## Exercício 1

Seja  $(u_n)_n$  uma sucessão definida por:  $u_n = \frac{2n-3}{3n}$ 

a)

Estude  $(u_n)_n$  quanto à monotonia

 $(u_{n+1}) - (u_n) < 0$  é monótona decrescente  $(u_{n+1}) - (u_n) > 0$  é monótona crescente

$$\begin{split} & \left[ \frac{3n}{3n} \right] \left[ \frac{2n-1}{3n+3} \right] - \left[ \frac{2n-3}{3n} \right] \left[ \frac{3n+3}{3n+3} \right] \\ & \left[ \frac{6n^2-3n}{(3n)\left(3n+3\right)} - \frac{6n^2-9n+6n-9}{(3n)\left(3n+3\right)} \right] \\ & \left[ \frac{6n^2-3n-6n^2+9n-6n+9}{(3n)\left(3n+3\right)} \right] \\ & \frac{9}{(3n)\left(3n+3\right)} > 0, \forall n \in \mathbb{N} \end{split}$$

 $u_n$  é monótona crescente

b)

 $(u_n)_n$  é uma sucessão limitada? Justifique.

$$\lim_{n} \frac{2n-3}{3n} = \lim_{n} \frac{\varkappa(2-\frac{3}{n})}{\varkappa(3)} = \frac{2-\frac{\varkappa}{n}}{3} = \frac{2}{3}$$

 $(u_n)_n$  é convergente pois tende para um número real. Toda a sucessão convergente é limitada. Como  $(u_n)_n$  é crescente sabemos que:

$$\frac{2n-3}{3n} = \frac{2}{3} - \frac{1}{n}$$

 $-\frac{1}{n}<0,$ então qualquer termo será sempre inferior a  $\frac{2}{3}$ 

$$-\frac{1}{3} < u_n < \frac{2}{3}, \forall n \in \mathbb{N}$$



# Exercício 2

Considere a sucessão  $(a_n)_n$  de termo geral  $a_n = \frac{(-1)^n}{n}$ .

**a**)

Determine os três primeiros termos da sucessão  $(a_n)_n$ .

b)

Verifique se  $(a_n)_n$  é uma sucessão convergente.

$$\begin{cases} \text{Para n par: } \lim\limits_{n} \ \frac{1}{n} = \frac{1}{+\infty} = 0 \\ \text{Para n impar: } \lim\limits_{n} \ -\frac{1}{n} = \frac{-1}{+\infty} = 0 \end{cases}$$

 $(a_n)_n$  é convergente para zero.



# Exercício 3

Determine, caso existam, os seguintes limites:

$$\lim_{n} \left( \frac{2n}{\sqrt{n^2 + 1}} \right) \stackrel{\infty}{=}$$

$$\lim_{n} \left( \frac{\varkappa(2)}{\varkappa\sqrt{1 + \frac{1}{\varkappa^2}}} \right)$$

$$= \frac{2}{\sqrt{1}} = 2$$

$$\lim_{n} \left( \sqrt{n+10} - \sqrt{n} \right) \stackrel{\infty = \infty}{=}$$

$$\lim_{n} \left( \frac{\left( \sqrt{n+10} - \sqrt{n} \right) \left( \sqrt{n+10} + \sqrt{n} \right)}{\left( \sqrt{n+10} + \sqrt{n} \right)} \right)$$

$$\lim_{n} \frac{10}{\sqrt{n+10} + \sqrt{n}} = \frac{10}{+\infty} = 0$$

**c**)

$$\lim_{n} \left(1 + \frac{10}{n}\right)^{\frac{n}{2}} \stackrel{1^{\infty}}{=}$$

$$\left[\lim_{n} \left(1 + \frac{10}{n}\right)^{n}\right]^{\frac{1}{2}}$$

$$= \left[e^{10}\right]^{\frac{1}{2}} = e^{5}$$

#### Exercício 4

Considere a função real de variável real definida por  $f(x) = \frac{\sqrt{x+5}}{x}$ 

$$D_f = \{x \in \mathbb{R} : x + 5 \ge 0 \land x \ne 0\} = [-5, +\infty[\setminus \{0\}]]$$

### Exercício 5

Considere a função quadrática  $f,\,f(x)=\frac{\sqrt{x+5}}{x}$ 

a)

b)

Averigue se o ponto de coordenadas  $(8, \sqrt{2})$  pertence ao gráfico de f.

$$f(8) = \frac{\sqrt{8}}{8-6} = \frac{\cancel{2}\sqrt{2}}{\cancel{2}} = \sqrt{2}$$

Logo  $(8, \sqrt{2})$  pertence a f

Considere a função real de variável real definida pela expressão  $f(x) = (m-3)x^2 - 2x + 1, m \in \mathbb{R} \setminus 3$ . Determine o valor de m de modo que o ponto de coordenadas (-1, 2) pertença ao gráfico de f.

$$f(-1) = 2 \Leftrightarrow m = 2$$

#### Exercício 6

Considere a função polinomial definida em  $\mathbb{R}$  por  $p(x) = x^3 - 7x - 6$ .

a)

Mostre, usando a regra de Ruffini, que  $p(x) = (x+1)(x^2 - x - 6)$ , para qualquer  $x \in \mathbb{R}$ .

Logo, 
$$(x+1)(x^2-x-6)$$

b)

Determine, sob a forma de intervalo ou união de intervalos, o conjunto de números reais que verificam a condição  $p(x) \leq 0$ .

$$(x+1)(x^2 - x - 6) \le 0$$

| x                           | -∞ | -2 |   | -1 |   | 3 | +∞ |
|-----------------------------|----|----|---|----|---|---|----|
| x+1                         | _  | -  | _ | 0  | + | + | +  |
| $x^2 - x - 6$               | +  | 0  | _ | -  | _ | 0 | +  |
| $(x+1)\left(x^2-x-6\right)$ | _  | 0  | + | 0  | _ | 0 | +  |

Decrescente Decrescente

$$C.S. = ]-\infty, -2] \cup [-1, 3]$$

## Exercício 7

Considere a função real de domínio  $\mathbb{R} \setminus 1$  definida por:

$$g(x) = \begin{cases} x^2 - 4, & \text{se } -2 < x < 2, \\ 2, & \text{se } x \ge 2. \end{cases}$$

**a**)

Represente graficamente a função g. (Nota: não é necessário apresentar cálculos.)



$$D_g = ]-2, +\infty[$$

$$D_g' = [-4, 0[ \cup \{2\}$$

b)

Verifique se a função g é injetiva. Justifique.

A função não é injetiva pois há objetos diferentes com imagem igual, por exemplo:

$$-2 \neq -3 \land f(-2) = f(-3) = -3$$

**c**)

Justifique se é verdadeira a seguinte afirmação: "A função g é uma função ímpar."

#### Exercício 7

Considere a função quadrática itf, de domínio  $\mathbb{R}$ , definida por  $f(x)=-2x^2-4x+1$ .

**a**)

Mostre que o vértice da parábola definida pelo gráfico de f é V(-1, 3).

$$f(x) = -2(x+1)^2 + 3$$

Logo, o vértice da parábola á V(-1,3)

b)

Indique o contradomínio de f.

$$D_f' = ]-\infty, 3]$$

**c**)

Indique, caso existam, o máximo e o mínimo absoluto de f.

A função tem como máximo absoluto 3 mas não tem mínimo absoluto

