

Introduction to Reinforcement Learning

June 27th, 2023

Nick Zolman (UW) Ludger Paehler (TUM) Vincent Van Wynendaele (ESPCI-Paris PSL)

https://tinyurl.com/dynamicsai-2023

Today's Tutorial

- High-Level Introduction to RL
- Examples
- Building RL Intuition
- The "Sharp Edges" of DRL
- Practical Code Walkthrough

Today's Tutorial

- High-Level Introduction to RL
- Examples
- Building RL Intuition
- The "Sharp Edges" of DRL
- Practical Code Walkthrough

The Deepmind Revolution

AlphaGo Lee (2016)

AlphaGo Master (2017)

AlphaGo Zero (2017)

The Deepmind Revolution: Alpha Go

Human Expert Knowledge + Monte Carlo Tree Search

The Deepmind Revolution: Alpha Zero

Monte Carlo Tree Search

Design of Protein Architectures

- Gamified design of proteins with the same search algorithm as DeepMind
- >1m molecules as starting blocks

>100 RL-generated molecules manufactured Under electron microscopes

"Top-down design of protein architectures with reinforcement learning" by Lutz et al.

Evolution of Simulations: AutoML Zero & AlphaTensor

Alpha Zero for Tensor Decompositions

Large Language Model Revolution: RLHF

- Requires a pre-trained large language model
- Fine-tunes LLM with policy gradient method
- Fine-tuning on human preferences
 - o <u>Instruction Tuning</u>

Requires **Human**-generated Instruction Datasets

Wall Models for Large-Eddy Simulations

- Large-scale multi-agent RL with equi-spaced agents along the wall to learn the wall-model of an LES
- Trained on the mean wall-shear stress

Tested on Turbulent boundary layers

Control of a Tokamak Reactor

- Physicists defines control objectives
- Deep RL interacts with Tokamak simulator
- Control policy applied to Tokamak reactor

RL Control Policy run
On real Tokamak reactor <u>in</u>
practice!

Today's Tutorial

- High-Level Introduction to RL
- Examples
- Building RL Intuition
- The "Sharp Edges" of DRL
- Practical Code Walkthrough

State: Where you are

Action: left/right/up/down

Next state: Where you are after the action

The Goal of Reinforcement Learning

Maximize long-term reward:

$$R = \sum_{t=1}^{+\infty} \gamma^{t-1} r_t$$

State s Reward r Action a

Environment

V*(s): Maximal reward you can get starting from state s Q*(s, a): Maximal reward starting from s after taking action a $\pi(a|s)$: Probability of taking action a given state s

 $V^{\pi}(s)$: Reward you can get, starting from s <u>following policy</u> π $Q^{\pi}(s, a)$: Reward starting from s after taking action a <u>following</u> π

The Snake Game

Quick Description of the environment

Finishing the environment : Shaping the reward function

How unintended consequence happen?

Evaluate $Q^{\pi}(s, a)$

Improve by taking

 $\pi(s) = \operatorname{argmax}_{a} Q^{\pi}(s, a)$

The importance of hyper-parameters: γ and ϵ

$$G_t = \sum_{k=0}^{T-t-1} \gamma^k R_{t+1+k}$$

When should you explore ? The ϵ -greedy setting

Visualization of $\gamma = 0$

$$G_t = \sum_{k=0}^{1-t-1} \gamma^k R_{t+1+k} = R_{t+1}$$

What about Deep learning

Today's Tutorial

- High-Level Introduction to RL
- Examples
- Building RL Intuition
- The "Sharp Edges" of DRL
- Practical Code Walkthrough

Sharp Edges of Deep RL: Reward Shaping

Exploration vs Exploitation

- Under sparse rewards, random exploration fails
- Strategies -> Augment the reward with...
 - A bonus signal
 - A prediction model which measures curiosity of the RL agent
 - A (variational) forward model
 - A Physical properties
 - An external memory
 - Short-term memory
 - Episodic memory
 - Direct exploration

Sharp Edges of Deep RL: Inverse RL

Problem Definition:

- Inputs: (state-, action-space, sample trajectories, dynamics model)
- Outputs: **reward function**, from which we then seek to the recover **policy**

Learning rewards from goals, demos

- Practical framework for task specification
- Adversarial training can be unstable
- Requires examples of desired behavior or outcomes

Learning rewards from human preferences

- Pairwise preferences easy to provide
- Has been deployed at scale
- May require (human) supervision in the loop of RL

Sharp Edges of Deep RL: Domain Transfer

- Deep RL is sample-inefficient + data collection is expensive
- Number of available approaches
 - System identification (supervised)
 - Domain adaptation (unsupervised)
 - Domain randomization (unsupervised)

Policy Parameters ξ Simulator Data sampled from $D_{q(\mathbf{x},\mathbf{y}|\ \xi)}$ Main Task Model

Sharp Edges of Deep RL: Cost of Data Collection

- Cost of data collection very high for scientific environments
 - >100m interactions with simulator=
- Ability to utilize surrogates such as Gaussian Processes etc.
- Highly active area of research

Sharp Edges of Deep RL: Hyperparameter Tuning

- Performance of (deep) RL highly dependent on hyperparameters
- Number of Hyperparameter tuning approaches available
 - Bayesian optimizationm
 - Population-based training
- Most stable with a Hyperparameter Tuning Toolkit like

Ray Tune

Sharp Edges of Deep RL: Environment Construction

- We desire: Efficient, low-latency implementation of the environment
- Techniques:
 - Separation of compute between CPUs
 & GPUs with latency-masking
 - Agent + environment compiled into one executable and run on the GPU/TPU
 - Vectorized gymnasium environments
 - Operation of own Threadpool with own Queue

Ray + Ray Runtime give us most of these

Practical Code Walkthrough

https://tinyurl.com/dynamicsai-2023