MAXIMIZAR

FUNCIÓN OBJETIVO:

Z = 10X1 + 20X2

SUJETO A:

R1: 3X1 + X2 <=90

R2: X1 + X2 <=50

R1: X2 <=35

X1; X2 >=0

PASO1: PREPARAMOS ECUACIONES DEL METODO

SIMPLEX

PARA CADA RESTRICCIÓN:

<= AGREGAMOS VARIABLE DE HOLGURA +SN

>= RESTAMOS VARIABLE DE HOLGURA -SN

Paso 1 Preparamos ecuaciones del método Simplex

Para cada restricción: ≤ agregamos variable de holgura + S_n ≥ restamos variable de holgura - S_n

La función Objetivo Z la despejamos e igualamos a cero

LA FUNCIÓN OBJETIVO Z LA DESPEJAMOS E IGUALAMOS A CERO Z=0

PASO 2: ARMAR LA TABLA SIMPLEX

PRIMER RENGLON COLOCAR LOS COEFICIENTES DE LAS VARIABLES DE Z (LA FUNCIÓN OBJETIVO

SEGUNDO RENGLON COLOCAR LOS COEFICIENTES DE LA RESTRICCIÓN 1

-	2	Χı	χ,	5,	Sz	53	K
5						,	
R,							
R _z							
ß,							

	2	X	χ,	S,	SŁ	53	K
5	1	-10	- 50	0	0	0 '	0
R,							
R,							
ß,							

	2	X,	X,	5,	Sz	53	K
5	1	-10	- 50	0	0	0	0
R,	0	3	1	1	0	0	90
Rz							
B ₃							

	2	Χ,	χ,	S,	SŁ	53	K
5	1	-10	- 50	0	0	0	0
R.	0	-Jo	1	1	0	0	90
R ₂	0	1	1	0	1	0	50
B ₃	0	0	1	0	0	T	35

PASO 3 SELECCIONAMOS COLUMNA Y FILA PIVOTE

COLUMNA: EN DONDE ESTÉ UBICADO EL ELEMENTO MAS NEGATIVO DEL RENGLON DE LA FUNCIÓN Z

FILA: DIVIDIMOS CADA VALOR ENTRE LOS ELEMENTOS DE LA COLUMNA PIVOTE.

SELECCIONAMOS LA FILA QUE OBTENGA MENOS RESULTADO

NO PARTICIPAN EL RENGLON Z NI LOS VALORES DE LA COLUMNA PIVOTE CON CEROS O VALORES NEGATIVOS.

103	2	X,	χ_{i}	15,	Sz	53	K
5	1	-10	1-50	0	0	0	0
R,	0	3	1	1	0	0	90
R _z	0		1	0	1	0	50
B ₃	0		1	0	0	1	35

Paso 3 Seleccionamos columna y fila pivote

Columna: En donde esté ubicado el elemento más negativo del renglón de la función Z Fila: Dividimos cada valor entre los elementos de la columna pivote. Seleccionamos la fila que obtenga menor resultado (no participan el renglón Z, ni con valores

ceros o neaativos)

	7	X,	χ_{i}	15,	Sz	53	K	
5	1	-10	1-50	0	0	0'	0 4	-
R	0	3	1	1	0	0	90	90/1 = 90
0	0	1	1	0	1	0	50	50/1 = 50
B ₃	0	0	1	0	0	1	35	35/1: 35

11-	2	X,	X,	5,	Sz	53	K	
5	1	-10	1-50	0	0	0	0 4	
R,	0	3	1	1	0	0	90	90/1 = 90
	0		1				50	50/1 = 50
ß,	0	0	1	0				35/1: 35

ELEMENTO PIVOTE ES EL DE LA INTERSECCION ENTRE FILA Y COLUMNA Y SIEMPRE DEBERÁ SER 1.(EN CASO DE NO SER 1 SE DEBERÁ HACER OPERACIONES MATEMÁTICAS PARA LOGRAR EL 1)

PASO 4 REDUCIMOS LA COLUMNA EN DONDE ESTÁ EL PIVOTE

APLICANDO OPERACIONES CON RENGLONES, EL PIVOTE ELIMINARÁ (CONVERTIR A CERO) LOS DEMÁS ELEMENTOS DE ESA COLUMNA

Paso 4 Reducimos la columna en donde está el pivote Aplicando operaciones con renglones, el

Aplicando operaciones con renglones, el pivote eliminará (convertir a cero) los demás elementos de esa columna

	χ,	Xz	5,	Sz	58	K
<u></u>	-10	- 20	× 0	0	0	0
	3	1	1	0	0	90
	1	1	0	1	0	50
	0	1	0	0	1	35

EL PIVOTE ELIMINA AL -20

POR LO TANTO DEBO MULTIPLICAR EL PIVOTE *20 Y LUEGO SUMAR AL RENGLON Z

R3 * 20 + Z

$^{\prime}$	χı	51	Sz	Ss	K
-10					
, ,					

ELIMINAR EL SIGUIENTE RENGLON

EL PIVOTE ELIMINA AL 1 DEL RENGLON R1

POR LO TANTO DEBO MULTIPLICAR EL PIVOTE *(-1) Y LUEGO SUMAR AL RENGLON R1

$$X_1$$
 X_2 S_1 S_2 S_3 K
 -10 0 0 0 20 700
 3 0 1 0 -1 55

ELIMINAR EL SIGUIENTE RENGLON

EL PIVOTE ELIMINA AL 1 DEL RENGLON R2

POR LO TANTO DEBO MULTIPLICAR EL PIVOTE *(-1) Y LUEGO SUMAR AL RENGLON R2

R3 * (-1) + R2

	χ,	X2	5,	Sz	53	K
5	-10		× 0	0	0	0
₹,	3	1)×	1	0	0	90
(-1) + R	1	11×	0	1	0	50
L Rs.	-0	1	0	0	1	35

\times .	χ_z	51	Sz	Ss	K
-10	0	0	0	20	700
3	0	1	0	- 1	55
1	0	0	1	- J	15

EL RENGLON R3 SE COPIA COMO ESTA POR TENER EL ELEMENTO PIVOTE

X,	χ_z	51	Sz	Ss	K
-10	0	0	0	20	700
3	0	1	0	-1	55
ĭ	0	0	1	- J	15
0	1	0	0	1	35

COMO QUEREMOS MAXIMIZAR: Y EN EL RENGLON Z TENEMOS UN NUMERO NEGATIVO, DEBEMOS SEGUIR OPERANDO.

NUEVAMENTE REPETIMOS EL PASO DE SELECCIONAR LA COLUMNA PIVOTE Y LUEGO LA FILA PIVOTE

Paso 3 Seleccionamos columna y fila pivote

Columna: En donde esté ubicado el elemento más negativo del renglón de la función Z
Fila: Dividimos cada valor entre los elementos de la columna pivote.
Seleccionamos la fila que obtenga menor resultado (no participan el renglón Z, ni con valores ceros o neaativos)

NO PARTICIPA Z NI VALORES CON CERO, EN ESTE CASO EL RENGLON R3 LUEGO

DIVIDIMOS EL RESULTADO CON LA COLUMNA PIVOTE

55/3 = 18.33

15/1 = 15

SELECCIONAMOS EL MENOR PARA LA FILA PIVOTE

	χ,	Xz	51	Sz	Ss	K
_	-10	0	0	0	20	700
	3	0	T	0	- 1	55
	1	0	0	1	-J	15
	0	1	0	0	1	35

SELECCIONO EL ELEMENTO PIVOTE

	Χ,	χz	51	Sz	Ss	K
1	-10	0	0	0	20	700
	3	0	T	0	- 1	55
	1	0	0	1	- J	15
	0	1	0	0	J	35

REPETIMOS EL PASO4

Paso 4 Reducimos la columna en donde está el pivote

Aplicando operaciones con renglones, el pivote eliminará (convertir a cero) los demás elementos de esa columna

LUEGO CONTINUAMOS CON RENGLON R1 PARA HACER CERO EL VALOR DE LA COLUMNA PIVOTE:

,	χ_{i}	χз	Sı	Ss	S3	K
	0	0	0	10	10	850
	0	0	1	-3	2	10

R2 SE COPIA COMO ESTÁ

Χι	Х	Sı	Sa	Sa	k
0	0	O	10	10	850
0	0	1	-3	10	10
1	0	0	l	-1	15

COMO EN EL RENGLON R3 LA COLUMNA PIVOTE YA TIENE CERO, QUEDA COMO ESTÁ (SE COPIA LO MISMO)

χ_{ι}	χs	Ş١	Ss	S3	K
0	0	0	10	10	850
0	0	0	-3	2	10
1	0	0	ı	- 1	15
0	1	0	0	7	32

Paso 5 Validamos si hay elementos negativos en el renglón Z

Si hay negativos – Aplicamos de nuevo el paso 3 (columna y fila pivote)

Si **no hay negativos** – Método simplex ha optimizado alcanzando una solución

AGREGO LA COLUMNA Z (COPIO COMO ESTABA EN EL PASO 2

7	χ_{i}	χz	S,	S²	S3	K
1	0	0	O	10	10	850
0	0	0	1	-3	2	10
0	1	0	0	ı	-1	15
0	O	1	0	0	7	850 10 15 35

REALIZAMOS LA INTERPRETACIÓN DE LA SOLUCIÓN:

SOLUCIÓN:

X1=

X2=

X1=15

X2=35

PARA MAXIMIZAR Z

Z=850

DE ESTA FORMA LLEGAMOS A LA SOLUCIÓN:

MAXIMIZAR

FUNCIÓN OBJETIVO:

Z = 10X1 + 20X2

MAXIMIZAR

FUNCIÓN OBJETIVO:

$$Z = 10X1 + 20X2$$

$$Z=10(15)+20(35)$$

$$Z = 150 + 700$$

HALLO LOS VERTICES (PUNTOS QUE DELIMITAN LA REGION FACTIBLE)

	(x. y)
A	(0,0)
В	(30,0)
((20,30)
D	

EL PUNTO C SE PUEDE DETERMINAR GRAFICAMENTE.

TAMBIEN ALGEGRAICAMENTE CON LA INTERSECCION DE LAS RECTAS R1 Y R2

Intersection Riy Rz

$$R_1$$
 $3x + y = 90$
 R_2 $x + y = 50$

UTILIZO EL METODO DE ELIMINACIÓN

X=20

SE REEMPLAZA EL VALOR EN CUALQUIER DE LAS 2 ECUACIONES Y SE DESPEJA EL VALOR DE Y

X+Y=50

20+Y=50

Y=30

EL VERTICE C (20;30)

Pasa	Region	uimos los pontos de la factible en la función objetivo
	(x, y)	Z = 10x + 20 y
A	(0,0)	S=10(0)+50(0) = 0
В	(30,0)	7 = 10(30) + 50(0) = 300
C	(20,30)	Z=10(20) + 20(30) = 800
D	(15, 35)	5-10(12) + 50(32) = 820
E	(0, 35)	Z=10(0)+20(35)=700