Homework 6

- 1. Consider any path π .
 - Suppose $\pi \vDash \varphi U \psi$. Let n be the smallest number that $\pi^n \vDash \psi$. $\pi \vDash F \psi$ holds. For every $0 \le i < n$ we have $\pi^i \vDash \varphi$. Hence, for every $0 \le j \le n$ we have $\pi^j \vDash \varphi \lor \psi$. Hence, $\pi \vDash \psi R(\varphi \lor \psi)$ holds.
 - Suppose $\pi \vDash \psi R(\phi \lor \psi) \land F\psi$. Since $\pi \vDash F\psi$, let n be the smallest number that $\pi^n \vDash \psi$. For every $0 \le i < n$ we have $\pi^i \vDash \neg \psi$. Since $\pi \vDash \psi R(\phi \lor \psi)$, for every $0 \le j \le n$ we have $\pi^j \vDash \phi \lor \psi$. Hence, for all $0 \le k < n$ we have $\pi^k \vDash \phi$. Hence, $\pi \vDash \phi U \psi$ holds.
- 2. Consider any path π .
 - Suppose $\pi \vDash \phi W \psi$.
 - If there is some $i \ge 0$ such that $\pi^i \models \psi$ and for every $0 \le j < i$ we have $\pi^j \models \varphi$, then for every $0 \le k \le i$, we have $\pi^k \models \varphi \lor \psi$. Hence, $\pi \models \psi R(\varphi \lor \psi)$ holds.
 - If for every $i \ge 0$ we have $\pi^i \models \varphi$, then for every $i \ge 0$ we have $\pi^i \models \varphi \lor \psi$. Hence, $\pi \models \psi R(\varphi \lor \psi)$ also holds.
 - Suppose $\pi \vDash \psi R(\phi \lor \psi)$.
 - If there is some $i \ge 0$ such that $\pi^i \models \psi$ and for every $0 \le j \le i$ we have $\pi^j \models \phi \lor \psi$. Let n be the smallest of such i. For every $0 \le j < n$ we have $\pi^j \models \neg \psi$. Hence, for every $0 \le k < n$ we have $\pi^k \models \phi$. Hence, $\pi \models \phi W \psi$ holds.
 - If for every $i \ge 0$ we have $\pi^i \vDash \varphi \lor \psi$ and there is no such $j \ge 0$ such that $\pi^j \vDash \psi$, then for every $k \ge 0$ we have $\pi^k \vDash \varphi$. Hence, $\pi \vDash \varphi W \psi$ holds.
- 3. Consider $M = (S, \to, L)$ designed as below. Let $\varphi = p$ and $\psi = q$. Consider any path that starts with s_0 . We have $M, s_0 \models AF(p \lor q)$ but $M, s_0 \not\models AFp \lor AFq$.

- 4. $[AG(q \Rightarrow \neg EF(p \land EF r))] \land [AG(r \Rightarrow \neg EF(p \land EF q))]$
- 5. Consider $M = (S, \rightarrow, L)$ designed as below. We have $M, s_0 \models AGEFp$ but not $M, s_0 \models AGFp$.

