RIEMANN INTEGRAL OF $f\alpha'$ IS EQUAL TO RIEMANN-STIELTJES INTEGRAL OF f WITH INTEGRATOR α

Let $\alpha:[a,b]\to\mathbb{R}$ be a differentiable monotonic function such that $\alpha'\in\mathscr{R}$. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Then $f\in\mathscr{R}(\alpha)$ if and only if $f\alpha'\in\mathscr{R}$. And

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x)\alpha'(x)dx$$

Proof

Let $\varepsilon > 0$ and choose a partition P such that

$$U(P, \alpha') - L(P, \alpha') < \varepsilon$$

By the mean value theorem, there exist points $t_i \in [x_{i-1}, x_i]$ such that

$$\Delta \alpha_i = \alpha'(t_i) \Delta x_i$$

Hence, if we pick any point $s_i \in [x_{i-1}, x_i]$ at all

CHANGE OF VARIABLE