

What is a graph?

Object (points, nodes, vertices)

2

What is a graph?

Relationship (lines, edges, arcs)

5

What is a graph?

Links indicate functional connectivity (Urban et al 2009) Implicit and explicit relationship to metapopulations

4

6

3

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

Site Data

Pairwise data

phy et al. 2015; Landscape Genetics: Cancepts, Methods, Applications, Storfer et al. 2007; Heredi

Functional Connectivity Hypotheses

7

9

Network "Assumptions"

- Nodes easily defined/delineated
- Measuring (gene) flow
- Connections reasonable estimate of this process

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Application

10

8

Network Topology - What is connected?

(Murphy et al. 2015; Murphy & Evero 2011)

Network Optimization

- Reduce problem to relevant edges
- Identify connections with highest gene flow
- Can avoid overlapping connections
- Avoid long edges

11 12

Rule-based networks

Hypothesized or model based

14

16

18

13

17

Graph Metrics

15

Graph Metrics

Degree Number of nodes linked to a node

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

Betweenness Number of times node is the shortest path

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

20

Mean Betweenness

21

(Murphy et al. 2015; Landscape Genetics: Concepts, Methods, Applications)

22

Do at site and between site processes limit connectivity?

At Site

Between Sites

23

25

27 2

29 30

"Calibration" of Gravity Equation

Singly Constrained

 $InT_{ij} = Ink_i + (In(\mu v_i) + In(\alpha w_{ij}) - In(\beta c_{ij}))$

Mixed Effects Models MLE

(Fotheringham & O'Kelly 1988)

31

32

Connectivity is driven by landscape at site and between sites

34

36 35

Unconstrained Model

Flow rate

"Calibration" of Gravity Equation

 $T_{ij} = k v_i^{\mu} w_{ij}^{\alpha} c_{ij}^{-\beta}$

Unconstrained

 $InT_{ij} = Ink + In(\mu v_i) + In(\alpha w_{ij}) - In(\beta c_{ij})$

Linear regression – OLS MLE

(Fotheringham & O'Kelly 1988)

40

"Calibration" of Gravity Equation

 $T_{ij} = k v_i^{\mu} w_{ij}^{\alpha} c_{ij}^{-\beta}$

Doubly Constrained

 $InT_{ij} + InT_{ji} - InT_{jj} - InT_{ii} = \beta(Inc_{ji} + Inc_{ji} - Inc_{ii} - Inc_{jj})$

MLE

(Fotheringham & O'Kelly 1988)

41