Дискретная математика. Коллоквиум весна 2017. Задачи

Орлов Никита

7 марта 2017 г.

Задача 6

Докажите, что множество непересекающихся отрезков на прямой конечно или счетно.

Решение

Для любого отрезка $[a_i,b_i]$ сделаем следующую операцию: возьмем достаточно больше $n\in N$ и возьмем среднее рациональных приближений сверху и снизу числа $c_i=\frac{a_i+b_i}{2}$ с точностью $\frac{1}{10^n}$. Это число лежит в интервале, так как оно больше левой границы и меньше правой границы.

Так как интервалы не пересекаются, и для каждого интверала можно найти хотя бы одно рациональное число, поставим в соответствие интервалу это число. Получили биекцию из множества интервалов во множество рациональных чисел, а оно не более, чем счетно.

[:|||:]

Задача 8

Докажите, что биекций на множестве натуральных чисел континуум.

Решение

Любую биекцию $\varphi:\mathbb{N}\to\mathbb{N}$ можно записать в виде

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n & \dots \\ \varphi(1) & \varphi(2) & \varphi(3) & \dots & \varphi(n) & \dots \end{pmatrix}$$

Значит нам надо показать, что множество перестановок $\psi = \{1, 2, \dots, n, \dots\}$ континуально.

Определим инъекцию $\psi\mapsto 2^{\mathbb{N}}$: будем выписывать перестановку в унарном коде, где $n\mapsto\underbrace{11\dots 1}_n 0$. Значит $\psi\precsim 2^{\mathbb{N}}(1)$.

Определим инъекцию $2^{\mathbb{N}} \mapsto \psi$: для каждой последовательности если на n месте стоит 0, то в последовательность выписываем последовательно числа $2n$ и $2n+1$, иначе $2n+1$ и $2n$. Следовательно, $\psi \succsim 2^{\mathbb{N}}(2)$.
Получили, что из (1) и (2) следует $\psi \sim 2^{\mathbb{N}}$.
[: :]
Задача 24
Докажите, что декартово произведение перечислимых множеств перечислимо.
Решение
Будем выполнять поочередно шаги вычисления перечислителей A и B . Всякий раз, когда перечислитель выводит число, будем записывать его в соответствующий аккумулятор и выводить все пары, состоящие из этого числа и всех чисел другого аккумулятора. Мы получим все возможные пары.
Задача 4
Решение
Задача 5
Решение
Задача 6
Решение
Задача 7

Решение