Bases de Datos

Normalización

1FN, 2FN, 3FN

Dependencias Funcionales no tradicionales

- Dependencia parcial
- Dependencia transitiva
- Grupos repetitivos

1. Dependencia Parcial

Existe DF entre los atributos de la clave y los atributos no clave

INVENTARIO(ID_producto, ID_bodega, descripción, cantidad)

ID_producto, ID_bodega — descripción, cantidad DF total

L→ ¿Es minimal?

```
INVENTARIO(ID_producto, ID_bodega, descripción, cantidad)

ID_producto, ID_bodega → descripción, cantidad DF total

→ ¿Es minimal?

Sí
```

```
INVENTARIO( D_producto, ID_bodega, descripción, cantidad)

→ PK compuesta

ID_producto, ID_bodega → descripción, cantidad DF total

→ ¿Es minimal?

Sí

→ ¿Existe otra dependencia?

ID_producto → descripción

DF parcial
```

2. Dependencia Transitiva

Existe dependencia funcional entre atributos no clave

k → a1, a2, a3
 DF total y minimal
 a1 → a3
 DF transitiva

EMPLEADOS(rut, nombre, ID_depto, nombre_depto)

rut nombre, ID_depto, nombre_depto

DF total

¿Es minimal?

EMPLEADOS(rut, nombre, ID_depto, nombre_depto)

```
rut nombre, ID_depto, nombre_depto

DF total

¿Es minimal?

Sí
```

```
PK simple
EMPLEADOS(rut, nombre, ID_depto, nombre_depto)
rut __ nombre, ID_depto, nombre_depto
                                               DF total
L→ ¿Es minimal?
  ¿Existe otra dependencia?
            ID_depto → nombre_depto
                                               DF transitiva
```

3. Grupos Repetitivos

- Grupo de valores asociados a atributos que tienen repeticiones
- Causados por dependencias entre atributos

Cómo detectarlas?

Analizando las relaciones entre atributos

PK simple

ALUMNOS(rol, nombre, carrera, créditos)

PK simple

ALUMNOS(rol, nombre, carrera, créditos)

1	10	López	Inf	220	•	
1	20	Muñoz	Mec	190	4	Debo recorrer toda la tabla
1	30	Rojas	Quí	210	4	
1	40	Zúñiga	Inf	220	—	

UPDATE ALUMNOS SET creditos = 210 WHERE carrera = 'Inf';

Muy lento

PK simple

ALUMNOS(rol, nombre, carrera, créditos)

Debo recorrer toda la tabla...

UPDATE ALUMNOS SET creditos = 210 WHERE carrera = 'Inf'; DELETE FROM ALUMNOS where rol = 120; **Muy lento**

PK simple

ALUMNOS(rol, nombre, carrera, créditos)

Debo recorrer toda la tabla...

UPDATE ALUMNOS SET creditos = 210 WHERE carrera = 'Inf';

Muy lento

DELETE FROM ALUMNOS where rol = 120;

Pierdo datos de la carrera

PK simple

ALUMNOS(rol, nombre, carrera, créditos)

110	López	Inf	220
120	Muñoz	Mec	190
130	Rojas	Quí	210
140	Zúñiga	Inf	220

Debo recorrer toda la tabla...

UPDATE ALUMNOS SET creditos = 210 WHERE carrera = 'Inf';

Muy lento

DELETE FROM ALUMNOS where rol = 120;

Pierdo datos de la carrera

INSERT INTO ALUMNOS(carrera, creditos) VALUES ('Tel', 200);

PK simple **ALUMNOS**(rol, nombre, carrera, créditos)

110	López	Inf	220
120	Muñoz	Mec	190
130	Rojas	Quí	210
140	Zúñiga	Inf	220

Debo recorrer toda la tabla...

UPDATE ALUMNOS SET creditos = 210 WHERE carrera = 'Inf';

Muy lento

DELETE FROM ALUMNOS where rol = 120;

Pierdo datos de la carrera

INSERT INTO ALUMNOS(carrera, creditos) VALUES ('Tel', 200); Error: PK no puede ser null

Normalización

¿Cómo eliminamos las dependencias anómalas de nuestra base de datos?

Normalización

- Proceso iterativo incremental de remoción de anomalías en el modelo relacional
- Produce un modelo con **más relaciones** que, a su vez, tienen **menos atributos**
- La base de datos es más eficiente en almacenamiento
 Tendrá un costo al crear nuestras consultas!

Normalización

- Proceso iterativo incremental de remoción de anomalías en el modelo relacional
- Produce un modelo con **más relaciones** que, a su vez, tienen **menos atributos**
- La base de datos es más eficiente en almacenamiento
 Tendrá un costo al crear nuestras consultas!

Iterativo e incremental → Mejora continua en base a incrementos

Proceso de normalización

Proceso de normalización

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

R(
$$\underline{K}_1$$
, \underline{A}_1 , \underline{A}_2 , { \underline{K}_2 , \underline{A}_3 , \underline{A}_4 })

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Grupo repetitivo
$$R(\underline{K}_{1}, A_{1}, A_{2}, \{K_{2}, A_{3}, A_{4}\})$$

$$\sum \left\{ \begin{array}{c} K_{1} \to A_{1} A_{2} \{K_{2}, A_{3}, A_{4}\} \\ K_{2} \to A_{3} A_{4} \end{array} \right\} \quad \text{Conjunto de dependencias funcionales}$$

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Grupo repetitivo

R(
$$\underline{K_1}$$
, A_1 , A_2 , $\{K_2$, A_3 , $A_4\}$)

$$\sum \left\{ \begin{array}{c} K_1 \rightarrow A_1 A_2 \{K_2, A_3, A_4\} \\ K_2 \rightarrow A_3 A_4 \end{array} \right\}$$
Conjunto de dependencias funcionales

R₁($\underline{K_1}$, A_1 , A_2)

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
 - 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
 - 3. Eliminar la relación original

Grupo repetitivo

$$R(\underline{K}_{1}, A_{1}, A_{2}, \{K_{2}, A_{3}, A_{4}\})$$

$$\sum \left\{ \begin{array}{c} K_{1} \rightarrow A_{1} A_{2} \{K_{2}, A_{3}, A_{4}\} \\ K_{2} \rightarrow A_{3} A_{4} \end{array} \right. \qquad \text{Conjunto de dependencias funcionales}$$

$$R_{1}(\underline{K}_{1}, A_{1}, A_{2})$$

$$R_{2}(\underline{K}_{1}, \underline{K}_{2}, A_{3}, A_{4})$$

Sea R(A₁,...,A_n) una relación en un esquema relacional, R está en 1FN si todos los atributos de R son **uni-valuados**

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

<u>Ejercicio</u> Primera Forma Normal - 1FN

Proceso:

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Informes(<u>rol</u>, nombre, {sigla, nota})

Ejercicio Primera Forma Normal - 1FN

Proceso:

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Informes(<u>rol</u>, nombre, {sigla, nota})

1. L Estudiantes(<u>rol</u>, nombre)

Ejercicio

Primera Forma Normal - 1FN

Proceso:

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Informes(<u>rol</u>, nombre, {sigla, nota})

- 1. L_ Estudiantes(<u>rol</u>, nombre)
- 2. Estudiantes_inscriben(rol, sigla, nota)

Ejercicio

Primera Forma Normal - 1FN

Proceso:

- 1. Crear una nueva relación con la clave de la relación original y los atributos que dependen funcionalmente de la clave
- 2. Crear otra relación cuya clave es compuesta de la original y la clave del grupo repetitivo, agregando el grupo repetitivo
- 3. Eliminar la relación original

Informes(<u>rol</u>, nombre, {sigla, nota}) 3.

- 1. **Estudiantes**(<u>rol</u>, nombre)
- 2. Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota)

Segunda Forma Normal - 2FN

Sea R(A $_1$,...,A $_n$) una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 2FN si para toda dependencia funcional X \to A en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Sea R(A₁,...,A_n) una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 2FN si para toda dependencia funcional X \to A en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

$$R(\underline{K_1, K_2, K_3}, A_1, A_2, A_3)$$

Sea R(A $_1$,...,A $_n$) una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 2FN si para toda dependencia funcional X \to A en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

$$R(\underline{K_1, K_2, K_3}, A_1, A_2, A_3)$$

$$\sum \left\{ \begin{array}{c} K_1 K_2 K_3 \rightarrow A_1 A_2 A_3 \\ K_2 \rightarrow A_2 \end{array} \right. \longrightarrow \text{Conjunto de dependencias funcionales}$$

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R,Σ) está en 2FN si para toda dependencia funcional $X\to A$ en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

$$R(\underbrace{K_1, K_2, K_3}, A_1, A_2, A_3)$$

$$\sum \left\{ \begin{array}{c} K_1 K_2 K_3 \rightarrow A_1 A_2 A_3 \\ K_2 \rightarrow A_2 \end{array} \right. \qquad \text{Conjunto de dependencias funcionales}$$

$$R_1(\underbrace{K_1, K_2, K_3, A_1, A_3})$$

Sea R(A $_1$,...,A $_n$) una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 2FN si para toda dependencia funcional X \to A en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- - 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

$$R(\underbrace{K_{1'}K_{2'}K_{3'}}, A_{1'}, A_{2'}, A_{3})$$

$$\sum \begin{cases} K_{1}K_{2}K_{3} \rightarrow A_{1}A_{2}A_{3} \\ K_{2} \rightarrow A_{2} \end{cases}$$
Conjunto de dependencias funcionales
$$R_{1}(\underbrace{K_{1'}K_{2'}K_{3'}A_{1'}A_{3}})$$

$$R_{2}(\underbrace{K_{2'}A_{2}})$$

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R,Σ) está en 2FN si para toda dependencia funcional $X\to A$ en Σ , X no es un subconjunto propio de ninguna clave candidata de R

- - 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Proceso:

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota, nombre_asignatura)

Proceso:

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota, nombre_asignatura)

Proceso:

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota, nombre_asignatura)

1) Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota)

Proceso:

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota, nombre_asignatura)

- 1) Estudiantes_inscriben(<u>rol</u>, <u>sigla</u>, nota)
- 2) Asignaturas(<u>sigla</u>, nombre_asignatura)

- 1. Se crea una nueva relación con la clave compuesta y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con clave de la dependencia parcial y sus atributos dependientes funcionalmente.
- 3. Se elimina la relación original.

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

R(
$$\underline{K}$$
, A_1 , A_2 , A_3)
$$\sum_{A_3 \atop A_1 \to A_3} K \to A_1 A_2$$
Conjunto de dependencias funcionales

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

R(
$$\underline{K}$$
, $\underline{A_1}$, $\underline{A_2}$, $\underline{A_3}$)

$$\sum_{A_3} \begin{pmatrix} K \to A_1 A_2 \\ A_3 \\ A_1 \to A_3 \\ R_1(\underline{K}, \underline{A_1}, \underline{A_2}) \end{pmatrix}$$
Conjunto de dependencias funcionales

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- **1**.
 - 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- \checkmark
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

$$R(\underline{K}, A_{1}, A_{2}, A_{3})$$

$$\sum \left\{ \begin{array}{c} K \to A_{1}A_{2} \\ A_{3} \\ A_{1} \to A_{3} \end{array} \right.$$

$$R_{1}(\underline{K}, A_{1}, A_{2})$$

$$R_{2}(\underline{A}_{1}, A_{3})$$
Conjunto de dependencias funcionales
$$R_{1}(\underline{K}, A_{1}, A_{2})$$

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
 - 3. Declare restricción de **integridad referencial** entre las claves.
 - 4. Se elimina la relación original.

$$R(\underline{K}, A_{1}, A_{2}, A_{3})$$

$$\sum \left\{ \begin{array}{c} K \to A_{1} A_{2} \\ A_{3} \\ A_{1} \to A_{3} \end{array} \right.$$

$$Conjunto de dependencias funcionales
$$R_{1}(\underline{K}, \underline{A_{1}}, A_{2}) \longrightarrow Clave foránea en línea segmentada$$

$$R_{2}(\underline{A_{1}}, A_{3})$$$$

Sea $R(A_1,...,A_n)$ una relación en un esquema relacional y sea Σ conjunto de DF de R, (R, Σ) está en 3FN si para toda dependencia funcional X \to A en Σ , X es superclave de R

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Tercera Forma Normal - 3FN

Proceso:

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Estudiantes(<u>rol</u>, nombre, dedicación, horas_dedicación)

$$\sum \begin{tabular}{l} $rol \to nombre, dedicación, horas_dedicación \\ dedicación \to horas_dedicación \end{tabular}$$

Tercera Forma Normal - 3FN

Proceso:

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Estudiantes(<u>rol</u>, nombre, dedicación, horas_dedicación)

$$\sum \begin{tabular}{l} $rol \to nombre, dedicación, horas_dedicación \\ dedicación \to horas_dedicación \end{tabular}$$

1) Estudiantes(<u>rol</u>, nombre, dedicación)

Tercera Forma Normal - 3FN

Proceso:

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Estudiantes(<u>rol</u>, nombre, dedicación, horas_dedicación)

$$\sum \begin{tabular}{l} $rol \to nombre, dedicación, horas_dedicación \\ dedicación \to horas_dedicación \end{tabular}$$

- 1) Estudiantes(<u>rol</u>, nombre, dedicación)
- 2) Dedicaciones(<u>dedicación</u>, horas_dedicación)

Tercera Forma Normal - 3FN

Proceso:

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Estudiantes(<u>rol</u>, nombre, dedicación, horas_dedicación)

$$\sum \begin{tabular}{l} \begin{tabular}{l} rol \to nombre, dedicación, horas_dedicación \\ dedicación \to horas_dedicación \end{tabular}$$

- 1) Estudiantes(<u>rol</u>, nombre, dedicación) 4 3)
- 2) Dedicaciones(<u>dedicación</u>, horas_dedicación)

Tercera Forma Normal - 3FN

Proceso:

- 1. Se crea una nueva relación con la clave original y sus atributos dependientes funcionalmente.
- 2. Se crea otra relación con el atributo que produce la dependencia transitiva y sus atributos dependientes funcionalmente.
- 3. Declare restricción de integridad referencial entre las claves.
- 4. Se elimina la relación original.

Estudiantes(<u>rol</u>, nombre, dedicación, horas_dedicación) 4)

$$\sum \begin{tabular}{l} $rol \to nombre, dedicación, horas_dedicación \\ dedicación \to horas_dedicación \end{tabular}$$

2) Dedicaciones(<u>dedicación</u>, horas_dedicación)

Consultas?

Recuerden!

- Marcelo Mendoza: <u>mmendoza@inf.utfsm.cl</u>
- Margarita Bugueño: margarita.bugueno@usm.cl