

Grafos, Dijkstra, Ry otras

historias donde aplicar caminos

mínimos!

HOLA!

Soy Inés Huertas

Data Dreamer
CEO en Datatons
Amante de los unicornios
Coorganizadora Rladies-Madrid
Datanauts Open NASA
Woman Startup Community Forum
@quierodata

Grafos

Grafos con pesos

¿Camino de 1 a 6?

Doroti!!! Sigue el camino de baldosas amarillas!

Distancia entre dos puntos puede ser medida en función:

- Del número de saltos
- Del estado de los enlaces

¿Para qué más se usa el camino mínimo de un grafo?

Problemas reales en los que la solución es Dijkstra:

- -Llegar a desde un punto de una ciudad hasta otro por el camino más rápido
- -Estudios sobre la probabilidad de, por ejemplo, frases más usadas por los españoles.
- -Cómo rodear una montaña por el camino más corto
- -Conocer el camino más rápido que sigue la información a través de las neuronas.

Os presento a Dijkstra!!

Algoritmo de Dijkstra lo podemos aplicar sobre un grafo con topología conocida

Se aplica sobre cada uno de los nodos para que cada uno sepa enrutar

Os presento a Dijkstra!!

Paso 0. Inicialización:

Escoger un nodo como nodo de trabajo, examinar sus adyacentes y etiquetar cada uno con su distancia al nodo de referencia

Paso 1. Encontrar el nodo más cercano:

Escoge el nodo con la etiqueta más pequeña y se hace nodo permanente, es el nuevo nodo de trabajo.

Paso 2. Actualización de etiquetas:

Se suman las etiqueta del nuevo nodo y si su distancia al nodo adyacente es menor a la etiqueta del nodo tenemos nuevo camino

Paso 3. Volver al paso 1:

Se elige el nodo con la etiqueta más pequeña y se hace nodo permanente, es el nuevo nodo de trabajo

NODO 1	NODO 2	NODO 3	NODO 4	NODO 5	NODO 6
P(1) T(2,3,4,5,6)	1 N2	INF 	4 N4	INF 	INF
	1 N2				

NODO 1	NODO 2	NODO 3	NODO 4	NODO 5	NODO 6
P(1)	1	INF	4	INF	INF
T(2,3,4,5,6)	N2		N4		
P(1,2)	1	4	4	2	INF
T(3,4,5,6)	N2	N2,N3	N4	N2,N5	
	1 N2			2 N2,N5	

NODO 1	NODO 2	NODO 3	NODO 4	NODO 5	NODO 6
P(1)	1	INF	4	INF	INF
T(2,3,4,5,6)	N2		N4		
P(1,2)	1	4	4	2	INF
T(3,4,5,6)	N2	N2,N3	N4	N2,N5	
P(1,2,5)	1	3	3	2	6
T(3,4,6)	N2	N2,N5,N3	N2,N5,N4	N2,N5	N2,N5,N6
	1 N2	3 N2,N5,N3	3 N2,N5,N4	2 N2,N5	

NODO 1	NODO 2	NODO 3	NODO 4	NODO 5	NODO 6
P(1)	1	INF	4	INF	INF
T(2,3,4,5,6)	N2		N4		
P(1,2)	1	4	4	2	INF
T(3,4,5,6)	N2	N2,N3	N4	N2,N5	
P(1,2,5)	1	3	3	2	6
T(3,4,6)	N2	N2,N5,N3	N2,N5,N4	N2,N5	N2,N5,N6
P(1,2,5,3)	1	3	3	2	5
T(6)	N2	N2,N5,N3	N2,N5,N4	N2,N5	N2,N5,N3,N6

CAMINOS MINIMOS NODO 1	SIGUIENTE	MÉTRICA
NODO 2	NODO 2	1
NODO 3	NODO 2	3
NODO 4	NODO 2	3
NODO 5	NODO 2	2
NODO 6	NODO 2	5

Dijkstra con R


```
1 1 1 6
```

```
> mat
    node X1 X2 X3 X4 X5 X6
[1,]    1    0    1 NA    4 NA NA
[2,]    2    2    0    3 NA    1 NA
[3,]    3 NA    3    0 NA    1    2
[4,]    4    4 NA NA    0    1 NA
[5,]    5 NA    1    1    1    0    4
[6,]    6 NA NA    2 NA    4    0
>
```


Dijkstra con R


```
# prepare data for graph functions - set NA to zero to indicate no direct edge
nms <- mat[,1]
mat <- mat[, -1]
colnames(mat) <- rownames(mat) <- nms
mat[is.na(mat)] <- 0</pre>
```

```
> mat
1 2 3 4 5 6
1 0 1 0 4 0 0
2 2 0 3 0 1 0
3 0 3 0 0 1 2
4 4 0 0 0 1 0
5 0 1 1 1 0 4
6 0 0 2 0 4 0
>
```

```
> mat

node X1 X2 X3 X4 X5 X6

[1,] 1 0 1 NA 4 NA NA

[2,] 2 2 0 3 NA 1 NA

[3,] 3 NA 3 0 NA 1 2

[4,] 4 4 NA NA 0 1 NA

[5,] 5 NA 1 1 1 0 4

[6,] 6 NA NA 2 NA 4 0

> |
```


Dijkstra con R


```
1 1 1 6
```

```
21 # creamos grafo desde la matriz de adyacencia
22 g <- graph.adjacency(mat, weighted=TRUE)
23 g
24
```

```
> g

IGRAPH 81705be DNW- 6 16 --

+ attr: name (v/c), weight (e/n)

+ edges from 81705be (vertex names):

[1] 1->2 1->4 2->1 2->3 2->5 3->2 3->5 3->6 4->1 4->5 5->2 5->3 5->4 5->6 6->3 6->5

> |
```


Preguntas?!!

INÉS HUERTAS FREIRE INES@RLADIES.ORG @QUIERODATA