Presentation - Progress II

Introduction to Artificial Intelligence

Student ID	Full Name	Email	Assigned tasks	Complete percentage
521H0272	Nguyen Gia My	521H0272@student.tdut.edu.vn	Research, Implement	100%
521H0201	Truong Gia Bao	521H0201@student.tdut.edu.vn	Research	100%
521H0324	Nguyen Van Truong	521H0324@student.tdut.edu.vn	Research	100%
521H0492	Nguyen Duc Duy Bao	521H0492@student.tdut.edu.vn	Research	100%

Apr-23

File structure

3	3	
0		1
2		1

3	3	
---	---	--

0	1
2	1

Apr-23

Define Adjacents Cells

Apr-23

	0	1	2
0	0		1
1			
2	2		1

(0,0)	(0,1)	(0,2)
(1,0)	(1,1)	(1,2)
(2,0)	(2,1)	(2,2)

1 2 3 4 5 6 7 8 9

Approach

0	1
2	1

"A cell must be green or red"

Green v ¬Green

"A cell must be green or red"

0	1
2	1

To assign a clause symbol to each cell:

- Traverse each cell of the matrix
- In each cell:
 - Creates a list of 2 values: *i* (green) or -*i* (red), where | i | is the coordinate of the matrix converted to integer form

$$\sum_{i=1}^{m \times n} G_i = k$$

 G_i : a green cell at position i

adjacents: 6

Ways to color

 $C_{adjacents}^{k}$

adjacents: 6

Ways to color: $C_{adjacents}^k = C_6^1 = 6$

	1

	1

	1

adjacents: 4

Ways to color

 $C_{adjacents}^{k}$

Apr-23

1	2	3
4	5	6
7	8	9

$$\sum_{i=1}^{m \times n} G_i = k$$

$$(G_7 \wedge G_8) \Leftrightarrow (\neg G_4 \wedge \neg G_5)$$

$$\equiv [(G_7 \land G_8) \rightarrow (\neg G_4 \land \neg G_5)] \land [(\neg G_4 \land \neg G_5) \rightarrow (G_7 \land G_8)] \qquad \text{/Eliminate biconditional}$$

$$\equiv \left[\neg(G_7 \land G_8) \lor (\neg G_4 \land \neg G_5)\right] \land \left[\neg(\neg G_4 \land \neg G_5) \lor (G_7 \land G_8)\right] \qquad \textit{/Eliminate implication}$$

$$\equiv \left[\left(\neg G_7 \lor \neg G_8 \right) \lor \left(\neg G_4 \land \neg G_5 \right) \right] \land \left[\left(G_4 \lor G_5 \right) \lor \left(G_7 \land G_8 \right) \right] \qquad \text{/De Morgan's Law}$$

$$\equiv \left[\left(\neg G_7 \lor \neg G_8 \lor \neg G_4 \right) \land \left(\neg G_7 \lor \neg G_8 \lor \neg G_5 \right) \right] \land \left[\left(G_4 \lor G_5 \lor G_7 \right) \land \left(G_4 \lor G_5 \lor G_8 \right) \right]$$
/Distributive Law

$$[(\neg G_7 \lor \neg G_8 \lor \neg G_4) \land (\neg G_7 \lor \neg G_8 \lor \neg G_5)] \land [(G_4 \lor G_5 \lor G_7) \land (G_4 \lor G_5 \lor G_8)]$$

$$\downarrow$$

$$(\neg G_7 \lor \neg G_8 \lor \neg G_4) \land (\neg G_7 \lor \neg G_8 \lor \neg G_5) \land (G_4 \lor G_5 \lor G_7) \land (G_4 \lor G_5 \lor G_8)$$

Apr-23

Solution: [-1, -2, 3, -4, -5, -6, 7, 8, -9]

-1	-2	3
-4	-5	-6
7	8	-9

0	1
2	1

Apr-23 NMT52B

Advantages

Disadvantages

There are many documents on propositional logic

Libraries are available to solve the problem

There are descriptions and suggestions from the topic

Still having logic errors when implementing into programming

It takes a long time to read and understand the functions of Pysat

It takes a long time to understand the logic

Table of complete percentages for each task

Task	Complete Percentages
Read file	100%
Get matrix data (rows, columns, cell coordinates, cell values)	100%
Find adjacent cells of a cell	100%
Find model (solution)	100%
Draw matrix	100%

References

Books

[1] Stuart Russell, Peter Norvig, [2005], Artificial Intelligence: A Modern Approach, 3rd edition, pp. 224-249.

Notes

[2] Harvard CS50's Introduction to Artificial Intelligence with Python, Lecture Note 1.