

MEETUP

RECOMMENDATION SYSTEMS

SIJO VM NEHA ANNA JOHN SAHANA SUBRAMANIAN PRATHIK ULLUR MATTHEW PENG

AGENDA

Problem Statement

Exploratory data analysis

Types of recommender Systems

Our Approach for meetups

Potential benefits for meetup.com

PROBLEM STATEMENT

MEETUP

Social networking ecosystem bringing people together for teaching, learning and exploring areas of interest

CHALLENGES

- Meetups unable to target users effectively
- Customers without personalized recommendations based on interests
- Groups devoid of intelligence on user interests

PROJECT AIM

- Build custom recommendations for members
- Improve member experience and advocacy of the Meetups org

DATA GATHERING AND EXPLORATORY ANALYSIS

DATASET - MEETUP API

299,630 Members

2,891 Groups

35,629 Events

GROUP CATEGORIES

MEMBERS

The Domain Walnut Creek Metropolitan Park NORTH BURNET (275) NORTH LAMAR NORTH SHOAL 35 NORTHWEST ALLANDALE (290) [183] HYDE PARK 35 Mueller Market Dis The University TARRYTOWN West of Texas MUELLER Lake Hills at Austin (360) Texas Capitol 🤤 Rollingwood Austin on Creek lerness Park BOULDIN CREEK Barton Creek Greenbelt 35 EAST RIVERSIDE MONTOPOLIS Sunset Valley (290) WESTGATE Austin-Bergs Internation

EVENTS

RECOMMENDATION SYSTEMS

Leverage Recommendation systems to provide a robust customer experience and deeper engagement

SPARSITY

01 00

TYPES OF RECOMMENDER SYSTEMS

COLLABORATIVE FILTERING

Read by both users

Read by her, Recommended to him!

CONTENT BASED

COLLABORATIVE FILTERING

TECHNIQUES

ADVANTAGES

DISADVANTAGES

MEMORY BASED APPROACH

Find similar users based on cosine similarity or pearson correlation and take weighted average of ratings

Easy creation and explainability of results

Performance reduces when data is sparse hence non-scalable

MODEL BASED APPROACH

Use Machine Learning to find user ratings of unrated items, eg., PCA, SVD, Neural Nets, Matrix Factorization

Dimensionality reduction deals with missing/sparse data

Inference is intractable because of hidden/latent features

MEMORY-BASED APPROACH

STEPS TAKEN

- > Leveraged RSVP count as an implicit score
- > Filtered users with RSVP count greater than two
- > Removed similar users who are part of only one group together

CHALLENGES

- > Only 18% of the users have an RSVP count greater than two for a group
- > May not be as meaningful to target other users
- > 20% of users are part of only one group
- > Possibility of getting new recommendations from similar users/groups becomes challenging

MEMORY-BASED APPROACH

PROCESS

- User based and Item based collaborative filtering
- Cosine similarity & Pearson Correlation as similarity metrics
- Top 5 recommendations listed for a given user

OBSERVATIONS

- User based and item-based recommendations with similar results
- Pearson correlation and cosine similarity computed differ slightly, but not much (possibly due to sparse data)

- Consider robust models which can work with sparse data
- Provide related recommendations over and above similar user circle/groups

POPULAR GROUPS

Dragon's Lair Events Meetup

Kontenders Poker of Austin

Austin Dance Lessons and Social Events

Austin Dance Social Meetup

PrimeTime

CURRENT GROUPS

Austin Dance Social Meetup

RECOMMENDATIONS

Austin Dance Social Meetup

Austin Salsa Bachata Dance and Social Events

Austin Argentine Tango and Social Events

Austin Kizomba Dance and Social Events

Austin Swing Dance and Social Events

MATRIX FACTORIZATION USING ALS

M x N (Users x Items)

APPROACH

Original

Train

Test

IMPLICIT FEEDBACK: RSVP

Members RSVP for events organized by groups to indicate their intent to attend

For each member and group, we calculated the ratio:

Total Number of Events RSVP'd for in the Group

Total Number of Events Organized by the Group

This ratio was used as an implicit feedback signal in the ALS recommender systems

IMPLICIT FEEDBACK: TIMEDELTA

TimeDelta in this case is the difference (in months) between the last visited event and the time a member joined the group.

- > For each member and group, if the timedelta is high, it indicates a long-term interest in the group for the member
- This difference was used as a second implicit feedback signal in the ALS recommender systems

EXAMPLE USER: WHAT WE KNOW

Austin Data Science
Austin Tech Debates
Data Science Salon
Austin's Algorithm Meetup
Data on Tap

Austin Sierra Club Outings
Austin LGBT Socials
Queer Adventurers of Austin
Austin LGBTQ Hikers!

Austin Instant Pot Goodness Rewild Community Meetup Travelling Texans Over 50 **RSVP**

Austin Data Science
Travelling Texans Over 50

IMPLICIT FEEDBACK: RSVP

5	Austin International Travel
	Austin Al Developers Group
Į 🖳	Austin Deep Learning
Į E	Austin Big Data Al
	Austin Data Science
S	Austin International Travel Club
	Data on Tap
Ç	Austin Women Over 50
	Women in Data Science - ATX
5	Austin Solo Female Travel Group

IMPLICIT FEEDBACK: TIMEDELTA

	Austin Sierra Club Outings
	Austin Data Science
	Queer Adventures of Austin
6	Guided Hikes on BCP
<u>2</u>	Austin ACM SIGKDD
<u>2</u>	Austin Big Data Al
2	Austin R User Group
	Austin LGBT Socials
	Austin Lesbian Mixers
	Austin Data Geeks

LOGISTIC MATRIX FACTORIZATION

- > This model takes a similar approach to ALS by splitting the observation matrix into the user matrix and item matrix
- Since this is a Non-negative Matrix
 Factorization, we can use the log-loss as our
 cost function. It treats it as a binary
 classification problems where we the
 probability that a member is part of a group
 or not

COMPARE RECOMMENDATION SYSTEMS

- Since we masked some portion of the testing dataset, we can evaluate the performance of our recommender systems
- Essentially, we need to check if the order of recommendations given for each of the user matches the events and corresponding groups that they ended up being a part of. This is evaluated using the AUC metric
- As a benchmark, we also calculated what the mean AUC would have been if we had simply recommended the most popular items. Popularity tends to be hard to beat in most recommender system problems, so it makes a good comparison

ALS: RSVP

Model AUC: 0.761 Baseline AUC: 0.837 ALS: TimeDelta

Model AUC: 0.809 Baseline AUC: 0.859 **Logistic: RSVP**

Model AUC: 0.738 Baseline AUC: 0.725

CONTENT BASED

Content Based Recommendation Systems are born from the idea of using the content of each item for recommending purposes

It is easier to make a more transparent system since we use the same content to explain the recommendations. However, they tend to over-specialize and recommend items similar to those already consumed

RECOMMENDATIONS

Austin Wine Tastings
Austin Texas Wine Society
Jazz Theory and its Practical Applications
Austin Burgundy Wine Meetup
Austin Food and Wine Lovers

MEETUP GROUP RECOMMENDATION FOR A MSBA GRADUATE STUDENT

RACHEL MEADE

CURRENT GROUPS

Austin Big Data Al

Women in Data Science - ATX
Austin Women in Technology
Austin Al Developers Group
Austin Startup and Tech Mixer

Data on Tap

Association of Industry Analytics - Austin
Austin ACM SIGKDD
PyLadies ATX

Austin Python Meetup

Healthcare Predictive Analytics

Austin Data Geeks

MEETUP: ECOSYSTEM

MEETUP: REVENUE MODEL

GROUP FEES	\$180/Year
BASIC PLAN	\$14.99
UPGRADE PLAN	\$19.99
INCREASE IN REVENUE	\$5.00

CALCULATIONS

Assume that we can get 50% of groups falling in the "Completely New" and "New" categories to increase their revenues by upgrading the plans.

This would amount to 25% of the total number of groups.

of groups in Austin = 2900 Number of groups to upgrade = 0.25*2900 = 725 Revenue increase per month = \$5*725 = \$3,625 Potential Annual Revenue = \$43,500

of groups around the world = 225,000

*Austin represents only 1.3% if the total groups

QUESTIONS?

REFERENCES

- 1. https://en.wikipedia.org/wiki/Meetup
- 2. https://techboomers.com/t/what-is-meetup-how-it-works
- 3. https://drive.google.com/file/d/1wllvd4a2nzkmgH0y9WqpqFzBA9596nHW/view?usp=sharing
- 4. https://web.stanford.edu/~rezab/nips2014workshop/submits/logmat.pdf
- 5. http://cs229.stanford.edu/proj2014/Christopher%20Aberger,%20Recommender.pdf