Modélisation

Introductions aux Bases de Données Nathanaël Martel

Trois étapes de modélisation

Conceptuel

Organisation des données indépendamment de toutes organisation physique.

Logique

Restructuration du modèle conceptuel pour une exploitation physique

Physique

Faire rentrer le modèle dans le logiciel

Modélisation conceptuelle

- Oublier les logiciels, applications, plateforme, SGBD
- Se concentrer sur les données, comment elles sont perçus par les différents personnes utilisant le système
- Fournir un diagramme expliquant l'organisation des données ainsi qu'un vocabulaire adapté

- Réunir les entités dont nous disposons
- Les décrire
- Décrire les relations que les objets ont les uns avec les autres

Les entités

« Un groupes d'objets qui ont les mêmes propriété et qui sont indépendant entre eux »

Exemple: les employés, les clients, les produits...

Représentation des entités sous forme de diagramme :

- Un rectangle avec le nom de le l'entité
- Le nom de l'entité est un nom commun ou une phrase nominal au singulier

Client

Produit

Décrire les entités:

Préciser les attributs qui compose l'entité

Client

Nom Prénom Téléphone **Produit**

Nom Prix Fabriquant

Décrire les entités:

Préciser les types des attributs

Client

Nom texte (max 256) Prénom texte (max 256) Téléphone nombre entier Date de naissance : date

Produit

Nom texte (max 256) Prix nombre décimal Fabriquant texte (max 256)

Décrire les entités:

- Clés uniques : identifie de manière unique l'objet
- Clé primaire : identifiant unique principal

Client

Nom Prénom Téléphone *attribut unique* Date de naissance **Produit**

Nom Prix Fabriquant EAN attribut unique

Les relations entre les entités :

- Les différents liens entre les entités
- Nommé par un verbe ou un groupe verbal
- Avec une direction qui fait sens

Les relations entre les entités :

- Le nombre d'occurrences minimum et maximum de parte et d'autre de la relation
 - Min = 0, Max = 1 est noté 0..1
 - Le minimum montre la cardinalité
 - Le maximum montre la participation

Exemples:

- Relation 0..1: un ou aucun
- Relation 0..n : plusieurs
- Relation 1..n: au moins un
- Relation 1..1: un et un seul

Les relations entre 3 entités :

« Un client achète des produits livrés à une adresse »

Exemple de diagramme conceptuel pour un blog

Exemple de diagramme conceptuel pour un blog

Exemple, pour un article donné je peux :

- Choisir un et un seul auteur
 - Liste déroulante <select>
 - Boutons radios <input type="radio" />
- Sélectionner plusieurs catégories (ou aucune)
 - Cases à cocher <input type="checkbox" />

Relations «One to many»

- 1 auteur peut écrire n articles
- 1 article est écrit par un et un seul auteur

Trois types de relations

- One to many «1:n»
- Many to many «n:n»
- One to one «1:1»

Les étapes de la modélisation conceptuelle

- Définir les entités
- Définir les attributs des entités
- Définir les types des attributs
- Identifier les possibles clés unique et primaires
- Définir les relations avec leur cardinalité

Modélisation logique

 À partir de la modélisation conceptuelle nous déduisons un modèle physique

Clé primaire PK

 Pour chaque entité, il faut définir une clé primaire, le plus souvent un identifiant nommé «id» entier qui s'auto-incrémente

Client

Id *PK AI nombre entier*Nom *texte (max 256)*Prénom *texte (max 256)*Téléphone *nombre entier*Date de naissance : *date*

Produit

Id *PK AI nombre entier*Nom *texte (max 256)*Prix *nombre décimal*Fabriquant *texte (max 256)*EAN *UK*

Relations binaire

- Les relations avec 1 ou 0 indiquent simplement qu'un objet fait (ou peut faire) référence à un autre
- La clé primaire du côté de 1 va être utilisé comme clé étrangère de l'autre côté de la relation

Relations binaire

Relations «many to many»

- Une catégorie peut contenir plusieurs articles
- Un articles peut être dans plusieurs catégories

Relations multiple

- Quand il a deux « n »
- Il faut créer une table intermédiaire reprenant les clés primaire des deux tables
- La relation peut avoir d'autres attributs.

Relations multiple

Relations «one to one»

- Un client a une et une seule adresse
- À part quelque rare cas, les deux entités peuvent fusionner.

Client
Id **PK**Nom
Prénom
Rue
Ville
Code postale

Diagramme logique

Les étapes de la modélisation logique

- Définir les clés primaire, les ajouter si nécessaire
- Transformer les relations en ajoutant si besoins des tables

Modélisation Physique

- À partir de la modélisation logique nous implémentons un système de base de données
- Certains logiciel sont capable de faire automatiquement le passage de la modélisation physique à la modélisation logique et dans le sens inverse

- Certaines interfaces proposent des « assistants » pour créer les tables
- Sinon il est possible de le faire directement avec SQL

Création de la Base de Données

```
CREATE DATABASE `bibliotheque`;
```

Création de tables avec SQL

```
CREATE TABLE `livre` (
   `id` int NOT NULL AUTO_INCREMENT PRIMARY KEY,
   `titre` varchar(255) NOT NULL
);
```

Options génériques des champs

- AUTO_INCREMENT: à chaque nouvel enregistrement, la valeur du champs va s'incrémenter de 1 par rapport au précédent (même s'il a été supprimé entre temps). C'est idéal pour s'assurer de l'unicité de la valeur d'un champs et c'est donc parfait pour un clé primaire.
- PRIMARY KEY: indique que ce champs est la clé primaire de la table. Une clé primaire n'est pas nécessairement auto incrémenté.

Options génériques des champs

- DEFAULT '': valeur par défaut que prend le champs si rien n'est précisé à l'enregistrement.
- Null / Not Null: possibilité ou non que la valeur du champ soit à Null. Attention, Null est différent de 0 ou d'une chaîne vide.

Différents types de champs numérique

- Int: un nombre entier (longueur)
- Tinyint: un «petit» nombre entier, entre -128 et 128
- Decimal, float, double : d'autres types numérique (option sur le nombre de chiffres)

Différents types de champs dates

- Date: une date dans le format de la SGBD
- Datetime : une date avec l'heure dans le format de la SGBD
- Timestamp: date et heure au format Unix, c'est à dire le nombre entier de seconde depuis le 01/01/1970

Différents types de champs textuels

- Varchar: une chaîne de caractère (longueur)
- Text : un chaîne de texte de longueur indéfinis (et potentiellement infinis)

• ... et pleins d'autres types

- Enum: un choix dans une liste de propositions (proposition). En fait, cela revient à faire un tinyint.
- Bit, Binary, Blob: des données sous forme binaire.

```
-
```

Modification de tables avec SQL

```
ALTER TABLE `livre`

ADD `auteur` varchar(255) COLLATE 'latin1_swedish_ci'

NOT NULL DEFAULT 'Victor Hugo',

ADD `date_achat` date NULL AFTER `auteur`;
```

Autres exemple

```
CREATE TABLE `auteur` (
   `id` int NOT NULL AUTO_INCREMENT PRIMARY KEY,
   `nom` varchar(255) NOT NULL,
   `prenom` varchar(255) NOT NULL,
   `date_naissance` date NULL,
   `date_mort` date NULL
);
```

Clés étrangères

- C'est un champs comme un autre, il doit être déclaré comme les autres.
- Il n'est pas nécessaire de signaler à la base de données que c'est une clée étrangère : il faudra toujours préciser sur quoi ce fait la requête dans les jointures
- Il est possible de demander à la base de données de gérer la cohérence des clés étrangère avec une "contrainte"

Conclusion

La modélisation d'une base de données passe par une phase conceptuelle puis logique.

Ces phases permettent d'obtenir un diagramme qui sert de documentation ainsi qu'une structure de travail.