

ARBOLES DE DECISION

APRENDIZAJE DE MAQUINA I - CEIA - FIUBA

Dr. Ing. Facundo Adrián Lucianna

Dr. Ing. Álvaro Gabriel Pizá

REPASO CLASE ANTERIOR

- Clasificación
- Regresión logística
- KNN
- Métricas de evaluación

CLASIFICACIÓN

Es más común encontrarnos con problema de clasificación que de regresión:

- Una persona llega a una guardia con un set de síntomas atribuidos a una de tres condiciones médicas.
- Un servicio de banca online debe determinar si una transacción en el sitio es fraudulenta o no, usando como base la dirección IP, historia de transacciones, etc.
- En base a la secuencia de ADN de un número de pacientes con y sin una enfermedad dada, un genetista debe determinar que mutaciones de ADN genera un efecto nocivo relacionado a la enfermedad o no.

REGRESIÓN LOGISTICA

En la gráfica se observa el problema de predecir usando regresión lineal. Dada la naturaleza de la función, hay valores en donde se obtienen p(x) < 0, o p(x) > 1. Esto va a ocurrir con cualquier regresión que de valores por fuera a 0 y 1.

Para evitar este problema, se debe modelar a p(x) usando una función que nos asegure que siempre tendremos valores entre 0 y 1.

En regresión logística, esto lo resolvemos usando una función sigmoide:

$$p(x) = rac{e^{w_0 + w_1 x_1}}{1 + e^{w_0 + w_1 x_1}}$$

REGRESIÓN LOGISTICA

En la gráfica se observa el problema de predecir usando regresión lineal. Dada la naturaleza de la función, hay valores en donde se obtienen p(x) < 0, o p(x) > 1. Esto va a ocurrir con cualquier regresión que de valores por fuera a 0 y 1.

Para evitar este problema, se debe modelar a p(x) usando una función que nos asegure que siempre tendremos valores entre 0 y 1.

En regresión logística, esto lo resolvemos usando una función sigmoide:

$$p(\widehat{X}) = rac{e^{w_0 + w_1 x_1 + ... + w_n x_n}}{1 + e^{w_0 + w_1 x_1 + ... + w_n x_n}}$$

$$P(Y=k\,|\,X=x) = rac{e^{w_{k0}+w_{k1}x_1+...+w_{kn}x_n}}{1+\sum_{l=1}^{K-1}e^{w_{l0}+w_{l1}x_1+...+w_{ln}x_n}} \ P(Y=K\,|\,X=x) = rac{1}{1+\sum_{l=1}^{K-1}e^{w_{l0}+w_{l1}x_1+...+w_{ln}x_n}}$$

REGRESIÓN LOGISTICA

REGRESIÓN LOGISTICA - AJUSTE

Matemáticamente la función de verosimilitud es:

$$\ell(w_0,w_1) = \prod_{i:y_i=1} p(x_i) \prod_{j:y_j=0} (1-p(x_j))$$

Y buscamos encontrar los valores de wo y w1 que hacen el valor máximo de esta función.

KNN

El clasificador de k vecinos más cercanos (KNN o k-NN), es un algoritmo que utiliza la proximidad de sus vecinos para hacer clasificaciones sobre la agrupación de un punto.

La idea se basa de la **suposición** de que se pueden encontrar puntos similares cerca uno del otro en base a votación de pluralidad (se elige la clase en función de la moda de la clase de sus vecinos).

MÉTRICAS DE EVALUACIÓN MATRIZ DE CONFUSIÓN

Valores actuales

1 Verdadero positivo (TP)
Falso positivo (FP)

O Falso negativo (FN)
Verdadero negativo (TN)

MÉTRICAS DE EVALUACIÓN

• Sensibilidad:
$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

• Especificidad:
$$TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$$

• Exactitud:
$$ACC = \frac{TP + TN}{P + N}$$

• Exactitud balanceada:
$$BA = \frac{TPR + TNR}{2}$$

• Precision: Precision =
$$\frac{TP}{TP + FP}$$

• Recuperación:
$$Recall = \frac{TP}{TP + FN}$$

• F1-score o F
$$\beta$$
-score: $F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$

Siempre se arranca de umbral 1, donde la TPR es 0 y TFP es 0 y termina en 0 donde TVP es 1 y TFP es 1.

- A es la curva de un clasificador perfecto
- B es la curva de un clasificador estándar.
- C es la curva de un clasificador que adivina (el peor caso).

La curva ROC me permite encontrar el valor umbral que mejor resultado me dé.

Además me permite comparar clasificadores sin preocuparme del valor umbral elegido.

Si quiero bajar a una métrica a esta curva, podemos calcular el área bajo la curva (AUC).

- A tendrá un AUC = 1
- B tendrá un 0.5 < AUC < 1</p>
- c tendrá un AUC = 0.5

CONJUNTO DE VALIDACIÓN Y VALIDACIÓN CRUZADA

PROCESO DE MACHINE LEARNING

Cuando vimos esto, a propósito, deje afuera un conjunto de datos...

PROCESO DE MACHINE LEARNING

Cuando vimos esto, a propósito, deje afuera un conjunto de datos... Conjunto de validación

CONJUNTO DE VALIDACIÓN

Cuando vimos esto, a propósito, deje afuera un conjunto de datos... Conjunto de validación

El conjunto de validación es un set que se usa en el entrenamiento para evaluar cómo se entrena el modelo pero sin usarlo para entrenar. En general, se usa aproximadamente un 10% del set total.

Supongamos que entrenamos un modelo que con cada paso mejora las métricas de entrenamiento, pero si lo dejamos mucho tiempo, llevará a un **sobreajuste**. Entonces, con el set de validación, cada cierto tiempo, evaluamos y vemos como performa.

Lo que va a pasar es que hay un punto donde la métrica de evaluación empezara a aumentar indicando **sobreajuste**, entonces en ese momento cortamos el entrenamiento.

La diferencia con el **conjunto de testeo** es que a este **nunca** lo usamos en ningún proceso de entrenamiento

CONJUNTO DE VALIDACIÓN

Este proceso que vimos mejora la generalización, pero es muy sensible a la selección del conjunto de validación. Además, eliminar datos que hubieran servido para entrenar es algo caro que pagamos.

Buscando atacar esto, existe K-Fold cross validation.

Los datos de entrenamientos se dividen en **K** sub-conjuntos. Con esta separación, realizamos el proceso de validación que vimos previamente, pero **K** veces:

Cada vez vamos eligiendo como set de validación a un conjunto **K** y a los restantes **K-1** como entrenamiento.

Una vez finalizado, los errores medidos se promedian para obtener la efectividad total del modelo.

Valores típicos usado es K=5 o 10.

¿Para qué se usa esto?

El ejemplo de iteraciones nos da una pista...

Valores típicos usado es K=5 o 10.

¿Para qué se usa esto?

El ejemplo de iteraciones nos da una pista...

Nos permite encontrar los **hiperparámetros**, ya que nos permite evaluar al menos una vez cada punto de entrenamiento, sin tener problemas de **sobreajuste** y sin tocar el conjunto de testeo.

Una vez que encontramos aquellos parámetros que mejoren las métricas de validación cruzada, ya se puede entrenar el modelo y testear con el conjunto de test para obtener las métricas del modelo.

VARIANTES DE LA VALIDACIÓN CRUZADA

Stratified K-Fold Cross Validation

Cuando tenemos un desbalance fuerte en la variable target, se usa esta variante. Lo que se busca es que cada uno de los K conjuntos, se eligen de forma que mantenga más o menos la misma proporción, para mantener las distribuciones generales.

¡Esto se aplica también al conjunto de testeo!

VARIANTES DE LA VALIDACIÓN CRUZADA

Leave-P-out Cross Validation

En este caso, dado n datos de entrenamiento, se eligen **p** datos, se entrena con **n-p** y se valida con los **p** datos. Esto se va repitiendo para todas las combinaciones posibles.

Es la versión más extrema de validación cruzada

Un caso particular es cuando p=1, llamada Leave-1-out Cross Validation

ARBOLES DE DECISIÓN

ARBOLES DE DECISIÓN

Los árboles de clasificación y regresión, conocidos como **CART** (Classification and Regression Trees), son una poderosa técnica de aprendizaje automático que se utiliza ampliamente para resolver problemas tanto de clasificación como de regresión.

Los árboles CART son modelos de decisión que utilizan una estructura de árbol para realizar predicciones basadas en reglas **lógicas sencillas y fáciles de interpretar**.

Arboles de clasificación

Arboles de regresión

Empecemos con un ejemplo sencillo, usando el dataset <u>Hitters</u> (Dato de salarios de jugadores de Beisbol de 1987 y estadísticas deportivas de 1986)

Se predice el logaritmo del salario (tiene una distribución más de campana). **Years** es años jugando en las ligas. **Hits** es el número de hits que realizó el año pasado.

Empecemos con un ejemplo sencillo, usando el dataset <u>Hitters</u> (Dato de salarios de jugadores de Beisbol de 1987 y estadísticas deportivas de 1986)

Se predice el logaritmo del salario (tiene una distribución más de campana). **Years** es años jugando en las ligas. **Hits** es el número de hits que realizó el año pasado.

Empecemos con un ejemplo sencillo, usando el dataset <u>Hitters</u> (Dato de salarios de jugadores de Beisbol de 1987 y estadísticas deportivas de 1986)

Este árbol de regresión es una sobre simplificación del verdadero valor de regresión entre **Salary**, **Years** y **Hits**. Sin embargo, tiene sus ventajas porque es más fácil entender y tienen mejor representación gráfica.

Como construimos el proceso de construcción del árbol de regresión:

- 1. Dividimos el espacio de observaciones, que son el set de los valores posibles X_1 , X_2 , ..., X_p , en J regiones distintas y que no se solapan R_1 , R_2 , ..., R_J .
- Para cada observación que cae en una región R_j, hacemos la misma predicción, la cual es simplemente la media de la respuesta de los valores de entrenamiento que están en R_i.
 - Podemos usar otra métrica de medición de posición central.

¿Cómo dividimos el espacio de observaciones?

En teoría, el espacio lo podríamos dividir en cualquier tipo de regiones, pero se elige espacios "rectangulares" para simplificar el modelo.

El objetivo es encontrar cajas R₁, ..., R_J que minimice la suma al cuadrado de los residuos, dado por:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_J}
ight)^2$$

¿Cómo dividimos el espacio de observaciones?

En teoría, el espacio lo podríamos dividir en cualquier tipo de regiones, pero se elige espacios "rectangulares" para simplificar el modelo.

El objetivo es encontrar cajas R₁, ..., R_J que minimice la suma al cuadrado de los residuos, dado por:

$$RSS = \sum_{j=1}^J \sum_{i \in R_j} \left(y_i - \hat{y}_{R_J}
ight)^2$$
 Es la media de $old y$ en la región R_J

¿Cómo dividimos el espacio de observaciones?

Es imposible buscar todas las combinaciones posibles de valores para encontrar la minimizar a RSS.

Tenemos que usar algún algoritmo de optimización. Para ello tomamos un algoritmo top-down greedy que es conocido como Recursive binary splitting.

- **Top-down:** Arrancamos desde el tronco del árbol y vamos bajando.
- Greedy: En cada paso, se busca la mejor bifurcación en ese paso particular.

Recursive binary splitting

Se elije un X_j y el punto de corte **s** de tal forma que bifurca el espacio de features en dos regiones $\{X|X_j < s\}$ y $\{X|X_j >= s\}$ que lleve a la mayor reducción de **RSS**.

Es decir, para cada valor de j y cada valor de s:

$$R_1(j,s) = \{X|X_j < s\} \quad R_2(j,s) = \{X|X_j \ge s\}$$

Y buscamos el valor de j y s que minimice esta ecuación:

$$\sum_{i: x_i \in R_1(j,s)} \left(y_i - \hat{y}_{R_1}
ight)^2 + \sum_{i: x_i \in R_2(j,s)} \left(y_i - \hat{y}_{R_2}
ight)^2$$

Recursive binary splitting

Y recursivamente repetimos esto para los segmentos que se generan, pero ahora tomando a las regiones formadas y aplicando este proceso, partimos en nuevas regiones.

Este proceso continua hasta que llegamos a un criterio de corte.

Recursive binary splitting

Podando los arboles

El proceso que se describió puede producir buenas predicciones del set de entrenamiento, pero muy fácilmente puede generar **overfitting**, haciendo que se desempeñe muy mal en el set de validación.

El caso mas extremo es un árbol con una hoja por cada punto del set de entrenamiento.

Esto se debe a que el árbol es muy complejo. Un árbol más pequeño con menor regiones puede llevar a menos varianza y mejor interpretación a expensa de un poco de sesgo.

Podando los arboles

La estrategia más obvia es construir el árbol sólo mientras la disminución en el RSS sea mayor a un valor umbral (relativamente alto). Esta estrategia dará como resultado árboles más pequeños, pero es demasiado cortoplacista,

Una división aparentemente sin valor en las primeras etapas del árbol podría ser seguida por una división muy buena, es decir, una división que conduzca a una gran reducción del RSS más adelante.

Podando los arboles

Una mejor estrategia es llevar un paso de eliminación hacia atrás. Construimos un árbol enorme T₀, y luego vamos podando para obtener un **sub-árbol**.

¿Como hacemos? Intuitivamente es elegir un sub-árbol que disminuya el error de validación.

Pero de nuevo, estamos ante un problema demasiado complejo de iterar.

Podando los arboles

Vamos a introducir un valor de penalización α a nuestra formula de RSS. Dado un valor de α , existe un sub-árbol T perteneciente a T₀ que:

$$\sum_{m=1}^L \sum_{i \in R_i} \left(y_i - \hat{y}_{R_m}
ight)^2 + lpha L$$

...es minimo.

L indica el número de hojas del sub-árbol.

 α presenta un trade-off entre complejidad del árbol y su capacidad de ajustar a los datos. Si α =0 el árbol elegido es T₀. Cuando más grande es α , el precio a pagar por el tamaño de árbol cada vez es mayor. α nunca es negativo.

Podando los arboles

Algo interesante es que a medida que aumentamos α desde cero, las ramas se podan del árbol de una manera anidada y predecible, por lo que es fácil obtener la secuencia completa de subárboles en función de α .

Podemos seleccionar un valor de α usando un conjunto de validación o usando validación cruzada.

Luego volvemos al conjunto de datos completo y obtenemos el sub-árbol correspondiente a α .

Algoritmo total

- Usando Recursive binary splitting se crea el árbol más grande con el dataset de entrenamiento, terminando el entrenamiento cuando cada hoja tenga menos de un número determinado de observaciones.
- 2. Se aplica la técnica de podado de árbol para obtener un set de sub-arboles como función de α . Usando validación cruzada para elegir α .
- 3. Elija el sub-árbol del paso 2 que corresponde al valor de α que disminuya el error.

Un árbol de clasificación es muy similar a uno de regresión, pero ahora se usa para predecir una variable cualitativa.

En el caso de regresión, al llegar la hoja, obteníamos el valor con el promedio de los valores en la hoja. Ahora, obtenemos la clase en base a la **clase que más ocurre** en las muestras que están en la hoja.

Al interpretar los resultados de un **árbol de clasificación**, a menudo estamos interesados no sólo en la predicción de clase correspondiente a una región de nodo terminal particular, sino también en las **proporciones de clase entre las observaciones de entrenamiento** que caen en esa región.

La forma en que se crea un árbol de clasificación es muy parecida al árbol de regresión con la estrategia **top-down** y **greedy**, pero no contamos con el error cuadrático.

Una primera métrica que podemos usar es la tasa de error de clasificación:

$$E=1-\max_k(\widehat{p}_{mk})$$

Es la fracción de las observaciones de entrenamiento en esa región que no pertenecen a la clase más común.

 \widehat{p}_{mk} representa la proporción de las observaciones de entrenamiento en la región **m** que son de la clase **k**.

Ojo, el error de clasificación **no es suficientemente sensible para crecer a los árboles** y, en la práctica, son preferibles otras dos medidas.

El indice de Gini, el cual es una medida de la desigualdad usada inicialmente para medir la desigualdad de los países:

$$G = \sum_{k=1}^K \widehat{p}_{mk} (1 - \widehat{p}_{mk})$$

Como una medida de la varianza a travez de todas las clases K. El cual se observa que el **indice de Gini** toma un valor pequeño si todas las \widehat{p}_{mk} son cercanas a cero o uno.

Por esto, se dice que el indice de Gini es una medida de la pureza de un nodo terminal

En un árbol de clasificación, queremos encontrar una rama de decisión que de mucha información.

Si en una rama, x<0, hace que todas las observaciones de una clase vayan para un lado y todas las otras observaciones vayan para la otra, **va a ser una excelente rama a elegir**.

En cambio, el caso que no afecta a como se mueven las clases, probablemente no es una buena opción.

La forma que capturamos esta noción de cuanta información transmite es con **Entropía**. O también como medida de desorden.

Si en una hoja, todas las observaciones de entrenamiento son de una sola clase, la entropía es cero.

En cambio, si las clases están desperdigadas de forma uniforme entre la clase, la entropía es grande.

La definición de **entropía** es:
$$D = -\sum_{k=1}^K \widehat{p}_{mk} log(\widehat{p}_{mk})$$

Vemos que si \widehat{p}_{mk} son cercanos a cero o a uno, la entropía es un valor pequeño. Si las proporciones son similares entre sí, este valor va a ser grande.

Todo el resto es igual al árbol de regresión

VENTAJAS Y DESVENTAJAS DE LOS ARBOLES

- Son fáciles de explicar a las personas, más inclusive que a la regresión lineal.
- Se hipotetiza que el árbol de decisión se acerca más a la forma que un humano piensa.
- Se puede representar gráficamente.
- Los árboles puede manejar fácilmente variables cualitativas sin necesidad de crear variables dummy.
- No tienen el mismo nivel de exactitud de predicción que otros modelos
- No son robustos, pequeños cambios en los datos pueden cambiar grandes cambios en la predicción.

VENTAJAS Y DESVENTAJAS DE LOS ARBOLES

BOSQUES ALEATORIOS

BOSQUESALEATORIOS

Es común que los árboles sobreajusten, dado que tan exacto tienden a adaptarse a los datos de entrenamiento,.

Una forma de evitar esto es mediante bosques aleatorios, en el cual se construyen múltiples arboles de decisión y combinar sus salidas.

Si son de **clasificación**, estos árboles votan la clase.

Si son de regresión, se promedia las predicciones.

BOSQUES ALEATORIOS

¿Como se construyen aleatoriamente estos árboles?

Una forma es usando bootstrapping

BOSQUES ALEATORIOS

¿Como se construyen aleatoriamente estos árboles?

Bagging

En el caso de los árboles, en vez de entrenar a los árboles con todas las observaciones del set de entrenamiento, se arma un nuevo set para cada árbol, usando **Bootstrapping**.

Dado que cada árbol es entrenado diferente, va a ser diferente de los demás árboles.

En general estos árboles son profundos, es decir gran varianza, pero poco sesgo. Al promediar las salidas, en regresión, reducimos la varianza.

Bagging ha mejorar sustancialmente los resultados cuando se lleva a cientos o miles de árboles.

BOSQUESALEATORIOS

Los bosques aleatorios son una mejora de los obtenidos mediante bagging únicamente.

Los bosques aleatorios hacen lo mismo que mediante **bagging**, pero además se usa una cantidad aleatoria de atributos. El valor de cuantos atributos a usar se elige aproximadamente la raíz cuadrada de la cantidad de atributos totales.

Por ejemplo, si tenemos p=13 atributos, se usarán m=4, y en cada árbol será una combinación al azar diferente.

BOSQUES ALEATORIOS

El razonamiento de esto es:

Supongamos que hay un atributo que es muy fuerte predictor, junto a otros atributos moderadamente fuertes. Si aplicamos **Bagging**, todos estos árboles siempre tenderán a usar el atributo fuerte en la bifurcación inicial. Por consiguiente, todos serán parecidos y habrá una fuerte correlación entre árboles, **quitando la posibilidad de reducir la varianza**.

Bosques aleatorios, al separar los atributos, en promedio (p-m)/p de las particiones no van a considerar al atributo fuerte, quitando la correlación.

BOOSTING

Por último, nos queda Boosting

La idea es similar a la de Bagging, pero en vez de construir arboles aleatoriamente dado por el proceso de Bootsrapping, los nuevos árboles que se construyen usando la información de árboles anteriores.

El truco está en que se entrena un árbol, se calcula los residuos, y esos residuos pasan a ser la variable predictora del siguiente árbol. Los árboles elegidos son chicos con unos pocos nodos.

Esto es un proceso de aprendizaje lento que depende de árboles anteriores. Un proceso lento de aprendizaje estadísticamente lleva a buenos entrenamiento.

Un algoritmo derivado de esto es el famoso XGBoost

