Universidad Nacional de Colombia Sede Medellín Posgrados en Matemáticas Admisión Semestre 2020-01 Prueba de Conocimientos

Primera Parte: Álgebra lineal

1. Sean
$$u = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}$$
 y $v = \begin{bmatrix} -2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Halle dos vectores $w, z \in \mathbf{R}^4$ tales que el

conjunto

$$B = \{u, v, w, z\}$$
 sea una base ortogonal para \mathbf{R}^4 .

2. Sea P_3 el espacio vectorial conformado por los polinomios con coeficientes reales de grado menor o igual que 3, y sea $T\colon P_3\to I\!\!R^2$ la transformación lineal definida por

$$T(p(x)) = \begin{bmatrix} p(1) \\ p'(1) \end{bmatrix}.$$

- a. Demuestre que el codominio de T coincide con ${\bf \it R}^2$. (El codominio de T es también conocido como la imagen de T, Imagen(T)).
- b. Halle una base para el kernel de ${\cal T}$.

(El subespacio kernel(T) es también conocido como el núcleo de T).

- 3. Sea $T\colon V\to W$ una transformación lineal entre dos espacios vectoriales de dimensión finita.
 - a. Demuestre que si $\dim(V) < \dim(W)$, entonces T no es sobreyectiva.
 - b. Demuestre que si $\dim(W) < \dim(V)$, entonces T no es inyectiva.

4. Sea A una matriz de entradas reales, de tamaño 3×3 cuyos valores propios son

$$\lambda_1 = \frac{-1}{2}, \ \lambda_2 = \frac{1}{2} \ y \ \lambda_3 = 1$$

- a. Demuestre que \boldsymbol{A} es invertible.
- b. Halle los valores propios de las matrices A^{-1} , $A^2 \ y \ A + 3I$.
- c. Halle el polinomio característico de $\,A^2.\,$
- d. Sean $V_1,\ V_2\ y\ V_3$ vectores propios no nulos, asociados a los valores propios $\lambda_1,\ \lambda_2\ y\ \lambda_3$, respectivamente. Sea $x \in \pmb{R}^3$. ¿Qué se puede afirmar acerca del límite $\lim_{n \to \infty} \left(A^n x\right)$? (justifique su respuesta)

Segunda Parte: Cálculo

1.

a. Demuestre que

$$x < (1+x)\ln(1+x)$$

para todo x > 0.

b. Demuestre que para todo $k \in (1,e)$ la ecuación

$$(1+x)^{1/x} = k$$

posee exactamente una solución x > 0.

2. Considere la función $f\!:\![\,-1,\!\infty) o extbf{\emph{R}}$ definida por

$$f(x) = \sqrt{1+x}$$

para todo $x \geq -1$. Denote por p_n el polinomio de Taylor de orden n de f alrededor del origen.

a. Determine p_2 y demuestre que

$$p_2(x) \le f(x) \le p_2(x) + \frac{x^3}{16}$$

para todo $x \ge 0$.

b. Demuestre que

$$1 + \frac{1}{8} - \frac{1}{56} \le \int_0^1 \sqrt{1 + x^3} dx \le 1 + \frac{1}{8} - \frac{1}{56} + \frac{1}{160}.$$

3. Calcular el flujo del campo

$$\overrightarrow{F}(x, y, z) = (e^{\sin z} + \tan z)\overrightarrow{j} + y^2\overrightarrow{k}$$

a través del semi-elipsoide superior $2x^2+3y^2+z^2=6$, $z\geq 0$, con su normal apuntando hacia arriba.