Python3 introduction: exercise sheet

Institute for Analysis and Scientific Computing

Disclaimer: These exercises are **NOT** mandatory! However, if you are new to Python3, we suggest doing Exercise 1.

Exercise 1: Take a look at the slides and install Python3 on your system.

Exercise 2: Consider a partition $0 = x_0 < x_1 < \ldots < x_N = 1$ of the interval [0,1]. Let

$$h_0 := 0$$
, $h_{N+1} := 0$, and $h_i := x_i - x_{i-1}$ for $i = 1, ..., N$.

Consider the matrix $A \in \mathbb{R}^{(N+1)\times(N+1)}$, given by

$$A_{ij} := \begin{cases} h_i^{-1} + h_{i+1}^{-1} & \text{if } i = j, \\ -h_i^{-1} & \text{if } |i - j| = 1, \\ 0 & \text{else.} \end{cases}$$

Write a program that reads the points x_i from the file mesh.csv (there, N=2000 and every line contains a pair (i,x_i)). Assemble the matrix A and check if the matrix is correct by checking whether $z^{\top}Az=0$ for $z=(1,\ldots,1)^{\top}$. Furthermore, compute the eigenvalues of A and write them to a file eigenvalues.csv.

Exercise 3: Let $f: \mathbb{R} \to \mathbb{R}: x \mapsto \sin(x)$. Plot f in the interval [-3-3].

Exercise 4: Let $(f_n)_{n\in\mathbb{N}}$ and $(g_n)_{n\in\mathbb{N}}$ be the sequences given by

$$f_n := \sqrt{6\sum_{k=0}^n \frac{1}{(k+1)^2}}$$
 and $g_n := \sum_{k=0}^n \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6}\right).$

For n = 0, ..., 10 compute f_n and g_n and visualize the convergence of $|\pi - f_n|$ and $|\pi - g_n|$.

Exercise 5: An easy algorithm to find a root of a given function $f: \mathbb{R} \to \mathbb{R}$ is the so-called bisection algorithm. Starting with an interval [a,b] containing a root (i.e., a value x such that f(x)=0), we set $x_0^\ell=a, x_0^r=b$. For given $n\in\mathbb{N}$ and x_n^ℓ, x_n^r , we define $x_n^m:=(x_n^\ell+x_n^r)/2$ and

$$x_{n+1}^{\ell} := \begin{cases} x_n^m & \text{if } \operatorname{sign}(x_n^{\ell}) = \operatorname{sign}(x_n^m), \\ x_n^{\ell} & \text{else}, \end{cases} \quad \text{and} \quad x_{n+1}^{r} := \begin{cases} x_n^m & \text{if } \operatorname{sign}(x_n^m) = \operatorname{sign}(x_n^r), \\ x_n^{r} & \text{else}. \end{cases}$$

Visualize the algorithm for $f(x) = \sin(x)$ and [a, b] = [2, 4], as well as the convergence $|x_n^m - \pi|$.