第十三周作业参考解答

练习6.3

1(1,2,3,6), 2, 3, 4, 5, 6

练习7.1

3, 4, 5, 6, 7, 8, 10, 11, 12

练习 6.3.1. 求下列矩阵的奇异值分解.

(注意矩阵的奇异值不计排列顺序是唯一的,但奇异值分解中选取的正交矩阵不必唯一.)

$$\blacktriangleleft \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \\ & & 1 \end{bmatrix} . \blacktriangleright$$

$$\blacktriangleleft \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} . \blacktriangleright$$

$$6. \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}$$

$$\blacktriangleleft \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} . \blacktriangleright$$

练习 6.3.2. 矩阵 A 的 QR 分解 A = QR, 且 R 有奇异值分解 $R = U\Sigma V^T$, 求 A 的奇异值分解.

$$\blacktriangleleft A = (QU)\Sigma V^T. \blacktriangleright$$

练习 6.3.3. 设 A 的奇异值分解为 $A = U\Sigma V^T$, 求矩阵 $\begin{vmatrix} 0 & A^T \\ A & 0 \end{vmatrix}$ 的谱分解.

$$\blacktriangleleft \begin{bmatrix} 0 & A^T \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & V\Sigma U^T \\ U\Sigma V^T & 0 \end{bmatrix} = \begin{bmatrix} V & \\ & U \end{bmatrix} \begin{bmatrix} 0 & \Sigma \\ \Sigma & 0 \end{bmatrix} \begin{bmatrix} V^T & \\ & U^T \end{bmatrix}$$

$$= \begin{bmatrix} V \\ U \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \Sigma \\ -\Sigma \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} V^T \\ U^T \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}V & \frac{1}{\sqrt{2}}V \\ \frac{1}{\sqrt{2}}U & -\frac{1}{\sqrt{2}}U \end{bmatrix} \begin{bmatrix} \Sigma \\ -\Sigma \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}V & \frac{1}{\sqrt{2}}V \\ \frac{1}{\sqrt{2}}U & -\frac{1}{\sqrt{2}}U \end{bmatrix}^T.$$

(这里仅考虑了 A 为方阵的情况. 一般情况是类似的.) ▶

练习 6.3.4. 设矩阵 $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$,考虑单位圆 $C = \{v \in \mathbb{R}^2 | ||v|| = 1\}$ 及其在 A 对应的线性变换 A 下的像 $AC = \{Av \in \mathbb{R}^2 | ||v|| = 1\}$.

- 1. 设 $\omega \in A(C)$, 证明 $\omega^T(AA^T)^{-1}\omega = 1$.
- ◀ 将 ω = Av 代入即得. ▶
- 2. 求 A 的奇异值分解 $A = U\Sigma V^T$.

- 3. 注意 V,U 为二阶正交矩阵,对应的线性变换是旋转或反射,而 Σ 是对角矩阵,对应伸缩变换.从几何上看,曲线 $V^T(C),\Sigma V^T(C),U\Sigma V^T(C)$ 分别是什么形状?
 - 圆,椭圆,关于原点旋转某个角度的椭圆. (注意正交矩阵给出的变换是旋转和反射的复合.) ▶

- 练习 6.3.5. 设 A 的奇异值分解是 $A = U\Sigma V^T$.
- 1. 证明 $AA^T = U(\Sigma \Sigma^T)U^T$, $A^TA = V(\Sigma^T \Sigma)V^T$ 分别是这两个对称矩阵的谱分解, 并得到 AA^T 和 A^TA 的非零特征值相同.
 - ▼ 这已经是谱分解的形式了.▶
- 2. 对任意 A 的奇异值 $\sigma \neq 0$, 设 v 和 w 分别是 A^TA 和 AA^T 的属于 σ^2 的特征向量, 证明 Av 和 A^Tw 分别是 AA^T 和 A^TA 的属于 σ^2 的特征向量.
 - ▼ 直接验证.▶

练习 6.3.6 (极分解). 对 n 阶方阵 A, 存在正交矩阵 Q 和对称半正定矩阵 S, 使得 A = QS.

◀ 考虑 A 的奇异值分解 $A = U\Sigma V^T = (UV^T)(V\Sigma V^T)$. ▶

分解式 A = QS 称为 A 的极分解. 容易看到, $A = S_1Q_1$, 即方阵分解为对称半正定矩阵和正交矩阵的乘积, 也存在.

- 练习 7.1.3. 把复数域 ℂ 看作有理数域 ℚ 上的线性空间, 子集 ℝ 是否是子空间?
 - 是的. 其对加法和 Q 上的数乘封闭. ▶

- 练习 7.1.4. 设 $\mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}.$
 - 1. 证明 $\mathbb{Q}[i]$ 关于数的加法和数乘构成 \mathbb{Q} 上的一个线性空间.
 - 验证其为 C 的子空间. 我们只需考虑加法和数乘封闭. ▶
 - 证明 ℚ[i] 是数域.
 - ▲ 其对乘法与非零元的取逆封闭. ▶
 - 3. 把复数域 ℂ 看作有理数域 ℚ[i] 上的线性空间,子集 ℝ 是否是子空间?

练习 7.1.5. 设 V 是以 0 为极限的实数序列全体: $V = \{\{a_n\} | \lim_{n\to\infty} a_n = 0\}$. 定义加法和数乘分别为: $(a_n) + b_n = a_n + b_n$; $k(a_n) = ka_n$, $k \in \mathbb{R}$. 证明 V 是 \mathbb{R} 上的线性空间.

▲ 加法和数乘的运算律由 ℝ 上加法和数乘的运算律给出. ▶

练习 7.1.6.

1. 其对加法和数乘封闭

$$2. \quad f\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x - 1 \\ y \\ z \end{bmatrix}$$

练习 7.1.7. 对 n 阶方阵 A, 令 $P(A) = \{f(A)|f(x) \in \mathbb{F}[x]\}$. 证明 P(A) 关于矩阵的加法和数乘构成 \mathbb{F} 上的线性空间.

▼ 我们需要验证加法和数乘的封闭性. 这由多项式加法和数乘的封闭性直接得到. ▶

练习 7.1.8. 对 n 阶方阵 A, 令 $Com(A) = \{n$ 阶方阵 $B|AB = BA\}$.

- 1. 证明, Com(A) 是 $\mathbb{F}^{n\times n}$ 的子空间.
- ▼ 验证加法和数乘的封闭性.▶
- 2. 证明,对任意 $B, C \in Com(A)$, 都有 $BC \in Com(A)$; 由此证明对任意多项式 f(x), 都有 $f(A) \in Com(A)$.
 - ▼ 按定义验证.▶

练习 7.1.10.

- 1. 是
- 2. 否(对加法不封闭)
- 3. 是
- 4. 否 (对加法不封闭, 如 $p_1(x) = x + 1$, $p_2(x) = x 1$)
- 5. 否 (对加法不封闭, 如 $p_1(x) = (x+1)^2$, $p_2(x) = (x-1)^2$)

练习 7.1.11. 设
$$M_1 = span(a_1, a_2), M_2 = span(b_1, b_2),$$
 其中 $a_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, a_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \\ -3 \end{bmatrix}, b_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -2 \end{bmatrix}, b_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -2 \end{bmatrix}$

- $egin{bmatrix} 1 \\ 3 \\ 1 \\ -3 \end{bmatrix}$. 分别求 $M_1 + M_2, M_1 \cap M_2$ 的一组基和维数.
 - $\blacktriangleleft \{a_1, a_2, b_1\}, 3; \{2a_1 + a_2\}, 1. \blacktriangleright$

练习 7.1.12. 设 $\mathbb{F}_0^{n\times n}$ 是矩阵空间 $\mathbb{F}^{n\times n}$ 中所有迹为零的矩阵构成的子集.

- 1. 证明 $\mathbb{F}_0^{n \times n}$ 是 $\mathbb{F}^{n \times n}$ 的子空间.
- 其为线性函数 $trace: \mathbb{F}^{n\times n} \to \mathbb{F}$ 的核. \blacktriangleright
- 2. 求子空间 $\mathbb{F}_0^{n\times n}$ 和 $span(I_n)$ 的交与和.
- **▼** 交为零空间. 和为 $\mathbb{F}^{n\times n}$. **▶**