

Sunbeam Institute of Information Technology Pune and Karad

Module – Operating System Concepts

Trainer - Devendra Dhande

Email – <u>devendra.dhande@sunbeaminfo.com</u>

- Oss are classified by looking at targeted hardware
- 1) Desktop OS (GPOS) responsiveness
- 2) Server OS throughput
- 3) Handheld OS
- 4) Embedded OS 2 small thotprint (size) 5) Real Time OS 2
- 6) Distributed OS load balancing

1) Resident Monitor System 2) Booten Systems 3) Multi-programming system
- multiple programs are loaded into memory (RAM) Degree of mustiprogramming: 1> no. of programs loaded in RAM CPV Home burst-time spent on CPV IO time burst - time spent for ID CPV > ID & CPV bound process burst burst I cpv bound process DURST > CPU & TO bound process - mixture of cpu bound & RD bound process

4) Time sharing system/Multitasking System
- CPV Fime is shared in all the processes of RAM

- Response time & I see

i) Process based multitasking

- system wide multitasking

is) Thread based Multitasking (Multithreading)

- multitæking within process

5) Mutilser System

- mutiple terminals (monitort keyboard) are connected to single system due to this multiple users can operate single system
- whoame, who, w, tty

6) Multiprocessing System

-multiple CPV's are putted on single thip, such processor is known as "multiprocessor"/ "multicore".

- O'S can schedule multiple processes for those multiple corres - multiple processes can execute simultaneously, due to this it is also known as parallel system.

is symmetric multiprocessing lix Asymmetric multiprocessing

Windows Vista 9 multiprocessing was linux 2.6t 9 supported from these versions

Process Life Cycle

CPU Scheduling – Types and Algorithms

1) Running -> Terminated ? voluntarily 2) Running -> Waiting ? voluntarily 3) Running -> Ready ? force fully 4) Waiting -> Ready ? Ready

Algorithms:
1) FCFS
2) SJF
3) Poiority
4) RR
5) Fair Share

Types: 1) Pre emptive scheduling - CPU access is given to another process force fully - CPV access is given to another process voluntarily.

CPU Scheduling – Criteria's

```
1) CPU Utilization (Max)
            - Desktop OS- 70% - Server OS-90%
 2) Thorugh put (Max)
           - Amount of work done in anit time
3) Waiting time (min) no of processes completed
- time spent by process into ready queue to get
CPV access
4) Response time (min)
- time from arrival of process into ready quae
upto first time gotting scheduled.
5) Turn Around time (Min)
- Total time spent by process into memory CRAM)
          TAT = CPU + CPV + FO + TO >
```


Execution Context and Context Switching

Execution content:
- values of CPU registers

Context switching:
- changing the process of CPU
- CPU dispatcher is responsible
for context switching.

FCFS (First Come First Serve) (non preemptive)

Process	Arrival	CPU Burst
P1	0	24
P2	0	3
P3	0	3

WT	RT	TAT
0	\circ	24
24	24	27
27	27	30

Process	Arrival	CPU Burst	MT	RT	TAT
Р3	0	3	0	\mathcal{O}	\mathcal{Z}
P2	0	3	3	3	6
P1	0	24	6	6	30
				_	

Convoy effect: due to arrival of longer process early all other processes need to wait for longer time

SJF (Shortest Job First)

(Non Preemptive)

Process	Arrival	CPU Burst
P1	0	7
P2	2	4
P3	4	1
P4	5	4

WT	RT	TAT
0	0	7
6	6	10
3	3	4
7	7	11

Shortest Remaining Time First

(Pro expoting)

		Cheen	IPITVC)	0		
	Process	Arrival	CPU Burst	Remain Lime	WT	
į	P1	0	7	5	9	0
	P2	2	4	2	l	0
	P3	4	1		0	\mathcal{O}
i	P4	5	4		2	2
_						০ ও

Starration: due to longer CPU burst, process doesn't get scheduled for duration.

Priority

(Non-Preemptive)

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	0	1	1 (H)
P3	0	2	4 (L)
P4	0	5	2

WT	RT	TAT
6	6	16
O	٥	1
16	16	18
1	١	6

(Pre emptive)

Process	Arrival	CPU Burst	Priority
P1	0	10	3
P2	1	1	1 (H)
Р3	3	2	4(1)
P4	0	5	2

WT	RT	TAT
6	6	16
0	O	1
13	13	15
1	0	6

RR (Round Robin)

Process	CPU Burst		WT		R	٢		Time quantum = 20
P1	53	33,13	0+5	7+24	Ω			TG=100
P2	17		20		20	1		La behave lèke
Р3	68	48,28,8		10+17	37			FCFS TO=4
P4	24	48,28,8	577	40	57			TG=4 GCPV overhead will increase
P1 P2	- P3 P4	P1 P3	Ph]	PI	PS	P3		
20 1 —	37 57 7	7 97	117 121	134	13	54 19	62_	
	,	1	'					
	H —	——	+	——				
		 	—					

Fair Share

- CPU time is divided into time slices (epoch)
- some share of each epoch is given to the processes which are in ready queue.
- share is given to the process on the basis of their priority
- priority of every process is decided by its nice value
- nice values range ---> -20 to +19 (40 values)
 - * -20 highest priority

* +19 - lowest priority

Process	Nice Value
P1	10
P2	10
P3	10
P4	10

Epoch - 100

Process	Nice Value						
P1	5						
P2	5						
P3	10						
P4	10						

	P1	PZ	P3	P4	PI	P2	PS	P4	
0			00			200			

completely fair

Multi Level Ready Queue

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com