Urban NaviGator DBW Serial Interface Specification

This document describes all the serial message structure used to perform drive-by-wire operation on the Urban NaviGator using the Apollo interface. The DBW device messages are different when using the old Tablet code.

Contents

1	Hardware Requirements					
2	Brakin	g and Acceleration Control				
	2.1 S	erial Communication				
		DBW Device to Tablet:				
	2.1.2	Tablet to DBW Device				
3	Steeri	ng Angle Control				
	3.1 S	erial Communication				
		g Control				
	4.1 S	erial Communication4				

1 HARDWARE REQUIREMENTS

2 Braking and Acceleration Control

You will need to connect to the NI myRIO to control the braking and acceleration effort of the vehicle. The myRIO code has a state structure:

6/15/18

2.1 SERIAL COMMUNICATION

Rx:	Pin 10 Connector A	Baud Rate:	115200	Data Bits:	8
Tx:	Pin 14 Connector A	Parity	None	Stop Bits:	1

2.1.1 DBW Device to Tablet:

The DBW board will send two messages to the connected device. The first message is a periodic update message sent every 100 milliseconds. This message is a brief description of the current state of the DBW device. It is sent along with a Cyclic Redundancy Check value so that the receiver can test the validity of the data within the message.

1	2	3	4	5	6	7
Header	State	Pause	Brake %	Throttle %	CRC	Terminator
147	Ref. Table	Ref. Table	0-100	0-100	0-255	147

The second message is a response message that will be sent whenever a message is received. The response variable will either be 128 for a correct message or 64 for a message with corrupted data. This should instruct the connected device whether or not to resend the message.

1	2	3
Header	Response	Terminator
137	Ref. Table	127

2.1.2 Tablet to DBW Device

This message is sent to the DBW device. The DBW device will send a response when it receives this message. It is up to the sender of this message on how to respond to the response from the DBW device. You should repeat this exchange until the DBW device acknowledges the message.

1	2	3	4	5	6	7	8	9
	Auto	Left	Right	Pause	Brake	Throttle		
Header	Req.	Blinker	Blinker	Cmd.	%	%	CRC	Terminator
	Ref.	Ref.	Ref.	Ref.				
137	Table	Table	Table	Table	0-100	0-100	0-255	127

The table below shows the values that the message components will take given their state. All states were assigned a non-zero value so that the CRC computation is easier.

Value	State	Pause	Response	Auto Req.	Blinkers	Pause Cmd.
32	Inactive	-	-	-	-	-
	Manual-	No pause in	Correct	No auto		Pause not
64	Active	effect	Message	request	No blinker	commanded
		Pause is in	Incorrect		Yes	Pause
128	Full-Auto	effect	Message	Auto request	Blinker	Commanded
255	E-stop	-	1	-	-	-

6/15/18 2

3 STEERING ANGLE CONTROL

Steering angle control is achieved through connecting to the SmartMotor that is attached to the steering column. You will have to go through a SEALevel communication converter that turns RS-232 to USB. This will require a driver: (link the driver software).

3.1 SERIAL COMMUNICATION

Baud Rate:	38400	Data Bits:	8
Parity	None	Stop Bits:	1

Commands to SmartMotor:

Command	Description
RUN	Command to begin the SmartMotor program. Must be sent if SmartMotor resets.
p=#	Command to request a certain angle from the SmartMotor. The number is in units of encoder counts. The conversion must be known ahead of time to get accurate angles. 155,000 encoder count/max turn.
f=2	Command to shutdown SmartMotor

Message sent by SmartMotor:

Command	Description
c=#	Sent periodically to report the current encoder count position.
HOMING	Sent after receiving the "RUN" command
HOMING_COMPLETE	Sent after completing the homing process
READY	Sent after homing is complete and signals the program is ready for inputs.
NORMAL_SHUTDOWN	Sent when shutdown command is received, f=2
EMERGENCY_SHUTDOWN	Sent when shutdown is required due to errors/limits
OVER_CURRENT	Sent if motor exceeds current limit i.e. motor stalled. Motor is shutdown
THERMAL_LIMIT	Sent if motor exceeds thermal limit. Motor is shutdown

Messages from the SmartMotor will be sent with only a carriage return at the end of each message.

6/15/18

4 SHIFTING CONTROL

Shifting angle control is achieved through connecting to the SmartMotor that is attached to the shifting mechanism. You will have to go through a SEALevel communication converter that turns RS-232 to USB. This will require a driver: (link the driver software).

4.1 SERIAL COMMUNICATION

Baud Rate:	38400	Data Bits:	8
Parity	None	Stop Bits:	1

Commands to SmartMotor:

Command	Description
RUN	Command to begin the SmartMotor program. Must be sent if SmartMotor resets.
h=1	One of the two requirements for the program to start. The other being the brake pressed.
s=0	Command to request park gear
s=255	Command to request reverse gear
s=128	Command to request neutral gear
s=1	Command to request drive gear
s=2	Command to request regen gear

Message sent by SmartMotor:

Command	Description
BREAK_PEDAL_HIGH	Sent when the brake pedal is not pressed
BREAK_PEDAL_LOW	Sent when the brake pedal is pressed
HOMING	Sent after receiving the "RUN" command
HOMING_COMPLETE	Sent after completing the homing process
NORMAL_SHUTDOWN	Sent when shutdown command is received, f=2
READY	Sent after homing is complete and signals the program is ready for
NEADI	inputs.
FAULT High: Pot reading is too high.	Error message when encoder value is not correct for a desired gear
FAULT Low: Pot reading is too low.	Error message when encoder value is not correct for a desired gear
PARK	Sent after completing the transition to park gear
REVERSE	Sent after completing the transition to reverse gear
NEUTRAL	Sent after completing the transition to neutral gear
DRIVE	Sent after completing the transition to drive gear
REGEN	Sent after completing the transition to regen gear
ACTUATING_TO_PARK	Sent after request for park is received and is actuating to park
ACTUATING_TO_REVERSE	Sent after request for reverse is received and is actuating to reverse
ACTUATING_TO_NEUTRAL	Sent after request for neutral is received and is actuating to neutral
ACTUATING_TO_DRIVE	Sent after request for drive is received and is actuating to drive
ACTUATING_REGEN	Sent after request for regen is received and is actuating to regen
UNKNOWN_COMMAND	Sent if request is not one of the specified values

Messages from the SmartMotor will be sent with only a carriage return at the end of each message.

6/15/18 4