

MÉTODOS ESTOCÁSTICOS EN RECURSOS HIDRÁULICOS

Sthochastic Methods in Water Resources

2024 - 15

Ejercicio 03 - Estadísticas Hidrológicas y Extremos

Considere los siguientes datos de caudal máximo diario anual del río Mosa en la estación de Eysden en la frontera entre los Países Bajos y Bélgica (descarga promedio diaria en m³/s).

Año	Caudal Máximo Diario Anual (m³/s)						
1950	1266	1963	1537	1976	597	1989	1149
1951	1492	1964	1155	1977	1216	1990	1444
1952	1862	1965	1899	1978	1061	1991	1791
1953	861	1966	1956	1979	1450	1992	1207
1954	715	1967	1596	1980	2016	1993	3050
1955	1367	1968	1380	1981	1270	1994	1578
1956	1837	1969	745	1982	1341	1995	2817
1957	1429	1970	2181	1983	1075	1996	792
1958	1429	1971	955	1984	2482	1997	1143
1959	1261	1972	1007	1985	874	1998	1698
1960	1607	1973	824	1986	1689	1999	2076
1961	2132	1974	1271	1987	1554	2000	1204
1962	1652	1975	1044	1988	1831	2001	1835

http://sites.google.com/view/agua_unal

Departamento de Ingeniería Civil y Agrícola Facultad de Ingeniería Sede Bogotá

- 1. Pruebe si estos valores pueden ser modelados como variables estocásticas independientes.
- 2. Pruebe si se puede detectar una tendencia.
- 3. Grafique los datos en papel de probabilidad Gumbel y determina los parámetros de la distribución Gumbel. ¿Cuál es la estimación de la inundación de 1000 años?
- 4. Determine los parámetros de la distribución Gumbel mediante regresión lineal de Q_{max} contra $^{-\ln\left(-\ln\left(\frac{i}{n+1}\right)\right)}$ con i siendo el rango del máximo más pequeño. Estima la inundación de 1000 años y sus límites de confianza del 95%.
- 5. Determine los parámetros de la distribución Gumbel con el método de momentos. Estima la inundación de 1000 años y sus límites de confianza del 95%.
- 6. Estima la inundación de 1000 años asumiendo una distribución lognormal de los valores máximos.
- 7. Prueba si los datos pueden considerarse como resultados de una distribución Gumbel.
- 8. Prueba si los datos pueden considerarse como resultados de una distribución lognormal.
- 9. ¿Cuál es la probabilidad de que la inundación de 1000 años ocurra al menos una vez en los próximos 40 años?
- 10. ¿Cuál es la probabilidad de que la inundación de 1000 años ocurra dos veces en los próximos 100 años?

http://sites.google.com/view/agua_unal