

Heterogeneous computing: Domain-Specific Languages and High-Level Synthesis

Parallel Computing

Serena Curzel

Politecnico di Milano Dipartimento di Elettronica , Informazione e Bioingegneria serena.curzel@polimi.it

- Observation: most "real world" applications have complex workload characteristics
 - Parallelizable & hard to parallelize
 - SIMD patterns & divergent control flows
 - Predictable & unpredictable data accesses
- ☐ The best system is a heterogeneous one

- □ Given a fixed power budget, the goal is not only to increase performance, but also *energy efficiency*
- Specialization (i.e., fixed function hardware) can provide better energy efficiency

$$Power = \frac{Op}{second} \times \frac{Joules}{Op}$$

- General-purpose processors are not energyefficient
- For each instruction:
 - Read instruction (Address translation, communicate with icache, access icache, etc.)
 - Decode instruction (Translate op to uops, access uop cache, etc.)
 - Check for dependencies/pipeline hazards
 - Identify available execution resource
 - Use decoded operands to control register file SRAM (retrieve data)
 - Move data from register file to selected execution resource
 - Perform arithmetic operation
 - Move data from execution resource to register file
 - Use decoded operands to control write to register file SRAM

Efficient Embedded Computing [Dally et al. 08]

On the other hand, the circuit that would be required to actually perform the computation can be very simple

Choosing the right tool for the job:

- Two ideas to reduce energy consumption:
 - Use specialized processors (more operations per joule, higher energy efficiency)
 - Move less data!

Minimizing communication overhead increases performance, and it also reduces energy

consumption

Operation	Energy/Op	Cost					
(32-bit operands)	(28 nm)	(vs. ALU)					
ALU op	1 pJ	-	7				
Load from SRAM	1-5 pJ	5x	7)				
Move 10mm on-chip	32 pJ	32x	~]				
Send off-chip	500 pJ	500x					
Send to DRAM	1 nJ	1,000x					
Send over LTE	>10 µJ	10,000,000x					
data from John Brunhaver, Bill Dally, Mark Horowitz							

☐ How can we write efficient, portable parallel programs for emerging heterogeneous architectures?

Pthreads, OpenMP, Vectorized instructions, ... CUDA, OpenCL,

MPI, Spark, ...

Verilog, VHDL, ...

- □ The ideal parallel programming language provides
 - Performance
 - Productivity
 - Generality

■ Existing languages:

- Programming languages with restricted expressiveness for a particular domain
- ☐ High-level, usually declarative, and deterministic
- External or embedded within another language

- We are surrounded by data-intensive imaging applications
- Almost every imaging sensor is accessed by a powerful compute unit

Keywords: parallelism, locality

- □ Faster algorithms
 - Advanced methods, sometimes approximate computing
- Faster hardware
 - Faster CPUs (higher frequency, higher memory bandwidth, SIMD vector operations)
 - GPUs
- More efficient use of hardware
 - Parallelism
 - Better cache management
 - Memory usage

Require to reorganize computation!

- □ C++ with multithreading and SIMD operations
- CUDA/OpenCL for GPUs
- Optimized libraries (BLAS, IPP, MKL, OpenCV)

- Writing efficient image processing pipelines is hard!
 - Optimization requires manually transforming program and data structure to exploit parallelism and locality
 - Exploring of different options becomes difficult

☐ Halide proposes a radically different approach:

decouple the algorithm from the schedule

what is computed

fixed once and never modified by scheduling decisions

where and when it is computed

easily changed to explore different possibilities

□ C/C++ implementation of a box blur algorithm with 3x3 window:

```
void box_filter_3x3(const Image &in, Image &blury){
   Image blurx(in.width(), in.height()); // allocate blurx array

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
}</pre>
```

Code example

```
void box_filter_3x3(const Image &in, Image &blury){
   Image blurx(in.width(), in.height()); // allocate blurx array

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
}</pre>
```


□ C/C++ implementation of a box blur algorithm with 3x3 window:

```
void box_filter_3x3(const Image &in, Image &blury){
   Image blurx(in.width(), in.height()); // allocate blurx array

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
        blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
}</pre>
```

Serena Curzel

9.96 ms/megapixel on a quad core x86

■ Optimized C/C++ implementation:

```
void box filter 3x3(const Image &in, Image &blury) {
 m128i one third = mm set1 epi16(21846);
#pragma omp parallel for
for (intyTile = 0; yTile < in.height(); yTile += 32) {
 m128i a, b, c, sum, avg;
 m128i blurx[(256/8)*(32+2)]; // allocate tile blurx array
 for (int xTile = 0; xTile < in.width(); xTile += 256) {
   m128i *blurxPtr = blurx;
  for (int y = -1; y < 32+1; y++) {
   const uint16 t *inPtr = &(in[yTile+y][xTile]);
   for (int x = 0; x < 256; x += 8) {
    a = mm loadu si128(( m128i*)(inPtr-1));
    b = mm loadu si128(( m128i*)(inPtr+1));
    c = mm load si128((m128i*)(inPtr));
    sum = mm add epi16(mm add epi16(a, b), c);
    avg = mm mulhi epi16(sum, one third);
     mm store si128(blurxPtr++, avg);
    inPtr += 8;
  blurxPtr = blurx;
  for (int y = 0; y < 32; y++) {
    m128i * outPtr = ( m128i*)(&(blury[yTile+y][xTile]));
   for (int x = 0; x < 256; x += 8) {
    a = mm load si128(blurxPtr+(2*256)/8);
    b = mm load si128(blurxPtr+256/8);
    c = mm load si128(blurxPtr++);
    sum = mm add epi16( mm add epi16(a, b), c);
    avg = mm mulhi epi16(sum, one third);
    mm store si128(outPtr++, avg);
```

0.9 ms/megapixel on a quad core x86

parallelism (work distributed among threads, SIMD parallel vectors)

Code example

■ Optimized C/C++ implementation:

```
void box filter 3x3(const Image &in, Image &blury) {
 m128i one third = mm set1 epi16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
  m128i a, b, c, sum, avg;
 for (int xTile = 0; xTile < in.width(); xTile += 256) {
   m128i *blurxPtr = blurx;
  for (int y = -1; y < 32+1; y++) {
   const uint16 t *inPtr = &(in[yTile+y][xTile]);
   for (int x = 0; x < 256; x += 8) {
    a = mm loadu si128(( m128i*)(inPtr-1));
    b = mm loadu si128(( m128i*)(inPtr+1));
    c = mm load si128(( m128i*)(inPtr));
    sum = mm add epi16( mm add epi16(a, b), c);
    avg = _mm_mulhi_epi16(sum, one_third);
    mm store si128(blurxPtr++, avg);
    inPtr += 8:
  blurxPtr = blurx;
  for (int y = 0; y < 32; y++) {
   m128i * outPtr = ( m128i*)(&(blury[yTile+y][xTile]));
   for (int x = 0; x < 256; x += 8) {
    a = mm load si128(blurxPtr+(2*256)/8);
    b = mm load si128(blurxPtr+256/8);
    c = _mm_load_si128(blurxPtr++);
    sum = mm add epi16( mm add epi16(a, b), c);
    avg = _mm_mulhi_epi16(sum, one third);
    mm store si128(outPtr++, avg);
```

0.9 ms/megapixel on a quad core x8611x faster

locality

(compute in tiles, interleave tiles of blurx, blury, store blurx in local cache)

- So the unoptimized C/C++ version implements the pipeline like this:
 - Compute blurx on the whole input image
 - Store the result to memory
 - Load it back and compute blury on it
- The optimized version interleaves the execution of the two stages:
 - Compute blurx on a chunk of the input
 - Immediately compute blury on the intermediate result
 - Throw away the intermediate data, store the result of blury and move to the next chunk of the input

- Since we immediately throw away the intermediate results, there will be regions of blurx that are computed several times, once for each neighboring chunk of blury
- ☐ The same happens between blurx and the input image

- We were able to move from 9.9 to 0.9ms/megapixel
- The process required knowledge of parallelism and memory hierarchy
- Expensive (time consuming) because it had to be done manually
- Difficult to predict the effect of optimization choices
- Not easily portable to different hardware architectures

Now let's see how Halide solves these problems and at the same time maintains (or enhances!) the benefits in terms of performance

☐ Halide **algorithm**:

```
Var x, y; Func blurx, blury; blurx(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3; blury(x, y) = (blurx(x, y-1) + blurx(x, y) + blurx(x, y+1))/3;
```

☐ Halide schedule:

```
blury.tile(x, y, xi, yi, 256, 32)
   .vectorize(xi, 8).parallel(y);
blurx.compute_at(blury, x).store_at(blury, x).vectorize(x.8);
```

- □ There is a choice space for optimizations in an image processing pipeline
 - In what order should each stage compute its values?
 - When should each stage compute its inputs?

Serial y, serial x

1-	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

Serial x, serial y

1	Ç)	17	25	33	41	49	57
2	1	0	18	26	34	42	50	58
3	/1	1	19	27	35	43	51	59
∠.	1	2	20	28	36	44	52	60
5	1	3	21	29	37	45	53	61
6	1	4	22	30	38	46	54	62
7	1	5	23	31	39	47	55	63
8	1	6	24	32	40	48	56	64

Serial y, Vectorize x by 4

1		2	2	
3		2	ļ	
5		6	5	
7		8	3	
9		1	O	
11		1	2	
13		1	4	
15		1	6	

Parallel y, Vectorize x by 4

Split x by 2, Split y by 2, Serial youter, Serial xouter, Serial yinner, Serial xinner

1-	2	5	5	9	10	13	14
3	4	7	8	11	12	15	16
17	18	21	22	25	26	29	30
19	20	23	24	27	28	31	32
33	34	37	38	41	42	45	46
35	36	39	40	43	44	47	48
49	50	53	54	57	58	61	62
51	52	55	56	59	60	63	64

```
compute blury:
  for ...:
  blury(...) = ...
```

```
compute blurx:
  for ...:
  blurx(...) = ...
```

```
tone curve
gaussian blur
```

Compute and store producer, then compute consumer

no recomputationpoor locality

Compute producer values when needed by consumer, then throw them away

- + locality
- redundant work

Compute producer values when needed by consumer, then keep the old values for reuse?

+ locality+ no redundant work- poor parallelism

Compute producer values when needed by consumer, then throw them away

locality

+ no redundant work (property of the consumer function)

```
compute blurx:
   for c:
     for y:
        compute blury:
        for x:
        blury(...) = ...
        for x:
        blurx(...) = ...
```


Compute a subset of producer values all at once, then pass them to the consumer

+/- depend on chunk size, kernel size, parallelism...

More on scheduling and performance

Animated visualization of these and other scheduling options: https://www.youtube.com/watch?time_continue=14&v=3uiEyEKji0M&feature=emb_logo

□ Performance requires complex trade-offs and frequent reorganization of computation

■ Halide makes this iterative process easier

☐ How can we write efficient, portable parallel programs for emerging heterogeneous architectures?

Pthreads, OpenMP, Vectorized instructions, ... CUDA, OpenCL,

MPI, Spark, ...

Choosing the right tool for the job:

"Traditional" FPGA/ASIC design flow

- Register-Transfer Level (RTL) design
 - Specify behavior and structure (muxes, registers...) in Verilog/VHDL
 - Precise, fine-grained control
 - Time-consuming and error-prone!

High-Level Synthesis

- High-level behavioral design through sw programming languages
 - Automated translation to RTL
 - Like compilers, but for hardware

Benefits

- Number of expert SW developers vs HW designers
- Easier to describe complex functionalities
- □ Technology-independent design
- Easier HW/SW partitioning
- ☐ Faster design cycle (including verification)

Challenges

- While compilers map instructions to existing hardware, HLS tools must create a custom architecture
- ☐ Huge design space to explore
- Not all code is suitable to be translated into hardware

High-Level Synthesis

- Example HLS tool: Bambu, developed at DEIB
- ☐ (Probably) Most popular: Vitis HLS, from AMD/Xilinx
- Others: Intel HLS Compiler, SmartHLS (formerly LegUp) ...
- Compiler-like structure: front-end, middle-end, backend
- □ Transformations applied on an Intermediate Representation (IR) of the input

☐ HLS inputs:

- High-level language specification (C/C++/Python...)
- Library of characterized modules
- Constraints (area/delay)
- (Optional) optimization directives

Constraints

IPs library

☐ HLS objectives:

- Minimum area (functional units, registers, memory, interconnect)
- Maximum speed (latency in clock cycles, clock period, throughput)

Generally, one parameter is set as a constraint, and the other one is optimized

■ Additional goals:

 Low power consumption, testability, more accurate estimation, fault tolerance...

High-Level Synthesis

☐ HLS output:

- Synthesizable Verilog/VHDL
- Controller + datapath (FSMD)
- Next steps: simulation, logic synthesis, implementation

controller and datapath

Datapath:

- Functional resources: Perform operations on data (arithmetic and logic blocks).
- Memory resources: Store data (memory and registers).
- Interconnection resources: (muxes, busses and ports).

Controller:

- Finite state machine (FSM)
- Controller + microprogram
- Synchronization scheme (e.g., global clock single phase with master-slave registers)

- ☐ From high-level code to circuits:
 - 1. Build FSM for the controller
 - 2. Build datapath

Input code

FSM diagram

Splitting controller and datapath

- ☐ HLS performs these steps automatically
 - Scheduling (determine when to perform each operation)
 - Resource allocation (allocate resources for each operation)
 - Binding (map operations to resources)
- Possible optimization: one less adder
- More optimization opportunities in the input program, in the FSMD, in the datapath...

☐ Single Static Assignment form (SSA)

 A program is in SSA form if every variable is only assigned once

□ 3-address form

Single operator and at most three names

Original

SSA

$$a_1 := b_1 + c_1$$
 $b_2 := c_1 + 1$
 $d_1 := b_2 + c_1$
 $a_2 := a_1 + 1$
 $e_1 := a_2 + b_2$

☐ Basic block

 Sequence of instructions with no labels (except at the first instruction) and no jumps (except at the last instruction)

□ Control Flow Graph

- Nodes: basic blocks
- Edges: potential flow of control (loop, if/else, goto...)

□ Data Flow Graph

- Nodes: operations
- Edges: data dependencies (read-after-write)
- One DFG for each basic block

- Definition: assignment of operations to time (control steps)
- Possibly within limits on hardware resources and timing
- Exploits potential parallelism
- □ Scheduling problems are *NP-hard*, so many techniques and heuristics can be used:
 - ASAP As soon as possible
 - ALAP As late as possible
 - List-based scheduling (resource constrained)
 - Integer Linear Programming
 - •

- ☐ Inputs:
 - IR (CDFG, SSA form)
 - Operation delays in cycles
 - Timing/resource constraints
- Output:
 - Start time for every operation in the IR
- □ Goal:
 - Best latency/area trade-off

■ Example of different scheduling solutions

1 adder & 1 mult. 2 adder & 1 mult.

step 1: +1 step 2: +2 step 3: X1 step 4: +3, X2

step 1: +1, +2 step 2: X1

step 3: +3, X2

- □ Simplest model: Minimum Latency Unconstrained Scheduling
 - All operations have bounded delays expressed as number of clock cycles, no area constraints

□ ASAP scheduling

- ☐ Dual algorithm ALAP scheduling
 - Latency-constrained scheduling
 - Maximum latency = ASAP latency

ALAP result

□ Mobility:

- Difference between ASAP and ALAP start time
- Operations with mobility = 0 are on the critical path

- More realistic model: Constrained Scheduling
 - All operations have bounded delays expressed as number of clock cycles
 - Minimize latency given constraints on resources (ML-RCS)
 - Minimize resources given a bound on latency (MR-LCS)
- NP-hard
 - Exact methods (ILP)
 - Heuristics (list-based, force-directed)

☐ List-based Scheduling

- Heuristic method for both ML-RCS and MR-LCS
- Does not guarantee optimal solution
- Greedy strategy, O(n) time complexity

Algorithm:

- Construct a priority list (based e.g. on operation mobility)
- 2. While not all operations scheduled:
 - 1. For each available resource, select an operation in the ready list following the descending priority
 - 2. Assign these operations to the current clock cycle
 - 3. Update the ready list
 - 4. Clock cycle ++

■ Exercise: schedule the given basic block from an HLS IR using list-based scheduling.

```
tmp_1 = a * b;
tmp_2 = c * d;
x_1 = tmp_1 * tmp_2;
x_2 = a * d;
x_3 = x_2 - x_1;
x_4 = x_2 + x_3;
x_5 = c * 3;
x_6 = x_4 + x_4;
x_7 = tmp_1 * x_5;
out_1 = x_6 * x_7;
```

- Use mobility to create the priority list
- Available functional units:
 - 1 adder, latency 1 clock cycle
 - 1 multiplier, latency 2 clock cycles
 - 1 ALU, latency 2 clock cycles
- The ALU can perform any kind of arithmetic operations
- a, b, c, and d are input constants

Building the DFG

```
tmp_1 = a * b;
tmp_2 = c * d;
x_1 = tmp_1 * tmp_2;
x_2 = a * d;
x_3 = x_2 - x_1;
x_4 = x_2 + x_3;
x_5 = c * 3;
x_6 = x_4 + x_4;
x_7 = tmp_1 * x_5;
out_1 = x_6 * x_7;
```


☐ Priority list = mobility

☐ Priority list = mobility

Clock cycle	ASAP		
0	tmn 1 tmn 2 v 2 v 5		
1	tmp_1 tmp_2 x_5		
2	x_1		
3			
4	x_3		
5	x_4		
6	x_6		
7	out 1		
8	out_1		

Mobility_{tmp_1} = 0 Mobility_{tmp_2} = 0 Mobility_{x_2} = 2 Mobility_{x_5} = 3 Mobility_{x_1} = 0 Mobility_{x_3} = 0 Mobility_{x_4} = 0 Mobility_{x_6} = 0 Mobility_{out_1} = 0

List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy

```
Ready list: tmp_1 = a * b;
           tmp 2 = c * d;
           x 1 = tmp 1 * tmp 2;
          x 2 = a * d;
           x 3 = x 2 - x 1;
           x 4 = x 2 + x 3;
           x 5 = c * 3;
           x 6 = x 4 + x 4;
           x 7 = tmp 1 * x 5;
           out 1 = x 6 * x 7;
```

Mobility_{tmp_1} = 0Mobility $tmp_2 = 0$ Mobility $x_2 = 2$ Mobility_{x_5} = 3Mobility $x_1 = 0$ Mobility $x_7 = 3$ Mobility $x_3 = 0$ Mobility $x_4 = 0$ Mobility_x 6 = 0Mobility_{out_1} = 0

List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy
3		$x_1 = tmp_1 * tmp_2;$	$x_2 = a * d;$
4		busy	busy

```
Ready list: x_1 = tmp 1 * tmp 2;
           x 2 = a * d;
           x 3 = x 2 - x 1;
           x^{4} = x 2 + x 3;
           x 5 = c * 3;
           x 6 = x 4 + x 4;
           x 7 = tmp 1 * x 5;
           out 1 = x 6 * x 7;
```

Mobility $x_2 = 2$ Mobility $x_5 = 3$ Mobility $x_1 = 0$ Mobility_{x 7} = 3Mobility $x_3 = 0$ Mobility_x $_4 = 0$ Mobility $x_6 = 0$ Mobility_{out_1} = 0

HLS scheduling

List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy
3		$x_1 = tmp_1 * tmp_2;$	$x_2 = a * d;$
4		busy	busy
5	$x_3 = x_2 - x_1;$	$x_5 = c * 3;$	

Ready list:
$$x_3 = x_2 - x_1;$$

 $x_4 = x_2 + x_3;$
 $x_5 = c * 3;$
 $x_6 = x_4 + x_4;$
 $x_7 = tmp_1 * x_5;$
out_1 = x_6 * x_7;

Mobility $x_5 = 3$

Mobility_{x_7} = 3

Mobility_x 3 = 0

Mobility $x_4 = 0$

Mobility $x_6 = 0$

Mobility_{out_1} = 0

HLS scheduling

List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy
3		$x_1 = tmp_1 * tmp_2;$	$x_2 = a * d;$
4		busy	busy
5	$x_3 = x_2 - x_1;$	$x_5 = c * 3;$	
6	$x_4 = x_2 + x_3;$	busy	

Ready list:
$$x_4 = x_2 + x_3;$$

 $x_6 = x_4 + x_4;$
 $x_7 = tmp_1 * x_5;$
out_1 = x_6 * x_7;

Mobility
$$x_7 = 3$$

HLS scheduling

■ List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy
3		$x_1 = tmp_1 * tmp_2;$	$x_2 = a * d;$
4		busy	busy
5	$x_3 = x_2 - x_1;$	$x_5 = c * 3;$	
6	$x_4 = x_2 + x_3;$	busy	
7	$x_6 = x_4 + x_4;$	$x_7 = tmp_1 * x_5;$	
8		busy	

Ready list:
$$x_6 = x_4 + x_4;$$

 $x_7 = tmp_1 * x_5;$
out_1 = x_6 * x_7;

Mobility $x_7 = 3$

Mobility_x $_6 = 0$ Mobility $out_1 = 0$

List-based scheduling

Clock cycle	ADDER	MULTIPLIER	ALU
1		tmp_1 = a * b;	$tmp_2 = c * d;$
2		busy	busy
3		$x_1 = tmp_1 * tmp_2;$	$x_2 = a * d;$
4		busy	busy
5	$x_3 = x_2 - x_1;$	$x_5 = c * 3;$	
6	$x_4 = x_2 + x_3;$	busy	
7	$x_6 = x_4 + x_4;$	$x_7 = tmp_1 * x_5;$	
8		busy	
9		out_1 = x_6 * x_7;	
10		busy	

Ready list: out 1 = x 6 * x 7;

Mobility_{out_1} = 0

https://colab.research.google.com/drive/1muPx2tSure0GmyljW4q5G0J6QdHclXZE?usp=share_link

- ☐ Stanford course CS149, Parallel Computing
- □ https://halide-lang.org/
 - Links to source code, publications, tutorials, all sorts of useful material
- □ "Digital & Computational Photography", MIT course by Frédo Durand (lectures 14 to 17) https://stellar.mit.edu/S/course/6/sp15/6.815/materials.html

- M. Fingeroff, "High-Level Synthesis Blue Book"
 - https://cse.usf.edu/~haozheng/teach/cda4253/ doc/hls/hls bluebook uv.pdf
- Bambu tutorial from <u>DATE 2022</u> (somewhat outdated, but still useful)
- ☐ In-depth Vitis HLS <u>user guide and tutorials</u>
- □ J. Cong et al., "FPGA HLS Today: Successes, Challenges, and Opportunities" https://doi.org/10.1145/3530775
- □ G. Gozzi et al., "SPARTA: High-Level Synthesis of Parallel Multi-Threaded Accelerators" https://doi.org/10.1145/3677035