DPS5005 Digital power communication protocol V1.2

I. Introduction to the agreement

Using RS232, RS485 or Bluetooth serial port transmission interface, communication protocol for the MODBUS-RTU protocol, this product only supports the function code 0x03,0x06,0x10.

II. Communication protocol introduction

The information transfer is asynchronous, and the Modbus-RTU mode is in 11-bit bytes

Word format (serial data)	10-bit binary
Start bit	1 bit
Data bit	8 bits
Parity bit	none
Stop bit	1 bit

Data frame structure:

Data frame interval	Address code	Function code	Data area	CRC check
3.5 bytes or more	1 byte	1 byte	N bytes	2 bytes

Data transmission before the data bus is no time to send data is greater than 3.5 (for example: baud rate of 9600 when the 5ms) message to send at least 3.5 bytes of time to start the pause interval, the entire message frame must be as a continuous Data transfer stream, if there is more than 3.5 bytes of pause before the frame is completed, the receiving device will refresh the incomplete message and assume that the next byte is the address field of a new message. Likewise, if a new message begins with a previous message in less than 3.5 characters, the receiving device will consider it a continuation of the previous message.

1.1 address code

The address code is the first byte (8 bits) of each communication message frame, from 1 to 255. This byte indicates that the slave set by the user will receive the information sent by the host. Each slave must have a unique address code, and only the slave code that matches the address code can respond to the loopback message. When the slave sends back the message, the echo data starts with the respective address code. The address code sent by the host indicates the slave address to be sent, and the address code returned by the slave indicates the slave address of the loopback. The corresponding address code indicates where the information came from.

1.2 function code:

The function code is the second byte transmitted for each communication message frame. The ModBus communication protocol defines a function code of 1 to 127. As a host

request to send, through the function code to tell the slave should be what action. As a slave response, the function code returned by the slave is the same as the function code sent from the host and indicates that the slave has responded to the host and has performed the relevant operation. The unit only supports 0x03, 0x06, 0x10 function code.

function	Definition	Operation (binary)
code		
0x03	Read register data	Read data from one or more registers
0x06	Write a single register	Write a set of binary data to a single register
0x10	Write multiple registers	Write multiple sets of binary data to multiple
		registers

1.3 Data area

The data area includes what information or what action is required to be returned from the slave, which can be data (eg, digital input / output, analog input / output, register, etc.), reference address, and so on. For example, if the host tells the slave to return the value of the register (including the start address of the register to be read and the length of the read register) via function code 03, the returned data contains the data length of the register and the contents of the data.

0x03 Read the function host format

Address	Functio	Register start	Number of register addresses	CRC check
code	n code	address	n (1 ~ 32)	code
1 byte	1 byte	2 bytes	2 bytes	2 bytes

0x03 Read function Slave returns format

address	function	Returns the	Register data	CRC check code
code	code	number of bytes 2		
		* n		
1 byte	1 byte	1 byte	2 * n bytes	2 bytes

0x06 Write a single register function host format

Address code	Function code	Register	Register	CRC check code
		address	data	
1 byte	1 byte	2 bytes	2 bytes	2 bytes

0x06 Write a single register function from the machine to return the format

Address	Function	Register	Register data	CRC check
code	code	address		code
1 byte	1 byte	2 bytes	2 bytes	2 bytes

0x10 Write function host format

Address	Function	Register	Number of	Write the	Register	Register
code	code	start	register	number of	data	data
		address	addresses	bytes 2 * n		
1 byte	1 byte	2 bytes	N (1 ~ 32)	1 byte	2 * n	2 * n

_				
П				
			hvtes	bytes
			bytes	Dytes

0x10 Write function slave return format

Address	Function	Register start	Number of register	Register data
code	code	address	addresses	
1 byte	1 byte	2 bytes	N (1 ~ 32)	2 * n bytes

Protocol register description (data in single register address is double-byte data)

Name	Description	Number of bytes	Decima I point	Unit	Read and write	Register address
U-SET	Voltage setting	2	2	>	R/W	0000H
I-SET	Current setting	2	3	Α	R/W	0001H
UOUT	Output voltage display value	2	2	V	R	0002H
IOUT	Output current display value	2	3	Α	R	0003H
POWER	Output power display value	2	2	W	R	0004H
UIN	Input voltage display value	2	2	V	R	0005H
LOCK	Key lock	2	0	-	R/W	0006H
PROTEC T	Protection state	2	0	1	R	0007H
CVCC	Constant voltage constant current state	2	0	-	R	H8000
ONOFF	Switch output	2	0	-	R/W	0009H
B_LED	Backlight brightness level	2	0	-	R/W	000AH
MODEL	Product number	2	0	-	R	000BH
VERSO	Firmware version	2	0	-	R	000CH
N	number					
EXTRAC	Quickly bring up data	2	0	-	W	0023H
T_M	sets					
U-SET	Voltage setting	2	2	V	R/W	0050H
I-SET	Current setting	2	3	Α	R/W	0051H
S-OVP	Overvoltage protection	2	2	V	R/W	0052H
S-OCP	Overcurrent protection value	2	3	Α	R/W	0053H
S-OPP	Over power protection value	2	1、2	W	R/W	0054H
B-LED	Backlight brightness level	2	0	-	R/W	0055H
M-PRE	The data is called out of the update output	2	0	-	R/W	0056H
S-INI	Power on the output switch	2	2	-	R/W	0057H

Note 1: This product is designed with M0-M9 10 groups of data sets, each with serial number 10-17 8 data, which M0 data group for the product power default call data group, M1, M2 data group for the product M3-M9 is the ordinary storage array, the starting

address of the data group is calculated as: 0050H + data group number * 0010H, for example, the starting address of the M3 data group is: 0050H +3 * 0010H = 0080H.

Note 2: key lock function read and write values of 0 and 1,0 for non-locking, 1 for the lock.

Note 3: The protection status read value is 0-3,0 for normal operation, 1 is OVP, 2 is OCP, 3 is OPP.

Note 4: constant voltage constant current state read value of 0 and 1, 0 for the CV state, 1 for the CC state.

Note 5: The switch output function reads and writes values of 0 and 1, 0 are off, and 1 is on.

Note 6: backlight brightness level read and write range of 0-5,0 level of the darkest, 5 the most bright.

Note 7: Quickly call out the data set function to write the value of 0-9, write will automatically call out the corresponding data set data.

1.4 error check code (CRC check):

The host or slave can use the check code to determine whether the received information is correct. Due to electronic noise or some other interference, the information in the transmission process sometimes fails. Error check code (CRC) can be checked by the host or slave if the communication data transmission process is wrong. The wrong data can give up (regardless is it sent or received), which increases the security and efficiency of the system. The CRC (redundant cyclic code) of the MODBUS communication protocol contains 2 bytes, that is, 16-bit binary numbers. The CRC code is calculated by the sending device (host) and placed at the end of the transmitted message frame. The device that receives the information (slave) recalculates the CRC of the received message, compares whether the calculated CRC matches the received one, and if the two do not match, it indicates an error. CRC check code sent when the low before the high after the post.

CRC code calculation method:

- (1) Preset 1 16-bit register is hexadecimal FFFF (ie all 1); this register is called the CRC register;
- (2) the first 8-bit binary data (the first byte of the communication information frame) is different from the lower 8 bits of the 16-bit CRC register, and the result is placed in the CRC register;
- (3) Move the contents of the CRC register one bit to the right (to the lower) to fill the most significant bit with 0 and check the shifted bit after the right shift;
- (4) If the shift bit is 0: repeat step 3 (shift right one again); if the shift bit is 1: The CRC register is XORed with the polynomial A001 (1010 0000 0000 0001)
- (5) Repeat steps 3 and 4 until the right 8 times, so that the entire 8-bit data is processed;
- (6) Repeat steps 2 through 5 to proceed to the next byte of the communication information frame;
- (7) After all the bytes of the communication information frame are calculated as described above, the resulting high and low bytes of the 16-bit CRC register are exchanged;
- (8) The final CRC register is the CRC code.

III, communication examples

Example 1: The host reads the output voltage and the output current display value Host sends the message format:

Host sent	Number	Sent	Remarks
	of bytes	information	
Slave Address	1	01	To the slave at address 01
function code	1	03	Read register
Register start	2	0002H	Register start address
address			
Number of register	2	0002H	A total of 2 bytes
addresses			
CRC code	2	65CBH	The CRC code is calculated by the
			host

For example, if the current display value is 05.00V, 5.000A, the slave response returns the message format:

Slave response	Number	Returned	Remarks
	of bytes	information	
Slave Address	1	01	From slave 01
function code	1	03	Read register
Read the number of bytes	1	04	A total of 1 byte
The address is 0002H	2	01F4H	Output voltage display value
register contents			
The address is 0003H	2	1388H	Output current display value
register contents			
CRC code	2	B76BH	The CRC code is calculated
			from the slave

Example 2: The host should set the voltage to 24.00V

Host sends the message format:

Host sent	Number of	Sent	Remarks
	bytes	information	
Slave Address	1	01H	From slave 01
function code	1	06H	Write a single register
Register address	2	0000H	Register address
The address is the contents	2	0960H	Set the output voltage
of the 0000H register			value
CRC code	2	8FB2H	The CRC code is
			calculated by the host

After receiving the response from the machine to return the message format:

Slave response	Number of	Returned	Remarks
	bytes	information	
Slave Address	1	01H	To the slave at address 01
function code	1	06H	Write a single register
Register address	2	0000H	Register start address
The address is the contents	2	0960H	Set the output voltage
of the 0000H register			value
CRC code	2	8FB2H	The CRC code is
			calculated from the slave

Example 3: the host to set the voltage of 24.00V, current 1.500A.

Host sends the message format:

7-14 1/2 VA	プラーH- 业L-	此业品产台	友 >>
主机发送	字节数	发送的信息	备注
从机地址	1	01H	来自从机01
功能码	1	10H	写寄存器
寄存器起始地址	2	0000H	寄存器起始地址
寄存器地址数量	2	0002H	共2个字节
写入字节数	1	04H	共1个字节
地址为0000H寄存器的内容	2	0960H	设定输出电压值
地址为0001H寄存器的内容	2	05DCH	设定输出电流值
CRC码	2	F2E4H	由主机计算得到CRC码

After receiving the response from the machine to return the message format:

从机响应	字节数	返回的信息	备 注
从机地址	1	01H	发送至地址为01的从机
功能码	1	10H	写寄存器
寄存器起始地址	2	0000H	寄存器起始地址
寄存器地址数量	2	0002H	共2个字节
CRC码	2	41C8H	由从机计算得到CRC码