BAHUG 101 - Lecture 2

23th September 2015

Outline of Today's Lecture

- ► Parametric Polymorphism
- ► Total and Partial functions
- Recursion Patterns
- Functional Programming style
- Currying and Partial Application

Parametric Polymorphism

How the type **a** is determined

Polymorphic functions have "type variables" in their type definition.

```
lengthList :: [a] \rightarrow Integer
lengthList [] = 0
lengthList (x:xs) = 1 + lengthList xs
```

How the type a is determined

Polymorphic functions have "type variables" in their type definition.

```
lengthList :: [a] → Integer
lengthList [] = 0
lengthList (x:xs) = 1 + lengthList xs
```

In Haskell, the *caller of a function gets to determine the type* when creaing a polymorphic function.

Functions that assume inputs are impossible

Take the following function.

```
bogus :: [a] \rightarrow Bool
bogus ('X' : _) = True
bogus _ = False
```

¹We can do something like this with ad hoc polymorphism, type families,

Functions that assume inputs are impossible

Take the following function.

```
bogus :: [a] \rightarrow Bool
bogus ('X' : _) = True
bogus _ = False
```

It assumes [a] is [Char] in the definition of the function, and it thus illegal. We can do something if a is an Int and something different if a is a Char.¹

GADTs

¹We can do something like this with ad hoc polymorphism, type families,

Functions that work for any input are ok

In the following function, we do not need to know what the list contains to determine if it is empty.

```
notEmpty :: [a] \rightarrow Bool
notEmpty (_:_) = True
notEmpty [] = False
```

Parameticity allows for type erasure

During compilation the types are removed from the code. They are not needed during execution because the types are known at compile time!

strange $:: a \rightarrow b$

```
strange :: a → b
strange = error "impossible!" — error :: String → a
```

There is no way to write this function! It would need to work for any **a** and any **b**.

Given the type signature, do we know how to write this function?

limited **::** a → a

Given the type signature, do we know how to write this function?

limited **::** a → a

limited x = x

We know that limited must be the identity function because it is the only function, for any a, that takes an a and returns an a.²

²You can programmatically do this with a Haskell package called (Djinn)[http://lambda-the-ultimate.org/node/1178]

Partial and Total Functions

What happens in this example?

To take the first element of a list, you could use the **head** function.

```
head :: [a] \rightarrow a head (x:_) = x
```

What does head [] produce?

What happens in this example?

To take the first element of a list, you could use the **head** function.

```
head :: [a] \rightarrow a head (x:_) = x
```

What does head [] produce?

An error! It cannot produce a value of type a.

What happens in this example?

To take the first element of a list, you could use the **head** function.

```
head :: [a] \rightarrow a
head (x:) = x
```

What does head [] produce?

An error! It cannot produce a value of type a.

The **head** in Haskell looks like this.

```
head :: [a] → a
head (x:_) = x
head [] = errorEmptyList "head"
```

head is a partial function

head is a *partial function*; it is not defined for all inputs. Certain inputs will cause **head** to crash.

head is a partial function

head is a *partial function*; it is not defined for all inputs. Certain inputs will cause **head** to crash.

In contrast, a total function is a function defined for all inputs.

Partial Functions should be avoided

It is a common Haskell practice to avoid partial functions, such as

- head
- ▶ tail
- ▶ init
- ▶ last
- **▶** (!!)

How to avoid partial functions

Here is a total function using partial functions. It is a bit cludgey.

```
doStuff1 :: [Int] \rightarrow Int
doStuff1 [] = 0
doStuff1 [_] = 0
doStuff1 xs = head xs + (head (tail xs))
```

How to avoid partial functions

Here is a total function using partial functions. It is a bit cludgey.

```
doStuff1 :: [Int] \rightarrow Int
doStuff1 [] = 0
doStuff1 [_] = 0
doStuff1 xs = head xs + (head (tail xs))
```

We can make it simpler by pattern matching.

```
doStuff2 :: [Int] \rightarrow Int
doStuff2 [] = 0
doStuff2 [_] = 0
doStuff2 (x1:x2:_) = x1 + x2
```

Recursion Patterns

If we have a function taking in a value of type [a], what can we do to it?

▶ Do something to every element of the list.

If we have a function taking in a value of type [a], what can we do to it?

- ▶ Do something to every element of the list.
- Keep only some of the elements of the list (based on some test).

If we have a function taking in a value of type [a], what can we do to it?

- ▶ Do something to every element of the list.
- Keep only some of the elements of the list (based on some test).
- ▶ Combine all the elements of the list in some form.

If we have a function taking in a value of type [a], what can we do to it?

- ▶ Do something to every element of the list.
- Keep only some of the elements of the list (based on some test).
- ▶ Combine all the elements of the list in some form.
- ► There are other things. What can you think of?

Do something to every element of a list: add

Here is a simple function that adds one to every element in a list of integers.

```
addOneToAll :: [Int] \rightarrow [Int]
addOneToAll [] = []
addOneToAll (x:xs) = x + 1 : addOneToAll xs
```

Do something to every element of a list: absolute value

Here is a simple function that takes the absolute value of every element in a list.

```
absAll :: [Int] \rightarrow [Int]
absAll [] = []
absAll (x:xs) = abs x : absAll xs
```

Do something to every element of a list: square

Here is a simple function that squares all of the elements in a list.

```
squareAll :: [Int] \rightarrow [Int]
squareAll [] = []
squareAll (x:xs) = x^2 : squareAll xs
```

Notice a pattern?

It seems we keep writing the following.

```
\begin{tabular}{lll} $\sf doSomethingToEachInt :: [Int] &\to [Int] \\ $\sf doSomethingToEachInt [] &= [] \\ $\sf doSomethingToEachInt (x:xs) = ? \ x : doSomethingToEachInt \ xs \\ \end{tabular}
```

where

```
f :: Int → Int
```

Pass in the function on **Int**s

If we pass in the function that works on **Int**s we can simplify **doSomethingToEachInt**.

```
doSomethingToEachInt':: (Int \rightarrow Int) \rightarrow [Int] \rightarrow [Int] doSomethingToEachInt'_ [] = [] doSomethingToEachInt' f (x:xs) = f x : doSomethingToEachInt' f xs
```

Мар

We can make doSomethingToEachInt even more generic to work on lists of any type if the f we pass in works for any input a to any output b.

```
map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b]
map _ [] = []
map f (x:xs) = f x : map f xs
```

Redoing our original functions

We can rewrite our original functions as so.

addOneToAll'
$$xs = map (+1) xs$$

Redoing our original functions

We can rewrite our original functions as so.

```
addOneToAll' xs = map (+1) xs
absAll' xs = map abs xs
```

Redoing our original functions

We can rewrite our original functions as so.

```
addOneToAll' xs = map (+1) xs
absAll' xs = map abs xs
squareAll' xs = map (^2) xs
```

We can also ignore elements in a list

What if we only want to keep the positive integers?

We can also ignore elements in a list

What if we only want to keep the positive integers?

```
keepOnlyPositive :: [Int] → [Int]
keepOnlyPositive [] = []
keepOnlyPositive (x:xs)
  x > 0 = x : keepOnlyPositive xs
  otherwise = keepOnlyPositive xs
Or only the even values?
keepOnlyEven :: [Int] \rightarrow [Int]
keepOnlyEven [] = []
keepOnlyEven (x:xs)
   even x = x : keepOnlyEven xs
  otherwise = keepOnlyEven xs
```

Filter

We see a similar abstraction.

Filter

We see a similar abstraction.

Similar to before, we can abstract this to lists of any type.

```
filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a] filter _ [] = [] filter p (x:xs)  
| p x = x : filter p xs   — Keep the element | otherwise = filter p xs — Ignore an element
```

p is known as a predicate function.

Can we abstract combining elements?

We can combine elements of a list. Take for example the following functions.

```
sum' :: [Int] \rightarrow Int
sum' [] = 0
sum' (x:xs) = x + sum' xs
```

Can we abstract combining elements?

We can combine elements of a list. Take for example the following functions.

```
sum' :: [Int] → Int
sum' [] = 0
sum' (x:xs) = x + sum' xs

product' :: [Int] → Int
product' [] = 1
product' (x:xs) = x * product' xs
```

Can we abstract combining elements?

We can combine elements of a list. Take for example the following functions.

```
sum' :: [Int] \rightarrow Int
sum' [] = 0
sum'(x:xs) = x + sum'xs
product' :: [Int] → Int
product' [] = 1
product' (x:xs) = x * product' xs
length' :: [a] \rightarrow Int
length' [] = 0
length' (:xs) = 1 + length' xs
```

The combining case basic formula

The basic formula is this.

```
combine :: [a] \rightarrow b combine [] = someBaseValue combine (x:xs) = x 'binaryFunction' combine xs
```

Fold

The basic formula can be written in Haskell as such.

```
fold :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b

fold f z [] = z — base value

fold f z (x:xs) = f x (fold f z xs)

— types a b
```

This function has another name, foldr, in the standard Prelude.

Rewriting our examples

Our functions from before can be written in a simpler manner using **fold**

```
sum'' = fold (+) 0
product'' = fold (*) 1
length'' = fold addOne 0
where addOne _ s = 1 + s
```

In Haskell, there are several different common kinds of folds.

▶ foldr, which folds from the right.

```
foldr f z [a,b,c] == a 'f' (b 'f' (c 'f' z))
```

In Haskell, there are several different common kinds of folds.

▶ foldr, which folds from the right.

foldr f z
$$[a,b,c] == a$$
 'f' $(b$ 'f' $(c$ 'f' $z)$)

▶ foldl, which folds from the left.

```
foldl f z [a,b,c] == ((z 'f' a) 'f' b) 'f' c
```

In Haskell, there are several different common kinds of folds.

▶ foldr, which folds from the right.

foldr f z
$$[a,b,c] == a$$
 'f' $(b$ 'f' $(c$ 'f' $z)$)

▶ foldl, which folds from the left.

foldl f z [a,b,c]
$$==$$
 ((z 'f' a) 'f' b) 'f' c

► foldr1, which folds from the right eagerly.

In Haskell, there are several different common kinds of folds.

foldr, which folds from the right.

foldr f z
$$[a,b,c] == a$$
 'f' $(b$ 'f' $(c$ 'f' $z)$)

▶ foldl, which folds from the left.

foldl f z [a,b,c]
$$==$$
 ((z 'f' a) 'f' b) 'f' c

- ▶ foldr1, which folds from the right eagerly.
- ▶ fold11, which folds from the left eagerly.

In Haskell, there are several different common kinds of folds.

▶ foldr, which folds from the right.

foldr f z
$$[a,b,c] == a$$
 'f' $(b$ 'f' $(c$ 'f' $z)$)

▶ fold1, which folds from the left.

foldl f z [a,b,c]
$$==$$
 ((z 'f' a) 'f' b) 'f' c

- ► foldr1, which folds from the right eagerly.
- ▶ fold11, which folds from the left eagerly.

In general, **fold1** has poor performance. Use **foldr** or **fold11** instead

Functional Programming

Functional Combinators

It is common in Haskell to "glue" functions together.

An example of this is the (.) compose combinator.

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

f g x = f (g x)

Functional Combinators

It is common in Haskell to "glue" functions together.

An example of this is the (.) compose combinator.

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

f g x = f (g x)

If we ant to both add one and multiply by 4 for each element in a list, we can do it this way.

```
add1Mul4 :: [Int] \rightarrow [Int] add1Mul4 x = map ((*4) . (+1)) x
```

Another interesting combinator is (\$)

(
$$$$$
) :: (a \rightarrow b) \rightarrow a \rightarrow b
f $$$ x = f x

Another interesting combinator is (\$)

(
$$$$$
) :: (a \rightarrow b) \rightarrow a \rightarrow b
f $$$ x = f x

This function is often used to remove parenthesis (due to operator/function precidence). For example

```
negateNumEven1 :: [Int] \rightarrow Int
negateNumEven1 x = negate (length (filter even x))
```

Another interesting combinator is (\$)

(
$$$$$
) :: (a \rightarrow b) \rightarrow a \rightarrow b
f $$$ x = f x

This function is often used to remove parenthesis (due to operator/function precidence). For example

```
negateNumEven1 :: [Int] \rightarrow Int
negateNumEven1 x = negate (length (filter even x))
```

can be rewritten as

```
negateNumEven2 :: [Int] \rightarrow Int
negateNumEven2 x = negate $ length $ filter even x
```

Another interesting combinator is (\$)

(
$$$$$
) :: (a \rightarrow b) \rightarrow a \rightarrow b
f $$$ x = f x

This function is often used to remove parenthesis (due to operator/function precidence). For example

```
negateNumEven1 :: [Int] \rightarrow Int
negateNumEven1 x = negate (length (filter even x))
```

can be rewritten as

```
negateNumEven2 :: [Int] \rightarrow Int negateNumEven2 x = negate $ length $ filter even x
```

or as

```
negateNumEven3 :: [Int] \rightarrow Int negateNumEven3 x = negate . length . filter even x = x
```

Lambda expressions

Lambda expressions allow us to define small functions inline. For example

```
duplicate1 :: [String] \rightarrow [String]
duplicate1 = map dup
  where dup x = x \leftrightarrow x
```

Lambda expressions

Lambda expressions allow us to define small functions inline. For example

```
duplicate1 :: [String] \rightarrow [String]
duplicate1 = map dup
  where dup x = x \leftrightarrow x
```

can be simplified as

```
duplicate2 :: [String] \rightarrow [String] duplicate2 = map (x \rightarrow x + x)
```

Lambda expressions are best used for only the smallest functions. Otherwise use a helper function.

Currying and Partial Application

Does the multiple input functions look strange?

When we have a function that takes multiple inputs, we didn't discuss the syntax too much. Why are all but the last types inputs, and the last one the output?

```
f :: Int \rightarrow Int \rightarrow Int

f x y = 2*x + y
```

Does the multiple input functions look strange?

When we have a function that takes multiple inputs, we didn't discuss the syntax too much. Why are all but the last types inputs, and the last one the output?

```
f :: Int \rightarrow Int \rightarrow Int

f x y = 2*x + y
```

In truth, all Haskell functions $\it take only one input.$ When written out, $\it f$ looks like so.

```
f':: Int \rightarrow (Int \rightarrow Int) — Takes in an Int, returns a function f'x = y \rightarrow 2*x + y
```

Does the multiple input functions look strange?

When we have a function that takes multiple inputs, we didn't discuss the syntax too much. Why are all but the last types inputs, and the last one the output?

```
f :: Int \rightarrow Int \rightarrow Int

f x y = 2*x + y
```

In truth, all Haskell functions $\it take only one input.$ When written out, $\it f$ looks like so.

f':: Int
$$\rightarrow$$
 (Int \rightarrow Int) — Takes in an Int, returns a function f'x = \y \rightarrow 2*x + y

Function application is left associative, so the following are equivalent.

$$f 3 2 = (f 3) 2$$

Currying

The concept of representing multi-argument functions as single argument ones is known as *currying*.

Currying

The concept of representing multi-argument functions as single argument ones is known as *currying*.

We can make a function take two arguments by instead taking one pair.

```
f'' :: (Int, Int) \rightarrow Int
f'' (x, y) = 2*x + y
```

Currying

The concept of representing multi-argument functions as single argument ones is known as *currying*.

We can make a function take two arguments by instead taking one pair.

```
f'' :: (Int, Int) \rightarrow Int
f'' (x, y) = 2*x + y
```

And convert between these forms using the **curry** and **uncurry** functions.

```
curry :: ((a,b) \rightarrow c) \rightarrow a \rightarrow b \rightarrow c

curry f x y = f (x,y)

uncurry :: (a \rightarrow b \rightarrow c) \rightarrow (a,b) \rightarrow c

uncurry f (x,y) = f x y
```

Partial Application

Since all functions in Haskell only really take in one input and potentially return a function, we can choose to only apply some of the arguments.

add
$$x y = x + y$$

add4 $y = add 4 y$

This is called *partial application*. This only works for applying arguments from left to right order.

Wholemeal Programming

Consider the following function.

It isn't very Haskell-y because it does a lot in one function and is works at a low-level.

Wholemeal Programming

Consider the following function.

It isn't very Haskell-y because it does a lot in one function and is works at a low-level.

Instead, a Haskell programmer would probably write this.

Instead of thinking of direct manipulations, we can think of what kind of processing "pipeline" we want.