Formelsammlung Elektronische Bauelemente

Martin Dietschreit, Willy Hille, Julia Nützel, Colin Pohle, Eric Richter, Kevin Wenke nach Original von Marcel Ott.

21. März 2021

Inhaltsverzeichnis

1	E-Reihen		•		 •	•	•	•	•	•	•	•	•	•	1
2	Grundlagen ET														2
3	dB & dB-Rechnung														2
4	Halbleiter allgemein														3
5	Einweggleichrichter														4
6	Zweipuls-Mittelpunkt-Schaltung (M2U)														4
7	Brückengleichrichter = "Grätzbrücke".														5
8	RC-Sieb														5
9	LC-Sieb														6
10	Zener-Diode														6
11	Spannungsbegrenzung														7
12	Diode als Schalter														8
13	Kapazitätsdioden														8
14	Bipolartransistoren														8
14.1	Bestimmung R_C														9
14.2	Erzeugen der Basisvorspannung														9
14.3	Thermische Arbeitspunktstabilisierung														10
15	Transistor-Grundschaltungen														10
		•		•											40
15.1	Emitter-Schaltung														10
	· ·														10
15.1 15.2 15.3	Emitter-Schaltung														
15.2 15.3	Emitter-Schaltung														11
15.2	Emitter-Schaltung														11 11
15.2 15.3 15.4	Emitter-Schaltung				 	 					 				11 11 12
15.2 15.3 15.4 15.5	Emitter-Schaltung				 	 					 				11 11 12 12
15.2 15.3 15.4 15.5 15.5.1	Emitter-Schaltung				 	 					 				11 11 12 12 12

16	OPV - Operationsverstärker	14
16.1	Anwendungen mit frequenzunabhängiger Gegenkopplung	14
16.1.1	Invertierender Verstärker/Umkehrverstärker	14
16.1.2	Nichtinvertierter Verstärker/Elektrometerverstärker	14
16.1.3	Spannungsfolger	15
16.1.4	Addierverstärker	15
16.1.5	Subtrahierverstärker	15
16.2	OPV mit frequenzunabhängiger Gegenkompplung	16
16.2.1	Integrierverstärker	16
16.2.2	Differenzierer	16
16.2.3	Komparator/Vergleicher	16
16.3	Schmidtt-Trigger	17
16.3.1	invertierter SWS	17
16.3.2	nichtinvertierter SWS	17
16.3.3	nichtinvertierter SWS mit Referenzspannungsquelle	17
16.3.4	invertierter SWS mit Referenzspannungsquelle	17

1 E-Reihen

E6	E12	E24	E48	E96
20%	10%	5%	2%	1%
		4	1	1,02
		1	1,05	1,05 1,07
	1		1,1	1,1
		1,1	1,15	1,15 1,18
1			4 04	1,21
		1,2	1,21	1,24
	1.0		1,27	1,27 1,3
	1,2		1,33	1,33 1,37
		1,3	1,4	1,4
			1,47	1,47
		1,5		1,5 1,54
	1,5		1,54	1,58
	,-	1,62	1,62	1,62 1,65
			1,69	1,69 1,74
1,5		1,8 1,78 1,87 1,96		1,78
				1,82 1,87
	1.0		1,87	1,91
	1,0		1,96	1,96 2
		2		2,05 2,1
			2,05	2,15
		2,2		2,21 2,26
	2,2		2,26	2,32
	,		2,37	2,37 2,43
		2,4	2,49	2,49
2,2				2,55 2,61
		2,7	2,61	2,67
	0.7	,-	2,74	2,74
	2,7		2,87	2,87 2,94
		3	3,01	3,01
20%	10%	5%	2%	3,09
E6	E12	E24	E48	E96
_0	LI2	L24	L+0	L30

E 6	E12	E24	E48	E96
20%	10%	5%	2%	1%
2070	1070	070	270	3,16
			3,16	3,24
				3,32
		3,3	3,32	3,4
				3,48
	3,3		3,48	3,57
				3,65
			3,65	3,74
		3,6		3,83
3,3			3,83	3,92
			4,02	4,02
		3,9		4,12
		-	4,22	4,22
	3,9			4,32
	,		4,42	4,42
		4,3		4,53
		,-	4,64	4,64
			,-	4,75
	4,7		4,87	4,87
		,-	4,99	
		,	5,11	5,11
	4,7		-,	5,23
	,		5,36	5,36
		5,1		5,49
		3,1	5,62	5,62
4,7			- , -	5,76
','			5,9	5,9
		5,6		6,04
		0,0	6,19	6,19
	5,6		-, -	6,34
	-,-		6,49	6,49
	6,2	6.2	-,	6,65
		- ,—	6,81	6,81
				6,98
			7,15	7,15
		6,8	, -	7,32
		-,-	7,5	7,5
	6,8		.,.	7,68
	,,,		7,87	7,87
		7,5		8,06
6,8		,-	8,25	8,25
5,5			,,_0	8,45
			8,66	8,66
		8,2		8,87
	8,2		9,09	9,09
	0,2		0,00	9,31
		9,1	9,53	9,53
				9,76
20%	10%	5%	2%	1%
E6	E12	E24	E48	E96

Verwendung: Wert aus der gewünschten Reihe auswählen (Standard: **E24**) und mit 10^n für beliebiges ganzzahliges n multiplizieren. Der letzte Eintrag in **E24** kann also $9{,}1\Omega$, 910Ω , aber auch $0{,}00091\Omega$ beschreiben. (Letzterer hat evtl. keinen praktischen Nutzen.)

$$C_{gew} \ge C_{berechnet}$$
 $R_{\min} \le R_{gew} \pm R_{gew} \cdot Toleranz \le R_{\max}$

2 Grundlagen ET

Elektrischer Parameter	Einheit	Symbol	Definition
Spannung	Volt	[U] = 1V	$1V = 1\frac{J}{C} = 1\frac{Nm}{As} = 1\frac{kg \cdot m^2}{A \cdot s^3} = 1A \cdot \Omega$
Strom	Ampere	[I] = 1A	$1A = 1\frac{C}{s} = 1\frac{V}{\Omega}$
Widerstand	Ohm	$[R] = 1\Omega$	$R = \frac{U}{I} = \frac{1}{G}$
Leitfähigkeit	Siemens	[G] = 1S	$G = \frac{1}{R}$
Kapazität	Farad	[C] = 1F	$C = \frac{Q}{U} 1F = 1\frac{As}{V}$
Ladung	Coulomb	[Q] = 1C	1C = 1As
Induktivität	Henry	[L] = 1H	$1H = 1\frac{Vs}{A}$
Leistung	Watt	[P] = 1W	$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$
Frequenz	Hertz	[f] = 1Hz	$f = \frac{1}{T}$

Hinweis: U_{a-} bzw. U_{a+} ist nur kürzere Schreibweise für $U_{a_{\min}}$ bzw. $U_{a_{\max}}$

3 dB & dB-Rechnung

$$\begin{split} V_P &= \frac{P_{aus}}{P_{ein}} \qquad V_U = \frac{U_{aus}}{U_{ein}} \qquad V_{P_{dB}} = 10 \lg \frac{P_{aus}}{P_{ein}} \qquad V_{U_{dB}} = 20 \lg \frac{U_{aus}}{U_{ein}} \\ \text{negativer dB-Wert: D\"{a}mpfung (z.B. } 10dB \rightarrow x10; -10dB \rightarrow x\frac{1}{10}) \end{split}$$

Stromverstärkung (ungewöhnlich) verhält sich wie Spannungsverstärkung

dB	V_P	V_U
0	1	1
1	$\sqrt[10]{10} = 1,26$	$\sqrt[20]{10} = 1.12$
2	$\sqrt[5]{10} = 1,58$	$\sqrt[10]{10} = 1,26$
3	2	$\sqrt{2} = 1,41$
6	4	2
10	10	$\sqrt{10} = 3{,}16$
20	100	10
40	10^{4}	100
60	10^{6}	1000
80	108	10^{4}
100	10^{10}	10^{5}

bezogene dB-Werte:

Größe	Bezugswert	Einheit
Leistung P_0	1mW	dBm
Leistung P_0	1W	dBW
Spannung U_0	1V	dBV
Spannung U_0	1V	dBV
Spannung U_0	774,6mV	dBu
Strom I_0	1A	dBA
Strom I_0	1,291mA	dBi

$$dBm$$
: $V_{P_{dB}} = 10 \lg \frac{P_{aus}}{1mW}$
 $db\mu$: $V_{U_{dB}} = 20 \lg \frac{U_{aus}}{1\mu V}$

\longrightarrow Zerlegen

$$V_{ges} = \prod_{i=1}^{n} V_i = V_1 \cdot V_2 \cdot V_3 \cdot \ldots \cdot V_n$$

$$V_{ges_{dB}} = \sum_{i=1}^{n} V_i = V_{1_{dB}} + V_{2_{dB}} + V_{3_{dB}} + \ldots + V_{n_{dB}}$$

4 Halbleiter allgemein

Besetzungswahrscheinlichkeit:					
$P(W) = \frac{1}{1 + e^{\frac{W - W_F}{k \cdot T}}}$	$k = 1.38 \cdot 10^{-23} \frac{Ws}{K}$				
	$T={ m absolute\ Temperatur} \ W_F={ m Fermi-Nivaeu}$				
TI. O	-				
T = 0	T > 0				
$W > W_F \to 0$	$P(W_F) = \frac{1}{2}$				
$W < W_F \to 1$	-				

Legende: $I_F = \mathsf{Effektivwert}$ I_{FM} =periodischer Spitzenstrom $I_{FS} = Stoßspitzenstrom$ $I_0 = \text{Richtstrom (arithm. Mittel)}$ T = Gesamtdauer $t_i = Einschaltdauer$ $g = \frac{t_i}{T}$ $U_{RSM} = \text{eindeut. Spitzensperrspannung}$ $T = II_{D} . I_{D}$ U_{RRM} =period. Spitzensperrspannung P_{tot} =tot. Verlustleistung $P_V \le P_{tot}$ $R_{thJU}=$ therm. Widerstand zw. Sperrschicht & Umgebung $R_{thJU}=rac{artheta_{J}-artheta_{U}}{P_{V}}rac{artheta_{J}}{artheta_{U}}rac{Temperatur\ Sperrschicht}{Umgebung}$ $R_{thJU}=R_{th_{JG}}+R_{th_{GK}}+R_{th_{K}}$ $\begin{array}{ll} & R_{thJU} = R_{th_{JG}} + R_{th_{GK}} + R_{th_{K}} \\ P_{V_{\max}} = \frac{\vartheta_{I_{\max}} - \vartheta_{U}}{R_{th_{JG}} + R_{th_{GK}} + R_{th_{K}}} \\ \text{Diode} & R_{R} = \text{stat. Sperrwiderstand} \end{array}$ R_F =Gleichstromwiderstand Diode $r_F = dyn$. Durchlasswiderstand $C_D =$ Diodenkapazität $r_f = \frac{\Delta U_F}{\Delta I_F}$ $R = \frac{U}{I}$ $t_{rr} =$ Sperrverzögerungszeit

5 Einweggleichrichter

Bemerkung

 $U_{Diode} \approx 0.6 V$ im Leerlauf Belastungsfall

Ungünstigster Fall: Leerlauf praktisch sinnvolle Auswahl Laststrom Trafoübersetzung praktisch $2\cdot U_a$

Welligkeit

6 Zweipuls-Mittelpunkt-Schaltung (M2U)

$$\begin{array}{lll} \text{Wert} & \text{Formel} & \text{Bemerkung} \\ U_{2-} & = \sqrt{2} \cdot U_1 - U_F & \approx 1, 3 \cdot U_1 \\ I_{FM} & \geq 0, 72 \cdot I_{L-} \\ U_{RM} & \geq 3 \cdot \sqrt{2} \cdot U_1 \\ U_{Breff} & = 1, 8 \cdot 10^{-3} \cdot s \cdot \frac{I_{L-}}{C_L} \\ U_{BrSS} & = 7 \cdot 10^{-3} \cdot s \cdot \frac{I_{L-}}{C_L} \end{array}$$

7 Brückengleichrichter = "Grätzbrücke"

8 RC-Sieb

Wert Formel Bemerkung

 $rac{U_{Br1}}{\sqrt{R_{2_S}+x_{2_{C_s}}}}=rac{U_{Br2}}{x_{C_s}}$ Vorraussetzung: $R_s\gg x_{C_s} o Gpproxrac{R_s}{x_{C_s}}$

 $\begin{array}{ll} \frac{U_{Br1}}{U_{Br2}} &= G & \text{Gl\"{a}ttungsfaktor} \\ G &= \sqrt{(\frac{R_s}{x_{Cs}})_2 + 1} & \text{sinnvoll: } 10 \dots 20 \end{array}$

 $G = 2\pi \cdot f_{Br} \cdot C_s \cdot R_s$ sinnvoll: $10 \dots 20$

 $x_{Cs} = \frac{1}{2\pi \cdot f_{Br} \cdot C_s}$ $U_{A-} = U_{2-} - U_{Rs}$ $U_{Rs} \leq 0.1 \cdot U_2$ $U_{Rs} = R_S \cdot I_{L-}$

9 LC-Sieb

$$G = \frac{x_L}{x_C} - 1$$

$$x_L 2\pi \cdot f_{Br} \cdot L_S$$

$$x_C = \frac{1}{2\pi \cdot f_{Br} \cdot C_S}$$

$$G = (2\pi \cdot f_{Br})_2 \cdot L_S \cdot C_S$$

10 Zener-Diode

Diodenbelastung: $P_{v_{ZD}} = I_{Z_{Betrieb \, \text{max}}} \cdot U_Z$

Fall 1:
$$U_E = konst., I_L ist variabel$$

ohne Last
$$I_L=0$$
 $R_V=\frac{U_E-U_Z}{I_Z}$

mit Last
$$R_V = \frac{U_E - U_Z}{I_Z + I_L} \ P_{tot} = I_{Z \max} \cdot U_Z$$

Fall 2: $U_E \ variabel, I_L = konst.$

$$U_E = U_{R_V} + U_Z = (I_Z + I_L) \cdot R_V + U_Z$$

$$R_V = \frac{U_E - U_Z}{I_Z + I_L}$$

Fall 3: $U_E und I_L variabel$ S = relativer Stabilisierungs faktor

$$I_{Z_{\min}} = 0.1 \cdot I_{Z_{\max}}$$

$$I_{Z_{\min}} = 0.1 \cdot I_{Z_{\max}}$$
 $R_{Vmax} = \frac{U_{E\min} - U_Z}{I_{Z\min} + I_{L\max}}$

$$S = \left(1 + \frac{R_V}{r_z}\right) \cdot \frac{U_Z}{U_e}$$

$$P_{Rv} = \frac{(U_{E \max} - U_Z)}{R_V}$$

$$P_{Rv} = \frac{(U_{E \max} - U_Z)^2}{R_V} \qquad R_{V \min} = \frac{U_{E \max} - U_Z}{I_{Z \max} + I_{L \min}}$$

$$S_{\min} = \left(1 + \frac{R_V \text{ gew. min}}{r_z}\right) \cdot \frac{U_Z}{U_{E \max}}$$

$$U_E = 2 \cdot U_Z$$

$$R_{Vgew\,\mathrm{min}} = \frac{Ue_{\mathrm{max}} - U_Z}{I_{ZBetr_{\mathrm{max}}} + I_{L\,\mathrm{min}}}$$

$$I_{ZBetrieb_{\max}} = \frac{Ue_{\max} - U_Z}{R_{Vgew_{\min}}} - I_{L\min}$$

$$R_{V_{\min}} \leq R_{V_{gew}} \leq R_{V_{\max}}$$
 meist gegen $R_{V_{\max}}$

$$I_{L_{\max}} = \frac{U_Z}{R_{L_{\min}}}$$

$$I_L = \frac{U_A}{R_L} = \frac{U_Z}{R_L}$$

$$I_{L_{\min}} = \frac{U_Z}{R_{L_{\max}}}$$

Leistung über Diode auch mit berechnen, wenn das nicht explizit gefragt ist.

11 Spannungsbegrenzung

a) Spannungsgrenzen mit Z-Dioden

pos.
$$HW U_a = U_S + U_{Z2}$$

neg. $HW U_a = U_S + U_{Z1}$

b) Spannungsgrenzen mit Gegenspannung

$$U_a = U_S + U_V$$
$$U_e > U_S + U_V$$

c) Spannungsgrenzen mit Klipperschaltung

$$U_a = U_r$$

$$U_e = U_{S1} + U_{SL} + U_R$$

$$U_e < 2 \cdot U_s$$

12 Diode als Schalter

$$U_B = U_{Schalter}$$
$$U_{RL} = 0$$

$$U_{RL} = I_R \cdot R_L$$

$$U_{Diode} = U_R \approx U_B$$

$$Gefahr: U_B > U_R$$

geschlossener

Schalter:

$$U_{B} = U_{RL}$$

$$U_{Schalter} = 0$$

$$I_{RL} zu beachten$$

$$P_{S \max} = Schaltleistung der Diode = U_{RL} \cdot I_{F \max}$$

$$U_{RL} = U_B - U_s$$
 $I_{F \max} = \frac{P_{tot}}{U_S} \longrightarrow P_{S \max} = P_{tot}(\frac{U_B}{U_S} - 1)$ $R_{L \min} = \frac{(U_B - U_S)^2}{P_{S \max}}$

$$R_{L\min} = \frac{(U_B - U_S)^2}{P_{S\max}}$$

13 Kapazitätsdioden

Verlustfaktor
$$\tan\delta=\frac{r_s}{X_C}=2\pi f\cdot C_D\cdot r_s$$
 Güte
$$Q=\frac{1}{\tan\delta}=\frac{X_C}{r_s}=\frac{1}{2\pi f\cdot C_D\cdot r_s}$$

$$X_e=(2\pi f\cdot C_D)^{-1}$$

14 Bipolartransistoren

Strom und Spannung am NPN-Transistor Strom und Spannung am PNP-Transistor

$$I_B \uparrow \rightarrow I_C \uparrow \quad I_B = 0 \rightarrow I_C = 0$$

Wert

Gleichstromverstärkung B

dyn. Gleichstromverstärkung β

$$P_V$$

Eingangswiderstand Transistor
$$r_{BE}$$

Ausgangsleitwert Transistor $\frac{1}{r_{CE}}$

Steilheit des Transistors S

$$C_1$$

$$C_2$$

$$r_e$$

Formel

$$=rac{I_C}{I_B}$$

$$=h_{21e}=rac{\Delta I_C}{\Delta I_B}$$

$$= U_{CE} \cdot I_C + \underbrace{U_{BE} \cdot I_B}_{\text{vernachl. klein}}$$

$$= h_{11e} = \frac{\Delta U_{BE}}{\Delta I_{BE}}$$

$$= h_{22e} = \frac{\Delta I_C}{\Delta U_{CE} = \frac{1}{r_{CE}}}$$

$$=y_{21}=rac{\Delta U_{BE}}{\Delta I_{BE}}$$

$$-y_{21} - \frac{1}{\Delta I_{BE}}$$

$$= \frac{1}{2\pi f_{gu} \cdot (r_e + R_i)}$$

$$= \frac{1}{2\pi f_{gu} \cdot (r_a + R_L)}$$

$$=R_1\parallel R_2\parallel r_{BE}$$

Bemerkung

bei
$$U_{CE} = konst.$$

14.1 Bestimmung R_C

$$U_{CE} \approx \frac{1}{2}U_B$$
 $R_C = \frac{U_B - U_{CE(a)}}{I_{C(a)}}$

14.2 Erzeugen der Basisvorspannung

durch Basisvorwiderstand

$$R_B = \frac{U_B - U_{BE(a)}}{I_{B(a)}}$$

$$R_C = \frac{U_B - U_{CE}}{I_C}$$

durch Basisspannungsteiler

$$\begin{split} I_q &= 2 \dots 10 \cdot I_B \\ R_1 &= \frac{U_B - U_{BE(a)}}{I_q + I_B} \\ R_2 &= \frac{U_{BE(a)}}{I_q} \\ R_C &= \frac{U_B - U_{CE}}{I_C} \end{split}$$

$$R_2 = \frac{U_{B-UCB}}{I_q}$$

$$R_C = \frac{U_{B-UCB}}{I_q}$$

$$R_C = \frac{U_B - U_{CE}}{I_C}$$

14.3 Thermische Arbeitspunktstabilisierung

durch Emitter-Widerstand:

$$\begin{split} I_E &= I_C + I_B \quad U_{RE} = R_E \cdot I_E \\ R_C &= \frac{U_B - U_{CE} - U_{RE}}{I_C} \\ C_E &\geq \frac{h_{21e}}{2\pi f_{gu} \cdot (h_{11e} + R_i)} = \frac{\beta}{2\pi f_{gu} \cdot (r_{BE} + R_i)} \end{split}$$

durch Spannungsgegenkopplung:

$$R_{1} = \frac{U_{CE} - U_{BE(a)}}{I_{q} + I_{B}}$$
 $R_{2} = \frac{U_{BE}}{I_{q}}$ $R_{C} = \frac{U_{B} - U_{CE}}{I_{C} + I_{B} + I_{q}}$

15 Transistor-Grundschaltungen

15.1 Emitter-Schaltung

Wert	Formel	Bemerkung
r_e	$=R_1 \parallel R_2 \parallel r_{BE}$	wenn R_E mit C_E überbrückt
r_e	$= R_1 \parallel R_2 \parallel (r_{BE} + \beta \cdot R_E)$	ohne C_E
r_a	$=R_C \parallel r_{CE}$	
V_u	$=rac{eta}{r_{BE}}\cdot r_a$	ohne Last
V_u	$= \frac{\beta}{r_{BE}} \cdot (r_a \parallel R_L)$	mit Last
V_{i}	$= \beta \cdot \frac{r_{CE}}{r_{CE} + R_C}$	ohne Last
V_{i}	$= \beta \cdot \frac{r_{CE}}{r_{CE} + (R_C \parallel R_L)}$	mit Last
V_p	$= V_u \cdot V_i \varphi = 180^{\circ}$	
C_E	$= \frac{h_{21E}}{2\pi f_{gu}(h_{11E} + R_i)}$	

15.2 Kollektor-Schaltung

Anmerkung: BST = Basisspannungsteiler

Wert	Formel	Bemerkung
$r_{e_{oL}}$	$=R_1 \parallel [r_{BE} + \beta(R_E \parallel r_{CE})]$	ohne BST
$r_{e_{oL}}$	$=R_1 \parallel R_2 \parallel [r_{BE} + \beta(R_E \parallel r_{CE})]$	mit BST
$r_{e_{mL}}$	$= R_1 \parallel [r_{BE} + \beta(R_E \parallel r_{CE} \parallel R_L)]$	ohne BST
$r_{e_{mL}}$	$= R_1 \parallel R_2 \parallel [r_{BE} + \beta (R_E \parallel r_{CE} \parallel R_L)]$	mit BST
r_a	$=R_E\parallel rac{r_{BE}*R_i}{eta}$	
V_u	$=rac{eta\cdot R_E}{eta\cdot R_E+r_{BE}}$	ohne Last
V_u	$= \frac{\beta \cdot (R_E \ R_L)}{\beta \cdot (R_E \ R_L) + r_{BE}}$	mit Last
V_{i}	$= \beta \cdot \frac{r_{CE}(1+\beta)}{R_E + r_{CE}}$	ohne Last
V_{i}	$= \beta \cdot \frac{r_{CE}(1+\beta)}{(R_E R_L) + r_{CE}}$	mit Last
V_n	$=V_u \cdot V_i \varphi = 0^\circ$	

15.3 Basis-Schaltung

Wert Formel

$$r_e = R_E \parallel \frac{r_{BE}}{\beta}$$

$$r_a = R_C \parallel r_{CE}$$

$$V_u = \frac{\beta}{r_{BE}} \cdot r_a$$

$$V_i = \frac{\beta}{\beta + 1}$$

$$V_p = V_u \cdot V_i$$

$$\varphi = 0^{\circ}$$

15.4 Selektivverstärker

$$\begin{array}{llll} \text{Wert} & \text{Formel} \\ f_o & = \frac{1}{2\pi\sqrt{L\cdot C}} \\ Q = G\ddot{u}te & = \frac{R\|r_{CE}}{X_C} = \frac{R\|r_{CE}}{X_L} \\ X_C & = \frac{1}{2\pi f \cdot C} \\ X_L & = 2\pi f \cdot L \end{array} \qquad \begin{array}{lll} \text{Wert} & \text{Formel} \\ b_{oL} & = \frac{f_0}{Q} = \frac{f_0 \cdot X_C}{R\|r_{CE}} = \frac{f_0 \cdot X_L}{R\|r_{CE}} \\ b_{mL} & = \frac{f_0 \cdot X_C}{R\|r_{CE} \cdot R_L} = \frac{r_0 \cdot X_L}{R\|r_{CE}\|R_L} \\ V_u & = Y_{21}(R \parallel r_{CE}) \end{array}$$

15.5 Schaltverstärker

Schaltfrequenz
$$f_{\max}=rac{1}{t_{ein}+t_{aus}}$$
 $R_1=rac{U_B-U_{CX}}{I_{BX}}$ $R_2=rac{U_e-U_{BE}}{I_{BX}}$

15.5.1 Schaltverstärker mit Hilfsspannungen

$$I_{BX} = \frac{\ddot{u} \cdot U_B}{R_c \cdot B} \quad U_{IH} \ge R_1 \left(I_{BX} + \frac{U_{BEX} + |U_H|}{R_2} \right) + U_{BEX}$$

$$\frac{R_1 \cdot (U_{BEX} + |U_H|)}{U_{IH} - U_{BEX} - I_{BX} \cdot R_1} \le R_2 \le \frac{R_1 (U_{BEY} + |U_H|)}{U_{IL} - U_{BEY}}$$

$$R_1 = \frac{(U_{IH} - U_{BEX})(U_{BEY} + U_H) - (U_{BEX} + U_H)(U_{IL} - U_{BEY})}{I_{BX} \cdot (U_{BEY} + U_H)}$$

standardmäßig: $U_{BEX} = 0.8V$ $U_{BEY} = 0.2V$

15.6 Feldeffekt-Transistoren

Vorwärtssteilheit $y_{21}=\frac{\Delta I_D}{\Delta U_{GS}}=S$ Ausgangsleitwert $y_{22}=\frac{\Delta I_D}{\Delta U_{DS}}=\frac{1}{r_{DS}}$ Automatische Gate-Spannungs-Erzeugung $U_{RS}=I_D\cdot R_S$ $P_{tot}=U_{DS}\cdot I_D$ Gatespannungserzeuger mit Gatespannungsteiler $R_1=\frac{U_B-U_{GS}-U_{RS}}{I_q}$ $R_2=\frac{U_{GS}+U_{RS}}{I_q}$

15.6.1 Source-Schaltung

Wert Formel

$=0.2 \cdot \frac{y_{21}}{f_{gu}}$ C_S $= \frac{1}{2\pi f_{gu}(R_i + r_e)}$

$$C_2 = \frac{1}{2\pi f_{gu}(R_L + r_a)}$$

$$R_G = \frac{U_{GS} = 0.5V}{I_{GSS}}$$

$$R_{GS} = \frac{U_{GS}}{I_{GSS}}$$

$$R_{GS} = \frac{U_{GS}}{I_{GSS}}$$

$$R_S = \frac{U_{GS}}{I_D} = \frac{U_{RS}}{I_D}$$

$$r_a = R_D \parallel r_{DS}$$

$$r_{DS} = \frac{1}{y_{22}}$$

$$r_{DS}$$
 = $\frac{1}{y_{22}}$
 R_D = $\frac{U_B - U_{DS} - [U_{RS} o. U_{GS}]}{I_D}$ = $\frac{U_D}{I_D}$

$$r_e = \frac{R_G \cdot R_{GS}}{R_G + R_{GS}} = R_G \parallel R_{GS}$$

$$r_e = R_1 \parallel R_2 \parallel R_{GS}$$

$$V_U = y_{21} \cdot r_a$$

$$U_{RG} = -I_{GSS} \cdot R_G \quad \varphi = 180^{\circ}$$

Bermerkung

oder:

für Gatesp. Teiler

15.6.2 Drain-Schaltung

 $r_e = R_{GS}(1+y_{21}\cdot R_S) \parallel R_G$ bzw. bei Gatespannungsteiler: $r_e = R_{GS}(1+y_{21}\cdot R_S) \parallel R_1 \parallel R_2$
$$\begin{split} r_a &= R_S \parallel \frac{1}{y_{21}} \quad V_U = \frac{y_{21} \cdot R_S}{1 + y_{21} \cdot R_S} \; \varphi = 0^\circ \\ R_G &= \frac{-U_{GS}}{I_{GSS}} \quad R_S = \frac{U_{RS}}{I_D} \quad R_{GS} = \frac{-U_{GS}}{-I_{GSS}} \quad R_1 = \frac{U_B - U_{GS} - U_S}{I_q} \quad R_2 = \frac{U_{GS} + U_S}{I_q} \end{split}$$

16 OPV - Operationsverstärker

Wert Formel

$$\begin{array}{ll} V_{ldb} &= 20 \lg \frac{U_a}{U_e} \text{ (Verstärkung)} \\ I_K &= \frac{U_2 - U_1}{Z_K} \quad I_1 + I_K = 0 \\ \underline{Z_1} &= \frac{U_1}{\underline{I_1}} = \frac{U_1}{-I_K} \\ \underline{Z_1} &= \frac{Z_K}{-V_0 + 1} \\ U_1 &= \frac{U_2}{V_0} \\ z_2 &= \frac{z_K}{1 + \frac{1}{-V_0}} \end{array}$$

16.1 Anwendungen mit frequenzunabhängiger Gegenkopplung

16.1.1 Invertierender Verstärker/Umkehrverstärker

Wert Formel

$$r_e = R_1$$

$$r'_a = r_a \cdot \frac{V}{V_0}$$

$$U_a = -\frac{R_2}{R_1} \cdot U_e$$

$$V = -\frac{R_2}{R_1}$$

Einfluss der endlichen Verstärkung auf einen realen OPV:

$$V = -\frac{V_0 \cdot R_K}{R_K + R_1 \cdot V_0 + R_1}$$

16.1.2 Nichtinvertierter Verstärker/Elektrometerverstärker

Wert Formel

$$V = 1 + \frac{R_K}{R_1}$$

$$U_a = \left(1 + \frac{R_K}{R_1}\right) \cdot U_e$$

$$R_2 \longrightarrow R_K$$

16.1.3 Spannungsfolger

Wert Formel

$$U_a = U_e$$

$$V = 1$$

16.1.4 Addierverstärker

Wert Formel

$$\begin{array}{ll} -U_a &= (I_1 + I_2) \cdot R_0 \\ &= \frac{R_0}{R_1} \cdot U_{e1} + \frac{R_0}{R_2} \cdot U_{e2} \\ \\ -U_a &= (U_{e1} + U_{e2}) \cdot \frac{R_0}{R_1} \leftarrow \text{nur f\"{u}r } R_1 = R_2 \ ! \\ \\ -I_K &= I_1 + I_2 \\ \\ V &= 1 \end{array}$$

16.1.5 Subtrahierverstärker

$$-U_a = \frac{R_K}{R_1} \cdot U_{e1} - \left(1 + \frac{R_K}{R_1}\right) \cdot \frac{R_3}{R_2 + R_3} \cdot U_{e2}$$

16.2 OPV mit frequenzunabhängiger Gegenkompplung

16.2.1 Integrierverstärker

$-U_a = \frac{1}{RC} \cdot \int U_e(t)dt + U_0$

16.2.2 Differenzierer

$$i_c = C \cdot \frac{du_c}{dt} \quad i_k = \frac{U_a}{R} = -i_c \quad -U_a = RC \cdot \frac{du_e}{dt}$$

16.2.3 Komparator/Vergleicher

invertierter Komparator / nicht-invertierter Komparator

16.3 Schmidtt-Trigger

16.3.1 invertierter SWS

Wert Formel

$$U_{ein} = \frac{R_2}{R_1 + R_2} \cdot U_{a-}$$

$$U_{aus} = \frac{R_2}{R_1 + R_2} \cdot U_{a+}$$

$$U_{Hys}$$
 $U_{aus} - U_{ein}$

16.3.2 nichtinvertierter SWS

Wert Formel

$$U_{ein} = -\frac{R_1}{R_2} \cdot U_{a-}$$

$$U_{aus} = -\frac{R_1}{R_2} \cdot U_{a+}$$

16.3.3 nichtinvertierter SWS mit Referenzspannungsquelle

Wert Formel

$$U_{ein} = -\frac{R_1}{R_2} \cdot U_{a \min} + U_{ref} (1 + \frac{R_1}{R_2})$$

$$U_{aus} = -\frac{R_1}{R_2} \cdot U_{a \max} + U_{ref} (1 + \frac{R_1}{R_2})$$
 $U_{aus} = \frac{R_2}{R_1 + R_2} \cdot U_{a \max} + U_{ref} (1 - \frac{R_2}{R_1 + R_2})$

16.3.4 invertierter SWS mit Referenzspannungsquelle

Wert Formel

$$U_{ein} = -\frac{R_1}{R_2} \cdot U_{a \min} + U_{ref} \left(1 + \frac{R_1}{R_2} \right) \qquad U_{ein} = \frac{R_2}{R_1 + R_2} \cdot U_{a \min} + U_{ref} \left(1 - \frac{R_2}{R_1 + R_2} \right)$$

$$U_{ein} = \frac{R_2}{R_1 + R_2} \cdot U_{a \min} + U_{ref} \left(1 - \frac{R_2}{R_1 + R_2} \right)$$

$$U_{ein} = \frac{R_2}{R_1 + R_2} \cdot U_{a \min} + U_{ref} \left(1 - \frac{R_2}{R_1 + R_2} \right)$$

