

Data Definition Language

Allows the specification of:

- The schema for each relation, including attribute types.
- Integrity constraints
- Authorization information for each relation.
- Non-standard SQL extensions also allow specification of
 - The set of indices to be maintained for each relations.
 - The physical storage structure of each relation on disk.

Create Table Construct

An SQL relation is defined using the create table command:

```
create table r (A_1 D_1, A_2 D_2, ..., A_n D_n, (integrity-constraint<sub>1</sub>), ..., (integrity-constraint<sub>k</sub>))
```

- r is the name of the relation
- \square each A_i is an attribute name in the schema of relation r
- \Box D_i is the data type of attribute A_i
- Example:

```
create table branch
(branch_name char(15),
branch_city char(30),
assets integer)
```


Domain Types in SQL

- char(n). Fixed length character string, with user-specified length n.
- varchar(n). Variable length character strings, with user-specified maximum length n.
- ☐ int. Integer (a finite subset of the integers that is machine-dependent).
- □ **smallint.** Small integer (a machine-dependent subset of the integer domain type).
- numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of decimal point.
- □ real, double precision. Floating point and double-precision floating point numbers, with machine-dependent precision.
- float(n). Floating point number, with user-specified precision of at least n digits.

Integrity Constraints on Tables

- not null
- \square primary key $(A_1, ..., A_n)$

Example: Declare *branch_name* as the primary key for *branch*

.

```
create table branch
    (branch_name char(15),
    branch_city char(30) not null,
    assets integer,
    primary key (branch_name))
```

primary key declaration on an attribute automatically ensures **not null** in SQL-92 onwards, needs to be explicitly stated in SQL-89

Basic Insertion and Deletion of Tuples

- Newly created table is empty
- Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

- Insertion fails if any integrity constraint is violated
- Delete all tuples from account

delete from account

Note: Will see later how to delete selected tuples

Drop and Alter Table Constructs

- The drop table command deletes all information about the dropped relation from the database.
- The alter table command is used to add attributes to an existing relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

- All tuples in the relation are assigned *null* as the value for the new attribute.
- The alter table command can also be used to drop attributes of a relation:

alter table r drop A

where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases

Basic Query Structure

□ A typical SQL query has the form:

select
$$A_1$$
, A_2 , ..., A_n
from r_1 , r_2 , ..., r_m
where P

- □ *A*_i represents an attribute
- \square R_i represents a relation
- □ *P* is a predicate.
- ☐ This query is equivalent to the relational algebra expression.

$$\prod_{A_1,A_2,...,A_n} (\sigma_P(r_1 \times r_2 \times ... \times r_m))$$

□ The result of an SQL query is a relation.

The select Clause

- ☐ The **select** clause list the attributes desired in the result of a query
 - corresponds to the projection operation of the relational algebra
- Example: find the names of all branches in the *loan* relation:

```
select branch_name from loan
```

In the relational algebra, the query would be:

$$\prod_{branch\ name} (loan)$$

- NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
 - E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name
 - Some people use upper case wherever we use bold font.

The select Clause (Cont.)

- SQL allows duplicates in relations as well as in query results.
- □ To force the elimination of duplicates, insert the keyword **distinct** after select.
- Find the names of all branches in the *loan* relations, and remove duplicates

select distinct *branch_name* **from** *loan*

The keyword all specifies that duplicates not be removed.

select all branch_name **from** loan

The select Clause (Cont.)

An asterisk in the select clause denotes "all attributes"

select *
from loan

- ☐ The **select** clause can contain arithmetic expressions involving the operation, +, −, *, and /, and operating on constants or attributes of tuples.
- □ E.g.:

select *loan_number, branch_name, amount* * 100 **from** *loan*

The where Clause

- ☐ The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- □ To find all loan number for loans made at the Perryridge branch with loan amounts greater than \$1200.

```
select loan_number
from loan
where branch_name = 'Perryridge' and amount > 1200
```

 Comparison results can be combined using the logical connectives and, or, and not.

The from Clause

- ☐ The **from** clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- ☐ Find the Cartesian product *borrower X loan*

select *
from borrower, loan

Find the name, loan number and loan amount of all customers having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge'

The Rename Operation

- □ SQL allows renaming relations and attributes using the **as** clause: old-name **as** new-name
- □ E.g. Find the name, loan number and loan amount of all customers; rename the column name *loan_number* as *loan_id*.

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

Tuple Variables

- □ Tuple variables are defined in the **from** clause via the use of the **as** clause.
- ☐ Find the customer names and their loan numbers and amount for all customers having a loan at some branch.

```
select customer_name, T.loan_number, S.amount

from borrower as T, loan as S

where T.loan_number = S.loan_number
```

Find the names of all branches that have greater assets than some branch located in Brooklyn.

```
select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn'
```

- □Keyword **as** is optional and may be omitted borrower **as** $T \equiv borrower T$
 - ☐ Some database such as Oracle *require* **as** to be omitted

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator "like" uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - □ underscore (_). The _ character matches any character.
- Find the names of all customers whose street includes the substring "Main".

select customer_name
from customer
where customer_street like '% Main%'

Match the name "Main%"

like 'Main\%' escape '\'

- □ SQL supports a variety of string operations such as
 - concatenation (using "||")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan in Perryridge branch

- □ We may specify desc for descending order or asc for ascending order, for each attribute; ascending order is the default.
 - Example: order by customer_name desc

Duplicates

- In relations with duplicates, SQL can define how many copies of tuples appear in the result.
- **Multiset** versions of some of the relational algebra operators given multiset relations r_1 and r_2 :
 - 1. $\sigma_{\theta}(r_1)$: If there are c_1 copies of tuple t_1 in r_1 , and t_1 satisfies selections σ_{θ} , then there are c_1 copies of t_1 in $\sigma_{\theta}(r_1)$.
 - 2. $\Pi_A(r)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(r_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .
 - 3. $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in r_1 and c_2 copies of tuple t_2 in t_2 , there are $c_1 \times c_2$ copies of the tuple t_1 . t_2 in $t_1 \times t_2$

Duplicates (Cont.)

Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- Then $\Pi_B(r_1)$ would be $\{(a), (a)\}$, while $\Pi_B(r_1) \times r_2$ would be $\{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)\}$
- SQL duplicate semantics:

select
$$A_1, A_2, ..., A_n$$
 from $r_1, r_2, ..., r_m$ **where** P

is equivalent to the *multiset* version of the expression:

$$\prod_{A_1,A_2,\ldots,A_n} (\sigma_P(r_1 \times r_2 \times \ldots \times r_m))$$

Set Operations

- □ The set operations union, intersect, and except operate on relations and correspond to the relational algebra operations \cup , \cap , -.
- Each of the above operations automatically eliminates duplicates; to retain all duplicates use the corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs *m* times in *r* and *n* times in *s*, then, it occurs:

- \square m + n times in r union all s
- \square min(m,n) times in r intersect all s
- max(0, m n) times in r except all s

Set Operations

Find all customers who have a loan, an account, or both:

```
(select customer_name from depositor)
union
(select customer_name from borrower)
```

☐ Find all customers who have both a loan and an account.

```
(select customer_name from depositor)
intersect
(select customer_name from borrower)
```

☐ Find all customers who have an account but no loan.

```
(select customer_name from depositor)
except
(select customer_name from borrower)
```


Aggregate Functions

☐ These functions operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

☐ Find the average account balance at the Perryridge branch.

```
select avg (balance)
    from account
    where branch_name = 'Perryridge'
```

☐ Find the number of tuples in the *customer* relation.

```
select count (*)
from customer
```

Find the number of depositors in the bank.

```
select count (distinct customer_name) from depositor
```


Aggregate Functions – Group By

☐ Find the number of depositors for each branch.

```
select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name
```

Note: Attributes in **select** clause outside of aggregate functions must appear in **group by** list

Aggregate Functions – Having Clause

☐ Find the names of all branches where the average account balance is more than \$1,200.

select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200

Note: predicates in the **having** clause are applied after the formation of groups whereas predicates in the **where** clause are applied before forming groups

Nested Subqueries

- SQL provides a mechanism for the nesting of subqueries.
- A subquery is a select-from-where expression that is nested within another query.
- □ A common use of subqueries is to perform tests for set membership, set comparisons, and set cardinality.

"In" Construct

Find all customers who have both an account and a loan at the bank.

from borrower
where customer_name in (select customer_name
from depositor)

Find all customers who have a loan at the bank but do not have an account at the bank

select distinct customer_name
from borrower
where customer_name not in (select customer_name
from depositor)

Example Query

 Find all customers who have both an account and a loan at the Perryridge branch

Note: Above query can be written in a much simpler manner. The formulation above is simply to illustrate SQL features.

"Some" Construct

Find all branches that have greater assets than some branch located in Brooklyn.

```
select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and
S.branch_city = 'Brooklyn'
```

□ Same query using > some clause

"All" Construct

Find the names of all branches that have greater assets than all branches located in Brooklyn.

```
select branch_name
    from branch
    where assets > all
        (select assets
        from branch
        where branch_city = 'Brooklyn')
```


"Exists" Construct

Find all customers who have an account at all branches located in Brooklyn.

- □ Note that $X Y = \emptyset \iff X \subset Y$
- □ Note: Cannot write this query using = all and its variants

Absence of Duplicate Tuples

- The unique construct tests whether a subquery has any duplicate tuples in its result.
- ☐ Find all customers who have at most one account at the Perryridge branch.

```
select T.customer_name
from depositor as T
where unique (
    select R.customer_name
    from account, depositor as R
    where T.customer_name = R.customer_name and
        R.account_number = account.account_number and
        account_branch_name = 'Perryridge')
```


Example Query

☐ Find all customers who have at least two accounts at the Perryridge branch.

```
select distinct T.customer_name
from depositor as T
where not unique (
    select R.customer_name
    from account, depositor as R
    where T.customer_name = R.customer_name and
        R.account_number = account.account_number and
        account_branch_name = 'Perryridge')
```

Variable from outer level is known as a correlation variable

Modification of the Database – Deletion

Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge'

Delete all accounts at every branch located in the city 'Needham'.

Example Query

Delete the record of all accounts with balances below the average at the bank.

```
delete from account
    where balance < (select avg (balance)
    from account)</pre>
```

- Problem: as we delete tuples from deposit, the average balance changes
- Solution used in SQL:
 - 1. First, compute avg balance and find all tuples to delete
 - Next, delete all tuples found above (without recomputing avg or retesting the tuples)

Modification of the Database – Insertion

Add a new tuple to account

insert into account
values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)
 values ('Perryridge', 1200, 'A-9732')

Add a new tuple to account with balance set to null

insert into account
 values ('A-777','Perryridge', null)

Modification of the Database – Insertion

Provide as a gift for all loan customers of the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account

```
insert into account
    select loan_number, branch_name, 200
    from loan
    where branch_name = 'Perryridge'
insert into depositor
    select customer_name, loan_number
    from loan, borrower
    where branch_name = 'Perryridge'
        and loan.account_number = borrower.account_number
```

- □ The select from where statement is evaluated fully before any of its results are inserted into the relation
 - Motivation: insert into table1 select * from table1

Modification of the Database – Updates

- □ Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.
 - Write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

set balance = balance * 1.05 **where** balance ≤ 10000

- The order is important
- Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

Same query as before: Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.

Joined Relations**

- Join operations take two relations and return as a result another relation.
- ☐ These additional operations are typically used as subquery expressions in the **from** clause
- Join condition defines which tuples in the two relations match, and what attributes are present in the result of the join.
- □ **Join type** defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join typesJoin Conditionsinner joinnaturalleft outer joinon < predicate>right outer joinusing $(A_1, A_1, ..., A_n)$ full outer join

Joined Relations – Datasets for Examples

- Relation loan
- □ Relation *borrower*

loan_number	branch_name	amount	customer_name	loan_number	
L-170	Downtown	3000	Jones	L-170	
L-230	Redwood	4000	Smith	L-230	
L-260	Perryridge	1700	Hayes	L-155	
loan			borrower		

Note: borrower information missing for L-260 and loan information missing for L-155

Joined Relations – Examples

loan inner join borrower on loan.loan_number = borrower.loan_number

loan_number	branch_name	amount	customer_name	loan_number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230

□ loan left outer join borrower on loan.loan_number = borrower.loan_number

loan_number	branch_name	amount	customer_name	loan_number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-260	Perryridge	1700	null	null

Joined Relations – Examples

□ loan natural inner join borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

□ loan natural right outer join borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

☐ Find all customers who have either an account or a loan (but not both) at the bank.

select *customer_name*

from (depositor natural full outer join borrower) where account_number is null or loan_number is null

Joined Relations – Examples

- Natural join can get into trouble if two relations have an attribute with same name that should not affect the join condition
 - e.g. an attribute such as *remarks* may be present in many tables
- □ Solution:
 - loan full outer join borrower using (loan_number)

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Derived Relations

- □ SQL allows a subquery expression to be used in the **from** clause
- ☐ Find the average account balance of those branches where the average account balance is greater than \$1200.

```
select branch_name, avg_balance
from (select branch_name, avg (balance)
    from account
    group by branch_name )
    as branch_avg ( branch_name, avg_balance )
where avg_balance > 1200
```

Note that we do not need to use the **having** clause, since we compute the temporary (view) relation *branch_avg* in the **from** clause, and the attributes of *branch_avg* can be used directly in the **where** clause.

View Definition

- A relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.
- A view is defined using the create view statement which has the form

create view v as < query expression >

- where <query expression> is any legal SQL expression. The view name is represented by *v*.
- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.

Example Queries

A view consisting of branches and their customers

Find all customers of the Perryridge branch

```
select customer_name
from all_customer
where branch_name = 'Perryridge'
```


Uses of Views

- Hiding some information from some users
 - Consider a user who needs to know a customer's name, loan number and branch name, but has no need to see the loan amount.
 - Define a view

```
(create view cust_loan_data as
select customer_name, borrower.loan_number, branch_name
from borrower, loan
where borrower.loan_number = loan.loan_number)
```

- Grant the user permission to read cust_loan_data, but not borrower or loan
- Predefined queries to make writing of other queries easier
 - Common example: Aggregate queries used for statistical analysis of data

Processing of Views

- When a view is created
 - the query expression is stored in the database along with the view name
 - the expression is substituted into any query using the view
- Views definitions containing views
 - One view may be used in the expression defining another view
 - A view relation v_1 is said to depend directly on a view relation v_2 if v_2 is used in the expression defining v_1
 - A view relation v_1 is said to depend on view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
 - □ A view relation *v* is said to be *recursive* if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
- □ View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1 Replace the view relation v_i by the expression defining v_i **until** no more view relations are present in e_1

 As long as the view definitions are not recursive, this loop will terminate

With Clause

- The **with** clause provides a way of defining a temporary view whose definition is available only to the query in which the **with** clause occurs.
- Find all accounts with the maximum balance

```
with max_balance (value) as
select max (balance)
from account
select account_number
from account, max_balance
where account.balance = max_balance.value
```


Complex Queries using With Clause

☐ Find all branches where the total account deposit is greater than the average of the total account deposits at all branches.

- Note: the exact syntax supported by your database may vary slightly.
 - E.g. Oracle syntax is of the form
 with branch_total as (select ..),
 branch_total_avg as (select ..)
 select ...

Update of a View

Create a view of all loan data in the *loan* relation, hiding the *amount* attribute

```
create view loan_branch as
select loan_number, branch_name
from loan
```

Add a new tuple to loan_branch

```
insert into loan_branch
    values ('L-37', 'Perryridge')
```

This insertion must be represented by the insertion of the tuple

```
('L-37', 'Perryridge', null)
```

into the *loan* relation

Updates Through Views (Cont.)

- Some updates through views are impossible to translate into updates on the database relations

Others cannot be translated uniquely

- insert into all_customer values ('Perryridge', 'John')
 - Have to choose loan or account, and create a new loan/account number!
- Most SQL implementations allow updates only on simple views (without aggregates) defined on a single relation

1

Null Values

- ☐ It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- ☐ The predicate **is null** can be used to check for null values.
 - Example: Find all loan number which appear in the *loan* relation with null values for *amount*.

```
select loan_number
from loan
where amount is null
```

- ☐ The result of any arithmetic expression involving *null* is *null*
 - Example: 5 + null returns null
- □ However, aggregate functions simply ignore nulls
 - More on next slide

Null Values and Three Valued Logic

- Any comparison with *null* returns *unknown*
 - □ Example: 5 < null or null <> null or null = null
- ☐ Three-valued logic using the truth value *unknown*:
 - OR: (unknown or true) = true,(unknown or false) = unknown(unknown or unknown) = unknown
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown
 - □ NOT: (**not** unknown) = unknown
 - "P is unknown" evaluates to true if predicate P evaluates to unknown
- □ Result of where clause predicate is treated as false if it evaluates to unknown

Null Values and Aggregates

Total all loan amounts

select sum (amount) from loan

- Above statement ignores null amounts
- Result is *null* if there is no non-null amount
- All aggregate operations except count(*) ignore tuples with null values on the aggregated attributes.