Reference Sheet for Discrete Maths

Propositional Calculus

Order of decreasing binding power: =, \neg , \land/\lor , \Rightarrow/\Leftarrow , $\equiv/\not\equiv$.

Equivales is the only equivalence relation that is associative $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$, and it is symmetric and has identity true.

Discrepancy (difference) ' $\not\equiv$ ' is symmetric, associative, has identity 'false', mutually associates with equivales $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$, and mutually interchanges with it as well $(p \not\equiv q \equiv r) \equiv (p \equiv q \not\equiv r)$. Finally, negation commutes with difference: $\neg (p \equiv q) \equiv \neg p \equiv q$.

Implication has the alternative definition $p \implies q \equiv \neg p \lor q$, thus having true as both left identity and right zero; it distributes over \equiv in the second argument, and is self-distributive; and has the properties:

Shunting
$$p \land q \implies r \equiv p \implies (q \implies p \land p)$$

Contrapositive $p \implies q \equiv \neg q \implies p \land (p \implies q) \equiv p \land (p \implies q) \equiv p \land (q \implies p) \equiv p \land (p \implies q) \implies q$

Leibniz $e = f \implies E[z = e] = E[z := f]$

It is a *linear* order relation generated by 'false \Longrightarrow true'; whence "from false, follows anything": false \Longrightarrow p. Moreover it has the useful properties "(3.62) Contextualisation": $p \Longrightarrow (q \equiv r) \equiv p \land q \equiv p \land r$ —we have the context p in each side of the equivalence— and $p \Rightarrow (q \Rightarrow r) \equiv p \land q \Rightarrow p \land r$. Implication is "Subassociative": $((p \Rightarrow q) \Rightarrow r) \Rightarrow (p \Rightarrow (q \Rightarrow r))$. Finally, we have " \equiv - \equiv Elimination": $(p \equiv q \equiv r) \Rightarrow s \equiv p \Rightarrow s \equiv q \Rightarrow s \equiv r \Rightarrow s$.

Conjunction and disjunction distribute over one another, are both associative and symmetric, \vee has identity false and zero true whereas \wedge has identity true and zero false, \vee distributes over $\vee, \equiv, \wedge, \Rightarrow, \leftarrow$ whereas \wedge distributes over $\equiv -\equiv$ in that $p \wedge (q \equiv r \equiv s) \equiv p \wedge q \equiv p \wedge r \equiv p \wedge s$, and they satisfy,

Most importantly, they satisfy the "Golden Rule": $p \land q \equiv p \equiv q \equiv p \lor q$.

The many other properties of these operations —such as weakening laws and other absorption laws and case-analysis (\sqcup -char)— can be found by looking at the list of *lattice* properties —since the Booleans are a lattice.

Orders

An order is a relation $_ \sqsubseteq _ : \tau \to \tau \to \mathbb{B}$ satisfying the following three properties: **Reflexivity** Transitivity Mutual Inclusion $a \sqsubseteq a$ $a \sqsubseteq b \land b \sqsubseteq c \Rightarrow a \sqsubseteq c$ $a \sqsubseteq b \land b \sqsubseteq a \equiv a = b$

Indirect Inclusion is like 'set inclusion' and Indirect Equality is like 'set extensionality'.

Indirect Equality (from above)
$$x=y\equiv (\forall z\bullet x\sqsubseteq z\equiv y\sqsubseteq z)$$
 Indirect Inclusion (from above) $x\sqsubseteq y\equiv (\forall z\bullet x\sqsubseteq z\equiv z\sqsubseteq y)$ Indirect Equality (from below) $x=y\equiv (\forall z\bullet z\sqsubseteq x\equiv z\sqsubseteq y)$ Indirect Inclusion (from below) $x\sqsubseteq y\equiv (\forall z\bullet z\sqsubseteq x\Rightarrow z\sqsubseteq y)$

An order is bounded if there are elements \top , \bot : τ being the lower and upper bounds of all other elements:

Lattices

The operations act as providing the greatest lower bound, 'glb', 'supremum', or 'meet', by \sqcap ; and the least upper bound, 'lub', 'infimum', or 'join', by \sqcup .

Let \square be one of \square or \sqcup , then:

Duality Principle:

If a statement S is a theorem, then so is $S[(\sqsubseteq, \sqcap, \sqcup, \top, \bot) := (\supseteq, \sqcup, \sqcap, \bot, \top)].$

 $a \sqsubseteq b \land c \sqsubseteq d \Rightarrow a \Box c \sqsubseteq b \Box d$

```
Conditionals
```

```
"Axiom, Definition of if" "if to \land" P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \Rightarrow P[z = F \in \{x \mid R \bullet E\} \equiv (\exists x \mid R \bullet F = E)]
           x]) \wedge (\neg b \Rightarrow P[z := x])
"Alternative definition of if" "if to \not\equiv" P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv b \wedge P[z = \text{Theorem (11.7) "Simple Membership":} e \in \{x \mid P\} \equiv P[x = e]
          x \not\equiv \neg b \land P[z := x]
"Alternative definition of if" "if to \lor" P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv (b \land P[z = \text{Theorem (11.6)}] "Mathematical formulation of set comprehension": \{x \mid P \bullet E\} = \{y \mid (\exists x \mid P \bullet y = E)\}
```

"Alternative definition of if" "if to \equiv " $P[z = \text{if } b \text{ then } x \text{ else } y \text{ fi}] \equiv b \Rightarrow P[z = b]$ x] $\equiv \neg b \Rightarrow P[z := x]$

> If true if true then x else y fi = xif false then x else y fi = yIf false

If then-constant

if R then true else P fi $= R \vee P$ if R then false else P fi $= \neg R \wedge P$

If else-constant

if R then P else true fi $= R \Rightarrow P$ if R then P else false fi $= R \wedge P$

"If swap" if b then x else y fi = if $\neg b$ then y else x fi

"If idempotency" if b then x else x fi = x

"If guard strengthening" if b then x else y fi = if $b \wedge x \neq y$ then x else y fi

"If Distributivity" P[z = if b then x else y fi] = if b then P[z = x] else P[z = y] fi

"If Context" if b then E else F fi = if b then E[b = true] else F[b = false] fi

"If junctivity" (if b then x else y fi) \oplus (if b then x' else y' fi) = if b then $(x \oplus x')$ else $(y \oplus y')$ fi More coming soon!

Set Theory

Theorem (11.9) "Simple set comprehension equality": $\{x \mid Q\} = \{x \mid R\} \equiv (\forall x \bullet Q \equiv R)$

Axiom (11.13) "Subset" "Definition of \subseteq " "Set inclusion": $S\subseteq T\equiv (\forall\ e\mid\ e\in S\ \bullet\ e\in T)$