		I claim:
. 1		
1	1.	A method for monitoring an operation in a well, comprising:
2		injecting a material into the well;
3		monitoring a characteristic in the well;
5		determining the placement position of the material in the well from the monitored characteristic.
1	2.	The method of claim 1, wherein the material is selected from a gravel slurry, a proppant
2		a fracturing fluid, a chemical treatment, a cement, and a well fluid.
1	3.	The method of claim 1, wherein the measuring step is performed using a sensor
2		positioned in the well.

Attorney Docket No.: 68.0316

2	4.	well.
1 2	5.	The method of claim 3, wherein the sensor is positioned internal to a sand screen placed in the well.
1 2	6.	The method of claim 3, wherein the sensor measures one or more of temperature, pressure, flow, stress, strain, compaction, sand detection, and seismic measurements.
1	7.	The method of claim 3, wherein the sensor is a fiber optic line.
1 · 2 · 3 · 4	8.	The method of claim 7, wherein the fiber optic line provides a distributed temperature measurement, a distributed pressure measurement, a distributed stress measurement, a strain temperature measurement, a distributed sand detection measurement, and a distributed seismic measurement.

Attorney Docket No.: 68.0316

1	9.	The method of claim 7, wherein at least a portion of the fiber optic line is routed along a
2		nonlinear path.
		•
1	10.	The method of claim 7, wherein at least a portion of the fiber optic line is routed along a
2		helical path.
1	11.	The method of claim 7, further comprising increasing the resolution of the measurement
2		provided by the fiber optic line by routing at least a portion of the fiber optic along a
3		nonlinear path.
1	12.	The method of claim 7, further comprising increasing the resolution of the measurement
2		provided by the fiber optic line by routing at least a portion of the fiber optic along a path
3		that provides a length of fiber optic line in the portion that is greater than the longitudinal
4		length of the well in the corresponding portion of the well.
1	13.	The method of claim 1, wherein the monitored characteristic is selected from

2		temperature, pressure, flow, stress, strain, sand detection, and seismic measurements.
1	14.	The method of claim 1, further comprising performing a remedial action based upon the
2		determined placement.
1	15.	The method of claim 14, wherein the remedial action comprises one or more of isolating
2		a portion of the well and injecting additional material into the well.
1	16.	The method of claim 1, wherein the well is a multilateral well having at least two
2		branches.
1	17.	The method of claim 16, wherein at least one of the branches has a gravel pack
2		completion therein.

1	18.	The method of claim 16, further comprising a fiber optic line placed in the gravel pack
2		completion.
1	19.	The method of claim 1, further comprising expanding an expandable tubing in the well.
1	20.	The method of claim 19, further comprising monitoring a characteristic of the expandable
2	20.	tubing during expansion.
2		tuoning during expansion.
1	21.	The method of claim 20, further comprising determining the extent of the expansion.
1	22.	The method of claim 19, further comprising reexpanding a portion of the expandable
2		tubing.
1	23.	The method of claim 1, further comprising:
٠.	<i>23</i> .	The memod of claim 1, futures complising.

2		injecting the material into the well using a service tool, the service tool having a sensor
3		therein; and
4		monitoring a characteristic of the material with the sensor.
1	24.	The method of claim 23, further comprising comparing the monitored characteristic from
2		the sensor in the service tool to the monitored characteristic in the well.
1	25.	The method of claim 1, further comprising heating the material prior to the injection step.
1	26.	The method of claim 1, further comprising cooling the material prior to the injection step.
1	27.	The method of claim 1, wherein the material is substantially at surface ambient
2		temperature prior to the injection step.

1	28.	The method of claim 1, wherein the operation is a strip rate test.
1	29.	A system used to monitor an operation in a well, comprising:
2		a pump in communication with the well and with a source of material at the surface;
3		an intelligent completions device positioned in the well proximal a desired fluid placement position; and
5 6 7		a surface controller in communication with the intelligent completions device adapted to receive data from the intelligent completions device and provide an indication of the placement position of the material.
1	30.	The system of claim 29, wherein the intelligent completions device is a sensor.
1	31.	The system of claim 29, wherein the intelligent completions device is a fiber optic line.

1	32.	A system used to monitor an operation in a well, comprising:
2		means for injecting a material into the well;
3		means for monitoring a characteristic in the well;
4	means	for determining the placement position of the material in the well from the monitored
5		characteristic.
1	33.	A service tool for use in a well, comprising an intelligent completions device in the
2		service tool.
1	34.	The service tool of claim 33, wherein the intelligent completions device is a sensor.
1	35.	The service tool of claim 33, wherein the intelligent completions device is a fiber optic
2		line.

1	36.	The service tool of claim 33, further comprising:
2		an outlet; and
3		the intelligent completions device positioned proximal the outlet.
1	37.	A method for monitoring a well operation, comprising:
2		running a service tool into the well;
3 .		delivering a material through the service tool; and
4		monitoring a characteristic of the material with the service tool.
1	38.	The method of claim 37, wherein the monitoring step is performed using one or more of a
2		sensor and a fiber optic line in the service tool.
1	39.	The method of claim 37, further comprising monitoring the material exiting the service

Attorney Docket No.: 68.0316

2		t001.
1	40.	The method of claim 37, further comprising:
2		measuring a well characteristic using one or more of a sensor and a fiber optic line that is
3		separate from the service tool; and
3		separate from the service tool, and
4		comparing the characteristic measured by the service tool to the well characteristic.
1		
1		