Wiktor Kuchta

5/1D

Załóżmy, że char $(K)=p>0, K\subset L$ jest rozszerzeniem algebraicznym ciał oraz $a\in L\setminus K.$

W 4/5 pokazaliśmy, że wielomian nierozkładalny nierozdzielczy f daje się zapisać jako $g(X^p)$. Wielomian g też jest nierozkładalny, więc iterując ten proces możemy otrzymać $f(X) = h(X^{p^l})$, gdzie h jest nierozkładalny rozdzielczy.

Wielomian minimalny $W_a(X)$ jest równy $h(X^{p^l})$ dla pewnego l > 0 i wielomianu h rozdzielczego nierozkładalnego. Zatem $h(a^{p^l}) = W_a(a) = 0$. Wielomian minimalny W_{ap^l} dzieli h, więc a^{p^l} rozdzielczy.

5/3aD

Załóżmy, że $a \in L$ jest algebraiczny nad K, L = K[a] i $W(X) = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ jest wielomianem minimalnym a nad K.

Przyjmujemy, że wielomian charakterystyczny macierzy A to $\varphi_A(x) = \det(A - tI)$. Wtedy wyraz wolny tego wielomianu to $\varphi_A(0) = \det A$ i jeśli $\deg \varphi_A = n$, to współczynnik przy x^{n-1} to $(-1)^{n-1}$ tr A.

Stopień [K(a):K] wynosi $\deg W=n$, więc taki też jest stopień wielomianu charakterystycznego φ_{f_a} . Dla dowolnego wielomianu P mamy $P(f_a)(x)=P(a)\cdot x$, więc wielomian minimalny endomorfizmu f_a nad K to dokładnie wielomian minimalny a nad K. Wielomian minimalny f_a nad f_a dzieli f_a , a skoro są tego samego stopnia, to f_a 0.

Zatem $\operatorname{Tr}_{L/K} = \operatorname{tr} f_a = (-1)^n (-1)^{n-1} a_{n-1} = -a_{n-1}, \ \operatorname{N}_{L/K} = \det f_a = (-1)^n a_0.$

5/4aD

Funkcja Frobeniusa Fr należy do $G = G(F(p^n)/F(p))$, bo homomorfizmy ciał są stałe na podciałach prostych, w tym wypadku F(p). Punkty stałe Fr^k to dokładnie pierwiastki $X^{p^k} - X$, których jest co najwyżej p^k . Zatem Fr^k może być identycznością na $F(p^n)$ tylko dla $k \ge n$, tzn. ord $Fr \ge n$. Z drugiej strony rząd elementu dzieli rząd grupy, który z tw. Artina szacujemy $|G| = [F(p^n):F(p^n)^G] \le [F(p^n):F(p)] = n$. Zatem ord Fr = n = |G| i Fr jest generatorem.