System Technical Document

Prototype Solar Panel Tracker Untuk Penerangan Dengan Memanfaatkan PIR Sensor

Dibuat Oleh:

13322008 Paian Manalu

13322018 Rika Merianti Simatupang

13322033 Rivaldo Butar-Butar

Untuk:

Proyek Akhir Tahun 2

Institut Teknologi Del

Lembar Pengesahan

Dokumen Teknis Proyek Akhir II

Prototype Solar Panel Tracker Untuk Penerangan Dengan Memanfaatkan PIR Sensor

Oleh:

13322008 Paian Manalu

13322018 Rika Merianti Simatupang 1322033 Rivaldo Y.G Butar-Butar

Sitoluama, Juni 2019

Pembimbing

Istas Manalu, S.Tr.Kom., M.T. NIDN: 0104088902

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 2 dari 55
	TA 23 24	

DAFTAR ISI

1		ction	
		oose of Document	
		oe	
		nition,Acronim and Abbreviation	
	1.4 Iden	tification and Numbering	9
	1.5 Refe	rence Documents	11
	1.6 Doc	ument Summary	11
2	Current	System Overview	13
	2.1 Busi	ness Process	13
	2.2 Busi	ness Process Penggunaan Senter	13
	2.3 Proc	edures	14
	2.4 Serv	ice Time	14
3	Target.		15
	3.1 Scor	oe	15
	3.2 Busi	ness Process Solar Panel Tracker	16
	3.2.1	Procedures	16
	3.2.2	Service Time	17
	3.3 Busi	ness Process Penyimpanan Daya	17
	3.3.1	Procedures Penyimpanan Daya	
	3.3.2	Service Time	18
	3.4 Busi	ness Process Lampu Otomatis Menyala	18
	3.4.1	Procedures Lampu Otomatis Menyala	
	3.4.2	Service Time	18
4		ement Definition	
	4.1 High	Level Architecture Design	19
	4.2 Prod	luct Main Function	20
		rs Characteristics	
		straints	
	4.5 Syst	em Environment	
	4.5.1	Development Environment	
	4.5.2	Operational Environment	
5		ement Definition	
		lware Requirement	
		Requirement	
		em Communication Interface	
6	U	Description	
		lware Design	
	6.1.1	Design Rangkaian Solar Panel Tracker	
	6.1.2	Design Rangkaian Lampu	
	6.1.3	Design Rangkaian Pemutar Panel	
	6.1.4	Design Prototipe Panel Surya	
7		Design Description	
		il Functional Description	
	7.1.1	Fungsi Mendeteksi Intensitas Cahaya	
	7.1.2	Fungsi Menyerap Energi dan Menyimpan Energi	
	7.1.3	Function Mendeteksi Pergerakan dan Penerangan Otomatis	
		il Function Flowchart	
	7.2.1	Detail Function Mendeteksi Intensitas Cahaya	
	7.2.2	Detail Function Menyerap Energi dan Menyimpan Energi	
		r 21. Detail Function Menyerap Energi dan Menyimpan Energi	
	7.2.3	Function Mendeteksi Pergerakan dan Penerangan Otomatis	43

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 3 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

8	Imple	mentation	44
		rdware Implementation	
	8.1.1	<u>*</u>	
	8.1.2	Prototipe Solar Panel	
	8.1.3	Penerangan	45
		nction Specification Menggerakkan Solar Panel	
9		ıg	
	9.1 Te	st Script Butir-Uji-1	49
	9.2 Te	st Script Butir-Uji-2	50
	9.3 Te	st Script Butir-Uji-3	51
L	AMPIRA	V	53
Se	ejarah Ver	si	54
Se	ejarah Peri	ıbahan	55

IT Del SWTD_Kel-04_IPM_PAII Halaman 4 dari 55 TA 23.24

DAFTAR GAMBAR

Gambar 1. Business Process Penggunaan Senter	14
Gambar 2. Business Process Solar Panel Tracker	16
Gambar 3. Business Process Penyimpanan Daya	17
Gambar 4. Business Process Lampu Otomatis Menyala	18
Gambar 5. Solar Panel Monocrystalline 12wp	26
Gambar 6. Arduino Mega	26
Gambar 7. DS Servo	27
Gambar 8. Sensor LDR	28
Gambar 9. Baterai SMT-POWER 12V 40Ah	28
Gambar 10. Solar Charge Controller	29
Gambar 11. Watt Meter Digital	29
Gambar 12. Battery Capacity	30
Gambar 13. MCB	30
Gambar 14. Relay	31
Gambar 15. BH1750	32
Gambar 16. Lampu	32
Gambar 17. Sensor Pir	33
Gambar 18. Poswer Inverter	34
Gambar 19. Prototipe Solar Panel	39
Gambar 20. Detail Function Mendeteksi Intensitas Cahaya	41
Gambar 21. Detail Function Menyerap Energi dan Menyimpan Energi	42
Gambar 22. Function Mendeteksi Pergerakan dan Penerangan Otomatis	43
Gambar 23. Rangkaian Mikrokontroller dalam Enclosure	44
Gambar 24. Prototipe Solar Panel	45
Gambar 25. Penerangan	46

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 5 dari 55
	TA 23.24	

DAFTAR TABEL

Tabel 1. Definisi	
Tabel 2. Akronim	9
Tabel 3. Singkatan	
Tabel 4. Aturan Penulisan Dokumen	
Tabel 5. Komponen Perangkat Keras	23
Tabel 6. Test Script BU-01	
Tabel 7. Test Script BU-02	
Tabel 8. Test Script BU-03	

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 6 dari 55
	TA 23.24	

1 Introduction

Dokumen kebutuhan perangkat lunak adalah dokumen yang merangkum semua pernyataan tentang fungsi dan karakteristik yang diharapkan dari sistem *Prototype Solar Panel Tracker*. Tujuan pembuatan dokumen ini adalah untuk memastikan bahwa ada pemahaman yang jelas dan konsisten antara pengguna dan pengembang tentang kebutuhan sistem. Dokumen ini akan mencakup ruang lingkup sistem, daftar definisi, singkatan, dan istilah yang digunakan, identifikasi dan penomoran elemen-elemen penting, referensi dokumen yang terkait, serta ikhtisar atau ringkasan dari konten utama dokumen tersebut.

1.1 Purpose of Document

Dokumen ini disusun oleh tim pengembang yang bertanggung jawab untuk memahami spesifikasi kebutuhan dalam membangun *Prototype Solar Panel Tracker*. Tujuan dari penyusunan dokumen ini adalah:

- 1. Dokumentasi kebutuhan perangkat keras sistem sesuai dengan persyaratan yang diberikan oleh pihak terkait atau pihak pembimbing.
- 2. Memberikan gambaran tentang sistem pelacak panel surya yang akan dibangun, termasuk fungsi-fungsinya, ruang lingkup, batasan, dan tujuan dari sistem yang akan dibuat.
- 3. Mendeskripsikan dan menjelaskan kebutuhan dari pengguna agar tim pengembang dapat mengimplementasikannya dalam sistem yang akan dibangun.

1.2 Scope

Tujuan dari pengembangan *Prototype Solar Panel Tracker* Untuk Penerangan Dengan Memanfaatkan PIR Sensor adalah untuk meningkatkan efisiensi penggunaan energi melalui teknologi yang ramah lingkungan. Proyek ini meliputi analisis kebutuhan, perancangan, implementasi, pengujian, dan evaluasi efektivitas sistem dalam berbagai kondisi lingkungan goa.

Dalam konteks ini, hubungan antara tujuan dan keuntungan bagi organisasi pemilik sistem adalah sebagai berikut:

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 7 dari 55

- Meningkatkan efisiensi penggunaan energi dengan mengatur penyaluran energi dari panel surya dan mengaktifkan lampu otomatis sesuai dengan deteksi gerak.
 Ini akan berdampak pada penghematan biaya energi bagi organisasi.
- 2. Dengan menerapkan teknologi yang ramah lingkungan, sistem ini bertujuan untuk mengurangi jejak karbon dan dampak negatif terhadap lingkungan sekitar. Ini sejalan dengan komitmen organisasi terhadap keberlanjutan lingkungan.
- 3. Sistem juga dirancang untuk meningkatkan kualitas layanan dengan memberikan pencahayaan otomatis yang responsif terhadap kehadiran manusia di area Goa Banuarea. Dengan demikian, sistem ini meningkatkan kenyamanan dan keamanan bagi pengunjung serta penghuni area tersebut.

1.3 Definition, Acronim and Abbreviation

Pada bagian ini akan terdapat beberapa kata yang berupa akronim, singkatan dan juga istilah-istilah yang digunakan.

Tabel 1. Definisi

No.	Definisi	Penjelasan	
1.	Software	SRS adalah sebuah dokumen yang berisi pernyataan	
	Requirement	lengkap dari apa yang dapat dilakukan oleh perangkat	
	Specification	lunak, tanpa menjelaskan bagaimana hal tersebut dikerjakan	
		oleh perangkat lunak.	
2.	Current System	Merupakan sistem yang sedang berjalan saat ini atau sistem	
	Overview	yang sedang diterapkan sebelum sistem yang baru.	
3.	Target System	Menggambarkan mengenai target sistem yang diharapkan	
	Overview	setelah menerapkan sistem yang dibagun.	
4.	System General	Berisi tentang fungsi utama dari sistem yang akan dibagun.	
	Description		
5.	Requirement	Deskripsi antarmuka dari sistem, dan deskripsi tentang	
	Definition	syarat dalam sistem.	
6.	Detail Design	Deskripsi struktur detail dari komponen yang dibutuhkan	
	Description	sistem.	

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 8 dari 55
	TA 23.24	

Tabel 2. Akronim

No	Akronim	Deskripsi
1.	ToR	Term of Reference, merupakan dokumen penugasan
		proyek.
2.	MoM	Minutes of Meeting, merupakan dokumen yang berisi
		diskusi antara dosen pembimbing dengan kelompok
		pengembang proyek

Singkatan adalah pemendekan kalimat, frasa atau nama menjadi huruf awal yang tidak dapat dibaca tetapi harus dilafalkan satu persatu hurufnya. Penggunaan singkatan pada dokumen ini dapat dilihat pada table berikut ini.

Tabel 3. Singkatan

No.	Singkatan	Deskripsi
1.	PA2	Proyek Akhir 2
2.	PiP	Project Implementation Plan
3.	BPMN	Business Process Model and Notation
4.	SRS	Software Requirement Spesification

1.4 Identification and Numbering

Semua dokumen yang dikumpulkan sebagai bagian dari pengerjaan Proyek Akhir II di Institut Teknologi DEL mengikuti kaidah penomoran yang dinyatakan dalam dokumen Standard Penamaan dan Penomoran hasil Proyek Akhir II. Aturan penamaan dan penomoran yang digunakan pada dokumen ini dapat dilihat pada tabel berikut.

Tabel 4. Aturan Penulisan Dokumen

No.	Deskripsi Ketentuan		
1.	Aturan penamaan dokumen dengan nama SRS-Kel.04-IPM-TA 23.24 PA II		
	XX	XX : Nama dokumen	
	YY : Nomor Kelompok proyek		
	ZZZ : Inisial pembimbing		

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 9 dari 55

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

No.	Deskripsi Ketentuan		
	AA : Tahun Ajaran		
2.	Aturan penamaan use case dengan nama UC-YY.		
	UC-01		
	UC-02		
	UC : Nama istilah untuk use case		
	YY : Nomor urutan use case		
3.	Aturan penamaan functional requirement dengan nama F-XX		
	F-01		
	F-02		
	F : Nama istilah untuk fungsi		
	XX : Nomor urutan fungsi		
4.	Aturan penamaan non-functional requirement dengan nama NF-XX		
	NF-01		
	NF-02		
	NF : Non functional		
	XX : Nomor urutan fungsi		
5.	Aturan penomoran dan penamaan bab dan sub-bab		
	1. Untuk penulisan penomoran bab : 1, 2, 3		
	Contoh: 1 Pembukaan		
	2. Untuk penulisan penomoran sub-bab: 1.1, 1.2, 1.3		
	Contoh: 1.1 Tujuan Penulisan Dokumen		
	3. Untuk penulisan penomoran sub sub-bab: 1.1.1, 1.1.2, 1.1.3		
	Contoh: 2.1.1 Business Process		

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 10 dari 55
	TA 23.24	

No.	Deskripsi Ketentuan
6.	Aturan penomoran dan penamaan tabel dan gambar sebagai berikut.
	1. Untuk tabel: Tabel 1. Daftar Definisi
	2. Untuk gambar : Gambar 1. Proses Bisnis
	3. Ukuran Font Judul Bab: 12
	4. Ukuran Font Judul Subbab: 12
	5. Jenis Font Judul : Arial
	6. Jenis Font Caption Tabel: Times New Roman
	7. Jenis Font Caption Gambar: Times New Roman
	8. Ukuran Font Caption Tabel:12pt bold-black
	9. Ukuran Font Caption Gambar:12
	10. Jenis Font Deskripsi: Times New Roman
	11. Spasi antar judul dan paragraf : 1.5

1.5 Reference Documents

Dokumen yang menjadi rujukan dokumen ini adalah:

- 1. ToR-Kel.04-IPM-TA 23.24 PA II, Term of Reference *Prototype Solar Panel Tracker* Untuk Penerangan Dengan Memanfaatkan PIR Sensor
- 2. PiP-Kel.04-IPM-TA 23.24 PA II, Project Implementation Plan *Prototype Solar Panel Tracker* Untuk Penerangan Dengan Memanfaatkan PIR Sensor
- 3. SRS-Kel.04-IPM-TA 23.24 PA II, Project Implementation Plan *Prototype Solar Panel Tracker* Untuk Penerangan Dengan Memanfaatkan PIR Sensor

1.6 Document Summary

Sistematika pembahasan dokumen STD ini sebagai berikut:

- 1. Pada bab *Introduction* dijelaskan mengenai tujuan dari dokumen, scope(batasan), definition, overview, identification and reference document.
- 2. Pada bab *Current System Overview* menggambarkan mengenai..proses dari sistema yang berjalan saat ini. Proses dan waktu yang dibutuhkan pada sistem yang sedang berjalan saat ini serta ruang lingkup, proses berjalannya sistem, dan waktu yang dibutuhkan pada sistema yang sedang dibagun.

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 11 dari 55
D 1		1 4111 0 1 1 7

- 3. Pada bab *Target System Overview* menggambarkan mengenai target dari sistem yang akan dibangun dan diterapkan. Proses dan waktu yang dibutuhkan pada sistem yang baru yang akan diterapkan, proses berjalannya sistem, dan keuntungan dari penerapan sistem yang baru.
- 4. Pada *bab System General Description*, menggambarkan fungsi utama sistem yang dibangun, karakteristik dari penggunaan sistem, batasan dari sistem, serta lingkungan dalam pengembangan maupun dalam pengoperasian sistem tersebut.
- 5. Pada bab *Requirement Definition* dijelaskan deskripsi antarmuka sistem, deskripsi fungsi pada sistem, dan gambaran data yang digunakan dalam pengembangan sistem serta batasan dalam pengembangan sistem.
- 6. Pada bab *Design Description* menjelaskan tentang rincian dan struktur dari komponen, alat dan perangkat yang dibutuhkan dalam pembuatan sistem, rangkaian setiap proses yang susun oleh tim pengembang untuk menjalankan sistem dalam memastikan bahwa sistema yang dibangun dapat diimplementasikan sesuai rancangan yang dibuat pada dokumen sebelumnya
- 7. Pada bab *Detail Design Description* berisi mengenai table structure, dan detail function description.
- 8. Pada bab *Implementation* berisi tentang dokumentasi proses implementasi dari sistem yang telah dibangun oleh tim pengembang dari sistem.
- 9. Pada bab *Testing* akan menggambarkan proses dan hasil pengujian terhadap sistem yang telah diimplementasikan.

2 Current System Overview

Seribu Goa Banurea di Humbang Hasundutan adalah destinasi alam yang menawarkan pengalaman unik menjelajahi goa bawah tanah dengan aliran sungai dan pemandangan hijau perbukitan Gunung Pinapan. Meskipun aksesnya sulit, keindahan pepohonan rindang dan udara sejuk menarik banyak pengunjung. Goa ini terkenal dengan lorong-lorongnya yang panjang dan aktivitas seru seperti Cave Tubing, yang memungkinkan pengunjung menikmati satwa liar dan air terjun.

Saat ini, pengunjung mengandalkan senter sebagai sumber pencahayaan utama karena belum ada penerangan permanen yang memadai di dalam goa. Setiap pengunjung diberikan senter untuk membantu mereka menjelajahi lorong-lorong gelap dan melihat formasi batuan yang menarik. Namun, ketergantungan pada senter ini menimbulkan tantangan, seperti risiko kehabisan baterai atau lampu senter mati di tengah perjalanan. Oleh karena itu, pengunjung dihimbau untuk membawa senter cadangan dan baterai ekstra sebelum masuk ke dalam goa. Meskipun senter cukup efektif untuk sementara, ada kebutuhan mendesak untuk meningkatkan sistem pencahayaan di Seribu Goa Banurea demi keamanan dan kenyamanan pengunjung. Pengembangan sistem pencahayaan permanen akan menciptakan lingkungan yang lebih aman dan memudahkan eksplorasi goa di masa depan.

2.1 Business Process

2.2 Business Process Penggunaan Senter

Pada bagian ini akan dijelaskan proses bisnis dari sistem yang ada saat ini dimana masyarakat menggunakan senter untuk menjelejahi Seribu Goa. Proses penggunaan senter dapat diperhatikan pada Gambar 1.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 13 dari 55
	TA 23.24	

Gambar 1. Business Process Penggunaan Senter

2.3 Procedures

Urutan proses penggunaan penerangan senter adalah sebagai berikut:

- 1. Masyarakat mendapatkan senter
- 2. Masyarakat menggunakan senter pada saat menjelajahi goa
- 3. Masyarakat mengembalikan senter pada saat telah menyelesaikan penjelajahan di dalam goa

2.4 Service Time

Pada proses peminjaman senter ini kurang efisien dan memakan waktu yang cukup banyak.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 14 dari 55
	TA 23.24	

3 Target

Sistem Solar Panel Tracker ini dirancang untuk secara otomatis mengatur orientasi panel surya agar selalu mengikuti pergerakan matahari sepanjang hari, dengan tujuan memaksimalkan penyerapan energi. Komponen utama yang digunakan dalam sistem ini meliputi sensor LDR untuk mendeteksi posisi matahari, aktuator untuk menggerakkan panel surya, dan kontroler untuk mengatur operasi sensor dan aktuator guna mengoptimalkan penyerapan energi. Fungsi sistem ini adalah untuk melacak pergerakan matahari, sehingga panel surya selalu dalam posisi optimal untuk menyerap sinar matahari. Ini akan meningkatkan produktivitas energi yang dihasilkan oleh panel surya dan mengurangi ketergantungan pada sumber energi konvensional. Integrasi dengan infrastruktur energi surya yang telah ada di Seribu Goa Banurea memungkinkan koordinasi yang lebih baik antara komponen-komponen sistem, meningkatkan kinerja dan produktivitas energi secara keseluruhan.

Untuk meningkatkan keamanan dan kenyamanan pengunjung, sistem Solar Panel Tracker ini juga akan dilengkapi dengan sensor PIR yang mendeteksi pergerakan pengunjung di sekitar area. Ketika sensor PIR mendeteksi pergerakan, sinyal akan dikirim ke kontroler, yang kemudian akan mengaktifkan lampu otomatis untuk memberikan pencahayaan tambahan. Jika tidak ada pergerakan yang terdeteksi setelah beberapa waktu, kontroler akan mematikan lampu otomatis untuk menghemat energi. Dengan integrasi sensor PIR, sistem ini tidak hanya meningkatkan efisiensi energi matahari, tetapi juga memberikan keamanan tambahan dan pengalaman yang lebih nyaman bagi pengunjung. Penggunaan energi yang efisien ini akan mengurangi pemborosan energi dan biaya operasional dalam jangka panjang.

3.1 Scope

Proyek ini akan mengimplementasikan sistem Solar Panel Tracker dengan lampu otomatis di lingkungan Seribu Goa Banuarea di Humbang Hasundutan, yang terdiri dari daerah perbukitan dengan aliran sungai dan perkebunan masyarakat. Destinasi wisata alam ini menawarkan pengalaman unik seperti susur goa bawah tanah dan tubing di sepanjang sungai. Meskipun akses ke lokasi ini cukup sulit, keindahan alamnya menarik banyak pengunjung.

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 15 dari 55
Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut		

3.2 Business Process Solar Panel Tracker

Pada business process akan di jelaskan tentang prosedur untuk menggunakan sistem yang dalam pengembangan sistem ini.

Gambar 2. Business Process Solar Panel Tracker

3.2.1 Procedures

Berikut adalah prosedur kerja dari sistem Solar Panel Tracker dengan lampu otomatis yaitu:

- 1.Sensor LDR mengukur intensitas cahaya matahari.
- 2.Motor servo menggerakkan panel surya untuk selalu menghadap ke arah matahari berdasarkan data dari sensor LDR.
- 3.Panel surya menyerap sinar matahari dan mengubahnya menjadi energi listrik.
- 4. Energi listrik ini kemudian disimpan di dalam baterai.
- 5. Jika baterai belum penuh, pengisian daya akan terus berlanjut.
- 6. Jika baterai sudah penuh, pengisian daya berhenti untuk mencegah kelebihan muatan.
- 7. Sensor PIR mendeteksi jika ada pergerakan pengunjung di sekitar area goa.
- 8. Jika sensor mendeteksi pergerakan, lampu otomatis akan menyala.
- 9. Jika tidak ada pergerakan yang terdeteksi setelah beberapa waktu, lampu otomatis akan mati untuk menghemat energi.

3.2.2 Service Time

Proses penyimpanan daya ini memerlukan waktu yang banyak untuk menyerap energi matahari, mengonversinya menjadi energi listrik, dan menyimpannya di baterai untuk digunakan saat ada pengunjung.

3.3 Business Process Penyimpanan Daya

Pada bagian ini akan dijelaskan proses bisnis dimana sistem dapat menyerap energi matahari untuk disimpan menjadi daya yang akan disimpan. Proses bisnis penyimpanan daya dapat dilihat pada Gambar 3.

Gambar 3. Business Process Penyimpanan Daya

3.3.1 Procedures Penyimpanan Daya

Berikut adalah prosedur penyimpanan daya dengan adanya sistem yang akan dibangun oleh pengembang:

- 1. Sistem dihidupkan oleh pengembang.
- 2. Sensor mengukur intensitas cahaya.
- 3. Jika matahari terdeteksi, Arduino menghitung posisi matahari berdasarkan data intensitas cahaya.
- 4. Jika tidak ada matahari, panel tidak beroperasi dan baterai tidak diisi daya.
- 5. Servo menggerakkan panel mengikuti arah matahari.
- 6. Panel menyerap sinar matahari dan mengubahnya menjadi listrik.
- 7. Listrik disimpan ke dalam baterai.
- 8. Pengembang mengkonversi listrik AC menjadi DC.
- 9. Pengembang dapat menggunakan listrik DC untuk menghidupkan lampu.

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 17 dari 55
D1 '' 1 1 ' 1 ' 1 ' 1 '	· 1 D D	1 A11' O 1 ' T '

3.3.2 Service Time

Proses penyimpanan daya ini memerlukan waktu yang banyak untuk menyerap energi matahari, mengonversinya menjadi energi listrik, dan menyimpannya di baterai untuk digunakan saat ada pengunjung.

3.4 Business Process Lampu Otomatis Menyala

Pada bagian ini akan dijelaskan proses bisnis saat lampu otomatis menyala. Proses bisnis saat lampu otomatis menyala dapat dilihat pada Gambar 2.

Gambar 4. Business Process Lampu Otomatis Menyala

3.4.1 Procedures Lampu Otomatis Menyala

Berikut adalah prosedur lampu otomatis yang menyala dengan adanya sistem yang akan dibangun:

- 1. Pengunjung memasuki area goa.
- 2. Jika pengunjung berada dalam jarak sensor PIR, maka pergerakan akan dideteksi.
- 3. Kemudian relay akan menghubungkan arus.
- 4. Apabila pergerakan pengunjung masih terdeteksi, lampu otomatis akan menyala.
- 5. Namun, jika tidak ada pergerakan pengunjung yang terdeteksi, lampu otomatis akan mati.

3.4.2 Service Time

Setelah adanya sistem ini, maka proses lampu otomatis menyala dapat dilakukan secara efisien sehingga menghemat waktu.

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 18 dari 55
Delement in improved the sign desired and delement of the control		

4 Requirement Definition

Solar Panel Tracker adalah sistem yang terdiri dari perangkat keras yang dirancang untuk secara otomatis mengatur posisi panel surya agar selalu mengikuti pergerakan matahari sepanjang hari. Perangkat keras sistem ini meliputi panel surya monokristalin 120wp yang dipasang pada struktur yang dapat melacak gerakan matahari, Arduino mega sebagai otak sistem yang mengontrol gerakan panel surya, DS Servo untuk menggerakkan panel surya secara horizontal, Power Inverter untuk mengubah arus searah (DC) menjadi arus bolakbalik (AC), sensor LDR dan sensor PIR untuk mendeteksi intensitas cahaya dan gerakan di sekitar panel surya, serta baterai SMT-POWER 12V 40Ah sebagai penyimpan energi listrik.

Perangkat lunak sistem ini terdiri dari program-program yang dijalankan oleh Arduino mega untuk mengatur dan mengendalikan gerakan panel surya berdasarkan informasi yang diterima dari sensor-sensor. Program tersebut juga mengirim informasi tentang konsumsi daya dan kinerja sistem keseluruhan ke Watt Meter Digital untuk pemantauan. Dengan integrasi perangkat keras dan perangkat lunak tersebut, *Solar Panel Tracker* dapat beroperasi secara adaptif dan efisien, meningkatkan penyerapan energi matahari dan efisiensi penggunaan energi secara keseluruhan. Sistem ini memberikan solusi yang ramah lingkungan dan berkelanjutan dalam menghasilkan dan mengelola energi matahari untuk kebutuhan listrik.

4.1 High Level Architecture Design

Pengembangan alat ini menggunakan beberapa komponen untuk membentuk arsitektur, antara lain:

1) Sensor LDR

Sensor LDR ini berfungsi untuk mendeteksi intensitas cahaya lingkungan sekitar panel surya. Informasi ini digunakan untuk menentukan apakah panel surya perlu disesuaikan posisinya berdasarkan tingkat pencahayaan.

2) Sensor PIR

Sensor PIR ini berfungsi untuk mendeteksi gerakan manusia atau benda di sekitar panel surya. Hal ini dapat digunakan untuk mengaktifkan atau menonaktifkan sistem pelacakan panel surya tergantung pada kehadiran manusia.

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 19 dari 55

3) DS Servo

DS Servo ini digunakan untuk menggerakkan panel surya secara horizontal dan vertikal. DS Servo menerima sinyal pengendalian dari Arduino Mega dan mengatur posisi panel surya agar mengikuti pergerakan matahari.

4) Power Inverter

Power Inventer ini digunakan untuk mengubah arus searah (DC) dari panel surya menjadi arus bolak-balik (AC). Ini memungkinkan energi yang dihasilkan oleh panel surya dapat digunakan untuk menggerakkan motor atau sistem penggerak lainnya dalam *Solar Panel Tracker*.

5) Baterai SMT-POWER 12V 40Ah

Berfungsi sebagai penyimpan energi listrik yang dihasilkan oleh panel surya. Baterai menyimpan energi yang tidak langsung digunakan oleh sistem, seperti saat terjadi penurunan intensitas cahaya matahari atau pada malam hari.

6) Watt Meter Digital

Ini digunakan untuk memantau konsumsi daya dan kinerja sistem keseluruhan. Ini memberikan informasi yang berguna bagi pengguna untuk memantau kinerja *Solar Panel Tracker* dan mengoptimalkan penggunaan energi.

4.2 Product Main Function

Terdapat beberapa fungsi utama dari prototipe ini yang akan digunakan yaitu:

- 1. Fungsi untuk mengoptimalkan penyerapan energi matahari
- 2. Fungsi untuk mendeteksi pergerakan masyarakat
- 3. Fungsi untuk meningkatkan penerangan
- 4. Fungsi untuk menyimpan energi

4.3 Users Characteristics

Terdapat beberapa fungsi utama dari prototipe ini yang akan digunakan yaitu:

- 1. Fungsi untuk mengoptimalkan penyerapan energi matahari
- 2. Fungsi untuk mendeteksi pergerakan masyarakat
- 3. Fungsi untuk meningkatkan penerangan
- 4. Fungsi untuk menyimpan energi

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 20 dari 55
Dolouman ini mamunalean haaian dari daleumant	asi manualan asamaan Duasamana Duar	rale Alchin 2 mahagiarra Institut

4.4 Constraints

Berikut ini adalah Batasan yang dimiliki dalam pengembang Solar Panel Tracker yaitu:

1. Keterbatasan Energi Matahari

Kinerja *Solar Panel Tracker* sangat tergantung pada cahaya matahari yang tersedia di lokasi Seribu Goa Banurea. Cuaca buruk atau penutupan langit yang berlebihan dapat mengurangi efisiensi pengumpulan energi oleh panel surya.

2. Keterbatasan Ruang dan Akses

Pembuatan *Solar Panel Tracker* harus memperhitungkan keterbatasan ruang dan aksesibilitas di dalam goa. Panel surya dan perangkat pelacak harus dirancang agar cocok dengan lingkungan yang sempit dan mungkin sulit dijangkau.

4.5 System Environment

Berikut akan dijelaskan lingkungan *software* dan *hardware* yang dibutuhkan dalam pengembangan *Solar Panel Tracker*.

4.5.1 Development Environment

Dalam pengembangan alat *Solar Panel Tracker for Seribu Goa Banurea* dibangun oleh kelompok PA II akan berfungsi dengan spesifikasi sebagai berikut:

Alat ini membutuhkan aplikasi dengan untuk menjalankan code program spesifikasi:

Server : Arduino IDE

Operating System : Windows

DBMS : Arduino software

Spesifikasi hardware lingkungan Pembangunan Solar Ponal Tracker yaitu:

Processor : Intel(R)Core(TM)i5-10800H CPU

Memory : 8.00 GB

4.5.2 Operational Environment

Dalam pengembangan alat *Solar Panel Tracker for Seribu Goa Banurea* dibangun oleh kelompok PA II akan berfungsi dengan spesifikasi sebagai berikut:

Alat ini membutuhkan aplikasi dengan untuk menjalankan code program spesifikasi:

Server : Arduino IDE

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 21 dari 55

Client : Penjunjung Destinasi Seribu Goa Banurea

Operating System : Windows

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 22 dari 55
	TA 23.24	

5 Requirement Definition

Requirement adalah gambaran atau sketsa layanan yang akan disediakan oleh sistem, serta batasan-batasan yang mengatur fungsi sistem tersebut. Ini mencakup pernyataan tentang pelayanan yang akan diberikan oleh sistem, serta batasan-batasan yang mengatur cara sistem beroperasi, mungkin termasuk definisi matematis dari fungsi sistem yang bersangkutan.

5.1 Hardware Requirement

Antarmuka perangkat keras yang dibutuhkan oleh pengembang untuk membagun *Solar Panel Tracker* dengan sistem yang sangat penting. Adapun komponen perangkat keras yang dibutuh oleh pengembang yaitu:

Tabel 5. Komponen Perangkat Keras

Komponen	Deskripsi
Solar Panel Monocrystalline 120wp	Dipasang pada struktur yang dapat
	melacak gerakan matahari, panel ini selalu
	berada dalam posisi optimal untuk
	menangkap sinar matahari sepanjang hari,
	meningkatkan efisiensi pengumpulan
	energi dan kinerja keseluruhan sistem
	panel surya.
Arduino Mega	Menerima informasi dari sensor posisi
	matahari dan mengatur motor atau servo
	untuk menggerakkan panel surya agar
	selalu berada dalam sudut yang optimal
	untuk menangkap sinar matahari.
DS Servo	Untuk menggerakkan panel surya agar
	selalu mengikuti pergerakan matahari
	secara otomatis.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 23 dari 55
	TA 23.24	

Sensor LDR	Sensor cahaya yang mendeteksi intensitas	
	cahaya atau kecerahan lingkungan	
	sekitarnya.	
Baterai SMT-POWER 12V 40Ah	Sebagai penyimpan energi listrik yang	
	dihasilkan oleh panel surya.	
Solar Charge Controller	Untuk menjaga kesehatan dan kinerja	
	baterai serta memastikan efisiensi dan	
	keandalan keseluruhan sistem.	
Watt Meter Digital	Untuk mengukur dan memantau konsumsi	
	daya serta kinerja sistem secara	
	keseluruhan.	
Battery Capacity/Voltage	Membantu menjaga kesehatan dan kinerja	
	baterai dalam Solar Panel Tracker dan	
	dapat memastikan kelancaran operasional	
	dan efisiensi sistem secara keseluruhan.	
MCB (Miniature Circuit Breaker)	Untuk melindungi rangkaian dari	
	kelebihan arus yang dapat menyebabkan	
	kerusakan pada sistem. MCB akan	
	memotong otomatis pasokan daya saat	
	terjadi kelebihan arus, sehingga mencegah	
	terjadinya kerusakan pada peralatan atau	
	komponen panel surya.	
Relay	Relay berfungsi untuk mengontrol nyala	
	lampu secara otomatis berdasarkan deteksi	
	gerakan dari PIR sensor, sehingga lampu	
	hanya menyala saat diperlukan.	
Step-down Converter	Step-down berfungsi untuk mengubah	
	tegangan tinggi yang dihasilkan oleh panel	
	surya menjadi tegangan rendah yang	
	sesuai untuk mengoperasikan perangkat	
	elektronik seperti kontroler, sensor, dan	

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 24 dari 55
	TA 23.24	

lampu LED.	
Sebagai output yang menghasilkan cahaya	
untuk penerangan dalam goa tersebut.	
mengubah arus searah (DC) yang	
dihasilkan oleh panel surya menjadi arus	
bolak-balik (AC) yang dapat digunakan	
untuk menggerakkan motor atau sistem	
penggerak lainnya dalam Solar Panel	
Tracker. Ini memungkinkan konversi daya	
yang dihasilkan oleh panel surya menjadi	
bentuk yang sesuai untuk menggerakkan	
mekanisme pelacak (tracker) panel surya	
guna memaksimalkan penerimaan cahaya	
matahari secara efisien.	
Sensor PIR pada Solar Panel Tracker	
berfungsi untuk mendeteksi gerakan	
manusia atau benda bergerak di sekitar	
panel surya.	

Dibawah ini akan dijelaskan lebih lanjut mengenai komponen untuk kebutuhan hardware dalam mengerjakan proyek ini yaitu:

1. Solar Panel Monocrystalline 120wp

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 25 dari 55
	TA 23.24	

Gambar 5. Solar Panel Monocrystalline 12wp

(Sumber: https://ktcables.com.au/2021/03/18/120w-monocrystalline-12v-solar-panel/)

Solar Panel Monocrystalline 120Wp adalah jenis panel surya yang menggunakan sel-sel surya monokristalin untuk mengubah energi matahari menjadi listrik. Dengan daya output sebesar 120 watt puncak (Wp), panel ini mampu menghasilkan listrik sebanyak itu saat terkena sinar matahari langsung pada kondisi optimal. Keunggulan utama dari panel surya monokristalin adalah efisiensinya yang tinggi dalam mengubah energi matahari menjadi listrik, serta kemampuannya untuk menghasilkan daya yang stabil dalam jangka waktu yang lama. Panel ini cocok digunakan untuk aplikasi-aplikasi yang membutuhkan daya listrik yang handal dan efisien, seperti proyek-proyek rumah tangga, komersial, dan industri.

2. Arduino Mega

Gambar 6. Arduino Mega

(Sumber: https://elektronikhobi.net/wp-content/uploads/ARDUINO_MEGA.png)

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 26 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

Arduino Mega2560 adalah papan mikrokontroler yang dilengkapi dengan IC ATmega2560. Papan ini memiliki 54 pin digital input/output, di mana 15 di antaranya bisa digunakan sebagai output PWM, serta 16 input analog dan 4 port serial UART. Selain itu, Arduino Mega2560 dilengkapi dengan osilator kristal 16 MHz, koneksi USB, colokan listrik, header ICSP, dan tombol reset. Papan ini mencakup semua yang diperlukan untuk berfungsi sebagai mikrokontroler. Anda hanya perlu menghubungkannya ke komputer dengan kabel USB atau menyambungkannya ke adaptor AC-ke-DC atau baterai untuk sumber dayanya.

3. DS Servo

Gambar 7. DS Servo (Sumber: https://www.robotics.org.za/DS3235-270)

Motor servo adalah jenis motor yang dirancang untuk menghasilkan gerakan presisi dan dapat dikontrol dengan akurasi tinggi. Motor servo umumnya digunakan dalam berbagai aplikasi di mana pergerakan yang tepat dan stabil diperlukan, seperti robotika, sistem kendali otomatis, peralatan industri, dan model kendaraan. Sebuah motor servo terdiri dari beberapa komponen utama, termasuk motor DC, gearbox (pengurang kecepatan), potensiometer, dan sebuah sirkuit kontrol yang biasanya disebut sebagai kontroler servo. Kontroler servo menerima sinyal kontrol dari mikrokontroler atau perangkat lainnya, dan kemudian menggerakkan motor dengan putaran yang sesuai untuk mencapai posisi yang diinginkan.

4. Sensor LDR

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 27 dari 55
	TA 23.24	

Gambar 8. Sensor LDR

(Sumber: https://alltopnotch.co.uk/product/ldr-photoresistor-light-detection-sensor-module/)

Sensor LDR (Light Dependent Resistor) adalah komponen elektronik yang berubah resistansinya sesuai dengan intensitas cahaya yang diterimanya. Ketika terkena cahaya, resistansi LDR menurun, sedangkan ketika dalam kegelapan, resistansinya meningkat. Prinsip kerja Sensor LDR didasarkan pada efek fotokonduktifitas, yaitu kemampuan bahan semikonduktor untuk mengubah resistansinya sebagai respons terhadap cahaya. Sensor LDR umumnya digunakan dalam berbagai aplikasi yang memerlukan deteksi atau pengukuran intensitas cahaya, seperti dalam sistem penerangan otomatis (misalnya lampu jalanan yang menyala secara otomatis saat gelap), pengendalian kecerahan layar pada perangkat elektronik, atau dalam percobaan dan proyek elektronika sebagai sensor cahaya.

5. Baterai SMT-POWER 12V 40Ah

Gambar 9. Baterai SMT-POWER 12V 40Ah

(Sumber: https://www.bhinneka.com/smt-power-battery-smt1240-

sku3325144772#attr=250522,250523)

Baterai SMT-POWER 12V 40Ah adalah jenis baterai lead-acid yang memiliki tegangan nominal 12 volt dan kapasitas 40 ampere-hour (Ah). Baterai ini biasanya digunakan dalam berbagai aplikasi yang membutuhkan daya cadangan atau daya penyimpanan, seperti sistem penerangan darurat, sistem pembangkit listrik tenaga surya, sistem UPS (Uninterruptible Power Supply), dan berbagai peralatan listrik lainnya. Baterai lead-acid seperti ini menggunakan elektrolit berbasis asam sulfat

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 28 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

dan memiliki konstruksi dalam bentuk sel yang terhubung secara serial untuk menghasilkan tegangan yang diinginkan. Mereka dapat memberikan daya yang relatif stabil selama beberapa tahun dengan perawatan yang tepat, seperti pengisian ulang yang sesuai dan penggantian jika sudah melewati masa pakainya.

6. Solar Charge Controller

Gambar 10. Solar Charge Controller

(Sumber: https://tdsolarshop.ca/collections/solar-charge-controller/products/30a-12-24v-pwm-charge-controller)

Solar Charge Controller adalah perangkat elektronik yang digunakan dalam sistem pembangkit listrik tenaga surya untuk mengatur pengisian baterai dengan efisien dan melindungi baterai dari kerusakan akibat overcharging atau overdischarging. Fungsi utama dari Solar Charge Controller adalah mengatur arus masuk dari panel surya ke baterai, sehingga baterai dapat diisi secara optimal tanpa risiko kerusakan. Ketika intensitas cahaya matahari meningkat, Solar Charge Controller akan mengatur arus masuk ke baterai agar tetap dalam batas yang aman, dan ketika intensitas cahaya berkurang atau pada malam hari, Solar Charge Controller akan mencegah arus baterai mengalir kembali ke panel surya, menghindari kerugian energi.

7. Watt Meter Digital

Gambar 11. Watt Meter Digital

 $(Sumber: \underline{https://www.exploroz.com/forum/110349/how-to-read--understand-a-solar-panel-watt-beta and a solar-panel-watt-beta and a solar-pan$

meter)

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 29 dari 55
	TA 23.24	

Watt Meter Digital adalah perangkat elektronik untuk mengukur konsumsi daya listrik perangkat atau sistem dengan presisi. Ini mengukur daya aktif, tegangan, arus, dan bisa menampilkan energi total yang digunakan. Tampilan digital memudahkan pembacaan, dan beberapa model memiliki fitur tambahan seperti pengukuran faktor daya. Digunakan untuk mengelola konsumsi energi secara efektif.

8. Battery Capacity/Voltage

Gambar 12. Battery Capacity

(Sumber: https://m.media-amazon.com/images/I/51mM0QB4SZL.jpg)

Battery Capacity adalah jumlah energi yang dapat disimpan oleh baterai, diukur dalam ampere-hour (Ah) atau watt-hour (Wh), menentukan berapa lama baterai dapat memberikan daya sebelum perlu diisi ulang. Battery Voltage adalah tegangan listrik yang dihasilkan oleh baterai, diukur dalam volt (V), menentukan kemampuan baterai untuk menyediakan daya ke perangkat atau sistem yang digunakan.

9. MCB (Miniature Circuit Breaker)

Gambar 13. MCB

(Sumber: https://res.cloudinary.com/rsc/image/upload/F4887457-01)

MCB adalah singkatan dari Miniature Circuit Breaker. Ini adalah perangkat perlindungan listrik yang digunakan dalam sistem listrik untuk melindungi kabel dan peralatan dari kelebihan arus dan konsleting yang dapat menyebabkan

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 30 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

kebakaran atau kerusakan peralatan. MCB bekerja dengan cara mendeteksi arus yang melampaui ambang batas yang ditentukan dan memutus sirkuit secara otomatis untuk menghentikan aliran listrik. MCB biasanya terpasang di dalam panel listrik dan dapat diatur ulang setelah pencabutan sirkuit, memungkinkan penggunaan kembali sistem tanpa harus mengganti perangkat.

10. Relay

Gambar 14. Relay

(Sumber: https://www.zanoor.com/wp-content/uploads/2020/07/Relay.jpg)

MPU6050 adalah sensor inersial yang menggabungkan tiga akselerometer dan tiga giroskop dalam satu chip. Sensor ini dapat digunakan untuk mengukur percepatan linear dan kecepatan sudut dari perangkat atau sistem dalam tiga dimensi. MPU6050 sering digunakan dalam berbagai aplikasi yang memerlukan pemantauan gerakan, seperti navigasi inersial, stabilisasi drone, kontrol gerak robotika, dan game. Sensor MPU6050 juga dilengkapi dengan fitur pengolah sinyal digital yang kompleks, sehingga mampu memberikan data yang akurat dan stabil dalam berbagai kondisi lingkungan. Selain itu, chip MPU6050 biasanya dapat berkomunikasi dengan mikrokontroler atau perangkat lain melalui antarmuka komunikasi serial seperti I2C (Inter-Integrated Circuit) atau SPI (Serial Peripheral Interface).

11. Step-down Converter

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 31 dari 55
	TA 23.24	

Gambar 15. BH1750

(Sumber: https://cdn.webshopapp.com/shops/304271/files/332132158/2448x2138x2/step-down-buck-converter-dc-dc-300w.jpg)

Step-down converter adalah jenis konverter daya yang digunakan untuk menurunkan tegangan listrik dari tingkat yang lebih tinggi menjadi tingkat yang lebih rendah. Fungsi utamanya adalah mengubah tegangan listrik AC atau DC menjadi tegangan yang lebih rendah, yang sesuai dengan kebutuhan sistem atau perangkat elektronik yang dihubungkan. Konverter ini umumnya digunakan dalam berbagai aplikasi, termasuk dalam pembangkit listrik, peralatan elektronik, dan sistem tenaga terbarukan seperti panel surya. Dengan prinsip kerja yang mengatur rasio tegangan masukan dan keluaran, step-down converter memberikan fleksibilitas dalam mendukung berbagai kebutuhan daya elektronik.

12. Lampu

Gambar 16. Lampu

(Sumber: https://s1.bukalapak.com/img/6553576811/w-

1000/Lampu Bohlam Led Emergency magic Hemat Listrik.jpg)

Lampu adalah perangkat yang menghasilkan cahaya. Secara tradisional, lampu menggunakan sumber cahaya seperti filamen, gas neon, atau gas halida logam yang diberi daya listrik untuk menghasilkan cahaya. Namun, dengan kemajuan

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 32 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

teknologi, lampu saat ini juga dapat menggunakan sumber cahaya LED (Light Emitting Diode) atau lampu pijar. Lampu memiliki berbagai macam bentuk, ukuran, dan jenis, yang masing-masing cocok untuk aplikasi yang berbeda. Misalnya, lampu pijar sering digunakan dalam penerangan rumah tangga, sementara lampu neon atau LED digunakan dalam aplikasi komersial atau industri. Lampu juga dapat diatur untuk memberikan intensitas cahaya yang berbeda, warna yang berbeda, atau efek cahaya yang khusus, sesuai dengan kebutuhan penggunaannya.

13. Sensor Pir

Gambar 17. Sensor Pir

(Sumber: https://cdn-blog.adafruit.com/uploads/2014/01/pirsensor.jpg)

Sensor PIR (Passive Infrared Sensor) adalah jenis sensor yang digunakan untuk mendeteksi pergerakan objek berdasarkan perubahan dalam radiasi inframerah yang dipancarkan oleh tubuh manusia atau benda lainnya. Sensor PIR bekerja dengan mendeteksi perbedaan suhu antara objek di sekitarnya dan latar belakangnya. Prinsip kerja Sensor PIR didasarkan pada kemampuan sensor untuk mendeteksi perubahan dalam pola radiasi inframerah di area yang diamati. Ketika seseorang atau objek yang lebih hangat melewati area yang dipantau, sensor akan mendeteksi perubahan dalam pola radiasi dan menghasilkan sinyal keluaran sebagai respons. Sensor PIR sering digunakan dalam sistem keamanan, penerangan otomatis, dan aplikasi lain di mana deteksi gerakan diperlukan. Mereka biasanya terpasang di dalam perangkat elektronik atau sistem dan dapat berkomunikasi dengan perangkat lain, seperti lampu atau alarm, untuk memberikan tanggapan sesuai dengan deteksi pergerakan yang terjadi.

14. Power Inverter

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 33 dari 55

Gambar 18. Poswer Inverter

(Sumber: https://cf.shopee.co.id/file/0cc46bb2f160e033ccf0bbf2a72cc905_tn)

Inverter adalah perangkat elektronik yang mengubah arus listrik searah (DC) menjadi arus listrik bolak-balik (AC). Digunakan dalam berbagai aplikasi seperti pembangkit listrik tenaga surya, kendaraan listrik, sistem UPS, dan lainnya.

5.2 Data Requirement

Perangkat lunak yang digunakan dalam merancang dan mengimplementasikan sistem terdiri dari:

1) Bizagi Modeler

Bizagi Modeler adalah sebuah perangkat lunak yang digunakan untuk membuat dan mengelola model proses bisnis. Perangkat lunak ini mendukung notasi standar industri seperti Business Process Model and Notation (BPMN) dan juga menyediakan fitur kolaborasi yang memungkinkan tim kerja untuk bekerja secara bersama-sama dalam pengembangan dan perbaikan proses bisnis. Bizagi Modeler membantu dalam analisis, desain, dan dokumentasi proses bisnis yang membantu perusahaan dalam meningkatkan efisiensi operasional dan pengambilan keputusan yang lebih baik.

2) Arduino IDE

Arduino IDE menyediakan antarmuka pengguna yang intuitif untuk menulis, mengedit, dan mengompilasi kode Arduino dalam bahasa pemrograman yang mirip dengan C/C++. Dengan Arduino IDE, pengguna dapat membuat program yang akan dijalankan di papan Arduino mega, mengakses dan mengontrol berbagai input/output (I/O), membaca data dari sensor, mengendalikan aktuator, dan menjalankan berbagai tugas lainnya. Setelah selesai menulis kode, pengguna dapat mengunggahnya langsung ke papan Arduino mega melalui koneksi USB.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 34 dari 55
	TA 23.24	

3) Microsoft Word

Microsoft office Microsoft Word merupakan aplikasi yang tergabung dalam paket Microsoft Office dan berperan sebagai program pengolah kata. Fungsinya mencakup pembuatan, penyuntingan, dan pemformatan dokumen. Microsoft Word memiliki reputasi yang kuat dan populer sebagai salah satu perangkat lunak pengolah kata yang paling terkenal di dunia.

4) Proteus

Proteus adalah perangkat lunak untuk simulasi, desain, dan pengujian rangkaian elektronika. Digunakan untuk merancang dan mensimulasikan rangkaian sebelum dibuat fisik, juga untuk desain PCB, pembelajaran, dan pengembangan perangkat keras.

5.3 System Communication Interface

Dalam hal ini antarmuka komunikasi merupakan cara antara komponen-komponen perangkat berinteraksi untuk mengoperasikan sistem. Pada bagian ini akan dijelaskan bagaimana komponen-komponen di dalam sistem berinteraksi yaitu:

1. Sensor LDR ke Arduino Mega

Sensor LDR dan Sensor PIR mengirimkan informasi ke Arduino tentang intensitas cahaya dan deteksi gerakan di sekitar panel surya.

2. Sensor Pir ke Arduino Mega

Arduino mega menggunakan informasi dari kedua sensor tersebut untuk mengatur gerakan panel surya dan mengirimkan sinyal pengendalian ke DS Servo dan Power Inverter.

3. Arduino Mega ke DS Servo

DS Servo menggerakkan panel surya agar mengikuti pergerakan matahari.

4. Arduino Mega ke Power Inverter

Power Inverter mengubah arus DC dari panel surya menjadi arus AC yang dapat digunakan untuk menggerakkan motor atau sistem penggerak lainnya.

5. Arduino Mega ke Watt Meter Digital

Arduino mega juga mengirim informasi tentang konsumsi daya dan kinerja sistem keseluruhan ke Watt Meter Digital untuk pemantauan.

TA 23.24

6 Design Description

Detail Design Description Pada bagian ini dijelaskan mengenaik gambaran sistem yang akan dibuat dan design yang terlibat dalam sistem ini.

6.1 Hardware Design

Gambar 18. Rangkaian Solar Panel Tracker

Sistem panel surya tracker yang akan digunakan di Seribu Goa Banurea terdiri dari beberapa bagian. Panel surya menangkap cahaya matahari dan mengubahnya menjadi listrik. Listrik ini kemudian masuk ke MCB (miniature circuit braker), yang melindungi sistem dari kelebihan arus listrik. Setelah itu, listrik masuk ke kontroler, yang mengatur bagaimana listrik disimpan dalam baterai atau digunakan langsung. Baterai menyimpan listrik untuk digunakan ketika panel surya tidak dapat menghasilkan listrik, seperti saat malam hari.

Setelah baterai, listrik masuk ke konverter DC/AC, yang mengubah listrik DC menjadi listrik AC, yang digunakan oleh perangkat listrik. Listrik AC kemudian dikeluarkan melalui output AC. Sistem ini mengumpulkan listrik dari panel surya, menyimpannya dalam baterai, dan mengubahnya menjadi listrik yang dapat digunakan pada saat terdeteksi kedatangan atau pergerakan si pengunjung. Fitur tracker memungkinkan panel

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 36 dari 55
--------	----------------------------------	--------------------

surya untuk mengikuti gerakan matahari, sehingga dapat mengambil cahaya matahari dengan lebih baik dan mengoptimalkan pengeluaran listrik.

6.1.2 Design Rangkaian Lampu

Gambar 19. Rangkaian Lampu

Gambar diatas merupakan design lampu yang akan digunakan pada proyek yang akan dibangun. Rangkaian elektronik pada *Solar Panel Tracker* terdiri dari beberapa komponen utama, yaitu panel surya, sensor LDR, mikrokontroler, LED, resistor, dan kabel. Panel surya berfungsi sebagai pembangkit tenaga listrik dari cahaya surya. Sensor LDR digunakan untuk mendeteksi cahaya surya dan mengirimkan sinyal ke mikrokontroler. Mikrokontroler akan mengontrol sistem pengikatan panel surya sesuai dengan posisi cahaya surya yang terdeteksi oleh sensor LDR. LED digunakan sebagai indikator kondisi panel surya, sedangkan resistor digunakan sebagai penghambat arus listrik. Kabel digunakan untuk menghubungkan komponen-komponen dalam rangkaian.

Sistem pengikatan panel surya bekerja dengan cara mendeteksi cahaya surya menggunakan sensor LDR. Ketika cahaya surya memasangi panel surya, sensor LDR akan mendeteksi cahaya tersebut dan mengirimkan sinyal ke mikrokontroler.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 37 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

Mikrokontroler akan mengontrol sistem pengikatan panel surya sesuai dengan posisi cahaya surya yang terdeteksi oleh sensor LDR. Setelah itu, mikrokontroler akan menyalakan LED sebagai indikator kondisi panel surya.

6.1.3 Design Rangkaian Pemutar Panel

Gambar 20. Rangkaian Pemutar Panel

Pada gambar diatas merupakan rangkaian Arduino yang dimana digunakan untuk menghubungkan servo. Fungsi servo pada sistem tracker panel surya adalah untuk mengontrol posisi panel surya sesuai dengan posisi cahaya surya. Servo akan menerima sinyal dari mikrokontroler, yang berisi informasi tentang posisi cahaya surya yang terdeteksi oleh sensor LDR. Mikrokontroler akan mengirimkan sinyal kontrol ke servo dengan menggunakan tegangan dan arus tertentu. Servo akan mengubah sinyal kontrol tersebut menjadi gerakan mekanis, yang digunakan untuk menggerakkan panel surya.

Dengan menggunakan servo, sistem tracker panel surya dapat mengikat panel surya sesuai dengan posisi cahaya surya dan meningkatkan efisiensi pengambilan energi surya. Hal ini dapat menjadi solusi untuk mengatasi masalah kehilangan efisiensi pengambilan energi surya karena posisi panel surya yang tidak sesuai dengan arah cahaya surya. Selain itu, servo dapat menjadi kontribusi positif terhadap penghematan energi listrik

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 38 dari 55
	TA 23.24	

6.1.4 Design Prototipe Panel Surya

Gambar dibawah ini merupakan rancangan prototipe Panel Surya yang akan digunakan dalam pengembangan *Solar Panel Tracker*.

Gambar 19. Prototipe Solar Panel

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 39 dari 55
	TA 23.24	

7 Detail Design Description

Pada bagian ini akan dijelaskan secara terperinci deskripsi fungsi-fungsi yang ada dalam sistem prototipe yang telah dikembangkan.

7.1 Detail Functional Description

Pada subbab ini akan dijelaskan secara detail mengenail deskripsi fungsi-fungsi yang terdapat dalam *Solar Panel Tracker* yang telah dikembangkan.

7.1.1 Fungsi Mendeteksi Intensitas Cahaya

Identifikasi/Nama: Fungsi LDR

Deskripsi Isi : Fungsi ini bertujuan untuk mendeteksi intensitas cahaya matahari

yang mengakibatkan panel bergerak menggunakan servo

7.1.2 Fungsi Menyerap Energi dan Menyimpan Energi

Identifikasi/Nama: Fungsi Solar Panel dan Baterai

Deskripsi Isi : Fungsi ini bertujuan untuk menyerap sinar matahari yang akan

yang akan diproses menjadi energi

7.1.3 Function Mendeteksi Pergerakan dan Penerangan Otomatis

Identifikasi/Nama: Fungsi sensor PIR yang mengakibatkan lampu otomatis menyala

Deskripsi Isi : Fungsi ini bertujuan untuk mengidentifikasi adanya pergerakan di

dalam goa yang mengakibatkan lampu akan otomatis menyala

7.2 Detail Function Flowchart

7.2.1 Detail Function Mendeteksi Intensitas Cahaya

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 40 dari 55
	TA 23.24	

Gambar 20. Detail Function Mendeteksi Intensitas Cahaya

Flowchart ini menggambarkan sistem pelacakan matahari yang menggunakan LDR dan servo. Proses dimulai dengan LDR mendeteksi cahaya matahari, kemudian panel bergerak menggunakan servo. Panel ini mengikuti arah sinar matahari, bergerak ke arah timur pada pagi hari dan ke arah barat pada sore hari.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 41 dari 55
	TA 23.24	

7.2.2 Detail Function Menyerap Energi dan Menyimpan Energi

Gambar 21. Detail Function Menyerap Energi dan Menyimpan Energi

Flowchart ini menunjukkan cara mengisi baterai dengan energi matahari. Pertama, panel surya menangkap sinar matahari dan mengubahnya menjadi energi. Energi ini kemudian disimpan di dalam baterai. Jika baterai belum penuh, proses pengisian terus berlanjut. Ketika baterai sudah penuh, proses pengisian berhenti.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 42 dari 55
	TA 23.24	

7.2.3 Function Mendeteksi Pergerakan dan Penerangan Otomatis

Gambar 22. Function Mendeteksi Pergerakan dan Penerangan Otomatis

Flowchart ini menunjukkan cara kerja deteksi gerakan dengan sensor PIR. Pertama, sensor PIR mendeteksi adanya gerakan. Jika ada gerakan, lampu akan menyala otomatis. Jika tidak ada gerakan, lampu akan tetap mati. Proses ini kemudian selesai.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 43 dari 55
	TA 23.24	

8 Implementation

Pada bab ini akan dijelaskan secara rinci implementasi *hardware* yang sudah dilakukan dalam pembangunan sistem *Solar Panel Tracker*.

8.1 Hardware Implementation

8.1.1 Rangkaian Mikrokontroller dalam Enclosure

Dalam rangkaian ini, daya dari baterai dialirkan ke watt meter untuk mengukur daya yang digunakan. Kemudian, daya tersebut masuk ke PCB (*printed circuit board*) yang mengatur dan mengontrol proses. Selanjutnya, daya tersebut melewati langkah penurunan (*step down*) sebelum mencapai Arduino, yang bertanggung jawab atas pengendalian sistem secara keseluruhan.

Gambar 23. Rangkaian Mikrokontroller dalam Enclosure

8.1.2 Prototipe Solar Panel

Pada saat solar panel telah menyerap sinar matahari maka arus dari panel surya masuk ke PCB untuk pengaturan dan pengendalian. Selanjutnya, arus tersebut dialirkan ke *Solar*

IT Del	SWTD_Kel-04_IPM_PAII TA 23.24	Halaman 44 dari 55

Charger Control (SCC) yang mengatur pengisian baterai. Setelah itu, arus baterai diatur lagi melalui PCB sebelum masuk ke dalam baterai untuk penyimpanan energi.

Gambar 24. Prototipe Solar Panel

8.1.3 Penerangan

PIR (*Passive Infrared Sensor*) mendeteksi pergerakan manusia yang terjadi didalam goa. Lalu mengaktifkan transistor BC547. Kemudian relay mengalirkan daya dari baterai ke inverter untuk mengubah arus menjadi arus bolak-balik. Selanjutnya, arus tersebut digunakan untuk menyala lampu.

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 45 dari 55
	TA 23.24	

Gambar 25. Penerangan

8.2 Function Specification Menggerakkan Solar Panel

Fungsi/Nama: Fungsi Menggerakkan Solar Panel

Deskripsi Isi : Mengontrol dua servo motor untuk mengarahkan panel surya agar selalu mengikuti arah matahari berdasarkan pembacaan dari empat sensor LDR. Setiap sensor mendeteksi intensitas cahaya, dan program menentukan sensor mana yang menerima cahaya paling kuat. Servo motor pada sumbu X dan Y kemudian bergerak untuk mengarahkan panel surya ke arah cahaya tersebut, sehingga memaksimalkan penyerapan energi.

```
#include <Servo.h>
Servo servoX, servoY;
const int LDR1 = A0, LDR2 = A1, LDR3 = A2, LDR4 = A3;
unsigned int rRDL1 = 0, rRDL2 = 0, rRDL3 = 0, rRDL4 = 0;
unsigned int max1 = 0, max2 = 0, max3 = 0;
int servoXPos = 70, servoYPos = 60;

void setup() {
   servoX.attach(8);
   servoY.attach(9);
```

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 46 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEI.

```
Serial.begin(9600);
servoX.write(servoXPos);
servoY.write(servoYPos);
void loop() {
rRDL1 = analogRead(LDR1);
rRDL2 = analogRead(LDR2);
rRDL3 = analogRead(LDR3);
rRDL4 = analogRead(LDR4);
max1 = max(rRDL1, rRDL2);
max2 = max(rRDL3, rRDL4);
max3 = max(max1, max2);
Serial.println(max3);
Serial.println(String(rRDL1) + ", " + String(rRDL2) + ", "
+ String(rRDL3) + ", " + String(rRDL4));
// Control for servoX (X-axis)
if (rRDL1 == max3 || rRDL2 == max3) {
if (servoXPos < 140) servoXPos += 1;
\} else if (servoXPos > 0) {
servoXPos -= 1;
servoX.write(servoXPos);
// Control for servoY (Y-axis)
if (rRDL2 == max3 \parallel rRDL3 == max3) {
Serial.println("servoY +" + String(servoYPos));
if (servoYPos < 120) servoYPos += 1;
\} else if (servoYPos > 0) {
Serial.println("servoY -" + String(servoYPos));
servoYPos -= 1;
servoY.write(servoYPos);
delay(100);
```

Untuk menggerakkan panel surya agar selalu menghadap ke arah dengan intensitas cahaya matahari tertinggi, berdasarkan pembacaan dari empat sensor LDR. Ini bertujuan untuk meningkatkan penyerapan energi matahari dan efisiensi sistem energi surya secara otomatis. Ini juga memantau nilai sensor dan menampilkan data ke monitor serial untuk debugging. Dengan demikian, kode ini berfungsi dalam pelacakan matahari dan optimalisasi penyerapan energi pada sistem energi surya.

IT Del SWTD_Kel-04_IPM_PAII Halaman 48 dari 55
TA 23.24

9 Testing

Bagian ini berisi perencanaan Test, identifikasi butir dan skenario untuk melakukan test. Test script butir uji dituliskan per fungsi.

9.1 Test Script Butir-Uji-1

Tabel 6. Test Script BU-01

No. Fungsi	•	OPR-FC01		
Nama Butir Uji		Pengujian Mendeteksi ir	ntensitas Cahaya	
		Matahari		
Tujuan]	Menguji kemampuan LDR	dalam mendeteksi	
	l	intensitas cahaya matahari		
Deskripsi		Menguji kemampuan LDR dalam mendeteksi		
2 csm ipsi		intensitas cahaya matahari yang mengakibatkan		
		•		
	-	panel bergerak menggunakan		
Kondisi Awal		Solar panel dan LDR ditempa	tkan dibawah sinar	
	1	matahari		
Tanggal Penguji	an 3	n 30 Mei 2024		
Penguji]	Kelompok 04		
Skenario Uji				
Menempatkan solar panel dan LDR dibawah sinar matahari				
2. Menunggu pergerakan solar panel ketika LDR dapat mendeteksi sinar				
matahari				
Kriteria Evaluasi Hasil				
Solar panel berha	sil bergerak seca	ra vertikal dan horizontal		
	Kasus dan	Hasil Uji (Data Normal)		
Data Masukan	Yang	Pengamatan	Kesimpulan	
	diharapkan			
Solar panel	Solar panel	Solar panel dapat	[X] diterima	
bergerak	dapat bergerak	1	[] ditolak	
ooigoiak		_	[] Gitolak	
	menggunakan	matahri		
	servo			

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 49 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL.

Catatan

9.2 Test Script Butir-Uji-2

Tabel 7. Test Script BU-02

No. Fungsi	OPR-FC02		
Nama Butir Uji	Pengujian Penyerapan Energi		
Tujuan	Menguji kemampuan Solar panel dalam menyerap sinar matahari		
Deskripsi	Menguji kemampuan Solar panel dalam menyerap sinar matahari menjadi energi yang disimpan didalam baterai		
Kondisi Awal	Solar Panel ditempatkan dibawah sinar matahari		
Tanggal Pengujian	30 Mei 2024		
Penguji	Kelompok 04		

Skenario Uji

Menempatkan solar panel dibawah sinar matahari

Kriteria Evaluasi Hasil

Solar panel berhasil menyerap sinar matahari hingga di proses menjadi energi yang disimpan di dalam baterai

Kasus dan Hasil Uji (Data Normal)

Data Masukan	Yang	Pengamatan	Kesimpulan	
	diharapkan			
Menyerapan	Solar panel	Energi yang telah penuh	[X] diterima	
sinar matahari	dapat menyerap	100% dapat dilihat pada	[] ditolak	
	sinar matahari	watt meter.		
	hingga daya			
	bisa disimpan			
	oisa disimpan			

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 50 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEL

	kedalam baterai.		
		Catatan	

9.3 Test Script Butir-Uji-3

Tabel 8. Test Script BU-03

No. Fungsi OPR-FC03						
Nama Butir Uji	Pengujian Lampu Otomatis Menyala					
Tujuan		Menguji	kemampuan	sens	sor PIR	dalam
		mendetek	si pergerakan a	ıtau ke	beradaan	manusia
Deskripsi		Menguji	kemampuan	sens	sor PIR	dalam
		mendetek	si pergerakan a	ıtau ke	eberadaar	manusia
		sehingga l	ampu dapat m	enyala	secara o	tomatis
Kondisi Awal		Sensor	PIR ditemp	atkan	yang	mudah
		mendetek	si pergeraka	ın a	ıtau ke	beradaan
		manusia.				
Tanggal Penguji	an	30 Mei 2024				
Penguji		Kelompok 04				
Skenario Uji						
Pada saat penggui	wati atau n	nendekati sens	or			
	teria Evalı	uasi Hasil				
Sensor PIR berha	sil mendeteksi _l	pengguna s	ehingga lampı	otom	atis meny	/ala
	Kasus dar	n Hasil Uji	i (Data Norma	al)		
Data Masukan	Yang		Pengamatan		Kesin	npulan
diharapkai		ı				
Pengguna	Sensor PIR	Senso	r PIR berhasil		[X] dite	rima
hendak lewat	dapat	mende	eteksi penggun	a	[] ditola	k
atau mendekati	mendeteksi					
keberadaan	pengguna					

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 51 dari 55
	TA 23.24	

Dokumen ini merupakan bagian dari dokumentasi penyelenggaraan Program Proyek Akhir 2 mahasiswa Institut Teknologi DEL. Dilarang mereproduksi dokumen ini dengan cara apapun tanpa sepengetahuan Institut Teknologi DEI.

sensor	sehingga lampu				
	dapat otomatis				
	menyala				
Catatan					

IT Del		SWTD_Kel-04_IPM_PAII	Halaman 52 dari 55
ı		TA 23.24	

LAMPIRAN

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 53 dari 55
	TA 23.24	

Sejarah Versi

Versi	Ditulis	Tanggal	Disetujui Oleh	Tanggal
	Oleh			
Draft			Pembimbing	
Final			Pembimbing	

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 54 dari 55
	TA 23.24	

Seiarah	Perm	hał	ıan
ocial all	r ei u	Dai	Ian

No. dokumen : No. versi :

Halaman	Semula	Menjadi	Alasan perubahan

No. dokumen : No. versi :

Halaman	Semula	Menjadi	Alasan perubahan

IT Del	SWTD_Kel-04_IPM_PAII	Halaman 55 dari 55
	TA 23.24	