Wydział	Dzień	poniedziałek $17^{15} - 19^{30}$	Nr zespołu
Matematyki i Nauk Informatycznych	Data		18
Nazwisko i Imię:	Ocena z przygotowania	Ocena ze sprawozdania	Ocena Końcowa
1. Jasiński Bartosz			
2. Sadłocha Adrian			
3. Wódkiewicz Andrzej			
Prowadzący		Podpis prowadzącego	
dr hab. Jacek Gosk			

Sprawozdanie nr 8

1. Opis ćwiczenia i wstęp teoretyczny

Celem ćwiczenia było zapoznanie się z działaniem lampy elektronowej, wykazanie zależności natężenia prądu anodowego diody od napięcia przyłożonego na diodę oraz wyznaczenie temperatury katody na podstawie wykonanych pomiarów.

Przed rozpoczęciem ćwiczenia, w sali laboratoryjnej przygotowany został uprzednio układ pomiarowy, którego schemat przedstawiono na rysunku 1.

Układ został przygotowany w taki sposób, aby napięcie przyłożone do lampy elektronowej hamowało ruch elektronów opuszczających katodę (biegun dodatni baterii połączony został z katodą, a ujemny z anodą). Budowa układu pozwalała jedynie na regulowanie wartości napięcia w jedną stronę. Z powodu braku możliwości zamiany polaryzacji przykładanego napięcia, nie można było wyznaczyć w ćwiczeniu wartości napięcia kontaktowego między okładkami.

Korzystaliśmy z przybliżenia, że elektrony wewnątrz lampy można opisać jako gaz elektronów, oraz dalej, z powodu znajdowania się ich w próżni nie występują oddziaływania między nimi – jako gaz doskonały. Były to podstawy do założenia, że prędkości elektronów przemieszczających się w kierunku anody mają rozkład Maxwella.

Wzór, który uwzględnia ten rozkład i posłużył w ćwiczeniu za podstawę opracowywania wyników pomiarów, opisuje zależność między natężeniem prądu anodowego a napięciem przyłożonym do lampy.

$$I_a(U_a;T) = I_{a_0} \exp\left(-\frac{eU_a}{kT}\right) \tag{1} \label{eq:1}$$
 schemat.png

Rysunek 1: Schemat układu pomiarowego

gdzie I_a to natężenie prądu anodowego, U_a to zmienna niezależna będąca napięciem przyłożonym do lampy, T to parametr równania, będący temperaturą katody, zaś pozostałe czynniki to następujące stałe:

- I_a prąd początkowy
- e ładunek elementrarny z minusem
- $\bullet k$ stała Boltzmanna

Analizując równanie, mozna stwierdzić, że I_{a_0} to zerowe natężenie prądu anodowego przy braku przyłożonego dodatkowego napięcia $(U_a=0\mathrm{V})$. Ponieważ napięcie U_a jest hamujące, dlatego przyjmuje w naszych rozważaniach wyłącznie wartości ujemne, stąd (pamiętając o ujemnej wartości ładunku e) argument funkcji wykładniczej ma wartość ujemną. Zatem mierzona wartość I_a powinna znajdować się w przedziale $(0;I_{a_0}]$ i maleć wraz ze zwiększaniem wartości bezwzględnej napięcia hamującego. Dodatkowo, wraz ze zwiększaniem temperatury T wykres funkcji wykładniczej oddala się w przedziale $(-\infty;0)$ od osi OX, co wpływa na zwiększenie wartości funkcji I_a dla ustalonego x.

Do dalszego opracowywania wyników wyprowadzono drugi wzór ze wzoru 1, logarytmując równanie stronami:

$$\ln \frac{I_a}{I_{a_0}} = -\frac{eU_a}{kT} \tag{2}$$

Poszukiwana była zależność liniowa, gdzie:

- $X = U_a$ zmienna niezależna
- $Y = \ln \frac{I_a}{I_{a_0}}$ zmienna zależna
- $a = -\frac{e}{kT}$ współczynnik kierunkowy

2. Pomiary i wstępne obliczenia

3. Opracowanie wyników