

# Pricing Optimization in Real Estate: Profit maximization under financial and time constraints

## **Underlying problem**



Current pricing methods:

Rely only on expert knowledge, without rigorous quantitative assessments of market statistics

### Resulting in:

 Substantial mispricing of real estate assets

## **Key Deliverables**



- Dynamic Pricing Optimization algorithm that maximizes returns on assets
- Application to a Real-World real estate project

## **Project Scope**



- Location: Manhattan
- Real estate asset types:
  Condominiums and
  Cooperatives

# A Three-Step Project - Focus on Pricing Optimization



# Scraped data analysis suggests a focus on Upper East Side and Upper West Side Manhattan

#### Our data needs

- High importance of data quality
- Past sales data:
  - Sale prices
  - Sale dates
  - Asset characteristics
- Last year of data is required

# Requires scraping online platforms

- Most efficient way of collecting recent data quickly
- Scraping twice during the year to update data
- Scraped information about around 6k sales on main marketplace platforms

#### Data-driven focus on UES and UWS

| Neighborhood       | Proportion of<br>Manhattan <sup>1</sup> sales | Prices standard deviation |
|--------------------|-----------------------------------------------|---------------------------|
| Upper East Side    | 23%                                           | 484                       |
| Upper West Side    | 23%                                           | 545                       |
| Midtown            | 14%                                           | 742                       |
| Downtown           | 34%                                           | 585                       |
| Financial District | 6%                                            | 560                       |

#### UES and UWS form a large enough homogeneous market

Excluding Harlem, not in the focus of the project

## Full Workflow: 4 Models to Optimize Real Estate Prices

### **Key Assumptions**

- Assets have an 'intrinsic value' (AVM)
- Sales ~= Demand (Simulation Model)
- Selected market is homogeneous (DP Model)









# Determining market value of Real Estate assets using scraped data

#### **Model Development**

#### Feature engineering & selection

- From all available variables in the dataset:
  - Engineer potentially relevant variables
  - Select most important and statistically significant variables
  - Drop highly correlated variables

#### Model comparison & selection

- Build multiple models (Linear Regressions, Random Forests, Gradient Boosted Trees, various sets of features)
- Compare validation scores of each model
- Retain the best model and fine-tune it

### **Model Results & Possible Improvements**

#### Most important features include

- Square footage
- Building age
- Floor

#### Observations

- Currently using: Gradient Boosting algorithm
- NRMSE = 0.09

#### Possible improvements

 Include the market state (seasonality, mortgage rates) in the model

# Time on Market model leverages price prediction to determine absorption time





## Creating a Simulation Environment for Optimization

### **Simulating Demand in Real Estate**

Demand in Real Estate Markets is complicated:

1) Decentralized, 2) Heterogenous, 3) Dynamic

Used aggregate historical sales as a proxy for demand; generated Poisson, 2-mean fixed distributions (#sales/week or month)

Generated different demand scenarios to account for dynamic market states



### **Dynamic Pricing Optimization: Choice of Algorithm**

Criteria: Robustness under real-estate context / constraints

Took algo from Prof Maglaras' (CBS) paper: "Dynamic Pricing with Financial Milestones: Feedback-form Policies"

 Accounts for dynamism and decentralization of markets; does not require demand price response curve



# Pricing algorithm and application to a real-world project

## Algorithm compares current and expected revenues and sales rates



- Prices are decreased when revenues and sales overshoot targets
- Prices are increased otherwise, proportionally to the delta
- O. Besbes and C. Maglaras, "Dynamic Pricing with Financial Milestones: Feedback-Form Policies," *Management Science*, vol. 58, pp. 1715-1731, 2012.



# Results and Application to a Real-World Project





significantly better results across all demand scenarios.