CS450 - Assignment Two

Andrew Struthers

April 2023

- 1. Calculate the propagation delay and RTT for a 100m copper link.
 - This problem will require us to calculate the propagation delay and the Round-Trip Time (RTT) using the following equations:

Propagation Delay = Link Length (meters)
$$\times$$
 Copper SoL Coeff. (1)

$$RTT = 2 \times Propagation Delay$$
 (2)

We can see the following calculations performed in Excel below.

Propagation Delay		Link Length (Meter)	Copper
0.000000435	Seconds	100	230,000,000
0.000434783	Milliseconds		
0.434782609	Microseconds		
RTT			
0.000000870	Seconds		
0.000869565	Milliseconds		
0.869565217	Microseconds		

Figure 1: Propagation delay and RTT for a 100m copper link

We can see that the propagation delay was $\approx 0.44 \mu s$ and the RTT was $\approx 0.87 \mu s$.

- 2. How many IP packets will it take to transfer a 150 GB file?
 - For this problem, we will be looking at the following equation:

$$Packets = [File Size (Bytes)/Maximum Segment Size (MSS)]$$
 (3)

We want to take the ceiling of the division because any remainder will still need its own packet, so we always take the next highest integer result.

# Packets		File Size (Bytes)	MSS
110,315,	941 Packets	161,061,273,600	1,460

Figure 2: Number of packets to send a 150 GB file over Ethernet

The MSS for Ethernet is 1460, therefore we divide the number of bytes in the file by 1460, take the ceiling of that result, and bam, we have the number of packets being transmitted. In this case, it will take ≈ 110.3 million Ethernet packets.

- 3. What is the total time required to send a 100 GB file over the following network: A 60m copper link with 10 Gbps bandwidth, to a 1,800km fiber link with 40 Gbps bandwidth, to a final 90m copper link with 1 Gbps bandwidth. Assume that each switch is a store-and-forward switch that introduces a 40 μs delay between packets, and a 3 RTT handshake is required before data can be transmitted.
 - This problem is a bit more complex to solve than the previous two. We will use equation (1) and (2) above to calculate the RTT for each stage in this network. We will also need to calculate the transmit time with the following equation:

Transmit Time = File Size (bits)/Bandwidth (bps)
$$(4)$$

Notice that the file size must be in bits, but we are given the file size in bytes. We will perform an in-line calculation to change the units by multiplying the file size in bytes by 8, since there are 8 bits in a byte. We will also use equation (3) to calculate the number of required packets. Finally, we will need three new equations to calculate the total switch delay, the total RTT for the entire network, and finally the total transfer time. These are given by the following equations:

Total Switch Delay = Number of Packets
$$\times$$
 Switch Delay (5)

Total RTT =
$$(4 \times \text{Switch Delay}) + \text{Link 1 RTT} + \text{Link 2 RTT} + \text{Link 3 RTT}$$
 (6)

Total Transfer Time =
$$(3 \times \text{Total RTT})$$

+ $(2 \times \text{Total Switch Delay})$
+ Link 1 Delay + Link 2 Delay + Link 3 Delay (7)

To begin with the calculation for this problem, we will first determine the three individual components of this network to find each RTT and transmit time.

Propagation Delay		Distance	Speed of Light	
0.000000261	Seconds	60	230,000,000	Copper
0.000260870	Milliseconds			
0.260869565	Microseconds			
0.77		D		
RTT		Propagation Delay		
0.000000522	Seconds	0.000000261		
0.000521739	Milliseconds			
0.521739130	Microseconds			
Transmit Time		Bandwidth (bps)	File Size (Bytes)	File Size (bits)
85.899345920	Seconds	10,000,000,000	107,374,182,400	858,993,459,200
85,899.34592	Milliseconds			
85,899,345.92	Microseconds			

Figure 3: RTT and transmit time for a 100 GB file over 60m of copper with 10 Gbps

Propagation Delay		Distance	Speed of Light	
0.009	Seconds	1,800,000	200,000,000	Optical
9.000	Milliseconds			
9,000	Microseconds			
RTT		Propagation Delay		
	Seconds	0.009		
	Milliseconds	5,500		
18,000	Microseconds			
Transmit Time		Bandwidth (bps)	File Size (Bytes)	File Size (bits)
21.474836480	Seconds	40,000,000,000	` ' '	858,993,459,200
21,474.836480	Milliseconds			
21,474,836.480	Microseconds			

Figure 4: RTT and transmit time for a 100 GB file over 1,800km of fiber with 50 Gbps

Propagation Delay		Distance	Speed of Light	
0.0000003	91 Seconds	90	230,000,000	Copper
0.0003913	04 Milliseconds			
0.3913043	48 Microseconds			
RTT		Propagation Delay		
0.0000007	83 Seconds	0.000000391		
0.0007826	09 Milliseconds			
0.7826086	96 Microseconds			
Transmit Time		Bandwidth (bps)	File Size (Bytes)	File Size (bits)
858.9934	59 Seconds	1,000,000,000	107,374,182,400	858,993,459,200
858,993.4	59 Milliseconds			
858,993,4	59 Microseconds			

Figure 5: RTT and transmit time for a 100 GB file over 90m of copper with 1 Gbps

Now that we have the numbers for each individual component of the network, we must calculate some information about the network as a whole.

# Packets		File Size (Bytes)	MSS			
73,543,961		107,374,182,400	1,460			
Total Switch Delay		# Packets	Switch Delay			
2,941.758440	Seconds	73,543,961	0.000040			
2,941,758.440	Milliseconds					
2,941,758,440	Microseconds					
RTT for Circuit with 3		Link 1 RTT	Switch Delay	Link 2 RTT	Switch Delay	Link 3 RTT
0.018161304	Seconds	0.000000522	0.000040	0.018	0.000040	0.000000783
18.161304	Milliseconds					
18,161.304	Microseconds					

Figure 6: Number of packets, total switch delay, and the total RTT for the network

			Link 1 Transmit		Link 2 Transmit		Link 3 Transmit
		3 * Circuit RTT	Time + Link 1 Prop	Total Switch	Time + Link 2 Prop	Total Switch	Time + Link 3 Prop
Total Transfer Time		Handshake	Delay	Delay	Delay	Delay	Delay
6,849.948006	Seconds	0.054483913	85.899346181	2,941.758440	21.483836480	2,941.758440	858.993459591
6,849,948.006	Milliseconds						
6,849,948,006	Microseconds						

Figure 7: Total transfer time of the 100 GB file over the network

Looking at Figure 7, we can see that the total transfer time of the 100 GB file over this vast distance is $\approx 6,850$ seconds, or just over 1 hour and 54 minutes.

- 4. What is the maximum number of bits that could be in a 100 Mbps satellite link? The satellite is 36,210km above the earth's surface.
 - The equation for this problem will be as follows:

Delay
$$\times$$
 Bandwidth = Link Length \times Bandwidth (bps) \times Vacuum SoL Coeff. (8)

Below we can see the calculation performed in Excel:

Delay x Bandwidth (round trip)		Link Length (Meter)	Bandwidth (bps)	Vaccum
24,140,000	bits	36,210,000	100,000,000	300,000,000

Figure 8: Total number of bits that would be floating through space

This calculation shows us that at any given point in transmission, there could be ≈ 24 million bits of this file floating through space. This is ≈ 3 MB, which honestly doesn't seem like that much. I initially expected there to be far more bits over 36k km.