argin in
$$x' \sum x$$
 = $\frac{z'1}{1!z'1!}$ > minimum various + without risk from x' st x' = $\frac{z''}{1!z'}$ | $\frac{z''}{1!z'}$ |

d'or
$$x_{tg} = \frac{\sum_{\mu}^{-1} \mu}{1! \sum_{\mu}^{-1} \mu} = \underset{x, s, t}{\operatorname{argmin}} \left[\frac{\pi}{\mu} - \frac{\pi}{2} \sum_{j=1}^{-1} \frac{\pi}{2} \right]$$

(as général: $x_{tg} + (1-\alpha) \operatorname{Rg} = \pi(\alpha)$

$$\left(\frac{\pi}{\mu} \right) \left(\frac{$$

Pelatio eta λ et X?

a λ fixi on choisit la portyfuille nizqui, λ a t_5 ce qui correspond on choix de $\frac{1}{\lambda}$ $\Sigma \mu$ => λ a $t_9 = \frac{1}{\lambda}$ $\Sigma \mu$ => λ $\frac{\Sigma \mu}{11 \Sigma \mu} = \frac{1}{\lambda}$ $\Sigma \mu$ => λ a $t_9 = \frac{1}{\lambda}$ $\Sigma \mu$ => λ $\frac{\Sigma \mu}{11 \Sigma \mu}$