

Unsupervised prediction

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Key ideas

- · Sometimes you don't know the labels for prediction
- · To build a predictor
 - Create clusters
 - Name clusters
 - Build predictor for clusters
- · In a new data set
 - Predict clusters

Iris example ignoring species labels

```
[1] 45 5
```

Cluster with k-means

```
kMeans1 <- kmeans(subset(training,select=-c(Species)),centers=3)
training$clusters <- as.factor(kMeans1$cluster)
qplot(Petal.Width,Petal.Length,colour=clusters,data=training)</pre>
```


Compare to real labels

table(kMeans1\$cluster,training\$Species)

virginica	versicolor	setosa	
23	1	0	1
0	0	35	2
12	34	0	3

Build predictor

```
modFit <- train(clusters ~.,data=subset(training,select=-c(Species)),method="rpart")
table(predict(modFit,training),training$Species)</pre>
```

Apply on test

```
testClusterPred <- predict(modFit,testing)
table(testClusterPred ,testing$Species)</pre>
```

```
testClusterPred setosa versicolor virginica
1 0 0 13
2 15 0 0
3 0 15 2
```

Notes and further reading

- · The cl_predict function in the clue package provides similar functionality
- · Beware over-interpretation of clusters!
- This is one basic approach to recommendation engines
- · Elements of statistical learning
- Introduction to statistical learning