NOVA IMS

Information

School

Management

Reinforcement Learning

Lecture 1

Introduction to Reinforcement Learning

April 2025

Nuno Alpalhão nalpalhao@novaims.unl.pt

Schedule

7 Lectures

- Every Tuesday at 8:30.
- Understanding the Basic Principles of RL.
- Variations of RL approaches and their implications.
- Real world applications.

7 Labs

- Every Wednesday at 8:30 (P3), Thursday** (P1) at 13:30 and Thursday** at 15:00 (P2).
- Hands-on experience of RL algorithms using Python.
- When to use RL?

^{**} Classes on the 1st of May will be changed!!

Grading | First Season

1 Exam (50%)

- 10 multiple choice questions and 5 other questions.
- 1:30 hours duration.

1 **Project** (50%)

- Project will be the implementation of a RL application.
- Group Activity up to 4 people.
- To be delivered until the 20th of June.

Grading | Second Season

1 Exam (50%)

• 1:30 hours duration.

1 **Project** (50%)

- Project will be the implementation of a RL application.
- Individual.
- To be delivered until the 18th of July.

Tools

Programming Language

ML Libraries

Environment Engine

Bibliography

Reinforcement Learning: An Introduction

Second edition, in progress

Richard S. Sutton and Andrew G. Barto © 2014, 2015

A Bradford Book

The MIT Press Cambridge, Massachusetts London, England

http://incompleteideas.net/book/the-book-2nd.html

We will focus mostly on the first two books.

Learning Outcomes

- Define the characteristics of reinforcement learning.
- Determine whether an application problem should be formulated as an RL problem.
- Formally define an RL problem (state space, action space, dynamics, and reward model).
- Be able to select which algorithm is best suited for a specific RL problem and justify it.

Learning Outcomes

QUESTIONS?

Many Faces of RL

From DeepMind's and UCL with David Silver Course

Machine Learning

RL in Machine Learning

Reinforcement Learning Involves

Optimization

Delayed consequences

Exploration

Generalization

Optimization

Optimization

- Objective is to find an optimal way to make decisions.
- Yielding best outcomes or at least very good outcomes.
- Unequivocal notion of usefulness of each decision.

Delayed Consequences

Delayed Consequences

- Decisions now have a long-term impact.
- Early rewards can hinder the future.
- Introduces two challenges
 - When planning: decisions involve reasoning about not just immediate benefit of a choice but also its long-term ramifications.
 - When learning: At each stage how can we value the lessons learned?

Exploration

Exploration

- Learning about the world by making decisions.
- Agent as scientist.
- Only get a reward (label) for decision made.
- Decisions impact what we learn about. (What new information is obtained?)

Generalization

Generalization

- Policy is mapping from experience to action.
- Why not just pre-program a policy?

Examples

Autonomous Vehicles (AV's)

 AV's have sensors like LiDAR, radar, cameras, etc., that sense their nearby environment.

- The raw sensory data and object detection are combined to get a unified scene representation that is used for planning a path to a destination.
- The planned path is next used to feed inputs to the controls to make the system/agent follow that path.

Examples

Robots

- Using computer vision and natural language processing or speech recognition using deep learning techniques.
- Observe human behaviour through cameras and learn to perform like humans.

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.

Examples

Recommendation Systems

- Video sharing/hosting applications YouTube, TikTok, and Facebook suggest to us the videos that we would like to watch based on our viewing history.
- Systems continually learn from the way users respond to the suggestions presented by the engine.

Examples

Finance and Trading

- Sequential action optimization focus wherein past states and actions influence the future outcomes.
- Reinforcement learning finds significant use in time-series analysis, especially in the field of finance and stock trading.

MACHINE LEARNING USE CASES IN FINANCE

Process Automation

Security

Underwriting and credit scoring

Algorithmic trading

Robo-advisory

Examples

Healthcare

- Generating predictive signals and enabling medical intervention at early stages.
- Robot-assisted surgeries or managing the medical and patient data.
- RL-based systems provide recommendations learned from its experiences and continually evolve.

Visualized by Riseapps

Reward Hypothesis

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a **reward signal**. For example, us humans can learn without examples of optimal behaviour.
- Feedback is delayed, not instantaneous.
- Time really matters (sequential, non i.i.d data), which means future interactions can depend on earlier ones.
- Agent's actions affect the subsequent data it receives.

RL in Machine Learning

The constituents of deep reinforcement learning

	Low-dimensional states	High-dimensional states
Static dataset	Classic supervised learning	Deep supervised learning
Agent/environment interaction	Tabular reinforcement learning	Deep reinforcement learning

Supervised vs. reinforcement learning

Concept	Supervised learning	Reinforcement learning
Inputs x	Full dataset of states	Partial (one state at a time)
Labels y	Full (correct action)	Partial (numeric action reward)

RL Conceptualization

Reward Hypothesis

Reinforcement learning is based on the reward hypothesis:

All goals can be described by the maximisation of expected cumulative reward.

- A reward is a scalar feedback signal.
- Indicates how well agent is doing at current step.
- The agent's job is to maximise cumulative reward.

Core Concepts

The reinforcement learning formalism includes:

- Reward signal (specifies the goal).
- Environment (dynamics of the problem).
- Actions (What the agent can do).
- Agent:
 - Agent state.
 - Policy.
 - Value function.
 - Model.

Fetch I

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: ???
- Actions: ???
- Agent:
 - Agent state: ???
 - Policy: ???
 - Value function: ???
 - Model: ???

Environment State

Environment State

- The environment state is the environment's internal state.
- It is usually invisible to the agent.
- Even if it is visible, it may contain lots of irrelevant information.
- Fully Observable Environments.
- Partially Observable Environments.

Fetch II

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: Dog Owner Ball positions?
- Actions: ???
- Agent:
 - Agent state: ???
 - Policy: ???
 - Value function: ???
 - Model: ???

"How about, for God's sake, this one?"

Agent State

Agent State

- The history is the full sequence of observations, actions, rewards.
- This history is used to construct the agent state.
- The agent's actions depend on its state.
- The agent state is a function of the history.
- The agent state is often much smaller than the environment state.

Fetch III

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: Dog owner stick positions?
- Actions: Move and move the stick.
- Agent:
 - Agent state: Current Position? Do I have the stick?
 - Policy: ???
 - Value function: ???
 - Model: ???

Agent Policy

Agent Policy
Behaviour function

A policy is the agent's behaviour.

- It is a map from state to action:
 - Deterministic policy.
 - Stochastic policy.

Fetch IV

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: Dog owner stick positions?
- Actions: Move and move the stick.
- Agent:
 - Agent state: Current Position? Do I have the stick?
 - Policy: Chase it!
 - Value function: ???
 - Model: ???

"THEY THROW IT, I CHASE IT - THERE ARE WORSE GIGS."

Agent Value Function

Agent Value Function How good is each state and/or action

- Value function is a prediction of future reward.
- Used to evaluate the goodness/badness of states.
- And therefore, to select between actions.
- Discount factor trades off importance of immediate vs long-term rewards
- The value depends on a policy.
- Agents often approximate value functions.

Fetch V

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: Dog owner stick positions?
- Actions: Move the stick.
- Agent:
 - Agent state: Current Position? Do I have the stick?
 - Policy: Chase it!
 - Value function: Do I deserve the treat?
 - Model: ???

"The bone is a great reward if you can put up with all the knick-knacking and paddy whacking."

Agent Model

Agent Model

Representation of the environment

- A model predicts what the environment will do next.
- Predicts the next state.
- A model does not immediately provide a good policy, there is still a need to plan.

Fetch VI

Example: Let's play fetch!

- Reward signal: Get a treat from owner.
- Environment: Dog owner stick positions?
- Actions: Move and move the stick.
- Agent:
 - Agent state: Current Position? Do I have the stick?
 - Policy: Chase it!
 - Value function: Do I deserve the treat?
 - Model: Where will I be next?

"I started out fetching.

Agent Categories I

Agent Categories I

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function
- Actor Critic
 - Policy
 - Value Function

Environment

Agent Categories II

Agent Categories II

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Optionally Policy and/or Value Function
 - Model

Many Concepts of RL

From DeepMind's and UCL with David Silver Course

Prediction/Evaluation vs Control

• **Prediction**: evaluate the future (for a given policy)

Control: optimise the future (find the best policy)

These can be strongly related.

If we could predict everything, do we need anything else?

Learning vs Planning

Two fundamental problems in reinforcement learning

Learning:

- The environment is initially unknown.
- The agent interacts with the environment.

Planning:

- A model of the environment is given (or learnt).
- The agent plans in this model (without external interaction).
- a.k.a. reasoning, pondering, thought, search, planning.

Exploration vs Exploitation

Two fundamental other problems in reinforcement learning

- Exploration finds more information about the environment.
- Exploitation exploits known information to maximise reward.
- It is usually important to explore as well as exploit.

Conclusions

- All components are functions
 - Policies
 - Value functions
 - Models
 - State update
- Often the assumptions from supervised learning (i.i.d., stationarity) are disrupted.
- Deep learning is an important tool.
- Deep reinforcement learning is a rich and active research field.

Good to Know

Reinforcement Learning has a lot of Mathematics!

Thank You!

Morada: Campus de Campolide, 1070-312 Lisboa, Portugal

Tel: +351 213 828 610 | Fax: +351 213 828 611

