Università degli Studi di Bergamo, Scuola di Ingegneria, Dalmine Laurea Magistrale in Ingegneria Edile

Dinamica, Instabilità e Anelasticità delle Strutture a.a. 2015/2016

II ELABORATO

1) Si consideri il seguente *sistema discreto* strutturale semplicemente compresso avente aste rigide e molle rotazionali elastiche lineari (molle d'estremità e molle rotazionali relative):

ove n è il numero di tratti in cui è stata suddivisa la lunghezza totale l fissa (n > 1; in fig. è rappresentato il caso n = 4). I parametri positivi μ e η descrivono le cedevolezze elastiche delle molle rotazionali d'estremità.

Richieste:

- Si considerino i primi tre casi con n = 2, n = 3 e n = 4:
 - calcolare il carico critico euleriano P^E_{cr,n} di ogni caso utilizzando il metodo energetico ed il metodo statico (si
 parta da equazioni valide per spostamenti arbitrariamente grandi per poi giungere a relazioni valide in regime
 di spostamenti geometricamente piccoli);
 - fornire in tabella il valore dei $P_{cr,n}^E$ per le sei combinazioni di coppie miste (μ, η) , $\mu \neq \eta$, sui tre valori α $(\alpha \to 0, \alpha = \alpha_a, \alpha \to \infty)$, essendo $\alpha_a = 5 + (N C)/5$ (N = numero lettera iniziale del nome, <math>C = numero lettera iniziale del cognome). Si assuma quindi $\mu = \alpha_a$ per tutto ciò che segue;
 - rappresentare le deformate critiche per $\eta \to 0$, $\eta = \eta_a$, $\eta \to \infty$;
 - rappresentare l'andamento dei carichi critici $P_{cr,n}^{E}$ in funzione del parametro η , ponendoli a confronto.
- Facoltativo: determinare il carico critico P^E_{cr,n} per ulteriori n successivi (n > 4); rappresentarne l'andamento al variare di n, indagando l'eventuale comportamento asintotico per n crescenti ed individuando i nessi con quanto segue.
- 2) Si consideri quindi il *sistema continuo* corrispondente, costituito da un'asta semplicemente compressa di lunghezza l, deformabile solo flessionalmente (con rigidezza flessionale elastica EJ) e avente le medesime molle rotazionali d'estremità.

Richieste:

- Determinare il carico critico euleriano P_{cr}^E mediante il metodo statico per $\eta \to 0$, $\eta = \eta_a$, $\eta \to \infty$. Studiare e rappresentare la dipendenza di P_{cr}^E dal parametro positivo η .
- Determinare e rappresentare la deformata critica ottenuta nei vari casi, esprimendo la stima della lunghezza di libera inflessione l₀.
- Confrontare il valore ottenuto di P_{cr}^{E} per $\eta \to 0$, $\eta = \eta_a$, $\eta \to \infty$ con quello ricavabile mediante la formula di Newmark, indicando l'errore percentuale con essa commesso.
- Dati E = 32000 MPa, l = 6 m, sezione trasversale rettangolare 25 cm x 30 cm, effettuare la verifica di stabilità per $\eta = \eta_a \text{ con P} = 7000 \text{ kN}$.