CHARACTERISTICS OF SINUSOIDS

- A sinusoidally varying voltage function can be represented by $v(t) = V_m \sin(\omega t)$
- The function repeats itself in every 2π radians. Therefore, period is 2π radians.
- Frequency f = 1/T
- We know $\omega T = 2\pi$

CONCEPTS OF LAGGING & LEADING

- More general form of sinusoids is $v(t) = V_m \sin(\omega t + \theta)$
- \bullet Here θ is the phase angle measured in radian. However, for representation purpose sometimes we use to express θ in degree.
- At t = 0, $v(t = 0) = V_m \sin \theta$
- \bullet Therefore, $V_m \sin(\omega t + \theta)$ sinusoid leads $V_m \sin(\omega t)$ sinusoid.

Ref. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers

COMMON TERMS IN &C CIRCUITS

RMS and the average value of a signal.

SINUSOID&L FORCED RESPONSE

- ❖ A series R-L circuit is excited by a sinusoidal voltage waveform.
- ❖ The corresponding differential equation is

$$Ri(t) + L\frac{di(t)}{dt} = V_m \cos \omega t$$

- \diamond The response i(t)=Natural Response+ Forced Response
- ❖ Natural Response

$$i_{nat}(t) = ke^{-\frac{R}{L}t}$$

❖ The forced Response is

$$i_{for}(t) = C_1 \cos \omega t + C_2 \sin \omega t$$

- riangle Apply $i_{for}(t)$ in the differential equation and determine the values of C_1 , C_2
- ❖ The overall response $i(t) = i_{for}(t) + ke^{-\frac{R}{L}t}$

COMPLEX FORCING FUNCTION

- ❖ In this module we will focus only on the sinusoidal steady state response of the circuit.
- ❖ Using Mesh analysis/Nodal analysis we can solve the problem, however, the approach will be cumbersome.
- \diamond We use an alternative approach, where, v-i relationship will be a simple algebraic expression.
- We start with Euler's identity $e^{j\theta} = \cos \theta + j \sin \theta$.

COMPLEX FORCING FUNCTION

• Put $v(t) = V_m e^{j\omega t}$, $i(t) = I_m e^{j(\omega t + \theta)}$ in the differential equation of R-L circuit.

$$L\frac{d}{dt}(I_m e^{j(\omega t + \theta)}) + RI_m e^{j(\omega t + \theta)} = V_m e^{j\omega t}$$

$$I_m e^{j\theta} = \frac{V_m}{R + j\omega L}$$

$$I_m \angle \theta = \frac{V_m \angle 0}{R + j\omega L}$$

• Find out I_m , θ in terms of R, L, ω , V_m .

$$I_m = \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}$$

$$\theta = -\tan^{-1}\frac{\omega L}{R}$$

❖ This abbreviated complex representation is also known as phasor.

THE RESISTOR (PHASOR DIAG.)

- For the resistance v(t) = Ri(t)
- Let us apply a voltage $v(t) = V_m e^{j(\omega t + \phi)}$
- ❖ The current flowing through the resistance

$$i(t) = \frac{V_m}{R} e^{j(\omega t + \cdot)} = I_m e^{j(\omega t + \phi)}$$

THE INDUCTOR (PHASOR DIAG.)

- For the inductor $v(t) = L \frac{di(t)}{dt}$
- Let us apply a voltage $i(t) = I_m e^{j(\omega t + \phi)}$
- ❖ The current flowing through the resistance

$$v(t) = j\omega L I_m e^{j(\omega t + \phi)} = j\omega L i(t)$$

- \diamond Which says that the voltage phasor leads the current phasor by an angle of 90°.
- ❖ For sinusoidal input, the effective impedance of an inductor is

$$X_L = \omega L$$

• For inductive load $V = jX_LI$, where V, I are the phasor representation of voltage and current, respectively.

Ref. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", McGraw Hill publishers

THE CAPACITOR (PHASOR DIAG.)

- For the capacitor $i(t) = C \frac{dv(t)}{dt}$
- Let us apply a voltage $v(t) = V_m e^{j(\omega t + \phi)}$
- ❖ The current flowing through the resistance

$$i(t) = j\omega CV_m e^{j(\omega t + \phi)} = j\omega Cv(t)$$

- \diamond Which says that the voltage phasor lags the current phasor by an angle of 90°.
- ❖ For sinusoidal input, the effective impedance of a capacitor is

$$X_C = \frac{1}{\omega C}$$

• For capacitive load $V = -jX_CI$, where V, I are the phasor representation of voltage and current, respectively.

SERIES R-L CIRCUIT

Instantaneous power

$$\begin{aligned} p(t) &= v(t)i(t) \\ &= V_r I_r \cos \theta (1 - \cos 2\omega t) - V_r I_r \sin \theta \sin 2\omega t \end{aligned}$$

❖ Average Power

$$P_{avg} = V_r I_r \cos \theta$$

❖ Draw the power triangle from the phasor diagram.

Dhasor, Subdivide each voltage phasor by current phasor

$$|z| = \sqrt{x_L^2 + R^2} = \sqrt{(\omega L)^2 + R^2}$$

R = 12 | Cos 9 XL = 12 | Sm9

$$\bar{z} = R + j \times_L = 1 z l e^{j\theta} = 1 z l \angle \theta$$

SERIES R-L-C CIRCUIT

- For series R-L-C circuit assume $X_L > X_C$.
- ❖ The impedance $Z = R + j(X_L X_C)$
- ightharpoonup The power factor is $pf = \cos \theta = \frac{R}{|Z|}$

PARALLEL R-L-C CIRCUIT

Resistive - capacitive

- For series R-L-C circuit assume $X_L > X_C$.
- The power factor is $pf = \cos \theta = \frac{|Z|}{R}$

Problem-2:

Consider the following circuit is at steady state. Determine the expression i(t)

$$i(t) = 16\cos(3000t - 126.9^{\circ})$$

Problem-3:

Using the Nodal Analysis, determine the node voltages in phasor form.

$$V_1 = 1.062 \angle 23.3^0 V$$

$$V_2 = 1.593 \angle -50^0 V$$

Problem-4:

Determine the Thevenin's and Norton's equivalent circuits of the given network.

$$V_{th} = 16.77 \angle -33.4^{\circ} V$$

 $I_N = 2.6 + j1.5 A$
 $R_{th} = R_N = 2.5 - j5 \Omega$

Problem-5:

Determine the rms and average of the given voltage waveform.

Problem-6:

Calculate the complex power delivered to each passive components of the given circuit. The voltage magnitude is given in rms.

