

## NASIONALE SENIOR SERTIFIKAAT

**GRAAD 12** 

### **JUNIE 2022**

FISIESE WETENSKAPPE: CHEMIE V2

**PUNTE: 150** 

TYD: 3 uur

Hierdie vraestel bestaan uit 20 bladsye, insluitend 2 gegewensblaaie.

#### **INSTRUKSIES EN INLIGTING**

- 1. Skryf jou naam en van in die toepaslike spasies op die ANTWOORDEBOEK.
- 2. Hierdie vraestel bestaan uit SEWE vrae. Beantwoord AL die vrae in die ANTWOORDEBOEK.
- 3. Begin ELKE vraag op 'n NUWE bladsy in die ANTWOORDEBOEK.
- 4. Nommer die antwoorde korrek volgens die nommeringstelsel wat in hierdie vraestel gebruik is.
- 5. Laat EEN reël tussen twee subvrae, byvoorbeeld tussen VRAAG 2.1 en VRAAG 2.2.
- 6. Jy mag 'n nieprogrammeerbare sakrekenaar gebruik.
- 7. Jy mag toepaslike wiskundige instrumente gebruik.
- 8. Jy word aangeraai om die aangehegte GEGEWENSBLAAIE te gebruik.
- 9. Toon ALLE formules en substitusies in ALLE berekeninge.
- 10. Rond jou FINALE numeriese antwoorde tot 'n minimum van TWEE desimale plekke af.
- 11. Gee kort (bondige) motiverings, besprekings, ens. waar nodig.
- 12. Skryf netjies en leesbaar.

#### **VRAAG 1: MEERVOUDIGEKEUSE-VRAE**

Verskeie opsies word as moontlike antwoorde op die volgende vrae gegee. Kies die antwoord en skryf slegs die letter (A–D) langs die vraagnommers (1.1 tot 1.10) in die ANTWOORDEBOEK neer, byvoorbeeld 1.11 E.

| 1.1 | Wat | ter EEN van die volgende is die algemene formule van alkene?                                                                                     |     |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Α   | $C_nH_{2n}$                                                                                                                                      |     |
|     | В   | C <sub>2</sub> H <sub>2n+2</sub>                                                                                                                 |     |
|     | С   | $C_nH_{2n-2}$                                                                                                                                    |     |
|     | D   | $C_nH_{2n+1}$                                                                                                                                    | (2) |
| 1.2 |     | nneer die karbonielgroep aan die einde van 'n organiese molekule geleë is,<br>watter EEN van die gegewe homoloë reekse sal die molekuul behoort? |     |
|     | Α   | Alkohole                                                                                                                                         |     |
|     | В   | Aldehiede                                                                                                                                        |     |
|     | С   | Ketone                                                                                                                                           |     |
|     | D   | Haloalkane                                                                                                                                       | (2) |
| 1.3 | Wat | ter EEN van die volgende verbindings het die HOOGSTE kookpunt?                                                                                   |     |
|     | Α   | Oktaan                                                                                                                                           |     |
|     | В   | 2-metielheptaan                                                                                                                                  |     |
|     | С   | 2,3-dimetielheksaan                                                                                                                              |     |
|     | D   | 2,2,3-trimetielpentaan                                                                                                                           | (2) |
| 1.4 |     | ter EEN van die volgende veranderinge sal die gemiddelde kinetiese gie van deeltjies VERHOOG?                                                    |     |
|     | Α   | Katalisator                                                                                                                                      |     |
|     | В   | Afname in temperatuur                                                                                                                            |     |
|     | С   | Toename in temperatuur                                                                                                                           |     |
|     | D   | Toename in oppervlakte                                                                                                                           | (2) |
|     |     |                                                                                                                                                  |     |

1.5 Beskou die organiese reaksie hieronder waarin verbinding **P** die HOOF organiese produk is

$$CH_3CH(CH_3)CH_2CH = CH_2 + H_2O \rightarrow verbinding P$$

Die korrekte IUPAC-naam van die hoof organiese produk P is ...

- A 4-metielpentaan-1-ol.
- B 4-metielpentaan-2-ol.
- C 2-metielpentaan-1-ol.
- D 2-metielpentaan-2-ol. (2)
- 1.6 Beskou die potensiële energiediagram vir die volgende hipotetiese omkeerbare reaksie.



Watter EEN van die volgende is die KORREKTE interpretasie van die inligting wat in die grafiek vertoon word?

|   | ∆H voorwaartse reaksie | ∆H terugwaartse reaksie |    |
|---|------------------------|-------------------------|----|
|   |                        |                         |    |
| Α | Y – Z                  | Z – Y                   |    |
| В | Z – Y                  | Y – Z                   |    |
| Ь | Z = 1                  | 1 – 2                   |    |
| С | X – Y                  | Y – X                   |    |
|   |                        |                         |    |
| D | Y – X                  | X – Y                   | (2 |

Kopiereg voorbehou

1.7 Beskou die volgende reaksie by ewewig by temperatuur **T**.

$$NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H < 0$$

Die temperatuur van die reaksiemengsel word verhoog.

Watter EEN van die volgende is KORREK oor die REAKSIETEMPO VAN DIE VOORWAARTSE REAKSIE en die OPBRENGS van N<sub>2</sub>O<sub>4</sub> onmiddellik nadat die temperatuur verhoog is?

|   | Tempo van die voorwaartse reaksie | Opbrengs van N₂O₄ |
|---|-----------------------------------|-------------------|
| Α | Afneem                            | Toeneem           |
| В | Toeneem                           | Afneem            |
| С | Toeneem                           | Toeneem           |
| D | Afneem                            | Afneem            |

(2)

1.8 Watter EEN van die volgende grafieke beskryf die verwantskap tussen die [H<sub>3</sub>O<sup>+</sup>] en pH KORREK?





С



[H<sub>3</sub>O<sup>+</sup>]



(2)

1.9 Beskou die suur-basis reaksie hieronder.

$$H_2PO_4^- + OH^- \rightleftharpoons H_2O + Q$$

Die korrekte formule vir stof Q is ...

- A H<sub>3</sub>PO<sub>4</sub>.
- B HPO<sub>4</sub><sup>2-</sup>.
- C PO<sub>4</sub><sup>3</sup>-.

D 
$$H_3O^+$$
. (2)

1.10 Die volgende stroombaan word gebruik om die geleidingsvermoë van sure, HA en HB, by 25 °C te toets. Beide sure het 'n konsentrasie van 1 mol·dm<sup>-3</sup>.



Die leerders se resultate word in die tabel hieronder getoon.

| SUUR | AMMETERLESING (A) |
|------|-------------------|
| HA   | 0,8               |
| НВ   | 1,5               |

Leerders skryf die volgende stellings as hul gevolgtrekkings neer.

- I. HA is 'n sterker suur as HB
- II. pH van HB is laer as dié van HA
- III. Ka-waarde van HB is hoër as dié van HA

Watter EEN van die bogenoemde stellings is KORREK?

- A Slegs I
- B Slegs II
- C Slegs I en II
- D Slegs II en III

(2)

[20]

(3)

#### VRAAG 2 (Begin op 'n nuwe bladsy.)

Beskou die organiese verbindings A tot F wat in die tabel hieronder gegee word.

| A | $CH_2CH_3$   CH $_3CHCH_2$ — $C \equiv C - CH - CH_2CH_3$   CH $_3$ | В | propan-2-oon                    |
|---|---------------------------------------------------------------------|---|---------------------------------|
| С | Bromometaan                                                         | D | C <sub>4</sub> H <sub>8</sub> O |
| Е | C7H15COOH                                                           | F | Heksaan                         |

2.1 Aan watter homoloë reekse behoort die volgende verbindings?

2.2 Skryf 'n LETTER neer van die verbinding wat aan die volgende beskrywing voldoen:

2.2.2 'n Verbinding waarvan die formule dieselfde as die empiriese formule van verbinding **E** is (1)

2.3 Verbinding **A** is 'n koolwaterstof.

2.3.2 Is verbinding **A** VERSADIG of ONVERSADIG?

Gee 'n rede vir die antwoord. (2)

2.3.3 Skryf die IUPAC-naam van verbinding **A** neer.

2.4 Skryf die struktuurformule van verbinding **B** neer. (2)

2.5 Verbinding **D**, 'n reguitketting-molekule, het slegs EEN KETTING-isomeer.

Vir verbinding **D** skryf neer die:

2.5.2 STRUKTUURFORMULE van sy KETTING-isomeer (2)

2.6 'n Groep leerders gebruik verbinding **F** as brandstof deur dit met 'n oormaat suurstof te laat reageer.

Skryf neer die:

| 2.6.1 | Naam van die reaksie tussen verbinding F en suurstof | (1) |
|-------|------------------------------------------------------|-----|
|-------|------------------------------------------------------|-----|

- 2.6.2 Skryf 'n gebalanseerde vergelyking neer vir die reaksie van verbinding **F** met 'n oormaat suurstof, deur die MOLEKULÊRE FORMULES te gebruik (3)
- 2.6.3 Gee 'n rede waarom alkane as brandstof gebruik word (1) [22]

(2)

#### VRAAG 3 (Begin op 'n nuwe bladsy.)

3.1 'n Groep leerders vergelyk die kookpunte van DRIE verbindings **A**, **B** en **C** tydens 'n ondersoek. Die verbindings het vergelykbare molekulêre massa.

Die data wat die leerders vir die verbindings verkry het, word in die tabel hieronder getoon.

|   | Verbinding  | Kookpunt (°C) |
|---|-------------|---------------|
|   |             |               |
| Α | Pentaan     | 36,1          |
|   |             |               |
| В | Butan-2-oon | 79,64         |
|   |             |               |
| С | Butan-1-ol  | 117,7         |

- 3.1.1 Definieer die term *kookpunt*. (2)
- 3.1.2 Identifiseer die onafhanklike veranderlike vir hierdie ondersoek. (1)
- 3.1.3 Watter intermolekulêre kragte is vergelykbaar in die ondersoek? (1)
- 3.1.4 Verduidelik waarom die kookpunt van verbinding **C** HOËR is as dié van verbinding **B** deur na TIPE, RELATIEWE STERKTE van intermolekulêre kragte en ENERGIE te verwys. (4)
- 3.2 Die grafieke hieronder wys hoe die dampdruk van verbindings **A** en **B** (getoon in die tabel hierbo) met temperatuur verander.

#### **GRAFIEK VAN TEMPERATUUR TEENOOR DAMPDRUK**



- 3.2.1 Definieer die term *dampdruk.*
- 3.2.2 Skryf die waarde van  $\mathbf{p}_1$ , wat in die grafiek gewys word neer. (1)

3.2.5 Verduidelik jou antwoord op VRAAG 3.2.4. (2) [16]

#### VRAAG 4 (Begin op 'n nuwe bladsy.)

Beskou die vloeidiagram wat hieronder gegee word. Verbindings P, Q en R is organiese produkte van **reaksies 1**, **2** en **3** onderskeidelik.



Vir **REAKSIE 1**, skryf neer die:

- 4.1 Naam van die tipe reaksie wat plaasvind (1)
- 4.2 Gekondenseerde struktuurformule van verbinding **P** (2)
- 4.3 Is alkohol **P** 'n primêre, sekondêre of tersiêre alkohol?Gee 'n rede vir die antwoord.(2)

Vir **REAKSIE 2**, skryf neer die:

- 4.4 Naam van die reaksie wat plaasvind (1)
- 4.5 IUPAC-naam en struktuurformule van die organiese produk **Q** (4)
- 4.6 Tipe eliminasiereaksie wat deur **REAKSIE 3** voorgestel word (1)
- 4.7 EEN ander reaksietoestand anders as hitte vir **REAKSIE 3** (1)

Verbinding **R**, C<sub>4</sub>H<sub>8</sub>, wat in reaksie **3** in die vloeidiagram hierbo geproduseer word, word na verbinding **T** in 'n TWEE stap-proses soos hieronder getoon, omgeskakel.

Verbindings **R** en **T** is onvertakte POSISIONELE isomere.



4.8 Definieer die term *posisionele isomeer.* 

- (2)
- 4.9 Skryf 'n gebalanseerde vergelyking neer deur gebruik te maak van struktuurformules vir die reaksie wat in STAP 2 plaasvind.

(6) **[20]** 

#### VRAAG 5 (Begin op 'n nuwe bladsy.)

Die ontbinding van waterstofperoksied wat deur die gebalanseerde vergelyking hieronder voorgestel word, word gebruik om die faktore wat die reaksietempo beïnvloed te ondersoek.

$$H_2O_2(aq) \rightarrow H_2(g) + O_2(g) \Delta H < 0$$

5.1 Definieer reaksietempo.

- (2)
- 5.2 Behalwe vir temperatuur, skryf TWEE faktore neer wat die reaksietempo van die reaksie beïnvloed.

(2)

5.3 Tydens 'n eksperiment (**eksperiment 1**), ontbind 150 cm<sup>3</sup> van H<sub>2</sub>O<sub>2</sub> by 30 °C in 'n fles.

Die grafiek hieronder toon die resultate van **eksperiment 1**.



5.3.1 Gee 'n rede waarom die reaksietempo tussen t = 2000 s en t = 5000 s afneem.

(2)

5.3.2 Hoe lank (in sekondes) het die reaksie geneem om voltooiing te bereik?

(1)

Bereken die:

5.3.3 Gemiddelde reaksietempo (3)

5.3.4 Volume van suurstof wat geproduseer was tydens die interval t = 0 tot t = 2000 s.

Aanvaar dat die molêre gasvolume by 30 °C 25 000 cm<sup>3</sup>·mol<sup>-1</sup> is.

AANVAAR DAT DIE VOLUME VAN DIE OPLOSSING KONSTANT BLY.

(5)

5.4 Hoe sal die volgende beïnvloed word as die volume waterstofperoksied (H<sub>2</sub>O<sub>2</sub>) wat in **eksperiment 1** gebruik is, verdubbel word?

Kies uit VERHOOG, VERLAAG of BLY DIESELFDE.

5.4.2 Totale volume suurstof geproduseer (1)

5.5 In **eksperiment 2** ontbind waterstofperoksied onder dieselfde toestande soos in **eksperiment 1**, maar 'n klein hoeveelheid mangaandioksied word bygevoeg.

Die Maxwell-Boltzmann-verspreidingskurwe vir die reaksie in **eksperiment 1** en **eksperiment** 2 word hieronder getoon.



E<sub>1</sub> en E<sub>2</sub> verteenwoordig aktiveringsenergieë vir die reaksie in **eksperimente** 1 en 2.

- 5.5.1 Definieer aktiveringsenergie. (2)
- 5.5.2 Beskryf wat deur die ingekleurde area in die grafiek voorgestel word. (1)
- 5.5.3 Watter EEN van **E**₁ of **E**₂ sal 'n hoër reaksietempo hê? Verduidelik die antwoord deur na die botsingsteorie te verwys. (4) [24]

#### VRAAG 6 (Begin op 'n nuwe bladsy.)

6.1 Die volgende reaksie bereik ewewig by 'n temperatuur van 327 °C.

$$N_2(g) + 3 H_2(g) \approx 2 NH_3(g)$$
  $\Delta H < 0$ 

6.1.1 Wat is die betekenis van die dubbelpyltjie "⇌"?

(1)

Hoe vergelyk die tempo van die voorwaartse reaksie met die tempo van die terugwaartse reaksie tydens die volgende tydintervalle?

Kies uit HOËR AS, LAER AS of GELYK AAN.

6.1.2 Voordat ewewig vir die eerste keer bereik word

(2)

6.1.3 By ewewig

(1)

Die reaksie word begin deur 4,88 mol N<sub>2</sub> en 6,18 mol H<sub>2</sub> in 'n 2 dm<sup>3</sup> verseëlde houer te plaas en toegelaat om te reageer. Wanneer ewewig bereik word by 327 °C word daar gevind dat 41,48 gram NH<sub>3</sub> teenwoordig is.

6.2 Bereken die ewewigskonstante, Kc, by 327 °C.

(8)

6.3 Skryf die naam van 'n faktor wat die waarde van Kc beïnvloed neer.

(1)

6.4 Die grafiek hieronder toon aan hoe die persentasie opbrengs van NH<sub>3</sub> wissel met druk by verskillende temperatuurwaardes.



Watter grafiek (**A**, **B** of **C**) verteenwoordig persentasie opbrengswaardes wat by die HOOGSTE druk verkry is?

Verduidelik die antwoord deur na Le Chatelier se beginsel te verwys. (4)

6.5 Watter effek sal die volgende veranderinge op die opbrengs van NH<sub>3</sub> by ewewig hê?

Kies uit TOENEEM, AFNEEM of GEEN EFFEK.

- 6.5.1 Meer N<sub>2</sub> word in die houer gepomp. (1)
- 6.5.2 'n Geskikte katalisator word bygevoeg. (1)
- 6.5.3 Die volume van die houer word by konstante temperatuur verhoog. (1) [20]

#### VRAAG 7 (Begin op 'n nuwe bladsy.)

7.1 Swawelsuur, H<sub>2</sub>SO<sub>4</sub> ioniseer volgens die gebalanseerde vergelyking hieronder:

$$H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4$$

- 7.1.1 Definieer 'n *suur* volgens die Lowry-Brønsted-toerie (2)
- 7.1.2 Skryf die formules van die TWEE basisse in die reaksie hierbo neer. (2)
- 7.1.3 Identifiseer 'n stof in die reaksie wat as 'n amfoliet in sommige reaksies kan optree. (1)
- 7.2 Die tabel hieronder gee inligting oor oplossings van twee sure en 'n sout.

| NAAM VAN STOF    | FORMULE                         | Ka-waarde of pH                                            |  |  |  |  |
|------------------|---------------------------------|------------------------------------------------------------|--|--|--|--|
| Etanoësuur       | CH₃COOH                         | $K_a = 1.8 \times 10^{-4} \text{ by } 25 ^{\circ}\text{C}$ |  |  |  |  |
| Swawelsuur       | H <sub>2</sub> SO <sub>4</sub>  | pH = 3                                                     |  |  |  |  |
| Natriumkarbonaat | Na <sub>2</sub> CO <sub>3</sub> | pH = 7,8                                                   |  |  |  |  |

7.2.1 Is CH<sub>3</sub>COOH in STERK of in SWAK suur?

Gee 'n rede vir die antwoord.

(2)

7.2.2 Watter suur, CH<sub>3</sub>COOH of H<sub>2</sub>SO<sub>4</sub>, sal vinniger met Na<sub>2</sub>CO<sub>3</sub> reageer?

Aanvaar die sure het dieselfde konsentrasie en is in oormaat.

(1)

- 7.2.3 Bereken die konsentrasie van die H<sub>2</sub>SO<sub>4</sub> oplossing.
- (4)
- 7.2.4 Verduidelik, deur 'n relevante vergelyking te gebruik, waarom die pH van Na<sub>2</sub>CO<sub>3</sub> groter as 7 is.

(3)

- 7.3 'n Standaardoplossing word voorberei deur 1,74 g Mg(OH)<sub>2</sub> in water op te los om 200 cm<sup>3</sup> van die oplossing te maak.
  - 7.3.1 Definieer die term *standaardoplossing.* (2)
  - 7.3.2 Bewys deur berekening dat die konsentrasie van die Mg(OH)<sub>2</sub> oplossing 0,15 mol·dm<sup>-3</sup> is. (2)

'n Groep leerders het 50 cm<sup>3</sup> van 'n **verdunde** soutsuuroplossing by 40 cm<sup>3</sup> van die standaardoplossing Mg(OH)<sub>2</sub> bygevoeg.

Die gebalanseerde vergelyking vir die reaksie is:

$$Mg(OH)_2 + 2 HC\ell \rightarrow MgC\ell_2 + 2 H_2O$$

Die **verdunde** soutsuuroplossing was verkry deur 5 cm³ van 10 mol·dm⁻³ gekonsentreede soutsuuroplossing by water te voeg om 100 cm³ van die **verdunde** suuroplossing te produseer. Daar word gevind dat EEN van die ione (OH⁻ of H₃O⁺) in oormaat is, by die voltooiing van die reaksie.

7.3.3 Bereken die konsentrasie van die ione in oormaat. (9)
[28]

**TOTAAL: 150** 

# NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

#### DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

#### GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

#### TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

| NAME/NAAM                                         | SYMBOL/SIMBOOL                   | VALUE/WAARDE                              |
|---------------------------------------------------|----------------------------------|-------------------------------------------|
| Standard pressure Standaarddruk                   | $p^{\scriptscriptstyle{\theta}}$ | 1,013 x 10 <sup>5</sup> Pa                |
| Molar gas volume at STP Molêre gasvolume teen STD | Vm                               | 22,4 dm <sup>3</sup> ·mol <sup>-1</sup>   |
| Standard temperature Standaardtemperatuur         | Τ <sup>θ</sup>                   | 273 K                                     |
| Charge on electron Lading op elektron             | е                                | -1,6 x 10 <sup>-19</sup> C                |
| Avogadro's constant Avogadro se konstante         | NA                               | 6,02 x 10 <sup>23</sup> mol <sup>-1</sup> |

#### TABLE 2: FORMULAE/TABEL 2: FORMULES

| $n = \frac{m}{M}  \text{or/of}$ $n = \frac{N}{N_A}  \text{or/of}$ | $c = \frac{n}{V} \text{ or/of } c = \frac{m}{MV}$ $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$ | pH= -log[H <sub>3</sub> O <sup>+</sup> ]<br>$K_{W} = [H_3O^+][OH^-] = 1 \times 10^{-14}$ |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| $n = \frac{V}{V_o}$                                               | OB V B TIB                                                                                    | at /by 298K                                                                              |
| $E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} /$ | $E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$                                 |                                                                                          |

 $\mathsf{E}^{\theta}$ cell =  $\mathsf{E}^{\theta}$ oxidising agent -  $\mathsf{E}^{\theta}$ reducing agent /  $\mathsf{E}^{\theta}$ sel =  $\mathsf{E}^{\theta}$ oksideermiddel -  $\mathsf{E}^{\theta}$ reduseermiddel

 $E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} / E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$ 

#### TABLE 3: THE PERIODIC TABLE OF ELEMENTS/TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

| 1<br>(I)        |     | 2<br>II)        | 3   | }              | 4                       | 5               | 6                            | 7               | 8<br>Atoon          | 9<br>ngetal        | 10              | 11                 | 12              | 13<br>(III)           | 14<br>(IV)               | 15<br>(V)         | 16<br>(VI)        | 17<br>(VII)            | 18<br>(VIII)     |
|-----------------|-----|-----------------|-----|----------------|-------------------------|-----------------|------------------------------|-----------------|---------------------|--------------------|-----------------|--------------------|-----------------|-----------------------|--------------------------|-------------------|-------------------|------------------------|------------------|
| 2,1<br>H<br>1   |     |                 |     |                |                         | KEY/            | SLEUTE                       | :L              | Atomic 2            | ,                  |                 |                    |                 |                       |                          |                   |                   |                        | 2<br>He<br>4     |
| 0, Li<br>7      | 1,5 | 4<br>Be<br>9    |     |                |                         |                 | <i>ktronega</i><br>ectronega | _               | ္                   | u -                | Simbo           |                    |                 | 2.0<br>B<br>11        | 6<br>C<br>12             | 7<br>0.ε Ν<br>14  | 3.5<br>0<br>16    | 0,4<br>19<br>8         | 10<br>Ne<br>20   |
| 23              | 1,2 | 12<br>Mg<br>24  |     | Ţ              |                         |                 |                              |                 | derde rel           | 1                  | 1               | ı                  |                 | 13<br>- Al<br>27      | ω Si<br>28               | 15<br>7 P<br>31   | 7 32<br>32        | ວ 17<br>ເກີ Cℓ<br>35,5 | 18<br>Ar<br>40   |
| 39              | 1,0 | 40              | 1,3 | 45             | <u>د</u> 22<br>Ti<br>48 | 9. V<br>51      | 9 Cr<br>52                   | 25<br>Mn<br>55  | 26<br>Fe<br>56      | 27<br>- Co<br>- 59 | 59              | وب<br>5 Cu<br>63,5 | 9 Zn<br>65      | 9. Ga<br>70           | ∞ 32<br>Ge<br>73         | 33<br>N As<br>75  | 2, Se<br>34<br>34 | 35<br>89 Br<br>80      | 36<br>Kr<br>84   |
| 86              | 1,0 | 38<br>Sr<br>88  | 1,2 | 39<br>Y<br>89  | 40<br>7 Zr<br>91        | 41<br>Nb<br>92  | ∞ 42<br>Mo<br>96             | ි Tc            | 744<br>77 Ru<br>101 | 45<br>Rh<br>103    | 106             | 108                | 48<br>Cd<br>112 | 49<br>In<br>115       | <sup>∞</sup> : Sn<br>119 | 51<br>Sb<br>122   | 52<br>7 Te<br>128 | 53<br>S; I<br>127      | 54<br>Xe<br>131  |
| 55<br>Cs<br>133 |     | 56<br>Ba<br>137 | L   | 57<br>La<br>39 | 72<br>9 Hf<br>179       | 73<br>Ta<br>181 | 74<br>W<br>184               | 75<br>Re<br>186 | 76<br>Os<br>190     | 77<br>Ir<br>192    | 78<br>Pt<br>195 | 79<br>Au<br>197    | 80<br>Hg<br>201 | 81<br>∞ Tℓ<br>204     | ∞ Pb<br>207              | 83<br>6 Bi<br>209 | 84<br>Po<br>Po    | 85<br>S; At            | 86<br>Rn         |
| 87<br>2'0 Fr    | _   | 88<br>Ra<br>226 |     | 89<br>Ac       |                         | 58<br>Ce        | 59<br>Pr                     | 60<br>Nd        | 61<br>Pm            | 62<br>Sm           | 63<br>Eu        | 64<br>Gd           | 65<br>Tb        | 66<br>Dv              | 67<br>Ho                 | 68<br>Er          | 69<br>Tm          | 70<br>Yb               | 71<br>Lu         |
|                 |     |                 |     |                |                         | 140<br>90<br>Th | 141<br>91<br>Pa              | 144<br>92<br>U  | 93<br>Np            | 150<br>94<br>Pu    | 152<br>95<br>Am | 157<br>96<br>Cm    | 159<br>97<br>Bk | Dy<br>163<br>98<br>Cf | 165<br>99<br>Es          | 167<br>100<br>Fm  | 169<br>101<br>Md  | 173<br>102<br>No       | 175<br>103<br>Lr |
|                 |     |                 |     |                |                         | 232             |                              | 238             |                     |                    |                 |                    |                 |                       |                          |                   |                   |                        |                  |