William Stallings Data and Computer Communications 7th Edition

Bab 21 Keamanan jaringan

Hal yang dibutuhkan dlm keamanan

- Dapat dipercaya
- Berintegritas
- Tersedia

Menyerang pasif

- Tidak terdengar dalam transmisi
- Untuk memperoleh information
- Pelepasan dari isi surat
 - —Orang luar belajar isi dari transmisi.
- Analisa
 - Dengan menangkap frekuensi dan panjang gelombang dari pesan ,enkripsi sama,komunikasi alami mungkin terkira.
- Sulit untuk deteksi
- Dapat dicegah

Active Attacks

- Penyamaran
 - pemberlakuan menjadi sebuah kesatuan yang berbeda
- Mengulangi
- Modifikasi pesan
- Denial of pelayanan
- Mudah dideteksi
 - Deteksi mudah untuk pencegahan
- Melindungi

Enkripsi Simetris(sederhana)

Komposisi

- Text datar
- Algoratima Enkripsi
- Kunci rahasia
- Text Rahasia
- Algoritma deskripsi

Requirements for Security

- Algoritma enkripsi kuat
 - —Sama jika diketauhi, sebaiknya tidak dapat untuk dekripsi atau percobaan kunci
 - —Sama jika sejumlah kepingan text merupakan tersedia bersama dengan text sederhana
- Pengirim dan Penerima harus memperoleh kerahasiaan kunci keamanan
- Salah satu kunci yang diketahui, semua komunikasi menggunakan kunci ini untuk bisa membaca

Penyerangan enkripsi

Analisa kript

- —Menyampaikan secara alami dari algoritma ditambah beberapa pengetahuan karakteristik dari text sederhana.
- —Mencoba untuk menarik kesimpulan text sederhana atau kunci.

Pemaksaan

—Mencoba setiap kemungkinan kunci sehingga text sederhana dicapai

Algorithms

- Kepingan blok
 - —Proses text sederhana dalam ukuran blok yang tetap menghasilkan kepingan dari text yang ukurannya sama.
 - —Standar enkripsi data (DES)
 - —Triple DES (TDES)
 - —Standar enkripsi sebelumnya.

Standar data enkripsi

- Standar US
- 64 bit text blok datar
- 56 bit kunci
- dipecahkan di tahun 1998 oleh Electronic Frontier Foundation
 - -Mesin khusus tujuan
 - —Kurang dari tiga hari
 - —DES sekarang tidak digunakan

Triple DEA

- ANSI X9.17 (1985)
- Diresmikan dlm standar DEA th 1999
- mengunakan 3 kunci dan 3 esekusi dari algoritma DEA
- Panjang kunci yang efektif 112 atau 168 bit
- Pelan
- Ukuran blok (64 bit) sangat kecil

Standar enkripsi sebelumnya

- Institut standar dan teknologi nasional/National Institute of Standards and Technology (NIST) dalam 1997 disebut Advanced Encryption Standard (AES)
 - Kekuatan keamanan lebih besar sama dengan 3DES
 - Efesiensi mutu
 - Sandi rahasia simetris blok
 - Panjang blok 128 bits
 - Panjang kuncinya 128, 192, and 256 bits
 - Evaluasi memasukkan keamanan, efisiensi komputional,keperluan memory, kecocokan dan fleksibelitas hardware dan software
 - 2001, AES terbitan sebagai standar proses informasi federal (FIPS 197)

Deskripsi AES

- Mengambil kunci sepanjang 128 bit
- Input adalah single 128-bit blok
 - Menggambarkan sebagai matrik kotak
 - Blokn dikopi didalam array yang ditetapkan
 - dimodifikasi disetiap tingkatan
 - Setelah tingkatan terakhir, keadaan tersebut dikopi ke output matrix
- 128-bit kunci digambarkan sebagai kotak matrix dari byte
 - dikembangkan didalam array mengatur kata dari kunci
 - Setiap 4 byte
 - Mengatur 44 kata total kunci dari 128 bit
- Pemesanan byte oleh kolom
 - Pertama empat byte dari 128 bit input text sederhana four bytes of 128-bit plaintext input menempati kolom pertama dimatrix
 - Pertama empat byte dikembangkan kuncyu yang menempati kolom pertama dari w-matrix.

Enkripsi dan Dekripsi AES

(a) Encryption

(b) Decryption

Ulasan AES (1)

- Kunci dikembangkan didalam array dari empat puluh dua 32 bit kata,w[i]
 - Empat kata jelas (128 bit) menjalankan sebagai deretan kunci dari setiap deretan array
- Empaty tingkat perbedaan
 - Satu permutasi dan tiga subtitusi
 - Substitusi byte menggunakan tabel S-bax byte untuk melakukan subtitusi byte-byte dari blik.
 - Penggeseran baris merupakan permutasi yang dlakukan baris oleh baris
 - Kolom Campuran merupakan subtitusi yang merubah setiap byte dalam kolom sebagai fungsi dari semua dari byte dikolom
 - Menambah rentetan kunci XOR bitwise dari edaran blok dengan porsi dari pengembangan kunci
- Struktuir sederhana
 - Untuk kedua enkripsi dan dekripsi, both encryption and decryption, kepingan memulai menambah deretan stage kuncid
 - Diikuti oleh 9 deretan,
 - Setiap memasukkan semua 4 tingkatan
 - Diikuti oleh persepuluh tingkatan dari tiga tingkatan

Deretan enkripsi AES

Ulasan AES (2)

- Hanya menambah deretan tingkatan kunci menggunakan kunci
 - Dengan menambah deretan tingkatan kunci diawal dan akhir
 - Beberapa tingkatan yang lain awal dan akhir, dibalik tanpa kunci
 - Bertambah tidak aman
- Menambah deretan tingkatan kunci tidak berat dengan sendirinya
 - 3 deretan lainnya berebut bit
 - mereka sendiri tidak menyediakan keamanan karena bukan kunci
- Setiap deretan memutarbalik dengan mudah
- Dekripsi menggunakan perkembangan kunci dalam perintah untuk memutar balik
 - Tidak identik algoritma enkripsi
- Mudah memeriksa bahwa enkripsi menemukan kembali plaintext
- Tingkat terakhir dari enkripsi dan diskripsi diantara 3 tingkatan
 - Untuk membuat kepingan kebalikkan

Lokasi Peralatan dari enkripsi

PSN = packet switching node

Hubungan enkripsi

- Masing-masing hubungan komunikasi equipped at both ends
- Keamanan semua trafik
- Tingkat keamanan tinggi
- Banyak persyaratan dari peralatan enkripsi
- Pesan harus dienkripsi di masing—masing switch untuk membaca alamat (virtual circuit number)
- Security vulnerable at switches
 - —Particularly on public switched network

Enkripsi End to End

- Enkripsi dilakukan diakhir dari sistem
- Data dalam bentuk enkripsi yang melewati jaringan unaltered
- Tujuan membagi kunci dengan sumber untuk decrypt
- Host hanya dapat enkripsi data user
 - Jadi node switching tidak dapat membaca header atau paket routing
- Pola lalu lintas tidak aman
- Menggunakan sambungan end to end

Distribusi Key

- Kunci diseleksi A dan dikirim ke B
- Three party memilih key dan mengirimkan ke A dan B
- Menggunakan old key untuk enkripsi dan transmisi new key dari A dan B
- Menggunakan old key untuk transmisi kunci baru dari third party ke A dan B

Distribusi key otomatik (diag)

Distribusi key otomatik

- Session Key
 - Digunakan untuk durasi dari satu logical connection
 - Merusak pada akhir session
 - Digunakan untuk pemakai data
- Permanent key
 - Digunakan untuk distribusi keys
- Pusat distribusi key
 - Determinasi system yang boleh komunikasi
 - Menyediakan key satu sesi untuk koneksi
- Security service module (SSM)
 - Mennjukkan enkripsi end to end
 - Mengandung keys untuk host

Traffic Padding

- Menghasilkan potongat text yang berkesinambungan
- Jika tidak ada text datar untuk encoding, maka akan mengirim data acak
- Membuat ketidakmungkian analisa traffic

Autentikfikasi pesan

- Protection against active attacks
 - —Pemalsuan data
 - —Eavesdropping
- Pesan adalah authentic jika datang dari source yang diminta
- Pengesahan mengijinkan receiver untuk mengklasivfikasi bahwa pesan itu asli atau authentic
 - —Message belum diubah
 - —Message dari sumber yang asli
 - —Message timeline

Authentication Using Encryption

- Mengasumsikan penerima dan pengirim yang hanya mengetahui kunci
- Message meliputi:
 - —error detection code
 - —sequence number
 - —time stamp

Authentication Without Encryption

- Authentication tag generated and appended to each message
- Message not encrypted
- Berfungsi untuk:
 - —Messages broadcast ke multiple destinations
 - Have one destination responsible for authentication
 - —One side heavily loaded
 - Encryption adds to workload
 - Can authenticate random messages
 - Programs authenticated tanpa encryption bisa dieksekusi tanpa decoding

Message Authentication Code

- Generate authentication code based on shared key and message
- Common key shared between A and B
- Jika hanya pengirim dan penerima yang mengetahui key dan code yang sesuai:
 - Receiver assured message has not altered
 - Receiver assured message is from alleged sender
 - —If message has sequence number, receiver assured of proper sequence

Message Authentication Using Message Authentication Code

One Way Hash Function

- Accepts variable size message and produces fixed size tag (message digest)
- Keuntungan pengesahan tanpa encryption
 - —Encryption lambat
 - —Encryption hardware mahal
 - Encryption hardware optimized to large data
 - —Algorithms covered by patents
 - —Algorithms subject to export controls (from USA)

Using One Way Hash

Secure Hash Functions

- Hash function must have following properties:
 - —Can be applied to any size data block
 - —Produce fixed length output
 - —Mudah untuk menghitung
 - —Not feasible to reverse
 - —Not feasible to find two message that give the same hash

SHA-1

- Secure Hash Algorithm 1
- Pesan masukan lebih kecil dari 2⁶⁴ bits
 - —Diproses di 512 bit blocks
- Keluaran 160 bit digest

Message Digest Generation Using SHA-1

Public Key Encryption

- Dibangun di mathematical algorithms
- Asymmetric
 - —Menggunakan dua separate keys
- Ingredients
 - —Plain text
 - —Encripsi algoritma
 - —Public dan private key
 - —Cipher text
 - Deskripsi algoritma

Public Key Encryption - Encryption

(a) Encryption

Public Key Encryption – Authentication

(b) Authentication

Public Key Encryption - Operation

- One key made public
 - Digunakan untuk encryption
- Other kept private
 - Digunakan untuk decryption
- Infeasible to determine decryption key given encryption key and algorithm
- Either key can be used for encryption, the other for decryption

Steps

- User generates pair of keys
- User places one key in public domain
- To send a message to user, encrypt using public key
- User decrypts menggunakan private key

Digital Signature

- Sender encrypts message with their private key
- Receiver can decrypt using senders public key
- This authenticates sender, who is only person who has the matching key
- Does not give privacy of data
 - —Decrypt key is public

RSA Algorithm

Key Generation

Select p, q

p and q both prime

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer e

 $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate d

 $d = e^{-1} \mod \phi(n)$

Public key

 $KU = \{e, n\}$

Private key

 $KR = \{d, n\}$

Encryption

Plaintext:

M < n

Ciphertext:

 $C = M^{\ell} \pmod{n}$

Decryption

Ciphertext:

C

Plaintext:

 $M = C^d \pmod{n}$

RSA Example

Public Key Certificate Use

Signed certificate: Recipient can verify signature using CA's public key.

Secure Sockets Layer Transport Layer Security

- Service keamanan
- Transport Layer Security didefinisi di RFC 2246
- SSL general-purpose service
 - —Set of protocols that rely on TCP
- Two implementation options
 - —Part of underlying protocol suite
 - Transparent to applications
 - —Embedded in specific packages
 - E.g. Netscape and Microsoft Explorer and most Web servers
- Minor differences between SSLv3 and TLS

SSL Architecture

- SSL menggunakan TCP untuk menyediakan keandalan end-to-end service keamanan
- SSL two layers of protocols
- Record Protocol provides basic security services to various higher-layer protocols
 - —In particular, HTTP can operate on top of SSL
- Three higher-layer protocols
 - —Handshake Protocol
 - —Change Cipher Spec Protocol
 - —Alert Protocol
 - —Used in management of SSL exchanges (see later)

SSL Protocol Stack

SSL Connection and Session

Connection

- Transport that provides suitable type of service
- Peer-to-peer
- Transient
- Every connection associated with one session

Session

- Association antara client dan server
- Dibuat oleh Handshake Protocol
- Define set of cryptographic security parameters
- Used to avoid negotiation of new security parameters for each connection
- Maybe multiple secure connections between parties
- May be multiple simultaneous sessions between parties
 - Not used in practice

SSL Record Protocol

- Confidentiality
 - Handshake Protocol defines shared secret key
 - Digunakan untuk symmetric encryption
- Message Integrity
 - Handshake Protocol defines shared secret key
 - Digunakan untuk membentuk message authentication code (MAC)
- Each upper-layer message fragmented
 - -2^{14} bytes (16384 bytes) or less
- Compression optionally applied
- Compute message authentication code
- Compressed message plus MAC encrypted using symmetric encryption
- Prepend header

SSL Record Protocol Operation

Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL Record Header

Record Protocol Header

- Content Type (8 bits)
 - change_cipher_spec, alert, handshake, and application_data
 - No distinction between applications (e.g., HTTP)
 - Content of application data opaque to SSL
- Major Version (8 bits) SSL v3 is 3
- Minor Version (8 bits) SSLv3 value is 0
- Compressed Length (16 bits)
 - Maximum $2^{14} + 2048$
- Record Protocol then transmits unit in TCP segment
- Menerima data decrypted, verified, decompressed, dan reassembled dan kemudian dikirim

Change Cipher Spec Protocol

- Menggunakan Record Protocol
- Satu pesan
 - —Satu byte bernilai 1
- Cause pending state to be copied into current state
 - Updates cipher suite to be used on this connection

Alert Protocol

- Convey SSL-related alerts to peer entity
- Alert messages compressed and encrypted
- Dua byte
 - —Byte pertama warning(1) atau fatal(2)
 - Jika fatal, SSL dengan seketika mengakhiri koneksi
 - Other connections on session may continue
 - No new connections on session
 - —Byte kedua mengindikasi specific alert
 - —E.g. fatal alert is an incorrect MAC
 - —E.g. nonfatal alert is close_notify message

Handshake Protocol

- autentifikasi
- Negotiate encryption and MAC algorithm and cryptographic keys
- Digunakan sebelum semua aplikasi data dikirim

Handshake Protocol – Phase 1 Initiate Connection

- versi
 - Versi tertinggi SSL dimengerti oleh client
- acak
 - Client-menghasilkan structure yang acak
 - 32-bit timestamp and 28 bytes from secure random number generator
 - digunakan selama mengganti key untuk mencegah replay attacks
- Session ID
 - Panjang variable
 - Nonzero indicates client wishes to update existing connection or create new connection on session
 - Zero indicates client wishes to establish new connection on new session
- CipherSuite
 - List of cryptographic algorithms supported by client
 - Each element defines key exchange algorithm and CipherSpec
- Compression Method
 - Compression methods client supports

Handshake Protocol – Phase 2, 3

- Client menunggu selama server mengirimkan pesan helo
 - Prameter sama sebagai client helo
- fase 2 tergantung skema enkripsi yang pokok
- Pesan terakhir dalam fase 2 server_done
 - Diperlukan
- 3 fase
 - Siap menerima dari server_done, client memeriksa sertifikat jika diperlukan dan mengecek parameter server_helo
 - Client mengirimkan pesan ke server, tergantung kunci skema pokok umum

Handshake Protocol – Phase 4

- Pengaturan komplit
- Client mengirimkan pertukaran spesifikasi
- Menunggu salinan CipherSpec dalam pengukur CipherSpec
 - Bagian Handshake Protocol tidak dipertimbangkan
 - Mengirim dengan menggunakan pertukaran protokol Cipher Spec
- Client mengirimkan pesan yang terakhir dibawah algoritma baru, kunci dan rahasia
- Pesan yang terakhir memeriksa pertukaran kunci dan keautentikkan
- Server mengirimkan pertukaran CipherSpec-nya
- Menunggu Transfer pengukur CipherSpec
- Mengirimkan pesan terakhirnya
- Handshake komplit

Handshake Protocol Action

IPv4 and IPv6 security

- IPSec
- Mengamankan kantor cabang mengkoneksi di internet
- Mengamankan jalan masuk di internet
- Konektifitas Extranet and intranet
- Mempertinggi perdagangan keamanan elektronik

Keleluasaan IPSec

- autentikasi header
- Peralatan keamanan Dienkapsul
- Pertukaran kunci
- RFC 2401,2402,2406,2408

Assosiasi keamanan

- Satu jalan menghubungkan antara pengirim dan penerima
- selama 2 jalan ,2 assosiasi dibutuhkan
- Parameter identifikasi 3 SA
 - —Index parameter keamanan
 - —Alamat tujuan IP
 - Pengidentifikasi keamanan protokol

Parameter SA

- Urutan penghitug nomor
- Urutan penghitung luapan
- Anti-jawaban windows
- Informasi AH
- Informasi ESP
- Seumur hidup
- IPSec protocol mode
 Tembusan, pengangkutan atau wildcard
- Jalur kecil MTU

Autentik Header

Encapsulating Security Payload

- ESP
- Pelayanan dapat dipercaya

Paket ESP

Required Reading

- Stallings bab 21
- Web sites di public/private key encryption
- RFCs mentioned
 - —www.rfc-editor.org