Detecting Community Structures in Social Networks by Graph Sparsification

Partha Basuchowdhuri, Satyaki Sikdar, Sonu Shreshtha, Subhasis Majumder

Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata, India

Figure: The tendency of people to live in racially homogeneous neighborhoods[1]. In yellow and orange blocks % of Afro-Americans < 25, in brown and black boxes % > 75.

Definition of a Community

For a given graph $\mathcal{G}(\mathcal{V},\mathcal{E})$, find a cover $\mathbb{C}=\{C_1,C_2,...,C_k\}$ such that $\bigcup_i C_i=\mathcal{V}$.

- For disjoint communities, $\forall i, j$ we have $C_i \cap C_j = \emptyset$
- For overlapping communities, $\exists i, j$ where $C_i \cap C_j \neq \emptyset$

Figure: Zachary's Karate Club Network

$$\mathbb{C} = \{C_1, C_2, C_3\}, C_1 =$$
yellow nodes, $C_2 =$ green, $C_3 =$ blue is a disjoint cover

However,
$$\bar{\mathbb{C}}=\{\bar{C_1},\bar{C_2}\},\bar{C_1}=$$
 yellow & green nodes and $\bar{C_2}=$ blue & green nodes is an overlapping cover

For our problem, we concentrate on *disjoint* community detection

A Little Background: Edge Betweenness Centrality

Top 6 edges

rop o euges			
Edge	$\mathbf{c_B}(\mathbf{e})$	Туре	
(10, 13)	0.3	inter	
(3, 5)	0.23333	inter	
(7, 15)	0.2079	inter	
(1, 8)	0.1873	inter	
(13, 15)	0.1746	intra	
(5, 7)	0.1476	intra	

Bottom 6 edges

Dottom o cages		
Edge	$\mathbf{c_B}(\mathbf{e})$	Туре
(8, 11)	0.022	intra
(1, 2)	0.0269	intra
(9, 11)	0.031	intra
(8, 9)	0.0412	intra
(12, 15)	0.052	intra
(3, 4)	0.060	intra

The Girvan-Newman Algorithm

Proposed by Michelle Girvan and Mark Newman[2] in 2002

The Key Ideas

- Based on reachability of nodes shortest paths
- Edges are selected on the basis of the edge betweenness centrality

The algorithm

- Compute centrality for all edges
- Remove edge with largest centrality; ties can be broken randomly
- Recalculate the centralities on the running graph
- 1 Iterate from step 2, stop when you get clusters of desirable quality

(a) Best edge: (10, 13)

(f) Final graph

(b) Best edge: (3, 5)

(e) Best edge: (2, 11)

(c) Best edge: (7, 15)

(d) Best edge: (1, 8)

Louvain Method: A Greedy Approach

- Proposed by Blondel et al[3] in 2008
- Takes the greedy maximization approach
- Very fast in practice, it's the current state-of-the-art in disjoint community detection
- Performs hierarchical partitioning, stopping when there cannot be any further improvement in modularity
- Contracts the graph in each iteration thereby speeding up the process

Louvain Method in Action

Our Method

Input: An unweighted network $\mathcal{G}(\mathcal{V}, \mathcal{E})$

Output: A disjoint cover C

- $\textbf{0} \ \ \text{Use Jaccard coefficient to turn } \mathcal{G} \ \text{into a weighted network } \mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$
- ② Construct an t-spanner of $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$. Take the complement of \mathcal{G}_S , call it \mathcal{G}_{comm}
- **1** Use LINCOM to break \mathcal{G}_{comm} into small but pure fragments
- \bullet Use the second phase of Louvain Method to piece all the small bits and pieces together to get $\mathbb C$

Jaccard Intro

Definition

$$w_J(e(v_i, v_j)) = \frac{|\Gamma(v_i) \cap \Gamma(v_j)|}{|\Gamma(v_i) \cup \Gamma(v_j)|}$$

where $\Gamma(v_i)$ is the neighborhood of the node v_i

$$w_J \in [0, 1]$$

- Jaccard works well in domains where local influence is important[4][5][6]
- The computation takes O(m) time

Jaccard Example

Table: Jaccard weight statistics for top 10% edges in terms of w_J .

Network	E	intra-cluster	top 10% edges in terms of w_J		
		edge count	Total edges	Intra-edge	Fraction
Karate	78	21	7	7	1
Dolphin	159	39	15	15	1
Football	613	179	61	61	1
Les-Mis	254	56	25	25	1
Enron	180,811	48,498	18,383	18,220	0.99113
Epinions	405,739	146,417	40,573	36,589	0.90180
Amazon	925,872	54,403	92,587	92,584	0.99996
DBLP	1,049,866	164,268	104,986	104,986	1

Spanner

• A (α, β) -spanner of a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W})$ is a subgraph $\mathcal{G}_{\mathcal{S}} = (\mathcal{V}, \mathcal{E}_{\mathcal{S}}, \mathcal{W}_{\mathcal{S}})$, such that,

$$\delta_S(u,v) \leq \alpha \cdot \delta(u,v) + \beta \quad \forall u,v \in V$$

• A t-spanner is a special case of (α, β) spanner where $\alpha = t$ and $\beta = 0$

Authors	Size	Running Time
Althöfer et al. [1993] [7]	$O(n^{1+\frac{1}{k}})$	$O(m(n^{1+\frac{1}{k}} + nlogn))$
Althöfer et al. [1993] [7]	$\frac{1}{2}n^{1+\frac{1}{k}}$	$O(mn^{1+\frac{1}{k}})$
Roddity et al. [2004] [8]	$\frac{1}{2}n^{1+\frac{1}{k}}$	$O(kn^{2+\frac{1}{k}})$
Roddity et al. [2005] [9]	$O(kn^{1+\frac{1}{k}})$	O(km) (det.)
Baswana and Sen [2007] [10]	$O(kn^{1+\frac{1}{k}})$	O(km) (rand.)

```
Algorithm 1: Greedy Construction of t-spanner (GREEDY(G, t))
```

Input : Undirected, weighted graph G(V, E, W), (t)

Output: t-spanner edge set E_S

```
1 begin
2 | E_S \leftarrow \emptyset |
3 | foreach e(s, t) \in E, in non-decreasing order of weight do
4 | if d_{(V,E_S)}(s,t) > (2k-1)w(e(s,t)) then
5 | | E_S \leftarrow E_S \cup \{e(s,t)\} |
6 | return E_S
```

```
if v_{min} exists for v then
   Algorithm 2: Spanner based Community Detection
                                                                                                                17
                                                                                                                                                E_S \leftarrow E_S \cup \{e(v, v_{min})\}
                                                                                                                18
    (SPAN(G, k))
                                                                                                                                                E_{comm} \leftarrow E_{comm} \setminus \{e(v, v_{min})\}
                                                                                                                19
     Input: Undirected, weighted graph G(V, E, W), (k)
                                                                                                                                                \mathcal{E}_i \leftarrow \mathcal{E}_i \cup \{e(v, v_{min})\}
                                                                                                                20
     Output: G_{comm} = (V, E_{comm})
                                                                                                                                                E' \leftarrow E' \setminus \{E'(v, c_{min})\}\
                                                                                                                21
                                                                                                                                                v_{min} \in c_{min}
  1 begin
                                                                                                                                                if v_{min}(c) < v_{min} then
          E_S \leftarrow \emptyset, C_0 \leftarrow \{\{v\} | v \in V\}, E' \leftarrow E_{comm} \leftarrow E
                                                                                                                22
                                                                                                                                                     E_S \leftarrow E_S \cup \{e(v, v_{min}(c))\}
          \mathcal{E}_i' \leftarrow \mathcal{E}_i \leftarrow \emptyset, \, \mathcal{R}_0 \leftarrow V
                                                                                                                23
                                                                                                                                                     E_{comm} \leftarrow E_{comm} \setminus
          for i \leftarrow 1 to k-1 do
                                                                                                                24
                                                                                                                                                     \{e(v, v_{min}(c))\}
                \mathcal{R}_i \leftarrow \text{randomly pick } n^{1-\frac{i}{k}} \text{ clusters from } C_{i-1}
  5
                                                                                                                                                    E' \leftarrow E' \setminus \{E'(v,c)\} \mid v_{min}(c) \in c
                                                                                                                25
                \mathcal{E}_i \leftarrow \emptyset, C_i \leftarrow \mathcal{R}_i
  6
                                                                                                                                           else
                for all the e(u,v) \in \mathcal{E}_{i-1} do
                                                                                                                26
                                                                                                                                                E_S \leftarrow E_S \cup \{e(v, v_{min}(c))\}
                     if u, v \in c, c \in \mathcal{R}_i then
                                                                                                                27
                                                                                                                                               E_{comm} \leftarrow E_{comm} \setminus \{e(v, v_{min}(c))\}
                    \mathcal{E}_i \leftarrow \mathcal{E}_i \cup \{e(u,v)\}
                                                                                                                28
  Ω
                                                                                                                                              E' \leftarrow E' \setminus \{E'(v,c)\} \mid v_{min}(c) \in c
                                                                                                                29
                foreach v \in V' AND \in c \notin \mathcal{R}_i do
10
                                                                                                                                for all the e(v, u) \mid u, v \in c', c' \in E' do
                      foreach e(v, v'), v' \in c \mid c \in C_{i-1} do
11
                                                                                                                30
                                                                                                                                 E' \leftarrow E' \setminus \{e(v,u)\}
                           if c \in \mathcal{R}_i then
                                                                                                                31
12
                                 v_{min} \leftarrow \arg\min_{\forall v' \in \Gamma(v) \in c} d(v, v')
13
                                                                                                                          for all the v \in V' do
                                                                                                                32
                           else
14
                                                                                                                                for all the c \in C_{k-1} do
                            v_{min}(c) \leftarrow \arg\min_{\forall v' \in \Gamma(v), c} d(v, v')
15
                                                                                                                                     E_S \leftarrow E_S \cup \{e(v, v_{min}(c))\}\
                                                                                                                34
                                                                                                                                     E_{comm} \leftarrow E_{comm} \setminus \{e(v, v_{min}(c))\}
                                                                                                                35
                      forall the v_{min}, v_{min}(c) \in \Gamma(v), c \mid c \in C_{i-1}
16
                                                                                                                                  E' \leftarrow E' \setminus \{E'(v,c)\} \mid v_{min}(c) \in c
                                                                                                                36
                      do
                                                                                                                          return G_{comm}
                                \triangleright v_{min} chosen from sampled nodes only
                                                                                                                37
```


Figure: Original network n=11, m=18 $\delta(1,5)=5$

Figure: A 3-spanner of the network n=11, m=11 $\delta_s(1,5)=12$

Since $\delta_s(1,5) < t$. $\delta(1,5)$, the edge (1,5) is discarded The other edges are discarded in a similar fashion.

Figure: 5-spanner. n = 62, m = 148

Figure: 7-spanner. n = 62, m = 144

Name	n	Spanner	#intra-community	#inter-community
	34	Original	59	19
		3	57	19
Karate		5	53	19
		7	51	18
		9	48	19
	59	Original	120	39
Dolphin		3	117	38
		5	102	38
		7	100	38
		9	90	38
Football 11		Original	447	163
	115	3	385	166
		5	376	166
		7	293	166
		9	286	165

Figure: Original US Football network

Figure: Sparsified network \mathcal{G}_{comm}

Figure: Final network with communities marked as separate components

- At every timestamp, a node spreads influence to all of it's neighbors.
- Nodes are assigned a Influenced Neighbors Score(INS) value at every timestamp

$$INS_t(v) = \frac{\text{\# neighbors influenced at time } t}{Degree(v)}$$

- A threshold(THR) is set, and the nodes are classified accordingly. If $INS(v) \leq THR$, v is a **broker node**, otherwise v is a **community node**
- Broker nodes are placed in a **stack**, and community nodes in a **queue**. This results in a mix of breadth first and depth first traversals.
- Running time O(m+n)

An Example - Threshold is taken to be 0.66.

Broker Stack: N

Community Queue: \emptyset

Broker Stack: L

Community Queue: Ø

Broker Stack: | B

Community Queue: A E

Both the Broker Stack and Community Queue are empty, so, the process stops.

Post-processing - Brokers are assigned to communities (if possible).


```
Algorithm 3: Traversal-based Linear Time Community
  Detection (LINCOM(G, r))
   Input : Undirected, unwtd. graph G(V, E), threshold
              (r)
   Output: Cover of k communities.
              G_s = \{G_s, G_{so}, ..., G_{ss}\}
 1 begin
        find v_{start} \in V, \ni v_{start} is the node with lowest
       degree
       for all the v \in V do
 3
           nodeType(v) \leftarrow community(v) \leftarrow covered(v) \leftarrow
           0
       S \leftarrow Q \leftarrow \emptyset \quad \text{bbrokerStack}(S), \text{communityQueue}(Q)
 5
       coverCount \leftarrow 1
       v \leftarrow v_{start}
 7
       NODE-CAT(G, v, O, S)
        while coverCount < n do
 9
10
           if O is non-empty then
               v \leftarrow \text{dequeue}(Q)
11
           else
12
            v \leftarrow \text{pop}(S)
13
           NODE-CAT(G, v, O, S)
14
15
        for all the v \in V do
         check community(v) to form G_s
16
       POST-PROCESS(G_s)
17
18
       CONVERGE(G,G_s,t)
       return G_{\circ}
19
```

```
Algorithm 4: Categorizing uncovered nodes in Nghb(v) (NODE-CAT(G, v, Q, S))

Input: Undirected, unwtd, graph G(V, E), threshold
```

```
(r), brokerStack (S), communityQueue (Q)
   Output: Update Q, S, nodeType list, community list
 1 begin
       SPREAD(v)
       for i = 1 to dea(v) do
           u \leftarrow adiList(v,i)
           calculate INS(u)
 5
           if node Type(u) is NON-ZERO then continue
 7
           if INS(u) < r then
               nodeTvpe(u) \leftarrow 1
                                          ⊳marking the broker
               nodes
               \operatorname{push}(S,u)
10
               communitv(u) \leftarrow u
11
           else
12
               nodeTvpe(u) \leftarrow 2 \quad \triangleright marking the community
13
               nodes
14
               enqueue(Q,u)
               communitv(u) \leftarrow communitv(v)
15
16
       return
```

```
Algorithm 5: Spreading Influence to the Neighbors (SPREAD(v))
```

```
Input : Undirected, unwtd. graph G(V, E), root node (v)
Output: Update coverCount, covered list
```

Algorithm 6: Influenced Neighbors Score (INS(v))

Input: Undirected, unwtd. graph G(V, E), root node (v)

```
\begin{array}{c|c} \textbf{Dotput:} & \textbf{INS}(v) \\ \textbf{1} & \textbf{begin} \\ \textbf{2} & \textbf{insTotal}(v) \leftarrow 0 \\ \textbf{3} & \textbf{for } i = 1 \ to \ deg(v) \ \textbf{do} \\ \textbf{4} & \textbf{if } \ covered(adjList(v,i)) \ EQUALS \ TO \ 1 \ \textbf{then} \\ \textbf{5} & \textbf{begin} \\ \textbf{6} & \textbf{INS}(v) \leftarrow \textbf{insTotal}(v) / \textbf{deg}(v) \\ \textbf{7} & \textbf{return } \textbf{INS}(v) \end{array}
```

```
Algorithm 7: Post-processing of the Broker Nodes
   (POST-PROCESS(G_{*}))
   Input: Undirected, unwtd. graph G(V, E), root
              node (v)
   Output: Update community(v) value for broker nodes
 1 begin
       for all the v \in V do
 2
           max(v) \leftarrow 0
 3
           cover(v) \leftarrow 0
       for all the v \in V do
 5
           if nodeTupe(v) EQUALS TO 1 then
 6
               for all the G_{s_i} \in G_s do
 7
                   if \frac{|Neighbors of v in G_{s_i}|}{|G_{s_i}|} > max(v) then
 8
                      max(v) \leftarrow \frac{|Neighbors\ of\ v\ in\ G_{s_i}|}{|G_{s_i}|}
 Q
               if max(v) is NON-ZERO then
10
                   communitv(v) \leftarrow cover that leads to
11
                   \max(v)
12
       return
```


Modularity Maximization[3]

Modularity

We define modularity [2] as

$$Q = \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j) \qquad Q \in [-1, 1]$$

- The higher the modularity, the better is the community structure*
- Actual social networks have modularity values between 0.30 0.60
- Suffers from resolution limit problems, but usually works very well in practice

Performance Comparison

Dataset Information [11]			Louvain Method		Our Algorithm (3-spanner	
Name	n	m	Modularity	Time(sec)	Modularity	Time(sec)
Karate	34	78	0.415	0	0.589	0.51
Dolphins	62	159	0.518	0	0.676	0.53
Football	115	613	0.604	0	0.8615	0.65
Enron	33,696	180,811	0.596	0.38	0.855	13.13
Epinions	75,877	405,739	0.45	0.97	0.695	27.03
Amazon	334,863	925,872	0.926	6	0.995	78.47
DBLP	317,080	1,049,866	0.819	11	0.961	76.8607

Conclusions and Future Scope

- Jaccard coefficient based edge weight preserves the community structure
- Spanners can be used to identify inter-community edges (to a large extent)
- LINCOM is effective in breaking the graph into pure fragments
- Works very fast in practice produces good quality clusters

- ullet The stretch-factor t and THR is predetermined, may turn out to be network dependent
- The algorithm can be modified to do overlapping community detection

References I

- [1] Markus M Möbius and Tanya S Rosenblat. The process of ghetto formation: Evidence from chicago. Unpublished manuscript. http://trosenblat. nber. org/papers/Files/Chicago/chicago-dec7. pdf, 2001.
- [2] M. Girvan and M. E. J. Newman. Community structure in social and biological networks. PNAS, 99(12):7821–7826, June 2002.
- [3] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E.L.J.S. Mech. Fast unfolding of communities in large networks. J. Stat. Mech, page P10008, 2008.
- [4] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan.
 Local graph sparsification for scalable clustering.
 In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages 721–732. ACM, 2011.

References II

- [5] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of the American society for information science and technology, 58(7):1019–1031, 2007.
- [6] Gerd Lindner, Christian L Staudt, Michael Hamann, Henning Meyerhenke, and Dorothea Wagner. Structure-preserving sparsification of social networks. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pages 448–454. ACM, 2015.
- Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares.
 On sparse spanners of weighted graphs.
 Discrete & Computational Geometry, 9(1):81–100, 1993.
- Liam Roditty and Uri Zwick.
 On dynamic shortest paths problems.
 In Algorithms-ESA 2004, pages 580-591. Springer, 2004.

References III

- Liam Roditty, Mikkel Thorup, and Uri Zwick.
 Deterministic constructions of approximate distance oracles and spanners.
 In Automata, languages and programming, pages 261–272. Springer, 2005.
- [10] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563, 2007.
- [11] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.

"No one ever complains about a speech being too short!" - Ira Hayes

Thank you for your attention. Any questions?