Групповой проект. 3 этап

Электрический пробой. Программа

Астафьева Анна Андреевна Коломиец Мария Владимировна Жиронкин Павел Владимирович Паландузян Артем Карапетович Сурнаков Александр Васильевич Евдокимова Юлия Константиновна Группа: НПИбд-01-18

Содержание

1	Целі	и и зада	ачи	1																								5
2	Реал	іизация	я ал	тор	итма	авп	в программе																6					
	2.1	Вычис	СЛ	ение	по'	генц	иал	ıa .																				6
	2.2	Прогр	pan	има																								9
	2.3	Резулі																										11
	2.4	Изме	не	ние	гео	метр	оии	стр	иис	иер	ЭН	ой	C'	гр	ук	ту	рь	I B	38	ві	1C	им	10	СТ	И	O	Г	
		показ	зат	еля ј	poc	га η																						11
		2.4.1																										12
		2.4.2	2	$\cdot \eta =$	= 2	(рис	. 2.1	1):																				13
		2.4.3																										14
		2.4.4	4	.η=	= 4	(рис	. 2.1	3):			•	•		•			•				•	•	•		•	•	•	14
3	Выв	од																										16
4	Список литературы													17														

Список таблиц

Список иллюстраций

2.1	Функция вычисления потенциала	7
2.2		7
2.3	Присоединение нового узла	8
		9
		(
2.6	Программа	0
2.7	Рост стримерной структуры при электрическом пробое	. 1
2.8	Рост стримерной структуры при $\eta=1$. 2
2.9	Рост стримерной структуры при $\eta=1$. 2
2.10	Рост стримерной структуры при $\eta=1$. 3
2.11	Рост стримерной структуры при $\eta=2$. 3
	Рост стримерной структуры при $\eta=3$.4
	·	4

1 Цели и задачи

Цель работы: реализация программы по алгоритму, сотавленному на прошлом этапе для моделирования роста стримерной структуры при электрическом пробое.

Задачи:

- 1. Реализовать в геометрии «острие плоскость» однозвенную модель со степенной зависимостью вероятности роста от напряженности поля $p \sim E^{\eta}$.
- 2. Рассмотреть изменение геометрии стримерной структуры для случаев η = 0, 1, 2.

2 Реализация алгоритма в программе

Реализовывать алгоритм мы решили на языке Python, с использованием графического модуля graphicps для наглядного изображения пробоя.

2.1 Вычисление потенциала

1. Задаем квадратную сетку 50х50 в качесте области моделирования:

```
# Размер матрицы и размер каждого узла на UI
n, m, nmSize = 50, 50, 8
```

2. Задаем произвольные значения потенциала для внутренних узлов области:

```
# Генерация матрицы потенциалов

#matF = [[rd.randint(1, 50) / 100 for j in range(m)] for i in range(n)]

matF = [[0 for j in range(m)] for i in range(n)]
```

3. Узлам, примыкающим к границе, задаем значение потенциала, равное значению потенциала границы (0 для верхней границы, 1 для нижней для простоты вычислений):

```
# По краям потенциал укажем как 0, а снизу 1 for i in range(0, len(matF)):

matF[i][0],matF[0][i],matF[-1][i],matF[i][-1] = 0,0,0,1
```

4. Вычисляем новые значения потенциала во всех узлах. Для вычисления потенциала мы используем формулу:

$$\phi_{i,j} = \frac{1}{4}(\phi_{i-1,j} + \phi_{i+1,j} + \phi_{i,j-1} + \phi_{i,j+1})$$

И итерационно просчитываем потенциал для каждого узла сетки (рис. 2.1):

Рис. 2.1: Функция вычисления потенциала

5. Повторяем пункт 4. пока потенциалы не перестанут изменяться.

В результате получаем потенциал (рис. 2.2):

Рис. 2.2: Потенциал поля

Посчитав потенциал поля перейдем к моделированию разряда по модели НПВ.

1. Пробиваем первый узел:

sX, sY = int(n/2), 10 # Начальная точка стримера

2. Пробегаем по всем узлам, в которые возможем рост и считаем сумму вероятностей роста по формуле:

$$Z = \sum_{k=1}^{M} E_k^{\eta}$$

Здесь $|E| = \phi_B$ (для горизонтальных и вертикальных звеньев), $|E| = \phi_B/\sqrt{2}$ (для диагональных). # Находим сумму всех вероятностей for i in range(0, len(matProb)): for j in range(0, len(matProb[i])): sum+=matProb[i][j]

- 3. Разыгрываем случайное число ξ , равномерно распределенное от 0 до Z:
- # Берем эту сумму за 100% и генерируем случайное число от 0 до этой суммы randval = rd.randint(0,100) / 100 * sum
 - 4. Затем повторно шаг за шагом рассчитывается сумма до тех пор, пока текущая сумма не станет больше ξ . Тот узел, для которого сумма стала больше ξ , присоединяется к структуре (рис. 2.3):

Рис. 2.3: Присоединение нового узла

5. Пересчитываем поле (п. 4-5):

Перерассчитываем потенциал после добавления нового узла к стримеру matF = copy.deepcopy(getNewMat(matF, streamer, 0.005))

6. Повторяем пункты 2-5, пока узор не достигнет границы.

2.2 Программа

В итоге мы получили программу (рис. 2.4, 2.5, 2.6):

Рис. 2.4: Программа

```
# Companies can a cut imbosomon and republically deep 400, 400)

# Companies particular content and the product of the companies of the compan
```

Рис. 2.5: Программа

```
matrodistreamer[ii]0 - lijstreamer[ii]01 - deaffstreamer[ii]03 - lijstreamer[ii]03 - lijstreamer[ii]04 - lijstreamer[ii]04 - lijstreamer[ii]05 - l
```

Рис. 2.6: Программа

2.3 Результат работы программы

При вероятности с показателем роста $\eta=1$:

 $p \sim E$

Получаем стримерную структуру (рис. 2.7):

Рис. 2.7: Рост стримерной структуры при электрическом пробое

2.4 Изменение геометрии стримерной структуры в зависимости от показателя роста η

Рассмотрим изменения стримерной структуры при увеличении показателя роста $\eta.$

2.4.1 1. $\eta=1$ (рис. 2.8, 2.9, 2.9):

Рис. 2.8: Рост стримерной структуры при $\eta=1$

Рис. 2.9: Рост стримерной структуры при $\eta=1$

Рис. 2.10: Рост стримерной структуры при $\eta=1$

2.4.2 2. $\eta=2$ (рис. **2.11**):

Рис. 2.11: Рост стримерной структуры при $\eta=2$

2.4.3 3. $\eta=3$ (рис. 2.12):

Рис. 2.12: Рост стримерной структуры при $\eta=3$

2.4.4 4. $\eta=4$ (рис. 2.13):

Рис. 2.13: Рост стримерной структуры при $\eta=4$

При увеличении η уменьшается ветвистость стримерной структуры.

3 Вывод

Написана программа реализующая в геометрии «острие – плоскость» однозвенную модель со степенной зависимостью вероятности роста от напряженности поля $p \sim E^{\eta}$.

Рассмотренно изменение геометрии стримерной структуры для случаев η = 1, 2, 3, 4: при увеличении η уменьшается ветвистость стримерной структуры.

4 Список литературы

- 1. Д. А. Медведев, А. Л. Куперштох, Э. Р. Прууэл, Н. П. Сатонкина, Д. И. Карпов МОДЕЛИ-РОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЯВЛЕНИЙ НА ПК
- 2. Niemeyer L., Pietronero L., Wiesmann H. J. Fractal dimension of dielectric breakdown // Physical Review Letters. 1984. V. 52, N 12. P. 1033–1036
- 3. Biller P. Fractal streamer models with physical time // Proc. 11th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, IEEE N 93CH3204-5. Baden-D"attwil, Switzerland, 1993. P. 199–203.