BÁO CÁO THỰC HÀNH

Họ tên	Nguyễn Trọng Nghĩa	Lóp: IT012.P23.1
MSSV	24521148	STT: 17
Bài Thực Hành	LAB2	
CBHD	Trương Văn Cương	

Bài tập thực hành:

- 1. Mô phỏng mạch so sánh 2 số 2 bit
- 2. Mô phỏng mạch ALU(8 bit)

1.Thực Hành

1.1 Mô phỏng mạch so sánh 2 số 2 bit

Bảng chân trị

A0A1	B0B1	A=B	A <b< th=""><th>A>B</th></b<>	A>B
00	00	1	0	0
00	01	0	1	0
00	10	0	1	0
00	11	0	1	0
01	00	0	0	1
01	01	1	0	0
01	10	0	1	0
01	11	0	1	0
10	00	0	0	1
10	01	0	0	1
10	10	1	0	0
10	11	0	1	0
11	00	0	0	1
11	01	0	0	1
11	10	0	0	1
11	11	1	0	0

Nhận xét: Kết quả mô phỏng đúng với từng trường hợp của bảng chân trị trên

Trường hợp: A=B

Giải thích: $F_{eq} = (A_1'B_1' + A_1B_1) (A_0'B_0' + A_0B_0)$

Kết quả mô phỏng: (ví dụ cho trường hợp khi A=0 tương ứng với A0A1=00 và B=0 tương ứng với B0B1=00)

Trường hợp A<B:

 $Giải \ thích \ F_{A < B} = A_1 'B_1 (A_0 '+B_0) + A_0 'B_0 (B_1 '+B_0)$

Kết quả mô phỏng: (ví dụ cho trường hợp khi A=1 tương ứng với A0A1=01 và B=2 tương ứng với B0B1=10)

Trường hợp A>B:

Giải thích: $F_{A>B} = A_1B_0'(B_1'+A_0) + A_0A_1B_1' + A_0B_0'B_1$

Kết quả mô phỏng: (ví dụ cho trường hợp khi A=3 tương ứng với A0A1 = 11 và B=2 tương ứng với B0B1=10)

1.2 Mô phỏng mạch ALU(8 bit)

Kết quả mô phỏng:

A	В	0	S
00001011	00001001	00	00010100
00001011	00001001	01	00000010
00001011	00001001	10	00001001
00001011	00001001	11	00001011

Nhận xét: Kết quả mô phỏng đúng với lý thuyết mạch ALU

Giải thích:

- Trường hợp O=00 thực hiện phép tính A+B. Khi đó A=11 ứng với mã nhị phân 00001011 và B=9 ứng với mã nhị phân 00001001 thì kết quả là S=20 với mã nhị phân là 00010100

Trường hợp O=01 thực hiện phép tính A-B. Khi đó A=11 ứng với mã nhị phân 00001011 và B=9 ứng với mã nhị phân 00001001 thì kết quả là S=2 với mã nhị phân là 00000010

-

Trường hợp O=10 thực hiện cổng logic AND lấy những phần tử bit 1 giống nhau,
với A=00001011 và B=00001001 ta được kết quả S=00001001

Trường hợp O=11 thực hiện cổng logic OR lấy những phần tử bit 1 từ cả A và B, với A=00001011 và B=00001001 ta được kết quả S=00001011

