MMSNP: Proof of the Universal-Algebraic Dichotomy Conjecture

Manuel Bodirsky, Florent Madelaine, **Antoine Mottet** September 25, 2018

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

Complexity:

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

► Complexity: NP-complete.

- ► Input: undirected graph *G*,
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

- Complexity: NP-complete.
- ► Input: undirected graph G
- ▶ Question: can one colour the vertices of *G* in a way to avoid the following patterns:

► Complexity: in P.

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph *G*,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ?

```
(i.e., find G^* such that \forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*)
```

In general, for some fixed set ${\cal F}$ of vertex-coloured graphs, the problem ${\sf FPP}({\cal F})$ is:

- ► Input: finite graph *G*,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n$$

where:

 $ightharpoonup M_1, \ldots, M_n$ are unary predicates,

In general, for some fixed set $\mathcal F$ of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal F)$ is:

- ► Input: finite graph *G*,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg ($$

where:

 $ightharpoonup M_1, \ldots, M_n$ are unary predicates,

In general, for some fixed set $\mathcal F$ of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal F)$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \not\rightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}))$$

where:

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$,

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

where:

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$,
- \triangleright β_i is a conjunction of literals.

In general, for some fixed set \mathcal{F} of vertex-coloured graphs, the problem $\mathsf{FPP}(\mathcal{F})$ is:

- ► Input: finite graph G,
- ▶ Question: can one colour the vertices of G and avoid \mathcal{F} ? (i.e., find G^* such that $\forall F^* \in \mathcal{F}, F^* \nrightarrow G^*$)

MMSNP: formulas of the form

$$\exists M_1 \cdots \exists M_n \forall \overline{x} \bigwedge_i \neg (\alpha_i(\overline{x}) \wedge \beta_i(\overline{x}, M_1, \dots, M_n))$$

where:

- $ightharpoonup M_1, \ldots, M_n$ are unary predicates,
- $ightharpoonup \alpha_i$ is a conjunction of positive literals $E(x_i, x_k)$,
- \triangleright β_i is a conjunction of literals.

MMSNP and FPP are computationally equivalent.

- For every finite set \mathcal{F} of forbidden patterns, the corresponding problem is in P or NP-complete,
- ▶ Algorithm that takes \mathcal{F} and outputs complexity of FPP(\mathcal{F}).

- For every finite set \mathcal{F} of forbidden patterns, the corresponding problem is in P or NP-complete,
- ▶ Algorithm that takes \mathcal{F} and outputs complexity of FPP(\mathcal{F}).

New results:

An algebraic characterisation of membership in P,

- For every finite set \mathcal{F} of forbidden patterns, the corresponding problem is in P or NP-complete,
- ▶ Algorithm that takes \mathcal{F} and outputs complexity of FPP(\mathcal{F}).

New results:

- ► An algebraic characterisation of membership in P,
- Solve question posed by Lutz and Wolter (ICDT'15),

- For every finite set \mathcal{F} of forbidden patterns, the corresponding problem is in P or NP-complete,
- ▶ Algorithm that takes \mathcal{F} and outputs complexity of FPP(\mathcal{F}).

New results:

- ► An algebraic characterisation of membership in P,
- Solve question posed by Lutz and Wolter (ICDT'15),
- ► Confirmation of conjecture by Bodirsky-M (LICS'16).

Introduction

MMSNP "⊆" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Definition

 $\mathfrak{B} = (B; E)$ a graph. CSP(\mathfrak{B}) is the problem:

- ► Input: a finite graph 𝔄,
- **Question:** is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

Definition

 $\mathfrak{B} = (B; E)$ a graph. CSP(\mathfrak{B}) is the problem:

- ► Input: a finite graph 𝔄,
- **Question:** is there a homomorphism $\mathfrak{A} \to \mathfrak{B}$?

In general, the forbidden patterns problem (FPP) for \mathcal{F} is not a CSP, but a finite union of CSPs.

Proposition

Every FPP reduces in polynomial-time to a finite number of FPP of connected structures.

For every finite set \mathcal{F} of finite connected coloured graphs, there exists an ω -categorical partially coloured graph \mathfrak{B}^* such that $\mathfrak{A}^* \to \mathfrak{B}^*$ iff \mathfrak{A}^* avoids \mathcal{F} .

For every finite set \mathcal{F} of finite connected coloured graphs, there exists an ω -categorical partially coloured graph \mathfrak{B}^* such that $\mathfrak{A}^* \to \mathfrak{B}^*$ iff \mathfrak{A}^* avoids \mathcal{F} .

Construct a new $\mathfrak B$ by:

- ightharpoonup deleting the uncoloured elements in \mathfrak{B}^* ,
- forgetting about the colours.

For this talk: we call \mathfrak{B} an MMSNP structure.

For every finite set \mathcal{F} of finite connected coloured graphs, there exists an ω -categorical partially coloured graph \mathfrak{B}^* such that $\mathfrak{A}^* \to \mathfrak{B}^*$ iff \mathfrak{A}^* avoids \mathcal{F} .

Construct a new $\mathfrak B$ by:

- ightharpoonup deleting the uncoloured elements in \mathfrak{B}^* ,
- forgetting about the colours.

For this talk: we call $\mathfrak B$ an MMSNP structure.

Proposition (Bodirsky-Dalmau, STACS'06)

$$CSP(\mathfrak{B}) = FPP(\mathcal{F}).$$

Moreover, $\mathfrak B$ belongs to the Bodirsky-Pinsker class.

For every finite set $\mathcal F$ of finite connected coloured graphs, there exists an ω -categorical partially coloured graph $\mathfrak B^*$ such that $\mathfrak A^* \to \mathfrak B^*$ iff $\mathfrak A^*$ avoids $\mathcal F$.

Construct a new $\mathfrak B$ by:

- deleting the uncoloured elements in B*,
- forgetting about the colours.

For this talk: we call $\mathfrak B$ an MMSNP structure.

Proposition (Bodirsky-Dalmau, STACS'06)

 $CSP(\mathfrak{B}) = FPP(\mathcal{F}).$

Moreover, $\mathfrak B$ belongs to the Bodirsky-Pinsker class.

FPP of finite sets of finite connected structures

For every finite set \mathcal{F} of finite connected coloured graphs, there exists an ω -categorical partially coloured graph \mathfrak{B}^* such that $\mathfrak{A}^* \to \mathfrak{B}^*$ iff \mathfrak{A}^* avoids \mathcal{F} .

Construct a new $\mathfrak B$ by:

- ightharpoonup deleting the uncoloured elements in \mathfrak{B}^* ,
- forgetting about the colours.

For this talk: we call $\mathfrak B$ an MMSNP structure.

Proposition (Bodirsky-Dalmau, STACS'06)

$$CSP(\mathfrak{B}) = FPP(\mathcal{F}).$$

Moreover, $\mathfrak B$ belongs to the Bodirsky-Pinsker class.

FPP of finite sets of finite connected structures

CSPs in the BP class

Structure \mathfrak{B} such that $CSP(\mathfrak{B}) = FPP(\mathcal{F})$:

Structure \mathfrak{B} such that $CSP(\mathfrak{B}) = FPP(\mathcal{F})$:

Structure \mathfrak{B} such that $CSP(\mathfrak{B}) = FPP(\mathcal{F})$:

Introduction

MMSNP "⊆" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Conjecture (Bodirsky-Pinsker, 2011)

Let $\mathfrak B$ be a reduct of a finitely bounded homogeneous structure. If there is no uniformly continuous h1 homomorphism $Pol(\mathfrak B) \to \mathscr P$, then $CSP(\mathfrak B)$ is in P.

Conjecture (Bodirsky-Pinsker, 2011)

Let $\mathfrak B$ be a reduct of a finitely bounded homogeneous structure. If there is no uniformly continuous h1 homomorphism $Pol(\mathfrak B) \to \mathscr P$, then $CSP(\mathfrak B)$ is in P.

Theorem (Bodirsky-Madelaine-M, 2018)

Let $\mathfrak B$ be ω -categorical such that CSP($\mathfrak B$) is in MMSNP. If there is no uniformly continuous h1 homomorphism $Pol(\mathfrak B) \to \mathscr P$, then CSP($\mathfrak B$) is in P.

Introduction

MMSNP "⊆" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Another question about MMSNP

A precoloured forbidden patterns problem is an FPP where the input can be partially coloured.

Precoloured MMSNP

Question (Lutz-Wolter, ICDT'15)

 \mathcal{F} finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal{F})$ and its precoloured version have the same complexity?

Question (Lutz-Wolter, ICDT'15)

 ${\mathcal F}$ finite family of finite connected coloured graphs. Do $\mathsf{FPP}({\mathcal F})$ and its precoloured version have the same complexity?

Rephrased: do $CSP(\mathfrak{B}, \bullet, \bullet)$ and $CSP(\mathfrak{B})$ have same complexity?

Question (Lutz-Wolter, ICDT'15)

 \mathcal{F} finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal{F})$ and its precoloured version have the same complexity?

Proposition (Bodirsky, LMCS 2007)

For ω -categorical model-complete cores, it is possible to add constants without changing the complexity.

Question (Lutz-Wolter, ICDT'15)

 \mathcal{F} finite family of finite connected coloured graphs. Do $\mathsf{FPP}(\mathcal{F})$ and its precoloured version have the same complexity?

Proposition (Bodirsky, LMCS 2007)

For ω -categorical model-complete cores, it is possible to add constants without changing the complexity.

Good news: we can choose the MMSNP structure $\mathfrak B$ so that $(\mathfrak B,\neq)$ is an ω -categorical model-complete core.

Suppose the vertex *x* is precoloured in the input:

Proposition

The input precoloured graph is colourable iff the graph obtained by adding the gadgets is colourable.

Introduction

MMSNP "⊆" CSP

A Dichotomy Conjecture for Infinite-Domain CSPs

Precoloured MMSNP

Canonical Functions

Conclusion

Definition

 $f: B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathcal G$, there exists $\beta \in \mathcal G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

Definition

 $f\colon B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S\subseteq B$ of B and $\alpha_1,\ldots,\alpha_k\in \mathcal G$, there exists $\beta\in \mathcal G$ such that $\beta\circ f|_S=f\circ (\alpha_1,\ldots,\alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

Definition

 $f \colon B^k \to B$, a group $\mathcal G$ acting on B. f is canonical (wrt $\mathcal G$) if for every finite subset $S \subseteq B$ of B and $\alpha_1, \ldots, \alpha_k \in \mathcal G$, there exists $\beta \in \mathcal G$ such that $\beta \circ f|_S = f \circ (\alpha_1, \ldots, \alpha_k)|_S$.

In our case, we only care about the following consequence:

"the colour of the output only depends on the colours of the inputs" (colour-canonical)

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

Theorem (Bodirsky-M, LICS'16)

Let $\mathfrak B$ be in the BP class. If $Pol(\mathfrak B)$ contains a pseudo-Siggers operation modulo $\overline{Aut(\mathfrak A)}$ that is canonical with respect to $Aut(\mathfrak A)$, then $CSP(\mathfrak B)$ is in P.

We view this behaviour as an operation on a finite set. Only finitely many behaviours of a given arity.

Theorem (Bodirsky-M, LICS'16)

Let $\mathfrak B$ be in the BP class. If $Pol(\mathfrak B)$ contains a pseudo-Siggers operation modulo $\overline{Aut(\mathfrak A)}$ that is canonical with respect to $Aut(\mathfrak A)$, then $CSP(\mathfrak B)$ is in P.

 \Rightarrow let $\mathscr C$ be the clone of canonical polymorphisms of the MMSNP structure $\mathfrak B$. If there is no h1 homomorphism $\mathscr C \to \mathscr P$, then CSP($\mathfrak B$) is in P.

1. We suppose that there is a h1 homomorphism $\xi \colon \mathscr{C} \to \mathscr{P}$.

- 1. We suppose that there is a h1 homomorphism $\xi \colon \mathscr{C} \to \mathscr{P}$.
- 2. \mathscr{C} is an idempotent clone by the precolouring. This implies the existence of a subfactor of \mathscr{C} that is isomorphic to \mathscr{P} .

- 1. We suppose that there is a h1 homomorphism $\xi \colon \mathscr{C} \to \mathscr{P}$.
- 2. \mathscr{C} is an idempotent clone by the precolouring. This implies the existence of a subfactor of \mathscr{C} that is isomorphic to \mathscr{P} .
- 3. Using this subfactor and Cthulhu partitions[†], we show that the polymorphisms of $\mathfrak B$ canonize in a unique way,

(†): Coined collectively by the institute of algebra in Dresden.

- 1. We suppose that there is a h1 homomorphism $\xi \colon \mathscr{C} \to \mathscr{P}$.
- 2. \mathscr{C} is an idempotent clone by the precolouring. This implies the existence of a subfactor of \mathscr{C} that is isomorphic to \mathscr{P} .
- 3. Using this subfactor and Cthulhu partitions[†], we show that the polymorphisms of \mathfrak{B} canonize in a unique way[‡],

- (†): Coined collectively by the institute of algebra in Dresden.
- (‡): Loosely speaking.

- 1. We suppose that there is a h1 homomorphism $\xi \colon \mathscr{C} \to \mathscr{P}$.
- 2. \mathscr{C} is an idempotent clone by the precolouring. This implies the existence of a subfactor of \mathscr{C} that is isomorphic to \mathscr{P} .
- 3. Using this subfactor and Cthulhu partitions[†], we show that the polymorphisms of \mathfrak{B} canonize in a unique way[‡],
- **4.** Define an h1 homomorphism $Pol(\mathfrak{B}) \to \mathscr{P}$ by canonizing and composing with ξ .

- (†): Coined collectively by the institute of algebra in Dresden.
- (‡): Loosely speaking.

 σ : set of colour symbols. A trivial subfactor of $\mathscr C$ is a partition $S \uplus T \subseteq \sigma$ such that the equivalence relation with blocks S and T is a congruence of $\mathscr C$ with the property that the clone induced by $\mathscr C$ on $\{S,T\}$ is isomorphic to $\mathscr P$.

Proposition

S, T trivial subfactor of \mathscr{C} . $\exists (B, E)$ undirected graph s.t.:

- ► (B, E) contains an edge from S to T but does not contain pseudo-loops;
- ▶ the connected components of N are included in S, included in T, or bipartite with the bipartition induced by S and T;
- ightharpoonup E is preserved by $Pol(\mathfrak{B})$.

We say that $\{S, T\}$ is a Cthulhu partition of (B, E).

19/22

Theorem (Hubička-Nešetřil, 2016)

Let $\mathfrak B$ be an MMSNP structure. Then there is a linear order < on B such that $(\mathfrak B,<)$ is ω -categorical and Ramsey.

Theorem (Hubička-Nešetřil, 2016)

Let $\mathfrak B$ be an MMSNP structure. Then there is a linear order < on B such that $(\mathfrak B,<)$ is ω -categorical and Ramsey.

Theorem (Bodirsky-Pinsker-Tsankov, 2010)

Suppose that $\mathcal G$ is the automorphism group of an ω -categorical ordered Ramsey structure. For every $f: B^k \to B$, there exists a function $g \in \overline{\mathcal Gf\mathcal G}$ that is canonical with respect to $\mathcal G$.

Theorem (Hubička-Nešetřil, 2016)

Let $\mathfrak B$ be an MMSNP structure. Then there is a linear order < on B such that $(\mathfrak B,<)$ is ω -categorical and Ramsey.

Theorem (Bodirsky-Pinsker-Tsankov, 2010)

Suppose that $\mathcal G$ is the automorphism group of an ω -categorical ordered Ramsey structure. For every $f: B^k \to B$, there exists a function $g \in \overline{\mathcal Gf\mathcal G}$ that is canonical with respect to $\mathcal G$.

Given $f \in \text{Pol}(\mathfrak{B})$, and $\xi \colon \mathscr{C} \to \mathscr{P}$ given by subfactor $\{S, T\}$, define $\phi(f) := \xi(g)$ where g is an arbitrary function in $\mathscr{C} \cap \overline{\text{Aut}(\mathfrak{B}, <)} f \text{ Aut}(\mathfrak{B}, <)$.

Proposition

 $\phi \colon \mathsf{Pol}(\mathfrak{B}) \to \mathscr{P}$ is a well-defined uniformly continuous height 1 homomorphism.

Theorem

Let B be a MMSNP structure.

Then either the following equivalent statements hold:

1. there is no uniformly continuous height 1 homomorphism $\mathsf{Pol}(\mathfrak{B}) o \mathscr{P}$,

and $CSP(\mathfrak{B})$ is in P, or $CSP(\mathfrak{B})$ is NP-complete.

$\mathsf{Theorem}$

Let B be a MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathfrak{B}) o \mathscr{P}$,
- 2. Pol(B) contains a pseudo-Siggers,

and $CSP(\mathfrak{B})$ is in P, or $CSP(\mathfrak{B})$ is NP-complete.

Theorem

Let B be a MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathfrak{B}) o \mathscr{P}$,
- 2. $Pol(\mathfrak{B})$ contains a pseudo-Siggers,
- 3. $Pol(\mathfrak{B})$ contains a canonical pseudo-Siggers,

and $CSP(\mathfrak{B})$ is in P, or $CSP(\mathfrak{B})$ is NP-complete.

$\mathsf{Theorem}$

Let B be a MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathfrak{B}) o \mathscr{P}$,
- 2. $Pol(\mathfrak{B})$ contains a pseudo-Siggers,
- 3. $Pol(\mathfrak{B})$ contains a canonical pseudo-Siggers,
- 4. $Pol(\mathfrak{B}, \bullet, \bullet)$ contains a colour-canonical pseudo-Siggers, and $CSP(\mathfrak{B})$ is in P, or $CSP(\mathfrak{B})$ is NP-complete.

Theorem

Let B be a MMSNP structure.

Then either the following equivalent statements hold:

- 1. there is no uniformly continuous height 1 homomorphism $\operatorname{Pol}(\mathfrak{B}) o \mathscr{P}$,
- 2. $Pol(\mathfrak{B})$ contains a pseudo-Siggers,
- 3. $Pol(\mathfrak{B})$ contains a canonical pseudo-Siggers,
- **4.** $Pol(\mathfrak{B}, \bullet, \bullet)$ contains a colour-canonical pseudo-Siggers, and $CSP(\mathfrak{B})$ is in P, or $CSP(\mathfrak{B})$ is NP-complete.

Items 3. and 4. can be checked effectively.

- ► When is CSP(𝔻) in Datalog? Is it decidable? Answered for monochromatic obstructions.
- ▶ MMSNP₂: instead of colouring vertices, we colour edges. It is more expressive than MMSNP, but it is open whether it has a complexity dichotomy (Lutz et al.).

Example: is it possible to colour the edges of an input graph and avoid:

22/22