1 Review

Simple vs Simple: Reject for large $\frac{p_1(X)}{p_0(X)}$

One-sided: $\Theta \subset \mathbb{R}$.

 $H_0: \theta \leq \theta_0 \text{ vs } H_1: \theta > \theta_0$

If \mathcal{P} MLR in T(X), UMP test rej for large T(X).

 $= \{P_{\theta} : \theta \in \Theta \subset \mathbb{R}\}.$

Test $\theta \leq \theta_0$ vs $\theta > \theta_0$.

 $T(X) \in \mathbb{R}$ stochastically increasing in θ .

 $P_{\theta}((x) \leq t)$ non-increasing in θ .

 $\beta(\theta) = P_{\theta}(T(x) > c)$ non-decreasing in θ .

Example 1.1. $X_i \stackrel{\text{iid}}{\sim} p_{\theta}(x) = p_0(x - \theta), i \leq n.$ T(X) = sample mean/median.

Example 1.2. $X_i \stackrel{\text{iid}}{\sim} p_{\theta}(x) = \frac{1}{\theta} p\left(\frac{x}{\theta}\right)$ $T(X) = \sum_i X_i^2, \sum_i |X_i|$

Example 1.3. $X_i \stackrel{\text{iid}}{\sim} N(\theta, 1)$. $T(X) = \bar{X}$.

$$\tilde{T}(X) = \mathbb{E}[\tilde{T}(X) \mid \bar{X}] + \text{random noise}$$
 (1.1)

$$= \bar{X} + \varepsilon \approx N(\theta, \frac{1+\delta}{n}) \tag{1.2}$$

2 Two-sided tests, unbiasedness

 $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$

Example 2.1. $X \sim N(\theta, 1), H_0: \theta = 0$

- (a) Reject when $|X| > z_{n/2}$
- (b) Reject when $X > z_{\alpha}$
- (c) Reject when $X < z_{1-\alpha_1}$ or $X > z_{\alpha_2}$ such that $\alpha_1 + \alpha_2 = \alpha$.

Equal-tailed test 2.1

Reject for extreme T(X)

$$(*)\phi(X) = \begin{cases} 1, & \text{if } T > c_1, T < c_1 \\ 0, & \text{if } T \in (c_1, c_2) \\ \gamma, & \text{if } T = c_i \end{cases}$$
 (2.1)

Equal-tailed: choose c_i , γ_i so $\alpha_1 = \alpha_2 = \frac{\alpha}{2}$.

2.2 **Unbiased test**

A test is unbiased if

$$\inf_{\theta \in \Theta_1} \mathbb{E}_{\theta}[\phi(X)] \alpha \tag{2.2}$$

(for exp fam $\theta_0 \in \Theta^{\circ}$, $\beta'(\theta_0) = 0$)

Suppose $\theta_0 \in \Theta^{\circ}$. There is a two-sided UMP unbiased level- α test of the form (*) with c_i , γ_i , chosen to satisfy

$$\mathbb{E}_{\theta_0}\phi(X) = \alpha \tag{2.3}$$

$$\beta'(\theta_0) = \mathbb{E}_{\theta_0}(T(X)(\phi(X) - \alpha)) = 0 \tag{2.4}$$

$$\mathbb{E}_{\theta_0}\phi(X) = \alpha \tag{2.3}$$

$$\beta'(\theta_0) = \mathbb{E}_{\theta_0}(T(X)(\phi(X) - \alpha)) = 0 \tag{2.4}$$

$$p_0(x) = \begin{cases} \frac{1}{\sqrt{2\pi}}e^{-x^2/2}, & \text{if } x > 0\\ \frac{1}{2}e^{-|x|}, & \text{if } x < 0 \end{cases}$$

p-Values 3

Example 3.1. $X \sim N(\theta, 1)$. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$.

$$p(X) = P_{\theta_0}(|X - \theta_0| > |x - \theta_0|) \tag{3.1}$$

$$p(x) = P_{\theta_0}(X > x) \tag{3.2}$$

Setup: Testing problem \mathcal{P} , H_0 , H_1

Non-random Test $\phi_{\alpha}(x)$ for each significance level $\alpha \in (0,1)$.

$$\phi_{\alpha}(x) = 1_{x \in R_{\alpha}} \tag{3.3}$$

Example 3.2. test $X \sim N(\theta, 1)$, $H_0: \theta = 0$. $R_{\alpha} = (-\infty, z_{\alpha/2}] \cup [z_{\alpha/2}, \infty)$

Assume rejection regions are nested

$$\alpha_1 \le \alpha_2 \implies R_{\alpha_1} \subset R_{\alpha_2}$$
 (3.4)

$$(\phi_{\alpha_1}(X) \le \phi_{\alpha_2}(X)) \tag{3.5}$$

Define *p-value*

$$p(x) = \inf\{\alpha : \phi_{\alpha}(x) = 1\}$$
(3.6)

$$=\inf\{\alpha:x\in R_{\alpha}\}\tag{3.7}$$

Picture:

 $\forall \theta \in \Theta_0$

$$P_{\theta}(p(X) \le \alpha) = \sup_{\tilde{\alpha} < \alpha} P_{\theta}(x \in R_{\tilde{\alpha}}) \le \sup_{\tilde{\alpha} < \alpha} \tilde{\alpha} = \alpha$$
 (3.8)

If $\phi_{\alpha}(x)$ reject for large T(X)

$$p(x) = \sup_{\theta \in \Theta_0} P_{\theta}(T(X) > T(x))$$
(3.9)

4 Confidence intervals/regions

Accept/reject decision only so informative

Definition 4.1. Model $\mathcal{P}_{1-\alpha} = \{P_{\theta} : \theta \in \Theta\}$. C(X) is a *confidence set* for $g(\theta)$ if $P_{\theta}(g(\theta) \in C(X)) \geq 1 - \alpha$ for all θ .