CALIŞMA SORULARI

A-Aşağıdaki alıştırmalardaki hesaplamaları yaparak a+bi formunda ifade ediniz.

- 1. (3-4i)(6+2i) 2. (1-i)+(2+4i) 3. i(6-2i) 4. $\frac{1}{i}$ 5. $\frac{2-i}{4+i}$ 6. $\left|2i+\frac{3-i}{2i}\right|(1-i)$

- 7. $\frac{1+i}{1-i} + \frac{2}{i}$ 8. $\frac{(2+i)-(3-4i)}{(2-i)(3+i)}$ 9. $(2+4i)\overline{(6-3i)}$ 10. $\frac{(-4-5i)\overline{(8-4i)}}{\overline{6+2i}}$

- 11. $\frac{8i}{6-i}$ 12. i^3 -4i 13. $(3+i)^2$ 14. $\frac{17-3i}{2+4i}$
- 15. $\frac{(7+i)(1-5i)}{(4-i)(6+i)}$ 16. $\frac{(3-5i)(3-7i)}{(3+i)i^3}$ 17. (1+i)(3+i)(1+5i) 18. $(2-i)^3$

- 19. $\left(\frac{3+2i}{1+i}\right)^2$ 20. (-3-8i)(2i)(3+2i)

B. Aşağıdaki problemlerde z=a+bi alarak reel ve sanal kısımlarına göre cevabı bulunuz.

- 1. $Re(z^2)=?$, $Im(z^2)=?$ 2. |z+2|=?3. Re(2z-3z+4)=?
- 4. Im $(z^2+z)=?$
- 5. Im $\left(\frac{2z}{|z|}\right) = ?$ 6. |z-i| = ?

C. z reel veya imajinerdir \Leftrightarrow $z^2 = (z)^2$ olduğunu gösteriniz.

D. z kompleks sayısı için Re(iz)=-Imz ve Im(iz)=Rez olduğunu gösteriniz.

SORULAR 2

A. Aşağıdaki her bir problemde |z|, arg z ve Arg z yi tanımlayıp kompleks sayıları kutupsal gösterimde yazınız.

- 1. 1+4i 2. 2-6i 3. 8-2i 4. -3 **–**6i 5. -14i

- 6. -2-12i

- 7. 3+9i 8. -4-i 9. -8-3i 10. -5+i

B. Kutupsal gösterimle verilen sayıları a+bi gösterimiyle yazınız.

- 1. $3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ 2. $9\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$ 3. $8\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$
- 4.

- $14\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$ 5. $4\left(\cos\frac{11\pi}{4} + i\sin\frac{11\pi}{4}\right)$ 6. $15\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$

- 7. $5\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$ 8. $14\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ 9. $7\left(\cos\frac{8\pi}{3} + i\sin\frac{8\pi}{3}\right)$

C. Aşağıdaki eşitlikleri sağlayan noktaların geometrik yerini düzlemde gösterin.

- 1. $z^2 + (\overline{z})^2 = 4$ 2. |z| = |z i| 3. $|z|^2 + |m|z = 16$ 4. |z 8 + 4i| = 9

- 5. |z|+Rez=0 6. |m|z-i|=Re|z+1| 7. |z-i|+|z|=9 8. |z-i|=z|z+2i|
- **D**. (a) $\sin(\theta/2)\neq 0$ ise Lagrange trigonometrik eşitliği olarak bilinen

$$\sum_{j=0}^{n} \cos\left(j\theta\right) = \frac{1}{2} + \frac{\sin\left(n + \frac{1}{2}\right)\theta}{2\sin\left(\frac{\theta}{2}\right)}$$

nin sağlandığını gösteriniz.

(b)
$$\sin\theta + \sin 2\theta + ... + \sin[(n-1)\theta] = \frac{1}{2}\cot(\theta/2) - \frac{\cos(n-\frac{1}{2})\theta}{2\sin\frac{\theta}{2}}$$
 olduğunu gösteriniz (0<\theta<2\pi). (Yol

gösterme. $\sum_{i=0}^{n} z^{i} = (1-z^{n+1}) / (1-z) (z \neq 0 için)$ olduğunu kullanın ve $z=\cos\theta+i\sin\theta$ alıp de Moivre

teoremini kullanıp, bu eşitliği reel ve sanal kısımlarına ayırınız)

E.
$$\sum_{n=0}^{\infty} r^n e^{in\theta} = \frac{1 - r\cos\theta + ir\sin\theta}{1 + r^2 - 2r\cos\theta}$$
 (r<1) olduğunu gösteriniz. Bundan faydalanarak

$$\sum_{n=0}^{\infty} r^n \cos n\theta = \frac{1 - r \cos \theta}{1 + r^2 - 2r \cos \theta} \text{ ve } \sum_{n=0}^{\infty} r^n \sin n\theta = \frac{r \sin \theta}{1 + r^2 - 2r \cos \theta} \text{ olduğunu gösteriniz.}$$

F. $\cos 4\theta$ ve $\sin 4\theta$ yı $\sin \theta$ ve $\cos \theta$ nın kuvvetlerinin bir çarpımı olarak yazın.

- 1- Aşağıdaki hesaplamaları yaparak a+bi formunda ifade ediniz.
- a. $(i-1)^3$ b. $(1+i)^{-2}$ c. $\overline{(1+i)(2+i)}$ (3+i) d. $\overline{(1+i\sqrt{3})(i+\sqrt{3})}$
- e. $\frac{1+2i}{3-4i} \frac{4-3i}{2-i}$ f. $\frac{(4-i)(1-3i)}{-1+2i}$ g. (3+i) $\overline{(2+i)}$ h. i^5
- 2- Aşağıdaki sayıları bulunuz.
- b. $Im[\overline{(2+i)(3+i)}]$ c. Re $\frac{4-3i}{2-i}$ d. $Im \frac{1+2i}{3-4i}$
- 1- $z_1=(x_1,y_1)$ ve $z_2=(x_2,y_2)$ kompleks sayılar olsun. Aşağıdakilerin sağlanıp sağlanmadığını gösteriniz.
 - a.Re (z_1+z_2) =Re z_1 +Re z_2 , b. Im (z_1+z_2) =Im z_1 +Im z_2 ,
 - c.Re(z_1 . z_2)=Re z_1 . Re z_2 , d. Im(z_1 . z_2)=Im z_1 . Im z_2 ,
- 4- Aşağıdaki noktalardan hangilerinin |z-i|=1 çemberinin içinde olduğunu bulunuz.

- a. $\frac{1}{2} + i \frac{\sqrt{2}}{2}$ b. $\frac{-1}{2} + i \sqrt{3}$ c. $1 + i \frac{1}{2}$ d. $\frac{1}{2} + i$ e. $\frac{1}{2} + i \frac{\sqrt{3}}{3}$
- 5- $\sqrt{2}$ |z| \geq | Rez | + | Imz | olduğunu gösteriniz.

6- z₁ ve z₂ farklı kompleks sayılar olsun. K pozitif reel sayısını da bu iki nokta arasındaki uzaklıktan daha büyük seçelim. { z : | z-z₁ | + | z-z₂ | = K} nokta kümesinin odak noktaları z₁ ve z₂ olan bir *elips* tanımladığını gösteriniz.

7- z₁ ve z₂ farklı kompleks sayılar olsun. K pozitif reel sayısını da bu iki nokta arasındaki uzaklıktan daha küçük olarak seçelim. $\{z : | z-z_1| - | z-z_2| = K\}$ nokta kümesinin odak noktaları z_1 ve z_2 olan bir hiperbol tanımladığını gösteriniz.

- 8- (a) $Arg(z, \overline{z}) = 0$; (b) Rez > 0 ise $Arg(z + \overline{z}) = 0$ olduğunu gösteriniz.
- 9- c bir pozitif reel sayı olsun. $argz_1 = argz_2 \Leftrightarrow z_1 = c.z_2$ olduğunu gösteriniz.
- 10- Rez>0 \Leftrightarrow | z 1 | < | z + 1 | olduğunu gösteriniz.
- 11- Re $\frac{1+z}{1-z} > 0 \iff |z| < 1$ olduğunu gösteriniz.

SORULAR 4

1- Aşağıdaki problemlerde, üstel ifadeyi (a+bi) şeklinde bir kompleks sayı olarak ifade ediniz.

$$1 - e^{i}$$
 $2 - e^{1-i}$ $3 - e^{\pi - i}$ $4 - e^{3\pi + 4i}$ $5 - e^{2-2i}$

$$2 - e^{1-i}$$

$$3-e^{\pi-i}$$

$$4 - e^{3\pi + 4i}$$

$$5 - e^{2-2i}$$

$$6 - e^{2 - \frac{\pi i}{2}}$$
 $7 - e^{\pi(1+i)/4}$ $8 - e^{2 - \frac{\pi i}{6}}$ $9 - e^{-5+7i}$ $10 - e^{9\pi i}$

$$7-e^{\pi(1+i)/2}$$

$$8 - e^{2 - \frac{\pi}{6}}$$

$$9 - e^{-5+7}$$

$$10 - e^{9\pi}$$

2-Aşağıdaki kompleks sayıları $re^{i\theta}$ şeklinde yazınız.

- 1. 3i
- 2. 2+i

- 3. 1-i 4. (-1-2i) 5. 3+i 6. (-3-9i)

3- $z \in \mathbb{C}$ için $e^{-z} = \frac{1}{e^z}$ olduğunu gösteriniz.

4- z,w∈ \mathbb{C} için $e^{z-w} = e^z / e^w$ olduğunu gösteriniz.

5- n pozitif bir tamsayı ise birimin n.inci kökleri $e^{\frac{2k\pi i}{n}}$, (k=0,1,2,....(n-1)) şeklindedir. Gösteriniz.

6- e^{z^2} fonksiyonunu u(x,y)+iv(x,y) şeklinde yazınız ve u ile v nin tam düzlemde Cauchy Riemann denklemlerini sağladığını gösteriniz.

7- $e^{\frac{1}{z}}$ yi u(x,y)+iv(x,y) şeklinde yazınız ve z \neq 0 için u ile v nin Cauchy Riemann denklemlerini sağladığını gösteriniz.

- 1- Aşağıdaki problemlerde, log z nin bütün değerlerini bulun ve Log z yi tanımlayınız?

- 1. $\log(2i)$ 2. $\log(1+i)$ 3. $\log(-9)$ 4. $\log(3-2i)$ 5. $\log(1-2i)$ 6. $\log\left|\left(1+i\right)^{\frac{1}{4}}\right|$

- $7.\log\left(i^{\frac{1}{3}}\right) = 8.\log\left[\left(2-2i\right)^{\frac{1}{5}}\right] = 9.\log(-4+2i) + 10.\log(-6-3i) = 11.\log(2+4i) = 12.\log\left[(1-i)(2-3i)\right]$ $13.\log\left[\left(-1-2\mathrm{i}\right)^{2}\right] \qquad 14.\log(-5i) \qquad \qquad 15.\log\left[\left(7-2i\right)^{\frac{1}{8}}\right] \qquad \qquad 16.\log(-8) \qquad \qquad 17.\log\left[\left(2i\right)^{\frac{1}{2}}\right]$ $18.\log \left[\left(6 - 18i \right)^{-\frac{3}{4}} \right] \qquad 19.\log \left[\left(2 + 2i \right)^{35} \right] \qquad 20.\log \left[\left(-4 + 3i \right)^{\frac{2}{7}} \right]$
- 2- Aşağıdakilerin doğruluğunu eşitliğin her iki tarafını da hesaplayarak gösteriniz.
- 1- $\log[(1-i)(1+i)] = \log(1-i) + \log(1+i)$, $2 \log[(1-i)/(1+i)] = \log(1-i) \log(1+i)$
- **3-** Aşağıdaki problemlerde, e^{logz} ve $log(e^z)$ yı doğrudan hesaplayarak e^{logz} =z ve $log(e^z)$ =z+2n πi (n∈Z) olduğunu gösteriniz.

- 1. z = -1-i 2. z = i 3. z = -4 4. z = 3+3i 5. z = -5+5i
- **4-** z = x+iy, (x>0,y>0) olsun.
- 1-Logz= $(1/2)\ln(x^2+y^2)+i \tan^{-1}(y/x)$ olduğunu gösteriniz.
- 2-Log(z) nin reel ve sanal kısımlarının, (x>0,y>0 dörtte bir düzlemde) I. bölgede Cauchy-Riemann denklemlerini sağladığını gösteriniz.

- 1- Aşağıdaki problemlerde verilen sayının bütün değerlerini veren ifadeyi bulunuz. Tam ifadeyi elde ettikten sonra her bir kuvvetini hesaplayınız?

- 1. $(1-i)^{\frac{1}{2}}$ 2. $i^{\frac{1}{4}}$ 3. $16^{\frac{1}{4}}$ 4. $(1+i)^{\frac{3}{2}}$ 5. $(-16)^{\frac{1}{4}}$
- 6. $\left(\frac{1+i}{1-i}\right)^{\frac{1}{3}}$ 7. $1^{\frac{1}{6}}$ 8. $(-1)^{\frac{1}{5}}$ 9. $(-2-2i)^{\frac{1}{4}}$ 10. $(-i)^{\frac{1}{3}}$

- 11. $i^{\frac{3}{5}}$ 12. $(3+3i)^{\frac{4}{5}}$ 13. $(4i)^{-\frac{1}{2}}$ 14. $(1-i)^{-\frac{3}{7}}$ 15. $(1+4i)^{\frac{1}{3}}$
- **2**-Birimin n.inci kökleri $w_0, w_1, ..., w_n$ olsun. $w_0 + w_1 + ... + w_{n-1} = 0$ olduğunu gösteriniz.
- **3-** (a,b,c∈ \mathbb{C} , a≠0) için az²+bz+c=0 denklemini sağlayan sayıların [-b±(b²-4ac)¹/2]/2a olduğunu gösteriniz.
- 4- z²+iz-2=0 denklemini çözün.
- 5- z²+(1-i)z+i=0 denklemini çözün.
- 6- a,b,c∈IR için az²+bz+c=0 denkleminin kökleri eşit değilse kökler eşleniktir. Gösterin.

- 7-4 ve 5 deki alıştırmalardaki kökler eşlenik değildirler. Bu alıştırma 6 ile çelişir mi?
- 8- z^4 - $2z^2$ =-2 denklemini çözün. (Y.G. $t=z^2$ alıp t ye göre çözünüz.)
- **9-** Aşağıdaki problemlerde z^{α} nın bütün değerlerini bulun ve $\Pr[z^{\alpha}]$ yı tanımlayınız.

- $5.(-1+i)^{-3i}$
- 1. i^{1+i} 2. $(1+i)^{2i}$ 3. i^{i} 4. $(1+i)^{2-i}$ 5. $(-1+i)^{2-i}$ 6. $(-4)^{2-i}$ 7. 6^{-2-3i} 8. $(7i)^{3i}$ 9. $(1-i)^{-2-2i}$ 10. i^{2-4i} 11. 2^{3-i} 12. 3^{5+i} 13. $(3-2i)^{i}$ 14. $(8-2i)^{1+2i}$ 15. $(-3i)^{2i}$

- **10-** z=x+iy, x>0 ve y>0 olsun. α herhangi bir sabit kompleks sayı olmak üzere

$$Pr[z^{\alpha}] = u(x,y)+iv(x,y)$$

olacak şekilde u ve v yi tanımlayınız.

- 1- Aşağıdaki problemlerde fonksiyonun değerini a+bi formunda bir kompleks sayı olarak yazınız. a ve b sayıları, reel trigonometrik ve hiperbolik fonksiyonların bir reel sayıdaki değerleri olarak yazılabilir.
- 1- sin i
- 2- cosh(1-i)
- 3- tan 2i 4- cos(-1-i)

- 5- $\sinh (4i)$ 6- $\csc (2+i)$ 7- $\cos (-2-4i)$ 8- $\sin (\pi+i)$

- 9- $tanh(\pi i)$
- $10-\cot\left(\frac{\pi}{4}+i\right) \qquad 11-\sin\left(e^{i}\right) \qquad 12-\cosh(\ln i)$

- 2- Aşağıdakileri gösteriniz.
- 1- $\cos^2 z + \sin^2 z = 1$ ($\forall z \in \mathbb{C}$) olduğunu gösteriniz,
- 2- cosz ve sinz nin tam kompleks düzlemde analitik olduğunu gösteriniz. (3 ve 4 denklemlerini ve Teorem 2.15 i kullanınız.)
- 3- coshz yi u(x,y)+iv(x,y) formunda yazınız. Bu sonucu coshz nin tam kompleks düzlemde analitik olduğunu göstermek için kullanınız.
- 4- sinhz yi u(x,y)+iv(x,y) formunda yazınız ve $\forall z \in \mathbb{C}$ için sinhz nin analitik olduğunu gösteriniz.
- 5- \forall x∈IR için coshx>0 dır. z∈ \mathbb{C} için coshz sıfır veya negatif olabilir mi?
- 6- sinhz=0 olan z∈ \mathbb{C} leri bulunuz.
- 7- tan z=u(x,y)+iv(x,y) olacak şekilde u(x,y)ve v(x,y) fonksiyonunu tanımlayınız. tanz nin analitik olduğu $z \in \mathbb{C}$ leri bulunuz.
- 8- sinz=1/2 denklemini çözünüz. (Yol Gösterme: $(e^{iZ} e^{-iZ}) / 2i = 1/2$ yazıp $e^{iZ} e^{-iZ} = i$ denklemini e^{iz} ile çarpıp, e^{iz} ye göre bu denklemi çözün, sonra z ye göre sonucu bulun.)
- 9- sinz=i denklemini çözünüz.

10- z=x+iy alalım. $|\sinh y| \le |\sin z| \le \cosh y$ olduğunu gösteriniz.

11-
$$\tan \left\{ \frac{1}{i} \log \left[\left(\frac{1+iz}{1-iz} \right)^{\frac{1}{2}} \right] \right\}$$
 ifadesini hesaplayınız.

SORULAR 8

1-Aşağıdaki şıklardan herbirinde uygun işlemleri yaparak her birini a+ib şeklinde yazınız. Her birindeki olabilecek bütün değerleri bulunuz.

- 1. e^{4-i} 2. $(3i)^{3/4}$ 3. sinh(-5i) 4. $log[(3-2i)^2]$ 5. cos(log(1+i))
- 6. 3 ^{1/i} 7. $\frac{2+4i}{e^{1-i}}$ 8. $\sin(4i)$ 9. $\cosh(-1+i)$ 10. 2i e^{2-i}
- 11. $(2+i)^{4/7}$ 12. $(i^i)^{2i}$ 13. $\cosh(3^i)$ 14. $\log(-4+7i)$ 15. $(1+3i)^{21}$ 16. $i^{\cos i}$ 17. $(4+i)^{-3/7}$ 18. $1^{1/9}$ 19. $(2+i)^{3/8}$ 20. $i^{1/5}$
- 21. $(2+i)^{2/3}$ 22. $\log (2+8i)$ 23. $\sinh [(2+5i)^2]$ 24. $\log (e^{2-i})$
- 25. sin(cos2i)

2- x∈R için cos 5x i cosx ve sinx in kuvvetleri cinsinden yazmak için De Moivre formülünü kullanın.

3- $\left| \frac{z-i}{z+3-2i} \right| = 3$ eşitliğini sağlayan noktaları düzlemde gösteriniz.

4- Aşağıdakileri gösteriniz.

- 1- secz yi u(x,y)+i v(x,y) şeklinde yazınız.
- 2- z,w∈ℂ için cosh(z+w)=coshz.coshw + sinhz.sinhw olduğunu gösteriniz.
- 3- 0<Argz Argw < p olacak şekilde z,w∈ℂ alalım. Köşeleri 0,z,w

olan üçgenin alanının $\frac{1}{2}$ Im($\frac{1}{z}$.w) olduğunu gösteriniz.

4- n pozitif tamsayı ve sin $\theta \neq 0$ olan $\theta \in R$ için

$$\cos\theta + \cos 3\theta + ... + \cos((2n-1)\theta) = \frac{\sin(2n\theta)}{2\sin\theta}$$

olduğunu gösteriniz.

5-
$$z \ne 0$$
 için $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ olduğunu gösteriniz.

6- K>0 sabit olsun. | (z+1) / (1-z) | = K eşitliğini sağlayan noktaların kümesinin; K=1 ise bir doğru, K≠1 ise bir çember olduğunu gösteriniz.

- **5-** z⁵=-4i denklemini çözünüz.
- 6- (a) dan (e) ye her birinde w=e^z dönüşümü altında z-düzlemindeki dikdörtgenin görüntüsünü bulun. Her birinde, dikdörtgeni ve görüntüsünü çizin.
- a-) $0 < x < \pi$, $0 < y < \pi$ b-) -1 < x < 1, $-\pi/2 < y < \pi/2$ c-) 0 < x < 1, $0 < y < \pi/4$

- d-) 1 < x < 2, $0 < y < \pi$ e-) -1 < x < 2, $-\pi/2 < y < \pi/2$
- 7- (6) daki soruyu aşağıdaki dikdörtgenlere göre w=cosz dönüşümü için cevaplandırınız.

- a-) 0 < x < 1, 1 < y < z b-) $\pi / / 2 < x < \pi$, 1 < y < 3 c-) $0 < x < \pi$, $\pi / / 2 < y < \pi$
- d-) $\pi < x < 2\pi$, 1 < y < 2 e-) $0 < x < \pi / / 2$, 0 < y < 1

8-w=z² dönüşümü altında π/4 ≤argz≤ 5 π/4 bölgesinin görüntüsünü bulunuz

9-w= z^3 dönüşümü altında $\pi/6 < argz < \pi/3$ bölgesinin görüntüsünü bulunuz (çizin)

10- $w = \frac{1}{2} \left(z + \frac{1}{2} \right)$ dönüşümünün |z|=r çemberini w-düzleminde 1 ve –1 merkezli bir elipse dönüştürdüğünü gösteriniz.

11- $w = \frac{1}{2} \left(z + \frac{1}{z} \right)$ dönüşümünün arg z=k (sabit) yarı-doğrusunu w-düzleminde 1 ve –1 merkezli bir

hiperbolün üzerine görüntülediğini gösteriniz.

- 12- w=1/z dönüşümü altında (birim çemberin dışı) |z|>1 in görüntüsünü bulunuz.
- **13-** w= z³ dönüşümü altında Rez>0, Imz>0 birinci dörtte bir düzlemin görüntüsünü bulunuz.
- **14-** $w=z^{\frac{1}{2}}$ dönüşümü altında Imz>0 üst yarı-düzleminin görüntüsünü bulunuz.

SORULAR 9

- 1- $f(z)=f(x+iy)=x+y+i(x^3y-y^2)$ fonksiyonu için (a) f(-1+3i) (b) f(3i-2) değerlerini bulunuz.
- 2- $f(z)=z^2+4z^2-5$ Rez + Imz fonksiyonu için (a) f(-3+2i) (b) f(2i-1) değerlerini bulunuz.
- 3- Aşağıdaki fonksiyonlar için f(1+i) değerini bulunuz.

(a)
$$f(z) = z + (\frac{z}{z})^2 + 5$$
 (b) $f(z) = \frac{1}{z^2 + 1}$

4-Aşağıdaki fonksiyonlar için f(2i-3) değerini bulunuz.

(a)
$$f(z) = (z+3)^3(z-5i)^2$$
 (b) $f(z) = \frac{z+2-3i}{z+4-i}$

- 5- $f(z) = z^{21} 5z^7 + 9z^4$ fonksiyonunu kutupsal formda yazınız ve
- (a) f(-1+i) (b) $f(1+i\sqrt{3})$ değerlerini bulunuz.
- **6-** Aşağıdaki fonksiyonları u(x,y) + i v(x,y) kartezyen formda yazınız.

(a)
$$f(z) = (z)^2 + (2-3 i) z$$
 (b) $f(z) = \frac{z+2-i}{z-1+i}$

7- Aşağıdaki fonksiyonları $u(r,\theta) + i v(r,\theta)$ kutupsal formda yazınız.

(a)
$$f(z) = z^5 + (z^{-1})^5$$
 (b) $f(z) = z^5 + (z^{-1})^3$

(b)
$$f(z) = z^5 + (\frac{z}{z})^3$$

8- $f(z)=f(x+iy) = e^x \cos y + i e^x \sin y$ fonksiyonu için aşağıdaki değerleri bulunuz.

(a) f(0) (b) f(1) (c) $f(i\frac{\pi}{4})$ (d) $f(1+i\frac{\pi}{4})$

(e) $f(i\frac{2\pi}{3})$ (f) $f(2+i\pi)$

9- $f(z)=f(x+iy)=\frac{1}{2}\ln(x^2+y^2)+i\arctan\frac{y}{x}$ fonksiyonu için aşağıdaki değerleri bulunuz.

(a) f(1)

(b) f(1+i) (c) $f(\sqrt{3})$ (d) $f(\sqrt{3}+i)$

(e) $f(1+i\sqrt{3})$ (f) f(3+i4)

10- $z = r e^{i \theta}$ olmak üzere $f(z) = r^2 (\cos 2\theta + i \sin 2\theta)$ fonksiyonu için aşağıdaki değerleri bulunuz.

(a) f(1) (b) f(2 e⁴) (c) f($\sqrt{2}$ e³) (d) f($\sqrt{3}$ e^{1 $\frac{7\pi}{6}$})

11- r = |z|, $\theta = \text{Argz}$ olmak üzere $f(z) = \ln r + i \theta$ fonksiyonu için aşağıdaki değerleri bulunuz.

(a) f(1) (b) f(1+i) (c) f(-2) (d) $f(-\sqrt{3}+i)$

12- w=f(z) = (1-i) z+1-2i dönüşümü için

a) Imz > 1 yarı düzleminin görüntüsünü bulunuz.

b) z₁=-1+i , z₂=i , z₃=1+i noktalarının görüntüleri olan w₁, w₂, w₃ noktalarını bulunuz.

13- w=f(z) = (2+i) z-3+4i dönüşümü için

 $\begin{cases} x=t & (-\infty < t < \infty) \text{ doğrusunun görüntüsünü bulunuz.} \\ y=1-2t \end{cases}$

14- w=f(z) = (3+4i) z-2+i dönüşümü için

- (a) | z-1 | < 1 açık yuvarının görüntüsünü bulunuz.
- (b) $z_1=0$, $z_2=1-i$, $z_3=2$ noktalarının görüntülerini bulunuz ve düzlemde gösteriniz.
- (c) $\begin{cases} x = 1 + \cos t & (-\pi < t \le \pi) \end{cases}$ çemberinin görüntüsünü bulunuz. y=1+sint

15 - w=f(z) = (2+i) z-2i dönüşümünün, köşeleri z₁=-2+i , z₂=-2+2i , z₃=2+i olan üçgeni yine bir üçgene dönüştürdüğünü gösteriniz.

16- w =f(z)= z² dönüşümü altında

(a) y=1 doğrusunun görüntüsünün u= $\frac{v^2}{4}$ -1 parabolü olduğunu gösteriniz.

- (b) x=2 doğrusunun görüntüsünün u=4 $\frac{v^2}{16}$ parabolü olduğunu gösteriniz.
- (c) 0<x<2, 0<y<1 dikdörtgensel bölgesinin görüntüsünü bulunuz.
- (d) Köşeleri 0,2 ve 2+2i olan üçgenin görüntüsünü bulunuz.
- (e) 1<x<2 şeritsel bölgenin u=1- $\frac{v^2}{4}$ parabolü ile u=4 - $\frac{v^2}{16}$ parabolü arasındaki bölgeye görüntülendiğini gösteriniz.
- (f) x²-y²=1 hiperbolünün sağındaki bölgenin, Rew>1 yarı düzlemi üzerine görüntülendiğini gösteriniz.
- (g) z-düzlemindeki I. bölgedeki xy=1/2 ve xy=4 hiperbolleri arasındaki bölgenin görüntüsünü bulunuz.
- 17- Aşağıdaki bağıntıları sağlayan noktaların kümesini bulunuz.

(a)
$$Re(z^2)>4$$
 (b) $Im(z^2)>6$

18- w = $f(z) = z^{1/2}$ dönüşümü altında

- (a) x=4 doğrusunun u²-v² =4 hiperbolüne dönüştüğünü gösteriniz.
- (b) 2<y<6 şeritsel bölgenin , w-düzleminin I. bölgesindeki uv=1 ve uv=3 hiperbolleri arasındaki bölgeye görüntülendiğini gösteriniz.
- c) z-düzlemindeki x=4 $\frac{y^2}{16}$ parabolünün sağındaki bölgenin Rew>2 yarı düzlemi üzerine dönüştüğünü gösteriniz. (Yol Gösterme: z=w² ters dönüşümünü kullanın)
 - (d) { $r e^{i\theta}$: $r>1 ve <math>-\pi/3 < \theta < \pi/2$ } kümesinin görüntüsünü bulunuz.
 - (e) { r e $^{i\theta}$: 1<r<9 ve 0<0<2 $\pi/$ 3 } kümesinin görüntüsünü bulunuz.
 - (f) { r e $^{i\theta}$: r<4 ve $-\pi$ < θ < π / 2 } kümesinin görüntüsünü bulunuz.
- ${f 19}$ w=z 3 dönüşümü altında aşağıdaki kümelerin görüntülerini bulunuz.
 - (a) { $r e^{i\theta}$: 1<r<2 ve $-\pi/4$ < θ < $\pi/3$ }
 - (b) { $r \; e^{i\theta} : r{>}3$ ve $2\pi/3{<}\theta{<}3\pi/4$ }
- **20** Aşağıdaki dönüşümler altında {r $e^{i\theta}$: r>0 ve $-\pi < \theta < 2\pi/3$ } kümesinin görüntüsünü bulunuz.

(a)
$$w=z^{1/2}$$
 (b) $w=z^{1/3}$ (c) $w=z^{1/4}$

SORULAR 10

1- Aşağıdaki limitleri bulunuz.

(a)
$$\lim_{z \to 2+i} (z^2-4z+2+5i)$$
 (b) $\lim_{z \to i} \frac{z^2+4z+2}{z+1}$ (c) $\lim_{z \to i} \frac{z^4-1}{z-i}$ (d) $\lim_{z \to 1+i} \frac{z^2+z-2+i}{z^2-2z+1}$

(e)
$$\lim_{z \to 1+i} \frac{z^2 + z - 1 - 3i}{z^2 - 2z + 2}$$

2- Aşağıdaki limitleri gösteriniz.

(a)
$$\lim_{z \to i} \frac{x^2}{z} = 0$$

(a)
$$\lim_{z \to i} \frac{x^2}{z} = 0$$
 (b) $\lim_{z \to i} \frac{|z|^2}{z} = 0$

3- f(z) =
$$\frac{z^2}{|z|^2} = \frac{x^2 - y^2 + i2xy}{x^2 + y^2}$$
 fonksiyonu verilsin.

- (a) y=x doğrusu boyunca z \rightarrow 0 için $\lim_{z\rightarrow0}$ f(z) yi bulunuz.
- (b) y=2x doğrusu boyunca z \rightarrow 0 için $\lim_{z\rightarrow0}$ f(z) yi bulunuz.
- (c) y=x² doğrusu boyunca z \rightarrow 0 için $\lim_{z\rightarrow0}$ f(z) yi bulunuz.
- (d) z→0 için f(z) nin limiti hakkında ne söyleyebilirsiniz?

4- u(x,y) =
$$\frac{x^3 - 3xy^2}{x^2 + y^2}$$
 fonksiyonunun (x,y) \rightarrow (0,0) için limiti var mıdır ?

5- Aşağıdaki fonksiyonların nerede sürekli olduklarını bulunuz.

(a)
$$z^4-9z^2+iz-2$$
 (b) $\frac{z+1}{z^2+1}$ (c) $\frac{z^2+6z+5}{z^2+3z+2}$

(d)
$$\frac{z^4 + 1}{z^2 + 2z + 2}$$
 (e) $\frac{x + iy}{x - 1}$ (f) $\frac{x + iy}{|z| - 1}$

6- z≠0 için f(z) =
$$\frac{z \cdot \text{Re } z}{|z|}$$
 ve f(0)=0 olsun. f nin her z için sürekli olduğunu gösteriniz.

7- $f(z) = x e^y + i y^2 e^{-x}$ fonksiyonunun her z için sürekli olduğunu gösteriniz.

8- f(z) =
$$\frac{x^2 + iy^2}{|z|^2}$$
 (z $\neq 0$ için) ve f(0)=1 olsun. f(z) nin z=0 da sürekli olmadığını gösteriniz.

9-
$$f(z) = \frac{\operatorname{Re} z}{|z|}$$
 ($z \neq 0$ için) ve $f(0)=1$ olsun. $f(z)$, $z=0$ da sürekli midir? Gösteriniz.

10-
$$f(z) = \frac{(\operatorname{Re} z)^2}{|z|}$$
 ($z \neq 0$ için) ve $f(0) = 1$ olsun. $f(z)$, $z = 0$ da sürekli midir? Gösteriniz.

- $\textbf{11-} \ f(z) = z^{1/2} = r^{1/2} \ (\cos(\theta/2) + i \sin(\theta/2)) \ (\ r > 0 \ ve \pi < \theta \le \pi \) \ olsun. \ f(z) \ nin \ negatif \ x-ekseni \ \ddot{u}zerindeki \ noktalarda$ sürekli olmadığını gösteriniz.
- **12-** $f(z) = \ln|z| + i \operatorname{Arg} z \ (-\pi < \operatorname{Arg} z \le \pi)$ fonksiyonunun $z_0 = 0$ ve negatif x-ekseni üzerindeki noktalarda sürekli olmadığını gösteriniz.
- 13- f(z) fonksiyonu her z için sürekli olsun.
- (a) g(z) = f(z) fonksiyonunun her z için sürekli olduğunu gösteriniz.
- (b) $h(z) = \overline{f(z)}$ fonksiyonunun her z için sürekli olduğunu gösteriniz.

SORULAR 11

1- Aşağıdaki alıştırmalarda f'(z₀) türevinin olup olmadığını, türev tanımı kullanarak elde ediniz.

2-
$$f(z)=z+2z$$
, $z_0=3$

1- f(z)=z², z₀=1+i 2- f(z)=z+2
$$\frac{z}{z}$$
, z₀=3i 3- f(z)= $\frac{z}{1+z}$, z₀=2

4-
$$f(z)=Imz$$
, $z_0\in\mathbb{C}$ 5- $f(z)=|z|$, $z_0=i$ 6- $f(z)=Rez$, $z_0\in\mathbb{C}$

5-
$$f(z)=|z|$$
, $z_0=|z|$

6-f(z)=Rez. zn∈
$$\mathbb{C}$$

7- f(z)=Rez+i.Imz,
$$z_0 \in \mathbb{C}$$
 8- f(z)= $(z)^2$, z_0 =2-i 9- f(z)=i+Rez, z_0 =4+7i

8- f(z)=
$$\binom{-}{z}$$
², z₀=2-i

10- f(z)=
$$\frac{2}{1+z}$$
, z₀=-1+4i