UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Técnicas Digitais para Computação - INF01118

Professor: Fernando R. Nascimento

Turma: B

Aula Prática 07 (AP07)

Nomes:

Felipe de Souza Lahti – matr. 170715 Germano de Mello Andersson – matr. 137719

1. Introdução

O objetivo de nossa sétima aula prática era reconhecer o software Max Plus II 10.2 da Altera através do projeto e implementação de alguns circuitos combinacionais. Os circuitos a serem desenvolvidos eram: um meio-somador; um somador completo e um somador do tipo Ripple-Carry de 8 bits. O relatório apresenta os projetos, a análise das funções geradas, as equações lógicas das referidas funções e tabela verdade. Para o circuito Ripple-Carry também foi realizado uma simulação temporal.

2. Meio-Somador

O meio-somador consiste de um circuito que dada duas entradas, IN1 e IN2, gera uma saída soma (S) e um carryout (Cout). Ele pode ser formado à partir de uma porta XOR e uma porta AND de duas entradas.

Equações lógicas:

S= IN1 XOR IN2

Cout = IN1 . IN2

Esquema Lógico:

Tabela Verdade:

IN1	IN2	S	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Simulação Funcional:

3. Somador Completo

O somador completo consiste de um circuito que dadas trÊs entradas IN1, IN2 e Cin gera uma saída soma (S) e um Carryout (Cout). Ele pode ser formado à partir de dois meio-somadores e uma porta OR de duas entradas.

Equações lógicas:

S= (IN1 XOR IN2) XOR Cin
Cout = (IN1 . IN2) + (Cin . (IN1 XOR IN2))

Esquema Lógico:

Tabela Verdade:

Cin	IN1	IN2	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Simulação Funcional:

3. Somador de 8 bits (Ripple-Carry)

O somador de 8 bits consiste de um circuito que dadas 17 entradas (X1,...,X8 + Y1,...,Y8 + Cin) retorna 8 saídas de soma (S1,...,S8) e 1 saída de Carryout (Cout). Em nosso projeto ele foi formado à partir de 8 somadores completos e uma entrada adicional (para fazer o Cin).

Esquema Lógico:

Simulação Funcional:

Podemos observar que a soma não ultrapassa 255, que é o limite de representação deste nosso somador (8 bits). Quando ultrapassamos este limite, Cout é ligado, sinalizando o estouro de representação. Quando isto ocorre, S volta a ser contado à partir do seu valor inicial.

Simulação Temporal:

Para a análise a seguir, retiramos do gráfico acima estes casos de testes (em hexadecimal):

- a) 00+FF, entre 0 e 100ns;
- b) FF+01, entre 101ns e 200ns;
- c) 00+EF, entre 201ns e 300ns.

Para melhor visualização, vamos ampliar cada caso:

Y	D 15	0 }
X	D 125	255
📂 Cin	1	
- S8	0	
- S7	0	
- S6	0	
- S5	1	
- S4		
- S3	0	
- S2	1	
- S1	1	
- Cout	0	

Name:	Value:	.Ons	150.0ns	200.
T ¥	D 15		255	, A
S ∓X	D 125		1	
in Cin	1			
- ■ S8	Ū			
- S7	0			01 01 01 01 01 01 01 01 01 01 01 01 01 0
- S6	Ū			4
- S5	1			4
- S4	1			4
- S3	0			
- S2	1			
- S1	1			00 10 21 21 21 21 21 21 21 21 21 21 21 21 21
- Cout	Ū			9

Vamos tabelar uma aproximação dos valores destes atrasos para auxiliar na análise:

C/ Cin=0	00+FF	FF+01	01+EF
S1	-	-	14ns
S2	-	18ns	16ns
S3	-	20ns	18ns
S4	-	22ns	20ns
S5	-	24ns	22ns
S6	-	26ns	24ns
S 7	-	28ns	26ns
S8	-	30ns	28ns
Cout	-	-	-

C/ Cin=1	00+FF	FF+01	01+EF
S1	20ns	16ns	14ns
S2	22ns	-	16ns
S3	24ns	-	18ns
S4	26ns	-	20ns
S5	28ns	-	22ns
S6	30ns	-	24ns
S7	32ns	-	26ns
S8	34ns	-	28ns
Cout	34ns	-	28ns

O menor atraso apresentado foi na operação 01+EF, com apenas 14ns na S1, e o maior de 34ns, quando tivemos a presença do Cin com valor 1. Isto ocorre obviamente pelo atraso causado da propagação dos bits de carry, fazendo com que o resultado de 8 bits fique consistente, em média, com 14ns de atraso.

4. Conclusão

Esta sétima aula prática foi mais uma boa aula para conhecer uma nova ferramenta, que nos acompanhará muito nas próximas aulas, o Max Plus II. Enxergar o atraso da propagação do carry também foi de grande valia. O tutorial do Max Plus está bem elaborado e, de fato, facilita muito na primeira utilização do software.

Tivemos dificuldades com a solicitação da licença do Max Plus junto a Altera. Na verdade, ainda não temos ela. Apesar de parecer um caso isolado, vale a pena conferir se o procedimento continua sendo o mais adequado.