Syntax Analysis (Parsing)

- Error handling
- An overview of parsing
 - Functions & Responsibilities
- Context Free Grammars
 - Concepts & Terminology
- Writing and Designing Grammars
- Resolving Grammar Problems / Difficulties
- Top-Down Parsing
 - Recursive Descent & Predictive LL
- Bottom-Up Parsing
 - SLR、LR & LALR
- Concluding Remarks/Looking Ahead

Parsing During Compilation

- Parser works on a stream of tokens.
- The smallest item is a token.

Error Handling

What are some Typical Errors?

```
#include<stdio.h>
int f1(int v)
                                  As reported by MS VC++
        int i,j=0;
                                 1. 'f2' undefined; assuming extern returning int
        for (i=1;i<5;i++)
           {j=v+f2(i)}
                                  2. syntax error : missing ';' before '}'
        return j; }
                                  3. syntax error : missing ';' before identifier
int f2(int u)
                                     'printf'
        int j;
                                  4. j$ invalid id
        j=u+f1(u*u);
                                             Which are "easy" to recover from?
        return j; }
                                             Which are "hard"?
int main()
        int i,j=0;
        for (i=1;i<10;i++)
           { j=j+i*i printf("%d\n",i); }
        printf("%d\n",f1(j$));
        return 0;
```

}

Error Handling

Error type	Example	Detector
Lexical	x#y=1	Lexer
Syntax	x=1 y=2	Parser
Semantic	int x; $y=x(1)$	Type checker
Correctness	Program can be compiled	Tester/user/static analysis/model- checker

Error Processing

- Detecting errors
- Finding position at which they occur
- Clear / accurate presentation
- Recover (pass over) to continue and find later errors
- Don't impact compilation of "correct" programs

Error Recovery Strategies

Panic Mode— Discard tokens until a "synchronizing" token is found (end, ";", "}", etc.) -- Decision of designer E.g., (1++2)*3 skip + -- Problems: skip input ⇒miss declaration – causing more errors ⇒miss errors in skipped material -- Advantages: simple ⇒suited to 1 error per statement

Phrase Level – Local correction on input

- -- "," replace";" Delete "," insert ";"......
- -- Also decision of designer, Not suited to all situations
- -- Used in conjunction with panic mode to allow less input to be skipped

E.g.,
$$x=1$$
; $y=2$

Error Recovery Strategies – (2)

Error Productions:

- -- Augment grammar with rules
- -- Augment grammar used for parser construction / generation
- -- example: add a rule for := in C assignment statements Report error but continue compile
- -- Self correction + diagnostic messages

Error \rightarrow ID := Expr

Global Correction:

- -- Adding / deleting / replacing symbols is chancy may <u>do many</u> changes!
- -- Algorithms available to minimize changes costly key issues
- -- Rarely used in practice

Error Recovery Strategies – (3)

Past

- Slow recompilation cycle (even once a day)
- Find as many errors in one cycle as possible
- Researchers could not let go of the topic

Present

- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is less compelling
- Panic-mode seems enough

Parsing During Compilation

- Parser works on a stream of tokens.
- The smallest item is a token.

Grammar >> **language**

Why are Grammars to formally describe Languages Important?

- 1. Precise, easy-to-understand representations
- 2. Compiler-writing tools can take grammar and generate a compiler (YACC, BISON)
- 3. allow language to be evolved (new statements, changes to statements, etc.) Languages are not static, but are constantly upgraded to add new features or fix "old" ones

RE vs. CFG

- Regular Expressions
 - → Basis of lexical analysis
 - → Represent regular languages
- Context Free Grammars
 - → Basis of parsing
 - → Represent language constructs
 - → Characterize context free languages

Reg. Lang. CFLs

EXAMPLE: (a+b)*abb

 $A0 \rightarrow aA0 \mid bA0 \mid aA1$

 $A1 \rightarrow bA2$

 $A2 \rightarrow bA3$

 $A3 \rightarrow \varepsilon$

Context-Free Grammars

- Inherently recursive structures of a programming language are defined by a context-free grammar.
- In a context-free grammar, we have:
 - A finite set of terminals (in our case, this will be the set of tokens)
 - A finite set of non-terminals (syntactic-variables)
 - A finite set of productions rules in the following form
 - $A \rightarrow \alpha$ where A is a non-terminal and α is a string of terminals and non-terminals (including the empty string)
 - A start symbol (one of the non-terminal symbol)
- Example:

$$E \rightarrow E + E \mid E - E \mid E * E \mid E / E \mid - E$$

$$E \rightarrow (E)$$

$$E \rightarrow id$$

$$E \rightarrow num$$

Concepts & Terminology

A Context Free Grammar (CFG), is described by (T, NT, S, PR), where:

T: Terminals / tokens of the language

NT: Non-terminals, S: Start symbol, $S \in NT$

PR: Production rules to indicate how T and NT are combined to generate valid strings of the language.

$$PR: NT \rightarrow (T \mid NT)^*$$

E.g.:
$$E \rightarrow E + E$$

 $E \rightarrow \text{num}$

Like a Regular Expression / DFA / NFA, a Context Free Grammar is a mathematical model

Example Grammar

```
expr \rightarrow expr \ op \ expr
expr \rightarrow (expr)
expr \rightarrow -expr
expr \rightarrow id
op \rightarrow +
op \rightarrow -
op \rightarrow *
op \rightarrow /
```

Black: NT

Blue: T

expr: S

8 Production rules

Example Grammar

A fragment of Cool:

```
EXPR → if EXPR then EXPR else EXPR fi

| while EXPR loop EXPR pool

| id
```

Terminology (cont.)

- A sentence of G is a string of terminal symbols of G.
 - ω is a sentence of L(G) if $S \stackrel{+}{\Rightarrow} \omega$ where S is the start symbol of G and ω is a string of terminals of G.
- L(G) is *the language of G* (the language generated by G) which is a set of sentences.
- A language that can be generated by a context-free grammar is said to be a context-free language
- Two grammars are *equivalent* if they produce the same language.
- $S \stackrel{*}{\Rightarrow} \alpha$ it is called as a *sentential form* of G.
 - If α does not contain non-terminals, it is called as a *sentence* of G.

How does this relate to Languages?

Let G be a CFG with start symbol S. Then $S \stackrel{+}{\Rightarrow} W$ (where W has no non-terminals) represents the sentence generated by G, denoted L(G). So $W \in L(G) \Leftrightarrow S \stackrel{+}{\Rightarrow} W$.

W: is a sentence of G

EXAMPLE: id * id is a sentence

Here's the derivation:

$$E \Rightarrow E \text{ op } E \Rightarrow E * E \Rightarrow id * E \Rightarrow id * id$$

Sentential forms

 $E \Rightarrow id * id$

Sentence

Example Grammar – Terminology

Terminals: a,b,c,+,-,punc,0,1,...,9, blue strings

Non Terminals: A,B,C,S, black strings

T or NT: X,Y,Z

Strings of Terminals: u,v,...,z in T*

Strings of T / NT: α , β , γ in $(T \cup NT)^*$

Alternatives of production rules:

$$A \rightarrow \alpha_1; A \rightarrow \alpha_2; \dots; A \rightarrow \alpha_k; \Rightarrow A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_k$$

First NT on LHS of 1st production rule is designated as start symbol!

$$E \rightarrow E \text{ op } E \mid (E) \mid -E \mid id$$

op $\rightarrow + \mid - \mid * \mid /$

Derivations

The central idea here is that a production is treated as a **rewriting rule** in which the non-terminal on the left is replaced by the string on the right side of the production.

$$E \Rightarrow E+E$$

- E+E derives from E
 - we can replace E by E+E
 - to able to do this, we have to have a production rule $E \rightarrow E + E$ in our grammar.

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+id$$

- A sequence of replacements of non-terminal symbols is called a derivation of id+id from E.
- In general a derivation step is

$$\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n \quad (\alpha_n \text{ derives from } \alpha_1 \text{ or } \alpha_1 \text{ derives } \alpha_n)$$

Grammar Concepts

A step in a derivation is one action that replaces a NT with the RHS of a production rule.

EXAMPLE: $E \Rightarrow -E$ (the \Rightarrow means "derives" in one step) using the production rule: $E \rightarrow -E$

EXAMPLE:
$$E \Rightarrow E \text{ op } E \Rightarrow E * E \Rightarrow E * (E)$$

EXAMPLES: $\alpha A \beta \Rightarrow \alpha \gamma \beta$ if $A \rightarrow \gamma$ is a production rule $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$ then $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$; $\alpha \stackrel{*}{\Rightarrow} \alpha$ for all α If $\alpha \stackrel{*}{\Rightarrow} \beta$ and $\beta \rightarrow \gamma$ then $\alpha \stackrel{*}{\Rightarrow} \gamma$

Other Derivation Concepts

Example

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$
OR
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

- At each derivation step, we can choose any of the non-terminal in the sentential form of G for the replacement.
- If we always choose the left-most non-terminal in each derivation step, this derivation is called as **left-most derivation**.
- If we always choose the right-most non-terminal in each derivation step, this derivation is called as **right-most derivation**.

Derivation Example

<u>Leftmost</u>: Replace the leftmost non-terminal symbol

$$E \Rightarrow_{lm} E \text{ op } E \Rightarrow_{lm} id \text{ op } E \Rightarrow_{lm} id * E \Rightarrow_{lm} id * id$$

<u>Rightmost</u>: Replace the leftmost non-terminal symbol

$$E \Rightarrow_{rm} E \text{ op } E \Rightarrow_{rm} E \text{ op id} \Rightarrow_{rm} E * \text{id} \Rightarrow_{rm} \text{id} * \text{id}$$

Important Notes:
$$A \rightarrow \delta$$

If
$$\beta A \gamma \implies \beta \delta \gamma$$
 what's true about β ?

If $\beta A \gamma \implies \beta \delta \gamma$ what's true about γ ?

Derivations: Actions to parse input can be represented pictorially in a parse tree.

Left-Most and Right-Most Derivations

Left-Most Derivation

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(id+E) \Longrightarrow -(id+id)$$
 (4.4)

Right-Most Derivation (called *canonical derivation*)

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+id) \Longrightarrow -(id+id)$$

- We will see that the *top-down parsers* try to find the *left-most derivation* of the given source program.
- We will see that the *bottom-up parsers* try to find the *right-most derivation* of the given source program in the reverse order.

Parse Tree

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.

A parse tree can be seen as a graphical representation of a derivation.

EX.
$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

$$E \Rightarrow -E \Rightarrow -(E+E) \Rightarrow -(id+id) \Rightarrow -(id+id)$$

Examples of LM / RM Derivations

$$E \rightarrow E \text{ op } E \mid (E) \mid -E \mid id$$

op $\rightarrow + \mid - \mid * \mid /$

A leftmost derivation of : id + id * id

See latter slides

A rightmost derivation of : id + id * id DO IT BY YOURSELF.

A leftmost derivation of : id + id * id

$$E \Rightarrow E \text{ op } E$$

$$E \rightarrow E \text{ op } E \mid (E) \mid -E \mid id$$

op $\rightarrow + \mid - \mid * \mid /$

$$\Rightarrow$$
 id op E

$$\Rightarrow$$
 id + E

$$\Rightarrow$$
 id + E op E

$$\Rightarrow$$
 id + id op E

$$\Rightarrow$$
 id + id * E

$$\Rightarrow$$
 id + id * id

A rightmost derivation of :
$$id + id * id$$

DO IT BY YOURSELF.

Alternative Parse Tree & Derivation

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 E + E * E

$$\Rightarrow$$
 id + E * E

$$\Rightarrow$$
 id + id * E

$$\Rightarrow$$
 id + id * id

WHAT'S THE ISSUE HERE?

Two distinct leftmost derivations!

Ambiguity

• A grammar produces more than one parse tree for a sentence is called as an *ambiguous* grammar.

$$E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+E*E$$

 $\Rightarrow id+id*E \Rightarrow id+id*id$

$$E \Rightarrow E^*E \Rightarrow E+E^*E \Rightarrow id+E^*E$$

 $\Rightarrow id+id^*E \Rightarrow id+id^*id$

Two parse trees for id+id*id.

Ambiguity (cont.)

- For the most parsers, the grammar must be unambiguous.
- unambiguous grammar
 - → unique selection of the parse tree for a sentence
- We have to prefer one of the parse trees of a sentence (generated by an ambiguous grammar) to disambiguate that grammar to restrict to this choice by "throw away" undesirable parse trees.
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.
 - 1. Grammar rewritten to eliminate the ambiguity
 - 2. Enforce precedence and associativity

Ambiguity: precedence and associativity

• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the **precedence** and **associativity** rules.

$$E \rightarrow E + E \mid E^*E \mid id \mid (E)$$
disambiguate the grammar
$$precedence: \qquad ^* \text{ (left associativity)}$$

$$+ \text{ (left associativity)}$$

Ex. id + id * id

Ambiguity: Grammar rewritten

• Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the **precedence** and **associativity** rules.

Eliminating Ambiguity

Consider the following grammar segment:

 $stmt \rightarrow if expr then stmt$

if expr then stmt else stmt

other (any other statement)

How is this parsed?

if E_1 then if E_2 then S_1 else S_2

Parse Trees for Example

Two parse trees for an ambiguous sentence.

Ambiguity (cont.)

- We prefer the second parse tree (else matches with closest then).
- So, we have to disambiguate our grammar to reflect this choice.
- The unambiguous grammar will be:

The general rule is "match each **else** with the closest previous unmatched **then**."

Non-Context Free Language Constructs

• There are some language constructions in the programming languages which are not context-free. This means that, we cannot write a context-free grammar for these constructions.

Example

- L1 = { $\omega c\omega \mid \omega \text{ is in } (a+b)^*$ } is not context-free
 - declaring an identifier and checking whether it is declared or not later. We cannot do this with a context-free language. We need semantic analyzer (which is not context-free).

Example

- $L2 = \{a^nb^mc^nd^m \mid n\geq 1 \text{ and } m\geq 1\}$ is not context-free
 - → declaring two functions (one with n parameters, the other one with m parameters), and then calling them with actual parameters.

Operations on Languages

OPERATION		
union of L and M written L∪M	Does context-free languages closed under these operations?	
concatenation of L and M written LM		
Kleene closure of L written L*		
WITHER E	L^* denotes "zero or more concatenations of L	
positive closure of L written L ⁺	$\mathrm{L}^+\!\!=\!igcup_{i=1}^\infty L^i$	
	L ⁺ denotes "one or more concatenations of L	
Intersection of L and M written $L \cap M$	$L \cap M = \{s \mid s \text{ is in } L \text{ and } s \text{ is in } M\}$	

Let's derive: id := id + real - integer;

```
Left-most derivation:
assign_stmt
\rightarrow id := expr;
\rightarrow id := expr \ op \ term;
\rightarrow id := expr \ op \ term \ op \ term;
\rightarrow id := term \ op \ term \ op \ term;
\rightarrow id := id op term op term;
\rightarrow id := id + term op term;
\rightarrow id := id + real \ op \ term;
\rightarrow id := id + real - term;
\rightarrow id := id + real - integer;
```

```
using production:
      assign\_stmt \rightarrow id := expr;
      expr \rightarrow expr \ op \ term
      expr \rightarrow expr \ op \ term
      expr \rightarrow term
      term \rightarrow id
      op \rightarrow +
      term \rightarrow real
      op \rightarrow -
      term \rightarrow integer
```

CFG2Parser

Top-Down Parsing

- The parse tree is created top to bottom (from root to leaves).
- By always replacing the leftmost non-terminal symbol via a production rule, we are guaranteed of developing a parse tree in a left-to-right fashion that is consistent with scanning the input.
- Top-down parser

Recursive-Descent Parsing

- Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.) • It is a general parsing technique, but not widely used. $A \Rightarrow aBc \Rightarrow adDc \Rightarrow adec$

(scan a, scan d, scan e, scan c - accept!) • Not efficient

Predictive Parsing

- no backtracking, at each step, only one choices of production to use
- efficient
- needs a special form of grammars (LL(k) grammars, k=1 in practice).
- **Recursive Predictive Parsing** is a special form of Recursive Descent parsing without backtracking.
- Non-Recursive (Table Driven) Predictive Parser is also known as LL(k) parser.

Recursive-Descent Parsing (uses Backtracking)

- General category of Top-Down Parsing
- Choose production rule based on input symbol
- May require backtracking to correct a wrong choice.

Steps in top-down parse

Implementation of Recursive-Descent

```
E \rightarrow T \mid T + E
T \rightarrow int \mid int * T \mid (E)
bool term(TOKEN tok) { return *next++ == tok; }
bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E1()) | (next = save, E2()); }
bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return (next = save, T1())
                                        | | (next = save, T2())
                                        | | (next = save, T3()); |
```

When Recursive Descent Does Not Work?

- Example: $S \rightarrow S$ a
- Implementation:

```
bool S1() { return S() && term(a); }
bool S() { return S1(); } infinite recursion
```

 $S \rightarrow^+ S$ a left-recursive grammar

we should remove left-recursive grammar

Left Recursion

- A grammar is *left recursive* if it has a non-terminal A such that there is a derivation $A \Rightarrow^+ A\alpha$ for some string α .
- The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.
- Top-down parsing techniques **cannot** handle left-recursive grammars.
- So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.

Immediate Left-Recursion

$$A \rightarrow A \alpha \mid \beta$$
 where β does not start with A

$$\downarrow \qquad \text{eliminate immediate left recursion}$$

$$A \rightarrow \beta A'$$

$$A' \rightarrow \alpha A' \mid \epsilon \qquad \text{an equivalent grammar: replaced by right-recursion}$$

In general,

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive, but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $A \Rightarrow Sc \Rightarrow Aac$ causes to a left-recursion

• So, we have to eliminate all left-recursions from our grammar

Elimination of Left-Recursion

Algorithm eliminating left recursion.

```
- Arrange non-terminals in some order: A_1 \dots A_n
- for i from 1 to n do {
     - for | from 1 to i-1 do {
         replace each production
                   A_i \rightarrow A_i \gamma // j < i
                       by
                    A_i \rightarrow \alpha_1 \gamma \mid ... \mid \alpha_k \gamma
                   where A_i \rightarrow \alpha_1 \mid ... \mid \alpha_k are all the current A_i-productions.
             // for all A_m at the begin of \alpha, m>=i
    - eliminate immediate left-recursions among A<sub>i</sub>-productions
          // for all A_m at the begin of \alpha, m>i
```

Algorithm to eliminate left recursion from a grammar.

Example

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid \varepsilon$

- Order of non-terminals: S, A

for S:

- we do not enter the inner loop.
- there is no immediate left recursion in S.

for A:

- Replace $A \rightarrow Sd$ with $A \rightarrow Aad \mid bd$ So, we will have $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$
- Eliminate the immediate left-recursion in A $A \to bdA' \mid A'$ $A' \to cA' \mid adA' \mid \epsilon$

no immediately left-recursive

eliminating immediate left-recursive

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid A'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Reading materials

- This algorithm crucially depends on the ordering of the nonterminals
- The number of resulting production rules is large

[1] Moore, Robert C. (2000). Removing Left Recursion from Context-Free Grammars

- 1. A novel strategy for ordering the nonterminals
- 2. An alternative approach

Predictive Parser vs. Recursive Descent Parser

- In recursive-descent,
 - At each step, many choices of production to use
 - Backtracking used to undo bad choices
- In Predictive Parser (lookahead)
 - At each step, only one choice of production
 - That is
 - ➤ When a non-terminal A is leftmost in a derivation
 - The k input symbols are $a_1 a_2 ... a_k$
 - There is a unique production $A \rightarrow \alpha$ to use
 - ➤Or no production to use (an error state)
 - >LL(k) is a recursive descent variant without backtracking

Predictive Parser (example)

```
stmt → if expr then stmt else stmt
|while expr do stmt
|begin stmt_list end
|for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is **if** we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- LL(1) grammar

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure (function).

```
Ex: A → aBb (This is only the production rule for A)
proc A() {

match the current token with a, and move to the next token;
call B();
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A() {
   case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
            - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ε-production. For example, if the current token is not a or b, we may apply the ε-production.
- Most correct choice: We should apply an ε-production for a non-terminal A when the current token is in the **follow** set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
                                                      proc C { match the current token with f,
proc A {
                                                                 and move to the next token; }
    case of the current token {
       a: - match the current token with a,
            and move to the next token;
                                                      proc B {
                                                         case of the current token {
           - call B;
           - match the current token with e,
                                                             b:- match the current token with b,
            and move to the next token;
                                                                and move to the next token;
                                                               - call B
      c: - match the current token with c,
            and move to the next token;
                                                           e,d: do nothing
           - call B;
           - match the current token with d,
            and move to the next token;
       f: - call C
```

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring

Problem: Uncertain which of 2 rules to choose:

$$stmt \rightarrow if \ expr \ then \ stmt \ else \ stmt$$

$$/ \ if \ expr \ then \ stmt$$

When do you know which one is valid?

What's the general form of *stmt*?

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

 α : if expr then stmt

 β_1 : else stmt β_2 : ε

Transform to:

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

EXAMPLE:

 $stmt \rightarrow if \ expr \ then \ stmt \ rest$

 $rest \rightarrow else \ stmt \ / \ \epsilon$

So, we can immediately expand A to $\alpha A'$

Left-Factoring -- Algorithm

• For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 | \dots | \alpha \beta_n | \gamma_1 | \dots | \gamma_m$$

convert it into

$$A \rightarrow \alpha A' | \gamma_1 | \dots | \gamma_m$$

$$A' \rightarrow \beta_1 | \dots | \beta_n$$

Left-Factoring – Example 1

$$A \rightarrow \underline{abB} \mid \underline{aB} \mid cdg \mid cdeB \mid cdfB$$

$$\downarrow \downarrow step 1$$
 $A \rightarrow aA' \mid \underline{cdg} \mid \underline{cdeB} \mid \underline{cdfB}$
 $A' \rightarrow bB \mid B$

$$\downarrow \downarrow step 2$$
 $A \rightarrow aA' \mid cdA''$
 $A' \rightarrow bB \mid B$

$$A'' \rightarrow g \mid eB \mid fB$$

Predictive Parser

a grammar a grammar suitable for predictive eliminate left parsing (a LL(1) grammar)

left recursion factor no %100 guarantee.

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the **current symbol** in the input string.

 $A \rightarrow \alpha_1 \mid ... \mid \alpha_n$

current token

input: ... a

current token

Implementation of Recursive-Descent

```
E \rightarrow T \mid T + E
T \rightarrow int \mid int * T \mid (E)
bool term(TOKEN tok) { return *next++ == tok; }
bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E1()) | (next = save, E2()); }
bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next; return (next = save, T1())
                                        | | (next = save, T2())
                                        | | (next = save, T3()); |
```

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
                                                      proc C { match the current token with f,
proc A {
                                                                 and move to the next token; }
    case of the current token {
       a: - match the current token with a,
            and move to the next token;
                                                      proc B {
                                                         case of the current token {
           - call B;
           - match the current token with e,
                                                             b:- match the current token with b,
            and move to the next token;
                                                                and move to the next token;
                                                               - call B
      c: - match the current token with c,
            and move to the next token;
                                                           e,d: do nothing
           - call B;
           - match the current token with d,
            and move to the next token;
       f: - call C
```

Non-Recursive Predictive Parsing -- LL(1)

- Non-Recursive predictive parsing is a **table-driven parser** which has an **input buffer**, a **stack**, a **parsing table**, and an **output stream**.
- It is also known as LL(1) Parser.
 - 1. Left to right scan input
 - 2. Find leftmost derivation

Grammar:
$$E \to TE'$$

 $E' \to +TE' \mid \varepsilon$ Input: $id + id$
 $T \to id$

Non-Recursive / Table Driven

General parser behavior: X: top of stack a: current input

- 1. When X=a = \$ halt, accept, success
- 2. When $X=a \neq \$$, POP X off stack, advance input, go to 1.

Algorithm for Non-Recursive Parsing

Set *ip* to point to the first symbol of w\$; push the start symbol and \$ onto the stack **repeat**

```
let X be the top stack symbol and a the symbol pointed to by ip;
     if X is terminal or $ then
                                                                          Input pointer
        if X=a then
            pop X from the stack and advance ip
         else error()
     else
            /* X is a non-terminal */
        if M[X,a] = X \rightarrow Y_1 Y_2 ... Y_k then begin
             pop X from stack;
             push Y_k, Y_{k-1}, \dots, Y_1 onto stack, with Y_1 on top
             output the production X \rightarrow Y_1 Y_2 ... Y_k
                                                           May also execute other code
         end
                                                           based on the production used,
         else error()
                                                           such as creating parse tree.
until X=$ /* stack is empty */
```

LL(1) Parser – Example2

Example:

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow * FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

how to construct id+id*id?

Table M

Non- terminal	INPUT SYMBOL					
	id	+	*	()	\$
E	E→TE'			E→TE'		
E '		E'→+TE'			E'→∈	E'→∈
T	T→FT'			T→FT'		
Т'		T'→∈	T'→*FT'		Τ'→∈	Τ'→∈
F	F→id			F →(E)		

Parsing table M for grammar

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>	
\$E	id+id*id\$		
\$E'T	id+id*id\$	$E \rightarrow TE'$	
\$E'T' F	id+id*id\$	$T \rightarrow FT'$	
\$ E' T'id	id+id*id\$	$F \rightarrow id$	
\$ E' T '	+id*id\$		
\$ E'	+id*id\$	$T' \rightarrow \epsilon$	
\$ E' T+	+id*id\$	$E' \rightarrow +TE'$	
\$ E' T	id*id\$		
\$ E' T' F	id*id\$	$T \rightarrow FT'$	
\$ E' T'id	id*id\$	$F \rightarrow id$	
\$ E' T '	*id\$		
\$ E' T' F *	*id\$	$T' \rightarrow *FT'$	
\$ E' T' F	id\$		
\$ E' T'id	id\$	$F \rightarrow id$	
\$ E' T'	\$		
\$ E'	\$	$T' \rightarrow \varepsilon$	
\$	\$	$E' \rightarrow \epsilon$	accept

moves made by predictive parser on input id+id*id.

Leftmost Derivation for the Example

The leftmost derivation for the example is as follows:

$$E \Rightarrow TE'$$

$$\Rightarrow$$
 FT'E'

$$\Rightarrow$$
 id T'E'

$$\Rightarrow$$
 id E'

$$\Rightarrow$$
 id + TE'

$$\Rightarrow$$
 id + FT'E'

$$\Rightarrow$$
 id + id T'E'

$$\Rightarrow$$
 id + id * FT'E'

$$\Rightarrow$$
 id + id * id T'E'

$$\Rightarrow$$
 id + id * id E'

$$\Rightarrow$$
 id + id * id

LL(1) Parser – Example

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

Sentence
"abba" is
correct or not

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \epsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

?

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aBb	bba\$	
\$aB	ba\$	$B \rightarrow bB$
\$aBb	ba\$	
\$aB	a \$	$B \rightarrow \epsilon$
\$ <mark>a</mark>	a \$	
\$	\$	accept, successful completion

LL(1) Parser – Example (cont.)

Outputs:

$$S \rightarrow aBa$$
 $B \rightarrow bB$ $B \rightarrow bB$ $B \rightarrow \epsilon$

$$\mathrm{B} \to \mathrm{bB}$$

$$B \rightarrow bB$$

$$B \rightarrow \epsilon$$

Derivation(left-most):

parse tree

Constructing LL(1) Parsing Tables

Constructing the Parsing Table M!

- 1st: Calculate FIRST & FOLLOW for Grammar
- 2nd: Apply Construction Algorithm for Parsing Table (We'll see this shortly)

Basic Functions:

FIRST: Let α be a string of grammar symbols. FIRST(α) is the set that includes every terminal that appears leftmost in α or in any string originating from α .

NOTE: If $\alpha \Rightarrow \epsilon$, then ϵ is FIRST(α).

FOLLOW: Let A be a non-terminal. FOLLOW(A) is the set of terminals a that can appear directly to the right of A in some sentential form. (S $\Rightarrow \alpha Aa\beta$, for some α and β).

NOTE: If $S \Rightarrow \alpha A$, then \$ is FOLLOW(A).

Compute FIRST for Any String X

- 1. If X is a terminal, $FIRST(X) = \{X\}$
- 2. If $X \rightarrow \epsilon$ is a production rule, add ϵ to FIRST (X)
- 3. If X is a non-terminal, and $X \rightarrow Y_1Y_2...Y_k$ is a production rule

```
if Y_1 \Rightarrow \varepsilon, Place FIRST (Y_2) in FIRST (X)
```

if
$$Y_2 \Rightarrow \varepsilon$$
, Place FIRST(Y_3) in FIRST(X)

• • •

if
$$Y_{k-1} \Rightarrow \varepsilon$$
, Place FIRST(Y_k) in FIRST(X)

NOTE: As soon as $Y_i \stackrel{*}{\Rightarrow} \epsilon$, Stop.

Repeat above steps until no more elements are added to any FIRST() set.

Checking " $Y_i \Rightarrow \epsilon$?" essentially amounts to checking whether ϵ belongs to FIRST(Y_i)

Computing FIRST(X): All Grammar Symbols - continued

Informally, suppose we want to compute

FIRST(
$$X_1 X_2 ... X_n$$
) = FIRST (X_1)

"+"FIRST (X_2) if ϵ is in FIRST (X_1)

"+"FIRST (X_3) if ϵ is in FIRST (X_2)

...

"+"FIRST (X_n) if ϵ is in FIRST (X_{n-1})

Note 1: Only add ε to FIRST $(X_1 X_2 ... X_n)$ if ε is in FIRST (X_i) for all i

Note 2: For FIRST(X_i), if $X_i \rightarrow Z_1 \ Z_2 \dots \ Z_m$, then we need to compute FIRST(Z₁ Z₂ ... Z_m)!

FIRST Example

Example $E \to TE'$ $E' \to +TE' \mid \epsilon$ $T \to FT'$ $T' \to *FT' \mid \epsilon$ $F \to (E) \mid id$ FIRST(F) - { (id}

FIRST(F) = { (,id}
FIRST(T') = {*,
$$\epsilon$$
}
FIRST(T) = { (,id}
FIRST(E') = {+, ϵ }
FIRST(E) = { (,id}

Alternative way to compute FIRST

Compute FOLLOW (for non-terminals)

- 1. If S is the start symbol \rightarrow \$ is in FOLLOW(S) Initially S\$
- 2. If $A \rightarrow \alpha B\beta$ is a production rule
- \rightarrow everything in **FIRST**(β) is FOLLOW(B) except ϵ
- 3. If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B\beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
- → everything in FOLLOW(A) is in FOLLOW(B).
 (Whatever followed A must follow B, since nothing follows B from the production rule)

We apply these rules until nothing more can be added to any FOLLOW set.

The Algorithm for FOLLOW – pseudocode

- 1. Initialize FOLLOW(X) for all non-terminals X to empty set. Place \$ in FOLLOW(S), where S is the start NT.
- 2. Repeat the following step until no modifications are made to any Follow-set

For any production
$$X \to X_1 X_2 ... X_j X_{j+1} ... X_m$$

For $j=1$ to m ,
if X_j is a non-terminal then:

FOLLOW(
$$\mathbf{X}_{j}$$
)=FOLLOW(\mathbf{X}_{j}) \cup (FIRST(\mathbf{X}_{j+1} ,..., \mathbf{X}_{m})-{ ϵ });
If FIRST(\mathbf{X}_{j+1} ,..., \mathbf{X}_{m}) contains ϵ or \mathbf{X}_{j+1} ,..., \mathbf{X}_{m} = ϵ
then FOLLOW(\mathbf{X}_{j})=FOLLOW(\mathbf{X}_{j}) \cup FOLLOW(\mathbf{X});

FOLLOW Example

```
\begin{array}{lll} \text{Example}: & \textbf{X} \rightarrow \textbf{X}_1 \, \textbf{X}_2 \, \dots \, \textbf{X}_j \, \textbf{X}_{j+1} \, \dots \, \textbf{X}_m \\ & \textbf{E} \rightarrow \textbf{TE}' & \textbf{For } j = 1 \ \text{to m,} \\ & \textbf{E}' \rightarrow + \textbf{TE}' \mid \quad \epsilon & \text{if } \textbf{X}_j \ \text{is a non-terminal then:} \\ & \textbf{T} \rightarrow \textbf{FT}' & \textbf{FOLLOW}(\textbf{X}_j) = \textbf{FOLLOW}(\textbf{X}_j) \cup (\textbf{FIRST}(\textbf{X}_{j+1}, \dots, \textbf{X}_m) - \{\epsilon\}); \\ & \textbf{T}' \rightarrow ^*\textbf{FT}' \mid \quad \epsilon & \textbf{If } \textbf{FIRST}(\textbf{X}_{j+1}, \dots, \textbf{X}_m) \ \text{contains } \epsilon \ \text{or } \textbf{X}_{j+1}, \dots, \textbf{X}_m = \epsilon \\ & \textbf{then } \textbf{FOLLOW}(\textbf{X}_j) = \textbf{FOLLOW}(\textbf{X}_j) \cup \textbf{FOLLOW}(\textbf{X}); \\ \end{array}
```

```
FIRST(F) = \{(id)\}
                      FIRST(*FT') = \{*\}
                                                FOLLOW(E) = \{ \}
                      FIRST((E)) = \{(\}
FIRST(T') = \{*, \epsilon\}
                                                FOLLOW(E') = \{ , \} 
                      FIRST(id) = \{id\}
FIRST(T) = \{(id)\}
                                                FOLLOW(T) = \{ +, \}, 
                      FIRST(+TE') = \{+\}
FIRST(E') = \{+, \epsilon\}
                                                FOLLOW(T') = \{ +, \}
                      FIRST(\varepsilon) = \{\varepsilon\}
FIRST(E) = \{(id)\}
                                                FOLLOW(F) = \{*, +, \}, \}
                      FIRST(TE') = \{ (,id) \}
                      FIRST(FT') = \{ (,id) \}
```

Constructing LL(1) Parsing Table

Algorithm:

- 1. Repeat Steps 2 & 3 for each rule $A \rightarrow \alpha$
 - 2. Terminal a in FIRST(α)? Add $A \rightarrow \alpha$ to M[A, a]
 - 3.1 ε in FIRST(α)? Add $A \rightarrow \alpha$ to M[A, b] for all terminals b in FOLLOW(A).
 - 3.2 ε in FIRST(α) and β in FOLLOW(A)? Add A $\rightarrow \alpha$ to M[A, β]
- 4. All undefined entries are errors.

Constructing LL(1) Parsing Table -- Example

Example:

$$E \rightarrow TE'$$
 FIRST(TE')={(,id}

$$\rightarrow$$
 E \rightarrow TE' into M[E,(] and M[E,id]

$$E' \rightarrow +TE'$$

$$\rightarrow$$
 E' \rightarrow +TE' into M[E',+]

$$E' \rightarrow \epsilon$$

$$FIRST(\varepsilon) = \{\varepsilon\}$$

→ none

but since ε in FIRST(ε)

and
$$FOLLOW(E')=\{\$,\}$$

 \rightarrow E' \rightarrow ϵ into M[E',\$] and M[E',)]

$$T \rightarrow FT'$$

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

$$T' \rightarrow *FT'$$

$$\rightarrow$$
 T' \rightarrow *FT' into M[T',*]

$$T' \rightarrow \epsilon$$

$$FIRST(\varepsilon) = \{\varepsilon\}$$

→ none

but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,,+\} \rightarrow T' \rightarrow \varepsilon$ into M[T',\$], M[T',)] and M[T',+]

$$F \rightarrow (E)$$

$$\rightarrow$$
 F \rightarrow (E) into M[F,(]

$$F \rightarrow id$$

$$\rightarrow$$
 F \rightarrow id into M[F,id]

Constructing LL(1) Parsing Table (cont.)

Non-	Input symbol							
terminal	id	+	*	()	\$		
E	$E \rightarrow TE'$			$E \rightarrow TE'$				
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \varepsilon$		
T	$T \rightarrow FT$			$T \rightarrow FT'$				
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$		
F	$F \rightarrow id$			$F \rightarrow (E)$				

Parsing table M for grammar

LL(1) Grammars

L: Scan input from Left to Right

L: Construct a Leftmost Derivation

1: Use "1" input symbol as lookahead in conjunction with stack to decide on the parsing action

LL(1) grammars == they have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

- Grammar can't be ambiguous or left recursive
- Grammar is LL(1) \Leftrightarrow when A $\rightarrow \alpha \mid \beta$
 - 1. α and β do not derive strings starting with the same terminal a
 - 2. Either α or β can derive ε , but not both.
 - 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).

Note: It may not be possible for a grammar to be manipulated into an LL(1) grammar

A Grammar which is not LL(1)

Example:

$$S \rightarrow i C t S E \mid a$$

$$E \rightarrow e S \mid \epsilon$$

$$C \rightarrow b$$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

	a	b	e	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iCtSE$		
E			$E \rightarrow e S$			$E \rightarrow \epsilon$
			$E \rightarrow \epsilon$			
C		$C \rightarrow b$	Ţ			

Problem \rightarrow ambiguity | two production rules for M[E,e]

A Grammar which is not LL(1) (cont.)

- A left recursive grammar cannot be a LL(1) grammar.
 - $-A \rightarrow A\alpha \mid \beta$
 - \Rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \rightarrow If β is ϵ , any terminal that appears in FIRST(α) also appears in FIRST($A\alpha$) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.
- What do we have to do if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.

Error Recovery in Predictive Parsing

- An error may occur in the predictive parsing (LL(1) parsing)
 - if the terminal symbol on the top of stack does not match with the current input symbol.
 - if the top of stack is a non-terminal A, the current input symbol is a, and the parsing table entry M[A,a] is empty.
- What should the parser do in an error case?
 - The parser should be able to give an error message (as much as possible meaningful error message).
 - It should be recover from that error case, and it should be able to continue the parsing with the rest of the input.

Error Recovery Techniques

- Panic-Mode Error Recovery
 - Skipping the input symbols until a synchronizing token is found.
- Phrase-Level Error Recovery
 - Each empty entry in the parsing table is filled with a pointer to a specific error routine to take care that error case.
- Error-Productions (used in GCC etc.)
 - If we have a good idea of the common errors that might be encountered, we can augment the grammar with productions that generate erroneous constructs.
 - When an error production is used by the parser, we can generate appropriate error diagnostics.
 - Since it is almost impossible to know all the errors that can be made by the programmers, this method is not practical.

Global-Correction

- Ideally, we would like a compiler to make as few change as possible in processing incorrect inputs.
- We have to globally analyze the input to find the error.
- This is an expensive method, and it is not in practice.

Panic-Mode Error Recovery in LL(1) Parsing

- In panic-mode error recovery, we skip all the input symbols until a synchronizing token is found or pop terminal from the stack.
- What is the synchronizing token?
 - All the terminal-symbols in the follow set of a non-terminal can be used as a synchronizing token set for that non-terminal.
- So, a simple panic-mode error recovery for the LL(1) parsing:
 - All the empty entries are marked as *synch* to indicate that the parser will skip all the input symbols until a symbol in the **follow set** of the non-terminal A which on the top of the stack. Then the parser will pop that non-terminal A from the stack. The parsing continues from that state.
 - To handle unmatched terminal symbols, the parser pops that unmatched terminal symbol from the stack and it issues an error message saying that unmatched terminal is inserted.

Panic-Mode Error Recovery - Example

FOLLOW(S)={\$} FOLLOW(A)={b,d}

	a	b	c	d	e	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
A	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	aab\$	$S \rightarrow AbS$
\$SbA	aab\$	$A \rightarrow a$
\$Sba	aab\$	
\$Sb	ab\$	Error: missing b, inserted
\$S	ab\$	$S \rightarrow AbS$
\$SbA	ab\$	$A \rightarrow a$
\$Sba	ab\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	ceadb\$	$S \rightarrow AbS$
\$SbA	ceadb\$	$A \rightarrow cAd$
\$SbdAc	ceadb\$	
\$SbdA	eadb\$	Error:unexpected e (illegal A)
(Remove	all input	tokens until first b or d, pop A)
\$Sbd	db\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

Motivation Behind FIRST & FOLLOW

FIRST: Is used to help find the appropriate reduction to follow given the top-of-the-stack non-terminal and the current input symbol.

Example: If $A \rightarrow \alpha$, and a is in FIRST(α), then when a=input, replace A with α (in the stack).

(a is one of first symbols of α , so when A is on the stack and a is input, POPA and PUSH α .)

FOLLOW: Is used when FIRST has a conflict, to resolve choices, or when FIRST gives no suggestion. When $\alpha \to \epsilon$ or $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then what follows A dictates the next choice to be made.

Example: If $A \to \alpha$, and b is in FOLLOW(A), then when $\alpha \stackrel{*}{\Rightarrow} \epsilon$ and b is an input character, then we expand A with α , which will eventually expand to ϵ , of which b follows!

 $(\alpha \stackrel{*}{\Rightarrow} \epsilon : i.e., FIRST(\alpha) contains \epsilon.)$

Compute FIRST for Any String X

- 1. If X is a terminal, $FIRST(X) = \{X\}$
- 2. If $X \rightarrow \epsilon$ is a production rule, add ϵ to FIRST (X)
- 3. If X is a non-terminal, and $X \rightarrow Y_1Y_2...Y_k$ is a production rule

```
if Y_1 \Rightarrow \varepsilon, Place FIRST (Y_2) in FIRST (X)
```

if
$$Y_2 \Rightarrow \varepsilon$$
, Place FIRST(Y_3) in FIRST(X)

• • •

if $Y_{k-1} \Rightarrow \varepsilon$, Place FIRST(Y_k) in FIRST(X)

NOTE: As soon as $Y_i \stackrel{*}{\Rightarrow} \epsilon$, Stop.

Repeat above steps until no more elements are added to any FIRST() set.

Checking " $Y_i \Rightarrow \epsilon$?" essentially amounts to checking whether ϵ belongs to FIRST(Y_i)

Computing FIRST(X): All Grammar Symbols - continued

Informally, suppose we want to compute

FIRST(
$$X_1 X_2 ... X_n$$
) = FIRST (X_1)

"+"FIRST (X_2) if ϵ is in FIRST (X_1)

"+"FIRST (X_3) if ϵ is in FIRST (X_2)

...

"+"FIRST (X_n) if ϵ is in FIRST (X_{n-1})

Note 1: Only add ϵ to FIRST $(X_1 X_2 ... X_n)$ if ϵ is in FIRST (X_i) for all i

Note 2: For FIRST(X_i), if $X_i \rightarrow Z_1 \ Z_2 \dots \ Z_m$, then we need to compute FIRST(Z_1 Z_2 \dots Z_m)!

Compute FOLLOW (for non-terminals)

- 1. If S is the start symbol \rightarrow \$ is in FOLLOW(S) Initially S\$
- 2. If $A \rightarrow \alpha B\beta$ is a production rule
- \rightarrow everything in **FIRST**(β) is FOLLOW(B) except ϵ
- 3. If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B\beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
- → everything in FOLLOW(A) is in FOLLOW(B).
 (Whatever followed A must follow B, since nothing follows B from the production rule)

We apply these rules until nothing more can be added to any FOLLOW set.

Constructing LL(1) Parsing Table

Algorithm:

- 1. Repeat Steps 2 & 3 for each rule $A \rightarrow \alpha$
 - 2. Terminal a in FIRST(α)? Add $A \rightarrow \alpha$ to M[A, a]
 - 3.1 ε in FIRST(α)? Add $A \rightarrow \alpha$ to M[A, b] for all terminals b in FOLLOW(A).
 - 3.2 ε in FIRST(α) and β in FOLLOW(A)? Add A $\rightarrow \alpha$ to M[A, β]
- 4. All undefined entries are errors.

Answer

1
$$lexp \rightarrow atom$$

2
$$lexp \rightarrow list$$

$$3 \text{ atom} \rightarrow \text{num}$$

4 atom
$$\rightarrow$$
id

5 list
$$\rightarrow$$
 (lexp_seq)

8 lexp_seq'
$$\rightarrow \epsilon$$

	num	id	()	\$
lexp	1	1	2		
atom	3	4			
list			5		
lexp_seq	6	6	6		
lexp_seq'	7	7	7	8	

No conflict, Grammar is LL(1)

Panic-Mode Error Recovery - Example

FOLLOW(S)={\$} FOLLOW(A)={b,d}

	a	b	c	d	e	\$
S	$S \rightarrow AbS$	sync	$S \rightarrow AbS$	sync	$S \rightarrow e$	$S \rightarrow \epsilon$
A	$A \rightarrow a$	sync	$A \rightarrow cAd$	sync	sync	sync

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	aab\$	$S \rightarrow AbS$
\$SbA	aab\$	$A \rightarrow a$
\$Sba	aab\$	
\$Sb	ab\$	Error: missing b, inserted
\$S	ab\$	$S \rightarrow AbS$
\$SbA	ab\$	$A \rightarrow a$
\$Sba	ab\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	ceadb\$	$S \rightarrow AbS$
\$SbA	ceadb\$	$A \rightarrow cAd$
\$SbdAc	ceadb\$	
\$SbdA	eadb\$	Error:unexpected e (illegal A)
(Remove	all input	tokens until first b or d, pop A)
\$Sbd	db\$	
\$Sb	b\$	
\$S	\$	$S \rightarrow \epsilon$
\$	\$	accept

Phrase-Level Error Recovery

- Each empty entry in the parsing table is filled with a pointer to a special error routine which will take care that error case.
- These error routines may:
 - change, insert, or delete input symbols.
 - issue appropriate error messages
 - pop items from the stack.
- We should be careful when we design these error routines, because we may put the parser into an infinite loop.

Final Comments – Top-Down Parsing

So far,

- We've examined grammars and language theory and its relationship to parsing
- Key concepts: Rewriting grammar into an acceptable form
- Examined Top-Down parsing:

Brute Force: Recursion and backtracking

Elegant: Table driven

We've identified its shortcomings:

Not all grammars can be made LL(1)!

• Bottom-Up Parsing - Future

Bottom-Up Parsing

- Goal: creates the parse tree of the given input starting from leaves towards the root.
- How: construct the right-most derivation of the given input in the reverse order.
 - $S \Rightarrow r_1 \Rightarrow ... \Rightarrow r_n \Rightarrow \omega$ (the right-most derivation of ω) \leftarrow (finds the right-most derivation in the reverse order)
- Techniques:
 - General technique: shift-reduce parsing
 - ✓ Shift: pushes the current symbol in the input to a stack.
 - ✓ Reduction: replaces the symbols $X_1X_2...X_n$ at the top of the stack by A if A → $X_1X_2...X_n$.
 - LR parsers (SLR, LR, LALR)

Bottom-Up Parsing -- Example

Right Sentential Forms

Naive algorithm

$$S = \gamma_0 \underset{rm}{\Longrightarrow} \gamma_1 \underset{rm}{\Longrightarrow} \gamma_2 \underset{rm}{\Longrightarrow} ... \underset{rm}{\Longrightarrow} \gamma_{n-1} \underset{rm}{\Longrightarrow} \gamma_n = \omega$$
 input string

```
Let \omega = input string repeat  pick \ a \ non-empty \ substring \ \beta \ of \ \omega \ where \ A \rightarrow \beta \ is \ a \ production  if (no \ such \ \beta) backtrack else  else  replace one \beta \ by \ A \ in \ \omega until \omega = "S" (the start symbol) or all possibilities are exhausted
```

Questions

```
Let \omega = \text{input string} repeat  \begin{array}{c} \text{pick a non-empty substring } \beta \text{ of } \omega \text{ where } A \!\!\!\! \to \!\!\! \beta \text{ is a production} \\ \text{if (no such } \beta) \\ \text{backtrack} \\ \text{else} \\ \text{replace one } \beta \text{ by A in } \omega \\ \text{until } \omega = \text{``S''} \text{ (the start symbol) or all possibilities are exhausted} \end{array}
```

- Does this algorithm terminate?
- How fast is the algorithm?
- Does the algorithm handle all cases?
- How do we choose the substring to reduce at each step?

Important facts

- Important Fact #1
 - Let $\alpha\beta\omega$ be a step of a bottom-up parse
 - Assume the next reduction is by $A \rightarrow \beta$
 - Then ω must be a string of terminals

Why?

Because $\alpha A\omega \rightarrow \alpha \beta\omega$ is a step in a rightmost derivation

- Important Fact #2
 - Let $\alpha A \omega$ be a step of a bottom-up parse
 - $-\beta$ is replaced by A
 - The next reduction will not occur at left side of A

Why?

Because $\alpha A\omega \rightarrow \alpha \beta\omega$ is a step in a rightmost derivation

Handle

- Informally, a handle of a string is a substring that matches the right side of a production rule.
 - But not every substring matches the right side of a production rule is handle
- A handle of a right sentential form $\gamma (\equiv \alpha \beta \omega)$ is (t, p)
 - t: a production $A \rightarrow \beta$
 - p: a position of γ where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ .

$$S \stackrel{rm}{\Rightarrow}^* \alpha A \omega \stackrel{rm}{\Rightarrow} \alpha \beta \omega$$

• If the grammar is unambiguous, then every right-sentential form of the grammar has exactly one handle.

Why?

Handle

If the grammar is unambiguous, then every right-sentential form of the grammar has exactly one handle.

•Proof idea:

```
The grammar is unambiguous
```

- ⇒rightmost derivation is unique
- \Rightarrow a unique production $A \rightarrow \beta$ applied to take r_i to r_{i+1} at the position k
- \Rightarrow a unique handle $(A \rightarrow \beta, k)$

Handle Pruning

A right-most derivation in reverse can be obtained by handle-pruning.

Let $\omega = \text{input string}$ repeat

pick a non-empty substring β of ω where $A \rightarrow \beta$ is a production if (no such β) handle $(A \rightarrow \beta, pos)$

backtrack

else

replace one β by A in ω

until ω = "S" (the start symbol) or all possibilities are exhausted

Example

$$E \rightarrow E+T \mid T$$
 $x+y * z$ $T \rightarrow T*F \mid F$ $id+id*id$

$$F \rightarrow (E) \mid id$$

Right-Most Sentential Form

E+T

E

Handle

$$F \rightarrow id$$
, 1

$$T \rightarrow F$$
, 1

$$E \rightarrow T$$
, 1

$$F \rightarrow id, 3$$

$$T \rightarrow F$$
, 3

$$F \rightarrow id, 5$$

$$T \rightarrow T*F, 3$$

$$E \rightarrow E+T$$
, 1

Shift-Reduce Parser

- Shift-reduce parsers require a stack and an input buffer
 - Initial stack just contains only the end-marker \$
 - The end of the input string is marked by the end-marker \$.
- There are four possible actions of a shift-parser action:
 - 1. Shift: The next input symbol is shifted onto the top of the stack.
 - **2. Reduce**: Replace the handle on the top of the stack by the nonterminal.
 - 3. Accept: Successful completion of parsing.
 - **4. Error**: Parser discovers a syntax error, and calls an error recovery routine.

Example

			$E \rightarrow E+T \mid T$	x+y * z
Stack	<u>Input</u>	Action	$T \rightarrow T^*F \mid F$	id+id*id
\$	id+id*id\$	shift	$F \rightarrow (E) \mid id$	10,10,10
\$id	+id*id\$	reduce by $F \rightarrow id$	1 -7 (L) 10	
\$F	+id*id\$	reduce by $T \rightarrow F$	Handle	
\$T	+id*id\$	reduce by $E \rightarrow T$		_
\$ <mark>E</mark>	+id*id\$	shift	$F \rightarrow id, 1$	
\$E+	id*id\$	shift	$T \rightarrow F, 1$	
\$E+id	*id\$	reduce by $F \rightarrow id$	$E \rightarrow T, 1$	
E+F	*id\$	reduce by $T \rightarrow F$	· ·	
\$E+ T	*id\$	shift	$F \rightarrow id, 3$	
E+T*	id\$	shift	$T \rightarrow F, 3$	F 6
\$E+T*id	\$	reduce by $F \rightarrow id$	$F \rightarrow id, 5$	
E+T*F	\$	reduce by $T \rightarrow T^*F$	$T \rightarrow T^*F, 3$	id
E+T	\$	reduce by $E \rightarrow E+T$		•
\$E	\$	accept	$E \rightarrow E+T, 1$	

$$E \Rightarrow E+T \Rightarrow E+T^*F \Rightarrow E+T^*id \Rightarrow E+F^*id$$
$$\Rightarrow E+id^*id \Rightarrow T+id^*id \Rightarrow F+id^*id \Rightarrow id+id^*id$$

Question

$$E \rightarrow E+E \mid E*E \mid id \mid (E)$$

Ex. $id + id * id$

Stack	<u>Input</u>	Action		
?	?	?		

Question

$$E \rightarrow E+E \mid E*E \mid id \mid (E)$$

Ex. $id + id * id$

Stack	<u>Input</u>	Action
\$	id+id*id\$	shift
\$id	+id*id\$	reduce by $E \rightarrow id$
\$E	+id*id\$	shift
\$E+	id*id\$	shift
\$E+id	*id\$	reduce by $E \rightarrow id$
\$E+E	*id\$	reduce by $E \rightarrow E + E$
\$E	*id\$	shift
\$E*	id\$	shift
\$E*id	\$	reduce by $E \rightarrow id$
\$E*E	\$	reduce by $E \rightarrow E^*E$
\$E	\$	accept

Stack	<u>Input</u>	Action
\$	id+id*id\$	shift
\$id	+id*id\$	reduce by $E \rightarrow id$
\$E	+id*id\$	shift
\$E+	id*id\$	shift
\$E+id	*id\$	reduce by $E \rightarrow id$
\$E+E	*id\$	shift
\$E+E*	*id\$	shift
\$E+E*id	id\$	reduce by $E \rightarrow id$
\$E+E*E	\$	reduce by $E \rightarrow E^*E$
\$E+E	\$	reduce by $E \rightarrow E + E$
\$E	\$	accept

Question

$$S \rightarrow aA \mid aB$$
, $A \rightarrow c$, $B \rightarrow c$
Ex. ac

Stack	<u>Input</u>	Action
\$	ac\$	shift
\$ a	c\$	shift
\$ac	\$	reduce by which?

When Shift-Reduce Parser fail

- There are no known efficient algorithms to recognize handles
- Stack contents and the next input symbol may not decide action:
 - > shift/reduce conflict: Whether make a shift operation or a reduction.
 - ✓ Option 1: modify the grammar to eliminate the conflict
 - ✓ Option 2: resolve in favor of shifting
 - Classic examples: "dangling else" ambiguity, insufficient associativity or precedence rules
 - ➤ reduce/reduce conflict: The parser cannot decide which of several reductions to make
 - ✓Often, no simple resolution
 - ✓ Option 1: try to redesign grammar, perhaps with changes to language
 - ✓ Option 2: use context information during parse (e.g., symbol table)

Classic real example: call and subscript: id(id, id)

When Stack = ... id (id, input = id) ...

Reduce by expr \rightarrow id, or Reduce by param \rightarrow id

The role of precedence and associativity

- Precedence and associativity rules can be used to resolve shift/reduce conflicts in ambiguous grammars:
 - lookahead with higher precedence ⇒ shift
 - same precedence, left associative ⇒ reduce
- Alternative to encoding them in the grammar

Example

$$E \rightarrow E+E \mid E*E \mid id \mid (E)$$

- * high precedence than +
- ★ and + left associativity

Stack	<u>Input</u>	Action _
\$	id+id*id\$	shift
\$id	+id*id\$	reduce by $E \rightarrow id$
\$E	+id*id\$	shift
\$E+	id*id\$	snift
\$E+id	*id\$	reduce by $E \rightarrow id$
\$E+E	*id\$	reduce by $E \rightarrow E + E$
\$E	*id\$	shift
\$E*	id\$	shift
\$E*id	1	reduce by $E \rightarrow id$
\$E*E	\$	reduce by $E \rightarrow E^*E$
\$E	\$	accept

Stack	<u>Input</u>	Action
\$	id+id*id\$	shift
\$id	+id*id\$	reduce by $E \rightarrow id$
\$E	+id*id\$	shift
\$E+	id*id\$	shift
\$E+id	*id\$	reduce by $E \rightarrow id$
\$E+E	*id\$	shift
\$E+E*	*id\$	shift
\$E+E*ic	l id\$	reduce by $E \rightarrow id$
\$E+E*E	\$	reduce by $E \rightarrow E^*E$
\$E+E	\$	reduce by $E \rightarrow E+E$
\$E	\$	accept

Shift-Reduce Parsers

1. LR-Parsers

- covers wide range of grammars.
 - **SLR** simple LR parser
 - LR most general LR parser
 - LALR intermediate LR parser (lookahead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different.

LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

- LR parsing is attractive because:
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient.
 - The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers.

$$LL(1)$$
-Grammars $\subset LR(1)$ -Grammars

An LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input.

Shift-Reduce Parsers

1. LR-Parsers

- covers wide range of grammars.
 - **SLR** simple LR parser
 - LR most general LR parser
 - LALR intermediate LR parser (lookahead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different.

A Trivial Bottom-Up Parsing Algorithm

```
Let \omega = \text{input string}
repeat
        pick a non-empty substring \beta of \omega where A \rightarrow \beta is a production
       if (no such \beta)
                                  We only want to reduce at handles
            backtrack
       else
          replace one \beta by A in \omega
until \omega = "S" (the start symbol) or all possibilities are exhausted
                                      We have defined handles
                                      Stack is: ...T, input *...
                                      But, how to detect handles?
 LR Parsers avoid backtrack
```

LR Parsing Algorithm Framework

Viable Prefix

• At each step the parser sees:

The stack content must be a prefix of a right-sentential form

- $E \Rightarrow ... \Rightarrow F^*id \Rightarrow (E)^*id$ — (, (E, (E) are prefix of (E)* id
- But, not all prefix can be the stack content
 - $-(E)^*$ cannot be appear on the stack, it should be reduced by F->(E)
- A viable prefix is a prefix of a right-sentential form that can appear on the stack
- If the bottom-up parser enforces that the stack can only hold viable prefix, then, we do not backtrack

Observations on Viable Prefix

• A viable prefix does not extend past the right end of handle

```
stack: a_1a_2...a_n input: r_1r_2\omega either a_i...a_n is a handle, or there is no handle Why? a_1a_2...a_{n-k} A \mid r_2\omega => a_1a_2a_{n-k}a_{n-k+1}...a_n \mid r_1r_2\omega \text{ by } A \rightarrow a_{n-k+1}...a_n \mid r_1
```

• A production A-> $\beta_1\beta_2$ is valid for viable prefix $\alpha\beta_1$ if

$$S=>^* \alpha A\omega => \alpha \beta_1 \beta_2 \omega$$

- Reduce: if $\beta_2 = \epsilon$
- Shift: if $\beta_2 != \epsilon$
- Item: $A \rightarrow \beta_1 \cdot \beta_2$

 How to compute viable prefix and its corresponding valid productions?

Key point: the set of viable prefixes is a regular language

- We construct a finite state automaton recognizing the set of viable prefixes,
 - each state s represents a set of valid items if the initial state s_0 goes to the state s items after reading the viable prefix ω

- LR(0) Items: One production produces a set of items by placing . in to productions
- A production A-> $\beta_1\beta_2$ is valid for viable prefix $\alpha\beta_1$ if $S=>* \alpha A\omega => \alpha \beta_1\beta_2 \omega$
- Reduce: if $\beta_2 = \varepsilon$ Shift: if $\beta_2 != \varepsilon$
- Item: A-> β_1 • β_2

E.g. The production $T \rightarrow (E)$ gives items

- T-> (E) // we have seen ε of T-> (E), shift
- $T\rightarrow(E)$ // we have seen (of $T\rightarrow(E)$, shift
- T->(E \bullet) // we have seen (E of T-> (E), shift
- T->(E). // we have seen (E) of T-> (E), reduce

The production T-> ϵ gives the item

• T->

The stack may have many prefixes of productions

Let $Prefix_n$ be a valid prefix of A_n -> α_n

- Prefix_n will eventually reduce to A_n
- $\operatorname{Prefix}_{n-1}A_n$ is a valid prefix of A_{n-1} -> $\operatorname{Prefix}_{n-1}A_n\beta$

- Finally, $Prefix_k...Prefix_n$ eventually reduces to A_k
 - $\operatorname{Prefix}_{k-1} A_k$ is a valid prefix of A_{k-1} -> $\operatorname{Prefix}_{k-1} A_k \beta$

- Consider: (id * id) Stack: (id* input id)
 - id * is a viable prefix of T->id * T
 - ε is a viable prefix of E->T
 - (is a viable prefix of T->(E)

Example:

$$E \rightarrow T + E \mid T$$

 $T \rightarrow id * T \mid id \mid (E)$

A state (a set of items) $\{T->(E), E->T, T->id *T\}$ says:

- We have seen (of $T\rightarrow(E)$
- We have seen ε of E->T
- We have seen id * of T->id * T

Closure Operation: States

- If *I* is a set of LR(0) items for a grammar G, then *closure*(*I*) is the set of LR(0) items constructed from I by the two rules:
 - 1. Initially, every LR(0) item in I is added to closure(I).
 - 2. Repeat
 - If $A \rightarrow \alpha.B\beta$ is in closure(I) and $B \rightarrow \gamma$ is a production in G;
 - then $B\rightarrow .\gamma$ will be in the closure(I).

Unitl no more new LR(0) items can be added to closure(I).

The stack may have many prefixes of productions

 $Prefix_k...Prefix_n$ eventually reduces to A_k

- $\operatorname{Prefix}_{k-1} A_k$ is a valid prefix of A_{k-1} -> $\operatorname{Prefix}_{k-1} A_k \beta$

Closure Operation -- Example

$$E' \rightarrow E \qquad I_0: \ closure(\{E' \rightarrow \bullet E\}) = \\ E \rightarrow E + T \qquad \{E' \rightarrow \bullet E \longleftarrow \\ E \rightarrow T \qquad E \rightarrow \bullet E + T \\ T \rightarrow T^*F \qquad E \rightarrow \bullet T \\ T \rightarrow F \qquad T \rightarrow \bullet T^*F \\ F \rightarrow (E) \qquad T \rightarrow \bullet F \\ F \rightarrow id \qquad F \rightarrow \bullet (E) \\ F \rightarrow \bullet id \}$$

kernel items

- 1. kernel items: the initial item and all items whose dots are not at the left end
- 2. Nonkernel items: otherwise

- 1. Initially, every LR(0) item in I is added to closure(I).
- 2. If $A \rightarrow \alpha$. $B\beta$ is in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$ will be in the closure(I).

Closure Operation -- Example

$$E' \rightarrow E \qquad I_0: \ closure(\{E \rightarrow E + \bullet T\}) = \\ E \rightarrow E + T \qquad \qquad \{E \rightarrow E + \bullet T \leftarrow \text{kernel items} \\ E \rightarrow T \qquad \qquad T \rightarrow \bullet T^*F \qquad 1. \ \text{kernel items: the initial item} \\ T \rightarrow T^*F \qquad \qquad T \rightarrow \bullet F \qquad \text{and all items whose dots are} \\ T \rightarrow F \qquad \qquad F \rightarrow \bullet (E) \qquad \qquad \text{not at the left end} \\ F \rightarrow \text{id} \qquad \qquad P \rightarrow \text{id} \qquad P \rightarrow \text{$$

- 1. Initially, every LR(0) item in I is added to closure(I).
- 2. If $A \rightarrow \alpha .B\beta$ is in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$ will be in the closure(I).

Goto Operation: Transitions

- If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then **goto(I,X)** is defined as follows:
 - If $A \rightarrow \alpha \bullet X\beta$ in I
 - then every item in closure($\{A \rightarrow \alpha X \bullet \beta\}$) will be in goto(I,X).

Example:

```
I = \{ E' \rightarrow \bullet E, E \rightarrow \bullet E + T, E \rightarrow \bullet T, T \rightarrow \bullet T * F, T \rightarrow \bullet F, F \rightarrow \bullet (E), F \rightarrow \bullet id \}
goto(I,E) = \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + T \}
goto(I,T) = \{ E \rightarrow T \bullet, T \rightarrow T \bullet * F \}
goto(I,F) = \{ T \rightarrow F \bullet \}
goto(I,C) = \{ F \rightarrow (\bullet E), E \rightarrow \bullet E + T, E \rightarrow \bullet T, T \rightarrow \bullet T * F, T \rightarrow \bullet F, F \rightarrow \bullet (E), F \rightarrow \bullet id \}
goto(I,id) = \{ F \rightarrow id \bullet \}
```

LR(0) Automaton

- Add a dummy production S'->S into G, get G'
- Algorithm:

```
C is { closure(\{S' \rightarrow \bullet S\}) } repeat
```

for each I in C and each grammar symbol X if goto(I,X) is not empty and not in C add goto(I,X) to C

New item, corresponding to new state in DFA

until no more set of LR(0) items can be added to C.

- goto function is the transition function of the DFA
- Initial state: closure({S'->S})

The Canonical LR(0) Collection -- Example

LR(0) Parsing Algorithm Implmentation

A Configuration of LR(0) Parsing Algorithm

• A configuration of a LR(0) parsing is:

- S_m and a_i decides the parser action by consulting the parsing action table. (*Initial Stack* contains just S_o)
- A configuration of a LR(0) parsing represents the right sentential form:

$$X_1 ... X_m a_i a_{i+1} ... a_n$$
\$

Constructing LR(0) Parsing Table

(of an augumented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows:
 - If a is a terminal, $A \rightarrow \alpha_{\bullet} a\beta$ in I_i and $goto(I_i,a)=I_j$ then action[i,a] is *shift j*.
 - If $A \rightarrow \alpha$ is in I_i , then action[i,a] is *reduce* $A \rightarrow \alpha$.
 - If $S' \rightarrow S$ is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not LR(0).
- 3. Create the parsing goto table :
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$

Actions of A LR(0)-Parser

1. shift s -- shifts the next input symbol a_i and the state S onto the stack (s_m where m is a state number)

$$(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_m S_m a_i S, a_{i+1} ... a_n \$)$$

- 2. reduce $A \rightarrow \beta$
 - pop $2|\beta|$ (=r) items from the stack;
 - then push A and S where $S=goto[S_{m-r},A]$

$$(S_0 X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_0 X_1 S_1 ... X_{m-r} S_{m-r} A S, a_i ... a_n \$)$$

- Output is the reducing production reduce $A \rightarrow \beta$, (and others)
- 3. Accept Parsing successfully completed
- **4.** Error -- Parser detected an error (an empty entry in the action table)

Parsing Tables of Expression Grammar

1) $E \rightarrow E+T$

2) $E \rightarrow T$

3) $T \rightarrow T^*F$

4) $T \rightarrow F$

5) $F \rightarrow (E)$

6) $F \rightarrow id$

LR(0) Action Table				Goto Table					
state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2	r2	r2	s7	r2	r2	r2			
			r2						
3		r4	r4		r4	r4			
4	s 5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9	r1	r1	s7	r1	r1	r1			
			r1						
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
 - Any state has two reduce items:
 - E.g., $X \rightarrow \beta$. and $Y \rightarrow \omega$.
- LR(0) has a shift/reduce conflict if:
 - Any state has a reduce item and a shift item:
 - E.g., $X \rightarrow \beta$. and $Y \rightarrow \omega.t\delta$

G is in LR(0) Grammar if no conflict

LR(0) Conflicts

Parsing Tables of Expression Grammar

1) $E \rightarrow E+T$

2) $E \rightarrow T$

3) $T \rightarrow T^*F$

4) $T \rightarrow F$

5) $F \rightarrow (E)$

11

r5

r5

6) $F \rightarrow id$

LR(0) Action Table Goto Table * \$ id E T F state 2 3 **s**5 **s4** 0 **s6** acc 2 r2 r2 **s7 r2** r2 r2 **r2** 3 r4 r4 r4 r4 2 4 **s**5 **s4** 8 3 5 **r6 r6 r6** r6 3 9 **s**5 **s4** 6 7 **s**5 **s4 10** 8 **s11 s6** 9 r1 **s**7 r1 r1 r1 r1 r1 10 **r3 r3 r3 r3**

r5

r5

LR(0) Parsing Algorithm Implmentation

SLR(1) Parsing Algorithm

Constructing SLR(1) Parsing Table)

(of an augumented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows:
 - If a is a terminal, $A \rightarrow \alpha_{\bullet} a \beta$ in I_i and $goto(I_i, a) = I_i$ then action[i,a] is *shift j*.
 - If $A \rightarrow \alpha$, is in I_i , then action[i,a] is reduce $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S$.
 - If S' \rightarrow S. is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not SLR(1).
- 3. Create the parsing goto table :
 - for all non-terminals A, if $goto(I_i,A)=I_i$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$

SLR(1) Parsing Algorithm Implmentation

LR(0) Conflicts

Parsing Tables of Expression Grammar

1) $E \rightarrow E+T$

2)
$$E \rightarrow T$$

3)
$$T \rightarrow T^*F$$

4)
$$T \rightarrow F$$

5)
$$F \rightarrow (E)$$

6)
$$F \rightarrow id$$

Follow(E) = $\{+, \}$

SLR(1) Action Table								Goto Table			
state	id	+	*	()	\$		E	T	F	
0	s5			s4				1	2	3	
1		s6				acc					
2	r2	r2	s7	r2	r2	r2					
			r2								
3		r4	r4		r4	r4					
4	s5			s4				8	2	3	
5		r6	r6		r6	r6					
6	s 5			s4					9	3	
7	s 5			s4						10	
8		s6			s11						
9	r1	r1	s7	r1	r1	r1					
			r1								
10		r3	r3		r3	r3					
11		r5	r5		r5	r5					

Actions of A SLR(1) Parser – Example

<u>input</u>	<u>action</u>	<u>output</u>
id*id+id\$	shift 5	
*id+id\$	reduce by F→id	$F \rightarrow id$
*id+id\$	reduce by $T \rightarrow F$	$T \rightarrow F$
*id+id\$	shift 7	
id+id\$	shift 5	
+id\$	reduce by F→id	$F \rightarrow id$
+id\$	reduce by $T \rightarrow T^*F$	$T \rightarrow T^*F$
+id\$	reduce by $E \rightarrow T$	$E \rightarrow T$
+id\$	shift 6	
id\$	shift 5	
\$	reduce by F→id	$F \rightarrow id$
\$	reduce by $T \rightarrow F$	$T \rightarrow F$
\$	reduce by $E \rightarrow E + T$	$E \rightarrow E + T$
\$	accept	
	id*id+id\$ *id+id\$ *id+id\$ *id+id\$ id+id\$ id+id\$ +id\$ +id\$ +id\$ \$ \$ \$	id*id+id\$ shift 5 *id+id\$ reduce by F→id *id+id\$ reduce by T→F *id+id\$ shift 7 id+id\$ shift 5 +id\$ reduce by F→id +id\$ reduce by T→T*F +id\$ reduce by E→T +id\$ shift 6 id\$ shift 5 \$ reduce by F→id reduce by E→T

SLR(1) Grammar

- An LR parser using SLR(1) parsing tables for a grammar G is called as the SLR(1) parser for G.
- If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR grammar in short).
- Every SLR grammar is unambiguous, but not every unambiguous grammar is a SLR grammar.

Conflict Example

If $A \rightarrow \alpha$, is in I_i , then action[i,a] is reduce $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S'$.

shift/reduce and reduce/reduce conflicts

- If a state does not know whether it will make a shift operation or reduction for a terminal, we say that there is a **shift/reduce conflict**.
- If a state does not know whether it will make a reduction operation using the production rule i or j for a terminal, we say that there is a reduce/reduce conflict.
- If the SLR parsing table of a grammar G has a conflict, we say that that grammar is not SLR grammar.

SLR(1)

 $\mathrm{B} \rightarrow$.

$$S \rightarrow AaAb$$

$$S \rightarrow BbBa$$

$$A \rightarrow \varepsilon$$

$$B \rightarrow \varepsilon$$

$$S \rightarrow .BbBa$$

$$S \rightarrow .BbBa$$

$$A \rightarrow .$$

Construct

SLR(1) action table

Problem

FOLLOW(A)=
$$\{a,b\}$$

FOLLOW(B)= $\{a,b\}$
a reduce by $A \rightarrow \epsilon$
reduce by $B \rightarrow \epsilon$
reduce/reduce conflict

b reduce by
$$A \rightarrow \epsilon$$
 reduce by $B \rightarrow \epsilon$ reduce/reduce conflict

Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A \rightarrow \alpha$ when the current token is a:
 - $\text{ if } A \rightarrow \alpha$. in the I_i and a is FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

{
$$I_0: S \to AaAb$$
, $S \to BbBa$, $A \to \varepsilon$, $B \to \varepsilon$ }: reduce/reduce conflict FOLLOW(A)=FOLLOW(B)={a,b}

LR(1) Item

- To avoid some of invalid reductions, the states need to carry more information.
- Extra information is put into a state by including a terminal symbol as a second component in an item.
- A LR(0) item is:

$$A \rightarrow \alpha \cdot \beta$$

• A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta$, a where **a** is the look-ahead of the LR(1) item (**a** is a terminal or end-marker.)

LR(1) Item (cont.)

- When β (in the LR(1) item $A \to \alpha \cdot \beta$, a) is not empty, the look-ahead does not have any affect.
- When β is empty $(A \to \alpha_{\bullet}, a)$, we do the reduction by $A \to \alpha$ only if the next input symbol is **a** (not for any terminal in FOLLOW(A)).
- A state will contain $A \to \alpha_{\bullet}, a_{1}$ where $\{a_{1},...,a_{n}\} \subseteq FOLLOW(A)$ $A \to \alpha_{\bullet}, a_{n}$

LR(1) Automaton

• The states of LR(1) automaton are similar to the construction of the one for LR(0) automaton, except that *closure* and *goto* operations work a little bit different.

closure(I) is: (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha \cdot B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, **b** will be in the closure(I) for each terminal **b** in **FIRST**(β**a**).

LR(0) automaton

- if $A \rightarrow \alpha \cdot B\beta$ in closure(I) and $B \rightarrow \gamma$ is a production rule of G; then $B \rightarrow .\gamma$, will be in the closure(I).

The Algorithm for FOLLOW – pseudocode

- 1. Initialize FOLLOW(X) for all non-terminals X to empty set. Place \$ in FOLLOW(S), where S is the start NT.
- 2. Repeat the following step until no modifications are made to any Follow-set

For any production
$$X \to X_1 X_2 ... X_j X_{j+1} ... X_m$$

For $j=1$ to m ,
if X_j is a non-terminal then:

FOLLOW(
$$X_j$$
)=FOLLOW(X_j) \cup (FIRST(X_{j+1} ,..., X_m)-{ ϵ });
If FIRST(X_{j+1} ,..., X_m) contains ϵ or X_{j+1} ,..., X_m = ϵ
then FOLLOW(X_j)=FOLLOW(X_j) \cup FOLLOW(X_j);

goto operation

- If I is a set of LR(1) items (i.e. state) and X is a grammar symbol (terminal or non-terminal), then goto(I,X) is defined as follows:
 - If $A \to \alpha.X\beta$, a in I then every item in **closure**($\{A \to \alpha X.\beta, a\}$) will be in goto(I,X).

Construction of LR(1) Automaton

• Algorithm:

```
C is { closure({S'→.S, $}) }
repeat the followings until no more set of LR(1) items can be added to C.
for each I in C and each grammar symbol X
    if goto(I,X) is not empty and not in C
    add goto(I,X) to C
```

- goto function is a DFA on the sets in C.
- Initial state: closure({S'->S,\$})

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

• • •

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta$$
, $a_1/a_2/.../a_n$

LR(1) Automaton example

if $S \rightarrow AaAb$, \$\\$ in closure(I) and $A \rightarrow \varepsilon$ is a production rule of G; then $A \rightarrow .$, a will be in the closure(I) for each terminal a in FIRST(AaAb\$) = {a}.

Construction of LR(1) Parsing Tables

- 1. Construct the canonical collection of sets of LR(1) items for G'. $C \leftarrow \{I_0,...,I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha \cdot a\beta$, b in I_i and $goto(I_i,a) = I_j$ then action[i,a] is shift j.
 - If $A \rightarrow \alpha_{\bullet}$, a is in I_i , then action[i,a] is reduce $A \rightarrow \alpha$ where $A \neq S'$.
 - If $S' \rightarrow S_{\bullet}$, \$ is in I_i , then action[i,\$] is *accept*.
 - If any conflicting actions generated by these rules, the grammar is not LR(1).
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i,A)=I_j$ then goto[i,A]=j
- 4. All entries not defined by (2) and (3) are errors.
- 5. Initial state of the parser contains $S' \rightarrow .S$, \$

Conflict Example SLR(1)

If $A \rightarrow \alpha$, is in I_i , then action[i,a] is reduce $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S'$.

Canonical LR(1) Collection – Example 2

LR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s 5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3	r3			
8			r5	r5			
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

so, it is a LR(1) grammar

LALR Parsing Tables

LALR stands for LookAhead LR.

- LALR parsers are often used in practice because LALR parsing tables are smaller than LR(1) parsing tables.
- The number of states in SLR and LALR parsing tables for a grammar G are equal.
- But LALR parsers recognize more grammars than SLR parsers.
- YACC/Bison creates a LALR parser for the given grammar.
- A state of LALR parser will be again a set of LR(1) items.

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component.

Ex:
$$S \to L \bullet = R, \$$$
 \Rightarrow $S \to L \bullet = R$ \leftarrow Core (LR(0) Item) $R \to L \bullet, \$$ $R \to L \bullet$

• We will find the states (sets of LR(1) items) in a canonical LR(1) parser with same cores. Then we will merge them as a single state.

- We will do this for all states of a canonical LR(1) parser to get the states of the LALR parser.
- In fact, the number of the states of the LALR parser for a grammar will be equal to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

- Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar.
- Find each core; find all sets having that same core; replace those sets having same cores with a single set which is their union.

$$C = \{I_0,...,I_n\} \rightarrow C' = \{J_1,...,J_m\}$$
 where $m \le n$

- Create the parsing tables (action and goto tables) same as the construction of the parsing tables of LR(1) parser.
 - Note that: If $J=I_1 \cup ... \cup I_k$ since $I_1,...,I_k$ have same cores → cores of goto(I_1,X),...,goto(I_2,X) must be same.
 - So, goto(J,X)=K where K is the union of all sets of items having same cores as goto(I_1 ,X).
- If no conflict is introduced, the grammar is LALR(1) grammar. (We may only introduce reduce/reduce conflicts; we cannot introduce a shift/reduce conflict)

Creating LALR Parsing Tables

Canonical LR(1) Parser

LALR Parser

shrink # of states

- This shrink process may introduce a reduce/reduce conflict in the resulting LALR parser (so the grammar is NOT LALR)
- But, this shrink process does not produce a shift/reduce conflict.

Reduce/Reduce Conflict

• But, we may introduce a reduce/reduce conflict during the shrink process for the creation of the states of a LALR parser.

Shift/Reduce Conflict

- We say that we cannot introduce a shift/reduce conflict during the shrink process for the creation of the states of a LALR parser.
- Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser must have:

$$A \rightarrow \alpha \bullet$$
, a and $B \rightarrow \beta \bullet a\gamma$, b

• This means that a state of the canonical LR(1) parser must have:

$$A \rightarrow \alpha \bullet$$
, a and $B \rightarrow \beta \bullet a\gamma$, c

But, this state has also a shift/reduce conflict. i.e. the original canonical LR(1) parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

Canonical LR(1) Collection – Example 2

Canonical LALR(1) Collection – Example 2

LALR(1) Parsing Tables – (for Example2)

	id	*	=	\$	S	L	R
0	s512	s411			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s512	s411				810	713
5			r4	r4			
6	s512	s411				810	9
7			r3	r3			
8			r5	r5			
9				r1			

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	. <mark>\$4</mark> ift/r	adua			8	7
5 11	O SII	111/1	r4 r4	r4		C1 •	
6 ⁿ	o ₁ re	duçe	red	uce	con	fligt	9
7			<u>r3</u>	r3			
8	•		r5	r5			
9 S	0, 1t	is a	LAI) gr	amn	nar
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

Panic Mode Error Recovery in LR Parsing

- Discard zero or more input symbols until a symbol **a** is found that can legitimately follow **A**.
 - The symbol a is simply in FOLLOW(A), but this may not work for all situations.
- Scan down the stack until a state s with a goto on a particular nonterminal A is found. (Get rid of everything from the stack before this state s).

Phrase-Level Error Recovery in LR Parsing

- Each empty entry in the action table is marked with a specific error routine.
- An error routine reflects the error that the user most likely will make in that case.
- An error routine inserts the symbols into the stack or the input (or it deletes the symbols from the stack and the input, or it can do both insertion and deletion).
 - missing operand
 - unbalanced right parenthesis

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be unambiguous.
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts.
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar.
 - At the end, we will have again an unambiguous grammar.
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are much natural, and a corresponding unambiguous grammar can be very complex.
 - Usage of an ambiguous grammar may eliminate unnecessary reductions.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

Sets of LR(0) Items for Ambiguous Grammar

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₇ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift \rightarrow + is right-associative

reduce → + is left-associative

when current token is *

shift \rightarrow * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I_8 has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_8$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +
shift → + has higher precedence than *
reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Cata

Action

		Act			Goto		
	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s 5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

Summary

- Bottom-up parsing—shift-reduce parsing
- LR parsing——SLR、LR、LALR

Reading materials

- [1] Frost, R.; R. Hafiz (2006). A New Top-Down Parsing Algorithm to Accommodate Ambiguity and Left Recursion in Polynomial Time.
- [2] Frost, R.; R. Hafiz; P. Callaghan (2007). Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive Grammars.