Situated Temporal Planning Using Deadline-aware Metareasoning

Shahaf S. Shperberg¹, Andrew Coles², Erez Karpas³, Wheeler Ruml⁴, and Solomon Eyal Shimony¹

¹Ben-Gurion University, Israel; ²King's College London, UK; ³Technion, Israel; ³University of New Hampshire, USA

Situated Temporal Planning [Cashmore et al. 2018]

Example: planning a route:

- 'take 10:00 bus' action expires at 10:00 subtree of plans becomes invalid;
 consider only if sufficient time to complete plan
- exploring 'take 9:47 bus' action can invalidate 10:00 action; searching under multiple nodes means less time for each
- a plan expiration time and cost are uncertain until the plan is complete but completion effort also uncertain

which plans to explore?

Unknown deadlines: greedy schemes

• $r_i(t_0)$: the best rate of improvement per time unit (slope) for process i:

• **P-Greedy** [Shperberg et al. 2019]: Allocate t_u time units to the process that

maximizes: $Q_i(t_0) = r_i(t_0) + \frac{\alpha}{E(D_i)}$

• Delay-Damage Aware (DDA): Allocate t_u time units to the process that maximizes: $Q_i(t_0) = r_i(t_0) - \gamma \cdot r_i(t_0 + t_u)$

DDA uses a more methodological way to decide which process is damaged the most by delay

Allocating Effort when Actions Expire (AE2) [Shperberg et al. 2019]

n partial plans/nodes/processes to share CPU time. Given for each process i:

- effort CDF: M_i(t) = probability that i requires CPU time ≤ t
- success probability: P_i = probability that i finds a solution (without considering time found)
- deadline CDF: D_i(t) = probability that i expires before t (clock wall time).
 Not certain until solution is complete

Find a **schedule** for the processes that **maximizes probability** of finding a solution that is **still valid** when found.

AE2 is NP-Hard. The (AE)² can be modeled as an MDP, but the state space is exponential in n.

Known deadlines:

Linear contiguous policies (LCP): (1, 1, 1, 3, 3, 2, 2, 2, ...)

No feedback and allocation for all process are contiguously

With known deadlines, there exists an LCP that is an optimal solution.

Search -> Metareasoning -> Search

Estimating the distributions:

- OPTIC uses a temporal relaxed planning graph (TRPG) (Coles et al. 2010) to estimate **distance-to-go** d(s) and **latest start time** lst(s) for every state.
- d(s) is used for estimating distribution of remaining search time (M_i)
- lst(s) is used for estimating distribution for deadlines (D_i)

Known deadlines: pseudo-polynomial algorithm

- $LPF_i(t_0, t_u)$: the log probability of failure for the process to find a timely solution within t_u processing time units, starting at time t_0
- -LPF is equivalent to utility

DP algorithm:

- 1. Sort processes in a non-decreasing order of deadlines
- 2. Compute the optimal utility of scheduling processes I thought **n** starting from time **t**:

$$OPT(t,l) = \max_{0 \le j \le d_l - t} \left(OPT(t+j,l+1) - LPF_l(t,j) \right)$$

- 3. Return OPT(0,1) as the utility of the optimal policy.
 - runs in time polynomial in \mathbf{n} and $\max d_i$
 - Usable when a solution needs to be found before a known (common to all processes) timeout, e.g., Algorithm Portfolio

Empirical Evaluation - results

Domain	baseline		DDA		DDA (dom tuned)	
airport	19.0	(19–19)	20.0	(20-20)	20.5	(19–21)
pw-nt	4.0	(3-4)	4.0	(3-5)	3.9	(3-5)
rcll 1	37.7	(37-40)	73.7	(53–92)	83.9	(59–99)
rcll 2	1.0	(1-1)	4.0	(2-23)	2.7	(0-13)
sat cmplx	5.0	(5-5)	5.0	(5–5)	3.8	(2-5)
sat tw	5.0	(5-5)	5.0	(5–5)	3.6	(3-5)
trucks	6.0	(6–6)	6.9	(6–9)	5.7	(5-8)
turtlebot	14.0	(14-14)	12.5	(10-13)	13.0	(13-13)
umts-flaw	4.1	(4-5)	5.1	(5–6)	5.0	(5-5)
umts	48.0	(48-48)	45.5	(42–49)	45.7	(44-49)
TOTAL	143.8	(142-147)	181.7	(151–227)	187.7	(153–223)

Conclusion

Considering planning time is **hard**, but ignoring it is not the solution!

