

SENSOR DE TEMPERATURA

COMPONENTES

- Arduino nano;
- Dois capacitores;
- Um regulador de tensão LM7805;
- Módulo CAN MCP2515;
- Sensor de temperatura mlx90614

PINAGEM

- 1. Módulo CAN → Arduino Nano
 - Int \rightarrow D2
 - SCK →D13
 - $SI \rightarrow D11$
 - $SO \rightarrow D12$
 - $CS \rightarrow D10$
 - $GND \rightarrow GND$
 - VCC → 5V
- 2. Sensor temp. → Arduino nano
 - VIN →5V
 - $GND \rightarrow GND$
 - $SCL \rightarrow A5$
 - SDA \rightarrow A4

SENSOR DE COMBUSTÍVEL

COMPONENTES

- Arduino nano;
- Dois capacitores;
- Um regulador de tensão LM7805;
- Módulo CAN MCP2515;
- Divisor de tensão (dois resistores);
- Sensor de combustível.

PINAGEM

- 1. Módulo CAN → Arduino Nano
 - Int \rightarrow D2
 - SCK →D13
 - $SI \rightarrow D11$
 - $SO \rightarrow D12$
 - $CS \rightarrow D10$
 - $GND \rightarrow GND$
 - $VCC \rightarrow 5V$
- 2. Sensor combustível → Arduino nano
 - Sinal \rightarrow R2 \rightarrow D9 \rightarrow R1

$$R1 \to GND \\$$

• $GND \rightarrow GND$

SENSOR DE VELOCIDADE

COMPONENTES

- Arduino nano;
- Dois capacitores;
- Um regulador de tensão LM7805;
- Módulo CAN MCP2515;
- Resistor;
- Diodo;
- Sensor de velocidade;

PINAGEM

- 1. Módulo CAN → Arduino Nano
 - Int → D2
 - SCK →D13
 - $SI \rightarrow D11$
 - $SO \rightarrow D12$
 - $CS \rightarrow D10$
 - $GND \rightarrow GND$
 - $VCC \rightarrow 5V$
- 2. Sensor de Velocidade → Arduino nano
 - $GND \rightarrow GND$
 - Sinal → diodo → resistor → A1

ESP32

COMPONENTES

- ESP32;
- Dois capacitores;
- Um regulador de tensão LM7805;
- Módulo CAN bus SN65HVD230;
- Resistor.

PINAGEM

- 1. Módulo CAN \rightarrow ESP32
 - $\bullet \quad 3V3 \to 3V3$
 - GND \rightarrow GND
 - $\bullet \quad \mathsf{CTX} \to \mathsf{RX2}$
 - $CRX \rightarrow TX2$
 - $\bullet \quad \mathsf{CANH} \to \mathsf{CANH}$
 - $CANL \rightarrow CANL$
- 2. ESP32 COMUNICAÇÃO \rightarrow UART
 - RX0 → resistor → TX1 (Arduino)
 - TX0 → RX0 (Arduino)

PAINEL

COMPONENTES

- Arduino nano;
- Dois capacitores;
- Um regulador de tensão LM7805;
- Três resistores;
- Dois displays de 7 segmentos, cátodo comum, FJS18101AH;
- Dois LEDs;
- Dois furos para comunicação UART;

PINAGEM

Os dois displays estão com todos os pinos conectados, exceto os pinos 1, 5 e 8

- 1. Displays → Arduino
 - Disp.(1) $5 \rightarrow \text{Resistor } 1 \rightarrow \text{D9}$
 - Disp.(2) 5 → Resistor 2 → D10
 - $7 \rightarrow D11 > A$
 - 6 → D12 > B
 - 4 → D6 > C
 - 3 → D5 > D
 - 2 → D4 > E
 - 9 → D7 > F
 - $10 \rightarrow D8 > G$
 - 8 → Não está conectado > DP
- 2. LEDs \rightarrow Arduino
 - LED(1) → D2
 - GND \rightarrow GND led(2) \rightarrow resistor \rightarrow GND
 - LED(2) → D3
 - GND \rightarrow GND led(1) \rightarrow resistor \rightarrow GND
- 3. Comunicação UART_ESP32 → Arduino
 - $RX0 \rightarrow TX1$
 - TX0 → resistor(esp32) → RX0