Relatório 15 – Redes Neurais Convolucionais 1 (Deep Learning)

Guilherme Loan Schneider

Descrição da atividade

As redes neurais convolucionais são, de maneira simplificada, uma rede neural com algumas etapas antes de chegar no processamento tradicional de rede (neurônios de entrada, ocultos e de saída). Esse tipo é principalmente utilizado para reduzir a complexidade de imagens, tendo aplicações no DLSS (Deep Learning Super Sampling) de placas de vídeo da NVIDIA.

Parte Convolucional da rede neural

Operador de Convolução

A primeira etapa da rede convolucional é reduzir a complexidade de uma imagem. É possível visualizar que a imagem acima está no espectro RGB, normalmente é aplicada uma redução para a escala de cinza, que consegue preservar as características da imagem e reduzir a complexidade da rede como um todo.

Em seguida o algoritmo define os melhores valores para o detector de características, que é uma matriz, de acordo com a imagem passada. O tamanho da matriz também e definido pelo algoritmo, variando muito de tamanho conforme o comprimento e largura da imagem passada.

É interessante destacar também que existem vários tipos de matrizes para o detector de características, como uma matriz para deixar a imagem mais nítida, para adicionar Blur, remover o Blur, identificar bordas, dentre outras (https://en.wikipedia.org/wiki/Kernel_(image_processing)).

Por fim, após aplicar o detector de características na imagem, tem-se como resultado um conjunto de mapas de características, que possuem tamanho menor que a imagem original, e tentam preservar as principais diferenças de uma imagem para outra.

Pooling Etapa 2 Pooling Conjunto de Mapas de características Max Pooling

Finalizada a etapa 1, os valores obtidos nos mapas de características são refinados mais uma vez, passando pela técnica Max Pooling, que consiste em, dado uma seleção de valores μ x μ em um mapa de características, acessar o maior valor e armazená-lo em uma matriz de Pooling.

Flattening

Etapa 3 Flattening

A última etapa da rede convolucional transforma as matrizes obtidas no processo anterior em vetores. Os valores desses vetores serão utilizados na camada de entrada da rede neural.

A rede neural em sua totalidade

Rede Neural Convolucional

Por fim, na imagem acima é mostrado todo o processo de uma rede neural convolucional.

- 1. Inserção de um conjunto de imagens;
- 2. Extração das características dessa imagem a partir do detector de características;
- 3. Aplicação do Max Pooling, a fim de manter as especificidades da imagem e torna-la menor ainda.
- 4. Planarização das matrizes;
- 5. Utilização dos vetores na camada de entrada da rede neural tradicional;
- 6. Obtenção do resultado final da rede.

Referencias

Deep Learning com Python de A a Z - Seção 8 à 10