Em todas as enzimas o sítio ativo (escolha a verdadeira, só uma):				
1 Contem o sítio de ligação do substrato				
2 Considerando a sequencia primaria, é continuo ao lugar de ligação do substrato				
 Considerando a estrutura primaria, localiza-se numa região distante da zona de ligação ao substrato 				
4Contem um ião metálico como grupo prostético				
5 Contem os resíduos que estão envolvidos na reação de catálise.				
Selecione uma opção de resposta:				
O 3				
O 4				
O 2				
O 1				
Quando adicionado a uma reação um catalisador (escolha a verdadeira, só uma):				
Quando adicionado a uma reação um catalisador (escolha a verdadeira, só uma): 1 Subministra o calor de formação				
1 Subministra o calor de formação				
 Subministra o calor de formação Altera a constante de equilibro Keq para a formação de produtos. 				
 Subministra o calor de formação Altera a constante de equilibro Keq para a formação de produtos. Aumenta a velocidade al qual o equilíbrio e atingido. 				
 Subministra o calor de formação Altera a constante de equilibro Keq para a formação de produtos. Aumenta a velocidade al qual o equilíbrio e atingido. Troca o ordem da reação. 				
 Subministra o calor de formação Altera a constante de equilibro Keq para a formação de produtos. Aumenta a velocidade al qual o equilíbrio e atingido. Troca o ordem da reação. Modifica a ΔG₀ (energia livre de Gibbs standard). 				
 Subministra o calor de formação Altera a constante de equilibro Keq para a formação de produtos. Aumenta a velocidade al qual o equilíbrio e atingido. Troca o ordem da reação. 				
 Subministra o calor de formação - Altera a constante de equilibro Keq para a formação de produtos. - Aumenta a velocidade al qual o equilíbrio e atingido. - Troca o ordem da reação. - Modifica a ΔG₀ (energia livre de Gibbs standard). Selecione uma opção de resposta:				
 Subministra o calor de formação - Altera a constante de equilibro Keq para a formação de produtos. - Aumenta a velocidade al qual o equilíbrio e atingido. - Troca o ordem da reação. - Modifica a ΔG₀ (energia livre de Gibbs standard). Selecione uma opção de resposta:				
 Subministra o calor de formação - Altera a constante de equilibro Keq para a formação de produtos. - Aumenta a velocidade al qual o equilíbrio e atingido. - Troca o ordem da reação. - Modifica a ΔG₀ (energia livre de Gibbs standard). Selecione uma opção de resposta: 1 5 				
 1 Subministra o calor de formação 2 Altera a constante de equilibro Keq para a formação de produtos. 3 Aumenta a velocidade al qual o equilíbrio e atingido. 4 Troca o ordem da reação. 5 Modifica a ΔG₀ (energia livre de Gibbs standard). Selecione uma opção de resposta: 1 5 4 				

Uma enzima pode facilitar a velocidade da reação da seguinte forma:

1.- Estabilizando o estado de transição

2.- Ligando-se fortemente com o substrato

3.- Ligando-se fortemente com o produto

4.- Evitando que o substrato mude seu estado de ionização

5.- Evitando que a reação siga o caminho reverso.

- 0 4
- 5
- 0 3
- 1
- 0 2

Considere o diagrama do fluxo de informação genética dos organismos vivos

Diga qual a resposta certa

1. Passo 1- Replicação Passo 2 - transcrição Passo 3 - tradução

2. Passo 1- transcrição Passo 2 - replicação Passo 3 - tradução

3. Passo 1 - Tradução Passo 2 - transcrição Passo 3 - Replicação

4. Passo 1- Transcrição Passo 2 - tradução Passo 3 - Replicação

5. Passo 1 - Replicação Passo 2 - tradução Passo 3 - transcrição

- a. 3
- b. 4
- c. 1
- d. 5
- e. 2

Considere os resultados da linearização de Lineweaver-Burk ($1/v = K_M/V_{max} \times 1/[S] + 1/V_{max}$) aplicada a dados obtidos para uma reacção enzimática que segue a cinética de Michaelis-Menten. As unidades de [S] são mM e as unidades de v_0 são $\mu M/mL^*$ min de produto formado

Diga qual o valor ou valores correctos

a. $V_{Max} = 0.1976 \, \mu M/ml^*min$

b. $V_{Max} \approx 5 \mu M/ml*min$

c. $K_M = 0,4062 \text{ mM}$

d. $K_M \approx 2 \text{ mM}$

Gráfico de Lineweaver-Burk

Selecione uma ou mais opções de resposta:

- a
- C
- ✓ d ✓

Quando adicionado a uma reação um catalisador (escolha a verdadeira, só uma): 1.- Subministra o calor de formação 2.- Altera a constante de equilibro Keq para a formação de produtos. 3.- Aumenta a velocidade al qual o equilíbrio e atingido.

4.- Troca o ordem da reação.

5.- Modifica a ΔG_0 (energia livre de Gibbs standard).

- 5

A medida da velocidade versus concentração de substrato em presença ou ausência de uma substância A deu os dados apresentados no gráfico.

A em um inibidor:

1.- Competitivo

2.- Acompetitivo

3.- incompetitivo

4.- Competitivo

[S] µM	Velocity in absence of A µ mol/min	Velocity in presence of A µ mol/min
2.5	0.32	0.20
3.3	0.40	0.26
5.0	0.52	0.36
10.0	0.69	0.56

Selecione uma opção de resposta:

3

_ 2

O 4

1 X

Na presença de um inibidor reversível competitivo a actividade da enzima altera-se porque:

- a. K_{M} aumenta e V_{Max} diminui
- b. K_{M} mantém-se e V_{Max} diminui
- c. K_M diminui e V_{Max} diminui
- d. K_M aumenta e V_{Max} mantém-se

- _ b
- O C
- _ a
- d

Em todas as enzimas o sítio ativo (escolha a verdadeira, só uma):

1.- Contem o sítio de ligação do substrato

2.- Considerando a sequencia primaria, é continuo ao lugar de ligação do substrato

3.- Considerando a estrutura primaria, localiza-se numa região distante da zona de

ligação ao substrato

4.-Contem um ião metálico como grupo prostético

5.- Contem os resíduos que estão envolvidos na reação de catálise.

Selecione uma opção de resposta:

3

1 X

0 4

_ 2

5

O complexo de pré-iniciação de síntese de proteínas em procariontes e composto por:			
a) Fatores de iniciação, mRNA, 30S subunit, 50S subunit, ATP			
b) Fatores de iniciação, mRNA, 30S subunit, GTP			
c) Fatores de iniciação, 30S subunit, 50S subunit, ATP			
d) Fatores de iniciação, mRNA, 50S subunit, GTP			
e) Fatores de iniciação, mRNA, 30S subunit, 50S subunit, GTP			
f) sem resposta			
Selecione uma opção de resposta:			
_ c)			
(b)			
a)			
d)			

Qual dos seguintes compostos / moléculas / complexos não é necessário na síntese de proteínas:
a) Ribossoma
b) peptidil transferase
c) spliceosoma
d) tRNA
e) metionina
f) sem resposta
Selecione uma opção de resposta:
• c) ✓
(b)
a)

Os aminoácidos de uma proteína podem-se determinar no DNA pela ordem de:			
a) rRNA			
b) tRNA			
c) Nucleotidos			
d) mRNA			
e) anticodões			
f) sem resposta			
Selecione uma opção de resposta:			
f)			
• c) √			
d)			
a)			
b)			

Quais dos seguintes processos definem melhor a técnica de espectrometria de massa com ionização MALDI:			
a) A amostra é atingida por um feixe de energia de Xenon			
b) A amostra é empurrada por um tubo capilar e o solvente evapora rapidamente			
c) A amostra e misturada com uma matriz, formando cristais que são bombardeados com um feixe laser.			
d) A amostra e aquecida e bombardeada com eletrões.			
e) A amostra e misturada com uma matriz, formando cristais que são bombardeados com um feixe de eletrões.			
f) Sem resposta			
Selecione uma opção de resposta:			
f)			
(b)			
⊙ c) ✓			
a)			
d)			
○ e)			

O número de subunidades do ribossoma numa célula humana é de:
a) 1
b) 2
c) 3
d) 4
e) 5
f) Sem resposta
Selecione uma opção de resposta:
(e)
(c)
b) ✓
(a)
d)

Porquê é muito difícil distinguir entre a leucina e a isoleucina com recurso a espectrometria de massa?			
a)	Por causa da forma do grupo lateral		
b)	Porque as duas tem os pKs dos grupos laterais idênticos		
c)	Porque as duas tem os pKs dos grupos carboxílicos e aminas muito parecidos		
d)	Porque as duas tem a mesma massa		
e) este	Porque a isoleuicina tem um carbono Beta que provoca problemas reoquímicos.		
f)	Sen Resposta		
Selecione uma opção de resposta:			
\bigcirc	f)		
•	c) ×		
\bigcirc	d)		
\bigcirc	b)		
\bigcirc	a)		
\bigcirc	e)		

Pergunta 9

Correta

Nota: 1,0 em 1,0

A síntese das proteínas tem início com um aminoácido. Qual?

- a) Ácido Glutâmico
- b) Metionina
- c) Triptofano
- d) Histidina
- e) Ácido Aspártico
- f) Sem resposta

Selecione uma opção de resposta:

- (a)
- (e)
- (d)
- _____f)
- b) **√**

Pergunta 10

Incorreta

Nota: -0,1 em 1,0

No DNA, qual é a razão que se mantêm constante numa mesma espécie?

- a) (A+G) / (T+C)
- b) (A+T) / (G+C)
- c) (A+C) / (U+C)
- d) (A+U) / (G+C)
- e) Sem resposta

- a) X
- _____e)
- _ c)
- (b)
- (d)

Uma das seguintes formas de ADN tem forma de hélice no sentido contrário das agulhas do relógio (para a esquerda). a) M-RNA b) T-RNA c) A-DNA d) Z-DNA e) sem resposta Selecione uma opção de resposta: e) d) 🗸 c) b) a)

× Teste 1 biomédica.pdf

...

Pergunta 5

Correta

Nota: 1,0 em 1,0

O centro ativo de uma enzima é B⁺ A⁻. Os aminoácidos são histidina e ácido aspártico. A que pHs a proteína está inativa?

- a) 10
- b) 5
- c) 4.5
- d) 8
- e) 2

f) sem resposta

Selecione uma ou mais opções de resposta:

- _ c)
- ✓ d) √
- a)
 √
- (b)
- √ e) √

Pergunta 6

Correta

Nota: 1,0 em 1,0

DNA Gyrase tem a função de:

- a) Evitar que a doble hélice do DNA desestabilize.
- b) Catalisa a adição de novos nucleótidos.
- c) Ajuda a colocar a DNA polimerase no seu lugar durante a replicação.
- d) Colocar os primers no seu lugar para que a DNA polimerase inicie o a replicação.
- e) Ajuda a leading strand durante o processo de replicação.
- f) Sem resposta

- (d)
- (b)
- e)
- f)
- a) **√**