Review - Number Theory

- Modular arithmetic
 - Notation x in Z i
- Greatest common divisor
 - if gcd(x,y) = 1 we say that x and y are relatively prime
- Modular Inversion
 - The inverse of x in Z n is an element y in Z n
 - s.t.
 - $x * y = 1 in Z_n$
 - x in Z_n has an inverse iff gcd(x,n) = 1
- More notation
 - Z n* = the set of invertible elements in Z n
- Solving modular linear equations
 - $a^*x + b = 0$ in Z n
 - $x = -b * a^{-1} in Z n$
 - Find a^-1 in Z_n using extended Euclid
- Fermat's theorem
 - Let p be a prime for all x element (Z_p)*: x^p-1 = 1in Z_p
- Generating random primes
 - step1: choose a random integer p element {2 ^ 1024, 2 ^ 1025 1}
 - step2: test if 2 ^ p 1 in Z_p
 - if so, output p and stop. If not, goto step 1
- Structure
 - (Z_p)* is a cyclic group, that is there is a g element (Z_p)* such that {1, g, g^2, ..} = (Z_p)* g is called a generator of (Z_p)*
 - Note: note every element is a generator
- Order
 - For g element (Z p)* the set {1, q, ...} is called the group generate by g, denoted <q>
 - Def: the order of g element (Z_p)* is the size of <g>
 - ord_p(g) = |<g>|
- Euler's generalization of Fermat
 - Def: For an integer N define sigma(N) = I(Z_n)*I
 - Thm (Euler): For all x element (Z_n)*: x ^ sigma(N) = 1 in Z_n
- Modular e'th roots
 - Let p be a prime and c element of Z_p
 - Def: x element of Z_p s.t.
 - x^e = c in Z_p is called an e'ht root of c
- Euler's theorem
- Computing square roots mod p
- Solving quadratic equations mod p
- Repeated squaring algorithm
- DLOG