1 Theta

Definitions:

 $\hat{v} = f_1 - c_1$, the center of mass to reacting interface vector for reactant molecule 1

 $\hat{\sigma} = f_2 - f_1$, vector between the two reacting interfaces

 θ : angle between the \hat{v} and $\hat{\sigma}$

angle range: $[0, \pi]$

Procedure:

Note that each reacting molecule is associated to a separate θ angle. The indices 1 and 2 refer to the molecule to whom the θ angle belongs to and the other molecule, respectively.

- 1. Determine angle to rotate each complex by
 - (a) Calculate current angle, $\theta_{\rm curr}$

$$\theta_{\text{curr}} = \arccos\left(\frac{\hat{\boldsymbol{v}}\cdot\hat{\boldsymbol{\sigma}}}{|\hat{\boldsymbol{v}}||\hat{\boldsymbol{\sigma}}|}\right)$$

- (b) Determine difference from the target angle, θ_{targ} , $\theta_{rot} = \theta_{targ} \theta_{curr}$
- (c) Determine the angle to rotate each complex by (the complexes are rotated in opposite directions), according to their diffusion rotation constants,

$$\begin{aligned} \theta_{\text{pos.}} &= \left\{ \begin{array}{l} \frac{1}{2} \left(\theta_{\text{targ}} - \theta_{\text{curr}} \right) & \text{if } Dr_z^{\text{dom.}} = 0 \right\} \\ \frac{Dr_z}{Dr_{\text{tot}}} \left(\theta_{\text{targ}} - \theta_{\text{curr}} \right) & \text{if } Dr_z^{\text{dom.}} \neq 0 \right\} \\ \theta_{\text{neg.}} &= \left\{ \begin{array}{l} -\theta_{\text{pos.}} & \text{if } Dr_z^{\text{inf}} = 0 \\ \frac{Dr_z}{Dr_{\text{tot}}} \left(\theta_{\text{targ}} - \theta_{\text{curr}} \right) & \text{if } Dr_z^{\text{inf.}} \neq 0 \right\} \end{aligned}$$

- (d) If $\theta_{\text{targ.}} \theta_{\text{curr.}} < 1e^{-8}$, no rotation is done for this angle.
- 2. Determine rotation axis (this could probably be simplified to just use \hat{x} or \hat{y} instead of $\hat{v} \times \hat{x}$ or $\hat{v} \times \hat{y}$),

$$\hat{\boldsymbol{u}} = \begin{cases} \hat{\boldsymbol{v}} \times \hat{\boldsymbol{x}} & \text{if } (\theta_{\text{curr.}} = 0 \mid\mid \theta_{\text{curr.}} = \pi) & & (\hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{x}} \neq 0 & \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{x}} \neq \pi) \\ \hat{\boldsymbol{v}} \times \hat{\boldsymbol{y}} & \text{if } (\theta_{\text{curr.}} = 0 \mid\mid \theta_{\text{curr.}} = \pi) & & (\hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{x}} = 0 \mid\mid \hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{x}} = \pi) \\ \hat{\boldsymbol{\sigma}} \times \hat{\boldsymbol{v}} & & \text{otherwise} \end{cases}$$

1

3. Set up rotation quaternions, which are then normalized,

$$\begin{aligned} Q_{\text{pos.}} &= \cos \left(\frac{\theta_{\text{pos.}}}{2}\right) + \left[\sin \left(\frac{\theta_{\text{pos.}}}{2}\right) * \hat{\boldsymbol{u}}_{x}\right] \hat{\boldsymbol{i}} + \left[\sin \left(\frac{\theta_{\text{pos.}}}{2}\right) * \hat{\boldsymbol{u}}_{y}\right] \hat{\boldsymbol{j}} + \left[\sin \left(\frac{\theta_{\text{pos.}}}{2}\right) * \hat{\boldsymbol{u}}_{z}\right] \hat{\boldsymbol{k}} \\ Q_{\text{neg.}} &= \cos \left(\frac{\theta_{\text{neg.}}}{2}\right) + \left[\sin \left(\frac{\theta_{\text{neg.}}}{2}\right) * \hat{\boldsymbol{u}}_{x}\right] \hat{\boldsymbol{i}} + \left[\sin \left(\frac{\theta_{\text{neg.}}}{2}\right) * \hat{\boldsymbol{u}}_{y}\right] \hat{\boldsymbol{j}} + \left[\sin \left(\frac{\theta_{\text{neg.}}}{2}\right) * \hat{\boldsymbol{u}}_{z}\right] \hat{\boldsymbol{k}} \end{aligned}$$

4. Iterate over all vectors, (dominant interface)–(x), where x is every other center of mass/interface coordinate, and rotate with $Q_{pos.}$ for the dominant complex and $Q_{neg.}$ for the inferior complex,

$$\hat{\boldsymbol{v}}_{\text{rot.}} = Q_{\text{i}} (\hat{\boldsymbol{v}}) Q_{\text{i}}^{-1}$$

- When doing this, \hat{v} is a quaternion with w component of 0.
- Q^{-1} is the inverse quaternion,

$$Q^{-1} = \frac{\left[Q_w - Q_x \hat{\boldsymbol{i}} - Q_y \hat{\boldsymbol{j}} - Q_z \hat{\boldsymbol{k}}\right]}{|Q|}$$

• Quaternion multiplication:

$$\begin{aligned} Q_{\text{new}} &= \left[\left(Q_{1,w} * Q_{2,w} \right) - \left(Q_{1,x} * Q_{2,x} \right) - \left(Q_{1,y} * Q_{2,y} \right) - \left(Q_{1,z} * Q_{2,z} \right) \right] \\ &+ \left[\left(Q_{1,w} * Q_{2,x} \right) + \left(Q_{1,x} * Q_{2,w} \right) + \left(Q_{1,y} * Q_{2,z} \right) - \left(Q_{1,z} * Q_{2,y} \right) \right] \hat{\boldsymbol{i}} \\ &+ \left[\left(Q_{1,w} * Q_{2,y} \right) + \left(Q_{1,y} * Q_{2,w} \right) + \left(Q_{1,z} * Q_{2,x} \right) - \left(Q_{1,x} * Q_{2,z} \right) \right] \hat{\boldsymbol{j}} \\ &+ \left[\left(Q_{1,w} * Q_{2,z} \right) + \left(Q_{1,z} * Q_{2,w} \right) + \left(Q_{1,x} * Q_{2,y} \right) - \left(Q_{1,y} * Q_{2,x} \right) \right] \hat{\boldsymbol{k}} \end{aligned}$$

2 Phi

Figure 1: Definition of phi angle, the dihedral (torsion) angle between a predefined vector, \hat{n} and the interface to interface vector, $\hat{\sigma}$. The sign of the angle is determined by the position of vector \hat{n} relative to vector $\hat{\sigma}$, shown in the inset.

Definitions:

 $\hat{\sigma} = f_2 - f_1$, the vector between the two reacting interfaces

 \hat{n} : normal of the molecule, as given by the user (usually the z or y principle axis)

 ϕ_i : dihedral angle between $\hat{\sigma}$ and \hat{n}

angle range: $[\pi, -\pi]$

Procedure:

Note that each reacting molecule is associated to a separate ϕ angle. The indices 1 and 2 refer to the molecule to whom the ϕ angle belongs to and the other molecule, respectively.

- 1. Determine the current angle, $\phi_{\text{curr.}}$, through an orthographic projection onto the xy plane
 - (a) Transform the molecule such that the axis of rotation, \hat{v} , is aligned with the z axis
 - Get angle between the current $\hat{\sigma}$ and the z axis,

$$\chi = \arccos\left(\frac{\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{z}}}{|\hat{\boldsymbol{\sigma}}||\hat{\boldsymbol{z}}|}\right)$$

- Get the rotation axis, $\hat{\boldsymbol{u}} = \hat{\boldsymbol{\sigma}} \times \hat{\boldsymbol{z}}$
- Create quaternion and rotate,

$$Q = \cos\left(\frac{\chi}{2}\right) + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_x\right] \hat{\boldsymbol{i}} + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_y\right] \hat{\boldsymbol{j}} + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_z\right] \hat{\boldsymbol{k}}$$

(b) In the transformed coordinate system, get the two vectors, $\hat{\sigma}$ and \hat{n} . The vector \hat{n} must be determined through a rotation to fit the coordinates to the provided molecule template internal coordinates, to obtain the current orientation (a dummy particle would be too computationally expensive).

3

- i. Center the molecule to origin (0,0,0) by subtracting all coordinates by the center of mass.
- ii. Get the angle (μ_1) between $\hat{f}_{curr.} = f_{curr.} c_{curr.}$, the current center of mass to reacting interface vector, and $\hat{f}_{targ.} = f_{targ.} c_{targ.}$, the center of mass to reacting interface vector provided by the user
- iii. Create the rotation quaternion,

$$Q_1 = \cos\left(\frac{\mu_1}{2}\right) + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_x\right] \hat{\boldsymbol{i}} + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_y\right] \hat{\boldsymbol{j}} + \left[\sin\left(\frac{\mu_1}{2}\right) * \hat{\boldsymbol{u}}_z\right] \hat{\boldsymbol{k}}$$

where $\hat{\boldsymbol{u}} = \hat{\boldsymbol{f}}_{\text{targ.}} \times \hat{\boldsymbol{f}}_{\text{curr.}}$

- iv. Rotate the molecule using this quaternion, as described above.
- v. If the molecule has more than one interface, repeat this process using the second interface, obtaining Q_2 .
- vi. Return the quaternion,

$$Q_{rot}^{\hat{\boldsymbol{n}}} = \begin{cases} Q_1 & \text{if interfaces} = 1 \\ Q_2 Q_1 & \text{otherwise} \end{cases}$$

- vii. Rotate the provided normal with $Q_{\mathrm{rot.}}^{\hat{n}}$ to obtain the current normal, \hat{n}
- (c) Still in the transformed coordinate system, project $\hat{\sigma}$ and \hat{n} onto the xy plane. For example,

$$\hat{\boldsymbol{\sigma}}_{\text{proj.}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\sigma}}_{x} \\ \hat{\boldsymbol{\sigma}}_{y} \\ \hat{\boldsymbol{\sigma}}_{z} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{\sigma}}_{x} \\ \hat{\boldsymbol{\sigma}}_{y} \\ 0 \end{bmatrix}$$

(d) Get ϕ by the dot product,

$$\phi = \arccos\left(\frac{\hat{\boldsymbol{\sigma}}_{\text{proj.}} \cdot \hat{\boldsymbol{n}}_{\text{proj.}}}{|\hat{\boldsymbol{\sigma}}_{\text{proj.}}||\hat{\boldsymbol{n}}_{\text{proj.}}|}\right)$$

2. Do steps 1b through 4 for the θ rotation, replacing all angle calculations with the above procedure for ϕ

3 Omega

Figure 2: Definition of omega angle, comprised of the two reacting interface to center of mass vectors (\hat{v}_1 and \hat{v}_2) for each molecule. The sign of the angle is determined by the position of vector \hat{v}_1 relative to vector \hat{v}_2 , shown in the inset.

Definitions:

 \hat{v}_1 : $f_1 - c_1$, center of mass to reacting interface vector for reactant molecule 1

 \hat{v}_2 : $f_2 - c_2$, center of mass to reacting interface vector for reactant molecule 2

 \hat{n}_1 : the normal of reactant molecule 1, provided by the user

 \hat{n}_2 : the normal of reactant molecule 2, provided by the user

 $\hat{\sigma}$: $f_2 - f_1$, vector between the two reacting interfaces (current complex's interface to other complex's interface)

 ω : dihedral between the \hat{v}_1 and \hat{v}_2 , or the dihedral between the normals of the two reacting molecules

angle range: $[\pi, -\pi]$

Procedure:

1. Follows the same procedure for the ϕ rotation, replacing \hat{n} and $\hat{\sigma}$ with one of two sets of vectors:

$$\begin{cases} \hat{\boldsymbol{n}}_{1}, \, \hat{\boldsymbol{n}}_{2} & \text{if } \theta_{1} = \pi \mid\mid \theta_{2} = \pi \\ \hat{\boldsymbol{v}}_{1}, \, \hat{\boldsymbol{v}}_{2} & \text{otherwise} \end{cases}$$

This is necessary since if either θ angle is equal to π , the dihedral between \hat{v}_1 and \hat{v}_2 is undefined, but an equivalent dihedral could still be necessary to properly align the two molecules (such as in the case of two planar clathrins associating)