CE080 - FUNDAMENTOS BÁSICOS PARA ESTATÍSTICA

Prof. Dr. Anselmo Chaves Neto

1. FUNÇÕES

1.1- Sistema de Coordenadas Cartesianas ou Plano Cartesiano

A localização de pontos num plano é bastante antiga na Matemática e data aproximadamente do século III a.C. Porém, atualmente, usa-se o Sistema de Coordenadas Cartesianas que teve origem com os trabalhos do matemático René Descartes (século XVIII).

Esse sistema é formado por dois eixos perpendiculares que se cruzam em um ponto chamado **origem**. Esses dois eixos chamam-se: **eixo das abscissas** (horizontal X) e **eixo das ordenadas** (vertical Y).

Exercícios 1

- 1) Desenhe um sistema de eixos cartesianos e indique: o eixo das abscissas, o eixo das ordenadas, a origem e os quatro quadrantes.
- 2) Desenhe um **sistema de eixos cartesianos** e marque no plano os pontos cujas **coordenadas** são:
- a) $P_1(2, -1)$ b) A(0, 2) c) B(0, 3) d) M(0, -2) e) N(2, 2) f) V(-2, 3) g) $P_2(-1, 0)$ h) $P_3(-2, -1)$ i) $P_4(2, 1)$ j) $P_5(0, -4)$
- 3) Desenhe um **sistema de eixos cartesianos**, marque nele os pontos P_1 , P_2 e P_3 . Trace os **segmentos de reta** $\overline{P_1P_2}$, $\overline{P_1P_3}$ e $\overline{P_2P_3}$ que definem o triângulo $\Delta P_1P_2P_3$.
- 4) Desenhe um **sistema de eixos cartesianos**, marque nele os pontos P_4 e P_5 . Trace a reta definida por esses dois pontos.

Exercícios 2

- 1) Desenhe um **sistema de eixos cartesianos** e o segmento de reta cujas extremidades são os pontos: P(4; 4) e Q(-3; -3).
- 2) Desenhe um **sistema de eixos cartesianos** e a reta b correspondente a 1^a. bissetriz do sistema.
- 3) Quais as coordenadas do ponto M correspondente à intersecção do segmento PQ com a sua mediatriz?
- 4) Escreva os sinais das coordenadas do ponto $P_1 \in 1^{0}$. quadrante, do ponto $P_2 \in 2^{0}$. quadrante, do ponto $P_3 \in 3^{0}$. quadrante e do ponto $P_4 \in 4^{0}$. quadrante.

- 5) O ponto P situa-se sobre o semieixo positivo das ordenadas de um sistema cartesiano e a distância de P a origem é 5. Quais as coordenadas deste ponto?
- 6) O ponto Q situa-se sobre o semieixo negativo das abscissas de um sistema cartesiano e a distância de Q a origem é 5. Quais as coordenadas deste ponto?
- 7) Escreva os quadrantes do sistema cartesiano aos quais pertencem os pontos: $P_1(-4; 4), P_2(-3; -2), P_3(5; 5), P_4(2; -1), P_5(-5; -1), P_6(3; 2) e P_1(-2; 3).$
- 8) Seja a reta s que passa pelos pontos (0; 0) e (3; 3) de um plano cartesiano. Qual o ângulo que essa reta faz com o eixo das abscissas? E, qual o ângulo que a reta faz com o eixo das ordenadas?
- 9) Seja a reta r que passa pelos pontos (0; 0) e ($\sqrt{3}$; 1) de um plano cartesiano. Pergunta-se:
 - a) Qual o ângulo que reta faz com o eixo das abscissas?
 - b) Qual o ângulo que a reta faz com o eixo das ordenadas?
 - c) Qual a distância entre os dois pontos?
- 10) Seja a reta p que passa pelos pontos (0; 0) e $(1; \sqrt{3})$ de um plano cartesiano. Pergunta-se:
 - a) Qual o ângulo que reta faz com o eixo das abscissas?
 - b) Qual o ângulo que a reta faz com o eixo das ordenadas?
 - c) Qual a distância entre os dois pontos?
- 11) Seja o conjunto de pontos representado por: $\{(x; y) \mid x = 0 \text{ e } y \in R\}$. Em qual região do plano cartesiano estes pontos estão situados?
- 12) Seja o conjunto de pontos representado por: $\{(x; y) \mid x \in R_+ \text{ e } y = 0\}$. Em qual região do plano cartesiano estes pontos estão situados?
- 13) Seja o conjunto de pontos representado por: $\{(x; y) \mid x = 0 \text{ e } y \in R_{-}\}$. Em qual região do plano cartesiano estes pontos estão situados?
- 14) Seja o conjunto de pontos representado por: $\{(x; y) \mid x = 0 \text{ e } y \in R_+\}$. Em qual região do plano cartesiano estes pontos estão situados?
- 15) A origem do sistema, (0; 0), está situada em alguma das regiões do plano cartesiano definidas nos exercícios de 12 a 14?
- 16) Desenhe um quadrado contido no 1⁰ quadrante de um sistema cartesiano. Quais as coordenadas do vértice do quadrado que você desenhou?

1.2- Produto Cartesiano

Dados dois conjuntos não vazios A e B, denomina-se **produto cartesiano** de A por B ao conjunto formado por todos os pares ordenados (x; y) com $x \in A$ e $y \in B$. A notação do produto cartesiano de A por B é AxB, onde se lê "A cartesiano B".

Exercícios 1.2

- 1) Escreva em linguagem simbólica o produto cartesiano AxB.
- 2) Dados os conjuntos $A = \{1; 2; 3\}$ e $B = \{5; 6\}$, use diagramas para obter os produtos cartesianos:
 - a) AxB
 - b) BxA
- 4) Faça a **representação Gráfica** dos dois produtos cartesianos do exercício 2 em um plano cartesiano.
- 5) Calcule o número de elementos dos produtos cartesianos do exercício 2, ou seja, qual o valor de n(AxB) conhecendo-se os valores de n(A) e n(B)?
- 6) Faça a **representação Gráfica** do produto cartesiano dos intervalos fechados B = [3; 5] e C = [3; 7] em um plano cartesiano, sendo que esses intervalos estão contidos nos reais (R). Veja que o resultado é um **retângulo**.
- 7) Qual o número de elementos do produto cartesiano do exercício 6, n(BxC)?
- 8) Faça a **representação gráfica** do produto cartesiano dos intervalos D =]3; 5], aberto à esquerda e E = [3; 7[, aberto à direita, em um plano cartesiano. Considere esses intervalos contidos nos reais (R). Veja que o resultado é um **retângulo com o lado vertical esquerdo e o lado superior tracejados.**
- 9) Qual o número de elementos do produto cartesiano do exercício 8, n(DxE)?
- 10) O número de elementos de um conjunto B é n(B) = 3m e o de um conjunto D é n(D) = 3p. Qual o número de elementos de BxD, ou seja, n(BxD), sabendo que p m = 1 e m + 2p = 8?
- 11) Faça a **representação gráfica** do produto cartesiano entre o intervalo A = [-3; ∞), aberto à direita, e o intervalo E = (2; 5], aberto à esquerda. Considere esses intervalos contidos nos reais (R).
- 12) O eixo das abscissas Ox representa o conjunto dos números reais, R, e da mesma forma o eixo das ordenadas Oy, também, representa o conjunto dos

- reais, R. Então, o produto cartesiano RxR pode ser escrito como R². Faça a representação gráfica desse produto cartesiano.
- 13) Qual o número de elementos do produto cartesiano do exercício anterior, n(RxR)?
- 14) Faça a **representação gráfica** do produto cartesiano entre o intervalo C = [-2; ∞), aberto à direita, e o intervalo D = (2; 7] aberto à esquerda.
- 15) Faça a **representação gráfica** do produto cartesiano entre o intervalo E = (-3; ∞) e o intervalo F = (2; 5]. Considere esses intervalos contidos nos reais (R).
- 16) Considere a intersecção entre os produtos cartesianos CxD do exercício 14 e o produto cartesiano ExF do exercício 15. Faça a **representação gráfica** da intersecção e escreva em linguagem o conjunto correspondente à intersecção.
- 17) Seja o conjunto de pontos do segmento de reta $\overline{AB} = \{(x; y) \in \mathbb{R}^2 \mid y = 5 + 2x \in \mathbb{R}^2 \mid y = 5 + 2x \in \mathbb{R}^2 \}$. Pede-se:
 - a) as coordenadas das extremidades do segmento \overline{AB} ;
 - b) o comprimento desse segmento.
- 18) Seja o conjunto de pontos do segmento de reta $\overline{CD} = \{(x; y) \in \mathbb{R}^2 \mid y = 4 + x \in x \in [3; 15] \subset \mathbb{R}\}.$
 - a) as coordenadas das extremidades do segmento $\overline{\text{CD}}$;
 - b) o comprimento desse segmento.
- 19) Existe intersecção entre os segmentos \overline{AB} e \overline{CD} dos exercícios 17 e 18?
- 20) Quais as coordenadas do ponto de intersecção entre \overline{AB} e \overline{CD} dos exercícios 17 e 18?

1.3- Relação

Dados dois conjuntos não vazios A e B denomina-se **relação R de A em B** a qualquer <u>subconjunto do produto cartesiano de A por B, AxB</u>. A relação R de A em B é denotada por $A \rightarrow B$.

Domínio e Conjunto Imagem

Dado o par ordenado (X; Y) pertencente à relação R de A em B, tem-se que a relação R associa X a Y, e então, Y é a imagem de X em R. Dessa forma, o conjunto domínio de R, D(R) é formado por todos os elementos de A que estão associados a pelo menos um elemento de B e o conjunto imagem de R, Im(R) é formado por todos os elementos de B que são imagens de pelo menos um elemento de A.

Exercícios 1.3

- 1) Dados os conjuntos $A = \{2; 7; 9\}$ e $B = \{7; 9; 10\}$, mostre que $R_1 = \{(2; 9), (2; 10), (7; 9)\}$ é uma relação de A em B.
- 2) Qual o domínio D(R) e o conj. imagem Im(R) da relação R₁ do exercício 1?
- 3) Verifique se $R_2 = \{(2; 9), (2; 10), (7; 5)\}$ é uma relação de A em B, os conjuntos especificados no exercício 1.
- 4) Considere os conjuntos do exercício 1. Faça a representação da relação R₁: A→B por meio do diagrama de flechas.
- 5) Considere os conjuntos A e B do exercício 1. Escreva, por enumeração, a relação $R_4 = \{(x; y) \in AxB \mid x = y\}$.
- 6) Qual o domínio D(R) e o conj. imagem Im(R) da relação R₄ do exercício 5?
- 7) Considere os conjuntos A e B do exercício 1. Escreva, por enumeração, a relação $R_5 = \{(x; y) \in AxB \mid x < y\}.$
- 8) Qual o domínio D(R) e o conj. imagem Im(R) da relação R₅ do exercício 7?
- 9) Considere os conjuntos $C = \{-3; -2; -1; 0; 1; 3\}$ e $D = \{2; 3; 4; 5; 6\}$ e a relação R: $C \rightarrow D$, $R = \{(-3; 2), (-3; 3), (-2; 4), (-2; 5), (0; 5), (0; 6)\}$. Represente graficamente a relação R em um plano cartesiano.
- 10) Qual o domínio D(R) e o conj. imagem Im(R) da relação R do exercício 9?
- 11) Considere P como o conjunto dos números pares e I o conjunto dos números ímpares. Verifique qual das relações adiante é relação de P em I, ou seja, a relação R: $P \rightarrow I$.

- a) {(2; 2), (4; 5), (6; 4)}
- b) {(4; 3), (6; 5), (8; 7)}
- c) $\{(1; 2), (3; 4), (5; 6)\}$
- 12) Qual o domínio D(R) e o conj. imagem Im(R) da relação R do exercício 11?
- 13) Represente graficamente a relação R que você identificou no exercício 11 em um plano cartesiano.
- 14) Represente por extensão (ou enumeração) a relação $R_1 = \{(x; y) \in N^2 | y = x\}.$
- 15) Qual o domínio $D(R_1)$ e o conjunto imagem $Im(R_1)$ da relação R_1 do exercício 14.
- 16) Represente graficamente em um plano cartesiano a relação R₁ do exercício 14.
- 17) Represente por extensão (ou enumeração) a relação $R_2 = \{(x; y) \in N^2 | y = x^2\}.$
- 18) Qual o domínio $D(R_2)$ e o conj. imagem $Im(R_2)$ da relação R_2 do exercício 17?
- 19) Represente graficamente em um plano cartesiano a relação R₂ do exercício 17.
- 20) Represente por extensão (enumeração) a relação $R_3 = \{(x; y) \in N^2 | y = x\}.$
- 21) Qual o domínio $D(R_3)$ e o conjunto imagem $Im(R_3)$ da relação R_3 do exercício 20?
- 22) Represente graficamente em um plano cartesiano a relação R₃ do exercício 20.
- 23) Seja A = $\{2; 5; 10\}$ e C = $\{-4; 4; 3\}$.
 - a) Represente por diagrama em flechas a relação $R_1 = \{(x; y) \in AxC \mid x + y < 7\}.$
 - b) Represente por extensão a relação $R_1 = \{(x; y) \in AxC \mid x + y < 7\}$.
 - c) Represente por extensão o domínio e o conjunto imagem de R₁.
 - d) Represente por diagrama em flechas a relação $R_2 = \{(x; y) \in AxC \mid x^2 = y\}.$
 - e) Represente por extensão o domínio e o conjunto imagem de R₂.
- 24) Faça a **representação gráfica** (no plano cartesiano) das relações R₁ e R₂, citadas anteriormente.
- 25) Dados os intervalos: $A = [-3; 3] \subset R$ e $B = [-9; 9] \subset R$, faça a representação gráfica (no plano cartesiano) das relações:

- a) $R_1 = \{(x; y) \in AxB \mid y = x^2\};$
- b) $R_2 = \{(x; y) \in AxB \mid y = 3x\};$
- c) Represente por extensão $D(R_1)$ e $Im(R_1)$;
- d) Represente por extensão $D(R_2)$ e $Im(R_2)$.
- 26) Dada a representação gráfica, adiante, da relação R de X em Y, ou seja, R: $X \to Y$, com $X \subset Z$ e $Y \subset Z$ pede-se:
 - a) Represente por extensão (ou enumeração) a relação R;
 - b) Represente por extensão o domínio de R, D(R);
 - c) Represente por extensão o conjunto imagem de R, Im(R);
 - d) De qual conjunto, produto cartesiano, R é subconjunto?

Representação Gráfica da Relação R

27) Dada a representação gráfica, adiante, da relação R_2 de X em Y, ou seja, R_2 : $X \to Y$, com $X \subset Z$ e $Y \subset Z$.

Representação Gráfica da Relação R2

Pede-se:

- a) Represente por extensão (ou enumeração) a relação R2;
- b) Representa por extensão o domínio de R2, D(R2);
- c) Represente por extensão a imagem de R2, Im(R2);
- d) De qual conjunto, produto cartesiano, R2 é subconjunto?
- 28) Dada a representação gráfica, adiante, da relação R_3 de X em Y, ou seja, R_3 : $X \to Y$, com $X \subset R$ e $Y \subset R$,

pede-se:

- a) Represente por propriedade a relação R₃;
- b) Represente por propriedade o domínio de R₃, D(R₃);
- c) Represente por propriedade a imagem de R₃, Im(R₃);
- d) De qual conjunto produto cartesiano R₃ é subconjunto?

1.4- Função

Dados dois conjuntos não vazios A e B, denomina-se **função a toda relação de** A em B na qual, para todo elemento de A, está associado um único elemento de B. Desta forma, todos os elementos de A estão associados a um elemento de B e nenhum elemento de A pode estar associado a dois ou mais elementos de B.

Uma função do conjunto A em B denotada por $\mathbf{f} \colon \mathbf{A} \to \mathbf{B}$ pode ser representada por uma lei do tipo $\mathbf{y} = \mathbf{f}(\mathbf{x})$ que determina a forma como são obtidos os pares (x; y) do produto cartesiano, ou seja, $(x; y) \in AxB$. Se uma relação R é uma função de A em B, dizemos que:

- A é o domínio da função;
- B é o contradomínio;
- os elementos do contradomínio B que estão associados aos do domínio A formam o conjunto imagem da função.

Exercícios 1.4

- 1) Identifique nas figuras que o professor fará no quadro negro, o que é função e o que não é, explicando por quê.
- 2) Dados os conjuntos $A = \{0, 1, 2, 3\}$ e $B = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, pede-se:
 - a) O produto cartesiano AxB.
 - b) Os pares (pontos) correspondentes à função, y = f(x): $A \rightarrow B$, com y = f(x) = 2x + 1.
 - c) Represente os pares ordenados obtidos no item (b) em um plano cartesiano.
- 3) Dado o conjunto dos reais, R, e o conjunto dos reais não negativos, R₊, pedese:
 - a) A representação no plano cartesiano da função y = f(x): $R \rightarrow R_+$, $y = f(x) = 3x^2 + 2$.
 - b) A representação no plano cartesiano da função y=f(x): $R \to R_+, y=f(x)=x^2$.
- 4) Seja a relação de A = [0; 5] em B = $\{1/5\}$ cuja expressão é $f(x) = y = \frac{1}{5}$.
 - a) f(x) é uma função, explique por quê.
 - b) Qual o conjunto domínio de f(x)?
 - c) Qual o conjunto contradomínio de f(x)?
 - d) Faça a representação no plano cartesiano da função f(x).
- 5) Seja a expressão $f(x) = y = \frac{1}{b-a}$, tal que $x \in [a; b] \subset R$, com b > a. Assim,

tem-se f:X
$$\rightarrow$$
Y com X = [a; b] \subset R e Y = { $\frac{1}{b-a}$ } \subset R

- a) f(x) é uma função, explique por quê.
- b) Qual o conjunto domínio de f(x)?
- c) Qual o conjunto contradomínio de f(x)?

- d) Qual o conjunto imagem de f(x)?
- e) Faça a representação no plano cartesiano da função f(x), assumindo um valor genérico para b.
- 6) As funções dos itens 4 e do item 5 têm um nome especial. Qual é este nome?
- 7) Seja a representação gráfica, adiante, da relação R_3 de X em Y, ou seja, R_3 : X \rightarrow Y, com X \subset R e Y \subset R, adiante. A relação R_3 é uma função? Por quê?

8) Seja a representação gráfica da relação R_2 de X em Y, ou seja, R_2 : $X \to Y$, com $X \subset Z$ e $Y \subset Z$, adiante. A relação R_2 é uma função? Por quê?

Representação Gráfica da Relação R2

9) Seja a representação gráfica da relação R de X em Y, ou seja, R: $X \to Y$, com $X \subset Z$ e $Y \subset Z$, adiante. A relação R é uma função? Por quê?

Representação Gráfica da Relação R

10) Seja a representação gráfica, adiante, da relação R_6 de X em Y, ou seja, R_6 : $X \to Y$, com $X = [0; 5] \subset R_+$ e $Y = [0; 2] \subset R_+$, adiante. A relação R_6 é uma função? Por quê?

- 11) Seja y = f(x) a função cuja representação gráfica está na figura anterior (10).
 - a) Qual a expressão da função f(x)? Represente-a por propriedade (compreensão).
 - b) Qual o domínio da função f(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função f(x)? Represente-o por propriedade (compreensão).
 - d) Qual o conjunto imagem da função f(x)? Represente-o por propriedade (compreensão).
- 12) Seja y = g(x) a função $g: X \to Y$, com X sendo o intervalo $[0; 3] \subset R_+$ e Y o intervalo $[0; 10] \subset R_+$ cuja representação gráfica está na figura adiante.
 - a) Qual a expressão da função g(x)? Represente-a por propriedade (compreensão).
 - b) Qual o domínio da função g(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função g(x)? Represente-o por propriedade (compreensão).
 - d) Qual o conjunto imagem da função g(x)? Represente-o por propriedade (compreensão).

- 13) Seja y = h(x) a função h: $X \to Y$, com X sendo o intervalo [-3; 0] $\subset R$. e Y o intervalo [0; 10] $\subset R_+$, cuja representação gráfica está na figura adiante.
 - a) Qual a expressão da função g(x)? Represente-a por propriedade (compreensão).
 - b) Qual o domínio da função g(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função g(x)? Represente-o por propriedade (compreensão).
 - d) Qual o conjunto imagem da função g(x)? Represente-o por propriedade (compreensão).

- 14) Seja $y = f(x) = x^3$ a função f: $X \to Y$, com X sendo o intervalo [-3; 3] $\subset R$ e Y o intervalo [-30; 30] $\subset R$, cuja representação gráfica está na figura adiante.
 - a) Por que f(x) é uma função?
 - b) Qual o domínio da função f(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função f(x)? Represente-o por propriedade (compreensão).
 - d) Qual o conjunto imagem da função f(x)? Represente-o por propriedade (compreensão).

- 15) Seja y = $g(x) = x^3 + 5$ a relação g: X \rightarrow Y, com X sendo o intervalo [-3; 3] \subset R e Y o intervalo [-50; 50] \subset R, cuja representação gráfica está na figura adiante.
 - a) Por que g(x) é uma função?
 - b) Qual o domínio da função g(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função g(x)? Represente-o por propriedade (compreensão).
 - d) Qual o conjunto imagem da função g(x)? Represente-o por propriedade (compreensão).

- 16) Seja y = h(x) = 2x + 1, a função h: $X \to Y$, com X sendo o intervalo [0; 5] $\subset R_+$ e Y o intervalo [0; 20] $\subset R_+$, cuja representação gráfica está na figura adiante.
 - a) Por que h(x) é uma função?
 - b) Qual o domínio da função h(x)? Represente-o por propriedade (compreensão).
 - c) Qual o contradomínio da função h(x)? Represente-o por propriedade (compreensão).

d) Qual o conjunto imagem da função y = h(x)? Represente-o por propriedade (compreensão).

- 17) Seja y = f(x) = 2x + 5, a função f: $X \to Y$, com X sendo o conjunto [0; 1; 2; 3; 4; 5] $\subset N$ e Y o conjunto [0; 1; 2;; 19; 20] $\subset N$, cuja representação gráfica está na figura adiante.
 - a) Por que f(x) é uma função?
 - b) Qual o domínio da função f(x)? Represente-o por extensão.
 - c) Qual o contradomínio da função f(x)? Represente-o por extensão.
 - d) Qual o conjunto imagem da função f(x)? Represente-o por extensão.

1.4.1- FUNÇÃO CONSTANTE

Chama-se **função constante** a toda função na qual os elementos do domínio possuem a mesma imagem.

Exercícios 1.4.1

1) Seja y = f(x) = 0,2 a função f: X \rightarrow Y com X = {2, 3, 4, 5, 6} \subset N e o conjunto unitário Y = {0,2} \subset Q. A representação gráfica está na figura adiante.

- a) Por que f(x) é uma função? Qual a propriedade importante que tem essa função?
- b) Qual o nome dessa função, devido essa propriedade do item (a)?
- c) Qual o domínio da função f(x)? Represente-o por extensão.
- d) Qual o contradomínio da função f(x)? Represente-o extensão.
- e) Qual o conjunto imagem da função f(x)? Represente-o por extensão.
- 2) Seja y = g(x) = 0.25 a função $g: X \to Y$ com X sendo o intervalo $[0; 4] \subset R$ e o conjunto unitário $Y = \{0.25\} \subset R$. A representação gráfica está na figura adiante.
 - a) Por que g(x) é uma função? Qual a propriedade que tem essa função?
 - b) Qual o nome dessa função, devido essa propriedade do item (a)?
 - c) Qual o domínio da função g(x)? Represente-o por propriedade (compreensão).
 - d) Qual o contradomínio da função g(x)? Represente-o.

e) Qual o conjunto imagem da função g(x)? Represente-o.

- 3) Uma variável aleatória X tem como função densidade de probabilidade a função f(x) = 1. Esta é uma função de $X = [0; 1] \subset R$ em $Y = \{1\} \subset N$.
 - a) Por que f é uma função? Qual a propriedade importante que tem essa função?
 - b) Qual o nome dessa função?
 - c) Qual o domínio de f?
 - d) Qual o contradomínio de f?
 - e) Qual conjunto imagem de f?

- 4) Uma variável aleatória X tem como função densidade de probabilidade a função f(x) = 1/5. Trata-se de uma função de X, o intervalo [5; 10] ⊂ R, em Y o conjunto unitário {1/5} ⊂ R.
 - a) Por que f é uma função? Qual a propriedade que tem essa função?
 - b) Qual o nome dessa função f?
 - c) Qual o domínio de f?
 - d) Qual o contradomínio de f?
 - e) Qual conjunto imagem de f?
 - f) Faça a representação gráfica de f.
- 5) Faça a representação gráfica da função definida por f: U → Y, onde U é o intervalo fechado [a; b] ⊂ R, Y é o conjunto unitário {1/(b − a)} ⊂ R e tem-se f(u) = 1/(b − a). Identifique os elementos da função (domínio, etc.). Se U é uma variável aleatória, como se chama a função f(u) no contexto estatístico?

1.4.2 FUNÇÃO CRESCENTE E FUNÇÃO DECRESCENTE

Uma função f(y), definida no intervalo [a; b], é chamada de função crescente se para $y_2 > y_1$ tem-se $f(y_2) > f(y_1)$ e da mesma forma g(y), definida no intervalo [a; b], é chamada de função decrescente se para $y_2 > y_1$ ocorrer $g(y_2) < g(y_1)$.

Exercícios 1.4.2

1) A função y = g(x) = 3x definida em R, ou seja $g:X \rightarrow Y$ com $X \subset R$ e $Y \subset R$, é crescente ou decrescente? Por quê?

2) A função $y = f(x) = 2^x$ definida em R, ou seja, $f:X \rightarrow Y$ com $X \subseteq R$ e $Y \subseteq R_+$, é crescente ou decrescente? Por quê?

3) A função y = f(x) = sen(x) com $x \in [0; \frac{\pi}{2})$, ou seja, $f: X \to Y$ com $X = [0; \frac{\pi}{2}) \subset R$ e $Y = [-1; 1] \subset R$, é crescente ou decrescente? Por quê?

4) A função y = h(x) = tg(x) com $x \in [0; \frac{\pi}{2})$, ou seja, h: $X \rightarrow Y$ com $X = [0; \frac{\pi}{2})$ $\subset R$ e $Y \subset R_+$, é crescente ou decrescente? Por quê?

5) A função $f(x) = 3^{-x}$ com $x \in R$ é crescente ou decrescente? Por quê?

- 6) A função $p(x) = 0.3^x.0.7^{1-x}$ com x = 0, 1 é da forma $p(x) = \theta^x(1-\theta)^{1-x}$ com $\theta \in (0; 1)$ e x = 0, 1. Na forma específica trata-se da função f do conjunto $\{0; 1\}$ no intervalo [0; 1], ou seja, $f:\{0; 1\} \rightarrow [0;1] \subset R$ com $\theta = 0.3$. A representação gráfica está em seguida.
- a) Por que p(x) é uma função?
- b) Qual o domínio dessa função p(x)?
- c) Qual o contradomínio dessa função p(x)?
- d) Qual o conjunto imagem de p(x)?
- e) Qual o nome dessa função no contexto estatístico?

7) A função $p(y) = \binom{5}{y} 0,4^y 0,6^{5-y}$ com y = 0, 1, 2, 3, 4, 5 é da forma $p(y) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$ y = 0, 1, 2,, n. Na forma específica trata-se da função f do conjunto $\{0; 1; 2; 3; 4; 5\}$ no intervalo [0; 1], ou seja, $f:\{0; 1; 2; 3; 4; 5\} \rightarrow [0;1] \subset R$. A representação gráfica está em seguida.

- a) Por que p(y) é uma função?
- b) Qual o domínio dessa função p(y)?
- c) Qual o contradomínio dessa função p(y)?
- d) Qual o conjunto imagem de p(y)?

1.4.3 FUNÇÕES PARES E FUNÇÕES ÍMPARES

Função Par

Uma função é chamada de **função par** quando para qualquer valor x do seu domínio ocorrer f(x) = f(-x). Assim, em uma função par valores simétricos (em relação à origem) do domínio têm sempre a mesma imagem no contradomínio.

Função Impar

Uma função é chamada de **função impar** quando para qualquer valor **x** do seu domínio ocorrer f(x) = -f(-x). Assim, em uma função impar valores simétricos (em relação à origem) do domínio têm imagens simétricas no contradomínio.

Função Sem Paridade

Uma função que não é par e não é impar é chamada de função sem paridade ou se diz que **não tem paridade**.

Exercícios 1.4.3

1) Classifique as funções abaixo em função par, em função impar ou em função sem paridade e justifique por quê.

c)
$$f(x) = x^3$$
 $com x \in R$ ()

d)
$$f(x) = 3x^4$$
 com $x \in R$ (

e)
$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2}z^2} \text{ com } z \in R$$
 ()

f)
$$f(z) = \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2}z} \text{ com } z \in \mathbb{R}$$
 (

g)
$$f(x) = 3x \text{ com } x \in R$$
 (

g)
$$f(x) = 3x \text{ com } x \in R$$
 ()
h) $y = x^2 + 3 \text{ com } x \in R$ ()

i)
$$h(x) = -\frac{x^3}{2}$$
 com $x \in R$

j)
$$u(x) = x^3 - 1 \text{ com } x \in R$$
 (

k)
$$f(x) = sen(x)$$
 $x \in [0, \frac{\pi}{2}]$ (

$$1) f(x) = \cos(x) \qquad x \in R \qquad ($$

1)
$$f(x) = \cos(x)$$
 $x \in R$ (
m) $f(y) = tg(y)$ $y \in [0, \frac{\pi}{2})$ (

n)
$$f(x) = \ell n(x)$$
 $x \in R_+$ ()
o) $f(x) = 1 - x$ $x \in R$ ()

o)
$$f(x) = 1 - x$$
 $x \in R$ ()

2) Classifique as funções que o professor desenhará no quadro negro em **função par**, em **função impar** ou em **função sem paridade** e justifique por quê.

1.4.4 FUNÇÃO SOBREJETORA, INJETORA E BIJETORA

Função Sobrejetora

Uma função $f: A \rightarrow B$ é chamada de **função sobrejetora** quando todo elemento do **contradomínio B** for imagem de pelo menos um elemento do **domínio A** da função. Desta forma o **conjunto imagem** de **f** é **igual ao seu contradomínio**.

Função Injetora

Uma função f: A→B é chamada de **função injetora** quando para **dois elementos distintos quaisquer** do domínio, corresponderem **duas imagens distintas** no contradomínio.

Função Bijetora

Uma função f: A→B é chamada de **função bijetora** quando for **injetora e sobrejetora** simultaneamente.

Exercícios 1.4.4

1) A função $y = f(x) = x^3$, com $x \in R$ e $y \in R$, é sobrejetora? Por quê?

2) A função y = g(x) = x, com $x \in R$ e $y \in R$, é injetora? Por

3) A função $f(x) = x^3$, com $x \in [-10; 10]$ e $y \in [-1000; 1000]$ é bijetora? Por quê?

4) A função y = sen(x), com $x \in R$ e $y \in [-1; 1] \subset R$, é injetora?

5) Complete o texto de forma a torná-lo verdadeiro: "toda reta paralela ao eixo das abscissas, Ox, corta uma função injetora em no máximo um

-". Então, a função y = f(x) = sen(x) não é injetora porque existem retas paralelas ao eixo Ox cortando o gráfico em mais de um
- 6) Identifique nas figuras que o professor fará no quadro negro as funções sobrejetoras.
- 7) Identifique nas figuras que o professor fará no quadro negro as funções sobrejetoras, injetoras e bijetoras.

8) A função $y=f(x)=\ell n(2x)$, com $x\in R_+^*$ e $y\in R$, é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

9) A função $y = f(x) = 3e^{-5x}$, com $x \in R$ e $y \in R_+^*$, é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

10) A função $y = f(x) = e^{-5x}$, com $x \in R$ e $y \in R^*_+$ é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

11) A função $y=f(x)=\cos(x)$, com $x\in R$ e $y\in [-1;1]\subset R$, é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

12) A função $y = f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$, com $z \in R$ e $y \in (0; 0,4] \subset R_+^*$, é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

13) A função do item (12) é muito importante na estatística. Qual o nome dessa função na Estatística?

14) A função $y=f(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z}$, com $z\in R$ e $y\in R_+^*$, é sobrejetora? É injetora? É bijetora? Veja o gráfico adiante.

15) A função $p(x) = 0.3^x.0.7^{1-x}$ com x = 0, 1 é da forma $p(x) = \theta^x(1-\theta)^{1-x}$ com $\theta \in (0; 1)$ e x = 0, 1. Na forma específica trata-se da função f do conjunto $\{0; 1\}$ no intervalo [0; 1], ou seja, $f:\{0; 1\} \rightarrow [0;1] \subset R$ com $\theta = 0.3$. A representação gráfica está em seguida.

a) Por que p(x) é uma função?

- b) Qual o domínio dessa função p(x)?
- c) Qual o contradomínio dessa função p(x)?
- d) Qual o conjunto imagem de p(x)?
- e) Qual o nome dessa função no contexto estatístico?
- f) A função p(x) é par, impar ou sem paridade?
- g) A função p(x) é sobrejetora, injetora ou bijetora? Por quê?

16) A função $p(y) = \binom{5}{y} 0,4^y 0,6^{5-y}$ com y = 0, 1, 2, 3, 4, 5 é da forma $p(y) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$ y = 0, 1, 2,, n. Na forma específica trata-se da função f do conjunto $\{0; 1; 2; 3; 4; 5\}$ no intervalo [0; 1], ou seja, $f:\{0; 1; 2; 3; 4; 5\} \rightarrow [0;1] \subset \mathbb{R}$. A representação gráfica está em seguida.

- a) Por que p(y) é uma função?
- b) Qual o domínio dessa função p(y)?
- c) Qual o contradomínio dessa função p(y)?
- d) Qual o conjunto imagem de p(y)?
- e) A função p(y) é par, impar ou sem paridade?
- f) A função p(y) é sobrejetora, injetora ou bijetora? Por quê?

g) Qual o nome dessa função p(x) no contesto estatístico?

1.4.5 FUNÇÃO INVERSA

Seja f uma função **bijetora** de A em B, então é possível definir uma nova função com **domínio B** e **contradomínio A** que associa a cada elemento $y = f(x) \in B$ um único elemento $x \in A$. Essa nova função, denotada por \mathbf{f}^1 , é **chamada de função inversa de f**. E, então, $\mathbf{f}^1 = \{(y; x) \mid (x; y) \in \mathbf{f}\}$.

Exercícios 1.4.5

- 1) Seja y = f(x) = 3x 1, com $x \in R$, ou melhor, $f:R \to R$. Veja os gráficos de f(x) e de $f^{-1}(y)$.
- a) Determine a função inversa de f, ou seja, f⁻¹(y);
- b) Por que existe a inversa f⁻¹ de f?
- c) Se x = 5, qual o valor de y = f(x)?
- d) Se y = 11, qual o valor de $x = f^{-1}(y)$?

- 2) Seja f(x) = y = sen(x), com $x \in [0; \frac{\pi}{2}]$, ou melhor, $f:[0; \frac{\pi}{2}] \rightarrow [0; 1]$. Veja os gráficos de f(x) e de $f^{-1}(y)$.
- a) Escreva a função f⁻¹(y).
- b) Se $x = 45^{\circ}$, ou melhor, $x = \frac{\pi}{4}$ radianos; qual o valor de f(x)?
- c) Se $y = \frac{\sqrt{3}}{2}$, qual o valor de $f^{-1}(y)$?

- 3) Seja f(x) = y = sen(x/2), com $x \in [0; \frac{\pi}{2}]$, ou melhor, $f: [0; \frac{\pi}{2}] \rightarrow [0; 1]$
- a) Qual o valor de f⁻¹(y)?
- b) Se $y = \frac{\sqrt{2}}{2}$, qual o valor de $f^1(y)$?
- c) Qual propriedade uma função deve possuir para que admita inversa?
- 4) Seja $f(x) = y = \cos(x)$, com $x \in R$, ou melhor, f: $R \rightarrow R$ com conjunto imagem igual a [-1; 1].

a) Essa função admite inversa em todo o seu domínio? Por quê? Veja o gráfico adiante.

b) Se a função $f(x) = y = \cos(x)$ for definida apenas no 1^{0} quadrante, ou seja, $f:[0;\frac{\pi}{2}] \rightarrow [1;0]$, ela admite inversa? Por quê? Veja o gráfico.

d) Se y = 0.5; qual o valor da inversa $f^{-1}(y)$? Veja o gráfico adiante.

- 5) Seja f(x) = y = ln(x). Veja os gráficos adiante.
- a) Existe inversa de f(x)? Por quê?
- b) Qual a função inversa de f(x), $f^{-1}(y)$?
- c) Se x = 0, qual o valor de f(x)?
- d) Se x = 2, qual o valor de f(x)?
- e) Se y = 1, qual o valor de $f^{-1}(y)$? f) Se y = 0.4, qual o valor de $f^{-1}(y)$?

6) Seja a função $f(x) = y = \ln(x)$, ou seja, $f: R_+^* \to R$,. Veja os gráficos de f(x) e de $f^1(y)$ adiante.

- a) Qual o valor da inversa $f^{1}(y)$ no ponto y = 0.5?
- b) Qual o valor de f(x) em x = 1?
- c) Qual o valor de f(x) em x = 2?
- d) Qual o valor de $f^{1}(y)$ em y = 0,69314718?
- 7) Seja f(x) = y = log(x), ou seja, f: $R_+^* \rightarrow R$. Veja os gráficos adiante.

- a)Qual a função inversa de f(x), $f^{-1}(y)$?
- b) Qual o valor de f(2)?
- c) Qual o valor de f(3)?
- d) Qual o valor de f(4)?
- e) Qual o valor de f¹(0,301029999)? f) Qual o valor de f¹(0,477121).

- 8) Seja f(x) = y = log(x) = 0.845098. Qual o valor da inversa de f(x), em 0.845098, ou seja, $f^{1}(0.845098)$?
- 9) Os gráficos adiante se referem à representação gráfica da relação de $R \rightarrow R$. y = tg(x). Considere, agora, y = f(x) = tg(x) que é uma função $f : [0; \frac{\pi}{2}) \rightarrow R_+$. Veja os gráficos da função no trecho $x \in [0; \frac{\pi}{2})$ adiante.

- a) Qual o valor de f(x) em $x = 45^{\circ}$?
- b) Qual o valor de f(x) em $x = \pi/6$? c) Qual o valor de $f^{-1}(y)$ em y = 1?

- d) Qual o valor de f⁻¹(y) em y = $\frac{\sqrt{3}}{3}$?
- e) Qual o valor de $f^{1}(y)$ em $y = \sqrt{3}$?

1.4.6 Função Composta

Dadas as funções \mathbf{f} e \mathbf{g} chama-se **função composta** de \mathbf{f} com \mathbf{g} a função denotada por $\mathbf{f} \circ \mathbf{g}$ e definida por $\mathbf{f} \circ \mathbf{g}(\mathbf{x}) = \mathbf{f}[\mathbf{g}(\mathbf{x})]$.

Exercícios 1.4.6

- 1) Sejam as funções f(x) = x + 3 e g(x) = 3x 5. Determine:
- a) f ° g;
- b) $g^{\circ} f$;
- c) $f \circ g$ para x = 1.
- 2) Sejam as funções $f(x) = x^3 1$ e g(x) = 3x. Calcule:
- a) $f^{o}g(2)$;
- b) $f^{o}f(x)$;
- c) f^of(3).

1.5- Funções Importantes

1.5.1 FUNÇÃO POLINOMIAL DO 1^{0.} GRAU (RETA)

Toda função definida de R em R, ou seja, f: $R \rightarrow R$, por f(x) = ax + b, com $b \in R$ e $a \in R^*$ é denominada função **polinomial do 1**0. grau.

Equação Geral da Reta

A equação geral da reta é $\mathbf{ay} + \mathbf{bx} + \mathbf{c} = \mathbf{0}$ com $\mathbf{a} \in \mathbb{R}$, $\mathbf{b} \in \mathbb{R}^*$ e $\mathbf{c} \in \mathbb{R}$.

Equação Reduzida da Reta

Da equação geral pode-se obter a forma reduzida, ou seja, $y = -\frac{b}{a}x - \frac{c}{a}$ e

fazendo $m = -\frac{b}{a}$ e $n = -\frac{c}{a}$ tem-se y = mx + n, onde **m é o coeficiente angular** da reta e **n o coeficiente linear ou intercepto**.

Exercícios 1.5.1

- 1) Mostre que o coeficiente angular m é a tangente do ângulo agudo que a reta faz com o eixo das abscissas.
- 2) Mostre que o coeficiente linear (intercepto) n é igual à distância do ponto de interseção da reta com o eixo das ordenadas a origem do Sistema Cartesiano.
- 3) Dada a f(x) = y = 2x + 1. Veja o gráfico adiante. Pede-se:
 - a) O zero (raiz) da função.
 - b) O coeficiente angular da reta que a função representa.
 - c) O coeficiente linear da reta que a função representa.

4) Determine a equação da reta que passa pelo ponto P(1; 2) e é paralela a reta representada pela função do exercício 3.

5) Determine a equação da reta que passa pelo ponto P(1; 2) e é perpendicular a reta representada pela função do exercício 3.

- 6) Uma reta passa pelo ponto (2; 1) e tem coeficiente angular igual a $\frac{1}{2}$. Qual a equação dessa reta na forma reduzida e na forma geral?
- 7) Sabendo que três pontos $(x_1; y_1)$, $(x_2; y_2)$ e $(x_3; y_3)$ são colineares (pertencem a mesma reta) se verificam a equação:

$$\det\begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} = 0$$

Pergunta-se:

- a) Os pontos (1; 7), (0; 5) e (-3; -1) pertencem a mesma reta?
- b) Os pontos (0; 3), (1; 5) e (7, -2) pertencem a mesma reta?
- c) Os pontos (5; 15), (-5; -5) e (0; 5) pertencem a mesma reta?
- 8) Sabendo que a equação da reta que passa por dois pontos é dada por:

$$\det \begin{pmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{pmatrix} = 0$$

Pergunta-se:

- a) Qual a equação da reta que passa pelos pontos (1; 7) e (0; 5)?
- b) Qual a equação da reta que passa pelos pontos (0; 3) e (2; 5)?
- c) Qual a equação da reta que passa pelos pontos (2; 2) e (-1; -1)?
- 9) Sabendo que a distância de um ponto $P(x_0; y_0)$ a reta r com equação ay + bx + c = 0 é dada pela expressão:

$$d(P, r) = \frac{|ay_0 + bx_0 + c|}{\sqrt{a^2 + b^2}}$$

Pergunta-se:

- a) Qual a distância do ponto (1; 7) à reta y = 2x + 5?
- b) Qual a distância do ponto (0; 3) à reta 2y 3x + 4 = 0?
- c) Qual a distância da origem do sistema à reta y -x + 5 = 0?
- 10) Sabendo que a área de um triângulo cujos vértices têm as coordenadas $(x_1; y_1), (x_2; y_2)$ e $(x_3; y_3)$ é dada pela expressão:

$$A = \frac{1}{2} | \det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} |$$

Pergunta-se:

- a) Qual a área do triângulo cujos vértices são: (1; 2), (3; 4) e (9; 2)?
- b) Qual a área do triângulo cujos vértices são: (0; 2), (3; 0) e (4; 3)?
- c) Qual a área do triângulo cujos vértices são: (1; 1), (4; 2) e (3; 5)
- 11) Resolva a **inequação produto** $(2x + 5)(-5x + 2) \ge 0$ respondendo aos itens:
- a) Identifique as funções que compõem o produto;
- b) Construa, separadamente, os gráficos das funções;
- c) Monte uma tabela com os sinais de cada função e do produto;
- d) Escreva o conjunto solução.
- 12) Resolva a **inequação quociente** $\frac{(3x-5)(2x+1)}{3-x} < 0$ respondendo aos itens:
- a) Identifique as funções que compõem o quociente;
- b) Construa, separadamente, os gráficos das funções;
- c) Monte uma tabela com os sinais de cada função e do quociente;
- d) Escreva o conjunto solução.
- 13) Resolva a **inequação quociente** $\frac{(3x-5)}{7-x} > 0$ respondendo aos itens:
- a) Identifique as funções que compõem o quociente;
- b) Construa, separadamente, os gráficos das funções;
- c) Monte uma tabela com os sinais de cada função e do quociente;
- d) Escreva o conjunto solução.
- 14) Resolva a **inequação produto** (2x 5)(x-2) > 0 respondendo aos itens:
- a) Identifique as funções que compõem o produto;
- b) Construa, separadamente, os gráficos das funções;
- c) Monte uma tabela com os sinais de cada função e do produto;
- d) Escreva o conjunto solução.

1.5.2 FUNÇÃO POLINOMIAL DO 2^{0.} GRAU

Toda função definida de R em R por $f(x) = ax^2 + bx + c$, com b, $c \in R$ e $a \in R^*$, é denominada função **polinomial do 2**⁰. **grau ou função quadrática (trinômio do 2**⁰. **grau).**

FÓRMULA DE BHASCARA (Filósofo indiano que viveu de 1114 a 1185).

A determinação das raízes da função do 2^{0} grau é feita usando a fórmula de Bháskara e a idéia é completar o trinômio $\mathbf{ax}^2 + \mathbf{bx} + \mathbf{c}$ de modo a fatorar o quadrado perfeito, ou seja:

- começando com $ax^2 + bx + c = 0$, multiplica-se a equação por 4a;
- ao resultado $4a^2x^2 + 4abx + 4ac = 0$, soma-se b^2 aos dois membros da igualdade, pois falta o termo b^2 para que fique um quadrado perfeito;
- operando com o resultado: $4a^2x^2 + 4abx + 4ac + b^2 = b^2$ $4a^2x^2 + 4abx + b^2 = b^2 - 4ac$
- o primeiro membro é um trinômio quadrado perfeito, então, $(2ax + b)^2 = b^2 4ac$
- isolando a incógnita x: $2ax + b = \pm \sqrt{b^2 4ac}$

$$2ax = -b \pm \sqrt{b^2 - 4ac}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

40

Exercícios 1.5.2

- 1) Dada a função do segundo grau $f(x) = ax^2 + bx + c$, (veja o gráfico), mostre que:
 - a) a soma das raízes da função é igual a $S = \frac{-b}{a}$;
 - b) o produto das raízes da função é igual a $P = \frac{c}{a} \cos a \neq 0$.
- 2) Dada a equação do segundo grau $x^2 2x 3 = 0$;
 - a) identifique os coeficientes a, b e c;
 - b) calcule a soma das raízes;
 - c) calcule o produto das raízes;
 - d) ache as raízes da equação.

- 3) Seja a função $f(x) = ax^2 + bx + c$, definida nos números reais. O gráfico dessa função é uma curva chamada parábola. Assim, complete o texto adiante tornando verdadeiro.
 - a) Quando a > 0 a **concavidade** da curva está voltada para
 - b) Quando a < 0 a **concavidade** da curva está voltada para
- 4) Veja os gráficos das seguintes funções do 2⁰. grau e responda aos itens adiante.

A)
$$f(x) = x^2 - 4x + 3$$

A)
$$f(x) = x^2 - 4x + 3$$

B) $g(x) = -x^2 + x + 2$

- a) Cada uma das funções tem concavidade para cima ou para baixo?
- b) Calcule a soma das raízes de cada uma das funções;
- c) Calcule o produto das raízes de cada uma das funções;;
- d) Ache as raízes de cada uma das funções.
- 5) O gráfico da função definida de R em R por $f(x) = ax^2 + bx + c$ com $a \ne 0$ é uma curva chamada parábola. Determine as coordenadas do vértice V da função do 2^{0} . grau $f(x) = ax^{2} + bx + c$ (**parábola**) observando que:
 - a parábola tem um eixo de simetria passando pelo vértice V, então a abscissa do vértice é o ponto médio das abscissas das raízes;
 - a soma das raízes é $S = \frac{-b}{a}$;
 - entrando com a abscissa de V (x_V achada no passo anterior) em f(x) = y $= ax^2 + bx + c$ encontra-se a ordenada de V, (y_V) .

Adiantando as coordenadas são: $V(\frac{-b}{2a};\frac{-\Delta}{4a})$ com $\Delta=b^2-4ac$

- 6) Dadas as equações do 2⁰. grau adiante. Pede-se:
- a) As raízes da função do 2⁰. grau;
- b) As coordenadas do vértice V da função do 2⁰. grau;
- c) O gráfico da função;
- d) Identifique se a função tem concavidade para cima ou para baixo.

$$1^a$$
. $x^2 - 5x + 6 = 0$

$$2^{a}. 2x^{2}-10x+8=0$$

$$3^{a}. -x^{2}+5x-4=0$$

$$4^{a}. x^{2}-1=0$$

$$5^{a}. -x^{2}+x+2=0$$

$$3^{a.} -x^2 + 5x - 4 = 0$$

$$4^a$$
. $x^2 - 1 = 0$

$$5^{a.} -x^2 + x + 2 = 0$$

7) Resolva as inequações do 2⁰ grau seguintes;

a)
$$x^2 + 5x - 24 \ge 0$$

b)
$$-x^2 + 3x + 4 > 0$$

a)
$$x^2 + 5x - 24 \ge 0$$

b) $-x^2 + 3x + 4 > 0$
c) $x^2 - 5x + 6 < 0$
d) $2x^2 - 10x + 8 > 0$

d)
$$2x^2 - 10x + 8 > 0$$

e)
$$-x^2 + 5x - 4 \ge 0$$

f) $x^2 - 1 \ge 0$
g) $-x^2 + x + 2 \le 0$

f)
$$x^2 - 1 \ge 0$$

g)
$$-x^2 + x + 2 \le 0$$

- 8) Faça esboços dos gráficos das funções do 2º. grau cujos parâmetros são:
 - a) a > 0 e $\Delta > 0$;
 - b) $a < 0 e \Delta > 0$;
 - c) a > 0 e $\Delta = 0$;
 - d) a < 0 e Δ = 0;
 - e) a > 0 e Δ < 0;
 - f) a < 0 e Δ < 0.
- 9) Quando o discriminante é maior que zero $\Delta > 0$ tem-se que as raízes da função são números, quando $\Delta < 0$ as raízes são..... e quando $\Delta = 0$ as raízes são
- 10) A função do 2^{0} grau definida de R em R por $f(x) = ax^{2} + bx + c$ com $a \neq 0$ assume um valor máximo ou mínimo dependendo do valor do coeficiente a da função. Se a > 0 (concavidade para cima) f(x) tem um **mínimo** dado pela ordenada do vértice e $\mathbf{f}(\mathbf{x})_{\min} = \frac{-\Delta}{4a}$;

Se a < 0 (concavidade para baixo) f(x) tem um máximo dado pela ordenada do vértice e $\mathbf{f}(\mathbf{x})_{\text{max}} = \frac{-\Delta}{4a}$.

Então, determine o máximo ou o mínimo das seguintes funções:

a)
$$f(x) = x^2 + 5x - 24$$

a)
$$f(x) = x^2 + 5x - 24$$

b) $f(x) = -x^2 + 3x + 4$

c)
$$f(x) = x^2 - 5x + 6$$

d)
$$f(x) = 2x^2 - 10x + 8$$

e)
$$f(x) = -x^2 + 5x - 4$$

f) $f(x) = x^2 - 1$
g) $f(x) = -x^2 + x + 2$

f)
$$f(x) = x^2 - 1$$

g)
$$f(x) = -x^2 + x + 2$$

1.5.3 FUNÇÃO MODULAR

Uma função f: $R \to R$ é denominada de **função modular** quando é definida por f(x) = |x|.

OBS. Lembre que **módulo** ou **valor absoluto** de um número é a **distância** da imagem desse número na reta orientada até a origem da reta. Veja que |5| é igual à distância de 5 a origem 0, logo |5| = 5. Por outro lado, |-7| é igual à distância de -7 a origem 0, logo |-7| = 7. Como você sabe distância é sempre um número positivo.

Exercícios 1.5.3

1) Faça o gráfico da função $f(x) = |x|, x \in R$.

- 2) Observando o gráfico do exercício anterior se conclui que o conjunto imagem da função modular é o conjunto dos reais não, ou seja, ${\rm Im}(f)=R_+.$
- 3) Observando o gráfico do exercício 1 se conclui que o conjunto domínio da função modular é o conjunto dos....., ou seja, D(f) = R.
- 4) Faça os gráficos de y = |f(x)| nos seguintes casos:

a)
$$f(x) = 3x - 5$$

b)
$$f(x) = -x^2 + 3x$$

- 5) Dada a função $f(x) = x^2 3$, faça o gráfico de $y = |x^2 3| 3$.
- 6) Dadas as funções f(x) = |x 1| e g(x) = 3x 2 faça o gráfico de $f^{\circ}g(x)$.

1.5.4 FUNÇÃO EXPONENCIAL

1.5.4.1 DEFINIÇÃO

Uma função é chamada de exponencial quando é definida por $f(x) = a^x$, dos reais nos reais, ou seja, de R em R, com $a \in R_+^*$ e $a \ne 1$.

Exercícios 1.5.4.1

1) Faça o gráfico da função exponencial $f(x) = 2^x$, ou seja, $f: R \rightarrow R_+^*$.

Responda para f(x):

- a) Qual o domínio de f(x)?
- b) Qual o contradomínio de f(x)?
- c) Qual o conjunto imagem de f(x)?
- d) A função f(x) é par, impar ou sem paridade?
- e) A função f(x) é sobrejetora, injetora ou bijetora?
- 2) Faça o gráfico da função exponencial $f(x) = 2e^{-2x}$, $f:R_+^* \rightarrow R_+$ e responda aos itens adiante.

- a) Observa-se que f(x) é da forma $f(x) = \theta e^{-\theta x}$, $x \ge 0$, $\theta > 0$. Então, no contexto estatístico, qual o nome que essa função recebe?
- b) Sendo f(x) uma função densidade de probabilidade, qual a área da região limitada pela curva e pelo eixo das abscissas?
- 3) Faça o gráfico da função exponencial $f(x) = e^x$.
- 4) Faça o gráfico da função exponencial $f(x) = e^{-x}$, $x \ge 0$, $f:R_+^* \to R_+$ e responda aos itens adiante.

Responda para f(x):

- a) Qual o domínio de f(x)?
- b) Qual o contradomínio de f(x)?
- c) Qual o conjunto imagem de f(x)?
- d) A função f(x) é par, impar ou sem paridade?
- e) A função f(x) é sobrejetora, injetora ou bijetora?
- 5) Faça o gráfico da função exponencial $f(x) = 4e^x$.
- 6) Faça o gráfico da função exponencial $f(x) = 5e^{-x}$.
- 7) Uma variável aleatória X tem função densidade de probabilidade dada por $f(x) = 5e^{-5x}$ $x \ge 0$. Faça o gráfico dessa função e responda aos itens adiante.
- a) Qual o domínio de f(x)?
- b) Qual o contradomínio de f(x)?
- c) Qual o conjunto imagem de f(x)?
- d) A função f(x) é par, impar ou sem paridade?
- e) A função f(x) é sobrejetora, injetora ou bijetora?

1.5.4.2 FUNÇÃO EXPONENCIAL: CRESCENTE E DECRESCENTE

Dada uma função exponencial definida por $f(x) = a^x$, de R em R, com $a \in R_+^*$ e $a \ne 1$ existem dois tipos de comportamento para o gráfico dessa função. O tipo depende do valor da base da exponencial <u>a</u>. Assim, tem-se:

 1^{0} .) Se a > 1 tem-se uma função exponencial crescente.

 2^{0} .) Se 0 < a < 1 tem-se uma função exponencial decrescente.

Exercícios 1.5.4.2

- 1) Identifique as sentenças verdadeiras e marque V e nas falsas marque F.
- a) $f(x) = 6^x$ é uma função crescente por que a base a = 6 é maior que 1 ()
- b) $g(x) = (\frac{1}{4})^x$ é uma função crescente por que a base $a = \frac{1}{4}$ é menor que 1 ()
- c) $(\frac{3}{2})^{0,3} > (\frac{3}{2})^{0,2}$ () d) $(\frac{2}{3})^{0,3} > (\frac{2}{3})^{0,2}$ () e) $(0,8)^{0,7} > (0,8)^{0,5}$ () f) $(3)^{0,7} > (3)^{0,5}$ ()

- 2) Identifique as funções exponenciais como crescente ou decrescente.
- a) $f(x) = 2^x$
- b) $g(x) = 0.5^x$ c) $h(x) = 0.25^x$ d) $r(y) = 5^y$
- 3) Classifique as funções adiante em par ou impar ou sem paridade; crescente ou decrescente ou constante.
- 1) $f(t) = t^2 \ t \in R$
- 2) $g(t) = -t^2 t \in R$
- 3) $f(x) = e^{-x} x \in R^*$
- 4) $f(x) = -e^{-x} x \in \mathbb{R}^{+}$
- 5) $g(x) = x^2 3 \ x \in R$
- 6) $h(x) = 7 \quad x \in R$

1.5.4.3 EQUAÇÃO EXPONENCIAL

Uma equação é denominada de equação exponencial quando a incógnita situase no expoente.

Exemplos (resolva estas equações)

1)
$$2^x = 16$$

$$2) 3^{x-2} = \frac{1}{9}$$

3)
$$0.5^x = 2^{-3}$$

4)
$$(\frac{1}{3})^y = \frac{1}{27}$$

Exercícios 1.5.4.3

Resolva as equações exponenciais que seguem.

1)
$$2^{2x} - 3 \cdot 2^x + 2 = 0$$

2)
$$3^x = 243$$

3) Resolva os sistemas de equações exponenciais que seguem.

1)
$$\begin{cases} 2^{x+y} = 8 \\ 2^{x-y} = 32 \end{cases}$$

$$2) \begin{cases} 2^{x}.4^{y} = 64 \\ \frac{2^{x}}{4^{y}} = 4 \end{cases}$$

3)
$$\begin{cases} 3^{x+y} = 81 \\ 2^{x-y} = 4^{-1} \end{cases}$$

1.5.5 FUNÇÃO LOGARÍTMICA

Uma função logarítmica é a função f(x) definida de R_+^* em R por $f(x) = log_a(x)$ com $a \in R_+^*$ e $a \ne 1$.

OBS.: 1) A função logarítmica é crescente se a > 1 e é decrescente se a < 1.

2) A função logarítmica é bijetora, logo admite inversa.

Exercícios 1.5.5

1) Faça o gráfico da função logarítmica $f(x) = log_2(x)$ e determine a sua inversa.

2) Faça o gráfico da função logarítmica $f(x) = log_{1/2}(x)$ e determine a sua inversa.

- 3) Calcule o valor de $\log(\sqrt[3]{20})$, sabendo que $\log(2) = 0.3010$.
- 4) Determine as condições de existência de $log(x^2 + 3x)$.
- 5) Seja y = f(x) = log(x) = 0,698970. Então, qual o valor de $x = f^{-1}(y)$ a função inversa de f(x)?
- 6) Seja y = h(x) = ℓ n(x) = 1,098612289. Então, qual o valor de x = h⁻¹(y) a função inversa de h(x)?
- 7) Resolva a equação logarítmica ln(x+5) = 2,302585093.
- 8) Resolva a equação logarítmica log(2x + 3) = 0.845098.
- 9) f(x) = ln(x), em qual ponto essa função corta o eixo das abscissas?
- 10) Seja f(x) = log(x), em qual ponto essa função corta o eixo das abscissas?
- 11) Quais as propriedades operacionais da função logarítmica? As propriedades são:
 - 1ª.) O logaritmo de um **produto** é igual a **soma** dos logaritmos dos fatores. log(A.B) = log(A) + log(B)
 - 2^a.) O logaritmo de um **quociente** é igual ao logaritmo do **dividendo** menos o logaritmo do **divisor**. log(A/B) = log(A) log(B)

3^a.) O logaritmo de uma **potência** é igual ao **produto do expoente da potência pelo logaritmo da base**.

$$\log(B^{x}) = x\log(B)$$

4ª.) O logaritmo de uma **raíz** é igual ao logaritmo do **radicando** dividido pelo índice da raiz.

$$\log(\sqrt[i]{R}) = \frac{\log(R)}{i}$$

- 12) Calcule o valor de $Y = x^3z^2w^5$ sabendo que log(x) = a, log(z) = b, log(w) = c e que 3a + 2b + 5c = 0.301030.
- 13) Calcule o valor de $Y=\sqrt{x}.z^2.^{\sqrt[3]{W}}$ sabendo que $\log(x)=a$, $\log(z)=b$, $\log(w)=c$ e que $0.5a+2b+\frac{1}{3}c=1.301030$.
- 14) Calcule o valor $Y = \frac{x}{z^3} \cdot \sqrt[5]{w}$ sabendo que $\log(x) = a$, $\log(z) = b$, $\log(w) = c$ e que $a 3b + \frac{1}{5}c = 2,84509804$
- 15) Se $f(x) = y = \ln(x) = 0,69314718$, qual o valor de x? Veja que x na verdade é $f^{-1}(y)$.
- 16) Se f(x) = y = log(x) = 0,602060, qual o valor de x? Veja que x na verdade é $f^{-1}(y)$.

2. LIMITES

Definição

Seja uma função f(x) definida em um intervalo aberto que contém o ponto \mathbf{a} , exceto possivelmente no próprio ponto \mathbf{a} . O limite de f(x) quando x se aproxima de \mathbf{a} é L. Assim, tem-se:

$$L = \lim_{x \to a} f(x)$$

e isto significa que $\forall \epsilon > 0$ existe um $\delta > 0$ tal que $|f(x) - L| < \epsilon$ sempre que $0 < |x - a| < \delta$ e ainda se f(x) tem limite quando x tende para a, então tal limite é único.

Propriedades importantes:

- 1^a.) $\lim_{x \to a} c = c$ com c uma constante, ou seja, um real.
- $2^{\mathbf{a}}$.) $\lim_{x \to a} x = \mathbf{a}$
- 3^a·) $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- 4^a.) $\lim_{x \to a} f(x) g(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 5^a.) $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} f(x) / \lim_{x \to a} g(x)$, com $\lim_{x \to a} g(x) \neq 0$
- 6^a.) $\lim_{x \to a} \operatorname{cf}(x) = \operatorname{c} \lim_{x \to a} \operatorname{f}(x)$
- 7^{a.}) $\lim_{x \to a} f(x)^n = (\lim_{x \to a} f(x))^n$, desde que $\lim_{x \to a} f(x)$ exista.

INDETERMINAÇÕES

As formas indeterminadas ou indeterminações são as seguintes:

1^a.)
$$\frac{0}{0}$$
 2^{a} .) $\frac{\infty}{\infty}$ 3^{a} .) $0x\infty$ 4^{a} .) $\infty - \infty$ 5^{a} .) 0^{0} 6^{a} .) ∞^{0} 7^{a} .) 1^{∞}

EXERCÍCIOS 2.1: Calcule os limites

1)
$$\lim_{x \to 2} (3x+4)^5$$
 R.: 100000

2)
$$\lim_{x \to a} x^3$$
 R.: a^3

2)
$$\lim_{x \to a} x^3$$
 R.: a^3
3) $\lim_{x \to 2} \frac{3x+4}{5x+7}$ R.: 10/17

4)
$$\lim_{x\to 2} (3x^2 + 2x + 4)$$

5)
$$\lim_{x\to 2} [(3x^2 + 2)(x + 4)]$$
 R.: 84

EXERCÍCIOS 2.2

1) Dada a função
$$f(x) = \frac{x^3 + x - 10}{x - 2}$$
, pede-se:

- a) O gráfico da função para x variando de -5 a 5.
- b) Calcule o limite da função quanto x vai para 2, ou seja, $\lim_{x \to 2} \frac{x^3 + x 10}{x 2}$

2) Dada a função
$$f(x) = \frac{2x^4 - 6x^3 + x^2 + 3}{x - 1}$$
, pede-se:

- a) O gráfico da função para x variando de -5 a 5.
- b) O valor da função em x = 1. R.: $\frac{0}{0}$ (indeterminação)
- c) O limite da função quando x tende para 1, ou seja, $\lim_{x \to 1} \frac{2 x^4 6 x^3 + x^2 + 3}{x 1}$

3) Dada a função
$$f(x) = \frac{2}{1 + e^{-1/x}}$$
, pede-se:

- a) O gráfico da função para x variando de 0 a 100.
- b) O valor da função em $x = \infty$.

c) O limite da função quando x tende para
$$+\infty$$
, ou seja, $\lim_{x \to \infty} \frac{2}{1 + e^{\left(-\frac{1}{x}\right)}}$

- 4) Dada a função $f(x) = x^3 3x + 2$ pede-se:
- a) O gráfico da função para x variando de -5 a 5.
- b) O valor da função em x = 0. R.: 2
- c) O limite da função quando x vai para 0, ou seja, $\lim_{x\to 0} x^3 3x + 2$ R.: 2
- 5) Dada a função $f(x) = \frac{\sqrt{x} 2}{4 x}$, pede-se:
- a) O gráfico da função para x variando de 2 a 6.
- b) O valor da função em x = 4. R.: $\frac{0}{0}$ (indeterminação)
- c) O limite da função quando x vai para 4, $\lim_{x \to 4} \frac{\sqrt{x} 2}{4 x}$ R.: -1/4

6) LIMITE FUNDAMENTAL $\lim_{x\to 0} \frac{\text{sen}(x)}{x} = 1$ (Veja a figura anterior).

Demonstre que o limite de $\frac{sen(x)}{x}$ quando x vai para 0 é igual a 1, ou seja,

$$\lim_{x\to 0}\frac{\mathrm{sen}(x)}{x}=1.$$

Prova: Veja a figura anterior que é a de um circulo trigonométrico (raio 1).

Suponha as desigualdades de áreas do triângulo retângulo OAC, do setor circular OAD e do triângulo retângulo OBD, ou seja:

área do triângulo OAC < área do setor OAD < área do triângulo OBD

$$\frac{\cos(x)\text{sen}(x)}{2} < \frac{x}{2} < \frac{\text{tg}(x)}{2}$$
 e dividindo tudo por $\frac{\text{sen}(x)}{2}$ resulta:

$$\cos(x) < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$
, e trabalhando com as desigualdades tem-se:

$$\cos(x) < \frac{\sin(x)}{x} < \frac{1}{\cos(x)}$$

então, quando $x \to 0$ tem-se: $1 < \lim_{x \to 0} \frac{\text{sen}(x)}{x} < 1$.

Portanto, $\lim_{x\to 0} \frac{\text{sen}(x)}{x}$ está "ensanduichado" entre 1 e 1, logo $\lim_{x\to 0} \frac{\text{sen}(x)}{x} = 1$.

- 7) Dada $f(x) = \frac{\text{sen}(ax)}{bx}$ com $b \neq 0$ calcule o limite da função quando x vai para 0. R.: a/b
- 8) Dada $f(x) = \frac{1 \cos(x)}{\sin(x)}$ calcule o limite da função quando x vai para 0. R.: 0
- 9) Dada $f(x) = \frac{1}{\sin(x)} \frac{1}{tg(x)}$ calcule o limite da função quando x vai para 0.

R.: 0

- 10) Dada $f(x) = \frac{\sin^2(x)}{x}$ calcule o limite da função quando x vai para 0. R.: 0
- 11) Dada $f(x) = \frac{tg(x)}{x}$ calcule o limite da função quando x vai para 0. R.: 1
- 12) Dada $f(x) = \frac{\text{sen}(kx)}{x}$ calcule o limite da função quando x vai para 0. R.: k
- 13) Dada $f(x) = \frac{\text{sen}(x)}{x 2\pi}$ calcule o limite da função quando x vai para 2π . R.: 1
- 14) Calcule o limite da função $f(x) = \frac{x^2 + 3x + 5}{x^2 2x 8}$ quando x vai para 1. R.: -1
- 15) Demonstre que $\lim_{h\to 0} (1+h)^{\frac{1}{h}} = e$ (número de Euler e = 2,718281828) e

$$\lim_{h \to \infty} (1 + \frac{1}{h})^h = e$$
 (número de Euler e = 2,718281828).

Prova da 1ª. parte

A demonstração deste resultado é feita aplicando-se a **definição de derivada** da função f(x) = ln(x). Então,

$$f'(x) = \frac{df(x)}{dx} = \frac{d\ell n(x)}{dx} = \lim_{h \to 0} (\frac{\ell n(x+h) - \ell n(x)}{h}) = \lim_{h \to 0} [\frac{1}{h} \ell n(\frac{(x+h)}{x})]$$

$$f'(x) = \lim_{h \to 0} \left[\frac{1}{h} \ln(1 + \frac{h}{x}) \right] = \lim_{h \to 0} \left[\ln(1 + \frac{h}{x})^{\frac{1}{h}} \right] \text{ e como } f'(x) = \frac{d \ln(x)}{dx} = \frac{1}{x}$$

tem-se que para x = 1 a relação é $\frac{1}{1} = \lim_{h \to 0} [\ell n (1+h)^{\frac{1}{h}}]$ e $\lim_{h \to 0} [\ell n (1+h)^{\frac{1}{h}}] = 1$

$$Continuando, \ \underset{h \to 0}{\ell im} [(1+h)^{\frac{1}{h}}] = \ \underset{h \to 0}{\ell im} [e^{\ell n(1+h)^{\frac{1}{h}}}] = e^{\ell \underset{h \to 0}{im} [\ell n(1+h)^{\frac{1}{h}}]} = e^{1} = e$$

Para a 2a. parte da prova tem-se $\lim_{h\to\infty} (1+\frac{1}{h})^h$ muda-se a variável $\frac{1}{h} = n$ com

h→∞e n →0 resulta:
$$\lim_{n\to 0} (1+n)^{\frac{1}{n}} = e$$
 (provado na 1ª. parte)

16) LIMITE FUNDAMENTAL $\lim_{x\to 0} \frac{\mathbf{e}^x - 1}{x} = 1$. Mostre que o limite da

função
$$\frac{e^x - 1}{x}$$
 quando x vai para 0, ou seja, $\lim_{x \to 0} \frac{\mathbf{e}^x - 1}{x} = 1$.

Prova: Seja a prova no caso geral, ou seja, quando tem-se $\frac{a^x-1}{x}$ a > 0; então

fazendo $a^x=1+\frac{1}{u}$ e aplicando logaritmo de base ${\boldsymbol a}$ tem-se $x=log_a(1+\frac{1}{u}).$

Portanto,
$$\frac{a^x - 1}{x} = \frac{1 + \frac{1}{u} - 1}{\log_a (1 + \frac{1}{u})} = \frac{1}{u \log_a (1 + \frac{1}{u})} = \frac{1}{\log_a (1 + \frac{1}{u})^u}$$

e, considerando que quando $x \to 0$ implica que $u \to \infty$, pois $u = \frac{1}{a^x - 1}$.

Então,
$$\lim_{u \to \infty} \left(\frac{1}{\log_a (1 + \frac{1}{11})^u} \right) = \left(\frac{1}{\log_a \left[\lim_{u \to \infty} (1 + \frac{1}{11})^u \right]} \right) = \frac{1}{\log_a (e)}.$$

Assim,
$$\lim_{x\to 0} (\frac{e^x-1}{x}) = \frac{1}{\ell n(e)} = \frac{1}{1} = 1$$
 (mudando a base de **a** p/**e** $\log_a(e) = \frac{\ln(e)}{\ln(a)}$)

- 17) Calcule o limite da função $f(x) = \frac{x^2 4}{x^2 5x + 6}$ quando x vai para 2. R.: -4
- 18) Demonstre que $\lim_{x\to 0} (1 + kx)^{1/x} = e^k$
- 19) Demonstre que $\lim_{x\to\infty} (1+\frac{k}{x})^x = e^k$.
- 20) Demonstre que $\lim_{x\to\infty} (1-\frac{k}{x})^x = e^{-k}$.
- 21) Demonstre que $\lim_{x\to\infty} (1+\frac{1}{x})^{x+k} = e$.
- 22) Calcule $\lim_{x\to 0} (\frac{\ell n(1+x)}{x})$. R.: 1
- 23) Calcule $\lim_{x\to 1} (\frac{\ell n(x)}{x-1})$. R.: 1
- 24) Calcule $\lim_{x\to 1} (\frac{x-1}{\ell n(x)})$. R.: 1
- 25) Demonstre que o limite da função $(1 + ax)^{1/x}$ quando x vai para 0 é igual a e^a , ou seja, $\lim_{x \to 0} (1 + ax)^{\left(\frac{1}{x}\right)} = e^a$.
- 26) Calcule o limite da função $g(x) = \frac{x^2 4x + 2}{x^3 x^2 x + 1}$ quando x vai p/ 1. R.: ∞

R.: 0

- 27) Calcule $\lim_{h \to 0} \frac{\sqrt{4+h} 2}{h} \quad R.: 1/4$
- 28) Calcule $\lim_{x\to 0} \frac{\operatorname{sen}(x)}{\sqrt{x}}$
- 29) Calcule $\lim_{x \to 0} \frac{\text{sen}(3x)}{x}$ R.: 3
- 30) Calcule $\lim_{x\to 0} (\frac{6x \text{sen}(2x)}{2x + 3\text{sen}(4x)})$ R.: 2/7
- 31) Calcule $\lim_{x\to 0} (\frac{1-\cos(x)}{\sin(x)})$ R.: 0
- 32) Calcule $\lim_{x\to 0} \left(\frac{1}{\operatorname{sen}(x)} \frac{1}{\operatorname{tg}(x)}\right)$ R.: 0
- 33) Calcule $\lim_{x\to 0} (1+x)^{1/x}$ R.: e

$$\lim_{x \to \infty} (1 + \frac{1}{x})^{x}$$
R: e

35) Calcule
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{(x+k)}$$

36) Calcule
$$\lim_{x\to 0} \frac{\ell n(1+x)}{x}$$
 R.: 1

- 37) Dada a função $f(x)=\frac{2x^3+5x^2+x+1}{x^3+5x-7}$ calcule o limite da função quando x vai para o infinito (∞) . R.: 2
- 38) Dada a função $f(x) = \frac{x^2 1}{x^3 + 2x + 2}$ calcule o limite da função quando x vai para o infinito (∞) .
- 39) Dada a função $f(x) = \frac{x^2 1}{x^3 + 2x + 2}$ calcule o limite da função quando x vai para menos infinito (-\infty). R.: 0
- 40) Dada a função $f(x) = \frac{2x^5 + x 2}{-3x^2 + x + 5}$ calcule o limite da função quando x vai para o infinito (∞). R.: - ∞
- 41) Dada a função $f(x) = \frac{x^3 + 8}{3x^2 + 5x + 1}$ calcule o limite da função quando x vai para o infinito (∞). R.: ∞
- 42) Dada a função $f(x) = \frac{x^4 + 2x^2 + 3}{x^2 x 1}$ calcule o limite da função quando x vai para menos infinito (-\infty). R.: \infty
- 43) Dada a função $f(x) = \frac{3x^3 + 2x 1}{2x^2 x + 3}$ calcule o limite da função quando x vai para menos infinito (-\infty). R.: -\infty
- 44) Calcule $\lim_{x\to 0} (\frac{\ln(1+x)^2}{x})$. R.: 2
- 45) Calcule $\lim_{x \to \infty} (1 + \frac{2}{x})^x$. R.: e^2
- 46) Calcule $\lim_{x \to 1} (\frac{\ln(x^3)}{x-1})$. R.: 3

47) Calcule
$$\lim_{x\to 1} (\frac{2x-2)}{\ell n(x)})$$
. R.: 2

48) Calcule
$$\lim_{x \to \infty} (1 + \frac{1}{x})^{x+3}$$
. R.: e

49) Prove que
$$\lim_{x\to 0} (\frac{a^x - 1}{x}) = \ln(a)$$
 com $a > 0$.

50) Calcule
$$\lim_{x\to 0} (\frac{e^x - 1)}{2x})$$
. R.: 1/2

51) Calcule
$$\lim_{x\to 1} (\frac{2^{x-1}-1)}{x-1})$$
. R.: $\ln(2)$

52) Calcule
$$\lim_{x\to 0} (\frac{e^x - 1}{\text{sen}(x)})$$
. R.: 1

53) Calcule
$$\lim_{x\to\infty} (x(\sqrt[x]{e}-1))$$
. R.:1

54) Prove que
$$\lim_{x\to 0} (\frac{(1+x)^a - 1)}{x}) = a \text{ com } a \neq 0.$$

55) Calcule
$$\lim_{x\to 0} (\frac{(1+x)^m - 1)}{mx})$$
. R.: 1

56) Calcule
$$\lim_{x\to 0} [\ell n(\frac{(1+x)^e-1)}{x})]$$
. R.: 1

57) Calcule
$$\lim_{x\to 1} [\ell n(\frac{x^e-1)}{x-1})]$$
. R.: 1

- 58) Uma **função distribuição de probabilidade** de uma variável aleatória X, F(x), tem a seguinte propriedade: quando a variável (aleatória) vai para -∞ o valor da função vai para zero e quando a variável (aleatória) vai para ∞ o valor da função vai para 1. Verifique se a função F(x) = 1 − e^{-2x} x ≥ 0 é função distribuição de probabilidade da variável X, observando que o "menos infinito, -∞" da variável X é 0, que corresponde ao menor valor do contradomínio.
- 59) Uma **função distribuição de probabilidade** de uma variável aleatória X, F(x), tem a seguinte propriedade: quando a variável (aleatória) vai para $-\infty$ o valor da função vai para zero e quando a variável (aleatória) vai para ∞ o valor da função vai para 1. Verifique se a função $F(x) = 1 e^{-\theta x} (1 + \theta x)$ $x \ge 0$ é função distribuição de probabilidade da variável X, observando que o

"menos infinito, $-\infty$ " da variável X é 0, que corresponde ao menor valor do contradomínio.

- 60) Verifique se a função $F(x) = \frac{x-a}{b-a}$ $x \in [a; b]$ e a < b é uma função de distribuição com base na propriedade enunciada nos dois últimos exercícios. Veja que o "menos infinito" dessa variável é **a** (seu menor valor no domínio) e o "mais infinito" é **b** (o seu maior valor no domínio).
- 61) Verifique se a função F(x) = x x ∈ [0; 1] é uma função de distribuição com base na propriedade enunciada nos últimos exercícios. Veja que o "menos infinito" dessa variável é 0 (seu menor valor no domínio) e o "mais infinito" é 1 (o seu maior valor no domínio).
- 62) Verifique se a função $F(x) = 1 \frac{1}{1+x}$ $x \ge 0$ é uma função de distribuição com base na propriedade enunciada nos últimos exercícios. Veja que o "menos infinito" dessa variável é $\mathbf{0}$ (seu menor valor no domínio) e o "mais infinito" é ∞ .

3. DERIVADAS

Definição

Seja uma função f definida no intervalo aberto (a; b). Se a < x < b, a derivada da função primitiva f no ponto x é dada por: $f'(x) = \frac{df(x)}{dx}$ =

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 desde que o limite exista. Se f'(x) existe para todos os

valores no intervalo (a, b), então f é chamada diferenciável em (a, b).

Propriedades importantes:

1^a.) Se f(x) = c, então f'(x) =
$$\frac{df(x)}{dx}$$
 = 0

2^a.) Se
$$f(x) = ax + b$$
, então $f'(x) = \frac{df(x)}{dx} = a$.

3^{a.}) Se
$$f(x) = x^{m}$$
, então $f'(x) = \frac{df(x)}{dx} = mx^{m-1}$.

4^a.) A derivada de cf(x) é cf'(x) =
$$c \frac{df(x)}{dx}$$
.

- 5^a .) A derivada da soma f(x) + g(x) é igual a f'(x) + g'(x), ou seja, se y = u + v, então y' = u' + v'.
- 6^a .) A derivada do produto f(x)g(x) é igual a f(x)g'(x) + f'(x)g(x), ou seja, y = uv, então y' = uv' + u'v.
- $7^{a.}$) A derivada do produto f(x)g(x)h(x) é igual a f(x)g(x)h'(x) + f(x)g'(x)h(x) + f'(x)g(x)h(x), ou seja, se y = uvw, então y' = uvw' + uv'w + u'vw.

8°.) A derivada do quociente
$$y = \frac{f(x)}{g(x)} = \frac{u}{v}$$
 é igual a y' $= \frac{vu'-uv'}{v^2}$.

9^{a.}) Se
$$f(x) = sen(x)$$
, então $f'(x) = \frac{df(x)}{dx} = cos(x)$.

10^a.) Se
$$f(x) = \cos(x)$$
, então $f'(x) = \frac{df(x)}{dx} = -\sin(x)$

11^a.) Se
$$f(x) = tg(x)$$
, então $f'(x) = \frac{df(x)}{dx} = \sec^2(x) = (1 + tg^2(x))$.

12a.) Se
$$f(x) = \cot g(x)$$
, então $f'(x) = \frac{df(x)}{dx} = -\csc^2(x) = -(1 + \cot^2(x))$.

13^a.) Se
$$f(x) = \sec(x)$$
, então $f'(x) = \frac{df(x)}{dx} = \sec(x)tg(x)$.

14^a.) Se
$$f(x) = \csc(x)$$
, então $f'(x) = \frac{df(x)}{dx} = -\csc(x)\cot(x)$

15^a.) Se y = u e u = f(x), então y' =
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$

16^a) Se
$$y = arcsen(u)$$
, então $y' = \frac{u'}{\sqrt{1 - u^2}}$.

$$17^a.$$
) Se $y=arccos(u),$ então $y'=\frac{-\,u'}{\sqrt{1-u^{\,2}}}\,.$

18^a.) Se
$$y = arctg(u)$$
, então $y' = \frac{u'}{1+u^2}$.

19^a.) Se y = arccotg(u), então y' =
$$\frac{-u'}{1+u^2}$$
.

20^a.) Se y = arcsec(u), então y' =
$$\frac{u'}{u\sqrt{u^2-1}}$$
.

21^a.) Se y = arccosec(u), então y' =
$$\frac{-u'}{u\sqrt{u^2-1}}$$
.

22^a.) Função Exponencial: $y = a^u$, u = f(x), $y' = a^u ln(a)u'$.

23°.) Função Logaritmica:
$$y = log_a(u), \ u = f(x), \ y' = \frac{u'}{u \, ln(a)}$$

OBS.
$$\log_a(e) = \frac{1}{\ln(a)}$$
.

24ª.) Função Exponencial Geral: $y=u^v$, u=f(x) e v=f(x), $y'=vu^{v-1}u'+u^v\ell n$ (u).v'.

REGRA DE L'HOSPITAL

Quando se tem para x = a (finito ou infinito) as funções f(x) e g(x) tendendo para **zero** ou **infinito** e fazendo com que o quociente $\frac{f(x)}{g(x)}$ assuma a forma

indeterminada
$$\frac{0}{0}$$
 ou $\frac{\infty}{\infty}$, então $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

EXERCÍCIOS 23

Verifique em todos os exercícios anteriores sobre limites aqueles em que ocorrem indeterminações do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$ e aplique a Regra de L'Hospital.

EXERCÍCIOS 24

1) Seja a função
$$y = f(x) = 2\pi$$
, calcule a derivada de $f(x)$. R.: 0

2) Seja a função
$$y = sen(k\pi)$$
, calcule a derivada de y. R.: 0

3) Seja a função y = sen(
$$k\pi x$$
), calcule a derivada de y. R.: $cos(k\pi x) k\pi$

4) Seja a função
$$y = \frac{x+1}{x}$$
, calcule a derivada de y. R.: $\frac{1}{x} - \frac{1+x}{x^2}$

5) Seja a função
$$y = \frac{k}{x}$$
, calcule a derivada de y. R.: $-\frac{k}{x^2}$

6) Seja a função
$$y = x^2$$
, calcule a derivada de y. R.: $2x$

7) Seja a função
$$y = (x+3)^5$$
, calcule a derivada de y. R.: $5(x+3)^4$

8) Seja a função
$$f(x) = x^3 - 5x^2 + 2x - 7$$
, calcule a derivada de $f(x)$.

R.:
$$3x^2 - 10x + 2$$

9) Seja a função
$$y = \sqrt{x^2 + 1}$$
, calcule a derivada de y. R.: $\frac{x}{\sqrt{x^2 + 1}}$

10) Seja a função y =
$$\sqrt[4]{8x^3}$$
, calcule a derivada de y. R: $\frac{3}{4} \frac{8^{(1/4)} x^2}{(x^3)^{(3/4)}}$

11) Seja a função y =
$$\pi^{2x}$$
, calcule a derivada de y. R.: $2 \pi^{(2x)} \ln(\pi)$

12) Seja a função
$$f(x) = e^{x+2} - e^x$$
, calcule a derivada de $f(x)$. R.: $e^{(x+2)} - e^x$

13) Seja a função
$$f(x) = \ell n(x)$$
, calcule a derivada de $f(x)$. R.: $\frac{1}{x}$

14) Seja a função
$$f(x) = ln(2x^2)$$
, calcule a derivada de $f(x)$. R.: $\frac{2}{x}$

15) Seja a função
$$f(x) = log_a(x^2 - 2x + 1)$$
, calcule a derivada de $f(x)$.

R.:

$$\frac{2x-2}{(x^2-2x+1)\ln(a)}$$

16) Seja a função $y = [\ell n(x)]^x$, calcule a derivada de y.

R.:
$$\ln(x)^x \left(\ln(\ln(x)) + \frac{1}{\ln(x)} \right)$$

- 17) Seja a função $y = x^x$, calcule a derivada de y. R.: $x^x (\ln(x) + 1)$
- 18) Seja a função $y = sen(x^2)$, calcule a derivada de y. R.: $2 cos(x^2) x$
- 19) Seja a função $y = sen^2(x)$, calcule a derivada de y. R.: 2sen(x)cos(x)
- 20) Seja a função y = $\cos(\ln(x))$, calcule a derivada de y. R.: $-\frac{\sin(\ln(x))}{x}$
- 21) Seja a função $y = cos^2(x)$, calcule a derivada de y. R.: -2sen(x)cos(x)
- 22) Seja a função $y = 1 \cos^2(x)$, calcule a derivada de y. R.: $2 \operatorname{sen}(x) \cos(x)$
- 23) Seja a função $f(x) = x^3 x$ -1, calcule a derivada de f(x). R: $3x^2 1$
- 24) Seja a função $f(x) = \frac{-2}{x}$, calcule a derivada de f(x). R.: $\frac{2}{x^2}$
- 25) Seja a função $y = \frac{x^2 + 1}{\sqrt{x}}$, calcule a derivada de y. R.: $2\sqrt{x} \frac{x^2 + 1}{2x^{(3/2)}}$
- 26) Seja a função $y = 2xe^x$, calcule a derivada de y. R.: $2e^x + 2xe^x$
- 27) Seja a função $f(t) = \sqrt{3t}$, calcule a derivada de f(t). R.: $\frac{\sqrt{3}}{2\sqrt{t}}$
- 28) Seja a função $f(x) = \ell n(x^2)$, calcule a derivada de f(x). R.: $\frac{2}{x}$
- 29) Seja a função $f(x) = \pi^x$, calcule a derivada de f(x). R.: $\pi^x \ln(\pi)$
- 30) Seja a função y = $\log(x^2 + 1)$, calcule a derivada de y. R.: $\frac{2x}{(x^2 + 1) \ln(10)}$
- 31) Seja a função y = x^{x+1} , calcule a derivada de y. R.: $x^{(1+x)} \left(\ln(x) + \frac{1+x}{x} \right)$
- 32) Seja a função $y = x \ell n(e^x) + 2sen(\pi)$, calcule a derivada de y. R.: 0

- 33) Seja a função y = sen(5x), calcule a derivada de y. R.: 5 cos(5x)
- 34) Seja a função $y = x^2 + e^x$, calcule a derivada de y. R.: $2x + e^x$
- 35) Seja a função $z = f(y) = cos(y^2) + y^5$, calcule a derivada de z.

R.:

 $-2\sin(y^2)y + 5y^4$

36) Seja a função $f(t) = t^3 + t^2 + \ell n(t)$, calcule a derivada de f(t) no ponto t = 1,

ou seja,
$$\frac{df(t)}{dt}\Big|_{t=1}$$
.

R.: 6

37) Seja a função $g(x) = x.e^x$. $\ell n(x) + sen(e^x)$, calcule a derivada de g(x).

R.:

$$e^x \ln(x) + x e^x \ln(x) + e^x + \cos(e^x) e^x$$

38) Seja a função $y = \sqrt{x^2 + 1}$, calcule a derivada de y. R.:

$$\frac{x}{\sqrt{x^2+1}}$$

39) Seja a função $y = \sqrt[3]{x}$, calcule a derivada de y. R.:

$$\frac{1}{3 x^{(2/3)}}$$

40) Seja a função $y = \pi^{2x}$, calcule a derivada de y. R.:

$$2\pi^{(2x)}\ln(\pi)$$

41) Um balão esférico está sendo inflado. Determine a taxa na qual o volume V do balão varia em relação ao seu raio R.

42) Seja a função $y = f(x) = \sqrt{x}$, calcule a derivada de y. R.:

$$\frac{1}{2\sqrt{x}}$$

43) Calcule o valor da derivada obtida no item anterior no ponto x = 4, ou seja,

$$\frac{\mathrm{df}(x)}{\mathrm{dx}}\bigg|_{x=4}$$
. R.: 1/4

44) Seja a função $y = f(x) = \frac{3x^2 - x + 2}{4x^2 + 5}$, calcule a derivada de y.

R.:
$$\frac{6x-1}{4x^2+5} - \frac{8(3x^2-x+2)x}{(4x^2+5)^2}$$

45) Calcule o valor da derivada obtida no item anterior no ponto x = 0, ou seja,

$$\frac{\mathrm{df}(x)}{\mathrm{dx}}\Big|_{x=0}$$
. R.: -1/5

- 46) Determine a equação da tangente (reta tangente) ao gráfico da função $f(x) = \frac{5}{1+x^2}$ no ponto com coordenadas (-2, 1), ou melhor, no ponto P(-2, 1).
- 47) Determine a equação da tangente ao gráfico da função $f(x) = 3x^2 2\sqrt{x}$ no ponto com coordenadas (4, 44), ou melhor, no ponto P(4, 44).
- 48) Seja a função y = f(x) = sen(x+1).cos(x-1), calcule o valor da derivada de y no ponto x = 0.

R.: 1

- 49) Seja a função $y = arctg(\frac{1+x}{1-x})$, calcule o valor da derivada de y no ponto x = 0.
- 50) Calcule o coeficiente angular da tangente à curva $y = x^2 5x + 7$ no ponto x = 0.
- 51) Calcule a inclinação da curva $y = 10^x$ no ponto x = 2.
- 52) Determine as coordenadas dos pontos da curva $y = x^3 + 2x^2 4x + 5$ em que a tangente a curva, nesses pontos, é:
 - a) horizontal;
 - b) paralela à reta 2y + 8x = 5.
- 53) Seja $y = f(x) = \frac{\text{sen}(x)}{1 + \cos(x)}$, calcule y'.
- 54) Seja a função g(x) = sec(x).tg(x), calcule g'(x).
- 55) Determine o coeficiente angular das tangentes à curva y = sen(x) nos pontos com abscissas: x = 0, $x = \frac{\pi}{3}$, $x = \frac{\pi}{2}$, $x = \frac{2\pi}{3}$ e π .
- 56) Determine a equação da normal à curva y = tg(x) no ponto $P(\frac{\pi}{4}, 1)$.
- 57) De um balão a 150 m acima do solo cai um saco de areia. Desprezando-se a resistência do ar, a distância s(t) do solo ao saco em queda, após t segundos é dada por s(t) = -4,9t² + 150. Determinar a velocidade do saco nos seguintes casos:
 - a) quando t = a segundos;

- b) quando t = 2 segundos;
- c) quando s = 0 (distância ao solo);
- 58) Uma função densidade de probabilidade, f(x), de uma variável aleatória X corresponde à **derivada** da função distribuição de probabilidade, F(x), dessa variável aleatória. Sendo assim, se $F(x) = 1 \frac{1}{1+x}$ x > 0, calcule a função densidade de probabilidade de X.
- 59) Uma função densidade de probabilidade, f(x), de uma variável aleatória X corresponde à **derivada** da função distribuição de probabilidade, F(x), dessa variável aleatória. Sendo assim, se $F(x) = 1 e^{-5x} x > 0$, calcule a função densidade de probabilidade de X.
- 60) Calcule a função densidade de probabilidade, f(x), da variável aleatória X dada a função distribuição de probabilidade $F(x) = \frac{x-a}{b-a}$ $x \in [a;b]$ e a < b.
- 61) Calcule a função densidade de probabilidade, f(x), da variável aleatória X dada a função distribuição de probabilidade $F(x) = x \text{ com } x \in [0; 1]$.

4. INTEGRAL

4.1- Definições e Integrais Imediatas

Função Primitiva: Dada uma função f(x) definida no intervalo [a; b], chama-se função primitiva de f(x) a toda função F(x), também definida em [a; b] e cuja derivada F'(x) = f(x) em todo intervalo [a; b]. Toda função contínua admite uma primitiva.

Teorema: Se F(x) é uma primitiva de f(x), então F(x) + c onde c é uma constante é, também, uma primitiva de f(x).

4.2- Integral Indefinida

Como já se definiu, dada uma função f(x) definida no intervalo [a; b], chama-se função primitiva de f(x) a toda função F(x), também definida em [a; b] e cuja derivada F'(x) = f(x) em todo intervalo [a; b]. E, se sabe que toda função contínua admite uma primitiva. Então, a **integral indefinida** de f(x) é a integral mais geral da função f(x), isto é,

$$\int f(x)dx = F(x) + C$$

onde F(x) é a uma função tal que $F'(x) = \frac{d(F(x))}{dx} = f(x)e$ C é uma constante arbitrária.

Integrais Imediatas:

$$1^{a}$$
.) $\int dx = x + c$

$$2^{a}.) \int x^{m} dx = \frac{x^{m+1}}{m+1} + c$$

3^a.)
$$\int u^m du = \frac{u^{m+1}}{m+1} + c$$
 com $u = f(x)$.

4a.)
$$\int \sqrt{x} dx = \int x^{1/2} dx = \frac{2}{3} \sqrt{x^3} + c.$$

5a.)
$$\int \sqrt{u} du = \int u^{1/2} du = \frac{2}{3} \sqrt{u^3} + c$$
, com $u = f(x)$.

6^a.)
$$\int a^u du = \frac{a^u}{\ell n(a)} + c$$
, com $u = f(x)$.

7^a.)
$$\int a^{u} \ell n(a) du = a^{u} + c$$
, com $u = f(x)$.

8a.)
$$\int e^{u} du = e^{u} + c$$
, com $u = f(x)$.

9^a.)
$$\int \frac{du}{u} = \ell n(u) + c , \text{ com } u = f(x).$$

10^a.)
$$\int \cos(u)du = \sin(u) + c$$
, $\cos u = f(x)$.

11^a.)
$$\int sen(u)du = -cos(u) + c$$
, $com u = f(x)$.

12^a.)
$$\int \sec^2(u)du = tg(u) + c$$
, com $u = f(x)$.

13^a.)
$$\int \cos ec^2(u)du = -\cot g(u) + c, \quad com \ u = f(x).$$

14^a.)
$$\int \frac{du}{\sqrt{1-u^2}} = arcsen(u) + c , com u = f(x).$$

ou
$$\int \frac{du}{\sqrt{1-u^2}} = -\arccos(u) + c$$
, com $u = f(x)$.

15^a.)
$$\int \frac{du}{1+u^2} = arc \ tg(u) + c$$
, com $u = f(x)$.

ou
$$\int \frac{du}{1+u^2} = -\operatorname{arc} \cot g(u) + c$$
, com $u = f(x)$.

EXERCÍCIOS 25: INTEGRAL INDEFINIDA.

- 1) Seja f(x) = x, calcule a integral indefinida de f(x). R: $\frac{x^2}{2}$
- 2) Seja $f(x) = \frac{1}{\sqrt{x}}$, calcule a integral indefinida de f(x). R: $2\sqrt{x}$
- 3) Calcule a integral indefinida $\int e^{ax} dx$, com $a \in R$. R: $\frac{e^{(ax)}}{a}$
- 4) Seja $y = f(x) = 2\cos(x)$, calcule a integral indefinida de f(x). R: $2\sin(x)$
- 5) Calcule a integral indefinida $\int_{x}^{3} dx$. R: $3 \ln(x)$
- 6) Seja $f(x) = 5x^4$, calcule a integral indefinida de f(x). R: x^5

- 7) Seja y = -2x³, calcule a integral indefinida de y. R: $-\frac{x^4}{2}$
- 8) Calcule a integral indefinida [-sen(x) dx]. R: cos(x)
- 9) Calcule a integral indefinida $\int \frac{dx}{\sqrt{4-4x^2}}$ R: $\frac{1}{2}\arcsin(x)$
- 10) Seja o polinômio $f(x) = x^2 2x + 5$, calcule a integral indefinida de f(x).

R:
$$\frac{1}{3}x^3 - x^2 + 5x$$

- 11) Calcule a integral indefinida [5 dx. R: 5x
- 12) Calcule a integral indefinida $\int \frac{dx}{2}$. R: x/2
- 13) Calcule a integral indefinida $\int x^3 dx$. R: $x^4/4$
- 14) Calcule a integral indefinida $\int 2x^5 dx$. R: $x^6/3$
- 15) Calcule a integral indefinida $\int \frac{1}{\pi} x^5 dx$. R: $\frac{1}{\pi} \frac{x^6}{6}$
- 16) Calcule a integral indefinida $\int 3\sqrt{x} \, dx$. R: $2x^{(3/2)}$
- 17) Calcule a integral indefinida $\int \frac{4}{3} \sqrt[3]{x} \, dx$. R: $x^{(4/3)}$
- 18) Calcule a integral indefinida $\int \frac{dx}{x^3}$. R: $-\frac{1}{2x^2}$
- 19) Calcule a integral indefinida $\int \frac{5}{3} x^{2/3} dx$. R: $x^{(5/3)}$
- 20) Calcule a integral indefinida $\int 2x^{-3} dx$. R: $-\frac{1}{x^2}$
- 21) Calcule a integral indefinida $\int \frac{1}{2} x^{-1/2} dx$. R: \sqrt{x}
- 22) Calcule a integral indefinida $\int 2^x dx$. R: $\frac{2^x}{\ln(2)}$
- 23) Calcule a integral indefinida $\int 3\sqrt{10x} \, dx$. R: $2x^{(3/2)} \sqrt{10}$
- 24) Calcule a integral indefinida $\int 3e^{3x} dx$. R: $e^{(3x)}$
- 25) Calcule a integral indefinida $\int e^{\sin(x)} \cos(x) dx$. R: $e^{\sin(x)}$

- 26) Calcule a integral indefinida $\int \frac{2x dx}{x^2}$. R: $2 \ln(x)$
- 27) Calcule a integral indefinida $\int 3e^x dx$. R: $3e^x$
- 28) Calcule a integral indefinida $\int 2e^{-x} dx$. R: $-2 e^{(-x)}$
- 29) Calcule a integral indefinida $\int e^{2x} dx$. R: $\frac{1}{2} e^{(2x)}$
- 30) Calcule a integral indefinida $\int \frac{2dx}{e^x}$. R: $-2 e^{(-x)}$
- 31) Calcule a integral indefinida $\int \frac{\cos(x)}{\sin(x)} dx$. R: $\ln(\sin(x))$
- 32) Calcule a integral indefinida $\int \frac{2x dx}{x^2 + 1}$. R: $\ln(x^2 + 1)$
- 33) Calcule a integral indefinida $\int \frac{dx}{x \ell n(x)}$. R: $\ln(\ln(x))$
- 34) Calcule a integral indefinida $\int 2\cos(2x)dx$. R: sen(2x)
- 35) Calcule a integral indefinida $\int sen(x^2)2xdx$. R: $-cos(x^2)$
- 36) Calcule a integral indefinida $\int -3\sin(3x)dx$. R: $\cos(3x)$
- 36) Calcule a integral indefinida $\int 2 \sec^2(x) dx$. R: $\frac{2 \sin(x)}{\cos(x)}$
- 37) Calcule a integral indefinida $\int -2\cos e^2(x) dx$. R: $\frac{2\cos(x)}{\sin(x)}$
- 38) Calcule a integral indefinida $\int 2 \sec^2(2x) dx$.
- 39) Calcule a integral indefinida $\int sec^2(2x)dx$.
- 40) Calcule a integral indefinida $\int \frac{2dx}{\sqrt{1-x^2}}$. R: 2 arcsin(x)
- 41) Calcule a integral indefinida $\int \frac{3dx}{1+x^2}$. R: 3 arctan(x)
- 42) Calcule a integral indefinida $\int \frac{dx}{2+2x^2}$. R: $\frac{1}{2}\arctan(x)$
- 43) Calcule a integral indefinida $\int \frac{dx}{\sqrt{9-9x^2}}$. R: $\frac{1}{3} \arcsin(x)$
- 44) Calcule a integral indefinida $\int (x^2 + x + 1) dx$. R: $\frac{1}{3}x^3 + \frac{1}{2}x^2 + x$

- 45) Calcule a integral indefinida $\int (2x+1)dx$. R: $x^2 + x$
- 46) Calcule a integral indefinida $\int (6x^5 8x^3 2x) dx$. R: $x^6 2x^4 x^2$
- 47) Calcule a integral indefinida $\int (e^x + e^{-x} + x 1) dx$. R: $e^x e^{(-x)} + \frac{x^2}{2} x$
- 48) Calcule a integral indefinida $\int (\frac{1}{x^2} + \frac{1}{x} 3\sqrt{x}) dx$.
- 49) Calcule a integral indefinida $\int (e^x + 2^x) dx$.
- 50) Calcule a integral indefinida $\int (\cos(x) + \sin(x)) dx$.
- 51) Calcule a integral indefinida $\int (\sec^2(x) \csc^2(x)) dx$.
- 52) Calcule a integral indefinida $\int (\frac{1}{1+x^2} + \sec^2(x)) dx$.
- 53) Calcule a integral indefinida $\int (\frac{1}{1+x^2} + \cos ec^2(x))dx$.
- 54) Calcule a integral indefinida $\int (\cos(x) \frac{1}{\sqrt{1-x^2}}) dx$.
- 55) Calcule a integral indefinida $\int tg(x)dx$.
- 56) Calcule a integral indefinida $\int \sec^2(\frac{x}{2})dx$.
- 57) Calcule a integral indefinida $\int \sqrt{3+x^2}.xdx$.

4.3- Integral Definida

Teorema Fundamental do Cálculo

Sejam F(x) e sua derivada $F'(x) = \frac{d(F(x))}{dx} = f(x)$ funções injetoras e contínuas no intervalo [a; b]. Então, se o intervalo for dividido em n subintervalos de comprimento $\Delta_1 x$, $\Delta_2 x$, $\Delta_3 x$,, $\Delta_n x$ e se for inseridos os n-1 pontos $\xi_1, \xi_2, \xi_3, \ldots, \xi_{n-1}$ entre a e b, de forma que se tenha

$$a<\xi_1<\xi_2\!<\!\xi\!<\!,\dots,\!<\!\xi_{n-1}\!<\!b$$

e fazendo $a=\xi_0$ e $b=\xi_n$, em cada subintervalo e selecionando-se um ponto x_1 no intervalo (ξ_0,ξ_1) , x_2 em (ξ_1,ξ_2) x_n em (ξ_{n-1},ξ_{n1}) formase a soma:

 $S_n \ = \ \sum_{k=1}^n f(x_k) \Delta_k x = \ f(x_1) \Delta_1 x \ + \ f(x_2) \Delta_2 x \ + \ \dots \dots \ + f(x_n) \Delta_n x. \ Assim, \ quando \ n$

aumenta indefinidamente, de modo que quando $\Delta_k x \to 0$ o limite da soma será:

$$n \to \infty \sum_{i=1}^{n} f(x_k) \Delta_k x = \int_a^b f(x) dx = F(x) \begin{vmatrix} b \\ a \end{vmatrix} = F(b) - F(a)$$

EXERCÍCIOS 26: INTEGRAL DEFINIDA.

- 1) Dada a função $f(x)=x^2$, calcule a integral definida de f(x) de 0 a 4, ou seja, $\int\limits_0^4 x^2 dx \ . \qquad \qquad R \colon \frac{64}{3}$
- 2) Dada a função y = sen(x), calcule a integral definida de y de 0 a $\frac{\pi}{2}$, ou seja, $\int_{0}^{\pi/2} sen(x)dx$. R: 1
- 3) Dada a função $f(x) = x^5$, calcule a integral definida $\int_0^2 x^5 dx$. R: 32/3
- 4) Dada a função $f(z) = \sqrt[3]{z}$ calcule a integral definida $\int\limits_0^1 \sqrt[3]{z} dz$.
- 5) Dada a função y = a^u , calcule a integral definida $\int_0^2 a^u du$. R: $\frac{-1 + a^2}{\ln(a)}$
- 6) Dada a função $f(s) = (3s + 4)^2$, calcule a integral definida $\int_{-5}^{-4/3} (3s + 4)^2 ds$.
- 7) Dada a função $f(s) = (3s + 4)^2$, calcule a integral definida $\int_{-4/3}^{5} (3s + 4)^2 ds$.
- 8) Calcule $\int_{-3}^{1} dx \cdot R: 4$
- 9) Calcule $\int_{-2}^{-1} x^2 dx$.
- 10) Calcule $\int_{0}^{\pi} sen(x) dx$. R: 2
- 11) Calcule $\int_{1}^{2} \frac{dx}{x}$. R: $\ln(2)$

- 12) Calcule $\int_{0}^{\pi} 2\cos(x) dx$. R: 0
- 13) Calcule $\int_{1}^{e} \frac{dx}{x}$. R: 1
- 14) Calcule $\int_{-1}^{0} \frac{dx}{1+x^2}$. R: $\frac{\pi}{4}$
- 15) Calcule $\int_{3}^{3} \frac{dx}{1+x^{2}}$. R: 0
- 16) Calcule $\int_{0}^{\pi} \cos(2x) dx$.
- 17) Calcule $\int_{0}^{\pi} \cos(5x) dx$.
- 18) Calcule $\int_{0}^{\pi} sen(2x) dx$.
- 19) Calcule $\int_{0}^{\pi} sen(3x) dx$.
- 20) Calcule $\int_{0}^{\pi} sen(6x) dx$.
- 21) Calcule $\int_{0}^{2\pi} \cos(2x) dx$.
- 22) Calcule $\int_{0}^{2\pi} \cos(3x) dx$.
- 23) Calcule $\int_{0}^{2\pi} \operatorname{sen}(2x) dx$.
- 24) Uma função distribuição de probabilidade de uma variável aleatória contínua X pode ser obtida integrando-se a função densidade de probabilidade do menor valor do domínio de X até um valor específico x. Dada a função densidade de probabilidade $f(x) = 5e^{-5x}$ $x \ge 0$ determine a função distribuição de X.
- 25) Uma função distribuição de probabilidade de uma variável aleatória contínua X pode ser obtida integrando-se a função densidade de probabilidade do menor valor do domínio de X até um valor específico x.

Dada a função densidade de probabilidade $f(x) = \frac{1}{(1+x)^2}$ $x \ge 0$. Determine a função distribuição de X.

- 26) Calcule a função distribuição de probabilidade da variável aleatória X, dado que a sua função densidade de probabilidade é $f(x) = \frac{1}{b-a} \ x \in [a;b] \ a < b$.
- 27) Calcule a função distribuição de probabilidade da variável aleatória X, dado que a sua função densidade de probabilidade é f(x) = 1 $x \in [0; 1]$.
- 28) Calcule a função distribuição de probabilidade da variável aleatória X, dado que a sua função densidade de probabilidade é $f(x) = \theta e^{-\theta x} \cos x \ge 0$, $\theta > 0$.
- 29) Calcule a função distribuição de probabilidade da variável aleatória X, dado que a sua função densidade de probabilidade é $f(x) = 1.5x^2 \text{ com } x \in [-1; 1]$.
- 30) Uma função densidade de probabilidade é sempre não negativa, ou seja, f(x)
 ≥ 0 e a integral definida da função é sempre igual a l. Então, verifique se f(x)
 = 1,5x² com x ∈ [-1; 1] é uma função densidade de probabilidade.
- 31) Verifique se a função $f(x) = 3e^{-3x} com x \in (0; \infty)$, é uma função densidade de probabilidade.
- 32) Verifique se a função f(x) = 1 com $x \in [0; 1]$, é uma função densidade de probabilidade.
- 33) Verifique se a função $f(x) = \frac{1}{(1+x)^2}$ com x > 0, é uma função densidade de probabilidade.
- 34) Verifique se a função $f(x) = \frac{1}{b-a}$ com $x \in [a; b]$ a < b é uma função densidade de probabilidade.

35) Verifique se a função $f(x) = x^2 \text{ com } x \in [1; 5]$ é uma função densidade de probabilidade.

4.4- Métodos de Integração

4.4.1- Integração por Partes

O método da integração por partes é baseado na seguinte regra:

$$\int u dv = uv - \int v du$$

Sendo que na aplicação dessa regra deve-se separar o integrando em duas partes. Uma que é o u e a outra que junto com dx é o dv. Dessa forma existem duas regras gerais:

1^a.) a parte escolhida como **dv** deve ser de fácil integração;

2^a.) a integral $\int v du deve ser mais simples do que <math>\int u dv$.

EXERCÍCIOS 27: INTEGRAÇÃO POR PARTES

1) Calcule a integral
$$\int x \operatorname{sen}(x) dx$$

R:
$$sen(x) - xcos(x) + C$$

2) Calcule a integral
$$\int xe^x dx$$

R:
$$(-1 + x)e^{x} + C$$

3) Calcule a integral
$$\int x^2 \ell n(x) dx$$

R:
$$\frac{1}{3}x^3 \ln(x) - \frac{1}{9}x^3 + C$$

4) Calcule a integral
$$\int x\sqrt{1+x}dx$$

R:
$$\frac{2(1+x)^{(3/2)}(-2+3x)}{15} + C$$

5) Calcule a integral
$$\int$$
 arcsen (x)) dx R: xarcsen(x) + $\sqrt{1-x^2}$ + C

R:
$$xarcsen(x) + \sqrt{1-x^2} + C$$

6) Calcule a integral
$$\int x \arcsin(x^2) dx$$

R:
$$\frac{1}{2}x^2 \arcsin(x^2) + \frac{\sqrt{1-x^4}}{2} + C$$

7) Calcule a integral
$$\int \sin^2(x) dx$$

$$R: -\frac{1}{2} \operatorname{sen}(x) \cos(x) + \frac{x}{2} + C$$

4.4.2- Integrais Trigonométricas

Nas integrais trigonométricas são usadas as seguintes identidades trigonométricas:

$$1^{a}$$
.) $sen^{2}(x) + cos^{2}(x) = 1$

$$2^{a}$$
.) $1 + tg^{2}(x) = sec^{2}(x)$

$$3^{a}$$
.) $1 + \cot^{2}(x) = \csc^{2}(x)$

4a.)
$$sen^2(x) = \frac{1}{2}(1 - \cos(2x))$$

$$5^{a}$$
.) $\cos^{2}(x) = \frac{1}{2}(1+\cos(2x))$

$$6^{a}.) \operatorname{sen}(x) \cos(x) = \frac{1}{2} \operatorname{sen}(2x)$$

7^a.)
$$sen(x)cos(y) = \frac{1}{2}[sen(x - y) + sen(x + y)]$$

8a.)
$$\operatorname{sen}(x)\operatorname{sen}(y) = \frac{1}{2}[\cos(x-y) - \cos(x+y)]$$

9^{a.})
$$cos(x)cos(y) = \frac{1}{2}[cos(x - y) + cos(x + y)]$$

$$10^{a.}) 1 - \cos(x) = 2\sin^2(x/2)$$

$$11^{a.}) 1 + \cos(x) = 2\cos^2(x/2)$$

12^a·)
$$1 \pm \text{sen}(x) = 1 \pm \cos(\frac{\pi}{2} - x)$$

EXERCÍCIOS 28: INTEGRAIS TRIGONOMÉTRICAS

1) Calcule a integral
$$\int sen^2(x)dx$$

R:
$$-\frac{1}{2}$$
sen(x)cos(x)+ $\frac{x}{2}$ + C

2) Calcule a integral
$$\int \cos^2(3x) dx$$

R:
$$\frac{1}{6}\cos(3x)\sin(3x) + \frac{x}{2} + C$$

3) Calcule a integral
$$\int sen^3(x)dx$$

R:
$$-\cos(x) + \frac{1}{3}\cos^3(x) + C$$

4) Calcule a integral
$$\int \cos^5(x) dx$$

4) Calcule a integral
$$\int \cos^5(x) dx$$
 R: $\sin(x) - \frac{2}{3} \sin^3(x) + \frac{1}{5} \sin^5(x) + C$

5) Calcule a integral
$$\int \sin^2(x) \cos^3(x) dx$$
 R: $\frac{1}{3} \sin^3(x) - \frac{1}{5} \sin^5(x) + C$

R:
$$\frac{1}{3} \text{sen}^3(x) - \frac{1}{5} \text{sen}^5(x) + C$$

6) Calcule a integral
$$\int \cos^4(2x) \sin^3(2x) dx$$
 R: $-\frac{1}{10} \cos^5(2x) + \frac{1}{14} \cos^7(2x) + C$

R:
$$-\frac{1}{10}\cos^5(2x) + \frac{1}{14}\cos^7(2x) + C$$

7) Calcule a integral
$$\int \sin^3(3x) \cos^5(3x) dx$$
 R: $-\frac{1}{18} \cos^6(3x) + \frac{1}{24} \cos^8(3x) + C$

4.4.3- Integração por Substituições Trigonométricas

Quando o integrando da integral contém uma das formas $\sqrt{a^2-b^2u^2}$, $\sqrt{a^2+b^2u^2}$, $\sqrt{b^2u^2-a^2}$ e não possui nenhum outro fator irracional, pode-se fazer uma mudança de variável no integrando envolvendo funções trigonométricas. Então, quando se tem:

$$\sqrt{a^2 - b^2 u^2} \quad \text{muda-se u para } u = \frac{a}{b} \operatorname{sen}(z) \text{ e obt\'em-se} \qquad a \sqrt{1 - \operatorname{sen}^2(z)} = \operatorname{acos}(z)$$

$$\sqrt{a^2 + b^2 u^2} \quad \text{muda-se u para } u = \frac{a}{b} \operatorname{tg}(z) \text{ e obt\'em-se} \qquad a \sqrt{1 + \operatorname{tg}^2(z)} = \operatorname{asec}(z)$$

$$\sqrt{b^2 u^2 - a^2} \quad \text{muda-se u para } u = \frac{a}{b} \operatorname{sec}(z) \text{ e obt\'em-se} \qquad a \sqrt{\operatorname{sec}^2(z) - 1} = \operatorname{atg}(z)$$

EXERCÍCIOS 29: SUBSTITUIÇÕES TRIGONOMÉTRICAS

1) Calcule a integral
$$\int \frac{dx}{x^2 \sqrt{4+x^2}}$$
 R: $-\frac{\sqrt{4+x^2}}{4x} + C$

2) Calcule a integral
$$\int \frac{x^2}{\sqrt{4-x^2}} dx$$
 R: $\frac{1}{2} x \sqrt{x^2 - 4} + 2\ell n(x^2 + \sqrt{x^2 - 4}) + C$

3) Calcule a integral
$$\int \frac{\sqrt{9-4x^2}}{x} dx$$
 R: $3 \ln(\frac{3-\sqrt{9-4x^2}}{x}) + \sqrt{9-4x^2} + C$

4)
$$\int \frac{dx}{x\sqrt{9+4x^2}}$$
 R: $\frac{1}{3} \ln(\frac{\sqrt{9+4x^2}-3}{x})$

INTEGRAIS RESPOSTAS

Observe que se a integral é INDEFINIDA adicione a constante de integração c.

- 1) $\frac{x^2}{2}$
- 2) $2\sqrt{x}$
- 3) $\frac{\mathbf{e}^{(ax)}}{a}$
- 4) 2sen(x)
- 5) $3 \ln(x)$
- 6) x^5
- 7) $-\frac{x^4}{2}$
- $\cos(x)$
- 9) $-\sqrt{1-x}$
- 10) $\frac{1}{3}x^3 x^2 + 5x$
- 11) 5 *x*
- 12) $\frac{x}{2}$
- 15) $\frac{x^6}{6\pi}$
- 16) $2x^{(3/2)}$
- 17) $x^{(4/3)}$
- 18) $-\frac{1}{2x^2}$
- 19) $x^{(5/3)}$
- 20) $\frac{1}{x^2}$
- 21) \sqrt{x}

- 22) $\frac{2^x}{\ln(2)}$
- 23) $2x^{(3/2)}\sqrt{10}$
- 24) $e^{(3x)}$
- 25) $e^{\text{sen}(x)}$
- 26) $2 \ln(x)$
- 27) $3 e^{x}$
- 28) $-2 e^{(-x)}$
- 29) $\frac{1}{2}e^{(2x)}$
- 30) $-\frac{2}{e^x}$
- 31) ln(sen(x))
- 32) $ln(x^2+1)$
- 33) $\ln(\ln(x))$
- 34) sen(2x)
- 35) $-\cos(x^2)$
- 36) $\cos(3x)$
- $36') \frac{2\sin(x)}{\cos(x)}$
- $37) \frac{2\cos(x)}{\sin(x)}$
- $38) \frac{\sin(2x)}{\cos(2x)}$

REFERÊNCIAS BIBLIOGRÁFICAS:

- Ayres, Frank Jr. & Mendelson Cálculo Dif. e Integral; 4ª. Edição, Coleção Schaum, Bookman, Porto Alegre, 2005.
- 2. Cálculo: Funções de Uma Variável. Morettin, P. A.; Bussab, W. O. & Hazzan, S. Atual Editora.