Cooperation in *n* - player Prisoner's Dilemma threshold game

Boza, G. (1,4), Könnyű, B. (1) and Számadó, Sz. (2,3)

1-Department of Plant Taxonomy and Ecology, Eötvös Loránd University
2-HAS Research Group of Ecology and Theoretical Biology, Eötvös Loránd University
3-Collegium Budapest, Institute for Advanced Study

Budapest, Hungary

4-IIASA, International Institute for Applied Systems Analysis

Laxenburg, Austria

Studying cooperation

Reciprocal altruism

Game theory: a tool for studying cooperation

The Prisoner's Dilemma Game

- conflict of interest: the dilemma
- two players

Player 2

	Cooperate	Defect	
Cooperate	3	0	
	Reward	Sucker	
Defect	5	1	
50,000	Cheat	Punishment	

n-players game: Public Goods Game

n-players (n > 2)

public good: non-excludable, non-rival resource

benefit function (fitness function)

n-player games in natural systems

...on land...

...and in water

n-player Prisoner's Dilemma Threshold Game

n-players from the population of N randomly chosen:Well – mixed population

group size (n) 3

threshold value (TV)

cost of cooperation (c)

benefit of cooperation (b)

	partners			
focal	CC	CD	DD	
C	b-c	b-c	- <i>c</i>	
D	b	0	0	

willingness to cooperate (x), evolving trait

$$x = 1$$
 — always cooperates

$$x = 0$$
 \longrightarrow always defects

Bach, L. A., Helvik, T., Christiansen, F. B., (2006). The evolution of n-player cooperation – threshold games and ESS bifurcations. Journal of Theoretical Biology. 238: 426-434.

Results with well-mixed population structure

Changing parameter:

c – cost of cooperation

TV – threshold value

TV = 1 / 3

Game with spatial population structure

cellular automaton

von Neumann – neighborhood:

focal individual +

4 closest individual on the grid

<u>Moore – neighborhood:</u>

focal individual +

8 closest individual on the grid asynchronous update proportional update rule

$$p_i = \frac{d_i}{\sum_{j=1}^n d_j}$$

= defectors

= cooperators

TWO GROUP FORMING SCENARIOS

Scenario 1: fixed group composition (1 area – 1 group)

Scenario 1: fixed group composition (1 area – 1 group)

Scenario 2: group composition corresponding to focal individual (focal individual – 1 focal's group + 8 neighbors' group)

Scenario 1: fixed group composition (1 area – 1 group)

Scenario 2: group composition corresponding to focal individual (focal individual – 1 focal's group + 8 neighbors' group)

Scenario 1: fixed group composition (1 area – 1 group)

Defectors overtake

Scenario 2: group composition corresponding to focal individual

(focal individual – 1 focal's group + 8 neighbors' group)

than in well-mixed population

Population structure

Results with well-mixed population structure II.

Changing parameter:

n – group size

Conclusions

High levels of cooperation can evolve in *n*-player Prisoner's Dilemma Threshold Game

What matters:

- the size of the group
- the threshold value
- interpretation of (localized) interaction group
- Update rule (competition rule)

Thank you for your attention!