Name: Solutions

Each problem is worth 10 points. For full credit please show work and clearly indicate which operations you use in row reduction. No wireless devices are permitted. A calculator may be used to check answers.

(1) Find the augmented matrix for the following system. Use elimination and back substitution to solve it. Indicate which elimination steps you use.

No	pts
1	/10
2	/10
3	/10
4	/10
5	/10
6	/10
Σ	/60

$$x + 2y - 3z = 5$$
$$2x + 3y - 2z = 6$$
$$4x + 6y + z = 7$$

$$\begin{bmatrix} 1 & 2 & -3 & 5 \\ 2 & 3 & -2 & 6 \\ 4 & 6 & 1 & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -1 & 4 & -4 \\ 0 & -2 & 13 & -13 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \begin{bmatrix} 1 & 2 & -3 & 5 \\ 0 & -1 & 4 & -4 \\ 0 & 0 & 5 & -5 \end{bmatrix}$$

$$x + 2y - 3z = 5$$

 $-y + 4z = -4$
 $5z = -5$
So $5z = -5$, gives $z = -1$, $-y + 4(-1) = -4$ so $y = 0$,
and $x + 2(a) - 3(-1) = 5$, so $x = 5 - 3 = 2$.
Solution: $x = 2$
 $x = 2$
 $y = 0$ or $x = \begin{bmatrix} 2 \\ 6 \\ -1 \end{bmatrix}$

(2) Apply elimination to the following matrix. How may pivots are there in the resulting upper triangular matrix? Find all special solutions and then find the complete solution to $A\mathbf{x} = \mathbf{0}$.

$$A = \begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 2 & 1 & 5 \\ 1 & 1 & 2 & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 2 & 1 & 5 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ 2 & 2 & 1 & 5 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_2 - 2R_1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ R_3 - R_1 & 0 & 0 & 2 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 3 \\ R_3 - 2R_1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Free variables x2124

$$x_{1}+x_{2}+3x_{4}=0$$

$$x_{3}+x_{4}=0$$

$$x_{1}+x_{2}+x_{3}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{3}+x_{4}=0$$

$$x_{1}+x_{2}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{3}+x_{4}=0$$

$$x_{2}+x_{4}=0$$

$$x_{3}+x_{4}=0$$

complete solution
$$\vec{x} = x_2\vec{s}_1 + x_4\vec{s}_2 = x_2\begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_4\begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -x_2 - 3x_4 \\ x_4 \\ x_4 \end{bmatrix}$$

(3) Find an LU factorization for the following matrix A. Verify that this factorization works.

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \\ -1 & 1 & 12 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \\ -1 & 1 & 12 \end{bmatrix}$$

$$R_{2}-2R_{1} \begin{bmatrix} 0 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 3 & 11 \end{bmatrix}$$

$$R_{3}-3R_{2} \begin{bmatrix} 0 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} = U$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix}$$

Check
$$LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 - 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 - 1 \\ 2 & 5 & 1 \\ -1 & 1 & 12 \end{bmatrix} = A$$

(4) With A and b as given, use Gauss-Jordan elimination to find A^{-1} and then use A^{-1} to solve $A\mathbf{x} = \mathbf{b}$.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$R_{3} - R_{1} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

$$R_{1} + R_{3} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

$$R_{1} + R_{3} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

$$R_{1} + R_{3} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & -1 & -1 & 0 \end{bmatrix}$$

So
$$A^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

Solve
$$A \approx = \vec{b}$$
:
 $\vec{x} = A^{-1} \vec{b} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 1 & 1 \\ 1 & 0 - 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$

(5) With A as below, find conditions on the components of $\mathbf{b} = (b_1, b_2, b_3)$ so that the equation $A\mathbf{x} = \mathbf{b}$ has a solution. Find a vector **b** which is *not* in the column space C(A). How do you know **b** is not in C(A)?

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 & b_1 \\ 1 & 1 & 2 & b_2 \\ 2 & 5 & 1 & b_3 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 2 & 1 & b_1 \\ 0 & -1 & 1 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 + b_2 - 3b_1 \end{bmatrix} \xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 2 & 1 & b_1 \\ 0 & -1 & 1 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 + b_2 - 3b_1 \end{bmatrix}$$

So Az = b has a solution exactly when b3+b2-3b1=0. V

To=(1,0,0) is not in CIA) be cause b3+b2-3b, =-3 = 0

- (6) Which of the following subsets of \mathbb{R}^3 are subspaces? Give a brief reason.
 - a. All vectors $\mathbf{b} = (b_1, b_2, b_3)$ satisfying $b_1 2b_2 b_3 = 4$.

Not a subspace because it does not contain D.

b. All linear combinations of $\mathbf{v} = (1, 2, 3)$ and $\mathbf{w} = (1, -1, 0)$.

this is a subspace since the set of linear combinations of any 2 vectors is a subspace.

c. All vectors $\mathbf{b} = (b_1, b_2, b_3)$ satisfying $b_1^2 + b_2^2 = b_3^2$.

The vectors $\vec{b} = (1,0,1)$ and $\vec{c} = (0,1,1)$ are both in the set since $1^2 + 0^2 = 1^2$, $0^2 + 1^2 = 1^2$, but $\vec{b} + \vec{c} = (1,1,2)$ is not since $1^2 + 1^2 = 2 + 4 = 2^2$. So this not a subspace