Algoritma Pemrograman (2)

Departemen Teknik Informatika
Universitas Hasanuddin

Learning Outcomes

Menjelaskan definisi algoritma dan pembuatan algoritma (flowchart)

Flowchart

- Bagan-bagan yang mempunyai arus yang menggambarkan langkah-langkah penyelesaian suatu masalah.
- Merupakan cara penyajian dari suatu algoritma.
- Ada 2 macam Flowchart :
 - System Flowchart → urutan proses dalam system dengan menunjukkan alat media input, output serta jenis media penyimpanan dalam proses pengolahan data.
 - Program Flowchart → urutan instruksi yang digambarkan dengan symbol tertentu untuk memecahkan masalah dalam suatu program.

Flowchart Basic Symbols

Simbol-simbol Flowchart

- Flow Direction Symbols (Simbol penghubung alur)
- Processing Symbols (Simbol proses).
- Input-output Symbols (Simbol input-output)

Simbol-simbol Flowchart

SIMBOL	NAMA	FUNGSI
	TERMINATOR	Permulaan/akhir program
	GARIS ALIR (FLOW LINE)	Arah aliran program
	PREPARATION	Proses inisialisasi/ pemberian harga awal
	PROSES	Proses perhitungan/ proses pengolahan data
	INPUT/OUTPUT DATA	Proses input/output data, parameter, informasi

Simbol-simbol Flowchart — Cont.

SIMBOL	NAMA	FUNGSI
	PREDEFINED PROCESS (SUB PROGRAM)	Permulaan sub program/ proses menjalankan sub program
	DECISION	Perbandingan pernyataan, penyeleksian data yang memberikan pilihan untuk langkah selanjutnya
	ON PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada satu halaman
	OFF PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada halaman berbeda

Pembuatan Flowchart

- Tidak ada kaidah yang baku.
- Flowchart = gambaran hasil analisa suatu masalah
- Flowchart dapat bervariasi antara satu pemrogram dengan pemrogram lainnya.
- Secara garis besar ada 3 bagian utama:
 - Input
 - Proses
 - Output

Pembuatan Flowchart – cont.

- Hindari pengulangan proses yang tidak perlu dan logika yang berbelit sehingga jalannya proses menjadi singkat.
- Jalannya proses digambarkan dari atas ke bawah dan diberikan tanda panah untuk memperjelas.
- Sebuah flowchart diawali dari satu titik
 START dan diakhiri dengan END.

Contoh 1 Flowchart

Ordering a Burger Standard Process

Contoh 2 Flowchart

Pseudocode

- Outline dari sebuah program komputer
- Ditulis dalam bahasa Inggris atau Indonesia sederhana
- Kata kunci (*keyword*) digunakan untuk menjelaskan **struktur kendali** (misalnya: "jika", "ulangi", "sampai","if","repeat", "until")

Aturan penulisan algoritma

- Bagian Kepala (Header) → berisi tentang nama algoritma dan keterangan tentang algoritma tersebut
- 2. Bagian Deklarasi (Definisi Variabel) → berisi tentang nama variable, nama tetapan, nama prosedur, nama fungsi dan tipe data yang akan digunakan dalam algoritma
- 3. Bagian Deskripsi (rincian langkah) → berisi tentang langkah-langkah penyelesaian masalah, termasuk perintah baca data, pemberian nilai, penampilan nilai dan lain-lain

Menulis Pseudocode

Enam operasi dasar komputer:

- 1. Menerima informasi (Input)
- 2. Menampilkan Informasi (Output)
- 3. Melakukan perhitungan aritmetika (Compute)
- 4. Memberikan nilai ke data (Store)
- 5. Membandingkan dan Memilih (Compare)
- 6. Melakukan pengulangan (Loop)

1. Menerima Informasi

• Sewaktu komputer menerima informasi atau *input*, maka *statement* yang biasa digunakan adalah "Read", "Get", atau "Baca"

• Contoh:

Read Bilangan

Get kode_pajak

Baca nama_mahasiswa

2. Menampilkan Informasi

 Sewaktu komputer menampilkan informasi ataupun output, maka statement yang biasa digunakan adalah "Print", "Write", "Put", "Output", "Display" ataupun "Cetak"

• Contoh:

Print "Teknik Informatika"

Cetak "Saya sedang belajar"

Output Average

3. Melakukan perhitungan Aritmetika

- Untuk melakukan operasi aritmetika digunakan pseudocode berikut:
 - + untuk penjumlahan (add)
 - Untuk pengurangan (subtract)
 - * Untuk perkalian (multiply)
 - / Untuk pembagian (divide)
 - () Untuk kurung
- Statement "Compute", "Calculate" ataupun "Hitung" juga dapat digunakan.
- Contoh:

Add number to total

Total = Total + number

4. Memberikan nilai ke data

- Ada tiga cara untuk memberikan nilai ke dalam data :
 - Memberikan nilai awal, menggunakan statement "Initialize" atau "Set"
 - Memberikan nilai sebagai hasil dari suatu proses, maka tanda "=" digunakan
 - Untuk menyimpan suatu nilai maka statement "Save" atau "Store" digunakan

• Contoh:

Set Counter to 0

Total = Harga * Jumlah

5. Membandingkan dan memilih

- Salah satu operasi terpenting yang dapat dilakukan komputer adalah membandingkan dan memilih salah satu alternatif solusi.
- Keyword yang digunakan: "IF", "THEN" dan "ELSE"

```
    Contoh
        IF Pilih='1' THEN
        Discount = 0.1 * harga
        ELSE
        Discount = 0.2 * harga
        ENDIF
```

6. Melakukan pengulangan

• Jika ada beberapa perintah yang harus diulang, maka dapat digunakan *keyword* "DOWHILE" dan "ENDDO".

```
ContohDOWHILE bil < 10</li>cetak bilbil = bil +1ENDDO
```

- 1. Start
- 2. Output "Nilai Terkecil dari 2 angka"
- 3. Output "Masukkan 2 angka integer"
- 4. Input a dan b
- 5. If (a==b)
- 6. Output "Kedua angka sama"
- 7. Else if (a<b)
- 8. Output "Angka terkecil adalah ", a
- 9. Else
- 10. Output "Angkat terkecil adalah ",b
- **11.End**

Algoritma berbasis konteks kalimat

Algoritma berbasis diagram

Algoritma Mencari nilai terkecil dari 2 angka

Definisi Variabel

integer a, b;

Rincian Langkah

Algoritma berbasis pseudo code

Flowchart untuk Mencari Angka Terkecil dari Dua Bilangan (dengan connector)

Teorema Terstruktur

- Teorema terstruktur memungkinkan untuk menulis program komputer hanya dengan menggunakan tiga struktur kontrol yaitu:
 - 1. Sequence
 - 2. Selection
 - 3. Repetition

1. Sequence

- Sequence merupakan urutan pengerjaan dari perintah / statement pertama sampai dengan perintah / statement terakhir
- Sequence dapat digunakan untuk menampilkan empat operasi dasar komputer yang telah dibahas sebelumnya yaitu: menerima informasi, menampilkan informasi, melakukan perhitungan aritmetika dan memberikan nilai

Sequence

• Contoh:

Cetak "Jumlah Mahasiswa"

Set Jumlah to 49

Cetak "Tambahan mahasiswa baru"

Baca mhs_baru

Jumlah = Jumlah + mhs_baru

Cetak "Jumlah Mahasiswa"

Cetak jumlah

Penjelasan

• Urutan pengerjaan adalah mulai dari urutan pertama sampai dengan urutan terakhir, jika mhs_baru diisi dengan 2, maka jumlah yang tercetak adalah 51

2. Selection

- Struktur Kontrol Selection adalah penggambaran sebuah kondisi dan pilihan diantara dua aksi.
- Statement Pertama akan dikerjakan jika kondisi bernilai benar, jika tidak maka akan mengerjakan perintah setelah keyword "else" (jika ada).

Selection

Contoh:

 IF Bulan = 2 THEN
 Cetak "Februari"

 ELSE
 Cetak "Bukan Februari"

- Penjelasan
 - Tulisan "Februari" akan ditampilkan jika var "Bulan" bernilai 2, jika tidak maka tulisan "Bukan Februari" yang akan ditampilkan

3. Repetition

- Beberapa *statement* / perintah dapat diulang dengan menggunakan struktur kontrol *repetition*.
- Statement / perintah akan tetap diulang selama kondisi perulangan memenuhi (jika menggunakan DOWHILE ENDDO)

Repetition

• Contoh:

```
Bintang = 0

DOWHILE bintang < 5

Cetak bintang

bintang = bintang + 1

ENDDO
```

- Penjelasan:
 - Pertama kali bintang akan diisi dengan 0, setelah itu isi dari bintang akan dicetak sebanyak lima kali, sehingga tampilannya akan sebagai berikut:

01234

Thanks