STA 529 2.0 Data Mining

Dr Thiyanga S. Talagala

Random Forests

Lecture 4

Random Forests vs AdaBoost

Category	Random Forest	AdaBoost
Tree size	Fully grown	Decision stump
Tree con-	Independent	Each stump is made
struction		by taking the previous
		stump's mistakes into
		account
Say for	Equal	Some stumps get more
each tree		say
	parallel	sequential

Data

	smoking	<pre>family_history</pre>	height	cancer
1	Yes	Yes	5.3	Yes
2	No	Yes	6.0	Yes
3	Yes	No	5.2	Yes
4	Yes	Yes	5.0	Yes
5	No	Yes	5.9	No
6	No	Yes	4.7	No
7	Yes	No	5.2	No
8	Yes	Yes	5.4	No

Creating the first decision stump

1) Initial weights

	${\tt smoking}$	<pre>family_history</pre>	height	cancer	<pre>Ini_weights</pre>
1	Yes	Yes	5.3	Yes	0.125
2	No	Yes	6.0	Yes	0.125
3	Yes	No	5.2	Yes	0.125
4	Yes	Yes	5.0	Yes	0.125
5	No	Yes	5.9	No	0.125
6	No	Yes	4.7	No	0.125
7	Yes	No	5.2	No	0.125
8	Yes	Yes	5.4	No	0.125

Decision stump (In-class)

```
Smoking?
```

Height? Splitting point?

Family_history?

Decision stump

Your turn

Compute node Gini coefficient for Smoking and Family History and Height $> 5.1\,$

Frist decision stump

In-class

Compute total error.

Amount of say

$$\mbox{Amount of say} = \frac{1}{2} \mbox{log} \left(\frac{1 - \mbox{Total Error}}{\mbox{Total Error}} \right)$$

Compute the amount of say for the first decision stump.

Amount of say vs Total error

Building the next decision stump

	${\tt smoking}$	<pre>family_history</pre>	height	cancer	Ini_weights
1	Yes	Yes	5.3	Yes	0.125
2	No	Yes	6.0	Yes	0.125
3	Yes	No	5.2	Yes	0.125
4	Yes	Yes	5.0	Yes	0.125
5	No	Yes	5.9	No	0.125
6	No	Yes	4.7	No	0.125
7	Yes	No	5.2	No	0.125
8	Yes	Yes	5.4	No	0.125

New observation weights for incorrect classifications

New observation weight = initial weight \times $e^{\mathrm{Amount}\ \mathrm{of}\ \mathrm{say}}$

New observation weights for correct classifications

New observation weight = initial weight \times $\text{e}^{\text{-}Amount of say}$

Initial weights + new weights

	<pre>ini_weights</pre>	new_weights
1	0.125	0.05
2	0.125	0.05
3	0.125	0.05
4	0.125	0.33
5	0.125	0.05
6	0.125	0.05
7	0.125	0.05
8	0.125	0.05

Initial weights + new weights + normalized weights

	ini_weights	new_weights	normalized_weights
1	0.125	0.05	0.07352941
2	0.125	0.05	0.07352941
3	0.125	0.05	0.07352941
4	0.125	0.33	0.48529412
5	0.125	0.05	0.07352941
6	0.125	0.05	0.07352941
7	0.125	0.05	0.07352941
8	0.125	0.05	0.07352941
4 5 6 7	0.125 0.125 0.125 0.125	0.33 0.05 0.05 0.05	0.48529412 0.07352941 0.07352941

Create the next decision stump - inclass

Adaboost final decision - inclass

Adaboost vs Gradient Boosting Algorithm

Category	AdaBoost	Gradient Boosting	
Tree size	Decision stump	Statrts by making a sin-	
		gle leaf and then grow	
		trees	
Tree con-	Up weights the	identify observations	
struction	observations mis-	by large residuals com-	
	classified before	puted in the previous	
		iteration	
Say for	Not Equal	Equal	
each tree			
Tree con-	sequential	sequential	
struction			

Gradient Boosting - Regression

Dataset

```
colour gender tusk_length bmi
                          1.6 2.3
1
    blue
               M
2
               F
                          1.6 2.4
   brown
3
    blue
               F
                          1.5 3.2
4
   black
               Μ
                          1.8 3.4
5
                          1.5 3.5
   brown
               Μ
6
    blue
                          1.4 2.1
```

Initial guess

Compute residuals

Predict BMI

Continue building trees

Final prediction