Introduction to Discrete Mathematics

Prof. Dr. Rafiqul Islam

22 May, 2025

Importance in Computer Science

- Provides a foundation for programming logic and algorithms.
- Essential in cryptography, artificial intelligence, and data structures.
- Used in networking, security, and computational theory.

Boolean Logic

Definition: Boolean logic is a form of algebra in which values are true or false.

Basic Operations:

- \blacktriangleright AND $(A \land B)$
- ightharpoonup OR $(A \lor B)$
- ► NOT (¬*A*)

Example: Truth Table for AND Operation:

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Set Theory

Definition: Set theory deals with collections of objects.

Operations:

- ▶ Union $(A \cup B)$
- ▶ Intersection $(A \cap B)$
- \triangleright Difference (A B)

Example: If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$:

$$A \cup B = \{1, 2, 3, 4\}, \quad A \cap B = \{2, 3\}, \quad A - B = \{1\}$$

Set Theory Overview

Definition: A set is a collection of distinct objects.

- **Example:** A = $\{1,3,4,7,8,9\}$, B = $\{1,2,3,4,5\}$, C = $\{1,3\}$
- **► Subset Notation**: $C \subseteq AandC \subseteq B$

Explanation:

- ▶ **Definition:** A set C is a subset of A if every element of C is also in A.
- **Example:** $C = \{1,3\}$ is a subset of $A = \{1,3,4,7,8,9\}$
- ► Mathematical Notation: C ⊆ A

Properties of Subsets

- ▶ If $C \subseteq AandC \subseteq B$, then C is contained in both sets.
- ▶ If $A \subseteq BandB \subseteq C$, then $A \subseteq C$ (Transitivity).
- ▶ The empty set (\emptyset) is a subset of every set.

Graph Theory

Definition: Graph theory deals with nodes and edges representing relationships.

Example Graph:

$$V = \{A, B, C\}, \quad E = \{(A, B), (B, C), (C, A)\}$$

Applications: Network routing, social network analysis, shortest path algorithms.

Combinatorics

Definition: Combinatorics is the study of counting and arrangements.

Formula: Number of ways to arrange *n* distinct objects:

$$n! = n \times (n-1) \times ... \times 1$$

Example: Arranging 5 books:

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

Number Theory

Definition: Number theory deals with properties of integers.

Example: Finding the Greatest Common Divisor (GCD):

$$GCD(48, 18) = 6$$

Types of Mathematical Statements

Mathematical statements are used in logical reasoning in discrete mathematics. The main types of statements include:

- **Propositions** Statements that are either true or false.
- ▶ **Predicates** Statements with variables that become propositions when values are assigned.
- ▶ Quantified Statements Statements using quantifiers such as \forall (for all) and \exists (there exists).

Propositions

A proposition is a declarative sentence that is either true or false, but not both. **Examples:**

- ▶ "The sky is blue." (True or False based on conditions)
- ightharpoonup "2 + 2 = 4" (Always True)
- "All prime numbers are odd." (False, since 2 is even)

Predicates

A predicate contains one or more variables and becomes a proposition when values are assigned. **Example:**

- \triangleright P(x): "x is greater than 5"
- \triangleright P(7) is True, P(3) is False

Quantified Statements

Quantified statements express conditions for all or some elements in a set. **Types of Quantifiers:**

- **▶ Universal Quantifier** (∀): "For all x, ..."
- **Existential Quantifier** (∃): "There exists an x such that..."

Example:

 $\forall x (x > 0 \rightarrow x^2 > 0)$ (For all x, if x is positive, then x squared is positive)

Logical Operations

Logical operations allow us to combine and manipulate propositions. **Fundamental Operations:**

- **Negation (NOT)** $\neg p$: Reverses truth value.
- **Conjunction (AND)** $p \wedge q$: True if both are true.
- **Disjunction (OR)** $p \lor q$: True if at least one is true.
- ▶ Implication (IF-THEN) $p \rightarrow q$: "If p, then q."
- **Biconditional (IFF)** $p \leftrightarrow q$: "p if and only if q."

Truth Tables

Truth tables display all possible truth values for logical operations.

Example: Truth Table for $p \rightarrow q$

р	q	p o q
Т	T	T
Τ	F	F
F	T	T
F	F	T

Logical Equivalences

Logical equivalences ensure equivalent logical expressions. **Important Laws:**

- **▶** Commutative Laws: $p \land q \equiv q \land p$, $p \lor q \equiv q \lor p$
- ▶ Associative Laws: $(p \land q) \land r \equiv p \land (q \land r)$
- ▶ Distributive Laws: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- ▶ De Morgan's Laws: $\neg(p \land q) \equiv \neg p \lor \neg q$, $\neg(p \lor q) \equiv \neg p \land \neg q$

Set Operations

Set operations allow manipulation of elements in different sets.

Basic Set Operations:

- ▶ **Union** $(A \cup B)$: Elements in A or B or both.
- ▶ Intersection $(A \cap B)$: Elements in both A and B.
- **Complement** (A^c): Elements not in A.
- ▶ **Set Difference** (A B): Elements in A but not in B.

Example:

$$A = \{1, 2, 3\}, \quad B = \{3, 4, 5\}$$

$$A \cup B = \{1, 2, 3, 4, 5\}, \quad A \cap B = \{3\}, \quad A - B = \{1, 2\}$$

Mathematical Statement

A **Mathematical Statement** is a declarative sentence that can be either True or False , but not both simultaneously.

- ▶ Statements form the basis for mathematical reasoning.
- ▶ They help develop complex logical expressions.

Atomic Statements

An Atomic Statement is a simple, indivisible statement that cannot be broken into smaller components.

Examples:

- ▶ "The moon is made of cheese." (False)
- ▶ "42 is a perfect square." (True)
- ightharpoonup "3 + 7 = 12" (False)

Non-Statements

Not all sentences qualify as statements. Some are commands or questions and do not hold a truth value.

Examples:

- "Would you like some cake?"
- ▶ "Go to your room!"

Molecular Statements and Logical Connectives

Molecular Statements are created by combining Atomic Statements using logical connectives.

Logical Connectives:

- **► Conjunction** (∧) "and"
- **▶ Disjunction** (∨) "or"
- ▶ Implication (\rightarrow) "if...then..."
- **▶ Biconditional** (↔) "if and only if"
- **▶ Negation** (¬) "not"

Truth Tables for Logical Connectives

Truth tables help analyze logical expressions based on atomic statements.

Truth Table for Conjunction (△)

Р	Q	$P \wedge Q$
Т	Т	Т
Τ	F	F
F	Τ	F
F	F	F

Truth Table for Disjunction (\vee)

A disjunction $P \lor Q$ is true if at least one of P or Q is true.

Р	Q	$P \lor Q$
Т	Т	T
Τ	F	T
F	Τ	T
F	F	F

Truth Table for Implication (\rightarrow)

An implication $P \to Q$ is false only if P is true and Q is false.

Р	Q	P o Q
Τ	T	T
Τ	F	F
F	T	T
F	F	T

Truth Table for Biconditional (\leftrightarrow)

A biconditional $P \leftrightarrow Q$ is true when both have the same truth value.

Р	Q	$P\leftrightarrow Q$
T	T	Τ
T	F	F
F	T	F
F	F	T

Negation (\neg)

Negation reverses the truth value of a statement.

Р	$\neg P$
Т	F
F	T

Examples of Molecular Statements

Example 1:

- ➤ **Statement:** "If Bob gets a 90 on the final, then Bob will pass the class."
- ▶ Implication: $P \rightarrow Q$
- ▶ **Condition:** False if Bob gets a 90 but does not pass.

Example 2:

- **Statement:** "If 1 = 1, then most horses have 4 legs."
- ▶ **Implication:** True since both statements are logically correct.

Exercise

- List the elements of each set where $N = 1, 2, 3, \ldots$
 - ► $A = x \in N | 3 < x < 9$
 - \triangleright $B = x \in N | xis even, x < 11$
 - Aconsists of the positive integers between 3 and 9;