1. BUILDING LOADS AS REQUIRED BY CODE:

Loads are in accordance to: 2012 IBC

Modified by: Massachusetts Building Code (CMR780)

Snow Lowell MA
Wind Lowell MA
Seismic Lowell MA

Construction Live Load: 20 psf Uniform Live Load: 100 psf

2.1 BUILDING VERTICAL LOADS:

	Ro	oof	1	st Floor
2.1. Dead Load (D)	26.0	psf	128	psf
2.2. Live Load (L)		psf	100	psf
2.3. Roof Live Load (Lr)	20.0	psf		psf
2.4. Snow Load (S)	31.5	psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)		psf		psf
2.7. Wind Load (W)	-23.0	psf		psf

Total / Service Load: 54.5 psf 228 psf

2.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

_	R	oof		1	st Floor
1. 1.4D	36.4	psf	1	79.2	psf
2. 1.2D + 1.6L + .5(Lr or S or R)	47.0	psf	3:	13.6	psf
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	70.1	psf	2.	53.6	psf
4. 1.2D + 1.0W + L + .5(Lr or S or R)	24.0	psf	1	53.6	psf
5. 1.2D + 1.0E + L + .2S	37.5	psf	2.	53.6	psf
6. 0.9D + 1.0W	0.4	psf	1:	15.2	psf
7. 0.9D + 1.0E	23.4	psf	1:	15.2	psf
·					

Controlling Load: 70.1 psf 313.6 psf

3.1 BUILDING LATERAL LOAD ON LONGITUDINAL DIRECTION: BRACED-FRAME

	Ro	of	1	st Floor
2.1. Dead Load (D)		psf		psf
2.2. Live Load (L)		psf		psf
2.3. Roof Live Load (Lr)		psf		psf
2.4. Snow Load (S)		psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)	20.8	psf	20.4	psf
2.7. Wind Load (W)	6.4	psf	12.9	psf
		_		_

Total / Service Load: 27.2 psf 33.3 psf

3.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

0.0	psf	0.0	psf
0.0	psf	0.0	psf
3.2	psf	6.4	psf
6.4	psf	12.9	psf
20.8	psf	20.4	psf
6.4	psf	12.9	psf
20.8	psf	20.4	psf
	0.0 3.2 6.4 20.8 6.4	0.0 psf 3.2 psf 6.4 psf 20.8 psf 6.4 psf	0.0 psf 0.0 3.2 psf 6.4 6.4 psf 12.9 20.8 psf 20.4 6.4 psf 12.9

Controlling Load: 20.8 psf 20.4 psf

4.1 BUILDING LATERAL LOAD ON TRANSVERSE DIRECTION: MOMENT-FRAME

	Ro	of	1:	st Floor
2.1. Dead Load (D)		psf		psf
2.2. Live Load (L)		psf		psf
2.3. Roof Live Load (Lr)		psf		psf
2.4. Snow Load (S)		psf		psf
2.5. Rain Load (R)		psf		psf
2.6. Seismic Load (E)	17.6	psf	17.0	psf
2.7. Wind Load (W)	9.8	psf	19.6	psf
				

Total / Service Load: 27.3 psf 36.6 psf

4.2 LOAD COMBINATIONS PER LRFD SPECIFICATIONS:

	R	oof		1st Floor	
1. 1.4D	0.0	psf	0.0	psf	
2. 1.2D + 1.6L + .5(Lr or S or R)	0.0	psf	0.0	psf	
3. 1.2D + 1.6(Lr or S or R) + (L or .5W)	4.9	psf	9.8	psf	
4. 1.2D + 1.0W + L + .5(Lr or S or R)	9.8	psf	19.	5 psf	
5. 1.2D + 1.0E + L + .2S	17.6	psf	17.	O psf	
6. 0.9D + 1.0W	9.8	psf	19.	5 psf	
7. 0.9D + 1.0E	17.6	psf	17.	O psf	
•					

Controlling Load: 17.6 psf 19.6 psf

Ana Gouveia 12/6/2014

Reference: Section

ASCE

7-10 Eq/Fig/Table/Notes

DEAD LOAD

3

Floor:			Roof					2nd		
	Item	Quantity	Units	Unit Weight	Weight	Item	Quantity	Units	Unit Weight	Weight
		(Area)		(ksf or klf)	(kip)		(Area)		(ksf or klf)	(kip)
						Concrete Slab	7776	sf	0.075	583
	Metal Deck	7776	sf	0.014	109	Metal Deck 18 g.a	7776	sf	0.014	109
	EPDM Membrane	7776	sf	0.001	8	Cladding	7776	sf	0.01	78
	Insulation	7776	sf	0.006	47	Partitions	7776	sf	0.01	78
	Mechanical Equipment	7776	sf	0.005	39	Mechanical Equipment	7776	sf	0.007	54
						Steel Structure	7776	sf	0.012	93
Subtotal	202			0.026	202	995			0.128	995
Cummulative	202				202	1198				1198

^{*}Unit Weights per ASCE 7-10

				Reference: Section	ASCE <i>Eq/Fig/Ta</i> l	7-10 ble/Notes	
N LOAD				7			
Exposure Factor	C _e =	0.90			Table	7-2	
Thermal Factor	C _t =	1.00			Table	7-3	
Importance Factor	I _s =	1.00			Table	1.5-2	
Ground Snow Load	ρ_g =	50.00	psf		Figure	7-1	
Flat Roof Snow Load	ρ_{f} =	31.50	psf		Eq	7.3-1	
				Reference:	ASCE	7-10	

Section *Eq/Fig/Table/Notes*

SEISMIC LOAD 12

Number of Floors:

2

Floor:			Roof					2nd		
	Item	Quantity	Units	Unit Weight	Weight	Item	Quantity	Units	Unit Weight	Weight
		(Area)		(ksf or klf)	(kip)		(Area)		(ksf or klf)	(kip)
						Concrete Slab	7776	sf	0.075	583
	Metal Deck	7776	sf	0.014	109	Metal Deck	7776	sf	0.014	109
	EPDM Membrane	7776	sf	0.001	8	Cladding	7776	sf	0.01	78
	Insulation	7776	sf	0.006	47	Partitions	7776	sf	0.01	78
	Mechanical Equipment	7776	sf	0.005	39	Mechanical Equipment	7776	sf	0.007	54
	Snow	7776	sf	0.0315	245	Steel Structure	7776	sf	0.012	93
Subtotal	447				447	995				995
Cummulative	447				447	1442				1442

Mass (kip*s^2/ft) 107 58

WIND LOAD ANALYSIS

				Reference:	ASCE	7-10
				Section	Eq/Fig/Table/	'Notes
1. BUILDING INFORMATIO	N RELATED TO WI	ND LOAD	ANALYSIS	26/27/28		
Mean roof height	H _{roof} =	30	ft	Height of heigh	est level of structur	e
Floor-Floor Height	h _n =	15	ft			
Building Length	L = W =	112 76	ft			
Building Width Number of Braces/Level	vv =	2	ft			
Number of Moment Frame	s/Level	2				
Training of Montener Fame		_				
2. WIND EXPOSURE, ROUG	SHNESS AND OCCU	JPANCY (CATEGORY	26.4		
Occupancy Category:		В			Table	1-1
Ground Surface Roughness	::	В				26.7.2
Exposure Category:		С				26.7.2
3. ENVIRONMENTAL CHAR	ACTERISTICS AND	FACTOR	S	26.5		
Wind Speed	V =	120	mph	26.5	Figure	26.5-1A
willa speed	V –	120	Шрп	20.3	rigure	20.3-1A
Zone A	P _{s30} =	22.8	psf		Figure	28.6-1
Zone C	P _{s30} =	15.1	psf		Figure	28.6-1
	a ₁ =	7.6	ft	.1*W	_	
	a ₂ =	12	ft	.4*H _{roof}		
	a =	7.6	ft	Min Value		
	2.a =	15.2	ft			
Weighted Average for P _{s30}	:					
Longitudinal		16.1	psf			
Transverse		16.6	psf			
4. DESIGN WIND PRESSUR	<u>E</u>			26.8		
Adjustment Factor	λ =	1.4			Figure	28.6-1
Aujustinent ractor	$K_{zt} =$	1.4		26.8	rigure	20.0-1
Design wind pressure,	P _{s-longitudinal} =	22.6	kip	20.0		
Design wind pressure,	P _{s-transverse} =	23.3	kip			
besign wind pressure,	' s-transverse =	23.3	кір			
5. LOAD APPLIED TO EACH	LEVEL			26.8		
Doof	г	42.0	Lite.		F:-	20.6.4
Roof	F _{u-longitudinal} =	12.9	kip		Figure	28.6-1
	$F_{u-transverse} =$	19.6	kip	26.8		

14.551 Advanced Steel Design Homework #3

Wind Load Analysis Moment and Braced-Frame

Ana Gouveia 12/6/2014

28.6-1 28.6-1

28.6-1 28.6-1

Level 1

 $F_{u-longitudinal} = 25.8$ kip $F_{u-transverse} = 39.1$ kip

6. LATERAL LOAD APPLIED TO BRACED AND MOMENT FRAME

		Roof	Level 1	
Braced Frame	(Longitudinal)	6.44	12.88	kip
Moment Frame	(Transverse)	9.78	19.57	kip

7. VERTICAL UPLIFT PRESSURES ON ROOF

	Zone E P _{s3}	0	-27.4	psf
	Zone F P _{s3}	0	-15.6	psf
	Zone G P _{s3}	0	-19.1	psf
	Zone H P _{s3}	0	-12.1	psf
Design wind pressure Zone	E, P	s	-38.36	psf
Design wind pressure Zone	F, F	s	-21.84	psf
Design wind pressure Zone	G, P	s	-26.74	psf
Design wind pressure Zone	Н, Р	s	-16.94	psf

7. UPLIFT PRESSURE (TRANSVERSE LOADING)

Area, Zone E 577.6 ft²
Area, Zone F 577.6 ft²
Area, Zone G 3678.4 ft²
Area, Zone H 3678.4 ft²
Total Roof Area 8512 ft²

Transverse

Weighted Uplift Pressure from Transverse

-22.96 psf

Wind Load

Wind Load Analysis Moment and Braced-Frame

8. UPLIFT PRESSURE (LONGITUDINAL LOADING)

 ft^2 Area, Zone E 851.2 ft^2 Area, Zone F 851.2 ft^2 Area, Zone G 3404.8 Area, Zone H 3404.8 ft^2

 ft^2 Total Roof Area 8512

Longitudinal

Weighted Uplift Pressure from Longitudinal -23.49

Wind Load

9. MAXIMUM UPLIFT PRESSURE

Controlling Uplift Pressure

-23.49 psf

psf

Largest Absolute Value

ASSUMPTIONS:

Building Frame System: Eccentrically braced steel frame

			Reference:	ASCE	7-10
1. SEISMIC GROUD MOTION VALUES			Section 11.4	Eq/Fig	/Table/Notes
Seismic Site Class:			11.4.2	Soil Properties / Ch. 20	
Maximum Considered Earthquak	e Spectral	Response:			
$S_s =$	0.250		11.4.1	Fig	22-1 / 22-4
S ₁ =	0.077		11.4.1	Fig	22-1 / 22-4
Adjusted MCE Spectral Response					
F _a =	1.200		11.4.3	Table	11.4-1
F _v =	1.700		11.4.3	Table	11.4-2
$S_{MS} = F_a S_s =$	0.300		11.4.3	Eq	11.4-1
$S_{M1} = F_v S_1 =$	0.131		11.4.3	Eq	11.4-2
Design Spectral Response Accele	ration Par	ameters:			
$S_{DS} = 2/3 S_{MS} =$	0.2		11.4.4	Eq	11.4-3
$S_{D1} = 2/3 S_{M1} =$	0.087		11.4.4	Eq	11.4-4
Design Response Spectrum:					
$T_{O} = 0.2 S_{D1}/S_{DS} =$	0.087	S	11.4.5		
$T_S = S_{D1}/S_{DS} =$	0.436	S	11.4.5		
Long Period Transition T _L =	6	S	11.4.5	Fig	22-15
T =	0.54	S	Fundamental Per	riod of Structure	
$S_a = if T < T_O : S_{DS}(0.4+0.6T/T_O) =$			11.4.5	Eq	11.4-5
if $T_O < T < T_S : S_{DS} =$			11.4.5		
if $T_S < T < T_L : S_{D1}/T =$	0.162		11.4.5	Eq	11.4-6
if $T > T_L : S_{D1} * T_L / T^2 =$			11.4.5	Eq	11.4-7
2. IMPORTANCE FACTOR AND O	CCUPANCY	CATEGORY	11.5		
Occupancy Category:	II			Table	1-1
Importance Factor:	1			Table	11.5-1
•					
3. SEISMIC DESIGN CATEGORY			11.6		
SDC based on short period:	В			Table	11.6-1
SDS based on 1-s period:	В			Table	11.6-2
SDC =	В		Maximum from va	lues above	
4. EQUIVALENT LATERAL FORCE	PROCEDU	RE	12.8		
R =	3.25		12.8.1	Table	12.2-1
Ω ₀ =	2		12.8.1	Table	12.2-1
C _D =	3.25		12.8.1	Table	12.2-1

Approximate Fundamental Period, Ta

C _t =	0.03	
x =	0.75	
h _n =	30	ft
$T_a = C_t h_n^{\ x} =$	0.385	S

Seismic Response Coefficient:

$$\begin{split} C_{Scalc} &= S_{DS}/(R/I) = & 0.062 \\ C_{Smax} &= \text{if T} <= T_L : S_{D1}/(T^*(R/I) = & 0.050 \\ &\text{if T} > T_L : S_{D1^*}T_L/(T^{2*}(R/I) = & \end{split}$$

$$C_{Smin} = \frac{0.01}{C_S} = 0.050$$

Seismic Base Shear:

Seismic Weight	W =	1652	kip
Seismic Base Shear	V =	82.4	kip

Vertical Distribution of Seismic Forces:

Lateral force per level $F_x = C_{vx}V$

$$C_{vx} = (w_x h_x^k)/(\sum w_i h_i^k)$$
$$k = 0.94$$

Horizontal Distribution of Seismic Forces:

$$V_x = \sum F_i =$$

Dependent on structure	Table	12.8-2
	Table	12.8-2
Height of heighest leve	el of structure	
12.8.2.1	Eq	12.8-7
12.8.1.1		
	Eq	12.8-2
	Eq	12.8-3
	Eq	12.8-4
Revised Sup. 2	Eq	12.8-5/12.8-6
12.8.1		
12.7.2		Table Below
12.8.1	Eq	12.8-1

12.8.3 Eq 12.8-11

Eq

12.8-13

Vertical Distribution Factor

12.8.3

12.8.4

Floor	Height	Weight	w _x h _x ^k	C _{vx}	F _x	V _x	Overturning Moment	Total Height
	(f+)	(kin)			(kin)	(kin)	(lein ft)	/f+)

							ivioment	Height
	(ft)	(kip)			(kip)	(kip)	(kip.ft)	(ft)
Roof	15	572	14090	0.504	41.5	41.5		30
						41.5		15
2nd	15	1081	13867	0.496	40.9	82.4	623	15
						82.4		0
Podium	0	0	0	0	0	82.4	1859	0
SUM	30	1652	27957	1	82.4	123.9		0

ASSUMPTIONS:

Building Frame System: Steel moment-resisting frame

				Reference: Section	ASCE <i>Eq/Fig</i>	7-10 /Table/Notes
1. SEISMIC GROUD MOTI	ON VAL	UES		11.4		
Seismic Site Class:		С		11.4.2	Soil Prone	rties / Ch. 20
Maximum Considered Ea	rthquak		Response:	11.4.2	30111000	11103 / 011. 20
	S _s =	0.250		11.4.1	Fig	22-1 / 22-4
	S ₁ =	0.077		11.4.1	Fig	22-1 / 22-4
Adjusted MCE Spectral R	_				J	•
	F _a =	1.200		11.4.3	Table	11.4-1
	F _v =	1.700		11.4.3	Table	11.4-2
S _{MS} =	$F_aS_s =$	0.3		11.4.3	Eq	11.4-1
	$F_vS_1 =$	0.131		11.4.3	Eq	11.4-2
Design Spectral Response			ameters:		•	
$S_{DS} = 2/3$		0.2		11.4.4	Eq	11.4-3
$S_{D1} = 2/3$	3 S _{M1} =	0.087		11.4.4	Eq	11.4-4
Design Response Spectru	m:				•	
$T_{O} = 0.2 S_{D}$	₁ /S _{DS} =	0.087	S	11.4.5		
$T_S = S_{D}$	₁ /S _{DS} =	0.436	S	11.4.5		
Long Period Transition	T _L =	6	s	11.4.5	Fig	22-15
	T =	0.60	S	Fundamental Perio	iod of Structure	
$S_a = if T < T_O : S_{DS}(0.4+0.67)$	/T _o) =			11.4.5	Eq	11.4-5
if $T_0 < T < T_S$: S _{DS} =			11.4.5		
if $T_S < T < T_L : S$	S _{D1} /T =	0.147		11.4.5	Eq	11.4-6
if $T > T_L : S_{D1}^*$	$\Gamma_L/T^2=$			11.4.5	Eq	11.4-7
2. IMPORTANCE FACTOR	AND O	CCUPANCY	CATEGORY	11.5		
				_		
Occupancy Category:		II			Table	1-1
Importance Factor:		1			Table	11.5-1
3. SEISMIC DESIGN CATE	GORY			11.6		
		-				44.64
SDC based on short periods: SDS based on 1-s period:	a:	B B			Table Table	11.6-1 11.6-2
SDC =		В		Maximum from va		11.0-2
350				waxiinani ji om va	raes above	
4. EQUIVALENT LATERAL	FORCE I	PROCEDU	RE	12.8		
R =		3.5		12.8.1	Table	12.2-1
Ω_{O} =		3		12.8.1	Table	12.2-1
C _D =		3		12.8.1	Table	12.2-1

Approximate Fundamental Period, Ta:

C _t =	0.028	
x =	0.8	
h _n =	30	ft
$T_a = C_t h_n^x =$	0.425	S

Seismic Response Coefficient:

$$\begin{split} C_{Scalc} &= S_{DS}/(R/I) = & 0.057 \\ C_{Smax} &= \text{if T} <= T_L : S_{D1}/(T^*(R/I) = & 0.042 \\ &\text{if T} > T_L : S_{D1^*}T_L/(T^{2*}(R/I) = & \end{split}$$

$$C_{Smin} = \frac{0.01}{C_S} = 0.042$$

Seismic Base Shear:

Seismic Weight	W =	1652	kip
Seismic Base Shear	V =	69.2	kip

Vertical Distribution of Seismic Forces:

Lateral force per level $F_x = C_{vx}V$

$$C_{vx} = (w_x h_x^k)/(\sum w_i h_i^k)$$
$$k = 0.96$$

Horizontal Distribution of Seismic Forces:

Dependent on structure	Table	12.8-2
	Table	12.8-2
Height of heighest leve	el of structure	
12.8.2.1	Eq	12.8-7
12.8.1.1		
	Eq	12.8-2
	Eq	12.8-3
	Eq	12.8-4
Revised Sup. 2	Eq	12.8-5/12.8-6
Beware of mins and mo	ax	
12.8.1		
12.7.2		Table Below
12.8.1	Eq	12.8-1

12.8.3

Eq 12.8-11

Vertical Distribution Factor

12.8.3

12.8.4

$V_x = \Sigma F_i =$	Eq	12.8-13
----------------------	----	---------

Floor	Height	Weight	w _x h _x ^k	C _{vx}	F _x	V _x	Overturning Moment	Total Height
	(ft)	(kip)			(kip)	(kip)	(kip.ft)	(ft)
Roof	15	572	15105	0.508	35.1	35.1		30
						35.1		15
2nd	15	1081	14656	0.492	34.1	69.2	527	15
						69.2		0
Podium	0	0	0	0	0	69.2	1564	0
SUM	30	1652	29761	1	69.2	104.3		0

1. MOMENT FRAME INFORMATION

Figure 1 - Braced-Frame Member Reference

Diagonal, D	39	ft	
Story Height, H	15	ft	
Bay Width, W	36	ft	
F_r	9.78	kip	
F_1	19.57	kip	

2.1 MEMBER FORCES DISTRIBUTION

Find Reactions											
	Cy=		kip	up							
	By=	0.00	kip	down							
	Cx=	-14.68	kip	west							
	Bx=	-14.68	kip	west							
Joint B							J	oint C			
(Fr+F1)/2	V_1	14.68	kip					V_1	14.68	kip	
	F_{BFy}	-6.12	kip					F_{GCy}	-6.12	kip	С
Brace Force	F_{BF}	15.90	kip	T				F_GC	15.90	kip	С
Vertical Force	F_{BG}	-6.1152	kip	Т				\mathbf{F}_{FC}	-6.12	kip	С
To solve system:											
Moment Equation	15	F_GF	27.69		F _{GK}	-36	F_GJ	=	-72.06	513.69	
Forces in X	-1	F_GF	-0.923		F_{GK}	0	F_GJ	=	-4.8	-4.89	
Forces in Y	0	F_{GF}	-0.385		F_GK	1	F_GJ	=	4	-12	
Inverse Matrix							S	olution			
	61.533	922	2215.2					\mathbf{F}_{GF}	1.13		
	-66.666	-1000	-2400.0					$\mathbf{F}_{\mathbf{GK}}$	3.95		
	-25.666	-385	-923.0					\mathbf{F}_{GJ}	5.49		
Latina C						1-1-4	_				
Joint G	- 1	2.05		6		Joint	Γ	-	4467		_
Brace Force	F_GK	3.95	kip	С				F _{FJ}	14.67	kip	С
Horizontal Force	F_GF	1.13	kip	С				F _{GF}	1.13	kip	С
Vertical Force	F_GJ	5.49	kip	T				\mathbf{F}_{FK}	1.52	kip	Т

Joint J Joint K

14.551 Advanced Steel Design Homework #3

Problem #1 Braced-Frame: Wind

Ana Gouveia 12/6/2014

Brace Force	F _{JF}	14.7	kip	С	F_GK	4.0	kip	С
Horizontal Force	\mathbf{F}_{JK}	3.6	kip	T	F _{KJ}	3.6	kip	Т
Vertical Force	F_{JG}	5.49	kip	Т	F _{KF}	1.5	kip	Т

3. RESULTS

	Member	Frame	Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	10	Braced	First	Beam	14.67	С	
JK	13	Braced	Roof	Beam	3.65	Т	
JF	15	Braced	Roof	Brace	14.67	С	
GK	16	Braced	Roof	Brace	3.95	С	
BF	17	Braced	First	Brace	15.90	Т	
GC	18	Braced	First	Brace	15.90	С	
BG	3	Braced	First	Column	-6.12	Т	
JG	4	Braced	Roof	Column	5.49	Т	
CF	5	Braced	First	Column	-6.12	С	
KF	6	Braced	Roof	Column	1.52	Т	

Problem #2
Braced-Frame: Seismic

1. MOMENT FRAME INFORMATION

Figure 1 - Braced-Frame Member Reference

Diagonal, D	39	ft
Story Height, H	15	ft
Bay Width, W	36	ft
F_r	20.77	kip
F_1	20.44	kip

2.1 MEMBER FORCES DISTRIBUTION

Find Reactions											
	Cy=		kip	up							
	By=	0	kip	down	ı						
	Cx=	-20.603	kip	west							
	Bx=	-20.603	kip	west							
Joint B								Joint C			
(Fr+F1)/2	V_1	20.60	kip					V_1	20.60	kip	
	F_{BFy}	-8.58	kip					F_GCy	-8.58	kip	С
Brace Force	F_{BF}	22.32	kip	Т				F_{GC}	22.32	kip	С
Vertical Force	F_{BG}	-8.58	kip	Т				F_FC	-8.58	kip	С
To solve system:											
Moment Equation	15	F_{GF}	27.69		F_{GK}	-36	F_{G}	J =	29.1	615.6	3
Forces in X	-1	F_{GF}	-0.923		F_{GK}	0	F _G .	_J =	-6.25	0.16	
Forces in Y	0	F_{GF}	-0.385		F_GK	1	F_{G}	J =	1.796	-17.1	7
Inverse Matrix								Solution			
	61.533	922	2215.2					\mathbf{F}_{GF}	6.61		
	-66.666	-1000	-2400.0					$\mathbf{F}_{\mathbf{GK}}$	-0.38		
	-25.666	-385	-923.0					\mathbf{F}_{GJ}	1.66		
Joint G							Joint F				
Brace Force	F_GK	-0.38	kip	С				F _{FJ}	15.16	kip	С
			·								
Horizontal Force	F _{GF}	6.61	kip	C				F _{GF}	6.61	kip	C
Vertical Force	F_GJ	1.66	kip	T				F _{FK}	-0.15	kip	Т

Joint J Joint K

14.551 Advanced Steel Design Homework #3

Problem #2
Braced-Frame: Seismic

Ana	Gou	veia
12	/6/2	014

Brace Force	F_{JF}	15.2	kip	С	F_GK	-0.4	kip	С
Horizontal Force	\mathbf{F}_{JK}	-0.4	kip	T	F _{KJ}	-0.4	kip	Т
Vertical Force	F_{JG}	1.66	kip	Т	F_{KF}	-0.1	kip	Т

3. RESULTS

	Member	Frame	Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	10	Braced	First	Beam	15.16	С	
JK	13	Braced	Roof	Beam	-0.35	Т	
JF	15	Braced	Roof	Brace	15.16	С	
GK	16	Braced	Roof	Brace	-0.38	С	
BF	17	Braced	First	Brace	22.32	Т	
GC	18	Braced	First	Brace	22.32	С	
BG	3	Braced	First	Column	-8.58	Т	
JG	4	Braced	Roof	Column	1.66	Т	
CF	5	Braced	First	Column	-8.58	С	
KF	6	Braced	Roof	Column	-0.15	Т	

1. MOMENT FRAME INFORMATION

Figure 1 - Moment Frame

Story Height, H =
$$15$$
 ft
Bay Width, W = 24 ft
 $F_{r=}$ 9.78 kip
 $F_{1=}$ 19.57 kip

Figure 2 - Member Reference

2.1 MEMBER FORCES DISTRIBUTION

Compute Shear Forces

 $\sum F_x = 0$

$$\begin{array}{ccc} F_{r\,=} & 9.78 & \text{kips} \\ \text{\# of shear forces} & 2 \\ V_{1\,=} & 4.89 & \text{kips} \end{array}$$

Compute moments at top of columns

 $M_{JG} = 36.69 \text{ kip*ft}$ $M_{KF} = 36.69 \text{ kip*ft}$

METHOD OF JOINTS:

Joint J: Joint K:

	$M_{JK} =$	36.69	kip*ft		$M_{KJ} =$	36.69	kip*ft	
\sum Fx=0	$F_{JK} =$	4.89	kips	С	F _{JK} =	4.89	kips	С
\sum M/W	$V_{J=}$	3.06	kips		V _{K=}	3.06	kips	
∑Fy=0	F _{JG} =	3.06	kips	Т	F _{KF =}	3.06	kips	С
					M _{VF} –	36 69	kins	

Section 2

Joint G:			Joint F				
(F1+FR)/2	$V_{2} = 14.68$ kips		(F1+FR)/2	V _{2 =}	14.68	kips	
FJG	$F_{GJ} = 3.06$ kips	T	FKF	F _{FK} =	3.06	kips	Т
V2*H/2	$M_{GB} = 110.1 \text{ kip*ft}$		V2*H/2	$M_{FC} =$	110.1	kip*ft	
(MJG)	$M_{GJ} = 36.69 \text{ kip*ft}$		MKF	$M_{FK} =$	36.69	kip*ft	
(FJG)	$F_{GJ} = 3.06$ kips		FKF	F _{FK =}	3.06	kips	
∑Fx=0	$F_{GF} = 4.89$ kips	С	FGF	F _{FG =}	4.89	kips	С
\sum M	$M_{GF} = 146.76 \text{ kip*ft}$		\sum M	$M_{FG} =$	146.76	kip*ft	
\sum M/W	$V_{G=}$ 12.23 kips		\sum M/W	$V_{G} =$	12.23	kips	
∑F y =0	$F_{GB} = 15.29$ kips		\sum Fy=0	F _{FC =}	15.29	kips	

3. RESULTS

	Member	Frame	Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	29	Moment	First	Beam	4.89	С	146.76
JK	26	Moment	Roof	Beam	4.89	С	36.69
BG	21	Moment	First	Column	15.29	Т	110.07
CF	23	Moment	First	Column	15.29	С	110.07
JG	22	Moment	Roof	Column	4.89	Т	36.69
KF	24	Moment	Roof	Column	4.89	С	36.69

1. MOMENT FRAME INFORMATION

Figure 1 - Moment Frame

Story Height, H = 15 ft
Bay Width, W = 24 ft
$$F_{r=} 17.55 \text{ kip}$$

$$F_{1=} 17.03 \text{ kip}$$

Figure 2 - Member Reference

2.1 MEMBER FORCES DISTRIBUTION

Compute Shear Forces

 $\sum F_x = 0$

$$\begin{array}{ccc} F_{r\,=} & 17.55 & \text{kips} \\ \text{\# of shear forces} & 2 & \\ V_{1\,=} & 8.78 & \text{kips} \end{array}$$

Compute moments at top of columns

 $M_{JG} = 65.82 \text{ kip*ft}$ $M_{KF} = 65.82 \text{ kip*ft}$

METHOD OF JOINTS:

Joint J: Joint K:

	$M_{JK} =$	65.82	kip*ft		$M_{KJ} =$	65.82	kip*ft	
\sum Fx=0	F _{JK =}	8.78	kips	С	F _{JK =}	8.78	kips	С
Σ M/W	$V_{J=}$	5.49	kips		V _{K=}	5.49	kips	
∑Fy=0	F _{JG} =	5.49	kips	Т	F _{KF =}	5.49	kips	С
					M _{KF =}	65.82	kips	

Section 2

Joint G:					Joint F				
(F1+FR)/2	V _{2 =}	7.9	kips		(F1+FR)/2	V _{2 =}	7.9	kips	
FJG	$F_{GJ} =$	5.49	kips	Т	FKF	F _{FK} =	5.5	kips	С
V2*H/2	$M_{GB} =$	59.44	kip*ft		V2*H/2	$M_{FC} =$	59.4	kip*ft	
(MJG)	$M_{GJ} =$	65.82	kip*ft		MKF	$M_{FK} =$	65.8	kip*ft	
(FJG)	$F_{GJ} =$	5.49	kips		FKF	F _{FK} =	5.49	kips	
\sum Fx=0	F _{GF} =	9.11	kips	Т	FGF	F _{FG} =	9.11	kips	Т
\sum M	M _{GF} =	125.3	kip*ft		\sum M	$M_{FG} =$	125.3	kip*ft	
\sum M/W	$V_{G} =$	10.4	kips		\sum M/W	$V_{G} =$	10.4	kips	
∑Fy=0	F _{GB} =	15.9	kips		\sum Fy=0	F _{FC =}	15.9	kips	

3. RESULTS

	Member Frame		Floor	Function	Force	T/C	Moment
	(#)	(type)	(Units)		(kip)		(kip.ft)
GF	29	Moment	First	Beam	9.11	Т	125.26
JK	26	Moment	Roof	Beam	8.78	С	65.82
BG	21	Moment	First	Column	15.92	Т	59.44
CF	23	Moment	First	Column	15.92	С	59.44
JG	22	Moment	Roof	Column	9.11	Т	65.82
KF	24	Moment	Roof	Column	9.11	С	65.82