Considérons la fonction f définie sur $\mathbb R$ par

$$f(x) = \left(rac{1}{3}x + 2
ight)\left(x + rac{4}{3}
ight)$$

Notons u et v les fonctions suivantes :

Étudions le signe de u et v sur \mathbb{R} .

$$u(x)\geqslant 0$$

$$v(x)\geqslant 0$$

$$rac{1}{3}x+2\geqslant 0$$

$$egin{aligned} x+rac{4}{3}\geqslant 0\ x\geqslant -rac{4}{3} \end{aligned}$$

$$\frac{1}{3}x \geqslant -2$$

$$x\geqslant -\frac{4}{3}$$

Regroupons ces informations dans un tableau de signes pour déterminer le signe de f sur \mathbb{R} .

x	$-\infty$		-6		$-\frac{4}{3}$		$+\infty$
u(x)		_	0	+		+	
v(x)		_		_	•	+	
f(x)		+	0	_	•	+	

El Complétez les tableaux de signes suivants:

x	$-\infty$		$-\frac{5}{4}$		0	$+\infty$
u(x)		+	0	_	_	
v(x)		_		_	+	
f(x)						_

b.

\boldsymbol{x}	$-\infty$	=	-3	5	$+\infty$
u(x)		+	+	0 –	
v(x)					
f(x)		+	0 –	+	

x	$-\infty$		1 !	9	$+\infty$
u(x)			_	+	
v(x)		-	_	_	
w(x)		- () +	+	
f(x)					

E2 On considère les représentations graphiques des fonctions u et v suivantes.

Complétez le tableau de signes de la fonction f = uv:

x	$-\infty$	$+\infty$
u(x)		
v(x)		
f(x)		

E3 On considère la représentation graphique de la fonction f=uv suivante.

Complétez son tableau de signes :

x	$-\infty$				$+\infty$
u(x)		+ () –	-	
v(x)					
f(x)					

Propriété : Soient a et b deux réels et u la fonction définie sur $\mathbb R$ par u(x)=ax+b.

- Si a>0, alors u est positive sur $\mathbb R$ si et seulement si $x\geqslant -\frac{b}{a}$.
- Si a < 0, alors u est positive sur $\mathbb R$ si et seulement si $x \leqslant -\frac{b}{a}$.

lacktriangle On considère les fonctions u et vdéfinies sur $\mathbb R$ par u(x)=3x-2 et v(x) = -5x + 3.

- **a.** Étudiez le signe de u et v sur \mathbb{R} .
- **b.** En déduire le tableau de signes de f=uv sur

E5 Étudiez sur $\mathbb R$ le signe des fonctions

$$f_1(x) = (x-2)(x-5)$$
 f_2

$$f_2(x) = (x+2)(x-3)$$

$$f_1(x) = (x-2)(x-5)$$
 $f_2(x) = (x+2)(x-3)$
 $f_3(x) = (8-x)(x+4)$ $f_4(x) = (4x-8)(9-3)$

$$f_A(x) = (4x - 8)(9 - 3x)$$