

Winter Semester-2019 ~ 2020

Continuous Assessment Test - I

Programme Name & Branch: B.Tech

Slot: A1+TA1+TAA1 Maximum Marks: 50

Course Name & Code: Applied Linear Algebra & MAT 3004

Exam Duration: 90 min

Answer all the Questions	
.No.	Questions
	A. Consider the system of equations $x_1+2x_2+3x_3 = b_1 \\ 2x_1+5x_2+3x_3 = b_2$ a) What are the pivots? b) List the free and basic variables for the above system. c) Under what conditions on b_1 , b_2 , b_3 , the above system of equations is consistent? [10]
2.	A. Let $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix}$. a) Find elementary matrices E_1, E_2 and E_3 such that $E_1E_2E_3A = I$ b) Write A as a product of elementary matrices. [7] B. Find the LU decomposition of $A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$. [8]
3.	Let $V=R^2$. Define an operation $(u,v)\oplus (x,y)=(u+x,0),\ a\odot (x,y)=(\alpha x,\alpha y) \text{ for } (u,v),(x,y)\in V,\alpha\in R.$ Under the operations \bigoplus and \bigcirc , determine whether V forms vector space over R or not. [5]
4.	A. Prove that a vector x in a vector space V has a unique additive inverse. [5] B. Let $S = \{(1,1,1,1), (1,-1,1,2), (1,1,-1,1)\} \subset R^4$. Check whether the vector $(1,1,2,1)$ is in $L(S)$ or not. [5]
5.	Let $W = \{(x, y, z, w) \in R^4 x + y - z + w = 0, x + y + z + w = 0\}$. a) Prove that W forms a subspace of R^4 . b) Find the basis and dimension of W . [10]

