

Concours d'entrée 2014 - 2015 La distribution des notes est sur 25

Mathématiques

Durée: 3 heures 05 juillet 2014

I- (4 pts) Le plan complexe est rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

A tout nombre complexe z, $z \neq i$, on associe le nombre complexe z' tel que $z' = \frac{-2iz}{z-i}$.

Soit M, M', A, B et C les points d'affixes respectives z, z', i, -2i et -i.

- 1- a) Montrer que (z' + 2i)(z i) est un nombre réel constant à déterminer.
 - b) Déterminer l'ensemble de M' lorsque M décrit le cercle (γ) de centre A et de rayon 1.
 - c) M étant donné sur (γ) , placer le point M 'correspondant.
- 2- a) Montrer que, pour tout $z \neq i$, $z' + i = \frac{-i(z+i)}{z-i}$. En déduire que $(\overrightarrow{u}; \overrightarrow{CM'}) = (\overrightarrow{MA}; \overrightarrow{MC}) \frac{\pi}{2}$ (2π) .
 - b) Déterminer l'ensemble de M lorsque M' décrit la demi droite Ct de vecteur directeur u.
- II- (4 pts) Le plan est rapporté à un repère orthonormé. On considère la parabole (P) d'équation $y = \frac{1}{4}x^2 + 1$.
 - 1- a) Déterminer le sommet, le foyer et la directrice de (P).
 - b) Déterminer une équation de la tangente (Δ) à (P) au sommet. Tracer (P) et (Δ) .
 - 2- Montrer que la tangente (δ) à (P) au point M d'abscisse a $(a \neq 0)$ coupe (Δ) en un point N d'abscisse $\frac{a}{2}$.
 - 3- On considère l'équation (E): $x^2 2\lambda x \frac{\lambda^2}{\lambda^2} 1 = 0$ où $\lambda \in IR$.
 - a) Montrer que, pour tout réel λ , (E) a deux racines distinctes x_1 et x_2 différentes de 0.
 - b) Soit N_1 et N_2 deux points de (Δ) d'abscisses x_1 et x_2 ; (δ_1) et (δ_2) les tangentes à (P), autres que (Δ) , passant par N_1 et N_2 respectivement.

Déterminer les coordonnées du point d'intersection L de (δ_1) et (δ_2) en fonction de λ et montrer que, quand λ varie dans IR, L varie sur une parabole (P_0) symétrique de (P) par rapport à une droite à déterminer.

III- (4 pts) Une machine ayant 3 bras B_1 , B_2 et B_3 opère de la façon suivante :

Le bras B_1 place un jeton au hasard sur l'une des cases d'une grille de 9 cases, puis successivement les bras B_2 et B_3 font de même sur l'une des cases libres. On considère les événements suivants :

ı	7	8	9
	4	5	6
	1	2	3

D : " les 3 jetons sont alignés en diagonale " ; A : " les 3 jetons sont alignés " .

- 1- a) Montrer que $p(H) = \frac{1}{28}$ et calculer p(V) et p(D) . En déduire que $p(A) = \frac{2}{21}$.
 - b) Sachant que les 3 jetons sont alignés, calculer la probabilité qu'ils soient alignés horizontalement.
- 2- On suppose dans cette question que le bras B_1 est déréglé : il place le premier jeton dans l'un des coins de la grille. Soit S l'événement " le bras B_1 est déréglé " . Montrer que $p(A/S) = \frac{3}{28}$.
- 3- On suppose dans cette question qu'on ne sait pas si le bras B_1 est en bon état et que $p(S) = \frac{1}{3}$. La machine opère et donne 3 jetons non alignés. Calculer la probabilité que le bras B_1 soit déréglé.
- **IV-** (6 **pts**) Dans un plan orienté, on considère un triangle direct ABC tel que BC = 5, $AB = \sqrt{5}$ et $AC = \sqrt{10}$. Soit O le projeté orthogonal de A sur BC. Les cercles B et B et B passant par A se coupent de nouveau en un point D.

- 1- Montrer que $\hat{A} = \frac{3\pi}{4}$ rad et calculer $\sin \hat{C}$. En déduire que OA = 1 et OC = 3.
- 2- Soit S la similitude de centre A qui transforme (γ) en (γ') et soit $f = S \circ S$.
 - a) Déterminer la nature et les éléments de f et placer l'image E de B par f et montrer que S(C) = E.
 - b) Déterminer l'image de (BC) par S et placer les images O' et D' de O et D respectivement par S.
- 3- Soit H le projeté orthogonal de B sur (AC). Construire H' = S(H) et montrer que le triangle ACH' est rectangle isocèle.
- 4- Soit M un point de (γ) autre que A et D, et M' = S(M). Montrer que les points M, D et M' sont alignés.
- 5- Le plan est rapporté au repère $(O; \overrightarrow{u}, \overrightarrow{v})$ tel que $\overrightarrow{OC} = 3\overrightarrow{u}$ et $\overrightarrow{OA} = \overrightarrow{v}$. Soit P un point du plan d'affixe z = x + iy et P' d'affixe z' son image par S.
 - a) Montrer que $\frac{z'-z_D}{z-z_D} = \frac{-x^2-y^2+2x+2y+3}{x^2+(y+1)^2} + \frac{x^2+y^2+4x-1}{x^2+(y+1)^2}i$
 - b) Déduire que, si P est un point de (γ) autre que A et D, alors, P, D et P'sont alignés.
- **V-** (7 **pts**) **A-** On considère l'équation différentielle (1) : xy' + xy y = 0.

On pose y = xz où z est une fonction dérivable définie sur IR.

- 1- Déterminer et résoudre l'équation différentielle (2) de solution générale $\,z\,.$
- 2- Déterminer la solution générale F de (1) et montrer que F a un extremum en une valeur constante de x.

B- On considère la fonction f définie sur IR par $f(x) = xe^{2-x}$.

Soit (C) la courbe représentative de f dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1- Dresser le tableau de variations de $\,f\,$.
- 2- a) Soit $f^{(n)}$ la dérivée d'ordre n de f. Montrer que, pour tout $n \in IN^*$, $f^{(n)}(x) = (-1)^{n+1}(n-x)e^{2-x}$.
 - b) Montrer que la suite (U_n) définie sur IN par $U_n = f^{(n)}(n+1)$ est géométrique et non monotone.
- 3- a) Déterminer le point d'inflexion I de (C) et écrire une équation de la tangente (T) en I à (C).
 - b) Tracer (T), (C) et la courbe (γ) d'équation $y = \ell n x$.
- 4- a) Calculer $\int f(x) dx$.
 - b) Soit α l'abscisse du point d'intersection de (γ) et (C).

Calculer, en fonction de α , l'aire S du domaine limité par (C), (γ) et les droites d'équations x=1 et $x=\alpha$ et montrer que $S=2e+\alpha-1-(\alpha^2+\alpha+1)e^{2-\alpha}$ unités d'aire.

- 5- Montrer que la restriction de f à l'intervalle $[2; +\infty[$ admet une fonction réciproque f^{-1} de domaine de définition à déterminer.
- 6- On considère la fonction h définie sur]0; $+\infty[$ par $h(x) = \begin{cases} f^{-1}(x) & \text{si } x \in]0; 2[\\ f(x) & \text{si } x \in [2; +\infty[\end{cases}] \end{cases}$

Soit (H) la courbe représentative de h dans un repère orthonormé.

- a) Montrer que h est dérivable en 2.
- b) Tracer, dans un nouveau repère, la courbe (H) et la tangente à (H) au point L d'abscisse 2.
- c) Calculer l'aire du domaine limité par (H), l'axe des abscisses, l'axe des ordonnées et les deux droites d'équations x=3 et y=3.

Faculty of Engineering – Lebanese University
All the Entrance Exam Sessions are available on www.ulfg.ul.edu.lb

Concours d'entrée 2014 - 2015 La distribution des notes est sur 25

Solution de Mathématiques

Durée: 3 heures 05 juillet 2014

EXERCICE 1

1-a)
$$z' + 2i = \frac{-2iz}{z-i} + 2i = \frac{2}{z-i}$$
, alors $(z' + 2i)(z-i) = 2$ est un nombre réel constant.

b)
$$(z' + 2i)(z - i) = 2$$
, alors $|z' + 2i| \times |z - i| = 2$.

M décrit le cercle (γ) de centre A et de rayon 1 si et seulement si AM = 1; et puisque |z - i| = 1; donc |z' + 2i| = 2; et BM' = 2.

Finalement, l'ensemble de M ' est un cercle (γ') de centre B et de rayon 2 .

c)
$$(z' + 2i)(z - i) = 2$$
, alors $\arg(z' + 2i) + \arg(z - i) = \arg(2)$;
et $(\overrightarrow{u}; \overrightarrow{BM'}) + (\overrightarrow{u}; \overrightarrow{AM}) = 0$ (2π) ;
 $(\overrightarrow{u}; \overrightarrow{BM'}) = -(\overrightarrow{u}; \overrightarrow{AM})$ (2π) .
 $M \in (\gamma)$, alors M' est le point de (γ') tel que $(\overrightarrow{u}; \overrightarrow{BM'}) = -(\overrightarrow{u}; \overrightarrow{AM})$ (2π) .
Le dessin,

b) M' décrit la demi droite]Ct) de vecteur directeur \overrightarrow{u} si et seulement si $(\overrightarrow{u}; \overrightarrow{CM'}) = 0$ (2π) . $(\overrightarrow{MA}; \overrightarrow{MC}) = \frac{\pi}{2}$ (2π) .

L'ensemble de M est le demi-cercle de diamètre [AC] privé de A, C et se trouvant à la droite de l'axe des ordonnées.

EXERCICE 2

L'équation $y = \frac{1}{4}x^2 + 1 = f(x)$ est equivalent à $x^2 = 4(y-1)$.

- 1- a) Le sommet de (P) est le point S(0;1) son axe focal est l'axe des ordonnées ; le paramètre est p=2 ; Son foyer est le point F(0;2) et la directrice est la ligne droite de l'équation y=0.
 - b) La tangente (Δ) à (P) au sommet S est la ligne droite de l'équation y=1. Le dessin,

2- Le point de (P) avec abscisse a est $M(a; 1+\frac{a^2}{4})$.

Ensuite $f'(x) = \frac{1}{2}x$ alors la pente de la tangente (δ) de (P) à M est égale à $\frac{a}{2}$.

L'équation de (δ) est $y = \frac{a}{2}(x-a)+1+\frac{a^2}{4}$ ce qui implique que $y = \frac{a}{2}x+1-\frac{a^2}{4}$

 (δ) coupe (Δ) au point N d'ordonnée 1 et d'abscisse $x = \frac{a}{2}$.

- 3- (E) : $x^2 2\lambda x \lambda^2 1 = 0$ où $\lambda \in IR$.
 - a) Pour tout λ en IR , (E) est une équation quadratique comportant $\Delta' = \lambda^2 + \lambda^2 + 1 = 2\lambda^2 + 1$. Pour tout λ en IR , $\Delta' > 0$ et $c = -\lambda^2 1 \neq 0$, puis on a deux racines distinctes x_1 et x_2 différent de 0.
 - b) N_1 et N_2 sont deux points de (Δ) d'abscisses x_1 et x_2 . Les points des contacts de (δ_1) et (δ_2) de (P) sont les points des abscisses $2x_1$ et $2x_2$ respectivement. Ces points sont $M_1(2x_1;1+x_1^2)$ et $M_2(2x_2;1+x_2^2)$ alors les tangentes de (P) à M_1 et M_2 sont (δ_1) : $y=x_1x+1-x_1^2$ et (δ_2) : $y=x_2x+1-x_2^2$. Les coordonnées du point de leur point d'intersection L sont $x=x_1+x_2=2\lambda$ et $y=x_1x_2+1=-\lambda^2$

Les coordonnées du point de leur point d'intersection L sont $x = x_1 + x_2 = 2\lambda$ et $y = x_1 x_2 + 1 = -\lambda$ comme λ varies dans IR, Les coordonnées de L varie de sorte que $y = -\frac{1}{4}x^2$, alors L varies sur le parabole (P_0) d'équation $y = -\frac{1}{4}x^2 = g(x)$.

Pour tout x dans IR, $f(x) + g(x) = \frac{1}{4}x^2 + 1 - \frac{1}{4}x^2 = 1$, alors (P_0) est le symétrique de (P) par rapport à la droite d'équation $y = \frac{1}{2}$.

EXERCISE 3

- 1- Les 3 bras fonctionnent de façon indépendant, alors la probabilité d'un évènement concernant la position des 3 jetons est le produit des 3 probabilités p_1 , p_2 et p_3 , puis les bras A_1 , A_2 et A_3 placent successivement les jetons dans les cases convenant.
 - a) p(H)

Pour A_1 , tous les cases sont favorables, alors $p_1 = 1$.

Pour A_2 , tous les 8 cases libres sont possibles mais seulement les 2 cases libres de la ligne correspondant sont favorables, alors $p_2 = \frac{2}{8} = \frac{1}{4}$.

Pour A_3 , tous les 7 cases libres sont possibles mais seulement les cases libres de la ligne correspondant sont favorables, alors $p_3 = \frac{1}{7}$.

Ensuite,
$$p(H) = 1 \times \frac{2}{8} \times \frac{1}{7} = \frac{1}{28}$$
.

- Les memes pour $p(V) = \frac{1}{28}$.
- ${\color{red}\bullet}$ Pour que l'évènement D est réalisé, il y a deux cases sont possibles :

♠ A_1 place le premier jeton sur l'un de 4 coins des cases, alors $p_1 = \frac{4}{9}$.

De même pour,
$$p_2 = \frac{1}{4}$$
 et $p_3 = \frac{1}{7}$.

♠ A_1 place le premier jeton sur le case central, alors $p_1 = \frac{4}{9}$.

Pour A_2 , tous les 8 cases libres sont possibles mais seulement les 4 coins des cases sont favorables, alors $p_2 = \frac{4}{8} = \frac{1}{2}$.

De même pour, $p_3 = \frac{1}{7}$.

Ensuite,
$$p(D) = \frac{4}{9} \times \frac{2}{8} \times \frac{1}{7} + \frac{1}{9} \times \frac{4}{8} \times \frac{1}{7} = \frac{1}{63} + \frac{1}{126} = \frac{1}{42}$$
.

• $A = H \cup V \cup D$ ou H, V et D sont incompatible en pairs, alors $p(A) = p(H) + p(V) + p(D) = \frac{2}{21}$.

b) La probabilité demander est
$$p(H/A) = \frac{p(H \cap A)}{p(A)} = \frac{p(H)}{p(A)} = \frac{3}{8}$$

2- A_1 est dispobnible en stock

Pour A_1 , les cases possibles sont les 4 coins de la grille ou l'un des coins et tous ceux coins sont favorables, alors $p_1 = 1$.

Pour A_2 , tous les 8 cases libres sont possibles mais seulement 2 entre eux ne sont pas favorable (par exemple, si le premier jeton est placé dans le case 1, seulement les cases 6 et 8 ne sont pas favorable),

Ensuite
$$p_2 = \frac{6}{8} = \frac{3}{4}$$
.

Alors
$$p(A/S) = 1 \times \frac{3}{4} \times \frac{1}{7} = \frac{3}{28}$$
.

3- La probabilité demander est $p(S/\overline{A}) = p(\overline{A}/S) \times \frac{p(S)}{p(\overline{A})} = (1 - p(A/S)) \times \frac{p(S)}{1 - p(A)}$

Alors,
$$p(S/\overline{A}) = \left(1 - \frac{3}{28}\right) \times \frac{\frac{1}{3}}{1 - \frac{2}{21}} = \frac{25}{76}$$
.

EXERCISE 4

A- 1- Dans le triangle ABC on a $BC^2 = AB^2 + AC^2 - 2AB \times AC \cos \hat{A}$ alors

$$\cos \hat{A} = \frac{AB^2 + AC^2 - BC^2}{2AB \times AC} = -\frac{\sqrt{2}}{2} \text{ ; ensuite } \hat{A} = \frac{3\pi}{4} \text{ rad }.$$

- Dans le triangle ABC on a $\frac{\sin \hat{C}}{AB} = \frac{\sin \hat{A}}{BC}$ alors $\sin \hat{C} = \frac{1}{\sqrt{10}}$.
- Dans le triangle OAC on a $OA = AC \sin \hat{C} = 1$ et $OC = \sqrt{AC^2 OA^2} = 3$.
- 2- (γ) est le cercle de centre B et de rayon R = BA et (γ') est le cercle de centre C et de rayon R' = CA.
 - a) Le rapport de S est $k = \frac{R'}{R} = \sqrt{2}$;

$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{3\pi}{4} (2\pi)$$
, alors $\alpha = \frac{3\pi}{4}$ est un angle de S .

$$S = similitude \ (A; \sqrt{2}; \frac{3\pi}{4}) \ alors \ f = S \circ S = similitude \ (A; (\sqrt{2})^2; 2 \times \frac{3\pi}{4});$$
 C'est-à-dire

$$f = similitude (A; 2; -\frac{\pi}{2})$$

$$E = f(B)$$
; le point E est tel que $AE = 2AB$ et $(\overrightarrow{AB}; \overrightarrow{AE}) = -\frac{\pi}{2}$ (2π) .

$$E = f(B) = S \circ S(B) = S(S(B))$$
 ou $S(B) = C$ donc $E = S(C)$.

b) • S(B) = C et S(C) = E, alors S((BC)) = (CE).

O est la projection orthogonal de A sur (BC) et S(O) = O', donc O' est la projection orthogonal de A sur (CE).

• S(D) = D' ou D est le symétrique de A par rapport à (BC) alors D' est le symétrique de A par rapport à (CE).

Notez que $D \in (\gamma)$ et $S((\gamma)) = (\gamma')$ donc $D' \in (\gamma')$.

3- H est le projeté orthogonal de B sur(AC) et H' = S(H) alors H' est la projection orthogonale de S(B) sur S(AC); donc H' est la projection orthogonale de C sur (AE).

Le triangle ABH est un triangle rectangle isocèle en H puis $\widehat{BAH} = \pi - \widehat{BAC} = \frac{\pi}{4}$ rad, alors l'image ACH' du triangle ABH est un triangle rectangle isocèle en H'.

4- M est un point de (γ) distincte de A et D, et M'=S(M). Soit $A\widehat{D}M=\theta$ rad. Une similitude préserve les angles, alors $A\widehat{D}'M'=\theta$ rad.

Le quadrilatéral ADM'D' est cyclique donc $A\widehat{D}M'+A\widehat{D}'M'=\pi$ rad. Ensuite, $A\widehat{D}M+A\widehat{D}M'=\pi$. d'où les points M, D et M' sont colinéaires.

Déterminer la forme algébrique du rapport $\frac{z'-z_D}{z-z_D}$ en terme de x et y et démontrer que si M est un point de (γ) autre que A et D alors M, D et M' sont colinéaires .

- 5- Le plan est rapporté au repère $(O; \overrightarrow{u}, \overrightarrow{v})$ tel que $\overrightarrow{OC} = 3\overrightarrow{u}$ et $\overrightarrow{OA} = \overrightarrow{v}$.
 - a) La relation complexe de S est à la forme $z' = az + (1-a)z_A$ ou $a = \sqrt{2}e^{i\frac{3\pi}{4}} = -1+i$

alors
$$z' = (-1+i)z + (2-i)i = (-1+i)z + 1 + 2i$$
.

$$\frac{z' - z_D}{z - z_D} = \frac{(-1+i)z + 1 + 2i + i}{z+i} = \frac{(-1+i)z + 1 + 3i}{z+i} \times \frac{\overline{z} - i}{\overline{z} - i}$$

$$\frac{z'-z_D}{z-z_D} = \frac{(-1+i)z\overline{z} + (1+i)z + (1+3i)\overline{z} + 3-i}{|z+i|^2}$$

$$\frac{z'-z_D}{z-z_D} = \frac{(-1+i)(x^2+y^2) + (1+i)(x+iy) + (1+3i)(x-iy) + 3-i}{x^2 + (y+1)^2}$$

$$\frac{z'-z_D}{z-z_D} = \frac{-x^2-y^2+2x+2y+3}{x^2+(y+1)^2} + \frac{x^2+y^2+4x-1}{x^2+(y+1)^2}i.$$

b) Si M est un point de (γ) distincte de A et D donc $BM = \sqrt{5}$; puis $(x+2)^2 + y^2 = 5$.

La partie imaginaire de
$$\frac{z'-z_D}{z-z_D}$$
 est $Y = \frac{x^2+y^2+4x-1}{x^2+(y+1)^2} = \frac{(x+2)^2+y^2-5}{x^2+(y+1)^2} = 0$; donc $\frac{z'-z_D}{z-z_D}$

est un nombre purement réel.

Ensuite, les 3 points M, D et M' sont colinéaires.

EXERCISE 5

A- 1- Si y = xz, alors y' = z + xz'.

Par substitution dans l'équation (1) on obtient $xz + x^2z' + x^2z - xz = 0$; puis z' + z = 0 (2).

2- la solution générale de l'équation (2) est $z = Ce^{-x}$; et que dans (1) est F tel que $F(x) = Cxe^{-x}$.

$$F'(x) = Ce^{-x} - Cxe^{-x} = C(1-x)e^{-x}$$

Pour toutes les valeurs de C, le polynôme 1-x change le signe à 1.

Ensuite, F a un extremum en une valeur constante de x=1.

B- la fonction f définie sur IR par $f(x) = xe^{2-x}$.

$$1 - \lim_{x \to -\infty} e^{2-x} = +\infty$$
, alors $\lim_{x \to -\infty} f(x) = -\infty$;

$$\lim_{x \to +\infty} \frac{x}{e^x} = 0 \text{ , alors } \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^2 \frac{x}{e^x} = 0.$$

$$f'(x) = e^{2-x} - x e^{2-x} = (1-x)e^{2-x}.$$

Le tableau de variations de f est :

- 2-a) $f'(x) = (1-x)e^{2-x} = (-1)^{1+1}(1-x)e^{2-x}$.
 - Si, pour un certain $n \ge 1$, $f^{(n)}(x) = (-1)^{n+1}(n-x)e^{2-x}$ alors $f^{(n+1)}(x) = (-1)^{n+1}(-1) + (-1)^{n+1}(n-x)e^{2-x}$ $f^{(n)}$; puis $f^{(n)}(x) = (-1)^{n+1}(n-x)e^{2-x}$.

Ensuite, pour tout nombre naturelle $n \ge 1$, $f^{(n)}(x) = (-1)^{n+1}(n-x)e^{2-x}$.

- b) La suite (U_n) est définie pour tout n sur IN^* , par $U_n = f^{(n)}(n+1) = (-1)^n e^{1-n}$ Pour tout n sur IN, $U_{n+1} = (-1)^{n+1} e^{-n} = -e^{-1} \times U_n$, alors (U_n) est un suite géométrique de rapport commun $r = -e^{-1}$ et de premier terme $U_1 = -1$. Alors r < 0 donc (U_n) est non monotone.
- 3- a) $f''(x) = (-1)^3 (2-x) e^{2-x} = (x-2) e^{2-x}$. f''(x) change le signe en 2 , alors le point I(2; 2) est un point d'inflexion de (C). Une équation de la tangent (T) de (C) à I est y = f'(2)(x-2) + f(2); donc (T): y = -x + 4.
 - b) $\lim_{x \to +\infty} f(x) = 0$, puis l'axe des abscisses est asymptote de (C) à $+\infty$.

 $\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} e^2 e^{-x} = +\infty \text{ alors, } (C) \text{ a une direction parallèle asymptotique à } y'y \text{ de } -\infty.$

Tracer(T), (C) et (γ) .

UNIVERSITE LIBANAISE

FACULTE DE GENIE

4- a) Soit
$$u = x$$
 et $v' = e^{2-x}$, alors $u' = 1$ et $v = -e^{2-x}$

$$\int f(x) dx = \int x e^{2-x} dx = -x e^{2-x} + \int e^{2-x} dx = -(1+x) e^{2-x} + C.$$

b) Dans l'intervalle]1; α [, (γ) se trouve au-dessous de(C), alors l'aire demander de S est tel que $S = \int_{-\alpha}^{\alpha} (f(x) - \ell n x) dx \quad unites \ d'aire$

$$\int_{1}^{\alpha} (f(x) - \ln x) dx = \left[-(1+x)e^{2-x} - x\ln x + x \right]_{1}^{\alpha} = -(1+\alpha)e^{2-\alpha} - \alpha\ln\alpha + \alpha + 2e - 1 ; \text{ Ensuite}$$

$$S = 2e + \alpha - 1 - (1 + \alpha)e^{2-\alpha} - \alpha \ln \alpha$$
 unites d'aire

 α est la solution de l'équation $\ell n x = f(x)$, alors $\ell n \alpha = \alpha e^{2-\alpha}$; puis

$$S = 2e + \alpha - 1 - (1 + \alpha)e^{2-\alpha} - \alpha(\alpha e^{2-\alpha}) = 2e + \alpha - 1 - (\alpha^2 + \alpha + 1)e^{2-\alpha}$$
 unites d'aire

5- la restriction de f à l'intervalle $[2; +\infty[$ est continue et strictement décroissante puis il a une fonction inverse f^{-1} dont le domaine de définition est $f([2; +\infty[)$.

 $\lim_{x \to +\infty} f(x) = 0 \text{ et } f(2) = 2 \text{ alors } f([2; +\infty[) =]0; 2].$

- 6- La fonction h est définie sur]0; $+\infty[$ par $h(x) = \begin{cases} f^{-1}(x) & \text{si } x \in]0$; 2[$f(x) & \text{si } x \in [2; +\infty[$.
 - a) La fonction f est dérivable en 2 et f'(2) = -1, alors f^{-1} est dérivable en f(2)

tel que 2 et
$$(f^{-1})'(2) = \frac{1}{f'(2)} = -1$$
.

$$h_{\ell}'(2) = (f^{-1})'(2) = -1$$
 et $h_{r}'(2) = f'(2) = -1$ donc $h_{\ell}'(2) = h_{r}'(2) = -1$; ensuite h est dérivable en 2 et $h'(2) = -1$.

- b) Un équation de la tangent de (H) à L est y = h'(2)(x-2) + h(2); tel que y = -x + 4 qui est la ligne droite de (T).
 - (H) se compose de la partie de (C) correspondant à l'intervalle $[2; +\infty[$ et sa symétrique par rapport à la ligne droite (δ) de l'équation y = x. tracez (H) et (T).
- c) Par symétrie par rapport à (δ) , l'aire demander est le double de l'aire hachurée

tel que
$$\frac{1}{2}(2\times2) + \int_{2}^{3} f(x) dx = 2 - \left[(1+x)e^{2-x} \right]_{2}^{3} = 2 - 4e^{-1} + 3 = 5 - \frac{4}{e}$$
 unité d'aire.

l'aire demander est = $10 - \frac{8}{e}$ unité d'aire.

Faculty of Engineering – Lebanese University All the Entrance Exam Sessions are available on www.ulfg.ul.edu.lb

