	v	va	V1	vo						x0				x0		
0	0	0 X2	X1 0	X0 0				[0	1	3	2	0	1	3	2
1	0	0	0	1				x2								
2	0	0	1	0					4	5	7	6	4	5	7	6
3	0	0	1	1					12	13	15	x2	12	13	15	14
4	0	1	0	0					1		15	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{x3}$	1			x3
5	0	1	0	1					8	9	11	10	8	9	11	10
6	0	1	1	0				L								
7	0	1	1	1						0	x1			0	x1	
8	1	0	0	0					0	x0	3	2	0	x0	3	2
9	1	0	0	1]				
10	1	0	1	0					4	5	7	6	4	5	7	6
11	1	0	1	1				x2	12	12	1.5	x2	12	12	1.5	14
12	1	1	0	0					12	13	15	14	12	13	15	14
13	1	1	0	1					8	9	9 11 10 x3		8	9	11	11 10 x3
14	1	1	1	0												
15	1	1	1	1						x0	x 1			x0	x1	
7	XX	XX							0	1	3	2	0	1	3	2
	3 2	1 0														
0 0		0 0			-				4	5	7	6	4	5	7	6
1 (_	0 1						x2	12	13	15	14 x2	12	13	15	14
3 0	_	1 0 1 1										x3				x3
4 (0 0							8	9	11	10	8	9	11	10
5 (0 1			+											
6 0		1 0			+				.	x0	x1			x0	x1	
7 0		1 1							0	1	3	2	0	1	3	2
8 1	_	0 0							4	5	7	6 1	4	5	7	6
9 1	0	0 1						x2				x2				
1 1	0	1 0						X2	12	13	15	14	12	13	15	14
0	0	1 1			+						1.1	x3	0		1.1	x3
$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$		1 1							8	9	11	10	8	9	11	10
1 1	1	0 0									x1	'			x1	'
2					-					x0		2		x0	3	<u> </u>
1 1 3		0 1							0 1	3	3 2	0	1	3	4	
1 1	1	1 0							4	5	7	6	4	5	7	6
4								x2				x2				
1 1 5		1 1							12	13	15	14	12	13	15	14
									8	9	11	10 x3	8	9	11	10 x3
										-	x1				x1	

_		
Nome e Matricula		
Nome e Marrichia		

- 1. Usando a Representação de 7 Bits (3 expoente e 4 mantissa) de Ponto Flutuante, Converta os numeros para representação binária, realize as operações e depois converta novamente para Float com algarismos decimais. Suponha A= 2.4, B = 0.7, C = 8.3; Calcule S= A + B e M = A * C;
- 2. Qual o valor para Y0, Y1 e GS quando (a) d0=0,d1=1,d2=0,d3=1 e quando (b) d0=0,d1=0,d2=1,d3=1? (c) Escreva as equações booleanas para Y0, Y1 e GS.

- 3) Suponha um circuito com entradas A e C. A com B bits em complemento de B e B com apenas B bit. Se B = 1, a saída B = B suponha que B seja em B bits em complemento de B . Preencha a tabela, faça os mapas e minimize as equações. Não é necessário montar o circuito.
- 4) Suponha um circuito que receba 4 bits de entrada X3X2X1X0. As saidas são dois bits S1S0 e irá indicar qual bit de entrada está ligado. Por exemplo, Se apenas X1=1, então a saída é S1S0 = 01. Este circuito é um decodificador de prioridade. Caso, dois ou mais bits estiverem ligados, a saída indicará o maior deles. Por exemplo, X1=1 e X2=1, a saída será S1S0 = 10 (2 em decimal). Uma terceira saida N de 1 bit indica quando nenhum sinal está ligado. Preencha a tabela, faça os mapas e minimize as equações. Não é necessário montar o circuito.