# Machine Learning (CS 181): 21. Reinforcement Learning

David C. Parkes and Sasha Rush

Spring 2017

#### Contents

1 Markov Decision Process: Review

- 2 Reinforcement Learning
- 3 Temporal Difference Learning

4 Implementing RL

#### Markov Decision Process



S States A Actions  $r:S\times A\mapsto \mathbb{R}$  Reward Function  $p(s'\mid s,a)$  Transition Model

## Running Illustration: MDP on Gridworld

|              | 1 |               |
|--------------|---|---------------|
| $\leftarrow$ | S | $\rightarrow$ |
|              | + |               |
|              |   |               |

S

Location of the grid  $(x_1, x_2)$ 

Local movements  $\leftarrow, \rightarrow, \uparrow, \downarrow$ 

 $r: S \times A \mapsto \mathbb{R}$  Reward function, e.g. make it to goal

p(s'|s,a) Transition model, e.g deterministic or slippages

## Policy Evaluation

- Policy function:  $\pi: S \to A$
- Value Function: expected discounted reward

$$V^{\pi}(s) = \underbrace{r(s, \pi(s))}_{\text{reward now}} + \gamma \underbrace{\sum_{s' \in S} p(s' \mid s, \pi(s)) V^{\pi}(s)}_{\text{expected, discounted future reward}} \tag{1}$$

Q-Function: expected discounted reward of state and action (new)

$$Q^{\pi}(s,a) = \underbrace{r(s,a)}_{\text{reward now}} + \underbrace{\gamma}_{s' \in S} p(s' \mid s,a) Q^{\pi}(s',\pi(a)) \tag{2}$$

expected, discounted future reward

■ Can compute Value function from Q-Function

$$V^{\pi}(s) = Q^{\pi}(s, \pi(a))$$

# Policy Evaluation

- Policy function:  $\pi: S \to A$
- Value Function: expected discounted reward

$$V^{\pi}(s) = \underbrace{r(s, \pi(s))}_{\text{reward now}} + \gamma \underbrace{\sum_{s' \in S} p(s' \mid s, \pi(s)) V^{\pi}(s)}_{\text{expected, discounted future reward}} \tag{1}$$

Q-Function: expected discounted reward of state and action (new)

$$Q^{\pi}(s,a) = \underbrace{r(s,a)}_{\text{reward now}} + \underbrace{\sum_{s' \in S} p(s' \mid s,a) Q^{\pi}(s',\pi(a))}_{\text{expected, discounted future reward}} \tag{2}$$

■ Can compute Value function from Q-Function

$$V^{\pi}(s) = Q^{\pi}(s, \pi(a))$$

## Working with MDPs

An MDP is a general probabilistic framework, and can be utilized in many different scenarios.

#### ■ Planning:

- Full access to the MDP, compute an optimal policy.
- "How do I act in a known world?"

#### Policy Evaluation:

- Full access to the MDP, compute the 'value' of a fixed policy.
- "How will this plan perform under uncertainty?"
- Reinforcement Learning (today)
  - Limited access to the MDP.
  - "Can I learn to act in an uncertain world?"

## Working with MDPs

An MDP is a general probabilistic framework, and can be utilized in many different scenarios.

#### ■ Planning:

- Full access to the MDP, compute an optimal policy.
- "How do I act in a known world?"

#### ■ Policy Evaluation:

- Full access to the MDP, compute the 'value' of a fixed policy.
- "How will this plan perform under uncertainty?"
- Reinforcement Learning (today)
  - Limited access to the MDP.
  - "Can I learn to act in an uncertain world?"

## Working with MDPs

An MDP is a general probabilistic framework, and can be utilized in many different scenarios.

#### ■ Planning:

- Full access to the MDP, compute an optimal policy.
- "How do I act in a known world?"

#### ■ Policy Evaluation:

- Full access to the MDP, compute the 'value' of a fixed policy.
- "How will this plan perform under uncertainty?"
- Reinforcement Learning (today):
  - Limited access to the MDP.
  - "Can I learn to act in an uncertain world?"

#### Contents

1 Markov Decision Process: Review

- 2 Reinforcement Learning
- 3 Temporal Difference Learning
- 4 Implementing RL

## Reinforcement Learning



- lacksquare Agent knows current state s takes actions a, and gets reward r.
- No access to reward model r(s,a) or transition model p(s'|s,a), only see outcome reward r and next state s'
- Very challenging problem to learn  $\pi$  while uncertain about model of the world, (contrast with last class).

#### RL Example: Medical Diagnostics



- States: patient symptoms
- Actions: prescribe drugs, change diet, do nothing, ...
- Reward: +5 if health improves, -1 if costly, ...
- Transition model: update of symptoms health based on actions

#### RL Example: Ad Market



- States: current knowledge of user's preferences
- Actions: show particular ad ...
- Reward: +100 if user clicks, -1 if otherwise, ...
- Transition model: user remains on site or leaves

Note: transition model is probabilistic in both planning and RL. The difference is that in planning we **know** the probabilities.

#### RL Example: Ad Market



- States: current knowledge of user's preferences
- Actions: show particular ad ...
- Reward: +100 if user clicks, -1 if otherwise, ...
- Transition model: user remains on site or leaves

Note: transition model is probabilistic in both planning and RL. The difference is that in planning we **know** the probabilities.

## Types of RL

- Model-Based RL:
  - **E**stimate world models  $r(s, a; \mathbf{w})$  and  $p(s'|s, a; \mathbf{w})$ .
  - Utilize planning (value or policy iteration) to develop policy  $\pi$ .
- Model-Free (our focus):
  - lacktriangleright Directly learn the policy  $\pi$  from samples of the world

When might you prefer one over the other?

## Types of RL

- Model-Based RI:
  - **E**stimate world models  $r(s, a; \mathbf{w})$  and  $p(s'|s, a; \mathbf{w})$ .
  - Utilize planning (value or policy iteration) to develop policy  $\pi$ .
- Model-Free (our focus):
  - $lue{}$  Directly learn the policy  $\pi$  from samples of the world.

When might you prefer one over the other?

## Types of RL

- Model-Based RL:
  - **E**stimate world models  $r(s, a; \mathbf{w})$  and  $p(s'|s, a; \mathbf{w})$ .
  - Utilize planning (value or policy iteration) to develop policy  $\pi$ .
- Model-Free (our focus):
  - $lue{}$  Directly learn the policy  $\pi$  from samples of the world.

When might you prefer one over the other?

## Reinforcement Learning Setup

Learning is performed online, we learn as we interact with the world.



#### Contrast with supervised learning:

- No train/test, reward accumulated over interactions.
- Not learning from fixed data, more information acquired as we go.
- Able to influence the training distribution by action decisions.

## High-Level Challenges of RL

- 1. Exploration/Exploitation: Trade-off between taking actions with high expected future reward [exploitation], and taking less explored actions to improve estimation [exploration].
- Asynchronous Samples: In previous approaches we had a fixed set of samples, in RL samples come in on the fly based on interaction with the world.

## High-Level Challenges of RL

- Exploration/Exploitation: Trade-off between taking actions with high expected future reward [exploitation], and taking less explored actions to improve estimation [exploration].
- Asynchronous Samples: In previous approaches we had a fixed set of samples, in RL samples come in on the fly based on interaction with the world.

#### Contents

1 Markov Decision Process: Review

- 2 Reinforcement Learning
- 3 Temporal Difference Learning

4 Implementing RL

## Review: Bellman equations

The planning problem for an MDP is:

$$\pi^* \in \arg\max_{\pi} V^{\pi}(s).$$

(exists a solution that is optimal for every state s).

#### Definition (Bellman equations)

For an optimal policy  $\pi^*$ , we have

$$V^{*}(s) = \max_{a \in A} \left[ r(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{*}(s') \right], \quad \forall s$$
 (3)

## Alternate Form: Bellman equations

Alternate form of the Bellman operator using the Q-Function using:

$$\pi^* \in \arg\max_{\pi} Q^{\pi}(s, a).$$

#### Definition (Bellman equations)

For an optimal policy  $\pi^*$ , we have

$$Q^{*}(s,a) = r(s,a) + \gamma \sum_{s' \in S} p(s' \mid s, a) \max_{a' \in A} \left[ Q^{*}(s', a') \right], \quad \forall s, a$$
 (4)

## Model-Free Estimation Strategy

#### Observe:

- $lacksquare Q^*(s,a)$  is just a function from  $S \times A \mapsto \mathbb{R}$
- $\blacksquare$  If we had  $Q^*$  then  $\pi^*(s) = \arg\max_a Q^\pi(s,a)$

#### Strategy

- Learn the value of a Q-function to estimate  $Q^*$
- Use a parameter table,  $\mathbf{w} \in \mathbb{R}^{|S||A|}$ :

$$Q(s,a;\mathbf{w}) \triangleq w_{s,c}$$

## Model-Free Estimation Strategy

#### Observe:

- $lacksquare Q^*(s,a)$  is just a function from  $S \times A \mapsto \mathbb{R}$
- $\blacksquare$  If we had  $Q^*$  then  $\pi^*(s) = \arg\max_a Q^\pi(s,a)$

#### Strategy:

- lacksquare Learn the value of a Q-function to estimate  $Q^*$
- Use a parameter table,  $\mathbf{w} \in \mathbb{R}^{|S||A|}$ :

$$Q(s, a; \mathbf{w}) \triangleq w_{s,a}$$