

/ Exercise 2.2] (Onlicz mono): Reduction: J = wax 12j. < E [max y (12)] $\leq E\left(\sum_{i} \psi(i \geq i)\right) \leq W.$ + Uce monotonicity of y-1(-). (Show it first ...) (Albernatively, one com use superadditivity 2 to couple (neguality.)

Or using superadditivity / Exercise 3,1/ dc1, RER. Let $\psi_{\lambda}(\alpha) = \exp(\alpha x^{\lambda}) 1_{x>x_{\lambda}} + \frac{e^{1/\alpha} x}{2\alpha} 1_{x \in x_{\lambda}}$ Where $x_{\lambda} = \frac{1}{2} \frac{1}$ Proof. $|\nabla \cos f| = |\nabla \cos$ So, Wais in CIARE). For Your, let's check converge $P < P_{d}$: $V_{\alpha}^{\prime\prime}(P) = 0$. $P > P_{d}$: $V_{\alpha}^{\prime\prime}(P) = (2^{2} 2d - 2 + \lambda(2 - 1) P^{d}) = \exp(P^{d})$ $= \lambda \mathcal{R}^{d-2} \left(\lambda \mathcal{R}^{d} - L + \lambda \right) exp/\mathcal{R}^{d}$ Other checks once torival One cour instead table RL= (1-d) &

	2			St	10	U	Óh	H	9 / ('v (X	d)	Co	yli	M	la	belle	И.													
(3))	(e X	p	[2	_و مر)		C_o	₹	_	(Pd	12	ره		Ć	2x	p,	12	pa		•							
							lo	φ1.	12	16	(-)	(_	4	2	U	t)	٤	l	ec	7 .	12	/1	/ -	+ (£ .)					
	}	rof		S	2C	W.	d		1,5	l	1	Lo	U	W.	5	1	A.	DUJ		to	ll	7	fo.		1	/	Dc	·Co	lu	C	٠,	
				t										4) }	>	Y	(<u>_</u>	>	(P	-(_	4	2	-/	•				
									_	-			æ																			
C)	Y	12/	v)	4	- (exp	DI	12°	× /																						
	Ŵ	e K	2	the	ret	•	<i>fh</i>	ds.		ho	ld.	5	f	or^	X	2	P)	a	no	d	1	201	^		L	_	Po	<	O	N	W	y
				,							(l	d)	1/2	R	e,	ΧP	1-	- X	, d)	,										
		~	[/æ		2	<i>'</i>	D/				\times		<u> </u>		_			Ya LJ	e)	> 1	0											
				S 0			~~ ~~	l						2		1)														
(<u></u>		Yd	120) ;	>	ex	c p	12	وم	J	-(1	7																		
		/	Apc	edn	1	√	VV	a l	•	Fe	Q/		R	>	t			an	ol		fe	7	5	e e	€.	PL		OU	ll i	ho	3	

$$\varphi(x) = \psi_{\alpha}(x) - \exp(xx^{d}) \circ (ex)^{1/d} x = -\exp(xx^{d})$$

$$\varphi(0) = -1$$

$$\varphi(1/e) \circ (ex)^{1/d} - x e^{-d} \exp(xx^{d}) \in [0, (ex)^{1/d}]$$

$$Since \quad 0 \le x e^{-d} \exp(x^{d}) \in x e^{-d} \exp(x^{d}) = 2e^{-d} e^{-d}$$

$$\Rightarrow \varphi(x) \ge \varphi(0) = -1.$$

$$|| Exercise \quad 3 \cdot 2|$$

$$|| Then \quad || \times ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

$$|| X ||_{\psi_{\alpha}} \le 1. \quad Follows from \quad \psi_{\alpha}(x) \le \exp(x^{d}).$$

(apper bound]
$$\leq \frac{1}{2} + \left(\frac{|X|^p}{|X|^p}\right)^{\frac{1}{2}} = \frac{1}{2} + \left$$