ECE695GM Project Variational RNN for Joint Neural Latent Generation and Prediction

Akshita Kamsali

Data

- Data is initially in spikes binned at 1ms
- Preprocessing:
 - Resample at 5ms
 - Collect trials, separate held-out, and future predictions, and stack them

Overview

Proposed Model

Add transform layer and modify loss function objective to VRNN(Chung et. al. 2016)

Prior

$$z_t \sim N(\mu_{0,t}, diag(\sigma^2_{0,t}))$$

 $x_t \mid z_t \sim N(\mu_{x,t}, diag(\sigma^2_{x,t}))$

Recurrence

$$h_{t} = f_{\theta} (\phi \times_{\tau} (x_{t}), \phi^{z}_{\tau} (z_{t}), h_{t-1}),$$

Posterior Inference

$$z_t \mid x_t \sim N(\mu_{z,t}, diag(\sigma^2_{z,t}))$$

Transform

$$u_t = u * x_t$$

Output

$$o_t = exp(u_t)$$

Loss

$$poisson_nll(o_t, y_t) + \ E_q[\ \sum_t - KLD(q(z_t \mid x_{\leq t}, z_{< t}) \mid \mid p(z_t \mid x_{< t}, z_{< t})) + log \ p(x_t \mid x_{\leq t}, z_{< t})\]$$

$$Variational \ ELBO$$

Loss plots

Evaluation criteria

- Co-smoothing bits/spike -
- Decoding accuracy
- Match to PSTH
- Forward prediction bits/spike

bits/spike =
$$\frac{1}{n_{sp} \log 2} (\mathcal{L}(\boldsymbol{\lambda}; \hat{\boldsymbol{y}}_{n,t}) - \mathcal{L}(\bar{\boldsymbol{\lambda}}_{n,:}; \hat{\boldsymbol{y}}_{n,t}))$$

Results

All results are reported on test set of MC_Maze Large dataset

Metric	Epochs = 250	Epochs = 2500
co-bps	0.0176	0.0751
vel-R2	0.0140	0.0258
psth-R2	0.0341	0.1576
fp-bps	-0.0260	-0.0304

Conclusion and Future Work

- Need models to capture the inherent measurement noise
- Having a Variational RNN helps model both the inherent noise and sequential information
- Using more complex encoders and decoders (hierarchical), priors and posteriors
- Train for longer