

Predicting Recessions using Unlikely Indicators

Anders Seline, Mollie Maggiacomo, and Andrew Zhang

Research Question

Our group intends to create a means of predicting if the economy as a whole shows signs of approaching a recessionary period by observing the values of a chosen set of factors. These include well-known recession indicators widely used by economists, as well as other data points near and dear to almost every college student. For starters, the usual metrics of an oncoming downturn we will consider are as follows:

- Consumer Confidence Index (CCI)
- 10-Federal Funds Rate Spread
- Normalized GDP
- Total Manufacturing Employment
- Inflation

However, as college students, we wanted to use some unusual recession indicators we are more interested in in

our regression model

Unlikely Indicators

Alcohol

 During periods of recession, consumption of alcohol tends to go up as people feel the need to forget about their daily struggles

Copper

 Copper, a commodity material that is used heavily in construction, tends to lose demand during recession periods as construction projects get put on hold or pushed back

Unlikely Indicators

Fast Food

- We also wanted to use The Economist's Big Mac index as another indicator, but were ultimately unable to do so due to its short lifespan
- This would have served as a quasi-exchange rate, as it normalizes the price of goods in each country and compares the relative difference back to the monetary exchange rate
- As the dollar tends to weaken during recessions, we could have compared the US Big Mac Index with multiple others, and have our model search for trends

Gathered our data from the FRED Economic
 Database

Time Frame: 1967-2021

CSV Files:

CCI Index

- Copper Pricing
- o GDP
- Inflation
- Manufacturing Employment
- 10-FF Yield Spread
- Alcohol Sales Volume
- Recession in Next Month

rec_nest_mont	inflation	emp_pct	emp	spread	alc_pet	alc	gdp	copper_pct	copper	eci	date		
	2.77278562256007	0.0	19033	-0.36	0.0	8.853	100.868342478118	0.0	55.2	100.91371711802	1967-01-01	0	- 1
	2.8977031667640922	0.0030499638549714797	17978	0.52	0.00952596106781134	8.93733333333333	100.7207424096	0.0	55.2	101.063222562007	1967-02-01	1	2
	3.022620710975115	0.0021136945155190157	17940 -	0.91	0.009436073399970102	9.02166664466667	100.553109723236	-0.021739130434782705	54.0	101.165525611314	1967-03-01	2	3
	3.1475382551661375	-0.003455964325529526	17878	0.0	0.00934786624792161	9.106	100.379757610786	-0.0166666666666607	53.1	101.242167388896	1967-04-01	3	- 4
-	3.27245579935716	0.0025729947421412325	17832 -	0.77	0.009261292920418773	9.190300022233333	100.219858524299	-0.013182674199623379	52.4	101.297344700464	1967-05-01	4	5
	3.3973733435481823	0.0011215791834903177	17812	0.81	0.009176308440027562	9.2740006666669987	100.08887011546	-0.005725190839694583	52.1	101.321804468293	1967-06-01	5	6
-	3.5222908877392047	0.0015719739501459662	17784 -	1.72	0.00909286946520993	9.359	99.995304636833	0.0	52.1	101.286883156174	1967-07-01	6	7
	3.6472084319302278	0.006803868645973932	17905	1.43	0.009010634216618663	9.44333333333333	99.9385770623846	0.0	52.1	101.18926361197	1967-08-01	7	8
	3.77212597612125	-0.006199085646467492	17794	1.25	0.008900462407342077	9.527000044400057	99.9232325195438	0.011516314779270731	52.7	101.035113006269	1967-09-01		9
	3.8970435203122724	00033719231201523314	178003	1.56	0.008851415176853283	9.612	99.9672481164241	0.020872865275142205	53.8	100.974258552544	1967-10-01	9	10
	4.021961054500295	0.010393258429996367	17985	1.57	0.00877375502843658	9.496303033333333	100.048762304548	0.05018587360594795	54.5	101.050894278172	1967-11-01	10	11
	4.146878909994317	0.0022240756185709643	18025	1.28	0.008697445789878742	9.78066666666687	100.198938071591	0.019466028548672552	57.6	101.180991644122	1967-12-01	11	12
	4.27179615200534	0.0008321775312065682	18340	1.065	0.00862245245722848	9.865	100.39070213727	0.0243055555555555	59.0	101.248056122149	1968-01-01	12	13
	4.371011990168854	0.0007760632150775656	18054	0.83	0.009706081424227218	9.99075	100.598771591729	0.055602203389830404	62.3	101.165422193022	1968-02-01	13	14
	4.470027827450367	0.0007200620361138554	18067	0.81	0.009612729965112976	10.0565	100.796775426688	0.022471910112359605	63.7	101.00158107131	1968-03-01	14	15
	4.56844366473588	0.0035423700669729996	18131	0.14	0.009521205190672788	10.19225	100.963361666027	-0.02962731554160134	61.8	100.848061232027	1968-04-01	15	16
-	4.668659502019090	0.0002540951960731146	18190	-0.65	0.009431406830997968	10.248	101.082664880418	-0.09061488673139151	56.2	100.768455969851	1968-05-01	16	17
9	4.767875339302907	0.002089058923034542	18228	-0.27	0.009343286494925684	10.34375	101.147130914283	-0.017793584309049876	55.2	100.737288735917	1968-06-01	17	18
	4.86709117658642	0.0020298441957427027	18265	-0.51	0.00925679758308151	10.429499999999999	101.163793936173	-0.021739130434782705	54.0	100.719513399992	1968-07-01	10	19
9	4.966307013969933	0.0009022447303596365	18254	0.62	0.009171885205709157	10.53525	101.147155073388	-0.007407407407407418	53.6	100.70172048441	1968-08-01	19	20
-	5.065522851153447	00010956500884345004	182523	-0.33	0.00908853610498106	10.631	101.115610095348	-0.001865671641791078	53.5	100.709913499998	1968-09-01	20	21
	5.16473898843686	0.002246329189406147	18293	-0.51	0.009006678581506833	10.72676	101.090455653083	0.005607478835513864	53.8	100.795977183197	1968-10-01	21	22
	5.263954525720473	0.0008972831137592525	18346	-0.39	0.00892628242477903	10.8225	101.088685764161	0.003717472118959231	54.0	100.998165800676	1968-11-01	22	23
	5.363170363003666	0.0034884968553363083	18410	-0.22	0.008947308847308888	10.91825	101.116572282148	0.0100666688999996607	54.9	101.223719787677	1968-12-01	29	24
-	5.4623862002875	0.0011950027159153276	18432	-0.20500000000000002	0.008769720422228766	11.014	101.155747531586	0.04371584099453557	57.3	101.337502723813	1969-01-01	24	25
	5.469708828470419	0.0037977430665555602	18502	-0.19	0.009934326009321426	11,123416666666999	101.185767867879	0.00523560209424101	57.6	101.227272929994	1969-02-01	25	26
-	5.525031059953338	0.0030266998162390448	18558	-0.74	0.009036605958900568	11.232833333333333	101.185796203767	0.01736111111111116	58.6	100.980726105618	1969-03-01	26	27
	5.556353484836258	00021554046772276347	18554)	-0.38	0.009740788649391068	11.34225	101.152107445208	0.027303754266211566	60.2	100.695851130211	1969-04-01	v	28
	5.587875913019177	0.0018324889511696085	18588	-2.0	0.009646821985643594	11.4510000666600000	101.08700929278	0.019903554817275656	61.4	100.4282027225	1969-05-01	26	29

Merging Datasets and Formatting Data to Time-Frame

```
[68]: r = pd.DataFrame(pd.date_range(start=rspread.DATE.min(), end=rspread.DATE.max()),columns=["DATE"])
        rspread = r.merge(rspread.assign(DATE=pd.to_datetime(rspread['DATE'])), how='left').fillna(method='ffill')
       merge attoacasecs togetme.
ccc_copper = pd.merge(left=cci, right=copper, how='inner', on='DATE')
ccc_ddp = pd.merge(left=cci_copper, right=adp, how='inner', on='DATE')
cc_gdp_alc = pd.merge(left=cc_gdp, right=alc, how='left', on='DATE')
cc_gdp_alc = cc_gdp_alc.interpolate(method='linear')
        cc_gdp_alc['DATE'] = pd.to_datetime(cc_gdp_alc['DATE'])
        cc_gdp_alc_r = pd.merge(left=cc_gdp_alc, right=rspread, how='left', on='DATE')
        cc_gdp_alc_r['DATE'] = pd.to_datetime(cc_gdp_alc_r['DATE'])
         spread = cc_gdp_alc_r['T10YFF']
         for i in range(len(spread)):
              if spread[i] == '.':
    spread[i] = (
                         (float(spread[i - 1]) + float(spread[i + 1]))
       spread_np = spread.astype(np.float64)
del cc_gdp_alc_r['T10YFF']
        cc_gdp_alc_r['T10YFF'] = spread_np
        man_emp['DATE'] = pd.to_datetime(man_emp['DATE'])
cc_gdp_alc__remp = pd.merge(left=cc_gdp_alc_r_right=man_emp, how='left', on='DATE')
inflation['DATE'] = pd.to_datetime(inflation['DATE'])
        indicators_w_rec = pd.merge(left=cc_gdp_alc_r_emp, right=inflation, how='left', on='DATE')
rec['DATE'] = pd.to_datetime(rec['DATE'])
         indicators['FPCPITOTLZGUSA'] = indicators['FPCPITOTLZGUSA'].interpolate(method='linear')
        warnings.filterwarnings('ignore')
```

Data Usage and Normalization

 We had to normalize the alcohol sales and price of copper over time due to the increasing values of raw data over time by creating a column to calculate the % change for each time interval

```
indicators['copper_pct'] = indicators['copper'].pct_change()
      indicators['alc_pct'] = indicators['alc'].pct_change()
      indicators['emp_pct'] = indicators['emp'].pct_change()
      inf_list = list(indicators['inflation'])
      pct_change = [0]
      for i in range(1, len(inf_list)):
          b = inf_list[i]
          a = inf_list[i - 1]
          chng = (b - a) / np.absolute(a)
          pct change.append(chng)
[76]: indicators['copper_pct'] = indicators['copper_pct'].fillna(0)
      indicators['alc_pct'] = indicators['alc_pct'].fillna(0)
      indicators['emp pct'] = indicators['emp pct'].fillna(0)
      indicators['inflation_pct'] = pct_change
      indicators = indicators[[
          'date', 'cci', 'copper', 'copper_pct', 'gdp', 'alc', 'alc_pct',
          'spread', 'emp', 'emp_pct', 'inflation', 'inflation_pct',
          'rec next month'
      indicators = indicators.drop('inflation_pct', axis=1)
      indicators.to_csv('data/full_time_indicators.csv')
      indicators.describe()
```

	date	cci	copper	gdp	alc	spread	етр	inflation	rec_next_month
0	1967-01-01	100.913717	55.2	100.868342	8.853000	-0.36	18033	2.772786	0.0
1	1967-02-01	101.063223	55.2	100.720742	8.937333	0.52	17978	2.897703	0.0
2	1967-03-01	101.165526	54.0	100.553110	9.021667	0.91	17940	3.022621	0.0
3	1967-04-01	101.242167	53.1	100.379758	9.106000	0.00	17878	3.147538	0.0
4	1967-05-01	101.297345	52.4	100.219859	9.190333	0.77	17832	3.272456	0.0

641	2020-06-01	98.281638	359.8	92.322976	167.134000	0.61	11999	1.812210	1.0
642	2020-07-01	98.301124	383.5	93.984370	167.134000	0.61	12037	1.812210	1.0
643	2020-08-01	98.526634	394.3	95.633067	167.134000	0.45	12068	1.812210	1.0
644	2020-09-01	98.875920	401.6	95.741927	167.134000	0.59	12123	1.812210	1.0
645	2020-10-01	99.042669	396.3	95.845674	167.134000	0.59	12155	1.812210	1.0

Models Used

- 1. Logistic Regression
- Random Forest Model
- 3. Gradient Boosted Trees

Model Fitting

- 1. Initial fitting: Years 1967 (start of time) to 1980
- 2. Time Series fitting: 1980 to 2010
- 3. Testing Data: 2010 to present

Model Tuning

Logistic Regression:

 class weight: balanced, ensures that the weights of each class are adjusted inversely proportional to class frequencies. This was a conscious decision made after comparing different weighting methods

Random Forest & Gradient Boosted Trees:

- These models were tuned using cross validation to determine optimal parameters
- Note the difference between n_estimators since gradient boosting is less inclined to overfitting, we can use slightly more estimators here to boost accuracy

```
params = {
    'learning_rate' : 0.5,
    'n_estimators' : 500,
    'verbosity' : 0,
    'use_label_encoder' : False
}
gb = XGBClassifier(**params)
```

```
params = {
    'max_iter':1000,
    'class_weight':'balanced'
}
logit = LogisticRegression(**params)
```

```
params = {
    'bootstrap' : 'True',
    'class_weight' : 'balanced',
    'min_samples_leaf' : 3,
    'min_samples_split' : 10,
    'n_estimators' : 400
}
rand_forest = RandomForestClassifier(**params)
```

Model 1: Logistic Regression

- Set parameters: 'max_iter' and 'class_weight'
- 2. Fit to training data before 1980
- 3. Incorporating more data, one month at a time in a series, from 1980 to 2010
- 4. Get the weights of each indicator, and the prediction, at each time interval
- 5. Merge factor weights into combined dataframe = logi_results
- 6. Create dataframe for the classification report using predicted and actual recession values = logi_class_rep
- 7. Save both df's to CSV files in the outputs folder for further analysis

Model 2: Random Forest

- Input parameters: 'bootstrap', 'class_weight', 'min_samples_leaf',
 'min_samples_split', 'n_estimators'
- 2. Fit each model on period 1967-1980, and perform time series analysis from 1980-2010
- 3. Create Random Forest model with *RandomForestClassifier* and fit x and y_train data
- 4. Create coefficient lists for each variable
- 5. Get all the predictions
- 6. Add dates and combine into one df = rf_results
- 7. Create dataframe for the classification report = rf_class_rep
- 8. Save both df's to CSV files in the outputs folder for further analysis

Model 3: Gradient Boosted Trees

- Input parameters: 'learning_rate', 'n_estimators', 'verbosity', 'use_label_encoder'
- 2. Fit each model on period 1967-1980, and perform time series analysis from 1980-2010
- 3. Create Gradient Boosted Trees model with XGBClassifier and fit data
- 4. Create coefficient lists for each variable
- 5. Get all the predictions
- 6. Add dates and combine into one df = gb_results
- 7. Create dataframe for the classification report = gb_class_rep
- 8. Save both df's to CSV files in the outputs folder for further analysis

Model 1: Logistic Regression Results

Model 1: Logistic Regression Results

Model 2: Random Forest Results

Model 2: Random Forest Results

Model 3: Gradient Boosted Trees Results

Model 3: Gradient Boosted Trees Results

Classification Report Results on Full Dataset

Logistical Re	gression Rep	ort		
	precision	recall	f1-score	support
no recession recession	0.88 0.28	0.83 0.38	0.85 0.32	304 56
accuracy macro avg weighted avg	0.58 0.79	0.60 0.76	0.76 0.59 0.77	360 360 360

Gradient Boosted Trees Report							
	precision	recall	f1-score	support			
no recession	0.96	0.97	0.97	304			
recession	0.85	0.79	0.81	56			
accuracy			0.94	360			
macro avg	0.90	0.88	0.89	360			
weighted avg	0.94	0.94	0.94	360			

Gradient Boosted Trees Report							
	precision	recall	f1-score	support			
no recession recession	0.96 0.85	0.97 0.79	0.97 0.81	304 56			
accuracy macro avg weighted avg	0.90 0.94	0.88 0.94	0.94 0.89 0.94	360 360 360			

Classification Report Results on Test Data

Logistic Regression

				AND CONTRACTOR OF THE CONTRACT	
	precision	recall	f1-score	support	
no recession	1.00	0.99	1.00	121	
recession	0.90	1.00	0.95	9	
accuracy			0.99	130	
macro avg	0.95	1.00	0.97	130	
weighted avg	0.99	0.99	0.99	130	
weighted dvg	0.33	0.55	0.55	130	

Random Forest

	precision	recall	f1-score	support
no recession recession	1.00 1.00	1.00 1.00	1.00 1.00	121 9
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	130 130 130

Gradient Boosted Trees

	precision	recall	f1-score	support
no recession recession	1.00 1.00	1.00 1.00	1.00 1.00	121 9
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	130 130 130

Analysis of Results

- Our models were very successful in predicting recessions as shown by the graphical representations and the classification reports
- Depending on the conditions of the recession, different indicators responded differently during different recession periods

