Unsupervised Learning

A Beginner's Introduction

Report Error 1

Outline

Introduction

What is Unsupervised Learning?

- · Learning patterns from unlabeled data
- · No predefined output or target variable
- Goal: discover hidden structures, groupings, or representations
- · Common in exploratory data analysis

Why Unsupervised Learning?

- · Labeling data is expensive or impossible
- Understand data distribution and relationships
- · Useful for:
 - · Clustering customers, documents, images
 - · Reducing dimensionality for visualization or speed
 - Detecting anomalies or outliers

Main Tasks

Clustering

- Group similar data points into clusters
- Examples:
 - k-Means: partition data into k groups by minimizing within-cluster variance
 - · Hierarchical Clustering: build a tree of clusters
 - · DBSCAN: density-based clustering, detects noise

Dimensionality Reduction

- · Reduce number of features while preserving structure
- · Common methods:
 - PCA (Principal Component Analysis): finds directions of maximum variance
 - t-SNE, UMAP: nonlinear embeddings for visualization
 - Autoencoders: neural networks that learn compressed representations

Density Estimation and Anomaly Detection

- · Estimate probability distribution of data
- Detect outliers as points in low-density regions
- Examples:
 - Gaussian Mixture Models (GMM)
 - · Kernel Density Estimation (KDE)
 - One-class SVM

Popular Algorithms

k-Means Clustering

- · Initialize k centroids randomly
- · Assign points to nearest centroid
- Update centroids as mean of assigned points
- Repeat until convergence

Principal Component Analysis (PCA)

- · Linear projection to lower dimension
- · Finds orthogonal directions maximizing variance
- Useful for:
 - · Noise reduction
 - Visualization
 - Feature extraction

Challenges and Considerations

Challenges in Unsupervised Learning

- No ground truth for evaluation
- Choosing number of clusters or components
- Sensitivity to initialization and parameters
- Scalability to large datasets
- Interpretability of results

Applications and Tools

Applications

- Customer segmentation
- · Document and image organization
- · Anomaly detection in fraud, network security
- · Data compression and visualization

Popular Libraries

- · Scikit-learn: clustering, PCA, GMM, DBSCAN
- · TensorFlow/PyTorch: autoencoders and deep clustering
- HDBSCAN, UMAP packages for advanced clustering and visualization

Summary

Key Takeaways

- · Unsupervised learning finds patterns without labels
- Key tasks: clustering, dimensionality reduction, density estimation
- · Many algorithms exist; choice depends on data and goal
- Evaluation is often subjective or uses proxy metrics

