

IIC2213 — Lógica para Ciencia de la Computación 2022-1

Ayudantía 5

Definiciones

Sea $p_M(w)$ la cantidad de pasos que ejecuta una máquina determinista M hasta aceptar o rechazar w. Definimos $t_M(n) := \max\{p_M(w) \mid |w| = n\}$, o sea, la máxima cantidad de pasos que ejecuta M hasta aceptar algún input de tamaño n.

De forma equivalente, para una máquina no determinista M y un w aceptado por M, definimos $p_M^*(w)$ como la cantidad de pasos que ejecuta M con input w hasta aceptar, en la ejecución más corta que acepta a w. Luego, definimos $t_M(n) := \max\{\{n\} \cup \{p_M^*(w) \mid w \text{ es aceptada por } M \text{ y } |w| = n\}\}.$

Sea $t: \mathbb{N} \to \mathbb{N}$, y sea L un lenguaje. Decimos que L puede ser aceptado en tiempo t si y solo si:

- 1. Existe M tal que $\mathcal{L}(M) = L$
- 2. $t_M(n) \in \mathcal{O}(t(n))$

Definimos DTIME(t(n)) como todos los lenguajes que pueden ser aceptados por máquinas deterministas en tiempo t(n), y NTIME(t(n)) como todos los lenguajes que pueden ser aceptados por máquinas no deterministas en tiempo t(n). Luego, definimos las siguientes clases de complejidad:

- PTIME (P) := $\bigcup_{k \in \mathbb{N}} \text{DTIME}(n^k)$
- EXPTIME := $\bigcup_{k \in \mathbb{N}} \text{DTIME}(2^{n^k})$
- NPTIME (NP) : $=\bigcup_{k\in\mathbb{N}} \text{NTIME}(n^k)$

Pregunta 1

Sean $C(\tau)$ y $C(\varphi)$ codificaciones de una valuacion y una fórmula lógica, respectivamente. Dado φ en CNF y τ una valuación para φ , demuestre que el siguiente problema está en P:

$$\{w \in \{0,1\} * \mid w = C(\tau)0000C(\varphi), \ v \ \tau \models \varphi\}$$

Dado lo anterior, demuestre que el siguiente problema está en EXPTIME, y también en NP:

$$\{w \in \{0,1\}^* \mid w = C(\varphi), \text{ y } \varphi \text{ es satisfacible.}\}$$

Pregunta 2

Demuestre que si existe un problema $L \in P$ tal que para todo $L' \in NP$ existe una reducción polinomial de L' a L, entonces P = NP.

Pregunta 3

Sea G = (V, E) un grafo no dirigido, con |V| = n. Definimos C(G) como la codificación del grafo G de la siguiente forma:

$$C(G) = 1^n \# w_1 \# w_2 \# ... \# w_n$$

Cada w_i corresponde a un string binario de largo n, tal que tiene un 1 en la posición j si $\{i, j\} \in E$, o un 0 en caso contrario. Luego, si consideramos $V = \{1, ..., n\}$, podemos especificar un subconjunto U de V mediante un string binario $a_1a_2...a_n$, de forma que $a_i = 1$ si $i \in U$, y $a_i = 0$ si $i \notin U$.

Decimos que un grafo no dirigido G=(V,E) tiene un clique de tamaño k, si existe $U\subseteq V$ tal que |U|=k, y para todo $n_1,n_2\in U$ con $n_1\neq n_2$, tenemos que $\{n_1,n_2\}\in E$.

Demuestre que el siguiente problema está en P:

$$\{w \in \{0,1,\#\} \mid w = a_1 a_2 ... a_n \# C(G) \text{ y el subconjunto de } G \text{ especificado por } a_1 ... a_n \text{ forma un clique}\}$$

En base a lo anterior, demuestre que el siguiente problema está en EXPTIME:

$$\{w \in \{0,1,\#\} \mid w = 1^k \# C(G) \text{ y el grafo } G \text{ tiene un clique de tamaño } k\}$$

Demuestre que este problema también esta en NP.