<u>Incorporating Symbolic Sequential</u> <u>Modeling for Speech Enhancement</u>

Chien-Feng Liao, Yu Tsao, Xugang Lu, Hisashi Kawai

Outline

- Introduction
- Methodology
 - ∘ U-Net
 - Symbolic Encoder
 - Multi Head Attention
- Architecture
- Experiments
- Conclusion

Introduction

即使處於在吵雜的環境中,只要聽眾能理解講者的說話內容,就能恢復具有缺損的語音訊號。

作者認為,這是仰賴人類所擁有的語言知識達成的結果。也就是說,藉由語言模型的輔助,可以有效抑制干擾雜訊造成的破壞。

因此本篇論文嘗試使用 VQ-VAE 的 Symbolic Book 建構聲學單元,再由 Transformer 的 Multi Head Attention(MHA) 使用聲學特徵來提取 說話內容,幫助提升 Speech Enhancement 的效果。

Methodology

```
U-Net
+
VQ-VAE
+
Multi Head Attention
```

U-Net

Symbolic Encoder

源自於 VQ-VAE 中的 Code Book 概念

 $\mathcal{L}_{symbolic} = \|h_t - stop gradient(e_k)\|_2^2$

VQ-VAE

Symbolic Encoder

先將 Encoder 輸出的 hidden vector 進行向量量化後才輸入 Decoder 生成

兩步驟訓練:

- 訓練 Encoder-CodeBook-Decoder
- 訓練 Pixel CNN 來生成離散的 hidden variants (上圖的 q(z|x))

Multi Head Attention

Loss

$$\mathcal{L}_{mse} = \frac{1}{N} \sum_{i=1}^{N} \left\| Dec(Enc(x_i)) - y_i \right\|_2^2$$

$$\mathcal{L}_{symbolic} = \|h_t - stop\ gradient(e_k)\|_2^2$$

$$\mathcal{L}_{total} = \mathcal{L}_{mse} + \lambda \cdot \mathcal{L}_{symbolic}$$

Architecture

Encoder

Downsample Rate = 2

Decoder

Symbolic Encoder

Complete Model

- Sample rate: 16kHz
- Hamming window
 - o size: 512
 - ∘ stride: 256
- Input frame: 64
- Optimizer: Adam
 - ∘ learning rate: 0.0001
 - ∘ beta 1:0.5
 - ∘ beta 9:0.9

Data Set

● 語音:<u>TIMIT</u>

• 噪音:PNL 100 Nonspeech Sounds

將語音與噪音以不同的訊號雜訊比 (SNR, Signal-to-noise ratio) 混和後作為輸入,並將乾淨的語音作為 Ground Truth

Baseline Model

論文中提出的方法與另外三組模型進行比較 分別是 U-Net、U-Net-MOL 與 Oracle:

- 1. U-Net 單純的 U-Net
- 2. U-Net-MOL 使用了 <u>multi objective learning</u> 的 U-Net
- 3. Oracle 將原本的 Symbolic Encoder 換成輸入聲音的 phoneme(音素) embedding

Oracle

Baseline Model

TIMIT 資料集內,除了語音以外也將每個時間點的音素都標記好了 而 Oracle 就是將音素進行 Embedding 後作為 K_{in}、V_{in} 使用

音素範例 (來源)

	Noisy		U-Net		U-Net-MOL		Proposed (64)		Oracle	
SNR	PESQ	STOI	PESQ	STOI	PESQ	STOI	PESQ	STOI	PESQ	STOI
-6	1.213	0.532	1.685	0.602	1.800	0.619	1.828	0.624	1.961	0.703
-3	1.353	0.598	1.880	0.669	1.974	0.681	2.045	0.693	2.140	0.741
0	1.517	0.669	2.071	0.725	2.140	0.736	2.240	0.750	2.306	0.776
3	1.702	0.739	2.237	0.770	2.290	0.779	2.416	0.794	2.456	0.806
6	1.902	0.823	2.387	0.805	2.424	0.813	2.581	0.830	2.592	0.831
Avg.	1.537	0.669	2.052	0.714	2.126	0,725	2.222	0.738	2.291	0.771

- 1. 使用了 Symbolic Encoder 與 MHA 的模型,效果比 Oracle 以外的 Baseline Model 更好
- 2. Oracle 證明了在 Speech Enhancement 的問題中加入音素資訊能夠提 升模型的表現

Book size M	PESQ	STOI
39	2.061	0.711
64	2.108	0.713
128	2.027	0.712
256	2.041	0.711

當 Book Size 過大時會出現「index collapse」

導致有部分的 symbolic vector 不會被使用到

横軸是 Symbolic index

而上面每個值代表某個發音作為輸入時,會被 mapping 到某個 Symbolic 的次數

當發音越相似,其分佈就越接近

將各種發音的分佈進行相似度計算

有些不同的發音會得出相似的結果 是因為輸入含有噪音的緣故

Conclusion

利用 Symbolic Encoder 先將語音編碼成聲音單元,在通過 Multi Head Attention 與提取特徵,能取得比原先更好的結果

讀者想法:

- Symbolic Encoder + Multi Head Attention 的結構就是在為語 音建立基礎結構(說話內容)
- 而利用 U-Net 的 shortcut 便能幫助基礎結構補上語調的資訊(聲調 起伏、音色等等)
- 在 VQ-VAE 都出第 2 代的現在,可以試試用多階層(多解析度)的方式,來為模型保留住更多的聲音特徵