Results of the spatial BYM model with our implementation and with the previous distributions used in the model proposed by Mitzi

1 Implementation of the BYM model.

```
data {
 int<lower=0> N;
 int<lower=0> N_edges;
 int<lower=1, upper=N> node1[N_edges]; // node1[i] adjacent to node2[i]
 int<lower=1, upper=N> node2[N_edges]; // and node1[i] < node2[i]
                   // count outcomes
 int<lower=0> y[N];
// vector[N] x;
                              // predictor
 vector<lower=0>[N] E; // exposure
transformed data {
 vector[N] log_E = log(E);
parameters {
 real beta0;
                       // intercept
// real beta1;
                         // slope
 vector[N] theta_std; // standardized heterogeneous effects
 vector[N - 1] phi_std_raw; // raw, standardized spatial effects
transformed parameters {
 real<lower=0> sigma_theta = inv(sqrt(tau_theta)); // convert precision to sigma
 vector[N] theta = theta_std * sigma_theta;
                                            // non-centered parameterization
 // vector[N] phi_std;
 vector[N] phi;
 phi[1:(N - 1)] = phi_std_raw;
 phi[N] = -sum(phi_std_raw);
 // vector[N] phi;
 // phi = phi * sigma_phi; // non-centered parameterization
model {
// y ~ poisson_log(log_E + beta0 + beta1 * x + theta + phi);
 y ~ poisson_log(log_E + beta0 + theta + sigma_phi * phi);
 target += -0.5 * dot_self(phi[node1] - phi[node2]);
```

```
beta0 ~ normal(0, 5);
// beta1 ~ normal(0, 5);
theta_std ~ normal(0, 1);
tau_theta ~ gamma(3.2761, 1.81); // Carlin WinBUGS priors
tau_phi ~ gamma(1, 1); // Carlin WinBUGS priors
}
generated quantities {
// vector[N] mu = exp(log_E + beta0 + beta1 * x + phi + theta);
vector[N] mu = exp(log_E + beta0 + sigma_phi * phi + theta);
vector[N] SMR = exp(beta0 + sigma_phi * phi + theta);
// real psi = sd(phi) / (sd(theta) + sd(phi)); // proportion spatial variation
}
```

2 Fitting the model to Spain's mortality data.

```
library(rstan)
library(spdep)
# options(mc.cores = parallel::detectCores())
options(mc.cores = 3)
source("mungeCARdata4stan.R")
load("../../Mortalidad nacional/DatosSinTemporal.Rdata")
Veci <- nb2WB(CartoMuniSinIslas.nb)</pre>
nbs = mungeCARdata4stan(Veci$adj, Veci$num)
N = nbs$N
node1 = nbs$node1
node2 = nbs$node2
N_edges = nbs$N_edges
tcomp02 <- system.time(mod.BYM <- stan model("BYM Mitzi Priors3.stan"))</pre>
# Compilation in 61 seconds
save(mod.BYM, file = "mod.Stan.BYM.Priors3.Rdata")
# load('mod.Stan.BYM.Priors3.Rdata')
Ejecuta.BYM.Stan <- function(Sexo, Causa) {</pre>
    y <- MorTabu[Sexo, Causa, ]
    E <- Esperados[Sexo, Causa, ]</pre>
    datos <- list(N, N_edges, node1, node2, y, E)</pre>
    param <- c("SMR", "mu", "beta0", "sigma_phi", "tau_phi", "sigma_theta",</pre>
        "tau_theta")
    Res.t <- system.time(Res <- sampling(object = mod.BYM, data = datos, chains = 3,
        iter = 4400, warmup = 400, thin = \max(1, floor(3 * (4400 - 400)/1000)),
        cores = 3, pars = param))
    Res.BYM[[Sexo]][[Causa]] <<- list()</pre>
    Res.BYM[[Sexo]][[Causa]]$tiempo <<- Res.t</pre>
    Res.BYM[[Sexo]][[Causa]]$summary <<- Res</pre>
    Res.BYM[[Sexo]][[Causa]]$RR <<- summary(Res)$summary[1:7907, 1]</pre>
    Res.BYM[[Sexo]][[Causa]]$P.RR <<- apply(extract(Res, pars = "SMR")$SMR,</pre>
        2, function(x) {
```

```
mean(x > 1)
})

Res.BYM <- list(Hombres = list(), Mujeres = list())

for (i in c(9:18, 22, 28, 30, 31, 33, 35:37, 41)) {
    Ejecuta.BYM.Stan(1, i)
    save(Res.BYM, file = "Res.BYM-StanMitzi.Priors3.Rdata")
}</pre>
```

3 Descriptive principals.

Cause	Time	sigma_phi	sigma_theta	max.Rhat	min.n_eff
(9) Mouth and pharynx	8552.9	$0.5184 \ [0.2759, 0.953]$	0.8433 [0.1801,2.1384]	706.89	1.50
(10) Esophagus	4701.8	$0.3013 \ [0.2586, 0.3422]$	0.5737 [0.172, 1.3462]	88.21	1.50
(11) Stomach	4544.7	$0.2856 \ [0.2611, 0.309]$	0.1607 [0.149, 0.1733]	1.01	436.67
(12) Colon	4527.5	$0.2302 \ [0.2099, 0.2537]$	0.1578 [0.1472, 0.1688]	1.01	498.56
(13) Rectum	4582.8	0.227 [0.1999, 0.2592]	0.1888 [0.1734, 0.2054]	1.01	462.96
(14) Liver	4489.4	0.2975 [0.2694, 0.3279]	0.1985 [0.1837, 0.2142]	1.01	338.06
(15) Pancreas	4674.0	0.4495 [0.1966, 0.9092]	0.2388 [0.1553, 0.383]	92.11	1.50
(16) Other digestives	4464.5	0.2316 [0.2, 0.2667]	0.2004 [0.181, 0.2201]	1.01	292.06
(17) Larynx	4497.9	0.3125 [0.2786, 0.3469]	0.1985 [0.1808, 0.217]	1.01	350.67
(18) Lung	8260.6	$0.3244 \ [0.3055, 0.343]$	0.1464 [0.1377, 0.1551]	1.02	132.29
(22) Other skin	4526.0	$0.2683 \ [0.2265, 0.3162]$	$0.2303 \ [0.2055, 0.2587]$	1.02	260.59
(28) Prostate	4487.0	0.1895 [0.1705, 0.209]	$0.1431 \ [0.1339, 0.153]$	1.02	522.51
(30) Kidney	4572.0	0.2749 [0.2402, 0.3139]	0.1994 [0.1808, 0.2191]	1.01	330.08
(31) Bladder	4745.7	$0.2739 \ [0.2468, 0.3011]$	0.1678 [0.1554, 0.1805]	1.01	580.06
(33) Brain	8875.9	0.2108 [0.1826, 0.2399]	$0.1861 \ [0.1698, 0.2031]$	1.02	481.39
(35) Poorly defined	4832.4	0.2217 [0.1998, 0.244]	$0.1646 \ [0.1526, 0.1768]$	1.01	444.41
(36) Other lymphatics	4871.8	0.2046 [0.1792, 0.2309]	0.1673 [0.1547, 0.1826]	1.01	471.12
(37) Leukemias	4884.5	0.1998 [0.1756, 0.2272]	$0.176 \ [0.1605, 0.1913]$	1.02	436.37
(41) Other tumors	4840.7	0.2811 [0.2465, 0.3158]	0.1922 [0.1742, 0.2098]	1.01	344.39
Median	4674.0	0.27	0.19	1.01	350.67