Introduction

1

— 4. Électromagnétisme —

4.5. Propagation et rayonnement C – Onde électromagnétique dans un conducteur ohmique, réflexion sur un conducteur parfait

Table des matières

1.	Propagation d'une onde électromagnétique dans un conducteur	2
	1.1. Modèle du conducteur ohmique	2
	1.2. Modèle de l'onde	2
	1.3. Équation de propagation du champ électrique dans le conducteur .	2
	1.4. Relation de dispersion	3
	1.5. Solutions et interprétation	3
	1.6. Vitesse de phase et de groupe	
	1.7. Densité de courant dans le conducteur	
	1.8. Aspect énergétique	5
	•	
2.	Modèle du conducteur parfait	6
3.	Réflexion d'une OPPM électromagnétique sur un conducteur parfait	7
3.	3.1. Position du problème	7
3.	3.1. Position du problème	
3.	3.1. Position du problème	7
3.	3.1. Position du problème	7
	3.1. Position du problème 3.2. Détermination de l'onde réfléchie 3.3. Structure de l'onde résultante 3.4. Courants surfaciques	8 8
	3.1. Position du problème	7 8 8 9
	3.1. Position du problème	7 8 8 9

1. Propagation d'une onde électromagnétique dans un conducteur

1.1. Modèle du conducteur ohmique

- $\overrightarrow{J} = \gamma \overrightarrow{E}$ avec γ la conductivité électrique du milieu ohmique identique à celle en stationnaire tant que la fréquence temporelle est inférieure à une valeur seuil ($\approx 10^{14}$ Hz pour un métal).
- $\rho = 0$ car $\frac{\partial \rho}{\partial t} + \frac{\gamma}{\varepsilon_0}\rho = 0$ et $\tau = \frac{\varepsilon_0}{\gamma} \ll$ durée caractéristique d'évolution du champ électromagnétique dans le milieu ohmique.
- **Approximation usuelle** : courant de déplacement négligeable devant le courant de conduction : $\|\vec{j}_D\| \ll \|\vec{j}\|$.
- ightharpoonup À quelle condition sur γ , ε_0 et ω , $\|\vec{\imath}_D\| \ll \|\vec{\imath}\|$?
- **⇒** Est-ce vérifié dans le cuivre ($\gamma = 6 \times 10^7 \text{ S} \cdot \text{m}^{-1}$)?
- ightharpoonup Dans quel domaine de fréquences, est-ce vérifié dans l'eau de mer $(\gamma \approx 1 \, \mathrm{S} \cdot \mathrm{m}^{-1})$?

1.2. Modèle de l'onde

On s'intéresse au comportement d'une OPPM dans le milieu ohmique soit en représentation complexe

$$\underline{\vec{E}}(M,t) = E_0 \vec{e}_x e^{i(\omega t - kz)}$$
 et $\underline{\vec{B}}(M,t) = \underline{\vec{B}}_0 e^{i(\omega t - kz)}$

1.3. Équation de propagation du champ électrique dans le conducteur

On montre que

$$\boxed{\Delta \vec{E} = \mu_0 \gamma \frac{\partial \vec{E}}{\partial t}} \quad \text{et} \quad \boxed{\Delta \vec{B} = \mu_0 \gamma \frac{\partial \vec{B}}{\partial t}}$$

Il s'agit d'une équation de **diffusion**.

→ Démonstration :

ightharpoonup Commenter la non invariance par renversement du temps $t \to -t$.

1.4. Relation de dispersion

▶ Montrer, dans le cadre de l'**approximation** $\|\vec{j_D}\| \ll \|\vec{j}\|$, que l'équation de dispersion s'écrit :

$$k^2 = -i\mu_0 \gamma \omega$$

Remarques

- Relation différente
 - de celle du vide :
 - de celle dans un plasma :
- Relation non linéaire entre k et ω : le milieu est donc **dispersif**.

1.5. Solutions et interprétation

$$ightharpoonup$$
 En posant $\delta = \sqrt{\frac{2}{\mu_0 \gamma \omega}}$, montrer que

$$k = \pm \frac{1 - i}{\delta}$$

On en déduit

$$\underline{\underline{\vec{E}}}(M,t) = E_0 \, \overrightarrow{e}_x \, e^{\mp \frac{z}{\delta}} \, e^{i \left(\omega t \mp \frac{z}{\delta}\right)}$$

soit en notation réelle,

$$\vec{E}(M,t) = |E_0| \vec{e}_x e^{\mp \frac{z}{\delta}} \cos\left(\omega t \mp \frac{z}{\delta} + \varphi\right)$$

➤ Commenter les différents facteurs de l'expression du champ électrique.

ightharpoonup Que représente la grandeur δ ?

► Lorsque $k = k_1 + ik_2$ où $(k_1, k_2) \in \mathbb{R}^2$, quels rôles respectifs jouent k_1 et k_2 pour l'onde électromagnétique?

Exemple 1

Domaine	Fréquence	Longueur d'onde	δ	v_{arphi}
Fréquences industrielles	50 Hz	$6 \times 10^3 \text{ km}$	9 mm	3 m/s
Radio GO	200 kHz	2 km	0,1 mm	0,2 km/s
Radio FM	100 MHz	3 m	6 μm	4 km/s
GSM / Wi-Fi	$\approx 2\text{GHz}$	0,1 m	1 μm	$2 \times 10^1 \text{ km/s}$

Table 1 – Profondeur de peau et vitesse de phase pour le cuivre $\gamma = 6 \times 10^7~{
m S\cdot m^{-1}}$

Exemple 2

Eau de mer : $\gamma \approx 1 \, \mathrm{S} \cdot \mathrm{m}^{-1}$.

On en déduit, avec f en hertz et δ en mètres,

$$\delta \approx \frac{5 \times 10^2}{\sqrt{f}}$$

→ Dans quel domaine de fréquences, les sous-marins doivent-ils communiquer lorsqu'ils sont en immersion?

1.6. Vitesse de phase et de groupe

- Vitesse de phase $v_{\varphi} = \frac{\omega}{\mathrm{Re}(k)} = \sqrt{\frac{2\omega}{\mu_0 \gamma}}$
- Vitesse de groupe $v_{gr} = \frac{d\omega}{d(\operatorname{Re}(k))} = 2v_{\varphi}$
- → Commenter les définitions de ces deux vitesses en les comparant notamment à celles dans un plasma dilué.

→ La propagation est-elle dispersive?

1.7. Densité de courant dans le conducteur

$$\vec{j} = \gamma \vec{E}(M, t) = \gamma |E_0| \vec{e}_x e^{\mp \frac{z}{\delta}} \cos \left(\omega t \mp \frac{z}{\delta} + \varphi\right)$$

→ Dans quelle partie d'un conducteur les courants sont-ils significatifs ? Quel modèle de distribution de courants peut-on souvent adopter ?

1.8. Aspect énergétique

Exercice
Soit un consequence dans le sens
1. Montre

2. Exprima de surfi
4. Commo Soit un conducteur occupant le demi-espace z>0. On s'intéresse à l'aspect énergétique pour une onde cherchant à se propageant dans la direction Oz, dans le sens des z croissants.

1. Montrer que

$$\underline{\vec{B}} = \pm \frac{1 - i}{\delta \omega} E_0 e^{\mp \frac{z}{\delta}} e^{i \left(\omega t \mp \frac{z}{\delta}\right)} \vec{e}_y$$

- 2. Exprimer la valeur moyenne temporelle du vecteur de Poynting en z = 0.
- 3. Exprimer la valeur moyenne temporelle de la puissance cédée, par unité de surface, à un cylindre de conducteur d'axe Oz.
- 4. Commenter.

2. Modèle du conducteur parfait

L'étude précédente a montré qu'une onde électromagnétique pénètre dans un conducteur réel sur une profondeur de l'ordre de quelques $\delta=\sqrt{2/(\mu_0\gamma\omega)}$ d'autant plus petite que γ est élevée.

On en déduit le modèle du conducteur parfait :

Un **conducteur parfait** est un conducteur ohmique de conductivité γ infinie pour toute fréquence.

$$\gamma \longrightarrow +\infty$$

► La puissance volumique cédée à la matière restant finie, en déduire que le champ électrique est nul dans un conducteur parfait.

► En déduire que la densité volumique de charge, le champ magnétique et la densité de courants volumiques sont également nuls.

Conclusion Dans un conducteur parfait en régime variable,

$$\vec{E} = \vec{0}, \quad \vec{B} = \vec{0}, \quad \rho = 0, \quad \vec{j} = \vec{0}$$

et

$$\frac{d\mathcal{P}}{d\tau}\bigg|_{c\acute{e}d\acute{e}c\grave{a}\ la\ matière}=0$$

Courants électriques

Il n'y a pas de courants électriques au sein du conducteur dans le cadre du modèle du conducteur parfait.

Pour un conducteur réel, on a vu que $\|\overrightarrow{j}\|$ est significatif sur une épaisseur de l'ordre de δ .

→ Proposer un modèle de distribution de courants adaptée.

Champ électromagnétique au voisinage d'un conducteur parfait

vide conducteur parfait
$$\vec{E} = \vec{0}, \vec{B} = \vec{0}$$

$$\vec{E}(P^-,t)$$

$$\vec{E}(P^-,t)$$

$$\vec{R}$$

$$\vec{R}$$

$$\vec{R}$$

$$\begin{cases} \overrightarrow{E}(P^-,t) - \overrightarrow{E}(P^+,t) = \overrightarrow{E}(P^-,t) = \frac{\sigma(P,t)}{\varepsilon_0} \overrightarrow{n}_{\rm ext} \\ \overrightarrow{B}(P^-,t) - \overrightarrow{B}(P^+,t) = \overrightarrow{B}(P^-,t) = \mu_0 \overrightarrow{j}_s(P^-,t) \wedge \overrightarrow{n}_{\rm ext} \end{cases}$$

Ces relations seront fournies en cas de besoin.

3. Réflexion d'une OPPM électromagnétique sur un conducteur parfait

On se restreint à l'étude de la réflexion d'une onde plane progressive monochromatique (OPPM) polarisée **rectilignement** arrivant sur le plan conducteur **parfait** en **incidence normale**.

3.1. Position du problème

➤ Expliquer qualitativement le rôle du champ électromagnétique incident sur les porteurs de charge du conducteur.

➤ En déduire l'existence d'une onde électromagnétique réfléchie. Pourquoi estelle de même fréquence temporelle que l'onde incidente?

➡ On se restreint au cas d'un OPPM incidente polarisée rectilignement avec \vec{E} colinéaire à \vec{e}_x . Pourquoi traiter ce cas particulier permet ensuite de généraliser à n'importe quelle OPPM?

► Écrire les composantes du champ électromagnétique incident.

➡ Quelle est l'écriture générale de l'onde électromagnétique réfléchie?

3.2. Détermination de l'onde réfléchie

3.3. Structure de l'onde résultante

$$\vec{E}(M,t) = 2E_0 \sin(kz) \sin(\omega t + \varphi_0) \vec{e}_x$$
 et $\vec{B}(M,t) = 2\frac{E_0}{c} \cos(kz) \cos(\omega t + \varphi_0) \vec{e}_y$

FIGURE 1 – Champ électrique de l'onde stationnaire résultante

FIGURE 2 – Champ magnétique de l'onde stationnaire résultante

	Champ électrique \vec{E}	Champ magnétique \vec{B}
$z_n = n \frac{\lambda}{2}$		
$z_n' = \frac{\lambda}{4} + n\frac{\lambda}{2}$		

TABLE 2 – Ventres et nœuds de vibration

Δ
W
W
•
<
<
2
<
2
<
2
•
<
_
2
•
<
<
<
2
<
~
>
•
<
2
<
_
5
<
<
>
<
>
•
<
<i>-</i>
<
_
2
`
<
2
•
5
-
>
S
<
2
<
2
<
2
<
<i>-</i>
5
<
2
•
<
2
5
<
_
5
•
2
<

Aspect énergétique

1. Montrer que l'onde stationnaire ne propage pas d'énergie.

2. Montrer que la valeur moyenne temporelle de l'énergie électromagnétique volumique est uniformément répartie.

3.4. Courants surfaciques

► Montrer que le vecteur densité de courants surfaciques s'écrit

$$\vec{j}_s = 2\varepsilon_0 c E_0 \cos(\omega t + \varphi_0) \vec{e}_x$$

4. Cavité résonante

4.1. Position du problème

Une cavité est un volume vide délimité par des parois conductrices.

Un champ électromagnétique (\vec{E}, \vec{B}) peut-il exister dans cette cavité? Si non, pourquoi? Si oui, y a-t-il des conditions d'existence?

Exemple avec une cavité unidimensionnelle

4.2. Recherche des modes d'ondes stationnaires