Continuous-variable quantum states designs: theory and applications

Joseph T. Iosue, Kunal Sharma, Michael J. Gullans, Victor V. Albert

arXiv:2211.05127

March Meeting 2023 09 March 2023

Use cases of infinite dimensions

- Continuous-variable systems are useful in technologies necessary for communication and computation
- Offers some advantages over finite-dimensional spaces
 - Continuous-parameter families of transversal gates (Eastin-Knill no-go in DV)
 - Hamiltonian-based bias-preserving gates (no-go in DV)
 - ► See review V. V. Albert, arXiv:2211.05714

Why are designs interesting?

$$X=S^d$$
 $X=\mathrm{U}(d)$ $X=\mathbb{CP}^{d-1}$ spherical design unitary design qudit design

Numerical integration $X \subset \mathbb{R}^n$ e.g. Stroud 1971

Error correction $X = S^d$ e.g. Delsarte, Goethals, Seidel 1977

Randomized benchmarking X = U(d) e.g. Dankert, Cleve, Emerson, Livine 2006

State tomography $X=\mathbb{CP}^{d-1}$ e.g. Scott 2006

State distinction $X = \mathbb{CP}^{d-1}$ e.g. Ambainis, Emerson 2007

Shadow tomography $X=\mathbb{CP}^{d-1}$ e.g. Huang, Kueng, Preskill 2020

Why are designs interesting?

$$X=S^d$$
 $X=\mathrm{U}(d)$ $X=\mathbb{CP}^{d-1}$ spherical design unitary design qudit design

Numerical integration	$X\subset \mathbb{R}^n$	e.g. Stroud 1971
Error correction	$X = S^d$	e.g. Delsarte, Goethals, Seidel 1977
Randomized benchmarking	$X = \mathrm{U}(d)$	e.g. Dankert, Cleve, Emerson, Livine 2006
State tomography	$X=\mathbb{CP}^{d-1}$	e.g. Scott 2006
State distinction	$X=\mathbb{CP}^{d-1}$	e.g. Ambainis, Emerson 2007
Shadow tomography	$X=\mathbb{CP}^{d-1}$	e.g. Huang, Kueng, Preskill 2020

Continuous-variable designs

Theorem (Our work)

For any $t \ge 2$, continuous-variable state/unitary t-designs **do not** exist.

3/7

Continuous-variable designs

Theorem (Our work)

For any $t \ge 2$, continuous-variable state/unitary t-designs **do not** exist.

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

J. T. Iosue et al. (UMD)

Continuous-variable designs

Theorem (Our work)

For any $t \ge 2$, continuous-variable state/unitary t-designs **do not** exist.

- Consider $\mathcal{H} = L^2(\mathbb{R})$ with (Fock) basis $\{|n\rangle \mid n \in \mathbb{N}_0\}$
- Allow ourselves to use non-normalizable states (e.g. homodyne quadrature eigenstates, GKP states, phase states)

Example (Fock states plus phase states form a rigged 2-design)

$$\{|n
angle\}_{n\in\mathbb{N}_0}\cup\left\{| heta_arphi
angle\coloneqq\sum_{oldsymbol{n}\in\mathbb{N}_0}\mathrm{e}^{\mathrm{i} heta n+\mathrm{i}arphi n^2}\ket{n}
ight\}_{ heta,arphi\in[-\pi,\pi)}$$

 $\hbox{``Rigged''} \ \ is \ a \ reference \ to \ the \ rigged \ Hilbert \ space \ prescription \ that \ is \ used \ to \ formalize \ the \ construction$

J. T. Iosue et al. (UMD) CV state designs

App. 1: Continuous-variable design-based shadow tomography

- Properties of designs ensure that a relatively small number of qubit shadows yield a good approximation of a state for estimating observable expectation value
- Our phase-state + Fock-state rigged
 2-designs yield CV shadows with similar guarantees

$$S = egin{cases} 3 \ket{0/1}ra{0/1} - \mathbb{I} & \mathbb{E} & S = \mathsf{state} \ 3 \ket{\pm}ra{\pm} - \mathbb{I} & S = \mathsf{State} \ 3 \ket{\pm}ra{\pm} - \mathbb{I} & S = \begin{cases} (2\pi + 1) \ket{ heta_{arphi}}ra{ heta_{arphi}} - \mathbb{I} \ (2\pi + 1) \ket{n}ra{n} - \mathbb{I} \end{cases}$$

App. 1: Continuous-variable design-based shadow tomography

 $\mathbb{E}_{S\in\mathsf{shadows}}$

- Properties of designs ensure that a relatively small number of qubit shadows yield a good approximation of a state for estimating observable expectation value
- Our phase-state + Fock-state rigged 2-designs yield CV shadows with similar guarantees

$$S = egin{cases} 3 \, |0/1
angle \langle 0/1| - \mathbb{I} \ 3 \, |\pm
angle \langle \pm| - \mathbb{I} \ 3 \, |\pm\mathrm{i}
angle \langle \pm\mathrm{i}| - \mathbb{I} \end{cases}$$

$$S= ext{state}$$
 $S=\left\{egin{aligned} (2\pi+1)\ket{ heta_arphi}\!raket{ heta_arphi}-\mathbb{I}\ (2\pi+1)\ket{ heta}\!raket{ heta_arphi}-\mathbb{I} \end{aligned}
ight.$

Estimate $Tr(\rho \mathcal{O}_i)$ for a collection $i = j, \dots, M$

Rigged 3-design, $N \sim \log(M) \max_j f(\mathcal{O}_j)$

Rigged 2-design, $N \sim \log(M) \max_j g(\mathcal{O}_j, \rho)$

App. 2: Regularized rigged designs

- Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)
- ullet Choose a regularizer R to normalize non-normalizable states while retaining important features of the design

Applications

5/7

App. 2: Regularized rigged designs

- Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)
- ullet Choose a regularizer R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{n}}$

App. 2: Regularized rigged designs

- \bullet Recall that a rigged t-design utilizes non-normalizable states (i.e. tempered distributions)
- ullet Choose a regularizer R to normalize non-normalizable states while retaining important features of the design

Example (Hard energy cutoff)

R projects onto a (finite-dimensional) low energy subspace of $L^2(\mathbb{R})$; e.g. $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$

Example (Soft energy cutoff)

R decays with increasing energy, but maintains support on all of $L^2(\mathbb{R})$; e.g. $R = e^{-\beta \hat{n}}$

$$|\theta_{\varphi}\rangle \propto \sum_{\pmb{n}\in\mathbb{N}_0} \mathrm{e}^{\mathrm{i}\theta\,\pmb{n}+\mathrm{i}\varphi\,\pmb{n}^2}\,|\pmb{n}\rangle \ \mapsto \ \frac{1}{\mathrm{norm}}R\,|\theta_{\varphi}\rangle \propto \sum_{\pmb{n}\in\mathbb{N}_0} \mathrm{e}^{-\pmb{\beta}\pmb{n}+\mathrm{i}\theta\,\pmb{n}+\mathrm{i}\varphi\,\pmb{n}^2}\,|\pmb{n}\rangle$$

5/7

Applications

J. T. losue et al. (UMD) CV state designs

$$ar{\mathcal{F}}(\mathcal{E}) = \mathop{\mathbb{E}}_{\psi \in D} ra{\psi} \mathcal{E}(\ket{\psi} ra{\psi}) \ket{\psi}$$
 average fidelity

$$F_{e}(\mathcal{E}) = \langle \phi | (\mathcal{I} \otimes \mathcal{E}) (|\phi\rangle \langle \phi|) | \phi \rangle$$
 entanglement fidelity

$$\begin{split} \bar{F}(\mathcal{E}) &= \mathop{\mathbb{E}}_{\psi \in D} \left\langle \psi | \, \mathcal{E}(|\psi\rangle \langle \psi|) \, |\psi\rangle \quad \text{ average fidelity} \\ F_e(\mathcal{E}) &= \left\langle \phi | \, (\mathcal{I} \otimes \mathcal{E}) (|\phi\rangle \langle \phi|) \, |\phi\rangle \quad \text{ entanglement fidelity} \end{split}$$

FINITE DIMENSIONS

- ullet $D=\mathbb{CP}^{d-1}$ or equivalently D= 2-design
- ullet $|\phi
 angle = \max$ imally entangled state
- Beautiful relation *Horodecki*×3 (1999)

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

$$ar{F}(\mathcal{E}) = \mathop{\mathbb{E}}_{\psi \in D} \langle \psi | \, \mathcal{E}(|\psi\rangle\langle\psi|) \, |\psi\rangle$$
 average fidelity $F_e(\mathcal{E}) = \langle \phi | \, (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) \, |\phi\rangle$ entanglement fidelity

FINITE DIMENSIONS

- ullet $D=\mathbb{CP}^{d-1}$ or equivalently D=2-design
- ullet $|\phi
 angle =$ maximally entangled state
- Beautiful relation *Horodecki*×3 (1999)

$$ar{F} = rac{dF_e + 1}{d + 1}$$

Infinite dimensions

- D = R-regularized rigged 2-design
- $\bullet \ |\phi\rangle = {\rm two \ mode \ squeezed \ vacuum \ state}$
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

$$ar{F}(\mathcal{E}) = \mathop{\mathbb{E}}_{\psi \in D} \langle \psi | \, \mathcal{E}(|\psi\rangle\langle\psi|) \, |\psi\rangle$$
 average fidelity $F_e(\mathcal{E}) = \langle \phi | \, (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) \, |\phi\rangle$ entanglement fidelity

FINITE DIMENSIONS

- ullet $D=\mathbb{CP}^{d-1}$ or equivalently D=2-design
- $\bullet \ |\phi\rangle = \text{maximally entangled state}$
- Beautiful relation *Horodecki*×3 (1999)

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

Infinite dimensions

- ullet D = R-regularized rigged 2-design
- ullet $|\phi
 angle=$ two mode squeezed vacuum state
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$ar{F} = rac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

$$ar{F}(\mathcal{E}) = \mathop{\mathbb{E}}_{\psi \in D} \langle \psi | \, \mathcal{E}(|\psi\rangle\langle\psi|) \, |\psi\rangle$$
 average fidelity $F_e(\mathcal{E}) = \langle \phi | \, (\mathcal{I} \otimes \mathcal{E})(|\phi\rangle\langle\phi|) \, |\phi\rangle$ entanglement fidelity

FINITE DIMENSIONS

- ullet $D=\mathbb{CP}^{d-1}$ or equivalently D=2-design
- $\bullet |\phi\rangle =$ maximally entangled state
- Beautiful relation *Horodecki*×3 (1999)

$$\bar{F} = \frac{dF_e + 1}{d + 1}$$

Infinite dimensions

- D = R-regularized rigged 2-design
- $\bullet \ |\phi\rangle = {\rm two \ mode \ squeezed \ vacuum \ state}$
- With $d_R = (\text{Tr } R)^2 / \text{Tr } R^2$,

$$\bar{F} = \frac{d_R F_e + 1}{d_R + 1}$$

Need R invertible

When $R = \sum_{n=0}^{d-1} |n\rangle\langle n|$, $d_R = d$

When $R = e^{-\beta \hat{n}}$, $d_R = 2 \operatorname{Tr}(\rho_\beta \hat{n}) + 1$ where ρ_β is the thermal state

J. T. Iosue et al. (UMD)

CV state designs

Applications

• Find more (multimode) rigged designs, especially $t \ge 3$

7/7

Outlook

- Find more (multimode) rigged designs, especially $t \ge 3$
- Experimental protocols for measuring rigged t-design POVMs

- Find more (multimode) rigged designs, especially $t \ge 3$
- Experimental protocols for measuring rigged t-design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?

- Find more (multimode) rigged designs, especially t > 3
- Experimental protocols for measuring rigged t-design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let \mathcal{E} be an ensemble of unitaries in $U(L^2(\mathbb{R}))$. \mathcal{E} is an **R-regularized rigged unitary t-design** if for all quantum states $|\psi\rangle \in L^2(\mathbb{R})$, $\mathcal{E}|\psi\rangle$ is an R-regularized rigged state t-design.

7/7

- Find more (multimode) rigged designs, especially $t \ge 3$
- Experimental protocols for measuring rigged t-design POVMs
- Do any of the optimality arguments from finite-dimensional design-based shadow tomography extend to rigged designs?
- Find regularized rigged unitary designs

Definition (Regularized rigged unitary design)

Let $\mathcal E$ be an ensemble of unitaries in $\mathrm{U}(L^2(\mathbb R))$. $\mathcal E$ is an \emph{R} -regularized rigged unitary \emph{t} -design if for all quantum states $|\psi\rangle\in L^2(\mathbb R)$, $\mathcal E\,|\psi\rangle$ is an \emph{R} -regularized rigged state \emph{t} -design.

• Extend other finite dimensional design-based techniques to infinite dimensions with rigged designs (e.g. benchmarking continuous-variable devices)

7/7

Thanks!

Kunal Sharma

Michael J. Gullans

Victor V. Albert