Package 'SlimR'

August 19, 2025

Title Marker-Based Package for Single-Cell and Spatial-Transcriptomic Annotation

Version 1.0.7

Description

Annotating single-cell and spatial-transcriptomic (ST) data based on the Marker dataset. It supports the creation of a unified marker list, Markers_list, using sources including: the package's built-in curated species-specific cell type and marker reference databases (e.g., 'Cellmarker2', 'PanglaoDB', 'scIBD', 'TCellSI'), Seurat objects containing cell label information, or user-provided Excel tables mapping cell types to markers. Based on the Markers_list, 'SlimR' can calculate gene expression of different cell types and predict annotation information and calculate corresponding AUC by 'Celltype_Calculate()', and annotate it by 'Celltype_Annotation()', then verify it by 'Celltype_Verification()'. At the same time, it can calculate gene expression corresponding to the cell type to generate the corresponding annotation reference map for manual annotation (e.g., 'Heatmap', 'Features plot', 'Combined plot'). For more details see Kabacoff (2020, ISBN:9787115420572).

```
License MIT + file LICENSE
```

Date 2025-08-19

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5)

LazyData true

Imports cowplot, dplyr, ggplot2, patchwork, pheatmap, readxl, scales, Seurat, tidyr, tools, tibble

Suggests crayon

NeedsCompilation no

Author Zhao qing Wang [aut, cre] (ORCID:

<https://orcid.org/0000-0001-8348-7245>)

Maintainer Zhao qing Wang <zhaoqingwang@mail.sdu.edu.cn>

Repository CRAN

Date/Publication 2025-08-18 23:30:02 UTC

2 calculate_expression

Contents

	calculate_expression	2
	calculate_probability	3
	Cellmarker2	4
	Cellmarker2_raw	5
	Cellmarker2_table	5
	Celltype_Annotation	6
	Celltype_annotation_Cellmarker2	7
	Celltype_Annotation_Combined	9
	Celltype_annotation_Excel	10
	Celltype_Annotation_Features	12
	Celltype_Annotation_Heatmap	14
	Celltype_annotation_PanglaoDB	16
	Celltype_annotation_Seurat	17
	Celltype_Calculate	19
	Celltype_Verification	21
	Markers_filter_Cellmarker2	22
	Markers_filter_PanglaoDB	24
	Markers_list_scIBD	25
	Markers_list_TCellSI	25
	PanglaoDB	26
	PanglaoDB_raw	27
	PanglaoDB_table	27
	Read_excel_markers	28
	Read_seurat_markers	29
Index		31

calculate_expression Counts average expression of gene set (Use in package)

Description

Counts average expression of gene set (Use in package)

Usage

```
calculate_expression(
  object,
  features,
  assay = NULL,
  cluster_col = NULL,
  colour_low = "white",
  colour_high = "navy"
)
```

calculate_probability 3

Arguments

object	Enter a Seurat object.
features	Enter one or a set of markers.
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = NULL".
cluster_col	Enter the meta.data column in the Seurat object to be annotated, such as "seurat_cluster". Default parameters use "cluster_col = NULL".
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")

Value

Average expression genes and relatied informations in the input "Seurat" object given "cluster_col" and given "features".

See Also

```
Other Use_in_packages: calculate_probability()
```

calculate_probability Calculate gene set expression and infer probabilities with control datasets (Use in package)

Description

Calculate gene set expression and infer probabilities with control datasets (Use in package)

Usage

```
calculate_probability(
  object,
  features,
  assay = NULL,
  cluster_col = NULL,
  min_expression = 0.1,
  specificity_weight = 3
)
```

Arguments

object Enter a Seurat object.

features Enter one or a set of markers.

assay Enter the assay used by the Seurat object, such as "RNA". Default parameters

use "assay = NULL".

4 Cellmarker2

cluster_col

Enter the meta.data column in the Seurat object to be annotated, such as "seurat_cluster". Default parameters use "cluster_col = NULL".

min_expression The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1".

specificity_weight

The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation.Default parameters use "specificity_weight = 3".

Value

Average expression of genes in the input "Seurat" object given "cluster_col" and given "features".

See Also

Other Use_in_packages: calculate_expression()

Cellmarker2

Cellmarker2 dataset

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2

Format

A data frame with 8 columns:

Details

This dataset is used to filter and create a standardized marker list. The dataset can be filtered based on species, tissue class, tissue type, cancer type, and cell type to generate a list of marker genes for specific cell types.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

Other SlimR_Database: Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

Cellmarker2_raw 5

Cellmarker2_raw

Cellmarker2 raw dataset

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2_raw

Format

A data frame with 20 columns contined in the Cellmarker2 database:

Details

This dataset is used to filter and create a standardized marker list. The dataset can be filtered based on species, tissue class, tissue type, cancer type, and cell type to generate a list of marker genes for specific cell types.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

Other SlimR_Database: Cellmarker2, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

Cellmarker2_table

Cellmarker2 table

Description

A dataset containing marker genes for different cell types from Cellmarker2

Usage

Cellmarker2_table

Format

A list contain different types like species, tissue_class, tissue_type, cancer_type, cell_type

Details

This list is used to choose filters for creation of standardized marker list.

Source

```
http://117.50.127.228/CellMarker/
```

See Also

 $Other \ SlimR_Database: \ Cellmarker2, Cellmarker2_raw, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB_raw, PanglaoDB_table$

Celltype_Annotation

Annotate Seurat Object with SlimR Cell Type Predictions

Description

This function assigns SlimR predicted cell types to a Seurat object based on cluster annotations, and stores the results in the meta.data slot.

Usage

```
Celltype_Annotation(
   seurat_obj,
   cluster_col,
   SlimR_anno_result,
   plot_UMAP = TRUE,
   annotation_col = "Cell_type_SlimR"
)
```

Arguments

seurat_obj A Seurat object containing cluster information in meta.data.

cluster_col Character string indicating the column name in meta.data that contains cluster

IDs.

SlimR_anno_result

List generated by function Celltype_Calculate() which containing a data.frame in \$Prediction_results with: 1.cluster_col (Cluster identifiers (should match cluster_col in meta.data)) 2.Predicted_cell_type (Predicted cell types for each cluster_col in meta.data)

ter).

plot_UMAP logical(1); if TRUE, plot the UMAP with cell type annotations.

annotation_col The location to write in 'meta.data' that contains the predicted cell type. (default = "Cell_type_SlimR")

Value

A Seurat object with updated meta.data containing the predicted cell types.

Note

If plot_UMAP = TRUE, this function will print a UMAP plot as a side effect.

See Also

Other Automated_Annotation_Workflow: Celltype_Calculate(), Celltype_Verification()

Examples

Celltype_annotation_Cellmarker2

Uses "marker_list" from Cellmarker2 for cell annotation

Description

Uses "marker_list" from Cellmarker2 for cell annotation

Usage

```
Celltype_annotation_Cellmarker2(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    min_counts = 1,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Cellmarker2 database for the SlimR package, generated by the "Markers_filter_Cellmarker2 ()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = "RNA"".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Cellmarker2/'".
min_counts	The minimum number of counts of genes in "Marker_list" entered. This number represents the number of the same gene in the same species and the same location in the Cellmarker2 database used for annotation of this cell type. Default parameters use "min_counts = 1 ".
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")
colour_low_mertic	
	Color for lowest mertic level. (default = "white")
colour_high_me	
	Color for highest mertic level. (default = "black")

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other\ Other\_Functions\_Provided\_By\_SlimR: Celltype\_annotation\_Excel(), Celltype\_annotation\_PanglaoDB(), Celltype\_annotation\_Seurat()
```

```
## Not run:
Celltype_annotation_Cellmarker2(seurat_obj = sce,
    gene_list = Markers_list_Cellmarker2,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_annotation_Cellmarker2")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy",
    )
```

```
## End(Not run)
```

Celltype_Annotation_Combined

Uses "marker_list" to generate combined plot for cell annotation

Description

Uses "marker_list" to generate combined plot for cell annotation

Usage

```
Celltype_Annotation_Combined(
   seurat_obj,
   gene_list,
   species,
   cluster_col = "seurat_clusters",
   assay = "RNA",
   save_path = NULL,
   colour_low = "white",
   colour_high = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2()", "Markers_filter_PanglaoDB()", "read_excel_markers()", "read_seurat_markers()", etc.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Bar/'".
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")

Value

The cell annotation picture is saved in "save_path".

See Also

Other Semi_Automated_Annotation_Workflow: Celltype_Annotation_Features(), Celltype_Annotation_Heatmap()

Examples

```
## Not run:
Celltype_Annotation_Combined(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_Annotation_Combined"),
    colour_low = "white",
    colour_high = "navy"
    )
## End(Not run)
```

Celltype_annotation_Excel

Uses "marker_list" from Excel input for cell annotation

Description

Uses "marker_list" from Excel input for cell annotation

Usage

```
Celltype_annotation_Excel(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_ligh_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Excel files database for the SlimR package, generated by the "read_excel_markers()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = "seurat_clusters"".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Excel/'".
metric_names	Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter)
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")
colour_low_mertic	
	Color for lowest mertic level. (default = "white")
colour_high_mertic	
	Color for highest mertic level. (default = "black")

Value

The cell annotation picture is saved in "save_path".

See Also

Other Other_Functions_Provided_By_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_PanglaoD Celltype_annotation_Seurat()

```
## Not run:
Celltype_annotation_Excel(seurat_obj = sce,
    gene_list = Markers_list_Excel,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Excel")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

Celltype_Annotation_Features

Annotate cell types using features plot with different marker databases

Description

This function dynamically selects the appropriate annotation method based on the gene_list_type parameter. It supports marker databases from Cellmarker2, PanglaoDB, Seurat (via FindAllMarkers), or Excel files.

Usage

```
Celltype_Annotation_Features(
    seurat_obj,
    gene_list,
    gene_list_type = "Default",
    species = NULL,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    min_counts = 1,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy",
    ...
)
```

Arguments

seurat_obj	A valid Seurat object with cluster annotations in meta.data.
gene_list	A list of data frames containing marker genes and metrics. Format depends on gene_list_type: - Cellmarker2: Generated by Markers_filter_Cellmarker2() PanglaoDB: Generated by Markers_filter_PanglaoDB() Seurat: Generated by read_seurat_markers() Excel: Generated by read_excel_markers().
<pre>gene_list_type</pre>	Type of marker database to use. Be one of: "Cellmarker2", "PanglaoDB", "Seurat", or "Excel".
species	Species of the dataset: "Human" or "Mouse" for gene name standardization.
cluster_col	Column name in meta.data defining clusters (default: "seurat_clusters").
assay	Assay layer in the Seurat object (default: "RNA").
save_path	Directory to save output PNGs. Must be explicitly specified.
min_counts	Minimum number of counts for Cellmarker2 annotations (default: 1).
metric_names	Optional. Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter; used in "Seurat"/"Excel").

```
colour_low Color for lowest expression level. (default = "white")

colour_high Color for highest expression level. (default = "black")

colour_low_mertic

Color for lowest mertic level. (default = "white")

colour_high_mertic

Color for highest mertic level. (default = "black")

... Additional parameters passed to the specific annotation function.
```

Value

Saves cell type annotation PNGs in save_path. Returns invisibly.

See Also

Other Semi_Automated_Annotation_Workflow: Celltype_Annotation_Combined(), Celltype_Annotation_Heatmap()

```
## Not run:
# Example for Cellmarker2
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_Cellmarker2,
   species = "Human",
   cluster_col = "seurat_clusters",
   assay = "RNA",
   save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Cellmarker2"),
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
   colour_high_mertic = "navy",
# Example for PanglaoDB
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_panglaoDB,
   species = "Human",
   cluster_col = "seurat_clusters",
   assay = "RNA",
   save_path = file.path(tempdir(), "SlimR_Celltype_annotation_PanglaoDB")
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
   colour_high_mertic = "navy",
# Example for Seurat marker list
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_Seurat,
   species = "Human",
   cluster_col = "seurat_clusters",
   assay = "RNA",
```

```
save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Seurat")
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
   colour_high_mertic = "navy",
   )
# Example for Excel marker list
Celltype_Annotation_Features(seurat_obj = sce,
   gene_list = Markers_list_Excel,
   species = "Human",
   cluster_col = "seurat_clusters",
   assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_Excel")
   colour_low = "white",
   colour_high = "navy",
   colour_low_mertic = "white",
    colour_high_mertic = "navy",
    )
## End(Not run)
```

Celltype_Annotation_Heatmap

Uses "marker_list" to generate heatmap for cell annotation

Description

Uses "marker_list" to generate heatmap for cell annotation

Usage

```
Celltype_Annotation_Heatmap(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    colour_low = "navy",
    colour_high = "firebrick3"
)
```

Arguments

seurat_obj

Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.

gene_list	A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2 ()", "Markers_filter_PanglaoDB ()", "read_excel_markers ()", "read_seurat_markers ()", etc.	
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".	
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".	
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".	
min_expression	The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1".	
specificity_weight		
	The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation.Default parameters use "specificity_weight = 3".	
colour_low	Color for lowest probability level in Heatmap visualization of probability matrix. (default = "navy")	
colour_high	Color for highest probability level Heatmap visualization of probability matrix. (default = "firebrick3")	

Value

The heatmap of the comparison between "cluster_col" in the Seurat object and the given gene set "gene_list" needs to be annotated.

See Also

Other Semi_Automated_Annotation_Workflow: Celltype_Annotation_Combined(), Celltype_Annotation_Features(

```
## Not run:
Celltype_Annotation_Heatmap(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    colour_low = "navy",
    colour_high = "firebrick3"
)
## End(Not run)
```

```
Celltype_annotation_PanglaoDB
```

Uses "marker_list" from PanglaoDB for cell annotation

Description

Uses "marker_list" from PanglaoDB for cell annotation

Usage

```
Celltype_annotation_PanglaoDB(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the PanglaoDB database for the SlimR package, generated by the "Markers_filter_PanglaoDB ()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_PanglaoDB/'".
metric_names	Warning: Do not enter information. This parameter is used to check if "Marker_list" conforms to the PanglaoDB database output.
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")
colour_low_mertic	
	Color for lowest mertic level. (default = "white")
colour_high_mertic	
	Color for highest mertic level. (default = "black")

Value

The cell annotation picture is saved in "save_path".

See Also

```
Other Other_Functions_Provided_By_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_Excel(), Celltype_annotation_Seurat()
```

Examples

```
## Not run:
Celltype_annotation_PanglaoDB(seurat_obj = sce,
    gene_list = Markers_list_panglaoDB,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(), "SlimR_Celltype_annotation_PanglaoDB")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

Celltype_annotation_Seurat

Uses "marker_list" from Seurat object for cell annotation

Description

Uses "marker_list" from Seurat object for cell annotation

Usage

```
Celltype_annotation_Seurat(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = NULL,
    metric_names = NULL,
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_high_mertic = "navy"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	Enter the standard "Marker_list" generated by the Seurat object database for the SlimR package, generated by the "read_seurat_markers()" function.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
save_path	The output path of the cell annotation picture. Example parameters use "save_path = './SlimR/Celltype_annotation_Seurat/'".
metric_names	Change the row name for the input mertics, not recommended unless necessary. (NULL is used as default parameter)
colour_low	Color for lowest expression level. (default = "white")
colour_high	Color for highest expression level. (default = "black")
colour_low_mertic	
	Color for lowest mertic level. (default = "white")
colour_high_mertic	
	Color for highest mertic level. (default = "black")

Value

The cell annotation picture is saved in "save_path".

See Also

Other Other_Functions_Provided_By_SlimR: Celltype_annotation_Cellmarker2(), Celltype_annotation_Excel(), Celltype_annotation_PanglaoDB()

```
## Not run:
Celltype_annotation_Seurat(seurat_obj = sce,
    gene_list = Markers_list_Seurat,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    save_path = file.path(tempdir(),"SlimR_Celltype_annotation_Seurat")
    colour_low = "white",
    colour_high = "navy",
    colour_low_mertic = "white",
    colour_low_mertic = "navy",
    )

## End(Not run)
```

Celltype_Calculate 19

Description

Uses "marker_list" to calculate probability, prediction results, AUC and generate heatmap for cell annotation

Usage

```
Celltype_Calculate(
    seurat_obj,
    gene_list,
    species,
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    threshold = 0.8,
    compute_AUC = TRUE,
    plot_AUC = TRUE,
    AUC_correction = TRUE,
    colour_low = "navy",
    colour_high = "firebrick3"
)
```

Arguments

seurat_obj	Enter the Seurat object with annotation columns such as "seurat_cluster" in meta.data to be annotated.
gene_list	A list of cells and corresponding gene controls, the name of the list is cell type, and the first column of the list corresponds to markers. Lists can be generated using functions such as "Markers_filter_Cellmarker2 ()", "Markers_filter_PanglaoDB ()", "read_excel_markers ()", "read_seurat_markers ()", etc.
species	This parameter selects the species "Human" or "Mouse" for standard gene format correction of markers entered by "Marker_list".
cluster_col	Enter annotation columns such as "seurat_cluster" in meta.data of the Seurat object to be annotated. Default parameters use "cluster_col = 'seurat_clusters'".
assay	Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".
min_expression	The min_expression parameter defines a threshold value to determine whether a cell's expression of a feature is considered "expressed" or not. It is used to filter out low-expression cells that may contribute noise to the analysis. Default parameters use "min_expression = 0.1 ".

20 Celltype_Calculate

specificity_weight

The specificity_weight parameter controls how much the expression variability (standard deviation) of a feature within a cluster contributes to its "specificity score." It amplifies or suppresses the impact of variability in the final score calculation.Default parameters use "specificity_weight = 3".

threshold This parameter refers to the normalized similarity between the "alternative cell

 $type" \ and \ the \ "predicted \ cell \ type" \ in \ the \ returned \ results. \ (the \ default \ parameter$

is 0.8)

compute_AUC Logical indicating whether to calculate AUC values for predicted cell types.

AUC measures how well the marker genes distinguish the cluster from others. When TRUE, adds an AUC column to the prediction results. (default: TRUE)

plot_AUC The logic indicates whether to draw an AUC curve for the predicted cell type.

When TRUE, add an AUC_plot to result. (default: TRUE)

AUC_correction Logical value controlling AUC-based correction. (default = TRUE) When set to

TRUE: 1.Computes AUC values for candidate cell types. (probability > threshold) 2.Selects the cell type with the highest AUC as the final predicted type.

3.Records the selected type's AUC value in the "AUC" column.

colour_low Color for lowest probability level in Heatmap visualization of probability ma-

trix. (default = "navy")

colour_high Color for highest probability level Heatmap visualization of probability matrix.

(default = "firebrick3")

Value

A list containing:

- Expression_list: List of expression matrices for each cell type
- Proportion_list: List of proportion of expression for each cell type
- Expression_scores_matrix: Matrix of expression scores
- Probability_matrix: Matrix of normalized probabilities
- Prediction_results: Data frame with cluster annotations including:
 - cluster_col: Cluster identifier
 - Predicted_cell_type: Primary predicted cell type
 - AUC: Area Under the Curve value (when compute_AUC = TRUE)
 - Alternative_cell_types: Semi-colon separated alternative cell types
- Heatmap plot: Heatmap visualization of probability matrix
- AUC_plot: AUC visualization of Predicted cell type

See Also

Other Automated_Annotation_Workflow: Celltype_Annotation(), Celltype_Verification()

Celltype_Verification 21

Examples

```
## Not run:
SlimR_anno_result <- Celltype_Calculate(seurat_obj = sce,
    gene_list = Markers_list,
    species = "Human",
    cluster_col = "seurat_clusters",
    assay = "RNA",
    min_expression = 0.1,
    specificity_weight = 3,
    threshold = 0.8,
    compute_AUC = TRUE,
    plot_AUC = TRUE,
    AUC_correction = TRUE,
    colour_low = "navy",
    colour_high = "firebrick3"
)

## End(Not run)</pre>
```

Celltype_Verification Perform cell type verification and generate the validation dotplot

Description

This function performs verification of predicted cell types by selecting high log2FC and high expression proportion genes and generates and generate the validation dotplot.

Usage

```
Celltype_Verification(
   seurat_obj,
   SlimR_anno_result,
   assay = "RNA",
   gene_number = 5,
   colour_low = "white",
   colour_high = "navy",
   annotation_col = "Cell_type_SlimR"
)
```

Arguments

```
seurat_obj A Seurat object containing single-cell data. SlimR_anno_result
```

A list containing SlimR annotation results with: Expression_list - List of expression matrices for each cell type. Prediction_results - Data frame with cluster annotations.

```
assay Enter the assay used by the Seurat object, such as "RNA". Default parameters use "assay = 'RNA'".

gene_number Integer specifying number of top genes to select per cell type.

colour_low Color for lowest expression level. (default = "white")

colour_high Color for highest expression level. (default = "black")

annotation_col Character string specifying the column in meta.data to use for grouping.
```

Value

A ggplot object showing expression of top variable genes.

See Also

Other Automated_Annotation_Workflow: Celltype_Annotation(), Celltype_Calculate()

Examples

```
## Not run:
Celltype_Verification(seurat_obj = sce,
    SlimR_anno_result = SlimR_anno_result,
    assay = "RNA",
    gene_number = 5,
    colour_low = "white",
    colour_high = "navy",
    annotation_col = "Cell_type_SlimR"
    )
## End(Not run)
```

Markers_filter_Cellmarker2

Create Marker_list from the Cellmarkers2 database

Description

Create Marker_list from the Cellmarkers2 database

Usage

```
Markers_filter_Cellmarker2(
   df,
   species = NULL,
   tissue_class = NULL,
   tissue_type = NULL,
   cancer_type = NULL,
   cell_type = NULL
)
```

Arguments

df	Standardized Cellmarkers2 database. It is read as data(Cellmarkers2) in the SlimR library.
species	Species information in Cellmarkers2 database. The default input is "Human" or "Mouse". The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/ on Cellmarkers2's official website.
tissue_class	Tissue_class information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/on Cellmarkers2's official website.
tissue_type	Tissue_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/on Cellmarkers2's official website.
cancer_type	Cancer_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/ on Cellmarkers2's official website.
cell_type	Cell_type information in Cellmarkers2 database. The input can be retrieved by "Cellmarkers2_table". For more information, please refer to http://117.50.127.228/CellMarker/ on Cellmarkers2's official website.

Value

The standardized "Marker_list" in the SlimR package

See Also

```
Other Standardized_Marker_list_Input: Markers_filter_PanglaoDB(), Read_excel_markers(), Read_seurat_markers()
```

```
Cellmarker2 <- SlimR::Cellmarker2
Markers_list_Cellmarker2 <- Markers_filter_Cellmarker2(
    Cellmarker2,
    species = "Human",
    tissue_class = "Intestine",
    tissue_type = NULL,
    cancer_type = NULL,
    cell_type = NULL
)</pre>
```

Markers_filter_PanglaoDB

Create Marker_list from the PanglaoDB database

Description

Create Marker_list from the PanglaoDB database

Usage

```
Markers_filter_PanglaoDB(df, species_input, organ_input)
```

Arguments

df Standardized PanglaoDB database. It is read as data(PanglaoDB) in the SlimR

library.

species_input Species information in PanglaoDB database. The default input is "Human" or

"Mouse".The input can be retrieved by "PanglaoDB_table". For more informa-

tion,please refer to https://panglaodb.se/ on PanglaoDB's official website.

organ_input Organ type information in the PanglaoDB database. The input can be retrieved

by "PanglaoDB_table". For more information, please refer to https://panglaodb.se/

on PanglaoDB's official website.

Value

The standardized "Marker_list" in the SlimR package

See Also

```
Other Standardized_Marker_list_Input: Markers_filter_Cellmarker2(), Read_excel_markers(), Read_seurat_markers()
```

```
PanglaoDB <- SlimR::PanglaoDB
Markers_list_panglaoDB <- Markers_filter_PanglaoDB(
   PanglaoDB,
   species_input = 'Human',
   organ_input = 'GI tract'
   )</pre>
```

Markers_list_scIBD 25

Markers_list_scIBD

List of cell type markers in the scIBD dataset

Description

A dataset containing marker genes for different human intestine cell types from scIBD

Usage

Markers_list_scIBD

Format

A list with one hundred and one tables.

Details

This list is a table of 101 types of human intestine cell types markers obtained from scIBD. The article doi source is "https://doi.org/10.1038/s43588-023-00464-9", and the reference literature is: Nie et al. (2023) doi:10.1038/s43588-023-00464-9.

Source

doi:10.1038/s43588023004649

See Also

Other SlimR_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, PanglaoDB, PanglaoDB_raw, PanglaoDB_table

Markers_list_TCellSI List of cell type markers in the TCellSI dataset

Description

A dataset containing marker genes for different T cell types from TCellSI

Usage

Markers_list_TCellSI

Format

A list with ten tables.

26 PanglaoDB

Details

This list is a table of 10 types of T cell markers obtained from TCellSI. The data source is "https://github.com/GuoBioinfoLab/and the reference literature is: Yang et al. (2024) doi:10.1002/imt2.231.

Source

```
https://github.com/GuoBioinfoLab/TCellSI/
```

See Also

 $Other Slim R_Database: \verb|Cellmarker2_raw|, Cellmarker2_raw|, Cellmarker2_table|, Markers_list_scIBD|, PanglaoDB_raw|, PanglaoDB_table|$

PanglaoDB

PanglaoDB dataset

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

PanglaoDB

Format

A data frame with 9 columns:

Details

This dataset is used to filter and create a standardized marker list.'

Source

```
https://panglaodb.se/
```

See Also

```
Other SlimR_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB_raw, PanglaoDB_table
```

PanglaoDB_raw 27

PanglaoDB_raw

PanglaoDB raw dataset

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

PanglaoDB_raw

Format

A data frame with 14 columns contined in the PanglaoDB database:

Details

This dataset is used to filter and create a standardized marker list.'

Source

```
https://panglaodb.se/
```

See Also

 $Other SlimR_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_table$

PanglaoDB_table

PanglaoDB table

Description

A dataset containing marker genes for different cell types from PanglaoDB

Usage

PanglaoDB_table

Format

A list contain different types like species, organ, cell type.

Details

This list is used to choose filters for creation of standardized marker list.

28 Read_excel_markers

Source

```
https://panglaodb.se/
```

See Also

Other SlimR_Database: Cellmarker2, Cellmarker2_raw, Cellmarker2_table, Markers_list_TCellSI, Markers_list_scIBD, PanglaoDB, PanglaoDB_raw

Read_excel_markers

Create "Marker_list" from Excel files ".xlsx"

Description

```
Create "Marker list" from Excel files ".xlsx"
```

Usage

```
Read_excel_markers(path)
```

Arguments

path

The path information of Marker files stored in ".xlsx" format. The Sheet name in the file is filled with cell type. The first line of each Sheet is the table head, the first column is filled with markers information, and the following column is filled with mertic information.

Value

The standardized "Marker_list" in the SlimR package.

See Also

```
Other Standardized_Marker_list_Input: Markers_filter_Cellmarker2(), Markers_filter_PanglaoDB(), Read_seurat_markers()
```

```
## Not run:
Markers_list_Excel <- Read_excel_markers(
    "D:/Laboratory/Marker_load.xlsx"
    )
## End(Not run)</pre>
```

Read_seurat_markers 29

Description

Create "Marker_list" from Seurat object

Usage

```
Read_seurat_markers(
   df,
   sources = c("Seurat", "presto"),
   sort_by = "FSS",
   gene_filter = 20
)
```

Arguments

df	Dataframe generated by "FindAllMarkers" function, recommend to use parameter "group.by = "Cell_type" and "only.pos = TRUE".
sources	Type of markers sources to use. Be one of: "Seurat" or "presto".
sort_by	Marker sorting parameter, select "avg_log2FC" or "p_val_adj" or "FSS" (Feature Significance Score, FSS, product value of log2FC and Expression ratio). Default parameters use "sort_by = 'FSS'".
gene_filter	The number of markers left for each cell type based on the "sort_by" parameter's level of difference. Default parameters use "gene_fliter = 20"

Value

The standardized "Marker_list" in the SlimR package.

See Also

```
Other Standardized_Marker_list_Input: Markers_filter_Cellmarker2(), Markers_filter_PanglaoDB(), Read_excel_markers()
```

```
## Not run:
# Example for Seurat sources markers
seurat_markers <- Seurat::FindAllMarkers(
    object = sce,
    group.by = "Cell_type",
    only.pos = TRUE)

Markers_list_Seurat <- Read_seurat_markers(seurat_markers,
    sources = "Seurat",</pre>
```

30 Read_seurat_markers

```
sort_by = "avg_log2FC",
   gene_filter = 20
   )
# Example for presto sources markers
seurat_markers <- dplyr::filter(</pre>
   presto::wilcoxauc(
     X = sce,
     group_by = "Cell_type",
     seurat_assay = "RNA"
     ),
   padj < 0.05, logFC > 0.5
   )
Markers_list_Seurat <- Read_seurat_markers(seurat_markers,</pre>
   sources = "presto",
   sort_by = "logFC",
   gene_filter = 20
   )
## End(Not run)
```

Index

* Automated_Annotation_Workflow	calculate_expression, $2, 4$
Celltype_Annotation, 6	calculate_probability, 3 , 3
Celltype_Calculate, 19	Cellmarker2, 4, 5, 6, 25–28
Celltype_Verification, 21	Cellmarker2_raw, 4, 5, 6, 25-28
* Other_Functions_Provided_By_SlimR	Cellmarker2_table, 4, 5, 5, 25-28
Celltype_annotation_Cellmarker2,7	Celltype_Annotation, $6, 20, 22$
Celltype_annotation_Excel, 10	Celltype_annotation_Cellmarker2, 7, 11,
Celltype_annotation_PanglaoDB, 16	17, 18
Celltype_annotation_Seurat, 17	Celltype_Annotation_Combined, 9, 13, 15
* Semi_Automated_Annotation_Workflow	Celltype_annotation_Excel, 8, 10, 17, 18
Celltype_Annotation_Combined, 9	Celltype_Annotation_Features, 10, 12, 15
Celltype_Annotation_Features, 12	Celltype_Annotation_Heatmap, 10, 13, 14
Celltype_Annotation_Heatmap, 14	Celltype_annotation_PanglaoDB, 8, 11, 16
* SlimR_Database	18
Cellmarker2,4	Celltype_annotation_Seurat, 8, 11, 17, 17
Cellmarker2_raw, 5	Celltype_Calculate, 7, 19, 22
Cellmarker2_table, 5	Celltype_Verification, $7, 20, 21$
Markers_list_scIBD, 25	Markers_filter_Cellmarker2, 22, 24, 28,
Markers_list_TCellSI, 25	29
PanglaoDB, 26	Markers_filter_PanglaoDB, 23, 24, 28, 29
PanglaoDB_raw, 27	Markers_list_scIBD, <i>4</i> – <i>6</i> , 25, 26–28
PanglaoDB_table, 27	Markers_list_TCellSI, 4-6, 25, 25, 26-28
* Standardized_Marker_list_Input	
Markers_filter_Cellmarker2, 22	PanglaoDB, 4-6, 25, 26, 26, 27, 28
Markers_filter_PanglaoDB, 24	PanglaoDB_raw, 4-6, 25, 26, 27, 28
Read_excel_markers, 28	PanglaoDB_table, 4-6, 25-27, 27
Read_seurat_markers, 29	
* Use_in_packages	Read_excel_markers, 23, 24, 28, 29
calculate_expression, 2	Read_seurat_markers, 23, 24, 28, 29
<pre>calculate_probability, 3</pre>	
* datasets	
Cellmarker2, 4	
Cellmarker2_raw, 5	
Cellmarker2_table, 5	
Markers_list_scIBD, 25	
Markers_list_TCellSI, 25	
PanglaoDB, 26	
PanglaoDB_raw, 27	
PanglaoDB table 27	