

Tutorium 1

Algorithmen I SS 14

Vorstellung

- Name?
- Studiengang?
- Semester?
- ..

Organisatorisches

Folien https://github.com/vincent23/algo1-tut-ss14 Mail v.schuessler@gmail.com

- E-Mail an mich f
 ür Liste
- Tutorium ersetzt nicht Vorlesung oder Übung

Übungsbetrieb

- Jeweils Mittwoch bis Freitag der folgenden Woche ein Übungsblatt
- Abgabe zu zweit möglich
- Tutoriumsnummer groß in die rechte obere Ecke
- Pseudocode gut dokumentieren und verständlich halten
- Programmieraufgaben (später im Semester)
- Mittsemesterklausur
- Nichts verpflichtend, insgesamt 3 Bonuspunkte möglich

Laufzeitanalyse

Best Case Meistens eher uninteressant

Average Case Am interessantesten, aber schwierig zu berechnen

Worst Case Relativ interessant und gleichzeitig einfach abschätzbar, für uns am relevantesten

Nicht verwechseln mit Ω , \mathcal{O} und Θ !

Schleifeninvarianten

- Gilt zu Beginn
- und nach jedem Durchlauf der Schleife
- Beweis funktioniert wie bei vollständiger Induktion
- Geschickte Wahl der Invariante zum Beweis der Korrektheit

Beispiel: Maximum finden


```
Eingabe : Ein Array a der Länge n
Ausgabe: Index der größten Zahl in a
\max_i \text{index} = -1
\max = -\infty
for i = 0 to n - 1 do

if \max_i \text{index} = i
\max_i \text{index} = i
\max_i \text{index} = a[i]
end
```

Beispiel: Binäre Suche

Eingabe : sortiertes (!) Array a der Länge n, gesuchtes Element x **Ausgabe**: Index von x oder -1, falls Element nicht gefunden wurde

Beispiel: Binäre Suche


```
Eingabe : sortiertes (!) Array a der Länge n, gesuchtes Element x
Ausgabe: Index von x oder -1, falls Element nicht gefunden wurde
min index = 0
max index = n - 1
while min index \leq max index do
   mid index = min index + |(max index - min index)/2|
   if a[mid index] == x then
      return mid index
   else if a[mid index] < x then
      min index = mid index + 1
   else
    | max index = mid index -1
   end
end
return -1
```

O-Kalkül

Formale Definition

$$\mathcal{O}(f(n)) = \{g(n) : \exists c > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : g(n) \leq c \cdot f(n)\}$$

$$\Omega(f(n)) = \{g(n) : \exists c > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : g(n) \geq c \cdot f(n)\}$$

$$\Theta(f(n)) = \mathcal{O}(f(n)) \cap \Omega(f(n))$$

$$o(f(n)) = \{g(n) : \forall c > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : g(n) \leq c \cdot f(n)\}$$

$$\omega(f(n)) = \{g(n) : \forall c > 0 : \exists n_0 \in \mathbb{N} : \forall n \geq n_0 : g(n) \geq c \cdot f(n)\}$$

Aufgaben

- **2** 2^n ∈ $\mathcal{O}(3^n)$
- $3n^2 + \sqrt{n} \in \mathcal{O}(n^2)$
- ${\color{red} {\bf 4}} \; n! \in \mathcal{O}(n^n)$

Noch mehr Aufgaben

\mathcal{O} , Ω oder Θ

- $f(n) = \log n^2; g(n) = \log n + 5$
- **2** $f(n) = n \log n + n; g(n) = \log n$

Beweise

- 2 Auf der Menge der asymptotisch positiven Funktionen ist

$$f \sim_{\Theta} g : \Leftrightarrow f \in \Theta(g)$$

eine Äquivalenzrelation.

(Vereinfachtes) Master-Theorem

Für positive Konstanten a, b, c, d, sei $n = b^k$ für ein $k \in \mathbb{N}$

$$T(n) = egin{cases} a, & \text{falls } n = 1 \ cn + dT(rac{n}{b}), & \text{falls } n > 1 \end{cases}$$

Es gilt dann

$$T(n) = \begin{cases} \Theta(n), & \text{falls } d < b \\ \Theta(n\log(n)), & \text{falls } d = b \\ \Theta(n^{\log_b d}), & \text{falls } d > b \end{cases}$$

Aufgaben zum Master-Theorem

- A(1) = 1 und für $n = 2^k$, $k \in \mathbb{N} : A(n) = A(n/2) + cn$
- B(1) = 1 und für $n = 3^k$, $k \in \mathbb{N} : B(n) = 4B(n/3) + 4n$
- C(1) = 1 und für $n = 6^k$, $k \in \mathbb{N} : C(n) = 3C(n/6) + n + 7$
- D(1) = 1 und für $n = 6^k$, $k \in \mathbb{N} : D(n) = 6D(n/6) + C(n)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $n^2 \in \omega(n^2)$

- $n 7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\log_n n \in \mathcal{O}(1)$
- $\quad \quad \mathbf{n}^2 \in \omega(\mathbf{n}^2)$

- $7n + 4 \in \mathcal{O}(n)$
- $n \log n \in \mathcal{O}(n)$
- $n(n+1) \in \Theta(n^3)$
- $n^n + n^5 \in \Omega(n)$
- $n+n! \in \Omega(n^n)$
- $n + 10 \in o(n)$
- $\bullet \ \log_n n \in \mathcal{O}(1)$
- $n^2 \in \omega(n^2)$

Fragen?

Bis zum nächsten Mal

