Problem 1 Consider the function $f:[1,\infty)\to\mathbb{R}$

$$f(x) = \sqrt{x^4 + 1} - \sqrt{x^4 - 1}$$

- 1. (5 points) Show that f is differentiable and strictly decreasing for all x > 1.
- 2. (5 points) The MATLAB commands

```
>>x=single(linspace(10,100,201));
>>f=sqrt(x.^4+1)-sqrt(x.^4-1);
>>plot(x,f)
```

followed by a few purely cosmetic commands have generated the graph displayed in Figure 1. Which features of this graph have nothing to do with reality?

Figure 1: The naive application of MATLAB to the problem of computing f

- 3. (5 points) Why did the MATLAB commands fail to produce a reliable plot?
- 4. (5 points) Why is catastrophic cancellation not an issue for the interval

$$1 < x < \sqrt[4]{\frac{5}{3}}$$
.

5. (5 points) Find a numerically reliable way to evaluate f(x) for all $x \ge 1$ using MATLAB.

Problem 2 Consider the function $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = x^3 - x^2 - 4x + 1.$$

A very crude plot of the graph of g can be found in Figure 2.

Figure 2: A crude plot of the graph of g.

- 1. (5 points) Explain why you can be absolutely certain that g has exactly three distinct zeros even though we are not certain that the graph can be trusted.
- 2. (10 points) Newton's method has been applied to the solution of the equation

$$g(x) = 0 (1)$$

and has produced the results given below

n	x(n)	g(x(n))
0	2.1000000000000000e-01	1.251610000000001e-01
1	2.391907083051520e-01	-2.904027288519462e-04
2	2.391232785547966e-01	-1.284441442095385e-09
3	2.391232782565544e-01	1.110223024625157e-16
Δ	2 3912327825655456-01	0

Explain why you can not trust the computed values of $g(x_3)$ and $g(x_4)$.

3. (10 points) Find an interval of length at most 2×10^{-6} which is certain to contain the smallest positive root of g and determine the root with a relative error which is less than 10^{-6} .

Problem 3 Let $\phi: \mathbb{R} \to \mathbb{R}$ be any function which is infinitely often differentiable.

1. (5 points) Let $x \in \mathbb{R}$ and let h > 0. Show that $D_h(x)$ given by

$$D_h(x) = \frac{\phi(x+h) - 2\phi(x) + \phi(x-h)}{h^2}$$

satisfies

$$D_h(x) = \phi''(x) + O(h^2).$$

2. (10 points) A specific ϕ has been chosen, together with the point $x_0 = 1$. Then $D_h(x_0)$ has been computed for $h = 2^{-k}x_0$, where $k = 1, 2, \dots, 20$. The results can be found in the following table.

k	Dh	(Dh-D2h)	(D2h-D4h)/(Dh-D2h)
1	-2.629859253893		
2	-2.394779366424	2.350798874690e-01	
3	-2.314160132340	8.061923408471e-02	2.915928067761
4	-2.292594257216	2.156587512359e-02	3.738277886832
5	-2.287113989657	5.480267559562e-03	3.935186537738
6	-2.285738363786	1.375625870423e-03	3.983835777874
7	-2.285394109742	3.442540441938e-04	3.995961394281
8	-2.285308024504	8.608523785369e-05	3.998990451521
9	-2.285286501836	2.152266824851e-05	3.999747469028
10	-2.285281121149	5.380687071010e-06	3.999985125406
11	-2.285279775970	1.345179043710e-06	3.999978364344
12	-2.285279439762	3.362074494362e-07	4.001038781163
13	-2.285279363394	7.636845111847e-08	4.402439024390
14	-2.285279333591	2.980232238770e-08	2.562500000000
15	-2.285279273987	5.960464477539e-08	0.500000000000
16	-2.285279273987	0.00000000000e+00	Inf
17	-2.285280227661	-9.536743164062e-07	-0.00000000000
18	-2.285278320312	1.907348632812e-06	-0.50000000000
19	-2.285278320312	0.00000000000e+00	Inf
20	-2.285278320312	0.00000000000e+00	NaN

Determine the range of k for which we will be able to trust the corresponding error estimates.

3. (10 points) Find the value of $\phi''(1)$ with a relative error which is at most 10^{-6} .

Problem 4 Consider the problem of computing

$$f(\alpha) = \sqrt[5]{\alpha}$$

using a binary computer.

1. (5 points) Explain carefully why the problem is equivalent to solving the nonlinear equation

$$g(x) = 0$$
, where $g(x) = x^5 - \alpha$, (2)

and write down Newton's iteration for equation (2).

- 2. (5 points) Explain carefully why the problem is essentially solved if we can compute f(x) for all machine numbers $x \in [1, 32]$.
- 3. (15 points) It is clear that we will need an intelligent way of initializing Newton's iteration, i.e. a function

$$x_0 = x_0(\alpha)$$

defined for $\alpha \in [1,32]$. Assuming that we chosen a step size h>0 and have defined points

$$t_j = 1 + jh$$
, $j = 0, 1, 2, \dots, N$, $Nh = 31$,

and that we are willing to precompute the values

$$f(t_i), \quad j = 0, 1, 2, \dots, N,$$

then we can define x_0 by interpolating f on each subinterval $[t_j, t_{j+1}]$ using the corresponding first order polynomial. Now, what is the smallest value of N for which you will be able to ensure, that

$$|x_0(\alpha) - f(\alpha)| \le \frac{1}{50}$$

for all $\alpha \in [1, 32]$?