

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет: «РЛ»

Кафедра: «РЛ5»

Расчетно-проектное задание

Исполнительный привод

Выполнил: Ионин Д.А. Группа: СМ11-61Б

Вариант 1.1

Руководитель: Иванов С.Е.

ОГЛАВЛЕНИЕ

ОГЈ	ЛАВЛЕНИЕ	2
УСЈ	ЛОВИЕ КУРСОВОГО ПРОЕКТА	4
1.	ВЫБОР ПРОТОТИПА	5
2.	ВЫБОР ДВИГАТЕЛЯ	9
3.	КИНЕМАТИЧЕСКИЙ РАСЧЕТ	12
4.	СИЛОВОЙ РАСЧЕТ	15
5.	РАСЧЕТ ЗУБЧАТЫХ КОЛЕС НА ПРОЧНОСТЬ	17
6.	ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ	22
7.	ПРОЕКТНЫЙ РАСЧЕТ ВАЛА	27
8.	ВЫБОР ПОДШИПНИКОВ	28
9.	РАСЧЕТ ПРЕДОХРАНИТЕЛЬНОЙ МУФТЫ	29
10.	РАСЧЕТ ВИДА СОПРЯЖЕНИЯ	33
11.	РАСЧЕТ КИНЕМАТИЧЕСКОЙ ПОГРЕШНОСТИ	35
12.	РАСЧЕТ ПОГРЕШНОСТИ МЕРТВОГО ХОДА	38
13.	ПОГРЕШНОСТЬ УПРУГОГО СКРУЧИВАНИЯ ВАЛОВ	40
14.	СУММАРНАЯ КИНЕМАТИЧЕСКАЯ ПОГРЕШНОСТЬ ПО	
BEF	РОЯТНОСТНОМУ МЕТОДУ	42
15.	СУММАРНАЯ ПОГРЕШНОСТЬ МЕРТВОГО ХОДА ПО	
BEF	РОЯТНОСТНОМУ МЕТОДУ	43
16.	ОБЩАЯ ПОГРЕШНОСТЬ. АНАЛИЗ РЕЗУЛЬТАТОВ	44
17.	ПРОВЕРОЧНЫЙ СИЛОВОЙ РАСЧЕТ	45
18.	РАСЧЕТ НА БЫСТРОДЕЙСТВИЕ	50
19.	ПРОВЕРОЧНЫЙ РАСЧЕТ НА КОНТАКТНУЮ ПРОЧНОСТЬ	51
20.	ПРОВЕРОЧНЫЙ РАСЧЕТ НА ПРОЧНОСТЬ ПРИ	
КРА	АТКОВРЕМЕННЫХ НАГРУЗКАХ	53
ПРО	ОВЕРОЧНЫЙ РАСЧЕТ ШПОНКИ МУФТЫ	57

ПРО	ВЕРОЧНЫЙ РАСЧЕТ ШПОНКИ ДВИГАТЕЛЯ	58
ПРО	ВЕРОЧНЫЙ РАСЧЕТ ШТИФТОВОГО СОЕДИНЕНИЯ	59
21.	ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА V НА ПРОЧНОСТЬ	60
22.	РАСЧЕТ ВАЛА V НА ИЗГИБНУЮ ЖЕСТКОСТЬ	64
23.	РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА V	67
24.	ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА IV НА ПРОЧНОСТЬ	71
25.	РАСЧЕТ ВАЛА IV НА ИЗГИБНУЮ ЖЕСТКОСТЬ	75
26.	РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА IV	78
27.	ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА III НА ПРОЧНОСТЬ	82
28.	РАСЧЕТ ВАЛА IV НА ИЗГИБНУЮ ЖЕСТКОСТЬ	85
29.	РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА IV	88
СПИ	СОК ЛИТЕРАТУРЫ	92

УСЛОВИЕ КУРСОВОГО ПРОЕКТА

ЗАДАНИЕ № І

Тема проекта: исполнительный привод

Техническое задание: разработать конструкцию исполнительного привода по предложенной схеме в соответствии с данным вариантом.

Основные исходные данные:

№ варианта	I
Параметры	I
Момент на выходном валу M_c , Нмм	300
Скорость вращения выходного вала ω , об/мин	1.5
Момент инерции нагрузки J_{H} , $\kappa z \cdot m^2$	0.1
Ускорение вращения выходного вала є, с ⁻²	5
Погрешность редуктора на выходном валу $\Delta \varphi$, <i>угл. мин</i> .	25
Критерий проектирования	Min погрешности
Тип предохранительной муфты	Фрикционная
Тип корпуса	Открытый
Тип двигателя.	ДПР
Характер производства	Единичный
Срок службы (не менее)	300 ч
Вывод выходного элемента	По указанию преподавателя (со стороны двигателя или противоположной),
Вид крепления к основному изделию	По указанию преподавателя (со шпонкой и резьбой, под штифт или др.).
Условия эксплуатации	УХЛ 4.1
Степень защиты	Выбирается самостоятельно
Безлюфтовое колесо	Наличие обосновывается расчетом

1. ВЫБОР ПРОТОТИПА

1.1 Анализ технического задания

Согласно техническому эксплуатации заданию, условие прибора – УХЛ4.1. Это значит, что по ГОСТ 15150-69, изделие предназначено для эксплуатации в макроклиматических районах с умеренным и холодным В помещениях c кондиционированным климатом, или частично кондиционированным воздухом. Для изделий исполнения УХЛ4.1 рабочий диапазон температуры +10...+25 °C, средняя рабочая температура -20 °C, предельные значения температуры – +1...+40 °C, предельная относительная влажность – 80% при 25 °C. Срок службы ЭМП назначим 300 часов

По указанию руководителя, выбрал двигатель ДПР.

1.2 Анализ прототипов

1.2.1 Анализ первого прототипа

Данный прототип предназначен для дорогого двигателя, имеющего сложное крепление к корпусу. В качестве опор использован подшипники скольжения. Выходной вал имеет шпоночное соединение,

Рисунок 1.2.1 Прототип рядового исполнения с плохим двигателем

1.2.2. Анализ второго прототипа

Второй прототип имеет много недостатков, но в нем хорошие опоры и интересная компоновка промежуточных валов. Однако установка валов не учитывает принцип минимизации погрешности, накладывая дополнительные связи на конструкцию. Модуль передачи выходного вала маленький. В конструкции толстые крышки корпуса. На выходном валу сложное крепление в 2 подшипника в одну пластину. Все подшипники в конструкции разные.

Рис. 3.6. Трехступенчатый двухплатный цилиндрический зубчатый привод

Рисунок 1.2.2 второй прототип с хорошим промежуточным валом

1.2.3. Анализ третьего прототипа

Данная модель построена на одной плате, что негативно влияет на точность и сложность конструкции. В данном прототипе выбран хороший двигатель, интересная конструкция зубчатых колес.

Рисунок 1.2.3 Третий прототип одноплитного исполнения

2. ВЫБОР ДВИГАТЕЛЯ

Цель расчета: выбор двигателя для ЭМП

2.1 Выбор двигателя по мощности

Расчетная мощность нагрузки:

$$P_{ ext{H}}=(M_{ ext{H}}+J_{ ext{H}}arepsilon_{ ext{H}})\cdot\omega_{ ext{H}}$$
 $\omega_{ ext{H}}=1.5rac{ ext{paд}}{ ext{c}}$ $P_{ ext{H}}=(0.3+0.1\cdot5)\cdot1.5=1.2~ ext{BT}$

Поскольку выбран цилиндрический зубчатый редуктор открытого типа, выберем $\eta_0 = 80\%$

Согласно Т3, условия эксплуатации УХЛ 4.1 не являются суровыми, поэтому, ξ должен соответствовать рекомендованному диапазону 1.5 . . . 2,

Для частых пусков выберем $\xi = 1.7$

Расчетная мощность нагрузки:

$$P_p = \frac{\xi \cdot P_H}{\eta_o} = \frac{1.7 \cdot 1.2}{0.8} = 2.55 \text{ BT}$$

Учитывая разброс температур, характер работы, мощность, срок службы выберем ДПР-52- Φ 1-04 [1]

Табл. 2. Паспортные данные двигателя ДПР-52-Ф1-04

Номинальная мощность	Рном	2.6 Вт
Номинальные момент	Мном	9.8 Нмм
Пусковой момент	Мпуск	54 Нмм
Частота вращения выходного вала	пдв	2500 об/мин
Момент инерции ротора	J_p	$1.7 \cdot 10^{-6}$ кгм 2
Напряжение питания	U	27 B
Срок службы (не менее)	T	4000 ч
Macca		0.26 кг

Вывод: выбранный двигатель ДПР-52-Ф1-04 подходит по мощности.

2.2 Предварительная проверка выбора двигателя по моментам

По указанию руководителя, работу привода нужно рассматривать, как на работе при частых пусках.

Для этого режима двигатель должен удовлетворять условию:

$$M_{\text{HOM}} \ge M_{\text{с.пр.}} + M_{\text{дпр}}$$

где $M_{\text{ном}}$ — номинальный момент на валу двигателя;

 $M_{\text{с.пр.}}$ — статический приведённый момент;

 $M_{\text{д. пр.}}$ — динамический приведённый момент.

Общее передаточное отношение:

$$i_0 = \frac{2500}{1.5} = 1666$$

$$M_{\text{с.пр.}} = \frac{M_c}{i_o \cdot \eta_0} = \frac{0.3}{1666 \cdot 0.8} = 0.00023 \text{ H} \cdot \text{M}$$

$$M_{\text{д.пр.}} = \varepsilon_{\text{H}} \cdot i_{\text{o}} \cdot \left((1 + K_{\text{M}}) \cdot J_p + \frac{J_{\text{H}}}{i_0^2} \right)$$
 (1.7)

где $\varepsilon_{\rm H}$ — угловое ускорение вращения на выходном звене;

 $i_{\rm o}$ — общее передаточное отношение;

 $K_{\rm M}$ — коэффициент, учитывающий инерционность собственного зубчатого механизма, примем рекомендованное значение 0.75;

 $J_{
m p}$ — момент инерции ротора двигателя (из паспортных данных);

 $J_{
m H}$ — момент инерции нагрузки.

$$M_{\text{д.пр.}} = 5 \cdot 1666 \cdot \left((1 + 0.75) \cdot 1.7 \cdot 10^{-9} + \frac{0.1}{1666^2} \right) = 0.00032 \text{ H} \cdot \text{M}$$

$$0.0098 \text{ HM} \ge 0.00023 \text{ HM} + 0.00032 \text{ HM}$$

Вывод: выбранный двигатель ДПР-52-Ф1-04 подходит по моментам.

3. КИНЕМАТИЧЕСКИЙ РАСЧЕТ

Цель расчета: разработка кинематической схемы привода, разбиение передаточного отношения, определения числа зубьев зубчатых колес.

3.1 Расчет передаточного отношения привода

Общее передаточное отношение колес:

$$i_0 = \frac{n_{\rm AB}}{n_{\rm H}} = \frac{2500}{1.5} = 1666$$

Согласно условию ТЗ проектирование будет осуществляться по минимизации погрешности. При расчёте по критерию минимизации погрешности колёс число ступеней будет вычисляться по формуле:

$$n = \frac{\lg i_0}{\lg i_{max}}$$
 (округляется в большую сторону) (3.1.1)

где п — число ступеней;

 i_0 — общее передаточное отношение цепи.

 $i_{max} = 7,5.$.10 выберем 8, с этим значением получаются значения близкие к рекомендованному ряду;

Полученное число ступеней:

$$n = \frac{\lg 1666}{\lg 8} = 3.56 \approx 4$$

Для числа ступеней 3, передаточное отношение для ступеней определяется выражением:

$$i_{12} \le i_{34} \le i_{56} \le i_{78} \tag{3.1.2}$$

Выберем передаточные отношения из табличных:

Таблица 3. Передаточные отношения

i_{12}	i_{34}	i_{56}	i ₇₈
4	6	8	8

3.2 Определение чисел зубьев зубчатых колес

Пусть число зубьев 1 шестерни $z_1 = 25$ (Выбирается из рекомендованного диапазона [17 ... 30]

Число зубьев колеса рассчитывается по формуле:

$$z_{K} = z_{III} \cdot i_{j} \tag{3.2.1}$$

где $z_{\rm K}$ — число зубьев колеса;

 z_{III} — число зубьев шестерни;

 i_j —передаточное отношение одной ступени.

Учитывая рекомендованный ряд, назначаем количества зубьев колес и шестерен:

Таблица 4. Числа зубьев колес редуктора

№ колеса	1	2	3	4	5	6	7	8
№ элементарной	1	ſ	1	T .	11	Ī	I	V
передачи	_		,		11	L		• •
Число зубьев	25	100	25	150	25	200	25	200

Тогда действительное значение передаточного отношения будет отличаться от расчётного на:

$$\Delta i = \frac{|i_{\pi} - i_{o}|}{i_{o}}, \tag{3.2.2}$$

где Δi — отличие действительного передаточного отношения от расчётного;

ід — действительное передаточное отношение;

іо — общее передаточное отношение цепи.

Действительное передаточное отношение рассчитывается по формуле:

$$i_{II} = i_{12} \cdot i_{34} \cdot i_{56} \cdot i_{78} = \frac{100}{25} \cdot \frac{150}{25} \cdot \frac{200}{25} \cdot \frac{200}{25} = 1536$$

Это значение отличается от расчетного на

$$\Delta i = \frac{|1666 - 1536|}{1536} = 8.4\%$$

Такое отклонение не превышает допустимую [<10%]. В таком случае можно считать выбранные значения чисел зубьев колеса и шестерни подходящими.

Кинематическая схема приведена на рисунке 3.1:

Рисунок 3.1. Кинематическая схема

4. СИЛОВОЙ РАСЧЕТ

Цель расчёта: определение возникающих в каждой передаче моментов. Моменты рассчитываются по формуле:

$$M_{ ext{ведуш}} = rac{M_{ ext{ведом}}}{i_{j} \cdot \eta_{j} \cdot \eta_{ ext{подш}}}$$

где $M_{\mathrm{ведущ}}$ — момент на ведущем звене;

 $M_{\text{ведом}}$ — момент на ведомом звене;

 i_j — передаточное отношение ступени;

 η_j — КПД передачи;

 $\eta_{\text{подш}}$ — КПД подшипников.[1]

Общий момент нагрузки рассчитывается по формуле:

$$M_{\Sigma} = M_{H} + M_{\Lambda} = M_{H} + J_{H} \cdot \epsilon_{H}$$

где M_H – момент нагрузки;

 ${\rm M_{\rm д}}$ – динамический момент нагрузки;

 $J_{\rm H}$ – момент инерции нагрузки;

 $\varepsilon_{\rm H}$ –угловое ускорение вращения выходного вала. [1]

Примем КПД подшипника равным 0.99, а КПД передачи 0.98, эти значения взяты с запасом, и близки к идеальным. После уточнения характеристик привода, они получатся ниже.

4.1 Расчет общего момента нагрузки:

$$M_{\Sigma} = 0.3 + 0.1 \cdot 5 = 0.8 \text{ HM} = 800 \text{Hmm}$$

Расчет моментов в каждой передачи:

$$M_{V\Sigma} = \frac{M_{\Sigma}}{\eta_{\text{подш}}} = \frac{0.8}{0.99} = 0.81 \text{ HM} = 810 \text{ Hмм}$$

$$M_{IV\Sigma} = \frac{M_{IV\Sigma}}{i_{78} \cdot \eta_{\text{j}} \cdot \eta_{\text{подш}}} = \frac{0.81}{8 \cdot 0.98 \cdot 0.99} = 0.108 \text{ HM} = 108 \text{ Hмм}$$

$$M_{III\Sigma} = \frac{M_{IV\Sigma}}{i_{56} \cdot \eta_{\text{j}} \cdot \eta_{\text{подш}}} = \frac{0.108}{8 \cdot 0.98 \cdot 0.99} = 0.014 \text{ HM} = 14 \text{ Hмм}$$

$$M_{II\Sigma} = \frac{M_{III\Sigma}}{i_{34} \cdot \eta_{\text{j}} \cdot \eta_{\text{подш}}} = \frac{0.014}{6 \cdot 0.98 \cdot 0.99} = 0.0024 \text{ HM} = 2.4 \text{ Hмм}$$

$$M_{I\Sigma} = \frac{M_{II\Sigma}}{i_{12} \cdot \eta_{\text{i}}} = \frac{0.0024}{4 \cdot 0.98} = 0.0006 \text{ HM} = 0.6 \text{ HмM}$$

За неимением большинства необходимых данных (Например, о диаметрах валов), влиянием муфты на систему пренебрегаю. Оно будет рассчитано в проверочном расчете.

5. РАСЧЕТ ЗУБЧАТЫХ КОЛЕС НА ПРОЧНОСТЬ

Цель расчёта: определение модуля зацепления зубчатых колёс, обеспечивающего работоспособность в течение заданного срока службы.

5.1 Выбор материала

Для цилиндрической передачи открытого типа с небольшими окружными скоростями в качестве материала для шестерен будет использоваться углеродистая сталь 45, а в качестве материала для колёс — сталь 35 (см. таблица 6) в соответствии с рекомендациями.

$$[HB_{\text{шестерни}} = HB_{3K} + 10..15].$$

Зубья шестерен будут выполнены из материалов с более высокой твёрдостью рабочих поверхностей по сравнению с колёсами для повышения долговечности зубчатой передачи.

Таблица 6. Характеристики используемых материалов

	Шестерня	Колесо	
Материал	Сталь 45	Сталь 35	
Модуль упругости Е, МПа	2 · 1	10^{-5}	
Коэффициент линейного расширения α·10 ⁻⁶ , 1/°C	1	2	
Плотность ρ , г/см ³	7,8		
Твёрдость	$HB_1 = 229$	$HB_1 = 207$	
Термообработка	Закалка 860 С, масло	, Отпуск 500 С, вода,	
Предел прочности σ _в , МПа	600	530	
Предел текучести $\sigma_{\scriptscriptstyle T}$, МПа	355	315	

5.2 Расчёт допустимых напряжений

Расчётное число циклов нагружения определяется по формуле:

$$N_H = 60 \cdot n \cdot c \cdot L$$

где п — частота вращения зубчатого колеса;

с = 1 — число колёс, находящихся в зацеплении с рассчитываемым;

L = 300 ч. — срок службы передачи.

Расчет числа циклов нагружения:

$$N_{1} = 60 \cdot 2500 \cdot 1 \cdot 300 = 7.5 \cdot 10^{7}$$

$$N_{2} = N_{3} = 60 \cdot \frac{2500}{8} \cdot 1 \cdot 300 = 9.4 \cdot 10^{6}$$

$$N_{4} = N_{5} = 60 \cdot \frac{2500}{8 \cdot 8} \cdot 1 \cdot 300 = 1.1 \cdot 10^{6}$$

$$N_{6} = N_{7} = 60 \cdot \frac{4500}{6 \cdot 8 \cdot 10} \cdot 1 \cdot 300 = 1.9 \cdot 10^{5}$$

$$N_{8} = 60 \cdot \frac{4500}{4 \cdot 6 \cdot 8 \cdot 10} \cdot 1 \cdot 300 = 4.9 \cdot 10^{4}$$

Коэффициент долговечности определяется соотношением:

$$K_{FL} = \sqrt[m]{\frac{4 \cdot 10^6}{N_H}}$$

где m = 6 — показатель степени для материалов с твёрдостью $HB \le 350$ [9];

 $N_{\rm H}$ — расчётное число циклов нагружения.

При $N_{\rm H} > 4 \cdot 10^6$ принимают $K_{FL} = 1$ [9].

$$K_{FL1} = K_{FL2} = K_{FL3} = K_{FL4} = K_{FL5} \approx 1$$

$$K_{FL6} = K_{FL7} = \sqrt[6]{\frac{4 \cdot 10^6}{1.9 \cdot 10^5}} = 1.66$$

$$K_{FL8} = \sqrt[6]{\frac{4 \cdot 10^6}{4.9 \cdot 10^4}} = 2.08$$

В таком случае можно определить допускаемое напряжение изгиба:

$$[\sigma_{\rm F}] = \frac{\sigma_{\rm FR} \cdot K_{\rm FC} \cdot K_{\rm FL}}{S_{\rm F}}$$

Где σ_{FR} — предел выносливости при изгибе;

 $K_{FC} = 0.65$ — коэффициент, учитывающий цикл нагружения колеса для реверсивных передач;

 $K_{FL} = 1$ — коэффициент долговечности;

 $S_F = 2,2$ — коэффициент запаса прочности для особо ответственных передач.

Предел выносливости при изгибе рассчитывается из соотношения [рекомендованный коэффициент 1,8]:

$$\sigma_{FR} = 1.8 \cdot HB, M\Pi a$$

где НВ — твёрдость материала колеса.

Предел выносливости на изгиб для шестерней:

$$\sigma_{FRIII} = 1.8 \cdot 229 = 412 \text{ M}\Pi a$$

Предел выносливости на изгиб для зубчатых колес:

$$\sigma_{FRK} = 1.8 \cdot 207 = 372.6 \text{ M}\Pi a$$

Допускаемые напряжения на изгиб для шестерен будут равны:

$$[\sigma_F]_1 = [\sigma_F]_3 = [\sigma_F]_5 = \frac{412 \cdot 0.65 \cdot 1}{2.2} = 121.7$$
 Мпа $[\sigma_F]_7 = \frac{412 \cdot 0.65 \cdot 1.66}{2.2} = 202$ МПа

Допускаемые напряжения на изгиб для колес будут равны:

$$\begin{split} [\sigma_F]_2 &= \ [\sigma_F]_4 = \frac{372.6 \cdot 0.65 \cdot 1}{2.2} = 110.1 \ \text{М}\Pi\text{a} \\ [\sigma_F]_6 &= \frac{372.6 \cdot 0.65 \cdot 1.66}{2.2} = 182.7 \ \text{M}\Pi\text{a} \\ [\sigma_F]_8 &= \frac{372.6 \cdot 0.65 \cdot 2.08}{2.2} = 228.9 \ \text{M}\Pi\text{a} \end{split}$$

5.3. Расчет передач на изгибную прочность

Для открытых передач модуль зацепления определяется из изгибной прочности:

$$m = K_m \sqrt[3]{\frac{M \cdot Y_F \cdot K}{z \cdot \psi_m \cdot [\sigma_F]}}$$

где $K_m = 1,4$ — коэффициент для прямозубых колёс [9];

М — крутящий момент, действующий на рассчитываемое колесо (по данным силового расчёта);

Y_F — коэффициент формы зуба для прямозубых цилиндрических колёс.

z — число зубьев рассчитываемого колеса;

K = 1,1 — коэффициент расчётной нагрузки [9];

 $\psi_m = 10$ — коэффициент ширины зубчатого венца для мелкомодульных передач [рекомендованный диапазон 3..16];

 $[\sigma_F]$ — допускаемое напряжение изгиба.

Расчет $Y_F/[\sigma_F]$ для каждой передачи:

		1	2	3	4	5	6	7	8
	Yf	3.98	3.75	3.98	3.75	3.98	3.75	3.98	3.75
,	$Y_F/[\sigma_F]$	3.98	3.75	3.98	3.75	3.98	3.75	3.98	3.75
		${111.8} =$	${110.1} =$	${111.8} =$	${110.1} =$	${111.8} =$	${182.7} =$	${191.6}$ =	${228.9} =$
		= 0.0356	= 0.0341	= 0.0356	= 0.0341	= 0.0356	= 0.0205	= 0.0208	= 0.0163

Т.К. расчёт производится по тому зубчатому колесу (из пары шестерня – зубчатое колесо), для которого отношение $Y_F/[\sigma_F]$ больше. Модуль зацепления для каждой пары колёс будет равен:

$$m_{12} = 1.4 \sqrt[3]{\frac{0.6 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.06 \text{ mm}$$

$$m_{34} = 1.4 \sqrt[3]{\frac{2.4 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.10 \text{ mm}$$

$$m_{56} = 1.4 \sqrt[3]{\frac{14 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.18 \text{ mm}$$

$$m_{78} = 1.4 \sqrt[3]{\frac{108 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.36 \text{ mm}$$

Значения модулей зацепления округляются в соответствии с ГОСТ 9563-60.

С учетом размеров выбранного электродвигателя принимаю $m_{\mathrm min}=0.5$

С учетом дальнейшей установки муфты на последнем валу, а также уменьшения мертвого хода принимаю $m_{78}=0.7$

Таким образом, модули зацепления цилиндрических зубчатых передач будут равны

$$m_{12} = m_{34} = m_{56} = 0.5$$

 $m_{78} = 0.7$

6. ГЕОМЕТРИЧЕСКИЙ РАСЧЕТ

Целью расчёта является определение основных размеров передач и их элементов.

Основные геометрические размеры цилиндрических зубчатых передач указаны на рисунке 2.

Рисунок 2 Геометрические параметры цилиндрической зубчатой передачи

В данном приводе используются цилиндрические прямозубые передачи, поэтому угол наклона зубьев $\beta=0^\circ$.

Делительный диаметр определяется соотношением:

$$d = \frac{m \cdot z}{\cos \beta} \tag{6.1}$$

где d — делительный диаметр;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев рассчитываемого колеса;

 $\beta = 0^{\circ}$ — угол наклона зубьев.

6.1 Расчет делительного диаметра

$$d_1 = d_3 = d_5 = 0.5 \cdot 25 = 12.5 \text{mm}$$

$$d_7 = 0.7 \cdot 25 = 17.5 \text{ mm}$$

$$d_2 = 0.5 \cdot 100 = 50 \text{ mm}$$

$$d_4 = 0.5 \cdot 150 = 75 \text{ mm}$$

$$d_6 = 0.5 \cdot 200 = 100 \text{ mm}$$

$$d_8 = 0.7 \cdot 200 = 140 \text{ mm}$$

Диаметр вершин зубьев определяется по формуле:

$$d_{a} = \frac{m \cdot z}{\cos \beta} + 2m(h_{a}^{*} + x) = d + 2m(h_{a}^{*} + x), \tag{5.2}$$

где d_a — диаметр вершин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

z — число зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба [1];

х = 0 — коэффициент смещения.

Расчет диаметра вершин зубьев:

$$\begin{split} d_{a1} &= d_{a3} = d_{a5} = 12.5 + 2 \cdot 0.5 \cdot 1 = 13.5 \text{ mm} \\ d_{a7} &= 17.5 + 2 \cdot 0.7 \cdot 1 = 18.9 \text{ mm} \\ d_{a2} &= 50 + 2 \cdot 0.5 \cdot 1 = 51 \text{ mm} \\ d_{a4} &= 75 + 2 \cdot 0.5 \cdot 1 = 76 \text{ mm} \\ d_{a6} &= 100 + 2 \cdot 0.5 \cdot 1 = 101 \text{ mm} \\ d_{a8} &= 140 + 2 \cdot 0.7 \cdot 1 = 141.4 \text{ mm} \end{split}$$

Диаметр впадин определяется по формуле:

$$d_{f} = \frac{m \cdot z}{\cos \beta} - 2m(h_{a}^{*} + c^{*} - x), \qquad (5.3)$$

где d_f — диаметр впадин зубьев;

т — модуль зацепления рассчитываемой пары колёс;

z — число зубьев;

 $\beta = 0^{\circ}$ — угол наклона зубьев;

 $h_a^* = 1$ — коэффициент высоты головки зуба [рекомендованное значение];

 $c^*=0.5$ — коэффициент радиального зазора $m \le 0.5$ мм, ($c^*=0.35$ - коэффициент радиального зазора 0.5 < m < 1 мм); по ГОСТ 9587-81;

х = 0 — коэффициент смещения.

Расчет диаметров впадин:

$$\begin{split} d_{f1} &= d_{f3} = d_{f5} = 12.5 - 2 \cdot 0.5 \cdot (1 + 0.5) = 11 \text{ mm} \\ d_{f7} &= 17.5 - 2 \cdot 0.7 \cdot (1 + 0.35) = 15.61 \text{ mm} \\ d_{f2} &= 50 - 2 \cdot 0.5 \cdot (1 + 0.5) = 48.5 \text{ mm} \\ d_{f4} &= 75 - 2 \cdot 0.5 \cdot (1 + 0.5) = 73.5 \text{ mm} \\ d_{f6} &= 100 - 2 \cdot 0.5 \cdot (1 + 0.5) = 98.5 \text{ mm} \\ d_{f8} &= 140 - 2 \cdot 0.7 \cdot (1 + 0.35) = 138.11 \text{ mm} \end{split}$$

Окружной шаг определяется по формуле:

$$p = m \cdot \pi$$

где р — окружной шаг;

т — модуль зацепления рассчитываемой пары колёс.

$$p_{12} = p_{34} = p_{56} = 0.5 \cdot \pi = 1.57$$

 $p_{78} = 0.7 \cdot \pi = 2.19$

Ширина колеса определяется по формуле:

$$b_{\kappa} = \psi_{m} \cdot m$$

где b_{κ} — ширина колеса;

ψ_m выберем равным 6 — коэффициент ширины зубчатого венца для мелкомодульных передач из рекомендуемого диапазона 3..16; С данным числом 3К лучше всего установится на вал двигателя.[1]

т — модуль зацепления рассчитываемой пары колёс.

Тогда ширина колёс будет равна:

$$b_2 = b_4 = b_6 = 6 \cdot 0.5 = 3 \text{ mm}$$

 $b_8 = 6 \cdot 0.7 = 4.2 \text{ mm}$

Ширина шестерни определяется по формуле:

$$b_{III} = b_{K} + m$$

Тогда ширина шестерней будет равна:

$$b_1 = b_3 = b_5 = 3 + 0.5 = 3.5 \text{ mm}$$

 $b_7 = 4.2 + 0.7 = 4.9 \text{ mm}$

Межосевое расстояние определяется по формуле:

$$a_{\omega} = \frac{0.5 \cdot m \cdot (z_{\text{\tiny K}} + z_{\text{\tiny III}})}{\cos \beta}$$

$$a_{w12} = 0.5 \cdot 0.5 \cdot (12.5 + 50) = 31.25 \text{ MM}$$

$$a_{w34} = 0.5 \cdot 0.5 \cdot (12.5 + 75) = 43.75 \text{ MM}$$

$$a_{w56} = a_{78} = 0.5 \cdot 0.5 \cdot (12.5 + 100) = 56.25 \text{ MM}$$

$$a_{78} = 0.5 \cdot 0.7 \cdot (17.5 + 140) = 78.75 \text{ MM}$$

В таблице 7 сведены все рассчитанные геометрические параметры зубчатых колес:

Таблица 7. Геометрические параметры зубчатых колес

Параметр № колеса	Z	d, мм	d _а , мм	$ m d_{f}$, мм	<i>b</i> ,	a_{ω} , MM
1	25	12.5	13.5	11	3.5	21.25
2	100	50	51	48.5	3	31.25
3	25	12.5	13.5	11	3.5	42.75
4	150	75	76	73.5	3	43.75
5	25	12.5	13.5	11	3.5	E 6 2 E
6	200	100	101	98.5	3	56.25
7	25	17.5	18.9	15.61	4.9	70 75
8	200	140	141.4	138.11	4.2	78.75

Вывод: Полученные геометрические параметры зубчатых колес позволяют их компоновку.

7. ПРОЕКТНЫЙ РАСЧЕТ ВАЛА

Диаметр вала исходя из условия крутильной прочности определяется выражением [1]:

$$d \ge \sqrt[3]{\frac{M_{\text{Kp}}}{0,2[\tau]_{\text{Kp}}}}, [\tau]_{\text{Kp}} \approx 0.56 \frac{\sigma_{-1}}{n}$$

где $M_{\rm kp}$ -крутящий момент на валу

 $[\tau]_{\kappa p}$ – предельные крутильные напряжения

 $\sigma_{-1} = 245 \ \mathrm{M\Pi a} - \mathrm{предел}$ выносливости при симметричном цикле нагружения

n – коэффициент запаса, выберем рекомендованный n=2.[1]

$$[\tau]_{\rm kp} \approx 0.56 \frac{245}{2} = 68.6 {\rm MHz}$$

Данный двигатель ДПР-72-Ф1-03 имеет вал диаметром 4 мм, что позволяет закрепить выбранную 1 шестерню на его валу, ($d_{f1}=5.19>4$)

$$d_{II} \ge \sqrt[3]{\frac{2.4}{0.2 \cdot 68.6}} = 0.56 \text{ mm}$$

$$d_{III} \ge \sqrt[3]{\frac{14}{0.2 \cdot 68.6}} = 1 \text{ MM}$$

$$d_{IV} \ge \sqrt[3]{\frac{108}{0.2 \cdot 68.6}} = 1.98 \text{ MM}$$

$$d_V \ge \sqrt[3]{\frac{810}{0.2 \cdot 68.6}} = 389 \text{ mm}$$

Для повышения технологичности конструкции, выберу стандартный диаметр 4 мм на все валы

8. ВЫБОР ПОДШИПНИКОВ

В качестве опор будет использоваться шарикоподшипники. Предварительный выбор шарикоподшипников будет осуществляться по диаметру цапфы. Предварительно диаметр цапфы для каждого вала можно определить из выражения

$$d_{II} = d - 2..3 \text{ MM}$$

На вал I подшипник не назначается.

Из опыта прошлого семестра выберу подшипники F682 фирмы NTN изза простоты крепежа и отсутствия чрезмерного запаса хода. [3] (179 стр.)

Рисунок 3. Схема подшипника

Таблица 3. Параметры подшипника F682

d (MM)	2
D (MM)	5
D_1 (MM)	6.1
В (мм)	1.5
C ₁ (MM)	0.5
r (мин)	0.08
G_r (мкм)	13
Номинальная радиальная	169
грузоподъемность Н	
Номинальная осевая	50
грузоподъемность Н	
Размер заплечиков вала (мм)	2.62.7

9. РАСЧЕТ ПРЕДОХРАНИТЕЛЬНОЙ МУФТЫ

Цель расчета: подобрать предохранительную муфту, по рассчитанным ранее параметрам механизма.

Рассчитаю параметры муфты при установке на последний вал редуктора.

9.1 Расчет диаметра колеса муфты

Параметры зубчатого колеса z_6 на последнем валу:

Делительный диаметр, мм	80
Количество зубьев	200
Модуль, мм	0.4
Диаметр вала, мм	4
Передаваемый кр. момент Нмм	810
Ширина зубчатого венца, мм	4.2

По ГОСТ 15622-96, момент предохранения равен:

$$M_{\rm np} = K \cdot M_{\Sigma H}$$
,

где $K_{\text{max}} = 1.4$

 $M_{\Sigma {
m H}}$ -суммарный момент нагрузки.

$$M_{\rm np} = 1.4 \cdot 0.81 = 1.134 \text{ HM}$$

 $M_{\rm np} = f_{\rm rp} \cdot F_{\rm oc} \cdot D_{\rm cp}$

где $f_{\rm Tp}$ — коэффициент трения фрикционного материала;

 $F_{\rm oc}$ – осевая сила;

 $D_{\rm cp}$ — средний радиус

 $D_{
m диск} = (3 \dots 6) d_{
m вала} -$ наружный диаметр диска. Назначим D = 40 мм

Назначим внутренний диаметр $d_1 = 16$ мм

$$R_{\rm np} = \frac{1}{3} \cdot \frac{D_{\rm H}^3 - d_1^3}{D_{\rm H}^2 - d_1^2} = \frac{1}{3} \cdot \frac{40^3 - 16^3}{40^2 - 16^2} = 14.9 \text{ mm}$$

9.2 Расчет фрикционного материала муфты

T \sim \sim \sim 1	1 I		
	Механические свойства	ι Ματρημαπορ πορ <i>ε</i>	nvuoctu theuud
1 aOJIHHa J.Z.I	MICAGINACCKIIC CBOIICIBA	i marconanod nobe	

Материал	Условия	Коэф	Допустимое	Рабочая	
фрикционной	работы	трения,	давление,	температура,	
пары		f0	[р], МПа	${\mathbb C}$	
Сталь-сталь		0.08	0.6 - 0.8	250	
Сталь-бронза	Со смазкой	0.05	0.4	150	
Сталь-текстолит		0.1	0.5 - 0.6	100	
Сталь-асбест		0.3	0.25 - 0.3	250	
Сталь-	Без смазки	0.8	0.3	550	
металлокерамика					
Сталь-	Co overest	0.4	0.4	550	
металлокерамика	Со смазкой				

Выбираю материал Сталь-металлокерамика: с условием работы без смазки.

Сила сжатия пружины определяется следующим выражением:

$$F_2 = \frac{M_{\rm пред}}{R_{\rm пред} \cdot f_0}$$

$$F_2 = \frac{1134}{14.9 \cdot 1 \cdot 0.8} = 95.1 \text{ H}$$

Нагрузочная способность определяется допускаемым значением удельного давления p:

$$p = \frac{4 \cdot F_2}{\pi (D_H^2 - d_1^2)} = \frac{4 \cdot 95.1}{\pi (40^2 - 16^2)} \approx 0.1 < [p] = 0.3 \text{ M}\Pi a$$

Вывод – выбранные материалы подходят

$$F_{3min} = \frac{109}{1 - 0.05} = 116 \text{ H}$$

$$F_{3max} = \frac{109}{1 - 0.25} = 145 \text{ H}$$

Считаем, что сила пружины при предварительной деформации $F_1=0$ (H), так как это фрикционная предохранительная муфта. Назначим ход

пружины h = 5 (мм). Сила пружины при максимально допустимой деформации определяются по следующей формуле:

$$F_3 = \frac{F_2}{1 - 0.05} \dots \frac{F_2}{1 - 0.25} = \frac{95.1}{1 - 0.05} \dots \frac{95.1}{1 - 0.25} = 100 \dots 126.8 \text{ H}$$

Таблица 9.2.1 Характеристики выбранной пружины по ГОСТ 13766-86

Номер	Сила пружины	Диаметр	Наружный	Жесткость	Наибольший	
позиции	при	проволоки	диаметр	одного	прогиб	
	максимальной	d	пружины	витка С ₁	одного	
	деформации F_3	MM	D1	H/MM	витка, S'3	
	Н		MM		MM	
375	125	2.8	34	19.86	6.297	

Назначим полностью поджатые, зашлифованные на 3/4 дуги окружности опорные витки.

Жесткость пружины определяется по формуле:

$$c = \frac{F_2 - F_1}{h} = \frac{95.1 - 0}{5} = 19.02 \frac{H}{MM}$$

Число рабочих витков рассчитывается по следующей формуле:

$$n = \frac{c_1}{c} = \frac{19.86}{19.02} = 1.04$$

Назначим число рабочих витков n = 2

С учетом нерабочих витков $n_2 = 2$ полное число витков равно:

$$n_1 = n + n_2 = 2 + 2 = 4$$

9.3 проверочный расчет муфты

Выберем материал – проволока стальная углеродистая пружинная класса 1 - ГОСТ 9389-75.

Для d=2.8 мм временное сопротивление разрыву

$$R_m = 2000 \frac{H}{MM^2}$$

Допускаемое касательное напряжение найдем по следующей формуле:

$$[\tau] = 0.3 \cdot R_m = 0.3 \cdot 2000 = 600 \text{ M}\Pi \text{a}$$

Расчетное значение максимального касательного напряжения найдем по следующей формуле:

$$\tau_3 = \frac{8 \cdot F_3 \cdot D_1}{\pi \cdot d^3} \cdot k$$

Где $k=\frac{4i-1}{4i+4}+\frac{0.615}{i}$ - коэффициент, учитывающий кривизну витка пружины

 $i = \frac{D_1}{d}$ - индекс пружины

$$i = \frac{34}{2.8} = 12.1$$

$$k = \frac{4 \cdot 12.1 - 1}{4 \cdot 12.1 + 4} + \frac{0.615}{12.1} = 0.96$$

$$\tau_3 = \frac{8 \cdot 140 \cdot 25}{\pi \cdot 2.8^3} \cdot 0.96 = 389.7 \text{ M}\Pi\text{a}$$

Это значение не превышает допустимого

Рабочая деформация определяется по формуле:

$$S_2 = \frac{F_2}{c} = \frac{95.1}{19} = 5.0 \text{ MM}$$

Максимальная деформация:

$$S_3 = \frac{F_3}{c} = \frac{125}{19} = 6.5 \text{ MM}$$

Длина пружины при максимальной деформации вычисляется по формуле:

$$l_3 = (n_1 + 1 - n_3) \cdot d = (4 + 1 - 2) \cdot 2.8 = 8.4 \text{ mm}$$

Длина пружины в свободном состоянии:

$$l_0 = l_3 + S_3 = 8.4 + 6.5 = 14.9 \,(\text{MM})$$

Длина пружины при рабочей деформации:

$$l_2 = l_0 - S_2 = 14.9 - 5.0 = 9.9 \text{ mm}$$

Шаг навивки

$$t = S_t' + d = 6.297 + 2.8 = 10.1 \text{ mm}$$

10. РАСЧЕТ ВИДА СОПРЯЖЕНИЯ

Выберем вид сопряжения из условия:

$$j_p \leq j_{\text{nmin}}$$

где j_p — расчётное значение бокового зазора;

jn min — минимальное значение гарантированного бокового зазора для соответствующего вида сопряжения.

Расчётное значение бокового зазора определяется по формуле:

$$j_p = j_n^t + j_c$$

где j_p — расчётное значение бокового зазора;

 j_{t_n} — боковой зазор, компенсирующий изменение рабочей температуре; j_c — боковой зазор, необходимый для размещения слоя смазки.

Боковой зазор, компенсирующий изменение рабочей температуре, определяется по формуле:

$$j_{n12}^t = 0.684 \cdot a_w \left(\alpha_{_{3K}} \cdot (t_{_{3K}} - 20^{\circ}\text{C}) - \alpha_{_{KOP}} (t_{_{KOP}} - 20) \right)$$

где α_{ω} — межосевое расстояние;

 $\alpha_{3 \kappa}$ и $\alpha_{\kappa op}$ — коэффициенты линейного расширения материалов зубчатого колеса и корпуса;

Материал корпуса Ст5: $\alpha_{\rm кор} = 14.8 \cdot 10^{-6} \frac{1}{^{\circ}{\rm C}}$

Материал зубчатых шестерней 45: $\alpha_{\text{кор}} = 12 \cdot 10^{-6} \frac{1}{^{\circ}\text{C}}$

Материал зубчатых колес 35: $\alpha_{\text{кор}} = 12 \cdot 10^{-6} \frac{1}{^{\circ}\text{C}}$

По условиям Т3, работа устройства осуществляется по УХЛ-4.1, это значит, что предельная рабочая температура: 1°С ... 40 °С

При температуре $+40^{\circ}$ получим

$$j_{n12}^t = 0.684 \cdot a_w (11.3 \cdot (40 - 20^{\circ}\text{C}) - 14.8(40 - 20)) \cdot 10^{-6}$$

< 0 при положительном a_w

Значит дополнительный зазор не требуется.

При температуре +1° получим

$$\begin{split} j^t_{n12} &= 0.684 \cdot 31.25 \big(11.3 \cdot (1-20) - 14.8(1-20)\big) \cdot 10^{-6} = 1.4 \text{ мкм} \\ j^t_{n34} &= 0.684 \cdot 43.75 \big(11.3 \cdot (1-20) - 14.8(1-20)\big) \cdot 10^{-6} = 2.0 \text{ мкм} \\ j^t_{n56} &= 0.684 \cdot 56.25 \big(11.3 \cdot (1-20) - 14.8(1-20)\big) \cdot 10^{-6} = 2.6 \text{ мкм} \\ j^t_{n78} &= 0.684 \cdot 67.5 \big(11.3 \cdot (1-20) - 14.8(1-20)\big) \cdot 10^{-6} = 3.1 \text{ мкм} \end{split}$$

Значение зазора, необходимого для размещения смазки, определяется по формуле:

$$j_c = 0.01 \dots 0.02 \cdot m$$

где т — модуль зацепления. Тогда:

$$j_{c12}=j_{c34}=j_{c56}=0.015\cdot 0.5=0.0075=7.5\,\mathrm{MKM}$$
 $j_{c78}=0.015\cdot 0.6=9\,\mathrm{MKM}$

Расчетное значение бокового зазора для всех передач:

$$j_p = j_c + j_n^t$$
 $j_{12} = 1.4 + 7.5 = 8.9 \text{ мкм}$
 $j_{34} = 2 + 7.5 = 9.5 \text{ мкм}$
 $j_{56} = 2.6 + 7.5 = 10.1 \text{ мкм}$
 $j_{78} = 3.1 + 9 = 12.1 \text{ мкм}$

Для передачи 12 подойдет только сопряжение G, Для передач 34 и 56 достаточно сопряжения F Для передачи 78 – подойдет сопряжения

11. РАСЧЕТ КИНЕМАТИЧЕСКОЙ ПОГРЕШНОСТИ

Исходя из рекомендованных к данному типу привода значений, назначим 7 степень точности.

В таблице 11.1 приведены значения параметров передач для вида сопряжения G 7 степени точности.

Назначим Кф=1 для всех из результатов консультации

Таблица 11.1

№ 3.K.	1	2	3	4	5	6	7	8
Z	25	100	25	150	25	200	25	200
d, мм	12.5	50	12.5	75	12.5	100	17.5	140
a _ω , MM	31.25		43.75		56.25		78.75	
F _r , мкм	22	26	22	36	22	36	22	36
Тн, мкм	38	45	42	60	42	60	56	70
F _p , мкм	24	30	24	30	24	42	24	42
f _f , mkm	10							
K_{ϕ}		0.5		0.25		0.25		0.38
K		0.96		0.96		0.96		0.96
K_s		0.8		0.8		0.8		0.8
f _a , мкм	±20 ±		32 ±3		35	±60		
Ен, мкм	18	22	24	36	24	42	32	60
j _{nmin} , MKM	9		16		19		30	

Минимальное значение кинематической погрешности для передач 7-й степени точности определяется по формуле:

$$F_{iomin}' = 0.71 \cdot K_s \cdot K_{\varphi} \cdot (F_{i1}' + F_{i2}')$$

где Ks — коэффициент фазовой компенсации;9

 K_{ϕ} — коэффициент учитывающий угол поворота ведомого колеса;

Fi1 и Fi2 — допуски на кинематическую погрешность шестерни и колеса. Допуски на кинематическую погрешность определяются по формуле:

$$F_i' = F_p + f_f$$

где F_p — допуск на накопленную погрешность шага зубчатого колеса; f_f — допуск на погрешность профиля зуба.

Произведем расчет для всех передач:

$$F_1' = F_3' = F_5' = F_7' = 24 + 10 = 34$$
 мкм
$$F_2' = F_4' = 30 + 10 = 40$$
 мкм
$$F_6' = F_8' = 42 + 10 = 52$$
 мкм
$$F_{iomin12}' = 0.71 \cdot 0.8 \cdot 0.5 \cdot (34 + 40) = 21.1$$
 мкм
$$F_{iomin34}' = 0.71 \cdot 0.8 \cdot 0.25 \cdot (34 + 40) = 10.5$$
 мкм
$$F_{iomin56}' = 0.71 \cdot 0.8 \cdot 0.25 \cdot (34 + 52) = 12.2$$
 мкм
$$F_{iomin78}' = 0.71 \cdot 0.8 \cdot 0.38 \cdot (34 + 52) = 18.6$$
 мкм

Угловая погрешность элементарной передачи определяется по формуле:

$$\delta\varphi_{i0} = 6.88 \cdot \frac{F'_{i0}}{m \cdot z}$$

где F'_{i0} — кинематическая погрешность;

m — модуль зацепления;

z — число зубьев ведомого звена.

Переведем погрешность в угловые минуты:

$$\delta\varphi_{min12} = \frac{6.88 \cdot 21.1}{0.5 \cdot 50} = 5.8'$$

$$\delta\varphi_{min34} = \frac{6.88 \cdot 10.5}{0.5 \cdot 75} = 1.9'$$

$$\delta\varphi_{min56} = \frac{6.88 \cdot 12.2}{0.5 \cdot 100} = 1.7'$$

$$\delta\varphi_{min78} = \frac{6.88 \cdot 18.6}{0.7 \cdot 140} = 1.4'$$

Максимальное значение кинематической погрешности определяется по формулам:

$$F'_{i0\,\text{max}} = K \cdot K_{\varphi} \left(\sqrt{(F_{i1}')^2 + (E_{\sum M1})^2} + \sqrt{(F_{i2}')^2 + (E_{\sum M2})^2} \right)$$

где К — коэффициент фазовой компенсации;

 $F_{i1}{}'$ и $F_{i2}{}'$ — допуски на кинематическую погрешность шестерни и колеса;

 K_{φ} — коэффициент учитывающий угол поворота ведомого колеса;

 $E_{\sum M1}$ и $E_{\sum M2}$ — погрешности монтажа шестерни и колеса.

Примем погрешность монтажа равной 0.

Тогда:

$$F_{i0\,\,\mathrm{max}12}' = 0.96 \cdot 0.5 \left(\sqrt{(34)^2 + (0)^2} + \sqrt{(40)^2 + (0)^2} \right) = 35.6\,\,\mathrm{MKM}$$
 $F_{i0\,\,\mathrm{max}34}' = 0.96 \cdot 0.25 \left(\sqrt{(34)^2 + (0)^2} + \sqrt{(40)^2 + (0)^2} \right) = 17.8\,\,\mathrm{MKM}$ $F_{i0\,\,\mathrm{max}56}' = 0.96 \cdot 0.25 \left(\sqrt{(34)^2 + (0)^2} + \sqrt{(52)^2 + (0)^2} \right) = 20.6\,\,\mathrm{MKM}$ $F_{i0\,\,\mathrm{max}78}' = 0.96 \cdot 0.37 \left(\sqrt{(34)^2 + (0)^2} + \sqrt{(52)^2 + (0)^2} \right) = 30.5\,\,\mathrm{MKM}$

Переведем погрешность в угловые минуты:

$$\delta \varphi_{max12} = \frac{6.88 \cdot 35.6}{0.5 \cdot 50} = 9.8'$$

$$\delta \varphi_{max34} = \frac{6.88 \cdot 17.8}{0.5 \cdot 75} = 3.3'$$

$$\delta \varphi_{max56} = \frac{6.88 \cdot 20.6}{0.5 \cdot 100} = 2.8'$$

$$\delta \varphi_{max78} = \frac{6.88 \cdot 30.5}{0.7 \cdot 140} = 2.1'$$

Вывод: кинематическая погрешность зависит от угла поворота ведомого звена.

12. РАСЧЕТ ПОГРЕШНОСТИ МЕРТВОГО ХОДА

Минимальное значение мёртвого хода определяется по формуле:

$$j_{tmin} = \frac{j_{nmin}}{\cos \alpha \cdot \cos \beta}$$

где jn min — минимальное значение гарантированного бокового зазора соответствующей передачи;

 $\alpha = 20^{\circ}$ — угол исходного профиля колеса;

 $\beta = 0^{\circ}$ — угол наклона боковой стороны профиля.

Расчет для всех передач:

$$j_{tmin12} = \frac{9}{\cos 20^{\circ} \cos 0} = 10 \text{ MKM}$$
 $j_{tmin34} = \frac{16}{\cos 20^{\circ} \cos 0} = 16 \text{ MKM}$
 $j_{tmin56} = \frac{19}{\cos 20^{\circ} \cos 0} = 20 \text{ MKM}$
 $j_{tmin78} = \frac{30}{\cos 20^{\circ} \cos 0} = 32 \text{ MKM}$

Переведем погрешность в угловые минуты:

$$j_{\varphi min12} = \frac{6.88 \cdot 10}{0.5 \cdot 50} = 2.7'$$

$$j_{\varphi min34} = \frac{6.88 \cdot 16}{0.5 \cdot 75} = 2.9'$$

$$j_{\varphi min56} = \frac{6.88 \cdot 20}{0.5 \cdot 100} = 2.8'$$

$$j_{\varphi min78} = \frac{6.88 \cdot 32}{0.7 \cdot 140} = 2.2'$$

Для выбранных шарикоподшипников максимальный радиальный зазор $G_r = 13$ мкм.

Максимальное значение мёртвого хода определяется по формуле:

$$j_{tmax} = 0.7(E_{HSIII} + E_{HSIK}) + \sqrt{0.5 \cdot (T_{HIII}^2 + T_{HIK}^2) + 2 \cdot f_a^2 + \Delta p_{III}^2 + \Delta p_{IK}^2}$$

где Eнs — наименьшее смещение исходного контура зубчатого колеса;

Тн — допуск на смещение исходного контура зубчатого колеса;

f_а — допуск на отклонение межосевого расстояния передачи;

Δр — радиальный зазор в опорах зубчатого колеса.

Тогда:

$$\begin{split} j_{tmax12} &= 0.7(18+22) + \sqrt{0.5\cdot(38^2+45^2)+2\cdot20^2+0+13^2} = 80 \text{ мкм} \\ j_{tmax34} &= 0.7(24+36) + \sqrt{0.5(42^2+60^2)+2\cdot32^2+13^2+13^2} = 113 \text{ мкм} \\ j_{tmax56} &= 0.7(24+42) + \sqrt{0.5(42^2+60^2)+2\cdot35^2+13^2+13^2} = 120 \text{ мкм} \\ j_{tmax78} &= 0.7(32+64) + \sqrt{0.5(56^2+70^2)+2\cdot60^2+13^2+13^2} = 174 \text{ мкм} \end{split}$$

Переведем в угловые минуты:

$$j_{\varphi max12} = \frac{6.88 \cdot 80}{0.5 \cdot 50} = 22'$$

$$j_{\varphi max34} = \frac{6.88 \cdot 113}{0.5 \cdot 75} = 20.7'$$

$$j_{\varphi max56} = \frac{6.88 \cdot 120}{0.5 \cdot 100} = 16.5'$$

$$j_{\varphi max78} = \frac{6.88 \cdot 174}{0.7 \cdot 140} = 12.2'$$

Проверка: для всех передач максимальное значение погрешности мертвого хода больше минимального значения.

13. ПОГРЕШНОСТЬ УПРУГОГО СКРУЧИВАНИЯ ВАЛОВ

Погрешность мертвого хода передачи, обусловленная скручиванием валов, определяется по формуле:

$$\Delta \varphi = \frac{2 \cdot M_{\rm Kp} \cdot l}{G \cdot J_p}$$

где $M_{\kappa p}$ — крутящий момент на валу;

1 — длина рабочего участка вала;

 $G = 8 \cdot 10^4 M\Pi a$ — модуль упругости второго рода для стали;

J_p — полярный момент инерции сечения.

Полярный момент инерции определяется по формуле:

$$J_p \approx 0.1 \cdot d^4$$

где d — диаметр вала

$$d_{{}_{II}} = d_{{}_{III}} = d_{{}_{IV}} = 4 \text{ mm}$$
 $d_{V} = 7 \text{ mm}$

Длина рабочего участка вала:

$$l_{II}=11.5~\mathrm{MM}$$
 $l_{III}=8.7~\mathrm{MM}$ $l_{IV}=13.5~\mathrm{MM}$ $l_{V}=25~\mathrm{MM}$

Момент на валах:

$$M_{II} = 2.4 \text{ Hmm}$$
 $M_{III} = 14 \text{ Hmm}$
 $M_{IV} = 108 \text{ Hmm}$
 $M_{V} = 810 \text{ Hmm}$

Произведем расчет для всех валов:

$$J_{pII} = J_{pIII} = J_{pIV} = 25.6 \cdot 10^{-12} \text{ m}^4$$

$$J_{pV} = 240.1 \cdot 10^{-12} \text{ m}^4$$

$$\Delta\varphi_{II} = \frac{2\cdot0.0024\cdot0.012}{8\cdot10^4\cdot10^6\cdot25.6\cdot10^{-12}} = 0.00003 \text{ рад}$$

$$\Delta\varphi_{III} = \frac{2\cdot0.014\cdot0.009}{8\cdot10^4\cdot10^6\cdot25.6\cdot10^{-12}} = 0.00012 \text{ рад}$$

$$\Delta\varphi_{IV} = \frac{2\cdot0.108\cdot0.0014}{8\cdot10^4\cdot10^6\cdot25.6\cdot10^{-12}} = 0.00015 \text{ рад}$$

$$\Delta\varphi_{V} = \frac{2\cdot0.810\cdot0.025}{8\cdot10^4\cdot10^6\cdot240.1\cdot10^{-12}} = 0.0021 \text{ рад}$$

Переведем значение погрешности из радиан в угловые минуты:

$$\Delta \varphi_{II}' = \frac{180 \cdot 60 \cdot 0.00003}{\pi} = 0.10'$$

$$\Delta \varphi_{III}' = \frac{180 \cdot 60 \cdot 0.00012}{\pi} = 0.41'$$

$$\Delta \varphi_{IV} = \frac{180 \cdot 60 \cdot 0.00015}{\pi} = 0.52'$$

$$\Delta \varphi_{V} = \frac{180 \cdot 60 \cdot 0.0021}{\pi} = 7.2'$$

Суммарная погрешность от скручивания валов:

$$\Delta \varphi_{\Sigma}' = \frac{7.2}{1} + \frac{0.58}{8} + \frac{0.41}{8 \cdot 8} + \frac{0.10}{8 \cdot 8 \cdot 6} = 7.28'$$

14. СУММАРНАЯ КИНЕМАТИЧЕСКАЯ ПОГРЕШНОСТЬ ПО ВЕРОЯТНОСТНОМУ МЕТОДУ

Суммарная погрешность определяется выражением:

$$\delta_{\varphi \sum P} = E_{V \sum}^{\varphi} + t_1 \cdot \sqrt{\sum_{j=1}^{n} \left(\xi \cdot V_j^{\varphi}\right)^2}$$

где ξ_{j} — передаточный коэффициент j-той элементарной передачи; t_{1} — коэффициент, учитывающий процент брака;

$$V_i^{\varphi} = \delta_{\varphi maxj} - \delta_{\varphi minj}$$

где $\delta_{\varphi maxj},\,\delta_{\varphi minj}$ — максимальное и минимальное значение δ_{φ}

$$E_{V\Sigma}^{\varphi} = \sum_{j=1}^{n} \frac{\xi_{j} (\delta_{\varphi maxj} + \delta_{\varphi minj})}{2}$$

Произведем расчет для всех передач:

$$V_{12}^{\varphi} = 9.8' - 5.8' = 4'$$

$$V_{34}^{\varphi} = 3.3' - 1.9' = 1.4'$$

$$V_{56}^{\varphi} = 2.8' - 1.7' = 1.1'$$

$$V_{78}^{\varphi} = 2.1' - 1.4' = 0.7'$$

$$E_{12\Sigma}^{\varphi} = \frac{1}{8 \cdot 8 \cdot 6} \cdot \frac{9.8 + 5.8}{2} = 0.02'$$

$$E_{34\Sigma}^{\varphi} = \frac{1}{8 \cdot 8} \cdot \frac{3.3 + 1.9}{2} = 0.041'$$

$$E_{56\Sigma}^{\varphi} = \frac{1}{8} \cdot \frac{2.8 + 1.7}{2} = 0.28'$$

$$E_{87\Sigma}^{\varphi} = \frac{2.1 + 1.4}{2} = 1.75'$$

$$E_{V\Sigma}^{\varphi} = 0.02 + 0.041 + 0.28 + 1.75 = 2.1$$

$$\delta_{\varphi \Sigma P} = 2.1 + 0.42 \sqrt{\left(\frac{4}{8 \cdot 8 \cdot 6}\right)^2 + \left(\frac{1.4}{8 \cdot 8}\right)^2 + \left(\frac{1.1}{8}\right)^2 + (0.7)^2} = 2.4'$$

15. СУММАРНАЯ ПОГРЕШНОСТЬ МЕРТВОГО ХОДА ПО ВЕРОЯТНОСТНОМУ МЕТОДУ

Суммарная погрешность определяется выражением:

$$\delta_{j\Sigma P} = E_{V\Sigma}^{\varphi} + t_2 \sqrt{\sum_{j=1}^{n} (\xi \cdot V_j^j)^2}$$

где $\xi_{\rm j}$ — передаточный коэффициент j-той элементарной передачи; t_2 — коэффициент, учитывающий процент брака;

$$V_j^j = j_{\varphi max j} - j_{\varphi minj}$$

где $j_{\varphi max\,j},\,j_{\varphi minj}$ — максимальное и минимальное значение погрешности МХ для j-той элементарной передачи в угловых минутах;

$$E_{V\Sigma}^{j} = \sum_{j=1}^{n} \frac{\xi_{j}(j_{\varphi maxj} + j_{\varphi minj})}{2}$$

$$V_{12}^{j} = 22 - 2.7 = 19.3'$$

$$V_{34}^{j} = 20.7 - 2.9 = 17.8'$$

$$V_{56}^{j} = 16.5 - 2.8 = 13.7'$$

$$V_{78}^{j} = 12.2 - 2.2 = 10'$$

$$E_{12\Sigma}^{j} = \frac{1}{8 \cdot 8 \cdot 6} \cdot \frac{22 + 2.7}{2} = 0.03'$$

$$E_{34\Sigma}^{j} = \frac{1}{8 \cdot 8} \cdot \frac{20.7 + 2.9}{2} = 0.18'$$

$$E_{56\Sigma}^{j} = \frac{1}{8} \cdot \frac{16.5 + 2.8}{2} = 1.2'$$

$$E_{87\Sigma}^{j} = \cdot \frac{12.2 + 2.2}{2} = 7.2'$$

$$E_{V\Sigma}^{j} = 0.03 + 0.18 + 1.2 + 7.2 = 8.61$$

$$\delta_{j\Sigma P} = 8.61 + 0.39 \sqrt{\left(\frac{19.3}{8 \cdot 8 \cdot 6}\right)^{2} + \left(\frac{17.8}{8 \cdot 8}\right)^{2} + \left(\frac{13.7}{8}\right)^{2} + (10)^{2}} = 12.6'$$

16. ОБЩАЯ ПОГРЕШНОСТЬ. АНАЛИЗ РЕЗУЛЬТАТОВ

Общая погрешность положения выходного вала ЭМП, определенная по вероятностному методу, задается выражением:

$$\Delta \Sigma = \delta \varphi \Sigma P + \delta j \Sigma P + \Delta \varphi' \Sigma$$

где $\delta \varphi_{\Sigma P}$ — суммарная кинематическая погрешность

 $\delta j_{\it \Sigma P}$ — суммарная погрешность мертвого хода

 $\Delta \phi'_{\Sigma}$ — суммарная погрешность от скручивания валов.

Общая погрешность положения выходного вала ЭМП не должна превышать заданную погрешность с некоторым коэффициентом запаса:

$$\Delta_{\Sigma} \leq \frac{[\delta_0 S]}{n}$$

где $[\delta_0 S]$ — заданная по ТЗ погрешность положения выходного вала; n — коэффициент запаса $n=1,05\dots 1,5$.

$$\Delta_{\Sigma} = 7.28 + 2.4 + 12.6 = 22.3$$

$$n = \frac{25}{22.3} \approx 1.12$$

Анализ результатов: Полученный ЭП подходит по точности, заданной в Т3, с коэффициентом запаса 1.12

17. ПРОВЕРОЧНЫЙ СИЛОВОЙ РАСЧЕТ

КПД цилиндрических прямозубых передач внешнего зацепления:

$$\eta_{i,i+1} = 1 - \pi \cdot f \cdot \varepsilon_{\nu} \cdot C \cdot \frac{1}{2} \cdot \left(\frac{1}{z_i} + \frac{1}{z_{i+1}}\right),$$

 Γ де $arepsilon_{
u}=1.5$ – коэффициент перекрытия

f = 0.06 – коэффициент трения для колеса из закаленной стали

$$C = \frac{F + 2.92}{F + 0.174}$$
 – коэффициент нагрузки

$$F = \frac{2M_{i+1}}{d_{i+1}}$$
 – окружная сила, Н. Если $F > 30~H => C = 1$

$$M_{V\Sigma} = 810 \text{ Hmm}$$

$$M_{IV\Sigma} = 108 \text{ Hmm}$$

$$M_{III\Sigma} = 14 \text{ Hmm}$$

$$M_{II\Sigma} = 2.4 \text{ Hmm}$$

$$M_{I\Sigma} = 0.6 \text{ Hmm}$$

$$F_2 = \frac{2 \cdot 2.4}{50} = 0.096 \, H$$

$$F_4 = \frac{2 \cdot 14}{75} = 0.37 \, H$$

$$F_6 = \frac{2 \cdot 108}{100} = 2.16 \, H$$

$$F_8 = \frac{2 \cdot 810}{140} = 11.6 \, H$$

$$C_{12} = \frac{0.096 + 2.92}{0.096 + 0.174} = 11.2$$

$$C_{34} = \frac{0.37 + 2.92}{0.37 + 0.174} = 6.0$$

$$C_{56} = \frac{2.16 + 2.92}{2.16 + 0.174} = 2.18$$

$$C_{78} = \frac{11.6 + 2.92}{11.6 + 0.174} = 1.23$$

$$\eta_{12} = 1 - 3.14 \cdot 0.06 \cdot 1.5 \cdot 11.2 \cdot \frac{1}{2} \left(\frac{1}{25} + \frac{1}{100} \right) = 0.921$$

$$\eta_{34} = 1 - 3.14 \cdot 0.06 \cdot 1.5 \cdot 6.0 \cdot \frac{1}{2} \left(\frac{1}{25} + \frac{1}{150} \right) = 0.960$$

$$\eta_{56} = 1 - 3.14 \cdot 0.06 \cdot 1.5 \cdot 2.18 \cdot \frac{1}{2} \left(\frac{1}{25} + \frac{1}{200} \right) = 0.986$$

$$\eta_{78} = 1 - 3.14 \cdot 0.06 \cdot 1.5 \cdot 1.23 \cdot \frac{1}{2} \left(\frac{1}{25} + \frac{1}{200} \right) = 0.992$$

Моменты инерции ЗК рассчитывают по формуле:

$$J = \frac{\pi \cdot b \cdot d^4 \cdot \rho \cdot 10^{-12}}{32}$$

где d – диаметр звена, мм;

b – толщина, мм;

 ρ – плотность, г/см3.

$$J_{1} = \frac{3.14 \cdot 7.4 \cdot 12.5^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 1.3 \cdot 10^{-7} \text{ kg} \cdot \text{m}^{2}$$

$$J_{2} = \frac{3.14 \cdot 3 \cdot 50^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 4.8 \cdot 10^{-6} \text{ kg} \cdot \text{m}^{2}$$

$$J_{3} = \frac{3.14 \cdot 3.5 \cdot 12.5^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 6.5 \cdot 10^{-8} \text{ kg} \cdot \text{m}^{2}$$

$$J_{4} = \frac{3.14 \cdot 3 \cdot 75^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 7.2 \cdot 10^{-5} \text{ kg} \cdot \text{m}^{2}$$

$$J_{5} = \frac{3.14 \cdot 3.5 \cdot 12.5^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 6.5 \cdot 10^{-8} \text{ kg} \cdot \text{m}^{2}$$

$$J_{6} = \frac{3.14 \cdot 3 \cdot 100^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 2.3 \cdot 10^{-4} \text{ kg} \cdot \text{m}^{2}$$

$$J_{7} = \frac{3.14 \cdot 4.9 \cdot 17.5^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 3.5 \cdot 10^{-7} \text{ kg} \cdot \text{m}^{2}$$

$$J_{8} = \frac{3.14 \cdot 4.2 \cdot 140^{4} \cdot 7.8 \cdot 10^{-12}}{32} = 1.23 \cdot 10^{-3} \text{ kg} \cdot \text{m}^{2}$$

Момент инерции двигателя:

$$J_p$$
 1.7 · 10^{-6} кг м 2

Расчет момента инерции муфты:

Округлим в большую сторону, приняв ее форму как усеченного конуса:

$$J_{\rm M} = m_M \left(\frac{3}{10} (R_1^2 - R_2^2) - r^2 \right)$$
 , $m_M = \rho \cdot \pi (r \cdot H + H \cdot (R_1 - R_2))$

Где R_1 -радиус прижимного диска муфты

 R_2 - радиус гайки

r – радиус вала

$$\rho$$
 – плотность, $7800 \frac{\kappa \Gamma}{M^3}$

$$m_M = 7800 \cdot 3.14 (3.5 \cdot 30 + 30 \cdot (42 - 16)) \cdot 10^{-6} = 216.4 \, \Gamma = 0.2 \, \text{кг}$$

$$J_m = 216.4 \cdot \left(\frac{3}{10}(42^2 - 16^2) - 3.5^2\right) \cdot 10^{-9} = 9.5 \cdot 10^{-5}$$
кг · м²

$$\begin{split} \mathsf{M}_{\Sigma} *= 0.3 + 0.1 \cdot 5 &= 0.8 \, \mathsf{HM} = 800 \mathsf{HmM} \\ \varepsilon_8 = 5 \, c^{-2} &= 31.4 \frac{\mathsf{pag}}{\mathsf{c}^2} \\ \mathsf{M}_{\Sigma V}^* = \frac{\mathsf{M}_{\Sigma} \, *}{\eta_{\text{подш}}} + \varepsilon_{\mathsf{H}} (J_8 + J_{\mathsf{M}}) = \frac{0.8}{0.96} + 31.4 (1.23 \cdot 10^{-3} + 9.5 \cdot 10^{-5}) = 0.87 \, \mathsf{HM} \\ \mathsf{M}_{\Sigma IV} *= \frac{\mathsf{M}_{\Sigma V} \, *}{\eta_{\text{подш}} \cdot \eta_{78} \cdot i_{78}} + \varepsilon_{\mathsf{H}} (J_7 + J_6) = \\ &= \frac{0.87}{0.96 \cdot 0.992 \cdot 8} + 31.4 \cdot 8 \cdot (3.5 \cdot 10^{-7} + 2.3 \cdot 10^{-4}) = 0.172 \, \mathsf{HM} \\ \mathsf{M}_{\Sigma III} *= \frac{\mathsf{M}_{\Sigma IV} \, *}{\eta_{\text{подш}} \cdot \eta_{56} \cdot i_{56}} + \varepsilon_{\mathsf{H}} (J_5 + J_4) = \\ &= \frac{0.172}{0.96 \cdot 0.986 \cdot 8} + 31.4 \cdot 8 \cdot 8 \cdot (6.5 \cdot 10^{-8} + 7.2 \cdot 10^{-5}) = 0.167 \, \mathsf{HM} \\ \mathsf{M}_{\Sigma II} *= \frac{\mathsf{M}_{\Sigma III} \, *}{\eta_{\text{подш}} \cdot \eta_{34} \cdot i_{24}} + \varepsilon_{\mathsf{H}} (J_3 + J_2) = \end{split}$$

$$= \frac{0.167}{0.96 \cdot 0.921 \cdot 4} + 31.4 \cdot 8 \cdot 8 \cdot 6 \cdot (6.5 \cdot 10^{-8} + 1.3 \cdot 10^{-7}) = 0.049 \text{ HM}$$

$$M_{\Sigma I} *= \frac{M_{\Sigma II} *}{\eta_{12} \cdot i_{34}} + \varepsilon_{\text{H}} (J_1 + J_{\text{p}}) =$$

$$= \frac{0.049}{0.960 \cdot 6} + 31.4 \cdot 8 \cdot 8 \cdot 6 \cdot 4 \cdot (1.7 \cdot 10^{-6} + 4.8 \cdot 10^{-6}) = 0.047 \text{ HM}$$

Проверочный расчет на изгибную прочность:

Для открытых передач модуль зацепления определяется из изгибной прочности:

$$m = {K_m}^{3} \sqrt{\frac{M \cdot Y_F \cdot K}{z \cdot \psi_m \cdot [\sigma_F]}}$$

где $K_m = 1,4$ — коэффициент для прямозубых колёс [9];

М — крутящий момент, действующий на рассчитываемое колесо (по данным силового расчёта);

Y_F — коэффициент формы зуба для прямозубых цилиндрических колёс.

z — число зубьев рассчитываемого колеса;

K = 1,1 — коэффициент расчётной нагрузки [9];

ψ_m = 10 — коэффициент ширины зубчатого венца для мелкомодульных передач [рекомендованный диапазон 3..16];

 $[\sigma_F]$ — допускаемое напряжение изгиба.

Рассчитанные ранее в 5 главе отношения:

	1	2	3	4	5	6	7	8
Yf	3.98	3.75	3.98	3.75	3.98	3.75	3.98	3.75
$Y_F/[\sigma_F]$	3.98	3.75	3.98	3.75	3.98	3.75	3.98	3.75
	${111.8} = 0.0356$	${110.1} = 0.0341$	${111.8} = $ $= 0.0356$	${110.1} = 0.0341$	${111.8} = 0.0356$	${182.7} = $ $= 0.0205$	${191.6} = 0.0208$	${228.9}$ = 0.0163

Т.К. расчёт производится по тому зубчатому колесу (из пары шестерня – зубчатое колесо), для которого отношение $\frac{YF}{[\sigma F]}$ больше. Модуль зацепления для каждой пары колёс должен быть не менее:

$$\begin{split} m_{12} &= 1.4 \sqrt[3]{\frac{57 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.29 \text{ mm} \\ m_{34} &= 1.4 \sqrt[3]{\frac{199 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.44 \text{ mm} \\ m_{56} &= 1.4 \sqrt[3]{\frac{167 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.42 \text{ mm} \\ m_{78} &= 1.4 \sqrt[3]{\frac{172 \cdot 3.98 \cdot 1.1}{25 \cdot 10 \cdot 111.8}} = 0.42 \text{ mm} \end{split}$$

Таким образом, подобранные ранее модули зацепления цилиндрических зубчатых передач подходят:

$$m_{12} = m_{34} = m_{56} = 0.5$$

 $m_{78} = 0.7$

18. РАСЧЕТ НА БЫСТРОДЕЙСТВИЕ

Проверочный расчет заключается в определении времени разгона и выбега. Примем, что

$$t_p = 3T_{\rm MM}$$

Где $T_{\text{эм}}$ — электромеханическая постоянная:

$$T_{\text{\tiny 9M}} = \frac{J_{\text{пр}} w_{\text{\tiny HOM}}}{M_{\text{\tiny \Pi}} - M_{\text{\tiny CT \PiD}}}$$

Где $w_{\text{ном}} = 2500 \text{ рад/с} - \text{номинальная скорость вращения двигателя}$

 $M_{\rm n} = 54~{\rm H}$ мм — пусковой момент двигателя

 ${
m M_{ct\, np}}-~0.00023~{
m HM}-{
m ctatuveckuй}$ момент нагрузки на валу двигателя

 $J_{
m np}$ – приведенный к валу двигателя момент инерции ЭП:

$$\begin{split} J_{\text{пр}} &= J_1 + \frac{J_2 + J_3}{i_{12}^2} + \frac{J_4 + J_5}{(i_{12} \cdot i_{34})^2} + \frac{J_6 + J_7}{(i_{12} \cdot i_{34} \cdot i_{56})^2} + \frac{J_8 + J_M}{(i_{12} \cdot i_{34} \cdot i_{56} \cdot i_{78})^2} \\ & J_1 = 1.3 \cdot 10^{-7} \text{ kg km}^2 \\ & J_2 = 1.4 \cdot 10^{-5} \text{ kg kg}^2 \\ & J_3 &= J_5 = 6.5 \cdot 10^{-8} \text{ kg kg}^2 \\ & J_4 &= 7.2 \cdot 10^{-5} \text{ kg kg}^2 \\ & J_6 &= 2.3 \cdot 10^{-4} \text{ kg kg}^2 \\ & J_7 &= 3.5 \cdot 10^{-7} \text{ kg kg}^2 \\ & J_8 &= 1.23 \cdot 10^{-3} \text{ kg kg}^2 \\ & J_m &= 9.5 \cdot 10^{-5} \text{kg kg}^2 \\ & J_{mp} &= 1.3 \cdot 10^{-7} + \frac{1.4 \cdot 10^{-5} + 6.5 \cdot 10^{-8}}{4^2} + \frac{7.2 \cdot 10^{-5} + 6.5 \cdot 10^{-8}}{(4 \cdot 6)^2} + \\ & + \frac{2.3 \cdot 10^{-4} + 3.5 \cdot 10^{-7}}{(4 \cdot 6 \cdot 8)^2} + \frac{1.23 \cdot 10^{-3} + 9.5 \cdot 10^{-5}}{(4 \cdot 6 \cdot 8 \cdot 8)^2} = 1.14 \cdot 10^{-6} \text{ kg kg}^2 \\ & t_p &= 3T_{\text{3M}} = \frac{3J_{\text{Пр}} W_{\text{HOM}}}{M_{\text{H}} - M_{\text{CT}} \text{ np}} = \frac{3 \cdot 1.14 \cdot 10^{-6} \cdot 2500}{0.054 - 0.00023} = 0.159 \text{ cek} \end{split}$$

Вывод: время разгона 0.159 сек

19. ПРОВЕРОЧНЫЙ РАСЧЕТ НА КОНТАКТНУЮ ПРОЧНОСТЬ

Максимальные расчетные контактные напряжения должны быть меньше предельно допустимых:

$$\sigma_{\rm H} \leq [\sigma_{\rm H}]$$

Контактные напряжения в зубчатой передаче определяются выражением:

$$\sigma_{\rm H} = Z_H \cdot Z_M \cdot Z_{\xi} \cdot \sqrt{\frac{M_2 \cdot K(1 + i_{12})^2}{2b_2 \cdot i_{12}^2 \cdot a_{w12}^2}}$$

Где b_2 ширина зуба

 i_{12} —передаточное отношение

 a_{w12} – межосевое расстояние

K — коэффициент компенсации неточности моментов, задается из допущений; примем из рекомендованных $1.3\dots 1.5$ значений k=1.4 Z_H — коэффициент, учитывающий форму соприкасающихся поверхностей, при $\alpha=20^\circ$

$$Z_H = \sqrt{\frac{2}{2\cos\alpha \cdot \sin\alpha}} = 1.76$$

 Z_{M} – коэффициент, учитывающий механические свойства материалов колес

$$Z_M = \sqrt{\frac{E_{\rm np}}{\pi(1-\nu^2)}} = 270 \frac{{\rm H}^{\frac{1}{2}}}{{\rm M}}$$

Где v=0.3 коэффициент Пуассона для стали

 $Z_{\xi}\,$ - коэффициент, учитывающий влияние торцевого перекрытия зубьев, из рекомендаций примем $0.9\,$

$$\sigma_{12} = 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{199 \cdot 1.4(1+4)^2}{2 \cdot 6 \cdot 4^2 \cdot 31.25^2}} = 82.4 \text{ M}\Pi \text{a}$$

$$\sigma_{34} = 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{167 \cdot 1.4(1+6)^2}{2 \cdot 3 \cdot 6^2 \cdot 43.75^2}} = 71.19 \text{ M}\Pi \text{a}$$

$$\sigma_{56} = 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{172 \cdot 1.4(1+8)^2}{2 \cdot 3 \cdot 8^2 \cdot 56.25^2}} = 54.19 \text{ M}\Pi \text{a}$$

$$\sigma_{78} = 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.57 \text{ M}\Pi \text{a}$$

Допустимые напряжения для стали 45:

$$[\sigma_{
m B}]_k = 600 \
m M\Pi a$$

 $[\sigma_{
m T}]_k = 355 \
m M\Pi a$

$$[\sigma_{\rm T}]_k = 355 \,{\rm M}\Pi{\rm a}$$

Допустимые напряжения для стали 35:

$$[\sigma_{
m B}]_{
m III} = 530~{
m M}\Pi{
m a} \ [\sigma_{
m T}]_{
m III} = 315~{
m M}\Pi{
m a}$$

$$[\sigma_{\rm T}]_{\rm III} = 315 \, {\rm M}\Pi {\rm a}$$

Вывод: контактные напряжения меньше допустимых. Условие прочности выполнено.

20.ПРОВЕРОЧНЫЙ РАСЧЕТ НА ПРОЧНОСТЬ ПРИ КРАТКОВРЕМЕННЫХ НАГРУЗКАХ

Статическая прочность зубьев при перегрузках моментом М проверяется по условию:

$$\sigma_{\rm H} \sqrt{K_{\rm nep}} \leq [\sigma_{\rm H}]_{\rm max}$$

$$\sigma_{\text{изг}} \sqrt{K_{\text{пер}}} \leq [\sigma_{\text{изг}}]_{\text{мах}}$$

Где $K_{\text{пер}}$ – коэффициент перегрузки

 $\sigma_{
m H}\,$ - максимальные расчетные контактные напряжения при циклическом нагружении

 $\sigma_{\rm изг}$ - максимальные расчетные изгибные напряжения при циклическом нагружении

 $[\sigma_{
m H}]_{
m Max}$ - предельно допустимые контактные напряжения при кратковременных перегрузках

 $[\sigma_{\rm изг}]_{\rm мах}$ — предельно допустимые изгибные напряжения при кратковременных перегрузках

Коэффициент перегрузки рассчитывается по формуле

$$K_{\text{nep}} = \frac{M_{\pi}}{M_{\Sigma I}}$$

 Где M_{π} – пусковой момент двигателя

 $\mathbf{M}_{\sum I}$ — суммарный момент нагрузки, приведенный к валу двигателя

K — коэффициент компенсации неточности моментов, задается из допущений, $k=1,3\dots 1,5.$ Примем k=1,4;

Для прирабатываемых ЗК:

$$[\sigma_{\text{изг}}] \approx 0.8\sigma_{\text{T}}$$

$$[\sigma_{\rm H}] \approx 2.8 \sigma_{\rm T}$$

 Γ де σ_{T} – предел текучести зубчатого колеса.

	1	2	3	4	5	6	7
Yf	3.98	3.75	3.98	3.75	3.98	3.75	3.98
		$\sigma_{_{ m M3\Gamma}1}=$	$=\frac{2M_{\sum I}Y_{F1}K}{m_{12}^3z_2\psi_{m1}}$	$=\frac{2\cdot 57\cdot}{0.5^3\cdot}$	$\frac{3.98 \cdot 1.4}{25 \cdot 10} =$: 20.32 МП	a
		$\sigma_{_{ m M3\Gamma}2}=$	$\frac{2M_{\sum II}Y_{F2}K}{m_{12}^3z_2\psi_{m1}} =$	$=\frac{2\cdot 199\cdot 1}{0.5^3\cdot 1}$	$\frac{3.75 \cdot 1.4}{100 \cdot 10} =$	= 16.72 MΠ	la
		$\sigma_{_{\mathrm{M3}\Gamma3}} = 0$	$\frac{2M_{\sum III}Y_{F3}K}{m_{34}^3z_3\psi_{m1}}$	$=\frac{2\cdot 199}{0.5^3}$	$\frac{\cdot 3.98 \cdot 1.4}{25 \cdot 10}$	= 70.96 MΓ	Ia
		$\sigma_{_{ m M3\Gamma}4}=$	$\frac{2M_{\sum IV}Y_{F4}K}{m_{34}^3z_4\psi_{m1}}$	$=\frac{2\cdot 167}{0.5^3\cdot}$	$\frac{\cdot 3.75 \cdot 1.4}{150 \cdot 10}$	= 9.35 MΠ	a
		$\sigma_{\scriptscriptstyle{M3\Gamma5}} =$	$\frac{2M_V Y_{F5} K}{m_{56}^3 z_5 \psi_{m1}} =$	$=\frac{2\cdot 167\cdot}{0.5^3\cdot}$	$\frac{3.98 \cdot 1.4}{25 \cdot 10} =$	= 59.56 MΠ	la
		$\sigma_{_{ m M3F6}} =$	$\frac{2M_{\sum IV}Y_{F6}K}{m_{56}^3z_6\psi_{m1}}$	$=\frac{2\cdot 172}{0.5^3\cdot}$	$\frac{\cdot 3.75 \cdot 1.4}{200 \cdot 10}$	= 7.22 MΠ	a
		$\sigma_{_{ m M3r7}} = \frac{1}{2}$	$\frac{2M_{\sum VII}Y_{F7}K}{m_{78}^3z_7\psi_{m1}}$	$=\frac{2\cdot 172}{0.7^3}$	$\begin{array}{c} \cdot 3.98 \cdot 1.4 \\ \hline 25 \cdot 10 \end{array}$	= 22.35 MI	Та
		$\sigma_{\text{изг8}} = \frac{2}{3}$	$\frac{2M_{\sum VIII}Y_{F8}K}{m_{78}^3z_8\psi_{m1}}$	$=\frac{2\cdot 870}{0.7^3\cdot}$	$\frac{\cdot 3.75 \cdot 1.4}{200 \cdot 10}$	= 13.32 M	Па
		$[\sigma_{\!\scriptscriptstyle m E}$	_{изг}] _{max 1} ≈ ($0.8\sigma_{\mathrm{T}}=35$	$55 \cdot 0.8 = 2$	84 МПа	
		$[\sigma_{\scriptscriptstyle m M}]$	$_{\text{M3r}}]_{\text{max } 2} \approx 0$	$0.8\sigma_{\mathrm{T}} = 31$	$15 \cdot 0.8 = 2$	52 МПа	
			$K_{\text{nep12}} = \frac{1}{2}$	$\frac{[\sigma_{_{ m M3\Gamma}}]_{ m max}}{\sigma_{_{ m M3\Gamma}12}}$	$=\frac{252}{16.72}\approx$	15	
			$K_{\text{nep34}} =$	$\frac{[\sigma_{_{ИЗГ}}]_{\mathrm{max}}}{\sigma_{_{ИЗГ}12}}$	$=\frac{252}{9.35}\approx 2$.7	
			$K_{\text{nep56}} =$	$\frac{[\sigma_{\scriptscriptstyle \sf M3\Gamma}]_{ m max}}{\sigma_{\scriptscriptstyle \sf M3\Gamma}_{ m 12}}$	$=\frac{252}{7.22}\approx 3$	35	
			$K_{\text{nep78}} = \frac{1}{2}$	$\frac{[\sigma_{_{ m M3\Gamma}}]_{ m max}}{\sigma_{_{ m M3\Gamma}}_{_{ m 12}}}$	$=\frac{252}{13.32}\approx$	19	

3.75

$$[\sigma_H]_{\text{max}_1} = 355 \cdot 2.8 = 994 \text{ M}\Pi a$$

$$\begin{split} [\sigma_H]_{\text{Max}_2} &= 315 \cdot 2.8 = 882 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}1} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{199 \cdot 1.4(1+4)^2}{2 \cdot 3 \cdot 4^2 \cdot 31.25^2}} = 44.1 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}2} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{57 \cdot 1.4(1+4)^2}{2 \cdot 6 \cdot 4^2 \cdot 31.25^2}} = 44.1 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}2} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{199 \cdot 1.4(1+4)^2}{2 \cdot 3 \cdot 4^2 \cdot 31.25^2}} = 116.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}3} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{199 \cdot 1.4(1+6)^2}{2 \cdot 3.5 \cdot 6^2 \cdot 43.75^2}} = 71.9 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}4} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{167 \cdot 1.4(1+6)^2}{2 \cdot 3.5 \cdot 8^2 \cdot 56.25^2}} = 71.2 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}5} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{167 \cdot 1.4(1+8)^2}{2 \cdot 3.5 \cdot 8^2 \cdot 56.25^2}} = 49.4 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}6} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{172 \cdot 1.4(1+8)^2}{2 \cdot 3 \cdot 8^2 \cdot 56.25^2}} = 54.2 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}7} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{172 \cdot 1.4(1+8)^2}{2 \cdot 4.9 \cdot 8^2 \cdot 78.75^2}} = 30.3 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}8} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{870 \cdot 1.4(1+8)^2}{2 \cdot 4.2 \cdot 8^2 \cdot 78.75^2}}} = 73.6 \text{ M}\Pi\text{a} \\ \sigma_{\text{H}9} &= 1.76 \cdot 270 \cdot 0.9 \sqrt{\frac{8$$

$$K_{\text{пер12}} = \frac{[\sigma_{\text{изг}}]_{\text{max}}}{\sigma_{\text{изг}_{12}}} = \frac{994}{44} \approx 22$$

$$K_{\text{пер34}} = \frac{[\sigma_{\text{изг}}]_{\text{max}}}{\sigma_{\text{изг}_{12}}} = \frac{882}{71} \approx 12.4$$

$$K_{\text{пер56}} = \frac{[\sigma_{\text{изг}}]_{\text{max}}}{\sigma_{\text{изг}_{12}}} = \frac{882}{49.4} \approx 18$$

$$K_{\text{пер78}} = \frac{[\sigma_{\text{изг}}]_{\text{max}}}{\sigma_{\text{изг}_{12}}} = \frac{882}{30} \approx 30$$

Вывод: допустимый коэффициент перегрузки для передач от двигателя до предохранительной муфты: K=12.4, выбранный ранее коэффициент предохранения K=1.4

ПРОВЕРОЧНЫЙ РАСЧЕТ ШПОНКИ МУФТЫ

Основным критерием работоспособности шпоночных соединений является прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений – расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят. При расчете допускают, что нагрузка распределяется равномерно.

Расчет произведем для шпонки 3х3х6 ГОСТ 23360-78

$$\sigma_{\scriptscriptstyle{\mathsf{CM}}} = 4 \frac{\mathsf{M}_{\scriptscriptstyle{\mathsf{KP}}}}{h \cdot l \cdot d} \leq [\sigma_{\scriptscriptstyle{\mathsf{CM}}}]$$

где $\sigma_{\text{см}}$ – напряжение смятия, Мпа;

Mкр – крутящий момент;

d – диаметр вала;

h – высота шпонки;

1 – длина шпонки.

$$\tau = 2 \frac{M_{KP}}{h \cdot l \cdot d}$$

где τ – напряжение среза;

b – ширина шпонки.

$$\sigma_{\scriptscriptstyle{\text{CM}}} = 4 \cdot \frac{870}{3 \cdot 6 \cdot 12} \approx 16.1 \, \text{М} \Pi \text{a}$$
 $au = 2 \frac{870}{3 \cdot 6 \cdot 12} \approx 8.05 \, \text{M} \Pi \text{a}$

Выберем материал для шпонки сталь 45.

$$[\sigma_{\text{CM}}] = 50 \text{ M}\Pi a$$

 $[\tau] = 90 \text{M}\Pi a$

Вывод: рассчитанные значения получились меньше допускаемых, поэтому шпонка выбрана правильно.

ПРОВЕРОЧНЫЙ РАСЧЕТ ШПОНКИ ДВИГАТЕЛЯ

Расчет произведем для шпонки 1х1.4х3 ГОСТ 23360-78

$$\sigma_{\scriptscriptstyle{\mathsf{CM}}} = 4 \frac{\mathsf{M}_{\scriptscriptstyle{\mathsf{KP}}}}{h \cdot l \cdot d} \leq [\sigma_{\scriptscriptstyle{\mathsf{CM}}}]$$

где σ см – напряжение смятия, Мпа;

Mкр — крутящий момент;

d – диаметр вала;

h – высота шпонки;

1 – длина шпонки.

$$\tau = 2 \frac{M_{kp}}{b \cdot l \cdot d}$$

где τ – напряжение среза;

b – ширина шпонки.

$$\sigma_{\text{см}} = 4 \cdot \frac{223}{1 \cdot 3 \cdot 4} \approx 74.3 \text{ МПа}$$
 $\tau = 2 \frac{223}{1.4 \cdot 3 \cdot 4} \approx 26.5 \text{ МПа}$

Выберем материал для шпонки сталь 45.

$$[\sigma_{\text{CM}}] = 50 \text{ M}\Pi a$$

 $[\tau] = 90 \text{M}\Pi a$

Вывод: рассчитанные значения получились меньше допускаемых, поэтому шпонка выбрана правильно.

ПРОВЕРОЧНЫЙ РАСЧЕТ ШТИФТОВОГО СОЕДИНЕНИЯ

В нашем случае на штифтовое соединение действует только крутящий момент.

$$d_{\text{III}} = 1.13 \sqrt{\frac{M_{\text{Kp}}}{d \cdot [\tau_{\text{cp}}]}}$$

 Γ де d — диаметр вала

 $[au_{
m cp}]$ – допустимое напряжение на срезе

$$d_{\text{III}} = \frac{2 \cdot M_{\text{Kp}}}{(d_1 - d)^2 \cdot [\sigma_{\text{CM}}]}$$

Где d_1 -диаметр ступицы

Штифты изготавливают из стали 45 по ГОСТ 1050-88.

$$[\tau_{\rm cp}] = 170 \, {\rm M}\Pi{\rm a}$$

$$[\sigma_{\text{см}}] = 420 \, \text{Мпа}$$

Произведем расчет для самого нагруженного штифта для 3 зубчатого колеса.

$$d_{\text{m5}} = 1.13 \sqrt{\frac{199}{4 \cdot 170}} \approx 0.63 \text{ mm}$$

$$d_{\text{III}5} = \frac{2 \cdot 199}{(7 - 4)^2 \cdot 420} \approx 0.11 \text{ mm}$$

Штифт Ø 1 мм проходит

Вывод: выбранные штифты проходят по расчету, поэтому штифты выбраны правильно.

21. ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА V НА ПРОЧНОСТЬ

21.1 Нахождение сил нагружения

Зубчатое колесо является цилиндрическим прямозубым. В прямозубых передачах полная нагрузка направлена по линии зацепления и может быть разложена на две составляющие: окружную силу $F_{\text{окр}}$ и радиальную силу $F_{\text{г}}$. Окружная сила направлена по касательной к начальной окружности, а радиальная к центру ЗК. Угол между силами равен α .

Силы действующие колесо 8:

$$F_{\text{окр}} = \frac{2M_{\text{кр}}}{d_8} = \frac{2 \cdot 870}{140} = 12.4 \text{ H}$$
 $F_r = tg \ \alpha \cdot F_{\text{окр}} = 12.4 \cdot tg \ 20^\circ = 4.5 \text{ H}$

21.2 Составим эпюры

Для осей YOZ:

Для осей XOZ:

Проверка: $R_a + R_b = 8 + 4.4 = 12.4 = P_1$

Рассчитаем результирующие силы, действующие на опоры:

$$R_a = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{8^2 + 2.9^2} = 8.5 \text{ H}$$

$$R_b = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{4.4^2 + 1.6^2} = 4.7 \text{ H}$$

21.3 Расчеты

Геометрические характеристики опасного сечения:

$$W_p = \frac{\pi \cdot (D^3)}{16}$$
 — кручение $W_x = \frac{\pi \cdot (D^3)}{32}$ — изгиб

Согласно энергетической теории прочности:

$$\sigma_{_{\rm SKB}} = \sqrt{\left(\frac{M_{_{\rm M3\Gamma}}}{W_{_{\chi}}}\right)^2 + 3 \cdot \left(\frac{M_{_{\rm KP}}}{W_p}\right)^2}$$

Тогда:

$$M_{c \pi p} = \sqrt{M_{\text{изг} \Sigma}^2 + 0.75 \cdot M_{\text{кр}}^2}$$

$$M_{c \pi p} = \sqrt{(285^2 + 57^2) + 0.75 \cdot 870^2} = 807 \text{ H мм}$$

$$\sigma_{\text{экв}} = \sqrt{\left(\frac{\sqrt{(285^2 + 57^2)}}{\frac{\pi \cdot (7^3)}{22}}\right)^2 + 3 \cdot \left(\frac{870}{\frac{\pi \cdot (7^3)}{16}}\right)^2} = 23.9 \text{ Мпа}$$

В качестве материала выберем сталь 45 с пределом выносливости при изгибе $\sigma_{-1}=280~\mathrm{M}\Pi\mathrm{a}$

$$[\sigma_F] pprox rac{\sigma_{-1}}{n} = rac{280}{2} = 140 \ \mathrm{M}\Pi\mathrm{a} - \mathrm{Ha}$$
 изгиб

Где n = 2 коэффициент запаса

Тогда внешний диаметр сечения вала:

$$d \ge \sqrt[3]{rac{M_{
m пp}}{0.1[\sigma]}}$$
 $d \ge \sqrt[3]{rac{870}{0.1 \cdot 140}} = 3,96$ мм

Выбранный диаметр вала 7 мм подходит.

22. РАСЧЕТ ВАЛА V НА ИЗГИБНУЮ ЖЕСТКОСТЬ

Недостаточная изгибная жесткость вала вызывает перекос зубчатых колес, а, следовательно, появление больших люфтов и в конечном итоге заклинивание передач. Поэтому диаметр вала также рассчитывается исходя из условия:

$$\delta_{\text{pacy}} \leq [\delta]$$
,

где δ расч — расчетное значение прогиба вала в местах установки деталей, передающих силы и моменты, мм;

 $[\delta]$ – предельно допускаемое значение прогиба вала, мм.

Вычислим интеграл Мора, с помощью метода Верещагина.

$$\delta = \frac{1}{E \cdot J} \int_{E} J_{1}$$

 $E=2\cdot 10^5$ МПа модуль упругости для стали.

$$J = \frac{\pi D^4}{64} = \frac{3.14 \cdot 8^4}{64} = 201$$

В общем случае допускаемый прогиб принимают в пределах

$$[\delta] \le (0.0002 \dots 0.0003) \cdot L,$$

где L- длина вала, мм. L=55.3 мм.

Тогда примем: $[\delta] \le 0.00025 \cdot 55.3 = 0.0138$ мм

Из условия: $\delta_{pac4} \leq [\delta]$

 $0.0012 < 0.0138 \,\mathrm{mm}$

Вывод: для общего случая допускаемый прогиб проходит, поэтому вал проходит критерий изгибной жесткости.

23. РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА V

Режим работы с динамической нагрузкой. При динамическом режиме работы, в результате многократного воздействия циклических нагрузок, происходит усталостное выкрашивание рабочих поверхностей подшипников. В этом режиме расчет ведется по динамической грузоподъемности.

23.1 Эквивалентная динамическая нагрузка

Эквивалентную динамическую нагрузку для однорядных радиальных и радиально-упорных подшипников определяют по формуле:

$$P = (V \cdot X \cdot F_r + Y \cdot F_a) K_{\sigma} K_{\tau},$$

где V – коэффициент вращения;

(V=1 – вращение внутреннего кольца, V=1,2 – вращение наружного кольца),

Х, Ү – коэффициенты радиальной и осевой нагрузки;

 $K\sigma$ – коэффициент безопасности, учитывающий динамические нагрузки;

Кт — температурный коэффициент, учитывающий влияние температурного режима работы на долговечность подшипника.

Так как не заданы условия эксплуатации, принимаем:

$$K_{\sigma} = 1, K_{T} = 1.$$

Вращается внутреннее кольцо, значит: V=1.

Для опоры А:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_A = 8.5 H$$

Для опоры В:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_B = 4.7 \text{ H}$$

23.1 Расчет цапфы на изгибную прочность

$$d \ge \sqrt{\frac{F_r \lambda}{2 \cdot 0.1 \ [\sigma]}}$$

Где λ – коэффициент длины цапфы

Из рекомендаций $\lambda = 0,5...1,2$. Примем: $\lambda = 1$.

Для опоры А:

$$d_{\rm A} \ge \sqrt{\frac{8.5 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.55 \,\mathrm{mm}$$

Для опоры В:

$$d_{\rm B} \ge \sqrt{\frac{4,7 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.41 \text{ mm}$$

Из опыта прошлого семестра выберу подшипники MF137 фирмы NTN из-за простоты крепежа и отсутствия чрезмерного запаса хода. [3] (179 стр.)

Рисунок 3. Схема подшипника

Таблица 3. Параметры подшипника MF137

d (MM)	7
D (мм)	13
D_1 (MM)	14.2
В (мм)	3
C ₁ (MM)	0.6
r (мин)	0.15
G_r (мкм)	13
Номинальная радиальная	540
грузоподъемность Н	
Номинальная осевая	276
грузоподъемность Н	
Размер заплечиков вала (мм)	8.0 - 8.2

23.2 Проверка подшипника по ресурсу

При подборе подшипников по динамической грузоподъемности используют эмпирическую зависимость:

$$L = (C/P)^3,$$

$$L_h = 10^6 (C/P)^3 / 60n = 10^6 L / 60n$$

где L и $L_{\rm h}$ – долговечность в млн. оборотах или в часах, соответственно;

C - динамическая грузоподъемность, H;

P – эквивалентная динамическая нагрузка, H;

n — частота вращения подвижного кольца, об/мин.

Для опоры Б:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{540}{8.5}\right)^3 = 256 \cdot 10^{-3}$$
 млн. об =
$$= 256 \cdot 10^{-3} \, \cdot \frac{8 \cdot 8 \cdot 6 \cdot 4}{2500 \cdot 60} \cdot 10^6 \, \mathrm{y} = 2627 > 300 \, \mathrm{y}$$

Для опоры А:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{540}{4.7}\right)^3 = 1.56$$
 млн. об =
$$= 1.56 \cdot \frac{8 \cdot 8 \cdot 6 \cdot 4}{2500 \cdot 60} \cdot 10^6 \,\mathrm{y} = 15539 \,\mathrm{y} > 300 \,\mathrm{y}$$

23.3 Расчет момента трения и КПД

$$M_{\rm Tp}r = f \frac{F_r d}{2}$$

f – коэффициент трения 0,001...0,002.

$$M_{\rm Tp} = 0.002 \cdot 4.7 \cdot \frac{7}{2} + 0.002 \cdot 8.5 \cdot \frac{7}{2} = 0.92 \; {\rm H \cdot MM}$$

$$\eta = \frac{M_{\rm Kp} - M_{\rm Tp}}{M_{\rm Kp}} = \frac{870 - 0.92}{870} = 0.998$$

24. ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА IV НА ПРОЧНОСТЬ

24.1 Нахождение сил нагружения

Силы действующие на колесо 6:

$$F_{\text{окр1}} = \frac{2 M_{\text{кp}}}{d_w} = \frac{2 \cdot 172}{100} = 3.44 \text{ H}$$

$$F_{r1} = tg\alpha \cdot F_{\text{окр}} = 3.44 tg20^\circ = 1.25 H$$

Учтем поворот на 45 градусов:

$$F'_{r1} = -(3.44 + 1.25) \cdot \frac{\sqrt{2}}{2} = -3.31 \text{ H}$$

$$F'_{\text{OKp1}} = (3.44 - 1.25) \cdot \frac{\sqrt{2}}{2} = 1.54 \text{ H}$$

Силы действующие на колесо 7:

$$F_{\text{okp2}} = \frac{2 M_{\text{kp}}}{d_w} = \frac{2 \cdot 172}{17.5} = 19.7 \text{ H}$$
 $F_{r2} = tg\alpha \cdot F_{\text{okp2}} = 19.7 tg20^\circ = 7.2 H$

Найдем реакции опор

$$11.5 \cdot 7.2 - 3.31 \cdot 25.8 + R_a(31.77) = 0$$
 $R_{ax} = 0.09 { H}$
 $-3.31 \cdot 5.97 + 7.2 \cdot 20.3 - R_b(31.77) = 0$
 $R_{bx} = 3.97 { H}$
Проверка: $-R_a + R_b = 3.97 - 0.09 = 7.2 - 3.31$
 $11.5 \cdot 19.7 + 1.54 \cdot 25.8 - R_a(31.77) = 0$
 $R_{ay} = 8.34 { H}$
 $1.54 \cdot 5.97 + 19.7 \cdot 20.3 - R_b(31.77) = 0$
 $R_{by} = 12.9 { H}$

Проверка: $R_a + R_b = 19.7 + 1.54 = 21.24 = 19.7 + 1.54 = F_{\text{окр1}} + F_{\text{окр2}}$ Рассчитаем результирующие силы, действующие на опоры:

$$R_a = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{0.09^2 + 8.34^2} = 8.34 \text{ H}$$
 $R_b = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{3.97^2 + 12.9^2} = 13.5 \text{ H}$

Вывод: опасное сечение С, если выбранный вал подходит в этом сечении, то подойдет и в остальных

24.2 Расчеты

При известных значениях изгибающего и крутящего моментов в опасном сечении вала можно рассчитать приведенный момент по формуле:

$$M_{\textit{прив}} = \sqrt{(M_{\textit{изг}}^2 + 0.75M_{\textit{кp}}^2)}$$

$$M_{\textit{С}\Pi p} = \sqrt{(148.35^2 + 45.7^2) + 0.75 \cdot 172^2} = 215.4 \; \text{H} \cdot \text{мм}$$

$$\text{Изгиб } \sigma_{\textit{изг}} = \frac{M_{\textit{изг}}}{W_{\textit{x}}} = \frac{\sqrt{M_{\textit{изг}\textit{x}}^2 + M_{\textit{изг}\textit{y}}^2}}{0.1 \cdot d^3} = \frac{\sqrt{148.35^2 + 45.7^2}}{0.1 \cdot 4^3} = 24.25 \; \text{М}\Pi a$$

$$\text{Чистое кручение } \tau = \frac{M_{\textit{кp}}}{W_p} = \frac{172}{0.2 \cdot 4^3} = 13.4 \; \text{М}\Pi a$$

Энергетическая теория прочности:

$$\sigma_{_{\text{ЭКВ}}} = \sqrt{\sigma_{_{\text{ИЗГИБ}}}^2 + 3\tau^2} = \sqrt{24.25^2 + 3\cdot 13.4^2} = 33.56\ \text{М}$$
Па

Выберем материал сталь 45, из условия

$$\sigma_{_{
m ЭКВ}} \leq [\sigma]$$
 $\sigma_{-1} = 280 \ {\rm M}\Pi {\rm a}$
 $[\sigma] = rac{\sigma_{-1}}{n} = rac{280}{2} = 140 \ {\rm M}\Pi {\rm a}$

Где n = 2 коэффициент запаса

Тогда внешний диаметр сечения вала:

$$d \ge \sqrt[3]{rac{M_{
m пp}}{0.1[\sigma]}}$$
 $d \ge \sqrt[3]{rac{215.4}{0.1 \cdot 140}} = \ 2.48 \ {
m мм}$

Диаметр вала 4 мм выбран верно.

25. РАСЧЕТ ВАЛА IV НА ИЗГИБНУЮ ЖЕСТКОСТЬ

Недостаточная изгибная жесткость вала вызывает перекос зубчатых колес, а, следовательно, появление больших люфтов и в конечном итоге заклинивание передач. Поэтому диаметр вала также рассчитывается исходя из условия:

$$\delta_{\text{pacy}} \leq [\delta]$$
,

где δ расч — расчетное значение прогиба вала в местах установки деталей, передающих силы и моменты, мм;

 $[\delta]$ – предельно допускаемое значение прогиба вала, мм.

Вычислим интеграл Мора, с помощью метода Верещагина.

$$\delta = \frac{1}{E \cdot J} \int_{F} J_{1}$$

 $E=2\cdot 10^5$ МПа модуль упругости для стали.

$$J = \frac{\pi \cdot d^4}{64} = \frac{\pi \cdot 4^4}{64} = 12.56$$

$$\begin{split} \delta_{xoz} &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \\ & \cdot \left[23.7 \cdot 5.97 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 7.33 \cdot \frac{5.97}{20.25} \right) + \frac{1}{2} \cdot 14.3 \cdot 23.7 \cdot \right. \\ & \cdot \left(\left(\frac{13.12}{20.25} \right) \cdot 7.33 \right) + 14.3 \cdot \frac{1}{2} \cdot 148.35 \cdot \left(\left(\frac{15.5}{20.25} \right) \cdot 7.33 \right) + \frac{1}{2} \cdot \right. \\ & \cdot 148.35 \cdot 11.5 \cdot \left(\frac{2}{3} \cdot 7.33 \right) \right] = 0.0043 \text{ mm} \end{split}$$

$$\begin{split} \delta_{yoz} &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \Bigg[23.7 \cdot 0.54 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 13.1 \cdot \frac{5.97}{20.25} \right) + \frac{1}{2} \cdot 14.3 \cdot 0.54 \\ & \cdot \left(\left(\frac{13.12}{20.25} \right) \cdot 7.33 \right) + \frac{1}{2} \cdot 14.3 \cdot 46.24 \cdot \left(\left(\frac{15.5}{20.25} \right) \cdot 7.33 \right) + \frac{1}{2} \cdot 45.7 \\ & \cdot 11.5 \cdot \left(\frac{2}{3} \cdot 7.33 \right) \Bigg] = 0.00014 \text{ mm} \end{split}$$

$$\delta_{\Sigma} \ = \sqrt{0.0043^2 + 0.00014^2} = 0.0043 \ \mathrm{mm}$$

В общем случае допускаемый прогиб принимают в пределах

$$[\delta] \le (0.0002 \dots 0.0003) \cdot L,$$

где L – длина вала, мм. L = 31.7 мм.

Тогда примем: $[\delta] \le 0.00025 \cdot 31.7 = 0.0079$ мм

Из условия: $\delta_{\text{расч}} \leq [\delta]$

$$0.0043 < 0.0079 \,\mathrm{mm}$$

Вывод: для общего случая допускаемый прогиб проходит, поэтому вал проходит критерий изгибной жесткости.

26. РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА IV

Режим работы с динамической нагрузкой. При динамическом режиме работы, в результате многократного воздействия циклических нагрузок, происходит усталостное выкрашивание рабочих поверхностей подшипников. В этом режиме расчет ведется по динамической грузоподъемности.

26.1 Эквивалентная динамическая нагрузка

Эквивалентную динамическую нагрузку для однорядных радиальных и радиально-упорных подшипников определяют по формуле:

$$P = (V \cdot X \cdot F_r + Y \cdot F_a) K_{\sigma} K_{\tau},$$

где V – коэффициент вращения;

(V=1 – вращение внутреннего кольца, V=1,2 – вращение наружного кольца),

Х, Ү – коэффициенты радиальной и осевой нагрузки;

Кσ – коэффициент безопасности, учитывающий динамические нагрузки;

Кт — температурный коэффициент, учитывающий влияние температурного режима работы на долговечность подшипника.

Так как не заданы условия эксплуатации, принимаем:

$$K_{\sigma} = 1, K_{T} = 1.$$

Вращается внутреннее кольцо, значит: V=1.

Для опоры А:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_A = 8.34 \text{ H}$$

Для опоры В:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_B = 13.5 \text{ H}$$

26.2 Расчет цапфы на изгибную прочность

$$d \ge \sqrt{\frac{F_r \lambda}{2 \cdot 0.1 \ [\sigma]}}$$

Где λ – коэффициент длины цапфы

Из рекомендаций $\lambda = 0,5...1,2$. Примем: $\lambda = 1$.

Для опоры А:

$$d_{\rm A} \ge \sqrt{\frac{8.34 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.55 \,\mathrm{mm}$$

Для опоры В:

$$d_{\rm B} \ge \sqrt{\frac{13.5 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.69 \text{ MM}$$

Из опыта прошлого семестра выберу подшипники F 633 фирмы NTN изза простоты крепежа и отсутствия чрезмерного запаса хода. [3] (179 стр.)

Рисунок 3. Схема подшипника

Таблица 3. Параметры подшипника F 633

d (MM)	3
D (MM)	13
D_1 (MM)	15
В (мм)	5
С ₁ (мм)	1
r (мин)	0.15
G_r (мкм)	13
Номинальная радиальная	1300
грузоподъемность Н	
Номинальная осевая	485
грузоподъемность Н	
Размер заплечиков вала (мм)	4.2 - 4.5

26.2 Проверка подшипника по ресурсу

При подборе подшипников по динамической грузоподъемности используют эмпирическую зависимость:

$$L = (C/P)^3,$$

$$L_h = 10^6 (C/P)^3 / 60n = 10^6 L / 60n$$

где L и $L_{\rm h}$ – долговечность в млн. оборотах или в часах, соответственно;

C - динамическая грузоподъемность, H;

P – эквивалентная динамическая нагрузка, H;

n — частота вращения подвижного кольца, об/мин.

Для опоры Б:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{1300}{8.34}\right)^3 = 3.78$$
 млн. об =
$$= 256 \cdot 10^{-3} \cdot \frac{8 \cdot 6 \cdot 4}{2500 \cdot 60} \cdot 10^6 \text{ y} = 4847 \text{ y} > 300 \text{ y}$$

Для опоры А:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{1300}{13.5}\right)^3 = 892 \cdot 10^{-3}$$
млн. об =
$$= 892 \cdot 10^{-3} \cdot \frac{10^6}{60 \cdot 8 \cdot 1.5} \; \text{ч} = 1142 \; \text{ч} > 300 \; \text{ч}$$

26.3 Расчет момента трения и КПД

$$M_{\rm Tpr} = f \frac{F_r d}{2}$$

f – коэффициент трения 0,001...0,002.

$$M_{\rm Tp} = 0.002 \cdot 8.34 \cdot \frac{4}{2} + 0.002 \cdot 13.5 \cdot \frac{4}{2} = 0.087 \; {\rm H \cdot MM}$$

$$\eta = \frac{M_{\rm Kp} - M_{\rm Tp}}{M_{\rm Kp}} = \frac{1300 - 0.08}{1300} = 0.999$$

27. ПРОВЕРОЧНЫЙ РАСЧЕТ ВАЛА III НА ПРОЧНОСТЬ

27.1 Нахождение сил нагружения

Силы действующие на колесо 4:

$$F_{\text{окр1}} = \frac{2 M_{\text{кp}}}{d_w} = \frac{2 \cdot 167}{12.5} = 26.72 \text{ H}$$

$$F_{r1} = tg\alpha \cdot F_{\text{окр}} = 3.44 tg20^\circ = 9.72 H$$

Учтем поворот на 15 градусов:

$$F'_{r1} = (3.44 \sin 15 + 1.25 \cos 15) = 2.09 \text{ H}$$

 $F'_{\text{OKp1}} = (3.44 \cos 15 - 1.25 \sin 15) = 2.99 \text{ H}$

Силы действующие на колесо 5:

$$F_{\text{okp2}} = \frac{2 M_{\text{kp}}}{d_w} = \frac{2 \cdot 167}{72.5} = 4.74 \text{ H}$$

$$F_{r2} = tg\alpha \cdot F_{\text{OKp2}} = 4.74 \ tg20^{\circ} = 1.72 \ H$$

Найдем реакции опор

$$17.4 \cdot 2.1 - 4.7 \cdot 25.55 + R_a(31.77) = 0$$

$$R_{ax} = 2.63 \text{ H}$$

$$-4.7 \cdot 6.22 + 2.1 \cdot 14.37 - R_b(31.77) = 0$$

$$R_{bx} = 0.03 \text{ H}$$

Проверка:
$$4.7 - 2.1 - 2.63 + 0.03 = 0$$

$$17.4 \cdot 3.0 + 1.72 \cdot 25.55 - R_a(31.77) = 0$$

$$R_{ax} = 3.02 \text{ H}$$

$$1.72 \cdot 6.22 + 3.0 \cdot 14.37 - R_b(31.77) = 0$$

$$R_{bx} = 1.70 \text{ H}$$

Проверка: 3.02+1.70-3.0-1.72=0

Рассчитаем результирующие силы, действующие на опоры:

$$R_a = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{2.63^2 + 3.02^2} = 4 \text{ H}$$
 $R_b = \sqrt{R_{ax}^2 + R_{ay}^2} = \sqrt{0.03^2 + 1.7^2} = 1.7 \text{ H}$

Вывод: опасные сечения С и Д

27.2 Расчеты

При известных значениях изгибающего и крутящего моментов в опасном сечении вала можно рассчитать приведенный момент по формуле:

Чистое кручение
$$\tau = \frac{M_{\rm kp}}{W_p} = \frac{167}{0.2 \cdot 4^3} = 13.4 \ {\rm M}\Pi {\rm a}$$

Энергетическая теория прочности:

$$\sigma_{_{\text{ЭКВ}}} = \sqrt{\sigma_{_{\text{ИЗГИБ}}}^2 + 3\tau^2} = \sqrt{24.25^2 + 3\cdot 13.4^2} = 13.04\ \text{М}$$
Па

Выберем материал сталь 45, из условия

$$σЭКВ ≤ [σ]$$

$$σ-1 = 280 ΜΠα$$

$$[σ] = $\frac{σ_{-1}}{n} = \frac{280}{2} = 140 ΜΠα$$$

Где n = 2 коэффициент запаса

Тогда внешний диаметр сечения вала:

$$d \ge \sqrt[3]{rac{M_{
m np}}{0.1[\sigma]}}$$
 $d \ge \sqrt[3]{rac{1}{0.1 \cdot 140}} = 0.41 \ {
m mm}$

Диаметр вала 4 мм выбран верно.

28. РАСЧЕТ ВАЛА IV НА ИЗГИБНУЮ ЖЕСТКОСТЬ

Недостаточная изгибная жесткость вала вызывает перекос зубчатых колес, а, следовательно, появление больших люфтов и в конечном итоге заклинивание передач. Поэтому диаметр вала также рассчитывается исходя из условия:

$$\delta_{\text{pacy}} \leq [\delta]$$
,

где δ расч — расчетное значение прогиба вала в местах установки деталей, передающих силы и моменты, мм;

 $[\delta]$ – предельно допускаемое значение прогиба вала, мм.

Вычислим интеграл Мора, с помощью метода Верещагина.

$$\delta = \frac{1}{E \cdot J} \int_{F} J_{1}$$

 $E=2\cdot 10^5$ МПа модуль упругости для стали.

$$J = \frac{\pi \cdot d^4}{64} = \frac{\pi \cdot 4^4}{64} = 12.56$$

Вывод: опасные сечения С и Д

$$\begin{split} \delta_{xoz'} &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \\ & \cdot \left[16.4 \cdot 6.22 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 7.83 \right) - \frac{1}{2} \cdot 0.5 \cdot 17.4 \cdot \left(\frac{2}{3} \cdot \left(\frac{17.4}{25.55} \right) \cdot 7.83 \right) \right. \\ & \left. - \frac{1}{2} \cdot 0.5 \cdot 8.15 \cdot \left(\frac{1}{2} \left(\frac{1 - 17.4}{25.55} \right) \cdot 7.83 \right) + \frac{1}{2} \cdot 10.9 \cdot 8.15 \right. \\ & \left. \cdot \left(\frac{2}{3} \cdot 1.3 \cdot \frac{8.15}{14.37} \right) \right] = 0.00017 \text{ MM} \end{split}$$

$$\begin{split} &\delta_{yoz'} \\ &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \\ &\cdot \left[18.7 \cdot 6.22 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 7.83 \right) + \frac{1}{2} \cdot 18.7 \cdot 18.4 \cdot \left(\frac{2}{3} \cdot \left(\frac{17.4}{25.55} \right) \cdot 7.83 \right) + \frac{1}{2} \cdot 29.6 \cdot 8.15 \cdot \left(\frac{1}{2} \cdot 7.83 \cdot \frac{8.15}{14.37} \right) \right] \\ &= 0.00046 \ \text{mm} \end{split}$$

$$\begin{split} \delta_{xoz}{''} &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \bigg[16.4 \cdot 6.22 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 1.3 \right) - \frac{1}{2} \cdot 17.4 \cdot 0.5 \\ & \cdot \left(\frac{2}{3} \left(\frac{17.4}{25.55} \right) \cdot 1.3 \right) - \frac{1}{2} \cdot 0.5 \cdot 8.15 \cdot \left(\frac{2}{3} \left(\frac{15.5}{25.55} \right) \cdot 1.3 \right) + \frac{1}{2} \cdot 10.9 \\ & \cdot 8.15 \cdot \left(\frac{2}{3} \cdot 1.3 \cdot \frac{8.15}{14.37} \right) \bigg] = 0.000016 \text{ MM} \end{split}$$

$$\begin{split} \delta_{yoz}{''} &= \frac{1}{2 \cdot 10^5 \cdot 12.56} \bigg[18.7 \cdot 6.22 \cdot \frac{1}{2} \cdot \left(\frac{2}{3} \cdot 1.3 \right) + \frac{1}{2} \cdot 17.4 \cdot 29.6 \\ & \cdot \left(\frac{2}{3} \left(\frac{17.4}{25.55} \right) \cdot 1.3 \right) + \frac{1}{2} \cdot 18.7 \cdot 8.15 \cdot \left(\frac{2}{3} \left(\frac{15.5}{25.55} \right) \cdot 1.3 \right) + \frac{1}{2} \cdot 45.7 \\ & \cdot 11.5 \cdot \left(\frac{2}{3} \cdot 1.3 \cdot \frac{8.15}{14.37} \right) \bigg] = 0.00016 \text{ MM} \end{split}$$

$$\delta_{\Sigma}$$
 , $=\sqrt{0.00017^2+0.00046^2}=0.00049$ mm δ_{Σ} , $=\sqrt{0.000016^2+0.00016^2}=0.00016$ mm

В общем случае допускаемый прогиб принимают в пределах

$$[\delta] \le (0.0002 \dots 0.0003) \cdot L,$$

где L – длина вала, мм. L = 31.7 мм.

Тогда примем: $[\delta] \le 0.00025 \cdot 31.7 = 0.0079$ мм

Из условия: $\delta_{\text{pacy}} \leq [\delta]$

$$0.00049 < 0.0079 \,\mathrm{MM}$$

Вывод: для общего случая допускаемый прогиб проходит, поэтому вал проходит критерий изгибной жесткости.

29. РАСЧЕТ ОПОРЫ КАЧЕНИЯ ВАЛА IV

Режим работы с динамической нагрузкой. При динамическом режиме работы, в результате многократного воздействия циклических нагрузок, происходит усталостное выкрашивание рабочих поверхностей подшипников. В этом режиме расчет ведется по динамической грузоподъемности.

29.1 Эквивалентная динамическая нагрузка

Эквивалентную динамическую нагрузку для однорядных радиальных и радиально-упорных подшипников определяют по формуле:

$$P = (V \cdot X \cdot F_r + Y \cdot F_a) K_{\sigma} K_{\tau},$$

где V – коэффициент вращения;

(V=1 – вращение внутреннего кольца, V=1,2 – вращение наружного кольца),

Х, У – коэффициенты радиальной и осевой нагрузки;

Кσ – коэффициент безопасности, учитывающий динамические нагрузки;

Кт — температурный коэффициент, учитывающий влияние температурного режима работы на долговечность подшипника.

Так как не заданы условия эксплуатации, принимаем:

$$K_{\sigma} = 1, K_{T} = 1.$$

Вращается внутреннее кольцо, значит: V=1.

Для опоры А:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_A = 4 H$$

Для опоры В:

$$\frac{F_{\rm oc}}{F_r} = 0 < 0.35$$

Тогда x = 1; y = 0;

$$P = F_r = R_B = 1.7 \text{ H}$$

29.2 Расчет цапфы на изгибную прочность

$$d \ge \sqrt{\frac{F_r \lambda}{2 \cdot 0.1 \left[\sigma\right]}}$$

Где λ – коэффициент длины цапфы

Из рекомендаций $\lambda = 0,5...1,2$. Примем: $\lambda = 1$.

Для опоры А:

$$d_{\rm A} \ge \sqrt{\frac{4 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.37 \; {\rm mm}$$

Для опоры В:

$$d_{\rm B} \ge \sqrt{\frac{1.7 \cdot 1}{2 \cdot 0.1 \cdot 140}} = 0.25 \text{ MM}$$

Выберу аналогичные четвертому валу подшипники

Рисунок 3. Схема подшипника

Таблица 3. Параметры подшипника F 633

d (MM)	3
D (MM)	13
D_1 (MM)	15
В (мм)	5
C ₁ (MM)	1
r (мин)	0.15
G_r (мкм)	13
Номинальная радиальная	1300
грузоподъемность Н	
Номинальная осевая	485
грузоподъемность Н	
Размер заплечиков вала (мм)	4.2 - 4.5

29.3 Проверка подшипника по ресурсу

При подборе подшипников по динамической грузоподъемности используют эмпирическую зависимость:

$$L = (C/P)^3,$$

$$L_h = 10^6 (C/P)^3 / 60n = 10^6 L / 60n,$$

где L и $L_{\rm h}$ – долговечность в млн. оборотах или в часах, соответственно;

C - динамическая грузоподъемность, H;

Р – эквивалентная динамическая нагрузка, Н;

n — частота вращения подвижного кольца, об/мин.

Для опоры Б:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{1300}{1.7}\right)^3 = 447$$
 млн. об =
$$= 447 \cdot \frac{6 \cdot 4}{2500 \cdot 60} \cdot 10^6 \,\mathrm{y} = 71548 \,\mathrm{y} > 300 \,\mathrm{y}$$

Для опоры А:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{1300}{4}\right)^3 = 343$$
 млн. об =
$$= 343 \cdot \frac{6 \cdot 4}{2500 \cdot 60} \cdot 10^6 \,\mathrm{y} = 5490 \,\mathrm{y} > 300 \,\mathrm{y}$$

29.4 Расчет момента трения и КПД

$$M_{\rm Tp}r = f \frac{F_r d}{2}$$

f – коэффициент трения 0,001...0,002.

$$M_{\mathrm{Tp}} = 0.002 \cdot 4 \cdot \frac{4}{2} + 0.002 \cdot 1.7 \cdot \frac{4}{2} = 0.0228 \,\mathrm{H} \cdot \mathrm{mm}$$

$$\eta = \frac{M_{\mathrm{Kp}} - M_{\mathrm{Tp}}}{M_{\mathrm{Kp}}} = \frac{1300 - 0.0228}{1300} = 0.999$$

На II валу нагрузка меньше, размеры такие же. С достаточной точностью можно утверждать что подшипники F 633 на данный вал тоже подойдут

СПИСОК ЛИТЕРАТУРЫ

- 1. Кокорев Ю.А., Жаров В.А., Торгов А.М. Расчет электромеханического привода. Изд-во МГТУ, 1995, 132 с.
- 2. Технические характеристики двигателей ДПР-72 исполнения Ф1; ДПР-72-Ф1-03; сайт компании «Электроника и Связь, поставка электронных компонентов» URL: https://eandc.ru/catalog/dpr-72-f1-03/ (Дата обращения 29.02.2024).
- 3. RollingBearings.ru каталог подшипников NTN (на сайте www.podshipnik.ru). URL: https://www.podshipnik.ru/upload/iblock/217/%D0%9F%D0%BE%D0%B4%D1%88%D0%B8%D0%BF%D0%BD%D0%B8%D0%BA%D0%B8%D1%87%D0%B5%D0%BD%D0%B8%D1 %8F.pdf