

Nom du fichier Auteurs	DAL_ CFC_v0.1.docx MESSOUD Fatimetou KIBO YEGDJONG Adèle
Relecteurs	
Validateurs	M. MOUHAMADOU M. SOROLLA. M. DUROUSSEAU
Statut	Document v1

TABLE DES MATIERES

I- PRESENTATION DE PROJET	3
a. Contexte et définition de la problématique	3
b. Objectif et but	3
c. Analyse des besoins	
II- ANALYSE FONCTIONNELLE	
III – ANALYSE TECHNIQUE	
IV-Annexe	11
TABLE D'ILLUSTRATIONS	12

I- PRESENTATION DE PROJET

Notre projet est un projet de recherche et de développement qui consiste à détecter une anomalie dans le mouvement d'une personne. Pour aboutir à notre objectif, nous allons étudier des données exploitées par un générateur de code.

Afin de réaliser ce projet, notre périmètre d'étude sera porté sur la maison des personnes âgées et notre cible, repose sur les personnes âgées. De plus, nous sommes constitués d'un groupe de 8 personnes répartis par trinômes ou binômes en fonction des tâches du projet. Et la date de livraison de notre projet s'étend jusqu'au 15 Janvier 2018.

Dans les prochains paragraphes, nous parlerons de la problématique du projet, de l'analyse des besoins et par la fin, des fonctions principales que l'application fera.

a. Contexte et définition de la problématique

Nous avons comme client l'entreprise LEGRAND, qui est un groupe industriel français et leader dans le marché des produits et systèmes pour installations électriques et réseaux d'informations.

L'entreprise LEGRAND est à la recherche d'une nouvelle technologie qui lui permet d'analyser l'activité d'une personne donnée et de détecter une anomalie précise ,à l'aide de sa consommations énergétique.

Ces données de consommations sont établies par l'éco-compteur, fourni par l'entreprise LEGRAND.

b. Objectif et but

Notre objectif est de mettre en place une solution adéquate à la problématique du client. Pour cela, nous optons de faire ceci pour répondre aux besoins, au niveau du plan technique :

- Définir un générateur (*algorithme*) de code (Simulateur de l'éco-compteur)
- Définir un Analyseur de données (Simulateur de Détecteur)

Notre but est d'élaborer un plan de fonctionnement bien précis du détecteur et par la suite nous fournissons les fonctions principales à réaliser. (Voir figure 1)

Figure 1 : Description de l'objectif

Ce schéma nous illustre le fonctionnement de notre solution. En effet, l'Ecocompteur collecte les données de consommations énergétiques des différentes appareils de la maison et il envoie au détecteur qui aura comme fonction d'analyser et de comparer les données avec les données de la première semaine de son fonctionnement .

c. Analyse des besoins

Selon le principe de fonctionnement de l'application (voir figure 2), nous avons besoin :

- D'un générateur (simulateur Eco-compteur)qui joue le rôle de l'Eco-compteur, algorithme qui permet de générer des données à l'aide des consommations de l'Energie.
- Détecteur d'anomalie (Analyseur et détecteur) qui va étudier les données et détecter les anomalies de la personne âgée en fonction de ses différentes activités;
- Et d'un lanceur d'alerte qui validera l'existence d'anomalies chez la personne âgée.

Figure 2: Diagramme "Bête à corne"

Notre système agit sur une personne âgée, il décrit une anomalie d'activité à l'aide de sa consommation énergétique.

Le type d'anomalie considérée dans notre cas est un dépassement important de la consommation habituelle de 20%. En effet la consommation habituelle d'une personne âgée est étudié pendant une période d'apprentissage. Cette période a pour objectif de définir la consommation de la maison du personne âgée tout en prenant compte de la saison et des habitudes de la personnes âgée.

Le dépassement est définit comme anomalie après une étude bien précise.

Par conséquent le signal d'anomalie est envoyé à la personne à contacter en urgent.

Suite à cela, notre système a établi ses fonctions principales :

Analyser la consommation ,détecter une anomalie, envoyer une alerte.

Pour la consommation voici le tableau de la consommation moyenne et le signale d'anomalie

Appareil	Référence	Critère calcul	Consommation annuelle	Coût annuel en euros	Consommation en travail en V
Téléviseur LCD	Sony KDL-46EX720	5h30 par jour	145 kWh	17.6	72
Téléviseur plasma	TX-P50VT30	5h30 par jour	473 kWh	57.2	235
Console de jeux	Sony PS3	2h par jour	84 kWh	10.2	115
Minichaîne	Philips DCD8000	2h par jour	49 kWh	5.9	16,5
Lave-linge	LG F14164WH	220 cycles par an	270 kWh	32.7	31
Réfrigérateur	Samsung RL40HGSW	24h par jour	285 kWh	34.5	32.5
Lave-vaisselle	Bosch SPV53M00EU	280 cycles par an	220 kWh	26.6	25
Four à micro-ondes	Brandt MM1020W	5 mn par jour	36.5 kWh	4.4	1200
Bouilloire	Moulinex BY510510 Subito	5 mn par jour	60.9 kWh	7.4	2000
Cafetière	Philips Senseo	5 mn par jour	41.4 kWh	5	1330
Ordinateur portable	Dell Inspiron 14z	2h par jour	16.8 kWh	2	23
Smartphone (chargeur)	iPhone 4S	1h par jour	2.4 kWh	0.3	6.5
Smartphone (chargeur)	Samsung Galaxy SII	1h par jour	1 kWh	0.1	2.8
Modem	Numericable	24h par jour	57 kWh	6.9	6.5
Box HD	Numericable HD Box Memory	5h30 par jour	187 kWh	22.7	26
Boîtier ADSL	Freebox Revolution	24h par jour	166.6 kWh	20.2	19
Boîtier TV	Freebox Revolution	5h30 par jour	53 kWh	6.4	22
Ordinateur de bureau	Ordi de test	2h par jour	162.9 kWh	19.7	190
Moniteur	Philips Brilliance 241P4	2h par jour	21.9 kWh	2.7	30
Ordinateur tout-en-un	Asus ET2700INTS	2h par jour	77.7 kWh	9.4	103
Téléphone fixe	Philips CD6851B	24h par jour	12.3 kWh	1.5	1.4
Imprimante	Canon Pixma MG5350	10 min par jour	18 kWh	2.3	20
mpoule à incandescence	modèle x	5h par jour	109.6 kWh	13.3	60
Ampoule basse conso	modèle x	5h par jour	25.6 kWh	3.1	14
Ampoule LED	modèle x	5h par jour	12.9 kWh	1.6	7
Aspirateur	Rowenta Intensium RO6629	40 min par semaine	65.9 kWh	8	1900

II- ANALYSE FONCTIONNELLE

Le schéma ci-dessous vous présente l'énoncé des fonctions principales (Voir figure 3) :

Figure 3: Diagramme "Pieuvre"

Abréviation	Fonctions de service	Critères
FS1	Détecter l'anomalie	Obligation
FS2	Collecter des informations	Obligation
FS3	Envoyer des alertes	Obligation

Fonctions principales:

Etant donné que notre livrable final est un algorithme qui traite ses différentes fonctions. Nous allons définir chaque fonction comme suit :

FS2: Collecter les informations:

Nous avons besoin des données de consommations énergétiques pour chaque appareil de la maison .Cette étape se fait sous deux périodes de temps bien définies.

La première période est de durée d'une semaine qui a pour objectif de collecter les différentes consommations après la première utilisation de notre appareil. La deuxième période est la collection des nouvelles données après la semaine de familiarisation.

FS1 : Détecter l'anomalie :

Dans cette fonction, une analyse est très important afin de faire une comparaison de données anciennes enregistrées avec les nouvelles établies. En cas de différences majeures , il y aura un signal qui sera envoyé.

FS3: Envoyer une alerte:

Après un analyse bien adéquate, notre détecteur envoie une alerte à l'instant de la détection qui a pour objectif de prévenir les secouristes de l'état anormal de la personne âgée

III - ANALYSE TECHNIQUE

L'algorithme qui sera réalisé (Voir figure 4) aura deux fonctionnalités principales :

- Sauvegarde de l'apprentissage pendant une semaine
- Constat d'anomalie (détection)

L'apprentissage consiste à s'adapter au rythme de vie de la personne âgée pendant une certaine période bien définie soit une semaine.

Pendant cette période, le générateur garde en mémoire les consommations journalières, en énergie ou électricité, de la personne suivant des intervalles de temps.

Le constat d'anomalie est effectué après une comparaison faite par le générateur de données, entre les consommations habituelles de la semaine d'apprentissage et les données nouvelles.

Si ces nouvelles données sont différentes de celles habituelles, un signal sera envoyé, sinon aucun message n'est envoyé.

Figure 4: Organigramme algorithmique du simulateur

Figure 6: Organigramme algorithmique du detecteur

IV-Annexe

TABLE D'ILLUSTRATIONS

Figure 1 : Description de l'objectif	Erreur ! Signet non défini.
Figure 2: Diagramme "Bête à corne"	5
Figure 3: Diagramme "Pieuvre"	7
Figure 4: Organigramme algorithmique	10