$$H = \frac{B}{Im} - M \rightarrow B = \frac{B}{Im} + \frac{A}{Im}M$$

$$D = \frac{B}{Im} = \frac{B}{Im} + \frac{A}{Im}M$$

$$D = \frac{B}{Im} = \frac{B}{Im} + \frac{A}{Im}M$$

(1) 电极化强度为 \vec{P} 的均匀极化介质球,已知其在球内产生的电场是均匀的,而在球外产生的电场则与位于球心处的电偶极子所产生的电场相同。由此可知球内的电场为

$$\vec{E}_{P_1} = \frac{P}{3 \mathcal{E}_{P_1}} \circ$$

(2) 磁化强度为 \vec{M} 的均匀磁化介质球,已知其在球内产生的磁场是均匀的,而在球外产生的磁场则与位于球心处的磁偶极子所产生的磁场相同。由此可知球内的磁场为

$$\vec{B}_{h} = \frac{}{3} \text{ln} M.$$

(3) 设 O 是一块很大的电介质内部远离边界的一点,已知 O 点的电场强度为 \bar{E}_0 、电极化强度为 \bar{P} ,因此 $\bar{D}_0 = \varepsilon_0 \bar{E}_0 + \bar{P}$ 。用 \bar{E} 和 \bar{D} 分别表示挖出一个以O 点为中心的很小空腔后O 点处的电场强度和电位移矢量。试就三种不同的空腔形状,完成下表(用 \bar{E}_0 、 \bar{P} 表示 \bar{E} ,用 \bar{D}_0 、 \bar{P} 表示 \bar{D}):

空腔形状	$\vec{E} = \vec{E}(\vec{E}_0, \vec{P})$	$\vec{D} = \vec{D}(\vec{D}_0, \vec{P})$
球形	<u>f</u> .	$9.6+p=\frac{p}{3}$
对称轴平行于P的细长圆柱	0	0-
对称轴平行于P的薄圆盘	P Sw.	p

(4) 设 O 是一块很大的磁介质内部远离边界的一点,已知 O 点的磁感应强度为 \bar{B}_0 、磁化强度为 \bar{M} ,因此 $\bar{H}_0=\bar{B}_0/\mu_0-\bar{M}$ 。用 \bar{B} 和 \bar{H} 分别表示挖出一个以O 点为中心的很小空腔后O 点处的磁感应强度和磁场强度。试就三种不同的空腔形状,完成下表(用 \bar{B}_0 、 \bar{M} 表示 \bar{B} ,用 \bar{H}_0 、 \bar{M} 表示 \bar{H}):

空腔形状	$\vec{B} = \vec{B}(\vec{B}_0, \vec{M})$	$\vec{H} = \vec{H} (\vec{H}_0, \vec{M})$
球形	- 3 hm.	- 2 M.
对称轴平行于M的细长圆柱	-hoM.	- M .
对称轴平行于州的薄圆盘	0	Ø.

学教教教建文小 M= MV= EAMR3 (2)

设球内和效应 Bo 等

 $B = h_0 \frac{1}{4\pi r^3} \left[3 i \vec{m} \cdot \vec{r} \cdot \vec{r} - \vec{m} \right] = h_0 M \frac{R^3}{3 r^3} \left[2 \cos \theta \hat{r} + \sin \theta \hat{\theta} \right].$

地中: $B = M - 4 \pi r^3$ L 2000 地子が何道後: $f \cdot (B - B_0) \Rightarrow \cos B_0 = \frac{R^3}{3 R^3} \cdot M_0 M_0 \ge \cos B$ R. $B_0 = \frac{1}{3} \cdot M_0 M_0$ $H = -\frac{1}{3} \cdot M_0$

对于学院, 注意电场与户周向。 c3)~

对于细长图柱、没图柱截面积 S. 长为 L $E \propto \frac{S}{L^2}$ 时起标分数

 $\mathcal{R} \stackrel{\mathcal{L}}{=} \rightarrow 0 \quad \forall \quad \mathcal{E} \rightarrow 0$

B= MoH+ MM= 3/mM