Relazione AMOD

Alex Ponzo Pier Francesco Contino Valerio Ganci

Ottobre 2018

Uncapacitated Facility Location

Legenda

S facility potenziali D clienti c costo servizio f costo attivazione

$$\min z = \sum_{u \in S, \ v \in D} c_{uv} \ y_{uv} + \sum_{u \in S} f_u \ x_u$$
 (1)

$$\sum_{u \in S} y_{uv} = 1 \qquad \forall v \in D \tag{2}$$

$$x_u - y_{uv} \ge 0 \quad \forall u \in S \ \forall v \in D$$
 (3)

$$x_u \in \{0,1\}, \ y_{uv} \in \{0,1\} \qquad \forall u \in S, \ \forall v \in D$$
 (4)

- (2) Vincolo servizio utenti
- (3) Vincolo apertura fabbrica servente

Rilassamento lineare UFL

Legenda

S facility potenziali D clienti c costo servizio f costo attivazione

$$\min z = \sum_{u \in S, \ v \in D} c_{uv} \ y_{uv} + \sum_{u \in S} f_u \ x_u$$
 (5)

$$\sum_{u \in S} y_{uv} = 1 \qquad \forall v \in D \tag{6}$$

$$x_u - y_{uv} \ge 0 \quad \forall u \in S \ \forall v \in D$$
 (7)

$$x_u \geq 0, y_{uv} \geq 0 \qquad \forall u \in S, \forall v \in D$$
 (8)

Duale rilassamento lineare UFL

Legenda

S facility potenziali D clienti c costo servizio f costo attivazione

$$\max g(z) = \sum_{v \in D} z_v \tag{9}$$

$$z_v - w_{vu} \leq c_{vu} \quad \forall u \in S \ \forall v \in D$$
 (10)

$$\sum_{v \in D} w_{vu} \leq f_u \quad \forall u \in S \tag{11}$$

$$w_{vu} \geq 0 \tag{12}$$

Significato variabili duali

La variabile z_{ν} rappresenta quanto l'utente è disposto a pagare per il servizio offerto (il totale).

La variabile w_{vu} indica quanto l'utente v paga per l'apertura della facility u.

Se riscriviamo il vincolo (10) in $z_v \leq w_{vu} + c_{vu}$ vediamo che esso indica che l'utente v non deve pagare più della somma del costo di servizio e del suo contributo all'attivazione della facility.

L'obbiettivo del duale è massimizzare il costo per gli utenti, questo potrebbe risultare controintuitivo ma i vincoli (10) e (11) assicurano la fairness dei costi.

Dual ascending

Fase inizializzazione valori

$$z_{\nu} = \min_{u \in U} \{c_{\nu u}\} \tag{13}$$

$$w_{vu} = \max\{ 0, z_v - c_{vu} \} = 0$$
 (14)

Fase iterativa

$$\hat{z}_{s}^{max} = \min_{u \in U} \{ c_{su} + f_{u} - \sum_{v \neq s} \hat{w}_{vu} \}$$
 (15)

$$\hat{w}_{vu} = \max\{ 0, \hat{z}_v - c_{vu} \}$$
 (16)

Algoritmo di Erlenkotter

- 1) z e w iniziali si calcolano come nell'algoritmo precedente
- 2) si incrementa z_k con $k = argmin_v |\{u : c_{vu} \le z_v\}|$
- 3) questo z_k verrà incrementato di

$$\Delta z_k = \min \Delta_u : \Delta_u = c_{vu} - zv$$
 se $c_{vu} > z_v$ $\Delta_u = f_u - \sum_v w_{vu}$ altrimenti

- 4) Quando $f_u = \sum_v w_{vu}$ l'impianto u diventa bloccato così come tutti i clienti v tali che $c_{vu} \leq z_v$ (la cui z non può essere più incrementata)
- 5) Quando tutti i clienti sono bloccati l'algoritmo finisce

Le nostre implementazioni di dual ascending

- Implementazione C algoritmo dual ascending
- Implementazione C algoritmo Erlenkotter
- Implementazione AMPL algoritmo dual ascending

Confronto bound soluzione ottima

Valori nei casi dati in esame

	Caso 1	Caso 2	Caso 3	Caso 4
Sol. ottima	11584	15271	16649	18880
Erlenkotter				
Bound	11389	15237	16576	18795
Diff. bound	195	34	73	85
Misura relativa	0.98	0.997	0.995	0.995
Algoritmo base dual asc.				
Bound	8242	10771	11716	12043
Diff. bound	3342	4500	4933	6837
Misura relativa	0.712	0.705	0.704	0.638

Euristiche per upper bound

- Si attiva la fabbrica con costo di attivazione minore e si collegano ad essa tutti i clienti
- Per ogni cliente si attiva la fabbrica con costo di servizio minore e vi si collega.
- Per ogni cliente si studia il minimo dei costi totali delle fabbriche (il costo totale è definito come la somma del costo di servizio ed il costo di attivazione nel caso in cui la fabbrica non sia già attiva); se il minimo c.t. corrisponde ad una fabbrica già attiva il cliente vi viene collegato, in caso contrario il collegamento avviene in seguito all'attivazione della fabbrica stessa.
- Si attiva la fabbrica che ha minima somma dei costi di collegamento più costo di attivazione e si collegano ad essa tutti i clienti.

Confronto euristiche soluzione ottima

Valori nei casi dati in esame

		Caso 1	Caso 2	Caso 3	Caso 4
Sol. ottima		11584	15271	16649	18880
Eur. 1	Bound	27731	31146	26305	39974
	Differenza	16147	15875	9656	21094
	Rapporto	0.418	0.490	0.633	0.472
Eur. 2	Bound	51951	108434	142580	149096
	Differenza	40367	93163	125931	130216
	Rapporto	0.223	0.141	0.117	0.127
Eur. 3	Bound	19257	27493	26305	41597
	Differenza	7673	12222	9656	22717
	Rapporto	0.602	0.555	0.633	0.454
Eur. 4	Bound	18066	26754	25090	31355
	Differenza	6482	11483	8441	12475
	Rapporto	0.641	0.571	0.664	0.602

Confronto Erlenkotter upper bound

Valori nei casi dati in esame

	Caso 1	Caso 2	Caso 3	Caso 4
Sol. ottima	11584	15271	16649	18880
Erlenkotter upper bound				
Bound	11584	15835	17006	21349
Diff. bound	0	564	357	2469
Misura relativa	1	0.964	0.979	0.884
Eur. 4				
Bound	18066	26754	25090	31355
Differenza	6482	11483	8441	12475
Rapporto	0.641	0.571	0.664	0.602

Confronto tempi di esecuzione

Tempi nei casi dati in esame

Tempo esecuzione [s]	Caso 1	Caso 2	Caso 3	Caso 4
Dual asc. (C)	0.039	0.065	0.058	0.101
Dual asc. (AMPL)	0.109	0.484	0.437	1.140
Erlenkotter (C)	0.082	0.280	0.340	0.737