

Group Theory

Homework Assignment 01

Spring, 2020

- 1. Let E be the identity of a group G, a and b be any two elements in the group, a^{-1} and b^{-1} be respectively the inverses of a and b. Using the definition of a group, show that
 - (a) If ca = a, then c = E;
 - (b) If ca = E, then $c = a^{-1}$;
 - (c) The inverse of (ab) is $b^{-1}a^{-1}$.
- 2. Show that the set of nonzero complex numbers is a group under the ordinary multiplication.
- 3. Show that there is only one group of order three. Using a step-by-step procedure, construct the multiplication table for the group.
- 4. Show that a group must be an Abelian group if the order of any element except the identity in the group is 2.
- 5. Show that every subgroup of a cyclic group is also cyclic.