

T-61.3040 Statistical Signal Modeling

Autumn 2011

Amaury Lendasse & Yoan Miche

Today's Topics (04.10)

- Power spectrum
- Filtering random processes
- Spectral factorization
- Power spectrum and generation of AR, MA and ARMA processes

Power Spectrum

- Related concepts: Spectral density, power spectral density (PSD), energy spectral density (ESD)
- Also called spectrum of the signal, sometimes
- Tells you how "the energy of the signal is distributed over frequency bins"
- The Energy spectral density is for signals of which you can take the Fourier transform of

Energy Spectral Density (ESD)

If you have a signal $f_n, n \in \mathbb{Z}$, the Energy Spectral density $\Phi(\omega)$ is given by

$$\Phi(\omega) = \left| \frac{1}{\sqrt{2\pi}} \sum_{n=-\infty}^{\infty} f_n e^{-i\omega n} \right|^2 = \frac{F(\omega) F^*(\omega)}{2\pi}$$

with $F(\omega)$ the Discrete Time Fourier Transform of the signal f_n (assuming it exists)

- In our case, the x(n) are random variables
- No guarantees on being integrable/summable (nor their square)
- Use the Power Spectral Density instead

Wiener-Khinchin Theorem and PSD

- The Fourier transform is not taken on the random process itself (not possible anyway), but on its autocorrelation function $r_x(k)$
- Again, we consider only WSS processes here
- The Wiener–Khinchin theorem states that the Power Spectral Density $P_x(e^{j\omega})$ is the Fourier transform of the autocorrelation function $r_x(k)$

$$P_{x}(e^{j\omega}) = \sum_{k=-\infty}^{\infty} r_{x}(k)e^{-jk\omega}$$

Wiener-Khinchin Theorem and PSD

And the PSD and autocorrelation function form a Fourier transform pair, i.e.

$$r_{x}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_{x}(e^{j\omega}) e^{jk\omega} d\omega$$

■ So, PSD gives a frequency description of the second order moment of the process x(n), that is, its "power"

Power Spectrum: Properties

- Three properties of the PSD:
 - Symmetry: If x(n) is WSS, then the PSD is real-valued (i.e. $P_x(e^{j\omega}) = P_x^*(e^{j\omega})$) and $P_x(z)$ (z-transform version of the PSD) satisfies the symmetry

$$P_{x}(z) = P_{x}^{*}(1/z^{*}).$$

Also, if x(n) is real-valued, $P_x(e^{j\omega}) = P_x(e^{-j\omega})$ (or $P_x(z) = P_x^*(z^*)$ for the z-transform version)

Positivity: The PSD of a WSS process is nonnegative: $P_{\rm x}(e^{j\omega}) \geq 0$

Power Spectrum: Properties

- Three properties of the PSD (cont.):
 - Total Power: The power in a zero mean WSS process is proportional to the area under the PSD curve,

$$E\left[|x(n)|^2\right] = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_x(e^{j\omega}) d\omega$$

■ Remember that $r_x(0) = E\left[|x(n)|^2\right]$, for this last property

Power Spectrum: White noise

- An example, with a white noise process
- What is "white noise"?
- A WSS process v(n) is said to be white if the autocovariance is 0 for all $k \neq 0$, i.e.

$$c_{\nu}(k) = \sigma_{\nu}^2 \delta(k)$$

with $\delta(k)$ the unit sample

Power Spectrum: White noise

- White noise: sequence of uncorrelated random variables, each with variance σ_{v}^{2}
- E.g., sequence of uncorrelated Gaussian RVs is a white noise process

Figure: White Gaussian Noise (WGN). From Hayes book.

Now, the PSD is then a constant: $P_{\nu}(e^{j\omega}) = \sigma_{\nu}^2$

Power Spectrum: Harmonic process

For the case of the random phase sinusoid $x(n) = A \sin(n\omega_0 + \phi)$, remember we have $r_x(k) = \frac{1}{2}A^2\cos(k\omega_0)$, which gives a PSD

$$P_{x}(e^{j\omega}) = \frac{1}{2}\pi A^{2} \left[u_{0}(\omega - \omega_{0}) + u_{0}(\omega + \omega_{0}) \right]$$

11/47

Power Spectrum and autocorrelation matrix

- A last property, on the eigenvalues of the autocorrelation matrix
- Eigenvalue Extremal Property: The eigenvalues of the autocorrelation matrix of a zero mean WSS process are bounded by the extremal values of the PSD, i.e.

$$\min_{\omega} P_{x}(e^{j\omega}) \leq \lambda_{i} \leq \max_{\omega} P_{x}(e^{j\omega})$$

Filtering

"Mapping an input to an output signal"

Figure: Filtering: a discrete time system that maps x(n) to y(n). From Hayes book.

Linearity of a discrete-time system: with two inputs $x_1(n)$ and $x_2(n)$ and two constants a and b, we have

$$T[ax_1(n) + bx_2(n)] = aT[x_1(n)] + bT[x_2(n)]$$

Which is important for example in the case where the input is a superposition of unit samples like

$$x(n) = \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

Then, we have the output (using the linearity property)

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) T \left[\delta(n-k) \right] = \sum_{k=-\infty}^{\infty} x(k) h_k(n)$$

with $h_k(n) = T[\delta(n-k)]$ the response of the system to the delayed unit sample $\delta(n-k)$

- Shift-invariance of a discrete-time system: If a shift in the input results in the same shift in the output. That is, if we input $x(n n_0)$, the output is $y(n n_0)$.
- A system which is both linear and shift-invariant is called LSI (linear shift-invariant)

- So, if we have a WSS process x(n) of mean m_x and autocorrelation $r_x(k)$
- We filter x(n) with a stable LSI filter having a unit sample response h(n)
- Then the output y(n) is a random process related to x(n) by

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

■ The mean of the output y(n) can be found by

$$E[y(n)] = E\left[\sum_{k=-\infty}^{\infty} h(k)x(n-k)\right]$$
$$= \sum_{k=-\infty}^{\infty} h(k)E[x(n-k)]$$
$$= m_x \sum_{k=-\infty}^{\infty} h(k) = m_x H(e^{j0})$$

■ So the mean of the output is related to that of the input, scaled by the filter frequency response at $\omega=0$

■ In the same way, for autocorrelations of y(n) and of x(n), let's look at the cross-correlation first (needed to express $r_y(k)$)

$$r_{xy}(n+k,n) = E[y(n+k)x^*(n)]$$

$$= E\left[\sum_{l=-\infty}^{\infty} h(l)x(n+k-l)x^*(n)\right]$$

$$= \sum_{l=-\infty}^{\infty} h(l)E[x(n+k-l)x^*(n)]$$

$$= \sum_{l=-\infty}^{\infty} h(l)r_x(k-l)$$

- So the cross-correlation $r_{xy}(n+k,n)$ only depends on k and we can write $r_{xy}(k) = r_x(k) * h(k)$
- And now

$$r_{y}(n+k,n) = E[y(n+k)y^{*}(n)]$$

$$= E\left[y(n+k)\sum_{l=-\infty}^{\infty} x^{*}(l)h^{*}(n-l)\right]$$

$$= \sum_{l=-\infty}^{\infty} h^{*}(n-l)E[y(n+k)x^{*}(l)]$$

$$= \sum_{l=-\infty}^{\infty} h^{*}(n-l)r_{xy}(n+k-l)$$

Which can be rewritten as

$$r_y(n+k,n) = \sum_{m=-\infty}^{\infty} h^*(m) r_{xy}(m+k) = r_{xy}(k) * h^*(-k)$$

where $r_y(n+k,n)$ only depends on k

21/47

So,

$$r_{y}(k) = r_{xy}(k) * h^{*}(-k)$$

And finally,

$$r_{y}(k) = r_{x}(k) * h(k) * h^{*}(-k) = r_{x}(k) * r_{h}(k)$$

with $r_h(k)$ the autocorrelation of the unit sample response h(n)

- So, if x(n) is WSS, then y(n) is also WSS if $\sigma_y^2 < \infty$ (which requires the filter to be stable)
- Also, x(n) and y(n) will be jointly WSS

Now if h(n) is finite in length and zero outside [0, N-1] on which x(n) is defined, the variance (power) of y(n), we can write

$$\sigma_y^2 = E\left[\left|y(n)\right|^2\right] = \mathbf{h}^H \mathbf{R}_x \mathbf{h}$$

And using the relationship between autocorrelation, we have one between power spectrums:

$$P_y(e^{j\omega}) = P_x(e^{j\omega}) \left| H(e^{j\omega}) \right|^2$$

So the power spectrum of a WSS process filtered by a LSI filter is that of the input signal scaled by the squared magnitude of the frequency response of the filter

An example with white noise again:

■ Say we have y(n) the random process created by filtering the white noise w(n) with a LSI filter of system function

$$H(z) = \frac{1}{1 - 0.25z^{-1}}$$

Say we also have $\sigma_w^2 = 1$ (remember it is constant for all n), then the power spectrum of x(n) is

$$P_{x}(z) = \sigma_{w}^{2} H(z) H(z^{-1}) = \frac{1}{(1 - 0.25z^{-1})(1 - 0.25z)}$$

Using partial fraction expansion, we get

$$P_{x}(z) = \frac{16/15}{1 - 0.25z^{-1}} - \frac{16/15}{1 - 4z^{-1}}$$

■ Which using inverse z-transform, gives the autocorrelation of x(n) as

$$r_{\mathsf{X}}(k) = \frac{16}{15} \left(\frac{1}{4}\right)^k u(k) + \frac{16}{15} 4^k u(-k-1) = \frac{16}{15} \left(\frac{1}{4}\right)^{|k|}$$

Another example, where we start from a design constraint on the power spectrum

Say we want to create a process whose power spectrum is of the form

$$P_{x}(e^{j\omega}) = \frac{5 + 4\cos 2\omega}{10 + 6\cos 2\omega}$$

And we want to have it by filtering unit variance white noise with a LSI filter

■ Let's expand $P_x(e^{j\omega})$:

$$P_{x}(e^{j\omega}) = \frac{5 + 2e^{2j\omega} + 2e^{-2j\omega}}{10 + 3e^{j\omega} + 3e^{-j\omega}} = \frac{(2z^{2} + 1)(2z^{-2} + 1)}{(3z + 1)(3z^{-1} + 1)}$$

■ And then factorize it in terms of system functions $P_x(z) = H(z)H(z^{-1})$, with

$$H(z) = \frac{2z^2 + 1}{3z + 1} = z \frac{2}{3} \frac{1 + \frac{1}{2}z^{-2}}{1 + \frac{1}{3}z^{-1}}$$

■ Which is a stable filter (all poles inside unit circle), so the output will have the desired power spectrum

Spectral Factorization

- The power spectrum $P_x(e^{j\omega})$ of the WSS process x(n) is:
 - real-valued
 - positive
 - lacksquare periodic function of ω
- The spectral factorization of $P_x(e^{j\omega})$ aims at expressing it as

$$P_{x}(z) = \sigma_{0}^{2} Q(z) Q^{*}(1/z^{*})$$

Spectral Factorization

Such a process is called *regular* process and has specific properties:

- A regular process can be realized by filtering white noise of variance σ_0^2 by a causal (LSI and output only depends on present and past values) and stable filter. This realization is called *innovations representation* of the process
- The inverse of this causal and stable filter, 1/H(z), is a whitening filter. So if we filter the process x(n) by it, we obtain a white noise of variance σ_0^2 . The formation of this white noise process is called *innovations process*
- Since the white noise and the regular process are related by an invertible transformation, one can be obtained from the other "easily"

Spectral Factorization

$$\frac{v(n)}{P_{v}(z) = \sigma_{0}^{2}} \underbrace{H(z)}_{P_{x}(z) = \sigma_{0}^{2}H(z)H^{*}(1/z^{*})} \times (n)$$

$$\frac{x(n)}{P_{x}(z) = \sigma_{0}^{2}H(z)H^{*}(1/z^{*})} \underbrace{\frac{1}{H(z)}}_{P_{v}(z) = \sigma_{0}^{2}} v(n)$$

$$\frac{V(n)}{P_{x}(z) = \sigma_{0}^{2}H(z)H^{*}(1/z^{*})} \underbrace{\frac{1}{H(z)}}_{P_{v}(z) = \sigma_{0}^{2}} v(n)$$

Figure: Innovations Representation and Innovations Process

Predictable process

■ Predictable process (a.k.a. deterministic): a random process x(n) such that there exists coefficients a(k) to express x(n) as

$$x(n) = \sum_{k=1}^{\infty} a(k)x(n-k)$$

so x(n) can be predicted without error by a linear combination of the previous values

A process x(n) is *predictable* iff its spectrum is made of impulses:

$$P_{x}(e^{j\omega}) = \sum_{k=1}^{N} \alpha_{k} u_{0}(\omega - \omega_{k})$$

Wold Decomposition Theorem

Wold Decomposition Theorem: any WSS random process x(n) can be written as the sum of two processes $x_{\text{pred}}(n)$ and $x_{\text{reg}}(n)$, where $x_{\text{pred}}(n)$ is a predictable process and $x_{\text{reg}}(n)$ a regular process, with $x_{\text{reg}}(n)$ and $x_{\text{pred}}(n)$ orthogonal, i.e.

$$E\left[x_{\text{reg}}(m)x_{\text{pred}}^*(n)\right] = 0$$

Power Spectrum of ARMA process

General case: ARMA

■ Suppose we filter white noise v(n) with a causal LSI filter which has a rational system function with p poles and q zeros:

$$H(z) = \frac{B_q(z)}{A_p(z)} = \frac{\sum_{k=0}^q b_q(k)z^{-k}}{1 + \sum_{k=1}^p a_p(k)z^{-k}}$$

Now, if the filter H(z) is stable, output process x(n) is WSS and if $P_v(z) = \sigma_v^2$, we have the power spectrum

$$P_{x}(z) = \sigma_{v}^{2} \frac{B_{q}(z) B_{q}^{*}(1/z^{*})}{A_{p}(z) A_{p}^{*}(1/z^{*})}$$

■ This power spectrum defines an autoregressive moving average process of order (p, q), i.e. ARMA(p, q)

Power Spectrum of ARMA process

Now, we know that x(n) and v(n) are related by

$$x(n) + \sum_{l=1}^{p} a_p(l)x(n-l) = \sum_{l=0}^{q} b_q(l)v(n-l)$$

■ We can get the same relation between their autocorrelations (multiply by $x^*(n-k)$ and expectation):

$$r_{x}(k) + \sum_{l=1}^{p} a_{p}(l)r_{x}(k-l) = \sum_{l=0}^{q} b_{q}(l)r_{vx}(k-l)$$

Power Spectrum of ARMA process

■ Developing the cross-correlation and substituting, we get the *Yule-Walker* equations for an ARMA(p,q) process:

$$r_x(k) + \sum_{l=1}^p a_p(l) r_x(k-l) = \begin{cases} \sigma_v^2 c_q(k) & , 0 \le k \le q \\ 0 & , k > q \end{cases}$$

with
$$c_q(k) = \sum_{l=0}^{q-k} b_q(l+k) h^*(l)$$

- Note that using these equations, one can extrapolate the autocorrelation sequence $r_x(k)$ from a finite set of values
- One can also estimate the filter coefficients $a_p(k)$ and $b_q(k)$, but since the Yule-Walker equations are non-linear in these coefficients, it might get difficult

Power Spectrum of ARMA process: Example

Example: Filter white noise with a LSI filter with zeros $z=0.95e^{\pm j\pi/2}$ and poles $z=0.5e^{\pm j2\pi/5}$

Figure: Power spectrum of an ARMA(2,2) process with zeros $z=0.95e^{\pm j\pi/2}$ and poles $z=0.5e^{\pm j2\pi/5}$.

Power Spectrum of AR process

- Autoregressive processes (AR(p))
- In this case, x(n) is generated by filtering the white noise v(n) by an all-pole filter

$$H(z) = \frac{b(0)}{1 + \sum_{k=1}^{p} a_{p}(k)z^{-k}}$$

 $lue{}$ So, really, an AR process is an ARMA process with q=0

Power Spectrum of AR process

■ Again, if $P_{\nu}(z) = \sigma_{\nu}^2$, the power spectrum of x(n) is

$$P_x(z) = \sigma_v^2 \frac{|b(0)|^2}{A_p(z)A_p^*(1/z^*)}$$

And the Yule-Walker equations for an AR(p) process can be found by having q = 0 in the general case ARMA ones:

$$r_x(k) + \sum_{l=1}^p a_p(l) r_x(k-l) = \sigma_v^2 |b(0)|^2 \delta(k), k \ge 0$$

Now, the Yule-Walker equations are linear in the filter coefficients $a_p(k)$, so they are easier to solve

Power Spectrum of AR process: Example

■ Example: Given the first two autocorrelation values of a real-valued AR(1) process, assuming $\sigma_v^2 = 1$ and since we have the symmetry $r_x(k) = r_x(-k)$ for real processes

$$r_x(0)+ r_x(1)a(1) = b^2(0)$$

 $r_x(0)a(1) = -r_x(1)$

- So we get $a(1) = -\frac{r_x(1)}{r_x(0)}$ and $b(0) = \sqrt{\frac{r_x^2(0) r_x^2(1)}{r_x(0)}}$ and we have determined the coefficients of the first order filter that generates an AR(1) process, with the given autocorrelation values
- Of course, one can do it the other way around: express the autocorrelation sequence using the filter coefficients

Power Spectrum of AR process: Plots

Examples of power spectrum plots for AR(1) processes:

Figure: Power spectrum of a low-pass AR(1) process with a pole z = 0.5 (solid), z = 0.75 (dashed) and z = 0.9 (dotted).

Power Spectrum of AR process: Plots

Examples of power spectrum plots for AR(1) processes:

Figure: Power spectrum for a high-pass AR(1) process, with pole z = -0.5 (solid), z = -0.75 (dashed) and z = -0.9 (dotted).

Power Spectrum of MA process

Now, for MA processes

- MA(q) is ARMA(p,q) with p=0
- So we generate x(n) by filtering white noise with a filter (FIR) of the form

$$H(z) = \sum_{k=0}^{q} b_q(k) z^{-k}$$

■ And if we have $P_{\nu}(z) = \sigma_{\nu}^2$, the power spectrum (recall the power spectrum of a WSS process filtered by a LSI filter, earlier) is

$$P_{x}(z) = \sigma_{v}^{2} B_{q}(z) B_{q}^{*}(1/z^{*})$$

Power Spectrum of MA process: Yule-Walker equations

And the Yule-Walker equations can be found by using directly the inverse z-transform on the previous equation for the power spectrum

$$r_{x}(k) = \sigma_{v}^{2}b_{q}(k) * b_{q}^{*}(-k) = \sigma_{v}^{2} \sum_{l=0}^{q-|k|} b_{q}(l+|k|)b_{q}^{*}(l)$$

 \blacksquare So, the autocorrelation sequence of a MA(q) process is zero for k outside [-q, q]

Power Spectrum of MA process: Yule-Walker equations

- And again, estimating the MA(q) parameters from the autocorrelation is not easy, in general
- MA processes typically are slowly changing functions (w.r.t. frequency) with sharp nulls in the spectrum if $P_x(z)$ has zeros close to the unit circle

Power Spectrum of MA process

Example for a MA(4)

Figure: Power spectrum of an MA(4) process with zeros $z=e^{\pm j\pi/2}$ and $z=0.8e^{\pm j3\pi/4}$. There are zeros on the unit circle at $\omega=\pm\pi/2$

Finally...

To summarize:

- mean, variance, autocorrelation, autocovariance of random processes
- stationarity, WSS, strict-sense stationarity, L-th order stationarity
- ergodicity (to use time averages as estimations of first/second order moments)
- power spectrum, spectral factorization
- whitening a WSS process or generate a WSS by filtering white noise
- using different types of filters (all-pole, zero-pole, FIR), generate AR, ARMA or MA, resp.

Next time

- Signal Modeling (aren't you here for that?)
- Levinson Recursion (maybe?)
- Lattice Filtering (likely the lecture after that)

T-61.3040

