UTFPR/Curitiba - SISTEMAS INTELIGENTES – 2025/2 – Prof. Tacla

João Pedro de Pieri Batista da Silva - 2424525 - BSI

Técnicas escolhidas

A triagem média deve ser algo simples de ser feita, além de seguir uma lógica replicável, por este motivo foi escolhida a árvore de decisão, que resolve melhor o problema de classificação para uma triagem, ao mesmo tempo que não chega a ser uma solução tão eficiente para a regressão, tentando descobrir chance de sobrevivência (de 0 a 100).

Escolha Realizada: CART para classificação e MLP/Redes Neurais para regressão

Classificador CART

1) Datasets Utilizados

Dataset de Treino/Validação:

- Origem: Gerado com a função gerar_dados_vitimas.py
- Parâmetros de criação: (Foram utizados parâmetros já presentes na main do gerador, com exceção do número de vítimas)
- n_vitimas=800,
- media_idade=25,
- desvio_idade=3,
- tipo_acidente="uniforme",
- nivel_ruido=0.02

Dataset de Teste:

• Origem: VictSim3/datasets/vict/1000v/data.csv

• Número de vítimas: 1000

K-fold:

Classificação: 5 foldsRegressão: 5 folds

2) Parametrizações - Classificador

P1:

• max_depth: 2

• min_samples_leaf: 0.23

• random state: 42

P2:

• max_depth: 1

• min_samples_leaf: 0.20

• random_state: 42

P3:

• max_depth: 5

• min_samples_leaf: 0.25

• random_state: 42

3) Resultados de Treino e Validação - Classificador

P1:

f-score	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	0.985	0.987	0.992	0.983	0.985	0.9866	0.000008
validação	0.992	0.983	0.966	1.000	0.992	0.986572	0.000130

P2:

f-score	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	0.335	0.337	0.336	0.334	0.333	0.3348	0.000002
validação	0.333	0.328	0.331	0.341	0.341	0.334762	0.000002

P3:

f-score	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	0.954	0.643	0.658	0.977	0.982	0.8307	0.024741
validação	0.935	0.627	0.652	0.967	0.983	0.830669	0.024849

4) Médias dos F-scores - Classificador

MÉDIA f-score	P1	P2	P3
treino	0.9866	0.3348	0.8307
validação	0.986572	0.334762	0.830669

5) Comparação das Variâncias dos F-scores - Classificador

VARIÂNCIA f-score	P1	P2	P3
treino	0.000008	0.000002	0.024741
validação	0.000130	0.000026	0.024849

6 - 7) Escolha de uma Parametrização - Classificador

*Parametrização Escolhida: P1

Além das três parametrizações foram testados outros valores para os parâmetros, e foi percebido que profundidade máxima maior que 1 já era suficiente para não demonstrar tanta diferença em relação a outros parâmetros, assim como n mínimo de amostras por folhas, desde que maior que 23% (0.23) também era número ideal para um modelo, aumentar não alterava o resultado do modelo, enquanto diminuir o afetava negativamente. Dito isso foi escolhido a primeira parametrização, de forma a alcançar resultado eficaz e diminuir a complexidade da árvore. Além disso não foi encontrada nada que levasse a acreditar que estivesse ocorrendo um overfitting, e o próprio f-score já descarta a possibilidade de underfitting.

8) Resultados do Teste Cego - Classificador

Métricas de Performance:

• F-score: 0.8948

Precisão geral: 0.8963Recall geral: 0.8948

Matriz de Confusão

9) Conclusão - Classificador

Por serem dados gerados proceduralmente, aparentemente não há tanto ruído entre eles, ao usar os padrões já descritos na função main o dataset inicial tinha cerca de 2% de ruído, e pela boa predição no dataset inicial (cerca de 0.98 de fscore) acredito que se trate de uma função legivel computacionalmente, apenas afetada pelo ruído escolhido, apesar de não conseguir medir o ruído no dataset de teste para predição após escolha do modelo, não seria surpresa que o ruído estivesse próximo de sua taxa de falha, o classificador parece ser bem eficaz no que ele foi desenvolvido, apesar da diferença entre os fscores, deve ser relacionada a diferença da qualidade dos datasets, o treino em um dataset mais limpo por sua vez parece não ter gerado um overfitting do modelo.

Regressos MLP/Redes Neurais

1) Datasets Utilizados

Ambos datasets e quantidade de folds no k-fold foi igual a utilizada para desenvolvimento do classificador.

2) Parametrizações - Regressor

P1:

• n_layers: 2

• n_neurons: 2

learning_rates: 0.01random_state: 42

P2:

n_layers: 6

• n_neurons: 10

learning_rates: 0.025random_state: 42

P3:

• n_layers: 30

• n_neurons: 30

• learning_rates: 0.035

• random_state: 42

3) Resultados de Treino e Validação - Regressor

P1:

MSE	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	-0.11331867	-0.11943828	-0.11570488	-0.11501407	-0.11566706	-0.115829	0.000005
validação	-0.12639919	-0.10103001	-0.11768912	-0.11943393	-0.11603349	-0.116117	0.000087

P2:

MSE	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	-0.01367758	-0.04410777	-0.01203441	-0.0398772	-0.01175755	-0.024291	0.000264
validação	-0.00949561	-0.03401594	-0.01431698	-0.05122582	-0.01524142	-0.024859	0.000305

P3:

MSE	Fold K=1	Fold K=2	Fold K=3	Fold K=4	Fold K=5	Média	Variância
treino	-0.04368503	-0.04404468	-0.04110191	-0.03987384	-0.04160527	-0.042062	0.000003
validação	-0.03609366	-0.03378463	-0.04629813	-0.05125908	-0.0440804	-0.042303	0.000053

4) Médias dos MSE - Regressor

MÉDIA MSE	P1	P2	Р3
treino	-0.115829	-0.024291	-0.042062
validação	-0.116117	-0.024859	-0.042303

5) Comparação das Variâncias dos MSE - Regressor

VARIÂNCIA MSE	P1	P2	P3
treino	0.000005	0.000264	0.000003
validação	0.000087	0.000305	0.000053

6 - 7) Escolha de uma Parametrização - Regressor

As três parametrizações foram feitas da seguinte forma: Uma mais rápida e enxuta (P1), enquanto outra é mais moderada, apesar de possuir mais camadas e neurônios não chega a ser tão complexa ou demorada de treinar (P2), e por fim uma parametrização mais complexa, mais camadas e mais neurônios, com um learning rate maior, um tanto quanto agressiva. Verificando os resultados é possivel ver que a parametrização 1 possui resultados bem fracos, enquanto a segunda e a terceira possuem resultado relativamente similar, ambos são MSE próximos de zero, porém a parametrização 2 possui quase que metade do MSE da terceira. Ao observar a variância percebemos que a parametrização 2 varia mais entre folds do que as demais, ainda assim os números são baixos. Apesar da variância, foi escolhida a parametrização 2, por ser uma parametrização mais moderada, e por possuir um menor MSE.

8) Resultados do Teste Cego - Regressor

Métricas de Performance:

• MSE Negativo: -0.068369

^{*}Parametrização Escolhida: P2

Matriz de Confusão

---'

9) Conclusão - Classificador

O MSE negativo apresenta uma taxa de erro significativo (-0.068369), ainda mais quando considerando que os resultados variam de 0 a 1, o modelo porém, era o melhor dentre as parametrizações possíveis, principalmente quando se tratando de MSE negativo, acredito que para a quantidade de parâmetros o resultado não é descartavel, então apesar do MSE baixo, o resultado pode sim satisfatório devido as limitações impostas pelo dataset ou até previsibilidade de uma chance de sobrevivência, processo cujo é mais complicado de ser feito do que uma simples classificação como no modelo anterior, é cabível então, ainda mais ao considerar os resultados preliminares das demais parametrizações, que seja um limite imposto pelos propríos dados, um bom exemplo da área de ciência de dados é falar sobre modelos para prever o mercado financeiro em comparação com outros, uma precisão satisfatória não é universal e pode ser explicada pela complexidade da previsão de uma chance de sobrevivência.s