Homework 11 Due Wednesday, December 7th

- 1. (Dimmit and Foote, 2nd edition, p. 634, Exc. 4.) Let p be a prime and let $\{s,t\}$ be algebraically independent over \mathbb{F}_p . Let β be a root of $x^2 sx + t = 0$, and let α be a root of $x^p \beta = 0$. Denote $K = \mathbb{F}_p(s,t,\alpha)$. Show that $\{\alpha,s\}$ is a separating transcendence basis of K over \mathbb{F}_p , i.e., $\{\alpha,s\}$ is a transcendence basis of K over \mathbb{F}_p and K is separable over $\mathbb{F}_p(\alpha,s)$.
- **2**. (Dimmit and Foote, 2nd edition, p. 634, Exc. 5.) Let t be transcendental over \mathbb{F}_p and let K be obtained by adjoining to $\mathbb{F}_p(t)$ all p-power roots of t. Prove that $tr \deg_{\mathbb{F}_p}K = 1$ and K has no separating transcendence basis over \mathbb{F}_p .
- **3**. (Dimmit and Foote, 2nd edition, p. 634, Exc. 6.) Let t be transcendental over \mathbb{Q} . Show that $\mathbb{Q}(t, \sqrt{t^3 t})$ is not purely transcendental over \mathbb{Q} .

Definition: A field extension F of a field K is purely transcendental over K if there exists a transcendental basis S of F over K such that F = K(S).