Strona główna / Moje kursy / WliT / Informatyka / Niestacjonarne / I stopień / Semestr 4 [WliT-Inf-niest-I]

/ Systemy Baz Danych wykład 2023 N / Egzamin / Test

Rozpoczęto niedziela, 25 czerwca 2023, 11:01

Stan Ukończone
Ukończono niedziela, 25 czerwca 2023, 12:26

Wykorzystany czas 1 godzina 25 min.

Ocena 30,48 pkt. na 44,00 pkt. możliwych do uzyskania (**69,28**%)

Pytanie **1**Poprawnie

Punkty: 1,00 z 1,00

1a. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Informacje o studentach przyjmowanych na studia niezbędne w dziekanacie obejmują imię, nazwisko, pesel i nr_indeksu. Po pierwszym semestrze, każdemu ze studentów zostanie przypisana średnia ocen.

a) Student # pesel * imię * nazwisko * indeks o średnia

c) Student
* imię
* nazwisko
pesel
indeks
* średnia

(a)

(a) b) ✓

(c)

d)

1b. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Hurtownia przyjmuje zamówienia charakteryzowane przez identyfikator zamówienia, datę złożenia zamówienia i sumaryczną wartość zamówienia. Dział księgowości na podstawie złożonych zamówień wystawia faktury charakteryzowane przez numer faktury i datę jej wystawienia.

- (a)
- b)
- (c)
- d)
 ✓

1c. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

W sklepie internetowym użytkownicy opisani przez imię, nazwisko i identyfikujący login, dodatkowo muszą mieć przypisany co najmniej jeden numer telefonu.

- (a)
- (b)
- (c)
- d)
 ✓

1d. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Dla programistów w firmie oprócz unikalnych identyfikatorów, imienia i nazwiska należy pamiętać również znane im języki programowania.

- (a)
- b) ✓
- (c)
- (d)

1e. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Pracownicy w firmie oprócz unikalnych identyfikatorów, imienia i nazwiska są opcjonalnie scharakteryzowani przez języki obce, które znają. Poziom opanowania języka jest reprezentowany przez jedną z kilku wartości.

- b) *
- (c)
- (d)

1f. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Pracownicy scharakteryzowani przez pesel, imię i nazwisko, mogą uczestniczyć w projektach (potencjalnie w wielu) o unikalnej nazwie i budżecie, w określonych rolach o unikalnych nazwach i widełkach wynagrodzenia (potencjalnie pracownik może uczestniczyć w tym samym projekcie w różnych rolach).

- (a)
- (b)
- (c)
- **X** d)**✓**

1g. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Pracownicy scharakteryzowani przez pesel, imię i nazwisko mogą mieć dzieci na utrzymaniu opisane przez imię i wiek. Przyjmij, że dzieci danego rodzica mają unikalne imiona.

- a) *
- (b)
- (c)
- **X** d)

1h. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Pracownicy scharakteryzowani przez pesel, nazwisko i płacę mogą być związkowcami, którzy należą do jednego ze związków zawodowych, które posiadają unikalną nazwę i adres. Pamiętana ma być składka płacona przez związkowców.

- (a)
- (b)
- **X** c)**Y**
- (d)

1i. Modelowanie pojęciowe za pomocą diagramów ERD

Który z poniższych diagramów ERD jest zgodny z załączonym słownym opisem rzeczywistości.

Zamówienia w sklepie scharakteryzowane przez unikalny numer i sumaryczną wartość są składane przez osoby prywatne opisane przez pesel i nazwisko, albo firmy opisane przez regon i nazwę.

- (a)
- (b)
- **x** c) **v**
- (d)

1j. Modelowanie pojęciowe za pomocą diagramów ERD

Dany jest poniższy stan rzeczywistości. Z którymi modelami jest on zgodny.

Wybierz wszystkie poprawne:

2a. Transformacja z modelu pojęciowego do schematu relacyjnej bazy danych

Wskaż wszystkie poprawne transformacje powyższego diagramu ERD.

Przyjmij, że wszystkie poniższe polecenia SQL są poprawne składniowo.

a)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL);
CREATE TABLE A_B (c1 REFERENCES Encja_A, c2 REFERENCES Encja_B, PRIMARY KEY(c1, c2))

b)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20), a1 REFERENCES Encja_A NOT NULL);
ALTER TABLE Encja_A ADD b1 REFERENCES Encja_B;

c)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL,
a1 REFERENCES Encja_A NOT NULL);

d)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL, b1 NUMBER(6) UNIQUE, b2 VARCHAR(20) NOT NULL);

Wybierz wszystkie poprawne:

_ b)

_ d)

2b. Transformacja z modelu pojęciowego do schematu relacyjnej bazy danych

Wskaż poprawną transformację powyższego diagramu ERD.

- a)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL, a1 REFERENCES Encja_A NULL);
- b)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL);
- c)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL, a1 REFERENCES Encja_A NOT NULL);
- d)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL a1 REFERENCES Encja_A
 NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL);

Wybierz jedną odpowiedź:

(b)

 \times c)

(d)

2c. Transformacja z modelu pojęciowego do schematu relacyjnej bazy danych

Wskaż poprawną transformację powyższego diagramu ERD.

- a)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL, a1 REFERENCES Encja_A);
- b)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL a1 REFERENCES Encja_A NOT NULL);

CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20));

c)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL);
CREATE TABLE A_B (c1 REFERENCES Encja_A, c2 REFERENCES Encja_B, PRIMARY KEY(c1, c2));

d)
CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL);

Wybierz jedną odpowiedź:

- (a)
- (b)

(d)

2d. Transformacja z modelu pojęciowego do schematu relacyjnej bazy danych

Wskaż poprawną transformację powyższego diagramu ERD.

- a)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL,
 a1 NOT NULL REFERENCES Encja_A);
- b)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20) NOT NULL,
 a1 REFERENCES Encja_A NOT NULL);
- c)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL,
 a1 REFERENCES Encja_A NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6) PRIMARY KEY, b2 VARCHAR(20));
- d)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_B (b1 NUMBER(6), b2 VARCHAR(20) NOT NULL, a1 NOT NULL REFERENCES Encja_A,
 PRIMARY KEY(b1,a1));

Wybierz jedną odpowiedź:

(b)

(c)

X d)

2e. Transformacja z modelu pojęciowego do schematu relacyjnej bazy danych

Wskaż wszystkie poprawne transformacje powyższego diagramu ERD przy założeniu, że suma zbiorów wystąpień Encji A1 i Encji A2 jest podzbiorem zbioru wystąpień Encji A.

- a)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL, a11 FLOAT(5,2) NULL, a12 FLOAT(5,2) NULL, type CHAR(1) NOT NULL);
- b)
 CREATE TABLE Encja_A1(a1 NUMBER(6) PRIMARY KEY, a11 FLOAT(5,2) NOT NULL);
 CREATE TABLE Encja_A2(a1 NUMBER(6) PRIMARY KEY, a12 FLOAT(5,2) NOT NULL);
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL, a11 REFERENCES Encja_A1 NOT NULL, a12 REFERENCES Encja_A2 NOT NULL);
- c)
 CREATE TABLE Encja_A (a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL);
 CREATE TABLE Encja_A1(a1 NUMBER(6) REFERENCES Encja_A, a11 FLOAT(5,2) NOT NULL, PRIMARY KEY(a1));
 CREATE TABLE Encja_A2(a1 NUMBER(6) REFERENCES Encja_A, a12 FLOAT(5,2) NOT NULL, PRIMARY KEY(a1));
- d)
 CREATE TABLE Encja_A1(a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL,
 a11 FLOAT(5,2) NOT NULL);
 CREATE TABLE Encja_A2(a1 NUMBER(6) PRIMARY KEY, a2 VARCHAR(20) NOT NULL,
 a12 FLOAT(5,2) NOT NULL);

Wybierz wszystkie poprawne:

_ b)

d d)

Dane są schematy relacji R i S:

CREATE TABLE R (

a INTEGER(3) PRIMARY KEY CHECK (a > 0),

b VARCHAR(10) CHECK (b LIKE '%A%') NOT NULL,

c CHAR(1) CHECK (c IN ('A','B')),

d FLOAT(3,2) CHECK (d BETWEEN 2.0 AND 3.0),

e INTEGER (2) REFERENCES S(X));

CREATE TABLE S (

x INTEGER (2) PRIMARY KEY).

Stany relacji R i S są następujące:

Α	В	С	D	E
1	'ALA'	'A'	2.11	1
2	'OLA'	'B'	2.35	1

Х	
1	
2	

Które z poniższych operacji zostaną poprawnie wykonane na relacji R o powyższym stanie.

Prawda	Fałsz		
O x	X	INSERT INTO R VALUES(3, 'OLO', NULL, 2.5, 1)	~
O x	X	INSERT INTO R VALUES(4, NULL, 'B', 2.9, 1)	~
X	Ox	INSERT INTO R VALUES(5, 'ELA', 'A', 2.0, NULL)	~
O x	X	INSERT INTO R VALUES(6, 'ULA', 'A', 2.0, 3)	~
©×	X	INSERT INTO R VALUES(1, 'ALA', 'B', 2.11, 1)	×

4a. Algebra relacji

Dana relacja R:

а	b
1	Ola
4	Olo
3	Ala

i zapytanie: $\sigma_{\text{a>3}}\text{(}~\sigma_{\text{b LIKE '\%a\%'}\text{(}}~\text{R))}.$

Który z podanych wyników powyższego zapytania jest poprawny?

a)	а	b
	1	Ola
	4	Olo
	3	Ala

b)	а	b
	4	Olo
	3	Ala

c)	а	b
	4	Olo

d)	а	b
	50	S

(a)

(b)

_ c)

X d)**✓**

4b. Algebra relacji

Dane są relacje R i S:

R	r1	r2
	1	Ola
	4	Ula
	3	Ala

s [s1	s 2
	4	Jan
	3	lwo

i dane jest zapytanie: $\pi_{r1,s2}(R \bowtie_{r1 < s1} S)$.

Który z podanych wyników powyższego zapytania jest poprawny?

a)	r1	s2
	1	Jan
	1	lwo
	3	Jan

b)	r1 s2	
	1	Jan
	3	lwo
	3	

∀ a)**✓**

- (b)
- (c)
- (d)

4c. Algebra relacji

Dane są relacje R i S:

R	r1	r2
	1	Ola
	4	Ula
	4	Ala

s	s1	s 2
	4	Jan
	3	lwo

i dane jest zapytanie: $\pi_{r2,s1}(R \bowtie_{r1 = s1} S)$.

Który z podanych wyników powyższego zapytania jest poprawny?

a)	r2	s1
	Ula	4
	Ala	3
	_	1

o)	r2	s1
	Ola	-
	Ula	4
	Ala	4

(a)

O c

(d)

4d. Algebra relacji

Dane są relacje R i S:

R	r1	r2
	1	Ola
	4	Ula
	3	Ala

S	s1	s 2
	4	Jan
	3	lwo

i dane jest zapytanie: $R \ltimes_{r1 = s1} S$.

Który z podanych wyników powyższego zapytania jest poprawny?

a) [r1	s2
	1	-
	3	Iwo
	4	Jan

b)	r1	s1
	1	Ola
	4	Ula
	3	Ala

d)	r1	s 2
	3	lwo
	4	Jan

(a)

(b)

X c)

d) *

4e. Algebra relacji

Dane są relacje R i S:

R

r1	r2
1	Ola
1	Ula
2	Ola

S

r2
Ola
Ula

i dane jest zapytanie: $R \div S$.

Który z podanych wyników powyższego zapytania jest poprawny?

a) **r1 r2** 2 Ula

b)

r1	r2
1	Ola
1	Ola

c)

r1	
1	

d)

r2
Ola
Ula

- (a)
- (b)
- **⋉** c)**✓**
- (d)

4f. Algebra relacji

Dane są relacje R i S:

R **r1 r2** 1 Ola 4 Ula

4

S	s1	s 2
	4	Jan
	3	Iwo

i dane jest zapytanie: $\pi_{r1}(R) \cup \pi_{s1}(S)$.

Ala

Który z podanych wyników powyższego zapytania jest poprawny?

a) r1 s1
1 Ola
4 Ula
4 Ala
4 Jan
3 Iwo

b) r1 1 4 3

d)

(a)

(d)

4g. Algebra relacji

Wyraź operację iloczynu relacji ($R \cap S$) za pomocą zbioru operacji należących do minimalnego zbioru kompletnego. \cup 2

$$R \cap S$$

$$R \cap S =$$

a)
$$(R - S) - ((R - S) \cup (S - R))$$

b)
$$(R - S) \cup (S - R)$$

c)
$$(R \cup S) \cup ((R - S) \cup (S - R))$$

d)
$$(R \cup S) - ((R - S) \times (S - R))$$

□ c)✓ d)

√
f)
√

g)h)

5a Normalizacja

Które z poniższych zależności są zależnościami funkcyjnymi?

- a) Pesel studenta → numer indeksu
- b) Nazwisko studenta → Imię studenta
- c) Numer indeksu → Data urodzenia
- d) Data urodzenia → Numer indeksu
- e) Nazwisko studenta → Ocena z Baz Danych
- f) Numer indeksu → Wpis na listach obecności

Wybierz wszystkie poprawne:

___ f)

5b Normalizacja

Dana jest relacja o następującym schemacie i stanie:

Α	В	С
1	Χ	К
1	Χ	К
1	Υ	L
2	Υ	М

Które z poniższych zależności funkcyjnych są spełnione w tej relacji.

Prawda	Fałsz		
X	Ox	AB->C	~
\times	Ox	AC->B	✓
Ox	X	A->C	✓
X	©×	C->B	×

Pytanie 27

Poprawnie

Punkty: 1,00 z 1,00

5c Normalizacja

Dany jest zbiór zależności funkcyjnych: A->B, B-> C.

Korzystając z aksjomatów Armstronga możemy wygenerować z powyższych zależności nowe zależności funkcyjne. Za pomocą jakich aksjomatów wygenerowano poniższe zależności funkcyjne?

AB->A

Aksjomat zwrotności

Aksjomat rozszerzenia

Aksjomat przechodniości

A->C

AB->C

Aksjomat rozszerzenia

Aksjomat przechodniości

Aksjomat zwrotności

Dany jest zbiór atrybutów $X = \{A,B,C,D,E,F\}$ i zbiór zależności funkcyjnych $FD = \{AB->C,B->D,D->E,F->E\}$.

Który z poniższych zbiorów atrybutów jest domknięciem zbioru Y={A,B}, ze względu na powyższy zbiór zależności funkcyjnych.

- i. {A, B, C, D, E, F}
- ii. {A, B, C}
- iii. {A, B}
- **√**iv. {A, B, C, D, E}**✓**

Pytanie 29

Poprawnie

Punkty: 1,00 z 1,00

Dana jest relacja R o następującym schemacie: R(A,B,C,D,E).

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

FD1 ABC->D

FD2 ABC->E

FD3 AC->D

FD4 B->E

Wskaż w powyższym zbiorze niepełne zależności funkcyjne.

Punkty: 0,50 z 1,00

Dana jest relacja R o następującym schemacie: R(A,B,C,D,E,F).

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

FD1 ABC->D

FD2 ABC->E

FD3 AB->F

FD4 E->D

Wskaż w powyższym zbiorze przechodnie zależności funkcyjne.

Prawda	Fałsz		
X/	<pre> « » » » » » » » » » » » » » » » » » »</pre>	FD1 jest przechodnią zależnością funkcyjną	×
•×	×	FD2 jest przechodnią zależnością funkcyjną	×
O x	X	FD3 jest przechodnią zależnością funkcyjną	*
Ox	X	FD4 jest przechodnią zależnością funkcyjną	*

5g. Normalizacja

Które z poniższych implikacji są prawdziwe?

- a) 1NF \Rightarrow 2NF
- b) $2NF \Rightarrow 3NF$
- c) 3NF \Rightarrow 2NF
- d) $2NF \Rightarrow 1NF$
- e) 3NF \Rightarrow 1NF

Prawda	Fałsz		
O x	X	a)	✓
O x		b)	✓
X	Ox	c)	✓
X	Ox	d)	✓
×	Ox	e)	✓

	N 1		1.5	•	
5h	\sim	rr	~ 11	70/	~ 1 ~
111	1 /11	1111	1411	1/11	- 1 -
211	1 1	<i>/</i>	IUII		-10

Dana jest relacja R o schemacie R(A,B,C,D,E,F), gdzie atrybuty A, B i C tworzą klucz.

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

ABC->D

ABC->E

ABC->F

AC->D

D->F

F->E

Podaj atrybuty wtórne, które nie są w pełni funkcyjnie zależne od klucza relacji.

Prawda	Fałsz			
O x	X	atrybut A	✓	
O x	X	Atrybut B	✓	
O x	X	Atrybut C	✓	
X	Ox	Atrybut D	✓	
⊙ ×	K	Atrybut E	×	
© X	X	Atrybut F	×	

Punkty: 1,00 z 1,00

5i Normalizacja

Dana jest relacja o schemacie R(<u>A,B,C</u>,D,E,F), gdzie atrybuty A, B i C tworzą klucz.

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

ABC->D

ABC->E

ABC->F

AC->D

D->F

B->E

Wskaż atrybuty wtórne, który są przechodnio zależne od klucza relacji.

Prawda	Fałsz		
O x	₹ ♥	Atrybut A	~
O x	Χø	Atrybut B	•
O x	X	Atrybut C	✓
O x	×	Atrybut D	✓
O x	×	Atrybut E	•
X	Ox	Atrybut F	✓

5j Normalizacja

Dana jest relacja o schemacie R(<u>A,B,C</u>,D,E,F), gdzie atrybuty A, B i C tworzą klucz.

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

ABC->D

ABC->E

ABC->F

D->F

Czy schemat relacji R spełnia wymagania:

Prawda	Fałsz		
X	Ox	2NF	✓
Ox	X	3NF	✓

Spełnia 2NF, jeśli nie istnieje żadne rozszerzenie typu AC -> D i ABC -> D Spełnia 3NF, jeśli nie istnieje żadna przechodniość typu AC -> D i D -> F

5k Normalizacja

Dana jest baza danych o schemacie R(A,B,C,D,E,F), gdzie atrybuty A, B i C tworzą klucz.

Dany jest również zbiór zależności funkcyjnych FD obejmujący następujące zależności:

ABC -> D

ABC -> E

ABC -> F

AC -> D

E -> F

Które z poniższych dekompozycji są poprawne, tj. doprowadzają schemat bazy danych do wymagań 2NF i 3NF oraz są bezstratne?

Prawda	Fałsz		
O x	X	R1(<u>ABC</u> D), R2(<u>ABC</u> E), R3(<u>ABC</u> F)	~
*	X	R1(<u>AC</u> D), R2(<u>AB</u> E), R3(<u>E</u> F)	×
X	*	R1(<u>ABC</u> E), R2(<u>E</u> F), R3(<u>AC</u> D)	×
Ox	X	R1(<u>ABC</u> EF), R2(<u>AC</u> D)	✓