Équations polynômiales

1. Équations du second degré à coefficients réels

1.1 Équations du type $az^2 + bz + c = 0$, $a \neq 0$

Propriété.

Soit l'équation du second degré $az^2 + bz + c = 0$ avec $a \neq 0$, b et c des réels. Cette équation admet toujours des solutions dans l'ensemble des nombres complexes \mathbb{C} .

À l'aide de son discriminant $\Delta = b^2 - 4ac$, on distingue *trois cas*:

- Si $\Delta = 0$, il existe une *unique* solution $z = -\frac{b}{2a}$.
- Si $\Delta > 0$, il existe **deux solutions réelles** $z = \frac{-b \pm \sqrt{\Delta}}{2a}$.
- Si $\Delta < 0$, il existe deux solutions complexes conjuguées $z = \frac{-b \pm i\sqrt{-\Delta}}{2a}$.

Exemple. Résoudre dans $\mathbb C$ l'équation $z^2-2z+5=0.$

1.2 Cas particulier : équations du type $z^2 = a$, $a \neq 0$

Propriété.

L'équation $z^2 = a$ admet **toujours deux solutions** dans $\mathbb C$:

- Si a > 0, le solutions sont les **réels** : $\pm \sqrt{a}$.
- Si a < 0, le solutions sont les **imaginaires purs** : $\pm i\sqrt{a}$.

	Démonstration
Exen	aple. Résoudre dans \mathbb{C} l'équation $z^2 + 1 = 0$.
1.3	Factorisation d'un polynôme du second degré
On co	riété. a,b et c trois réels avec $a \neq 0$. onsidère le polynôme P tel que, pour tout z de \mathbb{C} , on ait : $P(z) = az^2 + bz + c$. ote z_1 et z_2 les solutions dans \mathbb{C} de l'équation $P(z) = 0$, avec éventuellement $z_1 = z_2$ si $\Delta = 0$. pour tout z de \mathbb{C} , on a :
	$P(z) = a(z - z_1)(z - z_2) \qquad .$
Exen	aple. Factoriser dans \mathbb{C} , $P(z) = z^2 - 4z + 8$.

2. Factorisation des polynômes

2.1 Fonction polynôme

Définitions.

• Soit n un entier naturel et $a_0, a_1, a_2, \cdots a_n$ des réels (éventuellement complexes) avec $a_n \neq 0$. Une fonction polynôme ou polynôme P est une fonction définie sur \mathbb{C} pouvant s'écrire, pour tout complexe z, sous la forme :

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

• On appelle *polynôme nul* le polynôme P tel que pour tout complexe z,

$$P(z) = 0$$

- Si P n'est pas le polynôme nul, n est le $\operatorname{degr\acute{e}}$ de P.
- On appelle racine de P tout nombre complexe z_0 tel que :

$$P(z_0) = 0 .$$

Mini-exercice. Soit P le polynôme défini sur \mathbb{C} par $P(z) = z^3 - (1+\mathrm{i})z^2 + z - 1 - \mathrm{i}$.

- 1. Quel est le degré de P?
- 2. Montrer que i est racine de P.

Propriété admise.

Un polynôme est le polynôme nul si et seulement si tous ses coefficients sont nuls.

2.2Factorisation par $z-z_0$

Définition.

On dit qu'un polynôme P est factorisable (ou divisible) par $z-z_0$ s'il existe un polynôme Q tel que pour tout complexe z:

$$P(z) = (z - z_0)Q(z)$$

Mini-exercice. Soit le polynôme P défini dans \mathbb{C} par : $P(z) = z^3 - 12z^2 + 48z - 128$.

- 1. Montrer que 8 est une racine de P.
- 2. En déduire les réels a et b tels que $P(z) = (z 8)(z^2 + az + b)$.
- 3. En déduire l'ensemble des racines de P.

Propriété.

Soit a un nombre complexe.

Pour tout complexe z et tout entier naturel non nul, z^n-a^n est factorisable par z-a et :

$$z^{n} - a^{n} = (z - a)(z^{n-1} + az^{n-2} + a^{2}z^{n-3} + \dots + a^{n-2}z + a^{n-1})$$
$$= (z - a)\left(\sum_{k=0}^{n-1} a^{k}z^{n-1-k}\right).$$

Propriété.

Le polynôme P est factorisable par z-a si et seulement si a est une racine de P.

2.3 Polynôme et racines

Propriété.

Un polynôme non nul de degré n admet au plus n racines distinctes.