INK AND INK SET

3--

FIELD OF THE INVENTION

The present invention relates to an ink and an ink set, which are ensured with excellent ejection stability.

BACKGOUND OF THE INVENTION

Accompanying recent popularization of computers, an inkjet printer is widely used for printing letters or an image on paper, film, cloth or the like not only at offices but also at homes.

The inkjet recording method includes a system of jetting out a liquid droplet by applying a pressure from a piezoelectric element, a system of jetting out a liquid droplet by generating a bubble in the ink under heat, a system of using an ultrasonic wave, and a system of jetting out a liquid droplet by suction using an electrostatic force. The ink composition used for such inkjet recording includes an aqueous ink, an oily ink and a solid (fusion-type) ink. Among these inks, an aqueous ink is predominating in view of production, handleability, odor, safety and the like.

The coloring agent used in such an ink for inkjet recording is required to have high solubility in a solvent, enable high-density recording, provide good color hue, exhibit excellent fastness to light, heat, air, water and

÷---

chemicals, ensure good fixing property to an imagereceiving material and less bleeding, give an ink having
excellent storability, have high purity and no toxicity,
and be available at a low cost. However, it is very
difficult to find out a coloring agent satisfying these
requirements in a high level.

Various dyes and pigments for inkjet recording have been already proposed and actually used, however, a coloring agent satisfying all requirements is not yet found out at present. Conventionally well-known dyes and pigments having a color index (C.I.) number can hardly satisfy both color hue and fastness required of the ink for inkjet recording.

On the other hand, when an insoluble dye solid is present in an ink at the preparation of the ink, this is found to cause a problem in the ejection property of the ink. Particularly, the dyes having a high molecular extinction coefficient, which have been studied by the present inventors, are revealed to have a problem in that the image is disordered or beading is generated due to ejection failure.

SUMMARY OF THE INVENTION

Under these circumstances, an object of the present invention is to provide an inkjet ink and an ink set, which can print an image without disorder or beading due to

ejection failure and ensure excellent ejection stability and durability.

The object of the present invention is attained by the ink and the ink set described below.

- 1. An ink obtained by dissolving at least one dye of an azo dye having a heterocyclic group or a phthalocyanine dye in an aqueous medium, wherein the dyes contained in said ink have a solubility of 15 g or more in 100 g of water at 25°C under atmospheric pressure.
- 2. The ink as described in the above 1, wherein the oxidation potential of at least one dye of an azo dye or an phthalocyanine dye is more positive than 1.0 V (vs SCE).
- 3. The ink as described in the above 1, wherein said azo dye has two heterocyclic groups and said phthalocyanine dye has at least one bond of -SO- or $-SO_2-$.
- 4. The ink as described in the above 1, wherein said azo dye or phthalocyanine dye is represented by the following formula (1), (2), (3) or (4):

Formula (1):

A₁₁-N=N-B₁₁

wherein A_{11} and B_{11} each independently represents a heterocyclic group which may be substituted;

Formula (2):

wherein X_{21} , X_{22} , X_{23} and X_{24} each independently represents $-SO-Z_2$, $-SO_2-Z_2$, $-SO_2NR_{21}R_{22}$, a sulfo group, $-CONR_{21}R_{22}$ or $-COOR_{21}$,

each Z₂ independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,

 R_{21} and R_{22} each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted

heterocyclic group,

 $Y_{21},\ Y_{22},\ Y_{23}$ and Y_{24} each independently represents a monovalent substituent,

÷.

 a_{21} to a_{24} and b_{21} to b_{24} represent the number of substituents X_{21} to X_{24} and Y_{21} to Y_{24} , respectively, a_{21} to a_{24} each independently represents a number of 0 or an integer of 1 to 4 but all are not 0 at the same time, and b_{21} to b_{24} each independently represents a number of 0 or an integer 1 to 4, provided that when a_{21} to a_{24} and a_{24} an

M represents a hydrogen atom, a metal atom or an oxide, hydroxide or halide thereof;

Formula (3):

$$A_{31}$$
 $N=N$ $N_{32}=B_{31}$ $N_{R_{36}}$ R_{36}

wherein A₃₁ represents a 5-membered heterocyclic group,

 B_{31} and B_{32} each represents =CR $_{31}$ - or -CR $_{32}$ = or either one of B_{31} and B_{32} represents a nitrogen atom and the other represents =CR $_{31}$ - or -CR $_{32}$ =,

 R_{35} and R_{36} each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an

aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, and each group may further have a substituent,

G₃, R_{31} and R_{32} each independently represents hydrogen atom, a halogen atom, an aliphatic group, aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxy group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, an amino (including an arylamino group and a heterocyclic amino an acylamino group, a ureido group, sulfamoylamino group, an alkoxycarbonylamino group, aryloxycarbonylamino group, an alkylsulfonylamino group, an arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkylthio group, an arylthio group, an alkylsulfonyl group, an arylsulfonyl group, a heterocyclic sulfonyl group, an alkylsulfinyl group, an arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group, a sulfo group or a heterocyclic thio group, and each group may be further substituted, and

 R_{31} and R_{35} , or R_{35} and R_{36} may combine to form a 5- or 6-membered ring;

Formula (4):

A41-N=N-B41-N=N-C41

wherein A_{41} , B_{41} and C_{41} each independently represents an aromatic group which may be substituted, or a heterocyclic group which may be substituted.

- 5. The ink as claimed in any one of the above 1 to 4, wherein said ink is used for an inkjet.
- 6. An ink set comprising inks, the constituent inks all being the ink claimed in any one of the above 1 to 5.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is described in detail below.

The ink of the present invention is characterized by dissolving at least one dye in an aqueous medium, wherein the dyes have a solubility of 15 g or more in 100 g of water at 25°C under atmospheric pressure. Furthermore, the oxidation potential of the dye is desired to be 1.0 V (vs SCE) or more. Particularly, the inks, where dyes having the above-described solubility and oxidation potential which are represented by any of the formulas (1) to (4) are used, have an excellent ejection stability and high stabilities to light, heat, and an oxidative atmosphere to meet the object of the invention. Although the dyes of high water-solubility are used for these inks, bleeding is inhibited even in the overlapping area of ink images having

different colors in an ink set composed of these inks to

meet the object of the invention.

ġ....

In addition, it might be said that the condition of "atmospheric pressure" relating to the measurement of the above-described solubility does not mean a condition of particularly high or low pressures, but the atmospheric pressure which is usually meant in ordinary environment. It is as a matter of course that no solubility is affected by usual changes of the atmospheric pressure.

The dyes for use in the present invention, including the dyes represented by formulae (1) to (4), are described below.

In the present invention, a dye having an oxidation potential more positive than 1.00 V (preferably more positive than 1.1 V, more preferably more positive than 1.2) is preferably used. By setting the oxidation potential of the dye to be more positive than 1.0 V, an image excellent in the image durability, particularly in the ozone resistance, can be obtained.

The oxidation potential value (Eox) can be easily measured by one skilled in the art and the method therefor is described, for example, in P. Delahay, New Instrumental Methods in Electrochemistry, Interscience Publishers (1954), A.J. Bard et al., Electrochemical Methods, John Wiley & Sons (1980), and Akira Fujishima et al., Denkikagaku

Sokutei Ho (Electrochemical Measuring Method), Gihodo Shuppan Sha (1984).

More specifically, a test sample is dissolved to a concentration of 1×10^{-6} to 1×10^{-4} mol/liter in a solvent such as dimethylformamide or acetonitrile containing a supporting electrolyte such as sodium perchlorate or tetrapropylammonium perchlorate and the oxidation potential is measured as a value to SCE (saturated calomel electrode) using a cyclic voltammetry. This value sometimes deviates on the order of tens of millivolt due to the effect of liquid junction potential, liquid resistance of sample solution, or the like, however, the reproducibility of potential can be guaranteed by adding a standard sample (for example, hydroquinone). In order to univocally specify the potential, in the present invention, the value standard) (SCE measured in а dimethylformamide (concentration of dye: 0.001 · moldm⁻³) containing 0.1 mol · dm⁻³ of tetrapropylammonium perchlorate as the supporting electrolyte is used as the oxidation potential of the dye. In the case of a water-soluble dye, the dye is sometimes hardly dissolved directly in N,N-dimethylformamide. such a case, the oxidation potential is measured after dissolving the dye by using water in a small amount as much as possible and then diluting it with N,N-dimethylformamide to have a water content of 2% or less.

The oxidation potential (Eox) value indicates the transferability of an electron from the sample to the electrode and as the value is larger (the oxidation potential is more positive), the electron is less transferable from the sample to the electrode, in other words, the oxidation less occurs. As for the relationship with the structure of compound, the oxidation potential becomes more positive when an electron-withdrawing group is introduced, and becomes more negative when an electron-donating group is introduced.

Examples of the dye having this property include azo dyes (for yellow dye, magenta dye and black dye) and phthalocyanine dyes (for cyanine dye) having a specific performance or structure. These dyes are described below.

[Yellow Dye]

When an image printed on a reflective medium by using an ink containing the yellow dye for use in the present invention is measured on the reflection density through a Status A filter and one point having a reflection density (D_B) of 0.90 to 1.10 in the yellow region is defined as the initial density of this ink and when this printed matter is enforcedly discolored by using an ozone fading tester capable of always generating 5 ppm of ozone and the accelerated fading rate constant (k) is determined from the time period (t) until the reflection density decreases to

80% (residual ratio) of the initial density, the yellow dye preferably gives an accelerated fading rate constant of 5.0×10^{-2} [hour⁻¹] or less. With this accelerated fading constant, the fastness, particularly, fastness to ozone gas, can be enhanced. In this viewpoint, the accelerated fading constant is preferably 3.0×10^{-2} [hour⁻¹] or less, more preferably 1.0×10^{-2} [hour⁻¹] or less.

÷-:-

The reflection density as used herein is a value measured through a Status A filter (blue) by using a reflection densitometer (X-Rite 310TR) and the accelerated fading rate constant (k) is a value determined according to residual ratio = $\exp(-kt)$, namely, $k=(-\ln 0.8)t$.

As described above, the yellow dye preferably has an oxidation potential more positive than 1.0 V (vs SCE), more preferably more positive than 1.1 V (vs SCE), still more preferably more positive than 1.2 V (vs SCE). In the present invention, the oxidation potential is preferably rendered more positive by introducing an electron-withdrawing group into the yellow dye skeleton.

The dye for use in the present invention preferably has good color hue as well as good fastness, more preferably has no trailing in the long wave side on the absorption spectrum. For this purpose, the yellow dye preferably has λ max in the region from 390 to 470 nm and the ratio $I(\lambda max + 70 \text{ nm})/I(\lambda max)$ of the absorbance at λ max

(I(λ max)) to the absorbance at λ max + 70 nm (I(λ max + 70 nm)) is preferably 0.2 or less, more preferably 0.1 or less. The lower limit of this ratio is ideally 0 but actually about 0.01.

·-·-

Examples of the dye satisfying these oxidation potential and absorption properties include the dye represented by formula (1):

Formula (1):

A₁₁-N=N-B₁₁

wherein A_{11} and B_{11} each independently represents a heterocyclic group which may be substituted.

The heterocyclic ring is preferably a heterocyclic ring constituted by a 5- or 6-membered ring and the heterocyclic ring may have a monocyclic structure or a polycyclic structure resulting from condensation of two or more rings and may be an aromatic heterocyclic ring or a non-aromatic heterocyclic ring. The heteroatom constituting the heterocyclic ring is preferably N, O or S atom.

The heterocyclic ring represented by A₁₁ in formula (1) is preferably 5-pyrazolone, pyrazole, triazole, oxazolone, isoxazolone, barbituric acid, pyridone, pyridine, rhodanine, pyrazolidinedione, pyrazolopyridone, merdramic acid or a condensed heterocyclic ring resulting from condensation of such a heterocyclic ring with a hydrocarbon

aromatic ring or a heterocyclic ring, more preferably 5-pyrazolone, 5-aminopyrazole, pyridone, 2,6-diaminopyridine or a pyrazoloazole, still more preferably 5-aminopyrazole, 2-hydroxy-6-pyridone or pyrazolotriazole.

Examples of the heterocyclic ring represented by B11 include pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, isoquinoline, quinazoline, cinnoline, phthalazine, quinoxaline, pyrrole, indole, benzofuran, thiophene, benzothiophene, pyrazole, imidazole, benzimidazole, triazole, oxazole, isoxazole, benzoxazole, thiazole, benzothiazole, isothiazole, benzisothiazole, thiadiazole, benzisoxazole, pyrrolidine, piperidine, piperazine, imidazolidine and thiazoline. Among these, preferred are pyridine, quinoline, thiophene, benzothiophene, pyrazole, imidazole, benzimidazole, triazole, oxazole, isoxazole, benzoxazole, thiazole, benzothiazole, isothiazole, benzisothiazole, thiadiazole and benzisoxazole, more preferred are quinoline, thiophene, pyrazole, thiazole, benzoxazole, benzisoxazole, isothiazole, imidazole, benzothiazole and thiadiazole, and still more preferred are pyrazole, benzothiazole, benzoxazole, imidazole, 1,2,4thiadiazole and 1,3,4-thiadiazole.

The heterocyclic group represented by A_{11} and B_{11} may be substituted and examples of the substituent include a halogen atom, an alkyl group, a cycloalkyl group, an

aralkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, a cyano group, a hydroxyl group, a nitro group, an alkoxy group, an aryloxy group, a silyloxy group, a heterocyclic oxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, aryloxycarbonyloxy group, an amino group, an acylamino group, an aminocarbonylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfamoylamino group, an alkylsulfonylamino group, an arylsulfonylamino group, a mercapto group, an alkylthio group, an arylthio group, a heterocyclic thio group, a sulfamoyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an aryloxycarbonyl group, an alkoxycarbonyl group, a carbamoyl group, an imido group, a phosphino group, a phosphinyl group, a phosphinyloxy group, a phosphinylamino group, a silyl group and an ionic hydrophilic group.

In the case where the dye represented by formula (1) is used as a water-soluble dye, the dye preferably contains at least one ionic hydrophilic group within the molecule. Examples of the ionic hydrophilic group include a sulfo group, a carboxyl group, a phosphono group and a quaternary ammonium group. Among these ionic hydrophilic groups, preferred are a carboxyl group, a phosphono group and a sulfo group, more preferred are a carboxyl group and a

sulfo group. The carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g., tetramethylammonium ion, tetramethylguanidium ion, tetramethylphosphonium). Among these counter ions, alkali metal ions are preferred and a lithium ion is more preferred.

Among the dyes represented by formula (1), preferred are the dyes represented by the following formulae (1-A), (1-B) and (1-C):

Formula (1-A):

wherein R1 and R3 each represents a hydrogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group, an alkylthio group, an arylthio group, an aryl group or an ionic hydrophilic group, R2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, a carbamoyl group, an acyl group, an aryl group or a heterocyclic group, and R4 represents a heterocyclic group;

Formula (1-B):

wherein R5 represents a hydrogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, alkoxy group, an alkylthio group, an arylthio group, an aryl group or an ionic hydrophilic group, Za represents -N=, -NH--C(R11) = ,or $\mathbf{Z}\mathbf{b}$ and Zc each independently represents -N= or -C(R11)=, R11 represents a hydrogen atom nonmetallic substituent, and R6 represents or heterocyclic group;

Formula (1-C):

wherein R7 and R9 each independently represents a hydrogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, a carbamoyl group or an ionic hydrophilic group, R8 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, an acylamino

<u>_</u>2-7•

group, a sulfonylamino group, an alkoxycarbonylamino group, a ureido group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, a carbamoyl group, a sulfamoyl group, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an amino group, a hydroxy group or an ionic hydrophilic group, and R10 represents a heterocyclic group.

The alkyl group represented by R1, R2, R3, R5, R7, R8 and R9 in formulae (1-A), (1-B) and (1-C) includes an alkyl group having a substituent and an unsubstituted alkyl group. The alkyl group is preferably an alkyl group having from 1 to 20 carbon atoms. Examples of the substituent include a hydroxyl group, an alkoxy group, a cyano group, a halogen atom and an ionic hydrophilic group. Examples of the alkyl group include a methyl group, an ethyl group, a butyl group, an isopropyl group, a tert-butyl group, a hydroxyethyl group, a methoxyethyl group, a cyanoethyl group, a trifluoromethyl group, a 3-sulfopropyl group and a 4-sulfobutyl group.

The cycloalkyl group represented by R1, R2, R3, R5, R7, R8 and R9 includes a cycloalkyl group having a substituent and an unsubstituted cycloalkyl group. The cycloalkyl group is preferably a cycloalkyl group having from 5 to 12 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the cycloalkyl group include a cyclohexyl group.

÷-:•

The aralkyl group represented by R1, R2, R3, R5, R7, R8 and R9 include an aralkyl group having a substituent and an unsubstituted aralkyl group. The aralkyl group is preferably an aralkyl group having from 7 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the aralkyl group include a benzyl group and a 2-phenethyl group.

The aryl group represented by R1, R2, R3, R5, R7, R8 and R9 includes an aryl group having a substituent and an unsubstituted aryl group. The aryl group is preferably an aryl group having from 6 to 20 carbon atoms. Examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, an alkylamino group and an ionic hydrophilic group. Examples of the aryl group include a phenyl group, a p-tolyl group, a p-methoxyphenyl group, an o-chlorophenyl group and an m-(3-sulfopropylamino)phenyl group.

The alkylthio group represented by R1, R2, R3, R5, R7, R8 and R9 includes an alkylthio group having a substituent and an unsubstituted alkylthio group. The alkylthio group is preferably an alkylthio group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkylthio group include a methylthio group and an ethylthio group.

The arylthio group represented by R1, R2, R3, R5, R7, R8 and R9 includes an arylthio group having a substituent

2--

and an unsubstituted arylthio group. The arylthio group is preferably an arylthio group having from 6 to 20 carbon atoms. Examples of the substituent include an alkyl group and an ionic hydrophilic group. Examples of the arylthio group include a phenylthio group and a p-tolylthio group.

The heterocyclic group represented by R2 and R22 which is described later is preferably a 5- or 6-membered heterocyclic ring and the heterocyclic ring may be further condensed. The heteroatom constituting the heterocyclic ring is preferably N, S or O. The ring may be an aromatic heterocyclic ring or a non-aromatic heterocyclic ring. The heterocyclic ring may be substituted and examples of the substituent are the same as those of the substituent of the aryl group which is described later. The heterocyclic ring is preferably a 6-membered nitrogen-containing aromatic heterocyclic ring and preferred examples thereof include triazine, pyrimidine and phthalazine.

The halogen atom represented by R8 includes a fluorine atom, a chlorine atom and a bromine atom.

The alkoxy group represented by R1, R3, R5 and R8 includes an alkoxy group having a substituent and an unsubstituted alkoxy group. The alkoxy group is preferably an alkoxy group having from 1 to 20 carbon atoms. Examples of the substituent include a hydroxyl group and an ionic hydrophilic group. Examples of the alkoxy group include a

methoxy group, an ethoxy group, an isopropoxy group, a methoxyethoxy group, a hydroxyethoxy group and a 3-

carboxypropoxy group.

ġ÷'n

The aryloxy group represented by R8 includes an aryloxy group having a substituent and an unsubstituted aryloxy group. The aryloxy group is preferably an aryloxy group having from 6 to 20 carbon atoms. Examples of the substituent include an alkoxy group and an ionic hydrophilic group. Examples of the aryloxy group include a phenoxy group, a p-methoxyphenoxy group and an o-methoxyphenoxy group.

The acylamino group represented by R8 includes an acylamino group having a substituent and an unsubstituted acylamino group. The acylamino group is preferably an acylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acylamino group include an acetamide group, a propionamide group, a benzamide group and a 3,5-disulfobenzamide group.

The sulfonylamino group represented by R8 includes a sulfonylamino group having a substituent and an unsubstituted sulfonylamino group. The sulfonylamino group is preferably a sulfonylamino group having from 1 to 20 carbon atoms. Examples of the sulfonylamino group include a methylsulfonylamino group and an ethylsulfonylamino group.

÷:•

The alkoxycarbonylamino group represented by R8 includes an alkoxycarbonylamino group having a substituent and an unsubstituted alkoxycarbonylamino group. The alkoxycarbonylamino group is preferably an alkoxycarbonylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonylamino group include an ethoxycarbonylamino group.

The ureido group represented by R8 includes a ureido group having a substituent and an unsubstituted ureido group. The ureido group is preferably a ureido group having from 1 to 20 carbon atoms. Examples of the substituent include an alkyl group and an aryl group. Examples of the ureido group include a 3-methylureido group, a 3,3-dimethylureido group and a 3-phenylureido group.

The alkoxycarbonyl group represented by R7, R8 and R9 includes an alkoxycarbonyl group having a substituent and an unsubstituted alkoxycarbonyl group. The alkoxycarbonyl group is preferably an alkoxycarbonyl group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.

The carbamoyl group represented by R2, R7, R8 and R9 includes a carbamoyl group having a substituent and an

unsubstituted carbamoyl group. Examples of the substituent include an alkyl group. Examples of the carbamoyl group include a methylcarbamoyl group and a dimethylcarbamoyl group.

The sulfamoyl group represented by R8 includes a sulfamoyl group having a substituent and an unsubstituted sulfamoyl group. Examples of the substituent include an alkyl group. Examples of the sulfamoyl group include a dimethylsulfamoyl group and a di-(2-hydroxyethyl) sulfamoyl group.

Examples of the alkylsulfonyl group and arylsulfonyl group represented by R8 include a methylsulfonyl group and a phenylsulfonyl group.

The acyl group represented by R2 and R8 includes an acyl group having a substituent and an unsubstituted acyl group. The acyl group is preferably an acyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acyl group include an acetyl group and a benzoyl group.

The amino group represented by R8 includes an amino group having a substituent and an unsubstituted amino group. Examples of the substituent include an alkyl group, an aryl group and a heterocyclic group. Examples of the amino group include a methylamino group, a diethylamino group, an anilino group and a 2-chloroanilino group.

The heterocyclic group represented by R4, R6 and R10 is the same as the heterocyclic group represented by B₁₁ in formula (1), which may be substituted, and preferred examples, more preferred examples and still more preferred examples are the same as those described above. Examples of the substituent include an ionic hydrophilic group, an alkyl group having from 1 to 12 carbon atoms, an aryl group, an alkylthio group, an arylthio group, a halogen atom, a cyano group, a sulfamoyl group, a sulfonamino group, a carbamoyl group and an acylamino group. The alkyl group, the aryl group and the like each may further have a substituent.

In formula (1-B), Za represents -N=, -NH- or -C(R11)=, Zb and Zc each independently represents -N= or -C(R11)=, and R11 represents a hydrogen atom or a nonmetallic substituent. The nonmetallic substituent represented by R11 is preferably a cyano group, a cycloalkyl group, an aralkyl group, an aryl group, an alkylthio group, an arylthio group or an ionic hydrophilic group. These substituents have the same meanings as the substituents represented by R1, respectively, and preferred examples are also the same. Examples of the skeleton of the heterocyclic ring comprising two 5-membered rings, contained in formula (1-B), are shown below.

ġ÷.•

When the above-described substituents each may further have a substituent, examples of the substituent include the substituents which may be substituted to the heterocyclic rings A_{11} and B_{11} in formula (1).

In the case where the dyes represented by formulae (1-A) to (1-C) are used as a water-soluble dye, the dye preferably contains at least one ionic hydrophilic group within the molecule. In this case, the dye includes dyes where at least one of R1, R2, R3, R5, R7, R8 and R9 in formulae (1-A) to (1-C) is an ionic hydrophilic group, and dyes where R1 to R11 in formulae (1-A) to (1-C) each further has an ionic hydrophilic group as the substituent.

Among the dyes represented by formulae (1-A), (1-B) and (1-C), preferred is the dye represented by formula (1-A), and more preferred is the dye represented by the following formula (1-A1):

Formula (1-A1):

wherein R21 and R23 each represents a hydrogen atom, an

alkyl group, a cycloalkyl group, an aralkyl group, an alkoxy group or an aryl group, R22 represents an aryl group or a heterocyclic group, one of X and Y represents a nitrogen atom and another represents -CR24 (wherein R24 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group, an alkylthio group, an alkylsulfonyl group, an alkylsulfinyl group, an alkyloxycarbonyl group, a carbamoyl group, an alkoxy group, an aryl group, an arylthio group, an arylsulfinyl group, an arylsulfinyl group, an arylsulfinyl group, an arylsulfinyl group, an aryloxy group or an acylamino group). These substituents each may be further substituted.

In formula (1-A), a dye having an ionic hydrophilic group is preferred.

Specific preferred examples of the dye represented by formula (1) are set forth below, however, the dye for use in the present invention is not limited to the following specific examples. These compounds can be synthesized by referring to JP-A-2-24191 (the term "JP-A" as used herein means an "unexamined published Japanese patent application"), JP-A-2001-279145 and Japanese Patent Application No. 2000-124832.

In many specific examples shown below, sodium ion is shown as the counter ion of the ionic hydrophilic group, but the counter ion is not limited thereto and an arbitrary ion may be used as the counter ion by the adjustment at the synthesis.

$$H_3C$$
 $N=N$
 $N=N$
 $N+N$
 $N+N$

YI-2

÷-'•

YI-3

YI-4

NC
$$N=N-N-N$$
 SO_3Na $N-N$ $N+1$ SO_3Na SO_3Na

YI-6

YI-7

$$N=N-N-0$$
 $N=N-0$
 $N=N-0$
 $N+0$
 $N+$

YI-8

$$NaO_3S$$
 S
 $N=N-N$
 NH_2
 SO_3Na
 CH_3

YI-10

$$H_3C$$
 $N=N$
 $N=N$

YI-11

$$N=N$$
 $N=N$
 $N=N$

YI-12

YI-15

YI-14
$$N=N-S$$

$$SO_3N_2$$

$$N=N-S$$

$$SO_3N_2$$

$$SO_3N_3$$

$$SO_3N_2$$

$$SO_3N_3$$

$$SO_3N_4$$

$$SO_3N_2$$

$$SO_3N_3$$

$$SO_3N_4$$

$$SO$$

$$N=N-S-N$$
 $N=N-S-N$
 $N=N-S-N$
 $N+1$
 $N+1$

<u>.</u>;;;•

$$H_3C$$
 $N=N-O$
 SO_3Na
 SO_2NH-O
 SO_3Na

	<u> </u>
Dye	R
YI-18	CH₃
YI-19	C₃H₅SO₃Na
YI-20	Н
YI-21	C ₂ H ₄ CN
YI-22	—√SO₃Na
YI-23	-CI
YI-24	SO ₃ Na CI ——————————————————————————————————
YI-25	-Соок
YI-26	COONa
YI-27	SO ₃ Na SO ₃ Na

Dye	R	
YI-28	CH₃	
YI-29		
YI-30	OC ₂ H ₅	

Dye	R	
YI-31		
YI-32	CH ₃	
YI-33	SC ₂ H ₄ SO ₃ Na	
YJ-34	SO₂C₂H₄SO₃Na	

Dye	R
YI-35	Н
YI-36	CH ₃
YI-37	-

$$(t)C_4H_9 N=N-N II NH_2 NH_2$$

Dye	R
YI-38	COOC₄H ₉
YI-39	CON(C ₄ H ₉) ₂
YI-40	SO ₂ NHC ₁₂ H ₂₅
YI-41	OC ₈ H ₁₇

Dye	R	R'
YI-42	CON(C ₄ H ₉) ₂	н
YI-43	COOC ₈ H ₁₇	Н
Yi-44	CON(C ₄ H ₉) ₂	
YI-45	CON(C ₄ H ₉) ₂	CH ₃
YI-46	H	
YI-47	Н	SC ₈ H ₁₇

R	N R
Dye	R
YI-48	—NHC₂H₄COOK
YI-49	—NHC₂H₄SO₃Na
YI-50	-NH-COOK
YI-51	SO_3K $-NH$ SO_3K KO_3S
YI-52	$-NH$ SO_3K
YI-53	-N-(CH ₂ COONa),
YI-54	KOOC COOK
YI-55	-NH-√_SO₃Na
YI-56	-NHC ₆ H ₁₃

	t-C ₄ H ₉ N=N−Ar
	N.
	N NH ₂
NaOOC	N COONa
/ >	-NH N NH-
NaOOC	COONa
Dye	Ar
YI-58	SCH ₃
•	N_SC₂H₄SO₃Na
YI-59	II S-N
	N Ph
YI-60	
YI-61	
	O SO ₃ Na
YI-62	
	N CN
	CH₂COONa
YI-63	⟨⟩-SO₃Na
	CI
YI-64	 SO₃Na
	CI
YI-65	———CN
	CI CI
	<u> </u>

÷--•

Dye	R	R'
YI-66	Ph	н
YI-67	OC ₂ H ₅	C₂H₅
YI-68	СН₃	Н
YI-69	t-C ₄ H ₉	н
Yi-70	t-C ₄ H ₉	-C₂H₄COOH

÷-:•

Dye	R
YI-72	н
YI-73	OCH ₃
YI-74	он
YI-75	SO₃Na
YI-76	F
YI-77	-N_>-coo-

$$t-C_4H_9$$
 $N=N-N-N$
 $N=N-N-N$
 $N+N-N$
 $N+N-N$

÷-'•

Dye	R ¹	R ²	R ³
YI-78	CI	CI	CI
YI-79	CI	Cl	F
YI-80	Cl	-CONHPh	CI

$$H_3C$$
 $N=N-N$
 $N+N$
 $N+1$
 N

Dye	R ¹	R ²	R ³
YI-81	F	н	. H
YI-82	Cl	Н	F

Dye	R ¹	R ²	R ³
YI-83	Н	F	F
YI-84	F	F	Н

÷:•

Dye	R	
YI-85	Н	
Y1-86	CH ₃	
YI-87	Ph	
YI-88	SCH ₂ COONa	•
YI-89	SC₂H₅	
YI-90	SC₄H _g -n	
YI-91	SCH ₂ CHMe ₂	
YI-92	SCHMeEt	
YI-93	SC₄H _g -t	
YI-94	SC ₇ H ₁₅ -л	
YI-95	SC ₂ H ₄ OC ₂ H ₅	
YI-96	SC ₂ H ₄ OC ₄ H ₉ -n	
YI-97	SCH ₂ CF ₃	

RN	^`R
Dye	R
YI-98	-NHC ₂ H ₄ COOK
YI-99	−NHC ₂ H ₄ SO ₃ Na
	коос
YI-100	-NH-
	KO3S COOK
YI-101	-NH-
	\ SO₃K
	SO ₃ Li
YI-102	NH
	SO₃Li
	COO_ NH ⁺
YI-103	-NH-
	,COO_ NH ⁺
YI-104	−NHC ₆ H ₁₃ -n
YI-105	$-N(C_4H_{9}-n)_2$
YI-106	−N+CH₂COONa)₂
YI-107	$-NH SO_3^-NH_4^+$
YI-108	COO- 2Et ₃ NH COO-

[Cyan Dye]

The phthalocyanine dye for a cyanine dye is described in detail below.

The phthalocyanine dye for use in the present invention is preferably excellent in both light fastness and ozone resistance and small in the change of color hue and surface state (less generation of bronze and less precipitation of dye).

With respect to the light fastness, the dye residual ratio (reflection density after irradiation/initial density×100) is preferably 90% or more, when the portion, where the reflection density (OD) of an image printed on a photographic image-receiving paper (for example, Epson PM Paper (trade name) manufactured by Seiko Epson Corp.) is is irradiated with continuous xenon illumination of 8000 lux (ID65 conditions of Image Fastness Test Method (International Standard IS018909) through a TAC filter (ultraviolet light-permeable, for the protection of a print film surface) for 3 days. Furthermore, the dye residual ratio when irradiated for 14 days is preferably 85% or more.

With respect to the color hue and surface state, the amount of Cu ion present in the form of a phthalate as a result of decomposition of the phthalocyanine dye can be used as an index. The amount of the salt present in an

actual print is preferably 10 mg/m² or less in terms of Cu ion. The amount of Cu ion flowed out from the print is determined by forming a solid image having a phthalate amount of 20 mg/m² or less in terms of Cu ion and storing this image in an ozone environment of 5 ppm for 24 hours to cause ozone fading. The amount of Cu ion flowed out from the image into water is preferably 20% or less. Incidentally, all Cu compounds are trapped by the image-receiving material before the image is color-faded.

The phthalocyanine dye having such properties can be obtained, for example, by 1) elevating the oxidation potential, 2) enhancing the aggregation property, 3) introducing an aggregation accelerating group, intensifying the hydrogen bond at the time of π - π stacking or 4) not incorporating a substituent at the α -position, that is, facilitating the stacking.

Conventional phthalocyanine dyes used for ink are derived from an unsubstituted phthalocyanine through sulfonation and these are a mixture which cannot be specified in the number and positions of substituents. On the other hand, the phthalocyanine dye for use in the present invention is a phthalocyanine dye which can be specified in the number and positions of substituents. The first structural feature is that the dye is a phthalocyanine dye obtained by not passing through sulfonation of

an unsubstituted phthalocyanine. The second structural feature is that the dye has an electron-withdrawing group at the β -position of a benzene ring of phthalocyanine, preferably at the β -position of all benzene rings. Specifically, useful dyes are those where a sulfonyl group is substituted (see, Japanese Patent Application Nos. 2001-47013 and 2001-190214), a sulfamoyl group in general is substituted (see, Japanese Patent Application Nos. 2001-24352 and 2001-189982), a heterocyclic sulfamoyl group is substituted (see, Japanese Patent Application Nos. 2001-96610 and 2001-190216), a heterocyclic sulfonyl group is substituted (see, Japanese Patent Application Nos. 2001-76689 and 2001-190215), a specific sulfamoyl group is substituted (see, Japanese Patent Application No. 2001-57063), a carbonyl group is substituted (see, Japanese Patent Application No. 2002-012869), or a specific substituent for enhancing the solubility or ink stability or preventing the bronze phenomenon, such as substituent an asymmetric carbon (see, Japanese Application No. 2002-012868) or Li salt (see, Japanese Patent Application No. 2002-012864), is substituted.

The first physical feature is to have a high oxidation potential (more positive than 1.0 V). The second physical feature is to have a strong aggregation property. Specifically, the dye having this property includes those

....

where the aggregation of oil-soluble dyes is specified (see, Japanese Patent Application No. 2001-64413) or the aggregation of water-soluble dyes is specified (see, Japanese Patent Application No. 2001-117350).

With respect to the relationship between the number of aggregating groups and the performance (light absorbance of ink), when an aggregating group is introduced, reduction of light absorbance or shifting of λ max to the shorter wave is liable to occur even in a dilute solution. With respect to the relationship between the number of aggregating groups and the performance (reflection density OD on Epson PM920 Image-Receiving Paper), as the number of aggregating groups increases, the reflection density OD at the same ion That is, the aggregation is intensity more decreases. considered to proceed on the image-receiving paper. the relationship between respect to the number aggregating groups and the performance (ozone resistance/light fastness), as the number of aggregating groups increases, the ozone resistance is more enhanced. A dye having a large number of aggregating groups is liable to be enhanced also in the light fastness. In order to impart the ozone resistance, a substituent must be present on the benzene ring of phthalocyanine. The reflection OD and the fastness are the in trade-off relationship and therefore, it is necessary to enhance the

light fastness without weakening the aggregation.

Preferred embodiments of the cyan ink using the phthalocyanine dye having these characteristic features are:

- 1) a cyan ink where after xenon light (Xe of 1.1 W/m (intermittent conditions)) is irradiated with a TAC filter on the portion having a reflection density OD of 1.0 of an image printed on Epson PM Photographic Image-Receiving Paper for 3 days, the dye residual ratio is 90% or more;
- 2) a cyan ink where after the portion having a reflection density of 0.9 to 1.1 in a Status A filter of a printed image is stored in an ozone environment of 5 ppm for 24 hours, the dye residual ratio is 60% or more (preferably 80% or more);
- 3) a cyan ink where after ozone fading under the conditions of 2, the amount of Cu ion flowed out into water is 20% or less of all dyes; and
- 4) a cyan ink which can be permeated into 30% or more of the upper portion of the image-receiving layer of a specific image-receiving paper.

Examples of the dye having the above-described characteristic features include a phthalocyanine dye represented by the following formula (2):

wherein X_{21} , X_{22} , X_{23} and X_{24} each independently represents $-SO-Z_2$, $-SO_2-Z_2$, $-SO_2NR_{21}R_{22}$, a sulfo group, $-CONR_{21}R_{22}$ or $-COOR_{21}$,

each Z_2 independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,

 R_{21} and R_{22} each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted

or unsubstituted aralkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group,

 $Y_{21},\ Y_{22},\ Y_{23}$ and Y_{24} each independently represents a monovalent substituent,

 a_{21} to a_{24} and b_{21} to b_{24} represent the number of substituents X_{21} to X_{24} and Y_{21} to Y_{24} , respectively, a_{21} to a_{24} each independently represents a number of 0 to 4 but all are not 0 at the same time, and b_{21} to b_{24} each independently represents a number of 0 to 4, provided that when a_{21} to a_{24} and a_{24} and a_{21} to a_{24} and a_{24} and

M represents a hydrogen atom, a metal atom or an oxide, hydroxide or halide thereof.

Phthalocyanine dyes are a dye having fastness but this dye is known to be inferior in the fastness to ozone gas when used as a dye for inkjet recording.

In the present invention, as described above, an electron-withdrawing group is preferably introduced into the phthalocyanine skeleton to render the oxidation potential more positive than 1.0 V (vs SCE). The oxidation potential can be rendered more positive by introducing a substituent having a large Hammett's substituent constant op value (a measure for the electron-withdrawing property

ġ.;·

or electron-donating property), such as sulfinyl group, sulfonyl group and sulfamoyl group.

Also for the purpose of such potential control, the phthalocyanine dye represented by formula (2) is preferably used.

The phthalocyanine dye represented by formula (2) is described in detail below.

In formula (2), X_{21} , X_{22} , X_{23} and X_{24} independently represents $-SO-Z_2$, $-SO_2-Z_2$, $-SO_2NR_{21}R_{22}$, a sulfo group, $-CONR_{21}R_{22}$ or $-CO_2R_{21}$. Among these substituents, preferred are $-SO_{-}Z_{2}$, $-SO_{2}-Z_{2}$, $-SO_{2}NR_{21}R_{22}$ and $-CONR_{21}R_{22}$, more preferred are -SO₂-Z₂ and -SO₂NR₂₁R₂₂, and most preferred is In the case where a_{21} to a_{24} each showing the number of substituents each represents a number of 2 or more, the plurality of $X_{21}s$, $X_{22}s$, $X_{23}s$ or $X_{24}s$ may be the same or different and each independently represents any one of the above-described groups. $X_{21},\ X_{22},\ X_{23}$ and X_{24} may be completely the same substituents, may be substituents of the same kind but partially different as in the case, for example, where X_{21} , X_{22} , X_{23} and X_{24} all are $-SO_2-Z_2$ and Z_2s are different from each other, or may include substituents different from each other (for example, -SO2-Z2 and $-SO_2NR_{21}R_{22}$).

Each Z_2 independently represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted

cycloalkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, and most preferably a substituted alkyl group, a substituted aryl group or a substituted alkyl group, a substituted aryl group or a substituted heterocyclic group.

 R_{21} and R_{22} each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted orunsubstituted cycloalkyl group, substituted or unsubstituted alkenyl group, a substituted unsubstituted aralkyl group, a substituted orunsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, preferably a hydrogen atom, substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group, more preferably a hydrogen atom, a substituted alkyl group, a substituted aryl group or a substituted heterocyclic group. However, it is not preferred that R_{21} and R_{22} both are a hydrogen atom.

The substituted or unsubstituted alkyl group represented by R_{21} , R_{22} and Z_2 is preferably an alkyl group having from 1 to 30 carbon atoms, more preferably a

branched alkyl group because the solubility of dye and the stability of ink are improved, and still more preferably an alkyl group having an asymmetric carbon (use in the racemic form). Examples of the substituent include those described later as the substituent when Z₂, R₂₁, R₂₂, Y₂₁, Y₂₂, Y₂₃ and Y₂₄ can further have a substituent. In particular, a hydroxyl group, an ether group, an ester group, a cyano group, an amido group and a sulfonamido group are preferred because the aggregating property and fastness of dye are enhanced. Other than these, the alkyl group may be substituted by a halogen atom or an ionic hydrophilic group. Incidentally, the number of carbon atoms in the alkyl group does not contain carbon atoms of substituents and this applies to other groups.

The substituted or unsubstituted cycloalkyl group represented by R_{21} , R_{22} and Z_2 is preferably a cycloalkyl group having from 5 to 30 carbon atoms, more preferably a cycloalkyl group having an asymmetric carbon (use in the racemic form) because the solubility of dye and the stability of ink are improved. Examples of the substituent include those described later as the substituent when Z_2 , R_{21} , R_{22} , Y_{21} , Y_{22} , Y_{23} and Y_{24} can further have a substituent. In particular, a hydroxyl group, an ether group, an ester group, a cyano group, an amido group and a sulfonamido group are preferred because the aggregating property and

fastness of dye are enhanced. Other than these, the cycloalkyl group may be substituted by a halogen atom or an ionic hydrophilic group.

substituted or unsubstituted alkenyl The represented by R_{21} , R_{22} and Z_2 is preferably an alkenyl group having from 2 to 30 carbon atoms, more preferably a branched alkenyl group because the solubility of dye and stability of ink are improved, and still preferably an alkenyl group having an asymmetric carbon (use in the racemic form). Examples of the substituent include those described later as the substituent when Z2, R_{21} , R_{22} , Y_{21} , Y_{22} , Y_{23} and Y_{24} can further have a substituent. In particular, a hydroxyl group, an ether group, an ester group, a cyano group, an amido group and a sulfonamido group are preferred because the aggregating property and fastness of dye are enhanced. Other than these, the alkenyl group may be substituted by a halogen atom or an ionic hydrophilic group.

The substituted or unsubstituted aralkyl group represented by R_{21} , R_{22} and Z_2 is preferably an aralkyl group having from 7 to 30 carbon atoms, more preferably a branched aralkyl group because the solubility of dye and the stability of ink are improved, and still more preferably an aralkyl group having an asymmetric carbon (use in the racemic form). Examples of the substituent

include those described later as the substituent when Z_2 , R_{21} , R_{22} , Y_{21} , Y_{22} , Y_{23} and Y_{24} can further have a substituent. In particular, a hydroxyl group, an ether group, an ester group, a cyano group, an amido group and a sulfonamido group are preferred because the aggregating property and fastness of dye are enhanced. Other than these, the aralkyl group may be substituted by a halogen atom or an ionic hydrophilic group.

The substituted or unsubstituted aryl group represented by R_{21} , R_{22} and Z_2 is preferably an aryl group having from 6 to 30 carbon atoms. Examples of substituent include those described later as the substituent when $Z_2,\ R_{21},\ R_{22},\ Y_{21},\ Y_{22},\ Y_{23}$ and Y_{24} can further have a substituent. In particular, an electronwithdrawing group is preferred because the dye can have a positive oxidation potential and be improved in the Examples of the electron-withdrawing group fastness. include those having a positive Hammett's substituent constant op value. Among these, preferred are a halogen heterocyclic group, a cyano group, a carboxyl group, an acylamino group, a sulfonamido group, a sulfamoyl group, a carbamoyl group, a sulfonyl group, an imido group, an acyl group, a sulfo group and a quaternary ammonium group, more preferred are a cyano group, a carboxyl group, a sulfamoyl group, a carbamoyl group, a sulfonyl group, an

imido group, an acyl group, a sulfo group and a quaternary ammonium group.

The heterocyclic group represented by R_{21} , R_{22} and Z_2 is preferably a 5- or 6-membered ring and the ring may be further condensed. Also, the ring may be an aromatic heterocyclic ring or a non-aromatic heterocyclic ring. Examples of the heterocyclic group represented by R_{21} , R_{22} and Z_2 are shown below in the form of a heterocyclic ring by omitting the substitution site. The substitution site is not limited and, for example, in the case of pyridine, the 2-position, 3-position and 4-position can be substituted. Examples include pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, isoquinoline, quinazoline, cinnoline, phthalazine, quinoxaline, pyrrole, indole, furan, benzofuran, thiophene, benzothiophene, pyrazole, imidazole, benzimidazole, triazole, oxazole, benzoxazole, thiazole, benzothiazole, isothiazole, benzisothiazole, thiadiazole, isoxazole, benzisoxazole, pyrrolidine, piperidine, piperazine, imidazolidine and thiazoline. In particular, an aromatic heterocyclic group is preferred. Preferred examples thereof include, shown in the same manner as above, pyridine, pyrazine, pyrimidine, pyridazine, triazine, pyrazole, imidazole, benzimidazole, triazole, thiazole, benzothiazole, isothiazole, benzisothiazole and thiadiazole. These groups each may

have a substituent and examples of the substituent include those described later as the substituent when Z_2 , R_{21} , R_{22} , Y_{21} , Y_{22} , Y_{23} and Y_{24} can further have a substituent. Preferred substituents are the same as the above-described substituents of the aryl group and more preferred substituents are the same as the above-described more preferred substituents of the aryl group.

ġ÷.

 Y_{21} , Y_{22} , Y_{23} and Y_{24} each independently represents a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group, a cyano group, a hydroxyl group, a nitro group, an amino group, an alkylamino group, an alkoxy group, an aryloxy group, an acylamino group, an arylamino group, a ureido group, a sulfamoylamino group, an alkylthio group, an arylthio group, an alkoxycarbonylamino group, a sulfonamido group, a carbamoyl group, a sulfamoyl group, a sulfonyl group, an alkoxycarbonyl group, a heterocyclic oxy group, an azo group, an acyloxy group, a carbamoyloxy group, silyloxy group, an aryloxycarbonyl group, aryloxycarbonylamino group, an imido group, a heterocyclic thio group, a phosphoryl group, an acyl group, a carboxyl group or a sulfo group. These groups each may further have a substituent.

 $Y_{21},\ Y_{22},\ Y_{23}$ and Y_{24} each is preferably a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a

cyano group, an alkoxy group, an amido group, a ureido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group, an alkoxycarbonyl group, a carboxyl group or a sulfo group, more preferably a hydrogen atom, a halogen atom, a cyano group, a carboxyl group or a sulfo group, and most preferably a hydrogen atom.

•

When Z_2 , R_{21} , R_{22} , Y_{21} , Y_{22} , Y_{23} and Y_{24} each is a group which can further have a substituent, the group may further have the following substituent.

Examples of the substituent include a linear or branched alkyl group having from 1 to 12 carbon atoms, a linear or branched aralkyl group having from 7 to 18 carbon atoms, a linear or branched alkenyl group having from 2 to 12 carbon atoms, a linear or branched alkynyl group having from 2 to 12 carbon atoms, a linear or branched cycloalkyl group having from 3 to 12 carbon atoms, a linear or branched cycloalkenyl group having from 3 to 12 carbon atoms (these groups each is preferably a group having a branched chain because the solubility of dye and the stability of ink are improved, more preferably a group having an asymmetric carbon; specific examples of the groups include a methyl group, an ethyl group, a propyl group, an isopropyl group, a sec-butyl group, a tert-butyl group, a 2-ethylhexyl group, a 2-methylsulfonylethyl group, a 3-phenoxypropyl group, a trifluoromethyl group and a

cyclopentyl group), a halogen atom (e.g., chlorine, bromine), an aryl group (e.g., phenyl, 4-tert-butylphenyl, 2,4-di-tert-amylphenyl), a heterocyclic group imidazolyl, pyrazolyl, triazolyl, 2-furyl, 2-thienyl, 2pyrimidinyl, 2-benzothiazolyl), a cyano group, a hydroxyl group, a nitro group, a carboxy group, an amino group, an alkyloxy group (e.g., methoxy, ethoxy, 2-methoxyethoxy, 2methanesulfonylethoxy), an aryloxy group (e.g., phenoxy, 2methylphenoxy, 4-tert-butylphenoxy, 3-nitrophenoxy, 3-tertbutyloxycarbamoylphenoxy, 3-methoxycarbamoyl), an acylamino (e.g., acetamido, benzamido, 4-(3-tert-butyl-4group hydroxyphenoxy)butanamido), an alkylamino group (e.g., methylamino, butylamino, diethylamino, methylbutylamino), an anilino group (e.g., phenylamino, 2-chloroanilino), a ureido group (e.g., phenylureido, methylureido, N,Ndibutylureido), a sulfamoylamino group (e.g., N,Ndipropylsulfamoylamino), an alkylthio group (e.g., methylthio, octylthio, 2-phenoxyethylthio), an arylthio group (e.g., phenylthio, 2-butoxy-5-tert-octylphenylthio, 2-carboxyphenylthio), an alkyloxycarbonylamino group (e.g., methoxycarbonylamino), a sulfonamido group (e.g., methanesulfonamido, benzenesulfonamido, p-toluenesulfonamido), a carbamoyl group (e.g., N-ethylcarbamoyl, N,N-dibutylcarbamoyl), a sulfamoyl group (e.g., N-ethylsulfamoyl, N,Ndipropylsulfamoyl, N-phenylsulfamoyl), a sulfonyl group

÷-'•

(e.g., methanesulfonyl, octanesulfonyl, benzenesulfonyl, toluenesulfonyl), an alkyloxycarbonyl group (e.g., methoxycarbonyl, butyloxycarbonyl), a heterocyclic oxy group (e.g., 1-phenyltetrazol-5-oxy, 2-tetrahydropyranyloxy), azo group phenylazo, 4-methoxyphenylazo, (e.g., 4 – pivaloylaminophenylazo, 2-hydroxy-4-propanoylphenylazo), an acyloxy group (e.g., acetoxy), a carbamoyloxy group (e.g., N-methylcarbamoyloxy, N-phenylcarbamoyloxy), a silyloxy group (e.g., trimethylsilyloxy, dibutylmethylsilyloxy), an aryloxycarbonylamino group (e.g., phenoxycarbonylamino), an imido group (e.g., N-succinimido, N-phthalimido), heterocyclic thio group (e.g., 2-benzothiazolylthio, 2,4di-phenoxy-1,3,5-triazole-6-thio, 2-pyridylthio), group sulfinyl (e.g., 3-phenoxypropylsulfinyl), phosphonyl (e.g., phenoxyphosphonyl, octyloxygroup phosphonyl, phenylphosphonyl), an aryloxycarbonyl group (e.g., phenoxycarbonyl), an acyl group (e.g., acetyl, 3phenylpropanoyl, benzoyl), and an ionic hydrophilic group (e.g., carboxyl, sulfo, phosphono, quaternary ammonium).

In the case where the phthalocyanine dye represented by formula (2) is water-soluble, the dye preferably contains an ionic hydrophilic group. Examples of the ionic hydrophilic group include a sulfo group, a carboxyl group, a phosphono group and a quaternary ammonium group. Among these ionic hydrophilic groups, preferred are a carboxyl group, a phosphono group and a sulfo group, more preferred are a carboxyl group and a sulfo group. The carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g., tetramethylammonium ion, tetramethylguanidium ion, tetramethylphosphonium). Among these counter ions, alkali metal salts are preferred and a lithium salt is more preferred because the solubility of dye and the stability of ink are improved.

As for the number of ionic hydrophilic groups, the phthalocyanine dye preferably contains at least two ionic hydrophilic groups, more preferably at least two sulfo groups and/or carboxyl groups, within one molecule.

In formula (2), a_{21} to a_{24} and b_{21} to b_{24} represent the number of substituents X_{21} to X_{24} and Y_{21} to Y_{24} , respectively. a_{21} to a_{24} each independently represents 0 or an integer of 1 to 4 but all are not 0 at the same time. b_{21} to b_{24} each independently represents 0 or an integer of 1 to 4. When a_{21} to a_{24} and a_{24} and a_{21} to a_{24} and a_{21} to a_{24} and a_{21} to a_{24} and a_{24} an

 a_{21} and b_{21} satisfy the relationship of $a_{21}+b_{21}=4$. In particular, a combination that a_{21} represents 1 or 2 and b_{21}

represents 3 or 2 is preferred, and a combination that a_{21} represents 1 and b_{21} represents 3 is most preferred.

÷-:•

The same relationship as that between a_{21} and b_{21} is present in each of the pairs a_{22} and b_{22} , a_{23} and b_{23} , and a_{24} and b_{24} , and the preferred combination is also the same.

M represents a hydrogen atom, a metal element or an oxide, hydroxide or halide thereof.

M is preferably a hydrogen atom, a metal element such as Li, Na, K, Mg, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Si, Ge, Sn, Pb, Sb and Bi, an oxide such as VO and GeO, a hydroxide such as Si(OH)₂, Cr(OH)₂ and Sn(OH)₂, or a halide such as AlCl, SiCl₂, VCl, VCl₂, VOCl, FeCl, GaCl and ZrCl.

Among these, more preferred are Cu, Ni, Zn and Al, and most preferred is Cu.

In the phthalocyanine dye represented by formula (2),

Pc (phthalocyanine ring) may also form a dimer (for example,

Pc-M-L-M-Pc) or a trimer through L (divalent linking group).

At this time, Ms may be the same or different.

The divalent linking group represented by L is preferably an oxy group -O-, a thio group -S-, a carbonyl group -CO-, a sulfonyl group -SO₂-, an imino group -NH-, a methylene group -CH₂- or a group formed by combining two or more of these groups.

As for the preferred combination of substituents in the compound represented by formula (2), a compound where at least one of various substituents is the preferred group is preferred, a compound where a larger number of various substituents are the preferred groups is more preferred, and a compound where all substituents are the preferred groups is most preferred.

֥•

Among the phthalocyanine dyes represented by formula (2), preferred is a phthalocyanine dye having a structure represented by the following formula (5):

$$(X_{54}) a_{54}$$
 Y_{56}
 $(X_{53}) a_{53}$
 Y_{55}
 Y_{55}
 Y_{54}
 Y_{55}
 Y_{55}

wherein X_{51} to X_{54} , Y_{51} to Y_{58} and M_1 have the same meanings as X_{21} to X_{24} , Y_{21} to Y_{24} and M in formula (2), respectively, and a_{51} to a_{54} each independently represents an integer of 1

or 2.

The phthalocyanine dye represented by formula (5) is described in detail below.

÷-:-

In formula (5), X_{51} to X_{54} and Y_{51} to Y_{58} have the same meanings as X_{21} to X_{24} and Y_{21} to Y_{24} in formula (2), respectively, and preferred examples are also the same. M_1 has the same meaning as M in formula (2) and preferred examples are also the same.

In formula (5), a_{51} to a_{54} each independently represents an integer of 1 or 2 and preferably satisfy $4 \le a_{51} + a_{52} + a_{53} + a_{54} \le 6$, and $a_{51} = a_{52} = a_{53} = a_{54} = 1$ is more preferred.

 X_{51} , X_{52} , X_{53} and X_{54} may be completely the same substituents, may be substituents of the same kind but partially different as in the case, for example, where X_{51} , X_{52} , X_{53} and X_{54} all are $-SO_2-Z_2$ and Z_2 s are different from each other, or may include substituents different from each other, for example, $-SO_2-Z_2$ and $-SO_2NR_{21}R_{22}$.

In the phthalocyanine dye represented by formula (5), the following combinations of substituents are particularly preferred.

 X_{51} to X_{54} each independently represents preferably $-SO_2Z_2$, $-SO_2Z_2$, $-SO_2NR_{21}R_{22}$ or $-CONR_{21}R_{22}$, more preferably $-SO_2Z_2$ or $-SO_2NR_{21}R_{22}$, and most preferably $-SO_2Z_2$.

 Z_2 is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a

substituted or unsubstituted heterocyclic group, and most preferably a substituted alkyl group, a substituted aryl group or a substituted heterocyclic group. In particular, the case where an asymmetric carbon is present in the substituent (use in the racemic form) is preferred because the solubility of dye and the stability of ink are enhanced. Also, the case where a hydroxyl group, an ether group, an ester group, a cyano group, an amido group or a sulfonamido group is present in the substituent is preferred because

the aggregating property and fastness are improved.

·-•

R₂₁ and R₂₂ each independently represents preferably a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, more preferably a hydrogen atom, a substituted alkyl group, a substituted aryl group or a substituted heterocyclic group. However, it is not preferred that R_{21} and R_{22} both are a hydrogen atom. In particular, the case where an asymmetric carbon is present in the substituent (use in the racemic form) is preferred because the solubility of dye and the stability of ink are enhanced. Also, the case where a hydroxyl group, an ether group, an ester group, a cyano group, an amido group or a sulfonamido group is present in the substituent is preferred because the aggregating property and fastness are improved.

Y₅₁ to Y₅₈ each independently represents preferably a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a cyano group, an alkoxy group, an amido group, a ureido group, a sulfonamido group, a carbamoyl group, a sulfamoyl group, an alkoxycarbonyl group, a carboxyl group or a sulfo group, more preferably a hydrogen atom, a halogen atom, a cyano group, a carboxyl group or a sulfo group, and most preferably a hydrogen atom.

 a_{51} to a_{54} each independently represents preferably 1 or 2 and it is more preferred that all are 1.

 M_1 represents a hydrogen atom, a metal element or an oxide, hydroxide or halide thereof, more preferably Cu, Ni, Zn or Al, and most preferably Cu.

In the case where the phthalocyanine dye represented by formula (5) is water-soluble, the dye preferably contains an ionic hydrophilic group. Examples of the ionic hydrophilic group include a sulfo group, a carboxyl group, a phosphono group and a quaternary ammonium group. Among these ionic hydrophilic groups, preferred are a carboxyl group, a phosphono group and a sulfo group, more preferred are a carboxyl group, a phosphono group and a sulfo group. The carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g.,

tetramethylammonium ion, tetramethylguanidium ion, tetramethylphosphonium). Among these counter ions, alkali metal salts are preferred and a lithium salt is more preferred because the solubility of dye and the stability of ink are improved.

÷-:•

As for the number of ionic hydrophilic groups, the phthalocyanine-base dye preferably contains at least two ionic hydrophilic groups, more preferably at least two sulfo groups and/or carboxyl groups, within one molecule.

As for the preferred combination of substituents in the compound represented by formula (5), a compound where at least one of various substituents is the preferred group is preferred, a compound where a larger number of various substituents are the preferred groups is more preferred, and a compound where all substituents are the preferred groups is most preferred.

As for the chemical structure of the phthalocyanine dye represented by formula (5), at least one electron-withdrawing group such as sulfinyl group, sulfonyl group and sulfamoyl group is preferably introduced into respective four benzene rings of phthalocyanine such that the total of op values of the substituents in the entire phthalocyanine skeleton becomes 1.6 or more.

The Hammett's substituent constant op value is briefly described here. The Hammett's rule is an empirical

advocated by L.P. rule Hammett in 1935 so as to quantitatively discuss the effect of substituent on reaction or equilibrium of benzene derivatives and its propriety is widely admitted at present. The substituent constant determined by the Hammett's rule includes a op value and a om value and these values can be found in a large number of general publications but these are described in detail, for example, in J.A. Dean (compiler), Lange's Handbook of Chemistry, 12th ed., McGraw-Hill (1979), and Kagakuno Ryoiki (Chemistry Region), special number, No. 122, pp. 96-103, Nankodo (1979). In the present invention, each substituent is limited or described by using the Hammett's substituent constant op but this does not mean that the substituent is limited only to those having a known value which can be found in the above-described publications. Needless to say, the substituent includes substituents of which op value is not known in publications but when measured based on the Hammett's rule, falls within the range specified. Furthermore, although the dye for use in the present invention includes those which are not a benzene derivative, the op value is used as a measure for showing the electron effect of the substituent irrespective of the substitution site. In the present invention, the op value is used in this meaning.

Inevitably in view of the synthesis method, the

phthalocyanine dye represented by formula (2) is generally a mixture of analogues differing in the site where the substituents Xn (n=1 to 4) and Ym (m=1 to 4) are introduced and in the number of the substituents introduced. Accordingly, these analogue mixtures are statistically averaged and represented by a formula in many cases. the present invention, it has been found that when these analogue mixtures are classified into the following three types, a specific mixture is particularly preferred. phthalocyanine-base dye analogue mixtures represented by formulae (2) and (5) are defined by classifying these into the following three types based on the substitution site. The positions of Y_{51} , Y_{52} , Y_{53} , Y_{54} , Y_{55} , Y_{56} , Y_{57} and Y_{58} in formula (5) are designated as 1, 4, 5, 8, 9, 12, 13 and 16, respectively.

(1) β -Position substitution type:

A phthalocyanine dye having specific substituents at the 2- and/or 3-position, the 6- and/or 7-position, the 10and/or 11-position, and the 14- and/or 15-position.

(2) α -Position substitution type:

A phthalocyanine dye having specific substituents at the 1- and/or 4-position, the 5- and/or 8-position, the 9and/or 12-position, and the 13- and/or 16-position.

(3) α, β -Position mixed substitution type:

A phthalocyanine dye having specific substitutions at

the 1- to 16-positions without any regularity.

In the present invention, phthalocyanine dye derivatives differing in the structure (particularly in the substitution site) are described by using these β -position substitution type, α -position substitution type and α,β -position mixed substitution type.

The phthalocyanine derivative for use in the present invention can be synthesized by combining the methods described or cited, for example, in Shirai and Kobayashi, Phthalocyanine -Kagaku to Kino- (Phthalocyanine -Chemistry and Function-), pp. 1-62, IPC, and C.C. Leznoff and A.B.P. Lever, Phthalocyanines - Properties and Applications, pp. 1-54, VCH, or methods analogous thereto.

The phthalocyanine dye represented by formula (2) of the present invention can be synthesized, for example, through sulfonation, sulfonyl chloridation or amidation of an unsubstituted phthalocyanine compound as described in International Publications 00/17275, 00/08103, 00/08101 and 98/41853 and JP-A-10-36471. In this case, sulfonation may take place at any site of the phthalocyanine nucleus and the number of sites sulfonated is difficult to control. Accordingly, when a sulfo group is introduced under such reaction conditions, the positions and number of sulfo groups introduced into the product cannot be specified and a mixture of those differing in the number of substituents

÷-`•

or in the substitution site inevitably results. If the dye is synthesized starting from such a product, the phthalocyanine dye is obtained as an α,β -position mixed substitution type mixture containing several kinds of compounds differing in the number of substituents or in the substitution site because the number of sulfamoyl groups substituted on the heterocyclic ring or their substitution sites cannot be specified.

As described above, for example, when many electronwithdrawing groups such as sulfamoyl group are introduced into the phthalocyanine nucleus, the oxidation potential becomes more positive and the ozone resistance is increased. However, according to the above-described synthesis method, phthalocyanine dye where the number of withdrawing groups introduced is small, namely, oxidation potential is more negative, is inevitably mingled. Therefore, in order to improve the ozone resistance, it is preferred to use a synthesis method where the production of compound having a negative oxidation potential suppressed.

The phthalocyanine compound represented by formula (5) for use in the present invention can be synthesized, for example, by reacting a phthalonitrile derivative (Compound P) shown below and/or a diminoisoindoline derivative (Compound Q) shown below with a metal derivative

÷---

represented by formula (6) or can be derived from a tetrasulfophthalocyanine compound obtained by reacting a 4-sulfophthalonitrile derivative (Compound R) shown below with a metal derivative represented by formula (6).

In the formulae above, X_p corresponds to X_{51} , X_{52} , X_{53} or X_{54} in formula (5) and Y_q and $Y_{q'}$ each corresponds to Y_{51} , Y_{52} , Y_{53} , Y_{54} , Y_{55} , Y_{56} , Y_{57} or Y_{58} in formula (5). In Compound R, M' represents cation.

÷-'•

Examples of the cation represented by M' include alkali metal ions such as Li, Na and K, and organic cations such as triethylammonium ion and pyridinium ion.

Formula (6):

$M-(Y)_d$

wherein M has the same meaning as M_1 in formula (5), y represents a monovalent or divalent ligand such as halogen atom, acetate anion, acetylacetonate and oxygen, and d represents an integer of 1 to 4.

That is, according to this synthesis method, a specific number of desired substituents can be introduced. Particularly, in the case of introducing a large number of electron-withdrawing groups so as to render the oxidation potential more positive as in the present invention, this synthesis method is very excellent as compared with the methods described above for synthesizing the phthalocyanine compound of formula (2).

The thus-obtained phthalocyanine compound represented by formula (5) is usually a mixture of compounds represented by the following formulae (a)-1 to (a)-4 which are isomers in respect to the substitution site of each substituent X_p , namely, a β -position substitution type. Formula (a)-1:

÷::•

$$P_{q}$$
 P_{q}
 P_{q}

Formula (a)-2:

$$Y_q$$
 Y_q
 Y_q

Formula (a)-3:

$$Y_q$$
 Y_q
 Y_q

Formula (a)-4:

$$Y_{q}$$
 Y_{q}
 Y_{q}

In the synthesis method above, when all X_ps are the same, a β -position substitution type phthalocyanine dye where X_{51} , X_{52} , X_{53} and X_{54} are completely the same

substituents can be obtained. On the other hand, when X_ps are different, a dye having substituents of the same kind but partially different from each other or a dye having substituents different from each other can be synthesized. Among the dyes of formula (5), these dyes having electron-withdrawing substituents different from each other are preferred, because the solubility and aggregating property of dye and the aging stability of ink can be controlled.

In the present invention, it has been found to be very important for the improvement of fastness that in any substitution type, the oxidation potential is more positive than 1.0 V (vs SCE). Its great effect cannot be expected at all from the above-described known techniques. Furthermore, although the reason is not particularly known, there is a tendency that the β -position substitution type is apparently more excellent in the color hue, light fastness, ozone gas resistance and the like than the α,β -position mixed substitution type.

Specific examples (Compounds I-1 to I-12 and Compounds 101 to 190) of the phthalocyanine dyes represented by formulae (2) and (5) are set forth below, however, the phthalocyanine dye for use in the present invention is not limited to the following examples.

Compounds:

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

÷:`•

÷:·-

SO₂NH′

SO₂NH′

(I-6)
$$SO_{2}N$$

$$N = N$$

$$N =$$

$$\begin{array}{c} \text{CH}_3\\ \text{SO}_2\text{NH} \\ \text{N} \\$$

÷-•

(I-9)

(I-10)

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

`SO₃Na

;::·

$$\begin{array}{c} SO_2NH \\ SO_3K \\ N \\ N \\ N \\ N \\ N \\ N \\ SO_2NH \\ SO_3K \\ SO_2NH \\ SO_3K \\ SO_2NH \\ SO_3K \\ \end{array}$$

In the following Tables (Compound Nos. 101 to 145), specific examples of each pair of $(X_1,\ X_2)$, $(Y_{11},\ Y_{12})$, $(Y_{13},\ Y_{14})$, $(Y_{15},\ Y_{16})$ and $(Y_{17},\ Y_{18})$ are independently in an irregular order.

÷-:•

	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_
N N N N N N N N N N N N N N N N N N N	Z Z Z	Ž,
*		⋝

omp. No.	Σ	. X1	X2	Y11, Y12	Y11, Y12 Y13, Y14	Y15, Y18	Y17, Y18
101	Cn	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₃ Li	Ŧ	-HH	-HH	HH-	Ŧ
102	O	OH -802-NH-CH2-CH-CO-NH-CH2CH2-803Na	7	-CI, -H	H- 'lO-	-CI, -H	-Ci, -H
103	J.	OH -80 ₂ -NH-CH ₂ -CH ₂ -80 ₂ NH-CH ₂ CH-80 ₃ LI	Ŧ	-н, -н	н- "н-	Н, Н	НН
104	S	-802-NH-SO2NH-CH2CH2-803LI	н-	Н. Н	н- н-	-нн	H, H
105	Ż	CH-COONS -SO2-NH-CH-CH-COONS	Ŧ	Cl,H	H- 'ID-	-CI, -H	-CI, -H
106	Cu	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ -COONB	-CN	-H, -H	-HH	-H, -H	H- H-
107	Cu	CH2-OH -802-CH2-CH2-802-NH-CH-COOLI	Ŧ	-HH	-нн	-H, -H	-HH
108	రె	-SO ₂ -CH ₂ -CH ₂ -CH ₂ -SO ₃ Li	Ŧ	-H, -H	-H, -H	н- 'н-	-H, -H
109	రె	-S0,-CH,-CH,-CH,-S0,K	Ŧ	H. H	-H, -H	H- 'H-	-H, -H
110	Cu	-S0,-(CH,),-CO,K	H -	-HH	-HH	H- 'H-	-H, -H

÷...

	£ \$ \$ \$	
X S	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Ž Ž
× ×	E E	¥ × ×
	Ž ×	

Comp. No.	¥	XI	X2	Y11, Y12	Y11, Y12 Y13, Y14	Y15, Y16 Y17, Y18	Y17, Y18
111	Ou	OH -802-NH-CH2-CH2-803-NH-CH2CH2-803L	#	Н- 'Н-	н- 'н-	-н, -н	-H, -H
112	On	OH -SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ NH-CH ₂ -CH-CH ₃	-So,Li	-so,Li -H, -H	-H, -H	-HH	-H, -H
113	Cu	-SO ₂ -CH ₂ -CH-CH ₂ SO ₃ K	Ŧ	н- 'н-	-н, -н	-н, -н	H- 'H-
114	Ö	он -so ₂ -с <u>н</u> -сн-сн ₃	-So₁Li	н- 'н-	Н- Н-	-н, -н	-H, -H
115	n _O	CH3 -SO ₂ NH(CH ₂) ⁹ N(CH ₂ CH ₂ OH) ₂ · CH ₃	Ŧ	-H, -H	-H, -H	-нн	H, H
116	Co	OH -CO-NH-CH-CH-CHSO3K	Ŧ	-H, -H	Н- 'Н-	-H, -H	-H, -H
117	õ	COOLI 	Ŧ	-HH	-нн	-H, -H	H, H

÷:•

×	• • • • • • • • • • • • • • • • • • • •	XX	XIX XX XIZ XZ	V44	z zz
	۶	> =	=(Š	

			,				
Comp. No.	Σ	XI	X2	Y11, Y12	Y13, Y14	Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	Y17, Y18
118	Сu	. ст. - so ₂ ct,ст,ст - so ₂ ct,ст,ст	Ŧ	H, H	H- 'H-	-H, -H	H- H
119	Ou	OH -SO ₂ CH ₂ -CH-CH ₂ -SO ₃ Na	Ŧ	ŦŤ	-HH	H- 'H-	-H, -H
120	Ö	сң -so ₂ -сң-сн-соогі	Ŧ	-н, -н	-H, -H	-H, -H	H- 'H-
121	Cu	-SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ -CH-CH ₂ -SO ₃ Li OH	Ŧ	-н, -н	-H, -H	-н, -н	-H, -H
122	S	OH 	Ŧ	H,H	-H, -H	-н, -н	-H, -H
123	Cn	-SO ₂ NH-C ₆ H ₁ ,(t)	Ŧ	-H, -H	-H, -H	-H, -H	-HH
124	S	С4,0H2 -S02-NH-СH2-СH2HCH2-СH3	Ŧ	-H, -Ĥ	-H, -H	-H, -H	-Н, -Н

X1 X	X1 X2 Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	Ŧ	СН ₋ - SO ₂ - СН ₋ СН ₋ СО ₂ - СН ₋ СН ₋ СО ₂ - СН ₋ СО ₂ - СН ₋ СО ₂ - СН ₋ СО ₃ - СН ₋ СО ₄ - СН ₋ СО ₄ - СО ₄ - СН ₋ СО ₄ - СН ₋ С	- SO ₂ CH ₂ CH ₂ SO ₂ NHCH ₂ CH ₂ CH ₂ O-CH ₃ -H	0-СН ₃ -SO ₂ -СН ₂ -СН-СН-СН ₂ -О-СН ₃ -SO ₂ -СН ₂ -СН-СН-СН ₂ -О-СН ₃	Ŷ	CH ₃ CO ₂ -CH-CH ₂ -O-C ₄ H ₃ (t) CO ₂ -CH-CH ₂ -O-C ₄ H ₃ (t)	
·	Σ	Cu — SO ₂ CH,	0- ² 0S	Cu —SO ₂ CH ₂	Zn -so ₂ -c	Cu - CO - NF	-co ² -ch	0-205 U
	Сотр. 16.	125	126	127	128	129 (130 (131

X2 X1 X2 X1	5. No. M X1 X1 X1 X2 Y11, Y12 Y13, Y14 Y15, Y16 Y17, Y18	CO ₂ C ₆ H ₁₃ (n) Cu - SO ₂ NHH, -H -H, -H -H, -H	HN ² OS - Cu	134 Cu -SO ₂ NH- SO ₂ -NH-CH ₂ -CH ₂ -CH ₂ -CH ₃ -H -H, -H -H, -H -H, -H -H, -H -H, -H)-205-	36 Cu -SO ₂ N -H, -H -H, -H -H, -H -H, -H
·	Comp. No.	132	133	134	135	136

		Y14 Y13					
Comp. No.	Σ	X1	X2	Y11, Y12	Y13, Y14	Y15, Y16	Y17, Y18
. 137	On	UsOs So₂U N	Ŧ	Н- 'Н-	н- н'-	-H, -H	Ŧ Ŧ
138	. ნ	CH ₃ - SO ₂ NH N N N N N N N N N N N N N N N N N N	H -	Н- Н-	н- 'н-	H- H-	Ŧ Ŧ
139	On	CO ₂ (CH ₂) ₃ —NH—C □ SO ₂ (CH ₂) ₃ —NH—C O	P	H. H	H- 'H-	H- 'H-	H- 'H-
140	Ö	NH-CH2-CH-SOU N=	Ŧ	· +	Ŧ Ŧ	H, H	# #

|--|

Comp. No	≥	IX	\X	VII V19	VII VI2 VI3 VI4 VI5 VIE VI	V15 V16	717 710
141	Ω̈́C	COONS SO ₂ NHCHCH ₂ -CH ₂ CH ₂ OH) ₂	Ŧ	푸 푸	Ŧ	Ŧ	Ŧ
142	Ö	SO ₂ NIHC SO ₃ LI	Ŧ	# #	Ŧ	Ŧ Ŧ	+ +
143	пO	OH COOK CO-NH-CH-CH-CO-NH-CH-CH ² -SO ³ K	Ŧ	Ŧ Ŧ	Ŧ	Ŧ	Ŧ
4	õ	-802-CH2CH2-NH-CO-(-)-CO-NH-CH-CH2-COOL	Ŧ	H, H	Ŧ Ť	Ŧ Ŧ	Ŧ
145	ဝိ	-so ₂ ch ₂ ch ₂ ch ₂ ch ₂ ch ₃ c ₃ Li	Ŧ	₽, Ŧ	-H, -H	Ŧ	Ŧ

÷.

In the following Tables (compound Nos. 146 to 190), each introduction site of substituents $(X_{\rm p1})$ and $(X_{\rm p2})$ is in an irregular order within the β -position substitution type.

÷:..

M-Pc(Xp1),(Xp2),	<u>ک</u> (۲۰	"(² d)			
Coap. No	Σ		Ε	Xp,	c
146	ηO	7808-H2-H2-HN-808- 9H2	3	OH 	-
147	Ou	-SO2-NH-CH2-CH2SO3L3	3	HO-HO-HO-HN-08-HO-HO-HO-NN-08-	-
148	On	CH ₀ INH-CH ₂ —CH-SO ₃ Li	3	-502NH-CH2-CH2-CH2-NH-CH4-CH1-O-CH2-CH2-OH	-
149	S.	CH ^O -NH-CH ^O -CH-SO ^O Li	2	-502-NH-CH2-CH2-CH2-CO-N-(CH2-CH2-OH)2	~
150	ទី	-SO ₂ -NH-CH ₂ -CH ₂ -SO ₂ -NH-CH ₂ CH ₂ -COON ₆	က	- SO ₂ NH — CH-CH ₂ OH-	
151	Cu	OH 	3	HO-4HD-6H3-CH3-RH4-OH	-
152	ટ	CH ₃ SO ₂ CH ₂ -CH-SO ₃ Li	2.5	HO-1HO-0-1HO-1HO-1OS-	1.5
153	ಸ	CH ₃ 	2	· ²(но-чо-чо)-n-оо-чо-чо-чо-чо-оs-	7
154	ខី	-so,-ch,-ch,-so,Li	3	40-H2-740-HN-708-410-740-708- HO	-
155	ਠ	-so ₂ -ch ₂ -ch ₂ -ch ₂ -cook	2	OH 	4.
156	ਠੋ	-802-CH2-CH2-CH2-801Li	3	П ⁶ OS—410—410—610— Но Но	-
157	õ	-S0,-CH,-CH,-0-CH,-S0,Li	2	-802-CH2-CH2-CH2-CH2-CH2-CH2-COOK	2
					l

<u>;</u>;;

Comp. No.	Σ	Χρι	Ε	Xp ₂	c
171	3	-CO2-CH2-CH2-O-CH2-CH2-SO3Na	က	-502-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH	-
172	ပိ	-So ₂ CH ₂ CH ₂ OCH ₂ CH ₂ O-CH ₂ CH ₂ SO ₃ K	2	-C02-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOK	2
173	Cr	- SO ₂ (CH ₂) ₃ SO ₂ NHCH ₂ CHCH ₂ OH . OH	7	Со2-СН2-Н2-Н2-СО3- Н2-СН2-Н2-Н2-СО3- Н2-СН3-Н2-Н2-Н2-СО3-	23
174	ខី	-802(CH2)3802NHCH2-CH-CH2803K OH	က	OH - - CO ₂ - CH ₂ - CH ₂ - SO ₂ - NH - CH ₂ - CH - CH ₃	-
175	ਟੋ	-SO ₂ (CH ₂) ₃ SO ₂ NH(CH ₂) ₃ N(CH ₂ CH ₂ OH) ₂	2	-co-ch-ch-ch-co-nn-ch-ch-co-	24
176	ပိ	OH 	က	-so ₂ -сң-сң-сқ-so ₂ -ин-сң-сн-сңсң	-
771	రె	-SO ₂ -CH ₂ -CH ₁ -O-CH ₂ -CH ₂ -O-CH ₃	2	OH - 	-
178	ซื	-so ₂ -ch ₂ -ch ₂ -o-ch ₂ -o-ch ₂ -oh	က	CH2CH3 CH2CH2-CH2CH2-CH2CH3-CH2CH3	
179	ច		2	0-CH2-CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	72
180	ច	0-CH-CH-802-NH-CH-CH-CH	က	-S0,NH-CH,-CH,-S0,NH-CH,-CH,-O-CH,-CH,-OH	-
181	3	CH ₃ 	က	-802-CH2-CH2-SO2-NH-CH-(CH3)2	-
182	3	OH - -SO2-CH2-CH2-CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	2.5	- SO2-CH2-CH2-CH2-CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	5.

		constant of the second of the			
Comp. No.	×	Хр,	E	Χρ ₂	E
183	Cu	CH3 -802-CH2-CH2-CO2-NH-CH-CH2-CH3	2	-so,-ch,-ch,-ch,-so,-nh-(ch,),-ch,-o-ch,ch,-oн	2
184	Q.	OH - 	က	-502-CH2-CH2-0-CH2-0-CH3	-
185	S.	OH 	က	-502-CH2-CH2-O-CH2-CH2-CH2-CH2-O-CH3	-
186	Cu	CH3 -SO2-CH2-CH2-CO2-NH-CH-CH2-CH3	က	-S0,-CH,-CH,-0-CH,-CH,-0-CH,-CH,-OH	-
187	S.	-802-CH-CH-CH-802-NH-CH-(CH6)2	က	CH2CH3 -CO2-CH2-CH2-CH2-CH2CH3	-
188	Cu	CO2-CH2-CH2-CH2-CH2-CH3 CH3 CH3	e .	-co2-cH2-cH2-0-cH3-0-cH3	-
. 189	Cu	-CO-NH-CH-CH-SQ2-NH-CH-(CH-)2	. 3	CH2CH3 -SO2-NH-CH2-CH2-CH3-CH3-CH3	-
190	ပ်	CH2CH3 CO - NH - CH2 - CH2 - CH2CH3	က	-C0-NH-CH ₂ -CH ₂ -O-CH ₂ -O-CH ₃	

The structure of the phthalocyanine compound represented by $M-Pc(X_{p1})_m(X_{p2})_n$ of Compound Nos. 146 to 190 is shown below:

$$X_{p1}$$
 Y_{q}
 Y_{q}

(wherein each X_{pl} is independently X_{pl} or X_{p2}).

The phthalocyanine dye represented by formula (2) can be synthesized according to the patent publications described above. Furthermore, the phthalocyanine dye represented by formula (5) can be synthesized by the methods described in JP-A-2001-226275, JP-A-2001-96610, JP-A-2001-47013 and JP-A-2001-193638, in addition to the synthesis method described above. The starting material, dye intermediate and synthesis route are not limited to those described in these patent publications.

[Magenta Dye]

The magenta dye for use in the present invention is preferably an azo dye having absorption maximum in the spectral region from 500 to 580 nm in an aqueous medium and having an oxidation potential more positive than 1.0 V (vs SCE).

.....

The first preferred structural feature of the azo dye for this magenta dye is that the dye has a chromophore represented by the formula: (heterocyclic ring A)-N=N-(heterocyclic ring B). In this case, the heterocyclic rings A and B may have the same structure. Specifically, the heterocyclic rings A and B each is a 5- or 6-membered heterocyclic ring selected from pyrazole, imidazole, triazole, oxazole, thiazole, selenazole, pyridone, pyrazine, pyrimidine and pyridine. These are specifically described, for example, in Japanese Patent Application Nos. 2000-15853 and 2001-15614, JP-A-2002-309116 and Japanese Patent Application No. 2001-195014.

The second preferred structural feature of the azo dye is that an aromatic nitrogen-containing 6-membered heterocyclic ring is bonded as the coupling component directly to at least one side of the azo group. Specific examples thereof are described in 2001-110457.

The third preferred structural feature is that the auxochrome has an aromatic ring amino group or heterocyclic

2.7

amino group structure, specifically, an anilino group or a heterylamino group.

The fourth preferred structural feature is that the dye has a steric structure. This is specifically described in Japanese Patent Application No. 2002-12015.

By having these structural features, the azo dye can be elevated in the oxidation potential and enhanced in the ozone resistance. The oxidation potential can be elevated, for example, by removing the α hydrogen of the azo dye. The azo dye represented by formula (3) is preferred also for the purpose of elevating the oxidation potential. The method for elevating the oxidation potential of azo dyes is specifically described in Japanese Patent Application No. 2001-254878.

The magenta ink of the present invention using the azo dye having the above-described characteristic features preferably has λ max (absorption maximum wavelength) of 500 to 580 nm because excellent color hue can be obtained, and preferably has a small half-value width in the long-wave and short-wave sides of the maximum absorption wavelength, namely, sharp absorption. This is specifically described in JP-A-2002-309133. The sharp absorption can be also realized by introducing a methyl group into the α position of the azo dye of formula (3).

The magenta ink using the azo dye preferably has an

ozone gas accelerated fading rate constant of 5.0×10^{-2} [hour⁻¹] or less, more preferably 3.0×10^{-2} [hour⁻¹] or less, still more preferably 1.5×10^{-2} [hour⁻¹] or less.

The ozone gas accelerated fading rate constant is determined as follows. An image is printed on a reflective image-receiving medium by using only the magenta ink and the colored region having a color in the main spectral absorption region of the ink and having a reflection density of 0.90 to 1.10 as measured through a Status A filter is selected as the initial density point. initial density is defined as the starting density (=100%). Then, this image is discolored by using an ozone fading tester capable of always keeping an ozone concentration of 5 mg/L, the time period until the density becomes 80% of the initial density is measured, a reciprocal [hour-1] of this time period is determined and on the assumption that the relationship between the fading density and the time period follows the primary chemical kinetics, the value is used as the fading reaction rate constant.

The test print patch may be a patch obtained by printing a black square symbol of JIS code 2223, a stepwise color patch of Macbeth chart, or an arbitrary stepwise density patch where the measured area can be obtained.

The reflection density of the reflection image (stepwise color patch) printed for measurement is a density

determined with measurement light through a Status A filter by a densitometer satisfying the International Standard ISO5-4 (geometrical conditions of reflection density).

٠٠٠

In the test chamber for the measurement of ozone gas accelerated fading rate constant, an ozone generator (for example, in a high-voltage discharge system of applying an a.c. voltage to dry air) capable of constantly maintaining an internal ozone gas concentration of 5 mg/L is provided and the exposure temperature is controlled to 25°C.

This accelerated fading rate constant is an index for showing the susceptibility to oxidation by photochemical smog, exhaust gas of automobiles, organic vapor from painted furniture surface or carpet, or oxidative atmosphere in the environment, such as gas generated from the frame interior in a bright room, and this is an index using ozone gas as a representative of such oxidative atmosphere.

The dye represented by formula (3), which is an azo dye having the above-described characteristic features and used in the present invention, is described below.

$$A_{31}$$
— $N=N$
 R_{36}
 R_{36}

wherein A₃₁ represents a 5-membered heterocyclic group;

 B_{31} and B_{32} each represents = $CR_{31}-$ or $-CR_{32}=$ or either one of B_{31} and B_{32} represents a nitrogen atom and the other represents = $CR_{31}-$ or $-CR_{32}=$;

R₃₅ and R₃₆ each independently represents a hydrogen atom or a substituent, the substituent is an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, and the hydrogen atom of each substituent may be substituted;

G₃, and R₃₂ each independently represents hydrogen atom or a substituent, the substituent is a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxy group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, an amino group, an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, alkylsulfonylamino group, an arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, alkylthio group, an arylthio group, a heterocyclic thio

group, an alkylsulfonyl group, an arylsulfonyl group, a heterocyclic sulfonyl group, an alkylsulfinyl group, an arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group or a sulfo group, and the hydrogen atom of each substituent may be substituted; and

 R_{31} and $R_{35}, \mbox{ or } R_{35}$ and R_{36} may combine to form a 5- or 6-membered ring.

In formula (3), A_{31} represents a 5-membered heterocyclic group. Examples of the heteroatom heterocyclic ring include N, O and S. A₃₁ is preferably a nitrogen-containing 5-membered heterocyclic ring and the heterocyclic ring may be condensed with an aliphatic ring, an aromatic ring or another heterocyclic ring. Preferred examples of the heterocyclic ring represented by A31 include a pyrazole ring, an imidazole ring, a thiazole ring, an isothiazole ring, a thiadiazole ring, a benzothiazole ring, a benzoxazole ring and a benzisothiazole ring. Each heterocyclic group may further have a substituent. Among these rings, more preferred are a pyrazole ring, imidazole ring, an isothiazole ring, a thiadiazole ring and a benzothiazole ring represented by the following formulae (a) to (f).

In formulae (a) to (f), R_{307} to R_{320} each represents the same substituent as G_3 , R_{31} and R_{32} in formula (3).

Among formulae (a) to (f), preferred are a pyrazole

ring and an isothiazole ring represented by formulae (a) and (b), and most preferred is a pyrazole ring represented by formula (a).

Formula (a)

(b)

(c)

(d)

$$- \sqrt{\sum_{S=N}^{R_{312}}}$$

(e)

(f)

In formula (3), B_{31} and B_{32} each represents = CR_{31} or $-CR_{32}$ = or either one of B_{31} and B_{32} represents a nitrogen
atom and the other represents = CR_{31} - or $-CR_{32}$ =. B_{31} and B_{32} each preferably represents = CR_{31} - or $-CR_{32}$ =.

 R_{35} and R_{36} each is preferably a hydrogen atom, an

aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, more preferably a hydrogen atom, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, and most preferably a hydrogen atom, an aryl group or a heterocyclic group, and the hydrogen atom of each substituent may be substituted, but R⁵ and R⁶ are not a hydrogen atom at the same time.

G₃ is preferably a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a hydroxy group, an alkoxy group, an aryloxy group, an acyloxy group, a heterocyclic oxy group, an amino group, an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkylthio group, an arylthio group or a heterocyclic thio group, more preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, an alkoxy group, an aryloxy group, an acyloxy group, an amino group or an acylamino group, and most preferably a hydrogen atom, an amino group (preferably an anilino group) or an acylamino group, and the hydrogen atom of each substituent may be substituted.

 R_{31} and R_{32} each is preferably a hydrogen atom, an alkyl group, a halogen atom, an alkoxycarbonyl group, a carboxyl group, a carbamoyl group, a hydroxy group, an alkoxy group or a cyano group, and the hydrogen atom of

each substituent may be substituted.

 R_{31} and R_{35} , or R_{35} and R_{36} may combine to form a 5- or 6-membered ring.

When A_{31} has a substituent or when the substituent R_{31} , R_{32} , R_{35} , R_{36} or G_3 further has a substituent, examples of the substituent include the substituents described above for G_3 , R_{31} and R_{32} .

In the case where the dye of formula (3) is a water-soluble dye, the dye preferably has further an ionic hydrophilic group as a substituent on any position of A₃₁, R₃₁, R₃₂, R₃₅, R₃₆ and G₃. Examples of the ionic hydrophilic group as a substituent include a sulfo group, a carboxyl group, a phosphono group and a quaternary ammonium group. Among these ionic hydrophilic groups, preferred are a carboxyl group, a phosphono group and a sulfo group, more preferred are a carboxyl group and a sulfo group. The carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g., tetramethylammonium).

The terms (substituents) used in the description of formula (3) are described below. These terms each is common in formula (3) and also in formula (3-A) shown later.

The halogen atom includes a fluorine atom, a chlorine atom and a bromine atom.

....

The aliphatic group means an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aralkyl group and a substituted aralkyl group. The "substituted" used for a "substituted alkyl group" and the like means that the hydrogen atom present in an "alkyl group" or the like is substituted, for example, by a substituted above for G_3 , R_{31} and R_{32} .

The aliphatic group may be branched or may form a ring. The number of carbon atoms in the aliphatic group is preferably from 1 to 20, more preferably from 1 to 16. The aryl moiety in the aralkyl group and the substituted aralkyl group is preferably a phenyl group or a naphthyl group, more preferably a phenyl group. Examples of the aliphatic group include a methyl group, an ethyl group, a butyl group, an isopropyl group, a tert-butyl group, a hydroxyethyl group, a methoxyethyl group, a cyanoethyl group, a trifluoromethyl group, a 3-sulfopropyl group, a 4-sulfobutyl group, a cyclohexyl group, a benzyl group, a 2-phenethyl group, a vinyl group and an allyl group.

The aromatic group means an aryl group and a substituted aryl group. The aryl group is preferably a phenyl group or a naphthyl group, more preferably a phenyl

group. The number of carbon atoms in the aromatic group is preferably from 6 to 20, more preferably from 6 to 16.

Examples of the aromatic group include a phenyl group, a p-tolyl group, a p-methoxyphenyl group, an o-chlorophenyl group and an m-(3-sulfopropylamino)phenyl group.

The heterocyclic group includes a substituted heterocyclic group. In the heterocyclic group, heterocyclic ring may be condensed with an aliphatic ring, aromatic ring or another heterocyclic ring. The heterocyclic group is preferably a 5- or 6-membered heterocyclic group. Examples of the substituent include an aliphatic group, a halogen atom, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an acylamino group, a sulfamoyl group, a carbamoyl group and an ionic hydrophilic Examples of the heterocyclic group include a 2group. pyridyl group, a 2-thienyl group, a 2-thiazolyl group, a 2benzothiazolyl group, a 2-benzoxazolyl group and a 2-furyl group.

The carbamoyl group includes a substituted carbamoyl group. Examples of the substituent include an alkyl group. Examples of the carbamoyl group include a methylcarbamoyl group and a dimethylcarbamoyl group.

The alkoxycarbonyl group includes a substituted alkoxycarbonyl group. The alkoxycarbonyl group is preferably an alkoxycarbonyl group having from 2 to 20

carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.

The aryloxycarbonyl group includes a substituted aryloxycarbonyl group. The aryloxycarbonyl group is preferably an aryloxycarbonyl group having from 7 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.

The oxycarbonyl heterocyclic group includes substituted heterocyclic oxycarbonyl group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. heterocyclic oxycarbonyl group is preferably a heterocyclic oxycarbonyl group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic oxycarbonyl group include a 2-pyridyloxycarbonyl group.

The acyl group includes a substituted acyl group.

The acyl group is preferably an acyl group having from 1 to

20 carbon atoms. Examples of the substituent include an

ionic hydrophilic group. Examples of the acyl group

include an acetyl group and a benzoyl group.

The alkoxy group includes a substituted alkoxy group.

The alkoxy group is preferably an alkoxy group having from

1 to 20 carbon atoms. Examples of the substituent include an alkoxy group, a hydroxyl group and an ionic hydrophilic group. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a methoxyethoxy group, a hydroxyethoxy group and a 3-carboxypropoxy group.

The aryloxy group includes a substituted aryloxy group. The aryloxy group is preferably an aryloxy group having from 6 to 20 carbon atoms. Examples of the substituent include an alkoxy group and an ionic hydrophilic group. Examples of the aryloxy group include a phenoxy group, a p-methoxyphenoxy group and an o-methoxyphenoxy group.

The heterocyclic oxy group includes a substituted heterocyclic oxy group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The heterocyclic oxy group is preferably a heterocyclic oxy group having from 2 to 20 carbon atoms. Examples of the substituent include an alkyl group, an alkoxy group and an ionic hydrophilic group. Examples of the heterocyclic oxy group include a 3-pyridyloxy group and a 3-thienyloxy group.

The silyloxy group is preferably a silyloxy group substituted by an aliphatic or aromatic group having from 1 to 20 carbon atoms. Examples of the silyloxy group include

a trimethylsilyloxy group and a diphenylmethylsilyloxy group.

The acyloxy group includes a substituted acyloxy group. The acyloxy group is preferably an acyloxy group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acyloxy group include an acetoxy group and a benzoyloxy group.

The carbamoyloxy group includes a substituted carbamoyloxy group. Examples of the substituent include an alkyl group. Examples of the carbamoyloxy group include an N-methylcarbamoyloxy group.

The alkoxycarbonyloxy group includes a substituted alkoxycarbonyloxy group. The alkoxycarbonyloxy group is preferably an alkoxycarbonyloxy group having from 2 to 20 carbon atoms. Examples of the alkoxycarbonyloxy group include a methoxycarbonyloxy group and an isopropoxycarbonyloxy group.

The aryloxycarbonyloxy group includes a substituted aryloxycarbonyloxy group. The aryloxycarbonyloxy group is preferably an aryloxycarbonyloxy group having from 7 to 20 carbon atoms. Examples of the aryloxycarbonyloxy group include a phenoxycarbonyloxy group.

The amino group includes a substituted amino group.

Examples of the substituent include an alkyl group, an aryl

group and a heterocyclic group, and the alkyl group, the aryl group and the heterocyclic group each may further have a substituent. The alkylamino group includes a substituted alkylamino group. The alkylamino group is preferably an alkylamino group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkylamino group include a methylamino group and a diethylamino group.

The arylamino group includes a substituted arylamino group. The arylamino group is preferably an arylamino group having from 6 to 20 carbon atoms. Examples of the substituent include a halogen atom and an ionic hydrophilic group. Examples of the arylamino group include a phenylamino group and a 2-chlorophenylamino group.

The heterocyclic amino group includes a substituted heterocyclic amino group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The heterocyclic amino group is preferably a heterocyclic amino group having from 2 to 20 carbon atoms. Examples of the substituent include an alkyl group, a halogen atom and an ionic hydrophilic group.

The acylamino group includes a substituted acylamino group. The acylamino group is preferably an acylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples

of the acylamino group include an acetylamino group, a propionylamino group, a benzoylamino group, an N-phenylacetylamino group and a 3,5-disulfobenzoylamino group.

The ureido group includes a substituted ureido group. The ureido group is preferably a ureido group having from 1 to 20 carbon atoms. Examples of the substituent include an alkyl group and an aryl group. Examples of the ureido group include a 3-methylureido group, a 3,3-dimethylureido group and a 3-phenylureido group.

The sulfamoylamino group includes a substituted sulfamoylamino group. Examples of the substituent include an alkyl group. Examples of the sulfamoylamino group include an N,N-dipropylsulfamoylamino group.

The alkoxycarbonylamino group includes a substituted alkoxycarbonylamino group. The alkoxycarbonylamino group is preferably an alkoxycarbonylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonylamino group include an ethoxycarbonylamino group.

The aryloxycarbonylamino group includes a substituted aryloxycarbonylamino group. The aryloxycarbonylamino group is preferably an aryloxycarbonylamino group having from 7 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the aryloxycarbonylamino group include a phenoxycarbonylamino group.

...

The alkylsulfonylamino group and the arylsulfonylamino group amino group include a substituted alkylsulfonylamino group and a substituted arylsulfonylamino group, respectively. The alkylsulfonylamino group and the arylsulfonylamino group are preferably an alkylsulfonylamino group having from 1 to 20 carbon atoms and an arylsulfonylamino group having from 1 to 20 carbon atoms, respectively. Examples of the substituent include an ionic hydrophilic group. Examples of the alkylsulfonylamino group and arylsulfonylamino group include a methylsulfonylamino group, an N-phenyl-methylsulfonylamino group, a phenylsulfonylamino group and a 3-carboxyphenylsulfonylamino group.

The heterocyclic sulfonylamino group includes substituted heterocyclic sulfonylamino group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The heterocyclic sulfonylamino group is preferably heterocyclic sulfonylamino group having from 1 to 12 carbon atoms. Examples of the substituent include an hydrophilic group. Examples of the heterocyclic sulfonylamino group include a 2-thienylsulfonylamino group and a 3pyridylsulfonylamino group.

The alkylthio group, the arylthio group and the heterocyclic thio group include a substituted alkylthio group, a substituted arylthio group and a substituted

heterocyclic thio group, respectively. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The alkylthio group, the arylthio group and the heterocyclic thio group are preferably an alkylthio group having from 1 to 20 carbon atoms, an arylthio group having from 1 to 20 carbon atoms and a heterocyclic thio group having from 1 to 20 carbon atoms, respectively. Examples of the substituent include an ionic hydrophilic group. Examples of the alkylthio group, arylthio group and heterocyclic thio group include a methylthio group, a phenylthio group and a 2-pyridylthio group.

The alkylsulfonyl group and the arylsulfonyl group include a substituted alkylsulfonyl group and a substituted arylsulfonyl group, respectively. Examples of the alkylsulfonyl group and arylsulfonyl group include a methylsulfonyl group and a phenylsulfonyl group.

The heterocyclic sulfonyl group includes substituted heterocyclic sulfonyl group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The heterocyclic sulfonyl group is preferably a heterocyclic sulfonyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of heterocyclic sulfonyl group the include

thienylsulfonyl group and a 3-pyridylsulfonyl group.

The alkylsulfinyl group and the arylsulfinyl group include a substituted alkylsulfinyl group and a substituted arylsulfinyl group, respectively. Examples of the alkylsulfinyl group and arylsulfinyl group include a methylsulfinyl group and a phenylsulfinyl group.

The heterocyclic sulfinyl group includes substituted heterocyclic sulfinyl group. Examples of the heterocyclic ring include the heterocyclic rings described above for the heterocyclic group. The heterocyclic sulfinyl group is preferably a heterocyclic sulfinyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic sulfinyl group include pyridylsulfinyl group.

The sulfamoyl group includes a substituted sulfamoyl group. Examples of the substituent include an alkyl group. Examples of the sulfamoyl group include a dimethylsulfamoyl group and a di-(2-hydroxyethyl)sulfamoyl group.

Among the dyes represented by formula (3), preferred is a dye having a structure represented by the following formula (3-A):

Formula (3-A):

$$Z_{32}$$
 Z_{31}
 R_{32}
 R_{31}
 R_{35}
 R_{34}
 R_{34}
 R_{33}

In formula (3-A), R_{31} , R_{32} , R_{35} and R_{36} have the same meanings as in formula (3).

R₃₃ and R₃₄ each independently represents a hydrogen atom or a substituent and the substituent is an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group. R₃₃ and R₃₄ each is preferably a hydrogen atom, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, more preferably a hydrogen atom, an aromatic group or a heterocyclic group.

 Z_{31} represents an electron-withdrawing group having a Hammett's substituent constant σp value of 0.20 or more. Z_{31} is preferably an electron-withdrawing group having a σp value of 0.30 or more, more preferably 0.45 or more, still more preferably 0.60 to more, but the σp value preferably

does not exceed 1.0.

Specific examples of the electron-withdrawing group having a Hammett's substituent constant op value of 0.60 or more include a cyano group, a nitro group, an alkylsulfonyl group (e.g., methylsulfonyl) and an arylsulfonyl group (e.g., phenylsulfonyl).

Specific examples of the electron-withdrawing group having a Hammett's op value of 0.45 or more include, in addition to those described above, an acyl group (e.g., acetyl), an alkoxycarbonyl group (e.g., dodecyloxycarbonyl), an aryloxycarbonyl group (e.g., m-chlorophenoxycarbonyl), an alkylsulfinyl group (e.g., n-propylsulfinyl), an aryl-sulfinyl group (e.g., phenylsulfinyl), a sulfamoyl group (e.g., N-ethylsulfamoyl, N,N-dimethylsulfamoyl) and a halogenated alkyl group (e.g., trifluoromethyl).

Specific examples of the electron-withdrawing group having a Hammett's substituent constant op value of 0.30 or more include, in addition to those described above, an acyloxy group (e.g., acetoxy), a carbamoyl group (e.g., Nethylcarbamoyl, N,N-dibutylcarbamoyl), a halogenated alkoxy group (e.g., trifluoromethyloxy), a halogenated aryloxy group (e.g., pentafluorophenyloxy), a sulfonyloxy group (e.g., methylsulfonyloxy), a halogenated alkylthio group (e.g., difluoromethylthio), an aryl group substituted by two or more electron-withdrawing groups having a op value

of 0.15 or more (e.g., 2,4-dinitrophenyl, pentachlorophenyl) and a heterocyclic ring (e.g., 2-benzoxazolyl, 2-benzothiazolyl, 1-phenyl-2-benzimidazolyl).

Specific examples of the electron-withdrawing group having a op value of 0.20 or more include, in addition to those described above, a halogen atom.

Among these, Z₃₁ is preferably an acyl group having from 2 to 20 carbon atoms, an alkyloxycarbonyl group having from 2 to 20 carbon atoms, a nitro group, a cyano group, an alkylsulfonyl group having from 1 to 20 carbon atoms, an arylsulfonyl group having from 6 to 20 carbon atoms, a carbamoyl group having from 1 to 20 carbon atoms or a halogenated alkyl group having from 1 to 20 carbon atoms, more preferably a cyano group, an alkylsulfonyl group having from 1 to 20 carbon atoms, and more preferably a cyano group, an arylsulfonyl group having from 6 to 20 carbon atoms, and most preferably a cyano group.

 Z_{32} represents a hydrogen atom or a substituent and the substituent is an aliphatic group, an aromatic group or a heterocyclic group. Z_{32} is preferably an aliphatic group, more preferably an alkyl group having from 1 to 6 carbon atoms.

Q represents a hydrogen atom or a substituent and the substituent is an aliphatic group, an aromatic group or a heterocyclic group. Q is preferably a group comprising a

nonmetallic atom group necessary for forming a 5-, 6-, 7- or 8-membered ring. The 5-, 6-, 7- or 8-membered ring may be substituted, may be a saturated ring or may have an unsaturated bond. Q is more preferably an aromatic group or a heterocyclic group. Preferred examples of the nonmetallic atom include a nitrogen atom, an oxygen atom, a sulfur atom and a carbon atom. Specific examples of the ring structure include a benzene ring, a cyclopentane ring, a cyclohexane ring, a cyclohexane ring, a cyclohexane ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, an imidazole ring, a benzimidazole ring, a benzothiazole ring, an oxazole ring, a sulfolane ring and a thiane ring.

The hydrogen atom of each substituent described in regard to formula (3-A) may be substituted. Examples of the substituent include the substituents described in regard to formula (3), the groups described as examples for G_3 , R_{31} and R_{32} , and ionic hydrophilic groups.

The preferred combination of substituents in the azo dye represented by formula (3) is described below. R_{35} and R_{36} each is preferably a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a sulfonyl group or an acyl group, more preferably a hydrogen atom, an aryl group, a heterocyclic group or a sulfonyl group, and most

preferably a hydrogen atom, an aryl group or a heterocyclic group. However, R_{35} and R_{36} are not a hydrogen atom at the same time.

G₃ is preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxyl group, an amino group or an acylamino group, more preferably a hydrogen atom, a halogen atom, an amino group or an acylamino group, and most preferably a hydrogen atom, an amino group or an acylamino group.

A₃₁ is preferably a pyrazole ring, an imidazole ring, an isothiazole ring, a thiadiazole ring or a benzothiazole ring, more preferably a pyrazole ring or an isothiazole ring, and most preferably a pyrazole ring.

 B_{31} and B_{32} each is $=CR_{31}-$ or $-CR_{32}=$, and R_{31} and R_{32} each is preferably a hydrogen atom, an alkyl group, a halogen atom, a cyano group, a carbamoyl group, a carboxyl group, a hydroxyl group, an alkoxy group or an alkoxycarbonyl group, more preferably a hydrogen atom, an alkyl group, a carboxyl group, a cyano group or a carbamoyl group.

As for the preferred combination of substituents in the compound represented by formula (3), a compound where at least one of various substituents is the preferred group is preferred, a compound where a larger number of various substituents are the preferred groups is more preferred, and a compound where all substituents are the preferred groups is most preferred.

Specific examples of the azo dye represented by formula (3) are set forth below, however, the present invention is not limited to those set forth below.

[Chem. 58]

$$\begin{array}{c|c}
 & CN \\
 & H_3C \\
 & CN \\
 & N \\$$

•	Dye	R,	R ₂	R ₃
	a-1	$-\langle N \rangle$	-C ₈ H ₁₇	
	a-2	~SCI		CH_3 CH_3 CH_3
	a-3	√S CI	CH_3 CH_3 CH_3	— € C ₈ H ₁₇
	a-4	$-\langle N \rangle$	OC ₈ H ₁₇	-C ₈ H ₁₇
	a-5	$-\stackrel{s}{\underset{N}{\bigvee}}_{NO_2}$	CH ₃ —CH ₃	CH ₃

$$\begin{array}{c|c}
 & CN \\
 & H_3C \\
 & CN \\
 & N \\$$

Dye	R ₁	R,	R ₃
a-6	SO ₂ NH-(CH ₂) ₃ O	-СН3	-СН₃
a-7	$C_{\theta}H_{17}$ $C_{\theta}H_{17}$ $C_{\theta}H_{13}$	CH ₃ CH ₃	-Сн ₃
a-8	NHCOCH-O-	C ₈ H ₁₇	-C _B H ₁₇
a-9	(n)C ₈ H ₁₇ O NHSO ₂ -C ₈ H ₁₇ (t)	CH ₃	C ₈ H ₁₇ (t)
a-10	-SCI CI	OC ₁₂ H ₂₅	OC ₁₂ H ₂₅

Dye	R,	R ₂	R ₃	R ₄
a-11	+	SO ₂ Na	—{Сн₃	SO ₃ Na.
a-12	→	S COOH.	- √_ -so₃K	Соон
a−13	-CI	S N SO_3K $(4,5-mix)$	–∕_So₃K	Ссоон .
a-14	+	SO ₃ Na	CH ₃ SO ₃ Na CH ₃	CH ₃ SO ₃ Na CH ₃ CH ₃
a-15	+	SSO ₃ K	CH ₃ SO ₃ K CH ₃	CH ₃ SO ₃ K CH ₃ CH ₃
a-16	+	S CI	CH ₃ CH ₂ CH ₃ N(CH ₂ CO ₂ H) ₂	CH ₃ CH ₂ CH ₂ N(CH ₂ CO ₂ H) ₂
a-17	+	S SO ₃ Na	CH ₃ SO ₃ Na	CH ₃ SO ₃ Na CH ₃

Dye	R,	R ₂	R ₃	R ₄
a-18	→ ^s	→ _N ^S	CH ₃ CH ₃	CH ₃
a-19	-SCA CI	-SO₂CH₃	CH ₃ CH ₃	. —СН
a-20	-	-coch,	C ₈ H ₁₇ (t)	C ₈ H ₁₇ (t)
a-21	~STOCI	-SO ₂ CH ₃	Н ₃ С	C ₈ H ₁₇ (t)
a-22	$\stackrel{s}{\leftarrow}$	н	CH ₃	CH ₃
a-23	$\stackrel{s}{\longrightarrow}$	Н	CH ₃	CH ₃
a-24	\prec^s_{N}	Н	CH₃	CH ₃
a-25	→° C	→°\	CH ₃ —CH ₃	CH ₃ CH ₃

	ď	8 - 63 - 63 - 63 - 63 - 63 - 63 - 63 - 6	64 C43 C43	45 CF3 CF3 CF3	eg
CN N H ₃ C N N = N H ₂ C H - N H ₃ C	ጜ	X _c OS N	HOOD HOOD HOOD	COOK (5, 6-mix) COOK	COOH (5,6-mix)
	ď	X _c os X	HOOD HNOOS N	S SOZNH SOZNH (5,6-mix) COOK	S SO ₃ Na N (5, 6-mix)
	2	a-32	a-33	a-34	a-35

÷-:•

	ď	₹₽	сосн		SO ₂ CH ₃	C ₈ H ₁ ,	2. L. C. L. C. L. L. C. L. L. C. L. L. C. L.
	В,	oc. H.	C,H1,(t)	₹5	₹ \	\$ \$	2 Hz
	R	SO,CH,		م مرح مرح	Ø √ Z Z	హ్ ల ల=o	Çγ²
a, N	, g	CONH,	I	I	I	CONH,	Ŧ
R ₂ N=N	ď	.	COOEt	CONH	I	π	ਲੰ
a z	R.	2			Z Z	, ,	w Yz
	œ	N O	ā	so ₂ cH ₃	N O	ā	S
	ď.	f Q	+	2	9-44 CN	+	+
	2	a-41	a-42	a-43	a-44	a-45	a-46

	ď	Ca.H17	5 5 5 5	£ †	For Solution of the second of	PN ₅ OS-
٩ <u> </u>	ď	C ₈ H ₁₇	ર્ફ 👇 ર્ફ	Ca.H.17	Ho Ho	anos-()
E Z Z	œ	I	I	I	x ·	τ
NO N	R.	NO O	Ö	\$HNOO	I	CN
	<u>ج</u>	сĥ	ъ́в	ť	ѓн	T
	ď	ъ	т́о	ř O	ť	ťo
	Dye	6 -1	b-2	9-3	4-4	b-5

	ď	CH ₃ CH ₂ N(CH ₂ CO ₂ K) ₂	C ₆ H ₁	SO ₂ Na
مر ^ک مر	ď	CH3 CH3 CH4N(CH2CO2N)2	£ \$ & &	- SO ₃ Na
CN N N N N N N N N N N N N N N N N N N N	ď	WYZ WYZ	o z	SO ₂ CH ₃
w z	ĸ.	I	I.	т .
	ď	ਲੂ	н́о	Ι
	ď	Ą.	ťo	oH,
	De	9-q	b-7	p-8

	å	C8H17	yeos K	yeos-K	Co.H17	G ₈ H ₁₇ (t)
	ď	C,H17(±)	. so, K	× sos ×	₹ \ †	₹ .
N=N N=N N=N N=N	ď	I	I	X°OS N	SOS N N-OCH ₂) ₂	S NHSO ₂ OC ₈ H ₁₇ (n)
z z	ď.	S	CONH,	I.	I	I
	&	ъ́	T	ų K	ř O	x
	ď.	- SCH,	\Diamond	Neos Sos	ਮੂੰ ਹ 	P
	Σ	7	c-2	6-0		ا ا

÷:•

	ጼ	×°So³K	₹ \$ \$	y to to	7.Hg.	S.H.S.	
	Å.	× vos	ž O ž	to to to	-C.H.;	. (n)%Hy(n)	
N=N- N=N- N=N- N-N- N-N- N-N- N-N- N-N-	Υ.	I	I	Ø	æ '		
Z N	ď	S	ઠ	± .	CONH,	I	
	ፚ	ਮੁੰ	ਤੌਂ ਹ	I .	о́н	r. Yo	
	De R,	Me	d-2 Me CH ₃	We	ዊ	£	
	8	<u>f</u>	d-2	ф -9	4-b	d-5	

	r.	C,H,(t)	C ₈ H ₁ ,	гооо	x cos X	£ 45	£ 2000
2 N	œ	C,H,(t)	- C ₆ H ₁₇	£\$\$	x cos \	₽ F	NCON NEW NOW NOW NEW NEW NEW NEW NEW NEW NEW NEW NEW NE
S N N N N N N N N N N N N N N N N N N N	ď.	I	on Yz		I.	SO ₂ CH ₃	I
	œ	CONH	.	I	Š	Ŧ	₹5
	ጜ	сĥ	I	ťo	x	CH3	
	ď	5-CI	5,6-diCl	5,6-diCl	s-CH ₃	5-NO ₂	NC CH ₃ CH
	Dye	e-1	e-2	e-3	9- 4	9-5	Ī Š Š

[Black Dye]

In the black ink for use in the present invention, a dye (L) having λ max in the region from 500 to 700 nm and having a half-value width ($W\lambda_{,1/2}$) of 100 nm or more (preferably from 120 to 500 nm, more preferably from 120 to 350 nm) in the absorption spectrum of a dilute solution standardized to an absorbance of 1.0 is used.

÷-:-

In the case where the dye (L) by itself can realize "(non-loosening) black" (that is, black which is not dependent on the light source at the observation and less susceptible to stress of any one color tone of B, G and R) with high image quality, this dye may be used alone as the dye for black ink. However, in general, a dye for covering the region where the dye (L) has low absorption is usually used in combination. A dye (S) having main absorption in the yellow region (\lambda max of 350 to 500 nm) is preferably used in combination. The black ink may also be produced by using other dyes in combination.

In the present invention, the above-described dye alone or in combination with other dyes is dissolved or dispersed in an aqueous medium to prepare the black ink and in order to satisfy the performances preferred as the black ink for inkjet recording, namely, 1) the weather resistance is excellent and/or 2) the balance of black is not disrupted even after color fading, an ink satisfying the

÷:•

following conditions is preferably produced.

A black square symbol of JIS code 2223 is printed in a 48-point size by using the black ink and the reflection density (D_{vis}) measured by a visual filter is defined as the initial density. Examples of the reflection densitometer having mounted thereon a visual filter include X-Rite Densitometer. Here, in the case of measuring the density of "black", the measured value of D_{vis} is used as the standard observed reflection density. This printed matter is enforcedly discolored by using an ozone fading tester capable of always generating 5 ppm of ozone and the accelerated fading rate constant (k_{vis}) is determined according to the relational formula "0.8= exp(- k_{vis} ·t)" from the time period (t) until the reflection density (D_{vis}) decreases to 80% of the initial reflection density value.

The black ink preferably has an accelerated fading rate constant (k_{vis}) of 5.0×10^{-2} [hour⁻¹] or less, more preferably 3.0×10^{-2} [hour⁻¹] or less, still more preferably 1.0×10^{-2} [hour⁻¹] or less (condition 1).

Also, a black square symbol of JIS code 2223 is printed in a 48-point size by using the black ink and the reflection densities (D_R, D_G, D_B) of three colors of C (cyan), M (magenta) and Y (yellow), which are density values measured by a Status A filter but not D_{VIS} , are defined as the initial densities. Here, (D_R, D_G, D_B)

indicate (C reflection density by red filter, M reflection density by green filter, Y reflection density by blue This printed matter is acceleratedly faded by using an ozone fading tester capable of always generating 5 ppm of ozone according to the above-described method and the accelerated fading rate constants (k_R, k_G, k_B) are determined similarly from the time period until reflection densities (D_R, D_G, D_B) decrease to 80% respective initial density values. When the ratio (R) of the maximum value to the minimum value in these three accelerated fading rate constants is determined example, in the case where k_{R} is a maximum value and k_{G} is a minimum value, $R=k_R/k_G$), the ratio (R) is preferably 1.2 or less, more preferably 1.1 or less, still more preferably 1.05 or less (condition 2).

Incidentally, the "printed matter obtained by printing a black square symbol of JIS code 2223 in a 48-point size" used above is an image printed in a size large enough to cover the aperture of the densitometer and thereby give a sufficiently large size for the measurement of density.

As described above, at least one dye used in the black ink has an oxidation potential more positive than 1.0 V (vs SCE), preferably more positive than 1.1 V (vs SCE), more preferably more positive than 1.2 V (vs SCE), and most

preferably more positive than 1.25 V (vs SCE), and at least one of the dyes preferably has λmax of 500 nm or more (condition 3).

Furthermore, the black ink is produced by using an azo dye represented by the following formula (4):

A41-N=N-B41-N=N-C41

wherein A_{41} , B_{41} and C_{41} each independently represents an aromatic group which may be substituted, or a heterocyclic group which may be substituted.

The azo dye represented by formula (4) includes those coming under the dye (L) having \(\lambda \) max in the region from 500 to 700 nm and having a half-value width of 100 nm or more in absorption spectrum of a dilute standardized to an absorbance of 1.0. Other than these, a dye (S) having λ max in the region from 350 to 500 nm is also included in the dye represented by formula (4). ink where at least one dye (L) is the dye of formula (4) is preferred, an ink where at least one dye (L) and at least one dye (S) are the dye of formula (4) is more preferred, an ink where 90 wt% of all dyes in the ink is occupied by the dye of formula (4) is still more preferred (condition 4).

The black ink for use in the present invention is a black ink satisfying at least one of these conditions 1 to

÷-`•

4.

The dye represented by formula (4) is described below.

In formula (4), A_{41} , B_{41} and C_{41} each independently represents an aromatic group which may be substituted or a heterocyclic group which may be substituted (A_{41} and C_{41} are a monovalent group and B_{41} is a divalent group).

The azo dye represented by formula (4) is preferably a dye represented by the following formula (4-A):

$$A_{41}$$
— N — N — B_{41} — N = N
 R_{45}
 R_{46}

wherein A_{41} and B_{41} have the same meanings as in formula (4),

 B_{42} and B_{43} each represents =CR₄₁- or -CR₄₂= or either one of B_{42} and B_{43} represents a nitrogen atom and the other represents =CR₄₁- or -CR₄₂=,

G₄, R₄₁ and R₄₂ each independently represents a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxy group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy

÷-'•

group, an aryloxycarbonyloxy group, an amino group (including an alkylamino group, an arylamino group and a heterocyclic amino group), an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an aryloxycarbonylamino group, an alkylsulfonylamino group, an arylsulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkylthio group, an arylthio group, an arylsulfonyl group, an arylsulfonyl group, an alkylsulfonyl group, an alkylsulfonyl group, an alkylsulfonyl group, an alkylsulfinyl group, an arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group or a sulfo group, and each group may be further substituted,

 R_{45} and R_{46} each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, and each group may further have a substituent, provided that R_{45} and R_{46} are not a hydrogen atom at the same time, and

 R_{41} and $R_{45},$ or R_{45} and R_{46} may combine to form a 5- or 6-membered ring.

The azo dye represented by formula (4-A) is more preferably a dye represented by the following formula (4-B):

Formula (4-B):

$$R_{47}$$
 R_{48}
 R_{43}
 R_{45}
 R_{46}
 R_{46}

·-·-

wherein R_{47} and R_{48} each has the same meaning as R_{41} in formula (4-A).

The terms (substituents) used in the description of formulae (4), (4-A) and (4-B) are described below. These terms each is common in the description of formulae (4-C) and (4-D) shown later.

The halogen atom includes a fluorine atom, a chlorine atom and a bromine atom.

The aliphatic group means an alkyl group, a substituted alkyl group, an alkenyl group, a substituted alkenyl group, an alkynyl group, a substituted alkynyl group, an aralkyl group and a substituted aralkyl group. The aliphatic group may be branched or may form a ring. The number of carbon atoms in the aliphatic group is preferably from 1 to 20, more preferably from 1 to 16. The aryl moiety in the aralkyl group and the substituted aralkyl group is preferably phenyl or naphthyl, more preferably phenyl. Examples of the aliphatic group include a methyl group, an ethyl group, a butyl group, an isopropyl group, a tert-butyl group, a hydroxyethyl group, a

methoxyethyl group, a cyanoethyl group, a trifluoromethyl group, a 3-sulfopropyl group, a 4-sulfobutyl group, a cyclohexyl group, a benzyl group, a 2-phenethyl group, a vinyl group and an allyl group.

The monovalent aromatic group means an aryl group and a substituted aryl group. The aryl group is preferably a phenyl group or a naphthyl group, more preferably a phenyl The number of carbon atoms in the monovalent group. aromatic group is preferably from 6 to 20, more preferably from 6 to 16. Examples of the monovalent aromatic group include a phenyl group, a p-tolyl group, a p-methoxyphenyl group, an o-chlorophenyl group and an m-(3-sulfopropylamino) phenyl group. The divalent aromatic group is a divalent form of these monovalent aromatic groups and examples thereof include a phenylene group, a p-tolylene group, a p-methoxyphenylene group, an o-chlorophenylene group, an m-(3-sulfopropylamino)phenylene group and a naphthylene group.

The heterocyclic group includes a heterocyclic group having a substituent and an unsubstituted heterocyclic group. The heterocyclic ring may be condensed with an aliphatic ring, an aromatic ring or another heterocyclic ring. The heterocyclic group is preferably a 5- or 6-membered heterocyclic group. Examples of the heteroatom in the heterocyclic ring include N, O and S. Examples of the

substituent include an aliphatic group, a halogen atom, an alkylsulfonyl group, an arylsulfonyl group, an acyl group, an acylamino group, a sulfamoyl group, a carbamoyl group and an ionic hydrophilic group. Examples of the heterocyclic ring used in the monovalent or divalent heterocyclic group include a pyridine ring, a thiophene ring, a thiazole ring, a benzothiazole ring, a benzoxazole ring and a furan ring.

The carbamoyl group includes a carbamoyl group having a substituent and an unsubstituted carbamoyl group. Examples of the substituent include an alkyl group. Examples of the carbamoyl group include a methylcarbamoyl group and a dimethylcarbamoyl group.

The alkoxycarbonyl group includes an alkoxycarbonyl group having a substituent and an unsubstituted alkoxycarbonyl group. The alkoxycarbonyl group is preferably an alkoxycarbonyl group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.

The aryloxycarbonyl group includes an aryloxycarbonyl group having a substituent and an unsubstituted aryloxycarbonyl group. The aryloxycarbonyl group is preferably an aryloxycarbonyl group having from 7 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic

group. Examples of the aryloxycarbonyl group include a phenoxycarbonyl group.

The heterocyclic oxycarbonyl group includes a heterocyclic oxycarbonyl group having a substituent and an unsubstituted heterocyclic oxycarbonyl group. The heterocyclic oxycarbonyl group is preferably a heterocyclic oxycarbonyl group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic oxycarbonyl group include a 2-pyridyloxycarbonyl group.

The acyl group includes an acyl group having a substituent and an unsubstituted acyl group. The acyl group is preferably an acyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acyl group include an acetyl group and a benzoyl group.

The alkoxy group includes an alkoxy group having a substituent and an unsubstituted alkoxy group. The alkoxy group is preferably an alkoxy group having from 1 to 20 carbon atoms. Examples of the substituent include an alkoxy group, a hydroxyl group and an ionic hydrophilic group. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a methoxy-ethoxy group, a hydroxyethoxy group and a 3-carboxypropoxy group.

÷-..

The aryloxy group includes an aryloxy group having a substituent and an unsubstituted aryloxy group. The aryloxy group is preferably an aryloxy group having from 6 to 20 carbon atoms. Examples of the substituent include an alkoxy group and an ionic hydrophilic group. Examples of the aryloxy group include a phenoxy group, a p-methoxy-phenoxy group and an o-methoxyphenoxy group.

The heterocyclic oxy group includes a heterocyclic oxy group having a substituent and an unsubstituted heterocyclic oxy group. The heterocyclic oxy group is preferably a heterocyclic oxy group having from 2 to 20 carbon atoms. Examples of the substituent include an alkyl group, an alkoxy group and an ionic hydrophilic group. Examples of the heterocyclic oxy group include a 3-pyridyloxy group and a 3-thienyloxy group.

The silyloxy group is preferably a silyloxy group substituted by an aliphatic or aromatic group having from 1 to 20 carbon atoms. Examples of the silyloxy group include a trimethylsilyloxy group and a diphenylmethylsilyloxy group.

The acyloxy group includes an acyloxy group having a substituent and an unsubstituted acyloxy group. The acyloxy group is preferably an acyloxy group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acyloxy group

include an acetoxy group and a benzoyloxy group.

The carbamoyloxy group includes a carbamoyloxy group having a substituent and an unsubstituted carbamoyloxy group. Examples of the substituent include an alkyl group. Examples of the carbamoyloxy group include an N-methyl-carbamoyloxy group.

The alkoxycarbonyloxy group includes an alkoxycarbonyloxy group having a substituent and an unsubstituted alkoxycarbonyloxy group. The alkoxycarbonyloxy group is preferably an alkoxycarbonyloxy group having from 2 to 20 carbon atoms. Examples of the alkoxycarbonyloxy group include a methoxycarbonyloxy group and an isopropoxycarbonyloxy group.

The aryloxycarbonyloxy group includes an aryloxycarbonyloxy group having a substituent and an unsubstituted aryloxycarbonyloxy group. The aryloxycarbonyloxy group is preferably an aryloxycarbonyloxy group having from 7 to 20 carbon atoms. Examples of the aryloxycarbonyloxy group include a phenoxycarbonyloxy group.

The amino group includes an amino group substituted by an alkyl group, an aryl group or a heterocyclic group, and the alkyl group, the aryl group and the heterocyclic group each may further have a substituent. The alkylamino group is preferably an alkylamino group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic

hydrophilic group. Examples of the alkylamino group include a methylamino group and a diethylamino group.

The arylamino group includes an arylamino group having a substituent and an unsubstituted arylamino group. The arylamino group is preferably an arylamino group having from 6 to 20 carbon atoms. Examples of the substituent include a halogen atom and an ionic hydrophilic group. Examples of the arylamino group include an anilino group and a 2-chlorophenylamino group.

The heterocyclic amino group includes a heterocyclic amino group having a substituent and an unsubstituted heterocyclic amino group. The heterocyclic amino group is preferably a heterocyclic amino group having from 2 to 20 carbon atoms. Examples of the substituent include an alkyl group, a halogen atom and an ionic hydrophilic group.

The acylamino group includes an acylamino group having a substituent and an unsubstituted acylamino group. The acylamino group is preferably an acylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the acylamino group include an acetylamino group, a propionylamino group, a benzoylamino group, an N-phenylacetylamino group and a 3,5-disulfobenzoylamino group.

The ureido group includes a ureido group having a substituent and an unsubstituted ureido group. The ureido

group is preferably a ureido group having from 1 to 20 carbon atoms. Examples of the substituent include an alkyl group and an aryl group. Examples of the ureido group include a 3-methylureido group, a 3,3-dimethylureido group and a 3-phenylureido group.

The sulfamoylamino group includes a sulfamoylamino group having a substituent and an unsubstituted sulfamoylamino group. Examples of the substituent include an alkyl group. Examples of the sulfamoylamino group include an N,N-dipropylsulfamoylamino group.

The alkoxycarbonylamino group includes an alkoxycarbonylamino group having a substituent and an unsubstituted alkoxycarbonylamino group. The alkoxycarbonylamino group is preferably an alkoxycarbonylamino group having from 2 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the alkoxycarbonylamino group include an ethoxycarbonylamino group.

The aryloxycarbonylamino group includes an aryloxy-carbonylamino group having a substituent and an unsubstituted aryloxycarbonylamino group. The aryloxy-carbonylamino group is preferably an aryloxycarbonylamino group having from 7 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the aryloxycarbonylamino group include a phenoxy-

carbonylamino group.

alkylsulfonylamino group includes an alkylsulfonylamino group having a substituent and an unsubstituted alkylsulfonylamino group, and the sulfonylamino group includes an arylsulfonylamino group having a substituent and an unsubstituted arylsulfonylamino group. The sulfonylamino group is preferably a sulfonylamino group having from 1 to 20 carbon atoms. Examples of substituent include an ionic hydrophilic group. Examples of these sulfonylamino groups include a methylsufonylamino group, an N-phenyl-methylsulfonylamino group, phenylsulfonylamino group and a 3-carboxyphenylsulfonylamino group.

The heterocyclic sulfonylamino group includes heterocyclic sulfonylamino group having a substituent and an unsubstituted heterocyclic sulfonylamino group. The heterocyclic sulfonylamino group is preferably a heterocyclic sulfonylamino group having from 1 to 12 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic sulfonylamino group 2-thiophenesulfonylamino group include a and 3pyridinesulfonylamino group.

The heterocyclic sulfonyl group includes a heterocyclic sulfonyl group having a substituent and an unsubstituted heterocyclic sulfonyl group. The hetero-

÷-:•

cyclic sulfonyl group is preferably a heterocyclic sulfonyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic sulfonyl group include a 2-thiophenesulfonyl group and a 3-pyridinesulfonyl group.

The heterocyclic sulfinyl group includes a heterocyclic sulfinyl group having a substituent and an unsubstituted heterocyclic sulfinyl group. The heterocyclic sulfinyl group is preferably a heterocyclic sulfinyl group having from 1 to 20 carbon atoms. Examples of the substituent include an ionic hydrophilic group. Examples of the heterocyclic sulfinyl group include a 4-pyridine-sulfinyl group.

The alkylthio group includes include an alkylthio group having a substituent and an unsubstituted alkylthio group, the arylthio group includes an arylthio group having a substituent and an unsubstituted arylthio group, and the heterocyclic thio group includes a heterocyclic thio group having a substituent and an unsubstituted heterocyclic thio group. The alkylthio group, the arylthio group and the heterocyclic thio group are preferably an alkylthio group having from 1 to 20 carbon atoms, an arylthio group having from 1 to 20 carbon atoms and a heterocyclic thio group having from 1 to 20 carbon atoms, respectively. Examples of the substituent include an ionic hydrophilic group.

Examples of the alkylthio group, arylthio group and heterocyclic thio group include a methylthio group, a phenylthio group and a 2-pyridylthio group.

The alkylsulfonyl group includes an alkylsulfonyl substituent group having a and an unsubstituted alkylsulfonyl group, and the arylsulfonyl group includes an arylsulfonyl group having a substituent and an unsubstituted arylsulfonyl group. Examples of the alkylsulfonyl group and arylsulfonyl group include methylsulfonyl group and a phenylsulfonyl group.

The alkylsulfinyl group includes an alkylsulfinyl group having a substituent and an unsubstituted alkylsulfinyl group, and the arylsulfinyl group includes an arylsulfinyl group having a substituent an unsubstituted arylsulfinyl group. Examples of the alkylsulfinyl group and arylsulfinyl group include methylsulfinyl group and a phenylsulfinyl group.

The sulfamoyl group includes a sulfamoyl group having a substituent and an unsubstituted sulfamoyl group. Examples of the substituent include an alkyl group. Examples of the sulfamoyl group include a dimethylsulfamoyl group and a di-(2-hydroxyethyl) sulfamoyl group.

Formulae (4), (4-A) and (4-B) are described below.

In the following, those described above for each group or substituent also apply.

In formula (4), A_{41} , B_{41} and C_{41} each independently represents an aromatic group (A_{41} and C_{41} are a monovalent aromatic group such as aryl group, and B_{41} is a divalent aromatic group such as arylene group) which may be substituted, or a heterocyclic group (A_{41} and C_{41} are a monovalent heterocyclic group and B_{41} is a divalent heterocyclic group) which may be substituted. Examples of the aromatic ring include a benzene ring and a naphthalene ring. Examples of the heterocyclic ring may be condensed

ÿ+'•

The substituent may be an arylazo group or a heterocyclic azo group.

with an aliphatic ring, an aromatic ring or another

heterocyclic ring.

A dye where at least one of A_{41} , B_{41} and C_{41} is a heterocyclic group is preferred, and a dye where at least two of A_{41} , B_{41} and C_{41} are a heterocyclic group is more preferred. Also, A_{41} , B_{41} and C_{41} all may be a heterocyclic group.

The heterocyclic group represented by C₄₁ is preferably an aromatic nitrogen-containing 6-membered heterocyclic group represented by the following formula (4-C). When C₄₁ is an aromatic nitrogen-containing 6-membered heterocyclic group represented by formula (4-C), formula (4) corresponds to formula (4-A).

Formula (4-C):

÷:•

In formula (4-C), B_{42} and B_{43} each represents = CR_{41} or - CR_{42} = or either one of B_{42} and B_{43} represents a nitrogen
atom and the other represents = CR_{41} - or - CR_{42} =. B_{42} and B_{43} each is preferably = CR_{41} - or - CR_{42} =.

R₄₅ and R₄₆ each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, and each group may further have a substituent. The substituent represented by R_{45} and R_{46} is preferably a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, more preferably a hydrogen atom, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, and most preferably a hydrogen atom, an aryl group or a heterocyclic group, and each group may further have a substituent. However, R_{45} and R_{46} are not a hydrogen atom at the same time.

 G_4 , R_{41} and R_{42} each independently represents a

hydrogen atom, a halogen atom, an aliphatic group, aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxy group, an alkoxy group, an aryloxy group, a heterocyclic oxy group, a silyloxy group, an acyloxy group, a carbamoyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, an amino group (including an alkylamino group, an arylamino group and a heterocyclic amino group), an acylamino group, a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkylsulfonylamino group, an arylsulfonylamino group, a heterocyclic sulfónylamino group, a nitro group, an alkylthio group, an arylthio group, a heterocyclic thio group, an alkylsulfonyl group, arylsulfonyl group, a heterocyclic sulfonyl group, an alkylsulfinyl group, an arylsulfinyl group, a heterocyclic sulfinyl group, a sulfamoyl group or a sulfo group, and each group may be further substituted.

·---

The substituent represented by G_4 is preferably a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a hydroxyl group, an alkoxy group, an aryloxy group, an acyloxy group, a heterocyclic oxy group, an amino group (including an alkylamino group, an arylamino group and a heterocyclic amino group), an acylamino group,

a ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkylthio group, an arylthio group or a heterocyclic thio group, more preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, an alkoxy group, an aryloxy group, an acyloxy group, an amino group (including an alkylamino group, an arylamino group and a heterocyclic amino group) or an acylamino group, and most preferably a hydrogen atom, an anilino group or an acylamino group, and each group may further have a substituent.

The substituents represented by R_{41} and R_{42} each is preferably a hydrogen atom, an alkyl group, a halogen atom, an alkoxycarbonyl group, a carboxyl group, a carbamoyl group, a hydroxy group, an alkoxy group or a cyano group, and each group may further have a substituent.

 R_{41} and $R_{45}, \mbox{ or } R_{45}$ and R_{46} may combine to form a 5- or 6-membered ring.

When the substituents represented by A_{41} , R_{41} , R_{42} , R_{45} , R_{46} and G_4 each further has a substituent, examples of the substituent include the substituents described above for G_4 , R_{41} and R_{42} . Also, an ionic hydrophilic group is preferably further present as a substituent on any one position of A_{41} , R_{41} , R_{42} , R_{45} , R_{46} and G_4 .

Examples of the ionic hydrophilic group as a substituent include a sulfo group, a carboxyl group, a

ġ-·

phosphono group and a quaternary ammonium group. Among these ionic hydrophilic groups, preferred are a carboxyl group, a phosphono group and a sulfo group, more preferred are a carboxyl group and a sulfo group. The carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g., tetramethylammonium ion, tetramethylguanidium ion, tetramethylphosphonium). Among these, lithium ion is preferred.

When B₄₁ has a ring structure, preferred examples of the heterocyclic ring include a thiophene ring, a thiazole ring, an imidazole ring, a benzothiazole ring and a thienothiazole ring. Each heterocyclic group may further have a substituent. Among these heterocyclic rings, a thiophene ring, a thiazole ring, an imidazole ring, a benzothiazole ring and a thienothiazole ring represented by the following formulae (a) to (e) are preferred. When B₄₁ is a thiophene ring represented by formula (a) and C₄₁ is a structure represented by formula (4-C), formula (4) corresponds to formula (4-B).

٠٠٠

(e)

(c)

wherein R_{409} to R_{417} each represents a substituent having the same meaning as G_4 , R_{41} and R_{42} in formula (4-A).

Among the dyes represented by formula (4-B), particularly preferred is a structure represented by the following formula (4-D):

Formula (4-D):

<u>:</u>-:-

In formula (4-D), Z_4 represents an electron-withdrawing group having a Hammett's substituent constant σ_{24} or σ_{24} or σ_{24} is preferably an electron-withdrawing group having a σ_{24} value of 0.30 or more, more preferably 0.45 or more, still more preferably 0.60 to more, but the σ_{24} value preferably does not exceed 1.0.

Specific examples of the electron-withdrawing group having a Hammett's substituent constant op value of 0.60 or more include a cyano group, a nitro group, an alkylsulfonyl group (e.g., methanesulfonyl) and an arylsulfonyl group (e.g., benzenesulfonyl).

Specific examples of the electron-withdrawing group having a Hammett's op value of 0.45 or more include, in addition to those described above, an acyl group (e.g., acetyl), an alkoxycarbonyl group (e.g., dodecyloxycarbonyl), an aryloxycarbonyl group (e.g., m-chlorophenoxycarbonyl), an alkylsulfinyl group (e.g., n-propylsulfinyl), an aryloxycarbonyl group (e.g., phenylsulfinyl), a sulfamoyl group (e.g., N-ethylsulfamoyl, N,N-dimethylsulfamoyl) and a halogenated alkyl group (e.g., trifluoromethyl).

Specific examples of the electron-withdrawing group having a Hammett's substituent constant op value of 0.30 or more include, in addition to those described above, an acyloxy group (e.g., acetoxy), a carbamoyl group (e.g., Nethylcarbamoyl, N,N-dibutylcarbamoyl), a halogenated alkoxy

group (e.g., trifluoromethyloxy), a halogenated aryloxy group (e.g., pentafluorophenyloxy), a sulfonyloxy group (e.g., methylsulfonyloxy), a halogenated alkylthio group (e.g., difluoromethylthio), an aryl group substituted by two or more electron-withdrawing groups having a op value of 0.15 or more (e.g., 2,4-dinitrophenyl, pentachlorophenyl) and a heterocyclic ring (e.g., 2-benzoxazolyl, 2-benzothiazolyl, 1-phenyl-2-benzimidazolyl).

Specific examples of the electron-withdrawing group having a Hammett's substituent constant op value of 0.20 or more include, in addition to those described above, a halogen atom.

Among these, Z₄ is preferably an acyl group having from 2 to 20 carbon atoms, an alkyloxycarbonyl group having from 2 to 20 carbon atoms, a nitro group, a cyano group, an alkylsulfonyl group having from 1 to 20 carbon atoms, an arylsulfonyl group having from 6 to 20 carbon atoms, a carbamoyl group having from 1 to 20 carbon atoms or a halogenated alkyl group having from 1 to 20 carbon atoms, more preferably a cyano group, an alkylsulfonyl group having from 1 to 20 carbon atoms and an arylsulfonyl group having from 6 to 20 carbon atoms, and most preferably a cyano group.

 R_{41} , R_{42} , R_{45} and R_{46} in formula (4-D) have the same meanings as in formula (4-A). R_{43} and R_{44} each

independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkylsulfonyl group, an arylsulfonyl group or a sulfamoyl group, preferably a hydrogen atom, an aromatic group, a heterocyclic group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group, more preferably a hydrogen atom, an aromatic group or a heterocyclic group.

The groups described in regard to formula (4-D) each may further have a substituent. When these groups each further has a substituent, examples of the substituent include the substituents described in regard to formula (4-A), the groups described as examples for G_4 , R_{41} and R_{42} , and ionic hydrophilic groups.

The preferred combination of substituents in the azo dye represented by formula (4-B) is described below. R₄₅ and R₄₆ each is preferably a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a sulfonyl group or an acyl group, more preferably a hydrogen atom, an aryl group, a heterocyclic group or a sulfonyl group, and most preferably a hydrogen atom, an aryl group, and most preferably a hydrogen atom, an aryl group or a heterocyclic group. However, R₄₅ and R₄₆ are not a hydrogen atom at the same time.

G₄ is preferably a hydrogen atom, a halogen atom, an

alkyl group, a hydroxyl group, an amino group or an acylamino group, more preferably a hydrogen atom, a halogen atom, an amino group or an acylamino group, and most preferably a hydrogen atom, an amino group or an acylamino group.

A₄₁ is preferably a pyrazole ring, an imidazole ring, an isothiazole ring, a thiadiazole ring or a benzothiazole ring, more preferably a pyrazole ring or an isothiazole ring, and most preferably a pyrazole ring.

 B_{42} and B_{43} each is =CR₄₁- or -CR₄₂=, and R₄₁ and R₄₂ each is preferably a hydrogen atom, an alkyl group, a halogen atom, a cyano group, a carbamoyl group, a carboxyl group, a hydroxyl group, an alkoxy group or an alkoxycarbonyl group, more preferably a hydrogen atom, an alkyl group, a carboxyl group, a cyano group or a carbamoyl group.

As for the preferred combination of substituents in the azo dye, a compound where at least one of various substituents is the preferred group is preferred, a compound where a larger number of various substituents are the preferred groups is more preferred, and a compound where all substituents are the preferred groups is most preferred.

Specific examples of the azo dye represented by formula (4) are set forth below, however, the present

invention is not limited to those set forth below. In these specific examples, the carboxyl group, the phosphono group and the sulfo group each may be in a salt state and examples of the counter ion for forming the salt include ammonium ion, alkali metal ions (e.g., lithium ion, sodium ion, potassium ion) and organic cations (e.g., tetramethyl-ammonium ion, tetramethylguanidium ion, tetramethyl-phosphonium). Among these, lithium ion is preferred.

$$A-N=N-B-N=N-C$$

HN

$$A-N=N-B-N=N-C$$

$$A \qquad B \qquad C$$

$$(C-1) \qquad H_3C \qquad CN \qquad H_3C \qquad H_3C \qquad H_3C \qquad G_2NH_2 \qquad H_3C \qquad G_2CH_3 \qquad H_3C \qquad G_2$$

֥••

;:··

(E-1) A B
$$HO_3S \longrightarrow N$$

$$C$$
 H_3C
 CN
 H
 SO_3H

والمنافقة

$$A-N=N-B-N=N-C$$
A
B

(F-1)

ĺ

С

ġ.··

$$H_2N$$
 N
 C_2H_5

HO₂C.

The azo dyes represented by formulae (4), (4-A), (4-B) and (4-D) can be synthesized by a coupling reaction of a diazo component and a coupler. As the main synthesis method, the method described in Japanese Patent Application No. 2002-113460 can be used.

For the dye having \(\lambda \text{max} \) in the region from 350 to 500 nm, a yellow dye or pigment described above can be preferably used.

The content of each dye represented by formulae (1) to (4) in the ink is preferably from 0.2 to 20 wt%, more preferably from 0.5 to 15 wt%.

In particular, the present invention is characterized in that the dyes contained in the ink all have a solubility of 15 g or more in 100 g of water at 25°C under atmospheric pressure.

The definition of the solubility used herein is the same as the concept used in normal chemical experiments and the solubility is a numerical value showing how much at a maximum the dye as a solute can be dissolved in 100 g of water as a solvent at 25°C under atmospheric pressure.

The solubility can be measured, for example, by adding an excess amount (for example, 60 g) of dye to 100 g of water at 25°C, allowing it to stand in a constant-temperature bath at 25°C for 24 hours, removing the undissolved solute through filtration, and analyzing how

÷-:•

much the solute is dissolved in the obtained solution.

[Preparation, etc. of Ink]

In the ink of the present invention, other dyes may be used in combination with the above-described dyes so as to obtain a full color image or adjust the color tone. Examples of the dye which can be used in combination include the followings.

Examples of the dye include, as the yellow dye, arylor heteryl-azo dyes having a phenol, a naphthol, an aniline, a pyrazolone, a pyridone or an open chain-type active methylene compound as the coupling component; azomethine dyes having an open chain-type active methylene compound as the coupling component; methine dyes such as benzylidene dye and monomethine oxonol dye; and quinone-base dyes such naphthoquinone dye and anthraquinone dye. examples of the dye species include quinophthalone dye, nitro nitroso dye, acridine dye and acridinone dye. dyes may be a dye which provides a yellow color for the first time when a part of the chromophore is dissociated. In this case, the counter cation may be an inorganic cation such as alkali metal and ammonium, an organic cation such as pyridinium and quaternary ammonium salt, or a polymer cation having such a cation in a partial structure.

Examples of the dye include, as the magenta dye, aryl- or heteryl-azo dyes having a phenol, a naphthol or an

aniline as the coupling component; azomethine dyes having a pyrazolone or a pyrazolotriazole as the coupling component; methine dyes such as arylidene dye, styryl dye, merocyanine dye and oxonol dye; carbonium dyes such as diphenylmethane dye, triphenylmethane dye and xanthene dye; quinone-base dyes such as naphthoquinone, anthraquinone and anthrapyridone; and condensed polycyclic dyes such as dioxazine dye. These dyes may be a dye which provides a magenta color for the first time when a part of the chromophore is dissociated. In this case, the counter cation may be an inorganic cation such as alkali metal and ammonium, an organic cation such as pyridinium and quaternary ammonium

salt, or a polymer cation having such a cation in a partial

structure.

÷:*•

Examples of the dye include, as the cyan dye, azomethine dyes such as indoaniline dye and indophenol dye; polymethine dyes such as cyanine dye, oxonol dye and merocyanine dye; carbonium dyes such as diphenylmethane dye, triphenylmethane dye and xanthene dye; phthalocyanine dyes; anthraquinone dyes; aryl- or heteryl-azo dyes having a phenol, a naphthol or an aniline as the coupling component; and indigo thioindigo dyes. These dyes may be a dye which provides a cyan color for the first time when a part of the chromophore is dissociated. In this case, the counter cation may be an inorganic cation such as alkali metal and

ammonium, an organic cation such as pyridinium and quaternary ammonium salt, or a polymer cation having such a cation in a partial structure.

In addition, a black dye such as polyazo dye may also be used.

Also, a water-soluble dye such as direct dye, acid dye, food dye, basic dye and reactive dye may be used in combination. Preferred examples thereof include C.I. Direct Red 2, 4, 9, 23, 26, 31, 39, 62, 63, 72, 75, 76, 79, 80, 81, 83, 84, 89, 92, 95, 111, 173, 184, 207, 211, 212, 214, 218, 21, 223, 224, 225, 226, 227, 232, 233, 240, 241, 242, 243 and 247; C.I. Direct Violet 7, 9, 47, 48, 51, 66, 90, 93, 94, 95, 98, 100 and 101; C.I. Direct Yellow 8, 9, 11, 12, 27, 28, 29, 33, 35, 39, 41, 44, 50, 53, 58, 59, 68, 86, 87, 93, 95, 96, 98, 100, 106, 108, 109, 110, 130, 132, 142, 144, 161 and 163; C.I. Direct Blue 1, 10, 15, 22, 25, 55, 67, 68, 71, 76, 77, 78, 80, 84, 86, 87, 90, 98, 106, 108, 109, 151, 156, 158, 159, 160, 168, 189, 192, 193, 194, 199, 200, 201, 202, 203, 207, 211, 213, 214, 218, 225, 229, 236, 237, 244, 248, 249, 251, 252, 264, 270, 280, 288, 289 and 291; C.I. Direct Black 9, 17, 19, 22, 32, 51, 56, 62, 69, 77, 80, 91, 94, 97, 108, 112, 113, 114, 117, 118, 121, 122, 125, 132, 146, 154, 166, 168, 173 and 199; C.I. Acid Red 35, 42, 52, 57, 62, 80, 82, 111, 114, 118, 119, 127, 128, 131, 143, 151, 154, 158, 249, 254, 257, 261, 263, 266,

289, 299, 301, 305, 336, 337, 361, 396 and 397; C.I. Acid Violet 5, 34, 43, 47, 48, 90, 103 and 126; C.I. Acid Yellow 17, 19, 23, 25, 39, 40, 42, 44, 49, 50, 61, 64, 76, 79, 110, 127, 135, 143, 151, 159, 169, 174, 190, 195, 196, 197, 199, 218, 219, 222 and 227; C.I. Acid Blue 9, 25, 40, 41, 62, 72, 76, 78, 80, 82, 92, 106, 112, 113, 120, 127:1, 129, 138, 143, 175, 181, 205, 207, 220, 221, 230, 232, 247, 258, 260, 264, 271, 277, 278, 279, 280, 288, 290 and 326; C.I. Acid Black 7, 24, 29, 48, 52:1 and 172; C.I. Reactive Red 3, 13, 17, 19, 21, 22, 23, 24, 29, 35, 37, 40, 41, 43, 45, 49 and 55; C.I. Reactive Violet 1, 3, 4, 5, 6, 7, 8, 9, 16, 17, 22, 23, 24, 26, 27, 33 and 34; C.I. Reactive Yellow 2, 3, 13, 14, 15, 17, 18, 23, 24, 25, 26, 27, 29, 35, 37, 41 and 42; C.I. Reactive Blue 2, 3, 5, 8, 10, 13, 14, 15, 17, 18, 19, 21, 25, 26, 27, 28, 29 and 38; C.I. Reactive Black 4, 5, 8, 14, 21, 23, 26, 31, 32 and 34; C.I. Basic Red 12, 13, 14, 15, 18, 22, 23, 24, 25, 27, 29, 35, 36, 38, 39, 45 and 46; C.I. Basic Violet 1, 2, 3, 7, 10, 15, 16, 20, 21, 25, 27, 28, 35, 37, 39, 40 and 48; C.I. Basic Yellow 1, 2, 4, 11, 13, 14, 15, 19, 21, 23, 24, 25, 28, 29, 32, 36, 39 and 40; C.I. Basic Blue 1, 3, 5, 7, 9, 22, 26, 41, 45, 46, 47, 54, 57, 60, 62, 65, 66, 69 and 71; and C.I. Basic Black 8.

A pigment may be also used in combination.

As the pigment which can be used in the ink of the present invention, commercially available pigments and

known pigments described in various publications can be Examples of the publication include Color Index, compiled by The Society of Dyers and Colourists, Kaitei Shin Han Ganryo Binran (Revised New Handbook of Pigments), compiled by Nippon Ganryo Gijutsu Kyokai (1989), Saishin Ganryo Oyo Gijutsu (Newest Pigment Application Technology), CMC Shuppan (1986), Insatsu Ink Gijutsu (Printing Ink Technique), CMC Shuppan (1984), and W. Herbst and K. Hunger, Industrial Organic Pigments, VCH Verlagsgesellschaft (1993). Specific examples of the pigment includes organic pigments such as azo pigments (e.g., azo lake pigment, insoluble azo pigment, condensed azo pigment, chelate azo pigment), polycyclic pigments (e.g., phthalocyanine-base pigment, anthraquinone-base pigment, perylene-base or perynone-base pigment, indigo-base pigment, quinacridone-base pigment, dioxazine-base pigment, isoindolinone-base pigment, quinophthalone-base pigment, diketopyrrolopyrrole-base pigment), dyeing lake pigments (lake pigments of acid or basic dye) and azine pigments, and inorganic pigments such as C.I. Pigment Yellow 34, 37, 42 and 53 which are a yellow pigment, C.I. Pigment Red 101 and 108 which are a red-type pigment, C.I. Pigment Blue 27, 29 and 17:1 which are a blue-type pigment, C.I. Pigment Black 7 and magnetite which are a black-type pigment, and C.I. Pigment White 4, 6, 18 and 21 which are a white-type pigment.

The pigment having a color tone preferred for the formation of an image includes the followings. As the blue to cyan pigment, phthalocyanine pigments, anthraquinonetype indanthrone pigments (for example, C.I. Pigment Blue 60) and dyeing lake pigment-type triarylcarbonium pigments are preferred, and phthalocyanine pigments are most (preferred examples thereof include copper phthalocyanine such as C.I. Pigment Blue 15:1, 15:2, 15:3, 15:4 and 15:6, monochloro or low chlorinated copper phthalocyanine, aluminum phthalocyanine such as pigments described in European Patent 860475, nonmetallic phthalocyanine such C.I. as Pigment Blue 16, phthalocyanine with the center metal being Zn, Ni or Ti, and among these, C.I. Pigment Blue 15:3 and 15:4 and aluminum phthalocyanine are more preferred).

As the red to violet pigment, azo pigments (preferred examples thereof include C.I. Pigment Red 3, 5, 11, 22, 38, 48:1, 48:2, 48:3, 48:4, 49:1, 52:1, 53:1, 57:1, 63:2, 144, 146 and 184, and among these, C.I. Pigment Red 57:1, 146 and 184 are more preferred), quinacridone-base pigments (preferred examples thereof include C.I. Pigment Red 122, 192, 202, 207 and 209 and C.I. Pigment Violet 19 and 42, and among these, C.I. Pigment Red 122 is more preferred), dyeing lake pigment-type triarylcarbonium pigments (preferred examples thereof include xanthene-base C.I.

Pigment Red 81:1 and C.I. Pigment Violet 1, 2, 3, 27 and 39), dioxazine-base pigments (for example, C.I. Pigment Violet 23 and 37), diketopyrrolopyrrole-base pigments (for example, C.I. Pigment Red 254), perylene pigments (for example, C.I. Pigment Violet 29), anthraquinone-base pigments (for example, C.I. Pigment Violet 5:1, 31 and 33) and thioindigo-base pigments (for example, C.I. Pigment Red 38 and 88) are preferred.

As the yellow pigment, azo pigments (preferred examples thereof include monoazo pigment-type C.I. Pigment Yellow 1, 3, 74 and 98, disazo pigment-type C.I. Pigment Yellow 12, 13, 14, 16, 17 and 83, synthetic azo-base C.I. Pigment Yellow 93, 94, 95, 128 and 155, benzimidazolone-base C.I. Pigment Yellow 120, 151, 154, 156 and 180, and among these, those not using a benzidine-base compound as а raw material are more isoindoline·isoindolinone-base pigments (preferred examples thereof include C.I. Pigment Yellow 109, 110, 137 and 139), quinophthalone pigments (preferred examples thereof include C.I. Pigment Yellow 138) and flavanthrone pigments (for example, C.I. Pigment Yellow 24) are preferred.

As the black pigment, inorganic pigments (preferred examples thereof include carbon black and magnetite) and aniline black are preferred.

Other than these, an orange pigment (for example, C.I.

Pigment Orange 13 and 16) and a green pigment (for example, C.I. Pigment Green 7) may be used.

The pigment which can be used in the present invention may be the above-described pigment which is not subjected to any treatment or is subjected to a surface treatment. For the surface treatment, a method of coating the surface with resin or wax, a method of attaching a surfactant, and a method of binding a reactive substance (for example, a radical generated from a silane coupling agent, an epoxy compound, polyisocyanate or a diazonium salt) to the pigment surface may be used and these are described in the following publications and patents:

- (1) <u>Kinzoku Sekken no Seishitsu to Oyo (Properties</u> and Applications of Metal Soap), Saiwai Shobo;
- (2) <u>Insatsu Ink Insatsu (Printing Ink Printing)</u>, CMC Shuppan (1984);
- (3) Saishin Ganryo Oyo Gijutsu (Newest Pigment Application Technology), CMC Shuppan (1986);
 - (4) U.S. Patents 5,554,739 and 5,571,311; and
- (5) JP-A-9-151342, JP-A-10-140065, JP-A-10-292143 and JP-A-11-166145.

Particularly, self-dispersible pigments prepared by allowing a diazonium salt to act on carbon black described in U.S. Patents of the above (4) and capsulated pigments prepared by the method described in Japanese Patent

Publications of the above (5) are effective, because dispersion stability can be obtained without using an excess dispersant in the ink.

In the ink of the present invention, the pigment may be dispersed by further using a dispersant. Various known dispersants can be used according to the pigment used, for example, a surfactant-type low molecular dispersant or a polymer-type dispersant can be used. Examples of the dispersant include those described in JP-A-3-69949 and European Patent 549486. In using the dispersant, a pigment derivative called synergist may also be added so as to accelerate the adsorption of dispersant to the pigment.

The particle size of the pigment which can be used in the ink of the present invention is, after dispersion, preferably from 0.01 to 10 μm , more preferably from 0.05 to 1 μm .

As for the method of dispersing the pigment, known dispersion techniques used for the production of ink or toner can be used. Examples of the dispersing machine include vertical or horizontal agitator mill, attritor, colloid mill, ball mill, three-roll mill, pearl mill, super-mill, impeller, disperser, KD mill, dynatron and pressure kneader. These are described in detail in Saishinganryo Oyo Gijutsu (Newest Pigment Application Technology), CMC Shuppan (1986).

The surfactant which can be contained in the inkjet ink of the present invention is described below.

In the present invention, a surfactant may be incorporated into the inkjet ink to control the liquid properties of ink, whereby excellent effects can be provided, such as enhancement of ejection stability of the ink, improvement of water resistance of the image and prevention of bleeding of the printed ink.

Examples cf the surfactant include anionic surfactants such sodium dodecylsulfate, as sodium dodecyloxysulfonate and sodium alkylbenzenesulfonate, cationic surfactants such as cetylpyridinium chloride, trimethylcetylammonium chloride and tetrabutylammonium chloride, and nonionic surfactants such as polyoxyethylene nonylphenyl ether, polyoxyethylene naphthyl ether and polyoxyethylene octylphenyl ether. Among these, nonionic surfactants are preferred.

The surfactant content is from 0.001 to 20 wt%, preferably from 0.005 to 10 wt%, more preferably from 0.01 to 5 wt%, based on the ink.

The inkjet ink of the present invention can be prepared by dissolving or dispersing the above-described dye and preferably the surfactant in an aqueous medium. The term "aqueous medium" as used in the present invention means water or a mixture of water and a slight amount of

water-miscible organic solvent, where additives such as wetting agent, stabilizer and antiseptic are added, if desired.

In preparing the ink solution of the present invention, in the case of a water-soluble ink, the dye is preferably first dissolved in water and thereafter, various solvents and additives are added, dissolved and mixed to provide a uniform ink solution.

For dissolving the dye and the like, various methods such as stirring, ultrasonic irradiation and shaking can be used. Among these, stirring is preferred. In performing the stirring, various systems known in this field can be used, such as flow stirring and stirring utilizing the shearing force by means of a reversal agitator or a dissolver. Also, a stirring method utilizing the shearing force with the bottom surface of a container, such as magnetic stirrer, can be advantageously used.

Examples of the water-miscible organic solvent which can be used in the present invention include alcohols (e.g., methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol, tert-butanol, pentanol, hexanol, cyclohexanol, benzyl alcohol), polyhydric alcohols (e.g., ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, hexanediol,

pentanediol, glycerin, hexanetriol, thiodiglycol), glycol derivatives (e.g., ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, ethylene glycol diacetate, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethylene glycol monophenyl ether), amines (e.g., ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenetriamine, triethylenetetramine, polyethyleneimine, tetramethylpropylenediamine) and other polar solvents (e.g., formamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, sulfolane, 2-pyrrolidone, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2imidazolidinone, acetonitrile, acetone). These watermiscible organic solvents can be used in combination of two or more thereof.

In the case where the above-described dye is an oil-soluble dye, the ink solution can be prepared by dissolving the oil-soluble dye in a high boiling point organic solvent and emulsion-dispersing it in an aqueous medium.

The high boiling point organic solvent for use in the present invention has a boiling point of 150°C or more, preferably 170°C or more.

Examples thereof include phthalic acid esters (e.g., dibutyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, bis(2,4-di-tert-amylphenyl) isophthalate, bis(1,1diethylpropyl) phthalate), esters of phosphoric acid or phosphone (e.g., diphenyl phosphate, triphenyl phosphate, tricresyl phosphate, 2-ethylhexyldiphenyl phosphate, dioctylbutyl phosphate, tricyclohexyl phosphate, tri-2ethylhexyl phosphate, tridodecyl phosphate, di-2ethylhexylphenyl phosphate), benzoic acid esters (e.g., 2ethylhexyl benzoate, 2,4-dichlorobenzoate, dodecyl benzoate, 2-ethylhexyl-p-hydroxybenzoate), amides (e.g., N, Ndiethyldodecanamide, N,N-diethyllaurylamide), alcohols or phenols (e.g., isostearyl alcohol, 2,4-di-tert-amylphenol), aliphatic esters (e.g., dibutoxyethyl succinate, di-2ethylhexyl succinate, 2-hexyldecyl tetradecanoate, tributyl citrate, diethyl azelate, isostearyl lactate, trioctyl citrate), aniline derivatives (e.g., N,N-dibutyl-2-butoxy-5-tert-octylaniline), chlorinated paraffins (e.g., paraffins having a chlorine content of 10 to 80%), trimesic acid esters (e.g., tributyl trimesate), dodecylbenzene, diisopropylnaphthalene, phenols (e.g., 2,4-di-tert-amylphenol, 4-dodecyloxyphenol, 4-dodecyloxycarbonylphenol, 4-(4-dodecyloxyphenylsulfonyl)phenol), carboxylic acids (e.g., 2-(2,4-di-tert-amylphenoxy)butyric acid, 2-ethoxyoctane-decanoic acid) and alkylphosphoric acids (e.g., di-(2-ethylhexyl)phosphoric acid, diphenylphosphoric acid). The high boiling point organic solvent can be used in an amount of, in terms of the weight ratio to the oil-soluble dye, from 0.01 to 3 times, preferably from 0.01 to 1.0 times.

These high boiling point organic solvents may be used individually or as a mixture of several kinds [for example, tricresyl phosphate and dibutyl phthalate, trioctyl phosphate and di(2-ethylhexyl) sebacate, or dibutyl phthalate and poly(N-tert-butylacrylamide)].

Examples of the high boiling point organic solvent for use in the present invention, other than the above-described compounds, and/or the synthesis method of these high boiling point organic solvents are described, for example, in U.S. Patents 2,322,027, 2,533,514, 2,772,163, 2,835,579, 3,594,171, 3,676,137, 3,689,271, 3,700,454, 3,748,141, 3,764,336, 3,765,897, 3,912,515, 3,936,303, 4,004,928, 4,080,209, 4,127,413, 4,193,802, 4,207,393, 4,220,711, 4,239,851, 4,278,757, 4,353,979, 4,363,873, 4,430,421, 4,430,422, 4,464,464, 4,483,918, 4,540,657, 4,684,606, 4,728,599, 4,745,049, 4,935,321 and 5,013,639, EP-A-276319, EP-A-286253, EP-A-289820, EP-A-309158, EP-A-

309159, EP-A-309160, EP-A-509311, EP-A-510576, East German Patents 147009, 157147, 159573 and 225240A, British Patent 2091124A, JP-A-48-47335, JP-A-50-26530, JP-A-51-25133, JP-A-51-26036, JP-A-51-27921, JP-A-51-27922, JP-A-51-149028, JP-A-52-46816, JP-A-53-1520, JP-A-53-1521, JP-A-53-15127, JP-A-53-146622, JP-A-54-91325, JP-A-54-106228, JP-A-54-18246, JP-A-55-59464, JP-A-56-64333, JP-A-56-81836, JP-A-59-204041, JP-A-61-84641, JP-A-62-118345, JP-A-62-247364, JP-A-63-167357, JP-A-63-214744, JP-A-63-301941, JP-A-64-9452, JP-A-64-9454, JP-A-64-68745, JP-A-1-101543, JP-A-1-102454, JP-A-2-792, JP-A-2-4239, JP-A-2-43541, JP-A-4-29237, JP-A-4-30165, JP-A-4-232946 and JP-A-4-346338.

The high boiling point organic solvent is used in an amount of, in terms of the weight ratio to the oil-soluble dye, from 0.01 to 3.0 times, preferably from 0.01 to 1.0 times.

In the present invention, the oil-soluble dye or high boiling point organic solvent is used by emulsion-dispersing it in an aqueous medium. Depending on the case, a low boiling point organic solvent may also be used at the emulsion-dispersion in view of emulsifiability. The low boiling point organic solvent is an organic solvent having a boiling point of about 30 to 150° C at atmospheric pressure. Preferred examples thereof include esters (e.g., ethyl acetate, butyl acetate, ethyl propionate, β -

ethoxyethyl acetate, methylcellosolve acetate), alcohols (e.g., isopropyl alcohol, n-butyl alcohol, secondary butyl alcohol), ketones (e.g., methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone), amides (e.g., dimethylformamide, N-methylpyrrolidone) and ethers (e.g., tetrahydrofuran, dioxane), however, the present invention is not limited thereto.

In the emulsion-dispersion, an oil phase obtained by dissolving the dye in a high boiling organic solvent or depending on the case, in a mixed solvent of a high boiling organic solvent and a low boiling organic solvent is dispersed in an aqueous phase mainly comprising water to form fine oil droplets of the oil phase. At this time, in either one or both of the aqueous phase and the oil phase, additives described later, such as surfactant, wetting agent, dye stabilizer, emulsification stabilizer, antiseptic and fungicide, can be added, if desired.

In the general emulsification method, an oil phase is added to an aqueous phase, however, a so-called phase inversion emulsification method of adding dropwise an aqueous phase in an oil phase can also be preferably used. The above-described emulsification method can be applied also when the dye used in the present invention is water-soluble and the additives are oil-soluble.

In performing the emulsion-dispersion, various

surfactants can be used. Preferred examples thereof include anionic surfactants such as fatty acid salt, alkylsulfuric ester salt, alkylbenzenesulfonate, alkylnaphthalenesulfonate, dialkylsulfosuccinate, alkylphosphoric ester salt, naphthalenesulfonic acid formalin condensate and polyoxyethylene alkylsulfuric ester salt, and nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkylallyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester and oxyethylene oxypropylene block copolymer. Also, SURFYNOLS (produced by Air Products & Chemicals), which are an acetylene-base polyoxyethylene oxide surfactant, are preferably used. Furthermore, amine oxide-type amphoteric surfactants such as N,N-dimethyl-N-alkylamine oxide are preferred. addition, surfactants described in JP-A-59-157636 (pages (37) to (38)) and Research Disclosure, No. 308119 (1989) can also be used.

For the purpose of stabilizing the dispersion immediately after the emulsification, a water-soluble polymer may be added in combination with the surfactant. Preferred examples of the water-soluble polymer include polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, polyacrylic acid, polyacrylamide and copolymers thereof.

Other than these, natural water-soluble polymers such as polysaccharides, casein and gelatin are also preferably Furthermore, for the stabilization of the dye used. dispersion, a polymer which does not substantially dissolve in an aqueous medium, such as polyvinyl, polyurethane, polyester, polyamide, polyurea and polycarbonate obtained by the polymerization of acrylic acid esters, methacrylic acid esters, vinyl esters, acrylamides, methacrylamides, olefins, styrenes, vinyl ethers or acrylonitriles, can also This polymer preferably combination. used in be contains -SO3 or -COO. In the case of using this polymer which does not substantially dissolve in an aqueous medium, the polymer is preferably used in an amount of 20 wt% or less, more preferably 10 wt% or less, based on the high boiling point organic solvent.

In preparing an aqueous ink composition by dispersing the oil-soluble dye or high boiling point organic solvent according to emulsion-dispersion, control of the particle size is important. In order to elevate the color purity or density of an image formed by the inkjet recording, it is essential to reduce the average particle size. The average particle size is, in terms of the volume average particle size, preferably 1 µm or less, more preferably from 5 to 100 nm.

The volume average particle size and particle size

distribution of the dispersed particles can be easily measured by a known method such as static light scattering method, dynamic light scattering method, centrifugal precipitation method and the method described in Jikken Kagaku Koza (Lecture of Experimental Chemistry), 4th ed., pp. 417-418. For example, the ink is diluted with distilled water to have a particle concentration of 0.1 to 1 wt%, then, the particle size can be easily measured by a commercially available volume average particle measuring apparatus (for example, Microtrac UPA, manufactured by Nikkiso K.K.). The dynamic light scattering method utilizing the laser Doppler effect is particularly preferred because even a small particle size can be measured.

The volume average particle size is an average particle size weighted with the particle volume and is obtained by multiplying the diameter of individual particles in the gathering of particles with the volume of the particle and dividing the sum total of the obtained values by the total volume of the particles. The volume average particle size is described in Soichi Muroi, Kobunshi Latex no Kagaku (Chemistry of Polymer Latex), page 119, Kobunshi Kanko Kai.

Also, it is revealed that the presence of coarse particles greatly affects the printing performance. More

specifically, the coarse particle clogs the nozzle of head or even if the nozzle is not clogged, forms a soil to bring about failure or slippage in the ejection of ink and this seriously affects the printing performance. In order to prevent these troubles, it is important to reduce the number of particles having a particle size of 5 μ m or more to 10 or less and the number of particles having a particle size of 1 μ m or more to 1,000 or less, in 1 μ l of ink prepared.

For removing these coarse particles, a known method such as centrifugal separation or microfiltration can be used. This separation step may be performed immediately after the emulsion-dispersion or may be performed immediately before filling the ink in an ink cartridge various additives such as wetting agent surfactant are added to the emulsified dispersion.

A mechanically emulsifying apparatus is effective for reducing the average particle size and eliminating coarse particles.

As for the emulsifying apparatus, known apparatuses such as simple stirrer, impeller stirring system, in-line stirring system, mill system (e.g., colloid mill) and ultrasonic system can be used, however, a high-pressure homogenizer is particularly preferred.

The mechanism of the high-pressure homogenizer is

described in detail in U.S. Patent 4,533,254 and JP-A-6-47264. Examples of the commercially available apparatus include Gaulin Homogenizer (manufactured by A.P. V Gaulin Inc.), Microfluidizer (manufactured by Microfluidex Inc.) and Altimizer (produced by Sugino Machine).

The high-pressure homogenizer with a mechanism of pulverizing particles in an ultrahigh pressure jet stream recently described in U.S. Patent 5,720,551 is particularly effective for the emulsion-dispersion of the present invention. Examples of the emulsifying apparatus using this ultrahigh pressure jet stream include DeBEE2000 (manufactured by BEE International Ltd.).

In performing the emulsification by a high-pressure emulsion-dispersing apparatus, the pressure is 50 MPa or more, preferably 60 MPa or more, more preferably 180 MPa or more.

A method of using two or more emulsifying apparatuses, for example, by performing the emulsification in a stirring emulsifier and then passing the emulsified product through a high-pressure homogenizer is particularly preferred. Also, a method of once performing the emulsion-dispersion by such an emulsifying apparatus and after adding additives such as wetting agent and surfactant, again passing the dispersion through a high-pressure homogenizer during the time of filling the ink into a cartridge is preferred.

In the case of containing a low boiling point organic solvent in addition to the high boiling point organic solvent, the low boiling point solvent is preferably removed in view of stability of the emulsified product, safety and hygiene. For removing the low boiling point solvent, various known methods can be used according to the kind of the solvent. Examples of the method include evaporation, vacuum evaporation and ultrafiltration. This removal of the low boiling point organic solvent is preferably performed as soon as possible immediately after the emulsification.

The preparation method of the inkjet ink is described in detail in JP-A-5-148436, JP-A-5-295312, JP-A-7-97541, JP-A-7-82515 and JP-A-7-118584 and the methods described in these patent publications can be utilized also in the preparation of the ink for inkjet recording of the present invention.

In the production of the inkjet ink of the present invention, ultrasonic vibrations may be added, for example, in the step of dissolving additives such as dye.

The ultrasonic vibration is added so as to prevent the ink from generation of bubbles due to a pressure applied in the recording head. More specifically, an ultrasonic energy equal to or greater than the energy imposed in the recording head is previously applied in the

process of producing the ink to eliminate the bubbles.

The ultrasonic vibration is usually an ultrasonic wave having a frequency of 20 kHz or more, preferably 40 kHz or more, more preferably 50 kHz or more. The energy added to liquid by the ultrasonic vibration is usually 2×10^7 J/m³ or more, preferably 5×10^7 J/m³ or more, more preferably 1×10^8 J/m³ or more. The time period where the ultrasonic vibration is applied is usually on the order from 10 minutes to one hour.

No matter when the step of adding ultrasonic vibrations is performed, the effect can be attained as long as it is after the dye is charged into a medium. The effect is also provided even by adding ultrasonic vibrations after the finished ink is once stored. However, the ultrasonic vibration is preferably added at the time of dissolving and/or dispersing the dye in a medium, because the effect of removing bubbles is large and the dissolution and/or dispersion of dye in a medium is accelerated by the ultrasonic vibration.

That is, the step of adding at least ultrasonic vibrations can be performed during or after the step of dissolving and/or dispersing the dye in a medium. In other words, the step of adding at least ultrasonic vibrations can be arbitrarily performed once or more after the preparation of ink until the ink is finished as a product.

As a practical mode, the step of dissolving and/or dispersing the dye in a medium preferably comprises a step of dissolving the dye in a partial medium out of the entire medium and a step of mixing the remaining medium. The ultrasonic vibration is preferably added at least in either one of these steps, more preferably in the step of dissolving the dye in a partial medium out of the entire medium.

The step of mixing the remaining solvent may be a single step or a multiple step.

In producing the ink of the present invention, degassing under heating or reduced pressure is preferably used in combination, because the effect of eliminating bubbles in the ink is enhanced. The degassing step under heating or reduced pressure is preferably performed simultaneously with or after the step of mixing the remaining medium.

Examples of the ultrasonic vibration-generating device for use in the step of adding ultrasonic vibrations include known devices such as ultrasonic disperser.

In producing the inkjet ink of the present invention, the step of removing dusts as a solid content by filtration, which is performed after the preparation of ink solution, is important. This operation is performed by using a filtration filter and the filtration filter used here is a

filter having an effective size of 1 μm or less, preferably from 0.05 to 0.3 μm , more preferably from 0.25 to 0.3 μm . As for the construction material of the filter, various materials can be used, however, in the case of an ink using a water-soluble dye, a filter produced for aqueous solvents is preferably used. In particular, a filter made of a polymer material, which less generates wastes, is preferred. The filtration may be performed by feeding and passing the solution through a filter and may be performed either under pressure or under reduced pressure.

After the filtration, air is often taken in into the solution. Bubbles ascribable to this air give rise to the disorder of image in the inkjet recording in many cases and therefore, the above-described bubble-eliminating step is preferably provided separately. For the elimination of bubbles, the solution after filtration may be allowed to stand or various methods such as ultrasonic defoaming or reduced-pressure defoaming using a commercially available device may be used. In the case of ultrasonic defoaming, the bubble-eliminating operation is preferably performed for 30 seconds to 2 hours, more preferably on the order from 5 minutes to one hour.

This operation is preferably performed in a space such as clean room or clean bench so as to prevent mingling of dusts at the operation. In the present invention, this

operation is preferably performed in a space having a cleanness degree of class 1,000 or less. The "cleanness degree" as used herein indicates a value measured by a dust counter.

In the inkjet ink of the present invention, additives such as drying inhibitor for preventing clogging due to drying of ink at the ejection port, permeation accelerator for attaining more successful permeation of ink into paper, ultraviolet absorbent, antioxidant, viscosity adjusting agent, surface tension adjusting agent, dispersant, dispersion stabilizer, fungicide, rust inhibitor, pH adjusting agent, defoaming agent and chelating agent, can be appropriately selected and used in an appropriate amount.

The drying inhibitor for use in the present invention is preferably a water-soluble organic solvent having a vapor pressure lower than water. Specific examples thereof include polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, thiodiglycol, dithiodiglycol, 2-methyl-1,3-propanediol, 1,2,6-hexanetriol, acetylene glycol derivative, glycerin and trimethylolpropane; lower alkyl ethers of polyhydric alcohol, such as ethylene glycol monomethyl (or ethyl) ether, diethylene glycol monomethyl (or ethyl) ether and triethylene glycol monoethyl(or butyl) ether; heterocyclic rings such as 2-pyrrolidone, N-methyl-2-pyrrolidone, 1,3dimethyl-2-imidazolidinone and N-ethylmorpholine; sulfurcontaining compounds such as sulfolane, dimethylsulfoxide
and 3-sulfolene; polyfunctional compounds such as diacetone
alcohol and diethanolamine; and urea derivatives. Among
these, polyhydric alcohols such as glycerin and diethylene
glycol are preferred. These drying inhibitors may be used
individually or in combination of two or more thereof. The
drying inhibitor is preferably contained in an amount of 10
to 50 wt% in the ink.

Examples of the permeation accelerator which can be used in the present invention include alcohols such as ethanol, isopropanol, butanol, di(tri)ethylene glycol monobutyl ether and 1,2-hexanediol, sodium laurylsulfate, sodium oleate and nonionic surfactants. A sufficiently high effect can be obtained by adding from 10 to 30 wt of the permeation accelerator in the ink. The permeation accelerator is preferably used in an amount of causing no blurring of printed letter or no print through.

Examples of the ultraviolet absorbent which can be used in the present invention for improving the preservability of image include benzotriazole-base compounds described in JP-A-58-185677, JP-A-61-190537, JP-A-2-782, JP-A-5-197075 and JP-A-9-34057, benzophenone-base compounds described in JP-A-46-2784, JP-A-5-194483 and U.S. Patent 3,214,463, cinnamic acid-base compounds described in JP-B-

48-30492 (the term "JP-B" as used herein means an "examined Japanese patent publication"), JP-B-56-21141 and JP-A-10-88106, triazine-base compounds described in JP-A-4-298503, JP-A-8-53427, JP-A-8-239368, JP-A-10-182621 and JP-T-8-501291 (the term "JP-T" as used herein means a "published Japanese translation of a PCT patent application"), compounds described in Research Disclosure No. 24239, and compounds of absorbing ultraviolet light and emitting fluorescent light, so-called fluorescent brightening agents, represented by stilbene-base compounds and benzoxazole-base compounds.

As the antioxidant which can be used in the present invention for improving the preservability of image, various organic or metal complex-base fading inhibitors can be used. Examples of the organic fading inhibitor include hydroquinones, alkoxyphenols, dialkoxyphenols, phenols, anilines, amines, indanes, chromans, alkoxyanilines and heterocyclic rings. Examples of the metal complex include nickel complex and zinc complex. More specifically, compounds described in patents cited in Research Disclosure, Nos. 17643 (Items VII-I to VII-J), 15162, 18716 (page 650, left column), 36544 (page 527), 307105 (page 872) and 15162, and compounds included in formulae of representative compounds and in exemplary compounds described in JP-A-62-215272 (pages 127 to 137) can be used.

Examples of the fungicide for use in the present invention include sodium dehydroacetate, sodium benzoate, sodium pyridinethione-1-oxide, ethyl p-hydroxybenzoate, 1,2-benzisothiazolin-3-one and salts thereof. The fungicide is preferably used in an amount of 0.02 to 5.00 wt% in the ink.

The fungicide is described in detail in <u>Bokin Bobai</u>

Zai Jiten (Dictionary of <u>Microbicide and Fungicide</u>),

compiled by Nippon Bokin Bobai Gakkai Jiten Henshu Iinkai.

Examples of the rust inhibitor include acidic sulfite, sodium thiosulfate, ammon thioglycolate, disopropylammonium nitrite, pentaerythritol tetranitrate, dicyclohexylammonium nitrite and benzotriazole. The rust inhibitor is preferably used in an amount of 0.02 to 5.00 wt% in the ink.

The pH adjusting agent for use in the present invention can be suitably used for adjusting the pH and imparting dispersion stability. The pH of the ink is preferably adjusted to 8 to 11 at 25°C. If the pH is less than 8, the solubility of dye decreases to readily cause clogging of a nozzle, whereas if it exceeds 11, the water resistance is liable to deteriorate. Examples of the pH adjusting agent include basic compounds such as organic base and inorganic alkali, and acidic compounds such as organic acid and inorganic acid.

As the basic compound, inorganic compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium acetate, potassium acetate, sodium phosphate and sodium monohydrogenphosphate, and organic bases such as aqueous ammonia, methylamine, ethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine, triethylamine, ethylenediamine, piperidine, diazabicyclooctane, diazabicycloundecene, pyridine, quinoline, picoline, lutidine and collidine, can also be used.

As the acidic compound, inorganic compounds such as hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, sodium hydrogensulfate, potassium hydrogensulfate, potassium dihydrogenphosphate and sodium dihydrogenphosphate, and organic compounds such as acetic acid, tartaric acid, benzoic acid, trifluoroacetic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, saccharinic acid, phthalic acid, picolinic acid and quinolinic acid, can also be used.

The ink of the present invention preferably has a conductivity of 0.01 to 10 S/m, more preferably from 0.05 to 5 S/m.

The conductivity can be measured by an electrode method using a commercially available saturated potassium

chloride.

The conductivity can be controlled mainly by the ion concentration in an aqueous solution. In the case where the salt concentration is high, desalting can be performed by using ultrafiltration membrane or the like. Also, in the case of controlling the conductivity by adding a salt or the like, the conductivity can be controlled by adding various organic or inorganic salts.

Examples of the inorganic salt which can be used include inorganic compounds such as potassium halide, sodium halide, sodium sulfate, potassium sulfate, sodium hydrogensulfate, potassium hydrogensulfate, sodium nitrate, potassium nitrate, sodium hydrogencarbonate, potassium hydrogencarbonate, sodium phosphate, sodium monohydrogen-phosphate, boric acid, potassium dihydrogenphosphate and sodium dihydrogenphosphate. Also, organic compounds such as sodium acetate, potassium acetate, potassium tartrate, sodium tartrate, sodium benzoate, potassium benzoate, sodium p-toluenesulfonate, potassium saccharinate, potassium phthalate and sodium picolinate can be used.

The conductivity can also be controlled by selecting the component of other additives.

The ink of the present invention has a viscosity at 25°C of 1 to 20 mPa·s, preferably from 2 to 15 mPa·s, more preferably from 2 to 10 mPa·s. If the viscosity exceeds 30

mPa·s, the fixing rate of the recorded image decreases and the ejection performance also decreases, whereas if it is less than 1 mPa·s, the recorded image is blurred to decrease the grade.

The viscosity can be freely adjusted by the amount of the ink solvent added. Examples of the ink solvent include glycerin, diethylene glycol, triethanolamine, 2-pyrrolidone, diethylene glycol monobutyl ether and triethylene glycol monobutyl ether.

A viscosity adjusting agent may also be used. Examples of the viscosity adjusting agent include water-soluble polymers such as celluloses and polyvinyl alcohol, and nonionic surfactants. The viscosity adjusting agent is described in detail in Nendo Chosei Gijutsu (Viscosity Adjusting Technology), Chap. 9, Gijutsu Joho Kyokai (1999), and Inkjet Printer Yo Chemicals (98 Zoho) -Zairyo no Kaihatsu Doko Tenbo Chosa- (Chemicals for Inkjet Printer (Enlarged Edition of 98) -Survey on Tendency Prospect of Development of Materials-), pp. 162-174, CMC (1997).

The method for measuring the viscosity of liquid is described in detail in JIS Z8803 but the viscosity can be simply and easily measured by a commercially available viscometer and examples of the rotational viscometer include B-type viscometer and E-type viscometer manufactured by Tokyo Keiki Co. In the present invention,

the viscosity is measured at 25°C by using a vibrating viscometer Model VM-100A-L manufactured by Yamaichi Denki. The unit of viscosity is pascal second (Pa·s) but usually, milli-pascal second (mPa·s) is used.

The surface tension of the ink for use in the present invention is, irrespective of dynamic surface tension or static surface tension, preferably from 20 to 50 mN/m, more preferably from 20 to 40 mN/m, at 25°C. If the surface tension exceeds 50 mN/m, ejection stability and printing quality are seriously deteriorated, for example, bleeding at color mixing or feathering is caused, whereas if the surface tension of the ink is less than 20 mN/m, printing failure may occur due to, for example, attachment of ink to the hard surface at the ejection.

For the purpose of adjusting the surface tension, a cationic, anionic or nonionic surfactant of various types can be added. The surfactant is preferably used in the range from 0.01 to 20 wt%, more preferably from 0.1 to 10 wt%, based on the inkjet ink. The surfactants can be used in combination of two or more thereof.

As the method for measuring the static surface tension, a capillary elevation method, a dropping method, a suspended ring method and the like are known. In the present invention, a vertical plate method is used as the method for measuring the static surface tension.

When a glass or platinum thin plate is vertically suspended while dipping a part of the plate in a liquid, a surface tension of the liquid acts downward along the portion of contact between the liquid surface and the plate. This force is balanced by an upward force and thereby, the surface tension can be measured.

As the method for measuring the dynamic surface tension, a vibrating jet method, a meniscus dropping method, a maximum bubble pressure method and the like are known and these are described, for example, in Shin Jikken Kagaku Koza, Kaimen to Colloid (New Lecture of Experimental Chemistry, Interface and Colloid), Vol. 18, pp. 69-90, Maruzen (1977). Furthermore, a liquid film rupturing method described in JP-A-3-2064 is known. In the present invention, a differential bubble pressure method is used as the method for measuring the dynamic surface tension. The principle and method of this measurement are described below.

When a bubble is generated in a solution rendered uniform by stirring, a gas-liquid interface is newly produced and surfactant molecules in the solution gather to the water surface at a constant speed. When the bubble rate (bubble generation rate) is changed, as the generation rate decreases, a larger number of surfactant molecules gather to the bubble surface. Therefore, the maximum

bubble pressure immediately before the bubble bursts becomes small and the maximum bubble pressure (surface tension) for the bubble rate can be detected. The dynamic surface tension is preferably measured by a method of generating a bubble in a solution by using large and small two probes, measuring the differential pressure between two probes in the maximum bubble pressure state, and calculating the dynamic surface tension.

In view of ejection stability of ink, quality of printed image, various fastnesses of image and reduction in blurring of image after printing or in stickiness on the printed surface, the content of the nonvolatile component in the ink of the present invention is preferably from 10 to 70 wt% based on the entire amount of the ink. In view of ejection stability of ink and reduction in blurring of image after printing, the content of the nonvolatile component is more preferably from 20 to 60 wt%.

The nonvolatile component as used herein means a liquid or solid component having a boiling point of 150°C or more at 1 atm or a high molecular weight component. The nonvolatile component in the ink for inkjet ink recording includes a dye and a high boiling point solvent and also includes a polymer latex, a surfactant, a dye stabilizer, a fungicide and a buffering agent which are added, if desired. Many of these nonvolatile components except for the dye

stabilizer reduce the dispersion stability of ink and even after printing, remain on the inkjet image-receiving paper to inhibit the aggregation and in turn stabilization of dye on the image-receiving paper and worsen various fastnesses of the image area or blurring of the image under high humidity condition.

In the present invention, a high molecular weight compound may also be contained. The high molecular weight compound as used herein indicates all polymer compounds having a number average molecular weight of 5,000 or more contained in the ink. Examples of the polymer compound include а water-soluble compound polymer which substantially dissolves in an aqueous medium, a waterdispersible polymer compound such as polymer latex and polymer emulsion, and an alcohol-soluble polymer compound which dissolves in a polyhydric alcohol used an auxiliary solvent, however, the high molecular weight compound as used in the present invention includes any polymer compound if it substantially dissolves or disperses uniformly in the ink solution.

Specific examples of the water-soluble polymer compound include water-soluble polymers such as polyvinyl alcohol, silanol-modified polyvinyl alcohol, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, polyalkylene oxide (e.g., polyethylene oxide, polypropylene

oxide) and polyalkylene oxide derivatives; natural watersoluble polymers such as polysaccharides, starch,
cationized starch, casein and gelatin; aqueous acrylic
resins such as polyacrylic acid, polyacrylamide and
copolymers thereof; aqueous alkyd resin; and water-soluble
polymer compounds having a -SO₃ or -COO group within the
molecule and substantially dissolvable in an aqueous medium.

Specific examples of the polymer latex include a styrene-butadiene latex, a styrene-acryl latex and a polyurethane latex, and specific examples of the polymer emulsion include an acryl emulsion.

These water-soluble polymer compounds can be used individually or in combination of two or more thereof.

As described above, the water-soluble polymer compound is used as the viscosity adjusting agent so as to adjust the viscosity of ink to a viscosity region of giving good ejection property, however, if the amount of the water-soluble polymer compound added is large, the viscosity of ink increases to reduce the ejection stability of ink solution and after aging of ink, the nozzle is readily clogged by the precipitate.

The amount added of the polymer compound as the viscosity adjusting agent varies depending on the molecular weight of the compound added (as the molecular weight is higher, the amount added can be smaller), but the amount

added is from 0 to 5 wt%, preferably from 0 to 3 wt%, more preferably from 0 to 1 wt%, based on the entire amount of ink.

In the present invention, apart from the abovedescribed surfactants, a nonionic, cationic or anionic surfactant is used as the surface tension adjusting agent. Examples of the anionic surfactant include a fatty acid salt, an alkylsulfuric ester salt, an alkylbenzenesulfonate, an alkylnaphthalenesulfonate, a dialkylsulfosuccinate, an alkylphosphoric ester salt, a naphthalenesulfonic acid formalin condensate and a polyoxyethylenealkylsulfuric ester salt. Examples of the nonionic surfactant include a polyoxyethylene alkyl ether, a polyoxyethylene alkylallyl ether, a polyoxyethylene fatty acid ester, a sorbitan fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene alkylamine, a glycerin fatty acid ester and an oxyethylene oxypropylene block copolymer. Also, SURFYNOLS (produced by Air Products & Chemicals), which are an acetylene-base polyoxyethylene oxide surfactant, are preferably used. Furthermore, amine oxide-type amphoteric surfactants such as N,N-dimethyl-N-alkylamine oxide are preferred. In addition, surfactants described in JP-A-59-157636 (pages (37) to (38)) and Research Disclosure, No. 308119 (1989) can be used.

In the present invention, if desired, various

cationic, anionic or nonionic surfactants described above may be used as a dispersant or a dispersion stabilizer, and fluorine- or silicone-base compounds or chelating agents represented by EDTA may be used as a defoaming agent.

[Image-Receiving Material]

The image-receiving material for use in the present invention includes recording paper and recording film described below, which are a reflective medium.

The support which can be used for the recording paper or film is produced, for example, from a chemical pulp such as LBKP and NBKP, a mechanical pulp such as GP, PGW, RMP, TMP, CTMP, CMP and CGP, or a waste paper pulp such as DIP, by mixing, if desired, conventionally known additives such as pigment, binder, sizing agent, fixing agent, cation agent and paper strength increasing agent, and then sheeting the mixture by using various devices such as Fourdrinier paper machine and cylinder paper machine. Other than these supports, synthetic paper or plastic film may be used. The thickness of the support is preferably from 10 to 250 µm and the basis weight is preferably from 10 to 250 g/m².

An image-receiving layer and a backcoat layer may be provided on the support as it is to produce an image-receiving material for the ink of the present invention, or after providing a size press or anchor coat layer by using

starch, polyvinyl alcohol or the like, an image-receiving layer and a backcoat layer may be provided to produce an image-receiving material. The support may be further subjected to a flattening treatment by a calendering device such as machine calender, TG calender and soft calender.

In the present invention, the support is preferably paper or plastic film of which both surfaces are laminated with polyolefin (for example, polyethylene, polystyrene, polybutene or a copolymer thereof) or polyethylene terephthalate. In the polyolefin, a white pigment (for example, titanium oxide or zinc oxide) or a tinting dye (for example, cobalt blue, ultramarine or neodymium oxide) is preferably added.

The image-receiving layer provided on the support contains a porous material and an aqueous binder. Also, the image-receiving layer preferably contains a pigment and the pigment is preferably a white pigment. Examples of the white pigment include inorganic white pigments such as calcium carbonate, kaolin, talc, clay, diatomaceous earth, synthetic amorphous silica, aluminum silicate, magnesium silicate, calcium silicate, aluminum hydroxide, alumina, lithopone, zeolite, barium sulfate, calcium sulfate, titanium dioxide, zinc sulfide and zinc carbonate, and organic pigments such as styrene-base pigment, acryl-base pigment, urea resin and melamine resin. Among these,

porous inorganic white pigments are preferred, and synthetic amorphous silica and the like having a large pore area are more preferred. The synthetic amorphous silica may be either a silicic acid anhydride obtained by a dry production method (gas phase method) or a silicic acid hydrate obtained by a wet production method.

Specific examples of the recording paper containing the pigment in the image-receiving layer include those disclosed in JP-A-10-81064, JP-A-10-119423, JP-A-10-157277, JP-A-10-217601, JP-A-11-348409, JP-A-2001-138621, JP-A-2000-43401, JP-A-2000-211235, JP-A-2000-309157, JP-A-2001-96897, JP-A-2001-138627, JP-A-11-91242, JP-A-8-2087, JP-A-8-2090, JP-A-8-2091, JP-A-8-2093, JP-A-8-174992, JP-A-11-192777 and JP-A-2001-301314.

Examples of the aqueous binder contained in the image-receiving layer include water-soluble polymers such as polyvinyl alcohol, silanol-modified polyvinyl alcohol, starch, cationized starch, casein, gelatin, carboxymethyl cellulose, hydroxyethyl cellulose, polyvinylpyrrolidone, polyalkylene oxide and polyalkylene oxide derivatives, and water-dispersible polymers such as styrene butadiene latex and acryl emulsion. These aqueous binders can be used individually or in combination of two or more thereof. Among these, polyvinyl alcohol and silanol-modified polyvinyl alcohol are preferred in the present invention in

view of adhesion to the pigment and peeling resistance of the ink-receiving layer.

The image-receiving layer may contain a mordant, a water-proofing agent, a light fastness enhancer, a gas resistance enhancer, a surfactant, a hardening agent and other additives in addition to the pigment and the aqueous binder.

The mordant added to the image-receiving layer is preferably immobilized and for this purpose, a polymer mordant is preferably used.

The polymer mordant is described in JP-A-48-28325, JP-A-54-74430, JP-A-54-124726, JP-A-55-22766, JP-A-55-142339, JP-A-60-23850, JP-A-60-23851, JP-A-60-23852, JP-A-60-23853, JP-A-60-57836, JP-A-60-60643, JP-A-60-118834, JP-A-60-122940, JP-A-60-122941, JP-A-60-122942, JP-A-60-235134, JP-A-1-161236 and U.S. Patents 2,484,430, 2,548,564, 3,148,061, 3,309,690, 4,115,124, 4,124,386, 4,193,800, 4,273,853, 4,282,305 and 4,450,224. An image-receiving material containing the polymer mordant described in JP-A-1-161236 (pages 212 to 215) is particularly preferred. When the polymer mordant described in this patent publication is used, an image having excellent image quality can be obtained and at the same time, the light fastness of the image is improved.

The water-proofing agent is effective for obtaining a

water-resistant image. The water-proofing agent is preferably a cationic resin. Examples of the cationic resin include polyamidopolyamine epichlorohydrin, polyethyleneimine, polyaminesulfone, poly-dimethyldiallyl-ammonium chloride and cation polyacrylamide. The content of the cationic resin is preferably from 1 to 15 wt%, more preferably from 3 to 10 wt%, based on the entire solid content of the ink-receiving layer.

Examples of the light fastness enhancer and the gas resistance enhancer include phenol compounds, hindered phenol compounds, thioether compounds, thiourea compounds, thiocyanic acid compounds, amine compounds, hindered amine compounds, TEMPO compounds, hydrazine compounds, hydrazide compounds, amidine compounds, vinyl group-containing compounds, ester compounds, amide compounds, compounds, alcohol compounds, sulfinic acid compounds, saccharides, water-soluble reducing compounds, acids, inorganic acids, hydroxy group-containing organic acids, benzotriazole compounds, benzophenone compounds, triazine compounds, heterocyclic compounds, water-soluble metal salts, organic metal compounds and metal complexes.

Specific examples of these compounds include those described in JP-A-10-182621, JP-A-2001-260519, JP-A-2000-260519, JP-B-4-34953, JP-B-4-34513, JP-B-4-34512, JP-A-11-170686, JP-A-60-67190, JP-A-7-276808, JP-A-2000-94829, JP-A-2

T-8-512258 and JP-A-11-321090.

The surfactant functions as a coating aid, a releasability improver, a slipperiness improver or an antistatic agent. The surfactant is described in JP-A-62-173463 and JP-A-62-183457.

In place of the surfactant, an organic fluoro compound may be used. The organic fluoro compound is preferably hydrophobic. Examples of the organic fluoro compound include fluorine-containing surfactants, oily fluorine-base compounds (for example, fluorine oil) and solid fluorine compound resins (for example, ethylene tetrafluoride resin). The organic fluoro compound is described in JP-B-57-9053 (columns 8 to 17), JP-A-61-20994 and JP-A-62-135826.

As the hardening agent, for example, the materials described in JP-A-1-161236 (page 222), JP-A-9-263036, JP-A-10-119423 and JP-A-2001-310547 can be used.

Other examples of the additive added to the imagereceiving layer include a pigment dispersant, a thickener,
a defoaming agent, a dye, a fluorescent brightening agent,
an antiseptic, a pH adjusting agent, a matting agent and a
hardening agent. The ink-receiving layer may be composed
of one layer or two layers.

In the recording paper or film, a backcoat layer may also be provided. Examples of the component which can be

added to this layer include a white pigment, an aqueous binder and other components.

Examples of the white pigment contained in the backcoat layer *include inorganic white pigments such as precipitated calcium carbonate, heavy calcium carbonate, kaolin, talc, calcium sulfate, barium sulfate, titanium dioxide, zinc oxide, zinc sulfide, zinc carbonate, satin white, aluminum silicate, diatomaceous earth, calcium silicate, magnesium silicate, synthetic amorphous silica, colloidal silica, colloidal alumina, pseudo-boehmite, aluminum hydroxide, alumina, lithopone, zeolite, hydrolyzed halloysite, magnesium carbonate and magnesium hydroxide, and organic pigments such as styrene-base plastic pigment, acryl-base plastic pigment, polyethylene, microcapsule, urea resin and melamine resin.

Examples of the aqueous binder contained in the backcoat layer include water-soluble polymers such as styrene/maleate copolymer, styrene/acrylate copolymer, polyvinyl alcohol, silanol-modified polyvinyl alcohol, starch, cationized starch, casein, gelatin, carboxymethyl cellulose, hydroxyethyl cellulose and polyvinylpyrrolidone, and water-dispersible polymers such as styrene butadiene latex and acryl emulsion. Other examples of the component contained in the backcoat layer include a defoaming agent, a foam inhibitor, a dye, a fluorescent brightening agent,

an antiseptic and a water-proofing agent.

In a constituent layer (including the back layer) of the inkjet recording paper or film, a polymer fine particle dispersion may be added. The polymer fine particle dispersion is used for the purpose of improving film properties, for example, stabilizing dimension preventing curling, adhesion or film cracking. The polymer fine particle dispersion is described in JP-A-62-245258, JP-A-62-136648 and JP-A-62-110066. When a polymer fine particle dispersion having a low glass transition temperature (40°C or less) is added to a layer containing a mordant, the layer can be prevented from cracking or curling. The curling can be prevented also by adding a polymer fine particle dispersion having a high glass transition temperature to the back layer.

[Inkjet Recording]

In the present invention, the hitting volume of ink on a recording material is from 0.1 to 100 pl, preferably from 0.5 to 50 pl, more preferably from 2 to 50 pl.

The present invention is not limited in the inkjet recording system and can be used for a known system, for example, an electric charge controlling system of jetting out the ink by using the electrostatic induction force, a drop-on-demand system (pressure pulse system) utilizing an oscillation pressure of a piezoelectric element, an

acoustic inkjet system of converting electric signals into acoustic beams, irradiating the beams on the ink and jetting out the ink by utilizing the radiation pressure, and a thermal inkjet (bubble jet) system of heating the ink to form a bubble and utilizing the generated pressure.

The inkjet recording system includes a system of ejecting a large number of small-volume ink droplets of a so-called photo ink having a low concentration, a system of improving the image quality by using a plurality of inks having substantially the same color hue but differing in the concentration, and a system using a colorless transparent ink. The hitting volume of ink is controlled mainly by the printer head.

For example, in the case of a thermal inkjet system, the hitting volume can be controlled by the structure of printer head. That is, the ink can be hit in a desired size by changing the ink chamber, heating section and nozzle size. Also, even in the thermal inkjet system, the ink can be hit in a plurality of sizes by providing a plurality of printer heads differing in the heating section or nozzle size.

In the case of a drop-on-demand system using a piezoelectric element, the hitting volume can be changed by the structure of printer head similarly to the thermal inkjet system, however, by controlling the waveform of

driving signals for driving the piezoelectric element, the ink can be hit in a plurality of sizes with printer heads having the same structure and this is described later.

In the present invention, the ejection frequency on hitting the ink on a recording material is preferably 1 kHz or more.

In order to record a high-quality image like a photograph, the hitting density must be 600 dpi (number of dots per inch) or more and with this hitting density, an image having high sharpness can be reproduced by a small ink droplet.

In hitting an ink by a head having a plurality of nozzles, the number of heads which can be driven at the same time is restricted, that is, from a few tens to about 200 in the case of a type where a recording paper and a head are moved in the directions orthogonal to each other, and a few hundreds even in the case of a type called line head where the head is fixed. This is because the driving electric power is limited or in order to avoid the effect of heat generated in the head on the image, a large number of head nozzles cannot be simultaneously Accordingly, the recording at a high hitting density tends to take a long time, but the recording speed can be increased by elevating the driving frequency.

The hitting frequency can be controlled, in the case

of a thermal inkjet system, by controlling the frequency of head-driving signal for heating the head.

In the case of a piezoelectric system, the hitting frequency can be controlled by controlling the frequency of signal for driving the piezoelectric element.

The driving of piezoelectric head is described. The hitting size, hitting speed and hitting frequency are determined in a printer control section based on the signal of an image to be printed, and a signal for driving a printer head is prepared. The driving signal is supplied to the printer head. The hitting size, hitting speed and hitting frequency are controlled by the signal for driving the piezoelectric element. Here, the hitting size and hitting speed are determined by the shape and amplitude of the driving waveform, and the frequency is determined by the cycle period of signal.

When the hitting frequency is set to 10 kHz, the head is driven every 100 micro-seconds and one-line recording is completed in 400 micro-seconds. When the travelling speed of recording paper is set such that the recording paper moves 1/600 inch, namely, about 42 micron per 400 micro-seconds, the printing can be performed at a speed of one sheet per 1.2 seconds.

With respect to the constitution of printing apparatus or printer using the inkjet ink of the present

invention, the mode disclosed, for example, in JP-A-11-170527 is suitably used. With respect to the ink cartridge, the mode disclosed, for example, in JP-A-5-229133 is suitably used. With respect to the suction and the constitution of cap or the like covering the printing head 28 at the suction, those disclosed, for example, in JP-A-7-276671 are suitably used. In the vicinity of head, a filter for eliminating bubbles, disclosed in JP-A-9-277552, is suitably provided.

Also, the surface of nozzle is suitably subjected to a water repellent treatment described in Japanese Patent Application No. 2001-16738. The present invention may be used for a printer connected to a computer or for an apparatus specialized for the printing of a photograph.

The inkjet ink of the present invention is preferably hit on a recording material at an average hitting speed of 2 m/sec or more, more preferably 5 m/sec or more.

The hitting speed is controlled by controlling the shape and amplitude of the waveform for driving the head.

Furthermore, by using a plurality of driving waveforms and selecting appropriate waveforms, the ink can be hit in a plurality of sizes with the same printer head.

[Use of Inkjet Ink]

The inkjet ink of the present invention can also be used for uses other than the inkjet recording, such as a

material for display image, an image-forming material for interior decoration and an image-forming material for outdoor decoration.

Examples of the material for display image include various materials such as poster, wall paper, ornamental goods (e.g., ornament, doll), handbill for commercial advertisement, wrapping paper, wrapping material, paper bag, vinyl bag, package material, billboard, image drawn on or attached to the side face of traffic (e.g., automobile, bus, electric car), and clothing with a logo. In the case of using the dye of the present invention as a material for forming a display image, the image includes not only a strict image but also all patterns by a dye, which can be acknowledged by a human, such as abstract design, letter and geometrical pattern.

Examples of the material for interior decoration include various materials such as wall paper, ornamental goods (e.g., ornament, doll), luminaire member, furniture member and design member of floor or ceiling. In the case of using the dye of the present invention as a material for forming an image, the image includes not only a strict image but also all patterns by a dye, which can be acknowledged by a human, such as abstract design, letter and geometrical pattern.

Examples of the material for outdoor decoration

include various materials such as wall material, roofing material, billboard, gardening material, outdoor ornamental goods (e.g., ornament, doll) and outdoor luminaire member. In the case of using the dye of the present invention as a material for forming an image, the image includes not only a strict image but also all patterns by a dye, which can be acknowledged by a human, such as abstract design, letter and geometrical pattern.

In these uses, examples of the medium on which the pattern is formed include various materials such as paper, fiber, cloth (including non-woven fabric), plastic, metal and ceramic. Examples of the dyeing form include mordanting, printing and fixing of a dye in the form of a reactive dye having introduced thereinto a reactive group.

Among these, preferred is dyeing by mordanting.

The present invention is described below by referring to Examples, however, the present invention is not limited thereto.

EXAMPLE 1

Ultrapure water (resistance: 18 M Ω or more) was added to the components shown in Table below to make 1 liter and the resulting solutions each was stirred for 1 hour under heating at 30 to 40°C and then filtered under reduced pressure through a microfilter having an average pore size of 0.25 μm . In this way, Ink Set 101 consisting

of respective ink solutions was prepared.

Table 1

(Constitution	of Ink	Set	1011
(CONS CT CUCTON	OI IIIR	Sec	TOT

(constitution of the sec for)							
	С	LC	M	LM	Y	DY	Bk
Dye	C-1 45 g	C-1 15 g	M-1 30 g	м-1 10 g	Y-1 30 g	Y-1 30 g C-1 3 g M-1 5 g	Bk-1 55 g BK-2 15 g
BTZ	3 g	3 g	3 g	3 g	3 g	3 g	3 g
UR	12 g	5 g	10 g	5 g	10 g	15 g	17 g
DGB	-	-	_	-	130 g	125 g	120 g
TGB	150 g	140 g	120 g	120 g	_	-	_
DEG	100 g	100 g	90 g	80 g	-	-	_
TEG	-	-	_	-	110 g	125 g	100 g
GR	120 g	130 g	130 g	120 g	125 g	135 g	125 g
PRD	35 g	35 g	_	_	-		35 g
TEA	10 g	10 g					
PRX	1 g	1 g	1 g	1 g	1 g	1 g	1 g
SW	10 g	10 g					

BTZ: Benzotriazole

UR: Urea

DGB: Diethylene glycol monobutyl ether

TGB: Triethylene glycol monobutyl ether

DEG: Diethylene glycol

TEG: Triethylene glycol

GR: Glycerin

PRD: 2-Pyrrolidone

TEA: Triethanolamine (TEA)

PRX: Proxel XL2(S), produced by Avecia

SW: Surfynol STG

C-1

H H
$$N = -SO_2(CH_2)_3SO_3K$$

H H H X

M-1

Y-1

BK-2

BK-1

Ink Sets 102 to 110 having thoroughly the same constitution as Ink Set 101 except for changing the dye as follows were produced.

[Table 2]

	С	LC	М	LM	Y	DY	Bk
101 (Comparative Example)	C-1	C-1	M-1	M-1	Y-1	Y-1 C-1 M-1	Bk-1 Bk-2
102 (Comparative Example)	C-1	C-1	M-2	M-2	Y-1	Y-1 C-1 M-2	Bk-1 Bk-2
103 (Comparative Example)	C-2	C-2	M-1	M-1	Y-1	Y-1 C-2 M-2	Bk-1 Bk-2
104 (Comparative Example)	C-2	C-2	M-2	M-2	Y-1	Y-1 C-2 M-2	Bk-1 Bk-2
105 (Invention)	C-3	C-3	м-з	м-з	Y-2	Y-3 C-3 M-3	Bk-3 Y-3
106 (Invention)	C-3	с-3	м-з	м-з	Y-2	Y-3 C-4 M-4	Bk-4 Y-3
107 (Invention)	C-3	C-3	M-4	M-4	Y-2	Y-4 C-3 M-3	Bk-3 Bk-4 Y-3
108 (Invention)	C-3	C-3	M-4	M-4	Y-3	Y-3 C-4 M-3	Bk-3 Bk-4 Y-4
109 (Invention)	C-4	C-4	м-3	м-з	Y-3	Y-4 C-4 M-3	Bk-3 Bk-5 Y-4
110 (Invention)	C-4	C-4	м-3	м-з	Y-3	Y-3 C-3 M-3	Bk-3 Bk-5 Y-4

C-2

 $X = -SO_2(CH_2)_3SO_3K$

C-3

X= -SO₂(CH₂)₃SO₃Li

C-4

 $X = -SO_2(CH_2)_3SO_3Li$

$$Y = -SO_2(CH_2)_3SO_2NH$$
 OH

M-2

M-3

M-4

Y-2

$$SO_3Li$$
 SO_3Li
 SO_3Li
 SO_3Li
 SO_3Li
 SO_3Li

BK-4

BK-5

(Dye having solubility of 15 g or less in water at 25°C under atmospheric pressure)

C-1, C-2, M-1, M-2, Y-1, BK-1 and BK-2.

(Dye having solubility of 15 g or more in water at 25°C under atmospheric pressure)

C-3, C-4, M-3, M-4, Y-2, Y-3, BK-3, BK-4 and BK-5.

Further, the oxidation potentials of the respective dyes (measured by the testmethod as described in the present specification) are as follows (Unit: V (vs SCE)).

C-1; 1.20, M-1; 0.85, Y-1; 0.95, BK-1; 0.78,

C-2; 1.21, C-3; 1.20, C-4; 1.20, M-2; 0.75,

M-3; 1.29, M-4; 1.31, Y-2; 1.25, Y-3; 1.22,

BK-3; 1.31, BK-4; 1.32, BK-5; 1.30.

These inks were filled in ink cartridges of Inkjet Printer PM-950C manufactured by Seiko Epson Corp. and a stepwise image pattern of gray and a portrait image of a person were printed.

The image was printed on Inkjet Photo Gloss Paper "GASAI" produced by Fuji Photo Film Co., Ltd. used as the image-receiving sheet and the image quality, ejection property of ink and fastness of image were evaluated.

(Evaluation Tests)

1) In the evaluation of ejection stability, cartridges were set in the printer and after confirming the ejection of ink from all nozzles, the printer was stopped.

The printer was left standing in an environment of 15°C and 30% RH for 240 hours and further in an environment of 35°C and 90% RH for 240 hours. Thereafter, the image was output on 100 sheets of A4-size paper and rated based on the following criteria:

A: Printing was not disordered from the start to the end of printing.

B: Printing was disordered in some outputs.

C: Printing was disordered from the start to the end of printing.

- evaluations were performed by using a printed sample. Here, the printed sample was prepared by printing cyan and gray patterns changed stepwise in the density. Among these patterns, a pattern having a density of 1.0±0.1 as measured by using a Status A filter of X-rite Densitometer was used as the index for measurement of density in the fading test.
- [1] In the evaluation of light fastness, the image after printing was irradiated with xenon light $(85,000\ lx)$ for 7 days by using a weather meter manufactured by Atlas and then rated.
- [2] In the evaluation of heat fastness, the sample was stored for 10 days under conditions of 80°C and 70% RH and then subjected to the same evaluation.
 - [3] In the evaluation of ozone resistance, the

sample was left standing for 7 days in a box set to an ozone gas concentration of 0.5 ppm and then subjected to the same evaluation.

In each evaluation, the sample was rated A when the residual gray density was more than 85% of the initial density, rated B when from 70 to 85%, and rated C when less than 70%.

3) In the evaluation of image quality, whether the beading occurred in the skin color part of the portrait image was rated. The sample was rated A when a uniform image was obtained in all image parts, rated B when beading or bronze was partially observed, and rated C when beading or bronze was observed throughout the image.

The results obtained are shown in the Table below.

Table 3

No.	Ejection Property	_	Heat Fastness	O₃ Fastness	Image Quality
РМ-950C (Comparative Example)	A	С	В	С	A
101 (Comparative Example)	В	В	A	B	С
102 (Comparative Example)	С	В	A	В	C
103 (Comparative Example)	В	В	A	В	С
104 (Comparative Example)	С	В	A	В	С
105 (Invention)	A	A	A	A	A
106 (Invention)	A	A	A	A	A
107 (Invention)	A	A	A	A	A
108 (Invention)	A	A	A	A	A
109 (Invention)	A	A	A	A	A
110 (Invention)	A	A	A	A	A

From the results shown in the above Table, it can be seen that ink sets 105 to 110 composed of only the inks of the invention, in which the dyes are represented by general formulas (1) to (4) and have a solubility of 15 g or more in 100 g of water, are superior in ejection stability and fastnesses to light, heat, and oxidation to ink sets 101 to 104 of comparative examples where inks satisfying no requisite for the solubility of the invention are used.

Similar results were obtained also by testing the system where the ink sets of the invention are used with the aid of the ink jet printer of thermal type.

EXAMPLE 2

About five kinds of monochromatic inks in total of cyan inks containing C-1, C-2, C-3, and C-4, respectively, magenta inks containing M-1, M-2, M-3, and M-4, respectively, yellow inks containing Y-1, Y-2, and Y-3, respectively, and black inks containing Bk-1/Bk-2, Bk-3/Y-3, Bk-4/Y-3, and Bk-3/Bk-4/Y-4, respectively, which were used in Example 1, monochromatic images were formed and further drawing was carried out similarly to Example 1 and the ejection stability on drawing and the respective fastnesses of the images drawn to light, heat, and ozone were evaluated according to the methods as described in Example The inks satisfying the requisites of the invention, that is, cyan inks containing C-3 and C-4, respectively, magenta inks containing M-3 and M-4, respectively, yellow inks containing Y-2 and Y-3, respectively, and black inks Bk-3/Y-3, containing Bk-4/Y-3, and Bk-3/Bk-4/Y-4, respectively, satisfied all the ejection stability and the respective fastnesses and were rated A. On the other hand, in the comparative examples, at least one of the ejection stability, light fastness, or ozone resistance was rated B or C.

According to the ink and ink set of the present invention, at least one specific dye is dissolved in an aqueous medium and the dyes contained all have a solubility

of 15 g or more in 100 g of water at 25°C under atmospheric pressure, whereby an image can be printed without disorder or beading due to ejection failure and excellent ejection stability and durability can be ensured.

While the invention has been described in detail and with reference to specific examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made to these examples without departing from the spirit and scope of the invention.