#### UNIVERSIDADE FEDERAL DE OURO PRETO

### JOAQUIM ALVES VIANA JÚNIOR

# Segundo Trabalho Prático da Disciplina BCC241 – Projeto e Análise de Algoritmos

Relatório técnico do segundo trabalho prático da Gradução em Ciência da Computação da Universidade Federal de Ouro Preto como requisito parcial para conclusão da disciplina BCC241 - Projeto e Análise de Algoritmos.

Prof.:Dr. Haroldo Gambini Santos

Ouro Preto 2018

# 1 Introdução

Conforme especificação fornecida em sala de aula, este trabalho apresenta uma solução, através de algoritmos aproximados e metaheurísticas, para o problema do empacotamento com conflito, também conhecido como Problema de *Bin Packing* com Conflitos (PBPC) em compartimentos de capacidade *c*.

O problema proposto neste trabalho considera um conjunto I de itens  $\{1,...,n\}$ , e desejamos alocar estes itens em contêineres (bin), considerando que o número de contêineres é ilimitado. Cada contêiner possui uma capacidade  $c \in Z^+$  e cada item possui um peso  $w_i \in Z^+$ , e há ainda um conjunto de conflitos  $F_i$  para cada item. Com isso temos como objetivo a minimização do número de contêineres usados. Uma solução é um agrupamento de itens por contêiner, usando o menor número possível, respeitando sua capacidade e conflitos para cada contêiner usado.

# 2 Desenvolvimento

# 2.1 Formulação

O PBPC é um problema desafiador na área da otimização. Diferentes abordagens sobre o problema mostram formas mais ou menos eficientes a depender da instância considerada. Heurísticas construtivas, algoritmos evolutivos, branch &bound, e outros são alguns dos métodos que podemos usar para se alcançar uma solução ótima ou próximo dela. O problema possui uma grande relevância dado que o problema envolve restrições de capacidade e conflito, cada um pode ser vistos como Problema de Bin Packing ou Coloração de Vértices, por isso algumas metodologias desenvolvidas para um podem não funcionar bem apara outro e vice-versa.

Neste trabalho foram implementados 4 métodos com heurística gulosa/pseudogulosa(First-Fit(2.2.1), First-Fit Decrescente(2.2.2), Best-Fit(2.2.3) e Worst-Fit(2.2.4)), além de uma implementação do Simulated Annealing(2.2.5). É importante ressaltar que além destas heurísticas, foi utilizado o algoritmo de Bron Kerbosch(2.2.6) para encontrar o número mínimo de contêineres a serem usados baseado nos itens mais conflitantes.

#### 2.1.1 Elaboração das estruturas de dados

Dado o conjunto  $I_n$  de itens e seus respectivos pesos  $w_i$  e conflitos(simétricos, ou seja, se x possui conflito com y, então y possui conflito com x), foi elaborado um grafo G(V,A) para representar o conjunto de entrada, onde os vértices representam os itens e as arestas os conflitos (se x e y são conflitantes então há uma aresta de  $v_x$  para  $v_y$ .

# 2.2 Algoritmos

#### 2.2.1 First-Fit

O First-Fit é um algoritmo de aproximção bem simples, utilizando sempre a perspectiva gulosa para montar a solução. Os itens são processados pela sua ordem de entrada no programa. Para cada item, ele tenta colocar o item no primeiro pacote que pode acomodá-lo. Se nenhum

pacote é encontrado, ele abre um novo pacote e coloca o item dentro deste novo pacote. No pior caso um novo contêiner terá que ser criado para cada item logo temos  $O(n^2)$ .

| Algoi | ritmo 1 : First-Fit                                              |
|-------|------------------------------------------------------------------|
| 1.    | <b>para</b> $i$ de $1$ até $N$ faça                              |
| 2.    | <b>para</b> $j$ de 1 até faça                                    |
| 3.    | <b>se</b> Item <sub>i</sub> cabe em Contêiner <sub>j</sub>       |
| 4.    | <b>se</b> Item <sub>i</sub> não possui conflito com outros itens |
| 5.    | colocar Item <sub>i</sub> no contêiner <sub>j</sub>              |
| 6.    | fim-se                                                           |
| 7.    | fim-se                                                           |
| 8.    | fim-para                                                         |
| 9.    | se Itemi nao foi alocado em nenhum contêiner então               |
| 10.   | criar um novo contêiner e colocar Item <sub>i</sub> .            |
| 11.   | fim-se                                                           |
| 12.   | fim-para                                                         |

FONTE: ELABORADO PELO AUTOR

#### 2.2.2 First-Fit Decrescente

O First-Fit Decrescente utiliza-se de um algoritmo de ordenação para que o peso dos itens a serem escolhidos fiquem ordenados decrescentemente. Neste trabalho foi utilizado o QuickSort( no pior caso,  $O(n^2)$ ) logo temos  $O(n^2)$ .

#### Algoritmo 2: First-Fit Decrescente

- 1. Ordene os objetos decrescentemente utilizando **QuickSort**();
- 2. Aplique o **First-Fit** nos itens ordenados

FONTE: ELABORADO PELO AUTOR

#### 2.2.3 Best-Fit

O Best-Fit é um algoritmo por aproximção muito semelhante ao **First- Fit** que busca no momento da escolha do contêiner aquele que possui o menor espaço restante.**O(n²)**.Pode ser feito uma melhoria no algoritmo se mantivermos os contêiner em uma fila de prioridade, heap(**O(nlogn)**).

| Algor | ritmo 3 : Best-Fit                                                             |
|-------|--------------------------------------------------------------------------------|
| 1.    | <b>para</b> $i$ de $1$ até $N$ faça                                            |
| 2.    | Determine k = min(espaço restante dos Contêineres)                             |
| 3.    | <b>se</b> Item <sub>i</sub> cabe dentro do contêiner <sub>k</sub> <b>então</b> |
| 4.    | <b>se</b> Item <sub>i</sub> não possui conflito com outros itens               |
| 5.    | colocar Item <sub>i</sub> no contêiner <sub>j</sub>                            |
| 6.    | senão                                                                          |
|       | Criar um novo contêiner e colocar Item <sub>i</sub> .                          |
| 7.    | fim-se                                                                         |
| 8.    | fim-para                                                                       |
|       | FONTE:ELABORADO PELO AUTOR                                                     |

#### 2.2.4 Worst-Fit

O Worst-Fit é um algoritmo por aproximção muito semelhante ao **Wost-Fit** que busca no momento da escolha do contêiner aquele que possui o maior espaço restante. **O(n²)**. Também podemos melhorar este algoritmo se mantivermos os contêiner em uma fila de prioridade (**O(nlogn)**).

| Algo | ritmo 4 : Worst-Fit                                                            |
|------|--------------------------------------------------------------------------------|
| 1.   | <b>para</b> $i$ de 1 até $N$ faça                                              |
| 2.   | Determine k = max(espaço restante dos Contêineres)                             |
| 3.   | <b>se</b> Item <sub>i</sub> cabe dentro do contêiner <sub>k</sub> <b>então</b> |
| 4.   | se Item <sub>i</sub> não possui conflito com outros itens                      |
| 5.   | Colocar Item <sub>i</sub> no contêiner <sub>j</sub>                            |
| 6.   | senão                                                                          |
|      | Criar um novo contêiner e colocar Item <sub>i</sub> .                          |
| 7.   | fim-se                                                                         |
| 8.   | fim-para                                                                       |

FONTE: ELABORADO PELO AUTOR

#### 2.2.5 Simulated Annealing

O Simulated Annealing é uma meta-heurística que consiste na busca local. Sua ideia vem de uma analogia com a termodinâmica, onde a tempertura influencia no fator de mudanças de um determinado evento.

Essa técnica começa sua busca a partir de uma solução incial qualquer, e a cada iteração cria uma nova solução que é ou não aceita de acordo com um fator probalístico, este processo se repete até que o tempo limete seja alcançado ou a temperatura diminua demais. Para entender isso temos alguns parâmetros:

```
S0 = Solução Inicial (Entrada);
Si = Solução da iteração i;
S = Configuração Final;
T0 = Temperatura Inicial;
Ti = Temperatura na Iteração i;
α = Factor de redução da temperatura (Entrada);
f(Si) = Valor da função objetivo correspondente á configuração Si;
i = Variável de controle de Loops.
```

#### **Algoritmo 5**: Simulated Annealing 1. S = S02.T0 = TempInicial()3. T = T0eps = 0.00014. repita 5. 6. enquanto(TempoLimite<TempoAtual e T>eps) 7. i = 18. repita Si = Perturba(S)9. 10. $\Delta Fi = \mathbf{f}(Si) - \mathbf{f}(S)$ se ( $\Delta fi \leq 0$ ) ou (exp(- $\Delta fi/T$ ) > Random)) então 11. S = Si12. 13. Fim-se 14. i = i + 115. $T = \alpha T$

#### 2.2.6 Clique Maximal - Bron-Kerbosch

A fim de trazer um maior refinamento nos resultados em busca da solução ótima, foi implementado o algoritmo para encontrar do clique maximal em um grafo. Um clique nada mais é que um sub-grafo completo e neste problema procura-se saber sua cardinalidade, ou seja quantos vértices pertecem a ele quais são estes vértices.

Neste trabalho as instâncias são montadas na forma de um grafo como anteriormente mencionado. A partir disso conseguimos encontrar um clique maximal onde os itens pertencentes a ele não podem compartilhar o mesmo contêiner. Com isso sabemos o número mínimo de contêiners para a instância sendo gerada.

Para encontrar o pivô foi calculado o grau modificado de cada vértice de modo a saber quais véritces tem mais chance de estar no clique.

```
16. Algoritmo 6: Pivotamento pelo Maior Grau Modificado
```

```
    BK(C, P, S)
    se P e S estão vazios então
    Adiciona a clique C no conjunto solução;
    fim
    Escolha o vértice de máximo grau modicado em P como pivô u;
    para cada Vértice v em P/N(u) faça
    BK(C U{v} P ∩N(v), S ∩ N(v));
    P := P\{v};
    S := S\{v};
    fim
```

FONTE: http://www.decom.ufop.br/haroldo/

# 3 Experimentos e Análises

Para a reaalização dos exeperimentos foi utilizado um computador com as seguintes configurações: processador Intel core i5-3230M CPU @ 2.60GHz 2.60 GHz, 8GB de RAM e sistema operacional Microsft Windows 10 64bits.

A implementação deste trabalho, feita em C++(versão 11) encontra-se no repositório público do GitHub(www.github.com/junior003/TPPAA2), bem como as instâncias que foram usadas para testar o algoritmo.

### 3.1 Análise estática de código com cppcheck

Conforme foi sugerido pelo professor foi utilizado uma ferramenta de verificação com uso do compilador cppCheck utilizando o seguinte comando no terminal (é necessário estar na pasta da implementação):

Cppcheck \*.cpp

Como resultado obtém-se:

Checking BronKerbosch.cpp ...

1/7 files checked 18% done

Checking Container.cpp ...

2/7 files checked 21% done

Checking Entrada\_e\_Saida.cpp ...

3/7 files checked 28% done

Checking Item.cpp ...

4/7 files checked 32% done

Checking Main.cpp ...

5/7 files checked 38% done

Checking Metodos.cpp ...

6/7 files checked 95% done

Checking Sorting.cpp ...

7/7 files checked 100% done

FONTE: ELABORADO PELO AUTOR

# 3.2 Experimentos

Os testes foram elaborados de uma forma testar diferente formas de se chegar a uma solução. Combinando os diferentes métodos gulosos com o Simulated Annealing e em alguns casos utilizando o algoritmo do Clique Maximal.

# Tempo de Execução e solução encontrada TESTE1

Neste primeiro teste os métodos gulosos foram executados uma única vez, os dados seguem na tabela abaixo(solução encontrada, e tempo em segundos):

| Instância             | FirstFit |          | BestFit |          | WorstFi | t        | FirstFit[ | )        |
|-----------------------|----------|----------|---------|----------|---------|----------|-----------|----------|
| d-BPWC_2_2_5.txt      | 60       | 0.00009  | 60      | 0.001994 | 59      | 0.004066 | 58        | 0.007994 |
| d-BPWC_2_3_1.txt      | 89       | 0.00001  | 90      | 0.00001  | 88      | 0.009838 | 88        | 0.009838 |
| d-BPWC_2_8_5.txt      | 203      | 0.040031 | 204     | 0.034321 | 202     | 0.041819 | 201       | 0.055032 |
| d-BPWC_3_5_3.txt      | 250      | 0.07797  | 251     | 0.06931  | 248     | 0.09958  | 247       | 0.144265 |
| d-BPWC_3_6_2.txt      | 308      | 0.148044 | 310     | 0.178785 | 308     | 0.19113  | 308       | 0.30415  |
| d-BPWC_3_6_6.txt      | 305      | 0.121318 | 307     | 0.12389  | 304     | 0.15567  | 304       | 0.253039 |
| d-BPWC_3_6_9.txt      | 292      | 0.124423 | 294     | 0.12167  | 292     | 0.14959  | 292       | 0.2429   |
| d-BPWC_3_7_7.txt      | 359      | 0.2035   | 362     | 0.2164   | 359     | 0.24005  | 358       | 0.394407 |
| d-BPWC_4_2_5.txt      | 180      | 0.016987 | 195     | 0.0209   | 181     | 0.3547   | 179       | 0.127245 |
| d-BPWC_4_5_6.txt      | 505      | 0.59628  | 512     | 0.57403  | 504     | 0.7198   | 504       | 1.31742  |
| d-BPWC_4_7_8.txt      | 661      | 1.30994  | 664     | 1.34277  | 660     | 1.66145  | 660       | 2.52354  |
| da-BPWC_1_9_9.txt     | 57       | 0.00994  | 53      | 0.00001  | 59      | 0.01099  | 52        | 0.00538  |
| da-BPWC_2_5_8.txt     | 46       | 0.016724 | 46      | 0.002053 | 49      | 0.026297 | 44        | 0.01030  |
| da-BPWC_3_1_1.txt     | 80       | 0.00554  | 80      | 0.00001  | 83      | 0.014    | 80        | 0.01002  |
| da-BPWC_3_8_5.txt     | 136      | 0.11136  | 136     | 0.13618  | 142     | 0137863  | 131       | 0.16705  |
| da-BPWC_4_2_8.txt     | 156      | 0.019137 | 156     | 0.02223  | 160     | 0.0627   | 156       | 0.03731  |
| ta-BPWC_5_4_10.txt    | 23       | 0.00001  | 22      | 0.00022  | 23      | 0.00001  | 23        | 0.00001  |
| ta-BPWC_5_7_3.txt     | 25       | 0.00001  | 25      | 0.00002  | 26      | 0.00009  | 25        | 0.00001  |
| ta-BPWC_6_7_5.txt     | 47       | 0.001275 | 45      | 0.00901  | 48      | 0.001    | 46        | 0.003006 |
| ta-BPWC_7_9_7.txt     | 108      | 0.00099  | 110     | 0.011984 | 116     | 0.01508  | 106       | 0.01702  |
| ta-BPWC_8_7_7.txt     | 188      | 0.011995 | 185     | 0.1014   | 192     | 0.02099  | 186       | 0.021465 |
| tELGN-BPWC_5_9_19.txt | 56       | 0.0002   | 56      | 0.01112  | 55      | 0.09999  | 55        | 0.09999  |
| tELGN-BPWC_6_4_16.txt | 54       | 0.0099   | 57      | 0.001    | 56      | 0.00999  | 50        | 0.003783 |
| tELGN-BPWC_6_6_19.txt | 75       | 0.002997 | 78      | 0.00265  | 75      | 0.002247 | 74        | 0.005695 |
| tELGN-BPWC_7_1_18.txt | 86       | 0.0009   | 86      | 0.10001  | 95      | 0.00098  | 90        | 0.008994 |
| tELGN-BPWC_7_2_2.txt  | 90       | 0.001002 | 90      | 0.0111   | 94      | 0.00999  | 91        | 0.005995 |
| tELGN-BPWC_7_6_10.txt | 149      | 0.14995  | 153     | 0.1499   | 152     | 0.017991 | 145       | 0.03298  |
| tELGN-BPWC_7_8_3.txt  | 205      | 0.03628  | 208     | 0.036674 | 206     | 0.037945 | 202       | 0.061969 |
| tELGN-BPWC_7_9_5.txt  | 228      | 0.044973 | 229     | 0.045976 | 228     | 0.045977 | 225       | 0.69956  |
| tMIMT-BPPC_5_3_1.txt  | 22       | 0.001997 | 22      | 0.01442  | 24      | 0.001425 | 23        | 0.00001  |
| tMIMT-BPPC_5_4_7.txt  | 25       | 0.00252  | 25      | 0.00001  | 25      | 0.00024  | 24        | 0.00099  |
| tMIMT-BPPC_5_5_4.txt  | 29       | 0.00169  | 28      | 0.0001   | 30      | 0.000999 | 27        | 0.001    |
| tMIMT-BPPC_6_2_2.txt  | 43       | 0.00099  | 43      | 0.0001   | 47      | 0.00098  | 44        | 0.00019  |
| tMIMT-BPPC_7_1_5.txt  | 87       | 0.001086 | 87      | 0.011101 | 93      | 0.001002 | 91        | 0.008898 |
| tMIMT-BPPC_7_8_3.txt  | 213      | 0.046817 | 215     | 0.040693 | 213     | 0.039925 | 212       | 0.6466   |
| tMIMT-BPPC_8_6_7.txt  | 317      | 0.125697 | 327     | 0.129905 | 321     | 0.14452  | 312       | 0.27767  |

| ua-BPWC_1_5_2.txt     | 55  | 0.00006  | 54  | 0.00001  | 62  | 0.00002   | 52  | 0.00006  |
|-----------------------|-----|----------|-----|----------|-----|-----------|-----|----------|
| ua-BPWC_4_2_9.txt     | 426 | 0.011833 | 426 | 0.01081  | 461 | 0.022035  | 428 | 0.0165   |
| ua-BPWC_4_5_4.txt     | 427 | 0.015053 | 426 | 0.054801 | 466 | 0.054807  | 428 | 0.029997 |
| ua-BPWC_4_7_5.txt     | 427 | 0.040259 | 427 | 0.04304  | 465 | 0.090299  | 425 | 0.053763 |
| ua-BPWC_4_8_9.txt     | 437 | 0.056605 | 435 | 0.0734   | 474 | 0.12688   | 442 | 0.089946 |
| uELGN-BPWC_1_2_1.txt  | 51  | 0.00001  | 50  | 0.00001  | 56  | 0.00001   | 50  | 0.00001  |
| uELGN-BPWC_1_2_20.txt | 52  | 0.00001  | 53  | 0.00001  | 58  | 0.00001   | 53  | 0.00001  |
| uELGN-BPWC_1_5_1.txt  | 69  | 0.00001  | 69  | 0.007858 | 70  | 0.0005    | 66  | 0.00001  |
| uELGN-BPWC_1_7_10.txt | 87  | 0.00001  | 87  | 0.00001  | 88  | 0.011557  | 84  | 0.006997 |
| uELGN-BPWC_2_4_7.txt  | 119 | 0.008399 | 120 | 0.003997 | 128 | 0.006653  | 118 | 0.009156 |
| uELGN-BPWC_2_7_16.txt | 182 | 0.023447 | 182 | 0.15783  | 187 | 0.019744  | 179 | 0.040085 |
| uELGN-BPWC_3_1_18.txt | 208 | 0.001997 | 208 | 0.002    | 232 | 0.0001967 | 208 | 0.03152  |
| uELGN-BPWC_3_3_18.txt | 209 | 0.00001  | 209 | 0.00001  | 237 | 0.00001   | 212 | 0.33526  |
| uELGN-BPWC_3_3_9.txt  | 208 | 0.00098  | 207 | 0.00001  | 227 | 0.009895  | 208 | 0.034115 |

FONTE: ELABORADO PELO AUTOR

O gráfico abaixo representa a média dos tempos de cada método de acordo com as instâncias:



Podemos observer que as instâncias iniciais são muito mais custosas que as demais, neste teste. Isso se deve ao número de itens e ao número de conflito serem simultaneamente maiores que as demais instâncias. Exemplo: d-BPWC\_4\_7\_8 possui 500 itens e o maior conflito (clique) encontrado foi de 482 itens conflitantes.

# TESTE2

Neste segundo teste o algoritmo de Bron e Kerbosch foi usado para encontrar o clique e a partir disso foi usado o Firs-Fit para gerar soluções, os dados seguem na tabela abaixo(solução encontrada, tempo limite 10 segundos):

| Instância             | Clique Maxi | mal com FirstFit |
|-----------------------|-------------|------------------|
| d-BPWC_2_2_5.txt      | 58          | 7,0009           |
| d-BPWC_2_3_1.txt      | 88          | 7,0055           |
| d-BPWC_2_8_5.txt      | 201         | 7,0005           |
| d-BPWC_3_5_3.txt      | 247         | 7,0004           |
| d-BPWC_3_6_2.txt      | 310         | 7,0001           |
| d-BPWC_3_6_6.txt      | 304         | 7,0012           |
| d-BPWC_3_6_9.txt      | 292         | 7,051            |
| d-BPWC_3_7_7.txt      | 358         | 7,0004           |
| d-BPWC_4_2_5.txt      | 179         | 7,0035           |
| d-BPWC_4_5_6.txt      | 504         | 7,0004           |
| d-BPWC_4_7_8.txt      | 660         | 7,0003           |
| da-BPWC_1_9_9.txt     | 51          | 7,0074           |
| da-BPWC_2_5_8.txt     | 44          | 7,0287           |
| da-BPWC_3_1_1.txt     | 80          | 7,0005           |
| da-BPWC_3_8_5.txt     | 137         | 7,0006           |
| da-BPWC_4_2_8.txt     | 156         | 7,0004           |
| ta-BPWC_5_4_10.txt    | 23          | 7,0018           |
| ta-BPWC_5_7_3.txt     | 24          | 7,0000           |
| ta-BPWC_6_7_5.txt     | 47          | 7,004            |
| ta-BPWC_7_9_7.txt     | 107         | 7,00000          |
| ta-BPWC_8_7_7.txt     | 188         | 7,00005          |
| tELGN-BPWC_5_9_19.txt | 55          | 7,00025          |
| tELGN-BPWC_6_4_16.txt | 51          | 7,00014          |
| tELGN-BPWC_6_6_19.txt | 74          | 7,00039          |
| tELGN-BPWC_7_1_18.txt | 90          | 7,00017          |
| tELGN-BPWC_7_2_2.txt  | 91          | 7,00025          |
| tELGN-BPWC_7_6_10.txt | 145         | 7,00478          |
| tELGN-BPWC_7_8_3.txt  | 202         | 7,00080          |
| tELGN-BPWC_7_9_5.txt  | 226         | 7,00081          |
| tMIMT-BPPC_5_3_1.txt  | 22          | 7,009            |
| tMIMT-BPPC_5_4_7.txt  | 24          | 7,00084          |
| tMIMT-BPPC_5_5_4.txt  | 29          | 7,00072          |
| tMIMT-BPPC_6_2_2.txt  | 44          | 7,00082          |
| tMIMT-BPPC_7_1_5.txt  | 91          | 7,005            |
| tMIMT-BPPC_7_8_3.txt  | 213         | 7,00004          |
| tMIMT-BPPC_8_6_7.txt  | 312         | 7,00006          |
| ua-BPWC_1_5_2.txt     | 54          | 7,00007          |

| ua-BPWC_4_2_9.txt     | 428 | 7,00090 |
|-----------------------|-----|---------|
| ua-BPWC_4_5_4.txt     | 430 | 7,00008 |
| ua-BPWC_4_7_5.txt     | 427 | 7,00099 |
| ua-BPWC_4_8_9.txt     | 439 | 7,00055 |
| uELGN-BPWC_1_2_1.txt  | 50  | 7,00005 |
| uELGN-BPWC_1_2_20.txt | 53  | 7,001   |
| uELGN-BPWC_1_5_1.txt  | 65  | 7,00021 |
| uELGN-BPWC_1_7_10.txt | 85  | 7,00002 |
| uELGN-BPWC_2_4_7.txt  | 65  | 7,00002 |
| uELGN-BPWC_2_7_16.txt | 85  | 7,00005 |
| uELGN-BPWC_3_1_18.txt | 117 | 7,00003 |
| uELGN-BPWC_3_3_18.txt | 180 | 7,00002 |
| uELGN-BPWC_3_3_9.txt  | 212 | 7,00001 |

Neste teste podemos observar que o tempo gasto é sempre o mesmo, pois devido a sua grande expansão recursiva, o algoritmo acaba por sempre estourar o tempo limite estabelecido, o algoritmo está configurado para parar assim que atingir 70% do tempo total..

#### **TESTE3**

Neste terceiro teste os métodos gulosos foram executados como forma de gerar a solução inicial para o Simulated Annealing. Foi fixado o tempo limite = 600, a partir disso foram usados todos os outros métodos para gerar soluções(com temperatura = 50000 e 100000), os dados seguem na tabela abaixo(em segundos):

#### Temperatura = 50000:

| Instância         | FirstFit |         | BestFit | BestFit  |     | WorstFit |     | Solucao random |  |
|-------------------|----------|---------|---------|----------|-----|----------|-----|----------------|--|
| d-BPWC_2_2_5.txt  | 60       | 3.52874 | 60      | 3.51225  | 59  | 4.34621  | 58  | 3.6251         |  |
| d-BPWC_2_3_1.txt  | 89       | 6.72286 | 90      | 6.95068  | 88  | 6.9365   | 88  | 6.5148         |  |
| d-BPWC_2_8_5.txt  | 201      | 31.4716 | 201     | 31.0561  | 202 | 31.0424  | 201 | 30.9851        |  |
| d-BPWC_3_5_3.txt  | 247      | 48.1922 | 251     | 46.7953  | 248 | 51.27    | 247 | 57.5855        |  |
| d-BPWC_3_6_2.txt  | 308      | 74.4782 | 310     | 76.7442  | 308 | 80.477   | 320 | 78.0331        |  |
| d-BPWC_3_6_6.txt  | 305      | 69.3456 | 307     | 69.3038  | 304 | 73.9857  | 311 | 72.2042        |  |
| d-BPWC_3_6_9.txt  | 292      | 67.5458 | 294     | 66.96668 | 292 | 77.3684  | 293 | 74.619         |  |
| d-BPWC_3_7_7.txt  | 359      | 92.8234 | 362     | 93.0711  | 359 | 98.1796  | 358 | 96.5344        |  |
| d-BPWC_4_2_5.txt  | 180      | 14.1888 | 195     | 18.0019  | 181 | 20.8036  | 255 | 37.6875        |  |
| d-BPWC_4_5_6.txt  | 505      | 179.109 | 512     | 188.217  | 504 | 196.459  | 546 | 194.585        |  |
| d-BPWC_4_7_8.txt  | 661      | 317.041 | 664     | 313.742  | 660 | 347.104  | 681 | 347.683        |  |
| da-BPWC_1_9_9.txt | 57       | 5.05391 | 58      | 4.6135   | 59  | 5.14977  | 55  | 4.83332        |  |
| da-BPWC_2_5_8.txt | 45       | 7.22978 | 44      | 6.8792   | 49  | 9.12813  | 79  | 13.6362        |  |
| da-BPWC_3_1_1.txt | 80       | 7.84308 | 80      | 7.76302  | 83  | 11.6592  | 130 | 21.6623        |  |

|                       | 400 | 40.45.40 | 100 | 44.005.4 | 1 4 4 4 | 40 5000  | 100 | 50.0004 |
|-----------------------|-----|----------|-----|----------|---------|----------|-----|---------|
| da-BPWC_3_8_5.txt     | 136 | 42.1542  | 136 | 41.2654  | 141     | 43.5366  | 180 | 56.6094 |
| da-BPWC_4_2_8.txt     | 156 | 28.5099  | 156 | 29.3548  | 160     | 49.4136  | 162 | 108.501 |
| ta-BPWC_5_4_10.txt    | 23  | 1.10224  | 22  | 1.08746  | 22      | 1.09524  | 23  | 1.2149  |
| ta-BPWC_5_7_3.txt     | 24  | 1.32245  | 24  | 1.30502  | 26      | 1.45025  | 24  | 1.35433 |
| ta-BPWC_6_7_5.txt     | 44  | 2.7922   | 44  | 2.79222  | 48      | 3.9175   | 53  | 4.74205 |
| ta-BPWC_7_9_7.txt     | 107 | 13.8799  | 109 | 16.2419  | 114     | 17.0951  | 116 | 17.5923 |
| ta-BPWC_8_7_7.txt     | 187 | 32.8908  | 185 | 32.5284  | 191     | 37.4897  | 205 | 48.8212 |
| tELGN-BPWC_5_9_19.txt | 56  | 3.20002  | 55  | 3.23955  | 55      | 3.3837   | 56  | 3.39539 |
| tELGN-BPWC_6_4_16.txt | 54  | 2.9669   | 57  | 2.85125  | 56      | 3.17897  | 51  | 3.32414 |
| tELGN-BPWC_6_6_19.txt | 75  | 5.85977  | 74  | 7.1198   | 75      | 6.50041  | 75  | 6.09952 |
| tELGN-BPWC_7_1_18.txt | 86  | 3.704    | 86  | 3.73533  | 95      | 4.91716  | 97  | 5.17728 |
| tELGN-BPWC_7_2_2.txt  | 90  | 5.15984  | 90  | 4.50018  | 94      | 5.52989  | 96  | 6.07182 |
| tELGN-BPWC_7_6_10.txt | 149 | 18.9595  | 153 | 17.9501  | 152     | 19.35049 | 147 | 18.984  |
| tELGN-BPWC_7_8_3.txt  | 205 | 29.6646  | 208 | 29.9995  | 206     | 29.6319  | 203 | 30.0216 |
| tELGN-BPWC_7_9_5.txt  | 228 | 34.1199  | 229 | 34.8881  | 228     | 34.3097  | 232 | 34.8279 |
| tMIMT-BPPC_5_3_1.txt  | 22  | 0.952757 | 22  | 0.949424 | 24      | 1.13776  | 24  | 1.37811 |
| tMIMT-BPPC_5_4_7.txt  | 22  | 0.93919  | 22  | 0.92004  | 24      | 1.16000  | 23  | 1.03191 |
| tMIMT-BPPC_5_5_4.txt  | 27  | 1.33     | 27  | 1.35     | 27      | 1.33     | 27  | 1.39    |
| tMIMT-BPPC_6_2_2.txt  | 43  | 1.89014  | 43  | 1.86979  | 47      | 2.49133  | 47  | 2.55778 |
| tMIMT-BPPC_7_1_5.txt  | 87  | 3.94914  | 87  | 4.30953  | 93      | 5.75144  | 98  | 4.1633  |
| tMIMT-BPPC_7_8_3.txt  | 213 | 30.9836  | 215 | 31.6343  | 213     | 34.1951  | 212 | 31.3791 |
| tMIMT-BPPC_8_6_7.txt  | 317 | 70.5828  | 327 | 72.584   | 321     | 76.9975  | 315 | 74.3606 |
| ua-BPWC_1_5_2.txt     | 55  | 2.4004   | 54  | 2.36963  | 62      | 3.0995   | 53  | 2.7098  |
| ua-BPWC 4 2 9.txt     | 426 | 44.343   | 426 | 42.1711  | 461     | 81.0346  | 441 | 58.0797 |
| ua-BPWC 4 5 4.txt     | 427 | 63.5034  | 426 | 60.1632  | 466     | 122.679  | 439 | 88.5188 |
| ua-BPWC_4_7_5.txt     | 427 | 64.3853  | 427 | 66.4528  | 465     | 127.598  | 473 | 103.553 |
| ua-BPWC_4_8_9.txt     | 437 | 78.2531  | 435 | 78.8194  | 474     | 137.336  | 480 | 112.152 |
| uELGN-BPWC 1 2 1.txt  | 51  | 2.07     | 50  | 1.96     | 56      | 2.0304   | 51  | 2.11014 |
| uELGN-BPWC 1 2 20.txt | 52  | 2.1222   | 53  | 2.16331  | 58      | 2.17847  | 53  | 2.1837  |
| uELGN-BPWC 1 5 1.txt  | 65  | 3.908    | 66  | 3.7678   | 70      | 3.8008   | 65  | 4.27416 |
| uELGN-BPWC 1 7 10.txt | 83  | 6.48025  | 87  | 6.50769  | 88      | 7.25008  | 85  | 7.04995 |
| uELGN-BPWC 2 4 7.txt  | 119 | 5.69783  | 120 | 5.95734  | 128     | 6.59015  | 115 | 6.35996 |
| uELGN-BPWC_2_7_16.txt | 182 | 20.8858  | 182 | 22.3083  | 187     | 21.7107  | 178 | 21.6018 |
| uELGN-BPWC_3_1_18.txt | 208 | 8.25031  | 208 | 8.017    | 232     | 10.55    | 213 | 10.3229 |
| uELGN-BPWC_3_3_18.txt | 209 | 11.1334  | 209 | 12.2569  | 237     | 18.5038  | 216 | 13.7702 |
| uELGN-BPWC 3 3 9.txt  | 208 | 11.1107  | 207 | 11.1724  | 227     | 17.3076  | 214 | 13.2422 |
|                       |     |          | I.  |          |         |          |     | 1       |

# Temperatura = 100000:

| Instância             | FirstFit |          | BestFit | ·        | WorstF | it       | Solução Random |          |  |
|-----------------------|----------|----------|---------|----------|--------|----------|----------------|----------|--|
| d-BPWC 2 2 5.txt      | 58       | 6,8331   | 60      | 7,2564   | 59     | 8,27993  | 68             | 11,2983  |  |
| d-BPWC 2 3 1.txt      | 89       | 13,3542  | 90      | 13,2992  | 88     | 13,1754  | 88             | 13,314   |  |
| d-BPWC_2_8_5.txt      | 201      | 58,364   | 204     | 59,0551  | 202    | 60,2631  | 202            | 61,2849  |  |
| d-BPWC 3 5 3.txt      | 247      | 95,1689  | 251     | 95,9061  | 248    | 95,2396  | 247            | 100,051  |  |
| d-BPWC 3 6 2.txt      | 308      | 144,4782 | 310     | 146,7442 | 309    | 160,477  | 320            | 168,0331 |  |
| d-BPWC_3_6_6.txt      | 305      | 129,3456 | 308     | 129,3038 | 304    | 143.9857 | 311            | 142.2042 |  |
| d-BPWC_3_6_9.txt      | 292      | 127.5458 | 294     | 126.9668 | 292    | 147.3684 | 293            | 144,619  |  |
| d-BPWC_3_7_7.txt      | 359      | 182.8234 | 362     | 183.0711 | 359    | 201.1796 | 358            | 198.5344 |  |
| d-BPWC_4_2_5.txt      | 180      | 69.1888  | 199     | 80.0019  | 181    | 80.8036  | 255            | 96.6875  |  |
| d-BPWC 4 5 6.txt      | 505      | 377,666  | 504     | 355,154  | 504    | 376,101  | 546            | 384,68   |  |
| d-BPWC 4 7 8.txt      | 661      | 420,000  | 664     | 432,05   | 660    | 411,11   | 660            | 425,98   |  |
| da-BPWC_1_9_9.txt     | 57       | 10,5842  | 57      | 11,0001  | 59     | 10,4802  | 61             | 11,1757  |  |
| da-BPWC_2_5_8.txt     | 45       | 15,3483  | 44      | 14,3857  | 49     | 18,5104  | 72             | 26,3835  |  |
| da-BPWC 3 1 1.txt     | 80       | 15,0453  | 80      | 15,6443  | 83     | 22,246   | 126            | 39,6209  |  |
| da-BPWC 3 8 5.txt     | 136      | 80,9051  | 136     | 80,6632  | 141    | 83,6953  | 176            | 110,816  |  |
| da-BPWC_4_2_8.txt     | 156      | 57,4025  | 156     | 57,4011  | 158    | 96,9376  | 163            | 217,984  |  |
| ta-BPWC 5 4 10.txt    | 22       | 2,20943  | 22      | 2,18369  | 22     | 3,40367  | 25             | 3,50415  |  |
| ta-BPWC_5_7_3.txt     | 24       | 2,6305   | 24      | 2,5487   | 24     | 2,9789   | 28             | 3,1564   |  |
| ta-BPWC_6_7_5.txt     | 47       | 7,07003  | 44      | 5,61034  | 48     | 8,60346  | 51             | 8,4577   |  |
| ta-BPWC_7_9_7.txt     | 107      | 27,7646  | 109     | 29,5978  | 115    | 35,83885 | 117            | 34,2853  |  |
| ta-BPWC 8 7 7.txt     | 187      | 64,2544  | 185     | 60,9411  | 192    | 77,1413  | 191            | 100,299  |  |
| tELGN-BPWC_5_9_19.txt | 55       | 6,4797   | 55      | 7,4755   | 55     | 6,55877  | 55             | 5,4642   |  |
| tELGN-BPWC 6 4 16.txt | 51       | 5,95287  | 57      | 5,59201  | 56     | 5,9811   | 52             | 6,02154  |  |
| tELGN-BPWC_6_6_19.txt | 75       | 11,2564  | 74      | 11,3586  | 75     | 11,6581  | 75             | 11,6985  |  |
| tELGN-BPWC_7_1_18.txt | 86       | 7,2527   | 86      | 7,18     | 87     | 9,7412   | 86             | 10,3985  |  |
| tELGN-BPWC_7_2_2.txt  | 90       | 10,2     | 90      | 9,6658   | 94     | 10,7584  | 90             | 11,9957  |  |
| tELGN-BPWC_7_6_10.txt | 149      | 37,9396  | 149     | 35,41257 | 152    | 37,5715  | 146            | 35,3984  |  |
| tELGN-BPWC_7_8_3.txt  | 205      | 58,7507  | 205     | 57,5856  | 206    | 60,5039  | 208            | 57,9715  |  |
| tELGN-BPWC_7_9_5.txt  | 228      | 66,8162  | 229     | 69,2316  | 226    | 67,7258  | 226            | 66,6829  |  |
| tMIMT-BPPC_5_3_1.txt  | 22       | 1,93388  | 22      | 1,976    | 24     | 2,35283  | 23             | 2,17234  |  |
| tMIMT-BPPC_5_4_7.txt  | 22       | 1,9597   | 22      | 1,92826  | 24     | 2,7811   | 24             | 2,20402  |  |
| tMIMT-BPPC_5_5_4.txt  | 27       | 2,73499  | 27      | 2,63801  | 28     | 2,8901   | 27             | 2,63798  |  |
| tMIMT-BPPC_6_2_2.txt  | 43       | 4,01176  | 43      | 3,77899  | 47     | 4,7112   | 48             | 5,144    |  |
| tMIMT-BPPC_7_1_5.txt  | 87       | 4,778053 | 87      | 4,76852  | 93     | 4,09166  | 93             | 4,96811  |  |
| tMIMT-BPPC_7_8_3.txt  | 213      | 6,60602  | 215     | 7,64084  | 213    | 7,33153  | 215            | 6,6363   |  |
| tMIMT-BPPC_8_6_7.txt  | 317      | 14,4609  | 318     | 14,8012  | 321    | 16,2339  | 317            | 16,0159  |  |
| ua-BPWC_1_5_2.txt     | 53       | 2,504713 | 54      | 2,46989  | 60     | 2,62197  | 53             | 2,510351 |  |
| ua-BPWC_4_2_9.txt     | 426      | 88.343   | 426     | 84.1711  | 428    | 160.0346 | 430            | 120.0797 |  |
| ua-BPWC_4_5_4.txt     | 426      | 123.5034 | 426     | 120.1632 | 436    | 122.679  | 439            | 169,5188 |  |
| ua-BPWC_4_7_5.txt     | 427      | 122.3853 | 426     | 132.4528 | 465    | 203.598  | 473            | 204,553  |  |
| ua-BPWC_4_8_9.txt     | 437      | 145.2531 | 435     | 150.8194 | 474    | 245.336  | 480            | 235.152  |  |
|                       |          |          |         |          |        |          |                |          |  |

| uELGN-BPWC_1_2_1.txt  | 50  | 2.07    | 50  | 1.96    | 56  | 2.0304  | 0,52 | 2.1837  |
|-----------------------|-----|---------|-----|---------|-----|---------|------|---------|
| uELGN-BPWC_1_2_20.txt | 52  | 2.1222  | 53  | 2.16331 | 58  | 2.17847 | 53   | 4.27416 |
| uELGN-BPWC_1_5_1.txt  | 69  | 3.908   | 66  | 3.7678  | 70  | 3.8008  | 65   | 7.04995 |
| uELGN-BPWC_1_7_10.txt | 83  | 6.48025 | 87  | 6.50769 | 88  | 7.25008 | 85   | 6.35996 |
| uELGN-BPWC_2_4_7.txt  | 117 | 5.69783 | 120 | 5.95734 | 128 | 6.59015 | 117  | 21.6018 |
| uELGN-BPWC_2_7_16.txt | 182 | 20.8858 | 182 | 22.3083 | 187 | 21.7107 | 180  | 10.3229 |
| uELGN-BPWC_3_1_18.txt | 208 | 8.25031 | 208 | 8.017   | 232 | 10.55   | 212  | 13.7702 |
| uELGN-BPWC_3_3_18.txt | 209 | 11.1334 | 209 | 12.2569 | 237 | 18.5038 | 217  | 13.2422 |
| uELGN-BPWC_3_3_9.txt  | 208 | 11.1107 | 207 | 11.1724 | 227 | 17.3076 | 216  | 2.1837  |

FONTE: ELABORADO PELO AUTOR

Neste experimento pudemos observar para diversas instâncias, que com a temperatura inicial mais alta alcançou-se resultados mais rapidamente principalmente as que foram geradas incialmente por métodos randômicos.

**TESTE 4**O gráfico abaixo mostra a relação tempo-número de itens – clique para cada instância:



FONTE: ELABORADO PELO AUTOR

# Conclusão

Através destes teste pudemos observar que:

- 1) First- Fit apesar de ser um algoritmo simples encontra uma boa resposta
- 2) Best-Fit e Worst- Fit— para algumas ocasiões não é bom, porém se usado com SA com uma temperatura alta consegue bons resultados quase sempre
- 3) Clique O uso do clique maximal ajudou a entender o crescimento do tempo de execução e o comportamento de cada procedimento

O PBPC é um problema de grande relevância, seja na logistica de entrega de alguma mercadoria como no próprio empacotamento de algum certo material. Este trabalho mostrou diferentes formas de resolver e analisar diferentes formas de se alcançar uma solução próxima da ótima.