	6.9709		21.60	51.48	0.1122E-12	-12.950
	,							5.00		12.000
260.0	1221.8	7.9830	9.1649	9.0007	6.9036		21.25	52.93	0.9055E-13	-13.043
270.0	1227.9	7.8545	7.1011	d.8906	6.8868		20.90	54.12	C. 7353E-13	-13.134
280.0	1232.8	7.7304	9.0382	8.7817	6.8705		20.57	55.38	0.6005F-13	-13.221
290.0	1236.5	7.6375	3.9760	8.6739	6.9544		20.25	56.60	0.4929E-13	-13.307
300.0	1237.5	7.4855	9.9145	9.5670	6.8387		19.94	57.79	0.40666-13	-13.391
320.0	1243.6	7.2441	8.7931	8.3554	6.8077		19.36	60.09	0.2832E-13	-13,553
340.0	1246.1	7.0052	8.6732	8.1462	6.7774		18.83	62.28	0.1961E-13	-13.708
360.7	1247.6	6.7685	8 - 5546	7.9389	6.7475		18.34	64.38	0.1392E-13	-13.856
380.0	1248.5	6.5336	9.4370	7.7332	6.7180		17.91	66.39	0.9999F-14	-14.020
400.0	1249.1	6.3304	9.3203	7.5290	6.6987		17.52	68.30	0.7265E-14	-14.139
420.0	1249.5	6.0687	8.2344	7.3261	6.6596		17.17	70.13	0.53315-14	-14.273
440.0	1249.7	5.8384	8.0892	7.1246	6.6308		16.85	71.89	0.3947E-14	-14.404
460.0	1249.3	5.6396	7.9748	6.9242	6.6021		16.55	73.61	0.2946E-14	-14.531
480.9	1249.9	5.3821	7.8610	6.7251	6.5737		16.28	75.31	0.2214E-14	-14.655
590.0	1249.9	5.1560	7.7489	6.5271	6.5454	3.8616	16.C1	77.02	0.1674E-14	-14.776
,,,,,	10			04						
520.0	1250.3	4.9312	7.6356	6.3303	6.5172	3.8545	15.74	78.78	0.1274E-14	-14.895
540.0	1250.0	4.7078	7.5238	6.1347	6.4893	3.8474	15.47	80.61	0.9741F-15	-15.011
560.0	1250.0	4.4856	7.4127	5.9402	6.4615	3.8404	15.20	92.57	0.7486E-15	-15.126
							14.90	84.69	0.7486E-15	-15.170
580.0	1250.0	4.2647	7.3023	5.7468	6.4338	3.8335				
600.0	1250.∩	4.0451	7 - 19 25	5.5546	6.4064	3.8265	14.58	97.03	0.4489E-15	-15.349
620.0	1250.0	3.8268	7.0833	5.3634	6.3790	3.8197	14.24	89.63	0.3489E-15	-15.457
640.0	1250.0	3.6096	6.9748	5.1733	6.3519	3.8128	13.87	92.56	0.27286-15	-15.564
660.0	1250.0	3,3938	6.8668	4.9843	6.3249	3.8060	13.47	95.87	0.2142E-15	-15.669
680.3	1250.0	3,1791	6.7595	4.7964	6.2980	3.7993	13.03	99.63	0.1689E-15	-15.772
700.0	1250.7	2.9657	6.6528	4.6096	6.2713	3.7925	12.57	103.91	0.1338E-15	-15.874
750.0	1250.0	2.4374	6.3887	4.1471	6.2052	3.7759	11.29	117.29	0.7635E-16	-16.117
800.0	1250.0	1,9165	6.1282	3,6910	6.1400	3,7595	9.93	135.22	0.4511E-16	-16.346
850.0	1250.0	1.4028	5.8713	3.2413	6.2758	3.7433	8,61	158.17	0.2776E-16	-16.557
									0.1790E-16	
900.0	1250.0	0.8962	5.6180	2.7978	6.0124	3.7273	7.44	185.71		-16.747
950.0	1250.0	0.3965	5.3682	2.3603	5.9498	3.7116	6.47	216.28	0.1214E~16	-16.916
								0.7.5	0.04475.15	17.0/-
1000.0	1250.0	-0.0964	5.1218	1.9288	5.8882	3.6961	5.73	247.55	0.8667E-17	-17.062

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1200 CEGREES

HE13HT	TEMP	LOG N1021	LOG NID)	LOG N(NZ)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM 3	/CM3	/CM3	MOL NT	HT KM	GM/CM3	GM/CM3
	255.0	10 0751	10 0000	11 (021	7.5315		26.90	11.72	0.3//15.10	-10.609
120.0	355.0	10.8751	10.8808	11.6021				11.62	0.2461E-10	
130.0	545.2	10.3363	10.5183	11.1072	7.3719		26.32	18.29	0.7982E-11	-11.098
140.0	692.5	9.9785	10.2874	10.7810	7.2757		25.83	23.75	0.3830E-11	-11.417
150.0	896.7	9.7034	10.1167	10.5319	7.2085		25.38	28.23	0.2199E-11	-11.658
160.0	895.2	9.4749	9.9799	10.3262	7.1575		24.96	31.96	0.13985-11	-11.854
170.0	963.8	9.2755	9.8641	10.1476	7.1167		24.55	35.09	0.9480E-12	+12.023
180.0	1017.0	9.0955	9.7625	9.9872	7.0826		24.14	37.76	0.6717E-12	-12.173
190.0	1058 - 1	8,9292	9.6707	9.8394	7.0533		23.75	40.07	0.49118-12	-12.309
200.0	1090.1	8.7727	9.5860	9.7008	7.0273		23.35	42.11	0.3675E-12	-12.435
200+0	1070+1	0.1121	7.3000	7.1000	1.0213		27.77	46.11	0.30.32 12	
210.0	1114.8	8.6235	9.5065	9.5690	7.0038		22.96	43.93	0.2801E-12	-12.553
220.0	1134.0	8.4797	9.4310	9.4422	6.9822		22.57	45.59	0.2165E-12	-12.664
230.0	1148.8	8.3401	9.3583	9.3193	6.9619		22.19	47.13	0.1693E-12	-12.771
240.0	1160.3	8.2338	9.2880	9.1994	6.9427		21.81	48.57	0.1337E-12	-12.874
250.0	1169.3	8.9730	9.2195	9.0819	6.9243		21.45	49.93	0.1065E-12	-12.973
260.0	1176.2	7.9383	9.1523	8.9662	6.9066		21.08	51.24	0.85428-13	-13.068
							20.73	52.51	0.6896E-13	-13.161
270.0	1181.5	7.8382	9.0863	8.8521	6.8893					
280.0	1185.7	7.6794	9.0211	8.7392	6.8724		20.39	53.73	0.5599E-13	-13.252
290.0	1188.9	7.5518	8.9567	8.6273	6.8559		20.07	54.92	0.4570E-13	-13.340
300.0	1191.4	7.4251	8.8929	8.5162	6.8396		19.75	56.09	0.3749E-13	-13.426
320.0	1194.8	7.1741	8.7668	8.2963	6.8076		19.16	58.33	0.2557E-13	-13.592
340.0	1196.9	6.9256	8.6422	8.0787	6.7761		18.62	60.47	0.1772E-13	-13.752
360.0	1198.1	6.6792	8.5188	7.8629	6.7451		18.14	62.51	0+1245E-13	-13.905
380.0	1198.9	6.4347	8.3963	7.6488	6.7143		17.71	64.45	0.8868E-14	-14.052
400.0	1199.3	6.1918	8.2748	7.4362	6.6839		17.33	66.30	0.6387E-14	-14.195
400+0	11////	0.1710	0.2740	7.4302	0.000,		.,,,,,	00430	0.03372 11	
420.0	1199.6	5.9505	8 - 1541	7.2249	6.6536		16.98	68.07	0.4647E-14	-14.333
440.0	1199.8	5.7107	8.0342	7.0150	6.6236		16.67	69.78	0.34115-14	-14.467
460.0	1199.9	5.4724	7.9150	6.8063	6.5937		16.37	71.46	0.2524E-14	-14.598
480.0	1199.9	5.2355	7.7966	6.5989	6.5641		16.09	73.13	0.1881E-14	-14.726
500.0	1199.9	4.9999	7.6788	6.3927	6.5346	3.9578	15.81	74.85	0.14118-14	-14.850
		. 2.50	7.5437	6.1877	6.5053	3.9504	15.54	76.63	0.1064E-14	-14.973
520.0	1200.0	4.7658	7.5617							
540.0	1200.0	4.5330	7 - 44 5 3	5.9839	6.4762	3.9431	15.25	78.53	0.8073E-15	-15.093
560.0	1200.0	4.3016	7.3296	5.7813	6.4472	3.9358	14.95	80.59	0.6153E-15	-15.211
580.0	1200.0	4.0715	7.2146	5.5799	6.4184	3.9286	14.62	82.87	0.4711E-15	-15.327
600.0	1200.0	3.8428	7.1002	5.3796	6.3898	3.9214	14.26	85.43	0.3624E-15	-15.441
620.0	1200.0	3.6153	6.9865	5.1805	6.3614	3.9142	13.88	88.31	0.2801E-15	-15.553
640.0	1200.0	3.3892	6.8734	4.9825	6.3331	3.9071	13.46	91.60	0.2174E-15	-15 -663
660.0	1200.0	3.1643	6.7610	4.7856	6.3049	3,9000	13.00	95.36	0.1696E-15	-15.771
680.0	1200.0	2.9407	6.6492	4.5899	6.2770	3.8929	12.51	99.66	0.1329E-15	-15.877
						3.8859	11.99	104.58	0.1047E-15	-15.980
700.0	1200.0	2.7184	6.5380	4.3953	6.2491	3.0839	11.99	104.50	0+104/6=15	-13.960
750.0	1200.0	2.1681	6.2628	3.9135	6.1803	3.8686	10.59	120.05	0.5913E-16	-16.228
800.0	1200.0	1.6255	5.9915	3.4384	6.1124	3.8515	9.17	140.62	0.3481E-16	-16.458
850.0	1200.0	1.0904	5.7240	2.9700	6.0454	3.8346	7.86	166.34	0.2151E-16	-16.667
900.0	1200.0	0.5626	5.4601	2.5080	5.9794	3.8180	6.77	195.99	0.1403E-16	-16.853
950.0	1200.0	0.0421	5.1999	2.0523	5-9143	3.8016	5.92	227.23	0.9682E-17	-17.014
1000.0	1200.0	-0.4713	4.9432	1.6028	5.8500	3.7854	5.29	257.36	0.7050E-17	-17.152
1000.0	1500.0	-0.4113	4.7436	1.0020	2.0200	3+1034	3069	531.030	0+1050t-17	11+176

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued exospheric temperature = 1150 degrees

HEIGHT	TEMP	LOG N(02)	LOG NACT	LOG N(N2)	LOC NUREL	LOG N(H)	MEAN	SCALE	OENSITY	LOG CEN
KM	DEG K	/CM3	/643	/CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
	01.0	,	, , , ,	, 0	,,	705				
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	538.6	13.3393	10.5224	11.1105	7.3749		26.31	18.07	0.8044E-11	-11.095
140.0	679.7	9.9803	10.2924	10.7836	7.2759		25.81	23.32	0.3855E-11	-11.414
150.0	788.3	9.7027	10.1214	10.5326	7.2133		25.36	27.62	0.2205F-11	-11.657
160.0	871.8	9.4711	9.9837	10.3243	7.1627		24.92	31.17	0.1395E-11	-11.856
170.0	936.0	9.2681	9.8668	10.1428	7.1220		24.50	34.15	0.9403E-12	-12.027 -12.179
180.0	985.4	9.0843	9.7637	9.9791	7.0980		24.08	36.69	0.6621E-12 0.4809E-12	-12.318
190.0	1023.4	8.9139	9.6703	9.8279	7.0585 7.0324		23.66	38.89 40.83	0.4809E-12	-12.447
200.0	1052.7	8.7531	9.58.38	9.0000	1.0324		23.23	40.00	0.33106-12	-12.441
210.0	1075.1	8.5994	9.5024	9.5499	7,0086		22.85	42.57	0.2706E-12	-12.568
220.0	1092.4	8.4510	9.4247	9.4191	6.9866		22.45	44.17	0.2078E-12	-12.682
230.0	1105.7	8.3067	9.3499	9.2921	6.9659		22.05	45.65	0.1614E-12	-12.792
240.0	1115.9	8.1655	9.2773	9.1680	6.9463		21.66	47.04	0.12668-12	-12.897
250.0	1123.8	8.0267	9.2064	9.0461	6.9274		21.28	48.37	0.1002E-12	-12.999
260.0	1129.9	7.8900	9.1369	8.9261	6.9092		20.90	49.65	0.7982E-13	-13.098
270.0	1134.5	7.7548	9.0684	8.8075	6.8914		20.54	50.88	0.6403E-13	-13 - 194
280.0	1138.1	7.6209	9.0007	8.6901	6.8739		20.20	52.08	0.5167E-13	-13.287
290.0	1140.8	7.4880	8.9338	8.5737	6.8568		19.86	53.25	0.4192E-13	-13.378
300.0	1142.9	7.3561	8.8675	8.4581	6.8399		19.54	54.38	0.34198-13	-13.466
		7.0946	8.7361	8.2290	6.8066		18.94	56.57	0.2305F-13	-13.637
320.0	1145.8		8.6063	8.0022	6.7739		18.41	58.66	0.15816-13	-13.801
340.0	1147.5	6.8356							0.1100F-13	-13.958
360.0	1148.5	6.5787	8.4777	7.7772	6.7416		17.93 17.51	62.50	0.7759E-14	-14.110
380.0	1149.1	6.3237	8.3500 8.2233	7.5539 7.3321	6.6778		17.13	64.28	0.5536E-14	-14.257
400.0	1149.5	6.0703	8 . 22 33	1.3321	0.0//0		17.15	04.20	0.55500-14	-14.231
420.0	1149.7	5.8186	8.0974	7.1117	6.6462		16.79	65.99	0.3990E-14	-14.399
440.0	1149.8	5.5684	7.9723	6.8926	6.6149		16.47	67.66	0.2903E-14	-14.537
460.0	1149.9	5.3197	7.8479	6.6749	6.5838		16.18	69.30	0.2128E-14	-14.672
480.0	1149.9	5.0725	7.7243	6.4585	6.5528		15.89	70.98	0.1572E-14	-14.834
500.0	1150.0	4.8267	7.6014	6.2434	6.5221	4.0619	15.60	72.71	0.1168E-14	-14.932
520.0	1150.0	4.5824	7.4793	6.0295	6.4915	4.0542	15.30	74.55	0.8733E-15	-15.059
540.0	1150.0	4.3395	7.3578	5.8168	6.4611	4.3465	14.99	76.56	0.6564E-15	-15.183
560.0	1150.0	4.3980	7.2371	5.6054	6.4309	4.0389	14.65	78.78	0.4959E-15	-15.305
580.0	1150.0	3.8579	7.1170	5.3952	6.4009	4.0313	14.28	81.29	0.3765E-15	-15.424
600.0	1150.0	3.6192	6.9977	5.1862	6.3710	4.0238	13.88	84.14	0.2872E-15	-15.542
620.0	1150.0	3,3819	6.8790	4.9784	6.3413	4.0163	13-44	87.40	0.2202E-15	-15.657
640.0	1150.0	3.1459	6.7610	4.7718	6.3118	4.0089	12.96	91.17	0.1697E-15	-15.770
660.0	1150.0	2.9113	6.6437	4.5664	6.2824	4.0015	12.44	95.52	0.13156-15	-15.881
680.0	1150.0	2.6780	6.5270	4.3622	6.2532	3.9942	11.89	100.52	0.1024E-15	-15.990
700.0	1150.0	2.4463	6.4110	4.1591	6.2242	3.9869	11.31	196.26	0.8029E-16	-16.095
	112000	2.7700	0.4110			,00,				
750.0	1150.0	1.8717	6.1239	3.6564	6.1523	3.9688	9.81	124.27	0.4501E-16	-16.347
800.0	1150.0	1.3055	5.8408	3.1607	6.0815	3.9509	8.36	147.80	0.2652E-16	-16.576
850.0	1150.0	0.7472	5.5616	2.6718	6.0116	3.9333	7.12	176.13	0.16556-16	-16.781
900.0	1150.0	0.1965	5.2863	2.1897	5.9427	3.9160	6.14	207.09	0.1098E-16	-16.959
950.0	1150.0	-0.3466	5.0147	1.7142	5.8748	3.8989	5.42	237.71	0.77476-17	-17.111
1000 0	1150.0	0.0034	4.7469	1.2452	5.8978	3.8820	4.92	265.37	0.5767E-17	-17.239
1000.0	1150.0	-0.8624	4.7469	1.2452	2.8376	3.0020	7.72	200001	0.51016-11	2.0237

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1133 CEGREES

HE 13HT	TEMP	LCG N(C2)	LOG NED)	LCG N(N2)	LOG NUHE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM 3	/ CM 3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
K.F.	DEGR	7643	7 611 7	7 6113	705	70, 3	HOL WI	111 18	3.76.3	917 613
120.0	355.0	12.8751	10.8808	11.6021	7.5315		26.90	11.62	0.24616-10	-10,629
130.3	531.0	10.3427	10.5272	11.1142	7.3783		26.31	17.82	0.8115E-11	-11.091
				11.7864	7.2847		25.8C	22.84	0.38825-11	-11.411
140.0	665.4	9.9022	13.2979							
150.0	769.1	9.7016	10.1265	10.5330	7.2188		25.33	26.94	0.2210F-11	-11.656
160.0	846.5	7.4561	9.9876	10.3216	7.1684		24.99	30.32	3.1389€-11	-11.857
170.0	936.4	9.2589	9.8692	10.1365	7.1278		24.44	33.15	0.9300F-12	-12.032
180.0	952.1	9.37.36	9.7644	9.9690	7.0937		24.CO	35.56	0.6501E-12	-12.187
190.0	987.3	8,8954	9.6690	9.8137	7.0640		23.57	37.66	0.4687E-12	-12.329
200.0	1013.7	8.7297	3.5803	9.6671	7.0375		23.14	39.51	0.3458E-12	-12.461
210.3	1034.1	8.5709	9.4966	9.5270	7.0134		22.72	41.18	0.25978-12	-12.586
220.0	1043.7	8.4172	9.4165	9.3917	6,9909		22.30	42.72	0.19795-12	-12,704
230.0	1061.6	8.2675	9.3392	9.2600	6.9698		21.89	44.15	0.15266-12	-12.817
		8.1209	9.2640	9.1311	6.9496		21.48	45.50	0.1188E-12	-12.925
240.0	1070.6									
250.0	1077.6	7.9766	9.1995	9.0045	6.9302		21.09	46.80	0.9328E-13	-13.030
260.0	1082.9	7.8342	9.1182	8.8796	6.9113		20.70	48.35	0.7381∈-13	-13.132
270.0	1096.9	7.6934	7.3470	8.7561	6.8929		23.33	49.25	0.5880E-13	-13.231
280.0	1093.0	7.5538	8.9766	8 • 6 3 3 7	6.8748		19.98	50.42	0.4713E-13	-13.327
290.0	1092.4	7.4152	9.9368	8.5123	6.8570		19.64	51.57	0.3800F-13	-13,420
300.0	1094.2	7.2776	8.8377	8.3917	6.8394		19.31	52.68	0.3080E-13	-13.512
320.0	1096.6	7+3046	8.7007	8 - 1526	6.8348		18.71	54.81	0.20526-13	-13,688
340.0	1098.0	6.7340	9,5651	7.9156	6.7707		18.18	56.83	D.1392E-13	-13.856
360.0	1098.8	6.4556	8 + 43 97	7.6806	6.7369		17.71	58.74	0.9583E-14	-14.019
			9.2973	7.4472	6.7035			60.54	0.6688E-14	-14.019
380.0	1099.3	6.1990					17.29			
400.0	1979.6	5.9342	8 - 1649	7.2153	6.6703		16.92	62.25	0.47245-14	-14.326
420.0	1099.8	5.6711	8.0333	6.9850	6.6373		16.58	63.91	0.33716-14	-14.472
440.J	1099.9	5.4095	7.9025	6.7560	6.6046		16.27	65.53	0.2428E-14	-14.615
460.0	1099.9	5.1495	7.7725	6.5284	6.5720		15.97	67.16	0.17638-14	-14.754
480.0	1100.0	4.8911	7.6433	6.3021	6.5397		15.67	68.85	0.1289E-14	-14.890
500+0	1100.0	4.6342	7.5148	6.0772	6.5075	4.1746	15.36	70.64	0.94856-15	-15.023
520.0	1100.0	4.3788	7.3871	5.8536	6.4756	4.1665	15.C4	72.59	0.7021E-15	-15.154
540.0	1130.3	4.1248	7.2601	5.6313	6.4438	4.1585	14.68	74.76	0.5227E-15	-15,282
560.0	1130.0	3.8724	7,1339	5,4103	6,4122	4.1506	14.30	77.21	0.39115-15	-15,408
580.0	1170.0	3.6214	7.9384	5,1905	6.3838	4.1427	13.98	80.03	0.2943E-15	-15.531
				4.9720				83.28	0.22265-15	-15.653
600.0	1100.0	3.3718	6.8836	4.9720	6.3456	4.1348	13.41	03.20	0.2220:-15	-10.000
									0.1/025.15	16 771
620.0	1100.0	3.1237	6.7595	4.7548	6.3185	4.1270	12.90	87.07	0.1693E-15	-15.771
640.0	1100.0	2.9770	6.6362	4.5388	6.2877	4.1192	12.35	91.47	0.1295E-15	-15.888
660.0	1130.3	2.6317	6.5135	4.3241	6.257C	4.1115	11.77	96.58	0.99716-16	-16.001
680.0	1100.0	2.3878	6.3916	4.1105	6.2265	4.1038	11.15	1 12 . 48	0.7728E-16	-16 - 112
700.0	1100.0	2.1452	6.2703	3.8982	6.1961	4.0962	10.52	109.25	0.6034E-16	-16.219
750.0	1100.0	1.5449	5.9702	3.3726	6.1210	4.0772	8.95	130.26	0.3372E-16	-16.472
800.0	1130.0	0.9530	5.6742	2.8544	6.0469	4.0586	7.54	156.84	0.2001E-16	-16,699
850.0	1100.0	0.3692	5.3823	2.3433	5.9739	4.2402	6.40	187.19	3.1270E-16	-16.896
900.0	1103.0	-0.2065	5.0945	1.8393	5,9019	4.0221	5.57	218.18	0.8626E-17	-17.064
950.3	1100.0	-0.7743	4.8106	1.3422	5.8308	4.0042	5.00	246.66	0.6238E-17	-17.205
750 t J	1100.0	-541745	4.0100	1.3422	9.0308	4.0042	3.00	240.00	2.05 305 -11	-17.205
1000.0	1100.9	-1.3344	4.5305	0.8519	5.7607	3.9865	4.61	270.74	0.475JE-17	-17.323
1000.0	1100.0	-1.3344	4.3303	0.4514	3.7007	7 + 7000	4.01	210114	0.41306-11	-1 1 6 32 3

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1050 CEGREES

HEIGHT	TEMP	LOG N(O2)	LDC N(D)	LOG N(N2)	IDG NUHEL	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM 3	/CN3	/C M 3	MOL WY	HT KM	GM/CM3	GM/CM3
120.0	355.0	13.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2451E-10	-10.609
130.0	522.5	10.3466	10.5327	11.1185	7.3823		26.30	17.54	0.8197E-11	-11.086
140.0	649.6	9.9841	10.3341	10.7893	7.2901		25.78	22.31	0.39118-11	-11.408
150.0	746.1	9.6997	10.1319	10.5329	7.2248		25.30	26.20	0.22138-11	-11.655
160.0	819.3	9.4598	9.9916	10.3178	7.1746		24.83	29.40	0.13818-11	-11.860
170.0	874.9	9.2476	9.8712	10.1285	7.134C		24.37	32.09	0.9169E-12	-12.038
180.0	917.1	9.0541	9.7642	9.9565	7.0997		23.92	34.38	0.6354E-12	-12.197
190.0	949.1	8.8734	9.6664	9.7965	7.0697		23.46	36.37	0.4541E-12	-12.343
200.0	973.4	8.7929	9.5752	9.6450	7.0428		23.02	38.15	0.3321E-12	-12.479
210.0	991.9	8.5373	9.4888	9.4999	7.0181		22.57	39.76	0.2473E-12	-12.607
220.0	1005.9	8.3777	9.4060	9.3594	6.9952		22.14	41.24	0.1868E-12	-12.729
230.0	1016.5	8 - 2 2 2 0	9,3258	9,2225	6.9734		21.71	42.63	0.1428E-12	-12.845
240.0	1024.6	8.0692	9.2477	9.0893	6.9526		21.28	43.95	0.1103E-12	-12.957
250.0	1030.7	7.9188	9.1712	8.9563	6.9325		20.88	45.22	0.8592E-13	-13.066
260.0	1035.4	7.7701	9.3959	8.8259	6.9129		20.48	46.44	0.6747E-13	-13.171
270.0	1038.9	7,6230	9.0216	8.6969	6.8938		20.10	47.62	0.5335E-13	-13.273
280.0	1041.6	7.4771	8.9481	8 - 5691	6.875G		19.74	48.77	0.4246E-13	-13.372
290.0	1343.6	7.3323	8.8753	8,4421	6.8564		19.39	49.88	0.3400E-13	-13.469
300.0	1045.1	7.1883	8.8030	8.3160	6.8381		19.07	50.96	0.2737E-13	-13.563
320.0	1947.2	6.9326	8.6597	8.0657	6.8019		18.47	53.04	0.18016-13	-13.744
340.0	1048.4	6,6193	8.5178	7.8177	6.7663		17.94	54.99	0+1207E-13	-13.918
360.0	1049.1	6.3382	8.3771	7.5716	6.7309		17.48	56.82	0.8216E-14	-14.085
380.0	1049.5	6.0590	8.2374	7.3271	6.6959		17.07	58,55	0.5671E-14	-14.246
400.0	1049.7	5.7817	8.0987	7.0843	6.6612		16.70	60.20	0.3962E-14	-14.492
420.0	1049.8	5.5060	7.9608	6.8430	6-6267		16.37	61.81	0.2797E-14	-14.553
440.0	1049.9	5.2320	7 - 82 38	6+6031	6.5924		16.05	63.41	0.1992E-14	-14.701
460.0	1049.9	4.9597	7.6877	6.3647	6.5583		15.74	65.05	0.1431E-14	-14.844
480.0	1050.0	4.6889	7,5523	6.1276	6.5244		15.42	66.79	0.1035E-14	-14.985
500.0	1050.0	4.4198	7 - 41 77	5.8920	6.4907	4.2969	15.08	68.68	0.7533E-15	-15.123
520.0	1050.2	4.1522	7.2839	5.6578	6.4572	4.2885	14.72	70.79	0.55186-15	-15.258
540.0	1050.0	3.8862	7 - 1509	5.4249	6.4240	4.2801	14.32	73.20	0.4065E-15	-15.391
560.0	1050.0	3.6217	7.0187	5.1933	6.3909	4.2718	13.87	75.98	0.30126-15	-15.521
580.0	1059.0	3.3588	6.8872	4.9631	6.3580	4.2635	13.38	79.24	0.22456-15	-15.649
600.0	1050.0	3.0973	6.7565	4.7342	6.3252	4.2552	12.84	83.05	0.1683E-15	-15.774
620.0	1050.0	2.8374	6 - 62 65	4.5067	6.2927	4.2470	12.25	87.53	0.1270E-15	-15.896
640.0	1050.0	2.5789	6.4973	4.2804	6.2604	4.2389	11.63	92.77	0.96528-16	-16.015
660.0	1050.2	2.3219	6.3688	4.0554	6.2282	4.23C8	10.97	98.87	0.7391E-16	-16.131
680.0	1050.0	2.0664	6.2410	3.8317	6.1963	4.2228	10.30	105.90	0.5707E-16	-16.244
700.0	1050.0	1.8123	6.1140	3.6093	6.1645	4.2148	9.63	113.92	0.4447E-16	-16.352
750.0	1050.0	1.1834	5.7995	3.0587	6.0858	4.1949	8.05	138.28	D.2492E-16	-16.603
800.0	1050.3	0.5633	5 - 48 9 4	2.5157	6.0082	4.1754	6.73	167.58	0.15016-16	-16.824
850.0	1050.9	-0.0483	5 - 18 37	1.9804	5.9317	4.1561	5.76	198.76	0.9763E-17	-17.010
900.0	1050.3	-0.6514	4.8821	1.4524	5.8562	4.1371	5.09	228.13	0.6823E-17	-17.166
950.0	1050.0	-1.2462	4.5847	0.9316	5.7818	4.1184	4.65	253.14	0.5065E-17	-17.295
1000.0	1050.0	-1.8330	4.2913	0.4179	5.7084	4.0999	4.37	273.96	0.3937E-17	-17.405

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 1000 CEGREES

HEIGHT	TEMP	LOS N(C2)	LOG N(O)	LCG N(N2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	OEG K	/CM3	/ CM3	/ CM 3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.8751	13.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	513.0	10.3509	10.5388	11.1233	7.3868		26.29	17.27	0.82896-11	-11.082
140.0	632.3	9.9863	10.3109	10.7925	7.2962		25.76	21.74	0.3943E-11	-11.494
150.0	722.4	9.6972	10.1376	10.5324	7.2314					
150.0	122.4	7.0712	10.1376	10.3324	1.2314		25.26	25.41	0.2214E-11	-11.655
160.3	790.4	9.4519	9.9954	10.3128	7.1814		24.77	28.43	0.1369E-11	-11.864
170.0	841.8	9.2339	9.8728	1J.1186	7.1466		24.29	30.97	0.90065-12	-12.045
180.0	880.5	9.0342	9.7631	9.9414	7.1059		23.81	33.15	0.6179E-12	-12.209
190.0	909.8	8.8473	9.6626	9.7759	7.0755		23.34	35.05	0.4372E-12	-12.359
200.0	931.9	8.6693	9.5684	9.6188	7.0481		22.87	36.75	0.3166E-12	-12.499
210.0	948.6	8.4981	9.4789	9.4679	7.9228		22.41	38.30	0.2334E-12	-12+632
220.0	961.2	8.3318	9.3929	9.3216	6.9992		21.95	39.74	0.1747E-12	-12.758
230.0	970.7	8.1692	9.3095	9.1788	6.9767		21.50	41.10		
240.0	977.9	8,3096	7.2281	9.1788	6.9552				0.1323E-12	-12.878
							21.06	42.39	0.1012E-12	-12.995
250.0	983.3	7.8522	9.1482	8.9036	6.9343		20.64	43.63	0.7820E~13	-13.107
260.0	987.4	7.6967	9.3695	8.7642	6.9135		20.24	44.82	0.6090E-13	-13.215
270.0	990.5	7.5426	8.9918	8.6291	6.8940		19.85	45.98	0.4777E-13	-13.321
280.J	992.8	7.3897	8.9148	8.4951	6.8744		19.48	47.10	0.3773E-13	-13-423
290.3	994.6	7.2378	8.8385	8.3620	6.855C		19.13	48.19	0.2999E-13	-13.523
300.0	995.9	7.3868	8.7627	8 - 2298	6.8358		18.80	49.24	0.2397E-13	-13.620
							10.00	17867	0.23//2 13	13.020
320.0	997.7	6.7871	8.6124	7.9672	6.7979		18.21	51.25	0.1556E-13	-13.808
340.0	998.7	6.4898	8 4 4 6 3 6	7.7070	6.7605		17.69	53.13	0.1030E-13	-13.987
360.0	999.2	6.1947	8 - 31 59	7.4486	6.7235		17.23	54.88	0.6924E-14	-14.160
380.0	999.6	5.9017	8.1693	7.1920	6.6867		16.83	56.54	3.4722E-14	-14.326
400.0	999.8	5.6105	8.0237	6.9371	6.6502		16.47	58.13	0.3259E-14	-14.487
420.0	299.9	5.3211	7.8790	6.6837	6.6140		11.11	59.70	0 22725 1/	14 442
440.0	999.9	5.0334	7.7351	6.4318	6.5780		16.14		0.2273E-14	-14.643
460.0	1000.0	4.7474	7.5921	6.1815	6.5422		15.81	61.30	0.1609E-14	-14.796
480.0							15.48	62.99	0.1135E-14	-14.945
	1000.0	4.4632	7.4500	5.9326	6.5066		15.13	64.83	0.8115E-15	-15.091
500.0	1000.0	4.1806	7.3387	5.6852	6.4713	4.4300	14.75	66.89	0.5838E-15	-15.234
520.3	1000.0	3.8996	7.1682	5.4392	6.4361	4.4212	14.33	69.25	0.4227E-15	-15.374
540.0	1000.0	3.6203	7.0285	5.1947	6.4012	4.4124	13.86	72.01	0.3080E-15	-15.511
560.0	1000.0	3.3426	6.8897	4.9516	6.3664	4.4036	13.34	75.26	0.2258E-15	-15.646
580.0	1000.0	3.0665	6.7516	4.7099	6.3319	4.3949	12.76	79.12	0.1667E-15	-15.778
600.0	1000.0	2.7920	6.6144	4.4695	6 • 2975	4.3863	12.13	83.70	0.1240E-15	-15.907
620.0	1000.0	2.5190								
			6.4779	4.2306	6.2634	4.3777	11.46	89.10	0.9288E-16	-16.032
640.0	1000.0	2.2476	6.3422	3.9930	6.2294	4.3691	10.76	95.44	0.7020E-16	-16.154
660.0	1000.0	1.9778	6.2073	3.7568	6.1957	4.3606	10.05	102.79	0.5356E-16	-16.271
680.0	1000.0	1.7395	6.0732	3.5219	6.1621	4.3522	9.34	111.20	0.4129E-16	-16.384
700.0	1000.0	1.4427	5.9398	3.2883	6.1287	4.3438	8.66	120.67	0.3219E-16	-16.492
750.0	1030.0	0.7824	5 - 6096	2.7102	6.0461	4.3230	7-14	148.41	0.1826E-16	-16.738
800.0	1000.0	0.1312	5.2840	2.1401	5.9646	4.3025	5.99	179.47	0.1128E-16	-16.948
850.0	1000.0	-0.5109	4.9629	1.5780	5.8843	4.2822	5.20	209.75	0.7566E-17	-17.121
900.0	1000.0	-1.1442	4 - 64 63	1.0236	5.8050	4.2623	4.68	235.88	0.5451E-17	-17.264
950.0	1000.0	-1.7688	4.3340	0.4768	5.7269	4.2426	4.36	256.64	0.4147E-17	-17.382
	111010	10.000		0.4100	34,209	4.5450	7.70	270.04	0.41415-11	-11.6302
1000.0	1000.0	-2.3849	4.0260	-0.0626	5.6458	4.2232	4.17	272.51	0.3278E+17	-17.484

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 950 CEGREES

HEIGHT	TEMP	LCG V(02)	LOG N(C)	LOC MINZ)	LOG N(PE)	LOG N(H)	ME AN	SCALF	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM 3	/ Cw 3	/CM3	/C M 3	MOL WT	HT KM	GM/CM3	GM/CM3
120.7	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.67	0.2461E-10	-10.609
130.0	532.7	13.3557	13.5456	11.1285	7.3917		26.29	16.88	0.8392E-11	-11.076
140.0	613.7	9.9878	10.3193	10.7957	7.3028		25.74	21.12	0.3976E-11	-11.401
150.0	677.2	9.6938	10.1436	10.5314	7.2386		25.22	24.56	0.22136-11	-11.655
160.0	759.9	9.4422	9.9991	13.3065	7.1886		24.71	27.41	0.1354F-11	-11.868
170.0	837.1	9.2175	9.8737	10.1065	7.1476		24.20	29.81	0.8808E-12	-12.055
180.0	842.6	2.0108	9.7610	9.9232	7.1125		23.70	31.87	0.5975E-12	-12,224
190.0	869.2	8.8166	9.6571	9.7515	7.0915		23.20	33.69	0.4180E-12	-12.379
200.0	889.3	9.6312	9.5595	9.5880	7.0534		22.71	35.33	0.2993E-12	-12.524
200.0	30 9 6 7	0.0012		7				,,,,,	3427772 12	1.47
210.0	974.4	8.4525	9.4665	9.4306	7.0274		22.22	36.83	0.21836-12	-12.661
220.0	915.7	8.2786	9.3768	9.2777	7.0030		21.74	38.23	0.1616E-12	-12.792
230.7	924.2	8.1384	9.2897	9.1282	6.9797		21.27	39.55	0.12118-12	-12.917
240.0	930.6	7.9413	7.2045	8.9813	6.9572		20.82	40.92	0.91808-13	-13.037
250.0	935.4	7.7759	9.1209	8.8365	6.9355		20.38	42.93	C.7024E-13	-13.153
260.3	939.0	7.6126	9.0384	8.6933	6.9142		19.97	43.20	0.5420E-13	-13.266
270.0	941.8	7.4507	8.9568	8.5514	6.8933		19.57	44.33	0.4216E-13	-13.375
280.0	943.8	7.2900	8.8760	8.4106	6.8728		19.20	45.43	0.3302E-13	-13.481
290.3	945.3	7.1304	8.7958	8.2797	6.8524		18.85	46.49	0.2604E-13	-13.584
300.3	946.5	6.9716	8.7161	8.1316	6.8323		18.52	47.51	0.2066E-13	-13.685
320.0	948.9	6.6563	8.5581	7.8555	6.7925		17.93	49.44	0.1322E-13	-13.879
340.0	948.9	6.3435	9.4015	7.5816	6.7532		17.43	51.24	0.8627E-14	-14-264
360.3	942.4	6.2330	8,2462	7.3098	6.7142		16.98	52.91	0.5724E-14	-14.242
380.0	949.6	5.7245	8.0919	7.0397	6.6756		16.59	54.50	0.3852E-14	-14.414
400.0	949.8	5.4180	7.9386	6.7714	6 • 6372		16.23	56.25	0.2624E-14	-14.581
400.5	77 7 8 11	2.4100	1.1500	0.11114			10127			
420.J	949.9	5.1134	7.7863	6.5047	6.5990		15.89	57.61	0.1806E-14	-14.743
440.0	949.9	4.8136	7.6348	6.2396	6.5611		15.54	59.25	0.1254E-14	-14.902
460.0	950.0	4.5096	7.4843	5.9761	6.5235		15.18	61.03	0.8783E-15	-15.056
480.0	950.0	4.2134	7.3347	5.7141	6.4860		14.78	63.04	0.6195E-15	-15.208
500.0	950.0	3.9129	7.1860	5.4537	6.4488	4.5753	14.34	65.36	0.4401E-15	-15.356
520.0	950.0	3.6172	7.0381	5.1947	6.4118	4.5660	13.84	68.10	0.3147E-15	-15.502
540.0	950.0	3.3231	6.8911	4.9373	6.3750	4.5568	13.28	71.37	0.2267E-15	-15.645
560.0	953.0	3.0308	6.7449	4.6814	6.3384	4.5475	12.67	75.29	0.1645E-15	-15.784
580.0	950.0	2.7402	6.5996	4.4270	6.3021	4.5384	11.99	79.99	0.12038-15	-15.920
600.0	95 3 • 0	2.4512	6 - 4551	4.1740	6.2659	4.5293	11.27	85,69	0.8879E-16	-16.052
800.0	95 3+0	2.4912	0+4771	4.1140	0.2039	40 72 73	11.66	07403	01.10176 10	10005
620.0	950.0	2.1639	6.3115	3.9225	6.2300	4.5202	10.52	92.23	0.6617E-16	-16.179
640.0	950.0	1.8783	6.1687	3.6724	€.1942	4.5112	9.76	99.97	0.4985E-16	-16.302
660.0	950.0	1.5942	6.0266	3.4237	6.1587	4.5023	9.02	108.85	0.3801E-16	-16.420
680.0	950+0	1.3118	5.8854	3.1765	6.1234	4.4934	8.30	118.84	0.2936E-16	-16.532
700.0	950.0	1.0310	5.7450	2.9306	6.0882	4.4845	7.64	129.85	0.2301E-16	-16.638
	05.0	2 225-		2 2221	/ 0012	4.4626	6.28	160.38	0.1336E-16	-16.874
750.0	950.0	0.3358	5.3975	2 - 3221	6.0012 5.9155	4.4410	5.33	191.52	0.1536E-16	-17.069
800.0	950.0	-0.3496	5.0548	1.7220	5.9155	4.4410	5 · 5 5 4 · 73	219.01	0.8534E-17 0.5932E-17	-17.069
850.0	950.0	-1.0255	4.7168	0.5467	5.7475	4.4198	4.36	240.88	0.4401E-17	-17.356
900.0		-1.6921			5.7475	4.3780	4.13	257.44	0.34176-17	-17.466
950.0	950.0	-2.3495	4.0548	-J.0289	3.6652	4.3/80	4+13	231.44	0.541/6-1/	-17.400
1000.0	950.0	-2.9981	3.7305	-3.5967	5.5841	4.3576	3.99	270.05	0.2732E-17	-17.563

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 990 CEGREES

HEIGHT	TEMP	LOG N(C2)	1.06 N.(01	LOG N(N2)	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
	0.0	, 0.1.5	, 0113	, 0,,,					0, 0 3	
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10,609
130.0	491.6	10.3608	10.5530	11.1343	7.3972		26.28	16.51	0.8506F-11	-11.070
140.0	593.9	9.9895	10.3263	10.7990	7.3101		25.71	20.46	0.4010E-11	-11.397
150.0	670.6	9.6894	10.1499	10.5296	7.2464		25.17	23.67	0.2210E-11	-11.656
	0.000	,,,,,,		10070.0						
160.0	728.1	9.4306	10.0026	10.2986	7.1964		24.63	26.34	0.1336E-11	-11.874
170.0	771.2	9.1981	9.8739	10.0920	7.1549		24.10	28.60	0.8575E-12	-12.067
180.0	803.4	8.9833	9.7576	9.9017	7.1192		23.57	30.56	0.5741E-12	-12.241
190.0	827.6	8,7807	9.6498	9.7228	7.0875		23.04	32.30	0.3964E-12	-12.402
200.0	845.8	8.5870	9.5483	9.5520	7.0586		22.52	33.88	0.2803E-12	-12.552
200.0	342.8	8.5870	9.0483	9.5520	1.0000		22.02	33.00	0.20035-12	-12.552
210.0	859.4	8.3997	9.4512	9.3871	7.0317		22.00	35.33	0.2019E-12	-12.695
				9.2267	7.0064		21.50	36.70		-12.831
220.0	869.5	8.2172	9.3574						0.1477E-12	
230.0	877.2	8.0384	9.2660	9.0697	6.9821		21.02	38.00	0.1095E-12	-12.961
240.0	882.9	7.8623	9.1766	8.9152	6.9587		20.55	39.24	0.8210E-13	-13.086
250.0	887.2	7.6885	9.0887	8.7628	6.9359		20.10	40.43	0.6217E-13	-13.206
260.0	890.4	7.5165	9.0019	8.6120	6.9136		19.67	41.57	0.47526-13	-13.323
270.0	892.8	7.3459	9.9160	8 • 4625	6.8917		19.27	42.68	0.3662E-13	-13.436
280.0	894.6	7.1765	8.8308	8.3141	6.8701		18.90	43.75	J.2843E-13	-13.546
290.0	896.0	7.3082	8.7463	8.1666	6.8487		18.55	44.77	0.2223E-13	-13.653
300+0	897.0	6.8407	8.6624	8.0200	6.8275		18.23	45.75	0.17496-13	-13.757
320.0	898.3	6.5080	8,4957	7.7286	6.7855		17.65	47.60	0.1102E-13	-13.958
340.0	899.0	6.1780	8.3305	7.4397	6.7441		17.16	49.31	0.7083E-14	-14.150
360.0	899.5	5.8503	8,1665	7.1527	6.7030		16.72	50.91	0.4631E-14	-14.334
380.0	899.7	5.5247	8.0037	6.8677	6.6622		16.33	52.45	0.3071E-14	-14.513
400.0	899.8	5,2012	7.8419	6.5845	6.6217		15.97	53.98	0.2061E-14	-14.686
420.0	899.9	4.8797	7.6811	6.3030	6.5814		15.61	55.57	0.1398E-14	-14.855
440.0	899.9	4.5601	7.5213	6.9232	6.5414		15.22	57.29	0.9566E-15	-15.019
460.0	900.0	4.2423	7.3625	5.7450	6.5017		14.81	59.25	0.6600E-15	-15.180
480.0	900.0	3.9265	7.2045	5.4685	6.4621		14.34	61.54	0.4589E-15	-15.338
500.0	900.0	3.6125	7.0475	5.1936	6.4228	4.7344	13.81	64.26	0.3216E-15	-15.493
30010	90010	3.0123	1.0413	3.17.0	084220	701777	13.01	04020	0. 12100 17	134473
520.0	900.0	3.3003	6.8914	4.9203	6.3838	4.7246	13.22	67.56	0.2271E-15	-15.644
540.0	900.0	2.9900	6.7363	4.6486	6.3449	4.7148	12.55	71.57	0.1617E-15	-15.791
560.0	900.0	2,6814	6.5820	4.3785	6.3063	4.7051	11.82	76.44	0.1161E-15	-15.935
580.0	900.0	2,3746	6.4286	4.1099	6.2680	4.6954	11.04	82.32	0.8429E-16	-16.074
						4.6858		89.32	0.6186E-16	-16.209
600.0	900.0	2.0696	6 • 2761	3.8428	6.2298	4.0000	10.23	07.32	0.01005-10	-10.207
620.0	900.0	1.7664	6.1245	3.5773	6.1918	4.6762	9.42	97.53	0.4599E-16	-16.337
	900.0	1.4648	5.9737	3.3134	6.1541	4.6667	8.64	106.98	J. 3466E-16	-16.460
640.0										
660.0	900.0	1.1650	5.8238	3.0509	6.1166	4.6573	7.91	117.60	0.2653E-16	-16.576
680.0	900.0	0.8669	5 - 67 47	2.7899	6.0793	4.6479	7.24	129.21	0.2064E-16	-16.685
700.0	900.0	0.5705	5.5265	2.5304	6.0422	4.6386	6.64	141.57	0.1634€-16	-15.787
750.0		0.1/0-		1 0005				172 45	0.00/05.17	17.007
750.0	900.0	-0.1633	5.1596	1.8880	5.9504	4.6154	5.50	173.45	0.9840E-17	-17.007
800.0	900.0	-0.8868	4.7979	1.2546	5.8559	4.5926	4.77	202.59	0.6549E-17	-17.184
850.0	900.0	-1.6002	4.4412	0.6300	5.7706	4.5702	4.34	225.97	0.4716E-17	-17.326
900.0	900.0	-2.3039	4.0893	0.0140	5.6826	4.5480	4.08	243.58	0.3586E-17	-17.445
950.0	900.0	-2.9979	3.7423	-0.5936	5.5957	4.5261	3.92	256.88	0.2824E-17	-17.549
1000.0	900.0	-3.6824	3.4001	-1.1929	5.5101	4.5046	3.82	267.49	0.2272E-17	-17.644

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued

EXOSPHERIC TEMPERATURE = 850 CEGREES

HEIGHT	TEMP	LCG N(02)	LOG NION	LOG NINZ)	LDG VILHET	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/ CM3	/CM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
	000	70113	7 0113	7 65	76113	70.113		111 15.	0117613	171.7 C-3
120.0	355.0	10.3751	10.9808	11,6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	479.7	10.3664	12.5611	11.1405	7.4031		26.27	16.12	0.8630E-11	-11.064
140.0	573.0	9,9911	10.3349	10.8023	7.31.90		25.68	19.76	0.4046F-11	-11.393
150.0	642.8	9.6839	10.1563	10.5271	7.2548		25.11	22.74	0.2203E-11	-11.657
130.0	042+0	7.0037	10.1303	10.72/1	1.62340		23.11	22 + 17	0.22030-11	-11.031
160.0	695.0	9.4168	10.0058	10.2891	7.2046		24.55	25.23	0.1313E-11	-11.882
170.0	734.1	9.1754	9.8732	10.0747	7.1627		23.98	27.36	0.9305E-12	-12.081
180.0	763.3	8.9512	9.7527	9.8764	7.1262		23.42	29.22	0.5478E-12	-12.261
								30.89	0.37275-12	-12.201
190.0	785.2	8.7392	9.6405	9.6892	7.0936		22.86			
200.0	801.5	8.5358	9.5343	9.5101	7.0638		22.31	32.41	0.2598E-12	-12.595
					7 0000			22.02	0.10445.10	10.724
210.0	813.7	8.3388	9.4326	9.3368	7.0359		21.77	33.83	0.18466-12	-12.734
220.0	822.9	8.1466	9.3340	9.1679	7.0094		21.24	35.16	0.13336-12	-12.875
230.0	829.7	7.9583	9.2379	9.0023	6.9840		20.73	36.43	0.9760E-13	-13.011
240.0	834.8	7.7722	9.1437	8.8393	6.9595		20.25	37.65	0.7232E-13	-13.141
250.0	938.6	7.5886	9.0509	8.6783	6.9355		19.79	38.91	0.5416E-13	-13.266
260.0	841.5	7.4067	8.9592	8.5190	6.9120		19.36	39.94	0.4096E-13	-13.388
270.0	843.6	7.2264	8 - 86 85	8.3609	6.8889		18.95	41.01	0.3125E-13	-13.505
280.0	845.2	7.0472	8.7785	8 - 2040	6.8661		18.58	42.04	0.2403E-13	-13.619
290.0	846.4	6.8691	8.6891	8.0479	6.8435		18.24	*43.03	0.1862E-13	-13.730
300+0	847.3	6.6918	8.6003	7.8927	6.8211		17.92	43.97	0.1452E-13	-13.838
320.0	848.5	6.3398	9.4239	7.5844	6.7767		17.36	45.73	0.8994E-14	-14.046
340.0	849.2	5,9904	8.2491	7.2785	6.7329		16.87	47.35	J.5686E-14	-14.245
360.0	849.5	5.6435	8.0755	6.9748	6.6894		16.45	48.88	0.3656E-14	-14.437
380.0	849.7	5.2988	7.9031	6.6730	6.6462		16.06	50.39	0.2385E-14	-14.623
400.0	849.9	4.9563	7.7319	6.3731	6.6033		15.67	51.93	0.15746-14	-14.803
400+0	047.7	4.7303	1.1317	0.3/31	0.00.3		13+01	31.073	0.13/46-14	-14.003
420.0	849.9	4.6158	7.5616	6.0751	6.5607		15.27	53.61	0.1050E-14	-14.979
440.0	850.0	4.2774	7.3924	5.7788	6.5183		14.84	55.52	0.70688-15	-15,151
	850.0	3.9410	7.2242	5.4843	6.4762		14.34	57.78	0.47996-15	-15.319
460.0							13.78		0.4794E-15	-15.483
480.0	850.0	3.6066	7.0570	5.1915	6.4344			60.51		
500.0	850.0	3.2741	6.8907	4.9004	6.3928	4.9091	13.13	63.86	0.2269E-15	-15.644
						4.8987	10.40	67.99	0.1582E-15	-15.801
520.0	850.0	2.9436	6.7255	4.6111	6.3514		12.40			
540.0	850.0	2.6150	6.5612	4.3234	6.3103	4.8884	11.61	73.09	0.11146-15	-15.953
560.0	850.0	2.2883	6.3978	4.0373	6.2694	4.8781	1C.76	79.32	0.7940E-16	-16.100
580.0	850.0	1.9634	6.2354	3.7530	6.2288	4.8679	9.89	86.80	0.5733E-16	-16.242
600.0	850.0	1.6405	6.0739	3.4702	6.1884	4.8577	9.03	95.63	0.4201E-16	-16.377
620.0	850.0	1.3194	5.9134	3.1891	6.1482	4.9476	8.21	105.80	0.3130E-16	-16.504
640.0	850.0	1.0001	5.7537	2.9096	6.1083	4.8375	7.45	117.18	0.23758-16	-16.624
660.0	850.0	0.6826	5 • 59 50	2.6317	6.9685	4.8275	6.78	129.52	0.1837E-16	-16.736
680.0	850.0	0.3670	5.4372	2.3553	6.0290	4.9176	6.20	142.47	0.1450E-16	-16.839
700.0	850.0	0.0531	5.2803	2.0806	5.9898	4.8077	5.71	155.62	0.1167E-16	-16.933
750.0	850.0	-0.7238	4.8918	1 - 4004	5.8926	4.7832	4.82	196.73	0.7364E-17	-17.133
800.0	850.0	-1.4898	4.5088	J.7297	5.7967	4.7591	4.30	212.21	0.5116E-17	-17.291
850.0	850.0	-2.2453	4.1311	0.0684	5.7022	4.7353	4.CO	231.40	0.3799E-17	-17.420
900.0	850.0	-2.9903	3.7586	-0.5839	5.6090	4.7118	3.82	245.89	0.2940E-17	-17.532
950.0	850.0	-3.7251	3.3911	-1.2272	5.5170	4.6886	3.70	257.56	0.2333E-17	-17.632
1000.0	850.0	-4.4499	3.0287	-1.8617	5 - 4263	4.6658	3.6G	267.89	0.1880E-17	-17.726

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 830 DEGREES

HE I GH T	TEMP	LOG N(C2)	LOS NICO	LCG-N(N2)	LOG NUHE)	LOS NON	MEAN	SCALS	DENSITY	LOG DEN
KM	DEG K	/CM3	/ CM3	/CM3	/GM3	/CM3	MOL WT	HT KM	GM/CM3	GM/CM3
120.0	355.0	10.9751	13.8838	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.J	467.4	10.3723	17.5697	11.1471	7.4095		26.26	15.71	0.8765E-11	-11.057
140.0	551.3	9.3925	10.3439	13.8356	7.3264		25.65	19.93	0.40825-11	-11.389
150.0	614.1	9.6772	13.1629	13.5237	7.2638		25.05	21.79	0.2193E-11	-11.659
160.0	661.1	9.4006	10.0086	10.2775	7.2134		24.45	24.39	0.1286E-11	-11.891
170.0	696.1	9.1488	9.8715	13.0544	7.1708		23.85	26.19	0.7997F-12	-12.097
180.3	722.4	8.9141	9.7460	9.8468	7.1334		23.25	27.85	0.5186E-12	-12.285
190.0	742.3	8.6911	9.6288	9.6502	7.0998		22.65	29.45	0.3471E-12	-12.460
200.0	756.6	8.4768	9.5174	9.4615	7.0688		22.07	30.93	0.2381E-12	-12.623
216.0	767.6	8.2688	9.4102	9.2786	7.0396		21.5C	32.31	0.1666E-12	-12.778
220.0	775.8	8.9655	9.3063	9.1001	7.0119		20.94	33.61	0.1186E-12	-12.926
230.0	781.9	7.8658	9.2047	8.9248	6.9853		20.42	34.86	0.8565E-13	-13.067
240.0	786.5	7.6689	9.1050	8.7521	6.9594		19.92	36.35	0.6265E-13	-13.203
250.0	799.9	7.4742	9.0067	8.5814	6.9341		19.45	37.19	0.4636E-13	-13.334
260.0	792.4	7.2813	9.9095	8.4124	6.9092		19.02	38.28	0.3466E-13	-13.460
270.0	794.3	7.0898	9.8133	8.2446	6.9848		18.61	39.32	0.2616E-13	-13.582
280. C	795.8	6.9996	9.7178	8.0780	6.8606		18.24	40.31	0.1991E-13	-13.701
290.0	796.8	6.7195	8.6230	7.9124	6.8366		17.91	41.25	0.1527E-13	-13.816
300.0	797.6	6.5223	3.5286	7.7475	6.8129		17.60	42.14	0.1179E-13	-13.928
320.0	798.7	6.1483	8.3414	7.4201	6.7658		17.C5	43.81	0.7168E-14	-14.145
340.0	799.3	5.7772	9.1556	7.0951	6.7192		16.58	45.35	0.4447E-14	-14.352
360.0	799.6	5.4086	7.9713	6.7724	6.6730		16.16	46.84	0.2807E-14	-14.552
380.0	799.8	5.0424	7.7881	6.4518	6.6271		15.75	48.36	3.1797E-14	-14.745
400.0	799.9	4.6785	7.6061	6.1332	6.5816		15.33	49.99	0.1164E-14	-14.934
420+0	799.9	4.3168	7.4253	5.8165	6.5363		14.86	51.86	0.7619E-15	-15.118
440.0	800.0	3.9572	7 - 24 55	5.5017	6.4913		14.33	54.10	0.5036E-15	-15.298
460.0	800.0	3.5998	7.0668	5.1888	6.4466		13.72	56.85	0.3360E-15	-15.474
480.0	800.0	3.2445	6.9891	4.8778	6.4021		13.01	60.29	0.2264F-15	-15.645
500.0	800.3	2.8912	6.7125	4.5685	6.3579	5.1019	12.21	64.62	0.1542E-15	-15.812
520.0	800.0	2.5400	5.5369	4.2610	6.3140	5.0908	11.33	70.04	0.1362E-15	-15.974
540.0	830.3	2.1909	6.3623	3.9554	6.2703	5.0798	10.40	76.75	0.7423E-16	-16.130
560.0	800.3	1.8437	6.1887	3.6515	6.2268	5.0689	9.46	84.90	0.5264E-16	-16.279
580.0	800.0	1.4986	6.0162	3.3493	6.1837	5.0580	8.54	94.57	0.3802E-16	-16.420
600.0	800.0	1.1555	5.8446	3.0489	6.1437	5.0472	7.69	105.69	0.2801E-16	-16.553
000.0	850.0	1.1775	2.0440	3.9407	0.1407	3.0412	1.07	100007	0.20316-10	-10.333
620.0	830.0	0.8143	5.6740	2.7502	6.0980	5.0365	6.92	118.06	0.2108E-16	-16.676
640.0	800.0	0.4751	5.5044	2.4532	6.0556	5.0258	6.26	131.32	0.1623E-16	-16.790
660.0	800.0	0.1378	5.3357	2.1579	6.3134	5.0152	5.70	144.99	0.1279E-16	-16.893
680.0	800.0	-0.1976	5.1681	1.9643	5.9714	5.0046	5.24	158,59	0.1031E-16	-16.987
700.0	800.0	-0.5311	5.0013	1.5724	5.9297	4.9941	4.87	171.65	0.8486E-17	-17.071
				2.31.27						
750.0	800.0	-1.3565	4.5886	J.8497	5.8264	4.9681	4.24	200.38	0.5644E-17	-17.248
800.0	800.0	-2.1705	4.1816	0.1371	5.7246	4.9424	3.88	221.73	0.40765-17	-17.390
850.0	800.0	-2.9731	3.7803	-0.5655	5.6242	4.9172	3.66	238.19	0.3096E-17	-17.509
900.0	800.0	-3.7647	3.3845	-1.2585	5.5251	4.8922	3.51	251.73	0.2422E-17	-17.616
950.0	800.0	-4.5454	2.9941	-1.9421	5.4274	4.8676	3.39	264.10	0.1928E-17	-17.715
,										
1000.0	800.0	-5.3156	2.6091	-2.6163	5.3311	4.8434	3.29	276.40	0.1552E-17	-17.899

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 750 CEGREES

HE 1 GHT	TEMP	LOG N(C2)	LOG N(0)	LUG N(N2)	LOG N(FE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
КW	DFG K	/C™3	/ CM 3	/ CM 3	/CM3	/C M 3	MOL WI	HI K₩	GM/CM3	GM/CM3
120.0	355.0	10.8751	17,8808	11.6021	7.5315		26.90	11.62	0.24616-10	-10,609
130.0	454.5	10.3785	10.5789	11.154)	7.4162		26.25	15.29	0.8909E-11	-11.050
140.0	529.9	9.9936	17.3535	10.8088	7.3355		25.61	18.29	0.41186-11	-11.385
150.0	594.7	9.6692	13.1695	10.5194	7.2734		24.98	20.79	0.2179E-11	-11.662
160.3	626.3	9.3916	10.0108	13.2639	7.2226		24.34	22.93	0.1254E-11	-11.902
170.0	657.5	9,1182	9.8685	10.0326	7.1752		23,70	24.83	0.7653E-12	-12.116
180.0	690.9	8,8712	9.7375	9.8125	7.1408		23.06	26.47	0.4868E-12	-12.313
190.0	698.3	8.6359	7.6143	9.6051	7.1059		22.42	28.00	0.3198E-12	-12.495
		9.4290	7.4969	9.4055	7.0736		21.80	29.43	0.2154E-12	-12.667
200.0	711.3	7.4 190	7.4969	9.4000	1.3136		21.80	29.43	0.21546-12	-12.667
210.0	721.0	8.1883	9.3836	9.2116	7.0436		21.20	30.78	0.1482E-12	-12.829
220.0	728.3	7.9724	9.2734	9.0220	7.0138		23.62	32.06	0+1038E+12	-12.984
230. J	733.8	7.7600	7,1656	8.9357	6.2857		20.07	33.28	0.7388E-13	-13-131
240.0	737.9	7.5505	9.0596	8.6519	6.9583		19.56	34.44	0.5329E-13	-13.273
250.0	740.9	7.3432	3.9551	8.4702	6.9314		19.09	35.55	0.3892E-13	-13,410
230.0	170.7	1.1432	7.7371	0.4102	0.7314		170 37	33.33	0.30726-13	-131413
260.0	743.2	7.1377	8.8517	8.2901	6.9051		18.65	36.60	0.2874E-13	-13.542
270.0	744.9	6.9337	9.7492	8.1114	6.879C		18.26	37.60	0.2143E-13	-13.669
280.0	746.2	6.7309	8 . 64 74	7.9338	6.8533		17,89	38.54	0.1612E-13	-13.793
290.0	747.2	6.5293	8.5463	7.7572	6.9278		17.56	39.43	0.1223E-13	-13.913
300.0	747.9	6.3286	8.4458	7.5815	6.8325		17.26	40.28	0.9345E-14	-14.029
30000	14147	0.52.00	3.4430	147017	0.0027		11120	4000	0.75456 14	.14.027
320.0	748.8	5.9298	9.2461	7.2323	6.7523		16.73	41.85	0.5559E-14	-14.255
340.0	749.3	5.5340	8.0481	6.8857	6.7026		16.27	43.34	0.3377E-14	-14.471
360.0	749.6	5.1409	7.8514	6.5415	6 - 6534		15.83	44.83	0.2086E-14	-14.681
380.0	749.8	4.7503	7.6561	6.1996	6.6344		15.38	46.44	0.1307E-14	-14.884
400.0	749.9	4.3621	7.4620	5.8597	6.5558		14.88	48.28	0.8288E-15	-15.082
400.0	14747	4.5021	1.4020	3411341	0.5555		17000	40.20	0.02000-17	-174032
420.0	749.9	3.9763	7.2690	5.5219	6.5076		14.31	50.51	0.5313E-15	-15.275
440.J	750.0	3.592H	7.3773	5.1862	6.4596		13.63	53.32	0.3443E-15	-15.463
460.0	750.0	3,2115	6.9866	4.8524	6.4119		12.85	56.92	0.2255E-15	-15-647
480.0	750.0	2.8325	6.6971	4.5236	6.3644		11.95	61.55	0.1496E-15	-15.825
500.0	750.0	2.4557	6.5087	4.1907	6.3173	5.3155	10.97	67.47	0.1006E-15	-15.997
520.0	750.0	2.0911	6.3214	3.8628	6.2704	5.3037	9.93	74.91	0.6876E-16	-16.163
540.0	750.0	1.7387	6.1352	3.5367	6.2238	5.2920	A. 91	84.05	0.4789E-16	-16.320
560. J	750.0	1.3384	5.9501	3.2125	6.1775	5.2803	7.93	94.94	0.3408E-16	-16.467
580. J	750.0	0.9703	5.7660	2.8902	6.1314	5.2687	7.05	107.45	0.2484E-16	-16.605
600.0	750.2	0.6042	5.583∪	2.5698	6.0856	5.2572	6.28	121.23	0.1859E-16	-16.731
620.0	75).0	2.2403	5 - 40 10	2.2512	6.0401	5.2457	5.64	135.77	0.1429E-16	-16.845
				1.9344	5.9948	5.2343	5.12	150.46	0.1127E-16	-16.948
640.0	75 0 . 0	-0.1215	5.2201						0.1127E-16 0.9118E-17	-17.040
660.0	750.3	-0.4813	5.0402	1.6195	5.9498	5.2230	4.70	164.73		
680.0	750.0	-0.8390	4.8614	1.3063	5.9050	5.2117	4.37	178.14	0.7546E-17	-17.122
700.0	75J.0	-1.1947	4.6835	0.9949	5.8605	5.2005	4.12	190.42	0.6370F-17	-17.196
750.0	750.0	-2.0752	4.2433	0.2240	5.7504	5.1727	3,68	215.94	0.4456E-17	-17.351
800.0	750.0	-2.9434	3.8092	-0.5361	5.6417	5.1454	3.42	235.68	0.3319E-17	-17.479
850.0	753.0	-3.7996	3.3811	-1.2856	5.5346	5.1184	3.24	252.39	0.2560F-17	-17.592
900.0	753.0	-4.6439	2.9589	-2.0248	5.4290	5.0918	3.09	268.19	0.2016E-17	-17,696
950.0	750.0	-5.4767	2.5425	-2.7539	5.3248	5.0656	2.95	284.40	0.1608E-17	-17.794
750.0	150.0	-9.4101	7.3475	-2.1534	2.2248	7.0000	2.73	504.41	V. 10000-17	
1000.0	750.0	-6.2982	2.1318	-3.4731	5.2220	5.0397	2.92	301.77	0.1295E-17	-17.888

Table 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 700 DEGREES

HELSHI	TEMP	LOG N(C2)	1.00 01/01	LOC MANAGE	LOG N(HE)	LDG N(H)	MEAN	SCALE	DENSITY	LOG DEN
	OEG K	/CM3	/CM3	/ CM 3	/CM3	/CM3		HT KM	GM/CM3	GM/CM3
KM	UEG K	/ L M 3	/ UM 3	/ Lm 3	/ Lm 3	/CM3	MOL WY	HI KE	GM/ CM3	GM/ LM3
120.0	355.0	10.8751	10.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	441.4	10.3850	10.5885	11.1612	7.4233		26.24	14.85	0.9062E-11	-11.043
140.0	506.2	9.7944	10.3634	10.8119	7.3450		25.58	17.53	0.4154E-11	-11.382
150.0	554.8	9.6597	10.1762	10.5139	7.2835		24.90	19.79	0.2160E-11	-11.666
160.0	591.2	9.3598	10.0124	10.2479	7.2323		24.22	21.75	0.1218E-11	-11.914
170.0	618.4	9.3829	9.8642	10.0031	7.1879		23.53	23.49	0.72726-12	-12.138
180.0	638.9	8.8220	9.7267	9.7729	7.1483		22.84	25.07	0.4527E-12	-12.344
190.0	654.2	8.5725	9.5968	9.5532	7.1120		22.16	26.55	0.2912E-12	-12.536
200.0	665.7	8.3312	9.4724	9.3410	7.0781		21.50	27.93	0.1923E-12	-12.716
210.0	674.3	8.0961	9.3520	9.1344	7.0459		20.86	29.24	0.1298E-12	-12.887
220.0	680.7	7.8656	9.2347	8.9322	7.0150		20.26	30.49	0.8936E-13	-13.049
230.0	685.5	7.6387	9.1197	8.7332	6.9851		19.70	31.68	0.6254E-13	-13.204
240.0	689.2	7.4147	9.0066	8.5367	6.9559		19.18	32.91	0.4442E-13	-13.352
250.0	691.9	7.1929	8.8948	8.3424	6.9273		18.70	33.89	0.3197E-13	-13.495
260.0	693.9	6.9730	9.7842	8.1497	6.8992		18.27	34.89	0.2328E-13	-13.633
270.0	695.4	6.7546	8.6746	7.9584	6.8714		17.88	35.83	0.1714E-13	-13.766
280.0	696.6	6.5375	8 - 56 57	7.7682	6.8439		17.53	36.73	0.1273E-13	-13.895
290.J	697.4	6.3216	8 + 4574	7.5791	6.8166		17.21	37.57	0.9537E-14	-14.021
300. J	698.1	6.1066	8.3498	7.3909	6.7895		16.92	38.37	0.7198E-14	-14.143
300. J	698.1	0.1000	n . 3498	7 - 3909	6.1872		10.92	38.37	0.71985-14	-14.143
320.0	698.9	5.6794	8.1359	7.0168	6.7358		16.39	39.88	0.4178E-14	-14.379
340.0	699.4	5.2554	7.9237	6.6455	6.6826		15.91	41.37	0.2477E-14	-14.606
360.0	699.7	4.8342	7.7131	6.2768	6.6258		15.42	42.96	0.1493E-14	-14.826
380.0	699.8	4.4157	7.5038	5,9104	6.5774		14.88	44.80	0.9125E-15	-15.040
400.0	699.9	3.9998	7.2958	5,5463	6.5253		14.24	47.08	0.5648E-15	-15.248
420.0	699.9	3.5864	7.0891	5.1844	6.4736		13.48	50.03	0.3539E-15	~15.451
440.0	700.0	3.1755	6.8836	4.8246	6.4222		12.58	53.92	0.2246E-15	-15.649
460.0	700.0	2.7670	6 - 67 94	4.4673	6.3711		11.55	59.07	0.1446E-15	-15.840
480.0	730.0	2.3610	6.4763	4.1115	6.3203		10.43	65.81	0.9468E-16	-16.024
500.0	700.0	1.9572	6.2745	3.7591	6.2697	5.5534	9.27	74.46	0.6322E-16	-16.199
520.0	700.0	1.5559	6.0738	3,4067	6.2195	5.5407	8.15	85.21	0.4321E-16	-16.364
540.J	730.0	1.1569	5.8743	3.0573	6.1696	5.5282	7.12	98.09	0.3033E-16	-16.518
560.0	720.0	0.7601	5.6759	2.7100	6.12CC	5.5157	6.23	112.81	0.2193E-16	-16.659
580.0	700.0	0.3657	5.4787	2.3647	6.0706	5.5032	5.49	128.81	0.1636E-16	-16.786
						5.4909	4.89	145.38		-16.900
600.0	700.0	-3.0265	5.2826	2.0214	6.0215	5.4909	4.89	140.38	0.1260E-16	-10.400
										17 000
620.0	700.0	-0.4164	5.0877	1.6800	5.9728	5.4786	4.42	161.73	0.1000E-16	-17.000
640.0	700.0	-0.8041	4.8938	1.3406	5.9242	5.4664	4.06	177.26	0.8155E-17	-17.089
660.J	733.3	-1.1895	4.7011	1.0031	5.8760	5.4542	3.77	191.60	0.6808E-17	-17.167
680.0	700.0	-1.5728	4.5094	0.6676	5.8281	5.4422	3.55	204.60	0.5797E-17	-17.237
700.0	700.0	-1.9539	4.3189	0.3339	5.7804	5.4302	3.38	216.34	0.5014E-17	-17.300
			,							2
750.0	700.0	-2.8973	3.8472	-0.4920	5.6623	5.4004	3.07	241.44	0-3663E-17	-17.436
800.0	730.0	-3.8275			5.5459	5.3711			0.2794E-17	-17.554
			3.3821	-1.3063			2 • 86	263.26		
850.0	700.0	-4.7448	2.9234	-2.1094	5.4312	5.3422	2.68	284.45	0.2184E-17	-17.661
900.0	720.0	-5.5495	2.4711	-2.9014	5.3180	5.3137	2.52	306.55	0.1735E-17	-17.761
950.0	790.0	-6.5418	2.0250	-3.6826	5.2063	5.2856	2.37	330.33	0.1395E-17	-17.855
1000.0	700.3	-7.4219	1.5849	-4.4531	5.0962	5.2579	2.23	356.12	0.1134E-17	-17.945

TABLE 1.—Detailed atmospheric data as a function of height and exospheric temperature—Continued EXOSPHERIC TEMPERATURE = 650 CEGREES

HE LIGHT	TEMP	LOG N(02)	100 0101	LOC MINZI	LOG N(HE)	LOG N(H)	MEAN	SCALE	DENSITY	LOG DEN
KM	DEG K	/CM3	/CM3	/ CM3	/CM3	/CM3	MOL NT	HT KM	GM/CM3	GM/CM3
K/A	DEG K	76113	76113	7 0115	70115	70.17			01.7 01.3	0.,0
120.0	355.0	10.8751	19.8808	11.6021	7.5315		26.90	11.62	0.2461E-10	-10.609
130.0	428.2	10.3916	10.5984	11.1687	7.4307		26.23	14.42	0.9222E-11	-11.035
140.0	483.3	9.9948	10.3737	10.8147	7.3550		25.53	16.76	0.4189E-11	-11.378
150.0	524.7	9.6486	10.1828	10.5072	7.2941		24.82	18.78	0.2137E-11	-11.670
160.0	555.8	9.3348	10.0133	10.2293	7.2424		24.08	20.56	0.1178E-11	-11.929
170.3	579.2	9.0426	9.8583	9.9714	7.1970		23.34	22.18	0.6859E-12	-12.164
180.0	596.7	8.7658	9.7134	9.7273	7.1559		22.60	23.67	0.4167E-12	-12.380
190.0	610.0	8.4998	9.5757	9.4933	7.1180		21.87	25.08	0.2617E-12	-12.582
200.0	619.9	8.2420	9.4432	9.2667	7.0822		21.16	26.42	0.1690E-12	-12.772
		3 0003	0.21/7	9.0456	7.0481		20.49	27.70	0.1118E-12	-12.952
210.0	627.4	7.9902	9.3147	8.8287	7.0153		19.87	28.91	0.7543E-13	-13.122
220.0	633.0	7.7430	9.1892	8.6151	6.9834		19.29	30.07	0.5184E-13	-13.285
230.0	637.2	7.4994		8.4040	6.9522		18.77	31.16	0.3620E-13	-13.265
240.0	640.4	7.2586	8.9445						0.2563E-13	-13.591
250.0	642.8	7.0201	8.8244	8.1951	6.9215		18.29	32.19	0.25035-13	-13.591
260.0	644.6	6.7835	8,7055	7.9878	6.8913		17.87	33.14	0.1838E-13	-13.736
270.0	645.9	6.5485	8,5876	7.7819	6.9615		17.49	34.04	0.13336-13	-13.875
280.0	646.9	6.3149	8 4704	7.5773	6.8319		17.14	34.88	0.9761E-14	-14.011
290.0	647.7	6.0824	8.3539	7.3737	6.8026		16.83	35.68	0+7239E-14	-14.142
		5.8510	8 . 2380	7.1711	6.7734		16.54	36 - 45	0.5364E-14	-14.271
300.0	648.3	3.0310	0.2300	7 - 1 / 11	0.1134		10.54	30.43	0.55041. 14	
320.0	649.0	5.3910	8.0078	6.7683	6.7156		15.99	37.97	0.3026E-14	-14.519
340.0	649.4	4.9344	7.7793	6.3685	6.6584		15.44	39.58	0.1743E-14	-14.759
360.0	649.7	4.4908	7.5524	5.9714	6.6015		14.83	41.47	0.1021E-14	-14.991
380.0	649.8	4.0301	7.3271	5.5768	6.5451		14.10	43.90	0.6069E-15	-15.217
400.0	649.9	3.5823	7 - 10 31	5.1847	6.4890		13.20	47.15	0.3660E-15	-15.437
10000		342003								
420.0	649.9	3.1371	6.8805	4.7950	6.4333		12.13	51.62	0.22406-15	-15.650
440.0	650.0	2,6946	6.6592	4.4076	6.3779		10.91	57.75	0.1395E-15	-15.855
460.0	650.0	2.2547	6.4393	4.0224	6.3229		9.60	66.04	0.8870E-16	-16.052
480.0	650.0	1.8173	6.2206	3.6396	6.2682		8.29	76.92	0.5782E-16	-16.238
500.0	650.0	1.3826	6.0032	3.2589	6.2138	5.8199	7.07	90.63	0.3883E-16	-16.411
520.0	650.0	0.9503	5.7871	2.8805	6.1597	5.8063	6.02	107.07	0.2698E-16	-16.569
540.0	650.0	3.5206	5.5722	2.5043	6.1059	5.7927	5.16	125.67	0.1946E-16	-16.711
560. U	650.0	0.0934	5.3586	2.1303	6.0525	5.7793	4.48	145.50	0.1458E-16	-16.836
580.0	650.0	-0.3314	5 - 1462	1.7584	5.9993	5.7659	3.97	165.49	0.1134E-16	-16.946
600.0	650.0	-0.7537	4.9351	1.3887	5.9465	5.7526	3.57	184.70	0.9113E-17	-17.040
	450.0	1 1727	4.7251	1.0211	5.8939	5.7394	3.28	202,56	0.7537E-17	-17-123
620.0	650.0	-1.1736	4.5164	0.6556	5.8417	5.7262	3.05	218.85	0.6381E-17	-17.195
640.0	650.0	-1.5911	4.3088	0.8556	5.7897	5.7131	2.87	233.65	0.5502E-17	-17.259
660.0	650.0			-0.0692	5.7381	5.7001	2.73	247.21	0.4813E-17	-17.318
680.0	650.0	-2.4190	4.1024					259.82	0.4256E-17	-17.371
700.0	650.0	-2.8295	3.8972	-0.4286	5.6867	5.6872	2.61	524*85	0.42306-17	-17.371
750.0	650.0	-3.8454	3.3892	-1.3180	5.5596	5,6552	2.38	289.07	0.3233E-17	-17.490
800.0	650.0	-4.8472	2.8883	-2.1950	5,4343	5.6236	2.20	317.51	0.2531E-17	-17.597
850.0	650.0	-5.8351	2.3944	-3.0599	5.3107	5.5925	2.04	346.84	0.2021E-17	-17.694
900.0	650.0	-6.8093	1.9073	-3.9128	5.1688	5.5618	1.90	377.64	0.1639E-17	-17.785
950.0	650.0	-7.7702	1.4268	-4.7541	5.0686	5.5315	1.78	409.90	0.1348E-17	-17.870
750.0	0,000			441341	20000					
1000.0	650.0	-8.7181	0.9529	-5.5839	4.9500	5.5017	1.67	443.29	0.1124E-17	-17.949

	14	9777	12222	-12 -12 -12 -12	113	13.13	13.	41111	114.	-14. -14. -14.
	1450	-10.609 -11.108 -11.427 -11.665	-11.856 -12.018 -12.160 -12.288 -12.404	-12.512 -12.614 -12.710 -12.802 -12.890	-12,975 -13,057 -13,137 -13,214 -13,290	-13.364 -13.436 -13.507 -13.576 -13.644	-13.711 -13.776 -13.841 -13.904 -13.966	-14.027 -14.088 -14.147 -14.206 -14.263	-14.320 -14.376 -14.432 -14.487 -14.541	-14.595 -14.648 -14.700 -14.803
	1500	-17.609 -11.109 -11.429 -11.666	-11.857 -12.019 -12.160 -12.286 -12.402	-12.509 -12.609 -12.704 -12.794 -12.881	-12.964 -13.045 -13.123 -13.199	-13.345 -13.416 -13.485 -13.553	-13.684 -13.748 -13.811 -13.933	-13.993 -14.052 -14.110 -14.167	-14.279 -14.334 -14.388 -14.442 -14.495	-14.547 -14.599 -14.650 -14.701 -14.751
ms, g/em²)	1550	-13.609 -11.113 -11.433 -11.668	-11.859 -12.320 -12.160 -12.286 -12.401	-12.507 -12.606 -12.699 -12.788	-12.955 -13.035 -13.111 -13.186 -13.258	-13.329 -13.466 -13.532 -13.532	-13.663 -13.723 -13.784 -13.945 -13.904	-13.963 -14.020 -14.077 -14.133	-14.242 -14.296 -14.349 -14.401	-14.504 -14.554 -14.604 -14.654
temperature (decimal logarithms,	1600	-10.609 -11.110 -11.431 -11.669	-11.860 -12.321 -12.161 -12.286 -12.403	-12.505 -12.603 -12.696 -12.784	-12.948 -13.026 -13.101 -13.175	-13.315 -13.383 -13.449 -13.514	-13.640 -13.701 -13.761 -13.820 -13.878	-13.935 -13.992 -14.047 -14.102	-14.209 -14.261 -14.313 -14.364 -14.415	-14.464 -14.514 -14.563 -14.611
ure (decim	1650	-10.609 -11.111 -11.432 -11.670	-11.861 -12.022 -12.162 -12.287 -12.400	-12.504 -12.602 -12.693 -12.780	-12.943 -13.019 -13.093 -13.165 -13.235	-13.303 -13.459 -13.498 -13.560	-13.621 -13.681 -13.740 -13.798 -13.854	-13.910 -13.966 -14.020 -14.073	-14.178 -14.229 -14.280 -14.330	-14.428 -14.477 -14.524 -14.572
e temperat	1700	-10.609 -11.111 -11.433 -11.671	-11.863 -12.024 -12.163 -12.288 -12.400	-12.504 -12.601 -12.691 -12.777 -12.859	-12,938 -13,013 -13,086 -13,157 -13,226	-13.292 -13.358 -13.421 -13.484	-13.604 -13.663 -13.721 -13.778	-13.888 -13.942 -13.995 -14.048	-14.150 -14.200 -14.250 -14.399	-14.395 -14.442 -14.489 -14.535
i exospherie	1750	-10.609 -11.111 -11.433 -11.673	-11.864 -12.325 -12.164 -12.289 -12.401	-12.504 -12.600 -12.690 -12.775	-12.934 -13.009 -13.080 -13.15C	-13.283 -13.47 -13.419 -13.471	-13.59C -13.647 -13.704 -13.759 -13.814	-13.868 -13.921 -13.973 -14.024 -14.075	-14.125 -14.222 -14.270 -14.318	-14.365 -14.411 -14.457 -14.502
of height and	1830	-10.609 -11.111 -11.434 -11.674	-11.965 -12.026 -12.166 -12.290 -12.402	-12.504 -12.600 -12.689 -12.774 -12.854	-12,933 -13,034 -13,075 -13,144 -13,210	-13.275 -13.338 -13.400 -13.460	-13.576 -13.688 -13.743 -13.743	-13.849 -13.901 -13.952 -14.002	-14.131 -14.149 -14.244 -14.290	-14.336 -14.426 -14.471 -14.471
function of	1850	-10.609 -11.111 -11.435 -11.675	-11.866 -12.027 -12.167 -12.291 -12.402	-12,505 -12,599 -12,688 -12,772 -12,852	-12.927 -13.000 -13.070 -13.138	-13.268 -13.330 -13.449 -13.507	-13.564 -13.620 -13.674 -13.788	-13.883 -13.883 -13.933 -13.982 -14.031	-14.079 -14.126 -14.173 -14.219	-14.310 -14.354 -14.398 -14.442
-Densities as a f	1900	-10.609 -11.112 -11.435 -11.675	-11.868 -12.029 -12.168 -12.291	-12.505 -12.599 -12.688 -12.771	-12.925 -12.997 -13.066 -13.133	-13.261 -13.322 -13.382 -13.440 -13.497	-13.553 -13.607 -13.661 -13.713	-13.816 -13.866 -13.915 -13.964 -14.011	-14.059 -14.105 -14.151 -14.196 -14.241	-14.285 -14.329 -14.372 -14.414
ાં	1950	-10.609 -11.112 -11.436 -11.676	-11.869 -12.030 -12.169 -12.292 -12.403	-12.595 -12.599 -12.687 -12.769	-12.922 -12.993 -13.062 -13.128	-13.254 -13.315 -13.373 -13.431	-13.542 -13.596 -13.648 -13.700	-13.801 -13.850 -13.898 -13.946 -13.993	-14.039 -14.085 -14.130 -14.174 -14.218	-14.261 -14.304 -14.347 -14.389
TABLE	2000	-10.609 -11.112 -11.436 -11.677	-11.873 -12.031 -12.170 -12.293 -12.404	-12.505 -12.599 -12.686 -12.768	-12,919 -12,990 -13,058 -13,123	-13.248 -13.308 -13.422 -13.477	-13.531 -13.584 -13.686 -13.687 -13.737	-13.786 -13.835 -13.882 -13.929	-14.021 -14.065 -14.110 -14.153	-14.239 -14.281 -14.323 -14.364
	2050	-10.609 -11.112 -11.437 -11.678	-11.870 -12.031 -12.170 -12.293 -12.404	-12.505 -12.598 -12.685 -12.766	-12.917 -12.987 -13.054 -13.119 -13.181	-13.242 -13.301 -13.358 -13.414 -13.468	-13.521 -13.625 -13.625 -13.675 -13.724	-13.820 -13.867 -13.867 -13.913	-14.003 -14.047 -14.090 -14.133	-14.218 -14.259 -14.300 -14.340
	2100	-10.609 -11.113 -11.438 -11.679	-11.871 -12.032 -12.171 -12.293 -12.404	-12.504 -12.597 -12.683 -12.764 -12.841	-12.913 -12.983 -13.049 -13.114 -13.175	-13.235 -13.293 -13.353 -13.405 -13.450	-13.511 -13.563 -13.613 -13.662 -13.711	-13.759 -13.805 -13.851 -13.997 -13.941	-13.985 -14.029 -14.072 -14.114 -14.116	-14.197 -14.237 -14.278 -14.317
	E/Z		160 170 180 190 200	210 220 230 240 250	260 270 280 290 300	310 330 330 340 350	360 370 380 390 400	410 420 430 440 450	460 480 490 500	510 520 530 540 550

1			STATIC D	IFFUSION	MODELS	OF THE	UPPER A	IMOSPILE.	T.E.	4
	1400	-14.913 -14.965 -15.016 -15.067 -15.18	-15.168 -15.218 -15.267 -15.316 -15.364	-15.412 -15.460 -15.508 -15.555 -15.601	-15.648 -15.693 -15.739 -15.784	-15.873 -15.917 -15.961 -16.004 -16.046	-16.089 -16.130 -16.172 -16.213	-16.293 -16.332 -16.371 -16.409 -16.446	-16.483 -16.520 -16.556 -16.591 -16.625	-16.659 -16.693 -16.725 -16.757 -16.788
	1450	-14.854 -14.905 -14.955 -15.004 -15.054	-15.102 -15.151 -15.199 -15.246	-15.340 -15.387 -15.433 -15.479 -15.524	-15.570 -15.614 -15.659 -15.703	-15.790 -15.833 -15.875 -15.918 -15.960	-16.301 -16.0842 -16.083 -16.123	-16.202 -16.241 -16.279 -16.317	-16.392 -16.428 -16.464 -16.499 -16.534	-16.568 -16.602 -16.635 -16.667 -16.699
tinued	1500	-14.901 -14.850 -14.899 -14.947	-15.042 -15.089 -15.136 -15.183 -15.229	-15.274 -15.323 -15.365 -15.409 -15.454	-15.498 -15.541 -15.585 -15.628	-15.713 -15.755 -15.796 -15.838	-15.919 -15.960 -16.000 -16.039 -16.078	-16.117 -16.155 -16.193 -16.231 -16.268	-16.305 -16.341 -16.376 -16.412 -16.447	-16.481 -16.515 -16.548 -16.581 -16.513
g/cm²)—Continued	1550	-14.751 -14.799 -14.847 -14.894	-14.987 -15.33 -15.079 -15.124 -15.169	-15.213 -15.351 -15.345 -15.388	-15.431 -15.474 -15.516 -15.558 -15.600	-15.641 -15.682 -15.723 -15.763	-15.843 -15.983 -15.922 -15.961	-16.337 -16.375 -16.112 -16.149	-16.222 -16.258 -16.294 -16.329 -16.363	-16.397 -16.431 -16.464 -16.497 -16.529
rrithms, g/	1600	-14.706 -14.753 -14.800 -14.846	-14.936 -14.981 -15.026 -15.010	-15.157 -15.200 -15.243 -15.286 -15.328	-15.411 -15.411 -15.494 -15.534	-15.575 -15.615 -15.655 -15.694 -15.734	-15.772 -15.811 -15.849 -15.887 -15.925	-15.963 -16.000 -16.073 -16.109	-16.145 -16.180 -16.215 -16.259 -16.284	-16.318 -16.385 -16.417 -16.449
a function of height and exospheric temperature (decimal logarithms,	1650	-14.665 -14.711 -14.756 -14.801	-14.890 -14.934 -14.977 -15.020 -15.063	-15.105 -15.147 -15.231 -15.272	-15,313 -15,353 -15,394 -15,434 -15,474	-15.513 -15.552 -15.591 -15.68	-15.706 -15.744 -15.782 -15.819 -15.856	-15.893 -15.929 -15.965 -16.031	-16.372 -16.107 -16.141 -16.175 -16.209	-16.243 -16.276 -16.309 -16.341 -16.373
erature (d	1730	-14.626 -14.671 -14.716 -14.803	-14.846 -14.889 -14.932 -14.974 -15.016	-15.057 -15.098 -15.139 -15.180	-15.263 -15.300 -15.339 -15.378	-15.456 -15.494 -15.532 -15.570	-15.645 -15.682 -15.719 -15.755	-15.827 -15.863 -15.898 -15.93	-16.003 -16.037 -16.071 -16.105	-16.171 -16.204 -16.237 -16.269 -16.301
herie temp	1759	-14.591 -14.635 -14.678 -14.721	-14.806 -14.848 -14.890 -14.931	-15.312 -15.353 -15.393 -15.132	-15.211 -15.250 -15.288 -15.326 -15.364	-15.402 -15.440 -15.477 -15.514	-15.587 -15.623 -15.659 -15.695	-15.766 -15.801 -15.835 -15.304	-15.938 -15.972 -16.305 -16.939 -16.071	-16.104 -16.168 -16.200 -16.231
and exosp	1830	-14.558 -14.631 -14.684 -14.686	-14.769 -14.810 -14.851 -14.891	-15.010 -15.049 -15.088 -15.126	-15.263 -15.243 -15.278 -15.278	-15,352 -15,425 -15,461 -15,497	-15.533 -15.664 -15.664 -15.639	-15.709 -15.742 -15.776 -15.810	-15.877 -15.910 -15.943 -15.976	-16.040 -16.072 -16.103 -16.135
1 of height	1850	-14.527 -14.569 -14.611 -14.652	-14.734 -14.774 -14.814 -14.853	-14.932 -14.970 -15.308 -15.384	-15.122 -15.159 -15.232 -15.269	-15.305 -15.341 -15.376 -15.412	-15.482 -15.517 -15.551 -15.586	-15.653 -15.687 -15.720 -15.754	-15.819 -15.852 -15.884 -15.916	-15.979 -16.011 -16.042 -16.073
s a function	1996	-14.498 -14.543 -14.621 -14.661	-14.761 -14.740 -14.779 -14.818	-14.895 -14.932 -15.007 -15.044	-15.081 -15.117 -15.153 -15.225	-15.260 -15.295 -15.330 -15.400	-15.434 -15.468 -15.502 -15.535	-15.632 -15.688 -15.668 -15.732	-15.764 -15.796 -15.828 -15.860	-15.922 -15.953 -15.983 -16.013
Table 2.—Densities as	1950	-14.471 -14.511 -14.552 -14.591	-14.673 -14.708 -14.747 -14.785	-14.867 -14.934 -14.973 -15.006	-15.042 -15.078 -15.113 -15.148	-15.219 -15.253 -15.287 -15.321	-15.388 -15.422 -15.455 -15.488	-15.553 -15.585 -15.617 -15.649 -15.681	-15.712 -15.744 -15.775 -15.836	-15.867 -15.927 -15.957 -15.987
TABLE 2.—	2000	-14.445 -14.485 -14.524 -14.563	-14.640 -14.678 -14.716 -14.793	-14.863 -14.863 -14.935 -14.973	-15.335 -15.343 -15.375 -15.113	-15.212 -15.245 -15.245 -15.279	-15.345 -15.377 -15.410 -15.442 -15.474	-15.506 -15.538 -15.569 -15.601 -15.632	-15.663 -15.693 -15.724 -15.754 -15.784	-15.814 -15.844 -15.874 -15.903
	2050	-14.420 -14.459 -14.498 -14.536	-14.612 -14.649 -14.686 -14.722	-14.795 -14.83) -14.866 -14.931	-14.97) -15.035 -15.039 -15.372	-15.139 -15.173 -15.206 -15.238	-15.333 -15.335 -15.367 -15.399 -15.430	-15.462 -15.493 -15.524 -15.554 -15.585	-15.615 -15.645 -15.675 -15.705	-15.764 -15.793 -15.922 -15.851 -15.883
	2130	-14.396 -14.434 -14.472 -14.510	-14.584 -14.621 -14.657 -14.693	-14.764 -14.834 -14.868 -14.902	-14.936 -14.973 -15.034 -15.037	-15.103 -15.135 -15.167 -15.200	-15.263 -15.295 -15.326 -15.357 -15.388	-15.419 -15.449 -15.480 -15.510	-15.570 -15.599 -15.629 -15.658	-15.716 -15.745 -15.773 -15.802 -15.830
	T.	540 540 590 590	610 620 630 640 650	660 670 680 690 700	710 720 730 740 750	750 770 780 790 800	810 820 830 840 850	860 873 880 890 900	910 920 930 940 950	960 970 980 990 1000

	9 20	-11.0	-11.9 -12.3 -12.5 -12.5	-12.9 -13.1 -13.2 -13.5	-13.7 -13.8 -14.0 -14.1	-14.5 -14.5 -14.6 -14.7	-14.9 -15.1 -15.2 -15.3	-15.5 -15.7 -15.7 -15.9	-16.0 -16.1 -16.2 -16.3	-16.4 -16.5 -16.5 -16.7
	7.90	-10.609 -11.943 -11.382 -11.666	-11.914 -12.138 -12.344 -12.536	-12.887 -13.049 -13.204 -13.352 -13.495	-13.533 -13.766 -13.895 -14.021 -14.143	-14.262 -14.379 -14.494 -14.506 -14.717	-14.826 -14.934 -15.040 -15.145 -15.248	-15.350 -15.451 -15.551 -15.649 -15.745	-15.940 -15.933 -16.024 -16.113 -16.199	-16.283 -16.364 -16.443 -16.518 -16.590
tinued	750	-10.609 -11.050 -11.385 -11.662	-11.902 -12.116 -12.313 -12.495 -12.667	-12.829 -12.984 -13.131 -13.273	-13.542 -13.669 -13.793 -13.913	-14.143 -14.255 -14.364 -14.471 -14.577	-14.681 -14.783 -14.984 -14.983	-15.275 -15.275 -15.369 -15.463 -15.556	-15.647 -15.737 -15.825 -15.912 -15.997	-16.081 -16.163 -16.242 -16.320 -16.399
a function of height and exospheric temperature (decimal logarithms, g/cm¹)—Continued	800	-10.609 -11.057 -11.389 -11.659	-11.891 -12.397 -12.285 -12.463 -12.623	-12.778 -12.926 -13.067 -13.203 -13.334	-13.460 -13.582 -13.701 -13.816	-14.038 -14.145 -14.249 -14.352 -14.453	-14.552 -14.649 -14.745 -14.843 -14.934	-15.027 -15.118 -15.209 -15.298	-15.474 -15.563 -15.645 -15.729 -15.812	-15.894 -15.974 -16.352 -16.133
rithms, g/	850	-10.609 -11.064 -11.393 -11.657	-11.882 -12.091 -12.261 -12.429 -12.585	-12.734 -12.875 -13.011 -13.141	-13.388 -13.505 -13.619 -13.730	-13.943 -14.046 -14.147 -14.245 -14.342	-14.437 -14.530 -14.623 -14.713	-14.891 -14.979 -15.065 -15.151	-15.319 -15.402 -15.493 -15.564	-15.723 -15.801 -15.877 -15.953 -16.027
lecimal log	900	-10.609 -11.970 -11.397 -11.656	-11.874 -12.367 -12.241 -12.492 -12.552	-12.695 -12.931 -12.961 -13.286	-13.323 -13.436 -13.546 -13.653	-13.859 -13.958 -14.055 -14.150 -14.243	-14.334 -14.424 -14.513 -14.630	-14.771 -14.855 -14.937 -15.319	-15.180 -15.263 -15.338 -15.416 -15.493	-15.569 -15.644 -15.718 -15.791 -15.864
erature (d	950	-10.609 -11.076 -11.431 -11.655	-11.868 -12.055 -12.224 -12.379	-12,661 -12,792 -12,917 -13,037 -13,153	-13.266 -13.375 -13.481 -13.584 -13.685	-13.783 -13.879 -13.972 -14.064 -14.154	-14.242 -14.329 -14.414 -14.498	-14.663 -14.743 -14.823 -14.902	-15.056 -15.133 -15.208 -15.283	-15.502 -15.502 -15.574 -15.645 -15.715
sheric temp	1000	-10.609 -11.082 -11.404 -11.655	-11.864 -12.045 -12.209 -12.359	-12.632 -12.758 -12.878 -12.995	~13.215 -13.321 -13.423 -13.523 ~13.620	-13.715 -13.808 -13.899 -13.987 -14.074	-14.160 -14.243 -14.326 -14.467	-14.566 -14.643 -14.720 -14.796	-14.945 -15.018 -15.091 -15.163	-15.304 -15.374 -15.443 -15.511 -15.579
t and exosp	1050	-10.609 -11.086 -11.408 -11.655	-11.860 -12.038 -12.197 -12.343	-12.6C7 -12.729 -12.845 -12.957 -13.066	-13.171 -13.273 -13.372 -13.469 -13.563	-13.655 -13.744 -13.832 -13.918 -14.003	-14.085 -14.167 -14.246 -14.325 -14.402	-14.478 -14.553 -14.627 -14.701	-14.844 -14.915 -14.985 -15.054 -15.123	-15.258 -15.358 -15.391 -15.456
on of heigh	1100	-10.609 -11.091 -11.411 -11.656	-11.857 -12.032 -12.187 -12.329 -12.461	-12.586 -12.704 -12.817 -12.925 -13.030	-13.132 -13.231 -13.327 -13.420	-13.601 -13.773 -13.856 -13.938	-14.019 -14.097 -14.175 -14.251	-14.399 -14.472 -14.615 -14.615	-14.754 -14.822 -14.890 -14.957 -15.023	-15.089 -15.154 -15.218 -15.282 -15.345
as a functio	1150	-10.609 -11.095 -11.414 -11.657	-11.856 -12.027 -12.179 -12.318	-12.568 -12.682 -12.792 -12.897	-13.098 -13.194 -13.287 -13.378 -13.466	-13.553 -13.637 -13.720 -13.801 -13.881	-13.958 -14.035 -14.110 -14.257	-14.328 -14.399 -14.469 -14.537	-14.672 -14.738 -14.804 -14.869	-14.996 -15.059 -15.121 -15.183
Table 2.—Densities as	1200	-19.609 -11.098 -11.417 -11.658	-11,854 -12,023 -12,173 -12,309 -12,435	-12.553 -12.664 -12.771 -12.874 -12.973	-13.068 -13.252 -13.340 -13.426	-13.510 -13.592 -13.673 -13.752	-13,905 -13,979 -14,052 -14,124	-14.264 -14.400 -14.467 -14.533	-14.598 -14.662 -14.726 -14.789	-14.912 -14.973 -15.033 -15.093
TABLE 2	1250	-10.609 -11.101 -11.419 -11.659	-11.854 -12.021 -12.168 -12.302 -12.425	-12.543 -12.659 -12.754 -12.854 -12.959	-13.043 -13.134 -13.221 -13.307 -13.391	-13.473 -13.553 -13.631 -13.708	-13.856 -13.929 -14.000 -14.070	-14.206 -14.273 -14.339 -14.404	-14.531 -14.593 -14.655 -14.716	-14.836 -14.895 -14.953 -15.011
	1390	-10.639 -11.103 -11.422 -11.663	-11.854 -12.019 -12.165 -12.296 -12.417	-12.531 -12.637 -12.739 -12.837 -12.931	-13.021 -13.110 -13.195 -13.279	-13.440 -13.518 -13.594 -13.668	-13.813 -13.884 -13.953 -14.021	-14.154 -14.219 -14.283 -14.346 -14.409	-14.470 -14.531 -14.650 -14.650	-14.767 -14.824 -14.881 -14.937 -14.993
	1350	-10.609 -11.105 -11.424 -11.662	-11.855 -12.318 -12.162 -12.292 -12.412	-12.523 -12.628 -12.727 -12.823 -12.914	-13.003 -13.089 -13.173 -13.254 -13.333	-13.411 -13.487 -13.561 -13.634 -13.705	-13.775 -13.844 -13.911 -13.978 -14.043	-14.197 -14.233 -14.295 -14.355	-14.415 -14.474 -14.533 -14.593	-14.704 -14.760 -14.815 -14.873
	T/Z	120 130 140 150	160 170 180 190 200	210 220 230 230 240 250	260 270 280 290 300	310 320 330 340 350	360 370 380 390 400	410 420 430 440 450	460 470 480 490 500	510 520 530 540 550

imal exospheric and ct as ABLE 2,-Densitie

-17.083 -17.123 -17.160 -17.195 -17.259 -17.289 -17.318 -17.345 -17.345 -17.396 -17.421 -17.445 -17.468 -17.534 -17.553 -17.555 -17.576 -17.617 -17.637 -17.656 -17.675 -17.713 -17.732 -17.750 -17.768 -17.803 -17.820 -17.837 -17.854 -17.870 905 902 918 934 949 -17.701 -17.721 -17.721 -17.741 -17.167 -17.203 -17.237 -17.269 -17.300 -17.329 -17.357 -17.385 -17.411 -17.461 -17.485 -17.508 -17.531 -16.659 -16.724 -16.786 -16.845 -16.900 -16.951 -17.900 -17.046 -17.089 -17.576 -17.597 -17.619 -17.640 -17,780 -17,799 -17,818 -17,837 -17.503 -17.525 -17.548 -17.570 -17.613 --17.634 --17.655 --17.675 --16.467 -16.538 -16.605 -16.669 -16.845 -16.898 -16.948 -16.995 -17.040 -17.082 -17.122 -17.160 -17.196 -17.405 -17.405 -17.430 -17.455 -17.110 -17.147 -17.183 -17.216 -17.415 -17.440 -17.463 -17.487 -17.531 -17.553 -17.574 -17.595 -17.616 -16.616 -16.676 -16.734 -16.790 -16.893 -16.941 -16.987 -17.030 -17.279 -17.308 -17.337 -17.364 -17.399 -17.636 -17.656 -17.676 -17.695 -17.715 800 -16.736 -16.788 -16.839 -16.887 -16.977 -17.019 -17.059 -17.097 -17.167 -17.200 -17.232 -17.262 -17.319 -17.346 -17.371 -17.396 -17.420 -17.444 -17.467 -17.489 -17.510 -17.552 -17.573 -17.593 -17.613 -16.100 -16.172 -16.242 -16.310 -16.377 -16.441 -16.504 -16.565 -16.624 -16.681 -17.651 -17.670 -17.689 -17.707 -17.352 -17.409 -17.423 -17.445 -16.576 -16.632 -16.685 -16.737 -16.737 -16.834 -16.880 -16.924 -16.967 -17.907 -17.046 -17.083 -17.118 -17.152 -17.184 -17.215 -17.244 -17.273 -17.303 -17.467 -17.488 -17.509 -17.529 -17.569 -17.588 -17.607 -17.625 15.935 16.005 16.074 16.142 16.209 -16.274 -16.337 -16.403 -16.460 -16.420 -16.477 -16.532 -16.586 -16.638 -16.916 -16.957 -16.996 -17.033 -17.103 -17.136 -17.167 -17.198 -17.255 -17.282 -17.307 -17.332 -17.380 -17.402 -17.424 -17.446 -15.784 -15.852 -15.920 -15.986 16.116 16.179 16.241 16.302 16.362 -16.689 -16.738 -16.785 -16.830 -17.487 -17.506 -17.526 -17.545 77777 15.970 -16.032 -16.093 -16.154 -16.213 -17.152 -17.210 -17.237 -17.237 -15.646 -15.712 -15.778 -15.843 -16.271 -16.328 -16.384 -16.439 -16.492 -16.544 -16.595 -16.644 -16.692 -16.783 -16.827 -16.929 -16.949 -16.949 -17.021 -17.021 -17.081 -17.289 -17.313 -17.337 -17.360 -17.382 -17.404 -17.425 -17.445 -17.465 -17.044 -17.076 -17.107 -17.137 -17.166 -17.221 -17.221 -17.246 -17.271 -16.131 -16.188 -16.244 -16.298 -16.398 -16.405 -16.456 -16.506 -16.506 -16.650 -16.695 -16.739 -16.782 -16.864 -16.902 -16.940 -16.976 -17.019 5.835 5.896 5.956 6.015 -15.712 -15.830 -15.888 -16.001 -16.057 -16.112 -16.116 -16.373 -16.374 -16.374 -16.424 -16.520 -16.566 -16.612 -16.656 -16.741 -16.781 -16.821 -16.859 -16.896 -16.932 -16.967 -17.001 -17.033 -17.094 -17.123 -17.152 -17.179 -17.205 -17.230 -17.255 -17.278 -17.301 1100 -16.620 -16.662 -16.703 -16.742 -16.781 -16.819 -16.856 -16.891 -16.926 -16.959 -16.992 -17.023 -17.053 -17.083 -15.657 -15.714 -15.770 -15.876 -15.881 -15.936 -15.990 -16.043 -16.441 -16.441 -16.487 -16.532 -17.138 -17.165 -17.190 -17.215 -15.305 -15.424 -15.483 -15.542 -16.147 -16.198 -16.249 -16.298 -16.347 -15.497 -15.668 -15.663 -15.663 -15.824 -15.877 -15.877 -15.929 -15.980 -16.031 -16.081 -16.131 -16.180 -16.228 -16.276 -16.323 -16.369 -16.414 -16.458 -16.502 -16.545 -16.587 -16.627 -16.706 -16.745 -16.782 -16.818 -16.853 -16.887 -16.920 -16.952 -16.984 -17.014 -15.403 -15.457 -15.511 -15.564 -15.617 -15.669 -15.721 -15.772 -15.823 -15.874 -15.923 -15.973 -16.021 -16.070 -16.211 -16.256 -16.331 -16.346 -16.389 -16.432 -16.475 -16.516 -16.596 -16.635 -16.673 -16.711 -16.783 -16.817 -16.851 -16.884 -16.916 -16.947 -16.977 -17.006 -17.035 15.824 15.972 15.920 15.967 16.060 16.106 16.195 16.195 -16.680 -16.715 -16.784 -16.817 6.283 6.326 6.368 6.499 6.450 -16.490 -16.530 -16.568 -16.606 5.318 5.370 5.422 5.474 5.525 5.576 5.627 5.677 5.726 850 881 912 942 5.148 5.103 5.157 5.211 5.265 1330 1166. 77777 77777 -15.963 -16.038 -16.052 -16.096 -16.140 -16.225 -16.267 -16.308 -16.349 -16.389 -16.428 -16.567 -16.505 -16.580 -16.616 -16.651 -16.686 -16.720 -16.753 -16.786 -16.818 -16.849 -16.879 -14.978 -15.031 -15.084 -15.136 -15.239 -15.290 -15.341 -15.391 -15.491 -15.543 -15.588 -15.637 -15.732 -15.779 -15.826 -15.872 810 830 830 840 850 850 860 990 91.0 92.0 93.0 94.0 560 580 580 590 620 630 630 650 9240 560 670 690 700

