Descriptive Statistics

Churn_Modelling Dataset

: ชุดข้อมูล ดูอัตราร้อยละต่อปีที่ลูกค้าหยุดสมัครรับบริการหรือพนักงานออกจากงาน

CODE part

from google.colab import files uploaded = files.upload()

import pandas as pd
df = pd.read_csv('Churn_Modelling.csv')

Upload file + ใช้ pandas read .csv returns a " pandas dataframe "

df.dtypes

บอก data type แต่ละ column ใน dataframe

Descriptive Statistics for Numeric Data

df.describe()											
	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

// ไม่มี mode

Mode (.mode())

```
df.mode()
df.mode(numeric_only=True)
df["Gender"].mode()
```

//ฐานนิยาม

Variance

```
df.var()
df.var()['Age']
```

Coefficient of Variation

```
from scipy.stats import variation
variation(df.var['Age'])
```

Descriptive Statistics for Categorical Data

```
df.describe(exclude=['float', 'int64'])
df.describe(include = 'object')
# หลัง convert data type ไปใช้ 'category'
```

Convert Data Type (.astype())

```
df.RowNumber=df.RowNumber.astype('category')

df.CustomerId=df.CustomerId.astype('category')

df.HasCrCard=df.HasCrCard.astype('category')

df.IsActiveMember=df.IsActiveMember.astype('category')

df.Exited=df.Exited.astype('category')

df.NumOfProducts=df.NumOfProducts.astype('category')

df.Geography = df.Geography.astype('category')

df.Surname = df.Surname.astype('category')

df.Gender = df.Gender.astype('category')
```

```
df.Geography.value_counts()

critical df.Geography.value_counts()

cri
```

" Data Visualization "

matplotlib : สร้างกราฟใน Python

seaborn : ใช้ปรับ style ของกราฟเพื่อความสวยงาม

Spain Germany Prantice 0 0001

Bar charts

```
df.Geography.value_counts().plot.bar(grid=False)
```

// pandas ทำได้

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('darkgrid') #{darkgrid, whitegrid, dark, white, ticks}
colors = ['#00A5E0', '#DD403A']
```

```
fig = plt.figure(figsize = (5, 5))
sns.countplot(x = 'Exited', data = df, palette = colors)
```



```
for index, value in enumerate(df['Exited'].value_counts()):
    # label = '{}%'.format(round((value/df['Exited'].shape[0])*100, 2))
    #เป็น %
    label = '{:,}'.format(value)
    #เป็นจำนวณ
    plt.annotate(label, xy = (index -0.25, value -1000), color =
'w',fontweight='bold',size=17) #จัดดำแหน่งตัว % ในกราฟ
```

```
plt.title('Number of Retained and Churned Customers')
plt.xticks([0, 1], ['Remained', 'Churned'])
#ในไฟล์ที่เป็น 0,1 ใน column ['Exited']
plt.xlabel('Status')
plt.ylabel('Count');
```



```
fig, axarr = plt.subplots(2, 2, figsize=(20, 12))
sns.countplot(x='Geography', hue = 'Exited',palette="Set1",data = df, ax=axarr[0][0])
sns.countplot(x='Gender', hue = 'Exited',data = df, ax=axarr[0][1])
sns.countplot(x='HasCrCard', hue = 'Exited',data = df, ax=axarr[1][0])
sns.countplot(x='IsActiveMember', hue = 'Exited',data = df, ax=axarr[1][1])
```

Palette = {(deep, muted, bright, pastel, dark, colorblind)}

Box Plot

Box Plot

 $\textbf{Example} \hbox{:}\ 30,\,36,\,47,\,50,\,52,\,52,\,56,\,60,\,63,\,70,\,70,\,110$

sns.boxplot(y='Age',data = df)


```
fig = plt.figure(figsize = (8, 5))
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df)
```

 $Q_1 = 48.5$ $Q_2 = 54$ $Q_3 = 66.5$ IQR = 18

```
sns.boxplot(y='Age',x= 'Gender', hue='Exited',data =df)
```



```
fig, axarr = plt.subplots( 2, 3, figsize=(15, 10))
sns.boxplot(y='CreditScore',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][0])
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][1])
sns.boxplot(y='Tenure',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][2])
sns.boxplot(y='Balance',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][0])
sns.boxplot(y='EstimatedSalary',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][1])
```


Histogram

```
fig = plt.figure(figsize = (10,8))
sns.histplot(df, x="Age")
```



```
fig = plt.figure(figsize = (10, 8))
sns.histplot(df, x="Age", hue = 'Exited',multiple="dodge")
```



```
fig, axarr = plt.subplots( 2, 2, figsize=(15, 10))
sns.histplot(df, x="Age", hue = 'Exited',multiple="stack", ax=axarr[0][0])
sns.histplot(df, x="CreditScore", hue = 'Exited',multiple="stack", ax=axarr[0][1])
sns.histplot(df, x="Balance", hue = 'Exited',multiple="stack", ax=axarr[1][0])
sns.histplot(df, x="EstimatedSalary", hue = 'Exited',multiple="stack", ax=axarr[1][1])
```


Hypothesis Testing

Z-test

```
//skip ไปอ่านจากตัวอย่างก็ได้
: Test for p1-p2
320 of 400 people asked in North //p1
300 of 425 people asked in South //p2
• Ho: p1 -p2 = 0
• Ha: p1 - p2 ≠ 0
• two-tailed test with α = 0.05
```

```
from statsmodels.stats.proportion import proportions_ztest
import numpy as np
```

```
significance = 0.05 #alpha value
successes = np.array([320, 300])
samples = np.array([400, 425])
```

Compute z-statistics and p-value

```
stat,p_value =
proportions_ztest(count=successes,nobs=samples,alternative='two-sided')
# alternative : str in ['two-side','smaller','lager']
# lager : p1 > p2
# smaller : p1 < p2</pre>
```

stat = Z

'two-sided' เพราะ เป็น two tail

```
print('z_stat: %0.5f, p_value: %0.5f' % (stat, p_value))
if p_value < significance:
    print ("Reject the null hypothesis")
else:
    print ("Accept the null hypothesis")

z_stat: 3.12644, p_value: 0.00177
Reject the null hypothesis
```

ตัวอย่าง Z-test

Z-Test for the Difference in Two Proportions: **Heart Disease dataset** Use z-test for p1-p2

```
Ho: p1 -p2 = 0 // H0 = gender ไม่มีผล p1=p2
Ha: p1 - p2 ≠ 0
```

two-tailed test with $\alpha = 0.01$

- p1 is the proportion of females having heart disease
- p2 is the proportion of males having heart disease

// upload file + import numpy and pandas ก่อน//

```
df = pd.read_csv('HeartDisease.csv')
df['Gender'] = df.sex.replace({1: 'Male', 0: 'Female'})

p = df.groupby('Gender')['target'].agg([lambda z: np.sum(z==1),'size'])
# np.sum(z==1) : นับจำนวนแถวที่เป็น 1 # ['target'] == 1 : have heart disease
# groupby เพศ : female/male
p.columns = ['HeartDisease', 'Total']
# total คือ จำนวนข้อมูลทั้งหมด ทั้ง0,1
```

compute Z

```
from statsmodels.stats.proportion import proportions_ztest
significance = 0.01
successes = np.array([ p.HeartDisease.Female, p.HeartDisease.Male ])
samples = np.array([ p.Total.Female, p.Total.Male ])
stat, p_value = proportions_ztest(count=successes, nobs=samples,
alternative='two-sided')
```

```
print('z_stat: %0.5f, p_value: %0.6f' % (stat, p_value))
if p_value < significance:
    print ("Reject the null hypothesis")
else:
    print ("Accept the null hypothesis")

z_stat: 4.89023, p_value: 0.000001
Reject the null hypothesis</pre>
```

t-test on different mean(x-y)

Test on different means μx-μy

```
import numpy as np
import scipy.stats as stats
```

```
#equal_var = True
significance = 0.05
A = np.array([43, 53, 65, 49, 55, 60, 47, 50, 60, 55])
B = np.array([62, 43, 54, 67, 59, 45, 46, 63, 65, 45])

#equal_var = False
significance = 0.05
A = np.array([43, 53, 65, 49, 55, 60, 147, 50, 60, 55])
B = np.array([62, 43, 54, 67, 59, 45, 46, 63, 65, 45])
```

compute T

```
stat, p_value = stats.ttest_ind(A,B, equal_var = True)
```

equal_var bool, optional

If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]. If False, perform Welch's t-test, which does not assume equal population variance [2].

กรณีที่

```
• \sigma_{x^2} \neq \sigma_{y^2} (unknown)
```

เปลี่ยน equal_var = False

```
print('t_stat: %0.5f, p_value: %0.4f' % (stat, p_value))
if p_value < significance:
  print ("Reject the null hypothesis")
else:
  print ("Accept the null hypothesis")

t_stat: -0.32795, p_value: 0.7467
Accept the null hypothesis</pre>
```

Paired t-test

Paired t-Test (two samples are dependent)

```
significance = 0.01
group1 = np.array([60, 45, 80, 87, 79, 75, 60, 30, 45])
group2 = np.array([75, 65, 90, 80, 89, 95, 85, 69, 40])
```

```
stat, p_value = stats.ttest_rel(group1,group2)
```

```
print('t_stat: %0.5f, p_value: %0.4f' % (stat, p_value))
if p_value < significance:
   print ("Reject the null hypothesis")
else:
   print ("Accept the null hypothesis")

t_stat: -2.94514, p_value: 0.0186
Accept the null hypothesis</pre>
```

ตัวอย่าง Paired t-Test: Blood Pressure Difference

```
import numpy as np
import pandas as pd
import scipy.stats as stats
```

```
df = pd.read csv('BloodPressure.csv')
df[['bp_before','bp_after']].describe()
                             The blood pressure before the treatment was higher
        bp_before bp_after
                             (156.45 ± 11.39) compared to the blood pressure
  count 120.000000 120.000000
                             after treatment (151.36 ± 14.18)
  mean 156.450000 151.358333
        11.389845 14.177622
   std
       138.000000 125.000000
   min
   25%
      147.000000 140.750000
   50%
      154.500000 149.500000
      164.000000 161.000000
   75%
   max 185.000000 185.000000
```

```
significance = 0.01
stat,p_value = stats.ttest_rel(df['bp_before'], df['bp_after'])
```

```
print('t_stat: %0.5f, p_value: %0.4f' % (stat, p_value))
if p_value < significance:
   print ("Reject the null hypothesis")
else:
   print ("Accept the null hypothesis")

t_stat: 3.33719, p_value: 0.0011
Reject the null hypothesis</pre>
```

There is a statistically significant decrease(anav) in blood pressure

Chi-square test

```
chi2, p, dof, expected = chi2_contingency(df,correction=False)
print(f"chi2 statistic: {chi2:.5g}")
print(f"p-value: {p:.5g}")
print(f"degrees of freedom: {dof}")
print("expected frequencies:")
print(expected)

chi2 statistic: 0.17361
p-value: 0.67692
degrees of freedom: 1
expected frequencies:
[[24. 16.]
[36. 24.]]
```

ตัวอย่าง Chi-square test

If there is a relationship between **sex** and **heart disease** at =1%

//Dataset เดียวกับ ตัวอย่าง Z test

```
df['target'].replace({1:'Yes', 0:'No'},inplace=True)
Table1 = pd.crosstab(df.Gender, df.target, margins=True) #จะมี column All
Table1 = pd.crosstab(df.Gender, df.target)
# crosstab : count ให้เลย >> เราเลือกแถว คอมลัม
```

```
from scipy.stats import chi2_contingency
chi2, p, dof, expected = chi2_contingency(Table1,correction=False)
print(f"chi2 statistic: {chi2:.5g}")
print(f"p-value: {p:.5g}")
print(f"degrees of freedom: {dof}")
print("expected frequencies:")
print(expected)
significance = 0.01
if p < significance:</pre>
 print ("sex and have heart disease are dependent")
else:
 print ("sex and have heart disease are independent")
chi2 statistic: 23.914
p-value: 1.0072e-06
degrees of freedom: 1
expected frequencies:
[[ 43.72277228 52.27722772]
[ 94.27722772 112.72277228]]
sex and have heart disease are dependent
```

Regression

Simple linear regression

```
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
```

```
x = np.array([50, 51, 52, 53, 54]).reshape(-1,1)
y = np.array([20, 40, 50, 70, 80]).reshape(-1,1)
```

```
model=LinearRegression()
model.fit(x,y)
```

```
print('intercept:', model.intercept_)
print('slope:', model.coef_)

intercept: [-728.]
slope: [[15.]]
# Y = -728. + 15x
```

```
#Predict new input x = 51.5
y_predict=model.predict([[51.5]])
y_predict
array([[44.5]])
```

Case study on linear regression

```
df= pd.read_csv( 'advertising.csv' )
x_TV=df.TV.values.reshape(-1,1)
y=df.Sales.values.reshape(-1,1)
```

Create simple linear regression model

```
model=LinearRegression()
model.fit(x_TV,y)
```

View the model

```
model.intercept_, model.coef_  (array([7.03259355]), array([[0.04753664]])) \\ \widehat{Y} = 7.0326 + (0.0475 * TV)
```

predict

Model Evaluation

 R^2 : Coefficient of determination

```
model.score(x_TV,y)
0.611875050850071
```

Mean Absolute Error (MAE)

Mean Square Error (MSE)

```
from sklearn.metrics import mean_squared_error, mean_absolute_error
y_predict1=model.predict(x_TV)
```

```
print('MAE =', mean_absolute_error(y,y_predict1))
print('MSE =', mean_squared_error(y,y_predict1))

MAE = 2.549806038927486
MSE = 10.512652915656757
```

Use multiple linear regression

```
import seaborn as sns
sns.pairplot(df, x_vars=['TV','Radio','Newspaper'], y_vars='Sales',
height=4)
```

step1

```
x_Radio=df.Radio.values.reshape(-1,1)
x_News=df.Newspaper.values.reshape(-1,1)
```

```
model.fit(x_Radio,y)
#print(model.score(x_Radio,y))
model.fit(x_News,y)
#print(model.score(x_News,y))
```

step2

```
x_TVRadio=df[['TV','Radio']]
x_TVNews=df[['TV','Newspaper']]
```

```
model.fit(x_TVRadio,y)
#print(model.score(x_TVRadio,y))
model.fit(x_TVNews,y)
#print(model.score(x_TVNews,y))
```

step3

```
X3=df[['TV','Radio','Newspaper']]
model.fit(X3,y)
#print(model.score(X3,y))
```

```
print(model.coef_) print(model.intercept_)  [[ \ 0.04576465 \ \ 0.18853002 \ -0.00103749]] \\ [2.93888937] \\ \widehat{Y} = 2.9389 \ + \ (0.04585 \ *\ TV) \ + \ (0.1885 \ *\ Radio) \ + \ (-0.0010 \ *\ Newspaper)
```

Prediction

Polynomial regression

```
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
```

```
x = np.array([0, 1, 2, -1, -2]).reshape(-1,1)
y = np.array([1, 6, 17, 2, 9]).reshape(-1,1)
poly_features = PolynomialFeatures(degree=2)
x_poly=poly_features.fit_transform(x)
model=LinearRegression()
model.fit(x_poly,y)

print('intercept:', model.intercept_)
print('slope:', model.coef_)

intercept: [1.]
slope: [[0. 2. 3.]]

\widehat{Y} = 1 + 2x^1 + 3x^2
```

Case study on polynomial regression

salary.csv

	Α	В	С
1	Position	Level	Salary
2	Business Analyst	1	45,000.00
3	Junior Consultant	2	50,000.00
4	Senior Consultant	3	60,000.00
5	Manager	4	80,000.00
6	Country Manager	5	110,000.00
7	Region Manager	6	150,000.00
8	Partner	7	200,000.00
9	Senior Partner	8	300,000.00
10	C-level	9	500,000.00
11	CEO	10	1,000,000.00

```
df= pd.read_csv('salary.csv')
```

```
x = df.iloc[:,1:2].values #level column
y = df.iloc[:,2].values #Salary column
```

Data visualization

```
plt.scatter(x,y, color='red')
plt.ticklabel_format(style='plain')
plt.title('Salary vs Level')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
```


predict

```
degree=['Degree1', 'Degree2', 'Degree3',
'Degree4']
Predict=pd.DataFrame(index=degree).T
Rscore = []
for k in range(1, 5):
 poly_features=PolynomialFeatures(degree=k)
 x_poly=poly_features.fit_transform(x)
 model=LinearRegression()
 model.fit(x_poly,y)
 p1=model.predict(x_poly)
 if(k==1):
   Predict.Degree1=p1
 elif(k==2):
    Predict.Degree2=p1
 elif(k==3):
    Predict.Degree3=p1
  else:
    Predict.Degree4=p1
  Rscore.append(model.score(x_poly,y))
```


Model

Prediction

```
x_poly = PolynomialFeatures(degree=4)
model.predict(x_poly.fit_transform([[6.5]]))
array([158862.45265155])
```

Visualization of model prediction

Naïve Bayes Classifier

Naïve Bayes Classifier / Case study on Loan Prediction

Dataset: simple loan.csv

age	employed	own_house	credit	target
young	FALSE	n	fair	no
young	FALSE	n	good	no
young	TRUE	n	good	yes
young	TRUE	У	fair	yes
young	FALSE	n	fair	no
middle	FALSE	n	fair	no
middle	FALSE	n	good	no
middle	TRUE	У	good	yes
middle	FALSE	у	excellent	yes
middle	FALSE	У	excellent	yes
old	FALSE	У	excellent	yes
old	FALSE	У	good	yes
old	TRUE	n	good	yes
old	TRUE	n	excellent	yes
old	FALSE	n	fair	no
old	FALSE	n	excellent	yes
young	TRUE	У	fair	yes

Naïve Bayes Classifier (Manual Computing)

age	employed	own_house	credit	target	P(target = "no") = 6/17 = 0.3529	P(target = "yes") = 11/17=
young	FALSE	n	fair	no		
young	FALSE	n	good	no	P(age = "middle" target = "no") = 2/6	P(age = "middle" target
young	TRUE	n	good	yes	P(age = "old" target = "no") = 1/6	P(age = "old" target = "y
young	TRUE	У	fair	yes	P(age = "young" target = "no") = 3/6	P(age = "young" target =
young	FALSE	n	fair	no	r (ago young tanget no / are	r (ago)oung tanget
middle	FALSE	n	fair	no	P(employed="false" target="no") = 6/6	P(employed="false" tar
middle	FALSE	n	good	no	P(employed="true" target="no") = 0/6	P(employed="true" targe
middle	TRUE	у	good	yes	,	
middle	FALSE	у	excellent	yes	P(own_house = "n" target="no") = 6/6	P(own_house = "n" targe
middle	FALSE	У	excellent	yes	P(own_house = "y" target="no") = 0/6	P(own_house = "y" targe
old	FALSE	У	excellent	yes		
old	FALSE	У	good	yes	P(credit= "excellent" target="no") = 0/6	P(credit= "excellent" targ
old	TRUE	n	good	yes	P(credit= "fair" target="no") = 4/6	P(credit= "fair" target="ye
old	TRUE	n	excellent	yes	P(credit="good" target="no") = 2/6	P(credit= "good" target="
old	FALSE	n	fair	no	r (credit- good taiget- no) = 20	r (credit- good target-
old	FALSE	n	excellent	yes		
voung	TRUE		fair	wes		

Prediction a New Customer

- a new customer X
- X = (age ="old", employed = "false", own_house = "n", credit= "good")

P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17= 0.6471

P(employed="false" | target="no") = 6/6 P(employed="false" | target="yes") = 5/11 P(own_house = "n" | target="no") = 6/6 P(own_house = "n" | target= "yes") = 4/11

P(credit= "good" | target="no") = 2/6 P(credit= "good" | target="yes") = 4/11

 $P(v_j) \prod_{i=1}^{n} P(a_i | v_j)$ When v_j = target="no"

= (6/17) x (1/6) x (6/6) x (6/6) x (2/6) = 0.019608

 $P(v_j) \prod_{i=1}^{n} P(a_i|v_j)$ When v_j = target="yes"

= (11/17) x (5/11) x (5/11) x (4/11) x (4/11) = 0.017678

Therefore, X belongs to class ("target= no")

- a new customer X
- X = (age ="middle", employed = "true", own_house = "y", credit= "fair")

P(target = "no") = 6/17 = 0.3529 P(target = "yes") = 11/17= 0.6471

P(age = "middle" | target = "no") = 2/6 P(employed="true" | target="no") = 0/6 P(employed="true" | target="yes") = 6/11 P(own_house = "y" | target="no") = 0/6 P(own_house = "y" | target="yes") = 7/11

P(credit= "fair" | target="no") = 4/6 P(credit= "fair" | target="yes") = 2/11 $P(v_j) \prod_{i=1}^n P(a_i | v_j)$ When v_j = target="no" = (6/17) x (2/6) x 0 x 0 x (4/6) = 0

 $P(v_j) \prod_{i=1}^{n} P(a_i | v_j)$ When v_j = target="yes"

= (11/17) x (3/11) x (6/11) x (7/11) x (2/11) = 0.011137

Therefore, X belongs to class ("target= yes")

Python Programming for Loan Prediction

Upload and Read Data File

```
df= pd.read_csv('simple_loan.csv')
X=df.drop(['target'], axis=1)
y=df.target
```

Label Encoding

```
from sklearn.preprocessing import LabelEncoder
def labelEncode(data,columns):
  for i in columns:
    lb = LabelEncoder().fit_transform(data[i])
    data[i+'_'] = lb #คอลัมที่ encode จะเป็นชื่อ + '_'
```

```
f_columns=['age', 'employed','own_house', 'credit']
labelEncode(X,f_columns) #ใช้ function Encode

y_le = LabelEncoder()
y1 = y_le.fit_transform(y)
```

เลือกเฉพาะที่ encode แล้วมาใส่ใน X1

เลขที่ encode จะเรียงตามตัวอักษร

```
X1=X[['age_', 'employed_','own_house_', 'credit_']]
```

Model Construction

```
from sklearn.naive_bayes import CategoricalNB
model = CategoricalNB()
model.fit(X1,y1)
```

```
print(model.category_count_)
                                       Count(age=... && target=...) = ...
age
[array([[2., 1., 3.],
                                       target = no / middle old young
       [3., 5., 3.]]),
                                       target = yes / middle old young
employed
array([[6., 0.],
                                       target = no / false
       [5., 6.]]),
                                       target = yes / true
own house
array([[6., 0.],
                                       target = no / n
       [4., 7.]]),
                                       target = yes / y
credit
                                       target = no / excellent fair good
array([[0., 4., 2.],
       [5., 2., 4.]])]
                                       target = yes / excellent fair good
```

Model Prediction

- 1. age ="middle", employed = "true", own_house ="y", credit= "fair" ⇒ (0 1 1 1)
- 2. age ="old", employed = "false", own_house ="n", credit= "good" \Rightarrow (1 0 0 2)

```
new_input=[[0,1,1,1],[1,0,0,2]]
y_prob_pred = model.predict_proba(new_input)
```

ดูแบบปริ้นผลลัพธ์

```
y_new_predict=model.predict(new_input)
n=1
for i in y_new_predict:
  print( 'No' ,n, '=>: ',y_le.classes_[i])
  n=n+1
No 1 =>: yes // คนที่1
No 2 =>: no // คนที่2
```

ดูแบบเทียบเอง

```
y_prob_pred
array([[0.0721808 , 0.9278192 ], คนแรก target yes > no
[0.53238717, 0.46761283]]) คนที่2 target yes < no
```

ผลการ predict คือ

```
คนที่1 ⇒ target = "yes" (1)
คนที่2 ⇒ target = "no" (0)
```

เลขจะไม่เท่าแบบคำนวณมือเพราะสูตรใน python บวกแอลฟา

Monte Carlo Simulation

Estimating the value of Pi

Monte Carlo simulations use random sampling to obtain numerical results

The Algorithm

```
Set the radius, sampling size to N (#iteration of random points)

circle_points=0

For i=1 to N

random x and y as a point p=(x,y)

If point p is inside the circle increment circle_points

End for

Calculate Pi = 4*(circle_points/N)

Return Pi
```

Checking the Position of Point p (inside or outside the circle)

```
If distance(P,center) \leq r = inside [ distance(P,center) = \sqrt{x^2 + y^2} ] note: center = (0,0)
```

Python: Estimating the value of Pi

```
import random
import math
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
```

set the initial values

```
r = 1.0 # radius
N = 1001 # number of iteration
d = {"Trials":[],"Pi":[]}
```

Monte Carlo Simulation

```
for T in range(1,N):
    circle_p=0
    for i in range(T):
        x = random.uniform(-1.0, 1.0)
        y = random.uniform(-1.0, 1.0)
        x2 = x ** 2
        y2 = y ** 2

        if math.sqrt(x2 + y2) <= r:
            circle_p+=1

d["Trials"].append(T)
        d["Pi"].append((circle_p/T)*4)</pre>
```

Visualize Pi values calculated by Monte Carlo

```
df = pd.DataFrame(data=d)
plt.figure(figsize = (10,7))
plot = sns.scatterplot(x="Trials", y="Pi", s=30, marker="o", data=df)
plot.set(title='Monte Carlo Simulation to Estimate Value of Pi', xlabel="
Number of Trials", ylabel="Value of Pi")
plt.axhline(y=3.14, color='r', linestyle='-')
plt.show()

Monte Carlo Simulation to Estimate Value of Pi

400

Amounte Carlo Simulation to Estimate Value of Pi

400

Amounte Carlo Simulation to Estimate Value of Pi

225

Amounte Carlo Timate Value of Pi

375

Monte Carlo Simulation to Estimate Value of Pi

400

Amounte Carlo Timate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo Simulation to Estimate Value of Pi

400

Monte Carlo
```

Histogram of Pi values

```
sns.set_style('darkgrid')
fig = plt.figure(figsize = (10,6))
```



```
df['Pi'].mean()
3.138038884790763
```

Mean ของ pi แต่ละรอบจะได้ไม่เท่ากัน เพราะเป็นการ random

Predicting sales commission budget

Random $C \rightarrow Random A \rightarrow Cal B, D \rightarrow Cal E$

Python: Predicting sales commission budget

```
import pandas as pd
import numpy as np
import seaborn as sns
sns.set_style('whitegrid')
```

```
avg = 1
std_dev = .1
num_reps = 500 #จน.พนง
```

```
sales_target_values = [75_000, 100_000, 200_000, 300_000, 400_000, 500_000] sales_target_prob = [.3, .3, .2, .1, .05, .05] #+กันแล้วได้1
```

Calculate Commission Rate function

```
def calc_commission_rate(x):
   if x <= .90:
      return .02
   if x <= .99:
      return .03
   else:
      return .04</pre>
```

Simulation with 1,000 iterations

```
num simulations = 1000
all_stats = []
# Loop through many simulations
for i in range(num_simulations):
 sales target = np.random.choice(sales target values, num reps,
                 p=sales target prob)
 #Random Sales Target (weighted uniform distribution)
 pct_to_target = np.random.normal(avg, std_dev, num_reps).round(2)
 #Random Percent to Plan (normal distribution)
 # สร้าง dataframe based on the inputs and number of reps
 df = pd.DataFrame(index=range(num_reps) , data={'Pct_To_Target':
   pct to target, 'Sales Target': sales target}'
 # คำนวน Actual Sale
 df['Sales'] = df['Pct_To_Target'] * df['Sales_Target']
 df['Commission Rate'] = df['Pct To Target'].apply(calc commission rate)
 df['Commission Amount'] = df['Commission Rate'] * df['Sales']
 # We want to track sales, commission amounts and sales targets over all the
simulations
 all_stats.append([df['Sales'].sum().round(0),
                    df['Commission_Amount'].sum().round(∅),
                    df['Sales_Target'].sum().round(0)])
 # sumรอบละ500คน ทั้งหมด1000รอบ
```

```
results_df = pd.DataFrame.from_records(all_stats,
columns=['Sales','Commission_Amount','Sales_Target'])
results_df
```

	Sales	Commission_Amount	Sales_Target				
0	82492750.0	2814232.0	82975000				
1	84638250.0	2932080.0	84050000				
2	84118000.0	2882388.0	84025000				
3	83171750.0	2831272.0	83475000				
4	84356000.0	2833640.0	84650000				
995	80065000.0	2742478.0	80050000				
996	81377250.0	2742122.0	81800000				
997	84699500.0	2885540.0	84525000				
998	81348250.0	2783185.0	81775000				
999	82562000.0	2815660.0	82700000				
1000	1000 rows × 3 columns						

results_df.describe().style.format('{:,.2f}')							
	Sales	Commission_Amount	Sales_Target				
count	1,000.00	1,000.00	1,000.00				
mean	83,853,300.25	2,863,612.69	83,843,300.00				
std	2,765,438.83	104,464.41	2,718,974.15				
min	74,864,250.00	2,541,080.00	75,025,000.00				
25%	81,888,625.00	2,788,941.25	82,043,750.00				
50%	83,901,125.00	2,861,297.50	83,875,000.00				
75%	85,816,312.50	2,936,809.25	85,725,000.00				
max	92,766,000.00	3,182,838.00	92,875,000.00				

