

CS-E4530 Computational Complexity Theory

Lecture 6: Complexity Classes and their Relationships

Aalto University
School of Science
Department of Computer <u>Science</u>

Spring 2020

Topics

- Basic requirements for complexity classes
- Time and space complexity classes
- Hierarchy theorems
- The reachability method
- Class inclusions
- Simulating nondeterministic space
- Closure under complement

(C. Papadimitriou: Computational Complexity, Chapter 7)

7.1 Basic Requirements for Complexity Classes

A complexity class is specified by

- model of computation (multi-tape TMs)
- mode of computation (deterministic, nondeterministic,...)
- resource (time, space, ...)
- bound (function f)

A *complexity class* is the set of all languages decided by some multi-tape Turing machine M operating in the appropriate mode, and such that, for any input x, M expends at most f(|x|) units of the specified resource.

Reasonable bound functions

Not all functions provide reasonable bounds: some are too complicated to compute themselves within the bounds that they allow.

Definition (7.1)

A function $f: \mathbf{N} \to \mathbf{N}$ is a *proper complexity function* if f is nondecreasing and there is a k-tape TM M_f with input and output such that on any input x,

- 1. $M_f(x) = \sqcap^{f(|x|)}$ where \sqcap is a *tally* ("quasi-blank") symbol,
- 2. M_f halts within O(|x|+f(|x|)) steps, and
- 3. M_f uses O(f(|x|)) space besides its input.
- Examples of proper complexity functions f(n):

$$c, n, \lceil \log n \rceil, \log^2 n, n \log n, n^2, n^3 + 3n, 2^n, \sqrt{n}, n!, \dots$$

- If f and g are proper, so are, e.g., f + g, $f \cdot g$, 2^g .
- Only proper complexity functions will be used as bounds.

Precise Turing machines

Definition (7.2)

Let M be a deterministic/nondeterministic multi-tape Turing machine (with or without input and output).

Machine M is *precise* if there are functions f and g such that for every $n \ge 0$, for every input x of length n, and for every computation of M,

- 1. M halts in precisely f(|x|) steps and
- 2. all of its tapes (except those reserved for input and output whenever present) are at halting of length precisely g(|x|).

Precise bounds will be convenient in various simulation results.

Simulating TMs with precise TMs

Proposition (7.1)

Let M be a deterministic or nondeterministic TM deciding a language L within time/space f(n) where f is proper.

Then there is a precise TM M' which decides L in time/space $\mathcal{O}(f(n))$.

Proof sketch

The simulating machine M' on input x:

- 1. computes a yardstick/alarm clock $\sqcap^{f(|x|)}$ using M_f (operating on a new set of tapes) and
- 2. using the yardstick (output tape of M_f) simulates M for exactly f(|x|) steps or simulates M using exactly f(|x|) units of space.

7.2 Time and Space Complexity Classes

ullet Given a proper complexity function f, we obtain following classes:

```
 \begin{array}{ll} \mathbf{TIME}(f) & \text{(deterministic time)} \\ \mathbf{NTIME}(f) & \text{(nondeterministic time)} \\ \mathbf{SPACE}(f) & \text{(deterministic space)} \\ \mathbf{NSPACE}(f) & \text{(nondeterministic space)} \\ \end{array}
```

- The bound f can be a family of functions parameterised by a non-negative integer k; meaning the union of all individual classes.
- The most important are: $\mathbf{TIME}(n^k) = \bigcup_{j>0} \mathbf{TIME}(n^j)$ • $\mathbf{NTIME}(n^k) = \bigcup_{j>0} \mathbf{NTIME}(n^j)$

Key Complexity Classes

The relationships of these classes will be studied in the sequel.

Complements of decision problems

• Given an alphabet Σ and a language $L \subseteq \Sigma^*$, the *complement* of L is the language

$$\overline{L} = \Sigma^* - L$$
.

 For a decision problem A, the answer for the problem"A COMPLEMENT" is "yes" iff the answer A is "no".

Example

SAT COMPLEMENT: Given a Boolean expression ϕ in CNF, is ϕ unsatisfiable?

Example

REACHABILITY COMPLEMENT: Given a graph (V,E) and vertices $v,u\in V$, is it the case that there is no path from v to u?

Closure under complement

For any complexity class C, coC denotes the class

$$\{\overline{L} \mid L \in C\}.$$

Example. As SAT \in **NP**, then SAT COMPLEMENT \in **coNP**.

- All deterministic time and space complexity classes C are closed under complement: if L ∈ C, then \(\overline{L}\) ∈ C.
 Proof. Exchange "yes" and "no" states of the deciding Turing machine.
- Hence, for example, P = coP.
- The same holds for nondeterministic space complexity classes (to be shown in the sequel).
- An important open question: are nondeterministic time complexity classes closed under complement?
 For instance, does NP = coNP hold?

7.3 Hierarchy Theorems

- We derive a quantitative hierarchy result: with sufficiently greater time allocation, Turing machines are able to perform more complex computational tasks.
- For a proper complexity function $f(n) \ge n$, define

$$H_f = \{M; x \mid M \text{ accepts input } x \text{ within } f(|x|) \text{ steps}\}.$$

 \bullet Thus, H_f is the time-bounded version of H, i.e. the language of the HALTING problem.

Upper bound for H_f

Lemma (7.2)

 $H_f \in \mathbf{TIME}(f(n)^3).$

Proof sketch

A 4-tape machine U_f deciding H_f in time $f(n)^3$ is based on

- (i) the universal Turing machine U,
- (ii) a machine M_f computing the yardstick of length f(n) where n is the length of the input x,
- (iii) the single-tape simulation of a multi-tape Turing machine, and
- (iiv) the linear speedup trick.

The machine U_f operates on input M; x' as follows:

- 1. It copies the description of M to tape 3, initialises tape 2 to encode initial state s and initialises tape 1 to contain the input $\triangleright x$.
- 2. It uses M_f to compute the alarm clock $\sqcap^{f(|x|)}$ for M on tape 4.
- 3. Then U_f simulates M and advances the alarm clock at each simulated step. If U_f finds out that M accepts input x within f(|x|) steps, then it accepts. But if the alarm clock expires, then U_f rejects.

Observations:

- Since the multi-tape machine M is simulated using a single tape, each simulation step takes $O(f(n)^2)$ time.
- The total running time thus is $O(f(n)^3)$ for f(|x|) steps.
- The running time can be made at most $f(n)^3$ by treating several symbols as one, as in the proof of the linear speedup theorem.

Lower bound for H_f

Lemma (7.3)

 $H_f \not\in \mathbf{TIME}(f(\lfloor \frac{n}{2} \rfloor)).$

Proof sketch

- Suppose there is a TM M_{H_f} that decides H_f in time $f(\lfloor \frac{n}{2} \rfloor)$.
- Consider $D_f(M)$: if $M_{H_f}(M;M) =$ "yes" then "no" else "yes". Thus, D_f on input M runs in time $f(\lfloor \frac{2|M|+1}{2} \rfloor) = f(|M|)$.
- If $D_f(D_f)=$ "yes", then D_f accepts input D_f within $f(|D_f|)$ steps, hence $D_f; D_f \in H_f$ and so $M_{H_f}(D_f; D_f)=$ "yes". But then $D_f(D_f)=$ "no", a contradiction.
- If $D_f(D_f)=$ "no", then D_f rejects input D_f within $f(|D_f|)$ steps, hence $D_f; D_f \not\in H_f$ and so $M_{H_f}(D_f; D_f)=$ "no". But then $D_f(D_f)=$ "yes", a contradiction again.

The time hierarchy theorem

Theorem (7.4; Time Hierarchy Theorem)

If $f(n) \ge n$ is a proper complexity function, then the class $\mathbf{TIME}(f(n))$ is strictly contained within $\mathbf{TIME}((f(2n+1))^3)$.

Proof

- TIME $(f(n)) \subseteq \text{TIME}((f(2n+1))^3)$ as f is nondecreasing.
- By the first lemma: $H_{f(2n+1)} \in \mathbf{TIME}((f(2n+1))^3)$.
- By the second lemma:

$$H_{f(2n+1)} \not\in \mathbf{TIME}(f(\lfloor \frac{2n+1}{2} \rfloor)) = \mathbf{TIME}(f(n)).$$

Corollary (7.5)

P is a proper subset of EXP.

Proof

- Since $n^k = O(2^n)$, we have $P \subseteq TIME(2^n) \subseteq EXP$.
- It follows by the time hierarchy theorem that $\mathbf{TIME}(2^n) \subsetneq \mathbf{TIME}((2^{2n+1})^3) \subseteq \mathbf{TIME}(2^{n^2}) \subseteq \mathbf{EXP}$.

The space hierarchy theorem

Theorem (7.6; Space Hierarchy Theorem)

If $f(n) \ge n$ is a proper complexity function, then the class $\mathbf{SPACE}(f(n))$ is a proper subset of $\mathbf{SPACE}(f(n)\log f(n))$.

However, counter-intuitive results are obtained if non-proper complexity functions are allowed.

Theorem (7.7: Gap Theorem)

There is a computable function f from the nonnegative integers to the nonnegative integers such that $\mathbf{TIME}(f(n)) = \mathbf{TIME}(2^{f(n)})$.

Proof idea

The bound f can be defined so that no TM M computing on input x with |x|=n halts in any number of steps between f(n) and $2^{f(n)}$.

7.4 The Reachability Method

Theorem (7.8)

Let f(n) be a proper complexity function. Then

- (a) $SPACE(f(n)) \subseteq NSPACE(f(n))$ and $TIME(f(n)) \subseteq NTIME(f(n))$.
- (b) $NTIME(f(n)) \subseteq SPACE(f(n))$.
- (c) **NSPACE** $(f(n)) \subseteq \mathbf{TIME}(c^{\log n + f(n)}).$

Proof

- (a) Anyt TM is also an NTM.
- (b) Simulation of all the choices within space f(n) (see below).
- (c) Proof by the reachability method (see below).

Proof of NTIME $(f(n)) \subseteq \mathbf{SPACE}(f(n))$

- Let $L \in \mathbf{NTIME}(f(n))$. Hence, there is a precise nondeterministic Turing machine N that decides L in time f(n).
- We show how to construct a deterministic machine M that simulates N within the space bound f(n).
- Let d be the degree on nondeterminism of N (maximal number of possible moves for any state-symbol pair in Δ).
- Any computation of N on input x corresponds to an f(n)-long sequence of nondeterministic choices (represented by integers $0, 1, \ldots, d-1$) where n = |x|.
- The simulating deterministic machine M considers all such sequences of choices and simulates N on each.

Proof-cont'd.

- With sequence $(c_1, c_2, \dots, c_{f(n)})$ M simulates the actions that N would have taken had N taken choice c_i at step i.
- If a sequence leads N to halting with "yes", then M does, too.
 Otherwise it considers the next sequence. If all sequences are exhausted without accepting, then M rejects.
- There are an exponential number of simulations to be carried out, but they can all be completed in space f(n) by running them one-by-one, and always erasing the previous simulation to reuse space.
- As f(n) is proper, the first sequence $0^{f(n)}$ can be generated in space f(n).

Proof of NSPACE $(f(n)) \subseteq \mathbf{TIME}(c^{\log n + f(n)})$

The *reachability method* is used to prove the claim.

- Consider a k-tape *nondeterministic* TM N with input and output which decides a language L within space f(n).
- We develop a deterministic method for simulating the nondeterministic computation of N on input x within time $c^{\log n + f(n)}$ where n = |x| and c is a constant depending on N.
- The configuration graph G(N,x) of N with input x is used: the vertices of the graph are all possible configurations of N with input x, and there is an edge between two vertices (configurations) C_1 and C_2 iff $C_1 \vdash_N C_2$.
- Now $x \in L$ iff there is a path from $C_0 = (s, \triangleright, x, \triangleright, \epsilon, \dots, \triangleright, \epsilon)$ to some configuration of the form $C = (\text{"yes"}, \dots)$ in G(N, x).

Proof-cont'd.

- A configuration $(q, w_1, u_1, \dots, w_k, u_k)$ is a complete "snapshot" of a computation.
- Since N is a machine with input and output *deciding* L with the bound f(n), we observe that for a configuration:
 - the output tape can be neglected,
 - for the input tape, only the cursor position can change, and
 - for all other k-2 tapes, the length is at most f(n).
- A configuration can thus be represented as $(q,i,w_2,u_2,\ldots,w_{k-1},u_{k-1})$ where $1\leq i\leq n$ gives the cursor position on the input tape.
- How many possible configurations does N have? At most

$$|K|(n+1)(|\Sigma|^{f(n)})^{2(k-2)}$$

$$\leq |K|2n(|\Sigma|^{2(k-2)})^{f(n)} \leq nc_1^{f(n)} \leq c_1^{\log n + f(n)}$$

for some constant $c_1 \ge 2$ depending on N.

Proof—cont'd.

- Hence, deciding whether $x \in L$ holds can be done by solving a reachability problem for a graph with at most $c_1^{\log n + f(n)}$ vertices.
- The problem can be solved, say, with a quadratic algorithm in time $c_2c_1^{2(\log n + f(n))} \le c^{\log n + f(n)}$ with $c = c_2c_1^2$.
- The graph G(N,x) does not need to be represented explicitly (e.g., as an adjacency matrix) for the reachability algorithm.
- Given the machine N, the existence of an edge from C to C' can be determined on the fly by examining C, C', and the input x.

7.5 Class Inclusions

Corollary (7.9)

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$

Proof

- 1. $L = SPACE(\log n) \subseteq NSPACE(\log n) = NL$ follows by (a).
- 2. $NL = NSPACE(\log n) \subseteq TIME(c^{\log n + \log n}) = TIME(n^{2\log c}) \subseteq P$ follows by (c).
- 3. By (a) $\mathbf{TIME}(n^k) \subseteq \mathbf{NTIME}(n^k)$ which implies $\mathbf{P} \subseteq \mathbf{NP}$.
- 4. By (b) $\mathbf{NTIME}(n^k) \subseteq \mathbf{SPACE}(n^k)$ which implies $\mathbf{NP} \subseteq \mathbf{PSPACE}$.
- 5. By (a) and (c) $\mathbf{SPACE}(n^k) \subseteq \mathbf{NSPACE}(n^k) \subseteq \mathbf{TIME}(c^{\log n + n^k}) \subseteq \mathbf{TIME}(2^{n^{k+c'}}) \subseteq \mathbf{EXP}.$

Which inclusions are proper?

Corollary (7.10)

The class L is a proper subset of PSPACE.

Proof

By the space hierarchy theorem, $\mathbf{L} = \mathbf{SPACE}(\log(n)) \subsetneq \mathbf{SPACE}(\log(n)\log(\log(n))) \subseteq \mathbf{SPACE}(n^2) \subseteq \mathbf{PSPACE}.$

It is believed that *all* inclusions of the complexity classes in $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$ are proper. However, we only know that

- owever, we only know that
- at least one of the inclusions between L and PSPACE is proper (but don't know which) and
- at least one of the inclusions between P and EXP is proper (but don't know which).

7.6 Simulating Nondeterministic Space

- How efficiently can we simulate nondeterministic space by deterministic space?
- It follows by the previous theorem that

$$\mathbf{NSPACE}(f(n)) \subseteq \mathbf{TIME}(c^{\log n + f(n)}) \subseteq \mathbf{SPACE}(c^{\log n + f(n)}).$$

But can we do better than this?

 Yes! In fact, nondeterministic space can be simulated in deterministic space with only a quadratic overhead.

Savitch's theorem

Theorem (7.11)

 $REACHABILITY \in \mathbf{SPACE}(\log^2 n)$.

Proof sketch

- Given a graph G and vertices x, y and $i \ge 0$, define PATH(x, y, i): there is a path from x to y of length at most 2^i .
- If G has n vertices, any simple path is at most n edges long and we can solve reachability in G if we can compute whether $PATH(x,y,\lceil \log n \rceil)$ holds for any given vertices x,y of G.
- This can be done using middle-first search within space bound log² n.

- function path(x,y,i) /* middle-first search */
 - if i = 0 then

if x = y or there is an edge (x, y) in G then return "yes" else for all vertices z do

if path(x,z,i-1) and path(z,y,i-1) then return "yes"; return "no"

- We prove that path(x, y, i) correctly determines PATH(x, y, i) by induction on i = 0, 1, 2, ...:
 - If i = 0, then clearly path correctly determines PATH(x, y, 0).

For i>0, path(x,y,i) returns "yes" iff there is a vertex z satisfying path(x,z,i-1) and path(z,y,i-1). By the induction hypothesis, there are then paths from x to z and from z to y both of length at most 2^{i-1} . Thus there is a path from x to y of length at most 2^i .

- The algorithm is started with $path(x, y, \lceil \log n \rceil)$.
- The $O(\log^2 n)$ space bound can be achieved by managing recursion using a stack that contains a triple (x,y,i) for each active recursive call path(x,y,i). The stack, with triple (x,y,i) at the top, is handled as follows:
 - Generate all vertices z one after the other reusing space.
 - For each z, push (x, z, i-1) on the stack and call path(x, z, i-1).
 - ▶ If this returns "no", erase (x, z, i-1) and move to the next z.
 - If a "yes" answer is obtained, then erase (x, z, i-1), push (z, y, i-1) on the stack and call path(z, y, i-1).
 - If this returns "no", erase (z, y, i-1) and move to the next z. Otherwise return "yes" on path(x, y, i).
- At any moment, there are at most $\log n$ active recursive calls, each taking at most $3\log n$ space on the stack. The $O(\log^2 n)$ space bound follows.

(Interestingly, REACHABILITY for *undirected graphs* is solvable even in $\mathbf{SPACE}(\log n)$ [O. Reingold 2004].)

Corollary (7.12; Savitch's Theorem, 1970)

For any proper complexity function $f(n) \ge \log n$,

NSPACE
$$(f(n)) \subseteq SPACE((f(n))^2)$$
.

Proof

- To simulate an f(n)-space bounded NTM N on input x, run the previous algorithm on the configuration graph G(N,x).
- The edges of the graph G(N,x) are determined on the fly by examining the input x.
- The configuration graph has at most $c_1^{\log n + f(n)} \le c^{f(n)}$ vertices for some c.
- By Savitch's theorem, the algorithm needs at most $(\log c^{f(n)})^2 = f(n)^2 \log^2 c = \mathcal{O}(f(n)^2)$ space.

Corollary (7.13)

PSPACE = NPSPACE.

Nondeterminism is less powerful for space than for time. (Maybe.)

7.7 Closure under Complement

- A key result about reachability will be established: the number of vertices reachable from a vertex x can be computed in nondeterministic log n space.
- The complement (the number of vertices not reachable from x) can be handled in nondeterministic log n space, too.
 (This quantity can be obtained by a simple subtraction.)
- This implies that nondeterministic space is closed under complement.
- It is open (and doubtful) whether nondeterministic time complexity classes are closed under complement.

Functions computed by NTMs

When does an NTM M compute a function F from strings to strings?

- On input x, each computation of M either
 - outputs the correct answer F(x) or
 - enters the rejecting "no" state.
- At least one computation must end up with F(x), which must be unique for all such computations.
- Such a machine observes a space bound f(n) iff for any input x, at halting all tapes (except the ones reserved for input and output) are of length at most f(|x|).

Immerman-Szelepcsényi theorem

Theorem (7.14; Immerman-Szelepcsényi theorem, 1987)

Given a graph G and a vertex x, the number of vertices reachable from x in G can be computed by an NTM within space $\log n$.

Proof

- Let us define S(k) as the set of vertices in G which are reachable from x via paths of length k or less.
- The strategy is to compute values $|S(1)|, |S(2)|, \ldots, |S(n-1)|$ iteratively and recursively, i.e. |S(i)| is computed from |S(i-1)|.
- Given that the number of vertices in G is n, the number of vertices reachable from x in G is |S(n-1)|.
- Let G(v, u) mean that v = u or there is an edge from v to u in G.

The nondeterministic algorithm:

```
\begin{split} |S(0)| \leftarrow 1; \\ &\textbf{for } k \leftarrow 1, 2, ..., n-1 \textbf{ do} \\ &l \leftarrow 0; \\ &\textbf{for } \text{ each vertex } u \leftarrow 1, 2, ..., n \textbf{ do} \\ &\text{ check whether } u \in S(k) \text{ and set } reply \text{ accordingly;} \\ &/^* \text{ See below how this is implemented */} \\ &\textbf{ if } reply = true \textbf{ then } l \leftarrow l+1; \\ &\textbf{ end for;} \\ &|S(k)| \leftarrow l \\ &\textbf{ end for} \end{split}
```

```
/* Check whether u \in S(k) and set reply */
m \leftarrow 0; reply \leftarrow false;
  /* m \sim count of vertices in S(k-1) reached in a nondet. trial */
  /* reply \sim \text{was } u \in S(k) \text{ discovered? */}
for each vertex v \leftarrow 1, 2, ..., n do
  /* check whether v \in S(k-1) */
  w_0 \leftarrow x; path \leftarrow true
  for p \leftarrow 1, 2, ..., k-1 do
     guess a vertex w_n; if not G(w_{n-1}, w_n) then path \leftarrow false
  end for
   if path = true and w_{k-1} = v then
     m \leftarrow m+1; /* v \in S(k-1) holds */
      if G(v, u) then reply \leftarrow true
  end if
end for
if m < |S(k-1)| then "give up" (end in "no" state)
```

- Note that only $\log n$ -space is needed as there are only nine variables: $|S(k-1)|, k, l, u, m, v, p, w_p, w_{p-1}$ which each (an integer) can be stored in $\log n$ space.
- The algorithm computes correctly |S(k)| (by induction on k):
 - If k = 0, then |S(k)| = 1 as given by the algorithm.
 - For k>0, consider a computation that does not "give up". We need to show that counter l is incremented iff $u\in S(k)$. If counter l is incremented, then reply=true implying that $u\in S(k)$, i.e. there is a path $(x=)w_0,\ldots,w_{k-1}(=v),u$. If $u\in S(k)$, then there is some $v\in S(k-1)$ such that G(v,u). But as the computation does not "give up", m=|S(k-1)| (which is the correct value by induction) and therefore all $v\in S(k-1)$ are verified as such and, thus, reply is set to true.
 - Moreover, clearly there is at least one accepting computation where paths to the members of S(k-1) are correctly guessed.

Closure under Complement

Corollary (7.15)

If $f(n) \ge \log n$ is a proper complexity function, then $\mathbf{NSPACE}(f(n)) = \mathbf{coNSPACE}(f(n))$.

Proof sketch

- Suppose $L \in \mathbf{NSPACE}(f(n))$ is decided by an f(n)-space bounded NTM N. We build an f(n)-space bounded NTM \overline{N} deciding \overline{L} .
- On input x, \overline{N} runs the previous algorithm on the configuration graph G(N,x) associated with N and x.
- \overline{N} rejects if it finds an accepting configuration in any S(k).
- Since G(N,x) has at most $n_g = c^{f(n)}$ vertices, then \overline{N} can accept if $|S(n_g-1)|$ is computed without an accepting configuration.
- Due to bound n_g , \overline{N} needs at most $\log c^{f(n)} = \mathcal{O}(f(n))$ space.

Learning Objectives

- The definitions and background of major complexity classes: P, NP, PSPACE, NPSPACE, EXP, L, and NL.
- The knowledge of basic relationships between complexity classes (inclusions and proper inclusions).
- Savitch's theorem and Immerman-Szelepscényi theorem.