Redes de Computadores II

(adaptação slides RC I)

Mecanismos e Desempenho do TCP

Prof. Ricardo Couto A. da Rocha rcarocha@ufg.br

UFG – Regional de Catalão

Roteiro

- Visão geral e objetivos
- Multiplexação
- Transmissão não-confiável e Protocolo UDP
- Mecanismos de transmissão confiável
- Protocolo TCP
- Estimativa de RTT e timeout
 - Controle de Fluxo no TCP
 - Gerenciamento de Conexão
 - Controle de Congestionamento
 - · Requisitos de Aplicações e Camada de Transporte

Estimativa de Timeout e RTT

- Timeout → tempo máximo de espera por recebimentos de ACKs do TCP (para uma dada conexão)
 - Expirado timeout, segmento é considerado perdido (não entregue)
- · Boa escolha de um timeout torna o protocolo eficiente
- Fundamentos da escolha do timeout
 - Timeout deve variar dinamicamente, em função de congestionamentos
 - Timeout deve ser uma função de RTT
 - RTT → Round-trip delay time (tempo de ida e volta de um pacote)
 - RTT é imprevisível!

Medição e Variação de RTT

Medição de RTT por 2 min usando ping (ping -i 0.2 8.8.8.8) do IP 189.41.16X.XXX para IP 8.8.8.8

Thu May 26 14:34:34 BRT 2016

RTT no Enlace e no Transporte

Figura 6.38 (a) Densidade de probabilidades de tempos de chegada de confirmações na camada de enlace de dados. (b) Densidade de probabilidades de tempos de chegada de confirmações para o TCP

Fonte: Tanenbaum, Andrew S. Redes de computadores. Pearson Education, 2003.

RTT: estimado vs. medido

RTT de gaia.cs.umass.edu para fantasia.eurecom.fr

Fonte: material do professor do livro Kurose/Ross

RTT

- · Diretivas/Preocupações do método de escolha do RTT
 - Estimar um RTT que seja uma aproximação do próximo RTT
 - Usar um RTT estimado que reaja rapidamente a alterações do RTT, sem ser exageradamente afetado por picos momentâneos RTTs
- RTT deve ser calculado dinamicamente, a partir de estimativa (Algoritmo de Karn)
 - RTTEstimado: média ponderada dos RTTs medidos
 - RTTEstimado = (1-α)*RTTEstimado+α*RTTMedido
- Valor recomendado: a=0,125 (RFC 2988 / 6298)

Karn, P. and C. Partridge, "Improving Round-Trip Time Estimates in Reliable Transport Protocols", SIGCOMM 87.

Timeout

- Escolha do timeout
 - Deve levar em conta a variância do RTT
- D armazena o desvio de RTT
 - Dé calculado sempre que um ACK é recebido
 - Mé valor observado de RTT
 - $-\beta$ sugerido de 0,25 (1/4)

$$D=(1-\beta)D+\beta|RTT-M|$$

$$Timeout = RTT + 4*D$$

Roteiro

- Visão geral e objetivos
- Multiplexação
- Transmissão não-confiável e Protocolo UDP
- Mecanismos de transmissão confiável
- Protocolo TCP
- Estimativa de RTT e timeout
- Controle de Fluxo no TCP
 - Gerenciamento de Conexão
 - Controle de Congestionamento
 - · Requisitos de Aplicações e Camada de Transporte

Controle de Fluxo Fim-a-Fim

- Regula o fluxo de mensagens (pacotes) entre transmissor e receptor;
- Resolve o problema da diferença entre velocidade de transmissão e recepção;
- Não permite que uma estação transmissora mais rápida sobrecarregue uma estação receptora;
- · Técnicas:
 - Stop-and-Wait == Bit Alternado
 - Sliding Window (Janela deslizante)

Controle de Fluxo

TRANSMISSOR

RECEPTOR

012340123401234...

012340123401234...

012340123401234...

012340123401234...

012340123401234...

0

0 1

0 1 2

0 1 2 3

ACK de 4 segmentos

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ...

0 1 2 3

tempo

Buffers de Recepção

- RcvBuffer: tamanho do buffer de recepção
- RcvWindow: espaço livre no buffer de recepção

Janela de Transmissão

Janela de Transmissão

- Situações em que o desempenho pode ser inadequado
 - ◆Janela sempre vazia: mau uso da largura de banda
 - Exemplo: aplicação de Telnet (terminal remoto)
 - Cada byte tende a ser enviado em único pacote e confirmado isoladamente
 - Melhoria: Algoritmo de Nagle
 - Envia um byte e aguarda confirmação
 - Enquanto isso, buffer de transmissão é preenchido pela aplicação
 - ◆ Janela sempre cheia: síndrome da silly window

Desempenho

- · Síndrome da "silly window"
 - Assim que 1 byte é liberado na janela, o receptor avisa e o transmissor envia 1 byte

Roteiro

- Visão geral e objetivos
- Multiplexação
- Transmissão não-confiável e Protocolo UDP
- Mecanismos de transmissão confiável
- Protocolo TCP
- Estimativa de RTT e timeout
- Controle de Fluxo no TCP
- Gerenciamento de Conexão
 - Controle de Congestionamento
 - Requisitos de Aplicações e Camada de Transporte

Roteiro

- Visão geral e objetivos
- Multiplexação
- Transmissão não-confiável e Protocolo UDP
- Mecanismos de transmissão confiável
- Protocolo TCP
- Estimativa de RTT e timeout
- Controle de Fluxo no TCP
- Gerenciamento de Conexão
- Controle de Congestionamento
 - · Requisitos de Aplicações e Camada de Transporte

- Congestionamento
 - Rede não dá vazão ao volume de tráfego
 - Largura de banda diminui
 - Perda de mensagens aumenta
- Protocolo reativo
 - Diminuir a taxa de transmissão de pacotes
 - Aumentar a taxa de transmissão não melhora largura da banda
 - Piora o congestionamento

Congestionamento

 Congestionamento X Capacidade do Destinatário (Janela de Recepção)

- · Baseado em uma janela de congestionamento
- Define quantidade de bytes que podem ser enviados
- Slow start
 - Janela inicia com tamanho pequeno
 - Tamanho aumenta exponencialmente (duplica)
- Threshold
 - Define um limiar a partir do qual a janela aumenta linearmente
- Timeout
 - Evento de retorno da janela de congestionamento à posição inicial
 - Após um timeout, threshold assume a metade do threshold anterior.

TCP Tahoe - 1988

TCP Reno - 1990 - dente de serra

Roteiro

- Visão geral e objetivos
- Multiplexação
- Transmissão não-confiável e Protocolo UDP
- Mecanismos de transmissão confiável
- Protocolo TCP
- Estimativa de RTT e timeout
- Controle de Fluxo no TCP
- Gerenciamento de Conexão
- · Controle de Congestionamento
- Requisitos de Aplicações e Camada de Transporte

Efeitos da Adoção de TCP

- Momento de envio efetivo dos pacotes é definido pela camada de transporte e não pela aplicação
- Velocidade de transmissão limitada pelo controle de congestionamento e fluxo
 - Atraso no recebimento dos pacotes pela aplicação
- Pacotes mantidos no buffer de recepção (segmentos faltantes aguardando retransmissão)
 - Overhead/sobrecarga no sistema transmissor e receptor

Atraso na Entrega de Pacotes

• Efeito do atraso na entrega de pacotes (para aplicação) em aplicações multimidia

Exemplo de FEC

Correção de erros em multimídia: FEC

FEC mais elaborado

Referências

- Kurose, James F., Keith W. Ross, and Wagner Luiz Zucchi. Redes de Computadores ea Internet: uma abordagem top-down.
 Capítulo 3. Pearson, 2010.
- Tanenbaum, Andrew. Redes de Computadores. Capítulo 6. Pearson.