MATLAB assignment 2

Wiener and adaptive filtering

- This is a MATLAB exercise to enhance the understanding of concepts learnt during lectures.
- Use data files and function files (.mat & .m) that are attached with this document as instructed.

Submission	Submission method	Notes
document		
Report	Upload the softcopy	Should include observations and discussions with
	to Moodle	relevant plots to support your answers.
MATLAB scripts	Upload a single ZIP	Name each script according to question number.
	file including all the	Also, include necessary comments on the scripts
	.m files to Moodle	for better read-ability.

Introduction

This exercise allows;

- The implementation of the Wiener filter.
- The implementation of adaptive noise canceller based on LMS and RLS algorithms and analyse their behaviour with non-stationary noise.

1. Weiner filtering (on stationary signals)

Data construction

- Ideal signal $y_i(n)$: ideal ECG. mat. Sampling frequency = 500 Hz
- Input signal $x(n) = y_i(n) + \eta(n)$
- Where $\eta(n) = \eta_{wq}(n) + \eta_{50}(n)$
- $\eta_{wq}(n)$: white Gaussian noise such that SNR is 10 dB with respect to $y_i(n)$
- $\eta_{50}(n) = 0.2 \sin(2\pi f_1 n)$ where $f_1 = 50$

1.1. Discrete-time domain implementation of the Wiener filter

Calculate the optimum weight vector $\mathbf{w}_0 = (\Phi_{\mathbf{Y}} + \Phi_{\mathbf{N}})^{-1} \Theta_{\mathbf{Y}y}$ given the signals in Part 1 and Part 2 and parameters:

- a) For an arbitrary filter order
- b) Find the optimum filter order and its coefficients. Plot magnitude response
- c) Obtain the filtered signal $\hat{y}(n)$ using filter obtained in above.
- d) Plot the spectra of $y_i(n)$, $\eta(n)$, x(n), $\hat{y}(n)$ on the same plot.
- e) Interpret spectra and the magnitude response of the filter.

Part 1

- Desired signal: single beat of $y_i(n)$
- Noise signal: Extract the signal segment from the T wave of any chosen ECG beat to the P wave of the next ECG beat (isoelectric segment) of x(n).

Part 2

- Desired signal: Construct a linear model having the same length and a comparable morphology to that of a single ECG beat of the ideal signal $y_i(n)$. For example, see Figure 1
- Noise signal: Extract the signal segment from the T wave of any chosen ECG beat to the P wave of the next ECG beat (isoelectric segment) of x(n).

1.2. Frequency domain implementation of the Wiener filter

$$W(f) = \frac{S_{YY}(f)}{S_{YY}(f) + S_{NN}(f)}$$

Where $S_{ZZ}(f)$ is the PSD of a signal z(n). Alternatively, $S_{ZZ}(f)$ is the power of the Fourier transform of the template z(n). Therefore, $S_{ZZ}(f) = (absoulte(Fourier\ transform[z(n)]))^2$.

- a) Implement the frequency domain version of the Wiener filter. $S_{\hat{Y}}(f) = W(f)S_X(f)$.
- b) Compare the filtered signal with Part 1 or Part 2 with the aid of a plot and mean squared error with respect to the ideal signal y(n).

1.3. Effect on non-stationary noise on the Wiener filtering

This section explores the behaviour of the Wiener filter when the noise characteristics are non-stationary. This is demonstrated by changing the 50 Hz noise to 100 Hz halfway through the signal duration.

Data construction

$$\eta(n) = \eta_{wq}(n) + \eta_{50}(n) + \eta_{100}(n)$$

 $\eta_{wg}(n)$: white Gaussian noise such that SNR is 10 dB with respect to $y_i(n)$ 50 Hz noise such that: $\eta_{50}(n)=0.2\sin(2\pi f_1 n)$ where $f_1=50$ and $0\leq n < T/2$ 100 Hz noise such that: $\eta_{100}(n)=0.3\sin(2\pi f_2 n)$ where $f_2=125$ and $T/2\leq n\leq T$ Where T is the total time.

- a) Apply any Wiener filter derived out of sections 1.1, 1.2 on the new x(n)
- b) Plot the filtered time-domain signal and interpret the result.

2. Adaptive filtering

This section is based on the ANC and LMS sections of the 6_Optimum and adaptive filters.pdf

Data construction

Sampling frequency (f_s) = 500 Hz Number of samples (N) = 5000

 $y_i(n)$: Sawtooth waveform with a width of 0.5.

 $\eta(n)$: Non-stationary noise: use same as in section 1.3.

 $r(n) = a(\eta_{wg}(n) + \eta_{50}(nf_{50} + \phi_1) + \eta_{100}(nf_{100} + \phi_2))$, where a and ϕ_1, ϕ_2 are arbitrary constants.

Use the following code to generate signals

```
N=5000; % Number of points t=linspace(0,5,N)'; % Time vector with fs = 500 Hz s=sawtooth(2*pi*2*t(1:N,1),0.5); % Sawtooth signal n1=0.2*sin(2*pi*50*t(1:N/2,1)-phi); % Sinusoid at 50 Hz n2=0.3*sin(2*pi*100*t(N/2+1:N,1)-phi); % Sinusoid at 100 Hz nwg=s-awgn(s,snr,'measured'); % Gaussian white noise
```

2.1. LMS method

Implement the LMS method as per the equation

$$\mathbf{w}(n+1) = \mathbf{w}(n) + 2\mu e(n)\mathbf{R}^{T}(n)$$

a) Explore the rate of adaptation by varying the rate of convergence μ and the order of the adaptive filter (M-1). To quantify you may calculate the mean squared error with respective to desired signal.

2.2. RLS method

Implement the LMS method as per the equations:

$$\mathbf{k}(n) = \frac{\lambda^{-1}\mathbf{p}(n-1)\mathbf{r}(n)}{1 + \lambda^{-1}\mathbf{r}^{T}(n)\mathbf{p}(n-1)\mathbf{r}(n)}$$

$$\mathbf{p}(n) = \lambda^{-1}\mathbf{p}(n-1) - \lambda^{-1}\mathbf{k}(n)\mathbf{r}^{T}(n)\mathbf{p}(n-1)$$

$$\alpha(n) = x(n) - \mathbf{w}^{T}(n-1)\mathbf{r}(n)$$

$$\mathbf{w}(n) = \mathbf{w}(n-1) + \mathbf{k}(n)\alpha(n)$$

$$\alpha(n) = \hat{s}(n) = x(n) - \mathbf{w}^{T}(n)\mathbf{r}(n)$$

Initialisations:

 $P(0) = \delta^{-1}I$, where δ is a small constant and I is the identity matrix

 $\mathbf{w}(0) = 0$ or any tap weight vector if necessary

- a) Explore the rate of adaptation by varying the forgetting factor λ and the order of the adaptive filter (M-1). To quantify you may calculate the mean squared error with respective to desired signal.
- b) Compare the performance of LMS and RLS algorithms.
- c) Test LMS and RLS algorithms using the $y_i(n)$ as the <code>idealECG.mat</code>

Reference plot for 2.1

