Методические указания к выполнению лабораторной работы №3

Решение прямой и двойственной задач

Цели работы:

- а. Постановка задачи линейного программирования и её решение с помощью стандартной программы.
- б. Исследование прямой и двойственной задачи.

Краткие общие сведения

Если исходная задача линейного программирования представлена в виде:

найти минимум функции f = (c, x) на множестве

$$X = \left\{ x \in \mathbf{R}^n : Ax \ge B, x \ge 0 \right\},\tag{3.1}$$

то двойственная задача линейного программирования может быть сформулирована следующим образом:

найти максимум функции (B, λ) на множестве $\lambda = \{\lambda \in \mathbf{R}^m : \mathbf{A}^T \lambda \leq c, \lambda \geq 0\}$, где

 ${f A}^{T}$ - матрица, транспонированная к ${f A}$. Двойственная к двойственной задаче есть исходная залача.

Известно, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают. При этом координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора B.

Рассмотрим видоизмененную исходную задачу:

Найти $\min(c,x)$ на множестве $\left\{x:x\geq 0, Ax\geq \mathrm{B}+\varepsilon_{\mbox{\it ℓ}}_i\right\}$, где $\mbox{\it ε}>0$,

$$oldsymbol{e}_i = egin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$$

Если исходная задача имеет единственное решение , то при малых $\varepsilon > 0$ и видоизмененная задача имеет решение ; причем если α_{ε}^i -значение минимума , то существует

$$\lim_{\varepsilon \to 0} \left(\alpha_{\varepsilon}^{i} - \alpha_{0}^{i} \right) / \varepsilon \stackrel{Df}{=} \beta_{i}$$
 Оказывается, что β есть і -я координата оптимальной точки для лвойственной залачи.

Для проведения лабораторной работы составлена программа, обеспечивающая решение задачи линейного программирования при задании с терминала исходных значений параметров.

Порядок проведения лабораторной работы

- 1. По заданной содержательной постановке задачи поставить задачу формально (т.е. привести к виду (3.1)).
- 2. Решить поставленную задачу с помощью готовой программы.
- 3. Поставить двойственную задачу с помощью готовой программы.
- 4. Решить двойственную задачу с помощью той же программы.
- 5. Определить коэффициенты чувствительности исходной задачи по координатам правой части ограничений (вектора В). Для этого :
 - а) увеличить і ю координату вектора ограничений правой части на $\mathcal{E} = 10^{-3}$;
 - б) решить задачу с новым вектором $B = B + \varepsilon_{e_i}$, ответ $\varphi(\varepsilon)$;
 - в) вычислить $\overset{\sim}{\chi_{i}}=(\varphi_{i}(\varepsilon)-\varphi_{i}(0))/\varepsilon$
 - г) сравнить полученное число с і -й координатой оптимальной точки двойственной задачи.
- 6. Повторить процедуру , описанную в п.5, но варьировать на этот раз коэффициенты целевой функции компоненты вектора $\,C\,$ и сопоставить результаты с координатами вектора-решения исходной задачи .

Требования к отчету

- 1. Содержательная постановка задачи.
- 2. Формальная постановка задачи.
- 3. Результаты решения исходной задачи линейного программирования.
- 4. Постановка двойственной задачи линейного программирования.
- 5. Результаты решения двойственной задачи.
- 6. Протокол работы за машиной.
- 7. Объяснение полученных результатов.

Тексты исходных задач

Вариант 1

Пусть для выращивания некоторой культуры применяется m видов удобрений соответственно в количестве \mathbf{B}_i (i=1,2,...,m) единиц.

Вся посевная площадь разбита на n почвенно-климатических зон, каждая по d_j (j=1,2,...,n) единиц. Пусть a_{ij} - количество i - го удобрения, вносимого на единицу площади j – ой зоны, а c_j – повышение средней урожайности, получаемой с единицы

площади j — ой зоны. Составить такой план распределения удобрений между посевными зонами, который обеспечивал бы максимальный суммарный пророст урожайности.

Исходные данные для этой задачи сведены в табл. 3.1. Имеется 400 ц фосфорных , 300 ц азотных и 100 ц калийных удобрений. Требуется построить математическую модель этой задачи для симплекс-метода. Замечание: рекомендуется через x_j обозначить площадь, которую необходимо удобрить в j – ой зоне.

Таблица 3.1

30ны	посевная площадь,	Затраты удобрений на 1 га, ц фосфорные азотные калийные		прирост урожайности на 1 га, ц	
1	100	2	1	1	12
2	150	1	2	5/ 4	14
3	200	1	1/2	0	10

Вариант 2

Рассмотрим задачу оптимального использования материалов при условии, что заданный план изготовления может быть выполнен или перевыполнен: при изготовлении обуви используют, в частности, жесткую кожу — черпак, ворот и др. Каждый из видов в свою очередь делится на несколько категорий по средней толщине. ГОСТом предусмотрено изготовление деталей из определенного вида кожи. Одна и та же деталь может быть изготовлена из разных видов кожи, причем из этих же кож изготовляют и другие детали. Исходные данные приведены в табл.3.2.

В наличии имеется 0.9 тыс. кв. м. чепрака толщиной 4.01-4.5 мм по цене 14.4 р. за 1 кв. м.; 0.8 тыс. кв. м. черпака толщиной 4.51-5.0 мм по цене 16 р. за 1 кв. м.; 5.0 тыс. кв. м. ворота толщиной 3.5-4.0 мм по цене 12.8 р. за 1 кв. м.; 7.0 тыс. кв. м. ворота толщиной 4.51-5.0 мм по цене 10.5 р. за 1 кв. м.

Таблица 3.2

Толщиа детали,	Количество деталей по	Количество деталей, которые можно изготовить из 1000 кв. м кожи, тыс. шт., при толщине			
MM	плану, тыс.	чепрака, мм		ворота, мм	
	шт.	4,01-4,5	4,51-5,0	3,5-4,0	4,51-5,0
3,9	21	26,5	7,8	-	-
3,0	30	51,0	26	45,7	-
2,5	500	-	-	5,0	72,5

Вариант 3

На рынок доставляется картофель из трех колхозов по цене соответственно 12, 10 и 8 тыс. рублей за 1 тонну. На погрузку картофеля в колхозах соответственно затрачивается 1, 6 и 5 минут. Потребности рынка составляют не менее 12 т, на погрузку которого можно затратить не более 60 минут. Из каких колхозов и в каком количестве надо доставлять картофель, чтобы его стоимость была минимальной при условии того, что колхозы могут выделить для продажи соответственно 10, 8 и 6 тонн картофеля.

Вариант 4

Имеются две почвенно-климатические зоны, площадь которых соответственно равна 0,8 и 0,6 млн. га. Определить размеры площадей озимых и яровых культур, необходимые для достижения максимального выхода продукции в стоимостном выражении. Урожайность культур по зонам и стоимость 1 ц зерна приведены в табл.3.3. Необходимо произвести озимых не менее 20 млн. ц и яровых не менее 6 млн. ц.

	Урожайность, ц/ га		
Наименование	1 зона	2 зона	Стоимость 1 ц, р.
озимые	20	25	8
яровые	25	20	7

Вариант 5

Для изготовления двух видов продукции P1, P2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а также величина прибыли, получаемая от реализации единицы продукции, приведены в табл.3.4. Прибыль от единицы продукции первого вида составляет 50 р., второго вида — 40 р.

Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.

Таблица 3.4

Виды сырья	Запас сырья		ц сырья, идущих на иницы продукции Р2
S1	20	2	5
S2	40	8	5
S3	30	5	6

Вариант 6

При откорме каждое животное ежедневно должно получить не менее 9 единиц питательного вещества S_1 , не менее 8 единиц вещества S_2 и не менее 12 единиц вещества S_3 . Для составления рациона используют два вида корма. Содержимое количества единиц питательных веществ в 1 кг. каждого корма и стоимость 1 кг. корма приведены в табл.3.5.

Стоимость 1 кг. корма первого вида составляет 4 р., второго вида – 6 р.

Необходимо составить дневной рацион нужной питательности, причем затраты на него должны быть минимальными.

Таблица 3.5

Питательные Количество единиц питательных вещест		ных веществ в 1 кг корма
вещества	Корм 1	Корм 2
S1	3	1
S2	1	2
S3	1	6