Automated Cardiotocogram Analysis

COMP417 Group Project, Fall 2015 Group 13

Cardiotocography

- A Mean to monitor fetal heart rate and uterine contraction.
 - o Invented by Dr. Orvan W. Hess
- Used by Obstetrics to
 - Determine if unborn child suffers lack of oxygen
 - Check if fetal heart rate is affected by contraction

Problem

- Large number of predictors, only per attribute normal range, no overall interpretation method
- Depend on Doctors' knowledge experience
- Time consuming
- Wrong interpretation exposes mother and child to unnecessary intervention

Our solution

- An automated CTG classification model
- Raw data set contains 23 predictors and 3 class result

Explorative analysis: statistics

- Pathologic
 - Higher mean "Variance"
 - Higher variance of "Variance of pathologic cases"
- Query with higher than average "Variance of pathologic cases" increases probability of classifying into pathologic

Explorative analysis: Correlation

- Width of FHR and Minimum of FHR negatively correlated
- Not much Pathologic cases when Width FHR and Min values near means
 - Less likely to classify as Pathologic if Width of FHR close to mean

Explorative analysis: No. of Ac per sec.

- Near zero number of acceleration per second for Suspect and Pathologic
- Higher average number of accelerations per second for normal cases
- Small AC reduces the probability of classifying into Normal

Pre-processing

- Standard data cleaning procedure
 - Null data removal
 - Zero variance filtering
- Filtering predictors that correlates
 - 75% cutoff
 - o 95% cutoff
- Recursive Feature Elimination
 - Naive Bayesian approach
 - Random Forest approach

Our models

- K-NN
 - Distance based approach
 - Simple and fast
- Naive Bayesian
 - Probabilistic approach
 - Simple and fast; capable of processing large number of predictors
- Support Vector Machine
 - Mathematical optimization
 - Reliable and accurate
 - Exhaustive tuning of Cost
- Random Forest
 - Tree based ensemble approach, with probabilistic element
 - Most accurate classification model, resilient to overfitting

Result

	NB (75%)	RF (75%)	NB (95%)	RF (95%)	No filters	WIN
KNN	0.9106	0.8494	0.9082	0.8541	0.8165	NB (75%)
NB	0.8682	0.8871	0.8565	0.8753	0.8541	NB (75%)
SVM	0.8965	0.9035	0.9012	0.9129	0.9176	No filter
RF	0.9341	0.9341	0.9224	0.9388	0.9318	RF (95%)

Explorative analysis: predictors

- Importance of predictors according to Random Forest
 - MSTV
 - ASTV
 - Mean
 - ALTV

nsp rf model\$finalModel

Result Analysis: pruned decision tree

Deployment: Before

expulsive

Medical

Officer

Deployment: After

- Save time
 - Doctors and lab technicians can serve more patients
- Accurate classification result
 - No human intervention
 - Follow up only when necessary
- Reduce risk of administering unnecessary intervention

