

INTRODUCTION TO EVOLUTIONARY ALGORITHMS

GIỚI THIỆU CÁC THUẬT TOÁN TIẾN HÓA

Tối thiểu hoá (minimization)

Cho hàm số $f: S \to \mathbb{R}$.

Tìm $x^* \in S$ sao cho $\forall x \in S, f(x^*) \leq f(x)$.

Tối thiểu hoá (minimization)

Cho hàm số $f: S \to \mathbb{R}$.

Tìm $x^* \in S$ sao cho $\forall x \in S, f(x^*) \leq f(x)$.

Tối đa hoá (maximization)

Cho hàm số $f: S \to \mathbb{R}$.

Tìm $x^* \in S$ sao cho $\forall x \in S, f(x^*) \ge f(x)$.

Ví dụ 1:

Cho hàm số $f(x) = (x - 0.5)^2$.

Tìm giá trị nhỏ nhất của f trên \mathbb{R} .

Cách giải?

Ví dụ 1:

Cho hàm số $f(x) = (x - 0.5)^2$.

Tìm giá trị nhỏ nhất của f trên \mathbb{R} .

Cách giải: Tính đạo hàm (derivative) của f.

Ví dụ 2:

Cho đồ thị G(V,E) biểu diễn độ dài đường đi giữa các thành phố. Tìm đường đi ngắn nhất giữa 2 thành phố.

Cách giải?

Ví dụ 2:

Cho đồ thị G(V,E) biểu diễn độ dài đường đi giữa các thành phố. Tìm đường đi ngắn nhất giữa 2 thành phố.

Cách giải: Thuật toán Dijkstra.

Ví dụ 3:

Cho ảnh y khoa thể hiện cấu trú tuyến tiền liệt của một bệnh nhân. Tìm giải pháp xạ trị ung thư tối ưu.

→ Phân tích f để thiết kế và áp dụng thuật giải thích hợp.

Làm sao để giải bài toán black-box optimization?

Thách thức khi giải bài toán tối ưu hoá trong thực tế

- Thông tin vấn đề không có sẵn, không đầy đủ.
- Vấn đề có độ phức tạp cao, khó phân tích.
- Chưa có (hoặc không tồn tại) thuật giải hiệu quả.

Tiến hoá (Evolution)

- Quá trình tiến hoá của các loài trong tự nhiên có nét tương đồng với một quá trình tối ưu hoá.
- Nhìn chung, sau mỗi thế hệ (generation), các cá thể (individuals) được sinh ra có độ thích nghi (fitness) tốt hơn với môi trường sống.
- Tại sao ta có thể lấy ý tưởng từ quá trình tiến hoá để thiết kế thuật qiải cho các bài toán tối ưu hoá?

Cho hàm số $f: S \to \mathbb{R}$.

Tìm $x^* \in S$ sao cho $\forall x \in S, f(x^*) \ge f(x)$.

Tối ưu hoá	Thuật toán tiến hoá
f là hàm mục tiêu (objective function) / hàm tối ưu (optimization function).	f^{EA} là hàm thích nghi (fitness function) / hàm lượng giá (evaluation function).
Mỗi x là một lời giải / giải pháp (solution). x^* là (một) giải pháp tối ưu.	Mỗi x^{EA} là một cá thể, hay còn gọi là kiểu gen (genotype). x được xem như là kiểu hình (phenotype).
S là tập tất cả những giải pháp hợp lệ (set of feasible solutions) của bài toán.	S^{EA} là không gian tìm kiếm hợp lệ (feasible search space) của thuật toán.

Nhìn chung các thuật toán tiến hoá (Evolutionary Algorithms – EAs) có 3 thành phần chính:

- 1. Quần thể (population) gồm nhiều cá thể (individuals).
- 2. Phép **biến đổi** (variation): để sinh ra cá thể mới (offspring).
- 3. Phép **chọn lọc** (selection): để lựa chọn những cá thể có độ thích nghi (fitness) tốt hơn cho thế hệ tiếp theo.

Solution₈ – Fitness₈ Solution₂ – Fitness₂ Solution₅ – Fitness₅ \cdot \cdot Solution₁ – Fitness₁

Các thuật toán tiến hoá (cổ điển)

- Kiểu gen là các chuỗi nhị phân (binary strings): 01000110, 1011100, 11100101,...
- > Thuật giải di truyền (Genetic Algorithm) cổ điển.
- Kiểu gen là các vector số thực (real-valued vectors): (0.413, 1.313, 0.92), (1.521, 2.1843, 0.12),...
- > Chiến lược tiến hoá (Evolution Strategy) cổ điển.
- Kiểu gen là các cấu trúc cây (tree structures), biểu diễn các chương trình / hàm số.
- Lập trình di truyền (Genetic Programming).

Các thuật toán tiến hoá TRƯỚNG ĐẠI HỘ ỚI MÔ hình (Model-Based EAs)

- Estimation-of-Distribution Algorithms
- Extended Compact Genetic Algorithms (ECGA)
- Bayesian Optimization Algorithm (BOA)
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
- Adapted Maximum-Likelihood Gaussian Model Iterated Density Estimation Evolutionary Algorithm (AMaLGaM)
- Gene-pool Optimal Mixing Evolution Algorithms (GOMEA) / Linkage Tree Genetic Algorithm (LTGA).
- **>** ...

Các thuật toán lấy cảm hứng từ sinh học (bio-inspired)

- Particle Swarm Optimization (PSO)
- Ant Colony Optimization (ACO)
- Differential Evolution (DE)
- Artificial Immune System (AIS)
- Artificial Bee Colony Algorithm (ABC)
- **>** ...

UIT

Lưu ý

- Hầu hết các thuật toán tiến hoá đều có 3 thành phần chính:
- 1. Một quần thể.
- 2. Một phép biến đổi.
- Một phép chọn lọc.
- Mục tiêu của các thuật toán tiến hoá là để giải bài toán cần giải quyết, KHÔNG phải để mô phỏng các hiện tượng tự nhiên.
- Các thuật ngữ sinh học được sử dụng để tiện cho việc trao đổi ý tưởng trong nghiên cứu và ứng dụng >> tránh lạm dụng.

Thuật giải di truyền (Genetic Algorithm)

- Được đề xuất bởi John Holland (1975).
- Kiểu gen là các chuỗi nhị phân (binary strings) có chiều dài cố định l.
- 1. $t \leftarrow 0$
- 2. $P^t \leftarrow \text{initializeAndEvaluateInitialIndividuals}(n)$
- 3. **while** terminationCriteriaNotSatisfied(P^t) **do**
 - 1. $S^t \leftarrow \text{selectParents}(P^t, n)$
 - 2. $O^t \leftarrow \text{createAndEvaluateOffspring}(S^t, n)$
 - 3. $P^{t+1} \leftarrow O^t$
 - 4. $t \leftarrow t + 1$

Khởi tạo quần thể (Population Initialization)

 Quần thể đầu tiên thường được khởi tạo một cách ngẫu nhiên với phân bố đồng nhất (uniformly

random).

0	1	0	0	0	1	1	0	1	0
0	0	1	0	1	1	0	1	1	1
1	0	0	0	1	1	0	0	1	1
0	1	1	1	0	0	0	0	1	0
0	0	1	1	1	0	0	0	0	1
1	0	0	1	1	1	0	1	0	0

Khởi tạo quần thể (Population Initialization)

- Quần thể đầu tiên thường được khởi tạo một cách ngẫu nhiên với phân bố đồng nhất (uniformly random).
- $ightharpoonup Với mỗi bit của từng cá thể, phát sinh ngẫu nhiên một số <math>r \in [0..1]$.
- $r < 0.5 \rightarrow$ bit nhận giá trị 0.
- $r \ge 0.5 \rightarrow$ bit nhận giá trị 1.
- Cách tốt hơn?
- Có thể sử dụng thông tin về bài toán đang xét (nếu có) để khởi tạo quần thể với phân bố phù hợp hơn.

- Phép chọn lọc: Lựa chọn (ngẫu nhiên) những cá thể (có độ thích nghi cao) làm cá thể cha mẹ (parents) để sinh ra những cá thể mới (cá thể con – offspring).
- Chọn lọc theo tỷ lệ: Xác suất một cá thể được chọn làm cá thể cha mẹ tỷ lệ thuận với độ thích nghi của cá thể đó.
- Những giải pháp tốt hơn được ưu tiên lựa chọn nhiều hơn để tạo ra những giải pháp mới.

- P là quần thể có n cá thể.
- P_i là cá thể thứ i của P.
- fitness[P_i] là độ thích nghi của P_i .
- Tổng giá trị thích nghi của $P: \sum_{i=0}^{n-1}$ fitness $[P_i]$
- Xác suất cá thể P_i được chọn = tỷ lệ đóng góp của P_i cho tổng giá trị thích nghi của P:

$$p_i^S = \frac{\text{fitness}[P_i]}{\sum_{i=0}^{n-1} \text{fitness}[P_i]}$$

Tạo ra tập lựa chọn S (selection set) có n cá thể cha mẹ từ quần thể P gồm n cá thể.

- Bước 1: Tính xác suất được lựa chọn p_i^{S} của từng cá thể.
- Bước 2: Tính xác suất tích luỹ (cumulative probability) $p_i^{S,C}$ của từng cá thể: $p_i^{S,C}=\sum_{j=0}^i p_j^S$
- Bước 3: Phát sinh ngẫu nhiên 1 số thực $r \in [0..1)$.
- Bước 4: Chọn cá thể P_i sao cho $p_{i-1}^{S,C} \le r < p_i^{S,C}$ với $i \in \{0,1,\dots,n-1\}$ và $p_{-1}^{S,C}=0$. Lặp lại bước 3-4 tới khi chọn đủ n cá thể.

- Một quần thể có 5 cá thể với độ thích nghi là (1, 4, 3, 1, 1).
- Tỷ lệ đóng góp của từng cá thể vào tổng giá trị thích nghi là $(0.1, 0.4, 0.3, 0.1, 0.1) \rightarrow xác suất được chọn <math>p_i^S$ của từng cá thể.

• Xác suất tích luỹ $p_i^{S,C}$ của từng cá thể là (0.1, 0.5, 0.8, 0.9,

1.0).

Ví dụ:

- $r = \cdots \rightarrow lya chon ...$
- $r = \cdots \rightarrow \text{Iwa chon } \dots$
- $r = \cdots \rightarrow lya chon ...$
- $r = \cdots \rightarrow \text{Iya chon } \dots$
- $r = \cdots \rightarrow$ Iwa chon ...

Proportional selection còn được gọi là Roulette wheel selection.

Các phép biến đổi (Variation)

- Phép biến đổi: được thực hiện trên tập lựa chọn S (selection set) nhằm tạo ra các cá thể mới (offspring) từ các cá thể cha mẹ (parents).
- Thuật giải di truyền GA có 2 phép biến đổi chính:
- Lai ghép (crossover), còn được gọi là Tái tổ hợp (recombination).
- Đột biến (mutation)

Phép biến đổi – Lai ghép

Phép lai ghép: Tạo ra cá thể mới bằng cách kết hợp kiểu gen của những cá thể (có độ thích nghi cao) trong quần thể.

Cá thể cha mẹ (Parents)	Phép lai (Crossover)	Cá thể con (Offspring)		
0000000000000000001111111111111	Lai một điểm (One-point crossover – 1X)	000001111111111111111111111111111111111		
00000000000000000011111111111111	Lai hai điểm (Two-point crossover – 2X)	00011111111000		
00000000000000000011111111111111	Lai đồng nhất (Uniform crossover – UX)	10110001011010		

Lai một điểm

Lai một điểm

Lai một điểm

Lai hai điểm

Lai hai điểm

Lai hai điểm

Lai đồng nhất

0	1	0	0	0	1	1	0	1	0
0	0	1	0	1	1	0	1	1	1

Lai đồng nhất

0.14	0.35	0.67	0.49	0.72	0.53	0.03	0.91	0.6	0.25
					l				

Lai đồng nhất

Phép biến đổi – Lai ghép

- Lựa chọn xác suất lai p_c .
- Ghép cặp các cá thể trong tập lựa chọn S.
- Với mỗi cặp đôi cá thể cha mẹ, phát sinh ngẫu nhiên 1 số thực $r \in [0..1)$.
- ightharpoonup Nếu $r < p_c$, tiến hành phép lai tạo ra 2 cá thể con mới.
- Ngược lại, 2 cá thể con là sao chép (clone) của 2 cá thể cha mẹ.

Phép biến đổi – Đột biến

- Phép đột biến: Tạo ra cá thể mới bằng cách phát sinh những biến đổi ngẫu nhiên trên kiểu gen của các cá thể trong quần thể.
- Lựa chọn xác suất đột biến p_m (thường nhỏ).
- Với mỗi bit của từng cá thể, phát sinh ngẫu nhiên 1 số thực $r \in [0..1)$.
- ightharpoonup Nếu $r < p_m$, đảo ngược giá trị của bit (0ightharpoonup1 hoặc 1ightharpoonup0).
- Ngược lại, giữ nguyên giá trị của bit.

Đột biến

Ví dụ: Xác suất đột biến 0.05

Điều kiện dừng (Termination)

- Sử dụng hết tài nguyên tính toán.
- Thời gian.
- Số lần gọi hàm lượng giá (evaluation function calls).
- Quần thể không còn độ đa dạng (diversity).
- Các cá thể trong quần thể gần giống nhau về kiểu gen.
- Các cá thể trong quần thể có độ thích nghi gần giống nhau.
- Đạt được độ thích nghi mong muốn.
- Tìm được một giải pháp chấp nhận được cho bài toán.

Độ thích nghi trung bình của quần thể là 177.0

P0	Fitness
10010	324
01100	144
01001	81
10100	400
01000	64
00111	49

Độ thích nghi trung bình của quần thể P1 là 318.8

P0	Fitness	Selection	Crossover	Mutation	Fitness
10010	324	10010	10 010	10100	400
01100	144	10100	10 100	10010	324
01001	81	01000	010 00	01010	100
10100	400	10010	100 10	10001	289
01000	64	01100	0 1100	00100	16
00111	49	10100	1 0100	11100	784

Độ thích nghi trung bình của quần thể P2 là 426.3

P1	Fitness	Selection	Crossover	Mutation	Fitness
10100	400	11100	111 00	11110	900
10010	324	10010	100 10	10000	256
01010	100	10001	10 001	00100	16
10001	289	10100	10 100	10001	289
00100	16	10001	100 01	10000	256
11100	784	11100	111 00	11101	841

Độ thích nghi trung bình của quần thể P3 là 654.5

P2	Fitness	Selection	Crossover	Mutation	Fitness
11110	900	11110	111 10	11101	841
10000	256	10001	100 01	10010	324
00100	16	11101	11 101	11000	576
10001	289	10000	10 000	10101	441
10000	256	11110	1111 0	11111	961
11101	841	11101	1110 1	11100	784

Độ thích nghi trung bình của quần thể P4 là 862.0

P3	Fitness	Selection	Crossover	Mutation	Fitness
11101	841	11101	11 101	11111	961
10010	324	11111	11 111	11101	841
11000	576	11100	1 1100	11101	841
10101	441	11101	1 1101	11100	784
11111	961	11111	111 11	11100	784
11100	784	11000	110 00	11111	961

Tiến hoá (Evolution)

Tiến hoá diễn ra trên một quần thể (population) gồm nhiều cá thể (individual). Mỗi thế thệ nhiều cá thể con được sinh ra.

- Tiến hoá đã tạo ra nhiều sinh vật có độ phức tạo cao (Tính hữu hiệu – effectiveness).
- "Xử lý song song", nhiều lựa chọn có thể được thử nghiệm cùng lúc (Tính hiệu quả – efficiency).
- Nếu một vài cá thể thất bại, quá trình tiến hoá vẫn diễn ra (Tính bền vững – robustness).
- Ý tưởng tổng quát đơn giản, dễ tuỳ biến (Tính đơn giản – simplicity).

Tham khảo

Prof. dr. P.A.N. Bosman's speech on Evolutionary Intelligence.

https://www.youtube.com/watch?v=sOyo YkkbDn0&ab_channel=CentrumWiskunde %26Informatica