ESTRUTURAS DE DADOS DO TIPO ÁRVORE

Faculdade de Juazeiro do Norte

Arvores

 As estruturas de dados do tipo árvore são não lineares, ou seja, os elementos que as compõem não estão armazenados de forma sequencial e também não estão todos encadeados.

Exemplo de arvores

Árvores

Arvore BINÁRIA

Conjunto finito de elementos, em que cada um é denominado nó e o primeiro é conhecido como raiz. Pode estar vazio ou ser particionado em três subconjuntos: 1º subconjunto (nó raiz), 2º subconjunto (sub-árvore direita) e 3º subconjunto (sub-árvore esquerda).

 As árvores binárias podem ser ilustradas de três formas:

- a) Todos os nós de uma sub-árvore direita são maiores que o nó raiz.
- b) Todos os nós de uma sub-árvore esquerda são menores que o nó raiz.
- c) Cada sub-árvore é também uma árvore binária.
- d) O grau de um nó representa o seu número de subárvores.

- e) Na árvore binária, o grau máximo de um nó é 2.
- f) O grau de uma árvore é igual ao máximo dos graus de todos os seus nós.
- g) Uma árvore binária tem grau máximo igual a 2.
- h) Nó pai: nó acima e com ligação direta a outro nó.
- i) Nó filho: nó abaixo e com ligação direta a outro nó.
 São os nós raízes das sub-árvores.
- j) Nós irmãos: são que possuem o mesmo nó pai.
- k) Nó folha ou terminal: nó que não possui filhos.

Graus dos nós de uma árvore binária

• I) Nós ancestrais: estão acima de um nó e têm ligação direta ou indireta.

 m) Nós descendentes: estão abaixo de um nó e possuem ligação direta ou indireta.

 n) Nós descendentes direito: estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da subárvore direita.

 o) Nós descendentes esquerdo: estão abaixo de um nó, possuem ligação direta ou indireta e fazem parte da subárvore esquerda.

- p) Nível de um nó: distância do nó raiz.
- q) Altura ou profundidade da árvore: nível mais distante da raiz.

 r) Expressão que representa o número máximo de nós em um nível da árvore binária = 2ⁿ, onde n é o nível em questão.

- s) Árvore estritamente binária: árvore em que todos os nós têm 0 ou 2 filhos.
- t) Expressão que representa o número de nós de uma árvore estritamente binária = 2f−1, onde n é o número de nós folha.

Quantidade de nós
folha = 4.
Os nós folha são:
1, 3, 5 e 8.
Número de nós desta
árvore estritamente
binária = 2.n - 1, onde
n é o número de folhas
2.4 - 1 = 7 nós

• u) Árvore completa: todos os nós com menos de dois filhos ficam no último ou no penúltimo nível.

• v) Árvore cheia: árvore estritamente binária e completa.

Operações da arvore

- Na inserção, as propriedades da árvore devem ser obedecidas e todo novo nó é sempre uma folha.
- Na remoção, o filho da direita, que é o maior, assume o lugar do nó pai.
- Na consulta (em ordem, pré-ordem e pós-ordem), todos os nós são listados, alterando-se apenas a ordem.

- Consulta em ordem: cada árvore é mostrada com o ramo da esquerda, a raiz e posteriormente o ramo da direita.
- Consulta pré-ordem: cada árvore é mostrada com a raiz, o ramo da esquerda e posteriormente o ramo da direita.
- Consulta pós-ordem: cada árvore é mostrada com o ramo da esquerda, o ramo da direita e posteriormente a raiz.

Consultas em um árvore binária

Em ordem: 1 2 3 4 6 8 Pré-ordem: 6 2 1 4 3 8 Pós-ordem: 134286

Árvore AVL

 Criada em 1962 por Adelson-Velsky e Landis, é uma árvore binária balanceada que obedece a todas as propriedades da árvore binária e em que cada nó apresenta diferença de altura entre as sub-árvores direita e esquerda de 1, 0 ou –1.

Árvore AVL

 Se a diferença de altura entre as sub-árvores de um nó é maior que 1 ou menor que -1, a árvore está desbalanceada e haverá uma rotação.

Diferença de altura de um nó	Diferença de altura do nó filho do nó desbalanceado	Tipo de rotação	Figura
2	1	Simples à esquerda	7.17
	О	Simples à esquerda	7.18
	-1	Dupla com filho para a direita e pai para a esquerda	7.19
-2	1	Dupla com filho para a esquerda e pai para a direita	7.20
	0	Simples à direita	7.21
	-1	Simples à direita	7.22