Projection onto k-dimensional subspaces

Consider an n-dimensional vector space V with the dot product at the inner product and a subspace U of V. With basis vectors $\mathbf{b}_1, \ldots, \mathbf{b}_k$ of U, we obtain the **orthogonal projection** of any vector $\mathbf{x} \in V$ onto U via

$$\pi_U(x) = B\lambda$$
, $\lambda = (B^\top B)^{-1}B^\top x$
 $B = (b_1|\cdots|b_k) \in \mathbb{R}^{n \times k}$

where λ is the **coordinate vector** of $\pi_U(x)$ with respect to the basis b_1, \ldots, b_k of U.

The projection matrix P is

$$P = B(B^{\mathsf{T}}B)^{-1}B^{\mathsf{T}}$$

such that

$$\pi_U(\mathbf{x}) = \mathbf{P}\mathbf{x}$$

for all $x \in V$.