PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Primer semestre 2018

Interrogación 2 - MAT1610

1. La ley de los gases para un gas ideal a la temperatura absoluta T (en Kelvin) y la presión P (en atmósferas) con un volumen V (en litros) es

$$PV = nRT.$$

donde n es constante y corresponde al número de moles del gas y R=0.0821 es la constante de los gases.

Suponga que en el instante t_0 la presión P es igual a 8atm y que ésta aumenta a razón de 0,1atm/min. Además se sabe que en ese mismo instante el volumen V es de 10 litros y que éste disminuye a razón de 0,15lt/min.

Determine la razón de cambio de T, con respecto al tiempo, en el instante t_0 , sabiendo que la constante n=10mol.

Solución:

En el instante t_0 , tenemos

$$P=8 \text{ atm}$$
 , $\frac{\mathrm{d}P}{\mathrm{d}t}=0.1 \text{ atm/min},$ $V=10 \ \ell$, $\frac{\mathrm{d}V}{\mathrm{d}t}=-0.15 \ \ell.$

Además, en cualquier instante t se tiene que PV = (0.0821)T = 0.821T con P, V Y T funciones que dependen del tiempo t.

Derivamos la expresión PV = 0.821T con respecto al tiempo t para obtener

$$\frac{\mathrm{d}}{\mathrm{d}t}(PV) = 0.821 \, \frac{\mathrm{d}T}{\mathrm{d}t},$$

es decir,

$$\frac{\mathrm{d}P}{\mathrm{d}t} V + P \frac{\mathrm{d}V}{\mathrm{d}t} = 0.821 \frac{\mathrm{d}T}{\mathrm{d}t}.$$

Luego

$$\frac{dT}{dt} = \frac{1}{0,821} \left(\frac{dP}{dt} V + P \frac{dV}{dt} \right)$$
$$= \frac{1}{0,821} \left(8(-0,15) + 10(0,1) \right)$$
$$= 0,243.$$

Entonces la razón de cambio de la temperatura es -0.243 K/min.

Distribución de puntaje:

- 2 puntos por derivar la fórmula correctamente.
- 2 puntos por hacer los reemplazos de manera correcta
- 2 puntos por determinar la razón de cambio pedida.

2. a) Calcule

Solución:

Observamos que $\ln\left(\left(1+\frac{a}{x}\right)^{bx}\right) = bx\ln\left(1+\frac{a}{x}\right)$ y por lo tanto tenemos que:

$$\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^{bx} = \lim_{x\to\infty} e^{bx\ln\left(1+\frac{a}{x}\right)} = e^{\lim_{x\to\infty} bx\ln\left(1+\frac{a}{x}\right)}$$

Por lo tanto necesitamos calcular $\lim_{x\to\infty} bx \ln\left(1+\frac{a}{x}\right)$ que es un límite de la forma $\infty\cdot 0$. Para esto usaremos la siguiente transformación:

$$\lim_{x \to \infty} bx \ln\left(1 + \frac{a}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{a}{x}\right)}{1/bx}$$

Observe que el último límite es de la forma 0/0 y podemos usar la regla del H'opital, obteniendo que

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{a}{x}\right)}{1/bx} = \lim_{x \to \infty} \frac{ab}{1 + a/x} = ab$$

Por lo tanto el límite pedido es e^{ab} .

Distribución de puntaje:

- 1 punto por hacer el cambio correctamente para llevar el límte a uno que permita usar la regla de L'Hopital.
- $\bullet \ 1$ punto por usar correctamente L'Hopital.
- 1 punto por determinar el límite pedido.
- b) Determine el máximo y mínimo absoluto de la función $f(x) = 2\cos(x) + \sin(2x)$ en el intervalo $[0, 2\pi]$.

Solución:

Tenemos que $f'(x) = -2\mathrm{sen}(x) + 2\cos(2x)$, por lo tanto f'(x) = 0 en $(0, 2\pi)$ si y sólo si $x = \frac{5\pi}{6}, \frac{\pi}{6}$ o $\frac{3\pi}{2}$, por lo tanto los candidatos a puntos donde se alcanzan los extremos son $0, 2\pi, \frac{5\pi}{6}, \frac{\pi}{6}$ y $\frac{3\pi}{2}$.

Evaluando en cada uno de estos puntos obtenemos que:

$$f(0) = 2$$
, $f(2\pi) = 2$, $f(3\pi/2) = 0$, $f(\pi/6) = 3\sqrt{3}/2$ y $f(5\pi/6) = -3\sqrt{3}/2$.

Por lo tanto el mínimo es $-3\sqrt{3}/2$ y el máximo es $3\sqrt{3}/2$.

Distribución de puntaje:

- 1 punto por determinar los candidatos a extremos.
- 1 punto por evaluar correctamente los candidatos
- 1 punto por determinar correctamente el máximo y mínimo.
- 3. Considere la función

$$f(x) = \frac{2x^2}{x^2 - 1}$$

a) Determine intervalos de crecimiento y decrecimiento de f.

Solución:

Observe que
$$f'(x) = \frac{-4x}{(x^2 - 1)^2}$$

Por lo tanto f es creciente en $(-\infty, -1)$ y (-1, 0) y decreciente en (0, 1) y $(1, \infty)$.

b) Determine intervalos donde f es cóncava hacia arriba y cóncava hacia abajo.

Solución:

Observe que
$$f''(x) = \frac{12x^2 + 4}{(x^2 - 1)^3}$$

Por lo tanto f es cóncava hacia arriba en los intervalos $(-\infty,-1)$ y $(1,\infty)$ y cóncava hacia abajo en (-1,1)

c) Bosqueje el gráfico de f, indicando asíntotas, extremos y puntos de inflexión.

Solución:

De los puntos anteriores observamos que f(0) = 0 es un máximo local y que no existen puntos de inflexión.

Además la función tiene dos asíntotas verticales; x = 1 y x = -1 y una asíntota horizontal y = 2.

Distribución de puntaje:

- $\bullet\,$ 2 punto por los intervalos de monotonía (1 por c/u).
- 2 punto por los intervalos de concavidad (1 por c/u).
- 1 punto por el gráfico.
- $\bullet \ 1$ punto por asíntotas y extremos.
- 4. a) Demuestre que la ecuación sen(x) = 2x 1 tiene exactamente una raíz real.

Solución:

Considere la función h(x) = sen(x) - 2x + 1, observamos que h es continua en [0,2] y h(0) = 1 y que h(2) = sen(2) - 3 < 0 por lo tanto existe al menos una raíz real de la ecuación h(x) = 0.

Para ver que no hay más notemos que h es derivable en todo \mathbb{R} por lo tanto si existieran dos raíces a y b por el Teorema del Valor medio debería existir a < c < b con h'(c) = 0, pero $h'(x) = \cos(x) - 2 < 0$ para todo x en \mathbb{R} . Luego existe una única raíz de la ecuación.

Distribución de puntaje:

- 1 punto por determinar que existe alguna raíz
- 1 punto por suponer más de una raíz y verificar que lo anterior implica tener las hipótesis del TVM.
- 1 punto por la conclusión
- b) Se necesita cortar un hilo de longitud L en dos trozos. Con un trozo se construye una circunferencia y con el otro un cuadrado. ¿Qué parte del hilo original debe ser destinada para la construcción de la circunferencia, si se desea que la suma de sus áreas sea mínima?

Solución:

Cortamos el hilo es dos trozos, uno de largo x y el otro de largo L-x. Con el trozo de largo x formamos el círculo y con el de largo L-x formamos el cuadrado. De esta manera, la función objetivo es

$$f(x) = \frac{x^2}{4\pi} + \frac{(L-x)^2}{16}, \quad x \in [0, L].$$

La derivada de esta función es

$$f'(x) = \frac{(8+2\pi)x - 2\pi L}{16\pi}$$

y se anula en $x = \pi L/(4+\pi)$. Como la segunda derivada de f es

$$f''(x) = \frac{8 + 2\pi}{16\pi}$$

se concluye que $x = \pi L/(4+\pi)$ es un mínimo local de f. Como f es convexa y $x = \pi L/(4+\pi) \in [0,L]$ se concluye que este punto debe ser el mínimo global de f en [0,L]. Por lo tanto, si el corte tiene longitud $x = \pi L/(4+\pi)$ entonces la suma de las áreas es mínima.

Distribución de puntaje:

- 1 punto por plantear correctamente la función que se quiere minimizar.
- $\bullet \ 1$ punto por encontrar el punto crítico
- 1 punto por verfificar que corresponde a un mínimo y responder la pregunta
- 5. Suponga que f es una función continua definida en el intervalo [0,3] la cual satisface que:
 - f(0) = -1,
 - f'(x) = 2 para todo $x \in (0, 1)$,
 - f'(x) = 1 para todo $x \in (1, 2)$,
 - f'(x) = -1 para todo $x \in (2,3)$.

Encuentre una fórmula para la función f.

Solución:

Notemos que

- una antiderivada para la función f sobre el intervalo (0,1) es de la forma $2x + C_1, C_1 \in \mathbb{R}$,
- una antiderivada para la función f sobre el intervalo (1,2) es de la forma $x+C_2,C_2\in\mathbb{R}$,
- una antiderivada para la función f sobre el intervalo (2,3) es de la forma $-x+C_3,C_3\in\mathbb{R}$.

Como f es continua y f(0) = -1 se deduce que $C_1 = -1$. Por continuidad se tiene que $2 \cdot 1 - 1 = 1 + C_2$ y por tanto $C_2 = 0$ y que $2 = -2 + C_3$ y por tanto $C_3 = 4$. por lo tanto

$$f(x) = \begin{cases} 2x - 1 & \text{si } x \in [0, 1] \\ x & \text{si } x \in (1, 2] \\ -x + 4 & \text{si } x \in (2, 3] \end{cases}$$

Distribución de puntaje:

- 1 punto por determinar c/u la forma de cada una de las ramas (3 en total)
- 1 punto por determinar c/u de las constantes y dar la fórmula final (3 en total)
- 1 punto por la conclusión