Pesquisa Operacional PERT/CPM

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

- Introdução
- 2 Rede de Projetos
- 3 PERT/CPM
- 4 PERT + Folgas

- O gerenciamento do um projeto de grande escala requer a coordenação de inúmeras atividades
 - Um conjunto grande de tarefas devem ser consideradas para conclusão do projeto;
- A criação de um cronograma realista e o monitoramento da execução fazem parte dos desafios inerentes da atividade [Hillier and Lieberman, 2010].

- Duas técnicas de Pesquisa Operacional intimamente relacionadas podem auxiliar na coordenação de tarefas
 - PERT¹: Técnica de Avaliação e Revisão do Programa;
 - CPM²: Método do Caminho Crítico
- PERT e CPM foram desenvolvidas de forma independente no final dos anos 1950;
- As técnicas fazem uso de redes (de atividades) para auxiliar o planejamento e coordenação das atividades [Hillier and Lieberman, 2010].

¹PERT é o acrônimo de *Program Evaluation and Review Technique*.

²PERT é o acrônimo de *Critical Path Method*.

Introdução

000

- Segundo [Hillier and Lieberman, 2010], PERT e CPM podem ser usadas em atividades como:
 - Construção de uma fábrica;
 - Pesquisa e desenvolvimento de um novo produto;
 - Produção de filmes;
 - Construção de navios;
 - Instalação de um sistema de informação;
 - Desenvolvimento de uma campanha de publicidade;
 - Manutenção de equipamentos;

Rede de Projetos

Rede de Projetos

- Uma rede usada para representar as atividades de um projeto é chamada de Rede de Projeto;
 - Consiste em uma série de nós (representados por círculos ou retângulos), conectados por uma série de arestas direcionadas;
- Existem basicamente dois tipos de redes de projeto:
 - Atividade na Aresta (AOA)³
 - Cada atividade é representada por uma aresta;
 - Atividade no Nó (AON)⁴
 - Cada atividade é representada por um nó.

³AOA é o acrônimo de *Activity-on-arc*.

⁴AON é o acrônimo de *Activity-on-node*.

Rede Atividade no Arco (AOA)

- O sequenciamento das arestas mostra as relações de precedência entre as atividades;
- Um nó é usado apenas para separar uma atividade de cada um de seus predecessores imediatos;
- As versões originais de PERT/CPM usavam esse tipo de rede
 - Esse foi padrão convencional de construção de diagramas PERT/CPM por muitos anos;
 - Esse tipo de representação ainda é comumente utilizado [Hillier and Lieberman, 2010].

- O nó representa as atividades;
- As arestas são usadas para indicar relações de precedência entre as atividades;
 - Cada atividade é ligada por meio de arestas aos seus predecessores imediatos;
- Redes AON, segundo [Hillier and Lieberman, 2010], possuem algumas vantagens sobre redes AOA:
 - São consideravelmente mais fáceis de serem construídas;
 - São mais fáceis de serem entendidas:
 - São mais fáceis de serem revisadas quando há mudanças no projeto.

MÉTODO PERT/CPM

- Exemplo 1: Adaptado de [Gersting, 2014]
 - Considere um problema de agendamento de tarefas, para construção de uma cadeira de balanço.
 - A lista de atividades está detalhada abaixo.

ID	Atividade	Dep.	Hrs.
A	Seleção da madeira	-	3
В	Entalhamento dos arcos	А	4
C	Entalhamento do assento	А	6
D	Entalhamento do encosto	А	7
Е	Entalhamento dos braços	А	3
F	Escolha do tecido	-	1
G	Costura da almofada	F	2
Н	Montagem: assento e encosto	C; D	2
1	Fixação dos braços	E; H	2
J	Fixação dos arcos	B; H	3
K	Verniz	l; J	5
L	Instalação almofada	G; K	0.5

• A partir da tabela, podemos gerar o seguinte diagrama:

Fonte: Próprio autor

Observe que nesta etapa, os tempos das atividades estão abaixo dos círculos.

- Podemos calcular o tempo mínimo para execução da atividade;
 - Para isso, caminha-se da esquerda para direita no diagrama;
 - Supõe-se que todas as tarefas predecessoras de uma tarefa i devam ser previamente concluídas;
 - Para definir o tempo mínimo até uma tarefa i, adiciona-se o tempo máximo das atividades predecessoras;

- Podemos definir a seguinte notação: [Nogueira, 2010]
 - EF: Tempo Final Mais Cedo (*Earliest Finish*);
 - i: atividade atual (que está sendo analisada);
 - *j*: atividade precedente que está sendo analisada;
 - k: atividade sucessora que está sendo analisada;
 - ρ_i : conjunto de atividades precedentes à atividade i;
 - σ_i : conjunto de atividades sucessoras à atividade i;
 - D: duração da atividade.

- Fórmula de cálculo para caminho mínimo:
 - Tempo final mais cedo (EF): corresponde ao maior valor EF_j das atividades precedentes j

$$EF_i = \max_{j \in \rho_i} (EF_j) + D_i$$

 A partir do cálculo dos tempos mínimos de cada atividade, temos:

Fonte: Próprio autor

Observe que nesta etapa, os tempos das atividades estão abaixo dos círculos.

 Para definição do caminho crítico, voltamos da direita para esquerda, recuperando o valor máximo das atividades precedentes.

Fonte: Próprio autor

MÉTODO PERT/CPM

- Exemplo 1: [Hillier and Lieberman, 2010]
 - Considere um problema de agendamento de tarefas para construção de uma casa.

ID	Atividade	Dep.	Semanas
Α	Escavação	-	2
В	Fundação	A	4
С	Paredes, contrapiso e laje	В	10
D	Telhado	С	6
Е	Encanamento externo	С	4
F	Encanamento interno	E	5
G	Revestimento externo	D	7
Н	Pintura exterior	E; G	9
I	Serviços elétricos	С	7
J	Gesso / massa corrida	F; I	8
K	Instalação do piso	J	4
L	Pintura interior	J	5
M	Acabamento externo	Н	2
N	Acabamento interno	K; L	6

• A partir da tabela, podemos gerar o seguinte diagrama:

Fonte: [Hillier and Lieberman, 2010]

Introdução

- Os tempos de início e término de cada atividade, se nenhum atraso ocorrer, são chamados de:
 - ES (Hora de Início Mais Cedo)
 - EF (Hora de Término Mais Cedo)
- ES corresponde à subtração de EF da duração estimada da atividade

$$ES = EF - D$$

 A hora de início mais cedo pode ser definida como o maior tempo de término mais cedo dos predecessores imediatos

$$ES = \max_{j \in \rho_i} (EF_j)$$

ES é o acrônimo de Earliest Start Time. EF é o acrônimo de Earliest Finish Time.

 A partir do diagrama anterior, podemos adicionar as informações de início e término mais cedo (EF + ES).

Fonte: [Hillier and Lieberman, 2010]

Introdução

- Os tempos de início e término de cada atividade, para que nenhum atraso ocorra no cronograma, são chamados de:
 - LS (Hora de Início Mais Tarde)
 - LF (Hora de Término Mais Tarde)
- LS corresponde à subtração de LF da duração estimada da atividade [Hillier and Lieberman, 2010].

$$LS = LF - D$$

 A hora de término mais tarde pode ser definida como o menor tempo de início mais tarde dos sucessores imediatos

$$LF = \min_{k \in \sigma_i} (LS_k)$$

ES é o acrônimo de Latest Start Time. EF é o acrônimo de Latest Finish Time.

 A partir do diagrama original, podemos adicionar as informações de início e término mais tarde (LF + LS)

Fonte: [Hillier and Lieberman, 2010]

- Informações de início (ES e LS) e término (EF e LF) podem ser agrupadas em variáveis de Início (S) e Término (F), respectivamente;
- A folga (slack) corresponde à diferença entre as horas de término mais tarde (LF) e mais cedo (EF)⁵

$$Fo = LF - EF$$

 O conjunto de atividades com folga zero corresponde ao Caminho Crítico (CPM) [Hillier and Lieberman, 2010].

⁵Também pode ser calculada usando as horas de início mais tarde (LS) e mais cedo (ES).

• Uma folga pode ser identificada com base nos tempos de término, conforme figura abaixo:

Fonte: [Hillier and Lieberman, 2010]

 A partir do diagrama original, podemos adicionar as informações de Início (S) e o Término (F).

Fonte: [Hillier and Lieberman, 2010]

PERT COM 3 ESTIMATIVAS

- O modelo PERT possui uma incerteza, devido à estimativa de duração das atividades;
 - Em alguns cenários, pode ser recomendado a criação de múltiplas estimativas de duração de atividade;
 - Tal abordagem permite maior tolerância a eventuais falhas no cronograma;
 - Essas estimativas podem, ainda, ser combinadas, gerando uma estimativa mais próxima à realidade [Hillier and Lieberman, 2010].

- Frequentemente são geradas 3 estimativas para cada atividade [Hillier and Lieberman, 2010]:
 - Estimativa mais provável (m);
 - Estimativa otimista (o);
 - Estimativa pessimista (p).

- As estimativas devem respeitar uma probabilidade de distribuição beta, com a forma da figura abaixo, onde:
 - Distribuição mais provável (m) corresponde ao valor mais alto de probabilidade na curva;
 - Distribuições otimistas (o) e pessimistas (p) correspondem aos extremos da distribuição.

Fonte: [Hillier and Lieberman, 2010]

- Nessa distribuição, podemos calcular a variância (σ^2) e a média (μ)
 - Média (aritmética): soma dos valores do conjunto de dados dividido pela cardinalidade;
 - Variância: medida de quão dispersos estão os valores em relação ao valor esperado (ex.: média aritmética) ⁶;

⁶Pode ser descrita como "a média do quadrado da distância de cada ponto até a média".

 A variância, de acordo com as estimativas PERT, pode ser calculada por⁷ [Hillier and Lieberman, 2010]:

$$\sigma^2 = \left(\frac{p-o}{6}\right)^2$$

 A média, de acordo com as estimativas PERT, pode ser calculada por [Hillier and Lieberman, 2010]:

$$\mu = \frac{o + 4m + p}{6}$$

⁷Considerando que o intervalo da distribuição esteja limitado a $(\mu - 3\sigma)$ e $(\mu + 3\sigma)$.

Referências I

Introdução

0000

Gersting, J. L. (2014).

Mathematical Structures for Computer Science. W. H. Freeman and Company, 7 edition.

Hillier, F. and Lieberman, G. (2010).

Introduction to Operations Research.

McGraw-Hill higher education. McGraw-Hill Higher Education.

Nogueira, F. (2010).

Pert/cpm - notas de aulas.

[Online]; acessado em 11 de Fevereiro de 2021. Disponível em: https://www.ufjf.br/epd015/files/2010/06/PERT_CPM1.pdf.

PERT/CPM