- Q 1.
 - (a)
 - (b)

Q 2.

- Q 3.
 - (a)
 - (b)
 - (c)

Due: 6 May 2020

Q 4.

(a)

This Figure 10.6 taken from the module notes p225.

Figure 1: Diagram showing the stationary path (solid line) and a varied path (dashed line) for a problem in which the left-hand end is fixed, but the other end is free to move along the line defined by $\tau(x, y) = 0$.

Given the perturbed path

$$y_{\epsilon}(x) = y(x) + \epsilon h(x), \tag{4.1}$$

the Taylor series to the first-order of (4.1) at point x = v (see figure 1) is given in (4.2).

The point x = v is known as the point of expansion. HB p8.

$$y_{\epsilon}(x) = (y(v) + \epsilon h(v)) + (y'(v) + \epsilon h'(v))(x - v) + \mathcal{O}((x - v)^{2}).$$
 (4.2)

Now, determining the value of (4.2) at $v_{\epsilon} = v + \epsilon \xi + \mathcal{O}(\epsilon^2)$ where v_{ϵ} is the perturbed value of v:

$$y_{\epsilon}(v_{\epsilon}) = y(v) + \epsilon h(v)$$

$$+ (\varkappa + \epsilon \xi + \mathcal{O}(\epsilon^{2}) \mathscr{V}) (y'(v) + \epsilon h'(v))$$

$$+ \mathcal{O}((\varkappa + \epsilon \xi + \mathcal{O}(\epsilon^{2}) \mathscr{V})^{2}),$$

$$y_{\epsilon}(v_{\epsilon}) = y(v) + \epsilon h(v)$$

$$+ (\epsilon \xi + \mathcal{O}(\epsilon^{2})) (y'(v) + \epsilon h'(v))$$

$$+ \mathcal{O}((\epsilon \xi + \mathcal{O}(\epsilon^{2}))^{2}),$$

$$y_{\epsilon}(v_{\epsilon}) = y(v) + \epsilon h(v)$$

$$+ \epsilon \xi \left(y'(v) + \epsilon h'(v) \right)$$

$$+ \mathcal{O}\left(\epsilon^{2} \right) \left(y'(v) + \epsilon h'(v) \right)$$

$$+ \mathcal{O}\left(\left(\epsilon \xi + \mathcal{O}\left(\epsilon^{2} \right) \right)^{2} \right),$$

$$y_{\epsilon}(v_{\epsilon}) = y(v) + \epsilon \left(h(v) + \xi y'(v)\right) + \underbrace{\epsilon^{2} \xi h'(v) + \mathcal{O}\left(\epsilon^{2}\right) \left(y'(v) + \epsilon h'(v)\right) + \mathcal{O}\left(\left(\epsilon \xi + \mathcal{O}\left(\epsilon^{2}\right)\right)^{2}\right)}_{\text{These are all second-order terms in } \epsilon.}$$

Thus,

$$y_{\epsilon}(v_{\epsilon}) = y(v) + \epsilon \left(h(v) + \xi y'(v)\right) + \mathcal{O}\left(\epsilon^{2}\right), \tag{4.3}$$

Due: 6 May 2020

as required.

To show that at (x, y) = (v, y(v)),

$$\xi \left(\tau_x + y'(v)\tau_y\right) + h(v)\tau_y = 0$$

the 2D Taylor expansion to the first-order of $\tau(x,y)$ at point x=a,y=bis required, namely,

$$\tau(x,y) = \tau(a,b) + \tau_x(a,b) [x-a] + \tau_y(a,b) [y-b]. \tag{4.4}$$

Evaluating (4.4) with $x = v_{\epsilon} = v + \epsilon \xi$ and $y = y_{\epsilon}(v_{\epsilon}) = y(v) +$ $\epsilon (y'(v)\xi + h(v))$ gives,

$$\tau (v_{\epsilon}, y_{\epsilon}(v_{\epsilon})) = \tau(v + \epsilon \xi, y(v) + \epsilon (y'(v)\xi + h(v)))$$

$$= \tau(v, y(v)) + \tau_{x}(v, y(v)) [v_{\epsilon} - v] + \tau_{y}(v, y(v)) [y_{\epsilon}(v_{\epsilon}) - y(v)],$$

$$= \tau_{x}(v, y(v)) [v_{\epsilon} - v] + \tau_{y}(v, y(v)) [y_{\epsilon}(v_{\epsilon}) - y(v)],$$

$$= \tau_{x}(v, y(v)) [v + \epsilon \xi \sigma] + \tau_{y}(v, y(v)) [y(\sigma) + \epsilon (y'(v)\xi + h(v)) - y(\sigma)],$$

$$= \tau_{x}(v, y(v)) \epsilon \xi + \tau_{y}(v, y(v)) \epsilon (y'(v)\xi + h(v)),$$

$$= \epsilon [\tau_{x}(v, y(v)) \xi + \tau_{y}(v, y(v)) (y'(v)\xi + h(v))],$$

Recall that $\tau(v_{\epsilon}, y_{\epsilon}(v_{\epsilon})) = 0$ and therefore,

$$\epsilon \left[\tau_x (v, y(v)) \, \xi + \tau_y (v, y(v)) \, (y'(v) \xi + h(v)) \right] = 0,$$

$$\tau_x (v, y(v)) \, \xi + \tau_y (v, y(v)) \, (y'(v) \xi + h(v)) = 0,$$

$$\xi \left[\tau_x (v, y(v)) + \tau_y (v, y(v)) y'(v) \right] + \tau_y (v, y(v)) h(v) = 0, \tag{4.5}$$

as required.

(b) The Gâteaux differential is given as

$$\Delta S(y,h) = \xi F|_{v} + \int_{a}^{v} dx \, (hF_{y} + h'F_{y'}), \qquad (4.6)$$

and it will be shown, by integrating by parts the integral of (4.6), that a stationary path must satisfy the transversality condition given in (4.7):

$$\tau_x F_{y'} + \tau_y (y' F_{y'} - F) = 0$$
 at $(x, y) = (v, y(v))$ (4.7)

Due: 6 May 2020

as follows.

Equation (4.6) can be rewritten as in (4.8),

$$\Delta S(y,h) = \xi F|_{v} + \int_{a}^{v} dx \, h F_{y} + \int_{a}^{v} dx \, h' F_{y'}, \tag{4.8}$$

and integrating by parts the right-most integral in (4.8):

$$I = \int_{a}^{v} dx \, h' F_{y'}, \tag{4.9}$$
Let $u = F_{y'}$ then $\frac{du}{dx} = \frac{d}{dx} (F_{y'})$
Let $\frac{dv}{dx} = h'(x)$ then $v = \int dx \, h'(x) = h(x).$

For integration by parts:

$$\begin{split} I &= \int_a^v \mathrm{d}x \, u \frac{\mathrm{d}v}{\mathrm{d}x} = \left[uv \right]_a^v - \int_a^v \mathrm{d}x \, v \frac{\mathrm{d}u}{\mathrm{d}x}, \\ &= \left[F_{y'} h(x) \right]_a^v - \int_a^v \mathrm{d}x \, \frac{\mathrm{d}}{\mathrm{d}x} \left(F_{y'} \right) h(x), \\ &= \left(\left. F_{y'} h(x) \right|_{x=v} - \left. F_{y'} h(a) \right|^0 \right) - \int_a^v \mathrm{d}x \, \frac{\mathrm{d}}{\mathrm{d}x} \left(F_{y'} \right) h(x), \\ &= \left. F_{y'} h(x) \right|_{x=v} - \int_a^v \mathrm{d}x \, \frac{\mathrm{d}}{\mathrm{d}x} \left(F_{y'} \right) h(x). \end{split}$$

The Gâteaux differential (4.8) becomes,

$$\Delta S(y,h) = \xi F|_{v} + \int_{a}^{v} dx \, h(x) F_{y} + F_{y'} h(x)|_{x=v} - \int_{a}^{v} dx \, \frac{d}{dx} (F_{y'}) \, h(x),$$

$$= \xi F|_{x=v} + F_{y'} h(x)|_{x=v} + \int_{a}^{v} dx \, h(x) F_{y} - \int_{a}^{v} dx \, \frac{d}{dx} (F_{y'}) \, h(x),$$

$$= \xi F|_{x=v} + F_{y'} h(x)|_{x=v} + \int_{a}^{v} dx \, \left(h(x) F_{y} - \frac{d}{dx} (F_{y'}) \, h(x) \right),$$

$$= \xi F|_{x=v} + F_{y'} h(x)|_{x=v} - \int_{a}^{v} dx \, \left(\frac{d}{dx} (F_{y'}) \, h(x) - h(x) F_{y} \right),$$

$$= \xi F|_{x=v} + F_{y'} h(x)|_{x=v} - \int_{a}^{v} dx \, \left(\frac{d}{dx} (F_{y'}) - F_{y} \right) h(x)$$

$$= \xi F|_{x=v} + F_{y'} h(x)|_{x=v} - \int_{a}^{v} dx \, \left(\frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) - \frac{\partial F}{\partial y} \right) h(x). \tag{4.10}$$

For clarity, here v is not the same as that for the upper limit of integration in (4.9).

On a stationary path $\Delta S(y,h) = 0$ for all allowed h and the Euler-Lagrange equation equation is satisfied and so the integrand of (4.10) is zero, thus the Gâteaux differential shown in (4.10) reduces to

$$\Delta S(y,h) = \xi F|_{x=y} + F_{y'}h(x)|_{x=y} = 0. \tag{4.11}$$

Rewriting (4.5) more succinctly as

$$\xi (\tau_x + \tau_y y'(x))|_{x=v} + \tau_y h(x)|_{x=v} = 0,$$
 (4.12) $\tau_x = \tau_x (v, y(v)), \text{ and } \tau_y = \tau_y (v, y(v))$

Due: 6 May 2020

and rearranging (4.12) in terms of h(x) evaluated at x = v,

$$h(x) \mid_{x=v} = -\frac{\xi}{\tau_y} (\tau_x + y'(x)\tau_y) \mid_{x=v}.$$
 (4.13)

Substituting for h(v) from (4.13) into (4.11) gives,

$$\begin{aligned} \xi F|_{x=v} - F_{y'} \frac{\xi}{\tau_y} \left(\tau_x + y'(x) \tau_y \right) \Big|_{x=v} &= 0, \\ \left(\xi F - F_{y'} \frac{\xi}{\tau_y} \left(\tau_x + y'(x) \tau_y \right) \right) \Big|_{x=v} &= 0, \\ \xi \left(F - F_{y'} \frac{(\tau_x + y'(x) \tau_y)}{\tau_y} \right) \Big|_{x=v} &= 0, \\ - \left(-F + F_{y'} \frac{(\tau_x + y'(x) \tau_y)}{\tau_y} \right) \Big|_{x=v} &= 0, \\ - \left(\frac{-F \tau_y + F_{y'} \left(\tau_x + y'(x) \tau_y \right)}{\tau_y} \right) \Big|_{x=v} &= 0, \\ - \left(-F \tau_y + F_{y'} \left(\tau_x + y'(x) \tau_y \right) \right) \Big|_{x=v} &= 0, \\ - \left(-F \tau_y + F_{y'} \tau_x + F_{y'} y'(x) \tau_y \right) \Big|_{x=v} &= 0, \\ - \left(\tau_y \left(-F + F_{y'} y'(x) \right) + F_{y'} \tau_x \right) \Big|_{x=v} &= 0, \\ - \left(\tau_y \left(F_{y'} y'(x) - F \right) + F_{y'} \tau_x \right) \Big|_{x=v} &= 0. \end{aligned}$$

Finally,

$$\tau_y \left(F_{y'} y'(x) - F \right) \Big|_{x=y} + F_{y'} \tau_x \Big|_{x=y} = 0. \tag{4.14}$$

Equation (4.14) shows that the transversality condition has been satisfied, as required.

(c) Now, considering the case when

$$S[y] = \int_0^v dx \frac{\sqrt{1 + y'^2}}{y}, \quad y(0) = \delta,$$

where y(v) > 0, $\delta > 0$ and the right-hand end point (v, y(v)) lies on the line $\alpha y + \beta x + \gamma = 0$, where α, β, γ are constants with $\beta \neq 0$, it can be shown that the first-integral may be written as

$$y\sqrt{1+y'^2} = c, (4.15)$$

for some constant c > 0, as follows.

The first-integral is given by

$$y'G_{y'} - G = \text{constant},$$
 HB p17.

Due: 6 May 2020

with,

$$G = \frac{\sqrt{1 + y'^2}}{y}, \quad y(0) = \delta.$$

$$G_{y'} = \frac{1}{y} \left(\frac{1}{2} (1 + y'^2)^{-\frac{1}{2}} 2 y' \right),$$

$$= \frac{(1 + y'^2)^{-\frac{1}{2}} y'}{y},$$

$$= \frac{y'}{y\sqrt{1 + y'^2}}.$$

The first-integral becomes,

$$y'\left(\frac{y'}{y\sqrt{1+y'^2}}\right) - \frac{\sqrt{1+y'^2}}{y} = c, \quad \text{where } c \text{ is a constant,}$$

$$\left(\frac{y'^2}{y\sqrt{1+y'^2}}\right) - \frac{\sqrt{1+y'^2}}{y} = c,$$

$$\frac{y'^2}{y\sqrt{1+y'^2}} - \frac{\sqrt{1+y'^2}\sqrt{1+y'^2}}{y\sqrt{1+y'^2}} = c,$$

$$\frac{y'^2}{y\sqrt{1+y'^2}} - \frac{1+y'^2}{y\sqrt{1+y'^2}} = c,$$

$$\frac{y'^2-1-y'^2}{y\sqrt{1+y'^2}} = c,$$

$$-\frac{1}{y\sqrt{1+y'^2}} = c,$$

$$-\frac{1}{c} = y\sqrt{1+y'^2}.$$

Redefining the constant c, then the first-integral may be written as,

$$y\sqrt{1+y'^2}=c$$
, for some constant $c>0$, as required. (4.16)

Now, rearranging (4.16) in terms of y', as follows.

$$y'^{2} = \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} = \frac{c^{2}}{y^{2}} - 1,$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{\frac{c^{2}}{y^{2}} - 1}.$$

Then,

$$\frac{\mathrm{d}x}{\mathrm{d}y} = 1 \bigg/ \frac{\mathrm{d}y}{\mathrm{d}x},$$

so,

$$\frac{dx}{dy} = \frac{1}{\sqrt{\frac{c^2}{y^2} - 1}} = \frac{1}{\sqrt{\frac{c^2 - y^2}{y^2}}} = \frac{y}{\sqrt{c^2 - y^2}}.$$

$$\int dy \frac{dx}{dy} = \int dy \frac{y}{\sqrt{c^2 - y^2}},$$

$$x = \int dx \frac{y}{\sqrt{c^2 - y^2}}.$$
(4.17)

Due: 6 May 2020

Solving the integral of (4.17),

$$x = \int \mathrm{d}y \, \frac{y}{\sqrt{c^2 - y^2}}.$$

Let $u = c^2 - y^2$,

$$\frac{\mathrm{d}u}{\mathrm{d}y} = -2y$$
, so $\frac{\mathrm{d}y}{\mathrm{d}u} = 1 \bigg/ \frac{\mathrm{d}u}{\mathrm{d}y} = -\frac{1}{2y}$.

$$x = \int du \left(\frac{dy}{du}\right) \frac{y}{\sqrt{u}},$$

$$= \int du \left(-\frac{1}{2y}\right) \frac{y}{\sqrt{u}},$$

$$= -\frac{1}{2} \int du \frac{1}{\sqrt{u}},$$

$$= -\frac{1}{2} \int du u^{-\frac{1}{2}},$$

$$= -\frac{1}{2} \left(\frac{u^{\frac{1}{2}}}{\frac{1}{2}}\right) + c_{\delta} = -\sqrt{u} - c_{\delta},$$

where c_{δ} is the constant of integration.

Thus,

$$x = -\sqrt{c^2 - y^2} - c_{\delta},$$

 $(x + c_{\delta})^2 = c^2 - y^2,$
 $y^2 + (x + c_{\delta})^2 = c^2,$ as required.

Applying the boundary condition, $y(0) = \delta$, to (4.18) gives,

$$\delta^2 + c_\delta^2 = c^2$$
 and so, $c_\delta^2 = c^2 - \delta^2$.

(4.18) The solution of the first-integral (4.18) are circles centred at $(-c_{\delta}, 0)$.

Differentiating $y^2 + (x + c_{\delta})^2 = c^2$ implicitly:

$$\frac{\mathrm{d}}{\mathrm{d}x} (y^2) + \frac{\mathrm{d}}{\mathrm{d}x} (x + c_\delta)^2 = \frac{\mathrm{d}}{\mathrm{d}x} (c^2),$$

$$2y \frac{\mathrm{d}y}{\mathrm{d}x} + 2 (x + c_\delta) = 0,$$

$$y \frac{\mathrm{d}y}{\mathrm{d}x} + x + c_\delta = 0,$$

$$yy' + x + c_\delta = 0.$$
(4.19)

Due: 6 May 2020

Comparing (4.19) with $\alpha y + \beta x + \gamma = 0$ but first dividing through this expression by β :

$$\frac{\alpha}{\beta}y + x + \frac{\gamma}{\beta} = 0,$$

then it is seen that $y' = \alpha/\beta$ and $c_{\delta} = \gamma/\beta$.

Finally, it can be shown that in the limit as $\delta \to 0$, the stationary path becomes

$$\beta^2 y^2 + (\beta x + \gamma)^2 = \gamma^2,$$

as follows.

In the limit as $\delta \to 0$, $c_{\delta} = c$ and equation (4.18) can be written as,

$$y^{2} + (x + c_{\delta})^{2} = c_{\delta}^{2}. \tag{4.20}$$

Substituting into (4.20) for $c_{\delta} = \gamma/\beta$ gives,

$$y^2 + \left(x + \frac{\gamma}{\beta}\right)^2 = \frac{\gamma^2}{\beta^2},$$

cross multiplying by β^2 gives,

$$\beta^2 y^2 + \beta^2 \left(x + \frac{\gamma}{\beta} \right)^2 = \gamma^2$$
 and

$$\beta^2 y^2 + (\beta x + \gamma)^2 = \gamma^2$$
 as required.

Due: 6 May 2020

- (a)
- (b)
- (c)
- (d)