Douglas M. Bates

lme4: Mixed-effects modeling with R

February 12, 2010

Springer

Page: 1 job: lMMwR macro: symono.cls date/time: 12-Feb-2010/16:53

Page: 2 job: lMMwR macro: symono.cls date/time: 12-Feb-2010/16:53

Page: viii job: lMMwR macro: svmono.cls date/time: 12-Feb-2010/16:53

Contents

1	\mathbf{A} S	Simple	, Linear, Mixed-effects Model	1
	1.1	Mixed	l-effects Models	1
	1.2	The D	yestuff and Dyestuff2 Data	3
		1.2.1	The Dyestuff Data	3
		1.2.2	The Dyestuff2 Data	5
	1.3	Fittin	g Linear Mixed Models	6
		1.3.1	A Model For the Dyestuff Data	7
		1.3.2	A Model For the Dyestuff2 Data	10
		1.3.3	Further Assessment of the Fitted Models	11
	1.4	The L	inear Mixed-effects Probability Model	12
		1.4.1	Definitions and Results	12
		1.4.2	Matrices and Vectors in the Fitted Model Object	14
	1.5	Assess	sing the Variability of the Parameter Estimates	15
		1.5.1	Confidence Intervals on the Parameters	16
		1.5.2	Interpreting the Profile Zeta Plot	18
		1.5.3	Profile Pairs Plots	19
	1.6	Assess	sing the Random Effects	22
	1.7	Chapt	ter Summary	25
	Exe	rcises .		25
2	Mo	dels W	With Multiple Random-effects Terms	27
	2.1		del With Crossed Random Effects	27
		2.1.1	The Penicillin Data	28
		2.1.2	A Model For the Penicillin Data	30
	2.2	A Mo	del With Nested Random Effects	35
		2.2.1	The Pastes Data	35
		2.2.2	Fitting a Model With Nested Random Effects	39
		2.2.3	Parameter Estimates for Model fm3	40
		2.2.4	Testing $H_0: \sigma_2 = 0$ Versus $H_a: \sigma_2 > 0$	41
		2.2.5	Assessing the Reduced Model, fm3a	44
	2.3	A Mo	del With Partially Crossed Random Effects	44

x Contents

	2.4 Exer	2.3.1 The InstEval Data 2.3.2 Structure of L for model fm4 Chapter Summary rcises	46 49 49 51
3	Mo o	dels Incorporating Covariates Rat Brain example	53 55 55
4	4.1 4.2 4.3 4.4 4.5	The sleepstudy Data 4.1.1 Characteristics of the sleepstudy Data Plot Mixed-effects Models For the sleepstudy Data 4.2.1 A Model With Correlated Random Effects 4.2.2 A Model With Uncorrelated Random Effects 4.2.3 Generating Z and Λ From Random-effects Terms 4.2.4 Comparing Models fm9 and fm8 Assessing the Precision of the Parameter Estimates Examining the Random Effects and Predictions Chapter Summary colems	57 57 59 60 63 65 67 70 74
5	5.1 5.2 5.3 5.4 5.5 5.6 5.7	nputational Methods for Mixed Models Definitions and Basic Results The Conditional Distribution $(\mathcal{U} \mathcal{Y}=\mathbf{y})$ Integrating $h(\mathbf{u})$ in the Linear Mixed Model Determining the PLS Solutions, $\tilde{\mathbf{u}}$ and $\hat{\boldsymbol{\beta}}_{\theta}$ 5.4.1 The Fill-reducing Permutation, \mathbf{P} . 5.4.2 The Value of the Deviance and Profiled Deviance 5.4.3 Determining r_{θ}^2 and $\hat{\boldsymbol{\beta}}_{\theta}$ The REML Criterion Step-by-step Evaluation of the Profiled Deviance Generalizing to Other Forms of Mixed Models 5.7.1 Descriptions of the Model Forms 5.7.2 Determining the Conditional Mode, $\tilde{\mathbf{u}}$	777 779 80 82 83 84 86 87 89 91 92 93
D c.	Exei	rcises	95

List of Figures

1.1	Yield of dyestuff from 6 batches of an intermediate	5
1.2	Simulated data similar in structure to the Dyestuff data	6
1.3	Image of the Λ for model fm1ML	15
1.4	Image of the random-effects model matrix, \mathbf{Z}^{T} , for fm1	15
1.5	Profile zeta plots of the parameters in model fm1ML	17
1.6	Absolute value profile zeta plots of the parameters in model	
	fm1ML	17
1.7	Profile zeta plots comparing $\log(\sigma)$, σ and σ^2 in model fm1ML .	18
1.8	Profile zeta plots comparing $\log(\sigma_1)$, σ_1 and σ_1^2 in model fm1ML	19
1.9	Profile pairs plot for the parameters in model fm1	20
1.10	95% prediction intervals on the random effects in fm1ML,	
	shown as a dotplot	24
1.11	95% prediction intervals on the random effects in fm1ML versus	
	quantiles of the standard normal distribution	24
1.12	•	26
0.1		00
2.1	Diameter of growth inhibition zone for 6 samples of penicillin.	29
2.2	Random effects prediction intervals for model fm2	31
2.3	Image of the random-effects model matrix for fm2	31
2.4	Images of Λ , $\mathbf{Z}^{T}\mathbf{Z}$ and \mathbf{L} for model fm2	32
2.5	Profile zeta plot of the parameters in model fm2	33
2.6	Profile pairs plot of the parameters in model fm2	34
2.7	Cross-tabulation image of the batch and sample factors	36
2.8	Strength of paste preparations by batch and sample	37
2.9	Images of Λ , $\mathbf{Z}^{T}\mathbf{Z}$ and \mathbf{L} for model fm3	40
2.10	Random effects prediction intervals for model fm3	41
2.11	Profile zeta plots for the parameters in model fm3	42
	Profile zeta plots for the parameters in model fm3a	44
	Profile pairs plot of the parameters in model fm3a	45
	Random effects prediction intervals for model fm4	47
0 1 5	_	
2.15	Image of the sparse Cholesky factor, \mathbf{L} , from model fm4	48

xii List of Figures

3.1	Profile plot of the parameters in model fm4	54
3.2	Profile pairs plot of the parameters in model fm4	54
3.3	Activation of brain regions in rats	55
4.1	Lattice plot of the sleepstudy data	58
4.2	Images of Λ , Σ and $\mathbf L$ for model fm8	62
4.3	Images of Λ , Σ and L for model fm9	65
4.4	Images of \mathbf{Z}^{T} for models fm8 and fm9	65
4.5	Profile zeta plots for the parameters in model fm9	68
4.6	Profile pairs plot for the parameters in model fm9	69
4.7	Plot of the conditional modes of the random effects for	
	model fm9 (left panel) and the corresponding subject-specific	
	coefficients (right panel)	71
4.8	Comparison of within-subject estimates and conditional	
	modes for fm9	72
4.9	Comparison of predictions from separate fits and fm9	73
4.10	Prediction intervals on the random effects for model fm9	75