AMENDMENTS TO THE SPECIFICATION

Delete the original pages containing Tables 1-16.

Insert between page 90 and page 91 the following pages including Tables 1-16.

[Table 1]
Results of thermal conductivity measurement

Sample No.	Composition	Thermal conductivity [W/(m·K)]	High thermal conductivity
11	Pure Ag	320	0
2	Ag-0.005at% Bì Alloy	319	0
3	Ag-0.2at% Bi Alloy	296	0
4	Ag-0.4at% Bi Alloy	271	0
5	Ag-0.6at% Bi Alloy	247	×
6	Ag-0.005at% Sb Alloy	319	0
7	Ag-0.2at% Sb Alloy	292	0
8	Ag-0.4at% Sb Alloy	264	0
9	Ag-0.6at% Sb Alloy	236	×
10	Ag-0.2at% Bi-0.01at% Nd Alloy	296	0
11	Ag-0.2at% Bi-0.1at% Nd Alloy	294	0
12	Ag-0.2at% Bi-0.5at% Nd Alloy	287	0
13	Ag-0.2at% Bi-2at% Nd Alloy	260	0
14	Ag-0.2at% Bi-3at% Nd Alloy	242	×
15	Ag-0.2at% Bi-0.01at% Y Alloy	296	0
16	Ag-0.2at% Bi-0.1at% Y Alloy	294	0
17	Ag-0.2at% Bi-0.5at% Y Alloy	288	0
18	Ag-0.2at% Bi-2at% Y Alloy	262	0
19	Ag-0.2at% Bi-3at% Y Alloy	245	×
20	Ag-0.2at% Sb-0.01at% Nd Alloy	292	0
21	Ag-0.2at% Sb-0.1at% Nd Alloy	290	0
22	Ag-0.2at% Sb-0.5at% Nd Alloy	283	0
23	Ag-0.2at% Sb-2at% Nd Alloy	256	0
24	Ag-0.2at% Sb-3at% Nd Alloy	238	×
25	Ag-0,2at% Sb-0.01at% Y Alloy	292	0
26	Ag-0.2at% Sb-0.1at% Y Alloy	290	O
27	Ag-0.2at% Sb-0.5at% Y Alloy	284	0
28	Ag-0.2at% Sb-2at% Y Alloy	258	0
29	Ag-0.2at% Sb-3at% Y Alloy	241	×

[Table 2]
Results of thermal conductivity measurement

Sample No.	Composition	Thermal conductivity [W/(m·K)]	High thermal conductivity
1	Pure Ag	320	0
30	Ag-0.2at% Bi-0.01at% Cu Alloy	296	0
31	Ag-0.2at% Bi-0.1at% Cu Alloy	295	0
32	Ag-0.2at% Bi-0.5at% Cu Alloy	290	0
33	Ag-0.2at% Bi-2at% Cu Alloy	260	0
34	Ag-0.2at% Bi-3at% Cu Alloy	248	×
35	Ag-0.2at% Bi-0.01at% Au Alloy	296	0
36	Ag-0.2at% Bi-0.1at% Au Alioy	295	0
37	Ag-0.2at% Bi-0.5at% Au Alloy	290	0
38	Ag-0.2at% Bi-2at% Au Alloy	262	0
39	Ag-0.2at% Bi-3at% Au Alloy	251	×
40	Ag-0.2at% Sb-0.01at% Cu Alloy	292	0
41	Ag-0.2at% Sb-0.1at% Cu Alloy	291	0
42	Ag-0.2at% Sb-0.5at% Cu Alloy	286	0
43	Ag-0.2at% Sb-2at% Cu Alloy	256	0
44	Ag-0.2at% Sb-3at% Cu Alloy	244	×
45	Ag-0.2at% Sb-0.01at% Au Alloy	292	0
46	Ag-0.2at% Sb-0.1at% Au Alloy	291	0
47	Ag-0.2at% Sb-0.5at% Au Alloy	286	0
48	Ag-0.2at% Sb-2at% Au Alloy	258	0
49	Ag-0.2at% Sb-3at% Au Alloy	247	×
50	Ag-0.2at% Bi-0.5at% Nd-0.5at% Cu Alloy	281	0
51	Ag-0.2at% Bi-0.5at% Nd-0.5at% Au Alloy	281	0
52	Ag-0.2at% Bi-0.5at% Y-0.5at% Cu Alloy	282	0
53	Ag-0.2at% Bi-0.5at% Y-0.5at% Au Alloy	282	0
54	Ag-0.2at% Sb-0.5at% Nd-0.5at% Cu Alloy	277	0
55	Ag-0.2at% Sb-0.5at% Nd-0.5at% Au Alloy	277	0
56	Ag-0.2at% Sb-0.5at% Y-0.5at% Cu Alloy	278	0
57	Ag-0.2at% Sb-0.5at% Y-0.5at% Au Alloy	278	0
58	Ag-0.2at% Si Alloy	265	0
59	Ag-0.2at% Sn Alloy	248	×

[Table 3]
R suits of reflectance measurement

Sample No.	C		e relative to Ag [%]	High
Sample No.	Composition	Wavelength 405nm	Wavelength 650nm	reflectance
1	Pure Ag	90.8	92.5	0
2	Ag-0.005at% Bi Alloy	90.7	92.5	0
3	Ag-0.2at% Bi Alloy	86.2	90.8	0
4	Ag-0.4at% Bi Alloy	81.6	89.1	0
5	Ag-0.6at% Bi Alloy	77.0	87.4	×
6	Ag-0.005at% Sb Alloy	90.7	92.5	0
7	Ag-0.2at% Sb Alloy	86.1	90.7	0
8	Ag-0.4at% Sb Alloy	81.4	88.9	0
9	Ag-0,6at% Sb Alloy	76.7	87.1	×
10	Ag-0.2at% Bi-0.01at% Nd Alloy	86.2	90.8	0
11	Ag-0.2at% Bi-0.1at% Nd Alloy	85.9	90.7	0
12	Ag-0.2at% Bi-0.5at% Nd Alloy	84.8	90.3	0
13	Ag-0.2at% Bi-2at% Nd Alloy	80.7	88.6	0
14	Ag-0.2at% Bi-3at% Nd Alloy	78.0	87.5	×
15	Ag-0.2at% Bi-0.01at% Y Alloy	86.2	90.8	0
16	Ag-0.2at% BI-0.1at% Y Alloy	85.9	90.7	0
17	Ag-0.2at% Bi-0.5at% Y Alloy	84.7	90.2	0.
18	Ag-0.2at% Bi-2at% Y Alloy	80,3	88.4	0
19	Ag-0.2at% Bi-3at% Y Alloy	77.4	87.2	×
20	Ag-0.2at% Sb-0.01at% Nd Alloy	86.1	90.7	0
21	Ag-0.2at% Sb-0.1at% Nd Alloy	85.8	90.6	0
22	Ag-0.2at% Sb-0.5at% Nd Alloy	84.7	90.2	0
23	Ag-0.2at% Sb-2at% Nd Alloy	80.6	88.5	0
24	Ag-0.2at% Sb-3at% Nd Alloy	77.9	87.4	×
25	Ag-0.2at% Sb-0.01at% Y Alloy	86.1	90.7	0
26	Ag-0.2at% Sb-0.1at% Y Alloy	85.8	90.6	0
27	Ag-0.2at% Sb-0.5at% Y Alloy	84.6	90.1	0
28	Ag-0,2at% Sb-2at% Y Alloy	80.2	88,3	0
29	Ag-0.2at% Sb-3at% Y Alloy	77.3	87,1	×

[Table 4] Results of reflectance measurement

Sample No.	Composition		e relative to Ag [%]	High
Sample No.	Composition	Wavelength 405nm	Wavelength 650nm	reflectance
1	Pure Ag	90.8	92,5	0
30	Ag-0.2at% Bi-0.01at% Cu Alloy	86.2	90.8	0
31	Ag-0.2at% Bi-0.1at% Cu Alloy	86.0	90.7	0
32	Ag-0,2at% Bi-0.5at% Cu Alloy	85.3	90.4	0
33	Ag-0.2at% Bi-2at% Cu Alloy	81.0	88.3	0
34	Ag-0.2at% Bi-4at% Cu Alloy	79.3	87.5	×
35	Ag-0.2at% Bi-0.01at% Au Alloy	86.2	90.8	0
36	Ag-0.2at% Bi-0.1at% Au Alloy	86.0	90,7	0
37	Ag-0.2at% Bi-0,5at% Au Alloy	85.4	90.4	0
38	Ag-0.2at% Bi-3at% Au Alloy	81.5	88.5	0
39	Ag-0.2at% Bi-4at% Au Alloy	79.9	87.7	×
40	Ag-0.2at% Sb-0.01at% Cu Alloy	86.1	90.7	0
41	Ag-0.2at% Sb-0.1at% Cu Alloy	85.9	90.6	0
42	Ag-0.2at% Sb-0.5at% Cu Alloy	85.2	90.3	0
43	Ag-0.2at% Sb-3at% Cu Alloy	80,9	88.2	0
44	Ag-0.2at% Sb-4at% Cu Alloy	79.2	87.4	×
45	Ag-0.2at% Sb-0.01at% Au Alloy	86.1	90.7	0
46	Ag-0.2at% Sb-0.1at% Au Alloy	85.9	90.6	0
47	Ag-0.2at% Sb-0.5at% Au Alloy	85.3	90.3	0
48	Ag-0.2at% Sb-3at% Au Alloy	81.4	88.4	0
49	Ag-0.2at% Sb-4at% Au Alloy	79.8	87.6	×
50	Ag-0,2at% Bi-0.5at% Nd-0.5at% Cu Alloy	84.0	89.8	0
51	Ag-0.2at% Bi-0.5at% Nd-0.5at% Au Alloy	84.0	89.9	0
52	Ag-0.2at% Bi-0.5at% Y-0.5at% Cu Alloy	83.9	89.8	0
53	Ag-0.2at% Bi-0.5at% Y-0.5at% Au Alloy	83.9	89.8	0
54	Ag-0.2at% Sb-0.5at% Nd-0.5at% Cu Alloy	83.9	89.7	0
55	Ag-0.2at% Sb-0.5at% Nd-0.5at% Au Alloy	83.9	89.8	0
56	Ag-0.2at% Sb-0.5at% Y-0.5at% Cu Alloy	83.8	89.7	0
57	Ag-0.2at% Sb-0.5at% Y-0.5at% Au Alloy	83.8	89.7	0
58	Ag-0.2at% Si Alloy	85.5	90.3	0
59	Ag-0.2et% Sn Alloy	85.0	89.9	0

[Table 5]
Results of durability (thermal stability) evaluation

Sample No.	Composition	before and temperature	reflectance d after high high humidity : [%]	High durability
		Wavelength 405nm	Wavelength 650nm	- Carabinay
1	Pure Ag	-27.3	-3.0	×
2	Ag-0,005at% Bi Alloy	-1.4	-0.8	0
3	Ag-0.2at% Bi Alloy	-0.7	-0.3	0
4	Ag-0.4at% Bi Alloy	-0.5	-0.2	0
5	Ag-0,6at% Bi Alloy	-0.3	-0.1	0
6	Ag-0.005at% Sb Alloy	-1.6	-0.9	0
7	Ag-0.2at% Sb Alloy	-0.8	-0.4	0
8	Ag-0.4at% Sb Alloy	-0.6	-0.3	0
9	Ag-0.6at% Sb Alloy	-0.4	-0.2	0
10	Ag-0.2at% Bi-0.01at% Nd Alloy	-0.6	-0.2	0
11	Ag-0.2at% Bi-0.1at% Nd Alloy	-0.5	-0.1	0
12	Ag-0.2at% Bi-0.5at% Nd Alloy	-0,3	-0.1	0
13	Ag-0.2at% Bi-2at% Nd Alloy	0.0	0.0	0
14	Ag-0.2at% Bi-3at% Nd Alloy	0.0	0.0	0
15	Ag-0.2at% Bi-0.01at% Y Alloy	-0.6	-0.2	0
16	Ag-0.2at% Bi-0.1at% Y Alloy	-0.5	-0.1	0
17	Ag-0.2at% Bi-0.5at% Y Alloy	-0.4	-0.1	0
18	Ag-0.2at% Bi-2at% Y Alloy	0,0	0.0	0
19	Ag-0.2at% Bi-3at% Y Alloy	0,0	0.0	0
20	Ag-0.2at% Sb-0.01at% Nd Alloy	-0.7	-0.3	0
21	Ag-0.2at% Sb-0.1at% Nd Alloy	-0.6	-0.2	0
22	Ag-0.2at% Sb-0.5at% Nd Alloy	-0.4	-0.2	0
23	Ag-0.2at% Sb-2at% Nd Alloy	0.0	0.0	0
24	Ag-0.2at% Sb-3at% Nd Alloy	0.0	0.0	0
25	Ag-0.2at% Sb-0.01at% Y Alloy	-0.7	-0.3	0
26	Ag-0.2at% Sb-0.1at% Y Alloy	-0.6	-0.2	0
27	Ag-0.2at% Sb-0.5at% Y Alloy	-0.5	-0.2	0
28	Ag-0.2at% Sb-2at% Y Alloy	0.0	0.0	0
29	Ag-0.2at% Sb-3at% Y Alloy	0.0	0.0	0

[Table 6]
Results of durability (thermal stability) valuation

Sample No.	Composition	Change in before and temperature test	I after high high humidity	High durability
		Wavelength 405nm	Wavelength 650nm	
1	Pure Ag	-27.3	-3.0	×
30	Ag-0.2at% Bi-0.01at% Cu Alloy	-0.6	-0.2	0
31	Ag-0.2at% Bi-0.1at% Cu Alloy	-0.5	-0.1	0
32	Ag-0.2at% Bi-0.5at% Cu Alloy	-0.4	-0.1	0
33	Ag-0.2at% Bi-3at% Cu Alloy	0.0	0.0	0
34	Ag-0.2at% Bi-4at% Cu Alloy	0.0	0.0	0
35	Ag-0.2at% Bi-0.01at% Au Alloy	-0.6	-0.2	0
36	Ag-0.2at% Bi-0.1at% Au Alloy	-0.5	-0.1	0
37	Ag-0.2at% Bi-0.5at% Au Alloy	-0.4	-0.1	0
38	Ag-0.2at% Bi-3at% Au Alloy	0.0	0.0	0
39	Ag-0.2at% Bi-4at% Au Alloy	0.0	0.0	0
40	Ag-0.2at% Sb-0.01at% Cu Alloy	-0.7	-0.3	0
41	Ag-0.2at% Sb-0.1at% Cu Alloy	-0.6	-0.2	0
42	Ag-0.2at% Sb-0.5at% Cu Alloy	-0.4	-0.1	0
43	Ag-0,2at% Sb-2at% Cu Alloy	0.0	0.0	0
44	Ag-0.2at% Sb-4at% Cu Alloy	0.0	0.0	0
45	Ag-0.2at% Sb-0.01at% Au Alloy	-0.7	-0.3	0
46	Ag-0.2at% Sb-0.1at% Au Alloy	-0.5	-0.2	0
47	Ag-0.2at% Sb-0.5at% Au Alloy	-0.3	-0.1	0
48	Ag-0.2at% Sb-3at% Au Alloy	0.0	0.0	0
49	Ag-0.2at% Sb-4at% Au Alloy	0.0	0.0	0
50	Ag-0.2at% Bi-0.5at% Nd-0.5at% Cu Alloy	0.0	0.0	0
51	Ag-0.2at% Bi-0.5at% Nd-0.5at% Au Alloy	0.0	0.0	0
52	Ag-0.2at% Bi-0.5at% Y-0.5at% Cu Alloy	0.0	0.0	0
53	Ag-0.2at% Bl-0.5at% Y-0.5at% Au Alloy	0,0	0.0	0
54	Ag-0.2at% Sb-0.5at% Nd-0.5at% Cu Alloy	0.0	0.0	0
55	Ag-0.2at% Sb-0,5at% Nd-0,5at% Au Alloy	0.0	0.0	. 0
56	Ag-0.2at% Sb-0.5at% Y-0.5at% Cu Alloy	0.0	0.0	0
57	Ag-0.2at% Sb-0.5at% Y-0.5at% Au Alloy	0.0	0.0	0
58	Ag-0,2at% Si Alloy	-19,9	-2.1	×
59	Ag-0.2at% Sn Alloy	-18.4	-1.8	×

[Table 7]
Change in appearance after salt immersion test of Ag-based thin film

Sample No.	Composition	Change in appearance after salt immersion test	High durability
1	. Pure Ag	Yes	×
2	Ag-0.005at% Bl Alloy	No	0
3	Ag-0.2at% Bi Alloy	No	0
4	Ag-0.4at% Bi Alloy	No	0
5	Ag-0,6at% Bi Alloy	No	0
6	Ag-0.005at% Sb Alloy	No	0
7	Ag-0.2at% Sb Alloy	No	0
8	Ag-0.4at% Sb Alloy	No	0
9	Ag-0.6at% Sb Alloy	No	0
10	Ag-0.2at% Bi-0.01at% Nd Alloy	No	0
11	Ag-0.2at% Bi-0.1at% Nd Alloy	No	0
12	Ag-0.2at% Bi-0.5at% Nd Alloy	No	0
13	Ag-0.2at% Bi-2at% Nd Alloy	No	0
14	Ag-0.2at% Bi-3at% Nd Alloy	No	0
15	Ag-0.2at% Bi-0.01at% Y Alloy	No	0
16	Ag-0,2at% BI-0,1at% Y Alloy	No	0
17	Ag-0.2at% Bi-0.5at% Y Alloy	No	0
18	Ag-0.2at% Bi-2at% Y Alloy	No	0
19	Ag-0.2at% BI-3at% Y Alloy	No	0
20	Ag-0.2at% Sb-0.01at% Nd Alloy	No	0
21	Ag-0.2at% Sb-0.1at% Nd Alloy	No	0
22	Ag-0.2at% Sb-0.5at% Nd Alloy	No	0
23	Ag-0,2at% Sb-2at% Nd Alloy	No	0
24	Ag-0.2at% Sb-3at% Nd Alloy	No	0
25	Ag-0.2at% Sb-0.01at% Y Alloy	No	0
26	Ag-0.2at% Sb-0.1at% Y Alloy	No	0
27	Ag-0,2at% Sb-0.5at% Y Alloy	No	0
28	Ag-0.2at% Sb-2at% Y Alloy	No	0
29	Ag-0.2at% Sb-3at% Y Alloy	No	0

[Table 8] Change in appearance after salt immersion test of Ag-based thin film

Sample No.	Composition	Change in appearance after salt immersion test	High durability
1	Pure Ag	Yes	×
30	Ag-0.2at% Bi-0.01at% Cu Alloy	No	0
31	Ag-0.2at% Bi-0.1at% Cu Alloy	No	0
32	Ag-0.2at% Bi-0.5at% Cu Alloy	No	0
33	Ag-0.2at% Bi-3at% Cu Alloy	No	0
34	Ag-0.2at% Bi-4at% Cu Alloy	No	0
35	Ag-0.2at% Bi-0.01at% Au Alloy	No	0
36	Ag-0.2at% Bi-0.1at% Au Alloy	No	0
37	Ag-0.2at% Bi-0.5at% Au Alloy	No	0
38	Ag-0.2at% Bi-3at% Au Alloy	No	0
39	Ag-0.2at% Bi-4at% Au Alloy	No	0
40	Ag-0,2et% Sb-0.01et% Cu Alloy	No	0
41	Ag-0.2at% Sb-0.1at% Cu Alloy	No	0
42	Ag-0.2at% Sb-0.5at% Cu Alloy	No	0
43	Ag-0.2at% Sb-3at% Cu Alloy	No	0
44	Ag-0.2at% Sb-4at% Cu Alloy	No	0
45	Ag-0,2at% Sb-0.01at% Au Alloy	No	0
46	Ag-0,2at% Sb-0.1at% Au Alloy	No	0
47	Ag-0.2at% Sb-0,5at% Au Alloy	No	0
48	Ag-0.2at% Sb-3at% Au Alloy	No	0
49	Ag-0.2at% Sb-4at% Au Alloy	No	0
50	Ag-0.2at% Bi-0.5at% Nd-0.5at% Cu Alloy	No	0
51	Ag-0,2at% Bi-0.5at% Nd-0.5at% Au Alloy	No	0
52	Ag-0,2at% Bi-0.5at% Y-0.5at% Cu Alloy	No	0
53	Ag-0.2at% Bi-0.5at% Y-0.5at% Au Alloy	No	0
54	Ag-0.2at% Sb-0.5at% Nd-0.5at% Cu Alloy	No	0
55	Ag-0.2at% Sb-0.5at% Nd-0.5at% Au Alloy	No	0
56	Ag-0.2at% Sb-0.5at% Y-0.5at% Cu Alloy	No	0
57	Ag-0.2at% Sb-0.5at% Y-0.5at% Au Alloy	No	0
58	Ag-0.2at% Si Alloy	Yes	×
59	Ag-0,2at% Sn Alloy	Yes	×

[Table 9]
Average roughness before and after high temperature high humidity test of Ag-based thin film

				
Sample No.	Composition	before and tempera	roughness I after high ture high test (nm)	High durability
		Before test	After test	
1	Pure Ag	4.18	7.33	×
2	Ag-0.005at% Bi Alloy	0.63	0.93	0
3	Ag-0.2at% Bi Alloy	0.58	0.61	0
4	Ag-0.4at% Bi Alloy	0.55	0.58	0
5	Ag-0.6at% Bi Alloy	0.52	0.54	0
6	Ag-0.005at% Sb Alloy	0,65	0.95	0
7	Ag-0.2at% Sb Alloy	0.58	0.63	0
8	Ag-0.4at% Sb Alloy	0,56	0.59	0
9	Ag-0.6at% Sb Alloy	0.54	0.57	Ö
10	Ag-0.2at% Bi-0.01at% Nd Alloy	0.58	0.60	0
11	Ag-0.2at% Bi-0.1at% Nd Alloy	0.55	0.59	0
12	Ag-0.2at% Bi-0.5at% Nd Alloy	0.52	0.56	0
13	Ag-0.2at% Bi-2at% Nd Alloy	0.45	0.48	0
14	Ag-0.2at% Bi-3at% Nd Alloy	0.44	0.48	0
15	Ag-0.2at% Bi-0.01at% Y Alloy	0.57	0.60	0
16	Ag-0.2at% Bi-0.1at% Y Alloy	0.56	0.59	0
17	Ag-0.2at% Bi-0,5at% Y Alloy	0,53	0.58	0
18	Ag-0.2at% Bi-2at% Y Alloy	0.47	0.53	0
19	Ag-0.2at% Bi-3at% Y Alloy	0.45	0.52	0
20	Ag-0.2at% Sb-0.01at% Nd Alloy	0.58	0.62	0
21	Ag-0.2at% Sb-0.1at% Nd Alloy	0.56	0.60	0
22	Ag-0.2at% Sb-0.5at% Nd Alloy	0.53	0.58	0
23	Ag-0.2at% Sb-2at% Nd Alloy	0.47	0,50	0
24	Ag-0.2at% Sb-3at% Nd Alloy	0.47	0.49	0
25	Ag-0.2at% Sb-0.01at% Y Alloy	0.58	0.63	0
26	Ag-0.2at% Sb-0.1at% Y Alloy	0.55	0.61	0
27	Ag-0.2at% Sb-0.5at% Y Alloy	0.54	0.60	0
28	Ag-0.2at% Sb-2at% Y Alloy	0.46	0.54	0
29	Ag-0.2at% Sb-3at% Y Alloy	0.45	0.53	0

[Table 10]

Sample No.	Composition	Average r before and temperat humidity	ture high	High durability
		Before test	After test	
1	Pure Ag	4.18	7.33	×
30	Ag-0.2at% Bi-0.01at% Cu Alloy	0.59	0.93	0
31	Ag-0.2at% Bi-0.1at% Cu Alloy	0.58	0.90	0
32	Ag-0.2at% Bi-0.5at% Cu Alloy	0.56	0.86	0
33	Ag-0,2at% Bi-3at% Cu Alloy	0.55	0.75	0
34	Ag-0.2at% Bi-4at% Cu Alloy	0.54	0.73	0
35	Ag-0.2at% Bi-0,01at% Au Alloy	0.59	0.94	0
36	Ag-0.2at% Bi-0.1at% Au Alloy	0.57	0.89	0
37	Ag-0.2at% Bi-0.5at% Au Alloy	0.56	0.84	0
38	Ag-0.2at% Bi-3at% Au Alloy	0.54	0.76	0
39	Ag-0.2at% Bi-4at% Au Alloy	0.53	0.75	0
40	Ag-0.2at% Sb-0.01at% Cu Alloy	0.59	0.95	0
41	Ag-0.2at% Sb-0.1at% Cu Alloy	0.58	0.91	0
42	Ag-0.2at% Sb-0.5at% Cu Alloy	0.57	0.88	0
43	Ag-0.2at% Sb-3at% Cu Alloy	0.56	0.78	0
44	Ag-0.2at% Sb-4at% Cu Alloy	0.54	0.77	0
45	Ag-0,2at% Sb-0.01at% Au Alloy	0.58	0.94	0
46	Ag-0.2at% Sb-0.1at% Au Alloy	0.58	0.90	0
47	Ag-0.2at% Sb-0.5at% Au Alloy	0.57	0.86	0
48	Ag-0.2at% Sb-3at% Au Alloy	0.57	0.79	0
49	Ag-0.2at% Sb-4at% Au Alloy	0.55	0.77	0
50	Ag-0.2at% Bi-0.5at% Nd-0.5at% Cu Alloy	0.50	0.55	0
51	Ag-0.2at% Bi-0.5at% Nd-0.5at% Au Alloy	0.51	0.56	0
52	Ag-0.2at% Bi-0.5at% Y-0.5at% Cu Alloy	0.52	0.57	0
53	Ag-0.2at% Bi-0.5at% Y-0.5at% Au Alloy	0.51	0.55	0
54	Ag-0.2at% Sb-0.5at% Nd-0.5at% Cu Alloy	0,52	0.58	0
55	Ag-0,2at% Sb-0.5at% Nd-0.5at% Au Alloy	0.53	0.60	0
56	Ag-0.2at% Sb-0.5at% Y-0.5at% Cu Alloy	0.52	0,59	0
57	Ag-0.2at% Sb-0.5at% Y-0.5at% Au Alloy	0,54	0.59	0
58	Ag-0.2at% Si Alloy	0.68	1.17	×
59	Ag-0.2at% Sn Alloy	0.79	1.25	×

[Table 11]

						Evaluation results	Ş		
	Tout No	Tout No Compacition	Amount of	Hah temperature high	Sheet resistance (Ω/□	ance (Ω/□)	Visible light	Salt immersion test	lon test
	iest No.		added (at%)	humidity test (Ag aggregation test)	Before Ag aggregation test	After Ag aggregation test	transmittance (%)	Discoloration (turning yellow)	Peeling
Comparative Example 1	-	Pure Ag		×	12	84	08	×	Observed
	2		0.01	Φ	12	53	80	٧	None
	ဗ		90'0	0	13	16	£	0	None
	4		0.12	0	16	16	62	0	Мопе
	S	Ag-Bi	0,19	0	18	41	8.2	0	None
	9		1.2	0	20	20	92	0	None
	7		5.1	0	29	30	72	0	Non
t of an and	8		10.0	0	41	41	43	0	Non
	6		0.009	Φ	12	25	80	٥	ē
	10		0.05	0	12	14	82	0	Non
	11		0.11	Ο	13	13	22	0	None
	12	Ag-Sb	0.22	0	18	17	9/	0	None
	13		1.1	0	23	21	62	0	None
	14		4.9	0	31	33	02	0	None
	15		10,0	0	43	45	45	0	None

[Tabl 12]

High temperature high humidity test (Ag aggregation test)	add e An	5
×	v ×	
×	0.88 ×	
×	1.0 ×	
×	× 6.0	
×	t.0 ×	

[Tabl 13]

						Evaluation results	ssuits	
			Amount of element	f element	High temperature	Sheet resistance (Ω/□)	ance (D/D)	tdrii oldisi//
	Test No.	Composition	added (at%)	(at%)	high humidity test Number of white	Before Ag aggregation	Ag aggregation	transmittance
			Bi/Sb	Others	spots generated	test	test	(24)
Comparative Example 2	23	θγ	-	-	98	ß	43	79
	24	Ag-Bi	0.19	•	10	16	15	11
	25		0.19	6.0	8	16	16	77
	26	ny-ia-8y	0.19	0.9	5	16	17	92
	27		0.19	9.0	10	17	20	75
	88	Ag-6-	0,19	1.1	4	17	19	73
Example 2	53	i	0.19	හ.0	8	16	15	9/
	30	46-bi-ro	0.19	1,5	4	19	19	72
	31	A - C+ A	0.21	3,0	0	17	16	89
	32	n¥-n∞6¥	12.0	10.0	0	26	26	23
	33	10 40 EV	0.21	2.7	0	19	17	છ
	34	Ag-Su-cu	0.21	9.7	0	28	30	48

[Table 14]

							ឃំ	Evaluation results	ults			
			Amount of		Reflectance (%): Wavelength 400 nm	6): nm	Surfac	Surface roughness (nm)	s (nm)		Salt immersion test	rsion test
	Test No.	Test No. Composition	element added (at%)	initial reflectance before erviron- mental test [A]	After environ- mental test [B]	Amount of change [B-A]	Before environ- mental test [C]	After environ-mental test [D]	Amount of change [D-C]	Electric resistance (μΩcm)	Discolora- tlon (turning yetlow)	Pe ling
	-	Pure Ag	,	8.08	63.5	-27.3	4.2	7.3	3.1	2.3	×	Observed
	2		0.01	89.4	83.0	-5.4	2.1	2.8	0.7	2.5	٥	None
	ဇ		0.04	88.2	87.2	-1.0	0.92	1.01	60'0	2.6	0	None
	4	ë	0.19	86.2	85.4	-0.8	0.65	12'0	90'0	3.3	0	None
	ភ	<u></u>	6.0	81.2	81.4	+0.2	0.64	59'0	0.01	2.0	0	None
1	ဖ		2.0	74.9	73.8	-0.5	0.63	0.62	-0.01	14.8	0	None
Ехатыре 1	7		3.1	62.3	62.4	+0.1	0.64	99'0	0.02	20.6	0	Non
	80		0.009	89.4	83.0	-5.4	2.1	2.8	2'0	2.4	۷	None
	6		0.05	88.2	87.2	-1.0	0.92	1.01	0.09	2.5	0	None
	9	Aq-Sh	0.21	86.2	85.4	8.0-	0.65	0.71	90.0	3.2	0	None
	#	3	1.8	74.3	73.8	-0.5	0.63	0.62	-0.01	13.6	0	None
	12		3.0	62.3	62.4	+0.1	0.64	0.66	0.05	19,5	0	Non
	13	Ag-Nd	0.4	6.98	85.0	-1.9	0.52	0.61	0.09	4.9	×	Observed
Comparative	14	Ag-In	0.40	87.8	83.3	4.5	3.6	7.1	3.5	4.5	V	Non
Example 1	15	Ag-Nb	0.92	83.8	81.3	-2.5	2.1	3.1	1.0	9.5	V	Obs rved
	16	Ag-Sn	0.88	85.7	79,0	-6.7	3.5	6.2	2.7	6.4	×	Observ d

NOTE: Discoloration (turning yellow): O: No discoloration, Δ : Slight discoloration, \times : Large discoloration

Table 15

!						Ev	Evaluation results	ılts		
		Amoi	Amount of	Ref Wave	Reflectance (%): Wavelength 400 nm	s): nm	Surface	Surface roughness (nm)	s (nm)	
Test No.	Composition	erament ar (at%)	elament added (at%)	Initial reflectance before environ-	After environ- mental	Amount of change	Before environ- mental	After environ- mental	Amount of change	Electric resistance (µDcm)
		BI, Sb	Others	mental test [A]	test [B]	[A-4]	test [C]	test [D]	<u>5</u>	
_	Pure Ag	•	•	90.8	63.5	-27.3	4.2	7.3	3.1	2.3
4	Ag-Bi	0.19		86.2	85.4	-0.8	0.65	0.71	90.0	3.3
12	Ag-Bi-Nd	0.19	0.7	85.1	84.7	-0.4	0.48	0.49	0.01	Not measured
8	Ag-Bi-Y	0.19	0.5	85.4	84.8	9.0-	0.59	0.56	-0.03	Not measured
<u>6</u>	Ag-Bi-Cu	0.19	6'0	86.0	85.5	-0.5	0.68	0.70	0.02	3.4
ន	Ag-Bi-Au	0.19	0,1	82,9	85.7	7'0-	0.70	0.71	0.01	3.5
2	Ag-Bi-Cu	0.19	3.0	87.5	2'28	-0.3	0.63	0.72	0.09	4.1
. 23	Ag-Sb-Au	0.20	0.1	86.1	0.38	-0.1	0.65	0.68	0.03	3.2
ន	Ag-Sb-Cu	0.20	1.0	85.8	82.8	0.0	0.64	0.70	0.06	3.4
24	Ag-Sb-Cu	0.20	3.0	85.1	1'99	0'0	0,59	0.62	0,03	8.6

[Table 16]

Sample No.	Composition of sputtering target	Bi content of thin film
1	Ag-0.01at% Bi Alloy	<0.001
2	Ag-0.04at% Bi Alloy	<0.001
3	Ag-0.05at% Bi Alloy	0.005
4	Ag-0.20at% Bi Alloy	0.011
5	Ag-1.41 at% Bi Alloy	0.056
6	Ag-4.50at% Bi Alloy	0.398
7	Ag-7.00at% Bi Alloy	1.02
8	Ag-14,3at% Bi Alloy	3.82
9	Ag-22.9at% Bi Alloy	9.93
10	Ag-40.8at% Bi Alloy	27.2