Question number	Answer	Notes	Marks
7 (a)	any two from: MP1. alphas do not penetrate as far; MP2. alphas are more ionizing; MP3. alphas are more likely to collide (with material); MP4. alphas have more mass / move slower;	allow RA allow RA allow RA allow RA	2
(b) (i)	(nuclei with) same numbers of protons; (nuclei with) different numbers of neutrons;	allow (nuclei with) same atomic number allow (nuclei with) different mass number	2
(ii)	one mark for each correct number; $ \begin{array}{c} 235 \text{U} \\ 92 \end{array} \rightarrow \begin{array}{c} 231 \text{Th} \\ 90 \end{array} + \begin{array}{c} 4 \\ 2 \end{array} $		2
(iii)	any indication that 2100 million years is 3 half-lives; evaluation of number of uranium nuclei after 1 half-life; (after 2100 million years) there are 800 million uranium nuclei; (after 2100 million years) there are 5600 million thorium nuclei; 5600 (million) / 800 (million) = 7;	3200 (million) uranium nuclei after one half-life scores first three marks allow total number of nuclei is constant allow 7 × 800 = 5600	5

Total for Question 7 = 11 marks