学	院
班	级
学	号
姓	名

东北大学考试试卷(A闭卷)

2019 — 2020 学年 秋 季学期

课程名称: 线性代数

总分	 1	111	四	五.	六	七	八	九

一. (每题3分, 共9分)

1. 设行列式
$$D = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 1 & 3 & 1 & 4 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix}$$
, 求 D 的第二行各元素代数余子式之和.

2. 求矩阵
$$A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & -1 & -2 \\ 4 & 3 & 3 \end{pmatrix}$$
的逆矩阵.

3. 设 3 阶实对称矩阵 A 满足 $A^3 + A^2 - A - E = O$, 求行列式 |A + 2E| 的值.

二. (每题3分,共9分)

- 1. 求二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + 4x_1x_2$ 的秩和正惯性指数.
- 2. 设 λ_1 和 λ_2 是3阶矩阵A的两个不同特征值,已知矩阵 λ_1E-A 的秩等于1,试判断矩阵A是 否相似于对角矩阵,请给出理由.
- 3. 求 $\mathbf{R}[x]_3$ 中向量 $f(x) = x^2 2x + 3$ 在基 $\boldsymbol{\varepsilon}_1 = 1$, $\boldsymbol{\varepsilon}_2 = x 1$, $\boldsymbol{\varepsilon}_3 = x^2 x 1$ 下的坐标.

三. (每题3分,共9分)

- 1. 求由基 $\boldsymbol{\varepsilon}_1 = (1,0,0)^T$, $\boldsymbol{\varepsilon}_2 = (1,1,0)^T$, $\boldsymbol{\varepsilon}_3 = (-1,1,1)^T$ 到基 $\boldsymbol{\eta}_1 = (1,0,0)^T$, $\boldsymbol{\eta}_2 = (0,1,0)^T$, $\boldsymbol{\eta}_3 = (0,0,1)^T$ 的过渡矩阵.
- 2. 求线性空间 $V = \{ \begin{pmatrix} 0 & a \\ b & c \end{pmatrix} | a, b, c \in \mathbf{R} \}$ 的一个基和维数.
- 3. 取定两个实函数 $f_1 = e^{ax}\cos(bx)$, $f_2 = e^{ax}\sin(bx)$, 它们生成实函数空间的二维子空间 $V = L(f_1, f_2)$. 求V 中微分运算 $\mathscr Q$ 在基 f_1 , f_2 下的矩阵.

四. (4分)

若矩阵
$$A$$
 与矩阵 $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ 相似,求 $R(A-2E) + R(A-E)$.

五. (4分)

六. (4分)

已知3阶矩阵 A 与3维列向量 x,使得向量组 x,Ax, A^2x 线性无关,且满足 $A^3x=3Ax-2A^2x$,求矩阵 A 的特征值.

七. (4分)

设 3 阶实对称矩阵
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
,已知 $\left|a_{11} + a_{22} + a_{33}\right| < \left|a_{11}\right| + \left|a_{22}\right| + \left|a_{33}\right|$,其中 $\left|a_{11}\right| + \left|a_{22}\right| + \left|a_{33}\right|$,其中 $\left|a_{11}\right| + \left|a_{22}\right| + \left|a_{33}\right|$

值函数,试判断二次型 $\mathbf{x}^T A \mathbf{x}$ 的正定性.

八. (4分)

设 3 阶矩阵
$$A = \begin{pmatrix} 5 & 0 & -4 \\ 0 & 4 & 0 \\ -4 & 0 & 5 \end{pmatrix}$$
, 求一个正定矩阵 B , 使 $A = B^2$.

九. (3分)

求证:两个n元齐次线性方程组同解的充要条件是它们系数矩阵的行向量组等价.

A卷

学 院

班 级

学 号

姓 名

| -

1.
$$\widetilde{\mathbf{A}}_{21} + A_{22} + A_{23} + A_{24} = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & -7 & 0 & 0 \\ -1 & 1 & -1 & 1 \end{vmatrix} = -14.$$

2. $\Re : \begin{pmatrix} 1 & -1 & 2 & 1 & 0 & 0 \\ -2 & -1 & -2 & 0 & 1 & 0 \\ 4 & 3 & 3 & 0 & 0 & 1 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 & 9 & 4 \\ 0 & 1 & 0 & -2 & -5 & -2 \\ 0 & 0 & 1 & -2 & -7 & -3 \end{pmatrix}$ $\Re \bigcup \begin{pmatrix} 1 & -1 & 2 \\ -2 & -1 & -2 \\ 4 & 3 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 9 & 4 \\ -2 & -5 & -2 \\ -2 & -7 & -3 \end{pmatrix}.$

3. 解:由 $A^3 + A^2 - A - E = O$ 可知,矩阵A的特征值 λ 满足 $\lambda^3 + \lambda^2 - \lambda - 1 = 0$. 所以特征值 $\lambda = 1$ 或 $\lambda = -1$.

所以当矩阵
$$A$$
 相似于 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, 即 $A = E$ 时, $|A + 2E| = 27$;

当矩阵
$$A$$
 相似于 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $|A+2E|=9$;

当矩阵
$$A$$
 相似于 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, $|A+2E|=3$;

当矩阵
$$A$$
 相似于 $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$,即 $A = -E$ 时, $|A + 2E| = 1$.

1. 解: 经过配方,

 $f(x_1,x_2,x_3) = (x_1 + 2x_2)^2 - 3x_2^2 + x_3^2$,所以二次型的秩等于 3,而正惯性指数等于 2.

2. 解: 因为矩阵 $\lambda_1 E - A$ 的秩等于 1,所以特征值 λ_1 有两个线性 无关特征向量,显然,特征值 λ_2 只有一个线性无关特征向量,于是矩阵 A 有 3 个线性无关特征向量,因此矩阵 A 能够相似于对角矩阵。

3. 解:在取坐标的同构映射下,问题可以转化为 $\beta = (3,-2,1)^T$ 在基 $\epsilon_1 = (1,0,0)^T$, $\epsilon_2 = (-1,1,0)^T$, $\epsilon_3 = (-1,-1,1)^T$ 下的坐标问题.

根据
$$\begin{pmatrix} 1 & -1 & -1 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
可知,

原问题的坐标为 $(3,-1,1)^T$.

=

1. 解: 因为 $(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3) = (\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3) \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 所以有

$$(\boldsymbol{\eta}_1, \boldsymbol{\eta}_2, \boldsymbol{\eta}_3) = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3) \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = (\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

于是过渡矩阵为 $\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$

2. 解: 因为 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in V$, 并且线性无关, 同时对 $\forall \begin{pmatrix} 0 & a \\ b & c \end{pmatrix} \in V$, 都有 $\begin{pmatrix} 0 & a \\ b & c \end{pmatrix} = a \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, 因此 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ 构成线性空间V的一组基,同时线性空间V是3维的.

3. 解: 因为

$$\mathscr{D}(e^{ax}\cos(bx)) = ae^{ax}\cos(bx) - be^{ax}\sin(bx),$$

$$\mathscr{D}(e^{ax}\sin(bx)) = ae^{ax}\sin(bx) + be^{ax}\cos(bx),$$

所以

$$\mathscr{D}(f_1, f_2) = (f_1, f_2) \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$
,从而微分运算 \mathscr{D} 在基 f_1, f_2 下的矩阵为 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

A卷

学院

班 级

 \bigcirc

学 号

姓名

四. 解:因为矩阵 A 与矩阵 B 相似,所以存在可逆矩阵 P,满 足 $A = P^{-1}BP$. 于是

$$R(A-2E) + R(A-E) = R(P^{-1}BP - 2E) + R(P^{-1}BP - E)$$

$$= R(P^{-1}(B-2E)P) + R(P^{-1}(B-E)P)$$

$$= R(B-2E) + R(B-E)$$

由于
$$B-2E = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -2 \end{pmatrix}$$
, 其秩等于 3,而

$$B-E = \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
, 其秩等于 1, 所以 $R(A-2E) + R(A-E) = 4$.

六. 解: 因为

 $A(x, Ax, A^2x) = (Ax, A^2x, A^3x) = (Ax, A^2x, 3Ax - 2A^2x)$

$$A(x, Ax, A^{2}x) = (x, Ax, A^{2}x) \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -2 \end{pmatrix}$$

因为向量组x, Ax, A^2x 线性无关, 所以矩阵A 相似于矩阵 $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$,进而它们有相同的特征值. 由于 $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$ 有 $\begin{bmatrix} 0 & 1 & -2 \end{bmatrix}$

特征值 $\lambda_1 = -3$, $\lambda_2 = 0$, $\lambda_3 = 1$, 所以矩阵 A 的特征值为 $\lambda_1 = -3$, $\lambda_2 = 0$, $\lambda_3 = 1$.

八. 解: 经计算,矩阵A可正交合同对角化为

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}^{T} A \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix},$$

于是

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}^{T}.$$

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}^{T} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix},$$

那么矩阵是正定矩阵,且满足 $B^2 = A$.

五. 解: 由 $F_{n+1} = F_n + F_{n-1}$ 可得

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}, 即矩阵 A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

进一步,由
$$\binom{F_{n+1}}{F_n} = A \binom{F_n}{F_{n-1}}$$
可推出

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = A^n \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

因为
$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n =$$

$$\left(\frac{1+\sqrt{5}}{2} \quad \frac{1-\sqrt{5}}{2} \right) \left(\frac{(1+\sqrt{5})^n}{2} \right)^n \quad 0 \\ 0 \quad \left(\frac{1-\sqrt{5}}{2} \right)^n \right) \left(\frac{1+\sqrt{5}}{2} \quad \frac{1-\sqrt{5}}{2} \right)^{-1} \quad \left| \quad \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{y} \quad f = a_{22} < 0. \quad \mathbf{因此,} \quad \mathbf{\Box}$$
次型既不正定,也不负定.

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1}.$$

七. 解:

曲 $|a_{11}+a_{22}+a_{33}| < |a_{11}|+|a_{22}|+|a_{33}|$,可知 a_{11} , a_{22} , a_{33} 中一定存在两个非零数,满足一个为正数,一个 为负数. 不妨设 $a_{11} > 0$, $a_{22} < 0$.

此时在二次型

$$f = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

中,一方面,若取
$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
,则 $f = a_{11} > 0$,另一方面,若取

$$x = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
,则 $f = a_{22} < 0$. 因此,二次型既不正定,也不负定

九. 证明:

设 $A_{m\times n}x = \mathbf{0} 与 B_{s\times n}x = \mathbf{0}$ 同解,那么

$$A_{m \times n} x = 0$$
, $B_{s \times n} x = 0$ 与 $\begin{pmatrix} A_{m \times n} \\ B_{s \times n} \end{pmatrix} x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 同解,于是

 $R(A_{m \times n}) = R(B_{s \times n}) = R(igg(rac{A_{m \times n}}{B}igg)$,进而可以证明出 $A_{m \times n}$ 与 $B_{s \times n}$ 的行向量组等价.

反过来,若 $A_{m\times n}$ 与 $B_{s\times n}$ 的行向量组等价,则存在矩阵P和矩阵 Q,使得PA = B和QB = A,显然, $A_{m \times n} x = 0$ 与 $B_{e \times n} x = 0$ 同