NASA hw4

Author: B12705014陳泊華

Chapter1

1.

	可通過的VLAN數量	802.1Q
Access Port	1	無
Trunk Port	2^12=4096個,扣掉0和4095	有

^{*}註: VLAN 0又稱為untagged VLAN, VLAN 4095又稱為reserved VLAN

reference:

- (i) https://www.geeksforgeeks.org/difference-between-trunk-port-and-access-port/)
- (ii) TA slides
 - 2. Trunk native是指在設定trunk時可以指定VLAN作為Native VLAN(預設通常為1),若訊框符合該VLAN則不特別附加VLAN tag給該封包;要注意的是trunk兩邊設定的 native VLAN通常要一致,才不會造成通訊失敗

reference:

- (i) https://www.networkacademy.io/ccna/ethernet/trunk-native-vlan)
- (ii) chatGPT
 - 3.

			封包			
			802.1Q VID 欄位			
傳遞方向	線路1	線路2	線路3	線路4	線路5	能否抵達
PC-01/VLAN 10 → PC-02	10	無				可
PC-01/VLAN 20 → PC-02	20	無				否
PC-01/VLAN 10 → PC-04	10		10		無	否
PC-01/VLAN 20 → PC-04	20		20		20	可
PC-01/VLAN 10 → PC-03	10			10		可
PC-01/VLAN 20 → PC-03	20			10		可

4. Double Tagging Attack是VLAN hopping的一種實現方式;以figure 4來說,若攻擊者(PC-01)使用的VLAN與Switch上所設定的Trunk native相同的話(在這裡是10),攻擊者就能在其封包資料中埋入VLAN 20的訓框,如此RiNG-edge在解讀時就會認為這是來自VLAN 20的封包並且傳到PC-04

reference:

- (i) https://en.wikipedia.org/wiki/VLAN_hopping
- (https://en.wikipedia.org/wiki/VLAN_hopping)
- (ii) https://www.jannet.hk/virtual-lan-vlan-attack-zh-hant/

(https://www.jannet.hk/virtual-lan-vlan-attack-zh-hant/)

Chapter2

1.

- (1) 將Laptop-PT Admin連到RiNG的console槽
- (2) 觀察config檔,發現其使用IOS type 7加密,並且帳號為RiNG,於是利用線上解密軟體,獲得密碼Roselia,登入獲得權限。

reference:

(i) https://www.cisco.com/c/zh_tw/support/docs/security-vpn/remote-authentication-dial-user-service-radius/107614-64.html

(https://www.cisco.com/c/zh_tw/support/docs/security-vpn/remote-authentication-dial-user-service-radius/107614-64.html)

(ii) https://www.youtube.com/watch?v=rjorz6S0rVE (https://www.youtube.com/watch?

<u>v=rjorz6S0rVE)</u>

(iii) https://www.xiaopeiqing.com/cisco-password-cracker/

(https://www.xiaopeiging.com/cisco-password-cracker/)

- (iv) https://zh.wikipedia.org/zh-tw/RS-232 (https://zh.wikipedia.org/zh-tw/RS-232)
 - 2. 步驟:
 - (1) 依照題目敘述設定vlan、更改名稱
 - (2) 設定RiNG-core和RiNG-edge的trunk和link aggregation
 - (3) 打開PC terminal ping對方測試

reference: TA slides

- 3. a. 在configure terminal (全局配置模式) 下執行:
 - \$ no username RiNG password #否則會跳出can not have both a user password
 - \$ username RiNG secret Afterglow

b&c.

- \$ line vty 0 4
- \$ transport input ssh
- \$ login local
- \$ password Afterglow

驗證方式:打開Laptop-PT Admin的command prompt,輸入

\$ ssh -l RiNG 192.168.99.1

密碼輸入先前設定的Afterglow

C:\>ssh -l RiNG 192.168.99.1

Password:

RiNG-Core>" "

d.

```
$ line vty 5 15
$ transport input none

e.

$ ip domain-name bowen.com
$ crypto key generate rsa general-keys``` #設定長度為768
```$ ip ssh version 2

reference:
(i) TA slides
(ii) chatGPT 3.0
```

```
interface Vlan1
no ip address
shutdown
interface Vlan99
 ip address 192.168.99.1 255.255.255.0
line con 0
 login local
line vty 0 4
login local
transport input ssh
line vty 5 15
no login
end
```

# Chapter3

1.

先透過WiFi Settings -> details -> TCP/IP -> Renew DHCP lease來release租約

Discover: DHCP client透過discover message尋找DHCP server, 在data link layer科

Offer: server收到client的discover message後回傳offer message, 在network layer

Request: 由client端向server端傳送,表示準備好接收IP位址。

Acknowledge: DHCP server收到request message後回傳,包含IP位址和子網域遮罩給予cli

No.	Tim	ne	Source	Destination	Protocol	Length	Info				
Г	902 54	1981	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Request	<ul><li>Transaction</li></ul>	ID	0x956cdb59
	1355 55	7907	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Request	- Transaction	ID	0x956cdb59
	1359 55	7965	192.168.3.99	192.168.3.70	DHCP	34	2 DHCP	ACK	<ul><li>Transaction</li></ul>	ID	0x956cdb59
	8301 23	32.329	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Request	- Transaction	ID	0x956cdb5a
	8305 23	341	192.168.3.99	192.168.3.70	DHCP	34	2 DHCP	ACK	- Transaction	ID	0x956cdb5a
	9168 27	6.279	192.168.3.70	192.168.3.99	DHCP	34	2 DHCP	Release	- Transaction	ID	0x956cdb5b
	9506 30	2.885	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Discover	- Transaction	ID	0x3c0ef3d9
	9514 30	3.926	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Discover	- Transaction	ID	0x3c0ef3d9
	9533 30	5.974	192.168.3.99	192.168.3.70	DHCP	34	2 DHCP	Offer	- Transaction	ID	0x3c0ef3d9
	9534 30	5.974	192.168.3.99	192.168.3.70	DHCP	34	2 DHCP	0ffer	- Transaction	ID	0x3c0ef3d9
L	9537 30	6.976	0.0.0.0	255.255.255	DHCP	34	2 DHCP	Request	- Transaction	ID	0x3c0ef3d9
	9539 30	6.986	192.168.3.99	192.168.3.70	DHCP	34	2 DHCP	ACK	- Transaction	ID	0x3c0ef3d9

reference: https://www.geeksforgeeks.org/how-dora-works/

(https://www.geeksforgeeks.org/how-dora-works/)

### 2. DHCP封包內容:

- Frame 9506: 342 bytes on wire (2736 bits), 342 bytes captured (2736 bits) on interface en0, id 0
- > Ethernet II, Src: Apple\_02:19:f8 (b0:be:83:02:19:f8), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
- > Internet Protocol Version 4, Src: 0.0.0.0, Dst: 255.255.255.255
- > User Datagram Protocol, Src Port: 68, Dst Port: 67
- Dynamic Host Configuration Protocol (Discover)

Message type: Boot Request (1)

Hardware type: Ethernet (0x01)

Hardware address length: 6

Hops: 0

Transaction ID: 0x3c0ef3d9

Seconds elapsed: 0

> Bootp flags: 0x0000 (Unicast)

Client IP address: 0.0.0.0

Your (client) IP address: 0.0.0.0

Next server IP address: 0.0.0.0

Relay agent IP address: 0.0.0.0

Client MAC address: Apple\_02:19:f8 (b0:be:83:02:19:f8)

Server host name not given

Boot file name not given

Magic cookie: DHCP

- > Option: (53) DHCP Message Type (Discover)
- > Option: (55) Parameter Request List
- > Option: (57) Maximum DHCP Message Size
- > Option: (61) Client identifier
- > Option: (51) IP Address Lease Time
- > Option: (12) Host Name
- > Option: (255) End

在 DHCP Discover 階段填入這些特殊地址的原因是為了實現廣播機制,確保 DHCP Discover 發出的資訊能夠被網絡中的所有設備收到,並且在客戶端尚未分配到有效 IP 地址之前,確保其能夠與 DHCP 伺服器進行通信,從而獲取到所需的 IP 地址和其他配置信息。

	IP 0.0.0.0	IP 255.255.255	
涵義	表client端尚未有IP地址	IP的廣播地址	
原因	在 DHCP Discover 階段, 客戶端尚未獲得有效的 IP 地址,因此它的源端 IP 地址為 0.0.0.0, 表示客戶端需要獲取一個有效的 IP 地址。	在 DHCP Discover 階段, 客戶端需要向網絡中的所有設備廣播 DHCP Discover 報文, 以尋找可用的 DHCP 伺服器。	將目

reference: <a href="https://zh.wikipedia.org/zh-tw/保留IP地址">https://zh.wikipedia.org/zh-tw/保留IP地址</a> (https://zh.wikipedia.org/zh-tw/%E4%BF%9D%E7%95%99IP%E5%9C%B0%E5%9D%80)

- 3. 在 RiNG-Core 上配置 DHCP Snooping,檢測和阻止未經授權的DHCP伺服器(標記出可信任的接口)
  - \$ ip dhcp snooping
  - \$ interface FastEthernet 0/22
  - \$ ip dhcp snooping trust

# 檢查:

\$ show ip dhcp snooping

RiNG-Core#

%SYS-5-CONFIG\_I: Configured from console by console
show ip dhcp snooping

Switch DHCP snooping is enabled

DHCP snooping is configured on following VLANs: none

Insertion of option 82 is enabled

Option 82 on untrusted port is not allowed

Verification of hwaddr field is enabled

VOLITIOGCION OF NWGGGI FICE	a io chabic	
Interface	Trusted	Rate limit (pps)
English a most 0 / 1		
FastEthernet0/1	no	unlimited
FastEthernet0/2	no	unlimited
FastEthernet0/3	no	unlimited
FastEthernet0/4	no	unlimited
FastEthernet0/5	no	unlimited
FastEthernet0/6	no	unlimited
FastEthernet0/7	no	unlimited
FastEthernet0/8	no	unlimited
FastEthernet0/9	no	unlimited
FastEthernet0/10	no	unlimited
FastEthernet0/11	no	unlimited
FastEthernet0/12	no	unlimited
FastEthernet0/13	no	unlimited
FastEthernet0/14	no	unlimited
FastEthernet0/15	no	unlimited
FastEthernet0/16	no	unlimited
FastEthernet0/17	no	unlimited
FastEthernet0/18	no	unlimited
FastEthernet0/19	no	unlimited
FastEthernet0/20	no	unlimited
FastEthernet0/21	no	unlimited
FastEthernet0/22	yes	unlimited
FastEthernet0/23	no	unlimited
FastEthernet0/24	no	unlimited
GigabitEthernet0/1	no	unlimited
GigabitEthernet0/2	no	unlimited
RiNG-Core#		

#### reference:

- (i) <a href="https://zh.wikipedia.org/zh-tw/DHCP\_snooping">https://zh.wikipedia.org/zh-tw/DHCP\_snooping</a> (https://zh.wikipedia.org/zh-tw/DHCP\_snooping)
- (ii) https://zh.wikipedia.org/zh-tw/無線接入點 (https://zh.wikipedia.org/zh-tw/%E7%84%A1%E7%B7%9A%E6%8E%A5%E5%85%A5%E9%BB%9E)