Сумський державний університет

Кафедра

Прикладної математики та моделювання складних систем

3BIT

Обов'язкове домашнє завдання Завдання 12

Дисципліна

Теорія ймовірностей та математична статистика

Варіант 8

Виконавець: студентка групи ПМ-81

Пороскун Олена Олегівна

Викладач: Гончаров Олександр Андрійович

Суми, Сумська область

- 12 Дані експерименту наведені в таблиці 21 в безрозмірному вигляді. Потрібно:
 - а) побудувати кореляційне поле;
- б) висловити гіпотезу про вид статистичної залежності між X і Y, визначити коефіцієнт кореляції і тісноту лінійного зв'язку;
 - в) знайти рівняння лінії регресії;
 - г) побудувати лінію регресії.

Таблиця 21

X	1	2	3	4	5	6	7	8
Y	100	85,6	74,4	65,3	56,7	43,3	40,8	34,8

	Α	В	С	D	Е	F	G	Н	1
1		ння 12	C	D	E	Г	G	п	1
2	Завда	иня 12		Лінія ре	гресії у(х)	=kx+b			
3		х	y		y(x)				
4		1	100		95,2083				
5		2	85,6		85,8952				
5		3	74,4		76,5821				
7		4	65,3		67,269				
8		5	56,7		57,956				
9		6	43,3		48,6429				
.0		7	40,8		39,3298				
1		8	34,8		30,0167				
.2			,		,				
.3		Sx	36		$\sum_{n=1}^{n}$		$\sum_{i=1}^{n}$		
.4		Sy	500,9		$S_{x} = \sum_{i=1}^{n} x_{i}^{2} S_{y}$	x_i S_y	$=\sum_{i=1}^{n}y_{i}$		
.5		Sxx	204	7	1 1 1 1	$\sum_{n=1}^{n}$	<i>t</i> =1	$\sum_{i=1}^{n}$	
.6		Syy	35092,27	$S_{xx} = \sum_{x} S_{xx}$	$\sum_{i} x_i^2 S_y$	$y = \sum_{y} y$	$V_i^2 S_{xy}$	$=\sum x_i$	y_i
.7		Sxy	1862,9	i:	=1	$\overline{i=1}$		$\overline{i=1}$	
.8		n	8		Кількіст	ь факторіі	з х(або у)		
9		\bar{x}	4,5		$\bar{z} - \frac{S_x}{2}$		$\bar{y} - \frac{S_y}{2}$,	
0		\bar{y}	62,6125		Кількісті $\bar{x} = \frac{S_x}{n}$ $\frac{S_x}{n} - \bar{x}^2$ $k = \frac{S_x}{n}$		$y - \frac{1}{n}$		
1		Dx	5,25	D	S_x =2		S_y	=2	
2		Dy	466,2085938	$D_x =$	$\frac{1}{n} - x^2$		$D_y = \frac{1}{n}$	- y-	
3					5	S_{xy} =	_		
4		k	-9,313095238		k = -	$\frac{1}{n} - x$	y		
5		коефіцієн	ти рівняння лінійної регресії		~	D_x			
6		b	104,5214286	$b = \bar{y}$	$\kappa = -k \cdot \bar{x}$			D_x	
7		r	-0,988288083				r = k.	$\frac{n}{D}$	
8		вибірко	вий коефіцієнт кореляції r				1	D_y	
9		Висновог	:: між факторами хіу спостер	пігається з	ท่นที่มีนนนั ๑๐๒	dSOK 3 Cm	TERRIN NIPE	ем тісноти	такаты
0		DNCHORON	між факторами х і у спостер		пнинии зв 0,9.	AJOK J CHI	триим Рівн	CM HUNDIN	' tar ar

Дивлячись на графік кореляційного поля можна висловити гіпотезу про лінійну залежність між X і У.

Формули для знаходження числових характеристик:

$$S_{x} = \sum_{i=1}^{n} x_{i} \qquad S_{y} = \sum_{i=1}^{n} y_{i}$$

$$S_{xx} = \sum_{i=1}^{n} x_{i}^{2} \quad S_{yy} = \sum_{i=1}^{n} y_{i}^{2} \quad S_{xy} = \sum_{i=1}^{n} x_{i} \cdot y_{i}$$

n = обсяг величин X (та У)

$$\bar{x} = \frac{S_x}{n}$$
 $\bar{y} = \frac{S_y}{n}$
$$D_x = \frac{S_x}{n} - \bar{x}^2$$

$$D_y = \frac{S_y}{n} - \bar{y}^2$$

Коефіцієнти рівняння лінійної регресії:

$$k = \frac{\frac{S_{xy}}{n} - \bar{x} \cdot \bar{y}}{D_x} = -9,313095238 \qquad b = \bar{y} - k \cdot \bar{x} = 104,5214286$$

Pівняння лінійної регресії: y(x) = kx + b

Вибірковий коефіцієнт кореляції обчислюється за формулою:

$$r = k \cdot \sqrt{\frac{D_x}{D_y}}$$

Можна оцінити тісноту лінійного зв'язку між факторами за шкалою:

$$\mid r \mid < 0,6 -$$
слабка $0,6 \leq \mid r \mid \leq 0,9 -$ середня $\mid r \mid > 0,9 -$ сильна.

Висновок: між факторами X і У спостерігається лінійний зв'язок з сильним рівнем тісноти, так як $| \mathbf{r} | = 0.988288083 > 0.9$.

A	В	С	D	E	F	G	Н	- 1
1 3a	вдання 12							
2				Лінія регресії $y(x) = kx + b$)			
3	X	у		y(x)				
4	1	100		=\$C\$24*\$B4+\$C\$26				
5	2	85,6		=\$C\$24*\$B5+\$C\$26				
6	3	74,4		=\$C\$24*\$B6+\$C\$26				
7	4	65,3		=\$C\$24*\$B7+\$C\$26				
8	5	56,7		=\$C\$24*\$B8+\$C\$26				
9	6	43,3		=\$C\$24*\$B9+\$C\$26				
10	7	40,8		=\$C\$24*\$B10+\$C\$26				
11	8	34,8		=\$C\$24*\$B11+\$C\$26				
12								
13	Sx	=CYMM(B4:B11)		$S_{x} = \sum_{i=1}^{n} x_{i}$ $= \sum_{i=1}^{n} x_{i}^{2} S_{yy} = \sum$		$\frac{n}{\sum}$		
14	Sy	=CYMM(C4:C11)		$S_x = \sum_{i=1}^n x_i$	$S_y =$	$\sum_{i} y_i$		
15	Sxx	=B4^2+B5^2+B6^2+B7^2+B8^2+B9^2+B10^2+B11^2		$\sum_{i=1}^{n}$		1	$\frac{n}{}$	
16	Syy	=C4^2+C5^2+C6^2+C7^2+C8^2+C9^2+C10^2+C11^2	S_{xx}	$=\sum x_i^2$ $S_{yy}=\sum$	y_i^2 .	$S_{xy} = $	$\sum x_i$	$\cdot y_i$
17	Sxy	=B4*C4+B5*C5+B6*C6+B7*C7+B8*C8+B9*C9+B10*C10+B11*C11	1				=1	
18	n	=CYËT(B4:B11)		Кількість факторів	х(або у)	_		
19	\bar{x}	=C13/C18		$\bar{z} = \frac{S_x}{S_x}$	- -	S_y		
20	\bar{y}	=C14/C18		$ar{x} = rac{S_x}{n}$ $ar{x} = rac{S_x}{n}$ $ar{x} = rac{S_x}{n} - ar{x}^2$ $ar{x} = rac{S_x y}{n} - ar{x}$ $ar{y} = ar{y} - k \cdot ar{x}$	<i>y</i> -	\overline{n}		
21	Dx	=C15/C18-C19^2	,	$S_x = S_x$	D	$_{-}$ S_{y}	- 2	
22	Dy	=C16/C18-C20^2	1	$D_x = \frac{1}{n} - x^2$	D_{y}	$=\frac{1}{n}$	- <i>y</i> -	
23				S_{xy}	~	_		
24	k	=(C17/C18-C19*C20)/C21		$k = \frac{n}{n}$	- x ·	<i>y</i>		
25		коефіцієнти рівняння лінійної регресії		L	$\mathbf{p}_{\mathbf{x}}$			
26	b	=C20-C24*C19	b	$= \bar{y} - k \cdot \bar{x}$		r = k	D_x	
27	r	=С24*КОРЕНЬ(С21/С22)				r = k	$\frac{1}{D}$	
28		вибірковий коефіцієнт кореляції r					$\sqrt{D_y}$	
29								
30		Висновок: між факторами х і у спостерігається лінійний зв'язо	эк з сип	ьним півнем тісноти так як	$ \mathbf{r} > 0.9$			

Лінія регресії:

Лінія регресії та кореляційне поле:

Сумський державний університет

Кафедра

Прикладної математики та моделювання складних систем

3BIT

Завдання 18

Дисципліна

Теорія ймовірностей та математична статистика

Варіант 8

Виконавець: студентка групи ПМ-81

Пороскун Олена Олегівна

Викладач: Гончаров Олександр Андрійович

Суми, Сумська область

Завдання 18. З групи А таблиці 6.5 вибрати числа, які записані в клітинах з номерами з *набору* (див. табл. 6.4) для даного варіанта. Порожня клітина означає відсутність числа. Виписані таким чином числа назвемо вибіркою А. Аналогічно за допомогою рядка В вибираємо вибірку В. Позначимо $C = A \cup B$ (об'єднана вибірка). Виконати такі завдання:

- а) знайти вибіркові середні і дисперсії для А і В;
- б) обчислити внутрішньо- і міжгрупові дисперсії;
- в) визначити середню дисперсію вибірки С за обчисленими числовими характеристиками А і В;
- г) обчислити виправлену вибіркову дисперсію і середнє квадратичне відхилення для «С».

Для розв'язання наступних трьох завдань студенту потрібно згідно зі своїм варіантом з таблиці 6.4 вибрати так званий *набір*.

Таблиця 6.4

Варіант	1	2	3	4	5	6
набір	3 4 5 6 8	12368	23578	23468	12568	14567

Продовження таблиці 6.4

Варіант	7	8	9	10	11	12
набір	1 3 5 6 8	35678	12347	1 3 4 7 8	1 3 4 6 7	2 3 6 7 8

Продовження таблиці 6.4

Варіант	13	14	15	16	17	18
набір	23456	1 4 5 7 8	1 2 3 4 5	25678	1 2 4 5 8	1 2 4 6 7

Продовження таблиці 6.4

Варіант	19	20	21	22	23	24
набір	14568	1 3 5 7 8	1 2 4 5 7	23457	12567	3 4 5 7 8

Продовження таблиці 6.4

Варіант	25	26	27	28	29	30
набір	23458	12346	1 2 4 6 8	1 3 4 5 7	14678	1 3 4 6 8

Таблиця 6.5

Набір	1	2	3	4	5	6	7	8
Група А		-2,4	3,7		0,8	5,8	-1,1	-3,1
Група В	-2,9	8,3	1,8	-3,7	4,2		-0,5	6,1

Вибіркова середня обчислюється за формулою:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$
 (5.1)

де $n - oб' \varepsilon м$ вибірки;

хі - елементи вибірки.

Вибіркова дисперсія обчислюється за формулою:

$$D = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2.$$
 (5.2)

Якщо вибірка складається з двох (або кількох) груп, то внутрішньогрупова дисперсія обчислюється за формулою:

$$D_{\text{BH. rp.}} = \frac{D_{\text{A}} \cdot n_{\text{A}} + D_{\text{B}} \cdot n_{\text{B}}}{n_{\text{A}} + n_{\text{B}}}, \tag{5.3}$$

де D_A, D_B – дисперсії груп A і B, n_A, n_B – об'єми груп A і B.

Міжгрупова дисперсія:

$$D_{\text{між}} = \frac{(\bar{x}_{A} - \bar{x})^{2} \cdot n_{A} + (\bar{x}_{B} - \bar{x})^{2} \cdot n_{B}}{n_{A} + n_{B}}.$$
 (5.4)

Вибіркова дисперсія дорівнює сумі внутрішньогрупової та міжгрупової дисперсій.

🖹 Завда	ання 18 Порос	скун О. ПМ-81								
	А	В	С	D	E	F	G	Н	I	J
1				Завда	ння 18					
2										
3		Набір	3	5	6	7	8			
4		Група А	3,70	0,80	5,80	-1,10	-3,10			
5		Група В	1,80	4,20	-	-0,50	6,10			
6										
7		Вибірков	е середнє			Об'єм в	ибірки n			
8		M=	1,97			n=	9,00			
9										
10		Диспер	сії для гру	пАіВ:					я груп АіВ	:
11		D(A)=	12,84		n(A)=		\overline{x}	a	\overline{x}	b
12		D(B)=	8,23		n(B)= 4,00 1,2			22	2,9	90
13										
14		Внутрішні	ьогрупова	дисперсія	D (вн гр):	10,79				
15										
16		Міжг	рупова дис	персія D(л	ліж) :	2,58				
17										
18		Сере	едня диспе	рсія вибірі	ки С:	10,54				
19										
20		Виправ	влена вибір	окова дисг	іерсія і					
21		cepe	днє квадра	тичне для	«C»:					
22										
23		s ²	11,85							
24		δ	3,44							
25										

Зави	дання 18	Пороскун О. ПМ	-81 формули							
	Α	В	С	D	E	F	G	Н	I	J
1					38	авдання 18				
2										
3		Набір	3	5	6	7	8			
4		Група А	3,7	0,8	5,8	-1,1	-3,1			
5		Група В	1,8	4,2	-	-0,5	6,1			
6										
7		Вибір	кове середнє			Об'єм вибірки n				
8		M=	=CP3HAY(C4:G5)			n=	= =CЧЁТ(C4:G5)			
9										
10		Дис	персії для груп А і	B:		Об'єм груп:		едні д	ұля груп A i B:	
11		D(A)= =ДИСП(C4:G4)			n(A)= =C4ËT(C4:G4)		$\overline{\chi_a}$		$\overline{\chi_b}$	
12		D(B)=	=ДИСП(C5:G5)		n(B)=	=СЧЁТ(C5:G5)	=СРЗНАЧ(С4:G4	1)	=CP3HA4(C5:G5)	
13										
14		Внутрі	шньогрупова дисг	ерсія D (вн гр):	=(C11*F11+C12*F12)/(F11+F12)				
15										
16		M	іжгрупова диспер	сія D(між)	:	=((H11-C8)^2*F11+(I11-C8)^2)/(F11+F12)				
17										
18		C	ередня дисперсія	вибірки (2:	=(C11+C12)/2				
19										
20		Виправ.	лена вибіркова ди	сперсія і (середнє					
21			квадратичне д	ıя «С»:						
22										
23		s ²	=(G8/(G8-1))*F18							
24		δ	=КОРЕНЬ(С23)							
25										

Сумський державний університет

Прикладної математики та моделювання складних систем

3BIT

Завдання 19

Дисципліна

Теорія ймовірностей та математична статистика

Варіант 8

Виконавець: студентка групи ПМ-81

Пороскун Олена Олегівна

Викладач: Гончаров Олександр Андрійович

Суми, Сумська область

Завдання 19. З рядків таблиці 6.6 згідно зі своїм набором (див. табл. 6.4) скласти вибірку, тобто початковий числовий масив. Інші потрібні дані наведені у табл. 6.7.

Виконати такі завдання:

- а) скласти варіаційний ряд;
- б) знайти розмах, медіану і моду вибірки;
- в) побудувати полігон частот;
- г) побудувати гістограму вибірки. Основи прямокутників гістограми вибрати так, щоб точки, які відповідають числам «А», «В» і т. д. опинились на серединах основ. Інтервали, частота яких виявиться меншою 5, об'єднати з більш показними сусідніми інтервалами;
- д) обчислити вибіркове середнє, дисперсію; виправлену дисперсію і середнє квадратичне відхилення;
- е) обчислити теоретичні частоти для нормального закону, крайні інтервали брати напівнескінченними (сума всіх частот при цьому буде дорівнювати об'єму вибірки);
 - ж) накласти теоретичну криву на гістограму;
 - з) обчислити суму Пірсона;
- и) визначити кількість ступенів вільності, з рівнем значущості α перевірити гіпотезу про нормальний розподіл;
- к) визначити ймовірність попадання в інтервал [a; b] двома способами за відносною частотою і за теоретичною функцією розподілу;
- л) знайти інтервали довіри для числових параметрів «а» і «о» нормально розподіленої генеральної сукупності.

Таблиця 6.6

Набір	Елементи вибірки	шт.
1	FEEFCEDEBEFDGDHCGBEBCCDD	24
2	BDEDGKGFDEDCHEDCGEKC	20
3	CEFFCDFGGDGCEKEHDEEFDDCGKA	26
4	EFDEDEKFEFAGECEGGDDBDFHEGH	26
5	EFGFHEBGEGEKFBEBDGEFK	21
6	BDFFFFHDCEDAGKDEDBEFFKDG	24
7	DFHFDCDHGGEHBKEGDBBADEGDE	25
8	HEHEEFHGEDDCKAEDBFDCDGC	23

Таблиця 6.7

Варіант	A	В	a	b	γ	α
1	2	3	4	5	6	7
1	0,6	1,5	3,3	4,8	0,999	0,025
2	0,8	1,2	1,2	1,7	0,999	0,025
3	1,0	1,4	1,4	1,9	0,95	0,05
4	2,8	3,6	3,6	4,9	0,99	0,05
5	0,5	1,0	1,5	2,2	0,99	0,05
6	0,5	1,0	1,0	1,7	0,999	0,05
7	1,2	1,6	2,4	2,9	0,999	0,01
8	1,9	2,7	3,5	4,8	0,999	0,05
9	0,5	1,2	1,2	2,3	0,99	0,01
10	1,7	2,3	2,9	3,8	0,95	0,05
11	1,1	1,9	2,7	4,0	0,95	0,01
12	2,1	3,0	3,9	5,4	0,99	0,02
13	1,2	1,9	3,3	4,4	0,999	0,01
14	0,7	1,2	2,2	2,9	0,99	0,05
15	0,9	1,4	1,9	2,6	0,999	0,01
16	2,9	3,6	4,3	5,4	0,95	0,025
17	2,6	3,2	4,4	5,3	0,999	0,01
18	1,2	2,1	3,9	5,4	0,99	0,05
19	1,9	2,6	4,0	5,1	0,99	0,05
20	1,7	2,6	4,4	5,9	0,99	0,025
21	1,7	2,2	3,2	3,9	0,95	0,05
22	1,5	2,2	2,9	4,0	0,99	0,05
23	1,0	1,9	2,8	4,3	0,99	0,01
24	0,7	1,2	1,7	2,4	0,95	0,05
25	0,7	1,3	1,3	2,2	0,999	0,01

Продовження таблиці 6.7

1	2	3	4	5	6	7
26	1,8	2,4	3,6	4,5	0,99	0,01
27	1,7	2,3	2,9	3,8	0,95	0,01
28	1,6	2,4	4,0	5,3	0,999	0,025
29	2,9	3,3	3,7	4,2	0,99	0,05
30	0,7	1,1	1,1	1,6	0,999	0,05

Таблиця 6.4

Варіант	1	2	3	4	5	6
набір	3 4 5 6 8	12368	23578	23468	12568	14567

Продовження таблиці 6.4

Варіант	7	8	9	10	11	12
набір	13568	35678	12347	13478	13467	23678

Продовження таблиці 6.4

Варіант	13	14	15	16	17	18
---------	----	----	----	----	----	----

набір	23456	14578	12345	25678	1 2 4 5 8	12467

Продовження таблиці 6.4

Варіант	19	20	21	22	23	24
набір	14568	13578	1 2 4 5 7	23457	12567	3 4 5 7 8

Продовження таблиці 6.4

Варіант	25	26	27	28	29	30
набір	23458	12346	12468	1 3 4 5 7	14678	13468

3			Набори		
4	3	5		7	8
5	3,5	5,1	2,7	4,3	
6	5,1	5,9	4,3	5,9	5,1
7	5,9	6,7	5,9	7,5	7,5
8	5,9	5,9	5,9	5,9	5,1
9	3,5	5,1 5,9 6,7 5,9 7,5 5,1 2,7 6,7 5,1 9,9 5,9 2,7 5,1 2,7 4,3 6,7 5,1 5,1 5,9	5,9	4,3	5,1
10	4,3	5,1	5,9	3,5	5,9
11	5,9	2,7	7,5	4,3	7,5
12	6,7	6,7	4,3	7,5	6,7
13	6,7	5,1	3,5	6,7	5,1
14	4,3	6,7	5,1	6,7	4,3
15	6,7	5,1	4,3	5,1	4,3
16	3,5	9,9	1,9	7,5	3,5
17	5,1	5,9	6,7	2,7	9,9
18	9,9	2,7	9,9	9,9	1,9
19	5,1	5,1	4,3	5,1	5,1
20	7,5	2,7	5,1	6,7	4,3
21	4,3	4,3	4,3	4,3	2,7
22	5,1	6,7	2,7	2,7	5,9
23	5,1	5,1	5,1	2,7	4,3
24	5,9	5,9	5,9	1,9	3,5
25	4,3	9,9	5,9	4,3	4,3
26	4,3		6 2,7 4,3 5,9 5,9 5,9 7,5 4,3 3,5 5,1 4,3 1,9 6,7 9,9 4,3 5,1 4,3 2,7 5,1 5,9 5,9	4,3 5,9 7,5 5,9 4,3 3,5 4,3 7,5 6,7 6,7 5,1 7,5 2,7 9,9 5,1 6,7 4,3 2,7 2,7 1,9 4,3 5,1 6,7 4,3 5,1 6,7 4,3	7,5 5,1 7,5 5,1 5,1 5,9 7,5 6,7 5,1 4,3 4,3 3,5 9,9 1,9 5,1 4,3 2,7 5,9 4,3 3,5 4,3 6,7
27	3,5		4,3	6,7	3,5
28	6,7		6,7	4,3	
29	9,9			5,1	
30	3 3,5 5,1 5,9 5,9 3,5 4,3 5,9 6,7 6,7 4,3 6,7 3,5 5,1 9,9 5,1 7,5 4,3 5,1 5,1 5,9 4,3 4,3 5,9 6,7				
31					
32	A	1,9			
33	В	2,7			
34	С	1,9 2,7 3,5			
35	D	4,3			
36	E	5,1			
37	F	5,9			
38	G	6,7			
39	H	7,5			
40	K	9,9			

Виконати такі завдання:

- а) скласти варіаційний ряд;
- б) знайти розмах, медіану і моду вибірки;
- в) побудувати полігон частот;

									_	_
5	G	Н		J	K	L	М	N	0	Р
6				u)	скласт	и варіації	инии ряс	,		
7		1.00	2.70	2.50	4.20	5 10	5.00	6.70	7.50	0.00
8		1,90	2,70	3,50	4,30	5,10	5,90	6,70	7,50	9,90
9		4	9	9	23	23	18	16	9	8
10				د						
11				б) знайт	ій розмах	к, меошң	у и мооу	виогрки;		
12		06		6 !						
13			мо розмах 9,90	виогрки	x_max - :	x_min :				
		x_max x min	1,90							
15 16		_	1,90 - x min =	8,00						
17		A_IIIAA -	- x_mm =	0,00						
18		Mediana -	_ 110 ganias	ima ava h) ภักษณะยน	่ ก็invv บุก ∗	hei nieui	รส กกี′ <i>ย</i> นก	м частини	5,10
19		nicotana	це вирин	та, жа о	returno ou	огрку на (oot plont	sa oo ewo	м чистини	5,10
20		Мода –	บอ คุลกรัสษา	na nadu 1	ио має н	aทักักมม _ี ง	частот	(wad wa	นาย กับทาง	4,30
21		Мода — це варіанта ряду, що має найбільшу частоту (мод може бути декілька)								5,10
22		oekbloku)								
23		в) побудувати полігон частот;								
24				, .						
25		Полігон	частот -	- це ламан	а, що з'є	днує точ	ки з коор	одинатал	au (xi, ni).	
26					. ,					
27					Полігон	частот				
28		25			HOMEON	1 4acioi				
29		25 7								
30										
31		20 -			/					
32					/					
33		15 -			/					
34		n		/						
35		10 -	4	/						
36										
37		5 -								
38										
39		o ⊥								
40			1,90 2,7	70 3,50	4,30		,90 6,7	0 7,50	9,90	
41						x				
42										

	G	Н	I	J	K	L	M	N	0	Р
5										
6				а) скл	асти в	аріаційн	ий ряд	;		
7										
8		1,9	2,7	3,5	4,3	5,1	5,9	6,7	7,5	9,9
9		4	9	9	23	23	18	16	9	8
10										
11		б) знайти розмах, медіану і моду вибірки;								
12										
13		0	бчислимо розмах ви	бірки х_тах	$-x_min$	ı :				
14		x_max	=MAKC(B5:F30)							
15		x_min	=MИH(B5:F30)							
16		X.	$_{\text{max}} - x_{\text{min}} =$	=I14-I15						
17										
18		Медіана — це варіанта, яка ділить вибірку на дві рівні за об'ємом частини								=МЕДИАНА(B5:F30)
19										
20		Мода	– це варіанта ряду	, що має най	більшу :	частоту	/ (мод л	юже бу	vmu	4,3
21				декільк	ca)					=MOДA(B5:F30)

г) побудувати гістограму вибірки. Основи прямокутників гістограми вибрати так, щоб точки, які відповідають числам «А», «В» і т. д. опинились на серединах основ. Інтервали, частота яких виявиться меншою 5, об'єднати з більш показними сусідніми інтервалами;

Для побудови гістограми потрібно вибрати на вісі ОХ основи прямокутників. У випадку варіаційного ряду з рівновіддаленими варіантами хі, зручно розбивку [αі: βі] вибрати за таким правилом:

$$\alpha_i + \beta_i = 2x_i$$
, $\alpha_{i+1} = \beta_i$, $i = 1, \dots, k$..

При побудові гістограми інтервали, які відповідають малим частотам n_i , називають непоказними і об'єднують із сусідніми. Якщо сусідніх два, то вибирають той, у якого частота n_i вища. Рівень зображуваності, взагалі кажучи, величина інтуїтивна. Приймемо, що об'єднанню підлягають інтервали, у яких $n_i < 5$. Інколи навіть після об'єднання двох інтервалів утворюється непоказний інтервал, тоді процес об'єднання продовжується на наступний сусідній інтервал.

Об'єднання двох інтервалів описується співвідношеннями:

Після об'єднання інтервалів виконується їх перенумерація, щоб індекс «і» приймав всі значення підряд без пропусків. В результаті зміни інтервалів варіаційний ряд дещо видозмінюється: частоти відносяться не до чисел, а до інтервалів — показують, скільки елементів з вибірки попадає в даний інтервал. Запишемо інтервальний варіаційний ряд в таблицю 5.2 (стовпці «і», «інтервал», « δ_i » — довжина інтервалу, $\delta_i = \beta_i - \alpha_i$).

Для обчислення висот прямокутників треба вибрати масштаб, це можна зробити таким чином. Прямокутник найбільшої висоти буде відповідати моді варіаційного ряду. Тому, для того щоб рисунок гістограми ефективно

використовував площу рисунка висотою H, масштабний множник μ повинен задовольняти співвідношенню:

$$S = H \cdot \delta = \mu \cdot n_M \qquad \qquad \mu = \frac{H \cdot \delta}{n_M}$$

де δ і S — довжина основи і площа прямокутника, який відповідає моді варіаційного ряду, n_M — частота моди (найбільша частота в варіаційному ряді). Тепер висота будь-якого прямокутника гістограми буде обчислюватись за формулою:

$$h_i = \mu \frac{n_i}{\delta_i}$$

У даному завданні, узявши висоту 80 мм, отримаємо:

$$\mu = \frac{H \cdot \delta}{n_M} = \frac{80 \cdot 0.8}{23} = 2.78$$

	Q	R	S	Т	U	V	W	X	γ		
4	ų.	IX.	3		U	V	V V	^			
5											
6		1 1	г) побудувати гістограму вибірки. Основи прямокутників гістограми вибрати так, щоб точки, які відповідають числам «А», «В» і т. д. опинились на серединах основ. Інтервали, частота яких виявиться меншою 5, об'єднати з більш показними								
7		((A)), («В» і т. д. опини	ілись на сер	единах ос	-		иться меншою 3, 06 'єд	нати з більш показними		
8						сусідніми інтере	валами;				
9			$S = H \cdot \delta =$		H · &	$\delta_i = \beta_i$	2 0	, .			
10			$S = H \cdot O =$	$\mu \cdot n_{M}$	$\mu - {n_M}$	$o_i - \mu$	$\sigma_i - a$	i			
11		δ_i	0,8		n_M	=MAKC(H9:P9)					
12					У дано	му прикладі, узявши вис	оту 80 мм	, отримаємо			
13		μ	=(80*S11)/V11								
14			πο δ	ic none		и і площа прямокутника	awwi nian	ranimaa Mami naniamiiiman	o nami		
15			део			и г площа прямокутника га моди (найбільша часто			о ряду,		
16				re _M	- 4ac10	та моди (наиопъша часто	та в варіаі	циному ряді).			
17											
18		Тепер	висота будь-якого	о прямокутни	ка гістогра	ми буде обчислюватись за	h. =	$=\mu \frac{n_i}{s}$			
19				форм	улою:		ni -	δ_i			

	Q	R	S	T	U	V
20						
21		i	інтервал	n_i	δ_i	h_i
22		1	1,50	13	1.6	22,61
23		1	3,10	13	1,6	
24		2	3,10	9	0,8	31,30
25			3,90	<i>3</i>	0,8	
26		3	3,90	23	0,8	80,00
27		3	4,70	23	0,6	
28		4	4,70	22	0.0	80,00
29		4	5,50	23	0,8	
30		5	5,50	18	0.0	62,61
31		3	6,30	18	0,8	
32		6	6,30	16	0,8	55,65
33		U	7,10	10	0,0	
34		7	7,10	9	0.8	31,30
35		/	7,90	9	0,8	
36		8	7,90	8	2.4	9,28
37		0	10,30	0	2,4	

	Q	R	S	Т	U	V
20						
21		i	інтервал	n_i	δ_i	h_i
22			1,5			=\$S\$13*(\$T22/\$U22)
23		1	3,1	13	=S23-S22	
24			3,1			=\$\$\$13*(\$T24/\$U24)
25		2	3,9	9	=S25-S24	
26			3,9			=\$S\$13*(\$T26/\$U26)
27		3	4,7	23	=S27-S26	
28			4,7			=\$S\$13*(\$T28/\$U28)
29		4	5,5	23	=S29-S28	
30			5,5			=\$S\$13*(\$T30/\$U30)
31		5	6,3	18	=S31-S30	
32			6,3			=\$S\$13*(\$T32/\$U32)
33		6	7,1	16	=S33-S32	
34			7,1			=\$\$\$13*(\$T34/\$U34)
35		7	7,9	9	=S35-S34	
36			7,9			=\$S\$13*(\$T36/\$U36)
37		8	10,3	8	=S37-S36	

д) обчислити вибіркове середнє, дисперсію; виправлену дисперсію і середнє квадратичне відхилення;

Сума усіх елементів вибірки:

$$S_x = \sum_{i=1}^n x_i = 639,70$$

де
$$n=119-$$
 обсяг вибірки

Вибіркове середнє:

$$a = \bar{x} = \frac{S_x}{n} = 5.38$$

Вибіркова дисперсія:

$$D_x = \frac{S_{xx}}{n} - \overline{x}^2 = 3,45$$
 де $S_{xx} = \sum_{i=1}^n x_i^2 = 3848,95$

Виправлена дисперсія:

Середнє квадратичне відхилення:

$$S^2 = \frac{n}{n-1} D_x = 3,48$$

$$\sigma = S = \sqrt{S^2} = 1,86$$

	Z	AA	AB	AC	AD	AE	AF
4							
5		d) ofman		a aanadu	a duemana	io eum	0.07.0111
6		· ·	ити вибірков ерсію і середі	-	_	_	- 1
7		ouch	ерсио і серео	пс койора	ımu4ne oı	охинепп	.,
8					S		$\sum_{i=1}^{n}$
9		Buối	ркове середн	€:	$\bar{x} = -\frac{1}{2}$	$\frac{x}{i}$ S_x	$= \sum_{i} x_{i}$
10					7	ι	i=1
11		n	119				
12		Sx	639,70				
13		X	5,38				
14				S	~~ 2		$\sum_{n=0}^{\infty}$
15		Вибіркова	дисперсія:	$D_x = -\frac{1}{2}$	$\frac{xx}{1} - \overline{x}^2$	$S_{xx} =$	$\sum_{i} x_i^2$
16				•	ι	,	i=1
17		Sxx	3848,95				
18		Dx	3,45				
19						n	_
20		Bunpa	влена диспер	сія:	S2 :	$=\frac{n}{n-1}$	$\frac{1}{1}D_x$
21						n-	1
22		S^2	3,48				
23						_	
24		Середнє	квадратичн	е відхиле	ення:	$\sigma = S =$	$=\sqrt{S^2}$
25							
26		σ	1,86				

	Z	AA	AB	AC	AD	AE	AF
4							
5		رره	обчислити вибіркове серед	uc duenancias	eunnaeneu	v ducuancim i canad	uc veadnamuuue
6		0)	оочислити виогркове серео	-	виприыген _. пення;	у оисперсью і серео	не квиоритичне
7				olox n	terms,		
8						S.,	$\stackrel{n}{\smile}$
9			Вибіркове середнє:		$\bar{x} =$	$\frac{S_x}{n}$ S_x	$= \sum_{i} x_{i}$
10						n	i=1
11		n	=СЧЁТ(В 5 :F30)				
12		Sx	=CYMM(B5:F30)				
13		X	=AB12/AB11				
14				S	_ 2		$\sum_{i=1}^{n}$
15		E	Вибіркова дисперсія:	$D_x = \frac{S_{xx}}{a}$	$-\overline{x}^2$	$S_{xx} =$	$\sum_{i} x_i^2$
16				n		,	i=1
17		Sxx	=CУММКВ(B5:F30)				
18		Dx	=AB17/AB11-(AB13^2)				
19						n	D
20			Виправлена дисперсіл	9:		$S^2 = \frac{n}{n-1}$	$\frac{1}{1}D_x$
21						n-	1
22		S^2	=(AB11/(AB11-1))*AB18				
23							_
24			Середнє квадратичне	відхилення:		$\sigma = S =$	$=\sqrt{S^2}$
25							V -
26		σ	=КОРЕНЬ(АВ22)				

е) обчислити теоретичні частоти для нормального закону, крайні інтервали брати напівнескінченними (сума всіх частот при цьому буде дорівнювати об'єму вибірки);

Заповнимо стовпець «х», в який заносять аргументи інтегралу ймовірностей:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \exp(-\frac{t^2}{2}) dt,$$

на «і»-ому інтервалі $x = \frac{r-a}{s}$, де « r » – число з стовпця «інтервал».

По стовпцю «х» таблиці 5.2 можна обчислити значення інтеграла ймовірностей, використовуючи Додаток A (табл. A.2). Треба мати на увазі, що, обчислюючи ймовірності $P = \Phi(x'') - \Phi(x')$, ми віднімаємо близькі між собою числа, а це, як відомо, приводить до значного зросту відносної похибки. Тому значення функції $\Phi(x)$ треба отримувати з максимальною точністю. Аргумент «х» в Додатку А заданий з двома знаками після коми, отже, якщо в стовпці «х» таблиці 5.2 залишати три знаки після коми, то за допомогою лінійної інтерполяції можна знайти потрібні значення $\Phi(x)$ достатньо точно.

Приклад лінійної інтерполяції. Нехай треба знайти $\Phi(2,086)$. У Додатку А (табл. А.2) знаходимо $\Phi(2,08) = 0,4812$, $\Phi(2,10) = 0,4821$. Можна обчислити різницю 0,4821 - 0,4812 = 0,0009. Отже, на одну соту частину аргументу припадає 0,0009, а на одну тисячну 0,00009. Помножимо на однозначне число 6 ($6 \cdot 0,00009 = 0$).

0,00054) і округлимо до чотирьох знаків після коми — 0,0005. Отже $\Phi(2,086) = 0,4812 + 0,0005 = 0,4817$.

Заповнимо стовпець $\Phi(x)$ таблиці. Тепер можна обчислити теоретичні ймовірності попадання в інтервали:

$$P_i = \Phi(x_i^{\prime\prime}) - \Phi(x_i^{\prime})$$

(від нижнього числа клітини стовпця $\Phi(x)$ віднімаємо верхнє число тієї ж клітини). Нарешті, останній стовпець таблиці – теоретичні частоти:

$$n_i' = P_i \cdot n$$
 де $n - o6$ 'єм вибірки.

Зауважимо, що, на відміну від фактичних, теоретичні частоти не округляються до цілого значення.

	Z	AA	AB	AC	AD	AE	AF				
28		е) обчисл	ити теореп	гичні час	тоти дл	я нормаг	тьного				
29		закону, к	райні інтере	вали бран	пи напівн	<i>ескінчен</i>	ними				
30		(сума всіх частот при цьому буде дорівнювати об'єму									
31				вибірки)) ;						
32											
33		Виходячи з	вигляду гіст	ограми (б	близькі до	центру	рисунка				
34		прямок	утники висо	кі, а до п	ериферії	внижуют	ься),				
35		висуне	ио гіпотезу п	ро норма	льний зан	кон розпо	оділу				
36		генерально	ої сукупності	. В якост	і парамет	рів норм	ального				
37			зак	ону прий	мемо:						
38											
39		$a = \bar{x}$	5,38		$\sigma = S$	1,86					
40											
41											
42		i	інтервал	х	Φ	p_i	n_i'				
43		1	1,5	-2,086	-0,4817	0,0918	10,9242				
44		1	3,1	-1,226	-0,3899	0,0918	10,9242				
45		2	3,1	-1,226	-0,3899	0,1033	12,2927				
46		2	3,9	-0,796	-0,2866	0,1033	12,2927				
47		3	3,9	-0,796	-0,2866	0,1238	14,7322				
48		3	4,7	-0,366	-0,1628	0,1236	14,7322				
49		4	4,7	-0,366	-0,1628	0,1887	22,4553				
50			5,5	0,065	0,0259	0,1007	22,4333				
51		5	5,5	0,065	0,0259	0,1638	19,4922				
52			6,3	0,495	0,1897	0,1030	15,4522				
53		6	6,3	0,495	0,1897	0,1328	15,8032				
54			7,1	0,925	0,3225	0,1020	15,0032				
55		7	7,1	0,925	0,3225	0,0898	10,6862				
56		7,9 1,355		0,4123	0,0070	10,0002					
57		8	7,9	1,355	0,4123	0,0836	9,9484				
58		3	10,3	2,645	0,4959	0,0050	7,7404				

	Z	AA	AB	AC	AD	AE	AF				
27											
28											
29		е) обчислити теоретичні частоти для нормального закону, крайні інтервали брати напівнескінченними									
30		(сума всіх частот при цьому буде дорівнювати об'єму вибірки);									
31											
32											
33		Rus	OUGHA 3 BALLIGUA LICTOLUSM	и (близькі до центру рисунка пр	дмокутник	и високі а по перид	enii shrkmotrca)				
34		1		н (олизвкі до центру рисунка пр й закон розподілу генеральної с			-				
35		Bheyne	мо ттотезу про пормальни	приймемо:	укуппості.	В якості параметрі	в пормального закону				
36				npininesio.							
37											
38											
39		$a = \bar{x}$	=AB13		$\sigma = S$	=AB26					
40			ı								
41							,				
42		i	інтервал	X	Φ	p_i	n_i'				
43			1,5	=(\$AB43 -\$AB\$39)/\$AE\$39	-0,4817						
44		1	3,1	=(\$AB44 -\$AB\$39)/\$AE\$39	-0,3899	=\$AD44-\$AD43	=\$AB\$11*\$AE43				
45		_	3,1	=(\$AB45 -\$AB\$39)/\$AE\$39	-0,3899						
46		2	3,9	=(\$AB46 -\$AB\$39)/\$AE\$39	-0,2866	=\$AD46-\$AD45	=\$AB\$11*\$AE45				
47			3,9	=(\$AB47 -\$AB\$39)/\$AE\$39	-0,2866		0.D04440.D45				
48		3	4,7	=(\$AB48 -\$AB\$39)/\$AE\$39	-0,1628	=\$AD48-\$AD47	=\$AB\$11*\$AE47				
49			4,7	=(\$AB49 -\$AB\$39)/\$AE\$39	-0,1628		_\$AD\$11*\$AE40				
50		4	5,5	=(\$AB50 -\$AB\$39)/\$AE\$39 =(\$AB51 -\$AB\$39)/\$AE\$39	0,0259	=\$AD50-\$AD49	=\$AB\$11*\$AE49				
51		5	5,5 6,3	=(\$AB51 -\$AB\$39)/\$AE\$39 =(\$AB52 -\$AB\$39)/\$AE\$39	0,0239	=\$AD52-\$AD51	=\$AB\$11*\$AE51				
52		,	6,3	=(\$AB52 -\$AB\$39)/\$AE\$39 =(\$AB53 -\$AB\$39)/\$AE\$39	0,1897	-\$AD32-\$AD31	-\$AD\$11.\$AE31				
54		6	7,1	=(\$AB54 -\$AB\$39)/\$AE\$39	0,1897	=\$AD54-\$AD53	=\$AB\$11*\$AE53				
55		0	7,1	=(\$AB55 -\$AB\$39)/\$AE\$39	0,3225	-φAD34-φAD33	-ψΑΒΦΙΙ ΦΑΕ33				
56		7	7,9	=(\$AB56 -\$AB\$39)/\$AE\$39	0,3223	=\$AD56-\$AD55	=\$AB\$11*\$AE55				
57		/	7,9	=(\$AB57 -\$AB\$39)/\$AE\$39	0,4123	—фAD30-фAD33	-ψΑΒΦΙΙ ΦΑΕΣΣ				
		Q.				-\$AD58 \$AD57	-\$AB\$11*\$AE57				
58		8	10,3	=(\$AB58 -\$AB\$39)/\$AE\$39	0,4959	=\$AD58-\$AD57	=\$AB\$11*\$AE57				

ж) накласти теоретичну криву на гістограму;

Абсциси та ординати теоретичної кривої обчислимо за наступними формулами:

$$x_i = \frac{x_{i1} - x_{i2}}{2} \qquad \qquad y_i = \mu \cdot n_i' / \Delta_i$$

3'єднуємо точки плавною лінією (вершина кривої не зобов'язана співпадати з якою-небудь точкою), вона повинна бути симетричною відносно прямої $x = \bar{x}$.

	Q	R	S	Т	U	V	W	X	Υ		
38											
39			ж) накласти теоретичну криву на гістограму;								
40			ж) ни	мисти п	пеоретич	ну криву	на гито	граму,			
41											
42		Абсці	иси та орд	цинати те	оретичної	кривої о	бчислимо	за настуг	ІНИМИ		
43					форм	улами:					
44			2	$x_{i1} - x_i$	2			1/4			
45			$x_i = -$	$\frac{x_{i1}-x_i}{2}$	_	3	$v_i = \mu$	n_i'/Δ_i			
46											
47											
48					T.						
49					Гісто	грама					
50							_	Теоретичн	а крива		
51											
52											
53											
54											
55											
56											
57											
58											
59											
60											
61											
62		1	2	3	4	5	6	7	8		

	Q	R	S	T	U	V	W	X	Υ
20									
21		i	інтервал	n_i	δ_i	h_i		X	у
22		1	1,50	13	1,6	22,61		2,3	18,9986
23		1	3,10	13	1,0				
24		2	3,10	9	0,8	31,30		3,5	42,7572
25			3,90	9	0,0				
26		3	3,90	23	0,8	80,00		4,3	51,2424
27			4,70	23	0,0				
28		4	4,70	23	0,8	80,00		5,1	78,1054
29		4	5,50	23	0,8				
30		5	5,50	18	0,8	62,61		5,9	67,799
31			6,30	10	0,6				
32		6	6,30	16	0,8	55,65		6,7	54,9677
33		0	7,10	10	0,0				
34		7	7,10	9	0,8	31,30		7,5	37,1694
35		,	7,90	7	0,0				
36		8	7,90	8	2,4	9,28		9,1	11,5344
37		0	10,30	0	2,4				

	Q	R	S	Т	U	V	W	Х	Υ
20									
21		i	інтервал	n_i	δ_i	h_i		X	у
22			1,5			=\$S\$13*(\$T22/\$U22)		=CP3HAЧA(S22:S23)	=\$S\$13*(\$AF43/\$U22)
23		1	3,1	13	=S23-S22				
24			3,1			=\$S\$13*(\$T24/\$U24)		=CP3HAЧA(S24:S25)	=\$S\$13*(\$AF45/\$U24)
25		2	3,9	9	=S25-S24				
26			3,9			=\$\$\$13*(\$T26/\$U26)		=CP3HA4A(S26:S27)	=\$S\$13*(\$AF47/\$U26)
27		3	4,7	23	=S27-S26				
28			4,7			=\$S\$13*(\$T28/\$U28)		=CP3HAЧA(S28:S29)	=\$S\$13*(\$AF49/\$U28)
29		4	5,5	23	=S29-S28				
30			5,5			=\$S\$13*(\$T30/\$U30)		=CP3HAЧA(S30:S31)	=\$S\$13*(\$AF51/\$U30)
31		5	6,3	18	=S31-S30				
32			6,3			=\$S\$13*(\$T32/\$U32)		=CP3HAЧA(S32:S33)	=\$S\$13*(\$AF53/\$U32)
33		6	7,1	16	=S33-S32				
34			7,1			=\$S\$13*(\$T34/\$U34)		=CP3HAЧA(S34:S35)	=\$S\$13*(\$AF55/\$U34)
35		7	7,9	9	=\$35-\$34				
36			7,9			=\$S\$13*(\$T36/\$U36)		=CP3HAЧA(S36:S37)	=\$S\$13*(\$AF57/\$U36)
37		8	10,3	8	=\$37-\$36				

з) обчислити суму Пірсона;

$$\chi^2_{\text{спост}} = \sum_{i} \chi_i^2 = \sum_{i} \frac{(n_i - n_i')^2}{n_i'} = 6,69$$

	AG	АН	Al	AJ	AK
4					
5		з) об:	числити	суму Пірс	гона;
6		_	∇	∇ (n	$(n_i - n_i')^2$
7		$\chi^2_{\text{спост}} =$	$= \sum \chi_i^2$	$=\sum_{i}\frac{(n_{i})^{2}}{n_{i}}$	n'.
8			i	i	
9				,	
10		i	n_i	n_i'	$\chi_{\rm i}^2$
11		1	13	10,9242	0,39444
12		•		10,52.2	0,05111
13		2	9	12,2927	0,88198
14				,	-,
15		3	23	14,7322	4,63994
16					
17		4	23	22,4553	0,01321
18				_	
19		5	18	19,4922	0,11423
20					
21		6	16	15,8032	0,00245
22					
24		7	9	10,6862	0,26607
25					
		8	8	9,9484	0,3816
26					
27		X	$\frac{2}{\text{choct}} = \sum$	$\chi_{\rm i}^2$	6,69
28			i		

	AG	АН	AI	AJ	AK
4					
5			3)	обчислити	и суму Пірсона;
6		_	$\overline{}$	٦ , ١	$(n_i - n_i')^2$
7		Хспос	_т = 2	$\chi_{\rm i}^2 = \chi_{\rm i}$	$\sum_i rac{(n_i-n_i')^2}{n_i'}$
8			i		i
9					
10		i	n_i	n_i'	χ_{i}^{2}
11					
12		1	13	=AF43	=((\$AI11-\$AJ11)^2)/\$AJ11
13					
14		2	9	=AF45	=((\$AI13-\$AJ13)^2)/\$AJ13
15					
16		3	23	=AF47	=((\$AI15-\$AJ15)^2)/\$AJ15
17					
18		4	23	=AF49	=((\$AI17-\$AJ17)^2)/\$AJ17
19					
20		5	18	=AF51	=((\$AI19-\$AJ19)^2)/\$AJ19
21					
22		6	16	=AF53	=((\$AI21-\$AJ21)^2)/\$AJ21
23					
24		7	9	=AF55	=((\$AI23-\$AJ23)^2)/\$AJ23
25					
26		8	8	=AF57	=((\$AI25-\$AJ25)^2)/\$AJ25
27		γ	enoct = \sum	χ_i^2	
28		λο	i	1/1	=CУMM(AK11:AK26)

и) визначити кількість ступенів вільності, з рівнем значущості α перевірити гіпотезу про нормальний розподіл;

Для обчислення кількості ступенів вільності треба від числа інтервалів відняти кількість зв'язків, які накладає підсумовування. У випадку нормального закону зв'язків 3, це підсумовування при обчисленні \bar{x} , D, χ^2 .

Отже, ступенів вільності 8 - 3 = 5.

Нехай заданий рівень значущості $\alpha=0,05$. Використовуючи табл. А.5, знайдемо критичне значення розподілу χ^2 :

$$\chi^2_{\text{крит}} = 11,1$$

отже, $\chi^2_{\text{спост}} < \chi^2_{\text{крит}}$, тому *немає* підстав відкинути гіпотезу про нормальний розподіл.

к) визначити ймовірність попадання в інтервал [a; b] двома способами — за відносною частотою і за теоретичною функцією розподілу;

Визначимо ймовірність P_{ab} попадання у інтервал [3,5; 4,8] двома способами — за відносною частотою і за теоретичною функцією розподілу.

За відносною частотою:

$$P = \frac{0.5 \cdot 9 + 23}{119} = 0.23$$

(в чисельнику враховуємо частоти тих варіант варіаційного ряду, які належать інтервалу [a; b], для точок, які знаходяться на границі частота зменшується вдвічі).

За теоретичним розподілом:

$$P_{ab} = P (a \le X \le b) = \Phi (x'') - \Phi (x')$$

$$x'' = \frac{4,8 - 5,38}{1,86} = -0,31$$

$$x' = \frac{3,5 - 5,38}{1,86} = -1,23$$

$$P_{ab} = \Phi (-0,31) - \Phi (-1,23) = -0,1217 - (-0,3907) = 0,269$$

л) знайти інтервали довіри для числових параметрів «а» і «σ» нормально розподіленої генеральної сукупності.

Знайдемо інтервали довіри для параметрів нормального розподілу; нехай їх треба обчислити з надійністю $\gamma = 0,999$. В табл. А.3 для n = 119 і $\gamma = 0,999$ знаходимо $t_{\gamma} = 3,374$ і обчислюємо відхилення:

$$\delta = \frac{t_y \cdot S}{\sqrt{n}} = \frac{3,374 \cdot 1,86}{\sqrt{119}} = \frac{6,28}{10,9} = 0,5$$

$$a - \delta = 5,38 - 0,58 = 4,8$$

 $a + \delta = 5,38 + 0,58 = 5,96$

3 надійністю $\gamma = 0,999$ отримаємо 4,8 < a < 5,96 .

Додаток A (табл. A.4) дозволяє знайти $q_{\gamma}=0.27$. Тому з надійністю $\gamma=0.999$ отримаємо інтервал довіри:

$$\sigma (1-q) < \sigma < \sigma (1+q),$$
 $\sigma (1-q) = 1,86(1-0,27) = 1,36$
 $\sigma (1-q) = 1,86(1+0,27) = 2,36$

3 надійністю $\gamma = 0.999$ отримаємо $1.36 < \sigma < 2.36$.

Таблиця A.2. — Таблиця значень функції $\Phi(x)$

X	$\Phi(X)$	X	$\Phi(X)$	X	$\Phi(X)$	X	$\Phi(X)$
0,00	0,0000	0,41	0,1591	0,82	0,2939	1,23	<mark>0,3907</mark>
0,01	0,0040	0,42	0,1627	0,83	0,2967	1,24	0,3925
0,02	0,0080	0,430,	0,16664	0,84	0,2995	1,25	0,3944
0,03	0,0120	0,44	0,1700	0,85	0,3023	1,26	0,3962
0,04	0,0160	0,45	0,1736	0,86	0,3051	1,27	0,3980
0,05	0,0199	0,46	0,1772	0,87	0,3079	1,28	0,3997
0,06	0,0239	0,47	0,1808	0,88	0,3106	1,29	0,4015
0,07	0,0279	0,48	0,1844	0,89	0,3133	1,30	0,4032
0,08	0,0319	0,49	0,1879	0,90	0,3159	1,31	0,4049
0,09	0,0359	0,50	0,1915	0,91	0,3186	1,35	0,4115
0,10	0,0398	0,51	0,1950	0,92	0,3212	1,36	0,4131
0,11	0,0438	0,52	0,1985	<mark>0,93</mark>	0,3238	1,37	0,4147
0,12	0,0478	0,53	0,2019	0,94	0,3264	1,38	0,4162
0,13	0,0517	0,54	0,2054	0,95	0,3289	1,39	0,4177
0,14	0,0557	0,55	0,2088	0,96	0,3315	1,40	0,4193
0,15	0,0596	0,56	0,2122	0,97	0,3340	1,41 1,42	0,4207 $0,4222$
0,16	0,0636	0,57	0,2157	0,98	0,3365	1,42	0,4222
0,17	0,0675	0,58	0,2190	0,99	0,3389	1,44	0,4251
0,18	0,0714	0,59	0,2224	1,00	0,3414	1,45	0,4265
0,19	0,0754	0,60	0,2257	1,01	0,3438	1,46	0,4279
0,20	0,0793	0,61	0,2291	1,02	0,3461	1,47	0,4292
0,21	0,0832	0,62	0,2324	1,03	0,3485	1,48	0,4306
0,22	0,0871	0,63	0,2356	1,04	0,3508	1,49	0,4319
0,23	0,0910	0,64	0,2389	1,05	0,3531	1,50	0,4332
0,24	0,0948	0,65	0,2421	1,06	0,3554	1,51	0,4345
0,25	0,0987	0,66	0,2454	1,07	0,357	1,52	0,4347
0,26	0,1026	0,67	0,2486	1,08	0,3599	1,53	0,4370
0,27	0,1064	0,68	0,2517	1,09	0,3622	1,54	0,4382
0,28	0,1103	0,69	0,2549	1,10	0,3634	1,55	0,4394
0,29	0,1141	0,70	0,2580	1,11	0,3665	1,56	0,4406
0,30	0,1179	0,71	0,2611	1,12	0,3687	1,57	0,4418
0,31	0,1217	0,72	0,2642	1,13	0,3708	1,58	0,4429
0,32	0,1255	0,73	0,2673	1,14	0,3729	1,59	0,4441
0,33	0,1293	0,74	0,2703	1,15	0,3749	1,60	0,4452
0,34	0,1331	0,75	0,2734	1,16	0,3770	1,61	0,4463
0,35	0,1368	0,76	0,2764	1,17	0,3790	1,62	0,4474
0,36	0,1406	0,77	0,2793	1,18	0,3810	1,63	0,4485
0,37	0,1443	0,78	0,2823	1,19	0,3830	1,64	0,4495
0,38	0,1480	0,79	0,2852	1,20	0,3849	1,65	0,4505
0,39	0,1517	0,80	0,2881	1,21	0,3869	1,66	0,4515
0,40	0,1554	0,81	0,2910	1,22	0,3888	1,67	0,4525

Продовження таблиці А.2

X	$\Phi(X)$	X	$\Phi(X)$	X	$\Phi(X)$	X	$\Phi(X)$
1,68	0,4535	1,92	0,4726	2,32	0,4898	2,78	0,4973
1,69	0,4545	1,93	0,4732	2,34	0,4903	2,80	0,4974
1,70	0,4554	1,94	0,4738	2,36	0,4909	2,82	0,4976
1,71	0,4564	1,95	0,4744	2,38	0,4913	2,84	0,4977
1,72	0,4573	1,96	0,4750	2,40	0,4918	2,86	0,4979
1,73	0,4582	1,97	0,4756	2,42	0,4922	2,88	0,4980
1,74	0,4591	1,98	0,4761	2,44	0,4926	2,90	0,4981
1,75	0,4599	1,99	0,4767	2,46	0,4930	2,92	0,4982
1,76	0,4608	2,00	0,4772	2,48	0,4934	2,94	0,4984
1,77	0,4616	2,02	0,4783	2,50	0,4938	2,96	0,4985
1,78	0,4625	2,04	0,4793	2,52	0,4941	2,98	0,4986
1,79	0,4633	2,06	0,4803	2,54	0,4944	3,00	0,4986
1,80	0,4641	2,08	0,4812	2,56	0,4948	3,20	0,4993
1,81	0,4648	2,10	0,4821	2,58	0,4951	3,40	0,4996
1,82	0,4656	2,12	0,4830	2,60	0,4953	3,60	0,4998
1,83	0,4664	2,14	0,4838	2,62	0,4956	3,80	0,4999
1,84	0,4671	2,16	0,4846	2,64	0,4958	4,00	0,4999
1,85	0,4678	2,18	0,4854	2,66	0,4961	4,25	0,4999
1,86	0,4686	2,20	0,4861	2,68	0,4963	4,50	0,4999
1,87	0,4693	2,22	0,4868	2,70	0,4965	5,00	0,4999
1,88	0,4699	2,24	0,4874	2,72	0,4967	∞	0,5
1,89	0,4706	2,26	0,4881	2,74	0,4969		
1,90	0,4713	2,28	0,4887	2,76	0,4971		
1,91	0,4719	2,30	0,4893				

Tаблиця A.3.-Tаблиця значень функції $t_{\gamma}=t(\gamma,n),$

n	γ	0,95	0,99	0,999	n	γ	0,95	0,99	0,999
	5	2,78	4,60	8,61		20	2,093	2,861	3,883
	6	2,57	4,03	6,86		25	2,064	2,797	3,745
	7	2,45	3,71	5,96		30	·	,	· ·
	8	2,37	3,50	5,41			2,045	2,756	3,659
	9	2,31	3,36	5,04		35	2,032	2,720	3,600
	10	2,26	3,25	4,78		40	2,023	2,708	3,558
	11	2,23	3,17	4,59		45	2,016	2,692	3,527
	12	2,20	3,11	4,44		50	2,009	2,679	3,502
	13	2,18	3,06	4,32		60	2,001	2,662	3,464
	14	2,16	3,00	4,22		70	1,996	2,649	3,439
			· ·	, , , , , , , , , , , , , , , , , , ,		80	1,991	2,640	3,418
	15	2,15	2,98	4,14		90	1,987	2,633	3,403
	16	2,13	2,95	4,07		100	1,984	2,627	3,392
	17	2,12	2,92	4,02		120	1,980	2,617	3,374
	18	2,11	2,90	3,97		∞	1,960	2,576	3,291
	19	2,10	2,88	3,92		→	1,700	2,570	5,271

Tаблиця A.4-Tаблиця значень функції $q_{\gamma}=q(\gamma,n)$

n	0,95	0,99	0,999	,	n γ
5	1,37	2,67	5,64		20
6	1,09	2,01	3,88		25
7	0,92	1,62	2,98		30
8	0,80	1,38	2,42		35
9	0,71	1,20	2,06		40
10	0,65	1,08	1,80		45
11	0,59	0,98	1,60		50
12	0,55	0,90	1,45		60
13	0,52	0,83	1,33		70
14	0,48	0,78	1,23		80
15	0,46	0,73	1,15		90
16	0,44	0,70	1,07		100
17	0,42	0,66	1,01		150
18	0,40	0,63	0,96		200
19	0,39	0,60	0,92		250

n	0,95	0,99	0,999
20	0,37	0,58	0,88
25	0,32	0,49	0,73
30	0,28	0,43	0,63
35	0,26	0,38	0,56
40	0,24	0,35	0,50
45	0,22	0,32	0,46
50	0,21	0,30	0,43
60	0,188	0,269	0,38
70	0,174	0,245	0,34
80	0,161	0,226	0,31
90	0,151	0,211	0,29
100	0,143	0,198	0,27
150	0,115	0,160	0,211
200	0,099	0,136	0,185
250	0,089	0,120	0,162

Таблиця $A.5 - Критичні точки розподілу <math>\chi^2$

Кількість ступенів	Ріве	ень значу	щості α
вільності	0,01	0,025	0,05
1	6,6	5,0	3,8
2	9,2	7,4	6,0
3	11,3	9,3	7,8
4	13,3	11,1	9,5
5	15,1	12,8	11,1
6	16,8	14,4	12,6
7	18,5	16,0	14,1
8	20,1	17,5	15,5
9	21,7	19,0	16,9
10	23,2	20,5	18,3
11	24,7	21,9	19,7
12	26,2	23,3	21,0
13	27,7	24,7	22,4
14	29,1	26,1	23,7
15	30,6	27,5	25,0

Кількість ступенів	Рівень	значущо	сті α
вільності	0,01	0,025	0,05
16	32,0	28,8	26,3
17	33,4	30,2	27,6
18	34,8	31,5	28,9
19	36,2	32,9	30,1
20	37,6	34,2	31,4
21	38,9	35,5	32,7
22	40,3	36,8	33,9
23	41,6	38,1	35,2
24	43,0	39,4	36,4
25	44,3	40,6	37,7
26	45,6	41,9	38,9
27	47,0	43,2	40,1
28	48,3	44,5	41,3
29	49,6	45,7	42,6
30	50,9	47,0	43,8

Сумський державний університет

Кафедра

Прикладної математики та моделювання складних систем

3BIT

Завдання 20

Дисципліна

Теорія ймовірностей та математична статистика

Варіант 8

Виконавець: студентка групи ПМ-81

Пороскун Олена Олегівна

Викладач: Гончаров Олександр Андрійович

Суми, Сумська область

2020

Завдання 20 (таблиця 6.8). Для заданої двовимірної вибірки виконати такі завдання:

- а) обчислити числові характеристики
- $S_x, S_y, S_{xx}, S_{yy}, S_{xy}, \bar{x}, \bar{y}, D_x, D_y;$
- б) обчислити коефіцієнти рівняння лінійної регресії;
- в) обчислити вибірковий коефіцієнт кореляції, оцінити тісноту лінійного зв'язку між факторами
 - Γ) для X_{min} , X, X_{max} знайти передбачення «у»;
 - д) для X_{min} , X, X_{max} знайти інтервали довіри лінії регресії з надійністю γ ;
- е) побудувати на одному рисунку кореляційне поле, лінію регресії і область довіри.

В таблиці 6.8 число «k» дорівнює остачі від ділення номера варіанта на 5, а число «n» приймає значення з набору для цього варіанта (табл. 6.4). Отже, в початковий числовий масив треба включити пари чисел «x» і «y», які записані в стовпці «k» в тих клітинах (відокремлених товстими горизонтальними лініями), номер «n» яких належить набору даного варіанта.

Таблиця 6.8

k →	0		1			2		3		4	
n ↓	X	у	X	у	X	у	X	у	X	у	
1	2	3	4	5	6	7	8	9	10	11	
	35	30	58	13	83	28	65	15	75	28	
1	31	38	29	32	86	29	86	39	77	34	
1	1	73	2	54	80	25	76	28	99	63	
	36	28	29	34	90	34	86	37	96	58	
	6	63	31	31	61	14	86	37	65	18	
2	43	25	37	25	75	24	81	32	95	58	
	27	42	21	39	76	23	63	15	65	21	
	3	69	55	11	70	19	96	44	62	16	
	1	70	0	61	86	33	99	50	92	53	
3	6	63	49	23	92	38	84	37	77	33	
3	33	34	56	20	98	41	77	27	78	35	
	46	47	26	34	79	23	62	19	96	55	

Продовження таблиці 6.8

1	2	3	4	5	6	7	8	9	10	11
	10	58	38	26	78	25	76	27	82	40
4	49	16	14	40	65	18	78	29	71	23
4	45	24	33	31	71	17	87	40	82	38
	46	21	21	36	64	16	72	24	75	28
	17	52	40	27	63	16	92	46	85	40
5	4	71	7	52	96	45	80	31	64	17
3	17	50	4	53	66	17	85	36	92	51
	34	32	24	38	91	36	91	48	60	16
	2	76	57	17	74	22	61	19	66	24
6	4	70	43	24	95	43	60	18	96	61
U	39	28	51	17	85	29	92	42	91	54
	4	70	7	49	85	31	89	43	68	24
	9	61	55	22	70	20	66	23	88	49
7	16	54	45	25	61	12	71	26	64	21
/	35	28	46	21	82	26	64	18	88	45
	9	65	35	26	83	26	74	24	87	45
	3	73	34	30	93	39	68	20	96	59
8	18	52	28	31	86	29	87	42	81	33
8	45	15	17	40	86	29	75	27	65	20
	3	74	16	38	88	38	73	25	69	25

Таблиця 6.4

Варіант	1	2	3	4	5	6
набір	3 4 5 6 8	12368	23578	23468	12568	14567

Продовження таблиці 6.4

Варіант	7	8	9	10	11	12
набір	13568	35678	1 2 3 4 7	13478	13467	23678

Продовження таблиці 6.4

Варіант	13	14	15	16	17	18
набір	23456	14578	1 2 3 4 5	25678	12458	12467

Продовження таблиці 6.4

Варіант	19	20	21	22	23	24
набір	14568	13578	1 2 4 5 7	23457	12567	3 4 5 7 8

Продовження таблиці 6.4

			Poodoleen	si milionini,	· · ·	
Варіант	25	26	27	28	29	30
набір	23458	12346	1 2 4 6 8	13457	14678	1 3 4 6 8

а) Формули для знаходження числових характеристик:

$$S_x = \sum_{i=1}^n x_i$$
 $S_y = \sum_{i=1}^n y_i$ $S_{xx} = \sum_{i=1}^n x_i^2$ $S_{yy} = \sum_{i=1}^n y_i^2$ $S_{xy} = \sum_{i=1}^n x_i \cdot y_i$

n = oбcяг величин X (ma Y)

$$\bar{x} = \frac{S_x}{n}$$
 $\bar{y} = \frac{S_y}{n}$

$$D_{x} = \frac{S_{xx}}{n} - \overline{x}^{2} \qquad D_{y} = \frac{S_{yy}}{n} - \overline{y}^{2}$$

б) Коефіцієнти рівняння лінійної регресії:

$$k = \frac{S_{xy}}{n} - \bar{x} \cdot \bar{y} = 0.89$$
 $b = \bar{y} - k \cdot \bar{x} = -38.3$

Pівняння лінійної регресії: y(x) = kx + b

$$y = 0.89 x - 38.3$$

в) Вибірковий коефіцієнт кореляції обчислюється за формулою:

$$r = k \cdot \sqrt{\frac{D_x}{D_y}} = 0.97$$

Можна оцінити тісноту лінійного зв'язку між факторами за шкалою:

$$\mid r \mid < 0,6 -$$
слабка $0,6 \leq \mid r \mid \leq 0,9 -$ середня $\mid r \mid > 0,9 -$ сильна.

Висновок: між факторами X і У спостерігається лінійний зв'язок з сильним рівнем тісноти, так як | r | = 0.97 > 0.9.

г) для Xmin, X, Xmax знайти передбачення «у»

$$y(x) = kx + b$$

$$y(x_{min}) = y(60) = 15,4$$

$$y(\overline{x}) = y(77,5) = 31$$

$$y(x_{max}) = y(99) = 50,3$$

д) для X_{min} , X, X_{max} знайти інтервали довіри лінії регресії з надійністю $\gamma = 0.999$;

$$S_y = \sqrt{\frac{n}{n-1}D_y} = 10.9$$

Використовуючи таблицю А.3, знаходимо $t_{\gamma} = 3,883$. Тепер можна записати формулу для обчислення ширини інтервалу довіри

$$\delta(x) = \frac{t_y \cdot S_y}{\sqrt{n}} \sqrt{1 + \frac{(x - \overline{x})^2}{D}}$$

$$\frac{t_y \cdot S_y}{\sqrt{n}} = 9,5$$

$$\delta(x_{min}) = \delta(60) = 17,18$$

$$\delta(\overline{x}) = \delta(77,5) = 9,5$$

$$\delta(x_{max}) = \delta(99) = 19,9$$

Отже, отримаємо інтервали довіри для передбачень «у» в заданих точках

$$y_x - \delta_x \le y \le y_x + \delta_x;$$
 $x = 60:$ $-1,79 \le y \le 32,57,$
 $x = 77,5:$ $21,55 \le y \le 40,55,$
 $x = 99:$ $30.30 \le y \le 70,28.$

е) побудувати на одному рисунку кореляційне поле, лінію регресії і область довіри

4	Α	В	С	D	E	F	G	Н	I
1									
2							Порос	кун О. ПМ-81	
3									
4		X	у				2.		
5		99	50				38	авдання 20	
6		84	37						
7		77	27						
8		62	19						
9		92	46				Пия поменей иновите!	··6:	
10		80	31			-> -5	Для заданої двовимірно	-	_ <u></u>
11		85	36			а) оочи	слити числові характерист		•
12		91	48			-) -5	б) обчислити коефіціє	•	• •
13		61	19			в) оочислити вио			ту лінійного зв'язку між факторами
14		60	18			-) 3	г) для Xmin, X, Xm	-	
15		92	42				-	-	регресії з надійністю 🧨 ;
16		89	43			е) пооудув	ати на одному рисунку кор	еляціине поле, лії	нію регресії і область довіри.
17		66	23						
18		71	26						
19		64	18			n	n	S_x	.S.,
20		74	24		$S_x =$	$x > x_i$ $S_v = 0$	y_i \bar{x}	$=\frac{\alpha}{2}$	$\bar{y} = \frac{3y}{2}$
21		68	20			i=1	=1	\boldsymbol{n}	$ar{y} = rac{S_y}{n}$ $S_{xy} = \sum_{i=1}^n x_i \cdot y_i$
22		87	42			$\frac{n}{n}$	n		n
23		75	27		2	$S_{xx} = \sum_{i} x_i^2$	$S_{yy} = $	y_i^2	$S_{xy} = \sum_{i} x_i \cdot y_i$
24		73	25			i=1	i=1		i=1
25									

	M11	- (9	f _x =B5^2+B6^2+B7^2+B8^2+B9^2+B10^2+B11^2+	B12^2+B1	3^2+B14^2+B1	5^2+B16^2+B17^2+B18^2+B19^2+B20^2+B2	1^2+B22^2+B23^2+B2	4^2		
3at	вдання 20 Пор	роскун О. ПМ-	-81 (формули)							
	K	L	M	N	О	Р	Q	R	S	T
7 8	а) обчислити числові характеристики б) обчислити коефіцієнти рівняння лінійної регресії									
9		Sx	=CVMM(B5:B24)				v – 1-v -	- h		
10		Sy	=CYMM(C5:C24)		y = kx + b					
11		Sxx	=B5^2+B6^2+B7^2+B8^2+B9^2+B1		k =	= =((M13/M18)-M14*M15)/M16	b =	=M15-P11*M14	y = 0.89	x - 38,3
12		Syy	=CYMMKB(C5:C24)							
13		Sxy	=B5*C5+B6*C6+B7*C7+B8*C8+B9*C9		م د			!!!!.		
14		X	=CP3HAU(B5:B24)		6) 00	нислити вибірковий коефіцієнт	кореляци, оціні	іти тісноту лініиного зв'я	зку між факп	юрами
15		y	=CP3HAU(C5:C24)				r =	=Р11*КОРЕНЬ(М16/М17)		
16		Dx	=M11/M18-M14^2		Dayana	io.a dammana Vi V		with polonom of our residence of our		
17		Dy	=M12/M18-M15^2		Бисново	к: між факторами Хі У спосте	рігається лініин 0.97> 0.	-	тісноти, так	ж r =
18		n	=СЧЁТ(В5:В24)				0,9/> 0,	,у.		

	V13	- (9	f _x =B5*C5+B6*C6+B7*C7+B8*C8+B9*C9+B10*C1	0+B11*C1:	1+B12*C12+B13	*C13+B14*C14+B15*C15+B16*C16+B17*C1	7+B18*C18+B19*C19	9+B20*C20+B21*C21+B22*C22+B23*C	23+B24*C24		
≅ Зав	дання 20 По	ороскун О. ПМ-	81 (формули)								
	K	L	M	N	0	Р	Q	R	S	Т	
7 8	а) обчислити числові характеристики б) обчислити коефіцієнти рівняння лінійної регресії										
9		Sx	=CYMM(B5:B24)		11						
0		Sy	=CУMM(C5:C24)		y = kx + b						
1		Sxx	=B5^2+B6^2+B7^2+B8^2+B9^2+B10^2-		k = = ((M13/M18)-M14*M15)/M16 $b = = M15-P11*M14$ $y = 0.89 x - 38$						
2		Syy	=СУММКВ(С5:С24)								
.3		Sxy	=B5*C5+B6*C6+B7*C7+B8*C8+B		a) a5m	uszamu subinussuš usadinisum	uanaznulii aulu				
4		X	=CP3HAU(B5:B24)		6) 004	ислити вибірковий коефіцієнт	кореляци, оцін	ити тісноту лініиного зв'з	изку миж фак	торами	
.5		<u>y</u>	=CP3HAU(C5:C24)				r =	=Р11*КОРЕНЬ(М16/М17)			
.6		Dx	=M11/M18-M14^2		Puguaga						
.7		Dy	=M12/M18-M15^2		ДИСНОВО	к: між факторами ХіУ спостер	•	-	тісноти, та	K K r =	
18		n	=СЧЁТ(В5:В24)				0,97> (<i>1</i> , У.			

25								
26		Лінія регресії			г) для Xmin, X, Xmax	х знайти перед	бачення «у»;	
27		y(x) = kx + b			y = kx + b)		
28	х	y(x)		X min	=MИH(\$B\$5:\$B\$24)	y(X min)	=\$P\$11*\$G28+\$R\$11	
29	99	=\$P\$11*\$B29+\$R\$11		- x	=CP3HAY(\$B\$5:\$B\$24)	y(X)	=\$P\$11*\$G29+\$R\$11	
30	84	=\$P\$11*\$B30+\$R\$11		X max	=MAKC(\$B\$5:\$B\$24)	y(X max)	=\$P\$11*\$G30+\$R\$11	
31	77	=\$P\$11*\$B31+\$R\$11						
32	62	=\$P\$11*\$B32+\$R\$11						
33	92	=\$P\$11*\$B33+\$R\$11						
34	80	=\$P\$11*\$B34+\$R\$11		д) для Хті	n, X, Хтах знайти інтер	овали довіри лін	іўрегресії з надійністю ;	
35	85	=\$P\$11*\$B35+\$R\$11					<u> </u>	
36	91	=\$P\$11*\$B36+\$R\$11	Sy =	=KOPEHb((M18/(M18-1))*M17)		$S_{\cdots} =$	$\frac{n}{n-1}D_y$	
37	61	=\$P\$11*\$B37+\$R\$11				-y \	$n-1^{-y}$	
38	60	=\$P\$11*\$B38+\$R\$11						·
39	92	=\$P\$11*\$B39+\$R\$11						
40	89	=\$P\$11*\$B40+\$R\$11		Використовуючи таблицю А.3, з	находимо ty = 3,883. Тепер	можна записати	формулу для обчислення ширини інтервалу довір	и:
41	66	=\$P\$11*\$B41+\$R\$11			. [-	
42	71	=\$P\$11*\$B42+\$R\$11		$\delta(x) = \frac{t_y \cdot s}{\pi}$	$\frac{y}{1} + \frac{x}{1}$	-x		tγ = 3,883
43	64	=\$P\$11*\$B43+\$R\$11	t . S	Бикористовуючи Таолицю А.3, 3 S(x) = √ 1 (J42*F36)/КОРЕНЬ(М18)	→	D	,	
44	74	=\$P\$11*\$B44+\$R\$11	$\frac{c_y \cdot b_y}{} =$	=(J42*F36)/КОРЕНЬ(М18)				
45	68	=\$P\$11*\$B45+\$R\$11	\sqrt{n}					
46	87	=\$P\$11*\$B46+\$R\$11		X min	=MИH(\$B\$5:\$B\$24)	δ(Xmin)	=\$F\$44*KOPEHb(1+(((\$G46-\$G\$47)^2))/\$М\$16)	
47	75	=\$P\$11*\$B47+\$R\$11		x	=CP3HAY(\$B\$5:\$B\$24)	δ(X)	=\$F\$44*KOPEHb(1+(((\$G47-\$G\$47)^2))/\$М\$16)	
48	73	=\$P\$11*\$B48+\$R\$11		X max	=MAKC(\$B\$5:\$B\$24)	δ(Xmax)	=\$F\$44*KOPEHь(1+(((\$G48-\$G\$47)^2))/\$М\$16)	
49								
50								
50 51				Отже, 0.	тримаємо інтервали дов	іри для передбо	чень «у» в заданих точках	
				Отже, о	-	іри для передба ≤ y ≤ yx + δx	-	
51				Отже, о	-		-	
51 52				Отже, о	-		-	
51 52 53				Отже, 0 X min	-		-	=\$128+\$146
51 52 53 54					$yx - \delta x$	$\leq y \leq yx + \delta x$;	=\$I28+\$I46 =\$I29+\$I47