

## (v) It is given that $\angle OAC = 35^{\circ}$ $\triangle AOB$ Is isosceles triangle



Therefore  $\angle ABO = 35^{\circ}$ 

And

$$\angle ABO + \angle OAC + \angle AOB = 180^{\circ}$$

$$70^{\circ} + \angle AOB = 180^{\circ}$$

$$\angle AOB = 180^{\circ} - 70^{\circ}$$

$$= 110^{\circ}$$

So reflection

$$\angle AOB = 2(ACB)$$

$$\angle ACB = \frac{1}{2} (360^{\circ} - 110^{\circ})$$

$$= \frac{1}{2} (250^{\circ})$$
$$= 125^{\circ}$$

Hence  $x = 125^{\circ}$ 

(vi) It is given that  $\angle AOB = 60^{\circ}$ 



And

$$\angle COA + \angle AOC = 180^{\circ}$$
$$\angle COA = 180^{\circ} - 60^{\circ}$$
$$= 120^{\circ}$$

 $\Delta ABO$  Is isosceles triangle So

$$\angle CAO = \frac{1}{2} (180^{\circ} - 120^{\circ})$$
  
=  $30^{\circ}$   
Hence  $x = 30^{\circ}$ 

(vii)  $\angle BAC = \angle BDC$  (Given that  $\angle BAC = 50^{\circ}$ )



In  $\Delta BDC$  we have

$$\angle DBC + \angle BDC + \angle BCD = 180^{\circ}$$
  
 $70^{\circ} + 50^{\circ} + \angle BCD = 180^{\circ}$   
 $\angle BCD = 180^{\circ} - 120^{\circ}$   
 $= 60^{\circ}$ 

Hence  $x = 60^{\circ}$ 

(viii) ΔDOB Is isosceles triangle



Because OD = OB (radius of circle)

$$\angle ODB + \angle OBD + \angle DOB = 180^{\circ}$$
  
 $40^{\circ} + 40^{\circ} + \angle DOB = 180^{\circ}$   
 $\angle DOB = 180^{\circ} - 80^{\circ}$   
 $= 100^{\circ}$ 

So  $\angle AOC = \angle DOB$  (vertical angle)

Hence  $x = 100^{\circ}$ 

\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*