Ajuste de equacoes lineares - analise e aplicacoes

Sollano Rabelo Braga Outubro, 2016

${\bf Contents}$

1) Baixar e/ou carregar pacotes necessarios	2
2) Carregar a base de dados	2
3) Calculo das variaveis necessarias para a regressao	4
4) Ajuste dos modelos 4.1) Modelo de Curtis (Modelo 1) (R base)	4 4 6
5) Estimar as alturas que nao foram medidas	7
6) Analise grafica - Modelo de Curtis (Modelo 1)	8
6.1) Grafico de Dispersao	9
6.2) Histograma	11
7) Comparação de modelos 7.1) Graficos comparando os modelos	14
8) Exportar Graficos	24

1) Baixar e/ou carregar pacotes necessarios

Este script contem secoes que podem ser rodadas sem o uso de nenhum pacote adicional no entanto, e interessante se conhecer os metodos alternativos, pois sao de melhor entendimento e facil computação para isso precisa-se dos pacotes instalados e carregados. Este passo so sera necessario caso os pacotes não estejam instalados, ou estejam desatualizados, para se instalar os pacotes, utiliza-se dos seguintes comandos:

```
# install.packages("gridExtra", dependencies = TRUE)
# install.packages("tidyverse", dependencies = TRUE)
```

Para se realizar a instalacao, basta remover o # e rodar o comando. Para carregar os pacotes, pode-se utilizar do comando library:

Os pacotes devem ser carregados toda vez que se for utilizar o script.

2) Carregar a base de dados

Sera utilizada uma base de dados de inventario florestal, em fomato .csv. Para o carregamento dos dados, utiliza-se o comando read.csv2()

```
dados_orig <- read.csv2("dados.csv")</pre>
```

obs: utilizou-se do comando read.csv2 dois pois o separador deste arquivo e ";" e o decimal e ",". visuaza-se a base de dados com head:

```
head(dados_orig)
```

```
TALHAO PARCELA COD_ARVORE CAP
##
                                       HT CATEGORIA
                                                        HD
## 1
       3654
                101
                            301 51.1 28.4
                                             Normal 30.45
## 2
       3654
                101
                            303 50.8 0.0
                                             Normal 30.45
## 3
       3654
                101
                            304 53.2 0.0
                                             Normal 30.45
       3654
## 4
                101
                            503 50.0 0.0
                                             Normal 30.45
       3654
                            302 51.3 29.0
                                             Normal 30.45
## 5
                101
                            401 54.0 0.0
## 6
       3654
                101
                                             Normal 30.45
```

Percebe-se que a variavel DAP nao esta presente; como ela sera bastante utilizada no script, cria-se a coluna no dataframe original. Utilizando R base:

```
dados_orig$DAP <- dados_orig$CAP / pi
head(dados_orig)</pre>
```

```
TALHAO PARCELA COD ARVORE CAP
                                       HT CATEGORIA
##
## 1
                                              Normal 30.45 16.26564
       3654
                101
                            301 51.1 28.4
## 2
       3654
                101
                            303 50.8
                                      0.0
                                              Normal 30.45 16.17014
## 3
       3654
                101
                            304 53.2
                                      0.0
                                              Normal 30.45 16.93409
## 4
       3654
                101
                            503 50.0
                                      0.0
                                              Normal 30.45 15.91549
## 5
                            302 51.3 29.0
                                             Normal 30.45 16.32930
       3654
                101
                            401 54.0 0.0
                                              Normal 30.45 17.18873
## 6
       3654
                101
```

utilizando o dplyr: utilizando mutate, pode-se criar novas variaveis sem a necessidade de se repetir o nome do objeto varias vezes:

```
dados_orig <- dados_orig %>% mutate(DAP = CAP / pi)
head(dados_orig)
```

```
##
     TALHAO PARCELA COD_ARVORE CAP
                                        HT CATEGORIA
                                                         HD
                                                                 DAP
## 1
       3654
                 101
                            301 51.1 28.4
                                              Normal 30.45 16.26564
## 2
       3654
                 101
                            303 50.8
                                      0.0
                                              Normal 30.45 16.17014
## 3
       3654
                 101
                            304 53.2
                                      0.0
                                              Normal 30.45 16.93409
## 4
       3654
                 101
                            503 50.0
                                      0.0
                                              Normal 30.45 15.91549
## 5
       3654
                 101
                            302 51.3 29.0
                                              Normal 30.45 16.32930
## 6
       3654
                 101
                            401 54.0
                                      0.0
                                              Normal 30.45 17.18873
```

Substitui-se 0 por NA para evitar erros na regressao. O R nao trabalha bem com zeros, entao e recomendado substitui-los por NA antes de comecar a trabalhar.

Utilizando o R base:

```
head(dados_orig)
```

```
TALHAO PARCELA COD_ARVORE CAP
##
                                        HT CATEGORIA
                                                         HD
                                                                  DAP
## 1
       3654
                 101
                            301 51.1 28.4
                                               Normal 30.45 16.26564
## 2
       3654
                 101
                            303 50.8
                                      0.0
                                               Normal 30.45 16.17014
## 3
       3654
                            304 53.2
                                              Normal 30.45 16.93409
                 101
                                       0.0
## 4
       3654
                 101
                            503 50.0
                                       0.0
                                              Normal 30.45 15.91549
## 5
       3654
                 101
                            302 51.3 29.0
                                               Normal 30.45 16.32930
## 6
       3654
                 101
                            401 54.0
                                               Normal 30.45 17.18873
dados_orig[dados_orig == 0 ] <- NA</pre>
head(dados_orig)
```

```
##
     TALHAO PARCELA COD ARVORE CAP
                                        HT CATEGORIA
                                                         HD
                                                                  DAP
## 1
       3654
                 101
                            301 51.1 28.4
                                               Normal 30.45 16.26564
## 2
       3654
                 101
                            303 50.8
                                        NA
                                               Normal 30.45 16.17014
## 3
       3654
                 101
                            304 53.2
                                        NA
                                               Normal 30.45 16.93409
## 4
       3654
                            503 50.0
                                               Normal 30.45 15.91549
                 101
                                        NA
## 5
       3654
                 101
                            302 51.3 29.0
                                               Normal 30.45 16.32930
## 6
       3654
                 101
                            401 54.0
                                        NA
                                               Normal 30.45 17.18873
```

Utilizando o dplyr:

```
dados_orig <- na_if(dados_orig, 0)
head(dados_orig)</pre>
```

```
##
     TALHAO PARCELA COD_ARVORE
                                CAP
                                        HT CATEGORIA
                                                         HD
                                                                  DAP
## 1
       3654
                 101
                            301 51.1 28.4
                                              Normal 30.45 16.26564
## 2
       3654
                 101
                            303 50.8
                                        NA
                                              Normal 30.45 16.17014
## 3
       3654
                 101
                            304 53.2
                                        NA
                                              Normal 30.45 16.93409
## 4
       3654
                            503 50.0
                                        NA
                                              Normal 30.45 15.91549
                 101
                                              Normal 30.45 16.32930
## 5
       3654
                 101
                            302 51.3 29.0
```

```
## 6 3654 101 401 54.0 NA Normal 30.45 17.18873
```

Na regressao os NAs podem gerar erros, portanto cria-se uma copia dos dados, onde remove-se todos os seus NAs, utilizando a funcao na.omit():

```
dados_sem_na <- na.omit(dados_orig)
head(dados_sem_na, 15)

## TALHAO PARCELA COD_ARVORE CAP HT CATEGORIA HD DAP</pre>
```

```
## 1
        3654
                  101
                              301 51.1 28.4
                                                Normal 30.45 16.26564
## 5
        3654
                  101
                              302 51.3 29.0
                                                Normal 30.45 16.32930
## 9
        3654
                  101
                              204 53.2 28.8
                                                Normal 30.45 16.93409
                              405 59.0 30.2 Dominante 30.45 18.78028
## 10
        3654
                  101
## 15
        3654
                              101 51.0 29.2
                                                Normal 30.45 16.23380
                  101
                  101
                              201 59.3 30.7 Dominante 30.45 18.87578
## 16
        3654
## 17
        3654
                  101
                              203 54.0 28.7
                                                Normal 30.45 17.18873
## 18
        3654
                  101
                              202 56.6 30.6
                                                Normal 30.45 18.01634
                              201 54.0 29.7
## 21
        3654
                  102
                                                Normal 31.35 17.18873
## 22
                              101 58.9 32.5
                                                Normal 31.35 18.74845
        3654
                  102
                              202 53.6 28.9
## 28
        3654
                  102
                                                Normal 31.35 17.06141
## 31
        3654
                  102
                              305 54.1 29.2
                                                Normal 31.35 17.22056
## 37
        3654
                  102
                              302 55.5 29.7
                                                Normal 31.35 17.66620
                              303 59.1 30.6 Dominante 31.35 18.81211
## 38
        3654
                  102
## 39
        3654
                  102
                              204 57.7 29.8
                                                Normal 31.35 18.36648
```

3) Calculo das variaveis necessarias para a regressao

Serão utilizados dois modelos: Modelo de Curtis (Modelo 1): LN(HT) = b0 + b1 * 1/DAP Modelo de Campos & Leite(Modelo 2): LN(HT) = b0 + b1 * 1/DAP + b2 * Ln (HD) antes de ajusta-los, calcula-se as variaveis utilizadas nos modelos. Este passo nao e obrigatorio em todos os modelos, porem, para evitar erros, e recomendado sempre o fazer. O calculo das variaveis pode ser feito utilizando o R base ou o pacote dplyr: utilizando o R base:

```
dados_sem_na$INV_DAP <- 1/dados_sem_na$DAP
dados_sem_na$LN_HT <- log(dados_sem_na$HT)
dados_sem_na$LN_HD <- log(dados_sem_na$HD)</pre>
```

utilizando o dplyr: Com o dplyr pode-se criar diversas variaveis com em uma unica linha, sem a necessidade de repetir o nome do objeto toda vez:

```
dados_sem_na <- dados_sem_na %>% mutate(INV_DAP=1/DAP, LN_HT=log(HT), LN_HD=log(HD))
```

4) Ajuste dos modelos

4.1) Modelo de Curtis (Modelo 1) (R base)

O modelo sera ajustado e salvo em um objeto separado, utilizando a funcao lm. insere-se primeiro o modelo, separando o lado y e x da equacao com "~", seguido do argumento data, que diz qual dado sera utilizado.

```
modelo1 <- lm(LN_HT ~ INV_DAP, data = dados_sem_na)
modelo1</pre>
```

```
##
## Call:
```

Utilizando a funcao class percebe-se que a classe do objeto gerado e lm:

```
class(modelo1)
```

```
## [1] "lm"
```

a funcao coef chama os coeficientes de um objeto lm; com ela pode-se criar um objeto separado que contem apenas os coeficientes:

```
modelo1coef <- coef(modelo1)
modelo1coef
## (Intercept) INV_DAP</pre>
```

pode-se chamar os coeficientes com base em sua posicao neste objeto. esse objeto sempre sera um vetor com n componentes, sendo n o numero de coeficientes do modelo ajustado. Neste caso, foi ajustado um modelo que gerou dois coeficientes, b0 e b1. portanto, b0 estara na posicao 1, e b1 na posicao 2:

```
modelo1coef[[1]] # b0
```

```
## [1] 3.888954
```

3.888954

-11.668419

```
modelo1coef[[2]] # b1
```

```
## [1] -11.66842
```

pode-se utilizar "\$", para chamar resultados por nome, ou "[]", para chamar por posicao Aqui tem-se um resumo geral da regressao, com a funcao summary:

```
modelo1summary <- summary(modelo1)
modelo1summary</pre>
```

```
##
## lm(formula = LN_HT ~ INV_DAP, data = dados_sem_na)
##
## Residuals:
                       Median
       Min
                  1Q
                                    3Q
                                            Max
## -0.29798 -0.08978 0.02432 0.08214
                                       0.40316
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                                    125.22
## (Intercept)
                3.88895
                            0.03106
                                              <2e-16 ***
## INV_DAP
               -11.66842
                            0.51722
                                    -22.56
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1076 on 1396 degrees of freedom
## Multiple R-squared: 0.2672, Adjusted R-squared: 0.2666
## F-statistic:
                 509 on 1 and 1396 DF, p-value: < 2.2e-16
```

Sua classe pode ser verificada com a funcao class:

```
class(modelo1summary)

## [1] "summary.lm"

Para se chamar o r quadrado ajustado, existem duas formas:
```

```
modelo1summary$adj.r.squared
## [1] 0.2666496
```

```
## [1] 0.2666496
modelo1summary[[9]]
```

```
## [1] 0.2666496
```

Assim como o sigma, ou erro-padrao:

```
modelo1summary$sigma
```

```
## [1] 0.1076069
modelo1summary[[6]]
```

```
## [1] 0.1076069
```

Com isso, pode-se criar um dataframe com os coeficientes, R2, e erro-padrao. para isso utiliza-se a funcao data.frame, onde indica-se o nome e o conteudo de cada variavel (coluna) do data frame que sera criado:

4.2) Modelo de Campos e Leite (Modelo 2) (dplyr)

Com o pacote dplyr, o processo pode ser feito de forma mais direta. utilizando cada passo seguido de %>%, evita-se a criacao de objetos adicionais, ou funcoes longas com varios parenteses, que podem se tornar confusas. Serao utilizadas as seguintes funcoes do dplyr: a funcao mutate, que cria novas variaveis, a funcao do, que roda funcoes nativas do R dentro de pipes do dplyr, rowwise, para aplicar funcoes por linha, e transmute, que e similar a mutate, criando novas variaveis, porem, esta mantem apenas as variaveis criadas, descartando as demais.

```
## Source: local data frame [1 x 5]
## Groups: <by row>
```

Utiliza-se [[]] para extrair o numero em si, com base em suas posicoes, pois [] extrai um objeto de classe lista, devido a forma que foi criado (funcao do()). extrai-se o R2 e sigma do objeto gerado pela funcao summary com base em suas posicoes.

5) Estimar as alturas que nao foram medidas

Primeiro faz-se uma copia dos dados originais, para que eles nao sejam alterados:

```
dadosest <- dados_orig
```

Agora pode-se estimar a altura. Neste caso, serao estimadas apenas as alturas das arvores que nao foram medidas; as arvores nao medidas possuem NA no lugar do valor da altura, portanto, utiliza-se a funcao ifelse, que se baseia em um teste logico, e retorna um resultado caso ele seja verdadeiro, e outro caso seja falso. assim, cria-se uma nova coluna com a funcao ifelse, onde ela ira estimar a altura caso haja NA, e caso nao haja, ela ira inserir o valor da variavel HT

```
HT CATEGORIA
     TALHAO PARCELA COD_ARVORE CAP
                                                        HD
                                                                       HT_EST
                                                                 DAP
                                              Normal 30.45 16.26564 28.40000
## 1
       3654
                101
                            301 51.1 28.4
## 2
       3654
                101
                            303 50.8
                                       NA
                                              Normal 30.45 16.17014 23.74451
## 3
       3654
                101
                            304 53.2
                                       NA
                                              Normal 30.45 16.93409 24.53020
## 4
       3654
                101
                            503 50.0
                                       NA
                                              Normal 30.45 15.91549 23.47195
## 5
       3654
                101
                            302 51.3 29.0
                                              Normal 30.45 16.32930 29.00000
## 6
       3654
                            401 54.0
                                              Normal 30.45 17.18873 24.78189
                101
                                       NΑ
```

Pode-se fazer o processo direto com o dplyr, desde o ajuste do modelo, ate a estimacao da altura:

```
TALHAO PARCELA COD ARVORE CAP
                                       HT CATEGORIA
                                                        HD
                                                                DAP
                                                                      HT EST
## 1
       3654
                            301 51.1 28.4
                                             Normal 30.45 16.26564 28.40000
                101
       3654
                            303 50.8
## 2
                101
                                       NA
                                             Normal 30.45 16.17014 23.74451
```

```
## 3
       3654
                 101
                            304 53.2
                                        NA
                                               Normal 30.45 16.93409 24.53020
## 4
       3654
                 101
                            503 50.0
                                        NA
                                               Normal 30.45 15.91549 23.47195
                                               Normal 30.45 16.32930 29.00000
## 5
       3654
                 101
                            302 51.3 29.0
## 6
       3654
                 101
                            401 54.0
                                               Normal 30.45 17.18873 24.78189
                                        NA
```

6) Analise grafica - Modelo de Curtis (Modelo 1)

Serao utilizados 3 tipos de graficos nesta analise: y estimado x y observado; dispersao de residuos em porcentagem; histograma de residuos em porcentagem. Para o calculo do residuo, precisa-se estimar as alturas das arvores que ja temos a medicao, e comparar umas com as outras; portanto, o primeiro passo e estimar as alturas das arvores ja medidas. primeiro cria-se um novo objeto, que ira conter os dados utilizados nos graficos.

```
dados_graph <- dados_sem_na
head(dados_graph)
##
     TALHAO PARCELA COD_ARVORE
                                 CAP
                                       HT CATEGORIA
                                                        HD
                                                                 DAP
                                                                        INV_DAP
## 1
                                              Normal 30.45 16.26564 0.06147931
       3654
                101
                            301 51.1 28.4
## 2
       3654
                101
                            302 51.3 29.0
                                              Normal 30.45 16.32930 0.06123962
## 3
       3654
                101
                            204 53.2 28.8
                                              Normal 30.45 16.93409 0.05905249
       3654
                            405 59.0 30.2 Dominante 30.45 18.78028 0.05324733
##
                101
## 5
       3654
                101
                            101 51.0 29.2
                                              Normal 30.45 16.23380 0.06159986
## 6
       3654
                            201 59.3 30.7 Dominante 30.45 18.87578 0.05297795
                101
##
        LN_HT
                 LN_HD
## 1 3.346389 3.416086
## 2 3.367296 3.416086
## 3 3.360375 3.416086
## 4 3.407842 3.416086
## 5 3.374169 3.416086
## 6 3.424263 3.416086
agora cria-se nova variavel, onde estima-se a altura das arvores:
dados graph$HT EST <- exp(modelo1df$b0 + modelo1df$b1 * dados graph$INV DAP)
e por fim, calcula-se o residuo em porcentagem:
dados_graph$RES <-( (dados_graph$HT_EST - dados_graph$HT) / dados_graph$HT ) * 100
head(dados_graph)
##
     TALHAO PARCELA COD_ARVORE CAP
                                       HT CATEGORIA
                                                        HD
                                                                 DAP
                                                                        INV_DAP
## 1
       3654
                101
                            301 51.1 28.4
                                              Normal 30.45 16.26564 0.06147931
       3654
## 2
                101
                            302 51.3 29.0
                                              Normal 30.45 16.32930 0.06123962
       3654
## 3
                101
                            204 53.2 28.8
                                              Normal 30.45 16.93409 0.05905249
## 4
       3654
                101
                            405 59.0 30.2 Dominante 30.45 18.78028 0.05324733
## 5
       3654
                101
                            101 51.0 29.2
                                              Normal 30.45 16.23380 0.06159986
## 6
       3654
                101
                            201 59.3 30.7 Dominante 30.45 18.87578 0.05297795
##
        LN_HT
                 LN_HD
                          HT_EST
                                        RES
## 1 3.346389 3.416086 23.84532 -16.03761
## 2 3.367296 3.416086 23.91210 -17.54448
## 3 3.360375 3.416086 24.53020 -14.82569
## 4 3.407842 3.416086 26.24937 -13.08155
## 5 3.374169 3.416086 23.81180 -18.45273
## 6 3.424263 3.416086 26.33201 -14.22798
```

agora que tem-se os dados preparados, pode-se plotar os graficos.

6.1) Grafico de Dispersao

grafico basico

```
ggplot(dados_graph, aes(HT, RES)) + geom_point(size = 3)
```


adicionar elementos

```
ggplot(dados_graph, aes(HT, RES)) +
  geom_hline(yintercept = 0, colour = "gray45") + # linha no zero
  geom_point(size = 3) + # aumentar os pontos
  coord_cartesian(ylim = c(-40,40)) # limites do eixo x
```


grafico final Este grafico sera salvo em um objeto, para ser uzado futuramente:

```
mod1_gres <- ggplot(dados_graph, aes(HT, RES)) +
    geom_hline(yintercept = 0, colour = "gray45") +
    geom_point(size = 3) +
    coord_cartesian(ylim = c(-40,40)) +
    labs(x = "Altura observada (m3)",
        y = "Residuo (%)" ) +
    theme( # com theme muda-se tamanho e estilo de letra de cada parte do grafico
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 12))

mod1_gres</pre>
```


6.2) Histograma

```
ggplot(dados_graph,aes(RES, ..density..) ) +
  geom_vline(xintercept = 0, colour = "gray45") +
  geom_histogram(binwidth = 1) +
  xlim(-40, 40)
```


grafico final Este grafico sera salvo em um objeto, para ser uzado futuramente:

7) Comparacao de modelos

e se o objetivo for definir qual o melhor modelo para uma base de dados? ja foi criado o objeto dados_graph, que possui os dados para o grafico do modelo 1. O processo sera repetido para o modelo 2, e em seguida -se os dois dados por linha: agora cria-se o dado utilizando o dplyr:

```
dados_graph2 <- dados_sem_na %>%
    cbind(modelo2df) %>%
    mutate(
          DAP = CAP/pi,
          HT_EST = exp(b0 + b1 * (1/DAP) + b2 * log(HD) ),
          RES = ( (HT_EST - HT) / HT )* 100 ) %>%
          select(-b0, -b1, -b2, -R2_aj, -erro_pad)

head(dados_graph2)
```

```
##
     TALHAO PARCELA COD_ARVORE CAP
                                       HT CATEGORIA
                                                        HD
                                                                DAP
                                                                        INV_DAP
## 1
       3654
                                              Normal 30.45 16.26564 0.06147931
                101
                            301 51.1 28.4
## 2
       3654
                101
                            302 51.3 29.0
                                              Normal 30.45 16.32930 0.06123962
  3
       3654
                101
                            204 53.2 28.8
##
                                              Normal 30.45 16.93409 0.05905249
## 4
       3654
                101
                            405 59.0 30.2 Dominante 30.45 18.78028 0.05324733
## 5
       3654
                101
                            101 51.0 29.2
                                              Normal 30.45 16.23380 0.06159986
## 6
       3654
                            201 59.3 30.7 Dominante 30.45 18.87578 0.05297795
                101
##
        LN HT
                 LN_HD
                         HT EST
                                        RES
## 1 3.346389 3.416086 28.65920 0.9126793
```

```
## 2 3.367296 3.416086 28.69291 -1.0589468
## 3 3.360375 3.416086 29.00230 0.7024166
## 4 3.407842 3.416086 29.83977 -1.1928242
## 5 3.374169 3.416086 28.64226 -1.9100531
## 6 3.424263 3.416086 29.87921 -2.6735817
```

agora une-se os dois dados em um unico data.frame. vamos utiliza-se bind_rows, do pacote dplyr, pois esta funcao possui possui o argumento .id, que add uma variavel para identificar cada dataframe.

```
##
     Modelo TALHAO PARCELA COD_ARVORE CAP
                                              HT CATEGORIA
                                                               HD
                                                                       DAP
## 1 Curtis
              3654
                       101
                                   301 51.1 28.4
                                                    Normal 30.45 16.26564
## 2 Curtis
              3654
                       101
                                   302 51.3 29.0
                                                    Normal 30.45 16.32930
## 3 Curtis
              3654
                       101
                                   204 53.2 28.8
                                                    Normal 30.45 16.93409
## 4 Curtis
              3654
                       101
                                   405 59.0 30.2 Dominante 30.45 18.78028
                                   101 51.0 29.2
                                                    Normal 30.45 16.23380
## 5 Curtis
              3654
                       101
## 6 Curtis
              3654
                       101
                                   201 59.3 30.7 Dominante 30.45 18.87578
##
        INV_DAP
                                     HT_EST
                                                  RES
                   LN_HT
                            LN_HD
## 1 0.06147931 3.346389 3.416086 23.84532 -16.03761
## 2 0.06123962 3.367296 3.416086 23.91210 -17.54448
## 3 0.05905249 3.360375 3.416086 24.53020 -14.82569
## 4 0.05324733 3.407842 3.416086 26.24937 -13.08155
## 5 0.06159986 3.374169 3.416086 23.81180 -18.45273
## 6 0.05297795 3.424263 3.416086 26.33201 -14.22798
```

Agora tem-se uma variavel de HT_EST, uma variavel de RES, e uma variavel que diferencia os dois, dizendo qual dado pertence ao modelo 1 (curtis), e qual e do modelo 2 (Campos e Leite). Agora ja e possivel plotar o grafico, divindo os dados com base na variavel modelo.

7.1) Graficos comparando os modelos

7.2) Dispersao

um grafico para cada ajuste

```
gf_disp_1 <- ggplot(dados_graph_bind, aes(HT, RES)) +
  geom_hline(yintercept = 0, colour = "gray45") +
  geom_point(size = 3) +
  coord_cartesian(ylim = c(-40,40)) +
  facet_grid(~Modelo)+
  labs(x = "Residuo (%)",
        y = "Densidade" ) +
  theme( #com theme muda-se o tamanho e fonte da letra
        axis.title = element_text(size = 14),
        axis.text = element_text(size = 12),
        strip.text.x = element_text(size = 16))
gf_disp_1</pre>
```


diferenciando por cor

legenda em baixo

diferenciando por cor (tons de cinza)

7.3) Histograma

um grafico para cada modelo

um grafico para cada modelo, com divisao entre colunas

diferenciando por cor

```
gf_hist_3 <- ggplot(dados_graph_bind, aes(RES, ..density..) ) +</pre>
  geom_vline(xintercept = 0, colour = "gray45") +
  geom_histogram(aes(fill = Modelo ),
                binwidth = 1, # largura das colunas
                position = "identity", # forca os histogramas a se sobreporem
                alpha = .6) + # intensidade da cor. varia entre 0 e 1
 xlim(-40, 40) +
 labs(x = "Residuo (%)",
            = "Densidade" ) +
 theme( #com theme muda-se o tamanho e fonte da letra
   axis.title = element_text(size = 14),
   axis.text
              = element_text(size = 12),
   strip.text.x = element_text(size = 16),
   legend.position="bottom")
gf_hist_3
```


adicionar divisao entre as colunas, grafico colorido

```
gf_hist_4 <- ggplot(dados_graph_bind, aes(RES, ..density..) ) +</pre>
 geom_vline(xintercept = 0, colour = "gray45") +
  geom_histogram(aes(fill = Modelo ),
                 color= "gray45", # adicionar divisao entre colunas
                 binwidth = 1, # largura das colunas
                 position = "identity", # forca os histogramas a se sobreporem
                 alpha = .6) + # intensidade da cor. varia entre 0 e 1
 xlim(-40, 40) +
  labs(x = "Residuo (%)",
            = "Densidade" ) +
  theme ( #com theme muda-se o tamanho e fonte da letra
   axis.title = element_text(size = 14),
              = element_text(size = 12),
   axis.text
   strip.text.x = element_text(size = 16),
   legend.position="bottom")
gf_hist_4
```


diferenciando por cor (tons de cinza)

```
gf_hist_5 <- ggplot(dados_graph_bind, aes(RES, ..density..) ) +</pre>
  geom_vline(xintercept = 0, colour = "gray45") +
  geom_histogram(aes(fill = Modelo ),
                 binwidth = 1, # largura das colunas
                 position = "identity", # forca os histogramas a se sobreporem
                 alpha = .6) + # intensidade da cor. varia entre 0 e 1
 xlim(-40, 40) +
  scale_fill_manual(values =c("black", "grey40") ) +
  labs(x = "Residuo (%)",
            = "Densidade" ) +
      У
  theme ( #com theme muda-se o tamanho e fonte da letra
   axis.title = element_text(size = 14),
              = element_text(size = 12),
   axis.text
   strip.text.x = element_text(size = 16),
   legend.position="bottom")
gf_hist_5
```


adicionar divisao entre as colunas, grafico em tons de cinza

```
gf_hist_6 <- ggplot(dados_graph_bind, aes(RES, ..density..) ) +</pre>
  geom_vline(xintercept = 0, colour = "gray45") +
  geom_histogram(aes(fill = Modelo ),
                color = "gray45", # adicionar divisao entre colunas
                binwidth = 1, # largura das colunas
                position = "identity", # forca os histogramas a se sobreporem
                alpha = .6) + # intensidade da cor. varia entre 0 e 1
 xlim(-40, 40) +
  scale_fill_manual(values =c("black", "grey40") ) +
 labs(x = "Residuo (%)",
            = "Densidade" ) +
  theme( #com theme muda-se o tamanho e fonte da letra
   axis.title = element_text(size = 14),
   axis.text = element_text(size = 12),
   strip.text.x = element_text(size = 16),
   legend.position="bottom")
gf_hist_6
```


8) Exportar Graficos

Exporta-se os graficos feitos com o g
gplot com a funcao g
gsave. Caso se deseje exportar o ultimo grafico plotado, basta rodar a funcao com o nome desejado e a extensao no final (recomendado: .png). Recomenda-se alterar a resolucao para 12 x 8 (polegadas):

```
ggsave("graficos/grafico_teste.png", width = 12, height = 8)
```

Como os graficos foram salvos em objetos, pode-se exporta-los chamando pelo nome do objeto, por exemplo:

```
ggsave("graficos/gf_disp_2.png",gf_disp_2, width = 12, height = 8)
ggsave("graficos/gf_disp_3.png",gf_disp_3, width = 12, height = 8)
ggsave("graficos/gf_hist_1.png",gf_hist_1, width = 12, height = 8)
ggsave("graficos/gf_hist_3.png",gf_hist_3, width = 12, height = 8)
ggsave("graficos/gf_hist_4.png",gf_hist_4, width = 12, height = 8)
```