Matrix theory Assignment 4

K R Sai Pranav

Abstract—This document solves for the determinant of a matrix using properties of determinants

Download all python codes from

https://github.com/saipranavkr/EE5609/codes

and latex-tikz codes from

https://github.com/saipranavkr/EE5609

1 Problem

By using the properties of determinants, show that

$$\begin{vmatrix} 1 + a^2 & ab & ac \\ ab & 1 + b^2 & bc \\ ac & bc & 1 + c^2 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

2 Solution

$$\begin{vmatrix} 1 + a^{2} & ab & ac \\ ab & 1 + b^{2} & bc \\ ac & bc & 1 + c^{2} \end{vmatrix} \xrightarrow{R_{1} \leftarrow aR_{1};R_{2} \leftarrow bR_{2};R_{3} \leftarrow cR_{3}} \xrightarrow{R_{1} \leftarrow aR_{1};R_{2} \leftarrow cR_{3};R_{3} \leftarrow cR_{3};$$

$$\begin{vmatrix} 1 + a^2 & a^2 & a^2 \\ b^2 & 1 + b^2 & b^2 \\ c^2 & c^2 & 1 + c^2 \end{vmatrix} \xrightarrow{R1 \leftarrow R1 + R2 + R3}$$

$$\begin{vmatrix} 1 + a^2 + b^2 + c^2 & 1 + a^2 + b^2 + c^2 & 1 + a^2 + b^2 + c^2 \\ b^2 & 1 + b^2 & b^2 \\ c^2 & c^2 & 1 + c^2 \end{vmatrix}$$

$$(2.0.1)$$

Taking $1 + a^2 + b^2 + c^2$ out from (2.0.1),

$$\Rightarrow (1 + a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & 1 & 1 \\ b^{2} & 1 + b^{2} & b^{2} \\ c^{2} & c^{2} & 1 + c^{2} \end{vmatrix}$$

$$\stackrel{C2 \leftarrow C2 - C1; C3 \leftarrow C3 - C1}{\longleftrightarrow} (1 + a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & 0 & 0 \\ b^{2} & 1 & 0 \\ c^{2} & 0 & 1 \end{vmatrix}$$

= $1 + a^2 + b^2 + c^2$ (: Determinant of a lower triangle matrix is the product of it's diagonal elements)