

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»					
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»					
Лабораторная работа № <u>4</u>					
Дисциплина Методы вычислений					
Тема <u>Метод Ньютона</u>					
Вариант №10					
Студент Коноваленко В. Д.					
Группа <u>ИУ7-21М</u>					
Оценка (баллы)					
Преподаватель Власов П.А.					

Цель работы: изучение метода Ньютона для решения задачи одномерной минимизации.

Содержание работы

- 1. реализовать модифицированный метод Ньютона с конечно-разностной аппроксимацией производных в виде программы на ЭВМ;
- 2. провести решение задачи

$$\begin{cases} f(x) \to min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта;

- 3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности точек $(x_i, f(x_i))$, аппроксимирующих точку искомого минимума (для последовательности точек следует предусмотреть возможность «отключения» вывода её на экран);
- 4. провести решение задачи с использованием стандартной функции fminbnd пакета MatLAB.

Целевая функция $f(x)$		[a, b]
$\sin\left(\frac{x^4 + x^3 - 3x + 3 - 30^{\frac{1}{3}}}{2}\right)$	$ + th\left(\frac{4\sqrt{3}x^3 - 2x - 6\sqrt{2} + 1}{-2\sqrt{3}x^3 + x + 3\sqrt{2}}\right) + 1.2 $	[0, 1]

Метод Ньютона поиска минимума функции f(x) является методом касательных Ньютона решения уравнения g(x) = 0, где g(x) = f'(x).

Идея метода Ньютона состоит в следующем: за очередное приближение \bar{x} неизвестного корня x^* принимают точку пересечения с 0x касательной к графику g(x) в точке, отвечающей текущему приближению.

Условием окончания итераций служит одно (или оба) из условий:

1.
$$|\bar{x} - \bar{x}'| < \varepsilon$$

2.
$$|g(x)| < \varepsilon$$

Расчётная схема метода Ньютона

Пусть \bar{x} – текущее приближение точки x^* , а $\bar{x'}$ - приближение на прошлой итерации.

Уравнение касательной к графику функции g(x) в точке $(\bar{x}, g(\bar{x}))$:

$$y - \bar{y} = g'(\bar{x})(x - \bar{x})$$

Пересечение с Ох:

$$\bar{x} = \bar{x}' - \frac{g(\bar{x}')}{g'(\bar{x})}$$

Когда вычисление g'(x) затруднительно, используют модификацию метода Ньютона, которая называется «метод одной касательной». В качестве очередного приближения для корня x^* используется не точка пересечения касательной в точке x_n с осью Ox, а точка пересечения прямой, проходящей через x_n и параллельную касательной в точке x_0 .

Расчётная схема для модифицированного метода:

$$\bar{x} = \bar{x}' - \frac{g(\bar{x}')}{g'(x_0)}$$

Конечно-разностная аппроксимация производных:

$$f'(x) \approx \frac{f(x+\delta) - f(x-\delta)}{2\delta}, \delta > 0$$
$$f''(x) \approx \frac{f(x+\delta) - 2f(x) + f(x+\delta)}{\delta^2}, \delta > 0$$

Текст программы представлен на Листинге 1

Листинг 1

```
function lab4()
    clc();
    warning('off', 'all');

    debug = 1;
    delaySeconds = 3.0;

    a = 0;
    b = 1;
    e = 1e-2;
    d = 1e-6;

    [x, y, N] = NewtonMethod(a, b, e, d, debug, delaySeconds);

    hold off;
    fplot(@f, [a, b]);
    hold on;

    fprintf('RESULT: e = %f | N = %d | x* = %.10f | f(x*) = %.10f', e, N, x, y)
    scatter(x, y, 'g', 'filled');
```

```
hold off;
end
function y = f(x)
   y = sin((power(x, 4) + power(x, 3) - 3 * x + 3 - power(30, 1/3)) / 2) + tanh((4))
* sqrt(3) * power(x, 3) - 2 * x - 6 * <math>sqrt(2) + 1) / (-2 * <math>sqrt(3) * power(x, 3) + 1
x + 3 * sqrt(2)) + 1.2;
end
function [x, y, N] = NewtonMethod(a, b, e, d, debug, delaySeconds)
    x = (b + a) / 2;
    f2 = (f(x - d) - 2*f(x) + f(x + d)) / (d^2);
    i = 0;
    while 1
        i = i + 1;
        f1 = (f(x + d) - f(x - d)) / (2 * d);
        new_x = x - f1/f2;
        if debug
             fprintf('%d: x = \%.10f \mid f1 = \%.10f \mid n', i, x, f1);
             hold off;
             fplot(@(x) (f(x + d) - f(x - d)) / (2 * d), [a, b]);
             hold on;
             plot([0, 1], [0, 0], 'Color', 'black');
             scatter(x, f1, 'filled', 'r');
scatter(new_x, 0, 'r');
             plot([x, new_x], [f1, 0], 'Color', 'r');
             pause(delaySeconds);
        end
        if abs(f1) < e</pre>
             break;
        end
        x = new x;
    end
    y = f(x);
    N = i;
end
```

Результаты расчетов для задачи из индивидуального варианта.

№ п/п	ε	N	<i>x</i> *	$f(x^*)$
1	0.01	4	0.7080663432	-0.4652389612
2	0.0001	8	0.7054915619	-0.4652516052
3	0.000001	12	0.7054667074	-0.4652516064

Сводная таблица, обобщающая вычисления из лабораторных работ №№1-4 для $\varepsilon=10^{-6}$

№п/п	Метод	N	<i>x</i> *	$f(x^*)$
1	Поразрядного поиска	47	0.7054662704	-0.4652516064
2	Золотого сечения	30	0.7054667232	-0.4652516064
3	Парабол	12	0.7054664267	-0.4652516064
4	Ньютона модифицированный	12	0.7054667074	-0.4652516064
5	Функция fminbnd	8	0.7054663959	-0.4652516064