## Prüfungsrelevante Verfahren, Sätze und Rechenregeln

## 2 Diskrete Strukturen

- 2.1 Mengenlehre
- 2.2 Abbildungen
- 2.3 Beweis mittels vollständiger Induktion (Beispiel)

Beweis. Die Aussage  $A_n$  sei  $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$  mit  $n \in \mathbb{N}, q \in \mathbb{R}, q \neq 1$ .

(IA): 
$$n_0 = 0$$
:  $\sum_{k=0}^{0} q^k = q^0 = 1 = \frac{1 - q^{0+1}}{1 - q}$  w.A.  $\Rightarrow$  Es gilt  $A_0$ 

(IV): 
$$\forall \tilde{n} : n_0 \le \tilde{n} \le n : \sum_{k=0}^{\tilde{n}} q^k = \frac{1 - q^{\tilde{n}+1}}{1 - q}$$

(IS): 
$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1} \stackrel{\text{(IV)}}{=} \frac{1 - q^{n+1}}{1 - q} + q^{n+1} = \frac{1 - q^{n+1} + (1 - q)q^{n+1}}{1 - q}$$
$$= \frac{1 - q^{n+1} + q^{n+1} - q^{n+2}}{1 - q} = \frac{1 - q^{(n+1)+1}}{1 - q}$$

 $\Rightarrow$  Damit ist die Behauptung für alle  $n\in\mathbb{N}$ vollständig bewiesen

• "Die Aussage  $A_n$  sei..." nur in VL und AuD Skript, evtl. wird sonst aber z.Z.: erwartet; IV muss auch nicht unbedingt notiert werden

- alles nochmal mit (n+1)+1 hinschreiben ist nicht nötig
- Varianten:  $A_n \Rightarrow A_{n+1}/$  aus  $A_n$  folgt  $A_{n+1}$  für alle  $n \in \mathbb{N}$  w.A. /Folglich gilt  $A_n$  für alle  $n \in \mathbb{N}, n \geq n_0$
- Bedenke dass z.T. auch nur für  $n \in \mathbb{N}, n \geq k$  bewiesen wird (kein  $\tilde{n}$ )!! und  $n_0 = 0$  nicht immer gelten muss
- 2.4 Zahlentheorie
- 2.5 Gruppentheorie
- 2.6 Graphentheorie
- 2.7 Aussagenlogik
- 2.8 Relationen