Kap 5. Gasser

- Gasslover
- Ideell gasslov
- Gassblandinger og reaksjoner
- Partialtrykk og Daltons lov
- Reelle gasser

Hot Air Balloon Taking Off from the Ski Resort of Chateau d'Oex in the Swiss Alps

www.ntnu.no TMT4110 Kjemi

Hva er gass?

- Stoff uten fast form eller fast volum.
- Partiklene beveger seg i en rett linje til de støter på noe
- Ofte målt i trykk

$$trykk = \frac{kraft}{arealenhet}$$

$$P = \frac{F}{A} = \left[\frac{N}{m^2} \right]$$

5.1 Tidlige eksperimenter

- Torricelli fant ut at luft i atmosfæren utøver et trykk
- Designet det første barometeret
- Normalt lufttrykk = Hg-søyle på 76 cm

1 atm = 760 mmHg = 760 torr

www.ntnu.no

Enheter for trykk

• Torr

- Etter Torrecelli
- -1 Torr = 1 mmHg

Pascal

- SI-enheten (Pa = $N/m^2 = kg m^{-1} s^{-2}$)
- $1 Pa = 7,501 \cdot 10^{-3} \text{ mmHg}$

Atmosfære

- Normalt lufttrykk
- -1 atm = 760 mmHg

• Bar

 $- 1 bar = 10^5 Pa$

Se tabell i SI Chemical Data (Tabell 4)

5.2 Gasslover

• Boyle:

Utførte kvantitative målinger med gasser og deres trykk og volum (med konstant temperatur)

Boyles lov

TABLE 5.1		
Actual Data from Boyle's Experiments		
Volume (in ³)	Pressure (in Hg)	Pressure \times Volume (in Hg \times in ³)
48.0 40.0 32.0 24.0 20.0 16.0 12.0	29.1 35.3 44.2 58.8 70.7 87.2 117.5	14.0×10^{2} 14.1×10^{2} 14.1×10^{2} 14.1×10^{2} 14.1×10^{2} 14.0×10^{2} 14.1×10^{2}

Boyles lov:

$$P \cdot V = konst$$

$$V = k \cdot \frac{1}{P}$$

(ved konstant T og n)

7

I praksis:
 De fleste gasser avviker fra loven hvis man gjør nøyaktige målinger
 => reelle gasser

• **Ideell gass**: En gass som følger Boyles lov

www.ntnu.no TMT4110 Kjemi

Charles' lov

 Ved konstant trykk og stoffmengde øker gassvolumet lineært med temperaturen

$$V = b \cdot T_{\scriptscriptstyle
ho}$$
Obs!
T i Kelvin!

Temperatur (K) = 0° C + 273.15

Absolutte nullpunkt

= 0 Kelvin

www.ntnu.no

Avogadros lov

$$V = a \cdot n$$

=> For en gass ved konstant T og P er volumet proporsjonalt med antall mol gass

5.3 Den ideelle gasslov

 $V = \frac{k}{p}$ Boyle's law:

(at constant T and n)

Charles's law:

V = bT (at constant P and n)

Avogadro's law: V = an

(at constant T and P)

Kan kombineres til **den ideelle gasslov**

$$P \cdot V = n \cdot R \cdot T$$

Gasskonstanten

 $R = 0.08206 L atm K^{-1} mol^{-1} når P [atm] og V [L]$

 $R = 8,31451 \text{ J K}^{-1} \text{ mol}^{-1} \text{ når P [Pa] og V [m}^{3}]$

www.ntnu.no TMT4110 Kjemi

Den ideelle gasslov

$$P \cdot V = n \cdot R \cdot T$$

- Empirisk ligning som gjelder for ideell gass
- Reelle gasser ligner mest på ideelle gasser ved
 - Lavt trykk
 - Høy temperatur

5.4 Gasstøkiometri

Standardtilstand (STP) for gass:

$$T = 0 \, ^{\circ}C = 273,2 \, K$$

 $P = 1 \, atm$

• Molart volum: volumet av 1 mol gass ved STP

$$V = \frac{nRT}{P} = \frac{1mol \cdot 0,08206LatmK^{-1}mol^{-1} \cdot 273,2K}{1atm} = 22,42L$$

Molart volum av ideell gass: 22,42 L

TABLE 5.2		
Molar Volumes for Various Gases at 0°C and 1 atm		
Gas	Molar Volume (L)	
Oxygen (O ₂)	22.397	
Nitrogen (N ₂)	22.402	
Hydrogen (H ₂)	22.433	
Helium (He)	22.434	
Argon (Ar)	22.397	
Carbon dioxide (CO ₂)	22.260	
Ammonia (NH ₃)	22.079	

• Molar masse til en gass kan finnes fra tetthet, trykk og temperatur.

$$P = \frac{\frac{m}{M}}{V} = \frac{\frac{m}{M}RT}{V} = \frac{\frac{m}{M}RT}{M} = \frac{dRT}{M}$$

$$=> M = \frac{dRT}{P}$$

5.5 Daltons lov

- Enhver gass vil oppføre seg som om den var alene i tilgjengelig volum
- Kalles partialtrykk; P_A, P_B, P_C, ...
- Totaltrykket vil være summen av partialtrykkene (**Daltons lov**):

$$P_{tot} = P_A + P_B + P_C + \dots$$

Totaltrykk i en gassblanding

$$P_{tot} = P_A + P_B + P_C + \dots = \frac{n_A RT}{V} + \frac{n_B RT}{V} + \frac{n_C RT}{V} + \dots$$

$$= n_A + n_B + n_C + \dots + \frac{RT}{V} = n_{tot} \frac{RT}{V}$$

- Molfraksjon:
 - = antall mol av en komponent i forhold til totalt antall mol

$$\chi_A = \frac{n_A}{n_{tot}} = \frac{P_A}{P_{tot}}$$

$$P_A = \chi_A \cdot P_{tot}$$

5.10-11 Reelle gasser

Ideelle vs. Reelle gasser

Ideell gass

- Gasspartiklene har null volum
- Ingen interaksjon mellom partiklene

Reell gass

- Gasspartiklene har et volum
 mindre ledig plass
- Tiltrekningskrefter mellom partiklene lavere trykk

Korrigering av volum

- Tilgjengelig volum bli mindre pga partiklenes egenvolum.
- Spesielt tydelig ved høyt trykk

$$V_{\text{tilgjengelig}} = V - nb \implies P' = \frac{nRT}{(V - nb)}$$

Korrigering av trykk

 Trykk i reell gass er mindre enn ventet utfra ideell gasslov.
 Pga tiltrekningskrefter mellom molekylene (van der Waalske krefter)

$$P_{obs} = P' - a \left(\frac{n}{V}\right)^2$$

Ideal - no IMF straight paths

Real - with IMF curved paths

van der Waals ligning

$$P_{obs} = \frac{nRT}{(V - nb)} - a\left(\frac{n}{V}\right)^{2}$$
volumkorreksjon trykkorreksjon

$$\left[P_{obs} + a\left(\frac{n}{V}\right)^2\right](V - nb) = nRT$$

Obs!

Bruk ideell gasslov hvis ikke annet er oppgitt!

5.12 Hva skjer i atmosfæren?

- Mest tilstede: N₂ og O₂. Men også andre gasser som CO₂, H₂O, Ar,...
- Sammensetning i atmosfæren ikke konstant på grunn av gravitasjon
- Trykk/temperatur endres sfa høyde over havet

TABLE 5.4	andiina Nasa Cas	
Atmospheric Composition Near Sea Level (dry air)*		
Component	Mole Fraction	
N_2	0.78084	
O_2	0.20946	
Ar	0.00934	
CO_2	0.000345	
Ne	0.00001818	
He	0.00000524	
CH_4	0.00000168	
Kr	0.00000114	
H_2	0.0000005	
NO	0.0000005	
Xe	0.000000087	
*The atmosphere co	ntains various amoun	

of water vapor, depending on conditions.

Øverste del av atmosfæren

- Kjemien hovedsakelig bestemt av effekter fra
 - høy-energi stråling
 - partikler fra sola / verdensrommet
- Viktig skjold for å forhindre at stråling treffer jordoverflata
- eks: Ozon (O₃) stopper UV-stråling

Gasser i troposfæren

- Sterkt påvirket av menneskelig aktivitet
- Forurensing i hovedsak fra
 - transport
 - strømproduksjon

• Transport:

- Bensin forbrennes til CO, CO₂
- $O_2 \text{ og } N_2 \rightarrow NO \rightarrow NO_2$
- $NO_2(g)$ → NO(g) + O(g) vha solenergi
- $O(g) + O_2(g) \rightarrow O_3(g)$
- Ozon er også veldig reaktivt

$$=> (NO)_x \text{ og } O_3$$

Innovation and Creativity

Strømproduksjon:

- Kull inneholder en del svovel:
 - $S + O_2(g) \rightarrow SO_2(g)$
 - $-2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$
 - $SO_3(g)$ + $H_2O(l)$ → $H_2SO_4(aq)$ ved å reagere med vanndråper i lufta
- Svovelsyre er veldig korrosivt
- Sur nedbør
- Mottiltak
 - Bruke kull med mindre S
 - Fjerne SO_2 (ved utfelling av $CaSO_3(s)$ → scrubbing)

Sur nedbør

• $H_2O(1) + CO_2 \rightarrow H^+(aq) + HCO_3^-(aq)$

• $2 \text{ NO}_2(g) + \text{H}_2\text{O}(1) \rightarrow \text{HNO}_2(aq) + \text{HNO}_3(aq)$

• $2 SO_2(g) + O_2 \rightarrow 2 SO_3(g)$ $SO_3(g) + H_2O(1) \rightarrow H_2SO_4(aq)$

www.ntnu.no \ TMT4110 Kjemi

Fra eksamen 2005

Oppgave 1

- a) Skriv reaksjonsligning for reaksjonen mellom natriummetall og vann.
- b) Natriuminnholdet i natriumamalgam (en legering av natrium og kvikksølv) reagerer med vann mens kvikksølvet forblir ureagert. En prøve på 2,00 g natriumamalgam reagerte med vann og det ble dannet 57,3 mL hydrogen, målt som tørr gass ved 1 atm og 23 °C. Beregn vektprosent natrium i prøven.
- c) Konsentrasjon i løsninger angis oftest som molaritet, molalitet, molbrøk (molprosent) eller vektprosent.
 - Definer hver av disse begrepene
 - Beregn molbrøken av natrium i prøven i pkt. a.

Fra eksamen 2006

Oppgave 1

- a) Skriv reaksjonsligningen når hvert av metallene Al(s) og Zn(s) reagerer med HCl (aq).
- b) En metallpulverblanding består av Al(s) og Zn(s). 4,36 g av blandingen tilsettes saltsyre. Når alt metall har reagert, er det utviklet 2,81 L hydrogengass. Gassen samles opp over løsningen ved 20°C og 756 Torr. (Damptrykket av saltsyren antas tilnærmet lik damptrykket over rent vann.) Hvor mange mol H₂(g) inneholder gassen?
- c) Beregn molbrøken av henholdsvis Al(s) og Zn(s) i den opprinnelige metallpulverblandingen.

