STANISLAS H.P.

Sommabilité et Commutativité

PSI

Théorème de réordonnancement

Soit σ une bijection sur \mathbb{N} et (a_n) une suite de scalaires absolument convergente. Alors, $\sum a_{\sigma(n)}$ est absolument convergente et

$$\sum_{n=0}^{+\infty} a_{\sigma(n)} = \sum_{n=0}^{+\infty} a_n$$

1. Cas $a_n \ge 0$. On note $N_n = \max \sigma(\llbracket 0, n \rrbracket)$. Alors,

$$\sum_{k=0}^{n} a_{\sigma(k)} \leqslant \sum_{k=0}^{N_n} a_k \leqslant \sum_{k=0}^{+\infty} a_k$$

Aunsi $\sum a_{\sigma(k)}$ converge et $\sum_{k=0}^{+\infty} a_{\sigma(k)} \leqslant \sum_{k=0}^{+\infty} a_k$. En appliquant ce dernier résultat avec la série $(a_{\sigma(k)})$ et la bijection σ^{-1} , on obtient l'autre inégalité puis l'égalité.

- **2.** Si $a_n \in \mathbb{R}$, on décompose $a_n = a_n^+ + a_n^-$.
- **3.** Si $a_n \in \mathbb{C}$, on décompose $a_n = \Re(a_n) + \operatorname{Im}(a_n)$.

Sommation par paquets

Soient I un ensemble dénombrable et $(a_i)_{i\in I}\in (\mathbb{R}_+)^I$. La famille (a_i) est **sommable** si $\left\{\sum_{j\in J}a_j,\,J\subset I\text{ fini}\right\}$ est majoré. La borne supérieure de cet ensemble sera notée $\sum_{i\in I}a_i$. On suppose que $I=\bigsqcup_{\lambda\in\Lambda}I_\lambda$. Si (a_i) est sommable, alors, pour tout $\lambda\in\Lambda$, $\sum_{i\in I_\lambda}a_i$ converge et

$$\sum_{i \in I} a_i = \sum_{\lambda \in \Lambda} \left(\sum_{i \in I_\lambda} a_i \right)$$

On remarque que, si (a_n) est absolument convergente, alors $(a_n)_{n\in\mathbb{N}}$ est sommable.

- **4.** Le caractère convergeant de $\sum_{i \in I_{\lambda}} a_i$ s'obtient par croissance et majoration.
- **5.** Soit $\Gamma \subset \Lambda$ fini. Alors,

$$\sum_{\lambda \in \Gamma} \left(\sum_{i \in I_{\lambda}} a_{i} \right) \leqslant \sum_{i \in I} a_{i}$$

$$\sum_{\lambda \in \Lambda} \sigma_{\lambda} \leqslant \sum_{i \in I} a_{i}$$

6. Soit $J \subset I$ fini et $\{\lambda \in \Lambda : J \cap I_{\lambda} \neq \emptyset\} = \{\lambda_1, \dots, \lambda_p\}$. Alors,

$$\sum_{i \in J} a_i \leqslant \sum_{i=1}^p \sigma_{\lambda_i}$$

$$\leqslant \sum_{\lambda \in \Lambda} \sigma_{\lambda}$$

$$\sum_{i \in I} a_i \leqslant \sum_{\lambda \in \Lambda} \sigma_{\lambda}$$