

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

N	3	m	Δ	•
IN	d	111	c	

Devraj Chow dhary

UB Person Number:

1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 4 4 **(5)** (5) (5) 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 9 9 9 9 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
								rae
			5					*

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$T(\begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}$$

$$J$$
 $T(U) = \begin{bmatrix} 1 & 10 \\ -2 & 10 \end{bmatrix}$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$

a) For take
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 Pivot Pos in every column.

For $T_{A}(v)$ to be one to one the Avil $\{A\} = \overline{\xi}_{0}\}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 & 4 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Pivot Pos $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 4 \\ 0$

- **6. (10 points)** For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True.
$$T(w+w) = T(w) + T(u) = T(w) + T(v).$$

$$\delta_0 T(w) = T(u) + T(v).$$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True:

If well context continearly independent it means = u,vqv = 0.

Sotheset & u,v + has to be linearly independent because gc, u+1/2 v=0.

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

False. An : A[u] + A[v] : n, W+ n2V2

(on be linearly dependent of also not n2 # 0.

Aldo Gut a le can also be a

Fo Gut + C2V need herbedinearly dependant be cause.

Not be

(itt + C2V becomes linearly independent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True. T(v) = T(v+w) = T(w) + T(w).