Топология I, листочек 3

1. Докажите, что $\mathbb{R}/\mathbb{Z} \simeq S^1$.

Утверждение 1. Элементы базы топологии на X после индуцирования на $Y\subseteq X$ становятся базой топологии на Y.

По определению элемент базы останется открытым после индуцирования. Покажем теперь, что все индуцированные элементы базы составят базу. Пусть $U\subseteq Y$ – открытое множество. Тогда существует такое открытое $V\subseteq X$, что $V\cap Y=U$. Раз V открыто, то существуют элементы базы $B_i\in \tau_X, i\in I$, что $\bigcup_{i\in I}B_i=V$. Тогда $U=V\cap Y=Y\cap\bigcup_{i\in I}B_i=\bigcup_{i\in I}B_i\cap Y$ открытое множество представимо как объединение индуцированных элементов базы на топологии X, а значит, что множество всех таких индуцированных элементов составят базу топологии на Y.

Утверждение 2. Если в топологии пространства X/\sim образ элемента базы топологии на X при канонической проекции открыт, то объединение этих образов составит базу топологии на фактор пространства.

Пусть $U \in X/\sim$ открыто, тогда $\pi_{\sim}^{-1}[U]$ открыто и представимо как $\bigcup_{i \in I} B_i$ где B_i – элемент базы топологии на X. Тогда $U = \pi_{\sim}[\bigcup_{i \in I} B_i] = \bigcup_{i \in I} \pi_{sim}[B_i]$. А значит образ элементов базы топологии на X составит базу топологии на фактор пространстве.

Утверждение 3. Если биекция $X \to y$ станавливает однозначное соответствие между элементами базы двух пространств, то она является гомеоморфизмом.

Пусть $U\subseteq X$ открыто, тогда существуют такие элементы базы $B_i\subseteq X$, $i\in I$, что $U=\bigcup_{i\in I}B_i$. Тогда $f[U]=\bigcup_{i\in I}f[B_i]$ – объединение открытых, а значит само открыто. В обратную сторону доказывается также.

Базой пространства S^1 являются всевозможные пересечения окружности и открытых кругов, то есть открытые дуги. Найдем теперь базу пространства \mathbb{R}/\mathbb{Z} . Пусть (a,b) – элемент базы топологии на \mathbb{R} . Прообраз образа этого интервала равен $\bigcup_{n\in\mathbb{Z}}(a+n,b+n)$ и открыт, а значит образы интервалов составят базу топологии на фактор пространстве. Если классы эквивалентности отождествить с точками на [0,1), то образами интервалов (a,b) будет $(\{a\},\{b\})$, если изначальный интервал не содержал целых точек, $[0,\{b\}) \cup (\{a\},1)$, если изначальный интервал содержал 1 целую точку и [0,1), если изначальный интервал содержал 2 и более целые точки. Пусть $f:[x]\mapsto e^{i2\pi\{x\}}$ биекция из \mathbb{R}/\mathbb{Z} в S^1 . Тогда очевидно, что она однозначно сопоставляет элементам базы топологии на фактор пространства, что мы получили открытые дуги, а значит пространства гомеоморфны.

2. Докажите, что $\mathbb{D}^n/S^{n-1} \simeq S^n$.

Пусть I=(-1,1) интервал. Тогда положим $B^n=I^n$, $\mathbb{D}^n=\overline{B^n}$ и $S^n=\partial\mathbb{D}^n$.