EL 6303, Probability and Stochastic Processes	Name:	
Fall 2016		
Section A1, A2		
Elza Erkip		
December 16, 2016		

Final

Time Limit: 3 hours
Total: 100 points

- \bullet Closed book/closed notes/no electronics. Four formula sheets allowed.
- $\bullet\,$ Please show your work in the blue books.
- Include your name and student ID on both this sheet and the blue books. Return both at the end of the exam.
- Good luck!

1. (Total: 20 pts) Consider a communication system where the transmitted information is represented as a random variable X with

$$P(X = 1) = P(X = -1) = 1/2.$$

The receiver observes Y such that

$$Y = X + Z$$

where $Z \sim N(0, \sigma^2)$ is the additive Gaussian noise. We assume X and Z are independent.

- (a) (4 pts) Find f(y|x), the conditional pdf of Y given X for x = 1 and x = -1.
- (b) (4 pts) Find f(y), the pdf of Y.
- (c) (6 pts) Given Y = 0.5, which input value has higher probability: x = 1 or x = -1? Prove your result.

Hint: For y = 0.5, compare p(x|y), conditional pmf of X given Y, for x = 1 and x = -1. You do not need to calculate p(x|y) exactly to do the comparison.

(d) (6 pts) Suppose receiver estimates the transmitted signal as \hat{X} using the following rule

$$\hat{X} = \begin{cases} 1, & \text{if } Y \ge 0 \\ -1, & \text{if } Y < 0 \end{cases}$$

Find $P(\hat{X} \neq X \mid X = -1)$. Your answer should be in terms of the Q-function

$$Q(u) = \int_u^\infty \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz.$$

2. (Total: 15 pts) Consider $Q \sim \text{Unif}(0,1)$ and binary random variables $X_1, \dots X_n$ such that

$$P(X_i = j | Q = q) = \begin{cases} q, & j = 1\\ 1 - q, & j = 0 \end{cases}$$

for $i = 1, \ldots, n$. Also,

$$p(x_1, \dots x_n | q) = \prod_{i=1}^{n} p(x_i | q),$$

Hence X_i are conditionally i.i.d given Q.

- (a) (3 pts) Find $P(X_n = 1)$.
- (b) (5 pts) Find the joint pmf of (X_1, \ldots, X_n) .
- (c) (7 pts) Find $P(X_n = 1 | X_{n-1} = x_{n-1}, \dots, X_1 = x_1)$.

Hint: You can use $\int_0^1 u^k (1-u)^{n-k} du = \frac{k!(n-k)!}{(n+1)!}$.

3. (Total: 20 pts) Consider a stochastic system which scales its input by A(t), where A(t) is a stochastic process. Hence

$$Y(t) = A(t)X(t),$$

where X(t) is the system input, Y(t) is the output. We assume A(t) has mean $\mu_A(t)$ and autocorrelation $R_{AA}(t_1, t_2)$.

- (a) (6 pts) Suppose X(t) is a deterministic signal.
 - i. Find the mean of Y(t).
 - ii. Find the autocorrelation of Y(t).
 - iii. If A(t) is WSS, is Y(t) also WSS? Explain.
- (b) (14 pts) Suppose X(t) is a stochastic process with mean $\mu_X(t)$ and autocorrelation $R_{XX}(t_1, t_2)$. We assume X(t) and A(t) are independent.
 - i. Find the mean of Y(t).
 - ii. Find the autocorrelation of Y(t).
 - iii. Find the cross correlation $R_{XY}(t_1, t_2)$ between the input and the output.
 - iv. If both A(t) and X(t) are WSS, is Y(t) also WSS? Explain.
 - v. If both A(t) and X(t) are WSS, are X(t) and Y(t) jointly WSS? Explain.
 - vi. Suppose both A(t) and X(t) were Gaussian processes. Would Y(t) be also Gaussian? Explain.
 - vii. Suppose X(t) is a white noise process. Would Y(t) be also white noise? Explain.

- 4. (Total: 15 pts) Energy harvesting technology allows for storage of energy derived from external sources (e.g., solar power, thermal energy, ...) into batteries. Consider a battery that is used for completing tasks, and is charged by harvesting energy from the environment. The battery performs as follows:
 - At each unit of time, a task is requested with probability q and the battery consumes 1 Joule in order to complete the requested task. If the battery is empty, no task can be done, even if it is requested.
 - At each unit of time, 1 Joule of energy is harvested and stored in the battery with probability p, independently from whether a task is requested or not.

The battery has a capacity of 2 Joules, so it cannot store more than 2 Joules, even if it harvests energy. The process X_1, X_2, \ldots represents the total energy stored in the battery (in Joules) as a function of time. This process can be represented as a Markov chain with states $\{0, 1, 2\}$.

- (a) (5 pts) Draw the state transition diagram of this Markov chain.
- (b) (2 pts) Find the probability transition matrix **P**.
- (c) (6 pts) Suppose $P(X_1 = 1) = 0.3, P(X_1 = 2) = 0.7.$
 - i. What is the probability that the battery will be full at time n=2, that is $P(X_2=2)$?
 - ii. What is the probability that the battery will be empty at time n=2?
 - iii. Find $P(X_3 = 1)$.
- (d) (2 pts) Find $P(X_{i+2} = 0 | X_i = 2)$, that is the probability that the battery goes from full to empty in two time slots.

- 5. (20 pts) We consider a stochastic process N(t) that counts the number of particles arriving at a Geiger counter. Suppose Λ is an exponential random variable, namely $f_{\Lambda}(\lambda) = \alpha e^{-\alpha \lambda}$ for $\lambda > 0$. Conditional on $\Lambda = \lambda$, N(t) is a Poisson process with rate λ .
 - (a) (3 pts) Find $P(N(t) = n | \Lambda = \lambda)$ for some t > 0.
 - (b) (6 pts) Using the conditional probability you found in (a), find the marginal distribution of N(t), P(N(t)=n).

 Hint: $\int_0^\infty e^{-kx} x^n \, \mathrm{d}x = \frac{n!}{k^{n+1}}$
 - (c) (6 pts) Let T_1 denote the time of the arrival of the first particle. Find $F_{T_1}(t_1)$, the cdf of T_1 .
 - (d) (5 pts) Is N(t) an independent increment process? Prove your result.

- 6. (Total: 10 pts) Suppose W(t) represents a Wiener process with parameter σ^2 . Recall properties of the Wiener process (Brownian motion):
 - I. W(0) = 0.
 - II. $W(t_1) W(t_2) \sim N(0, \sigma^2(t_1 t_2)), t_1 > t_2$.
 - III. W(t) has independent increments, that is if (t_1, t_2) and (t_3, t_4) are non-overlapping intervals, $W(t_1) W(t_2)$ and $W(t_3) W(t_4)$ are independent.

Let $X(t) = \frac{1}{\sqrt{c}}W(ct)$ for some constant c > 0. We will show that X(t) is also a Wiener process.

- (a) (1 pts) Show that X(t) satisfies property I.
- (b) (3 pts) Show that X(t) satisfies property II.
- (c) (4 pts) Show that X(t) satisfies property III.
- (d) (2 pts) Find the parameter of this Wiener process.

Note: This is called the self-similarity property of the Wiener process.