Код Рида-Маллера

Илья Коннов

Факультет компьютерных наук Высшая Школа Экономики

11 февраля 2022 г.

Если вы смотрите презентацию, то на сером фоне справа иногда видны некоторые ценные комментарии, для которых поля слайда оказались слишком узки. Если вы читаете pdf-ку, то эти комментарии уже находятся в самом подходящем для них месте в тексте (а в правых полях видны заголовки слайдов). Если вы смотрите мой доклад и видите этот текст, то что-то пошло серьёзно не так. Да, у этого одного файла есть три разные версии.

Содержание

1	Введение		
2	Кодирование	3	
3		3 5 6	
4	Декодирование		
5	Источники	7	

1 Введение

Введение

Описаны Дэвидом Маллером (автор идеи) и Ирвингом Ридом (автор метода декодирования) в сентябре 1954 года.

Обозначаются как $\mathrm{RM}(r,m)$, где r — ранг, а 2^m — длина кода. Кодирует сообщения длиной $k=\sum_{i=0}^r C_m^i$ при помощи 2^m бит. Традиционно, считается что коды бинарные и работают над битами, т.е.

Традиционно, считается что коды бинарные и работают над битами, т.е. \mathbb{Z}_2 .

Соглашение: сложение векторов $u,v\in\mathbb{Z}_2^n$ будем обозначать как $u\oplus v=(u_1+v_1,u_2+v_2,...,u_n+v_n).$

Всякую булеву функцию можно записать при помощи таблицы истинности

Булевы функции и многочлен Жегалкина

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

И при помощи многочлена Жегалкина:

$$f(x,y) = xy + x + y + 1$$

В общем случае, многочлены будут иметь следующий вид:

Многочлены Жегалкина

$$f(x_1, x_2, ..., x_m) = \sum_{S \subseteq \{1, ..., m\}} c_S \prod_{i \in S} x_i$$

Например, для m=2: $f(x_1,x_2)=c_1\cdot x_1x_2+c_2\cdot x_1+c_3\cdot x_2+c_4\cdot 1$ Всего $n=2^m$ коэффициентов для описания каждой функции. Рассмотрим функции, степень многочленов которых не больше r:

Функции небольшой степени

$$\{f(x_1,x_2,...,x_m)\mid \deg f\leq r\}$$

Каждую можно записать следующим образом:

$$f(x_1, x_2, ..., x_m) = \sum_{\substack{S \subseteq \{1, ..., m\} \\ |S| \leq r}} c_S \prod_{i \in S} x_i$$

В каждом произведении используется не больше r переменных.

Замечу, что при $S=\varnothing$, мы считаем, что $\prod_{i\in S}x_i=1$, таким образом всегда появляется свободный член.

Сколько тогда всего коэффициентов используется?

$$k = C_m^0 + C_m^2 + \ldots + C_m^r = \sum_{i=0}^r C_m^i$$

Если говорить несколько проще, то для составления многочленов мы сложим сначала одночлены (x+y+z), затем произведения одночленов (xy+yz+xz) и т.д. вплоть до r множителей. Тогда легко видеть, почему k именно такое: мы складываем все возможные перестановки сначала для 0 переменных, потом для одной, двух, и так до всех r

2 Кодирование

Идея кодирования

Пусть каждое сообщение (длины k) — коэффициенты некоторого многочлена от m переменных степени не больше r.

Тогда мы можем его представить при помощи 2^n бит, подставив все возможные комбинации переменных (ведь рассматриваем многочлены над \mathbb{Z}_2).

Таким образом получим таблицу истинности, из которой позднее сможем восстановить исходный многочлен, а вместе с ним и сообщение.

Пример

- r=1 (степень многочлена), m=2 (переменных). Это RM(1,2).
- Тогда наш многочлен: $f(x,y) = c_1 x + c_2 y + c_3$.
- Сообщение: **101**, тогда f(x,y) = x + 0 + 1.
- Подставим всевозможные комбинации:

\boldsymbol{x}	y	f(x,y)
0	0	1
0	1	1
1	0	0
1	1	0

Получили код: 1100.

Декодирование когда потерь нет

Или как можно декодировать код, в самых простых ситуациях. Этот пример — продолжение предыдущего.

- Мы получили код: 1100
- Представим таблицу истинности.

$$\begin{array}{c|cccc} x & y & f(x,y) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

- Подстановками в $f(x,y)=c_1x+c_2y+c_3$ $\begin{cases} &c_3=1\\ &c_2+c_3=1\\ &c_1+c_2+c_3=0\\ &c_1+c_2+c_3=0 \end{cases}$
- $c_1 = 1, c_2 = 0, c_3 = 1$, исходное сообщение: **101**.

3 Свойства и параметры кода

Хотим показать, что этот код является линейным, т.е. что его кодовые слова образуют линейное пространство, и у нас есть изоморфизм из пространства сообщений (\mathbb{Z}_2^k) в пространство слов (\mathbb{Z}_2^m).

Для этого необходимо немного формализовать всё описанное раньше.

Доказательство линейности Пусть C(x) кодирует сообщение $x \in \mathbb{Z}_2^k$ в код $C(x) \in \mathbb{Z}_2^m$.

$$C(x) = (p_x(a_i) \mid a_i \in \mathbb{Z}_2^m)$$

где $p_x(a_i)$ — соответствующий сообщению a_i многочлен. Перебирая все a_i получаем упорядоченный набор его значений. Это и будет кодом.

Причём p_x берёт в качестве своих коэффициентов биты из x. Поскольку многочлены степени не выше r образуют линейное пространство, то $p_{(x \oplus y)} = p_x + p_y$.

Напомню, что базис пространства многочленов выглядит примерно так: $1, x_1, x_2, x_1x_2$ (для двух переменных, степени не выше 2). Поскольку мы работает в поле \mathbb{Z}_2 , здесь нету x_1^2 и x_2^2 ($a^2 = a$).

Чтобы преобразовать сообщение в многочлен, мы берём каждый бит сообщения и умножаем его на соответствующий базисный вектор. Очевидно, такое преобразование будет изоморфизмом. Именно поэтому $p_{(x+y)}=p_x+p_y$.

Обратите внимание, что x это не просто число (\mathbb{Z}_{2^k}) и мы рассматриваем его биты, а реально вектор битов (\mathbb{Z}_2^k). У него операция сложения побитовая (\oplus).

Тогда:

$$C(x\oplus y)_i=p_{(x\oplus y)}(a_i)=p_x(a_i)+p_y(a_i)=C(x)_i+C(y)_i$$

т.е.
$$\forall x, y \quad C(x \oplus y) = C(x) + C(y)$$
, ч.т.д.

Для краткости, я использую запись $C(x)_i$ для i-го элемента вектора C(x). Поскольку i произвольное, то и весь вектор получился равен.

Таким образом этот код действительно линейный и к нему применимы уже известные теоремы!

Последствия линейности

1. Существует порождающая матрица G.

$$C(x) = x_{1 \times k} G_{k \times n} = c_{1 \times n}$$

Так можно кодировать сообщения x в коды c. Но искать её мы не будем, обойдёмся одними многочленами, это интереснее.

2. Минимальное растояние будет равно минимальному весу Хемминга среди всех кодов. Вес Хэмминга вектора — количество в нём ненулевых элементов.

$$d = \min_{\substack{c \in C \\ c \neq 0}} w(c)$$

Доказательство очень просто: минимальное расстояние — вес разности каких-то двух различных кодов, но разность двух кодов тоже будет кодом, т.к. мы в линейном пространстве. Значит достаточно найти минимальный вес, но не учитывая нулевой вектор, т.к. разность равна нулю тогда и только тогда, когда коды равны.

3. Корректирующая способность:

$$t = \left| \frac{d-1}{2} \right|$$

Однако мы ещё не знаем как выглядят наши коды (как выглядят таблицы истинности функций степени не больше r?). А значит не можем ничего сказать про минимальное расстояние.

3.1 Конструкция Плоткина

Хотим понять как выглядят кодовые слова.

Конструкция Плоткина: многочлены

- Код таблица истинности функции $f(x_1,...,x_m) \in \text{RM}(r,m)$, причём $\deg f \leq r$. Порядок очевидно не больше r, потому что это условие для включения в пространство кодов RM(r,m).
- Разделим функцию по x_1 : $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1h(x_2,...,x_m)$. Теперь у нас есть две функции от меньшего числа аргументов. Очевидно, так можно сделать всегда, когда m>1.
- Заметим, что $\deg f \leq r$, а значит $\deg g \leq r$ и $\deg h \leq r-1$.

Теперь рассмотрим те же функции, но со стороны их таблиц истинности. Нам же интересны именно коды, а они как раз очень тесно связаны с этими таблицами.

Ранее: $f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$.

Конструкция Плоткина: таблица истинности

• Заметим, что таблица истинности f состоит из двух частей: при $x_1=0$ и при $x_1=1.$

$$\operatorname{Eval}(f) = \left(\frac{\operatorname{Eval}^{[x_1=0]}(f)}{\operatorname{Eval}^{[x_1=1]}(f)}\right)$$

Здесь я очень резко ввожу обозначения для таблицы истинности, но они больше не пригодятся. Вообще-то говоря, это не матрица, а вектор длины 2^m (число аргументов), поскольку порядок аргументов всегда фиксирован и нам его хранить не нужно. В любом случае, $\operatorname{Eval}(f)$ — таблица для всей функции, $\operatorname{Eval}^{[x_1=0]}(f)$ — кусок таблицы при $x_1=0$, $\operatorname{Eval}^{[x_1=1]}(f)$ — кусок таблицы при $x_1=1$.

- Причём $\operatorname{Eval}^{[x_1=0]}(f) = \operatorname{Eval}(g)$, а $\operatorname{Eval}^{[x_1=0]}(f) \oplus \operatorname{Eval}^{[x_1=1]}(f) = \operatorname{Eval}(h)$. Это всё следует из ранее полученного утверждения. Если мы подставим $x_1=0$, то останется только g первое равенство очевидно. Если же мы рассмотрим $\operatorname{Eval}^[x_1=1](f)$, то получим $\operatorname{Eval}(g+h)$, но если туда прибавить ещё раз $\operatorname{Eval}(g)$, то останется только $\operatorname{Eval}(h)$ (поскольку 1+1=0 в \mathbb{Z}_2) получили второе равенство.
- Таким образом, $\operatorname{Eval}(f) = (\operatorname{Eval}(g) \mid \operatorname{Eval}(g) \oplus \operatorname{Eval}(h))$

Теперь собираем всё это в одно важное утверждение. Если дана $f(x_1,...,x_m)$, причём $\deg f \leq r$, то можно её разделить:

$$f(x_1,...,x_m) = g(x_2,...,x_m) + x_1 h(x_2,...,x_m)$$

Причём мы уже знаем, что $\deg g \leq r$ и $\deg h \leq r-1$, если $\deg f \leq r$

Также известно, что $\text{Eval}(f) = (\text{Eval}(g) \mid \text{Eval}(g) \oplus \text{Eval}(h)).$

Заметим, что Eval(f) – кодовое слово (как и для g, h).

Тогда:
$$c=\operatorname{Eval}(f)\in\operatorname{RM}(r,m)$$
 (т.к. $\deg f\leq r$)
$$u=\operatorname{Eval}(g)\in\operatorname{RM}(r,m-1)$$
 (т.к. $\deg g\leq r$)
$$v=\operatorname{Eval}(h)\in\operatorname{RM}(r-1,m-1)$$
 (т.к. $\deg h\leq r-1$)

Конструкция Плоткина: вывод Напомню, что $\mathrm{RM}(r,m)$ включает в себя все функции (их таблицы истинности, если точнее) от m аргументов и степени не выше r. Очевидно, наши годятся.

Утверждение: Для всякого кодового слова $c \in \text{RM}(r,m)$ можно найти $u \in \text{RM}(r,m-1)$ и $v \in \text{RM}(r-1,m-1)$, такие что $c = (u \mid u+v)$.

Что здесь важно отметить — оба наших новых кодовых слова u,v получились «меньше», чем исходное c.

Это позволяет, во-первых, устраивать индукцию по m, чем мы скоро и займёмся. Во-вторых, это позволяет легко строить большие порождающие матрицы, но мы этим не будем заниматься.

3.2 Минимальное расстояние

Хотим найти минимальное расстояние для кода $\mathrm{RM}(r,m)$

Минимальное расстояние

$$d = \min_{c \in C, c \neq 0} w(c)$$

Предположим, что $d = 2^{m-r}$ и докажем по индукции.

База: $\mathrm{RM}(0,m)$ — единственный бит потворён 2^m раз. Очевидно, $w(\underbrace{\mathtt{11...1}}_{2^m})=2^m=2^{m-0}>2^{m-r}.$

Случай $\mathrm{RM}(0,m)$ — очень скучный. Здесь длина сообщения равна $k=\sum_{i=0}^r C_m^i=C_m^0=1,$ а длина кода $n=2^m.$ Причём мы просто берём один бит (соответсвует функции $f(x_1,...,x_m)=0$ или $f(x_1,...,x_m)=1)$ и повторяем его 2^m раз (в таблице истинности).

Замечу, что не рассматриваю второй случай $w(\mathbf{00...0})$, поскольку он нам не нужен для расчёта минимального расстояния. Вариант с нулевым вектором явно выкидывается, см. определение d выше.

Гипотеза: Если $v \in \text{RM}(r-1, m-1)$, то $w(v) \ge 2^{m-r}$.

Шаг: Хотим доказать для $c \in RM(r, m)$.

$$\begin{split} w(c) &= w((u \mid u \oplus v)) \overset{(1)}{=} w(u) + w(u \oplus v) \geq \\ &\overset{(2)}{\geq} w(u) + (w(v) - w(u)) = w(v) \overset{IH}{\geq} 2^{m-r} \blacksquare \end{split}$$

Теперь немного объяснений.

Переход (1): $w((x \mid y)) = w(x) + w(y)$. Вес это всего лишь число ненулевых элементов, поэтому нет разницы как мы будем группировать части вектора.

Переход (2): $w(u \oplus v) \ge w(v) - w(u)$. Если у нас в v стоит w(v) бит, то прибавив к нему u, мы сможем изменить (обнулить) не больше w(u) бит. Возможно появится больше единиц, но нас интересует нижняя граница.

Переход (IH): предположение индукции в чистом виде.

Для бинарного кода RM(r, m):

Свойства и параметры

- $r \leq m$
- Длина кода: 2^m

- Длина сообщения: $k = \sum_{i=0}^r C_m^i$
- Минимальное расстояние: $d = 2^{m-r}$
- Корректирующая способность: $t=2^{m-r-1}-1$ поскольку $t=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{2^{m-r}}{2}-\frac{1}{2}\right\rfloor=\left\lfloor2^{m-r-1}-0.5\right\rfloor=2^{m-r-1}-0.5$
- ullet Существует порождающая матрица G для кодирования

4 Декодирование

Этот код является линейным, к нему применимы все обычные (и неэффективные методы):

Если потери есть

5 Источники

Бонусный раздел, который не включён в основную презентацию, но может быть очень полезен.

- 1. https://arxiv.org/pdf/2002.03317.pdf топчик.
- 2. http://dha.spb.ru/PDF/ReedMullerExamples.pdf очень хорошо и подробно, но используется подход через матрицы, а не через полиномы, а это не весело.
- 3. https://en.wikipedia.org/wiki/Reed-Muller_code кратко, чётко, понятно, но не описано декодирование.
- 4. https://ru.bmstu.wiki/Коды_Рида-Маллера в целом всё есть, но написано очень непонятно;