Least Square

Least Squares Problem

- ▼ Keywords
 - ▼ Inner product (= dot product)
 - ▼ Vector norm
 - ▼ Unit vector
 - ▼ Orthogonal vectors

Over-determined Linear Systems

- 1. Over-determined linear systems
 - a. the number of equations >> the number of variables
 - b. usually no solution exists
 - i. b/c b vector is not included in the span of column vectors of the matrix A
- 2. Motivation for least squares
 - a. approximately obtain the solution
 - b. minimize the sum of squared errors (= least squares)
 - i. error = b-Ax
 - ii. the sum of squared errors = ||b Ax||
- 3. Least squares problem
 - a. given an over-determined system Ax=b
 - b. obtain least squares solution \hat{x}

i.
$$\hat{x} = argmin_x ||b - Ax||$$

Inner Product

- 1. Inner product (= dot product)
 - a. element-wise multiplication + summation
 - b. view as matrix multiplication

$$u * v = u^T v$$

- * is denoted as dot for convenience
- c. linear combination

$$(c_1u_1+...+c_pu_p)*w=c_1(u_1*w)+...+c_p(u_p*w)$$

Vector Norm

- 1. Vector norm (= vector length)
 - a. non-negative scalar ||v|| defined as the square root of v st v

$$\left|\left|v\right|\right|^2 = v * v$$

· This trick is widely used in machine learning

Unit Vector

- 1. Unit vector
 - a. a vector whose length is 1
 - b. vector normalization
 - i. make the length of a vector to 1

$$u = (1/||v||) * v$$

Distance between Vectors

- 1. Distance between u and v
 - a. written as dist(u,v)
 - b. the length of the vector u-v

$$dist(u,v) = ||u-v||$$

Inner Product and Angle Between Vectors

1. Rewriting the inner product using norms and angle

a.
$$u*v = ||u||||v||cos(\theta)$$

Orthogonal Vectors

- 1. Orthogonal (=perpendicular)
 - a. the angle between two vectors is 0

$$u*v = ||u||||v||cos(\theta) = 0$$

ullet vectors u,v are nonzero

Least Squares & Geometrical Interpretation

- ▼ Keywords
 - ▼ Over-determined system
 - ▼ Least squares

Geometrical Interpretation of Least Squares

- 1. Geometrical interpretation
 - a. find the shortest distance between b, \hat{b}
 - b. the solution is orthogonal vector

3

- i. b, \hat{b} should be orthogonal
- ii. \hat{b}, Ax should be orthogonal
- c. how can we make the infinite number of solution to finite?
 - a. use the basis

i.
$$(b-\hat{b})*(a_1x_1+a_2x_2+a_3x_3)=0$$

ii.
$$A^T(b-A\hat{x})=0$$

Least Square

Normal Equation

- 1. Normal equation
 - a. given a least squares problem Ax=b
 - b. obtain a normal equation

$$A^T A \hat{x} = A^T b$$

- which is equal to $A^T(b-A\hat{x})$
- 2. To be continue...

Normal Equation

- ▼ Keywords
 - ▼ Normal equation

Normal Equation

- 1. Normal equation
 - a. the normal equation can be viewed as a new linear system

$$Cx = d$$

•
$$C = A^T A, d = A^T b$$

b. if C is invertible, the solution is computed as

$$\hat{x} = \left(A^T A\right)^{-1} A^T b$$

- c. if C is non-invertible, the solution is infinite
 - i. normal equation is a special case, so there is no case for none solution
 - ii. however, $C = A^T A$ is usually invertible
- 2. Another derivation of normal equation

a.
$$\hat{x} = argmin_x ||b - Ax|| = argmin_x ||b - Ax||^2$$

i.
$$argmin_x(b-Ax)^T(b-Ax)=b^Tb-x^TA^Tb-b^TAx+x^TA^TAx$$

b. computing derivatives w.r.t \boldsymbol{x}

i.
$$-A^Tb - A^Tb + 2A^TAx = 0$$

c. vector derivations commonly used at fc layer

i.
$$f(x) = a^T x = x^T a, f'(x) = a$$

ii.
$$f * g = f' * g + f * g'$$

Orthogonal Projection

- ▼ Keywords
 - ▼ Orthogonality & Orthonormality
 - ▼ Orthogonal basis & Orthonormal basis
 - ▼ Orthogonal projection

Orthogonal Projection Perspective

- 1. Orthogonal projection
 - a. orthogonal projection of b onto Col A

$$\hat{b}=f(b)=A\hat{x}=A{(A^TA)}^{-1}A^Tb$$

- b. when A = U, $A^T A = I$
 - i. where \boldsymbol{U} consists of orthogonal vectors

ii.
$$\hat{b} = UU^Tb$$

Orthogonal and Orthonormal Sets

- 1. Orthogonal sets
 - a. each pair of distinct vectors from the set is orthogonal
 - b. 서로와 서로 간에 항상 수직을 이루는 벡터들의 집합
 - c. is it always linearly independent?
 - i. Yes
- 2. Orthonormal sets
 - a. it is an orthogonal set of unit vectors
 - b. orthogonal vector set 에서 주어진 방향은 그대로 두고 크기만 1인 벡터들의 집합

Orthogonal and Orthonormal Basis

- 1. Orthogonal basis
 - a. make basis $\{v_1,...,v_p\}$ of a p-dimensional subspace W as an orthogonal

5

2. Orthonormal basis

- a. make the above basis as an orthonormal basis
- 3. Gram-Schmidt process (QR factorization)
 - a. this process makes the basis as an orthogonal or orthonormal
 - b. compute the orthogonal projection y onto W
 - c. QR factorization
 - i. matrix 를 분해하는 과정을 의미
 - d. To be continue...
- 4. Orthogonal projection \hat{y} of y onto line
 - a. 정사영된 벡터 \hat{y} 의 길이

$$||y||cos\theta = y*u/||u||$$

b.
$$\hat{y}=proj_{L}y=(yst u/||u||^{2})u=(yst u/ust u)u$$

i. if
$$u$$
 is a unit vector, $\hat{y} = proj_L y = (y*u)u$

- ullet L means a line which is a span
- 5. Orthogonal projection \hat{y} of y onto plane
 - a. projection is done independently on each orthogonal basis vector

b.
$$\hat{y} = proj_L y = (y*u_1/u_1*u_1)u_1 + (y*u_2/u_2*u_2)u_2$$

i. if
$$u_1,u_2$$
 are unit vectors, $\hat{y}=proj_Ly=(y*u_1)u_1+(y*u_2)u_2$

- c. 삼수선의 정리
 - i. 3개의 선에 대하여 2개의 선이 수직이면 나머지 1개도 수직이다

Transformation: Orthogonal Projection

- 1. Transformation of orthogonal projection \hat{b} of b
 - a. given orthonormal basis u_1,u_2

b.
$$\hat{b} = f(b) = (b*u_1)u_1 + (b*u_2)u_2 = (u_1u_1^T + u_2u_2^T)b$$

i.
$$\hat{b} = UU^Tb$$
 , which is linear transformation

• matrix
$$U = [u_1 \ u_2]$$

2. Application of orthogonal projection

a. SVN, encoder, ...

Gram-Schmidt Orthogonalization & QR Factorization

- ▼ Keywords
 - ▼ Gram-schmidt orthogonalization
 - ▼ QR factorization
- 1. Gram-schmidt orthogonalization
 - a. transform the two linearly independent vectors V_1, V_2 to orthonormal vectors u_1, u_2
 - i. the span of the vectors \boldsymbol{V} and \boldsymbol{u} are the same
 - b. how?
 - i. normalize the vector \emph{V}_1 to generate the vector \emph{u}_1
 - ii. compute V_2-u_1 to make the vector u_2
 - iii. normalize the vector u_2
- 2. QR factorization
 - a. reproduce the vector V_2
 - b. A=QR
 - i. matrix A is composed of the vectors V_1, V_2
 - ii. matrix R is a triangular matrix

Least Square 7