## Dosages (ou titrages) directs

### Exercice 1 :dosage d'une solution de Tarnier par une solution de thiosulfate de sodium

Pour déterminer la concentration  $C_1$  en diiode  $I_{2(aq)}$  d'une solution de Tarnier, on dose un volume  $V_1 = 25,0mL$  de solution de Tarnier par une solution de thiosulfate de sodium  $(2Na^+_{(aq)} + S_2O_3^{2-}_{(aq)})$ de concentration  $C_2 = 0,0200 mol/L$ .

Données :  $I_{2(aq)}/I^{-}_{(aq)}$  et  $S_4O_6^{2-}_{(aq)}/S_2O_3^{2-}_{(aq)}$ 

Le volume versé à l'équivalence est égal à  $V_{2E} = 12, 1mL$ .

- 1. Etablir l'équation de la réaction de dosage.
- 2. Etablir un tableau d'avancement.
- 3. En déduire une relation entre  $n(I_2)$  et  $n(S_2O_3^{2-})$ .
- 4. Déterminer la concentration  $C_1$  du diiode.

## Exercice 2 : Titrage conductimétrique

On dose, par titrage conductimétrique, une solution  $S_A$ d'acide chlorhydrique,  $H_3O^+_{(aq)} + Cl^-_{(aq)}$ , par une solution  $S_B$  d'hydroxyde de sodium,  $Na^+_{(aq)} + HO^-_{(aq)}$ . L'équation de la réaction de titrage est :

$$H_3O^+_{(aq)} + HO_{(aq)} \longrightarrow 2 H_2O_{(l)}$$

Le suivi du titrage par conductimétrie permet de tracer le graphe  $\sigma = f(V_B)$  ci-dessous :



- 2. Déterminer le volume équivalent  $V_E$  du titrage. néglige la dilution lors du titrage.
- 3. On se place avant l'équivalence.
- 3.1. Quel est le réactif limitant?
- 3.2. La concentration en ions chlorure varie-t-elle au cours du titrage?



- 4. On se place maintenant après l'équivalence.
- 4.1. Quel est le réactif limitant?
- 4.2. Établir l'expression de la conductivité  $\sigma$
- 4.3. Justifier l'évolution de la conductivité de la solution contenue dans le bécher après l'équivalence du titrage.



On pèse 1,0 g de sulfate de fer(II) impur. On le dissout dans un peu d'eau et on acidifie la solution à l'aide d'acide sulfurique et on ajoute la solution de permanganate.

La coloration rose persistante est obtenue lorsque nous avons ajouté 24,5 mL d'une solution de permanganate de potassium 0,025 mol/L.

Calculez la masse de sulfate de fer(II) dans 1,0 g de sulfate de fer impur.



### Exercice 4 : Vinaigre (acide acétique $(CH_3COOH)$ )

On désire par cet exercice déterminer la concentration molaire  $C_0$  en acide acétique  $(CH_3COOH)$  du vinaigre du commerce, on prépare alors une solution diluée 100 fois de concentration  $C_A$ .

Ensuite, on prélève un volume  $V_A = 10,0mL$  de cette solution diluée que l'on dose par une solution d'hydroxyde de sodium  $(Na^+ + HO^-)$  de concentration  $C_B = 10.10^{-3} mol.L^{-1}$ .

Le volume de réactif titrant (hydroxyde de sodium) versé à l'équivalence vaut  $V_{BE} = 9,7mL$ .

- 1. Identifier les deux couples acido-basiques mis en jeu dans ce titrage et écrire l'équation de la réaction.
- 2. Expliquer à quoi correspond l'équivalence.
- 3. Le titrage est suivi par une mesure de la conductivité de la solution dosée.
- 3.1. Expliquer pourquoi la conductivité augmente doucement du début du titrage jusqu'à l'équivalence.
- 3.2. Expliquer pourquoi la conductivité augmente fortement après l'équivalence.
- 4. En utilisant un tableau d'avancement simplifié, trouver la relation entre la quantité de matière d'acide acétique titrée  $n_A$  et la quantité de matière d'hydroxyde de sodium versé  $n_B$  à l'équivalence ?
- 5. Calculer la concentration en acide acétique  $C_A$  de la solution de vinaigre diluée.
- 6. En déduire la concentration  $C_0$  en acide acétique du vinaigre commercial.

# Exercices Supplémentaires

#### Exercice 5 :dosage du permanganate de potassium

On prépare une solution  $S_1$  de permanganate de potassium  $(K_{(aq)}^+ + MnO_{4(aq)}^-)$  de coloration violette en dissolvant une masse m de  $KMnO_{4(s)}$  dans un volume V = 100mL d'eau, (acidifiée par quelques gouttes d'acide sulfurique).

Pour déterminer la concentration de la solution  $S_1$ , on prélève à l'aide d'une pipette un volume  $V_1 = 10mL$  de cette solution qu'on introduit dans un bécher et on lui ajoute progressivement une solution  $S_2$  d'acide oxalique  $H_2C_2O_4$  de concentration  $C_2 = 0, 4mol/L$ .

- 1. Comment s'appelle cette étude expérimentale qui a pour objet la détermination de la concentration de la solution  $S_1$ ?
- 2. Donner le schéma du dispositif expérimental utilisé dans cette étude en nommant ses différents constituants.
- 3. Comment s'appelle la solution dont on doit déterminer la concentration ? et comment s'appelle la solution ajouté?
- 4. Ecrire l'équation de la réaction qui se produit durant cette étude sachant que: l'acide oxalique est réducteur du couple  $CO_2/H_2C_2O_4$  et l' ion permanganate est oxydant du couple  $MnO_4^-/Mn^{2+}$ .
- 5. Construire le tableau d'avancement de cette réaction et en déduire la relation d'équivalence.
- 6. Comment repérer l'équivalence dans cette étude?
- 7. Quel est le réactif limitant avant l'équivalence et quel est celui limitant après l'équivalence?
- 8. Sachant que le volume ajouté à l'équivalence est :  $V_{2eq} = 12, 5mL$ , déterminer la concentration  $C_1$  de la solution  $S_1$ .
- 9. Déterminer la masse m utilisée pour préparer la solution  $S_1$ .
- 10. Pour diluer la solution  $S_1$ , quel volume d'eau doit- on ajouter à 90mL de la solution  $S_1$  pour que sa concentration devient C' = 0.1 mol/L?
- on donne : g=10N/kg M(K)=39,1g/mol M(Mn)=54,9g/mol M(O)=16g/mol