Автор: FlintWithBlackCrown aka Кирилл Болохов

Опр. по Коши $A=\lim_{x\to a}f(x)$, если $\forall \varepsilon>0$ $\exists \delta>0: \forall x\neq a\in E \land |x-a|<\delta\Rightarrow |f(x)-A|<\varepsilon$

Определение по Гейне $A=\lim_{x\to a}f(x)$, если для любой последовательности $x_n\neq a\in E$, такое что $\lim x_n=a\Rightarrow \lim f(x_n)=A$

Замечания

- 1. Значение функции в точке a не участвует вопределении
- 2. Значение функции в точках, далеких от a не участвуют в определении
- 3. в определении по Гейне для существования предела достаточно чтобы для любой последовательности $x_n \neq a \in E \wedge \lim x_n = a \Rightarrow f(x_n) \in \mathbb{R}$

Доказательство:

Возьмем две последовательности $x_n \neq a, y_n \neq a \in E$ и $\lim x_n = \lim y_n = a$, надо доказать, что $\lim f(x_n) = \lim f(y_n)$

Рассмотрим новую последовательность x_1,y_1,x_2,y_2 обозначим за z_n , знаем, что стремится к a, $\lim z_n=a\Rightarrow \lim f(z_n)$ существует, обозначим его B, тогда $\lim f(x_n)=\lim f(z_{2n-1})=B=\lim f(z_{2n})=\lim f(y_n)$ (предел подпоследовательности равен пределу последовательности)

Теорема

Определения Коши и Гейне равносильны.

Доказательство:

- 1. Коши \Rightarrow Гейне. Знаем, что $\forall \varepsilon>0$ $\exists \delta>0: \forall x\in E$ и $|x-a|<\delta\Rightarrow |f(x)-A|<\varepsilon$. Возьмем последовательность $x_n\in E$, такое что $\lim x_n=a$. Надо $\lim f(x_n)=A$. Возьмем $\varepsilon>0$. Для него из определения Коши найдется $\delta>0$, такое что Тогда найдется N, такой что $\forall n\geq N: |x_n-a|<\delta$. Тогда для таких $x_n: |f(x_n)-A|<\varepsilon$, т.е. $\lim f(x_n)=A$
- 2. Гейне \Rightarrow Коши. Зафиксируем $\varepsilon>0$ и предположим, что никакое δ для него не подойдет. Возьмем в качестве $\delta=\frac{1}{n}$. Оно не подходит, т.е. найдется $x_n\neq a\in E$ и $|x_n-a|<\frac{1}{n}$, но $|f(x_n)-A|\geq \varepsilon$. $\Rightarrow \lim x_n=a\Rightarrow$ по Гейне $\Rightarrow \lim f(x_n)=A\Rightarrow$ найдется N, такое что $\forall n\geq N: |f(x_n)-A|<\varepsilon$. Противоречие

Свойства перделов

1. Предел единственный. $f:E \to \mathbb{R}, a$ - предельная точка. Тогда если $\lim f(x) = A$ и $\lim f(x) = B$, то A = B

Доказательство: Возьмем последовательность $x_n \neq a \in E$, такой что $\lim x_n = a$ (пользуемся тем, что у нас предельная точка). То по определению для $\lim f(x) = A \Rightarrow \lim f(x_n) = A$

$$\lim(f_x) = B \Rightarrow \lim f(x_n) = B$$

Следовательно A = B

2. Если $f:E\to R$, а - предельная точка E и $\lim f(x)$ существуют, то есть окрестность U_a , такая что f ограничена на множестве $U_a\cap E$.

Доказательство

По Коши найдется $\delta>0$, такое что $\forall x\neq a\in E$ и $|x-a|<\delta\Rightarrow |f(x)-A|<1\Rightarrow |f(x)|\leq |A|+|f(x)-A|$

Тогда для $U_a=(a-\delta,a+\delta)\ |f(x)|\leq \max\{|f(a)|,|A|+1\}$

Замечание $f(x) = \frac{1}{x}, E = (0,2), \lim_{x \to 1} f(x) = 1$, но f не является ограниченной функцией

3. Стабилизация знака. $f:E o\mathbb{R},$ a - предел точки E и $\lim_{x o a}f(x)=A$, тогда найдется U_a , такое что знак функции на U_a с точечкой сверху \cap E совпадает со знаком A.

Доказательство:

Возьмем $arepsilon \coloneqq A$. Из определения по Коши найдется $\delta > 0$, такое что $x \neq a \in E$ и $|x-a| < \infty$ δ , то $|f(x) - A| < \varepsilon = A$

Теорема

Арифметические действия с пределами $f,g:E o\mathbb{R},a$ - предельная точка $E.\lim_{x o a}f(x)=$ $A, \lim_{x \to a} g(x) = B$, тогда

- 1. $\lim_{x \to a} (f(x) \pm g(x)) = A \pm B$
- 2. $\lim_{x\to a} f(x)g(x) = AB$
- 3. $\lim_{x\to a} |f(x)| = |A|$
- 4. Если $B \neq 0$, то $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$

Доказательство:

Будем проверять опр. по Гейне. Возьмем последовательность $x_n \neq a \in E$, такое что $\lim x_n =$ a. Тогда $\lim f(x_n) = A$ и $\lim g(x_n) = B \Rightarrow$ по теореме пределов последовательности $\lim(f(x_n)+g(x_n))=A+B.$ т.е. проверили определение по Гейне. $\lim_{x\to a}(f(x)+g(x))=$ A + B

Теорема

Предельный переход в неравенстве $f,g:E\to\mathbb{R},a$ - предельная точка E. $A\coloneqq$ $\lim_{x\to a}f(x), B\coloneqq \lim_{x\to a}g(x).$ Если $f(x)\leq g(x)\; \forall x\in E,$ то $A\leq B$ Доказательство:

Возьмем $x \neq a \in E$, такое что $\lim x_n = a$. Тогда из определения по Гейне $\lim f(x_n) = A$ и $\lim g(x_n) = B.$ Кроме того $f(x_n) \leq g(x_n) \forall n$, тогда предельный переход в неравенстве последовательности дает $A \leq B$

Теорема о двух милиционерах для функций.

 $f,g,h:E o\mathbb{R},$ a - предельная точка E. $f(x)\leq g(x)\leq h(x)$ $orall x\in E.$ Если $\lim_{x o a}f(x)=$ $\lim_{x \to a} h(x) =: A$, to $\lim_{x \to a} g(x) = A$

Доказательство:

Блин, ну задолбало опять определение по Гейне переписывать, схема уже понятна, так что очев

Критерий Коши

 $f:E o\mathbb{R},$ a - предельная точка E. Следующей условие равносильности

- 1. $\lim_{x\to a} f(x) \in \mathbb{R}$
- 2. $\forall \varepsilon > 0 \exists \delta > 0 \ \forall x \neq a, y \neq a \in E \ \text{if} \ |x a| < \delta, |y a| < \delta \Rightarrow |f(x) f(y)| < \varepsilon$

Доказательство:

Пусть $\lim_{x\to a} f(x=:A)$. Возьмем $\varepsilon>0$. Тогда найдется $\delta>0$, такое что $\forall x\neq a\in E$ и |x-E| $|a|<\delta\Rightarrow |f(x)-A|<rac{\delta}{2}$. Аналогично получаем такое неравенство для y. $|f(x)-f(y)|\leq 1$ $|f(x)-A|+|A-f(y)|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$ Это была стрелочка из 1 в 2

Будем проверять определение по Гейне, а имеено что если $x \neq a \in E$ и $\lim x_n = a$, то $\lim(f(x_n))$ существует. Возьмем последовательность $x_n \neq a \in E$, такое что $\lim x_n = a$. Берем arepsilon>0, и по нему $\delta>0$, тогда найдется N, такой что $\forall n\geq N \ |x_n-a|<\delta, \, \forall m\geq N: |x_m-a|<\delta$ $|a|<\delta$, тогда $|f(x_n)-f(x_m)|<arepsilon\Rightarrow f(x_n)$ - фундаментальная последовательность $\Rightarrow f(x_n)$ имеет конечный предел

Бесконечные пределы

f:E o R a - предельныая точка $E.\lim_{x o a}f(x)=+\infty$

Определение с окрестностями $\forall U_{+\infty} \exists U_a$, такое что $f(U_a$ с точечкой сверху $\cap E) \subset U_{+\infty}$

Определение по Коши $\forall C: \exists \delta>0: \forall x\neq a\in E$ и $|x-a|<\delta\Rightarrow f(x)>C$

Предел в тчоке $+\infty$ $f:E\to\mathbb{R},+\infty$ предел точки E

 $\lim_{x\to +\infty} f(x) = A.$ Определение с окрестностями $\forall U_A \exists U_{+\infty}$, такое что

 $f(U_{+\infty}$ с точечкой сверху \cap E) \subset U_a .

Определение по Коши $\forall \varepsilon > 0 \exists C: \forall x \in E$, такое что $x > C \Rightarrow |f(x) - A| < \varepsilon$

Упражнение. Расшифровать по Коши $\lim_{x \to \infty} f(x) = +\infty$

Односторонние пределы

 $f:E o\mathbb{R}, E_1:=E\cap(-\infty,a),$ a - предельная точка $E_1.$ Предел в точке a слева $\lim_{x o a-o}f(x)=\lim_{x o a-}f(x)=:A.$ Если $A=\lim_{x o a}f\mid_{E_1}$

Предел точки a справа. $\lim_{x\to a+0}=\lim_{x\to a+}f(x)$

 $f:E o\mathbb{R}, E_2\coloneqq E\cap(a,+\infty), a$ - предельная точка E_2 . Если $A=\lim_{x o a}f\mid_{E_2}$, то A - предел в точке a - справа

Замечания

- 1. Если существуеют $\lim_{x \to a} f(x)$, то $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = \lim_{x \to a} f(x)$
- 2. Если $\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x)$, то существуют $\lim_{x \to a} f(x)$
- 3. Расшифровка $\lim_{x \to a+} f(x) = A$ по Коши.

 $\forall \varepsilon > 0 \,\, \exists \delta > 0 : \exists x \neq a \in E_2 \,\, \mathrm{i} \,\, |x-a| < \delta \Rightarrow |f(x)-A| < \varepsilon$

 $\forall arepsilon > 0 \; \exists \delta > 0 : \forall x \in E$, такое что $a < x < a + \delta \Rightarrow |f(x) - A| < arepsilon$

Определение

Монотонная функция $f: E \to \mathbb{R}$

- 1. f строго возрастает, если $\forall x, y \in E$,такие что $x < y \Rightarrow f(x) < f(y)$
- $2. \ f$ нестрого возрастающая, если очев
- 3. строго убывающая если очев
- 4. ну и для нестрого убывающей тоже как будто очев уже
- 5. f строго монотонная если f строго убывающая или строго возрастающая
- 6. f монотонная если очев

Теорема

 $f:E o\mathbb{R}, E_1:-E\cap(-\infty,a), a$ - предельная точка $E_1.$ Тогда

- 1. Если f возрастающая на E_1 и ограничена сверху, то существуюет конечный $\lim_{x\to a-} f(x)$
- 2. Тож самое только убывает и снизу

Упражнение $\lim_{x\to a+} f(x)$

Доказательство:

1. Множество $\{f(x):x\in E_1\}$ ограничена сверху \Rightarrow у него есть конечный sup, обозначим его A. Проверим, что $\lim_{x\to a-}f(x)=A$. Возьмем $\varepsilon>0$. A - наименьшая из верхних границ \Rightarrow $A-\varepsilon$ не верхняя граница \Rightarrow $b\in E_1$, такой что $f(b)>A-\varepsilon$. Покажем, что $\delta:=a-b>0$ подходит. Возьмем $\underbrace{a-\delta}_{=b}< x< a, x\in E \Rightarrow A-\varepsilon< f(b)\leq f(x)\leq A< A+\varepsilon \Rightarrow |f(x)-A|<\varepsilon$

Непрерывные функции

оаыфыва.....

Определение

 $f:E o\mathbb{R},$ $a\in E.$ f непрерывна в точке a, если a не является предельной точкой E или a -предельная точка E и $\lim_{x o a}f(x)=f(a)$

Определение по Коши

$$\forall \varepsilon > 0 \; \exists \delta > o : \forall x \in E$$
 и $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \varepsilon$

Определение с окрестностями

$$\forall U_{f(a)} \ \exists U_a \Rightarrow f(U_a \cap E) \subset U_{f(a)}$$

Определение по Гейне

Для любой последовательности $x_n \in E$ и $\lim x_n = a \Rightarrow \lim f(x_n) = f(a)$ Примеры

1.
$$f(x) = \text{const}$$

2.
$$f(x) = x$$

Теорема

 $\exp x$ непрерывна во во всех точках

Доказательство:

$$t \cdot \exp a \le \exp x - \exp a \le \frac{t}{1-t} \exp a \Rightarrow \lim_{x \to a} \exp x = \exp a$$

Анекдот:

Играют две армянские нейронные сети в нарды в гостиной. Одна другой говорит:

- Очень холодно. Пойду погреюсь

Идет и садится к камину.

Вторая:

- А это что у вас? K-means?

Вы спросите, а как нейронные сети ходят? По очереди, они же в нарды играют