Midterm 1 Review

Section 5.1 - Areas and Distances

- 1. (a) (Stewart, 5.1: 5) Estimate the area under the graph of $f(x) = 1 + x^2$ from x = -1 to x = 2 using three rectangles and right endpoints. Then improve your estimate by using six rectangles. Sketch the curve and the approximating rectangles.
 - (b) Repeat part (a) using left endpoints.
 - (c) Repeat part (a) using midpoints.
 - (d) From your sketches in parts (a)-(c), which appears to be the best estimate?
- 2. (Stewart, 5.1: 13) The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find lower and upper estimates for the distance that she traveled during these three seconds.

t (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
v (ft/s)	0	6.2	10.8	14.9	18.1	19.4	20.2

3. (Stewart, 5.1: 19) Find an expression for the area under the graph of f as a limit. Do not evaluate the limit.

(a)
$$f(x) = \frac{2x}{x^2+1}$$
, $1 \le x \le 3$

(b)
$$f(x) = \sqrt{\sin x}, \ 0 \le x \le \pi$$

Section 5.2 - The Definite Integral

- 1. (Stewart, 5.2: 26)
 - (a) Find an approximation to the integral $\int_0^4 (x^2 3x) dx$ using a Riemann sum with right endpoints and n = 8.
 - (b) Draw a diagram showing the approximating rectangles in part (a).
 - (c) Interpret the integral in part (a) as a difference of areas and illustrate with a diagram.
- 2. (Stewart, 5.2: 35, 37, 39) Evaluate the integral by interpreting it in terms of areas.

(a)
$$\int_{-1}^{2} (1-x)dx$$

(b)
$$\int_{-3}^{0} (1 + \sqrt{9 - x^2}) dx$$

(c)
$$\int_{-1}^{2} |x| dx$$

3. (Stewart, 5.2: 47) Write as a single integral in the form $\int_a^b f(x)dx$:

$$\int_{-2}^{2} f(x)dx + \int_{2}^{5} f(x)dx - \int_{-2}^{-1} f(x)dx$$

- 4. Given that $\int_0^{2\pi} f(x)dx = 4$ find the value for the following integrals:
 - (a) $\int_0^{2\pi} (3f(x) + 2) dx$
 - (b) $\int_0^{2\pi} \left(\frac{2f(x)}{3} + 5\right) dx$

5.3 - The Fundamental Theorem of Calculus

- 1. What does the Fundamental Theorem of Calculus say? (Both parts)
- 2. (Stewart, 5.3: 7,9,11,12,13) Find the derivative of the given functions.
 - (a) $g(x) = \int_1^x \frac{1}{t^3+1} dt$
 - (b) $g(s) = \int_5^s (t t^2)^8 dt$
 - (c) $F(x) = \int_{x}^{\pi} \sqrt{1 + \sec t} \, dt$
 - (d) $G(x) = \int_x^1 \cos \sqrt{t} \ dt$
- 3. (Stewart, 5.3: 75) On what interval is the curve

$$y = \int_0^x \frac{t^2}{t^2 + t + 2} \, dt$$

concave downward?

5.4 - Indefinite Integrals

- 1. (Stewart, 5.4: 7, 9, 15) Find the general indefinite integral.
 - (a) $\int (x^4 \frac{1}{2}x^3 + \frac{1}{4}x 2) dx$
 - (b) $\int (u+4)(2u+1) du$
 - (c) $\int (\theta \csc\theta \cot\theta) d\theta$
- 2. (Stewart, 5.3: 35, 37, 43) Evaluate the integral
 - (a) $\int_1^2 \frac{v^3 + 3v^6}{v^4} dv$
 - (b) $\int_0^1 (x^e + e^x) dx$
 - (c) $\int_0^{\pi} f(x) dx$ where $f(x) = \sin x$ if $0 \le x < \pi/2$ and $f(x) = \cos x$ if $\pi/2 \le x \le \pi$
- 3. (Stewart, 5.4: 21,25,33,35,38) Evaluate the integral.
 - (a) $\int_{-2}^{3} (x^2 3) dx$
 - (b) $\int_0^2 (2x-3)(4x^2+1) dx$
 - (c) $\int_1^2 (\frac{x}{2} \frac{2}{x}) dx$
 - (d) $\int_0^1 (x^{10} + 10^x) dx$
 - (e) $\int_0^{\pi/3} \frac{\sin\theta + \sin\theta \tan^2\theta}{\sec^2\theta} d\theta$

- 4. (Stewart, 5.4: 59) The velocity function (in meters per second) for a particle moving along a line is $v(t) = 3t^2 + 2t 5$ for $0 \le t \le 3$. Find:
 - (a) The displacement during the given time interval.
 - (b) The distance traveled by the particle during the given time interval.
- 5. (Stewart, 5.4: 61) The acceleration function in (m/s^2) for a particle moving along a line is a(t) = t + 4, the initial velocity is v(0) = 5, and the initial position is s(0) = 3.
 - (a) Find the velocity at time t

during the time interval 04t43

- (b) Find the position at time t
- (c) Find the distance traveled during the given time interval

5.5 - The Substitution Rule

- 1. Decide whether or not you need to use substitution for the following integrals and then evaluate them appropriately.
 - (a) $\int e^{7x} dx$
 - (b) $\int (8x^3 + 3x^2) dx$
 - (c) $\int \cos(x/2) dx$
 - (d) $\int e^{x^2} x \, dx$
 - (e) $\int y(y^2+1)^2 dy$
 - (f) $\int_0^1 x \sqrt{1-x^2} \, dx$
 - (g) $\int_1^e \frac{\ln x}{x} \ dx$
 - (h) $\int_{1}^{3} (\frac{1-x}{x})^2 dx$
 - (i) $\int_{-1}^{2} \frac{x}{1+x^2} dx$
 - (j) $\int_0^{\pi/6} \cos^3(2x) \sin(2x) dx$
 - (k) $\int_{-1}^{2} (x+2)^2 dx$
 - (1) $\int_0^2 \frac{e^x}{1+e^x} dx$
 - (m) $\int_0^{\pi} \frac{\sec(3x)\tan(3x)}{\cos(3x)} dx$
 - (n) $\int_3^4 (3-x)^{10} dx$