Large Scale Simulations

Our Goal In Lecture

- Going to build up the intuition for large-scale simulation
 - Focus on the simulation of galaxies to the universe
 - This lecture will give the tools to do this
- The devil is in the details
 - Our lecture use the core concepts in large scale sim
 - To get everything to work at scale is much harder
- We will touch on where the field is going

Lets Take a look at the Scale of Things

https://www.illustris-project.org/media/

Prof. Mark Vogelsberg Main Inspiration for talk

Prof. Lina Necib
Doing related work on smaller scales

Illustris/IllustrisTNG Model: - basic ingredients -

- hydrodynamics: quasi-Lagrangian moving mesh (Arepo, Springel 2010)
- <u>heating / cooling:</u> primordial, metal line
- UV background: with self-shielding correction
- star formation / ISM: effective EOS
- chemical enrichment:
 9 elements by SNIa, SNII, AGB
- supernova feedback: kinetic SNII feedback
- supermassive black holes: seeding, growth, merging
- AGN feedback: quasar, radio mode, radiative

MV+ 2013, 2014

IllustrisTNG Team:

Mark Vogelsberger llustris Team Shy Genel Volker Springel Paul Torrey Lars Hernquist Dylan Nelson Rainer Weinberger Federico Marinacci Ruediger Pakmor Annalisa Pillepich Jill Naiman

three boxes with different primary science focus (~250 million CPUh)

TNG100

galaxy clusters

Details

- This lecture is built on the following references:
 - https://www.youtube.com/watch?v=Fo23ihGLPA0
 - https://td.lpi.ru/~eugvas/nbody/lectures.pdf
 - https://www.tat.physik.uni-tuebingen.de/~schaefer/ teach/f/chaos_english.pdf
 - https://blbadger.github.io/3-body-problem.html

What do we need for Simulation?

- All Physics we need has been developed 100s of years ago
 - The two body problem has been solved since the 18th century

What do we need for Simulation?

To simulate this on a computer we will add a "softening" term

This is how DM/galaxies are modeled

- Instead of treating matter as a fluid
 - Discretize matter into chunks and solve n-body problem

3 body Problem: History

- The original two body probelm was solved in 18th century
 - Work done by Netwon, Bernoulli Bros, Euler, Laplace,...
 - All started on the 3 body problem and built on the two body
- King Oscar II decided to make a competition:

 For his 60th birthday he bestowed a prize on who could solve the n-body problem

3 body Problem: History

- The original two body probelm was solved in 18th century
 - Work done by Netwon, Bernoulli Bros, Euler, Laplace,...
 - All started on the 3 body problem and built on the two body
- King Oscar II (king of Sweden) decided to make a competition:
 - For his 60th birthday he bestowed a prize on who could solve the n-body problem

Henri Poincare -

He proved no solution existed!

Going to N-body

- The challenge of solving this numerically for n-body
 - This scales with the number of bodies N²
 - Requires the computations of all pairwise distances

- For N=1000 (1 Million/step computations)
- For N=10⁶ Something ridiculous

Historical Solutions

- One approach has been to build dedicated computing hardware
 - Dedicated hardware that can do large-scale parallel computation
 - Focused specifically on n-body simulation
 - GRAPE boards (GRAvity PipelinE)
- Now done with GPUs

Jun Makino with GRAPE-6

Scaling of n-body

The Evolution of Large-Scale Simulations

M. Vogelsberger(https://indico.cern.ch/event/736594/contributions/3184103/attachments/1738225/2812076/talk_vogelsberger.pdf)

How do you deal with N-body?

- Barne's-Hut Algorithm re-rank stars into a tree structure
 - Structure is a grid over the whole space

[from Dehnen & Read 2011]

Tree Construction

- QuadTree/OctTree
 - Split each square(cube) into 4(8) sub regions
- KD Tree
 - Use the data to draw equal numbered regions in space

Tree Construction

- QuadTree/OctTree
 - Split each square(cube) into 4(8) sub regions
- KD Tree
 - Use the data to draw equal numbered regions in space

Just requires that we know the bounds of the space

Visualizing Tree

Note that for the big grids, this equates to Gauss' law style an apporach Treat each square as a star w/total mass at mass weighted center

Barnes-Hut Algorithm

- We can follow a step by step construction of this:
 - 1. Construct tree structure with bounds
 - 2. Loop over stars and fill tree structure
 - 3. Loop over stars and compute distance
 - Full n-body computation for nearby trees only
 - 4. Step forward everything
- The above process is N log(N) in comptuational time

Image Sources

large scale cosmological plot

link: https://theconversation.com/shape-of-the-universe-could-it-be-curved-not-flat-126721

attribution: Illustris, CC BY-SA

galaxy simulation movie

link: https://www.illustris-project.org/media/

attribution: Illustris, CC BY-SA

illustric TNG model

link: https://www.freeastroscience.com/2023/04/first-pictures-uncover-concealed.html

attribution: Illustris, CC BY-SA

galaxy cluster figure

link: https://www.researchgate.net/publication/333090502_The_IllustrisTNG_simulations_public_data_release

attribution: Illustris, CC BY-SA

Henri Poicare

link: https://commons.wikimedia.org/wiki/File:Young_Poincare.jpg

attribution: Eugène Pirou (1841–1909) [1], Public domain, via Wikimedia Commons

Image Sources

Jun Makino

link: https://x.com/urbit/status/1031188756005412866

attribution: x.com, @urbit

GPUs

link: https://www.researchgate.net/figure/fig4_228390182

attribution: Hans-Peter Bischof

evoloution of large-scale simulations

link: https://indico.cern.ch/event/736594/contributions/3184103/attachments/1738225/2812076/talk_vogelsberger.pdf

attribution: M. Vogelsberger

star tree structure

link: https://arxiv.org/abs/1105.1082

attribution: Walter Dehnen, Justin Read, arXiv:1105.1082 [astro-ph.IM]

visualizing tree

link: http://15418.courses.cs.cmu.edu/spring2013/article/18

attribution: Copyright 2013 Carnegie Mellon University