TP9- Díodo (homojunção)

- 1- Considere um díodo p-n de silício com as seguintes características: $N_D = 10^{16}$ cm⁻³ e $N_A = 10^{18}$ cm⁻³ . Calcule:
 - a) O valor da energia de Fermi na região p e n
 - b) O valor de V₀
 - c) A largura da zona de depleção no lado n e no lado p.

Dados para Si: N_c (300K)= 2.8x10¹⁹ cm⁻³; N_V (300K)= 1x10¹⁸ cm⁻³; ε = 11.9x8.8410⁻¹² F/m.

- 2- Considere um díodo p-n de silício com 20 μ m de diâmetro e as seguintes características: $N_D = 10^{16}$ cm⁻³ e $N_A = 10^{18}$ cm⁻³ . A T=300K calcule:
 - a) A largura de depleção na região n e p para:
 - i) sem polarização
 - ii) para polarização inversa de: 2V; 5V e 10V
 - iii) para polarização direta de: 0.5V
 - b) O valor máximo do campo elétrico (sem polarização- E 0)
 - c) A carga existente na zona de depleção para as polarizações da alínea a).

Dados para Si: n_i (300K)= 1.5x10¹⁰ cm⁻³; ε = 11.9x8.8410⁻¹² F/m.

3 — Considere um díodo ideal (Si) com N_D = 10^{16} cm⁻³ e N_A = 10^{18} cm⁻³. A área do díodo é 10^{-3} cm².

Considere as seguintes propriedades de transporte a T=300K.

<u>n-SC</u>: μ_p = 300 cm²/V.s; : μ_n = 1300 cm²/V; D_p =7.8 cm²/s; D_n =33 cm²/s .

<u>p-SC</u>: μ_p = 100 cm²/V.s; : μ_n = 280 cm²/V; D_p =2.6 cm²/s; D_n =7.3 cm²/s .

Considere $\tau_n = \tau_p = 10^{-6}$ s

Calcule a corrente de saturação (em escuro) do díodo.

- 4 Considere um díodo p-n com as seguintes características: $N_D = N_A = 10^{17}$ cm $^{-3}$ e $\tau_n = \tau_p = 10^{-8}\,s$.
 - a) Calcule a corrente de saturação (em escuro) do díodo quando o semicondutor usado é o silício e quando é o GaAs.

Considere as seguintes propriedades de transporte a T=300K.

 $\underline{Si}: L_p = 3.5 \times 10^{-4} \text{ cm}; \ L_n = 5.91 \times 10^{-4} \text{ cm}; \ D_p = 12.5 \text{ cm}^2/\text{s}; \ D_n = 35 \text{ cm}^2/\text{s}; \ n_i = 1.5 \times 10^{10} \text{ cm}^{-3}.$

GaAs: $L_p = 3.16 \times 10^{-4}$ cm; $L_n = 14.83 \times 10^{-4}$ cm; $D_p = 10$ cm²/s; $D_n = 220$ cm²/s $n_i = 1.8 \times 10^6$ cm⁻³.

b) Calcule a tensão de polarização necessária para que a densidade de corrente seja de 10³ A/ cm², para os dois díodos (Si e GaAs).