Bridge-Finding Game

In the Bit-Fixing GGM

Fix $(t_1, \tau(t_1)), \ldots, (t_P, \tau(t_P))$

preprocessing phase

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$
$\mathtt{Mult}(au(x_1), au(x_2))$
$\tau(x_1 + x_2)$
$\operatorname{Inv}(au(x_1+x_2))$
$\tau(-x_1-x_2)$
$\mathtt{Mult}(au(x_1), au(1))$
$\tau(x_1 + 1)$
$ exttt{Mult}(au(x_2), \mathfrak{y})$
$\tau(x_2+7)$

$$\tau(y) = \vec{a} \cdot \vec{x} + b$$

au(y)	$ec{a}$	b	
$ au(t_1)$	(0, 0, 0)	t_1	
• • •	• • •	• • •	
$ au(t_P)$	(0, 0, 0)	t_P	
au(1)	(0, 0, 0)	1	
$ au(x_1)$	(1, 0, 0)	0	
$ au(x_2)$	(0, 1, 0)	0	
$ au(x_3)$	(0, 0, 1)	0	
$\tau(x_1+x_2)$	(1, 1, 0)	0	
$\tau(-x_1-x_2)$	(-1, -1, 0)	0	
$\tau(x_1+1)$	(1, 0, 0)	1	
ŋ	(0, 0, 0)	7	
$\tau(x_2+7)$	(0, 1, 0)	7	
	• • •	• • •	

Restricted
Discrete-Log
Oracle

Bridge-Finding Game

In the Bit-Fixing GGM

Fix
$$(t_1, \tau(t_1)), \ldots, (t_P, \tau(t_P))$$

preprocessing phase

online phase

$\tau(1), \tau(x_1), \tau(x_2), \tau(x_3)$	
$\mathtt{Mult}(au(x_1), au(x_2))$	
$\tau(x_1+x_2)$	7

Bridge event since $\tau(t_P) = \tau(-x_1 - x_2) = 01101101$ but $((0,0,0),t_P) \neq ((-1,-1,0),0)$

Then we learned

$$x_1 + x_2 + t_P = 0$$

Theorem (informal).
$$\Pr[\mathsf{BRIDGE}] \leq \mathcal{O}\left(\frac{q^2 + q(N+P)}{p}\right)$$
.

$$\tau(y) = \vec{a} \cdot \vec{x} + b$$

au(y)	$ec{a}$	b
$ au(t_1)$	(0, 0, 0)	t_1
• • •	• • •	• • •
01101101	(0, 0, 0)	t_P
au(1)	(0, 0, 0)	1
$\tau(x_1)$	(1, 0, 0)	0
$ au(x_2)$	(0, 1, 0)	0
$ au(x_3)$	(0, 0, 1)	0
$\tau(x_1+x_2)$	(1, 1, 0)	0
τ (01101101 ₂)	(-1, -1, 0)	0
$\tau(x_1+1)$	(1, 0, 0)	1
ŋ	(0, 0, 0)	7
$\tau(x_2+7)$	(0, 1, 0)	7
• • •	• • •	• • •