

Dynamics and Control (UESTC 3001)

- Lecture 1: Root Locus Analysis
- Lecture 2: Root Locus II and Nyquist Plots
- Lecture 3: Bode Plots
- Lecture 4: Bode Plots II
- Lecture 5: Stability in Frequency Domain
- Lecture 6: Stability Examples
- Lecture 7: Compensators
- Lecture 8: Tutorials and Test Exercises

Lecture delivered by: Dr Ola Popoola (Olaoluwa.Popoola@Glasgow.ac.uk)

Notes prepared by: Dr Ola R. Popoola

Intended Learning Objectives

At the end of this lecture, you will be able to:

- Sketch Bode magnitude plots and Bode phase plots
- Analyze bode plots and compute stability margins

Additional Reading Materials

- "Modern Control Systems" R. C. Dorf, R.H. Bishop Addison Wesley
- "Modern Control Engineering" K. Ogata. Prentice Hall International
- "Feedback Control of Dynamic Systems" Franklin, Powell, Emami-Naeini. Addison Wesley.
- "Feedback Systems: An Introduction for Scientists and Engineers" K. J. Åström, R. M. Murray. Princeton University Press, Princeton.
 Available at
 - https://www.cds.caltech.edu/~murray/amwiki/index.php/Main_Page
- "Control Engineering: An introduction with the use of Matlab", D. P. Atherton.
 - Available at http://bookboon.com/en/control-engineering-matlab-ebook

These are recommended only and are not required to pass the course.

Additional Notes

- All required notes/tutorials/exam answers may be found on Moodle.
- You are encouraged to do your own reading to complement the lecture material.
- You can also use the forum on Moodle to ask questions about course material, rather than using email.

Revision

- Root Locus Plots
- Frequency Response Analysis
- Nyquist Plots

Nyquist Plot -Simple Lead

Transfer function: G(s) = s + 1

Frequency response function: $G(j\omega) = 1 + j\omega$

This can be seen to have a phase of $\tan^{-1}\omega$. This varies between **0** when $\omega = 0$ and $+90^{\circ}$ when $\omega \rightarrow \infty$.

The magnitude given by:

$$|G(j\omega)| = \sqrt{1 + \omega^2}$$

Which varies between

1 when $\omega = 0$ and

 $+\infty$ when $\omega \rightarrow \infty$.

Nyquist Plot –MATLAB Examples

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2} = \frac{100s+10}{\frac{1}{100}s^3+\frac{1}{5}s^2+s}$$

In Matlab, it can be represented as a transfer function object: sys = tf([100 10],[1/100 1/5 1 0]);

- Root locus: rlocus(sys)
- Nyquist plot: nyquist(sys)

N.B.: don't forget to switch off the display of negative frequencies

Nyquist Plot –Class Examples

$$H(s) = \frac{10}{s(s+2)}$$

- Write out $H(j\omega)$
- Write in complex form i.e. a + jb
- Evaluate magnitude and phase as $\omega \to 0$, $\omega = 2$, and $\omega \to \infty$
- Sketch Nyquist plot

Nyquist Plot -Class Examples

Draw the Nyquist plot of the transfer functions:

$$H(s) = \frac{10}{s(s+2)}$$

• Write out $H(j\omega)$

$$H(j\omega) = \frac{10}{j\omega(\omega+2)}$$

• Write in complex form i.e. a + jb

$$H(j\omega) = -\frac{10\omega^2}{\omega^4 + 4\omega^2} - \frac{j20\omega}{\omega^4 + 4\omega^2}$$

- Evaluate magnitude and phase as $\omega \to 0$, $\omega = 2$, and $\omega \to \infty$
 - Mag: $-2.5 + j\infty$, -1.25 j1.25, -0 j0
- Sketch Nyquist plot

Nyquist Plot –Class Examples

$$(a)H(s) = \frac{10}{s(s+2)}$$

UESTC 3001- Dr Ola R. Popoola

Nyquist Plot –Classwork

$$H(s) = \frac{1}{(s-3)(s-4)}$$

- Write out $H(j\omega)$
- Write in complex form i.e. a + jb
- Evaluate magnitude and phase as $\omega \to 0$, $\omega = 2$, and $\omega \to \infty$
- Sketch Nyquist plot

Nyquist Plot –Classwork

$$H(s) = \frac{1}{(s-3)(s-4)}$$

$$H(j\omega) = \frac{12 - \omega^2}{(12 - \omega^2)^2 + (7\omega)^2} + \frac{j7\omega}{(12 - \omega^2)^2 + (7\omega^2)}$$

Nyquist Plot -Classwork

$$H(s) = \frac{90}{(s+3)(s+6)}$$

UESTC 3001- Dr Ola R. Popoola

Bode Plots/Diagrams

Bode Plots Introduction

Bode Plots are an alternative method for displaying frequency responses graphically.

The Bode plots use two separate plots

- Magnitude/gain
- Phase

Why Bode Plots?

- Nyquist plots for complex systems are hard to draw accurately without reasonable computations.
- Bode plots are sometimes used instead as accurate sketches are possible.
- To guide us to draw the Bode diagrams of 'complex' transfer functions, we can use asymptotic plots.

Bode Components and Time Constant form

 The general form a transfer function can be factorised by writing in the time constant form such as:

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)\dots}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)\dots}$$

• The plots are:

gain measured in dB = $20 \log_{10} |G(j\omega)|$ Phase, $arg[G(j\omega)] = \angle G(j\omega)$

Plotted against frequency, ω , on a logarithmic scale.

Writing transfer functions in time constant form

Time constant form -Classwork

Write the transfer functions below in the time constant form:

$$H(s) = \frac{1}{s(s+2)}$$

$$H(s) = \frac{1}{(s+3)(s+4)}$$

$$H(s) = \frac{1}{s^2 + 3s + 3}$$

For quadratic polynomials, comment on transfer function and damping factor.

Bode Plots - Magnitude

Magnitude:

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)...}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)...}$$

$$20 \log_{10} |G(j\omega)| = 20 \log_{10} K$$

$$+20 \log_{10} \left| 1 + j \frac{\omega}{\omega_{z1}} \right| + 20 \log_{10} \left| 1 + j \frac{\omega}{\omega_{z2}} \right|$$

$$-20 r \log_{10} |j\omega|$$

$$-20 \log_{10} \left| 1 + j \frac{\omega}{\omega_{p1}} \right| - 20 \log_{10} \left| 1 + j \frac{\omega}{\omega_{p2}} \right|$$

Bode Plots -Phase

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)\dots}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)\dots}$$

Phase:

$$\angle G(j\omega) = Arg[G(j\omega)] = \tan^{-1}\left(\frac{\omega}{\omega_{z1}}\right) + \tan^{-1}\left(\frac{\omega}{\omega_{z2}}\right) + \dots$$
$$-r. 90^{o}$$
$$-\tan^{-1}\left(\frac{\omega}{\omega_{n1}}\right) - \tan^{-1}\left(\frac{\omega}{\omega_{n2}}\right) + \dots$$

Bode Plots –Simple Gain

$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)...}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)..}$

Simple Gain:

$$G(s) = K$$

Gain:

$$20\log_{10}|G| = 20\log_{10}|K|$$

Phase:

$$argG(j\omega) = 0^{\circ}$$

Example for K=10

Bode Plots -Integrator

Integrator:

$$G(s) = \frac{1}{s}$$

$$20\log_{10}|G| = -20\log_{10}\omega$$

Phase:

$$argG(j\omega) = -90^{\circ}$$

Bode Plots –Simple lag Gain

Simple lag:
$$G(s) = \frac{1}{1 + \frac{s}{\omega c}}$$

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)\dots}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)\dots}$$

$$\omega \ll \omega_C \rightarrow$$

$$\omega = \omega_{\mathcal{C}} \rightarrow$$

$$\omega \gg \omega_C$$

$$\omega = \omega_C$$

$$20\log_{10}|G| = -10\log_{10}\left(1 + \frac{\omega^2}{\omega_C^2}\right)$$

$$-10\log_{10}(1) = 0 dB$$

$$-10\log_{10}(2) = -3 \text{ dB}$$

$$\omega \ll \omega_C$$
 \rightarrow $-10\log_{10}(1) = 0 \text{ dB}$
 $\omega = \omega_C$ \rightarrow $-10\log_{10}(2) = -3 \text{ dB}$
 $\omega \gg \omega_C$ \rightarrow $-20\log_{10}\left(\frac{\omega}{\omega_C}\right)$ \rightarrow -20 dB/decade crossing the 0 dB line at

Bode Plots –Simple Lag Phase

Simple lag:
$$G(s) = \frac{1}{1 + \frac{s}{\omega c}}$$

Phase:
$$\tan^{-1} G = -\tan^{-1} \frac{\omega}{\Omega}$$

$$\omega \ll \omega_C \rightarrow -\tan^{-1}\frac{\omega}{\omega} \simeq 0^C$$

$$\omega = \omega_C$$
 \rightarrow $-\tan^{-1}\frac{\omega_C^2}{\omega_C} = -45^\circ$

Phase:
$$\tan^{-1} G = -\tan^{-1} \frac{\omega}{\omega_C}$$

$$\omega \ll \omega_C \rightarrow -\tan^{-1} \frac{\omega}{\omega_C} \simeq 0^o$$

$$\omega = \omega_C \rightarrow -\tan^{-1} \frac{\omega^c}{\omega_C} = -45^o$$

$$\omega \gg \omega_C \rightarrow -\tan^{-1} \frac{\omega^c}{\omega_C} \simeq -90^o$$

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{z1}}\right)\left(1 + \frac{s}{\omega_{z2}}\right)\dots}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)\dots}$$

What is an acceptable limit for $\omega \ll \omega_C$ (resp. $\omega \gg \omega_C$)? $\frac{\omega_C}{5}$ (resp. $5\omega_C$)

$$\frac{\omega_C}{10}$$
 (resp. $10\omega_C$)

Bode Plots – Simple lag phase plot

Version 1

Version 2

Bode Plots –Simple Lead Gain

• Simple lead
$$G(s) = 1 + \frac{s}{\omega_c}$$

 $G(s) = \frac{1}{s}$

Gain:
$$20\log_{10}|G| = 10\log_{10}\left(1 + \frac{\omega^2}{\omega_C^2}\right)$$

$$\omega \ll \omega_C$$
 \rightarrow $10\log_{10}(1) = 0 \text{ dB}$
 $\omega = \omega_C$ \rightarrow $10\log_{10}(2) = 3 \text{ dB}$

$$\omega = \omega_C \qquad \rightarrow \qquad 10\log_{10}(2) = 3 \text{ dB}$$

$$\omega \gg \omega_C$$
 \Rightarrow 20log₁₀ $\left(\frac{\omega}{\omega_c}\right) \Rightarrow$ 20 dB/decade crossing

the 0 dB line at $\omega = \omega_C$

Contribution of Components

$$G(s) = \frac{K\left(1 + \frac{s}{\omega_{Z1}}\right)\left(a + \frac{s}{\omega_{Z2}}\right) \dots}{s^r\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right) \dots \left(1 + \frac{2\zeta s}{\omega_n} + \frac{s^2}{\omega_n^2}\right) \dots}$$

Component	Formular	Gain	Phase
a. Gain	K	$20\log K $	00
b. Integrator	$\frac{1}{s^r}$	$-20r\log\omega$	$-r.90^{o}$
c. First Order lead	$1 + \frac{s}{\omega_{Z1}}$	0, 20 dB/dec after ω_{z1}	$\tan^{-1}(\frac{\omega}{\omega_{z1}})$
d. First Order lag	$\frac{1}{1 + \frac{s}{\omega_{p1}}}$	0, -20 dB/dec after ω_{p1}	$-\tan^{-1}(\frac{\omega}{\omega_{p1}})$
e. Second Order lag	$\frac{1}{\left(1 + \frac{2\zeta s}{\omega_n} + \frac{s^2}{\omega_n^2}\right)}$	0, -40 dB/dec after $\omega = \omega_n$	$-\tan^{-1}(\frac{\frac{2\zeta\omega}{\omega_n}}{1-\frac{\omega^2}{\omega_n^2}})$

Bode Plot Process

Now let us discuss the procedure of drawing a Bode plot:

- 1. Substitute the $s = j\omega$ in the open loop transfer function $G(s) \times H(s)$.
- 2. Find the corresponding corner frequencies and tabulate them.
- 3.Now we are required one semi-log graph chooses a frequency range such that the plot should start with the frequency which is lower than the lowest corner frequency. Mark angular frequencies on the x-axis, mark slopes on the left hand side of the y-axis by marking a zero slope in the middle and on the right hand side mark phase angle by taking -180° in the middle.
- 4. Calculate the gain factor and the type of order of the system.
- 5.calculate slope corresponding to each factor then add.

UESTC 3001- Dr Ola R. Popoola

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2}$$

Components:

A simple gain 10

A simple lead term (1 + 10s)

An integrator $\frac{1}{s}$ Two lag terms $\frac{1}{1+\frac{s}{10}}$

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2}$$

Components:

A simple gain 10

A simple lead term (1 + 10s)

An integrator $\frac{1}{6}$

Two lag terms $\frac{1}{1+\frac{s}{10}}$

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2}$$

Components:

A simple gain 10

A simple lead term (1 + 10s)

An integrator $\frac{1}{6}$

Two lag terms $\frac{1}{1+\frac{s}{10}}$

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2}$$

Phase Plot

$$0 < \omega < 0.02$$
 Angle = -90°

$$\omega = 0.1$$
 Angle = -45°

$$0.5 < \omega < 2$$
 Angle = 0°

$$\omega = 10$$
 Angle = -90°

$$50 < \omega < \infty$$
 Angle = -180°

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2}$$

Bode Plots – Matlab

$$G(s) = \frac{10(1+10s)}{s\left(1+\frac{s}{10}\right)^2} = \frac{100s+10}{\frac{1}{100}s^3 + \frac{1}{5}s^2 + s}$$

In Matlab, it can be represented as a transfer function object: $sys = tf([100\ 10],[1/100\ 1/5\ 1\ 0]);$

Bode plot: bodeplot(sys)

Nyquist plot: nyquistplot(sys)

Response of a delay

Laplace transform of a delay of T seconds is:

$$H(s) = e^{-sT}$$

In the frequency domain:

$$s = j\omega$$

The frequency response of a delay is:

$$H(j\omega) = e^{-j\omega T}$$

Magnitude:

$$|H(j\omega)| = 1$$

Phase:

$$\angle H(j\omega) = -\omega T \ radians$$

Response of a delay

Practice Exercise

Consider the transfer function:

$$H(s) = \frac{10.(s + 0.5)}{(s + 10)}$$

For this transfer function, find its Bode diagrams