Assignment2

Task 1:

In the case of supervised machine learning, the method LinearRegression().fit() is used to train a linear regression model on a given dataset.

Linear regression is a machine learning algorithm that can be used to predict values over a continuous range using a constant slope

There are 2 types of Regression:

1. Simple Regression:

$$y = w_1 x + b$$

where,

- y = Predicted value/Target Value
- x = Input
- $w_1 = \text{Gradient/slope/Weight}$
- b = Bias

(only one feature)

2. Multivariable Regression:

$$y = b + \sum_{i=1}^{n} w_i x_i$$

fit() takes in the data of independent variables and their corresponding dependent variable and *gives the best fit coefficients* for the model equation. It also gives slope.

Once a model is trained it can be used to predict the target values(**y**) for a given test set.

It uses MSE to find the cost/error in the model

$$1/n\sum (y'-y_i)^2$$

MSE where y' is predicted value yi is actual value

fit() tries to minimize the MSE to improve accuracy of the model by using **Ordinary Least Squares(OLS)** method. But **Gradient Descent** can also be used in fit().

Task 2: Gradient Descent

When there is only one independent variable and one dependent variable we have:

$$y = mx + b$$

The MSE(cost function) will be

$$MSE = rac{1}{N}\sum_{i=1}^n (y_i - (mx_i + b))^2$$

Where yi are the actual values from the data set, (mxi+b) are the predicted values.

Thus we have to make the model best-fit "**learn**" m,b values. So we use Partial Derivatives,

$$f(m,b) = rac{1}{N} \sum_{i=1}^n (y_i - (mx_i + b))^2$$

Now by applying chain rule to find df/dm and df/db we get

$$f'(m,b) = \begin{bmatrix} \frac{df}{dm} \\ \frac{df}{db} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum -x_i \cdot 2(y_i - (mx_i + b)) \\ \frac{1}{N} \sum -1 \cdot 2(y_i - (mx_i + b)) \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{N} \sum -2x_i(y_i - (mx_i + b)) \\ \frac{1}{N} \sum -2(y_i - (mx_i + b)) \end{bmatrix}$$

Now we iterate through the data points and calculate the average partial derivatives and

the slope of the function we get at **our current position is gradient ascent** thus we take the *negative of gradient and move in the opposite direction to reduce the cost/error.*

We also use the **learning rate** – the size of steps taken every time we calculate gradient.

We do this until we reach the minimum threshold or we fail to reduce cost in subsequent iterations.

Task 3:(2.3.2)

	Bias	Variance
1	0.269831	0.005708
2	0.086700	0.001127
3	0.033488	0.000463
4	0.023947	0.000523
5	0.023811	0.000578
6	0.023972	0.000672
7	0.024629	0.001041
8	0.024492	0.001374
9	0.026168	0.002083
10	0.026308	0.003341
11	0.027670	0.004764
12	0.030992	0.026002
13	0.030812	0.021660
14	0.037333	0.039962
15	0.055917	0.249697

For degrees 1,2 the bias and variance both are high thus the model didn't fit well thus it is 'underfit'.

But after that as the degree of polynomial increases

the **Bias value decreases**, causing the model to *over learn* which implies **overfitting**

thus the Variance value increases(model can't perform well on test data)

Task 4:(2.4)

	irreducibleErr
1	2.949030e-17
2	-4.987330e-18
3	1.192622e-18
4	2.927346e-18
5	-4.987330e-18
6	2.168404e-19
7	8.673617e-19
8	-1.084202e-18
9	4.336809e-19
10	4.336809e-18
11	8.673617e-18
12	3.469447e-18
13	-3.469447e-18
14	0.000000e+00
15	-1.110223e-16

The irreducible error is the '**Noise'** that can't be eliminated by improving the model.

The values of the irreducible error are extremely small of the order of 1e-18.

The Noise may be due to faults while collecting the data.

As *irreducibleError* is due to noise, there is barely any change in its values.

The values of irreducible error don't explicitly depend on the model itself.

Task 5:(2.5)

From the graph we observe that as the degree/complexity of the model increases the **bias decreases and the variance increases**.

We also observe in the above graph that variance decreases till degree 3(as the model was completely *underfit* before) then it starts increasing as the complexity increases.

We observe a point where bias and variance both are minimum possible at (degree=4, with minimum total error).

Thus (degree=4) is the best fit model according to the given data with minimum total error(MSE).

mse 1 0.119942 0.013246 2 0.005177 0.004762 0.004783 0.004856 0.005244 0.005588 0.006330 10 0.007754 11 0.009163 12 0.031183 13 0.026501 14 0.047096 0.265264 15