Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	397	dual specificity phosphatase\$1	US-PGPUB; USPAT	ADJ	OFF	2005/07/14 11:18
L2	69	1 near6 human	US-PGPUB; USPAT	ADJ	OFF	2005/07/14 11:19

FILE 'HOME' ENTERED AT 15:59:36 ON 14 JUL 2005

=> fil .bec

COST IN U.S. DOLLARS SINCE FILE TOTAL

FULL ESTIMATED COST ENTRY SESSION 0.21 0.21

FILES 'MEDLINE, SCISEARCH, LIFESCI, BIOTECHDS, BIOSIS, EMBASE, HCAPLUS, NTIS, ESBIOBASE, BIOTECHNO, WPIDS' ENTERED AT 15:59:46 ON 14 JUL 2005 ALL COPYRIGHTS AND RESTRICTIONS APPLY. SEE HELP USAGETERMS FOR DETAILS.

11 FILES IN THE FILE LIST

=> s dual specificity phosphatase# or dsp?

FILE 'MEDLINE'

51733 DUAL

486913 SPECIFICITY

108671 PHOSPHATASE#

366 DUAL SPECIFICITY PHOSPHATASE#

(DUAL (W) SPECIFICITY (W) PHOSPHATASE#)

2506 DSP?

L1 2831 DUAL SPECIFICITY PHOSPHATASE# OR DSP?

FILE 'SCISEARCH'

90554 DUAL

164909 SPECIFICITY

73011 PHOSPHATASE#

543 DUAL SPECIFICITY PHOSPHATASE#

(DUAL(W)SPECIFICITY(W)PHOSPHATASE#)

6313 DSP?

L2 6811 DUAL SPECIFICITY PHOSPHATASE# OR DSP?

FILE 'LIFESCI'

13259 "DUAL"

67388 "SPECIFICITY"

22786 PHOSPHATASE#

147 DUAL SPECIFICITY PHOSPHATASE#

("DUAL"(W) "SPECIFICITY"(W) PHOSPHATASE#)

926 DSP?

L3 1059 DUAL SPECIFICITY PHOSPHATASE# OR DSP?

FILE 'BIOTECHDS'

1261 DUAL

10534 SPECIFICITY

4420 PHOSPHATASE#

30 DUAL SPECIFICITY PHOSPHATASE#

(DUAL (W) SPECIFICITY (W) PHOSPHATASE#)

115 DSP?

L4 134 DUAL SPECIFICITY PHOSPHATASE# OR DSP?

FILE 'BIOSIS'

52515 DUAL

189717 SPECIFICITY

113331 PHOSPHATASE#

367 DUAL SPECIFICITY PHOSPHATASE#

(DUAL (W) SPECIFICITY (W) PHOSPHATASE#)

2820 DSP?

L5 3144 DUAL SPECIFICITY PHOSPHATASE# OR DSP?

FILE 'EMBASE'

48716 "DUAL"

211598 "SPECIFICITY"

```
80338 PHOSPHATASE#
           332 DUAL SPECIFICITY PHOSPHATASE#
                 ("DUAL" (W) "SPECIFICITY" (W) PHOSPHATASE#)
          2348 DSP?
          2644 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L6
FILE 'HCAPLUS'
        82674 DUAL
        176025 SPECIFICITY
        122184 PHOSPHATASE#
           466 DUAL SPECIFICITY PHOSPHATASE#
                  (DUAL (W) SPECIFICITY (W) PHOSPHATASE#)
          4664 DSP?
          5079 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L7
FILE 'NTIS'
         13288 DUAL
          3352 SPECIFICITY
           747 PHOSPHATASE#
             6 DUAL SPECIFICITY PHOSPHATASE#
                  (DUAL(W)SPECIFICITY(W)PHOSPHATASE#)
           620 DSP?
           624 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L8
FILE 'ESBIOBASE'
         21005 DUAL
         68541 SPECIFICITY
         28231 PHOSPHATASE#
           317 DUAL SPECIFICITY PHOSPHATASE#
                  (DUAL(W)SPECIFICITY(W)PHOSPHATASE#)
          1067 DSP?
          1344 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L9
FILE 'BIOTECHNO'
         10638 DUAL
         87045 SPECIFICITY
         25111 PHOSPHATASE#
           204 DUAL SPECIFICITY PHOSPHATASE#
                 (DUAL (W) SPECIFICITY (W) PHOSPHATASE#)
           562 DSP?
           741 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L10
FILE 'WPIDS'
         58353 DUAL
          9371 SPECIFICITY
          4947 PHOSPHATASE#
            30 DUAL SPECIFICITY PHOSPHATASE#
                 (DUAL (W) SPECIFICITY (W) PHOSPHATASE#)
          4600 DSP?
          4618 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
L11
TOTAL FOR ALL FILES
         29029 DUAL SPECIFICITY PHOSPHATASE# OR DSP?
=> s 112(10a)(gene/q or human)
FILE 'MEDLINE'
       1269134 HUMAN
           314 L1 (10A) (GENE/O OR HUMAN)
L13
FILE 'SCISEARCH'
       1203816 HUMAN
           322 L2 (10A) (GENE/Q OR HUMAN)
L14
```

FILE 'LIFESCI'

360592 HUMAN

L15 163 L3 (10A) (GENE/Q OR HUMAN)

FILE 'BIOTECHDS'

73867 HUMAN

L16 55 L4 (10A) (GENE/Q OR HUMAN)

FILE 'BIOSIS'

6470545 HUMAN

L17 320 L5 (10A) (GENE/Q OR HUMAN)

FILE 'EMBASE'

5451661 HUMAN

L18 244 L6 (10A) (GENE/Q OR HUMAN)

FILE 'HCAPLUS'

1450466 HUMAN

L19 522 L7 (10A) (GENE/Q OR HUMAN)

FILE 'NTIS'

85958 HUMAN

L20 11 L8 (10A) (GENE/Q OR HUMAN)

FILE 'ESBIOBASE'

446947 HUMAN

L21 218 L9 (10A) (GENE/Q OR HUMAN)

FILE 'BIOTECHNO'

735552 HUMAN

L22 187 L10(10A)(GENE/Q OR HUMAN)

FILE 'WPIDS'

164992 HUMAN

L23 99 L11(10A) (GENE/Q OR HUMAN)

TOTAL FOR ALL FILES

L24 2455 L12(10A) (GENE/Q OR HUMAN)

=> s 124 not 2001-2005/py

FILE 'MEDLINE'

2526292 2001-2005/PY

L25 165 L13 NOT 2001-2005/PY

FILE 'SCISEARCH'

4709965 2001-2005/PY

(20010000-20059999/PY)

L26 166 L14 NOT 2001-2005/PY

FILE 'LIFESCI'

446970 2001-2005/PY

L27 92 L15 NOT 2001-2005/PY

FILE 'BIOTECHDS'

104980 2001-2005/PY

L28 19 L16 NOT 2001-2005/PY

FILE 'BIOSIS'

2258182 2001-2005/PY

L29 165 L17 NOT 2001-2005/PY

FILE 'EMBASE'

2163216 2001-2005/PY

L30 132 L18 NOT 2001-2005/PY

FILE 'HCAPLUS'

4744712 2001-2005/PY

L31 221 L19 NOT 2001-2005/PY

FILE 'NTIS'

68839 2001-2005/PY

L32 7 L20 NOT 2001-2005/PY

FILE 'ESBIOBASE'

1317879 2001-2005/PY

L33 97 L21 NOT 2001-2005/PY

FILE 'BIOTECHNO'

368875 2001-2005/PY

L34 112 L22 NOT 2001-2005/PY

FILE 'WPIDS'

4252353 2001-2005/PY

L35 30 L23 NOT 2001-2005/PY

TOTAL FOR ALL FILES

L36 1206 L24 NOT 2001-2005/PY

=> s 112(2w)3

FILE 'MEDLINE'

2818713 3

L37 47 L1 (2W)3

FILE 'SCISEARCH'

2708840 3

L38 55 L2 (2W)3

FILE 'LIFESCI'

436558 3

L39 9 L3 (2W)3

FILE 'BIOTECHDS'

152294 3

L40 5 L4 (2W)3

FILE 'BIOSIS'

2498690 3

L41 50 L5 (2W)3

FILE 'EMBASE'

1716324 3

L42 28 L6 (2W)3

FILE 'HCAPLUS'

6333050 3

L43 67 L7 (2W)3

FILE 'NTIS'

296622 3

L44 6 L8 (2W)3

FILE 'ESBIOBASE'

793650 3

L45 25 L9 (2W)3

FILE 'BIOTECHNO'

485790 3

L46 20 L10(2W)3

```
FILE 'WPIDS'
     4520732 3
          64 L11(2W)3
L47
TOTAL FOR ALL FILES
    376 L12(2W) 3
L48
=> s 136 and 148
FILE 'MEDLINE'
     1 L25 AND L37
FILE 'SCISEARCH'
       1 L26 AND L38
L50
FILE 'LIFESCI'
          1 L27 AND L39
FILE 'BIOTECHDS'
     1 L28 AND L40
FILE 'BIOSIS'
     0 L29 AND L41
L53
FILE 'EMBASE'
    0 L30 AND L42
L54
FILE 'HCAPLUS'
           2 L31 AND L43
FILE 'NTIS'
          0 L32 AND L44
L56
FILE 'ESBIOBASE'
           1 L33 AND L45
FILE 'BIOTECHNO'
           1 L34 AND L46
FILE 'WPIDS'
           1 L35 AND L47
L59
TOTAL FOR ALL FILES
        9 L36 AND L48
\Rightarrow s 112(5a)human and 112(5a)gene/q
FILE 'MEDLINE'
      1269134 HUMAN
          81 L1 (5A) HUMAN
```

179 L1 (5A)GENE/Q L61 28 L1 (5A)HUMAN AND L1 (5A)GENE/Q

FILE 'SCISEARCH'

1203816 HUMAN

68 L2 (5A) HUMAN

193 L2 (5A)GENE/Q

L62 18 L2 (5A) HUMAN AND L2 (5A) GENE/Q

FILE 'LIFESCI'

360592 HUMAN

29 L3 (5A) HUMAN

109 L3 (5A)GENE/Q

L63 10 L3 (5A) HUMAN AND L3 (5A) GENE/Q

FILE 'BIOTECHDS'

```
73867 HUMAN
```

10 L4 (5A) HUMAN

38 L4 (5A)GENE/Q

L64 8 L4 (5A) HUMAN AND L4 (5A) GENE/Q

FILE 'BIOSIS'

6470545 HUMAN

86 L5 (5A) HUMAN

203 L5 (5A)GENE/Q

L65 37 L5 (5A) HUMAN AND L5 (5A) GENE/Q

FILE 'EMBASE'

5451661 HUMAN

54 L6 (5A) HUMAN

137 L6 (5A)GENE/Q

L66 15 L6 (5A) HUMAN AND L6 (5A) GENE/Q

FILE 'HCAPLUS'

1450466 HUMAN

138 L7 (5A) HUMAN

367 L7 (5A)GENE/Q

L67 86 L7 (5A) HUMAN AND L7 (5A) GENE/Q

FILE 'NTIS'

85958 HUMAN

2 L8 (5A) HUMAN

6 L8 (5A)GENE/Q

L68 0 L8 (5A) HUMAN AND L8 (5A) GENE/Q

FILE 'ESBIOBASE'

446947 HUMAN

50 L9 (5A) HUMAN

131 L9 (5A)GENE/Q

L69 19 L9 (5A) HUMAN AND L9 (5A) GENE/Q

FILE 'BIOTECHNO'

735552 HUMAN

33 L10(5A) HUMAN

118 L10(5A)GENE/Q

L70 13 L10(5A) HUMAN AND L10(5A) GENE/Q

FILE 'WPIDS'

164992 HUMAN

8 L11 (5A) HUMAN

58 L11(5A)GENE/Q

L71 2 L11(5A) HUMAN AND L11(5A) GENE/Q

TOTAL FOR ALL FILES

L72 236 L12(5A) HUMAN AND L12(5A) GENE/Q

=> s 136 and 172

FILE 'MEDLINE'

L73 9 L25 AND L61

FILE 'SCISEARCH'

L74 10 L26 AND L62

FILE 'LIFESCI'

L75 7 L27 AND L63

FILE 'BIOTECHDS'

L76 1 L28 AND L64

FILE 'BIOSIS'

```
L77
            10 L29 AND L65
FILE 'EMBASE'
             8 L30 AND L66
L78
FILE 'HCAPLUS'
            22 L31 AND L67
L79
FILE 'NTIS'
L80
             0 L32 AND L68
FILE 'ESBIOBASE'
L81
             9 L33 AND L69
FILE 'BIOTECHNO'
L82
            9 L34 AND L70
FILE 'WPIDS'
             0 L35 AND L71
L83
TOTAL FOR ALL FILES
            85 L36 AND L72
=> dup rem 160,184
PROCESSING COMPLETED FOR L60
PROCESSING COMPLETED FOR L84
L85
             28 DUP REM L60 L84 (66 DUPLICATES REMOVED)
=> d tot
    ANSWER 1 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
L85
     Human homologs of BVP and CDC14: characterization of new
     dual specificity phosphatases
     (2000) 161 pp. Avail.: UMI, Order No. DA3017796
SO
     From: Diss. Abstr. Int., B 2001, 62(6), 2603
ΑU
     Deshpande, Tarangini
ΔN
     2002:361836 HCAPLUS
DM
     137:196416
      ANSWER 2 OF 28 BIOTECHDS COPYRIGHT 2005 THE THOMSON CORP. on STN
L85
      Novel dual-specificity mitogen-activated protein-kinase polypeptide
TI
      useful in screening assays for identifying agents that modulate activity
      of the protein which are useful for treating cancer and autoimmune
         vector-mediated gene transfer and expression in host cell and antibody
ΑU
      Luche R M: Wei B
ΑN
      2001-01529 BIOTECHDS
      WO 2000060092 12 Oct 2000
PΤ
      ANSWER 3 OF 28 BIOTECHDS COPYRIGHT 2005 THE THOMSON CORP. on STN
L85
      New isolated nucleic acid molecules encoding human nuclear
TΤ
      dual specificity phosphatase-like protein for
      diagnosis of androgen independent prostate cancers;
         vector-mediated gene transfer and expression in mammal cell and
         monoclonal antibody
ΑU
      Richardson J; Vassiliadis J; Shyjan A W
      2000-12150 BIOTECHDS
AN
PΙ
      WO 2000039277 6 Jul 2000
L85
     ANSWER 4 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
ΤI
     mVH1, a dual-specificity phosphatase whose expression is cell cycle
     regulated
```

Mammalian Genome (2000), 11(12), 1154-1156

CODEN: MAMGEC; ISSN: 0938-8990

SO

```
AU Zhang, Xin-Min; Dormady, Shane P.; Chaung, Wenren; Basch, Ross S.
```

- AN 2001:8820 HCAPLUS
- DN 135:89064
- L85 ANSWER 5 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI FYVE-DSP1, a Dual-Specificity Protein Phosphatase Containing an FYVE Domain
- SO Biochemical and Biophysical Research Communications (2000), 270(1), 222-229
 CODEN: BBRCA9; ISSN: 0006-291X
- AU Zhao, Runxiang; Qi, Ying; Zhao, Zhizhuang Joe
- AN 2000:194610 HCAPLUS
- DN 133:55190
- L85 ANSWER 6 OF 28 BIOSIS COPYRIGHT (c) 2005 The Thomson Corporation on STN
- TI The tooth, the whole tooth, and nothing but the tooth.
- SO AAAS Annual Meeting and Science Innovation Exposition, (February 17-22 2000) Vol. 166, pp. A50. print.

 Meeting Info.: 166th National Meeting of the American Association for the Advancement of Science (AAAS) and Science Innovation Exposition.

 Washington, D.C., USA. February 17-22, 2000.
- AU MacDougall, Mary [Reprint Author]
- AN 2003:257563 BIOSIS
- L85 ANSWER 7 OF 28 SCISEARCH COPYRIGHT (c) 2005 The Thomson Corporation on STN DUPLICATE 3
- TI Molecular cloning of a human dentin sialophosphoprotein gene
- SO EUROPEAN JOURNAL OF ORAL SCIENCES, (FEB 2000) Vol. 108, No. 1, pp. 35-42. ISSN: 0909-8836.
- AU Gu K (Reprint); Chang S R; Ritchie H H; Clarkson B H; Rutherford R B
- AN 2000:147252 SCISEARCH
- L85 ANSWER 8 OF 28 LIFESCI COPYRIGHT 2005 CSA on STN
- TI Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2
- SO Nature Genetics [Nat. Genet.], (20000500) vol. 25, no. 1, pp. 17-19. ISSN: 1061-4036.
- AU Bolino, A.; Muglia, M.; Conforti, F.L.; LeGuern, E.; Salih, M.A.M.; Georgiou, D.-M.; Christodoulou, K.; Hausmanowa-Petrusewicz, I.; Mandich, P.; Schenone, A.; Gambardella, A.; Bono, F.; Quattrone, A.; Devoto, M.; Monaco, A.P.*
- AN 2000:87091 LIFESCI
- L85 ANSWER 9 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI Dual specificity phosphatase PTEN and methods of use and structure of PTEN gene
- SO PCT Int. Appl., 60 pp.

CODEN: PIXXD2

- IN Tonks, Nicholas K.; Myers, Michael P.
- AN 1999:64950 HCAPLUS
- DN 130:135002

	PATENT NO.			KIND DATE			APPLICATION NO.					DATE							
																			
ΡI	WO 9902704			A2		19990121			WO 1998-US14205				19980708						
	WO 9902704		A 3		1999	0401													
		W:	AL,	AM,	AT,	AU,	ΑZ,	ВA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CU,	CZ,	DE,	
			DK,	EE,	ES,	FΙ,	GB,	GE,	GH,	GM,	HR,	HU,	ID,	IL,	IS,	JP,	KE,	KG,	
			KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MD,	MG,	MK,	MN,	MW,	MX,	
			NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	
			UA,	UG,	US,	US,	UZ,	VN,	YU,	ZW,	AM,	ΑZ,	BY,	KG,	ΚZ,	MD,	RU,	TJ,	TM
		RW:	GH,	GM,	KE,	LS,	MW,	SD,	SZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,	DE,	DK,	ES,	
			FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	CF,	CG,	CI,	
								MR,											

AU 9884794 A1 19990208 AU 1998-84794 19980708

- L85 ANSWER 10 OF 28 Elsevier BIOBASE COPYRIGHT 2005 Elsevier Science B.V. on STN DUPLICATE
- AN 2000013706 ESBIOBASE
- TI Molecular cloning and characterization of a novel deal-specificity protein phosphatase possibly involved in spermatogenesis
- AU Nakamura K.; Shima H.; Watanabe M.; Haneji T.; Kikuchi K.
- CS H. Shima, Section of Biochemistry, Institute of Immunological Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan. E-mail: hshima@imm.hokudai.ac.jp
- SO Biochemical Journal, (15 DEC 1999), 344/3 (819-825), 49 reference(s) CODEN: BIJOAK ISSN: 0264-6021
- DT Journal; Article
- CY United Kingdom
- LA English
- SL English
- L85 ANSWER 11 OF 28 MEDLINE on STN DUPLICATE 5
- TI Analysis of the desmoplakin gene reveals striking conservation with other members of the plakin family of cytolinkers.
- SO Experimental dermatology, (1999 Dec) 8 (6) 462-70. Journal code: 9301549. ISSN: 0906-6705.
- AU Green K J; Guy S G; Cserhalmi-Friedman P B; McLean W H; Christiano A M; Wagner R M
- AN 2000062271 MEDLINE
- L85 ANSWER 12 OF 28 MEDLINE on STN DUPLICATE 6
- TI Genomic characterization of human DSPG3.
- SO Genome research, (1999 May) 9 (5) 449-56. Journal code: 9518021. ISSN: 1088-9051.
- AU Deere M; Dieguez J L; Yoon S J; Hewett-Emmett D; de la Chapelle A; Hecht J
- AN 1999263231 MEDLINE
- L85 ANSWER 13 OF 28 MEDLINE on STN DUPLICATE 7
- TI Genomic structure, chromosomal location, and mutation analysis of the human CDC14A gene.
- SO Genomics, (1999 Jul 15) 59 (2) 248-51. Journal code: 8800135. ISSN: 0888-7543.
- AU Wong A K; Chen Y; Lian L; Ha P C; Petersen K; Laity K; Carillo A; Emerson M; Heichman K; Gupte J; Tavtigian S V; Teng D H
- AN 1999339990 MEDLINE
- L85 ANSWER 14 OF 28 MEDLINE on STN DUPLICATE 8
- TI Rat dentin matrix protein 3 is a compound protein of rat dentin sialoprotein and phosphophoryn.
- SO Connective tissue research, (1999) 40 (1) 49-57. Journal code: 0365263. ISSN: 0300-8207.
- AU George A; Srinivasan RThotakura S R; Liu K; Veis A
- AN 2000231419 MEDLINE
- L85 ANSWER 15 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI Characterization of dermatan sulfate proteoglycan 3 (DSPG3) and cartilage oligomeric matrix protein
- SO (1998) 190 pp. Avail.: UMI, Order No. DA9828232 From: Diss. Abstr. Int., B 1998, 59(4), 1474
- AU Deere, Michelle Williams
- AN 1998:571011 HCAPLUS
- DN 129:184976
- L85 ANSWER 16 OF 28 MEDLINE on STN DUPLICATE 9
- TI Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human.
- SO Human molecular genetics, (1998 Oct) 7 (11) 1703-12.

Journal code: 9208958. ISSN: 0964-6906. Laporte J; Blondeau F; Buj-Bello A; Tentler D; Kretz C; Dahl N; Mandel J L ΑU MEDLINE 1998409499 ANDUPLICATE 10 ANSWER 17 OF 28 MEDLINE on STN

L85

- Pten is essential for embryonic development and tumour suppression. TI
- Nature genetics, (1998 Aug) 19 (4) 348-55. SO Journal code: 9216904. ISSN: 1061-4036.
- Di Cristofano A; Pesce B; Cordon-Cardo C; Pandolfi P P ΙIΑ
- MEDLINE 1998361160 AN
- ANSWER 18 OF 28 MEDLINE on STN DUPLICATE 11 L85
- Refined mapping of the human dentin sialophosphoprotein (TΙ DSPP) gene within the critical dentinogenesis imperfecta type II and dentin dysplasia type II loci.
- European journal of oral sciences, (1998 Jan) 106 Suppl 1 227-33. SO Journal code: 9504563. ISSN: 0909-8836.
- ΑU MacDougall M
- 1998200300 MEDLINE AN
- MEDLINE on STN **DUPLICATE 12** L85 ANSWER 19 OF 28
- Chromosomal localization of three human dual TТ specificity phosphatase genes (DUSP4, DUSP6, and DUSP7).
- Genomics, (1997 Jun 15) 42 (3) 524-7. SO Journal code: 8800135. ISSN: 0888-7543.
- Smith A; Price C; Cullen M; Muda M; King A; Ozanne B; Arkinstall S; Ashworth A
- 97349124 MEDLINE AN
- L85 ANSWER 20 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- Assignment of dentin sialophosphoprotein (DSPP) to the critical TIDGI2 locus on human chromosome 4 band q21.3 by in situ hybridization
- Cytogenetics and Cell Genetics (1997), 79(1-2), 121-122 SO CODEN: CGCGBR; ISSN: 0301-0171
- MacDougall, M.; Simmons, D.; Luan, X.; Gu, T. T.; DuPont, B. R. ΑU
- 1998:276313 HCAPLUS AN
- DN 129:50311
- ANSWER 21 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN L85
- The dual specificity phosphatases M3/6 and MKP-3 are highly selective for ΤI inactivation of distinct mitogen-activated protein kinases
- Journal of Biological Chemistry (1996), 271(44), 27205-27208 SO CODEN: JBCHA3; ISSN: 0021-9258
- Muda, Marco; Theodosiou, Aspasia; Rodrigues, Nanda; Boschert, Ursula; ΑU Camps, Montserrat; Gillieron, corine; Davies, Kay; Ashworth, Alan; Arkinstall, Steve
- 1996:681481 HCAPLUS AN
- DN 126:3595
- ANSWER 22 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN L85
- Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a TI novel cytosolic dual-specificity phosphatase
- EMBO Journal (1996), 15(14), 3621-3632 SO
 - CODEN: EMJODG; ISSN: 0261-4189
- Groom, Linda A.; Sneddon, Alan A.; Alessi, Dario R.; Dowd, Stephen; Keyse, ΑU Stephen M.
- 1996:479542 HCAPLUS AN
- 125:191459 DN
- L85 ANSWER 23 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN DUPLICATE 13
- Characterization of human DSPG3, a small dermatan TI sulfate proteoglycan

- SO Genomics (1996), 38(3), 399-404 CODEN: GNMCEP; ISSN: 0888-7543
- AU Deere, Michelle; Johnson, Jan; Garza, Sonya; Harrison, Wilbur R.; Yoon, Sung-Joo; Elder, Frederick F. B.; Kucherlapati, Raju; Hook, Magnus; Hecht, Jacqueline T.
- AN 1997:45371 HCAPLUS
- DN 126:127584
- L85 ANSWER 24 OF 28 MEDLINE on STN DUPLICATE 14
- TI A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase.
- SO Journal of biological chemistry, (1995 Nov 10) 270 (45) 26782-5. Journal code: 2985121R. ISSN: 0021-9258.
- AU Wishart M J; Denu J M; Williams J A; Dixon J E
- AN 96070766 MEDLINE
- L85 ANSWER 25 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI A novel dual specificity phosphatase induced by serum stimulation and heat shock
- SO Journal of Biological Chemistry (1994), 269(47), 29897-902 CODEN: JBCHA3; ISSN: 0021-9258
- AU Ishibashi, Toshio; Boattaro, Donald P.; Michieli, Paolo; Kelley, Christine A.; Aaronson, Stuart A.
- AN 1994:674996 HCAPLUS
- DN 121:274996
- L85 ANSWER 26 OF 28 MEDLINE on STN DUPLICATE 15
- TI Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III.
- SO Gene, (1994 Aug 5) 145 (2) 283-8. Journal code: 7706761. ISSN: 0378-1119.
- AU Agnes F; Shamoon B; Dina C; Rosnet O; Birnbaum D; Galibert F
- AN 94333823 MEDLINE
- L85 ANSWER 27 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI Chromosomal assignment of the human genes coding for the major proteins of the desmosome junction, desmoglein DGI (DSG), desmocollins DGII/III (DSC), desmoplakins DPI/II (DSP), and plakoglobin DPIII (JUP)
- SO Genomics (1991), 10(3), 640-5 CODEN: GNMCEP; ISSN: 0888-7543
- AU Arnemann, Joachim; Spurr, Nigel K.; Wheeler, Grant N.; Parker, Andrew E.; Buxton, Roger S.
- AN 1991:672075 HCAPLUS
- DN 115:272075
- L85 ANSWER 28 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- TI B cell development regulated by gene rearrangement: arrest of maturation by membrane-bound $D\mu$ protein and selection of DH element reading frames
- SO Cell (Cambridge, MA, United States) (1991), 65(1), 47-54 CODEN: CELLB5; ISSN: 0092-8674
- AU Gu, Hua; Kitamura, Daisuke; Rajewsky, Klaus
- AN 1991:423443 HCAPLUS
- DN 115:23443
- => d ab 4,5,9,10,13,16,19,21,22,25
- L85 ANSWER 4 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN
- AB Recently, a new family of dual-specificity protein phosphatases has been identified, which can hydrolyze both phosphotyrosine and phosphoserine. The first eukaryotic member of the family, yVH1, was cloned from Saccharomyces cerevisiae by searching the yeast genome for vaccinia VH1 homologs. The identification of a new dsPTP that is the mouse ortholog of

yVH1, is reported. Both the mouse and human homologs of the yeast VH1 gene, were isolated. MVH1 (Dusp12) expression is cell cycle related and accumulates during the G1/S phase. While the substrates for mVH1 are not known, it seems likely that this gene, like other dual -specificity phosphatases, plays a role in regulating cell division and may be involved in neoplastic transformation.

ANSWER 5 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN L85 Dual-specificity protein phosphatases (DSPs) dephosphorylate proteins at AB Ser/Thr and Tyr. FYVE domain is a double zinc finger motif which specifically binds phosphatidylinositol(3)-phosphate. Here, we report a novel dual specificity phosphatase that contains a FYVE domain at the C-terminus. We designate the protein FYVE-DSP1. Mol. cloning yielded three isoforms of the enzyme presumably derived from alternate RNA Sequence alignment revealed that the catalytic phosphatase domain of FYVE-DSP1 closely resembled that of myotubularin, while its FYVE domain has all the conserved amino acid residues found in other proteins of the same family. Recombinant FYVE-DSP1 is partitioned in both cytosolic and membrane fractions. It dephosphorylates proteins phosphorylated on Ser, Thr, and Tyr residues and low mol. weight phosphatase substrate para-nitrophenylphosphate. It shows typical characteristics of other DSPs and protein tyrosine phosphatases (PTPs). These include inhibition by sodium vanadate and pervanadate, pH dependency, and inactivation by mutation of the key cysteinyl residue at the phosphatase signature motif. Finally, PCR analyses demonstrated that FYVE-DSP1 is widely distributed in human tissues but different spliced forms expressed differently. (c) 2000 Academic Press.

ANSWER 9 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN

PTEN proteins and altered PTEN proteins, and the nucleic acid mols.
encoding them are described. PTEN is a protein phosphatase and is a tumor suppressor with sequence homol. to protein tyrosine phosphatases. The cDNA sequence of human PTEN gene is presented. Also described are methods of diagnosis and treatment, e.g., of prostate cancer, utilizing compns. comprising PTEN or altered PTEN or nucleic acid mols. encoding PTEN or altered PTEN.

L85 ANSWER 10 OF 28 Elsevier BIOBASE COPYRIGHT 2005 Elsevier Science B.V. on STN DUPLICATE

Dual-specificity protein phosphatases (DSPs) play roles in the regulation AB of mitogenic signal transduction for extracellular stimulation and the cell cycle. In the present study, we identified a novel DSP, termed TMDP (testis- and skeletal-muscle-specific DSP). Nucleotide sequence analysis of TMDP cDNA indicated that the open reading frame of 597 bp encodes a protein of 198 amino acid residues with a predicted molecular mass of 22.5 kDa. The deduced amino acid sequence contains a motif for a conserved catalytic domain of DSPs and shows highest similarity to human Vaccinia HI-related phosphatase (45.5% identity) but low homology to the mitogen-activated protein kinase phosphatase and CDC25 subfamilies of DSPs. Recombinant TMDP protein exhibited intrinsic phosphatase activity towards both phospho-seryl/threonyl and -tyrosyl residues of myelin basic protein, with similar specific activities in vitro. Northern-blot analysis revealed that TMDP is most abundantly expressed in the testis. The expression in the testis is characterized as follows: (i) TMDP mRNA first appeared 3 weeks after birth, corresponding to the time that meiosis begins; (ii) TMDP mRNA was abundant in fractionated spermatocytes and round spermatids; and (iii) hybridization in situ showed that the TMDP mRNA is localized in spermatocytes and/or spermatids in seminiferous tubules. These data demonstrate that TMDP is a novel DSP abundantly expressed in the testis and suggest that TMDP may be involved in the regulation of meiosis and/or differentiation of testicular germ cells during spermatogenesis.

L85 ANSWER 13 OF 28 MEDLINE on STN

AB Human CDC14A is a dual-specificity

phosphatase that shares sequence similarity with the recently identified tumor suppressor, MMAC1/PTEN/TEP1. By radiation hybrid mapping, we localized CDC14A to chromosome band 1p21, a region that has been shown to exhibit loss of heterozygosity in highly differentiated breast carcinoma and malignant mesothelioma. We have mapped the exon-intron structure of CDC14A gene and found an in-frame ATG at 14 codons upstream of the previously reported start site (GenBank Accession Number AF000367). In screening a panel of 136 cDNAs from tumor cell lines for coding mutations, we have identified a 48-bp in-frame deletion in the cDNA of the breast carcinoma cell line, MDA-MB-436. This deletion is the result of an acceptor splice site mutation (AG to AT) in intron 12 that causes the skipping of exon 13 in the gene. Loss of expression of the wildtype allele in the same breast cell line supports the possibility that CDC14A may be a tumor suppressor gene that is targeted for inactivation during tumorigenesis. Copyright 1999 Academic Press.

L85 ANSWER 16 OF 28 MEDLINE on STN DUPLICATE 9

AB X-linked myotubular myopathy (XLMTM) is a severe congenital muscle disorder due to mutations in the MTM1 gene. The corresponding protein, myotubularin, contains the consensus active site of tyrosine phosphatases (PTP) but otherwise shows no homology to other phosphatases. Myotubularin is able to hydrolyze a synthetic analogue of tyrosine phosphate, in a reaction inhibited by orthovanadate, and was recently shown to act on both phosphotyrosine and phosphoserine. This gene is conserved down to yeast and strong homologies were found with human ESTs, thus defining

a new dual specificity phosphatase (psp) family. We report the presence of novel members of the MTM gene family in Schizosaccharomyces pombe, Caenorhabditis elegans, zebrafish, Drosophila, mouse and man. This represents the largest family of DSPs described to date. Eight MTM-related genes were found in the human genome and we determined the chromosomal localization and expression pattern for most of them. A subclass of the myotubularin homologues lacks a functional PTP active site. Missense mutations found in XLMTM patients affect residues conserved in a Drosophila homologue. Comparison of the various genes allowed construction of a phylogenetic tree and reveals conserved residues which may be essential for function. These genes may be good candidates for other genetic diseases.

ANSWER 19 OF 28 MEDLINE on STN DUPLICATE 12

AB Mitogen-activated protein (MAP) kinase phosphatases constitute a growing family of dual specificity phosphatases thought to play a role in the dephosphorylation and inactivation of MAP kinases and are therefore likely to be important in the regulation of diverse cellular processes such as proliferation, differentiation, and apoptosis. For this reason it has been suggested that MAP kinase phosphatases may be tumor suppressors. We have determined the chromosomal locations of three human dual specificity phosphatase genes

by fluorescence in situ hybridization and radiation hybrid mapping. The genes were localized to three different chromosomes, MKP2 (DUSP4) to

by fluorescence in situ hybridization and radiation hybrid mapping. The genes were localized to three different chromosomes, MKP2 (DUSP4) to 8p11-p12, MKP3 (DUSP6) to 12q22-q23, and MKPX (DUSP7) to 3p21. This will allow the potential roles of these genes in disease processes to be evaluated.

L85 ANSWER 21 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN

AB The mitogen-activated protein (MAP) kinase family includes extracellular signal-regulated kinase (ERK), c-Jun, NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38/RK/CSBP (p38) as structurally and functionally distinct enzyme classes. Here we describe two new dual specificity phosphatases of the CL100/MKP-1 family that are selective for inactivating ERK or JNK/SAPK and p38 MAP kinases when expressed in COS-7 cells. M3/6 is the first phosphatase of this family to display highly

specific inactivation of JNK/SAPK and p38 MAP kinases. Although stress-induced activation of p54 SAPKβ, p46 SAPKγ (JNK1) or p38 MAP kinases is abolished upon co-transfection with increasing amts. of M3/6 plasmid, epidermal growth factor-stimulated ERK1 is remarkably insensitive even to the highest levels of M3/6 expression obtained. contrast to M3/6, the dual specificity phosphatase MKP-3 is selective for inactivation of ERK family MAP kinases. Low level expression of MKP-3 blocks totally epidermal growth factor-stimulated ERK1, whereas stress-induced activation of p54 SAPKβ and p38 MAP kinases is inhibited only partially under identical conditions. Selective regulation by M3/6 and MKP-3 was also observed upon chronic MAP kinase activation by constitutive p21ras GTPases. Hence, although M3/6 expression effectively blocked p54 SAPKβ activation by p21rac (G12V), ERK1 activated by p21ras (G12V) was insensitive to this phosphatase. ERK1 activation by oncogenic p21ras was, however, blocked totally by co-expression of MKP-3. This is the first report demonstrating reciprocally selective inhibition of different MAP kinases by two distinct dual specificity phosphatases.

L85 ANSWER 22 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN The Pyst1 and Pyst2 mRNAs encode closely related proteins, which are novel AB members of a family of dual-specificity MAP kinase phosphatases typified by CL100/MKP-1. Pyst1 is expressed constitutively in human skin fibroblasts and, in contrast to other members of this family of enzymes, its mRNA is not inducible by either stress or mitogens. Furthermore, unlike the nuclear CL100 protein, Pystl is localized in the cytoplasm of transfected Cos-1 cells. Like CL100/MKP-1, Pyst1 dephosphorylates and inactivates MAP kinase in vitro and in vivo. In addition, Pyst1 is able to form a phys. complex with endogenous MAP kinase in Cos-1 cells. However, unlike CL100, Pyst1 displays very low activity towards the stress-activated protein kinases (SAPKs) or RK/p38 in vitro, indicating that these kinases are not physiol. substrates for Pyst1. specificity is underlined by the inability of Pystl to block either the stress-mediated activation of the JNK-1 SAP kinase or RK/p38 in vivo or to inhibit nuclear signalling events mediated by the SAP kinases in response to UV radiation. These results provide the 1st evidence that the members of the MAP kinase family of enzymes are differentially regulated by dual-specificity phosphatases and also indicate that the MAP kinases may be regulated by different members of this family of enzymes depending on their subcellular location.

L85 ANSWER 25 OF 28 HCAPLUS COPYRIGHT 2005 ACS on STN To identify new members of a family of protein-tyrosine phosphatases AB (PTPs), of which VH1 is prototype, we screened a B5/589 human mammary epithelial cell cDNA library by low stringency hybridization with probes for the catalytic domains of the human VHR and mouse 3CH134 phosphatases. Two overlapping clones of 1.8 and 2.5 kilobase pairs were detected by 3CH134 but not VHR probes. Sequence anal. of the largest clone, B23, revealed a 2470-nucleotide open reading frame encoding a novel protein. Within the 397 amino acid sequence, the HCXAGXXR signature sequence for PTPs was located at positions 261-268. The closest similarities were to 3CH134, its human homolog CL100, and PAC-1, PTPs induced as early response genes to mitogen stimulation. Less relatedness was observed with VHR and VH1 dual specificity phosphatases of human and vaccinia virus, resp. A bacterially expressed recombinant protein containing the catalytic domain of B23 showed significant but consistently lower activity than VHR in vitro. Among the substrates tested, B23 displayed the highest relative activity toward phosphorylated extracellular signal regulated kinase-1, suggesting that it may be a target for B23 activity in vivo. The B23 transcript was detected in a wide variety of normal human tissues, with relatively high expression in pancreas and brain. B23 was induced by serum stimulation of human fibroblasts as well as by heat shock with similar kinetics to those observed with CL100. Thus, B23 is a new human protein phosphatase which appears to

be regulated in response to mitogenic signaling and at least some forms of stress.

=> log y COST IN U.S. DOLLARS	SINCE FILE	TOTAL		
FULL ESTIMATED COST	ENTRY 77.71	SESSION 77.92		
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION		
CA SUBSCRIBER PRICE	-4.38	-4.38		

STN INTERNATIONAL LOGOFF AT 16:12:14 ON 14 JUL 2005