

Linear Regression

Instructor: Hongfei Xue

Email: hongfei.xue@charlotte.edu

Class Meeting: Mon & Wed, 4:00 PM - 5:15 PM, CHHS 376

Recap

- Spam email classification:
 - Binary classification of emails: Spam vs. Ham (Legitimate message)

- A group of experts write rules determining whether an email is spam or not.
- A programmer implement the rules into computer code

Machine Learning

- Function is everywhere!
 - Function $\rightarrow f$; Input instance $\rightarrow x$; Output Targe $\rightarrow y$

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.

Classification vs. Regression

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.
- Linear Regression is a Regression algorithm.

Regression:

• The output targets $f(x) \in Y$ is continuous, or has a continuous component (e.g., stock price prediction).

Classification:

• The output targets $f(x) \in Y$ is one of a finite set of discrete categories (e.g., mail classification).

Supervised Learning

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.
- Linear Regression is a Supervised Learning algorithm.
- Supervised Learning: The output targets are known in the set of training examples:
 - $(x_1, y_1), (x_2, y_2) \dots (x_i, y_i)$

[e.g., predict stock price]

• Training data vs. Test data

Supervised Learning

• Training data vs. Test data

All Data

Training Data

Test Data

- The goal of machine learning algorithms is to build a function (hypothesis) h(x) such that:
 - h matches f well on the training data $\rightarrow h$ is able to fit data that it has see
 - h also f well on the test data $\rightarrow h$ is able to generalize to unseen data
- To achieve the goal, we want to choose h from a "nice" class of functions that depends on a vector of parameters w:
 - $h(x) \equiv h_w(x) \equiv h(w, x)$

Do we need to make assumptions on the data?

No free lunch theorem: we must make such assumptions.

• Informal theorem: for any machine learning algorithm \mathcal{A} , there must exist a task \mathcal{P} on which it will fail

 We use prior knowledge (i.e., we believe linear function is enough) to design an ML algorithm here

Which Hypothesis?

- Hypothesis class: $\mathcal{H} = \{h\}$
 - E.g.: linear models, quadratic models, neural networks, etc.
- An example:
 - M_1 : x is Red $\Rightarrow x \in C_1$
 - M_2 : x is a Square or x is a Diamond => $x \in C_1$
 - M_3 : x is Red and x is a Quadrilateral => $x \in C_1$

Occam's Razor

William of Occam (1288 – 1348)
English Franciscan friar, theologian and philosopher.

"Entia non sunt multiplicanda praeter necessitatem"

- Entities must not be multiplied beyond necessity.
- i.e. Do not make things needlessly complicated.
- i.e. Prefer the simplest hypothesis that fits the data.

House Price Prediction

- Given the floor size in square feet, predict the selling price:
 - Input *x*: the floor size of the house

• Need to learn a function (hypothesis) h such that $h(x) \approx f(x)$

- Is this a classification or regression task?
 - Regression, because the house price is real-valued.
 - Would a problem with only two labels $y_1 = 0.5$ and $y_2 = 1.0$ still be regression?

House Price Prediction

• Another hypothesis?

• Pros and cons of the hypothesis?

Linear Regression

• Use a linear function to approximate the real (unknown) function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1]^T [1, x] = w_1 x + w_0$$

- In our case, $h_{\mathbf{w}}(X)$ is a straight line
 - w_0 is the intercept (or the bias term)
 - w_1 controls the slope
- Actually, the floor size of the house is not the only factor determining its sell price. There are many factors: $(x_1, ..., x_d)$.

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x_1, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Assumption: the prediction results are the linear combination of input attributes (features).

Error Measurement

• Our linear approximation function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Error Measurement: Find **w** that obtains the best fit on the training data, i.e. find **w** that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(X_n) - y_n)^2$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

- *N*: Total number of samples in training set
- $J(\mathbf{w})$: Error function
- $\hat{\mathbf{w}}$: Optimimal \mathbf{w} that minimize $J(\mathbf{w})$
- Why do we use the square errors?

Inductive Learning Hypothesis

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, ..., w_d]$
 - Find w that minimizes an error function $J(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_i, \mathbf{w})$ and t_i .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_i \Longrightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x}_i \in \mathbf{X}$.

Matrix Notation

- Linear Regression Learning Task
 - learn w given training examples $\langle X, y \rangle$.
 - The training data is denoted as $\langle \mathbf{X}, \mathbf{y} \rangle$, where \mathbf{X} is a $N \times D$ data matrix consisting of N data examples such that each data example is a D dimensional vector. \mathbf{y} is a $N \times 1$ vector consisting of corresponding target values for the examples in \mathbf{X} .
- The derivation of the least squares estimate can be done by first converting the expression of the squared loss into matrix notation, i.e.,

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

Analytical Solution

• To minimize the error, we first compute its derivative with respect to **w**:

$$\frac{\partial LL(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{2} \frac{\partial}{\partial \mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

• Note that, we use the fact that $(\mathbf{X}\mathbf{w})^T\mathbf{y} = \mathbf{y}^T\mathbf{X}\mathbf{w}$, since both quantities are scalars, and the transpose of a scalar is equal to itself. Continuing with the derivative:

$$\frac{\partial LL(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{2} (2\mathbf{w}^T \mathbf{X}^T \mathbf{X} - 2\mathbf{y}^T \mathbf{X})$$

Analytical Solution

• Setting the derivation to 0, we get:

$$2\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X} - 2\mathbf{y}^{\top}\mathbf{X} = 0$$

$$\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X} = \mathbf{y}^{\top}\mathbf{X}$$

$$(\mathbf{X}^{\top}\mathbf{X})^{\top}\mathbf{w} = \mathbf{X}^{\top}\mathbf{y} \text{ (Taking transpose both sides)}$$

$$(\mathbf{X}^{\top}\mathbf{X})\mathbf{w} = \mathbf{X}^{\top}\mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$
The Moore-Penrose pseudo-inverse

Summary

• Our linear approximation function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Error Measurement: Find w that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(X_n) - y_n)^2$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

• Analytical Solution:

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Questions?

