Discrete Mathematics (0034) Lecture Notes

Yulwon Rhee (202211342)

Department of Computer Science and Engineering, Konkuk University

1 Week 1

1.1 논리와 명제

논리: 사고의 규칙

명제 논리(Propositional Logic): T/F 판별 가능한 문장 or 수식

술어 논리(Predicate Logic): 변수 포함 명제

단순 명제(simple Proposition): 하나의 문장 or 수식으로 구성된 명제 합성 명제(Composition Proposition): 단순 명제들이 논리 연산자로 연결

항진 명제(Tautology): 항상 T인 합성 명제 모순 명제(Contradiction): 항상 F인 합성 명제

1.2 논리 연산자

Table 1: Logical Operators

연산자	기호
부정(NOT)	2
논리곱(AND)	٨
논리합(OR)	V
배타적 논리합(XOR)	\oplus
조건(if then)	\rightarrow
쌍방 조건(iff)	\leftrightarrow

Table 2: Truth Table for the XOR, Implication and Biconditional Proposition

p	q	$p \oplus q$	$p \oplus q$		p	q	p o q		p	q	p
T	T	F	F		Т	T	Т		T	T	
T	F	Т	T		T	F	F		T	F	
F	T	Т	T		F	T	T		F	T	
F	F	F	F		F	F	T		F	F	

- -p이면 q이다. (if p then q, q when p, p only if q)
- -p는 q의 충분조건이다. (p is sufficient for q)
- -q는 p의 필요조건이다. (q is necessary for p)
- -p는 q를 함축한다. (p implies q)

1.3 논리 연산자 우선순위

$$\sim$$
 > \wedge > \vee > \leftrightarrow > \leftrightarrow

1.4 논리 연산: 상호 관계

1.5 예제 풀이

- e.g.) You cannot ride the rollercoaster if you are under 4 ft. tall unless you are older than 16 years old.
- *p* : You can ride the rollercoaster
- q: You are under 4 ft. tall
- r: You are older than 16 years old
- $\sim p$ if q unless r
- $\Rightarrow \sim p \text{ if } q \text{ if } \sim r$
- $\Rightarrow \sim r \rightarrow (q \rightarrow \sim p)$
- $\equiv (\sim r \land q) \rightarrow \sim p$

2.1 비트 연산(Bit Operations)

Table 4: Logical Operators

Name	NOT	AND	OR	XOR	Implies	Iff
Propositional Logic	2	^	V	\oplus	\rightarrow	\leftrightarrow
Boolean Algebra	\overline{p}	$p \cdot q$	+	\oplus		
C/C++/Java(Wordwise)	!	&&	П	!=		==
C/C++/Java(Bitwise)	~	&		^		

2.2 논리적 동치 관계

 $p\leftrightarrow q$ 가 항진 명제 $\rightarrow p,q$ 는 논리적 동치, $p\equiv q$ 또는 $p\Leftrightarrow q$

Table 5: 논리적 동치 관계

법칙 이름	동치 관계
결합 법칙	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$
홀수 법칙	$p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$
드 모르간 법칙	
조건 법칙	$p \rightarrow q \Leftrightarrow \sim p \lor q$
대우 법칙	$p \to q \Leftrightarrow \sim q \to \sim p$

2.3 술어 논리(Predicate Logic)

p(x) = x에 대한 명제술어

2.4 술어 한정자(Predicate Quantifier)

∀: 모든

∃: 어떤

괄호를 이용하여 모순이 없도록 범위 지정 필요

제한된 정의역 표현: 변수가 만족해야 하는 조건이 한정기호 다음에 표기 e.g.)

$$\forall x < 0(x^2 > 0)$$
, 정의역은 실수 $\Longrightarrow \forall x(x < 0 \rightarrow x^2 > 0)$
 $\exists x > 0(x^2 = 2)$, 정의역은 실수 $\Longrightarrow \exists x(x > 0 \land x^2 = 2)$

부정:

$$\sim \forall (p(x)) \equiv \exists x (\sim p(x))$$

$$\sim (\exists x p(x)) \equiv \forall x (\sim p(x))$$

2.5 중첩 한정자

 $\forall x \exists y \ P(x,y)$: For every x, there is a y for which P(x,y) is true.

 $\exists x \forall y \ P(x,y)$: There is an x for which P(x,y) is true for every y.

2.6 예제 풀이

1. If a user is active at least one network link will be available.

A(u): User u is active.

S(n,x): Network link n is in status x.

 $\exists u \ A(u) \rightarrow \exists n \ S(n, available)$

- 2. Everyone has exactly one best friend.
- \rightarrow For every person x, person x has exactly one best friend.
- \rightarrow 'Exactly one' means that
 - 1. There is a person y who is the best friend of x.
 - 2. For every person z, if person z is not y, then z is not the best friend of x.

B(x, y): y is the best friend of x.

$$\forall x \exists y (B(x,y)), y$$
의 조건: $\forall z ((z \neq y) \rightarrow \sim B(x,z))$

3. There is somebody whom everybody loves.

$$\exists y \forall x L(x,y)$$
 ($\exists y$ 와 $\forall x$ 순서 유의!)

4. Nobody loves everybody

$$\sim \exists x \forall y \ L(x,y) \equiv \forall x \exists y \sim L(x,y)$$

3.1 추론

(연역적) 추론(Argument): 주어진 명제 p_n 을 바탕으로 새로운 명제 q를 유도

p_n: 전제(Premise), 가정(Hypothesis)

q: 결론(Conclusion)

유효 추론(Valid Argument): 전제 T, 결론 T 허위 추론(Fallacious Argument): 결론 F

Table 6: 논리적 추론 법칙

법칙 이름	추론 법칙
긍정 법칙*	$p,\ p o q \vdash q$
부정 법칙*	$\sim q, \ p \rightarrow q \vdash \sim p$
조건 삼단 법칙*	$p \to q, \ q \to r \vdash p \to r$
선언 삼단 법칙	$p \lor q, \sim p \vdash q$
양도 법칙	$(p \to q) \land (r \to s), \ p \lor r \vdash (q \lor s)$
파괴적 법칙	$(p \to q) \land (r \to s), \ \sim q \lor \sim s \vdash \sim p \lor \sim r$
선접 법칙	$p \vdash p \lor q$
분리 법칙	$p \land q \vdash p$
연접 법칙	$p, q \vdash p \land q$

^{*} 가장 많이 사용되고 잘 알려진 3가지 법칙

3.2 대치 vs 추론

대치의 공식은 합성 명제 전체 또는 한 부분에 적용 가능 추론의 법칙은 합성 명제의 주 연산자에 사용

3.3 증명법: 한정기호를 사용한 명제의 추론규칙

전칭 예시화(Universal Instantiation): $\forall x P(x) \rightarrow \exists c P(c)$

전칭 일반화(Universal Generalisation): P(c) for an arbitrary $c \to \forall x P(x)$

존재 예시화(Existential Instantiation): $\exists x P(x) \rightarrow P(c)$ for some c (c가 적어도 하나 존재)

존재 일반화(Existential Generalisation): P(c) for some $c \to \exists x P(x)$

6 Yulwon Rhee (202211342)

3.4 예제 풀이

 There is someone in this class who has been to France Everyine who goes to France visits the Louvre.
 Therefore, someone in this class has visited the Louvre.

Solution.

x: 사람

C(x): x is in this class. F(x): x has been to France. L(x): x visits to Louvre.

 $\exists x (C(x) \land F(x)), \ \forall x (F(x) \rightarrow L(x)) \vdash \exists x (C(x) \land L(x))$

Some $c, C(c) \land F(c)$: T (존재 예시화) $\forall x \rightarrow c \in x, F(c) \rightarrow L(c)$: T (전칭 예시화) $C(c) \land F(c) \vdash C(c), F(c)$ $F(c), F(c) \rightarrow L(c) \vdash L(c)$ $C(c), L(c) \rightarrow C(c) \land L(c)$ $C(c) \land L(c) \rightarrow \exists x (C(x) \land L(x))$ (존재 일반화)

3.5 정리의 증명

정의: 논의 대상 보편화 위해 사용 용어 or 기호 의미를 확실히 규명한 문장 or 식 e.g.) 한 내각의 크기가 직각인 삼각형은 직각삼각형, 명제는 T/F 판별 가능한 문장 or 수식 공리: 별도 증명 없이 T로 이용되는 명제 e.g) p가 참이면 p∨q도 참, a = b 면, a+c = b+c 정리: 공리, 정의로 T가 확인된 명제 증명: 공리, 정의, 정리로 명제가 T임을 확인하는 과정

3.6 증명 방법

 $p \rightarrow q$ 증명: p,q 모두 T or p 무조건 거짓

직접 증명법: $p \rightarrow q$ 직접 증명

간접 증명법: 동치로 $p \rightarrow q$ 변환하여 증명. 대우 증명법, 모순 증명법, 반례 증명법, 존재 증명법

기타 증명법: 수학적 귀납법

3.7 수학적 귀납법

연역법(Deduction): 사실(Fact), 공리(Axiom)에 입각해 추론(Inference)을 통해 새로운 사실 도출 귀납법(Induction): 관찰, 실험에 기반한 가설을 귀납 추론을 통해 일반적인 규칙으로 입증

4.1 직접 증명법(Direct Proof)

 $p \rightarrow q$ 가 T 증명

4.2 모순 증명법(귀류법, Contradiction Proof)

주어진 문제의 명제 부정 후 논리 전개

$$\sim (p \land (\sim q)) \equiv \sim p \lor \sim (\sim q)$$

$$\equiv \sim p \lor \sim q$$

$$\equiv \sim p \lor q$$

$$\equiv p \to q$$

 $p \wedge (\sim q)$ 가 T라고 하고, 모순 유도 시 원래 명제 T

4.3 대우 증명법(Contrapositive Proof)

 $p \to q \equiv \sim q \to \sim p$ 에서, $\sim q \to \sim p$ 가 T 증명

4.4 존재 증명법(Existence Proof)

 $\exists x$ such that p(x) 증명

4.5 반례 증명법(Counter-Example Proof)

반례를 통해 증명

 $\forall x p(x)$ 가 F임을 보이기 위해 $\sim \forall x p(x) \equiv \exists x \sim p(x)$ 에서 p(x)가 F인 x 적어도 하나 존재

4.6 필요충분조건 증명법(Iff Proof)

 $p \rightarrow q$, $q \rightarrow p$ 증명 $\Rightarrow p \leftrightarrow q$ 증명

5.1 집합

Cardinality: 원소 개수

부분 집합(Subset): A의 모든 원소가 B의 원소에 속할 때, $A\subseteq B$. 부분 집합이 아닐 때, $A\nsubseteq B$

진부분 집합(Proper Subset): $A\subseteq B, A\neq B\Longrightarrow A\subset B$. 진부분 집합이 아닐 때, $A\not\subset B$ 멱집합(Power Set): 모든 부분 집합을 원소로 가지는 집합 $=P(S)=2^S$. $|P(S)|=2^{|S|}$

5.2 부분 집합의 성질

- $\forall P, P \subseteq P$
- $\forall P, \varnothing \subseteq P$

5.3 집합의 연산

Table 7: Set Operators

연산	기호
합짐합	$A \cup B$
교집합	$A \cap B$
차집합	A - B
대칭 차집합	$A \oplus B$
곱집합	$A \times B$

서로소: $A \cap B = \emptyset$

곱집합(Cartesian Product): $a \in A, \ b \in B, \ (a,b)$ 인 모든 순서쌍의 집합 e.g) $A = 1,2,3, \ B = a,b,c$ 라 할 때, $A \times B = (1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c)$ 드 모르간 법칙: $\overline{(A \cup B)} = \overline{A} \cap \overline{B}, \ \overline{(A \cap B)} = \overline{A} \cap \overline{B}$

5.4 집합의 분할

분할(Partition): $\exists S \neq \emptyset (\pi = \{A_1, A_2, \dots, A_i, \dots, A_k\})$

- $1. i = 1, \dots, k$ 에 대하여, $A_i \subseteq S (S \neq \emptyset)$
- 2. $S = A_1 \cup A_2 \cup \cdots \cup A_k$
- 3. $i \neq j \rightarrow A_i \cap A_j = \emptyset$ c.f.) $A_i = 분할의 블록$

6.1 보수

r진수 정수 N에서 r-1의 보수: $(r^n-1)-N$ r진수 정수 N에서 r의 보수: $(r^n)-N=(r-1)$ 의 보수) +1

6.2 부호화 절대치 표현

- 연산 결과가 정확하지 않음
- 0의 표현이 2가지

6.3 1의 보수 표현

- 연산 결과는 정확하지만 (초과 비트를 더해줄 때)
- 0의 표현이 2가지

6.4 2의 보수 표현

- 연산 결과가 정확함
- 0의 표현이 1가지
- 음수 값 하나 더 표현 가능 (0의 표현이 하나 줄어들어서)

6.5 초과 비트 발생 시

- 1의 보수: 초과 비트를 덧셈
- 2의 보수: 무시

7.1 행렬

대각합(Trace): 대각성분의 합. tr(A) = trace(A) 교대 행렬(Skewed-Symmetric Matrix): $A = -A^T$

7.2 행렬식

$$Det(A) = |A|$$

$$let A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \\
Det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$let B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}
Det(B) = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{vmatrix} = b_{11}b_{22}b_{33} + b_{12}b_{23}b_{31} + b_{13}b_{21}b_{31} - b_{11}b_{23}b_{32} - b_{12} - b_{21} - b_{33} - b_{13}b_{22}b_{31}$$

정칙 행렬(Non-Singular Matrix): $Det(A) \neq 0$ 특이 행렬(Singular Matrix): Det(A) = 0

7.3 행렬식의 성질

- $-n \times n$ 행렬 A에서 임의의 두 행 또는 열이 같으면 Det(A) = 0
- $-n \times n$ 행렬 A에서 임의의 두 행 또는 열을 바꾸어서 만든 행렬 B에서 Det(B) = -Det(A)
- $-n \times n$ 행렬 A에서 임의의 행 또는 열의 모든 원소가 0이면 Det(A) = 0
- $\operatorname{Det}(A) = \operatorname{Det}(A^T)$
- $\operatorname{Det}(AB) = \operatorname{Det}(A) \cdot \operatorname{Det}(B)$
- $\operatorname{Det}(kA) = k\operatorname{Det}(A)$

가역적(Nonsingular, Invertible): A, B가 정칙 행렬. AB = BA = I인 경우