Mobile Autoguidé 2015

Les 2 boutons poussoirs peuvent servir à régler la vitesse de déplacement du mobile. Connexions au port 1 :

Codage de l'accélération-décélération : BP0 = AccélérationBP1 = Décélération

	BP1	BP0	Action
2 appuis	0	0	Décélérer+éteindre led
simultanés			
1 appui	1	0	Décélérer+éteindre led
1 appui	0	1	Accélérer+allumer led
Pas d'appui	1	1	Ne rien faire

Sécurité: priorité à la décélération

Il faut 2 décalages à droite pour récupérer le premier bit dans le carry « C ».

Récupération des ordres : si $BP0 = 0 \rightarrow ralentir$

Si $BP0 = 1 \rightarrow tester BP1$

reglage:

mov a,p1

rrc a

rrc a

jnc ralentir

rrc a

jnc augmenter

sjmp reglage

Définition des durées :

Assemblage des 2 chronogrammes :

D + /D + M + /M = 20ms

Durées de référence :Dir (D) = Mot (M) = 1.5ms =1500 μ s

Correspondance hexadécimale

Valeurs à charger dans Timer0 pour générer la durée des créneaux

Notation:

VD1 Valeur à charger dans Timer0 pour une durée de référence du créneau de

direction (DIR = 1) ou du moteur (MOT = 1). VD1 = FA24h

VDR1 Valeur à charger dans Timer0 pour une durée de référence du complément du

créneau de direction (DIR = 0). VDR1 = FC18h

VMR1 Valeur à charger dans Timer0 pour une durée de référence du complément du

créneau du moteur (MOT = 0). VMR1 = C180h

Les valeurs extrémales des créneaux :

DIR	/DIR	MOT	/MOT
VDmin = 1000	VDRmax = 1500	VMmin = 1000	VMRmax = 16500
VDmax = 2000	VDRmin = 500	VMmax = 2000	VMRmin = 15500

Les valeurs à charger dans le Timer0 :

Le Timer peut dénombrer 65536 états = T

V est le nombre d'états à compter

D est la valeur de départ du compteur telle que :

$$D + V = T$$

Il faut charger le Timer avec la valeur D = T - V

Remarque: pour augmenter V il faut diminuer D.

Les variations des grandeurs :

Pour la direction et son complément : $D + /D = 2500 \mu s$

Durée en us

$$1000 \le VD = 1500 \le 2000$$
 $1500 \ge VDR = 1000 \ge 500$

Valeurs à charger:

En décimal

$$64536 \ge 64036 \ge 63536$$
 $64036 \le 64536 \le 65036$

En hexadécimal

$ FC18h \ge FA24h \ge F830h FA24h \le FC18h \le FE0Ch $	$FC18h \ge FA24h \ge F830h$	$FA24h \le FC18h \le FE0Ch$
---	-----------------------------	-----------------------------

Pour le moteur et son complément : $M + /M = 17500 \mu s$

Durée en µs

$$1000 \le VM = 1500 \le 2000$$
 $16500 \ge VMR = 16000 \ge 15500$

Valeurs à charger :

En décimal

$$64536 \ge 64036 \ge 63536$$
 $49036 \le 49536 \le 50036$

En hexadécimal

$FC18h \ge FA24h \ge F830h$	$BF8Ch \le C180h \le C374$	
$ 1 C1011 \leq 1112 + 11 \leq 1 C3011$		$10011 \pm 031 \pm 11$

Les actions réalisées :

Accélérer:	de 1,5 à 2ms	Tourner à droite :	de 1,5 à 2ms
Décélérer :	de 1,5 à 1ms	Tourner à gauche :	de 1,5 à 1ms

Pour faire varier une durée, il faut :

• Ajouter ou soustraire une valeur de variation (par exemple $1\mu s$) contenue dans un registre R6 pour la direction

R7 pour la vitesse

- Comparer la grandeur calculée aux valeurs limites
- Mémoriser la valeur dans 2 registres (1 octet pour les poids forts et 1 octet pour les poids faibles) VD2, VDR2, VM2 et VMR2
- Charger la valeur (selon la phase en cours du sous-programme) dans 2 registres tampons VTH0 et VTL0

• Recharger le Timer 0 TH0 et TL0

Les octets réservés en mémoire RAM:

• 8 octets de sauvegarde des valeurs calculées :

	VD2l	7Fh
VD2	VD2h	7Eh
	VDR21	7Dh
VDR2	VDR2l	7Ch
	VM2l	7Bh
VM2	VD2h	7Ah
	VMR21	79h
VMR2	VMR2h	78h

• 2 registres tampons

VTL0	6Fh
VTH0	6Eh

Chargement des registres tampons selon la phase du sous programme de traitement de la durée des créneaux, puis du Timer0:

Méthode de chargement de Timer0

- Timer0, une fois lancé, compte en permanence
- L'interruption timer0 (adresse 000Bh) est validée au début du programme principal
- Lorsque un cycle de comptage se termine, la mise à « 1 » de TF0 lors du débordement du compteur (passage de FFFFh à 0000h) provoque l'exécution du sous programme d'interruption

PINTTIMER0

Dans ce sous programme, le registre R0 permet de sélectionner une phase (réglage de la durée d'un créneau) parmi quatre :

PHASE	TR0A0	TR0A1	TR0A2	TR0A3		
R0	0	1	2	3		
Valeur du créneau	DIR=1	DIR=0	MOT=1	MOT=0		
chargement	VD2 _{I,h} ↓ VT _{I,h} 0	$VDR2_{l,h}$ \downarrow $VT_{l,h}0$	VM2 _{I,h} ↓ VT _{I,h} 0	VMR2 _{I,h} ↓ VT _{I,h} 0		
RELANCET0						

Ce que fait RELANCET0:

- Arrête Timer0
- Charge les valeurs VTL0 et VTH0 respectivement dans TL0 et TH0
- Relance Timer0

NB: à la fin de la phase 3 un drapeau FININT (bit d'adresse 7h en zone bit de la mémoire RAM) est mis à 1. Il permet de savoir qu'un cycle de 20ms s'est déroulé.

Il peut être utilisé pour éviter de charger, pendant un cycle de 20ms une valeur erronée :

Exemple : suite à une action sur BPO, VMR (nouveau) est calculée, mais

 $VM_{(préc\acute{e}dent)} + VMR_{(nouveau)} \neq 15 \text{ ms}$

et la période du signal de commande est modifiée.

Comparaison de 2 nombres :

instruction CJNE Compare and Jump if Not Equal

Cette instruction positionne le Carry:

CJNE a, #data, saut

CJNE compare « data » au contenu de l'accumulateur et positionne le carry selon :

$$[A] < data$$
 $C = 1$
 $[A] \ge data$ $C = 0$

Exemple

```
compare:
                    a, #data, differend
            cjne
egal:
            . . . . .
            . . . . .
                   suite_a
            sjmp
differend:
                    inferieur
            jc
superieur: ....
                   suite_b
            sjmp
inferieur:
            . . . .
```

- Si data = [A] → exécution de l'instruction repérée par le label "egal"
- Si data ≠ [A] → saut au label différend pour traitement du Carry
 - Si C = 0 [A] > data \rightarrow (label supérieur)
 - Si C = 1 [A] < data \rightarrow (label inférieur)

Accélération:

Décélération:

Virage à droite :

Virage à gauche :

Asservissement de vitesse

Un dispositif d'émission-réception infrarouge, identique à celui présent sur la carte de détection de position, est placé sur l'essieu arrière-gauche du mobile.

Sur la partie intérieure de la roue gauche est placée une cible constituée d'une alternance de 8 8 secteurs noirs et de 8 secteurs blancs qui seront détectés par le récepteur infrarouge

