THE FOLLOWING ARE THE ENGLISH TRANSLATION OF ANNEXES TO THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT (ARTICLE 34):

Amended Sheets (Pages 22-27)

We claim:-

1. The use of compounds of the general formula 1

5

where

A is =N- or =CH-;

10

X when A is =N- is methyl or a radical of the formula IIa

15

or when A is =CH- is an R radical;

Y is an R radical or a radical of the formula IIb

$$0 \longrightarrow X \longrightarrow 0$$
 IIb

20

with either X being a radical of the formula IIa or Y being a radical of the formula IIb;

25

R is hydrogen, halogen, C_1 - C_4 -alkyl, $-SO_3$ H, $-SO_3$ Me⁺, $-SO_3$ N⁺R¹R²R³R⁴, $-SO_2$ NR¹R², $-CH_2$ NR¹R², $-CH_2$ R⁵, -COOH, -COON⁺R¹R²R³R⁴, -COOR6 or -COR6;

30

R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in either case be interrupted by one or more –O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and

acetyl; C_3 - C_8 -cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR 7 - or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C_1 - C_4 -alkoxy and acetyl; hydroabietyl, abietyl or aryl; R^1 and R^2 or R^1 , R^2 and R^3 may combine to form a 5- to 7-membered cyclic radical which comprises the nitrogen atom and may comprise further hetero atoms;

R⁵ is a radical of the formula IIb'

$$0 \longrightarrow N$$

10

5

R⁶ is one of the R¹ alkyl radicals;

R⁷ is hydrogen or C₁-C₄-alkyl;

15

20

Me is an alkali metal ion;

Z and Z' are each independently arylene which may be substituted by one or more of halogen, -SO₃-H, -SO₃-Me⁺, -SO₃-N⁺R¹R²R³R⁴, and C₁-C₁₂-alkyl, and

the rings B¹ and B² may each be independently additionally substituted by one or more identical or different R radicals other than hydrogen,

as crystallization modifiers for organic pigments.

2. The use according to claim 1, utilizing compounds of the formula la

$$R^{a2}$$
 B^{1a}
 B^{2a}
 A^{a}
 A^{a}
 A^{a}

30

where

X^a is methyl or a radical of formula IIa

5

10

15

20

25

Y^a is hydrogen, halogen, C₁-C₄-alkyl or a radical of the formula IIb

 $0 \xrightarrow{N} 0$ IIb

with either X^a being a radical of the formula IIa or Y^a being a radical of the formula IIb;

R^{a1}, R^{a2} are each hydrogen, halogen, C₁-C₄-alkyl or a D radical, although R^{a1} can be a D radical only when X is methyl and R^{a2} can be a D radical only when X is a radical of the formula IIa;

D is -SO₃H, -SO₃ Me⁺, -SO₃ N⁺R¹R²R³R⁴, -SO₂NR¹R² or -CH₂NR¹R²;

R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in each case be interrupted by one or more -O- or -NR⁷- moieties; hydroabietyl, abietyl or aryl;

Me is an alkali metal ion;

Z is arylene which may be substituted by one or more of halogen, -SO₃H, -SO₃ Me⁺, -SO₃ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

the rings B^{1a} and B^{2a} may each be independently additionally substituted by halogen or C₁-C₄-alkyl at different positions than R^{a1} and R^{a2}.

3. The use according to claim 1, utilizing compounds of the formula lb

$$\begin{array}{c|c}
R^{b4} \\
\hline
B^{1b} & B^{2b}
\end{array}$$

$$\begin{array}{c|c}
R^{b1} \\
\hline
R^{b2} \\
\end{array}$$

$$\begin{array}{c|c}
Ib
\end{array}$$

where

10

15

20

25

5 Y^b is a radical of the formula IIb

$$0 \longrightarrow 0$$
 IIb

R^{b1}, R^{b2}, R^{b3} and R^{b4} are each hydrogen, halogen, C₁-C₄-alkyl or a D radical, although only one of R^{b1}, R^{b2}, R^{b3} and R^{b4} can be a D radical;

D is $-SO_3H$, $-SO_3^-Me^+$, $-SO_3^-N^+R^1R^2R^3R^4$, $-SO_2NR^1R^2$ or $-CH_2NR^1R^2$;

R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in each case be interrupted by one or more -O- or -NR⁷- moieties; dehydroabietyl or aryl;

Me is an alkali metal ion;

Z is arylene which may be substituted by one or more of halogen, -SO₃H, -SO₃ Me⁺, -SO₃ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

the rings B^{1b} and B^{2b} may each be independently additionally substituted by halogen or C₁-C₄-alkyl at different positions than R^{b1} to R^{b4}.

- 4. A process for converting a crude organic pigment into a finely divided pigmentary form, which comprises finishing said crude pigment in the presence of one or more compounds of the formula I according to claim 1.
- The process according to claim 4 wherein said crude organic pigment is subjected to a grinding and/or a recrystallization from organic or aqueous organic solvent in the presence of one or more compounds of the formula I.

15

20

25

- 6. The process according to claim 4 or 5 wherein said crude organic pigment is synthesized in the presence of one or more compounds of the formula I.
- 5 7. The process according to any of claims 4 to 6 wherein said crude organic pigment and the compound of the formula I are concurrently synthesized in situ and the mixture produced is finished.
- 8. The process according to any of claims 4 to 7 wherein said crude organic pigment is a quinophthalone.
 - 9. Pigment preparations comprising
 - A) at least one organic pigment, and
 - B) at least one compound of the formula I as per claim 1.
 - 10. The pigment preparations according to claim 9 wherein said at least one organic pigment (A) comprises a quinophthalone pigment.
 - 11. Compounds of the general formula I'

$$0 = \begin{bmatrix} B^1 & B^2 \\ N & D \end{bmatrix}$$

where

- R is hydrogen, halogen, C₁-C₄-alkyl, -SO₃H, -SO₃Me⁺, -SO₃N⁺R¹R²R³R⁴, -SO₂NR¹R², -CH₂NR¹R², -CH₂R⁵, -COOH, -COO⁻N⁺R¹R²R³R⁴, -COOR⁶ or -COR⁶;
- 30 R¹, R², R³ and R⁴ are each independently hydrogen; C₁-C₂₂-alkyl or C₂-C₂₂-alkenyl whose carbon chain may in either case be interrupted by one or more –O-, -S-, -NR⁷-, -CO- or -SO₂- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and

acetyl; C₃-C₈-cycloalkyl whose carbon skeleton may be interrupted by one or more -O-, -S-, -NR⁷- or -CO- moieties and/or which may be substituted by one or more of hydroxyl, halogen, aryl, C₁-C₄-alkoxy and acetyl; hydroabietyl, abietyl or aryl; R¹ and R² or R¹, R² and R³ may combine to form a 5- to 7-membered cyclic radical which comprises the nitrogen atom and may comprise further hetero atoms;

R⁵ is a radical of the formula IIb'

$$O \longrightarrow N$$

10

5

R⁶ is one of the R¹ alkyl radicals;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

15

Me is an alkali metal ion;

Z and Z' are each independently arylene which may be substituted by one or more of halogen, -SO₃H, -SO₃ Me⁺, -SO₃ N⁺R¹R²R³R⁴ and C₁-C₁₂-alkyl, and

20

the rings B¹ and B² may each be independently additionally substituted by one or more identical or different R radicals other than hydrogen with the proviso that when A is =CH-, at least one of the two rings is substituted by at least one R radical other than hydrogen.

25