Оглавление

1 Функциональные последовательности и ряды			2	
	1.1	Семей	іства функций	2
		1.1.1	Переход к пределу в равномерно сходящемся семестве функций	3
		1.1.2	Непрерывность предельной функции	3
	1.2	Интег	ралы, зависящие от параметра	4
		1.2.1	Непрерывность интеграла от параметра	4
		1.2.2	Производная интеграла от параметра	4
		1.2.3	Интегрирование интеграла от параметра	ŀ
		1.2.4	Несобственные интегралы, зависящиеся от параметра	6
		1.2.5	Признак Вейерштрасса равномерной сходимости несобственного интеграла от параметра	7

Глава 1

Функциональные последовательности и ряды

1.1. Семейства функций

Определение 1. $E \neq \emptyset$ — произвольное множество, $Y \subset \mathbb{R}^{n \geq 1}$ Функции $f: E \times Y \to \mathbb{R}$ будем называть семейством функций, заданных на E

Обозначение. $f(x,y), \qquad x \in E, \quad y \in Y$

Пример. Функциональная последовательность $\{f_n(x)\}_{n=1}^{\infty}$ является частным случаем семейства функций при $Y=\mathbb{N}$

Определение 2. y_0 – т. сг. $Y, \qquad f: E \times Y \to \mathbb{R}, \qquad f_0: E \to \mathbb{R}$ Будем говорить, что семейство функций **равномерно** сходится к f_0 при $y \to y_0$, если

$$\forall \varepsilon > 0 \quad \exists \text{ окрест. } U(y_0): \quad \forall x \in E \qquad \forall y \in \left(U(y_0) \cap Y\right) \setminus \{y_0\} \quad |f(x,y) - f_0(x)| < \varepsilon \qquad (1.1)$$

Обозначение. $f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x)$

Теорема 1 (Критерий Коши равномерной сходимости семейства функций). $f: E \times Y \to \mathbb{R}, \quad y_0 - \mathbf{r}.$ сг. Y

Для того, чтобы семейство функций равномерно сходилось к некоторой функции f_0 необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists \text{ okpect. } U(y_0): \quad \forall y_1, y_2 \in \left(U(y_0) \cap Y\right) \setminus \{\ y_0\ \} \quad \forall x \in E \quad |f(x,y_2) - f(x,y_1)| < \varepsilon \qquad (1.2)$$

Доказательство.

• Необходимость:

Пусть семейство функций $f:E\times Y\to\mathbb{R}$ равномерно сходится к f_0 при $y\to y_0$ По определению это означает, что

$$\forall \varepsilon > 0 \quad \exists \text{ okp. } U(y_0): \quad \forall y_1, y_2 \in \left(U(y_0) \cap Y\right) \setminus \{y_0\} \quad |f(x, y_{1,2}) - f_0(x)| < \frac{\varepsilon}{2}$$

$$\implies |f(x, y_2) - f(x, y_1)| \stackrel{\triangle}{\leq} |f(x, y_2) - f_0(x)| + |f_0(x) - f(x, y_1)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• Достаточность Фиксируем $x \in E$ Применяя критерий Коши к функции одного аругмента f(x,y), получаем, что $\exists \lim_{y \to y_0} f(x,y) \coloneqq$

Возьмём $\forall \varepsilon > 0$, выберем окрестность $U(y_0)$

Возьмём $\forall y_1, y_2 \in (U(y_0), \cap Y) \setminus \{x_0\}$ и зафиксируем y_1

$$\lim_{y_2 \to y_0} |f(x, y_2) - f(x, y_1)| \le \varepsilon$$

$$|f_0(x) - f(x, y_1)| \stackrel{\text{def } f_0}{=} \left| \lim_{y_2 \to y_0} \left(f(x, y_2) - f(x, y_1) \right) \right| \stackrel{\text{menp. } |f(x, y_2)|}{=} \lim_{y_2 \to y_0} |f(x, y_2) - f(x, y_1)| \le \varepsilon$$

Значит, f(x,y) равномерно сходится к $f_0(x)$ при $y \to y_0$

1.1.1. Переход к пределу в равномерно сходящемся семестве функций

Теорема 2. $f: E \times Y \to \mathbb{R}$, $Y \subset \mathbb{R}^{n \geq 1}$, $y_0 \in \mathbb{R}^n$ – т. сг. Y

$$f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x) \tag{1.3}$$

 $E, d(x_1, x_2)$ – метрическое пространство, $x_0 \in E$ – т. сг. E

$$\forall y \in Y \quad \exists \lim_{x \to x_0} f(x, y) = \varphi(x)$$

Тогда $\exists \lim_{y \to y_0} \varphi(y)$ и $\exists \lim_{x \to x_0} f_0(x)$ и справедливо

$$\lim_{y \to y_0} \varphi(y) = \lim_{x \to x_0} f_0(x) \tag{1.4}$$

Доказательство. Возьмём любую последовательность $\{y_n\}_{n=1}^{\infty}, \quad y_n \in Y, \quad y_n \xrightarrow[n \to \infty]{} y_0$

Положим $f_n(x) := f(x, y_n)$

$$f(x,y) \xrightarrow{x \in E} f_0(x) \implies f_n(x) \xrightarrow{x \in E} f_0(x)$$
 (1.5)

При этом, по условию теоремы для любого n имеем

$$\varphi(y_n) = \lim_{x \to x_0} f(x, y_n) \xrightarrow{\text{def } f_n} \lim_{x \to x_0} f_n(x)$$

$$\tag{1.6}$$

Значит, можно применить теорему о переходе к пределу в равномерно сходящейся функциональной последовательности:

$$\exists \lim_{n \to \infty} \varphi(y_n) \in \mathbb{R}, \qquad \exists \lim_{x \to x_0} f_0(x), \qquad \lim_{n \to \infty} \varphi(y_n) = \lim_{x \to x_0} f_0(x)$$

В силу произвольности $\{y_n\}_{n=1}^{\infty}$ и условий, наложенных на y_n в начале, последнее утверждение доказывает теорему

1.1.2. Непрерывность предельной функции

 $x_0 \in E$ – т. сг., y_0 – т. сг. $Y \subset \mathbb{R}^n$ **Теорема 3.** E, d – метрическое пространство,

$$f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x), \qquad \forall y \in Y \quad f(x,y) \text{ непр. в } x_0$$
 Тогла $f_0(x)$ непр. в x_0

Тогда $f_0(x)$ непр. в x_0

Доказательство. Применим предыдущую теорему:

По условию имеем $\exists \lim_{x \to x_0} f(x,y) \coloneqq \varphi(y) \quad \forall y \in Y$, при этом $\varphi(y) = f(x_0,y)$

По предыдущей теореме $\exists \lim_{y \to y_0} \varphi(y)$ и $\exists \lim_{x \to x_0} f_0(x)$ и тогда

$$\lim_{y \to y_0} f(x_0, y) = \lim_{y \to y_0} \varphi(y) = \lim_{x \to x_0} f_0(x)$$

Ho $\lim_{y\to y_0} f(x_0,y) = f_0(x_0)$, что и даёт непрерывность f_0 в x_0

Следствие. $f: E \times Y \to \mathbb{R}, \qquad f(x,y) \xrightarrow[y \to y_0]{x \in E} f_0(x), \qquad \forall y \in Y \quad f(x,y) \in \mathcal{C}\bigg(E\bigg)$ $\Longrightarrow f_0 \in \mathcal{C}\bigg(E\bigg)$

1.2. Интегралы, зависящие от параметра

Определение 3. $f:[a,b]\times Y\to\mathbb{R}$ – семейство функций, $Y\subset\mathbb{R}^{n\geq 1}, \forall y\in Y \ f(x,y)\in\mathcal{C}\Big([a,b]\Big)$ Интегралом, зависящим от параметра, будем называть функцию $I:Y\to\mathbb{R}$:

$$I(y) := \int_a^b f(x, y) \, \mathrm{d} x$$

1.2.1. Непрерывность интеграла от параметра

Теорема 4.
$$y_0$$
 – т. сг. Y , $f(x,y) \xrightarrow{x \in [a,b]} f_0(x)$

Тогда $f_0 \in \mathcal{C}igg([a,b]igg)$ и

$$I(y) = \int_a^b f(x, y) \, \mathrm{d}x \xrightarrow{y \to y_0} \int_a^b f_0(x) \, \mathrm{d}x$$
 (1.7)

Доказательство. Непрерывность f_0 следует из следствия к предыдущей теореме, поэтому интеграл в правой части (1.7) определён

По определению равномерной сходимости,

$$\forall \varepsilon > 0 \quad \exists U(y_0) : \quad \forall y \in \left(U(y_0) \cap Y \right) \setminus \{ y_0 \} \quad |f(x,y) - f_0(x)| < \varepsilon$$

При таких y имеем

$$|I(t) - \int_a^b f_0(x) \, dx| = \left| \int_a^b \left(f(x, y) - f_0(x) \right) \, dx \right| \le \int_a^b |f(x, y) - f_0(x)| \, dx \le \int_a^b \varepsilon \, dx = \varepsilon(b - a)$$

Следствие.
$$Y=[p,q], \qquad f:[a,b]\times Y\to \mathbb{R}, \qquad f\in\mathcal{C}\Big([a,b]\times Y\Big)$$
 $\Longrightarrow I(y)\in\mathcal{C}\Big([p,q]\Big)$

1.2.2. Производная интеграла от параметра

4

Теорема 5.
$$f:[a,b] \times Y \to \mathbb{R}, \qquad Y = [p,q], \qquad f \in \mathcal{C}\left([a,b] \times Y\right)$$

$$\forall \ (x,y) \in [a,b] \times Y \quad \exists \ f'(x,y), \qquad f'_y(x,y) \in \mathcal{C}\left([a,b] \times Y\right)$$

$$\Longrightarrow \quad \forall y \in [p,q] \quad \exists \ I'(y), \qquad I'(y) = \int_a^b f'_y(x,y) \ \mathrm{d} \ x$$

Доказательство. Поскольку f_y' непрерывна, к нейц применима терема Кантора:

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall (x_1, y_1), (x_2, y_2) : \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} < \delta \qquad |f_y'(x_2, y_2) - f_y'(x_1, y_1)| < \varepsilon$$

Пусть $0 < |h| < \delta$, тогда

$$\exists c \in (y \ (y \ y + h)): \quad f(x, y + h) - f(x, y) = f'_{y}(x, c)h$$

$$f(x,y+h) - f(x,y) = f'_y(x,y)h + \left(f'_y(x,c) - f'_y(x,y)\right)h := f'_y(x,y)h + r_h(x,y)h, \qquad |r_h(x,y)| < \varepsilon$$
 (1.8)

$$I(y+h) - I(y) \stackrel{\text{def}}{=} \int_a^b \left(f(x,y+h) - f(x,y) \right) dx = \frac{1}{18}$$

$$= \int_a^b f_y'(x,y)h dx + \int_a^b r_h(x,y)h dx = h \int_a^b f'(x,y) dx + h \int_a^b r_h(x,y) dx$$

$$\left| h \int_a^b r_h(x,y) dx \right| \le |h| \int_a^b |r_h(x,y)| dx \le |h| \int_a^b \varepsilon dx = |h|\varepsilon(b-a)$$

Отсюда следует, что I(y) дифференцируема в y и выполнено утверждение теоремы

1.2.3. Интегрирование интеграла от параметра

Теорема 6.
$$f \in \mathcal{C}\Big([a,b] \times [p,q]\Big), \qquad I(y) \coloneqq \int_a^b f(x,y) \; \mathrm{d}\, x, \quad K(x) \coloneqq \int_p^q f(x,y) \; \mathrm{d}\, y$$
 $\Longrightarrow \int_p^q I(y) \; \mathrm{d}\, y = \int_a^b K(x) \; \mathrm{d}\, x$

Доказательство. По теореме о непрерывности интеграла, $I(y) \in \mathcal{C}\Big([a,b]\Big)$

Положим

$$\varphi(y_0) \coloneqq \int_p^{y_0} I(y) \, \mathrm{d} \, y, \qquad v(y) \coloneqq \int_a^b l(x, y_0) \, \mathrm{d} \, x, \qquad l(x, y_0) \coloneqq \int_p^{y_0} f(x, y) \, \mathrm{d} \, y$$

 $\varphi \in \mathcal{C}igg([p,q]igg)$, поскольку $I(y) \in \mathcal{C}igg([p,q]igg)$

Поскольку $f \in \mathcal{C}\left([a,b] \times [p,q]\right)$, то она ограничена (по первой теореме Вейерштрасса), т. е.

$$\exists\, M: \quad \forall (x,y) \in [a,b] \times [p,q] \quad |f(x,y)| \leq M$$

Поэтому при $y_1,y_2\in[p,q]$ имеем

$$|f(x,y_2) - l(x,y_1)| = \left| \int_p^{y_2} f(x,y) \, dy - \int_p^{y_1} f(x,y) \, dy \right| = \left| \int_{y_1}^{y_2} f(x,y) \, dy \right| \le$$

$$\le \left| \int_{y_1}^{y_2} |f(x,y)| \, dy \right| \le |M(y_2 - y_1)| = M|y_2 - y_1| \quad (1.9)$$

При фиксированном y_0 функция $l(x,y_0) \in \mathcal{C}([a,b])$, поэтому, с учётом (1.9) имеем

$$l(x, y_0) \in \mathcal{C}\left([a, b] \times [p, q]\right)$$

По определению l, при фиксированном x получаем

$$l'_{y_0}(x,y) = f(x,y_0)$$

$$\implies l'_{y_0}(x,y) \in \mathcal{C}\left([a,b] \times [p,q]\right)$$

$$\implies \exists v'(y_0), \qquad v'(y_0) = \int_a^b l'_{y_0}(x,y_0) \, \mathrm{d}x = \int_a^b f(x,y_0) \, \mathrm{d}x = I(y_0)$$

По определению φ ,

$$\exists \varphi'(y_0), \qquad \varphi'(y_0) = I(y_0)$$

Из последних двух выражений следует, что

$$v'(y_0) = \varphi'(y_0), \qquad y_0 \in [p, q]$$

Подставляя p вместо y_0 получаем

$$\varphi(p) = \int_p^p I(y) dy = 0, \qquad v(p) = \int_a^b l(x, p) dx$$

$$f(x,p) = \int_{p}^{p} f(x,y) dy = 0 \implies v(p) = 0$$

$$\implies \int_p^q I(y) \, \mathrm{d}y = \varphi(q) = \varphi(q) - \varphi(p) = \int_p^q \varphi'(y_0) \, \mathrm{d}y_0 = \int_p^q v'(y_0) \, \mathrm{d}y_0 = \int_p^b v'(y_0) \, \mathrm{d}y_0 = \int_p^b l(x, q) \, \mathrm{d}x = \int_p^b K(x) \, \mathrm{d}x$$

1.2.4. Несобственные интегралы, зависящиеся от параметра

Пусть $Y \subset \mathbb{R}^{n \geq 1}$, $f: [a, \infty) \times Y \to \mathbb{R}$ – семейство функциі Предположим, что $f \in \mathcal{C}\left([a, \infty) \times Y\right)$ и пусть A > a Определим функцию $F: Y]times[a, \infty)$:

$$f(y,A) := \int_a^A f(x,y) \, dx, \qquad y \in Y, \quad A > a$$

Пусть

$$\forall y \in Y \quad \exists \lim_{A \to \infty} F(y, A) =: F_0(y)$$

Определение 4. Будем говорить, что несобственный интеграл $\int_a^\infty f(x,y) \; \mathrm{d}\, x$ равномерно сходится при $y \in Y,$ если

$$F(y,A) \xrightarrow[A \to \infty]{y \in Y} F_0(y)$$

Применяя критерий Коши равномерной сходимости семейства функций, получаем следующее утверждение:

Теорема 7. Для того, чтобы несобственный интеграл $\int_a^\infty f(x,y) \, \mathrm{d}\, x$, зависящий от параметра, рав-

номерно сходился при $y \in Y$, **необходимо и достаточно**, чтобы

$$\forall \varepsilon > 0 \quad \exists L > a : \quad \forall A_1, A_2 > L \quad \forall y \in Y \quad \left| \int_{A_1}^{A_2} f(x, y) \, dx \right| < \varepsilon$$

Доказательство. Заметим, что

$$F(y, A_2) - F(y, A_1) = \int_a^{A_2} f(x, y) \, dx - \int_a^{A_1} f(x, y) \, dx = \int_{A_1}^{A_2} f(x, y) \, dx$$

1.2.5. Признак Вейерштрасса равномерной сходимости несобственного интеграла от параметра

Теорема 8.
$$f \in \mathcal{C}\Big([a,\infty) \times Y\Big)$$

$$\forall y \in Y \quad |f(x,y)| \leq g \tag{1.10}$$

$$\int_{a}^{\infty} g(x) \, \mathrm{d}x < \infty$$

Тогда несобственный интеграл $\int_a^\infty f(x,y)\;\mathrm{d}\,x$ сходится равномерно при $y\in Y$

Доказательство. Возьмём $\forall \varepsilon>0$, выберем L так, чтобы $\int_L^\infty g(x) \;\mathrm{d}\, x<\varepsilon.$ Тогда

$$\forall A_1, A_2 > L \quad \left| \int_{A_1}^{A_2} f(x, y) \, dx \right| \le \left| \int_{A_1}^{A_2} |f(x, y)| \, dx \right| \le \left| \int_{A_1}^{A_2} g(x) \, dx \right| \le \int_{L}^{\infty} g(x) \, dx < \varepsilon$$

при любом $y \in Y$

По предыдущей теореме

$$\int_a^A f(x,y) \, dx \xrightarrow[A \to \infty]{y \in Y} \int_a^\infty f(x,y) \, dx$$