

Analytical Geometry and Linear Algebra I, Lab 5

Test 1 Solutions Matrix Rank O/A session

Questions from the class

No questions for today

Task 1

(2 points) Decompose the vector $\mathbf{p} = (1, 2, 3)$ into components parallel and perpendicular to the vector $\mathbf{q} = (1, -2, 2)$.

Definition

The vector projection of a vector \mathbf{a} on (or onto) a nonzero vector \mathbf{b} , sometimes denoted $\mathsf{proj}_{\mathbf{b}} \mathbf{a}$ is the orthogonal projection of \mathbf{a} onto a straight line parallel to \mathbf{b} .

Projection of **a** on **b** (a_1), and rejection of **a** from **b** (a_2)

Where it can be used:

- Maps
- Blueprints
- Fitting algorithms (Least squares)

- Reduce matrix dimension
- Reinforcement Learning (RL) fitness functions

2D Case, Classical way

Project \vec{b} on \vec{a}_1

$$e = b - a_1x$$
, $e - \text{error b/w similar vectors}$

$$a_1 \cdot (b - a_1 x) = 0$$
$$a_1^T (b - a_1 x) = 0$$
$$a_1^T b = a_1^T a_1 x$$

$$\frac{a_1^T b}{a_1^T a_1} = x - \text{Classical formula from school}$$

Case study

$$\frac{a_1^T b}{a_1^T a_1} = x \Rightarrow \frac{\begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}}{\begin{bmatrix} 4 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix}} = \frac{3}{2}$$

Projection
$$p = a_1 x = \frac{3}{4} \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

2D Case, Projection matrix

$$\left. \begin{array}{l}
 Pb = xa_1 = a_1 x \\
 \frac{a_1^T b}{a_1^T a_1} = x
 \end{array} \right\} P = \frac{a_1 a_1^T}{a_1^T a_1}$$

Where P — projection matrix

$$p = Pb = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

2D Case, Projection matrix Project \vec{b} on \vec{a}_2 , which is perpendicular to \vec{a}_1

$$P_{d_1} = I - P = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Where
$$P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

 P_{d_1} is an error between the whole space and current projection matrix.

$$p_{d_1} = P_{d_1}b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

mm

Case study: Reinforcement Learning fitness function

Goal

It is necessary for the robot to move in a straight line in all directions, as well as as as efficiently as possible.

The efficiency criteria are: course deviation error, max velocity and clearance.

$$F = \omega_1 X_z + \omega_2 \frac{1}{|err| + \varepsilon} + \omega_3 (P_{d_{real}} \vec{X}), \text{ where}$$

$$err = |(I - P_{d_{real}})(I - P_{n_{pl}})\vec{X}|,$$

 P_* - projection matrix, ω_* - weight coeffs.

StriRus - task description

and leaves

Answer

- 1. Find the matrix product AB if $A = \begin{bmatrix} x & -2 & -1 \\ 4 & 1 & -4 \end{bmatrix}$, $B = \begin{bmatrix} -5 & 1 \\ 1 & -3 \\ 2 & x \end{bmatrix}$
- 2. Find the largest possible value of determinant (AB).

Answer

For which values x, vectors **a** and **b** are basis of some space? Explain your answer.

$$\mathbf{a} = \begin{bmatrix} 1 - x \\ x \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 - x \\ -2 \end{bmatrix}$$

Answer

Task 4

Given a parallelogram ABCD. Point N is the crossing of its diagonals. The old coordinate system has origin A and the basis AB, AD.

- 1. Define a new coordinate system formed by the point *D* and two new basis vectors: *DB* and *DC*.
- 2. Compute the transitions matrix A from the old basis to the new basis.
- 3. Calculate coordinates of point N in both bases, using the transition matrix A.

Answer

mm

Video

mmP

Definition

 $N_r(A)$ — max number of **lineary independent** rows of matrix A.

 $N_c(A)$ — max number of **lineary independent** columns of matrix A.

$$Rank(A) = N_r(A) = N_c(A)$$

The rank of the matrix is how many of the rows (columns) are «unique»: not formed out by other rows (columns).

Matrix Rank

Motivation

- Computation of the number of solutions of a system of linear equations.
- Analysis of the linear dependency of rows and columns.
- Applications in Control Theory (next year): observability and controllability.

How to find

There are 3 ways:

- 1. Look at matrix and find linear dependencies.
- 2. **Reduced form** (transform matrix to upper triangular form (The first part of the algorithm for finding inverse matrix).
- 3. Minor method (Метод окаймляющих миноров) not popular in western education.

Case Study (on whiteboard)

Calculate the rank of the following matrix:
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{bmatrix}$$
.

Answer: 2

Task 2

Determine the ranks of the following matrices for all real values of parameter α :

1.
$$\begin{bmatrix} 1 & \alpha & -1 & 2 \\ 2 & -1 & \alpha & 5 \\ 1 & 10 & -6 & 1 \end{bmatrix}$$
;

2.
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \alpha^2 & \alpha \end{bmatrix};$$

Reference material

Matrix Rank (OnlineMschool)

