Exponentially Improved Dimension Reduction in ℓ_1 :

Subspace Embeddings and Independence Testing

Taisuke Yasuda (CMU) with

Yi Li (NTU)

David Woodruff (CMU)

Dimension Reduction

- Dimension Reduction: techniques which reduce the dimensionality of datasets, while (approximately) preserving properties of interest
 - Input: data in n-dimensions, where n is very large
 - Want a map $f: \mathbb{R}^n \to \mathbb{R}^r$ for $r \ll n$, such that f(x) approximates x
 - Goal: minimize *r*

Linear Sketching

- Linear Sketching: dimension reduction map f is a linear map
 - f(x) = Sx, where S is an $r \times n$ matrix
 - Sx is known as the "sketch" of x

 ℓ_1 Subspace Embeddings Independence Testing

Useful for:

- Norm estimation
 - Given Sx, estimate $|x| \approx |Sx|$
- Distance estimation
 - Given Sx and Sy, estimate $|x y| \approx |S(x y)| = |Sx Sy|$
- Streaming/dynamic environments
 - Sketch is very easy to update: $S(x + \Delta) = Sx + S\Delta$
- Distributed environments
 - Sketch is very easy to aggregate: S(x + y) = Sx + Sy

Part (1): Subspace Embeddings

Norm Estimation in ℓ_2

- Johnson-Lindenstrauss (1984)
 - Let S to be an $r \times n$ matrix of i.i.d. Gaussians
 - Let x be an n-dimensional vector and $\varepsilon > 0$
 - If $r = \Theta(\varepsilon^{-2})$, then $|Sx|_2 = (1 \pm \varepsilon)|x|_2$
 - Let X be a set of m vectors
 - If $r = \Theta(\varepsilon^{-2}\log m)$, then $|Sx|_2 = (1 \pm \varepsilon)|x|_2$ for all $x \in X$
 - Let A be an $n \times d$ matrix
 - If $r = \Theta(\varepsilon^{-2} d)$, then $|Sx|_2 = (1 \pm \varepsilon)|x|_2$ for all $x \in \text{span}(A)$ ℓ_2 Subspace Embedding

Norm Estimation in ℓ_1

	ℓ_2 Johnson-Lindenstrauss (1984)	ℓ_1 Upper Bound Wang-Woodruff (2019)	ℓ_1 Lower Bound Wang-Woodruff (2019)
1 vector	ε^{-2}	$\exp(\exp(\varepsilon^{-2}))$	
m vectors	$\varepsilon^{-2}\log m$	$\exp(\exp(\varepsilon^{-2}\log m))$	$\exp(\sqrt{m})$
d-dimensional subspace	$\varepsilon^{-2}d$	$\exp(\exp(\varepsilon^{-2}d))$	$\exp(\sqrt{d})$

*Suppressing big Oh, big Omega, and log factors

Our Results

	ℓ_2 Johnson-Lindenstrauss (1984)	ℓ_1 Upper Bound Li-Woodruff-Y (2021)	ℓ_1 Lower Bound Wang-Woodruff (2019)
1 vector	ε^{-2}	$\frac{-\exp(\exp(\varepsilon^{-2}))}{\exp(\varepsilon^{-1})}$	
m vectors	$\varepsilon^{-2}\log m$	$\frac{\exp(\exp(\varepsilon^{-2}\log m))}{\exp(\varepsilon^{-1}m)}$	$\exp(\sqrt{m})$
d-dimensional subspace	$\varepsilon^{-2}d$	$\frac{\exp(\exp(\varepsilon^{-2}d))}{\exp(\varepsilon^{-1}d)}$	$\exp(\sqrt{d})$

*Suppressing big Oh, big Omega, and log factors

Our Results

- Improved dependence on ε , d from doubly exponential to singly exponential
- Singly exponential dependence on d is tight
- ℓ_1 is very different from ℓ_2
 - ℓ_1 doesn't care whether we embed d vectors or their span
 - In ℓ_2 , there is an exponential difference

Li-Woodruff-Y (2021)

	ℓ_2	ℓ_1 UB	ℓ_1 LB
1 vector	ε^{-2}	$\exp(\varepsilon^{-1})$	
m vectors	$\varepsilon^{-2}\log m$	$\exp(\varepsilon^{-1}m)$	$\exp(\sqrt{m})$
d-dim subspace	$\varepsilon^{-2}d$	$\exp(\varepsilon^{-1}d)$	$\exp(\sqrt{d})$

^{*}Suppressing big Oh, big Omega, and log factors

Our Techniques

- Improving the ε dependence:
 - Classical technique of sampling and hashing $\rightarrow O(1)$ distortion
 - Randomizing sampling rates themselves $\rightarrow (1 + \varepsilon)$ distortion
- Improving the *d* dependence:
 - Net argument → doubly exponential bound
 - Applying 1 vector result to the ℓ_1 leverage score vector \rightarrow singly exponential bound

Li-Woodruff-Y (2021)

	ℓ_2	ℓ_1 UB	ℓ_1 LB
1 vector	ε^{-2}	$\exp(\varepsilon^{-1})$	
m vectors	$\varepsilon^{-2}\log m$	$\exp(\varepsilon^{-1}m)$	$\exp(\sqrt{m})$
d-dim subspace	$\varepsilon^{-2}d$	$\exp(\varepsilon^{-1}d)$	$\exp(\sqrt{d})$

^{*}Suppressing big Oh, big Omega, and log factors

Improving the ε dependence

- Sample entries with probability p for $\log n$ levels $p = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{n}$
- Estimate = $\frac{1}{p}$ (sum of heavy survivors) at each level
- This is good in expectation, but not with high probability!
 - We can't take medians in this model
- ullet Our idea: randomize sampling rates p to get high probability bounds

Part (2): Independence Testing

Independence Testing

- q-dimensional distribution given by a data stream of q-tuples:
 - Each stream element is $(i_1, ..., i_q)$, where $i_j \in \{1, ..., d\}$
 - Empirical joint distribution *P*:

$$p(i_1, ..., i_q) = \frac{\text{number of occurrences of } (i_1, ..., i_q)}{\text{length of stream}}$$

• Empirical product distribution $Q = Q_1 \times Q_2 \times \cdots \times Q_q$ $q_j(i) = \frac{\text{number of occurrences of } (*, \dots *, i, *, \dots, *)}{\text{length of stream}}$ i appears at the j -th position

• Question: Estimate $||P - Q||_1$

Independence Testing

Braverman-Ostrovsky (2010)

$$||P - Q||_1$$
 can be estimated in $(\frac{1}{\epsilon} \log d)^{q^{O(q)}}$ space.

Li-Woodruff-Y (2021)

 $||P-Q||_1$ can be estimated in $2^{O(q^2)}(\frac{q}{\epsilon}\log d)^{O(q)}$ space.

Estimate ℓ_1 -Norm of Tensor Matrix

Earlier: sketch S and decoding algorithm \mathcal{D} s.t. $\mathcal{D}(Sx) = (1 \pm \epsilon) ||x||_1$

- Idea: to get the ℓ_1 norm of the matrix, we want to apply this to the vector of ℓ_1 norms of the rows
- Instead, we apply the sketch S to every row
- Whenever we want the ℓ_1 norm of a row, we estimate using the decoding algorithm $\mathcal D$
- Works because of the form of the sketch S

Estimate ℓ_1 -Norm of Tensor

- Nested sketch
 - Bucket at mode j contains the sketch for tensor of mode j-1
 - Run the decoding algorithm to recover the ℓ_1 norm inside each bucket

• Overall sketch length = $2^{O(q^2)} (\frac{q}{\epsilon} \log d)^{O(q)}$

Estimate ℓ_1 -Norm of Tensor

- ullet For the product distribution, unclear how to directly maintain SQ
- However, our sketch is a tensor product $S = S_1 \otimes S_2 \otimes \cdots \otimes S_q$!
- We can compute $S_1Q_1, S_2Q_2, \dots, S_qQ_q$ and assemble them with a tensor product:

$$SQ = (S_1Q_1) \otimes (S_2Q_2) \otimes \cdots \otimes (S_qQ_q)$$

• Compute $||P - Q||_1$ by linearity of the sketches

Conclusion

- ullet We gave two exponentially improved bounds for dimension reduction in ℓ_1
- For subspace embeddings in ℓ_1 :
 - Previous bounds [WW19] required $\exp(\exp(\varepsilon^{-2}d))$ dimensions
 - We show $\exp(\varepsilon^{-1}d)$ is possible
 - Our new techniques include sampling with random sampling rates and avoiding net arguments by using the ℓ_1 leverage score vector
- For independence testing:
 - Previous bounds [BO10] use $(\frac{1}{\epsilon} \log d)^{q^{O(q)}}$ space
 - We show $2^{O(q^2)}(\frac{q}{\epsilon}\log d)^{O(q)}$ space is possible
 - We recursively apply sampling and heavy hitter sketches over the modes of the tensor