Elsevier L⁴T_EX template[☆]

$Elsevier^1$

Radarweg 29, Amsterdam

Elsevier $Inc^{a,b}$, Global Customer $Service^{b,*}$

^a 1600 John F Kennedy Boulevard, Philadelphia
^b 360 Park Avenue South, New York

Abstract

This template helps you to create a properly formatted LATEX manuscript.

Keywords:

1. Main

Suppose $(X_1^T, Y_1), \ldots, (X_n^T, Y_n)$ are i.i.d. from $N_{p+1}(\mu, \Sigma)$, where $X_i \in \mathbb{R}^p$ and $Y_i \in \mathbb{R}$. Denote $X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n)^T$.

Write $Y = \beta_0 \mathbf{1}_n + X^T \beta + \epsilon$, where $\mathbf{1}_n$ is n dimensional vector with all elements equal to 1. ϵ has distribution $N(0, \sigma^2 I_n)$.

The problem is to test hypotheses $H: \beta = 0$.

Let $Q_n = WW^T$ be the rank decomposition of Q_n , where W_n is a $n \times n - 1$ matrix with $W^TW = I_{n-1}$. The new test statistic is

$$T = \frac{y^T Q_n y}{y^T W (W^T X^T X W)^{-1} W^T y}$$

or equivalently

$$\frac{y^{T}Q_{n}y}{y^{T}Q_{n}{(X^{T}X)}^{-1}Q_{n}y-{(y^{T}Q_{n}{(X^{T}X)}^{-1}\mathbf{1}_{n})}^{2}/{(\mathbf{1}_{n}{(X^{T}X)}^{-1}\mathbf{1}_{n})}}$$

 $^{^{\,\}dot{\bowtie}} Fully$ documented templates are available in the elsarticle package on CTAN.

^{*}Corresponding author

Email address: support@elsevier.com (Global Customer Service)

 $[\]mathit{URL}$: www.elsevier.com (Elsevier Inc)

¹Since 1880.

Let $\tilde{y} = W^T y$, $\tilde{X} = XW$, $\tilde{\epsilon} = W^T \epsilon$. Then

$$\tilde{y} = \tilde{X}^T \beta + \tilde{\epsilon}$$

and

$$T = \frac{\tilde{y}^T \tilde{y}}{\tilde{y}^T \big(\tilde{X}^T \tilde{X}\big)^{-1} \tilde{y}}$$

Next we derive another form of T. We follow the similar technique of Hotelling's T^2 .

Let R be an $(n-1) \times (n-1)$ orthogonal matrix satisfies

$$R\tilde{y} = \begin{pmatrix} \|\tilde{y}\| \\ 0 \\ \dots \\ 0 \end{pmatrix}.$$

We can write

$$T = \frac{\|\tilde{y}\|^2}{\tilde{y}R^T(R\tilde{X}^T\tilde{X}R^T)^{-1}R\tilde{y}}$$
 (1)

Denote by $B = R\tilde{X}^T\tilde{X}R^T$, then

$$T = \frac{1}{(B^{-1})_{11}}.$$

Let

$$B = \begin{pmatrix} b_{11} & b_{(1)}^T \\ b_{(1)} & B_{22} \end{pmatrix},$$

and apply the matrix inverse formula, we have $(B^{-1})_{11}=1/(b_{11}-b_{(1)}^TB_{22}^{-1}b_{(1)})$. Hence

$$T = b_{11} - b_{(1)}^T B_{22}^{-1} b_{(1)}.$$

2. Asymptotic distribution

Note that conditioning on \tilde{y} , R is a constant orthogonal matrix. And \tilde{y} is independent of \tilde{X} under null hypotheses. So $B|\tilde{y}$ has the same distribution with

 $\tilde{X}^T\tilde{X}$ under null hypotheses. Hence B is independent of \tilde{y} and can be written as

$$B = \sum_{i=1}^{p} \lambda_i z_i z_i^T \tag{2}$$

where z_i 's are i.i.d. n-1 dimensional random vectors distributed as $N(0, I_{n-1})$, $\lambda_1 \geq \lambda_2 \ldots \geq \lambda_p > 0$ are eigenvalues of Σ_X . Denote by $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_p)$, $Z = (Z_1, \ldots, Z_p)$. Let $Z_{(1)}$ and $Z_{(2)}$ be the first 1 row and last n-2 rows of Z, that is

$$Z = \begin{pmatrix} Z_{(1)} \\ Z_{(2)} \end{pmatrix}.$$

Then

$$B = Z\Lambda Z^{T}$$

$$= \begin{pmatrix} Z_{(1)}\Lambda Z_{(1)}^{T} & Z_{(1)}\Lambda Z_{(2)}^{T} \\ Z_{(2)}\Lambda Z_{(1)}^{T} & Z_{(2)}\Lambda Z_{(2)}^{T} \end{pmatrix}.$$
(3)

Hence

$$T = Z_{(1)}\Lambda Z_{(1)}^T - Z_{(1)}\Lambda Z_{(2)}^T (Z_{(2)}\Lambda Z_{(2)}^T)^{-1} Z_{(2)}\Lambda Z_{(1)}^T$$

$$= Z_{(1)} (\Lambda - \Lambda Z_{(2)}^T (Z_{(2)}\Lambda Z_{(2)}^T)^{-1} Z_{(2)}\Lambda) Z_{(1)}^T.$$
(4)

But

$$\operatorname{rank}(\Lambda Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda) = \operatorname{rank}(\Lambda^{\frac{1}{2}} Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda^{\frac{1}{2}})$$

$$= \operatorname{rank}(I_{n-2}) = n - 2,$$
(5)

and

$$\operatorname{rank}(\Lambda - \Lambda Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda) = \operatorname{rank}(I_p - \Lambda^{\frac{1}{2}} Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda^{\frac{1}{2}})$$

$$= p - n + 2.$$
(6)

Hence

$$T \sim \sum_{i=1}^{p-n+2} \lambda_i (\Lambda - \Lambda Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda) \chi_1^2$$

By Weyl's inequality, we have for $1 \le i \le p-n+2$

$$\lambda_i(\Lambda - \Lambda Z_{(2)}^T (Z_{(2)} \Lambda Z_{(2)}^T)^{-1} Z_{(2)} \Lambda) \le \lambda_i(\Lambda),$$
 (7)

and

$$\lambda_{i}(\Lambda - \Lambda Z_{(2)}^{T}(Z_{(2)}\Lambda Z_{(2)}^{T})^{-1}Z_{(2)}\Lambda)$$

$$\geq \lambda_{i+n-2}(\Lambda) + \lambda_{p-n+2}(-\Lambda Z_{(2)}^{T}(Z_{(2)}\Lambda Z_{(2)}^{T})^{-1}Z_{(2)}\Lambda)$$

$$= \lambda_{i+n-2}.$$
(8)

Hence

$$\sum_{i=n-1}^p \lambda_i \chi_1^2 \le T \le \sum_{i=1}^{p-n+2} \lambda_i \chi_1^2$$

Note that under condition ${\rm tr}\Sigma^4/({\rm tr}\Sigma^2)^2\to 0$, we have by Liapounoff central limit theorem that

$$\frac{\sum_{i=1}^{p} \lambda_i \chi_1^2 - \operatorname{tr} \Sigma_X}{\sqrt{\operatorname{tr}(\Sigma_X^2)}} \xrightarrow{\mathcal{L}} N(0,1).$$

And

$$\frac{T - \operatorname{tr}\Sigma_X}{\sqrt{\operatorname{tr}(\Sigma_X^2)}} - \frac{\sum_{i=1}^p \lambda_i \chi_1^2 - \operatorname{tr}\Sigma_X}{\sqrt{\operatorname{tr}(\Sigma_X^2)}} = \frac{T - \sum_{i=1}^p \lambda_i \chi_1^2}{\sqrt{\operatorname{tr}(\Sigma_X^2)}},$$
(9)

To prove (9) \xrightarrow{P} 0, we only need to prove

$$E\left(\frac{\sum_{i=1}^{n-2} \lambda_i \chi_1^2}{\sqrt{\operatorname{tr}(\Sigma_X^2)}}\right) \to 0,$$

that is

$$E\left(\frac{\sum_{i=1}^{n-2} \lambda_i}{\sqrt{\operatorname{tr}(\Sigma_X^2)}}\right) \to 0. \tag{10}$$

If λ_i 's are bounded below and above, then (10) is equivalent to

$$n/\sqrt{p} \to 0,$$
 (11)

or $p/n^2 \to \infty$. We thus obtain the following theorem.

Theorem 1. Suppose

$$E\left(\frac{\sum_{i=1}^{n-2} \lambda_i}{\sqrt{tr(\Sigma_X^2)}}\right) \to 0,$$

and

$$\frac{tr\Sigma^4}{\left(tr\Sigma^2\right)^2} \to 0.$$

Then under null hypotheses, we have

$$\frac{T - tr\Sigma_X}{\sqrt{tr(\Sigma_X^2)}} \xrightarrow{\mathcal{L}} N(0,1).$$

3. Full Asymptotic Results

$$\Sigma_X = P\Lambda P^T$$

Non-spike: there's no principal component (r=0). That is, $\lambda_1 = \cdots = \lambda_p$. Spike: there's r principal components. That is, $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_r \geq \lambda_{r+1} = \cdots = \lambda_p$. Denote by P_1 the first r column of P and P_2 the last p-r column of P.

$$Y = \beta_0 \mathbf{1}_n + X^T \beta + \epsilon$$

$$= \beta_0 \mathbf{1}_n + X^T P_1 P_1^T \beta + X^T P_2 P_2^T \beta + \epsilon$$
(12)

In either case, let λ be $\lambda = \lambda_{r+1} = \cdots = \lambda_p$.

PCR try to do regression between Y and (estimated) X^TP_1 . If P_1 is observed, then the problem is reduced to testing an ordinary regression model. However, it's not the case.

Simply estimating P_1 and invoke classical testing procedure may not be a good idea since the estimation may not be consistent in high dimension. In fact, there may be even no principal component!

In this paper, testing PCR means testing:

 H_0 : There's no principal component or there's r principal components but $P_1^T \beta = 0$.

 H_1 ; There's r principal components and $P_1^T \beta \neq 0$.

Next we consider:

- 1. There's no PC.
- 2. There's r principal components but $P_1\beta = 0$.

3.1. circumstance 1

$$T = \frac{\beta^T \tilde{X} \tilde{X}^T \beta + 2\beta^T \tilde{X} \tilde{\epsilon} + \tilde{\epsilon}^T \tilde{\epsilon}}{\beta^T \tilde{X} (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T \beta + 2\beta^T \tilde{X} (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon} + \tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}}$$
(13)

Independent of data, generate a random p dimensional orthonormal matrix O with Haar invariant distribution. And

$$T = \frac{\left(O\beta\right)^T O\tilde{X} \left(O\tilde{X}\right)^T O\beta + 2\left(O\beta\right)^T \tilde{X}\tilde{\epsilon} + \tilde{\epsilon}^T \tilde{\epsilon}}{\left(O\beta\right)^T O\tilde{X} \left(\left(O\tilde{X}\right)^T O\tilde{X}\right)^{-1} \left(O\tilde{X}\right)^T \beta + 2\left(O\beta\right)^T O\tilde{X} \left(\left(O\tilde{X}\right)^T O\tilde{X}\right)^{-1} \tilde{\epsilon} + \tilde{\epsilon}^T \left(\left(O\tilde{X}\right)^T O\tilde{X}\right)^{-1} \tilde{\epsilon}}$$

$$(14)$$

Note that conditioning on O, $O\tilde{X}$ is a random matrix with each entry independently distributed as $N(0,\lambda)$. Hence O is independent of $O\tilde{X}$. Observe also that $O\beta/\|\beta\|$ is uniformly distributed on the unit ball. We can without loss of generality assuming that $\beta/\|\beta\|$ is uniformly distributed on the unit ball. Independent of data, generate R>0 with R^2 distributed as χ_p^2 . Then $\xi=R\beta/\|\beta\|$ distributed as $N_p(0,I_p)$. Note that conditioning on \tilde{X} , $\eta=(\tilde{X}^T\tilde{X})^{-1/2}\tilde{X}^T\xi$ is distributed as $N_{n-1}(0,I_{n-1})$. Hence η is independent of \tilde{X} .

Then

$$T = \frac{(\|\beta\|/R)^{2} \xi^{T} \tilde{X} \tilde{X}^{T} \xi + 2(\|\beta\|/R) \xi^{T} \tilde{X} \tilde{\epsilon} + \tilde{\epsilon}^{T} \tilde{\epsilon}}{(\|\beta\|/R)^{2} \xi^{T} \tilde{X} (\tilde{X}^{T} \tilde{X})^{-1} \tilde{X}^{T} \xi + 2(\|\beta\|/R) \xi^{T} \tilde{X} (\tilde{X}^{T} \tilde{X})^{-1} \tilde{\epsilon} + \tilde{\epsilon}^{T} (\tilde{X}^{T} \tilde{X})^{-1} \tilde{\epsilon}}$$

$$= \frac{(\|\beta\|/R)^{2} \eta^{T} \tilde{X}^{T} \tilde{X} \eta + 2(\|\beta\|/R) \eta^{T} (\tilde{X}^{T} \tilde{X})^{1/2} \tilde{\epsilon} + \tilde{\epsilon}^{T} \tilde{\epsilon}}{(\|\beta\|/R)^{2} \eta^{T} \eta + 2(\|\beta\|/R) \eta^{T} (\tilde{X}^{T} \tilde{X})^{-1/2} \tilde{\epsilon} + \tilde{\epsilon}^{T} (\tilde{X}^{T} \tilde{X})^{-1} \tilde{\epsilon}}$$

$$= \frac{A_{1} + A_{2} + A_{3}}{B_{1} + B_{2} + B_{3}}$$

$$(15)$$

We consider

$$\frac{\frac{\|\beta\|^2}{R^2}\eta^T\eta}{\tilde{\epsilon}^T(\tilde{X}^T\tilde{X})^{-1}\tilde{\epsilon}} = \frac{(n-1)\|\beta\|^2}{p} \frac{\frac{p}{R^2}\frac{\eta^T\eta}{n-1}}{\tilde{\epsilon}^T(\tilde{X}^T\tilde{X})^{-1}\tilde{\epsilon}}$$
(16)

Note that

$$\tilde{\epsilon}^{T} (\tilde{X}^{T} \tilde{X})^{-1} \tilde{\epsilon} \sim \frac{\tilde{\epsilon}^{T} \tilde{\epsilon}}{(\tilde{X}^{T} \tilde{X})_{11 \cdot 2}}$$

$$\sim \frac{\sigma^{2}}{\lambda} \frac{\chi_{n-1}^{2}}{\chi_{n-n+2}^{2}}$$
(17)

Hence

$$\frac{\frac{\|\beta\|^2}{R^2} \eta^T \eta}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} = \frac{(n-1)(p-n+2)}{p(n-1)} \frac{\lambda}{\sigma^2} \|\beta\|^2 (1 + o_P(1))$$

$$= \frac{\lambda}{\sigma^2} \|\beta\|^2 (1 + o_P(1))$$
(18)

On the other hand,

$$\frac{\frac{\|\beta\|^2}{R^2}\eta^T \tilde{X}^T \tilde{X}\eta}{\tilde{\epsilon}^T \tilde{\epsilon}} = \frac{\|\beta\|^2}{\sigma^2 p(n-1)} \frac{\frac{p}{R^2}\eta^T \tilde{X}^T \tilde{X}\eta}{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\sigma^2 (n-1)}}$$
(19)

Note that

$$\eta^T \tilde{X}^T \tilde{X} \eta \sim \eta^T \eta (\tilde{X}^T \tilde{X})_{11}$$

$$\sim \lambda \chi_{n-1}^2 \chi_p^2$$
(20)

Hence

$$\frac{\|\beta\|^{2}}{R^{2}} \eta^{T} \tilde{X}^{T} \tilde{X} \eta = \frac{\|\beta\|^{2}}{\sigma^{2} p(n-1)} \lambda(n-1) p(1+o_{P}(1))$$

$$= \frac{\lambda}{\sigma^{2}} \|\beta\|^{2} (1+o_{P}(1))$$
(21)

We can deduce that: If $\|\beta\|^2 \to 0$, then

$$T = \frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} (1 + o_P(1))$$
 (22)

If $\|\beta\|^2 \to \infty$, then

$$T = \frac{\eta^T \tilde{X}^T \tilde{X} \eta}{\eta^T \eta} (1 + o_P(1))$$
(23)

Note that

$$\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} \sim (\tilde{X}^T \tilde{X})_{11 \cdot 2} \sim \lambda \chi_{p-n+2}^2 \tag{24}$$

Hence by CLT,

$$\frac{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda (p - n + 2)}{\lambda \sqrt{2(p - n + 2)}} \xrightarrow{\mathcal{L}} N(0, 1)$$
(25)

$$\frac{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda(p - n + 2)}{\lambda \sqrt{2(p - n + 2)}} = \frac{\sqrt{p}}{\sqrt{p - n + 2}} \frac{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda(p - n + 2)}{\lambda \sqrt{2p}}$$

$$= \frac{\sqrt{p}}{\sqrt{p - n + 2}} \left(\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda p}{\lambda \sqrt{2p}} + \frac{(n - 2)}{\sqrt{2p}} \right) \tag{26}$$

By slutsky Theorem,

$$\frac{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda p}{\lambda \sqrt{2p}} \xrightarrow{\mathcal{L}} N(0, 1)$$
 (27)

On the other hand

$$\frac{\eta^T \tilde{X}^T \tilde{X} \eta}{\eta^T \eta} \sim (\tilde{X}^T \tilde{X})_{11} \sim \lambda \chi_p^2 \tag{28}$$

Hence by CLT,

$$\frac{\frac{\eta^T \tilde{X}^T \tilde{X}^{\eta}}{\eta^T \eta} - \lambda p}{\lambda \sqrt{2p}} \xrightarrow{\mathcal{L}} N(0, 1)$$
 (29)

 $A_1 \asymp n \|\beta\|^2$. $A_3 \asymp n$. And $B_1 \asymp \frac{n}{p} \|\beta\|^2$. $B_3 \asymp n/p$.

$$A_{2} = O_{P}(\|\beta\|/\sqrt{p})\eta^{T}(\tilde{X}^{T}\tilde{X})^{1/2}\tilde{\epsilon}$$

$$= O_{P}(\|\beta\|/\sqrt{p})\sqrt{\eta^{T}(\tilde{X}^{T}\tilde{X})\eta}$$

$$= O_{P}(\|\beta\|/\sqrt{p})O_{P}(\sqrt{np})$$

$$= O_{P}(\sqrt{n}\|\beta\|)$$
(30)

$$B_{2} = O_{P}(\|\beta\|/\sqrt{p})\eta^{T}(\tilde{X}^{T}\tilde{X})^{-1/2}\tilde{\epsilon}$$

$$= O_{P}(\|\beta\|/\sqrt{p})\sqrt{\eta^{T}(\tilde{X}^{T}\tilde{X})^{-1}\eta}$$

$$= O_{P}(\|\beta\|/\sqrt{p})O_{P}(\sqrt{n/p})$$

$$= O_{P}(\frac{\sqrt{n}}{p}\|\beta\|)$$
(31)

If $\|\beta\|^2 \to 0$, we have

$$\left| \frac{T - \lambda p}{\lambda \sqrt{2p}} - \frac{\frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} - \lambda p}{\lambda \sqrt{2p}} \right|
= \frac{1}{\lambda \sqrt{2p}} \left| T - \frac{\tilde{\epsilon}^T \tilde{\epsilon}}{\tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}} \right|
= \frac{1}{\lambda \sqrt{2p}} \left| \frac{A_1 + A_2 + A_3}{B_1 + B_2 + B_3} - \frac{A_3}{B_3} \right|
= \frac{1}{\lambda \sqrt{2p}} \left| \frac{(A_1 + A_2)B_3 - (B_1 + B_2)A_3}{(B_1 + B_2 + B_3)B_3} \right|
= \frac{O_P(1)}{\lambda \sqrt{2p}} \left| \frac{(O_P(n \|\beta\|^2) + O_P(\sqrt{n} \|\beta\|))O_P(\frac{n}{p}) - (O_P(\frac{n}{p} \|\beta\|^2) + O_P(\frac{\sqrt{n}}{p} \|\beta\|))O_P(n)}{n^2/p^2} \right|
= O_P(\sqrt{p} \|\beta\|^2) + O_P(\frac{\sqrt{p}}{\sqrt{n}} \|\beta\|)$$
(32)

Hence if $\sqrt{p} \|\beta\|^2 \to 0$ and $p/n^2 \to \infty$, CLT holds.

If
$$\|\beta\|^2 \to \infty$$
, we have

$$\left| \frac{T - \lambda p}{\lambda \sqrt{2p}} - \frac{\frac{A_1}{B_1} - \lambda p}{\lambda \sqrt{2p}} \right|
= \frac{1}{\lambda \sqrt{2p}} \left| \frac{A_1 + A_2 + A_3}{B_1 + B_2 + B_3} - \frac{A_1}{B_1} \right|
= \frac{1}{\lambda \sqrt{2p}} \left| \frac{(A_2 + A_3)B_1 - (B_2 + B_3)A_1}{(B_1 + B_2 + B_3)B_1} \right|
= \frac{O_P(1)}{\lambda \sqrt{2p}} \left| \frac{(O_P(\sqrt{n}||\beta||) + O_P(n))O_P(\frac{n}{p}||\beta||^2) - (O_P(\frac{\sqrt{n}}{p}||\beta||) + O_P(\frac{n}{p}))O_P(n||\beta||^2)}{\frac{n^2}{p^2}||\beta||^4} \right|
= O_P(\frac{\sqrt{p}}{\sqrt{n}}||\beta||^{-1}) + O_P(\sqrt{p}||\beta||^{-2})$$
(33)

Hence if $\frac{n}{p} \|\beta\|^2 \to \infty$ and $p/n^2 \to \infty$, CLT holds.

3.2. circumstance 2

$$T = \frac{\beta^T \tilde{X} \tilde{X}^T \beta + 2\beta^T \tilde{X} \tilde{\epsilon} + \tilde{\epsilon}^T \tilde{\epsilon}}{\beta^T \tilde{X} (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T \beta + 2\beta^T \tilde{X} (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon} + \tilde{\epsilon}^T (\tilde{X}^T \tilde{X})^{-1} \tilde{\epsilon}}$$
(34)

4. Simulation Results

References