SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS EXTENSION 1

YEAR 11 YEARLY EXAMINATION

2002

Time allowed:

90 minutes

Instructions:

- Show all necessary working
- Start each question on a new page
- All questions are of equal value
- Marks will not be awarded for careless or badly arranged work
- Non-programmable calculators may be used
- This paper must be handed in with your answer sheets
- Answers must be written in blue or black pen

Name:		
	Class	:

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	TOTAL

Marks

a) If
$$(x+1)$$
 is a factor of $P(x) = x^3 - ax + 3$. Find the value of a.

1

2

Write down the equation of the polynomial function (in factored form)

- A parabola is symmetrical about the line y = 2 it has a focal length 3 units and the c) 3 equation of the directrix is x = 1.

2

- How many parabolas satisfy these conditions? i)
- ii) If the vertex is (4, 2) find the equation of the parabola

d) Solve
$$\frac{x+1}{x-1} \le 0$$

The roots of the quadratic equation $(k+2)x^2 - 4x + k^2 = 0$ are reciprocals. e) 3 Find the value/s of k.

Marks

A polynomial of degree 7 is divided by the polynomial Q(x), the remainder is $x^2 + x + 2$. What is the least degree of Q(x).

1

b) For the quadratic equation $x^2 + (k-3)x + 2 - k = 0$

3

- i) Find the value of the discriminant in the terms of k
- ii) Explain why the roots of this quadratic equation are real for all values of k
- c) If a + b = 1 and $a^2 + b^2 = 2$

3

- i) Find the value of ab
- ii) Hence find the value of $a^3 + b^3$
- d) i) Write $x^{-\frac{1}{2}}$ with a positive index

4

ii) Solve $x^{\frac{1}{2}} + 10x^{-\frac{1}{2}} = 7$

Marks

a) For the function $y = \sqrt{x^2 - 4}$

3

Write down

- i) the domain
- ii) the range
- b) The points P(12t, 6t²) and Q (36, 54) are points on a parabola

3

- i) Find the cartesian equation of the parabola
- ii) If PQ is a focal chord find the value of t

c)

A cyclist riding along a straight flat road passes by three stop signs A, B and C spaced 200m apart. From these three signs the respective angles of elevation to the top of a mobile phone tower are 45°,45° and 30°. If 'h' is the height of the tower GH.

5

- i) Show that $CG = \sqrt{3} h$.
- ii) If $\langle GBA = \alpha \rangle$. Find two different expressions for $\cos \alpha$ in terms of h.
- iii) Hence find the height of the tower.

Question 4 Marks

a) i) Simplify
$$(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$
 3

ii) The roots of $x^3 - 4x^2 - 8 = 0$ are α , β and γ . Use the result in part (i) to find The value of $\alpha^2 + \beta^2 + \gamma^2$.

b) i) Show that
$$\frac{1+\cos 2A}{\sin 2A} = \cot A$$

- ii) Hence find the exact value of cot 15°
- c) T $(2t, t^2)$ is a point on the parabola $x^2 = 4y$ with focus S. P is the point which divides ST internally in the ratio 1:2.
 - i) Write down the coordinates of P in terms of t.
 - ii) Hence show that as T moves on the parabola $x^2 = 4y$ that the locus of P is the parabola $9x^2 = 12y 8$

Question 5

a) The roots of the equation
$$x^3 - 6x^2 + 5x + 8 = 0$$
 are α , β , γ

The roots of the equation $x^3 + \alpha x^2 + bx + 512 = 0$ are $k\alpha$, $k\beta$, $k\gamma$

- i) Find the value of k
- ii) Hence find the value of b.
- b) Consider the points A(-2, 3) B(6, 5) the point P(x, y) moves so that the angle APB = 90°
 - i) Write down an expression for the gradient of AP
 - ii) Show that the locus of P is a circle
 - iii) Find its centre and radius.
- c) i) Expand tan (A + B)

ii) The roots of $x^2 - 2x - 1 = 0$ are $\tan A$ and $\tan B$. If A and B are acute find the size of A + B.

Quest	tion 6		Marks
a)	i)	Derive the equation of the tangent to the parabola $x^2 = 4ay$ at the point P(2at, at ²)	7
	ii)	The tangent cuts the y axis at R . Find the co-ordinates of R .	
	iii)	If S is the focus of the parabola. Find the length of PS .	
	iv)	Prove that the triangle <i>PSR</i> is isosceles	
	v)	If $\langle PSR = 120^{\circ}$. Find the numerical value of t.	

b) If
$$P(x) = 4x^3 + 9x - 4$$

- i) Find $P(\alpha+1)$
- ii) If α is a root of P(x) use part (i) to help show that $P(\alpha + 1) > 0$

.

$$P(x) = A(x+2)^{2}(x-1)$$
sub $(x-1)^{2}$ $(x-1)^{2}$

$$P(x) = 3(x+2)^{2}(x-1)$$

(ii)
$$(y-2)^2 = 12(x-4)$$

$$\frac{(x+1)^{2}(x+1)}{(x-1)^{2}} \leq 0.(x-1)^{2}$$

$$\frac{(x-1)^{2}(x+1)}{(x+1)} \leq 0.$$

e)
$$d$$
, $\frac{1}{d}$ roots
 $\therefore prod = 1$
 $\frac{k^2}{k+2} = 1$
 $k+2$
 $k^2 = k+2$
 $k^2 - k - 2 = 0$
 $(k-2)(k+1) = 0$
 $\therefore k=2, k=-1$

$$2 = 25$$

$$3 = 2$$

$$3 = 2$$

$$3 = 4$$

b) i)
$$\Delta = (k-3)^2 - 4.1(2-k)$$

= $k^2 - 6k + 9 - 8 + 4k$
 $\Delta = k^2 - 2k + 1 = (k^-1)$
ii)

since A > 0 for all values of 4

c) i)
$$(a+b)^{2} = a^{2}+b^{2} + 2ab$$

$$(a+b)^{2} - (a^{2}+b)^{2} = 2ab$$

$$1 - 2 = 2ab$$

$$\therefore ab = -\frac{1}{2}$$
ii)
$$a^{3}+b^{3}$$

Since
$$(a+b)^3 =$$

$$a(a^2 + 2ab + b^2) + b(a^2 + 2ab + b^2)$$

$$a^3 + 3a^2b + 3ab^2 + b^3$$

$$\therefore a^3 + b^3 = (a+b)^2 - 3a^2b - 3ab^2$$

$$= (a+b)^2 - 3ab(a+b)$$

$$= 1 - 3x - 1 \cdot 1$$

$$= 1 - 3x - 1 \cdot 1$$

d) i)
$$x^{-1/2} = \frac{1}{12}$$
ii) $x^{-1/2} = \frac{1}{12}$

$$5x + \frac{10}{12} = 7$$
Let $u = \sqrt{x}$

$$u + \frac{10}{4} = 7$$

$$u^{2} + 10 = 7u$$

$$u^{2} - 7u + 10 = 0$$

$$(u - 5)(u - 2) = 0$$

$$u = 5 \qquad u = 2$$

- i) $D: \underline{31 > 2}, \alpha \leq -2$
- ii) <u>R: y>0</u>

(1

b) i)
$$P(12t, bt^{2})$$

 $x=12t : t = \frac{x}{12}$ $y=b(\frac{x}{12})^{2}$

 $y = \frac{3c^2}{24} \quad 02 \quad 3c^2 = 24y$ $(36) \quad (36,54)$

find equ of sQ

 $m_{sq} = \frac{4}{3}$

: eq so y= 4 x + 6

Sub $P(12t, 6t^2)$ $6t^2 = \frac{14}{3} \cdot 12t + 6$ $6t^2 - 16t - 6 = 0$ $3t^2 - 8t - 3 = 0$ (3t + 1)(t - 3) = 0 t = 3 t = -1/3 1 $t = 3 \Rightarrow Q(36, 54)$ $t = -\frac{1}{3} \Rightarrow P(12t, 6t^2)$

 $\frac{P\left(-4,\frac{2}{3}\right)}{}$

A i) $\tan 30^\circ = \frac{h}{cq}$ $\therefore cq = \sqrt{3} h$

ii)

 $I_{n} \triangle ABA \Rightarrow \cos \alpha = \frac{h^{2} + 200^{2} - h^{2}}{2 \cdot h \cdot 200}$

$$\cos d = \frac{200^2}{400h}$$

In D GBC

 $\Rightarrow \cos (180 - 4) = h^{2} + 200^{2} - (\sqrt{3} + \sqrt{3})$

$$-\cos z = \frac{20,000 - h^2}{200h}$$

In A AGC => cos x = h2+4002- (13 h)

$$\cos 4 = \frac{80,000 - h^2}{400 h}$$

any comb of A, B, C. $-\frac{100}{h} = \frac{20,000 - h^2}{200h}$

 $-20000 = 20,000 - L^2$ -2000

Overtion
$$\frac{4}{a}$$

a) i) $(a+\beta+\delta)^2-2(x\beta+\beta\delta+\delta\lambda)$

= $a(a+\beta+\delta)+\beta(a+\delta+\beta)+\delta(a+\beta+\delta)$

- $2a\beta-2\beta\delta-2\delta\lambda$

= $\frac{a^2+\beta^2+\delta^2}{2}$

ii)
$$d^2+\beta^2+\lambda^2=(d+\beta+\lambda)^2-2(2a+1mc)$$
 $a=1$ $b=-4$ $c=0$ $d=-8$

$$=(4)^2-2(0)$$

$$=16$$

b) i) LHS =
$$\frac{1 + \cos^2 A - \sin^2 A}{2 \sin A \cdot \cos A}$$

= $\frac{2 \cos^2 A}{2 \sin A \cdot \cos A}$
= $\frac{\cos A}{\sin A}$
= $\cot A$
= $\frac{2 \cot A}{\cos A}$

$$ij) \cot \overline{15^0} = \frac{1 + \cos 30^\circ}{\sin 30^\circ}$$

$$= \left(1 + \frac{3}{2}\right) \div \left(\frac{1}{2}\right)$$

$$= \left(\frac{2 + 3}{2}\right) \times \frac{2}{1}$$

$$= \frac{2+\sqrt{3}}{7}$$

i)
$$S(o_{x1})$$
 $T(2t, t^{2})$
 $P(\frac{0+2t}{3}, \frac{2+t^{2}}{3})$
 $P(\frac{2t}{3}, \frac{2+t^{2}}{3})$
 $T(2t, t^{2})$
 $f(\frac{2t}{3}, \frac{2+t^{2}}{3})$
 $f(\frac{2t}{3}, \frac{2+t^{2}}{3})$

Overtion 5

a) i)
$$d+\beta+8=6$$
 $kd+k\beta+k8=-\alpha$
 $k(d+\beta+8)=-\alpha$
 $d(d+\beta+8)=-\alpha$
 $d(d+\beta$

水=4 .: a=-24

i)
$$m_{AP} = \frac{y-3}{x+2}$$

ii)
$$\left(\frac{y-3}{3l+2}\right) \cdot \left(\frac{y-5}{3l-6}\right) = -1$$
 $y^2 - 8y + 15 = -1\left(3l^2 - 4x\right) - 15$
 $y^2 - 8y + 15 = -3l^2 + 4x + 12$
 $x^2 + y^2 - 4x - 8y - 3 = 0$
 $\left(3l^2 - 4x + 4\right) + \left(y^2 - 8y + 16\right) = 17$
 $\left(x-2\right)^2 + \left(y-4\right)^2 = \sqrt{17}$
 $\left(x-2\right)^2 + \left(y-4\right)^2 = \sqrt{17}$
 $\left(x-2\right)^2 + \left(y-4\right)^2 = \sqrt{17}$

Root tanA, tanB

Sum tanA + tanB = 2

tanA. tanB = -1

tan (A+B) =
$$\frac{2}{1--1}$$

tan (A+B) = 1

A+B) = $\frac{4}{1--1}$

$$y = \frac{31^{2}}{4a}$$
 $\frac{dy}{dx} = \frac{2x}{4a} - \frac{x}{2a}$
 $\frac{dy}{dx} = \frac{2x}{4a} - \frac{x}{2a}$
 $\frac{dy}{dx} = \frac{2x}{4a} - \frac{x}{2a}$

-12) ·· eqn tong at P y-at=t (x-la ii) $R(0,-at^2)$

ii)
$$R(0,-at^2)$$

iii)
$$PS = \sqrt{(\alpha t^2 - \alpha)^2 + (2\alpha t - 0)^2}$$

$$= \sqrt{\alpha^2 (t^2 - 1)^2 + 4\alpha^2 t^2}$$

$$= \alpha \sqrt{t^4 - 2t^2 + 1 + 4t^2}$$

$$= \alpha \sqrt{t^4 + 2t^2 + 1}$$

$$= \alpha \sqrt{(t^2 + 1)^2}$$

$$\frac{PS = a (t^{2}+1)}{SR = a + at^{2}} = a(1+t^{2})$$

SR = PS :. APSR, soseeles

- b) $P(x) = 4x^3 + 9x 4$ i) $P(x + 1) = 4(x + 1)^3 + 9(x + 1) - 4$
 - ii) a a root ...

 P(x)=0

 4 x 3 + 9 x 4 = 0
 - $P(\alpha+1) = 4(\alpha^3 + 3\alpha^2 + 3 \alpha + 1)$ + $9\alpha + 9 - 4$

.. P(a+1) >0 for all of