Comparing Machine Learning Algorithms Across Data Systems

Grace Davenport, Hayden French, Silas Hayes, Ryan Lipps

Motivation

- As data scientists, we are interested in using big data systems for the implementation of scikit-learn machine learning algorithms
- We are now familiar with several distributed computing frameworks, but have not directly applied them to the data science pipeline
- We are interested in using Spark, Dask, and Ray to implement some popular machine learning algorithms—regression, classification, and clustering—and compare compute times between each system

Data Preprocessing

- Dataset: 20 million flight searches between June, 2022 and August, 2022 and is approximately 2 GBs
- Variables: (1) flight search on a specific date, (2) returning base fare, (3) distance, (4) time traveled, and (5) number of seats remaining
- Prior to uploading our data to our cluster, we normalized each variable via
 z-score scaling and performed a random 80-20 train/test split
- We are more interested in the overall compute times than model performance, but still aim to mirror the traditional machine learning pipeline as closely as possible

Experimental Design

- We implemented each algorithm on Dask, Spark, and Ray hosted on Amazon's EC2 instances
- For all algorithms, we used all quantitative variables as predictors. For KNN and Random Forest, our response variable was the base price of the flight. For K-Means, we performed unsupervised clustering
- We ran each algorithm on differently-sized subsets of our data and recorded the execution time for each

Sklearn + Joblib

Parallelize sklearn with this one neat trick!!

with joblib.parallel_backend('dask'):

```
rf_model = RandomForestRegressor(max_depth=2)
rf_model.fit(X_reg_train_subset, y_reg_train_subset)
y_pred = rf_model.predict(X_reg_test_subset)
metric = mean_squared_error(y_reg_test_subset, y_pred)
```


Sklearn + Joblib Actually Parallel?

Discussion

Dask

Spark

Ray

Modified Experimental Design

- We modified our approach to use Dask and Spark's distributed computing frameworks own machine learning backend instead of sklearn
- We selected algorithms which were supported by **both libraries** and representative of **different machine learning methods** (clustering vs. regression, e.g.)
- Again, we ran each algorithm on differently-sized subsets of the data to compare runtimes
- Ray does not have its own ML implementation for these algorithms though it is still useful for RL and parallelized tuning

	Dask	Spark
Linear Regression	108.04 s	144.91 s
Logistic Regression	142.80 s	279.03 s
K-Means	326.70 s	691.83 s

Discussion

Spark

Future Work

Custom Distribution

Assess these systems using custom sklearn distributing

Vary VM Numbers

Each system different number of VMs

More Precise Metrics

Calculate the mean and standard deviation

Thank you!

