Quantitative Analyse - Aufgabe 6

Praktikum zur analystischen Chemie

Verfasser: Maxim Gilsendegen

Matrikelnummer: 3650677

E-Mail-Adresse: 182513@stud.uni-stuttgart.de

Assistent: Robert Stelzer Abgabedatum: 19.07.2023

Inhaltsverzeichnis

1	Aufgabe	1
2	Durchführung	1
3	Auswertug	1
4	Literatur	2

1 Aufgabe

Bestimmung der Stoffmenge von Sb³⁺ durch Titrieren mit KBrO₃.

2 Durchführung

Bevor der Analysekolben mit demineralisiertem Wasser auf 100 ml aufgefüllt wurde, wurden 25 ml halbkonzentrierte HCl-Lösung hinzugegeben.

Es wurde mit einem 25 ml Aliquoten und zwei 10 ml Aliquoten titriert, diese wurden auf 100 ml verdünnt, mit 10 ml 7 M HCl versetzt und auf 50°C erhitzt.

Als Farbindikator wurden zwei Tropfen Methylorange hingegeben und mit 0.01682 M KBrO₃-Lösung titriert, bis die Lösung komplett klar wurde.

3 Auswertug

KBrO₃ reagiert in saurer Lösung zu:

$$\operatorname{BrO_3^-}_{(aq)} + 6 \operatorname{H}^+_{(aq)} + 3 \operatorname{Sb}^{3+}_{(aq)} \longrightarrow 3 \operatorname{Sb}^{5+}_{(aq)} + \operatorname{Br}^-_{(aq)} + 3 \operatorname{H}_2 O_{(l)}$$
 (1)

Ist kein $\mathrm{Sb^{3+}}$ mehr vorhanden um Reaktionsgleichung 1 zu ermöglichen, reagiert $\mathrm{KBrO_3}$ nach Reaktionsgleichung 2.

$$BrO_3^{-}_{(aq)} + 5Br_{(aq)}^{-} + 6H_{(aq)}^{+} \longrightarrow 3Br_{2(aq)} + 3H_2O_{(l)}$$
 (2)

Durch das entstehende Brom würde sich die Lösung nach dem Äquivalenzpunkt leicht gelblich färben. Die Volumina bis zum Äquivalenzpunkt sind in Tabelle 1 festgehalten. Die Stoffmenge kann nach der folgenden Formel mit den Werten aus Tabelle 1 berechnet werden.

$$n(\text{KBrO}_3) = c(\text{KBrO}_3) \cdot \Delta V$$

= $0.01682 \frac{\text{mol}}{1} \cdot 0.010351$
= 0.000174087 mol

Anhand von den Koeffizienten der Reaktanten aus Reaktionsgleichung 1, wird die Stoffmenge von Sb³⁺ wie folgt bestimmt.

$$n(\mathrm{Sb^{3+}}) = 3 \cdot n(\mathrm{KBrO_3}) \cdot \frac{100 \,\mathrm{ml}}{V_{\mathrm{Aliquot}}}$$

= $3 \cdot 0.000174087 \,\mathrm{mol} \cdot 4$
= $0.0020890 \,\mathrm{mol}$
= $2.0890 \,\mathrm{mmol}$

Diese Berechnung wird analog für den Aliquoten 2 und 3 durchgeführt

Tab.1: Volumina an Maßlösung für die einzelnen Titrationen.

Aliquot	V_{Aliquot} [ml]	$\Delta V [ml]$	$n \; [\mathrm{mmol}]$
1	25	10.35	2.0890
2	10	4.3	2.1698
3	10	4.65	2.3464

Ein Mittelwert für die Stoffmenge wird durch folgende Gleichung bestimmt, wobei i für die Nummer des jeweiligen Aliquoten steht.

$$n = \frac{\sum_{i=1}^{3} n_i}{3}$$

$$= \frac{2.0890 \,\text{mmol} + 2.1698 \,\text{mmol} + 2.3464 \,\text{mmol}}{3}$$

$$= 2.2017 \,\text{mmol}$$

Damit wurde eine Stoffmenge von n = 2.2017 mmol experimentell bestimmt.

4 Literatur

[1] Skript zum Praktikum im Modul AC I: 19.07.2023