Predicting Customer Spending on Black Friday

Data cleaning and feature extraction

Import libraries and methods.

```
In [125]: import pandas as pd
    import numpy as np
    from matplotlib import pyplot as plt
    import statsmodels.api as sm
    from sklearn import linear_model, metrics
    from sklearn.model_selection import cross_val_score, GridSearchCV
    from sklearn.ensemble import GradientBoostingRegressor
    from sklearn import tree
    from sklearn.utils import shuffle
```

Read dataset and print features and categories.

```
In [4]: df = pd.read_csv('C:/Users/Nolan/.PyCharmCE2018.3/config/scratches/Practice/BlackFri
        for x in list(df):
            if len(df[x].unique())>21:
                print(x, df[x].unique(), str(len(df[x].unique()))+' categories')
            else:
                print(x, sorted(df[x].unique()))
        User ID [1000001 1000002 1000003 ... 1004113 1005391 1001529] 5891 categories
        Product ID ['P00069042' 'P00248942' 'P00087842' ... 'P00038842' 'P00295642'
         'P00091742'] 3623 categories
        Gender ['F', 'M']
        Age ['0-17', '18-25', '26-35', '36-45', '46-50', '51-55', '55+']
        Occupation [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2
        0]
        City Category ['A', 'B', 'C']
        Stay_In_Current_City_Years ['0', '1', '2', '3', '4+']
        Marital_Status [0, 1]
        Product_Category_1 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
        Product_Category_2 [nan, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
        13.0, 14.0, 15.0, 16.0, 17.0, 18.0]
        Product_Category_3 [nan, 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.
        0, 15.0, 16.0, 17.0, 18.0]
        Purchase [ 8370 15200 1422 ... 14539 11120 18426] 17959 categories
```

From the above lists, it is clear that all initial features are categorical.

Check for duplicates.

```
In [5]: df.duplicated().sum()
```

Out[5]: 0

No duplicates found.

Next, check the number of missing values.

```
In [6]:
        df.isnull().sum()
Out[6]: User_ID
                                             0
        Product_ID
                                             0
        Gender
                                             0
        Age
                                             0
        Occupation
                                             0
        City_Category
                                             0
        Stay_In_Current_City_Years
                                             0
        Marital_Status
                                             0
        Product_Category_1
                                             0
        Product_Category_2
                                       166986
        Product_Category_3
                                       373299
        Purchase
                                             0
        dtype: int64
```

The only missing values are in product category 2 and 3, for products that belong in less than 3 categories. The fact that Product_Category_2 does not have the level 1 and Product_Category_3 does not have level 2 suggests the categories are placed in numerical order. This means the order has no meaning, and the important information is simply the categories the product belongs to.

Thus we can dummy code all 3 features and add them together.

Out[7]:

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14	PC15	PC16
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4																>

We can combine the three columns into a single column representing the unique combination of categories.

235

There are 235 categories in this new feature. To prevent overfitting, this feature might not be used.

Now dummy code the remaining variables.

```
In [9]: df['Male']=np.where(df['Gender']=='M',1,0)
    agedummies = pd.get_dummies(df['Age'])
    occupationdummies =pd.get_dummies(df['Occupation'])
    citydummies = pd.get_dummies(df['City_Category'])
    staydummies =pd.get_dummies(df['Stay_In_Current_City_Years'])
    df['Constant']=1
```

Next we can create variables for the popularity of products (count) and different products each customer bought.

```
In [10]: df['Product_Count']=df['Product_ID'].map(df.groupby('Product_ID')['Purchase'].count(
    df['User_Count']=df['User_ID'].map(df.groupby('User_ID')['Purchase'].count())

    df[['User_ID','Product_ID','User_Count','Product_Count']].head(10)
```

Out[10]:

	User_ID	Product_ID	User_Count	Product_Count
0	1000001	P00069042	34	221
1	1000001	P00248942	34	570
2	1000001	P00087842	34	99
3	1000001	P00085442	34	334
4	1000002	P00285442	76	200
5	1000003	P00193542	29	606
6	1000004	P00184942	13	1424
7	1000004	P00346142	13	586
8	1000004	P0097242	13	896
9	1000005	P00274942	106	782

Next, we can create a new response of the number purchased. The number purchased may serve as an intermediate response that can be modeled separately if necessary.

Out[11]:

	Product_ID	Purchase	Price	Number	User_Sum
0	P00069042	8370	2648	3	333481
1	P00248942	15200	3880	4	333481
2	P00087842	1422	346	4	333481
3	P00085442	1057	365	3	333481
4	P00285442	7969	3920	2	810353
5	P00193542	15227	3828	4	341635
6	P00184942	19215	3809	5	205987
7	P00346142	15854	3847	4	205987
8	P0097242	15686	3936	4	205987
9	P00274942	7871	1940	4	821001

Exploratory Data Visualization

The counts of each category are plotted below.

There is reasonable variability in each of the categorical variables in the customer population. There is no basis for excluding any feature yet.

Now perform a quick visual check for independence/balance of variables. For each level of a variable the distribution of other variable should be similar.

Age and marital status are related (older people tend to be married). Occupation and city category and stay in current city appear related as well. However, the correlations are not so strong that independence is lost (most levels are represented to some degree in each level of the other variable). Therefore there is no basis to combine any variables yet.

The next plot shows the mean total purchase for each categorical variable.

City categories A and B are similar, and marital status and stay in current city appear to have little effect on average spending. However, this may differ when the product categories are considered.

The next plot shows the number and total purchase amount for each category of product.

```
In [15]: productdf = pd.concat([df[['Product_ID','Number','Purchase']],prodcatdummy],axis=1)
    categorynumbertotals = []
    categorypurchasetotals = []
    for x in list(prodcatdummy):
        categorynumbertotals.append(np.dot(productdf[x],productdf['Number']))
        categorypurchasetotals.append(np.dot(productdf[x],productdf['Purchase']))
    fig2, ax2 = plt.subplots(1,2)
    ax2[0].bar(list(prodcatdummy),categorynumbertotals)
    ax2[0].set_ylabel('Number Purchased')
    ax2[1].bar(list(prodcatdummy),categorypurchasetotals)
    ax2[1].set_ylabel('Purchased Amount')
    fig2.set_size_inches(15,6)
    fig2.tight_layout()
```


The number and amount purchased varies greatly by product category.

Feature Selection for Least Squares Regression

First scale the continuous variables.

```
In [16]: continuous = ['Price','User_Count','Product_Count']
for x in continuous:
    df[x]/=df[x].std()*2
```

Then create the centered design matrix and response vector.

We will first use a linear model to obtain p values.

In [157]: model = sm.OLS(y,X)
 results=model.fit()
 resultssummary = results.summary()
 resultssummaryhtml = resultssummary.tables[1].as_html()
 resultssummarydf = pd.read_html(resultssummaryhtml,header=0,index_col=0)[0]
 print(resultssummary)

OLS Regression Results

______ Dep. Variable: Purchase R-squared: 0.612 Model: 0LS Adj. R-squared: 0.612 F-statistic: Method: Least Squares 1.543e+04 Thu, 11 Apr 2019 Date: Prob (F-statistic): 0.00 -5.0847e+06 Time: 19:39:44 Log-Likelihood: No. Observations: 537577 AIC: 1.017e+07 Df Residuals: 537521 BIC: 1.017e+07

Df Model: 55
Covariance Type: nonrobust

covariance Type		HOIH ODUSE				
=======================================	coef		t 	P> t	[0.025	0.975]
Constant	9273.4215	169.163	54.819	0.000	8941.867	9604.976
Male	8.8494	5.188	1.706	0.088	-1.320	19.018
Marital_Status	-27.6085	4.603	-5.998	0.000	-36.629	-18.588
Price	2619.7751	6.534	400.956	0.000	2606.969	2632.581
User_Count	-134.2451	5.198	-25.825	0.000	-144.434	-124.057
Product_Count	1065.0613	4.736	224.909	0.000	1055.780	1074.343
18-25	-70.2463	21.311	-3.296	0.001	-112.014	-28.478
26-35	-37.8884	21.250	-1.783	0.075	-79.537	3.760
36-45	-3.5074	21.555	-0.163	0.871	-45.754	38.739
46-50	-1.4072	22.514	-0.063	0.950	-45.533	42.719
51-55	74.0105	22.768	3.251	0.001	29.387	118.634
55+	22.7481	24.116	0.943	0.346	-24.518	70.015
1	-60.4847	9.452	-6.399	0.000	-79.010	-41.960
2	-12.2785	11.378	-1.079	0.281	-34.579	10.022
3	119.0292	13.251	8.983	0.000	93.057	145.001
4	35.9358	9.039	3.975	0.000	18.219	53.653
5	54.6786	15.416	3.547	0.000	24.464	84.893
6	82.2209	12.656	6.497	0.000	57.416	107.026
7	24.9372	8.875	2.810	0.005	7.543	42.332
8	-21.3737	40.340	-0.530	0.596	-100.440	57.692
9	36.1389	21.034	1.718	0.086	-5.087	77.365
10	-35.4290	22.836	-1.551	0.121	-80.188	9.330
11	-39.2844	15.810	-2.485	0.013	-70.272	
12	62.4662	10.802	5.783	0.000	41.295	
13	-20.3484	20.342	-1.000	0.317		
14	64.0199	11.232	5.700	0.000	42.005	
15	92.5123	15.519	5.961	0.000	62.096	
16	59.4179	11.636	5.106	0.000	36.611	82.225
17	70.0608	9.950	7.041	0.000	50.559	89.563
18	39.4676	20.201	1.954	0.051	-0.125	
19	-149.9148	18.107	-8.279	0.000		
20	-54.7030	10.487	-5.216	0.000	-75.258	
В	26.4198	5.424	4.871	0.000	15.789	
С	91.3146	6.664	13.703	0.000		
1	1.5024	6.809	0.221	0.825		
2	11.8786	7.606	1.562	0.118	-3.030	26.787

3	10.7198	7.724	1.388	0.165	-4.420	25.859
4+	19.4464	7.917	2.456	0.014	3.929	34.963
PC1	659.3219	6.984	94.400	0.000	645.633	673.011
PC2	181.5946	7.502	24.208	0.000	166.892	196.297
PC3	801.2992	13.495	59.378	0.000	774.850	827.749
PC4	-320.1572	10.745	-29.795	0.000	-341.218	-299.097
PC5	-418.2902	6.209	-67.363	0.000	-430.461	-406.120
PC6	738.4822	8.704	84.843	0.000	721.422	755.542
PC7	1014.5667	25.407	39.932	0.000	964.769	1064.364
PC8	-20.8859	6.116	-3.415	0.001	-32.872	-8.900
PC9	-204.7667	12.834	-15.955	0.000	-229.922	-179.612
PC10	1518.9864	17.743	85.609	0.000	1484.210	1553.763
PC11	-452.6535	9.166	-49.382	0.000	-470.619	-434.688
PC12	-217.4070	12.321	-17.646	0.000	-241.555	-193.259
PC13	-513.4249	11.568	-44.382	0.000	-536.099	-490.751
PC14	-66.4772	6.484	-10.252	0.000	-79.186	-53.768
PC15	-77.9154	7.061	-11.034	0.000	-91.755	-64.076
PC16	187.3284	6.875	27.247	0.000	173.853	200.803
PC17	204.8190	9.707	21.099	0.000	185.793	223.845
PC18	-35.1863	15.724	-2.238	0.025	-66.005	-4.368
Omnibus:	:=======	========= 26758.015	====== Durbin-W	======= atson:	========	1.771
<pre>Prob(Omnibus):</pre>		0.000	Jarque-B	era (JB):	54	499.899
Skew:		-0.356	Prob(JB)	• •		0.00
Kurtosis:		4.388	Cond. No	•		246.
==========	:=======:	========	=======	=======	========	======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly sp ecified.

```
In [162]: fig4, ax4 = plt.subplots(2,1)
    resultssummarydf['coef'].plot(kind='bar',ax=ax4[0])
    resultssummarydf['t'].plot(kind='bar',ax=ax4[1])
    ax4[0].set_ylabel('Coefficient')
    ax4[1].set_ylabel('t value')
    fig4.set_size_inches(15,15)
    fig4.tight_layout()
```


It is clear that the purchase amount depends the most on the price, popularity, and category of the product. But the product category effect may differ among different customers. This would be captured by interaction effects.

Because there are so many possible interactions, we will invoke the heirarchy of effects principle and assume significant interactions involve only significant main effects. So first we will check for interactions between significant features. Due to the large number of interactions, this will be done in several stages. The levels are first grouped by categorical feature.

```
In [19]: sigage = ['18-25','51-55']
    sigocc = [1,3,4,5,6,7,11,12,14,15,16,17,18,20]
    sigcity = ['B','C']
    sigpc = []
    for i in range(1,19):
        sigpc.append('PC'+str(i))
    sigother = ['Marital_Status','Price','User_Count','Product_Count']
    sig = sigother+sigage+sigocc+sigcity+sigpc
```

First interactions between the all features and features in groups with the least number of categories is evaluated.

```
In [20]: X1 = X.copy()
for i in range(len(sig)):
    for j in range(i+1,len(sig)):
        a=sig[i]
        b=sig[j]
        if not (a in sigage and b in sigage) and not (a in sigocc and b in sigocc)\
            and not (a in sigcity and b in sigcity) and not (a in sigpc and b in sig
            and not (a in sigocc and b in sigpc) and not (a in sigpc and b in sigocc
            X1[str(a)+'x'+str(b)]=X1[a]*X1[b]

y=df['Purchase']
X1.head(10)
```

Out[20]:

_		Constant	Male	Marital_Status	Price	User_Count	Product_Count	18- 25	26- 35	36- 45	46- 50	 СхР
	0	1.0	-1.0	-1.0	1.120588	-0.804753	-0.381538	-1.0	-1.0	-1.0	-1.0	
	1	1.0	-1.0	-1.0	2.107206	-0.804753	0.595130	-1.0	-1.0	-1.0	-1.0	
	2	1.0	-1.0	-1.0	-0.722914	-0.804753	-0.722951	-1.0	-1.0	-1.0	-1.0	
	3	1.0	-1.0	-1.0	-0.707698	-0.804753	-0.065310	-1.0	-1.0	-1.0	-1.0	
	4	1.0	1.0	-1.0	2.139239	-0.563565	-0.440305	-1.0	-1.0	-1.0	-1.0	 -
	5	1.0	1.0	-1.0	2.065563	-0.833466	0.695875	-1.0	1.0	-1.0	-1.0	
	6	1.0	1.0	1.0	2.050347	-0.925347	2.985025	-1.0	-1.0	-1.0	1.0	
	7	1.0	1.0	1.0	2.080778	-0.925347	0.639905	-1.0	-1.0	-1.0	1.0	
	8	1.0	1.0	1.0	2.152052	-0.925347	1.507432	-1.0	-1.0	-1.0	1.0	
	9	1.0	1.0	1.0	0.553603	-0.391288	1.188406	-1.0	1.0	-1.0	-1.0	

10 rows × 338 columns

In [21]: model = sm.OLS(y,X1)
 results=model.fit()
 summary = results.summary()
 summaryhtml = summary.tables[1].as_html()
 summarydf = pd.read_html(summaryhtml,header=0,index_col=0)[0]
 print(summarydf)

	coef	std err	t	P> t	[0.025	0.975]
Constant	14500.0000	288.544	50.257	0.000	13900.000	_
Male	15.9504	4.965	3.213	0.001	6.220	25.681
Marital_Status	570.9279	90.616	6.301	0.000	393.324	
Price	1038.1643	96.735	10.732	0.000	848.567	
User_Count	-144.7470	111.262	-1.301	0.193	-362.816	73.322
Product_Count	-4440.0222	109.931		0.000	-4655.483	-4224.561
18-25	-95.1387	134.266	-0.709	0.479	-358.296	168.018
26-35	-32.6309	20.663	-1.579	0.114	-73.129	7.867
36-45	18.2178	20.934	0.870	0.384	-22.813	59.248
46-50	19.3909	21.856	0.887	0.375	-23.446	62.228
51-55	831.5974	182.705	4.552	0.000		1189.694
55+	56.9920	23.315	2.444	0.015	11.296	102.688
1	-138.3672	22.624		0.000	-182.710	-94.025
2	-19.7758	10.779	-1.835	0.067	-40.902	1.351
3	60.5897	33.291	1.820	0.069	-4.659	
4	-120.1853	49.988	-2.404	0.016	-218.160	-22.211
5	144.5690	48.458	2.983	0.003	49.594	239.544
6	-210.3857	31.308	-6.720	0.000	-271.749	
7	12.0219	24.174	0.497	0.619		59.402
8	6.6448	38.353	0.173	0.862	-68.526	81.816
9	32.5327	19.941	1.631	0.103	-6.551	71.617
10	-49.0725	21.833	-2.248	0.025	-91.865	-6.280
11	-8.5162	40.560	-0.210	0.834	-88.012	70.980
12	102.3980	28.353	3.612	0.000	46.827	157.969
13	-8.0480	19.712	-0.408	0.683	-46.683	30.587
14	12.4916	31.544	0.396	0.692	-49.333	
15	489.8461	47.292	10.358	0.000	397.156	582.537
16	-71.4333	27.140	-2.632	0.008	-124.627	
17	125.2610	24.886	5.033	0.000	76.486	174.036
18	5.6574	46.037	0.123	0.902	-84.574	95.888
•••	•••	• • •		• • •	•••	• • •
BxPC7	-91.4643	29.073	-3.146	0.002		
BxPC8	-3.5424	7.266	-0.488	0.626	-17.784	10.699
BxPC9	15.6290	15.609	1.001	0.317		46.223
BxPC10	-51.0543	21.401	-2.386	0.017	-92.999	-9.109
BxPC11	-4.1884	11.064	-0.379	0.705	-25.873	17.496
BxPC12	-24.5459	14.535	-1.689	0.091	-53.033	3.942
BxPC13	-1.9330	13.842	-0.140	0.889	-29.063	25.197
BxPC14	2.2896	7.624	0.300	0.764	-12.653	17.232
BxPC15	-17.4096	8.564	-2.033	0.042	-34.195	-0.624
BxPC16	9.2164	8.235	1.119	0.263	-6.925	25.357
BxPC17	-9.9917	11.924	-0.838	0.402	-33.362	13.379
BxPC18	10.3153	19.260	0.536	0.592	-27.433	48.064
CxPC1	77.5597	10.205	7.600	0.000	57.558	97.561
CxPC2	35.6175	10.920	3.262	0.001	14.215	57.020
CxPC3	-19.3201	19.543	-0.989	0.323	-57.623	18.983
CxPC4	45.3462	15.910	2.850	0.004	14.163	76.529
CxPC5	-6.6441	9.022	-0.736	0.461	-24.326	11.038
CxPC6	-0.6157	12.591	-0.049	0.961	-25.294	24.062

```
36.521
                                      -3.092
CxPC7
                 -112.9169
                                              0.002
                                                      -184.497
                                                                   -41.336
CxPC8
                   -8.0195
                              8.876
                                      -0.903
                                              0.366
                                                       -25.417
                                                                    9.378
CxPC9
                   10.9962
                             18.650
                                       0.590
                                              0.555
                                                       -25.558
                                                                   47.550
CxPC10
                  -60.1545
                              25.127
                                      -2.394 0.017
                                                      -109.404
                                                                   -10.905
CxPC11
                    3.3816
                             13.696
                                       0.247
                                              0.805
                                                       -23.463
                                                                   30.226
CxPC12
                             17.939
                                      -1.154
                                             0.249
                                                       -55.862
                                                                   14.459
                  -20.7018
CxPC13
                  -10.1790
                              16.746
                                      -0.608 0.543
                                                       -43.001
                                                                   22.642
                                       2.930
CxPC14
                   27.2937
                              9.314
                                              0.003
                                                         9.039
                                                                   45.548
CxPC15
                   11.0644
                              10.180
                                       1.087
                                              0.277
                                                        -8.887
                                                                   31.016
CxPC16
                   40.7283
                              10.026
                                       4.062
                                              0.000
                                                        21.078
                                                                   60.379
CxPC17
                    9.9203
                              14.109
                                       0.703
                                              0.482
                                                       -17.733
                                                                   37.574
CxPC18
                   11.8925
                             23.598
                                       0.504
                                              0.614
                                                       -34.359
                                                                   58.144
```

[338 rows x 6 columns]

78

Cells with t value below 5 are screened out. (Some significant interactions are screened out, but this high t value was chosen to filter out more interactions to make the regression analysis more efficient).

```
significant = summarydf[((summarydf['t']>=5)|(summarydf['t']<=-5))&(summarydf.index.</pre>
In [22]:
          print(significant)
          print(len(significant))
          Index(['Marital_StatusxPrice', 'Marital_Statusx7', 'Marital_Statusx12',
                  'Marital_Statusx14', 'Marital_Statusx20', 'PricexProduct_Count',
                  'Pricex18-25', 'Pricex1', 'Pricex7', 'Pricex12', 'Pricex14', 'Pricex17',
                  'PricexPC1', 'PricexPC2', 'PricexPC3', 'PricexPC4', 'PricexPC5',
                  'PricexPC6', 'PricexPC7', 'PricexPC8', 'PricexPC9', 'PricexPC10',
                  'PricexPC11', 'PricexPC12', 'PricexPC13', 'PricexPC14', 'PricexPC16', 'PricexPC17', 'PricexPC18', 'User_CountxProduct_Count', 'User_Countx5',
                  'User_Countx6', 'User_Countx11', 'User_Countx16', 'User_CountxB',
                  'User_CountxPC1', 'User_CountxPC4', 'User_CountxPC5', 'User_CountxPC10',
                  'User_CountxPC17', 'Product_Countx18-25', 'Product_Countx51-55',
                  'Product_Countx6', 'Product_CountxPC1', 'Product_CountxPC2',
                  'Product_CountxPC3', 'Product_CountxPC4', 'Product_CountxPC5',
                  'Product_CountxPC6', 'Product_CountxPC7', 'Product_CountxPC9',
                  'Product_CountxPC10', 'Product_CountxPC11', 'Product_CountxPC12',
                  'Product_CountxPC13', 'Product_CountxPC14', 'Product_CountxPC15', 'Product_CountxPC16', 'Product_CountxPC17', 'Product_CountxPC18',
                  '18-25x1', '18-25x6', '18-25x15', '18-25xB', '18-25xPC5', '51-55x15',
                  '51-55x17', '51-55xB', '51-55xPC2', '51-55xPC10', '5xB', '5xC', '7xB',
                  '11xB', '11xC', '12xB', '20xB', 'CxPC1'],
                 dtype='object')
```

Separately, the interactions between the two features with the most categories (occupation and product type) are evaluated.

Out[23]:

	Constant	Male	Marital_Status	Price	User_Count	Product_Count	18- 25	26- 35	36- 45	46- 50	 20xi
0	1.0	-1.0	-1.0	1.120588	-0.804753	-0.381538	-1.0	-1.0	-1.0	-1.0	
1	1.0	-1.0	-1.0	2.107206	-0.804753	0.595130	-1.0	-1.0	-1.0	-1.0	
2	1.0	-1.0	-1.0	-0.722914	-0.804753	-0.722951	-1.0	-1.0	-1.0	-1.0	
3	1.0	-1.0	-1.0	-0.707698	-0.804753	-0.065310	-1.0	-1.0	-1.0	-1.0	
4	1.0	1.0	-1.0	2.139239	-0.563565	-0.440305	-1.0	-1.0	-1.0	-1.0	
5	1.0	1.0	-1.0	2.065563	-0.833466	0.695875	-1.0	1.0	-1.0	-1.0	
6	1.0	1.0	1.0	2.050347	-0.925347	2.985025	-1.0	-1.0	-1.0	1.0	
7	1.0	1.0	1.0	2.080778	-0.925347	0.639905	-1.0	-1.0	-1.0	1.0	
8	1.0	1.0	1.0	2.152052	-0.925347	1.507432	-1.0	-1.0	-1.0	1.0	
9	1.0	1.0	1.0	0.553603	-0.391288	1.188406	-1.0	1.0	-1.0	-1.0	

10 rows × 308 columns

In [24]: model = sm.OLS(y,X2)
 results2=model.fit()
 summary2 = results2.summary()
 summaryhtml2 = summary2.tables[1].as_html()
 summarydf2 = pd.read_html(summaryhtml2,header=0,index_col=0)[0]
 print(summarydf2)

	coef	std err	t	D\ +	[0.025	0.975]
Constant	9141.3253	883.657		0.000	7409.386	10900.000
Male	11.8108	5.195	2.273	0.023	1.629	21.993
	-28.5738	4.605	-6.205	0.000	-37.599	
Price	2620.2654	6.536	400.891	0.000	2607.455	
User_Count	-134.0123	5.201	-25.768	0.000	-144.206	-123.819
Product_Count	1066.4779	4.737	225.152	0.000	1057.194	1075.762
18-25	-70.9498	21.314	-3.329	0.001	-112.725	-29.174
26-35	-38.3284	21.253	-1.803	0.071	-79.984	3.327
36-45	-3.8939	21.559	-0.181	0.857	-46.149	38.361
46-50	-1.8568	22.519		0.934	-45.993	42.279
51-55	73.7717	22.772			29.139	118.404
55+	24.2404	24.120		0.315	-23.033	71.514
1	207.4069	108.551		0.056	-5.350	420.164
2	-14.4740	11.379	-1.272	0.203	-36.777	7.829
3	142.8304	160.498	0.890	0.374	-171.741	457.402
4	207.2518	96.030	2.158	0.031	19.035	395.468
5	227.5009	212.757	1.069	0.285	-189.497	644.499
6	60.2347	152.532	0.395	0.693	-238.722	359.192
7	-111.7035	102.173	-1.093	0.274	-311.960	88.552
8	-19.5794	40.321	-0.486	0.627	-98.608	59.449
9	33.1228	21.070	1.572	0.116	-8.173	74.418
10	-34.3473	22.841	-1.504	0.133	-79.115	10.420
11	-103.4703	193.578	-0.535	0.593	-482.877	275.936
12	-150.3344	130.712	-1.150	0.250	-406.527	105.858
13	-24.9027	20.372	-1.222	0.222	-64.831	15.026
14	125.7281	138.299	0.909	0.363	-145.333	396.790
15	1.3935	193.228	0.007	0.994	-377.328	380.115
16	0.0389	139.624	0.000	1.000	-273.620	273.698
17	-11.1744	120.315	-0.093	0.926	-246.988	224.639
18	-441.1250	263.026	-1.677	0.094	-956.647	74.397
• • •	• • •	• • •	• • •	• • •	• • •	•••
18xPC7	-531.5277			0.000	-773.901	
18xPC8	-25.7327	28.277	-0.910		-81.156	29.690
18xPC9	-50.0799	61.558	-0.814	0.416	-170.732	70.572
18xPC10	-105.0670	81.622	-1.287	0.198	-265.044	54.910
18xPC11	81.4256	34.510	2.359	0.018	13.786	149.065
18xPC12	-87.1403	60.983	-1.429	0.153	-206.665	32.384
18xPC13	31.5646	53.320	0.592	0.554	-72.941	136.070
18xPC14	6.3118	33.559	0.188	0.851	-59.463	72.087
18xPC15	-26.1513	31.959	-0.818	0.413	-88.790	36.488
18xPC16	-18.8785	30.299	-0.623	0.533	-78.263	40.506
18xPC17	72.4218	46.902	1.544	0.123	-19.504	164.347
18xPC18	43.7074	66.960	0.653	0.514	-87.533	174.948
20xPC1	-64.6001	14.340	-4.505	0.000	-92.706	-36.494
20xPC2	-20.0387	17.246	-1.162	0.245	-53.841	13.764
20xPC3	65.4210	29.516	2.216	0.027	7.570	123.272
20xPC4	7.9462	23.946	0.332	0.740	-38.988	54.880
20xPC5	10.6699	13.169	0.810	0.418	-15.142	36.482
20xPC6	22.6396	18.698	1.211	0.226	-14.007	59.287

```
20xPC7
                  64.9110
                             46.708
                                        1.390
                                               0.165
                                                       -26.636
                                                                   156.458
20xPC8
                   3.0866
                             13.390
                                       0.231
                                               0.818
                                                       -23.157
                                                                    29.330
20xPC9
                  39.1513
                             30.720
                                       1.274
                                               0.203
                                                       -21.059
                                                                    99.361
                                                       -37.416
20xPC10
                  30.5503
                                       0.881
                                               0.378
                             34.677
                                                                    98.516
                                       3.720
                                               0.000
20xPC11
                  76.9431
                             20.681
                                                        36.409
                                                                   117.477
20xPC12
                             26.540
                                       2.323
                                               0.020
                                                         9.625
                                                                   113.661
                  61.6434
20xPC13
                  30.7553
                             25.219
                                       1.220
                                               0.223
                                                       -18.673
                                                                    80.184
20xPC14
                   -6.1659
                             14.431
                                       -0.427
                                               0.669
                                                       -34.451
                                                                    22.119
20xPC15
                  67.1351
                             16.509
                                       4.067
                                               0.000
                                                        34.778
                                                                    99.492
20xPC16
                             15.631
                                       -2.396
                                                       -68.086
                  -37.4510
                                               0.017
                                                                    -6.816
20xPC17
                             22.128
                  22.8954
                                       1.035
                                               0.301
                                                       -20.475
                                                                    66.266
20xPC18
                  45.8951
                             36.622
                                       1.253
                                               0.210
                                                       -25.884
                                                                   117.674
```

[308 rows x 6 columns]

Type *Markdown* and LaTeX: α^2

```
In [25]: significant2 = summarydf2[((summarydf2['t']>=5)|(summarydf2['t']<=-5))&(summarydf2.i
print(significant2)
print(len(significant2))

Index(['5xPC1', '7xPC1', '17xPC1'], dtype='object')
3</pre>
```

Finally, the 235 different combinations of product category are evaluated.

```
In [26]: X3 = pd.concat([X,combinationdummies],axis=1)
    y=df['Purchase']
    model = sm.OLS(y,X3)
    results3=model.fit()
    summary3 = results3.summary()
    summaryhtml3 = summary3.tables[1].as_html()
    summarydf3 = pd.read_html(summaryhtml3,header=0,index_col=0)[0]
    print(summarydf3)
```

	coef	std err	t	P> t	[0.025	0.975]
Constant	7472.3126	210.803	35.447	0.000	7059.145	7885.480
Male	-5.4838	4.741	-1.157	0.247	-14.775	3.808
Marital_Status	-24.2188	4.199	-5.767	0.000	-32.449	-15.988
Price	531.6964	9.386	56.647	0.000	513.300	550.093
User_Count	-125.3046	4.747	-26.395	0.000	-134.609	-116.000
Product_Count	937.3614	4.848	193.337	0.000	927.859	946.864
18-25	-78.0671	19.444	-4.015	0.000	-116.177	-39.957
26-35	-38.3684	19.388	-1.979	0.048	-76.368	-0.369
36-45	22.5996	19.667	1.149	0.251	-15.947	61.146
46-50	40.8842	20.543	1.990	0.047	0.620	81.148
51-55	119.9773	20.776	5.775	0.000	79.256	160.698
55+	70.0986	22.008	3.185	0.001	26.964	113.234
1	-61.5016	8.624	-7.131	0.000	-78.405	-44.598
2	-8.9872	10.381	-0.866	0.387	-29.334	11.359
3	114.6363	12.090	9.482	0.000	90.941	138.332
4	34.3615	8.247	4.166	0.000	18.197	50.526
5	43.2242	14.065	3.073	0.002	15.658	70.791
6	79.8843	11.547	6.918	0.000	57.252	102.516
7	20.6677	8.098	2.552	0.011	4.797	36.539
8	-52.0197	36.806	-1.413	0.158	-124.158	20.119
9	31.5228	19.191	1.643	0.100		
10	-20.5449	20.837	-0.986	0.324		
11	-30.4601	14.426	-2.112	0.035	-58.734	-2.186
12	55.9217	9.856	5.674	0.000	36.604	
13	4.4517	18.560	0.240	0.810	-31.925	40.828
14	55.3432	10.249	5.400	0.000	35.256	75.430
15	92.9658	14.159	6.566	0.000	65.214	
16	57.1254	10.617	5.381	0.000	36.317	
17	58.6287	9.079	6.458	0.000	40.834	76.423
18	27.4042	18.431	1.487	0.137	-8.720	63.528
• • •	• • •					
712.0nan	1926.1185	222.527	8.656	0.000		2362.264
717.0nan	2440.1088	239.827	10.174	0.000	1970.054	2910.163
78.0nan	2348.8389	258.121	9.100	0.000	1842.929	2854.748
7nannan	1785.6055	115.397	15.474	0.000	1559.431	2011.780
810.016.0	-5345.7231	394.498	-13.551	0.000	-6118.926	
810.0nan	-5506.1343	273.660	-20.120		-6042.500	
811.016.0	1629.2569	418.883	3.890	0.000	808.259	2450.255
811.0nan	-836.4709	164.792	-5.076	0.000	-1159.458	-513.484
812.017.0	697.5453	178.428	3.909	0.000	347.833	1047.258
812.0nan	-22.0083	93.220	-0.236	0.813	-204.716	160.699
813.014.0	343.5918	169.216	2.030	0.042	11.933	675.251
813.015.0	-82.5245	109.036	-0.757	0.449	-296.231	131.182
813.016.0	-528.4923	113.050	-4.675	0.000	-750.067	-306.917
813.0nan	252.2708	77.527	3.254	0.001	100.320	
814.015.0	65.2626	445.190	0.147	0.883	-807.295	937.820
814.016.0	-1418.6685	122.780	-11.555		-1659.314	

```
-1735.5492
                             71.272
                                     -24.351
                                              0.000 -1875.240 -1595.859
814.017.0
814.018.0
               -1376.9480
                            604.200
                                      -2.279
                                              0.023 -2561.160 -192.736
814.0nan
               -2135.8032
                             56.658
                                     -37.696
                                              0.000 -2246.851 -2024.756
815.016.0
               -1471.0223
                            116.836
                                     -12.590
                                              0.000 -1700.018 -1242.027
815.0nan
               -2051.4243
                             64.806
                                     -31.655
                                              0.000 -2178.441 -1924.408
                                      -9.571
816.017.0
               -1247.3347
                            130.318
                                              0.000 -1502.753 -991.916
816.0nan
               -2169.5633
                             66.101
                                     -32.822
                                              0.000 -2299.119 -2040.007
817.0nan
               -1827.9441
                             58.011
                                     -31.511
                                              0.000 -1941.643 -1714.245
                -384.1842
                            140.493
                                      -2.735
                                              0.006 -659.546
                                                               -108.822
818.0nan
89.014.0
                 107.1941
                            216.922
                                       0.494
                                              0.621 -317.966
                                                                532.354
89.0nan
               -1051.0156
                            276.056
                                      -3.807
                                              0.000 -1592.076 -509.955
8nannan
               -2369.9094
                             66.023
                                     -35.895
                                              0.000 -2499.313 -2240.506
915.0nan
                5819.2891
                            222.791
                                      26.120
                                              0.000 5382.626
                                                               6255.952
9nannan
                2974.3192
                           2620.021
                                       1.135
                                              0.256 -2160.839
                                                               8109.477
```

[291 rows x 6 columns]

['1013.016.0', '1013.0nan', '1014.016.0', '1015.016.0', '1015.0nan', '1016.0nan', '10nannan', '111.015.0', '111.016.0', '111.0nan', '1113.016.0', '1114.0nan', '1115. 016.0', '1115.0nan', '1116.0nan', '113.014.0', '113.016.0', '114.017.0', '115.016. 0', '115.018.0', '115.0nan', '117.0nan', '118.0nan', '11nannan', '12.013.0', '12.014.0', '12.015.0', '12.016.0', '12.018.0', '12.03.0', '12.04.0', '12.05.0', '12.06. 0', '12.08.0', '12.09.0', '12.0nan', '1214.017.0', '1214.0nan', '1217.0nan', '12nan nan', '13.04.0', '1314.016.0', '1315.016.0', '1315.0nan', '1316.0nan', '13nannan', '14.0nan', '1416.0nan', '1417.0nan', '1418.0nan', '14nannan', '15.012.0', '15.017. 0', '15.018.0', '15.08.0', '1516.017.0', '1516.0nan', '1517.0nan', '15nannan', '16.013.0', '16.015.0', '16.016.0', '16.0nan', '16nannan', '18.013.0', '18.017.0', '18.09.0', '18.0nan', '18nannan', '1nannan', '214.0nan', '215.016.0', '215.0nan', '217. Onan', '218.0nan', '23.010.0', '23.015.0', '24.012.0', '24.014.0', '24.015.0', '24. 05.0', '24.08.0', '24.09.0', '24.0nan', '25.012.0', '25.015.0', '25.08.0', '25.0na n', '26.015.0', '28.014.0', '28.016.0', '28.018.0', '29.014.0', '29.015.0', '29.0na n', '34.012.0', '34.05.0', '34.08.0', '34.09.0', '34.0nan', '35.016.0', '412.0nan', '415.0nan', '45.015.0', '45.08.0', '45.0nan', '48.09.0', '48.0nan', '49.015.0', '4n annan', '511.012.0', '512.014.0', '512.0nan', '513.014.0', '513.016.0', '514.016. 0', '514.017.0', '514.0nan', '515.018.0', '515.0nan', '516.0nan', '517.0nan', '518.0nan', '56.011.0', '56.013.0', '56.016.0', '56.08.0', '56.09.0', '56.0nan', '57.0na n', '58.012.0', '58.018.0', '58.0nan', '59.014.0', '59.0nan', '5nannan', '611.013. 0', '611.016.0', '611.0nan', '613.0nan', '616.0nan', '68.013.0', '68.014.0', '68.01 5.0', '68.016.0', '68.0nan', '6nannan', '712.0nan', '717.0nan', '78.0nan', '7nanna n', '810.016.0', '810.0nan', '811.0nan', '814.016.0', '814.017.0', '814.0nan', '81 5.016.0', '815.0nan', '816.017.0', '816.0nan', '817.0nan', '8nannan', '915.0nan'] 164

The significant (t>=5) interactions from each stage of evaluation are redefined below for convenience. All these interactions are evaluated together, and insignificant interactions are eliminated.

```
In [30]: | significant = ['Marital StatusxPrice', 'Marital Statusx7', 'Marital Statusx12',
                          'Marital_Statusx14', 'Marital_Statusx20', 'PricexProduct_Count',
                          'Pricex18-25', 'Pricex1', 'Pricex7', 'Pricex12', 'Pricex14', 'Pricex17',
                          'PricexPC1', 'PricexPC2', 'PricexPC3', 'PricexPC4', 'PricexPC5', 'PricexPC6', 'PricexPC7', 'PricexPC8', 'PricexPC9', 'PricexPC10',
                          'PricexPC11', 'PricexPC12', 'PricexPC13', 'PricexPC14', 'PricexPC16',
                          'PricexPC17', 'PricexPC18', 'User_CountxProduct_Count', 'User_Countx5',
                          'User_Countx6', 'User_Countx11', 'User_Countx16', 'User_CountxB',
                          'User_CountxPC1', 'User_CountxPC4', 'User_CountxPC5', 'User_CountxPC10',
                          'User_CountxPC17', 'Product_Countx18-25', 'Product_Countx51-55',
                          'Product_Countx6', 'Product_CountxPC1', 'Product_CountxPC2',
                          'Product_CountxPC3', 'Product_CountxPC4', 'Product_CountxPC5', 'Product_CountxPC6', 'Product_CountxPC7', 'Product_CountxPC9', 'Product_CountxPC10', 'Product_CountxPC11', 'Product_CountxPC12',
                          'Product_CountxPC13', 'Product_CountxPC14', 'Product_CountxPC15',
                          'Product_CountxPC16', 'Product_CountxPC17', 'Product_CountxPC18', '18-25x1', '18-25x6', '18-25x15', '18-25xB', '18-25xPC5', '51-55x15',
                          '51-55x17', '51-55xB', '51-55xPC2', '51-55xPC10', '5xB', '5xC', '7xB', '11xB', '11xC', '12xB', '20xB', 'CxPC1']
               significant2 = ['5xPC1', '7xPC1', '17xPC1']
               significant3 = ['1013.016.0', '1013.0nan', '1014.016.0', '1015.016.0', '1015.0nan',
                                        '111.015.0', '111.016.0', '111.0nan', '1113.016.0', '1114.0nan', '11
'1116.0nan', '113.014.0', '113.016.0', '114.017.0', '115.016.0', '11
'118.0nan', '11nannan', '12.013.0', '12.014.0', '12.015.0', '12.016.
'12.05.0', '12.06.0', '12.08.0', '12.09.0', '12.0nan', '1214.017.0',
                                        '13.04.0', '1314.016.0', '1315.016.0', '1315.0nan', '1316.0nan', '13
                                        '1417.0nan', '1418.0nan', '14nannan', '15.012.0', '15.017.0', '15.01 '1516.0nan', '1517.0nan', '15nannan', '16.013.0', '16.015.0', '16.01
                                        '18.013.0', '18.017.0', '18.09.0', '18.0nan', '18nannan', '1nannan', '217.0nan', '218.0nan', '23.010.0', '23.015.0', '24.012.0', '24.014. '24.09.0', '24.0nan', '25.012.0', '25.015.0', '25.08.0', '25.0nan',
                                        '28.018.0', '29.014.0', '29.015.0', '29.0nan', '34.012.0', '34.05.0' '35.016.0', '412.0nan', '415.0nan', '45.015.0', '45.08.0', '45.0nan' '4nannan', '511.012.0', '512.014.0', '512.0nan', '513.014.0', '513.0
                                        '514.0nan', '515.018.0', '515.0nan', '516.0nan', '517.0nan', '518.0n
'56.08.0', '56.09.0', '56.0nan', '57.0nan', '58.012.0', '58.018.0',
                                        '5nannan', '611.013.0', '611.016.0', '611.0nan', '613.0nan', '616.0n
                                        '68.016.0', '68.0nan', '6nannan', '712.0nan', '717.0nan', '78.0nan', '811.0nan', '814.016.0', '814.017.0', '814.0nan', '815.016.0', '815.
                                        '817.0nan', '8nannan', '915.0nan']
              X4 = pd.concat([X,X1[significant],X2[significant2],X3[significant3]],axis=1)
               y=df['Purchase']
```

```
In [31]: model = sm.OLS(y,X4)
    results4=model.fit()
    summary4 = results4.summary()
    summaryhtml4 = summary4.tables[1].as_html()
    summarydf4 = pd.read_html(summaryhtml4,header=0,index_col=0)[0]
    print(summary4)
```

	OLS Regres	sion Resul	lts 			_
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Purchase OLS Least Squares Thu, 11 Apr 2019 12:23:11 537577 537277 299 nonrobust	R-square Adj. R-s F-statis Prob (F- Log-Like AIC: BIC:	squared: stic: -statistic):	1	0.686 0.686 3926. 0.00 0280e+06 .006e+07	
0.975]	coef	std err	t	P> t	[0.025	
Constant 7998.407	7294.1192	359.336	20.299	0.000	6589.831	•

In [39]: significant4 = summarydf4[((summarydf4['t']>=5)|(summarydf4['t']<=-5))&((summarydf4.
print(sorted(significant4))
print(len(significant4))</pre>

['1013.016.0', '1013.0nan', '1014.016.0', '1015.016.0', '1015.0nan', '1016.0nan', '10nannan', '111.015.0', '111.016.0', '1114.0nan', '1115.016.0', '1115.0nan', '111 6.0nan', '113.014.0', '113.016.0', '114.017.0', '115.018.0', '115.0nan', '117.0na n', '118.0nan', '11nannan', '11xB', '11xC', '12.013.0', '12.014.0', '12.015.0', '1 2.016.0', '12.018.0', '12.03.0', '12.04.0', '12.06.0', '12.08.0', '12.09.0', '12.0n an', '1214.017.0', '1214.0nan', '1217.0nan', '12nannan', '12xB', '13.04.0', '1314.0 16.0', '1315.016.0', '1315.0nan', '1316.0nan', '13nannan', '1416.0nan', '1417.0na n', '1418.0nan', '14nannan', '15.012.0', '15.017.0', '15.018.0', '15.08.0', '1516.0 17.0', '1516.0nan', '1517.0nan', '15nannan', '16.013.0', '16.015.0', '16.016.0', '1 6.0nan', '16nannan', '17xPC1', '18-25x1', '18-25x15', '18-25x6', '18-25xB', '18.01 3.0', '18.017.0', '18.09.0', '18nannan', '20xB', '214.0nan', '215.016.0', '217.0na n', '23.010.0', '23.015.0', '24.012.0', '24.014.0', '24.015.0', '24.05.0', '24.08. 0', '24.09.0', '24.0nan', '25.015.0', '25.08.0', '28.014.0', '28.016.0', '29.015.
0', '29.0nan', '34.012.0', '34.05.0', '34.08.0', '34.09.0', '34.0nan', '35.016.0', '415.0nan', '45.015.0', '45.08.0', '45.0nan', '48.09.0', '48.0nan', '49.015.0', '4n annan', '51-55x15', '51-55x17', '51-55xB', '51-55xPC2', '511.012.0', '512.014.0', '512.0nan', '513.014.0', '513.016.0', '514.0nan', '515.018.0', '515.0nan', '516.0na n', '517.0nan', '518.0nan', '56.011.0', '56.013.0', '56.016.0', '56.08.0', '56.09. 0', '56.0nan', '57.0nan', '58.012.0', '58.018.0', '58.0nan', '5nannan', '5xB', '5xC', '5xPC1', '611.013.0', '611.016.0', '611.0nan', '613.0nan', '616.0nan', '68.013. 0', '68.014.0', '68.015.0', '68.016.0', '68.0nan', '6nannan', '712.0nan', '717.0na n', '78.0nan', '7nannan', '7xB', '7xPC1', '810.016.0', '810.0nan', '811.0nan', '81 4.016.0', '814.017.0', '814.0nan', '815.016.0', '815.0nan', '816.017.0', '816.0na n', '817.0nan', '8nannan', '915.0nan', 'CxPC1', 'Marital_Statusx12', 'Marital_Statu sx14', 'Marital_Statusx20', 'Marital_Statusx7', 'PricexPC1', 'PricexPC1' 0', 'PricexPC14', 'PricexPC16', 'PricexPC17', 'PricexPC2', 'PricexPC9', 'PricexProd uct_Count', 'Product_Countx18-25', 'Product_Countx51-55', 'Product_Countx6', 'Produc ct_CountxPC10', 'Product_CountxPC11', 'Product_CountxPC12', 'Product_CountxPC14', 'Product_CountxPC17', 'Product_CountxPC18', 'Product_CountxPC2', 'Product_CountxPC 3', 'Product_CountxPC4', 'Product_CountxPC5', 'Product_CountxPC6', 'User_Countx11', 'User_Countx16', 'User_Countx5', 'User_Countx6', 'User_CountxB', 'User_CountxPC1', 'User_CountxPC17', 'User_CountxPC4', 'User_CountxPC5', 'User_CountxProduct_Count'] 201

The resulting model is shown below.

```
In [40]: X5 = pd.concat([X,X4[significant4]],axis=1)
    y=df['Purchase']
    model = sm.OLS(y,X5)
    results5=model.fit()
    summary5 = results5.summary()
    summaryhtml5 = summary5.tables[1].as_html()
    summarydf5 = pd.read_html(summaryhtml5,header=0,index_col=0)[0]
    print(summary5)
```

```
OLS Regression Results
_____
                  Purchase
                         R-squared:
Dep. Variable:
                                              0.686
                     OLS Adj. R-squared:
Model:
                                             0.685
             Least Squares F-statistic:
Method:
                                             4596.
            Thu, 11 Apr 2019 Prob (F-statistic):
13:25:16 Log-Likelihood:
Date:
                                        0.00
-5.0283e+06
Time:
No. Observations:
                   537577 AIC:
                                           1.006e+07
Df Residuals:
                   537321
                         BIC:
                                           1.006e+07
Df Model:
                     255
Covariance Type:
                nonrobust
_______
========
                  coef std err t P>|t|
                                              [0.025
0.975]
-----
                7945.8332 210.575 37.734 0.000 7533.112
Constant
8358.554
```

Now interactions with similar coefficients can be grouped.

```
In [92]: | inter = summarydf5.loc['13nannan':,'coef']
       names=inter.index.to series(name='Name')
       inter = pd.concat([inter,names],axis=1)
       inter=inter.sort values('coef')
       inter.reset index(drop=True,inplace=True)
       combined = \lceil \lceil 0 \rceil \rceil
      group = []
      for i in range(1,len(inter)):
         if min(inter.loc[i-1,'coef'],inter.loc[i,'coef'])/max(inter.loc[i-1,'coef'],inte
            group.append(i)
         else:
            combined.append(group)
            group = [i]
       combined.append([len(inter)-1])
      X6=X.copy()
       for a in combined:
         name = ''
         for b in a:
            name += inter.loc[b,'Name']
         X6[name]=0
         for b in a:
            X6[name]+=X5[inter.loc[b,'Name']]
      model = sm.OLS(y, X6)
       results6=model.fit()
       summary6 = results6.summary()
       summaryhtml6 = summary6.tables[1].as_html()
       summarydf6 = pd.read_html(summaryhtml6,header=0,index_col=0)[0]
       print(summary6)
                           OLS Regression Results
      ______
      Dep. Variable:
                            Purchase
                                    R-squared:
                                                            0.646
      Model:
                               OLS Adj. R-squared:
                                                            0.646
      Method:
                        Least Squares F-statistic:
                                                        1.128e+04
      Date:
                      Thu, 11 Apr 2019
                                    Prob (F-statistic):
                                                             0.00
                                    Log-Likelihood:
      Time:
                            14:54:10
                                                      -5.0601e+06
      No. Observations:
                             537577
                                    AIC:
                                                         1.012e+07
      Df Residuals:
                             537489
                                    BIC:
                                                         1.012e+07
      Df Model:
                                87
      Covariance Type:
                           nonrobust
      ______
      ______
       ______
       ______
      ______
      _____
                              P>|t| [0.025
                                               0.975]
      coef
            std err
                         t
```

Next, we check for quadratic and cubic effects on continuous variables price, user count, and product count.

```
In [94]: X7 = X6.copy()
        X7['PriceSq']=X7['Price']*2
        X7['UserCountSq']=X7['User_Count']*2
        X7['ProdCountSq']=X7['Product_Count']*2
        X7['PriceCub']=X7['Price']*3
        X7['UserCountCub']=X7['User_Count']*3
        X7['ProdCountCub']=X7['Product Count']*3
        model = sm.OLS(y, X7)
        results7=model.fit()
        summary7 = results7.summary()
        summaryhtml7 = summary7.tables[1].as_html()
        summarydf7 = pd.read html(summaryhtml7,header=0,index col=0)[0]
        print(summary7)
                                 OLS Regression Results
        ______
        Dep. Variable:
                                           R-squared:
                                                                         0.646
                                  Purchase
                                      OLS Adj. R-squared:
        Model:
                                                                         0.646
                            Least Squares F-statistic:
        Method:
                                                                    1.128e+04
        Date:
                         Thu, 11 Apr 2019 Prob (F-statistic):
                                                                          0.00
                                                                 -5.0601e+06
                                 15:00:36 Log-Likelihood:
        Time:
        No. Observations:
                                   537577
                                           AIC:
                                                                     1.012e+07
```

537489

nonrobust

87

BIC:

t P>|t| [0.025 0.975]

1.012e+07

All squared and cubed terms are significant.

Df Residuals:

Covariance Type:

coef std err

Df Model:

The squared and cubed terms are also evaluated for the full model (without combining interactions).

```
In [95]: X8 = X5.copy()
    X8['PriceSq']=X8['Price']*2
    X8['UserCountSq']=X8['User_Count']*2
    X8['ProdCountSq']=X8['Product_Count']*2
    X8['PriceCub']=X8['Price']*3
    X8['UserCountCub']=X8['User_Count']*3
    X8['ProdCountCub']=X8['Product_Count']*3

model = sm.OLS(y,X8)
    results8=model.fit()
    summary8 = results8.summary()
    summaryhtml8 = summary8.tables[1].as_html()
    summarydf8 = pd.read_html(summaryhtml8,header=0,index_col=0)[0]
    print(summary8)
```

```
OLS Regression Results
______
                           R-squared:
Dep. Variable:
                    Purchase
                                                  0.686
Model:
                       OLS Adj. R-squared:
                                                  0.685
Method:
               Least Squares
                           F-statistic:
                                                  4596.
            Thu, 11 Apr 2019
Date:
                           Prob (F-statistic):
                                                   0.00
                    15:06:28 Log-Likelihood:
Time:
                                             -5.0283e+06
No. Observations:
                     537577
                           AIC:
                                               1.006e+07
Df Residuals:
                           BIC:
                                               1.006e+07
                     537321
Df Model:
                       255
Covariance Type:
                  nonrobust
______
========
                     coef
                                           P>|t|
                          std err
                                     t
                                                   [0.025
0.975]
                           210.575 37.734
Constant
                 7945.8332
                                           0.000
                                                 7533.112
8358.554
                    2 2222
                                    ~ ~~~
```

The square and cube of the user count is not significant.

```
In [110]: X8=X8.drop(['UserCountSq','UserCountCub'],axis=1)
```

Now we have two potential feature sets for linear modeling, X7 and X8. Both these models have better R-squared value and AIC than the model with no interactions. The model with more interactions has a better R-squared and AIC than the one with interactions combined.

Next we will cross validate each of these models (regularized and unregularized).

```
In [173]: | def evaluatemodel(model, matrix, importance=False):
              data = pd.concat([matrix,y],axis=1)
              data = shuffle(data)
              X = data.iloc[:,:-1]
              Y = data.iloc[:,-1]
              Model = model
              Model.fit(X,Y)
              Ypredict = Model.predict(X)
              print('R-squared: '+str(metrics.r2 score(Y,Ypredict)))
              print('RMSE: '+str(np.sqrt(metrics.mean_squared_error(Y,Ypredict))))
              CVscore = cross_val_score(Model,X,Y,cv=5,scoring='neg_mean_squared_error')
              print('CV Mean RMSE: '+str(np.mean(np.sqrt(-1*CVscore))))
              if importance:
                  fig5, ax5 = plt.subplots()
                  ax5.bar([str(a) for a in list(matrix)],Model.feature_importances_)
                  ax5.set_title('Feature Importance')
                  ax5.set_xticklabels([str(a) for a in list(matrix)],rotation=90)
                  fig5.set_size_inches(15,8)
          evaluatemodel(linear_model.LinearRegression(),X8)
```

R-squared: 0.6856332167786194 RMSE: 2792.7778613349474

CV Mean RMSE: 2794.5883661837847

In [112]: evaluatemodel(linear_model.LinearRegression(),X7)

R-squared: 0.646180835824119 RMSE: 2962.843714140378

CV Mean RMSE: 2963.5695803064104

We see that the reduction in features by combining features with similar coefficients does not noticeably help during cross validation. The full model's CV score is similar to the score obtained using the entire data set, indicating the model is not overfit, even with over 200 features.

Next, we evaluate the performance of ridge and lasso regression on X8. Since the cross validation score is already good, these steps would only serve to simplify the model, but may have little impact on the model variance.

```
In [113]: evaluatemodel(linear_model.Ridge(alpha=0.5),X8)
```

R-squared: 0.6856337969010652 RMSE: 2792.7752844821166 CV Mean RMSE: 2794.42075404524

In [115]: evaluatemodel(linear_model.Lasso(alpha=0.5,tol=0.1),X8)

R-squared: 0.6830708596105055 RMSE: 2804.1365223217813

CV Mean RMSE: 2805.8791806238214

The ridge regression model gives slightly better results than the unregularized model, surprisingly. Different alpha values are evaluated to check if this has any effect.

```
In [121]: evaluatemodel(linear_model.Ridge(alpha=0.1),X8)
```

R-squared: 0.6856339255159195 RMSE: 2792.7747131859346

CV Mean RMSE: 2794.4221427450466

```
In [117]: evaluatemodel(linear_model.Ridge(alpha=0.25),X8)
```

R-squared: 0.6856338972265197 RMSE: 2792.774838845038

CV Mean RMSE: 2794.643214747238

```
In [118]: evaluatemodel(linear_model.Ridge(alpha=0.75),X8)
```

R-squared: 0.685633631088085 RMSE: 2792.7760210090196

CV Mean RMSE: 2794.4423847080147

The best model in terms of RMSE is ridge regression with alpha=0.1. This also has a negligibly lower cross validation RMSE than the unregularized model.

Looking at the regression model statistics from the statsmodels summaries, it is clear that there is no significant serial correlation. The skew value indicates residuals are fairly symmetric, but slightly skewed left. However, the residual distribution has extremely heavy tails, as indicated by the kurtosis. This indicates that the residuals are not due to gaussian random error. This combined with the overall poor fit suggests there are unknown variables that have large effects on customer purchase. If such variables were binary categorical variables, it could explain the heavy tails.

Decision Tree

Due to the large number of significant interactions observed in linear regression, a decision tree may be a good model, because it can account for any degree of interaction as well as non-linearity.

First evaluate using the default settings.

```
In [124]: evaluatemodel(tree.DecisionTreeRegressor(),X)
```

R-squared: 0.9998134481838908

RMSE: 68.0327158438232

CV Mean RMSE: 3746.8512714664917

Clearly there is overfitting. GridSearchCV will be used to tune the hyperparameters.

```
In [129]: grid = {'min_impurity_decrease':[0.1,0.01,0.001,0.0001,0.00001]}
    reg = GridSearchCV(tree.DecisionTreeRegressor(),grid,cv=5)
    reg.fit(X,y)
    print(reg.best_params_)

{'min_impurity_decrease': 0.001}
```

```
In [134]:
          grid = {'max depth':[9,10,11,12,13]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min impurity decrease=0.001),grid,cv=5
          reg.fit(X,y)
          print(reg.best params )
          { 'max_depth': 11}
In [139]: | grid = {'min_samples_split':[2,5,10,20,50], 'min_samples_leaf':[1,2,5,10,25]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min impurity decrease=0.001,max depth=
          reg.fit(X,y)
          print(reg.best_params_)
          {'min_samples_leaf': 25, 'min_samples_split': 10}
In [140]:
          grid = {'min_samples_leaf':[25,50,75,100]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min impurity decrease=0.001,max depth=
          reg.fit(X,y)
          print(reg.best_params_)
          {'min_samples_leaf': 75}
In [141]: evaluatemodel(tree.DecisionTreeRegressor(min_impurity_decrease=0.001,max_depth=11,mi
          R-squared: 0.7053264391071729
          RMSE: 2703.8877185178103
          CV Mean RMSE: 2727.385630592458
          More fine tuning ...
In [142]:
          grid = {'min_impurity_decrease':[0.0005,0.001,0.002,0.005],'max_depth':[10,11,12]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min_samples_split=10,min_samples leaf=
          reg.fit(X,y)
          print(reg.best_params_)
          {'max_depth': 12, 'min_impurity_decrease': 0.0005}
In [143]: | grid = {'min_samples_split':[7,10,15],'min_samples_leaf':[65,75,85]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min impurity decrease=0.0005,max depth
          reg.fit(X,y)
          print(reg.best_params_)
          {'min_samples_leaf': 85, 'min_samples_split': 10}
```

Since minimum samples per leaf is much higher than minimum samples to split, minimum samples to split will not have any effect.

```
In [144]: evaluatemodel(tree.DecisionTreeRegressor(min impurity decrease=0.0005,max depth=12,m
          R-squared: 0.7090098026990052
          RMSE: 2686.9355354772692
          CV Mean RMSE: 2716.73401195658
In [145]: | grid = {'min_impurity_decrease':[0.0004,0.0005,0.0006],'max_depth':[11,12,13]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min samples split=10,min samples leaf=
          reg.fit(X,y)
          print(reg.best_params_)
          {'max_depth': 13, 'min_impurity_decrease': 0.0004}
In [147]:
          grid = {'min_impurity_decrease':[0.0001,0.0002,0.0004],'max_depth':[14,15,16]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min_samples_split=10,min_samples_leaf=
          reg.fit(X,y)
          print(reg.best_params_)
          {'max_depth': 16, 'min_impurity_decrease': 0.0001}
In [150]: grid = {'min_impurity_decrease':[0.00004,0.00006,0.00008,0.0001],'max_depth':[16,17,
          reg = GridSearchCV(tree.DecisionTreeRegressor(min_samples_split=10,min_samples_leaf=
          reg.fit(X,y)
          print(reg.best_params_)
          {'max_depth': 19, 'min_impurity_decrease': 6e-05}
In [152]: grid = {'min_impurity_decrease':[0.00003,0.00004,0.00005],'max_depth':[21,22,23]}
          reg = GridSearchCV(tree.DecisionTreeRegressor(min_samples_split=10,min_samples_leaf=
          reg.fit(X,y)
          print(reg.best_params_)
```

{'max_depth': 21, 'min_impurity_decrease': 4e-05}

evaluatemodel(tree.DecisionTreeRegressor(min_impurity_decrease=0.00004,max_depth=21,

R-squared: 0.7210230848251868

RMSE: 2630.887038842364

CV Mean RMSE: 2701.243691940237

This optimized model performs better than linear regression both in terms of RMSE and cross validation RMSE. This is likely because it can capture any degree of interaction between any number of features as well as nonlinear behavior.

Similar to the regression model, the price and popularity of the product is the most important, followed by product category. In the decision tree mode, the length of time in the same city has a slight effect also.

Overall the characteristics of the product has more impact on the amount a customer spends on a product than the characteristics of the customer. This indicates most purchases made on Black Friday are items that most people would want to buy. The characteristics of the customer helps refine the model, but accounts for only a small portion of the sum of squares. The rest of the variability is presumably from characteristics of the product or customers that are not extractable from the data set.