STAT3006: TUTORIAL2

- 1. Newton's method.
- 2. Expectation Maximization (EM) algorithm.

- Also called Newton-Raphson's method.
- Used to iteratively approximate zero points of the equation g(x) = 0, where g(x) must be differentiable.

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$$

- We have a sequence (Newton sequence) of $\{x_n\}_{n=1}^{\infty}$ from the Newton's method.
 - From the lecture note2, Newton sequence is quadratic convergence.
 - Quadratic convergence implies that $\lim \frac{|x_{n+1}-x_n|}{|x_n-x_\infty|}=1$, so we can use $|x_{n+1}-x_n|<\epsilon$ as stopping rule.
- Usually, we would like to maximize f(x) instead of searching zero points of g(x).
 - In some cases (e.g. f is convex), maximizing f(x) is equivalent to searching zero points of f'(x).
 - Let g(x) be f'(x).
 - $x_{n+1} = x_n \frac{f'(x_n)}{f''(x_n)}.$
 - Requirement for f(x), f must be twice differentiable, and calculating the $\left(f''(x_n)\right)^{-1}$ is computationally feasible.

• In the multivariate case, (maximize $f(x_1, x_2, ..., x_p)$, the range of f is in R).

•
$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \left(Hf\left(\mathbf{x}^{(n)}\right)\right)^{-1} Jf\left(\mathbf{x}^{(n)}\right)$$

- $Hf(x^{(n)})$ is the Hessian matrix of $f(x_1^{(n)}, x_2^{(n)}, \dots, x_p^{(n)})$.
- $Jf(x^{(n)})$ is the Jacobian vector of $f(x_1^{(n)}, x_2^{(n)}, ..., x_p^{(n)})$.

- Application: we maximize log likelihood function to obtain MLE, where f=logL.
 - In this case, $Jf(x^{(n)})$ is called the score function.
 - $-Hf(x^{(n)})$ is called the observed information matrix.

- Example (Weibull distribution): $p(x) = \alpha \beta x^{\beta-1} e^{-\alpha x^{\beta}} (x > 0, \alpha > 0, \beta > 0).$
- $\log \mathbf{L} = nlog \boldsymbol{\alpha} + nlog \boldsymbol{\beta} + (\boldsymbol{\beta} 1) \sum log X_i \boldsymbol{\alpha} \sum X_i^{\boldsymbol{\beta}}$
- Calculate the score function.
- Calculate the observed Information matrix.

- When we use Newton's method, we have to calculate the inverse of a matrix.
- It is usually computationally infeasible when the dimension of parameters is high.
- In some problems, the observed data is X, and the missing (unobserved) data is Z.
 - On the one hand, directly maximizing observed-data likelihood $L(\theta | X)$ is very difficult.
 - On the other hand, complete-data likelihood $L(\theta | X, Z)$ is more tractable.
- EM algorithm is a very useful tool to maximize $L(\theta \mid X)$ by playing with $L(\theta \mid X, Z)$.
 - Given current estimates for Θ , $\Theta^{(t)}$
 - E (Expectation) step: calculate the conditional expectation $Q(\theta|\theta^{(t)}) = E[\log L(\theta|X, Z)|X, \theta^{(t)}]$.
 - M (Maximization) step: $\Theta^{(t+1)} = \operatorname{argmax} Q(\Theta|\Theta^{(t)})$
 - Why EM algorithm works? It can be shown that $L(\Theta^{(t+1)} \mid X) \ge L(\Theta^{(t)} \mid X)$.
 - Sometimes, multiple initial values should be tried to avoid falling into a local mode.

Problem:

- There are two coins, coin A and coin B.
- The probability of coin A's head up is Θ_A ; The probability of coin B's head up is Θ_B .
- We first randomly select a coin from coin A and coin B, and then toss the selected coin ten times. We repeat the preceding procedure five times.
- Data:
 - HTTTT HTTHT
 - HHTTH THHTH
 - TTTHT THHTT
 - TTHTH TTTHT
 - THHTH HTHHT

- When $Z_i = 1$, coin A is selected. When $Z_i = 2$, coin B is selected.
 - $P(Z_i = 1) = P(Z_i = 2) = 1 / 2$.
- Denote the number of heads up in experiment I by X_i .
- Missing data is Z_i , the observed data is X_i .
- Observed-data likelihood function is too complicated to deal with.
- The complete-data likelihood function is

$$L(\theta_A, \theta_B | \mathbf{X}, \mathbf{Z}) = \prod_{i=1}^{5} \left[\binom{10}{X_i} \theta_A^{X_i} (1 - \theta_A)^{10 - X_i} \right]^{I(Z_i = 1)} \cdot \left[\binom{10}{X_i} \theta_B^{X_i} (1 - \theta_B)^{10 - X_i} \right]^{I(Z_i = 2)},$$

• The log complete-data likelihood function is

$$\begin{split} &l(\theta_A, \theta_B | \mathbf{X}, \mathbf{Z}) \\ &= \sum_{i=1}^5 I(Z_i = 1) \cdot \left[\log \binom{10}{X_i} + X_i \log \theta_A + (10 - X_i) \log(1 - \theta_A) \right] + \\ &I(Z_i = 2) \cdot \left[\log \binom{10}{X_i} + X_i \log \theta_B + (10 - X_i) \log(1 - \theta_B) \right], \end{split}$$

• The E step is

$$E(I(Z_{i}=1)|X_{i},\theta_{A}^{(t)},\theta_{B}^{(t)}) = P(Z_{i}=1|X_{i},\theta_{A}^{(t)},\theta_{B}^{(t)})$$

$$= \frac{\binom{10}{X_{i}}(\theta_{A}^{(t)})^{X_{i}}(1-\theta_{A}^{(t)})^{10-X_{i}}}{\binom{10}{X_{i}}(\theta_{A}^{(t)})^{X_{i}}(1-\theta_{A}^{(t)})^{10-X_{i}} + \binom{10}{X_{i}}(\theta_{B}^{(t)})^{X_{i}}(1-\theta_{B}^{(t)})^{10-X_{i}}},$$

$$E(I(Z_{i}=2)|X_{i},\theta_{A}^{(t)},\theta_{B}^{(t)}) = \frac{\binom{10}{X_{i}}(\theta_{B}^{(t)})^{X_{i}}(1-\theta_{B}^{(t)})^{10-X_{i}}}{\binom{10}{X_{i}}(\theta_{A}^{(t)})^{X_{i}}(1-\theta_{A}^{(t)})^{10-X_{i}} + \binom{10}{X_{i}}(\theta_{B}^{(t)})^{X_{i}}(1-\theta_{B}^{(t)})^{10-X_{i}}}.$$

• The M step is

$$\theta_A^{(t+1)} = \frac{\sum_{i=1}^5 E(I(Z_i = 1) | X_i, \theta_A^{(t)}, \theta_B^{(t)}) \cdot X_i}{\sum_{i=1}^5 E(I(Z_i = 1) | X_i, \theta_A^{(t)}, \theta_B^{(t)}) \cdot 10}$$

$$\theta_B^{(t+1)} = \frac{\sum_{i=1}^5 E(I(Z_i = 2) | X_i, \theta_A^{(t)}, \theta_B^{(t)}) \cdot X_i}{\sum_{i=1}^5 E(I(Z_i = 2) | X_i, \theta_A^{(t)}, \theta_B^{(t)}) \cdot 10}$$