CHƯƠNG 1: ĐỘNG HỌC CHẤT ĐIỂM

1.1. Các khái niệm cơ bản về chuyển động

- 1.2. Tốc độ và vận tốc
- **1.3.** Gia tốc

- 1.4. Vận tốc, gia tốc trong chuyển động tròn
- 1.5. Một số chuyển động đơn giản

1.1 Các khái niệm cơ bản về chuyến động

Cơ học

- Nghiên cứu về chuyển động của các vật thể.

Động học

- Nghiên cứu các tính chất và quy luật chuyến động mà không xét đến nguyên nhân gây ra nó.

Chuyển động

- Khái niệm: Chuyển động là sự chuyển dời vị trí của vật (so với vật làm mốc) trong không gian và thời gian.
- Tính chất: Chuyển động có tính tương đối tuỳ theo hệ quy chiếu ta chọn.

1.1 Các khái niệm cơ bản về chuyến động

Chất điểm

- ➤ Khái niệm: Chất điểm là một vật có kích thước nhỏ không đáng kể so với những khoảng cách, những kích thước mà ta đang khảo sát.
- Mục đích: Để bài toán đơn giản hơn.
- ightharpoonup Đặc điểm: như một điểm, có khối lượng m của vật.
- Tính chất: Có tính chất tương đối.
- > Hệ chất điểm: là tập hợp các chất điểm.

1.1 Các khái niệm cơ bản về chuyến động

Quỹ đạo

- Tập hợp các vị trí của chất điểm trong quá trình chuyển động.

Quãng đường

- Là độ dài của vết mà chất điểm vạch ra trong quá trình khảo sát.

Độ dời

- Là vectơ nối từ vị trí đầu đến vị trí cuối của quá trình khảo sát.

Nhắc lại về hệ tọa độ

Hình 1.1: Tọa độ Descartes

Hình 1.2: Hệ tọa độ cầu

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$x = rsin\theta cos\phi$$
; $y = rsin\theta sin\phi$; $z = rcos\theta$

1.1 Các khái niệm cơ bản vê chuyên động

Hệ quy chiếu = Hệ toạ độ+Vật mốc+Đồng hồ+Mốc thời gian

Phương trình chuyển động: (liên hệ giữa toạ độ và thời gian)

biểu diễn vị trí của chất điểm theo thời gian

$$\overrightarrow{r} = \overrightarrow{r}(t)$$
 hay

$$\vec{r} = \vec{r}(t)$$
 hay
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

Ví dụ:

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}$$

$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases} \begin{cases} x = t - 2 \\ y = t^2 - 2t + 3 \\ z = t^2 - t + 1 \end{cases}$$

1.1 Các khái niệm cơ bản vê chuyên động

Phương trình quỹ đạo: (quan hệ giữa các toạ độ trong không gian)

biểu diễn dạng đường đi của chất điểm

PT Chuyển động
$$\xrightarrow{\text{khử } t}$$
 PT Quỹ đạo

Ví du:
$$\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases} \Rightarrow x^2 + y^2 = 4 \Rightarrow$$

$$\Rightarrow x^2 + y^2 = 4$$

$$\begin{cases} x = 2\cos t \\ y = 3\sin t \end{cases} \Rightarrow \frac{x^2}{4} + \frac{y^2}{9} = 1 \Longrightarrow \boxed{\bigcirc}$$

VD: Xác định quỹ đạo, biết PTCĐ:

a)
$$\begin{cases} x = \cos t \\ y = \cos 2t \end{cases} \Rightarrow (P) : y = 2x^2 - 1, |x| \le 1$$

b)
$$\overrightarrow{r} = \alpha t. \overrightarrow{i} - \beta t^2. \overrightarrow{j}$$
 \Rightarrow (P): $y = -\frac{\beta}{\alpha^2}.x^2$

c)
$$\begin{cases} x = A\sin(\omega t + \phi) \\ y = A\cos(\omega t + \phi) \end{cases} \Rightarrow (C) : x^2 + y^2 = A^2$$

d)
$$\begin{cases} x = 5e^{-2t} \\ y = 4e^{2t} \end{cases} \Rightarrow (H): y = \frac{20}{x}$$

1.2 Tốc độ và vận tốc

- > Tốc độ đặc trưng cho tính nhanh chậm của chuyển động và không âm.
- Vận tốc tức thời đặc trưng cho phương, chiều và độ nhanh chậm của chuyển động

1.2 Tốc độ và vận tốc

Đặc điểm của vectơ vận tốc tức thời

- > Phương: tiếp tuyến với quỹ đạo.
- Chiều: theo chiều chuyển động
- ► Độ lớn: $|\vec{v}| = \left| \frac{d\vec{r}}{dt} \right| \approx \frac{ds}{dt} = v_s = s'$
- Diểm đặt: tại điểm đang khảo sát.

1.2 Tốc độ và vận tốc

Biểu thức giải tích của vectơ vận tốc

Trong hệ toạ độ Descartes:
$$\vec{r}(x, y, z)$$
 $\vec{v}(v_x, v_y, v_z)$

$$\vec{v} = \frac{d\vec{r}}{dt} \quad \Rightarrow \quad \vec{v} = \frac{dx}{dt} = x'$$

$$v_y = \frac{dy}{dt} = y'$$

$$v_z = \frac{dz}{dt} = z'$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

Ví dụ 1:

Một canô xuôi dòng từ bến A đến bến B với tốc độ $v_1 = 30$ km/h; rồi ngược dòng từ B về A với tốc độ $v_2 = 20$ km/h. Tính tốc độ trung bình trên lộ trình đi – về của canô.

Giải:

$$v_{s} = \frac{s}{t} = \frac{AB + BA}{t_{1} + t_{2}} = \frac{AB + AB}{\frac{AB}{V_{1}} + \frac{AB}{V_{2}}} = \frac{2v_{1}v_{2}}{v_{1} + v_{2}}$$
$$= \frac{2.30.20}{30 + 20} = 24km/h$$

Ví dụ 2:

Một chất điểm chuyển động trên đoạn đường s. Trên nửa đoạn đường đầu, nó chuyển động với tốc độ v_1 = 25km/h. Trong nửa thời gian trên quãng đường còn lại, chất điểm chuyển động với tốc độ v_2 = 20km/h và trong thời gian còn lại, nó có tốc độ v_3 = 30km/h. Tính tốc độ trung bình trên toàn bộ quãng đường.

Giải:

$$v_s = \frac{s}{t} = \frac{s_1 + s_2 + s_3}{t_1 + t_2 + t_3} = \frac{2v_1(v_2 + v_3)}{2v_1 + v_2 + v_3} = \frac{2.25(20 + 30)}{2.25 + 20 + 30}$$

1.3 Gia tôc

_Gia tốc đặc trưng cho sự biến thiên về phương, chiều Gia tôc đạc trung cho sự và độ lớn của véc tơ vận tốc.

trung bình $\vec{a}_{tb} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v} - \vec{v}_0}{t - t_0}$ tức thời $\vec{a} = \frac{d\vec{v}}{dt} = (\vec{v})'$

tức thời
$$\vec{a} = \frac{dv}{dt} = (\vec{v})$$

Trong hệ toạ độ Descartes: $\vec{V}(V_x, V_v, V_z)$

$$\begin{vmatrix} a_x = \frac{dv_x}{dt} = v_x' = x'' & \vec{a}(a_x, a_y, a_z) \\ a_y = \frac{dv_y}{dt} = v_y' = y'' \\ a_z = \frac{dv_z}{dt} = v_z' = z'' \end{vmatrix}$$

$$a_{y} = \frac{dv_{y}}{dt} = v_{y}' = y''$$

$$a_z = \frac{dv_z}{dt} = v_z' = z''$$

$$\vec{a}(a_x, a_y, a_z)$$

$$a = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}$$

- Ví dụ: Phương trình chuyển động của một chất điểm như sau: $\begin{cases} x = t \\ y = t^2 + 2t - 3 \end{cases}$

$$\begin{cases} x = t \\ y = t^2 + 2t - 3 \\ z = 0 \end{cases}$$

Xác định:

- Dạng chuyển động $y = x^2 + 2x 3$
- Vị trí của chất điểm $\mathbf{v}_{\mathbf{v}} = \mathbf{v}' = 1$ Vận tốc tức thời $\mathbf{v}_{\mathbf{v}} = \mathbf{v}' = 2\mathbf{t} + 2$ $\mathbf{v}_{\mathbf{v}} = \mathbf{v}' = 2\mathbf{t} + 2$ $\mathbf{v}_{\mathbf{v}} = \mathbf{v}' = 0$ $\mathbf{Gia} \text{ tốc tức thời } \mathbf{a}_{\mathbf{v}} = \mathbf{v}_{\mathbf{v}}' = 0$ $\mathbf{a}_{\mathbf{v}} = \mathbf{v}_{\mathbf{v}}' = 0$ $\mathbf{a}_{\mathbf{v}} = \mathbf{v}_{\mathbf{v}}' = 0$

1.3 Gia tôc

Gia tốc trong chuyển động cong

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

$$a_t = \frac{dv}{dt}$$

 $a_{t} = \frac{dv}{dt} \begin{vmatrix} d\ddot{a}c & trung & cho & sự & biến \\ thiên & về & do & lớn \\ thiên & về & do & long \\ thiên & long \\ th$

$$a_n = \frac{v^2}{R}$$

pháp tuyến $a_n = \frac{v^2}{R}$ đặc trưng cho sự biến thiên $v \hat{e}$ phương chiều của \vec{v}

 $(\hat{a}_{n} | luôn hướng vào bề lõm của quỹ đạo)$

Các thành phần gia tốc song song và vuông góc của gia tốc:

Gia tốc có thể được phân tích thành thành phần: song song với quỹ đạo (dọc theo tiếp tuyến quỹ đạo) và thành phần vuông góc với quỹ đạo (dọc theo pháp tuyến của quỹ đạo)

Các thành phần gia tốc song song và vuông góc của gia tốc:

Gia tốc song song với vận tốc

Các thay đổi độ lớn của vận tốc: các thay đổi tốc độ; hướng không đổi

Các thành phần gia tốc song song và vuông góc của gia tốc:

Gia tốc vuông góc với vận tốc

Các thay đổi hướngcủa vận tốc: chất điểm dọc theo đường cong ở vận tốc không đổi

Các thành phần gia tốc song song và vuông góc của gia tốc:

Vector vận tốc và gia tốc của chất điểm chuyển động qua P trên quỹ đạo cong với

(a) tốc độ không đổi,

(b) tốc độ tăng dần, và

(c) vận tốc giảm dần

Hình 1.6: Gia tốc pháp tuyến và tiếp tuyến

$$\sin(d\varphi) = \frac{dv_n}{dt} \approx d\varphi \Rightarrow dv_n \approx vd\varphi$$

$$a_n = \frac{dv_n}{dt} = v\frac{d\varphi}{dt} = v\frac{d\varphi}{ds}\frac{ds}{dt} = \frac{v^2}{R}$$

$$a_n = \frac{v^2}{R}$$

Phân tích véct σ d \vec{v} thành hai thành phần: $d\vec{v}_n$ vuông góc với \vec{v}' và $d\vec{v}_{\perp}$ nằm dọc theo \vec{v}' , ta có:

$$d\vec{v} = d\vec{v}_n + d\vec{v}_\tau$$

Chia hai vế cho dt, ta có:

$$\vec{a} = \vec{a}_n + \vec{a}_{\tau}$$

$$\vec{a}_n = \frac{d\vec{v}_n}{dt}$$

 $\frac{\vec{a}_n}{dt} = \frac{d\vec{v}_n}{dt}$ là gia tốc pháp tuyến, vuông góc với véctơ vận tốc và hướng vào tâm cong.

Theo hình $dv_n = v.sin(d\phi) \approx vd\phi$; vậy trị số của gia tốc pháp tuyến có thể suy ra là:

$$a_n = \frac{dv_n}{dt} = \sqrt{\frac{d\varphi}{dt}} = \sqrt{\frac{d\varphi}{ds}\frac{ds}{dt}} = \frac{v^2}{R} \rightarrow a_n = \frac{v^2}{R}$$

$$\vec{a}_{\tau} = \frac{d\vec{v}_{\tau}}{dt}$$

là gia tốc tiếp tuyến, hướng theo tiếp tuyến và véctơ vận $\frac{d\vec{v}_{\tau}}{dt}$ là gia tốc tiếp tuyến, hướng theo tiếp tuyến và véctơ vận tốc. Trị số $dv_{\tau} = dv$ là thành phần thay đổi của véctơ vận tốc về độ lớn (mô đun). Do đó, giá trị của gia tốc tiếp tuyến là:

$$a_{\tau} = \frac{dv}{dt}$$

Gia tốc trong chuyển động cong

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

$$a = \sqrt{a_t^2 + a_n^2}$$

1.4 Vận tốc và gia tốc trong chuyển động tròn

1.4 Vận tốc và gia tốc trong chuyến động tròn

← Gia tốc góc

Gia tốc góc trung bình:
$$\vec{\beta}_{tb} = \frac{\Delta \vec{\omega}}{\Delta t}$$
 (rad/s²)

tức thời: $\vec{\beta} = \frac{d\vec{\omega}}{dt}$ (rad/s²)

 $\rightarrow \vec{\beta} \uparrow \uparrow \vec{\omega}$

→ Chuyển động tròn nhanh dần

 $\geqslant \vec{\beta} \uparrow \downarrow \vec{\omega}$

→ Chuyển động tròn chậm dần

 $> \beta = 0$

- → Chuyển động tròn đều
- → β = Const → Chuyển động tròn thay đổi đều

1.4 Vận tốc và gia tốc trong chuyển động tròn

Liên hệ giữa vận tốc dài và vận tốc góc, gia tốc dài và gia tốc góc

$$S = \theta.R$$

$$\overrightarrow{B}$$

$$\overrightarrow{A}$$

$$\overrightarrow{B}$$

$$\overrightarrow{A}$$

$$\overrightarrow{A}$$

$$\overrightarrow{A}$$

$$\overrightarrow{A}$$

$$\overrightarrow{A}$$

$$\frac{ds}{dt} = \frac{d\theta.R}{dt} \Leftrightarrow v = \omega.R \quad \Rightarrow \quad \vec{v} = \vec{\omega} \times \vec{R}$$

$$\frac{dv}{dt} = \frac{d\omega.R}{dt} \Leftrightarrow a_t = \beta.R \quad \Rightarrow \quad \vec{a}_t = \vec{\beta} \times \vec{R}$$

28

Ví dụ: Chất điểm chuyển động với phương trình:

$$\begin{cases} x = 3t^2 - \frac{4}{3}t^3 \\ y = 8t \end{cases}$$
 (SI)

Xác định vận tốc, gia tốc a, a_t , a_n , R lúc t = 2s.

<u>Giải</u>

Ta có:

$$\begin{array}{l}
\Rightarrow \begin{cases} a_x = x " = 6 - 8t \\ a_y = y " = 0 \end{cases} \Rightarrow a = \sqrt{a_x^2 + a_y^2} = |6 - 8t|
\end{array}$$

Lúc t = 2s th:

$$v = \sqrt{(12-16)^2 + 64} = 4\sqrt{5} \approx 8,94 \text{m/s}$$

 $a = |6-8.2| = 10 \text{m/s}^2$

Gia tốc tiếp tuyến:

$$a_{t} = (v)' = \left(\sqrt{(6t - 4t^{2})^{2} + 64}\right)' = \frac{(6t - 4t^{2})(6 - 8t)}{\sqrt{(6t - 4t^{2})^{2} + 64}}$$
$$= 2\sqrt{5} \approx 4,47 \text{m/s}^{2}$$

Gia tốc pháp tuyến:

$$a_n = \sqrt{a^2 - a_t^2} = 4\sqrt{5} \approx 8,94 \text{m/s}^2$$

Bán kính chính khúc của quĩ đạo:

$$R = \frac{v^2}{a_n} = \frac{8,94^2}{8,94} = 8,94m$$

1.5 Một số chuyển động đơn giản

- + Chuyển động thẳng đều
- + Chuyển động thẳng biến đổi đều
- + Chuyển động tròn đều
- + Chuyển động tròn biến đổi đều
- + Chuyển động ném xiên

1.5 Một số chuyển động đơn giản

+ Chuyển động thẳng biến đổi đều: (a=const)

$$\vec{a} = \frac{\vec{dv}}{dt} \implies \vec{dv} = \vec{a}dt$$

$$\Leftrightarrow \vec{\mathbf{v}} - \vec{\mathbf{v}}_0 = \vec{\mathbf{a}}\mathbf{t}$$

$$\Rightarrow \vec{v} = \vec{v}_0 + \vec{a}t$$

$$v = \frac{dx}{dt}$$
 \Rightarrow $dx = vdt$

$$\Rightarrow \int_{x_0}^{x} dx = \int_{0}^{t} v dt$$

$$\Rightarrow \int_{x_0}^{x} dx = \int_{0}^{t} (v_0 + at) dt$$

$$\Rightarrow x = x_0 + v_0 t + \frac{at^2}{2}$$

Tính quãng đường:

$$s = \int_{t_1}^{t_2} v dt$$

vói:
$$v = v$$

Nếu v = const thì:
$$s = v.(t_2 - t_1) = v.t$$

$$s = v.(t_2 - t_1) = v.t$$

Ví dụ: trong mp (Oxy), chất $\begin{cases} x = 5 - 10 \sin 2\pi t \\ y = 4 + 10 \sin 2\pi t \end{cases}$ (SI) điểm chuyển động với pt:

$$\begin{cases} x = 5 - 10 \sin 2\pi t \\ y = 4 + 10 \sin 2\pi t \end{cases}$$
 (SI)

- a) Xác định vị trí của chất điểm lúc t = 5s.
- b) Xác định quĩ đạo.
- c) Xác định vectơ vận tốc lúc t = 5s.
- d) Tính quãng đường vật đi từ lúc t = 0 đến t = 5s.

Giải

a) Lúc
$$t = 5s$$
, chất điểm ở tọa độ:
$$\begin{cases} x = 5 \\ y = 4 \end{cases}$$
 (SI)

b) Qũi đạo là đường thẳng: x + y = 9

c) Ta có:
$$\begin{cases} v_x = x' = -20\pi \cos(2\pi t) \\ v_y = y' = 20\pi \cos(2\pi t) \end{cases} (SI) \Rightarrow v = 20\pi \sqrt{2} |\cos(2\pi t)|$$

Lúc t = 5s, thì:
$$\Rightarrow$$
 v = $20\pi\sqrt{2} \approx 88,9 (\text{m/s})$

d) Quãng đường:

$$s = \int_{0}^{5} v dt = 20\pi\sqrt{2} \int_{0}^{5} |\cos(2\pi t)| dt = 20.20\pi\sqrt{2} \int_{0}^{0.25} \cos(2\pi t) dt \approx 283m$$

Ý nghĩa hình học của công thức tính quãng đường:

s = trị số diện tích hình phẳng giới hạn bởi đồ thị v(t) với trục Ot.

Ví dụ: Tính s và tốc độ TB, biết đồ thị vận tốc:

a) Từ t = 2s đến t = 8s \bullet s₁ = 100m; v₁ = 16,7m/s b) Từ t = 0 đến t = 10s• $s_2 = 140m$; $v_2 = 14m/s$ V(m/s)20 10 t(s)

1.5 Một số chuyên động đơn giản

+ Chuyến động tròn biến đổi đều: ($\beta = const$)

$$\vec{\beta} = \frac{d\vec{\omega}}{dt} \implies d\vec{\omega} = \vec{\beta}dt$$
 $\omega = \frac{d\theta}{dt} \implies d\theta = \omega.dt$

$$\iff \int_{\overline{\omega_0}}^{\omega} d\overline{\omega} = \int_{0}^{t} \overline{\beta} dt$$

$$\iff \vec{\omega} - \vec{\omega}_0 = \vec{\beta}t$$

$$\iff \vec{\omega} = \vec{\omega}_0 + \vec{\beta}t$$

$$\omega = \frac{d\theta}{dt} \implies d\theta = \omega.dt$$

$$\iff \int_{\varphi_0}^{\varphi} d\theta = \int_0^t \omega dt$$

$$\iff \int_{\varphi_0}^{\varphi} d\theta = \int_{0}^{t} (\omega_0 + \beta t) dt$$

$$\Leftrightarrow \varphi = \varphi_0 + \omega_0 t + \frac{\beta t^2}{2}$$

Ví dụ 1:

Chất điểm chuyển động tròn với phương trình:

$$\varphi = 6t - 2t^3 \text{ (SI)}$$

- a) Xác định vận tốc góc, gia tốc góc lúc t = 0 và lúc chất điểm dừng.
- b) Xác định góc mà chất điểm đã quay trong thời gian trên.
- c) Tính tốc độ góc, gia tốc góc trung bình trong thời gian trên.

Ta có:
$$\varphi = 6t - 2t^3$$

$$\Rightarrow \omega = \varphi' = 6 - 6t^2$$

$$\Rightarrow \beta = \phi'' = -12t$$

a) Lúc t = 0 thì:

$$\omega_0 = 6(\text{rad / s}); \quad \beta_0 = 0(\text{rad / s}^2)$$

Lúc dừng thì:

$$\omega = 0 \Rightarrow t = 1s \Rightarrow \beta = -12(rad/s^2)$$

b) Góc quay:
$$\theta = \int_{0}^{1} \omega dt = \int_{0}^{1} (6 - 6t^{2}) dt = 4(rad)$$

c) Tốc độ góc trung bình:
$$\omega_{tb} = \frac{\theta}{t} = 4(\text{rad/s})$$

Gia tốc góc trung bình:

$$\beta_{tb} = \frac{\omega - \omega_0}{t} = -6(\text{rad/s}^2)$$

Ví dụ 2:

Chất điểm M chuyển động trên đường tròn bán kính R=5m với phương trình: $s=5+4t-t^3$ (hệ SI). Trong đó s là độ dài đại số của cung \overrightarrow{OM} , O là điểm mốc trên đường tròn. Xác định:

- a) Tính chất của chuyển động, gia tốc tiếp tuyến, pháp tuyến, gia tốc toàn phần lúc t = 1s và lúc t = 2s.
- b) Góc mà chất điểm đã quay trong thời gian 2s kể từ lúc t=0. Tính vận tốc góc TB trong khoảng thời gian này.

$$\varphi = \frac{s}{R} = \frac{5 + 4t - t^3}{5}$$

$$\omega = \varphi' = \frac{4 - 3t^2}{5}$$

$$\beta = \omega' = \frac{-6t}{5}$$

Lúc
$$t = 1s$$
 thì:

Lúc t = 1s thì:
$$\begin{cases} \omega_1 = 0,2 \text{ rad/s} \\ \beta_1 = -1,2 \text{ rad/s}^2 \end{cases} \Rightarrow \mathbf{C}\mathbf{\tilde{d}} \text{ chiều dương.}$$

Gia tốc tiếp tuyến:
$$a_{t1} = \beta_1 R = -1, 2.5 = -6 \text{ m/s}^2$$

Gia tốc pháp tuyến:
$$a_{n1} = \omega_1^2 R = 0, 2^2.5 = 0, 2 \text{ m/s}^2$$

$$\Rightarrow a_1 = \sqrt{a_{t1}^2 + a_{n1}^2} \approx 6 \text{m/s}^2$$

Lúc
$$t = 2s th$$
:

Lúc t = 2s thì:
$$\begin{cases} \omega_2 = -1,6 \text{ rad/s} \\ \beta_2 = -2,4 \text{ rad/s}^2 \end{cases} \Rightarrow \mathbf{C}\mathbf{d} \text{ nhanh dần theo chiều âm.}$$

$$\begin{cases} a_{t2} = \beta_2 R = -12 \text{m/s}^2 \\ a_{n2} = \omega_2^2 R = 12,8 \text{m/s}^2 \end{cases}$$

$$\Rightarrow$$
 $a_2 = \sqrt{a_{t2}^2 + a_{n2}^2} \approx 17.5 \text{m/s}^2$

Góc quay kể từ t = 0 đến t = 2s:

$$\theta = \int_{0}^{2} |\omega| dt = \frac{1}{5} \int_{0}^{2} |4 - 3t^{2}| dt \approx 1,23 \text{ rad}$$

Ví dụ 3:

Một chất điểm chuyển động tròn quanh điểm O với góc quay là hàm của vận tốc góc:

$$\theta = \frac{\alpha - \omega_{o}}{\alpha}$$

Trong đó ω_0 , α là hằng số dương. Lúc t=0 thì $\omega=\omega_0$.

Tìm biểu thức tường minh của góc quay, vận tốc góc và gia tốc góc theo thời gian?

$$\omega = \omega_o + \alpha\theta = \frac{d\theta}{dt}$$

$$\Rightarrow \frac{d\theta}{\omega_0 + \alpha\theta} = dt$$

$$\Rightarrow \frac{d\theta}{\omega_o + \alpha\theta} = dt \qquad \Leftrightarrow \int_0^\theta \frac{d\theta}{\omega_o + \alpha\theta} = \int_0^t dt$$

$$\int \frac{d\theta}{\omega_0 + \alpha\theta} = \frac{1}{\alpha} \int \frac{d\theta}{\underline{\omega_0}} = \frac{1}{\alpha} \int \frac{d\theta}{u + \theta}; \qquad u = \frac{\omega_0}{\alpha}$$

$$m = u + \theta \implies \frac{1}{\alpha} \int_{0}^{\theta} \frac{d\theta}{u + \theta} = \frac{1}{\alpha} \int_{u}^{u + \theta} \frac{dm}{m}$$

$$\omega = \omega_o + \alpha\theta = \frac{d\theta}{dt}$$

$$\Rightarrow \frac{d\theta}{\omega_o + \alpha\theta} = dt \iff \int_0^\theta \frac{d\theta}{\omega_o + \alpha\theta} = \int_0^t dt$$

$$\Rightarrow \theta = \frac{\omega_0}{\alpha} (e^{\alpha t} - 1)$$

$$\omega = \omega_0 e^{\alpha t}$$

$$\beta = \alpha \omega_0 e^{\alpha t}$$

TĐ	TBĐĐ	TRÒN ĐỀU	TRÒN BĐĐ
a = 0	a = const	β = 0	β = const
v = const	$v = v_0 + at$	ω = const	$\omega = \omega_0 + \beta t$
s = vt	$s = v_0 t + \frac{1}{2} a t^2$	$\theta = \omega t$	$\theta = \omega_0 t + \frac{1}{2} \beta t^2$
$\mathbf{x} = \mathbf{x}_0 + \mathbf{v}\mathbf{t}$	$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$\varphi = \varphi_0 + \omega t$	$\varphi = \varphi_0 + \omega_0 t + \frac{1}{2}\beta t^2$
	$v^2 - v_0^2 = 2a(x - x_0)$	Chu kì:	$\omega^2 - \omega_0^2 = 2\beta\theta$
	= 2as	$T = \frac{2\pi}{} = \frac{2\pi R}{}$	
	Rơi tự do:	ων	
	$v_0 = 0$; $a = g$	Tần số: f=	$\frac{1}{\Gamma} = \frac{\omega}{2\pi}$

Chuyển động ném xiên

Một vật xuất phát từ một điểm O trên mặt đất với vận tốc ban đầu là \vec{v}_0 , hợp với mặt phẳng nằm ngang một góc α

Chuyển động ném xiên

$$\int_{\mathbf{V}} \mathbf{v}_{x} = \mathbf{v}_{0x} + \mathbf{a}_{x} \mathbf{t}$$
$$\mathbf{v}_{y} = \mathbf{v}_{0y} + \mathbf{a}_{y} \mathbf{t}$$

$$\int_{V} \int_{V_{x}} v_{x} = v_{0} \cos \alpha$$

$$v_{y} = v_{0} \sin \alpha - gt$$

Thiết lập phương trình của chuyển động ném xiên

The tap phoong trim cua chuyen dong nem xien
$$\begin{cases}
x = x_0 + v_{0x}t + \frac{a_x t^2}{2} \\
y = y_0 + v_{0y}t + \frac{a_y t^2}{2}
\end{cases}$$

$$\begin{cases}
x = v_0 \cos \alpha.t \\
y = v_0 \sin \alpha.t - \frac{gt^2}{2}
\end{cases}$$
(PTCD)

(Quỹ đạo của CĐ ném xiên có dạng parabol)

$$y = -\frac{g}{2v_0^2 \cos^2 \alpha} x^2 + tg\alpha.x$$

Chuyến động ném xiên

• Thời gian chất điểm đến S:

$$v_{y_s} = v_0 \sin \alpha - gt_s = 0$$

$$t_{s} = \frac{v_{0} \sin \alpha}{g}$$

• Đỉnh S:
$$\begin{cases} x_s = \frac{v_0^2 \sin 2\alpha}{2g} \\ y_s = \frac{v_0^2 \sin^2 \alpha}{2g} \end{cases}$$

Tầm cao =
$$y_s = \frac{v_0^2 \sin^2 \alpha}{2g}$$

Tầm xa =
$$2x_s = \frac{v_0^2 \sin 2\alpha}{g_{52}}$$

Chuyển động ngang