Lecture 1

Yutong Yan

1 The Central Paradigm of Computer Science

- ullet The central paradigm in computer science is that an algorithm $m{A}$ is good if:
 - \circ **A** runs in **polynomial** time in the input size n.
 - That is, **A** runs in time $T(n) = O(n^k)$ for some constant number k.
 - T(n) = 100n + 55
 - $T(n) = \frac{1}{2}n^2 + 999 \log n$
 - $T(n) = 6n^7 + 900000n^2 \sqrt{n}$
 - \circ An algorithm is bad if it runs in exponential time.
 - $T(n) = 2^n + 100n^5$
 - $T(n) = 1.000000001^n n^3 n$
 - An algorithm is **good** if it runs in **polynomial** time in the input size n.

e.g.		Input Size n		
Runtime of Algorithm		10	100	1000
	n	10	100	1000
	n^2	100	10000	1000000
	2^n	10^{3}	10^{30}	10^{300}

2 Good versus Bad (Algorithms)

- For example, consider the problem of sorting n numbers.
 - o A Good Algorithm: **MergeSort** runs in time $O(n \cdot log n)$
 - A Bad Algorithm: **BruteForce Search** runs in time $O(n \cdot n!) \gg 2^n$

3 An Equivalent Characterization

- \bullet This central paradigm has an equivalent formulation
 - \circ **A** runs in **polynomial** time in the input size n.
 - \circ The input sizes that \boldsymbol{A} can solve, in a fixed amount T of time, scales multiplicatively with increasing computational power.

		Input Sizes solved in Time T			
		Power = 1	Power = 2		
	n	T	2T		
Runtime of Algorithm	n^2	\sqrt{T}	$\sqrt{2} \cdot \sqrt{T}$		
	2^n	$\log T$	$1 + \log T$		

- Moore's Law: Computational power doubles roughly every two years.
 - \rightarrow Functional time algorithms will never be able to solve large problems.

- The practical implications are perhaps simpler to understand with this <u>latter</u> formulation.
- Thus, improvements in hardware will never overcome bad algorithm design.
- Indeed, the current dramatic breakthroughs in computer science are based upon batter (faster and higher performance) algorithmic techniques.

4 Robustness

ullet This measure of quality or "goodness" is robust

- All reasonable models of algorithms are polynomial time equivalent.
 - Otherwise one model could perform, say, an exponential number of operations in the time another model took to perform just one.
- The standard formal model is the **Turing Machine**.