- VOLE (Vector Oblivious Linear Evaluation)
 - Part 1 VOLE's General Idea
 - Part 2 VOLE's construction based on LPN assumption
 - 2.1 Pre-Knoeledge
 - 2.2 VOLE's construction
 - Part 3 VOLE's application in MPC, Multipication
 - Part 4 Use VOLE generator to generate VOLE
 - Pre-calculate:
 - Offline:
 - Online:
 - Correctness:
 - Reference:

VOLE (Vector Oblivious Linear Evaluation)

Part 1 VOLE's General Idea

VOLE sends Δ and b to the sender, a and c to the receiver with linearity of c,b,a: $c = \Delta \cdot a + b$

Nowadays, the mainstream VOLE is based on LPN assumption.

At abstract level:

Part 2 VOLE's construction based on LPN assumption

2.1 Pre-Knoeledge

- 1. LPN assumption: go to file: LPN.md
- 2. FSS (Functional Secret Sharing): go to file: FSS.md
- 3. VOLE generator
 - VOLE defines 2 algorithm, i.e. VOLE = (Setup, Expand)
 - $Setup(1^{\lambda}, F, n, x)$ returns a pair of seeds ($seed_0, seed_1$), where $seed_1$ includes x
 - $Expand(\sigma, seed_{\sigma})$, if $\sigma = 0$, it returns (u, v); otherwise, it returns w.
 - Correctness:
 - $(u, v) \leftarrow Expand(0, seed_0);$
 - $w \leftarrow Expand(1, seed_1)$, where $w = u \cdot x + v$.
 - Saftey
 - for different input x', we have computationally indistinguishable $(seed_0, seed_1)$:
 - The vector (u, v) returned by $Expand(0, seed_0)$ and random vector (u', v') are computationally indistinguishable.

2.2 VOLE's construction

- 1. First attempt
 - for setup, we have: (a and b are random vectors, hence c is also random)
 - $seed_0 \leftarrow (a, b) \in_R F^k \times F^k$;
 - $seed_1 \leftarrow (c = a \cdot x + b, x) \in F^k \times F^k$
 - for expand, we have: $(C_{k,n} \in F^{k \times n}(k < n))$, is a broadcast parameter matrix)
 - $Expand(0, seed_0) = (a \cdot C_{k,n}, b \cdot C_{k,n});$
 - $Expand(1, seed_1) = c \cdot C_{k,n}$
- 2. Second attempt
 - In the above attempt, Expand maintains a linear relationship, but the resulting strings are not (pseudo-) random. Try to solve this problem with the help of the LPN hypothesis, defining the new Expand algorithm as follows:
 - randomly generate a matrix $C_{k,n} \in F^{k \times n}(k < n)$ and broadcast them, then use FSS to generate a set of random vectors μ , V_b , V_c ($V_b + V_c = 0$)

 $X \cdot \mu$

- $Expand(0, seed_0) = (a \cdot C_{k,n} + \mu, b \cdot C_{k,n} v_b);$
- $Expand(1, seed_1) = c \cdot C_{k,n} + v_c$
- It's easy to verify that the output of Expand is (pseudo-) random. the Linearity is guaranteed by $v_b + v_c = x \cdot \mu$.
- 3. Formal construction based on formal 2 attempts
 - Suppose under LPN assumption, we have public parameters $F, k, n, t = rn, C \in F^{k \times n}$, then the generator of VOLE canbe defined as:
 - $Setup(1^{\lambda}, x)$:
 - 1. randomly generate $(a, b) \in F^k \times F^k$, $\mu \in F^n$, which satisfy $HW(\mu) = t$;
 - 2. calculate $c = a \cdot b$:
 - 3. $(K_0, K_1) \leftarrow FSS.Gen(1^{\lambda}, f)$, which satisfy $FSS.Eval(0, K_0) + FSS.Eval(1, K_1) = x \cdot \mu$;
 - 4. $seed_0$ ← (K_0 , μ , a, b), $seed_1$ ← (K_1 , x, c);
 - 5. output ($seed_0$, $seed_1$).
 - $Expand(\sigma, seed_{\sigma})$:
 - 1. if $\sigma = 0$, $seed_0 = (K_0, \mu, a, b)$, calculate $V_0 \leftarrow FSS.Eval(0, K_0)$, output $(u, v) \leftarrow (a \cdot C + \mu, b \cdot C v_0)$;
 - 2. if $\sigma = 1$, $seed_1 = (K_1, x, C)$, calculate $v_1 \leftarrow FSS.Eval(1, K_1)$, output $w \leftarrow c \cdot C + v_1$;

Part 3 VOLE's application in MPC, Multipication

Recall that in the multipication gate, how to calculate cross term is a difficult problem.

In sirnn.md, crossterm is addressed by COT. However, it can also be tackled by VOLE. Take $X_0 V_1$ as an example:

- P_0 has input x_0 , P_1 has input y_1 ;
- Let P_0 calculate $v = b \cdot C v_0$ with Expand() locally;
- Let P_1 calculate $w = c \cdot C v_1$ with Expand() locally;
- therefore, $x_0y_1 = w v = v_0 + v_1 + c \cdot C b \cdot C$.

Part 4 Use VOLE generator to generate VOLE

The VOLE generator is essentially a pseudo-random number generator that generates two strings of pseudorandom numbers that happen to be linearly correlated.

Pre-calculate:

- 1. From Tursted Third Party (TTP) draw random number $r_x \leftarrow^R F$;
- 2. use VOLE generator to calculate the seeds: $(seed_0, seed_1) \leftarrow^R G.setup(1^{\lambda}, r_x)$;
- 3. output $seed_0$ to P0, $(seed_1, r_x)$ to P1.

Offline:

- 1. P0 calculate $(r_u, r_v) \leftarrow G.Expand(0, seed_0)$;
- 2. P1 calculate $r_w \leftarrow G.Expand(1, seed_1)$;

Online:

Now, P0 has private input (u,v), P1 has w

- 1. P1 sends $m_X \leftarrow X r_X$ to P0
- 2. P0 sends $m_u \leftarrow u r_u$, $m_v \leftarrow m_x \cdot r_u + v r_v$ back to P1
- 3. P1 calculate $W \leftarrow m_u \cdot x + m_v + r_w$;

Correctness:

Discuss the correctness of VOLE protocol. The random vector computed in the offline calculation stage meets $r_x r_u + r_v = r_w$, so the vector w computed in the online calculation stage P1 meets:

$$W = m_U x + m_V x + r_W = (u - r_U x) + (m_X r_U + v - r_V) + (r_X r_U + r_V) = ux + v$$

Reference:

https://zhuanlan.zhihu.com/p/606020139?utm_id=0