Zadanie 1

W urnie znajduje się 20 kul, w tym 10 kul białych i 10 czarnych. Ciągniemy losowo bez zwracania 18 kul. Niech *N* oznacza liczbę wyciągniętych kul białych. Wariancja zmiennej losowej *N* wynosi:

- (A) $\frac{13}{19}$
- (B) $\frac{12}{19}$
- (C) $\frac{11}{19}$
- (D) $\frac{10}{19}$
- (E) $\frac{9}{19}$

Zadanie 2.

Zmienna losowa X ma rozkład jednostajny na przedziale (0,2), a zmienna losowa Y ma rozkład jednostajny na przedziale (0,1). Zmienne są niezależne.

$$Pr\left(|2Y - X| < \frac{1}{2}\right)$$
 wynosi:

- (A) $\frac{7}{16}$
- (B) $\frac{8}{16}$
- (C) $\frac{9}{16}$
- (D) $\frac{10}{16}$
- (E) $\frac{12}{16}$

Zadanie 3.

Mamy trzy niezależne, 10-elementowe próbki proste pobrane z trzech populacji normalnych:

$$(X_{i,1}, \ldots, X_{i,10}) \sim N(\mu_i, \sigma^2), \quad i = 1, 2, 3$$

o tej samej (nieznanej) wariancji σ^2 .

W każdym z trzech przypadków policzono:

średnią:
$$\overline{X}_i = \frac{1}{10} \sum_{j=1}^{10} X_{i,j}$$

i wariancję z próbki:
$$S_i^2 = \frac{1}{9} \sum_{i=1}^{10} (X_{i,j} - \overline{X}_i)^2$$

Uzyskano następujące wyniki:

i	1	2	3
S_i^2	$\frac{15}{9}$	$\frac{25}{9}$	$\frac{20}{9}$
\overline{X}_i	30	31	32

Przeprowadzono testy F analizy wariancji na poziomie istotności $\alpha = 0.05$ dla weryfikacji każdej z następujących hipotez:

 H_{12} : $\mu_1 = \mu_2$ przeciwko alternatywie: $\mu_1 \neq \mu_2$

 H_{23} : $\mu_2 = \mu_3$ przeciwko alternatywie: $\mu_2 \neq \mu_3$ H_{13} : $\mu_1 = \mu_3$ przeciwko alternatywie: $\mu_1 \neq \mu_3$

 H_{123} : $\mu_1 = \mu_2 = \mu_3$ przeciwko alternatywie: "nie wszystkie wartości

oczekiwane μ_1, μ_2, μ_3 są równe"

Wybierz zdanie prawdziwe:

- (A) H_{12} oraz H_{23} odrzucone, reszta nie odrzucona
- (B) H_{13} odrzucona, reszta nie odrzucona
- (C) wszystkie hipotezy odrzucone
- (D) H_{123} oraz H_{13} odrzucone, reszta nie odrzucona
- (E) wszystkie odrzucone oprócz H_{13}

Zadanie 4.

Niech (X_1, \dots, X_n) będzie próbką n niezależnych realizacji z rozkładu o dystrybuancie:

$$F_{\theta}(x) = \begin{cases} 1 - 2^{-(x - \theta)} & dla & x > \theta \\ 0 & dla & x \le \theta \end{cases}$$

gdzie $\theta \ge 0$ jest nieznanym parametrem.

Rozważmy jednostajnie najmocniejszy test hipotezy:

 H_0 : $\theta = 0$ przeciw alternatywie H_1 : $\theta > 0$

na poziomie istotności $\alpha = 0.01$.

W danym punkcie $\theta_1 > 0$ funkcja mocy tego testu przybiera wartość większą lub równą 0.64 wtedy i tylko wtedy, gdy liczebność próbki n spełnia warunek:

(A)
$$n \le \frac{7}{\theta_1}$$

(B)
$$n \ge 6 \cdot \theta_1$$

(C)
$$n \ge \frac{6}{\theta_1}$$

(D)
$$n \ge \frac{\log_2 100}{\theta_1}$$

(E)
$$n \ge \frac{7}{\theta_1}$$

Zadanie 5.

Prawdopodobieństwo sukcesu w pojedynczym doświadczeniu wynosi p, gdzie $p \in (0,1)$. Powtarzamy doświadczenie aż do momentu, kiedy po raz trzeci nastąpi sukces. Niech N oznacza ilość porażek, które poprzedziły 3-ci sukces. Liczba powtórzeń doświadczenia wynosi więc (N+3). Przy jakiej wartości parametru p zachodzi:

$$Pr(N = 1) = Pr(N = 2)$$
?

- (A) $\frac{1}{3}$
- (B) $\frac{2}{5}$
- (C) $\frac{1}{2}$
- (D) $\frac{3}{5}$
- (E) $\frac{2}{3}$

Zadanie 6.

Niech $\left(X_1,\ldots,X_n\right)$ będzie próbką n niezależnych realizacji zmiennej losowej X. Niech $X_{\max}^{(n)}$ oraz $X_{\min}^{(n)}$ oznaczają odpowiednio największą i najmniejszą z liczb $\left(X_1,\ldots,X_n\right)$. Jeśli rozważymy przypadek próbek 2-elementowych oraz 3-elementowych, to zależność:

$$E(X_{\text{max}}^{(3)} - X_{\text{min}}^{(3)}) = \frac{3}{2} \cdot E(X_{\text{max}}^{(2)} - X_{\text{min}}^{(2)})$$

zachodzi wtedy i tylko wtedy, gdy:

- zmienna losowa X posiada skończoną wartość oczekiwaną, i ponadto:
- (A) nic ponadto (żaden dodatkowy warunek nie jest potrzebny)
- (B) X ma rozkład określony na półosi nieujemnej tzn. Pr(X < 0) = 0
- (C) X ma rozkład wykładniczy
- (D) X ma rozkład jednostajny na pewnym przedziale
- (E) X ma rozkład zdegenerowany do punktu

Zadanie 7.

Zmienna losowa X ma rozkład warunkowy dany gęstością:

$$f_{X/\Lambda=\lambda}(x) = \begin{cases} \lambda \cdot e^{-\lambda x} & dla & x > 0\\ 0 & dla & x \le 0 \end{cases}$$

Natomiast rozkład brzegowy zmiennej losowej Λ dany jest gęstością:

$$f_{\Lambda}(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha - 1} \cdot e^{-\beta x} & dla & x > 0\\ 0 & dla & x \le 0 \end{cases}$$

Jeśli parametry drugiego z rozkładów wynoszą $(\alpha, \beta) = (2, 2)$, to mediana z rozkładu bezwarunkowego (brzegowego) zmiennej X wynosi:

- (A) 1,086
- (B) 1,000
- (C) 0,914
- (D) 0,828
- (E) 0,742

Zadanie 8.

Dla t = 1, 2, ..., T obserwujemy niezależne realizacje zmiennej losowej X_t , o których zakładamy iż pochodzą z rozkładu o parametrach:

$$E(X_t) = n_t \cdot \mu$$

$$VAR(X_t) = n_t \cdot \sigma^2$$
,

gdzie wartości (n_1, n_2, \dots, n_T) są nam znane (i dodatnie), natomiast parametry μ oraz σ^2 są nieznane. Wybieramy estymator parametru σ^2 z klasy estymatorów postaci:

$$c \cdot \sum_{t=1}^T \frac{\left(X_t - n_t \overline{X}\right)^2}{n_t} \,,$$

gdzie:
$$\overline{X} \doteq \frac{\sum_{t=1}^{T} X_{t}}{n},$$

$$n \doteq \sum_{t=1}^{T} n_t ,$$

i gdzie c jest pewną liczbą rzeczywistą (parametrem konkretnego estymatora). Otrzymamy estymator nieobciążony, jeśli przyjmiemy stałą c równą:

(A)
$$\frac{n}{T \cdot n}$$

(B)
$$\frac{n}{T \cdot n - 1}$$

(C)
$$\frac{n}{T \cdot n - T}$$

(D)
$$\frac{n}{T \cdot n - n}$$

(E)
$$\frac{n}{T \cdot n - T - n}$$

Zadanie 9.

Mamy dwie niezależne obserwacje: x_1 oraz x_2 z rozkładu normalnego, przy czym jedna z nich pochodzi z rozkładu o parametrach (μ, σ^2) , a druga z rozkładu o parametrach $(2\mu, 2\sigma^2)$. Niestety zgubiliśmy informację, która z obserwacji z którego z rozkładów pochodzi. Parametry (μ, σ^2) są nieznane. W tej sytuacji wybieramy estymator parametru σ^2 z klasy estymatorów postaci:

$$\sigma^{2} = a \cdot (x_{1} - x_{2})^{2} + b \cdot (x_{1} + x_{2})^{2},$$

gdzie (a, b) to para liczb rzeczywistych (parametry konkretnego estymatora). Otrzymamy estymator nieobciążony, jeśli przyjmiemy:

(A)
$$a = \frac{1}{3}, b = 0$$

(B)
$$a = \frac{3}{8}$$
, $b = -\frac{1}{24}$

(C)
$$a = \frac{1}{2}$$
, $b = -\frac{1}{18}$

(D)
$$a = \frac{7}{12}$$
, $b = -\frac{1}{4}$

(E)
$$a = \frac{2}{3}$$
, $b = -\frac{2}{27}$

Zadanie 10.

Za pomocą testu zgodności χ^2 testowano hipotezę, iż n-elementowa próbka pochodzi z rozkładu Poissona o wartości oczekiwanej równej jeden. Mamy niepełną informację o próbce, na podstawie której przeprowadzono test:

k	0	1	2	3 lub więcej
Ilość obserwacji w próbce, które	n-70-40-25	70	40	25
przyjęły wartość k		70	70	23

Podaj najmniejszą możliwą liczebność próbki n, jeśli wiadomo, iż na poziomie istotności $\alpha = 0.05$ nie znaleziono podstaw do odrzucenia hipotezy o zgodności.

- (A) 194
- (B) 195
- (C) 196
- (D) 197
- (E) 198

Egzamin dla Aktuariuszy z 27 marca 1999 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko:	KLUCZ ODPOWIEDZI		
C			
Pesel			

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	С	
3	D	
4	С	
5	С	
6	A	
7	D	
8	D	
9	В	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.
* Wypełnia Komisja Egzaminacyjna.