Méthodes d'approximation d'équations différentielles

1 Ordre 1

On connait:

$$\begin{cases} f(x,y) = y' = \dots \\ y(x_0) = y_0 \end{cases}$$

La **méthode d'Euler** se définit comme suit :

$$\begin{cases} x = x + h \\ y = y + h \cdot y' \\ y' = f(x, y) \end{cases}$$

La **méthode de Runge** se définit comme suit :

x = x + h	x_0	
$y = y + h \cdot y_m'$	y_0	
y' = f(x, y)	$f(x_0, y_0)$	
$x_m = x + \frac{h}{2}$	$x_0 + \frac{h}{2}$	
$y_m = y + \frac{h}{2} \cdot y'$	$y_0 + \frac{h}{2} \cdot y'$	
$y_m' = f(x_m, y_m)$	$f(x_m, y_m)$	