Click-Through Prediction

Background

First: Interested in looking at why someone clicks on an ad These are features of the person clicking

Second: Interested in why is an ad clicked on? These are features of ad clicked on

What's the data?

utype- object / ad_data.head() [4]: **Daily Time Spent Daily Internet** Clicked Area [4]: City **Ad Topic Line** Male Country **Timestamp** on Site Income Usage on Ad Cloned 5thgeneration 2016-03-27 Wrightburgh Tunisia 0 68.95 61833.90 256.09 0 orchestration 00:53:11 Monitored national 2016-04-04 0 1 80.23 31 68441.85 West Jodi Nauru 193.77 standardization 01:39:02 Organic bottom-line San 2016-03-13 0 2 26 59785.94 236.50 Davidton 0 69.47 service-desk 20:35:42 Marino Triple-buffered reciprocal West 2016-01-10 3 29 245.89 74.15 54806.18 Italy time-frame Terrifurt 02:31:19 South 2016-06-03 4 68.37 35 73889.99 225.58 Robust logistical utilization 0 Iceland 0 03:36:18 Manuel

EDA

<AxesSubplot:xlabel='Age'>

: Axesouptor:xtaper- cricken on an ' Araber- barry time obenr

Doesn't look like a log regression would be as accurately predictive

Data seems to be fairly Gaussian, transformation isn't necessary

Determining if there are NAs

Looking at the training set features correlations

Feature Engineering

```
countries = x train['Country'].to list()
    country list = []
    for name in countries:
        try:
             country = pc.countries.search fuzzy(name)
             country_code = country[0].alpha_2
             country list.append(country code)
        except LookupError:
             country list.append('None')
                                               Age = x_train['Age']
                                               x_train['Age Bins'] = pd.cut(Age, bins = [18, 30, 36, 43, 62], labels = ['youngest', 'younger-mid', 'older-mid', 'oldest'])
    # column = ad data['Country']
    # get continent(column)
1]: #print(country_list)
                                                 Income = x train['Area Income']
    type(country_list)
                                                 x_train['Income Bins'] = pd.cut(Income, bins = [13, 47, 57, 65, 80], labels = ['low', 'low-mid', 'high-mid', 'high'])
    Code array= np.array(country list)
    x_train['Country Code'] = Code_array
21: continent list = []
    for code in country list:
        try:
             cont_code = pcc.country_alpha2_to_continent_code(code)
             continent_list.append(cont_code)
        except LookupError:
             continent_list.append('None')
3]: Continent_array = np.array(continent_list)
    x train['Continent Code'] = Continent array
```

Initial drops

	Sex	Time of Day	Month	Income Bins	Age Bins	Time_Online_Bins	Time_On_Site_Bins
212	Male	night	5	low-mid	youngest	most-time	more-time
692	Male	night	4	low	oldest	middle-time	middle-time

Maybe correlation from Time Online and Time on Site....

12	Daily Time Spent on Site	Daily Internet Usage	Sex	Time of Day	Month	Income Bins	Age Bins
212	76.87	235.35	Male	night	5	low-mid	youngest
692	66.26	179.04	Male	night	4	low	oldest

Decision Tree

```
print("DTCLF Accuracy is:", dtclf.score(test_features_oc_ohe, test_labels))
#this is just to see if the score is the same between different methods
```

DTCLF Accuracy is: 0.92727272727272

```
print("Depth of tree:", dtclf.get_depth())
print("Number of leaves:", dtclf.get_n_leaves())
print("Number of nodes:", dtclf.tree_.node_count)
#I can do better than this
```

Depth of tree: 10 Number of leaves: 38 Number of nodes: 75

Pruning!

Chose to use minimal cost complexity to prune

Uses the "weakest link" method. This method takes the alpha values and determines effectiveness, then removes the node with the least effective alpha first. As alpha goes up, more of the tree is pruned so you get less nodes and more impurity.

Got rid of the last alpha since that's the tree with only one node

Select alpha by comparing train and test accuracy scores

Want to find the alpha where the training set model accuracy is lowest and still maintains a high testing set model accuracy

Feature Importance

	Feature	Importance	
1	Daily Internet Usage	0.787311	4
0	Daily Time Spent on Site	0.212689	
9	Income Bins_low	0.000000	
15	Age Bins_older-mid	0.000000	
14	Age Bins_younger-mid	0.000000	
13	Age Bins_youngest	0.000000	
12	Income Bins_high	0.000000	
11	Income Bins_high-mid	0.000000	
10	Income Bins_low-mid	0.000000	
8	Time of Day_night	0.000000	
7	Time of Day_evening	0.000000	
6	Time of Day_afternoon	0.000000	
5	Time of Day_morning	0.000000	
4	Sex_Male	0.000000	
3	Sex_Female	0.000000	
2	Month	0.000000	
16	Age Bins_oldest	0.000000	

Before getting rid of Time Online and Time on Site binned features, lots of other features had small importances

Next steps

Use NLP, vectorization and KMeans to cluster Ad topic lines

Add in continent features

Maps to show where data comes from

Cross-Validation and other models to test for over-fitting of this one...the accuracy is pretty high, I want to make sure it's not inflated

Apply to bigger set!