矩阵论与凸优化第 4 课凸优化初步

管老师

七月在线

Apr, 2017

主要内容

- 优化与凸优化简介
 - 优化问题基本形式
 - 凸优化问题基本形式
 - 凸优化的应用
- 凸集合与凸函数基本概念
 - 凸集合与凸函数的关系
 - 凸集合与凸函数的性质对应
- 凸集分离定理
 - 凸集分离定理
- 共轭凸函数
 - 共轭凸函数
- 凸优化问题举例

记号

• 本节课常用数学记号

 V,W
 向量空间

 v,w
 向量

v, w 向量 $\mathbb{R}^n, \mathbb{R}^m$ 实坐标空间

 α,β V 和 W 的基

 $T: V \to W$ 向量空间 V 到 W 的线性映射

 $A_{\alpha,\beta}(T)$ 线性映射 T 在 α 和 β 这两组基下的矩阵

 $G(v_1, v_2)$ 内积空间 V 上的内积

 H_{α} G 在基 α 下的矩阵形式

优化问题

优化问题的一般形式

最小化: $f_0(x)$

条件: $f_i(x) \leq b_i, i = 1, \dots, m$.

其中 $f_0(x)$ 为目标函数,条件里的不等式是限制条件.

举例:

极大似然估计

如果 $L(\mu, \sigma)$ 是一个极大似然估计问题中的似然函数,其中 μ, σ 分别是期望和方差,那么极大似然估计的问题转化为

最小化:
$$-L(\mu, \sigma)$$
 条件: $\sigma \ge 0$

最小二乘

如果 $A_{n \times k}$ 是一个矩阵, $b \in \mathbb{R}^n$ 是一个向量, 对于 $x \in \mathbb{R}^k$

最小化:
$$f_0(x) = |Ax - b|^2$$

凸优化问题

凸优化问题的一般形式

最小化: $f_0(x)$

条件: $f_i(x) \leq b_i, i = 1, \dots, m$.

其中 $f_0(x)$ 为目标函数,条件里的不等式是限制条件.

- 凸优化问题的条件, f_0, f_1, \cdots, f_m 都是凸函数.
- 凸优化问题的特点, 局部最优等价于全局最优.
- 凸优化问题的求解, 几乎总有现成的工具来求解.

凸优化的应用

- 凸优化问题逼近非凸优化问题, 寻找非凸问题的初始点
- 利用对偶问题的凸性给原问题提供下界估计
- 凸优化问题可以给非凸问题带来一些启发

凸集合定义

如果一个集合 Ω 中任何两个点之间的线段上任何一个点还属于 Ω , 那么 Ω 就是一个凸集合.i.e.

$$\lambda x_1 + (1 - \lambda)x_2 \in \Omega, \forall x_1, x_2 \in \Omega, \lambda \in (0, 1)$$

凸函数定义

如果一个函数 f 定义域 Ω 是凸集,而且对于任何两点. 以及两点之间线段上任意一个点都有

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

 $\forall x_1, x_2 \in \Omega, \lambda \in (0,1)$

函数的上境图

假设 f 是一个定义在 Ω 上的函数,区域 $\{(x,y): y \geq f(x), \forall x \in \Omega\}$ 就是 f 的上境图.

上境图就是函数图像上方的部分区域.

凸集合与凸函数

一个函数是凸函数当且仅当 f 的上境图是凸集合.

凸集合与凸函数有很多相对应的性质可以由这个结论来进行链接。

凸组合

对于任何 n 个点 $\{x_i\}_{i=1}^n$,以及权重系数 $\{w_i\}_{i=1}^n$.若权重系数非负 $w_i \le 0$ 而且 $\sum_{i=1}^n w_i = 1$,则线性组合

$$S = \sum_{i=1}^{n} w_i x_i$$

为一个凸组合.

凸组合的物理意义可以理解成 n 个重量为 w_i 的点的整体重心.

集合的凸包

n 个点 $\{x_i\}_{i=1}^n$ 的全部凸组合就构成 $\{x_i\}_{i=1}^n$ 的凸包.

函数的凸闭包

如果 C 是函数 f 的上境图, \overline{C} 是 C 的凸包,那么以 \overline{C} 为上境图的函数称为 f 的凸闭包.

集合的凸包的性质

若 \overline{C} 是C的凸闭包,那么

- \bullet $C \subset \overline{C}$
- C 的支撑平面也是 \overline{C} 的支撑平面,反之亦然.

函数的凸闭包的性质

若 g 是 f 的凸闭包,那么

- $g \leq f$
- $\inf\{g\} = \inf f$

凸集合与凸函数的对应性质 (凸组合)

凸集合性质

假设 Ω 是一个凸集合,那么 Ω 任何子集的凸包仍包含于 Ω .

凸函数性质:琴生 (Jensen) 不等式

如果 $f:\Omega\to\mathbb{R}$ 是一个凸函数,则对于任何 $\{x_i\in\Omega\}_{i=1}^n$,以及凸组合 $\sum\limits_{i=1}^n w_ix_i$ 都有

$$\sum_{i=1}^{n} w_i f(x_i) \ge f(\sum_{i=1}^{n} w_i x_i)$$

话外篇:琴生 (Jensen) 不等式的推论

很多常用的不等式都是琴生不等式的推论,事实上,大部分不等式要么来自于 $x^2 \ge 0$ 要么来自于琴生不等式.

算数集合平均不等式

对于正数 a_1, \cdots, a_n

$$\frac{\sum_{i=1}^{n} a_i}{n} \ge \left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}}$$

柯西不等式

$$(\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2) \geq (\sum_{i=1}^n a_i b_i)^2$$

<ロ > 4 目 > 4 目 > 4 目 > 9 Q @

凸集合与凸函数的对应性质 (集合相交)

凸集合性质

任意多个凸集合的交集仍是凸集合.

凸函数性质

- 任意多个凸函数的逐点上确界仍是凸函数.
- 固定一个凸函数的若干个变量,所得的函数仍然是凸函数
- 凸函数的 sublevel set 都是凸集合.

凸集合与凸函数的对应性质 (线性组合)

凸集合性质

假设 $T:V\to W$ 是一个线性映射,则

- 若 Ω_V 是 V 中的凸集合,则 $\Omega_W = T(\Omega_V)$ 是 W 中的凸集合.
- 若 Ω_W 是 W 中的凸集合,则 $\Omega_V = T^{-1}(\Omega_W)$ 是 V 中的凸集合.

凸函数性质

- 凸函数的非负线性组合仍是凸函数, f_1, \dots, f_k 是凸函数,而且 $w_i \ge 0$,则 $\sum_{i=1}^k w_i f_k$ 也是凸函数.
- 若 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数, $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$, 那么复合函数 g(x) = f(Ax + b) 还是凸函数.

凸集合与凸函数的对应性质 (微分)

凸集合性质

- 若凸集合 Ω 的边界 C 是一个可微曲线,则 C 在任何一点上的切线(平面)都是这个凸集合的支撑线(平面)
- 若凸集合 Ω 的边界 C 是一个二阶可微曲线,则 C 在任何一点上的曲率向量都指向 Ω 内部.

曲率向量的物理意义是加速方向或者受力方向.

凸函数性质

● 若一个凸函数一阶可微,那么凸函数的一阶近似不大于函数本身.i.e.

$$f(x) \ge f(x_0) + (\nabla f(x_0))^T \cdot (x - x_0)$$

● 若一个凸函数二阶可微,那么这个函数的二阶导数 (Henssen 矩阵) 非负(半正定).

凸集合与凸函数的对应性质 (光学投影)

凸集合性质

- 若 Ω 是凸集合,那么 Ω 在任何一个平面上的投影仍是凸集合(平行光源投影)
- 若 $\Omega \subset \mathbb{R}^n$ 是凸集合,那么

$$\Omega_{\hat{n}} = \{(x_1/x_n, \cdot, x_{n-1}/x_n, 1) : (x_1, \cdots, x_n) \in \Omega \coprod x_n \neq 0\}$$

也是凸集合.(点光源投影)

• 若 $\Omega \subset \mathbb{R}^n$ 是一个凸集合,那么椎体 $tx: x \in \Omega, t \in \mathbb{R}_+$ 也是个凸集合.(点光源)

凸集合与凸函数的对应性质 (光学投影)

凸函数性质

- 若 f(x,y) 是凸函数, 那么 $g(x) = \inf_{(x,y) \in \Omega} f(x,y)$, 也是凸函数
- 若 $f: \mathbb{R}^n \to \mathbb{R}$ 是凸函数,那么 $g(x,t) = tf(x/t): \mathbb{R}^{n+1} \to \mathbb{R}$ 也是个凸函数.

凸集分离定理

若 C,D 分别为 \mathbb{R}^n 中的两个不交的非空凸集合,i.e. $C\cap D=\emptyset$, 则一定存在向量 $a\in\mathbb{R}^n$ 以及实数 $b\in\mathbb{R}$ 使得任何 $x_C\in C, x_D\in D$ 有 $a^Tx_C\leq b$ 以及 $a^Tx_D\geq b$.

定理中不等式的几何意义在于 C,D 分别位于超平面 $a^Tx = b$ 的两边.

证明

分情况讨论: 如果 C 是一个独点集 $\{p\}$, 那么考虑集合 $\{|p-q|:q\in D\}$. 因为点之间的距离是非负数,所以根据确界原理存在一个序列 $\{q_i\in D\}_{i=1}^\infty$. 使得

$$\lim_{i \to \infty} |p - q_i| = \inf\{|p - q| : q \in D\}$$

而另一方面有界序列一定存在收敛子序列,所以可以假定 $\lim_{i \to \infty} q_i = q_{\infty}$.

(1) 如果 $p \neq q_{\infty}$, 则令 $a = q_{\infty} - p, b = a^{T}(p + q_{\infty})/2$, 我们得到

$$a^{T}p = a^{T}\left(-\frac{q_{\infty} - p}{2} + \frac{p + q_{\infty}}{2}\right) = -\frac{|a|^{2}}{2} + b \le b$$
$$a^{T}q_{\infty} = a^{T}\left(\frac{q_{\infty} - p}{2} + \frac{p + q_{\infty}}{2}\right) = \frac{|a|^{2}}{2} + b \ge b$$

继续证明

此时对于任何一个 $q_0 \in D$, 考虑线段 $q_\infty + t(q_0 - q_\infty)$, 因为 $|q_\infty - p| = \inf\{|q - p| : q \in D\}$, 所以

$$f(t) = |q_{\infty} + t(q_0 - q_{\infty}) - p|^2 \ge |q_{\infty} - p|^2 = f(0), \forall t \in (0, 1)$$

所以 $f'(0) \ge 0$, 于是我们有

$$(q_{\infty} - p)^T (q_0 - q_{\infty}) \ge 0$$

也就是

$$a^T q_0 \ge a^T q_\infty \ge b$$

- ◆□ ▶ ◆昼 ▶ ◆ Ē ▶ · · Ē · · · りへで

继续证明

(2) 如果 $p = q_{\infty}$,那么选取序列 $\{p_j\}_{j=1}^{\infty}$,使得 p_j 不在 D 的闭包里面. 那么根据上一种情况我们知道,对每一个 j,都存在着 a_j 使得 $a_j^T q \geq a_j^T p_j$. 因为 a_j 的长度无关紧要,所以可以假设 a_j 都是单位向量。于是有界序列一定存在收敛子序列,所以可以假定 a_j 收敛于一个单位向量 a_{∞} . 那么对于任何一个 $q \in D$ 我们有

$$\begin{aligned} \boldsymbol{a}_{\infty}^T p &= \lim_{j \to \infty} \boldsymbol{a}_j^T p_j \\ &\leq \lim_{j \to \infty} \boldsymbol{a}_j^T q \\ &= \lim_{j \to \infty} \boldsymbol{a}_j^T q \\ &= \boldsymbol{a}_{\infty}^T q \end{aligned}$$

令 $a = a_{\infty}, b = a_{\infty}^T p$. 即得所求.

继续证明

如果 C, D 是任意凸集合,考虑集合 $C - D = \{x - y : p \in C, q \in D\}$. 那么不难证明 C - D 还是一个 凸集合(作业). 而且零向量 $O \notin C - D$. 于是使用前面证明的 独点集与凸集合的分离定理我们有,存在一个向量 a 使得

$$a^T(p-q) \le q^T O = 0$$

所以对于任意的 $p \in C, q \in D$,都有

$$a^Tq \geq a^Tp$$

这时候令 $b = \sup\{a^T p : p \in C\}$, 既得所证。

共轭函数

共轭函数

如果 $f: \mathbb{R}^n \to \mathbb{R}$ 是一个函数, 那么 f 的共轭函数

$$f^*(y) = \sup_{x \in \mathsf{dom}f} (y^T x - f(x))$$

其中 $f^*(y)$ 的定义域是使得等式右边有界的那些 y.

共轭函数

共轭函数的性质

- 共轭函数 f^* 是一个凸函数
- 如果 $g \in f$ 的凸闭包,那么 $g^* = f^*$
- 如果 f 是一个凸函数,那么 $f^{**} = f$

谢谢大家!