

1-(2).

1 -(\angle).						
correlation	n analysis					
	ID	Stay	Age	InfctRsk	Culture	Xray \
ID	1.000000	-0.022387	0.037258	-0.211316	-0.267415	-0.166020
Stay	-0.022387	1.000000	0.188914	0.533444	0.326684	0.382482
Age	0.037258	0.188914	1.000000	0.001093	-0.225847	-0.018855
InfctRsk	-0.211316	0.533444	0.001093	1.000000	0.559159	0.453392
Culture	-0.267415	0.326684	-0.225847	0.559159	1.000000	0.424962
Xray	-0.166020	0.382482	-0.018855	0.453392	0.424962	1.000000
Beds	-0.035653	0.409265	-0.058823	0.359770	0.139725	0.045820
MedSchool	0.006071	-0.296951	0.145126	-0.233030	-0.242744	-0.086697
Region	0.101505	-0.492130	-0.020432	-0.192281	-0.308278	-0.296344
Census	-0.027056	0.473885	-0.054775	0.381411	0.142948	0.062914
Nurses	-0.133531	0.340367	-0.082945	0.393981	0.198900	0.077381
Facilities	-0.097857	0.355538	-0.040451	0.412601	0.185131	0.111928
	Beds	MedSchool	Region	Census	Nurses	Facilities
ID	-0.035653	0.006071	0.101505	-0.027056	-0.133531	-0.097857
Stay	0.409265	-0.296951	-0.492130	0.473885	0.340367	0.355538
Age	-0.058823	0.145126	-0.020432	-0.054775	-0.082945	-0.040451
InfctRsk	0.359770	-0.233030	0 -0.192281	0.381411	0.393981	0.412601
Culture	0.139725	-0.242744	-0.308278	0.142948	0.198900	0.185131
Xray	0.045820	-0.086697	7 -0.296344	0.062914	0.077381	0.111928
Beds	1.000000	-0.591180	0 -0.105627	0.980998	0.915504	0.794524
MedSchool	-0.591180	1.000000	0.102668	-0.614757	-0.588240	-0.524390
Region	-0.105627	0.102668	1.000000	-0.152744	-0.112681	-0.211532
Census	0.980998	-0.614757	7 -0.152744	1.000000	0.907897	0.778063
Nurses	0.915504	-0.588240	-0.112681	0.907897	1.000000	0.783505
Facilities	0.794524	-0.524390	0 -0.211532	0.778063	0.783505	1.000000

1-(3)-1.

ID	0
Stay	0
Age	0
InfctRsk	0
Culture	0
Xray	0
Beds	0
MedSchool	0
Region	0
Census	0
Nurses	0
Facilities	0
dtype: int64	

1-(3)-2.

결측치가 없으므로 전처리가 필요 없다.

1-(3)-4.

1-(3)-4.						
========	coef	std err	======= t	P> t	[0.025	0.975]
Intercept	-3.0366	1.447	-2.098	0.038	-5.908	-0.166
ID	-0.0020	0.003	-0.697	0.488	-0.008	0.004
Stay	0.2453	0.071	3.456	0.001	0.104	0.386
Age	0.0095	0.022	0.441	0.660	-0.033	0.052
Culture	0.0520	0.011	4.818	0.000	0.031	0.073
Xray	0.0124	0.005	2.333	0.022	0.002	0.023
Beds	-0.0031	0.003	-1.162	0.248	-0.008	0.002
MedSchool	0.5428	0.322	1.687	0.095	-0.096	1.181
Region	0.3006	0.105	2.867	0.005	0.093	0.509
Census	0.0029	0.003	0.848	0.398	-0.004	0.010
	0.0018	0.002	1.056	0.294	-0.002	0.005
Nurses Facilities	0.0018 0.0230 =======	0.002 0.010 ======	2.290 =======	0.294 0.024 =======	0.002 0.003	0.003

1-(3)-5.

mae: 0.5930129350985645
mse: 0.5605675300605998
rmse: 0.7487105783015222
r2: 0.5998431660026755

1-(3)-6.

1-(3)-7.

mae, mse, rmse, r-square의 점수를 바탕으로 살펴본 결과 기대치는 준수한 편이라고 할 수 있다. mse, rmse 스코어를 보았을 때, 이상치가 꽤나 존재한다는 점을 알 수 있고, r-square 점수를 보았을 때, 전반적으로 성능이 썩 좋다고 볼수 없다는 것을 알수 있다.

1-(4)-1.

========	=======	=======	========		========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-2.6944	1.067	-2.526	0.013	-4.809	-0.580
Stay	0.2601	0.058	4.513	0.000	0.146	0.374
Culture	0.0528	0.010	5.376	0.000	0.033	0.072
Xray	0.0126	0.005	2.435	0.017	0.002	0.023
MedSchool	0.4631	0.291	1.589	0.115	-0.115	1.041
Region	0.2904	0.101	2.871	0.005	0.090	0.491
Facilities	0.0262	0.007	3.781	0.000	0.012	0.040
========	========	========	=========			=======

1-(4)-2.

mae: 0.5691602303972083 mse: 0.5376815255396669 rmse: 0.7332677038706034 r2: 0.6161801648847816

1-(4)-3.

1-(4)-4.

mae, mse, rmse, r-square의 점수를 바탕으로 살펴본 결과 기대치는 준수한 편이라고 할 수 있다. mse, rmse 스코어를 보았을 때, 이상치가 꽤나 존재한다는 점을 알 수 있고, r-square 점수를 보았을 때, 1-(3)번과 비교하여 전반적으로 약간 나아진 성능을 보이지만, 눈에 띄게 좋아졌다고 보기는 어렵다.

1-(5).

회귀계수가 0.01 이하인 변수를 제외하고 학습을 수행하였는데, 회귀계수가 0.1 이상인 변수가 존재하기 때문에 변수 제외 회귀계수의 기준치를 조금 더 높인 후에 학습을 진행하면 조금 더 좋은 결과가 나올 것으로 보인다.

2-1.

2-2.

결측치가 없으므로 전처리가 필요 없다.

2-3.

```
[[0.65461268 1.15634789]]
[-68.84155381]
```

2-4.

0.9411764705882353

2-6.

[[18 0] [2 14]]

정확도: 0.9412, 정밀도: 0.9000, 재현율: 1.0000, F1:0.9474 ROC AUC 값: 1.0000

2-7.

각각의 독립변수에 대한 절편의 값이 상당히 높고, 독립변수의 갯수가 상대적으로 적고, 체형과 성별의 상관관계가 눈에 띄게 크기 때문에 아주 높은 성능과 정확도를 보여주고있다.

3-1.

mpg	0
cylinders	0
displacement	0
horsepower	6
weight	0
acceleration	0
model_year	0
origin	0
name	0
dtype: int64	

3-2.

결측치가 존재하므로 전처리 수행

3-5.

0.80

3-6, 3-7, 3-8.

```
best parameters: {'max_depth': 3, 'min_samples_split': 3}
best score: 0.7508547008547009
0.7721518987341772
best parameters: {'max_depth': 5, 'min_samples_split': 3}
best score: 0.7956654456654456
0.8227848101265823
best parameters: {'max_depth': 4, 'min_samples_split': 3}
best score: 0.7765262515262515
0.8481012658227848
best parameters: {'max_depth': 5, 'min_samples_split': 5}
best score: 0.7956959706959706
0.8227848101265823
best parameters: {'max_depth': 4, 'min_samples_split': 2}
best score: 0.7733821733821733
0.8481012658227848
```


중요도가 높은 상위 5개 피처는 displacement, horsepower, weight, acceleration, mpg이다.

3-10. (tree.dot 결과파일 첨부)

```
node [shape=box, style="filled", color="black", fontname="helvetica"] ;
edge [fontname="helvetica"];
0 [label="displacement <= 134.5\ngini = 0.558\nsamples = 313\nvalue = [54, 71, 188]\nclass = japan", fillcolor="#c29ff2"];
1 [label="mpg <= 30.95\ngini = 0.623\nsamples = 136\nvalue = [48, 64, 24]\nclass = europe", fillcolor="#dbfae8"];
  -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
2 [label="horsepower <= 87.0\ngini = 0.622\nsamples = 74\nvalue = [36, 24, 14]\nclass = usa", fillcolor="#f9elcf"];
3 [label="displacement <= 97.25\ngini = 0.578\nsamples = 38\nvalue = [21, 5, 12]\nclass = usa", fillcolor="#f6d3ba"];
4 [label="model year <= 74.5\nqini = 0.43\nsamples = 22\nvalue = [16, 4, 2]\nclass = usa", fillcolor="#eeab7b"];
5 [label="acceleration <= 15.0\ngini = 0.153\nsamples = 12\nvalue = [11, 0, 1]\nclass = usa", fillcolor="#e78c4b"];
6 [label="horsepower <= 75.5\ngini = 0.444\nsamples = 3\nvalue = [2, 0, 1]\nclass = usa", fillcolor="#f2c09c"];
7 [label="gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]\nclass = japan", fillcolor="#8139e5"];
8 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0, 0]\nclass = usa", fillcolor="#e58139"];
  [label="gini = 0.0\nsamples = 9\nvalue = [9, 0, 0]\nclass = usa", fillcolor="#e58139"];
10 [label="acceleration <= 15.65\ngini = 0.58\nsamples = 10\nvalue = [5, 4, 1]\nclass = usa", fillcolor="#fbeade"];
11 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0, 0]\nclass = usa", fillcolor="#e58139"];
10 -> 11
12 [label="displacement <= 93.5\ngini = 0.5\nsamples = 6\nvalue = [1, 4, 1]\nclass = europe", fillcolor="#88efb3"];
10 -> 12 ;
13 [label="acceleration <= 19.35\ngini = 0.5\nsamples = 2\nvalue = [1, 0, 1]\nclass = usa", fillcolor="#fffffff"];
14 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"];
15 [label="gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]\nclass = japan", fillcolor="#8139e5"];
16 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4, 0]\nclass = europe", fillcolor="#39e581"];
17 [label="weight <= 2429.5\ngini = 0.508\nsamples = 16\nvalue = [5, 1, 10]\nclass = japan", fillcolor="#c6a5f3"];
18 [label="weight <= 2219.5\ngini = 0.439\nsamples = 14\nvalue = [3, 1, 10]\nclass = japan", fillcolor="#af8lee"];
19 [label="displacement <= 99.5\ngini = 0.594\nsamples = 8\nvalue = [3, 1, 4]\nclass = japan", fillcolor="#e6d7fa"];
18 -> 19 ;
20 [label="horsepower <= 81.5\ngini = 0.5\nsamples = 6\nvalue = [1, 1, 4]\nclass = japan", fillcolor="#b388ef"];
19 -> 20 ;
21 [label="model_year <= 77.5\ngini = 0.32\nsamples = 5\nvalue = [0, 1, 4]\nclass = japan", fillcolor="#a06aec"];
20 -> 21 ;
22 [label="gini = 0.0\nsamples = 3\nvalue = [0, 0, 3]\nclass = japan", fillcolor="#8139e5"];
21 -> 22
23 [label="weight <= 2145.0\ngini = 0.5\nsamples = 2\nvalue = [0, 1, 1]\nclass = europe", fillcolor="#fffffff"];
24 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"];
25 [label="gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]\nclass = japan", fillcolor="#8139e5"];
26 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"];
27 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0, 0]\nclass = usa", fillcolor="#e58139"];
28 [label="gini = 0.0\nsamples = 6\nvalue = [0, 0, 6]\nclass = japan", fillcolor="#8139e5"];
29 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0, 0]\nclass = usa", fillcolor="#e58139"];
17 -> 29
30 [label="weight <= 2757.5\ngini = 0.545\nsamples = 36\nvalue = [15, 19, 2]\nclass = europe", fillcolor="#d9fae7"];
31 [label="model_year <= 81.0\ngini = 0.49\nsamples = 29\nvalue = [8, 19, 2]\nclass = europe", fillcolor="#97f1bd"];
30 -> 31 :
32 [label="displacement <= 97.5\ngini = 0.417\nsamples = 27\nvalue = [8, 19, 0]\nclass = europe", fillcolor="#8cf0b6"];
31 -> 32
33 [label="gini = 0.0\nsamples = 8\nvalue = [0, 8, 0]\nclass = europe", fillcolor="#39e581"];
32 -> 33
34 [label="model_year <= 73.5\ngini = 0.488\nsamples = 19\nvalue = [8, 11, 0]\nclass = europe", fillcolor="#c9f8dd"];
32 -> 34
35 [label="horsepower <= 93.0\ngini = 0.463\nsamples = 11\nvalue = [7, 4, 0]\nclass = usa", fillcolor="#f4c9aa"];
34
36 [label="gini = 0.0\nsamples = 4\nvalue = [4, 0, 0]\nclass = usa", fillcolor="#e58139"];
37 [label="horsepower <= 103.5\ngini = 0.49\nsamples = 7\nvalue = [3, 4, 0]\nclass = europe", fillcolor="#cef8e0"];
   -> 37 ;
38 [label="displacement <= 108.5\ngini = 0.32\nsamples = 5\nvalue = [1, 4, 0]\nclass = europe", fillcolor="#6aeca0"];
```

```
<u>-> 38 ;</u>
39 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"];
38 -> 39 ;
40 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4, 0]\nclass = europe", fillcolor="#39e581"];
38 -> 40 ;
41 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0, 0]\nclass = usa", fillcolor="#e58139"];
37 -> 41 :
42 [label="mpg <= 23.45\ngini = 0.219\nsamples = 8\nvalue = [1, 7, 0]\nclass = europe", fillcolor="#55e993"] ;
34 -> 42 ;
43 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"] ;
42 -> 43 ;
44 [label="gini = 0.0\nsamples = 7\nvalue = [0, 7, 0]\nclass = europe", fillcolor="#39e581"];
42 -> 44 :
45 [label="gini = 0.0\nsamples = 2\nvalue = [0, 0, 2]\nclass = japan", fillcolor="#8139e5"];
31 -> 45 ;
46 [label="gini = 0.0\nsamples = 7\nvalue = [7, 0, 0]\nclass = usa", fillcolor="#e58139"] ;
30 -> 46 :
47 [label="displacement <= 97.5\ngini = 0.52\nsamples = 62\nvalue = [12, 40, 10]\nclass = europe", fillcolor="#90f0b8"]
48 [label="acceleration <= 21.25\ngini = 0.361\nsamples = 38\nvalue = [9, 29, 0]\nclass = europe", fillcolor="#76eda8"] ;
47 -> 48 :
49 [label="horsepower <= 70.5\ngini = 0.284\nsamples = 35\nvalue = [6, 29, 0]\nclass = europe", fillcolor="#62ea9b"];
48 -> 49 ;
50 [label="weight <= 2120.0\ngini = 0.17\nsamples = 32\nvalue = [3, 29, 0]\nclass = europe", fillcolor="#4de88e"] ;
49 -> 50 ;
51 [label="displacement <= 80.0\ngini = 0.124\nsamples = 30\nvalue = [2, 28, 0]\nclass = europe", fillcolor="#47e78a"] ;
50 -> 51 ;
52 [label="acceleration <= 18.8\ngini = 0.408\nsamples = 7\nvalue = [2, 5, 0]\nclass = europe", fillcolor="#88efb3"];
51 -> 52 ;
53 [label="weight <= 1790.0\ngini = 0.444\nsamples = 3\nvalue = [2, 1, 0]\nclass = usa", fillcolor="#f2c09c"] ;
52 -> 53 ;
54 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"] ;
53 -> 54
53 -> 55 ;
56 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4, 0]\nclass = europe", fillcolor="#39e581"] ;
52 -> 56
57 [label="gini = 0.0\nsamples = 23\nvalue = [0, 23, 0]\nclass = europe", fillcolor="#39e581"];
51 -> 57
58 [label="mpg <= 35.55\ngini = 0.5\nsamples = 2\nvalue = [1, 1, 0]\nclass = usa", fillcolor="#fffffff"] ;
50 -> 58 ;
59 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"];
58 -> 59 ;
60 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"] ;
58 -> 60 ;
61 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0, 0]\nclass = usa", fillcolor="#e58139"];
49 -> 61 ;
62 [label="gini = 0.0\nsamples = 3\nvalue = [3, 0, 0]\nclass = usa", fillcolor="#e58139"];
63 [label="displacement <= 106.0\ngini = 0.601\nsamples = 24\nvalue = [3, 11, 10]\nclass = europe", fillcolor="#flfdf6"];
64 [label="acceleration <= 17.35\ngini = 0.34\nsamples = 10\nvalue = [1, 1, 8]\nclass = japan", fillcolor="#9d65eb"];
65 [label="acceleration <= 14.3\ngini = 0.198\nsamples = 9\nvalue = [1, 0, 8]\nclass = japan", fillcolor="#9152e8"];
66 [label="weight <= 2195.0\ngini = 0.5\nsamples = 2\nvalue = [1, 0, 1]\nclass = usa", fillcolor="#fffffff"];
65 -> 66 ;
67 [label="gini = 0.0\nsamples = 1\nvalue = [1, 0, 0]\nclass = usa", fillcolor="#e58139"];
68 [label="gini = 0.0\nsamples = 1\nvalue = [0, 0, 1]\nclass = japan", fillcolor="#8139e5"];
66 -> 68 ;
69 [label="gini = 0.0\nsamples = 7\nvalue = [0, 0, 7]\nclass = japan", fillcolor="#8139e5"];
65 -> 69 ;
70 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"];
64 -> 70 ;
71 [label="displacement <= 120.5\ngini = 0.449\nsamples = 14\nvalue = [2, 10, 2]\nclass = europe", fillcolor="#7beeab"];
72 [label="acceleration <= 17.75\ngini = 0.278\nsamples = 12\nvalue = [0, 10, 2]\nclass = europe", fillcolor="#61ea9a"];
71 -> 72 ;
73 [label="gini = 0.0\nsamples = 9\nvalue = [0, 9, 0]\nclass = europe", fillcolor="#39e581"];
72 -> 73 ;
74 [label="displacement <= 119.5\ngini = 0.444\nsamples = 3\nvalue = [0, 1, 2]\nclass = japan", fillcolor="#c09cf2"];
75 [label="gini = 0.0\nsamples = 2\nvalue = [0, 0, 2]\nclass = japan", fillcolor="#8139e5"];
74 -> 75 ;
76 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"];
77 [label="gini = 0.0\nsamples = 2\nvalue = [2, 0, 0]\nclass = usa", fillcolor="#e58139"];
71 -> 77 ;
78 [label="displacement <= 190.5\ngini = 0.139\nsamples = 177\nvalue = [6, 7, 164]\nclass = japan", fillcolor="#8b48e7"];
0 -> 78 [labeldistance=2.5, labelangle=-45, headlabel="False"];
79 [label="weight <= 3045.0\ngini = 0.491\nsamples = 40\nvalue = [6, 7, 27]\nclass = japan", fillcolor="#b387ef"];
80 [label="horsepower <= 115.5\ngini = 0.327\nsamples = 34\nvalue = [0, 7, 27]\nclass = japan", fillcolor="#a26cec"];
   -> 80 ;
   [label="mpg <= 19.5\ngini = 0.18\nsamples = 30\nvalue = [0, 3, 27]\nclass = japan", fillcolor="#8f4fe8"];
```

```
80 -> 81;
82 [label="gini = 0.0\nsamples = 1\nvalue = [0, 1, 0]\nclass = europe", fillcolor="#39e581"];
81 -> 82;
83 [label="horsepower <= 94.0\ngini = 0.128\nsamples = 29\nvalue = [0, 2, 27]\nclass = japan", fillcolor="#8a48e7"];
81 -> 83;
84 [label="gini = 0.0\nsamples = 21\nvalue = [0, 0, 21]\nclass = japan", fillcolor="#8139e5"];
83 -> 84;
85 [label="horsepower <= 101.0\ngini = 0.375\nsamples = 8\nvalue = [0, 2, 6]\nclass = japan", fillcolor="#ab7bee"];
83 -> 85;
86 [label="gini = 0.0\nsamples = 2\nvalue = [0, 2, 0]\nclass = europe", fillcolor="#39e581"];
85 -> 86;
87 [label="gini = 0.0\nsamples = 6\nvalue = [0, 0, 6]\nclass = japan", fillcolor="#8139e5"];
85 -> 87;
86 [label="gini = 0.0\nsamples = 4\nvalue = [0, 4, 0]\nclass = europe", fillcolor="#39e581"];
80 -> 88;
89 [label="gini = 0.0\nsamples = 6\nvalue = [6, 0, 0]\nclass = usa", fillcolor="#58139"];
79 -> 89;
90 [label="gini = 0.0\nsamples = 137\nvalue = [0, 0, 137]\nclass = japan", fillcolor="#8139e5"];
78 -> 90;
}
```

3-11.

차량의 생산지를 분류하는데 필요한 변수들은 3~5개가 적정한 것으로 보이고, 의사 결정 나무 모델의 정확도는 다소 높은 편이나, 만족스러운 유의수준 5%이내의 만족스러운 결과를 보여주지는 못하였다.

```
[[0. 0.7568534 0.76430274 0.81714342 0.76688518]
[0.88418752 0.92630115 0.95699245 0.99553039 1. ]]
```

5.

최소-최대 정규화와 Z-점수 정규화의 차이점은 값이 생성되는 범위다. 최소-최대 정규화는 특정 범위에 속하는 값을 생성하는 반면, Z-점수 정규화는 평균이 0이고 표준 편차가 1인 값을 생성한다. 또 다른 차이점은 이상치를 처리하는 방식이다. 최소-최대 정규화는 이상치가 값 범위를 왜곡할 수 있으므로 Z-점수 정규화만큼 이상치에 강하지 않다.

6.

	color_blue	color_red
0	0	1
1	1	0
2	1	0
	blue red	
0	0 1	
1	1 0	
2	1 0	
	color_blue	color_red
0	0	1
1	1	0
2	1	0
	color_blue	color_red
0	0	1
1	1	0
2	1	0

```
first_name 1
last_name 1
age 1
sex 1
preTestScore 2
postTestScore 2
dtype: int64
```

8.

```
entropy_outlook: 1.5774062828523454
entropy_temperature: 1.5566567074628228
entropy_humidity: 1.0
entropy_windy: 0.9852281360342515
entropy_feature: 0.9402859586706311
```