MATH 300: Homework 2

Aren Vista

September 20, 2025

1 Q1. 4.1

Each of the following statements can be recase in the if-then form. Rewrite the following sentences in the form "If A then B"

- 1. The product of an odd integer and an even integer is even
 - H: $x = 2k + 1, y = 2j, k \in \mathbb{Z}, j \in \mathbb{Z}$
 - C: $x * y = 2l, l \in \mathbb{Z}$
- 2. The square of an odd integer is odd
 - H: If we square an odd integer
 - C: Then result is an odd integer
- 3. The square of a prime number is not a prime
 - H: If we square a prime number
 - C: Then the result is not a prime
- 4. The product of two negative integers is negative
 - If we mutiple two negative integers
 - Then the product will be negative
- 5. The diagonals of a rhombus are perpendicular
 - If we have two diagonals from a rhombus
 - Then they will be perpendicular
- 6. Congruent triangles have the same area
 - If we have two congruent triangles
 - Then the area of the trianges will be equal
- 7. The sum of three consentive integers is divisible by three
 - If we have the sum of three consentive integers
 - Then the sum will be divisible by three

2 Q2. 4.2.k

Below you will find pairs of statments A and B. For each pair, please indicate which of the following three senetences are true and which are false

Refer to x, and y as real numbers

$$A: x + y = 0, B: x = 0 \land y = 0$$

False by counter-example:

- Suppose x = 1, y = -1
- Observe $1 + (-1) = 0 \land x \neq 0, y \neq 0$
- \therefore the statement is false by counter example \Box

3 Q3. 5.6

Prove that the product of two odd integers is odd

- Let x = 2k + 1, y = 2j + 1 s.t. $k \in \mathbb{Z} \land j \in \mathbb{Z}$
- Observe x * y = (2k+1)(2j+1) = 4kj + 2k + 2j + 1
- Observe (4kj + 2k + 2j + 1) = 2(2kj + k + j) + 1 where $(2kj + k + j) = z, z \in \mathbb{Z}$
- Thus x * y = 2z + 1
- : given two odd integers, if multipled together; then the product is odd

4 Q4. 5.13

Let x be an integer. Prove if x is odd iff x+1 is even.

- Case 1: $x \in \mathbb{Z}$ and x is odd s.t. $x = 2k + 1, k \in \mathbb{Z}$ by definition of odd
 - Observe x + 1 = 2k + 2
 - Thus, $x+1=2(k+1), (k+1)\in\mathbb{Z}$ which must be even by definition of even
 - : if x is odd then x + 1 is even \square
- Case 2: $x \in \mathbb{Z}$ and x+1 is even s.t. $x+1=2k, k \in \mathbb{Z}$ by definition of even
 - Observe x = 2k 1
 - Let $c \in \mathbb{Z}, 2c = 2k 2$ s.t. 2k = 2c + 2
 - Subtitute and observe x = 2k 1 = 2c + 1 which is odd by definition of odd
 - : if x + 1 is even then x is odd \square
- : By Case 1 and Case 2 x is odd iff x+1 is even \Box

5 Q5. pg 31 p.9

Prove or disprove the following statements:

Let $a, b, c \in \mathbb{Z}$. If a|c and b|c, then (a+b)|c

- False by counter-example
- Let a = b = c = 1
- Observe $a|c=1|1 \wedge b|c=1|1$
- Observe (1+1) / 1 : (a+b) / c
- \therefore False by counter-example.

Let $a, b, c \in \mathbb{Z}$. If a|c, then (ac)|(bc)

- Observe $a|b = ax = b, x \in \mathbb{Z}$
- Multiply both sides by c s.t. ac(x) = bc
- This can be rearanged by the defn. of divisibility ac(x) = bc = (ac)|(bc)
- :: Given $a, b, c \in \mathbb{Z}$. If a|c, then (ac)|(bc)