Representações de Fourier

Universidade Federal do Ceará Campus Sobral Engenharia Elétrica e Engenharia de Computação

Sistemas Lineares (SBL0091)

Prof. C. Alexandre R. Fernandes

Agenda

- I. Por que usar representações de Fourier?
- II. Série de Fourier de Tempo Discreto
- III. Série de Fourier de Tempo Contínuo

- O que é Transformada e Série de Fourier?
 - Expressam sinais como uma soma (ponderada) de exponenciais complexas unitárias.
 - Decomposição de um sinal em uma base de exponenciais complexas unitárias.
 - Exponenciais complexas unitárias são compostas de senos e cossenos.

- O que é Transformada e Série de Fourier?
 - Vídeos ilustrativos:
 - https://www.instagram.com/reel/CXthXUXp_O2/
 - https://www.youtube.com/watch?v=r18Gi8lSkfM

Por que usar exponenciais complexas unitárias/senos e cossenos?

- Exponenciais complexas formam uma base ortogonal (isto simplifica muita coisa!).
- Exponenciais complexas são auto-funções de SLIT (convolução vira um produto no domínio da frequência!)
- Exponenciais complexas unitárias, senos e cossenos são usadas para modelar matematicamente ondas eletromagnéticas e mecânicas.

Por que usar exponenciais complexas unitárias/senos e cossenos?

- Em diversos tipos de sinais (áudio, imagem etc), senos e cossenos possuem significado físico muito relevante:
 - Áudio: senos e cossenos representam notas musicais (frequências fundamentais)
 - Ondas eletromagnéticas visíveis: senos e cossenos representam cores

Por que usar exponenciais complexas unitárias/senos e cossenos?

 Um grande número de sinais podem ser expressos pela Transformada/Série de Fourier

- Aplicações em vários ramos da engenharia e da ciência
- Possui propriedades interessantes (e.g. linearidade, teorema da convolução)

Exponenciais complexas são auto-funções de SLIT:

 Saída de um sistema quando a entrada é uma exponencial complexa unitária (caso discreto):

$$x[h] = e^{j\Omega n}$$

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

$$= \sum_{k=-\infty}^{\infty} h[k]e^{j\Omega(n-k)}$$

Exponenciais complexas são auto-funções de SLIT:

$$y[n] = e^{j\Omega n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\Omega k}$$
$$= H(e^{j\Omega}) e^{j\Omega n}$$

$$H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k] e^{-j\Omega k}$$

 Saída do sistema é igual à entrada vezes uma constante (que depende de ômega).

$$e^{j\Omega n} \longrightarrow h[n] \longrightarrow H(e^{j\Omega})e^{j\Omega n}$$

Exponenciais complexas são auto-funções de SLIT:

 Saída de um sistema quando a entrada é uma exponencial complexa unitária (caso contínuo):

$$x(t) = e^{j\omega t}$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)}d\tau$$
$$= e^{j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$
$$= H(j\omega)e^{j\omega t}$$

$$H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$

Exponenciais complexas são auto-funções de SLIT:

 Saída do sistema também é igual à entrada vezes uma constante (que depende de ômega).

$$\frac{\psi(t)}{(\psi[n])} \longrightarrow H \longrightarrow H(j\omega)e^{j\omega t} \qquad e^{j\Omega n} \longrightarrow H \longrightarrow H(e^{j\Omega})e^{j\Omega}$$

- Analogia com álgebra linear: autovetores e autovalores.
- Se a entradas é uma exponenciais complexas, os SLIT se comportam de forma simples.

• Tanto $H(e^{j\Omega})$ quanto $H(j\omega)$ são chamadas de resposta em frequência.

$$H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau \qquad H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\Omega k}$$

 Elas são a resposta (ganho) que o sistema dá à exponencial complexa de uma certa frequência.

$$y(t) = |H(j\omega)| e^{j(\omega t + \arg\{H(j\omega)\})}$$

 Resposta em frequência: ganho em amplitude e deslocamento da fase inicial.

$$y(t) = |H(j\omega)| e^{j(\omega t + \arg\{H(j\omega)\})}$$

Resposta em frequência é complexa (mesmo se a resposta ao impulso_{13 / 75} é real).

• Vimos que, no caso de entradas iguais a exponenciais complexas, os SLIT se comportam de forma simples.

 Este resultados pode ser estendido para uma soma de exponenciais complexas:

$$x(t) = \sum_{k=1}^{M} a_k e^{j\omega_k t} \qquad y(t) = \sum_{k=1}^{M} a_k H(j\omega_k) e^{j\omega_k t}$$

Operação de convolução torna-se uma multiplicação:

$$h(t) * x(t)$$
 $a_k H(j\omega_k)$

O resultado acima também vale pro caso discreto.

• Representações de Fourier para quatro tipos de sinais

Propriedade de Tempo	Periódica	Não Periódica
C o n t i n u	Série de Fourier (FS)	Transformada de Fourier (FT)
D i s c r e i	Série de Fourier de Tempo Discreto (DTFS)	Transformada de Fourier de Tempo Discreto (DTFT)

• 1º caso: sinal PERIÓDICO e DISCRETO NO TEMPO

 Ideia básica: representar um sinal discreto periódico (de período N) como uma soma de exponencial complexas unitárias:

$$\hat{x}[n] = \sum_{k} A[k] e^{-jk\Omega_{o}n}$$

 $\Omega_0 = 2\pi/N$ é a frequência fundamental.

 Neste caso, usamos a frequência fundamental e as frequência múltiplas desta (harmônicas).

 Lembrando: exponencial complexas unitárias discretas no tempo são periódicas na frequência:

$$e^{j(N+k)\Omega_{o}n} = e^{jN\Omega_{o}n}e^{jk\Omega_{o}n}$$
$$= e^{j2\pi n}e^{jk\Omega_{o}n}$$
$$= e^{jk\Omega_{o}n}$$

Ou seja, só precisamos usar N frequências: k=0,..,N-1 (ou k=-N/2,...,N/2-1)

$$\hat{x}[n] = \sum_{k=\langle N \rangle} A[k] e^{jk\Omega_{\sigma}n}$$

- Como achar os coeficientes A[k] da série de Fourier?
 - Minimizando o erro quadrático médio (MSE) entre o sinal x[n] e a soma de exponencial complexas unitárias:

$$MSE = \frac{1}{N} \sum_{n = \langle N \rangle} |x[n] - \hat{x}[n]|^2$$
$$= \frac{1}{N} \sum_{n = \langle N \rangle} |x[n] - \sum_{k = \langle N \rangle} A[k] e^{jk\Omega_{\alpha}n}|^2$$

- Como achar os coeficientes A[k] da série de Fourier?
 - Derivação omitida para efeitos de simplificação:

$$A[k] = X[k]$$

$$x[n] = \sum_{k=\langle N \rangle} X[k] e^{jk\Omega_{\sigma}n}$$

$$x[n] \xleftarrow{DTFS; \Omega_o} X[k]$$

$$X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_o n}$$

DTFS = discrete time Fourier series (série de Fourier discreta no tempo)

Note que DTFS X[k] é complexa, mesmo x[n] sendo real.

- Qual é o significado disso?
 - A magnitude de X[k] representa a amplitude com a qual a exponencial complexa de frequência Ω está presente em x[n].
 - A fase de X[k] representa a fase inicial com a qual a exponencial complexa de frequência $\mathbf{k}\Omega_n$ está presente em x[n].

Não há restrições para a representação da DTFS.

 Ou seja, qualquer sinal discreto e periódico pode ser expresso por uma DTFS.

Exemplos:

Exemplo 3.1 Encontre a representação por DTFS para

$$x[n] = \cos(\frac{\pi}{8}n + \phi)$$

$$x[n] \xleftarrow{DTFS; 2\pi/16} X[k] = \begin{cases} \frac{1}{2}e^{-j\phi}, & k = -1\\ \frac{1}{2}e^{j\phi}, & k = 1\\ 0, & -7 \le k \le 8 \text{ e } k \ne \pm 1 \end{cases}$$

EXERCÍCIO 3.1 Determine os coeficientes da DTFS por inspeção para o sinal

$$x[n] = 1 + \operatorname{sen}\left(\frac{1}{12}\pi n + \frac{3\pi}{8}\right)$$

Resposta:

$$x[n] \xleftarrow{DTFS; 2\pi/24} X[k] = \begin{cases} -\frac{e^{-j(3\pi/8)}}{2j}, & k = -1\\ 1, & k = 0\\ \frac{e^{j(3\pi/8)}}{2j}, & k = 1\\ 0 & \text{caso contrário para } -11 \le k \le 12 \end{cases}$$

Exemplo 3.2 Encontre os coeficientes da DTFS para a onda quadrada com período N descrita na Figura 3.3.

Exemplo 3.2 Encontre os coeficientes da DTFS para a onda quadrada com período N descrita na Figura 3.3.

EXERCÍCIO 3.2 Determine os coeficientes da DTFS para o sinal periódico descrito na Figura 3.5.

Resposta:

$$x[n] \longleftrightarrow \frac{DTFS; 2\pi/6}{3} \times X[k] = \frac{1}{6} + \frac{2}{3} \cos k \frac{\pi}{3}$$

Exemplo – calcule a DTFS:

$$x[n] = \sum_{m=-\infty}^{\infty} \delta[n-2m] + \delta[n+3m]$$

Exemplo – calcule x[n]:

$$X[k] = \sum_{m=-\infty}^{\infty} \delta[k-2m] - 2\delta[k+3m]$$

• 2º caso: sinal PERIÓDICO e CONTÍNUO NO TEMPO

 Ideia básica: representar um sinal contínuo periódico (de período T) como uma soma de exponencial complexas unitárias:

$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} A[k] e^{jk\omega_{n}t}$$

 $\omega_o = 2\pi/T$ é a frequência fundamental.

 Usamos a frequência fundamental e as frequência múltiplas desta (harmônicas).

28 / 75

 No caso contínuo, a exponencial complexa unitária NÃO é periódicas na frequência.

Ou seja, usamos todas as harmônicas possíveis.

- Como achar os coeficientes A[k] da série de Fourier?
- Demonstração no livro (pag. 179): $A[m] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jm\omega_o t} dt$
- Inversa da Série de Fourier.

Resumo:

$$X(t) = \sum_{k=-\infty}^{\infty} X[k]e^{jk\omega_{n}t}$$

$$X[k] = \frac{1}{T} \int_{\langle T \rangle} x(t)e^{-jk\omega_{n}t} dt$$

$$x(t) \stackrel{FS; \omega_{n}}{\longleftrightarrow} X[k]$$

- A FS X[k] é complexa, mesmo x(t) sendo real.
- Neste caso, a FS só existe se x(t) é integrável ao quadrado.
- Condição de existência da FS:

$$\frac{1}{T} \int_{\langle T \rangle} \left| x(t) \right|^2 dt < \infty$$

Exemplo 3.5 Determine a representação por FS para o sinal

$$x(t) = 3\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$$

$$X[k] = \begin{cases} \frac{3}{2}e^{-j\pi/4}, & k = -1\\ \frac{3}{2}e^{j\pi/4}, & k = 1\\ 0 & \text{caso contrário} \end{cases}$$

Exercício 3.3 Determine a representação por FS para

$$x(t) = 2\operatorname{sen}(2\pi t - 3) + \operatorname{sen}(6\pi t)$$

Resposta:

$$x(t) \stackrel{FS; 2\pi}{\longleftrightarrow} X[k] = \begin{cases} j/2, & k = -3\\ je^{j3}, & k = -1\\ -je^{-j3}, & k = 1\\ -j/2, & k = 3\\ 0, & \text{caso contrário} \end{cases}$$

Exemplo 3.6 Determine a representação por FS correspondente à onda quadrada da Figura 3.9.

FIGURA 3.9 Onda quadrada correspondente ao Exemplo 3.6.

Exemplo 3.6 Determine a representação por FS correspondente à onda quadrada da Figura 3.9.

$$X[k] = \frac{2\operatorname{sen}(k\omega_o T_s)}{Tk\omega_o}$$

EXEMPLO 3.8 Aqui, desejamos encontrar a representação por FS para a saída, y(t), do circuito RC descrito na Figura 3.14 em resposta à entrada de onda quadrada descrita na Figura 3.9, supondo $T_s/T = \frac{1}{4}$, T = 1 s, e RC = 0.1 s.

$$II(j\omega) = \frac{1/RC}{j\omega + 1/RC}$$

$$y(t) \leftarrow \xrightarrow{FS: \omega_o} Y[k] = H(jk\omega_o) X[k]$$

$$Y[k] = \frac{10}{j2\pi k + 10} \frac{\operatorname{sen}(k\pi/2)}{k\pi}$$

III. Série de Fourier de Tempo contínuo

Exemplo – calcule a FS:

$$x(t) = \sum_{m=-\infty}^{\infty} \delta(t - \frac{1}{2}m) + \delta(t - \frac{3}{2}m)$$

Exemplo – calcule x(t):

$$X[k] = j\delta[k-1] - j\delta[k+1] + \delta[k-3] + \delta[k+3], \quad \omega_{\alpha} = \pi$$

III. Série de Fourier de tempo contínuo

Domínio de Tempo	Periódico	
C o n t i n u	Série de Fourier $x(t) = \sum_{k=-\infty}^{\infty} X[k] e^{jk\omega_{o}t}$ $X[k] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\omega_{o}t} dt$ $x(t) \text{ tem período } T$ $\omega_{o} = \frac{2\pi}{T}$	
D i s c r e t o	Série de Fourier de Tempo Discreto $x[n] = \sum_{k=\langle N \rangle} X[k] e^{jk\Omega_o n}$ $X[k] = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\Omega_o n}$ $x[n] e X[k] \text{ têm período } N$ $\Omega_o = \frac{2\pi}{N}$	
	Discreto	

Tabela 3.3 Propriedades de Periodicidade das Representações de Fourier

Propriedade no Domínio de Tempo	Propriedade no Domínio de Freqüência
Contínua	Não periódica
Discreta	Periódica

Vamos voltar ao caso de sinais em tempo discreto x[n].

Entretanto, considere agora que x[n] não é periódico (aperiódico).

• Não conseguiremos mais expressar x[n] como uma soma de um número finito de exponencial complexas unitárias.

 Teremos que usar todas as frequência disponíveis (entre 0 e 2pi ou -pi e pi).

Transformada de Fourier em tempo discreto:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$$

• Diferença básica para a série de Fourier: somatório virou integral.

Usa-se todas as frequências disponíveis.

• É como se a TF fosse a série de Fourier com N→ inf.

• Frequência fundamental $\Omega_a \rightarrow 0$.

TF e IF inversa:

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$$

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

$$x[n] \stackrel{DTFT}{\longleftrightarrow} X(e^{j\Omega})$$

- Eq. da TF: soma é para todos os valores de n e não apenas dentro de um período.
- Demonstração na pag. 188 do livro.

- A Transformada de Fourier é, em geral, complexa:
 - Magnitude da TF: espectro de magnitude
 - Fase da TF: espectro de fase
- Qual é o significado disso?
 - O espectro de magnitude representa a amplitude com a qual a exponencial complexa de frequência Ω está presente em x[n].
 - O espectro de fase representa a fase inicial com a qual a exponencial complexa de frequência Ω está presente em x[n].

Para a TF do sinal x[n] existir, as seguinte condição deve ser satisfeita:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty.$$

- Ou seja, x[n] deve ser absolutamente somável.
- Demonstração:

Note que a Resposta em Frequência (RF) é a TF da resposta ao impulso:

$$H(e^{j\Omega}) = \sum_{k=-\infty}^{\infty} h[k] e^{-j\Omega k}$$

• RF é uma forma de representar sistemas TI no domínio da frequência.

• Exemplos – calcule a TF:

$$- x[n] = a^n u[n], para |a| < 1.$$

$$-$$
 x[n] = 2. 3ⁿ u[-n]

$$-x[n] = delta[n]$$

-
$$x[n] = delta[n-n_0]$$

Exemplos – calcule a TF:

Exemplos – calcule a TF inversa:

$$X(e^{j\Omega}) = \delta(\Omega), -\pi < \Omega \le \pi.$$

$$X(e^{j\Omega}) = \begin{cases} 1, & |\Omega| \le W \\ 0, & W < |\Omega| < \pi \end{cases}$$

$$X(e^{j\Omega}) = 2\cos(2\Omega)$$

TABELA 3.1 Relação Entre Propriedades de Tempo de um Sinal e a Representação de Fourier Apropriada

Propriedade de Tempo	Periódica	Não Periódica	
C o n t i n u	Série de Fourier (FS)	Transformada de Fourier (FT)	
D i s c r e i	Série de Fourier de Tempo Discreto (DTFS)	Transformada de Fourier de Tempo Discreto (DTFT)	

Vamos voltar ao caso de sinais em tempo contínuo x(t)

Considere que x(t) não é periódico (aperiódico).

• Assim como no caso discreto e aperiódico, x(t) não pode ser expresso como soma de um número finito de exponencial complexas unitárias.

Teremos que usar todas as frequência disponíveis.

• Transformada de Fourier e a sua inversa (tempo contínuo):

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

- Ambas as eqs usam integrais: contínuo no tempo e na frequência
- Usa-se todas as frequências disponíveis (e não apenas de -pi a pi).

$$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega)$$

- É como se a TF fosse a série de Fourier com T→ inf.
- Frequência fundamental $w_0 \rightarrow 0$.

Dominio de Tempo	Periódico	Não periódico	
4	Série de Fourier	Transformada de Fourier	N
	Derie de l'Ourier		ã
C	$x(t) = \sum_{n=0}^{\infty} X[k] e^{jk\omega_n t}$	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	o
0	k=-00		p
n	1 6	V(: 0 0 4	e
t	$X[k] = \frac{1}{T} \int_{\langle T \rangle} x(t) e^{-jk\omega_{o}t} dt$	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	r
í	- '\' /		i
n	x(t) tem período T	- Ta	ó
u			d
0	$\omega_{\sigma} = \frac{2\pi}{T}$		i
	, , , , , , , , , , , , , , , , , , ,		c
			0
D	Série de Fourier de Tempo Discreto	Transformada de Fourier de Tempo Discreto	P e
i	$x[n] = \sum X[k]e^{jk\Omega_{\alpha}n}$	Ι Γπ :0. :0:::0	
S		$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\Omega}) e^{j\Omega n} d\Omega$, ,
c	k=(N)	Σπ 3-π	,
r	$X[k] = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk\Omega_0 n}$	$X(e^{j\Omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\Omega n}$	0,
e	$N_{n=\langle N \rangle}$	$X(e^{x}) = \mathbf{Z}_{X[n]e}$	a
-	x[n] e $X[k]$ têm período N	n=-∞	i
ı		$X(e^{j\Omega})$ tem período 2π	c
o	$\Omega_o = \frac{2\pi}{N}$		0
-	Discreto	Continuo	Domínio de Freqüência

• Para a TF do sinal x(t) existir, a seguinte condição deve ser satisfeita:

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

• Ou seja, x[n] deve ser absolutamente somável.

Note que a Resposta em Frequência (RF) é a TF da resposta ao impulso:

$$H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega\tau}d\tau$$

• RF é uma forma de representar sistemas TI no domínio da frequência.

Exemplos – calcule a TF:

$$- x(t) = e^{-at} u(t)$$

$$- x(t) = e^{-at} u(-t)$$
, para a>0

- Pulso retangular no tempo:

$$x(t) = \begin{cases} 1, & -T \le t \le T \\ 0, & |t| > T \end{cases}$$

Pulso retangular na frequência:

$$X(j\omega) = \begin{cases} 1, & -W \le \omega \le W \\ 0, & |\omega| > W \end{cases}$$

Exemplos – calcule a TF:

-
$$x(t) = delta(t-t_0)$$

$$- X(j\omega) = 2\pi\delta(\omega).$$

Tabela 3.3 Propriedades de Periodicidade das Representações de Fourier

Propriedade no Domínio de Tempo	Propriedade no Domínio de Freqüência
Contínua	Não periódica
Discreta	Periódica
Periódica	Discreta
Não periódica	Contínua

1. Linearidade

$$z(t) = ax(t) + by(t) \longleftrightarrow Z(j\omega) = aX(j\omega) + bY(j\omega)$$

$$z(t) = ax(t) + by(t) \longleftrightarrow Z[k] = aX[k] + bY[k]$$

$$z[n] = ax[n] + by[n] \longleftrightarrow Z(e^{j\Omega}) = aX(e^{j\Omega}) + bY(e^{j\Omega})$$

$$z[n] = ax[n] + by[n] \longleftrightarrow DTFS; \Omega_{\omega} \to Z[k] = aX[k] + bY[k]$$

- 2. Simetria da Transformada e Série de Fourier
 - Caso de sinal PERIÓDICO e DISCRETO NO TEMPO

- Propriedade muito importante da série de Fourier (para x[n] real):

$$X[-k] = X*[k]$$

- Série de Fourier é conjugado-simétrica.

2. Simetria da Transformada e Série de Fourier

TABELA 3.4 Propriedades de Simetria das Representações de Fourier para Sinais de Tempo com Valores Reais

	Forma Complexa	Forma Retangular	Forma Polar
FT	$X^*(j\omega) = X(-j\omega)$	Re{ $X(j\omega)$ } = Re{ $X(-j\omega)$ } Im{ $X(j\omega)$ } = -Im{ $X(-j\omega)$ }	$ X(j\omega) = X(-j\omega) $ $\arg\{X(j\omega)\} = -\arg\{X(-j\omega)\}$
FS	$X^*[k] = X[-k]$	$Re\{X[k]\} = Re\{X[-k]\}$ $Im\{X[k]\} = -Im\{X[-k]\}$	X[k] = X[-k] $arg\{X[k]\} = -arg\{X[-k]\}$
DTFT	$X^*(e^{j\Omega}) = X(e^{-j\Omega})$	$\operatorname{Re}\{X(e^{j\Omega})\} = \operatorname{Re}\{X(e^{-j\Omega})\}$ $\operatorname{Im}\{X(e^{j\Omega})\} = -\operatorname{Im}\{X(e^{-j\Omega})\}$	$ X(e^{j\Omega}) = X(e^{-j\Omega}) $ $\arg\{X(e^{j\Omega})\} = -\arg\{X(e^{-j\Omega})\}$
DTFS	$X^*[k] = X[-k]$	$Re\{X[k]\} = Re\{X[-k]\}$ $Im\{X[k]\} = -Im\{X[-k]\}$	$ X[k] = X[-k] $ $\arg\{X[k]\} = -\arg\{X[-k]\}$

2. Simetria da Transformada e Série de Fourier

- 3. Simetria para sinais pares/ímpares:
- quando x[n] é um sinal par (x[n]=x[-n]), a série/Transformada de Fourier é real $(Im\{X[k]\} = 0)$:
 - $Re{X[k]} = X[k]$
 - $Im\{X[k]\} = 0$
- Neste caso, x[n] é expresso como uma soma apenas de cossenos (demonstração no livro - pag. 175)

$$x[n] = \sum_{k=0}^{N/2} B[k] \cos(k\Omega_o n)$$

$$B[k] = \begin{cases} X[k], & k = 0, N/2 \\ 2X[k], & k = 1, 2, ..., N/2 - 1 \end{cases}$$

- 3. Simetria para sinais pares/ímpares:
 - Resultado simular: quando x[n] é ímpar (x[n]=-x[-n]), a série de Fourier é puramente imaginária:
 - $Re\{X[k]\} = 0$
 - $Im\{X[k]\} = X[k]$
 - Neste caso, x[n] é expresso como uma soma apenas de senos.

- 3. Simetria para sinais pares/ímpares:
 - Caso genérico: x[n] não é par nem ímpar.

$$- x[n] = x_P[n] + x_I[n] \rightarrow X[k] = Re\{X[k]\} + j Im\{X[k]\}$$

- Série de Fourier de $x_p[n]$ → Re{X[k]}
- Série de Fourier de $x_I[n]$ → j Im{X[k]}
- Estas propriedades de simetria valem para os casos discreto e contínuo, e para o série e transformada.

4. Deslocamento no Tempo:

TABELA 3.6 Propriedades de Deslocamento no Tempo das Representações de Fourier

$$x(t-t_{\sigma}) \stackrel{FT}{\longleftrightarrow} e^{-j\omega t_{\sigma}} X(j\omega)$$

$$x(t-t_{\sigma}) \stackrel{FS; \omega_{\sigma}}{\longleftrightarrow} e^{-j\omega_{\sigma}t_{\sigma}} X[k]$$

$$x[n-n_{\sigma}] \stackrel{DTFT}{\longleftrightarrow} e^{-j\Omega_{\sigma}n_{\sigma}} X(e^{j\Omega})$$

$$x[n-n_{\sigma}] \stackrel{DTFS; \Omega_{\sigma}}{\longleftrightarrow} e^{-jk\Omega_{\sigma}n_{\sigma}} X[k]$$

- Deslocar no tempo → multiplicar por exponencial complexa unitária na frequência
- Apenas o módulo da Transformada/Série é alterada.

4. Deslocamento no Tempo:

EXEMPLO 3.22 Use a FT do pulso retangular x(t) descrito na Figura 3.28(a) para determinar a FT do pulso retangular deslocado no tempo, z(t), da Figura 3.28(b).

Solução: Primeiramente, note que z(t) = x(t - T); deste modo, a propriedade de deslocamento no tempo implica que $Z(j\omega) = e^{-j\omega T}X(j\omega)$. No exemplo 3.15, obtivemos

$$X(j\omega) = \frac{2}{\omega} \operatorname{sen}(\omega T)$$

Dessa forma, temos

$$Z(j\omega) = e^{-j\omega T} \frac{2}{\omega} \operatorname{sen}(\omega T)$$

5. Deslocamento na Frequência:

Tabela 3.7 Propriedades de Deslocamento em Frequência das Representações de Fourier

$$e^{j\gamma n} x(t) \stackrel{FT}{\longleftarrow} X(j(\omega - \gamma))$$

$$e^{jk_{\alpha}\omega_{\alpha}t} x(t) \stackrel{FS: \omega_{\alpha}}{\longleftarrow} X[k - k_{\alpha}]$$

$$e^{j\Gamma n} x[n] \stackrel{DTFT}{\longleftarrow} X(e^{j(\Omega - \Gamma)})$$

$$e^{jk_{\alpha}\Omega_{\alpha}n} x[n] \stackrel{DTFS: \Omega_{\alpha}}{\longleftarrow} X[k - k_{\alpha}]$$

 Multiplicar por exponencial complexa unitária no tempo → Deslocar na frequência

5. Deslocamento na Frequência:

Exemplo 3.23 Use a propriedade de deslocamento em frequência para determinar a FT do pulso senoidal complexo.

$$z(t) = \begin{cases} e^{j10t}, & |t| \le \pi \\ 0, & \text{caso contrário} \end{cases}$$

Solução: Podemos expressar z(t) como o produto de uma senoidal complexa, e^{f10t} por um pulso retangular.

$$x(t) = \begin{cases} 1, & |t| \le \pi \\ 0, & \text{caso contrário} \end{cases}$$

Usando os resultados do Exemplo 3.15, escrevemos

$$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega) = \frac{2}{\omega} \operatorname{sen}(\omega \pi)$$

e usando a propriedade de deslocamento em frequência

$$e^{j10t}x(t) \stackrel{FT}{\longleftrightarrow} X(j(\omega-10))$$

obtemos

$$z(t) \longleftrightarrow \frac{2}{\omega - 10} \operatorname{sen}((\omega - 10)\pi)$$

- 5. Deslocamento na Frequência:
 - Multiplicar por cosseno/seno unitária no tempo → Deslocar na frequência para os dois lados

- Pode-se fazer um sinal ocupar uma banda de frequência desejada.
- Este é o princípio básico das transmissões em telecomunicações

6. Diferenciação (apenas para tempo contínuo)

$$\frac{d}{dt}x(t) \longleftrightarrow j\omega X(j\omega)$$

$$\frac{d}{dt}x(t) \stackrel{FS: \omega_o}{\longleftrightarrow} jk\omega_o X[k]$$

- Diferenciação atua, grosso modo, como um filtro passa-alta.

• 7. Integração (apenas para tempo contínuo):

$$Y(j\omega) = \frac{1}{j\omega} X(j\omega)$$

- Expressão acima é válida apenas para X(j0) = 0.
- Expressão genérica:

$$\int_{-\infty}^{t} x(\tau) d\tau \xleftarrow{FT} \frac{1}{j\omega} X(j\omega) + \pi X(j0) \delta(\omega)$$

Integração atua, grosso modo, como um filtro passa-baixa.

8. Teorema da Convolução:

Para sinais periódicos:

$$y(t) = h(t) * x(t) \longleftrightarrow Y(j\omega) = X(j\omega)H(j\omega)$$

$$y[n] = x[n] * h[n] \longleftrightarrow Y(e^{j\Omega}) = X(e^{j\Omega})H(e^{j\Omega})$$

8. Teorema da Convolução:

EXEMPLO 3.29 Admitamos que $x(t) = (1/\pi t) \operatorname{sen}(2\pi t) \operatorname{e} h(t) = (1/\pi t) \operatorname{sen}(2\pi t)$. Encontre y(t) = x(t) * h(t).

Solução: Este problema é extremamente difícil de resolver no domínio de tempo. Porém, é simples de resolver no domínio de frequência usando-se a propriedade da convolução. Temos

$$x(t) \stackrel{FT}{\longleftrightarrow} X(j\omega) = \begin{cases} 1, & |\omega| \le \pi \\ 0, & \text{caso contrário} \end{cases}$$

$$h(t) \stackrel{FT}{\longleftrightarrow} H(j\omega) = \begin{cases} 1, & |\omega| \le 2\pi \\ 0, & \text{caso contrário} \end{cases}$$

Desde que $y(t) = x(t) * h(t) \longleftrightarrow Y(j\omega) = X(j\omega)H(j\omega)$, temos

$$Y(j\omega) = \begin{cases} 1, & |\omega| \le \pi \\ 0, & \text{caso contrário} \end{cases}$$

e concluímos que $y(t) = (1/\pi t) \operatorname{sen}(\pi t)$.

8. Teorema da Convolução:

EXERCÍCIO 3.18 Admitamos que a resposta ao impulso de um sistema de tempo discreto seja dada por $h[n] = (1/\pi n) \operatorname{sen}((\pi/4)n)$. Encontre a saída y[n] em resposta à entrada (a) $x[n] = (1/\pi n) \operatorname{sen}((\pi/8)n)$, e (b) $x[n] = (1/\pi n) \operatorname{sen}((\pi/2)n)$.

Resposta:

(a)
$$y[n] = \frac{1}{\pi n} \operatorname{sen}\left(\frac{\pi}{8}n\right)$$

$$y[n] = \frac{1}{\pi n} \operatorname{sen}\left(\frac{\pi}{4}n\right)$$

• 9. Dualidade:

• 9. Dualidade:

