Piecewise polynomial approximation algorithm for short-range intermolecular interaction on wide SIMD architectures

Kentaro Nomura¹, Yutaka Maruyama¹, Keigo Nitadori¹, Jun Makino^{1,2}

1. RIKEN Center for Computational Science 2. Kobe University

Background

- Interaction in molecular dynamics simulations, which can divided into shortand long-range part in Ewald sum method, dominates the calculation time.
- To accelerate, the short-range force calculation has been replaced with rational approximation, table lookup interpolation, polynomial approximation.
- Piecewise polynomial approximation is a powerful technique to approximate functions with low order polynomials keeping accuracy for small sections.

Pro: multiply and add operation rich, division free.

Con: Random memory access to table of polynomial coefficients.

512-bit-width SIMD registers of novel high-performance CPUs can serve as an efficient table for piecewise polynomial approximation.

Objective

To demonstrate a new implementation of piecewise polynomial approximation algorithm using wide SIMD registers as a table to accelerate the calculation of short-range intermolecular interaction.

Algorithm

Short-range interaction in Ewald sum method

Q,q: charges, r: distance between charges, ε_0 : permittivity of vacuum

Coulomb interaction is divided into two part, short- and long-range part. The short-range part includes complementary error function and exponential function which results in highly compute intensive.

Existing method: Rational function approximation (RFA)

GROMACS*, one of the fastest MD simulation package, adopts RFA.

 $m{F}_{
m short}(r) = rac{Qq}{4\pi\epsilon_0} \left\{ rac{1}{r^3} - rac{{
m erf}(lpha r)}{r^3} + rac{2lpha}{\sqrt{\pi}} rac{{
m exp}(-lpha^2 r^2)}{r^2}
ight\} m{r}$ $\sum_{m=0}^{10} b_m (lpha^2 r^2)^m \over \sum_{m=0}^{5} c_m (lpha^2 r^2)^m} b_m b_m (eta), c_m (eta)$: mth coefficient of polynomial function

The correlation part of short-range force is approximated by rational function. For details, see pmeForceCorrectionSingleAccuracy on http://manual.gromacs.org/documentation/current/doxygen/html-lib/group_module_simd.xhtml.

*Abraham, et al., Software X, 1-2, 2015.

New method:

Piecewise polynomial approximation (PPA)

$$F_{\rm short}(r) = \frac{Qq}{4\pi\epsilon_0} \left\{ \begin{array}{l} {\rm erfc}(\sqrt{(\alpha r)^2}) + \frac{2}{\sqrt{\pi}} \exp(-\alpha^2 r^2) \sqrt{(\alpha r)^2} \right\} \frac{r}{r^3} \\ x = (\alpha r)^2 - x_0^{(l)} \\ F_{\rm approx}^{(l)}(x) = \left(\sum_{m=0}^n a_m^{(l)} x^m \right)^2 \frac{\alpha : {\rm constant\ of\ Ewald\ sum\ method.}}{x_0^{(l)} : {\rm lower\ bound\ of\ } (\alpha r)^2 {\rm\ in\ region\ } l.} \\ a_m^{(l)} : {\rm\ mth\ coefficient\ of\ polynomial\ function\ in\ region\ } l. \end{array} \right.$$

Deformation of original short-range force formula to make target function not change drastically brings higher accuracy.

To make approximated functions accurate,

- Intervals $(x_0^{(l)})$ are set to power of 2.
- Sollya* is used for computing minimax polynomials of each 1.

*S. Chevillard, M. Joldeş and C. Lauter. "Sollya: an environment for the development of numerical codes," In *Mathematical Software - ICMS 2010*, pages 28-31, Heidelberg, Germany, September 2010. Springer.

Implementation

Table lookup/permute instruction for 512-bit SIMD

512-bit SIMD registers can be used as a table with instructions below: For Intel architecture

- __m512 _mm512_permutexvar_ps(__m512i idx, __m512 a)
- _m512 _mm512_permutex2var_ps(_m512 a,__m512i idx, __m512 b)
 For ARM v8 architecture
- svfloat32_t svtbl_f32(svfloat32_t a, svuint32_t idx)

Pseudo code of PPA

Require:

 $a_m^{(l)}$: polynomial coefficients.

X.f: X as an floating point value w/o changing any bit.

X.s : X as an integer value w/o changing any bit.

offset: offset binary of exponent bit.

function *n*th-polynomial approximation {

$$r^{2} = |r_{i} - r_{j}|^{2};$$

$$R^{2} = \alpha^{2} * r^{2};$$

$$l = (((R^{2}).s - offset) >> 23) & 0x0f;$$

$$x_{0}^{(l)} = ((R^{2}).s & 0xff800000).f;$$

$$x = R^{2} - x_{0}^{(l)};$$

$$return \left(\sum_{m=0}^{n} a_{m}^{(l)} x^{m}\right)^{2};$$

Accuracy

Comparison with the original force in DP and PPA in SP.

Enough accuracy for SP calculation.

Enough accuracy for SP calculation.

Description of the control of the contro

Benchmark result

N² calculation is applied for 32768 point charge distributed on cubic lattice.

CPU: Intel Xeon Gold 6140@2.30GHz
Compiler: icc 17.0.0 20160721
Option: -xCORE-AVX512 -ip
-unroll-loops
-use-fast-math

r / Angstrom

PPA is 10% faster than the previously known polynomial-approximation implementation.

Conclusion

interacti

ber

Elapsed

We proposed a piecewise polynomial approximation algorithm which uses SIMD registers as a table of polynomial coefficients for efficient calculation of short-range intermolecular interaction.

- Enough accurate for for the calculation in single-precision.
- 10% faster than the best previously known SIMD implementation on Intel Skylake Xeon.