Trabajo de Fin de Grado

Ingeniería Informática

DISEÑO DE INFRAESTRUCTURA DE RED PARA UNA EMPRESA MULTISEDE

17/07/2025

Autor: Cheuk Kelly Ng Pante Tutor: Jonás Philipp Lüke

INDICE GENERAL

- 1. INTRODUCCIÓN
- 2. ANÁLISIS DE REQUISITOS
- 3. OBJETIVOS
- 4. DISEÑO DE RED

- 5. EQUIPAMIENTO Y SERVICIOS
- 6. TELEFONÍA IP
- 7. SIMULACIONES
 - 8. CONCLUSIONS AND FUTURE LINES

1 _ INTRODUCCIÓN

INTRODUCCIÓN

El objetivo principal de este proyecto es:

INTRODUCCIÓN

- Referencia el pliego técnico del expediente.
- Gestión ciclo integral del agua.
- Plantea una propuesta de modernización, mejora conectividad.
- No aborda la totalidad del documento.
- Diseño y simulación de determinados aspectos.

7 ANÁLISIS DE REQUISITOS

Como referencia pliego técnico del Consorcio, se han identificado:

Comunicaciones datos

- Red IP Privada entre sedes.
- Acceso a Internet centralizado.
- Escalabilidad y QoS.

Electrónica de red

- Switches que proporcionen densidad de puertos minimas.
- Capacidad PoE, implementando IEEE 802.3az.
- VLANs para segmentar la red.
- Herramientas QoS.

ANÁLISIS DE REQUISITOS

Seguridad gestionada

- Selección de un cortafuegos de nueva generación.
- Sistema de consulta estadística para monitorización.
- Plataforma de seguridad avanzada para las amenazas.
- Sistema de respuesta ante incidentes.

Comunicaciones voz

- 38 extensiones iniciales.
- Plataforma VoIP en la nube.
- Cableado estructurado CAT6.

3-0BJETIVOS

OBJETIVOS

Red de interconexión

Diseñar una red que centralice la conectividad y mejore control tráfico.

Elección de dispositivos

Dispositivos de red adecuados para la infraestructura: routers, switches y firewalls.

Herramientas de simulación

Utilizar herramientas de simulación como GNS3 para validar el diseño y configuración

Esquema de direccionamiento

Crear un esquema de direccionamiento IPv6.

1 DISEÑO DE RED

TOPOLOGÍA DE RED

Se basa en un **topología en estrella** con la Oficina Central como nodo principal y **único punto** de salida a **Internet**.

INTERCONEXIÓN ENTRE SEDES

Se utiliza la tecnología **SD-WAN de Cisco Meraki** proporcionada por Vodafone.

Gestión y monitorización centralizada con políticas dinámicas de tráfico.

Enlace de **respaldo** proporcionado por **Telefónica** con los dispositivos en modo *Warm Spare*.

ESQUEMA DE RED

ESQUEMA DE DIRECCIONAMIENTO

Sede	Prefijo de sede	VLAN	Dir. de Red
Oficina central	2001:db8:1234:0100::/56	Datos	2001:db8:1234:0100::/64
		Voz	2001:db8:1234:0101::/64
		DMZ	2001:db8:1234:0102::/64
San Cristóbal	2001:db8:1234:0200::/56	Datos	2001:db8:1234:0200::/64
		Voz	2001:db8:1234:0201::/64
ETAP Cuartillos	2001:db8:1234:0300::/56	Datos	2001:db8:1234:0300::/64
		Voz	2001:db8:1234:0301::/64
ETAP Montañés	2001:db8:1234:0400::/56	Datos	2001:db8:1234:0400::/64
		Voz	2001:db8:1234:0401::/64
ETAP Paterna	2001:db8:1234:0500::/56	Datos	2001:db8:1234:0500::/64
		Voz	2001:db8:1234:0501::/64
ETAP Algar	2001:db8:1234:0600::/56	Datos	2001:db8:1234:0600::/64
		Voz	2001:db8:1234:0601::/64
Depósito de Cádiz	2001:db8:1234:0700::/56	Datos	2001:db8:1234:0700::/64
		Voz	2001:db8:1234:0701::/64

- Escalabilidad y resolver el problema de agotamiento de direcciones.
- Asignación de un bloque /56 por sede.
- Subredes /64 por VLAN (Datos, Voz, DMZ).
- 2001:db8:1234::/48 como prefijo para la red.
- DHCPv6 centralizado, con relays en sedes.
- IPs estáticas en la DMZ.

5 EQUIPAMIENTO Y SERVICIOS

EQUIPAMIENTO Y SERVICIOS

Dispositivo	Modelo	Cantidad
Dispositivo SD-WAN	Cisco Meraki MX95	1
Dispositivo SD-WAN	Cisco Meraki MX85	7
Dispositivo SD-WAN	Cisco Meraki MX68	1
Dispositivo SD-WAN	Cisco Meraki MX67	5
Switch de distribución	Catalyst 9300-24P	2
Switch de distribución	Catalyst 3560-CX-12PD-S	5
Switch de acceso	WS-C2960L-16TS-LL	16
Firewall	FortiGate FG-100F-HA	7
Teléfono IP	Grandstream GRP2612G	38

Meraki Dashboard y Zabbix

Se ha definido servicios como VPN, DHCP, AD, DNS interno, correo corporativo y backup remoto.

G TELEFONÍA IP

TELEFONÍA IP

- Red preparada para VoIP con segmentación por VLAN de voz.
- Propuesta de centralita FreePBX en la nube (Microsoft Azure)
- Funcionalidades: buzón de voz, grabación, IVR, ...

Sede	Prefijo	Rango extensiones
Oficina central	1XXX	1000-1059
San Cristóbal	2XXX	2000-2024
ETAP de Cuartillos	3XXX	3000-3009
ETAP de Montañés	4XXX	4000-4009
ETAP de Paterna	5XXX	5000-5004
ETAP de Algar	6XXX	6000-6004
Depósito de Cádiz	7XXX	7000-7004

Organización de extensiones por sede

- SIMULACIONES

SIMULACIÓN DE LA RED ISP

La simulación de la red ISP se basa en MPLS VPN L3, debido a **limitaciones** de GNS3 para emular SD-WAN con Cisco Meraki. Además, **requieren** de **licencias** oficiales. Se utilizan routers MikroTik CHR v7.16, compatibles con MPLS, aunque solo con IPv4.

CONFIGURACIÓN DE LA RED ISP

1

Interfaces Loopback e IPs físicas

Facilitar la distribución de etiquetas y mantener conectividad. Subredes /30.

2

OSPF como enrutamiento

Aprendizaje dinámico de direcciones de router PE y P dentro de MPLS.

3

Intercambio de etiquetas (LDP)

Habilitación de LDP entre los nodos para el intercambio de etiquetas.

4

Multi-Protocolo BGP (MP-BGP)

Distribución de rutas entre routers frontera de la red MPLS.

SIMULACIÓN DE LA OFICINA CENTRAL

VLANs:

Datos (10), Voz (20) y DMZ (30)

Servicios en Docker:

Contenedores DHCP y DNS

Redundancia en la red:

VRRP en routers y Rapid Spanning Tree en switches (convergencia en la topología y bucles redes conmutadas)

EtherChannel (LACP):

Enlaces agregados entre switch y router para ancho de banda y tolerancia a fallos.

SIMULACIÓN ENTRE SEDES Y RED ISP

ISP simplificada

Configuración similar a la primera

Red completamente en IPv4

Falta soporte MPLS y simplificación de red.

FreePBX y VoIP

Telefonía IP funcional en Oficina Centra con una MV FreePBX

Sede San Cristóbal

Configuración básica para probar conexión entre sedes.

SIMULACIÓN EN EL LABORATORIO

Dispositivos físicos reales:

MikroTik RB2011, TP-Link T2500G y Grandstream GRP2601.

Servicios simulados (PC1)

DHCP y DNS en Docker, reutilizados.

Centralita FreePBX (PC2)

FreePBX en contenedor Docker, IP estática.

Pruebas de VoIP funcionales

Llamadas entre extensiones 1001 y 1002, buzón de voz activado.

8 CONCLUSIONS AND FUTURE LINES

CONCLUSIONS

To summarize, this project helped design a modern and scalable network that meets some needs of the *Consorcio de Aguas de la Zona Gaditana*.

The design includes IPv6 addressing, SD-WAN technology, IP Phones and next generations firewalls, aiming to improve security and connections between sites.

A three-layer topology and star-shaped network was used. Devices were chosen based on cost, performance and compatibility.

Finally, the network was simulated using GNS3, which allowed for partial but meaningful validation of the design.

FUTURE LINES

This project can lead to future improvements:

• First, deploying *FreePBX* in *Microsoft Azure* taking the advantage of the scalability and availability offered by the cloud.

• Second, using tools like *Ansible* or *Python* scripts to automate device settings would reduce mistakes and make management easier.

• Third, implementing *Zabbix* to get more detailed visibility over services and devices.

• Finally, doing stress tests and critical scenario simulation in GNS3 to validate the design, optimize its performance and find possible weaknesses in the network.

BIBLIOGRAFÍA

- [1] Angel H., "Entendiendo las bases de MPLS casi desde cero." https://borrowbits.com/2018/09/entendiendo-las-bases-de-mpls-casi-desde-cero/, 2018. Redes MPLS: entendiendo sus bases (casi desde cero).
- [2] Wikipedia, "SD-WAN." https://es.wikipedia.org/wiki/SD-WAN, 2025. Wikipedia sobre
- SD-WAN. Accedido: 2 de julio de 2025.
- [3] Gerencia del Consorcio de Aguas de la Zona Gaditana, "Expediente 006-
- 2020: Servicio de telecomunicaciones de voz, fijas y móviles, red de acceso de datos, Intranet e Internet del Consorcio de Aguas de la Zona Gaditana." https://contrataciondelestado.es/wps/poc?
- <u>uri=deeplink:detalle_licitacion&idEvl=svlvypWr12kSugstABGr5A%3D%3D</u>, 2020. Pliego de condiciones.
- [4] VoIP Studio, "¿Qué es VoIP? La guía completa." https://voipstudio.com/es/blog/que-es-voip-la-guia-completa/, 2025. Guía completa sobre VoIP. Accedido: 26 de marzo de 2025.
- [5] Wikipedia, "GNS3: Software de simulación de redes." https://es.wikipedia.org/wiki/GNS3, 2025. Wikipedia sobre GNS3.
- [6] Cisco Meraki, "MX Warm Spare High Availability Pair." https://documentation.meraki.com/MX/Deployment Guides/MX Warm Spare High Availability Pair#:~:text=than%2030%20seconds.-,Routed%20Warm%20Spare,used%20as%20a%20routed%20gateway., 2025. Cisco Meraki sobre el modo de alta disponibilidad (Warm Spare). Accedido: 30 de junio de 2025.

DISEÑO DE INFRAESTRUCTURA DE RED PARA UNA EMPRESA MULTISEDE

Autor: Cheuk Kelly Ng Pante

Tutor: Jonás Philipp Lüke