лите это понятие), лежащей в соприкасающейся плоскости с центром в центре кривизны кривой и радиусом, равным радиусу кривизны в точке $r(t_0)$.

Это предельная окружность называется соприкасающейся окружностью в данной точке кривой.

17.6. Эвольвента

Как известно, $\frac{d\mathbf{t}}{ds}=k\mathbf{n}$. Покажем, что для плоских кривых

$$\frac{d\mathbf{n}}{ds} = -k\mathbf{t}.\tag{17.31}$$

В самом деле, поскольку \mathbf{n} - единичный вектор и, следовательно, имееь постоянную длину, его производная $\frac{d\mathbf{n}}{ds}$ перпендикулярна ему. Касательный вектор \mathbf{t} также перпендикулярен вектору \mathbf{n} . На плоскости два вектора, перпендикулярные третьему, коллинеарны, поэтому

$$\frac{d\mathbf{n}}{ds} = a\mathbf{t}.\tag{17.32}$$

Для того чтобы найти значение коэффициента a, продифференцируем по длине дуги тождество $\mathbf{tn} = 0$. В результате получим

$$\frac{dt}{ds}\mathbf{n} + \mathbf{t}\frac{dn}{ds} = 0.$$

Подставив сюда значения $\frac{dt}{ds} = k\mathbf{n}, \frac{dn}{ds} = a\mathbf{t}$ и заметив, что $\mathbf{tt} = \mathbf{nn} = 1$, получим a = -k. Отсюда, в силу равенства (17.32), и следует формула (17.31). Формулы (17.9) и (17.31), т.е.

$$\frac{dt}{ds} = k\mathbf{n}, \frac{dn}{ds} = -k\mathbf{t},$$

называются формулами Френе¹ для плоской кривой.

Определение 8. Если кривая Γ_1 является эволютной плоской кривой Γ , то кривая Γ называется эволбвентной кривой Γ_1 .

 $^{^{1}}$ Ж.Ф.Френе (1816-1900) - французский математик.