

VIDEU-28

Facebook] -> code storywith MIK

Twith -> cswithMIK

9

-> codestory with MIK

re You'll learn something new

1642. Furthest Building You Can Reach

You are given an integer array heights representing the heights of buildings, some bricks, and some ladders

You start your journey from building 0 and move to the next building by possibly using bricks or ladders

While moving from building i to building i+1 (0-indexed),

- If the current building's height is greater than or equal to the next building's height, you do not need a ladder or bricks.
- If the current building's height is less than the next building's height, you can either use one ladder or h[i+1] h[i] bricks.

Return the furthest building index (0-indexed) you can reach if you use the given ladders and bricks optimally.

Example:- heights =
$$[4, 2, 7, 6, 9, 14, 12]$$

bricks = 5
ladders = 1

bricks = 5 ladders = 1

Why Greedy Fails?

Options and a

(Tree Diagram)

ladder = X o

$$\{2, 3, 19, 3\}$$

$$idx = 1$$

$$-1$$
 $\{2,3,19,3\}$
 \downarrow
 $\{2,7,19,3\}$

Solve (idx, bricks, laddous) { int

i) (idit = =
$$n-1$$
) {

yether 0;

```
i) (heights [idx+1] <= heights(idx]) ?
        return 1 + Solve (ida+1, bricks, laddon);
  I else of 1/ we need bricks/ladden
        int by Bricks =0;
        int byladden = 0;
         i) (heightlida+1) - heightlida) = boicky) {
              by Bricks = 1 + Solve (idx+1, bricks - diff)
         byladdon = 1+ solve (idna, bricks,
                                      1aley-1);
        reture max (by Brich, by Lady)
zy Greedy
```

Are Bhai Bhai Bhai Bhai Bhai 111

Story - codi:

```
i) (heighbliti) <= heu[i]) {
(•)
                  continue;
      4
       diff = her(i+1) - heifi);
(·)
                 (bricks >= dilf) {
                    brids -= diff;
Pl. Pub (diff);
              che i] (laddy >0) {
                   (max-part bricks = pq. top();
                          (till < max-pah-bricks)
                             Pq. pop();
                               Pa. Punh (dill))
```