OBJECT-ORIENTED SYSTEMS
DEVELOPMENT:
USING THE UNIFIED MODELING
LANGUAGE

Activity Diagram

INTRODUCTION

- Activity diagrams, along with use case and state machine diagrams, are considered behavior diagrams because they describe what must happen in the system being modeled.
- Activity diagrams consist of activities that are made up of actions which help people on the business and development sides of an organization come together to understand the same process and behavior.
- Activity diagram is defined as a UML diagram that focuses on the execution and flow of the behavior of a system instead of implementation.
- It is also called object-oriented flowchart.

BENEFITS OF ACTIVITY DIAGRAMS

- Demonstrate the logic of an algorithm.
- Describe the steps performed in a UML use case.
- Illustrate a business process or workflow between users and the system.
- Simplify and improve any process by clarifying complicated use cases.
- Model software architecture elements, such as method, function, and operation.

HOW TO DRAW AN ACTIVITY DIAGRAMS

- Activity diagram is a flowchart of activities.
- It represents the workflow between various system activities.
- Activity diagrams include swimlanes, branching, parallel flow, control nodes, expansion nodes, and object nodes.
- Activity diagram also supports exception handling.
- To draw an activity diagram, one must understand and explore the entire system.
- All the elements and entities that are going to be used inside the diagram must be known by the user.
- After analyzing all activities, these activities should be explored to find various constraints that are applied to activities.
- If there is such a constraint, then it should be noted before developing an activity diagram.

HOW TO DRAW AN ACTIVITY DIAGRAMS

- All the activities, conditions, and associations must be known.
- Following rules must be followed while developing an activity diagram:
 - All activities in the system should be named.
 - Activity names should be meaningful.
 - Constraints must be identified.
 - Activity associations must be known.

Symbol	Name	Description		
	Start symbol	Represents the beginning of a process or workflow in		
		an activity diagram. It can be used by itself or with a		
		note symbol that explains the starting point.		
	Activity	Indicates the activities that make up a modeled		
Activity	symbol	process. These symbols, which include short		
		descriptions within the shape, are the main building		
		blocks of an activity diagram.		
	Connector	Shows the directional flow, or control flow, of the		
	symbol	activity. An incoming arrow starts a step of an		
		activity; once the step is completed, the flow		
		continues with the outgoing arrow.		
	Joint symbol/	Combines two concurrent activities and re-introduces		
	Synchronizati	them to a flow where only one activity occurs at a		
 	on bar	time. Represented with a thick vertical or horizontal		
,		line.		

Symbol	Name	Description		
	Fork symbol	Splits a single activity flow into two concurrent		
		activities. Symbolized with multiple arrowed lines		
+ +		from a join.		
\wedge	Decision	Represents a decision and always has at least two		
()	symbol	paths branching out with condition text to allow users		
\sim		to view options. This symbol represents the branching		
		or merging of various flows with the symbol acting as		
		a frame or container.		
	Note symbol	Allows the diagram creators or collaborators to		
		communicate additional messages that don't fit within		
		the diagram itself. Leave notes for added clarity and		
		specification.		
	Send signal	Indicates that a signal is being sent to a receiving		
	symbol	activity.		

Symbol	Name	Description	
	Receive	Demonstrates the acceptance of an event. After the	
	signal symbol	event is received, the flow that comes from this action	
		is completed.	
	Shallow	Represents a transition that invokes the last active	
(H)	history	state.	
	pseudostate		
	symbol		
	Option loop	Allows the creator to model a repetitive sequence	
	symbol	within the option loop symbol.	
\otimes	Flow final	Represents the end of a specific process flow. This	
	symbol	symbol shouldn't represent the end of all flows in an	
		activity; in that instance, you would use the end	
		symbol. The flow final symbol should be placed at the	
		end of a process in a single activity flow.	

Symbol	Name	Description		
[Condition]	Condition	Placed next to a decision marker to let you know		
	text	under what condition an activity flow should split of		
		in that direction.		
	End symbol	Marks the end state of an activity and represents the		
		completion of all flows of a process.		

- An activity partition or a swimlane is a high-level grouping of a set of related actions. A single partition can refer to many things, such as classes, use cases, components, or interfaces.
- If a partition cannot be shown clearly, then the name of a partition is written on top of the name of an activity.

ACTIVITY DIAGRAM FOR A LOGIN

- Many of the activities people want to accomplish online—checking email, managing finances, ordering clothes, etc.—require them to log into a website.
- This activity diagram shows the process of logging into a website, from entering a username and password to successfully logging in to the system.

ACTIVITY DIAGRAM FOR A LOGIN

ACTIVITY DIAGRAM FOR A BANKING SYSTEM

Withdraw money from a bank account through an ATM

Activities involved in an ATM transaction.

Example: Business Level Activity Diagram of the Library

An activity diagram for processing mortgage requests (Loan: Processing Mortgage Request).

Coffee Example

WHEN USE ACTIVITY DIAGRAM

- Model the workflow in a graphical way, which is easily understandable.
- Model the execution flow between various entities of a system.
- Model the detailed information about any function or an algorithm which is used inside the system.
- Model business processes and their workflows.
- Capture the dynamic behavior of a system.
- Generate high-level flowcharts to represent the workflow of any application.
- Model high-level view of an object-oriented or a distributed system.

How to create AD

Step ID	Process Activity or Decision	Who/What Performs	Parallel Activity	Loop	Preced- ing Step
1	Request quote	Customer	No	No	-
2	Develop requirement notes	Salesperson	No	Yes	1
3	Decision: Help?	Salesperson	-	Yes	2
4	Salesperson enters data	Salesperson	No	Yes	3
5	Check requirements	Technical Expert	No	Yes	3
6	Tech. expert enters data	Technical Expert	No	Yes	5
7	Calculate quote	System	No	Yes	4, 6
8	Review quote	Customer	No	Yes	7
9	Decision: Changes?	Customer	No	Yes	8
10	Accept quote as order	Customer	No	No	9

HACS Use-Cases (Homework assignment collection system)

• Use case: Distribute Assignments

• Actors: Instructor (initiator), Student

• Type: Primary and essential

o Description: The Instructor completes an assignment and

submits it to the system. The instructor will also

submit the delivery date, due date, and the class

the assignment is assigned for. The system will at

the due date mail the assignment to the student.

• Cross Ref.: Requirements XX, YY, and ZZ

Swimlanes (Who Does What?)

