$\it Note:$ Page numbers followed by "f" and "t" refer to figures and tables, respectively.

A	dependency graph, 237–238
ABox, 11	part of speech (POS) tagging, 237
Actor concept, 13–14	tokenization, 237
Advisory systems, 118–120	machine learning techniques in, 239-240
Agent concept, 13	support vector machine (SVM), 239-240, 239f
Amazon Alexa, 7	Word2Vec, 240
Amazon Echo, 9–10	and semantic web, 242-245
Ant Colony Optimization (ACO)—based classifier	framework for classification of genetic mutations
algorithm, 110	using ontologies, 243–245
Archetype Management System, 47	ontology creation from clinical documents,
Artificial Neural Network (ANN), 179–180	242-243
Asymmetric key cryptography/public-key	statistical techniques in, 236-237
cryptography, 255–256	bag of words (BOW), 236
71 0 1 7·	rapid automatically keyword extraction (RAKE),
B	236–237
Bag of words (BOW), 236	term frequency-inverse document frequency (TF-
Batch processing, 155	IDF), 236
Bayesian network for COVID19 likelihood diagnosis,	Clinical terminology system and classification system,
88f	43 <i>t</i>
Behavioral monitoring, 181–182	Composite Capability/Preference Profiles (CC/PP)
Big data, 155	technique, 212
	Conceptual interoperability, 157
C	Conditional random field (CRF), 168
Catalog Of Somatic Mutations In Cancer (COSMIC)	Connected electronic health record, 95
Mutation dataset, 245	analysis performance of, 111–112
Chronic Obstructive Pulmonary Disease (COPD), 168	architecture description, 105–107
Cipher text, 262	background, 100–102
Clinical coding systems, 41–42, 43f	electronic health record-related standards and
Clinical decision support systems (CDSSs), 69–70,	terminologies, 100-101
81-82, 132-134	semantic interoperability, 101–102
semantic knowledge graph for, 82–83	data processing module, 107-110
Clinical Document Architecture (CDA), 100–101	data analysis based on data aggregation process,
Clinical Natural Language Processing (Clinical NLP),	108-110
233-242	data transformation, 107-108
deep learning techniques in, 240–242	preprocessing data, 107
convolution neural network (CNN), 240-241, 241f	electronic health records and EHR systems, 102-104
recurrent neural network (RNN), 241-242, 241f	future works, 113–114
genetic mutation classification using deep learning	implementation, 110
and (case study), 245-249	response time of, 112–113
graphical techniques in, 238–239	smart health unit, 99–100
hyper link induced topic search (HITS), 238–239	ConversationItem, 14
TextRank algorithm, 238	Convology, 7–22, 13f
linguistic techniques in, 237–238	in action, 17–19

C 1 (Continue)	Did Adison 1 14
Convology (Continued)	Dialog Action concept, 14
Actor concept, 13–14	Dialog concept, 13
availability and reusability, 16	DialogFlow platform, 8
background, 9–10	DialogStatus, 11, 16
construction of, 10–12	Dice Coefficient, 226
conceptualization, 12	DIFUTURE architecture, 134–135
integration, 12	Digital Imaging and Communications in Medicine
knowledge acquisition, 11	(DICOM), 100–101
specification, 11	DILIGENT, 10
ConversationItem, 14	Dynamic interoperability, 157
Dialog concept, 13	-
Event concept, 15	E
future work, 20	Earthquake, 121–122, 125
resource sustainability and maintenance, 19–20	Electronic Health Record (EHR), 97–98, 100–101, 168,
Status concept, 15–16	233–234, 246 <i>f</i>
Convolution neural network (CNN), 179–180,	Electronic medical record (EMR) system, 130
240–241, 241 <i>f</i>	ELIZA, 9
COVID19 epidemic, 88–90	Emergency Resource Ontology (ERO), 120
COVID19 likelihood diagnosis	Emergency situations, 117–118, 121–122
Bayesian network for, 88f	EventAnswer, 15
MTheory for, 91f	Event concept, 15
C-rater, 223	EventQuestion, 15
Cryptographic algorithms, 253	Extensible markup language (XML), 256, 259–260
Cryptography, 253–254	Extraction, transformation, and loading (ETL) tools,
n	130
Determosossina madula 107, 110	F
Data processing module, 107–110	-
data analysis based on data aggregation process, 108–110	Faster Region-based CNN (Faster R-CNN), 182
	Fast healthcare interoperability resources (FHIR),
data transformation, 107–108	31–32, 37, 39–40
preprocessing data, 107	FastText embeddings, 169
DATAtourisme, 212, 215	Feature-based sentiment analysis, 160
Data warehouse system, 130	First-order logic (FOL), 89
Decision support system (DSS), 117–119, 177–182,	Formal concept analysis (FCA), 48–49
178f, 195 LoT analysis 178 179	Free word order, 157
IoT-enabled, 178–179	G
data acquisition, 179	
data transmission and storage, 179	Gloze approach, 25–26
machine learning and deep learning techniques,	Google Assistant, 7
application of, 179–182	Google Home, 9–10
behavioral monitoring, 181–182	Graph-based Aggregation Model (GAM),
identification of diseases, 180–181	109-110
smart electronic health records, 181	Н
ontology's role in, 182–187	
issues and challenges, 185–186	HasRelevantIntent object property, 14, 18
technology available, 186–187	HasTriggerQuestion object property, 14
quality of service (QoS) and quality of experience	Healthcare Bigdata Hub, 60–62
(QoE) parameters in, 187–190	Healthcare Cube Integrator (HCI), 129–152
Deep Belief Network, 179–180	future enhancement of work, 149
Deep Neural Network (DNN), 181	HCI conceptual framework and designing
Density-based FS (DFS) approach, 110	framework, 136–140
Dependency graph, 237–238	implementation framework and experimental setup,
Description Logic (DL) techniques, 181, 197	140-148

research methods and literature findings of research	issues and challenges, 185–186
publications, 131–136	technology available, 186–187
electronic health record availability in India and	Knowledge organization system (KOS), 75
its privacies challenges, 132	Knowledge representation (KR), 69, 74, 157–158
electronic health records databases/system study, 132–133	L
health care processes and semantic web	Latent Dirichlet Allocation, 167
technologies, 135–136	Latent Semantic Analysis (LSA), 169, 223
Indian health policies and information technology,	Linked Data, 256
131–132	Linked Open Data (LOD), 12, 157–158
research objectives, 136	Logical Observation Identifiers Names and Codes
study of existing health knowledgebases and their	(LOINC), 42–44
infrastructures, 133–134	Loinc, 100–101
study of existing solution available for health data integration, 134–135	Long Short Term Memory (LSTM), 168
result analysis, 148	M
state-of-the-art health care system, 129–131	Machine learning, 157, 160–161
Healthcare Enterprise (IHE), 100–101	Machine learning and deep learning techniques,
Health Level 7 (HL7), 100–101	application of, 179–182
HL7 version 2.x, 37–38	behavioral monitoring, 181–182
HL7 version 3.x, 38–39	identification of diseases, 180–181 smart electronic health records, 181
Heterogeneity, 155 Hierarchical agglomerative clustering (HAC), 247	Meaning-aware information search and retrieval
Hierarchical Attention Networks (HANs) method, 170	framework for healthcare, 165–176
Human phenotype ontology (HPO), 133–134	future research dimensions, 174
Hyper link induced topic search (HITS), 238–239	medical catalog terminology extractor, 171
HyperText Markup Language (HTML), 165–166	medical ontology, 171
71	from ontologically annotated medical catalog
I	database, 172
Inflammation, 49	meaning-aware search results recommendations,
Information extraction in the healthcare sector, 174	172
Insight analysis module, 109–110	semantic query experience, 172
Integrated Care EHR (ICEHR), 102	related work, 167–170
International Classification of Diseases (ICD)-11,	semantic healthcare information discovery, 173-174
100-101	semantic reasoner, 172
Internet of Things (IoT)-enabled decision support	semantic search and information retrieval in
system, 178–179	healthcare, 170
data acquisition, 179	semantic similarity computation, 172–173
data transmission and storage, 179	Meaning-aware search result recommendation in
Internet of things-based ontologies, 101–102	healthcare, 172, 175
Issue-Procedure Ontology (IPO), 198–202, 199f	Medical catalog terminology extractor, 171
Issue-Procedure Ontology for Medicine (IPOM), 198,	Medical Devices (MD), 97–99, 102
202–208, 203 <i>f</i>	Medical institutions in Korea, 55–68
ī	classification of, 60t
J	hierarchical structure, 62 <i>f</i>
JavaScript Object Notation (JSON) format, 39	knowledge base, formal definition of, 56
K	knowledge graph of, 60–65, 66f
Knowledge-based DSS (KBDSS), 195–196, 198	data collection, 60–62
Knowledge-based D55 (KBD55), 195–196, 196 Knowledge-based systems (KBSs), 69	graph transformation, 64–65 model of administrative district, 62–63
Knowledge graphs, 77–78	model of medical institutions, 63
Knowledge modeling, ontology's role in decision	public data in Korea, 56–57
support system (DSS) for, 182–187	Medical ontology, 171

Medical Service Act, 57–58, 63 Medicine, issue-procedure ontology for, 203–208 Metadata, 256 Meteorological disaster ontology (MDO), 119–120 METHONTOLOGY, 10 MFrags, 89 Mixed script (code mixed) sentences, 157 MTheory, 89 for COVID19 likelihood diagnosis, 91f Multientity Bayesian networks (MEBN), 87, 89–91 and ontology web language, 91–92 and Probabilistic Context-Free Grammar (PCFG), 92–93	Ontology-supported rule-based reasoning for emergency management, 117–128 future work, 127 inference of knowledge, 122–127 sample scenarios, 125–127 system in action, 123–125 literature review, 119–120 system framework, 120–122 construction of ontology, 120–122 Ontology Web Language (OWL) ontology, 24–25, 27–28, 124 OpenEHR, 100–101 OpenRefine, 64–65, 64f Otitis media, 41–42, 42f
	P
Natural language, 221–222 Natural language processing (NLP) system, 157, 167–168, 233–234 Natural language understanding (NLU) algorithms, 7 NeOn, 10 N-gram, 237	Part of speech (POS) tagging, 222–223, 237 Physical interoperability, 32 Plain text, 262 Pragmatic interoperability, 157 Privacy and semantic web, 264–265
_	Probabilistic Context-Free Grammar (PCFG)
0	multientity Bayesian networks (MEBN) and, 92–93
Ocean Template Designer, 245	Probabilistic ontologies, 92
Ontology, 4, 175	Probabilistic Web Ontology Language (PR-OWL), 87,
Ontology-based decision-making, 195–210 issue-procedure ontology, 198–202	92 Public Data Portal, 57, 60–62
for medicine, 203–208	Public Key Cryptography (PKC), 255
Ontology-based intelligent decision support systems, 177–194	Publishing and consuming data on the web, 3 PuffBot, 17–19
application of machine learning and deep learning	
techniques, 179–182	Q
behavioral monitoring, 181–182 identification of diseases, 180–181	Quality of service (QoS) and quality of experience (QoE) parameters in decision support systems,
smart electronic health records, 181 IoT-enabled decision support system, 178–179	187–190
data acquisition, 179	R
data transmission and storage, 179	Rapid automatically keyword extraction (RAKE),
QoS and QoE parameters in decision support	236–237
systems for healthcare, 187–190	Recurrent neural network (RNN), 168, 179-180,
role of ontology in DSS for knowledge modeling,	241–242, 241 <i>f</i>
182-187	Reference information model (RIM), 38
issues and challenges, 185–186	Relational database management system (RDBMS)
technology available, 186–187	model, 33
Ontology-based knowledge base method, 197f	Representational State Transfer (REST) architecture, 39,
Ontology-based semantic similarity, profile	39t, 195 Resource description framework (RDF), 2, 24–25,
identification using, 211–220 profile creation, 216–218	69–86, 118–119, 134–135, 165–166, 206, 207f,
semantic matching, 214–216	256
build paths, 214	clinical decision support systems (CDSS), 81–82
semantic similarity, 215	semantic knowledge graph for, 82–83
weight computing of the concept, 215–216	future possibilities, 83–84
weight allocation for keyword, 213–214	graphs, 33-34, 34f

RDF Query Language, 36	syntactic interoperability, 37-40
knowledge-based systems, 71–72	fast healthcare interoperable resource, 39–40
knowledge graphs, 77–78	Health level 7 version 2.x, 37–38
knowledge organization system (KOS), 75	Health level 7 version 3.x, 38–39
knowledge representation	syntactic interoperability and semantic web
in knowledge-based system, 72–73	technology, 46–47
resource description framework for, 73–75	Semantic knowledge discovery in healthcare, 174
RDF in attributes (RDFa), 26	Semantic knowledge graph (SKG), 69-70, 78-81
as a semantic data model, 24-25	Semantic query experience in healthcare, 172, 175
semantic knowledge graph (SKG), 78-81	Semantic reasoner, 172
advantages, 83	Semantic search, 174
simple knowledge organization system (SKOS),	and information retrieval in healthcare, 170
75–77	Semantic similarity, 221–232
and resource description framework, 76-77	algorithm, 227
Resource description framework schema (RDFS), 32,	between a pair of sentences, 226
34-35, 75-76	between words, 226–227
Rule-based engine, 184	computation, 172–173, 212, 215
Rule-based POS tagging, 237	data set, 227–228
00 0	literature survey, 222–223
S	results, 228–229
Sarcasm detection, 157	word similarity, 225–226
Semantic annotation, 159–160	Semantic web, 1, 233–234, 253–268
Semantic attackers, 264	clinical natural language processing and, 242-245
Semantic data models, 23–30	framework for classification of genetic mutations
conceptual evaluation, 27-28	using ontologies, 243–245
comparison study, 27	ontology creation from clinical documents,
generalized architecture, 27-28	242–243
findings, 28–29	different attacks on, 262-263
related work, 25–26	importance of transport layer security on semantic
Resource Description Framework (RDF) as, 24-25	web, 262–263
Semantic healthcare information discovery, 173–174	future security protocols for, 265-266
Semantic indexing module, 184–185	privacy and semantic web, 264-265
Semantic Intelligence, 2–4	related work, 258–259
publishing and consuming data on the web, 3	security and cryptography, 253-256
technologies applied within enterprises, 3-4	asymmetric key cryptography/public-key
Semantic Intelligence technologies (SITs), 1–2	cryptography, 255–256
Semantic interoperability, 31–54, 101–102	symmetric key cryptography/secret key
clinical coding systems, 41–42, 43f	cryptography, 255
clinical terminology systems and clinical	security standards for, 259-262
classification systems, difference between,	extensible markup language, securing, 259-260
42-44	information interoperability in a secured way,
healthcare interoperability, 32	261-262
and semantic web technologies, 32-37, 44-49	resource description framework, securing, 260
applications of, 36–37	semantic attackers, 264
resource data framework, 33	and uncertainty, 90–91
Resource Description Framework (RDF) graphs,	W3C social web standards, drawbacks of existing
33–34, 34 <i>f</i>	privacy and security protocols in, 263–264
SPARQL Protocol, 36, 45f	Semantic web rule language (SWRL), 119-120
vocabularies, RDFS and OWL, 34-35	Sentiment analysis, 156f, 160
semantic web technology, challenges with the	Similarity matrix calculation, 226–227
adoption of	Simple knowledge organization system (SKOS), 70,
at the semantic interoperability level, 50	75–77, 200
at the syntactic interoperability level, 50–51	and resource description framework, 76–77

Simple Object Access Protocol (SOAP) architecture, 39, 39t	fast healthcare interoperable resource, 39–40 Health level 7 version 2.x, 37–38
Smart electronic health records, 181	Health level 7 version 3.x, 38–39
Smart Health Unit (SHU), 99	and semantic web technology, 46-47
Smart mental healthcare systems, 153–164	Syntactico-semantic reasoning, 93
architecture, 159–161	Systematized NOmenclature of MEDicine-Clinical
machine learning, 160–161	Terms (SNOMED-CT), 31–32, 42–44, 48–50
semantic annotation, 159–160	(
sentiment analysis, 156f, 160	T
benefits, 158–159	TBox, 11
actionable knowledge, 158–159	Term frequency-inverse document frequency (TF-IDF),
contextualization, 158	236
early intervention or detection, 159	Terminology and Data Elements Repositories for
invasive and continuous monitoring, 159	Healthcare Interoperability (TeRSan), 49
personalization, 158	TextRank algorithm, 238
privacy and cost of treatment, 159	Tokenization, 237
challenges, 155–158	Transport Layer Security (TLS), 258–259, 262–263
big data, 155	Transport Eayer Security (TES), 250 259, 202 200
heterogeneity, 155–157	U
invasive and continuous monitoring, 158	UIMA Ruta, 168
knowledge representation, 157–158	Unified Medical Lexicon System (UMLS), 100–101
natural language processing, 157	Uniform resource identifier (URI), 63, 73–74
classification of mental healthcare, 154–155	Universal resource identifier (URI), 24, 33
SMSD (Semantic Medical Sensor Data ontology), 102	User concept, 13–14
Social data, 154–155	UserEvent concept, 11, 15–16
SPARQL language, 2, 26	UserStatus concept, 11, 15–16
SPARQL Protocol, 36, 45–46, 45f	, , , , , , , , , , , , , , , , , , ,
Standards developing organizations (SDOs), 100–101	W
Stanford Natural Language Processing, 214	Wearable devices, 136–137, 139–140
Statistical Data and Metadata Exchange Health	Web Ontology Language (OWL), 34-35, 75-76,
Domain (SDMX-HD), 100–101	100-101, 165-166, 196
Status concept, 15–16	WebSub, 264
StatusItem concept, 14, 18	Weight of the keyword, 214
Streaming processing, 155	Word2Vec, 240
Structured query language (SQL), 36	Word matching, 23–24
Substitutable medical applications and reusable	WordNet, 214, 224–228
technologies (SMART), 46	World Wide Web Consortium (W3C), 256
Support vector machine (SVM), 168, 239–240, 239f	
Surmising, 265	X
Symmetric key cryptography/secret key cryptography,	XML (extensible mark-up language), 24-26
255	XQuery language, 26
Syntactic interoperability, 32, 37–40	XSPARQL, 26