

SOLUTION OF EXERCISESHEET 7

Exercise 7-1

This modified encryption does not achieve CPA-security. H(m) is only collision-resistant and doesn't have to hide the message m. If H(m) leaks the message m and this is concatenated with Enc(k,m) the resulting scheme Enc'(k,m) can't be CPA-secure.

Exercise 7-2

(a) not secure:

The adversary \mathcal{A} makes two queries to the oracle: $m^1 = m_1 || m_2 \Rightarrow t^1 = t_1^1 || t_2^1 = F(K, m_1) || F(K, F(K, m_2))$ $m^2 = F(K, m_1) || m_2 \Rightarrow t^2 = t_1^2 || t_2^2 = F(K, F(K, m_1)) || F(K, F(K, m_2))$ Then he knows the tag for the message $m^* = m_1 || m_1$ which is $t^* = F(K, m_1) || F(K, F(K, m_1)) = t_1^1 || t_1^2$. Because $m^* \neq m^1$ and $m^* \neq m^2$, (m^*, t^*) is a valid attack.

(b) not secure:

The adversary $\mathcal A$ makes one query to the oracle: $m^1=m_1||m_2\Rightarrow t^1=F(K,m_1)\oplus F(K,m_2)$ Then he knows the tag for the message $m^*=m_2||m_1$ which is $t^*=F(K,m_2)\oplus F(K,m_1)=F(K,m_1)\oplus F(K,m_2)=t^1$. Because $m^*\neq m^1$, (m^*,t^*) is a valid attack.

(c) not secure:

The adversary $\mathcal A$ makes one query to the oracle: $m^1=m_1||m_2\Rightarrow t^1=(r\oplus (F(K,m_1)\oplus F(K,m_2)),r)$ Then he knows the tag for the message $m^*=m_2||m_1$ which is $t^*=(r\oplus (F(K,m_2)\oplus F(K,m_1)),r)=(r\oplus (F(K,m_1)\oplus F(K,m_2)),r)=t^1$. Because $m^*\neq m^1$, (m^*,t^*) is a valid attack.

SOLUTION OF EXERCISESHEET 7

Exercise 7-3

(a) The adversary $\mathcal A$ can choose the message $\mathsf m^*$ of length $\ell(\lambda) \cdot \lambda$. We set $\ell(\lambda) = \mathsf I$ $\mathsf m^* = \mathsf m_1^* \mid | \ ... \mid | \ \mathsf m_l^*.$ We set $\mathsf m_i^* = \mathsf 0^\lambda$ for $1 \leq \mathsf i \leq \mathsf I$. We query $\mathsf m^*$ to our $\mathsf{Mac}_k(\cdot)$ oracle and recieve the tag $\mathsf t'^* = (\mathsf{IV}^*, \ \mathsf t^*)$. $\mathsf{IV}^* \in \{0,1\}^\lambda$ is a randomly generated vector.

$$\begin{array}{l} c_{1}^{*} = F_{k}(\mathsf{IV}^{*} \oplus \mathsf{m}_{1}^{*}) = F_{k}(\mathsf{IV}^{*} \oplus \mathsf{0}^{\lambda}) = F_{k}(\mathsf{IV}^{*}) \\ c_{2}^{*} = F_{k}(\mathsf{c}_{1}^{*} \oplus \mathsf{m}_{2}^{*}) = F_{k}(\mathsf{F}_{k}(\mathsf{IV}^{*}) \oplus \mathsf{0}^{\lambda}) = F_{k}(\mathsf{F}_{k}(\mathsf{IV}^{*})) \\ \dots \\ c_{l}^{*} = F_{k}(\ \dots \ \mathsf{F}_{k}(\mathsf{IV}^{*}) \ \dots) = \mathsf{t}^{*} \end{array}$$

To break the security of the MAC the adversary $\mathcal A$ can construct the following forgery: $\mathsf m=0^{\lambda-1}1\mid\mid\mathsf m_2^*\mid\mid\ldots\mid\mid\mathsf m_l^*$ with $\mathsf I\mathsf V=\mathsf I\mathsf V^*\oplus 0^{\lambda-1}1$

meaning we flip the last bit of the first block of our message as well as the last bit of our IV*. This causes that $IV^* \oplus m_1^* = IV \oplus m_1$ and therefore

 $\mathsf{c}_1^* = \mathsf{F}_k(\mathsf{IV}^* \oplus \mathsf{m}_1^*) = \mathsf{F}_k(\mathsf{IV} \oplus \mathsf{m}_1) = \mathsf{c}_1 \text{ as well as all other } \mathsf{c}_i^* = \mathsf{c}_i \text{ of the chain for } \mathsf{i} \in [2,l].$

We can conclude that $t^* = t$ but $m^* \neq m$ and therefore m was not queried to Mac_k before

 \Rightarrow The adversary $\mathcal A$ can now create the valid forgery (m, t') with t' = (IV, t*) and can break the unforgability of the Mac.

SOLUTION OF EXERCISESHEET 7

(b) The adversary $\mathcal A$ can choose the messages m of length $\ell(\lambda) \cdot \lambda$. We set $\ell(\lambda) = I$. We choose $\mathsf{m}^1 = \mathsf{m}^1_1 \mid\mid \ldots \mid\mid \mathsf{m}^1_l$ and $\mathsf{m}^2 = \mathsf{m}^2_1 \mid\mid \ldots \mid\mid \mathsf{m}^2_l$ with $\mathsf{m}^1_j = \mathsf{m}^2_j = 0^\lambda$ for $2 \leq j \leq I$.

$$\mathsf{c}_1^i = \mathsf{F}_k(\mathsf{IV} \oplus \mathsf{m}_1^i)$$
 with $\mathsf{IV}^* \in \{\mathsf{0,1}\}^\lambda$ as a fixed vector $\mathsf{c}_2^i = \mathsf{F}_k(\mathsf{c}_1^i \oplus \mathsf{m}_2^i)$

To break the security of the MAC the adversary $\mathcal A$ can construct the following forgery: $\mathsf m = \mathsf m_1^2 \mid\mid \mathsf m_2^{\,\prime}\mid\mid \mathsf m_3^1\mid\mid ...\mid\mid \mathsf m_l^1$

with $\mathsf{m}_2' = \mathsf{c}_1^1 \oplus \mathsf{m}_2^1 \oplus \mathsf{c}_1^2$ which generates a vector that satisfies the following equation: $\Rightarrow \mathsf{c}_1^1 \oplus \mathsf{m}_2^1 = \mathsf{c}_1^2 \oplus \mathsf{m}_2'$

This helps us construct m such that $c_2^1 = F_k(c_1^1 \oplus m_2^1) = F_k(c_1^2 \oplus m_2') = c_2$ and $c_i^1 = c_i$ for $i \in \{3,I\}$.

Therefore the adversary \mathcal{A} can create the valid forgery (m, t) with $\mathbf{t}=(\mathsf{c}_1^2,\,\mathsf{c}_2^1,\,\ldots\,,\,\mathsf{c}_l^1)$ for m which has not been queried before and can break the unforgability of the Mac.

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba December 8, 2022

SOLUTION OF EXERCISESHEET 7

Exercise 7-4

 Π' is unforgeable under an adaptive chosen message attack.

For proof, let's assume Π' is not unforgeable under an adaptive chosen message attack. Then there exists an adversary $\mathcal A$ against Π' who is able to find a valid message, tag pair in polynomial time with a non-negligible probability.

We use A to build an adversary D who breaks Π_M , an unforgeable MAC.

 \mathcal{D} runs \mathcal{A} . When \mathcal{A} sends a message to Mac'_k , the message is hashed with $H^s(m)$ and is then input to MAC. MAC returns a tag t which is returned to \mathcal{A} .

 ${\mathcal A}$ eventually outputs a valid message, tag pair in polynomial time, which ${\mathcal D}$ also outputs. ${\mathcal D}$ therefore also outputs a valid message, tag pair in polynomial time. ${\mathcal D}$ is efficient because he invokes ${\mathcal A}$, which is efficient, and so the messages are of poly length. Because they are only forwarded and hashed this happens in polynomial time too.

Because \mathcal{A} can forge Π' with a non-negligible probability, \mathcal{B} can forge Π_M with the same non-negligible probability. This is a contradiction because Π_M has to be unforgeable under an adaptive chosen message attack. So such an adversary \mathcal{A} can not exist.

Therefore it holds that Π' is unforgeable under an adaptive chosen message attack.