curs 9

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

RECAP. - SISTEMUL DEDUCTIV DE TIP HILBERT

Axiomele logice.

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

unde φ , ψ și χ sunt formule.

Regula de deducție.

Pentru orice formule φ, ψ ,

din φ şi $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

RECAP. - Γ-TEOREME

Definiția 8.3

Fie Γ o mulţime de formule. Γ -teoremele sunt formulele definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ -teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (T3) Numai formulele obţinute aplicând regulile (T0), (T1), (T2) sunt Γ-teoreme.

```
\begin{array}{lll} \textit{Thm}(\Gamma) & := & \text{multimea } \Gamma\text{-teoremelor} \\ \textit{Thm} & := & \textit{Thm}(\emptyset) \\ \Gamma \vdash \varphi & \Leftrightarrow & \varphi \text{ este } \Gamma\text{-teoremă} \\ \vdash \varphi & \Leftrightarrow & \emptyset \vdash \varphi \\ \Gamma \vdash \Delta & \Leftrightarrow & \Gamma \vdash \varphi \text{ pentru orice } \varphi \in \Delta. \end{array}
```

Definiția 8.4

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

RECAP. - Γ-TEOREME

Definiția Γ -teoremelor dă naștere la metoda de demonstrație prin inducție după Γ -teoreme.

Versiunea 1.

Fie P o proprietate a formulelor. Demonstrăm că orice Γ -teoremă satisface P astfel:

- (i) demonstrăm că orice axiomă are proprietatea P;
- (ii) demonstrăm că orice formulă din Γ are proprietatea P;
- (iii) demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea **P**, atunci ψ are proprietatea **P**.

Versiunea 2.

Fie Σ o mulţime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) demonstrăm că orice axiomă este în Σ ;
- (ii) demonstrăm că orice formulă din Γ este în Σ ;
- (iii) demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

TEOREMA DEDUCŢIEI

Teorema deducției este unul din cele mai utile instrumente pentru a arăta că o formulă e teoremă.

Teorema deducției 8.14

Fie $\Gamma \subseteq \mathit{Form}\ \mathsf{si}\ \varphi, \psi \in \mathit{Form}.$ Atunci

$$\Gamma \cup \{\varphi\} \vdash \psi \ ddacă \ \Gamma \vdash \varphi \rightarrow \psi.$$

Demonstraţie. " \Leftarrow " Presupunem că $\Gamma \vdash \varphi \rightarrow \psi$.

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteză
- (2) $\Gamma \cup \{\varphi\} \vdash \varphi \rightarrow \psi$ Propoziţia 8.7.(i)
- (3) $\Gamma \cup \{\varphi\} \vdash \varphi$ Propoziţia 8.5.(ii)
- (4) $\Gamma \cup \{\varphi\} \vdash \psi$ (MP): (2), (3).

TEOREMA DEDUCŢIEI

$$\Sigma := \{ \psi \in Form \mid \Gamma \vdash \varphi \to \psi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. Arătăm prin inducție după $\Gamma \cup \{\varphi\}$ -teoreme.

- · Fie ψ o axiomă sau o formulă din Γ . Atunci
 - (1) $\Gamma \vdash \psi$ Propoziţia 8.5.(i), (ii)
 - (2) $\Gamma \vdash \psi \rightarrow (\varphi \rightarrow \psi)$ (A1) şi Propoziţia 8.5.(i)
 - (3) $\Gamma \vdash \varphi \rightarrow \psi$ (MP): (1), (2).

Aşadar $\psi \in \Sigma$.

· Fie $\psi=\varphi$. Atunci $\varphi\to\psi=\varphi\to\varphi$ este teoremă, conform Propoziției 8.13, deci $\Gamma\vdash\varphi\to\psi$. Aşadar $\psi\in\Sigma$.

TEOREMA DEDUCŢIEI

 \cdot Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\psi,\psi \to \chi \in \Sigma$ și trebuie să arătăm că $\chi \in \Sigma$. Atunci

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteza inducţie

(2)
$$\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \chi)$$
 ipoteza inducţie

(3)
$$\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$
 (A2) şi P. 8.5.(i)

(4)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$$
 (MP): (2), (3).

(5)
$$\Gamma \vdash \varphi \rightarrow \chi$$
 (MP): (1), (4).

Aşadar $\chi \in \Sigma$.

CÂTEVA CONSECINȚE

Recap. - Propoziția 8.15

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (1)

Propoziția 9.1

Pentru orice mulţime de formule Γ şi orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \to \psi \text{ \sharp i } \Gamma \vdash \psi \to \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \to \chi \ .$$

Demonstrație.

(1)	$\Gamma \vdash \varphi \to \psi$	ipoteză

(2)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$
 P. 8.15 şi P. 8.7.(ii)

(3)
$$\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$$
 (MP): (1), (2)

(4)
$$\Gamma \vdash \psi \rightarrow \chi$$
 ipoteză

(5)
$$\Gamma \vdash \varphi \rightarrow \chi$$
 (MP): (3), (4).

9

CÂTEVA CONSECINȚE

Propoziția 9.2

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi$$
 (2)

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$$

$$\vdash \neg \neg \varphi \rightarrow \varphi$$

$$\vdash \quad \varphi \to \neg \neg \varphi$$

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \to \varphi).$$

citiu

Demonstraţie. Exerciţiu.

Propoziția 9.3

Pentru orice mulţime de formule Γ şi orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \text{ si } \Gamma \cup \{\neg\psi\} \vdash \varphi \quad \Rightarrow \quad \Gamma \vdash \varphi. \tag{7}$$

Demonstrație. Exercițiu.

(3)

(4)

(5)

(6)

LEGĂTURA DINTRE SINTAXĂ ȘI SEMANTICĂ

CORECTITUDINE

Teorema de corectitudine (Soundness Theorem) 9.4

Orice Γ -teoremă este consecință semantică a lui Γ , adică,

$$\Gamma \vdash \varphi \implies \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form$ şi $\Gamma \subseteq Form$.

Demonstrație. Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma) \subseteq \Sigma$. Arătăm prin inducție după Γ -teoreme.

- · Axiomele sunt în Σ (exercițiu).
- · Evident, $\Gamma \subseteq \Sigma$.
- · Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 7.9.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Notaţii.

Pentru orice variabilă $v \in V$ și orice evaluare $e: V \to \{0,1\}$,

$$v^e = \begin{cases} v & \text{dacă } e(v) = 1 \\ \neg v & \text{dacă } e(v) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulţime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Propoziţia 9.5

Fie $e: V \to \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Demonstrație. Prin inducție după formule. Avem următoarele cazuri:

- $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ şi $e^+(v) = e(v)$.
 - Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$.
 - Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.

 $\varphi = \neg \psi$. Atunci $Var(\varphi) = Var(\psi)$, deci $Var(\varphi)^e = Var(\psi)^e$.

Dacă $e^+(\varphi) = 1$, atunci $e^+(\psi) = 0$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \neg \psi$, adică, $Var(\varphi)^e \vdash \varphi$.

Dacă $e^+(\varphi)=0$, atunci $e^+(\psi)=1$, deci, conform ipotezei de inducție pentru ψ , $Var(\psi)^e \vdash \psi$, adică, $Var(\varphi)^e \vdash \psi$. Deoarece $\vdash \psi \to \neg \neg \psi$ (Propoziția 9.2), putem aplica (MP) pentru a obține $Var(\varphi)^e \vdash \neg \neg \psi$, deci $Var(\varphi)^e \vdash \neg \varphi$.

$$\begin{array}{ll} \cdot \ \varphi = \psi \to \chi. \ \ \text{Atunci} \ \ Var(\varphi) = Var(\psi) \cup Var(\chi), \ \text{deci} \\ Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e. \\ \\ \text{Dacă } e^+(\psi \to \chi) = 0, \ \text{atunci } e^+(\psi) = 1 \ \text{și } e^+(\chi) = 0. \ \text{Avem} \\ Var(\psi)^e \vdash \psi \qquad \text{ipoteza de inducție pentru } \psi \\ Var(\chi)^e \vdash \neg \chi \qquad \text{ipoteza de inducție pentru } \chi \\ Var(\varphi)^e \vdash \{\psi, \neg \chi\} \qquad Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e \ \text{și P.8.7.(i)} \\ \{\psi, \neg \chi\} \vdash \neg (\psi \to \chi) \qquad \text{Propoziția 9.2} \\ Var(\varphi)^e \vdash \neg (\psi \to \chi) \qquad \text{Propoziția 8.7.(iv)}. \end{array}$$

Dacă $e^+(\psi \to \chi) = 1$, atunci fie $e^+(\psi) = 0$, fie $e^+(\chi) = 1$.

În primul caz, obținem

$$Var(\psi)^e \vdash \neg \psi$$
 ipoteza de inducţie pentru ψ

$$Var(\psi)^e \vdash \neg \psi \rightarrow (\psi \rightarrow \chi)$$
 din P.9.2 şi P.8.7.(ii)

$$Var(\psi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \to \chi$$
 $Var(\psi)^e \subseteq Var(\varphi)^e$ şi P.8.7.(i).

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducţie pentru χ

$$Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$$
 (A1) şi Propoziţia 8.5.(i)

$$Var(\chi)^e \vdash \psi \to \chi$$
 (MP)

$$Var(\varphi)^e \vdash \psi \rightarrow \chi$$
 $Var(\chi)^e \subseteq Var(\varphi)^e$ şi P.8.7.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

TEOREMA DE COMPLETITUDINE

Teorema 9.6 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi$$
 ddacă $\models \varphi$.

Demonstrație. " \Rightarrow " Se aplică Teorema de corectitudine 9.4 pentru $\Gamma = \emptyset$.

" \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0,1\}, \{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Deoarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 9.5, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

TEOREMA DE COMPLETITUDINE

 $k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k şi fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Aşadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ şi

$$e'(x_{n-k}) = \begin{cases} 0 & \text{dacă } e(x_{n-k}) = 1\\ 1 & \text{dacă } e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{0, \dots, n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e şi e', obţinem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 9.3 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ și $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

CONSECINȚĂ UTILĂ

Propoziția 9.7

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq \mathit{Form}$. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Demonstrație. Observăm că

$$\begin{array}{cccc} \varphi \sim \psi &\iff & \vDash \varphi \rightarrow \psi \; \S i \vDash \psi \rightarrow \varphi \\ & & (\text{conform Propoziţiei 6.6}) \\ & \iff & \vdash \varphi \rightarrow \psi \; \S i \vdash \psi \rightarrow \varphi \\ & & (\text{conform Teoremei de completitudine}). \end{array}$$

" \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \rightarrow \psi$, rezultă din Propoziția 8.7.(ii) că $\Gamma \vdash \varphi \rightarrow \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

NOTAŢII.

Fie Γ o mulţime de formule şi φ o formulă.

Notaţii.

Definiția 9.8

Fie Γ o multime de formule.

- · Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash \varphi$.
- · Γ este inconsistentă dacă nu este consistentă, adică, $\Gamma \vdash \varphi$ pentru orice formulă φ .

Observație.

Fie Γ , Δ mulţimi de formule a.î. $\Gamma \subseteq \Delta$.

- · Dacă Δ este consistentă, atunci și Γ este consistentă.
- · Dacă Γ este inconsistentă, atunci și Δ este inconsistentă.

Propoziția 9.9

- (i) ∅ este consistentă.
- (ii) Mulţimea teoremelor este consistentă.

Demonstrație.

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine, ar rezulta că ⊨ ⊥, o contradicție. Aşadar ⊬ ⊥, deci Ø este consistentă.
- (ii) Aplicând Propoziția 8.7.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ ,

$$\vdash \varphi$$
 ddacă *Thm* $\vdash \varphi$.

Din (i) rezultă că *Thm* este consistentă.

Propoziţia 9.10

Pentru o mulţime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ şi $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Demonstraţie. $(i) \Rightarrow (ii) \Rightarrow (iii)$ şi $(i) \Rightarrow (iv)$ sunt evidente.

(iii) \Rightarrow (i) Fie φ o formulă. Conform Propoziția 9.2,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$.

 $(iv) \Rightarrow (iii)$. Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Propoziția 9.11

Fie Γ o multime de formule şi φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Demonstrație.

(i) Avem

$$\Gamma \cup \{\neg \varphi\} \text{ este inconsistent \check{a}} \iff \Gamma \cup \{\neg \varphi\} \vdash \bot$$

$$\text{P.9.10.(iv)}$$

$$\iff \Gamma \vdash \neg \varphi \to \bot$$

$$\text{Teorema Deducţiei}$$

$$\iff \Gamma \vdash \varphi$$

$$\neg \varphi \to \bot \sim \varphi \text{ \emptyset P.9.7.}$$

(ii) Similar.

Propoziția 9.12

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulţime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Demonstrație. Exercițiu.

Propoziția 9.13

Fie Γ o mulţime de formule. Γ este inconsistentă ddacă Γ are o submulţime finită inconsistentă.

Demonstrație. "⇐" este evidentă.

"⇒" Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 9.10.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 8.12, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă. \square

Un rezultat echivalent:

Propoziția 9.14

Fie Γ o mulţime de formule. Γ este consistentă ddacă orice submulţime finită a lui Γ este consistentă.

CONSECINȚĂ A TEOREMEI DE COMPLETITUDINE

Teorema 9.15

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Demonstrație. Avem

$$\{\varphi\} \text{ este inconsistent \check{a}} \iff \begin{array}{c} \vdash \neg \varphi \\ \text{conform Propoziției 9.11.(ii)} \\ \iff \quad \vdash \neg \varphi \\ \text{conform Teoremei de completitudine} \\ \iff \quad \{\varphi\} \text{ este nesatisfiabil \check{a}} \\ \text{conform Propoziției 7.11.(ii)}. \end{array}$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 9.16 (Teorema de completitudine tare - versiunea 1) Pentru orice mulțime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

Demonstrație. " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e:V \to \{0,1\}$. Presupunem că Γ nu este consistentă. Atunci $\Gamma \vdash \bot$ şi, aplicând Teorema de corectitudine, rezultă că $\Gamma \vDash \bot$. Ca urmare, $e \vDash \bot$, ceea ce este o contradicție.

" \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate pentru a conclude că Γ este satisfiabilă.

Fie $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ o submulţime finită a lui Γ. Atunci Σ este consistentă, conform Propoziţiei 9.14. Din Propoziţia 9.12.(ii), rezultă că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă. Aplicând acum Teorema 9.15, obţinem că $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziţiei 7.12.(i), $\Sigma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$, avem că Σ este satisfiabilă.

TEOREMA DE COMPLETITUDINE TARE

Teorema 9.17 (Teorema de completitudine tare - versiunea 2) Pentru orice multime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Demonstrație.

Observație

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).

Pe data viitoare!

All math is applied math... eventually.

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leustean din anul universitar 2017/2018.