

Weierstraß Institut für Angewandte Analysis und Stochastik

2. Vorlesung: Bedingte Wahrscheinlichkeit

Nikolas Tapia

18. April 2024, Stochastik für Informatik(er)

Laplace-Raum

Definition 1

Ein **Laplace-Raum** ist ein endlicher Wahrscheinlichkeitsraum, in dem alle Ergebnisse gleich wahrscheinlich sind, d.h. $\mathbb{P}(\omega) = \frac{1}{|\Omega|}$ für alle $\omega \in \Omega$.

Aussage 1

In einem Laplace-Raum ist die Wahrscheinlichkeit eines Ereignisses $A\subset\Omega$ gegeben durch

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$

Dabei ist |A| die Anzahl der Elemente in A.

Wiederholtes Zufallsexperiment

Wir betrachten ein Zufallsexperiment mit k möglichen Ergebnissen.

Wiederholen wir das Experiment n-mal unter gleichbleibenden Bedingungen. Wir bezeichnen mit Ω_n die Menge aller möglichen Folgen des n-fach wiederholten Experiments, d.h.

$$\Omega_n := \{\omega = (\omega_1, \dots, \omega_n) : \omega_i \in \Omega\}.$$

Dann gilt $|\Omega_n| = k^n$.

Element aus Ω_n bezeichnen wir mit $\omega = (\omega_1, \dots, \omega_n)$, ein geordnetes Tupel.

Ein geeignetes Raum konkret angeben

Oft möglich, oft nicht sinnvoll.

Alternativen

- Wahrscheinlichkeiten statistisch schätzen.
- Modellierung über Teilexperimenten, oft im Form von *Urnenmodellen*.
- Zufallsvariable durch ihre Verteilung definieren.

Häufigkeiten und Wahrscheinlichkeiten

 $\ensuremath{\mathbb{P}}$ ist sehr oft nicht direkt messbar.

Die **absolute Häufigkeit** $H_n(\omega_i)$ von $\omega_i \in \Omega$ ist die Anzahl der Realisierungen, in denen ω_i bei n Versuchen auftritt.

Die **relative Häufigkeit** $h_n(\omega_i) := \frac{H_n(\omega_i)}{n}$ von ω_i ist der Anteil der Realisierungen, in denen ω_i bei n Versuchen auftritt.

Die relative Häufigkeit $h_n(\omega_i)$ ist ein Näher für die theoretische Wahrscheinlichkeit $\mathbb{P}(\omega_i)$.

2

Mit Zurücklegen, mit Reihenfolge

2

Ohne Zurücklegen, ohne Reihenfolge

Leibniz Leibniz Gerreinschaft

Bedingte Wahrscheinlichkeit

Definition 2

Seien $A, B \subset \Omega$ Ereignisse mit $\mathbb{P}(B) > 0$. Die **bedingte Wahrscheinlichkeit von** A **gegeben** B, ist definiert als

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Baumdarstellung

Ein Baum besteht aus

- Knoten: Ergebnisse der jeweiligen Stufe.
- Kanten: bedingte Wahrscheinlichkeit des entsprechenden Ausgangs, gegeben das Ergebnis der vorherigen Stufe.
- Blätter: Endergebnis des Experimentes entsprechend der Zwischenergebnisse.

Multiplikationsregel

Aussage 2

In einem mehrstufigen Experiment berechnet sich die Wahrscheinlichkeit eines Ergebnisses durch **Multiplikation** der Wahrscheinlichkeiten entlang der Kanten, die zum Blatt mit diesem Ergebnis führen.

Formel der Gesamtwahrscheinlichkeit

Aussage 3

Sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum, und seien $A, B \subseteq \Omega$ Ereignisse, mit $0 < \mathbb{P}(B) < 1$. Dann gilt

$$\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c).$$

Additionsregel

Aussage 4

In einem mehrstufigen Experiment berechnet sich die Wahrscheinlichkeit eines Ergebnisses durch **Addition** der zugehörigen Wahrscheinlichkeiten auf den Blättern des Baumes.

Allg. Formel der Gesamtwahrscheinlichkeit

Aussage 5

Sei (Ω, \mathbb{P}) ein Wahrscheinlichkeitsraum, und sei A ein Ereignis. Sei B_1, \ldots, B_n eine disjunkte Zerlegung von Ω . Dann gilt

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i)\mathbb{P}(B_i).$$

Unabhängigkeit

Definition 3

Sei (Ω, \mathbb{P}) ein Warscheinlichkeitsraum, und seien $A, B \subseteq \Omega$ Ereignisse. A und B heißen **unabhängig**, falls

$$\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$$

gilt.

Unabhängigkeit

Aussage 6

Zwei Ereignisse A und B auf (Ω, \mathbb{P}) mit $\mathbb{P}(B) > 0$ sind unabhängig, wenn $\mathbb{P}(A \mid B) = \mathbb{P}(A)$ gilt.

