```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

Exploratory Data Analysis

```
In [2]: data=pd.read_csv("/home/placement/Downloads/Advertising.csv")
In [3]: data.head()
```

Out[3]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9

```
In [4]: y=data['sales']
x=data.drop('sales',axis=1)
```

localhost:8888/notebooks/lasso.ipynb

In [5]: x

Out[5]:

	Unnamed: 0	TV	radio	newspaper
0	1	230.1	37.8	69.2
1	2	44.5	39.3	45.1
2	3	17.2	45.9	69.3
3	4	151.5	41.3	58.5
4	5	180.8	10.8	58.4
195	196	38.2	3.7	13.8
196	197	94.2	4.9	8.1
197	198	177.0	9.3	6.4
198	199	283.6	42.0	66.2
199	200	232.1	8.6	8.7

200 rows × 4 columns

```
In [6]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [7]: from sklearn.linear_model import Lasso
    reg=Lasso()
    reg.fit(x_train,y_train)
```

Out[7]: v Lasso Lasso()

```
In [8]: y_pred=reg.predict(x_test)
```

localhost:8888/notebooks/lasso.ipynb

```
In [9]: | y pred
 Out[9]: array([16.52356688, 21.07183096, 21.63653184, 10.73467623, 22.18465223,
                13.23922119, 21.16664756, 7.4431686, 13.52971188, 15.20686921,
                 9.06623028, 6.63289843, 14.40121642, 8.95402791, 9.6407048,
                12.14981955, 8.84314265, 16.26648664, 10.32853903, 18.85137298,
                19.70493689, 13.5213463, 12.41160087, 21.46562312, 7.78549068,
                 5.78265455, 20.87376833, 11.96631497, 9.18377863, 8.5245863,
                12.43342356, 10.04074515, 21.58122748, 12.49489552, 18.26811877,
                20.16474367, 14.14870494, 20.95277886, 10.97979616, 4.53957393,
                 9.67385982, 12.60613272, 10.14475068, 8.20968861, 13.42902186,
                 5.36899823, 9.33781109, 14.18378647, 8.82071962, 11.68378102,
                15.56752612, 11.83221277, 13.07693412, 10.97649377, 6.53276607,
                 9.92514199, 9.50755099, 24.21620593, 7.71785174, 12.42302645,
                17.64869313, 15.30224537, 11.48429434, 11.04853032, 16.71492188,
                 6.9526154 1)
In [10]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Lasso
         lasso = Lasso()
         parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         lasso regressor=GridSearchCV(lasso, parameters)
         lasso regressor.fit(x train, y train)
Out[10]:
          ▶ GridSearchCV
          ▶ estimator: Lasso
                ▶ Lasso
In [11]: lasso regressor.best params
Out[11]: {'alpha': 1}
```

localhost:8888/notebooks/lasso.ipynb

```
In [12]: lasso=Lasso(alpha=0.01)
    lasso.fit(x_train,y_train)
    y_pred_lasso=lasso.predict(x_test)

In [13]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred)

Out[13]: 0.8589177083282906

In [14]: from sklearn.metrics import mean_squared_error
    mean_squared_error(y_pred_lasso,y_test)

Out[14]: 3.72733659282993

In []:
```

localhost:8888/notebooks/lasso.ipynb

4/7

```
In [15]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    Results['predicted']=y_pred_lasso
    #Result['km']=x_test['km']
    Results=Results.reset_index()
    Results['price']=Results.index
    Results.head(10)
```

Out[15]:

	index	Actual	predicted	price
C	95	16.9	16.585351	0
1	15	22.4	21.213889	1
2	30	21.4	21.691715	2
3	158	7.3	10.786696	3
4	128	24.7	22.243765	4
5	115	12.6	13.305613	5
6	69	22.3	21.249652	6
7	170	8.4	7.359812	7
8	174	11.5	13.415111	8
g	45	14.9	15.214711	9

In [16]: import seaborn as sns import matplotlib.pyplot as plt

In [17]: sns.lineplot(x='price',y='Actual',data=Results.head(50))#bule
sns.lineplot(x='price',y='predicted',data=Results.head(50))#orange
plt.plot()

Out[17]: []

In []:		
---------	--	--