

1'Orientation

Centre National de l'Evaluation, des Examens et de

#### Examen de Fin de Formation du Brevet de Technicien Supérieur

#### Session Mai 2015

Page 1 2

| Filières: | DSI – SRI - MCW | Durée:       | 2 Heures |
|-----------|-----------------|--------------|----------|
| Épreuve:  | MATHÉMATIQUES   | Coefficient: | 15       |

## 4 points Exercice 1:

On se propose d'étudier la convergence de l'intégrale généralisée  $\int_0^{+\infty} \frac{\ln(t)}{t^2+1} dt$ :

1 pt 1. Pour  $x \in ]0,1]$ , calculer l'intégrale  $\int_{x}^{1} \ln(t) dt$ .

On pourra utiliser une intégration par parties.

En déduire la convergence et la valeur de  $\int_0^1 \ln(t) dt$  .

1 pt 2. Vérifier que :  $\frac{\ln(t)}{t^2+1} \sim \ln(t)$ .

En déduire la nature de l'intégrale généralisée  $\int_0^1 \frac{\ln(t)}{t^2+1} dt$ .

1 pt  $\int 3$ . Calculer :  $\lim_{t \to +\infty} t^{\frac{3}{2}} \frac{\ln(t)}{t^2 + 1}$ .

En déduire la nature de l'intégrale généralisée  $\int_1^{+\infty} \frac{\ln(t)}{t^2+1} dt$ .

1 pt 4. En déduire que l'intégrale généralisée  $\int_0^{+\infty} \frac{\ln(t)}{t^2 + 1} dt$  est convergente.

### 6 points | Exercice 2 :

1 pt 
1. Etudier la nature de la série :  $\sum_{n\geq 1} \frac{n^2+n}{2^n}$  . On pourra utiliser La règle de D'Alembert.

1 pt 2. Etudier la nature de la série :  $\sum_{n\geq 1} \left(\frac{n}{2n+\ln(n)}\right)^n$ . On pourra utiliser le critère de Cauchy.

1 pt 3. a- Donner le développement limité à l'ordre 2 en 0 de la fonction :  $t \to \ln(1+t)$ .

0,5 pt b- Montrer que  $\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)$  est équivalent en 0 à  $\frac{1}{2n^2}$ .

0,5 pt c- En déduire la nature de la série  $\sum_{n\geq 1} \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right)$ .

0,5 pt 4. a- Vérifier que  $\frac{\ln n}{n} \ge \frac{1}{n}$  pour tout  $n \ge 3$ . en déduire la nature de la série numérique  $\sum_{n \ge 3} \frac{\ln(n)}{n}$ .

Filières:

DSI - SRI - MCW

| Épreuve:            | Mathématiques |
|---------------------|---------------|
| est décroissante su | r [3,+∞[.     |

1,5 pt b-Vérifier que la fonction  $t \mapsto \frac{\ln(t)}{t}$  est décroissante sur  $[3, +\infty]$ 

En déduire la nature de la série numérique  $\sum_{n\geq 3} (-1)^n \frac{\ln(n)}{n}$ .

### **6 points Exercice 3 :**

1 pt

Dans  $\mathbb{R}^3$  muni de sa base canonique  $B=\left(e_1,e_2,e_3\right)$  on considère l'endomorphisme f

dont la matrice dans la base B est donnée par :  $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$ .

- 1pt 1. Donner le polynôme caractéristique de la matrice A. En déduire les valeurs propres  $\lambda_1$ ,  $\lambda_2$  et  $\lambda_3$  de la matrice A telles que  $\lambda_1 < \lambda_2 < \lambda_3$ .
- 1 pt 2. a- Vérifier que  $u_1 = (1,0,0)$ ,  $u_2 = (1,1,0)$  et  $u_3 = (3,4,2)$  sont des vecteurs propres associés respectivement aux valeurs propres  $\lambda_1$ ,  $\lambda_2$  et  $\lambda_3$ .
- 0,5 pt b- Etablir que  $B' = (u_1, u_2, u_3)$  est une base de  $\mathbb{R}^3$ .
- 0,5 pt c- Donner P la matrice de passage de B à B'.
- 1 pt d- Montrer que  $P^{-1} = \frac{1}{2} \begin{pmatrix} 2 & -2 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 1 \end{pmatrix}$  est la matrice inverse de P.
- 0,5 pt 3. a- Donner la matrice D de f relativement à la base B'. 0,5 pt b- Vérifier que  $A = PDP^{-1}$ 
  - c- Calculer  $A^n$  en fonction de n.

# **4 points** Exercice 4 : On cherche s'il existe une relation entre la température et le nombre de glaces vendues. Les informations sont données par le tableau suivant :

| Température ( en Celsius) : $x_i$         | 21 | 17 | 24 | 25 | 13 |
|-------------------------------------------|----|----|----|----|----|
| Nombre de Glaces vendues : y <sub>i</sub> | 25 | 20 | 30 | 35 | 10 |

- 1 pt 1. Calculer les coordonnées du point moyen G et calculer le coefficient de corrélation linéaire. Peut-on envisager une relation linéaire entre les deux variables x et y.
- 1 pt 2. Déterminer l'équation de la droite de régression linéaire au sens des moindres carrées de *y* en *x* .
- 1 pt 3. Quel serait alors le nombre de glaces vendues s'il faisait 30 degrés ?
- 1 pt 4.Pour quelle température vendrait-on 62 glaces ?

Fin de l'épreuve