Project 6: Statistics and Bootstrapping

EE 511 – Section Thursday 9 am

Name: Junquan Yu

Student ID #: 3372029142

1. Problem Statement

The attached datasheet represents a set of 100 independent samples from some population.

a) Compute the sample mean m, and the sample variance s^2 .

b) Use the data to generate a discrete approximation to the Cumulative Distribution Function –

the empirical distribution, $F_{X^*}(x)$. Plot this distribution.

c) By splitting the data into equal size intervals (0-5, 6-10, etc), generate a discrete approximation

to the distribution and determine the values of the Probability Mass Function for this discrete

approximation.

Use the bootstrapping technique to generate M bootstrap samples based on the empirical

distribution found in part b) and compute the sample mean and sample variance for each

Bootstrap sample. Use M = 50 and M = 100.

e) Find the value of the MSE of the sample mean.

$$MSE_F(m) = E_F[(\mu - m)^2]$$

And compare to the variance of the sample means based on the bootstrap samples.

f) Calculate the (population) variance of the empirical distribution – call this We could evaluate

$$MSE_{F^*}(s^2) = E_F[(s^2 - \sigma_{F^*}^2)^2]$$

By computing s^2 for all possible n^n samples that can be generated from the empirical

distribution. That is a formidable computational task, so we consider only a (random) subset of

such samples – i.e. the set of Bootstrap samples in part d) and use the sample variances found in part d) to estimate the MSE.

37.12	8.45	28.96	0.27	36.22
2.78	3.98	32.79	0.14	24.87
1.33	33.25	19.91	30.43	25.84
33.55	31.10	1.86	30.57	5.34
45.39	28.67	7.12	35.38	1.92
9.25	12.55	27.49	33.72	2.30
28.32	30.92	32.62	24.10	33.56
35.62	27.88	20.71	36.62	24.03
28.00	31.44	33.32	5.01	1.30
4.56	2.28	11.33	0.24	8.53
5.27	18.52	7.63	31.03	4.06
12.83	15.43	8.75	4.65	5.21
7.90	26.48	6.81	32.20	25.69
18.18	4.48	30.33	1.68	28.44
23.26	3.35	0.17	8.90	13.29
31.54	26.16	22.79	6.89	27.92
30.99	6.93	13.27	10.08	28.95
13.40	4.57	34.10	0.76	36.40
0.60	39.74	1.11	2.40	1.05
34.10	29.95	1.94	0.16	1.43

2. Theoretical Exploration or Analysis

In statistics, bootstrapping is any test or metric that relies on random sampling with replacement. Bootstrapping allows assigning measures of accuracy (defined in terms of bias, variance, confidence intervals, prediction error or some other such measure) to sample estimates.[1][2] This technique allows estimation of the sampling distribution of almost any statistic using random sampling methods.[3][4] Generally, it falls in the broader class of resampling methods.

Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by measuring those properties when sampling from an approximating distribution. One standard choice for an approximating distribution is the empirical distribution function of the observed data. In the case where a set of observations can be assumed to be from an independent and identically distributed population, this can be implemented by constructing a number of resamples with replacement, of the observed dataset (and of equal size to the observed dataset).

It may also be used for constructing hypothesis tests. It is often used as an alternative to statistical inference based on the assumption of a parametric model when that assumption is in doubt, or where parametric inference is impossible or requires complicated formulas for the calculation of standard errors.

3. Simulation Methodology

For the problem a:

I just typed the all of the sample data from the homework PDF into an excel file called "Data Samples" and loaded these data into the Matlab with the built-in function xlsread(). Then I used the function mean() and var() to calculate the sample mean and sample variance respectively.

For the problem b and problem c:

I created several equal-sized intervals to accommodate these data and checked every number in the data. If the number I checked belongs to the certain interval, then the PMF counts for that interval plus one. In addition, if the I checked is less than the up bound of certain interval, then Fx counts for that interval plus one. After traversing all the number, I can get the Fx for these data, which is Fx=Fx counts/200. Similarly, the PMF for these data is PMF=PMF counts/200.

For the problem d:

I generated the bootstrap samples with the function randsample() and then used the functions mean() and var() to calculate the mean and variance of these bootstrap samples.

For the problem e:

I created a loop structure to calculate the MSE of the sample means using the sample means from the problem d. Then I compared it to the variance of the sample means based on the bootstrap samples.

For the problem f:

I created a loop structure to calculate the $MSE_{F^*}(s^2)$ using the population variance of the

empirical distribution $\sigma_{F^*}^2$.

4. Experiments and Results

For the problem a:

```
m =
17.647100000000005337597031029873
variance =
177.23229352525245872129744384438
```

It can be seen from the above screenshot that the sample mean m = 17.6471 and the sample variance $s^2 = 177.2323$.

For the problem b:

The discrete approximation to the Cumulative Distribution Function – the empirical distribution is showed below:

For the problem c:

I split the data into the equal size intervals, which are 1, 5 and 10. Then I simulated for each of them and the results are as follows:

When the size of intervals is set to 1:

When the size of intervals is set to 5:

When the size of intervals is set to 10:

For the problem d:

I simulated and computed the sample mean and the sample variance in the bootstrap samples scenarios with M=50 and 100. The results are as follows:

When 50 bootstrap samples were generated, the sample mean of bootstrap samples is:

mean_sample	=								
Columns 1	through 10	0							
18.5936	17.2972	13.8308	20.1544	17.8812	17.6806	18.3582	18.3212	15.5502	16.5604
Columns 11	l through 2	20							
17.3668	17.6352	21.6174	14.4808	16.3914	16.4014	18.7780	16.7398	15.1470	18.2184
Columns 21	l through 3	30							
15.8128	17.8026	15.0856	16.0788	20.2522	19.4314	18.3234	16.1736	14.7646	15.8328
Columns 31	l through 4	40							
22.4832	16.0912	16.2674	15.9010	14.8666	18.6434	16.6956	18.0664	17.4740	17.2222
Columns 41	l through !	50							
15.2974	18.5572	15.7214	18.8012	21.3632	13.9778	17.1488	18.0932	17.9882	18.3912

When 50 bootstrap samples were generated, the sample variance of bootstrap samples is:

```
var_sample =
   Columns 1 through 10

227.7178  183.3935  163.6369  192.5490  169.7505  177.3744  188.6601  150.2652  158.7004  164.6407

Columns 11 through 20

181.9951  178.5001  177.3251  149.9405  154.3046  156.5397  149.7021  177.3986  190.0071  156.2787

Columns 21 through 30

184.2365  198.1244  168.1065  189.7427  166.8585  176.4291  171.7301  122.7201  147.5349  184.1941

Columns 31 through 40

166.4695  170.3889  233.4499  177.0201  170.5499  145.5881  178.6318  164.3697  160.3446  164.2131

Columns 41 through 50

136.3230  183.8323  156.2007  219.0598  146.5648  185.0397  184.4468  139.3099  156.7120  177.7314
```

When 100 bootstrap samples were generated, the sample mean of bootstrap samples is:

1	mean_sample	=								
	Columns 1	through 1	.0							
	15.6266	19.1835	16.8945	20.7948	16.5950	17.0494	18.7409	18.4271	15.6339	18.7997
	Columns 11	l through	20							
	18.5432	18.2640	19.1753	17.7046	19.6527	16.7050	17.2861	18.9601	18.6312	18.0751
	Columns 21	l through	30							
	15.5129	17.4166	17.1560	17.4862	17.8612	17.5184	16.6720	16.9230	17.5616	15.1059
	Columns 31	l through	40							
	18.6483	18.1704	16.2624	16.6435	20.0513	16.0955	16.9553	17.8439	16.1691	20.0200
	Columns 41	l through	50							
	17.1182	17.3250	14.9847	17.9329	17.4411	20.2599	16.2732	17.9552	19.3947	17.3113
	Columns 51	l through	60							
	19.6737	18.2441	16.7023	18.2733	15.3049	18.8122	18.9398	17.9582	19.5341	16.1453
	Columns 61	l through	70							
	18.1882	16.6882	16.5732	18.9686	16.4736	20.5798	20.5934	16.2990	17.2237	18.2651
	Columns 71	through	80							
	17.3544	17.1020	21.5322	17.1022	19.9670	18.7177	17.2033	18.7568	16.7223	19.1559
	Columns 81	through	90							
	18.8137	17.1928	17.3364	15.8317	17.3241	18.3636	17.9013	17.5606	16.4760	18.3272
	Columns 91	through	100							
	18.3517	17.8380	17.8481	16.9874	20.3652	18.2531	17.7333	18.2312	16.2013	20.8786

When 100 bootstrap samples were generated, the sample variance of bootstrap samples is:

V	ar_sample	=								
	Columns 1	through 1	10							
	176.4747	185.4398	169.2663	175.1632	173.3243	192.7230	191.1933	155.7123	173.0485	190.5642
	Columns 1	1 through	20							
	187.3457	163.0218	187.3994	199.6205	194.8217	179.5604	183.1115	160.8484	187.4207	175.6257
	Columns 2	1 through	30							
	164.3265	186.8082	155.8841	175.8319	156.4379	179.6166	170.9359	195.9176	182.0590	173.0535
	Columns 3	1 through	40							
	179.2316	174.1284	164.9895	163.8050	185.9666	189.2978	176.6410	189.5886	179.7289	177.3807
	Columns 4	1 through	50							
	180.2032	182.7750	155.6110	199.5748	176.3708	164.5188	177.2946	171.0566	178.6185	170.7235
	Columns 5	1 through	60							
	171.5854	173.3291	182.1274	185.5790	140.1261	176.5572	174.3465	160.2697	165.4110	177.7353
	Columns 6	1 through	70							
	146.2379	176.5166	169.5793	191.0666	188.5953	156.7463	195.0690	176.8473	177.4771	174.8045

```
Columns 71 through 80

187.7380 175.7572 163.9185 169.3489 175.6295 184.5443 210.5725 160.9834 189.2171 199.3133

Columns 81 through 90

192.0668 170.5290 194.2226 183.7002 180.8263 185.2735 200.6945 187.9739 196.2397 179.0103

Columns 91 through 100

170.0927 185.7435 170.0784 169.7846 172.4473 157.0525 187.5548 170.9769 167.7296 176.5803
```

For the problem e:

I simulated 5 times for each of bootstrap samples scenarios with M=50 and 100. The results are as follows:

When 50 bootstrap samples were generated:

Times	1	2	3	4	5
MSE(m)	4.1849	2.5441	2.9722	3.7552	2.7765
Variance	4.1793	2.5948	3.0276	3.8143	2.8082

When 100 bootstrap samples were generated:

Times	1	2	3	4	5
MSE(m)	1.8067	1.7338	1.5645	1.8774	1.8007
Variance	1.8240	1.7432	1.5801	1.8963	1.7569

It can be seen from above tables that the simulation results is very close to the theoretical value about MSE(m) and the MSE(m) and the variance of the sample means are almost the same whether the M=50 or M=100.

For the problem f:

I simulated 5 times for each of bootstrap samples scenarios with M=50 and 100. The results are as follows:

When 50 bootstrap samples were generated:

When 100 bootstrap samples were generated:

Times	1	2	3	4	5
$MSE_{F*}(s^2)$	190.6101	151.2661	167.1836	166.4264	160.2743

It can be seen from above tables that the value of $MSE_{F^*}(s^2)$ tends to increase as the value of

M decreases.

5. References

- 1. Alberto Leon-Garcia. (2008). Probability, Statistics, and Random Processes for Electrical Engineering. Upper Saddle River, NJ 07458. Pearson Education, Inc.
- 2. Zhou Sheng, Shiqian Xie, Chengyi Pan. (2008). Probability Theory and Mathematical Statistics. No.4, Dewai Street, Xicheng District, Beijing. Higher Education Press.

6. Source Code

```
a=linspace(0,50,101);
Fx=zeros(1,100);
PMF=zeros(1,100);
M=100;
num_input=xlsread('Data Samples.xlsx');
for i=1:100
   num(i) =num_input(i);
   for j=1:100
       if (num(i) < a(j+1))</pre>
          Fx(j) = Fx(j) + 1;
           if(num(i)>a(j))&&(num(i)<a(j+1))
              PMF(i) = (a(j) + a(j+1))/2;
       end
   end
end
m=mean(num,2)
variance=var(num)
Fx=Fx/100;
```

```
figure(1);
histogram(PMF, 'Normalization', 'probability', 'BinWidth', 10);
title('The probability mass function')
ylabel('The value of PMF')
xlabel('The interval')
grid on
figure(2);
x=linspace(0,49.5,100);
plot(x,Fx);
grid on
title('The empirical distribution')
ylabel('The value of probability')
xlabel('The value taken on by x')
for i=1:M
   sample=randsample(num,M,1);
   mean_sample(i)=mean(sample);
   var_sample(i)=var(sample);
end
mean_sample
var_sample
var_mean=var(mean_sample)
MSE m=0;
for i=1:M
   MSE(i) = (mean\_sample(i) - m)^2;
end
MSE_m=mean(MSE)
MSE_var=0;
for i=1:M
   MSE(i) = (var_sample(i) -variance)^2;
MSE_var=mean(MSE)
```