Week 2: Data Wrangling

Video 2.1: Pre-processing Data in Python

Data pre-processing

- the process of converting or mapping data from initial "raw" form into another format, in order to prepare the data for further analysis
- · Often known as data cleaning, data wrangling

Learning Objectives:

- Identify and handle missing values
- Data formatting: pandas
- Data normalization (centering/scaling)
- Data Binning
- Turning Categorical values to numernic variables

Simple Dataframe Operations

```
import pandas as pd

# access column
df["column-name"]

# assign to variable
column1 = df["column-name"]

# manipulate values of whole column (ex: +1 all values)
df["column-name"] = df["column-name"]+1
```

Video 2.2: Dealing with Missing Values in Python

Missing Values

- What is a missing value?
- Missing values occue when no data value is stored for a variable (feature) in an observation
- Could be represented as:
 - o "?"
 - o "N/A"
 - 0 0
 - o a blank cell
 - NaN

How to deal with missing data?

- · Check with the data collection source
- check if you can retrieve the missing values
- maybe just remove the data where the missing value is found
 - drop the variable entirely
 - drop the individual entry
- · replace the missing values
 - replace it with an average (of similar datapoints)
 - replace it by frequency
 - replace it based on other funtions (if the data scientist knows something additional about the missing data)
- Leave it as missing data

Dealing with missing categorical data

• Replace with mode (the value that appears most often in column)

How to drop missing values in Python (pandas)

• Use df.dropna()

highway-mpg	price		
20	23875		
22	NaN		
29	16430		

```
# drop the entire row
df.dropna(axis=0)

# drop the entire column
df.dropna(axis=1)

# drop the NaN in price
df.dropna(subset=["price"], axis=0, inplace=True)

#or

df = df.dropna(subset=["price"], axis=0)
```

How to replace missing values in Python

• use df.replace(missing value, new value)

normalized-losses	make		normalized-losses	make
•••				
164	audi		164	audi
164	audi		164	audi
NaN	audi	→	162	audi
158	audi		158	audi

```
#set a mean
mean = df["normalized-losses"].mean()

#replace
df["normalized-losses"].replace(np.nan, mean)
```

Video 2.3: Data Formatting in Python

Data Formatting

- Data are usually collected from different places and sorted in different formats
- Bringing data into a common standard of expression allows users to make meaningful comparison

Applying calculations to an entire column

• Convert "mpg" to "L/100km" in Car dataset

```
# convert entire column (ex: mpg to L/100km)
df["city-mpg"]= 235/df["city-mpg"]

#rename
df.rename(columns=("city-mpg", "city-L/100km"), inplace=True)
```

Incorrect Data Types

Sometimes the wrong data type is assigned to a feature

```
# To identify data types
df.dtypes()
```

```
# to convert data types
df.astype()

df["price"] = df["price"].astype("int")
```

Video 2.4: Data Normalization in Python

Data Normaliztion

- Uniform the features value with different range
- normalization makes the range of the values consistens, which may make statistical analyses easier down the road

Methods of normalizing data

Simple feature scaling in Python


```
# divide max value
df["length"] = df["length"]/df["length"].max()
```

Min-max in Python

ength	width	height	length	width	heigh
168.8	64.1	48.8	0.41	64.1	48.8
168.8	64.1	48.8	0.41	64.1	48.8
180.0	65.5	52.4	0.58	65.5	52.4

```
df["length"] = (df["length"]-df["length"].min())/(df["length"].max()-
df["length"].min())
```

Z-score

length	width	height		length	width	height
168.8	64.1	48.8		-0.034	64.1	48.8
168.8	64.1	48.8	_	-0.034	64.1	48.8
180.0	65.5	52.4		0.039	65.5	52.4

```
df["length"] = (df["length"]-df["length"].mean())/df["length"].std()
```

Video 2.5: Binning in Python

- Binning: grouping of values into "bins"
- Converts numeric into categorical variables
- Group a set of numerical values into a set of "bins"
- ex: "price" is in a feature range from 5000 ti 45500, he wants to have a better representation of price

Binning in Python


```
binwidth = int((max(df["price"])-min(df["price"]))/4)
bins = range(min(df["price"]), max(df["price"]), binwidth)
group_names = ['Low','Med','High']
```

```
df['price']= pd.cut(df['price'], bins, labels=group_names)
```

Visualizing binned data

Video 2.6: Turning Categorical Variables into quantitative variables in Python

Categorical Variables

- Problem:
- Most Statistical models cannot take in the objects/strings as input
- "One-hot encoding"

Car	Fuel	 gas	diesel
Α	gas	 1	0
В	diesel	 0	1
С	gas	 1	0
D	gas	 1	0

Dummy variables in Python pandas

- Use pandas.get_dummies() method
- Convert categorical variables to dummy variables (0 or 1)

```
pd.get_dummies(df['fuel'])
```