CLAIMS:

1. A method of forming a conductive line comprising the following steps:

forming a polysilicon layer;

forming a silicide layer against the polysilicon layer;

providing a conductivity-enhancing impurity within the silicide layer; and

providing the polysilicon layer and the silicide layer into a conductive line shape.

- 2. The method of claim 1 wherein the silicide comprises a metal selected from the group consisting of tungsten, titanium, molybdenum and cobalt.
- 3. The method of claim 1 wherein the steps of forming the silicide layer and providing the conductivity-enhancing dopant therein together comprise:

depositing a metal together with the conductivity-enhancing impurity on the polysilicon layer; and

reacting the metal with the polysilicon to form the silicide layer having the conductivity-enhancing impurity therein.

4. The method of claim 1 wherein,

the step of forming the silicide layer comprises chemical vapor depositing silicide on the polysilicon layer; and

the step of providing the conductivity enhancing impurity comprises chemical vapor depositing the conductivity-enhancing impurity in situ with the chemical vapor depositing of the silicide.

5. The method of claim 1 wherein,

the step of forming the silicide layer comprises chemical vapor depositing a tungsten-comprising silicide on the polysilicon;

the step of providing the conductivity-enhancing impurity comprises chemical vapor depositing the conductivity-enhancing impurity in situ with the chemical vapor depositing of the tungsten-comprising silicide; and

the conductivity-enhancing impurity comprises a group III or a group V element.

6. The method of claim 5 wherein the step of chemical vapor depositing the conductivity-enhancing impurity comprises utilizing a precursor compound selected from the group consisting of PH₃, AsH₃, and diborane.

7.	The	method	of	claim	1	wherein	the	condu	ctivit	y-enh	ancing
impurity	is	provide	e d	to	a	conce	ntra	tion	of	at	least
about 1 x	10 ¹⁸ i	ions/cm³ v	vith	in the	S	ilicide lay	yer.				

8. The method of claim 1 wherein the step of forming the silicide layer and the step of doping the silicide layer together comprise:

providing a target comprising a metal, silicon and the conductivityenhancing impurity; and

sputtering of the target to form the silicide layer and the conductivity-enhancing impurity within the silicide layer, the silicide layer comprising the metal.

9. The method of claim 1 wherein the step of providing the conductivity-enhancing impurity comprises:

ion implanting the conductivity-enhancing impurity into the silicide layer after forming the silicide layer.

10. The method of claim 1 wherein the polysilicon layer is doped with the conductivity-enhancing impurity, and wherein the step of providing the conductivity-enhancing impurity comprises:

out-diffusing the conductivity-enhancing impurity from the doped polysilicon layer into the silicide layer.

11. The method of claim 1 wherein the step of providing the conductivity-enhancing impurity comprises:

gas phase chemical doping of the silicide layer.

- 12. The method of claim 1 wherein the conductive line is a wordline.
- 13. A method of lowering the resistivity of a metal-silicide layer comprising doping the metal-silicide layer with a Group III dopant or a Group V dopant.
- 14. The method of claim 13 wherein the dopant is provided to a concentration within the metal-silicide layer of at least about 1×10^{18} ions/cm³.

I

15. A method of forming a conductive line comprising the following steps:

forming a polysilicon layer;

forming a silicide layer against the layer of polysilicon;

providing a conductivity-enhancing impurity within the silicide layer; and

after providing the conductivity-enhancing impurity within the silicide layer, subjecting the silicide layer to a processing step of over 850°C for at least 10 seconds.

- 16. The method of claim 15 wherein the forming the silicide layer comprises depositing a metal layer over the polysilicon and reacting the metal layer with the polysilicon, and wherein the conductivity-enhancing impurity is provided within the metal layer prior to the reacting the metal layer with the polysilicon.
- 17. The method of claim 15 wherein the forming the silicide layer comprises depositing a metal layer over the polysilicon and reacting the metal layer with the polysilicon, and wherein the conductivity-enhancing impurity is provided within the metal layer after the reacting the metal layer with the polysilicon.

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14 15	
16	
<i>17</i>	
18	
19	
20	
21	

23

1

2

18.	The	metho	d of	cla	aim	15	wherein	the	conductivity-enhancing
impurity is	impla	inted i	nto	the	sili	cide	laver.		

- 19. The method of claim 15 wherein the conductivity-enhancing impurity is provided to a concentration within the silicide layer of at least about 1×10^{18} ions/cm³.
- 20. A method of forming a conductive line comprising the following steps:

forming a polysilicon layer;

forming a silicide layer against the layer of polysilicon;

providing a conductivity-enhancing impurity within the silicide layer;

subjecting the silicide layer to a processing step of over 850°C for at least 10 seconds while exposing the silicide layer to an oxygen-comprising atmosphere.

- 21. A conductive line comprising:
- a polysilicon layer; and
- a metal-silicide layer against the layer of polysilicon, the metalsilicide layer comprising a Group III dopant or a Group V dopant.

MI22-532.P02 A279809040603N 17 PAT-US/AP-00

19

20

21

22

1	2:	2.
2	layer	con
3	about 1	. X
4		
5	2	3.
6	Group	V
7		
8	2	4.
9	the dor	oant
10		
11	2	5.
12	a	fir
13	a	flo
14	a	se
15	a	co
16	a	m
17	laver c	omr

	22.	The	condu	ıctive	line	of	claim	21	whe	erein	the	met	al-sil	icide
layer	com	prises	s a	conc	entra	atio	n o	f th	ne	dopai	nt	of a	at	least
about	1 x 1	10 ¹⁸ io	ons/cm	3										

- 23. A metal-silicide layer comprising a Group III dopant or a Group V dopant.
- 24. The metal-silicide of claim 23 comprising a concentration of the dopant of at least about 1×10^{18} ions/cm³.
 - 25. A programmable-read-only-memory device comprising:
 - a first dielectric layer over a substrate;
 - a floating gate over the first dielectric layer;
 - a second dielectric layer over the floating gate;
 - a conductive line over the second dielectric layer; and
- a metal-silicide layer over the conductive line, the metal-silicide layer comprising a Group III dopant or a Group V dopant.
- 26. The programmable-read-only-memory device of claim 25 wherein the device is an EPROM.

б

- 27. The programmable-read-only-memory device of claim 25 wherein the device is an EEPROM.
- 28. The programmable-read-only-memory device of claim 25 wherein the metal-silicide layer comprises a concentration of the dopant of at least about 1×10^{18} ions/cm³.