Theoretical homework #4, TTTV 2017

By: Deborah Lambregts (11318643) & Bram Otten (10992456)

Group: G

TA: Douwe van der Wal

Date: May 7, 2017

Exercise 1

- (a) Angus likes somebody and somebody likes Betty $\exists x \exists y [Likes(a, Person(x)) \land Likes(Person(y), b)]$
- (b) Angus loves a dog who loves him $\exists x [Loves(a, Dog(x)) \land Loves(Dog(x), a)]$
- (c) Nobody greets Carl
 - 1) $\neg \exists x [Greets(Person(x), c)]$
 - 2) $\forall x [\neg Greets(Person(x), c)]$
- (d) Somebody coughs and sneezes $\exists x [Person(x) \land Coughs(x) \land Sneezes(x)]$
- (e) Nobody coughs or sneezes
 - 1) $\neg \exists x [Person(x) \land Coughs(x) \land Sneezes(x)]$
 - 2) $\forall x [Person(x) \rightarrow \neg Coughs(x) \land \neg Sneezes(x)]$
- (f) Only one dog barks $\exists x[Dog(x) \land Barks(x)] \land \neg \exists y[Dog(y) \land y \neq x \land Barks(y)]$

Exercise 2

Restaurant(md)

ServesVeg(md)

ServesMeat(md)

 $\forall x [Restaurant(x) \land \neg ServesMeat(x) \rightarrow Vegetarian(x)]$

 $\forall x. \forall y [Person(x) \land Restaurant(y) \land ServesVeg(y) \rightarrow CanEatAt(x,y)]$

Exercise 3

```
(a) \operatorname{Sem}(S) = \operatorname{Sem}(\operatorname{NP}) @ \operatorname{Sem}(\operatorname{VP})

\operatorname{Sem}(\operatorname{NP}) = \operatorname{Sem}(\operatorname{D}) @ \operatorname{Sem}(\operatorname{N})

\operatorname{Sem}(\operatorname{NP}) = \operatorname{Sem}(\operatorname{PN})

\operatorname{Sem}(\operatorname{VP}) = \operatorname{Sem}(\operatorname{V}) @ \operatorname{Sem}(\operatorname{NP})

D \to a: \lambda x.[\lambda y.[\exists z.[x@z \land y@z]]]

D \to \operatorname{every:} \lambda x.[\lambda y.[\forall z.[x@z \land y@z]]]

D \to \operatorname{every:} \lambda x.[\lambda y.[\forall z.[x@z \land y@z]]]

N \to \operatorname{restaurant:} \lambda x.Restaurant(x)

N \to \operatorname{menu:} \lambda x.Menu(x)

\operatorname{PN} \to \operatorname{Albert:} \lambda x.[x@a]

V \to \operatorname{has:} \lambda x.[\lambda y.[x@\lambda y.Has(x,y)]]

V \to \operatorname{opens:} \lambda x.[\lambda y.[x@\lambda y.Opens(x,y)]]
```

(b) (i) $\exists x (Opens(a, x) \land Restaurant(x))$

Before β -conversion

- $(1) \ \lambda x.[x@a] \ @ \ \lambda x.[\lambda y.[x@\lambda y.Opens(x,y)]] \ @ \ \lambda x.[\lambda y.[\exists z.[x@y \land y@z]]] \ @ \ \lambda x.Restaurant(x) \blacksquare$
- (2) $\lambda x.[x@a]$
- (3) $\lambda x.[x@a]$
- (4) $\lambda x.[\lambda y.[x@\lambda y.Opens(x,y)]]$ @ $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]]$ @ $\lambda x.Restaurant(x)$
- (5) $\lambda x.[\lambda y.[x@\lambda y.Opens(x,y)]]$
- (6) $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]] @ \lambda x.Restaurant(x)$
- (7) $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]]$
- (8) $\lambda x.Restaurant(x)$

After β -conversion

- (1) $\lambda x.[x@a]@\lambda y.Opens(x,y).\exists z.(\lambda x.Restaurant(x)@y \wedge y@z)$ $\rightarrow \lambda y.Opens(x,y).\exists z.(\lambda x.Restaurant(x)@y \wedge y@z)@a$ $\rightarrow Opens(x,a).\exists z.(\lambda x.Restaurant(x)@a \wedge a@z)$
- (2) x
- (3) x
- (4) $\lambda x.[\lambda y.[x@\lambda y.Opens(x,y)]]@\lambda y.\exists z.(\lambda x.Restaurant(x)@y \wedge y@z)$ $\leadsto \lambda y(\lambda y.\exists z.(\lambda x.Restaurant(x)@y \wedge y@z)@\lambda y.Opens(x,y)$ $\leadsto \lambda y.Opens(x,y).\exists z.(\lambda x.Restaurant(x)@y \wedge y@z)$
- (5) x
- (6) $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]] @ \lambda x.Restaurant(x)$ $<math>\rightarrow \lambda y.\exists z.(\lambda x.Restaurant(x)@y \land y@z)$
- (7) x
- (8) x

(ii) $\forall x \exists y (Restaurant(x) \rightarrow Menu(y) \land Has(x, y))$

β -conversion

- (1)
- (2)
- (3) $\lambda x.[\lambda y.[\forall z.[x@y \land y@z]]]$
- (4) $\lambda x.Restaurant(x)$
- $(5) \ \lambda x.[\lambda y.[x@\lambda y.Has(x,y)]]@\lambda y.\exists z.(\lambda x.Menu(x))@y \wedge y@z)\\ \leadsto$
- (6) $\lambda x.[\lambda y.[x@\lambda y.Has(x,y)]]$
- (7) $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]]@\lambda x.Menu(x)$ $\rightsquigarrow \lambda y.\exists z.(\lambda x.Menu(x))@y \land y@z)$
- (8) $\lambda x.[\lambda y.[\exists z.[x@y \land y@z]]]$
- (9) $\lambda x.Menu(x)$

Exercise 4

- (a) The scope of the sentence is ambiguous: either restaurants can have unique menus but must have one, or all restaurant have the same menu.
- (b) (i) $\forall x \exists y (Restaurant(x) \rightarrow Menu(y) \land Has(x, y))$
 - (ii) $\exists x \forall y \neg \exists z ((Menu(x) \land Restaurant(y) \rightarrow Has(y, x)) \land \neg (Menu(z) \land Restaurant(y) \land x \neq z \rightarrow Has(y, z)))$
- (c) This is not possible, because the only rule for 'a' is

which has the meaning of 'a' used in logic formula (i).