### Chromatin Conformation Prediction from ChIPseq

Ricky Lim<sup>1</sup>, Samuel Collombet<sup>2</sup>, Agus Salim<sup>3</sup>, Touati Benoukraf<sup>1</sup>

<sup>1</sup>CSI-NUS <sup>2</sup>Ecole Normale Superieur <sup>3</sup>La Trobe University

CSI-Meeting mailto:rlim.email@gmail.com

#### Contents

Introduction

Goal

What is ChIPseq?
What is Mixture Model (MM)?

2 Preliminary results

Pipeline

Input Data

Peak Calls: MACS2 vs jaHMM

Summary: Peak Calls

Component Calls

Summary: Component Calls

Motif Calls

Summary: Motif Calls Model Update: Biclustering

3 Summary and Future

#### **Chromatin Conformation Prediction**

 Main Question: Can we use transcription factor (TF)-ChIPseq to predict protein complexes (direct and indirect bindings) on chromatin?

#### **Chromatin Conformation Prediction**

- Main Question: Can we use transcription factor (TF)-ChIPseq to predict protein complexes (direct and indirect bindings) on chromatin?
- **Strategy**: Model ChIPseq signal using Mixture Models to cluster the direct and indirect bindings.

What is ChIPseq?

# ChIP-Seq



**Chromatin ImmunoPrecipitation** 





Sequencing ATCGTTAACGCATTAGCAGT...



#### **Chromatin Conformation**



#### Direct binding sites



#### **Indirect binding sites**



#### **Mixture of Chromatin Conformations**



Goal

What is MM?

### Mixture Model (GMM): Revisited

#### Types of clustering methods:

- Hard clustering: non-overlapping clusters
- Soft clustering: overlapping clusters

#### Mixture Model (GMM): Revisited

Types of clustering methods:

- Hard clustering: non-overlapping clusters
- Soft clustering: overlapping clusters

MM is a probabilistic way of soft clustering. Each cluster is a generative mixture model (pdf) with its parameters.

#### Mixture Gaussian pdf:

#### Key Assumption:

- ChIP-seq peaks are drawn from a finite set of gaussian distributions.
- ChIPseq peaks are fit with gaussian mixture models, with mixing  $\lambda$  parameter.
- Each gaussian corresponds to a cluster of peaks with  $\mu$  and  $\sigma$  parameters.



### Input: ChIP-seq of Cebp $\epsilon$ from Koeffler-BM

##FastQC 0.10.1 >>Basic Statistics pass #Measure Value Encoding Illumina 1.5 Total Sequences 41586141 Sequence length 40 #Summary PASS Basic Statistics PASS Per base sequence quality PASS Per sequence quality scores WARN Per base sequence content PASS Per base GC content PASS Per sequence GC content PASS Per base N content PASS Sequence Length Distribution PASS Sequence Duplication Levels PASS Overrepresented sequences WARN Kmer Content

### **Principles**

- MACS2: poisson model-based analysis of Peak calls MACS reference
- **jaHMM**: *negative binomial* model-based analysis of Peak calls jaHMM reference

# Why jaHMM is better?



### Targets Identified by jahmm





# Targets Identified by MACS2 vs jahmm



### Why jaHMM is better than MACS2?

 Given our dataset, negative binomial model assumed by jaHMM fits better than poisson model assumed by MACS2

### Why jaHMM is better than MACS2?

- Given our dataset, negative binomial model assumed by jaHMM fits better than poisson model assumed by MACS2
- jaHMM identified more peaks than MACS2

# Why jaHMM is better than MACS2?

- Given our dataset, negative binomial model assumed by jaHMM fits better than poisson model assumed by MACS2
- jaHMM identified more peaks than MACS2
- Peaks identified solely by jaHMM have scores higher with respect to their input than solely by MACS2

Pipeline Summary: Peak Calls Summary: Component Calls Summary: Motif Calls

Can we model ChIPseq Peaks using components of MMs?

# Input: ChIP-seq of Cebp $\epsilon$ from Koeffler-BM



# Log Transformation of ChIP-seq Input



# Check the Normality





# ComponentCalls: Fit ChIPseq Peaks with GMMs



#### GMM-ModelAssessment: Overfit<sup>1</sup>



#### Model Assessment: BIC-AIC

AIC and BIC is based on Occam's razor principle, i.e, the simplest the better.

AIC = 
$$-2 \times \log L + 2 * P$$
  
BIC =  $-2 \times \log L + \log(n) * P$   
L is likelihood  
P is the number of parameters

#### Model Assessment: BIC-AIC



# Summary

 Can we model ChIPseq using several components of MMs?

Yes, our ChIPseq Peaks identified by jaHMM can be fit with GMMs.

# Summary

 Can we model ChIPseq using several components of MMs?

Yes, our ChIPseq Peaks identified by jaHMM can be fit with GMMs.

How many components are required?
 From AIC-BIC and cross-validation, with 3 components are

sufficient to fit the ChIPseq.

Note: the lower the AIC and BIC values, the better the fitting.



Pipeline Summary: Peak Calls Summary: Component Calls Summary: Motif Calls

Motif Calls using Centdist

#### Group1: low peak score (29559 peaks)

#### 2/9/2015

CENTDIST:Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group1\_compSorted3.bed

Results for Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group1\_compSorted3.bed VFBSION: 2011.07.08

#### Try our De Novo Motif Finding Tool for ChIP-seq (SEME)

746 TPs
Show top 50 Factors 
Go Download As Text

| Rank<br>121 | Name<br>III        | Family<br>121                    | Logo<br>121    | Score<br>121 | Distribution [2]                                            | %Sequence<br>with motif<br>optimal setting                                                                                           | 1e-4 tdr<br>within +/- 200bp | Binding<br>Range | PWM<br>Score<br>Cutoff | Z0Score | Z1Score |
|-------------|--------------------|----------------------------------|----------------|--------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------|------------------------|---------|---------|
| 1           | V\$jaspar_MZF1_1_4 | jaspar_BetaBetaAlpha_zinc_finger | GGGGA<br>TCCCC | 12.2743      | 1400 VSjamper_MZF(_1_4 VSjamper_MZF(_1_4                    | 0.0                                                                                                                                  | 0.2864102                    |                  | 2.7671                 | 6.19578 | 6.07853 |
| 2           | V\$jaspar_SP1      | jaspar BetaBetaAlpha zinc finger | CCCc CCccc     | 11.5458      | V\$jespar_SP1 V\$jespar_SP1                                 | 0.5 NAN MANAGEMENT 0.0000 0.3465949                                                                                                  | 0.3048479                    |                  | 3.0083                 | 8.28603 | 3.25976 |
| 3           | V\$SP1_01          | SP1                              | GGc            | 11.3454      | VSSP1_01 1500 VSSP1_01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | 0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01<br>0.25 VSSP1_01 | 0.1500389                    |                  | 2.7192                 | 8.56304 | 2.78238 |
| 4           | V\$SP1_Q2_01       | SP1                              | -cc-CCc-       | 9.69061      | VSSP1_O2_01 VSSP1_O2_01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 9.4 Wallandar<br>0.0 0.2746372 20000                                                                                                 | 0.0 0.2415846 00000          |                  | 3.2844                 | 7.55059 | 2.14002 |
| 5           | VSMAZR_01          | SP1                              | CCCC-CC-       | 9.67933      | VSMAZR_01 VSMAZR_01                                         | 0.0 0.2536283                                                                                                                        | 0.2355628                    |                  | 2.9471                 | 5.14373 | 4.5356  |
| 6           | V\$MUSCLE_INI_B    | MINI                             | Access C       | 9.64468      | YSMUSCLE_INI_B 1500 VSMUSCLE_INI_B 500 0 400 0 0 500        | 0.00 0.1862715                                                                                                                       | 0.0 0.1611354                |                  | 2.8998                 | 7.04083 | 2.60384 |
|             |                    |                                  |                |              |                                                             |                                                                                                                                      |                              |                  |                        |         |         |

#### Group2: intermediate peak score (28851 peaks)

#### 2/9/2015

CENTDIST:Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group2\_compSorted3.bed

Results for Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group2\_compSorted3.bed

#### Try our De Novo Motif Finding Tool for ChIP-seg (SEME)

Show top 50 Factors \* Go Download As Text

| Rank | Name<br>[2]     | Family<br>121         | Logo<br>III | Score<br>[2] | Distribution<br>[2]                 | %Sequence<br>with motif<br>optimal setting       | % Sequence<br>with motif<br>1e-4 fdr<br>within +/- 200bp | Binding<br>Range<br>(21 | PWM<br>Score<br>Cutoff | Z0Score | Z1Score | P.<br>value |
|------|-----------------|-----------------------|-------------|--------------|-------------------------------------|--------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------|---------|---------|-------------|
| 1    | V\$CEBPB_02     | CEBP                  | TT- GCAA    | 36.4541      | 900 V9CEBPB_02 1200 V9CEBPB_02      | 0.25 VSCEBPB 02<br>0.25 VALUE 02<br>0.1615542    | 0.1398565                                                |                         | 2.9101                 | 33.7596 | 2.69456 | 0           |
| 2    | V\$CEBP_Q2_01   | CERP                  | TT_C        | 30.0046      | VSCEBP_G2_01 VSCEBP_G2_01           | 0.2 VSCEBP 02.01                                 | 0.15 VSCEBP 02 01                                        |                         | 3.1246                 | 27.234  | 2.7706  | 0           |
| 3    | V\$jaspar_CEBPA | jasper Leucine Zipper | T- CAA-     | 29.099       | 090 VSImper_CEBPA 700 VSImper_CEBPA | 0.09510935                                       | 0.08283942                                               |                         | 2.9262                 | 26.4199 | 2.67911 | 0           |
| 4    | V\$CEBP_Q2      | CERP                  | · TTc       | 27.1049      | 000 0 400 0 000 000                 | 0.16 VSCEBP_O2 0.00 0.1106028                    | 0.12 VICEBP_02<br>0.09 0 5000<br>0.09573325              |                         | 2.9207                 | 23.2332 | 3.87169 | 0           |
| 5    | V\$CEBPA_01     | CERP                  |             | 27.0551      | 000 VSCEBPA_01 1200 VSCEBPA_01      | 92 VSCEBPA 01<br>0.2 VSCEBPA 01<br>0.0 0.1544141 | 0.135108                                                 |                         | 2.8306                 | 24.272  | 2.78314 | 0           |
| 6    | V\$ETS_Q4       | ETS                   | -LAGGA4     | 26.0123      | 900 VSETS_Q4 1500 VSETS_Q4          | 0.25 www.w./w.w/<br>0.00 0.2105993               | 0.2                                                      |                         | 3.3301                 | 22.8659 | 3.14638 | 0           |
|      |                 |                       |             |              |                                     |                                                  |                                                          |                         |                        |         |         |             |

http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtools2/TASKS/Motif Enrichment/view.php?top=50&show=factor&submit=Go&email=guest.172.16.227.227&handle=guest.172.16.227... 1/7

### Group3: high peak score (5741 peaks)

#### 2/9/2015

CENTDIST:Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group3\_compSorted3.bed

Results for Koeffler\_BM\_CebpE\_GMM\_ModelAssignment\_log\_300\_group3\_compSorted3.bed

#### Try our De Novo Motif Finding Tool for ChIP-seg (SEME)

Show top 50 Factors \* Go Download As Text

| Rank<br>[2] | Name<br>(2)     | Family<br>I21         | Logo<br>121 | Score<br>[2] | Distribution [7]     |          | %Sequence<br>with motif<br>optimal setting | within +/- 200bp                                    | Binding<br>Range | PWM<br>Score<br>Cutoff | Z0Score | Z1Score | P-<br>value |
|-------------|-----------------|-----------------------|-------------|--------------|----------------------|----------|--------------------------------------------|-----------------------------------------------------|------------------|------------------------|---------|---------|-------------|
| 1           | V\$CEBPB_02     | CERP                  | TT- ccAA    | 32.9624      | V9CEBPB_02 400 V9CI  | EBPB_02  | 92 V9CEBPB_02                              | 0.00 0.229577                                       | 320              | 2.9101                 | 29.8398 | 3.12262 | 0           |
| 2           | V\$CEBP_Q2_01   | CERP                  | TT_CAA      | 28.6415      | VSCEBP_G2_01         | BP_G2_01 | 0.15<br>0.00<br>0.1684376                  | V\$CEBP G2 01                                       | 360              | 3.1246                 | 24.4458 | 4.19579 | 0           |
| 3           | VSPEA3_Q6       | ETS                   | ACATCC      | 28.3666      | VSPEA3_06 500 VSP    | PEA3_G6  | 0.4<br>0.0<br>0.3097021                    | 0.4 VSPEA3_Q6                                       | 440              | 2.8742                 | 21.9021 | 6.46444 | 0           |
| 4           | V\$jaspar_CEBPA | iesper Leucine Zipper | T- CAA-     | 27.798       | V\$[esper_CEBPA 250] |          | 0.15<br>0.00<br>0.1301167                  | V\$jasper_CEDPA<br>0.15<br>0.00 0 5000<br>0.1381292 | 360              | 2.9262                 | 24.5191 | 3.2789  | 0           |
| 5           | V\$CEBPB_01     | CERP                  | L.Tx. G.AA  | 27.6113      | VSCEBPB_01 VSCI      | EBPB_01  | 0.2<br>0.0<br>0.1863787                    | 0.0 0.1975266                                       | 360              | 3.1659                 | 23.722  | 3.88938 | 0           |
| 6           | V\$CEBPA_01     | CEBP                  | - TTsoo     | 26.0984      | VSCEBPA_91 VSCI      | EBPA_01  | 0.2<br>0.0<br>0.1750566                    | 0.0 0.1865529                                       | 360              | 2.8312                 | 21.6892 | 4.40913 | 0           |
|             |                 |                       |             |              |                      |          |                                            |                                                     |                  |                        |         |         |             |

http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtools2/TASKS/Motif Enrichment/view.php?top=50&show=factor&submit=Go&email=guest.172.16.227.227&handle=guest.172.16.227... 1/7

Pipeline Summary: Peak Calls Summary: Component Calls Summary: Motif Calls

Cebp motif is found in group3 only in 3-component GMMS using centdist

Pipeline Summary: Peak Calls Summary: Component Calls Summary: Motif Calls

- Cebp motif is found in group3 only in 3-component GMMS using centdist
- Next, can we further segregate these groups into direct and indirect bindings?

# **3 Component-Mixture Model**



### **Local Clustering**



#### Direct: 24948 peaks

#### 2/9/2015

CENTDIST:Koeffler\_BM\_CebpE\_GMM\_BiclusterAssignment\_SinglePeakFilteredOut\_log\_300\_compSorted3\_dist3kb\_direct.bed

Results for Koeffler\_BM\_CebpE\_GMM\_BiclusterAssignment\_SinglePeakFilteredOut\_log\_300\_compSorted3\_dist3kb\_direct.bed

#### Try our De Novo Motif Finding Tool for ChIP-seq (SEME)

Show top 50 Factors • Go Download As Text

| Rank<br>121 | Name<br>121     | Family<br>IZI         | Logo<br>(2)        | Score<br>III | Distribution (2)                                                            | %Sequence<br>with motif<br>optimal setting                       | % Sequence<br>with motif<br>1e-4 fdr<br>within +/- 2000pp | Binding<br>Range | PWM<br>Score<br>Cutoff | Z0Score | Z1Score | P.<br>value |
|-------------|-----------------|-----------------------|--------------------|--------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------|---------|---------|-------------|
| 1           | V\$CEBPB_02     | CERP                  | TT- OCAA           | 58.3326      | VSCERPE_02 VSCERPE_02                                                       | 0.25 0.00 0.1833414                                              | 0.25<br>0.25<br>0.00<br>0.1734007                         |                  | 2.9101                 | 47.6979 | 10.6347 | 0           |
| 2           | V\$jaspar_CEBPA | jaspar Leucine Zipper | T- CAA-            | 46.312       | 600 VS(maper_CEBPA 600 VS)maper_CEBPA 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0.00 0.1111111                                                   | 0.1045775                                                 |                  | 2.9262                 | 39.0362 | 7.27579 | 0           |
| 3           | V\$PEA3_Q6      | ETS                   | ACATCCE<br>AGGAAGE | 41.8737      | 1000 VSPEA3_OE 2000 VSPEA3_G6                                               |                                                                  | 0.2477152                                                 |                  | 2.8742                 | 33.5307 | 8.34297 | 0           |
| 4           | VSCEBP_Q2_01    | CERP                  | TT_CAA             | 41.8022      | V\$CEBP_G2_01 V\$CEBP_G2_01                                                 | 0.15 V9CEBP 02 01<br>0.15 V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3V3 | 0.09 0.1499519 25000                                      |                  | 3.1246                 | 39.0291 | 2.77308 | 0           |
| 5           | VSjaspar_SPI1   | jaspar Ets            | AGGAAGT<br>ACTTCCT | 40.3973      | 7500 V\$jaspar_SPH 1500 V\$jaspar_SPH 1500 0 500                            | 0.25 VS[aspar_SPH<br>0.25 VS 25000<br>0.2049864                  | 0.25 VS[mpar_SPH 0.25 0.1925204                           |                  | 3.5842                 | 32.6871 | 7.71024 | 0           |
| 6           | V\$CEBPB_01     | СЕВР                  | L.Tx.G.AA          | 40.0647      | 000 VSCEBPB_01 1300 VSCEBPB_01                                              | 0.00 0.1501924                                                   | 0.2 V9CEBPB_01                                            |                  | 3.1658                 | 36.5447 | 3.52005 | 0           |
|             |                 |                       |                    |              |                                                                             |                                                                  |                                                           |                  |                        |         |         | г           |

http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtools2/TASKS/Motif Enrichment/view.php?top=50&show=factor&submit=Go&email=guest.172.16.227.227&handle=guest.172.16.227... 1/7

#### Indirect: 26547 peaks

2/9/2015

CENTDIST:Koeffler\_BM\_CebpE\_GMM\_BiclusterAssignment\_SinglePeakFilteredOut\_log\_300\_compSorted3\_dist3kb\_indirect.bed

Results for Koeffler\_BM\_CebpE\_GMM\_BiclusterAssignment\_SinglePeakFilteredOut\_log\_300\_compSorted3\_dist3kb\_indirect.bed VERSION: 2011.07.08

#### Try our De Novo Motif Finding Tool for ChIP-seq (SEME)

746 TPs
Show top 50 Factors ▼ Go Download As Text

| Rank<br>121 | Name<br>[21      | Family<br>(2) | Logo<br>Di                                 | Score<br>121 | Distribution (2)                                                            | %Sequence<br>with motif<br>optimal setting            | within +/- 200bp                                         | Binding<br>Range<br>(2) | PWM<br>Score<br>Cutoff | Z0Score  | Z1Score | P-vi  |
|-------------|------------------|---------------|--------------------------------------------|--------------|-----------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------|----------|---------|-------|
| 1           | V\$jaspar_NFATC2 | jaspar_Rel    | TTTCC.                                     | 9.86315      | 900 VS(supper_NFATC2 VS(supper_NFATC2 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | VSjasper NFATC2<br>0.00<br>0.00 0 25000<br>0.06211625 | 0.1 VSjasper NFATC2<br>0.0 0 25000<br>0.07575244         | 320                     | 3.4936                 | 3.21144  | 6.65171 | 0.001 |
| 2           | V\$FOXD3_01      | FOX           | LAXISTT-AUX                                | 9.20345      | 0 450 0 460 0 560                                                           | 0.00 0.04836705                                       | 0.19 VSFOXDS_01<br>0.19 VALANA<br>0.00 0.1397145         | 120                     | 3.1121                 | 2.05819  | 7:14525 | 0.001 |
| 3           | V\$HNF1_Q6       | HNE1          | LIGITANI STANKA                            | 8.25904      | VSHNF1_O6 VSHNF1_O5                                                         | V\$HNF1_G6<br>0.00<br>0.00 0 25000<br>0.02885448      | 0.09 V9HNF1_G6<br>0.09 0.0592534                         | 200                     | 3.1667                 | 2.46373  | 5.7953  | 0.00  |
| 4           | V\$SRY_01        | FOX           | AAACA<br>                                  | 8.24092      | 9587Y_91 1000 VSBY_01                                                       | 0.00 V958Y 91<br>0.00 25000<br>0.05352771             | 0.15 VSSNY_01<br>0.00 0.1202396                          | 160                     | 2.7795                 | 0.858234 | 7.38269 | 0.00  |
| 5           | VSPAX4_04        | PAX           | batha                                      | 7.70944      | VSPAX4_04 800 VSPAX4_04                                                     | 0.1 VSPAX4_04<br>0.0 0 0.07827626                     | 0.14 VSPAX4_04<br>0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 280                     | 3.0252                 | 2.41782  | 5.29162 | 0.00  |
| 6           | V\$FOXP1_01      | FOX           | *TATTISISTSTUTTISI *Artenenellelellillilli | 7.70615      | 250 VSFOXP1_01 VSFOXP1_01                                                   | 0.00 0.02512525                                       | 0.14                                                     | 160                     | 2.2301                 | 1.69717  | 6.00898 | 0.00  |
|             |                  |               |                                            |              |                                                                             |                                                       |                                                          |                         |                        |          |         |       |

http://biogpu.ddns.comp.nus.edu.sg/~chipseq/webseqtoois2/TASKS/Motif\_Enrichment/view.php?top=50&show=factor&submit=Go&email=guest.172.16.227.227&handle=guest.172.16.227... 1/7

· Our current method could separate direct and indirect bindings

- · Our current method could separate direct and indirect bindings
- Next, can we further using peak clusters increase functional annotation?

- Our current method could separate direct and indirect bindings
- Next, can we further using peak clusters increase functional annotation?
- Working on DNA methylation review on region to single base resolution DNA methylation research

- Our current method could separate direct and indirect bindings
- Next, can we further using peak clusters increase functional annotation?
- Working on DNA methylation review on region to single base resolution DNA methylation research
- TCGA methylation on 19 cancer patients

# Find the targeted genes



# What problems the invention solves and advantages over existing methods? An Example:

