Exercice 1 (11 pts)

Partie I

- FIFO (1 pt)

	0	4	3	7	0	3	1	3	0	7	8	0	7	8	0	2
Frame1	0	0	0	7	7	7	7	3	3	3	3	0	0	0	0	0
Frame 2		4	4	4	0	0	0	0	0	7	7	7	7	7	7	2
Frame 3			3	3	3	3	1	1	1	1	8	8	8	8	8	8
Défauts de	X	X	Χ	Χ	Χ		Χ	Χ		Χ	Χ	Χ				Χ
pages																
Taux de défauts de pages = 11/16 * 100 = 68,75%																

- Optimal (1 pt)

	0	4	3	7	0	3	1	3	0	7	8	0	7	8	0	2
Frame1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Frame 2		4	4	7	7	7	1	1	1	1	8	8	8	8	8	8
Frame 3			3	3	3	3	3	3	3	7	7	7	7	7	7	7
Défauts de	Χ	Χ	Χ	X			X			Χ	Χ					X
pages																
Taux de défauts de pages = 8/16 *100 = 50%																

Partie II

1. Le nombre de pages occupées par la matrice B est : 24*24/120= 4.8 = 5 pages. (0,5 pt)

Les pages de la matrice B sont notées :

Processus 1: $P_{(1,1)}$, $P_{(2,1)}$, $P_{(3,1)}$, $P_{(4,1)}$, $P_{(5,1)}$

Processus 2: $P_{(1,2)}$, $P_{(2,2)}$, $P_{(3,2)}$, $P_{(4,2)}$, $P_{(5,2)}$

2. Le nombre de lignes dans chaque page est :

Pages de 1-4:5 lignes; Page 5:4 lignes (0,5 pt)

3. Les chaines de références qui correspond à l'exécution des deux processus:

Comme la matrice B est la même pour les deux processus (variable globale) et pour simplifier l'écriture des chaines de références, les pages de B sont notées : P_1 , P_2 , P_3 , P_4 , P_5

Processus 1

Partie I: (1 pt)

$$\underbrace{P_{(0,1)} \ P_1 \ \dots P_{(0,1)} \ P_1}_{110 \ fois} \underbrace{P_{(0,1)} \ P_2 \ \dots P_{(0,1)} \ P_2}_{85 \ fois} \underbrace{P_{(0,1)} \ P_3 \ \dots P_{(0,1)} \ P_3}_{60 \ fois} \underbrace{P_{(0,1)} \ P_4 \ \dots P_{(0,1)} \ P_4}_{10 \ fois} \underbrace{P_{(0,1)} \ P_5 \ \dots P_{(0,1)} \ P_5}_{10 \ fois} \underbrace{P_{(0,1)} \ P_3}_{10 \ fois} \underbrace{P_{(0,1)} \ P_4 \ \dots P_{(0,1)} \ P_4}_{10 \ fois} \underbrace{P_{(0,1)} \ P_5 \ \dots P_{(0,1)} \ P_5}_{10 \ fois}$$

La chaine réduite est : $P_{(0,1)}$ P_1 $P_{(0,1)}$ P_2 $P_{(0,1)}$ P_3 $P_{(0,1)}$ P_4 $P_{(0,1)}$ P_5 $P_{(0,1)}$

Partie II: (1 pt)

$$\underbrace{P_{(0,1)}\;P_1\;\dots\;P_{(0,1)}\;P_1}_{100\;fois}\;\underbrace{P_{(0,1)}\;P_2\;\dots\;P_{(0,1)}\;P_2}_{50\;fois}/\underbrace{P_{(0,1)}\;P_3\;\dots\;P_{(0,1)}\;P_3}_{6\;fois}/\underbrace{P_{(0,1)}\;P_3\;\dots\;P_{(0,1)}\;P_3}_{6\;fois}/\underbrace{P_{(0,1)}\;P_3\;\dots\;P_{(0,1)}\;P_3}_{6\;fois}$$

La chaine réduite est : $P_{(0,1)}$ P_1 $P_{(0,1)}$ P_2 $P_{(0,1)}$ P_3 $P_{(0,1)}$

Processus 2

Partie I: (1 pt)

$$\underbrace{P_{(0,2)} \ P_1 \ \dots P_{(0,2)} \ P_2}_{10 \ fois} \underbrace{P_{(0,2)} \ P_2 \ \dots P_{(0,2)} \ P_3}_{20 \ fois} \underbrace{P_{(0,2)} \ P_3 \ \dots P_{(0,2)} \ P_4}_{20 \ fois} \underbrace{P_{(0,2)} \ P_4 \ \dots P_{(0,2)} \ P_5}_{85 \ fois} \underbrace{P_{(0,2)} \ P_5 \ \dots P_{(0,2)} \ P_5}_{85 \ fois} \underbrace{P_{(0,2)} \ P_5 \ \dots P_{(0,2)} \ P_5}_{85 \ fois}$$

La chaine réduite est : $P_{(0,2)}$ P_1 $P_{(0,2)}$ P_2 $P_{(0,2)}$ P_3 $P_{(0,2)}$ P_4 $P_{(0,2)}$ P_5 $P_{(0,2)}$

Partie II: (1 pt)

$$\underbrace{P_{(0,2)} \; P_3 \; \dots \; P_{(0,2)} \; P_3}_{12 \; fois} \underbrace{P_{(0,2)} \; P_4 \; \dots \; P_{(0,2)} \; P_4}_{60,2)} \underbrace{P_{(0,2)} \; P_5 \; \dots \; P_{(0,2)} \; P_5}_{60 \; fois} P_{(0,1)}$$

La chaine réduite est : $P_{(0,1)}$ P_3 $P_{(0,1)}$ P_4 $P_{(0,1)}$ P_5 $P_{(0,1)}$

4. Programme qui calcul le nombre de 0 (1pt)

Processus 1

// Partie III int NB1 = 0; for (int i = 0; i < 24; i+=2) for (int j = 0; j < 24; j++) { if (B[i][j]==0) { NB1 ++; } }</pre>

Processus 2

```
// Partie III
int NB2 = 0;
for (int i = 1; i < 24; i+=2)
  for (int j = 0; j < 24; j++)
      {
        if (B[i][j]==0) { NB2 ++; }
    }</pre>
```

5. La chaine de référence correspondant à l'exécution des deux processus en temps partagé : (2 pts)

$$\underbrace{P_{(0,1)} \ P_1 \ \dots P_{(0,1)} \ P_1}_{72 \ fois} \underbrace{P_{(0,2)} \ P_1 \ \dots P_{(0,2)} \ P_1}_{48 \ fois} \underbrace{P_{(0,2)} \ P_2 \ \dots P_{(0,2)} \ P_2}_{12} \underbrace{P_{(0,1)} \ P_2 \ \dots P_{(0,1)} \ P_2}_{12} \underbrace{P_{(0,1)} \ P_2 \ \dots P_{(0,1)} \ P_3}_{12} \underbrace{P_{(0,1)} \ P_3 \ \dots P_{(0,1)} \ P_3}_{12} \underbrace{P_{($$

$$\underbrace{P_{(0,2)} \ P_2 \ \dots P_{(0,2)} \ P_2}_{48 \ fois} \underbrace{P_{(0,2)} \ P_3 \ \dots P_{(0,2)} \ P_3}_{24 \ fois} \underbrace{P_{(0,1)} \ P_3 \ \dots P_{(0,1)} \ P_3}_{48 \ fois} \underbrace{P_{(0,1)} \ P_4 \ \dots P_{(0,1)} \ P_4}_{24 \ fois} \underbrace{P_{(0,2)} \ P_3 \ \dots P_{(0,2)} \ P_3}_{24 \ fois}$$

$$\underbrace{P_{(0,2)} \ P_4 \ \dots P_{(0,2)} \ P_4}_{48 \ fois} \underbrace{P_{(0,1)} \ P_4 \ \dots P_{(0,1)} \ P_4}_{24 \ fois} \underbrace{P_{(0,1)} \ P_5 \ \dots P_{(0,1)} \ P_5}_{48 \ fois} \underbrace{P_{(0,2)} \ P_4 \ \dots P_{(0,2)} \ P_4}_{48 \ fois} \underbrace{P_{(0,2)} \ P_4 \ \dots P_{(0,2)} \ P_5}_{48 \ fois} \underbrace{P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)}}_{48 \ fois} \underbrace{P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)}}_{48 \ fois} \underbrace{P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)} \ P_{(0,1)}}_{48 \ fois} \underbrace{P_{(0,1)} \ P_{(0,1)}}_{48 \ f$$

Donc, la chaine réduite est :

6. Application de LRU (1pt)

	$P_{(0,1)}$	P_1	$P_{(0,2)}$	P_1	$P_{(0,2)}$	P_2	$P_{(0,1)}$	P_2	$P_{(0,1)}$	P_3
F1	$P_{(0,1)}$	$P_{(0,1)}$	$P_{(0,1)}$	$P_{(0,1)}$	$P_{(0,1)}$	P_2	P_2	P_2	P_2	P_2
F2		P_1	P_1	P_1	P_1	P_1	P _(0,1)	P _(0,1)	P _(0,1)	$P_{(0,1)}$
F3			P _(0,2)	P_3						
DP	X	Χ	Χ			X	X			Χ
	Nombre de défauts de pages = 6									

Exercice 2 (9 pts)

1.	Diagramme d'exécution :	(2,5 pts)		= 1ms
----	-------------------------	-----------	--	-------

																	r	r	r	
E/S											P1	P1					Р3			
CPU	P1	P1	P1		P2	P2	Р3	Р3	Р3	P1	P2	P2	P1	P1	P4	Р3	P2	Р3	Р3	P2
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

2. Etat des processus (0,25 * 4 = 1pt)

	Instants	8 ms	11 ms	12,5 ms	16,5 ms
	P1	Prêt	Bloqué	Actif	Terminé
snss	P2	Prêt	Actif	Prêt	Actif
Processus	Р3	Actif	Prêt	Prêt	Bloqué
I	P4	Prêt	Prêt	Prêt	Terminé

3. Les programmes système

Le PCB de chaque processus contient les champs suivants (en plus du champ etat) :

- File: F1 ou F2
- Durée : la durée d'exécution restante, initialement égale à la durée d'exécution du processus
- Attente : la durée d'attente d'un processus dans la file F1.

Scheduler() (1 pt)

Début

```
etiq : Si | vide(F2) Alors Défiler (F2, P-actif) ;
                              P-actif.etat := "Actif";
                              Lpsw(P-actif);
                       Sinon Si vide(F1) Alors Défiler (F1, P-actif);
                                                     P-actif.etat := "Actif";
                                                    P-actif.Attente := 0;
                                                    H := 3ms/5\mu s = 600;
                                                     Lpsw(P-actif);
                                              Sinon goto etiq;
                               Fsi;
         Fsi;
Fin.
```

```
R_it Horloge() // Lancée chaque 5µs (3pts)
Début
    <S.G.CXT>
    H--;
    Si (P-actif ≠ NULL) Alors P-actif. Durée := P-actif. Durée - 5µs; Fsi;
                                                                                   (0,5 pt)
    Pour i:= 1 à NB_Périph
    Faire
        Si (Tete_file(FB<sub>i</sub>) \neq NULL) Alors Tete_file(FB<sub>i</sub>).Durée := Tete_file(FB<sub>i</sub>).Durée - 5\mus; Fsi; (0,5 pt)
    Fait;
    Pt := Tete(F1);
    TQ (Pt ≠ NULL)
    Faire
        Pt.Attente := Pt.Attente + 5µs;
        Si (Pt.Durée > T2) Alors Trouver := vrai;
                                    Pt.Attente := 0;
                                    Defiler_element(F1, Pt, P);
                                                                          (1pt)
                                    Enfiler_Tete (F2, P);
        Fsi;
        Pt := Pt.svt;
    Si (Trouver = vrai) Alors Si (P-actif ≠ NULL) et (P-actif.File = F1) Alors P-actif.etat := "Prêt";
                                                                                 Enfiler (F1, P-actif);
                                                                                                           (0,5 pt)
                                                                                 Lpsw(scheduler);
    ı
                               Fsi;
    Fsi;
    Si (H=0) et P-actif ≠ NULL) Alors P-actif.etat := "Prêt";
                                           Enfiler (F1, P-actif);
                                                                   (0,5 pt)
    I
                                           Lpsw(scheduler);
   Fsi;
   <R.CXT>
Fin.
```

N.B: Enfiler_Tete (F2, P) permet d'enfiler le processus P en tête de la file F2 tout en respectant l'ordre FIFO entre les processus retirer de la file F1.

```
R_{it} fin d'E/S() (1,5 pts)
Début
   <S.G.CXT>
   .....
   Si (N \neq 0) Alors .....
               Sinon Si vide (F<sub>E/Si</sub>) Alors .....
                      Fsi;
                       Défiler (FB_i, p);
                       p.etat := "Prêt";
                       Si (p.File = F2)
                                 Alors Enfiler (F2, p);
                                 Sinon Si (p.Durée <= T1)
                                                  Alors p.File := F2;
                                                         Enfiler (F2, p);
                                                         Si (P-actif ≠ NULL) et (P-actif.File = F1)
                                                                       Alors P-actif.etat := "Prêt";
                                                                              Enfiler (F1, P-actif);
                                                                              Lpsw(scheduler);
                                                         Fsi;
                                                   Sinon Enfiler (F1, p);
                                         Fsi;
                       Fsi;
   Fsi;
   <R.CXT>
Fin.
```