General Two-Stage Stochastic Problem - L-Shaped Method

Consider the problem below.

$$Min c^{T}x + \sum_{\xi} p_{\xi}q_{\xi}^{T}y_{\xi}$$

$$s.t. Ax = b$$

$$T_{\xi}x + W_{\xi}y = h_{\xi}$$

$$x \ge 0, y \ge 0$$

x are the first stage decisions and y are the second stage decisions. For different scenarios ξ that occurs with probability p_{ξ} , scenario-dependent parameters change (all parameters with a ξ index). Here, we explained the L-Shaped method to find the optimal decision for x.

Step 0
$$\theta := -\infty$$
, $itr := 1, w := 0$
Step 1 If $itr = 1$:

$$Master problem = Min c^{T} x$$

$$s.t. Ax = b$$

$$x > 0$$

Else:

Master problem =
$$Min c^T x + \theta$$

 $s.t. Ax = b$
 $Ex + \theta \ge e$
 $x \ge 0$

E and e are explained in the next step. Solve the master problem for x^* and go to step 2.

Step 2 solve the subproblem given the optimal x^* from step 1.

$$Min \sum_{\xi} p_{\xi} q_{\xi}^{T} y_{\xi}$$

$$s.t. T_{\xi} x^{*} + W_{\xi} y = h_{\xi}$$

$$v \ge 0$$

Considering that π^{ξ} are the dual solutions to the subproblem, calculate:

$$E=\sum_{\xi}p_{\xi}\pi_{\xi}T_{\xi}$$
 Note that E would be matrix with dimensions 1*K $e=\sum_{\xi}p_{\xi}\pi_{\xi}h_{\xi}$ Note that e would be a scalar $w=e-Ex^*$

If $\theta \ge w$ stop! You reached the optimal solution. Otherwise, itr+=1 and go back to step 1 by adding the optimality cut below to the master problem.

 $Ex + \theta \ge e$ Note that here x means the variable, not the optimal value x^* .

An Example:

$$\begin{aligned} \mathit{Min}\, Z &= 100x_1 + 150x_2 + \mathbb{E}_{\xi}[q_1y_1 + q_2y_2] \\ s.\, t.\,\, x_1 + x_2 &\leq 120 \\ 6y_1 + 10y_2 &\leq 60x_1 \\ 8y_1 + 5y_2 &\leq 80x_1 \\ y_1 &\leq d_1\,, y_2 &\leq d_2 \\ x_1 &\geq 40, x_2 &\geq 20 \\ y_1 &\geq 0\,, y_2 &\geq 0 \end{aligned}$$

For each scenario ξ there are separate d_1, d_2, q_1, q_2 as follows:

$$\xi = (d_1, d_2, q_1, q_2) = \begin{cases} (500, 100, -24, -28), & pi_1 = 0.4 \\ (300, 300, -28, -32), & pi_2 = 0.6 \end{cases}$$

$$c = \begin{bmatrix} 100,150 \end{bmatrix} \ W = \begin{bmatrix} 6 & 10 \\ 8 & 5 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, T = \begin{bmatrix} -60x_1 \\ -80x_1 \\ 0 \\ 0 \end{bmatrix}, h = \begin{bmatrix} 0 \\ 0 \\ d_1 \\ d_2 \end{bmatrix}$$