Отчет по лабораторной работе № 4 Методы оптимизаций

Методы Ньютона.

Скроба Дмитрий М3234

June 2021

1. Постановка задачи.

- Реализовать 3 варианта Ньютоновского метода минимализации функции:
 - 1. Класический метод Ньютона.
 - 2. Метод Ньютона с одномерным поиском.
 - 3. Метод Ньютона с направлением спуска.
 - 4. Квазиньютоновские метод Пауэллаю
 - 5. Квазиньютоновские метод Давидона-Флетчера-Пауэлла(1 вариант).
 - 6. 2 варианта метода Марквардта.
- Сравниить классические методы Ньютона и зависимость результата от начального приближения и типа функции.
- Провести сравнение с методом наискорейшего спуска на функциях с заданным начальным приближением:

1.
$$f(x) = x_1^2 + x_2^2 - 1.2x_1x_2$$
 $x^0 = (4, 1)^T$

2.
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
 $x^0 = (-1.2, 1)^T$

• Исследовать работу квазиньютоновских методов в сравнении с методом ньютона показавшим себя лучше остальных, на функциях:

1.
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

2.
$$f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

3.
$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

4.
$$f(x) = 100 - \frac{2}{1 + (\frac{x_1 - 1}{2})^2 + (\frac{x_2 - 1}{3})^2} - \frac{1}{1 + (\frac{x_1 - 2}{2})^2 + (\frac{x_2 - 1}{3})^2}$$

• Исследовать работу метоу Марквардта в сравнении с методом ньютона показавшим себя лучше остальных, на функции Розенброка (n=100):

1.
$$f(x) = \sum_{i=1}^{99} 100(x_{i+1} - x_i^2)^2 + (1 - x_i)^2$$

2. Этап I.

Сравнение методов Ньютона:

- 1. Поиск направления спуска осуществляется методом Гаусса.
- 2. Поиск оптимального коэффициента осуществляется методом золотого сечения.

Функция 1:
$$f(x) = 3(x_1 - 1)^2 + 5x_2^2 + 6x_1x_2 + 2$$

(0.1, 0.1)	Количество шагов	Результат	Параметр
Классический	3	(-2.0, -1.0)	-
С одномерным поиском	3	(-1.9999, 0.9999)	(0.9999, 0.9899)
С направлением спуска	3	(-2.0000, 1.0000)	=

Рис. 1: Траектория метода Ньютона

Рис. 2: Траектория метода Рис. 3: Траектория метода Ньютона с одномерным поис- Ньютона \mathbf{c} спуска KOM

(1,1)	Количество шагов	Результат	Параметр
Классический	3	(-2.0, -1.0)	-
С одномерным поиском	3	(-1.9999, 0.9999)	(0.9999, 0.9899)
С направлением спуска	3	(-2.0000, 1.0000)	-

Рис. 4: Траектория метода Ньютона

Рис. 5: Траектория метода Рис. 6: Траектория метода Ньютона с одномерным поис- Ньютона \mathbf{c} направлением спуска KOM

(15, 15)	Количество шагов	Результат	Параметр
Классический	3	(-2.0, -1.0)	-
С одномерным поиском	3	(-1.9999, 0.9999)	(0.9999, 0.9899)
С направлением спуска	3	(-2.0000, 1.0000)	-

Рис. 7: Траектория метода Ньютона

Ньютона с одномерным поис- Ньютона KOM

Рис. 8: Траектория метода Рис. 9: Траектория метода направлением спуска

Функция 2: $f(x) = (2x_1 + x_2 + 2)^4 + (x_1 - 6x_2)^2$

(0.1, 0.1)	Количество шагов	Результат	Параметр
Классический	27	(-0.92305 - 0.15384)	-
С одномерным поиском	18	(-0.92306 - 0.15384)	(02.23540)
С направлением спуска	18	(-0.92306 - 0.15384)	-

Рис. 10: Траектория метода Ньютона

Рис. 11: Траектория метода Рис. 12: Траектория мето-Ньютона с одномерным поис- да Ньютона с направлением ком спуска

(10, -1)	Количество шагов	Результат	Параметр
Классический	33	(-0.92306 - 0.15384)	-
С одномерным поиском	21	(-0.92307 - 0.15384)	(02.56320)
С направлением спуска	19	(-0.92306 - 0.15384)	-

Рис. 13: Траектория метода Ньютона

Рис. 14: Траектория метода Рис. 15: Траектория мето-Ньютона с одномерным поис- да Ньютона с направлением ком спуска

(5, -10)	Количество шагов	Результат	Параметр
Классический	27	(-0.92306 - 0.15384)	-
С одномерным поиском	17	(-0.92307 - 0.15384)	(02.633320)
С направлением спуска	22	(-0.92307 - 0.15384)	-

Рис. 16: Траектория метода Ньютона

Рис. 17: Траектория метода Рис. 18: Траектория мето-Ньютона с одномерным поис- да Ньютона с направлением спуска KOM

Сравнение методов Ньютона с методом насикорейшего спуска

Функция $1: f(x) = x_1^2 + x_2^2 - 1.2x_1x_2$ $x^0 = (4, 1)^T$

Метод	Количество шагов	Результат	Параметр
Классический	3	(0.00000000.0000000)	-
С одномерным поиском	3	(0.00000000.0000000)	(00.9999989651)
С направлением спуска	3	(0.00000000.0000000)	-
Наискорейший спуск	12	(0.00084700.0010439)	-

Рис. 20: Траектория Рис. 21: Траектория Рис. 22: Траектория Рис. 19: Траектория метода Ньютона с метода Ньютона с метода Ньютона с метода Ньютона одномерным поис- направлением спус- шего спуска

Функция 2:
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
 $x^0 = (-1.2, 1)^T$

Метод	Количество шагов	Результат	Параметр
Классический	7	(1.00000001.0000000)	-
С одномерным поиском	14	(1.00000001.0000000)	(02.535447759510)
С направлением спуска	8	(1.00000001.0000000)	-
Наискорейший спуск	1276	(1.00175901.0035281)	-

метода Ньютона

Рис. 24: Траектория Рис. 25: Траектория Рис. 26: Траектория Рис. 23: Траектория метода Ньютона с метода Ньютона с метода наискорейодномерным поис- направлением спус-KOM ка

шего спуска

Вывод: При рассмотрении квадратических функций, классический метод Ньютона показал себя наилучшим образом, выдавая точный результат за оптимальнейшее количество итераций. При сравнении же на не квадратичных функциях, метод с одномерным поиском уступает в скорости, но показывает более точный результат, при этом скорость сходимость отличается не значительно, при этом точность у метода с направленным спуском теряет точность после 6 знака после запятой.

2. Этап II.

Сравнение квазиньютоновских методов:

Функция 1:
$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

(0,0)	(0,0) Количество шагов Результат		Параметр
DFP	14	(1.00000001.0000000)	-
С одномерным поиском	11	(1.00000001.0000000)	(03.09716119)
Powell	14	(1.00000001.0000000)	-

Рис. 27: Траектория метода DFP

Рис. 28: Траектория метода Рис. 29: Траектория метода Ньютона с одномерным поис-KOM

(10, 10)	Количество шагов	Результат	Параметр
DFP	30	(1.00000001.0000000)	-
С одномерным поиском	29	(1.00000001.0000000)	(03.09716119)
Powell	600	(1.00000001.0000000)	-

Рис. 30: Траектория метода DFP

Рис. 31: Траектория метода Рис. 32: Траектория метода Ньютона с одномерным поис- Powell KOM

(5,5)	Количество шагов	Результат	Параметр
DFP	402	(1.00000001.0000000)	-
С одномерным поиском	19	(1.00000001.0000000)	(02.421571789)
Powell	53	(1.00000001.0000000)	-

Рис. 33: Траектория метода DFP

Рис. 34: Траектория метода Ньютона с одномерным поис- Powell Powell KOM

Функция 2: $f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$

(0,0)	Количество шагов	Результат	Параметр
DFP	9	$(3.0000000 \ 2.0000000)$	-
С одномерным поиском	8	$(3.0000000 \ 2.000000)$	(-3.34 5004.393570891632)
Powell	9	$(3.0000000 \ 2.000000)$	-

Рис. 36: Траектория метода DFP

Рис. 37: Траектория метода Рис. 38: Траектория метода Ньютона с одномерным поис-Powell KOM

(10, 10)	Количество шагов	Результат	Параметр
DFP	6	$(3.0000000 \ 2.0000000)$	-
С одномерным поиском	6	$(3.0000000 \ 2.000000)$	(0 4.090417)
Powell	6	$(3.0000000 \ 2.000000)$	-

Рис. 39: Траектория метода DFP

Рис. 40: Траектория метода Ньютона с одномерным поис- Powell Powell KOM

(5,5)	Количество шагов	Результат	Параметр
DFP	6	$(3.0000000 \ 2.0000000)$	_
С одномерным поиском	6	$(3.0000000 \ 2.000000)$	(-3.34 5004.393570891632)
Powell	6	$(3.0000000 \ 2.000000)$	-

Рис. 42: Траектория метода DFP

Рис. 43: Траектория метода Ньютона с одномерным поис- Powell Рис. 44: Траектория метода Powell KOM

Функция 3:
$$f(x) = (x_1 + 10x_2)^2 + 5(x_3 - x_4)^2 + (x_2 - 2x_3)^4 + 10(x_1 - x_4)^4$$

(0.1, 0.1, 0.1, 0.1)	It	Результат		
DFP	9	(-0.0000097 0.0000010 -0.0003553 -0.0003553)		
С одномерным поиском	36567	(-0.0043255 0.0004326 -0.0018770 -0.0018771)		
Powell	20	(-0.0000098 0.0000010 -0.0003554 -0.0003554)		

(10, 10, 10, 10)	It	Результат	
DFP	20	$(0.0003374 - 0.0000337 \ 0.0001468 \ 0.0001468)$	
С одномерным поиском	34972	(-0.0395790 0.0039803 -0.0171487 -0.0171941)	
Powell	20	$(0.0003117 - 0.0000312 \ 0.0001455 \ 0.0001455)$	

(5, 5, 5, 5)	It	Результат	
DFP	31	$(-0.0000472\ 0.0000047\ -0.0000213\ -0.0000213)$	
С одномерным поиском	15629	(-0.0328747 0.0033003 -0.0142509 -0.0142768)	
Powell	24	$(-0.0000292\ 0.0000029\ 0.0000624\ 0.0000624)$	

Функция 4:
$$f(x)=100-\frac{2}{1+(\frac{x_1-1}{2})^2+(\frac{x_2-1}{3})^2}-\frac{1}{1+(\frac{x_1-2}{2})^2+(\frac{x_2-1}{3})^2}$$

(0,0)	Количество шагов	Результат	Параметр
DFP	5	$(1.2916431\ 1.00000020)$	-
С одномерным поиском	5	$(1.2916429\ 0.99999999)$	(-0.2393 0.99925161)
Powell	5	$(1.2916431 \ 1.0000000)$	-

Рис. 45: Траектория метода DFP

Рис. 46: Траектория метода Ньютона с одномерным поис- Powell Powell KOM

(10, -1)	Количество шагов	Результат	Параметр
DFP	6	$(1.2916430\ 0.99999998)$	-
С одномерным поиском	5	$(1.2916431\ 1.0000000)$	(-10.177583 1.00054)
Powell	5	$(1.2916430\ 0.9999998)$	-

Рис. 48: Траектория метода DFP

Рис. 49: Траектория метода Рис. 50: Траектория метода Ньютона с одномерным поис-KOM

Powell

(5, -10)	Количество шагов	Результат	Параметр
DFP	8	$(1.2916430\ 0.99999999)$	-
С одномерным поиском	5	$(1.2916430\ 1.0000000)$	(-2.773399 0.98253177)
Powell	8	$(1.2916431\ 0.99999998)$	-

Рис. 51: Траектория метода **DFP**

Рис. 52: Траектория метода Рис. 53: Траектория метода Ньютона с одномерным поис-KOM

Powell

Вывод: Как видно из результатов, чем больше размерность функции, тем больше погрешность метода Ньютона, при этом увеличивается количество итераций требуемое для нахождения результата. В отличии от метода Ньютона, квазиньютоновские методы не теряют свою точность, но при этом на результат влиют очень сильно начальное значение, и границы поиска одномерного поиска коэффициента.

3. Этап III.

Метод	Количество шагов	Абсолютная погр.	Относительная погр.
MarquardtMethodVersion1	336	40.660170266184714	4.066017026618471
MarquardtMethodVersion2	42	3.5918047510150995E11	3.591804751015099E10
NewtonLinaryMethod	3481	23533.339159426716	2353.3339159426714

Рис. 54: Метод Ньютона с одномерной оптимизации

Рис. 55: Метод Марквардта версия 1

Рис. 56: Метод Марквардта версия 2

Рис. 57: Метод Марквардта версия 2

Вывод: Наиблее точный результат продемонстрировал Метод Марквардта с разложением Холесского, за наименьшее оличество итераций и снаиболей точностью, минус в большой погрешности у самых больших координат. При этом метод Ньютона показал большую погрешность и очень долгое вычисление, но абсолютная скорость вычисления у него была больше, чем у метода Марквардта находящего направление методом Гаусса.

4. Приложения

Реализация всех методов и всех вспомогательных классов выводящих резальтаты представленна в репозитории (sdmitrioul)

Рис. 58: Диаграмма классов