Minimalizacja automatu

Minimalizacja automatu to minimalizacja liczby stanów.

Jest to transformacja automatu o danej tablicy przejść-wyjść na równoważny mu (pod względem przetwarzania sygnałów cyfrowych) automat o mniejszej liczbie stanów wewnętrznych.

Jest to prawie zawsze możliwe, gdyż w procesie pierwotnej specyfikacji często wprowadzane są stany nadmiarowe lub równoważne.

Czysty zysk – zamiast trzech przerzutników tylko dwa!

Minimalizacja liczby stanów

Relacja zgodności na zbiorze stanów S:

(pary stanów zgodnych)

Maksymalne zbiory stanów zgodnych (Maksymalne Klasy Zgodności)

Selekcja zbiorów zgodnych spełniających tzw.:

- warunek pokrycia
- warunek zamknięcia

Dwa stany wewnętrzne Si, Sj są **zgodne**, jeżeli dla każdego wejścia v mają one niesprzeczne stany wyjść, a ich stany następne są takie same lub niesprzeczne.

Dwa stany wewnętrzne S_i , S_j są **zgodne warunkowo**, jeżeli ich stany wyjść są niesprzeczne oraz dla pewnego $v \in V$ para stanów następnych do S_i , S_j (ozn. S_k , S_l): $(S_i, S_i) \neq (S_k, S_l)$

Stany Si, Sj są **sprzeczne**, jeżeli dla pewnego v ∈ V ich stany wyjść są sprzeczne.

Relacja zgodności

Ze względu na zgodność warunkową w obliczeniach (wszystkich!) par zgodnych posługujemy się tzw. tablicą trójkątną.

Tablica trójkątna zawiera tyle kratek, ile jest wszystkich możliwych par stanów. Na przykład dla automatu o 5 stanach:

Kratki tablicy wypełniamy symbolami:

- v jeżeli para stanów jest zgodna,
- x jeżeli para stanów jest sprzeczna, lub
- (i,j) parą (parami stanów następnych), jeżeli jest to para zgodna warunkowo.

Tablica trójkątna - przykład

Po wypełnieniu tablicy sprawdzamy, czy pary stanów sprzecznych (zaznaczone ×) nie występują przypadkiem jako pary stanów następnych. Jeśli są takie pary, to należy je skreślić (czyli zaznaczyć ×). Proces ten trzeba powtarzać tak długo, aż sprawdzone zostaną wszystkie krzyżyki.

Obliczanie MKZ

Po wyznaczenie zbioru **par stanów zgodnych**, przystępujemy do obliczenia:

maksymalnych zbiorów stanów zgodnych.

Maksymalne klasy zgodności (MKZ)

...znamy co najmniej trzy metody obliczania MKZ!

...wracamy do przykładu

Pary zgodne: (1,2); (1,3); (1,5); (2,3); (2,4); (2,5); (3,5); (3,6); (4,6)

 $MKZ = \{\{1,2,3,5\}, \{2,4\}, \{3,6\}, \{4,6\}\}\}$

Algorytm minimalizacji

- 1) Wyznaczenie par stanów zgodnych,
- 2) Obliczenie maksymalnych zbiorów stanów zgodnych (MKZ),
- 3) Selekcja zbiorów spełniających tzw. warunek pokrycia (a) i zamknięcia (b):
 - a) każdy stan musi wchodzić co najmniej do jednej klasy;
 - b) dla każdej litery wejściowej wszystkie następniki (stany następne) danej klasy muszą wchodzić do jednej klasy.

Warunek pokrycia - przykład

	а	b	С	d	а	b	С	d
1	I	3	4	2	1	1	1	1
2	4			I	0			
3	6	6	ı	l	0	1	ı	-
4	I	6	1	5	1	0	0	1
5	I	I	2	I	ı	I	_	
6	3		2	3	0		0	1

 $MKZ = \{\{1,2,3,5\}, \{3,6\}, \{2,4\}, 4,6\}\}$

Aby spełnić warunek pokrycia wystarczy wybrać klasy:

{1,2,3,5}, {4,6}

Warunek zamknięcia - przykład

Dla wybranych klas {1,2,3,5},{4,6}} obliczamy ich następniki:

Nie jest spełniony warunek zamknięcia!

Warunek pokrycia i zamknięcia – druga próba

MKZ =
$$\{\{1,2,3,5\}, \{3,6\}, \{2,4\}, \{4,6\}\}$$

Wybór: $\{1,2\}, \{3,5\}, \{4,6\}$

		а	b	С	d	а	b	С	d
Α	1,2	4	3	4	2	0	1	1	1
В	3,5	6	6	2	_	0	1	1	_
С	4,6	3	6	1,2	3,5	0	0	0	1

	а	b	С	d	а	b	С	d
				Α	0	1	1	1
В	O	C	Α		0	1	1	I
С	В	С	Α	В	0	0	0	1

Jeszcze jeden przykład

				_
	0	1	0	1
1	2	6	0	0
2	3	1	1	1
3	_	4	_	0
4	_	5	_	0
5	3	-	1	_
6	7	-	1	_
7	_	8	_	0
8	_	_	_	1

Jeszcze jeden przykład c.d.

Jeszcze jeden przykład c.d.

			_	
	0	1	0	1
1	2	6	0	0
2	3	1	1	1
	_	4	_	0
4 5 6	_	5	_	0
5	3		1	_
6	7		1	_
7	_	8	_	0
8				1

MKZ: 2,5,8 3,4,5 3,4,6 4,5,7 4,6,7 1,3 1,7 6,8

Tablica następników

	2,5,8	3,4,5	3,4,6	4,5,7	4,6,7	1,3	1,7	6,8
$\delta(0,S_i)$	33–	3	7	-3-	_7 _	2–	2–	7–
$\delta(1,S_i)$	1	45–	45–	5–8	5–8	64	68	

Jeszcze jeden przykład c.d.

		1	1	
	0	1	0	1
1	2	6	0	0
2	က	1	1	1
3	I	4	1	0
4	ı	5	-	0
5	3	1	1	-
6	7	ı	1	1
7		8	_	0
8	_	_	_	1

x s	0	1	0	1
A	С	С	1	1
В	В	A	1	0
C	A	В	0	0

В		(

	2,5,8	3,4,5	3,4,6	4,5,7	4,6,7	1,3	1,7	6,8
$\delta(0,S_i)$	3	3	7	3	7	2	2	7
$\delta(1,S_i)$	1	45	45	58	58	46	68	_

Detektor sekwencji

Zaprojektować układ sekwencyjny Mealy'ego o jednym wejściu binarnym i jednym wyjściu binarnym. Układ ma badać kolejne "trójki" symboli wejściowych.

Sygnał wyjściowy pojawiający się podczas trzeciego skoku układu ma wynosić 1, gdy "trójka" ma postać 001, a 0, gdy "trójka" jest innej postaci. Sygnał pojawiający się podczas pierwszego i drugiego skoku układu może być nieokreślony.

Detektor sekwencji

ZPT

Bardzo dużo par zgodnych!

Do wyznaczenia MKZ wykorzystamy pary sprzeczne, których jest znacznie mniej (dwie).

Minimalizacja detektora sekwencji

Pary sprzeczne zapisujemy w postaci wyrażenia boolowskiego typu iloczyn (koniunkcja) dwu-składnikowych sum.

W detektorze sekwencji pary sprzeczne są: (2, 3); (4, 5). Na tej podstawie zapisujemy wyrażenie: $(2 \lor 3)$ $(4 \lor 5)$, które po wymnożeniu uzyskuje postać:

$$(2 \lor 3) (4 \lor 5) = 24 \lor 25 \lor 34 \lor 35$$

Odejmując od zbioru S = {1, 2, 3, 4, 5} wszystkich stanów zbiory zapisane w poszczególnych składnikach uzyskujemy rodzinę wszystkich MKZ.

$$\{1, 2, 3, 4, 5\} - \{2, 4\} = \{1, 3, 5\}$$

 $\{1, 2, 3, 4, 5\} - \{2, 5\} = \{1, 3, 4\}$
 $\{1, 2, 3, 4, 5\} - \{3, 4\} = \{1, 2, 5\}$
 $\{1, 2, 3, 4, 5\} - \{3, 5\} = \{1, 2, 4\}$

Minimalizacja detektora sekwencji

MKZ: {1, 3, 5}, {1, 3, 4}, {1, 2, 5}, {1, 2, 4}

Klasy {1, 3, 5}, {1, 2, 4} spełniają warunek pokrycia,

X S	0	1
135	125	135
134	125	135
125	124	135
124	124	135

Funkcja przejść dla wszystkich MKZ

ale nie spełniają warunku zamkniętości – stany następne: {1,2,5}!

Dokładamy klasę {1,2,5}

Klasy: {1,3,5}, {1, 2, 4}, {1, 2, 5} spełniają warunek pokrycia i zamkniętości

s x	0	1	0	1
A 135	125	135	0	0
B 125	124	135	0	0
C 124	124	135	0	1

s X	0	1	0	1
A	В	Α	0	0
В	С	Α	0	0
C	С	A	0	1

Uzyskany automat był już realizowany na przerzutnikach i bramkach – wykład cz6, plansze 15 do 21.

Omówiliśmy cały proces syntezy!

Zaprojektować układ sekwencyjny Mealy'ego o jednym wejściu binarnym i jednym wyjściu binarnym. Układ ma badać kolejne "trójki" symboli wejściowych. Sygnał wyjściowy pojawiający się podczas trzeciego skoku układu ma wynosić 1, gdy "trójka" ma postać 001, a 0, gdy "trójka" jest innej postaci. Sygnał pojawiający się podczas pierwszego i drugiego skoku układu może być nieokreślony.

