```
Devin Gendron
```

Logic Symbols: $\geq \leq \neq \neg \land \lor \oplus \equiv \rightarrow \leftrightarrow \exists \forall Set Symbols: \in \notin \subseteq \subset \supseteq \supset \varnothing \cup \cap \times Quiz 4$

1

Let A = $\{x \mid -2 < x \le 4\}$, B = $\{x \mid -9 \le x \le 1\}$ and C = $\{x \mid 2 \le x < 4\}$, where x represents an

integer number. Determine the sets $(A-C)\cup A$, and $B\cap C_c$.

$$(A-C) \cup A = (A-C) = \{x \in R \mid -2 < x < 2 \ \} \ then \ (A-C) \cup A = \{x \in R \mid -2 < x < = 4 \ \}$$

(A
$$\cap$$
 B) – C= (A \cap B)= {x \in R | -2\cap B) – C= {x \in R | -2

$$B \cap C^C = \{x \in R \mid -9 \leq x \leq 1\}$$

2

Use an element argument to prove the statement:

For all sets A and B, $(A \cup B) \subseteq A \cap B$

3

For all sets A and B, simplify the given expression,

$$A - (A \cap B)$$

Cite a property from Theorem 6.2.2 for every step of the proof. Theorem 6.2.2.png

☑

 $A-(A\cap B) = A\cap (A\cap B)^{C}$ by the set difference law

- $= A \cap (A^{C} \cup B^{C})$ by DeMorgan's Law
- = $(A \cap A^c) \cup (A \cap B^c)$ by associative laws
- = (\varnothing) \cup ($A \cap B^{C}$) by the complement laws
- = $(A \cap B C) \cup (\emptyset)$ by the commutative law
- = $(A \cap BC)$ by the identity law
- = A-B by the set difference law

What are the terms a, a, a and a of the sequence {a}, where aequals:

1)
$$a_n = (-1)^{n+2} * n^2$$
, For all $n > 0$

$$2)$$
 an=5

1:
$$a(0)=(-1)^{(2)}*(0)^{2}=1$$

 $a(1)=(-1)^{(3)}*(1)^{2}=-1$
 $a(2)=(-1)^{(4)}*(2)^{2}=4$
 $a(3)=(-1)^{(5)}*(3)^{2}=-9$

$$2: a(0) = 5$$

$$a(1) = 5$$

$$a(2) = 5$$

$$a(3) = 5$$

5

Given that, 1k(k+1)=1k-1k+1. Use this identity to find a simple expression for

$$\sum_{k=1}^{n+1} \frac{1}{(k(k+1)=(1/1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/(k-1)-1/k)+(1/k-1/(k+1))}$$
 =1-1/(k+1)

Compute the following summations. (Instructions: Showing your work is necessary and you must make use of the formula provided in the attached document summation_formula.pdf. An intermediate form will be acceptable, so you don't need to calculate the final result.)

a)
$$\sum 5i=3(7i+6)$$

b)
$$\sum 3k=0(3^{k+3})$$

c)
$$\sum 5j=2(2^*(-2)j)$$

а

$$\sum 5i=3(7i+6) = \sum 5i=3(7i+6) - \sum i=1 (7i+6) = ((7*(3(3+1))/2) +6) - ((7*(2(2+1))/2) +6) = ((7*(3(4))/2) +6) - ((7*(2(3))/2) +6)$$

b

$$\sum 3k = 0(3^{k+3}) = \sum (3^k 3^3) = 9\sum (3^k) = (9 * 3^{(3+1)} - 1)/3 - 1 = \frac{9 * (3^{4} - 1)}{2}$$

С