РТ5-61Б, Забурунов Л. В.

Технологии Машинного Обучения

Рубежный Контроль №1

"Разведочный Анализ Данных"

1. Загрузка и анализ структуры набора данных

```
In [2]:
import numpy as np
import pandas as pd
import seaborn as sns
rk1 data = pd.read csv("ML Datasets/RK1/heart.csv")
                                                                                                                   In [3]:
rk1 data.shape
                                                                                                                  Out[3]:
(303, 14)
                                                                                                                   In [4]:
rk1 data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	int64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64
dtyp	es: float6	4(1), int64(13)	
		22 2 770	

memory usage: 33.3 KB

Набор данных содержит следующие колонки:

- 1. Возраст (age);
- 2. Пол (sex, логическое значение);
- 3. Категория боли в груди (ср);
- 4. Кровяное давление в состоянии покоя (trestbps);
- 5. Холестерол (chol);
- 6. Уровень сахара в крови (fbs);
- 7. Результаты ЭКГ (restecg);
- 8. Максимальный достигнутый пульс (thalach);
- 9. Стенокардия, вызванная физ. активностью (exang, логическое значение);
- 10. Уровень подавления физ. активностью участка ЭКГ ST (oldpeak);
- 11. Наклон участка ЭКГ ST (slope);
- 12. Число крупных сосудов (са);
- 13. ? (thal).

Итак, набор данных успешно загружен, имеет только числовые признаки и не имеет пропусков. Можно без труда переходить к корреляционному анализу.

2. Корреляционный анализ набора данных

В первую очередь выведем два основных элемента: таблицу корреляции и тепловую карту на её основе.

In [5]:

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
age	1.000000	0.098447	0.068653	0.279351	0.213678	0.121308	0.116211	0.398522	0.096801	0.210013	0.168814	0.276326	0.068001	0.225439
sex	0.098447	1.000000	0.049353	0.056769	0.197912	0.045032	0.058196	0.044020	0.141664	0.096093	0.030711	0.118261	0.210041	0.280937
ср	0.068653	0.049353	1.000000	0.047608	0.076904	0.094444	0.044421	0.295762	0.394280	0.149230	0.119717	0.181053	0.161736	0.433798
trestbps	0.279351	0.056769	0.047608	1.000000	0.123174	0.177531	0.114103	0.046698	0.067616	0.193216	0.121475	0.101389	0.062210	- 0.144931
chol	0.213678	0.197912	0.076904	0.123174	1.000000	0.013294	0.151040	0.009940	0.067023	0.053952	0.004038	0.070511	0.098803	0.085239
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	0.084189	0.008567	0.025665	0.005747	0.059894	0.137979	0.032019	- 0.028046
restecg	0.116211	0.058196	0.044421	0.114103	0.151040	0.084189	1.000000	0.044123	0.070733	0.058770	0.093045	0.072042	0.011981	0.137230
thalach	0.398522	0.044020	0.295762	0.046698	0.009940	0.008567	0.044123	1.000000	0.378812	0.344187	0.386784	0.213177	0.096439	0.421741
exang	0.096801	0.141664	0.394280	0.067616	0.067023	0.025665	0.070733	0.378812	1.000000	0.288223	0.257748	0.115739	0.206754	0.436757
oldpeak	0.210013	0.096093	0.149230	0.193216	0.053952	0.005747	0.058770	0.344187	0.288223	1.000000	0.577537	0.222682	0.210244	0.430696
slope	0.168814	0.030711	0.119717	0.121475	0.004038	0.059894	0.093045	0.386784	0.257748	0.577537	1.000000	0.080155	0.104764	0.345877
ca	0.276326	0.118261	0.181053	0.101389	0.070511	0.137979	0.072042	0.213177	0.115739	0.222682	0.080155	1.000000	0.151832	- 0.391724
thal	0.068001	0.210041	0.161736	0.062210	0.098803	0.032019	0.011981	0.096439	0.206754	0.210244	0.104764	0.151832	1.000000	0.344029
target	0.225439	0.280937	0.433798	0.144931	0.085239	0.028046	0.137230	0.421741	0.436757	0.430696	0.345877	0.391724	0.344029	1.000000

In [9]:

import matplotlib.pyplot as plt

```
fig, ax = plt.subplots(figsize=(25, 25))
```

sns.set(font_scale = 2)

#mask = np.zeros_like(rk1_data.corr(), dtype=np.bool)

#mask[np.triu_indices_from(mask)] = True

hmap = sns.heatmap(rkl_data.corr(), ax=ax, annot=True, fmt=".2f", linewidths=0.3, linecolor="black", vmin = -1

age	1.00	-0.10	-0.07	0.28	0.21	0.12	-0.12	-0.40	0.10	0.21	-0.17	0.28	0.07	-0.23
sex	-0.10	1.00	-0.05	-0.06	-0.20	0.05	-0.06	-0.04	0.14	0.10	-0.03	0.12	0.21	-0.28
ф	-0.07	-0.05	1.00	0.05	-0.08	0.09	0.04	0.30	-0.39	-0.15	0.12	-0.18	-0.16	0.43
trestbps	0.28	-0.06	0.05	1.00	0.12	0.18	-0.11	-0.05	0.07	0.19	-0.12	0.10	0.06	-0.14
chol tre	0.21	-0.20	-0.08	0.12	1.00	0.01	-0.15	-0.01	0.07	0.05	-0.00	0.07	0.10	-0.09
SqJ	0.12	0.05	0.09	0.18	0.01	1.00	-0.08	-0.01	0.03	0.01	-0.06	0.14	-0.03	-0.03
restecg	-0.12	-0.06	0.04	-0.11	-0.15	-0.08	1.00	0.04	-0.07	-0.06	0.09	-0.07	-0.01	0.14
thalach re	-0.40	-0.04	0.30	-0.05	-0.01	-0.01	0.04	1.00	-0.38	-0.34	0.39	-0.21	-0.10	0.42
exang th	0.10	0.14	-0.39	0.07	0.07	0.03	-0.07	-0.38	1.00	0.29	-0.26	0.12	0.21	-0.44
oldpeak	0.21	0.10	-0.15	0.19	0.05	0.01	-0.06	-0.34	0.29	1.00	-0.58	0.22	0.21	-0.43
slope old	-0.17	-0.03	0.12	-0.12	-0.00	-0.06	0.09	0.39	-0.26	-0.58	1.00	-0.08	-0.10	0.35
8	0.28	0.12	-0.18	0.10	0.07	0.14	-0.07	-0.21	0.12	0.22	-0.08	1.00	0.15	-0.39
thal	0.07	0.21	-0.16	0.06	0.10	-0.03	-0.01	-0.10	0.21	0.21	-0.10	0.15	1.00	-0.34
target	-0.23	-0.28	0.43	-0.14	-0.09	-0.03	0.14	0.42	-0.44	-0.43	0.35	-0.39	-0.34	1.00
ţ	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target

Заметим следующее:

- 1. Отсутствие пар линейно зависимых признаков. Это значит, что не существует заведомо сбивающих с толку модель МО признаков;
- 2. Отсутствие линейно зависимых от целевого (или наоборот) признаков. Это значит, что отсуствуют сверхинформативные признаки;
- 3. Существенные различия в корреляции различных признаков с целевым.

Посмотрим на некоторые пары, отличающиеся наибольшими к-тами линейной корреляции:

sns.catplot(data=rk1_data, y="oldpeak", x="slope", kind="violin")

In [11]:

-1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

--0.50

- -0.75

-1.00

<seaborn.axisgrid.FacetGrid at 0x209ef8f0f40>

sns.scatterplot(data=rkl_data, y="oldpeak", x="thalach")

<AxesSubplot:xlabel='thalach', ylabel='oldpeak'>

sns.jointplot(data=rk1_data, x="cp", y="target")

<seaborn.axisgrid.JointGrid at 0x21e6d38cf10>

sns.jointplot(data=rk1_data, x="age", y="thalach", kind="reg")

Out[11]:

In [10]:

Out[10]:

Out[30]:

<seaborn.axisgrid.JointGrid at 0x21e6c53fd00>

Также построим такие же графики для некоррелирующих между собой признаков:

sns.jointplot(data=rkl_data, x="chol", y="thalach", kind="reg")

<seaborn.axisgrid.JointGrid at 0x21e6d54d970>

sns.scatterplot(data=rk1_data, x="thal", y="restecg")

Out[37]:

In [40]:

Out[40]:

sns.jointplot(data=rk1_data, x="age", y="cp")

<seaborn.axisgrid.JointGrid at 0x21e6cc18820>

Out[44]:

