1.1	4 Use the Euclidean algorithm to find the following greatest common divisors.	
	a (6643, 2873)	
	Ans	
	c (26460, 12600)	
	Ans	
	e (12091, 8439)	
	Ans	
	6 For each part of Exercise 4, find integers m and n such that (a,b) is expressed	d in the
	form $ma + nb$.	
	7 Let a,b,c be integers. Give a proof for these facts about divisors:	
	a If $b a$, then $b ac$.	
	Ans	
	b If $b a$ and $c b$, then $c a$.	
	Ans	Ш
	c If $b a$ and $c b$, then $c (ma+nb)$ for any integers m,n .	
	Ans	
	11 Show that if $a>0$, then $(ab,ac)=a(b,c)$	
	Ans	
	14 For what positive integers n is it true that $(n, n+2) == 2$? Prove your claim.	
	Ans	

 $b = nq_2 + r_2$ with $0 \le r_2 < n$. Prove that n|(a-b) if and only if $r_1 = r_2$.

17 Let a,b,n be integers with n>1. Suppose that $a=nq_1+r_1$ with $0\leq r_1< n$ and

Ans		
	Let a,b,q,n be integers such that $b \neq 0$ and $a = bq + r$. Prove that $(a,b) == (b,r)$ be showing that (b,r) satisfies the definition of the greatest common divisor of a and b .	У
Ans		
1.2 7	Let m and n be positive integers such that $m+n=57$ and $[m,n]=680$. Find m and n	
Ans	5	
10) Show that $a\mathbf{Z}\cap b\mathbf{Z}=[a,b]\mathbf{Z}.$	
Ans		
16	A positive integer a is called a square if $a=n^2$ for some $n\in\mathbb{Z}$. Show that the integer $a>1$ is an integer if and only if every exponent in its prime factorization is even.	er
Ans		
20	A positive integer is called square- free if it is a product of distinct primes. Prove the every positive integer can be written uniquely as a product of a square and a square free integer.	
Ans		