a) $a_{ii} > 0$ pa	ra $1 \le i \le n$									
b) A es no si										
c) Todas las	submatrices	principales	de A so	on defin	nidas posit	ivas.				
$d) a_{ij} ^2 \leqslant a_i$		do $1 \leqslant i, j \leqslant$	$\leq n$. Dec	ducir q	ue el eleme	ento de mód	lulo máxim	o de A est	aá en	
la diagona	J.									
i)										
A es sd	<i>ζ</i> = <i>ζ</i>	$\times A^{T} \times$	>0	٧x	<i>≠</i> 0.	En par	ticular	vale	para	105
vectores						•			•	
100 10. 03				,,,,						
т										
ei Aei >	O A	L=1N								
_	_				4					
ei Aei =	e_{i} · c	oli(A)	= (c),··· ,	0,1,0,	,0) .	coli((A		
e Aei =			= 0	aai	+ + 1	· a:: + ··	·+ 0·a	ni. = 0	Zi.i.	
				14						
	_ \	, ,								
· aii >	OA	N = 1Y)								
b)										
Supongamo	os que	. A no	es	inve	ersible	, 3×,	60 to	.l que	Ax =	o .
Ax = 0	=>	√ [†] Δ √	_ _V T	O =	0	((2)())	× 1 m			
Absurdo	boez	H es	SOP.	>1	X ≠ O	ento	vices	X.YX	> 0.	
29 A ∴	inversi	ble.								

