Cálculo I

Pedro H A Konzen

13 de março de 2019

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre cálculo de funções de uma variável.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença Prefácio Sumário			i				
			ii iii iv				
				1	Fun	lamentos sobre funções	1
					1.1	Definição e gráfico	1
	1.2	Tipos de funções	3				
		1.2.1 Tipos de funções fundamentais	3				
		1.2.2 Funções potência	5				
		1.2.3 Funções polinomiais	5				
		1.2.4 Funções racionais	5				
		1.2.5 Funções algébricas	5				
		1.2.6 Funções transcendentes	5				
		1.2.7 Funções definidas por partes	6				
	1.3	Funções trigonométricas	7				
	1.4	Funções exponenciais e logarítmicas	7				
\mathbf{R}	espo	cas dos Exercícios	8				
\mathbf{R}	eferê	cias Bibliográficas	9				
Ín	dice	Remissivo	10				

Capítulo 1

Fundamentos sobre funções

1.1 Definição e gráfico

Uma **função** de um conjunto D em um conjunto Y é uma regra que associa um único elemento $y \in Y^1$ a cada elemento $x \in D$. Costumeiramente, identificamos uma função por uma letra, por exemplo, f e escrevemos f: $D \to Y$, y = f(x), para denotar que a função f toma valores de entrada em D e de saída em Y.

O conjunto D de todos os possíveis valores de entrada da função é chamado de **domínio**. O conjunto de todos os valores f(x) tal que $x \in D$ é chamado de **imagem** da função.

Ao longo do curso de cálculo, as funções serão definidas apenas por expressões matemáticas. Nestes casos, salvo explicitado o contrário, suporemos que a função tem números reais como valores de entrada e de saída. O domínio e a imagem deverão ser inferidos da regra algébrica da função ou da aplicação de interesse.

Exemplo 1.1.1. Determinemos o domínio e a imagem de cada uma das seguintes funções:

- $y = x^2$:
 - Para qualquer número real x, temos que x^2 também é um número real. Então, dizemos que seu domínio (natural)² é o conjunto

 $y \in Y$ denota que y é um elemento do conjunto Y.

²O **domínio natural** é o conjunto de todos os números reais tais que a expressão matemática que define a função seja possível.

$$\mathbb{R} = (-\infty, \infty).$$

– Para cada número real x, temos $y=x^2\geq 0$. Além disso, para cada número real não negativo y, temos que $x=\sqrt{y}$ é tal que $y=x^2$. Assim sendo, concluímos que a imagem da função é o conjunto de todos os números reais não negativos, i.e. $[0,\infty)$.

• y = 1/x:

- Lembremos que divisão por zeros não está definida. Logo, o domínio desta função é o conjunto dos números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
- Primeiramente, observemos que se y=0, então não existe número real tal que 0=1/x. Ou seja, 0 não pertence a imagem desta função. Por outro lado, dado qualquer número $y \neq 0$, temos que x=1/y é tal que y=1/x. Logo, concluímos que a imagem desta função é o conjunto de todos os números reais não nulos, i.e. $(-\infty,0) \cup (0,\infty)$.
- $y = \sqrt{1 x^2}$:
 - Lembremos que a raiz quadrada de números negativos não está definida. Portanto, precisamos que:

$$1 - x^2 \ge 0 \Rightarrow x^2 \le 1 \tag{1.1}$$

$$\Rightarrow -1 \le x \le 1. \tag{1.2}$$

Donde concluímos que o domínio desta função é o conjunto de todos os números x tal que $-1 \le x \le 1$ (ou, equivalentemente, o intervalo [-1,1]).

– Uma vez que $-1 \le x \le 1$, temos que $0 \le 1 - x^2 \le 1$ e, portanto, $0 \le \sqrt{1 - x^2} \le 1$. Ou seja, a imagem desta função é o intervalo [0, 1].

O **gráfico** de uma função é o conjunto dos pares ordenados (x, f(x)) tal que x pertence ao domínio da função. Mais especificamente, para uma função $f: D \to \mathbb{R}$, o gráfico é o conjunto

$$\{(x, f(x))|x \in D\}.$$
 (1.3)

O esboço do gráfico de uma função é, costumeiramente, uma representação geométrica dos pontos de seu gráfico em um plano cartesiano.

Exemplo 1.1.2. A Figura 1.1 mostra os esboços dos gráficos das funções $f(x) = x^2$, g(x) = 1/x e $h(x) = \sqrt{1-x^2}$.

Figura 1.1: Esboço dos gráficos das funções $f(x)=x^2, g(x)=1/x$ e $h(x)=\sqrt{1-x^2}$ dadas no Exemplo 1.1.2.

Para plotarmos os gráficos destas funções no wxMaxima podemos usar os seguintes comandos:

```
wxplot2d(x^2,[x,-2,2]);
wxplot2d(1/x,[x,-1,1],[y,-10,10]);
wxplot2d(sqrt(1-x^2),[x,-1,1]);
```

Exercícios

Em construção ...

1.2 Tipos de funções

Nesta seção, vamos ressaltar alguns tipos de funções que aparecerem com frequência nos estudos de cálculo.

1.2.1 Tipos de funções fundamentais

Uma **função linear** é uma função da forma f(x) = mx + b, sendo m e b parâmetros³ dados. Recebe este nome, pois seu gráfico é uma linha (uma reta)⁴.

 $^{^3}$ números reais.

⁴Não confundir com o conceito de linearidade de operadores.

Quando m=0, temos uma **função constante** f(x)=b. Esta tem domínio $(-\infty,\infty)$ e imagem $\{b\}$. Por outro lado, toda função linear com $m\neq 0$ tem $(-\infty,\infty)$ como domínio e imagem.

Exemplo 1.2.1. A Figura 1.2 mostra esboços dos gráficos das funções lineares f(x) = -5/2, f(x) = 2 e f(x) = 2x - 1.

Figura 1.2: Esboços dos gráficos das funções lineares y = -5/2, y = 2 e y = 2x - 1 discutidas no Exemplo 1.2.1.

Observação 1.2.1. O lugar geométrico do gráfico de uma função linear é uma reta (ou linha). O parâmetro m controla a inclinação da reta em relação ao eixo x^5 . Quando m=0, temos uma reta horizontal. Quando m>0 temos uma reta com inclinação positiva (crescente) e, quando m<0 temos uma reta com inclinação negativa. Verifique!

Quaisquer dois pontos (x_0, y_0) e (x_1, y_1) , com $x_0 \neq x_1$, determinam uma única função linear (reta) que passa por estes pontos. Para encontrar a expressão desta função, basta resolver o seguinte sistema linear

$$mx_0 + b = y_0 \tag{1.4}$$

$$mx_1 + b = y_1 \tag{1.5}$$

⁵eixo das abscissas

Subtraindo a primeira equação da segunda, obtemos

$$m(x_0 - x_1) = y_0 - y_1 \Rightarrow m = \frac{y_0 - y_1}{x_0 - x_1}.$$
 (1.6)

Daí, substituindo o valor de m na primeira equação do sistema, obtemos

$$\frac{y_0 - y_1}{x_0 - x_1} x_0 + b = y_0 \Rightarrow b = -\frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0.$$
 (1.7)

Ou seja, a expressão da função linear (equação da reta) que passa pelos pontos (x_0,y_0) e (x_1,y_1) é

$$y = \underbrace{\frac{y_0 - y_1}{x_0 - x_1}}_{m} (x - x_0) + y_0. \tag{1.8}$$

1.2.2 Funções potência

Em construção ...

1.2.3 Funções polinomiais

Em construção ...

1.2.4 Funções racionais

Em construção ...

1.2.5 Funções algébricas

Em construção ...

1.2.6 Funções transcendentes

Em construção ...

1.2.7 Funções definidas por partes

Funções definidas por partes são funções definidas por diferentes expressões matemáticas em diferentes partes de seu domínio.

Exemplo 1.2.2. Consideremos a seguinte função definida por partes:

$$f(x) = \begin{cases} -x & , x < 0, \\ x^2 & , x \ge 0 \end{cases}$$
 (1.9)

Observemos que tanto o domínio como a imagem desta função são $(-\infty, \infty)$. A Figura 1.3 mostra o esboço do gráfico desta função.

Figura 1.3: Esboço do gráfico da função definida por partes f(x) dada no Exemplo 1.2.2.

Um exemplo de função definida por partes fundamental é a **função valor absoluto**⁶

$$|x| = \begin{cases} x & , x \le 0 \\ -x & , x < 0 \end{cases} \tag{1.10}$$

Vejamos o esboço do seu gráfico dado na Figura 1.4.

⁶Esta função também pode ser definida por $|x| = \sqrt{x^2}$.

Figura 1.4: Esboço do gráfico da função valor absoluto y = |x|.

Exercícios

Em construção ...

1.3 Funções trigonométricas

Exercícios

Em construção ...

1.4 Funções exponenciais e logarítmicas

Em construção ...

Exercícios

Resposta dos Exercícios

Referências Bibliográficas

 $[1]\,$ George Thomas. $\emph{C\'alculo},$ volume 1. Addison- Wesley, 12. edition, 2012.

Índice Remissivo

```
domínio, 1
natural, 1

função, 1
constante, 4
definida por partes, 6
linear, 3
valor absoluto, 6

gráfico, 2
imagem, 1
```