Hebbian learning and Hopfield networks

Pietro Berkes, Brandeis University

"Classical" models of learning

- Characterized by deterministic update and learning rules
- The models have a number of parameters that are adjusted such that the model performs a certain function
- Examples: neural networks, support vector machines, PCA, ...
- Issues: cannot cope with uncertainty

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

- Most of learning in the brain is unsupervised
- Brilliant idea by Hebb (1949): cells that fire together, wire together

Hopfield network

- Hebb's ideas where formalized much later: Hopfield network (1982)
- Most direct implementation of Hebb's ideas:

$$\Delta w_{ij} = x_i x_j$$

Note: local learning rule, no teacher

Architecture

- x_i = +1 or -1(binary neural activity)
- wii = 0 (no self-connections)
- w_{ij} = w_{ij} (symmetric, bidirectional connections)

Learning rule

- Set neurons xi to desired pattern
- Update weights as $\Delta w_{ij} = x_i x_j$
- i.e., if we have N patterns $x_i^{(n)}$ the final weights will be

$$w_{ij} = \sum_{n=1}^{N} x_i^{(n)} x_j^{(n)}$$

Activity rule

• For each neuron *i*:

1) compute activation
$$a_i = \sum_j w_{ij} x_j$$

2) update state of neuron as $x_i = \begin{cases} +1 & a \ge 0 \\ -1 & a < 0 \end{cases}$

Updates can be synchronous or asynchronous

Applications: denoising

Applications: pattern completion

Applications: pattern recognition

Issues

 Capacity of the network: how many memories can be stored?

Not many: $\alpha = M/N = 0.144$ There is a whole literature about memory capacity and information storage in the hippocampus

 Robustness: how much can we modify a stored pattern such that we recover is perfectly/with a small error?

Hands-on part

Download exercises from

http://people.brandeis.edu/~berkes/data/cognitive_models/exercises2