Kmeans

2024-06-21

Load library

```
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
library(tidyr)
library(cluster)
                    # clustering algorithms
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WB
а
library(purrr)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
##
       filter
```

```
## The following object is masked from 'package:graphics':
##
## layout
```

Import dataset

```
rank <- read.csv("rank.csv")
# Examine data
head(rank)</pre>
```

	Customer.ID <int></int>	last_date <chr></chr>	recency <int></int>	frequency <int></int>	average_invoice_value <dbl></dbl>	rec_rank <int></int>	rank_freq r <int></int>
1	15749	2011-04-18	235	3	14844.767	3400	4211
2	15098	2011-06-10	182	3	13305.500	3148	1986
3	13687	2010-09-27	438	1	11880.840	4500	603
4	12918	2010-03-23	626	1	10953.500	5087	593
5	18052	2010-05-24	564	1	10877.180	4904	4268
6	17450	2011-12-01	8	51	4799.691	485	1916
6 r	ows 1-9 of 13	columns					

One thing to notice here, the magnitude of difference between the average invoice and the recency/frequency is too high. They should be in the same scale. So we need to scale the feature and create the segmentation.

Cluster plot

Examine the total within this cluster
a\$tot.withinss

[1] 8223.494

```
# Create functions to test different clusters
wss <- function(k){
   kmeans(scale(rank[,3:5]), , centers = k, iter.max = 18, nstart =10)$tot.withinss
}

# Let try 10 k
k<- seq(1:10)

# Apply mapping function
wss_score<-map_dbl(k, wss)

# Plot to examine
plot(k,wss_score)</pre>
```



```
#Verify the cut-off point
fviz_nbclust(scale(rank[,3:5]), kmeans, method = "wss")
```


fviz_nbclust(scale(rank[,3:5]), kmeans, method = "silhouette")

Optimal number of clusters

As we can see, we have some high invoice value, they have recency and low frequence. We can conclude that they are 1 time buyer. The difference about the rest 3 group are the recency.