6.2 UAS Model and Control

The key feature of *Movement Automaton* is to interface the *UAS system* as the *discrete command chain*. Following topics are introduced in this section:

- 1. Movement Automaton Applications (sec. 6.2.1) the listing of related work and similar approaches to ours.
- 2. UAS Model (sec. 6.2.2) a simple plane model used in this work as the controlled plant.
- 3. UAS Movement Automaton (sec. 6.2.3) movement automaton for UAS Nonlinear Model constructed from scratch.

6.2.1 Movement Automaton Applications

Movement Automaton is a basic interface approach for discretization of trajectory evolution or control input for any continuous or discrete system model.

Main function of Movement Automaton is for system given by equation state = f(time, state, input) with initial state $state_0$ to generate reference trajectory state(t) or control $signal\ input(t)$.

Using Movement Automaton as Control Proxy will provide us with discrete command chain interface. This will reduce the non-deterministic element from Evasive trajectory generation, by reducing infinite maneuver set to finite movement set.

Non-determinism of Avoidance Maneuver has been discussed as an issue in following works:

- 1. Newton gradient method for evasive car maneuvers [1].
- 2. Non-holistic methods for trajectory generation [2].
- 3. Stochastic approach to elliptic trajectories generation [3].

Examples of Movement Automaton Implementation as Control Element can be mentioned as follows:

- 1. Control of traffic flow [4].
- 2. Complex air traffic collision situation resolution system [5, 6].
- 3. SAA/DAA capable avoidance system [7].

6.2.2 UAS Model

Motivation: Simplified rigid body kinematic model will be used. This model has decoupled roll, yaw and pitch angles. The focus is on *reach set approximation methods*; therefore the *UAS model* is simplified.

State Vector (eq. 6.1) defined as a positional state in euclidean position in right-hand euclidean space, where x, y, z can be abstracted as latitude, longitude, altitude.

$$state = [x, y, z, roll, pitch, yaw]^{T}$$
(6.1)

Input Vector (eq. 6.2) is defined as the linear velocity of UAS v and angular speed of rigid body $\omega_{roll}, \omega_{pitch}, \omega_{yaw}$.

$$input = [v, \omega_{roll}, \omega_{pitch}, \omega_{yaw}]^T$$
 (6.2)

Velocity vector function (eq. 6.3) is defined through the standard rotation matrix and linear velocity v, oriented velocity $[v_x, v_y, v_z]$ given by (eq. 6.4).

$$\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} v\cos(pitch)\cos(yaw) \\ v\cos(pitch)\sin(yaw) \\ -v\sin(pitch) \end{bmatrix}$$
(6.3)

UAS Nonlinear Model (eq. 6.4) is given by *first order equations:*

$$\frac{\mathrm{d}x}{\mathrm{d}time} = v \cos(pitch) \cos(yaw); \qquad \frac{\mathrm{d}roll}{\mathrm{d}time} = \omega_{roll};$$

$$\frac{\mathrm{d}y}{\mathrm{d}time} = v \cos(pitch) \sin(yaw); \qquad \frac{\mathrm{d}pitch}{\mathrm{d}time} = \omega_{pitch};$$

$$\frac{\mathrm{d}z}{\mathrm{d}time} = -v \sin(pitch); \qquad \frac{\mathrm{d}yaw}{\mathrm{d}time} = \omega_{yaw};$$
(6.4)

Discretization for fixed step k we start with discretization of the model:

The *linear velocity* in text step is given:

$$v(k+1) = v(k) + \delta v(k) \tag{6.5}$$

The roll, pitch, yaw for next step are given

$$roll(k+1) = roll(k) + \delta roll(k)$$

$$pitch(k+1) = pitch(k) + \delta pitch(k)$$

$$yaw(k+1) = yaw(k) + \delta yaw(k)$$
(6.6)

The $\delta v(k)$ is velocity change, $\delta roll(k)$, $\delta pitch(k)$, $\delta yaw(k)$, are orientation changes for current discrete step k. If the duration of transition is 0s (as. 1) then 3D trajectory evolution in discrete time is given as:

$$x(k+1) = x(k) + v(k+1)\cos(pitch(k+1))\cos(yaw(k+1)) = \delta x(k)$$

$$y(k+1) = y(k) + v(k+1)\cos(pitch(k+1))\sin(yaw(k+1)) = \delta y(k)$$

$$z(k+1) = z(k) - v(k+1)\sin(pitch(k+1)) = \delta z(k)$$

$$time(k+1) = time(k) + 1 = \delta time(k)$$
(6.7)

The $\delta x(k)$, $\delta y(k)$, $\delta z(k)$ are positional differences depending on *input vector* for given discrete time k:

$$input(k) = \begin{bmatrix} \delta x(k), \delta y(k), \delta z(k), \delta v(k), \\ \delta roll(k), \delta pitch(k), \delta yaw(k), \delta time(k) \end{bmatrix}^{T}$$

$$(6.8)$$

The state vector for discrete time is given:

$$state(k) = \begin{bmatrix} x(k), y(k), z(k), v(k), \\ roll(k), pitch(k), yaw(k), time(k) \end{bmatrix}^{T}$$

$$(6.9)$$

6.2.3 UAS Movement Automaton

Motivation: An *UAS Nonlinear Model* (eq. 6.4) can be modeled by *Movement Automaton* (def. ??).

Movement Primitives by (def. ??) are given as (eq. ??). Each movement primitive will last for fixed duration 1s.

Assumption 1. Let assume that transition time of roll, pitch, yaw, and the linear velocity is 0s.

Under the assumption (as. 1) the *movement transitions* (def. ??) have zero duration. Therefore movement primitives can be considered as movements.

Note. The assumption (as. 1) can be relaxed under the condition that path tracking controller exists.

Movements satisfying (def. ??), for the nonlinear model (eq. 6.4) reduced to *discrete model* (eq. 6.10), are given by *apply movements* function (eq. 6.5, 6.6, 6.7).

$$state(k+1) = applyMovement(state(k), input(k))$$
 (6.10)

Movement Set for the discrete model (eq. 6.10) is defined as a set of unitary movements on main axes (tab. 6.1) and diagonal axes (tab. 6.2).

The maneuvering capability of several commercial small fixed-wing UAS was abstracted together. The turning rate on horizontal/vertical is defined as 15°.

The deltas are posed in $UAS \ body$ -fixed coordinate frame (ap. ??) for discrete time k.

Parameter	Movement					
	Straight	Down	Up	Left	Right	
$\delta x(k)[m]$	1.00	0.98	0.98	0.98	0.98	
$\delta y(k)[m]$	0	0	0	0.13	-0.13	
$\delta z(k)[m]$	0	-0.13	0.13	0	0	
$\delta roll(k)[^{\circ}]$	0	0	0	0	0	
$\delta pitch(k)[^{\circ}]$	0	15°	-15°	0	0	
$\delta yaw(k)[^{\circ}]$	0	0	0	15°	-15°	

Table 6.1: Input values for main axes movements.

Parameter	Movement					
	Down-Left	Down-Right	Up-Left	Up-Right		
$\delta x(k)[m]$	0.76	0.76	0.76	0.76		
$\delta y(k)[m]$	-0.13	0.13	0.13	-0.13		
$\delta z(k)[m]$	-0.13	-0.13	0.13	0.13		
$\overline{\delta roll(k)[^{\circ}]}$	0	0	0	0		
$\delta pitch(k)[^{\circ}]$	-15°	-15°	15°	15°		
$\delta yaw(k)[^{\circ}]$	15°	-15°	15°	-15°		

Table 6.2: Input values for diagonal axes movements.

Note. The movement set in shortened form is given as:

$$MovementSet = \begin{cases} Straight, Left, Right, Up, Down, \\ DownLeft, DownRight, UpLeft, UpRight \end{cases}$$
 (6.11)

The *implemented movement set example* (fig. 6.1) shows the movement used as basic building blocs of the trajectory for fixed-wing UAS:

- 1. Initial position (red plane) the initial position, before any movement execution.
- 2. Straight movement application (blue plane) the neutral movement application brings plane forward.
- 3. Main axes movements (cyan planes) the application of movements from (tab. 6.1) $\{Up, Down, Left, Right\}$.
- 4. Diagonal axes movements (magenta planes) the application of movements from (tab. 6.2) $\{DownLeft, DownRight, UpLeft, UpRight\}$.

Figure 6.1: Implemented movement set example.

Trajectory by (def. ??) for initial time time = 0, initial state state(0) and Movement Buffer (from def. ??):

$$Buffer = \left\{ movement(j) : \begin{array}{l} movement(j) \in MovementSet(eq.6.11), \\ j \in 1 \dots n, n \in N^+ \end{array} \right\}$$
 (6.12)

Assumption 2. The buffer is always non-empty, ordered, finite list of movements.

Note. The buffer has finite count n of movements stored. The buffer is the planning instrument used by higher level navigation/avoidance algorithm to control UAS (Control/Command interface) (fig. ??).

The discrete trajectory (eq. 6.13) is ordered set of states bounded to discrete time $0 \dots n$, where n is movement count of Buffer. Trajectory set has n+1 members defined like the following:

$$Trajectory(state(0), Buffer) =$$

$$\begin{cases} state(0) = state(0), \\ state(1) = applyMovement (state(0), movement(1)), \\ state(2) = applyMovement (state(1), movement(2)), \\ \vdots = \vdots \\ state(n-1) = applyMovement (state(n-2), movement(n-1)), \\ state(n) = applyMovement (state(n-1), movement(n)) \end{cases}$$

$$(6.13)$$

The movement (k) vector is selected from movement tables (tab. 6.1, 6.2).

Note. Parameter movement(\cdot) (eq. 6.13) is a movement order index in buffer (eq. 6.12).

Bibliography

- [1] Ondřej Šantin and Vladimir Havlena. Combined partial conjugate gradient and gradient projection solver for mpc. In *Control Applications (CCA)*, 2011 IEEE International Conference on, pages 1270–1275. IEEE, 2011.
- [2] Frangois G Pin and Hubert A Vasseur. Autonomous trajectory generation for mobile robots with non-holonomic and steering angle constraints. Technical report, Oak Ridge National Lab., 1990.
- [3] Ralph G Andrzejak, G Widman, K Lehnertz, C Rieke, P David, and CE Elger. The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy. *Epilepsy research*, 44(2-3):129–140, 2001.
- [4] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and Jonathan P How. Real-time motion planning with applications to autonomous urban driving. *IEEE Transactions on Control Systems Technology*, 17(5):1105–1118, 2009.
- [5] Emilio Frazzoli. Robust hybrid control for autonomous vehicle motion planning. PhD thesis, Massachusetts Institute of Technology, 2001.
- [6] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Trajectory tracking control design for autonomous helicopters using a backstepping algorithm. In *American Control Conference*, 2000. Proceedings of the 2000, volume 6, pages 4102–4107. IEEE, 2000.
- [7] Alojz Gomola, João Borges de Sousa, Fernando Lobo Pereira, and Pavel Klang. Obstacle avoidance framework based on reach sets. In *Iberian Robotics conference*, pages 768–779. Springer, 2017.