Camera Calibration Edge Detection

Lecture 9

Outline of Alternate Proof: Plane + Perspective Model

- ▶ Consider Z=0 Plane in the world
- ▶ Then,

3x4 perpective transform matrix Note: 3rd column does not matter because of Z=0

▶ Since in homogeneous coordinates, scale factor does not matter, the 3x3 matrix is a projective transform between the world plane and the camera image plane.

Outline of Alternate Proof

Transformation From Camera 2 to Camera I will be $H_1H_2^{-1}$ (Why?)

It will be a projective transform if projective transformation operation forms a group (Prove)

Examples of Projective Transformations

Camera Calibration

- ▶ To relate 3D world points to 2D camera points, we need to know a lot of things about the camera
 - Camera Location X,Y,Z
 - Camera orientation α , β
 - Gimbal vector $(r_1, r_2, r_3)^T$
 - Focal length f
 - Size of CCD array
 - Center of projection
- Intrinsic parameters: internal to the camera.
 - Do not change when camera is moved
- ▶ Extrinsic parameters: External to the camera.
 - Change when camera is moved

Camera Calibration

In general, the camera model looks like:

$$\begin{array}{rcl}
C_{h} & = & AW_{h}, \\
\begin{bmatrix}
C_{h_{1}} \\
C_{h_{2}} \\
C_{h_{3}} \\
C_{h_{4}}
\end{bmatrix} & = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}$$

- ▶ Calibration is the process of finding the parameters $[a_{11}...a_{44}]$
- If W_h and C_h are known, then we can solve for the unknown parameters

Camera Calibration

$$x = \frac{C_{h_1}}{C_{h_4}},$$
$$y = \frac{C_{h_2}}{C_{h_4}}.$$

$$C_{h_1} = a_{11}X + a_{12}Y + a_{13}Z + a_{14} = C_{h_4}x$$

$$C_{h_2} = a_{21}X + a_{22}Y + a_{23}Z + a_{24} = C_{h_4}y$$

$$C_{h_4} = a_{41}X + a_{42}Y + a_{43}Z + a_{44}$$

$$\begin{split} a_{11}X + a_{12}Y + a_{13}Z + a_{14} - a_{41}Xx - xa_{42}Y - xa_{43}Z - xa_{44} &= 0 \\ a_{21}X + a_{22}Y + a_{23}Z + a_{24} - a_{41}Xy - ya_{42}Y - ya_{43}Z - ya_{44} &= 0. \end{split}$$

Camera Calibration

$$a_{11}X + a_{12}Y + a_{13}Z + a_{14} - a_{41}Xx - xa_{42}Y - xa_{43}Z - xa_{44} = 0$$

$$a_{21}X + a_{22}Y + a_{23}Z + a_{24} - a_{41}Xy - ya_{42}Y - ya_{43}Z - ya_{44} = 0.$$

- ▶ This equation has 12 unknowns
- ▶ Each correspondence yields two equations
- If 6 correspondences are known, we can solve for the unknowns

Camera Calibration

Separating out the knowns and the unknowns

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -x_1X_1 & -x_1Y_1 & -x_1Z_1 & -x_1 \\ X_2 & Y_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & -x_2X_2 & -x_2Y_2 & -x_2Z_2 & -x_2 \\ \vdots & & & & & & & & \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -x_nX_n & -x_nY_n & -x_nZ_n & -x_n \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1X_1 & -y_1Y_1 & -y_1Z_1 & -y_1 \\ 0 & 0 & 0 & 0 & X_2 & Y_2 & Z_2 & 1 & -y_2X_2 & -y_2Y_2 & -y_2Z_2 & -y_2 \\ \vdots & & & & & & & \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -y_nX_n & -y_nY_n & -y_nZ_n & -y_n \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{14} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{24} \\ a_{41} \\ a_{42} \\ a_{43} \\ a_{44} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 \mathbf{or}

$$CP = 0$$
,

Camera Calibration

- ▶ This system CP = 0 is a homogeneous system.
- C is rank deficient: rank(C) = 11
- ▶ Has multiple solutions (other than the trivial solution)... Can be solved uniquely only up to a scale factor
- Solution?

Solving for P

- The null space of C represents the P which are the solutions to the system CP = 0
- How to find null space?
 - null(C) in MATLAB
 - Take SVD of C, as svd(C) = USV^T. The column of V corresponding to the eigen value of zero represents the solution

(in practice, you will have to take the smallest eigen value)

End of Module 1

- Introduction, overview of the course, policies
- General introduction of Computer Vision and the course modules
- Human eye
- Digital images
- Capturing color images
- Image histogram
- Interlacing

- 2D Transformations
- ▶ 2D Displacement Models
 - Affine, Projective
 - Recovering best transformation
- ▶ 3D Transformations
- Perspective, orthographic transforms
- Camera Model
- Planarity assumption
- Camera Calibration

Edge Detection

Applying Masks to Images

- ▶ Convolution Operation
- Mask
 - Set of pixel positions and weights
 - Origin of mask

1	1	1
1	1	1
1	1	1

1	2	1
2	4	2
1	2	1

1
1
1
1
1

Applying Masks to Images

- $I_1 \otimes \text{mask} = I_2$
- ▶ Convention: I_2 is the same size as I_1
- Mask Application:
 - For each pixel
 - ▶ Place mask origin on top of pixel
 - Multiply each weight with pixel under it
 - ▶ Sum the result and put in location of the pixel

Applying Masks to Images

40	40	40	80	80	80
40	40	40	80	80	80
40	149	149	1/9	80	80
40	149	149	1/9	80	80
40	149	149	1/9	80	80
40	40	40	80	80	80

$$6*(1/9*40)+3*(1/9*80) = 53$$

Applying Masks to Images

40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80
40	40	53	67	80	80

Overall effect of this mask?

Smoothing filter

What about corner pixels

- Expand image with virtual pixels
- Options
 - Fill with a particular value, e.g. zeros
 - Fill with nearest pixel value
- Or just ignore them

Edge Detection in Images

Finding the contour of objects in a scene

Edge Detection

4

Choice of Mask?

- Should give 0 output on smooth regions
- Should give high output on nonsmooth regions

-1	0	1
-1	0	1
-1	0	1

Prewitt mask

Why Edge Detection?

- ▶ Historical Background
- Discarding Useless Data?
- ▶ Simplification of Matching Problem
- Illumination Invariant Algorithms

Stages in Edge Detection

- Filtering
 - Removal of noise
- Differentiation
 - Assigns high values to regions of intensity change
- Detection
 - Indicates regions where intensity changes are significant

Filtering

Mean Filter

$$\begin{array}{lcl} h(x,y) & = & f(x-1,y-1)\frac{1}{9} + f(x-1,y)\frac{1}{9} + f(x-1,y+1)\frac{1}{9} + f(x,y-1)\frac{1}{9} \\ & + & f(x,y)\frac{1}{9} + f(x,y+1)\frac{1}{9} + f(x+1,y-1)\frac{1}{9} + f(x+1,y)\frac{1}{9} + f(x+1,y+1)\frac{1}{9} \end{array}$$

$$\begin{array}{lll} h(x,y) & = & f(x-1,y-1)g(-1,-1) + f(x-1,y)g(-1,0) + f(x-1,y+1)g(-1,1) \\ & + & f(x,y-1)g(0,-1) + f(x,y)g(0,0) + f(x,y+1)g(0,1) \\ & + & f(x+1,y-1)g(1,-1) + f(x+1,y)g(1,0) + f(x+1,y+1)g(1,1) \end{array}$$

$$h(x,y) = \sum_{i=-1}^{i=1} \sum_{j=-1}^{j=1} f(x+i, y+j)g(i, j)$$

$$h(x,y) = f(x,y) * g(x,y).$$

Filtering

- ▶ Gaussian Filter
- Pixel weight is inversely proportional to distance from origin

$$g(x, y) = e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

 \blacktriangleright Value of σ has to be specified

Gaussian Filtering

Example

$$g(x, y) = e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

$$x = -1, y = -1, \sigma = 1$$

$$g(-1,-1) = e^{-\frac{(-1)^2 + (-1)^2}{2}} \approx 0.367$$

Gaussian Filtering

- Implementation problem
 - Float multiplications are slow
- Solution
 - Multiply mask with 255, round to nearest integer
 - Scale answer by sum of all weights

Gaussian Filtering

94	155	94
155	255	155
94	155	94

5	21	35	21	5
21	94	155	94	21
35	155	255	155	35
21	94	155	94	21
5	21	35	21	5

1	2	1
2	4	2
1	2	1

Round(g/70)

Gaussian Filtering

0	0	0	0	1	2	2	2	1	0	0	0	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	3	11	26	50	73	82	73	50	26	11	3	0
1	6	20	50	93	136	154	136	93	50	20	6	1
2	9	30	73	136	198	225	198	136	73	30	9	2
2	11	34	82	154	225	255	225	154	82	34	11	2
2	9	30	73	136	198	225	198	136	73	30	9	2
1	6	20	50	93	136	154	136	93	50	20	6	1
0	3	11	26	50	73	82	73	50	26	11	3	0
0	1	4	11	20	30	34	30	20	11	4	1	0
0	0	1	3	6	9	11	9	6	3	1	0	0
0	0	0	0	1	2	2	2	1	0	0	0	0

Figure 2.3: Gaussian mask with $\sigma = 2$.

Continuous Gaussian Function

▶ I-D Gaussian

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

- Non zero from -∞ to ∞
- \blacktriangleright Width is controlled by σ
- Symmetric
- ► Area under curve = I

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}} = 1$$

Continuous Gaussian Function

2-D Gaussian Function

Gaussian Filter

Gaussian Vs Average

Gaussian Smoothing

Smoothing by Averaging

Is this a realistic comparison? What issues need to be looked at?

Noise Filtering

Gaussian Noise

After Averaging

After Gaussian Smoothing

Noise Filtering

Salt & Pepper Noise

After Averaging

After Gaussian Smoothing

Stage 2: Differentiation

▶ Continuous form

$$f' = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

▶ Discrete form (put $\Delta x = 1$)

$$f' = \frac{df}{dx} = f(x) - f(x-1)$$

Discrete Derivatives

$$f(x)$$
 40 40 40 40 80 80 80 80 80 80 80 $f'(x)$ 0 0 0 0 0 0 0 0 0 0 0 $f'(x)$ $f'(x)$ 1 1 $f'(x) = f(x) \otimes g(x)$ origin

$$f'''(x) = 0 = 0 = 0 = 0 = 0 = 0 = 0$$

Effect of Noise (without filtering)

Recap: Filtering Masks

▶ Mean Filter

▶ Gaussian Filter

S	1	1	1
1/9 x	1	1	1
	1	1	1

$$g(x, y) = ce^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

5	21	35	21	5
21	94	155	94	21
35	155	255	155	35
21	94	155	94	21
5	21	35	21	5

Recap: Derivative Masks

-1	0	1
-1	0	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

-1 1

-1

Properties of Masks

- Filtering Masks
 - ► All values are +ve
 - Sum to I
 - Output on smooth region is unchanged
 - ▶ Blurs areas of high contrast
 - Larger mask -> more smoothing

- Derivative Masks
 - opposite signs
 - Sum to zero
 - Output on smooth region is zero
 - Gives high output in areas of high contrast
 - Larger mask -> more edges detected

Derivative Masks

Prewit Operator

-1	0	1
-1	0	1
-1	0	1

-1	-1	-1
0	0	0
1	1	1

Sobel Operator

-1	0	1
-2	0	2
-1	0	1

-1	-2	-1
0	0	0
1	2	1

▶ Robert's Operator

Application of 2-D Masks

- If f_x is derivative in x-direction, f_y is derivative in y-direction
- ▶ Gradient Magnitude

$$M = \sqrt{f_x^2 + f_y^2}$$

Gradient Direction

$$\theta = \arctan \frac{f_y}{f_x}$$

Detection Stage - Threshold

▶ Gradient Magnitude

$$M(x,y) = \sqrt{f_x^2(x,y) + f_y^2(x,y)}$$

Gradient Magnitude normalized b/w 0-100

$$N(x,y) = \frac{M(x,y)}{\max_{i=1,\dots,n,j=1,\dots,n} M(i,j)} \times 100.$$

Application of a threshold

$$E(x,y) = \begin{cases} 1 & \text{if } N(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$

T = 10

T = 20

T = 40

T = 80

What about Gradient Direction?

- Gradient Direction is always perpendicular to edge
- Direction of most change of gray levels
- ▶ Thick edges can be eliminated using gradient direction
- Weak edges also captured in this manner

Canny's Edge Detector

- Filtering + Derivative:
 - Uses first derivative Gaussian masks
- Detection:
 - Uses Non-Maxima Suppression
 - Uses Hysteresis Thresholding

First Derivative of Gaussian

- Expression?
- ▶ Effect?
- Filtering + Derivative

Canny Edge Operator

$$\Delta S = \Delta (G_{\sigma} * I) = \Delta G_{\sigma} * I$$

$$\Delta G_{\sigma} = \begin{bmatrix} \frac{\partial G_{\sigma}}{\partial x} & \frac{\partial G_{\sigma}}{\partial y} \end{bmatrix}^{T}$$

$$\Delta S = \left[\frac{\partial G_{\sigma}}{\partial x} * I \quad \frac{\partial G_{\sigma}}{\partial y} * I \right]^{T}$$

$$f_{x}(x, y) = f(x, y) * \left(\frac{-x}{\sigma^{2}} \right) e^{\frac{-(x^{2} + y^{2})}{2\sigma^{2}}}.$$

$$f_y(x,y) = f(x,y) * (\frac{-y}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

 f_{x}

 f_{y}

$$M = \sqrt{f_x^2 + f_y^2}$$

 $M \ge Threshold = 10$

Non-Maximum Suppression

Remove all points along the gradient direction that are not maximum points

Non-Maxima Suppression

$$M(x,y) = \left\{ \begin{array}{ll} M(x,y) & \text{if } M(x,y) > M(x\prime,y\prime) \text{ and} \\ & \text{if } M(x,y) > M(x\prime\prime,y\prime\prime) \\ 0 & \text{otherwise} \end{array} \right.$$

Where M(x',y') and M(x'',y'') are gradient magnitudes on both sides of edge at (x,y) in the gradient magnitude direction

Non-Maxima Supression

Quantization of Gradient Direction

$$\theta = \arctan \frac{f_y}{f_x}$$

Non-Maximum Suppression

Hysteresis Thresholding

- \blacktriangleright Two thresholds, T_H and T_L
- Apply non-maxima suppression to M (gradient magnitude)
- Scan image from left to right, top to bottom
- If M(x,y) is above T_H mark it as edge
- ▶ Recursively look at neighbors; if gradient magnitude is above T_L mark it as edge

Hysteresis Thresholding

Algorithm Summary

 Compute gradient of image f(x,y) by convolving with first derivative of Gaussian in x and y directions

$$f_x(x,y) = f(x,y) * (\frac{-x}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}.$$
$$f_y(x,y) = f(x,y) * (\frac{-y}{\sigma^2}) e^{\frac{-(x^2+y^2)}{2\sigma^2}}.$$

Algorithm Summary

- Compute gradient magnitude and direction at each pixel
- ▶ Perform non-maxima suppression
 - Find gradient direction at pixel
 - Quantize it in 8 directions {0, 45, 90, 135, ... 315}
 - Compare current value of M with two neighbors in appropriate direction
 - If maximum, keep it, otherwise make it zero

Algorithm Summary

▶ Perform Hysteresis thresholding

- Scan image from left to right, top to bottom
- If M(x,y) is above T_H mark it as edge
- ▶ Recursively look at neighbors; if gradient magnitude is above T_L mark it as edge

Choice of Sigma

Choice of Sigma

- ▶ sHalf is computed by finding the point on the curve where the Gaussian value drops below T
- \rightarrow exp(-x^2/(2*sigma^2) = T
- sHalf = round(sqrt(-log(T) * 2 * sigma^2))
- mask size is then 2*sHalf + I

Choice of Signma

Sigma	Size of Mask
0.5	3x3
1	5x5
2	9x9
3	13x13
4	19x19

Conv. Results

sigma = 0.5

sigma = 2

Gradient Magnitude Results

sigma = 0.5

sigma = 2

M when $\sigma = 2$

Non-maxima suppressed image

Gradient Direction Results

Th = 50TI = 10

Th = 100TI = 10

Th = 50TI = 40(incr. in Th only) (incr. in Tl only)

