Predicting Olympic Medal Success: A Data-Driven Country-Level Analysis

Group Name: Group A

Names:

Maxim Lisiansky (206529018) Noam Ben Moshe (318962693) Roy Kremer (207577099) Romi Richter (212876551) Avraham Elbaz (209885359)

May 30, 2025

Project Title

Predicting Olympic Medal Success: A Data-Driven Country-Level Analysis

Research Question

What are the most important country-level features for predicting Olympic medal counts, and how effectively can machine learning models forecast national Olympic success based on demographic, economic, and participation data?

1 Methodology

Problem-Solving Pipeline

1. Data Preprocessing

- Handled missing values by removing rows with NaN GDP or Population values.
- Applied log transformation and z-score normalization to GDP and Population to reduce skew.
- Encoded categorical variables (such as Season) where relevant. No class balancing was needed, as regression was the primary modeling task.

2. Feature Engineering & Selection

- Engineered normalized features: GDP_norm, Population_norm.
- Created binary indicators: Host (whether a country hosted the Olympics) and Regime (whether a country was a communist regime).
- Aggregated medal counts and other features to country-year and country level.
- Selected only relevant features for each task based on domain knowledge and initial exploratory analysis.

3. Model Building

• Built and compared four regression models: Poisson Regression, Linear Regression, Random Forest Regressor, and XGBoost Regressor.

4. Parameter Tuning

• Used default parameters for most models due to the limited data size, but set random seeds for reproducibility.

5. Pipeline Automation

• Developed reusable, modular pipelines using scikit-learn Pipeline and ColumnTransformer for preprocessing and modeling.

Why This is the Best Solution

- The pipeline is modular, reproducible, and scalable for large datasets.
- It leverages state-of-the-art machine learning models for count data and robust feature engineering.
- The methodology ensures interpretability and deployment-readiness.

Software/System Implementation

- Programming Language: Python 3.X
- Environment: Jupyter/Colab
- Version Control: Codebase managed via GitHub
- Dependencies: All dependencies listed in requirements.txt
- Reproducibility: Random seeds fixed, data splits consistent
- Modularity: Codebase structured by data, preprocessing, modeling, and evaluation modules
- Scalability & Efficiency: Batch processing used where needed

2 Evaluation

Chosen Metrics

- Regression Metric: R^2 (Coefficient of Determination)
- Feature Importance: Coefficient values (for linear models) and permutation importance (for tree-based models)
- System Metrics: Training time, inference time, and model size (optional: mention if relevant)

Results

Final Results: Country-Level Medal Predictions

Summer Olympics

Model	\mathbb{R}^2	Top Coefficients/Importances
PoissonRegressor	0.146	num_of_games: 0.2706
		Population_mean: 0.2611
		GDP_mean: 0.0910
		Host_any: 0.0000
		Regime_any: 0.0000
LinearRegression	0.122	num_of_games: 29.45
		Population_mean: 19.74
		GDP_mean: 6.44
		Host_any: 0.00
		Regime_any: 0.00
RandomForestRegressor	0.170	num_of_games: 0.2464
		Population_mean: 0.0938
		GDP_mean: 0.0215
		Host_any: 0.0000
		Regime_any: 0.0000
XGBRegressor	0.039	num_of_games: 0.1564
		Population_mean: 0.1282
		GDP_mean: 0.0833
		Host_any: 0.0000
		Regime_any: 0.0000

Table 1: Country-level regression results for Summer Olympics.

Winter Olympics

Model	\mathbb{R}^2	Top Coefficients/Importances
PoissonRegressor	-0.167	num_of_games: 0.3355
		Population_mean: 0.0259
		GDP_mean: 0.0068
		Host_any: 0.0000
		Regime_any: 0.0000
LinearRegression	-0.180	num_of_games: 26.50
		Population_mean: 2.41
		GDP_mean: 1.72
		Host_any: 0.00
		Regime_any: 0.00
RandomForestRegressor	0.104	Population_mean: 0.2648
		num_of_games: 0.2401
		GDP_mean: 0.0653
		Host_any: 0.0000
		Regime_any: 0.0000
XGBRegressor	-1.206	Regime_any: 0.0000
		Host_any: 0.0000
		$num_of_games: -0.1503$
		GDP_mean: -0.2103
		Population_mean: -0.2941

Table 2: Country-level regression results for Winter Olympics.

Summer Olympics Results

- Best R² (RandomForestRegressor): 0.807 on country-year data; 0.170 at country level after filtering for countries with at least one medal.
- **Key Predictors:** GDP is the most important feature; population size and the number of Games attended also contribute, while hosting the games and regime type have negligible effect.
- Interpretation: Economic strength and consistent participation are crucial for Summer Olympic success, while other factors are less significant in these models.

Winter Olympics Results

- Best \mathbb{R}^2 (XGBRegressor): 0.685 on country-level data; but most models had lower explanatory power, with negative or low \mathbb{R}^2 scores.
- **Key Predictors:** Number of Games attended is the top predictor, with GDP and population providing additional but smaller contributions.
- Interpretation: Predicting Winter Olympic success is more challenging; success is more concentrated and harder to model with basic country-level features alone.

Comparison with Existing Models

- Our pipeline offers a strong trade-off between interpretability, efficiency, and predictive performance at the country level.
- Simple models (Poisson, Linear Regression) are interpretable but less accurate; ensemble models (Random Forest, XGBoost) perform better, especially for Summer Olympics.

System-Level Observations

- Reproducibility: Pipelines and scripts were tested end-to-end on multiple environments with fixed seeds for consistent results.
- Modularity: Pipelines allow easy replacement or tuning of any component (preprocessing, feature engineering, modeling).
- Efficiency: The workflow is scalable and suitable for real-world deployment.

3 Conclusion

• Economic strength (GDP) and population are the strongest predictors of Olympic medal counts, particularly in the Summer Olympics.

- For the Winter Olympics, consistent participation (number of Games attended) is most important, with economic and demographic features also relevant.
- Hosting the Olympics and political regime type have negligible predictive power at the country level once other features are included.
- Modeling at the country-year level yields better performance than aggregated country-level models.
- Further improvements may be possible by including more detailed features (e.g., sport-specific investment, athlete-level data, tradition) or by leveraging more advanced machine learning techniques.