The machine that is everywhere hailed as the very incarnation of the new had revealed itself to be not so new after all, but a series of skins, layer on layer, winding around the messy, evolving idea of the computing machine.

Why are we here?

CSC 360 Operating Systems...

THE GRAND ILLUSION

Jan 2020

Why do you have to take this course

• 5

What do you want to get out of it?!

- Take a few minutes, talk to someone YOU DON'T KNOW...
 - we will do this a few times
 - try to find someone who is in the same tutorial session as you!

hardware... what a mess!

Need policy and strategy for managing resources...

what is an Operating System?

 A program that acts as an intermediary between a user of a computer and the computer hardware

- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

We have an *exciting* history!

More global than this... But you get the idea!

The machine that is everywhere hailed as the very incarnation of the new had revealed itself to be not so new after all, but a series of skins, layer on layer, winding around the messy, evolving idea of the computing machine.

ELLEN ULLMAN, Life in Code, 1998³

The start of an *economic* revolution?

1952

Entrepreneurs?

- Ann Hardy
 - IBM, Tymeshare, wrote an OS!
 - Became VP, turned entrepreneur...

- Hewlett and Packard
 - "Much more personal than standard corporate histories, David Packard's The HP Way provides insights into managing and motivating people and inspiration for would—be entrepreneurs."

Group work!

mid 60s

GOOD for children! (Paul Allan, Bill Gates)

1970s(?) 1983

Marketing?!

1980

Apple DOS

Working state Discontinued
Source model Closed source

Initial release 1978; 42 years ago

Latest release 3.3 / 1980; 40 years ago

Kernel type Monolithic kernel

License Apple Software License Agreement

Synergy---Note not the only DOS!

1992

Sun Microsystems, "the computer is the network"

An example of the Microsoft MS-DOS command-line interface, showing that the current directory is the root of drive C

Developer Microsoft

Written in x86 assembly,[1] later

versions also used C

OS family DOS

Working state Preserved pieces exist

in 32-bit Windows

Source model Closed source; open

source for select

versions since 2018^[2]

Initial release August 12, 1981; 38

years ago[3]

Final release 8.0 (Windows Me) /

September 16, 2000;

19 years ago

Repository github.com/microsoft

/ms-dost₽

.

Update method Re-installation

Package manager None Platforms x86

Kernel type Monolithic

Default user interface Command-line, text

License Proprietary

MIT License (v1.25 &

v2.0)^[2]

Succeeded by Windows NT (as of

Windows XP)

Official website MS-DOS overview®

Support status

MS-DOS 6.0 unsupported as of December 31,

2001[4]

Getting personal...

https://www.youtube.com/watch?v=0eEG5LVXdKo

Microsoft was shipping a browser, IE, with the OS.

Killed Netscape! (Came back as firefox!)

May 1998, Department of Justice filed antitrust charges against Microsoft

"He kills for code, man!"

Antitrust movie, 2001

Assignment 1!

- A "shell"
 - Command line interpreter!
 - USER meets OS head on!

Apple DOS

All from wikipedia!

Linux

Tux the penguin, mascot of Linux[1]

Developer Community

Linus Torvalds

Written in C, assembler
OS family Unix-like
Working state Current

Source model Open source

Initial release September 17, 1991;

28 years ago

Marketing target Cloud computing, embedded devices.

mainframe computers,

mobile devices, personal computers,

servers,

supercomputers

Available in Multilingual

Platforms Alpha, ARC, ARM,

C6x, H8/300, Hexagon, Itanium, m68k,

Itanium, m68k, Microblaze, MIPS, NDS32, Nios II, OpenRISC, PA-RISC,

PowerPC, RISC-V, s390, SuperH, SPARC,

Unicore32, x86, XBurst, Xtensa

Kernel type Monolithic Userland GNU^[a]

Userland GNU^[a]

Default user interface Unix shell

License GPLv2^[7] and others

(the name "Linux" is a trademark^[b])

Official website www.linuxfoundation

.org ₽

User Operating System Interface

- Command Line Interface (CLI) or command interpreter allows direct command entry
 - Sometimes implemented in kernel, sometimes by systems program
 - Sometimes multiple flavors implemented shells
 - Primarily reads in a command from user and executes it
 - Sometimes commands built-in, sometimes just names of programs
 - If the latter, adding new features doesn't require shell modification

Interface Layers

Exported Abstractions

Four Components of a Computer System

Four Components of a Computer System

And more recently...

Google's Sergey Brin, Larry Page and Eric Schmidt 2001

Mark Zuckerberg 2010

LET'S BACK THAT QUESTION UP A LITTLE?!?!?

So where do we go from here?!

Are you going to develop OSes?

- Maybe you want to be a Magician?!? ☺
 - Take a whole bunch of hardware and SHARE it between users of the system in such a way that they don't get in each other's way...
 - It's like they are the ONLY person (program?) on the system?!

Course Load in a Nutshell

Term Schedule

Dates are a guideline and are subject to change.

Assignment/Exam	Weight	Due Date	
Tutorials	10%	1% each	
Assignment 1	8%	January 31	
Term Test 1	12%	February 3	
Assignment 2	15%	February 28	
Term Test 2	12%	March 2	
Assignment 3	18%	April 3	
Final Exam	25%	To be scheduled	

Text: readings and forum questions (will be part of assignments!) Silberschatz, Galvin, and Gagne 7th edition or later...

2020-01-05

Tutorials

YES!!!! THEY ARE WORTH GOING TO!!! 1% of your mark each, good practice for tests/exam

T01	ELL 061	2020-01-13	2020-04-03	W	10:30-11:20
T02	ECS 108	2020-01-13	2020-04-03	W	13:30-14:20
T03	DSB C116	2020-01-13	2020-04-03	R	14:30-15:20

In the Beginning ...

- There was hardware
 - processor
 - storage
 - card reader
 - tape drive
 - drum
- And not much else
 - no operating system
 - no libraries
 - no compilers

Hardware

MAGICAL Abstractions

- Hardware
 - disks
 - memory
 - processors
 - network
 - monitor
 - keyboard
 - mouse

- Operating system
 - files
 - programs
 - threads of control
 - communication
 - windows, graphics
 - input
 - locator

Memory?

operating system

job 1

job 2

job 3

job 4

512M

Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	< 16 MB	< 64 GB	> 100 GB
Implementation technology	custom memory wi multiple ports,		-COMCED DRAM	magnetic disk
Access time (ns)	0.25- 0.5	0.5- 25	80- 250	5,000.000
Bandwidth (MB/se	c2)0,009-100,000	5000- 10,000	1000- 5000	20- 150
Managed by	compiler	hardware	operating sys	coperating sys
Backed by	cache	main memory	disk	CD or tape

Programs (Assignment 2)

Files (Assignment 3)

Issues

- Naming
- Allocating space on disk (permanent storage)
 - organized for fast access
 - minimize waste
- Shuffling data between disk and memory (highspeed temporary storage)
- Coping with crashes

Memory Sharing (1)

Program 1

Program 2

Program 3

Operating System

Memory

Memory Sharing (2) Program 1 Program 2 Memory Program 3

Concurrency (more in Assignment 2)

Parallelism

Processors and cores! (Assignment 2)

TO DO!!!!

- Be sure you're on CSC 360 CourseSpaces and upload your "picture"
 - You should have received email by now!
- Please keep up with the programming!
- Forum (reading/questions) is posted on the web now
 - Due as part of Assignment 1
 - https://www.g2.com/categories/operating-system
- Assignment 0 ("warmup") is posted on the web now
 - Will be discussed on Thursday
 - Tutorial question next week!