МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 3.3.4. «Эффект Холла в полупроводниках»

Работу выполнил: Студент группы Б01-304 Каспаров Николай

1 Введение

1.1 Цели работы

- исследовать эффект Холла в полупроводниках,
- определить концентрацию носителей заряда и их подвижность;
- определить знак носителей;

1.2 Используемые приборы

Электромагнит с регулируемым источником питания, вольтметр, амперметр, миллиамперметр, милливеберметр, источник питания (1,5 В), образцы легированного германия;

2 Теоретическая часть

2.0.1 Эффект Холла

Во внешнем магнитном поле B на заряды действует сила Лоренца:

$$\mathbf{F} = q\mathbf{E} + q\mathbf{u} \times \mathbf{B} \tag{1}$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с полем **E**. В проводнике возникает поперечное электрического поле. Такое явление называется **эффектом Холла**.

2.0.2 Тензор проводимости в магнитном поле

Связь между электрическим полем ${\bf E}$ и плотностью тока ${\bf j}$ при эффекте Холла не может быть описана скалярным коэффициентом проводимости σ . Закон Ома записывается в виде:

$$\mathbf{j} = \hat{\sigma} \mathbf{E} \tag{2}$$

где $\hat{\sigma}$ — это тензор проводимости, который в выбранной системе координат представляется в виде матрицы:

$$\hat{\sigma} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$
(3)

Для случая одного типа носителей (например, электронов) и плоской геометрии:

$$E_y = u_x B_z = \frac{j_x B_z}{nq} \tag{4}$$

Плотность тока вдоль оси x описывается формулой:

$$j_x = qnu_x = qn\mu E_x = \sigma_0 E_x \tag{5}$$

где $\sigma_0 = nq\mu$ — удельная проводимость среды в отсутствие магнитного поля B.

Обобщённый закон Ома при наличии внешнего магнитного поля:

$$\mathbf{E} = \frac{\mathbf{j}}{\sigma_0} - \frac{1}{nq} (\mathbf{j} \times \mathbf{B}) \tag{6}$$

В компонентной форме для случая одного типа носителей (вдоль оси z):

$$E_x = \frac{j_x}{\sigma_0} - \frac{j_y B}{nq}, \quad E_y = \frac{j_y}{\sigma_0} + \frac{j_x B}{nq}, \quad E_z = \frac{j_z}{\sigma_0}$$
 (7)

Тензор удельного сопротивления $\hat{\rho}$, обратный тензору проводимости, принимает вид:

$$\hat{\rho} = \frac{1}{\sigma_0} \begin{pmatrix} 1 & -\mu B & 0\\ \mu B & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \tag{8}$$

Тензор проводимости:

$$\hat{\sigma} = \frac{\sigma_0}{1 + (\mu B)^2} \begin{pmatrix} 1 & \mu B & 0 \\ -\mu B & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (9)

2.0.3 Мостик Холла

Рис. 1: Мостик Холла

В схеме мостика Холла ток течёт вдоль оси x по плоской пластинке, помещённой в магнитное поле, направленное перпендикулярно пластинке. Возникает поперечное электрическое поле, создающее напряжение Холла:

$$U_{\perp} = E_y a = \frac{j_x B a}{nq} = \frac{B}{nqh} I = R_H \cdot \frac{B}{h} \cdot I \tag{10}$$

где $R_H = \frac{1}{nq}$ — постоянная Холла.

Продольное напряжение:

$$U_{\parallel} = E_x l = \frac{j_x l}{\sigma_0} = IR_0 \tag{11}$$

где $R_0 = \frac{l}{\sigma_0 a h}$ — омическое сопротивление образца.

2.1 Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 2. В зазоре электромагнита (рис. 2а) создаётся постоянное магнитное поле, величина которого регулируется источником питания, а ток измеряется амперметром A_1 . Направление тока в обмотках можно изменить, переключив разъём K_1 .

Градуировка электромагнита проводится с помощью милливеберметра или миллитесламетра.

Прямоугольный образец из легированного германия (рис. 26) подключается к источнику питания ($\approx 1.5\,\mathrm{B}$). При замыкании ключа K_2 по образцу течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 . Разность потенциалов U_{34} между контактами 3 и 4 измеряется вольтметром V.

Рис. 2: Схема установки для исследования эффекта Холла: (а) электромагнит; (б) держатель с образцом.

Контакты 3 и 4 могут не лежать на одной эквипотенциали из-за неточности подпайки. Чтобы исключить влияние омического падения напряжения, меняется направление магнитного поля. ЭДС Холла U_{\perp} определяется как:

$$U_{\perp} = U_{34} - U_0 \tag{12}$$

Измерив ток I и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, проводимость материала рассчитывается по формуле:

$$\rho_0 = \frac{U_{35}ah}{Il} \tag{13}$$

где l — расстояние между контактами 3 и 5, a — ширина образца, h — его толщина.

3 Ход работы

3.1 Калибровочный график зависмости

Используя милливеберметр, будем изменять значение I_M на генераторе. Таким образом, найдём зависимость значения B от I_M .

Таблица 1: Калибровка электромагнита

В, мТ	І, мА	σ_B , MT
18.0	0	0.9
127	0.12	6
249	0.24	12
359	0.36	18
470	0.49	20
590	0.61	30
690	0.73	30
880	0.96	40
1090	1.21	50

Рис. 3: Калибровочная прямая для электромагнита

Методом Хи-квадрат найдем коэффциенты полученной прямой:

$$B(I) = 920 \cdot I + 18.0 \text{ (MTJ)}$$

- $a = (920 \pm 9) \text{ MT} / \text{MA}, \ \varepsilon = 1.0 \%$
- $b = (18.0 \pm 0.5) \text{ MT}$ л, $\varepsilon = 2.7 \%$

3.2 Зависимость k(B)

Проведём измерение ЭДС Холла. Снимем зависимость напряжения U_{34} от тока через обмотки магнита (с учётом U_0 при $I_M=0$). Выполним серию экспериментов для различных токов через образец I (от 0.3 до 1 мА). Построим на одном графике семейство прямых с k:

$$k = \frac{dU_{34}}{dB}$$

Для построения графика будем пользоваться таблицей, связывающей ток в электромагните с магнитной индукцией в нем:

Таблица 2: Зависимость индукции магнитного поля от тока в электромагните

І, мА	В, мТл	σ_B , мТл	ε
0	18		8.0%
0.1	110		8.4%
0.2	202		4.6%
0.3	294		3.1%
0.4	386		2.4%
0.5	478		1.9%
0.6	570	9	1.6%
0.7	662		1.4%
0.8	754		1.2%
0.9	846		1.1%
1	938		1.0%
1.1	1030		0.9%
1.2	1122		0.8%

Рис. 4: Зависимость ЭДС Холла U от магнитного поля В при различных значениях тока через образец

3.3 Постоянная Холла

Построим график зависимости K(I) по данным из таблицы:

Таблица 3: Производная dU/dB = K при разных значениях тока в образце

І, мА	К, мкВ/мТл	σ_K , мк $\mathrm{B}/\mathrm{м}\mathrm{T}$ л	ε
0.3	4.59	0.04	1%
0.4	6.13	0.05	1%
0.5	7.74	0.05	1%
0.6	9.15	0.07	1%
0.7	10.58	0.08	1%
0.8	12.08	0.08	1%
0.9	13.57	0.10	1%
1	14.89	0.11	1%

Рис. 5: График зависимости K=dU/dB от тока через образец

Из него найдем коэффициент наклона, равный dK/dI:

$$\frac{dK}{dI} = \frac{R_x}{a} = (15.19 \pm 0.07) \frac{B}{T_{\text{T}}*A} (0.4\%)$$

Далее вычислим постоянную Холла:

$$R_x = (3.038 \pm 0.014) \cdot 10^{-2} \frac{\text{M}^3}{\text{K}_{\text{J}}} (0.4\%)$$

3.4 Остальные расчеты

Вычислим концентрацию носителей заряда следующим образом:

$$n = \frac{1}{R_r \cdot e} = (2.06 \pm 0.01) \cdot 10^{20} \, \frac{1}{\text{M}^3} \, (0.2\%)$$

Параметры установки: h=2 мм, a=8 мм, l=15 мм.

$$U_{35} = 81.1 \text{ MB}$$

Вычислим удельное сопротивление материала образца по формуле (13):

$$\sigma_0 = \frac{Il}{U_{35}ah} = (1.16 \pm 0.01) \cdot 10^{-5} \frac{1}{\text{OM} \cdot \text{M}} (1\%)$$

$$\rho_0 = \frac{1}{\sigma_0} = (86.5 \pm 0.09) \cdot 10^3 \text{ Om} \cdot \text{m}(1\%)$$

Вычислим подвижность носителей заряда:

$$\mu = \frac{\sigma_0}{qn} = (4.00 \pm 0.04) \cdot 10^{-3} \frac{\text{cm}^2}{\text{B} \cdot \text{c}} (1\%)$$

3.5 Определение знака носителей заряда

Из рисунка следует, что знак носителей заряда отрицательный. Если бы знак был положителен, то при исходных условиях мы бы пришли к явному противоречию.

4 Вывод

В ходе данной лабораторной работы было подтверждено существование эффекта Холла в полупроводниках. Было получено значение константы Холла: $(3.038\pm0.014)\cdot10^{-2}\,\frac{\rm M^3}{\rm K_{\rm II}}$ и некотрых других параметров среды (подвижность, концентрация носителей заряда). Был экспериментально определен знак носителей заряда: отрицательный. Результаты вычислений удельного сопротивления и подвижности носителей зарядов не сходятся с табличными, что, вероятно, объясняется ошибкой при измерении разности потенциалов между точками 3 и 5. В свою очередь, графики описывают верные зависимости, возможно, произошла ошибка при фиксировании единиц измерения величин (например, вместо мкВ измерялись мВ), из-за чего последние из результатов отличаются от теоретических. Тем не менее концентрация носителей зарядов получилась схожей с той, что есть на самом деле.