UNIT 5 GUIDE

Note: Video titles are clickable links.

Readings Day 25

- (1) Read in OpenStax: Section 4.8 from the beginning of the section through Example 4.40, and the subsection entitled "Growth Rates of Functions"
 - (a) Theorem 4.12: L'Hopital's Rule (0/0 Case)
 - (b) Theorem 4.13: L'Hopital's Rule $(\infty/\infty$ Case)
 - (c) Theorem 3.13 Derivatives of Inverse Trig Functions

Videos Day 25

(1) L'Hopital's Rule

Pre-Class Quiz 25

- (1) Write in your own words what the expression $\lim_{x\to a} f(x)$.
- (2) Find the linear approximation to $f(x) = x^2 + 3x$ at x = 1.
 - \bigcirc (a) L(x) = 4(x 1) + 5
 - \bigcirc (b) L(x) = (x 4) + 5
 - \bigcirc (c) L(x) = 5(x 4) + 1
 - \bigcirc (d) L(x) = 5(x 1) + 4
 - \bigcirc (e) L(x) = (x 5) + 4
- (3) What questions do you have about L'Hopital's Rule?
 - (a) What kind of limits can be found with L'Hopital's Rule?
 - (b) Can L'Hopital's rule be used on any limit?
 - (c) How do I apply L'Hopital's Rule?
 - (d) I have no questions right now

Readings Day 26

(1) Monday will be a review of Unit 4, so there is no pre-reading for Monday.

Videos Day 26

nothing

Pre-Class Quiz 26

- (1) What Unit 4 topics do you have questions about?
 - (a) Derivatives of Inverse Trig Functions
 - (b) Derivatives of Logarithmic Functions
 - (c) Implicit Differentiation
 - (d) Finding the Tangent Lines for Implicit Curves
 - (e) Setting up Related Rates Problems
 - (f) Differentiating Relates Rates Equations
 - (g) Solving Related Rates Questions of One of the Rates
 - (h) I have no questions right now

Readings Day 27

- (1) Read in OpenStax: Section 2.2
 - (a) Definition of a Limit
 - (b) Definition of One-Sided Limits
 - (c) Definition of Infinite Limits
 - (d) Definition of Vertical Asymptote

Videos Day 27

(1) Limit Applications

Pre-Class Quiz 27

(1) Briefly explain why L'Hopital's rule does not apply to the limit $\lim_{x\to 2} \frac{x^3}{x+6}$.

- (2) Determine the $\lim_{x\to 2} \frac{x^3}{x+6}$ either graphically or numerically.
 - \bigcirc (a) 2
 - \bigcirc (b) 0
 - \bigcirc (c) ∞
 - \bigcirc (d) 2
 - (e) Does not exist
- (3) Determine the limit $\lim_{x\to 9} \sqrt{x-5}$
 - \bigcirc (a) 9
 - \bigcirc (b) -5
 - \bigcirc (c) 2
 - \bigcirc (d) 4
 - (e) Does not exist
- (4) Determine the limit $\lim_{x\to 0} \sqrt{x-5}$
 - \bigcirc (a) 0
 - \bigcirc (b) -5
 - \bigcirc (c) 5
 - \bigcirc (d) 1
 - (e) Does not exist

Readings Day 28

(1) Read in OpenStax: Section 2.4

- (a) Definition of Continuity
- (b) Definition of Types of Discontinuities
- (c) Continuity from the right and the left
- (d) Theorem 2.11: The Intermediate Value Theorem
- (2) Read in OpenStax: Section 4.6 from the beginning through the Definition of Infinite Limits at Infinity
 - (a) Definition of Limit at Infinity
 - (b) Definition of Horizontal Asymptote
 - (c) **Note:** You do not need to read the "Formal Definition of the Limit"
- (3) Read in OpenStax: Section 4.6 from the subsection titled "End Behavior" through Example 4.27

Videos Day 28

(1) Discontinuities

Pre-Class Quiz 28

- (1) Briefly describe in your own words what it means for a function to be continuous.
- (2) Graph the function $g(x) = \frac{|x|}{x}$ on an interval that contains x = 0. Does the limit $\lim_{x \to 0} \frac{|x|}{x}$, yes or no? [answer1] Is the function $g(x) = \frac{|x|}{x}$ continuous at the point x = 0, yes or no? [answer2]
- (3) Graph the function $f(x) = \frac{2x^2 100}{x^2 + 2}$, look at the graph in differently sized viewing windows and determine, if possible, $\lim_{x \to \infty} \frac{2x^2 100}{x^2 + 2}$.
 - \bigcirc (a) 2
 - \bigcirc (b) 0
 - \bigcirc (c) ∞
 - \bigcirc (d) $-\infty$
 - (e) Does not exist

UNIT 5 GUIDE 5

(4) Which of the following topics do you still have questions about?
(a) Definition of Continuity
(b) How to determine if a function is continuous at a point
(c) Finding limits as x goes to positive or negative infinity
(d) I have no questions right now
Readings Day 29
(1) Read in OpenStax: Section 4.6 from the subsection titled "Guidelines for Drawing the Graph of a Function" through the end of the section.
(a) Problem Solving Strategy - Drawing the Graph of a Function
Videos Day 29
(1) Sketching a Graph
Pre-Class Quiz 29
(1) What will be true about the graph of the function f , if f' is always positive?
(a) The graph of f will always be increasing
\bigcirc (b) The graph of f will always be decreasing
(c) The graph of f will always be concave up
\bigcirc (d) The graph of f will always be concave down
(2) What will be true about the graph of the function f , if f' is always positive, but f'' is always negative?
(a) The graph of f will always be increasing and concave up.
\bigcirc (b) The graph of f will always be decreasing and concave down.
\bigcirc (c) The graph of f will always be decreasing and concave up.
(d) The graph of f will always be increasing and concave down.

6

(a) Determining where a function is increasing or decreasing
(b) Where a function is concave up or concave down
(c) Where a function has vertical asymptote(s)
(d) Where a function has a horizontal asymptote(s)
(e) The end behavior of a function
(f) Sketching a function given conditions of the function.
(g) I have no questions right now
 (1) Friday will be a review for the Unit 5 Quiz, so there is no pre-class reading Congratulations on making it to the end of the term! Videos Day 30 nothing Pre-Class Quiz 30
(1) What questions do you still have about topics in Unit 5?
(1) What questions do you still have about topics in Unit 5? (a) Using L'Hopital's Rule
(a) Using L'Hopital's Rule
(a) Using L'Hopital's Rule(b) Determining limits algebraically
 (a) Using L'Hopital's Rule (b) Determining limits algebraically (c) Where a function has vertical asymptote(s)
 (a) Using L'Hopital's Rule (b) Determining limits algebraically (c) Where a function has vertical asymptote(s) (d) Where a function has a horizontal asymptote(s)
 (a) Using L'Hopital's Rule (b) Determining limits algebraically (c) Where a function has vertical asymptote(s) (d) Where a function has a horizontal asymptote(s) (e) The end behavior of a function