

CPT104 - Operating Systems Concepts

CPU Scheduling I Tutorial

Length of Next CPU Burst

- Burst time for the process to be executed is taken as the average of all the processes that are executed till now.
- Can only estimate the length of Next CPU Burst .
- Can be done by using the length of previous CPU bursts, using exponential averaging.

 t_n = actual burst time of process P_n

 τ_n = predicted burst time for process P_n

 τ_{n+1} = predicted value for the next CPU burst

a = weighing (smoothening) factor ($0 \le a \le 1$)

$$\tau_{n+1} = a \cdot t_n + (1 - a) \tau_n$$

Example

- Calculate the predicted burst time using exponential averaging for the fifth process if the predicted burst time for the first process is 10 ms and previous runs of the first four processes are 8, 7, 4, 16.
- The scheduling algorithm is SJF.
- Given **a = 0.5**.

Solution:

- Actual burst time of processes: 4, 7, 8, 16.
- a = 0.5
- Predicted burst time for 1st process = 10 ms

Predicted burst time for 2nd process

= a x Actual burst time of 1st process + (1 - a) x Predicted burst time for 1st process

$$= 0.5 \times 4 + 0.5 \times 10 = 2 + 5 = 7 \text{ ms}$$

Actual burst time of processes: 4, 7, 8, 16.

Predicted burst time for 3rd process

= a x Actual burst time of 2nd process + (1 - a) x Predicted burst time for 2nd process

$$= 0.5 \times 7 + 0.5 \times 7 = 7 \text{ ms}$$

Predicted burst time for 4th process

= a x Actual burst time of 3rd process + (1 - a) x Predicted burst time for 3rd process

$$= 0.5 \times 8 + 0.5 \times 7 = 7.5 \text{ ms}$$

Actual burst time of processes: 4, 7, 8, 16.

Predicted burst time for 5th process

= a x Actual burst time of 4th process + (1 - a) x Predicted burst time for 4th process

 $= 0.5 \times 16 + 0.5 \times 7.5 = 11.75 \text{ ms}$

Shortest-Job-First (SJF) Scheduling (Ex.1.)

Process	Burst Time (ms)
P1	6
P2	2
Р3	5
P4	3

SJF scheduling Gantt chart

Average waiting time = (0 + 2 + 5 + 10) / 4 = 4.25

Shortest-Job-First (SJF) Scheduling (Ex.2.)

Process	Burst Time(ms)	
P1	2	
P2	5	
Р3	7	
P4	2	

SJF scheduling Gantt chart

Average waiting time = (0 + 2 + 4 + 9) / 4 = 3.75

Shortest-Job-First (SJF) Scheduling (Ex.3)

Process	Burst Time(ms)
P1	4
P2	8
Р3	6
P4	7

SJF scheduling Gantt chart

Average waiting time = (0 + 4 + 10 + 17) / 4 = 7.75

Priority Scheduling (Ex.1.)

Process	Burst Time	Priority	
P1	4	1	
P2	3	3	
Р3	2	4	
P4	5	2	

Average waiting time = = (0 + 4 + 9 + 12) / 4 = 6.25

Priority Scheduling (Ex.2.)

Process	Burst Time	Priority	
P1	5	3	
P2	4	2	
Р3	9	1	
P4	3	4	
P5	1	5	

Average waiting time = = (0 + 9 + 13 + 18 + 21) / 5 = 12.2

Round Robin (RR) Scheduling (Ex.1.)

<u>Process</u>	<u>Burst Time</u>	$P_{1_w} = 20 - 10 = 10$
P1	10	- w
P2	7	$P_{2_W} = 22 - 7 = 15$
Р3	5	$P_{3_W} = 15 - 5 = 10$

Time quantum = 5ms

AWT = (10 + 15 + 10) / 3 = 11.67ms

Round Robin (RR) Scheduling (Ex.2.)

Process	Burst Time
P1	8
P2	4
Р3	3

Time quantum = 4 ms

$$P_{1_w} = 15 - 8 = 7$$

$$P_{2_W} = 8 - 4 = 4$$

$$P_{3_W} = 11 - 3 = 8$$

$$AWT = (7 + 4 + 8) / 3 = 6.33ms$$

Round Robin (RR) Scheduling (Ex.3.)

Process	Burst Time
P1	5
P2	6
P3	3

$$P_{1_w} = 12 - 5 = 7$$

$$P_{2_w} = 14 - 6 = 8$$

$$P_{3_w} = 11 - 3 = 8$$

$$AWT = (7 + 8 + 8) / 3 = 7.66ms$$