A Comparative Study of Cryptographically Secure Random Number Generators

Felicia Guo, Jingyi Xu EE241B Final Project May 6, 2021

Overview

- Background
- PRNG vs TRNG
 - o Blum Blum Shub
 - o TRNG with Markov Chain de-correlation and IVN bias correction
- Results
- Summary

Background

- Increasing need for (cryptographically secure) random numbers
 - Private data transfers
- How do we generate random numbers?
 - True random: use device noise as entropy source
 - Need debiasing
 - Pseudorandom: take a seed and run it through algorithms
 - Has limited period
 - Easier to predict
- How do we know if a stream of numbers is 'random'?
 - Statistical tests
- How do we know if it's cryptographically secure?
 - Next-bit test: there is no polynomial time algorithm which, given the first L bits of the output sequences, can predict the L+1th bit with a probability significantly greater

Blum Blum Shub

Find M

$$M = p \cdot q$$
 $p = 4p1 + 3$
 $q = 4q1 + 3$

- Find seed: gcd(seed, M) = 1
- Repeat:

$$x_{n+1}=x_n^2\, mod\, M$$

• Can use least significant $\log_2{(\log_2{M})}$ bits for output

TRNG - Overview

- Input bitstream produced by strongARM latch utilizing noise
- Shift register "Markov Chain" assigns bits to IVN lane based on past bit history

TRNG - StrongARM Bit Generation

- Set outputs to same voltage
- Use device noise to differentiate outputs in strongARM
- Tested for VDD of 0.63V, 0.7V, 0.77V

TRNG - Iterative Von Neumann Debiasing

- Extracts entropy from input sequence by discarding sequences of all 1s or all 0s
- Iterative tree to limit hit to throughput from bit discarding

Results - Statistical Quality

- Post processing potentially helps with bias in TRNG (below)
- NIST SP 800-22 test results on right

	Pass Rate	
	BBS	TRNG
Runs	10/10	8/10
Block Frequency	10/10	10/10
Approx. Entropy	10/10	8/10
FFT	9/10	10/10
Serial	10/10	10/10

Results-Area

Area in um^2

BBS		TRNG	
Modular multiplier	3112.18	IVN	1757.06
Seed validation	646.18	Buffer	715.46
Control	30.55	MC router	32.19
Total	4153.55	Total	2535.28

Results-Power & Throughput

Power in mV

	BBS	TRNG
Internal	0.551	0.273
Switching	0.956	0.225
Leakage	0.167	0.079
Internal	1.675	0.577

	BBS	TRNG
Max clock frequency(GHz)	0.66	1.25
bitrate(Gbit/s)	1.332	1.25

Summary

- It's a trade-off
 - BBS has better bit statistical quality
 - TRNG has better energy and area efficiency
 - Comparable throughput
- Next steps:
 - More extensive testbenches with at least 100 runs and longer bitstreams
 - Better sources of colored noise to test the debiasing capabilities of IVN

