Midterm 1 for Algebra-Based Physics: Electricity and Magnetism

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

March 6, 2019

Instructions: Work each problem before looking at the given answer. See if you first understand the problem conceptually, then work out the mathematics, then end with plugging in relevant data.

Memory Bank:

- 1. Coulomb Force: $\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$
- 2. $k = 9 \times 10^9 \; {
 m N} \; {
 m C}^{-2} \; {
 m m}^2$
- 3. $q_e = 1.6 \times 10^{-19} \text{ C}$
- 4. Mass of a proton: $1.67 \times 10^{-27} \text{ kg}$
- 5. Electric field and charge: $\vec{F}=q\vec{E}$
- 6. Field of infinite wire of charge density λ : $\vec{E}(z)=\frac{2k\lambda}{z}\hat{z}$
- 7. Field of two oppositely charged infinite planes, with charge density σ : $\vec{E}(z)=\frac{\sigma}{\epsilon_0}\hat{z}$
- 8. $\epsilon_0 \approx 8.85 \times 10^{-12} \text{ F/m}$
- 9. Dipole moment: $\vec{p} = q\vec{d}$
- 10. Torque on dipole moment: $\vec{ au} = \vec{p} imes \vec{E}$
- 11. Electric flux: $\Phi = \vec{E} \cdot \vec{A} = EA \cos \theta$
- 12. Gauss' law: $\Phi = Q_{enc}/\epsilon_0$
- 13. Potential energy and voltage: $U = q\Delta V$
- 14. Voltage of a point charge: $V(r)=krac{q}{r}$
- 15. Voltage and E-field: $\vec{E} = rac{\Delta V}{\Delta x}$
- 16. Capacitance: Q = CV
- 17. Parallel plate capacitor: $C = \frac{\epsilon_0 A}{d}$
- 18. Adding two capacitors in series: $C_{tot}^{-1} = C_1^{-1} + C_2^{-2}$
- 19. Adding two capacitors in parallel: $C_{tot} = C_1 + C_2$
- 20. Definition of current: $I(t) = \frac{\Delta Q}{\Delta t}$
- 21. Drift velocity: $v_d = \frac{I}{nAq}$
- 22. Ohm's law: V=IR
- 23. Adding two resistors in series $R_{tot} = R_1 + R_2$
- 24. Adding two resistors in parallel $R_{tot}^{-1}=R_{1}^{-1}+R_{2}^{-2}$

Figure 1: A device accelerating a **positively charged** particle to the right.

1. Chapter 18, Electrostatics

(a)	Suppose two	o electrons a	approach e	each othe	r until 1	they a	re 10^{-14}	m apart.	What is the	force l	oetween
	them?										

(b) A charge $q_1=40\mu\mathrm{C}$ is located at (-4,0) m and a charge $q_2=20\mu\mathrm{C}$ is located at (2,0) m	ı. What is the
magnitude and direction of the electric field between them?	

(c)	In Fig. 1, assume a proton is being accelerated to the right. (a) If the electric field is $E=2000$ N/C to
	the right, what is the force on the proton? (b) Using Newton's Second Law, show that the acceleration
	is $a=(q/m)E$. (c) Recall that an object that is accelerating travels a distance d in a time t according to
	$d=\frac{1}{2}at^2$. How far has the proton travelled in 1 μ s?

2. Chapter 19, Voltage

- (a) An arch of electricity sends 2.0 C of charge through a potential of 10^5 Volts. What energy was dissipated?
- (b) Consult again Fig. 1. (a) If the plates are 100 cm apart, and the field is still 2000 N/C, what is the voltage difference between the plates? (b) Draw the voltage as a function of distance between the plates.

Figure 2: A circuit of capacitors.

3. Chapter 19, Capacitance

- (a) Find the charge stored when 3.0 V is applied to an 30.0 pF capacitor.
- (b) Find the charge stored when 3.0 V is applied to two 30.0 pF capacitors in parallel.
- (c) Consult Fig. 2. If $C_1=50.0$ pF, $C_2=25.0$ pF, and $C_3=25.0$ pF, and V=12.0 Volts, what is the total charge?

4. Chapter 20, Current and Ohm's law

- (a) Suppose two resistors $R_1=1 \mathrm{k}\Omega$ and $R_2=10 \mathrm{k}\Omega$ are connected in parallel to a 5.0 V battery. What is the current that flows from the battery?
- (b) Consider Fig. 3, in which six $10k\Omega$ resistors are connected to a 9V battery. (a) What is the total resistance? (b) What is the current flowing from the battery?

Figure 3: A circuit made of two sets of parallel resistors.