Ayudantía 2 Álgebra Lineal

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

31 de marzo de 2022

Problema 1. Sea $n \in \mathbb{N}^{\geq 2}$, y \mathbb{Z} el conjunto de los números enteros. Se define sobre este conjunto la relación de congruencia módulo n como sigue

$$a\mathcal{R}b \iff \exists k \in \mathbb{Z} \text{ tal que } a - b = nk$$

- 1. Pruebe que la relación anterior define una relación de equivalencia sobre Z.
- 2. De ahora en adelante, denotaremos $a\mathcal{R}b$ como $a\equiv b\pmod{n}$ y la clase de equivalencia de $a\in\mathbb{Z}$ como $[a]_n = \{b \in \mathbb{Z} : a \equiv b \pmod{n}\}$. Sea $\mathbb{Z}/n\mathbb{Z}$ el conjunto cociente de \mathbb{Z} por la relación de equivalencia congruencia módulo n. Pruebe que

$$\mathbb{Z}/n\mathbb{Z} = \{[0], [1]_n, \dots, \{n-1\}_n\}$$

Indicación: Recuerde que para $a, b \in \mathbb{Z}$ con $b \neq 0$ siempre existen únicos enteros $q, r \in \mathbb{Z}$ tales que a = bq + r $con 0 \le r < |b|,$

3. A continuación defina las siguientes operaciones sobre $\mathbb{Z}/n\mathbb{Z}$

$$[a]_n + [b]_n := [a+b]_n$$
 $[a]_n \cdot [b]_n := [a \cdot b]_n$ $\forall a, b \in \mathbb{Z}$

Pruebe que las operaciones anteriores están bien definidas, i.e., si $a \equiv a' \pmod{n}$ y $b \equiv b' \pmod{n}$ entonces $[a+b]_n = [a'+b']_n$ y $[ab]_n = [a'b']_n$.

- 4. Demuestre que $(\mathbb{Z}/n\mathbb{Z},+)$ es un grupo abeliano, i.e., la suma módulo n definida anteriormente es asociativa y conmutativa, posee elemento neutro e inversos. Asimismo, note que · es asociativo, conmutativo y posee neutro. Finalmente, pruebe que \cdot verifica la propiedad distributiva respecto de $+^1$.
- 5. Demuestre que $a \in \mathbb{Z}$ posee un inverso multiplicativo en $\mathbb{Z}/n\mathbb{Z}$, i.e., existe $b \in \mathbb{Z}$ tal que $[a]_n \cdot [b]_n = 1$ si y solo si mcd(a, n) = 1 en \mathbb{Z} , donde mcd denota el máximo común divisor.

Indicación: Tenga presente el siguiente resultado sobre números enteros conocido como Lema de Bézout:

Lema 0.1 (Bézout). Sean $a, b \in \mathbb{Z}$ no nulos. Entonces existen $x, y \in \mathbb{Z}$ tales que $ax + by = \operatorname{mcd}(a, b)$ donde mcd(a, b) denota el maáximo común divisor entre a y b.

6. Concluya que $(\mathbb{Z}/p\mathbb{Z}, +, \cdot)$ es un cuerpo si y solo si $p \in \mathbb{Z}$ es primo.

Problema 2. Considere el conjunto de raíces enésimas de la unidad

$$G = \{ z \in \mathbb{C} : z^n = 1 \text{ para algún } n \in \mathbb{N} \}$$

- 1. Demuestre que G es un grupo junto con la multiplicación usual de números complejos.
- 2. Pruebe que G no es un grupo con la suma.

Considere ahora el conjunto

$$H = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}\$$

- 3. Demuestre que H es un grupo con la suma.
- 4. Demuestre que H es también un grupo junto con la multiplicación.

¹Todas estas propiedades se resumen en el hecho de que $(\mathbb{Z}/n\mathbb{Z},+,\cdot)$ es un anillo abeliano.

MAT210 UTFSM

Problema 3. Sea K un cuerpo, $\mathbf V$ un espacio vectorial sobre K y S un conjunto.

1. Pruebe que si se tiene una función $f: \mathbf{V} \to S$ biyectiva con inversa $f^{-1}: S \to \mathbf{V}$, entonces el conjunto S posee estructura de espacio vectorial sobre K dada por las operaciones

$$v \oplus w = f(f^{-1}(v) + f^{-1}(w))$$
 $\alpha \odot v = f(\alpha f^{-1}(v)), \quad \forall \alpha \in K, v, w \in S$

2. Considere $S = \mathbb{R}^+$. Pruebe que S es un espacio vectorial con las operaciones

$$v \oplus w = vw$$
 $\alpha \otimes v = v^{\alpha}$, $\forall \alpha \in K, v, w \in S$

3. Demuestre que $S = \mathbb{R}$ es un espacio vectorial junto con las operaciones

$$v \oplus w = v + w + 1$$
 $\alpha \otimes v = \alpha v + \alpha - 1$, $\forall \alpha \in K, v, w \in S$