min
$$f(x)$$
 $f(x)$ $f(x$

$$= \|x^{k} - x^{*}\|^{2} - 2\chi \times \mathbb{E}[\nabla F_{i_{k}}(x^{k})|x^{k}]; x^{k} - x^{*} \times \frac{1}{2}] + \chi^{2}_{k} \mathbb{E}[\|\nabla f_{i_{k}}(x^{k})\|^{k}] \times \mathbb{E}[\|\nabla f_{i_{k}}(x^{k})\|^{k}] \times$$

$$\begin{aligned}
&+2 < \mathbb{E} \left[\mathbb{V}_{k}^{2}(x^{k}) - \mathbb{V}_{k}^{2}(x^{k}) \right]^{2} | x^{k} \right] + \mathbb{V}_{k}^{2}(x^{k}) \mathbb{V}^{2} \\
&= \mathbb{E} \left[\| \mathbb{V}_{k}^{2}(x^{k}) - \mathbb{V}_{k}^{2}(x^{k}) \|^{2} \right] \times \mathbb{V}^{2} + \mathbb{V}^{2} \\
&= \mathbb{E} \left[\| \mathbb{V}_{k}^{2}(x^{k}) \|^{2} + \mathbb{V}^{2}(x^{k}) \|^{2} + \mathbb{V}^$$

< (1- \(\lambda \k \mu \) \| \(\chi^{-} \chi^{+} \|^{2} + \chi^{2} \text{6}^{2}

*
$$X = \frac{1}{K+1}$$

Odyce mus ingregor (neigns)

 $X = \frac{1}{K+1}$ (becomment FW) $\rightarrow F_{K+1} = (1-\eta_1)F_K + \eta_1^2C$

* $X = \frac{1}{K+1}$ (becomment FW) $\rightarrow F_{K+1} = (1-\eta_1)F_K + \eta_1^2C$

* $X = \frac{1}{K+1}$ (becomment FW) $\rightarrow F_{K+1} = (1-\eta_1)F_K + \eta_1^2C$

* $X = \frac{1}{K+1}$ (becomment FW) $\rightarrow F_{K+1} = (1-\eta_1)F_K + \eta_1^2C$

* $X = \frac{1}{K+1}$ (becomment FW) $\rightarrow F_{K+1} = (1-\eta_1)F_K + \eta_1^2C$

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$ (becommend $X = \frac{1}{K+1}$)

* $X = \frac{1}{K+1}$

$$\begin{aligned}
& \left\| \int_{i \in S} \left(\nabla f_{i}(x) - \nabla f(x) \right) \right\|^{2} = \\
& = \left\| \int_{b^{2}} \left(\sum_{i \in S} \left\| \nabla f_{i}(x) - \nabla f(x) \right\|^{2} + \sum_{i \neq j} \left| \nabla f_{i}(x) - \nabla f(x) - \nabla f(x) \right|^{2} + \sum_{i \neq j} \left| \int_{be} \left| \int_{$$