

Outline

STL Features

Strength of seasonality and trend

STL decomposition

$$y_t = T_t + S_t + R_t$$

Seasonal strength

$$\max\left(0,1-\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t+R_t)}\right)$$

Trend strength

$$\max\left(0,1-\frac{\operatorname{Var}(R_t)}{\operatorname{Var}(T_t+R_t)}\right)$$

STL Features

Strength of seasonality and trend

STL decomposition

$$y_t = T_t + S_t + R_t$$

Seasonal strength

$$\max\left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)$$

Trend strength

$$\max \left(0, 1 - \frac{\text{Var}(R)}{\text{Var}(T_t + \frac{\text{Holidays more seasonal than other travel.}}{\text{WA has strongest trends.}}\right)$$

STL Features

Strength of seasonality and trend

STL decomposition

$$y_t = T_t + S_t + R_t$$

Seasonal strength

$$\max\left(0, 1 - \frac{\operatorname{Var}(R_t)}{\operatorname{Var}(S_t + R_t)}\right)$$

Trend strength

$$\max \left(0, 1 - \frac{\text{Var}(R)}{\text{Var}(T_t + \frac{\text{Holidays more seasonal than other travel.}}{\text{WA has strongest trends.}}\right)$$

Lab Session 9

Lab Session 9

- Use GGally::ggpairs() to look at the relationships between the STL-based features. You might wish to change seasonal_peak_year and seasonal_trough_year to factors.
- Which is the peak quarter for holidays in each state?

Feature extraction and statistics

Dimension reduction for features

Dimension reduction for features

Lab Session 10

Lab Session 10

- Use a feature-based approach to look for outlying series in PBS.
- What is unusual about the series you identify as outliers?