# Méthodes Agiles

Joseph Gillain - CogniTIC



## **Objectifs**

 Introduire les participants aux <u>méthodologies</u> de développement dites "Agiles" et plus particulièrement à SCRUM

> AGILE = Méthodologie AGILE >< Langage

#### Tables des matières

- 1. Phase Initiale: Introduction à Agile
- 2. Phase de Sprint:
  - a. Itération 1 Aperçu de SCRUM
  - b. Itération 2 Les rôles
  - C. Itération 3 La vision du produit
  - d. Itération 4 Le Product Backlog
  - e. Itération 5 Le Planning
    - f. Itération 6 Un contrat SCRUM
- 3. Phase de Clotûre: Case Study

# Phase initiale

...ou l'on compare les méthodes Agile aux méthodes traditionnelles

# Méthodes de développement de software

Qu'est ce qu'une méthode de développement?

Cadre établi afin de structurer, planifier et contrôler le processus de développement d'un système d'information

# Méthodes de développement de software

Quelles sont les disciplines d'un processus de développement?

# Les disciplines du développement de software

- Analyse des exigences
  - Comprendre les besoins du client
- Conception (Design)
  - Définir la solution technique
- Développement
  - Implémenter la solution
- Validation (Testing)
  - S'assurer que la solution répond adéquatement aux besoins
- Déploiment
  - Intégration globale et mise en production
- Maintenance

# Les activités du développement de software

Les différences entre différentes méthodologies de développement résident essentiellement dans:

- l'importance donnée à chaque activité
- la séquence permise entre chaque activité

Large variété de méthodologie: en cascade, en spirale, incrémentale, agile...

## Méthode en cascade

#### Méthode en cascade



#### Réflexion

Quels sont les avantages et les inconvénients d'une telle méthode?

#### Réflexion

Quels sont les critères favorable/défavorable pour cette méthode?

## **Avantages**

- 1. Le temps alloué dans les premières phases des projets permet d'atteindre des économies d'échelle
- La documentation est aussi importante que le code.
  Cela permet de pérenniser la connaissance au sein du projet
- 3. Approche simple, disciplinée et facile à comprendre

#### Inconvénients

- 1. La rigidité de l'approche
- 2. L'effet tunnel ou "black box"
- 3. Une mauvaise communication
- 4. La levée tardive des facteurs à risques
- 5. Une documentation pléthorique

# Exigences pour la méthode en cascade

- 1. L'environnement et les exigences sont stables
- 2. La technologie est bien connue et mature
- Il n'y a rien de nouveau ou d'inconnu dans le projet (prévisibilité)
- 4. De nombreux projets semblables ont déjà été exécutés avant

#### Méthode en cascade

Qui utilise ce genre de méthode?

#### Méthode en cascade

Qui utilise ce genre de méthode?



## Statistiques NASA-Soft. Eng.



## Statistiques NASA-Soft. Eng.



#### Réflexion

# Comment pourrait-on améliorer ce processus?

#### **Processus Incrémental**



Sources: Jeff Patton

#### **Processus Itératif**



Sources: Jeff Patton

# Rapid Application Development

#### **Origines**

#### Double constat:

- Manque de concertation entre informaticiens et utilisateurs
  - => inadéquation du produit aux besoins
- Durée des méthodes classiques inadaptées à la vitesse d'évolution des technologies

### **Principes**

- Fondement de base: Communication
- Répartition des rôles très structurée:
  - Maîtrise d'ouvrage: représente l'utilisateur et détermine les fonctionnalités à développer
  - Maîtrise d'oeuvre: apporte les solutions techniques aux problèmes posés par la maîtrise d'ouvrage
  - Groupe d'animation et Rapporteur: organise la communication du projet

#### Maîtrise d'ouvrage

#### Responsabilités:

- Définition des objectifs et des exigences
- Valider les solutions proposées et élaborées
- Préparer et piloter le changement induit

#### Acteurs:

- Maître d'ouvrage
  - Fixe les objectifs
- Coordinateur de Projet Utilisateurs ou Maître d'Ouvrage délégué
  Assure le suivi des objectifs
- Responsable de la cohérence et de la qualité fonctionnelle
  Contrôle la cohérence des décisions
  dans les domaines fonctionnels

#### Maîtrise d'oeuvre

#### Responsabilités:

- Proposer et réaliser la solution
- Livrer des "fonctionnalités"
- Respecter les directives de qualité

#### Acteurs:

- Maître d'œuvre
- Pilote de Projet Informatique
- Responsable par domaine

#### Interactions RAD

#### Groupe d'animation et de Rapport RAD

#### Animateur

- Provoque et conduit les réunions Produit une documentation
- N'émet pas d'avis personnel
- · Recadre les discussions
- Synthétise et formalise

#### Rapporteur

- Produit une documentation automatisée
- Modélise le système en direct lors des réunions de conception
- Rédige les comptes rendus

#### Maîtrise d'ouvrage

- Définit les objectifs et exigences du système
- Valide le solutions proposées et élaborées

• Prépare et pilote le changement

#### Maîtrise d'œuvre

- · Propose et réalise la solution
- · Livre des « fonctionnalités »
- respecte les directives du Plan d'Assurance Qualité

#### Les 5 phases d'un RAD

- Initialisation
  - Préparation de l'organisation et communication
- Cadrage
  - Analyse et expression des exigences
- Design
  - Conception et modélisation
- Construction
  - Réalisation, prototypage
- Finalisation
  - Recette et déploiement

### Cycle de vie d'un projet RAD



Cycle de vie d'un projet RAD

#### **Initialisation**

Préparation de l'organisation et communication

- définit le périmètre général du projet
- établit la structure du travail par thèmes
- recense les acteurs pertinents
- amorce la dynamique du projet

5% du projet

#### Cadrage

Analyse et expression des exigences

- Spécification de exigences par les utilisateurs lors d'entretiens de groupe
- 2 à 5 jours de sessions par commission

10% du projet

### Design

#### Conception et modélisation

- Validation des modèles organisationnels par les utilisateurs: flux, traitements, données
- Validation d'un premier prototype par les utilisateurs
- 4 à 8 jours de sessions sont prévus par commission
- 25% du projet

#### Construction

Réalisation, prototypage

- Construction au cours de plusieurs sessions itératives de l'application module par module
- Validation des prototypes par l'utilisateur

50% du projet

#### **Finalisation**

Livraison globale et le transfert du système en exploitation et maintenance.

10% du projet

# **Unified Process**

#### Le Processus Unifié

- Processus de développement pour les systèmes orientés objets
- Importance de la modélisation et de l'utilisation d'outils de support (particulièrement UML)

### Les 4 phases du UP

Chaque projet UP comprend les 4 phases suivantes:

- Inception
- Elaboration
- Construction
- Transition

### Inception

- Vision approximative de la finalité du projet
- Etude d'opportunité
- Définition de périmètre
- Estimations globales

#### **Elaboration**

- Ebauche plus élaborée
- Implémentation de l'architecture du noyau
- Résolutions des risques élevés
- Identification de la plupart des besoins
- Estimations plus réalistes

#### Construction

- Implémantation des éléments à moindre risque
- Préparation du déploiement

#### **Transition**

- Béta test
- Déploiement final

### Les disciplines du UP

Les disciplines sont les ensembles d'activités dans un domaine donné

- Modélisation métier
- Exigences
- Conception
- Implémentation
- Validation
- Déploiement

#### **Iterative Development**

Business value is delivered incrementally in time-boxed cross-discipline iterations.



#### Réflexion

## Quels sont les avatanges de l'UP

## Avantages du développement itératif

- La communication est de meilleure qualité
- La visibilité est meilleure
- La qualité est évaluée en continu
- Les risques sont détectés très tôt
- L'équipe prend confiance
- Les coûts sont contrôlés
- Possibilité d'exploiter méthodiquement les leçons tirées d'une itération

#### **Exercices**

Serait-ce faux de considérer que:

- Inception = Spécification
- Elaboration = Conception
- Construction = Implémentation

## Méthode Agile

## Le manifeste Agile

Valeurs et Principes

#### **Valeurs**

- Priorité aux personnes et aux interactions par rapport aux procédures et aux outils
  - Travail en groupe, communication

- Priorité aux applications opératinnelles par rapport à une documentation pléthorique
  - Documentations succinctes à jour, documentation permanente du code

#### **Valeurs**

- Priorité de la collaboration avec le client par rapport à la négociation de contrat
  - Feedback régulier du client, solution répondant réellement aux attentes
  - Grande maturité du client, relation de confiance
- Priorité de l'acceptation du changement par rapport à la planification
  - Planning flexible, modifications possibles après
    1ère version du système

- 1. La plus grande priorité est de **satisfaire le client** en lui livrant très tôt et régulièrement des versions fonctionnelles de l'application source de valeur
  - Le client peut décider de la mise en production de l' application
- Accueillir les demandes de changement à bras ouverts, même tard dans le processus de développement. Les méthodologies agiles exploitent les changements pour apporter au client un avantage concurrentiel
  - Produire des systèmes flexibles

- 3. Livrer le plus souvent possible des versions opérationnelles de l'application, avec une fréquence comprise entre deux semaines et deux mois, avec une préférence pour l'échelle de temps la plus courte
  - Objectif: livrer une application qui satisfasse aux besoins du client
- 4. Clients et développeurs doivent coopérer quotidiennement tout au long du projet
- 5. Construire des projets autour d'individus motivés. Leur donner l'environnement et le support dont ils ont besoin et leur faire confiance pour remplir leur mission

- 6. La méthode la plus efficace pour communiquer des informations à une équipe et à l'intérieur de celle-ci reste la conversation en face à face
- 7. Le **fonctionnement** de l'application est le premier indicateur d'avancement du projet
- 8. Les méthodes agiles recommandent que le projet avance à un **rythme soutenable** : développeurs et utilisateurs devraient pouvoir maintenir un rythme constant indéfiniment
  - Adapter le rythme pour préserver la qualité du travail sur la durée du projet

- 9. Porter une attention continue à **l'excellence technique** et à la conception améliore l'agilité
  - Maintenir le code source propre, clair et robuste
- 10. La **simplicité**, art de maximiser la quantité de travail à ne pas faire, est essentielle
  - Répondre le + simplement aux besoins actuels pour que celui ci soit adaptable
- 11. Les meilleures architectures, spécifications et conceptions sont le fruit d'équipes qui s'auto-organisent
  - Partage des responsabilités par volontariat

- 12. A intervalles de temps réguliers, l'ensemble de l'équipe s' interroge sur la manière de devenir encore plus efficace, puis ajuste son comportement en conséquence
  - Environnement en perpétuelle évolution

## Comparaison

| Cycle de vie              | Phases séquentielles                       | Agiles                                          |  |
|---------------------------|--------------------------------------------|-------------------------------------------------|--|
| Planification             | Prédictive                                 | Adaptative                                      |  |
| Documentation             | Produite en quantité                       | Réduite au strict nécessaire                    |  |
| Équipe                    | Ressources spécialisées                    | Responsabilisation, initiative et communication |  |
| Qualité                   | Contrôle à la fin du cycle                 | Contrôle qualité précoce et permanent           |  |
| Changement                | Opposition au changement.                  | Intégré dans le processus                       |  |
| Suivi de l'<br>avancement | Mesure de la conformité aux plans initiaux | Travail restant à faire                         |  |
| Gestion des risques       | Processus distinct                         | Intégré dans le processus                       |  |
| Mesure du succès          | Respect des engagements initiaux           | Satisfaction client                             |  |

# Exercice Méthode Agile?

# Comparer les méthodes en cascade, UP et RAD aux valeurs Agiles

| Priorités Agiles             | Cascade | RAD | UP |
|------------------------------|---------|-----|----|
| Personnes/Communication      |         |     |    |
| Applications opérationnelles |         |     |    |
| Satisfaction du client       |         |     |    |
| Intégration du changement    |         |     |    |

#### **Exercices**

Quelle serait la meilleure méthode de développement pour les projets suivants:

## Système de navigation A380



#### **Gmail**



# Système de gestion intégrée du stock



## **ARPANET**



#### **Facebook**



### Scanner médical



# Fin première partie