

Self-Promoted Supervision for Few-Shot Transformer

Bowen Dong¹, Pan Zhou², Shuicheng Yan², Wangmeng Zuo^{1,3}

¹ Harbin Institute of Technology ² National University of Singapore ³ Peng Cheng Laboratory

ViT Type	1-shot w/o SUN 1-	-shot w/ SUN-M
LT-ViT	43.08 ± 0.38	59.00±0.44
Visformer	47.61 ± 0.43	67.80 ± 0.45
Swin	54.63 ± 0.45	64.94 ± 0.46
NesT	54.57 ± 0.46	66.54 ± 0.45
Method	5-way 1-shot	5-way 5-shot
Method SUN - M		5-way 5-shot 83.25±0.30
	67.80 ± 0.45	

Motivation:

- > Our work starts from two questions:
- > Whether ViTs can perform well under few-shot learning setting or not?
- ➤ If not, how to improve the few-shot learning ability of ViTs?

Why Investigating ViTs:

- > ViT has three advantages over CNN:
- > Better performance than CNN.
- > Unify vision and language models.
- > More highly parallelized than CNN.
- > SUN has proved that ViTs can perform well on few-shot learning scenarios.

Preliminary Study:

- > We use Meta-Baseline to evaluate ViTs and ResNet-12, and find that ViTs perform much worse than CNNs.
- > We reveal that ViTs face severe overfitting on base classes, but obtain worse generalization on novel classes.

Analysis:

- The lack of inductive bias leads to the severe performance degeneration.
- > CNN (alike) inductive bias or local attention benefits to generalization ability
- > Low-quality token dependency learning results in overfitting on base classes.

Self-promoted sUpervisioN (SUN):

- \triangleright **Meta-Training:** to learn a meta-learner f with **location-specific supervision**, such that f is able to fast adapt itself to novel classes with a few training data.
 - \triangleright First optimize a teacher ViT f_g and use f_g to obtain **location-specific** supervision.
 - \triangleright Optimize meta-learner f via both ground-truth labels and location-specific supervision.
 - > Augmented Training via Spatial-Consistent Augmentation and Background Filtration.
- \triangleright **Meta-Tuning:** we fine-tune the meta-learner f via training it on multiple "N-way K-shot" tasks sampled from base set.
- > **Tips:** CNN-based patch embedding, longer training epochs and relative large drop-path rate (*e.g.*, 0.5) benefits to ViTs for SUN training framework.

Category Vanilla ViT w/ CNN Distill w/ SUN School Bus Scoreboard

Experiments:

- ➤ We evaluate our SUN on different ViTs, and obtain promising performance improvement on all ViT feature extractors.
- > We use the same meta-training phase and adopt various few-shot learning methods as meta-tuning phase, all achieve good classification accuracy (SUN-D is the best)
- > SUN achieves comparable accuracy against state-of-the-art CNN-based few-shot learning methods on multiple benchmarks.

Conclusion:

- ViT faces severe accuracy drop on few-shot learning, and reveal that slow token dependency learning and limited training data lead to the performance degeneration.
- > We propose **self-promoted supervision** (**SUN**) to generate individual location-specific for few-shot learning.
- > The first work to empirically analyze ViTs for few-shot learning, and provides a simple yet solid baseline for few-shot classification.

