Data Science & Artificial Intelligence

Data Structure through Python

Super 1500+

Lecture No.- 02

Topics to be Covered

- Stack Permutations
- Stack operations

Let n=8

2=

K=4

#Q. Suppose you are given an array s[1..n] and a procedure reverse (s, i, j) which reverses the order of elements in a between positions i and j (both inclusive). What does the following sequence do, where 1 <= k <= n:</p>

15 20 25 30 35 reverse(s, 1, k); reverse(S, 1, 4 reverse(s, k + 1, n); yeverse (s, ξ, ξ) reverse(s, l, n); yeverse (s, 1, 8) Rotates s left by k positions Leaves s unchanged Reverses all elements of s None of the above

Start Row inder

#Q. Consider a 2-dimensional array x with 10 rows and 4 columns, with each element storing a value equivalent to the product of row number and column number.

The array row major format. If the first element x[0][0] occupies the memory location with address 1000 and each element occupies only one memory location, which all locations (in decimal) will be holding a value of 10?

A. 1018, 1019B. 1022, 1041C. 1013, 1014D. 1000, 1399 $A = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix}$

#Q. The minimum number of comparisons required to determine if an integer appears more than n/2 times in a sorted array of n integers is

#Q. Consider the following declaration of a two dimensional array in C:

char a[100][100];
$$w = [[]]$$
 100 Rows, 100 Cos; Each Element Size 1 Byte.

Assuming that the main memory is byte-addressable and that the array is stored starting from memory address 0, the address of a [40][50] is:

$$\left\{ a \left[2 \right] \left[3 \right] = B + \left[i * c + j \right] * n$$

$$= 0 + \left[40 * 100 + 50 \right] * 1$$

$$= 4050$$

#Q. Consider the following two $\frac{1}{4}$ code segments. Y and X are one and two dimensional arrays of size n and n × n respectively, where $2 \le n \le 10$. Assume that in both code segments, elements of Y are initialized to 0 and each element X[i][j] of array X is initialized to i + j. Further assume that when stored in main memory all elements of

X are in same main memory page frame.

Code segment 1: for i in range(n): y[i] + = X[0][i];

Code segment 2: for i in range(n): y[i] + = X[i][0];

0		2		
YTO	5	6		
	1	2	6363	
Csa:	YG)=0+x	10/07.	= 0
	JC.)= 0+x	Lillo	= 1
	Y LI	1-01-	2750	1-2-
	1/2)= 0+x	12/10	
	, ,			

Which of the following statements is/are correct?

- \$1: Final contents of array Y will be same in both code segments.
- S2: Elements of array X accessed inside the for loop shown in code segment 1 are contiguous in main memory.
- S3: Elements of array X accessed inside the for loop shown in code segment 2 are contiguous in main memory.
- (A) Only S2 is correct
- (B) Only S3 is correct
- (C) Only S1 and S2 are correct
- (D) Only S1 and S3 are correct

#Q. The five items: A, B, C, D, and E are pushed in a stack, one after other starting from A. The stack is popped four items and each element is inserted in a queue. The two elements are deleted from the queue and pushed back on the stack. Now one item is popped from the stack. The popped item is

a. A

b. B

c. C

d. D

associativity as given below:

Operator	Priority	Associativity Right To Left Left To Right		
-	1			
*	2			
+	3	Right To Left		
/	4	Right To Left		

The Po	stflo Ex	Pression is	·				
Stack +	- +	- * /	*	+	1	_	1
Y: oub	c-de	2*++	fg	*	1+3	3-	//

#Q. . A function f defined on stacks of integers satisfies the following properties. f(empty) = 0 and $f(push(S, i) = min(f(S), 0) + (i)^2$ for all stacks S and integers i.

If a stack S contains the integers $\frac{4}{4}$, -5, $\frac{7}{7}$, -3, $\frac{6}{6}$ in order from bottom to top, what is

f(S)?
$$f(S) = \frac{1}{2} \int_{S} \int$$

#Q. Let 's' be a stack and push and pop be functions implementing the Insertion and Deletion operations in a Stack. push takes 2 parameters: the stack and the element to be inserted, pop takes a single parameter: the stack. What will be the contents of the stack after the following operations: push(s,A), push(s,B), push(s,C), pop(s), pop(s), push(s, D), push (s, E), pop(s)?

A. A D

B. DE

C. CE

D. A E

#Q. The Result after evaluating the Postfix Expression:

ANS

#Q. Which of the following permutation(s) can be obtained in the same order using a stack assuming that input is the sequence 5, 6, 7, 8, 9 in that order?

```
(A) 7, 8, 9, 5, 6

(B) 5, 9, 6, 7, 8

(B) 5, 9, 6, 5 Push (s) Push (6) Pash (7) Pop Push (8) Pop (), Push (9), Pop, Pop, Pop

(D) 9, 8, 7, 5, 6
```

MSQ

#Q. The Result after evaluating the Prefix Expression:


```
/*/*/*/1009807605403 is_____
```

- A. 60000
- B. 7500
- C. 25000
- D. 20000

#Q. The Prefix Expression for an infix expression (A*B+C)/(D-(E*F)) is

- A. +*/ABC-D*EF
- B. +/*ABC-D*EF
- C. /*+ABC-D*EF
- D. /+*ABC-D*EF

#Q. The postfix form of the expression is (A+B) * (C*D-E)*F/G is

- A. AB+CD*E-FG/**
- B. AB+CD*E-*F*G/
- C. AB+CD*E-F**G/
- D. AB+CDE*-*F*G/

#Q. Consider the array implementation of stack:

If the array index starts with 0, the maximum value of top which does not cause stack overflow is?

- A) 8
- B) 9
- C) 10
- D) 11

#Q. The Postfix Expression for an infix expression a+b*(c^d-e)^(f+g*h)-i is

- A. abcd^e-fgh*+^*+i-
- B. abcd^e*-fgh*+^+i-
- C. abcd^e-*fgh+^*+i-
- D. abcd^e-fgh+^**+i-

#Q. The result after evaluating the postfix Expression 20 50 3 6 + * * 300 / 2 - is ___

#Q. The following postfix expression with single digit operands is evaluated using a stack:

Note that ^ is the exponentiation operator. The top two elements of the stack after the first * is evaluated are:

- (A) 6, 1
- (B) 5, 7
- (C) 3, 2
- (D) 1, 5

2 mins Summary

-Stack

- Applications

- operations

NEXT CLASS TOPIC: QUEUES AND HASH TABLES

THANK - YOU