Introduction to Mercer's theorem and the kernel trick

Abdelwahid Benslimane

wahid.benslimane@gmail.com

Mercer's theorem

Let $\mathcal X$ be a compact in $\mathbb R^d$ (compact = closed and bounded) and $K:\mathcal X\times\mathcal X\to\mathbb R$ a symmetric function also called kernel function. Let v be any Borel measure and $L^v_2(\mathcal X)$ the space of integrable square functions defined on $\mathcal X$. It is also assumed that K is a definite positive kernel, which means that $\forall f\in L^v_2(\mathcal X)$, the following condition is satisfied:

$$\int_{\mathcal{X}} \int_{\mathcal{X}} K(x, y) f(x) f(y) v(dx) v(dy) \ge 0.$$

Then there exists a Hilbert space \mathcal{H} and $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, y \in \mathcal{X}$:

$$K(x,y)=\sum_{k=1}^{\infty}\lambda_k\phi_k(x)\phi_k(y)=\langle\phi(x),\phi(y)
angle$$
 (scalar product) with the coefficients $\lambda_k>0$.

The Hilbert space \mathcal{H} is a data representation space known as feature space and intuitively, the ϕ_k represent its basis.

For the recall, a Hilbert space is a complete normed vector space equipped with a scalar product.

Kernel trick

A valid kernel guarantees the existence of \mathcal{H} and can then be expressed as a scalar product in \mathcal{H} . Kernels guarantee the correct application of the kernel trick, which is a well-known approach that implicitly transform a linear method into a non-linear one by replacing the scalar products with a kernel function. Any algorithm on finite-dimensional vectors based on scalar products can be used by replacing the scalar product by any positive definite kernel. The kernel trick is to ignore \mathcal{H} and ϕ if we know they exist!

A kernel is (most of the time) close to a similarity measure. More precisely, if x and y are two vectors, then a kernel defined for these vectors must return a high value if $x \approx y$ and a low value if x and y are very different.

A function $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a similarity measure if the following conditions are satisfied:

- $x, y \in \mathcal{X}$ $s(x, y) \ge 0$ (positivity)
- $x, y \in \mathcal{X}$ s(x, y) = s(y, x) (simmetry)
- $\forall y \in \mathcal{X}, y \neq x \ s(x,y) > s(x,x)$ (uniformity)

• $s(x,y) = s(x,x) \Leftrightarrow x = y$ (identity).

There are several approaches to obtaining kernel functions:

- direct construction (using a ϕ projection)
- transformation of existing kernels,
- combination of existing kernels.

Direct construction:

Let \mathcal{X} be a compact in \mathbb{R} . Let $\phi: \mathcal{X} \to \mathbb{R}$, then $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ given by : $K(x,y) = \phi(x) \cdot \phi(y)$ is a non-negative kernel (called "conformal kernel").

Please note that conformal kernels cannot be interpreted as similarities.

Examples:

$$\phi:\mathbb{R} o\mathbb{R}, \phi(x)=x\Rightarrow K(x,y)=x\cdot y$$
 (known as the "linear kernel"), $\phi:\mathbb{R} o\mathbb{R}, \phi(x)=e^x\Rightarrow K(x,y)=e^{x+y}$

Tranformation of kernels:

If $K: \mathcal{X} imes \mathcal{X} o \mathbb{R}$ is definite positive, then exp(K) is also definite positive.

If $K: \mathcal{X} \times \mathcal{X} \to [-1, 1]$ is definite positive, then cos(K) is also definite positive.

Combination of existing kernels:

If $K_1, K_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are definie positive and $\alpha_1, \alpha_2 > 0$, then the following kernels are also definite positive:

- ullet linear combination: $K(x,y)=lpha_1K_1(x,y)+lpha_2K_2(x,y)$
- simple product: $K(x,y) = \alpha_1 K_1(x,y) \cdot \alpha_2 K_2(x,y)$

Of course, K is defined on $\mathcal{X} \times \mathcal{X}$ with values in \mathbb{R} .

If $K_1:\mathcal{X}_1 imes\mathcal{X}_1 o\mathbb{R}$ and $K_2:\mathcal{X}_2 imes\mathcal{X}_2 o\mathbb{R}$ are definite positive, then:

- ullet the direct sum: $K_1\oplus K_2=K_1+K_2$
- ullet the tensor product: $K_1 \otimes K_2 = K_1 \cdot K_2$

are also definite positive.