第三章集成门电路和触发器

3.5、图示电路为 TTL 门电路, 若用高内阻电压表各图 M 点的电压, 估算一下量测出 M 点 的电压为多少伏, 并说明理由。

输入悬空时为高电平, M="0", VM=0.2V

三态门输出为高阻, M 点电位由后面"与或非"门的输 入状态决定,后面与门中有一输入为 0, 所以 V_M=0V。

3.7、图示电路为 TTL 门电路,非门的输入短路电流 $I_{IL}=-1.5mA$,高电平输入电流为 $I_{IH} = 0.05 mA$, 当门 1 输入 A 为 "1" 或 "0" 时,问各流入门 1 输出端的电流为多少毫安?

A="0"时, M="1", 门1为外接拉电流负载, 流入门1的电流为:

I=-0.15mA A= "1"时,M= "0",门 1 为外接灌电流负载,流入门 1 的电流为:

- 3.8、某同学按照上图线路做实验时, 当 A="1"时, M 点的电压 VM=1.6V 左右, 试分析原因。 上图中门 1 的输出端断了, 门 2、3、4 为高电平输入, 此时 V_M=1.6V 左右。
- 3.9、图示电路为 TTL 三态门。三态门控制端 \overline{C}_1 和 \overline{C}_2 ,波形如图所示,试分析此电路能否正常工作, 为什么?

不能正常工作,因为 \overline{C}_1 和 \overline{C}_2 不能 同时有效, 即不能同时为低电平。

3.10、图示电路为一三态门工作系统,门A、B从总线接收数据;

门 C、D 向总线发送数据。若电路工作在图上所标状态下,

在图上标出电流的流向。

3.13、图为由 TTL"与非"门组成的电路,输入 A、B的波形如图所示,试画出 Vo的波形。 1、忽略"与非"门的平均传输时间。

2、考虑"与非"门的平均传输时间 tpd =20ns。

3.14、图中门 1、2、3 均为 TTL 门电路,平均延迟时间为 20ns,画出 Vo 的波形。

3.20、图示是"与非"门构成的基本触发器,输入 R、S 的波形如图所示,画出Q和 \overline{Q} 波形,并指出不定状态。

3.21、图示为由"或非"门构成的基本 RS 触发器,R、S 的输入波形如图所示,画出Q和 \overline{Q} 波形 (不考虑传输时间),指出不定状态的区域。

3.22、RS 型电位触发器及它的输入 R、S、E 的波形如图所示,初态为 0。试画出Q和 \overline{Q} 波形,并指出触发器状态不定区域。

3.23、分析图示触发器的触发方式,并列出它的功能表。

特性方程: $Q_{n+1} = D$ (E=1)

由于在 E=1 期间 Q 随 D 的变化而变化, 所以该触发器为正电位触发方式。

3.26、1.按图(a)所示的输入波形,分别画出锁定触发器,正边沿 D 触发器的输出波形。

2.按图(b) 所示 JK 触发器的输入波形, 试画出主从触发器及负边沿 JK 触发器的输出波形。

3.30、如果 CP 和 D 输入的波形如图 (b) 所示, 画出如图 (a) 所示电路的输出波形。

3.31、按照图(a)所示电路工作,在 CP 端加脉冲如图(b) 所示, 画各个触发器的输出波形。

3.32、在图(a) 所示电路中, A、CP的波形如图(b) 所示。先将触发器置为"00"状态。 画出触发器 Q1和 Q2的输出波形。

3.34、某正边沿 D 触发器的 $t_{su}=20ns, t_h=5ns, t_{pd_{CP\to O,\overline{O}}}=35ns$,分析下图 (a) (b) 所示电路能

对于 (a) 图电路,系统的建立时间应为: $t_{su_{xvs}} = t_{su_{FF}} + t_{pd} = 30ns$,而所给出的时序图中,当第二个 $CP \uparrow$ 到来时,建立时间只有 25ns,系统不能正常工作。

对于(b)图电路, 第二个CP↑到来

的时间只有 15ns< $t_{su}=20$ ns。 系统 不能正常工作。

: 电路不能正确计数。

3.35、主从 JK 触发器的数据建立时间为 20ns,时钟到输出的传输延迟时间为 25ns,加如图所示的 CP 脉冲,能否使触发器处在正确计数状态。

3.36、已知正边沿 D 触发器的最小数据建立时间 $t_{su}=20ns$ 。由时钟正跳变沿到输出 Q 和 \overline{Q} 的传输延迟分别为 $t_{P_{LH}}=14ns$ 和 $t_{P_{HL}}=20ns$,为保证 D 触发器可靠运行,选时钟脉冲低电平宽

度为 30 ns。(1)求触发器的最高运行频率 $f_{\text{max}} = ?$ (2)如果门 G 的延迟时间为 $t_{pdG} = 10 \text{ns}$,

求该系统的最高运行频率 f_{\max} =?(3)若门 G 的延迟时间为 t_{pd_G} =15ns , f_{\max} =?

(2) $: t_{su} + t_{pd_G} = 30 ns = t_{W_{CP=0}}$: 系统工作正常。

$$f_{\text{max}} = \frac{1}{t_{su} + t_{pd_G} + t_{pd_{CP} \to Q_{\text{max}}}} = \frac{1}{10 + 20 + 20} = 20MH_Z$$

(3) $: t_{su} + t_{pd_G} = 35ns > t_{W_{CP=0}} :$ 系统不能正常工作。

第四章组合逻辑电路

4.1、分析图示电路: (1) 已知 F 为高电位,问 A、B、C、D、E 这 5 点电位如何? (2) 用"与非"门改进这个图的设计。

$$F = F_{1} + F_{2} + \overline{DE}$$

$$= \overline{A}E + BDE + CD + \overline{B} \overline{D} + \overline{D} \overline{E} + \overline{D} + \overline{E}$$

$$= \overline{A} + B + C + \overline{D} + \overline{E} = A\overline{B} \overline{C}DE$$

4.5、分析图示电路,列出 K=1, K=0 时,输出的逻辑表达式,写出功能表,说明逻辑功能。

			K=1			ľ			
B2	Bı	B0	A2	A1	A0	A2 .	A 1 <i>A</i>	40	
0	0	0	0	0	0	0	0	0	
0	0	1	0	0	1	0	0	1	
0	1	0	0	1	1	0	1	1	
0	1	1	0	1	0	0	1	0	
1	0	0	1	1	0	1	1	1	
1	0	1	1	1	1	1	1	0	
1	1	0	1	0	1	1	0	0	
1	1	1	1	0	0	1	0	1	
						l			

$$\begin{split} A_0 &= (\overline{K}A_1 + KB_1) \oplus B_0 \\ &= \overline{K}(B_2 \oplus B_1) \oplus B_0 + (KB_1) \oplus B_0 \\ \mathrm{K=1} \ \forall \mathbf{f} \colon & A_0 &= B_1 \oplus B_0 \\ A_1 &= B_2 \oplus B_1 \\ A_2 &= B_2 \end{split} \qquad \begin{split} \mathrm{K=0} \ \forall \mathbf{f} \colon & A_0 &= B_2 \oplus B_1 \oplus B_0 \\ A_1 &= B_2 \oplus B_1 \\ A_2 &= B_2 \end{split}$$

从功能表中看出:

K=1 时电路实现二进制码到格雷码的转换;

K=0 时功能不详。

4.8、设计一个8421码转换成格雷码的转换电路。列出表达式,用"异或"门实现之。

4.14、用四输入 16 线输出的变量译码器及"与非"门,设计一个六输入 64 输出的变量译码器电路。

4.15、用 3 个 2 输入 4 输出变量译码器实现一个非完全译码的 BCD 译码器 (不用其他门)。

4.16、用完全译码的 BCD 译码器组成有"使能"控制,有 4 对互补输出的数据分配器,并列出功能表。

方法一:

方法二: BC 作地址, A 作数据输入, D 作使能。方法三: AC 作地址, B 作数据输入, D 作使能。

4.18、用一个 3 输入 8 输出的变量译码器及两个 4 输入"与非"门组成一位全加器、全减器电路。 (1) 实现全加器: A一被加数 B一加数 C一低位的进位 F1—本位和 F2—向高位的进位

(2) 实现全减器: A一被减数 B-减数 C-低位的借位 F1-本位差 F2-向高位的借位

4.19、用 BCD 译码器, 8 选 1 数据选择器及"与非"门组成能控制的 3 位并行等值比较器, 列其功能表(要求比较器禁止时输出为"1")。

当 $A_2A_1A_0 = X_2X_1X_0$ 时F = 0,其余时F = 1。D=1 时,输出总为 1。

4.21、用8选1数据选择器实现下列函数:

(1)
$$F = X\overline{YZ} + (XZ + \overline{XZ})W + \overline{X} \overline{Y} \overline{W}$$

= $X\overline{YZ} + XZW + \overline{XZ}W + \overline{X} \overline{Y} \overline{W} = X\overline{YZ} + W + \overline{X} \overline{Y}$

方法一: 从函数式可以看出: W=1 时, F=0; W=0, XYZ=010、011、111 时, F=1

方法二:继续化简 $F = (\overline{X} + YZ)\overline{W}(X + Y) = \overline{X}Y\overline{W} + XYZ\overline{W} + YZ\overline{W}$

$$= \overline{X} \ \overline{Y} \ \overline{Z}0 + \overline{X} \ \overline{Y}Z0 + \overline{X}Y\overline{Z} \ \overline{W} + \overline{X}YZ\overline{W} + X\overline{Y} \ \overline{Z}0 + X\overline{Y}Z0 + XY\overline{Z}0 + XYZ\overline{W}$$

(2) $F = \sum_{i=1}^{n} m^4(0,1,2,3,8,9,10,11)$

 $F = \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + A \overline{B} \ \overline{C} \ \overline{D} + \overline{A} B \overline{C} \ \overline{D} + A B \overline{C} \ \overline{D} + \overline{A} B \overline{C} D + A \overline{B} \ \overline{C} D + \overline{A} B \overline{C} D + A B \overline{C} D + A$

方法二: $F=(\overline{A}\ \overline{B}\ \overline{D}+A\overline{B}\ \overline{D}+\overline{A}B\overline{D}+AB\overline{D}+\overline{A}\ \overline{B}D+A\overline{B}D+\overline{A}BD+ABD)\overline{C}$ $=(m_0+m_1+m_2+m_3+m_4+m_5+m_6+m_7)\cdot\overline{C}$

从函数式中可以看出: C=0 时,不管 A、B、D 取何值, F 总为 1;

C=1 时,不管 A、B、D 取何值,F 总为 0;

4.22、设计一个10选1数据选择器,要求:(2)只能用一块8选1数据选择器和一块4位2选1 数据选择器。

方法二 S₃S₂S₁S₀ 的输入不是 8421 码。

4.23、用双 4 选 1 数据选择器实现全加器。输入量为 A、B、,进位输入为 C_{i-1} ,输出量为全加和 S 及进位输出 C_i 。

4.24、试用两块 4 位数据比较器,实现 9 位并行数据比较,画出逻辑电路图。

4.25、图示为 4 位全加器的逻辑符号, 其中 A3A2A1A0 为被加数, B3B2B1B0 为加数, Cn 为低位进 位, C3和 S3S2S1S0为进位和全加和。试用这个器件和最少的门,设计一个两个 4位二进制 数的大小比较器。

从上表中可以看出:

从上表中可以看出: $A_3A_2A_1A_0 + \overline{B}_3\overline{B}_2\overline{B}_1\overline{B}_0 = C_3S_3S_2S_1S_0 = 0 \times \times \times \times ;$ 即 $C_3 = 0$ 且 $S_3 S_2 S_1 S_0 \neq 1111$ 时, A<B。

4.26、利用 4 位全加器器件将余三码转换成 8421 码。

将余三码转换成 8421 码是将余三码减去 0011; 相当于余三码加上0011的补码,即:

4.27、利用 4 位全加器集成块,及 4 个"异或"门构成

一个并行加、减运算的电路。

当 C=0 时, 电路实现加法运算:

当 C=1 时, 电路实现减法运算。

$$A \oplus 0 = A$$
 $A \oplus 1 = \overline{A}$

4.29、A 和 B 均为 4 位 8421BCD 码。用 4 位加法器实现 A 和 B 这两个 4 位 8421BCD 码相加, 要求输出和为 BCD 码,并有进位 C。

解: 4 位加法器实现的是二进制加法,不能直接用来作 8421BCD 码相加,而两个 8421BCD 码相加的和最大为(18)+进制=(00011000)8421码

二进制数相加的和数	8421BCD	码相加的和数

二进制数相加的和数 8421BCD 码相加的和数

| Ci Y3 Y2 Y1 Y0 |
|----------------|----------------|----------------|----------------|
| 0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 1 0 | 1 0 0 0 0 |
| 0 0 0 0 1 | 0 0 0 0 1 | 0 1 0 1 1 | 1 0 0 0 1 |
| 0 0 0 1 0 | 0 0 0 1 0 | 0 1 1 0 0 | 1 0 0 1 0 |
| 0 0 0 1 1 | 0 0 0 1 1 | 0 1 1 0 1 | 1 0 0 1 1 |
| 0 0 1 0 0 | 0 0 1 0 0 | 0 1 1 1 0 | 1 0 1 0 0 |
| 0 0 1 0 1 | 0 0 1 0 1 | 0 1 1 1 1 | 1 0 1 0 1 |
| 0 0 1 1 0 | 0 0 1 1 0 | 1 0 0 0 0 | 1 0 1 1 0 |
| 0 0 1 1 1 | 0 0 1 1 1 | 1 0 0 0 1 | 1 0 1 1 1 |
| 0 1 0 0 0 | 0 1 0 0 0 | 1 0 0 1 0 | 1 1 0 0 0 |
| 0 1 0 0 1 | 0 1 0 0 1 | | |
| | I . | • | |

从功能表中可以看出:

- (1) 两个 8421BCD 码相加的和小于和等于 1001 时与 4 位二进制数相加的结果相同;
- (2)两个8421BCD码相加的和大于1001时,应等于两个4位二进制数相加的和数再加0110。
- (3) 进位 C 应为两个 4 位二进制数相加的进位再加上两个 4 位二进制数相加的和数加 0110 后的进位。

方法二: 从功能表中可以看出,8421BCD 码相加后的进位 C 应是二进制码相加后的进位为 1; 进位为 0 但 Y3Y1=11 或 Y3Y2=11 时的和。即:C8421=C $_{$ 二进制码+Y3Y2+Y3Y1。此时,二进制数相加的和加上 0110 为 8421BCD 相加的和。

第五章同步时序电路

5.1、分析图 5—83 所示时序电路,作出它的状态表和状态图。作出电平输入 X 序列为 1011100 时电路的时序图。

解:
$$Q_{n+1} = D = X \oplus Q_n$$
 $Z = \overline{XQ_n}$

5.2、分析图 5—84 所示时序电路,作出它的状态表和状态图并作当 X₁=1111110 及 X₂=0110110 时的时序图 (设触发器初态为 "00")。

逻辑功能:可自启动的同步五进制加法计数器。

5.4、画出图 5-86 所示时序电路的状态图和时序图, 起始状态为 Y3Y2Y1Y0=0001。

5.5、画出图 5-87 图所示同步十进制减法计数器的状态图和时序图。

5.6、分析于 5—88 所示集成电路的原理,列其功能表,定性画出表示 D_S , $D_0 \sim D_3$, \overline{E} , \overline{P}_E , \overline{R}_D 与CK 的配合关系的波形图,并分析这些参数与内部电路开关参数的关系。

$$D_{0} = D_{0}' \overline{\overline{E} + \overline{P}_{E}} + D_{s} \overline{\overline{E} + \overline{\overline{E} + \overline{P}_{E}}} + Q_{0} \overline{\overline{\overline{E} + \overline{P}_{E}}} + Q_{\overline{\overline{E} + \overline{P}_{E}}} + \overline{(\overline{\overline{E} + \overline{P}_{E}} + \overline{E})}$$

$$D_{1} = D_{1}' \overline{\overline{E} + \overline{P}_{E}} + Q_{0} \overline{\overline{E} + \overline{E} + \overline{P}_{E}} + Q_{1} \overline{\overline{\overline{E} + \overline{P}_{E}}} + Q_{1} \overline{\overline{\overline{E} + \overline{P}_{E}}} + \overline{(\overline{E} + \overline{P}_{E} + \overline{E})}$$

$$D_{2} = D_{2}' \overline{\overline{E} + \overline{P}_{E}} + Q_{1} \overline{\overline{E} + \overline{E} + \overline{P}_{E}} + Q_{2} \overline{\overline{E} + \overline{P}_{E}} + Q_{2} \overline{\overline{E} + \overline{P}_{E}} + \overline{(\overline{E} + \overline{P}_{E} + \overline{E})}$$

$$D_{3} = D_{3}' \overline{\overline{E} + \overline{P}_{E}} + Q_{2} \overline{\overline{E} + \overline{P}_{E}} + Q_{3} \overline{\overline{E} + \overline{P}_{E}} + \overline{(\overline{E} + \overline{P}_{E} + \overline{E})}$$

$$\overline{\overline{E} + \overline{P_E}}$$
: 当 \overline{E} , $\overline{P_E}$ 为00时, 并入

$$\frac{\overline{\overline{E} + \overline{\overline{E} + \overline{P_E}}} = E(\overline{E} + \overline{P_E}) = E\overline{P_E}}{\overline{\overline{E} + \overline{P_E}} + \overline{\overline{E}} = \overline{\overline{E} + \overline{P_E}}}, \underbrace{\overline{\overline{E}} = 0, \overline{P_E}}_{\overline{E} + \overline{P_E}} = 1 \text{ Bidd}$$

$$=(\overline{E}+\overline{P}_E)(P_E+\overline{E})=\overline{E}P_E+\overline{E}+\overline{E}$$
 $\overline{P}_E=\overline{E}$ \therefore \overline{E} 为 1 时,保持。

$\overline{R}_{\scriptscriptstyle D}$	$\overline{P}_{\!\scriptscriptstyle E}$	\overline{E}	$D_{\scriptscriptstyle S}$	$D_0' \sim D_3'$	СК	$Q_0 \sim Q_3$	功能
0	X	X	X	x~x	X	0~0	清"0"
1	0	0	X	$D_0' \sim D_3'$	\uparrow	$D_0' \sim D_3'$	并入
1	1	0	$D_{\scriptscriptstyle S}$	x~x	\uparrow	$D_s Q_0 \sim Q_2$	移位
1	X	1	X	x~x	\uparrow	$Q_0 \sim Q_3$	保持

$$t''_{su} = t_{pd} + t_{suFF}; \quad t''_H = t_{HFF} - t_{pd}$$

$$t'_{su} = 2t_{pd\overline{QR}} + t_{suFF} + t_{pd}; \quad t'_H = t_{HFF} - t_{pd} - 2t_{pd\overline{QR}} \ . \label{eq:tsu}$$

 \overline{E} , \overline{P}_E : 由 00 ⇒"11", \overline{P}_E 可以不变, \overline{P}_E 变化不影响,即由并入转到保持, \overline{E} , \overline{P}_E 应为 1X,二级或非门的传输时间即可,最大 t'_{su} 为二级或非门加一级与非门+FF 的 t_{su} 即可!

5.7、画出在图 5-88 电路中加上如图 5-89 所示输入波形时输出波形。

- 5.10、图 5-92 所示电路是为某接收机而设计的分频电路, 初始状态为"00", 问:
 - (1) 当 $X_1X_{2=}$ "00"; (2) 当 $X_1X_{2=}$ "01"; (3) 当 $X_1X_{2=}$ "11" 时,各种状态为几分频? 画出波形图。

解:
$$(1)$$
 当 $X_1X_2=$ "00"; 初始状态为 "00" 时:
$$Q_{2n+1}=1 \qquad J_1=Q_{2n}=1 \qquad K_1=\overline{J_1X_1}=1$$

$$Q_{1n+1}=\overline{Q}_{1n}$$

逻辑功能: 电路实现 2 分频。

(2) 当 $X_1X_{2=}$ "01";初始状态为"00"时: $J_1 = Q_{2n} \qquad K_1 = \overline{J_1X_1} = 1 \qquad Q_{1n+1} = Q_{2n}\overline{Q}_{1n}$ $J_2 = \overline{Q}_{1n} \qquad K_2 = \overline{\overline{Q}_{1n}X_1} = 1 \qquad Q_{2n+1} = \overline{Q}_{2n}\overline{Q}_{1n}$

(3) 当 $X_1X_2=$ "11"; 初始状态为 "00" 时: $J_1 = Q_{2n} \qquad K_1 = \overline{J_1X_1} = \overline{Q}_{2n}$ $Q_{1n+1} = Q_{2n}\overline{Q}_{1n} + Q_{\underline{2n}Q_{1n}} = Q_{2n}$ $J_2 = \overline{Q}_{1n} \qquad K_2 = \overline{Q}_{1n}X_1 = Q_{1n}$ $Q_{2n+1} = \overline{Q}_{1n}\overline{Q}_{2n} + \overline{Q}_{1n}Q_{2n} = \overline{Q}_{1n}$

5.11、同步 4 位二进制计数器的功能表及逻辑符号如图 5—93(a)所示。如果同步二进制计数器 按图 5—93(b)所示电路连接,要求:(1)列出该计数器的计数顺序。(2) Qp 端输出是几分频、占空比是多少?

- (2) QD 端输出是 12 分频,占空比是 50%。
- 5.12、将图 5—93 (a) 所示 4 位同步二进制计数器接成图 5—94 所示电路。问: (1) M="1"时, A 端输出为几分频; (2) M="0"时, A 端输出为几分频; (3) 占空比是多少?

A端是8分频;占空比为25%。

5.13、由图 5—93 (a) 所示 4 位同步二进制计数器接成图 5—95 所示电路,画出输出端 Qp 的波形,说明 Qp 为几分频。

5.14、图 5—96(a) 所示逻辑符号为 4 位并行通道移位寄存器及功能表。分析图 5—96(b) 所构成的逻辑图:(1) 写出状态图;(2) 画出 CK 与 QD 对应的波形图。

5.16、分析由图 5—96 (a) 所示移位寄存器组成的图 5—98 所示电路,分析电路的逻辑功能, 画出 Qp 的波形,分析电路能否自启动。

5.17、分析由图 5—96(a) 所示移位寄存器组成如图 5—99(a)、(b)、(c) 的逻辑电路,说明各输出 QD 是几分频?

5.18、分析图 5—100 所示同步时序电路的功能。画出各输出端的时序图。电路由 1 片 4 位二进制计数器、1 片 (3—8)变量译码器和 1 片 8 位锁存器组成。

电路实现逻辑功能:顺序脉冲发生器。

5.19、已知时序电路的状态表如表 5—13 所示,作出它的状态图。

表 5-13

v	Y_{n+1}		7	v	Y,	+1	7
Y _n	X=0	X=1		I n	X=0	X=1	L L
A	С	В	0	С	D	В	0
В	C	D	0	D.	В	A	1

5.20、设有表 5—14 所示的 3 种完全指定状态表; 试求最小化状态表。

表 5—14		
Y	0	-1
A	D/0	B/0
В	C/1	A/0
С	B/1	E/0
D	A/0 a	<i>B</i> /0
E	D/0	A /0
	(a)	

YX	0	1
A	A/0	B/0
В	C/1	A/0
С	B/1	E/0
Е	A/0	A/0

十 吐	レレた六	二五	隐含表
Y 111	11.37	JI HY	명 그 조

简化状态表

X	0	1
Y 1	8/0	7/1
2	3/0	5/0
3	2/0	1/0
4	5/1	8/0
5	8/0	4/1
6	5/1	3/0
7 .	1/1	8/0
8	4/0	6/1
	(b)	

X	0	1
1	8/0	4/1
2	3/0	1/0
4	1/1	8/0
6	1/1	3/0
7	4/0	6/1

简化状态表

Y	00	01	. 11	10
A	B/0	C/0	B/1	A/0
В	E/0	C/0	B/1	D/1
C	A/0	B/0 .	C/1	D/1
D	C/0	D/0	A/1	B/0
E	C/0	C/0	C/1	E /0

(c)

关联比较后的隐含表

		1		
Y	00	01	11	10
A	B/0	B/0	B/1	A/1
В	A/0	B/0	B/1	D/1
D	B/0	D/0	A/1	B/1

简化状态表

5.21、按照规定的状态分配,分别写出采用 D 触发器、J—K 触发器来实现状态表 5—15 所示的时序逻辑电路。

5.26、用负边沿 J—K 触发器及 2 输入 4 输出变量译码器,设计一个 4 相时钟分配器。解:用 J—K 触发器设计一个 4 进制计数器,Q1Q0 为变量译码器的输入。

5.27、用 J—K 触发器设计一个可控计数器, 当控制端 C=1 时,实现 000→100→110→111→011 →000; 当 C=0 时,实现 000→100→110→010→011→000 计数。要求写出:(1)状态图; (2)状态表;(3)状态方程;(4)检查能否自启动,画出状态图;(5)画出逻辑图。

5.28、用 J—K 触发器设计"1011"序列检测器。要求写出:(1)状态图;(2)状态表;(3)三种独立的状态分配方案;(4)分别写出三种分配方案的状态方程;(5)画出最佳设计的逻辑图。

解:设 So: 初始及检测成功状态; S1: 输入一个"1"状态; S2: 输入"10"状态; S3: 输入"101"状态; X: 输入; Z: 输出。

(1) 状态图

(2) 状态表

状态X	0	1
S0	S0/0	S1/0
S1	S2/0	S1/0
S2	S0/0	S3/0
S3	S2/0	S0/1

(3) 状态分配方案

	1	2	3
So	00	00	01
S ₁	01	01	00
S ₂	11	10	10
S 3	10	11	11

(4) 状态方程

方案一:

Q_{1}	$_{i}Q_{0}$	_n X	Q_{1n+}	Q_{0n+1}	Z	J_1K_1	J_0K_0
0	0	0	0	0	0	$0 \times$	$0 \times$
0	0	1	0	1	0	0 ×	1 ×
0	1	0	1	1	0	1 ×	$\times 0$
0	1	1	0	1	0	0 ×	$\times 0$
1	1	0	0	0	0	× 1	× 1
1	1	1	1	0	0	$\times 0$	× 1
1	0	0	1	1	0	$\times 0$	1 ×
1	0	1	0	0	1	× 1	$0 \times$

方案二:

Q_{1r}	Q_0	_n X	Q_{1n+}	Q_{0n+1}	Z	J_1K_1	J_0K_0
0	0	0	0	0	0	$0 \times$	$0 \times$
0	0	1	0	1	0	$0 \times$	1 ×
0	1	0	1	0	0	1 ×	$\times 1$
0	1	1	0	1	0	0 ×	$\times 0$
1	0	0	0	0	0	× 1	$\times 0$
1	0	1	1	1	0	$\times 0$	1 ×
1	1	0	1	0	0	$\times 0$	× 1
1	1	1	0	0	1	× 1	× 1

方案三、

Q_{1r}	Q_0	$_{n}X$	Q_{1n+1}	Q_{0n+1}	Z	J_1K_1	J_0K_0
0	1	0	0	1	0	0 ×	$\times 0$
0	1	1	0	0	0	0 ×	× 1
0	0	0	1	0	0	1 ×	$0 \times$
0	0	1	0	0	0	$0 \times$	$0 \times$
1	0	0	0	1	0	× 1	1 ×
1	0	1	1	1	0	$\times 0$	1 ×
1	1	0	1	0	0	$\times 0$	× 1
1	1	1	0	1	1	× 1	$\times 0$

				_		
1 1/	α	$\mathbf{v} \cdot \mathbf{o}$	\circ		\circ	T Z
$J_1 = K_1 =$	= (). ().	x + 0	. (). X	+()	()	X
0 1 41	$\Sigma_{1n}\Sigma_{0i}$, 21 21	n 🗷 ()n 🛂	· ' 121,	n 火 ()n ⁴	•

$$J_0=K_0=Q_{0n}\overline{X}+Q_{1n}X+\overline{Q}_{0n}X$$

$$J_1 = K_1 = \overline{Q}_{0n}\overline{X} + Q_{1n}Q_{0n}X$$

$$J_0=K_0=Q_{1n}\overline{X}+Q_{1n}\overline{Q}_{0n}+\overline{Q}_{1n}Q_{0n}X$$

从 JK 的卡诺图可以看出电路的 简化结果相似,以方案三画逻辑电路 5.30、用正边沿 D 触发器及其他门电路,设计一个节拍发生器,节拍顺序如图 5—101 所示,要求写出设计过程。

解:从时序图可得出状态图为:

方法一: 若将 ϕ_i 看作触发器的输出,三个触发器不可能有这样的状态,因此应有 6 个状态,并且在传输"1",可用 6 个触发器构成移位寄存器型计数器。其中 $\phi_1=Q_1,\phi_2=Q_3,\phi_3=Q_5$ 。此时,状态图为: 逻辑图:

方法二:用 3 个触发器构成 6 进制计数器, $\phi_3\phi_2\phi_1$ 为输出。

Q_{2i}	$_{n}Q_{1n}$	Q_{0n}	Q_{2n}	$+1Q_{1n}$	$+1Q_{0n+1}$	$\phi_3\phi_2\phi_1$
0	0	0	0	0	1	000
0	0	1	0	1	1	0 0 1
0	1	1	0	1	0	000
0	1	0	1	1	0	010
1	1	0	1	0	0	000
1	0	0	0	0	0	100

- 5.32、用正边沿 D 型触发器设计一个满足图 5—102 所示波形要求的逻辑电路, CP、X 为输入,, 写出设计过程。
 - 解:方法一:从时序图中可以看出将 Y1、Y2、 Z 为输出时,每经过 8 个时钟为一个循环。 其状态图为: X/Y1Y2Z

若以自然态序状态分配,状态表为:

 $Q_{2n+1}Q_{1n+1}Q_{0n+1}$

1

0

0

1

1

0

1

0

1

0

0

0

1

 $Q_{2n}Q_{1n}Q_{0n}$ X

0 1

0 0

1

1

0 0

1 0

0 1 1

0 1

0

1

1

1

0

<u> </u>		ЦЦ	
X			
Y1			
Y2—			
Z —			
	图 5一	-102	

Q_{1n} 00 01 11 10 Q_{1n} 00 01 11 10 00 \times \times \times 01 \times \times 1 01 \times \times 1	$2n \stackrel{\bigcirc 0}{\sim} n$				Ç	2_{2n} $\stackrel{0n}{\sim}_{\mathbf{X}}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Omega \setminus \Delta$	00	01	11		() \'1	00	01	11	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				X				×	×	
$11 \times 1 $	01		×	×	1	01		×	X	1
	11	×	1		.X.	11	×	1		×
$10 \times 1 1 \times 10 \times 1 1 \times$	10	×	1	1	×	10	×	1	1	X

$$D_2 = Q_{2n+1} = \overline{Q}_{0n}X + \overline{Q}_{1n}X + Q_{1n}Q_{0n}\overline{X}$$

或 $D_2 = Q_{2n+1} = Q_{2n}\overline{Q}_{0n} + Q_{2n}\overline{Q}_{1n} + \overline{Q}_{2n}Q_{1n}Q_{0n}$
同理,从卡诺图可以求出:

方法二: 从时序图中可以看出 Y_1Y_2 的状态为 $00 \rightarrow 11 \rightarrow 01 \rightarrow 10 \rightarrow 00$ 。

Y1 Y2 Z

0

1 0

0 1

0 0

0 0

1 1

1 0

Q_{1}	$_{n}Q_{0}$	$_{n}$ X	Q_{1n+}	Q_{0n+1}	Z
0	0	0	1	1	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	0	0

$$D_1 = Q_{1n+1} = \overline{Q}_{1n}$$

$$D_0 = Q_{0n+1} = \overline{Q_{1n} \oplus Q_{0n} \oplus X}$$

$$Z = Q_{1n}\overline{Q_{0n}}\overline{X} + \overline{Q_{1n}}Q_{0n}X$$

显然,方法二的结果比方法一的结果要简单得多。其逻辑图为:

- 5.33、用正边沿 D 触发器设计一个具有如下功能的电路(电路如图 5—103 所示);
 - (1) 开关 K 处于位置 1 (即 X=0) 时,输出 ZW=00; (2) 当开关 K 掷到 2 (即 X=1) 时,电路要产生完整的系列输出,即 ZW: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$ (开始 X 在位置 1); (3) 如果完整的系列输出后,K 仍在位置 2,则 ZW 一直保持 10 状态,只有当 K 回到位置 1 时,ZW 才重新回到 00。

要求:

(1) 画出最简状态图; (2) 列出状态表; (3) 给定状态分配; (4) 写出状态方程及输出方程; (5) 画出逻辑图。

5.34、设计一个无堵塞的脉冲发生器,产生一个010011000的序列脉冲,如图5-104所示。

- 要求: (1) 用 4 个正边沿 D 型触发器,采用移位方式实现;
 - (2) 用数据选择器,同步4位计数器和"与非"门实现;
 - (3) 用图 5-97 所示移位寄存器实现。
 - 解: Z=01011000, 01011000
- (2) 用四位二进制计数器构成一个8进制计数器,其输出端控制一个8选1数据选择器。

(1) 码长 m=8, $\therefore m = 8, n = 3$ 时,序列为

	Q_0 Q_1 Q_2 有重复 000, \therefore n=4										
	0	1	0			Q_0	Q_1	Q_2	Q_3		
	1	0	1		5	→ 1	0	1	0		
	1	1	0		11	1	1	0	1		
	0	1	1		6	0	1	1	0		
	0	0	1		12	0	0	1	1		
	0	0	0		8	0	0	0	1		
	0	0	0		0	0	0	0	0		
	1	0	0		1	1	0	0	0		
	0	1	0		2	<u></u> 0	1	0	0		
	$9 \leftarrow 4 \leftarrow 10$									-10	
	00	01	11	10			\bigcirc	Ţ	\bigcirc	\uparrow	
00	1000	0100	xxxx	1010		(0)	→ (1)	→(2)—	→ (5)	(13)	
01	xxxx	1101	XXXX	0011							
11	0001	xxxx	xxxx	xxxx		8	12	6	(11)		
10	0000	xxxx	0110	xxxx		$\overline{7}$	<u>14</u>	$\frac{1}{3}$			
$Q_{0n1}Q_{1n+1}Q_{2n+1}Q_{3n+1}$											
$\therefore D_3 = Q_{3n+1} = Q_{2n} \qquad D_2 = Q_{2n+1} = Q_{1n} $ (15)											
$D_1 =$	$D_1=Q_{1n+1}=Q_{0n} \qquad D_0=Q_{0n+1}=\overline{Q}_{3n}\overline{Q}_{2n}\overline{Q}_{0n}+\overline{Q}_{3n}Q_{2n}\overline{Q}_{1n}$										
检查的	能否自启:	动									
<u> </u>	O_{0}, O_{1}, O_{2}	$O_{2n}O_{2n}=0$	010时 6	$Q_{0n+1}Q_{1n+1}Q_{2$	$O_{2,1}$	1 = 1001					

当
$$Q_{0n}Q_{1n}Q_{2n}Q_{3n}=0010$$
时 $Q_{0n+1}Q_{1n+}Q_{2n+1}Q_{3n+1}=1001$
$$Q_{0n+1}Q_{1n+1}Q_{2n+1}Q_{3n+1}=1001$$
时 $Q_0^+Q_1^+Q_2^+Q_3^+=0100$ 如此检查各约束项,均可进入循环,所以可以自启动。

(3) 用四位右移移位寄存器实现

$J\overline{K}$	$Q_{\scriptscriptstyle A}$	$Q_{\scriptscriptstyle B}$	Q_{C}	$Q_{\scriptscriptstyle D}$
1	1	0	1	0
0	1	1	0	1
0	0	1	1	0
0	0	0	1	1
0	0	0	0	1
1	0	0	0	0
0	1	0	0	0
1	0	1	0	0
1	1	0	1	0

Q_{D} Q_{A} Q_{C}	求	求 $J\overline{K}$ 的表达式			
$Q_D Q_C$	00	01	11	10	
00	1	0	X	1	
01	X	1	X	0	
11	X	0	X	X	
10	0	X	0	X	

$$J\overline{K} = \overline{Q}_A \overline{Q}_C \overline{Q}_D + \overline{Q}_B Q_C \overline{Q}_D$$

检查自启动(无堵塞):

 $Q_{An}Q_{Bn}Q_{Cn}Q_{Dn}=0010$ 时 $\Rightarrow 1001\Rightarrow 0100$ 同前!