МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ

Декан/Директор

/ Соболев В.В.

23.05. 2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Методы оптимизации и теория оптимального управления

наименование – полностью

направление (специальность) 01.04.04 Прикладная математика

код, наименование - полностью

направленность (профиль/

программа/специализация) Разработка программного обеспечения и решения

математических методов искусственного интеллекта

наименование - полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 7 зачетных единиц

Кафедра Прикладная математика и информационные технологии полное наименование кафедры, представляющей рабочую программу Составитель Кетова Каролина Вячеславовна, д.ф.-м.н., профессор Ф.И.О.(полностью), степень, звание Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры Протокол от ______ 27.04. _____ 20.43 г. № 5 Заведующий кафедрой СОГЛАСОВАНО Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану 01.04.04 «Прикладная математика» (программа «Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта») Протокол заседания учебно-методической комиссии по УГСН код и наименование – полностью Председатель учебно-методической комиссии по УГСН 010000 «Математика и механика» код и наименование - полностью Руководитель образовательной программы К.В. Кетова 20 33 г.

2

Аннотация к дисциплине

Название дисциплины	Методы оптимизации и теория оптимального							
	управления							
Направление подготовки	01.04.04 Прикладная математика							
(специальность)								
Направленность	Разработка программного обеспечения и							
(профиль/программа/специализаци	математических методов решения задач с							
я)	использованием искусственного интеллекта							
Место дисциплины	Часть, формируемая участниками							
	образовательных отношений, Блока 1.							
	Дисциплины (модули)							
Трудоемкость (з.е. / часы)	7 з. е. / 252 часов							
Цель изучения дисциплины	Усвоение магистрантами теоретических основ							
	предмета, составляющего фундамент ряда							
	математических дисциплин прикладного							
	характера							
Компетенции, формируемые в	ОПК-2. Способен разрабатывать и развивать							
результате освоения дисциплины	математические методы моделирования объектов,							
	процессов и систем в области профессиональной							
	деятельности							
Содержание дисциплины	Методы оптимизации в математическом							
(основные разделы и темы)	моделировании. Прямые численные методы							
	одномерной оптимизации. Методы одномерной							
	оптимизации, использующие производные.							
	Прямые методы многомерной оптимизации.							
	Градиентные методы многомерной оптимизации.							
	Линейное программирование.							
Форма промежуточной	Зачет, Экзамен							
аттестации								

1. Цели и задачи дисциплины:

Целью освоения дисциплины является усвоение магистрантами теоретических основ предмета, составляющего фундамент ряда математических дисциплин прикладного характера.

Задачи дисциплины:

обучить магистрантов прикладным и вычислительным аспектам методов оптимизации.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	, 1		Знания	,,	,		
1	основные метод	ы решения опти	имизационных	задач			

Умения, приобретаемые в ходе освоения дисциплины

№ П/П		Умения
1	выбирать адеква	тный метод оптимизации для решения прикладных задач

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки
1	владеть современными алгоритмами решения задач безусловной и условной
	оптимизации

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-2. Способен	ОПК-2.1. Знать: методы			
разрабатывать и	анализа систем данных на			
развивать	основе современных			
математические	технологий извлечения новых			
методы	знаний из данных;			
моделирования	современные информационно-	1	-	-
объектов, процессов	коммуникационные и			
и систем в области	интеллектуальные технологии,			
профессиональной	инструментальные среды для			
деятельности	решения профессиональных			
	задач			
	ОПК-2.2. Уметь:			
	обосновывать выбор методов			
	анализа данных для решения			
	профессиональных задач;			
	обосновывать выбор		1	
	современных информационно-	-	1	_
	коммуникационных и			
	интеллектуальных			
	технологий, разрабатывать			
	оригинальные математические			

модели для решения профессиональных задач			
ОПК-2.3. Владеть: навыками применения современных программных средств для анализа данных при решении профессиональных задач; разработки оригинальных математических моделей, в том числе с использованием современных информационнокоммуникационных и интеллектуальных технологий, для решения профессиональных задач	-	-	1

3. Место дисциплины в структуре ООП

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 1 курсе в 1, 2 семестрах.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Математическое моделирование, Численные методы.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): Принципы построения математических моделей, Выполнение и защита выпускной квалификационной работы.

4. Структура и содержание дисциплины

4.1 Структура дисциплин

№ п/п	Раздел дисциплины. Форма промежуточной аттестации (по семестрам)	Всего часов на раздел	Семестр	pa	здела уч конт	(в часа ебной р гактная	рудоемн х) по ви работы КЧА	Содержание самостоятельной работы	
1	2	3	4	лек 5	пр 6	лаб 7	8 8	10	11
1	Методы оптимизации в математическом моделировании.	26	1	-	4	4	_	26	Защита лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий, выполнение тестовых заданий.
2	Прямые численные	26	1	4	4	4		26	Защита

	методы одномерной оптимизации								лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий, выполнение тестовых заданий.
3	Методы одномерной оптимизации, использующие производные	27	1	4	4	8	1	26	Защита лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий, выполнение тестовых заданий.
4	Зачет	2	1		_		0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости
	Итого за 1-й семестр	108	1	-	12	16	0,3	79,7	
5	Прямые методы многомерной оптимизации	26	2	4	_	4	_	18	Защита лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий, выполнение тестовых заданий.
6	Градиентные методы многомерной оптимизации	30	2	6	_	6	-	18	Защита лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий,

									выполнение тестовых заданий.
7	Линейное программирование	30	2	6	_	6	-	18	Защита лабораторной работы, работа на практических занятиях: текущий контроль выполнения заданий, выполнение тестовых заданий.
8	Защита курсовой работы	22	2	-	_	-	3	19	Курсовая работа
9	Экзамен	36	2	_		_	0,4	35,6	Экзамен выставляется по совокупности результатов текущего контроля успеваемости
	Итого за 2-й семестр	144	2	•	16	16	3,4	108,6	
	Итого	252			28	32	3,7	188,3	

4.2 Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Методы оптимизации в математическом моделировании. Определение границ объекта минимизации. Выбор управляемых переменных. Определение ограничений на управляемые переменные. Выбор численного критерия оптимизации.	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий, защита лабораторных работ
2	Прямые численные методы одномерной оптимизации. Минимум функции одной переменной.	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий, защита

	Унимодальные функции и их свойства. Выпуклые функции. Условие Липшица. Классическая минимизация функции одной переменной. Прямые методы минимизации функции одной переменной.					лабораторных работ
3	Методы одномерной оптимизации, использующие производные. Методы, использующие производные. Понятие о методах минимизации многомодальных функций.	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий, защита лабораторных работ, выполнение тестовых заданий.
4	Прямые методы многомерной оптимизации. Минимум ФНП. Дифференцируемые функции нескольких переменных, необходимые и достаточные условия минимума. Выпуклые множества. Выпуклые функции и их свойства. Выпуклые квадратичные функции. Общие принципы пмерной минимизации. Прямые методы безусловной минимизации.	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий, выполнение тестовых заданий, защита лабораторных работ
5	Градиентные методы многомерной оптимизации. Методы безусловной минимизации, использующие производные. Понятие о квазиньютоновских методах.	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий, выполнение тестовых заданий, защита лабораторных работ
6	Линейное программирование. Постановка и классификация задач	ОПК-2.1 ОПК-2.2 ОПК-2.3	1	1	1	Текущий контроль выполнения заданий,,

математического			выполнение
программирования.			тестовых
Примеры задач			заданий.
оптимизации,			
сводящихся к задачам			
математического			
программирования.			
Постановка задач			
линейного			
программирования.			
Графический метод.			
Симплексный метод			
решения задач			
линейного			
программирования.			
Метод искусственного			
базиса. Симплекс-метод			
при отсутствии условий			
неотрицательности			
переменных.			
Двойственность в			
линейном			
программировании.			
Применение теории			
двойственности.	_		

4.3 Наименование тем лекций, их содержание и объем в часах

Лекционных занятий учебным планом не предусмотрено.

4.4 Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоем- кость (час)
1.	2	Прямые численные методы одномерной оптимизации	6
2.	3	Методы одномерной оптимизации, использующие	6
		производные	
3.	4	Прямые методы многомерной оптимизации	8
4.	5	Градиентные методы многомерной оптимизации	8
	Всего		28

4.5 Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1.	1	Методы оптимизации в математическом	4
		моделировании	
2.	2	Прямые численные методы одномерной оптимизации	4
3.	3	Методы одномерной оптимизации, использующие	8

		производные	
4.	4	Прямые методы многомерной оптимизации	4
5.	5	Градиентные методы многомерной оптимизации	6
6.	6	Линейное программирование	6
	Всего		32

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- защиты лабораторных работ;
- зачет;
- курсовая работа;
- экзамен.

Примечание: оценочные материалы (вопросы к проведению практических, лабораторных занятий, задания для самостоятельной работы и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет, экзамен.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Лесин В.В., Лисовец Ю.П. Основы методов оптимизации. М.: Лань, 2018.-344 с. (10 экз.).
- 2. Методы оптимизации и теория оптимального управления: учебное пособие для вузов по направл. 01.04.04 «Прикладная математика» / М-во образования и науки РФ, ФГБОУ ВО «ИжГТУ имени М. Т. Калашникова»; сост.: Е.В. Касаткина, Е.А. Сабурова, Д.Г. Нефедов. Ижевск: Изд-во ИжГТУ имени М. Т. Калашникова, 2018. 148 с. (10 экз.)

б) дополнительная литература:

- 3. Васильев Ф.П. Методы оптимизации часть 1. М.: МЦНМО, 2019. 620 с. (10 экз.)
- 4. Васильев Ф.П. Методы оптимизации часть 2. М.: МЦНМО, 2019. 432 с. (10 экз.)
- 5. Теория оптимального управления: учебное пособие / И. П. Болодурина, Т. А. Огурцова, О. С. Арапова, Ю. П. Иванова. Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2018. 147 с. Режим доступа: http://www.iprbookshop.ru/69954.html.
- 6. Кочегурова Е.А. Теория и методы оптимизации: учебное пособие / Е. А. Кочегурова. Томск: Томский политехнический университет, 2018. 134 с. Режим доступа: http://www.iprbookshop.ru/34723.html.
- 7. Пантелеев А.В. Методы оптимизации в примерах и задачах: учеб. пособие для втузов / Пантелеев, А. В., Летова, Т. А. Изд. 3-е, стер. М.: Высшая школа, 2018. 544 с. (10 экз.)

в) методические указания:

- 8. Касаткина Е.В. Методические указания к самостоятельной работе и выполнению практических работ по курсу «Методы оптимизации и теория оптимального управления» для направления 01.04.04 «Прикладная математика». Ижевск, 2021. 79 с. (Рег. номер МиЕН 1-24/2021).
- 9. Русяк И.Г., Кетова К.В., Касаткина Е.В., Вавилова Д.Д. Методические указания к оформлению и выполнению рефератов, лабораторных работ, курсовых работ и проектов, практик, выпускных квалификационных работ для студентов направления 01.03.04 «Прикладная математика», 2021. 38 с. (Рег. номер МиЕН 1-1/2021).

г) перечень ресурсов информационно-коммуникационной сети Интернет:

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgibin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS.
 - 3. Национальная электронная библиотека http://нэб.рф.
 - 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/.

д) лицензионное и свободно распространяемое программное обеспечение:

- 1. Microsoft Office Standard 2007 (Open License: 42267924).
- 2. Doctor Web Enterprise Suite (Лицензия № 116663324).
- 3. OC MS Windows 7/10.
- 4. Среда программирования MS Visual Studio Community 2017.

7. Материально-техническое обеспечение дисциплины:

1. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

2. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук.

3. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

по направленности (профилю/программе/специализации)

Разработка программного обеспечения и математических методов решения

задач с использованием искусственного интеллекта наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном году:

Учебный год	« Согласова заведующий ка ответственной (подпись и д	федрой, й за РПД
2023 – 2024	MR119	27.04,2013
2024 – 2025		

Приложение к рабочей программе дисциплины (модуля)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Методы оптимизации и теория оптимального управления

наименование - полностью

направление (специальность) 01.04.04 Прикладная математика

код, наименование – полностью

направленность (<u>профиль</u>/ программа/специализация) <u>Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта</u>

наименование – полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 7 зачетных единиц

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№ п/п	Коды компетенции и и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ОПК-2.1. Знать: методы анализа систем данных на основе современных технологий извлечения новых знаний из данных; современные информационно-коммуникационные и интеллектуальные технологии, инструментальные среды для решения профессиональных	31: основные методы решения оптимизационных задач	Текущий контроль выполнения заданий; защита лабораторных работ, выполнение тестовых заданий.
2	задач ОПК-2.2. Уметь: обосновывать выбор методов анализа данных для решения профессиональных задач; обосновывать выбор современных информационно- коммуникационных и интеллектуальных технологий, разрабатывать оригинальные математические модели для решения профессиональных задач	У1: выбирать адекватный метод оптимизации для решения прикладных задач	Текущий контроль выполнения заданий; защита лабораторных работ, защита курсовых работ, выполнение тестовых заданий.
3	ОПК-2.3. Владеть: навыками применения современных программных средств для анализа данных при решении профессиональных	H1: владеть современными алгоритмами решения задач безусловной и условной оптимизации	Текущий контроль выполнения заданий; защита лабораторных работ, выполнение тестовых заданий.

задач; разраб	отки
оригинальных	
математических	
моделей, в том ч	нисле
с использова	нием
современных	
информационно-	
коммуникационн	ых и
интеллектуальны	X
технологий,	для
решения	
профессиональны	IX
задач	

Типовые задания для оценивания формирования компетенций

Наименование: Лабораторная работа

Представление в ФОС: Пример лабораторной работы

Пример лабораторной работы:

Изучить примеры задач оптимального управления экономическими системами.

Выполнение лабораторной работы

Рассмотрим задачу оптимального управления вида:

$$Y = F(K, L), \tag{1}$$

где $Y-{\rm BP\Pi},$ руб; $K-{\rm O\Pi\Phi},$ руб; L- трудовые ресурсы, чел.

$$\dot{K} = I - \eta K$$

где η – коэффициент выбытия; I = sY

Рисунок 1 – Схема распределения ресурсов

Изменение трудовых ресурсов и общей численности населения описывается функцией от времени:

$$L = L(t)$$
,

$$P = P(t)$$
,

где P — численность населения, чел.

В работе будет считать, что данные функции – экспоненциальные.

$$L(t) = L_0 e^{n_L t}, \qquad (2)$$

$$P(t) = P_0 e^{n_p t}, (3)$$

$$\lambda(t) = \frac{L_0}{P_0} e^{(n_L - n_P)t}, \qquad (4)$$

Постановка задачи:

$$Cr = \int_{0}^{T} (1 - s) f(k) \lambda_{0} e^{-at} dt \to \max, \qquad (5)$$

$$\alpha = \delta + n_P - n_L, \tag{6}$$

Наименование: Курсовая работа

Представление в ФОС: Темы курсовых работ

Перечень тем для курсовых работ:

- 1. Решение задачи оптимального управления в однофакторной макроэкономической модели с экзогенно заданной динамикой экономически активного населения (на примере УР)
- 2. Решение задачи оптимального управления в экономической макромодели экономической с учетом фактора квалификации трудовых ресурсов (на примере УР)
- 3. Решение задачи оптимального управления в двухфакторной модели экономической динамики с учетом темпов научно-технического прогресса (на примере УР)
- 4. Решение задачи оптимального управления в однофакторной макроэкономической модели с экзогенно заданной динамикой численности населения (на примере УР).
- 5. Решение задачи оптимального управления в конечномерной модели, обладающей квазимагистралью (на примере РФ).

Наименование: зачет

Представление в ФОС: перечень вопросов Перечень вопросов для проведения зачета:

- 1. Методы оптимизации в математическом моделировании.
- 2. 2. Минимум функции нескольких переменных.
- 3. З. Необходимые и достаточные условия локального минимума.
- 4. 4. Унимодальные функции и их свойства.

- 5. 5. Выпуклые функции.
- 6. 6. Условие Липшица.
- 7. 7. Классическая минимизация функции одной переменной.
- 8. 8. Прямые методы минимизации функции одной переменной (перебора, поразрядного поиска, исключения отрезков, метод парабол).
- 9. 9. Методы использующие производные (метод средней точки, хорд, Ньютона, кубической аппроксимации).
- 10. Дифференцируемые ф.н.п., необходимые и достаточные условия минимума.
- 11. Выпуклые множества.
- 12. Выпуклые функции и их свойства.
- 13. Выпуклые квадратичные функции.

Критерии оценки: приведены в разделе 2.

Наименование: экзамен

Представление в ФОС: перечень вопросов Перечень вопросов для проведения экзамена:

- 1. Общие принципы п-мерной минимизации.
- 2. Прямые методы безусловной минимизации (минимизация по правильному симплексу, поиск точки минимума по деформируемому симплексу, метод циклического покоординатного спуска, метод Хука-Дживса, метод сопряженных направлений).
- 3. Методы безусловной минимизации, использующие производные (метод градиентного и наискорейшего спуска, метод сопряженных градиентов и метод Ньютона).
- 4. Понятие о квазиньютоновских методах.
- 5. Постановка и классификация задач математического программирования.
- 6. Примеры задач минимизации, сводящихся к задачам математического программирования.
- 7. Необходимые условия минимума в терминах направлений.
- 8. Условный экстремум.
- 9. Необходимые и достаточные условия условного экстремума.
- 10. Условия оптимальности в задаче выпуклого программирования.
- 11. Задача математического программирования со смешанными ограничениями.
- 12. Постановка задач линейного программирования.
- 13. Графический метод.
- 14. Симплексный метод решения задач линейного программирования.
- 15. Метод искусственного базиса.
- 16. Симплекс метод при отсутствии условий неотрицательности переменных.
- 17. Двойственность в линейном программировании.
- 18. Применение теории двойственности.
- 19. Задачи дробно-линейного и квадратичного программирования.
- 20. Методы возможных направлений (случаи линейных и нелинейных ограничений).
- 21. Методы последовательной безусловной минимизации (метод штрафных функций и метод барьерных функций).

Критерии оценки:

Приведены в разделе 2.

Наименование: тест.

Представление в ФОС: набор вариантов для проведения тестирования.

1. Как называются методы оптимизации, которые используют только значения функции и не требующие вычисления ее производных?

А) прямые методы минимизации (нулевого порядка),

- В) методы первого порядка,
- С) методы порядка, выше первого.
- 2. Метод перебора относится к методам
 - А) первого порядка,
 - В) порядка, выше первого.
 - С) нулевого порядка.
- 3. Суть метода парабол заключается в том, что
 - А) На каждой итерации метода строится кубический трехчлен, график которого проходит через три выбранные точки графика функции f(x).
 - В) На каждой итерации метода строится квадратный трехчлен, график которого (парабола) проходит через три выбранные точки графика функции f(x).
 - С) На отдельных итерациях метода строится кубический трехчлен, график которого проходит через три выбранные точки графика функции f(x)
- 4. Метод золотого сечения заключается в следующем
 - А) Каждая из точек x_1 и x_2 делит отрезок [a, b] на две неравные части так, что отношение длины всего отрезка к длине его большей части равно отношению длин большей и меньшей частей отрезка.
 - В) Каждая из точек x_1 и x_2 делит отрезок [a, b] на две неравные части так, что отношение длины всего большей части к меньшей равно двум.
 - С) Каждая из точек x_1 и x_2 делит отрезок [a, b] на две неравные части произвольным образом.
- 5. В принципе максимума Понтрягина используется
 - А) Лагранжиан
 - В) Гамильтониан
 - С) Якобиан

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	A	С	В	A	В

Критерии оценки:

Приведены в разделе 2.

Наименование: защита лабораторных работ

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине

Критерии оценки:

Приведены в разделе 2.

Наименование: работа на практических занятиях: текущий контроль выполнения заданий.

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине:

Касаткина Е.В. Методические указания к самостоятельной работе и выполнению практических работ по курсу «Методы оптимизации и теория оптимального управления» для направления 01.04.04 «Прикладная математика». — Ижевск, 2021. — 79 с. (Рег. номер МиЕН 1-24/2021).

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине.

Критерии оценки: Приведены в разделе 2.

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов
Практическая работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите практической работы даны правильные ответы не менее чем на 50% заданных вопросов
Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, вы оформленный в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения матер при защите лабораторной работы, даны правильные ответы не чем на 50% заданных вопросов	

Промежуточная аттестация по дисциплине проводится в форме зачета, экзамена.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	85-100
«не зачтено»	43-84

Оценка	Набрано баллов
«отлично»	90-100
«хорошо»	75-89
«удовлетворительно»	60-74
«неудовлетворительно»	0-60

Если сумма набранных баллов менее 50 — обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 50 до 100 баллов, обучающийся допускается до экзамена.

Билет к зачету, экзамену включает 2 теоретических вопроса и 1 практическое задание.

Промежуточная аттестация проводится в письменной форме.

Время на подготовку: 60 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки		
	Обучающийся демонстрирует знание основного учебно-		
(/DOMESTIC)\\	программного материала в объеме, необходимом для дальнейшей		
«зачтено»	учебы, умеет применять его при выполнении конкретных заданий,		
	предусмотренных программой дисциплины		
	Обучающийся демонстрирует значительные пробелы в знаниях		
(///a pay/Tay/a))	основного учебно-программного материала, допустил		
«не зачтено»	принципиальные ошибки в выполнении предусмотренных		
	программой заданий и не способен продолжить обучение		

Оценка	Критерии оценки
«отлично»	Обучающийся показал всестороннее, систематическое и глубокое знание учебного материала, предусмотренного программой, умение уверенно применять на их практике при решении задач (выполнении заданий), способность полно, правильно и аргументировано отвечать на вопросы и делать необходимые выводы. Свободно использует основную литературу и знаком с дополнительной литературой, рекомендованной программой.
«хорошо»	Обучающийся показал полное знание теоретического материала, владение основной литературой, рекомендованной в программе, умение самостоятельно решать задачи (выполнять задания), способность аргументировано отвечать на вопросы и делать необходимые выводы, допускает единичные ошибки, исправляемые после замечания преподавателя. Способен к

	самостоятельному пополнению и обновлению знаний в ходе дальнейшей учебной работы и профессиональной деятельности
«удовлетворительно»	Обучающийся демонстрирует неполное или фрагментарное знание основного учебного материала, допускает существенные ошибки в его изложении, испытывает затруднения и допускает ошибки при выполнении заданий (решении задач), выполняет задание при подсказке преподавателя, затрудняется в формулировке выводов. Владеет знанием основных разделов, необходимых для дальнейшего обучения, знаком с основной и дополнительной литературой, рекомендованной программой.
«неудовлетворительно»	Обучающийся при ответе демонстрирует существенные пробелы в знаниях основного учебного материала, допускает грубые ошибки в формулировании основных понятий и при решении типовых задач (при выполнении типовых заданий), не способен ответить на наводящие вопросы преподавателя. Оценка ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании образовательного учреждения без дополнительных занятий по рассматриваемой дисциплине