10-3.

При разложении в присутствии серной кислоты двух комплексных солей ${\bf A}$ и ${\bf B}$ с одинаковым качественным составом образуется смесь трех газов ${\bf G_1}$, ${\bf G_2}$, ${\bf G_3}$. При концентрации кислоты свыше 80% разложение ${\bf B}$ идет по одному пути, а при снижении концентрации преобладает другой тип разложения. Также известно, что при добавлении раствора солей ${\bf Fe}^{2+}$ к каждой из солей ${\bf A}$ и ${\bf B}$ образуется темно-синий осадок.

Смесь газов G_1 , G_2 , G_3 пропустили последовательно через три сосуда. Сосуд 1 предварительно охладили до 0 °C. В сосуд 2 поместили водный раствор вещества D, а в сосуд 3 — насыщенный раствор органического вещества F.

В сосуде 1 образовалось жидкое вещество, которое нейтрализовали раствором КОН, добавили $CuSO_4$ и нагрели. При этом выделился газ N (реакция 1). К оставшемуся раствору добавили раствор вещества C и нагрели (реакция 2). Вещество C является органическим галогенпроизводным и характеризуется симметричным строением. Продуктом реакции 2 стало вещество M с молярной массой в 2,06 раза меньше, чем молярная масса C.

В сосуд 2 поступает смесь двух газов, оставшихся после прохождения через сосуд 1. Один из газов вступает в реакцию с веществом \mathbf{D} с образованием \mathbf{K} и \mathbf{L} (реакция 3). Известно, что молекула вещества \mathbf{L} не содержит вторичных атомов углерода. Молярная масса \mathbf{L} в 2,31 раза больше молярной массы \mathbf{K} .

В сосуд 3 попадает оставшийся газ G_3 с плотностью по озону, равной 0,917 (D(O₃)=0,917). При его взаимодействии с органическим соединением F образуется вещество H (реакция 4) с молярной массой в 2,36 раза больше, чем молярная масса F.

После проведения этих реакций к раствору в сосуде 1 добавили концентрированную серную кислоту (реакция 5), и образовалось вещество **Y**.

Для получения целевого продукта \mathbf{X} соединение, полученное в сосуде 1 при гидролизе \mathbf{M} в кислой среде, соединяют с веществом \mathbf{L} из сосуда 2, которое предварительно очищают от наиболее легкого продукта \mathbf{K} перегонкой (реакция 6).

Схема опыта представлена ниже:

Для подтверждения правильности решения задачи используйте следующие справочные данные:

Вещество А	w(C)=19.6%, w(N)=22.8%
Вещество В	w(C)=21.9%, w(N)=25.5%
Вещество С	w(Br)=76.2%
Вещество N	w(N)=53,8%
Вещество D	w(O)=30.8%
Вещество F	w(N)=31.1%
Вещество Н	w(N)=13.2%
Вещество Х	w(O)=25.8%

Определите все неизвестные вещества **A**, **B**, **C**, **D**, **F**, **G**₁, **G**₂, **G**₃, **H**, **M**, **N**, **L**, **K**, **X**, **Y** и напишите уравнения реакций 1-6. Ответы подтвердите расчетами.

Решение:

Основываясь на данных из таблицы, рассчитываем, что один из газов в смеси обладает молярной массой 44 г/моль. Вероятно, газ остался единственным, так как в каждом из растворов произошли качественные изменения. Предполагаем, что это CO₂.

Из условия задачи и из данных таблицы предполагаем, что комплексные соли могут содержать следующие группы (NH_4^+ , CO_3^- , CN^- и т.д.). зная, что соли имеют одинаковый качественный состав и при добавлении Fe^{2+} образуется синий осадок. Проверяем красную и желтую кровяные соли, которые подходят по данным таблицы. $A - K_4[Fe(CN)_6]$, $B - K_3[Fe(CN)_6]$. Соответствующий им синий осадок – турнбулева синь или берлинская лазурь $KFe[Fe(CN)_6]$. Соответственно, при их разложении возможно образование трех газов – это CO, CO_2 , HCN.

Далее, рассчитываем неизвестные вещество содержащиеся в растворах.

В сосуде 1 при данной температуре образуется жидкость из синильной кислоты. После реакции с КОН получается соль КСN. Данная соль реагирует с $Cu(SO)_4$ с образованием CuCN и газа N (реакция 1). Газ N рассчитывается исходя из данных таблицы — C_2N_2 . На основании расчета данного газа можно предположить окислительно-восстановительную реакцию, что ведет к образованию соли меди (I), а не других солей. Далее рассчитываем вещество C. На основании расчета вещество возможно обладает молярными массами: $105 \, \Gamma/$ моль, $210 \, \Gamma/$ моль, $315 \, \Gamma/$ моль и т.д. Под условие подходит симметричное вещество C—1,3,5-трибромбензол (реакция 2).

Так как после прохождения **раствора 1** остается только CO_2 , следует предположить, что раствор обладает окислительной активностью (реакция 3). Исходя из расчетов получается брутто-формула $C_5H_{12}O_2$. Так как продукты

после окисления СО будут являться спиртами, то по массовому отношению можно рассчитать оба спирта: L-трет-бутиловый спирт и метиловый спирт-K. И соответствующую им перекись D-трет-бутилметилпероксид.

В растворе 2 вещество **F** обладает основными свойствами, так как поглощает CO₂ и на основании данных таблицы можно рассчитать молярную массу — 45 г/моль (реакция 4). Соответствующее данной молярной массе вещество **F**-этиламин. После реакции этиламина с CO₂ получается соль **H**-гидрокарбонат этиламина.

Теперь рассмотрим способ получения X. Из бензо-1,3,5-тринитрила посредством кислотного гидролиза получаем тримезиновую кислоту Y (Бензол-1,3,5-трикарбоновая кислота, реакция 5), которая в последствии реагирует с образованием сложного эфира трет-бутиловый эфир

тримезиновой кислоты Х-

. (реакция 6)

Реакции:

1)
$$2\text{CuSO}_4 + 4\text{KCN} \rightarrow 2\text{CuCN} + (\text{CN})_2 + 2\text{K}_2\text{SO}_4$$

Критерии:

- 1) 14 веществ по 1 баллу итого 14 баллов (без расчета 0 баллов за неподтвержденное вещество).
 - 2) 6 реакций по 1 баллу итого 6 баллов.

Итого: 20 баллов.