NIBCO CHEMICAL RESISTANCE GUIDE FOR VALVES & FITTINGS

INTRODUCTION

This chemical resistance guide has been compiled to assist the piping system designer in selecting chemical resistant materials. The information given is intended as a guide only. Many conditions can affect the material choices. Careful consideration must be given to temperature, pressure and chemical concentrations before a final material can be selected.

Thermoplastics' and elastomers' physical characteristics are more sensitive to temperature than metals. For this reason, a rating chart has been developed for each.

MATERIAL RATINGS FOR THERMOPLASTICS & ELASTOMERS

Temp. in °F = "A" rating, maximum temperature which is recommended, resistant under normal

conditions

B to Temp. in °F = Conditional resistance, consult factory

C = Not recommended

Blank = No data available

MATERIAL RATINGS FOR METALS

A = Recommended, resistant under normal

conditions

B = Conditional, consult factory

C = Not recommended

Blank = No data available

Temperature maximums for thermoplastics, elastomers and metals should always fall within published temp/pressure ratings for individual valves. THERMOPLASTICS ARE NOT RECOM-MENDED FOR COMPRESSED AIR OR GAS SERVICE.

This guide considers the resistance of the total valve assembly as well as the resistance of individual trim and fitting materials. The rating assigned to the valve body plus trim combinations is always that of the least resistant part. In the cases where the valve body is the least resistant, there may be conditions under which the rate of corrosion is slow enough and the mass of the body large enough to be usable for a period of time. Such use should always be determined by test before installation of the component in a piping system.

In the selection of a butterfly valve for use with a particular chemical, the liner, disc, and stem must be resistant. All three materials should carry a rating of "A." The body of a properly functioning butterfly valve is isolated from the chemicals being handled and need not carry the same rating.

THERMOPLASTICS & ELASTOMERS

ABS — Acrylonitrile Butadiene Styrene Class 4-2-2 conforming to ASTM D1788 is a time-proven material. The smooth inner surface and superior resistance to deposit formation makes ABS drain, waste, and vent material ideal for residential and commercial sanitary systems. The residential DWV system can be exposed in service to a wide temperature span. ABS-DWV has proven satisfactory for use from -40°F to 180°F. These temperature variations can occur due to ambient temperature or the discharge of hot

liquids into the system. ABS-DWV is very resistant to a wide variety of materials ranging from sewage to commercial household chemical formulations. ABS-DWV is joined by solvent cementing or threading and can easily be connected to steel, copper, or cast iron through the use of transition fittings.

CPVC — Chlorinated Polyvinyl Chloride Class 23447-B, formerly designated Type IV, Grade 1 conforming to ASTM D-1784, has physical properties at 73°F similar to those of PVC, and its chemical resistance is similar to or generally better than that of PVC. CPVC, with a design stress of 2000 psi and maximum service temperature of 210°F, has proven to be an excellent material for hot corrosive liquids, hot or cold water distribution, and similar applications above the temperature range of PVC. CPVC is joined by solvent cementing, threading or flanging.

PP (Polypropylene) — Type 1 Polypropylene is a polyolefin, which is lightweight and generally high in chemical resistance. Although Type 1 polypropylene conforming to ASTM D-2146 is slightly lower in physical properties compared to PVC, it is chemically resistant to organic solvents as well as acids and alkalies. Generally, polypropylene should not be used in contact with strong oxidizing acids, chlorinated hydrocarbons, and aromatics. With a design stress of 1000 psi at 73° F, polypropylene has gained wide acceptance where its resistance to sulfur-bearing compounds is particularly useful in salt water disposal lines, crude oil piping, and low pressure gas gathering systems. Polypropylene has also proved to be an excellent material for laboratory and industrial drainage where mixtures of acids, bases, and solvents are involved. Polypropylene is joined by the thermo-seal fusion process, threading or flanging. At 180°F, or when threaded, PP should be used for drainage only at a pressure not exceeding 20 psi.

PVC — Polyvinyl Chloride Class 12454-B, formerly designated Type 1, Grade 1. PVC is the most frequently specified of all thermoplastic materials. It has been used successfully for over 30 years in such areas as chemical processing, industrial plating, chilled water distribution, deionized water lines, chemical drainage, and irrigation systems. PVC is characterized by high physical properties and resistance to corrosion and chemical attack by acids, alkalies, salt solutions, and many other chemicals. It is attacked, however, by polar solvents such as ketones, some chlorinated hydrocarbons and aromatics. The maximum service temperature of PVC is 140°F. With a design stress of 2000 psi, PVC has the highest long-term hydrostatic strength at 73°F of any of the major thermoplastics being used for piping systems. PVC is joined by solvent cementing, threading, or flanging.

PVDF (Polyvinylidene Fluoride) — KEM-TEMP (KYNAR®) is a strong, tough and abrasion-resistant fluorocarbon material. It resists distortion and retains most of its strength to 280°F. It is chemically resistant to most acids, bases, and organic solvents and is ideally suited for handling wet or dry chlorine, bromine and other halogens. No other solid thermoplastic piping components can approach the combination of strength, chemical resistance and working temperatures of PVDF. PVDF is joined by the thermoseal fusion process, threading or flanging.

EPDM — EPDM is a terpolymer elastomer made from ethylenepropylene diene monomer. EPDM has good abrasion and tear resistance and offers excellent chemical resistance to a variety of acids and alkalines. It is susceptible to attack by oils and is not recommended for applications involving petroleum oils, strong

acids, or strong alkalines. It has exceptionally good weather aging and ozone resistance. It is fairly good with ketones and alcohols and has an excellent temperature range from -20°F to 250°F.

HYPALON® (CSM) — Hypalon has very good resistance to oxidation, ozone, and good flame resistance. It is similar to neoprene except with improved acid resistance where it will resist such oxidizing acids as nitric, hydrofluoric, and sulfuric acid. Abrasion resistance of Hypalon is excellent, about the equivalent of nitriles. Oil and solvent resistance is somewhat between that of neoprene and nitrile. Salts have little if any effect on Hypalon. Hypalon is not recommended for exposure to concentrated oxidizing acids, esters, ketones, chlorinated, aromatic and nitro hydrocarbons. Hypalon has a normal temperature range of -20°F to 200°F.

NEOPRENE (CR) — Neoprenes were one of the first synthetic rubbers developed. Neoprene is an all-purpose polymer with many desirable characteristics and features high resiliency with low compression set, flame resistance, and is animal and vegetable oil resistant. Neoprene is principally recommended for food and beverage service. Generally, neoprene is not affected by moderate chemicals, fats, greases, and many oils and solvents. Neoprene is attacked by strong oxidizing acids, most chlorinated solvents, esters, ketones, aromatic hydrocarbons, and hydraulic fluids. Neoprene has a moderate temperature range of -20°F to 160°F.

NITRILE (NBR) — (BUNA-N) is a general purpose oil-resistant polymer known as nitrile rubber. Nitrile is a copolymer of butadiene and acrylonitrile and has a moderate temperature range of -20°F to 180°F. Nitrile has good solvent, oil, water, and hydraulic fluid resistance. It displays good compression set, abrasion resistance and tensile strength. Nitrile should not be used in highly polar solvents such as acetone and methyl ethyl ketone, nor should it be used in chlorinated hydrocarbons, ozone or nitro hydrocarbons.

FLUOROCARBON (FKM) (VITON®) (FLUOREL®) — Fluorocarbon elastomers are inherently compatible with a broad spectrum of chemicals. Because of this extensive chemical compatibility, which spans considerable concentration and temperature ranges, fluorocarbon elastomers have gained wide acceptance as a material of construction for butterfly valve o-rings and seats. Fluorocarbon elastomers can be used in most applications involving mineral acids, salt solutions, chlorinated hydrocarbons, and petroleum oils. They are particularly good in hydrocarbon service. Fluorocarbon elastomers have one of the broadest temperature ranges of any of the elastomers, -20°F to 300°F; however, they are not suited for steam service.

TEFLON® (PTFE) — Polytetrafluoroethylene has outstanding resistance to chemical attack by most chemicals and solvents. PTFE has a temperature rating of -20°F to 400°F in valve applications. PTFE, a self lubricating compound, is used as a seat material in ball valves.

PEEK (Polyetheretherketone) — PEEK is a high-performance engineered thermoplastic which can be used above the useful range of PTFE. PEEK has physical characteristics approaching some metals (approximately 30K tensile) and has excellent resistance to a wide range of organic and inorganic chemicals. PEEK can be used up to 550°F and is an excellent choice for heat transfer fluids, steam and hydrocarbon services.

GRAPHITE — Graphite is the packing and seal material of choice for most fire-rated products, primarily because of its high temperature rating of approximately 2000°F. Graphite has excellent chemical resistance, can retain compressibility at all temperatures and

has a low coefficient of friction. Graphite is not recommended for use in strong oxidizing atmospheres.

FLUOREL is a registered trademark of the 3M Company HYPALON is a registered trademark of the DuPont Company KYNAR is a registered trademark of Elf Atochem North America, Inc. TEFLON is a registered trademark of the DuPont Company. VITON is a registered trademark of the DuPont Company.

METALS USED IN VALVES & FITTINGS

ALUMINUM — A non-ferrous metal, very lightweight, approximately one-third as much as steel. Aluminum exhibits excellent atmospheric corrosion resistance, but can be very reactive with other metals. In valves, aluminum is mainly used as an exterior trim component such as a handwheel or an identification tag.

COPPER — Among the most important properties of wrot copper materials are their thermal and electrical conductivity, corrosion resistance, wear resistance, and ductility. Wrot copper performs well in high temperature applications and is easily joined by soldering or brazing. Wrot copper is exclusively used for fittings.

BRONZE — One of the first alloys developed in the bronze age is generally accepted as the industry standard for pressure-rated bronze valves and fittings. Bronze has a higher strength than pure copper, is easily cast, has improved machinability, and is very easily joined by soldering or brazing. Bronze is very resistant to pitting corrosion, with general resistance to most chemicals less than that of pure copper.

SILICONE BRONZE — Has the ductility of copper but much more strength. The corrosion resistance of silicon bronze is equal to or greater than that of copper. Commonly used as stem material in pressure-rated valves, silicon bronze has greater resistance to stress corrosion cracking than common brasses.

ALUMINUM BRONZE — The most widely accepted disc material used in butterfly valves, aluminum bronze is heat treatable and has the strength of steel. Formation of an aluminum oxide layer on exposed surfaces makes this metal very corrosion resistant. Not recommended for high pH wet systems.

BRASS — Generally good corrosion resistance. Susceptible to de-zincification in specific applications; excellent machinability. Primary uses for wrot brass are for ball valve stems and balls, and iron valve stems. A forging grade of brass is used in ball valve bodies and end pieces.

GRAY IRON — An alloy of iron, carbon and silicon; easily cast; good pressure tightness in the as-cast condition. Gray iron has excellent dampening properties and is easily machined. It is standard material for bodies and bonnets of Class 125 and 250 iron body valves. Gray iron has corrosion resistance that is better than steel in certain environments.

DUCTILE IRON — Has composition similar to gray iron. Special treatment modifies metallurgical structure, which yields higher mechanical properties; some grades are heat-treated to improve ductility. Ductile iron has the strength properties of steel using similar casting techniques to that of gray iron.

CARBON STEEL — Very good mechanical properties; good resistance to stress corrosion and sulfides. Carbon steel has high and low temperature strength, is very tough and has excellent fatigue strength. Mainly used in gate, globe, and check valves for applications up to 850°F, and in one-, two-, and three-piece ball valves.

3% NICKEL IRON — Improved corrosion resistance over gray and ductile iron. Higher temperature corrosion resistance and mechanical properties. Very resistant to oxidizing atmospheres.

NICKEL-PLATED DUCTILE IRON — Nickel coatings have received wide acceptance for use in chemical processing. These coatings have very high tensile strength, 50 to 225 ksi. To some extent, the hardness of a material is indicative of its resistance to abrasion and wear characteristics. Nickel plating is widely specified as a disc coating for butterfly valves.

400 SERIES STAINLESS STEEL — An alloy of iron, carbon, and chromium. This stainless is normally magnetic due to its martensitic structure and iron content. 400 series stainless steel is resistant to high temperature oxidation and has improved physical and mechanical properties over carbon steel. Most 400 series stainless steels are heat-treatable. The most common applications in valves are for stem material in butterfly valves and backseat bushings and wedges in cast steel valves.

316 STAINLESS STEEL — An alloy of iron, carbon, nickel, and chromium. A nonmagnetic stainless steel with more ductility than 400SS. Austinetic in structure, 316 stainless steel has very good corrosion resistance to a wide range of environments, is not susceptible to stress corrosion cracking and is not affected by heat treatment. Most common uses in valves are stem, body and ball materials.

17-4 PH STAINLESS STEEL® — Is a martensitic precipitation/ age hardening stainless steel, offering high strength and hardness. 17-4 PH withstands corrosive attack better than any of the 400 series stainless steels, and in most conditions its corrosion resistance closely approaches that of 300 series stainless steel. 17-4 PH is primarily used as a stem material for butterfly and ball valves.

ASTM A-352-Grade LCB Cast

ALLOY 20Cb-3® — This alloy has higher amounts of nickel and chromium than 300 series stainless steel and with the addition of columbium, this alloy retards stress corrosion cracking and has improved resistance to sulfuric acid. Alloy 20 finds wide use in all phases of chemical processing. Commonly used as interior trim on butterfly valves.

MONEL® — Is a nickel-copper alloy used primarily as interior trim on butterfly and ball valves. One of the most specified materials for corrosion resistance to sea and salt water. Monel is also very resistant to strong caustic solutions.

STELLITE® — Cobalt base alloy, one of the best all-purpose hard facing alloys. Very resistant to heat, abrasion, corrosion, impact, galling, oxidation, thermal shock and erosion. Stellite takes a high polish and is used in steel valve seat rings. Normally applied with transfer plasma-arc; Stellite hardness is not affected by heat treatment.

HASTELLOY C® — A high nickel-chromium molybdenum alloy, which has outstanding resistance to a wide variety of chemical process environments, including strong oxidizers such as wet chlorine, chlorine gas, and ferric chloride. Hastelloy C is also resistant to nitric, hydrochloric, and sulfuric acids at moderate temperatures.

17-4 PH STAINLESS STEEL is a registered trademark of Armco Steel Company STELLITE is a registered trademark of the Cabott Company ALLOY 20Cb-3 is a registered trademark of Carpenter Technology HASTELLOY C is a registered trademark of Haynes International MONEL is a registered trademark of International Nickel

MATERIAL DESIGNATIONS & ASTM STANDARDS FOR LISTED VALVE METALS

Aluminum	ASTM B-85 Die Cast	3% Ni-Iron	ASTM A-126-Class B Modified
Copper	ASTM B-75 Wrot & ASTM B-88	Ni-Plated Ductile Iron	ASTM B-320 Plating
Bronze	ASTM B-61 Cast ASTM B-62 Cast ASTM B-584, Alloy 844	400 Series Stainless Steel	ASTM B-582 Type 416 Wrot ASTM A-217-Grade CA-15 ASTM A-276 Type 410 Wrot
Silicon Bronze	ASTM B-98 Alloy B ASTM B-371 Wrot	316 Stainless	ASTM 276 Type 316 ASTM A-351-Grade CF-8M
Aluminum Bronze	ASTM B-148 Cast	17-4 PH Stainless Steel	ASTM A-564 Type 630
Brass	ASTM B-150 Rod ASTM B-16 Wrot	Alloy 20	ASTM A-351-Grade CN-7M ASTM B-473 20Cb-3
	ASTM B-124 Forged	Monel	ASTM B-164
Gray Iron	ASTM A-126 Class B		ASTM 494 Grade M-35-1
Ductile Iron	ASTM A-395 Heat Treated	Stellite	AWS 5.13 Hard Face
	ASTM A-536 As Cast	Hastelloy C	ASTM B-574
Carbon Steel	ASTM A-216-Grade WCB Cast ASTM A-105 Forged	,	ASTM B-494 Grade CW-12 MW

CHEMICALC	Z	MA		STIC:	s at Atur	E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	dd	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Acetaldehyde CH₃CHO	Conc.			120	С	С	350	200	С	С	С	С	275	Α	С	С	С	С	В	В	А		В	В	А		А	А	А	А	В	С
Acetamide CH ₃ CONH ₂			73		75	350	200	С	С	С	С	В	550		А		A		А	А			А	A	А	А	A	A	А	А	В	
Acetic Acid CH ₃ COOH	25%		С	180	73	200	350	180	С	150	С	С	550	А	С	С	С	С	С	С	С	С	С	А	А	А	A	A		A	С	С
Acetic Acid CH ₃ COOH	50%		С	140	73	200	350	140	С	73	С	С	550	Α	С	С	С	С	С	С	С	С	С	А	А	А	А	А		А	С	С
Acetic Acid CH ₃ COOH	85%		С	100	73	150	350	100	С	73	С	С	550	Α	С	С	С	С	С	С	С	С	С	Α	А	А	А	А		А	С	С
Acetic Acid CH ₃ COO	Glacia		С	100	С	100	350	B to 100	С	С	С	С	550	Α	С	С	С	С	С	С	С	С	С	С	A	В	А	А		А	С	С
Acetic Anhydride (CH ₃ CO) ₂ O					С	С	350	С	70	200	B to 70	С	275	A	С	С	С	С	С	С	С	С	С	С	В	В	В	В		А	В	С
Acetone CH ₃ COCH ₃			С	73	С	С	350	130	С	B to 70	С	С	275	A	А	А	A	А	A	A	A	А	A	А	A	А	А	А	Α	А	Α	А
Acetonitrile CH ₃ CN			С		С	150		С	С		70	С	275												A		А			A		
Acetophenone C ₆ H ₅ COCH ₃				120		С	350	140	С		С	С	275		С	С	С	С	С	С	С	С	С	С	С						С	С
Acetyl Chloride CH ₃ COCI		С				125	200	С	С	С	С	185	275		А	А	А	Α	С	С	А		С		А	А	А	А			С	А
Acetylene HC = CH	Gas 100%	70		73	140	250	250	200	140	70	70	200	275		С	С	С	С	А	А	А	А	А		А	А	Α	Α			Α	С
Acrylic Acid H ₂ C:CHCOOH	97%				С	150	200							Α																		
Acrylonitrile H ₂ C:CHCN			С		С	73	350	С	С	140	С	С	275	Α	А	А	А	Α	А	Α	Α	Α	А	Α	А	А	А		А	В		
Adipic Acid COOH(CH ₂) ₄ COOH	Sat'd.		185		140	150	350	200	180	140	160	250	275						С	С	В		С		B to 200		В	B to 200		А	В	А
Allyl Alcohol CH ₂ = CHCH2OH	96%	С	С	140	С	125	250	70	160	70	B to 70	100	550		А	А	А	Α	А	А	А	А	А	А	А	А	А	А	А	А		
Allyl Chloride CH2CHCH2CI					С	212	350	С	С			70	275								С										С	
Aluminum Acetate Al(C ₂ H ₄ O ₂) ₃	Sat'd.					275	350	200	B to 70	С	С	С			С		С			С					А		А	В			С	
Aluminum Ammonium Sulfate (Alum) AINH ₄ (SO ₄) ₂ 12H ₂ O	Sat'd.		180	150	140	275	250	200	140			200		A	В	В	В	В			С			В	А		A	A			A	В
Aluminum Chloride Aqueous AICI ₃	Sat'd.		185	180	140	280	250	210	70	200	160	250	275	А	С	С	С	С	С	С	С	С	С	С	А	С	А	А			A	С
Aluminum Fluoride Anhydrous AIF ₃	Sat'd.				73	280	250	210	180	200	160	250		А	С	С	С	С	С	С	С		С	С	В	С	В	А				С
Aluminum Hydroxide AlO ₃ • ₃ H ₂ O	Sat'd.		185	140	140	280	250	210	180		100	200			С	С	С	С	В	В	С		В	В	А	А	А	В				С

CHEMICALS	N	MAX		STIC:		E°F				IL MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	Ь	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Aluminum Nitrate Al(NO ₃) ₃ • ₉ H ₂ O	Sat'd.		185	180	140	280	250	210	180	100	100	100		Α	С	С	С	С	С	С	С	С	С		А	Α	А	С			С	С
Aluminum Oxychloride					140	275						С																				
Aluminum Potassium Sulfate (Alum) AIK(SO ₄)•12H ₂ O	Sat'd.		180	150	140	280	400	200	180	200	160	200		А	В	В	В	В			С			В	А		A	A			A	В
Aluminum Sulfate (Alum) Al ₂ (SO ₄) ₃	Sat'd.		185	180	140	280	250	210	200	160	140	185	275	А	С	С	С	С	С	С	С		С	С		В				A	С	
Ammonia, Aqueous													Se	e Am	moni	um H	ydrox	ide														
Ammonia Gas NH ₃	100%		185	150	140	С	400	140	140	140	140	С	550	А	В			С	A		А				A	A	А	А		А	В	В
Ammonia Liquid NH ₃	100%		С	73	С	С	400	140	B to 70	70	70	С	275	Α	С	С	С	С			А			А	А	A	A	А		A	A	С
Ammonium Acetate $NH_4(C_2H_3O_2)$	Sat'd.			73	140	175	400	140		140	140				С	С	С	С							В			В				
Ammonium Bifluoride NH ₄ HF ₂	Sat'd.		185		140	150	400	200	180			200		А	С			С	С	С	С	С	С	С	В	В	В	В				B to 70
Ammonium Bisulfide (NH ₄)HS					140	280	400		180																							
Ammonium Carbonate CH ₂ O ₃ •2H ₃ N	Sat'd.			180	140	280	400	210		140	140	250	275		С			С			A to 140	С		В	В	В	В	В		A	B to 212	B to 70
Ammonium Chloride NH ₄ Cl	Sat'd.		185	180	140	280	400	210	180	200	160	250	275	А	С			С	С	С	С	С	С	С	В	С	В	В		В	В	
Ammonium Dichromate (NH ₄) ₂ Cr ₂ O ₇					73	250		70	100	100	100			А																		
Ammonium Fluoride NH ₄ F	10%				140	280	400	210	100	200	100			А	С			С			С				С						С	С
Ammonium Fluoride NH ₄ F	25%				73	280	400	140						А	С			С			С				С						С	С
Ammonium Hydroxide NH ₄ OH	10%		С	180	140	225	400	210	B to 70	200	150	70	550	А	С	С		С			С			В	А	А	А	В		Α	В	С
Ammonia Hydroxide NH ₄ OH	Sat'd.	С	С	180	100	225	400	175	С	200	150	С	550	А	С	С					С			B to 70	A to 140			В		В	B to 120	С
Ammonium Nitrate NH ₄ NO ₃	Sat'd.	175	185	180	140	280	400	250	180	200	160	100		А	С	С		С								А	А	Α		Α		С
Ammonium Persulphate $(NH_4)_2S_2O_8$			73	150	140	73	200	210		70	70				С	С	С	С	С	С	С	С	С	В	A		А	С		A	С	С
Ammonium Phosphate (Monobasic) NH ₃ H ₃ PO ₄	All				140	280	400	210	100	140	140	185		А	С	С	С	С	В	В	С		В	А	А	А	А	В		A	В	С
Ammonium Sulfate (NH ₄) ₂ SO ₄			185	180	140	280	400	210	180	200	160	200		Α	С	С	С	С	В	В	С	В	В	В	В	В	А	В		А	С	С
Ammonium Sulfide (NH ₄) ₂ S	Dilute					125	350	210	140	200	160				С	С	С	С	С	С	С		С		В		В	В			Α	С
Ammonium Thiocyanate NH ₄ SCN	50-60%				140	275			70	70	70	185			С	С	С	С	С	С	С		С		Α	А	Α	В		А	В	С

CHEMICALS	Z	MAX		STIC:	s at Aturi	E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	М	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Amyl Acetate CH ₃ COOC ₅ H ₁₁				С	С	125	100	B to 70	С	С	С	С	550		В	В	В	В	В	В	В	А	В	Α	А	А	Α	Α	А	А	А	
Amyl Alcohol C ₅ H ₁₁ OH			73	180	100	280	400	210	B to 140	200	140	185	550	Α	А	А	А	Α	В	В	В		В	Α	А	А	А	А				A
n-Amyl Chloride C ₅ H ₁₁ Cl			С	С	С	280	400	С	С	С	С	200			А	A	A	A	A	A	A	А	A	Α	A	A	A	A	A	A	С	
Aniline C ₆ H ₅ NH ₂			С	180	С	120	200	140	С	70	С	С	275	Α	С	С	С	С	В	В	С	В	В	Α	А	А	A	В		A	С	С
Aniline Chlorohydrate					С																									А		
Aniline Hydrocloride C ₆ H ₅ NH ₂ •HCI	Sat'd.		С		С	75				С	С	185		С	С	С	С	С	С	С	С	С	С	С	С	С		А				
Anthraquinone C ₁₄ H ₈ O ₂					140							200							С	С	С											
Anthraquinone Sulfonic Acid C ₁₄ H ₇ O ₂ •SO ₃ H•3H ₂ O					140							200																				
Antimony Trichloride SbCI ₃	Sat'd.			180	140	73		140	140	140	140	185	275	Α	С	С	С	С	С	С	С	С	С	С	С	С	A	Α			С	
Aqua Regia (Nitrohydrochloric Acid) CIHHNO ₃		С	73	С	С	73	200	С	С	B to 70	С	100	С	С	С	С	С	С	С	С	С	С	С		В		В			В	С	
Argon Ar	Dry						350	200			100	200	550		А		A		A		A				А	А		Α	А			А
Arsenic Acid H ₃ ASO ₄ •Z\XH ₂ O	80%		185		140	280	400	185	160	200	180	200		Α	С	С	С	С	С	С	С		С	В	А	В	А	А		А	С	
Aryl Sulfonic Acid C ₆ H ₅ SO ₃ H					140			140				185																				
Asphalt			С		С	250	350	С	B to 70	С	С	180			А	А	А	Α	А	А	Α	Α	А	А	А	Α	Α	В		А	С	А
Barium Carbonate BaCO ₃	Sat'd.				140	280	400	250	180	200	160	250			А	А	А	А	В	В	В	В	В	А	А	А	A	А				
Barium Chloride BaC ₁₂ • ₂ H ₂ O	Sat'd.	180	180	180	140	280	400	250	180	200	160	300	275	А	Α	Α	А	Α	В	В	С	В	В	В	А		А	А				А
Barium Hydroxide Ba(OH) ₂	Sat'd.	180	180	180	140	280	400	180	140	150	150	250			С	С	С	С	В	В	С		В	Α	А	А	А	А		А		
Barium Nitrate Ba(NO ₃) ₂	Sat'd.		180	70	73	275	250	200	180	200	160	300		Α	С	С	С	С	А	А	А		А		А		А					
Barium Sulfate BaSO ₄	Sat'd.	150	185	С	140	280	400	200	100	200	160	300	550	Α	В	В	В	В	В	В	А		В	А	А	А	Α	А				
Barium Sulfide BaS	Sat'd.	150	180	180	140	280	400	140	С	200	160	300	275		С	С	С	С	В	В	С		В	Α	А	А	Α	Α				С
Beer		С		180	140	200	300	200	70	200	140	200			Α	Α	Α	Α	С	С	С		С	Α	А	Α	Α	Α			Α	Α
Beet Sugar Liquors				180	140	225		210	100	200	160	185					Α		В	В	В				Α	Α	Α	Α			Α	
Benzaldehyde C₀H₅CHO	10%	С		73	73	70		140	С	С	С	С	275	Α	Α	Α	А	Α	С	С	В		С	Α	Α	А	Α	В		А		А
Benzene C ₆ H ₆		С	С	С	С	170	250	С	С	С	С	150	275	Α	Α	Α	А	Α	А	А	А	А	А	Α	А	А	А	Α	А	А		А

CHEMICALS	NC	MAX	PLA X.TEN	STICS IPER/		E°F				L MA													MET	ALS									
AND FORMULA	CONCENTRATION	ABS	CPVC	РР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Benzene Sulfonic Acid C ₆ HSO ₃ H	10%			180	140	125		С	С	180	100	185	550		В	В	В	В	С	С	С		С	В	В	В	В	Α	Α				
Benzoic Acid C ₆ H ₅ COOH	All		73	140	230	350	С	С	200	160	200		С	550	С	С	С	С	С	С		С	А	Α	А	Α	Α	А		A			
Benzyl Alcohol C ₆ H ₅ CH ₂ OH		С	С	120	С	250	400	С	С	С	С	140	275		Α	А	А	Α	В	В	В		В	А	А	Α	Α	Α	А	А			А
Bismuth Carbonate (BiO) ₂ CO ₃					140				70	100	70																						
Black Liquor	Sat'd.		185		140	175	225	180	180	70	70	200			С	С	С	С	В	В	В		В	В	Α	Α	В	Α	В				
Bleach									S	See So	odium	1 Нур	ochlo	rite o	r Calc	ium l	Нурос	hlori	te														
Blood							200		70	70	70	70			В		В		С	С			В		Α	Α	Α	Α	Α		Α		
Borax NaB ₄ O ₇ • ₁₀ H ₂ O	Sat'd.			180	140	280		210	140	200	140	185			А	Α	А	Α	А	А	В	Α	А	Α	А	Α	Α	Α	Α	Α	А		
Boric Acid H ₃ BO ₃	Sat'd.		185	180	140	280		210	140	200	140	185	275	А	В	В	В	В	С	С	В		С	В	А	Α	В	А	Α		A		
Brake Fluid							300	140	С			С	275		В				В	В	Α		В	А	Α	Α	Α	Α	Α				
Brine	Sat'd.		185	180	140	280	400	250	180	180	160	300			А	Α	Α		С	С	С	В	С	В	Α	Α	В	Α	Α		Α		
Bromic Acid HBrO ₃			185		140	200		70				70			С	С	С	С														С	C
Bromine Br ₂	Liquid	С	С	С	С	150	300	С	С	70	С	70	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С		А	С	С
Bromine Br ₂	Gas	С	С	С	С	150	200	С	С	70	С	70	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Α	Α		А	С	С
Bromine Water	Cold Sat'd.	С	70	С	70	212	300	С	С	70	С	185	С	С	С	С	С	С	С	С	С		С									С	C
Bromobenzene C _o H ₇ Br		С	С	С	С	150	120	С	С	С	С	150																					
Bromotoluene C ₇ H ₇ Br		С	С	С	С	175	70	С	С	С	С	С																					
Butadiene H ₂ C:CHHC:CH ₂	50%		73	С	140	250	С	С	С	B to 140	140	185	550		А	A	А	A	А	A	A	А	A	A	A	Α	Α	А	A	A	A	Α	A
Butane C ₄ H ₁₀	50%			73	140	250	350	С	70	200	70	185	550		Α	Α	А	Α	А	A	A	Α	А	Α	А	Α	Α	Α	Α	Α	A	Α	A
Butyl Acetate CH ₃ COOCH(CH ₃)C ₂ H ₅)			73	С	С	73	175	140	С	С	С	С	550		В	В	В	В	В	В	В		В	А	A	Α	Α	Α	Α		Α		
Butyl Alcohol CH ₃ (CH ₂) ₂ CH ₂ OH		С	100	100	100	225	300	200	B to 140	140	140	75	550	А	В	В	В			В			A	Α	A	Α	Α	А					В
Butyl Cellosolve HOCH ₂ CH ₂ OC ₄ H ₉					73		200	140	С	100		С		Α	Α	А	А	Α	А	А			А	А	А	Α	Α	Α	А	А			
n-Butyl Chloride C ₄ H ₉ CI						280	400	С	С	С	С	100			В	В	В	В	В	В	В		В	В	В	В	В	В	В				
Butylene (C) CH ₃ CH:CHCH ₃	Liquid				140	280	400	С	70	C to 100	С	100			А	А	А	A			А			А	A	Α	Α	Α	А	А	А		
Butyl Phenol C ₄ H ₉ C ₆ H ₄ OH					73	230				B to 70	С																						
Butyl Phthalate				180								70	275																				
Butyl Stearate CH ₃ (CH ₂) ₁₆ CO ₂ (CH ₂) ₃ CH ₃					73	100	250	С	100		С	185			Α	Α	А	Α	В	В			В	Α	А	А	Α	А					

CHEMICALS	N	MAX	PLA X. TEN	STIC:		E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	99	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Butynediol HOCH ₂ C:CCH ₂ OH					73					100	B to 70																					
Butyric Acid CH ₃ CH ₂ CH ₂ COOH				180	73	230	300	140		С	С	70	550		A	A	A	А	С	С	С	С	С	В	A	А	Α	А				
Cadmium Cyanide Cd(CN) ₂			185		140						70																					
Calcium Bisulfide Ca(HS) ₂ • ₆ H ₂ O					С	280	200		100	С		185													А		A					
Calcium Bisulfite Ca(HSO ₃) ₂			185	180	140	280	350	С	70	200	70	185			С	С	С	С	С	С	С		С	В	А		Α	С		А		
Calcium Carbonate CaCO ₃			185	180	140	280	350	210	100	70	70	300	275		С	С	С	С	В	В	В		В	A	А	А	A	А		А		A
Calcium Chlorate Ca(CIO ₃)• ₂ H ₂ O					140	280	350	140	70	70	70	185		140	В	В	В	В	В	В	В	В	В	В	А		A	А				С
Calcium Chloride CaCl ₂		100	185	180	140	280	350	210	100	200	160	250	550	А	В	В	В	В	А	А	С		С	В	А	В	A	А	В	А		В
Calcium Hydroxide Ca(OH) ₂			185	180	140	280	250	210	140	200	70	250	275		С	С	С	С	С	С	С		С	A	А	А	A	А		А	С	С
Calcium Hypochlorite Ca(OCI) ₂	30%		185	150	140	200	200	70	С	140		185	275	90	С	С	С	С	С	С	С		С	В	В	В	В	С		В	С	С
Calcium Nitrate Ca(NO ₃) ₂				180	140	280	200	210	180	100	100	200		С	В	В	В	В	В	В			В		А		A	A				В
Calcium Oxide CaO					140	250		210	180	200	160								А	А	В				А	Α	A					
Calcium Sulfate CaSO ₄		100			140	280	200	210	180	200	160	200		Α	A	В	В	В	А	А	В	А	A	Α	A	А	A	A	А	А		А
Camphor C ₁₀ H ₁₆ O		С			73		350	210	100	70	С	250	550		В	В	В	В	В	В	В		В	Α	A	А	А	В				
Cane Sugar C ₁₂ H ₂₂ O ₁₁				73	140	275	400	250	180	100	160	200			А	А	А	А	А	А	А	А	A	Α	A	А	А	Α	А	А		
Caprylic Acid CH ₃ (CH ₂)COOH						175	350												А	А	В		A		A		А					
Carbitol					73		200	70	70	70	70	100			В	В	В	В	В	В	В		В		В		В	В				
Carbon Dioxide	Dry 100%	100	185	150	140	20	400	200	180	200	160	200	550	A	A	A	A	A	А	А	А	A	A	A	A	А	A	A	A		А	A
Carbon Dioxide	Wet	100	185	150	140	280	400	210	180	200	160	200	550	A	A	A	A	A	В	В	В	В	В	Α	А	А	A	A	A	А	A	A
Carbon Disulfide CS ₂				С	С	73	200	С	B to 70	С	С	70	275	A	В	В	В	В	А	А	A		A	A	А		A	А		А		С
Carbon Monoxide CO	Gas		185		140	275	400	250	70	200	70	250	550	А	A	A	A	А	А	А	В		A	Α	А	Α	A	A		А	А	
Carbon Tetrachloride CI ₄		С	73	С	73	280	350	С	С	С	С	185	550	A	A	A	A	А	С	С	А		С	Α	A	А	A	A		А		В
Carbonic Acid H ₂ CO ₃	Sat'd		185		140	280	350	210	180	70	70	200	275	А	С	С	С	С	В	В	В	В	В	Α	А	А	A	А	В			
Castor Oil			185		140	280	350	140	140	150	100		А	550	Α	Α	Α	Α	A	A	Α	Α	Α	А	Α	Α	Α	Α	Α	А	Α	Α
Caustic Potash														See Po	otassiu	ım Hyo	droxide	9														
Caustic Soda										ı		ı		See S	odium	Hydro	oxide					ı				ı			ı	,	,	
Cellosolve C ₄ H ₁₀ O ₂					73	280	200	140	С	70		С		A	A	A	А	А	А	А	А		A		A		A		A			

OUEMION C	Z	MAX		STICS		E °F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Cellosolve Acetate CH ₃ COOCH ₂ CH ₂ OC ₂ H ₅					73		300	140	С	С	С	С			В		В			В					В		В			А	В	
Chloral Hydrate CCI ₃ CH(OH) ₂	All				140	75				70	B to 70	С	550																			
Chloramine NH ₂ CI	Dilute				73					70	70				В	В	В	В	С	С	С				В		В	В				
Chloric Acid HCIO ₃ • ₇ H ₂ O	10%				140		140			200	140	140			С	С	С	С	С	С	С	С	С	С	В	С	А	С				
Chloric Acid HCIO ₃ • ₇ H ₂ O	20%				140		140					100			С	С	С	С	С	С	С	С	С	С	С	С	А	С				
Chlorine Gas (Dry) (Moisture Content)	<150 PPM		С	С	73	200	400	С	С	С	С	185	С	А	С	С	С	С	В	A*	A*	В	В	В	A		А	А		А	С	С
Chlorine Gas (Wet) (Moisture Content)	>150 PPM	С	С	С	С	200	400	С	С		С	185	С		С	С	С	С	С	С	С	С	С	С	С	С	С	А		А	С	С
Chlorine	Liquid	С	С	С	С	200		С		B to 70	С	B to 100	С		В	В		В	С	С	С		С	С	С	С						
Chlorinated Water	<3500 ppm		73		140	230	400	B to 100	С	B to 70	C	185	С	73	В	В	С	С			С		С	В	A	A	А	А		А	С	С
Chlorinated Water	>3500 ppm		С		С	230	400	С	С	B to 70	С	185	С	73	С	С	С	С			С			С	А	В	А	В		А	С	С
Chloroacetic Acid CH ₂ CICOOH	50%				140	С	200	70	С	200	С	С	С		С	С	С	С	С	С	С		С	С	С	С	В	В			С	С
Chloroacetyl Chloride CICH ₂ COCI					73	125																										
Chlorobenzene C₀H₅CI	Dry			73	С	170	200	С	С	С	С	70	С	А	А	Α	А	Α	С	С	В		С	Α	A	Α	А	Α		А		
Chlorobenzyl Chloride CIC ₆ H ₄ CH ₂ CI					С	125																			A		А					
Chloroform CHCI ₃	Dry		С	С	С	125	200	О	С	С	С	70	275	А	А	А	А	Α	С	С	С		С	Α	А	А	А	Α	Α			
Chloropicrin CCI ₃ NO ₂					С	150																										
Chlorosulfonic Acid CISO ₂ OH				С	73	С	200	С	С	С	С	С			С	С	С	С	В	В	С	С	В	С	С	С	В	А		А	С	С
Chromic Acid H ₂ CrO ₄	10%	С	180	150	140	175	350	70	С	140	С	140		С	С	С	С	С	С	С	С	С	С	B to 212	A to 70		A to 125	В		А	С	С
Chromic Acid H ₂ CrO ₄	30%	С	180	150	140	175	350	С	С	140	С	140		С	С	С	С	С	С	С	С	С	С	B to 212	B to 70		A to 125	С		А	С	С
Chromic Acid H ₂ CrO ₄	40%	С	180	150	140	175	300	С	С	140	С	140	С	С	С	С	С	С	С	С	С	С	С	С	B to 70			С		А	С	С
Chromic Acid H ₂ CrO ₄	50%	С	140	С	75	125	200	С	С	140	C	140	С	С	С	С	С	С	С	С	С	С		С	B to 70		B to 212	C		В	С	С
Chromium Potassium Sulfate CrK(SO ₄) ₂ •12H ₂ O			73	140	73	200		140	180	200	160	200		А						С					В	В	А	В				
Citric Acid C ₆ H ₈ O ₇	Sat'd.		185	180	140	275	200	210	70	140	140	200	550	Α	С	С	С	С	С	С	С		С	В	A	A	А	А		A		С
Coconut Oil				73	140	280	400	С	70	B to 140	100	185	550		В	В	В	В	С	С	В		С	В	Α		А	В				
Coffee								140	100			200			А	А	А	Α	С	С	С			Α	Α	Α	А		А			А

^{*} Ratings are for body material only.

CHEMICALS	N	MA	PLA X.TEN	STIC:		E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	М	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Coke Oven Gas				73	140	230	400	70	B to 70	140		185			В	В	В	В	А	А	А	А	A	Α	А	А		В				
Copper Acetate Cu(C ₂ H ₃ O ₂) ₂ •H ₂ O	Sat'd.		73	73	73	250	350	100	180	С	160	140			С	С	С	С	С	С	С		С	В	А		А	В		А		
Copper Carbonate CuCO ₃	Sat'd.				140	280	350	210				185												В	А		А	Α				
Copper Chloride CuC ₁₂	Sat'd.		185		140	280	350	210	180	200	160	200		А	С	С	С	С	С	С	С	С	С	В	А		Α	В		А	С	С
Copper Cyanide Cu(CN) ₂			185		140	275	350	210	180		160	185			С	С	С	С	С	С	С	А	С	В	А		А	В				С
Copper Fluoride CuF ₂ • ₂ H ₂ O	2%				140	280		210	B to 70	140	140	185		Α																		
Copper Nitrate Cu(NO ₃) ₂ • ₃ H ₂ O	30%				140	280		210	B to 70	200	160	200		Α	С	С	С	С	С	С	С		С	В	А		А	С			С	С
Copper Sulfate CuSO ₄ • ₅ H ₂ O	Sat'd.		185	120	140	280		210	180	200	160	200		Α	С	С	С	С	С	С	С		С	Α	А	А	Α	С		А	С	С
Corn Oil			С	73	73	275	400	С	180	С	С	300			В	В	В	В	В	В	В	В	В	А	А	Α	Α	В				Α
Corn Syrup				150	140	250			100	200	100	185																				
Cottonseed Oil			185	150	140	280	400	С	180	200		185	275		В	В	В	В	В	В	В		В	Α	Α	Α	Α	В			Α	
Creosote			73		73		350	С	73	73	С	73	275		В	В	В	В	А	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α		В
Cresol CH ₃ C ₆ H ₄ OH	90%			73	С	150	200	С	С	B to 140	С	100	С												В			В				
Cresylic Acid C ₇ H ₈ O	50%				140	150	200	С	C	С	С	185	275		А	А	А	Α	А	А	В	Α	А	Α	A	А	А	А	Α			А
Croton Aldehyde CH₃CH:CHCHO					С	125	200		С		70	С																				
Crude Oil			185		140	280	400	С	70			200	275		С	С	С	С	С	С	В			Α	А	Α	Α	В				С
Cumene C ₆ H₅CH(CH₃)₂						100	300	С	С	С	С	200									В				В		В	В		А		
Cupric Fluoride CuF ₂					140	280		210						Α																		
Cuproc Sulfate CuSO ₄ • ₅ H ₂ O	Sat'd.	100		73	140	280	250	210	180	140	160	200	550	Α																		
Cuprous Chloride CuCl	Sat'd.	70			140	250	3520	200	180	70	70	200		Α	С			С														С
Cyclohexane C ₆ H ₁₂		100	С	С	С	280	300	С	С	С	С	185	550		A	A	A	Α	В	В	A		В	Α	А	А	A	А	A	А		
Cyclohexanol C₀H11OH		100	С	120	С	150	250	С	С	С	С	185	550						А	А			A	Α	А	А	А					
Cyclohexanone C ₆ H ₁₀ O			С	С	С	73	200	70	С	С	С	С	275		В	В	В	В	В	В	В		В	В	А		A	В		А		
Decahydronaphthalene C ₁₀ H ₁₈							400	С	С	С	С	200																				
Detergents (Heavy Duty)		С	С	150	С			250	180	200	160	210	550		А	А	А	Α	А	А	А	Α	A	Α	A	А	Α	Α	A			A
Dextrin (Starch Gum)	Sat'd.				140	250	200	С	180			200			Α	Α	A	Α	В	В	В				А		A					A
Dextrose C ₆ H ₁₂ O ₆					140	275	400	140	180	140	160	200			A	А			А						A		А					

CHEMICALS	N	MAX	PLA X. TEN	STICS IPER/		E °F				L MA MAX.													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	РР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Diacetone Alcohol CH ₃ COCH ₂ C(CH)OH			С	120	С	70	350	70	С		С	С			Α	Α	А	Α	Α	Α	А	А	Α	Α	A	Α	Α	А	Α	А		А
Dibutoxyethyl Phthalate C ₂ 0H ₃ 0O ₆					С			B to 70	С	140	С	200			Α	Α	А	Α	А	А	A		А		А		А					
n-Dibutyl Ether C ₄ H ₉ OC ₄ H ₉						100	350	С	С	С	С	С																				
Dibutyl Phthalate C ₆ H ₄ (COOC ₄ H ₉) ₂				120	С	С	350	70	С	С	С	С	275		Α	Α	А	Α	А	А	А				А		Α					
Dibutyl Sebacate C ₄ H ₉ OCO(CH ₂)OCOC ₄ H ₉					73	С	350	70	С	С	С	С																				
Dichlorobenzene C ₆ H ₄ C ₁₂					C	150		С	С	С	С	150	С						А	А			А		А		Α					
Dichloroethylene C ₂ H ₄ C ₁₂				С	С	225	350	С	С	С	С	185					В			В					В			А				
Diesel Fuels					140	280	350	С	70	С	С	185	550		Α	Α	Α	Α	Α	A	Α	Α	А	Α	Α	Α	Α	Α	Α			Α
Diethylamine C ₄ H ₁₀ NH					С	73	200	70	70			С		Α	С	С	С	С	А	А	С			A	A	A	Α	В				С
Diethyl Cellosolve C ₆ H ₁₄ O ₂						280		С	140		100	200							А	А			А		А		Α					
Diethyl Ether C₄H₁₀O				73	73	73		С				С	275	Α																		
Diglycolic Acid O(CH ₂ COOH) ₂	Sat'd.				140	73	250	70	70			70																				
Dimethylamine (CH ₃) ₂ NH				120	140	75		140	С	С	С	С							С						A		А					
Dimethyl Formamide HCON(CH ₃) ₂			С	120	С	С	250	С	100	100	С	С	275		В	В	В	В	В	В	В				A		A	А				
Dimethylhydrazine (CH ₃) ₂ NNH ₂					С	С						С																				
Dinonyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₉) ₂							32	B to 10	С	С	С	B to 10																				
Dioctyl Phthalate C ₆ H ₄ (COOC ₈ H ₁₄) ₂			С	С	С	75	200	70		С	С	70	275		Α	Α	A	Α	С	С	С											
Dioxane 0:(CH ₂) ₄ :0		С		73	С	С		70	С	С	С	С	275	А	А	Α	А	Α	А	А	A					A		А	А			
Diphenyl Oxide (C ₆ H ₅) ₂ O	Sat'd.					125		С	С		С	300	С		Α	Α	А	Α	А									А				
Disodium Phosphate Na ₂ HPO ₄			185		140	200	400	210	100	140				А	В	В	В	В	В	В					А		А	В				
Dow Therm A C ₁₂ H ₁₀ •C ₁₂ H ₁₀ O					С		212	С	С	С	С	С	С	Α	A	Α	A	Α	В	A	А		A	A	A	A	А	А	А			
Ether C ₄ H ₁₀ O			С	73	С	125			С	С	С	С			Α	Α	A		В	В	В	А	A	A	A	A	A	А	A			Α
Ethyl Acetate CH ₃ COOC ₂ H ₅		С		120	С	С	200	70	С	С	С	С	550		Α	Α	В		А	А	А			Α	А	А	Α	Α	В	А		
Ethyl Acetoacetate CH ₃ COCH ₂ COOC ₂ H ₅		С			С	73	200	100	С			С																				
Ethyl Acrylate CH ₂ :CHCOOC ₂ H ₅			С		С	73	350	70	С	С	С	С			Α	Α			А	А	А		A	Α	A	А	Α	А	А	А		
Ethyl Alcohol (Ethenol) C ₂ H ₅ OH			140	180	140	280	300	170	180	200	70		550	Α	А	Α	А	А	А	А	А	A	А	Α	А	А	Α	Α	Α	А		

CUEMICALO	Z.	MA	PLA X. TEN	STIC:		E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Ethyl Benzyne C ₆ H ₅ C ₂ H ₅				С	С	125	350	С	С	С	С	70			В	В			В	В	В		В		А		А	А		А		
Ethyl Chloride C ₂ H ₅ CI	Dry			73	С	280	350	B to 70	С	70	B to 70	140	550	А	А	A	В		А	А	A	А	A	А	A	A	A	А	В	А		
Ethyl Chloroacetate CH ₂ CIOCO ₂ CH ₅					С	75																										
Ethylene Bromide BrCH ₂ CH ₂ Br	Dry	С	С	С	С	280	350	С	С		С	B to 70			А					А	Α				A		А	Α		А		
Ethylene Chloride CICH ₂ CH ₂ CI	Dry	С		73	С	280	350		С	С		70													Α		А	А				
Ethylene Chlorohydrin CICH ₂ CH ₂ OH				73	С	73	200	70	С	70	70	С		Α								А										
Ethylene Diamine NH ₂ CH ₂ CH ₂ NH ₂		С		120	С	225		70	100	100	100				А	С		Α	А	В				А		А	В					А
Ethylene Dichloride C ₂ H ₄ Cl ₂	Dry	С		73	С	280	350	С	С	С	С	120	275	Α	A	А			А	А	А		А		А	А	А	A	А			
Ethylene Glycol CH ₂ OHCH ₂ OC		73	185	120	140	280		210	180	200	160	250	550	Α	А	А	А	Α	А	А	А		А	А	Α	А	А	А	А	А		А
Ethylene Oxide CH ₂ CH2O				С	С	С	400	С	С	С	С	С	275		А	А			В	А	А		А		А		А	В		А		
Ethyl Ether (C ₂ H ₅) ₂ O				С	С	125	250	С	С	С	С	С	275																			
Ethyl Formate HCOOC ₂ H ₅						73			С		70	С			А	А			Α	А			Α		Α		Α					
2-Ethythexanol CH ₃ (CH ₂)CHC ₂ H ₅ CH ₂ OH						250				70	С																					
Ethyl Mercaptan C₂H₅SH						75				С				Α						А	А				Α		Α	Α				
Ethyl Oxalate (COOC ₂ H ₅) ₂								140	С		С																					
Fatty Acids R-COOH			73	120	140	280	400	С	140	С	140	185	275	Α	С	С	С	С	С	С	С		С		Α		А	Α		Α	С	
Ferric Chloride (Aqueous) FeCI ₃	Sat'd		185	180	140	280	400	225	180	200	160	200	550	Α	С	С	С	С	С	С	С	С		С	С	С	С	С		A to 175	С	С
Ferric Hydroxide Fe(OH) ₃	Sat'd		185	180	140	250	400	180	100	100	100	180							С	С			O		А		А	Α			С	С
Ferric Nitrate Fe(NO ₃) ₃ • ₉ H ₂ O	Sat'd		185	180	140	280	400	210	180	140	160	200		Α	С	С	С	С	С	С	С		С	В	А	А	А	С		А		С
Ferric Sulfate Fe ₂ (SO ₄) ₃				180	140	280	200	210	140	140	140	185	550	Α	С	С	С	С	С	С	С		С	В	Α	А	А	С				С
Ferrous Chloride FeCl ₂	Sat'd		185	180	140	280	400	200	180			200	275	Α	С	С	С	С	С	С	С	С	O	С	С	С	С			В	С	С
Ferrous Hydroxide Fe(OH) ₂	Sat'd		185	180	73	250	400	180	180			180							С						Α						С	
Ferrous Nitrate Fe(NO ₃) ₂			140	140	73	280	400	180	180	140	160	200		Α											А	А	А					
Ferrous Sulfate FeSO ₄		70	185	180	140	280	400	200	180	140	160	200		А	С	С	В		С	С	С	С	С	А	A	А	А	Α		А		В
Fish Oil					140		300	С	70	С		70			А	А	С		В	Α	Α		А	Α	A	А	Α	A	Α		\Box	Α
Flue Gas								С	180			300			A	A			A	A	A		A	A	A	A	A	A	A			

CHEMICALS	NC	MAX		STICS (IPER/		E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Fluoboric Acid HBF ₄			73	73	140	275	350	140	160	140	160	140			В	В			С	С			С		А		А	А			С	С
Fluorine Gas (Dry)	100%	С	73	С	73	73	С	С	С	140	С	С	С	B to 300	В	В			С	С	А				А	А	А	А		А		
Fluorine Gas (Wet)		С		С	73	73	С	С				100	С	С	С	С			С	С	С				А	А	А	Α				
Fluosilicic Acid H ₂ SiF ₆	50%		73		140	280	300	140	100	200	100	210	275		В	В			С	С	С		С	В	В	В	А	А		А	С	С
Formaldehyde HCHO	Dilute			120	140	125	300	140	С	200	140	С	550	Α	А	А	В		С	С	В			Α	А	А	А	Α		А		
Formaldehyde HCHO	35%		73	180	140	125	300	140	С	150	140	С	550	Α	А	А	В		С		В			А	А	A	А	Α		А		
Formaldehyde HCHO	37%		73	180	140	125	300	140	С	С	100	С	550	Α	А	Α	В		С		В			Α	А	A	А	А		А		
Formaldehyde HCHO	50%		73		140		300	140	С	С	140	С	275	Α	В	В	В		С		В			В	А	A	А	А		А		
Formic Acid HCOOH			73	73	73	250	300	200	С	70	140	С	275	A	С	С	В		С	С	С	В	С	Α	А	A	А	А		A		
Formic Acid Anhydrous HCOOH			73	180					С	160	100	С													Α		A	Α				
Freon 11 CCI ₃ F	100%	С	73		140	200	300	С	70	130	С	70	С	Α	A	Α	A	A	В	В	В		В	A	A	A	A	A				А
Freon 12 CCI ₂ F ₂	100%		73	73	140	200	С	С		130	130	С	550	A	A	A	A	A	В	В	В		В	Α	А	A	А					А
Freon 21 CHCl ₂ F	100%				С	200	300	С	С		С	С		Α	Α	Α	А	Α	В	В	В		В	А	А	А	А					А
Freon 22 CHCIF ₂	100%			73	С	200	С	С	С	130	130	С	275	Α	Α	Α	А	Α	В	В	В		В	А	А	A	А					А
Freon 113 C ₂ CI ₃ F ₃	100%				140	200	300	С	130	130	130	130		Α	A	Α	А	А	В	В	В		В	Α	А	A	А					А
Freon 114 C ₂ CI ₂ F ₄	100%				140	200	300	С	130	70	70	С	275	Α	A	Α	А	А	В	В	В		В	Α	А	A	А					А
Fructose C ₆ H ₁₂ O ₆			185		140	280	300	175	140	140	160	225							А	А			A	А	А	A	А	Α				
Furfural C ₄ H ₃ OCHO				С	С	75	300	140	С	70	70	С	275		Α	Α	A	A	А	А	А		A	А	А	A	А	Α		А		A
Gallic Acid C ₆ H ₂ (OH) ₃ CO ₂ H			73		140	75	300	70	С	70	70	185			В	В	С		С	С	С		С	Α	А	A	A	Α		А		
Gasoline, Leaded		С	С	С	140	275	200	С	70	70	70	100	550	Α	Α	Α	Α	Α	А	А	Α	A	Α	Α	Α	Α	Α	Α	Α	А	Α	Α
Gasoline, Unleaded		С	С	С	140	275	200	С	70	70		100	550	Α	Α	Α	Α	Α	А	А	Α	A	Α	Α	Α	Α	Α	Α	Α	А	Α	Α
Gashol		С	С	С	140	280	200	С	70			100		Α	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Gasoline, Sour		С	С	С	140	280	200	С	70			100		Α	В	В			А	А	Α		А	В	Α	Α	А	С		А		
Gelatin			150	180	140	250	300	200	180	200	160	250			С	С	В		С	С	С		С	С	С	Α	Α					
Glauber's Salt Na ₂ SO ₄ •10H ₂ O							200	70	С	100	160	200			Α	А		А	А	А			A	Α	А	А	А	А	Α			
Glucose C ₆ H ₁₂ O ₆ •H ₂ O		180	185	180	140	280	400	250	180	200	160	300	275		Α	Α	A	Α	Α	А	A	А	А	Α	A	A	А	A	А	A	А	А
Glue						250	400	100	140	200	160	250			А	А	А	Α	А	А	А	А	А	Α	А	А	А	Α	А	А	А	А

OUENIONIC	Z				L MA MAX.													MET	ALS													
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	8	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Glycerin C ₃ H ₅ (OH) ₃		140	185	180	140	280	400	200	70	200	160	300	550	А	А	А	А	А	А	А	А	А	А	А	А	А	А	A	A	А	А	А
Glycol													S	ee Eth	ylene	Glycol																
Glycol Amine															С	С	С		А	Α	А		Α		А		Α					
Glycolic Acid OHCH₂COOH	Sat'd			73	140	73	200		С	С	70	С	550		В	В			С	С	С		С		А		Α	В				
Glyoxal CHOCHO									С	С	70				В	В	В		С	С	С		С		А	А	А	В				
Grape Sugar C ₆ H ₁₂ O ₆					140			250	180	200	160	185																				
Grease								С	150	С	100	200			С	С	С	С	А	А	А		А		А	Α	А	Α	Α	A		
Green Liquor								150	150	70	70				С	С	С		А	Α		А	Α		Α	Α	Α	Α				
Gypsum CaSO ₄ • ₂ H ₂ O	Slurry					275	350	210	180	200	160	200			A	A	В	В	А	А	В	А	А	Α	A	Α	А	А		А		A
Heptane C ₇ H ₁₆				С	140	280	300	С	70	70	70	185	550		Α	А	A		А	А	А	А	A	Α	А	А	Α	Α	Α	А		
n-Hexane C ₆ H ₁₄		С	73	73	73	280	300	С	70	70	70	70	550		Α	А	A		А	А	Α	А	A	Α	А	A	Α	Α	А	A		
Hexanol CH ₃ (CH ₂) ₄ CH ₂ OH					100	175	300	С	70	70	B to 70	160			А	А	A		А	А	А		A	Α	А	А	A	A	A	А		
Hydraulic Oil (Petroluem)					73		300	С	160	70	70	250	550	Α	А	А	В		А	А	А		А	Α	А		А	А	А			
Hydrazine H₂NNH₂					С	200	250	70	70	70		С	С	Α	С	С	С	С	С	С	С		С		А		A	А				
Hydrobromic Acid HBr	20%		73	120	140	280	250	140	С	100	B to 70	185	С	Α	С	С	С	С	С	С	С	С	С	С	O	С	С	С	С		С	С
Hydrobromic Acid HBr	50%			140	140	280	250	140	C	100	B to 70	185	С	Α	С	С	С	С	С	С	С	С	С	С	С	С	С	C	C		С	С
Hydrochloric Acid HCI	<25%	С	180	150	140	280	250	150	С	100		С	275	A	С	С	С	С	С	С	С	С	С	С	В	С	В	С	С		С	С
Hydrochloric Acid HCI	37%	С	160	150	140	280	250	150	С	100		С			С	С	С	С	С	С	С	С	С	С	В	С	В	С	С		С	С
Hydrocyanic Acid HCN	10%			73	140	280	250	200	70	200		185	275		С	С	С	С	С	С	С	С	С	С	А	В	А	А	С	А	С	С
Hydrofluoric Acid HF	<3%	125	73	180	73	250	300	С	С	150	70	150	С	Α	С	С	С	С	С	С	С	С	С	С	O	С	В	А	С	А	С	С
Hydrofluoric Acid HF	30%	С	С	140	73	250	300	С	С	150	70	150	С	Α	С	С	С	С	С	С	С	С	С	С	С	С	В	A	С	A	С	С
Hydrofluoric Acid HF	40%	С	С	140	73	250	300	С	С	140	С	100	С	Α	С	С	С	С	С	С	С	С	С	С	С	А	В	В	С	А	С	С
Hydrofluoric Acid HF	50%	С	С	100	73	200	300	С	С	140	С	75	С	Α	С	С	С	С	С	С	С	С	С	С	С	С	В	В	С	А	С	С
Hydrofluosilicic Acid H ₂ SiF ₆	50%		140	140	140	280	300	140	170	150		200		С	В	В			С	С	С		С	В	В	В	Α	А			С	С
Hydrogen H ₂	Gas		73	73	140	280	300	250	180	200	160	300	550		Α	А	A	Α	А	А	Α	А	A	Α	А	А	А	Α	Α	А	А	А

OUTMON O	z	MAX		STICS IPERA		E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Hydrogen Cyanide HCN					140	280			70	100	70		275														А					
Hydrogen Fluoride Anhydrous HF			С	73	С	200	250	70	С			С	С	Α											А	А	Α			А		
Hydrogen Peroxide H ₂ O ₂	50%		185	150	140	150	300	100	С	200	С	185	275	А	С	С	С	С	С	С	В	С	С	Α	А	А	Α	Α			С	С
Hydrogen Peroxide H ₂ O ₂	90%				140	73	30	С	С	200	С	100	250	С	С	С	С	С	С	С	В	С	С	Α	A	A	Α	В		В	С	С
Hydrogen Phosphide PH ₃					140	150																										
Hydrogen Sulfide H ₂ S	Dry		185	150	140	280		100	С	140	С	140		Α	В				В		В				A	В	A	Α		A	В	
Hydrogen Sulfide H ₂ S	Wet				140	225		100	С	70	С	140	550	Α	С	С	С	С	С	С	С		С	С	A	С	А	В		В	С	С
Hydrogen Sulfite H ₂ SO ₃								70	С	70		100			С	С	С	С	С	С	С		С	С	А		А	А				С
Hydroquinone C ₆ H ₄ (OH) ₂	Sat'd.				140	250	300	С	70		С	185	275								А				A		А	А				
Hydroxylamine sulfate (NH ₂ OH) ₂ +H ₂ SO ₄					140			70			70																					
Hypochlorous Acid HOCI	10%		140	73	140	70	300	70	С			70																				С
Inks							300		70		70	70			Α	Α	Α		С	С	С		С		Α		Α	Α				
lodine	10%		73	150		150	200	70	70	70	С	70	275•	B to 70	С	С	С	С	С	С	С		С	С	С	С	В	Α		A		С
Iron Phosphate FeH₃PO₄												180		Α	С	С	С	С					В	Α	А	Α	А	С				С
Isobutane (CH ₃) ₂ CHCH ₃							140	С	70	С	С	B to 70	550		А	А	А	A	А	А	А	Α	А	Α	А	А	А	Α	Α	А		А
Isobutyl Alcohol (CH ₃) ₂ CHCH ₂ OH						250	300	140	70	70	70	140													A		A					
Isooctane (CH ₃) ₃ CCH ₂ CH(CH ₃) ₂				73		250	300	С	70	200	70	185	550	А	A	A	А	A	Α	А	А	A	А	Α	Α	Α	А	Α	Α	Α		А
Isophorone C(O)CHC(CH ₃)CH ₂ (CH ₃) ₂ CH ₂						175		С	С			С																				
Isopropyl Acetate CH ₃ COCOCH(CH ₃) ₂		С					200	70	С	С	С	С	550	Α	A				А	A	А		A	Α	A	A	A	А	А			А
Isopropyl Alcohol (CH ₃) ₂ CHOH		С	B to 70	180	140	140	300	140	70	200	70	160	A	550	А	Α	А	A	А	А	А	A	А	A	A	А	A	Α	Α			А
Isopropyl Chloride CH ₃ CHCICH ₃						100	200	С	С		С	70																				
Isopropyl Ether (CH ₃) ₂ CHOCH(CH ₃) ₂			С		С	125	140	С	70	С	С	С	550		А	А		А	А	A	А	Α	A	Α	А	А	А	Α	Α	А		
JP-3 Fuel							200	С	70	С	С	185	550		А	А	А	Α	А	Α	Α	Α	Α	Α	Α	Α	А	А	А	Α		Α
JP-4 Fuel			73		140	200	300	С	70	С	С	300	550		Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α
JP-5 Fuel			73		140	200	300	С	70	С	С	300	550		Α	Α	Α	Α	А	Α	Α	Α	А	Α	Α	А	Α	Α	Α	Α		А
JP-6 Fuel							200	С	100	С	С	100			Α	Α	Α	Α	А	Α	Α	Α	А	Α	А	Α	Α	А	А	А		А
Kelp Slurry								С	70	С		100			В	В	В	В	В	В	В		В	Α	A	А	А	А	А			

^{*} Ratings are for body material only.

CHEMICALS	N	MAX		STIC:	s at Atur	E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	Ь	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Kerosene		С	185	73	140	280	250	С	140	С	70	300	550	Α	Α	Α	Α	Α	А	А	А	Α	Α		А	Α	Α	Α	Α	Α	70	Α
Ketchup					73		250	210	140	B to 70		200			С	С	С		С	С	С		С	В	A	A	А	А			С	
Ketones		С	С		С	С	200	С	С	С	С	С		Α	Α	Α	Α		А	Α	Α		Α	Α	Α	Α	Α	Α	Α			
Kraft Liquors		100	185		140		250		70	70	70	100			С	С	С	С	С	С	С		С		А		Α					
Lactic Acid CH₃CHOHCOOH	25%			150	140	125	300	70		140	140	70	550	Α	С	С	С	С	С	В	С		В	Α	А	А	A	A				
Lactic Acid CH₃CHOHCOOH	80%			150	73	125	300	70	С	140		70	550	Α	С	С	С	С	С	В	С		В	Α	А	А	А	А		А		
Lard OII			185	73	140	280	300	С	140	С	70	185			С	С	С	С	В	В	В		В		Α		Α	В				С
Latex (C ₂ H ₆ OSi)x							200	70	70		100	70			Α	A			А	А			A		А		А					
Lauric Acid CH ₃ (CH ₂) ₁₀ COOH					140	225	300		70			100							С	С			С		А		A					
Lauryl Chloride C ₁₂ H ₂₅ CI							300	140	70			200							С	С			С		A		А					
Lead Acetate Pb(C ₂ H ₃ O ₂) ₂ • ₃ H ₂ O	Sat'd.		185	180	140	280	300	210	70	100	160	С	275		С	С			С	С	С		С		А		A	А				
Lead Chloride PbCl ₂				73	140	250	300	С	100	100	70	140		Α																		
Lead Nitrate Pb(NO ₃) ₂	Sat'd.		185	180	140	250	300	175	180		140	225	275	A							A				A		A					
Lead Sulfate PbSO ₄			185	150	140	250	300	210	180	200	140	225		Α	В	В			С	С	С		С		В		В	В				
Lemon Oil				С		250	300			140	100	200							С	С			С	В	А	Α	Α	Α				
Ligroin									100	С	70	100																				
Lime Slurry CaO								100	100	160	100				A	A					A				A		A	A				
Lime Sulfur (CaS)x				73	140			210	С	160	100	185			С	С	С	С	А	А	А		A		A		А	A				
Linoleic Acid CH ₃ (CH ₂) ₄ HC:CHCH ₂ CH: CH(CH ₂) ₄ COOH					140	250	300	С	B to 70	С		140	275		С	С	С	С	С	С	С		С	С	В	В	A	А		A		С
Linoleic Oil					140	230	300					70																				
Linseed Oil		100	185	150	140	280	300	B to 70	180	200	70	250	550		А	A	A	А	А	A	А	А	A	Α	А	А	А	A	A	А	А	A
Liqueurs					140					70	70																					
Lithium Bromide LiBr					140	225	300		140			200	550	A																		
Lithium Chloride LiCI						250		100	70			140	550	Α	В	В	В		В	В	С		В		А		A	A				
Lithium Hydroxide LiOH								100	70			140			С	С	С	С	А	А			А		А		А	В				
Lubricating Oil (ASTM #1)			73	С	140	280	350	С	180	С	70	150	550		Α	А	A	А	А	A	A	А	A	А	А	А	A	A	А	А	А	А
Lubricating Oil (ASTM #2)			73	С	140	280	350	С	180	С	70	150	550		Α	А	А	Α	А	А	А	А	A	Α	А	А	А	А	A	А	А	А
Lubricating Oil (ASTM #3)			73	С	140	280	350	С	180	С	70	150	550		А	A	А	А	А	А	А	А	A	Α	А	А	A	А	А		А	А

CHEMICALS	N	MAX	PLA X.TEN	STICS (IPER/		E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Ludox SiO ₂															С	С	С	С	А	А	А		А		А		А	А				
Magnesium Carbonate MgCO ₂					140	280	225	170	140	140	140	210	275		В	В			В	В	В		В	А	А	А	А	А				
Magnesium Chloride MgCl ₂	Sat'd.		185	180	140	280	400	170	180	200	160	170	275	А	А	Α	В	В	С	С	С		С	С	С	С	В	А		А		А
Magnesium Citrate MgHC ₆ H ₅ O ₇ • ₅ H ₂ O					140	250	300	175	180			225																				
Magnesium Fluoride MgF ₂								140				200		А						С			С		В							
Magnesium Oxide MgO								140	140		160				А	Α				А			А					Α				
Magnesium Sulfate MgSO ₄ •7H ₂ O			185	180	140	280	300	175	180	140	160	200	550	Α	Α	Α	А	Α	А	А	Α	Α	А	Α	А	А	А	Α	Α	А		А
Maleic Acid HOOCCH:CHCOOH	Sat'd.		185	180	140	250	250	70	С		С	200	550	Α	С	С	В	С	С	С	С		С	В	А	В	А	В		А		В
Maleic Acid COOCHCHCH(OH)COOH			185	150	140	250	250	С	100	70	70	200			В	В			С	С	С		С	Α	А	A	А	А				A
Manganese Sulfate MnSO ₄ •4H ₂ O				150	140	250	300	175	140	180	160	225	225	Α	А	Α	А		С	С	В		С		A		А	Α				
Mercuric Chloride HgCl ₂			140	180	140	250	300	210	140	140	140	185	550	Α	С	С	С	С	С	С	С	С	С	С	С	С	В	С		А	С	С
Mercuric Cyanide Hg(CN) ₂	Satd.				140	250	300	70	70	140	70	70	275		С	С	С	С	С	С	С		С		A		A	С				С
Mercuric Sulfate HgSO ₄	Sat'd.				140	230	300	70	70			70		Α	С	С	С	С														С
Mercurous Nitrate HgNO ₃ •2H ₂ O	Sat'd.				140	230	300	70	С		С	70	275	А	С	С	С	С	С	С	С		С	Α	А	A	A	С				С
Mercury Hg			185	150	140	275	300	210	140	140	140	185	550	Α	С	С	С	С	A	A	А		A	Α	A	A	A	В		А		С
Methane CH ₄		С			140	275	300	С	180	70	70	185	550		А	Α	A	Α	А	A	А	Α	A	Α	A	A	A	А	Α	A	А	A
Methanol (Methyl Alcohol) CH ₃ OH		С	С	180	140	280	300	140	140	140	140	С	550	А	А	А	A	Α	A	A	А	Α	A	Α	A	А	A	Α	A	A	Α	А
Methoxyethyl Oleate CH ₃ OCH ₂ CH ₂ (OOCC ₁₇ H ₃₃) ₂					73																											
Methyl Acetate CH ₃ CO ₂ CH ₃						100	300	B to 70	С	С	С	С	550		В	В			В	В	В		В	В	А		A	А		A		
Methyl Acetone C ₄ H ₈ O						С		70		С	С			С	А	Α	А	А	А	А	А	Α	А	Α	А	А	А	Α	Α			А
Methyl Acrylate CHCO ₂ C ₂ H ₅	Tech. Pure					100	300	B to 70	С	С	С	С							С						А		А	Α				
Methyl Amine CH ₃ NH ₂			С	С	С	С	300	70			70	100			С	С			А	А	В		А		А		А	С				
Methyl Bromide CH ₃ Br					С	280	300	С	70	С	С	185	275		С	С	В		С	С	В				В		В	В				
Methyl Cellosolve HOCH ₂ CH ₂ 0CH ₃					С	280		70	С	70	70	С			А	А	В		В	В	В			А	А	А	А	А	А			
Methyl Chloride CH ₃ CI	Dry	С			С	280	250	С	С	С	С	70			А	А	С	С	А	А	A	A	А	А	А	A	А	A	А	A	С	

CHEMICALS	N	MAX	PLA X.TEN	STIC:		E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	Ь	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Methyl Chloroform CH ₃ CCI		С	С			125	200	С	С	С	С	70							А	А			А		А		А					
Methyl Ethyl Keytone (MEK) CH ₃ COC ₂ H ₅		С	С	С	С	С	200	70	С	С	С	С	275	А	A	A	А	А	А	А	А		Α	А	А	А	А	А	А	А		А
Methyl Formate HCOOCH ₃								100	С	С	70	С			А	Α	А		Α	А	С		А	Α	А	А	Α	А		Α		
Methyl Isobutyl Carbinol (CH ₃) ₂ CHCH ₂ CH(CH ₃)OH							200	70	70	70	70	70																				
Methyl Isobutyl Keytone (CH ₃) ₂ CHCH ₂ COCH ₃		С	С	С	С	С	200	70	С	С	С	С	275	Α					А						А	А	A	A	А			
Methyl Isopropyl Keytone CH ₃ COCH(CH ₃) ₂						С	150	С	С	С	С	С																				
Methyl Methacrylate C ₅ H ₈ O ₂					73	125	150	С	С	70	С	С									С											
Methyl Sulfate (CH ₃) ₂ SO ₄					73	280	70																									
Methylene Bromide CH ₂ Br ₂					С	175	250	С	С	С	С	70																				
Methylene Chloride CH ₂ CI ₂					С	С	250	С	С	С	С	70	С		В	В	В		В	В	В				А	А	A	А		Α		
Methylene Chlorobromide CH ₂ CIBr					С			С	С	С	С	С							А	А					А		Α					
Methylene Iodine CH ₂ I ₂						С	200	250					250																			
Methylsulfuric Acid CH₃HSO₄					140	125																										
Milk			70	170		225	400	250	180	200	160	300	550		В	В	В	В	С	С	С		С	С	Α	Α	Α	Α			С	Α
Mineral Oil		70	185	120	140	280	300	С	140	B to 70	70	300	550		A	A	A	А	A	A	A	A	A	Α	A	А	A	Α	Α	Α	Α	A
Molasses				73	140	150	300	100	150	150	150	185			Α	Α	Α	Α	А	А	А		Α	Α	Α	Α	Α	Α		Α		Α
Monochloroacetic Acid CH ₂ CICOOH	50%		73	73	140	150	200	С	70	С	С	70		Α	С	С	С	С	С	С	С		С	С	С	С	В	В				С
Monochlorobenzene C ₆ H ₅ CI	Tech. Pure			73		170	200	С	С	С	С	70	С	Α	Α	Α			А	А	А	А	A	Α	А	А	А	Α	А			
Monoethanolamine HOCH ₂ CH ₂ NH ₂					С	С	100	70	70	С	С	185		Α			С		В	В	В		В		А		A	В				
$\begin{array}{l} \text{Morpholine} \\ \text{C}_4\text{H}_8\text{ONH} \end{array}$						75	200	70	С	С	С	С	275		В	В			В	В	В		В	В	В	В	В	В				
Motor Oil			185	73	140		350	С	180			250	550	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α	Α
Naphtha		B to 70	73	73	140	280	200	С	140	С	С	150	550		А	А	В		А	А	A	А	A	Α	A	А	Α	A	А	Α	Α	
Naphthalene C ₁₀ H ₈		B to 70			С	200	250	С	С	С	С	170	275		А	A	В		А	А	А	А		Α	А	А	А	A	А	Α	Α	
Natural Gas				73	140	280	300	С	140	140	140	185	550		A	A	Α	Α	А	А	Α	Α		A	Α	Α	Α	A	Α	Α	Α	Α
Nickel Acetate NI(OOC ₂ H ₃) ₂ •4H ₂ O					73	250	300	70	70	С		С																			С	
Nickel Ammonium Sulfate NISO ₄ •(NH ₄)2SO ₄ • ₆ H ₂ O							250		140	200	160				С	С	С	С	С	С	С				А		A	С			С	

CHEMICALS	N	MA		STIC:		E°F					ATERI Temi												MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Nickel Chloride NiCl ₂	Sat'd.		185	180	140	280	406	210	180	200	160	210	275	Α	С	С	В		С	С	С				А		A	С		А		
Nickel Nitrate Ni(NO ₃) ₂ •6H ₂ O	Sat'd.				140	280	400	210	180			250	275	Α	С	С			С	С	С			А	А	А	A	С			С	
Nickel Sulfate	Sat'd.		185	180	140	280	400	210		200	160	300		Α	С	С	В		С	С	С									А		Α
Nicotine C ₁₀ H ₁₄ N ₂					140	70			С	70	С													В	А		А	В				
Nicotine Acid CsH ₄ NCOOH					140	250		70			140				В	В			С	С	С			В	В	В	В	В				Α
Nitric Acid HNO ₃	<10%	73	185	140	140	175	250	70	С	100	С	185	550	Α	С	С	С	С	С	С	С	С		В	А	А	А	С			С	С
Nitric Acid HNO ₃	30%	С	150	73	140	125	250	70	С	100	С	160	275	С	С	С	С	С	С	С	С		В	А		А					С	С
Nitric Acid HNO ₃	40%	С	120	С	100	125	250	С	С	70	С	140	С	С	С	С	С	С	С	С	С		В	А		А					С	С
Nitric Acid HNO ₃	50%	С	120	С	100	125	250	С	С	70	С	120	С	С	С	С	С	С	С	С	С	С		В	А		А				С	С
Nitric Acid HNO ₃	70%	С	100	С	73	С	250	С	С	С	С	100	С	С	С	С	С	С	С	С	С	С		С	А		А				В	С
Nitric Acid HNO ₃ •NOx	Furning	С	С	С	С	С	70	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	А		A	С			В	С
Nitrobenzene C ₆ H ₅ NO ₂				73	С	73	400	С		С	С	70	С	А	В	В			А	A	А				А		А	А		А		
Nitroethane CH ₃ CH ₂ NO ₂	Tech. Pure					70			С		С	С								A												
Nitrogen Gas						275	300		140	100	140	185	550	А	А	А	А	А	А	А	А	А	А	А	А	A	А	А	Α		А	Α
Nitroglycerin CH ₂ NO ₃ CHNO ₃ CH ₂ NO ₃					С	125	70								В	В				В	В				А		А	В				
Nitroglycol C ₂ H ₄ N ₂ O ₆					С					70	70																					
Nitromethane CH ₃ NO ₂	Tech. Pure					120		70	С		С		275												А							
Nitrous Acid HNO	10%				73	230	400		С			100	275		С	С	С	С	С	С	С			В	В	В	В	С			С	С
Ntrous Oxide N ₂ O				73	73	С	400		С	B to 140	С	70	550	Α	В	В			С	В	В				A		А	С		А		
n-Octane CH ₈ H ₁₈						275	400	С	B to 70			70		550	A	Α	A	А	A	A	Α	А		А	A	А	А	А	Α	А	Α	Α
Oleic Acid CH ₃ (CH ₂) ₇ CH(CH ₂) ₇ COOH			185	150	140	250	250	B to 70	100	70	B to 70	185	550	А	В	В	А		В	В	С			В	А	A	А	Α		А		Α
Oleum					See Su	ılfuric	Acid, F	umino	J																							
Olive Oil						250	350		140	B to 100	140	150			A	Α	А	A	A	A	A	А	A		А	A	A	А	А	A		A
Oxalic Acid HOOCCOOH	50%		185	180	140	125	300	150	С		100	100	275	Α	С	С	С		С	С	С	С	С	В	А	A	A	А		A	С	
Oxygen (Gas) O ₂			185	150	140	280	406	210	B to 70	140	140	185	275	А	А	А	А	А	А	А	А	А	А	Α	А	А	Α	Α	Α	А	Α	A
Ozone O ₃					140	225	300	210	С	140	С	185	275	С	A	A	A	А	А	А	A	А	A	А	А	А	A	Α	A	A	А	А

OUENIOALO	Z	MAX	PLA K.TEN	STICS IPER		E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	Ь	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Palm Oil						200	200	С	140	С		70			С	С			С	С	С		С		Α		Α	Α				
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	10%		73	180	140	250	300	70	100	70	С	185	550		В	В	В	А	В	В	В		В	В	Α	Α	Α	Α				A
Palmitic Acid CH ₃ (CH ₂) ₁₄ COOH	70%		73	180	73	250	300		100	С	С	185	550		В	В	В	Α	В	В	В		В	В	А	А	А	Α			А	
Parafin C ₃₆ H ₇₄		B to 70			140	250	250	С	100		140	300	550		А	А	А		В	А	А	В	В	Α	А	А	А	А	А	А		A
Peanut Oil		70	С		С	250	250	С	100			150			A	А			A	A			А		Α		Α					
Pentachlorophenol C ₆ CI ₅ OH		С	С		С		70	С	С	С	С	250																				
n-Pentane CH ₃ (CH ₂) ₃ CH ₃		С					100	С	100		70	100	550		А	А	A	Α	А	A	А	А	А	Α	А	А	А	А	Α	Α	А	А
Peracetic Acid CH ₃ COOOH	40%				73																											
Perchloric Acid HCIO ₄	10%		140	73	73	200	250	70	С	70	70	70	275	Α					С						А		А	А				
Perchloric Acid HCIO ₄	70%		185	73		125		70	С	С	С	185	С	С					С						В		В	Α				
Perchloroethylene Cl ₂ C:CCl ₂						275	200	С	С	С	С	200			В	В			В	В	В		В	А	A	А	А	А		А		
Perphosphate			170	170	140		250	70	70			70																				
Phenol C ₆ H₅OH		С	73	73	73	125		70	С	С	С	200	С	Α	A	А	С		С	С	С		С	Α	А	А	А	A		А		
Phenylhydrazine C ₆ H ₅ NHNH ₂					С	125	B to 70	С	С	С		С																				
Phospate Esters									С		С	100			С	С			С	С			С		Α		Α	Α				
Phosphoric Acid H ₃ PO ₄	10%		210	180	140	275	300	140	70	200	140	200	550	A	С	С	С	С	С	С	С	С	С	В	Α	Α	A	С			С	С
Phosphoric Acid H ₃ PO ₄	50%		210	180	140	275	300	70	С	200	70	200	550	Α	С	С	С	С	С	С	С	С	С	В	A	А	А	С			С	С
Phosphoric Acid H ₃ PO ₄	85%		73	180	140	275	300	70	С	200	С	200	275	A	С	С	С	С	С	С	С	С	С	В	A	В	A	С			С	С
Phosphoric Anhydride P ₂ O ₅			73	73	73	200															С				A		Α				В	
Phosphorus (Red)					70	75	300																		Α		Α					
Phosphorus (Yellow)					73		300																									
Phosphorus Pentoxide P ₂ O ₅			73	73	73	200		140									С				В				A		A				С	
Phosphorus Trichloride PCI ₃					С	200	300		С	С	С			Α											A		A	А			С	
Photographic Solutions			185	150	140					100	100	185								С					Α		Α					
Phthalic Acid C ₆ H ₄ (COOH) ₂					73	200			С	140	С	140	550	Α	A	A			В	В	С		В		A	A	A	В		А		A
Picric Acid C ₆ H ₂ (NO ₂) ₃ OH	10%	С	140	170	170	73		140	С	70	70	140			С	С	С	С	С	С	С	С	С	В	А		A	С		А	С	С
Pine Oil									70		С	70			С	С	В		В	В	В		В	Α	Α	Α	Α	Α				-
Plating Solutions (Brass)			185	180	140	200	300	70			100	70																				

CHEMICALS	N	MAX		STICS (IPER/		E°F				L MA Max.													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Plating Solutions (Cadmium)			185	180	140	200	300	70			100	70																				
Plating Solutions (Chrome)			210	180	140	200	300				160														А		А					
Plating Solutions (Copper)			210	180	140	200	300	70			160	70																				
Plating Solutions (Gold)			185	180	140		300	70			125	70																				
Plating Solutions (Lead)			210	180	140	200	300	70	70		70	70																				
Plating Solutions (Nickel)			210	180	140	200	300	70				70		Α		С		С							A		A*					С
Plating Solutions (Rhodium)			185	180	140	200	300					70																				
Plating Solutions (Silver)			185	180	140	200	300	70			70	70													А		A				Α	
Plating Solutions (Tin)			210	180	140	200	300	100				140															A	А				
Plating Solutions (Zinc)			185	180	140	200	300	70				70									В											
Polysulfide Liquor							300	70	70	70	70	100			С	С	С	С	В	В			В		В		В	В				С
Polyvinyl Acetate (C ₄ H ₆ O ₂)						275	350	70	70	70	70	70			В	В	В		А	A	С		A	В	В	В	В	В				
Potash															See	Potas	sium (Carbor	nate													
Potassium Alum ALK(SO ₄) ₂ •12H ₂ O					140	280	400	210	180	200	160	200																				
Potassium Aluminum Sulphate AIK (H ₂ SO ₄) ₂					140	280	400	210	180	200	160	200				В		С			С			В	А		А	A			В	В
Potassium Amyl Xanthate C ₆ H ₁₁ OS ₂ K					73																											
Potassium Bicarbonate KH ₂ CO ₃	Sat'd.		73	170	140	200	400	170	70	200	160	200	275								А				А		A				Α	
Potassium Bichromate K ₂ Cr ₂ O ₇	Sat'd.				140	230	400	170	180			300	В	Α		Α		В			В			В	А		A				А	
Potassium Bisulfate KHSO ₄					140	275	400	170	180	140	140	200		Α	В	В	В		С	С	С	С	С		A		A	С				
Potassium Bromate KBrO ₃				180	140	275	400		180	140	140	250							С	A	А		A		А		А					
Potassium Bromide KBr				180	140	280	400	170	180	200	160	200	275	Α	В	В	В		С	С	С				А		A	А				
Potassium Carbonate K ₂ CO ₃		70		180	140	280	400	170	180	200	160	200	550	Α	В	В	В	В	A	A	А	Α	A	А	A	A	A	А	A			В
Potassium Chlorate KCIO ₃ (Aqueous)				180	140	200	400	140	B to 70	140	100	140		С	В	В			А	A	Α	Α		Α	A	A	А	A	Α			В
Potassium Chloride KCI			185	180	140	280	400	210	180	200	160	200				В	А	Α	В	В	В	В	С	В	В	В	Α	Α	А	A		A
Potassium Chromate K ₂ CrO ₄					140	280	400	170	140	70	70	200		С	Α	Α	В		В	В	В		В		А	A	Α	Α				
Potassium Cyanide KCN			185		140	280	400	140	180	200	160	185			С	С	С	С	В	В	В	В		А	А	А	А	А		А	С	С

CHEMICALC	Z	MAX		STIC:	s at Atur	E°F				IL MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	Ь	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Potassium Dichromate K ₂ Cr ₂ O ₇	Sat'd.		185		140	280	400	170	180	200		300	275	С	В	В	С		В	В	С			Α	А	А	А	А				
Potassium Ethyl Xanthate KS ₂ COC ₂ H ₅					73																											
Potassium Ferricyanide K ₃ Fe(CN) ₆					140	280	400	140	70	200	150	140	550		С	С			В	В	С				А		А	А			С	
Potassium Ferrocyananide K ₄ Fe(CN) ₆ •3H ₂ O					140	280	400	140	70	200	150	140	550		В	В	С	С	С	С	С			В	A		А	Α			С	С
Potassium Fluoride KF					140	275	400	140	180			250		А											А		A	A				
Potassium Hydroxide KOH	25%	140	180	180	140	С	300	140	В	140	160	С	275	Α	С	С	С		В	В	В	В		Α	А	А	A	А			С	
Potassium Hypochlorite KCIO		С	180	С	140	200	400	С	C to 70	70		70			С	С					С				A		А	С				
Potassium lodide KI				73		250	400	140	100	140	160	180		А	В	В					В	В			А		А	Α				
Potassium Nitrate KNO ₃					140	280	400	210	180	140	140	250	275	С	А	А	В	В	В	В	В	В		А	A	А	А	А	А	А		А
Potassium Perborate			170	170	140	275	400		70		70			Α																		
Potassium Perchlorate KCIO ₄					140	200	200	140	С	150		150																				
Potassium Permanganate KMnO ₄	10%			150	140	250	400	210	С	100	100	140			В	В			А	А	A			Α	A	А	А	А	А			
Potassium Permanganate KMnO ₄	25%			150	73	250	400	140	С	100	100	140			В	В			A	А	A			A	A	A	A	A	A			
Potassium Persulfate $K_2S_2O_8$					140	125	400	210	С	200	140	200																				
Potassium Sulfate K ₂ SO ₄				180	140	280	200	210	140	140	140	250		Α	А	А	В	В	А	А	А	А	В	Α	А	А	A	А	А	А		А
Potassium Sulfide K ₂ S						275	300		100		70	100	550		С	С	С	С	С	С	С	В		В	В	В	В	С		А		С
Potassium Sulfite K ₂ SO ₃ •2H ₂ O							300	140	70		70	200			В	В	В		С	С	С				А		A	В				
Potassium Tetraborate K ₂ B ₄ O ₇ •8H ₂ O					140	275	400	170	180	140	140	200		Α						А	A		A		А		Α					
Potassium Tripolyphosphate $K_5P_3O_{10}$							300		70		70	100		Α			В		А		А	А			А		А	А			С	
Propane C_3H_8			73		140	280	300	С	70	B to 70	70	70	550	Α	А	A	A	А	А	А	А	А		A	А	А	А	А	А	А	А	A
Propargyl Alcohol HC:CCH ₂ OH		С		140	100	140		140		140	С	140																				
Propionic Acid CH ₃ CH ₂ CO ₂ H		С							140	70	С														A		A					A
Propyl Acetate C₃H₁OOCCH₃						100	140	B to 70	С	С	С	С	550					А			A			A	A	А	А	A	А		А	
Propyl Alcohol CH ₃ CH ₂ CH ₂ OH		С		140		140	350	140	140	140	140		550		А	А	А	A	А	А	А	А		Α	А	А	А	A	А	А	A	A
n-Propyl Bromide CH ₃ CH ₂ CH ₂ Br							300	B to 70			70	70			В	В	В		В	В	В				А		А	В				
Propylene Dichloride CH₃CCICHCI					С	200		С	С		С	B to 70									А							А				

CHEMICALS	N	MAX	PLA K. TEN	STICS IPER/		E°F				L MA													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Propylene Glycol CH ₃ CHOHCH ₂ OH	<25%	С	180	140	С	150	300	70	180	70	100	140	550	Α	B to 70	B to 70		B to 70			B to 70				A to 140			B to 70		B to 70	B to 70	B to 70
Propylene Glycol CH₃CHOHCH₂OH	<25%	С	С	140	С	150	300	70	180	70	100	140	550	Α	B to 70	B to 70		B to 70			B to 70				A to 140			B to 70		B to 70	B to 70	B to 70
Propylene Oxide CH3CHCH2O					С	С	150	70	С	С	С	С									А				А		А					
n-Propyl Nitrate C ₃ H ₇ NO ₃							200	70	С	С	С	С							А	A			A		А		А					
Pyridine <u>N(CH)₄CH</u>				73	С	С		B to 70	С	С	С	С	С		В	В			В	В	В		В	С	В		А	В				
Pyrogallic Acid C ₆ H ₃ (OH) ₃					73	150	150		70		70				А	А			А	A	A		A	А	A	А	A	A	Α	A		
Pyrrole CHNH(CH) ₂ CH								С	С	С	С	С			В	В			В	В	В		В		В		В	В				
Quinone C ₆ H ₄ O ₂								100		С		С							А	А			А		А		А					
Rosin							200		70	70	70	100			С	С			С	С	С		С	Α	А	Α	Α	Α				
Salicylaldehyde C₀H₄OHCHO					С	125	200	70	70			70																				
Salicylic Acid C ₆ H ₄ (OH)(COOH)					140	200	300	210	С	70	С	185			В	В			С	С	С		С		A		Α	В				
Selenic Acid H ₂ SeO ₄					140	150			70	70	70																					
Silicic Acid SiO ₂ •nH ₂ O					140		400	140	100	140	140	200																				
Silicone Oil			150	150	73	250	350	140	140	140	70	185	550	Α	А	А	Α	Α	Α	A	Α	Α	A	А	А	Α	Α	Α	Α	Α	Α	Α
Silver Chloride AgCI														Α	С	С	С	С	С	С	С		С	С	С	С	A to 70	Α				С
Silver Cyanide AgCN			185		140	280	350	140	С		70	140			С	С	С	С	С	С	С		С		A to 100		A to 70	А				С
Silver Nitrate AgNO ₃		70	185	180	140	280	350	210	140	200	160	250	550	Α	С	С	С	С	С	С	С		С	В	А		А	С				С
Silver Sulfate Ag ₂ SO ₄		70			140	250	350	170	140			200		Α																		
Soaps		70	185	73	140		400	210	180	140	140	250	550		В	В	Α		В	В	В		В	Α	Α	Α	Α	В		Α		
Sodium Acetate NaC ₂ H ₃ O ₂	Sat'd.		185	180	140	280	400	170	С	70		С	275		А	Α	В		В	В	С		В	В	А		А	А		А		
Sodium Alum AINa(SO ₄) ₂ •12H ₂ O					140	280		170	180	140	140	210									С										С	
Sodium Aluminate NaAlO ₂	Sat'd.						300	200	180	140	140	200	275		С	С	В		В	В	А		В		А		A	A		A		
Sodium Benzoate C ₆ H ₅ COONa			140	170	140	280	300	210	140			200	550															Α				
Sodium Bicarbonate NaHCO ₃		70	185	180	140	280	400	250	180	200	160	300	550		А	А	В	В	А	А	С		А	А	А	А	А	Α	Α	А		А
Sodium Bichromate Na ₂ Cr ₂ O ₇ •2H ₂ O	Sat'd.		140	140	140	250	400	140	140	70	70	200	275	С	С	С								А	А	A	А	А				
Sodium Bisulfate NaHSO ₄		70		180	140	280		200	180	100	140	250			С	С	С	С	С	С	С		С	В	А		A	A				С

OUENION C	Z	MAX		STIC:	s at Atur	E°F				L MA													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	ф	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Sodium Bisulfite NaHSO ₃			185	180	140	280	400	200	180	200	140	250	550		В	В			С	С	С		С		A		A	С		A		
Sodium Borate (Borax) Na ₂ B ₄ O ₇ •10H ₂ O	Sat'd.			73			300	140	70	100	100	140	550	А	А	А			В	В			В	Α	А	А	А	А				
Sodium Bromide NaBr	Sat'd.		180	180	140	280	300	210	70		70	250	275	Α	В	В			С	С	С		С		А		А	Α				
Sodium Carbonate Na ₂ CO ₃		70	185	180	140	280	400	140	140	140	140	300	550		А	А	В	В	А	А	А	А	А		А	А	А	Α	В	A		С
Sodium Chlorate NaCIO ₃	Sat'd.			180	73	250	350	B to 140	B to 70		B to 140	100			Α	А	С		В	В	В		В	В	А	А	А	С				
Sodium Chloride NaCl			210	180	140	280	350	140	140	100	160	200			В	A	A	Α	В	В	В	В	С	А	В	В	В	В	A	A	А	А
Sodium Chlorite NaCIO ₂	25%		73		С	250	200	С	С	140		С		С																		
Sodium Chromate Na ₂ CrO ₄ •10H ₂ O						200		70	70		70	70		С	А	А			В	В	В		В	А	A	A	A	A				
Sodium Cyanide NaCN			185	180	140	280	350	140	140	140	140	140		200	275	С	С	С	С	А	A	А	A		А	А	A	A	Α			С
Sodium Dichromate Na ₂ Cr ₂ O ₇ •2H ₂ O	20%		185	180	140	200	300	140	С	200	С	200		С	С	С	С		В	В	В				A		A	В				
Sodium Ferricyanide Na ₃ Fe(CN) ₆ •H ₂ O	Sat'd.		140	140	100	275	350	140	70			140			С	С			С	С					A		Α					
Sodium Ferrocyanide Na ₄ Fe(CN) ₆ •10H ₂ O	Sat'd.		185		140	275	350	140	70			140													A		А	А				
Sodium Fluoride NaF			140	185	140	280	350	140	70	140	70	140	275	Α	А	А	В		С	С	С				A		А	Α				
Sodium Hydroxide NaOH	<10%	140	210	180	140	100	400	180	140	200	160	С	275	Α	А		A			А	A		В	Α	A	А	A	Α	A	А	С	
Sodium Hydroxide NaOH (Caustic Soda)	30%	70	210	180	140	С	350	140	100	140	160	С	275	А	A		В			В	В		В	А	A	А	Α	А			С	
Sodium Hydroxide NaOH	50%	70	210	180	140	С	350	140	С	140	160	С	275	Α	В	С	С	С	В	В	В	В	В	Α	А	А	А	А			С	В
Sodium Hydroxide NaOH	70%	С	140	180	140	С	350	70	С	100	100	С		Α	С	С	С	С	В	В	В	В	В	Α	A	А	A	Α			С	В
Sodium Hypochlorite NaOCI•5H ₂ O	5%	С	185	B to 100	73	275	350	70	С	150	С	185	С		С	С	С	С	С	С	С	С	С	С	А		А	А		А	С	С
Sodium Hypochlorite NaOCI•5H ₂ O	Sat'd.	С	185	С	73	B to 200	350	С	С	150	С	140	С		С	С	С	С	С	С	С	С	С	С	A		A	Α		A	С	С
Sodium Iodide NaI						275				140	160			Α																		
Sodium Metaphosphate (NaPO ₃)n				73		280		70	70	70		70		А	С	С	С		С	С	С				A		A	В				
Sodium Nitrate NaNO ₃	Sat'd.		185	180	140	280	400	210	140	140	140	225	275	Α	А	A	В	В	А	А	А	А	A	Α	A	А	A	Α	В	A		В
Sodium Nitrite NaNO ₂					140	280	400	170	С	140	140	200			А	A			В	В	В				А		А	А				
Sodium Palmitate CH ₃ (CH ₂) ₁₄ COONa	5%					250	350																									
Sodium Perborate NaBO ₂ •H ₂ O ₂ •3H ₂ O				73	140		350	70	70	70	70	70	275	Α	С	С			В	В	В			А	A	А	A	Α		А		

CHEMICALS	N	MAX		STICS IPER/		E°F				L MA MAX.													MET	ALS								
AND FORMULA	CONCENTRATION	ABS	CPVC	Ъ	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE IRON	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Sodium Perchlorate NaClO ₄		170	170		140	250	350		B to 70																							
Sodium Peroxide Na ₂ O ₂					140	200	250	140	B to 70	200	70	185		С	С	С	С	С	С	С	С			Α	А	А	А	А		В		В
Sodium Phosphate NaH ₂ PO ₄	Acid			180		280	400	170	140	200	140	200	550	Α	В	В	В	В	В	В	В	Α	В	Α	А	А	А	В		А		В
Sodium Phosphate NaH ₂ PO ₄	Alkaline			180		280	400	170	140	200	140	200	550	Α	В	В	В	В	В	В	В	Α	В	Α	А	А	А	В		A		В
Sodium Phosphate NaH ₂ PO ₄	Neutral			180		280	400	170	140	200	140	200	550	А	В	В	В	В	В	В	В	Α	В	А	А	A	А	В		А		В
Sodium Silicate Na2SiO ₃				180		280		200	140	200	140	200	550		С	С	В		А	A	Α		А	Α	А	A	А	Α	А	А		
Sodium Sulfate Na ₂ SO ₄	Sat'd.	70	185	150	140	280	400	140	140	140	140	200	275	А	Α	А	В	В	A	A	А	Α	А	Α	А	А	A	А	A	A		A
Sodium Sulfide Na ₂ S		70	185	150	140	280	350	140	180	200	140	200	550		С	С	С	С	В	В	С	В	В	Α	А	Α	А	А				С
Sodium Sulfite Na ₂ SO ₃		70	185	180	140	280	350	140	140	140	140	200			А	А	С		В	В	В		В	В	А	Α	A	С		A		
Sodium Thiosulphate NaS ₂ O ₃ •5H ₂ O				150	140	280	350	200	140	200	160	200	550		В	В	С		С	С	С		С		А		А	Α			Α	
Sour Crude Oil					140	280		С	С	70	С	200			С				A	Α	Α		В	А	А	Α	Α	А	А	Α		
Soybean Oil						250	400	С	140	200	70	250			А	Α	В		Α	Α	В	Α	Α	Α	Α	Α	Α	А	Α			
Stannic Chloride SnCl ₄			185		140	280	350	100	140	70	С	200	275	Α	С	С	С	С	С	С	С	С	С	С	С	С	A	С	С			С
Stannous Chloride SnCl ₂	15%		185		140	280	350	70	140	200	160	200		Α	С	С	С	С	С	С	С	С	С		А		А	С				
Starch					140	200	300	170	180	200	160	200			В	В	В	В	В	В	В		В	Α	Α	Α	Α	Α				
Steam (Low Pressure)						280	400	С	С	С	С	С	550	Α	А	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Steam (Medium Pressure)							400	С	С	С	С	С			А	А	Α	Α	A	Α	Α	Α	Α	А	Α	Α	Α	В		Α	В	Α
Steam (High Pressure)							С	С	С	С	С	С			С	С	С	С	С	В	Α	С	В	Α	А	Α	Α	С		Α	С	С
Stearic Acid CH(CH ₂) ₁₆ COOH			185	73	140	275	350	С	140	70	70	100	550	Α	А	Α	С	В	С	С	С	В	С	Α	А	А	А	А		А		А
Stoddard's Solvent						280		С	140	С	С	185			А	А			Α	Α	Α		Α		Α	Α	Α	Α	Α	Α	Α	
Styrene (C ₆ H ₅ CHCH ₂)n						180	350	С	С	С	С	100	275		В	В	В		В	В	В		В		А		А	А		A		
Succinic Acid CO ₂ H(CH ₂) ₂ CO ₂ H				150	140	150	200	70	70			70			А	Α			A	A	Α		А	Α	А	A	A	Α	А	А		
Sugar C ₆ H ₁₂ O ₆						275	350	140	100	140	140	200			С	С				В	С		В	Α	А	A	A	Α				
Sulfamic Acid HSO ₃ NH ₂	20%			180	140	С		С	С	70	70	С			В	В	В		С	С	С		С		А		А	В				А
Sulfate Liquors (Oil)				73			200	70	70			70			С	С	С	С	В	А			А		Α		А	Α				С
Sulfite Liquors	6%				140		350	140	70	70	70	140									С	В			Α		Α					
Sulfur S				С	140	250	350		С	70	70	250	275	А	С	С	С	С	В	В	С	В	В	В	А		А	А		А	С	С
Sulfur Chloride S ₂ Cl ₂				С		73	350	С	С	70	С	70		A	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С		С	С

	_	MA		STIC:	S AT ATUR	E °F				L MA MAX.													MET	ALS								
CHEMICALS AND FORMULA	CONCENTRATION	ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON	ALUMINUM BRONZE	BRASS	GRAY IRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Sulfur Dioxide SO ₂	Dry		С	73	140	175	350	70	С	200	С	100	550	Α	А	В	А	А	А	А	А		А	А	А	А	A	А	А	A	А	А
Sulfur Dioxide SO ₂	Wet		С	73	73	150		140	С	200		140		Α	С	В	В	С						С	А	С	А	А		А	В	С
Sulfur Trioxide SO ₃					140	С		70	С	С	С	140		С	С			С						С	В	В	А	А		А		С
Sulfuric Acid H ₂ SO ₄	Up to 30%	100	210	180	140	250	250	140	С	100	100	250		Α	С	С	С	С	С	С	С	С	С	С	А	В	А	А	С	Α		С
Sulfuric Acid H ₂ SO ₄	50%	70	210	150	140	250	250	70	140	150	С	250	С	Α	С	С	С	С	С	С	С	С	С	С	А	С	А	А	С	А		С
Sulfuric Acid H ₂ SO ₄	60%	С	210	150	140	250	250	С	С	150	С	250	С	Α	С	С	С	С	С	С	С	С	С	С	В	В	А	В	С	Α	С	С
Sulfuric Acid H ₂ SO ₄	70%	С	210	120	140	200	200	С	С	150	С	200	С	212	С	С	С	С	С	С	С	С	С	С	В	С	А	С	С	А	С	С
Sulfuric Acid H ₂ SO ₄	80%	С	180	73	140	200	200	С	С	150	С	180	С	212	С	С	С	С	С	С	С	С	С	С	С	С	A	С	С	Α	С	С
Sulfuric Acid H ₂ SO ₄	90%	С	150	С	100	200	200	С	С	70	С	160	С	212	С	С	С	С	С	С	С	С	С	С	С	С	А	С	С	А	С	С
Sulfuric Acid H ₂ SO ₄	93%	С	140	С	100	200	200	С	С	70	С	160	С	160	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С	А	С	С
Sulfuric Acid H ₂ SO ₄	94%	С	140	С	100	150	200	С	С	С	С	160	С	160	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С	А	С	С
Sulfuric Acid H ₂ SO ₄	95%	С	135	С	100	150	200	С	С	С	С	160	С	B to 160	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С	A	С	С
Sulfuric Acid H ₂ SO ₄	96%	С	130	С	100	150	200	С	С	С	С	160	С	С	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С	В	С	С
Sulfuric Acid H ₂ SO ₄	98%	С	125	С	С	150	200	С	С	С	С	160	С	С	С	С	С	С	С	С	С	С	С	С	С	С	В	С	С	В	С	С
Sulfuric Acid *H ₂ SO ₄ •ySO ₃	Fuming	С	С	С	С	С	200	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	В	С	В	С	С		С	С
Sulfurous Acid H ₂ SO ₃	Sat'd.	С	180	140	140	210	350	75		150	С	100	275	Α	С	С	С	С	С	С	С	С	С	В	A	А	A	Α	С	A		С
Surfactants Non-Ionic		С	С	100	С							B to 125																				
Tall Oil					140	280	250	С	140	С	B to 70	70			В	В	В		В	В	В		В	А	A	A	А	В		A		
Tannic Acid C ₇₆ H ₅₂ O ₄₆	10%	С	185	180	140	225	250	70	100	100	100	100			A	Α			В	В	С	В	В	В	A	А	А	А		А		
Tanning Liquors			185		140				70	70	70	200			A	A			В						Α		Α				Α	
Tar						250	250	С	С	70	70	185	275		Α	Α	Α	A	А	Α	Α	Α	Α	Α	Α	Α	Α	Α		Α	Α	Α
Tartaric Acid HOOC(CHOH)₂COOH				150	140	250	250	С	70	200	70	70	275	Α	А	Α	С	С	С	С	С	С	С	A	A	A	A	A		Α		В
Terpineol C ₁₀ H ₁₇ OH					С			С	70	С	С																					
Tetrachloroethane CHCl ₂ CHCl ₂						250	400	С	С	С	С	70													А		А					
Tetrachloroethylene C ₁₂ C:CCI ₂		С				275	350	С	С	С	С	70																				
Tetraethyl Lead Pb(C ₂ H ₅) ₄					73	280	350	С	70	С		70	275		А	А				В	В		А				A	Α				

CHEMICALS AND FORMULA	CONCENTRATION	MAX		STICS IPER/		E℉	SEAL MATERIALS AT MAX. TEMP °F									METALS																
		ABS	CPVC	ЬР	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM BRONZE	BRASS	GRAYIRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOYC	ALUMINUM	COPPER
Tetrahydrofuran C ₄ H ₈ O			С	С	С	С		С	С	С	С	С	275																			
Tetralin C ₁₀ H ₁₂							200	С	С		С	С																				
Tetra Sodium Pyrophosphate NaP ₂ O ₇ •10H ₂ O					140									A																		
Thionyl Chloride SOCI ₂					С				С		С		275	А																		
Thread Cutting Oils					73	200	350	С	70			70			A				Α	A	A			A	Α	Α	A		Α	Α	Α	
Titanium Tetrachloride TiCl ₄					С	150		С		С	С	185	275	А	С	С					С				В		В	В				
Toluene (Toluol) Ch ₃ C ₆ H ₅		С	С	С	С	175	200	С		С	С	70	275		А	Α	А	Α	A	A	A	Α		Α	А	A	A	A	А	A	А	A
Tomato Juice				180		200	350	200	С	С	70	200			В				С	С	В				Α	Α	A	Α			Α	
Transformer Oil				120	140		300	С	140		С	140	550	Α	А					Α	Α				Α	Α	Α	Α		Α	Α	
Transformer Oil DTE/30							300	С	140	С	С		550	А	А					А	А				А	A	А	Α		А	А	
Tributyl Citrate C ₁₈ H ₃₂ O ₇					73																											
Tributyl Phosphate (C ₄ H ₉) ₃ PO ₄					С	73	300	70	С	С	С	С			В	В	В		А	А	A			В	А		А	А				
Trichloroacetic Acid CCI ₃ COOH				150	140	125	200	70	B to 70	70	70	С		Α	В	С			С	С	С			С	В		В					
Trichloroethylene CHCI:CCI ₂		С	С	С	С	280	200	С	С	С	С	185	275	А	А	А	А	Α	В	В	В			А	A	A	А	А	Α	А	A	А
Triethanolamine (HOCH ₂ CH ₂) ₃ N		70			73	125		70	70	150	70	С	275		С	С			С	С	С	С		С	A		A	А				
Triethylamine (C ₂ H ₅) ₃ N					140	125			140		70	200				А	А												А			
Trimethylpropane (CH ₂ OH) ₃ C ₃ H ₅				73				180	200	160	300																					
Trisodium Phosphate N ₃ PO ₄ •12H ₂ O		70	185	185	140	280	350	70	70	185	70	185	550	А	С	С			В	В		Α			А	А	А	А				
Tung Oil								С	100	100	100	100			В	В	В		В	В	В			В	Α	Α	Α	Α		Α		
Turpentine			73	С	140	280		С	70	С	С	150	550		А	Α	А	Α	Α	Α	Α	Α		Α	Α	Α	Α	Α	Α	Α	Α	Α
Urea CO(NH ₂) ₂			185	180	140	250		210	140	140	140	185	550			В	В			С	С	С				A	A	В	С			С
Urine				180	140		400	210	140	140	140	70							С	С	С			Α	Α	Α	A	Α				
Varnish						250	350	С	70		С	70			A	Α	В	В	С	С	С			В	Α	Α	Α	Α		Α		Α
Vaseline (Petroleum Jelly)				150	С		300	С	140	70	140	70	550						А	А	А			Α	А	A	А	A	Α	A		
Vegetable Oil		С	С	100	С	275	300	С	70	70	70	200	550		А	А				Α	Α			А	Α	Α	A	Α	Α		Α	
Vinegar		73	180	180	140	225	300	180	С	200	70	С	550		С	С	С	С	С	С	С			Α	Α	Α	А	Α		Α	С	В
Vinyl Acetate CH ₃ COOCH:CH ₂				С	С	250	350	70	70	С	С	С	275		В	В		В	В	В				Α		А	В					
Water, Acid Mine H₂O			185		140	230	400	200	180	180	160			А	С	С	С	С	С	С	С	С	С	A	A	A	А	В	В	В	С	С

CHEMICALC	CONCENTRATION	PLASTICS AT MAX. TEMPERATURE *F						SEAL MATERIALS AT MAX. TEMP °F									METALS															
CHEMICALS AND FORMULA		ABS	CPVC	ď	PVC	PVDF	TEFLON	EPDM	BUNA-N	HYPALON	NEOPRENE	FLUORO- CARBON	PEEK	GRAPHITE	BRONZE (85% Cu)	SILICON BRONZE	ALUMINUM	BRASS	GRAYIRON	DUCTILE	CARBON STEEL	3% NI/IRON	NI PLATED DUCTILE	400 SERIES S.S.	316 S.S.	17-4 PH	ALLOY 20	MONEL	STELLITE	HASTELLOY C	ALUMINUM	COPPER
Water, Deionized		70	210	180	140	280	400	200	70		160			А	В	В	С	С	С	С	С		С	В	А	А	А	А		А	Α	Α
Water, Distilled H ₂ O		70	210	180	140	280	400	250	180	200	160			А	А	А	В	В	С	С	С	В	С	А	A	А	А	А	В	А	Α	А
Water, Potable H ₂ O		70	210	180	140	280	400	250	180	200	160		550	А	А	А	А	А	В	В	В	А	В	А	А	А	А	А	А	A	В	Α
Water, Salt H ₂ O		70	210	180	140	280	400	250	180	200	160			А	В	В	В	С	С	С	С	В	С	В	А	А	А	А	В	A	С	В
Water, Sea H ₂ O		70	210	73	140	280	400	250	180	200	160			А	В	В	В	С	С	С	С	В	С	В	В	А	А	А	С	A	С	В
Water, Soft H ₂ O		70				200	400	250	180	200	160			A	А	А	А	В	С	С	В	В	С	A	А	Α	А	А	А	Α	А	А
Water, Waste H ₂ O		70	185	180	140	230	400	200				70		А	В	В	В	В	В	В	В	В	В	В	А		А	А		Α	В	В
Whiskey			185	150	140	200	350	200	140	140	140	140			С	С	В		С	С	С		С	В	Α		Α	А		Α		Α
White Liquor			185		140	230			140	140	140		550		С	С	С		С	С	С		С		Α		А	А				
Wine			185	150	140	200	350	170	140	140	140	140	550		С	С			С	С	С		С	В	Α		А	А				
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂		С	С	С	С	200	350	С	С	С	С	150	275	А	А	А	А	А	А	А	А	А	А	А	А	Α	А	А	А	Α	Α	А
Zinc Acetate Zn(C ₂ H ₃ O ₂) ₂ •2H ₂ O						250		180	70	70	160	70			С	С	С	С	С	С	С		С		А		Α	Α				
Zinc Carbonate ZnCO ₃									100	100			275		В	В									В		А	В				
Zinc Chloride ZnCl ₂			185	180	140	280	400	180	70	200	160	200	275	А	С	С	С		С	С	С		С	С	В	В	А	А				
Zinc Nitrate Zn(NO ₃) ₂ •6H ₂ O					140	280		180	140	200		200	275	А											А	Α	Α					
Zinc Sulfate ZnSO ₄ •7H ₂ O			185	180	140	280	400	180	140	200	140	200	275	А	С	С	В		С	С	С	В	С	А	A	А	А	Α		Α		Α