Universidad Nacional Autónoma de México

ELECTRODINÁMICA CLÁSICA

Semestre 2016-II

10 de marzo de 2016

Tarea # 4. Multipolos, Electrostática de Medios Macroscópicos, Dieléctricos.

 $\begin{array}{c} \textit{Autor:} \\ \text{Favio V\'AZQUEZ}^{\dagger} \end{array}$

 $^{^\}dagger favio.vazquez@correo.nucleares.unam.mx$

Problema 1. Problema 4.1 de Classical Electromagnetic Radiation de Jackson [1].

Calcule los momentos multipolares q_{lm} de las distribuciones de carga mostradas como las partes a y b. Intente obtener resultados para todo los momentos que no se hacen cero válidos para todo l, pero en cada caso encuentre los primeros dos conjuntos de momentos que no se hacen cero al menos.

Figura 1: Disposición de la distribución de cargas para el problema 1.

- (c) Para la distribución de carga del segundo conjunto b escriba la expansión multipolar para el potencial. Manteniendo solo los términos de orden bajo en la expansión, grafique el potencial en el plano x-y como una función de la distancia desde el origen para distancias mayores a a.
- (d) Calcule directamente de la ley de Coulomb el potencial exacto para b en el plano x-y. Grafíquelo como una función de la distancia y compare con el resultados encontrado en la parte c.

Divida la forma asintótica en las partes c y d para ver el comportamiento a distancias grandes más claramente.

Solución:

Comenzamos recordando la ecuación para los momentos multipolares¹

$$q_{lm} = \sum_{i} q_i r_i^l Y_{lm}^*(\theta_i, \phi_i), \qquad (1.1)$$

donde (r_i, θ_i, ϕ_i) es la posición de la i-ésima carga, q_i es la magnitud de la i-ésima carga y $Y_{lm}^*(\theta_i, \phi_i)$ son los armónicos esféricos. Viendo la figura de la parte (a) vemos que las cargas, en coordenadas esféricas se ubican según la siguiente tabla²

Carga	r	θ	ϕ
+q	a	$\pi/2$	0
+q	a	$\pi/2$	$\pi/2$
-q	a	$\pi/2$	π
-q	a	$\pi/2$	$3\pi/2$

¹Ver ecuación (4.3) de Jackson [1].

²La primera carga es la ubicada en (x = 0, y = a, z = 0)

Entonces utilizando esta información tenemos

$$q_{lm} = qa^{l} \left[Y_{lm}^{*} \left(\frac{\pi}{2}, 0 \right) + Y_{lm}^{*} \left(\frac{\pi}{2}, \frac{\pi}{2} \right) - Y_{lm}^{*} \left(\frac{\pi}{2}, \pi \right) - Y_{lm}^{*} \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \right]. \tag{1.2}$$

Pero recordando que³

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi},$$
(1.3)

donde $P_l^m(\cos\theta \text{ son las funciones de Legendre asociadas (ver ecuación (3.49) de Jackson) y$

$$Y_{l,-m}(\theta,\phi) = (-1)^m Y_{lm}^*(\theta,\phi),$$
 (1.4)

podemos escribir entonces

$$q_{lm} = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} \left[e^{i(-m)(0)} + e^{i(-m)(\pi/2)} - e^{i(-m)(\pi)} - e^{i(-m)(3\pi/2)} \right] P_l^m (\cos \frac{\pi}{2}),$$

pero

$$e^{i(-m)(0)} = 1,$$

$$e^{i(-m)(\pi/2)} = (e^{-i\pi/2})^{(m)} = (-i)^m,$$

$$e^{i(-m)(\pi)} = (e^{-i\pi})^{(m)} = (-1)^m,$$

$$e^{i(-m)(3\pi/2)} = (e^{-i3\pi/2})^{(m)} = i^m.$$

Tenemos entonces,

$$q_{lm} = qa^{l} \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} \left[1 + (-i)^{m} - (-1)^{m} - i^{m}\right] P_{l}^{m}(0), \tag{1.5}$$

el término entre corchetes $[1+(-i)^m-(-1)^m-i^m]$ es cero para m par, y se hace (2-2i) para $m=-7,-3,1,5,9,\ldots$ y (2+2i) para $m=-5,-1,3,7,\ldots$, además por las propiedades de $P_l^m(0)$ sabemos que se hace cero cuando l y m tienen signos diferentes. Estas dos consideraciones no hacen ver que los únicos momentos que no se hacen cero son aquellos con l y m impares. Y como el texto lo solicita, los primeros conjuntos de momentos que no se hacen cero son

$$q_{1,\pm 1} = \mp q a \sqrt{\frac{3}{4\pi}} (1 \mp i), \qquad (1.6)$$

$$q_{3,\pm 1} = \pm q a^3 \sqrt{\frac{21}{\pi}} (1 \mp i)$$
, (1.7)

$$q_{3,\pm 3} = \mp q a^3 \sqrt{\frac{35}{16\pi}} (1 \pm i)$$
, (1.8)

³Ver ecuación (3.53) y (3.54) de Jackson [1]

(b) Viendo la figura de la parte (b) vemos que las cargas, en coordenadas esféricas se ubican según la siguiente $tabla^4$

Carga	r	θ	ϕ
+q	a	0	0
-2q	0	0	0
+q	a	π	0

Entonces,

$$q_{lm} = q \left[a^{l} Y_{lm}^{*}(0,0) - \underbrace{(0)^{l} Y_{lm}^{*}(0,0)}_{+} + a^{l} l Y_{lm}^{*}(\pi,0) \right], \tag{1.9}$$

y usando (1.3) podemos escribir esto como

$$q_{lm} = qa^{l} \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} \left[e^{im(0)} P_{l}^{m}(\cos(0)) + e^{im(0)} P_{l}^{m}(\cos(\pi)) \right], \tag{1.10}$$

$$\therefore q_{lm}qa^l \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} \left[P_l^m(1) + P_l^m(-1) \right]. \tag{1.11}$$

Debido a que el sistema tiene simetría azimutal, solamente los términos con m=0 serán distintos de cero, y notando que $P_l^0(1)=1, P_l^0(-1)=(-1)^l$ tenemos que

$$q_{l0} = qa^{l} \left[\frac{2l+1}{4\pi} \right]^{1/2} [1 + (-1)^{l}], \tag{1.12}$$

y tendremos que para l par y m = 0,

$$q_{l0} = 2qa^l \left[\frac{2l+1}{4\pi} \right], {1.13}$$

y para l impar o $m \neq 0$ $q_{l0} = 0$. Los primeros momentos que no se hacen cero son

$$q_{2,0} = qa^2 \sqrt{\frac{5}{\pi}}, (1.14)$$

$$q_{4,0} = qa^4 \sqrt{\frac{9}{\pi}}. (1.15)$$

(c) La expansión multipolar para el potencial podemos escribirla como⁵

$$\Phi(r,\theta,\phi) = \frac{1}{4\pi\epsilon_0 r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi}{2l+1} q_{lm} \frac{Y_{lm}(\theta,\phi)}{r^{l+1}},$$
(1.16)

y sustituyendo (1.13) obtenemos

$$\Phi(r,\theta,\phi) = \frac{1}{4\pi\epsilon_0} \sum_{l=1}^{\infty} \frac{4\pi}{2l+1} \left(qa^{2l} \sqrt{\frac{(4l+1)}{4\pi}} \right) \frac{Y_{2l,0}(\theta,\phi)}{r^{2l+1}}, \tag{1.17}$$

⁴La primera carga es la ubicada en (x = 0, y = 0, z = a)

⁵Ver ecuación (4.1) de Jackson [1].

$$\Phi(r,\theta) = \frac{q}{2\pi\epsilon_0 r} \sum_{l=1} P_{2l}(\cos\theta) \left(\frac{a}{r}\right)^{2l}.$$
 (1.18)

El término de orden más bajo se da cuando l = 1,

$$\Phi(r,\theta) = \frac{q}{4\pi\epsilon_0} \frac{a^2}{r^3} \left[\frac{1}{2} (3\cos^2\theta - 1) \right],\tag{1.19}$$

que en el plano x-y, donde $\theta=\pi/2$ tenemos

$$\Phi_{x-y}(r,\theta) = -\frac{q}{8\pi\epsilon_0} \frac{a^2}{r^3}.$$
(1.20)

Cuyo gráfico es

Figura 2: Gráfico del potencial aproximado utilizando expansión multipolar para términos de orden bajo en el plano x - y.

(d) Utilizando la ley de Coulomb podemos escribir el potencial como

$$\Phi = \frac{1}{4\pi\epsilon_0} \left[\frac{1}{|\mathbf{r} + a\hat{\mathbf{z}}|} \frac{1}{|\mathbf{r} - a\hat{\mathbf{z}}|} - \frac{2}{|\mathbf{r}|} \right],$$

que en el plano x - y se escribe

$$\Phi = \frac{2q}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{r^2 + a^2}} - \frac{1}{r} \right],\tag{1.21}$$

o

$$\Phi = \frac{q}{4\pi\epsilon_0 a} \left[\frac{2}{\sqrt{(r/a)^2 + 1}} - \frac{2}{(r/a)} \right]. \tag{1.22}$$

Cuyo gráfico es

Figura 3: Gráfico del potencial exacto, en el plano x-y, utilizando la ley de Coulomb

Con lo cual vemos que el primer término en la expansión multipolar es una buena aproximación para distancias $r \approx 2a$, pero impreciso para otras más pequeñas.

Si dividimos ahora la forma asintótica en las partes (c) y (d) para ver el comportamiento a distancias grandes, lo que tenemos que hacer es dividir por $1/r^3$ tanto el potencial aproximado como el exacto, obteniendo el siguiente gráfico

Figura 4: Comportamiento del potencial tanto para la forma aproximada como para la exacta, donde se ha dividido la forma asintótica. La línea recta es la aproximación de la parte (c) y la otra es la obtenida con la ley de Coulomb en la parte (d).

Vemos que la aproximación mejora para $r \gg a$.

Problema 2. Problema 4.7 de Classical Electromagnetic Radiation de Jackson [1].

Una distribución de carga localizada tiene la densidad de carga

$$\rho(\mathbf{r}) = \frac{1}{64\pi} r^2 e^{-r} \operatorname{sen}^2 \theta$$

- (a) Haga una expansión multipolar del potencial debido a esta densidad de carga y determine todos los momentos multipolares que no se hacen cero. Escriba el potencial a grandes distancias como una expansión finita en polinomios de Legendre.
- (b) Determine el potencial explícitamente en cualquier punto del espacio, y muestre que cerca del origen, correcto a r^2 inclusive,

$$\Phi(\mathbf{r}) \simeq \frac{1}{4\pi\epsilon_0} \left[\frac{1}{4} - \frac{r^2}{120} P_2(\cos\theta) \right]$$

(c) Si existe en el origen un núcleo con un momento cuadrupolar $Q=10^{-28}$ m², determine la magnitud de la energía de interacción, asumiendo que la unidad de carga en $\rho(\mathbf{r})$ arriba es la carga electrónica y que la unidad de longitud es el radio de Bohr del hidrógeno $a_0=4\pi\epsilon_0\hbar/me^2=0,529\times10^{-10}$ m. Exprese su respuesta como una frecuencia dividida por la constante de Planck h.

La densidad de carga en este problema es la de los estados $m=\pm 1$ del nivel 2p en el hidrógeno, mientras que la interacción cuadrupolar es del mismo orden que el encontrado en moléculas.

Problema 3. Problema 4.8 de Classical Electromagnetic Radiation de Jackson [1].

Un cascarón cilíndrico, muy largo y circular recto, de constante dieléctrica ϵ/ϵ_0 y radio interno y externo a y b, respectivamente, es colocado en un previamente campo eléctrico uniforme E_0 con su eje perpendicular al campo. El medio adentro y afuera del cilindro tiene una constante dieléctrica de uno.

- (a) Determine el potencial y campo eléctrico en las tres regiones, despreciando efectos finales.
- (b) Esboce las líneas de fuerza para un caso típico de $b \simeq 2a$.
- (c) Discuta las formas limitantes en su solución apropiadas para un cilindro dieléctrico sólido en un campo uniforme, y una cavidad cilíndrica en un dieléctrico uniforme.

Problema 4. Problema 4.9 de Classical Electromagnetic Radiation de Jackson [1].

Una carga puntual q es colocada en el espacio libre a una distancia d del centro de una esfera dieléctrica de radio a (a < d) y constante dieléctrica ϵ/ϵ_0 .

- (a) Encuentre el potencial en todos los puntos del espacio como una expansión en armónicos esféricos.
- (b) Calcule las componentes rectangulares del campo eléctrico cerca del centro de la esfera.
- (c) Verifique que, en el límite $\epsilon/\epsilon_0 \to \infty$, tu resultado es el mismo que para la esfera conductora.

Problema 5. Problema 4.13 de Classical Electromagnetic Radiation de Jackson [1].

Dos superficies cilíndricas conductoras, largas y coaxiales, de radios a y b son bajadas verticalmente a un líquido dieléctrico. Si el líquido sube una altura promedio de h entre los electrodos cuando una diferencia de potencial V es establecida entre ellos, muestre que la susceptibilidad del líquido es

$$\chi_e = \frac{(b^2 - a^2)\rho g h \ln (b/a)}{\epsilon_0 V^2}$$

donde ρ es la densidad del líquido, g es la aceleración debida a la gravedad, y la susceptibilidad del aire es depreciada.

Referencias

[1] J. Jackson, Classical Electrodynamics, 3ra edición. John Wiley and Sons, Inc. 1999.