Kombinatorické struktury

prof. RNDr. Jan Kratochvíl, CSc.

13. července 2021

Obsah

1	Konečné/Afinní projektivní roviny	2
	1.1 KPR a extremální grafy	6
2	Latinské čtverce	7
3	Bloková schémata	12
	3.1 Symetrické blokové schéma	14
	3.2 Steinerovy systémy trojic	20
	3.3 Hadamardovy matice	24
4	Latinské čtverce podruhe	30
5	Konečné projektivní prostory	36
	5.1 KPP zaklady	36
	5.2 Singerova konstrukce, Veblen–Young věta	43

1 Konečné/Afinní projektivní roviny

Definice 1.1 (Množinový systém). Nechť X, I jsou množiny. Pak

$$\mathcal{M} = (M_i)_{i \in I}, \forall i \in I : M_i \subseteq X$$

nazveme množinovým systémem.

Kromě množinového zápisu a *Vennova diagramu* také můžeme incidenci značit incidenční maticí $A_{\mathcal{M}} \in \{0,1\}^{X \times I}$, kde $A_{x,i} = 1$, právě když $x \in M_i$. Alternativou je také bipartitní graf incidence, který definujeme jako

$$B_{\mathcal{M}} = (X \cup I, \{\{x, i\} : x \in M_i\})$$

Definice 1.2 (Konečná projektivní rovina). Konečná projektivní rovina (KPR) je množinový systém $\mathcal{P} = (X, \mathcal{L})$ splňující následující axiomy:

- (A1) Pro každé dvě různé množiny $A, B \in \mathcal{L}$ platí $|A \cap B| = 1$
- (A2) Pro každé dva různé prvky $x, y \in X$ existuje $A \in \mathcal{L}$ taková, že $x, y \in A$
- (A3) V X existují čtyři prvky tak, že žádné tři z nich nepatří do stejné množiny z \mathcal{L} .

Je zvykem prvkům množiny X říkat body a množinám z \mathcal{L} přímky.

Poznámka 1.3 (Každé dva body v KPR sdílejí právě jednu přímku). Pokud $\mathcal{P} = (X, \mathcal{L})$ splňuje A1 a A2, pak každé dva různé body $x, y \in X$ náležejí právě jedné společné přímce.

 $D\mathring{u}kaz$. Mějme $x,y\in X$ různé. Z A2 máme, že existuje alespoň jedna $A\in\mathcal{L}$ taková, že $x,y\in A$. Pro spor předpokládejme, že existuje i odlišná $B\in\mathcal{L}$ taková, že $x,y\in B$. Pak přímky A a B nesplňují A1, nebot $A\cap B\supset \{x,y\}$, a tedy $|A\cap B|\geq 2$, což je spor. \square

Poznámka 1.4 (O ekvivalentním axiomu ke čtveřici v KPR). Pokud systém $\mathcal{P} = (X, \mathcal{L})$ splňuje A1 a A2, pak A3 je ekvivalentní axiomu

(A3') Body systému \mathcal{P} nemohou být pokryty jednou nebo dvěma přímkami z \mathcal{L} .

Věta 1.5 (O řádu KPR). Pro každou KPR $\mathcal{P} = (X, \mathcal{L})$ existuje přirozené číslo m takové, že

- $\forall A \in \mathcal{L} : |A| = m + 1$
- $\forall x \in X : |\{A \in \mathcal{L} : x \in A\}| = m + 1$
- $|X| = |\mathcal{L}| = m^2 + m + 1$

Toto číslo m nazýváme **řádem roviny** \mathcal{P} a můžeme psát KPR(m) pro konečnou projektivní rovinu řádu m.

 $D\mathring{u}kaz$. Vezmeme $x \notin A \in \mathcal{L}$. Definujme zobrazení které přiřazuje bod z přímky L bod na A:

$$\varphi: \{L: x \in L \in \mathcal{L}\} \to A$$

Neboli $\varphi(L)$ je průsečík s přímkou A (právě jeden společný bod). Různým přímkám přiřadí různé body. Nechť sporem existují 2 přímky kterým φ přiřadilo stejný bod, pak mají alespoň 2 společné body. Spor s axiomem A1 Definice 1.2. Proto φ je prosté.

Na druhou stranu, každý bod A protíná ještě nějaká přímka $\Rightarrow \varphi$ je na. Neboli φ je bijekce.

Vezmeme 2 přímky A, B. Dle A3 nemůže pokrývat celou KPR.

$$\exists y: y \notin A \land y \notin B$$

Jelikož φ je bijekce

$$|A| = \#$$
 přímek procházejících $y = |B|$

Dohromady

$$\exists m : \forall A \in \mathcal{L} : |A| = m+1$$

Necht $A \in \mathcal{L}$ libovolná přímka, má (m+1) bodů. Dal bodem $v \in A$ prochází dalších m přímek, pro nichž v je jediným společným bodem, ostatní jsou různé. Nazveme je vodorovné. Každá z nich má dalších (m+1)-1=m bodů, dohromady m^2 . Vezmeme další bod $s \in A$. Tím prochází dalších m přímek a musí protínat vodorovné právě v 1 bodě. Říkáme jim svislé. Z ostatních bodů A taky vychází svazek m přímek, další body již ale nejsou.

Tedy celkem $|X| = |\mathcal{L}| = m^2 + m + 1$ bodů a $|\mathcal{L}| = 1 + m(m+1)$ přímek.

Kanonický obrázek KPR:

"Přímky"se nerovnají geometrickým přímkám, jen mnemonický název.

Věta 1.6 (Existence KPR). Je-li $m = p^r$ mocnina prvočísla, pak existuje KPR(m).

 $D\mathring{u}kaz$. Konstruktivně pomoci mod aritmetiky. Z algebry $\exists GF(m)$ napíšeme jako

$$\{1,\ldots,m=0\}$$

Nechť $A = \{a_0, \dots, a_{m-1}\}$ je přímka. Označme svazek přímek vycházející z bodu a_k :

$$\forall k \in \{0, \dots, m-1\}, \forall b \in [m] : l_{k,b} = \{a_k\} \cup \{x_{i,k:i+b} : i \in [m]\}$$
(1)

kde $x_{i,j}$ je bod se souřadnice (i,j) v šachovnice.

Šikmé přímky taky lze vyjádřit pomoci vzorečku (1):

$$\forall b \in [m] : l_{m,b} = \{a_m\} \cup \{x_{i \ m \cdot i + b = b} : i \in [m]\}$$

Ověříme axiomy Definice 1.2:

(A1) Rozborem případů:

- 1. přímky ze stejného svazku dle jednoznačnosti aritmetiky modulo v tělese mají společný prvek pouze a_k .
- 2. Stejně pro šikmé přímky, protože je lze stejně vyjádřit.
- 3. Jednobodový průnik přímek ze svazku a vodorovných zaručuje jednoznačný bod $x_{i,j}.$
- 4. Potřebujeme ukázat

$$\forall k_1 \neq k_2, \forall b_1, b_2 : |l_{k_1, b_1} \cap l_{k_2, b_2}| = 1$$

Dle definice přímek ze svazku bod v průniku má souřadnice:

$$x_{i,j} = x_{i,k_1 \cdot i + b_1} = x_{i,k_2 \cdot i + b_2} \Rightarrow k_1 \cdot i + b_1 = k_2 \cdot i + b_2 \iff i = (b_1 - b_2) \cdot (k_2 - k_1)^{-1}$$

Z vlastnosti konečného tělesa, takové i je jednoznačné.

(A2) Není potřeba ukazovat rozborem případu. Stačí sečíst dvěma způsoby

$$C = |\{((x,y),A) : x,y \in A, x \neq y, A \in \mathcal{L}\}|$$

máme (m+1) přímek a $\binom{m+1}{2}$ způsobů zvolit body. Taky ale z A1 2 body spojuje nejvýše 1 přímka, proto $\binom{m^2+m+1}{2} \geq C$ Dohromady

$$\binom{m^2+m+1}{2} = (m^2+m+1)m(m+1) \geq C = (m+1) \cdot \binom{m+1}{2} = (m^2+m+1)m(m+1) = (m^2+m$$

Z rovnosti usoudíme, že každé dvojice odpovídá právě jedna přímka.

(A3) TODO z konstrukce?

Conjecture 1.7. KPR(m) existuje, právě když m je mocnina prvočísla

Věta 1.8 (KPR(6), Dk později). KPR(6) neexistuje.

Poznámka 1.9. KPR(10) neexistuje, ale jediný známý důkaz je počítačovým rozborem případů.

Neznáme žádnou KPR s řádem rozdílným od mocniny prvočísla. Zároveň však známe nekonečně mnoho m takových, že KPR(m) neexistuje. Nejmenší otevřený případ je m = 12.

Definice 1.10 (Konečná afinní rovina). Konečná afinní rovina (KAR) je množinový systém $\mathcal{P} = (X, \mathcal{L})$ splňující následující axiomy:

- (AF1) Pro každé dva různé prvky $x,y\in X$ existuje právě jedna množina $A\in\mathcal{L}$ taková, že $x,y\in A$
- (AF2) Pro každou množinu $A \in \mathcal{L}$ a každý prvek $x \in X$ nenáležící do A existuje právě jedna množina $B \in \mathcal{L}$ taková, že $x \in B$ a $A \cap B = \emptyset$
- (AF3) V X existují tři prvky, které nepatří do stejné množiny z \mathcal{L}

Prvkům množiny X říkáme body, množinám z \mathcal{L} říkáme přímky, dvě množiny s prázdným průnikem jsou rovnoběžky a dvě množiny s neprázdným průnikem jsou různoběžky.

Poznámka 1.11 (O relaci rovnoběžnosti a směrech). Rovnoběžnost přímek v KAR je tranzitivní a symetrická relace na \mathcal{L} . Její reflexivní zúplnění je tedy ekvivalence a \mathcal{L} se tedy rozpadá na několik tříd ekvivalence. Těmto třídám říkáme směry. Přímky různých směrů jsou různoběžné.

Q: co když přímky husté?

Q: co když slepíme směry dle ekvivalence?

A: Jak slepit? Neporuší to axiomy?

Q: souvisí KAR s hyperbolickou geometrii Lobačevského?

A: ano, ale nevíme co dříve.

Věta 1.12 (O řádu KAR). Pro každou KAR $\mathcal{P} = (X, \mathcal{L})$ existuje $m \in \mathbb{N}$ (nazývané řád roviny \mathcal{P}) takové, že:

- $\forall a \in \mathcal{L} : |A| = m$
- $\forall x \in X : |\{A \in \mathcal{L} : x \in A\}| = m + 1$
- $|X| = m^2$
- $|\mathcal{L}| = m^2 + m$
- počet směrů přímek je m+1, přičemž každý směr obsahuje m rovnoběžných přímek

 $D\mathring{u}kaz$. Vezmeme $x \notin A \in \mathcal{L}$. Definujme zobrazení které přiřazuje bod z přímky L bod na A:

$$\varphi(L) = L \cap A, \varphi : \{L : x \in L \in \mathcal{L}, L \not \mid A\} \to A$$

Z AF1 φ je prosté a je definované pro všechny body A proto φ je na \Rightarrow bijekce. Jelikož φ je bijekce a z AF2 existuje právě 1 rovnoběžka k A procházející bodem x:

$$|A| + 1 = \#$$
 přímek obsahujících x (2)

Vezmeme 2 přímky $A, B: A \not\parallel B$. Dle AF1, AF2, AF3 \Rightarrow nejde pokryt 2ma různoběžnými přímkami. Pak $\exists t \notin A \cup B$, zobrazeni φ určuje přímku pro každý bod A, B. Neboli |A| = |B|.

Vezmeme 2 rovnoběžky A, B a různoběžku C z předchozího případu usoudíme |A| = |C| = |B|.

Dohromady $\exists m, \forall A \in \mathcal{L} : |A| = m$. Taky z (2):

$$|\{L: x \in L \in \mathcal{L}\}| = m + 1$$

Vezmeme libovolnou přímku A, má m bodů. Přes libovolný bod $a \in A$ prochází další přímka B. Dle AF2 najdeme ke každému bodu $b_i \in B$ rovnoběžku k A která má dalších (m-1) bodů. Konstrukce dává m rovnoběžek a m^2 bodů. Dohromady $|X| = m^2$. Na jedné straně, počet bodu je m^2 . Každým bodem prochází (m+1) přímek. Na druhé straně se to rovná počtu přímek krát počet bodů na přímce m.

$$m^2 \cdot (m+1) = |\mathcal{L}| \cdot |A| = |\mathcal{L}| \cdot m \Rightarrow |\mathcal{L}| = m \cdot (m+1)$$

Důsledek 1.13 (O vztahu KAR a KPR). Každá afinní rovina řádu m vznikne z projektivní roviny řádu m vynecháním jedné přímky a jejích bodů. Naopak každá projektivní rovina řádku m vznikne z nějaké afinní roviny řádu m přidáním m+1 bodů, každý z nich do všech přímek jednoho směru, a jedné přímky obsahující tyto přidané body.

Definice 1.14 (Desargova vlastnost). Desargova vlastnost je následující: $Pro\ každých$ šest různých bodů $A_1, A_2, B_1, B_2, C_1, C_2$ takových, že se přímky A_1A_2, B_1B_2, C_1C_2 protínají v jednom bodě platí, že průsečíky dvojic přímek A_1B_1, A_2B_2 a B_1C_1, B_2C_2 a A_1C_1, A_2C_2 leží na jedné přímce.

Projektivní rovina je Desargovská, pokud má Desargovu vlastnost. Jinak je ne-Desargovská.

Cvičení 1.15. KPR sestrojené výše jsou Desargovské.

1.1 KPR a extremální grafy

Příklad 1.16 (Extremální Moorovy grafy).

Příklad 1.17 (Copnumber grafu).

2 Latinské čtverce

Definice 2.1 (Latinský obdélník). Latinský obdélník je matice $L \in X^{k \times n}$. Taková, že prvky se neopakuji ani ve sloupcích ani v řádcích. Kde X je n-prvková množina. Typický $\{1,...,n\} := [n]$.

Na řádky lze nahlížet jako na permutace.

Věta 2.2 (Latinské čtverce). Každý Latinský obdélník řádu $k \times n$ lze doplnit na Latinský čtverec řadu $n \times n$.

Důkaz. Dokážeme přidaní nových řádků v závislostí na již existujících řádcích.

V k-tem kroků se podíváme na j-tý sloupec. Nechť M_j bude množina kandidátů které můžeme dat na j-tou pozici v novém řádku.

$$M_i = [n] \setminus \{L_{ij} : i = 1, 2, ..., k\}$$

Teď musíme z množin M_j vzít po 2 různé prvky. Jinými slovy, hledáme Systém různých reprezentantů - SRR pro $\{M_j\}_1^n$.

Sestavíme graf, kde vrcholy jsou množiny M_j a prvky z [n].

$$(l, M_i) \in E \iff l \in M_i$$

Pak tento bipartitní graf je (n-k)-regulární. Protože $\forall x$ je v (n-k) množinách M_j . Dle Hallové věty, v takovém grafu existuje perfektní párovaní, které určuje SRR.

Důsledek 2.3. Latinských čtverců řádu n je $\mathcal{O}(n!)$.

 $D\mathring{u}kaz$. BUNO: v prvním řádku je $\{1,2,...,n\}$. Jinak můžeme vhodně přejmenovat prvky. V druhém řádku musí být permutace [n] bez pevných bodů. Z problému šatnářky takových permutaci je

$$\frac{n!}{e}$$

Pak dle věty každý obdélník lze doplnit na čtverec.

Definice 2.4 (Kolmost LČ). Latinský čtverce jsou kolmé $L \perp L'$ právě když

$$\forall x, y \in [n]^2 \exists ! (i, j) \in [n]^2 : L_{i,j} = x \land L'_{i,j} = y$$

Taky lze definovat ortogonalitu nad různými množiny.

Značení 2.5 (NOLČ(n)). NOLČ(n) značíme největší počet navzájem ortogonálních Latinských čtverců řádu n.

Věta 2.6 (Horní odhad NOLČ).

$$\forall n \in \mathbb{N}, n > 1 : NOL\check{\mathbf{C}}(n) \le n - 1$$

Důkaz. Necht

$$L^{1},...,L^{t} \in \{1,...,n\}^{n \times n}, \forall i \neq j : L^{i} \perp L^{j}$$

BUNO: přejmenujeme prvky v každém LČ tak, aby v prvním řádku bylo $\{1,2,...,n\}$. Takto vyrobíme LČ $L^{1\prime},...,L^{t\prime}$.

Tvrdíme ale, že ortogonalita je zachovaná. Obecně pro libovolná permutace π aplikovaná ne jeden z dvojice ortogonálních LČ zachovává ortogonalitu.

Pak na pozici (2,1) nemůže být 1. Pokud tam ale bude nějaké písmeno a, tak čtverce nebudou ortogonální, protože všechny dvojice (i,i) máme v prvním řádku. Z toho na pozice (2,1) můžou být prvky $\{2,...,n\}$ po 2 různé. Takže $NOL\check{C}(n) \leq n-1$.

Kdy máme extremální řešení?

Věta 2.7 (Extremální NOLČ a KPR).

$$NOL\check{\mathbf{C}}(n) = n - 1 \iff \exists KPR(n)$$

Z předchozí přednášky platí pro mocniny prvočísla.

 $D\mathring{u}kaz$. $KRP \Rightarrow L\check{\mathbf{C}}$. Sestavíme nevlastní přímku A, svislé a vodorovné přímky. Dal přímky spojující A a průniky svislých a vodorovných přímek budou určovat L $\check{\mathbf{C}}$.

$$L_{i,j}^{\alpha} = \beta \iff x_{i,j} \in k_{\alpha,\beta}$$

Pak písmena v LČ odpovídající červené přímce budou:

Z axiomu KPR svislé, vodorovné a přímky procházející body a_{α} se protínají právě v 1 bodě. Takže písmena se neopakuji v rádcích a sloupcích. Jsou \perp protože

$$\forall \beta, \beta' \exists ! (i,j) : L_{i,j}^{\alpha} = \beta \wedge L_{i,j}^{\gamma} = \beta'$$

Protože přímky se nemůžou protínat na nevlastní přímce A, takže se protínají uvnitř šachovnice.

$$\exists ! x_{i,j} \in l_{\alpha,\beta} \cap l_{\gamma,\beta'}$$

 $L\check{C} \Rightarrow KPR$. Necht máme $L\check{C}$

$$L^{\alpha}, \alpha \in \{1, 2, ..., n-1\}$$

Sestavíme nevlastní, svislé a vodorovné přímky. Šikmé přímky vytvoříme dle:

$$L_{i,j}^{\alpha} = \beta \iff x_{i,j} \in k_{\alpha,\beta}$$

Ověříme axiomy:

- A₁. Přímky ze stejného svazku šikmých přímek se protínají v nevlastním bodě. Vodorovné a svislé se protínají v šachovnici.
 Šikmé vs svislé a Vodorovné vs svislé se protínají protože průniky jsou určené LČ. 2
- A_3 . Plyne z toho, že $n \ge 2$.

Šikmé přímky se protínají právě v 1 bodě protože čtverce jsou ⊥.

• A_2 . Spočítáme 2ma způsoby # 3jic.

$$C = |\{((x, y), L) : x \neq y \in X, L \in \mathcal{L}, x, y \in L\}|$$

Máme $(n^2 + n + 1)$ přímek, na každé z nich je (n + 1) bodů. Pak

$$C = (n^2 + n + 1) \binom{n+1}{2}$$

Na druhou stranu, máme $(n^2 + n + 1)$ bodů. Každou 2ci prochází nejvýše 1 přímka.

$$C \le 1 \cdot \binom{n^2 + n + 1}{2}$$

Dohromady

$$(n^2+n+1)\binom{n+1}{2} \le \binom{n^2+n+1}{2}$$

Po roznásobení dostaneme stejná čísla na obou stranách, což může nastat pouze v případě že každou 2cí bodů prochází *právě 1* přímka.

Definice 2.8 (Ortogonální tabulka). Ortogonální tabulka řádu n, hloubky d je matice

$$M \in \{1, ..., n\}^{d \times n^2}$$

d řádků, n sloupců. Každé 2 řádky jsou ortogonální. Formálně:

$$\forall i \neq j, \forall x, y \in [n], \exists ! k \in \{1, ..., n^2\} : M_{i,k} = x \land M_{j,k} = y$$

Poznámka 2.9. Jelikož počet 2jic je pravě n^2 , což se rovná počtu sloupců stačí i slabší podmínka.

$$\forall i \neq j, \forall x, y \in [n], \exists k \in \{1, ..., n^2\} : M_{i,k} = x \land M_{j,k} = y$$

Věta 2.10 (Ortogonální tabulka a NOLČ).

$$\forall n,d \in \mathbb{N} \, \exists OA(n,d) \iff NOL\check{\mathbf{C}}(n) \geq d-2$$

 $D\mathring{u}kaz$. BUNO první řádek má bloky i, i, ..., i velikosti n. Druhý řádek bloky 1, 2, ..., n taky velikosti n. Jinak zvolíme vhodnou permutaci.

Pak vezmeme libovolný další řádek. Přemístíme blok velikosti n na řádek LČ.

$$L_{i,j}^3 = M_{3,n(i-1)+j}$$

Tvrdíme, že je to LČ.

- v řádku nemůže být dvakrát stejné písmeno, třeba pokud by tam bylo a. Měli bychom v původní tabulce dvakrát (i,a) v různých řádcích.
- Pokud bychom měli v sloupci 2 stejná písmena, např ve sloupci j. Tak bychom měli (j,b) na stejné pozice j. Jelikož 2. řádek má stejné bloky, tak by řádek ze kterého jsme udělali LČ nebyl \perp s 2. řádkem.

Když budeme mít 2 LČ z ortogonální tabulky, tak jsou ortogonální. Řádky tabulky jsou kolmé \Rightarrow řádky LČ jsou kolmé.

První 2 řádky jsou zafixované, z dalších můžeme vyrobit \bot LČ. Takže dohromady (d-2). Obraceně, pokud máme (d-2) LČ, tak je poskládáme do OA.

Věta 2.11 (Tenz produkt Ortogonálních tabulek).

$$\forall n_1, n_2, d \in \mathbb{N} \ \exists OA(n_1, d) \land OA(n_2, d) \Rightarrow \exists OA(n_1 \cdot n_2, d)$$

 $D\mathring{u}kaz$. Mějme řádek z $OA(n_1): a_1, a_2, ..., a_n$ a řádek z $OA(n_2): b_1, b_2, ..., b_n$. Uděláme výsledný řádek pomoci tenzorového součinu:

$$(a_1,b_1)(a_1,b_2),...(a_1,b_{n_2^2})(a_2,b_1)...$$

Vezmeme 2 řádky $OA(n_1 \cdot n_2, d)$. Nechť x = (c, d), y = (c', d').

Z vlastnosti OA, $\exists !k : c$ je ve stejném sloupci s c' v $OA(n_1)$. Analogický $\exists !l : d$ je ve stejném sloupci s d' v $OA(n_2)$.

Pak z definice tenzorového součinu v $OA(n_1 \cdot n_2, d) \exists ! (a_k, a_l)$. Z toho $\forall c, d, c', d', \exists !$ sloupec ve kterém v tabulce jsou $(c, d) \land (c', d')$.

Věta 2.12 (Dolní odhad NOLČ). Nechť $n = \prod_{i=1}^{k} p_i^{r_i}$ je faktorizace n. Pak

$$NOL\check{\mathbf{C}}(n) \ge \min_{i=1}^{k} \{p_i^{r_i} - 1\}$$

Důkaz. Necht

$$s = \min_{i=1}^{k} \{ p_i^{r_i} - 1 \}$$

Jelikož $p_i^{r_i}$ je mocnina prvočísla, z věty 2.7:

$$NOL\check{\mathbf{C}}(p_i^{r_i}) \ge p_i^{r_i} - 1$$

Pak protože $s = \min \Rightarrow p_i^{r_i} - 1 \ge s$.

Což spolu s větou 2.10 dává:

$$\exists OA(p_i^{r_i}, s+2)$$

Aplikujeme 2.11 induktivně, pak

$$\exists OA(\prod_{1}^{k}p_{i}^{r_{i}},s+2)=OA(n,s+2)\Rightarrow NOL\check{\mathbf{C}}(n)\geq s$$

Důsledek 2.13.

$$\forall n \in \mathbb{N}, n > 2 \land n \not\equiv 2 \mod 4 : NOL\check{\mathbb{C}}(n) \ge 2$$

 $D\mathring{u}kaz$. Rozložíme n na mocniny prvočísel. Pak pokud v rozkladu je 2, tak má exponent aspoň 2. Protože jinak je $n \not\equiv 2 \mod 4$, což jsme vyloučili předpokladem. Pro ostatní prvočísla $p_i^{r_i} - 1 \ge 2$. Dohromady $s \ge 2$.

Lemma 2.14 (OA 3m + 1).

$$\exists OA(m,4) \Rightarrow \exists OA(3m+1,4)$$

 $D\mathring{u}kaz$. Nechť $X = \{x_1, x_2, ..., x_m\}$. Dal vezmeme okruh \mathbb{Z}_{2m+1} a máme dle předpokladu OA(m,4)

$$D = \begin{pmatrix} D_1 \\ D_2 \\ D_3 \\ D_4 \end{pmatrix}$$

Vezmeme

$$a_{i} = (i, i, ..., i) \in \mathbb{Z}_{2m+1}^{m}$$

$$b_{i} = (i+1, i+2, ..., i+m) \in \mathbb{Z}_{2m+1}^{m}$$

$$c_{i} = (i-1, i-2, ..., i-m) \in \mathbb{Z}_{2m+1}^{m}$$

$$A = (a_{0}, a_{1}, ..., a_{2m}) \in \mathbb{Z}_{2m+1}^{m(2m+1)}$$

$$B = (b_{0}, b_{1}, ..., b_{2m}) \in \mathbb{Z}_{2m+1}^{m(2m+1)}$$

$$C = (c_{0}, c_{1}, ..., c_{2m}) \in \mathbb{Z}_{2m+1}^{m(2m+1)}$$

$$X = (x_{1}, x_{2}, ..., x_{m}, x_{1}, x_{2}, ..., x_{m}...) \in X^{m(2m+1)}$$

Pak sestavíme OA(3m+1,4) nad prvky $X \cup \mathbb{Z}_{2m+1}$ takto:

$$F = \begin{pmatrix} 0 & 1 & \dots & 2m & A & B & C & X & D_1 \\ 0 & 1 & \dots & 2m & B & A & X & C & D_2 \\ 0 & 1 & \dots & 2m & C & X & A & B & D_3 \\ 0 & 1 & \dots & 2m & X & C & B & A & D_4 \end{pmatrix}$$

Počet sloupců je

$$(2m+1) + 4m(2m+1) + m^2 = 9m^2 + 6m + 1 = (3m+1)^2$$

Teď zkontrolujeme, že $\forall x, y \in X, \forall i, j \in \mathbb{Z}_{2m+1}$ najdeme následující dvojice v sloupcích

$$z_{i,i} = \binom{i}{i}, z_{i,j} = \binom{i}{j}, z_{i,x} = \binom{i}{x}, z_{x,i} = \binom{x}{i}, z_{x,y} = \binom{x}{y}$$

Pak kvůli velikosti tabulky dvojice bude v OA právě jednou.

- $z_{i,i}$ je na začátku v 0,1,...,m.
- $z_{i,j}$ je v $\binom{A}{B} \cup \binom{B}{A}$ nebo $\binom{A}{C} \cup \binom{C}{A}$ nebo $\binom{B}{C} \cup \binom{C}{B}$
- $z_{i,x}$ je v $\binom{A}{X} \vee \binom{B}{X} \vee \binom{C}{X}$
- $z_{x,i}$ je v $\binom{A}{X} \vee \binom{B}{X} \vee \binom{C}{X}$
- $z_{x,y}$ je v D.

Věta 2.15 (Dolní odhad NOLČ - 2).

$$\forall k > 0: NOL \check{\mathbf{C}}(12k+10) \geq 2$$

 $D\mathring{u}kaz$. Pokud vezmeme m=4k+3 pak dle 2.13

$$\exists OA(4k+3,4) \overset{lemma}{\Rightarrow} \overset{2.14}{\Rightarrow} \exists OA(3(4k+3)+1,4) = OA(12k+10,4) \iff NOL\check{\mathbf{C}}(12k+10) \geq 2$$

Poznámka 2.16. Ortogonální tabulky se používají např pro rozvrhovaní turnaje kde každý hraje s každým jednou. Z toho turnaje mají určitý počet hráčů, aby existovala příslušná OA.

V bridge to je složitější, protože nejlepší hraje s nejhorším. Po nějakém počtu roundů už nejde pokračovat dal.

3 Bloková schémata

Definice 3.1 (Blokové schéma (BIBD)). Blokové schéma s parametry $v, k, \lambda > 0$ $((v, k, \lambda)$ -BIBD) je množinový systém (V, \mathcal{B}) takový, že:

- 1. |V| = v
- 2. $\forall B \in \mathcal{B} : |B| = k$
- 3. $\forall x, y \in V, x \neq y : |\{B \in \mathcal{B} : x, y \in B\}| = \lambda$
- 4. v > k, netrivialita: bloky neobsahuji všechny prvky.

Množiny $B \in \mathcal{B}$ jsou bloky schématu (V, \mathcal{B}) .

Vlastnosti 3.2 (BIBD).

BIBD reprezentujeme pomoci matice incidence, pro niž platí:

- Z 2 axiomu, sloupcový součet je právě k.
- Z 3 axiomu, libovolné 2 sloupce mají jedničky na λ společných pozicích. Neboli skalární součet je $\lambda.$

Věta 3.3 (Struktura BIBDu). Nechť (V, \mathcal{B}) je (v, k, λ) -BIBD, pak

1.
$$\forall x \in V \ patří to \ r = \frac{\lambda(v-1)}{k-1} \ bloků.$$

2.
$$|\mathcal{B}| = \frac{\lambda v(v-1)}{k(k-1)}$$

 $D\mathring{u}kaz.$ 1) ekvivalentně znamená, že řádkové součty matice se rovnají r. Zafixujeme libovolný prvek $x\in V.$ Pak

$$r_x = |\{B : x \in B \in \mathcal{B}\}|$$

Spočítáme 2ma způsoby # dvojic:

$$C = |\{(y, B) : x \neq y, x, y \in B \in \mathcal{B}\}|$$

Na jedné straně je r_x způsobů zvolit B obsahující x a (k-1) možnosti zvolit další prvek $y \in B$.

Na druhou stranu, nejprve zvolíme y, což jde udělat (v-1) způsoby. Z axiomu 3 takové x,y jsou ve λ společných množinách.

$$r_x(k-1) = C = (v-1)\lambda \Rightarrow r_x = \frac{\lambda(v-1)}{k-1}$$

Konečně, x byl libovolný prvek, rovnost platí $\forall x \in V$.

2) Jaký je součet všech prvků matice? Spočítáme po řádcích a po sloupcích

$$|\mathcal{B}| \cdot k = RS = SlS = v \cdot r = v \cdot \frac{\lambda(v-1)}{k-1} \Rightarrow |\mathcal{B}| = \frac{\lambda v(v-1)}{k(k-1)}$$

Vlastnosti 3.4 (Struktura BIBDu).

Pokud pro parametry $\exists (v, k, \lambda)$ -BIBD, tak:

D1 $\lambda(v-1)$ je dělitelné (k-1).

D2 $\lambda \cdot v(v-1)$ je dělitelné $k \cdot (k-1)$.

• $r > \lambda$.

 $D\mathring{u}kaz$. Plyne hned z 3.3, jelikož $r, |\mathcal{B}|$ jsou celá čísla. 3 podmínka platí z předpokladu netriviality

$$v > k \Rightarrow (v-1) > (k-1) \Rightarrow \frac{r}{\lambda} = \frac{v-1}{k-1} > 1$$

Příklad 3.5. Každá KPR(m) je $(m^2 + m + 1, m + 1, 1)$ -BIBD. Každá KAR(m) je $(m^2, m, 1)$ -BIBD.

Věta 3.6 (Wilson (1975) BD).

$$\forall k, \lambda \exists v_0 : \forall v \ge v_0 \land [D1] + [D2] \Rightarrow \exists (v, k, \lambda) - BIBD$$

Věta 3.7 (Fisherová nerovnost). Pokud (V, \mathcal{B}) je (v, k, λ) -BIBD tak $|\mathcal{B}| \geq v$.

 $D\mathring{u}kaz$. Trik jako v mnoha důkazech přednášky LAK, mocnění matice incidence. Nechť A je matice incidence BIBDu, pak

$$AA^{T} = \begin{pmatrix} r & \lambda & \dots & \lambda \\ \lambda & r & \dots & \lambda \\ \vdots & \vdots & \ddots & \vdots \\ \lambda & \dots & \lambda & r \end{pmatrix} = \lambda J + (r - \lambda)E$$

Spočítáme determinant pomoci vzorečku multilineární formy

$$det AA^T = (r - \lambda)^v + v \cdot \lambda \cdot (r - \lambda)^{v-1} = (r - \lambda)^{v-1} (r - \lambda + v\lambda) = (r - \lambda)^{v-1} (v(\lambda - 1) + r)$$

Dle Vlastnosti 3.4 $r > \lambda \Rightarrow (r - \lambda)^{v-1} > 0$. Dle axiomu BIBDu $\lambda - 1 \ge 0$ a r > 0. Takže i determinant je nenulový. Pak z LA

$$rankAA^T = v \le rankA \le |\mathcal{B}| \Rightarrow |\mathcal{B}| \ge v$$

Důsledek 3.8. Pro každý BIBD $k \le r$.

Důkaz.

$$|\mathcal{B}| \cdot k = v \cdot r \wedge |\mathcal{B}| \ge v \Rightarrow k \le r$$

3.1 Symetrické blokové schéma

Definice 3.9 (Symetrické blokové schéma). Blokové schéma se nazývá symetrické, pokud je počet jeho bloků roven počtu jeho prvků.

$$|\mathcal{B}| = v$$

Neboli extremální případ Fisherové nerovnosti.

Věta 3.10 (Ekvivalence BIBD). Nechť (V, \mathcal{B}) je množinový systém takový, že

- |V| = v
- $|\mathcal{B}| = b$
- $A \in \{0,1\}^{v \times b}$ je matice incidence
- $k, \lambda, r = \frac{\lambda(v-1)}{k-1} \in \mathbb{Z}^+$

 $Pak(V, \mathcal{B}) \ je(v, k, \lambda) - BIBD \iff :$

- 1. $AA^T = \lambda J + (r \lambda)E$
- 2. $JA = kJ \iff sloupcový součet v matice A je k$.
- 3. rankA = v

 $D\mathring{u}kaz$. " \Rightarrow ". Plyne z Fisherové nerovnosti 3.7. Z vlastnosti BIBDu Vlastnosti 3.4 sloupcový součet v matice A je $k \Rightarrow JA = kJ$.

"⇐". Ověříme axiomy:

- 1. TODO není axiom ale označení proměnné?
- 2. $JA = kJ \Rightarrow$ sloupcový součet v matice A je $k \Rightarrow \forall B \in \mathcal{B} : |B| = k$
- 3. z 1 podmínky plyne, že mimo diagonálu v AA^T jsou λ . Což je skalární součin dvou libovolný řádku matice A.
- 4. Nechť sporem v=k, tak A=J a pro $v\geq 2$ by již neměla plnou hodnost. Spor s 3 podmínkou.

Věta 3.11 (SBIBD ekvivalence). Nechť (V, \mathcal{B}) je množinový systém takový, že $|V| = |\mathcal{B}| > 1$ a A je matici incidence. Pak

- 1. Pokud je (v, k, λ) -SBIBD, tak
 - (a) $AA^T = \lambda J + (k \lambda)E \iff \forall x \in V \text{ patří do } k \text{ bloků, } \forall x \neq y \in V \text{ patří do } \lambda \text{ bloků.}$
 - (b) $A^TA = \lambda J + (k \lambda)E$. Maticové násobení je skalárním součinem sloupců matice A, neboli se díváme na bloky. Rovnost ekvivalentně znamená, že na diagonále jsou velikosti bloku k a mimo diagonálu průniky bloků λ .

$$\forall B \in \mathcal{B} : |B| = k, \forall B_1 \neq B_2 \in \mathcal{B} : |B_1 \cap B_2| = \lambda$$

- (c) $JA = kJ \iff \forall \text{ prvek patří do k bloků.}$
- (d) AJ = kJ násobíme charakteristický vektor s $\bar{1}$. Neboli $\forall B \in \mathcal{B} : |B| = k$.
- (e) A je regulární \iff rankA = v
- 2. Nechť A je regulární matice neboli platí e), potom pokud platí a) nebo b) \Rightarrow (V, \mathcal{B}) je (v, k, λ) -SBIBD.

 $D\mathring{u}kaz$. Je vidět a) \Rightarrow c) a b) \Rightarrow d).

Dle 3.10 (v, k, λ) -SBIBD \iff a), d), e). Potřebujeme zkontrolovat že b) je splněno. Ukážeme ale 1 a 2 dohromady pomoci implikace

$$(a), e) \Rightarrow b, d$$

2 je splněná taky, protože a), e) $\stackrel{(3)}{\Rightarrow}$ b), d), c) znovu z 3.10 (V, \mathcal{B}) je (v, k, λ) -SBIBD. Obraceně pokud platí b), e) pro $A \Rightarrow$ platí a), e) pro $A^T \Rightarrow$ a)-e) pro $A^T \Rightarrow$ a)-e) pro A. Začneme d).

A regulární $\Rightarrow \exists A^{-1}$. Pak

$$A^{-1}AJ \stackrel{c)}{=} A^{-1}kJ = kA^{-1}J \stackrel{k\neq 0}{\Rightarrow} A^{-1}J = k^{-1}J$$

Dal

$$JA^{T} = J^{T}A^{T} = (AJ)^{T} = (kJ)^{T} = kJ$$

Taky

$$A^{T} = A^{-1}AA^{T} \stackrel{a)}{=} = A^{-1}((k-\lambda)E + \lambda J) = (k-\lambda)A^{-1} + \lambda A^{-1}J = (k-\lambda)A^{-1} + \lambda k^{-1}J$$

Z rovnosti usoudíme, že $k \neq \lambda$ protože jinak A^T regulární = $c \cdot J$ která regulární není. Taky

$$JA^T = kJ = J((k-\lambda)A^{-1} + \lambda k^{-1}J) = (k-\lambda)JA^{-1} + \lambda k^{-1}J^2$$

Jelikož $J \in \{0,1\}^{v \times v} \Rightarrow J^2 = vJ$ tak

$$JA^{T} = kJ = (k - \lambda)JA^{-1} + \lambda k^{-1}vJ \Rightarrow (k - \lambda)JA^{-1} = (k - \lambda k^{-1}v)J$$

Neboli

$$JA^{-1} = \frac{k - \lambda k^{-1}v}{k - \lambda} \Rightarrow J = JA^{-1}A = \frac{k - \lambda k^{-1}v}{k - \lambda}JA$$

Označme $m = \frac{k - \lambda k^{-1} v}{k - \lambda}$, dal

$$J^{2} = vJ = (mJA)J = (mJ)AJ = mJkJ = mkJ^{2} \Rightarrow mk = 1$$

Konečně máme d)

$$JA^{-1} = mJ = k^{-1}J \Rightarrow J = k^{-1}JA \Rightarrow JA = kJ$$

b)
$$A^{T}A = ((k - \lambda)A^{-1} + \lambda k^{-1}J)A = (k - \lambda)E + \lambda k^{-1}kJ = (k - \lambda)E + \lambda J$$

Důsledek 3.12 (Duální SBIBD). Pokud A je matice symetrického $BIBDu \Rightarrow A^T$ je matice duálního SBIBDu. Neboli

$$(V, \mathcal{B})^* = (\mathcal{B}, V^*), V^* = \{v^* : v \in V\}, v^* = \{B : v \in B \in \mathcal{B}\}$$

Definice 3.13 (Konstrukce blokových schémat ze symetrických). Pokud (V, \mathcal{B}) je (v, k, λ) -BIBD, nechť B_0 je zafixovaný blok, definujme:

- 1. $(B_0, \{B \cap B_0 : B \in \mathcal{B} \setminus \{B_0\}\})$ je $(k, \lambda, \lambda 1)$ -BIBD (odvozové schéma neboli v aj derived design).
- 2. $(V \setminus B_0, \{B \setminus B_0 : B \in \mathcal{B} \setminus \{B_0\}\})$ je $(v k, k \lambda, \lambda)$ -BIBD (zbytkové schéma neboli v aj residual design).

Příklad 3.14 (KPR vs KAR). Každá konečná projektivní rovina je symetrický BIBD. Každá konečná afinní rovina je zbytkové schéma pro nějakou konečnou projektivní rovinu stejného řádu.

Lemma 3.15 (Lineární formy). Nechť $A \in \{0,1\}^{v \times b}$ je matice incidence a $r = \frac{\lambda(v-1)}{k-1}$, pak uvažme lineární formy

$$\forall j \in [b] : L_b(x_1, \dots, x_v) = \sum^v a_{ij} x_i$$

Potom

$$\sum_{i=0}^{b} L_j^2(x_1, \dots, x_v) = (r - \lambda) \sum_{i=0}^{v} x_i^2 + \lambda \left(\sum_{i=0}^{v} x_i\right)^2$$

 $D\mathring{u}kaz$. Budiž $x=(x_1,\ldots,x_v)$ řádkový vektor proměnných. Označme $L_j=L_j(x_1,\ldots,x_v)$, pak

$$xA = (L_1, \dots, L_b)$$

Dal

$$(xA)^T = A^T x^T = \begin{pmatrix} L_1 \\ L_2 \\ \dots \\ L_b \end{pmatrix}$$

Rovnici $AA^T=(r-\lambda)E+\lambda J$ vynásobíme xzleva a x^T zprava:

$$xAA^Tx^T = x((r-\lambda)E + \lambda J)x^T$$

Kde levá strana je $(L_1,\ldots,L_b)\cdot(L_1,\ldots,L_b)^T=\sum L_j^2$. Pravá strana

$$x((r-\lambda)E + \lambda J)x^T = x(r-\lambda)x^T + \lambda xJx^T$$

Roznásobíme

$$(r-\lambda)xx^{T} + \lambda xJx^{T} = (r-\lambda)\sum x_{i}^{2} + \lambda(\sum x_{i})(x_{1} + \ldots + x_{v}) = (r-\lambda)\sum x_{i}^{2} + \lambda\left(\sum x_{i}\right)^{2}$$

Věta 3.16 (Bruck-Ryser-Chowla). Nechť (v,k,λ) -SBIBD, položme $n=k-\lambda$, pak platí:

- 1. v je sudé a $n = m^2 \in \mathbb{N}$.
- 2. v je liché a Diofantická rovnice

$$z^2 = nx^2 + (-1)^{\frac{v-1}{2}} \lambda y^2$$

má netriviální řešení v celých číslech.

Důkaz. 1.

Dle 3.10:

$$AA^T = \lambda J + (r - \lambda)E$$

Spočítáme determinant dle vzorečku multilineární formy:

$$det AA^{T} = (det A)^{2} = (r - \lambda)^{v} + v\lambda(r - \lambda)^{v-1} = (r - \lambda)^{v-1}(r - \lambda + v\lambda) = (r - \lambda)^{v-1}(r + \lambda(v - 1))$$

Dosadíme $k(k-1) = \lambda(v-1)$:

$$= (k - \lambda)^{v-1}(k + k^2 - k) = (k - \lambda)^{v-1}k^2$$

 \forall prvočísla $p|n=(k-\lambda)$ je v det^2, k^2 sudá mocnina p. Takže v n^{v-1} taky sudá mocnina, jelikož v sudé \Rightarrow v n je sudá mocnina. Neboli n je mocnina přirozeného čísla. 2.

Nejprve použijeme Lagrangeovou větu o 4□:

$$n = b_1^2 + b_2^2 + b_3^2 + b_4^2, b_i \in \mathbb{Z}$$

Vezmeme matici

$$B = \begin{pmatrix} b_1 & -b_2 & -b_3 & -b_4 \\ b_2 & b_1 & -b_4 & b_3 \\ b_3 & b_4 & b_1 & -b_2 \\ b_4 & -b_3 & b_2 & b_1 \end{pmatrix}$$

Využijeme kvaterniony a konkretně normu

$$N(x) = x_1^2 + x_2^2 + x_3^2 + x_4^2, N(ab) = N(a) \cdot N(b)$$

která je multilineární formou. Pak zobrazení y = Bx je $\mathbb{Q}^4 \to Q^4$ tak že po aplikace normy platí:

$$y_1^2 + y_2^2 + y_3^2 + y_4^2 = (b_1^2 + b_2^2 + b_3^2 + b_4^2)(x_1^2 + x_2^2 + x_3^2 + x_4^2) = n(x_1^2 + x_2^2 + x_3^2 + x_4^2)$$

Nahlédneme B je regulární. Jinak sporem je singulární, pak Bx=0 má netriviální řešení, z toho

$$N(x) = n \cdot \sum x_i = 0 \Rightarrow \sum x_i = 0 \iff \forall i : x_i = 0$$

Což je spor.

Rozebereme 2 případy: 2a) $v \equiv 1 \mod 4$

Nechť máme proměnné $x_1,\dots,x_v\in\mathbb{Q}.$ Aplikujeme zobrazení určené matici B po 4cich, pak

$$\sum y^2 = n(\sum x^2)$$

Rovnice z lemma 3.15 po transformaci je

$$\sum L_{j}^{2} = \sum_{i}^{v-1} y_{i} + nx_{v}^{2} + \lambda(\sum x_{i})^{2}$$

Označme $w = \sum x_i$, taky nahlížejme na L_j jako na lineární formy v proměnných y_1, \dots, y_v . Dosadíme do L_j výrazy získané pomoci $x = \overline{B}y$. Taky ale $y_v = x_v$.

$$\sum L_j^2 = \sum_{i=1}^{v-1} y_i + ny_v^2 + \lambda w^2$$

Zvolme lineární formy tak, aby $L_j^2 = y_j^2$ (proces specializace):

$$L_1 = \sum c_j y_j = y_1 \Rightarrow \sum^{v-1} c_j y_j = (1 - c_1) y_1$$

Pak zvolme

$$y_1 = \begin{cases} \frac{\sum_{j=1}^{v-1} c_j y_j}{1 - c_1} & \text{pro } c_1 \neq 1\\ \frac{\sum_{j=1}^{v-1} c_j y_j}{-2} & \text{pro } c_1 = 1, L_1 = -y_1 \end{cases}$$

Pokračujeme induktivně, zbývá:

$$L_v^2 = ny_v^2 + \lambda w^2$$

Kde L_v, y_v, w jsou lineární formy v $y_v.$ Proto

$$L_v = \frac{p}{q}y_v, w = \frac{r}{s}y_v \Rightarrow \frac{p^2}{q^2}y_v^2 = ny_v^2 + \lambda \frac{r^2}{s^2}y_v^2$$

Dosadíme $y_v = 1$:

$$p^2s^2 = nq^2s^2 + \lambda r^2q^2$$

Položme $z = ps, x = qs \neq 0, y = rs$. Rovnice obecnějšího tvaru dostaneme protože $v \equiv 1 \mod 4 \Rightarrow v-1$ je dělitelné 2.

2b) $v \equiv 3 \mod 4$. Uvažme rovnici z lemma 3.15, doplníme poslední 4ce proměnnou x_{v+1} :

$$\sum L_j^2 = \sum_{i=0}^{v+1} y_i - nx_{v+1}^2 + \lambda w^2$$

Znovu překlopíme na lineární formy v y_i a po specializaci:

$$0 = y_{v+1}^2 - nx_{v+1}^2 + \lambda w^2, x_{v+1}^2 = \frac{p}{q}y_{v+1}^2, w = \frac{r}{s}y_{v+1}^2$$

Dostaneme

$$y_{v+1}^2 = n - \frac{p^2}{q^2} - \lambda \frac{r^2}{s^2} y_{v+1}^2$$

Dosadíme $y_{v+1} = 1$:

$$(qs)^2 = n(ps)^2 - \lambda(rq)^2$$

Znovu dostáváme rovnici

$$z^2 = nx^2 - \lambda y^2$$

Důsledek 3.17 ($\not\exists$ KPR(6)).

 $D\mathring{u}kaz$. Kdyby existovala KPR(6), tak by existoval i (43,7,1)-SBIBD. Pak ale dle 3.16 rovnice má netriviální řešení

$$z^2 = 6x^2 + (-1)^{21}y^2 \Rightarrow z^2 + y^2 = 6x^2$$

Pokud existovalo netriviální řešení, tak po zrušení společných dělitelů dostaneme řešení (x, y, z) = 1 nesoudělná. Vezmeme nemenší takové a upravíme $\mod 3$. Kvadratické residua jsou 0, 1. Na pravé straně zbytek je vždy 0, aby i na levé byl 0 tak y, z jsou zároveň dělitelné 3mi.

$$9z^2 + 9y^2 = 6x^2 \Rightarrow 3z^2 + 3y^2 = 2x^2 \Rightarrow 3|x$$

Spor s (x, y, z) = 1.

Věta 3.18 (Teorie čísel (BD)). $\forall n : n = a^2 + b^2 \iff prvočíslo \ p = 4k + 3 \ vystupuje \ v \ rozvoji \ s \ sudou \ mocninou.$

 $D\mathring{u}kaz.$ " \Rightarrow "již bylo ukazano na příkladě rovnice $z^2+y^2=nx^2$ pro x=1." \Leftarrow ".

Pozorování 1 Pokud $n = n_1 + n_2 \wedge n_1 = x_1^2 + y_1^2 \wedge n_2 = x_2^2 + y_2^2$ tak:

$$n = (x_1^2 + y_1^2)(x_2^2 + y_2^2) = x_1^2 x_2^2 + x_1^2 y_2^2 + y_1^2 x_2^2 + y_1^2 y_2^2 = (x_1 x_2 + y_1 y_2)^2 + (x_1 y_2 - y_1 x_2)^2$$

Pozorování 2 Z $n = \prod p_i^a$ vytkneme prvočísla $p \equiv 3 \mod 4$ do n_2 :

$$n = \prod p_i^a = n_1^2 \cdot (2) \cdot n_2$$

Pak $n_1^2 = n_1^2 + 0^2$ a $2 = 1^2 + 1^2$. Neboli úloha je redukovaná na $\forall p$ prvočíslo $p = 4k + 1 = a^2 + b^2$.

Pozorování 3 Pro p = 4k + 1 v tělese \mathbb{Z}_p je $(-1) \equiv l^2, l \in \mathbb{Z}_p$. Dal aplikujeme Diofantickou aproximaci

$$\forall e \in R, \forall n \exists \frac{h}{k} \in \mathbb{Q}, 0 < k \le n : |e - \frac{h}{k}| \le \frac{1}{k(n+1)}$$

pro $e = \frac{l}{p}, n = \lceil \sqrt{p} \rceil$. Pak

$$n+1 > \sqrt{p} \Rightarrow \frac{1}{n+1} < \frac{1}{\sqrt{p}}$$

Dle aproximaci

$$\exists \frac{h}{k}, k \leq \sqrt{p} : \left| \frac{l}{p} - \frac{h}{k} \right| \leq \frac{1}{k(n+1)} < \frac{1}{k\sqrt{p}}$$

Zvolme c = lk - ph. Pak

$$|lk - ph| < \sqrt{p} \Rightarrow c^2 < p\&c \equiv lk \mod p$$

Dal

$$0 < k^2 + c^2 \equiv k^2 + l^2 k^2 = k^2 (1 + l^2) \equiv 0 \mod p \Rightarrow k^2 + c^2 < 2p \Rightarrow k^2 + c^2 = p$$

Věta 3.19 ($\exists \text{ KPR } \Box$). $\exists \text{ } KRP(n) \land n \equiv 1 \lor 2 \mod 4 \Rightarrow \exists a,b \in \mathbb{Z} : n = a^2 + b^2$.

 $D\mathring{u}kaz$. Z Příklad 3.14 KPR(m) existuje právě tehdy když existuje ($m^2 + m + 1, m + 1, 1$)-SBIBD. Z 3.16 rovnice má netriviální řešení:

$$z^2 = nx^2 + (-1)^{\frac{v-1}{2}} \lambda y^2$$

Z druhého předpokladu dostaneme

$$z^2 + y^2 = nx^2$$

Podíváme se na prvočísla $p \equiv 3 \mod 4 : p | n \iff n = p^c \cdot n_1, (p, l) = 1$. Z teorie čísel $p \equiv 3 \mod 4 \Rightarrow -1$ je kvadratický nezbytek $\mod p$. Jelikož kvadratické \square -zbytek $\cdot (-1) = \square$ -nezbytek, tak

$$p|z, p|y \Rightarrow z = pz_1, y = py_1 \Rightarrow p^2 z_1^2 + p^2 y_1^2 = n_1 x^2$$

Po upravě

$$z_1^2 + y_2^1 = \frac{n}{p^2}x^2$$

Postupným dělením prvočíslem p dostaneme

$$p^{\lceil \frac{c}{2} \rceil} | z, p^{\lceil \frac{c}{2} \rceil} | y \Rightarrow p^{\lceil \frac{c}{2} \rceil} | n \Rightarrow c = 0 \mod 2$$

použijeme $3.18 \Rightarrow n = a^2 + b^2$.

3.2 Steinerovy systémy trojic

Definice 3.20 (Steinerův systém trojic). Steinerův systém trojic je $(v, k = 3, \lambda = 1)$ -BIBD, značíme STS(v).

Věta 3.21 (Existence STS a počet prvků). Existuje-li STS(v), $pak v \equiv 1$ $nebo v \equiv 3$ modulo 6.

Důkaz. Z věty o parametrech BIBDu 3.3:

$$r = \frac{\lambda(v-1)}{k-1} = \frac{v-1}{2} \in \mathbb{Z} \Rightarrow v \equiv 1 \mod 2$$

Taky

$$|\mathcal{B}| = \frac{\lambda v(v-1)}{k(k-1)} = \frac{v(v-1)}{6} \in \mathbb{Z} \Rightarrow v \not\equiv 5 \mod 6 \Rightarrow v \equiv 3 \mod 6$$

Definice 3.22 (Komutativní idempotentní kvazigrupa (KIK)). Je teměř grupa ale operace nemusí být asociativní, nemusí existovat e. Splňuje:

- komutativní: xy = yx
- idempotentní: xx = x
- kvazigrupa: $xy = xz \Rightarrow y = z$

Věta 3.23 (STS a speciální kvazigrupa). STS(v) existuje, právě když existuje komutativní idempotentní kvazigrupa na v prvcích splňující Definice 3.22 a x(xy) = y.

 $D\mathring{u}kaz$. " \Rightarrow ". Necht (V,\mathcal{F}) je STS. Definujme binarní operaci:

$$xy = \begin{cases} x & \text{pro } x = y, \text{idempotence} \\ z & \text{pro } x \neq y \& \{x, y, z\} \in \mathcal{F} \end{cases}$$

Vezmeme jednoznačný prvek ve stejné 3ci jako x,y.

Zkontrolujeme vlastnosti operace:

- komutativní: vždy bereme prvek z 3ci, je jedno jestli se ptáme na xy nebo yx.
- idempotentní: z definice
- podmínka x(xy) = y: $x = y \Rightarrow x(xx) = xx = x$. $x \neq y \Rightarrow x(xy) = xz = y$.
- kvazigrupa: Nechť xy=xz $x=y\Rightarrow x=z\Rightarrow x=y\Rightarrow y=z$ $x\neq y, \text{ nechť sporem }y\neq z \text{ pak bychom měli 2 3ce které sdílí 2 prvky. Spor s STS.}$

" \Leftarrow ". Máme kvazigrupa (V, \cdot) , definujme 3ce:

$$\mathcal{F} = \{\{x, y, x \cdot y\} | x \neq y \in V\}$$

Ověříme axiomy:

- 1. $\mathcal{F} \subset \binom{V}{3}$. Necht sporem $x \cdot y = y \Rightarrow yx = y$. Pak ale $y(yx) = yy \stackrel{idempotence}{=} y = x$ spor.
- 2. Vezmeme libovolnou 3ci dle definice \mathcal{F} . Nechť sporem máme další prvek xy=z který tvoří další 3ci:

$$\{x,z,xz\} = \{x,z,x(xy) = y\} = \{x,z,y\}$$

Věta 3.24 (Kombinace STS). $\forall v_1, v_2 : \exists STS(v_1), STS(v_2) \Rightarrow \exists STS(v_1 \cdot v_2).$

 $D\mathring{u}kaz$. Nechť máme (V_1, \circ_1) a (V_2, \circ_2) splňující Definice 3.22 a x(xy) = y. Pak kartezský součin s operaci definovanou po složkách je algebra stejného typu

$$(V_1, \circ_1) \times (V_2, \circ_2) = (V_1 \times V_2, \circ), (a, b) \circ (x, y) = (a \circ_1 x, b \circ_2 y)$$

Důsledek 3.25 (STS(9)). $\exists STS(9) = STS(3) \times STS(3)$.

Sice STS(3) na 3-prvkové množině by nesplňoval $v \neq k$ ale z historických důvodu ho považujeme za validní. Stejně tak STS(1) (jeden prvek).

Cvičení 3.26 (\exists STS(15)?).

Věta 3.27 (Nutná podmínka je i postačující pro STS). $\forall v \equiv 1, v \equiv 3 \mod 6, \exists STS(v).$

Důkaz pro 3, Boseho konstrukce. $V = \mathbb{Z}_{2m+1} \times \mathbb{Z}_3$, pak 3ce budou

$$\mathcal{F} = \{\{(i,0),(i,1),(i,2)\} | i \in \mathbb{Z}_{2m+1}\} \cup \{\{(i,k),(j,k),((m+1)(i+j),k+1)\} | i \neq j \in \mathbb{Z}_{2m+1}, k \in \mathbb{Z}_3\}$$

1. # prvků $|V| = (2m+1)3 = 6m+3 \equiv 3 \mod 6$.

2. # 3c

$$|\mathcal{F}| = 2m + 1 + 3\binom{2m+1}{2} = 2m + 1 + 3 \cdot \frac{(2m+1)2m}{2} = 6m^2 + 5m + 1 =$$
$$= (3m+1)(2m+1) = \frac{1}{6}(6m+3)(6m+2) = \frac{1}{6}|V|(|V|-1)$$

Zbývá zkontrolovat, že pro libovolnou 3ci prvků máme množinu. Zkontrolujeme 3ce rozborem případu

- (a) prvky jsou v různých řádcích ale nad sebou. Pak existuje množina z první podmínky.
- (b) prvky jsou ve stejném řádku. Pak existuje množina z druhé podmínky.
- (c) prvky jsou v různých řádcích ale ne nad sebou, na pozicích (j,k),(h,k+1). Pak hledáme $i:h=(m+1)(i+j)\iff 2h=(2m+2)(i+j)=i+j\iff i=2h-j$. Z vlastnosti okruhu takové i je jednoznačné. Musíme zkontrolovat $i\neq j$.

Nechť sporem $i = j \Rightarrow 2j = 2h \Rightarrow j = h$. Spor s volbou prvku z různých řádků.

Důkaz pro 1, Skolemova konstrukce. v = 6m + 1. Necht

$$V = \mathbb{Z}_{2m} \times \mathbb{Z}_3 \cup \{w\}$$

Představujeme $\mathbb{Z}_{2m} = \{1, \dots, 2m = 0\}.$

$$\mathcal{F} = \{\{(i,0), (i,1), (i,2)\} | i \in [m]\} \cup \{\{(i,k), (i+m,k-1), w\} | i \in [m], k \in [3]\} \cup \{\{(i,k), (j,k), (L_{i,j}, k+1)\} | i \neq j \in \mathbb{Z}_{2m}, k \in [3]\}$$

Kde $L \in Z_{2m}^{2m \times 2m}$ je symetrický Latinský čtverec takový, že na diagonále má dvakrát posloupnost $1, \dots, m$:

$$L_{i,i} = L_{m+i,m+i} = i, i \in [m]$$

Potřebujeme symetrický LČ protože 3 podmínka množiny musí být stejná nezávislé na tom, jestli se ptáme na i, j nebo j, i.

- 1. # prvků $|V| = 6m + 1 \equiv 1 \mod 6$.
- 2. # 3c, sčítance odpovídají typům množin v definici

$$\begin{aligned} |\mathcal{F}| &= m + 3m + 3\binom{2m}{2} = 4m + 3 \cdot \frac{(2m-1)2m}{2} = 6m^2 + m = \\ &= \frac{1}{6}(6m+1)6m = \frac{1}{6}|V|(|V|-1) \end{aligned}$$

Zbývá zkontrolovat, že pro libovolnou 3ci prvků máme množinu. Zkontrolujeme 3ce rozborem případu

- (a) jeden z prvků je w a druhý prvek je v první půlce $\in [m]$. Pak třetí prvek v druhé půlce o řád dole.
- (b) jeden z prvků je w a druhý prvek je v druhé půlce $\in \{m, ..., 2m\}$. Pak třetí prvek v druhé půlce o řád nahoře v první půlce.
- (c) prvky jsou ve stejném řádku. Pak existuje množina z třetí podmínky.
- (d) prvky jsou v různých řádcích ale nad sebou v první polovině. Pak existuje množina z první podmínky.

- (e) prvky jsou v různých řádcích ale nad sebou v druhé polovině. Chceme $\exists i: L_{i,j} = j \& i \neq j$. Z vlastnosti LČ i je jednoznačné a nemůže se rovnat j protože v druhé polovině na j-té pozice je prvek $j m \neq j$.
- (f) prvky jsou v různých řádcích ale ne nad sebou, na pozicích (j,k), (h,k+1). Chceme $\exists i: h=L_{i,j}$. Z vlastnosti LČ i je jednoznačné, chceme znovu $i\neq j$. Nechť sporem i=j, pak jsme na diagonále.

Pokud $j > m \Rightarrow h = j - m \neq j$. Opačně, $j \leq m \Rightarrow i = j = m$, což je již vyřešený případ v d).

(g) prvky na pozicích (h = j - m, k + 1) a (j, k). Pak ale j = i a případ pokrývá 3ce s w.

Lemma 3.28 (Tabulkový důkaz 1). $\exists STS(v_1) = S_1, STS(v_2) = S_2, STS(v_3) = S_3 : S_3 \subseteq S_2 \Rightarrow \exists S = STS(v_3 + v_1(v_2 - v_1))$ Navíc obsahuje původní jako podsystémy: $\simeq S_i \subseteq S, i \in [3]$.

 $D\mathring{u}kaz$. Označme $t=v_2-v_3$. Vezměme V_3 a $(S=V_2\setminus V_3)\times V_1$. Pak jako trojice vezmeme trojice z S_3 , trojice pro každé rozšíření na S_2 a trojice z S_1 tak, že (i,x),(j,y),(k,z):i,j,k je trojice v S_1 a $x+y+z\equiv 0\mod s$. TODO obrazek

Lemma 3.29 (Tabulkový důkaz 2). \exists $STS(v) \subseteq KPR(2)$ (Fanová rovina) $\Rightarrow \exists$ STS(f(v)) který taky obsahuje Fanovu rovinu, kde f je specifikovaná dle pravidel:

a)
$$v_1 = v, v_2 = 3, v_3 = 1 \Rightarrow 1 + v(3 - 1) = 2v + 1$$

b)
$$v_1 = 3, v_2 = v, v_3 = 1 \Rightarrow 1 + 3(v - 1) = 3v - 2$$

c)
$$v_1 = 3, v_2 = v, v_3 = 3 \Rightarrow 3 + 3(v - 3) = 3v - 6$$

d)
$$v_1 = v, v_2 = 9, v_3 = 3 \Rightarrow 3 + v(9 - 3) = 6v + 3$$

e)
$$v_1 = 3, v_2 = v, v_3 = 7 \Rightarrow 7 + 3(v - 7) = 3v - 14$$

f)
$$v_1 = v, v_2 = 7, v_3 = 1 \Rightarrow 1 + v(7 - 1) = 6v + 1$$

Předpoklad o Fanové rovině potřebujeme pouze pro e).

Obecný "tabulkový" důkaz. Uvěříme faktu, že pro všechna $v \le 1944 : v \equiv_6 1 \lor v \equiv_6 3$ existuje STS(v) a pro $v \ge 325$ navíc obsahuje KPR(2).

Indukcí dokážeme, že pro všechna $v \ge 1945$: $v \equiv_6 1 \lor v \equiv_6 3$ existuje STS(v) obsahující KPR(2). Mějme v = 36t + z, nebot $1944 = 36 \cdot 54$, víme, že $6t \ge 324$. Pak použijeme pravidla z předchozího

$$12t + 1 \xrightarrow{B} 36t + 1$$

$$28t + 1 \xrightarrow{A} 36t + 3$$

$$6t + 1 \xrightarrow{F} 36t + 9$$

$$12t + 9 \xrightarrow{E} 36t + 13$$
lemmatu:
$$18t + 7 \xrightarrow{A} 36t + 15$$

$$6t + 3 \xrightarrow{F} 36t + 19$$

$$6t + 3 \xrightarrow{D} 36t + 21$$

$$12t + 9 \xrightarrow{B} 36t + 25$$

$$18t + 13 \xrightarrow{A} 36t + 27$$

$$18t + 15 \xrightarrow{A} 36t + 31$$

$$12t + 13 \xrightarrow{C} 36t + 33$$

3.3 Hadamardovy matice

Definice 3.30 (Hadamardova matice (HM)). Hadamardova matice čádu m je $H \in \{-1,1\}^{m \times m}$ taková, že $HH^T = mI_m$. m na diagonále znamená, že všechny souřadnice jsou nenulové. Nuly mimo diagonále - řádky jsou ortogonální.

Lemma 3.31 (Transpozice Hadamardovy matice). H je Hadamardova matice, právě když H^T je Hadamardova matice.

 $D\mathring{u}kaz$. Kvůli symetrii pojmů, stačí jedna implikace směrem. Podělíme matici \sqrt{m} :

$$\left(\frac{1}{\sqrt{m}}H\right)\left(\frac{1}{\sqrt{m}}H^T\right) = I$$

Neboli

$$\left(\frac{1}{\sqrt{m}}H\right) = \left(\frac{1}{\sqrt{m}}H^T\right)^{-1} = \sqrt{m}H^{-1}$$

Tedy

$$H^T H = mH^{-1}H = mI$$

Definice 3.32 (Normální forma HM). Hadamardova matice je v *normální formě*, pokud všechny prvky v prvním řádku a prvním sloupci jsou +1.

Pozorování 3.33 (Uzavřenost HM). Přehození řádků či sloupců, stejně tak jako vynásobení řádku či sloupce -1, zachovává vlastnost "býti Hadamardovou maticí". Každou HM lze tedy vynásobením vhodných řádků a sloupců číslem -1 převést na HM stejného řádu, která je v normálním tvaru.

Věta 3.34 (Hadamardova matice a řád dělitelný čtyřmi). Je-li m > 2 řád HM, $pak m \equiv 0 \mod 4$.

 $D\mathring{u}kaz$. Triviální případy: m=1 matice je skalár. Pro m=2 máme jedinou možnost

$$H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Nechť H je HM v normální formě, m>2. Řádkovými a sloupcovými úpravy převedeme matici na následující tvar

$$H = \begin{pmatrix} ||| & ||| & ||| & ||| \\ ||| & ||| & --- & --- \\ ||| & --- & ||| & --- \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Uvažme prvky v prvních třech řádcích. V prvním řádku jsou všechny prvky +1. Budiž a počet sloupců, ve kterých má jak druhý, tak třetí řádek +1, b počet sloupců, ve kterých má druhý řádek +1 a třetí řádek -1, c počet sloupců, ve kterých má druhý řádek -1 a třetí řádek +1, a konečně d počet sloupců, ve kterých má jak druhý, tak třetí řádek -1. Z ortogonality řádků vyplývá, že

$$a+b+c+d=m$$

$$a+b-c-d=0$$

$$a-b+c-d=0$$

$$a-b-c+d=0$$

Sečtením 2 a 3 rovnice dostaneme a=d. Sečtením 1 a 4 rovnice $a=d=\frac{m}{4}$. Pak 1 a 2 dostaneme $b=\frac{m}{4}$. Neboli soustava má jediné řešení $a=b=c=d=\frac{m}{4}\Rightarrow m\equiv 0\mod 4$.

Věta 3.35 (Hadamardova matice a symetrické BIBDy). HM řádu m=4t existuje \iff existuje symetrický (4t-1,2t-1,t-1)-BIBD.

 $D\mathring{u}kaz$. Nechť H je HM v normální formě. Vyškrtneme první řádek a sloupec, čímž dostaneme matici velikosti (4t-1). Tak nahradíme $-1 \to 0$. Nechť matice po úpravách je A. Z vlastnosti HM, matice A má v každém sloupci (2t-1) jedniček. Ekvivalentně:

$$JA = (2t - 1)J$$

Neboli A jako matice incidence množinového systému implikuje, že každá množina má (2t-1) prvků. Zkontrolujeme ještě, že 2 prvky leží ve stejném počtu bloků \rightarrow skalární součin 2 řádků. Pro 2 libovolné řádky (kromě prvního) platí, že mají na čtvrtině míst (t-1) 1 proti -1, viz důkaz 3.34.

Transformace matice lze provést i opačným směrem, což dává ekvivalenci.

Definice 3.36 (Tenzorový součin). Jsou-li $A \in T^{m \times m}, B \in T^{n \times n}$, indexujeme prvky A jako a_{ij} , pak jejich tenzorový součin je matice (bloková):

$$A \times B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1m}B \\ a_{21}B & a_{22}B & \dots & a_{2m}B \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Věta 3.37 (Kombinace Hadamardových matic). Existují-li HM řádů m_1, m_2 , pak existuje HM řádu $m_1 \cdot m_2$.

 $D\mathring{u}kaz$. Nechť výsledná matice je H. Dostaneme ji pomoci tenzorového součinu Definice 3.36 daných matic. Z konstrukce, každý blok nové matice dostaneme násobením HM H_2 prvkem $a_{ij} \in \{-1,1\}$. Dle 3.33 $H \in \{0,1\}^{m_1 \cdot m_2 \times m_1 \cdot m_2}$.

Vezmeme 2 libovolné řádky H ze stejného bloku, jejich skalární součin je

$$\sum_{i=1}^{n_1} a_{ij}^2 \langle H_2, H_2 \rangle = \sum_{i=1}^{n_1} a_{ij}^2 \cdot 0$$

Pro 2 řádky z různých bloků (pro $u \neq w$ dopadne stejné jako předchozí):

$$u = w : \sum_{i=1}^{n_1} a_{ij} \cdot a_{kj} \langle H_2, H_2 \rangle = \sum_{i=1}^{n_1} a_{ij}^2 \cdot m_2$$

Vytkneme m_2 ze sumy a dostaneme skalární součin *i*-ho a *j*-ho řádku matice H_1 , což je taky nula.

Důsledek 3.38 (Sylvester). HM řádu 2^k existuji pro $\forall k \in \mathbb{N}$.

Conjecture 3.39 (Hadamard). $HM \check{r} \acute{a} du \ m \ existuje \ pro \ ka\check{z} d\acute{e} \ m = 4t$.

Důsledek 3.40 (Exponenciální Hadamardovy matice). Pro každé k existuje HM řádu 2^k .

Věta 3.41 (Payleyho konstrukce). a) Je-li $q = p^r \mod q$ mocnina prvočísla $p \ a \ q \equiv 3 \mod 4$, pak existuje HM řádu q + 1.

b) Je-li $q=p^r$ mocnina prvočísla p a $q\equiv 1 \mod 4$, pak existuje HM řádu 2q+2. Případ pro q=2 je pokrytý kvůli 3.38.

 $D\mathring{u}kaz$. Vezměme konečné těleso GF(q). Definujme $kvadratick\acute{y}$ charakter $\chi: GF(q) \to \{-1,0,1\}$:

$$\chi(x) = \begin{cases} 0 & \text{pro } x = 0\\ 1 & \text{pro } \exists y \in GF(q) : x = y^2\\ -1 & \text{pro } jinak \end{cases}$$

Znovu \Box -zbytky a nezbytky. Jelikož multiplikativní grupa je cyklická s generátorem g, pak \Box -zbytek je g^{2k} a nezbytky naopak liché mocniny. Proto

$$\chi(xy) = \chi(x) \cdot \chi(y)$$

Taky máme polovinu □-zbytků a polovinu nezbytků, tak

$$\sum_{b \in GF(q)} \chi(b) = 0 \tag{4}$$

Z čehož odvodíme:

Lemma 3.42 (Posunutí χ).

$$\forall c \neq 0 : S = \sum_{b \in GF(q)} \chi(b)\chi(b+c) = -1$$

 $D\mathring{u}kaz$. Vyjádříme (b+c) jako $b \cdot y$.

$$y = \frac{b+c}{b}$$

pro b=0 charakter je nula, takové sčítanci neovlivňuji součet, proto

$$S = \sum_{b \neq 0 \in GF(q)} \chi(b)\chi(b+c)$$

Taky nahlédneme, že y je jednoznačné a zobrazení $b \to y$ je prosté a na \Rightarrow bijekce. Navíc $b = \frac{c}{y-1}$ platí vždy protože pro y = 1 bychom dostali c = 0.

$$S = \sum_{b \neq 0} \chi(b) \chi(by) = \sum_{y \neq 1} \chi(b)^2 \chi(y) \stackrel{\chi^2(b) = 1}{=} \sum_{y \neq 1} \chi(y) = \sum_{y \neq 1} \chi(y) - \chi(1) = -1$$

Definice 3.43 (Charakterová matice Q). Označme $GF(q) = \{a_1, \dots, a_q\}$, definujme matici $Q \in \{-1, 0, 1\}^{q \times q}$ předpisem

$$Q_{ij} = \chi(a_i - a_j)$$

Nechť $\bar{1}$ je vektor délky $q, \forall i: \bar{1}_i = +1$

a) pokud $q \equiv 3 \mod 4$, pak

$$H_{q+1} = \begin{pmatrix} 0 & \bar{1} \\ -\bar{1}^T & Q \end{pmatrix} + I_{q+1}$$

je HM řadu (q+1). Dostaneme matici

$$H = \begin{pmatrix} | & | & | & | & | & \dots \\ - & | & q & q & q & \dots \\ - & q & | & q & q & \dots \\ - & q & q & | & q & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Z definici Q a vlastnosti konečného tělesa Q má mimo diagonálu $-1 \vee 1$. Neboli $H \in \{-1,1\}^{q+1 \times q+1}$. Skalární součin řádku se sebou, i > 0:

$$S = -1 + 1 + \sum_{j=1}^{q} \chi(a_i - a_j)$$

Jelikož $j \in [q]$, tak suma probíhá všemi prvky GF(q), dle (4) je 0. Takže S=0. Skalární součin dvou libovolných řádků, i,k>0:

$$S = 1 + \chi(a_k - a_i) + \chi(a_i - a_k) + \sum_{i=1}^{q} \chi(a_i - a_j) \chi(a_k - a_j)$$

Pak

$$\chi(a_k - a_i) + \chi(a_i - a_k) = \chi(a_k - a_i) + \chi(-1(a_k - a_i)) = \chi(a_k - a_i) + \chi(-1)\chi(a_k - a_i) \stackrel{\chi(-1) = -1}{=} 0$$

Kde $q \equiv 3 \mod 4 \Rightarrow \chi(-1) = -1$. Použijeme lemma 3.42 na

$$\sum_{j=1}^{q} \chi(a_i - a_j) \chi(a_k - a_j)$$

tak, že $b=a_i-a_j$ a $c=a_k-a_i\neq 0$. Neboli součet je -1. Dokázali jsme taky

$$QJ = 0 = JQ$$

A

$$QQ^T = \begin{pmatrix} q-1 & -1 \\ -1 & \ddots \end{pmatrix} = qI_q - J$$

b) Pokud $q \equiv 1 \mod 4$, sestavíme HM řádu 2q+2 takto:

$$H_{2q+2} = \begin{pmatrix} 0 & \bar{1} & 0 & \bar{1} \\ \bar{1}^T & Q & \bar{1}^T & Q \\ 0 & \bar{1} & 0 & -\bar{1} \\ \bar{1}^T & Q & -\bar{1}^T & -Q \end{pmatrix} + \begin{pmatrix} I_{q+1} & -I_{q+1} \\ -I_{q+1} & -I_{q+1} \end{pmatrix}$$

Technickým rozborem případů ověříme, že H_{2g+2} je HM.

Lemma 3.44 (O tenzorovém součinu (BD)). Pro A, A_1, A_2 čtvercové matice řádu m, B, B_1, B_2 čtvercové matice řádu n:

- $(A \times B)^T = A^T \times B^T$
- $\forall \alpha \in T : \alpha(A \times B) = (\alpha A) \times B = A \times (\alpha B)$
- $(A_1 + A_2) \times B = A_1 \times B + A_2 \times B$
- $A \times (B_1 + B_2) = A \times B_1 + A \times B_2$
- $(A_1 \times B_1)(A_2 \times B_2) = (A_1 A_2) \times (B_1 B_2)$

Pozorování 3.45 (Tenzorový produkt I).

$$\forall m, n : I_m \times I_n = I_{mn}$$

Věta 3.46 (Kombinace HM alternativní). Existují-li HM řádů m_1, m_2 , pak existuje HM řádu $m_1 \cdot m_2$.

Alternativní důkaz věty o kombinaci Hadamardových matic. Nechť A je HM řadu m_1 , B řadu m_2 . Pak z lemma 3.44

$$(A \times B)(A \times)^T = (A \times B)(A^T \times B^T) = (AA^T) \times (BB^T) = (mI_m) \times (nI_n) = mnI_{mn}$$

Poznámka 3.47 (Tenzorový součin symetrických matic). Pokud jsou matice A, B symetrické, je i jejich tenzorový součin symetrická matice. Takže pokud existují symetrické HM řádů m_1 a m_2 , pak existuje symetrická HM řádu m_1m_2 .

Věta 3.48 (Payleyho konstrukce revisited).

 $D\mathring{u}kaz$. a) Necht Q je matice definovaná jako Definice 3.43, pak označme

$$S = S_{q+1} = \begin{pmatrix} 0 & \bar{1} \\ -\bar{1}^T & Q \end{pmatrix} \tag{5}$$

Pak platí:

$$QJ = 0 = JQ$$
$$QQ^{T} = qI_{q} - J$$
$$SS^{T} = qI_{q+1}$$

Z $q \equiv 3 \mod 4 \Rightarrow \chi(-1) = -1$, matice S je antisymetrická: $S^T = -S$ proto pro $H_{q+1} = S + I_{q+1}$ platí:

$$H_{q+1}H_{q+1}^T = (S + I_{q+1})(S^T + I_{q+1}) = SS^T + S^T + S + I_{q+1} = qI_{q+1} - S + S + I_{q+1} = (q+1)I_{q+1}$$

Neboli dle definice H_{q+1} je HM.

b) je speciální případ tzv Williamsonové konstrukce kterou ukážeme níže.

Lemma 3.49 (Williamson). Buď $S \in \mathbb{R}^{n \times n}$ $t.\check{z}$.

$$SS^T = (n-1)I_n \& S^T = \varepsilon S, \varepsilon \in \{-1, 1\}$$

 $M\check{e}jme\ A, B \in \mathbb{R}^{m \times m}\ takov\acute{e},\ \check{z}e$

$$AA^T = BB^T = mI_m, AB^T = -\varepsilon BA^T$$

Pak pro matici

$$K = A \times I_n + B \times S$$

platí $KK^T = mnI_{mn}$.

Důkaz.

$$KK^{T} = (A \times I_{n} + B \times S)(A^{T} \times I_{n} + B^{T} \times S^{T}) =$$

$$= AA^{T} \times I_{n} + AB^{T} \times S^{T} + BA^{T} \times S + BB^{T} \times SS^{T} =$$

$$= mI_{m} \times I_{n} + (-\varepsilon BA^{T}) \times (\varepsilon S) + BA^{T} \times S + mI_{m} \times (n-1)I_{n}$$

$$= mI_{mn} + (-\varepsilon^{2} + 1)(BA^{T} \times S) + m(n-1)I_{mn} \stackrel{(-\varepsilon^{2} + 1) = 0}{=} mnI_{mn}$$

Věta 3.50 (Williamsonova konstrukce). Buď $q = p^r \mod 4$ $a \neq p$ mocnina prvočísla $p \mid a \neq p$ moch $q \equiv 1 \mod 4$ $a \neq p$ existuje HM řádu $p \neq q$. Potom existuje HM řádu $p \neq q$.

 $D\mathring{u}kaz$. Pro matici S definovanou v (5) platí:

$$S^T = S \& S S^T = q I_{q+1}$$

protože $q\equiv 1\mod 4$ je $-1\square$ -nezbytek. Nebol S splňuje předpoklady lemma 3.49 pro $\varepsilon=1$. Nechť A je HM řádu h. Sestrojíme pomocnou U:

$$U = I_{\frac{h}{2}} \times \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

Což je komplikovaný zápis pro matici, která má 0 na hlavní diagonále. Na dvou vedlejších diagonálách se střídá 1,-1. Položme

$$B = UA$$

Pak

$$BB^{T} = UAA^{T}U^{T} = U(hI_{h})U^{T} = hUU^{T} = hI_{H}(=AA^{T}),$$

 $AB^{T} = AA^{T}U^{T} = (hI_{h})U^{T} = -hU$
 $BA^{T} = UAA^{T} = U(hI_{h}) = hU$

Neboli S, A, B splňují předpoklady Williamsonova lemmatu lemma 3.49. Proto pro

$$K = A \times I_{q+1} + B \times S$$

platí $KK^T = h(q+1)I_{h(q+1)}$ což je definice HM řadu h(q+1). Musíme ale ověřit, že prvky v K jsou $\in \{-1,1\}$.

Matice $A \times I_{q+1}$ se skládá z bloků diagonálních matic s 1 nebo -1 na diagonále. Matice B umísti do bloků buď S nebo -S. Jelikož matice Q má nuly na diagonále a -1,1 mimo diagonálu v součtu na každé pozice dostaneme $0 \pm 1 = \pm 1$.

HW: pro jakou matici A dostaneme Payleyho konstrukce z Williamsonové?

4 Latinské čtverce podruhe

Definice 4.1 (Trochu méně pravidelné blokové schéma). (V, \mathcal{B}) je $(v, k_1, \dots, k_m, \lambda)$ -BIBD, jestliže

- |V| = v
- $\forall B \in \mathcal{B} \exists i \in [k] : |B| = k$
- $\forall x \neq y \in V : |\{B \in \mathcal{B} : \{x,y\} \in B\}| = \lambda$

Dále jako \mathcal{B}_i značíme bloky velikosti k_i , $b_i = |\mathcal{B}_i|, b = |\mathcal{B}|$.

Poznámka 4.2 (O b a b_i méně pravidelných schémat). • $\sum_{i=1}^m b_i = b$

• $\lambda v(v-1) = \sum_{i=1}^{m} b_i k_i (k_i - 1)$

Důkaz. Spočítáme 2ma způsoby

$$\binom{v}{2} \cdot \lambda = |\{(\{x,y\},B) : x \neq yV; x,y \in B \in \mathcal{B}\}| = \sum_{i=1}^{m} b_i \binom{k_i}{2}$$

TODO

Definice 4.3 (Průhledná množina). Buď $(V,\mathcal{B}), \mathcal{A} \subseteq \mathcal{B}$. Pak \mathcal{A} je průhledná množina bloků, pokud obsahuje navzájem disjunktní bloky.

Definice 4.4 (BIBD se středníkem).

 (V, \mathcal{B}) definujeme jako $(v, k_1, \dots, k_r; k_{r+1}, \dots, k_m, \lambda)$ -BIBD, je-li $(v, k_1, \dots, k_r, k_{r+1}, k_m, \lambda)$ -BIBD a $\mathcal{B}_1 \cup \dots \cup \mathcal{B}_r$ je průhledná množina.

Věta 4.5 (Dolní odhad na NOLČ).

Existuje-li $(v, k_1, \ldots, k_r; k_{r+1}, k_m, 1)$ -BIBD, pak

$$NOL\check{C}(v) \ge \min\{NOL\check{C}(k_1), \dots, NOL\check{C}(k_r), NOL\check{C}(k_{r+1}) - 1, \dots, NOL\check{C}(k_m) - 1\}$$

 $D\mathring{u}kaz$. Z 2.10 NOLČ $(k_i) \ge d \iff \exists OA(k_i, d+2)$. Označme

$$c = \min\{\text{NOL}\check{\mathbf{C}}(k_1) + 2, \dots, \text{NOL}\check{\mathbf{C}}(k_r) + 2, \text{NOL}\check{\mathbf{C}}(k_{r+1}) + 1, \dots, \text{NOL}\check{\mathbf{C}}(k_m) + 1\}$$

Pro $i \le r \ge 2.10$:

$$NOL\check{C}(k_i) + 2 \ge c \Rightarrow \exists OA(k_i, c)$$

Označme OA jako A_i nad symboly $1, 2, \dots, k_i$.

Pro $i > r \ge 2.10$:

$$NOL\check{C}(k_i) + 1 \ge c \Rightarrow \exists OA(k_i, c+1)$$

Sestrojíme tabulku A_i následovně. Začneme s ortogonální tabulkou D_i hloubky c+1 nad symboly $\{1,2,\ldots,k_i\}$, jejíž sloupce popřeházíme tak, aby první řádek začínal k_i symboly 1 a každý další řádek začínal $1,2,\ldots,k_i$. Matici A_i získáme z D_i škrtnutím prvního řádku a prvních k_i sloupců. Takže A_i má c řádků a $k_i^2 - k_i$ sloupců a její řádky jsou na sebe skoro kolmé v tom smyslu, že každé dva řádky nad sebou vidí všechny dvojice různých prvků z $\{1,2,\ldots,k_i\}$.

Zafixujme nyní $(v, k_1, k_2, ..., k_r; k_{r+1}, ..., k_m, 1)$ -BIBD (V, \mathcal{B}) , který podle předpokladu existuje, a nechť $S_1, S_2, ..., S_b$ jsou bloky. Pro každý blok S_j velikosti k_i vytvoříme matici B_j z matice A_i tak, že symboly $1, 2, ..., k_i$ nahradíme jmény prvků z bloku S_j . Potom matice

$$(B_1,\ldots,B_b,E)$$

kde Eje matice obsahující sloupce $(x,\dots,x)^T$ pro všechna

$$x \in V \setminus \bigcup_{S_j \in \bigcup_i^r \mathcal{B}_i} S_j$$

Pak tato matice je matice $\mathrm{OA}(v,c) \stackrel{2.10}{\Rightarrow} NOL\check{\mathrm{C}}(v) \geq c-2$. Alternativně, můžeme zpozorovat, že # sloupců této matice je

$$\sum_{i=r+1}^{r} b_i \cdot k_i^2 + \sum_{i=r+1}^{m} b_i (k_i^2 - k_i) + \text{sloupce z } E = \sum_{i=1}^{r} b_i (k_i^2 - k_i) + \sum_{i=r+1}^{r} b_i \cdot k_i + v - \sum_{i=r+1}^{r} b_i \cdot k_i = v + \sum_{i=r+1}^{r} b_i (k_i^2 - k_i) = v + v(v - 1) = v^2$$

Příklad 4.6. KPR(4) = (21,5,1)-BIBD $\stackrel{4.5}{\Rightarrow} NOL\check{\mathbf{C}}(21) \geq NOL\check{\mathbf{C}}(5) - 1 = 3$. To je protipříklad na hypotézu McNeishe $NOL\check{\mathbf{C}}(p_i^{r_i}) = \min_i \{p_i^{r_i} - 1\}$.

Věta 4.7 ((v,k,1)-BIBD a NOLČ). Existuje-li (v,k,1)-BIBD, pak

1)
$$NOL\check{C}(v-1) > \min(NOL\check{C}(k-1), NOL\check{C}(k) - 1)$$

2) Pro
$$2 \le x \le k$$
, pak $NOL\check{C}(v-x) \ge \min\{NOL\check{C}(k-x), NOL\check{C}(k) - 1, NOL\check{C}(k-1) - 1\}$

 $D\mathring{u}kaz$. 1) Z blokového schématu (v,k,1)-BIBDu zahoďme jeden prvek. Dostaneme tak (v-1,k-1;k,1)-BIBD (protože r-1 bloků o k-1 prvcích je po dvou disjunktních).

$$(V,\mathcal{B}) \to (V \setminus \{a\}, \mathcal{B}')$$

2) Z blokového schématu (v,k,1)-BIBD zahoďme x prvků, které patří do stejného bloku. Dostaneme tak (v-x,k-x;k-1,k,1)-BIBD (protože jediný blok o k-x prvcích triviálně tvoří průhlednou množinu).

Věta 4.8 ((v,k,1)-BIBD a NOLČ(v-3)). Existuje-li (v,k,1)-BIBD, pak $NOLČ(v-3) \ge \min\{NOL\check{C}(k-2),NOL\check{C}(k-1)-1,NOL\check{C}(k)-1\}.$

 $D\mathring{u}kaz$. Z blokového schématu (v, k, 1)-BIBD zahoďme tři prvky, které neleží ve stejném bloku. Dostaneme tak (v-3,k-2;k,k-1,1)-BIBD (protože bloky o k-2 prvcích jsou po dvou disjunktní).

Příklad 4.9. KPR(4) = (21,5,1)-BIBD $\stackrel{4.8}{\Rightarrow}$:

$$NOL\check{\mathbf{C}}(18) \geq \min\{NOL\check{\mathbf{C}}(3) = 2, NOL\check{\mathbf{C}}(5) - 1 = 3, NOL\check{\mathbf{C}}(4) - 1 = 2\} = 2$$

Přitom $18 \equiv 2 \mod 4$, ale 18 není tvaru 12k + 10.

Definice 4.10 (Řešitelný systém). Systém (V, \mathcal{B}) je řešitelný, pokud $\mathcal{B} = \mathcal{B}_1 \dot{\cup} \dots \dot{\cup} \mathcal{B}_r$ takový, že

- 1. $\forall i : \mathcal{B}_i$ je průhledná
- 2. $\bigcup \mathcal{B}_i = B$

Pak \mathcal{B}_i nazveme třídy řešitelnosti.

Příklad 4.11 (Řešitelný systém). Každá KAR řádu m je řešitelný $(m^2, m, 1)$ -BIBD s (m+1) třídami řešitelnosti, neboť každá třída ekvivalence rovnoběžnosti tvoří jednu třídu řešitelnosti.

Věta 4.12 (Řešitelnost a odhady na NOLČ). Pokud existuje řešitelný (v, k, 1)-BIBD a r třídami řešitelnosti, pak

1.
$$NOL\check{C}(v+1) \ge \min\{NOL\check{C}(k) - 1, NOL\check{C}(k+1) - 1\}$$

- 2. $pro \ 2 \leq x \leq r-2 : NOL\check{C}(v+x) \geq \min\{NOL\check{C}(x), NOL\check{C}(k)-1, \ NOL\check{C}(k+1)-1\}$
- 3. $NOL\check{C}(v+r-1) \ge \min\{NOL\check{C}(r-1), NOL\check{C}(k), NOL\check{C}(k+1)-1\}$
- 4. $NOL\check{C}(v+r) \ge \min\{NOL\check{C}(r), NOL\check{C}(k+1) 1\}$

 $D\mathring{u}kaz$. Pro prvních x tříd řešitelnosti přidáme jeden prvek y_i , přidáme blok obsahující všechna y_i (pokud jich je více než 1) a zároveň prvek y_i přidáme ke každému bloku "své" třídy řešitelnosti. Tím získáme po řadě

- 1) (v+1, k, k+1, 1)-BIBD
- 2a) (v+x,x;k,k+1,1)-BIBD pro $x \neq k$
- 3a) (v+r-1, r-1, k; k+1, 1)-BIBD pro $r-1 \neq k, k+1$
- 4a) (v+r,r;k+1,1)-BIBD pro $r \neq k+1$

Pro speciální případy:

- 2b) x = k: máme (r+k, k, k+1, 1)-BIBD, tedy NOLČ $(r+k) \ge \min\{ \text{NOLČ}(k)-1, \text{NOLČ}(k+1)-1 \} \ge \min\{ \text{NOLČ}(x), \text{NOLČ}(k)-1, \text{NOLČ}(k+1)-1 \}$
- 3b) r-1=k: máme (r+k,k;k+1,1)-BIBD, tedy NOLČ $(r+k) \ge \min\{ \text{ NOLČ}(k), \text{ NOLČ}(k+1)-1\}$
- 3c) r-1=k+1: máme (r+k+1,k+1,1)-BIBD, tedy NOLČ $(r+k+1) \ge$ NOLČ $(k+1)-1 \ge$ min{NOLČ(k+1),NOLČ(k+1)-1}
- 4b) r=k+1, tedy máme (r+k+1,k+1,1)-BIBD, tedy NOLČ $(r+k+1) \ge$ NOLČ $(k+1)-1 \ge$ min{NOLČ(k+1),NOLČ(k+1)-1}

Příklad 4.13 (Řešitelný systém 2). KAR(7) je (49,7,1)-BIBD, je řešitelný a má osm tříd řešitelnosti.

Tedy při volbě x = 1

$$NOL\check{C}(50) \ge \min\{NOL\check{C}(7) - 1, NOL\check{C}(8) - 1\} = \min\{5, 6\} = 5$$

a při volbě x = 5:

$$NOL\check{C}(54) > \min\{NOL\check{C}(5), NOL\check{C}(7) - 1, NOL\check{C}(8) - 1\} = \min\{4, 5, 6\} = 4$$

Definice 4.14 (Skupinově rozložitelný systém). Množinový systém (V, \mathcal{B}) se nazývá skupinově rozložitelný (group divisible), pokud $\exists V_1, \dots, V_n : V_i \subseteq V, V_i \cap V_j = \emptyset$.

- a) $\forall x, y \in V_i : \exists \lambda_1 \text{ bloků sdílejících } x, y$
- b) pro $i \neq j$: $\forall x \in V_i, \forall y \in V_j$: $\exists \lambda_2$ bloků sdílejících x, y.

Pokud všechny bloky mají velikost k, $|V_i| = m$, pak značíme systém jako $GD(v, k, m, \lambda_1, \lambda_2)$. Často se říká, že # skupin je $n \Rightarrow v = nm$.

Věta 4.15 (NOLČ a existence GD). Pokud pro m, k platí $NOLČ(m) \ge k-1$, pak $\exists GD(km, k, m, 0, 1)$ s m třídami řešitelnosti.

Obrázek 1: GD NOLČ

 $D\mathring{u}kaz$. NOLČ $(m) \ge k-1 \Rightarrow \exists OA(m,k+1)$. BÚNO poslední řádek v tabulce má symbol i v i-tém bloku. Tento řádek zahodíme.

Prvek na pozice (i,j) nahradíme právě dvojici souřadnic, takže stejná písmena v různých řádcích jsou odlišné. Postavíme množinový systém:

$$V = \{1, \dots, k\} \times \{1, \dots, n\}$$

kde 1-k jsou původní symboly a 1-n jsou "barvy".

Řádky OA tvoří třídy řešitelnosti velikosti m, bloky jsou sloupce OA (bereme jeden prvek každé barvy).

Z konstrukce máme parametry GD(km,k,m,?,?), zbývá zkontrolovat λ_1,λ_2 . Nechť x,y jsou libovolné 2 prvky ze stejné skupiny nějaké barvy. Jelikož do bloku vždy bereme jenom 1 prvek z barevné skupiny, nemůžou být ve stejném bloku $\Rightarrow GD(km,k,m,0,?)$.

Nechť x,y jsou libovolné prvky z dvou skupin různých barev. Z vlastnosti OA symboly x,y jsou nad sebou pravě v jediném sloupci $\Rightarrow GD(km,k,m,0,1)$.

Konečně zkontrolujeme řešitelnost. Každý obdélník na obrázku fig. 1 tvoří průhlednou množinu. Všechny takové pokrývají celý systém. \Box

Věta 4.16 (Řešitelný GD a NOLČ). Existuje-li GD(v,k,m,0,1) řešitelný, GD má r tříd řešitelnosti, pak

$$\forall x \in [r-1] : NOL\check{\mathbf{C}}(v+x) \ge \min\{NOL\check{\mathbf{C}}(m), NOL\check{\mathbf{C}}(x), NOL\check{\mathbf{C}}(k) - 1, NOL\check{\mathbf{C}}(k+1) - 1\}$$

 $D\mathring{u}kaz$. Označme skupiny rozložitelnosti V_1, \ldots, V_n , pak v = mn. Přidáme skupiny jako bloky

$$(V,\mathcal{B}) \to (V,\mathcal{B}'), \mathcal{B}' = \mathcal{B} \cup \{V_1,\ldots,V_n\}$$

Pak (V, \mathcal{B}') je $(v, m; k, \lambda = 1)$ -BIBD. λ je uniformní, protože prvky z S_i teď patří do 1 společného bloku. Navíc bloky S_i velikosti m jsou po 2 disjunktní. Pozor, toto neplatí pro m = k, tady průhlednou množinu tvoří právě bloky V_1, \ldots, V_n .

Přidáme navíc prvky $y_1, ..., y_x$, taky přidáme blok $\{y_1, ..., y_x\}$. Do všech množin z *i*-te třídy řešitelnosti přidáme prvek y_i . Čímž vznikne množinový systém (V', \mathcal{B}'') . Kde |V'| = v + x a je to (v + x, m, k + 1, k, ?, ?).

Zkontrolujeme λ rozborem případu:

- 2 prvky z modrých množin pořad jsou v 1 společném bloku.
- prvek y_i a nějaký prvek z třídy řešitelnosti je právě v 1 bloku
- 2 prvky y_i, y_k jsou v 1 nově přidaném bloku.

Dohromady máme $(v+x,m,x;k+1,k,\lambda=1)$ -BIBD. Navíc bloky tvořící skupiny rozložitelnosti a nový blok y-nů tvoří průhlednou množinu. Dle 4.5:

$$NOL\check{\mathbf{C}}(v+x) \ge \min\{NOL\check{\mathbf{C}}(m), NOL\check{\mathbf{C}}(x), NOL\check{\mathbf{C}}(k) - 1, NOL\check{\mathbf{C}}(k+1) - 1\}$$

Když m=k tak $NOL\check{\mathbf{C}}(m)$ je v min zbytečný, protože $NOL\check{\mathbf{C}}(k)-1$ je o 1 menší. Neboli v tomto případě nezáleží jestli bloky skupiny řešitelnosti tvoří průhlednou množinu.

Taky ale může být m=k+1, x=k, x=k+1. Všechny tyto případy jsou analogické m=k. \square

Důsledek 4.17 (O násobení NOLČ). Je- $li NOLČ(m) \ge k-1$, pak

$$\forall x \in [r-1]: NOL\check{\mathbf{C}}(km+x) \geq \min\{NOL\check{\mathbf{C}}(m), NOL\check{\mathbf{C}}(x), NOL\check{\mathbf{C}}(k) - 1, NOL\check{\mathbf{C}}(k+1) - 1\}$$

Ale kvůli tomu, že třídy řešitelnosti jsou obdélníky na obrázku fig. 1 a jsou velikosti m můžeme vzít vetší x:

$$\forall x \in [m-1]: NOL\check{\mathbf{C}}(km+x) \ge \min\{NOL\check{\mathbf{C}}(m), NOL\check{\mathbf{C}}(x), NOL\check{\mathbf{C}}(k) - 1, NOL\check{\mathbf{C}}(k+1) - 1\}$$

Lemma 4.18 (Dolni odhad pro NOLČ). Pokd $NOLČ(4t+2) \ge 2$ pro každé $2 \le t \le 181$, pak $NOL\check{C}(4t+2) \ge 2$ pro každé $t \ge 2$.

Znění říká, že pokud existuji aspoň 2 ortogonální $L\check{C}$ pro $10, 14, 18, \dots, 5 \cdot 181 + 2 = 726$.

 $D\mathring{u}kaz$. Nechť $t\geq 730, v=4t+2$. Podělíme v-10 číslem 144: $v-10=144g+z, z\in [0,144)$. Jelikož $v,10\equiv 2\mod 4$ tak jejich součet je dělitelný 4. Taky 144 = 36 $\Rightarrow z=4u, u\in [0,36)$. Přepíšeme $v=4\cdot 36g+4u+10$. Dal

$$NOL\check{\mathbf{C}}(36g) = NOL\check{\mathbf{C}}(2^{\geq 2} \cdot 3^{\geq 2} \cdot 5 \cdot \ldots) \geq \min(NOL\check{\mathbf{C}}(2^{\geq 2}), NOL\check{\mathbf{C}}(3^{\geq 2}), \ldots) \stackrel{2.12}{\geq} \min(3, 8, \geq 3, \ldots) = 3 \geq k - 1$$

Použijeme 4.17 s m = 36g, k = 4, x = 4u + 10.

$$\begin{split} NOL\check{\mathbf{C}}(m) &\geq k-1 \overset{4.17}{\Rightarrow} NOL\check{\mathbf{C}}(mk+x) = NOL\check{\mathbf{C}}(v) \geq \\ &\geq \min(NOL\check{\mathbf{C}}(36g) \geq 3, NOL\check{\mathbf{C}}(4u+10), NOL\check{\mathbf{C}}(4) - 1 = 2, NOL\check{\mathbf{C}}(5) - 1 = 3) \end{split}$$

Taky $10 \le 4u + 10 \le 4 \cdot 35 + 10 = 150 \le 726$. Takže dle předpokladu $NOL\check{\mathbf{C}}(4u+10) \ge 2$. Neboli $\min(NOL\check{\mathbf{C}}(36g) \ge 3, NOL\check{\mathbf{C}}(4u+10) \ge 2, NOL\check{\mathbf{C}}(4) - 1 = 2, NOL\check{\mathbf{C}}(5) - 1 = 3) = 2$

Věta 4.19 (NOLČ je aspoň 2). $\forall v > 6 : NOL\check{C}(v) \ge 2$.

 $D\mathring{u}kaz.$ Pokud $v\not\equiv 2\mod 4$ tak jsme dokázali v 2.13.

Jinak $v \equiv 2 \mod 4\&v \le 726$ věříme jako fakt. Pro $v \ge 730$ existuje z lemma 4.18. \square

5 Konečné projektivní prostory

5.1 KPP zaklady

Definice 5.1 (Konečný projektivní prostor, kolinearita). (P, \mathcal{L}) takový, že P je konečná množina bodů a \mathcal{L} je množinový systém (přímek) na P, je konečný projektivní prostor, splňuje-li axiomy A1, A2, A3.

Dále body $x \neq y \neq z \neq x$ takové, že $x, y, z \in l \in \mathcal{L}$, nazveme kolineární.

- (A1) $\forall x \neq y \in P \exists ! l \in \mathcal{L} : x, y \in l$ Takové přímce říkáme xy.
- (A2) netrivialita: $\forall l \in \mathcal{L} : |l| \geq 3$
- (A3) $\forall a,b,c: a \neq b \neq c \neq a, \&a,b,c$ nekolineární: $\forall x \in ac, y \in bc \exists z \in ab$ takový, že x,y,z jsou kolineární.

Pozorování 5.2.

$$\forall l_1 \neq l_2 \in \mathcal{L} : |l_1 \cap l_2| \leq 1$$

Protože jinak pro 2 body ležící v průniku je porušen A1.

Definice 5.3 (Podprostor). Je-li (P,\mathcal{L}) konečná geometrie, pak $U \subseteq P$ je podprostor, jestliže

$$\forall x \neq y \in U : xy \subseteq U$$

Zachovává přímky pro všechny body v podprostoru.

Poznámka 5.4 (Podprostor a KPP). Je-li $U \subseteq P$ podprostor, pak $(U, \mathcal{L}|_U)$ je konečný projektivní prostor.

Lemma 5.5 (Průnik podprostorů je podprostor). Pro $U, V \subseteq \mathcal{L}$ je podprostor, pak $U \cap V$ je podprostor.

Důkaz. Pro libovolné 2 různé body v průniku, dle definice podprostoru

$$x \neq y \in U \cap V \Rightarrow xy \subseteq U, xy \subseteq V \Rightarrow xy \subseteq U \cap V$$

Pozorování 5.6 (Triviální podprostory). $(\{x\},\emptyset)$ je KPP protože splňuje všechna tvrzení o přímkách, jelikož žádné nemá.

Podobně (\emptyset, \emptyset) je KPP, z toho lze udělat disjunktní podprostory.

Definice 5.7 (Obal). Buď $A \subseteq P, (P, \mathcal{L})$: pak $\langle A \rangle$ je nejmenší podprostor, který obsahuje A.

$$\langle A \rangle = \bigcap_{\substack{U \text{ podpr. } P \\ A \subseteq U}} U$$

Protože platí:

$$\forall U$$
 podpr. $P, A \subseteq U : \langle A \rangle \subseteq U$

Lemma 5.8 (O přidání prvku do podprostoru). $BudS \subseteq P$ podprostor $(P, \mathcal{L}), a \notin S$. Potom $\langle S \cup \{a\} \rangle = \bigcup_{x \in S} ax$.

 $D\mathring{u}kaz$. " $\langle S \cup \{a\} \rangle \supseteq \bigcup_{x \in S} ax$ ". Jelikož obal je podprostor, všechny přímky ax v něm musí být. Opačnou inkluzi ukážeme tak, že $AX = \bigcup_{x \in S} ax$ je podprostor. Obal je průnikem všech podprostoru, takže pokud průnik obsahuje AX tak nemůže mít nic navíc. Neboli $\langle S \cup \{a\} \rangle \subseteq \bigcup_{x \in S} ax$. Dle Definice 5.3 musíme ukázat:

$$\forall u \neq v : uv \subseteq AX$$

Rozbor případů:

- 1. $u = a \lor v = a$, tak druhý bod leží na nějaké přímce ax. Triviálně cela přímka $ax \subseteq AX$.
- 2. $u \in S \land v \in S$ je splněno dle Definice 5.3.
- 3. BUNO $(u \in S \iff u = x) \land v \notin S$. Pokud $u \in ax$ triviálně. Jinak $u \in ay, y \in S$. // TODO finish
- 4. $u, v \notin S; u, v \neq a; uv \not\supseteq a$ Cheeme $w \in uv \Rightarrow w \in AX$.

Nechť $u' \in au \land u' \in S$ analogicky v'. Dle A3:

$$\exists u : uv \cap u'v' \in S$$

Další 3
ce nekolineárních bodů je u,u',y. Proto $\exists w' \in u'y \subseteq S$. Pak
i $w \in w'a \Rightarrow w \in AX$.

Lemma 5.9 (Sjednocení podprostorů). Buďte $S,T\subseteq P$ podprostory (P,\mathcal{L}) . Potom

$$\langle S \cup T \rangle = \bigcup_{\substack{s \in S \\ t \in T \\ s \neq t}} st$$

 $D\mathring{u}kaz.$ Označme $\bigcup_{\substack{s \in S \\ t \in T}} st = SUT.$ Triviálně platí: $SUT \subseteq \langle S \cup T \rangle.$

Pro rovnost stačí ukázat že SUT je podprostor. Triviální případy:

- 1. $a \in S \land b \in S$ je splněno dle Definice 5.3. Analogicky pro T.
- 2. $a \in S \land b \in T$ dle konstrukce SUT.
- 3. $a \in S \land b \in rp, r \in S, p \in T$ jako v lemma 5.8.

Netriviální případ:

$$u \in s_1 t_1 : s_1 \in S, t_1 \in T \land v \in s_2 t_2 : s_2 \in S, t_2 \in T$$

Pokud by $s_1 = s_2 \lor t_1 = t_2$ tvrzení platí z lemma 5.8. Chceme

$$\forall x \in uv \exists a, b : a \in S, b \in T : x \in ab$$

Kroky:

1. podíváme se na body s_1, u, v :

$$t_1x \cap s_1u = t_1 \wedge t_1x \cap uv = x \stackrel{A3}{\Rightarrow} \exists y : t_1x \cap s_1v = y$$

2. podíváme se na body s_1, s_2, v :

$$t_2y \cap s_2v = t_2 \wedge t_2y \cap s_1v = y \stackrel{A3}{\Rightarrow} \exists z \in S : t_2y \cap s_1s_2 = z$$

3. podíváme se na body t_1, t_2, y :

$$zx \cap yt_1 = x \wedge zx \cap t_2y = z \stackrel{A3}{\Rightarrow} \exists q \in T : t_1t_2 \cap zx = q$$

Dohromady $x \in zq$.

Definice 5.10 (Projektivně nezávislá množina). Množina $A \subseteq P$ v (P, \mathcal{L}) je projektivně nezávislá, jestliže

$$\forall a \in A : \langle A \setminus \{a\} \rangle \neq \langle A \rangle$$

Lemma 5.11 (Přidání prvku do projektivně nezávislé množiny). Je-li A projektivně nezávislá \mathcal{E} $b \notin \langle A \rangle$, pak $A \cup \{b\}$ je projektivně nezávislá.

Analogie z vektorových prostoru: pokud máme lineárně nezávislé vektory a přidáme vektor který nelze vyjádřit jako lineární kombinaci, tak dostaneme množinu lineárně nezávislých vektorů.

 $D\mathring{u}kaz$. Nechť sporem $A \cup \{b\}$ není projektivně nezávislá \Rightarrow

$$\exists a \in A \cup \{b\} : \langle A \cup \{b\} \setminus \{a\} \rangle = \langle A \cup \{b\} \rangle$$

Rozebereme 2 případy:

- 1. $a = b \Rightarrow \langle A \rangle = \langle A \cup \{b\} \rangle \Rightarrow b \in \langle A \rangle$ spor s předpokladem.
- 2. $a \in A$. Nechť $A' = A \setminus \{a\}$. Pak

$$\langle A' \cup \{b\} \rangle = \langle A \cup \{b\} \rangle = \langle A' \cup \{b\} \cup \{a\} \rangle \Rightarrow a \in \langle A' \cup \{b\} \rangle$$

Pak ale a leží na nějaké přímce mezi A' i $\{b\}$. Neboli nastane situace na obrázku

$$b \in \langle \langle A' \rangle \cup \{a\} \rangle = \langle A \rangle$$

spor s předpokladem.

Pozorování 5.12 (Projektivní nezávislost a generované podprostory). $A_1, A_2 \subseteq P$: $\langle A_1 \rangle = \langle A_2 \rangle \Rightarrow \forall x : A_1 \cup \{x\}$ je projektivně nezávislá, právě když $A_2 \cup \{x\}$ je projektivně nezávislá.

Důkaz. Tvrzení je symetrické, stačí ukázat:

$$A_1 \cup \{x\}$$
 je pr n $\Rightarrow A_2 \cup \{x\}$ je pr n

$$A_1 \cup \{x\}$$
 je pr n $\Rightarrow \langle A_1 \cup \{x\} \rangle \neq \langle A_1 \rangle \Rightarrow x \notin \langle A_1 \rangle \Rightarrow x \notin \langle A_2 \rangle \Rightarrow A_2 \cup \{x\}$ je pr n.

Věta 5.13 (O výměně). Buďte A, B projektivně nezávislé množiny v $(P, \mathcal{L}), |A| < |B|$. Pak existuje $b \in B$ taková, že $A \cup \{b\}$ je projektivně nezávislá.

 $D\mathring{u}kaz$. Indukci podle |A| a zpětnou indukci (sestupně) dle $|A \cap B|$.

- 1) $A = \emptyset \Rightarrow B \neq \emptyset \Rightarrow \exists b \in B \Rightarrow A \cup \{b\} = \{b\}$ je triviální případ KPP.
- $A \subseteq B \Rightarrow \exists b \in B \setminus A \Rightarrow A \cup \{b\}$ je pr nezávislá protože je podmnožinou pr nezávislé.
- 2) indukční krok $\exists a \in A \setminus B$. Uvažme $A' = A \setminus \{a\}$. Jelikož |A'| < |A| < |B|. Dle i.p $\exists b \in B : A' \cup \{b\}$ je pr nezávislá. Rozebereme případy:
 - 1. $b \notin \langle A \rangle \overset{lemma}{\Rightarrow} ^{5.11} A \cup \{b\}$ je pr
 nezávislá.
 - 2. $b \in \langle A \rangle$. Označme $A'' = A' \cup \{b\} |A''| = |A| < |B|$. Taky $|A'' \cap B| > |A \cap B|$.

Dle i.p (velikost průniku) $\exists c \in B : A' \cup \{c\}$ je pr nezávislá. Dal $b \in \langle A \rangle \Rightarrow \langle A'' \rangle$. Dle 5.12 $A' \cup \{c\}$ je pr nezávislá.

Definice 5.14 (Projektivní báze). Projektivní báze je do inkluze maximální projektivně nezávislá množina.

Důsledek 5.15 (Projektivně nezávislá množina a báze). Každou projektivně nezávislou množinu lze doplnit na bázi a všechny projektivní báze mají stejnou mohutnost.

 $D\mathring{u}kaz$. Nechť máme pr nezávislou A. KPP je konečný, takže i # pr nezávislých je konečný. Vezmeme největší B pr nezávislou. Pak buď $|A| = |B| \Rightarrow A$ je maximální je pr báze.

Nebo $|A| < |B| \stackrel{5.13}{\Rightarrow} \exists b \in B : A \cup \{b\}$ je pr
 nezávislá. Můžeme postupovat dokud |A| < |B|. \square

Definice 5.16 (Dimenze). $\dim_P S = |B| - 1$, kde B je projektivní báze S.

Poznámka 5.17 (O dimenzi). • $\dim_P(\{a\},\emptyset) = 0$

- $\dim_P(\emptyset,\emptyset) = -1$
- $\dim_P(\text{přímka}) = 2 1 = 1$. 2 body tvoří pr nezávislou množinu, 3 již určuji stejnou přímku.
- Vezmeme 3 pr nezávislé body jejich obal je KPR. Pak $\dim_P(KPR) = 2$ Taky ale libovolný podprostor s $\dim_P = 2$ je KPR.

Důsledkem je, že všechny přímky v KPP mají stejnou mohutnost.

Věta 5.18 (O dimenzi průniku a spojení). Buďte U, V podprostory (P, \mathcal{L}) . Pak

$$\dim_P(U \cap V) + \dim_P(\langle U \cup V \rangle) = \dim_P(U) + \dim_P(V)$$

 $D\mathring{u}kaz.$ Z uzavřenosti na podprostory, $U\cap V$ je podprostor. Z 5.15 má bázi A. Analogicky má bázi $\langle U\cup V\rangle.$

Doplníme dle 5.13 A na bázi $B:\langle B\rangle=U$ a taky na $C:\langle C\rangle=V.$ $A\subseteq B, A\subseteq C.$ Označme:

$$\dim_P(U) = u, \dim_P(V) = v, \dim_P(U \cap V) = w$$

Taky víme

$$|B| = u + 1, |C| = v + 1, |A| = w + 1$$

Pozorování 1 $B \cup C$ je pr nezávislá množina a generuje $\langle U \cup V \rangle$. Vezmeme libovolný $x \in \langle U \cup V \rangle$ tak leží na přímce $ab : a \in U, b \in V$. Taky a, b leží na přímkách spojujících 2 body z bázi. Najdeme přímku spojující bod z bázi U a bázi V takovou že obsahuje x.

Necht sporem $B \cup C$ není pr nezávislá množina, pak jeden bod můžeme zahodit.

$$\exists a \in C : \langle B \cup C \rangle = \langle (B \cup C) \setminus \{a\} \rangle$$

Nutně $a \in C \setminus B$, označme $C_1 = C \setminus \{a\}$. Pak

$$\langle B \cup C \rangle = \langle (B \cup C) \setminus \{a\} \rangle = \langle B \cup C_1 \rangle$$

Najdeme 2 body $x,y:a\in xy$. Může nastat pouze případ $x\in U,y\in V$. Protože jinak z vlastnosti podprostoru by a leželo na přímce spojující 2 body báze. Takže

$$a \in xy : x \in U \setminus V, y \in V \setminus U \Rightarrow x \in ya \subseteq V$$

spor.

Znovu napíšeme rovnici dimenzi:

$$w + \dim_P(\langle U \cup V \rangle) = u + v$$

Navíc $|B \cup C| - u + 1 + v + 1 - (w + 1) = u + v - w$. Pak $\dim_P(B \cup C) = u + v - w$ a dostáváme rovnost.

Pozorování 5.19. U je podprostor KPP P a $\dim_P(U) = \dim_P(P) \Rightarrow U = P$.

 $D\mathring{u}kaz$. Sporem nechť $U \neq V \Rightarrow \exists x \in P \setminus U \Rightarrow x$ je pr
 nezávislý na bázi U. Pak

$$\dim_P(\langle U \cup \{x\} \rangle) = \dim_P U + 1 \le \dim_P P = \dim_P U$$

spor jak vyšitý.

Věta 5.20 (Modularita). Nechť A, B, C jsou podprostory $v(P, \mathcal{L})$ taková, že $B \subseteq A$. Pak

$$A \cap (\langle B \cup C \rangle) = \langle B \cup (A \cap C) \rangle$$

 $D\mathring{u}kaz$.

$$B \subseteq A \& B \subseteq \langle B \cup C \rangle \Rightarrow B \subseteq A \cap (\langle B \cup C \rangle)$$

Podobně

$$A \cap C \subseteq A \& A \cap C \subseteq C \subseteq \langle B \cup C \rangle \Rightarrow \langle A \cup C \rangle \subseteq A \cap (\langle B \cup C \rangle)$$

Dohromady

$$A \cap (\langle B \cup C \rangle) \supseteq \langle B \cup (A \cap C) \rangle$$

Druhou inkluzi ukážeme pomoci dimenzi a 5.19:

$$D_1 = \dim_P(A \cap (\langle B \cup C \rangle)) = \dim_P A = \dim_P(\langle B \cup C \rangle) - \dim_P(\langle A \cup B \cup C \rangle)$$

$$D_2 = \dim_P(\langle B \cup (A \cap C) \rangle) = \dim_P B + \dim_P(A \cap C) - \dim_P(A \cap B \cap C)$$

Jelikož $B \subseteq A$:

$$D_1 = \dim_P A = \dim_P(\langle B \cup C \rangle) - \dim_P(\langle A \cup C \rangle)$$

$$D_2 = \dim_P(\langle B \cup (A \cap C) \rangle) = \dim_P B + \dim_P(A \cap C) - \dim_P(B \cap C)$$

Taky

$$\dim_P A + \dim_P (B \cap C) + \dim_P (\langle B \cup C \rangle) =$$

$$\dim_P A + \dim_P B + \dim_P C =$$

$$\dim_P B + \dim_P (A \cap C) + \dim_P (\langle A \cup C \rangle)$$

Po úpravách $D_1 = D_2$.

Důsledek 5.21 (Průnikem dvou rovin v prostoru je přímka). $Bud\ P, \pi, \sigma : \dim_P P = 3, \dim_P \pi = \dim_P \sigma = 2, \pi \neq \sigma \Rightarrow \pi \cap \sigma \ je \ přímka - \dim_P (\pi \cap \sigma) = 1.$

 $D\mathring{u}kaz. \langle \pi \cup \sigma \rangle = P.$

$$\dim_P(\pi \cap \sigma) = \dim_P \pi + \dim_P \sigma - \dim_P(\langle \pi \cup \sigma \rangle) = 2 + 2 - 3 = 1$$

Definice 5.22 (Izomorfizmus KPP $\pi \cong \sigma$).

$$\exists f: \pi \to \sigma: x, y, z \in l \in \mathcal{L}_1 \iff f(x), f(y), f(z) \in \mathcal{L}_2$$

kde f je bijekce.

Věta 5.23 (Roviny si jsou podobné). $Bud'(P,\mathcal{L})$, $s \pi, \sigma$ rovinami v P. $Pak \pi \cong \sigma$.

 $D\mathring{u}kaz$. Víme $\dim_P(\pi \cap \sigma) \leq 2$, pak

1. $\dim_P(\pi \cap \sigma) = 1$ v průniku je přímka. Vezmeme $x \in \langle \pi \cup \sigma \rangle \setminus (\pi \cup \sigma)$ Uvažme

$$\forall y \in \pi : xy \cap \sigma = x'$$

Bod existuje protože

$$\dim_P xy \cap \sigma = \dim_P xy + \dim_P \sigma - \dim_P (xy \cup \sigma) = 1 + 2 - 3 = 0$$

Různým bodům x naleží různé body x' protože jinak by byl porušen axiom o 1 přímce.

Zbývá ukázat $xy\cap(\pi\cap\sigma=A)\Rightarrow y'\in A'x'.$ Plyne z A3, dle obrázku:

2. dim $_P(\pi \cap \sigma) = 0$ v průniku je bod x. Vezmeme bázi π a σ . Pak vezmeme $y \in$ bázi π , $z \in$ bázi σ a bod x. Necht $\langle \{x, y, z\} \rangle = \tau$.

$$\dim_P \pi \cap \tau = 1 \& \dim_P \sigma \cap \tau = 1$$

dle předchozího případu $\pi \cong \tau \cong \sigma$.

3. $\pi \cap \sigma = \emptyset$. Sestavíme τ_1 jako 2 body z bázi π a jeden bod z bázi σ . Opačně τ_2 jako 2 body z bázi σ a jeden bod z bázi π . Pak

$$\dim_P \pi \cap \tau_1 = 1 \& \dim_P \sigma \cap \tau_2 = 1 \& \dim_P \tau_1 \cap \tau_2 = 1$$

Takže $\pi \cong \tau_1 \cong \tau_2 \cong \sigma$.

5.2 Singerova konstrukce, Veblen-Young věta

Příklad 5.24. Nechť $q=p^r$ taky $n\geq 3\in\mathbb{N}$. Uvažme $GF(q)^{n+1}$, pak body jsou lineární obaly jednotlivých vektorů:

$$P = \{ \langle u \rangle | \ u \in GF(q)^{n+1} \setminus \{0\} \}$$

Přímky budou všechny podprostory dimenze 2:

$$\mathcal{L} = \{ \langle u, v \rangle | \ u, vLN \in GF(q)^{n+1} \}$$

Označme přímky určené vektory $u, v := l_{u,v}$. Ověříme axiomy Definice 5.1:

1. $|l_{u,v}|$. Lineární kombinace dvou vektorů je tvaru $\alpha u + \beta v$. Kde $\alpha, \beta \in GF(q)$, neboli q možnosti zvolit každý. Musíme ale zahodit kombinaci která dává 0 vektor. Vždy ale q-1 násobku stejného vektoru je dle definice stejný bod.

$$\# = \frac{q^2 - 1}{q - 1} = q + 1$$

Toto q bude řad prostoru.

2. z konstrukce $\forall u, vLN \exists !$ přímka $l : \langle u \rangle, \langle v \rangle \in l$.

3. Nechť u, v, w jsou LN vektory. Vezmeme a, b ležící na přímce vu, uw:

$$a = \alpha u + \beta v, b = \gamma u + \delta w$$

Cheeme xa + yb = rv + sw.

$$x(\alpha u + \beta v) + y(\gamma u + \delta w) = rv + sw$$
$$x\alpha + y\gamma = 0$$
$$x\beta = r$$
$$y\delta = s$$

Soustava má řešení.

Věta 5.25 (Singerova konstrukce). Existuje-li (P,\mathcal{L}) KPP řádu q dimenze n, pak existuje cyklický $(\frac{q^{n+1}-1}{q-1}, \frac{q^n-1}{q-1}, \frac{q^{n-1}-1}{q-1})$ -SBIBD.

 $D\mathring{u}kaz$. V=P, $\mathcal{B}=$ nadroviny v $(P,\mathcal{L})=$ podprostory dim=n-1. Které vzniknou tak, že ve vektorovém prostoru vezmeme podprostor dim=n.

$$|V| = |P| = \frac{q^{n+1}}{q-1} = q^n + q^{n-1} + \dots + 1$$

Velikost nadroviny $H\subseteq P: |H|=\frac{q^n-1}{q-1}=q^{n-1}+q^{n-2}+\ldots+1$. Nechť H_1,H_2 jsou podprostory KPP, které vznikli z podprostoru VP U_1,U_2 . Pak

$$\dim(U_1 \cap U_2) = n - 1 \Rightarrow |U_1 \cap U_2| = q^{n-1}$$

Jelikož v průniku podprostorů VP je vždy 0 vektor a q-1 jsou násobky stejného vektoru neboli stejného bodu v KPP. Takže

$$|H_1 \cap H_2| = \frac{q^{n-1} - 1}{q - 1}$$

Nadrovin je tolik, kolik je podprostoru v VP. Každý podprostor VP je určen lineární rovnici, jejichž počet je roven dim. Neboli

$$|B| = \frac{q^{n+1}}{q-1} = |V| = |P|$$

V matici incidence A vzniklého množinového systému každé 2 sloupečky mají stejný # 1. Pokud matici transponujeme, tak řádky mají stejný počet 1. Neboli A je matice symetrického BIBDu a:

$$|H_1 \cap H_2| = \frac{q^{n-1} - 1}{q - 1} = \lambda$$

Takže množinový systém je cyklický $(\frac{q^{n+1}-1}{q-1},\frac{q^n-1}{q-1},\frac{q^{n-1}-1}{q-1})$ -BIBD. Cyklický BIBD znamená, že existuje automorfismus (neboli permutace) který je jediný cyklus. Permutace bloků taky bude jediný cyklus.

Věta 5.26 (KPP \exists **BIBD).** $Bud'(P,\mathcal{L})$ konečný projektivní prostor řádu q a dimenze n. Pak jeho nadroviny tvoří symetrický $(\frac{q^{n+1}-1}{q-1}, \frac{q^n-1}{q-1}, \frac{q^{n-1}-1}{q-1})$ -BIBD.

Důkaz. Zkontrolujeme vlastnosti BIBDu indukci dle dimenze prostoru, základní případ KPR.

1.
$$|P| = q^n + q^{n-1} + \ldots + 1 = \frac{q^{n+1}-1}{q-1}$$
.

Indukční krok: nechť H podprostor P. Dle i.p $|H|=q^{n-1}+q^{n-2}+\ldots+1$. Vezmeme $x\in P\setminus H$, vytvoříme podprostor spojením každého bodu $h\in H$ s x přímkou xh, dle lemma 5.8. Na každé z těchto přímek je dalších q bodů. Neboli

$$|P| = q \cdot |H| + 1 = q(q^{n-1} + q^{n-2} + \dots + 1) + 1 = q^n + q^{n-1} + \dots + 1$$

2. # nadrovin. Nechť znovu H, A nadroviny: $H \cap A = U$

$$\dim_P H \cup A = n \stackrel{5.18}{\Rightarrow} \dim_P U = n - 2$$

Uje nadrovina v Htak
yUje průnikem Hs qdalšími nadrovina
mi. Avznikne přidáním přímek mezi 1 bod mimo průnik
aU.

$$|P \setminus H| = (q^n + q^{n-1} + \dots + 1) - (q^{n-1} + q^{n-2} + \dots + 1) = q^n$$

Analogicky

$$|H \setminus U| = q^{n-1}$$

Pokud zafixujeme U, tak ho lze doplnit na nadrovinu $\frac{q^n}{q^{n-1}}$ způsoby. Dle i.p H má $(q^{n-1} + q^{n-2} + \ldots + 1)$ nadrovin. Z nich vznikne

$$q(q^{n-1}+q^{n-2}+\ldots+1)$$
 + sama $H=q^n+q^{n-1}+\ldots+1$

3. Vezměme bod $X \in H$. Každá další nadrovina, která bod X obsahuje, protíná H v prostoru projektivní dimenze (n-2), tento průnik je tedy nadrovina v H obsahující bod X. Podle indukčního předpokladu je takovýchto nadrovin $q^{n-2} + q^{n-3} + \ldots + 1$, a podobně jako v předchozím bodě, každá z nich vznikla jako průnik s q možnými nadrovinami v P.

Věta 5.27 (KPP dimenze alespoň 3 mají Desargovskou vlastnost). Konečné projektivní prostory dimenze alespoň 3 mají Desargovskou vlastnosti.

Důkaz. Rozbor případu:

1. O, A, B, C neleží v jedné rovině. Taky to znamená, že

$$\pi = \langle A, B, C \rangle \neq \langle A', B', C' \rangle = \sigma$$

Všechny body na obrázku leží v 3-dim podprostoru.

Protože např $OA^\prime C^\prime$ tvoří rovinu. Přidáním bodu Bdimenze se zvedne o 1. Konečné bod B^\prime vytvoří 3d prostor

Proto

$$\dim_P(\pi \cap \sigma) = \dim_P \pi + \dim_P \sigma - \dim_P(\langle \pi \cup \sigma \rangle) = 2 + 2 - 3 = 1$$

Bod $P \in AB\&P \in A'B' \Rightarrow \in \pi \cap \sigma$ Podobně Q, R. Tyto 3 body jsou na hledané přímce.

- 2. O, A, B, C leží v jedné rovině π .
 - (a) Vezmeme 2 body mimo rovinu

$$\exists S \notin \pi, B_0 \in SB, B_0 \neq S, B_0 \notin \pi$$

Pak přímky $SP \cap AB_0 = P_0$. Taky $SB' \cap OB_0 = B_0'$. Tvrdíme P_0, A', B_0' jsou kolineární. Za prvé leží v $SPB' \cap OAB_0$.

$$P_0 \in PS\&A' \in PB'\&B'_0 \in SB' \Rightarrow P_0, A', B'_0 \in SPB'$$

 $P_0 \in AB_0\&A' \in OA\&B'_0 \in OB'_0 \Rightarrow P_0, A', B'_0 \in OAB_0$

- (b) Podobně $R_0 = CB_0 \cap RS$. Tvrdíme jako výš R_0, C', B'_0 jsou kolineární.
- (c) Tvrdíme jako výš P_0, R_0, Q jsou kolineární. Protože

$$P_0, R_0, Q \in AB_0C \cap A'B_0'C'$$

$$P_0 \in AB_0 \& R_0 \in CB_0 \& Q = AC \cap A'C' \Rightarrow Q \in AC \Rightarrow \in AB_0C$$

$$P_0 \in A'B_0' \& R_0 \in C'B_0' \& Q \in A'C' \Rightarrow \in A'B_0'C'$$

(d) Finálně P,Q,Rjsou kolineární. $P,Q,R\subseteq \pi\cap SP_0R_0$

$$P \in SP_0 \& R \in SR_0 \& Q \in P_0R_0 \Rightarrow \in SP_0R_0$$

Definice 5.28 (Automorfismus). Bijekce $\alpha:(V,\mathcal{B})\to (V,\mathcal{B})$ taková, že $\forall B\in\mathcal{B}:\alpha[B]\in\mathcal{B}$ je automorfismus.

Poznámka 5.29 (Inverz automorfismu je automorfismus). Pro konečné prostory platí, že pro α automorfismus je α^{-1} automorfismus.

 $D\mathring{u}kaz$. α jako permutace prvků je disjunktní sjednocení cyklů. Jelikož α je automorfismus, z každého bloku vede právě jedna šipka. Nemůže se stát, aby z bloky vedli 2 hrany. Taky dokážeme, že do každého bloku vede právě jedna šipka. Pro libovolný blok z bijekce platí:

$$\exists ! A : \alpha(A) = B'$$

V grafu zobrazení $\alpha: \forall u: deg_{out}(u) = 1, deg_{in} \leq 1$. Z konečnosti i $deg_{in} = 1$.

Neboli α na blocích je taky permutace. Pokud půjdeme po cyklech zpátky, znovu dostaneme bloky:

$$\forall B \in \mathcal{B} : \alpha^{-1}(B) \in \mathcal{B}$$

Takže automorfismy tvoří grupu.

Definice 5.30 (Kolineace). Kolineace je zobrazení $\alpha: V \cup \mathcal{B} \to V \cup \mathcal{B}$ takové, že $\alpha \upharpoonright V$ je bijekce na $V, \alpha \upharpoonright \mathcal{B}$ je bijekce na \mathcal{B} a zachovává incidence

$$\forall x \in V, \forall B \in \mathcal{B} : x \in B \Leftrightarrow \alpha(x) \in \alpha(B)$$

Věta 5.31 (Automorfismy a kolineace). Nechť pro (V, \mathcal{B}) platí:

$$\forall B \in \mathcal{B} : |B| \ge 2 \& \forall x \ne y \in V \exists ! B \in \mathcal{B} : x, y \in B$$

Neboli je to nepravidelný ($|V|, \{2,3,...\}, \lambda = 1$)-BIBD.

Nechť $\alpha: V \to V$ je permutace, $\overline{\alpha}: V \cup B \to V \cup 2^V$ takové, že

$$\forall x \in V : \overline{\alpha}(x) = \alpha(x)$$

 $a \ \overline{\alpha}(B) = {\alpha(x) : x \in B}.$ Pak následující tvrzení jsou ekvivalentní:

- 1. α je automorfismus
- 2. $\overline{\alpha}$ je kolineace
- 3. α zachovává kolinearitu:

$$\forall x \neq y \neq z \neq x \in V : x, y, z \ kolineární \Rightarrow \alpha(x), \alpha(y), \alpha(z) \ kolineární$$

 $D\mathring{u}kaz$. 1. Označme zobrazení na prvcích a blocích jako $\overline{\alpha}$. Aby vůbec byla kolineace, musí zachovávat incidence:

$$\overline{\alpha}(B) = {\alpha(x) : x \in B}$$

Z vlastnosti automorfismu, zobrazuje blok na blok, neboli je kolineace.

- 2. $\overline{\alpha}$ je kolineace což implikuje, že $\overline{\alpha}$ permutace na blocích $\Rightarrow \alpha$ je automorfismus.
- 3. z kolinearity

$$\forall B \in \mathcal{B} \exists B' \in \mathcal{B} : \alpha(B) \subseteq B'$$

Sestrojíme graf, vrcholy jsou bloky, hrany dle předchozího vztahu:

$$\mathcal{B}_{\alpha}^{C} = (\mathcal{B}, \{BB' : \alpha(B) \subseteq B'\})$$

Z každého vrcholu vychází aspoň 1 hrana. Nechť sporem z bloku B máme 2 out hrany. Pak $\alpha(B) \subseteq B_1 \cap B_2$, z předpokladu $|B| \ge 2$. Takže v průniku jsou 2 body, spor protože každé 2 prvky jednoznačně určuji blok. Neboli $\forall u : deg_{out}(u) = 1$.

Rozdělíme bloky dle velikosti, víme pro hrany z jednoznačnosti $|B| \leq |B'|$. V rámci skupiny největších bloků B' už nemůže být větší, takže $\alpha(B)$ je blok. Nechť sporem kdyby ze skupiny menších bloku vedla hrana do větších, tak platí:

$$|B_m| < |B| = |B'| : \alpha(B) = B' \& \alpha(B_m) = B'$$

Z bijekce na prvcích nutně $B_m \subseteq B$, znovu spor s jednoznačnosti bloků určených 2ma prvky.

Sestupnou indukci dle velikosti bloků dokážeme, že blok se zobrazuje na blok.

Úmluva 5.32. Nadále mluvíme o KPP řádu $q \ge 2$ a dim $_P \ge 2$ (většinou ≥ 3).

Poznámka 5.33 (Kolineace a obrazy přímek). Je-li α kolineace prostoru, pak

$$\forall x \neq y \in P : \alpha(xy) = \alpha(x)\alpha(y)$$

Definice 5.34 (Fixace). $A \subseteq P$: α fixuje všechny body A, jestliže $\forall x \in A : \alpha(x) = x$ $l \in \mathcal{L} : \alpha$ fixuje l, jestliže $\alpha[l] = l$.

Definice 5.35 (Centrální kolineace). Centrální kolineace (P,\mathcal{L}) je kolineace, pro niž existuje nadrovina H (nazývaná osa kolineace), jejíž všechny body jsou fixované kolineací α , a bod $C \in P$ (nazývaný střed kolineace) takový, že všechny přímky jím procházející jsou zobrazením α fixované.

(Pozor, může nastat $C \in H$ i $C \notin H$.)

Lemma 5.36 (Kolineace fixující nadrovinu). Buď α kolineace fixující všechny body nadroviny $H \subseteq P$. Pak existuje $C \in P$ tak, že α fixuje všechny přímky procházející bodem C. Ekvivalentně každá kolineace fixující rovinu je nutně Centrální.

 $D\mathring{u}kaz$.

1. $\exists C \notin H : \alpha(C) = C$. Každá přímka, která neleží v H ji protíná v 1 bodě. Nechť $P \in H : (CP = g) \cap H = P$.

$$\alpha(g) = \alpha(PC) = \alpha(P)\alpha(C) \stackrel{osa}{=} P\alpha(C) \stackrel{p\check{r}edpoklad}{=} PC$$

Neboli každá přímka procházející C je fixovaná.

2. $\forall X \in P \setminus H : \alpha(X) \neq X$. Vezmeme libovolný $Y \notin H$, pak $\alpha(P) \neq P, \alpha(P) \notin H$. Necht $P\alpha(P) \cap H = C$, dal nějakou přímky která neleží v H. Nechť na této přímce je bod $Q \notin H$.

$$PQ \notin H \Rightarrow PQ \cap H = S$$

Pak $\alpha: PQS \to \alpha(P)\alpha(Q)\alpha(S) = \alpha(P)\alpha(Q)S$. Takže $\alpha(Q) \in S\alpha(P)$ P,Q jsou různé body, proto i přímky $Q\alpha(Q) \neq P\alpha(P)$. Taky leží ve stejné rovině určené přímky SP, PQ. Proto $\exists T := Q\alpha(Q) \cap P\alpha(P)$. Pak

$$\alpha(T) = \alpha(Q\alpha(Q)) \cap \alpha(P\alpha(P))$$

Kvůli tomu, že H osa, $\alpha(PC)=\alpha(P)C=PC\Rightarrow P\alpha(P)$ je fixovaná, analogicky $Q\alpha(Q)$. Neboli

$$\alpha(T) = \alpha(Q\alpha(Q)) \cap \alpha(P\alpha(P)) = Q\alpha(Q) \cap P\alpha(P) = T$$

Což implikuje $T=H\cap P\alpha(P)$, protože body mimo H nejsou fixované. Jediný takový bod je ale $C\Rightarrow T=C$. Takže přímka QC je fixovaná α .

Lemma 5.37 (Rozšíření kolineace). Mějme $q_0 \in \mathcal{L} \to (P', \mathcal{L}'), P' = P \setminus g_0$ množinový systém. Pak každou kolineaci α množinového systému (P', \mathcal{L}') je možno rozšířit na kolineaci α^* prostoru (P, \mathcal{L}) právě jedním způsobem, a tato kolineace fixuje g_0 .

 $D\mathring{u}kaz$. Z původního KPP vznikne množinový systém (P',\mathcal{L}') :

$$P' = P \setminus g_0 \& \mathcal{L}' = \{l' : l' = l \setminus g_0 : l \in \mathcal{L}\}$$

Potřebujeme dodefinovat α^* pro přímku g_0 , jinde je shodné s α . Přímky disjunktní s g_0 jsou fixované:

$$\forall l \in \mathcal{L} \cap \mathcal{L}' : l \cap g_0 = \emptyset : \alpha^*(l) = \alpha(l)$$

Ostatní:

$$\forall l \in \mathcal{L} : l \cap g_0 = x : \alpha^*(l) = \alpha(l') \cup \{\alpha(x)\}\$$

Problém ale nastane, pokud máme 2 zkrácené, které se protínají s g_0 ve stejném bodě. Dokážeme že to nejde

$$\forall g \neq h \in \mathcal{L} : g \cap h = p \in g_0 \Rightarrow |\alpha^*(g) \cap \alpha^*(h)| \neq 0 \& \alpha^*(g) \cap \alpha^*(h) \subseteq g_0$$

1. q > 2, takže přímky g,h kromě průniku mají ještě aspoň 3 body. Pak určuji rovinu $H = \langle g \cup h \rangle$. Z velikosti podprostoru, máme ještě nějakou přímku a bod $Q \in H : Q \notin g \cup h$. Vezmeme přímky $Q \in m, n : g, h \cap n, m \neq \emptyset$. Z kolineace kvůli $\alpha(m), \alpha(n), \alpha(g'), \alpha(h')$ jsou ve stejné rovině $\Rightarrow \alpha^*(g) \cap \alpha^*(h)$ taky. Pak $\exists x = \alpha^*(g) \cap \alpha^*(h) \in g_0$.

- 2. q=2, pokud g_0, g, h neleží v jedné rovině. Pak stejná úvaha jako v 1).
- 3. q=2, pokud g_0,g,h leží v jedné rovině. Víme že $\dim_P \geq 3 \Rightarrow \exists m$ která v rovině neleží. Použijeme případ 2) pro m,h,g_0 a m,g,g_0 .

4. q = 2, dim $_P P = 2 \iff$ Fanova rovina taky platí, důkaz ad hoc.

Lemma 5.38 (Centrální kolineace tvoří grupu (BD)). Centrální kolineace s osou H a středem C tvoří grupu vzhledem ke skládání, jednotkou je identita.

 $D\mathring{u}kaz$. Nechť Γ je množina centrálních kolineace s osou H a středem C. Je neprázdná, protože obsahuje identitu.

 Γ je uzavřená na kompozice, protože pro libovolné $\alpha, \beta \in \Gamma, \alpha \circ \beta$ fixuje body H a každou přímku procházející bodem C.

Konečné, $\forall \alpha \in \Gamma$ je $\alpha^{-1} \in \Gamma$ protože $\alpha \alpha^{-1} = id$, α^{-1} taky musí fixovat body H a každou přímku procházející bodem C.

Source [1, p. 96].

Lemma 5.39 (Vlastnosti centrální kolineace). $Bud'\alpha$ centrální kolineace s osou H a středem C. Potom

1. $P \notin H \cup \{C\} \Rightarrow \forall x : \alpha(x) \text{ jednoznačně určen bodem } \alpha(P) \text{ tak, že:}$

$$\alpha(x) = CX \cap F\alpha(P), F = PX \cap H$$

2. Není-li α identická kolineace, pak každý bod mimo $H \cup \{C\}$ není fixovaný

3. Centrální kolineace α je jednoznačně určena kteroukoliv dvojicí $P \neq \alpha(P)$.

 $D\mathring{u}kaz.$ Pozorování: $P,\alpha(P),C$ jsou kolineární. Přímka $\alpha(PC)=PC$ z Definice 5.35 jako střed. Taky ale

$$\alpha(PC) = \alpha(P)\alpha(C) \stackrel{st\check{r}ed}{=} \alpha(P)C \Rightarrow \alpha(P) \in PC$$

Dal $PC \nsubseteq H$, spojení nadroviny a přímky už je nutně celý prostor, proto

$$\dim_P H = n - 1 \& \dim_P PC = 1 \Rightarrow \dim_P (H \cap PC) = n - 1 + 1 - n = 0$$

V průniku jeden bod.

1. Vezmeme $X \notin PC$. Přímka $PX \notin H \Rightarrow PX \cap H = F$ bod.

$$X \in FP \Rightarrow \alpha(X) \in \alpha(FP) = \alpha(F)\alpha(P) \stackrel{osa}{=} F\alpha(P)$$

Protože α kolineace: $X \in XC \Rightarrow \alpha(X) \in \alpha(XC) \stackrel{střed}{=} XC$. XC, FP jsou různé přímky, proto $\alpha(X) = XC \cap F\alpha(P)$. Taky $X \neq \alpha(X)$ protože přímky $X \in FP, \alpha(X) \in F\alpha(P)$ jsou různé $X \notin F\alpha(P)$.

- 2. Vezmeme $X \in PC$, nutně neleží v H, protože jinak je fixovaný a je určen jednoznačně. Analogicky $X \neq C$. Vezmeme libovolný $R \notin PC$, H, přímka RC jednoznačně určuje bod $\alpha(R)$. $X \notin RC$, dle 1) $\alpha(X)$ je jednoznačně určen $\alpha(R)$.
- 3. Plyne okamžitě z 1).

Důsledek 5.40 (Jednoznanost středu i osy kolineace). Je-li α neidentická kolineace, pak její osa i střed jsou jednoznačně určené.

 $D\mathring{u}kaz$.

- 1. Osa je jednoznačná. Nechť α fixuje 2 nadroviny $H \neq A$. Průnik je o 1 dimenze menší, neboli $\exists X,Y \in A \setminus H$ které jsou fixované. Spor s lemma 5.39.2.
- 2. Nechť H je osa. Nechť α neidentická kolineace se středy $C_1 \neq C_2 \notin H$. Pak spor protože dle lemma 5.39 žádný další bod kromě C_1 není fixovaný.

TODO not complete \Box

Věta 5.41 (Baerova). Buď H nadrovina v Desargovském prostoru $(\mathcal{P},\mathcal{L})$ a buďte P,P',C tři různé kolineární body takové, že $P,P \notin H$. Pak existuje právě jedna centrální kolineace α taková, že H je osa, C je střed, $\alpha(P) = P'$.

 $N\'{a}znak\ d\mathring{u}kazu.\ \mathcal{P}':=\mathcal{P}\setminus PC$ – zadefinujeme

$$\alpha(x) := \left\{ \begin{array}{ll} x & \operatorname{pro} \ x \in H \cup \{C\} \\ FP' \cap CX, F = PX \cap H & \operatorname{pro} \ x \not\in H \cup \{C\} \end{array} \right.$$

Toto je jednoznačné, neboť (TODO obrázek).

Dokážeme, že α je kolineace v P'.

1. neboť α je bijekce, jelikož máme

$$c \neq x_1 \neq x_2 \neq c \Rightarrow \alpha(x_1) \neq \alpha(x_2)$$

(a) x_1, x_2, P kolineární.

Z obrázku, $\alpha(x_1) \neq \alpha(x_2)$ protože jinak by Cx_1, Cx_2 různé přímky by měli 2 společné body.

(b) x,y,P nekolineární.

$$Q = xy \cap \alpha(x)\alpha(y)$$

Na obrázku jsou body jako v definici Desargovské vlastnosti, která platí pro KPP dostatečné velikosti. Takže Q,F,G jsou kolineární proto

$$\Rightarrow F, G \in H \Rightarrow FG \subseteq H \Rightarrow Q \in H$$

Dohromady odvodíme

$$\forall x,y: xy\cap\alpha(x)\alpha(y)\in H$$

Pokud vezmeme 3 kolineární body, tak z tvrzení výš průnik přímky určené jejích obrazy je stejný bod F. Neboli α zachovává kolinearitu.

Dle 5.31 α je kolineace.

2. použijeme lemma 5.37 pro α , čímž dostaneme zobrazení zachovávající kolinearitu pro P.

3. Z vlastnosti 3 plyne, že všechny další přímky procházející bodem C jsou fixovány. Je tedy C střed a H osa kolineace α^* .

Definice 5.42 (Množiny kolineací). • Množinu kolineací prostoru značíme Col(P).

- Množinu centrálních kolineací označíme $Col(H), H \subseteq P$.
- Množinu kolineací s osou H a středem C značíme Col(C, H).
- Kolineace s osou H a středem v H značíme

$$T(H) = \bigcup_{C \in H} \operatorname{Col}(C, H)$$

Věta 5.43 (Kolineace tvoří grupu). 1. Množina $(Col(H), \circ)$ je grupa

- 2. navíc Col(C, H) je její podgrupa a T(H) je též její podgrupa.
- 3. Navíc T(H) je komutativní.

Důkaz.

1. Složení kolineací fixujících každý bod nadroviny H je opět kolineace fixující každý bod nadroviny H. Podle lemma 5.36 je tato kolineace centrální, takže Col(H) je grupa.

2.

3.

4. Za prvé, T(H) je grupa. Nechť $\alpha, \beta \neq id \in T(H)$. Což taky znamená, že nefixuji žádný bod z P^* dle lemma 5.39. Pak ale i α^{-1} nefixuje žádný bod z P^* , je kolineace s osou H se středem v $H \Rightarrow \alpha^{-1} \in T(H)$.

Dal víme $\alpha, \beta \in \operatorname{Col}(C, H)$, zbývá ukázat že střed $\alpha \circ \beta \in H$. Necht sporem $\alpha \circ \beta$ fixuje nějaký bod $P \in P^*$. Pak $\beta(P) = \alpha^{-1}(P) \neq P$. Proto dle lemma 5.39.3 kolineace je jednoznačné těmi body určená, neboli $\beta = \alpha^{-1} \Rightarrow \alpha \circ \beta = id \in T(H)$.

Komutativita: znovu BUNO $\alpha, \beta \neq id \in T(H)$. Nechť C je středem α, D je středem β , neboli

$$\forall X \in P^* : C = X\alpha(X) \cap H\&D = X\beta(X) \cap H$$

Pak můžou nastat 2 možnosti:

(a) $C \neq D$. Body $D, X, \beta(X)$ jsou kolineární, pak i $\alpha(D) = D, \alpha(X), \alpha(\beta(X))$. Analogicky, $C, \beta(X), \alpha(\beta(X))$. Přímky jsou různé, proto

$$\alpha(\beta(X)) \in D\alpha(X) \cap C\beta(X)$$

Podobně $\beta(\alpha(X)) \in D\alpha(X) \cap C\beta(X)$. Pak

$$D\alpha(X) \neq C\beta(X) \Rightarrow \alpha(\beta(X)) = \beta(\alpha(X))$$

(b) C = D. Zvolme bod $E \neq C \in H$ a necht $\epsilon \neq id$ je centrální kolineace s osou H a středem (existuje dle Baerovi 5.41). Dle (a) ϵ komutuje s α, β . Pak jelikož $\beta \epsilon \notin \operatorname{Col}(C, H)$ (jinak by ϵ střed C) neboli dle (a) $\beta \epsilon$ komutuje s α :

$$\alpha\beta = \alpha\beta(\epsilon\epsilon^{-1}) = \alpha(\beta\epsilon)\epsilon^{-1} = (\beta\epsilon)\alpha\epsilon^{-1} = \beta(\alpha\epsilon)\epsilon^{-1} = \beta\alpha(\epsilon\epsilon^{-1}) = \beta\alpha$$

Definice 5.44 (Sčítání na $P \setminus H$). Uvažme prostor $P^* = \mathcal{P} \setminus H$ který je KAR, protože jsme každou přímku zkrátili o 1 bod.

Dle Baerovy věty 5.41 existuje pro každý bod $P \in P^*$ centrální kolineace $\tau_P \in T(H)$ taková, že $\tau_P(O) = P$. Pro dva ne nutně různé body $P, Q \in \mathcal{P} \setminus H$ označíme jako P + Q takový bod Z, že

$$\tau_Z = \tau_P \tau_Q (= \tau_Q \tau_P)$$

Pozorování 5.45. Pokud P,Q,O jsou nekolineární, tak

$$\tau_P: OQ^* \to PQ^* \& P + Q = \tau_P(\tau_Q(O)) = \tau_P(Q) \in PQ^*$$

Neboli

$$P+Q \in PQ^* \wedge P+Q \in P^*Q$$

Věta 5.46 (T(H) se skládáním a P^* se sčítáním). ($T(H), \circ$) $\cong (\mathcal{P}^*, +)$

 $D\mathring{u}kaz$. Baerova věta 5.41 zajišťuje, že $P \to \tau_P$ je bijekce, a izomorfismus plyne z definice. \square

Poznámka 5.47. Nulovým prvkem v $(P^*,+)$ je bod $O, \tau_O = id$. Opačný prvkem k X je -X. Protože $(\tau_X)^{-1}(O)$ je kolineace, je $-X \in OX$. Pak pro všechna $X,Y \in P^*$ platí:

$$\tau_{X+Y} = \tau_X \tau_Y$$

$$\tau_{-X} \circ \tau_X = id \Rightarrow \tau_{-X} = \tau_X^{-1}$$

$$\tau_{-(X+Y)} = (\tau_X \tau_Y)^{-1} = \tau_X^{-1} \tau_Y^{-1} = \tau_{-Y} \tau_{-X} = \tau_{-Y+(-X)}$$

$$\text{Tedy}$$

$$-(X+Y) = (-X) + (-Y)$$

Definice 5.48 (Operace s kolineacemi, nula). Označme \mathcal{D}_O množinu všech centrálních kolineací s osou H a středem O. Dále označme ω zobrazení z P do P, definované předpisem:

$$\omega(X) = \left\{ \begin{array}{ll} X & \text{pro } X \in H \\ O & \text{pro } X \in P^* \end{array} \right.$$

Na množině $F = \mathcal{D}_O \cup \{\omega\}$ definujeme sčítání a násobení následovně:

$$(\alpha + \beta)(X) = \begin{cases} X & \text{pro } X \in H \\ \alpha(X) + \beta(X) & \text{pro } X \in P^* \end{cases}$$

Pozorování 5.49. Pro každé $\alpha \in F$ platí:

$$\alpha + \omega = \omega + \alpha = \alpha$$
$$\alpha \cdot \omega = \omega \cdot \alpha = \omega$$

Lemma 5.50 (O zobrazení μ). Definujme zobrazení μ předpisem

$$\mu(X) = \left\{ \begin{array}{ll} X & \textit{pro } X \in H \\ -X & \textit{pro } jinak \end{array} \right.$$

 $Pak \ \mu \in \mathcal{D}_O$.

 $D\mathring{u}kaz$. Z definice μ fixuje každý bod nadroviny i střed O. Stačí tedy ukázat, že μ je kolineace dle 5.31 – neboť μ zachovává kolinearitu. Pro body ležící na přímce procházející bodem O to je zjevné. Pro g neprocházející bodem O mějme $C = g \cap H$. Pak $g = \{P + X : X \in OC\}$ a

$$\mu(g) = \{\mu(P+X) : X \in OC\} = \{-P + (-X) : X \in OC\} = \{-P + Y : Y \in OC\} = -PC\}$$

Lemma 5.51 (Kolineace jsou automorfismy grupy). Každá kolineace $\alpha \in \mathcal{D}_O$ je automorfismus grupy $(P^*,+)$, neboli

- 1. $\alpha(O) = O$
- 2. $\alpha(X+Y) = \alpha(Y) + \alpha(Y)$
- 3. $\forall X, Y \in P^* : \alpha(-X) = -\alpha(X)$.

 $D\mathring{u}kaz$. $\alpha(O) = O$ zjevně.

Mějme X,Y,O nekolineární. Označíme $X^* = OX \cap H, Y^* = OY \cap H$, a neboť α je kolineace se středem O, jsou body $O,X,\alpha(X),X^*$ kolineární, a stejně tak $O,Y,\alpha(Y),Y^*$. Z konstrukce plyne $X+Y=Y^*X\cap X^*Y$, a tedy

$$\alpha(X+Y) = \alpha(Y^*X) \cap \alpha(X^*Y) = Y^*\alpha(X) \cap X^*\alpha(Y)$$

což je přesně $\alpha(X) + \alpha(Y)$.

Spočteme $\alpha(-X)$ pro $X \neq O$. Mějme $P \in \mathcal{P}^*$ neležící na OX. Pak body O, P, X, tedy i body P + X, O, -X jsou nekolineární. Z výše dokázaného máme

$$\alpha(P) = \alpha(P + X + (-X)) = \alpha(P + X) + \alpha(-X) = \alpha(P) + \alpha(X) + \alpha(-X)$$

a tedy $O = \alpha(-X) + \alpha(X)$.

Mějme $X \neq Y \in \mathcal{P}^*$ tak, že $O \in XY$ a mějme P neležící na XO. Pak ani -P neleží na XO a navíc $X + P \neq X - P$. Dle předchozího

$$\alpha(X+Y) = \alpha(X+P-P+Y) = \alpha(X+P) + \alpha(Y-P) = \alpha(X) + \alpha(Y) + \alpha(Y) + \alpha(Y) + \alpha(Y) = \alpha(X) + \alpha(Y)$$

Nakonec mějme $X=Y\neq O$ a volme P neležící na XO, pak totiž ani -P neleží na XO a $X+P\neq X-P$. Pak

$$\alpha(X+X) = \alpha(X+P+X-P) = \alpha(X) + \alpha(P) + \alpha(X) + \alpha(-P) = \alpha(X) + \alpha(X)$$

Důsledek 5.52. Pro každé $\alpha \in \mathcal{D}_O$ platí:

$$\alpha \cdot \mu = \mu \cdot \alpha$$
$$\alpha \cdot \mu + \alpha = \omega$$

Lemma 5.53 (Součet kolineací je v F). Pro každé dvě ne nutně různé kolineace $\alpha, \beta \in \mathcal{D}_O$ je $\alpha + \beta \in F$.

Důkaz. Označíme $\sigma = \alpha + \beta$. Pak

$$\sigma(O) = O, \sigma(X + Y) = \sigma(X) + \sigma(Y) \forall X, Y \in \mathcal{P}^*$$

Dále σ fixuje každou přímku procházející bodem O.

Mějme g přímku neprocházející bodem O a $P = g \cap \mathcal{P}^*$ a označme $X = g \cap H$. Pak

$$g = \{P + X : X \in OC\}, \text{ a tedy } \sigma(P) = \{\sigma(P + X) : X \in OC\} = \{\sigma(P) + \sigma(X) : X \in OC\} \subseteq \{\sigma(P) + Y : Y \in OC\}$$

dle předchozího, a tedy σ zachovává kolinearitu.

Dále ukážeme, že buď $\sigma = \omega$, nebo je σ bijekce. Mějme $\sigma(X) = \sigma(Y)$ pro $X \neq Y \in \mathcal{P}^*$ Pak tedy $\alpha(X) + \beta(X) = \alpha(Y) + \beta(Y)$, a tedy

$$\alpha(X-Y) = \alpha(X) - \alpha(Y) = \beta(Y) - \beta(X) = \beta(Y-X) = \beta(\mu(X-Y)) = (\mu\beta)(X-Y)$$

Neboť $\alpha, \mu\beta$ jsou dvě centrální kolineace se stejnou osou, středem a shodují se na $X - Y \in \mathcal{P}^* \setminus \{0\}$, jsou totožné. Pak ovšem $\sigma = \alpha + \beta = \mu\beta + \beta = \omega$.

Tedy buď je $\sigma = \omega \in F$, nebo to je bijekce zachovávající kolinearitu, a tedy kolineace, fixující každý bod nadroviny Hi každou přímku procházející bodem O, a tedy $\sigma \in D_O \subset F$.

Věta 5.54 (Veblenova). Struktura $(F,+,\cdot)$ je konečné těleso o q prvcích.

Důkaz.

- 1. Podle 5.43 je $\mathcal{D}_O = \operatorname{Col}(C, H)$ grupa vůči operaci \circ .
- 2. Sčítání na F Definice 5.44 tvoří komutativní grupu s nulovým prvkem ω , přičemž opačným prvkem k $\alpha \in F$ je $\mu \alpha$.
- 3. Je snadné ukázat, že operace + a o jsou svázány distributivními zákony.
- 4. Velikost F. Zvolme pevně bod $P \in P^* \setminus \{O\}$. Podle lemma 5.39 je centrální kolineace $\alpha \in \mathcal{D}_O$ jednoznačně určena hodnotou $\alpha(P) \in OP$. Na přímce OP je q+1 bodů, z toho 2 nelze použít (O a průsečík přímky OP s nadrovinou H), takže máme q-1 možností (včetně identické kolineace). Podle Baerovy věty 5.41 pro každou z těchto možností centrální kolineace skutečně existuje a je jediná. Je tedy $|\mathcal{D}_O| = q-1 \Rightarrow |F| = q$.

Důsledek 5.55 (Řád KPP je mocnina prvočísla). KPP řádu q dimenze > 2 existuje právě tehdy, když q je mocnina prvočísla.

55

List of Theorems

1.1	Definice (Množinový systém)	2
1.2	Definice (Konečná projektivní rovina)	2
	Definice (Konečná afinní rovina)	5
1.14	Definice (Desargova vlastnost)	6
2.1	Definice (Latinský obdélník)	7
2.4	Definice (Kolmost LČ)	7
2.5	Značení (NOLČ(n))	7
2.8	Definice (Ortogonální tabulka)	9
3.1	Definice (Blokové schéma (BIBD))	12
3.9	Definice (Symetrické blokové schéma)	14
3.13	Definice (Konstrukce blokových schémat ze symetrických)	16
3.20	Definice (Steinerův systém trojic)	20
3.22	Definice (Komutativní idempotentní kvazigrupa (KIK))	20
3.30	Definice (Hadamardova matice (HM))	24
3.32	Definice (Normální forma HM)	24
3.36	Definice (Tenzorový součin)	25
		27
4.1	Definice (Trochu méně pravidelné blokové schéma)	30
4.3	Definice (Průhledná množina)	30
4.4	Definice (BIBD se středníkem)	30
4.10	Definice (Řešitelný systém)	32
4.14	Definice (Skupinově rozložitelný systém)	33
5.1	Definice (Konečný projektivní prostor, kolinearita)	36
5.3	Definice (Podprostor)	36
5.7	Definice (Obal)	37
5.10	Definice (Projektivně nezávislá množina)	38
5.14	Definice (Projektivní báze)	39
5.16		40
		42
5.28	Definice (Automorfismus)	46
5.30	Definice (Kolineace)	47
5.34	Definice (Fixace)	48
		48
	· · · · · · · · · · · · · · · · · · ·	52
5.44	Definice (Sčítání na $P \setminus H$)	53
5.48	Definice (Operace s kolineacemi, nula)	53

List of Theorems

1.5	Věta (O řádu KPR)	. 2
1.6	Věta (Existence KPR)	
1.8	Věta (KPR(6), Dk později)	. 4
1.12		
1.13	Důsledek (O vztahu KAR a KPR)	
2.2	Věta (Latinské čtverce)	. 7
2.3	Důsledek	
2.6	Věta (Horní odhad NOLČ)	. 7
2.7	Věta (Extremální NOLČ a KPR)	
	Věta (Ortogonální tabulka a NOLČ)	
	Věta (Tenz produkt Ortogonálních tabulek)	
	Věta (Dolní odhad NOLČ)	
	Důsledek	
	Lemma (OA $3m + 1$)	
2.15	Věta (Dolní odhad NOLČ - 2)	
3.2	Vlastnosti (BIBD)	. 12
3.3	Věta (Struktura BIBDu)	. 12
3.4	Vlastnosti (Struktura BIBDu)	
	,	
3.6	Věta (Wilson (1975) BD)	
3.7	Věta (Fisherová nerovnost)	
3.8	Důsledek	
	Věta (Ekvivalence BIBD)	
9.11	Věta (SBIBD ekvivalence)	. 15 . 16
	Důsledek (Duální SBIBD)	
	Věta (Bruck-Ryser-Chowla)	
	Důsledek (∄ KPR(6))	
	Věta (Teorie čísel (BD))	
	Věta (∃ KPR □)	
	Věta (Existence STS a počet prvků)	
	Věta (STS a speciální kvazigrupa)	
3.24	Věta (Kombinace STS)	. 21
	Důsledek (STS(9))	
	Věta (Nutná podmínka je i postačující pro STS)	
	Lemma (Tabulkový důkaz 1)	
	Lemma (Tabulkový důkaz 2)	
	Lemma (Transpozice Hadamardovy matice)	
	Věta (Hadamardova matice a řád dělitelný čtyřmi)	
	Věta (Hadamardova matice a symetrické BIBDy)	
	Věta (Kombinace Hadamardových matic)	
	Důsledek (Sylvester)	
3.40	Důsledek (Exponenciální Hadamardovy matice)	. 26
	Věta (Payleyho konstrukce)	
	Lemma (Posunutí χ)	
	Lemma (O tenzorovém součinu (BD))	
	Věta (Kombinace HM alternativní)	
	Věta (Payleyho konstrukce revisited)	
3.49	Lemma (Williamson)	. 29

3.50	Věta (Williamsonova konstrukce)	9
4.5	Věta (Dolní odhad na NOLČ)	1
4.7	Věta $((v,k,1)$ -BIBD a NOLČ)	1
4.8	Věta $((v,k,1)$ -BIBD a NOLČ $(v-3)$)	2
4.12	Věta (Řešitelnost a odhady na NOLČ)	2
	Věta (NOLČ a existence GD)	3
	Věta (Řešitelný GD a NOLČ)	4
	Důsledek (O násobení NOLČ)	5
	Lemma (Dolni odhad pro NOLČ)	5
4.19	Věta (NOLČ je aspoň 2)	6
5.5	Lemma (Průnik podprostorů je podprostor)	6
5.8	Lemma (O přidání prvku do podprostoru)	7
5.9	Lemma (Sjednocení podprostorů)	7
5.11	Lemma (Přidání prvku do projektivně nezávislé množiny)	8
5.13	Věta (O výměně)	9
5.15	Důsledek (Projektivně nezávislá množina a báze)	9
5.18	Věta (O dimenzi průniku a spojení)	0
5.20	Věta (Modularita)	1
5.21	Důsledek (Průnikem dvou rovin v prostoru je přímka) 4	2
5.23	Věta (Roviny si jsou podobné)	2
5.25	Věta (Singerova konstrukce)	4
5.26	Věta (KPP ∃ BIBD)	4
5.27	Věta (KPP dimenze alespoň 3 mají Desargovskou vlastnost) 4	5
5.31	Věta (Automorfismy a kolineace)	7
5.36	Lemma (Kolineace fixující nadrovinu)	8
5.37	Lemma (Rozšíření kolineace)	8
5.38	Lemma (Centrální kolineace tvoří grupu (BD))	9
5.39	Lemma (Vlastnosti centrální kolineace)	9
5.40	Důsledek (Jednoznanost středu i osy kolineace)	0
5.41	Věta (Baerova)	0
5.43	Věta (Kolineace tvoří grupu)	2
5.46	Věta $(T(H)$ se skládáním a P^* se sčítáním)	3
	Lemma (O zobrazení μ)	4
5.51	Lemma (Kolineace jsou automorfismy grupy)	4
5.52	Důsledek	4
	Lemma (Součet kolineací je v F)	4
	Věta (Veblenova)	5
	Důsledek (Řád KPP je mocnina prvočísla)	

Reference

 $[1] \begin{tabular}{l} Albrecht Beutelspacher, Beutelspacher Albrecht, and Ute Rosenbaum. {\it Projective geometry: from foundations to applications.} \end{tabular} Cambridge University Press, 1998.}$