Machine Learning Superstore Sales Prediction

Chole Ching

TABLE OF CONTENTS

O1Business Question

O2Data Collection

03
Preprocessing

04
Model(s) Creation

Model Evaluation and Comparison

Conclusion and Future Improvements

01 Business Question

Business Objectives

Prediction Sales of Store

Based on the historical data of the 45 Walmart stores, and understand the overall growth

Seasonal Sales Pattern

Examine the seasonal pattern for better implementing marketing campaigns

Implication of macro-economic indictors

Significance of the macro-indicators like CPI, Unemployment rate, Fuel price etc. on the sales figure

02 Data Collection

Data Collection

kaggle

New Notebook

Walmart Dataset

Walmart Store Sales Prediction - Regression Problem

https://www.kaggle.com/datasets/yasserh/walmart-dataset

03 Preprocessing

Original Dataset:

df. head()								
	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	CPI	Unemployment
0	1	05-02-2010	1643690.90	0	42.31	2.572	211.096358	8.106
1	1	12-02-2010	1641957.44	1	38.51	2.548	211.242170	8.106
2	1	19-02-2010	1611968.17	0	39.93	2.514	211.289143	8.106
3	1	26-02-2010	1409727.59	0	46.63	2.561	211.319643	8.106
4	1	05-03-2010	1554806.68	0	46.50	2.625	211.350143	8.106

Weekly sales data of:

- 45 Walmart stores in the US
- 143 weeks from 2010-02-05 to 2012-10-26.

Weekly Sales

UQ: 1,420,158

Mean: 1,046,964

LQ: 553,350

Univariate Analysis

Bivariate Analysis

Thanksgiving and Christmas

• Store no. 20 has the highest total sales during 2010-02-05 to 2012-10-26.

Bivariate Analysis

- Mean (blue line) is higher than median (red line)
- indicates that the sales among stores may vary a lot

- Holiday weeks have a higher mean but not significant.
- Non-holiday weeks have a number of outliers with much higher sales.

Bivariate Analysis

All these features show **no obvious positive/negative relationship** with Weekly Sales

Preprocessing

Time Series Models

Converting 'Date' to datetime object

Converting into time series

```
dateparse = lambda dates: pd. datetime. strptime(dates, '%Y-%m-%d')
data = pd.read_csv('/content/gdrive/MyDrive/Walmart Sales Project/data/ts_ARIMA_Walmart.csv', parse_dates=['Date'],
                                                                                                                                 #Convert to timeseries
                                   index_col='Date', date_parser=dateparse)
                                                                                                                                 ts = data['Weekly Sales']
print ('\n Parsed Data:')
                                                                                                                                 ts. head (5)
print (data, head())
                                                                                                                                 2010-02-05 49750740, 50
           Weekly_Sales
                                                                                                                                 2010-02-12
                                                                                                                                              48336677, 63
                                                                                                                                 2010-02-19 48276993.78
2010-02-05 49750740.50
                                                                                                                                 2010-02-26
                                                                                                                                               43968571.13
2010-02-12 48336677, 63
                                                                                                                                 2010-03-05 46871470 30
2010-02-19 48276993, 78
2010-02-26 43968571, 13
                                                                                                                                 Name: Weekly Sales, dtype: float64
/usr/local/lib/pvthon3,7/dist-packages/ipvkernel launcher, pv:1: FutureWarning: The pandas, datetime class is deprecated and will be rem
```

Regression Models

"""Entry point for launching an IPython kernel.

Converting date to numerical features

```
df['weekofyear'] = df['Date'].dt.weekofyear
df['year'] = df['Date'].dt.year
df['month'] = df['Date'].dt.month
```


04 Model(s) Creation

Time Series Algorithms

ARIMA

Results of Dickey-Fuller Test:

Test Statistic	-5.908298e+00					
p-value	2.675979e-07					
#Lags Used	4.000000e+00					
Number of Observations Used	1.380000e+02					
Critical Value (1%)	-3.478648e+00					
Critical Value (5%)	-2.882722e+00					
Critical Value (10%)	-2.578065e+00					
dtype: float64						

DF Test for stationarity

p-value = 0.0267e-05

(<0.05, = **stationary**)

Time Series Algorithms

ARIMA


```
rms = sqrt(mean_squared_error(np.exp(test), np.exp(predictions)))
print('Root Mean Squarred Error: %.2f'% rms)
Root Mean Squarred Error: 5136942.16
```

Time Series Models

Facebook Prophet

Univariate Forecasting

Time Series Models

Facebook Prophet

Univariate Forecasting

RMSE: **3451591.61**

Time Series Models

Facebook Prophet

Multivariate Forecasting

```
model_new = Prophet()
model_new.add_regressor('Fuel_Price')
model_new.add_regressor('Unemployment')
```

RMSE: **3886002.06**

Time Series Algorithms

LSTM

RMSE: **5097790.39**

Regression Models

Multiple Linear Regression

-20000

Baseline Model:

RMSE: **520420.226516**

Feature
"Temperature' and
'CPI' excluded:

RMSE: **527688.219704**

Regression Models

Random Forest Regression

Baseline Model:

RMSE: **37682.047669**

Feature 'Holiday_Flag', 'year' and month excluded:

RMSE: **37682.047669**

Dimentionarity Reduction

<u>PCA</u>

RMSE: 68731.563667

KPCA

RMSE: 68731.563667


```
#Applying PCA
     from sklearn. decomposition import PCA
     pca = PCA(n components = 6)
     X_train_pca = pca.fit_transform(X_train)
     X_test_pca = pca.transform(X_test)
[33] explained_variance = pca.explained_variance_ratio_
     explained variance
     array([6.94759666e-01, 1.55410532e-01, 7.75322368e-02, 7.08812135e-02,
           1.33115187e-03, 8.51998953e-05])
[34] rf_pca = RandomForestRegressor(n_estimators=500, random_state=1)
     rf_pca.fit(X_train_pca, y_train)
     y_pred_rf_pca = rf_pca.predict(X_test_pca)
[35] rmse = np. sqrt(MSE(y_test, y_pred_rf_pca))
     print("RMSE : % f" %(rmse))
     RMSE: 68731.563667
[36] #Applying KPCA
     from sklearn, decomposition import KernelPCA
     kpca = KernelPCA(n components = 6)
     X_train_kpca = kpca.fit_transform(X_train)
     X_test_kpca = kpca.transform(X_test)
[37] explained_variance = pca.explained_variance_ratio_
     explained_variance
    array([6.94759666e-01, 1.55410532e-01, 7.75322368e-02, 7.08812135e-02,
           1.33115187e-03, 8.51998953e-05])
[40] rf kpca = RandomForestRegressor(n estimators=500, random state=1)
     rf kpca. fit(X train kpca. v train)
     v pred rf kpca = rf kpca.predict(X test kpca)
[41] rmse = np.sqrt(MSE(y_test, y_pred_rf_kpca))
    print("RMSE : % f" %(rmse))
    RMSE: 68731.563667
```

Hyperparameter Tuning

'max features': 5,

'n_estimators': 30,
'random state': 4}

'min_samples_leaf': 1,

'min samples split': 3.

```
# Fit the grid search to the data
  grid search. fit (X train, v train)
  grid search, best params
  Fitting 2 folds for each of 1296 candidates, totalling 2592 fits
   'bootstrap': True.
   'max depth': 80.
   'max features': 3.
   'min samples_leaf': 4,
   'min_samples_split': 8, RMSE: 90392.538069
   'random state': 4}
[49] # Fit the grid search to the data
     grid search2. fit(X train, v train)
     grid_search2.best_params_
    Fitting 2 folds for each of 432 candidates, totalling 864 fits
     ('bootstrap': True,
      'max depth': 70.
      'max features': 5.
      'min samples leaf': 1.
     'min_samples_split': 7 RMSE: 61737.736260
      'random state': 5}
   # Fit the grid search to the data
    grid_search3.fit(X_train, y_train)
    grid search3. best params
  {'bootstrap': True,
   'max depth': 60.
   'max features': 5.
   'min_samples_leaf': 1,
   'min_samples_split': 2,
                                    RMSE: 40296.371264
   'n estimators': 40.
```

'random state': 4}

```
# Fit the grid search to the data
       grid search4.fit(X train, v train)
       grid search4, best params
  Fitting 2 folds for each of 36 candidates, totalling 72 fits
       ('bootstrap': True.
        'max_depth': 50,
        'max features': 5,
       'min samples leaf': 1.
       'min_samples_split': 3,
                                    RMSF: 44146.195977
       'n estimators': 35,
       'random state': 4}
[70] # Fit the grid search to the data
     grid search5. fit(X train, v train)
     grid_search5.best_params_
    Fitting 2 folds for each of 48 candidates, totalling 96 fits
     ('bootstrap': True.
      max_depth': 50,
```

The baseline model performs the best among all these models.

RMSE: 44040.803179

Model Evaluation and Comparison

Model Evaluation and Comparison

Algorithm	Metrics
Linear Regression	RMSE: 520420.226516
Random Forest Regression	RMSE: 37682.047669
ARIMA	RMSE: 5136942.16
Facebook Prophet	RMSE: 3451591.61
LSTM	RMSE: 5097790.39

Conclusion and Future Improvements

Conclusion and Future Improvements

- Larger dataset for more accurate training
- 2 Compare with other algorithms such as Deep Learning algorithms
- 3 Apply the models to product-wise sales forecasting

Thank you!

