Due on 05/11/2018

Spotlight SAR Simulation and Reconstruction

Consider a spotlight SAR system. The radar transmits a chirp signal with pulse duration $T_p = 0.25 \mu s$, carrier frequency $f_c = 200 \text{MHz}$ and baseband bandwidth $f_0 = 50 \text{MHz}$. The center of the target area is at $(X_c, Y_c) = (1000, 300)$. The desired target area is within $[X_c - X_0, X_c + X_0]$ in range, and within $[Y_c - Y_0, Y_c + Y_0]$ in crossrange, with $X_0 = 20$ and $Y_0 = 60$. Let $L = 40 < Y_0$, which requires zero-padding of SAR signal in u domain.

Nine targets are located at $(X_c + x_n, Y_c + y_n)$ with reflectivity σ_n , $n = 1, 2, \dots, 9$, where

$x_1 = 0,$	$y_1 = 0,$	$\sigma_1 = 1;$
$x_2 = 0.7X_0,$	$y_2 = -0.6Y_0,$	$\sigma_2 = 1.4;$
$x_3 = 0,$	$y_3 = -0.85Y_0,$	$\sigma_3 = 0.8;$
$x_4 = -0.5X_0,$	$y_4 = 0.75Y_0,$	$\sigma_4 = 1;$
$x_5 = -0.4X_0,$	$y_5 = 0.65Y_0,$	$\sigma_5=1;$
$x_6 = -1.2X_0,$	$y_6 = 0.75Y_0,$	$\sigma_6=1;$
$x_7 = 0.5X_0,$	$y_7 = 1.25Y_0,$	$\sigma_7 = 1;$
$x_8 = 1.1X_0,$	$y_8 = -1.1Y_0,$	$\sigma_8 = 1;$
$x_9 = -1.2X_0,$	$y_9 = -1.75Y_0,$	$\sigma_9 = 1$.

Find Δ_{uc} and assign a 10% guard band such that $\Delta_{uc} \leftarrow \Delta_{uc}/1.2$. Find the minimum and maximum aspect angles θ_{min} and θ_{max} . Find Δ_u and assign a 20% guard band such that $\Delta_u \leftarrow \Delta_u/1.4$. Find the minimum and the maximum distances from the radar to the target, r_{min} and r_{max} , the fast-time gate $[T_s, T_f]$, the fast-time interval $T = T_f - T_s$, and assign a 10% guard band such that $T_s \leftarrow T_s - 0.1T$ and $T_f \leftarrow T_f + 0.1T$, then readjust the fast-time interval T with the new T_s and T_f . Find the minimum fast-time interval T_{min} for processing the SAR data. Let the timedomain sample spacing be $\Delta_t = \frac{1}{4f_0}$ (guard band factor 2), and let the slow-time carrier frequency be $2k_c \sin \theta_c$.

Perform digital reconstruction using three methods, the spatial frequency interpolation, range stacking, and backprojection.

Complete Matlab programming that generates the following results. Submit a printed report that includes 1. Figures of the results; 2. Analysis of the results (describe your observations and provide analysis of these observations); 3. Attach the Matlab code for all problems. In addition, submit the Matlab code that can be compiled to generate all the results in one .zip file to yl72@buffalo.edu.

Note: this is an individual project and please complete the project independently.

- P4.1 Plot the magnitude of the measured spotlight SAR signal |s(t, u)| after fast-time baseband conversion.
- P4.2 The fast-time matched filter is $p_0(t) = p(t T_c)$, where $T_c = 2R_c/c$, $R_c = \sqrt{X_c^2 + Y_c^2}$. Perform fast-time baseband matched filtering. Plot the magnitude of the matched filtered output $|s_M(t, u)|$.
- P4.3 Plot the spectrum $|S(\omega, k_u)|$ of the baseband aliased spotlight SAR signal.
- P4.4 The Doppler-aliased measured data are compressed with reference signal $s_0(\omega, u) = \exp[-j2k\sqrt{X_c^2 + (Y_c u_{ic})^2} + j2kR_c]$. Plot the spectrum $|S_c(\omega, k_u)|$ of the compressed spotlight SAR signal.
- P4.5 Perform polar format processing, digital spotlight filtering, k_u -domain zeropadding for upsampling ($\Delta_{uc} \to \Delta_u$), slow-time decompression, followed by slow-time baseband conversion. Plot the resulting signal's spectrum $|S_d(\omega, k_u)|$.
- P4.6 Plot the spotlight SAR spatial frequency data coverage.
- P4.7 Spatial frequency interpolation spotlight SAR reconstruction spectrum.
- P4.8 Spatial frequency interpolation spotlight SAR reconstruction.
- P4.9 Range stack spotlight SAR reconstruction.
- P4.10 Range stack spotlight SAR reconstruction spectrum.
- P4.11 Backprojection spotlight SAR reconstruction.
- P4.12 Backprojection spotlight SAR reconstruction spectrum.