Machine Learning in Python using Scikit-Learn

Submitted by Amol Agrawal as proposal for Workshop in BangPypers

Machine Learning

"Statistics on Steroids"

Exploring and recognizing patterns using data analysis through computer science and statistics.

Lots of computer science! Even more statistics!

Scikit-Learn

"The Black Box"

A Python module for all your Machine Learning needs.

Easy to understand, easier to implement.

o. Beginning - What? Where? Why? How?

- **→** What is Machine Learning?
- → What are the aims of this workshop?
- → What this workshop is not!
- → Setup and basic config.

1. Scikit - Learn - The module, our savior.

- → About the module.
- → But why Scikit Learn ??
- → Dependencies.
- → Some basic terminologies.
- → Let's begin!

2. Machine Learning Or How I Learned To Stop
Worrying and Love the DATA

- → Introduction
- → Core Terminologies
- → Definitions.
- → Usage.

Machine Learning can be broadly categorized into

TWO CATEGORIES.

Let's look at them.

UNSUPERVISED MACHINE LEARNING

SUPERVISED MACHINE LEARNING

PRODFFREADERSWHIMSY. BLOGSPOT.CA

3. Supervised Learning - Classification and Regression

Definition

Herein, we have labeled data, i.e, for each X we know what the value of Y will be!

So for new unlabelled data, we can use the labelled data to make some predictions.

3.1 Classification Nearest Neighbors and **Support Vector** Machines

The labels have discrete values.

Eg:

Is Mail Spam or Not

Bug or Not

3.2 Regression - Linear Regression and Random Forests

Definition

The labels lie in a continuous range:

Eg.

Stock Market Prediction

Housing Price Prediction

4. Unsupervised Learning - Dimensionality Reduction and Clustering

Definition

We have NO LABELS!

Patterns must be found and labels must be generated on their own.

Time to freak out? NO!

4.1 Dimensionality Reduction -Principal Component Analysis

When the dataset has a large number of features, out of which some maybe redundant, to save computational power... Reduce the Dimensions!

Eg. Working on Images or Text

4.2 Clustering - KMeans

Definition:

Divide the dataset into clusters based on the feature set.

Eg.

Find prominent colors in an Image.

Cluster Documents

5. Model Selection and Validation -What model to use and Hypertuning

Definition

What model to use when? Which algorithm to use when?

How to tune the parameters?

How to get the best results?

6. Real Word Examples-Showcase of working examples of how ML is being used.

Definition:

Some real world examples of ML implemented and showcased.

7. Where to go from here?-How to incorporate ML in your work **Words of Caution**

How to integrate ML into your work.

Do's and Dont's

8. Workflow

How the workshop will be conducted.:

→ Ipython-Notebooks

Code will be made available for each aforementioned section through Ipython-Notebooks which makes it easy to follow along, tweak and run it quickly.

Scikit - Learn library will be utilized throughout to show how it's inherently implemented algorithms can be used.

→ Exercises

The notebooks will be littered with incomplete code blocks for the participants to attempt and solve.

9. Requirements

→ Basic knowledge of Python

10. Takeaway

- **→** Machine Learning Concepts
- → How to use Scikit Learn
- → How to create ML models quickly using Scikit Learn.

Thank You.