EEOB563 – Assignment #2

Dennis Psaroudakis

3

GitHub repo is https://github.com/Thyra/EEOB563

4

- a) The dinosaur sequence is highly similar to the cloning vector pAgaL as well as some other cloning vectors.
- b) The highest rated sequence is erythroid transcription factor from *Gallus gallus*. It is only 96% identical, there are some differences:

_				
1	Query	121	${\tt MEFVALGGPDAGSPTPFPDeagaflglgggerteaggllaSYPPSGRVSLVPWADTGTLG}$	300
2			${\tt MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG}$	
3	Sbjct	1	${\tt MEFVALGGPDAGSPTPFPDEAGAFLGLGGGERTEAGGLLASYPPSGRVSLVPWADTGTLG}$	60
4				
5	Query	301	${\tt TPQWVPPATQMEPPHYLE11qpprgspphpssgpllplssgpppCEARECVMARKNCGAT}$	480
6			TPQWVPPATQMEPPHYLELLQPPRGSPPHPSSGPLLPLSSGPPPCEARECV NCGAT	
7	Sbjct	61	TPQWVPPATQMEPPHYLELLQPPRGSPPHPSSGPLLPLSSGPPPCEARECVNCGAT	116
8				
9	Query	481	A TPLWR RDGT GHYLCNWAS ACGLYHRLNG QNRPLIRPKKRLLVSKRAGTVCSHERENC QT	660
10			ATPLWRRDGTGHYLCN ACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCS NCQT	
11	Sbjct	117	ATPLWRRDGTGHYLCNACGLYHRLNGQNRPLIRPKKRLLVSKRAGTVCSNCQT	169
12				
13	Query	661	${\tt STTTLWRRSPMGDPVCNNIHACGLYYKLHQVNRPLTMRKDGIQTRNRKVsskgkkrrppg}$	840
14			STTTLWRRSPMGDPVCN ACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG	
15	Sbjct	170	STTTLWRRSPMGDPVCNACGLYYKLHQVNRPLTMRKDGIQTRNRKVSSKGKKRRPPG	226
16				
17	Query	841	ggnpsatagggapmggggdpsmpppppppaaappQSDALYALGPVVLSGHFLPfgnsggf	1020
18			${\tt GGNPSATAGGGAPMGGGGDPSMPPPPPPPAAAPPQSDALYALGPVVLSGHFLPFGNSGGF}$	
19	Sbjct	227	${\tt GGNPSATAGGGAPMGGGGDPSMPPPPPPPAAAPPQSDALYALGPVVLSGHFLPFGNSGGF}$	286
20				
21	Query	1021	fgggaggYTAPPGLSPQI 1074	
22			FGGGAGGYTAPPGLSPQI	
23	Sbjct	287	FGGGAGGYTAPPGLSPQI 304	

Dennis Psaroudakis

5

These sequences might be homologous (I don't think I can be 100% sure just from the blast result) and if they are, they are more specificially orthologous because they are in different species as opposed to in different genome locations within the same species.

6

I let mafft choose the strategy (auto) and it chose L-INS-i, probably because there were so few sequences and not too long.

Figure 1: Tree created by mafft

This tree is a guide tree so it is only a rough clustering of the species, not the final phylogenic tree. The actual algorithm to create the phylogenetic tree is run later.

Dennis Psaroudakis 3