	,	gibbs/mx		,	kcel/mol		
T, K	Cp°	S°	-(G°-H°me)/T	H°-H"m	ARC*	ΔGf°	Log Kp
0	0.000	0.000	INFINITE	~2.401	~9.299	- 9. 299	INFINIT
100	7.955	37.221	53.322	-1.610	-9.930	-8-137	17.76
200	8.068	42.753	46.810	-0.611	-10.445 -10.970	-6.163 -3.920	6.71 2.87
238	8.521	46.048	46.048	0.000	-10.970	~3.920	2.01
300	8.533	46.101	46.048	0.016	-10.980	~3.876	2.82
400	9.253	48.650	46.391	D. 904	-11.482	~1.430	0.78
500	10.050	50.801	47.063	1.869	-11.917	1-134	-0.49
600	10.825	52.702	47-847	2.913	-12.279	3.779	-1.37
700	11.557	54.426	48.666	4.032	-12.576	6-480	-2.02
600	12.245	56.015	49.486	5.223	-12.816	9.219	-2.51
900	12.894	57.495	50.295	6.480	-13.005	11.985	-2.91
1000	13.502	58.885	51.085	7.800	-13.149	14-770	-3.22
1100	14.068	60.199	51.854	9.179	-13.253	17.367	-3.49
1200	14-591	61-446	52.602	10.612	-13.324	20.373	-3.71
1300	15.071	62.633	53.329	12.096	-13.365	23.182	-3,49
1400	15.510	63.766	54.034	13.625	-13.380	25.995	-4.05
1500	15.909	64.850	54.719	15.197	-13.374	28.507	-4.19
1600	16.271	45.889	55.385	16.806	-13.348	31.618	-4.31
1700	16.599	66.885	56.032	18.450	-13.306	34.427	-4.42
1800	16.896	67.842	56.662	20.125	-13.251	37.233	-4.52
1900	17.165	68.763	57.275	21.828	-13-183	40.037	~4.60
2000	17.408	69.650	57.872	23.557	-13.106	42.836	-4.68
2100	17-627	70.505	58.453	25.309	-13.019	45.631	-4.74
2200	17.825	71.329	59.020	27.081	-12.927	48.421	-4.81
2300	18.004	72.126	59-572	28.873	-12.828	51.208	-4.86
2400	18-166	72.896	60-111	30.682	-12.724	53.990	-4.91
2500	18.314	73.640	60.638	32.506	-12.616	56.768	-4.96
2600	18-445	74.361	61.152	34.344	-12.507	59.541	-5.00
2700	18.564	75.059	61.654	36.194	-12.394	62.311	-5.04
2800	18.674	75.737	62.145	38.056	-12.282	65-074	-5.07
2900 3000	18.769 18.858	76.394 77.031	62.625 63.095	39.929 41.810	-12.168 -12.053	67.835 70.593	-5.11 -5.14
3000	10.070	11.031	034077			. 00 2 5 3	
3100	18.936	77.651	63.554	43.700	-11.940	73.346	-5.17
3200	19.006	78.253	64.004	45.597	-11.829	76.094	-5.19
3300	19.069	78.839	64.445 64.877	47.501 49.411	-11.718 -11.610	78.841 81.583	-5.22 -5.24
3400 3500	19.123 19.172	79.409 79.964	65.300	51.325	-11.505	84-323	-5.26
3600	19.216	80.505	45.715	53.245 55.168	-11.403 -11.305	87.059	-5.28
3700 3800	19.252 19.284	81.546	66.122 66.521	57.095	-11.305	89.793 92.524	-5.30 -5.32
3900 3900	19.200	82.047	66.913	59.025	-11-122	95.252	-5.33
4000	19.331	82.536	67.297	60.957	-11.038	97.978	-5,35
				62.891	-10.958	100.703	
4100 4200	19.349 19.361	83.014	67.675 68.045	62.891	-10.958 -10.884	103-426	~5.36 ~5.38
4300	19.371	83.936	68.410	66. 763	-10.816	106-146	-5.39
4400	19.375	84.381	68.768	68.700	-10.754	108.867	~5.40
4500	19.377	84.817	69.119	70.638	-10.699	111.583	-5.41
4600	19.373	85.243	69.465	72.576	-10-650	114.301	~5, 43
4700	19.367	85.659	69.805	74.513	-10.609	117.016	-5,44
4800	19.357	86.067	70.140	76.449	-10.574	119.732	~5.45
4900	19-343	86.466	70-469	78.384	-10.547	122.446	~5.46
5000	19.325	86. 856	70.793	80.317	-10.527	125.161	~5.47
5100	19.300	87.239	71.112	82.248	-10.516	127-873	-5.48
5200	19.300	87.614	71.425	84. 178	-10.511	130.587	~5.48
5300	19.300	87.981	71.734	86.100	-10.511	133.301	-5.49
5400	19.300	88.342	72-039	86.038	-10-519	136.014	-5.50
5500	19.300	88.696	72.338	89.968	-10-528	138.728	~5.51
5600	19.300	89.044	72.633	91.898	-10.542	141.443	-5.52
5700	19.300	89.386	72.924	93.828	-10.562	144.156	-5.52
5800	19.300	89.721	73.211	95.758	-10.585	146.871	-5.53
5900	19.300	90.051	73.494 73.772	97.488 99.618	-10-612 -10-644	149-586 152-300	~5.54 ~5.54
6000	19.300	90.376					

AMMONIA (NE.) (IDEAL GAS) GPW = 17.0304 Point Group C_{3v}

Spe. 15 = 46.048 ± 0.006 gibbs/mol Ground State Quantum Weight = 1

 $\Delta Hf_0^0 = -9.30 \pm 0.1 \text{ kcal/mol}$ AHF298.15 = -10.97 ± 0.1 kcal/mol

Vibrational Frequencies and Degeneracies <u>ω, cm⁻¹</u> <u>ω, cm⁻¹</u> <u>ω, cm⁻¹</u> <u>ω, cm⁻¹</u> 3506 (1) 1022 (1) 3577 (2) 1691 (2)

Bond Length: N-H = 1.0124 A Bond Angle: 105.67° o(internal) = 2 Product of the Moments of Inertia: IAIBIC = 3.4824 x 10-119 g3cm6

Heat of Formation

Second and third law analyses of equilibrium data for the reaction 1/2N,(g)+3/2H,(g) = NH,(g) cited in the previous JANAF evaluation (1) plus more recent work of Schulz and Schaefer (6) were made using the revised thermal functions for NH (g), All of the previously cited work in reaction calorimetry plus the early work of Berthelot (7, 8) and Thomsen (9) were reevaluated. No significant differences in the third law calculations of the equilibrium data or in the corrections to the flow calculations data of Haber and Tamaru (12) and Wittig and Schmatz (13) were found. Thus, the 0.1 kcal discrepancy between the results of the equilibrium and reaction colorimetry measurements remains unresolved. The previous JAMAF selection (1) for AHf998 of NH4(g) was adopted. A recent evaluation (10) which includes new indirect calorimetry (unpublished) further confirms this selection.

Source	Method	ΔHf ^o ₂₉₈ kcal/mol	AHfo kcal/mol*	(e.u.)
Larson, Dodge (2, 1923)	Kp(4) from Kp(10-1,000 atm, 600-800 K)	-10.88	-10.70±0.11	+0.24±0.15 ^d
Maber et al. (3, 1915)	Kp(4) from Kp(30 atm, 800-1200 K)	-10.86	~10.88±0.15	-0.02:0.15 ^b
Haber, Maschke (5, 1915)	Kp(1 atm, 900~1400 K)	-10.85	-10.62±0.22	0.20±0.19 ^C
Schulz, Schaefer (6, 1966)	Kp(1 atm, 567-673 K)	-10.87	-10.78±0.20	0.14±0.3 ^d
Berthelot (7, 1880)	Indirect; Reaction of Br2(aq) and NH3(aq)	-11.4		
Berthelot (8, 1890)	Indirect; Reaction of O ₂ (g) with NH ₂ (g)	-12.1		
Thomsen (9, 1882)	Indirect; Reaction of O2(g) with NH3(g)	-11.9		
Becker, Roth (10, 1934)	Indirect; Heat of combustion oxalates	-11.00±0.15		
Haber et al. (11, 1915)	Flow calorimetry at 298 K	-11.10±0,05		
Haber, Tamaru (12, 1915)	Flow calorimetry (739-932 K)	-10.97±0.008		
Wittig, Schmatz (<u>13</u> , 1959)	Flow calorimetry at 832 K	-10.99±0.05		

*Second law analysis assuming ACp (gibbs/mol) equals (a) -2.672+0.00591(T-700), (b) -1.236+0.00404(T-1000), (c) -0.855+0.00305(T-1100), (d) -3.287+0.00651(T-600).

Heat Capacity and Entropy

The thermodynamic functions differ from those of the 1965 JANAF table (1) in being taken directly from the later and more complete work of Baar (15). Haar treated in detail the contribution of the highly anharmonic out-of-plane vibrational mode, including its large coupling with rotation and its coupling with the other vibrational modes. Haar's values of Co pass through a shallow maximum between 4000 and 5000 K; they were extrapolated from 5000 to 6000 K by assuming a constant value (19.300 gibbs/mol). A summary of Haar's estimated uncertainties and of the differences of the 1965 table from the present table (in gibbs/mol) is as follows:

	Uncertainties (Haar, 15)	1965 Table mir	us This Table
T. K	Cp°	s°	Сро	\$
1000	0.006	0.006	-0.034	-0.033
3000	0.10	0.06	+0.142	-0.122
5000	0.6	0.4	+1,775	+0.265

The National Bureau of Standards prepared this table (16) by critical analysis of data existing in 1972. Using the results of Haar (15) and AHf° selected by NBS (16), we recalculate the table in terms of R=1.987192 cal/(mol K) (17) and current JANAF reference states for the elements.

References

- 2.

- | Services | JANAT Thermochemical Tables, 2nd Edition, NSRDS-NBS 37, 1971.
 | A. T. Larson and R. L. Dodge, J. Amer. Chem. Soc. 45, 2918 (1923).
 | A. T. Larson and R. L. Dodge, J. Amer. Chem. Soc. 45, 2918 (1923).
 | C. C. Stephenson and H. O. McMahan, J. Amer. Chem. Soc. 51, 437 (1939).
 | C. C. Stephenson and H. O. McMahan, J. Amer. Chem. Soc. 51, 437 (1939).
 | F. Haber and A. Maschke, Z. Elektrochem. 21, 128 (1915).
 | G. Schulz and H. Schaefer, Ber. Bunsenges. Physik. Chem. 70, 21 (1965).
 | M. Berthelot, Compt. Rend. 89, 877 (1879); Ann. Chim. Phys. [5] 20, 247 (1880).
 | M. Berthelot, Chem. Phys. [5] 20, 244 (1880).
 | J. Thonsen, "Thermochemical Investigations," Vol. II, p. 68, Johann A. Barth, Leipzig, 1882.
 | G. Becker and W. A. Roth, Z. Elektrochem. 40, 836 (1934).
 | F. Haber, S. Tamaru, and L. W. Oeholm. Z. Elektrochem. 21, 206 (1915).
 | F. Haber and S. Tamaru, Z. Elektrochem. 22, 191 (1915).
 | F. E. Wittig and W. Schmatz, Z. Elektrochem. 63, 475 (1959).
 | Private Communication, W. H. Evans, U. S. Natl. Bur. Std., July 1972; evaluation of ICSU-CODATA Task Group on Key Values for Thermodynamics, June (1972).

- for Thermodynamics, June (1972).

 15. L. Haar, J. Res. Matl. Bur. Std. 72A, 207 (1968).

 16. S. Abramowitz et al., U. S. Natl. Bur. Std., Rept. 10904, 239, July, 1972.

 17. CODATA Task Group on Fundamental Constants, CODATA Bulletin 11, December, 1973.

ΗzΝ