

Tutorials Week 5

Pdf file on Blackboard	Dataset on Blackboard	Papers	Description
C 14.5	wagepan.dta	F. Vella and M. Verbeek (1998), "Whose Wages Do Unions Raise? A Dynamic Model of Unionism and Wage Rate Determination for Young Men," Journal of Applied Econometrics 13, 163-183	Fixed effects vs. first diff, pooled OLS, consequences of omitting dummy variables.
C 14.9	wagepan.dta	F. Vella and M. Verbeek (1998), "Whose Wages Do Unions Raise? A Dynamic Model of Unionism and Wage Rate Determination for Young Men," Journal of Applied Econometrics 13, 163-183	Estimation of models with pooled OLS, use of random effects, comparison of results from random effects vs. fixed effects.
C 14.8 (part (vi)	mathpnl.dta	Papke, Leslie (2005): "The Effects of Spending on Test Pass Rates: Evidence from Michigan" (2005), Journal of Public Economics 89, 821-839.	Estimation of models with pooled OLS, estimate the model with a fixed effect estimator, and verify serial correlation. For the extra questions: application of the Hausman test.

- (i) In the wage equation in Example 14.4, explain why dummy variables for occupation might be important omitted variables for estimating the union wage premium.
 - (ii) If every man in the sample stayed in the same occupation from 1981 through 1987, would you need to include the occupation dummies in a fixed effects estimation? Explain.
 - (iii) Using the data in WAGEPAN.RAW, include eight of the occupation dummy variables in the equation and estimate the equation using fixed effects. Does the coefficient on *union* change by much? What about its statistical significance?

EXAMPLE 14.4

A WAGE EQUATION USING PANEL DATA

We again use the data in WAGEPAN.RAW to estimate a wage equation for men. We use three methods: pooled OLS, random effects, and fixed effects. In the first two methods, we can include *educ* and race dummies (*black* and *hispan*), but these drop out of the fixed effects analysis. The time-varying variables are *exper*, *exper*², *union*, and *married*. As we discussed in Section 14.1, *exper* is dropped in the FE analysis (although *exper*² remains). Each regression also contains a full set of year dummies. The estimation results are in Table 14.2.

TABLE 14.2 Three Di	fferent Estimators	of a Wage Equation	
Dependent Variable: log	(wage)		
Independent Variables	Pooled OLS	Random Effects	Fixed Effects
educ	.091 (.005)	.092 (.011)	
black	139 (.024)	139 (.048)	
hispan	.016 (.021)	.022 (.043)	
exper	.067 (.014)	.106 (.015)	
exper ²	0024 (.0008)	0047 (.0007)	0052 (.0007)
married	.108 (.016)	.064 (.017)	.047 (.018)
union	.182 (.017)	.106 (.018)	.080 (.019)

The coefficients on educ, black, and hispan are similar for the pooled OLS and random effects estimations. The pooled OLS standard errors are the usual OLS standard errors, and these underestimate the true standard errors because they ignore the positive serial correlation; we report them here for comparison only. The experience profile is somewhat different, and both the marriage and union premiums fall notably in the random effects estimation. When we eliminate the unobserved effect entirely by using fixed effects, the marriage premium falls to about 4.7%, although it is still statistically significant. The drop in the marriage premium is consistent with the idea that men who are more able—as captured by a higher unobserved effect, a_i —are more likely to be married. Therefore, in the pooled OLS estimation, a large part of the marriage premium reflects the fact that men who are married would earn more even if they were not married. The remaining 4.7% has at least two possible explanations: (1) marriage really makes men more productive

EXPLORING FURTHER 14.3

The union premium estimated by fixed effects is about 10 percentage points lower than the OLS estimate. What does this strongly suggest about the correlation between *union* and the unobserved effect?

or (2) employers pay married men a premium because marriage is a signal of stability. We cannot distinguish between these two hypotheses.

The estimate of θ for the random effects estimation is $\hat{\theta} = .643$, which helps explain why, on the timevarying variables, the RE estimates lie closer to the FE estimates than to the pooled OLS estimates.

TABLE 14.2

Three Different Estimators of a Wage Equation

Independent Variables	Pooled OLS	Random Effects	Fixed Effects
educ	.091 (.005)	.092 (.011)	
black	139 (.024)	139 (.048)	
hispan	.016 (.021)	.022 (.043)	
exper	.067 (.014)	.106 (.015)	
exper ²	0024 (.0008)	0047 (.0007)	0052 (.0007)
married	.108 (.016)	.064 (.017)	.047 (.018)
union	.182 (.017)	.106 (.018)	.080

i) The exercise refers to Example 14.4. in the book

- The question is why omitting dummy variables for occupations can be a problem. First, you should realize this would be a problem with the fixed-effects specifications only if the observed individuals changed their occupations in the sample period.
- If occupations are fixed over time, then their effect is removed by the fixed-effect transformation.
- In this sample, **individuals change their occupation**; hence, an omitted variables bias affects all our results.
- Omitting the occupation dummy causes a bias since (apart from the fact wages are likely to differ across occupations) the degree of unionization may vary by occupation; hence, when you exclude it from the model, your residual will be correlated with the variable union.

- (ii) If every man in the sample stayed in the same occupation from 1981 through 1987, would you need to include the occupation dummies in a fixed effects estimation? Explain.
 - As we saw under point (i), if all individuals remained in the same occupation, then the fixed effect (within-group) transformation would have removed the effect of occupations from the model.
 - Not only were occupation dummies unnecessary to include, but they would be dropped from the regression because of the lack of variance over time.

(iii) Using the data in WAGEPAN.RAW, include eight of the occupation dummy variables in the equation and estimate the equation using fixed effects. Does the coefficient on *union* change by much? What about its statistical significance?

- Because the nine occupational categories (occ1 through occ9) are exhaustive, we must choose one as the base group.
- Of course the group we choose does not affect the estimated union wage differential.
- The fixed effect estimate on *union*, to four decimal places, is .0804 with standard error = .0194.
- There is practically no difference between this estimate and standard error and the estimate and standard error without the occupational controls ($\hat{\beta}_{union} = .0800$, se =0193).

NOTE: In Stata 11 you do not need "xi:" when adding dummy variables

. xi: xtreg lwage educ b i.yearIyear note: educ omitted becau note: black omitted becau note: hisp omitted becau note: _Iyear_1987 omitte	_1980-1987 se of colline use of colline se of colline	(naturall arity earity arity	y coded;				
Fixed-effects (within) regression Number of obs = Group variable: nr Number of groups =							
R-sq: within = 0.1806 between = 0.0005 overall = 0.0635			Obs per	group: min = avg = max =	8.0		
corr(u_i, Xb) = -0.1212			F(10,38 Prob >		= 83.85 = 0.0000		
lwage Coef	. Std. Err.	t	P> t	[95% Conf	. Interval]		
	0 (omitted)						
	0 (omitted)						
hisp exper .132146	0 (omitted)	12 45	0.000	1120042	1514007		
exper .132146							
married .046680		2 55	0.011	0107811			
union .080001	9 .0193103	4.14	0.000	.0421423	.1178614		
union .080001 _Iyear_1981 .019044 _Iyear_1982 01132	8 .0203626	0.94	0.350	0208779	.0589674		
Ivear 1982 01132	2 .0202275	-0.56	0.576	0509798	.0283359		
	5 .0203205	-2.07	0.039	0818357	0021553		
Tyear 1984 038470	9 .0203144	-1.89	0.058	0782991	.0013573		
_Iyear_1985 043249	8 .0202458	-2.14	0.033	0829434	0035562		
_Iyear_1986 027381		-1.34	0.179	0673511	.0125872		
_Iyear_1987	0 (omitted)						
cons 1.0276	4 .0299499	34.31	0.000	.9689201	1.086359		
sigma_u .400927 sigma_e .3509900 rho .5661223		of varian	ce due t	:o u i)			
F test that all u i=0:				Prob >	F = 0.0000		

Now with occupation dummies included:


```
Obs per group: min =
R-sq: within = 0.1827
      between = 0.0021
                                                        avg =
                                                                   8.0
      overall = 0.0696
                                                                     8
                                                        max =
                                          F(18,3797)
                                                                 47.14
corr(u i, Xb) = -0.1071
                                         Prob > F
                                                                0.0000
                 Coef. Std. Err.
                                      t P>|t|
                     0 (omitted)
       educ |
      black |
                   0 (omitted)
              0 (omitted)
       hisp |
               .1305982 .0099326
                                   13.15 0.000
                                                    .1111245
                                                               .1500718
      exper |
                        .000709
                                   -7.19 0.000
    expersq | -.0050996
                                                   -.0064898
                                                              -.0037095
    married |
               .0459227
                         .0183429
                                    2.50 0.012
                                                 .0099598
                                                               .0818855
   — union |
               .080381
                        .0194006
                                    4.14 0.000
                                                   .0423445
                                                               .1184175
 Iyear 1981 | .0206195
                       .0203817
                                    1.01 0.312
                                                   -.0193406
                                                              .0605797
Iyear 1982 | -.0098058
                        .0202533
                                          0.628
                                    -0.48
                                                   -.0495141
                                                              .0299025
 Iyear 1983 | -.0395489
                       .0203629
                                   -1.94 0.052
                                                   -.0794721
                                                              .0003744
 Tyear 1984 | -.0371896
                        .0203516
                                                   -.0770906
                                                              .0027115
                                   -1.83 0.068
 Iyear 1985 | -.0424542
                         .0202617
                                   -2.10 0.036
                                                   -.0821791
                                                              -.0027293
 0.159
                         .0204052
                                   -1.41
                                                   -.0687479
                                                               .0112644
 Tyear 1987 |
                  0 (omitted)
       occ2 | -.0136055
                         .0323164
                                   -0.42
                                          0.674
                                                   -.0769646
                                                               .0497536
       occ3 | -.0621039
                         .0377516
                                   -1.65 0.100
                                                   -.1361192
                                                              .0119114
             -.079205
                         .0307204
                                   -2.58 0.010
                                                              -.018975
       occ4 I
                                                   -.1394351
             -.0307397
                         .030348
                                   -1.01 0.311
                                                   -.0902397
       occ5 I
                                                              .0287603
       occ6 |
             -.0280367
                        .0306803
                                   -0.91 0.361
                                                 -.088188
                                                              .0321147
                                   -1.14 0.254
       occ7 | -.0386446
                         .0338524
                                                   -.1050153
                                                              .027726
       occ8 | -.0611993
                        .066051
                                   -0.93 0.354
                                                -.1906982
                                                              .0682997
       occ9 | -.0438229
                       .0342572
                                   -1.28 0.201
                                                   -.1109872
                                                              .0233415
      cons | 1.068066
                         .0394164
                                   27.10 0.000
                                                   .9907871
    sigma u |
             .3984261
    sigma e | .35091327
       rho | .5631524 (fraction of variance due to u_i)
F test that all u i=0: F(544, 3797) = 8.37 Prob > F = 0.0000
```

We find that after including the occupations in the fixed-effect specification the coefficient on the union did not change much, from 0.800 to 0.804, and the standard errors remained also very close.

Hence our fears about the effect of omitted occupations are not justified.

C14.9 of third edition. Use the data in wagepan.dta for this exercise.

- (i) Estimate the model $lwage_{it} = \beta 0 + \beta_1 educ_i + \beta_2 black_i + \beta_3 hisp_i + v_{it}$ by pooled OLS en report the standard errors in the usual form (this means here: we do not yet control for heteroscedasticity or serial correlation).
- (ii) Estimate the model from part (i) by random effects (thinking that $v_{it} = a_i + u_{it}$). How do the RE and pooled OLS point estimates of the β_i compare?
- (iii) Are the RE and pooled OLS standard errors the same? Which ones are more reliable and why?
- (iv) As example 14.4 (Table 14.2) shows, parameter estimates corresponding to time-varying explanatory variables such as *union*, may differ between pooled OLS and RE. What could be an explanation for this?

C14.9

- (i) We estimate the model as requested with pooled OLS.
- . reg lwage educ black hisp

Source	SS 	df	MS		Number of obs = $F(3, 4356) =$	
Model Residual	86.1248357	3 28. 4356 .26	7082786		Prob > F = R-squared = Adj R-squared =	0.0000
Total	1236.52964	4359 .28	3672779			.5139
lwage		Std. Err.			[95% Conf. I	nterval]
educ	.0770943	.0045613	16.90	0.000		.0860367
black	1225637	.0247022	-4.96	0.000	1709926 -	.0741348
hisp	.024623	.0222046	1.11	0.268	0189092	.0681553
_cons	.7523087	.0553537	13.59	0.000	.6437872	.8608301

Model Specification:

We estimated the model using pooled OLS with the following independent variables: education (*educ*), race (*black*), and hispanic status (*hisp*) to explain the logarithm of wages (*lwage*).

You can also interpret the results. For example:

Education (educ): Holding other factors constant, an additional year of education is associated with an increase of approximately 8.01% in wages. This result is statistically significant (p < 0.001).

Log-level:

(ii) Estimate the model from part (i) by random effects (thinking that $v_{it} = a_i + u_{it}$). How do the RE and pooled OLS point estimates of the β_i compare?

```
. xtreq lwage educ black hisp , re
Random-effects GLS regression
                                       Number of obs =
                                                            4360
Group variable: nr
                                       Number of groups = 545
R-sq: within = 0.0000
                                       Obs per group: min =
                                                   avg = 8.0
     between = 0.1296
     overall = 0.0697
                                                   max =
                                       Wald chi2(3)
                                                           80.56
                                     Prob > chi2 =
corr(u i, X) = 0 (assumed)
                                                           0.0000
     lwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      educ | .0770943 .009177 8.40 0.000 .0591076
                                                        .0950809
     black | -.1225637 .0496994 -2.47 0.014 -.2199728 -.0251546
      hisp | .024623 .0446744 0.55 0.582 -.0629371 .1121831
     _cons | .7523087 .1113686 6.76 0.000 .5340302 .9705872
    sigma u | .33894941
    sigma e | .38723169
       rho | .4338047 (fraction of variance due to u i)
```

- •Point Estimates: The point estimates (coefficients) for all variables are the same between the pooled OLS and random effects model.
- Implications: This suggests that the random effects model did not alter the estimated relationships between the independent variables and wage compared to the pooled OLS model.

(iii) Are the RE and pooled OLS standard errors the same? Which ones are more reliable and why?

. xtreg lwage educ black hisp , re

eg lwage edu	ıc black hisp)					Random-effects Group variable	_	ion			of obs = of groups =	= 4360 = 545
Source + Model	SS 86.1248357		MS 8.7082786		Number of obs F(3, 4356) Prob > F	= 108.70 = 0.0000	between	= 0.0000 = 0.1296 = 0.0697			Obs per	group: min = avg = max =	= 8.0
Residual +- Total	1150.40481 1236.52964		264096604 283672779		R-squared Adj R-squared Root MSE	= 0.0697 = 0.0690 = .5139 corr(u_i, X)	= 0 (assume	d)		Wald ch			
 lwage	 Coef.	Std. Er	r. t	P> t	[95% Conf.	Intervall	lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
educ black	.0770943 1225637 .024623	.004561 .024702	3 16.90 2 -4.96	0.000 0.000 0.268	.0681518 1709926 0189092	.0860367 0741348 .0681553	educ black hisp _cons	.0770943 1225637 .024623 .7523087	.009177 .0496994 .0446744 .1113686	8.40 -2.47 0.55 6.76	0.000 0.014 0.582 0.000	.0591076 2199728 0629371 .5340302	.0950809 0251546 .1121831 .9705872
hisp _cons	.7523087	.055353		0.268	.6437872	.8608301	sigma_u sigma_e sigma_e rho	.33894941 .38723169 .4338047	(fraction	of monio		·	

- While the coefficients are the same, the standard errors are not. The standard errors for the RE estimates are higher for all coefficients.
- The **RE errors are more reliable** —for the usual unobserved effects model because they account for the serial correlation in the composite error.
- One should **trust the results from the random-effect specifications**, since it corrects for the presence of first-order autocorrelation in the error term, which is caused by the presence of individual-specific effects. (See also, chapter 14.2 in the book)

TABLE 14.2 Three Different Estimators of a Wage Equation **Dependent Variable:** log(wage) **Independent Variables Pooled OLS Random Effects Fixed Effects** educ .091 .092 (.005)(.011)black -.139-.139(.024)(.048).016 .022 hispan (.021)(.043).067 .106 exper (.014)(.015)exper² -.0024-.0047-.0052(8000.)(.0007)(.0007).108 .064 married .047 (.016)(.017)(.018).182 .106 .080 union (.017)(.018)(.019)

- The important conclusions are the same. The RE and OLS coefficient estimates are identical for all explanatory variables, but the RE standard errors differ.
- One difference is that the RE standard errors on the year dummies are smaller than the OLS standard errors on the year dummies.

vi. vtreg lwage educ black bien i wear fe

Additional Material. Estimate with FE and compare with pooled OLS and RE

. x1: xtreg lwa i.year note: educ omit note: black omi note: hisp omit	_Iyear_1 ted because tted becaus	980-1987 of collinea e of colline	(naturall rity arity	y coded; _	Iyear_1980	omitted)
Fixed-effects (Group variable:		ression			obs = groups =	
R-sq: within between overall	= .			Obs per g	_	8 8.0 8
corr(u_i, Xb)	= -0.0000				= =	
		Std. Err.				
educ	0 0 0 .1193902 .1781901 .2257865 .2968181 .3459333	(omitted) (omitted) (omitted) .021487 .021487 .021487 .021487	5.56 8.29 10.51 13.81 16.10	0.000 0.000 0.000 0.000 0.000	.0772631 .136063 .1836594 .254691 .3038063	.1615173 .2203172 .2679135 .3389452 .3880604
	.35469771 .54824631	(fraction				
F test that all	u_i=0:	F(544, 3808) = 9	.71	Prob >	F = 0.0000

The coefficients and the standard errors of the year dummies are the same as in the RE specifications. Only the constant terms change.

We can hence observe that if we have only timevarying explanatory variables that are the same for all individuals within a year (year dummies), then there is no difference between the results from the RE or FE estimators.

Use the data in MATHPNL.RAW for this exercise. You will do a fixed effects version of the first differencing done in Computer Exercises 11 in Chapter 13. The model of interest is

$$math4_{it} = \delta_1 y94_t + ... + \delta_5 y98_t + \gamma_1 \log(rexpp_{it}) + \gamma_2 \log(rexpp_{i,t-1}) + \psi_1 \log(enrol_{it}) + \psi_2 lunch_{it} + a_i + u_{it},$$

where the first available year (the base year) is 1993 because of the lagged spending variable.

- (i) Estimate the model by pooled OLS and report the usual standard errors. You should include an intercept along with the year dummies to allow a_i to have a nonzero expected value. What are the estimated effects of the spending variables? Obtain the OLS residuals, \hat{v}_{it} .
- (ii) Is the sign of the $lunch_{it}$ coefficient what you expected? Interpret the magnitude of the coefficient. Would you say that the district poverty rate has a big effect on test pass rates?
- (iii) Compute a test for AR(1) serial correlation using the regression \hat{v}_{it} on $\hat{v}_{i,t-1}$. You should use the years 1994 through 1998 in the regression. Verify that there is strong positive serial correlation and discuss why.
- (iv) Now, estimate the equation by fixed effects. Is the lagged spending variable still significant?
- (v) Why do you think, in the fixed effects estimation, the enrollment and lunch program variables are jointly insignificant?
- (vi) Define the total, or long-run, effect of spending as $\theta_1 = \gamma_1 + \gamma_2$. Use the substitution $\gamma_1 = \theta_1 \gamma_2$ to obtain a standard error for $\hat{\theta}_1$. [Hint: Standard fixed effects estimation using $\log(rexpp_{it})$ and $z_{it} = \log(rexpp_{i,t-1}) \log(rexpp_{it})$ as explanatory variables should do it.]

C.14.8

We will use the latest specification from C13.11.

(i) We need to estimate the model with pooled OLS (assuming homeskedasticity and no serial correlation of the error term).

No serial correlation: u_{it} is uncorrelated across time.

. reg math4 lenrol lrexpp lrexpp 1 lunch y94 y95 y96 y97 y98

Source	SS	df	MS		Number of obs F(9, 3290)	
· ·	487253.951 477099.485				Prob > F R-squared Adj R-squared	= 0.0000 = 0.5053
Total	964353.436	3299 292	.316895		Root MSE	
math4	Coef.		t		[95% Conf.	Interval]
lrexpp lrexpp_1 lunch y94 y95 y96 y97	9.049175	2.428118 2.30532	2.89 0.22 3.93 -29.40 8.66 23.72 23.50 19.75 38.81	0.004 0.826 0.000 0.000 0.000 0.000 0.000 0.000	.1906496 -4.226844 4.529168 433835 4.933766 17.10856 16.52902 13.81693 28.8623	5.294706 13.56918 3795817
_cons		10.30109	-3.07		-51.85876	

We save the residuals:

. predict vhat,res
(550 missing values generated)

The effect of spending on success rate is about 0.096 p.p. per 1% increase in spending.

. nlcom _b[lrexpp]+_b[lrexpp_1]

nl 1: b[lrexpp]+ b[lrexpp 1]

Coef.		 [95% Conf.	Interval]
 		 7.141964	12.02425

ii) The coefficient of the lunch variable is negative. This suggests that districts with more pupils eligible for free lunch (poor districts) have lower success rates on average. The *lunch* variable is the percentage of students in the district eligible for free or reduced-price lunches, which is determined by poverty status. Therefore, *lunch* is effectively a poverty rate.

We see that the district poverty rate has a large impact on the math pass rate: a one percentage point increase in *lunch* reduces the pass rate by about 0.41 percentage points.

(iii) We should regress the residual on the lagged residual

. reg vhat 1.vhat lrexpp lenrol lunch y94 y95 y96 y97 y98 note: y98 omitted because of collinearity

. tsset distid year, delta(1)

panel variable: distid (strongly balanced)

time variable: year, 1992 to 1998

delta: 1 unit

. reg vhat 1.vhat

Source	SS	df	MS		er of obs 2748)	=	2,750 892.82
Model Residual	101287.401 311751.296	1 2,748	101287.40 113.44661	1 Prob 4 R-sq	•	= =	0.0000 0.2452 0.2450
Total	413038.697	2,749	150.25052	_	•	=	10.651
vhat	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
vhat L1.	. 5043244	.0168783	29.88	0.000	.471229		.5374198
_cons	1.21e-09	.2031091	0.00	1.000	398262		.398262

Source	SS	df	MS		=	2,750 99.17
Model Residual	101482.737 311555.96		11275.8596 113.706555	F(9, 2740) Prob > F R-squared	= =	0.0000 0.2457
Total	413038.697		150.250526	Adj R-squared Root MSE	=	0.2432 10.663

Interval]	[95% Conf.	P> t	t	Std. Err.	Coef.	vhat
						vhat
.5380794	.4717566	0.000	29.86	.0169119	.504918	L1.
						lrexpp
5.471307	-3.921803	0.746	0.32	2.395187	.7747519	
3.968724	-4.762246	0.859	-0.18	2.226345	396761	L1.
.4809523	2952328	0.639	0.47	.1979226	.0928598	lenrol
.0418006	0105847	0.243	1.17	.0133579	.0156079	lunch
1.433054	-1.28875	0.917	0.10	.6940439	.0721523	y94
1.352027	-1.373687	0.988	-0.02	.6950408	0108298	y95
1.291478	-1.238705	0.967	0.04	.6451815	.0263861	y96
1.273563	-1.253035	0.987	0.02	.6442674	.0102643	y97
				(omitted)	0	y98
16.57287	-25.43072	0.679	-0.41	10.71066	-4.428925	_cons

There is indeed a positive first order autocorrelation. P-value of vhat L1 is 0,000

There are many reasons for positive serial correlation. In the context of panel data, it indicates the presence of a time-constant unobserved effect, ai.

(iv) We estimate the model with a FE estimator.


```
. xtreg math4 lenrol lrexpp lrexpp 1 lunch y94 y95 y96 y97 y98, fe
Fixed-effects (within) regression
                                Number of obs
                                                              3300
Group variable: distid
                                      Number of groups =
R-sq: within = 0.6027
                                        Obs per group: min =
     between = 0.0399
                                                     avg =
                                                               6.0
     overall = 0.3202
                                                     max =
                                        F(9,2741)
                                                            462.02
corr(u i, Xb) = -0.0464
                                        Prob > F =
                                                            0.0000
                Coef. Std. Err. t P>|t|
     lenrol | .2450874 1.100381 0.22 0.824
                                                -1.912572
                                                           2.402747
     lrexpp | -.4111804 2.457658 -0.17 0.867
                                               -5.23023
                                                          4.407869
   lrexpp 1 | 7.002988 2.369184 2.96 0.003
                                              2.357421
                                                          11.64856
             .061527 .0514661 1.20 0.232
      lunch |
                                                -.0393892
                                                          .1624432
              6.177316 .5601833 11.03
                                        0.000
                                                5.078892
                                                          7.27574
       y94 |
                       .6905329 26.20 0.000
                                                16.73865
                                                          19.44669
       v95 I
            18.09267
                      .75684 23.70 0.000
       v96 l
            17.9404
                                                16.45636
                                                          19.42443
       y97 | 15.19184 .7993116 19.01 0.000 13.62452
                                                          16.75915
       y98 | 29.88319 .8374619 35.68 0.000 28.24107
                                                          31.52531
      cons | -16.08091 23.80746
                               -0.68 0.499
                                               -62.76329
                                                          30.60147
    sigma u | 11.487395
    sigma e | 8.9961899
       rho | .61984689 (fraction of variance due to u i)
F test that all u i=0: F(549, 2741) = 5.75 Prob > F = 0.0000
```

- The lagged expenditure is still statistically significant.
- The coefficient on the lagged spending variable has gotten somewhat smaller, but its t statistic is still almost three. Therefore, there is still evidence of a lagged spending effect after controlling for unobserved district effects.

(v) They are jointly insignificant:

- The change in the coefficient and significance on the *lunch* variable is most dramatic.
- Both *enrol* and *lunch* are slow to change over time, which means that their effects are largely captured by the unobserved effect, *ai*. Plus, because of the time demeaning, their coefficients are hard to estimate.
- The spending coefficients can be estimated more precisely because of a policy change during this period, where spending shifted markedly in 1994 after the passage of Proposal A in Michigan, which changed the way schools were funded.

(vi)The Long-term effect is:

```
. nlcom _b[lrexpp]+_b[lrexpp_1]

_nl_1: _b[lrexpp]+_b[lrexpp_1]

math4 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 | 6.591808 2.637934 2.50 0.012 1.421552 11.76206
```

The estimated long-run spending effect is $\hat{\theta}_1 = 6.59$, se($\hat{\theta}_1$) = 2.64.

Specifically, for each 1% increase in school expenditures, we expect the math4 scores to increase by approximately 6.59 percentage points, holding all other factors constant.

Estimating this yields:

. xtreg math4 lenrol lrexpp d.lrexpp lunch y94 y95 y96 y97 y98, fe Fixed-effects (within) regression Number of obs 3300 Group variable: distid Number of groups = 550 R-sq: within = 0.6027Obs per group: min = between = 0.03996.0 avg = overall = 0.3202max = F(9,2741) 462.02 corr(u i, Xb) = -0.0464Prob > F 0.0000 math4 | Coef. Std. Err. P>|t| [95% Conf. Interval] .2450874 1.100381 0.22 0.824 -1.912572 lenrol | 2.402747 lrexpp 2.50 0.013 1.419268 11.76435 --. | 6.591808 2.637934 D1. | -7.002988 2.369184 -2.96 0.003 -11.64856 -2.357421 1.20 0.232 .061527 .0514661 -.0393892 lunch | .1624432 6.177316 .5601833 11.03 0.000 5.078892 7.27574 y94 | 18.09267 .6905329 26.20 0.000 16.73865 19.44669 v95 | 23.70 0.000 16.45636 19.42443 17.9404 .75684 **y**96 | 19.01 0.000 13.62452 15.19184 .7993116 y97 | 16.75915 y98 | 29.88319 .8374619 35.68 0.000 28.24107 31.52531 -16.08091 23.80746 -0.68 0.499 -62.76329 30.60147 sigma u | 11.487395 sigma e | 8.9961899

(fraction of variance due to u i)

F test that all u i=0: F(549, 2741) = 5.75 Prob > F = 0.0000

Which yields exactly the same what we obtained with nlcom.

rho | .61984689

Aditional Material

Extra questions to C14.8:

(vii)Do you think that the real expenditure per pupil is a strictly exogenous variable? Explain.

- The answer is no.
- Strict exogeneity requires that the error term is independent of a variable in all periods.
- This can not be the case if there is a feedback mechanism from success rate towards expenditure. For
 example, if districts with lower pass rate will get more expenditure in the future, then the present
 values of the error-term will be correlated with future values of real expenditure.

(vii) Estimate the model mentioned in part (i) using random effects and compare the random effects results with the fixed effects results. Perform a Hausman test on the equality of the FE and RE coefficients. What do you conclude?

(viii) The Hausman test:

xtreg math	4 lenrol lre	xpp lrexpp_1	lunch	у94 у95	y96 y97 y98,	fe
Fixed-effects (within) regression Group variable: distid					of obs = of groups =	
	= 0.6027 = 0.0399 = 0.3202			Obs per	_	6 6.0 6
corr(u_i, Xb)	= -0.0464				1) = F =	
math4	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lrexpp lrexpp_1 lunch y94 y95	4111804 7.002988 .061527 6.177316 18.09267	2.457658 2.369184 .0514661 .5601833 .6905329	-0.17 2.96 1.20 11.03 26.20	0.867 0.003 0.232 0.000 0.000	-1.912572 -5.23023 2.357421 0393892 5.078892 16.73865	4.407869 11.64856 .1624432 7.27574 19.44669
y97 y98		.7993116 .8374619	19.01 35.68	0.000	16.45636 13.62452 28.24107 -62.76329	16.75915 31.52531
sigma_e	11.487395 8.9961899 .61984689	(fraction	of varia	nce due t	o u_i)	
F test that al:	l u_i=0:	F(549, 2741) =	5.75	Prob >	F = 0.0000

. estimate store fe

xtreg math4 lenrol lrexpp lrexpp 1 lunch y94 y95 y96 y97 y98, re

xtreg matn4 le	enrol lrexpp l	rexpp_1 1un	icn y94	Дар Дае I	уя/ уяв, ге	
_					of obs = of groups =	
	= 0.5941 $= 0.3873$ $= 0.5018$			Obs per	group: min = avg = max =	= 6.0
corr(u_i, X)	= 0 (assumed	d)			i2(9) = chi2 =	
math4	Coef.	Std. Err.			[95% Conf	. Interval]
lrexpp lrexpp_1 lunch y94 y95 y96 y97 y98	.7867612 .3821852 7.805654 3337942 6.356631 18.64244 18.20443 15.51763 30.54315 -23.22425	.3467126 2.060344 1.925119 .0226692 .5595344 .6295381 .6514805 .6733494 .6905471	2.27 0.19 4.05 -14.72 11.36 29.61 27.94 23.05 44.23	0.023 0.853 0.000 0.000 0.000 0.000 0.000 0.000	-3.656014 4.03249 378225 5.259963 17.40856 16.92755 14.19789 29.1897	4.420384 11.57882 2893635 7.453298 19.87631 19.48131 16.83733
sigma_e	7.8856386 8.9961899 .43449962	(fraction	of varian	nce due t	o u_i)	

- . estimate store re
- . hausman fe re

	Coeff					
1				sqrt(diag(V_b-V_B))		
Į.	fe	re	Difference	S.E.		
lenrol I	2450874	7867612	- 5416739	1.044331		
				1.339801		
				1.380924		
				.0462046		
				.0269548		
_				.283756		
у96 I	17.9404	18.20443	2640343	.3852012		
у98	29.88319	30.54315	6599615	.4738007		
b = consistent under Ho and Ha; obtained from xtreg						
B = inconsistent under Ha, efficient under Ho; obtained from xtreg						
Test: Ho: difference in coefficients not systematic						
chi2(9) = $(b-B)'[(V_b-V_B)^(-1)](b-B)$						
= 74.27 Prob>chi2 = 0.0000						
(V_b-V_B is not positive definite)						

We find that the two estimators lead to statistically different results. Since FE is consistent under less stringent assumptions (it allows for a correlation between the explanatory variables and the district-specific effect), we should prefer FE over RE.