Stress Orientation Rotation of the 2018 Mw 7.5 Palu Earthquake

Focal Mechanisms Data

Before 2018 Mw7.5 Palu

105 events May 1977 – Sep 2018

After 2018 Mw7.5 Palu

17 events Sep 2018 – Nov 2021

Stress Inversion Result

Before 2018 Mw7.5 Palu

After 2018 Mw7.5 Palu

	σ1 Azimuth	σ1 Plunge	σ2 Azimuth	σ2 Plunge	σ3 Azimuth	σ3 Plunge	SHmax
Before	113.6 ± 5.9	9.4 ± 9.0	190.6 ± 72.4	77.4 ± 9.5	24.2 ± 5.4	7.8 ± 7.2	114.0 ± 5.6
After	97.1 ± 20.6	42.5 ± 39.7	98.8 ± 45.1	45.5 ± 39.1	3.4 ± 11.0	9.1 ± 9.0	89.3 ± 14.5
Δ	-16.5	33.1	-91.8	-26.9	-20.8	1.3	-24.7

Stress Drop Ratio $\left(\frac{\Delta \tau}{\tau}\right)$ Calculation

To calculate the stress drop ratio, we use equation (4) in Hardebeck 2001

$$\Delta\theta = \tan^{-1}\left(\frac{1 - \frac{\Delta\tau}{\tau}\sin 2\theta - \sqrt{\left(\frac{\Delta\tau}{\tau}\right)^2 + 1 - 2\frac{\Delta\tau}{\tau}\sin 2\theta}}{\frac{\Delta\tau}{\tau}\cos 2\theta}\right) \qquad \qquad \frac{\Delta\tau}{\tau} = -\frac{\sin(2\Delta\theta)}{\cos(2\theta + 2\Delta\theta)}$$

Calculation of θ and $\Delta\theta$

21,874 HARDEBECK AND HAUKSSON: CRUSTAL STRESS FIELD IN CALIFORNIA

> Nodal plane 2018 Mw 7.5 Palu 348 · 57 · -15 87 · 77 · -146

$$\theta = 168 - 113.51 = 54.48$$
 $\theta_a = 168 - 97.16 = 70.84$
 $\Delta \theta = 70.84 - 54.48 = 16.36$

Fault | Before | After | $\theta + \Delta \theta$ | θ | $\Delta \theta$

Hardebeck & Hauksson 2001 say that θ and $\Delta\theta$ are calculated on the $\sigma 1 - \sigma 3$ plane. Since the mechanism of the 2018 Mw7.5 Palu earthquake is strike-slip, the $\sigma 1 - \sigma 3$ plane is horizontal, so the angle used is SHmax with respect to the strike of fault.

Model Stress Drop 2018 Mw 7.5 Palu by SHmax

$$\theta_b = 54.0 \pm 5.6 (48.4 - 59.6)$$

$$\Delta\theta = 20.2 \pm 15.0 (5.2 - 35.2)$$

$$\frac{\Delta \tau}{\tau} = 0.76 \pm 0.26 \, (0.43 - 0.95)$$