PROVA SCRITTA DI ELETTRONICA 1 22 SETTEMBRE 2017

1) Nel circuito in figura, i transistori e il diodo possono essere descritti da un modello "a soglia", con V_{γ} =0.75 V e $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento $V_u(V_i)$, per 0< V_i < V_{cc} e il margine d'immunità ai disturbi della rete.

 $V_{cc} = 5 \text{ V}, \ \beta_F = 100, \ R_1 = 20 \text{ k}\Omega, \ R_2 = 900 \ \Omega, \ R_3 = 5 \text{ k}\Omega.$

2) Nel circuito in figura, i transistori MOS sono caratterizzati dalla tensione di soglia $V_{Tn}=|V_{Tp}|=V_{T}$ e dai coefficienti $\beta_1=\beta_2=\beta_n$ e $\beta_3=\beta_p$. I diodi sono descritti da un modello a soglia, con $V_{\gamma}=0.75$ V. Il segnale di ingresso V_i abbia l'andamento seguente:

$$\begin{cases} t < 0, & V_i = V_{dd} \\ t > 0, & V_i = 0 \end{cases}$$

Si determini il corrispondente tempo di propagazione relativo al segnale di uscita Vu (ossia il tempo necessario a compiere il 50% dell'intera escursione).

 $V_{dd} = 3.3 V, \ V_T = 0.4 \ V, \ \beta_n = 1.25 \ mA/V^2, \ \beta_p = 0.25 \ mA/V^2, C = 40 \ fF.$

Esame di ELETTRONICA AB (mod. B): svolgere l'esercizio 1 (tempo disponibile 1h 15m). Esame di ELETTRONICA DEI SISTEMI DIGITALI A: l'esercizio 2 (tempo disponibile 1h 15m).

Esame di ELETTRONICA 1 / FONDAMENTI DI ELETTRONICA A: svolgere gli esercizi 1 e 2 (tempo disponibile 2h e 30m).

- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- · Non usare penne o matite rosse
- L'elaborato deve essere contenuto in un unico foglio (4 facciate) protocollo

Regione 1:vi<vg, T1 off, D on, e vu da calcolare col partitore resistivo.

	' ' I	
ir2=(vcc-vu)/r2	da cui si ricava che vu= 4.352 V	
$ir3=(vu-v_{\gamma})/r3$		
Ma ir2=ir3		
Regione 1 per 0 <vi< td="" vγ<=""></vi<>		

Regione 2: T1 AD e D on $(vi>v_{\gamma})$.

Regione 2. 11 AD C D on (vi>vγ).			
ir2=(vcc-vu)/r2	Si rimane in regione 2 fintantoché		
$ir3=(vu-v_{\gamma})/r3$	T1 va sat;		
$ib1=(vi-v_{\gamma})/r1$	oppure D va off		
Ma ir $2=ir3+\beta_f$ *ib1	Ma quando T1 va in saturazione,		
da cui si ricava che vu=7.212 -3.813 vi.	vu=vcesat=0.2V, quindi il diodo D deve essere		
Si può notare come in questa regione	già spento. Cerchiamo quindi solo il valore per il		
dvu/dvi = 3.81 > 1.	quale D va off, ovvero il valore per il quale vu=		
Quindi il primo punto notevole coincide	$v_{\gamma}=0.75V$).		
con il punto angoloso prima trovato, e	->		
cioè:	(B) Il diodo va off quando vu=v _γ , ma vu=7.212 -		
V_{OHMIN} =4.352 V, V_{ILMAX} = V_{γ} =0.75V.	3.813 vi, da cui si ricava che vi= 1.694 V		
,			
Regione 2 per vγ <vi<1.694 td="" v.<=""></vi<1.694>			

Regione 3: T1 on in AD, D off.

ir2=(vcc-vu)/r2	Si rimane in questa regione fintantochè	
$ib1=(vi-v_{\gamma})/r1$	T1 va sat, sse vu=vcesat, ovvero sse	
Ma ir2= β_f *ib1	vu=8.375 - 4.5 vi =vcesat , da cui si ricava	
Risolvendo si trova che: vu=8.375 - 4.5 vi	che vi= 1.817 V.	
Regione 3 per 1.694 <vi<1.817 td="" v.<=""></vi<1.817>		

Regione 4: Per vi>1.817 V T1 sat, e vu=vcesat=0.2V.

Si può notare come dalla Regione 3 alla Regione 4 il guadagno di tensione passi da |dvu/dvi|=4.5>1 a |dvu/dvi|=0.

Quindi il secondo punto notevole coincide con il terzo punto angoloso trovato, e cioè:

V_{OLMAX}=vcesat, V_{IHMIN}=1.817 V.

Si ricava allora che $NM_H=(4.352-1.817)V=2.535 V e NM_L=(0.75-0.2)V=0.55 V=NM$

Di seguito si riporta la caratteristica statica di trasferimento.

22.9.2017 - Esercizio 2

Il circuito è un invertitore, il cui pull-up è costituito da un transistore pMOS in configurazione pseudo-nMOS mentre il pull down è costituito dal parallelo fra i rami M1-D1 e M2-D2. Si ha :

$$V_{GS1} = V_i$$
 $V_{GS2} = V_i - V_{D2}$ $V_{SG3} = V_{dd}$ $V_{DS1} = V_u - V_{D1}$ $V_{DS2} = V_u - V_{D2}$ $V_{SD3} = V_{dd} - V_u$

Essendo il transistore M_1 e il diodo D_1 in serie (cioè attraversati dalla stessa corrente) essi possono essere solo contemporaneamente ON o contemporaneamente OFF. Analogamente, M_2 e D_2 possono essere solo contemporaneamente ON o contemporaneamente OFF.

 M_1 e D_1 sono ON se:

$$V_{GS1} = V_i > V_T$$

 M_2 e D_2 sono ON se:

$$\begin{array}{c} V_{GS2} = V_i - V_{D2} > V_T \\ V_{D2} = V_{\gamma} \end{array} \} \rightarrow V_i > V_T + V_{\gamma}$$

Per t<0, quindi, si ha $V_i=V_{dd}>V_T+V_{\gamma}>V_T$ e M_1,D_1,M_2,D_2 ON. Ipotizzando (*) M_1,M_2 in regione lineare di funzionamento, si ha:

$$I_{D1} = \beta_n \left((V_{dd} - V_T) (V_u - V_\gamma) - \frac{(V_u - V_\gamma)^2}{2} \right)$$

$$I_{D2} = \beta_n \left((V_{dd} - V_{\gamma} - V_T)(V_u - V_{\gamma}) - \frac{(V_u - V_{\gamma})^2}{2} \right)$$

 M_3 è necessariamente ON ($V_{SG3} = V_{dd} > V_T$). Inoltre, la condizione di saturazione:

$$V_{SG3} < V_{SD3} + V_T \rightarrow V_u < V_T$$

non può essere soddisfatta se il pull-down è ON. In questo caso, infatti, necessariamente i diodi sono ON e

$$V_u > V_{\nu} > V_T$$

 M_3 è quindi in regione lineare e:

$$I_{D3} = \beta_p \left((V_{dd} - V_T)(V_{dd} - V_u) - \frac{(V_{dd} - V_u)^2}{2} \right) \ (**)$$

L'equazione di Kirchhoff al nodo di uscita impone:

$$I_{D3} = I_{D1} + I_{D2} \rightarrow V_u = \begin{cases} 0.917 \text{ V} \\ 6.272 \text{ V} \end{cases}$$

Il secondo valore non è compatibile con le ipotesi ($V_{SD3} = V_{dd} - V_u < 0$), mentre il primo soddisfa tutte le ipotesi di linearità (*).

Per t>0, invece, si ha $V_i=0 < V_T e\ M_1, D_1, M_2, D_2 \text{OFF.}$ Il pull-up si comporta come nel caso noto di un invertitore CMOS o pseudo-nMOS con ingresso basso, e si ha $V_u=V_{dd}$. Il transitorio quindi prevede la carica del condensatore C dal valore iniziale $V_{u,iniz}=0.917V$ al valore finale $V_{u,finale}=V_{dd}$. Il tempo di propagazione va quindi calcolato sul valore intermedio della escursione:

$$V_{u,50\%} = \frac{V_{u,iniz} + V_{u,finale}}{2} = 2.108 V$$

In tale intervallo si ha sempre $V_u < V_T$. Quindi M_3 è sempre in regione lineare e I_{D3} è descritta da (**). Si ha:

$$I_{D3} = I_C = C \frac{dV_u}{dt} \rightarrow \int_0^{t_{p,LH}} dt = \int_{V_{u,iniz}}^{V_{u,50\%}} \frac{C}{I_{D3,LIN}} dt \rightarrow t_{p,LH} = 54.75 \text{ ps}$$