本文章主要涉及到对 <u>DDR</u>2 和 DDR3 在设计印制线路板(<u>PCB</u>)时,考虑<u>信号完整性</u>和<u>电源</u>完整性的设计事项,这些是具有相当大的挑战性的。文章重点是讨论在尽可能少的 PCB 层数,特别是 4 层板的情况下的相关技术,其中一些设计方法在以前已经成熟的使用过。

1. 介绍

目前,比较普遍使用中的 DDR2 的速度已经高达 800 Mbps,甚至更高的速度,如 1066 Mbps,而 DDR3 的速度已 经高达 1600 Mbps。对于如此高的速度,从 PCB 的设计角度来讲,要做到严格的时序匹配,以满足波形的完整性,这 里有很多的因素需要考虑,所有的这些因素都是会互相影响的,但是,它们之间还是存在一些个性的,它们可以被分 类为 PCB 叠层、阻抗、互联拓扑、时延匹配、串扰、电源完整性和时序,目前,有很多 EDA 工具可以对它们进行很好的计算和仿真,其中 Cadence ALLEGRO SI-230 和 Ansoft's HFSS 使用的比较多。

表 1 显示了 DDR2 和 DDR3 所具有的共有技术要求和专有的技术要求。

表 1: DDR2 和 DDR3 要求比较

点击看原图

对于一块受 PCB 层数约束的基板(如 4 层板)来说,其所有的信号线只能走在 TOP 和 BOTTOM 层,中间的两层,其中一层为 GND 平面层,而另一层为 VDD 平面层,Vtt 和 Vref 在 VDD 平面层布线。而当使用 6 层来走线时,设计一种专用拓扑结构变得更加容易,同时由于 Power 层和 GND 层的间距变小了,从而提高了 PI。

互联通道的另一参数阻抗,在 DDR2 的设计时必须是恒定连续的,单端走线的阻抗匹配电阻 50 Ohms 必须被用到所有的单端信号上,且做到阻抗匹配,而对于差分信号,100 Ohms 的终端阻抗匹配电阻必须被用到所有的差分信号终端,比如 CLOCK 和 DQS 信号。另外,所有的匹配电阻必须上拉到 VTT,且保持 50 Ohms,ODT 的设置也必须保持在50 Ohms。

在 DDR3 的设计时,单端信号的终端匹配电阻在 40 和 60 Ohms 之间可选择的被设计到 ADDR/CMD/CNTRL 信号线上,这已经被证明有很多的优点。而且,上拉到 VTT 的终端匹配电阻根据 SI 仿真的结果的走线阻抗,电阻值可能需要做出不同的选择,通常其电阻值在 30-70 Ohms 之间。而差分信号的阻抗匹配电阻始终在 100 Ohms。

点击看原图

图 1: 四层和六层 PCB 的叠层方式

3. 互联通路拓扑

对于 DDR2 和 DDR3, 其中信号 DQ、DM 和 DQS 都是点对点的互联方式,所以不需要任何的拓扑结构,然而列外的是,在 multi-rank DIMMs(Dual In Line Memory Modules)的设计中并不是这样的。在点对点的方式时,可以很容易的通过 ODT 的阻抗设置来做到阻抗匹配,从而实现其波形完整性。而对于 ADDR/CMD/CNTRL 和一些时钟信号,它们都是需要多点互联的,所以需要选择一个合适的拓扑结构,图 2 列出了一些相关的拓扑结构,其中 Fly- By 拓扑结构是一种特殊的菊花链,它不需要很长的连线,甚至有时不需要短线(Stub)。

对于 DDR3,这些所有的拓扑结构都是适用的,然而前提条件是走线要尽可能的短。Fly-By 拓扑结构在处理噪声方面,具有很好的波形完整性,然而在一个 4 层板上很难实现,需要 6 层板以上,而菊花链式拓扑结构在一个 4 层板上是容易实现的。另外,树形拓扑结构要求 AB 的长度和 AC 的长度非常接近(如图 2)。考虑到波形的完整性,以及尽可能的提高分支的走线长度,同事又要满足板层的约束要求,在基于 4 层板的 DDR3 设计中,最合理的拓扑结构就是带有最少短线(Stub)的菊花链式拓扑结构。

图 2: 带有 2片 SDRAM 的 ADDR/CMD/CNTRL 拓扑结构

对于 DDR2-800,这所有的拓扑结构都适用,只是有少许的差别。然而,菊花链式拓扑结构被证明在 SI 方面是具有优势的。

对于超过两片的 SDRAM,通常,是根据器件的摆放方式不同而选择相应的拓扑结构。图 3 显示了不同摆放方式而特殊设计的拓扑结构,在这些拓扑结构中,只有 A 和 D 是最适合 4 层板的 PCB 设计。然而,对于 DDR2-800,所列的这些拓扑结构都能满足其波形的完整性,而在 DDR3 的设计中,特别是在 1600 Mbps 时,则只有 D 是满足设计的。

图 3: 带有 4 片 SDRAM 的 ADDR/CMD/CNTRL 拓扑结构

4. 时延的匹配

在做到时延的匹配时,往往会在布线时采用 trombone 方式走线,另外,在布线时难免会有切换板层的时候,此时就会添加一些过孔。不幸的是,但所有这些弯曲的走线和带过孔的走线,将它们拉直变为等长度理想走线时,此时它们的时延是不等的,如图 4 所示。

图 4: Trombone 和 Vias 的实例

显然,上面讲到的 trombone 方式在时延方面同直走线的不对等是很好理解的,而带过孔的走线就更加明显了。在中心线长度对等的情况下,trombone 走线的时延比直走线的实际延时是要来的小的,而对于带有过孔的走线,时延是要来的大的。这种时延的产生,这里有两种方法去解决它。一种方法是,只需要在 EDA 工具里进行精确的时延匹配计算,然后控制走线的长度就可以了。而另一种方法是在可接受的范围内,减少不匹配度。

对于 trombone 线,时延的不对等可以通过增大 L3 的长度而降低,因为并行线间会存在耦合,其详细的结果,可以通过 SigXP 仿真清楚的看出,如图 5,L3 (图中的 S)长度的不同,其结果会有不同的时延,尽可能的加长 S的长度,则可以更好的降低时延的不对等。对于微带线来说,L3 大于 7 倍的走线到地的距离是必须的。

点击看原图

图 5: 针对 trombone 的仿真电路和仿真波形

trombone 线的时延是受到其并行走线之间的耦合而影响,一种在不需要提高其间距的情况下,并且能降低耦合的程度的方法是采用 saw tooth 线。显然,saw tooth 线比 trombone 线具有更好的效果,但是,它需要更多的空间。由于各种可能造成时延不同的原因,所以,在实际的设计时,要借助于 CAD 工具进行严格的计算,从而控制走线的时延匹配。

考虑到在图 2 中 6 层板上的过孔的因素,当一个地过孔靠近信号过孔放置时,则在时延方面的影响是必须要考虑的。先举个例子,在 TOP 层的微带线长度是 150 mils,BOTTOM 层的微带线也是 150 mils,线宽都为 4 mils,且过孔的参数为:barrel diameter="8mils",pad diameter="18mils",anti-pad diameter="26mils"。

这里有三种方案进行对比考虑,一种是,通过过孔互联的这个过孔附近没有任何地过孔,那么,其返回路径只能通过离此过孔 250 mils 的 PCB 边缘来提供;第二种是,一根长达 362 mils 的微带线;第三种是,在一个信号线的四周有四个地过孔环绕着。图 6显示了带有 60 0hm 的常规线的 S-Parameters,从图中可以看出,带有四个地过孔环绕的信号过孔的 S-Parameters 就像一根连续的微带线,从而提高了 S21 特性。由此可知,在信号过孔附近缺少返回路径的情况下,则此信号过孔会大大增高其阻抗。当今的高速系统里,在时延方面显得尤为重要。

现做一个测试电路,类似于图 5,驱动源是一个线性的 60 0hms 阻抗输出的梯形信号,信号的上升沿和下降沿均为 100 ps,幅值为 1V。此信号源按照图 6 的三种方式,且其端接一 60 0hms 的负载,其激励为一 800 MHz 的周期信号。在 0.5V 这一点,我们观察从信号源到接收端之间的时间延迟,显示出来它们之间的时延差异。其结果如图 7 所示,在 图中只显示了信号的上升沿,从这图中可以很明显的看出,带有四个地过孔环绕的过孔时延同直线相比只有 3 ps,而 在没有地过孔环绕的情况下,其时延是 8 ps。由此可知,在信号过孔的周围增加地过孔的密度是有帮助的。然而,在 4 层板的 PCB 里,这个就显得不是完全的可行性,由于其信号线是靠近<u>电源</u>平面的,这就使得信号的返回路径是由它们 之间的耦合程度来决定的。所以,在 4 层的 PCB 设计时,为符合电源完整性(Power integrity)要求,对其耦合程度 的控制是相当重要的。

图 6: 带有过孔互联通道的 s-parameters

图 7:图 6三种案例的发送和接收波形

点击看原图

对于 <u>DDR</u>2 和 DDR3,时钟信号是以差分的形式传输的,而在 DDR2 里,DQS 信号是以单端或差分方式通讯取决于其工作的速率,当以高度速率工作时则采用差分的方式。显然,在同样的长度下,差分线的切换时延是小于单端线的。根据时序仿真的结果,时钟信号和 DQS 也许需要比相应的 ADDR/CMD /CNTRL 和 DATA 线长一点。另外,必须确保时钟线

和 DQS 布在其相关的 ADDR/CMD/CNTRL 和 DQ 线的当中。由于 DQ 和 DM 在很高的速度下传输,所以,需要在每一个字节里,它们要有严格的长度匹配,而且不能有过孔。差分信号对阻抗不连续的敏感度比较低,所以换层走线是没多大问题的,在布线时优先考虑布时钟线和 DQS。

5. 串扰

在设计微带线时,串扰是产生时延的一个相当重要的因素。通常,可以通过加大并行微带线之间的间距来降低串扰的相互影响,然而,在合理利用走线空间上这是一个很大的弊端,所以,应该控制在一个合理的范围里面。典型的一个规则是,并行走线的间距大于走线到地平面的距离的两倍。另外,地过孔也起到一个相当重要的作用,图 8 显示了有地过孔和没地过孔的耦合程度,在有多个地过孔的情况下,其耦合程度降低了 7 dB。考虑到互联通路的成本预算,对于两边进行适当的仿真是必须的,当在所有的网线上加一个周期性的激励,将会由串扰产生的信号抖动,通过仿真,可以在时域观察信号的抖动,从而通过合理的设计,综合考虑空间和信号完整性,选择最优的走线间距。

点击看原图

图 8: 相互耦合走线的 s-parameters

6. 电源完整性

这里的电源完整性指的是在最大的信号切换情况下,其电源的容差性。当未符合此容差要求时,将会导致很多的问题,比如加大时钟抖动、数据抖动和串扰。

这里,可以很好的理解与去偶相关的理论,现在从"目标阻抗"的公式定义开始讨论。

在这里,关键是要去理解在最差的切换情况下瞬间电流(Transient Current)的影响,另一个重要因素是切换的频率。在所有的频率范围里,去耦网络必须确保它的阻抗等于或小于目标阻抗(Ztarget)。在一块 PCB上,由电源和地层所构成的电容,以及所有的去耦电容,必须能够确保在 100KHz 左右到 100-200MH 左右之间的去耦作用。频率在 100KHz 以下,在电压调节模块里的大电容可以很好的进行去耦。而频率在 200MHz 以上的,则应该由片上电容或专用的封装好的电容进行去耦。实际的电源完整性是相当复杂的,其中要考虑到 IC 的封装、仿真信号的切换频率和 PCB 耗电 网络。对于 PCB 设计来说,目标阻抗的去耦设计是相对来说比较简单的,也是比较实际的解决方案。

在 DDR 的设计上有三类电源,它们是 VDD、VTT 和 Vref。VDD 的容差要求是 5%,而其瞬间电流从 Idd2 到 Idd7 大小不同,详细在 JEDEC 里有叙述。通过电源层的平面电容和专用的一定数量的去耦电容,可以做到电源完整性,其中去耦电容从 10nF 到 10uF 大小不同,共有 10 个左右。另外,表贴电容最合适,它具有更小的焊接阻抗。

Vref 要求更加严格的容差性,但是它承载着比较小的电流。显然,它只需要很窄的走线,且通过一两个去耦电容就可以达到目标阻抗的要求。由于 Vref 相当重要,所以去耦电容的摆放尽量靠近器件的管脚。

然而,对 VTT 的布线是具有相当大的挑战性,因为它不只要有严格的容差性,而且还有很大的瞬间电流,不过此电流的大小可以很容易的就计算出来。最终,可以通过增加去耦电容来实现它的目标阻抗匹配。

在 4 层板的 PCB 里, 层之间的间距比较大, 从而失去其电源层间的电容优势, 所以, 去耦电容的数量将大大增加, 尤其是小于 10 nF 的高频电容。详细的计算和仿真可以通过 EDA 工具来实现。

7. 时序分析

对于时序的计算和分析在一些相关文献里有详细的介绍,下面列出需要设置和分析的8个方面:

- 1. 写建立分析: DQ vs. DQS
- 2. 写保持分析: DQ vs. DQS
- 3. 读建立分析: DQ vs. DQS
- 4. 读保持分析: DQ vs. DQS
- 5. 写建立分析: DQS vs. CLK
- 6. 写保持分析: DQS vs. CLK
- 7. 写建立分析: ADDR/CMD/CNTRL vs. CLK
- 8. 写保持分析: ADDR/CMD/CNTRL vs. CLK

表 2 举了一个针对写建立(Write Setup)分析的例子。表中的一些数据需要从控制器和存储器厂家获取,段" Interconnect"的数据是取之于 SI 仿真工具。对于 DDR2 上面所有的 8 项都是需要分析的,而对于 DDR3,5 项和 6 项 不需要考虑。在 PCB 设计时,长度方面的容差必须要保证 total margin 是正的。

表 2: 针对 DQ vs. DQS 的 DDR3 写保持时域分析案例

Element	Skew Component	Setup	Units	Comments
Controller	a.)DQ vs. DQS_skew at transmitter output		ps	From controller design data
_	b.) Data / Strobe PLL jitter		ps	Used if not included in transmitter skew
Total Controller	a + b		ps	
SDRAM (or DIMM)	Setup requirement (tDSb @ Vih/Vil level)		ps	From SDRAM datasheet; this number is to be adjusted based on DQ and DQS slew rates
	DQ slew rate		V/ns	Measured as per JEDEC specification from SI simulation results
	DQS slew rate		V/ns	Measured as per JEDEC specification from SI simulation results
Total SDRAM setup requirement	tDSb + slew rate adjustment		ps	Includes slew rate adjustment
Interconnect	a.) Data Xtalk		ps	2 aggressors (one each side of the victim); victim – repetitive; aggressor- PRBS
	b.) DQS Xtalk		ps	2 aggressors (one each side of the victim); victim – repetitive; aggressor- PRBS
	c.) Length matching tolerance		ps	Extracted from SI simulation results longest data net, worst case PVT corner
	d.) Characteristic impedance mismatch		ps	can be omitted if routing of DQ and corresponding DQS signals are done on same layer
Total Interconnect	Interconnect skew (a + b + c + d)		ps	
Min. Total Setup Budget	0.24*tck		ps	From SDRAM datasheet (includes clock duty cycle variation)
Setup margin	Min. Total Setup Budget – (Total Controller + Total SDRAM + Total Interconnect)		ps	Must be positive

点击看原图

8. PCB Layout

在实际的 PCB 设计时,考虑到 SI 的要求,往往有很多的折中方案。通常,需要优先考虑对于那些对信号的完整性要求比较高的。画 PCB 时,当考虑一下的一些相关因素,那么对于设计 PCB 来说可靠性就会更高。

- 1. 首先,要在相关的 EDA 工具里要设置好里设置好拓扑结构和相关约束。
- 2. 将 BGA 引脚突围,将 ADDR/CMD/CNTRL 引脚布置在 DQ/DQS/DM 字节组的中间,由于所有这些分组操作,为了尽可能少的信号交叉,一些独立的管脚也许会被交换到其它区域布线。
- 3. 由串扰仿真的结果可知,尽量减少短线(stubs)长度。通常,短线(stubs)是可以被削减的,但不是所有的管脚都做得到的。在 BGA 焊盘和存储器焊盘之间也许只需要两段的走线就可以实现了,但是此走线必须要很细,那么就提高了 PCB 的制作成本,而且,不是所有的走线都只需要两段的,除非使用微小的过孔和盘中孔的技术。最终,考虑到信号完整性的容差和成本,可能选择折中的方案。
- 4. 将 Vref 的去耦电容靠近 Vref 管脚摆放; Vtt 的去耦电容摆放在最远的一个 SDRAM 外端; VDD 的去耦电容需要靠近器件摆放。小电容值的去耦电容需要更靠近器件摆放。正确的去耦设计中,并不是所有的去耦电容都是靠近器件摆放的。所有的去耦电容的管脚都需要扇出后走线,这样可以减少阻抗,通常,两端段的扇出走线会垂直于电容布线。
- 5. 当切换平面层时,尽量做到长度匹配和加入一些地过孔,这些事先应该在 <u>EDA</u>工具里进行很好的仿真。通常,在时域分析来看,差分线里的两根线的要做到延时匹配,保证其误差在+/- 2ps,而其它的信号要做到+/- 10 ps。

9. DIMM

之前介绍的大部分规则都适合于在 PCB 上含有一个或更多的 DIMM,唯一列外的是在 DIMM 里所要考虑到去耦因素同在 DIMM 组里有所区别。在 DIMM 组里,对于 ADDR/CMD/CNTRL 所采用的拓扑结构里,带有少的短线菊花链拓扑结构和树形拓扑结构是适用的。

10. 案例

上面所介绍的相关规则,在 DDR2 PCB、DDR3 PCB 和 DDR3-DIMM PCB 里,都已经得到普遍的应用。在下面的案例中,我们采用 MOSAID 公司的控制器,它提供了对 DDR2 和 DDR3 的操作功能。在 SI 仿真方面,采用了 IBIS 模型,其存储器的模型来自 MICRON Technolgy, Inc,对于 DDR3 SDRAM 的模型提供了 1333 Mbps 的速率。在这里,数据是操作是在 1600 Mbps 下的。对于不带缓存(unbuffered)的 DIMM(MT_DDR3_0542cc)EBD 模型是来自 Micron Technology,下面所有的波形都是采用通常的测试方法,且是在 SDRAM die 级进行计算和仿真的。图 2 所示的 6 层板里,只在 TOP 和 BOTTOM 层进行了布线,存储器由两片的 SDRAM 以菊花链的方式所构成。而在 DIMM 的案例里,只有一个不带缓存的 DIMM 被使用。图 9-11 是对 TOP/BOTTOM 层布线的一个闪照图和信号完整性仿真图。

图 9: 只有在 TOP 和 BOTTOM 层走线的 DDR3 的仿真波形

(左边的是 ADDRESS 和 CLOCK 网络,右边的是 DATA 和 DQS 网络,其时钟频率在 800 MHz,数据通信率为 1600Mbps)

图 10: 只有在 TOP 和 BOTTOM 层走线的 DDR2 的仿真波形

(左边的是 ADDRESS 和 CLOCK 网络,右边的是 DATA 和 DQS 网络,其时钟频率在 400 MHz,数据通信率为 800Mbps)

图 11: 只有在 TOP 和 BOTTOM 层走线的 DDR3-DIMM 的仿真波形

(左边的是 ADDRESS 和 CLOCK 网络,右边的是 DATA 和 DQS 网络)

最好,图 12显示了两个经过比较过的数据信号眼图,一个是仿真的结果,而另一个是实际测量的。在上面的所有案例里,波形的完整性的完美程度都是令人兴奋的。

图 12: 800 Mbps DDR2 的数据信号仿真眼图(红) 和 实测眼图(蓝)

11. 结论

本文,针对 DDR2/DDR3 的设计,SI 和 PI 的各种相关因素都做了全面的介绍。对于在 4 层板里设计 800 Mbps 的 DDR2 和 DDR3 是可行的,但是对于 DDR3-1600 Mbps 是具有很大的挑战性。