Max-Margin Works while Large Margin Fails: Generalization without Uniform Convergence

Kiarash Joolaei
Department of Computer Engineering

October 12, 2025

Introduction

- Many machine learning methods use **Uniform Convergence** to guarantee model generalization (Direct Implication)
- There are setups that UC doesn't hold
- Main Question: Is proving generalization possible for setups where UC fails?

Problem Setup

Figure: The paper proves generalization bounds for a linear and a non-linear setting

Linear Setting

- Data Distribution: Fix some ground truth unit vector direction $\mu \in \mathbb{R}^d$. Let $x=z+\xi$, where $z\sim \mathrm{Uniform}(\{\mu,-\mu\})$, and ξ is uniform on the sphere of radius $\sqrt{d-1}\sigma$ in d-1 dimensions orthogonal to the direction of μ . Let $y=\mu^T x$ such that y=1 with probability 0.5 and -1 with probability 0.5. Denote this distribution of (x,y) as $\mathcal{D}_{\mu,\sigma,d}$.
- Model: We learn a model $w \in \mathbb{R}^d$ that predicts $\hat{y} = \text{sign}(f_w(x))$ where $f_w(x) = w^T x$.

Non-linear Setting

- Data Distribution: Fix some ground truth unit vector directions $\mu_1,\mu_2\in\mathbb{R}^d$. Let $x=z+\xi$, where $z\sim \mathrm{Uniform}(\{\mu_1,-\mu_1,\mu_2,-\mu_2\})$, and ξ is uniform on the sphere of radius $\sqrt{d-2}\sigma$ in d-2 dimensions orthogonal to the direction of μ . Let $y=(\mu_1^Tx)^2-(\mu_2^Tx)^2=\mathrm{XOR}((\mu_1+\mu_2)^Tx,(-\mu_1+\mu_2)^Tx)$. Denote this distribution of (x,y) as $\mathcal{D}_{\mu_1,\mu_2\sigma,d}$.
- Model: Fix $a \in \{-1,1\}^m$ so that $\sum_i a_i = 0$. The model is $f_W(x) = \sum_{i=1}^m a_i \phi(w_i^T x)$, where $W \in \mathbb{R}^{m \times d}$ and $\phi(z) = \max(0,z)^h$ for $h \in [1,2)$. We also assume m is divisible by 4.

We also define
$$\Omega_{\sigma,d}^{\mathsf{linear}} := \{ \mathcal{D}_{\mu,\sigma,d} : \mu \in \mathbb{R}^d, \|\mu\| = 1 \}$$
 and $\Omega_{\sigma,d}^{\mathsf{XOR}} := \{ \mathcal{D}_{\mu_1,\mu_2,\sigma,d} : \mu_1 \perp \mu_2 \in \mathbb{R}^d, \|\mu_1\| = \|\mu_2\| = 1 \}$

Generalization in SNR Regions

Large Dimension Assumption

Figure: All the results in the paper require the assumption that $d\geqslant \Omega(n).$

Preliminaries

In machine learning, the goal is to learn a hypothesis function h. One considers **global hypothesis class** \mathcal{G} , e.g., all two-layer neural networks. The learning is performed on a smaller subset $\mathcal{H} \subseteq \mathcal{G}$, meaning $h \in \mathcal{H}$, e.g., all two-layer neural networks with bounded norm.

Definition

For any loss function $\mathcal{L}: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, and a hypothesis mapping $h: \mathcal{X} \longrightarrow \mathbb{R}$, the **test loss** on a distribution \mathcal{D} is defined as $\mathcal{L}_{\mathcal{D}}(h) := \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathcal{L}(h(x),y) \right]$. For a set of examples $S = \{(x_i,y_i)\}_{i \in [n]}$, we define $\mathcal{L}_S(h) := \mathbb{E}_{i \sim [n]} \left[\mathcal{L}(h(x_i),y_i) \right]$

From now on, we assume $\mathcal{L}(y',y)=1\left\{\operatorname{sign}(y)\neq\operatorname{sign}(y')\right\}$

Preliminaries (Uniform Convergence Bound)

Definition

A **two-sided** uniform convergence bound with parameter ϵ_{unif} for a problem class Ω , a set of hypotheses \mathcal{H} , and loss \mathcal{L} is a bound that guarantees that for any $\mathcal{D} \in \Omega$, and for some $\delta \in (0,1)$

$$\Pr_{S \sim \mathcal{D}^n} \left(\sup_{h \in \mathcal{H}} |\mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_{S}(h)| \geqslant \epsilon_{\mathsf{unif}} \right) \leqslant 1 - \delta$$

The one-sided version guarantees

$$\Pr_{S \sim \mathcal{D}^n} \left(\sup_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_S(h) \geqslant \epsilon_{\mathsf{unif}} \right) \leqslant 1 - \delta$$

In all of the future results, we consider $\delta = \frac{3}{4}$

Preliminaries (Useful Hypothesis Class)

Definition

A hypothesis class $\mathcal H$ is useful with respect to an algorithm $\mathcal A$ over a problem class Ω with confidence δ , if for any $\mathcal D\in\Omega$

$$\Pr_{S \sim \mathcal{D}^n} \left(\mathcal{A}(S) \in \mathcal{H} \right) \geqslant \delta$$

Here we also have $\delta = \frac{3}{4}$.

In this definition, alongside the UC Bound definition, instead of considering a single distribution \mathcal{D} , a class of distributions Ω is considered.

Preliminaries (Margin)

Definition

The margin $\gamma(h,S)$ of a classifier h on a sample S equals $\min_{(x,y)\in S}yh(x)$.

The **normalized margin** for a scalar c and an h-homogeneous function f_W ($f_{cW}(x) = c^h f_W(x)$) is defined as:

$$\bar{\gamma}(f_W, S) := \frac{\gamma(f_W, S)}{\|W\|^h} = \gamma(f_{\frac{W}{\|W\|}}, S)$$

where $\|W\|:=\sqrt{\mathbb{E}_{i\sim[m]}[\|w_i\|^2]}$. The maximum normalized margin is defined as:

$$\gamma^*(S) := \sup_{W: \|W\| \leqslant 1} \gamma(f_W, S)$$

Preliminaries (Near-Max-Margin Solution)

Definition

Let $\epsilon > 0$. A classifier h is a $(1 - \epsilon)$ -max-margin solution for S if

$$\gamma(h,S) \geqslant (1-\epsilon)\gamma^*(S)$$

We refer to a bound that holds for $(1-\epsilon)$ -max-margin solutions as an **extremal margin bound**.

Main Results

• For the linear problem:

$$\kappa_{\mathrm{gen}}^{\mathrm{linear}} := 0, \quad \kappa_{\mathrm{uc}}^{\mathrm{linear}} := 1$$

• For the XOR problem with activation ReLU^h, for $h \in [1, 2)$:

$$\kappa_{\mathrm{gen}}^{\mathrm{XOR},h} := \mathrm{the\ solution\ to}\ 2^{\frac{1}{h}} \sqrt{\frac{2}{\kappa}} = \sqrt{\frac{\kappa}{4+\kappa}} + \sqrt{\frac{16}{\kappa(4+\kappa)}}, \quad \kappa_{\mathrm{uc}}^{\mathrm{XOR},h} := 4$$

ReLU^h Intuition

• If h=1, then $\kappa_{\rm gen}^{{\rm XOR},h}=\kappa_{\rm uc}^{{\rm XOR},h}$. Thus we do not a regime with UC failure, but max-margin solutions generalize.

Extremal-Margin Generalization for Linear Problem

This theorem states that when $\kappa > \kappa_{\rm gen}$, any near-max-margin solution generalizes.

Theorem

Let $\delta>0$. There exist constants $\epsilon=\epsilon(\delta)$ and $c=c(\delta)$ such that the following holds. For any n,d,σ and $\mathcal{D}\in\Omega^{linear}_{\sigma,d}$ satisfying $\kappa^{linear}_{\mathrm{gen}}+\delta\leqslant\kappa\leqslant\frac{1}{\delta}$, and $d\geqslant cn$, then with probability $1-3e^{-n}$ over the randomness of a training set $S\sim\mathcal{D}^n$, for any $w\in\mathbb{R}^d$ that is a $(1-\epsilon)$ -max-margin solution, we have $\mathcal{L}_{\mathcal{D}}(f_w)\leqslant e^{-\frac{n}{64d\sigma^4}}+e^{-\frac{n}{8}}$

Extremal-Margin Generalization for XOR on Neural Network

A similar generalization result holds for XOR problem learned on two-layer neural networks.

Theorem

Let $h \in (1,2)$, and let $\delta > 0$. There exist constants $\epsilon = \epsilon(\delta)$ and $c = c(\delta)$ such that the following holds. For any n,d,σ and $\mathcal{D} \in \Omega^{\mathsf{XOR}}_{\sigma,d}$ satisfying $\kappa = \frac{n}{d\sigma^2} \geqslant \kappa^{\mathsf{XOR},h}_{\mathsf{gen}} + \delta$ and $d \geqslant cn$, then with probability $1 - 3e^{-\frac{n}{c}}$ over the randomness of a training set $S \sim \mathcal{D}^n$, for any two-layer neural network with activation function ReLU^h and weight matrix W that is a $(1-\epsilon)$ -max-margin solution, we have $\mathcal{L}_{\mathcal{D}}(f_W) \leqslant e^{-\frac{1}{c\sigma^2}}$

This result is meaningful whenever σ is small enough (in terms of δ), because we assumed that $\frac{d}{n} \in \left[c, \frac{1}{\sigma^2(\kappa_{\mathrm{gen}}^{\mathrm{XOR},h} + \delta)}\right]$ and this interval needs to be non-empty. Also, test loss tends to zero as σ approaches 0.

Region where Max-Margin Generalization not Guaranteed

If $\kappa < \kappa_{\rm gen}$, it is possible that a near-max margin solution does not generalize at all. Since $\kappa_{\rm gen} = 0$ in the linear setting, we only state this result for the XOR problem.

Theorem

Suppose $\kappa < \kappa_{\mathrm{gen}}^{XOR,h}$. For any $\epsilon > 0$, there exists a constant $c = c(\kappa,\epsilon)$ such that if $d \geqslant cn$, then for any $\mathcal{D} \in \Omega_{\sigma,d}^{XOR}$, with probability $1 - 3e^{-\frac{n}{c}}$ over $S \sim \mathcal{D}^n$, there exists some W with $\|W\| = 1$ and $\gamma(f_W,S) \geqslant (1-\epsilon)\gamma^*(S)$ such that $\mathcal{L}_{\mathcal{D}}(f_W) = \frac{1}{2}$.

The last two theorems demonstrate that in the XOR problem, there is a threshold in κ ($\kappa_{\rm gen}$) above which generalization occurs. As long as κ is above this threshold, we achieve generalization when $\sigma^2 \ll 1$.

One-sided UC Bounds are Vacuous (XOR)

Theorem

Fix $h \in (1,2)$, and suppose $\kappa_{\rm gen}^{{\sf XOR},h} < \kappa < \kappa_{\it uc}^{{\sf XOR},h}$. For any $\delta > 0$ there exist strictly positive constants $\epsilon = \epsilon(\kappa,\delta)$ and $c = c(\kappa,\delta)$ such that the following holds. Let ${\cal A}$ be any algorithm that outputs a $(1-\epsilon)$ -max-margin two-layer neural network f_W for any $S \in (\mathbb{R}^d \times \{-1,1\})^n$. Let ${\cal H}$ be any concept class that is **useful** for ${\cal A}$ on $\Omega_{\sigma,d}^{h,{\sf XOR}}$. Suppose that $\epsilon_{\it unif}$ is a uniform convergence bound for the XOR problem $\Omega_{\sigma,d}^{h,{\sf XOR}}$: that is,

Suppose that ϵ_{unif} is a uniform convergence bound for the XOR problem $\Omega_{\sigma,d}^{h,XOR}$: that is, for any $\mathcal{D} \in \Omega_{\sigma,d}^{h,XOR}$, ϵ_{unif} satisfies

$$Pr_{S \sim \mathcal{D}^n} \left(\sup_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_{S}(h) \geqslant \epsilon_{unif} \right) \leqslant \frac{1}{4}$$

Then if $d \geqslant cn$ and n > c we must have $\epsilon_{\textit{unif}} \geqslant 1 - \delta$

One-sided UC Bounds are Vacuous (Linear)

Theorem

Consider the problem class $\Omega_{\sigma,d}^{\text{linear}}$ and suppose that $\kappa_{\text{gen}}^{\text{linear}} < \kappa < \kappa_{\text{uc}}^{\text{linear}}$. Then the following result holds for a universal constant (independent of κ): If $\epsilon \leqslant \frac{\kappa(\kappa_{\text{uc}}^{\text{linear}} - \kappa)^2}{c}$, and $\frac{d}{n} \geqslant \frac{c}{\kappa^2(\kappa_{\text{linear}}^{\text{linear}} - \kappa)^4}$, then we achieve the guarantee that $\epsilon_{\text{unif}} \geqslant 1 - e^{-\frac{n}{36d\sigma^2}} - e^{-\frac{n}{8}}$

Polynomial Margin Bounds Fail for Linear Problem

Theorem

Suppose $\kappa_{\mathrm{gen}}^{\mathrm{linear}} < \kappa < \kappa_{\mathrm{uc}}^{\mathrm{linear}}$. There exists a universal constant c such that the following holds. Let $\epsilon = \frac{\kappa(\kappa_{\mathrm{uc}} - \kappa)^2}{c}$, and let \mathcal{A} be any algorithm so that $\mathcal{A}(S)$ outputs a $(1-\epsilon)$ -max-margin solution f_w for any $S \in (\mathbb{R}^d \times \{-1,1\})^n$. Let \mathcal{H} be any concept class that is **useful** for \mathcal{A} . Suppose that there exists a polynomial margin bound of integer degree p for the linear problem $\Omega_{\sigma,d}^{\mathrm{linear}}$ that is, for any $\mathcal{D} \in \Omega_{\sigma,d}^{\mathrm{linear}}$, there is some G that satisfies

$$Pr_{S \sim \mathcal{D}^n} \left(\sup_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_{S}(h) \geqslant \frac{G}{\gamma(h, S)^p} \right) \leqslant \frac{1}{4}$$

Then for any $\mathcal{D} \in \Omega_{\sigma,d}^{\text{linear}}$, if $\frac{d}{n} \geqslant \frac{c}{\kappa^2(\kappa_{uc}-\kappa)^4}$, with probability $\frac{1}{2}-3e^{-n}$ over $S \sim \mathcal{D}^n$, the margin bound is weak even on the max-margin solution, that is, $\frac{G}{\kappa^*(S)^p} \geqslant \max(\frac{1}{c}, 1-e^{-\frac{\kappa}{36\sigma^2}}-e^{-\frac{n}{8}}-\frac{3\kappa}{c})^p$, which is more than an absolute constant.

Polynomial Margin Bounds Fail for XOR on Neural Network

Theorem

Fix an integer $p\geqslant 1$, and suppose $\kappa_{\rm gen}^{{\sf XOR},h}<\kappa<\kappa_{\rm uc}^{{\sf XOR},h}$. For any $\epsilon>0$, there exists $c=c(\kappa,p,\epsilon)$ such that the following holds. Let ${\cal H}$ be any hypothesis class such that for all ${\cal D}\in\Omega_{\sigma,d}^{{\sf XOR}}$,

$$Pr_{S \sim \mathcal{D}^n} \left(\text{all } (1 - \epsilon) \text{max-margin two-layer neural networks } f_W \text{ for } S \text{ lie in } \mathcal{H} \right) \geqslant \frac{3}{4}$$

Suppose that there exists an polynomial margin bound of degree p for the XOR problem $\Omega^{XOR}_{\sigma,d}$: that is, for any $\mathcal{D} \in \Omega^{XOR}_{\sigma,d}$, there exists some G that satisfies

$$Pr_{S \sim \mathcal{D}^n} \left(\sup_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}}(h) - \mathcal{L}_S(h) \geqslant \frac{G}{\gamma(h, S)^p} \right) \leqslant \frac{1}{4}$$

Then for any $\mathcal{D} \in \Omega^{\mathsf{XOR}}_{\sigma,d}$ if $d \geqslant cn$ and $n \geqslant c$, with probability $\frac{1}{2} - 3e^{-\frac{n}{c}}$ over $S \sim \mathcal{D}^n$, on the max-margin solution, the generalization guarantee is no better than $\frac{1}{c}$, ie. $\frac{G}{\gamma^*(S)^p} \geqslant \frac{1}{c}$

The End