Vehicle Obstacle Detection System

Embedded System
CPE-311 & CPE-312

Member

Thanyaluck Yiemyod 1811310836

1911310272

Rakphong Thongkhlai 1911310348

Kittipat Pomsri

1911310405

Phattaranan Rueangrat

1911310496

Table of contents

01

Overview

- Requirement
- Planning

Specification

- System information
- Function
- Behavior

03

Architectural design

- Block diagram
- Hardware detail selection
- STM32 Pin allocation

Detailed design

- Top-down design
- Flowchart
- Gantt chart

Project demo

Demo video

Problem, Solution & Conclusion

O1 Overview

Requirements

Planning

Requirements

what we want to achieve

- When the car approaches an obstacle within 10 cm,
 Speaker send a sound signal before hitting the obstacle.
- Car be able to move forward and backward.

Planning

Description		January															February							
	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4
Requirement & Planning																								
Specification																								
Architectural design																								
Detailed Design																								
Coding																								
System Testing																								
Acceptance testing																								

02 Specification

System information

Function

Behavior

*

System information

Software: Keil µVision 5

Create, develop and monitor project

Language: C

Develop program

MCU: STM32L152RB

Process the entire program

USER Button

Press to moves motor clockwise (move forward)

Ultrasonic sensor: HC-SR04 module

Measures the distance to an obstacle using ultrasonic sound waves

2 DC motors

Control movement speed and direction (forward, backward)

IC: L293D module

Motor Driver IC which allows the DC motor to drive on any direction

Speaker

Sound an alarm when an obstacle is within the specified range

LED

The light flashes when an obstacle is within the specified range

Function

Control movement (Motor)

Flashing light (LED action)

Calculate distance (Ultrasonic sensor)

Alert (Speaker)

Behavior

Movement Path

- 1. Button controls a motor
- 2. Motor direction with wheels
- 3. Slow down to stop move when speaker is activated.

Display Path

1. Receive action from movement path to activate LED

Behavior

Ultrasonic Path

- 1. Calculate distance from car to obstacle
- 2. When a car almost hit obstacle (within 10 cm.), motor stopped
- 3. sent signal to speaker

Speaker

- 1. Alert while near object
- 2. Stop sound when car move forward

03 Architectural design

Hardware detail selection

STM32L152RB Pin allocation

10 ct d10: 15

counterkløislewise

Ultrasonic ranging module : HC-SR04 Datasheet

Practical test of performance, Best in 30 degree angle

Ultrasonic ranging module : HC-SR04 Datasheet

Electric Parameter

Working Voltage	DC 5 V
Working Current	15mA
Working Frequency	40Hz
Max Range	4m
Min Range	2cm
MeasuringAngle	15 degree
Trigger Input Signal	10uS TTL pulse
Echo Output Signal	Input TTL lever signal and the range in proportion
Dimension	45*20*15mm

Hardware detail selection

Ultrasonic ranging module : HC-SR04 Datasheet

Sequence chart

Hardware detail selection

L293D L293DD

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

DESCRIPTION

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz.

The L293D is assembled in a 16 lead plastic packaage which has 4 center pins connected together and used for heatsinking

The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected together and used for heatsinking.

Hardware detail selection

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

Powerdip(12+2+2)

Hardware component lists

Component list	Qty.	มีแล้ว	แหล่งที่ซื้อ	ราคา/ชิ้น	ราคารวม
STM32L152RB board	1	/			
Ultrasonic sensor	1	/			
DC Motor	2	/			
Speaker	1	/			
LED	1	/			
Wires	-	/			
Gear	8	/			
Toy car wheels	4	/			
					0

PIN Allocation

9 10 11 12 13 14 15

Available pins
Special pins
No pin out

Input 1	Input 2	Output1	Output 2	output 3				
User button	UltraSonic	Motor	LED	Speaker				

04 Detailed design

Top-down design

Flowchart

Gantt chart

Gantt Chart

Description	Responsible		January															February							
	person	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4
Project planning	EVERYONE																								
Project Design	Thanyaluck, Kittipat & Phattaranan																								
Coding	Rakphong &																								
& Debugging	Panuwit																								
Presentation	EVERYONE																								

Plan Done

Delay

05 Project Demo

The final product

Demo Video

The final product

Demo Video

Problem & Solution

Problem

- Online communication
- Insufficient equipment
- The results were not as expected

Solution

- Use GitHub to collaborate and plan project
- Instead, use different equipment
- Adjust some functions

Conclusion

1

The result would be excellent tools for further development in the future projects

To improve the project's efficiency, some functions can be added and altered.

Thank You!