SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING

(Campus Name)

Academic Year: 2022-2023

Practical 2-First Come First Serve Scheduling algorithm

Name Arjun Mehta	Roll_No K036	SAP-ID	ВАТСН	DATE
171011111		70102300018	K1	10-01-25

Dear all,

Kindly complete the following task with your name in output file.

Example 1:-

First- Come, First-Served (FCFS) Scheduling

Process	Burst Time		
P_1	24		
P_2	3		
P.	3		

Suppose that the processes arrive in the order: P₁, P₂, P₃
 The Gantt Chart for the schedule is:

- Waiting time for P₁ = 0; P₂ = 24; P₃= 27
- Average waiting time: (0 + 24 + 27)/3 = 17

Operating System Concepts – 10th Edition

5a.1

Example 2

First- Come, First-Served (FCFS) Scheduling

Process	Burst Time		
P_1	24		
P_2	3		
P_3	3		

Suppose that the processes arrive in the order: P₁, P₂, P₃
 The Gantt Chart for the schedule is:

	P ₁	P ₂	P ₃	
(2	4 2	7 30	ì

- Waiting time for P₁ = 0; P₂ = 24; P₃ = 27
- Average waiting time: (0 + 24 + 27)/3 = 17

Operating System Concepts - 10th Edition

5a.1

Example 3

Process	Arrival time	Burst time
P1	0	5
P2	1	6
Р3	2	7

Theoretical calculation:

Program:

List of processes with (Process ID, Burst Time)

Initialize waiting time and turnaround time lists

waiting_time = [0] * len(processes)

turnaround_time = [0] * len(processes)

Calculate waiting time

for i in range(1, len(processes)):

```
waiting_time[i] = processes[i - 1][1] + waiting_time[i - 1]

# Calculate turnaround time
for i in range(len(processes)):
    turnaround_time[i] = processes[i][1] + waiting_time[i]

# Print the results
print("Process | Waiting Time | Turnaround Time")
for i in range(len(processes)):
    print(f"{processes[i][0]} | {waiting_time[i]} | {turnaround_time[i]}")
```

Example 2:

Result screenshot:

Conclusion:-

Write your observation about FCFS algorithm. how the waiting time can be reduced in FCFS algorithm? Write your idea.

In conclusion, the FCFS scheduling algorithm is one of the basic scheduling algorithms used in operating systems. It schedules the processes in the order in which they arrive in the ready queue, which is fair to all the processes.

References:

- 1. https://www.geeksforgeeks.org/preemptive-and-non-preemptive-scheduling/
- 2. https://www.guru99.com/fcfs-scheduling.html
- 3. https://www.javatpoint.com/os-fcfs-scheduling