AlwaysR, Módulo III: Estadística en R. Lab 03

Giancarlo M. Correa

En esta sección se resume los conceptos más importantes vistos en la parte práctica de cada clase.

Cargamos librerías a utilizar

```
library(ggplot2)
library(Sleuth3)
library(faraway)
library(jtools)
library(ggstance)
library(broom.mixed)
```

Bases de datos a utilizar:

head(cheddar)

```
## taste Acetic H2S Lactic
## 1 12.3 4.543 3.135 0.86
## 2 20.9 5.159 5.043 1.53
## 3 39.0 5.366 5.438 1.57
## 4 47.9 5.759 7.496 1.81
## 5 5.6 4.663 3.807 0.99
## 6 25.9 5.697 7.601 1.09
```

Si queremos saber que información contiene cada base de datos, podemos ver la ayuda de ellas mediante ?cheddar.

Modelos de regresión simple

Queremos evaluar cómo varía la media de la variable taste en función a la variable H2S. Implementamos el modelo lineal y observamos la tabla resumen:

```
mod1 = lm(taste ~ H2S, data = cheddar)
summary(mod1)
```

```
##
## Call:
## lm(formula = taste ~ H2S, data = cheddar)
##
## Residuals:
## Min 1Q Median 3Q Max
```

```
## -15.426 -7.611 -3.491
                            6.420 25.687
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -9.7868
                           5.9579
                                   -1.643
## H2S
                                    6.107 1.37e-06 ***
                5.7761
                           0.9458
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.83 on 28 degrees of freedom
## Multiple R-squared: 0.5712, Adjusted R-squared: 0.5558
## F-statistic: 37.29 on 1 and 28 DF, p-value: 1.374e-06
```

Interpretación de la pendiente β_1 : el valor medio de taste aumenta en 5.7761 cuando el valor de H2S aumenta en una unidad.

De esta tabla, podemos extraer información importante que puede ser reportada en nuestro estudio:

```
mod1$coefficients # Coeficientes
```

```
## (Intercept) H2S
## -9.786837 5.776089
```

```
mod1$residuals # Residuales
```

```
2
                                                                                     7
##
             1
                                     3
                                                             5
                                                                         6
##
     3.978800
                 1.558023
                            17.376468
                                        14.389277
                                                    -6.602732
                                                                -8.217212
                                                                            -3.315312 -14.325484
                                                                                                     5.648896
                                                                                    19
##
            13
                        14
                                    15
                                                16
                                                            17
                                                                        18
                                                                                                20
                                                                                                            21
##
    -6.818324
                 7.141408
                            25.686687
                                        -4.694300
                                                     3.090779 -10.960779
                                                                            -7.874734
                                                                                       -3.667630
                                                                                                    -4.799025
           25
##
                        26
                                    27
                                                28
                                                            29
                                                                        30
                 2.793608
                            -3.926291 -12.109221 -15.426315 -12.363299
     5.423249
```

mod1\$fitted.values # Valores ajustados (sobre la linea ajustada) para las observaciones

```
##
                      2
                                3
                                           4
                                                     5
                                                                6
                                                                          7
                                                                                     8
                                                                                                         10
           1
    8.321200 19.341977 21.623532 33.510723 12.202732 34.117212 40.615312 36.225484 12.451104 14.322556
##
                               16
                                          17
                                                    18
                                                               19
                                                                         20
                                                                                    21
                                                                                              22
                                                                                                         23
          14
                     15
## 18.758592 29.213313 45.594300 12.809221 17.360779 25.874734 42.567630 18.799025 20.364345 43.595773
          27
                     28
                               29
## 30.426291 12.809221 28.826315 17.863299
```

También podemos extraer información de la tabla resumen:

```
mySummary = summary(mod1)
mySummary$coefficients # coeficientes
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.786837 5.95791 -1.642663 1.116377e-01
## H2S 5.776089 0.94585 6.106770 1.373783e-06
```

```
mySummary$sigma # desviacion estandar de los residuales
## [1] 10.83338
mySummary$adj.r.squared # R2-adj
## [1] 0.5558458
Si queremos encontrar los intervalos asociados a la línea ajustada:
predict(object = mod1, interval = 'confidence')
##
            fit
                       lwr
                                upr
       8.321200 1.5397877 15.10261
     19.341977 14.9320752 23.75188
     21.623532 17.4560870 25.79098
## 4 33.510723 28.4626634 38.55878
    12.202732 6.4129042 17.99256
## 6 34.117212 28.9452197 39.28920
     40.615312 33.8688584 47.36177
## 8 36.225484 30.5866522 41.86432
## 9 12.451104
                6.7204950 18.18171
## 10 14.322556 9.0173018 19.62781
## 11 25.689899 21.6198312 29.75997
## 12 35.890471 30.3292115 41.45173
## 13 7.518324 0.5190994 14.51755
## 14 18.758592 14.2678191 23.24937
## 15 29.213313 24.8682851 33.55834
## 16 45.594300 37.4504396 53.73816
## 17 12.809221 7.1629273 18.45552
## 18 17.360779 12.6487385 22.07282
## 19 25.874734 21.7982892 29.95118
## 20 42.567630 35.2869177 49.84834
## 21 18.799025 14.3140850 23.28397
## 22 20.364345 16.0782626 24.65043
## 23 43.595773 36.0260861 51.16546
## 24 49.123490 39.9338287 58.31315
## 25 11.376751 5.3858618 17.36764
## 26
       8.806392 2.1547780 15.45801
## 27 30.426291 25.9182720 34.93431
## 28 12.809221 7.1629273 18.45552
## 29 28.826315 24.5264827 33.12615
## 30 17.863299 13.2350535 22.49154
```

Si queremos encontrar los intervalos de predicción para los valores de X observados:

```
predict(object = mod1, interval = 'prediction')
```

Warning in predict.lm(object = mod1, interval = "prediction"): predictions on current data refer to

```
##
            fit
                        lwr
                                 upr
## 1
      8.321200 -14.8830218 31.52542
     19.341977
                -3.2831326 41.96709
     21.623532
                -0.9555722 44.20264
     33.510723
                10.7526194 56.26883
## 5
     12.202732 -10.7313142 35.13678
     34.117212 11.3312982 56.90313
     40.615312 17.4212824 63.80934
## 7
## 8
     36.225484 13.3290918 59.12188
## 9 12.451104 -10.4680639 35.37027
## 10 14.322556
               -8.4939747 37.13909
## 11 25.689899
                 3.1285643 48.25123
## 12 35.890471
               13.0130594 58.76788
## 13 7.518324 -15.7504858 30.78713
## 14 18.758592
               -3.8824192 41.39960
## 15 29.213313
                 6.6007581 51.82587
## 16 45.594300 21.9559662 69.23263
## 17 12.809221 -10.0890102 35.70745
## 18 17.360779
                -5.3251570 40.04672
## 19 25.874734
                 3.3122478 48.43722
## 20 42.567630 19.2126060 65.92265
## 21 18.799025
                -3.8408303 41.43888
                -2.2369573 42.96565
## 22 20.364345
## 23 43.595773 20.1490566 67.04249
## 24 49.123490 25.1047841 73.14220
## 25 11.376751 -11.6088774 34.36238
## 26 8.806392 -14.3602293 31.97301
                 7.7818527 53.07073
## 27 30.426291
## 28 12.809221 -10.0890102 35.70745
## 29 28.826315
                 6.2224010 51.43023
## 30 17.863299 -4.8053805 40.53198
```

Este último intervalo lo vamos a guardar para poder graficarlo:

```
newData_pred = predict(object = mod1, interval = 'prediction')
## Warning in predict.lm(object = mod1, interval = "prediction"): predictions on current data refer to
```

```
plotData = cheddar
plotData = cbind(plotData, newData_pred)
```

Hacemos una gráfica sin los intervalos de predicción:

```
ggplot(cheddar, aes(x = H2S, y = taste)) +
  geom_point() +
  geom_smooth(method='lm')
```

```
## `geom_smooth()` using formula = 'y ~ x'
```


Ahora incluimos la línea de predicción:

```
ggplot(plotData, aes(x = H2S, y = taste )) +
  geom_point() +
  geom_smooth(method="lm", se=TRUE) +
  geom_line(aes(y=lwr), color = "red", linetype = "dashed") +
  geom_line(aes(y=upr), color = "red", linetype = "dashed")
```

`geom_smooth()` using formula = 'y ~ x'

Podemos predecir también para valores nuevos de X:

```
newData = data.frame(H2S = seq(from = 2.8, to = 10.2, by = 0.1))
predict(object = mod1, newdata = newData, interval = 'prediction')
```

```
##
            fit
                          lwr
                                   upr
## 1
       6.386211 -16.978644207 29.75107
       6.963820 -16.351309398 30.27895
## 3
      7.541428 -15.725481749 30.80834
       8.119037 -15.101170651 31.33925
## 4
       8.696646 -14.478385271 31.87168
       9.274255 -13.857134550 32.40564
## 6
      9.851864 -13.237427188 32.94115
## 7
## 8 10.429473 -12.619271644 33.47822
## 9 11.007082 -12.002676120 34.01684
## 10 11.584690 -11.387648560 34.55703
## 11 12.162299 -10.774196636 35.09880
## 12 12.739908 -10.162327748 35.64214
## 13 13.317517
                -9.552049009 36.18708
## 14 13.895126
                -8.943367243 36.73362
## 15 14.472735
                -8.336288978 37.28176
## 16 15.050344 -7.730820436 37.83151
## 17 15.627952 -7.126967529 38.38287
## 18 16.205561
                -6.524735854 38.93586
## 19 16.783170 -5.924130684 39.49047
## 20 17.360779 -5.325156966 40.04672
## 21 17.938388 -4.727819314 40.60460
```

```
## 22 18.515997 -4.132122002 41.16412
## 23 19.093606 -3.538068965 41.72528
## 24 19.671214 -2.945663788 42.28809
## 25 20.248823 -2.354909707 42.85256
## 26 20.826432
                -1.765809605 43.41867
## 27 21.404041 -1.178366007 43.98645
## 28 21.981650
                -0.592581077 44.55588
## 29 22.559259
               -0.008456618 45.12697
## 30 23.136868
                 0.574005931 45.69973
## 31 23.714477
                 1.154805497 46.27415
## 32 24.292085
                 1.733941376 46.85023
## 33 24.869694
                 2.311413228 47.42798
## 34 25.447303
                 2.887221085 48.00739
## 35 26.024912
                 3.461365344 48.58846
## 36 26.602521
                 4.033846772 49.17119
## 37 27.180130
                 4.604666503 49.75559
## 38 27.757739
                 5.173826034 50.34165
## 39 28.335347
                 5.741327228 50.92937
## 40 28.912956
                 6.307172309 51.51874
## 41 29.490565
                 6.871363862 52.10977
## 42 30.068174
                 7.433904827 52.70244
## 43 30.645783
                 7.994798499 53.29677
## 44 31.223392
                 8.554048520 53.89273
## 45 31.801001
                 9.111658881 54.49034
## 46 32.378609
                 9.667633913 55.08958
## 47 32.956218 10.221978285 55.69046
## 48 33.533827
                10.774696998 56.29296
## 49 34.111436
                11.325795378 56.89708
## 50 34.689045 11.875279075 57.50281
## 51 35.266654 12.423154052 58.11015
## 52 35.844263 12.969426584 58.71910
## 53 36.421871 13.514103245 59.32964
## 54 36.999480 14.057190908 59.94177
## 55 37.577089 14.598696736 60.55548
## 56 38.154698 15.138628171 61.17077
## 57 38.732307 15.676992932 61.78762
## 58 39.309916 16.213799006 62.40603
## 59 39.887525 16.749054639 63.02599
## 60 40.465133 17.282768327 63.64750
## 61 41.042742 17.814948813 64.27054
## 62 41.620351 18.345605075 64.89510
## 63 42.197960 18.874746318 65.52117
## 64 42.775569 19.402381966 66.14876
## 65 43.353178 19.928521657 66.77783
## 66 43.930787 20.453175227 67.40840
## 67 44.508395
                20.976352710 68.04044
## 68 45.086004 21.498064326 68.67394
## 69 45.663613 22.018320468 69.30891
## 70 46.241222 22.537131704 69.94531
## 71 46.818831
                23.054508756 70.58315
## 72 47.396440 23.570462502 71.22242
## 73 47.974049 24.085003963 71.86309
## 74 48.551658 24.598144293 72.50517
## 75 49.129266 25.109894775 73.14864
```

Ahora podemos revisar los supuestos del modelo gráficamente:

plot(mod1, which = 1) # varianza constante

plot(mod1, which = 2) # distribucion normal de residuos

plot(mod1, which = 4) # puntos influyentes

Modelos de regresión múltiple

Podemos incluir una variable más al modelo anterior:

```
mod2 = lm(taste ~ H2S + Lactic, data=cheddar)
summary(mod2)
```

```
##
## Call:
## lm(formula = taste ~ H2S + Lactic, data = cheddar)
##
## Residuals:
##
      Min
                1Q
                   Median
                                3Q
                                       Max
  -17.343 -6.530
                   -1.164
                             4.844
                                    25.618
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
               -27.592
                             8.982
                                    -3.072
                                           0.00481 **
## (Intercept)
## H2S
                  3.946
                             1.136
                                     3.475
                                            0.00174 **
                 19.887
                             7.959
                                     2.499
## Lactic
                                           0.01885 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 9.942 on 27 degrees of freedom
## Multiple R-squared: 0.6517, Adjusted R-squared: 0.6259
## F-statistic: 25.26 on 2 and 27 DF, p-value: 6.551e-07
```

Podemos hacer gráficas para observar los parámetros estimados y su error asociado:

plot_summs(mod2, scale = TRUE)

plot_summs(mod2, scale = TRUE, plot.distributions = TRUE, inner_ci_level = .9)

También podemos comparar los estimados de dos modelos diferentes:

```
plot_summs(mod1, mod2, scale = TRUE)
```


plot_summs(mod1, mod2, scale = TRUE, plot.distributions = TRUE)

