Group members:

Introduction:

The purpose of this report is to analyse the road safety data of England for the 12 months from 01/01/2019 to 31/12/2019 to understand 3 patterns majorly. They are, the patterns exist in the demographics of casualties, the patterns are there between the local authorities by considering the accidents which included a killed or seriously injured (KSI) casualty and the patterns are there in pedestrians who were actually KSI casualties. In this study, the complete process includes various steps, starts from data collection, followed by data cleaning and processing, data visualization and at the end conclusion. The raw data collected from UK Government website (https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data) and was in csv format, the applications R and Python were used for data cleaning and analysis purpose, for data visualization Power BI and Tableau were adopted. Packages used in R: dplyr, VIM, dlookr, and corrgram.

Data quality:

In order to perform analysis potentially, good quality of data is necessary. For this report, it focuses on datasets of road safety data known as STATS19 in the year 2019 for only England country. These datasets include three data files (The accident data, casualty data, and Guidance of Road Safety Open Dataset Data) and contains a lot of data quality problems which are needed to address namely:

O Invalid value

- In each file, there are certain invalid values that should not be in attribute according to guide file as Table 1:

Table 1: Invalid value

No.	File	Attribute name	Value
1	Accident	'lsoa_of_accident_location'	-1
2	Accident	'second_road_class'	-1
3	Casualty	'casualty_type'	-1

These issues are addressed by replacing its field by mode average value.

O Incorrect reference

- In guide file, there are some inconsistent information in attribute as Table 2:

Table 2: Incorrect reference

No.	File	Attribute name	Value	Remark
1	Guide	'local_authority_highway'	0	Should not have
2	Guide	'second_road_class'	0	The description should mention second_road_class instead of first_road_class

These issues are addressed by changing manually to be appropriate meaning.

O Wrong data type

- 1. For 'accident_index' and 'accident_reference' columns in accident and casualty file, these contain the unique value which combines with numbers and/or characters for each casualty. This kind of data should be assigned as string type whereas for some records which contain only numbers, they are defined as integer type.
- 2. For 'date' and 'time' columns in accident file, it is defined as integer type instead of datetime type.
- These issues are addressed by changing into the right format by a function of each program.
- Noted that: this problem doesn't cause by the collected data, but it may occur in some specific software or tools like pandas' data frame in Python.

O Missing & unknown values

- Missing and unknown values take place largely in these datasets due to following many reasons and showing in Figure 1 and 2:
 - 1. Negative value (-1):

According to guidance in guide file, if each data value is -1, it means that data missing or out of range. The number of this error accounts for about 50,000 records in accident file and around 15,000 records in casualty file.

Unknown data

According to guidance in guide file, some field names are defined that there is a specific value (2, 9, 10, and 99) meaning unknown value. For example, 'casualty_type' in casualty file assigns value 99 as unknown.

3. Nan:

In accident file, there are some columns which contain the Nan. This unknown data has less than 100 records.

Figure 1: The number of missing & unknown values in accident file

Figure 2: The number of missing & unknown values in accident file

- These issues are addressed by replacing its value by median average value for location data like latitude and longitude.
- O Numeric outlier
 - These datasets have 3 columns which contain the outlier data such as 'number_of_vehicles', 'number_of_casualties', and 'age of casualty'
 - These issues are addressed by replacing its value by mean average value.

Data definition and characterization:

Overall, the dataset consists of 54 columns which are in both quantitative and qualitative in nature, to be precise majority of them are Categorical, followed by Numerical and few are Ordinal data types. In the data cleaning stage, we had to remove and replace some of the rows due to quality issue. The data variables which we considered for analysis are elaborated pointwise as below.

The Accident dataset:

Table 3: The characterization of accident file

No.	Columns	Туре	Subtype	Definition
1	accident_reference	Categorical	nominal	The unique identification of an accident in that particular year
2	location_easting_osgr	numerical	Spatial	The easting location of collision as per Ordnance Survey
3	location_northing_osgr	numerical	Spatial	This column gives the northing location of collision as per Ordnance Survey
4	longitude	numerical	Spatial	Longitude of accident location
5	latitude	numerical	Spatial	Latitude of accident location
6	police_force	categorical	nominal	Police force number
7	accident_severity	categorical	Ordinal	How severe the accident is
8	number_of_vehicles	numerical		Count of vehicles involved in an accident
9	number_of_casualties	numerical		Count of casualties involved in an accident
10	date	categorical		Date of accident
11	day_of_week	nominal		day number in a week of accident
12	time	categorical		Time of accident
13	accident_index	categorical		Unique number, which is combination of year, reference number
14	accident_year	numerical		Year of accident
15	local_authority_district	Categorical	Nominal	district of local authority from where accident is reported
16	local_authority_ons_district	Categorical	Nominal	the office reference for National Statistics unique code
17	local_authority_highway	Categorical	Nominal	Code of local authority where the highway is
18	first_road_class	Categorical	Nominal	UK roads (excluding motorways) fall into the following 4 categories: A road, B road, C road, unclassified, Motorways, and A road (M) (first road)
19	first_road_number	Categorical	Nominal	the road number (1-9999)
20	road_type	Categorical	Nominal	the lane type of the road
21	speed_limit	Categorical	Ordinal	the maximum speed that is allowed to drive on the road
22	junction_detail	Categorical	Nominal	The description at the junction
23	junction_control	Categorical	Nominal	The things that control the traffic at the junction
24	second_road_class	Categorical	Nominal	UK roads (excluding motorways) fall into the following 4 categories: A road, B road, C road, unclassified, Motorways, and A road (M) (second road)
25	second_road_number	Categorical	Nominal	the road number (second road , 1-9999)
26	pedestrian_crossing_human_control	Categorical	Nominal	the person who control human crossing the road
27	pedestrian_crossing_physical_facilities	Categorical	Nominal	crossing facilities which helps people cross the road
28	light_conditions	Categorical	Nominal	The brightness of that situation
29	weather_conditions	Categorical	Nominal	Unique number is assigned to weather type

30	road_surface_conditions	Categorical	Nominal	Unique number is assigned to condition of the road
31	special_conditions_at_site	Categorical	Nominal	Unique number is assigned to condition of the location where accident happened
32	carriageway_hazards	Categorical	Nominal	Hazards Type
33	urban_or_rural_area	Categorical	Nominal	Accident zone area type (Rural or Urban)
34	did_police_officer_attend_scene_of_accident	Categorical	Nominal	Yes or No type
35	trunk_road_flag	Categorical	Nominal	The accident zone area type (Rural or Urban)
36	lsoa_of_accident_location	Categorical	Nominal	LSOA (Lower Super Output Area) code of the accident location

The casualty dataset:

Table 4: The characterization of casualty file

No	Columns	Type	Subtype	Definition
1	accident_index	categorical		the unique number which is combination of year and reference
				number
2	accident_year	Numerical		the year of accident
3	accident_reference	Numerical		unique identification of an accident in that particular year
4	vehicle_reference	Categorical	Nominal	unique value for each vehicle in a singular accident. Can be used to
				join a Casualty to a vehicle
5	casualty_reference	Categorical	Nominal	unique value for each casualty in a singular accident
6	casualty_class	Categorical	Nominal	the position of the victim while travelling during accident.
7	age_of_casualty	Categorical	Nominal	the age of the victim when accident happened.
8	sex_of_casualty	Categorical	Nominal	the gender of the victim
9	age_band_of_casualty	Categorical	Ordinal	the age of the victim into one of 10 groups with equal frequency of 5,
				ranging from 0-5 to 66-75 and 75+.
10	casualty_severity	Categorical	Ordinal	the seriousness of harm suffered by the victim.
11	pedestrian_location	Categorical	Nominal	the location of pedestrian during accident.
12	pedestrian_movement	Categorical	Nominal	the involvement of pedestrian in accident.
13	car_passenger	Categorical	Nominal	the spot of the victim in car during accident.
14	bus_or_coach_passenger	Categorical	Nominal	state of the victim in bus during accident.
15	pedestrian_road_maintenance_worker	Categorical	Nominal	Possibility of the victim being Maintenance Worker.
16	casualty_type	Categorical	Nominal	the details of the transport in which victim was
17	casualty_home_area_type	Categorical	Nominal	Type of the area where the victim lives in.
18	casualty_imd_decile	Categorical	Nominal	the relative deprivation level of the area the casualty lives in; the
				relative deprivation level of the area the driver involved in the crash
				lives in; or in casualty reports, it is also possible to see the relative
				deprivation level of the area in which the related driver lives.

Detail analysis:

a) Demographics Pattern of casualties

As a Figure 3, it can be clearly seen that the highest number of casualties occurs at Birmingham (2,623 accidents) which almost double of the second rank's city. This might because Birmingham is one of the biggest cities and locate in the middle of England where people tend to use it as a destination for resting during the long journey. These reasons make this city overcrowd by traffic and lead to more accidents. Moreover, both Westminster and Leeds are also important location that the casualties happen the most, accounting for 1,521 and 1,451 accidents respectively. It's quite sensible since both of those are big city in different region. For the other cites, casualty numbers are high and slightly different from Leeds.

Figure 3: The casualties location divided by district in England

Another common insight of casualties, Figure 4, is that the graph shape of male and female is quite similar when focusing on age band. However, the number of men casualties is much higher than that of women accidents in the same age band and one possible cause can be that women behavior is much calmer than that of men or it is possible that The age between 26 and 35 is the most important because it contains the highest number of casualties in both male (20,548 cases) and female (12,305) in this age band, one possible reason can be, the majority of people are likely to buy a new car by themselves and less careful due to unfamiliarity with driving. Thus, there are more cars with drivers in age group 26-35.

Figure 4: The number of casualties divided by different gender and age

b) Patterns for accidents involving killed or seriously injured (KSI) casualties as per different local authority levels:

Figure 5 shows KSI casualties in different districts in England. Graph shows top 30 counties with KSI casualties. As per the analysis done and shown in graph in Figure 5, local authority of Birmingham reported highest number of KSI casualties, thus, we can infer that Birmingham roads are most dangerous to drive to on, as in case of most of its accidents someone is either killed or seriously injured. As per graph every district who has KSI casualties above 268 are a cause of concern, and necessary measures should be taken to by local highway authorities of these districts to reduce casualties.

Figure 5: The number of KSI casualties occurring in different district

C) Patterns for Pedestrian Movement and Pedestrian location who were of KSI casualties

Looking at Figure 6, it's obvious that the almost three of four of all accidents occur at the place where vehicle are usually on high speed. For this data, that location of pedestrian is in carriageway or on verge. The sum of casualties occurring in carriageway is more than half of the total, especially when pedestrian cross the road showing 46.23 per cents. In marked contrast, the percentage of accidents is rarely seen at zig-zag way. This might because it's the caution zone which everyone always concerns, and it can be noticed in the long distance, the total number of this type of records are less than 1 per cent.

Figure 6: The proportion of KSI casualties divided by pedestrian location

Turning to Figure 7, not only the location of pedestrian is important for analysis the pattern, but the pedestrian movement is also one of the main factors. Almost all the number of accidents occur when the pedestrian crosses the road at nearside or offside of driver. Moreover, the highest number of pedestrians movement is crossing from driver's nearside being 47.2 per cents because it's a blind view of the driver when driving the vehicles. However, it makes sense that pedestrian who just stands in the stationary rarely suffer the accidents.

Figure 7: The proportion of KSI casualties divided by pedestrian movement

Conclusion:

As seen in demographics pattern we found that the greatest number of casualties were from age group of 25-35 and Birmingham has most number of casualties out of any districts or city. After looking into casualty severity, we see that the accidents where the victim was killed or seriously injured (KSI) were also from Birmingham. Thus, not only there are most number of casualties in Birmingham city many of those casualties were KSI casualties too. Hence local authorities in Birmingham should take necessary actions to bring down the casualty count.

Then we investigated casualty caused to pedestrians based on 2 parameters – their location and when the accident happened. Almost 55% of pedestrian where on carriageway when accident happened and in almost 54% of time pedestrians where on nearside of driver at the time of accident.