Mapping Mixtures of Genotype-by-Weather Interactions in Switchgrass (Panicum virgatum)

Alice H. MacQueen a,1,2 , Li Zhang a,1 , Samuel A. Smith a,1 , Jason Bonnette a , Arvid R. Boe b , Phillip A. Fay c , Felix B. Fritschi d , David B. Lowry e , Robert B. Mitchell f , Francis M. Rouquette Jr g , Yanqi Wu h , Arbel Harpak a , and Thomas E. Juenger a,2

The timing of vegetative and reproductive growth in plants ("phenological timings") depends on both genetic variation and environmental cues; thus, phenological traits can have important genotype-by-environment (GxE) interactions. Identifying the mixture and prevalence of GxE primed by weather prior to the phenological event (GxWeather) should aid prediction and manipulation of phenological timings. Here, we map GxWeather effects on phenological timings in two highly divergent switchgrass (Panicum virgatum) populations using repeated plantings of these populations at eight sites spanning the central United States. We distinguish GxWeather patterns covarying with interpretable weather-based cues from agnostic, site-based patterns. Most GxWeather effects belong to the latter category and do not covary with weather-based cues. However, 65% of effects on the timing of vegetative growth in the Gulf population covary with daylength 14 days prior to green-up date. 33% of effects on the timing of flowering in the Gulf population covary with cumulative rainfall in the seven days prior to flowering, while 22% of effects on flowering timing in the Midwest population covary with day length change two days prior to flowering. An independent pseudo-F2 cross of Gulf and Midwest individuals at the same sites mapped 23 additive QTLs for flowering, all with significant associations and eleven with enrichment of highly significant associations in our model of GxWeather effects. We demonstrate that we can identify QTL with GxWeather and assign them to specific weather-based cues or other patterns. Breeding for particular alleles at these loci could change flowering responsiveness to photoperiod and rainfall cues in switchgrass. More broadly, this approach could be used to identify genetic marker-environment interactions in any species with related populations phenotyped in multiple environments.

Plant phenological timings are major components of plant fitness affected by multiple external environmental cues (e.g. degree of winter chilling, day length, temperature, and water availability) that signal existing or upcoming growing conditions (1-3). Genetic responses to environmental cues determine the speed, timing, and energy apportioned to vegetative and reproductive growth and shape both the individual's lifespan and its lifetime production of viable seed. Day length (or photoperiod) is one of the most predictable environmental cues, and genetic sensitivity to photoperiod protects plants from potentially fatal consequences of phenological responses to temperature cues at the "wrong" time of year. However, the usefulness of specific environmental cues depends on both features of the environment, such as cue predictability and relevance, and the species' adaptive strategies (4). Species with wide natural distributions can have multiple distinct environmentally-cued phenological responses: for example, populations of sunflower (Helianthus annuus) exhibit day-neutral, facultative short day, and facultative long-day flowering responses, which vary with their environments (5, 6). Distinct genetic responses in different environments are known as genotype by environment interactions, or GxE.

Flowering time, or the transition from vegetative to reproductive growth, is a common subject of GxE research (5–11), a key output of selection driving adaptation to local environments (2, 12, 13), and a selection target for crop improvement to adapt crops to local or future environments (14). Changing flowering responsiveness to photoperiod cues has allowed geographic range expansion and increased yields in a number of cereal species (15–19) and other crops (20, 21). Recent statistical advances in studying phenological GxE have involved determining critical environmental indices before the phenological event

Significance Statement

The timing of plant seasonal development (phenology) has maior impacts on fitness because of the steep fitness cost of plantenvironment mismatches. We infer the mixture of ways genetic effects on phenological traits depend on plant environment, focusing on how effects covary with weather prior to the phenological event (GxWeather). Most effects do not have GxWeather, but a minority do. GxWeather is population-specific. The majority of effects on the timing of vegetative growth in the Gulf population have GxWeather: these effects differ in sign across environments and covary with a photoperiod cue two weeks prior. A minority of effects on flowering date in the Gulf and Midwest populations had GxWeather, covarying with a cumulative rainfall and a photoperiod cue, respectively.

Author affiliations: ^aUniversity of Texas at Austin, Department of Integrative Biology, Austin, 78712; ^bSouth Dakota State University, Department of Agronomy, Brookings, 57006; ^cUSDA-ARS, Grassland, Soil and Water Research Laboratory, Temple, 76502; ^dUniversity of Missouri, Division of Plant Sciences, Columbia, 65211; ^eMichigan State University, Department of Plant Biology, East Lansing, 48824; ^fUSDA-ARS, Wheat, Sorghum, and Forage Research Unit, Lincoln, 68583; ^eTexas A&M University, Texas A&M AgriLife Research and Extension Center, Overton, 75684; ^hOklahoma State University, Department of Plant and Soil Sciences, Stillwater, 74078

T.E.J. designed research. D.B.L. contributed plant material and resources. J.B., D.B.L., and T.E.J. designed and executed field experiments. A.R.B., P.A.F., F.B.F., D.B.L., R.B.M., F.M.R., Y.W., and T.E.J. hosted field experiments. A.H.M., L.Z., and S.A.S. conducted statistical and computational analyses. The manuscript was written by A.H.M. with contributions from all authors.

The authors declare no conflicts of interest.

¹ A.H.M. contributed equally to this work with L.Z. and S.A.S.

 ^2To whom correspondence should be addressed. Email: tjuenger@utexas.edu

occurs, such as photothermal time within a critical growth window (10). However, most studies of flowering GxE focus on finding a single, best fitting form of genotype-environment covariance, despite the key expectation that different genetic subpopulations, and even different genomic regions, have likely evolved distinct patterns of GxE. Additionally, despite theoretical predictions that local adaptation should involve antagonistic pleiotropy, or sign-changing GxE, at the level of individual loci (22–25), previous work has found limited evidence of antagonistic pleiotropy (12, 26). However, this work has been limited by a known statistical bias that reduced detection of genetic effects that differ in sign (26-28). Thus, despite substantial interest in the frequencies of various forms of GxE, the prevalence of antagonistic pleiotropy relative to other forms of GxE remains unknown. Switchgrass (Panicum virgatum) is considered a short-day plant with reproductive development strongly linked to day of the year (29). However, as part of its wide environmental adaptation across the eastern half of North America, its photoperiodicity has been predicted to differ by plant latitude of origin (30, 31). We previously found divergent Midwest and Gulf genetic subpopulations of switchgrass with distinct sets of environmental adaptations, in that both populations had distinct genetic variation associated with each of two fitness proxies, biomass and survival (32). The Midwest genetic subpopulation is primarily composed of individuals from the well-studied upland switchgrass ecotype (33, 34), while the Gulf subpopulation has individuals from the wellstudied lowland ecotype and the phenotypically intermediate coastal ecotype (32).

Here, we estimate the ways genetic effects on phenological timings depend on weather prior to the phenological event. To do this, we phenotype a diversity panel of hundreds of switchgrass genotypes from the Midwest and Gulf subpopulations for the timing of vegetative and reproductive development at eight common garden locations spanning 17 degrees of latitude. These gardens cover the majority of the latitudinal and climatic range of switchgrass and capture the most comprehensive picture to date of the environmental variation this species encounters. We define a number of ways phenological timings might covary with weather (@tblcovar) and additional ways phenological timings might vary by site (@SI-info), then jointly re-estimate genetic effects on these timings at all eight sites using the set of these covariance types that significantly improved the modeled log-likelihood when included (@SI-info) (35). The method we use for effect re-estimation, mash, allows us to identify and specify multiple ways genetic effects may covary with the environment, and does not have a statistical bias in detecting genetic effects with the same or opposite signs (36). To confirm our genetic mapping of GxWeather, we compare our re-estimated genetic effects to mapping results from an outbred pseudo-F2 cross grown at the same sites. Our analysis allow us to describe the weather cues and genetic variation affecting phenology in two divergent natural populations of switchgrass.

Results

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Genotypes from the Gulf and Midwest subpopulations had distinct phenological timings and distinct patterns of phenological correlations across our eight common garden sites (Figure 1). At the three Texas common gardens (hereafter 'Texas' gardens), located within the natural range of the Gulf subpopulation, Gulf vegetative growth occurred before Midwestern vegetative growth, and Gulf flowering occurred after Midwestern flowering (Figure 1 A). At the four northernmost common gardens (hereafter 'North' gardens), located within the natural range of the Midwest subpopulation, both Gulf vegetative growth and flowering occurred after Midwest vegetative growth and flowering. At the Oklahoma common garden, located near the natural range limits of both the Gulf and the Midwest subpopulations, Gulf and Midwest vegetative growth occurred over the same time period, and Gulf flowering occurred after Midwestern flowering (Figure 1 A). These patterns led to strong negative phenotypic correlations for the timing of vegetative growth between the North and Texas gardens, particularly in the Gulf and across all individuals (hereafter, 'Both' subpopulations), and contributed to positive phenotypic correlations for the timing of flowering that had larger magnitudes at more northern gardens (Figure 1 B).

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

Narrow-sense heritabilities (h^2) indicated that rank-changing GxE for these phenotypes was present across the common gardens (Figure 1 C). h^2 were typically high at individual gardens: 59% on average for green-up date, and 87% for flowering date. However, h^2 were variable across gardens, and green-up dates were uncorrelated ($r^2 < 0.2$) or negatively correlated between pairs of gardens (Figure 1 B). These negative and small correlations undoubtedly contributed to the low h^2 values for green-up and flowering date when estimated jointly at all eight gardens: h^2 was 0.8% for green-up and 23.2% for flowering date.

GxWeather mixtures for vegetative and reproductive timing. We next looked for evidence of GxWeather by jointly reestimating genetic effects across all eight common gardens using a model that allows effects to covary between gardens in many ways (Figure 1 D, SI Appendix, Datasets 1-6). To do this, we used genome-wide association (GWAS) on site-specific BLUPs for the timing of vegetative growth and flowering to determine preliminary single nucleotide polymorphism (SNP) effect estimates at each garden. We then jointly modeled genetic effect estimates, and the mixture of ways these effects might covary, across all eight common gardens, using a two-part procedure. We first modeled genetic effects with different combinations of covariance types, using a subset of effects selected at random from all SNPs used in the GWAS. In these models, we specified many ways genetic effects could covary between gardens (as expanded on below) and used a greedy algorithm to iteratively select covariance structures that significantly improved the log likelihood of a model when included. Given the high correlation between some of the covariance patterns we tested, this approach allowed us to select only the subset of patterns of covariation that most improved the fit of the joint effect patterns present in the data. We then re-estimated the set of genetic effects that had the largest effect estimates in univariate GWAS (hereafter "strong" effects) using the set of significant covariance matrices that most improved the model fit on the random effects.

We created three categories of ways effects could covary across gardens: "canonical" covariance, with simple patterns of effects; "data-driven" covariances derived from common

patterns of SNP effects in the data, and "GxWeather" covariances that captured the covariance of weather variables at specific times before the phenological event (Table 1, SI Appendix, Section S2). For example, GxWeather covariance between gardens in MI and MO, for rainfall in the seven days prior to flowering, captures the covariance in the amount of rainfall genotype A, B, and C receive in the seven days prior to their three flowering dates in MI and their three flowering dates in MO. If these six rainfall values are similar, covariance will be near one; if they are uncorrelated, covariance will be near zero; if there is sufficient rank changing in rainfall amounts between gardens for these genotypes, this covariance will be near negative one.

373

374

375

376

377

378

379

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

The GxWeather covariances allow hypothesis testing of specific weather variables as cues for each genetic effect. Say that a SNP in FLC controls flowering in a photoperioddependent manner. In that case, that SNP effect could have a high mixture proportion, or mass, on a covariance matrix created using a photoperiod-based environmental cue, such as day length two days prior to flowering. In our data, we would infer that the effect of that SNP on flowering was caused by a response to that or a correlated environmental cue. Overall, loadings of genetic effects on these GxWeather matrices in the model with re-estimated effects provide information on genome-wide patterns of SNPenvironment interaction.

The phenotypic correlations for the timing of vegetative growth had moderate negative correlations between the Texas and North gardens, particularly in the Gulf and in Both subpopulations (Figure 1 B). If these phenotypic correlations have a genetic component, then they might be controlled by SNP effects that differed in sign across these regions (effects with antagonistic pleiotropy), SNP effects that are large in one garden or region and non-significant in others (effects with amplification), or a combination of these patterns. Five GxWeather covariance matrices were selected by the greedy mash algorithm, one to two per subpopulation. Of these five, three had mass on them in mash models of the strong effects (Figure 2 A-B). Two of these three matrices had negative covariances between sites between Texas and North gardens (Figure 2 A), while one had all positive or near-zero covariances. SNP-associated phenotypic effects covaried with different weather-based cues in the Gulf & in Both subpopulations (Figure 2 B). In total, 65% of the posterior weight of strong SNP effects in the mash model of Gulf vegetative growth fell on a covariance matrix of daylength 14 days prior to the date of vegetative growth. The covariance matrix for this weather cue was very similar to the pattern of phenotypic correlation for the timing of vegetative growth in the Gulf subpopulation (Figure 1 B; Figure 2 A). Mash models of the timing of vegetative growth in Midwest and Both subpopulations did not include this GxWeather covariance; the Midwest had no weight on any GxWeather covariance, while Both subpopulations had non-zero weights on two additional GxWeather covariance types, average temperature one day prior to green-up, and the day length change in seconds in the day prior to greenup (Figure 2 B). The average temperature covariance matrix had negative covariances between Texas and North gardens, though not as strong as the negative phenotypic correlations seen in Both subpopulations (Figure 1 B; Figure 2 A). Only

the Gulf subpopulation and Both subpopulations had mass on any GxWeather covariance matrices (Figure 2 C).

435

436

437

438

439

440

441

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

For flowering date, distinct GxWeather covariances captured SNP-associated effect patterns in the Gulf and Midwest subpopulations. 33% of SNP effects on flowering in the Gulf subpopulation covaried with cumulative rainfall in the seven days prior to flowering (Fig 2D). 22.6% of SNP effects on flowering in the Midwest subpopulation covaried with day length change in the two days prior to flowering (Fig 2D), which had negative covariances between Texas and North gardens. Neither covariance matrix was selected for in Both subpopulations, and no GxWeather covariance matrices had mass in Both subpopulations (Fig 2E). In five of the six mash models of strong effects, the GxWeather covariance matrices captured a minority of the posterior weights of the strong effects (Figure 2C,E); the majority of this mass was on various canonical covariance matrices. These matrices included simple heterozygosity, with intermediate, positive covariances between all gardens, and garden-specific effects present only at one garden.

We next characterized the pairwise patterns of effects where we were confident in the sign of the effect at both gardens. We used the local false sign rate (lfsr), an analogue of the lfdr that establishes confidence in the effect sign, not the effect's difference from zero, to determine significance. We required significance (p < 0.05) in both gardens to include effects. This means that our tests for antagonistic pleiotropy, or a sign change between conditions, carry an equal statistical burden to those for effects with the same sign. We also summarized the pairwise patterns of effect sign and magnitude within and between the Texas and North regions (Table 2).

For greenup date for the Gulf subpopulation, hundreds to thousands of pairwise effects exhibited antagonistic pleiotropy, or a difference in effect sign, between pairs of Texas and North gardens (Fig. 3A). 78.7% of pairwise comparisons between North and Texas gardens had a difference in sign, while only 28.6% and 0.2% of North-North or Texas-Texas comparisons had a difference in sign, respectively (Table 2). The majority of pairwise effects for greenup for the Midwest (>55%) and Both (>85%) subpopulations were the same sign, and effects frequently differed in magnitude between the MO and OK garden and other gardens (Table 2; Fig 3A).

For flowering date for the Gulf subpopulation, less than 2% of pairwise effects exhibited antagonistic pleiotropy, or a difference in effect sign, within or between regions (Table 2). More effects differed in magnitude between the Texas and North regions than within these regions (42.7% vs <20%; Figure 3B). The Midwest population had relatively few significant effects for flowering, but a large proportion of these differed in sign between Texas and North regions (42.7%) or within the North region (65.4%). Finally, in Both subpopulations, less than 20% of pairwise effects differed in sign (Table 2). Most differences in sign were between TX1, the southernmost garden, and all other gardens (Fig 3B). Similarly, more effects that differed in magnitude included gardens in the Texas region (52.3-55.9%), and most effect pairs in the North region were not distinguishable (91.5%).

Confirmation of effects on phenology using an independent mapping population. We sought additional experimental support for our significant effect re-estimates using an independent pseudo-F2 mapping population created from Gulf & Midwest individuals and grown at the same sites (Fig. 4A,B). We conducted quantitative trait loci (QTL) mapping of flowering as functions of four environmental cues that we also used as covariance matrices in mash, and identified eight QTL for flowering date, six QTL for flowering GDD, ten QTL for flowering day length, and eight QTL flowering day length change, all of which showed QTL by environment interactions (SI Appendix, Fig. S3). All QTL for flowering overlapped one or more homologs from rice or A. thaliana with functionally validated roles in flowering (SI Appendix, Dataset 7). All flowering QTL intervals contained at least one SNP significant in at least one mash run at a log10transformed Bayes Factor > 2, or in the 1\% tail of significance, whichever was stricter (SI Appendix, Dataset 8). We also looked for enrichments of mash SNPs in the 1% tail of significance (the 'mash 1% tail') within each QTL interval. At the 5% level, five QTL had enrichments of SNPs in the mash 1% tail. Overall, there were eleven significant enrichments (p < 0.05, hypergeometric test) of SNPs in the mash 1% tail in the QTL intervals. Our QTL intervals had more enrichments of SNPs in the mash 1% tail than were found for all but eleven of these sets of random genomic intervals (Fig. 4C, p = 0.011). Thus, we were able to experimentally support our significant effect re-estimates with a QTL mapping experiment using a separate mapping population.

Discussion

As the climate and the natural environment change, it is increasingly critical to understand how patterns of gene-environment and plant-environment interactions will change in response. To do this, we must understand the current patterns of trait covariation across environments, the genetic underpinnings of these patterns, and the cases where this covariation can be altered. Here, we demonstrate that we can associate multiple patterns of GxWeather with specific genomic regions using a switchgrass diversity panel grown at eight common gardens. We can assign genetic effects to both GxWeather patterns with interpretable weather-based cues, and to agnostic, site-based patterns. We use this approach to study GxWeather for the timings of vegetative and reproductive development in the deeply genetically diverged Gulf and Midwest subpopulations of switchgrass.

Our analysis of the timing of vegetative growth in the Gulf and in Both subpopulations revealed substantial antagonistic pleiotropy in effects between the Texas and North gardens (Figure 3A). This result supports theoretical models that local adaptation should involve antagonistic pleiotropy at the level of individual loci (22–25), and is the first experimental work using QTL mapping and GWAS across common gardens to find antagonistic pleiotropy to be common in small genomic regions (12, 37, 38).

Our analysis of the timing of flowering showed that the Gulf and Midwest subpopulations have distinct GxWeather: flowering timing in the Midwest subpopulation has photoperiodrelated variation, in that flowering timing covaries with a day length change signal in the two days before flowering occurs. In contrast, the Gulf subpopulation does not have variation in flowering based on photoperiod. Instead, the

Table 1. Weather variables and time frames around the green up and flowering date used to construct the hypothesis-based covariance matrices. The correlations between values of these weather variables for genetically identical plants grown in different gardens were used to fill off-diagonal cells of the covariance matrices. Narrow-sense heritabilities for these values at each garden were used for the diagonal cells.

(1-7),

(1-7),

(1-7),

(1-

(1-

W	/eat	her	varia	b	le

- 1. cumulative GDD at 12C in the time frame
- 2. cumulative rainfall in the time frame
- 3. day length (hours) on a specific day indicated by the time frame
- 4. day length change (seconds) on a specific day indicated by the time frame 569
- 5. average temperature in the time frame

Gulf subpopulation has variation in flowering that covaries with the rainfall that occurs in the week prior to flowering. The genomic regions affecting flowering that we re-estimated across all eight sites were also supported by QTL from an independent mapping population at these sites (Fig. 4C). Identifying the environmental cues that are predictive of, or even correlated with, plant phenotypic responses remains a major challenge to studies interrogating gene action across many natural environments. Clearly, the photoperiod and cumulative GDD cues we identify here are functions of the genotypes measured, are not predictive, and capture only a minority of SNP effects on flowering. We know still less about the overwintering parameters that affect green-up, which is reflected in our lower ability to assign SNP effects on greenup to weather-based cues. More generally, it is difficult to predict the time scales over which individuals may integrate environmental cues, particularly in perennial species which may integrate these cues over longer time scales. Mash offers an opportunity to specify multiple environmental cues and compete them to explain patterns of SNP effects, allowing us to detect how important these cues are genome-wide, and how strongly each cue influences each SNP. This is a key development to further improve our understanding of genetic variation in GxE.

Figures and Tables

Materials and Methods

Whenever possible, plant material will be shared upon request. Source data and code to replicate these analyses are available at: https://github.com/Alice-MacQueen/pvdiv-phenology-gxe.git. SNP data to replicate these analyses are available from the UT dataverse at https://doi.org/link.

Genotype-by-environment effects on green-up and flowering as functions of weather-based cues. In 2019, we scored two phenological events every two days in two mapping populations of switchgrass, a diversity panel and a pseudo-F2 cross, planted at eight common garden locations (32, 34, 37). We scored green-up date as the day of the year when 50% of the tiller area of the crown of the plant cut the previous year had green growth. Flowering date was the day of the year when 50% of the plant tillers had panicles undergoing anthesis. We scored green-up and flowering as day of the year, then linked these dates to multiple weather-based environmental factors measured daily at each common garden (SI Appendix, Section S1, Table S1).

Figure 1. Characterization of green-up and flowering dates from the switchgrass diversity panel. (a) Map and trait histograms of green-up and flowering dates across two genetically distinct switchgrass subpopulations and eight common gardens. Purple represents individuals from the Midwest genetic subpopulation, and pink individuals from the Gulf subpopulation. Vertical dashed lines indicate the summer solstice. Common gardens are arranged in latitudinal order. (b) Phenotypic correlations between clonal replicates planted at eight common gardens, within and between two genetic subpopulations. (c) Narrow sense heritability of green-up and flowering within single common gardens (purple) and across all eight common gardens (green), within and between two genetic subpopulations. (d) Flow diagram of the methods applied to the green-up and flowering dates to jointly estimate SNP effects across all sites. Mash was fit to SNP effect data and used to find covariance matrices that improved the mash model likelihood using a large set of randomly selected, relatively unlinked SNP effects; this model was applied to a "strong" set of SNP effects with large effect sizes in the univariate GWAS.

Figure 2. Caption for this figure...

The formation and resequencing of the diversity panel has been described previously (32). The diversity panel contained 134 sequenced, clonally propagated individuals from the Midwest genetic subpopulation, and 229 from the Gulf genetic subpopulation. To allow for the possibility that different subpopulations had different strengths of connection between our phenotypes and genotypes (38), we conducted three sets of genetic analyses: on Gulf and Midwest genotypes separately, and on both subpopulations together ('Both'). Analyses to determine narrow-sense heritability (h2) for green-up and flowering were done using linear mixed models and followed (32). Details on these models can be found in (SI Appendix, Section S3,S4).

Mapping major patterns of genotype-by-environment effects on green-up and flowering. To evaluate the prevalence and kinds of covariance patterns of SNP effects across our common gardens, we used multivariate adaptive shrinkage (mash) on SNP effect estimates from the diversity panel (35). Mash is a statistical method that allows estimation and comparison of many effects jointly across many different conditions; it improves on previous methods by allowing multiple, arbitrary correlations in effect sizes among conditions (SI Appendix, Section S5). To obtain SNP effect estimates, we first conducted univariate genome-wide association at each common garden for green-up and flowering date. We then analyzed SNP effects for the top 19K relatively unlinked (r2 < 0.2) SNPs per condition using mash, as in (32). Details on these models can be found in (SI Appendix, Section S6). We generated hypothesis-based covariance matrices derived from correlations in environmental cues in the green-up or flowering date windows for the three subpopulations (SI Appendix, Table S1, Section S1). These covariance matrices represent correlations between identical genotypes drawn from a specific population at pairs of common gardens; covariances near one mean that the population has a strong, positive linear relationship in individual responses at that pair of gardens, while covariances near zero mean that there is no relationship within the population for individual responses at that pair of gardens. Mash SNP effects will undergo strong shrinkage towards one another in the first case, and little shrinkage in the second case. Mash also generates data-driven covariance matrices corresponding to major patterns of SNP effects present in the data. We generated six data-driven matrices per mash run, five (denoted DD_PCA_1 through DD_PCA_5) produced by singular value decomposition (SVD) of an overall matrix, denoted 'DD_tPCA'. We used SVD to present vectors of garden-specific effects for each numbered DD PCA matrix, because the first eigenvector of a SVD explains 100% of the variation in these matrices, and each value in this eigenvector represents one garden-specific effect.

Last, we characterized the overall patterns of antagonistic pleiotropy in the set of SNPs where there was pairwise significance of effects at pairs of gardens. To do this, we used the 'get_GxE' function of the switchgrassGWAS R package. First, this determines the set of SNPs with evidence of significant effects in both conditions for all pairs of conditions using local false sign rates (lfsr) as the significance criteria. Second, to determine antagonistic pleiotropy, this function determines if effects significant in both conditions are of opposite sign.

Using the lfsr rather than the local false discovery rate (lfdr) is a critical change in our ability to detect antagonistic pleiotropy. The lfdr, like other measures of FDR, focuses on if we have enough evidence to reject the null hypothesis that an effect j is 0 – that there is a significant effect. Previous studies of antagonistic pleiotropy (e.g. (37)) have used the lfdr or equivalent statistical tests to detect antagonistic These tests were conservative, in that they required two non-zero effects of different signs, while tests for differential sensitivity required only one non-zero effect. This previous work recognized that this testing bias could lead to undercounting occurrences of antagonistic pleiotropy (26, 27), and sought to reduce it by permutation (28). However, using the lfsr to test for antagonistic pleiotropy does not undercount occurrences of antagonistic pleiotropy, as this statistic answers a fundamentally different question. each effect j, the lfsr j is defined as the probability that we make an error in the sign of effect j if we were forced to declare the effect positive or negative (Stephens paper). Thus, rather than asking "Are these two effects different?" - as we reasonably expect two effects to be, even if this difference cannot be measured - the local false sign rate answers a more meaningful question: Can we be confident in the sign of this effect?

In addition, the get_GxE function also sets an arbitrary threshold to count an effect as changing in magnitude between environments, commonly known as differential sensitivity. For differential sensitivity, this function determines if effects significant in both conditions are of the same sign and of a magnitude (not tested for significance) that differs by a factor of 0.4 or more. The remaining effects that are

- W. L. Bauerle, et al., Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proceedings of the National Academy of Sciences 109, 8612–8617 (2012).
- 2. F. Andrés, G. Coupland, The genetic basis of flowering responses to seasonal cues. *Nature Reviews Genetics* **13**, 627–639 (2012).

significant in both conditions have the same effect sign and similar effect magnitudes and we denote these effects as having no GxE. The distinction between effects with different magnitudes is arbitrary but useful to fully characterize how effects vary across environments. and our use of the lfsr to determine significance and our specification that SNP effects must be significant in both conditions to be included means that our tests for antagonistic pleiotropy carry an equal statistical burden to those measuring differential sensitivity and effects without GxE.

Confirmation of genotype-by-environment effects using an independent mapping population. To confirm candidate genomic regions and patterns of allelic effects found in the diversity panel, we analyzed flowering in an outbred pseudo-F2 cross between four individuals, two Midwest and two Gulf individuals. The formation of this mapping population has been described previously (34); additional details on QTL mapping can be found in SI Appendix, Section S6. To be directly comparable to the diversity panel data, only 2019 phenology data from the pseudo-F2 cross from the same eight common garden sites were used. To compare our QTL enrichments of significant mash associations to the null expectation, we used permutation to choose 1000 sets of 23 genomic regions of the same size randomly distributed throughout the genome, then calculated enrichments of the mash 1% tail in these random intervals.

References

- C. Körner, D. Basler, Phenology under global warming. Science 327, 1461–1462 (2010).
- 4. C. A. Botero, F. J. Weissing, J. Wright, D. R. Rubenstein, Evolutionary tipping points in the capacity to adapt to environmental change. *Proceedings of the National Academy of Sciences* **112**, 184–189 (2015).
- 5. B. K. Blackman, Interacting duplications, fluctuating selection, and convergence: The complex dynamics of flowering time evolution during sunflower domestication. *Journal of experimental botany* **64**, 421–431 (2013).
- L. P. Henry, R. H. Watson, B. K. Blackman, Transitions in photoperiodic flowering are common and involve few loci in wild sunflowers (helianthus; asteraceae). American Journal of Botany 101, 1748–1758 (2014).
- J. Ågren, C. G. Oakley, S. Lundemo, D. W. Schemske, Adaptive divergence in flowering time among natural populations of arabidopsis thaliana: Estimates of selection and QTL mapping. Evolution 71, 550–564 (2017).

8. B. Brachi, et al., Linkage and association mapping of 869 arabidopsis thaliana flowering time in nature. PLoS 870 genetics 6, e1000940 (2010). 871

872

878

883

887

888

889

890

891

892

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

- 9. E. L. Dittmar, C. G. Oakley, J. Agren, D. W. 873 Schemske, Flowering time QTL in natural populations 874 of arabidopsis thaliana and implications for their 875 adaptive value. Molecular ecology 23, 4291–4303 876 877 (2014).
- 10. X. Li, T. Guo, Q. Mu, X. Li, J. Yu, Genomic 879 and environmental determinants and their interplay 880 underlying phenotypic plasticity. Proceedings of the 881 National Academy of Sciences 115, 6679–6684 (2018). 882
- 884 J. A. Romero Navarro, et al., A study of allelic di-11. 885 versity underlying flowering-time adaptation in maize 886 landraces. Nature genetics 49, 476-480 (2017).
 - 12. S. M. Wadgymar, et al., Identifying targets and agents of selection: Innovative methods to evaluate the processes that contribute to local adaptation. Methods in Ecology and Evolution 8, 738–749 (2017).
- 893 13. M. Blümel, N. Dally, C. Jung, Flowering time regu-894 lation in crops—what did we learn from arabidopsis? 895 Current opinion in biotechnology 32, 121–129 (2015). 896
 - 14. C. Jung, A. E. Müller, Flowering time control and applications in plant breeding. Trends in plant science **14**, 563–573 (2009).
 - A. Turner, J. Beales, S. Faure, R. P. Dunford, D. 15. A. Laurie, The pseudo-response regulator ppd-H1 provides adaptation to photoperiod in barley. Science **310**, 1031–1034 (2005).
 - 16. S. Faure, et al., Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (hordeum vulgare) to short growing seasons. Proceedings of the National Academy of Sciences 109, 8328-8333 (2012).
 - 17. H.-Y. Hung, et al., ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proceedings of the National Academy of Sciences 109, E1913–E1921 (2012).
 - S. Zakhrabekova, et al., Induced mutations in cir-18. cadian clock regulator mat-a facilitated short-season adaptation and range extension in cultivated barley. Proceedings of the National Academy of Sciences 109, 4326–4331 (2012).
 - 19. Y. Yang, Q. Peng, G.-X. Chen, X.-H. Li, C.-Y. Wu, OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Molecular Plant 6, 202–215 (2013).

P. Pin, O. Nilsson, The multifaceted roles of FLOW-20. ERING LOCUS t in plant development. Plant, cell & environment **35**, 1742–1755 (2012).

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

- 21. J. L. Weller, et al., Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal of Experimental Botany 70, 1209–1219 (2019).
- 22. H. Levene, Genetic equilibrium when more than one ecological niche is available. The American Naturalist **87**, 331–333 (1953).
- 23. J. Felsenstein, The theoretical population genetics of variable selection and migration. Annual review of genetics 10, 253-280 (1976).
- 24. T. J. Kawecki, D. Ebert, Conceptual issues in local adaptation. Ecology letters 7, 1225–1241 (2004).
- 25. P. W. Hedrick, Genetic polymorphism in heterogeneous environments: A decade later. Annual review of ecology and systematics 17, 535–566 (1986).
- D. L. Des Marais, K. M. Hernandez, T. E. Juenger, Genotype-by-environment interaction and plasticity: Exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics 44, 5-29 (2013).
- J. T. Anderson, C.-R. Lee, C. A. Rushworth, R. I. Colautti, T. Mitchell-Olds, Genetic trade-offs and conditional neutrality contribute to local adaptation. Molecular ecology 22, 699-708 (2013).
- 28. J. T. Anderson, J. H. Willis, T. Mitchell-Olds, Evolutionary genetics of plant adaptation. Trends in Genetics 27, 258–266 (2011).
- 29. R. B. Mitchell, K. J. Moore, L. E. Moser, J. O. Fritz, D. D. Redfearn, Predicting developmental morphology in switchgrass and big bluestem. Agronomy Journal 89, 827–832 (1997).
- D. J. Parrish, J. H. Fike, The biology and agronomy 30. of switchgrass for biofuels. BPTS 24, 423–459 (2005).
- 31. M. Casler, K. P. Vogel, C. Taliaferro, R. Wynia, Latitudinal adaptation of switchgrass populations. Crop Science 44, 293-303 (2004).
- 32. J. T. Lovell, et al., Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590, 438-444 (2021).
- 33. C. L. Porter Jr, An analysis of variation between upland and lowland switchgrass, panicum virgatum l., in central oklahoma. Ecology 47, 980–992 (1966).

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

993 34. E. R. Milano, D. B. Lowry, T. E. Juenger, The 994 genetic basis of upland/lowland ecotype divergence 995 in switchgrass (panicum virgatum). G3: Genes, 996 Genomes, Genetics 6, 3561–3570 (2016).

- 35. S. M. Urbut, G. Wang, P. Carbonetto, M. Stephens, Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. *Nature genetics* **51**, 187–195 (2019).
- 36. M. Stephens, False discovery rates: a new deal. *Biostatistics* **18**, 275–294 (2016).
- O. Savolainen, M. Lascoux, J. Merilä, Ecological genomics of local adaptation. *Nature Reviews Genetics* 14, 807–820 (2013).
- 38. D. B. Lowry, et al., QTL× environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proceedings of the National Academy of Sciences 116, 12933–12941 (2019).

ACKNOWLEDGMENTS. We thank the Brackenridge Field laboratory, the Ladybird Johnson Wildflower Center, and the Juenger laboratory for support with plant care and propagation. This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494, the US Department of Energy Awards DESC0014156 to T.E.J., DE-SC0017883 to D.B.L, National Science Foundation PGRP Awards IOS0922457 and IOS1444533 to T.E.J, and the Longterm Ecological Research Program (DEB 1832042) at the Kellogg Biological Station.