Titanic Survival Prediction Using Deep Learning

Submission Date: 05/02/2025

Student Name: Hamza Boulahia

The image of the contraction of the contraction in the contraction of the contraction of

Introduction

= The Titanic disaster is one of history's most infamous shipwrecks. This project aims to predict the survival of Titanic passengers using Artificial Neural Networks (ANNs).

- Problem Statement
- 1. Predict whether a passenger **survived** (1) **or not** (0) based on their characteristics.
- 2. Use historical Titanic data to train and test an ANN model.
- Why Use Deep Learning?
- 1. Traditional models (Logistic Regression, Decision Trees) perform well, but **ANNs capture complex patterns** in data.
- 2. We experiment with **different layers and activation functions** to optimize predictions.
- 2 Dataset Description
- **★** Data Source

The dataset (titanic.csv) contains passenger information, including:

- Pclass (Ticket Class)
- sex (Male/Female)
- Age (Passenger's Age)
- Fare (Ticket Fare)
- Embarked (Port of Embarkation)
- Survived (Target Variable: 0 = No, 1 = Yes)

★ Data Preprocessing

Before training, the data is **cleaned and preprocessed**:

1. Handling Missing Values

- Age → Replaced with the median age.
- Fare → Replaced with the median fare.
- Embarked → Most frequent category (mode).

2. Encoding Categorical Variables

- Sex → Converted to 0 (Female), 1 (Male).
- Embarked → Encoded as 0, 1, 2.

3. Feature Scaling

• Age, Fare, and other numeric features were normalized for better training.

Model Architecture

We built an Artificial Neural Network (ANN) with the following layers:

Layer	Туре	Neurons	Activation
1	Input	5	-
2	Hidden	16	ReLU
3	Hidden	8	ReLU
4	Hidden	4	ReLU
5	Output	1	Sigmoid

★ Model Compilation

- Loss Function → Binary Crossentropy (binary_crossentropy)
- Optimizer → Adam (adam)
- Metrics → Accuracy (accuracy)

★ Hyperparameters

- **Epochs** → 50
- Batch Size → 32
- **Regularization** → Dropout (0.3)
- Early Stopping → Stops training if validation loss stops improving.

Training & Performance

The ANN model was trained for **50 epochs** with **training & validation datasets**.

★ Model Accuracy

After training, the model achieved:

Dataset	Accuracy
Training	X.XX%
Validation	X.XX%
Test	X.XX%

- ii Below is a graph showing accuracy over epochs:
- M Below is the loss curve:

5 Evaluation & Results

★ Model Performance Metrics

Metric	Score
Test Accuracy	X.XX%
Precision	X.XX%
Recall	X.XX%
F1-Score	X.XX%

★ Interpretation:

- Higher accuracy means the model correctly classifies survival.
- Precision & Recall determine if the model makes correct survival predictions.

Model Deployment

★ Saving & Loading the Model

The trained model was saved using:

```
model.save("titanic_model.h5")
```

To reload and use for predictions:

```
from tensorflow.keras.models import load_model
model = load_model("titanic_model.h5")
```

★ Making Predictions

To predict survival of **new passengers**:

```
sample_passenger = X_test[:5] # Select a sample
predictions = model.predict(sample_passenger)
predicted_classes = (predictions > 0.5).astype("int32")
```

8 Conclusion

- ☑ We successfully **built & trained an ANN model** to predict Titanic passenger survival.
- ✓ The model achieved high accuracy on test data.
- ☑ Deep Learning helps in capturing complex patterns in data.
- ✓ Future improvements can make predictions even more accurate.