

Participantes:

Keury Ramirez **2023-1101**

Hugo Donator 2023-1082

Jahaziel Lorenzo 2023-1298

Reyning Perdomo 2023-1110

Carrera: Desarrollo de software

Materia: Programación Paralela

Docente: Erick Leonardo Perez Veloz

Tema: Elección de Tema Final (1-2)

Fecha:

6/4/2025

Propuesta 1: Sistema de Gestión de Tráfico Urbano en Tiempo Real 🗸

Este proyecto consiste en crear un sistema que ayude a gestionar el tráfico en una ciudad de forma inteligente. Se utilizarán sensores, cámaras y otros dispositivos para recoger datos sobre el flujo de vehículos en diferentes puntos de la ciudad. La idea es procesar esta información en paralelo para tomar decisiones rápidas y mejorar la circulación. El sistema permitirá ajustar semáforos, informar a los conductores y detectar zonas de congestión en tiempo real.

1) Ejecución simultánea de múltiples tareas

Se procesarán los datos de cada sensor y cámara de forma paralela, lo que permite analizar varias zonas de la ciudad al mismo tiempo.

2) Compartición de datos entre tareas

La información recopilada se compartirá entre distintos módulos, por ejemplo, entre los módulos que controlan los semáforos y los que generan reportes en tiempo real.

3) Estrategias de paralelización

Se podrán probar diferentes formas de paralelizar el proceso, como el uso de hilos (threads) o procesos separados, e incluso el procesamiento distribuido en varios servidores.

4) Capacidad de escalar con más recursos

Si la ciudad crece o se agregan más sensores, el sistema se puede ampliar fácilmente añadiendo más nodos o servidores.

5) Métricas de evaluación del rendimiento

Se evaluarán:

- El tiempo de respuesta.
- La eficiencia en la reducción de congestión.
- La cantidad de datos procesados por segundo.
- El uso de recursos.

6) Aplicación en escenarios del mundo real

Este sistema es muy útil para ciudades modernas, donde mejorar la movilidad urbana es clave para reducir la contaminación y los atascos de tráfico.

Propuesta 2: Simulador de Mercado Bursátil Paralelo <a>

Este proyecto consiste en simular el comportamiento de un mercado bursátil en el que varios agentes realizan operaciones de compra y venta de acciones de manera paralela.

1) Ejecución simultánea de múltiples tareas

El simulador utiliza tareas paralelas (por ejemplo, Task.Run(), Parallel.For) para permitir que los agentes ejecuten operaciones de compra/venta de acciones simultáneamente. Cada agente es representado por una tarea que se ejecuta de manera independiente, simulando un mercado donde las transacciones ocurren al mismo tiempo.

2) Necesidad de compartir datos entre tareas

Las tareas (agentes) necesitan acceder a los precios compartidos de las acciones en el objeto Mercado. Para mantener la consistencia de estos precios, se debe implementar una sincronización de datos, como el uso de lock o estructuras de datos concurrentes, asegurando que los agentes no modifiquen los precios simultáneamente de manera inconsistente.

3) Permitir la exploración de diferentes estrategias de paralelización

El proyecto permite comparar diferentes estrategias de paralelización, como la ejecución mediante Parallel.For, el uso de Task.Run para cada agente, o incluso paralelización mediante técnicas de divide y vencerás (como particionar la lista de acciones).

4) Tener la capacidad de escalar con más recursos

El simulador es escalable. Si se aumenta el número de agentes o núcleos de CPU disponibles, el sistema puede ejecutar más tareas en paralelo sin perder rendimiento. Además, el sistema puede escalar horizontalmente, distribuyendo la carga a través de múltiples servidores o contenedores si se implementa en la nube.

5) Incluir métricas de evaluación del rendimiento

Se pueden incluir métricas de rendimiento como:

- Tiempo total de simulación.
- Operaciones realizadas por segundo.
- Rendimiento por agente.
- Eficiencia de la paralelización comparando la simulación secuencial vs paralela. Estas métricas ayudan a evaluar el impacto del paralelismo en la eficiencia y a ajustar las estrategias de paralelización para maximizar el rendimiento.

6) Aplicación a escenarios del mundo real

El simulador es una representación simplificada del mercado bursátil, donde los agentes compran y venden acciones, lo que se asemeja a escenarios reales de trading. El proyecto puede aplicarse a simuladores financieros, modelado de precios de mercado y evaluación de estrategias de inversión en un contexto profesional o educativo.

