BUNDESREPUBLIK DEUTSCHLAND

© Deutsche Kl.: 30 h, 2/04

(II)	Offenlegu	ingsschrift 2212392
21)		Aktenzeichen: P 22 12 392.8
2		Anmeldetag: 15. März 1972
43		Offenlegungstag: 20. September 1973
	Ausstellungspriorität:	
30	Unionspriorität	
3	Datum:	_
33	Land:	
③I —————	Aktenzeichen:	
9	Bezeichnung:	Mikrokristallines Collagen enthaltende pharmazeutische Substanz für lokale Anwendung
6 1	Zusatz zu:	-
@	Ausscheidung aus:	-
7	Anmelder:	Avicon, Inc., Fort Worth, Tex. (V.St.A.)
• .	Vertreter gem. § 16 PatG.	Amthor, R., DiplIng.; Wolf, G., DiplIng.; PatAnwälte, 6000 Frankfurt
@	Als Erfinder benannt:	Leaders jun., Floyd E., Fort Worth, Tex. (V.St.A.)

patentanwälte dipl.·ing. AMTHOR dipl.-ing. WOLF

11 530

Avicon, Inc., 6201 South Freeway, Fort Worth, Texas, USA

Mikrokristallines Collagen enthaltende pharmazeutische Substanz fürge lokale Anwendung

Die Erfindung betrifft eine wässrige pharmazeutische Substanz, die ein paharmakologisch aktives ophthalmisches Mittel enthält, wobei die Eubstanz zur lokalen Anwendung am Auge geeignet ist und eine verbesserte pharmakologische Aktivität hat.

Erfindungsgemäß ist festgestellt worden, daß mikrokristallines Collagen bei Einbau in eine wüssrige pharmazeutische Substanz für lokale Anwendung, beispielsweise eine pharmazeutische Substanz mit einem pharmakologisch aktiven ophthalmischen Mittel für die lokale Anwendung am Auge, solchen Substanzen eine verbesserte pharmakologische Aktivität verleiht. Demgemäß sieht die Erfindung eine wässrige pharmazeutische Substanz vor, die ein pharmakologisch aktives ophthalmisches Mittel enthält, in dem sich mikrokristallines Collagen befindet, und zwar in der Form einer wässrigen Dispersion.

Das mikrokristalline Collagen wird in einer effektiven Menge aufge-

nommen, gewöhnlich in einer kleinen Menge, bezogen auf das Gewicht der Substanz, be-ispielsweise in einer Menge im Bereich von 0,1 bis 0,2 Gew.-% bis zu 5,0 Gew.-% mit Schwankungen nach beiden Seiten hin.

Mikrokristallines Collagen ist ein Collagen, das unter dem Warennamen AVITENE kommerziell erhöltlich ist, wie es von der Firma FMC Corporation. Princeton, New Jersey, USA, hergestellt wird.

Die Herstellung und die Eigenschaften mikrokristallinen Collagens sind aus den US-Patentschriften 3 393 080, 3 443 261 und 3 471 598 bekannt. Bei dem mikrokristallines Collagen handelt es sich um eine neue Form von Collagen in einem physikalischen Zustand zwischen dem geschwollener Collagenfäserchen und Tropocollageneinheiten. Es ist wasserunlöslich, liegt in Partikelform vor und ist kolloidal, ist im wesentlichen frei von molekularem Tropocollagen und wasserlöslichen Zersetzungsprodukten. Die Mikrokristalle bzw. Partikel bestehen aus Bündeln aggregierter Tropocollageneinheiten, und sie variieren in der Länge von der einesr einzelnen Tropocollageneinheit (etwa 25 bis 50 %) bis unter 1 Mikron, und sie haben Durchmesser von etwa 25 🌡 bis zu einigen Hundert Angström. Zweckmäßigerweise wird im Rahmen der Erfindung diese körperliche Form von Collagen mindestens etwa 1 Gew.-% submikrongroße kolloidale Collagenpartikel enthalten. Diese Form von Collagen, die tatsächlich ein wasserunlöskliches ionisierbares Salz von Collagen ist, ist einzigartig in ihren Charakteristiken hinsichtlich der Bildung eines wässrigen soliquoiden bzw. nicht-elastischen Gels in Konzentrationen von 0,5% dispergiertem Salz, wobei das Gel einen pH-Wert von

etwa 3,2 ± 0,5 hat und eine im wesentlichen stabile Viskosität mindestens etwa 100 Stunden lang bei 5°C bei Lagerung in einem geschlossenen Behälter aufweist. Das steht im scharfen Gegensatz zu den wässrigen elastischen bzw. emulsoiden Gelen, die durch Tropocollagen und abgebaute Formen von Collagen gebildet werden, beispielsweise Gelatin, die dick werden oder erhebliche Zunahmen in der Viskosität beim Etehen zeigen, um gummiartige Mischungen entstehen zu lassen.

Wie aus den genannten Patentschriften bekannt, wird diese neue form von Collagen aus undenaturiertem Collagen durch die Behandlung undenaturierten Collagens mit verdünnten Eäurelösungen hergestellt, die einen pH-Wert von etwa 1,6 bis 2,6 haben. Das behandelte Collagen wird im wesentlichen mechanisch in einer wüssrigen Flüssigkeit disintegriert, bis mindestens etwa 1,, vorzugsweise 25, bis 05, oder nehr, auf eine submikrongroße kolloidale Größe reduziert worden ist. Collagenfäserchen zeigen eine morphologisch sich wiederholende Bandstruktur, die bei der Herstellung dieser neuen körperlichen Form von Collagen zuerstört wird, und die einzelnen bzw. nikrokristallinen Partikel sind Fragmente der Bänder, nämlich zggregierte Tropocollageneinheiten.

Die Wirkung der Säure ist eine dreifache. Einmal dient die Säure dazu, ein begrenztes Schwellen der Fäserchen zu bewirken. Zweitens erfolgt eine begrenzte Hydrolyse selektiver Peptidbindungen innerhalb der nicht-kristallinen bzw. amorphen Bereiche der Collaegenfäserchen, so daß eine anschließende mechanische Disintegration eine mühelose Fragmentierung der gewschwächten morphologischen Bänder in mikrokristalline Partikel

ermöglicht, die Abhetsungen undrenen Genen von Gropocollagen und Gollagenfäserenen haben. Dur brieber absgiebt ein beil der Güure mit Preien primären Aminogruppen des Bollegens, un des entetchen zu lessen, was eman als Gollagensahn bezeitenen röm vo, das in Gegenwart von Jassen ionished wird.

Efuren, die vie's fils die Herotellung fas nikrokristellinen Gollegens signen, das im keimen der Erfindung verwendet wird, wafassen sovehl anorganische als auch innisierbare organische Büuren wie Lalzsüure, Behvefalsüure, Eromassenstolisiume, Phosphoradure, Essigniure, Otanoessigniure und Zitroreneiture. Phosphoradure, Essigniure und Zintronensdure vird der Vorzug gegeben. Anstelle von Stuwe können auch Büuresalze zufriedenstellend verwendst werden. Veispielsweise können Dichtgegennatrium oder Ammoniumphosphate an die Etelle von Phosphoradure und Ammonium- oder Matriumhydrogensulfate en die Etelle von Chwefelssüre treten.

In der Herstellung von Gollagen, das im Rahmen der Erfindung verwendet wird, wird als bevorzugtes Ausgangsmeterial für Gollagen gereinigte Haut von Rind verwendet. Din Mikrokristallines Gollagen, das sich für die Ewecke der Erfindung als effektiv erwiesen hat, besteht aus einem wasserunlöslichen ionisierbaren partiellen falz von Gollagen mit einem gebundenen ionisierbaren Säuregehalt von etwa 50, bis etwa 30, des theoretischen stöchometrischen gebundenen Läuregehaltes, das im wesentlichen frei von Tropocollagen und abgebauten Derivaten davon ist und weiter dadurch gekennzeichnet ist, das bei der kolloidalen Dispersion in

- 5 -

Wasser zur Bildung eines 0,5-Gew.-, -Gels, wobei mindestens 10 Gew.-/ des parktiellen Salzes eine Partikeleröße von unter 1 Hikron hat, das Gel einen pN-Wert von etwa 3,2 \pm 0,5 hat und eine im wesentlichen konstante Viskosität nach etwa einer Stunde mindestens etwa 100 Stunden lang hat, wenn eine Lagerung in einem geschlossenen Behälter bei 5°C unter Kühlung erfolgt. bolches Material wird dadurch hergestellt, das durch einen Körper aus undenstwiertem faserförmigem natürlichem Collagen hindurch eine wässrige Lösung aus einer ionisierbaren Säure verteilt wird, die einen pH-kert ziwschen etwa 1,6 und etwa 2,6 hat, bezogen auf eine Mige Feststoffkonzentration, woraufhin man die Säure mit den zur Verfügung stehenden Ameinogruppen des Collagens rægaleren läät, um ein wasserunlösliches innisierbares partielles Salz von Collagen zu bilden, das zwischen etwa 50% bis etwa 90% des theoretischen stöchiometrischen gebundenen Säuregehalts enthält, während die Temperatur unter 30°C gehalten wird und das partielle Salz im wesentlichen frei von Tropocollagen und abgebauten Derivaten davon gewonnen wird.

Die Wässrigen pharmazeutischen Substanzen, die das mikrokristalline Collagen in der Form einer Wässrigen Dispersion gemäß der Erfindung bilden, können eines oder mehrere einer Anzahl pharmakologisch aktiver ophthalmischer Mittel enthalten. Beispielsweise können die folgenden pharmakologisch aktiven Substanzen gut in wässrige pharmazeutische Lubstanzen eingebaut werden, die mikrokristallines Collagen gemäß der Erfindung enthalten.

Chloramphenicol

Stropin

Carbonycin

Homatropin

Crythromycin

Acopolamin

Neomycin

Tropicamid

Aureomycin

Oxyphenonium

Terramycin

Acetylcholin

Bacitracin

Carbachol

Penicillin

Pilocarpin

Ampicillin

Eserin

Tetracain

Isofluorphenat

Proparacain

Echothiophat

Benoxinat

Pemercarium

Kokain

Dihydroergocornin

Trocsin

Tolazolin

Licocain

Tetraäthylammoniumchlorid

Epinephrin

Hexamethonium

Isoniazid

Morepinephrin

Nitrofuran

Physostigmin

Sulfonamide wie

Cortison

Sulfanilamid

Hydrocortison

Sulfapyridin

Prednisilon

Eulfadiazin

Dexamethason

Sulfathiazol

Triamicinolon

Sulfacetamid

Methylprednisilon

Phenylephrin

Methiolat

Ephedrin

Argyrol

Enzianwurzel violett

Phenylmercurnitrat

Acriflacin

Chlorazen

Silbernitrat

Hercurochrom

quaternäre Amnoniumgermizide

Joa

Eine vollständigere Liste bzw. Bezeichnung pharmazeutischer Mittel, die sich zur Aufnahme in wässrigen pharmazeutischen Substanzen eignen, welche mikrokristallines Collegen in der Form eines wässrigen Gels gemäß der Erfindung enthalten, findet eich in "OCULAR PHARMA-COLOGY" von William I. Mavener, Verlag C. V. Mosby Co., Lt. Louis, Ho., USA (1966).

Es folgt eine Liste pharmazeutischer Substanzen, die gemäß der Erfindung hergestellt sind oder die Lehre der Erfindung beeinhalten.

Receptur Mr.

1. Carbachol	0,003 - 1,0%
HC1 0,01 M qs pA 3,5	
Mikrokristallines Collagen	0,5,5
Gereinigtes (entionisiertes oder destillier-	
tes) Wasser	දෑ
2. Carbachol	0,003-1,0%
HCl 0,01 W qs 5,5 pH	,
Benzalkoniumchlorid	0,005
Mikrokirstalllines Collagen	4.م. ز و 0
Gereinigtes kasser	q _s
3. Pilocarpinhydrochlorid	0,32% bis 0,01%
Mikrokristallim s Collagen	0,5%
Gereinigtes Wasser	α̈́в ,

Dic Konzentration an mikrokristellinem Collagen kann variiert wercen, beispielsweise von etwa 0,1 bis etwa 5,0 Gew.-7.

4.	Epinphrinbitartrat	0,05% bis zu etwa 1,0%
	HCl 0,1 N qs ph 5,8, falls erforderlich	
	Mikrokristallines Collagen	0,5;**
	Gereinigtes Wasser	ās
5.	Dexanethason	0,001% bis zu etwa 0,1%
	Mikrokristallines Collagen	0,5%
	Gereinigtes Wasser	qs ·
6.	Dexamethasonacetat	0,001% bis zu ca. 0,1%
	Kikrokristallines Collagen .	0,5%
	Gereinigtes Wasser	дв
7.	Phenylbutazon	0,125% bis zu ca. 1,0%
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	q s
8.	Carbachol	0,75% - 3,0%
	Denzalkoniumchlorid	0,005%
	Borsäure	(eingest. auf pH 3,8)
	Natriumchlorid	0,20%
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	ďs
9•.	Pilocarpinhydrochlorid	0,25% - 10%
	Benzalkoniumchlorid	0,004%
	Phenylquerchsilbernitrat	0,00133%
	Borsäure	(eingest. auf pH 3,8)
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	Ф
10.	Sulfacetamid	15%
	Chlorobutanol	0,15%

	Natriumthiosulfat	0,3%
	HCl (1N) eingest. auf pH 3,8	
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	đв
11.	Sulfacetamid	10,0%
	Prednisolon	0,25%
	Chlorobutanol	0,15%
	Natriumthiosulfat	0,1%
	Zitratpuffer	
	HCl (1N) eingest. auf pH 3,9	
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	đa
12.	Hydrocortison	0,5%
	Phenylephrinhydrochlorid	0,12%
Ben	zalkoniumchlorid	0,004%
•	Phenylmquecksilbernitrat	0,00133%
	Natriumbisulfit	0,1%
-	Borsäure	1,50%
	Polysorbat (Tween) 80	0,4%
	Mikrokristallines Collagen	6 ,5%#
	Gereinigtes Wasser	đa
13.	Phenylephrinhydrochlorid	0,12%
	Chlorobutanol	0,15%
	Zitratpuffer (eingest. auf pH 3,8)	•
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	qs .
14.	Hydrocortison	0,5%, 2,5%

	Benzalkoniumchlorid	0,004%
	Phenylquecksilbernitrat	0,00133%
	Borsäure	1,5%
	Netzmittel z.B. Polysorbat (Tween) 80	0,4%
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser .	qS
15.	Benzalkoniumchlorid	0,002%
	Chlorbutnanol	0,15%
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	āв
16.	Tropicamid	0,5%, 1,0%
	Phenylquecksilbernitrat	0,002%
	Natriumnitrat	1,18%
	Salpetersäure (ütrieren auf Einstel. pH 3,	<u>8</u>)
	Mikrokristallines Collagen	0,5%*
	Gereinigtes Wasser	qs
17.	Zinksulfat	0,25%
	Benzalknniumchlorid	0,01%
	Zitratpuffer (eingestellter pH auf 3,8)	
	Mikrokristallines Collagen	0,5%
	Gereinigtes Wasser	дв
18.	Polymixin-B-Sulfat	16,250 Einheiten)ml
	Neomycinsulfat	3,5 mg Base/ml
	Phenylephrinchlorid /hydro	0,12%
	Borsaure (qs eingest. auf pH 3,8)	
	Natriumchlorid	0,2%
	Mikrokristallines Collagen	0,5%*

Gereinigtes Wass	er _.	qs .
19. Polymixin-B-Sulfa	at .	16.250 Einheiten/ml
Hydrocortisonace	tat	0,5%, 1,5%
Benzalkoniumchlo:	rid	0,004%
Neomycinsulfat	- ·	3,5 mg Base/ml
Zitratpuffer ode	r Acetatpuffer (ph eingest	•
auf 3,8)	•	
Matriumchlorid		0,2%
Mikrokristalline	s Collagen	0,5%*
Gereiniges Wasse	r ·	ďs.
20. Atropinsulfat		1,0%
Prednisolon	•	0,25%
Chlorbutanol	·	0,15%
Borsäure (qs ein	gestellter pH-Wert auf 3,8	3)
Mikrokristalline	s Collagen	0,5%#
Gereinigtes !!ass	er .	đe
21. Dexamethason		0,1%
Benzalkoniumchlo	rid	0,004%
Phenylquecksilbe	rnitrat	0,00133%
Natriumchlorid	•	0,5%
Netzmittel z.B.	Rlysorbat (Tween) 80	0,05%
Zitrat- oder Ace	tatpuffer (pH eingest. auf	7,8)
Mikrokristalline	s Collagen	0,5%*
Gereinigtes Vass	er	qs
22. Triameinolonacet	onid	0,1%
Benzahlkoniumchl	orid	0,004%
Phenylquecksilbe	ernitrat	0,00133%
Minderalöl	309838/1112	1%

	Isopropylaguistat	2°,
	1-Nexadecanol	e,
	Lanolin	1,.
	Katriundodec; lsulfat	1;
	Lorbitolhydrat	3
	Glycerin	.
	Priathanolamin	1,.
	LaurinsSure	Ś _r .
	Hikrokristallin-Collagengel 1,33, Teststoffe	gs (kann variiert
	werden)	
27.	Triancinolonacetonid	0,15
	Benzelkoniunchlorid	0,004
	Phenylquecksilbermitrat	0,00135.
	ithorrlen 100	1,0,0
	Propylengithol	3 ,5 %
	Retzmirtcl z.B. Tween SC	2,3%
	hiktokristallin-Collagengeliestatofic	ā a
14.	Tricucinolonacetonid	0,1%
	Benzelkoniumehlovič	0,004,
	Phenyleucchsilbernitrat	0,00133/2
•	leograpanol	50%
	Mikrokristallines Collagen	1,0,.
,	Gereinictes Wasser	្មន

Es wurden Versuche durchgeführt, um die Verbesserung der pharmakologischen Aktivität in . ubstanzen zu demonstrieren, die miktrokristallines Gollegen envanlten, und zuem gegenüber anderen Shuliehen aubstanzen ohne nikrokristallinen Collagen, die jedoch andere Reaktionsmittel wie Hydrokypropylmethylcellulose (IFAC) enthalten, wie sie normalerweise in pharmazeutischen Eubstanzen verwendet werden, insbesondere in pharmazeutischen Eubstanzen, die ein pharmakologisch aktives
ophthalmisches Mittel enthalten und für die örtliche Anwendung am Auge
verwendet werden körnen. Beispielsweise zeigen die folgenden Rezepturen, die aus einer wässrigen Dispersion von mikrokristallinen Collagen
hergestellt wird und verschiedene pharmakologisch aktive Mittel enthalten, eine verbesserte biologische Aktivität:

Rozeptur A

Carbachol	0,1%
MC1 0,01 E qs PH 3,5	
Mikrokristallines Collagen	0,5%
Gereinigtes Wasser	qs

Reseptur B

(Jarpachol	•	1	0 9 1.70
;	HCl 0,01 N qs pH5,5			٠,
]	Benzalkoniumchlorid		•	0,005%
i	ikrokristallines Collagen			0,5%
í	Gereinigtes Vasser			ap

Das Vornandensein von nikrokristallinem Collagen in der Form einer Wüssrigen Dispersion in solchen Rezepturen verbesserte die Arznei-wirkung und/oder verlängert die Dauer der Arzneiwirkung, und deshalb ist mikrokristallines Collagen ein nützlicher Bestandteil des Vehi-kels bzw. Trägers für das pharmakologisch aktive Mittel.

Obgleich in der Beschreibung der Erfindung die Betonung auf flüssigwässrige pharmazeutische Substanzen gelegt worden ist, die mikrokristallines Collagen enthalten, können die Substanzen, die gemäß
den Erfindung hergestellt sind, auch in der Form von talben oder halbfesten oder gelartigen Substanzen oder von festen gelartigen Substanzen vorgesehen sein.

Die folgenden Beispiele veranschaulichen die erfindungsgemäße Lehre und die daraus zu erzielenden Vorteile.

Beispiel Mr. 1

Rezeptur Mr. 1 und 2 - Carbachol 0,1%

Versuchstier: Albinokaninchen

Beobachteter biologischer Endpunkt: Pupillengröße gegen die Zeit

n = 6; örtlich dosiert mit Spritze

Behandlung		Mitt Minu		Pupil	lengröß		Kaninch Stunder			
Rezeptur	ju	0	10	20	30	1,5	2,5	3,5	4,5	5,5
Carbachol in Sole mit B.C. 1:20.000	0,1	4,2	₹,1	2,9	2,8	2,8	3,0	3 ,5	3,4	3,7
Carbachol in HPMC 1,0% mit C.C. 1:20.000	0,1	4,2	უ , 2	2,9	2,8	3,1	3,4	3,7	3 , 8	4,1
Carbachol in mikrokristal- linem Collagen (Rezeptur Nr. 1)0,1	4,3	 2 , 1	1,8*	1,9*	2,51*	2,85	2,8	3,1	3,4
Carbachol in mikrokristal- linem Collagen (Rezeptur Nr.2)	0,1	4,2	2,1	1,7*	1,7*	1,8*	2,0	2,8	2,9	3,2

* verbesserter pharmakologischer Effekt; B.C. = Benzalkoniumchlorid

Rezeptur Kr. 3: Pilocarpinhydrochlorid

Versuchstier: Albinokaninchen

Beobachteter biologischer Indpunkt: Pupillengröße (Beginn und Dauer)

n = 6 örtlich dosiert mit Spritze

÷.	Mittlere			prechkurve		
Behandlung			(cm ²)	•		
Rezeptur	arzneikonzentration					
	0,32	0,1	0,032	0,01		
Pilocarpinhin rochlorid in tole	73,7	73,1	57,0	19,2		
Pilocarpinhydrochlorid in HPFC						
1,0,.	75,5	71,3	63,8	20,1		
Carbachol in mikrokirstallinea Collagen (Rezeptur Hr. 3)	101,0*	74,3	47,6	21,0		
* verbesserter pharmakologischer	Zffekt.					

Rezeptur Nr. 4: Epinphrinbitartrat

(Moscotur Fr. 4)

Formalin-induziertes Okular-Hypertensionsmodell

(siehe Proc. Soc. Emp. Diol. & Hed. 151, 637-641, 1969)

Versuchstier: Albinokeninchen

Beobachteter biologischer Endpunkt: Intraokularer Druck

n = 4, örtlich dosiert mit Epritze

Behandlung

Intrackularer Druck mm Hg
Arzneikonzentration

2, 1, 0,5, 0,25, 0,125, 0,625,

Beinphrinbitartrat
in bole

Epinphrinbitartrat
in nigrowr. Collegen

200222/1112

16.

24,0

* verbesserter pharmahologischer Effekt

Das errechntete Fotensverhültnis zeigt, daß die Rezeptur Er. 4 um das 5,15-fache so potent wie die Arznei in Lole ist.

Fasserlast-indusziertes Okulathypertencionsmodell

Versuchstier: Albinokaninchen

Beobachteter biologischer Endpunkt: Introokularer Druck

n = 4 örtlich dosiert mit Spritze

Behandlung	Int	raokulare:	r Druck m	m Hg	
	Arzneikonzentration				
۲,۰	1;:	0,5%	0,25	0,125,	
Epiphrinbitartrat in Sole 20,0	22,5	25,4	-	~	
Epinphrinbitartrat in mikro- kristallinch Collagen (Rezep- tur Hr. 4)	-	17 , 9#	18 , 9*	22,7	

* verbesserter pharmakologischer Effekt

Das errechntete Fotenzverhältnis zeigt, daß die Texstrezeptur Hr. 4 um das 4,16-fache so potent wie die Arznei in Sole ist.

Rezeptur Kr. 5: Dexamethasonalkohol -

Rezeptur Er. 6: Dexamethasonacetat

Immuno-uveitis-Test für Anti-Entzündungsmittel (Proc. Loc. Exp. Biol. and Med. April 1970)

Versuchstier: Albeinokaninchen

Beobachteter biologischer Endpunkt: Okulare Entzündung (als Kontrolle)

n = 6 oder 12, örtlich dosiert mit Epritze

Behandlung		re Entzündung (, Kontrolle) Arzneikonzentration		
кеzeptur	0,1%	0,032%	0,01%	0,00325
DexAlkohol in MPMC 0,5%	51,9	66,0	83,3	-
DexAlkohol in mikro- kristallinem ACollagen (Rezeptur Nr. 5)	59,5	70,3	56 , 8*	86,6 *
DexAcetat inHPMC 0,&5%	60,0	52,5	76, 1	82,7
DexAcetàt in mikrokri- stallinem Collagen (Rezeptur Nr. 6)	67,6	59,5	75,6	83,9

^{*} verbesserter pharmackologischer Effekt

Crotonöl-induziertes Ohredemaprobe: Eine örtliche dermatologische entzündungshemmende Probe (Endocrimnologie 77: 625-634, 1965)

Versuchstier: Albinokantten

Beobachteter biologischer Endpunkt: Edema am Ohr (15 der Kontrolle) n = 6 Armznei örtlich angewendet

Behandlung	% Abnahme gegenüber Kontrolle in Ohredema			
	Arzneikonzentration in mg 0,1 mg 0,01 mg 0,001 mg			
DexAlkohol in Salbengrund Nr. 4	44,8%	25,0%	10,0%	
DexAlkohol in mikrokr. Collagen (Rezeptur Er. 5)	46,6%	34,6%*	21,0%	
DexAcetat in Salbengrund Nr. 4	41,2%	28,0%	14,2%	
DexAcetat in mikrokristallinem . Collagen (Rezeptur Kr. 6)	55 , 5%	28 , 0%*	22,1%*	

^{*} verbesserter pharmakologischer Effekt

Grund Nr. 4 = eine verbesserte ualität der White Petrolatun, U.S.P. (Pennsylvania Refining Co., Butler, Pa. USA)

Dex.-Acetat - das errechnte Potenzverhältnis zeigt, daß die Testrezeptur (Er. 6) um das 4,7-fache so potent wie die Arznei in Salbengrund Er. 4 ist.

309838/1112

Latentansprüche

- 1. Wässrige pharmaseutische ubstanz für die lokale Anwendung am Auge mit einer verbesserten pharmakologischen Aktivität bei örtlicher Anwendung am Auge, bestehend aus einem pharmakologisch aktiven ochthelmischen Mittel, dadurch gekennzeichnet, daß sie im wesentlichen auch dem ophthalmischen Mittel und 0,1 bis 5,0 Gew.-; mikrokristallinen Collagens besteht, bezogen auf die Substanz.
- 2. Substanz nach Anspruch 1, dadurch gekennzeichnet, daß das phrarmakologisch aktive ophthalmische Mittel aus der Gruppe stammt, zu der
 Carbachol, ein Pilocarpinsalz, ein Epinphrinsalz, Denamethasson, Phenylbutazon, Eulfacetamid, H. drocortison, Chlorbutanol, Predisolonacetat, Phenylephrinhydrochlorid, Tropoicamid, Zinksulfat, Polyminin-Ptulfat, Heomycinsulfat, Stropinsulfat, Priamcinolonacetonid und Gemische daraus gehören.