lights ● EN

Christmas Lights (lights)

Davide wants to decorate his home for Christmas, even though his budget as a student is pretty limited, and he needs to avoid excessive expenses. After days of searching around the city, he finally found a nice row of almost new Christmas lights: it is time to start the decorations!

Figure 1: Davide's house, nicely decorated for Christmas.

The row consists of N consecutive lights, numbered from 0 to N-1. Each light has a colour L_i (i=0...N-1), represented by a number between 0 and C-1. Every colour between 0 and C-1 appears at least once in the row of lights. In order to save energy (running the house dynamo is tiring!), he wants to cut off a segment of consecutive lights from the row containing every colour between 0 and C-1 at least once.

What is the length of the shortest segment he can cut?

Among the attachments of this task you may find a template file lights.* with a sample incomplete implementation.

Input

The first line contains the two integers N and C. The second line contains N integers L_i .

Output

You need to write a single line with an integer: the length of a shortest segment of lights containing every colour.

lights Page 1 of 2

Constraints

- $3 \le C \le N \le 200000$.
- $0 \le L_i < C \text{ for each } i = 0 \dots N 1.$
- Every colour c between 0 and C-1 appears at least once in the row of lights, i.e., there exists at least one i ($0 \le i < N$) such that $L_i = c$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points)	Examples.
- Subtask 2 (15 points)	C=3.
- Subtask 3 (10 points)	$N \le 50.$
- Subtask 4 (20 points)	$N \le 500.$
- Subtask 5 (25 points)	$N \le 5000.$
- Subtask 6 (30 points)	No additional limitations.

Examples

input	output
10 4 0 1 3 0 0 1 2 0 2 3	5
11 3 1 1 0 0 2 2 1 1 1 2 2	4

Explanation

In the **first sample case**, the row of lights is the following:

There are two different segments of length five that include all four colours, depicted above. Every segment of a shorter length does not include all four colours, so the answer is five.

The **second sample case**, with one of the two possible shortest segments highlighted, is depicted below.

lights Page 2 of 2