

Lecture 09: Enhancing Policy gradient

Radoslav Neychev

Sber RL course Spring 2022

References

These slides are deeply based on Practical RL course week09 slides. Special thanks to YSDA team for making them publicly available.

Original slides link: week09 policy II

Let τ be a trajectory $(s_0, a_0, s_1, a_1, ...)$

Recall:

$$J(\pi) = E_{ au\sim\pi} \Big[\sum_{t=0}^T \gamma^t r(s_t)\Big]$$
 - goodness of the π , π depends on $heta$

Policy gradient theorem:

$$\nabla_{\theta} J(\pi) \approx E_{(s,a) \sim \pi} \left[Q^{\pi}(s,a) \nabla_{\theta} log \, \pi(a|s) \right]$$

Let τ be a trajectory $(s_0, a_0, s_1, a_1, ...)$

Recall:

$$J(\pi) = E_{ au\sim\pi} \Big[\sum_{t=0}^T \gamma^t r(s_t)\Big]$$
 - goodness of the π , π depends on θ

Policy gradient theorem:

$$\nabla_{\theta} J(\pi) \approx E_{(s,a) \sim \pi} \left[Q^{\pi}(s,a) \nabla_{\theta} log \, \pi(a|s) \right]$$

Problem: Value of learning rate doesn't guarantee degree of policy change. Let's use smarter optimization method.

Optimization

Suppose we want to optimize $F(\theta)$ by θ in local neighbourhood We approximate F by $\hat{F}(\theta) \approx F(\theta_0) + \nabla F(\theta)^T (\theta - \theta_0)$ Minimizing $\hat{F}(\theta)$ is the same as minimizing $\nabla F(\theta)^T (d)$, $d = \theta - \theta_0$

We want to find d that

1) minimize $\nabla F(\theta)^T(d)$

$$2) \boxed{d^T d} < \epsilon$$
Distance

Using Lagrange multipliers, we find that $d_{opt} \propto -\nabla F(\theta)$

Optimization

Now, let's measure distance using non-identical matrix K:

We want to find d that
1) minimize
$$\nabla F(\theta)^T(d)$$
2) $d^T K d < \epsilon$
Distance

Using Lagrange multipliers, we find that $d_{opt} \propto -K^{-1}\nabla F(\theta)$

Space of parameters

Natural Policy Gradient

Suppose:

$$KL(\pi(\theta_0)||\pi(\theta)) \approx 0.5*(\theta - \theta_0)^T K(\theta - \theta_0) = 0.5*d^T K d, K = \nabla_{\theta}^2 K L(\pi(\theta_0)||\pi(\theta))$$

Solve constrained equation: find vector d that

- 1) Minimize $abla J^T d$
- 2) $d^TKd < \epsilon$

Solution: $d_{opt} \propto K^{-1} \nabla J(\theta)$

New update rule: $heta_{t+1} = heta_t - lpha K^{-1}
abla J(heta)$

Natural Policy Gradient

Suppose:

$$KL(\pi(\theta_0)||\pi(\theta)) \approx 0.5*(\theta - \theta_0)^T K(\theta - \theta_0) = 0.5*d^T K d, K = \nabla_{\theta}^2 KL(\pi(\theta_0)||\pi(\theta))$$

Solve constrained equation: find vector d that

- 1) Minimize $\nabla J^T d$
- 2) $d^TKd < \epsilon$

Solution: $d_{opt} \propto K^{-1} \nabla J(\theta)$

New update rule: $heta_{t+1} = heta_t - lpha K^{-1}
abla J(heta)$

Problems: Value of learning rate still doesn't guarantee degree of policy change. It may be too hard to compute inverse of K.

If we want to find $K^{-1}\nabla J(\theta)$ we may solve $Kx=\nabla J(\theta)$

Matrix K is positive-definite so we can use **conjugate gradients**

Number of iterations k allows us to trade-off between precision and time.

As a result: $\Delta \theta \approx \alpha K^{-1} \nabla J(\theta)$

Last problem: Value of learning rate still doesn't guarantee degree of policy change.

Linear search!

Linear search!

Problem?

Imagine this situation:

Imagine this situation:

We want to compute loss function here! 14

Recall:
$$J(\pi) = E_{\tau \sim \pi} \left[\sum_{t=0}^{T} \gamma^t r(s_t) \right]$$

It can be proven that
$$J(\tilde{\pi}) = J(\pi) + E_{\tau \sim \tilde{\pi}} \left[\sum_{t=0}^{T} \gamma^t A_{\pi}(s_t, a_t) \right]$$

Let's rewrite it this way
$$J(\tilde{\pi}) = J(\pi) + \sum_s \rho_{\tilde{\pi}}(s) \sum_a \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Trust Region trick:

If
$$E_s \left[KL(\pi \mid\mid \tilde{\pi}) \right]$$
 is small,

$$J(\tilde{\pi}) \approx J(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

Then:

$$J(\tilde{\pi}) \approx J(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a) =$$

$$= J(\pi) + \sum_{s} \rho_{\pi}(s) \sum_{a} \pi(a|s) * \frac{\tilde{\pi}(a|s)}{\pi(a|s)} * A_{\pi}(s,a) =$$

$$= J(\pi) + E_{(s,a) \sim \pi} \left[\frac{\tilde{\pi}(a|s)}{\pi(a|s)} A_{\pi}(s,a) \right]$$

Can be computed at every point!

Trust Region Policy Optimization

- Sample state-action pairs from on-policy distribution
- 2) Compute $g = \nabla_{\theta'} \hat{J}(\tilde{\pi}) = \nabla_{\theta'} \frac{1}{N} \sum_{i=0}^{N} \frac{\tilde{\pi}(s_i, a_i)}{\pi(s_i, a_i)} A_{\pi}(s_i, a_i)$ $K = \nabla_{\theta'}^2 \frac{1}{N} \sum_{i=0}^{N} KL(\pi(s_i) \mid\mid \tilde{\pi}(s_i))$

$$K = \nabla_{\theta'}^2 \frac{1}{N} \sum_{i=0}^N KL(\pi(s_i) \mid\mid \tilde{\pi}(s_i))$$

- 3) Find $\hat{d} = -1 * ConjGrad(Kx = g)$
- 4) Do linear search in direction of \hat{d} , constraint $\frac{1}{N}\sum_{i=1}^{N}KL(\pi(s_i)\mid\mid \tilde{\pi}(s_i))<\alpha$

and simultaneously check value of
$$\frac{1}{N}\sum_{i=0}^{N}\frac{\tilde{\pi}(s_i,a_i)}{\pi(s_i,a_i)}A_{\pi}(s_i,a_i)$$

TRPO

Advantages

- Very stable training
- Good result

Disadvantages

- Cheap sampling is necessary
- Not easy to implement

KL constraint

Strict: TRPO

$$\begin{array}{ll}
\text{maximize} & \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] \\
\text{subject to} & \hat{\mathbb{E}}_t \left[\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right] \leq \delta.
\end{array}$$

Penalty: PPO-decay

$$\underset{\theta}{\text{maximize}} \, \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t - \beta \, \text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)] \right]$$

Different losses

Basic objective

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)}$$
, so $r(\theta_{\text{old}}) = 1$

$$L^{CPI}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] = \hat{\mathbb{E}}_t \left[r_t(\theta) \hat{A}_t \right]$$

Different losses

Clipped objective

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_t) \right]$$

Behaviour of losses

Suppose we interpolate the parameters of the model between updates

PPO-clip

Repeat:

- 1) Collect data
- 2) Update policy a few times to maximize $\ L^{CLIP}(\theta)$

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

TRPO PPO

- Works for smaller models
- Second-order optimization

- Works for big models
- First-order optimization

Continuous action spaces

Regular MDP $a \in \mathbb{R}^n$

Which methods can we use?

Continuous action spaces

- We can learn critic easily
- . The problem is finding

$$a_{opt}(s) = \underset{a}{argmax} Q(s,a)$$

Worst case: optimize over neural net!

- First idea: restrict Q(s,a) so that optimization becomes trivial

Q(s,a)=V(s)+A(s,a)

$$A(s,a) = -k_{\theta}(s) \cdot (a - \mu_{\theta}(s))^{2}$$

First idea: restrict Q(s,a) so that optimization becomes trivial For example, parabola (for 1d action space)

$$A(s,a) = -k_{\theta}(s) \cdot (a - \mu_{\theta}(s))^{2}$$

Q: How does it generalize for n-dimensional **a**?

Q(s,a)=V(s)+A(s,a)

First idea: restrict Q(s,a) so that optimization becomes trivial

Q(s,a)=V(s)+A(s,a)

$$A(s,a) = -0.5 \cdot (a - \mu_{\theta}(s))^{T} \cdot L(s) \cdot L(s)^{T} (a - \mu_{\theta}(s))$$

Where L(s) is a lower-triangular matrix

Network trains end-to-end

$$Q(s,a)=V(s)+A(s,a)$$

$$A(s,a)=...$$

$$argmin(Q(s_t, a_t) - [r + \gamma \cdot V(s_{t+1})])^2$$

Source: https://arxiv.org/pdf/1603.00748.pdf

How do we get V(s')?

Second idea: learn a separate network to find a opt

Train critic
$$Q_{ heta}(s$$
 , $a)$

$$\underset{\theta}{argmin}(Q(s_t, a_t) - [r + \gamma \cdot V(s_{t+1})])^2$$
 Train actor
$$a_{opt}(s) \approx \mu_{\theta}(s)$$
 How do we

Train actor
$$a_{opt}(s) \approx \mu_{\theta}(s)$$

$$\nabla_{\theta} J = \frac{\partial Q^{\theta}(s,a)}{\partial a} \frac{\partial \mu(s|\theta)}{\partial \theta}$$

Second idea: learn a separate network to find a opt

Train critic
$$Q_{ heta}(s,a)$$

$$argmin(Q(s_t, a_t) - [r + \gamma \cdot Q(s_{t+1}, \mu_{\theta}(s_{t+1}))])^2$$

Train actor $a_{opt}(s) \approx \mu_{\theta}(s)$ $\nabla_{\theta} J = \frac{\partial Q^{\theta}(s,a)}{\partial a} \frac{\partial \mu(s|\theta)}{\partial \theta}$

Gradient approximation:

$$abla_{ heta}J = rac{\partial Q^{ heta}(s,a)}{\partial a}rac{\partial \mu(s| heta)}{\partial heta}$$

- actual returns
- critic (approx)

• Gradient approximation:

$$abla_{ heta}J = rac{\partial Q^{ heta}(s,a)}{\partial a}rac{\partial \mu(s| heta)}{\partial heta}$$

Going neural

Duct tape zone

In general

- "Natural" for continuous action spaces
 - Discrete: use gumbel-softmax, bit.ly/2v0Xfpz
- Approximation is best around current policy
- Weak critic can introduce bias

vs. REINFORCE

- Better off-policy
- Less variance if reward is smooth
- (subjectively) harder to tune

Demo with torcs http://bit.ly/2pXwdKa

Thank you for your attention!

Backup

Policy iteration for neural networks

Q-values update

$$J_Q(\theta) = \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{s}_t, \mathbf{a}_t) - \hat{Q}(\mathbf{s}_t, \mathbf{a}_t) \right)^2 \right]$$

$$\hat{Q}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right]$$

$$\hat{\nabla}_{\psi} J_{V}(\psi) = \nabla_{\psi} V_{\psi}(\mathbf{s}_{t}) \left(V_{\psi}(\mathbf{s}_{t}) - Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right)$$

Policy update

$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \, \middle| \, \frac{\exp(Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot))}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right)$$

Which can be rewritten as:

$$\mathbf{a}_t = f_{\phi}(\epsilon_t; \mathbf{s}_t)$$

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}, \epsilon_{t} \sim \mathcal{N}} \left[\log \pi_{\phi}(f_{\phi}(\epsilon_{t}; \mathbf{s}_{t}) | \mathbf{s}_{t}) - Q_{\theta}(\mathbf{s}_{t}, f_{\phi}(\epsilon_{t}; \mathbf{s}_{t})) \right]$$

Maximum entropy RL

$$J(\pi) = \sum_{t=0}^{I} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t)) \right]$$

Soft Policy Iteration

$$\mathcal{T}^{\pi}Q(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V(\mathbf{s}_{t+1}) \right],$$

where

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} \left[Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t | \mathbf{s}_t) \right]$$

So what's new?

$$\hat{\nabla}_{\psi} J_{V}(\psi) = \nabla_{\psi} V_{\psi}(\mathbf{s}_{t}) \left(V_{\psi}(\mathbf{s}_{t}) - Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right)$$

Automatic Tuning of Alpha

$$J(\alpha) = \mathbb{E}_{\mathbf{a}_t \sim \pi_t} \left[-\alpha \log \pi_t(\mathbf{a}_t | \mathbf{s}_t) - \alpha \bar{\mathcal{H}} \right]$$

Automatic Tuning of Alpha

$$J(\alpha) = \mathbb{E}_{\mathbf{a}_t \sim \pi_t} \left[-\alpha \log \pi_t(\mathbf{a}_t | \mathbf{s}_t) - \alpha \bar{\mathcal{H}} \right]$$

This algorithm is called **Soft Actor-Critic**