LaPIS Diagnostic Test Workbook - Mathematics

Name : Lakshana S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV192

Lakshana S's Performance Report

Score: 18/40 Percentage: 45.0%

Lakshana S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Basic arithmetic

	Topics to be Improved
Types of angles	Identification of types of angles
LCM	Finding LCM

......

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $___{\circ}$ to $___{\circ}$.

The angle perpendicular to 0° is ____ $^{\circ}$.

The straight line measures $___^{\circ}$.

Question: 2

The angle formed between the directions

- (i) West and East is _____ angle.
- (ii) North and East is _____ angle.
- (iii) East and South is _____ angle.

Answer:

The angle formed between West and East is ____° and it is called _____ angle.

The angle formed between North and East is ____° and it is called _____ angle.

The angle formed between East and South is ____° and it is called _____ angle.

Question: 3

The addition of straight angle and right angle is _____ angle.

Answer:

The measurement of straight angle is _____°

The measurement of right angle is _____°.

Straight angle + Right angle = $___$ + $___$ = $___$

It is called as _____ angle.

Hi, here in this video you will learn LCM

Question: 4

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are	and multiples of 10 are
$\underline{Question: 5}$	
Find the LCM of 50, 100.	
Answer:	
Complete the division using least commo	on multiple.
	50 , 100
The LCM of 50, 100 is 2 x 2 x x	·
Question: 6	
Every number is the multiple of	
Answer:	
Let's find the first ten multiple of random	m numbers,
Multip	ple of $1 = \underline{\hspace{1cm}}$
•	ple of $2 = \underline{\hspace{1cm}}$
	le of 13 =
Multip	le of $20 = $
Here, is the common factor of e	very number.

Mensuration

	Topics to be Improved
Perimeter	Perimeter of triangle

.....

Hi, here in this video you will learn **Perimeter**

Question: 7

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 8

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 9

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(___+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

	Topics to be Improved
Chance of probability	Basis of probability
Range	Finding the range
Arithmetic mean, mode and median	Mean, Median and Mode

.....

Hi,	here	${\rm in}$	this	video	you	will	learn	Basics	of	probab	oility
-----	------	------------	------	-------	-----	------	-------	--------	----	--------	--------

Question:	10

Identify the sure events and impossible events

- (i) The sun rises in the west.
- (ii) Water is colourless.
- (iii) Clock rotates in clock wise direction.
- (iv) Ball is square in shape.

Answer:

Events that always occur are called	(sure/ impossible) events.
Events that cannot occur are called	(sure/ impossible) events.
Here, The sun rises in the west is	event. Water is colourless is
event.	
Clock rotates in clock wise direction is	event. Ball is square in shape is
event.	
Question: 11	

Probability of sure events is _____ (greater / smaller) than probability of impossible events.

Answer:

Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).

Therefore, Probability of sure event _____ Probability of impossible event.

Question: 12

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

Things Raju have	
Does Raju have pen in his box, (Yes/ No).	
Then probability of getting pen from his box is $\underline{\hspace{1cm}}$ $(0/1)$	
	回火器器回
Hi, here in this video you will learn Range	
Question: 13	
Range of the data =	
Answer:	
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =	
<u>Question: 14</u>	
Question: 14	
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1	
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20+51 \qquad \frac{-38-51}{2} \qquad 51+38 \qquad \frac{51+20}{2}$	
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ $\frac{51 + 20}{2}$ Answer: Range =	
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38-51}{2}$ $51 + 38$ $\frac{51+20}{2}$ Answer: Range =	4, 9
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38-51}{2}$ $51 + 38$ $\frac{51+20}{2}$ Answer: Range =	4, 9
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38-51}{2}$ $51 + 38$ $\frac{51+20}{2}$ Answer: Range =	4, 9
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38 - 51}{2}$ $51 + 38$ $\frac{51 + 20}{2}$ Answer: Range =	4, 9
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38-51}{2}$ $51 + 38$ $\frac{51+20}{2}$ Answer: Range =	4, 9
Question: 14 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 1 $-20 + 51$ $\frac{-38-51}{2}$ $51 + 38$ $\frac{51+20}{2}$ Answer: Range =	4, 9

Question: 16

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations. Arranging the data in ascending order:

0	occurs most number of	times. Th	en, mode o	of the given	n data is _		
Question: 17			•				
Which shape con	tains median of the given	ven data 3	, 5, 6, 2, 7,	9, 6, 4 and	d 1		
2		5		6	9	>	
$\underline{Answer:}$							
ascending or desc Arrange the given	ending order. n data in ascending or the given data is	der :					
$Question: \ 18$							
	Marks scored	100	90	80	70		
	Number of students	4	5	2	1		
Mean = .	Median = an	nd Mode =	:			_	
Answer:							
$Mean = {}$	of all observation mber of observation .						
Therefore, mean	observation = = in ascending order : _			observatio	on =		
Here, $median = 1$, mode	e =					

Geometry

Topics to be Improved				
Faces vertex and edges				
Right angle triangle and pythagoras property	Basics of Pythagoras property			
Lines of symmetry for regular polygons Identification of lines of symmetry				
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			
Angle sum property of triangle	Angle sum property of triangle			
Related angles	Basic of angles			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			

Hi, here in this video you will learn $\bf Basics~of~3D~model$

$Question: \ 19$
A point at which two or more lines segments meet is called(Vertex/ edges/ faces).
$\underline{Answer:}$
has two end point (line/line segment/ray).
Ais a point where two or more line segments meet(Vertex/ edges/ faces).
Mark the vertices in the diagram,

Question: 20	
Mark and find the	number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces in a cube. vertices, edges and faces.
Question: 21	
II	-d2

How many vertices, edges and faces does dices have?

Answer: The shape of dice is _____. Dices have ____ vertices, ____ edges and ____ faces. Hi, here in this video you will learn Pythagoras property Question: 22

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____(hypotenuse/ legs).

Pythagoras theorem states that _____

......

Question: 23

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the = sum of the squares on
Is Pythagoras theorem applicable in rectangle? (yes/ no). Given: breadth =, length of diagonal =
By Pythagoras theorem, $()^2 = ()^2 + ()^2$ = +
Therefore, diagonal of the rectangle is
Hi, here in this video you will learn Symmerty
$Question: \ 25$
Line of symmetry is divides any shape into (one / two) (identical / non dentical) halves.
$\underline{Answer:}$
Lines of symmetry is a line that divides any shape into (equal / unequal) halves. Symmetrical image have (identical / non identical) parts. Therefore, line of symmetry is dividing the shape into halves.
$Question: \ 26$
How many lines of symmetry does square have?
$\underline{Answer:}$
Square have sides.
All sides of square are and all angles are
Mark the lines of symmetry.
Therefore, square has lines of symmetry.
Question:~27
Classify the following based on the symmetry. Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle .
$\underline{Answer:}$

Lines of symmetry is a line that divides the shape into (equal / unequal) halves. The letter S is (symmetrical / asymmetrical) and have lines of
symmetry. Scalene triangle is(symmetrical / asymmetrical) and havelines of
Symmetry. The letter K is (symmetrical / asymmetrical) and have lines of symmetry.
Rhombus is(symmetrical / asymmetrical) and have lines of symmetry.
Cat is (symmetrical / asymmetrical) and have lines of symmetry. Stars is (symmetrical / asymmetrical) and have lines of symmetry
Hi, here in this video you will learn Sum of the length of sides of the triangle
$Question: \ 28$
Find the greatest distance to reach C from A in the given diagram.
$\begin{array}{c c} A & 70m \\ \hline 30m & \end{array}$
$_{ m 60m}$ $^{ m C}$
$\underline{Answer:}$
The sides of the given triangle are The possible way to reach point C from point A are and AB then to
Side AC = + =
Therefore, the greatest distance to reach C from A in the given diagram is
Question:~29
(Sum of / Difference between) the length of any two sides of a triangle is smaller han the length of the third side.
$\underline{Answer:}$
There are sides in a triangle. The sum of the two sides of a triangle is than the other side of the triangle. The difference of the two sides of a triangle is than the other side of the triangle. Example: In triangle XYZ,

Question: 30

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is _______ than the third side of the triangle. Therefore, the third side should be ______(less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ____ = _____
 Therefore, the length of the third side is less than ______
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = ____ = ____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn **Angle sum property**

Question: 31

Sum of the angles of triangle is _____.

$\underline{Answer:}$

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n= number of sides Triangle has _____ sides. Sum of the angles of triangle = $(_{----} - 2) \times 180^{\circ} = _{----}$

Question: 32

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _______ In $\triangle ABC$, Sum of the angles = $\angle A + \angle B + \angle C =$ _____ = _____ = _____ In $\triangle PQR$, Sum of the angles = _____ = ____ = ____ = ____ In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____ = ____ = ____ = ____ Therefore, the triangles that satisfy the angle sum property are = ______

$Question: 33 \dots \dots \dots$

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x+ ____ + ___ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Related Angles

Question: 34

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

Answer:

A ______ (line segment /ray) begins from one point and travels endlessly in a direction.

- (i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.
- (ii) If two rays starting at same point moves in opposite direction, they form a ______ (straight / perpendicular) line. The measure of the angle formed is _____ °and it is called _____ angles.

Question: 35

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

Question: 36

Find the complementary angles in the given diagram.

......

Two angles are said be complementary if sum of their angles is equal to	
$\angle AOB = $, and its complement angle is	
$\angle BOC = $, and its complement angle is	
$\angle COD = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$.	
$\angle DOE = \underline{\hspace{1cm}}$, and its complement angle is $\underline{\hspace{1cm}}$. Therefore, in the given figure the complementary angles are $\angle AOB$, $\underline{\hspace{1cm}}$ and $\angle BOC$, $\underline{\hspace{1cm}}$	
and 2000,	
Hi, here in this video you will learn Criteria of congruence	ektilitzea
Question: 37	
Circle the groups that contain congruent images.	
Answer:	
Two geometrical shapes are said to be congruent if they are	
(identical/non-identical) in shapes and size.	
Example: Square and Rectangle are (congruent/not congruent).	
Question: 38	
If the three sides of the triangle are equal to the corresponding sides of the other triangle, the triangles are congruent under (SSS/ASA/SAS) criteria .	n two
Answer:	
Two triangle are (congruent/not congruent) if they are identical in shapes an Criteria for congruence of triangles are SSS, and	d size.
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal) to the three corresponding sides of the other triangle.	ıal/
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle be them are equal to the corresponding sides and the included angle of the other triangle.	etween
3. In ASA Congruence criteria - $\underline{\hspace{0.5cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{0.5cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.	
SSS sides and angles are equal	
SAS sides and angles are equal	
ASA sides and angles are equal	

Question: 39

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved			
Properties of integers	Associative property		
Positive and negative rational numbers	Identification of positive rational numbers		
Integers	Basics of integers		
Fractions	Multiplication of fractions		

Hi, here in this video you will learn Properties of integers

Question: 40

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

 $\underline{Answer:}$

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

From the given option _____ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) _____ (does not/does) change the sum.

Therefore, (a + b) + c =______.

From the given option ______ satisfies the Associative property.

(iii) Commutative property:

Changing the order of the addends _____ (does not/ does) change the sum.

Therefore, $a + b = ___ + ___$

From the given option ______ satisfies the Commutative property.

(iv) Identity property: The sum of _____ and any number always returns same number.

Therefore, $a + \underline{\hspace{1cm}} = a$

From the given option ______ satisfies the Identity property.

Question:	<u>: 41</u>			
Mark the o	perations in which	ch commutative propert	y holds true for any tw	o integers.
	Addition	Subtraction	Multiplication	Division
Answer:				
For any two The commu	(does not/ o integers, commutative property :	nanging the does) change the result. utative property holds t for addition is for multiplication is	rue for	- -
Are additiv	e identity and m	ultiplicative identity the	e same? (Yes or No)	
Answer:				
The Identit	ty property for ac	for,,,,,,,	_ and additive identity	
Therefore,	additive identity	is (equal / not	equal) to multiplicative	ve identity.
*	in this video	you will learn Posi t	tive and Negativ	e ra-

 $\underline{\textit{Question: 43}}$

Segregate positive and negative rational number.

Answer:

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 44
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
(Positive / Negative / Neither positive nor negative rational number)
<u>Question: 45</u>
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Basics of integers
Question: 16

Question: 46

Highlight the ring that contains whole numbers. $\,$

 $\underline{Answer:}$

The numbers inside the inner ring $(1, 2, 3,)$ are numbers. The numbers inside the middle ring are numbers. The numbers inside the outer ring are negative numbers, positive numbers and zero and they are called as
Question: 47
Colour the frame of the box which contains the number 1, 4 and -10
Whole numbers
Answer:
Whole number consists of $0,1,2,3,4,$. Negative number consists of Natural numbers consists of Integers consists of Now, 1, 4, -10 are in
Question: 48
State whether the statement is true or false. Every positive number is an integer.
Answer:
Positive numbers are Integers consists of Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Multiplication on fractions
Question: 49
Fill the boxes
$2+4+\frac{6}{2} = \frac{2}{\square} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$
Answer:
The whole number can be expressed in fraction with denominator equal to (zero/one). Therefore, 2 can be written as in fraction. 4 can be written as in fraction.
$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$

0	70	
Question:	<i>90</i>	

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = $_$

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 51

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2 \frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Comparing Quantities

	Topics to be Improved	
Percentage	Basic of percentage	
Hi, here in this video you	will learn Basics of percentage	
Question: 52		
2% can be written as		
$\underline{Answer:}$		
Percentages are numerators of i	fractions with denominator $2\% = \frac{\square}{\square}$	
Question: 53		
Arun attended the LaPIS test f Arun?	for 100 marks and got 75% marks. What is the	mark scored by
$\underline{Answer:}$		
Arun attended LaPIS test for $_$	marks. He got	marks.
75~% can be written in fraction	n form	
Then the mark scored by Arun	$1 = \text{Total mark} \times 75\% = \underline{\qquad} \times \underline{\qquad}$	=
Question: 54		
There are 25 apples in a basket apples.	in which 10 of them are rotten. Find the perc	entage of rotten
Answer:		
There are apples in a behavior of rotten apples are		

Fraction form of rotten apples in a basket =	
Convert it into a percent= x	% =

Algebra

Topics to be Improved				
Basics of simple equation Solving of simple equation				
Terms of an expression Identification of terms in an expression				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
subtraction of algebraic expressions	subtraction of algebraic expressions			

Hi, here in this video you will learn Solving an equation

Question: 55

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 56

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

 $7 \square + 3 = -4$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

7× ____+3= ____

7× ____+3 = ____

 $7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$

7× ____+3 = ____

7× ____+3 = ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 57

Arrange the terms in the descending order when the value of x is 2. $2x 5x imes 1 x + 3 2x - 4 <math>\frac{1}{2}x$

Answer:

The given expression are ______

The value of x is _____. substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____,

Hi, here in this video you will learn Terms of an expression

Question: 58

Separate the variables and constants for all the terms given in the box

Answer:

In algebraic expression, variables are represented by _____ and Constant is a

Terms	Constants	Variables	

.....

......

Question: 59

Mark the expression that contains two terms.

$$3x + 5$$
 $12a$ $4xy$ $12a + b + 1$ $7m + 0$

Answer:

The terms in the expression 3x + 5 is/are _____.

The terms in the expression 12a is/are _____.

The terms in the expression 4xy is/are ______.

The terms in the expression 12a + b + 1 is/are _____

The terms in the expression 7m + 0 is/are _____.

 $Question:\ 60$

Shade the outline of circle that contains the term of the given expression.

$6m^2$	_	7mn	\perp	nl
$0m^2$		mn	$\overline{}$	TLL

1	ns	2011	or	
\boldsymbol{H}	$T \iota \varepsilon$	w	e_T	

Here,,	, are the terms of the given expression.
of addition.	
In algebraic expression,	(variables/ terms) are connected together with operations

Hi, here in this video you will learn **Types of expression**

Question: 61

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression,	(variables/ terms)	are connected	together wit	th operations
of addition.				
The terms in the expression are	, ,	$_$, and $_$		
Therefore, there are terms in th	e expression.			

......

.....

Question: 62

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 63

$5m^2 +$	-m + 0 is a	expression	. (Monomial/B)	inomial/ Trinomial)
\underline{Ansu}	ver:				
The te Here,	erms in expression the expression has	$m 5m^2 + m + 0 \text{ are } \underline{\hspace{2cm}}$ as $\underline{\hspace{2cm}} \text{term}$	ms and it is calle	ed a	_ expression.
Hi,	here in this vio	deo you will learn	Subtraction	on expression	1
Ques	<i>tion:</i> 64				
Find t	the sum of two ex	expressions $a + b + c a$	and $b + c + d$		
\underline{Ansu}	ver:				
The tv	wo terms will get	ons are and _ added only if they ar sions = +	e(Like/	Unlike) terms.	
\overline{Ques}	<i>tion:</i> 65				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i) '	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B is	s		
(iii)	How many more	teachers are there in s	school B than sc	hool A ?	
\underline{Ansu}	ver:				
]	Number of boys i	in school A = in school B = boys in school A and	·•	+ = _	
) [Number of girls i	in school $B = \underline{\hspace{1cm}}$ n school $B = \underline{\hspace{1cm}}$ students in school B is		=	
, ,	Number of teachers $A = \underline{\qquad}$	ers more in school B t	han school $A =$	Teachers in school	B – Teachers in

Question: 66

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
3a - 5b \\
\hline
 (-) & 5a - 7b \\
\hline
 -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$