

ENR497: B.Tech. Engg. Project

School of Engineering & Applied Science

(Winter 2025)

Breast Cancer Segmentation using nnU-net

Dev Bhalodia: AU2140208

Start date of project (Jan 2024)

End date of project (May 2024)

Outline of Presentation

- Motivation
- Literature survey
- Overall objectives of the project
- Main outcomes of the project
- Methodology
- Final results
- My contribution
- Gantt chart
- Who will benefit from my work

Motivation

- Manual segmentation is time consuming
- Many existing models often lack generalization
- Relevance to current trends in research and development
- Shift from 2D to **3D volumetric segmentation** for richer spatial context.
- Focus on end-to-end automation with modular pipelines.
- Emphasis on **explainability & post-processing** for clinical trust.
- Relevance to industry and market
- Rise of AI-assisted radiology tools in hospitals.
- Demand for efficient, accurate diagnostics support.
- Growth in deployable AI for low-resource healthcare settings.

Literature survey

- Traditional **3D U-Net** and **V-Net** face problem dealing with small irregular tumors.
- Attention U-Net helps focus on salient tumor features for 2D data.
- Recent **transformer-based** models like **Swin UNet** are **computationally expensive** as they are data hungry.
- 3D **DenseSeg** performs well with limited data.
- Pre-trained models like **MedSAM** are **not designed to handle 3D data**. It would train the 3D volume
 slice-by-slice, not preserving spatial context along z-axis

Objectives of the project

- Leverage 3D nnU-Net for volumetric tumor segmentation.
- Achieve **high performance metrics** such as Dice, IoU, PPV, when comparing with models already used for 3D segmentation of this dataset.
- Ensure generalizability and real-world usability.

Main outcomes

- I used nnU-net which automated the process of segmenting 3D volumetric images.
- Achieved **high metric scores** and **outperformed** baseline models.
- Made the project applicable for **clinical** (by radiologists) and **research use** (predictions serving as input for classifying tumors and model's performance serving as baseline for other future innovations).

Relevant Tools and Technologies

- Language & Frameworks:
 Python | PyTorch | nnU-Net
- Libraries Used: NumPy, Matplotlib, Nibabel, OpenCV
- Development Platform:
 Google Colab (with Tesla T4 GPU, CUDA)
- File Handling & Visualization:
 NiFTI support via Nibabel, visualized using Matplotlib

Methodology

Dataset Description

- Dataset: BreastDM
- Total Patients: 232
- Modalities per patient:
- Pre-contrast
- Post-contrast
- Subtraction image (SUB2)

Image Modalities

The figure above shows the first slice of each image volume of all 3 modalities of a patient.

Corresponding Label

The figure above shows the first slice of corresponding label (SUB2) of the previous 3 image slices.

Dataset preparation

Modality assignment

- All 3 modalities used for image input
- Only SUB2 used for ground truth labels

Slice cleaning

- Each modality had 8 slices, but many samples had blank/padded slices.
- Removed blank slices from all 3 modalities and corresponding labels in .npy format

Format conversion & structuring

- Converted .npy → .nii.gz using nibabel
- Followed nnU-Net **folder conventions**: imagesTr/, labelsTr/, imagesTs/
- Followed strict nnU-Net naming convention:
- Images: BC_***_@@@@.nii.gz (e.g., BC_001_0002.nii.gz: 2nd image, 3rd modality)
- Labels: BC_***.nii.gz (e.g., BC_001.nii.gz for corresponding label)

Label remapping

- Remapped label value: 255 → 1 (foreground class)
- Ensured compatibility with nnU-Net's binary segmentation expectations

Dataset.json definition

- Channel (modality) names
- Label classes (binary)
- Training sample count
- File extension: .nii.gz

Dataset preprocessing

Cropping

• Each 3D volume is **cropped to its non-zero region** to remove blank areas.

Reduces input volume size and computational cost.
A "fingerprint" is generated storing metadata: size, spacing, modalities, class count, and training samples.

Resampling

• Samples often have inconsistent voxel spacing due to scanning variations.

• nnU-Net computes the median voxel spacing and resamples all volumes to this target:

Images → interpolated using 3rd-order spline for smooth intensity

preservation.

Masks → interpolated using nearest-neighbor to preserve label values.
 Standardization ensures consistent learning and prevents spatial

artifacts

Configuration selection

One out of the 3 configurations is selected:

2D U-Net: Fast, low-resource; ignores spatial (z-axis) info.
 3D Full-Resolution U-Net: High accuracy, preserves spatial

relationships; more resource-intensive.

• U-Net Cascade: Two-stage refinement; used for very large datasets as it is the most computationally expensive configuration

Why 3D full res U-net was selected

- The dataset is 3D MRI with significant z-axis information.
 3D full-res captures spatial context across all three
- dimensions.
- Although computationally expensive, it was automatically selected during preprocessing due to its **suitability.**

Normalization

• **Z-score normalization** applied to each 3D image:

Score
$$Z = \frac{x - \mu}{\sigma}$$
Mean
$$SD$$

Mean and standard deviation are calculated from non zero voxels.

• If cropping reduces volume by ≥25%, normalization is performed only within non-zero regions, and other voxels are set to zero.

nnU-net pipeline

3D full res architecture

Key differences from Vanilla 3D U-net

Dynamic data-specific adaptation:
Automatically sets patch size, pooling layers, depth, and batch size based on GPU memory and data.

Vanilla 3D U-Net has fixed configurations → poor generalization

Preservation of full spatial resolution:
Minimizes downsampling to retain spatial detail.
Helps in detecting small, irregular tumors effectively

Dynamic Patch size-Based Training:

- Patch size is customized based on median shape and spacing.
- Ensures consistent context across patients.
- Vanilla U-Net uses arbitrarily fixed patches.

Encoder-Decoder Structure

- Encoder: Extracts semantic features through convolutions and pooling.
- Decoder: Reconstructs spatial resolution via upsampling.
 Skip Connections: Transfers high-res features from encoder to decoder for better localization.

Architectural Enhancements

- Leaky ReLU (vs. ReLU): Handles negative inputs to avoid dying ReLU issue.
- Instance Normalization: Each patch normalized independently instead of in batches ideal for small batches and MRI data.
- Patch-Based Inference:
- Inference done on overlapping patches.
 Gaussian-weighted averaging used to reduce border artifacts

Why this model fits my dataset?

- Maintains spatial resolution crucial for 3D MRI data.
- Automatically adapts to dataset proved to generalize well.
- Balances accuracy and memory efficiency in 3D volume segmentation.

Training pipeline

Training progress and termination

- **Default number of epochs is 1000** but I saw no improvement after 38.
- The best model gets saved and training can be resumed from there.
 1 epoch = 250 mini-batches

Optimizer

- Stochastic Gradient Descent (SGD) with Nesterov Momentum.
 Momentum coefficient: μ = 0.99 (carries forward 99% of previous update).
- Initial learning rate: 0.01

Learning rate decay

- lr = lr_init × (1 − epoch / epoch_max)^0.9
 Starts with high learning rate → gradually decreases.
 Helps in fine-tuning and prevents getting stuck in local minima.

Loss function

- Combined loss = Dice Loss + Cross Entropy Loss
- Dice Loss:

$$1 - (2 \times |A \cap B|) / (|A| + |B|)$$

A = predicted mask, B = ground truth mask

Cross entropy loss:

$$-\sum y_i \times log(p_i)$$

y_i: actual label, p_i: predicted probability

Mini-batch sampling strategy

- 66.7% of patches: randomly selected locations.
 33.3% of patches: guaranteed to contain foreground (label = 1)

On-the-fly Data Augmentation

- Performed during training to avoid overfitting and increase variability
- Techniques used:
 - 1. Rotation, Scaling, Gaussian noise & blur
 - 2. Brightness/Contrast changes
 - 3. Low-res simulation, Gamma correction
 - 4. Mirroring (flipping)

Inference and Evaluation

Inference Strategy

Patch-based Inference:

The model does not process the full 3D volume at once. Instead, it predicts over overlapping patches to reduce

memory consumption.

• Gaussian Weighting:

When overlapping patches are merged, central voxels are given higher weight. This avoids border artifacts and improves segmentation quality near edges.

Post-processing

• Performed after inference to improve segmentation output

• Key goals:

• Remove small false positives (e.g., noise misclassified as tumor).

• Keep only the largest disconnected component, assuming tumors are continuous.

• In nnU-Net: Post-processing usually runs after 1000 epochs, but I manually scripted it since I trained for 53 epochs

Visualization

Purpose:

• Offers qualitative assessment of model's performance.

• Helps verify prediction alignment with true mask.

What Was Visualized:

All 3 input modalities of image.
True mask, Predicted mask, and Post-processed mask
Side-by-side layout enables easy comparison of

segmentation accuracy and refinement

Evaluation

- Metrics in nnU-net pipeline (default):
 Pseudo Dice Score: Dice score averaged over an entire mini-batch
- Moving Average Dice: Smoothed over epochs to track performance trend

Final Metrics for Research Comparison:

- Dice Score (DSC): Measures overlap between predicted and true masks.
- IoU (Intersection over Union): A stricter overlap metric.
 PPV (Positive Predictive Value): Accuracy of positive predictions how many predicted positives are actually

Final Results

Evaluation results

Best Saved Model:

- Checkpoint: checkpoint_best.pth
 Pseudo Dice Score: 0.8920
- Pseudo Dice Moving Avg: 0.8748

Final Metrics for Research Comparison:

- Dice Score (DSC) = (2 × |A ∩ B |) / (|A | + |B |)
 IoU (Intersection over Union) = |A ∩ B | / |A ∪ B |
- **PPV** (Positive Predictive Value) = $|A \cap B| / |B|$ Where:
 - A = Ground truth positive voxels
 B = Predicted positive voxels

Before post-processing:

- Mean Dice Score: 0.8334
- Mean IoU Score: 0.7343
- Mean PPV Score: 0.7877

After post-processing:

- Mean Dice Score: 0.8698
- Mean IoU Score: 0.8052
- Mean PPV Score: 0.8760

Quantitative comparison with baseline 3D models

Model	DSC (%)	loU (%)	PPV (%)		
3D U-Net (Paper)	66.5	75.1	83.3		
3D V-Net (Paper)	65.6	74.2	77.1		
3D DenseSeg (Paper)	67.0	74.9	84.1		
nnU-Net	86.9	80.5	87.6 _d		

Training trends and metric progress

Time per epoch and learning rate decay:

Segmentation results:

Initial Works:

Using Kaggle 2D Ultrasound Dataset
Chosen as it was readily available and did not require any extensive data preparation and preprocessing.
 U-Net: Achieved mean IoU of 0.46

• Attention U-Net: Improved to 0.54 with better focus on tumor regions

Original Mask

Original Mask

Predicted Mask

Predicted Mask

Processed Mask

Processed Mask

Transition to BreastDM 2D MRI Dataset

- Precursor to 3D experimentation
 U-Net: mean IoU = 0.49
- Attention U-Net: mean IoU = 0.928

Quantitative comparison with baseline 2D models

Model	DSC (%)	IoU (%)	PPV (%)
U-Net (Paper)	73.7	80.3	83.6
U-Net VGG-16 (Paper)	70.4	77.3	79.6
UNeXt (Paper)	70.1	78.5	86.3
PSPNet (Paper)	72.7	79.0	72.9
Attention U-Net	82.5	92.8	72.1

My Contributions

- Converted raw dataset into nnU-Net-compatible format through custom scripting.
- Checked method's applicability across various datasets and dimensions
- Experimented with multiple models (Unet3D, Swin U-Net, MedSAM) before finalizing nnU-Net.
- Learned and executed the full nnU-Net pipeline
- Implemented **custom post-processing** to retain the largest disconnected component (due to early stopping).
- Computed Dice, IoU, and PPV for evaluation since pipeline used pseudo Dice.
- Developed clear visualizations to assess segmentation quality.

Gantt chart

ID :	Task Name :	202 2025-01						2025-02				2025-03					2025-04					
ID :		25	29	05	12	19	26	02	09	16	23	02	09	16	23	30	06	13	20	2		
1	Learning phase																					
2	dataset exploration				-																	
3	Ultrasound dataset setup				1																	
4	exploring models and deciding which to use				-																	
5	Unet training on Ultrasound					→																
6	Exploring model for improvement, learning an						-															
7	Exploration of MRI datasets							-														
8	Decided to use BreastDM dataset								-													
9	2D Unet on its 2D dataset									—												
10	2D attention Unet for improvement										—											
11	transition to 3D dataset, learning how to handl											-										
12	Implementing Swin Unet, MedSAM, 3D vanilla											-										
13	Using nnUnet (dataprep, preprocessing, traini													-								
14	Final deliverables																-					

Who will benefit from my work?

- Radiologists and Clinicians: My model reduces the burden of manual tumor segmentation, speeding up diagnosis and improving accuracy—especially for detecting subtle or irregular tumor structures in MRI scans.
- Hospitals and Healthcare Systems: This work can streamline radiology workflows and reduce inter-observer variability, ultimately saving time and resources. It can also be integrated with PACS.
- Resource-Limited Settings: Since my solution is lightweight and adaptable, it could be deployed in hospitals lacking specialized expertise or computational infrastructure.
- Patients: By enabling early and more reliable tumor detection, my system can support faster treatment planning, potentially improving survival rates.
- Expert-limited Settings: Automated tumor segmentation can help detect breast cancer earlier, especially in underserved areas where expert radiologists may not be available, ultimately saving more lives.