OPFICE DE LA PROPRIÉTÉ

INTELLECTUELLE DU CANADA

(12) (19) (CA) Demande-Application

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21)(A1) 2,334,955

(86) 1999/06/12

(87) 1999/12/23

(72) SIEVERNICH, BERND, DE

(72) LANDES, MAX, DE

(72) KIBLER, ELMAR, DE

(72) VON DEYN, WOLFGANG, DE

(72) WALTER, HELMUT, DE

(72) OTTEN, MARTINA, DE

(72) WESTPHALEN, KARL-OTTO, DE

(72) VANTIEGHEM, HERVE, DE

(71) BASF AKTIENGESELLSCHAFT, DE

(51) Int.Cl.⁶ A01N 43/80, A01N 43/78, A01N 61/00

(30) 1998/06/16 (198 26 431.3) DE

(54) MELANGES HERBICIDES A EFFET SYNERGIQUE

(54) HERBICIDAL MIXTURES HAVING A SYNERGISTIC EFFECT

(57) L'invention concerne un mélange herbicide à effet synergique contenant A) au moins un dérivé benzoyle à substitution 3-hétérocyclyle de la formule (I), dans laquelle les variables ont la signification suivante: R¹, R³ sont hydrogène, halogène, alkyle, halogénure d'alkyle, alcoxy, halogénure d'alcoxy, alkylthio, alkylsulfinyle ou alkylsulfonyle; R² est un radical hétérocyclique choisi dans le groupe: thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-3-v1. isoxazol-4-yl, isoxazol-5-yl, dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl et 4,5dihydroisoxazol-5-yl, ceux-ci pouvant être substitués éventuellement une fois ou plusieurs fois par halogène, alkyle, alcoxy, halogénure d'alkyle, halogénure d'alcoxy ou alkylthio: R⁴ est hydrogène, halogène ou alkyle; R⁵ est alkyle; R⁶ est hydrogène ou alkyle; ou bien un de ses

(57) The invention relates to synergistic herbicidal mixtures containing A) at least one 3-heterocyclyl-substituted benzoyl derivative of formula (I) in which the variables have the following meaning: R¹, R³ represent hydrogen, halogen, alkyl, alkyl halide, alkoxy, alkoxy halide, alkylthio, alkyl sulfinyl, or alkyl sulfonyl, R² represents a heterocyclic radical selected from the group: thiazole-2-yl, thiazole-4-yl, thiazole-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-3-yl, and 4,5-dihydroisoxazol-5-yl, whereby these can be optionally substituted one time or a multiple number of times by halogen, alkyl, alkoxy, alkyl halide, alkoxy halide, alkylthio, R⁴ represents hydrogen, halogen or alkyl, R⁵ represents alkyl, R⁶ represents hydrogen or alkyl; or one of the

OPIC Office de la propriété intellectuelle du Canada

CIPO
CANADIAN INTELLECTUAL
PROPERTY OFFICE

(21)(A1) **2,334,955**

(86) 1999/06/12 (87) 1999/12/23

sels écophiles, et B) une quantité produisant un effet synergique d'au moins un composé herbicide du groupe des inhibiteurs de l'acétyl CoA carboxylase (ACC), des inhibiteurs de l'acétolactate synthase (ALS), des amides, des herbicides de l'auxine, des inhibiteurs de transport de l'auxine, des inhibiteurs de biosynthèse de la carotinoïde, des inhibiteurs d'énolpyruvyl-shikimat-3-phosphatesynthase (ESPS), des inhibiteurs de la glutaminesynthétase, des inhibiteurs de la biosynthèse lipidique, des inhibiteurs de la mitose, des inhibiteurs de la protophorphyrinogèn-IX-oxydase, des inhibiteurs de la photosynthèse, des agents synergiques, des substances de croissance, des inhibiteurs de biosynthèse de paroi cellulaire, et de différents autres herbicides. L'invention concerne des agents contenant ces mélanges, ainsi que leur procédé de préparation et leur utilisation pour lutter contre des végétaux parasites.

environmentally compatible salts thereof; and B) a synergistically effective quantity of at least one herbicidal compound from the group of acetyl CoA carboxylase inhibitors (ACC), acetolactate synthase inhibitors (ALS), amides, auxin herbicides, auxin transport inhibitors, carotinoid biosynthesis inhibitors, enolpyruvyl-shikimat-3-phosphate synthase inhibitors glutamine synthetase inhibitors, (ESPS). lipid biosynthesis inhibitors, mitosis inhibitors, protophorphyrinogen-IX-oxidase inhibitors, photosynthesis inhibitors, synergistic agents, growth substances, cell wall biosynthesis inhibitors and various other herbicides. The invention also relates to agents which contain these mixtures, to methods for producing these agents, and to the use thereof for controlling unwanted plants.

(51) Internationale Patentklassifikation 6:

A01N 43/80, 43/78 // (A01N 43/80, 61:00) (A01N 43/78, 61:00)

(11) Internationale Veröffentlichungsnummer:

WO 99/65314

(43) Internationales Veröffentlichungsdatum:

23. Dezember 1999 (23.12.99)

(21) Internationales Aktenzeichen:

PCT/EP99/04055

A1

(22) Internationales Anmeldedatum:

12. Juni 1999 (12.06.99)

(30) Prioritätsdaten:

198 26 431.3

16. Juni 1998 (16.06.98)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): SIEVERNICH, Bemd [DE/DE]; Brahmsstrasse 8, D-67459 Böhl-Iggelheim (DE). LANDES, Max [DE/DE]; Bismarckstrasse 49a. D-67161 Gönnheim (DE). KIBLER, Elmar [DE/DE]; Im Wachtelschlag 13, D-67454 Hassloch (DE). VON DEYN, Wolfgang [DE/DE]; An der Bleiche 24, D-67435 Neustadt (DE). WALTER, Helmut [DE/DE]; Grünstadter Strasse 82, D-67283 Obrigheim (DE). OTTEN, Martina [DE/DE]; Gunterstrasse 28, D-67069 Ludwigshafen (DE). WESTPHALEN, Karl-Otto [DE/DE]; Mausbergweg 58, D-67346 Speyer (DE). VANTIEGHEM, Herve [BE/DE]; Zollhausstrasse 5, D-76297 Stutensee (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT: D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, AZ, BG, BR, BY, CA, CN, CZ, EE, GE, HU, ID, IL, IN, JP, KG, KR, KZ, LT, LV, MK, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, UA, US, UZ, VN, ZA, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: HERBICIDAL MIXTURES HAVING A SYNÉRGISTIC EFFECT

(54) Bezeichnung: HERBIZIDE MISCHUNGEN MIT SYNERGISTISCHER WIRKUNG

(57) Abstract

The invention relates to synergistic herbicidal mixtures containing A) at least one 3-heterocyclyl-substituted benzoyl derivative of formula (I) in which the variables have the following meaning: R¹, R³ represent hydrogen, halogen, alkyl, alkyl halide, alkoxy, alkoxy halide, alkylthio, alkyl sulfinyl, or alkyl sulfonyl; R² represents a heterocyclic radical selected from the group: thiazole-2-yl, thiazole-4-yl, thiazole-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and 4,5-dihydroisoxazol-5-yl, whereby these can be optionally substituted one time or a multiple number of times by halogen, alkyl, alkoxy. alkyl halide, alkoxy halide, alkylthio; R4 represents hydrogen, halogen or alkyl; R5 represents alkyl; R6 represents hydrogen or alkyl; or one of the environmentally compatible salts thereof; and B) a synergistically effective quantity of at least one herbicidal compound from the group of acetyl CoA carboxylase inhibitors (ACC), acetolactate synthase inhibitors (ALS), amides, auxin herbicides, auxin transport inhibitors, carotinoid biosynthesis inhibitors, enolpyruvyl-shikimat-3-phosphate synthase inhibitors (ESPS), glutamine synthetase inhibitors, lipid biosynthesis inhibitors, mitosis inhibitors, protophorphyrinogen-IX-oxidase inhibitors, photosynthesis inhibitors, synergistic agents, growth substances, cell wall biosynthesis inhibitors and various other herbicides. The invention also relates to agents which contain these mixtures, to methods for producing these agents, and to the use thereof for controlling unwanted plants.

HERBICIDAL MIXTURES HAVING A SYNERGISTIC EFFECT

The present invention relates to a synergistic herbicidal mixture comprising

A) at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I

10

15

20

in which the variables have the following meanings:

 R^1 , R^3 are hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylsulfinyl or C_1 - C_6 -alkylsulfonyl;

is a heterocyclic radical selected from the group:
thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl,
4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl
and 4,5-dihydroisoxazol-5-yl, it being possible for
the nine radicals mentioned to be unsubstituted or
mono- or polysubstituted by halogen, C₁-C₄-alkyl,
C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or
C₁-C₄-alkylthio;

 R^4 is hydrogen, halogen or C_1-C_6 -alkyl;

 R^5 is C_1-C_6 -alkyl;

 R^6 is hydrogen or C_1-C_6 -alkyl;

or one of its environmentally compatible salts;

40 and

B) a synergistically effective amount of at least one herbicidal compound from the group of the acetyl-CoA carboxylase inhibitors (ACC), acetolactate synthase inhibitors (ALS), amides, auxin herbicides, auxin transport inhibitors, carotenoid biosynthesis inhibitors, enolpyruvylshikimate 3-phosphate

2

synthase inhibitors (ESPS), glutamine synthetase inhibitors, lipid biosynthesis inhibitors, mitosis inhibitors, protoporphyrinogen IX oxidase inhibitors, photosynthesis inhibitors, synergists, growth substances, cell wall biosynthesis inhibitors and a variety of other herbicides.

The invention furthermore relates to herbicidal compositions comprising a herbicidally active amount of a synergistic herbicidal mixture as defined above and at least one liquid and/or solid carrier and, if desired, at least one surfactant.

Moreover, the invention relates to processes for the preparation of these compositions and to a method of controlling undesirable vegetation.

In crop protection products, it is always desirable to increase the specific activity of an active ingredient and the reliability 20 of action. It is an object of the present invention to increase the activity of known, herbicidally active 3-heterocyclyl-substituted benzoyl derivatives of the formula I.

It is an object of the present invention to increase the 25 selective herbicidal activity of the 3-heterocyclyl substituted benzoyl derivatives of the formula I against undesirable harmful plants.

We have found that this object is achieved by the mixtures defined at the outset. We have furthermore found herbicidal compositions which comprise these mixtures, processes for their preparation, and methods of controlling undesirable vegetation. In the last-mentioned cases, it is irrelevant whether the herbicidally active compounds of the components A) and B) are formulated and applied jointly or separately and in which sequence they are applied in the case of separate application.

The mixtures according to the invention show a synergistic

40 effect; the compatibility of the herbicidally active compounds of components A) and B) for certain crop plants is generally retained.

Suitable components B are, as acetyl-CoA carboxylase inhibitors 45 (ACC), for example, cyclohexenone oxime ethers, phenoxyphenoxypropionic esters or arylaminopropionic acids. The acetolactate synthase inhibitors (ALS) include, inter alia,

imidazolinones, pyrimidyl ethers, sulfonamides or sulfonyl ureas. Relevant auxin herbicides are, inter alia, pyridine carboxylic acids, 2,4-D or benazolin. Lipid biosynthesis inhibitors which are used are, inter alia, anilides, chloroacetanilides, thioureas, benfuresate or perfluidone. Suitable mitosis inhibitors are, inter alia, carbamates, dinitroanilines

inhibitors are, inter alia, carbamates, dinitroanilines, pyridines, butamifos, chlorthal-dimethyl (DCPA) or maleic hydrazide. Examples of protoporphyrinogen IX oxidase inhibitors are, inter alia, diphenyl ethers, oxadiazoles, cyclic imides or

- 10 pyrazoles. Suitable photosynthesis inhibitors are, inter alia, propanil, pyridate, pyridafol, benzothiadiazinones, dinitrophenols, dipyridylenes, ureas, phenols, chloridazon, triazine, triazinone, uracils or biscarbamates. The synergists are, inter alia, oxiranes. Examples of suitable growth substances
- are aryloxyalkanoic acids, benzoic acids or quinolinecarboxylic acids. The group "various other herbicides" is to be understood as meaning, inter alia, the classes of the active ingredients dicloropropionic acids, dihydrobenzofurans, phenylacetic acids and individual herbicides mentioned below whose mechanism of action is not (fully) understood.

Other suitable

Other suitable components B are active compounds selected from the group of the amides, auxin transport inhibitors, carotenoic biosynthesis inhibitors, enolpyruvylshikimate 3-phosphate

25 synthase inhibitors (EPSPS), glutamine synthetase inhibitors and cell wall synthesis inhibitors.

Examples of herbicides which can be used in combination with the 3-heterocyclyl-substituted benzoyl derivatives of formula I according to the present invention are, inter alia:

B1 acetyl-CoA carboxylase inhibitors (ACC), for example

- cyclohexenone oxime ethers, such as alloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim, tralkoxydim, butroxydim, clefoxydim or tepraloxydim;
- phenoxyphenoxypropionic esters, such as clodinafop-propargyl (and, if appropriate, cloquintocet), cyhalofop-butyl, diclofop-methyl, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenthiapropethyl, fluazifop-butyl, fluazifop-P-butyl, haloxyfop-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, isoxapyrifop, propaquizafop, quizalofop-ethyl, quizalofop-P-ethyl or quizalofop-tefuryl; or arylaminopropionic acids, such as

flamprop-methyl or flamprop-isopropyl;

	ration of flamprop-isopropyl;
5	- imidazolinones, such as imazapyr, imazaquin, imazamethabenz-methyl (imazame), imazamoc, imazapic, imazethapyr or imazamethapyr.
10	<pre>pyrimidyl ethers, such as pyrithiobac-acid, pyrithiobac-sodium, bispyribac- sodium, KIH-6127 or pyribenzoxym; - sulfonamides, such as florasulam, flumetsulam or metosulam; or - sulfonylureas, such as amidosulfurer</pre>
15	cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, halosulfuron-methyl, imparable
20	primisulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triflusulfuron-methyl,
25	N-[[[4-methoxy-6-(trifluoromethyl)- 1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoro- methyl)-benzenesulfonamide, sulfosulfuron or idosulfuron;
30	B3 amides, for example - allidochlor (CDAA), benzoylprop-ethyl, bromobutide, chlorthiamid, diphenamid, etobenzanid (benzchlomet), fluthiamide, fosamin or monalide;
35	B4 auxin herbicides, for example - pyridinecarboxylic acids, such as clopyralid or picloram; or - 2,4-D or benazolin;
40	<pre>B5 auxin transport inhibitors, for example</pre>
45	B6 carotenoid biosynthesis inhibitors, for example - benzofenap, clomazone (dimethazone), diflufenican, fluorochloridone, fluridone, pyrazolynate, pyrazoxyfen, isoxaflutole, isoxachlortole, mesotrione, sulcotrione (chlormesulone), ketospiradox, flurtamone, norflurazon or amitrol;

	B 7	enolpyruvylshikimate-3-phosphate synthase inhibitors (ESPS), for example
		- glyphosate or sulfosate;
5	В8	glutamine synthetase inhibitors, for example
		 bilanafos (bialaphos) or glufosinate-ammonium;
	В9	lipid biosynthesis inhibitors, for example
10		 anilides, such as anilofos or mefenacet;
10		- chloroacetanilides, such as dimethenamid,
	`	S-dimethenamid, acetochlor, alachlor, butachlor,
		butenachlor, diethatyl-ethyl, dimethachlor,
		metazachlor, metolachlor, S-metolachlor,
		pretilachlor, propachlor, prynachlor, terbuchlor,
15		thenylchlor or xylachlor;
		- thioureas, such as butylate, cycloate, di-allate,
		dimepiperate, EPTC, esprocarb, molinate, pebulate,
		prosulfocarb, thiobencarb (benthiocarb), tri-allate
20		or vernolate; or
20		- benfuresate or perfluidone;
	B10	mitosis inhibitors, for example
		- carbamates, such as asulam, carbetamid, chlorpropham,
^ -		orbencarb, pronamid (propyzamid), propham or
25		tiocarbazil;
		- dinitroanilines, such as benefin, butralin,
		dinitramin, ethalfluralin, fluchloralin, oryzalin,
		pendimethalin, prodiamine or trifluralin;
30		- pyridines, such as dithiopyr or thiazopyr; or
		 butamifos, chlorthal-dimethyl (DCPA) or maleic hydrazide;
	n11	
	PII	protoporphyrinogen IX oxidase inhibitors, for example
15		- diphenyl ethers, such as acifluorfen,
		acifluorfen-sodium, aclonifen, bifenox,
		chlornitrofen (CNP), ethoxyfen, fluorodifen,
		fluoroglycofen-ethyl, fomesafen, furyloxyfen,
		lactofen, nitrofen, nitrofluorfen or oxyfluorfen;
0		- oxadiazoles, such as oxadiargyl or oxadiazon;
•		- cyclic imides, such as azafenidin, butafenacil,
		carfentrazone-ethyl, cinidon-ethyl,
		flumiclorac-pentyl, flumioxazin, flumipropyn,
		flupropacil, fluthiacet-methyl, sulfentrazone or thidiazimin; or
5		 pyrazoles, such as ET-751, JV 485 or nipyraclofen;
		·
	B12	photosynthesis inhibitors, for example

		 propanil, pyridate or pyridafol;
		 benzothiadiazinones, such as bentazone:
		- dinitrophenols, for example bromofenoxim, dinoseb,
		dinosed-acetate, dinoterb or DNOC;
5		 dipyridylenes, such as cyperquat-chloride.
		difenzoquat-methylsulfate, diquat or
		paraquat-dichloride;
		 ureas, such as chlorbromuron, chlorotoluron,
		difenoxuron, dimefuron, diuron, ethidimuron, fenuron
10		fluometuron, isoproturon, isouron, linuron,
		methabenzthiazuron, methazole, metobenzuron,
•		metoxuron, monolinuron, neburon, siduron or
		tebuthiuron;
	•	- phenols, such as bromoxynil or ioxynil;
15		- chloridazon;
		 triazines, such as ametryn, atrazine, cyanazine,
		desmetryn, dimethamethryn, hexazinone, prometon,
		prometryn, propazine, simazine, simetryn, terbumeton,
		terbutryn, terbutylazine or trietazine;
20		- triazinones, such as metamitron or metribuzin;
		- uracils, such as bromacil, lenacil or terbacil; or
		 biscarbamates, such as desmedipham or phenmedipham;
	B13	synergists, for example
25		- oxiranes, such as tridiphane;
•		
	B14	growth substances, for example
		- aryloxyalkanoic acids, such as 2,4-DB, clomeprop,
30		dichlorprop, dichlorprop-P (2,4-DP-P), fluoroxypyr,
		MCPA, MCPB, mecoprop, mecoprop-P or triclopyr;
		- benzoic acids, such as chloramben or dicamba; or
		- quinolinecarboxylic acids, such as quinclorac or
		quinmerac;
35	B15	Cell wall synthogic inhibit.
	213	cell wall synthesis inhibitors, for example isoxaben or dichlobenil;
		isolaben of dichiodenii;
	B16	various other herbicides, for example
		- dichloropropionic acids, such as dalapon;
10		- dihydrobenzofurans, such as ethofumesate;
		- phenylacetic acids such as ethorumesate;
		- phenylacetic acids, such as chlorfenac (fenac); or aziprotryn, barban bengulide benething
		- aziprotryn, barban, bensulide, benzthiazuron, benzofluor, buminafos, buthidanala,
		benzofluor, buminafos, buthidazole, buturon,
5		cafenstrole, chlorbufam, chlorfenprop-methyl,
		chloroxuron, cinmethylin, cumyluron, cycluron,
		cyprazine, cyprazole, dibenzyluron, dipropetryn,
		dymron, eglinazin-ethyl, endothall, ethiozin,

20

7

flucabazone, fluorbentranil, flupoxam, isocarbamid, isopropalin, karbutilate, mefluidide, monuron, napropamide, napropanilide, nitralin, oxaciclomefone, phenisopham, piperophos, procyazine, profluralin, pyributicarb, secbumeton, sulfallate (CDEC), terbucarb, triaziflam, triazofenamid or trimeturon;

or their environmentally compatible salts.

- 10 Of particular importance are the following herbicides which can be used in combination with the 3-heterocyclyl-substituted benzoly [sic] derivatives of the formula I according to the present invention:
- 15 Bl acetyl-CoA carboxylase inhibitors (ACC), for example
 - cyclohexenone oxime ethers, such as alloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim, tralkoxydim, butroxydim, clefoxydim or tepraloxydim;
 - phenoxyphenoxypropionic esters, such as clodinafop-propargyl (and, if appropriate, cloquintocet), cyhalofop-butyl, diclofop-methyl, fenoxaprop-ethyl,

fenoxaprop-P-ethyl, fenthiaprop-ethyl, fluazifop-butyl, fluazifop-P-butyl, haloxyfop-ethoxyethyl,

- haloxyfop-methyl, haloxyfop-P-methyl, isoxapyrifop, propaquizafop, quizalofop-ethyl, quizalofop-P-ethyl or quizalofop-tefuryl; or
 - arylaminopropionic acids, such as flamprop-methyl or flamprop-isopropyl;
- 30 B2 acetolactate synthase inhibitors (ALS), for example
 - imidazolinones, such as imazapyr, imazaquin, imazamethabenz-methyl (imazame), imazapic, imazethapyr or imazamethapyr;
- pyrimidyl ethers, such as pyrithiobac-acid,
 pyrithiobac-sodium, bispyribac-sodium, KIH-6127 or pyribenzoxym;
 - sulfonamides, such as flumetsulam or metosulam; or
- sulfonylureas, such as amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, halosulfuron-methyl, imazosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron-methyl, prosulfuron, primisulfuron-methyl, pri
- primisulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron-methyl, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, triflusulfuron-methyl, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-

8

yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide, sulfosulfuron or idosulfuron;

- B3 amides, for example
- allidochlor (CDAA), benzoylprop-ethyl, bromobutide, chlorthiamid, diphenamid, etobenzanid (benzchlomet), fluthiamide, fosamine or monalide;
- B4 auxin herbicides, for example
- pyridinecarboxylic acids, such as clopyralid or picloram; or
 - 2,4-D or benazolin;
- B5 auxin transport inhibitors, for example
- 15 naptalame or diflufenzopyr;
 - B6 carotenoid biosynthesis inhibitors, for example
 - benzofenap, clomazone (dimethazone), diflufenican, fluorochloridone, fluridone, pyrazolynate, pyrazoxyfen, isoxaflutole, isoxachlortole, mesotrione, sulcotrione (chlormesulone), flurtamone, norflurazon or amitrol;
 - B7 enolpyruvylshikimate 3-phosphate synthase inhibitors (ESPS), for example
- 25 glyphosate or sulfosate;
 - B8 glutamine synthetase inhibitors, for example
 - bilanafos (bialaphos) or glufosinate-ammonium;
- 30 anilides, such as anilofos or mefenacet;
 - chloracetanilides, such as dimethenamid, S-dimethenamid, acetochlor, alachlor, butachlor, butenachlor, diethatyl-ethyl, dimethachlor, metazachlor, metolachlor, S-metolachlor, pretilachlor, propachlor, prynachlor,
- terbuchlor, thenylchlor or xylachlor;
 - thioureas, such as butylate, cycloate, di-allate, dimepiperate, EPTC, esprocarb, molinate, pebulate, prosulfocarb, thiobencarb (benthiocarb), tri-allate or vernolate; or
- 40 benfuresate or perfluidone;
 - B10 mitosis inhibitors, for example
- carbamates, such as asulam, carbetamide, chlorpropham, orbencarb, pronamide (propyzamide), propham or thiocarbazil;

- dinitroanilines, such as benefin, butralin, dinitramine, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine or trifluralin;
- pyridines, such as dithiopyr or thiazopyr; or
- 5 butamifos, chlorthal-dimethyl (DCPA) or maleic hydrazide;
 - Bl1 protoporphyrinogen IX oxidase inhibitors, for example
 - diphenyl ethers, such as acifluorfen, acifluorfen-sodium, aclonifen, bifenox, chlornitrofen (CNP), ethoxyfen,
- fluorodifen, fluoroglycofen-ethyl, fomesafen, furyloxyfen, lactofen, nitrofen, nitrofluorfen or oxyfluorfen;
 - oxadiazoles, such as oxadiargyl or oxadiazon;
 - cyclic imides, such as azafenidin, carfentrazone-ethyl,
- cinidon-ethyl, flumiclorac-pentyl, flumioxazin, flumipropyn, flupropacil, fluthiacet-methyl, sulfentrazone or thidiazimin; or
 - pyrazoles, such as ET-751, JV 485 or nipyraclofen;
- 20 B12 photosynthesis inhibitors, for example
 - propanil, pyridate;
 - benzothiadiazinones, such as bentazon;
 - dinitrophenols, such as bromofenoxim, dinoseb, dinoseb-acetate, dinoterb or DNOC;
- 25 dipyridylenes, such as cyperquat-chloride,
 - difenzoquat-methylsulfate, diquat or paraquat-dichloride; ureas, such as chlorbromuron, chlorotoluron, difenoxuron,
 - dimefuron, diuron, ethidimuron, fenuron, fluometuron, isoproturon, isouron, linuron, methabenzthiazuron,
- methazole, metobenzuron, metoxuron, monolinuron, neburon, siduron or tebuthiuron;
 - phenols, such as bromoxynil or ioxynil;
 - chloridazon;
- triazines, such as ametryn, atrazine, cyanazine,
- desmetryn, dimethamethryn, hexazinone, prometon, prometryn, propazin, simazine, simetryn, terbumeton, terbutryn, terbutylazine or trietazine;
 - triazinones, such as metamitron or metribuzin;
 - uracils, such as bromacil, lenacil or terbacil; or
- 40 biscarbamates, such as desmedipham or phenmedipham;
 - B13 synergists, for example
 - oxiranes, such as tridiphane;
- 45 Bl4 growth substances, for example

- aryloxyalkanoic acids, such as 2,4-DB, clomeprop, dichlorprop, dichlorprop-P (2,4-DP-P), fluoroxypyr, MCPA, MCPB, mecoprop, mecoprop-P or triclopyr;
- benzoic acids, such as chloramben or dicamba; or
- 5 quinolinecarboxylic acids, such as quinclorac or quinmerac;

B15 cell wall synthesis inhibitors, for example isoxaben or dichlobenil;

10

25

B16 various other herbicides, for example

- dichloropropionic acids, such as dalapon;
- dihydrobenzofurans, such as ethofumesate;
- phenylacetic acids, such as chlorfenac (fenac); or
- 15 aziprotryn, barban, bensulide, benzthiazuron, benzofluor, buminafos, buthidazole, buturon, cafenstrole, chlorbufam, chlorfenprop-methyl, chloroxuron, cinmethylin, cumyluron, cycluron, cyprazine, cyprazole, dibenzyluron, dipropetryn, dymron, eglinazin-ethyl, endothall, 20 ethiozin, flucabazone, fluorbentranil, flupoxam, isocarbamid, isopropalin, karbutilate, mefluidide, monuron, napropamide, napropanilide, nitralin, oxaciclomefone, phenisopham, piperophos, procyazine, profluralin, pyributicarb, secbumeton, sulfallate (CDEC),

terbucarb, triazofenamid or trimeturon; or their environmentally compatible salts.

The 3-heterocyclyl-substituted benzoyl derivatives of the formula 30 I are disclosed in WO 96/26206, WO 97/41116, WO 97/41117 and WO 97/41118.

They can exist, or be used, in the form of the pure enantiomers and also as racemates or diastereomer mixtures. The

- 35 3-heterocyclyl-substituted benzoyl derivatives of the formula I and the herbicidally active compounds from amongst groups B1 to B16 may also exist in the form of their environmentally compatible salts. Suitable salts are, in general, the salts of those cations, or the acid addition salts of those acids, whose
- 40 cations, or anions, respectively, do not adversely affect the herbicidal action of the active ingredients.

Suitable cations are, in particular, ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth 45 metals, preferably calcium and magnesium, and of the transition metals, preferably manganese, copper, zinc and iron, and also ammonium, it being possible in this case, if desired, for one to four hydrogen atoms to be replaced by C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, 5 tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy)eth-1-yl ammonium, di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C₁-C₄-alkyl)sulfonium and sulfoxonium ions, preferably, 10 tri(C₁-C₄-alkyl)sulfoxonium.

Anions of suitable acid addition salts are mainly chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and the anions of C₁-C₄-alkanoic acids, preferably formate, acetate, propionate and butyrate.

- The herbicidally active compounds from amongst groups Bl to Bl6 are described, for example, in
 - "Herbizide [Herbicides]", Hock, Fedtke, Schmidt, 1st edition, Thieme 1995 (s. "quinclorac" p. 238, "molinat" p. 32,
- "butachlor" p. 32, "pretilachlor" p. 32, "dithiopyr" p. 32, "mefenacet" p. 32, "fenoxapropethyl" p. 216, "dimepiperate" p. 32, "pyrazolynate" p. 146, "pyrazoxyfen" p. 146, "bensulfuronmethyl" p. 31, "pyrazosulfuron-ethyl" p. 31, "cinosulfuron" p. 31, "benfuresate" p. 233, "bromobutide"
- p. 243, "dymron" p. 243, "dimethyametryn" p. 118, "esprocarb" p. 229, "pyributicarb" p. 32, "cinemthylin" p. 32, "propanil" p. 32, "2,4-D" p. 30, "bentazon" p. 30, "azimsulfuron (DPX-A-8947)" p. 175, "mecoprop-P" p. 237, "chlorpropham" p. 205, "ethoxyfen" p. 30, "haloxyfop-P-methyl" p. 38,
- "haloxyfop-ethoxyethyl" p. 38, "flumiclorac-pentyl" p. 35, "flupropacil" p. 143, "nipyraclofen" p. 145, "metosulam" p. 33, "ethametsulfuron-methyl" p. 36, "thifensulfuron-methyl" p. 35, "pyrithiobac acid" p. 181);
- "Agricultural Chemicals", Book II Herbicides, 1993 (s.
 "thiobencarb" p. 85, "benzofenap" p. 221, "napropanilid"
 p. 49, "piperophos" p. 102, "anilofos" p. 241, "imazosulfuron
 (TH-913)" p. 150, "etobenzamid (HW-52)" p. 54, "sulcotrione
 (ICIA-0051)" p. 268, "poast" p. 253, "focus" p. 222,
- "dimethenamid" p. 48, "sulfosate" p. 236, "2,4-DB" p. 10,
 "dichlorprop-P" p. 6, "flupoxam" p. 44, "prosulfocarb" p. 84,
 "quinmerac" p. 233, "metazachlor" p. 64, "flurtamone" p. 265,

"bromofenoxim" p. 228, "fomesafen" p. 248,

"imazamethabenz-methyl" p. 153, "clodinafop-propargyl"
p. 214, "fenoxaprop-P-ethyl" p. 208, "fluazifop-P-butyl"
p. 207, "quizalofop-P-ethyl" p. 210, "quizalofop-terfuryl"
p. 211, "flumioxazin" p. 43, "flumipropyn" p. 267,

"sulfentrazone" p. 261, "thiazopyr" p. 226,

"pyrithiobac-sodium" p. 266, "flumetsulam" p. 227,

"amidosulfuron" p. 151, "halosulfuron-methyl" p. 148,

"rimsulfuron" p. 138, "tribenuron-methyl" p. 139,

"triflusulfuron-methyl" p. 137, "primisulfuron-methyl"
p. 147);

- "Agricultural Chemicals", Book II Herbicides, 13th Edition (s.
 "carfenstole" p. 284, "sulfosulfuron" p. 145,
 "ethoxysulfuron" p. 149, "pyribenzoxym" p. 279,
 "diflufenzopyr" p. 90, "ET-751" p. 278, "carfentrazone-ethyl"
 p. 267, "fluthiacet-methyl" p. 277, "imazapic" p. 160,
 "butenachlor" p. 54, "tiocarbazil" p. 84, "fluthiamide"
 p. 62, "isoxaflutole" p. 283, "butroxydim" p. 259,)
- "Short Review of Herbicides & PGRs 1991, Hodogaya Chemicals (s. "furyloxyfen" p. 142, "triazofenamid" p. 268, "thenylchlorid (NSK-850)" p. 52, "cumyluron (JC-940)" p. 90, "pendimethalin (AC-92553)" p. 58, "buthidazole" p. 88, 25 "cyprazole" p. 38, "allidochlor" p. 48, "benzoylprop-ethyl" p. 38, "chlorthiamid" p. 150, "diphenamid" p. 34, "flamprop-methyl" p. 40, "fosamin" p. 232, "isoxaben" p. 42, "monalide" p. 32, "naptalam" p. 36, "pronamid" p. 34, "bialaphos" p. 234, "glufosinate-ammonium" p. 234, 30 "glyphosate" p. 232, "amitrol" p. 254, "clomeprop p. 20, "dichlorprop" p. 6, "fenoprop" p. 8, "fluroxypyr" p. 156, "MCPA" p. 4, "MCPB" p. 8, "mecoprop" p. 6, "napropamide" p. 16, "triclopyr" p. 154, "chloramben" p. 28, "dicamba" p. 26, "clomazone" p. 268, "diflufenican" p. 42, 35 "fluorochloridone" p. 266, "fluridone" p. 156, "asulam" p. 112, "barban" p. 100, "butylate" p. 106, "carbetamide" p. 36, "chlorobufam" p. 100, "cycloate" p. 108, "desmedipham" p. 104, "di-allate" p. 106, "EPTC" p. 108, "orbencarb"
- p. 112, "pebulate" p. 106, "phenisopham" p. 118,
 "phenmedipham" p. 104, "propham" p. 100, "sulfallate" p. 110,
 "terbucarb" p. 102, "tri-allate" p. 108, "vernolate" p. 108,
 "acetochlor" p. 48, "alachlor" p. 46, "diethathyl-ethyl"
 p. 48, "dimethachlor" p. 50, "metolachlor" p. 46,
 "propachlor" p. 44, "pyrnachlor" p. 44, "terbuchlor" p. 48,
- "xylachlor" p. 52, "alloxydim" p. 260, "clethodim" p. 270, "cloproxydim" p. 268, "tralkoxydim" p. 270, "dalapon" p. 212, "ethofumesate" p. 124, "benefin" p. 54, "butralin" p. 58,

"dinitramin" p. 56, "ethalfluralin" p. 60, "fluchloralin" p. 54, "isopropalin" p. 58, "nitralin" p. 58, "oryzalin" p. 60, "prodiamine" p. 62, "profluralin" p. 54, "trifluralin" p. 54, "dinoseb" p. 128, "dinoseb-acetate" p. 128, "dinoterb" p. 128, "DNOC" p. 126, "acifluorfen-sodium" p. 142, 5 "aclonifen" p. 146, "bifenox" p. 140, "chlornitrofen" p. 138, "difenoxuron" p. 76, "fluorodifen" p. 138, "fluoroglycofen-ethyl" p. 146, "lactofen" p. 144, "nitrofen" p. 136, "nitrofluorfen" p. 140, "oxyfluorfen" p. 140, "cyperquat-chloride" p. 158, "difenzoquat-methylsulfate" 10 p. 160, "diquat" p. 158, "paraquat-dichloride" p. 158, "benzthiazuron" p. 82, "buturon" p. 66, "chlorbromuron" p. 72, "chloroxuron" p. 76, "chlorotoluron" p. 74, "cycluron" p. 84, "dimefuron" p. 88, "diuron" p. 70, "ethidimuron" 15 p. 86, "fenuron" p. 64, "fluometuron" p. 68, "isoproturon" p. 80, "isouron" p. 88, "karbutilate" p. 76, "linuron" p. 72, "methabenzthiazuron" p. 82, "metoxuron" p. 72, "monolinuron" p. 66, "monuron" p. 64, "neburon" p. 72, "siduron" p. 68, "tebuthiuron" p. 86, "trimeturon" p. 64, "isocarbamid" p. 168, "imazamethapyr" p. 172, "imazapyr" p. 170, 20 "imazaquin" p. 170, "imazethapyr" p. 172, "methazole" p. 162, "oxadiazon" p. 162, "tridiphane" p. 266, "bromoxynil" p. 148, "ioxynil" p. 148, "diclofop-methyl" p. 16, "fenthiaprop-ethyl" p. 20, "fluazifop-butyl" p. 18, "haloxyfop-methyl" p. 18, "isoxapyrifop" p. 22, 25 "propaquizafop" p. 24, "quizalofop-ethyl" p. 20, "chlorfenac" p. 258, "chlorfenprop-methyl" p. 258, "chloridazon" p. 174, "maleic hydrazide" p. 162, "norflurazon" p. 174, "pyridate" p. 176, "clopyralid" p. 154, "picloram" p. 154, 30 "chlorimuron-ethyl" p. 92, "chlorsulfuron" p. 92, "flazasulfuron" p. 96, "metsulfuron-methy1" S.92, "nicosulfuron" p. 96, "sulfometuron-methyl" p. 92, "triasulfuron" p. 94, "ametryn" p. 198, "atrazine" p. 188, "aziprotryne" p. 206, "cyanazine" p. 192, "cyprazine" p. 192, 35 "desmetryne" p. 200, "dipropetryn" p. 202, "eglinazine-ethyl" p. 208, "hexazinone" p. 208, "procyazine" p. 192, "prometone" p. 196, "prometryn" p. 196, "propazine" p. 188, "secbumeton" p. 196, "simazine" p. 188, "simetryn" p. 196, "terbumeton" p. 204, "terbutryn" p. 198, "terbutylazine" p. 190, "trietazine" p. 188, "ethiozine" p. 210, "metamitron" p. 206, 40 "metribuzin" p. 202, "bromacil" p. 180, "lenacil" p. 180, "terbacil" p. 180, "benazolin" p. 262, "bensulide" p. 228, "benzofluor" p. 266, "butamifos" p. 228, "DCPA" p. 28, "dichlobenil" p. 148, "endothal" p. 264, "mefluidide" p. 306, 45 "perfluidone" p. 260, "terbuchlor" p. 48);

- "Global Herbicide Directory" First Edition, 1994 (s. "oxadiargyl" p. 96);
- "European Directory of Agrochemical Products" Volume 2 Herbicides" Fourth Edition, (s. "buminafos" p. 255).

Moreover, the compound "DEH-112" is disclosed in European Patent Application EP-A 302 203. The compound "tepraloxydim" is described in DE-A 33 36 140; the compound "cinidon-ethyl" in DE-A 36 03 789 and the compound "fluorbentranil" in EP-A 84 893. Other compounds are known from "Brighton Crop Protection Conference - Weeds - 1993 (S. "thidiazimin" p. 29, "AC-322140" p. 41, "KIH-6127" p. 47, "prosulfuron" p. 53, "KIH-2023" p. 61, "metobenguron" p. 67, "Fig. 47, "metobenguron" p. 67, "Fig. 48, "Fig

- "metobenzuron" p. 67). The compound "carfenstrole (CH-900)" is mentioned in EP-A 332 133, and the compound N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]-carbonyl]-2-(trifluoromethylbenzenesulfonamide) is described in PCT/EP 96/03996.
- The assignment of the active ingredients to the respective mechanisms of action is based on current knowledge. If several mechanisms of action apply to one active ingredient, this substance was only assigned to one mode of action.

Preferred with regard to the synergistic herbicidal action of the mixtures according to the invention are those 3-heterocyclyl-substituted benzoyl derivatives of the formula I in which the variables have the following meanings, either alone 30 or in combination:

- R1 halogen, C₁-C₆-alkyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl or C₁-C₆-alkylsulfonyl;
- especially preferably halogen, such as chlorine or bromine, C_1 - C_6 -alkyl, such as methyl or ethyl, or C_1 - C_6 -alkylsulfonyl, such as methylsulfonyl or ethylsulfonyl; very particularly preferably chlorine, methyl or methylsulfonyl;
- a heterocyclic radical selected from the group:
 isoxazol-3-yl, isoxazol-5-yl and 4,5-dihydroisoxazol-3-yl, it
 being possible for the three radicals mentioned to be
 unsubstituted or mono- or polysubstituted by halogen,
 C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkyl, C1-C4-haloalkoxy or
 C1-C4-alkylthio;
- especially preferably isoxazol-5-yl, 3-methyl-isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl, 5-methyl-4,5-dihydroisoxazol-yl, 5-ethyl-4,5-dihydroisoxazol-3-yl or

- 4,5-dimethyl-4,5-dihydroisoxazol-3-yl; also preferred is a heterocyclic radical selected from the group: thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-4-yl, 4,5-dihydroisoxazol-4-yl and
- 4,5-dihydroisoxazol-5-yl, it being possible for the six radicals mentioned to be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;
- 10 R³ halogen, C₁-C₆-alkyl, C₁-C₆-alkylthio, C₁-C₆-alkylsulfinyl or C₁-C₆-alkylsulfonyl; especially preferably halogen, such as chlorine or bromine, C₁-C₆-alkylthio, such as methylthio or ethylthio, C₁-C₆-alkylsulfinyl, such as methylsulfinyl or ethylsulfinyl, or C₁-C₆-alkylsulfonyl, such as methylsulfonyl or ethylsulfonyl; very particularly preferably chlorine, methylsulfonyl or ethylsulfonyl;
- R⁴ hydrogen or methyl; especially preferably hydrogen;
- is C₁-C₆-alkyl, such as methyl, ethyl, propyl, 1-methylethyl,
 butyl, 1-methylpropyl or 2-methylpropyl;
 especially preferably methyl, ethyl or 1-methylethyl;
- R⁶ hydrogen or C₁-C₆ alkyl, such as methyl or ethyl; especially preferably hydrogen or methyl.
 30

Very particularly preferred are those 3-heterocyclyl-substituted benzoyl derivatives of the formula Ia, in particular the compounds Ia.1 to Ia.53, which are mentioned in Table 1 which follows:

40

Table 1

R⁵,NOH R¹

la

	No.	R ¹	R ²	R ³	R ⁴	R ⁵	R6
10	la.1	Ci	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	CH ₃
	Ja.2	CI	4,5-dihydroisoxazol-3-yl	Cl	Н	CH ₃	CH ₃
	Ia.3	Cl	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	H	CH ₃	H
	la.4	CI	4,5-dihydro-5-methylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	H
	Ia.5	Cl	4,5-dihydro-5,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	H
15	la.6	Cl	4,5-dihydro-5-ethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	la.7	C1	4,5-dihydro-5,5-diethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	Ia.8	Cl	4,5-dihydro-5-chloromethylisoxazol-3-yl	SO ₂ CH ₃	н	CH ₃	Н
	Ia.9	Cl	4,5-dihydroisoxazol-3-yl	SCH ₃	Н	CH ₃	Н
20	la.10	Cl	4,5-dihydro-5-ethoxyisoxazol-3-yl	SO ₂ CH ₃	H	CH ₃	Н
	Ia.11	CI	4,5-dihydro-5-methoxyisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	la.12	CI	4,5-dihydro-4,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	la.13	Cl	4,5-dihydro-5-thioethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	Ia.14	Cl	4,5-dihydro-5-trifluoromethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
25	Ia.15	SCH ₃	4,5-dihydroisoxazol-3-yl	SCH ₃	н	CH ₃	Н
	Ia.16	CI	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	Ia.17	CI	4,5-dihydroisoxazol-3-yl	CI	Н	C ₂ H ₅	Н
	la.18	CI.	4,5-dihydro-5-methylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
30	la.19	Cl	4,5-dihydro-5,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.20	Cl	4,5-dihydro-5-ethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	Ia.21	CI	4,5-dihydro-5,5-diethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.22	Cl	4,5-dihydroisoxazol-3-yl	SCH ₃	Н	C ₂ H ₅	Н
	Ia.23	CI	4,5-dihydro-5-chloromethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
35	Ia.24	CI	4,5-dihydroisoxazol-3-yl	SOCH ₃	Н	C ₂ H ₅	Н
	Ia.25	CI	4,5-dihydro-5-ethoxyisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.26	Cl	4,5-dihydro-4,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
į	la.27	Cl	4,5-dihydro-5-thioethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
40	la.28	Cl	4,5-dihydro-5-trifluoromethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.29	SCH ₃	4,5-dihydroisoxazol-3-yl	SCH ₃	Н	C ₂ H ₅	Н
.	Ia.30	Cl	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	i-C ₄ H ₉	Н
	la.31	CH ₃	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	CH ₃
	la.32	CH ₃	4,5-dihydroisoxazol-3-yl	Cl	Н	CH ₃	CH ₃
45	Ia.33	CH ₃	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
1	Ia.34		4,5-dihydro-5-methylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	la.35	CH ₃	4,5-dihydro-5,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	СН3	Н

40

45

	No.	R ¹	R ²	R ³	R ⁴	R ⁵	R6
	Ia.36	CH ₃	4,5-dihydro-5-ethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	H
	Ia.37	CH ₃	4,5-dihydro-5,5-diethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
5	Ia.38	CH ₃	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	la.39	CH ₃	4,5-dihydro-4,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	CH ₃	Н
	Ia.40	CH ₃	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.41	CH ₃	4,5-dihydroisoxazol-3-yl	Cl	Н	C ₂ H ₅	Н
	Ia.42	CH ₃	4,5-dihydro-5-methylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
10	Ia.43	CH ₃	4,5-dihydro-5,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	H
	Ia.44	CH ₃	4,5-dihydro-5-ethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	Ia.45	CH ₃	4,5-dihydro-5-diethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	Ia.46	CH ₃	4,5-dihydro-4,5-dimethylisoxazol-3-yl	SO ₂ CH ₃	Н	C ₂ H ₅	H
15	Ia.47	CH ₃	4,5-dihydroisoxazol-3-yl	SO ₂ CH ₃	Н	i-C ₄ H ₉	Н
	Ia.48	Cl	2-thiazolyl	SO ₂ CH ₃	Н	CH ₃	CH ₃
	Ia.49	Ci	2-thiazolyl	SO ₂ CH ₃	Н	CH ₃	H
20	Ia.50	C	2-thiazolyl	SO ₂ CH ₃	Н	C ₂ H ₅	Н
	la.51	CH ₃	2-thiazolyl	SO ₂ CH ₃	H	CH ₃	CH ₃
	Ia.52	Cl	3-methylisoxazol-5-yl	SO ₂ CH ₃	Н	CH ₃	Н
	Ia.53	Cl	3-methylisoxazol-5-yl	SO ₂ CH ₃	Н	C ₂ H ₅	Н

Also very particularly preferred are the compounds Ib, in particular the compounds 1b.1 to 1b.53, which differ from the compounds Ia.1 to Ia.53 only by the fact that they are present as the sodium salt:

Also very particularly preferred are the compounds Ic, in particular the compounds Ic.1 to Ic.53, which differ from the compounds Ia.1 to Ia.53 only by the fact that they are present as the lithium salt:

Also very particularly preferred are the compounds Id, in particular the compounds Id.1 to Id.53, which differ from the compounds Ia.1 to Ia.53 only by the fact that they are present as the potassium salt:

5

$$\begin{array}{c|c}
R^6 & O & R^1 \\
N & & & R^2 \\
R^5 & O & & R^3
\end{array}$$
Id

10

Also very particularly preferred are the compounds Ie, in particular the compounds Ie.1 to Ie.53, which differ from the compounds Ia.1 to Ia.53 only by the fact that they are present as the ammonium salt:

20

- Very particularly preferred are, especially, the compounds
 1a, especially the compounds Ia.1 to Ia.53.
 - Very particularly preferred are, moreover, the 3-heterocyclyl substituted benzoyl derivatives of the formula I where
- is a heterocyclic radical selected from amongst the group:
 thiazol-2-yl, thiazol-4-yl and thiazol-5-yl, it being
 possible for the three radicals mentioned to be unsubstituted
 or mono- or polysubstituted by halogen, C₁-C₄-alkyl,
 C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or
 C₁-C₄-alkylthio.

35

Very particularly preferred are, especially, the 3-heterocyclyl-substituted benzoyl derivatives of the formula I, where ${\sf R}^4$ is hydrogen.

40

- Very particularly preferred are, moreover, the 3-heterocyclyl substituted benzoyl derivatives of the formula I where
 - R² is a heterocyclic radical selected from the group:

isoxazol-3-yl, isoxazol-4-yl and isoxazol-5-yl, it being possible for the three radicals mentioned to be unsubstituted or mono- or polysubstituted by halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkyl, C_1-C_4 -haloalkoxy or C_1-C_4 -alkylthio.

Very particularly preferred are, especially, the 3-heterocyclyl-substituted benzoyl derivatives of the formula I, where

- R² is isoxazol-3-yl which can be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio.

 R⁴ is hydrogen.
- Very especially preferred are also in particular the 3-heterocyclyl-substituted benzoyl derivatives of the formula I where
- R² is isoxazol-5-yl, which can be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio; R⁴ is hydrogen.
- Most particularly preferred is

 4-[2-chloro-3-(3-methyl-isoxazol-5-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.
- Very particularly preferred are, moreover, the
 3-heterocyclyl-substituted benzoyl derivatives of the formula
 I where
- is a heterocyclic radical selected from the group:

 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and
 4,5-dihydroisoxazol-5-yl, it being possible for the three
 radicals mentioned to be unsubstituted or mono- or
 polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy,
 C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio.
- Very particularly preferred are, especially, the
 3-heterocyclyl-substituted benzoyl derivatives of the
 formula I where

40

20

- R² is 4,5-dihydroisoxazol-3-yl which can be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio; and
- 5 R4 is hydrogen.

Most particularly preferred are the 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

- R^1 is halogen or C_1-C_6 -alkyl; and
- R^3 is C_1-C_6 -alkylsulfonyl.
- Most especially preferred is

 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

Most particularly preferred is also

4-[2-methyl-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

With a view to the synergistic herbicidal action of the mixtures according to the invention, compounds from amongst groups B1 to 25 B14 or B16, preferably from amongst groups B1 to B14, are preferred as component B).

In particular, compounds from amongst the classes of active ingredients mentioned below are preferred, or the following 30 compounds are very particularly preferred:

- Bl acetyl-CoA carboxylase inhibitors (ACC):
- cyclohexenone oxime ethers, in particular cycloxydim,
 sethoxydim or tralkoxydim, preferably sethoxydim or tralkoxydim; or
 - phenoxyphenoxypropionic esters, in particular clodinafop-propargyl (and, if appropriate, cloquintocet), fenoxaprop-ethyl or fenoxaprop-P-ethyl, preferably clodinafop-propargyl (and, if appropriate, cloquintocet) or fenoxaprop-p-ethyl [sic];
 - B2 / acetolactate synthase inhibitors (ALS):
- imidazolinones, in particular imazapyr, imazaquin, imazamethabenz, imazethapyr or imazamoc, preferably imazapyr;
 - pyrimidyl ethers, in particular pyrithiobac sodium;

- sulfonamides, in particular florasulam, flumetsulam or metosulam, preferably metosulam; or
- sulfonylureas, in particular halosulfuron-methyl, nicosulfuron, primisulfuron-methyl, prosulfuron, rimsulfuron, thifensulfuron-methyl, tribenuron-methyl, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide or sulfosulfuron:

10 B3 amides:

- fluthiamide;
- B4 auxin herbicides:
 - pyridinecarboxylic acids, in particular clopyralid; or
- -15 2,4-D;
 - B5 auxin transport inhibitors:
 - diflufenzopyr;
 - B6 carotenoid biosynthesis inhibitors:
- 20 isoxaflutole, mesotrione, isoxachloride, ketospiradox or sulcotrione (chlormesulone), in particular isoxaflutole or sulcotrione;
- - B8 glutamin synthetase inhibitors:
 - glufosinate-ammonium;
- 30 B9 lipid biosynthesis inhibitors:
 - chloroacetanilides, in particular dimethenamid,
 S-dimethenamid, acetochlor, metolachlor or S-metolachlor,
 - thioureas, in particular benthiocarb;
- 35 B10 mitosis inhibitors:
 - dinitroanilines, in particular pendimethalin;
 - Bll protoporphyrinogen IX oxidase inhibitors:
- diphenyl ethers, in particular acifluorfen or acifluorfen-sodium;
 - oxadiazoles, in particular oxadiargyl; or
 - cyclic imides, in particular butafenacil, carfentrazone-ethyl, cinidon-ethyl or flumiclorac-pentyl, preferably carfentrazone-ethyl, cinidon-ethyl or
- 45 flumidorac-pentyl;
 - pyrazoles, in particular JV 485;

B12 photosynthesis inhibitors:

- pyridate or pyridafol, in particular pyridate;
- benzothiadiazinones, in particular bentazone;
- dipyridylenes, in particular paraquat-dichloride;
- 5 ureas, in particular diuron or isoproturon, preferably diuron;
 - phenols, in particular bromoxynil;
 - chloridazone;
 - triazines, in particular atrazine or terbutylazine; or
- 10 triazinones, in particular metribuzin;

B13 synergists:

oxiranes, in particular tridiphane;

15 B14 growth substances:

- aryloxyalkanoic acids, in particular fluoroxypyr, MCPA or mecoprop-P;
- benzoic acids, in particular dicamba; or
- quinolinecarboxylic acids, in particular quinclorac;

20

Bl6 various other herbicides:

triaziflam.

Also preferred as component B) are compounds from amongst the groups B1, B2, B4 to B12 and B14.

In particular, compounds from amongst the classes of active ingredients mentioned below are preferred, or the following compounds are very particularly preferred:

- B1 acetyl-CoA carboxylase inhibitors (ACC):
 - cyclohexenone oxime ethers, in particular cycloxydim or sethoxydim;

40 B2 acetolactate synthase inhibitors (ALS):

- imidazolinones, in particular imazapyr, imazaquin, imazamethabenz or imazethapyr, preferably imazapyr;
- pyrimidyl ethers, in particular pyrithiobac-sodium;
- sulfonamides, in particular flumetsulam or metosulam,
 preferably metosulam; or

- sulfonylureas, in particular halosulfuron-methyl, nicosulfuron or N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide, preferably nicosulfuron or N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide;
- B4 auxin herbicides:

-2,4-D;

10

5

- B5 auxin transport inhibitors:
 - diflufenzopyr;

B6 carotenoid biosynthesis inhibitors:

- 15 isoxaflutole or sulcotrione, preferably isoxaflutole;
- 20 B8 glutamine synthetase inhibitors:
 - glufosinate-ammonium;
 - B9 lipid biosynthesis inhibitors:
- chloracetanilide, in particular dimethenamid,
 S-dimethenamid, acetochlor, metolachlor or S-metolachlor;
 - thioureas, in particular benthiocarb;
 - B10 mitosis inhibitors:
 - dinitroaniline, in particular pendimethalin;

30

- Bll protoporphyrinogen IX oxidase inhibitors:
 - diphenyl ethers, in particular acifluorfen;
 - cyclic imides, in particular carfentrazone-ethyl or cinidon-ethyl, preferably carfentrazone-ethyl;

- B12 photosynthesis inhibitors:
 - pyridate;
 - benzothiadiazinones, in particular bentazone;
 - dipyridylenes, in particular paraquat-dichloride;
- 40 ureas, in particular diuron or isobroturon, preferably diuron;
 - phenols, in particular bromoxynil;
 - chloridazon;
 - triazines, in particular atrazine or terbutylazine; or
- 45 triazinones, in particular metribuzin;

B14 growth substances:

- aryloxyalkanoic acids, in particular MCPA;
- benzoic acids, in particular dicamba;
- quinolinecarboxylic acids, in particular quinclorac.

5

The following embodiments are especially preferred with a view to the synergistic herbicidal action of the mixtures according to the invention:

- In a particular embodiment, the synergistic herbicidal mixture according to the invention comprises, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I, where
- is a heterocyclic radical selected from the group:
 isoxazol-3-yl, isoxazol-5-yl and
 4,5-dihydroisoxazol-3-yl, the three radicals mentioned
 being unsubstituted or mono- or polysubstituted by
 halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl,
 C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;
- in particular isoxazol-5-yl, 3-methyl-isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl, 5-methyl-4,5-dihydroisoxazol-3-yl, 5-ethyl-4,5-dihydroisoxazol-3-yl or 4,5-dimethyl-4,5-dihydroisoxazol-3-yl;
- 25 and,

as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B12 and B14; in particular clodinafop (and, if appropriate, cloquintocet), diflufenzopyr, imazethapyr, flumetsulam, pyrithiobac-sodium,

- nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]-carbonyl]-2-(trifluoromethyl)benzene-sulfonamide, clopyralid, 2,4-D, isoxaflutole, glyphosate, glufosinate-ammonium, dimethenamide, S-dimethenamide, acetochlor, metolachlor, S-metolachlor, pendimethalin,
- carfentrazone-ethyl, pyridate, bentazone, diuron, bromoxynil, atrazine, terbutylazine, metribuzine or dicamba.

Very particularly preferred are mixtures which comprise, as component A), 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

Very particularly preferred are also mixtures which comprise, as component A), 4-[2-methyl-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

45

40

Very particularly preferred are also mixtures which comprise, as component A), 4-[2-chloro-3-(3-methyl-isoxazol-5-yl)-4-methylsulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

- 5 In another particular embodiment, the synergistic herbicidal mixture according to the invention comprises, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I where
- is a heterocyclic radical selected from the group:
 thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-4-yl,
 4,5-dihydroisoxazol-4-yl and 4,5-dihydroisoxazol-5-yl, it
 being possible for the six radicals mentioned to be
 unsubstituted or mono- or polysubstituted by halogen,
 C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkyl,
- 15 C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;
 and, as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B12 and B14;
 in particular clodinafop (and, if appropriate, cloquintocet), diflufenzopyr, imazethapyr, flumetsulam, pyrithiobac-sodium, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]-carbonyl]-2-(trifluoromethyl)benzene-sulfonamide, clopyralid, 2,4-D, isoxaflutole, glyphosate, glufosinate-ammonium, dimethenamide, S-dimethenamide, acetochlor, metolachlor, S-metolachlor, pendimethalin, carfentrazone-ethyl, pyridate, bentazone, diuron, bromoxynil,
- In a further particular embodiment, the synergistic herbicidal mixture according to the invention comprises, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I where

atrazine, terbutylazine, metribuzine or dicamba.

is a heterocyclic radical selected from the group consisting of 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and 4,5-dihydroisoxazol-5-yl, where the three abovementioned radicals may be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

and as component B) at least one herbicidal compound from amongst the groups B1, B2, B4 to B12 and B14;

The synergistic herbicidal mixture according to the invention preferably comprises, as component B), at least one herbicidal compound from the following groups:

•	п

	26
	<pre>Bl acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers or phenoxypropionic esters;</pre>
5	B2 acetolactate synthase inhibitors (ALS): imidazolinones, pyrimidyl ethers, sulfonamides or sulfonylureas;
10	<pre>B4 auxin herbicides: pyridinecarboxylic acids or 2,4-D;</pre>
	B5 auxin transport inhibitors;
15	B6 carotenoid biosynthesis inhibitors;
	B7 enolpyruvylshikimate 3-phosphate synthase inhibitors;
20	B8 glutamine synthetase inhibitors;
•	B9 lipid biosynthesis inhibitors: chloroacetanilides or thioureas,
25	B10 mitosis inhibitors: dinitroanilines;
	Bl1 protoporphyrinogen IX oxidase inhibitors: diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;
30	Bl2 photosynthesis inhibitors: pyridate, pyridafol, benzothiadiazinone,
35	dipyridylene, ureas, phenols, chloridazon, triazines or triazinones, in particular pyridate, benzothinediazinone, dipyridylenes, ureas, phenols, chloridazon, triazines or triazinones;
40	B14 growth substances: aryloxyalkanoic acids, benzoic acids or quinolinecarboxylic acids.
45	In particular, the synergistic herbicidal mixture according to the invention comprises, as component B), at least one herbicidal compound from the group:

cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, 5 nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr, isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium, dimethenamid, S-metolachlor, 10 benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cinidon-ethyl, pyridate, bentazon, paraquat-dichloride, diuron, isoproturon, bromoxynil, chloridazon, atrazine, metribuzin, MCPA, dicamba and quinclorac. 15 Also preferably, the synergistic herbicidal mixture according to the invention comprises, as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B11 and B14; 20 In particular, the synergistic herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the following groups: 25 acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers or phenoxypropionic esters; acetolactate synthase inhibitors (ALS): **B**2 30 imidazolinones, pyrimidyl ethers, sulfonamides or sulfonylureas; B4 auxin herbicides: 2,4-D; 35 **B**5 auxin transport inhibitors; carotenoid biosynthesis inhibitors; **B**6 40 **B**7 enolpyruvylshikimate 3-phosphate synthase inhibitors; **B8** glutamine synthetase inhibitors; 45 В9 lipid biosynthesis inhibitors:

chloroacetanilides or thioureas,

_	_
7	ю
Z.	м

- B10 mitosis inhibitors:
 dinitroanilines;
- Bll protoporphyrinogen IX oxidase inhibitors: diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;
 - B14 growth substances:

 aryloxyalkanoic acid, benzoic acids or
 quinolinecarboxylic acids.

The synergistic herbicidal mixture particularly preferably comprises at least one herbicidal compound from amongst the group:

15

20

10

5

cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr, isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium, dimethenamid, S-metolachlor, benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cipidor-ethyl, MCPL, disambalant

- benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cinidon-ethyl, MCPA, dicamba and quinclorac.
- Also preferably, the synergistic herbicidal mixture according to the invention comprises, as component B), at least one herbicidal compound from amongst the group B12.

The synergistic herbicidal mixture according to the invention comprises in particular at least one herbicidal compound from amongst the group: propanil, pyridate, benzothiadiazinones, dinitrophenols, dipyridylenes, ureas, phenols, chloridazon, triazines, triazinones, uracils and biscarbamates.

Particularly preferably, the synergistic herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the group: pyridate, bentazone, paraquat-dichloride, diuron, isoproturon, bromoxynil, chloridazon, atrazine or metribuzin.

10

15

30

Also particularly preferably, the herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the group: propanil, pyridate, dinitrophenols, dipyridylenes, chloridazon, triazinones, uracils and biscarbamates.

particularly preferably, the synergistic herbicidal mixture according to the invention comprises at least one compound from amongst the group: pyridate, paraquat-dichloride, chloridazon or metribuzin.

- In a further particular embodiment, the synergistic herbicidal mixture according to the invention comprises, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I where
- is a heterocyclic radical selected from the group consisting of thiazol-2-yl, thiazol-4-yl and thiazol-5-yl, where the three abovementioned radicals may be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;
- and, as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B12 or B14;
 - The synergistic herbicidal mixture according to the invention preferably comprises, as component B), at least one herbicidal compound from the following groups:
 - B1 acetyl-CoA carboxylase inhibitors (ACC):
 cyclohexenone oxime ethers or phenoxypropionic
 esters;
- B2 acetolactate synthase inhibitors (ALS):
 imidazolinones, pyrimidyl ethers, sulfonamides or
 sulfonylureas;
- B4 auxin herbicides:
 40 pyridinecarboxylic acids or 2,4-D;
 - B5 auxin transport inhibitors;
 - B6 carotenoid biosynthesis inhibitors;

-	-
-2	п
-3	u

- B7 enolpyruvylshikimate 3-phosphate synthase inhibitors;
- B8 glutamine synthetase inhibitors;

- B9 lipid biosynthesis inhibitors: chloroacetanilides or thioureas,
- B10 mitosis inhibitors: dinitroanilines;
 - Bl1 protoporphyrinogen IX oxidase inhibitors: diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;

15

20

25

10

- B12 photosynthesis inhibitors: pyridate, pyridafol, benzothiadiazinones, dipyridylenes, ureas, phenols, chloridazon, triazines or triazinones, in particular pyridate, benzothiadiazinones, dipyridylenes, ureas, phenols, chloridazon, triazines or triazinones;
- B14 growth substances: aryloxyalkanoic acids, benzoic acids or quinolinecarboxylic acids.

In particular, the synergistic herbicidal mixture according to the invention comprises, as component B), at least one herbicidal compound from the group:

30

35

40

cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr, isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium, dimethenamid, S-metolachlor, benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cinidon-ethyl, pyridate, bentazon, paraquat-dichloride, diuron, isoproturon, bromoxynil, chloridazon, atrazine, metribuzin, MCPA, dicamba and

45

quinclorac.

5	Also preferably, the synergistic herbicidal mixture according to the invention comprises, as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B11 and B14;
	In particular, the synergistic herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the following groups:
10	B1 acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers or phenoxypropionic esters;
15	B2 acetolactate synthase inhibitors (ALS): imidazolinones, pyrimidyl ethers, sulfonamides or sulfonylureas;
20	B4 auxin herbicides: 2,4-D;
	B5 auxin transport inhibitors;
	B6 carotenoid biosynthesis inhibitors;
25	B7 enolpyruvylshikimate 3-phosphate synthase inhibitors;
	B8 glutamine synthetase inhibitors;
30	B9 lipid biosynthesis inhibitors: chloroacetanilides or thioureas,
35	B10 mitosis inhibitors: dinitroanilines;
	Bl1 protoporphyrinogen IX oxidase inhibitors: diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;
40	B14 growth substances: aryloxyalkanoic acid, benzoic acids or quinolinecarboxylic acids.
45	The synergistic herbicidal mixture particularly preferably comprises at least one herbicidal compound from amongst the groups

10

20

35

40

cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr, isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium, dimethenamid, S-metolachlor, benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cinidon-ethyl, MCPA, dicamba and quinclorac.

- Also preferably, the synergistic herbicidal mixture
according to the invention comprises, as component B), at
least one herbicidal compound from amongst the group B12.

The synergistic herbicidal mixture according to the invention comprises in particular at least one herbicidal compound from amongst the group: propanil, pyridate, benzothiadiazinone, dinitrophenols, dipyridylenes, ureas, phenols, chloridazone, triazines, triazinones, uracils and biscarbamates.

Particularly preferably, the synergistic herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the group: pyridate, bentazone, paraquat-dichloride, diuron, isoproturon, bromoxynil, chloridazon, atrazine or metribuzin.

Also particularly preferably, the herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the group: propanil, pyridate, dinitrophenols, dipyridylenes, chloridazon, triazinones, uracils and biscarbamates.

Particularly preferably, the synergistic herbicidal mixture according to the invention comprises at least one compound from amongst the group:

pyridate, paraquat-dichloride, chloridazon or metribuzin.

In a further particular embodiment, the synergistic herbicidal mixture according to the invention comprises, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I where

is a heterocyclic radical selected from the group consisting of isoxazol-3-yl, isoxazol-4-yl and isoxazol-5-yl, where the three abovementioned radicals may be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

and, as component B), at least one herbicidal compound from amongst the groups B1, B2, B4 to B12 or B14;

10

5

The synergistic herbicidal mixture according to the invention preferably comprises, as component B), at least one herbicidal compound from the groups B1, B2, B4 to B11 and B14;

15

In particular, the synergistic herbicidal mixture according to the invention comprises at least one herbicidal compound from the following groups:

20

- B1 acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers or phenoxypropionic esters;
- B2 acetolactate synthase inhibitors (ALS):

 imidazolinones, pyrimidyl ethers, sulfonamides or
 sulfonylureas;
 - B4 auxin herbicides:
 pyridinecarboxylic acids or 2,4-D;

30

- B5 auxin transport inhibitors;
- B6 carotenoid biosynthesis inhibitors;
- B7 enolpyruvylshikimate 3-phosphate synthase inhibitors;
 - B8 glutamine synthetase inhibitors;
- 40 B9 lipid biosynthesis inhibitors: chloroacetanilides or thioureas,
 - B10 mitosis inhibitors:
 dinitroanilines;

45

B11 protoporphyrinogen IX oxidase inhibitors:

10

15

20

35

34

diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;

B14 growth substances:
 aryloxyalkanoic acid, benzoic acids or
 quinolinecarboxylic acids.

Particularly preferably, the synergistic herbicidal mixture comprises at least one herbicidal compound from amongst the group:

cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr, isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium, dimethenamid, S-metolachlor, benthiocarb, pendimethalin, acifluorfen, carfentrazone-ethyl, cinidon-ethyl, MCPA, dicamba and quinclorac.

Also preferably, the herbicidal mixture according to the invention comprises at least one herbicidal compound from amongst the group:

propanil, pyridate, dinitrophenols, dipyridylenes, chloridazon, triazinones, uracils and biscarbamates.

In particular, the synergistic herbicidal mixture according to the invention comprises at least one compound from amongst the group: pyridate, paraquat-dichloride, chloridazon or metribuzin.

In a further particular embodiment, the synergistic herbicidal mixture comprises, as component A, a 3-heterocyclyl-substituted benzoyl derivative of the formula I and, as component B, a herbicidal compound. For particularly preferred embodiments, the preferences described above apply analogously.

• In a further particular embodiment, the synergistic herbicidal mixture comprises, as component A, a 3-heterocyclyl-substituted benzoyl derivative of the formula I and, as component B, two herbicidal compounds.

For particularly preferred embodiments, the preferences described above apply analogously.

- In a further particularly preferred embodiment, the synergistic herbicidal mixture comprises, as component B, a herbicidal compound, where with respect to the preferred embodiments the above preferences apply, and a herbicidal compound from amongst the groups B12 and B14.
- 10 The present invention also extends to herbicidal compositions which comprise a herbicidally active amount of a synergistic herbicidal mixture (comprising components A) and B) as described above), at least one liquid and/or solid carrier and, if desired, at least one surfactant.

The herbicidal compositions and synergistic herbicidal mixtures according to the invention can effect very good control of broad-leaved weeds and grass weeds in crops such as maize, cereals, rice and soya without damaging the crop plants, an 20 effect observed especially even at low rates of application.

Taking into consideration the variety of application methods in question, the herbicidal compositions and synergistic herbicidal mixtures according to the invention can additionally be employed

- 25 in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following: Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spp. [sic] altissima, Beta vulgaris spp. [sic] rapa, Brassica napus var. napus, Brassica napus var.
- 30 napobrassica, Brassica rapa var. silvestris, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum,
- 35 (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spp., Manihot esculenta, Medicago sativa, Musa spp., Nicotiana tabacum
- 40 (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spp., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao,
- 45 Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera und Zea mays.

Moreover, the herbicidal compositions and synergistic herbicidal mixtures according to the invention can also be used in crops which tolerate the action of herbicides due to breeding, including genetic engineering methods.

5

The mixtures according to the invention, or the herbicidal compositions comprising them, can be employed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for spreading or granules, by means of spraying, atomizing, dusting, spreading or pouring.

The use forms depend on the intended purposes; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention.

Suitable inert auxiliaries are mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. paraffins, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, such as N-methylpyrrolidone and water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible

30 granules by adding water. To prepare emulsions, pastes or oil dispersions, the substrates [sic], as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agent, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance,

35 wetting agent, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and these concentrates are suitable for dilution with water.

Suitable surfactants are the alkali metal, alkaline earth metal
40 and ammonium salts of aromatic sulfonic acids, e.g. ligno-,
phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of
fatty acids, of alkyl-"and alkylaryl sulfonates, of alkyl
sulfates, lauryl ether sulfates and fatty alcohol sulfates, and
salts of sulfated hexa-, hepta- and octadecanols, and of fatty
45 alcohol glycol ether, condensates of sulfonated naphthalene and
its derivatives with formaldehyde, condensates of naphthalene, or
of the naphthalenesulfonic acids, with phenol and formaldehyde,

polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octylor nonylphenol, alkylphenyl and tributylphenyl polyglycol ether,
alkylaryl polyether alcohols, isotridecyl alcohol, fatty
alcohol/ethylene oxide condensates, ethoxylated castor oil,
5 polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers,
lauryl alcohol polyglycol ether acetate, sorbitol esters,
lignin-sulfite waste liquors or methylcellulose.

Powders, materials for spreading and dusts can be prepared by 10 mixing or concomitantly grinding the synergistic herbicidal mixture or the individual active ingredients with a solid carrier.

Granules, e.g. coated granules, impregnated granules and
15 homogeneous granules, can be prepared by binding the active
ingredients to solid carriers. Solid carriers are mineral earths
such as silicas, silica gels, silicates, talc, kaolin, limestone,
lime, chalk, bole, loess, clay, dolomite, diatomaceous earth,
calcium sulfate, magnesium sulfate, magnesium oxide, ground
20 synthetic material, fertilizers such as ammonium sulfate,
ammonium phosphate, ammonium nitrate, ureas and products of
vegetable origin such as cereal meal, tree bark meal, wood meal
and nutshell meal, cellulose powders or other solid carriers.

25 The concentrations of the mixtures according to the invention in the ready-to-use products can be varied within wide ranges. In general, the formulations comprise from 0.01 to 95% by weight, preferably 0.5 to 90% by weight, of the mixture according to the invention.

30

The active ingredients of components A) and B) can be formulated jointly, but also separately, and/or applied to the plants, their environment and/or seeds jointly or separately. It is preferable to apply the active ingredients simultaneously. However, it is also possible to apply them separately.

Moreover, it may be advantageous to apply the herbicidal compositions and synergistic herbicidal mixtures according to the invention, jointly or separately, with additional other crop protection agents, for example with pesticides or agents for controlling phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates can also be added.

The mixtures according to the invention and the herbicidal compositions can be applied pre- or post-emergence. If the active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal 5 compositions are sprayed, with the aid of the spray apparatus, in such a way that they come into as little contact, if any, with the leaves of the sensitive crop plants while reaching the leaves of undesirable plants which grow underneath, or the bare soil (post-directed, lay-by).

10

In the case of a post-emergence treatment of the plants, the herbicidal compositions according to the invention are preferably applied by foliar application. Application may be effected, for example, by usual spraying techniques with water as the carrier, 15 using amounts of spray mixture of approx. 100 to 1000 l/ha. The compositions may also be applied by the so-called "low-volume" and "ultra-low-volume" methods, or in the form of so-called granules.

20 As a rule, the synergistic herbicidal mixtures comprise components A) and B) in such weight ratios that the synergistic effect takes place. The ratios of component A) and B) in the mixture preferably range from 1:0.002 to 1:800, preferably from 1:0.003 to 1:160, particularly preferably from 1:0.02 to 1:160. 25

- In particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group Bl (acetyl-CoA carboxylase inhibitors (ACC)) in a weight ratio of 1:0.1 to 1:80, preferably of 1:0.17 to 1:16.
- The mixtures according to the invention especially preferably comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound 35 from the group of the cyclohexenone oxime ethers, preferably cycloxydim, sethoxydim or tralkoxydim, in particular sethoxydim or tralkoxydim, in a weight ratio of 1:0.4 to 1:80, preferably 1:0.67 to 1:16.
- Also, the mixtures according to the invention especially 40 preferably comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the phenoxyphenoxypropionic esters in a weight ratio of 1:0.1 to 1:60, preferably from 1:0.17 to 45 1:12.

40

45

Very particularly preferably, they comprise, as component B), clodinafop-propargyl in a weight ratio of 1:0.1 to 1:20, preferably 1:0.17 to 1:4.

- Also very particularly preferably, they comprise, as component B), fenoxaprop-ethyl in a weight ratio of 1:0.2 to 1:60, preferably 1:0.34 to 1:12.
- Also very particularly preferably, they comprise, as component B), fenoxaprop-P-ethyl in a weight ratio of 1:0.1 to 1:30, preferably 1:0.16 to 1:6.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B2 (acetolactate synthase inhibitors) in a weight ratio of 1:0.004 to 1:160, preferably 1:0.006 to 1:32.
- Especially preferably, the mixtures according to the invention comprise 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the imidazolinones in a weight ratio of 1:0.08 to 1:160, preferably 1:0.13 to 1:32.
- Very particularly preferably, they comprise, as component B), imazapyr in a weight ratio of 1:0.12 to 1:80, preferably 1:0.2 to 1:16.
- Also very particularly preferably, they comprise, as component B), imazaquin in a weight ratio of 1:0.2 to 1:60, preferably 1:0.33 to 1:12.
 - Also very particularly preferably, they comprise, as component B), imazamethabenz in a weight ratio of 1:0.4 to 1:160, preferably 1:0.66 to 1:32.

Also very particularly preferably, they comprise, as component B), imazethapyr in a weight ratio of 1:0.12 to 1:30, preferably 1:0.2 to 1:6.

Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the pyrimidyl ethers, in particular pyrithiobac-sodium, in a weight ratio of 1:0.008 to 1:24, preferably 1:0.013 to 1:4.8.

Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from amongst the group of the sulfonamides in a weight ratio of 1:0.004 to 1:45, preferably 1:0.006 to 1:9.

Very particularly preferably, they comprise, as component B), flumetsulam in a weight ratio of 1:0.1 to 1:45, preferably 1:0.17 to 1:9.

10

5

Also very particularly preferably, they comprise, as component B), metosulam in a weight ratio of 1:0.004 to 1:12, preferably 1:0.006 to 1:2.4.

- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the sulfonylureas in a weight ratio of 1:0.004 to 1:24, preferably 1:0.006 to 1:4.8.

20

Very particularly preferably, they comprise, as component B), halosulfuron-methyl, rimsulfuron or N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide in a weight ratio of 1:0.02 to 1:24, preferably 1:0.03 to 1:4.8.

Also very particularly preferably, they comprise, as component B), nicosulfuron in a weight ratio of 1:0.02 to 1:24, preferably 1:0.03 to 1:4.8.

30

25

Also very particularly preferably, they comprise, as component B), primisulfuron-methyl or prosulfuron in a weight ratio of 1:0.04 to 1:24, preferably 1:0.06 to 1:4.8.

35

Also very particularly preferably, they comprise, as component B), thisensulfuron-methyl, tribenuron-methyl or sulfosulfuron in a weight ratio of 1:0.04 to 1:12, preferably 1:0.06 to 1:2.4.

40

45

Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B3 (amides), in particular fluthiamide, in a weight ratio of 1:1 to 1:400, preferably 1:0.6 to 1:80.

- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B4 (auxin-herbicides) in a weight ratio of 1:0.1 to 1:150, preferably 1:0.67 to 1:30.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from amongst the group of the pyridinecarboxylic acids, in particular clopyralid, in a weight ratio of 1:0.1 to 1:150, preferably 1:0.67 to 1:30.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and 2,4-D in a weight ratio of 1:0.2 to 1:150, preferably 1:0.33 to 1:30.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B5 (auxin transport inhibitors), preferably diflufenzopyr, in a weight ratio of 1:0.06 to 1:20, preferably 1:0.1 to 1:4.
- 25 Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B6 (carotenoid biosynthesis inhibitors) in a weight ratio of 1:0.1 to 1:120, preferably 1:0.17 to 1:24.
 - Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and isoxaflutole or isoxachlortole in a weight ratio of 1:0.1 to 1:40, preferably 1:0.17 to 1:8.
- Also especially preferred, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and mesotrione or ketospiradox in a weight ratio of 1:0.1 to 1:60, preferably 1:0.16 to 1:12.
- Also especially preferred, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and sulcotrione in a weight ratio of 1:0.4 to 1:120, preferably 1:0.66 to 1:24.

- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the Group B7 (enolpyruvylshikimate-3-phosphate synthase inhibitors (ESPS)), preferably glyphosate or sulfosate, in a weight ratio of 1:1.4 to 1:216, preferably 1:2.4 to 1:43.2.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B8 (glutamine synthetase inhibitors), preferably glufosinate-ammonium, in a weight ratio of 1:0.04 to 1:120, preferably 1:0.06 to 1:24.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B9 (lipid biosynthesis inhibitors) in a weight ratio of 1:0.24 to 1:800, preferably 1:0.40 to 1:160.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the chloroacetanilides in a weight ratio of 1:0.24 to 1:800, preferably 1:0.4 to 1:160.
- Very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and dimethenamid or S-dimethenamid in a weight ratio of 1:0.24 to 1:400, preferably 1:0,4 to 1:80.
- Also very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and acetochlor in a weight ratio of 1:1 to 1:800, preferably 1:1.67 to 1:160.
- Also very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and metolachlor or S-metolachlor in a weight ratio of 1:0.24 to 1:800, preferably 1:0.40 to 1:160.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound

25

35

40

45

from the group of the thioureas in a weight ratio of 1:0.4 to 1:800, preferably 1:0.66 to 1:160.

Very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and benthiocarb in a weight ratio of 1:4 to 1:800, preferably 1:6.6 to 1:160.

- * Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B10 (mitosis inhibitors), preferably a dinitroaniline, in particular pendimethalin, in a weight ratio of 1:1,5 to 1:600, preferably 1:2,5 to 1:120.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group Bll (protoporphyrinogen IX oxidase inhibitors) in a weight ratio of 1:0.002 to 1:120, preferably 1:0.003 to 1:24.
 - Especially preferably, the mixtures according to the invention comprise 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the diphenylethers, in particular acifluorfen or acifluorfen-sodium, in a weight ratio of 1:0.2 to 1:60, preferably 1:0.33 to 1:12.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the oxadiazoles, in particular oxadiargyl, in a weight ratio of 1:0.2 to 1:120, preferably 1:0.33 to 1:24.
 - Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the cyclic imides in a weight ratio of 1:0.002 to 1:60, preferably 1:0.003 to 1:12.

Very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and carfentrazone-ethyl in a weight ratio of 1:0.002 to 1:7, preferably 1:0.003 to 1:1.4.

10

15

- Also very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I cinidon-ethyl or flumiclorac-pentyl, in a weight ratio of 1:0.012 to 1:7, preferably 1:0.02 to 1:1.4.

Also very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and butafenacil in a weight ratio of 1:0.02 to 1:60, preferably 1:0.03 to 1:12.

Also very particularly preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and JV 485 in a weight ratio of 1:0.2 to 1:60, preferably 1:0.3 to 1:12.

- In particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from group B12 (photosynthesis inhibitors) in a weight ratio of 1:0.12 to 1:800, preferably 1:0.2 to 1:160.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and pyridate or pyridafol in a weight ratio of 1:1 to 1:300, preferably 1:1.67 to 1:60.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the benzothiadiazinones, in particular bentazone, in a weight ratio of 1:1.92 to 1:288, preferably 1:3.2 to 1:57.6.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the dipyridylenes, in particular paraquat-dichloride, in a weight ratio of 1:0.4 to 1:160, preferably 1:0.66 to 1:32.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the ureas, in particular diuron or

45

isoproturon, in a weight ratio of 1:1 to 1:320, preferably 1:1.67 to 1:64.

- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the phenols, in particular bromoxynil, in a weight ratio of 1:0.4 to 1:140, preferably 1:0.67 to 1:28.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and chloridazon in a weight ratio of 1:2 to 1:800, preferably 1:3.3 to 1:160.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the triazines, in particular atrazine or terbutylazine, in a weight ratio of 1:1 to 1:800, preferably 1:1.67 to 1:160.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the triazinones, in particular metribuzin, in a weight ratio of 1:0.12 to 1:60, preferably 1:0.2 to 1:12.
- 30 Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B13 (synergists), preferably an oxirane, in particular tridiphane, in a weight ratio of 1:2 to 1:300, preferably 1:3.33 to 1:60.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B14 (growth substances) in a weight ratio of 1:0.1 to 1:240, preferably 1:0.167 to 1:48.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound

10

15

25

from the group of the aryloxyalkanoic acids in a weight ratio of 1:0.2 to 1:240, preferably 1:0,33 to 1:48.

Very particularly preferably, they comprise, as component B) fluoroxypyr in a weight ratio of 1:0.2 to 1:80, preferably 1:0.33 to 1:16.

Also very particularly preferably, they comprise, as component B), MCPA or mecoprop-P in a weight ratio of 1:1.6 to 1:240, preferably 1:2.67 to 1:48.

- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the benzoic acids, in particular dicamba, in a weight ratio of 1:0.3 to 1:160, preferably 1:0.5 to 1:32.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group of the quinolinecarboxylic acids, in particular quinclorac, in a weight ratio of 1:0,1 to 1:120, preferably 1:0.16 to 1:24.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and a herbicidal compound from the group B16 (various other herbicides), in particular triaziflam, in a weight ratio of 1:0.2 to 1:150, preferably 1:0.3 to 1:30.
- Also in particular, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I and two herbicidal compounds from the groups B1 to B16, where the weight ratio of the 3-heterocyclyl-substituted benzoyl derivative of the formula I to each of the individual herbicidal components of B) is in the ranges described above.
- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I, a herbicidal compound from the group B2 and a herbicidal compound from the group B14 in a weight ratio of 1:0.004:0.1 to 1:160:240, preferably 1:0.006:0.16 to 1:32:48.

- Especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I, a herbicidal compound from the group B5 and a herbicidal compound from the group B14 in a weight ratio of 1:0.06:0.1 to 1:20:240, preferably 1:0.1:0.16 to 1:4:48.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I, a herbicidal compound from the group B9 and a herbicidal compound from the group B12 in a weight ratio of 1:0.24:0.12 to 1:80:800, preferably 1:0.48:0.2 to 1:16:160.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I, a herbicidal compound from the group B12 and a herbicidal compound likewise from the group B12 in a weight ratio of 1:0.12:0.12 to 1:800:800, preferably 1:0.2:0.2 to 1:160:160.
- Also especially preferably, the mixtures according to the invention comprise a 3-heterocyclyl-substituted benzoyl derivative of the formula I, a herbicidal compound from the group B12 and a herbicidal compound from the group B14 in a weight ratio of 1:0.12:0.1 to 1:800:240, preferably 1:0.2:0.16 to 1:160:48.
- The rate of application of pure synergistic herbicidal mixture, 30 i.e. without formulation auxiliaries, amounts to 2 to 5000 g/ha, preferably 2 to 4500 g/ha, in particular 8 to 4500 g/ha, of active substance (a.s.), depending on the intended aim, the season, the target plants and growth stage.
- 35 The rate of application of 3-heterocyclyl-substituted benzoyl derivative of the formula I is 0.1 to 250 g/ha, as a rule 5 to 250 g/ha, preferably 25 to 150 g/ha, of active substance (a.s.).
- The preferred rate of application of the individual classes of 40 active ingredients, or of the active ingredients of component B, are compiled in Table 2.

_		T	_						48			,							
Rate of application	(g/ha)	25-400	100-400	100-400	100-400	100-400	25-300	25-100	50-300	25-150	1-800	20-800	30-400	50-300	100-800	30-150	20-120	2-120	2-120
	Active ingredient			cycloxydim	sethoxydim	tralkoxydim		clodinafpop-P-propargyla	fenoxaprop-cihyl	fenoxaprop-P-ethyl			ітаzаруг	imazaquin	imazamethabenz	imazaethopyr	ітазатох		pyrithiobac-sodium
	Class of active ingredient		cyclohexenone oxime ethers				phenoxyphenoxypropionic esters					imidazolinones						pyrimidyl ethers	
G	Component D	Acetyl-CoA carboxylase inhibitors									Acetolactate synthase inhibitors (ALS)								
		B1									B2								

Table 2

			r	· · · ·		_				19 	_	Γ	Γ				r		
Rate of application (g/ha)	1-225	1-20	25-225	1-60	1-120	5-120	1-120	10-120	10-120	5-120	10-60	10-60		5-120		10-60	250-2000	250-2000	25-750
Active ingredient		florasulam	flumetsulam	metosułam		halosulfuron-methyl	nicosulfuron	primisulfuron-methyl	prosulfuron	rimsulfuron	thifensulfuron-methyl	tribenuron-methyl	N-[[[4-methoxy-6-(trifluoromethyl)-	1,3,5-triazin-2-yl]amino]carbonyl]-	2-(trifluoromethyl)benzenesulfonamide	sulfosulfuron		fluthiamide	
Class of active ingredient	sulfonamides				sulfonylureas								-					•	
Component B																	Amides		Auxin herbicides
								•						•	:		B3		B4

Class of active ingredient			,								5U								
Class of active ingredient pyridinecarboxylic acids clopyralid	Rate of application (g/ha)	25-750	25-750	50-750	15-100	15-100	25-600	25-200	100-600	25-300	25-200	25-300	360-1080	360-1080	360-1080	10-600	10-600	60-4000	60-4000
hibitors	Active ingredient		clopyralid	2,4-D		diflufenzopyr		isoxaflutole	sulcotrione	mesotrione	isoxachlortole	kelospiradox		glyphosate	sulfosate		glufosinate-ammonium		
mponent B ransport inhibitors toid biosynthesis inhibitors e inhibitors (ESPS) ine synthetase inhibitors ine synthesis inhibitors	Class of active ingredient	pyridinecarboxylic acids				•		•	•	-	•			\$	ı				chloroacetanilides
B5 Auxin t B6 Caroter B7 Enolpy B7 Enolpy B8 Glutam B9 Lipid bi	Component B				B5 Auxin transport inhibitors		Carotenoid biosynthesis in						Enolpyruvylshikimat-3-phosphate B7 synthase inhibitors (ESPS)			Glutamine synthetase inhib		Lipid biosynthesis inhibitor	

Class of active ingredient Active ingredient Rate of application Glamethenamid 60-2000 S-dimethenamid 60-2000 acetochlor 250-4000 thioureas S-metolachlor 60-4000 thioureas 5-metolachlor 60-4000 dinitroanilines penthiocarb 100-4000 dinitroanilines 375-3000 diphenyl ethers pendimethalin 375-3000 diphenyl ethers acifluorfen 50-300 oxadiazoles scifluorfen 50-300 cyclic imides carfentrazone-ethyl 0.5-300 carfentrazone-ethyl 0.5-300 Ox-600 0.5-300	·	, .		-							51								
factive ingredient S-dimethenan S-dimether acetochlor metolachlor S-metolach S-metolach sacifluorfen acifluorfen acifluorfen acifluorfen acifluorfen acifluorfen acifluorfen acifluorfen	Rate of application (g/ha)	60-2000	60-2000	250-4000	60-4000	60-4000	100-4000	1000-4000	375-3000	375-3000	375-3000	0.5-600	50-300	50-300	50-300	20-600	20-600	0.5-300	0.5-35
of active ingredient is	Active ingredient	dimethenamid	S-dimethenamid	acetochlor	metolachlor	S-metolachlor		benthiocarb			pendimethalin			acifluorfen	acifluorfen-sodium		oxadiargyl		carfentrazone-ethyl
	Class of active ingredient					-	thioureas			dinitroanilines			diphenyl ethers			oxadiazoles		cyclic imides	
B10 Mitosis inhibitors B11 Protophorphyrinogen [sic] IX oxidase inhibitors	Component B											Protophorphyrinogen [sic] inhibitors							

										52									
Rate of application (g/ha)	3-35	3-35	5-300	50-300	30-4000	250-1500	250-1000	480-1440	480-1440	100-800	100-800	250-1600	250-1600	250-1600	100-700	100-700	500-4000	250-4000	250-4000
Active ingredient	cinidon-ethyl	flumictorac-penty1	butafenacil	JV 485		pyridate	pyridafol		bentazone		paraquat-dichloride		diuron	isoprotoron		bromoxynil			alrazine
Class of active ingredient						ı		benzothiadiazinones		dipyridylenes		ureas			phenois		chloridazon	triazines	
Component B					B12 Photosynthesis inhibitors														

		Τ	Τ	Т	г –	Т	Г	Τ-	<u> </u>) <u> </u>	τ		T			
Rate of application (g/ha)	250-4000	30-300	30-300	500-1500	500-1500	500-1500	25-1200	50-1200	50-400	400-1200	400-1200	75-800	75-800	25-600	25-600	50-750
Active ingredient	terbutylazine		metribuzin			tridiphane			fluoroxypyr	МСРА	mecoprop-P		dicamba		quinclorac	triaziflam
Class of active ingredient		triazinone			oxiranes			aryloxyalkanoic acids				benzoic acids		quinolinecarboxylic acids		
Component B				Synergists			Growth substances									Various other herbicides
				B13			B14									B16

a If appropriate, 10-50 g/ha cloquintocet may also be added.

Use examples

- The mixtures according to the invention were applied pre- or post-emergence (foliar treatment). The herbicidal compounds of component B were applied in the formulation in which they are present as commercially available product.
- 10 Some of the experiments were greenhouse experiments and some were field trials on mini plots (on a site with sandy loam (pH 6.2 to 7.0) or sandy clay (pH 5.0 to 6.7) as the soil).
- The harmful plants differed with regard to size and developmental 15 state; on average, they were 5 to 20 cm long, depending on the growth habit.
- The herbicidally active compounds of components A) and B) were applied in succession or jointly, in the latter case in some cases as a tank mix and in some cases as a readymix, in the form of emulsions, aqueous solutions or suspensions, the vehicle being water (300 400 l/ha). In the case of the field trials, application was effected with the aid of a mobile plot sprayer.
- The test period extended over 3 to 8 weeks, and the stands were also observed at later points in time.
- Damage by the herbicidal compositions was evaluated with 30 reference to a scale of 0% to 100% in comparison with untreated control plots. 0 means no damage and 100 means complete destruction of the plants.
- The following examples will demonstrate the action of the 35 herbicidal compositions which can be used according to the invention, without excluding the possibility of other uses.
- In these examples, the value E at which only an additive effect of the individual active ingredients is to be expected was calculated by the method of S. R. Colby (Calculating synergistic and antagonistic responses of herbicide combinations, Weeds 15, 20 pp (1967).

This was done using the formula

$$E = X + Y - \frac{XY}{100}$$

30

where

X = Percentage of the herbicidal action of component A) at an 10 application rate of a;

Y = Percentage of the herbicidal action of component B) at an application rate of b;

If the value observed exceeds the value E calculated in accordance with Colby's formula, then synergism is present.

The herbicidal mixtures according to the invention exert a greater herbicidal action than would have been expected according to Colby on the basis of the observed effects of the individual components when used alone.

The results of the tests are shown in Tables 3 to 82 below.

In these studies, the following plants were used:

name Common name Chinese lantern es Slender foxtail
es Slender foxtail
us Redroot pigweed
Camomile
Common blackjack
ea Alexander grass
Lambsquarters
-
Cyprus grass species
Crab grass
Hairy fingergrass
li Common barnyard grass
Bedstraw, catchweed
n Carolina geranium
1

	Scientific name	Common name
	Ipomoea acuminata	Blue morning-glory
	Ipomoea lacunosa	-
5	Ipomoea purpurea var. diversifolia	-
•	Ipomoea ssp. [sic]	Morning-glory species
	Lolium perenne	Perennial rye grass
	Panicum miliaceum	Prozo millet
	Phalaris spec.	Canary grass species
0	Richardia brasiliensis	-
	Setaria faberi	Giant foxtail
	Setaria viridis	Green foxtail
	Sorghum bicolor	Common sorghum
5	Sorghum halepense	Johnson grass
_	Stellaria media	Common chickweed
·	Triticum aestivum	Winter wheat
	Veronica ssp. [sic]	Speedwell species
	Zea mays	Maize

Table 3: Herbicidal action of compound Ia.3 and "cycloxydim" (B1) on Chenopodium album in the field (post-emergence treatment)

25		olication (g/ha	Damage (%)	Colby value E
. [Ia.3	Cycloxydim	1	, value b
	50		92	
30 L		100	0	
 -	50	100	98	92

Table 4:

Herbicidal action of compound Ia.3 and "cycloxydim" (B1) on Digitaria sanguinalis in the field (post-emergence treatment)

4	^
4	U

		lication (g/ha .s.)	Damage (%)	Colby value E
o [Ia.3	Cycloxydim		Joseph Value E
	50		57	
		100	81	
	50	. 100	98	92

51

Table 5: Herbicidal action of compound Ia.3 and "sethoxydim" (B1) on Abutilon theophrasti in the field (post-emergence treatment)

			Colby Value E
Ia.3	Sethoxydim		corpy value F
50		85	
	160	0	
50	160	94	85
	Ia.3 50	50 160	Ia.3 Sethoxydim 50 85 160 0

Table 6: Herbicidal action of compound Ia.3 and "sethoxydim"

(B1) on Setaria viridis in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
20 L	Ia.3	Sethoxydim		colb, value E
	100	***	75	
		160	93	
	100	160	99	98

Table 7: Herbicidal action of compound Ia.3 and "clodinafop-propargyl + cloquintocet" (B1) on Alopecurus myosuroides in the field (post-emergence treatment)

30 _				
		application ha a.s.)		
35	Ia.3	clodinafop- propargyl + cloquintocet	Damage (%)	Colby value E
	7.5		10	
		40	63	~
	75	40	94	67

Table 8: Herbicidal action of compound Ia.3 and "fenoxaprop-ethyl" (B1) on Alopecurus myosuroides in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)			
	Ia.3	fenoxaprop- ethyl	Damage (%)	Colby value E
	75		10	
10		83	82	
	75	83	94	84

Table 9: Herbicidal action of compound Ia.3 and "fenoxaprop-ethyl" (B1) on Galium aparine in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)			
20	Ia.3	fenoxaprop- ethyl	Damage (%)	Colby value E
	75		63	
		83	0	
	75	83	75	. 63

Table 10: Herbicidal action of compound Ia.3 and "fenoxaprop-P-ethyl" (B1) on Amaranthus retroflexus in the greenhouse (post-emergence treatment)

30	Rate of application (g/ha a.s.)			
	Ia.3	fenoxaprop- ethyl	Damage (%)	Colby value E
	15.6		80	
		31.2	0	
35	15.6	31.2	95	80

Table 11: Herbicidal action of compound Ia.33 and "imazapyr" (B1) on Alopecurus myosuroides in the greenhouse (post-emergence treatment)

40	Rate of a	application a a.s.)	Damage (%)	Colby value E
	Ia.33	imazapyr		1
	15.6	~	40	
45 C		250	90	
	15.6	250	95	94

Table 12: Herbicidal action of compound Ia.33 and "imazapyr" (B1) on Ipomoea ssp. [sic] in the greenhouse (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	Colhum
	Ia.33	imazapyr	Jamage (4)	Colby value E
	3.9		50	
		62.5	85	
10	3.9	62.5	95	93

Table 13: Herbicidal action of compound Ia.3 and "imazaquin" (B2) on Bidens pilosa in the field (post-emergence treatment)

15

		Rate of application (g/ha a.s.)		Colbu malua n
	Ia.3	imazaquin	Damage (%)	Colby value E
	75		30	
20		150	45	
	75	150	95	62

Table 14: Herbicidal action of compound Ia.3 and
"imazamethabenz" (B2) on Stellaria media in the field
(post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colby value E
Ia.3	imazamethabenz		corby value E
75		91	
	525	0	
75	525	99	91
	(g/ Ia.3 75 75	(g/ha a.s.) Ia.3 imazamethabenz 75 525 75 525	(g/ha a.s.) Damage (%) Ia.3 imazamethabenz 75 91 525 0 75 525 99

Table 15: Herbicidal action of compound Ia.3 and "imazethapyr"

(B2) on Ipomoea acuminata in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	
40	Ia.3	imazethapyr		corpy value E
	75		25	
L		70	33	
Ŀ	75	70	95	50

Table 16: Herbicidal action of compound Ia.3 and "imazethapyr" (B2) on Ipomoea purpurea var. diversifolia in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	imazethapyr		corby value E
	75		93	
		70	58	
10	75	70	99	97

Table 17: Herbicidal action of compound Ia.33 and "pyrithiobac-sodium" (B2) on Echinochloa crus-galli in the greenhouse (post-emergence treatment)

15

	Rate of application (g/ha a.s.)			
	Ia.33	pyrithiobac- sodium	Damage (%)	Colby value E
20	1.9		55	
		7.8	10	
	1.9	7.8	75	59

Table 18: Herbicidal action of compound Ia.33 and "metosulam"

(B2) on Veronica ssp. [sic] im the greenhouse
(post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
30	Ia.33	metosulam]	10227 10200 2
	62.5	to the co-	20	
		1.9	40	
	62.5	1.9	75	52

35 Table 19: Herbicidal action of compound Ia.33 and "halosulfuron-methyl" (B2) on Alopecurus myosuroides in the greenhouse (post-emergence treatment)

40	Rate of application (g/ha a.s.)			
	Ia.33	halosulfuron- methyl	Damage (%)	Colby value E
	62.5		40	
	-	31.2	45	
45	62.5	31.2	85	67

0050/49144

Table 20: Herbicidal action of compound Ia.33 and "halosulfuron-methyl" (B2) on Amaranthus retroflexus in the greenhouse (post-emergence treatment)

5	Rate of application (g/ha a.s.)			
	Ia.33	halosulfuron- methyl	Damage (%)	Colby value E
	7.8		70	***
10		7.8	80	
	7.8	7.8	98	94

Table 21: Herbicidal action of compound Ia.33 and "nicosulfuron" (B2) on Ipomoea lacunosa in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.33	nicosulfuron	3 (- 7	John Judge E
20	75		69	
		35	39	
	75	35	90	81

Table 22: Herbicidal action of compound Ia.50 and "nicosulfuron"

(B2) on Amaranthus retroflexus in the greenhouse
(post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
30 🗌	Ia.50	nicosulfuron		corpl (drue r
	3.9		10	
		1.9	65	
	3.9	1.9	80	69

35

15

62

Table 23: Herbicidal action of compound Ia.33 and
"N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin2-yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide" (B2) on Setaria faberi in the field
(post-emergence treatment)

		•	
Ia.33	N-[[[4-methoxy-6-(trifluoro-methyl)-1,3,5-triazin-2-yl]-amino]carbo-nyl]-2-(trifluoro-methyl)benzenesulfonamide	Damage (%)	Colby value E
75		65	
	50	0	
75	50	73	65
	(g/ Ia.33	6-(trifluoro- methyl)-1,3,5- triazin-2-yl]- amino]carbo- nyl]-2-(tri- fluoro- methyl)benzene- sulfonamide 75 50	N-[[[4-methoxy-6-(trifluoro-methyl)-1,3,5-triazin-2-yl]- Damage (%)

Table 24: Herbicidal action of compound Ia.3 and "2,4-D" (B4) on Abutilon theophrasti in the greenhouse (post-emergence treatment)

25	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	2,4-D		
ĺ	15.6		70	
30		62.5	40	
	15.6	62.5	85	82

Table 25: Herbicidal action of compound Ia.3 and "2,4-D" (B4) on

Amaranthus retroflexus in the greenhouse (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby Value E
40	Ia.3	2,4-D]	,
	15.6		55	
		62.5	20	
	15.6	62.5	70	64

Table 26: Herbicidal action of compound Ia.3 and "2,4-D" (B4) on Phalaris spec. in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	College and the T
	Ia.3	2,4-D		Colby value E
	75		20	
		500	20	
	75	500	43	36

Table 27: Herbicidal action of compound Ia.3 and "isoxaflutole" (B6) on ipomoea ssp. [sic] in the greenhouse (post-emergence treatment)

		Damage (%)	Colby walve B
Ia.3	isoxaflutole	Damage (0)	Colby value E
31.2		75	
**	62.5	55	
31.2	62.5	90	89
	a. Ia.3 31.2	31.2 62.5	a.s.) Damage (%) Ia.3 isoxaflutole 31.2 75 62.5 55

Table 28: Herbicidal action of compound Ia.3 and "isoxaflutole"

(B6) on Setaria viridis in the greenhouse
(post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colby value E
Ia.3	isoxaflutole		corpl value E
15.6		80	
	31.2	30	
15.6	31.2	90	86
	Ia.3 15.6 	a.s.) Ia.3 isoxaflutole 15.6 31.2 15.6 31.2	a.s.) Damage (%) Ia.3 isoxaflutole 15.6 80 31.2 30 15.6 31.2 90

Table 29: Herbicidal action of compound Ia.3 and "sulcotrione" (B6) on Ipomoea acuminata in the field (post-emergence treatment)

40	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	sulcotrione		Colby value E
	75		25	
		300	86	
45	75	300	98	90
			** ** ***	

Herbicidal action of compound Ia.50 and "sulcotrione" Table 30: (B6) on Amaranthus retroflexus in the greenhouse (post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colby walne m
Ia.50	sulcotrione		Colby value E
31.2	00 to to	60	
	250	45	
31.2	250	80	7.8
	(g/l	Ia.50 sulcotrione 31.2 250 31.2 250	(g/ha a.s.) Damage (%) Ia.50 sulcotrione 31.2 60 250 45 31.2 250 80

Herbicidal action of compound Ia.3 and "glyphosate" Table 31: (B7) on Geranium carolinianum in the field (post-emergence treatment)

Rate of application (g/ha a.s.) Damage (%) Colby value E Ia.3 glyphosate 20 150 30 ---840 97 150 840 100

98

25 Table 32: Herbicidal action of compound Ia.33 and "glyphosate" (B7) on Sorghum halepense in the field (post-emergence treatment)

30	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.33	glyphosate		COIDY VAILE E
	75		78	
		840	74	
	75	840	97	94

Table 33: Herbicidal action of compound Ia.3 and "glufosinate-ammonium" (B8) on Digitaria adscendens in the field (post-emergence treatment)

		application na a.s.)		
	Ia.3	glufosinate- ammonium	Damage (%)	Colby value E
45	75		90	*
		400	75	
	75	400	100	98

65

Table 34: Herbicidal action of compound Ia.33 and "glufosinate-ammonium" (B8) on Echinochloa crus-galli in the greenhouse (post-emergence treatment)

5	Rate of application (g/ha a.s.)			
	Ia.33	glufosinate- ammonium	Damage (%)	Colby value E
	15.6		90	
10		15.6	0	
	15.6	15.6	98	-90

Table 35: Herbicidal action of compound Ia.3 and
"glufosinate-ammonium" (B8) on Ipomoea acuminata in
the field (post-emergence treatment)

	Rate of (g/	application ha a.s.)		
20	Ia.3	glufosinate- ammonium	Damage (%)	Colby value E
	75		25	
		400	75	
	. 75	400	98	81

Table 36: Herbicidal action of compound Ia.33 and "glufosinate-ammonium" (B8) on Setaria faberi in the greenhouse (post-emergence treatment)

30		application		
	Ia.33	glufosinate- ammonium	Damage (%)	Colby value E
35	7.8		90	
" L		31.2	65	
L	7.8	31.2	98	96

40

Table 37: Herbicidal action of compound Ia.3 and "flufenacet" (B3) on Digitaria adscendens in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	flufenacet		corpy value E
	75		90	
		600	58	
10	75 .	600	100	96

Table 38: Herbicidal action of compound Ia.3 and "dimethenamid" (B9) on Amaranthus retroflexus in the greenhouse (pre-emergence treatment)

a.s.)		Damage (%)	Colby-value E
Ia.3	Dimethenamid		corpj-value E
31.2		40	
	125	80	
31.2	125	100	88
	Ia.3 31.2	Ia.3 Dimethenamid 31.2 125	a.s.) Damage (%) Ia.3 Dimethenamid 31.2 40 125 80

25 Table 39: Herbicidal action of compound Ia.3 and "dimethenamid" (B9) on Cyperus iria in the greenhouse (pre-emergence treatment)

30		Rate of application (g/ha a.s.)		Colby-value E
	Ia.3	Dimethenamid	Damage (%)	, , , , ,
	31.2		50	
		62.5	95	
	31.2	62.5	100	98
35 '				

Table 40: Herbicidal action of compound Ia.3 and "dimethenamid" (B9) on Digitaria sanguinalis in the greenhouse (pre-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	Dimethenamid		Joseph value E
	62.5		60	
5	***	125	. 80	
	62.5	125	98	92

Table 41: Herbicidal action of compound Ia.33 and "dimethenamid" (B9) on Panicum miliaceum in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	Colbu malma P
	Ia.33	dimethenamid	January (8)	Colby value E
	50		87	
		841	23	
10	50	841	94	90

Table 42: Herbicidal action of compound Ia.33 and "dimethenamid" (B9) on Sorghum halepense in the field (post-emergence treatment)

		application na a.s.)	Damage (%)	Colby value E
	Ia.33	dimethenamid		corby value E
20	75		78	
	*	1120	7	
	75	1120	90	80

25 Table 43: Herbicidal action of compound Ia.33 and "dimethenamid" (B9) on Veronica ssp. [sic] in the greenhouse (post-emergence treatment)

Colby value E	Damage (%)	Rate of application (g/ha a.s.)		30	
		Dimethenamid	Ia.33		
		60	<u>-</u>	15.6	
		70	500		
······	88	90	500	15.6	
•	88		300	20.0	35

Table 44: Herbicidal action of compound Ia.52 and "dimethenamid" (B9) on Amaranthus retroflexus in the greenhouse (post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colby value E
Ia.52	Dimethenamid		Join value E
62.5	~ ~ =	75	
	500	10	
62.5	500	100	78
	Ia.52 62.5	a.s.) Ia.52 Dimethenamid 62.5 500	a.s.) Ia.52 Dimethenamid 62.5 75 500 10

40

Table 45: Herbicidal action of compound Ia.52 and "dimethenamid" (B9) on Veronica ssp. [sic] in the greenhouse (post-emergence treatment)

5		plication (g/ha	Damage (%)	Caller
	Ia.52 Dimethenamid	· sumage (4)	Colby value E	
	15.6		40	
		500	70	
10	15.6	500	100	82
_				

Table 46: Herbicidal action of compound Ia.33 and "acetochlor" (B9) on Abutilon theophrasti in the greenhouse (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.33	acetochlor		corpy value E
20	7.8		90	
		31.2	0	
	7.8	31.2	100	90

25 Table 47: Herbicidal action of compound Ia.3 and "S-metolachlor" (B9) on Digitaria sanguinalis in the greenhouse (pre-emergence treatment)

30	Rate of application (g/ha a.s.)		Damage (%)	Colby volum 5
	Ia.3	S-Metolachlor	, samage (v)	Colby value E
1	62.5		60	~
		125	50	
	62.5	125	85	80
35 *				

Table 48: Herbicidal action of compound Ia.3 and "S-metolachlor" (B9) on Echinochloa crus-galli in the greenhouse (pre-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby walve F
	Ia.3	S-Metolachlor		Colby value E
	62.5		60	
5		62.5	65	~
	62.5	62.5	98	86

Table 49: Herbicidal action of compound Ia.3 and "S-metolachlor" (B9) on Setaria viridis in the greenhouse (pre-emergence treatment)

5		plication (g/ha a.s.)	Damage (%)	Colbumat
	Ia.3	S-Metolachlor	Damage (1)	Colby value E
	15.6		20	
		62.5	70	
10	15.6	62.5	85	76

Table 50: Herbicidal action of compound Ia.33 and "S-metolachlor" (B9) on Ipomoea ssp. [sic] in the greenhouse (post-emergence treatment)

		Damage (%)	Colby value E
Ia.33	S-Metolachlor		corpy varue E
62.5		80	
	62.5	0	
62.5	62.5	90	80
	Ia.33 62.5	62.5 62.5 62.5 62.5	a.s.) Damage (%) Ia.33 S-Metolachlor 62.5 80 62.5 0 62.5 62.5 90

25 Table 51: Herbicidal action of compound Ia.33 and "S-metolachlor" (B9) on Veronica ssp. [sic] in the greenhouse (post-emergence treatment)

Rate of application (g/ha a.s.)			Colbustia
Ia.33	S-Metolachlor	· ·	Colby value E
62.5		80	
	125	0	
62.5	125	98	80
	Ia.33 62.5	a.s.) Ia.33 S-Metolachlor 62.5 125	a.s.) Damage (%) Ia.33 S-Metolachlor 62.5 80 125 0

Table 52: Herbicidal action of compound Ia.16 and "benthiocarb" (B9) on Cyperus iria in the field (post-emergence treatment)

		Damage (%)	Colby value E
Ia.16	benthiocarb		
75		60	
	3000	50	the bit on
75	3000	92	80
	(g/h Ia.16 75 75	75 3000 75 3000	(g/ha a.s.) Damage (%) 1a.16 benthiocarb 75 60 3000 50 75 3000 92

Table 53: Herbicidal action of compound Ia.3 and "pendimethalin" (B10) on Brachiaria plantaginea in the field (post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colby mains a
. 3	pendimethalin		Colby value E
5		96	
_	990	0	
5	990	98	96
	=	990	96 - 990 0 990 98

Table 54: Herbicidal action of compound Ia.3 and "acifluorfen" (Bll) on Galium aparine in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colburation
	Ia.3	acifluorfen		Colby value E
20	75	10-0-0	60	
		100	48	
	75	100	95	79

25 Table 55: Herbicidal action of compound Ia.33 and "carfentrazone-ethyl" (Bl1) on Amaranthus retroflexus in the greenhouse (post-emergence treatment)

30	Rate of (g/)	Rate of application (g/ha a.s.)		
	Ia.33	carfentrazone- ethyl	Damage (%)	Colby value E
	1.9	** ** **	30	
ļ		0.9	60	
35	1.9	0.9	90	72

Table 56: Herbicidal action of compound Ia.3 and "carfentrazone-ethyl" (B11) on Anthemis mixta in the field (post-emergence treatment)

	Rate of	application ha a.s.)	_	
15	Ia.3	carfentrazone- ethyl	Damage (%)	Colby value E
•	75		68	
		30	0	
	75	30	91	68

Table 57: Herbicidal action of compound Ia.33 and "cinidon-ethyl" (B11) on Galium aparine in the field (post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	G-11
Ia.33	cinidon-ethyl	Junuge (4)	Colby value E
1.9		20	
	7.8	90	
1.9	7.8	100	92
	(g/) Ia.33 1.9	(g/ha a.s.) Ia.33	(g/ha a.s.) Damage (%) 1a.33 cinidon-ethyl 1.9 20 7.8 90 1.9 7.8 100

Table 58: Herbicidal action of compound Ia.3 and "pyridate"
(Bl2) on Bidens pilosa in the field (post-emergence treatment)

	Rate of (g/h	application a a.s.)	Damage (%)	
	Ia.3	pyridate		Colby value E
20	75		25	
		450	25	
	75	450	96	44

25 Table 59: Herbicidal action of Ia.3 and "pyridate" (B12) on Setaria faberi in the field (post-emergence treatment)

Rate of (g/h	application a a.s.)		Colby value E
Ia.3	pyridate		corby value E
75		99	
Ter qui un	450	0	
75	450	100	99
	(g/h. Ia.3 75 75	Rate of application (g/ha a.s.) Ia.3 pyridate 75 450 75 450	(g/ha a.s.) Damage (%) Ia.3 pyridate 75 99 450 0 75 450 100

Table 60: Herbicidal action of compound Ia.3 and "bentazone" (B12) on Richardia brasiliensis in the field (post-emergence treatment)

Rate of application (g/ha a.s.)			Colbumble
Ia.3	Bentazone]	Colby value E
75		70	
	1440	77	
75	1440	99	93
	a Ia.3 75 75	Ia.3 Bentazone 75 1440 75 1440	a.s.) Damage (%) Ia.3 Bentazone 75 70 1440 77 75 1440 99

72

Table 61: Herbicidal action of compound Ia.3 and "paraquat-dichloride" (B12) on Lolium perenne in the field (post-emergence treatment)

5		Rate of application (g/ha a.s.)		
	Ia.3	paraquat- dichloride	Damage (%)	Colby value E
	75		10	
10	~~~	400	97	
	75	400	100	97

Table 62: Herbicidal action of compound Ia.33 and "diuron" (B12)

on Alopecurus myosuroides in the greenhouse
(post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	College
20	Ia.33 diuron	diuron		Colby value E
	62.5		40	
		250	80	
	62.5	250	95	88

Table 63: Herbicidal action of compound Ia.3 and "isoproturon" (B12) on Stellaria media in the field (post-emergence treatment)

30	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
	Ia.3	isoproturon		COIDY VAIUE E
	75		91	
		1000	94	
35	75	1000	100	99

Table 64: Herbicidal action of compound Ia.3 and "bromoxynil" (B12) on Galium aparine in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby value v
	Ia.3	bromoxynil		Colby value E
45	75		60	
		470	84	
	75	470	98	94

73

Table 65: Herbicidal action of compound Ia.3 and "chloridazon" (B12) on Ipomoea purpurea var. diversifolia in the field (post-emergence treatment)

Rate of application (g/ha a.s.)		Damage (%)	Colbuma
Ia.3	chloridazon		Colby value E
75		94	
	1720	40	
75	1720	100	96
	(g/i Ia.3 75	(g/ha a.s.) Ia.3 chloridazon 75 1720	(g/ha a.s.) Damage (%) 1a.3 chloridazon 75 94 1720 40 75 1720 100

Table 66: Herbicidal action of compound Ia.3 and "atrazine" (B12) on Abutilon theophrasti in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colby
	Ia.3	atrazine	1	Colby value E
20	75		85	
		1120	32	
	75	1120	96	90

25 Table 67: Herbicidal action of compound Ia.3 and "atrazine" (B12) on Setaria faberi in the field (post-emergence treatment)

30	Rate of application (g/ha a.s.)		Damage (%)	Colby value E
. [Ia.3	atrazine	1	corpy value E
	75		95	
		1120	20	
	75	1120	99	96

35

Table 68: Herbicidal action of compound Ia.33 and "atrazine" (B12) on Sorghum bicolor in the field (post-emergence treatment)

40				
	Rate of a	application a a.s.)	Damage (%)	Colby value E
L	Ia.33	atrazine]	Corpy value E
	· 75		78	
45	** ** ***	840	27	
L	75	840	90	84
				0.3

74

Table 69: Herbicidal action of compound Ia.3 and "metribuzin" (B12) on Bidens pilosa in the field (post-emergence treatment)

5	Rate of application (g/ha a.s.)		Damage (%)	College
	Ia.3	metribuzin	Jamage (4)	Colby value E
	75		25	
	***	200	38	
10	75	200	73	54

Table 70: Herbicidal action of compound Ia.3 and "metribuzin" (B12) on Cyperus species in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)		Damage (%)	Colbumata
	Ia.3	metribuzin	(0)	Colby value E
20	75		5	
		200	50	
	75	200	75	53

25 Table 71: Herbicidal action of compound Ia.3 and "MCPA" (B14) on Cyperus species in the field (post-emergence treatment)

30	Rate of a (g/ha	Rate of application (g/ha a.s.)		Colby value E
	Ia.3	MCPA.	Damage (%)	corpy varue E
	75		0	
Į	70 in gs	600	5	
. [75	600	48	5
3 5				

Table 72: Herbicidal action of compound Ia.16 and "dicamba" (B14) on Amaranthus retroflexus in the field

(post-emergence treatment)

40	Rate of a	application a.s.)	Damage (%)	Colby value E
	Ia.16	dicamba		COIDY VAILE E
	100	··	96	
45		280	25	
		280	100	97

75

Table 73: Herbicidal action of compound Ia.33 and "dicamba" (B14) on Sorghum bicolor in the field (post-emergence treatment)

5	Rate of a (g/ha	pplication a.s.)	Damage (%)	6.11
. L	Ia.33	dicamba	- Dumage (8)	Colby value E
	75		78	
	700 aus gay	560	17	
10	75	560	89	01
	مردن بين كران ، اياس به برانسي با البرانسية . 	1 300	89	81

Table 74: Herbicidal action of compound Ia.3 and "quinclorac" (B14) on Ipomoea ssp. [sic] in the greenhouse (post-emergence treatment)

		olication (g/ha	Damage (10)	
	Ia.3	Quinclorac	Damage (%)	Colby value E
_	31.2	→ → →	75	
20		250	70	
	31.2	250	100	93

Table 75: Herbicidal action of compound Ia.3 and "quinclorac"

(B14) on Veronica ssp. [sic] in the greenhouse
(post-emergence treatment)

	Rate of app	lication (g/ha	Damage (%)	G-11-
30	Ia.3	Quinclorac	Damage (*)	Colby value E
	31.2		80	
		500	80	
	31.2	500	100	96

35

Table 76: Herbicidal action of compound Ia.3, "nicosulfuron" (B2) and "dicamba" (B14) on Ipomoea acuminata in the field (post-emergence treatment)

Rate of application (g/ha a.s.)			
Ia.3	nicosulfuron + dicamba	Damage (%)	Colby value E
75		23	
	20 + 192	89	
75	20 + 192	97	92
	(g/ Ia.3 75 75	(g/ha a.s.) Ia.3 nicosulfuron + dicamba 75 20 + 192 75 20 + 192	(g/ha a.s.) Damage (%) dicamba 75 23 20 + 192 89 75 20 + 192 97

0050/49144

76
Table 77: Herbicidal action of compound Ia.3, "diflufenzopyr"
(B5) and "dicamba" (B14) on Echinochloa crus-galli in the field (post-emergence treatment)

5		application ha a.s.)	-	
	Ia.3	diflufenzopyr + dicamba	Damage (%)	Colby value E
	75		98	
10		56 + 140	5	
	75	56 + 140	99	98

Table 78: Herbicidal action of compound Ia.33, "diflufenzopyr"

(B5) and "dicamba" (B14) on Sorghum halepense in the field (post-emergence treatment)

	Rate of application (g/ha a.s.)			
20	Ia.33	diflufenzopyr + dicamba	Damage (%)	Colby value E
	75		78	
<u> </u>		60 + 150	27	
	75	60 + 150	90	84

Table 79: Herbicidal action of compound Ia.33, "dimethenamide" (B9) and "atrazine" (B12) on Sorghum halepense in the field (post-emergence treatment)

30				
		application a a.s.)		
	Ia.33	dimethenamide + atrazine	Damage (%)	Colby value E
35	75		78	
33		840 + 960	5	
	7.5.	840 + 960	97	79

77

Table 80: Herbicidal action of compound Ia.3, "bentazone" (B12) and "atrazine" (B12) on Brachiaria plantaginea in the field (post-emergence treatment)

Rate of application (g/ha a.s.)			
Ia.3	bentazone + atrazine	Damage (%)	Colby value E
75		95	
	800 + 800	25	
75	800 + 800	98	96
	(g/) Ia.3 75	(g/ha a.s.) Ia.3 bentazone + atrazine 75 800 + 800	(g/ha a.s.) Damage (%) 1a.3 bentazone + atrazine 75 95 800 + 800 25

Table 81: Herbicidal action of compound Ia.33, "atrazine" (B12)

and "dicamba" (B14) on Ipomoea lacunosa in the field
(post-emergence treatment)

	Rate of (g/h	application a a.s.)		
20	Ia.33	atrazine + dicamba	Damage (%)	Colby value E
	75	*** ***	69	
		920 + 480	83	
	75	920 + 480	99	95

25

Table 82: Herbicidal action of compound Ia.33, "atrazine" (B12) and "dicamba" (B12) on Setaria faberi in the field (post-emergence treatment)

30	Rate of application (g/ha a.s.)			
	Ia.33	atrazine + dicamba	Damage (%)	Colby value E
35	75		65	
35		367 + 193	20	
	75	367 + 193	89	72

Further experiments demonstrated that the mixtures according to 40 the invention are crop plant selective (Tables 83 and 84).

Table 83: Phytotoxicity of compound Ia.52 and "dimethenamid" (B9) to Triticum aestivum in the greenhouse (post-emergence treatment)

ء ا	Rate of application (g/ha a.s.)		Phytotoxicity (%)
	Ia.52	Dimethenamide	
	62.5		0
. L		500	0
ro	62.5	500	0

Table 84: Phytotoxicity of compound Ia.33 and "S-metolachlor" (B9) on Zea mays in the greenhouse (post-emergence treatment)

		olication (g/ha	Phytotoxicity (%)
L	Ia.33	S-Metolachlor	
20	62.5		0
		125	0
	62.5	125	0
· L	02.5	125	0

We claim:

1. A synergistic herbicidal mixture comprising

5

A) at least one 3-heterocyclyl-substituted benzoyl derivative of the formula I

10

20

25

30

35

in which the variables have the following meanings:

 R^1 , R^3 are hydrogen, halogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl or C_1 - C_6 -alkylsulfonyl;

R² is a heterocyclic radical selected from the group: thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isoxazol-3-yl, isoxazol-5-yl, 4,5-dihydroisoxazol-3-yl,

4,5-dihydroisoxazol-4-yl and

4,5-dihydroisoxazol-5-yl, it being possible for the nine radicals mentioned to be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl,

C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

 R^4 is hydrogen, halogen or C_1 - C_6 -alkyl;

 R^5 is $C_1-C_6-alkyl$;

R⁶ is hydrogen or C₁-C₆-alkyl;

or one of its environmentally compatible salts;

40

45

and

B) a synergistically effective amount of at least one herbicidal compound from the group of the acetyl-CoA carboxylase inhibitors (ACC), acetolactate synthase inhibitors (ALS), amides, auxin herbicides, auxin transport inhibitors, carotenoid biosynthesis inhibitors,

enolpyruvylshikimate 3-phosphate synthase inhibitors (ESPS), glutamine synthetase inhibitors, lipid biosynthesis inhibitors, mitosis inhibitors, protoporphyrinogen IX oxidase inhibitors, photosynthesis inhibitors, synergists, growth substances, cell wall biosynthesis inhibitors and a variety of other herbicides.

- A synergistic herbicidal mixture as claimed in claim 1
 comprising, as component B), at least one herbicidal compound from the groups B1 to B16:
 - B1 acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers, phenoxyphenoxypropionic esters or arylaminopropionic acids;
 - B2 acetolactate synthase inhibitors (ALS): imidazolinones, pyrimidyl ethers, sulfonamides or sulfonylureas;

20

15

5

- B3 amides;
- B4 auxin herbicides:

 pyridinecarboxylic acids, 2,4-D or benazolin;

25

- B5 auxin transport inhibitors;
- B6 carotenoid biosynthesis inhibitors;
- 30 B7 enolpyruvylshikimate 3-phosphate synthase inhibitors
 (ESPS);
 - B8 glutamine synthetase inhibitors;
- 35 B9 lipid biosynthesis inhibitors: anilides, chloroacetanilides, thioureas, benfuresate or perfluidone;
- B10 mitosis inhibitors:

 40 carbamates, dinitroanilines, pyridines, butamifos, chlorthal-dimethyl (DCPA) or maleic hydrazide;
 - Bll protoporphyrinogen IX oxidase inhibitors: diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;
- B12 photosynthesis inhibitors:

propanil, pyridate, pyridafol, benzothiadiazinones, dinitrophenols, dipyridylenes, ureas, phenols, chloridazon, triazines, triazinones, uracils or biscarbamates;

5

- B13 synergists: oxiranes;
- B14 growth substances:

 aryloxyalkanoic acids, benzoic acids or
 quinolinecarboxylic acids;
 - B15 cell wall synthesis inhibitors:
- 15 B16 various other herbicides: dichloropropionic acids, dihydrobenzofurans, phenylacetic acids or aziprotryn, barban, bensulide, benzthiazuron, benzofluor, buminafos, buthidazole, buturon, cafenstrole, chlorbufam, xhlorofenprop-methyl, chloroxuron, cinmethylin, cumyluron, cycluron, cyprazine, cyprazole, 20 dibenzyluron, dipropetryn, dymron, eglinazin-ethyl, endothall, ethiozin, flucabazone, fluorbentranil, flupoxam, isocarbamid, isopropalin, karbutilate, mefluidide, monuron, napropamide, napropanilide, 25 nitralin, oxaciclomefone, phenisopham, piperophos, procyazine, profluralin, pyributicarb, secbumeton, sulfallate (CDEC), terbucarb, triazofenamide, triaziflam or trimeturon;
- or their environmentally compatible salts.
 - 3. A synergistic herbicidal mixture as claimed in claim 1 or 2, comprising, as component B), at least one herbicidal compound from the groups B1 to B16:

35

40

- Bl acetyl-CoA carboxylase inhibitors (ACC):
 - cyclohexenone oxime ethers: alloxydim, clethodim, cloproxydim, cycloxydim, sethoxydim, tralkoxydim, butroxydim, clefoxydim or tepraloxydim;
 - phenoxyphenoxypropionic esters: clodinafop-propargyl (and, if appropriate, cloquintocet), cyhalofop-butyl, diclofop-methyl, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenthiapropethyl, fluazifop-butyl, fluazifop-P-butyl, haloxyfop-ethoxyethyl, haloxyfop-methyl,

10

20

82

haloxyfop-P-methyl, isoxapyrifop, propaquizafop, quizalofop-ethyl, quizalofop-P-ethyl or quizalofop-tefuryl; or

- arylaminopropionic acids: flamprop-methyl or flamprop-isopropyl;

B2 acetolactate synthase inhibitors (ALS):

- imidazolinones:
 - imazapyr, imazaquin, imazamethabenz-methyl (imazame),
 imazamoc, imazapic, imazethapyr or imazamethapyr;
- pyrimidyl ethers: pyrithiobac-acid, pyrithiobac-sodium, bispyribacsodium, KIH-6127 or pyribenzoxym;
- sulfonamides:
- florasulam, flumetsulam or metosulam; or
 - sulfonylureas: amidosulfuron, azimsulfuron, bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, halosulfuron-methyl, imazosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron-methyl, prosulfuron, pyrazosulfuron-ethyl, rimsulfuron,

sulfometuron-methyl, thifensulfuron-methyl,

triasulfuron, tribenuron-methyl,

triflusulfuron-methyl, N-[[[4-methoxy-6(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide,
sulfosulfuron or idosulfuron;

30

B3 amides:

allidochlor (CDAA), benzoylprop-ethyl, bromobutide, chlorthiamid, diphenamid, etobenzanid (benzchlomet), fluthiamide, fosamin or monalide;

35

B4 auxin herbicides:

- pyridine carboxylic acids: clopyralid or picloram; or
- 2,4-D or benazolin;

40

B5 auxin transport inhibitors:

naptalame or diflufenzopyr;

B6 carotenoid biosynthesis inhibitors:

- benzofenap, clomazone (dimethazone), diflufenican, fluorochloridone, fluridone, pyrazolynate, pyrazoxyfen, isoxaflutole, isoxachlortole,

mesotrione, sulcotrione (chlormesulone), ketospiradox, flurtamone, norflurazon or amitrol;

- B7 enolpyruvylshikimate-3-phosphate synthase inhibitors (ESPS):
 - glyphosate or sulfosate;
- B8 Glutamine synthetase inhibitors:
 - bilanafos (bialaphos) or glufosinate-ammonium;

10

30

45

B9 Lipid biosynthesis inhibitors:

anilofos or mefenacet;

- chloroacetanilides:
 dimethenamid, S-dimethenamid, acetochlor, alachlor,
 butachlor, butenachlor, diethatyl-ethyl,
 dimethachlor, metazachlor, metolachlor,
 S-metolachlor, pretilachlor, propachlor, prynachlor,
 terbuchlor, thenylchlor or xylachlor;
- thioureas:
 butylate, cycloate, di-allate, dimepiperate, EPTC,
 esprocarb, molinate, pebulate, prosulfocarb,
 thiobencarb (benthiocarb), tri-allate or vernolate;
 or
- 25 benfuresate or perfluidone;

B10 mitosis inhibitors:

- carbamates:
 - asulam, carbetamid, chlorpropham, orbencarb, pronamid (propyzamid), propham or tiocarbazil;
- dinitroanilines: benefin, butralin, dinitramin, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine or trifluralin;
- - butamifos, chlorthal-dimethyl (DCPA) or maleic hydrazide;
- 40 B11 protoporphyrinogen IX oxidase inhibitors:
 - diphenyl ethers: acifluorfen, acifluorfen-sodium, aclonifen, bifenox, chlornitrofen (CNP), ethoxyfen, fluorodifen, fluoroglycofen-ethyl, fomesafen, furyloxyfen, lactofen, nitrofen, nitrofluorfen or oxyfluorfen;
 - oxadiazoles: oxadiargyl or oxadiazon;

10

15

30

84

-	cyclic imides:
	azafenidin, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flumiclorac-pentyl, flumioxazin
	flumipropyn, flupropacil, fluthiacet-methyl, sulfentrazone or thidiazimin; or

pyrazoles: ET-751, JV 485 or nipyraclofen;

B12 photosynthesis inhibitors:

- propanil, pyridate or pyridafol;
 - benzothiadiazinones:
 bentazone;
- dinitrophenols:
 bromofenoxim, dinoseb, dinoseb-acetate, dinoterb or
 DNOC;
- dipyridylenes: cyperquat-chloride, difenzoquat-methylsulfate, diquat or paraquat-dichloride;
- chlorbromuron, chlorotoluron, difenoxuron, dimefuron, diuron, ethidimuron, fenuron, fluometuron, isoproturon, isouron, linuron, methabenzthiazuron, methazole, metobenzuron, metoxuron, monolinuron, neburon, siduron or tebuthiuron;
- - chloridazon;
 - triazines: ametryn, atrazine, cyanazine, desmetryn, dimethamethryn, hexazinone, prometon, prometryn, propazine, simazine, simetryn, terbumeton, terbumeton

propazine, simazine, simetryn, terbumeton, terbutryn, terbutylazine or trietazine;

- triazinones:
 metamitron or metribuzine;
- uracils: bromacil, lenacil or terbacil; or
 - biscarbamates:
 desmedipham or phenmedipham;
- 40 B13 synergists:
 - oxiranes: tridiphane;

B14 growth substances:

45 - aryloxyalkanoic acids:

45

2,4-DB, clomeprop, dichlorprop, dichlorprop-P (2,4-DP-P), fluoroxypyr, MCPA, MCPB, mecoprop, mecoprop-P, or triclopyr;

- benzoic acids:

chloramben or dicamba; or

- quinolinecarboxylic acids: quinclorac or quinmerac;

B15 cell wall synthesis inhibitors:

- isoxaben or dichlobenil;

B16 various other herbicides

- dichloropropionic acids: dalapon;
- dihydrobenzofurans:
 ethofumesate;
 - phenylacetic acids: chlorfenac (fenac); or
- aziprotryn, barban, bensulide, benzthiazuron,
 benzofluor, buminafos, buthidazole, buturon,
 cafenstrole, chlorbufam, chlorfenprop-methyl,
 chloroxuron, cinmethylin, cumyluron, cycluron,
 cyprazine, cyprazole, dibenzyluron, dipropetryn,
 dymron, eglinazin-ethyl, endothall, ethiozin,
 flucabazone, fluorbentranil, flupoxam, isocarbamid,
 isopropalin, karbutilate, mefluidide, monuron,
 napropamide, napropanilide, nitralin, oxaciclomefone,
 phenisopham, piperophos, procyazine, profluralin,
 pyributicarb, secbumeton, sulfallate (CDEC),
 terbucarb, triazofenamid, triaziflan or trimeturon;

or their environmentally compatible salts.

- A synergistic herbicidal mixture as claimed in any of claims 1 to 3, comprising, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I, where R⁴ is hydrogen.
- 5. A synergistic herbicidal mixture as claimed in any of claims
 1 to 4, comprising, as component A), a 3-heterocyclylsubstituted benzoyl derivative of the formula I, where
 - R^1 , R^3 are halogen, C_1-C_6 -alkyl, C_1-C_6 -alkylthio, C_1-C_6 -alkylsulfinyl or C_1-C_6 -alkylsulfonyl.
 - 6. A synergistic herbicidal mixture as claimed in any of claims 1 to 5, comprising, as component A), a

3-heterocyclyl-substituted benzoyl derivative of the formula I, where

- is a heterocyclic radical selected from the group:
 isoxazol-3-yl, isoxazol-5-yl and
 4,5-dihydroisoxazol-3-yl, it being possible for
 the three radicals mentioned to be unsubstituted
 or mono- or polysubstituted by halogen,
 C1-C4-alkyl, C1-C4-alkoxy, C1-C4-haloalkyl,
 C1-C4-haloalkoxy or C1-C4-alkylthio.
- A synergistic herbicidal mixture as claimed in any of claims
 1 to 6, comprising, as component A), a
 3-heterocyclyl-substituted benzoyl derivative of the formula
 I, where
- is isoxazol-5-yl, 3-methyl-isoxazol-5-yl,
 4,5-dihydroisoxazol-3-yl,
 5-methyl-4,5-dihydroisoxazol-3-yl,
 5-ethyl-4,5-dihydroisoxazol-3-yl or
 4,5-dimethyl-4,5-dihydroisoxazol-3-yl.
- 8. A synergistic herbicidal mixture as claimed in any of claims 1 to 7, comprising, as component A),
 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.
- 9. A synergistic herbicidal mixture as claimed in any of claims 1 to 7, comprising, as component A),
 30 4-[2-methyl-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonyl-benzoyl]-1-methyl-5-hydroxy-1H-pyrazole.
- 10. A synergistic herbicidal mixture as claimed in any of claims 1 to 5, comprising, as component A), a
 3-heterocyclyl-substituted benzoyl derivative of the formula I, where
- is a heterocyclic radical selected from the group:
 thiazol-2-yl, thiazol-4-yl, thiazol-5-yl,
 isoxazol-4-yl, 4,5-dihydroisoxazol-4-yl and
 4,5-dihydroisoxazol-5-yl, it being possible for the
 six radicals mentioned to be unsubstituted or monoor polysubstituted by halogen, C₁-C₄-alkyl,
 C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or
 C₁-C₄-alkylthio.

- 11. A synergistic herbicidal mixture as claimed in any of claims 1 to 10, comprising, as component B), at least one herbicidal compound from the groups B1, B2, B4 to B12 or B14 as defined in claim 2 or 3.
- 12. A synergistic herbicidal mixture as claimed in any of claims 1 to 11, comprising, as component B), at least one herbicidal compound from the following groups:
- 10 B1 acetyl-CoA carboxylase inhibitors (ACC): cyclohexenone oxime ethers or phenoxypropionic esters;
 - B2 acetolactate synthase inhibitors (ALS):
 imidazolinones, pyrimidyl ethers, sulfonamides or
 sulfonylureas;
 - B4 auxin herbicides:
 pyridinecarboxylic acids or 2,4-D;
- 20 B5 auxin transport inhibitors;
 - B6 carotenoid biosynthesis inhibitors;
 - B7 enolpyruvylshikimate 3-phosphate synthase inhibitors;
 - B8 glutamine synthetase inhibitors;
 - B9 lipid biosynthesis inhibitors:
 chloroacetanilides or thioureas;
 - B10 mitosis inhibitors: dinitroanilines;
- Bl1 protoporphyrinogen IX oxidase inhibitors:
 diphenyl ethers, oxadiazoles, cyclic imides or pyrazoles;
 - B12 photosynthesis inhibitors:

 pyridate, pyridafol, benzothiadiazinone, dipyridylenes,
 ureas, phenols, chloridazon, triazines or triazinones;
 - B14 growth substances: aryloxyalkanoic acids, benzoic acids or quinolinecarboxylic acids.

45

40

15

25

- 13. A synergistic herbicidal mixture as claimed in any of claims 1 to 12, comprising, as component B), at least one herbicidal compound from the following groups:
- cycloxydim, sethoxydim, clodinafop (and, if appropriate, cloquintocet), fenoxaprop-ethyl, fenoxaprop-P-ethyl, imazapyr, imazaquin, imazamethabenz, imazethapyr, pyrithiobac-sodium, metosulam, halosulfuron-methyl, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-
- 1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)benzenesulfonamide, flufenacet, 2,4-D, diflufenzopyr,
 isoxaflutole, sulcotrione, glyphosate, glufosinate-ammonium,
 dimethenamid, S-metolachlor, benthiocarb, pendimethalin,
 acifluorfen, carfentrazone-ethyl, cinidon-ethyl, pyridate,
- bentazone, paraquat-dichloride, diuron, isoproturon, bromoxynil, chloridazon, atrazin, metribuzin, MCPA, dicamba and quinclorac.
- 14. A synergistic herbicidal mixture as claimed in any of claims 1 to 12, comprising, as component B), at least one herbicidal compound from the group: codinafop (and, if appropriate, cloquintocet), diflufenzopyr, imazethapyr, flumetsulam, pyrithiobac-sodium, nicosulfuron, N-[[[4-methoxy-6-(trifluoromethyl)-1,3,5-triazin-2-yl]amino]carbonyl]-2-(trifluoromethyl)-benzenesulfonamide, clopyralid, 2,4-D, isoxaflutole, glyphosate, glufosinate-ammonium, dimethenamid, S-dimethenamid, acetochlor, metolachlor,
- S-metolachlor, pendimethalin, carfentrazone-ethyl, pyridate, bentazone, diuron, bromoxynil, atrazine, terbuthylazine, metribuzin and dicamba.
 - 15. A synergistic herbicidal mixture as claimed in any of claims 1 to 5, 11 to 14, comprising, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I where
- is a heterocyclic radical from the group:

 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl and

 4,5-dihydroisoxazol-5-yl, it being possible for the three
 radicals mentioned to be unsubstituted or mono- or
 polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy,
 C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio.

- 16. A synergistic herbicidal mixture as claimed in any of claims 1 to 5, 11 to 14, comprising, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I, where
- is a heterocyclic radical from the group: thiazol-2-yl, thiazol-4-yl and thiazol-5-yl, it being possible for the three radicals mentioned to be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkyl or C₁-C₄-alkylthio.
- 17. A synergistic herbicidal mixture as claimed in any of claims 1 to 5, 11 to 14, comprising, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I, where
- is a heterocyclic radical from the group: isoxazol-3-yl, isoxazol-4-yl or isoxazol-5-yl, it being possible for the three radicals mentioned to be unsubstituted or mono- or polysubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio.
- 18. A synergistic herbicidal mixture as claimed in any of claims 15 to 17, comprising, as component B), at least one herbicidal compound from the groups B1, B2, B4 to B11 or B14 as defined in claim 2.
- 19. A synergistic herbicidal mixture as claimed in claim 15 or 16, comprising, as component B), at least one herbicidal
 30 compound from the groups B12 as defined in claim 2.
 - 20. A synergistic herbicidal mixture as claimed in any of claims 15 to 17, comprising, as component B), at least one herbicidal compound from the following group:
 - propanil, pyridate, pyridafol, dinitrophenols, dipyridylenes, triazinones, uracils or biscarbamates.
- 21. A synergistic herbicidal mixture as claimed in any of claims 1 to 20, comprising, as component A), a 3-heterocyclyl-substituted benzoyl derivative of the formula I and, as component B), a herbicidal compound as defined in any of claims 1 to 20.

45

- 22. A synergistic herbicidal mixture as claimed in any of claims 1 to 20, comprising, as component A), a 3-heterocyclylsubstituted benzoyl derivative of the formula I and, as component B), two herbicidal compounds as defined in any of claims 1 to 20.
- 23. A synergistic herbicidal mixture as claimed in any of claims 1 to 12, comprising a 3-heterocyclyl-substituted
 10 benzoyl derivative of the formula I and, as component B), a herbicidal compound as defined in any of claims 1 to 12 and a herbicidal compound from the groups B12 and B14.
- 24. Synergistic herbicidal mixture as claimed in any of claims 1 to 23, wherein component A) and B) are present in a weight ratio of 1:0.002 to 1:800.
- 25. Synergistic herbicidal mixture as claimed in claim 24, wherein component A) and component B) are present in a weight ratio of 1:0.003 to 1:160.
 - 26. A herbicidal composition comprising a herbicidally active amount of a synergistic herbicidal mixture as claimed in any of claims 1 to 23, at least one inert liquid and/or solid carrier and, if desired, at least one surfactant.
 - 27. A herbicidal composition as claimed in claim 26, wherein component A) and component B) are present in a weight ratio of 1:0.002 to 1:800.
 - 28. A herbicidal composition as claimed in claim 27, wherein component A) and component B) are present in a weight ratio of 1:0.003 to 1:160.
- 35 29. A process for the preparation of herbicidal compositions as claimed in claim 25, wherein component A, component B, at least one inert liquid and/or solid carrier and, if appropriate, a surfactant are mixed.
- 40 30. A method of controlling undesired vegetation, which comprises applying a synergistic herbicidal mixture as claimed in any of claims 1 to 23 before, during and/or after the emergence of undesired plants, it being possible for the herbicidally active compounds of components A) and B) to be applied simultaneously or in succession.

31. A method of controlling undesired vegetation as claimed in claim 30, wherein the leaves of the crop plants and of the undesired plants are treated.

30 -