Il teorema di Cauchy-Kowalevski e alcune sue conseguenze

Candidato: Alessandro Pedone, Relatore: Prof. Maurizio Grasselli

Politecnico di Milano

24 settembre 2024

Indice

- 1 Introduzione
- 2 Nozioni e strumenti
- 3 Versione invariante
- Esempi
- 5 Versioni alternative
- 6 Applicazioni

Sofya Vasilyevna Kovalevskaya (1850-1891)

Diamo per nota la figura storica di Augustin-Louis Cauchy. Kowalevski è stata:

- una matematica russa allieva di Weierstrass
- la **prima donna** a conseguire un dottorato (3 tesi risalenti al 1874) e a ottenere una cattedra in Europa (in matematica)

Introduzione

- Una biografia accurata: Little Sparrow: A Portrait of Sophia Kovalevsky (1983), Don H. Kennedy
- Un racconto breve: Too Much Happiness (2009), Alice Munro

Il problema

Introduzione

- Cerchiamo delle condizioni che garantiscano l'esistenza di una soluzione analitica di un sistema di EDP con condizioni di Cauchy.
- Se la soluzione esiste, è unica?
- Se esiste un'unica soluzione, essa dipende con continuità dal dato iniziale? (buona positura secondo Hadamard)
- Ragioniamo su alcune ulteriori conseguenze.

Equazioni di ordine k:

Lineare	$\sum_{ \alpha \le k} a_{\alpha} D^{\alpha} u = f$
Quasi-lineare	$\sum_{ \alpha =k} a_{\alpha}(x, D^{\beta}u) D^{\alpha}u + a_0(x, D^{\beta}u) = f,$
	$ \beta < k$
Non-lineare	$F(x, D^{\alpha}u) = 0, \alpha \le k$
In forma normale	$D_t^k u = G(x, t, D_x^{\alpha} D_t^j u), \alpha + j \le k, j < k$

Nozioni e strumenti essenziali

- Superfici caratteristiche
- Metodo delle caratteristiche
- Problemi di Cauchy
- Serie di potenze

Superfici caratteristiche

 ${\cal L}$ operatore differenziale lineare.

Definizione 2.1

Forma caratteristica di L:

$$\chi_L(x,\xi) = \sum_{|\alpha|=k} a_{\alpha}(x) \, \xi^{\alpha} \quad \text{con} \quad x,\xi \in \mathbb{R}^n$$

Definizione 2.2

Varietà caratteristica di L in x:

$$char_x(L) = \{ \xi \neq 0 : \chi_L(x, \xi) = 0 \}$$

Definizione 2.3

 Γ superficie caratteristica per L in $x \iff \nu(x) \in \operatorname{char}_x(L)$

Osservazione

Caso di operatore del 1° ordine: $A = (a_1, \ldots, a_n)$ tangente a Γ . Utile per generalizzazioni successive.

- Se $\xi \in \text{char}_x(L)$ L non è "propriamente" di ordine k in x nella direzione ξ .
- Assegnate su $\Gamma D^i_{\nu}u\left(i < k\right)$ di una soluzione u, se Γ non è caratteristica è possibile calcolare tutte le sue derivate parziali su Γ .

Operatori quasi-lineari 1° ordine

- $\mathbf{P} = \gamma : \mathbb{R}^{n-1} \to \mathbb{R}^n, \ \gamma = \gamma(s)$ parametrizzazione locale di Γ
- $\mathbf{u} = \phi \text{ su } \Gamma \text{ dato di Cauchy}$

Definizione 2.4

 Γ si dice non caratteristica in $x_0 = \gamma(s_0)$ se

$$\det \underbrace{\begin{bmatrix} D_{s_1}\gamma_1 & \cdots & D_{s_{n-1}}\gamma_1 \\ \vdots & & \vdots \\ D_{s_1}\gamma_n & \cdots & D_{s_{n-1}}\gamma_n \end{bmatrix}}_{\text{span del piano tangente}} \underbrace{a_1(\gamma,\phi(\gamma))}_{a_1(\gamma,\phi(\gamma))} (s_0) \neq 0$$

I problemi seguenti ¹ sono **equivalenti**.

EDP:
$$\begin{cases} \sum a_j(x, u) D_{x_j} u = b(x, u) \\ u = \phi \text{ su } \Gamma \end{cases}$$
 (1)

EDO:
$$\begin{cases} D_t x = A(x, y)^2 \\ D_t y = b(x, y) \\ x(0) = x_0 \\ y(0) = \phi(x_0) \quad \forall x_0 \in \Gamma \end{cases}$$
 (2)

Dove y = u(x) e $A(x, y) = [a_1(x, y), \dots, a_n(x, y)].$

¹si può generalizzare al caso non-lineare (1° ordine!)

 $^{^2}$ le soluzioni x vengono dette $\mathit{curve}\ \mathit{caratteristiche} \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle \mapsto \langle \neg \rangle$

Teorema 2.1

Ipotesi | Problema (1)
$$a_j, b, \phi, \Gamma \in C^1$$
$$\Gamma \text{ non caratteristica}$$
Tesi | $\exists ! \text{ soluzione } C^1 \text{ in un intorno di } \Gamma$

La dimostrazione si svolge sfruttando il teorema di esistenza e unicità locale per EDO.

Problema di Cauchy generale

$$\begin{cases} F^*(x, D^{\alpha}u^*) = 0 & |\alpha| \le k, F^* \text{ almeno } C^1 \\ D^j_{\nu}u^* = \phi^*_j & \text{su } \Gamma^* \text{ per } j < k \end{cases}$$

Mappatura in t=0

Detta γ^* la parametrizz. locale di Γ^* , applichiamo la mappa:

$$\Phi(x) = [x_1 \quad \cdots \quad x_{n-1} \mid x_n - \gamma^*(x_1, \dots, x_{n-1})]$$

 ${\it L.~C.~Evans,~Partial~Differential~Equations}$

$$t \leftarrow x_n$$
$$x \leftarrow (x_1, \dots, x_{n-1})$$

- 2 Chiamiamo $\Gamma_0 = \{t = 0\}.$
- Indichiamo le derivate nel modo seguente: $D_x^{\alpha} D_t^{j} u$.
- 4 Otteniamo il problema $(u^* = u(\Phi))$:

$$\begin{cases} F(x, t, D_x^{\alpha} D_t^j u) = 0 & |\alpha| + j \le k \\ D_t^j u(x, 0) = \phi_j(x) & \text{per } j < k \end{cases}$$

Superfici non caratteristiche in generale

Definizione 2.5

 Γ^* (o Γ_0) è non caratteristica \iff l'equazione su Γ_0 può essere riscritta in forma normale rispetto a t.

Osservazione

Si dimostra che è coerente con le definizioni precedenti.

Osservazione

- \blacksquare Caso lineare \rightarrow condizione sui coefficienti.
- \blacksquare Caso non-lineare \rightarrow validità ipotesi teorema del Dini su F.

Nozioni e strumenti

000000000000000000

Definizione 2.6

Funzione maggiorante:

$$\mathcal{M}_{Cr}(x) = \frac{Cr}{r - (x_1 + \dots + x_n)}$$

Osservazione

Per il teorema multinomiale se |x| < r/n si ha che

$$\frac{Cr}{r - (x_1 + \ldots + x_n)} = C \sum_{\alpha} \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}} x^{\alpha}.$$

Teorema 2.2 (utilità del maggiorante)

$$\begin{cases} g_{\alpha} \geq |f_{\alpha}| \\ \sum g_{\alpha} x^{\alpha} \text{ ha raggio di conv. } R \end{cases} \implies \begin{cases} \sum f_{\alpha} x^{\alpha} \\ \text{ha raggio almeno } R \end{cases}$$

In questo caso si scrive: $\sum g_{\alpha}x^{\alpha} \gg \sum f_{\alpha}x^{\alpha}$.

Versioni alternative

Teorema 2.3 (costruzione del maggiorante)

 $\sum f_{\alpha}x^{\alpha}$ ha raggio $R \implies \exists r < R, C > 0$ tali che

$$|f_{\alpha}| \le C \frac{1}{r^{|\alpha|}} \le C \frac{|\alpha|!}{\alpha! \, r^{|\alpha|}}$$

Schema dell'approccio

Seguendo l'ordine cronologico dei risultati procediamo per generalizzazioni progressive:

- EDO
- EDP quasi-lineari
- 3 EDP in forma normale

EDO

Teorema 3.1

$$A \subseteq \mathbb{C}, B \subseteq \mathbb{C}^n \text{ aperti}$$

 $\Omega \subseteq A \text{ aperto connesso}$
 $f: A \times B \to \mathbb{C}^n \text{ olomorfa}$
Pb:
$$\begin{cases} y' = f(x, y) & \forall x \in \Omega \\ y(x_0) = y_0 \end{cases}$$

Tesi

Ipotesi

localmente esiste un'unica soluzione olomorfa

Stima del raggio

Teorema 3.2

Ipotesi | Ipotesi del teorema precedente
$$\exists \overline{B_a(x_0)} \subseteq A, \ \overline{B_b(y_0)} \subseteq B$$
 | La soluzione converge almeno con raggio³
$$\widetilde{r} = a \left[1 - \exp\left(-\frac{b}{aM(n+1)}\right) \right]$$

Versione invariante

00000000000

 $^{^{3}}M = \max_{B_{a}(x_{0}), B_{b}(y_{0})} |f|$

Teorema 3.3

Ipotesi
$$A_i, B \text{ analitici}$$

$$Pb: \begin{cases} D_t y = \sum_{i=1}^{n-1} A_i(x, y) D_{x_i} y + B(x, y) \\ y = 0 \quad \text{su } \Gamma_0 \end{cases}$$

$$Tesi \qquad \exists! \ y(x, t) : \mathbb{R}^n \to \mathbb{R}^m \text{ sol. analitica}$$
in intorno dell'origine

Versione invariante

000000000000

Dimostrazione

- i potizziamo $y_h = \sum_{\alpha} c_{\alpha i}^h x^{\alpha} t^j$
- 2 inserendo le serie di y, A_i , B si ottiene che:

$$c_{\alpha j}^h = Q_{\alpha j}^h$$
 (coeff. delle serie di A_i, B)

Q polinomio a coefficienti non negativi

- $\widetilde{A}_i \gg A_i$, $\widetilde{B} \gg B \implies \widetilde{u} \gg u$ grazie a Q
- 4 si scelgono \widetilde{A}_i , \widetilde{B} in modo da poter calcolare esplicitamente \widetilde{y} analitica con il metodo delle caratteristiche

Come sappiamo già fare, maggioriamo le serie con

$$\mathcal{M}_{Cr}(x,y) \gg A_i(x,y), B(x,y)$$

e risolviamo il problema:

$$\begin{cases} D_t \, \widetilde{y}_h = \mathcal{M}_{Cr}(x, \widetilde{y}) \left[\sum_{i,j} D_{x_j} \widetilde{y}_i + 1 \right] \\ \widetilde{y}_h = 0 \quad \text{su } \Gamma_0 \end{cases}$$

 $con h = 1, \ldots, m$

Soluzione maggiorante

Il sistema precedente ha come soluzione:

$$\widetilde{y}_h(x,t) = u(x_1 + \dots + x_n, t) \quad \forall h$$

con

$$u(s,t) = \frac{r - s - \sqrt{(r-s)^2 - 2tCrmn}}{mn}$$

di cui possiamo studiare il raggio di convergenza.

Stima del raggio di convergenza

Teorema 3.4

La soluzione del teorema 3.3 converge con raggio almeno

$$\widetilde{r} = \frac{1}{n-1} \frac{r}{8Cmn} \text{ con } C \ge \frac{1}{2}$$

Osserviamone l'andamento⁴ rispetto a r, sapendo che:

$$r < \min\{raggi\ di\ conv.\ dei\ coefficienti\ a^i_{ml},\ b_m\}$$

$$C \ge \max \left\{ \frac{\max\limits_{i,m,l,\alpha} \left| (a_{ml}^i)_{\alpha} r^{|\alpha|} \right|}{\max\limits_{m,\alpha} \left| (b_m)_{\alpha} r^{|\alpha|} \right|} \right\}$$

⁴ trade-off Cr

EDP in forma normale

Teorema 3.5

I due problemi seguenti sono equivalenti

$$\begin{array}{ll} \text{non-lineare}: & \begin{cases} D_t^k u = G(x,t,D_x^\alpha D_t^j u) & |\alpha|+j \leq k,\, j < k \\ D_t^j u = \phi_j & \text{su } \Gamma_0,\, j < k \end{cases} \\ \text{quasi-lineare}: & \begin{cases} D_t \, y = \sum\limits_{i=1}^{n-1} A_i(x,y) D_{x_i} y + B(x,y) \\ y = 0 & \text{su } \Gamma_0 \end{cases} \end{array}$$

Versione invariante

Dimostrazione

Il Si costruisce il sistema in modo tale che $y_{\alpha j} = D_x^{\alpha} D_t^j u$ Le matrici A_i e B saranno quindi ricavabili dalle espressioni⁵:

$$D_{t}y_{\alpha j} = y_{\alpha(j+1)} \qquad |\alpha| + j < k$$

$$D_{t}y_{\alpha j} = D_{x_{l}}y_{(\alpha-e_{l})(j+1)} \qquad |\alpha| + j = k, \ j < k$$

$$D_{t}y_{0k} = D_{t}G + \sum_{|\alpha|+j < k} D_{y_{\alpha j}}Gy_{\alpha(j+1)} + \sum_{|\alpha|+j=k, \ j < k} D_{y_{\alpha j}}GD_{x_{l}}y_{(\alpha-e_{l})(j+1)}$$

 $^{^{5}}l(\alpha) = \min\{l : \alpha_l \neq 0\}$

$$y_{\alpha j}(x,0) = D_x^{\alpha} \phi_j(x)$$
 $j < k$
$$y_{0k}(x,0) = G(x,0, D_x^{\alpha} \phi_j(x))$$
 $|\alpha| + j \le k, j < k$

- 2 Si annulla la condizione di Cauchy ridefinendo $y(x,t) \leftarrow y(x,t) \phi(x)$
- 3 Si rimuove t, aggiungendo la variabile $y^0 = t$ con una relativa equazione

Versione "olomorfa"

Come nel caso delle EDO tutto si estende in modo immediato al caso complesso assumendo i dati olomorfi.

Rispondiamo ora alle domande con tre esempi:

- es. di Lewy: è necessario richiedere che i dati siano analitici
- es. di Kowalevski: è necessario richiedere che la superficie non sia caratteristica
- es. di Hadamard: il problema potrebbe non essere ben posto

Esempi

000000

Esempio di Lewy

Definizione 4.1

$$\mathcal{L} = D_x + iD_y - 2i(x+iy)D_t$$

è detto operatore di Lewy.

Esempi

000000

Teorema 4.1

```
f funzione continua a valori reali
Ipotesi
             che dipende solo da t
             u \in C^1: \mathcal{L}u = f in un intorno dell'origine
  Tesi
             f analitica in un intorno di t=0
```

La dimostrazione si svolge sfruttando il principio di riflessione di Schwarz.

Esempi 000000

L'enunciato precedente può essere generalizzato nel modo seguente:

Teorema 4.2

Ipotesi
$$A \subseteq \mathbb{R}^3$$
 aperto
$$\exists F \in C^{\infty}(\mathbb{R}^3, \mathbb{R}) : \nexists u \in C^1(A, \mathbb{R})$$
 tale che
$$\begin{cases} \mathcal{L}u = F \text{ in } A \\ u_x, u_y, u_t \text{ soddisfano la condizione di H\"older} \end{cases}$$

Esempio di Kowalevski

Questo problema non ammette soluzioni⁶ analitiche in un intorno dell'origine:

$$\begin{cases} u_t - u_{xx} = 0 \\ u(x,0) = \frac{1}{1+x^2} \quad \forall x \in \mathbb{R} \end{cases}$$

Osservazione

La superficie è caratteristica!

⁶dimostrazione per assurdo

Esempio di Hadamard

Il problema

$$\begin{cases} u_{xx} + u_{yy} = 0 \\ u(x,0) = 0 \\ u_y(x,0) = n\sin(nx)e^{-\sqrt{n}} \text{ con } n \in \mathbb{N} \end{cases}$$

ha come soluzione

$$u_n(x,y) = \sin(nx)\underbrace{\sinh(ny)e^{-\sqrt{n}}}_{n\to\infty}.$$

Politecnico di Milano

Versione astratta (classi di Ovsyannikov)

 \parallel

Versione classica (simile a esistenza e unicità locale per EDO)

Versione invariante (superfici non caratteristiche)

Versione classica

Teorema 5.1

$$\overline{\mathcal{O}}_0 \subseteq \mathcal{O}_1 \subseteq \mathbb{C}^n \text{ aperti connessi limitati}$$

$$A_j, f, y_0 \text{ olomorfi in } z$$

$$A_j, f \text{ continui in } t$$

$$\text{Pb: } \begin{cases} D_t y = \sum A_j(z,t) D_{z_j} y + A_0(z,t) y + f(z,t) \\ y(z,0) = y_0(z) \end{cases}$$

$$\exists \delta \in (0,T) : \exists ! y \text{ sol. per } |t| < T$$

$$- \text{ olomorfa in } z$$

$$- C^1 \text{ in } t$$

Le conseguenze di questo teorema si osservano in vari campi, tra cui i principali sono:

- teoria delle equazioni differenziali
- fisica matematica
- geometria differenziale
- teoria economica

- confutare la congettura di Weierstrass
- teorema di Holmgren
- ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali di Treves e Nirenberg
- teoria degli operatori differenziali lineari di Hörmander

Teorema di Holmgren

Risultato di unicità delle soluzioni per EDP lineari.

Osservazione

Il teorema di Cauchy-Kowalevski non esclude l'esistenza di altre soluzioni che non sono analitiche!

Una qualsiasi equazione lineare può essere ridotta a un **sistema** del 1° ordine. Ci concentriamo su questo caso.

Teorema 6.1

Ipotesi
$$\begin{cases} y \text{ distribuzione su } (\mathcal{O}_0 \cap \mathbb{R}^n) \times (-T, T) : \\ -K \subseteq \mathcal{O}_0 \cap \mathbb{R}^n \text{ compatto: } y = 0 \text{ in } \mathcal{O}_0 \cap \mathbb{R}^n \setminus K \\ -\begin{cases} D_t y = \sum A_j(z, t) D_{z_j} y + A_0(z, t) y \\ y = 0 \text{ per } t < 0 \end{cases}$$
Tesi
$$\begin{cases} y = 0 \text{ in } (\mathcal{O}_0 \cap \mathbb{R}^n) \times (-T, T) \end{cases}$$

Teorema 6.2

$$\begin{array}{c|c}
\Omega \subseteq \mathbb{R}^n \text{ aperto} \\
A_j \text{ analitici} \\
y \in C^1(\Omega \times (-T,T)) : \\
\begin{cases}
D_t y = \sum A_j(x,t) D_{x_j} y + A_0(x,t) y \\
y = 0 \text{ per } t = 0
\end{array}$$
Tesi
$$\begin{array}{c|c}
y = 0 \text{ in un intorno di } \Omega \times \{0\}$$

Dimostrazione

È un'applicazione della versione astratta alla funzione

$$\widetilde{y}(x,t) = H(t) \, y(x,t),$$

la quale soddisfa sempre un sistema della stessa tipologia.

Teorema di Cartan-Kähler

Un teorema molto importante in geometria differenziale:

- sull'integrabilità di sistemi differenziali esterni (exterior differential systems)
- si dimostra utilizzando il teorema di Cauchy-Kowalevski
- ha applicazioni al campo economico (I. Ekeland, P.A. Chiappori)

Ekeland riassume con queste parole il paper scritto nel 1999 insieme a Chiappori:

Questo articolo risolve un problema di base nella teoria economica, che era rimasto aperto per trent'anni, ovvero la caratterizzazione delle funzioni di domanda di mercato. Il metodo di dimostrazione consiste nel ridurre il problema a un sistema di equazioni differenziali alle derivate parziali non lineari, per il quale si cercano soluzioni convesse. Questo viene riscritto come un sistema differenziale esterno e viene risolto mediante il teorema di Cartan-Kähler, insieme ad alcune manipolazioni algebriche per ottenere la convessità.

- fossero di natura teorica
- rivelarono una maggiore complessità rispetto alle aspettative di Cauchy e Weierstrass

ha avuto conseguenze rilevanti sulla comprensione della complicata natura delle soluzioni delle EDP.

Era una vita - gli costava dirlo, come ebbe ad ammettere, perché si era sempre quardato dagli eccessivi entusiasmi -, era una vita che aspettava di veder entrare nel suo studio un allievo del genere. Un allievo in grado di lanciargli una sfida assoluta, di non sequire soltanto il percorso spericolato della sua mente, ma se possibile di spiccare un volo più alto.

— Alice Munro, Too Much Happiness

