CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 10 FEBBRAIO 2023

Svolgere i seguenti esercizi,

 \longrightarrow giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Scrivere la tavola di verità della forma proposizionale $(p \lor q) \to r$ e, se φ , ψ , ϑ sono formule, negare $(\forall x(\varphi(x))) \to (\exists x(\psi(x) \lor \vartheta(x)))$.

Esercizio 2. Si consideri la struttura algebrica (S, *), dove $S = \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ e l'operazione binaria * è definita ponendo, per ogni $(a, b), (c, d) \in S$,

$$(a,b)*(c,d) = (a+c+[4]_{12}, [4]_{15}bd).$$

- (i) Verificare che (S, *) è un monoide, determinarne l'elemento neutro e stabilire se è commutativo.
- (ii) Determinare gli elementi simmetrizzabili in (S,*) e, se esiste, il simmetrico di $([8]_{12},[9]_{15})$.
- (iii) Dare la definizione di elemento cancellabile. L'elemento ($[0]_{12}$, $[0]_{15}$) è cancellabile in (S,*)?
- (iv) La parte $H = \{([8]_{12}, [9]_{15}), ([8]_{12}, [4]_{15})\}$ è chiusa in (S, *)? In caso di risposta affermativa, che tipo di struttura è (H, *)?

Esercizio 3. Tenendo presente che vale $12 \cdot 29 = 348$, descrivere, per ogni $c \in \{n \in \mathbb{N} \mid 8 \le n \le 12\}$, l'insieme $A_c = \{n \in \mathbb{Z} \mid 150n \equiv_{348} c\}$.

Esercizio 4. Siano $T = \mathbb{N} \setminus \{0,1\}$, \mathbb{P} l'insieme dei numeri interi primi positivi e, per ogni $a \in T$, $\pi(a) = \{p \in \mathbb{P} \mid p \text{ divide } a\}$. Considerare l'applicazione $f : a \in T \longmapsto \min(\pi(a)) \cdot \max(\pi(a)) \in T$.

- (i) Determinare $\overleftarrow{f}(\{2\})$ e $\overleftarrow{f}(\{6\})$.
- (ii) f è iniettiva? È suriettiva?
- (iii) Detto \mathcal{R} il nucleo di equivalenza di f, determinare la classe di equivalenza $[256]_{\mathcal{R}}$.

Esercizio 5. Sia ρ la relazione d'ordine definita in \mathbb{Z} da: $\forall a, b \in \mathbb{Z}$

$$a \rho b \iff (a \le b \land \operatorname{rest}(a, 10) \le \operatorname{rest}(b, 10))^{1}$$

- (i) Determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (\mathbb{Z}, ρ) ;
- (ii) sempre in (\mathbb{Z}, ρ) , determinare l'insieme dei maggioranti di $\{15, 21\}$ e stabilire se esiste sup $\{15, 21\}$.
- (iii) (\mathbb{Z}, ρ) è un reticolo?
- (iv) Posto $L = \{-20, -7, 13, 21, 35, 82, 1789\}$, disegnare il diagramma di Hasse di (L, ρ) e stabilire se (L, ρ) è un reticolo e, nel caso, se è distributivo e se è complementato.
- (v) Esiste $x \in L$ tale che $(L \setminus \{x\}, \rho)$ sia un reticolo complementato?

Esercizio 6. Per ogni $n \in \mathbb{N}$, siano $f_n = \bar{4}x^4 + \bar{2}x^2 - x + \bar{7}$ e $g_n = x^2 - \bar{6}x - \bar{7}$ polinomi in $\mathbb{Z}_n[x]$.

(i) Dopo aver determinato le radici di $x^2 - 6x - 7$ in \mathbb{Z} , determinare, se possibile, un primo n tale che f_n sia un multiplo di g_n in $\mathbb{Z}_n[x]$.

Fissato, se esiste, un tale n, in $\mathbb{Z}_n[x]$:

- (ii) determinare tutti i polinomi associati ad f_n ;
- (iii) decomporre il polinomio monico associato ad f_n nel prodotto di polinomi monici irriducibili.

¹per ogni intero a, rest(a, 10) significa $a \mod 10$, ovvero a % 10.