$$_{n}P_{r} = \frac{n!}{(n-r)!}$$
 Cuando no se permite repetición

$P_{\nu} = n^{\nu}$ Cuando se permita repetición

¿Cuántos números de 5 cifras diferentes se puede formar con los dígitos: 1, 2, 3, 4, 5.?

$$m = 5$$
 $n = 5$

Sí entran todos los elementos. De 5 dígitos entran sólo 3.

Sí importa el orden. Son números distintos el 123, 231, 321.

No se repiten los elementos. El enunciado nos pide que las cifras sean diferentes.

$$P_5 = 5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

Con las cifras 2, 2, 3, 3, 3, 3, 4, 4; ¿cuántos números de nueve cifras se pueden formar?

$$m = 9$$
 $a = 3$ $b = 4$ $c = 2$ $a + b + c = 9$

Sí entran todos los elementos.

Sí importa el orden.

Sí se repiten los elementos.

$$PR_9^{3,4,2} = \frac{9!}{3! \cdot 4! \cdot 2!} = 1260$$

Teorema A (propiedades del coeficiente binomial)

$$\mathbf{a} \, \begin{pmatrix} \mathbf{n} \\ \mathbf{n} - \mathbf{r} \end{pmatrix} = \begin{pmatrix} \mathbf{n} \\ \mathbf{r} \end{pmatrix}$$
 , $0 \le \mathbf{r} \le \mathbf{n}$ [simetría

$$\mathbf{b} \quad \binom{n}{r} = \frac{n}{r} \binom{n-1}{r-1} \qquad , \quad 0 < r \le n \qquad [absorción]$$

$$\mathbf{c} \quad r * \binom{n}{r} = n * \binom{n-1}{r-1} \qquad , \quad 0 < r \le n \qquad [absorción]$$

c
$$r * \binom{n}{r} = n * \binom{n-1}{r-1}$$
 , $0 < r \le n$ [absorción

d
$$(n-r) * \binom{n}{r} = n * \binom{n-1}{r}$$
 , $0 < r \le n$

$$\mathbf{e} \quad \binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, \quad 0 < r < n$$
 [suma]

$$\mathbf{f} \quad 2^{n} = (+k \mid 0 \le k \le n : \binom{n}{k}) \qquad , \quad 0 \le n$$

$$\mathbf{g} \qquad \binom{n}{r} \binom{r}{k} = \binom{n}{k} \binom{n-k}{r-k} \quad , \quad 0 \le k \le r \le n$$

Una mesa presidencial está formada por ocho personas, ¿de cuántas formas distintas se pueden sentar, si el presidente y el secretario siempre van juntos?

Se forman dos grupos el primero de 2 personas y el segundo de 7 personas, en los dos se cumple que:

Sí entran todos los elementos.

Sí importa el orden.

No se repiten los elementos.

$$P_2 \cdot P_7 = 2 \cdot 7! = 10080$$

b
$$P(n,r) = \frac{n!}{(n-r)!}$$

$$\mathbf{c}$$
 P* (n,r) = n^r.

El coeficiente binomial $\binom{n}{r}$ (se lee "de n, r") se define por: $\binom{n}{r} = \frac{n!}{r! (n-r)!}$, para $0 \le r \le n$.