Université Paris-Sud - Topologie et Calcul Différentiel Année 2020-2021

Partiel du mercredi 10 Mars 2021

Départ 13h30 Durée : 3 heures

Les téléphones portables doivent obligatoirement être rangés <u>éteints</u>. Documents et tout autre appareil électronique sont interdits.

Dans cet énoncé, \mathbb{R}^n est automatiquement muni de la norme euclidienne $|| \ ||_2$, et de la distance euclidienne. On note (e_1, e_2, \dots, e_n) la base canonique de \mathbb{R}^n (donc e_j a toutes ses coordonnées nulles, sauf la j-ième qui vaut 1).

Exercice 1. (Rédigez bien, c'est presque une question de cours.)

On se donne un espace vectoriel V, muni d'une norme || ||, et une application linéaire $L: V \to V$.

1. On suppose qu'il existe $M \ge 0$ telle que

$$||L(x)|| \le M||x||$$
 pour tout $x \in V$. (1)

Démontrer que L est M-Lipschitzienne, c'est-à-dire que

$$||L(x) - L(y)|| \le M||x - y||$$
 pour tout choix de $x, y \in V$. (2)

2. Démontrer la réciproque : s'il existe $M \geq 0$ tel qu'on ait (2), alors on a aussi (1).

Exercice 2.

On se donne une application linéaire $\varphi : \mathbb{R}^n \to \mathbb{R}$. On note $\alpha_j = \varphi(e_j)$ l'image du j-ième élément de la base canonique.

- 1. Vérifier que $\varphi(x_1,\ldots,x_n)=\sum_{j=1}^n\alpha_jx_j$. pour $(x_1,\ldots,x_n)\in\mathbb{R}^n$.
- 2. En déduire que $|\varphi(X)| \leq \left(\sum_{j=1}^n \alpha_j^2\right)^{1/2} ||X||_2$ pour $X \in \mathbb{R}^n$.
- 3. Démonter en calculant $\varphi(X)$ pour un vecteur particulier que la norme de φ , est $|||\varphi||| = \left(\sum_{j=1}^n \alpha_j^2\right)^{1/2}$.

Exercice 3.

On se donne une base (V_1,V_2,V_3) de \mathbb{R}^3 , et pour tout $X\in\mathbb{R}^3$ on note $F(X)\in\mathbb{R}^3$ le vecteur de ses trois coordonnées dans la base (V_1,V_2,V_3) . Autrement dit, en écrivant horizontalement les vecteurs, $F(X)=(y_1,y_2,y_3)$, où les y_j sont tels que $X=\sum_{j=1}^3 y_j V_j$. On note $||\cdot||_2$ la norme euclidienne. On note aussi N la norme sur \mathbb{R}^3 définie par $N(x_1,x_2,x_3)=|x_1|+|x_2|+|x_3|$ (on admet que c'est une norme).

- 1. On pose $N_v(X) = N(F(X))$ pour tout $X \in \mathbb{R}^3$. Vérifier que N_v est une norme sur \mathbb{R}^3 .
- 2. Expliquez rapidement pour qoi il existe $M \geq 0$ tel que $N_v(X) \leq M||X||_2$ pour tout $X \in \mathbb{R}^3$.
- 3. On se donne maintenant une application linéaire $H: \mathbb{R}^3 \to \mathbb{R}^3$, on note $W_j = H(V_j)$ pour $1 \le j \le 3$, et on suppose que $||W_j||_2 \le 10$ pour $1 \le j \le 3$. Démontrer que $||H(X)||_2 \le 10M||X||_2$ pour tout $X \in \mathbb{R}^n$. [Indication : commencer par l'inégalité triangulaire].

Exercice 4.

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par f(0,0) = 0 et

$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
 pour $(x,y) \neq (0,0)$. (3)

- 1. Vérifier que f a des dérivées partielles en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$, et calculer ces dérivées partielles.
- 2. Démontrer que f est différentiable en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$, et calculer Df(x,y)(u,v) (la différentielle de f au point (x,y), appliquée au vecteur $(u,v) \in \mathbb{R}^2$.
- 3. Vérifier que f est continue en 0.
- 4. Pour tout vecteur $W = (u, v) \in \mathbb{R}^2$, on note f_W la fonction définie par $f_W(t) = f(tu, tv)$. Vérifier que f_W est dérivable sur \mathbb{R} .
- 5. En déduire que pour tout $W = (u, v) \in \mathbb{R}^2$, f a une dérivée directionnelle $\partial_W f(0, 0)$ (dans la direction W) à l'origine, que l'on calculera. Vous pouvez prendre $W \neq (0, 0)$ si vous voulez; de toute manière les définitions donnent $\partial_{(0,0)} f(0,0) = 0$.
- 6. Vérifier que l'application $W \to \partial_W f(0,0)$ n'est pas linéaire, et en déduire que f n'est pas différentiable en (0,0).

Exercice 5.

On se donne une fonction $f: \mathbb{R}^n \to \mathbb{R}$, et on note G_f le graphe de f. On rappelle que

$$G_f = \{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1}; x_{n+1} = f(x_1, \dots, x_n) \} \subset \mathbb{R}^{n+1}.$$
 (4)

On notera souvent $X=(x_1,\ldots,x_n)$ le point générique de \mathbb{R}^n et (X,x_{n+1}) un point générique de \mathbb{R}^{n+1} .

- 1. On suppose que f est continue au point $X = (x_1, \ldots, x_n)$, et on se donne une suite $\{X_k\}$ dans \mathbb{R}^n , qui converge vers X. On note $Z_k = (X_k, f(X_k)) \in \mathbb{R}^{n+1}$. Montrer que $\{Z_k\}$ converge vers un point de G_f .
- 2. On suppose maintenant que f est continue sur \mathbb{R}^n . Déduire de la question précédente que G_f est fermé.
- 3. Démontrer que réciproquement, si $G_f \subset \mathbb{R}^{n+1}$ est fermé, alors f est continue.