Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Event Study Estimators

Jeff Wooldridge Department of Economics Michigan State University

New York Camp Econometrics XV April 10, 2021

- 1. Introduction
- 2. Equivalence of TWFE and the Two-Way Mundlak Regression
- 3. Interventions with Common Treatment Timing
- 4. Staggered Event Studies
- 5. Nonlinear Models
- 6. Concluding Remarks
- 7. Stata Output: Staggered Case

1. Introduction

- For panel data, two-way fixed effects (TWFE) is still a staple in empirical research.
 - ► Applied to "structural" models say, production functions.
 - ► Applied to policy analysis event studies.
- Used for all configurations of *N* and *T*.
- With small T, large N, time effects often absorbed into covariates.
 - ► Analyze as a one-way FE estimator.

- The one-way Mundlak regression has proven useful for many purposes.
- ► Leads to simple, robust, regression-based comparisons between FE and random effects estimation: Arellano (1993).
- ► Produces insight into the pre-testing problem with Hausman tests.
- ➤ Suggests how to allow heterogeneity to correlate with covariates in nonlinear models: Mundlak-Chamberlain device.

- Wooldridge (2019, Journal of Econometrics): The one-way Mundlak regression applies to unbalanced panels.
- ► In the linear case, Mundlak still produces the complete-cases FE estimator.
- ➤ Suggests correlated random effects for heterogeneous slopes and nonlinear models.

- Current paper: Shows the equivalence between the TWFE estimator and the obvious two-way Mundlak regression.
- ► In latter case, focus is on pooled OLS, but results also hold for RE.
- Equivalence is simple but useful.
 - ► Further reveals the workings of TWFE.
- ► Applications to linear event study estimators with staggered intervention.
 - ► Applications to factor models.

- Advantages of TWFE for event studies:
- 1. We know properties of TWFE when the panel is unbalanced.
- 2. It is easy to test the null that treatment effects are homogeneous in a robust way.
- 3. Immediately extensions of the TWFE etimator to removing unit-specific trends can be applied with heterogenous treatment effects.
- Advantages of POLS for event studies:
- ► Given equivalence in the linear case, POLS can be extended to nonlinear models.

2. Equivalence of TWFE and the Two-Way Mundlak Regression

• Motivation for TWFE estimation:

$$y_{it} = \mathbf{x}_{it}\mathbf{\beta} + c_i + f_t + u_{it}, \ t = 1, ..., T; i = 1, ..., N$$

- \triangleright **x**_{it} is $1 \times K$.
- $ightharpoonup c_i$ are the unit-specific effects.
- $\blacktriangleright f_t$ are the time-specific effects.

- Results here are pure algebra.
- The two-way dummy variable regression:

$$y_{it}$$
 on \mathbf{x}_{it} , 1, $c2_i$, ..., cN_i , $f2_t$, ..., fT_t , $t = 1, ..., T$; $i = 1, ..., N$.

- ► Coefficients on \mathbf{x}_{it} are $\hat{\boldsymbol{\beta}}_{FE}$ ($K \times 1$).
- \mathbf{x}_{it} only includes variables that have some variation across i and t.

• Baltagi (2001): Two-way within transformation gives $\hat{\beta}_{FE}$.

$$\mathbf{\bar{x}}_{i\cdot} = T^{-1} \sum_{t=1}^{T} \mathbf{x}_{it}$$

$$\mathbf{\bar{x}}_{t} = N^{-1} \sum_{i=1}^{N} \mathbf{x}_{it}$$

$$\bar{\mathbf{x}} = (NT)^{-1} \sum_{i=1}^{N} \sum_{t=1}^{T} \mathbf{x}_{it} = N^{-1} \sum_{i=1}^{N} \bar{\mathbf{x}}_{i\cdot} = T^{-1} \sum_{t=1}^{T} \bar{\mathbf{x}}_{\cdot t}$$

$$\ddot{\mathbf{x}}_{it} = (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i.}) - N^{-1} \sum_{i=1}^{N} (\mathbf{x}_{it} - \overline{\mathbf{x}}_{i.}) = \mathbf{x}_{it} - \overline{\mathbf{x}}_{i.} - \overline{\mathbf{x}}_{.t} + \overline{\mathbf{x}}$$

$$\ddot{y}_{it} = y_{it} - \bar{y}_i - \bar{y}_t + \bar{y}$$

• $\hat{\beta}_{FE}$ is also the pooled OLS estimator from

$$\ddot{y}_{it}$$
 on $\ddot{\mathbf{x}}_{it}$, $t = 1, ..., T$; $i = 1, ..., N$.

- Alternatively, consider the two-way Mundlak regression.
- Pooled OLS of

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, $t = 1, ..., T$; $i = 1, ..., N$.

▶ Let $\hat{\beta}_M$ be the coefficients \mathbf{x}_{it} .

THEOREM: Provided the $K \times K$ matrix

$$\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{it}' \ddot{\mathbf{x}}_{it}$$

is nonsingular,

$$\hat{\boldsymbol{\beta}}_{M} = \hat{\boldsymbol{\beta}}_{FE}$$

Moreover, in the extended regression

$$y_{it}$$
 on 1, \mathbf{x}_{it} , $\mathbf{\bar{x}}_{i\cdot}$, $\mathbf{\bar{x}}_{\cdot t}$, \mathbf{z}_{i} , \mathbf{m}_{t} , $t = 1, ..., T$; $i = 1, ..., N$

for time-constant variables \mathbf{z}_i and unit-constant variables \mathbf{m}_t , the coefficients on \mathbf{x}_{it} are still $\hat{\boldsymbol{\beta}}_{FE}$. \square

- Proof uses Frisch-Waugh partialling out.
- Coefficients on $\bar{\mathbf{x}}_i$ and $\bar{\mathbf{x}}_{\cdot t}$ do change with the inclusion of \mathbf{z}_i , \mathbf{m}_t .
 - ▶ Basis of robust, regression-based Hausman tests.
- Random effects-type estimators give the same conclusions.
- Suppose a regressor is an interaction of the form

$$x_{itj} = z_{ij} \cdot m_{tj}$$

► Then

$$\bar{x}_{i\cdot j}=z_{ij}\cdot \bar{m}_j,\ \bar{x}_{\cdot tj}=\bar{z}_jm_{tj}$$

▶ Mundlak regression includes z_{ij} , m_{tj} as controls.

3. Interventions with Common Treatment Timing

- *T* time periods.
 - ▶ t = 1, ..., q 1 are control periods.
 - ▶ Intervention happens at t = q, remains in place.
- Treatment indicator:

$$w_{it} = d_i \cdot p_t$$

 $d_i = 1$ if (eventually) treated

 $p_t = fq_t + \cdots + fT_t = 1$ if a post treatment period

- Homogeneous treatment effect.
- Equation that motivates TWFE:

$$y_{it} = \beta w_{it} + c_i + g_t + u_{it}, t = 1, \dots, T; i = 1, 2, \dots, N$$

$$\bar{w}_{i \cdot} = d_i \bar{p}$$

$$\bar{w}_{\cdot t} = \bar{d} p_t$$

• TWM regression is equivalent to the DID regression

$$y_{it}$$
 on 1, w_{it} , d_i , p_t , $t = 1,...,T$; $i = 1,...,N$

 $\blacktriangleright \hat{\beta}_{DD} = \hat{\beta}_{FE}$. Enough to control for d_i, p_t .

• The TWFE estimator has the familiar form

$$\hat{\beta}_{FE} = \hat{\beta}_{DD} = (\bar{y}_1^{post} - \bar{y}_0^{post}) - (\bar{y}_1^{pre} - \bar{y}_0^{pre})$$

- Using separate time dummies $f2_t$, ..., fT_t in place of p_t has no effect on $\hat{\beta}_{DD}$.
- Adding controls, \mathbf{x}_i or $d_i \cdot \mathbf{x}_i$, has no effect on $\hat{\beta}_{DD}$.

• Now allow TEs to change over treatment period.

$$y_{it} = \beta_q(w_{it} \cdot fq_t) + \cdots + \beta_T(w_{it} \cdot fT_t) + c_i + g_t + u_{it}$$

• Can use TWFE to estimate the β_r .

$$w_{it} \cdot fr_t = d_i \cdot p_t \cdot fr_t = d_i(fq_t + \cdots + fT_t)fr_t = d_ifr_t$$

- Time averages are proportional to d_i .
- Cross-sectional averages proportional to fr_t .
- TWM equation:

$$y_{it} = \alpha + \beta_q(w_{it} \cdot fq_t) + \cdots + \beta_T(w_{it} \cdot fT_t) + \zeta d_i + \theta_q fq_t + \cdots + \theta_T fT_t + e_{it}$$

• POLS and RE give identical estimates.

- Add time-constant covariates, \mathbf{x}_i
- Coefficients on change with time period.
- Treatment effects change with t, \mathbf{x}_i , and possibly both:

$$y_{it} = \beta_q(w_{it} \cdot fq_t) + \dots + \beta_T(w_{it} \cdot fT_t) + [w_{it} \cdot fq_t \cdot (\mathbf{x}_i - \boldsymbol{\mu}_1)] \boldsymbol{\gamma}_q$$

$$+ \dots + [w_{it} \cdot fT_t \cdot (\mathbf{x}_i - \boldsymbol{\mu}_1)] \boldsymbol{\gamma}_T$$

$$+ (fq_t \cdot \mathbf{x}_i) \boldsymbol{\delta}_q + \dots + (fT_t \cdot \mathbf{x}_i) \boldsymbol{\delta}_T + c_i + g_t + u_{it}$$

$$\boldsymbol{\mu}_1 \equiv E(\mathbf{x}_i | d_i = 1)$$

• Can estimate by TWFE or TWM.

- TWM includes the time-constant variables d_i , \mathbf{x}_i , d_i \mathbf{x}_i .
- Need time dummies for fq_t , ..., fT_t .

$$y_{it} = \alpha + \beta_{q}(w_{it} \cdot fq_{t}) + \dots + \beta_{T}(w_{it} \cdot fT_{t}) + [w_{it} \cdot fq_{t} \cdot (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})]\boldsymbol{\gamma}_{q}$$

$$+ \dots + [w_{it} \cdot fT_{t} \cdot (\mathbf{x}_{i} - \boldsymbol{\mu}_{1})]\boldsymbol{\gamma}_{T}$$

$$+ (fq_{t} \cdot \mathbf{x}_{i})\boldsymbol{\delta}_{q} + \dots + (fT_{t} \cdot \mathbf{x}_{i})\boldsymbol{\delta}_{T} + \zeta d_{i} + \mathbf{x}_{i}\boldsymbol{\xi} + (d_{i} \cdot \mathbf{x}_{i})\boldsymbol{\lambda}$$

$$+ \theta_{q}fq_{t} + \dots + \theta_{T}fT_{t} + e_{it}$$

- Replace μ_1 with $\bar{\mathbf{x}}_1 = N_1^{-1} \sum_{i=1}^N d_i \cdot \mathbf{x}_i$.
 - ▶ In principle, account for sampling error. See did_4.do.

- Can connect this to period-by-period regression adjustment.
- Use periods 1, ..., q-1 as the control and then each $r \in \{q, q+1, ..., T\}$ in turn:
- Can estimate

$$y_{it} = \alpha + \beta_r w_{it} + w_{it} \cdot (\mathbf{x}_i - \overline{\mathbf{x}}_1) \boldsymbol{\gamma}_r + (fr_t \cdot \mathbf{x}_i) \boldsymbol{\delta}_r$$
$$+ \zeta d_i + d_i \cdot \mathbf{x}_i \boldsymbol{\lambda} + \theta_r fr_t + error_{it}$$
$$t \in \{1, \dots, q-1, r\}, i = 1, \dots, N$$

by POLS.

- Parametric version of Callaway and Sant'Anna (2020), but regression in levels.
- Estimates are identical to pooling all time periods.
- Doing separately has advantage of using doubly robust estimators (IPW and RA).

- In using a canned package such as Stata and its margins option
- need to be careful about how to specify interactions.
- Regression should look like

$$y_{it}$$
 on $1, d_i, \mathbf{x}_i, d_i \cdot \mathbf{x}_i, fq_t, ..., fT_t, fq_t \cdot \mathbf{x}_i, ..., fT_t \cdot \mathbf{x}_i,$

$$w_{it} \cdot fq_t, ..., w_{it} \cdot fT_t, w_{it} \cdot fq_t \cdot \mathbf{x}_i, ..., w_{it} \cdot fT_t \cdot \mathbf{x}_i$$

• Then use

- Same with TWFE.
- See did_4.do.

What is Being Estimated?

- Potential outcomes, $y_t(0)$ and $y_t(1)$.
- Treatment effect for a generic unit:

$$te_t = y_t(1) - y_t(0)$$

• We can identify the ATT in each treated period:

$$\tau_t \equiv E[y_t(1) - y_t(0)|d = 1], t = q, q + 1, ..., T$$

Assumption CT (Common Trend): With the (eventually) treated indicator d,

$$E[y_t(0) - y_1(0)|d] = E[y_t(0) - y_1(0)] \equiv \theta_t, \ t = 2, ..., T.$$

• With covariates:

Assumption CCT (Conditional Common Trends): For treatment indicator d and covariates \mathbf{x} ,

$$E[y_t(0) - y_1(0)|d, \mathbf{x}] = E[y_t(0) - y_1(0)|\mathbf{x}], t = 2, ..., T.$$

- Abadie (2005) uses this with T = 2.
- Similar to Callaway and Sant'Anna (2020); Sun and Abraham (2021); and others.

4. Staggered Treatments

- Wooldridge (2005): Studied robustness of FE to heterogeneous slopes.
- ► Suggested some strategies to allow heterogeneity based on intensity.
- TWFE under recent scrutiny for staggered (and more general) interventions.

- de Chaisemartin and D'Haultfœuille (2020), Goodman-Bacon (2018), Callaway and Sant'Anna (2021), Sun and Abraham (2021).
- Previous analysis shows TWFE is fine in common intervention time case provided TEs are allowed to change across t and with \mathbf{x} .
- Can use TWFE or TWM in staggered case with lots of heterogeneity.

- First intervention period is t = q.
- Some units treated in each period after q, up to T.
- No reversibility.
- Define treatment cohorts by dummies: d_q , ..., d_T .
 - $ightharpoonup d_r = 1$ if unit enters treatment in period r.
 - ► Essentially intensity indicators.

- At least two way to define treatment effects.
- 1. Have two potential outcomes again, but the TEs are

$$E[y_t(1) - y_t(0)|d_r = 1], r = q, ..., T; t = r, ..., T$$

2. Think of the intensities defining different potential outcomes:

$$\tau_{rt} \equiv E[y_t(r) - y_t(0)|d_r = 1], r = q, ..., T; t = r, ..., T$$

- Second is easier to deal with.
 - ▶ Both lead to the same estimating equation.

Assumption CTS (Common Trend, Staggered): With the exposure dummies d_q , ..., d_T ,

$$E[y_t(0) - y_1(0)|d_q,...,d_T] = E[y_t(0) - y_1(0)] \equiv \theta_t, t = 2,...,T.$$

- Again, similar to Callaway and Sant'Anna; Sun and Abraham; others.
- The paper derives the following for all t:

$$E(y_{it}|\mathbf{d}_{i}) = \eta + \lambda_{q}d_{iq} + \dots + \lambda_{T}d_{iT} + \sum_{s=2}^{T} \theta_{s}fs_{t}$$

$$+ \sum_{r=q}^{T} \sum_{s=r}^{T} \tau_{rs}(w_{it} \cdot d_{ir} \cdot fs_{t})$$

- This is the Mundlak equation.
 - ▶ Time dummies for t < q are redundant.
- Mundlak regression:

$$y_{it}$$
 on $1, d_{iq}, ..., d_{iT}, fq_t, ..., fT_t$,
$$w_{it} \cdot d_{iq} \cdot fq_t, ..., w_{it} \cdot d_{iq} \cdot fT_t, ..., w_{it} \cdot d_{iT} \cdot fT_t$$

• Equivalently, can use TWFE and drop everything except

$$w_{it} \cdot d_{iq} \cdot fq_t, ..., w_{it} \cdot d_{iq} \cdot fT_t, ..., w_{it} \cdot d_{iT} \cdot fT_t$$

• In practice, may need to impose commonality across cohort/time.

• Add covariates.

Assumption CCTS (Conditional Common Trends, Staggered):

For exposure indicators d_r and covariates \mathbf{x} ,

$$E[y_t(0) - y_1(0)|d_q, \dots, d_T, \mathbf{x}] = E[y_t(0) - y_1(0)|\mathbf{x}], t = 2, \dots, T.$$

- \bullet Assume all conditional expectations are linear in \mathbf{x} .
- This means linearity conditional on each $d_r = 1, r = q, ..., T$.

$$\dot{\mathbf{x}}_r \equiv \mathbf{x} - E(\mathbf{x}|d_r = 1), r = q, \dots, T$$

• Paper derives

$$E(y_t|d_q,...,d_T,\mathbf{x}) = \eta + \sum_{r=q}^T \lambda_r d_r + \mathbf{x}\mathbf{\kappa} + \sum_{r=q}^T (d_r \cdot \mathbf{x}) \zeta_r$$

$$+ \sum_{s=2}^T \theta_s f s_t + \sum_{s=2}^T (f s_t \cdot \mathbf{x}) \pi_t$$

$$+ \sum_{r=q}^T \sum_{s=r}^T \tau_{rs} (d_r \cdot f s_t) + \sum_{r=q}^T \sum_{s=r}^T (d_r \cdot f s_t \cdot \dot{\mathbf{x}}_r) \rho_{rs}.$$

• Słoczyński (forthcoming, REStat) in cross-sectional case with unconfoundness: Can be important to allow for slope heterogeneity.

• The regression is

$$y_{it}$$
 on $1, d_{iq}, ..., d_{iT}, \mathbf{x}_i, d_{iq} \cdot \mathbf{x}_i, ..., d_{iT} \cdot \mathbf{x}_i,$

$$fq_t, ..., fT_t, fq_t \cdot \mathbf{x}_i, ..., fT_t \cdot \mathbf{x}_i,$$

$$w_{it} \cdot d_{iq} \cdot fq_t, ..., w_{it} \cdot d_{iq} \cdot fT_t, ...,$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_t, ..., w_{it} \cdot d_{i,q+1} \cdot fT_t, ..., w_{it} \cdot d_{iT} \cdot fT_t,$$

$$w_{it} \cdot d_{iq} \cdot fq_t \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{iq} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT},$$

$$w_{it} \cdot d_{i,q+1} \cdot f(q+1)_t \cdot \dot{\mathbf{x}}_{iq}, ..., w_{it} \cdot d_{i,q+1} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT}, ...,$$

$$w_{it} \cdot d_{iT} \cdot fT_t \cdot \dot{\mathbf{x}}_{iT}$$

$$\dot{\mathbf{x}}_{ir} = \mathbf{x}_i - \overline{\mathbf{x}}_r = \mathbf{x}_i - N_r^{-1} \sum_{h=1}^N d_{hr} \mathbf{x}_h.$$

- RE gives identical estimates.
- ► Improving over POLS requires allowing more general patterns of serial correlation and maybe time-varying variances.
- Or drop everything in the first line except $fq_t \cdot \mathbf{x}_i$, ..., $fT_t \cdot \mathbf{x}_i$ and use TWFE.
 - ► Numerically identical.
- Can use Stata and margins to account for sampling variation in $\bar{\mathbf{x}}_r$.
 - ► See staggered 6.do.

5. Nonlinear Models

- With small T, TWFE cannot be applied to most nonlinear models.
 - ► Exception is Poisson regression.
- The pooled OLS methods extend to any nonlinear model.
- Suppose $y_{it} \ge 0$.

• Exponential mean is natural:

$$E(y_{it}|d_{iq},...,d_{iT}) = \exp\left[\eta + \lambda_q d_{iq} + \cdots + \lambda_T d_{iT} + \sum_{s=2}^T \theta_s f s_t + \sum_{r=q}^T \sum_{s=r}^T \tau_{rs} (w_{it} \cdot d_{ir} \cdot f s_t)\right]$$

- Can be estimated by pooled Poisson.
 - ► Estimator is fully robust; cluster standard errors (with *T* small).

 \bullet Or, can drop the d_{ir} and introduce mulitiplicative heterogeneity:

$$E(y_{it}|d_{iq},\ldots,d_{iT},c_i) = c_i \exp \left[\sum_{s=2}^T \theta_s f s_t + \sum_{r=q}^T \sum_{s=r}^T \tau_{rs}(w_{it} \cdot d_{ir} \cdot f s_t)\right].$$

- Estimate by FE Poisson.
 - ▶ Estimates are identical to POLS as in linear case.

- No longer equivalent with covariates.
- Can estimate

$$E(y_{it}|d_{iq},...,d_{iT},\mathbf{x}_{i},c_{i}) = c_{i} \exp \left[\sum_{s=2}^{T} \theta_{s} f s_{t} + \sum_{s=2}^{T} (f s_{t} \cdot \mathbf{x}_{i}) \boldsymbol{\pi}_{s} + \sum_{r=q}^{T} \sum_{s=r}^{T} \boldsymbol{\tau}_{rs} (w_{it} \cdot d_{ir} \cdot f s_{t}) + \sum_{r=q}^{T} \sum_{s=r}^{T} (w_{it} \cdot d_{ir} \cdot f s_{t} \cdot \dot{\mathbf{x}}_{ir}) \boldsymbol{\rho}_{rs}\right]$$

by FE Poisson.

► Fully robust, allows unbalanced panels.

• Underlying common trends assumption to identify ATTs:

$$\frac{E[y_t(0)|d_q,\ldots,d_T,\mathbf{x}]}{E[y_1(0)|d_q,\ldots,d_T,\mathbf{x}]} = \frac{E[y_t(0)|\mathbf{x}]}{E[y_1(0)|\mathbf{x}]}$$

• For other nonlinear response functions – logit, probit – CT assumption is on underlying latent variable.

6. Concluding Remarks

- Equivalence between TWFE and TWM has applications to event study estimators.
- ► Show TWFE can be made much more flexible than constant effect.
 - ► TWFE some resilience to unbalanced panels.
 - ► TWFE can be used for exponential models.
- ► TWM extends to general nonlinear models (logit, fractional logit).
- Equivalence may also suggest different strategies for factor models.

7. Stata Output: Staggered Case

```
. use staggered_6, clear

. xtset id year
        panel variable: id (strongly balanced)
        time variable: year, 2011 to 2016
            delta: 1 unit

. gen f2014 = year == 2014

. gen f2015 = year == 2015

. gen f2016 = year == 2016

. egen wsum = sum(w), by(id)

. gen d4 = wsum == 3

. gen d5 = wsum == 2

. gen d6 = wsum == 1
```

```
. * Constant TE:
```

sigma_e

.19979414

.

. xtreg logy w f2014 f2015 f2016, fe vce(cluster id)

Fixed-effects (within) regression Group variable: id	Number of obs = Number of groups =	3,270 545
R-sq:	Obs per group:	
within = 0.1106	$\mathtt{min} =$	6
between = 0.0100	avg =	6.0
overal1 = 0.0001	max =	6
	F (4,544) =	77.56
$corr(u_i, Xb) = -0.0655$	Prob > F =	0.0000

(Std. Err. adjusted for 545 clusters in id)

Robust **P**> | t | Std. Err. [95% Conf. Interval] logy Coef. 10.97 0.000 .1633485 .0148916 .1340964 .1926007 .010606 f2014 .067731 6.39 0.000 .0468972 .0885649 f2015 -.0314376 .0109958 -2.86 0.004 -.0530371 -.0098381 5.64 .0833337 f2016 .061815 .0109547 0.000 .0402962 2.412875 .0035134 686.77 0.000 2.419776 _cons 2.405973 sigma_u .97499069

rho | .95970045 (fraction of variance due to u_i)

. reg logy w f2014 f2015 f2016 d4 d5 d6, vce(cluster id)

Linear regression	Number of obs	=	3,270
	F (7 , 544)	=	46.52
	$\mathtt{Prob} > \mathtt{F}$	=	0.0000
	R-squared	=	0.0164
	Root MSE	=	98206

		Robust				
logy	Coef.	Std. Err.	t	P > t	[95% Conf.	<pre>Interval]</pre>
	+					
w	.1633485	.0148985	10.96	0.000	.1340829	.1926142
f2014	.067731	.0106109	6.38	0.000	.0468876	.0885744
£2015	0314376	.0110009	-2.86	0.004	053047	0098282
£2016	.061815	.0109598	5.64	0.000	.0402863	.0833436
d4	3287467	.0910431	-3.61	0.000	5075857	1499077
d5	0187403	.2060319	-0.09	0.928	4234558	.3859753
d6	.0190121	. 2663328	0.07	0.943	5041546	.5421789
_cons	2.494212	.0521605	47.82	0.000	2.391751	2.596672

. * TE varies by period:

.

logy	 Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval]
c.w#c.f2014	.1700551	.0220181	7.72	0.000	.1268043	.2133059
c.w#c.f2015	.1569093	.021125	7.43	0.000	.1154127	.198406
c.w#c.f2016	.1639358	.0221439	7.40	0.000	.1204379	.2074338
f2014 f2015 f2016 _cons	.0660821 0294763 .0616178 2.412875	.0114382 .0118883 .0119632 .0035142	5.78 -2.48 5.15 686.61	0.000 0.013 0.000 0.000	.0436136 0528288 .0381181 2.405972	.0885506 0061237 .0851174 2.419778
sigma_u sigma_e rho	.97500299 .19985916 .95967624	(fraction	of varia	nce due t	co u_i)	

. reg logy c.w#c.f2014 c.w#c.f2015 c.w#c.f2016 ///
> f2014 f2015 f2016 d4 d5 d6, vce(cluster id)

(Std. Err. adjusted for 545 clusters in id)

logy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
c.w#c.f2014	.1700551	.0220282	7.72	0.000	.1267844	. 2133258
c.w#c.f2015	.1569093	.0211348	7.42	0.000	.1153936	.1984251
c.w#c.f2016	.1639358	.022154	7.40	0.000	.1204179	. 2074538
f2014 f2015 f2016 d4 d5 d6 cons	.0660821 0294763 .0616178 3288891 017765 .0189143 2.494192	.0114435 .0118937 .0119687 .0910915 .2060861 .2664067	5.77 -2.48 5.15 -3.61 -0.09 0.07 47.80	0.000 0.014 0.000 0.000 0.931 0.943 0.000	.0436032 0528396 .0381073 5078233 422587 5043976 2.391702	.0885609006113 .0851283149955 .387057 .5422262 2.596683

. xtreg logy c.w#c.f2014 c.w#c.f2015 c.w#c.f2016 ///
> f2014 f2015 f2016 d4 d5 d6, re vce(cluster id)

logy	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
c.w#c.f2014	1700551	.0220282	7.72	0.000	.1268807	.2132296
c.w#c.f2015	.1569093	.0211348	7.42	0.000	.115486	.1983327
c.w#c.f2016	.1639358	.022154	7.40	0.000	.1205147	. 207357
£2014	 .0660821	.0114435	5.77	0.000	.0436532	.0885109
f2015	0294763	.0118937	-2.48	0.013	0527876	006165
£2016	.0616178	.0119687	5.15	0.000	.0381596	. 085076
d4	3288891	.0910915	-3.61	0.000	5074252	1503531
d5	017765	.2060861	-0.09	0.931	4216863	.3861564
d6	.0189143	. 2664067	0.07	0.943	5032334	.5410619
_cons	2.494192	.0521756	47.80	0.000	2.39193	2.596455
sigma_u	.9638903					
sigma_e	.19985916					
rho	.95877965	(fraction	of varia	nce due t	:o u_i)	

```
. * TE varies by entry cohort (intensity):
.
. xtreg logy c.w#c.d4 c.w#c.d5 c.w#c.d6 ///
> f2014 f2015 f2016, fe vce(cluster id)
```

(Std. Err. adjusted for 545 clusters in id)

logy	 Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval]
c.w#c.d4	.1800497	.0163678	11.00	0.000	.147898	.2122015
c.w#c.d5	.1133156	.0314756	3.60	0.000	.0514869	.1751442
c.w#c.d6	.0919859	.0637986	1.44	0.150	0333359	.2173078
f2014 f2015 f2016 cons	.0636247 0326062 .0628723 2.412875	.0107827 .0110059 .0109928 .0035181	5.90 -2.96 5.72 685.84	0.000 0.003 0.000 0.000	.0424438 0542254 .0412789 2.405964	.0848055 010987 .0844658 2.419786
cons sigma_u sigma_e rho	.97563289 .19965948 .9598034	(fraction				

. reg logy c.w#c.d4 c.w#c.d5 c.w#c.d6 /// f2014 f2015 f2016 d4 d5 d6, vce(cluster id)

(Std. Err. adjusted for 545 clusters in id)

logy	 Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval]
c.w#c.d4	1800497	.0163753	11.00	0.000	.1478832	.2122163
c.w#c.d5	.1133156	.0314901	3.60	0.000	.0514584	.1751727
c.w#c.d6	.0919859	.063828	1.44	0.150	0333936	.2173654
f2014 f2015	.0636247	.0107877	5.90	0.000	.0424341	.0848153
f2016	0326062 .0628723	.0110109 .0109978	-2.96 5.72	0.003 0.000	0542354 .0412689	010977 .0844757
d4	3370973	.0910864	-3.70	0.000	5160215	1581731
d5	0020626	. 2058754	-0.01	0.992	4064708	.4023456
d6	.0309059	. 2665283	0.12	0.908	4926449	.5544567
_cons	2.494915	.0521823	47.81	0.000	2.392411	2.597418

49

. xtreg logy c.w#c.d4 c.w#c.d5 c.w#c.d6 /// f2014 f2015 f2016 d4 d5 d6, re vce(cluster id)

logy	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
c.w#c.d4	.1800497	.0163753	11.00	0.000	.1479547	. 2121447
c.w#c.d5	.1133156	.0314901	3.60	0.000	.0515961	.1750351
c.w#c.d6	 .0919859	.063828	1.44	0.150	0331146	.2170865
£2014	.0636247	.0107877	5.90	0.000	.0424812	.0847681
f2015	0326062	.0110109	-2.96	0.003	0541872	0110252
£2016	.0628723	.0109978	5.72	0.000	.041317	.0844277
d4	3370973	.0910864	-3.70	0.000	5156234	1585712
d5	0020626	. 2058754	-0.01	0.992	4055711	.4014458
d6	.0309059	. 2665283	0.12	0.908	49148	.5532919
_cons	2.494915	.0521823	47.81	0.000	2.392639	2.59719
sigma_u	 .9638972					
sigma_e	.19965948					
rho	.95885915	(fraction	of varia	nce due t	to u_i)	

(Std. Err. adjusted for 545 clusters in id)

logy	Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval]
c.d4#c.f2014	.1799818	.0223482	8.05	0.000	.1360826	. 2238811
c.d4#c.f2015	.175937	.0228629	7.70	0.000	.1310266	. 2208473
c.d4#c.f2016	.1843389	.0249739	7.38	0.000	.1352819	. 2333959
c.d5#c.f2015	.0986968	.0411317	2.40	0.017	.0179005	.1794931
c.d5#c.f2016	.1280679	.0439805	2.91	0.004	.0416755	. 2144603
c.d6#c.f2016	.0943579	.0640588	1.47	0.141	031475	.2201909
f2014 f2015 f2016 _cons	.0636414 0307366 .0608776 2.412875	.0114978 .0118934 .0119708 .0035195	-2.58 5.09	0.000	0540993 .037363	
sigma_u sigma_e rho	.97563252 .19975631 .95976594	(fraction	of varia	nce due 1	to u_i)	

(Std. Err. adjusted for 545 clusters in id)

logy	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
c.d4#c.f2014	 .1799818	.0223584	8.05	0.000	.1360624	.2239013
c.d4#c.f2015	.175937	.0228734	7.69	0.000	.131006	. 220868
c.d4#c.f2016	.1843389	. 0249854	7.38	0.000	.1352593	. 2334185
c.d5#c.f2015	.0986968	.0411506	2.40	0.017	.0178633	.1795303
c.d5#c.f2016	.1280679	.0440007	2.91	0.004	.0416357	.2145001
c.d6#c.f2016	 .0943579	.0640883	1.47	0.142	0315329	. 2202488
f2014 f2015 f2016 d4 d5 d6	.0636414 0307366 .0608776 3371154 0020849 .0305106	.0115031 .0118989 .0119763 .0911247 .205955	5.53 -2.58 5.08 -3.70 -0.01 0.11	0.000 0.010 0.000 0.000 0.992 0.909	.0410455 0541101 .0373522 5161148 4066494 4932688	.0862372 0073632 .084403 158116 .4024797 .55429
_cons	2.494933	.0522037	47.79	0.000	2.392387	2.597478

(Std. Err. adjusted for 545 clusters in id)

logy	 Coef.	Robust Std. Err.	z	P > z	[95% Conf.	Interval]
c.d4#c.f2014	.1799818	.0223584	8.05	0.000	.1361601	. 2238036
c.d4#c.f2015	.175937	.0228734	7.69	0.000	.1311059	. 220768
c.d4#c.f2016	 .1843389	.0249854	7.38	0.000	.1353685	. 2333093
c.d5#c.f2015	.0986968	.0411506	2.40	0.016	.0180431	.1793505
c.d5#c.f2016	.1280679	.0440007	2.91	0.004	.041828	.2143078
c.d6#c.f2016	 .0943579	.0640883	1.47	0.141	0312529	. 2199687
£2014	 .0636414	.0115031	5.53	0.000	.0410958	.086187
f2015	0307366	.0118989	-2.58	0.010	0540581	0074152
£2016	.0608776	.0119763	5.08	0.000	.0374045	.0843506
d4	3371154	.0911247	-3.70	0.000	5157165	1585142
d5	0020849	. 205955	-0.01	0.992	4057493	.4015796
d6	.0305106	. 2666447	0.11	0.909	4921035	
_cons	2.494933	.0522037	47.79	0.000	2.392615	2.59725
	t					

sigma_u | .96389386

sigma_e | .19975631 rho | .9588206 (fraction of variance due to u_i)

. sum x1 if d4

Variable	Obs	Mean	Std. Dev.	Min	Max
x 1	80 4	11.73881	1.197314	 8	15

- . gen $x1_dm4 = x1 r(mean)$
- . sum x1 if d5

Variable	Obs	Mean	Std. Dev.	Min	Max
x 1	192	11.28125	1.529488	6	14

- $. gen x1_dm5 = x1 r(mean)$
- . sum x1 if d6

Variable	Obs	Mean	Std. Dev.	Min	Max
x1	102	12	1.980099	9	15

. gen $x1_dm6 = x1 - r(mean)$

logy	Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval
c.w#c.d4#c.f2014	.1800395	.0222895	8.08	0.000	.1362555	. 2238236
c.w#c.d4#c.f2015	.1758216	.0225127	7.81	0.000	.1315991	.220044
c.w#c.d4#c.f2016	.1849706	.0249513	7.41	0.000	.1359579	. 2339833
c.w#c.d5#c.f2015	.0978163	.0413402	2.37	0.018	.0166103	.1790222
c.w#c.d5#c.f2016	.1327046	.0434009	3.06	0.002	.0474506	.2179586
c.w#c.d6#c.f2016	.092621	.062385	1.48	0.138	0299239	. 2151659
c.w#c.d4#c.f2014#c.x1_dm4	0189186	.0161854	-1.17	0.243	0507122	.012875
c.w#c.d4#c.f2015#c.x1_dm4	0392521	.0176217	-2.23	0.026	0738671	0046372
c.w#c.d4#c.f2016#c.x1_dm4	0246808	.0215333	-1.15	0.252	0669795	.0176178
c.w#c.d5#c.f2015#c.x1_dm5	.0001442	.0237887	0.01	0.995	0465848	.0468732

c.w#c.d5#c.f2016#c.x1_dm5	03 9724	.0212825	-1.87	0.063	0815299	.0020819
c.w#c.d6#c.f2016#c.x1_dm6	0403321	.0322018	-1.25	0.211	1035872	.022923
f2014	.0454511	.0707414	0.64	0.521	0935088	.1844109
f2015	0158952	.0783568	-0.20	0.839	1698141	.1380238
f2016	0474077	.0795173	-0.60	0.551	2036063	.1087908
c.f2014#c.x1	.0015447	.0060751	0.25	0.799	0103889	.0134783
c.f2015#c.x1	0012545	.0065546	-0.19	0.848	0141299	.0116209
c.f2016#c.x1	.0091707	.0066265	1.38	0.167	0038459	.0221874
_cons	2.412875	.0035054	688.34 	0.000	2.405989	2.419761
sigma_u sigma_e rho	.97594894 .1996671 .95982544	(fraction	of varia	nce due t	co u_i)	

(Std. Err. adjusted for 545 clusters in id

logy	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval
c.w#c.d4#c.f2014	.1800395	.0223136	8.07	0.000	.1362082	.2238708
c.w#c.d4#c.f2015	.1758216	.022537	7.80	0.000	.1315514	.2200917
c.w#c.d4#c.f2016	.1849706	.0249782	7.41	0.000	.1359051	.2340361
c.w#c.d5#c.f2015	.0978163	.0413848	2.36	0.018	.0165227	.1791098
c.w#c.d5#c.f2016	.1327046	.0434477	3.05	0.002	.0473587	.2180505
c.w#c.d6#c.f2016	.092621	.0624522	1.48	0.139	0300561	. 2152981
c.w#c.d4#c.f2014#c.x1_dm4	 0189186	.0162029	-1.17	0.243	0507465	.0129092
c.w#c.d4#c.f2015#c.x1_dm4	 0392521	.0176407	-2.23	0.026	0739044	0045999
c.w#c.d4#c.f2016#c.x1_dm4	 0246808	.0215565	-1.14	0.253	0670251	.0176634
c.w#c.d5#c.f2015#c.x1_dm5	 .0001442	.0238144	0.01	0.995	0466352	.0469236

c.w#c.d5#c.f2016#c.x1_dm5	039724	.0213054	-1.86	0.063	081575	.002127
c.w#c.d6#c.f2016#c.x1_dm6	0403321	. 0322365	-1.25	0.211	1036554	.0229912
f2014	.0454511	.0708177	0.64	0.521	0936586	.1845608
f2015	0158952	.0784413	-0.20	0.839	1699801	.1381897
f2016	0474077	.079603	-0.60	0.552	2037747	.1089592
c.f2014#c.x1	.0015447	.0060817	0.25	0.800	0104018	.0134911
c.f2015#c.x1	0012545	.0065617	-0.19	0.848	0141438	.0116348
c.f2016#c.x1	.0091707	.0066336	1.38	0.167	0038599	.0222014
d4	-1.356329	.7810326	-1.74	0.083	-2.890538	.17788
d5	1.191999	1.144603	1.04	0.298	-1.056385	3.440383
d6	1.690494	1.679344	1.01	0.315	-1.6083	4.989288
x 1	.0682135	.025351	2.69	0.007	.0184158	.1180113
c.d4#c.x1	.0872358	.0672249	1.30	0.195	0448164	. 2192881
c.d5#c.x1	1026349	.1014854	-1.01	0.312	3019862	.0967163
c.d6#c.x1	1394164	.1293121	-1.08	0.281	3934286	.1145958
_cons	1.689357	.3034252	5.57	0.000	1.093328	2.285385

(Std. Err. adjusted for 545 clusters in id

.______

logy	 Coef.	Robust Std. Err.	z	P > z	[95% Conf.	Interval
c.w#c.d4#c.f2014	.1800395	.0223136	8.07	0.000	.1363058	.2237733
c.w#c.d4#c.f2015	.1758216	.022537	7.80	0.000	.1316499	.2199932
c.w#c.d4#c.f2016	.1849706	.0249782	7.41	0.000	.1360143	. 233927
c.w#c.d5#c.f2015	.0978163	.0413848	2.36	0.018	.0167036	.1789289
c.w#c.d5#c.f2016	.1327046	.0434477	3.05	0.002	.0475486	.2178606
c.w#c.d6#c.f2016	.092621	.0624522	1.48	0.138	0297831	.2150251
$\texttt{c.w#c.d4\#c.f2014\#c.x1_dm4}$	 0189186	.0162029	-1.17	0.243	0506757	.0128384
$\texttt{c.w#c.d4\#c.f2015\#c.x1_dm4}$	 0392521	.0176407	-2.23	0.026	0738273	004677
$\texttt{c.w#c.d4\#c.f2016\#c.x1_dm4}$	 0246808	. 0215565	-1.14	0.252	0669309	.0175692
c.w#c.d5#c.f2015#c.x1_dm5	.0001442	.0238144	0.01	0.995	0465311	.0468195

c.w#c.d5#c.f2016#c.x1_dm5	039724	.0213054	-1.86	0.062	0814819	.0020339
c.w#c.d6#c.f2016#c.x1_dm6	0403321	.0322365	-1.25	0.211	1035145	.0228503
f2014	.0454511	.0708177	0.64	0.521	0933491	.1842513
f2015	0158952	.0784413	-0.20	0.839	1696373	.1378469
f2016	0474077	.079603	-0.60	0.551	2034268	.1086113
c.f2014#c.x1	.0015447	.0060817	0.25	0.800	0103752	.0134646
c.f2015#c.x1	0012545	.0065617	-0.19	0.848	0141151	.0116062
c.f2016#c.x1	.0091707	.0066336	1.38	0.167	003831	.0221724
d4	-1.356329	.7810326	-1.74	0.082	-2.887125	.1744666
d 5	1.191999	1.144603	1.04	0.298	-1.051383	3.43538
d 6	1.690494	1.679344	1.01	0.314	-1.60096	4.981949
x 1	.0682135	.025351	2.69	0.007	.0185266	.1179005
c.d4#c.x1	.0872358	.0672249	1.30	0.194	0445226	. 2189943
c.d5#c. x 1	1026349	.1014854	-1.01	0.312	3015426	.0962728
c.d6#c.x1	1394164	.1293121	-1.08	0.281	3928634	.1140306
_cons	1.689357	. 3034252	5.57	0.000	1.094654	2.284059
	.95699311					
sigma_e	.1996671					
rho	. 9582852	(fraction	of varia	nce due t	co u_i)	

```
. * Now use margins for ATTs to account for sampling error in the covariate means. . * The changes in standard errors tend to be minor:
```

(Std. Err. adjusted for 545 clusters in id)

logy	Coef.	Robust Std. Err.	t	P > t	[95% Conf.	Interval]
c.w#c.d4#c.f2014		.1899911	2.12	0.035	.0289157	. 775328
c.w#c.d4#c.f2015	.6365949	. 2113629	3.01	0.003	.2214076	1.051782
c.w#c.d4#c.f2016	.4746943	. 2530328	1.88	0.061	0223467	.9717353
c.w#c.d5#c.f2015	.0961897	. 2600982	0.37	0.712	4147302	.6071095
c.w#c.d5#c.f2016	.5808412	. 2470379	2.35	0.019	.0955762	1.066106
c.w#c.d6#c.f2016	.5766064	. 3640648	1.58	0.114	1385386	1.291751
c.w#c.d4#c.f2014#c.x1	 0189186	.0162029	-1.17	0.243	0507465	.0129092
c.w#c.d4#c.f2015#c.x1	 0392521	.0176407	-2.23	0.026	0739044	0045999

c.w#c.d4#c.f2016#c.x1	 0246808	.0215565	-1.14	0.253	0670251	.0176634
c.w#c.d5#c.f2015#c.x1	.0001442	.0238144	0.01	0.995	0466352	.0469236
c.w#c.d5#c.f2016#c.x1	039724	.0213054	-1.86	0.063	081575	.002127
c.w#c.d6#c.f2016#c.x1	0403321	.0322365	-1.25	0.211	1036554	.0229912
f2014	.0454511	.0708177	0.64	0.521	0936586	.1845607
£2015	0158952	.0784413	-0.20	0.839	1699801	.1381897
£2016	0474077	.079603	-0.60	0.552	2037747	.1089592
c.f2014#c.x1	 .0015447 	.0060817	0.25	0.800	0104018	.0134911
c.f2015#c.x1	0012545	.0065617	-0.19	0.848	0141438	.0116348
c.f2016#c.x1	.0091707	.0066336	1.38	0.167	0038599	.0222014
d4	 -1.356329	.7810326	-1.74	0.083	-2.890538	.17788
d5	1.191999	1.144603	1.04	0.298	-1.056385	3.440383
d6	1.690494	1.679344	1.01	0.315	-1.6083	4.989288
x1	.0682135	.025351	2.69	0.007	.0184158	.1180113
		.02002				
c.d4#c.x1	.0872358	.0672249	1.30	0.195	0448164	. 2192881
c.d5#c.x1	1026349	.1014854	-1.01	0.312	3019862	.0967163
c.d6#c.x1	 1394164	.1293121	-1.08	0.281	3934286	.1145958
_cons	1.689357	. 3034252	5.57	0.000	1.093328	2.285385

•

```
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f2014 = 1 f2015 = 0 f2016 = 0) ///
        subpop(if d4 == 1) vce(uncond)
>
Average marginal effects
                                         Number of obs = 3,270
                                         Subpop. no. obs = 804
Expression : Linear prediction, predict()
dy/dx w.r.t. : w
at
          : d4
                                    1
            f2014
            f2015
                         =
            f2016
             d5
                         =
             d6
                              (Std. Err. adjusted for 545 clusters in id)
                      Unconditional
                 dy/dx Std. Err. t P>|t| [95% Conf. Interval]
         w | .1800395 .0223999 8.04 0.000 .1360386 .2240404
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f2014 = 0 f2015 = 1 f2016 = 0) ///
        subpop(if d4 == 1) vce(uncond)
>
Average marginal effects
                                         Number of obs = 3,270
                                         Subpop. no. obs = 804
Expression : Linear prediction, predict()
dy/dx w.r.t. : w
at
       : d4
                                     1
            £2014
```

```
f2015
            f2016 =
             d5
             d6
                              (Std. Err. adjusted for 545 clusters in id)
                      Unconditional
                       Std. Err. t P>|t| [95% Conf. Interval]
                 dy/dx
         w | .1758216 .0229027 7.68 0.000 .1308329 .2208102
. margins, dydx(w) at (d4 = 1 d5 = 0 d6 = 0 f2014 = 0 f2015 = 0 f2016 = 1) ///
        subpop(if d4 == 1) vce(uncond)
                                         Number of obs = 3,270
Average marginal effects
                                         Subpop. no. obs = 804
Expression : Linear prediction, predict()
dy/dx w.r.t. : w
at
           : d4
            f2014
            f2015
            f2016
            d5
            d6
                              (Std. Err. adjusted for 545 clusters in id)
                      Unconditional
                 dy/dx Std. Err. t P>|t| [95% Conf. Interval]
```

```
w | .1849706 .0251094 7.37 0.000 .1356474 .2342938
. margins, dydx(w) at (d4 = 0 d5 = 1 d6 = 0 f2014 = 0 f2015 = 1 f2016 = 0) ///
        subpop(if d5 == 1) vce(uncond)
>
Average marginal effects
                                         Number of obs = 3,270
                                          Subpop. no. obs = 192
Expression : Linear prediction, predict()
dy/dx w.r.t. : w
at : d4
                                    0
            f2014
            £2015
            £2016
            d5
                                    1
             d6
                              (Std. Err. adjusted for 545 clusters in id)
                      Unconditional
                 dy/dx Std. Err. t P>|t| [95% Conf. Interval]
         w | .0978163 .0413848 2.36 0.018 .0165227 .1791098
. margins, dydx(w) at (d4 = 0 d5 = 1 d6 = 0 f2014 = 0 f2015 = 0 f2016 = 1) ///
        subpop(if d5 == 1) vce(uncond)
                                         Number of obs = 3,270
Average marginal effects
                                          Subpop. no. obs = 192
Expression : Linear prediction, predict()
```

```
dy/dx w.r.t. : w
at : d4
           £2014
            f2015
            f2016
            d5
                                    1
            d6
                             (Std. Err. adjusted for 545 clusters in id)
                      Unconditional
            dy/dx Std. Err. t P>|t| [95% Conf. Interval]
         w | .1327046 .0447612 2.96 0.003 .0447787 .2206305
. margins, dydx(w) at (d4 = 0 d5 = 0 d6 = 1 f2014 = 0 f2015 = 0 f2016 = 1) ///
        subpop(if d6 == 1) vce(uncond)
>
Average marginal effects
                                         Number of obs = 3,270
                                         Subpop. no. obs = 102
Expression : Linear prediction, predict()
dy/dx w.r.t. : w
at : d4
                                    0
            £2014
            f2015
            f2016
            d5
            d6
                              (Std. Err. adjusted for 545 clusters in id)
```

		Unconditiona	.1			
	dy/dx	Std. Err.	t	P > t	[95% Conf.	Interval]
w	.092621	.065386	1.42	0.157	0358189	. 2210609

- . * Now exponential model for y. Without covariates, FE Poisson and
 . * pooled Poisson are identical. Adding the full set of year dummies
 . * does not change the estimates.
 .
 . xtpoisson y c.d4#c.f2014 c.d4#c.f2015 c.d4#c.f2016 ///
 > c.d5#c.f2015 c.d5#c.f2016 ///
- > c.d6#c.f2016 ///
- > f2014 f2015 f2016, fe vce(robust)

note: you are responsible for interpretation of non-count dep. variable

(Std. Err. adjusted for clustering on id)

У	 Coef.	Robust Std. Err.	z	P > z	[95% Conf.	Interval]
c.d4#c.f2014	.1942707	.0320979	6.05	0.000	.1313599	.2571814
c.d4#c.f2015	.1708469	.0339736	5.03	0.000	.1042598	. 237434
c.d4#c.f2016	.2224609	.0299002	7.44	0.000	.1638575	.2810643
c.d5#c.f2015	.0589306	.0440037	1.34	0.180	0273152	.1451763
c.d5#c.f2016	.2043645	. 0548574	3.73	0.000	.0968459	. 3118831
c.d6#c.f2016	 .1179841	.1654163	0.71	0.476	2062258	. 4421941
f2014 f2015	 .045545 0547305	.0198769 .0170008	2.29 -3.22	0.022 0.001	.006587 0880515	.084503 0214096
f2016	.040442	.0188927	2.14	0.032	.0034131	.077471

У	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
c.d4#c.f2014	.1942707	.0321274	6.05	0.000	.1313022	. 2572392
c.d4#c.f2015	.1708469	.0340048	5.02	0.000	.1041986	. 2374952
c.d4#c.f2016	. 2224609	.0299277	7.43	0.000	.1638036	. 2811181
c.d5#c.f2015	.0589306	.0440442	1.34	0.181	0273944	.1452556
c.d5#c.f2016	.2043645	.0549078	3.72	0.000	.0967471	. 3119818
c.d6#c.f2016	.1179841	.1655683	0.71	0.476	2065237	.4424919
f2014 f2015 f2016 d4	.045545 0547305 .040442 4453415	.0198951 .0170164 .01891 .1198097	2.29 -3.22 2.14 -3.72	0.022 0.001 0.032 0.000	.0065512 0880821 .003379 6801642	.0845388 021379 .077505 2105188
d 5	.0809309	.201272	-3.72	0.688	0001042 313555	.4754169
d6	.2727917	.3909351	0.70	0.485	493427	1.03901
_cons	3.000529	.0623774	48.10	0.000	2.878272	3.122787

note: you are responsible for interpretation of non-count dep. variable

(Std. Err. adjusted for clustering on id)

У	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
c.d4#c.f2014	.1942707	.0320979	6.05	0.000	.1313599	.2571814
c.d4#c.f2015	.1708469	.0339736	5.03	0.000	.1042598	. 237434
c.d4#c.f2016	.2224609	.0299002	7.44	0.000	.1638575	.2810643
c.d5#c.f2015	.0589306	.0440037	1.34	0.180	0273152	.1451763
c.d5#c.f2016	. 2043645	. 0548574	3.73	0.000	.0968459	. 3118831
c.d6#c.f2016	 .1179841	.1654163	0.71	0.476	2062258	. 4421941
year						
2012	.0306881	.0156213	1.96	0.049	.000071	.0613052
2013	.0580666	.0168517	3.45	0.001	.0250379	.0910953
2014	.075411	.0206204	3.66	0.000	.0349958	.1158263
2015	0248645	.0203301	-1.22	0.221	0647108	.0149818
2016	.070308	.0187326	3.75	0.000	.0335928	.1070233

(Std. Err. adjusted for clustering on id

У	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval
c.w#c.d4#c.f2014	 .1966912	.0320517	6.14	0.000	.1338709	. 2595114
c.w#c.d4#c.f2015	 .181199	.0330198	5.49	0.000	.1164814	. 2459165
c.w#c.d4#c.f2016	. 2307054	.0297962	7.74	0.000	.172306	. 2891048
c.w#c.d5#c.f2015	.0550393	.0431379	1.28	0.202	0295093	.139588
c.w#c.d5#c.f2016	.2142023	.0527788	4.06	0.000	.1107577	.3176469
c.w#c.d6#c.f2016	 .0219704	.1270021	0.17	0.863	2269492	. 27089
c.w#c.d4#c.f2014#c.x1_dm4	 012003	.0214177	-0.56	0.575	0539809	.0299749

c.w#c.d4#c.f2015#c.x1_dm4	0602142	.0202287	-2.98	0.003	0998616	0205667
c.w#c.d4#c.f2016#c.x1_dm4	0347854	.029333	-1.19	0.236	0922771	.0227062
c.w#c.d5#c.f2015#c.x1_dm5	0194663	.0249223	-0.78	0.435	0683132	.0293806
c.w#c.d5#c.f2016#c.x1_dm5	0 4 60565	.0245187	-1.88	0.060	0941123	.0019993
c.w#c.d6#c.f2016#c.x1_dm6	1263765	.0500253	-2.53	0.012	2244244	0283287
f2014 f2015 f2016	.041844 001671 1416546	.1302967 .1172639 .117782	0.32 -0.01 -1.20	0.748 0.989 0.229	2135328 231504 372503	.2972208 .2281621 .0891939
c.f2014#c.x1	.0003109	.0107946	0.03	0.977	0208461	.0214678
c.f2015#c.x1	0044377	.009647	-0.46	0.646	0233455	.01447
c.f2016#c.x1	.0151421	.0094951	1.59	0.111	0034679	.0337521

(Std. Err. adjusted for 545 clusters in id

У	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval
c.w#c.d4#c.f2014	.1960423	.0321189	6.10	0.000	.1330905	. 2589942
c.w#c.d4#c.f2015	.1782379	.0335015	5.32	0.000	.1125762	. 2438995
c.w#c.d4#c.f2016	. 2291282	.0297649	7.70	0.000	.1707902	. 2874663
c.w#c.d5#c.f2015	.0552965	.0429822	1.29	0.198	0289471	.1395402
c.w#c.d5#c.f2016	.2127154	.0526125	4.04	0.000	.1095968	. 3158339
c.w#c.d6#c.f2016	.0250988	.1058216	0.24	0.813	1823077	. 2325053
c.w#c.d4#c.f2014#c.x1_dm4	 00879 4 7	.0166791	-0.53	0.598	0414852	.0238957
c.w#c.d4#c.f2015#c.x1_dm4	 043178	.017645	-2.45	0.014	0777615	0085944
c.w#c.d4#c.f2016#c.x1_dm4	 0276426 	.0224272	-1.23	0.218	0715992	.0163139

c.w#c.d5#c.f2015#c.x1_dm5	0226903	.0298553	-0.76	0.447	0812055	.035825
c.w#c.d5#c.f2016#c.x1_dm5	0476805	.0244321	-1.95	0.051	0955665	.0002055
c.w#c.d6#c.f2016#c.x1_dm6	1207353	.0572943	-2.11	0.035	2330301	0084405
f2014	.0422137	.117699	0.36	0.720	1884721	. 2728996
f2015	0077869	.1054262	-0.07	0.941	2144186	.1988447
f2016	1199528	.1051667	-1.14	0.254	3260757	.08617
c.f2014#c.x1	.0002798	.0097223	0.03	0.977	0187755	.0193351
c.f2015#c.x1	0039262	.0086462	-0.45	0.650	0208726	.0130201
c.f2016#c.x1	.0133375	.0084839	1.57	0.116	0032906	.0299656
d4	-1.525272	.6487306	-2.35	0.019	-2.79676	2537829
d5	.751651	.9702689	0.77	0.439	-1.150041	2.653343
d6	3.010725	1.848229	1.63	0.103	6117372	6.633187
x1	.0549107	.026275	2.09	0.037	.0034127	.1064087
c.d4#c.x1	.0914792	.0539856	1.69	0.090	0143307	.1972891
c.d5#c.x1	0564077	.0864516	-0.65	0.514	2258498	.1130344
c.d6#c.x1	2337497	.1524969	-1.53	0.125	532638	.0651387
_cons	2.34674	. 3263905	7.19	0.000	1.707027	2.986454