ECE 4623/5623

Review

Decoders, Encoders, Latches, Flip-Flops

1. Decoders/Encoders

- (a) Do example of 2-to-4 decoder.
- (b) What is an encoder? Do example with BCD to 7-segment encoder.
- (c) Explain BCD.
- (d) Explain 7-segment display. Use Basys3 datasheet.
- (e) Explain binary to BCD double-dabble algorithm.
 - i. Start with n-bit binary number.
 - ii. The size of the shift register required to store the original binary value and the BCD result is $n + 4 \times \text{ceilling}(\frac{n}{3})$.
 - iii. Begin by constructing the shift register with the binary value aligned to the far right side.
 - iv. Shift left n times.
 - v. For each shift examine each 4-bit BCD result register that represents a 10's place. If the value is greater than 4, then add 3.
 - vi. Once this has been done n times the binary to BCD conversion is complete.
 - vii. Why do we add 3? What would happen if we didn't add 3?
- (f) Most combinational circuits will be realized in the FPGA using look-up-tables rather than actual logic gates.
- (g) LUTs are commonly used by your brain to do things like multiplication.

2. SR Latch (Fig. 1)

(a) NOR gate

A	В	OR(A,B)	NOR(A,B)
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

- (b) SR latch example with 2 NOR gates.
- (c) In the hold state where S=R=0, $Q_{next} = Q_{curr}$.
- (d) In the reset state $Q_{next} = 0$.
- (e) In the set state $Q_{next} = 1$.
- (f) In both the set and reset states Q_{curr} does not influence the value of Q_{next} .

Figure 1: SR latch with NOR gates.

Table 1: SR Latch truth table.

S	R	Q_{curr}		$Q_{next} = NOR (R, \bar{Q}_{next})$	Description
0	0	0	1	0	Hold
0	0	1	0	1	Hold
0	1	0	1	0	Reset
0	1	1	0	0	Reset
1	0	0	0	1	Set
1	0	1	0	1	Set
1	1				Forbidden
1	1				Forbidden

(g) The R=S=1 input combination is forbidden because Q and \bar{Q} would be forced to the same logic value.

3. Gated SR Latch (Fig. 2)

- (a) If we AND the S and R inputs with an EN (enable) signal, then the latch will only work when EN=1. This accomplished by adding 2 AND gates to the circuit. The input to the first AND gate is R and EN. The input to the second AND gate is S and EN.
- (b) It works the same as the SR latch, but only when EN=1.
- (c) If EN=0, then it is always in the hold state.
- (d) If the EN signal is a CLK, then the latch only works when the CLK=1.
- (e) We could go one step further and place a pulse detector on the EN signal. In this case, the latch only works during the brief time that a rising or falling edge is detected. Usually, edge triggered latches are called flip-flops.

4. D latch/flip-flop (Fig. 3)

Figure 2: Gated SR latch.

Figure 3: Gated D latch.

- (a) The D-latch is obtained by combining the R and S inputs of the gated RS latch and adding an inverter on the R input.
- (b) With this approach, the forbidden R=S=1 state is no longer a possibility.
- (c) The hold state is only possible when EN = 0. Othewise we are in the set or reset state because S and R are forced to be either (0,1) or (1,0).
- (d) The D-latch can also be either edge or level triggered depending on the source of the EN input.
- (e) The Basys3 uses the D latch/flip-flop.
- (f) Each CLB in the Artix7 has 8 D-latches. All 8 can be edge triggered, but only 4 can be level triggered. Look at diagram.

5. Latches and Flip-Flops Continued

- (a) There are several other types of latches and flip-flops. You can read about them and use what you learn to complete HW#1.
- (b) In general, a latch/flip-flop is used to store one bit of information.
- (c) In general, latches are level triggered and flip-flops are edge triggered. This distinction is not always clear.