模型-运筹学-规划论-非线性规划【czy】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
 - 3.1 一般形式和参数说明
 - 3.1 特殊形式和参数说明
 - 3.1.1 二次规划((quadratic programming)
 - 3.1.1.1 表达式和定义
 - 3.1.2 凸规划(convex programming)
 - 3.1.2.1 表达式和定义
 - 3.1.2.2 性质
 - 3.1.2.3 最优性条件
- 4. 非线性规划问题的解法
 - 4.1 一般算法
 - 4.2 进阶算法
 - 4.2.1 遗传算法
 - 4.2.2 模拟退火
 - 4.2.3 神经网络
 - 4.2.4 禁忌搜索
 - 4.2.5 蚂蚁算法
 - 4.3 软件求解
- 5. 实例
 - 5.1 例1: 经济管理——股票的投资组合问题
 - 5.1.1 问题描述
 - 5.1.2 符号与假设
 - 5.1.3 模型的建立
 - 5.2 例2: 生产与工程管理——选址问题
 - 5.2.1 问题描述
 - 5.2.2 符号与假设
 - 5.2.3 模型的建立——约束非线性规划
- 6. 参考资料

模型-运筹学-规划论-非线性规划【czy】

1. 模型名称

非线性规划 (Nonlinear programming)

2. 适用范围

非线性规划是具有**非线性约束条件**或**目标函数**的数学规划。目标函数与约束函数中只要有一个为非线性函数,即称该问题为非线性规划问题(nonlinear programming problem)。

3. 形式

3.1 一般形式和参数说明

目标函数minf(x)

$$ext{s.t.} \left\{ egin{aligned} g_i(x) \leq 0 & i=1,2,\ldots,m \ h_j(x) = 0 & j=1,2,\ldots,l \end{aligned}
ight.$$

向量 $x=(x_1, x_2, \ldots, x_n)$ 使得实值目标函数 (objective function) f 在 x 处达到最小。

一般称上述问题为数学规划问题 (mathematical programming problem) 或者最优化问题 (optimization problem)。

在上述问题中,满足约束条件的向量 x 称为可行解 (feasible solution),

全体可行解构成的集合称为可行域 (feasible region)。

可行域中使得目标函数值为最小的向量 x 称为问题的最优解。最优解一般又分为全局最优解 (Global Optimum)与局部最优解 (Local Optimum)。 1

3.1 特殊形式和参数说明

由约束条件和目标函数的不同类型,非线性规划问题有以下特殊情况:

- 1. 当目标函数 f 为二次函数,而约束函数 g_i,h_j 均为线性函数时,问题称为二次规划问题 (quadratic programming problem)。
- 2. 若目标函数 f与所有不等式约束函数 g_i 均为凸函数,而所有等式约束函数 h_j 均为线性函数,则称问题为凸规划函数 (convex programming problem)。
- 3. 若约束条件中含有矩阵的半正定条件,则称为半定规划问题 (semi-definite programming problem)

·无约束非线性规划:

$$minf(x) \ x \in E^{(n)}$$

·有约束非线性规划:

3.1.1 二次规划((quadratic programming)

3.1.1.1 表达式和定义

$$minf(x) = rac{1}{2}x^TGx + x^Tc \ s.t. \, a_i^Tx \geq b_i, i \in tau$$

其中 G 是 Hessian 矩阵。

如果 G 是半正定的,则该式为凸二次规划,这种情况下该问题的困难程度类似于线性规划。

如果有至少一个向量满足约束并且在可行域有下界,则凸二次规划问题就有一个全局最小值。如果 *G* 是正定的,则这类二次规划为严格的凸二次规划,那么全局最小值就是唯一的。如果是一个不定矩阵,则为非凸二次规划,这类二次规划更有挑战性,因为它们有多个平稳点和局部极小值点。

3.1.2 凸规划(convex programming)

3.1.2.1 表达式和定义

$$minf(x) \ s.\ t.\ egin{cases} g_i(x) \leq 0, i=1,\cdots,m \ a_j^Tx = b_j, j=1,\cdots,l \end{cases}$$

与一般的最优化问题标准形式相比, 凸规划有三点附加条件:

- 目标函数 f 必须是凸函数
- 不等式约束函数 g_i 必须是凸函数,不等式 $g_i \leq 0$ 组成的区域为凸集
- 等式约束函数 h_i 必须是仿射的 (即线性函数和常函数的和函数)

3.1.2.2 性质

- 凸规划问题的任一局部极小点是全局极小点, 且全体局部极小点的集合为凸集;
- 当凸规划的目标函数 f 为严格凸函数时, 若存在最优解, 则这个最优解一定是唯一的最优解。

3.1.2.3 最优性条件

设凸规划问题中的目标函数 f 是可微的,记可行域为D,即

$$D = \{x \mid g_i(x) \leq 0, i = 1, 2, \cdots, m; a_j^T x = b_j, j = 1, \cdots, l\}$$

则 x^* 是最优点的充分必要条件是:

对任意的 $y \in D$,有

$$abla f(x^*)(y-x^*) \geq 0$$

4. 非线性规划问题的解法

4.1 一般算法

无约束线性规划	有约束非线性规划
1.一般迭代法	1.可行方向法
2.一维搜索法	2.制约函数法(有约束转化为无约束)
1) 最速下降法	1) 外点法
2) 共轭梯度法	2) 内点法
3) 牛顿法	严禁转载
4) 拟牛顿法	
5) 变尺度法	

4.2 进阶算法

由于经典算法在处理**大规模问题**时得到的解通常不能保证**全局最优性**,为局部最优解。而进阶算法常常 具有跳出局部最优解的机制。

4.2.1 遗传算法

是根据生物演化,模拟演化过程中基因染色体的选择、交叉和变异得到的算法。在进化过程中,较好的个体有较大的生存几率。

4.2.2 模拟退火

是模拟统计物理中固体物质的结晶过程。在退火的过程中,如果搜索到好的解接受;否则,以一定的概率接受不好的解(即实现多样化或变异的思想),达到跳出局部最优解得目的。

4.2.3 神经网络

模拟大脑神经处理的过程,通过各个神经元的竞争和协作,实现选择和变异的过程。

4.2.4 禁忌搜索

模拟人的经验,通过禁忌表记忆最近搜索过程中的历史信息,禁忌某些解,以避免走回头路,达到跳出局部最优解的目的。

4.2.5 蚂蚁算法

模拟蚂蚁的行为, 拟人拟物, 向蚂蚁的协作方式学习。

4.3 软件求解

2.3.3软件求解

MATLAB优化工具箱常用命令:

命令	适用类型		
fmincon	约束非线性极小化		
fminsearch	无约束非线性最优化		
fminunc	无约束非线性最优化		
quadprog	二次规划		

5. 实例

5.1 例1: 经济管理——股票的投资组合问题

5.1.1 问题描述

投资的效益与风险:

一个投资者拟选择 A,B,C 三支业绩好的股票来进行长期组合投资。通过对这三支股票的市场分析和统计预测得到相关数据如下表所示:

机面包料	工在期间收益(0/)	五年的协方差(%)		
股票名称	五年期望收益(%)	Α	В	С
А	92	180	36	110
В	64	36	130	-30
С	41	110	-30	110

试从两个方面分别给出三支股票的投资比例:

- 1. 希望将投资组合中的股票收益的标准差降到最小,以降低投资风险,并希望 五年后的期望收益率不少于 65
- 2. 希望在标准差最大不超过 12

5.1.2 符号与假设

决策变量 x_i	股票 i 的投资比例
r_i	股票 i 五年的期望收益率
目标函数 R	五年后投资组合总收益
目标函数 $Var(R)$	投资组合的方差
目标函数D	投资组合的标准差

5.1.3 模型的建立

$$R = x_1 r_1 + x_2 r_2 + x_3 r_3$$

$$Var(R) = x_1^2 Var(x_1) + x_2^2 Var(x_2) + x_3^2 Var(x_3) + 2x_1 x_2 Cov(r_1, r_2) + 2x_2 x_3 Cov(r_2, r_3) + 2x_1 x_3 Cov(r_1, r_3)$$

1. 问题一的模型——二次规划

$$minD = \sqrt{180x_1^2 + 120x_2^2 + 140x_3^2 + 72x_1x_2 + 220x_1x_3 - 60x_2x_3}$$

$$s.\,t. egin{cases} x_1+x_2+x_3 &= 1 \ 0.92x_1+0.64x_2+0.41x_3 \geq 0.65 \ x_1,x_2,x_3 \geq 0 \end{cases}$$

2. 问题二的模型——约束非线性规划

$$maxR = 0.92x_1 + 0.64x_2 + 0.41x_3$$

$$s.\,t. egin{cases} x_1+x_2+x_3=1 \ \sqrt{180x_1^2+120x_2^2+140x_3^2+72x_1x_2+220x_1x_3-60x_2x_3} \leq 12 \ x_1,x_2,x_3 \geq 0 \end{cases}$$

5.2 例2: 生产与工程管理——选址问题

5.2.1 问题描述

供应与选址

6 个建筑工地水泥的日用量分别为 3,5,4,7,6,11(吨),两个临时料场 A,B 日储量 各有 20 吨。假设从料场到工地均有直线道路相连。试制定每天 A,B 两料场向各 工地供应水泥的供应计划,为进一步减少吨千米数,打算舍弃两个临时料场,改建两个新的,日储量仍各为 20 吨,问应建在何处使总的吨千米数最小?

2

5.2.2 符号与假设

图 1: 料场与工地分布

决策变量 z_{ij}	从料场 j 向工地 i 的运送量为 z_{ij}
(x_j,y_j)	料场j的位置
目标函数 f	吨干米数
(a_i,b_i)	工地位置
r_{j}	料场日储量
d_i	水泥日用量

5.2.3 模型的建立——约束非线性规划

$$egin{split} minf &= \sum_{j=1}^2 \sum_{i=1}^6 z_{ij} \sqrt{(x_j - a_i)^2 + (y_j - b_i)^2} \ s.\, t. egin{cases} \sum_{j=1}^2 z_{ij} = d_i, i = 1, \cdots, 6 \ \sum_{i=1}^6 z_{ij} \leq r_j, j = 1, 2 \ z_{ij} \geq 0 \end{cases} \end{split}$$

6. 参考资料

1. 数学建模培训营----非线性规划

^{1.} 在现有的求解算法下,许多非线性规划问题通常只能得到局部最优解,初始值不同则最优解常常不同(而凸规划的局部最优解即全局最优解)。 😐

^{2.} 这个指标是用运送货物的重量(单位:吨)乘以运送的距离(单位:千米),用来衡量运输企业的运送能力。" \underline{c}