Kap. 11: Anfangswertaufgaben: Mehrschrittverfahren

- 11.1 Grundlagen und Beispiele
- 11.2 Konsistenz von Mehrschrittverfahren
- 11.3 Null-Stabilität und Konvergenz von Mehrschrittverfahren
- 11.4 Absolute und A-Stabilität von Mehrschrittverfahren
- 11.5 Praktische Aspekte

11.1 Grundlagen und Beispiele

11.1 Erläuterung:

- ▶ Die Zuwachsfunktion Φ bei *Einschrittverfahren* ist "gedächtnislos", d.h. in jedem Schritt wird nur der aktuelle Punkt (x_k, y_k) zur Berechnung von Φ verwendet. Dabei fallen im Allgemeinen mehrere Auswertungen der Funktion f an vorgegebenen Zwischenstellen $x_k + a_r h$ an (z.B. beim expliziten R-stufigen Runge-Kutta-Verfahren).
- ▶ Bei *Mehrschrittverfahren* hingegen greift man für den Schritt von x_k nach $x_k + h$ auf mehrere bereits berechnete Werte von f über ein größeres Intervall $[x_k mh, x_k]$ von Stützstellen zurück.

Das allgemeine lineare Mehrschrittverfahren wird als eine lineare Differenzengleichung formuliert. Man legt die Anzahl $m\in\mathbb{N}$ fest und wählt die Bezeichnungen

$$x_k, \ldots, x_{k+m}, \qquad y_k, \ldots, y_{k+m}$$

zur festen Schrittweite h > 0 wie zuvor. Weiterhin setzen wir $f_{k+j} := f(x_{k+j}, y_{k+j})$.

11.2 Definition: Lineares Mehrschrittverfahren

Es sei $m \in \mathbb{N}$. Zu gegebenen reellen Zahlen $\alpha_0, \ldots, \alpha_m$ mit $\alpha_m = 1$ und β_0, \ldots, β_m heißt die Vorschrift

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = h \sum_{j=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

ein lineares *m*-Schritt Verfahren. (Hierbei wird $|\alpha_0| + |\beta_0| \neq 0$ vorausgesetzt.)

Bemerkung: Falls $\beta_m = 0$ gilt, heißt das Verfahren *explizit*, andernfalls *implizit*.

11.3 Übersicht zu den Verfahren von Adams und Nyström

Wichtige Klassen von *m*-Schrittverfahren werden erzeugt, indem die AWA in die äquivalente Integralgleichung

$$y(x_m) = y(x_m - \delta) + \int_{x_m - \delta}^{x_m} f(t, y(t)) dt$$

überführt wird und das Integral mit einer Quadraturformel angenähert wird. Als Integrationslänge verwendet man

- $\delta = h$ für die Verfahren von Adams-Bashforth und Adams-Moulton,
- $\delta = 2h$ für die Verfahren von Nyström und Milne-Simpson.

Als Knoten der Quadraturformel verwendet man die äquidistanten Stellen

- ▶ $x_k, ..., x_{k+m-1}$ im expliziten Fall (Adams-Bashforth für $\delta = h$ und Nyström für $\delta = 2h$),
- ▶ $x_k, ..., x_{k+m}$ im impliziten Fall (Adams-Moulton für $\delta = h$ und Milne-Simpson für $\delta = 2h$).

Für m>1 (bzw. m>2 im Fall $\delta=2h$) werden also auch Knoten außerhalb des Integrationsintervalls $[x_m-\delta,x_m]$ verwendet.

Die Gewichte der Quadraturformel werden so bestimmt, dass der maximale Exaktheitsgrad erreicht wird. Die Auswertung des Integranden erfolgt durch Einsetzen der Näherungen y_{k+j} anstelle von $y(x_{k+j})$, also durch Verwendung der Funktionswerte $f_{k+j} = f(x_{k+j}, y_{k+j})$.

11.4 Explizite *m*-Schrittverfahren: Adams-Bashforth-Verfahren

Es sei $m \in \mathbb{N}$. Das m-Schritt Adams-Bashforth-Verfahren lautet

$$y_{k+m} - y_{k+m-1} = h \sum_{j=0}^{m-1} \beta_j f_{k+j}$$

mit

$$\beta_j = \frac{1}{h} \int_{x_{h+m-1}}^{x_{h+m}} L_j(x) dx = \int_{m-1}^m \tilde{L}_j(x) dx.$$

Hierbei sind L_j , \tilde{L}_j Lagrange-Grundpolynome vom Grad m-1 zu den Stützstellen x_k,\ldots,x_{k+m-1} bzw. $0,1,\ldots,m-1$, also

$$L_{j}(x) = \prod_{\substack{i=0\\i\neq j}}^{m-1} \frac{x - x_{k+i}}{x_{k+j} - x_{k+i}}, \qquad \tilde{L}_{j}(x) = \prod_{\substack{i=0\\i\neq j}}^{m-1} \frac{x - i}{j - i}.$$

Beispielsweise ergeben sich die folgenden Formeln:

$$m = 1$$
: $y_{k+1} - y_k = hf_k$ Eulersche Polygonzugmethode

$$m=2: \quad v_{k+2}-v_{k+1}=\frac{h}{2}(-f_k+3f_{k+1})$$

$$m=3:$$
 $y_{k+3}-y_{k+2}=\frac{h}{12}(5f_k-16f_{k+1}+23f_{k+2})$

$$m=4:$$
 $v_{k+4}-v_{k+3}=\frac{h}{24}(-9f_k+37f_{k+1}-59f_{k+2}+55f_{k+3})$

$$m = 5$$
: $v_{k+5} - v_{k+4} = \frac{h}{220}(251f_k - 1274f_{k+1} + 2616f_{k+2} - 2774f_{k+3} + 1901f_{k+4})$

$$m = 6$$
: $y_{k+6} - y_{k+5} = \frac{h}{1440} (-475f_k + 2877f_{k+1} - 7298f_{k+2} + 9982f_{k+3} - 7923f_{k+4} + 4277f_{k+5})$

11.5 Implizite *m*-Schrittverfahren: Adams-Moulton-Verfahren

Es sei $m \in \mathbb{N}$. Das m-Schritt Adams-Moulton-Verfahren lautet

$$y_{k+m} - y_{k+m-1} = h \sum_{j=0}^{m} \beta_j f_{k+j}$$

mit

$$\beta_j = \frac{1}{h} \int_{x_{k+m}}^{x_{k+m}} \Lambda_j(x) dx = \int_{m-1}^m \tilde{\Lambda}_j(x) dx.$$

Hierbei sind Λ_j , $\tilde{\Lambda}_j$ Lagrange-Grundpolynome vom Grad m zu den Stützstellen x_k,\ldots,x_{k+m} bzw. $0,1,\ldots,m$, also

$$\Lambda_j(x) = \prod_{\substack{i=0 \ i \neq j}}^m \frac{x - x_{k+i}}{x_{k+j} - x_{k+i}}, \qquad \tilde{\Lambda}_j(x) = \prod_{\substack{i=0 \ i \neq j}}^m \frac{x - i}{j - i}.$$

Beispielsweise ergeben sich die folgenden Formeln:

$$\begin{array}{lll} m=1: & y_{k+1}-y_k &=& \frac{h}{2}(f_k+f_{k+1}) & \text{implizites Trapez-Verfahren} \\ m=2: & y_{k+2}-y_{k+1} &=& \frac{h}{12}(-f_k+8f_{k+1}+5f_{k+2}) \\ m=3: & y_{k+3}-y_{k+2} &=& \frac{h}{24}(f_k-5f_{k+1}+19f_{k+2}+9f_{k+3}) \\ m=4: & y_{k+4}-y_{k+3} &=& \frac{h}{720}(-19f_k+106f_{k+1}-264f_{k+2}+646f_{k+3}+251f_{k+4}) \\ m=5: & y_{k+5}-y_{k+4} &=& \frac{h}{1440}(27f_k-173f_{k+1}+482f_{k+2}-798f_{k+3}+1427f_{k+4}+475f_{k+5}) \end{array}$$

11.6 Explizite *m*-Schrittverfahren: Nyström-Verfahren

Es sei $m \in \mathbb{N}$. Das m-Schritt Nyström-Verfahren lautet

$$y_{k+m} - y_{k+m-2} = h \sum_{j=0}^{m-1} \beta_j f_{k+j}$$

mit

$$\beta_j = \frac{1}{h} \int_{x_{k+m-2}}^{x_{k+m}} L_j(x) dx = \int_{m-2}^m \tilde{L}_j(x) dx$$

und den Lagrange-Grundpolynomen L_j , \tilde{L}_j aus 11.4. Wir erhalten die folgenden Formeln:

$$m = 2$$
: $y_{k+2} - y_k = 2hf_{k+1}$, (Mittelpunktregel)

$$m = 3$$
: $y_{k+3} - y_{k+1} = \frac{h}{3}(f_k - 2f_{k+1} + 7f_{k+2})$

$$m=4:$$
 $y_{k+4}-y_{k+2}=\frac{h}{3}(-f_k+4f_{k+1}-5f_{k+2}+8f_{k+3})$

$$m=5$$
: $v_{k+5}-v_{k+3}=\frac{h}{20}(29f_k-146f_{k+1}+294f_{k+2}-266f_{k+3}+269f_{k+4})$

$$M = 5$$
. $y_{k+5} - y_{k+3} = \frac{1}{90}(291_k - 1401_{k+1} + 2941_{k+2} - 2001_{k+3} + 2091_{k+4})$

$$m = 6$$
: $y_{k+6} - y_{k+4} = \frac{h}{90} (-28f_k + 169f_{k+1} - 426f_{k+2} + 574f_{k+3} - 406f_{k+4} + 297f_{k+5})$

11.7 Implizite *m*-Schrittverfahren: Milne-Simpson-Verfahren

Es sei $m \in \mathbb{N}$. Das m-Schritt Milne-Simpson-Verfahren lautet

$$y_{k+m} - y_{k+m-2} = h \sum_{j=0}^{m} \beta_j f_{k+j}$$

mit

$$\beta_j = \frac{1}{h} \int_{x_{k+m-2}}^{x_{k+m}} \Lambda_j(x) \, dx = \int_{m-2}^m \tilde{\Lambda}_j(x) \, dx$$

und den Lagrange-Grundpolynomen Λ_i , $\tilde{\Lambda}_i$ aus 11.5.

Wir erhalten die folgenden Formeln:

$$m=2:$$
 $y_{k+2}-y_k=\frac{h}{3}(f_k+4f_{k+1}+f_{k+2}),$ (Simpsonregel)
 $m=3:$ $y_{k+3}-y_{k+1}=\frac{h}{3}(f_{k+1}+4f_{k+2}+f_{k+3})$ (=Simpsonregel bei $k+1$)
 $m=4:$ $y_{k+4}-y_{k+2}=\frac{h}{90}(-f_k+4f_{k+1}+24f_{k+2}+124f_{k+3}+29f_{k+4})$
 $m=5:$ $y_{k+5}-y_{k+3}=\frac{h}{90}(f_k-6f_{k+1}+14f_{k+2}-14f_{k+3}+129f_{k+4}+28f_{k+5})$

11.8 Implizite *m*-Schrittverfahren: BDF-Verfahren

Ein weiterer Ansatz für ein implizites m-Schritt-Verfahren, das alle m+1 Koeffizienten $\alpha_j \neq 0$ setzt und nur $\beta_{k+m} \neq 0$ verwendet, bildet zuerst das Interpolationspolynom

$$\rho_m(x) = \sum_{j=0}^m y_{k+j} \Lambda_j(x) \qquad (\approx y(x))$$

und führt durch Differenzieren von p_m und Vergleich mit der Differentialgleichung zu

$$\sum_{j=0}^m y_{k+j} \Lambda'_j(x_{k+m}) = f_{k+m}.$$

Um $\alpha_m=1$ zu erhalten, werden beide Seiten durch $\Lambda'_m(x_{k+m})=\sum_{j=1}^m\frac{1}{j\hbar}$ dividiert. Diese Verfahren heißen *backward difference formula* (BDF). Wir erhalten die folgenden Formeln:

$$\begin{array}{llll} m=1: & y_{k+1}-y_k = hf_{k+1} & \text{implizites Euler-Verfahren} \\ m=2: & y_{k+2}-\frac{4}{3}y_{k+1}+\frac{1}{3}y_k = \frac{2h}{3}f_{k+2} \\ m=3: & y_{k+3}-\frac{18}{11}y_{k+2}+\frac{9}{11}y_{k+1}-\frac{2}{11}y_k = \frac{6h}{11}f_{k+3} \\ m=4: & y_{k+4}-\frac{48}{25}y_{k+3}+\frac{36}{25}y_{k+2}-\frac{16}{25}y_{k+1}+\frac{3}{25}y_k = \frac{12h}{25}f_{k+4} \end{array}$$

Bemerkung:

- Es ist klar, dass alle Verfahren direkt auf Systeme von Differentialgleichungen erster Ordnung übertragen werden können.
- ▶ Bei den impliziten Verfahren tritt $f_{k+m} = f(x_{k+m}, y_{k+m})$ auf der rechten Seite auf. Aus der Formel des Differenzenverfahrens wird y_{k+m} mit Hilfe der Fixpunkt- oder der (gedämpften) Newton-Iteration bestimmt

11.9 Bemerkung: Der Ansatz aller Verfahren beruht auf der Polynom-Interpolation der Daten $f(x_{k+j},y_{k+j})$. Eine rekursive Berechnung der Koeffizienten ergibt sich durch Verwendung der Newton-Form der Interpolation:

Für die expliziten Verfahren mit den äquidistanten Stützstellen x_k, \dots, x_{k+m-1} berechnet man die "Rückwärtsdifferenzen"

$$\nabla^0 f_n := f_n, \quad \nabla^{\mu} f_n := \nabla^{\mu-1} f_n - \nabla^{\mu-1} f_{n-1}, \quad \mu \ge 1,$$

rekursiv nach dem Dreiecksschema

Das Interpolationspolynom in Newton-Form lautet dann

$$p_{m-1}(x) = \nabla^0 f_{k+m-1} + \frac{\nabla^1 f_{k+m-1}}{h} (x - x_{k+m-1}) + \dots + \frac{\nabla^{m-1} f_{k+m-1}}{(m-1)! h^{m-1}} \prod_{j=1}^{m-1} (x - x_{k+m-j}).$$

▶ Das explizite *m*-Schritt Adams-Bashforth Verfahren nimmt somit die Form

$$y_{k+m} - y_{k+m-1} = h \sum_{j=0}^{m-1} c_j \nabla^j f_{k+m-1}$$

an, wobei die Koeffizienten c_j , $j=0,\ldots,m-1$, gegeben sind durch $c_0=1$ und

$$c_{j} = \frac{1}{j!h^{j+1}} \int_{x_{k+m-1}}^{x_{k+m}} \prod_{\ell=1}^{J} (x - x_{k+m-\ell}) dx$$
$$= \frac{1}{j!} \int_{m-1}^{m} \prod_{\ell=1}^{j} (t - m + \ell) dt = \frac{1}{j!} \int_{0}^{1} \prod_{\ell=0}^{j-1} (t + \ell) dt$$

für j>0. Für diese Koeffizienten zeigt man die Formel

$$\sum_{i=0}^j \frac{c_{j-i}}{i+1} = 1, \qquad j \ge 0,$$

aus der dann die ci rekursiv berechnet werden können:

$$c_0 = 1$$
, $c_1 = \frac{1}{2}$, $c_2 = \frac{5}{12}$, $c_3 = \frac{3}{8}$, $c_4 = \frac{251}{720}$, $c_5 = \frac{95}{288}$, ...

Die gleichen Überlegungen lassen sich auf die Verfahren von Adams-Moulton, Nyström und Milne-Simpson anwenden. Bei den impliziten Verfahren tritt der Knoten x_{k+m} an den Anfang der Knotenliste. Für Adams-Moulton ergibt sich

$$y_{k+m} - y_{k+m-1} = h \sum_{i=0}^{m} \gamma_j \nabla^j f_{k+m},$$

mit $\gamma_0 = 1$ und

$$\gamma_{j} = \frac{1}{j!h^{j+1}} \int_{x_{k+m-1}}^{x_{k+m}} \prod_{\ell=0}^{j-1} (x - x_{k+m-\ell}) dx$$
$$= \frac{1}{j!} \int_{m-1}^{m} \prod_{\ell=0}^{j-1} (t - m + \ell) dt = \frac{1}{j!} \int_{-1}^{0} \prod_{\ell=0}^{j-1} (t + \ell) dt.$$

Hieraus lässt sich die Formel

$$\gamma_i = c_i - c_{i-1}$$

ableiten,, so dass wir erhalten:

$$\gamma_0 = 1, \ \gamma_1 = -\frac{1}{2}, \ \gamma_2 = -\frac{1}{12}, \ \gamma_3 = -\frac{1}{24}, \ \gamma_4 = -\frac{19}{720}, \ \gamma_5 = -\frac{3}{160}, \ \dots$$

▶ Gleichermaßen ergeben sich die BDF-Formeln in der Form

$$\sum_{i=1}^{m} \sigma_{j} \nabla^{j} y_{k+m} = h f_{k+m}$$

mit

$$\sigma_j = \frac{1}{j! \, h^{j-1}} \left(\prod_{\ell=0}^{j-1} (\cdot - x_{k+m-\ell}) \right)' (x_{k+m}) = \frac{1}{j! \, h^{j-1}} \prod_{\ell=1}^{j-1} (x_{k+m} - x_{k+m-\ell}) = \frac{1}{j}.$$

11.2 Konsistenz und Konvergenz

Eine zentrale Rolle nimmt wieder der Begriff des *lokalen Diskretisierungsfehlers* ein.

11.10 Definition

Sei $m \in \mathbb{N}$ sowie ein lineares m-Schrittverfahren

$$\sum_{j=0}^{m} \alpha_j y_{k+j} = h \sum_{j=0}^{m} \beta_j f_{k+j}, \qquad \alpha_m = 1,$$

gegeben. Weiter seien $f \in C^1(I \times G)$ und $(x, y) \in I \times G$ gegeben.

- ▶ Mit z bezeichnen wir die Lösung der AWA z' = f(t, z), z(x) = y.
- ▶ z_m sei der Wert, den das m-Schritt-Verfahren bei Verwendung der exakten Werte $\alpha_j z(x+jh)$ für $0 \le j \le m-1$ sowie $\beta_j f(x+jh,z(x+jh)) = \beta_j z'(x+jh)$ für $0 \le j \le m$ liefert.
- a) Der exakte relative Zuwachs beim m-Schritt-Verfahren ist

$$\Delta(f,x,y,h) = \frac{z(x+mh)-z(x+(m-1)h)}{h}.$$

b) Die Zuwachsfunktion des *m*-Schrittverfahrens wird definiert als

$$\Phi(f,x,y,h) = \frac{z_m - z(x + (m-1)h)}{h}$$

$$\Phi(f,x,y,h) = \frac{2m-2(x+(m-1)n)}{h}$$

 $r(f, \Phi, x, y, h) = \Delta(f, x, y, h) - \Phi(f, x, y, h)$

Berücksichtigung von $\alpha_m = 1$)

$$= \frac{1}{h} \left(-\sum_{i=0}^{m-1} \alpha_j z(x+jh) + h \sum_{i=0}^{m} \beta_j z'(x+jh) \right) - \frac{z(x+(m-1)h)}{h}.$$

Der lokale Diskretisierungsfehler des m-Schrittverfahrens ist (unter

 $= \frac{1}{h}\sum_{j=1}^{m}\alpha_{j}z(x+jh)-\sum_{j=1}^{m}\beta_{j}z'(x+jh).$

11.11 Definition: Konsistenz, Konsistenzordnung

und alle $(x, y) \in I \times G$ gilt

a) Das m-Schrittverfahren heißt konsistent, wenn für alle $f \in C^1(I \times G)$ und alle $(x, y) \in I \times G$ gilt

$$\lim_{h\to 0} r(f,\Phi,x,y,h) = 0.$$

 $r(f, \Phi, x, y, h) = \mathcal{O}(|h|^p)$ für $h \to 0$.

$$\lim_{h\to 0} r(f,\Phi,x,y,h)=0.$$
b) Es hat die *Konsistenzordnung* $p\in \mathbb{N}$, wenn für alle $f\in C^{p+1}(I\times G)$

Vorüberlegung: Die Konsistenzordnung von m-Schrittverfahren wird wieder durch eine Taylor-Entwicklung bestimmt. Hierfür benötigen wir nur die Taylor-Entwicklungen von z und z'. Dies führt auf einfache <u>lineare</u> Bedingungen an die Koeffizienten α_j und β_j . Aus den beiden Beziehungen

$$z(x+jh) = \sum_{\mu=0}^{p} \frac{z^{(\mu)}(x)}{\mu!} (jh)^{\mu} + \mathcal{O}(|h|^{p+1}) \qquad \text{für} \quad h \to 0,$$
$$z'(x+jh) = \sum_{\mu=1}^{p} \frac{z^{(\mu)}(x)}{(\mu-1)!} (jh)^{\mu-1} + \mathcal{O}(|h|^{p}) \qquad \text{für} \quad h \to 0,$$

folgt

$$r(f, \Phi, x, y, h) = \frac{z(x)}{h} \sum_{j=0}^{m} \alpha_j + \sum_{\mu=1}^{p} z^{(\mu)}(x) h^{\mu-1} \sum_{j=0}^{m} \left[\alpha_j \frac{j^{\mu}}{\mu!} - \beta_j \frac{j^{\mu-1}}{(\mu-1)!} \right] + \mathcal{O}(|h|^p).$$

11.12 Satz: Konsistenzordnung linearer Mehrschrittverfahren

Das m-Schrittverfahren

$$\sum_{i=0}^{m} \alpha_{j} y_{k+j} = h \sum_{i=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

mit $\alpha_m = 1$ ist konsistent genau dann, wenn

$$c_0 := \sum_{j=0}^m \alpha_j = 0, \quad c_1 := \sum_{j=0}^m j\alpha_j - \sum_{j=0}^m \beta_j = 0$$

gilt. Weiterhin sind äquivalent:

- (i) Das Verfahren besitzt die Konsistenzordnung $p \in \mathbb{N}$.
- (ii) Die Zahlen c_0, c_1 wie oben sowie

$$c_{\mu} := \sum_{j=0}^{m} \left[\alpha_{j} \frac{j^{\mu}}{\mu!} - \beta_{j} \frac{j^{\mu-1}}{(\mu-1)!} \right], \quad \mu = 2, \dots, p,$$

sind alle gleich Null.

(iii) Für jedes Polynom z vom Grad $\leq p$ ist

$$\sum_{i=0}^m \alpha_j z(x+j) - \sum_{i=0}^m \beta_j z'(x+j) \equiv 0.$$

Beweis: Aus der Vorüberlegung folgt bereits die Aussage zur Konsistenz und die Äquivalenz von (i) und (ii).

Wir zeigen die Äquivalenz von (ii) und (iii): für jedes Polynom z vom Grad $\leq p$ sind die Taylor-Entwicklungen der Vorüberlegung exakt, d.h.

$$z(x+j) = \sum_{\mu=0}^{p} \frac{z^{(\mu)}(x)}{\mu!} j^{\mu},$$

$$z'(x+j) = \sum_{\mu=1}^{p} \frac{z^{(\mu)}(x)}{(\mu-1)!} j^{\mu-1}.$$

Einsetzen ergibt

$$\sum_{j=0}^{m} \alpha_j z(x+j) - \sum_{j=0}^{m} \beta_j z'(x+j) = \sum_{\mu=0}^{p} c_{\mu} z^{(\mu)}(x).$$

Die Äquivalenz von (ii) und (iii) ist hieraus direkt abzulesen.

Bemerkung: Eine wichtige Methode (von Euler) definiert zu den Koeffizienten c_{μ} die erzeugende Funktion

$$C(z) = \sum_{\mu=0}^{\infty} c_{\mu} z^{\mu} = \sum_{j=0}^{m} \left[\alpha_{j} \sum_{\mu=0}^{\infty} \frac{(jz)^{\mu}}{\mu!} - z\beta_{j} \sum_{\mu=1}^{\infty} \frac{(jz)^{\mu-1}}{(\mu-1)!} \right] = \sum_{j=0}^{m} (\alpha_{j} - z\beta_{j}) e^{jz}.$$

Die Bedingung (ii) im Satz 11.12 ist äquivalent zur Bedingung

$$\frac{d^{\mu}}{dz^{\mu}}C(z)|_{z=0}=0 \quad \text{für} \quad 0 \leq \mu \leq p.$$

11.13 Korollar

- ▶ Die expliziten *m*-Schritt Verfahren von Adams-Bashforth $(m \ge 1)$ und Nyström ($m \ge 2$) haben die Konsistenzordnung m.
- ▶ Die impliziten *m*-Schritt Verfahren von Adams-Moulton ($m \ge 1$) und Milne-Simpson ($m \ge 2$) haben die Konsistenzordnung m + 1.
- ▶ Die impliziten *m*-Schritt BDF-Verfahren haben die Konsistenzordnung m.

Die angegebene Ordnung ist jeweils exakt, mit Ausnahme des Milne-Simpson Verfahrens mit m=2, das die Konsistenzordnung 4 besitzt.

Beweis: Wir verwenden Teil (iii) aus Satz 11.12. Wir weisen die Aussage zur Konsistenzordnung der ersten 4 Verfahren nach.

Sei dazu $\ell=1$ (für die Verfahren von Adams) oder $\ell=2$ (Nyström, Milne-Simpson). Weiter sei q ein Polynom vom Grad m (expliziter Fall) bzw. m+1 (impliziter Fall). Wir halten $x\in\mathbb{R}$ fest und wählen die Knoten $x,x+1,\ldots,x+m-1$ (expliziter Fall) bzw. $x,x+1,\ldots,x+m$ (impliziter Fall). Dann besitzt q' die Darstellung mit Hilfe der Lagrange-Grundpolynome L_i bzw. Λ_i

$$q'(t) = \sum_{j=0}^{m-1} q'(x+j)L_j(t),$$
 (expliziter Fall),
$$q'(t) = \sum_{j=0}^m q'(x+j)\Lambda_j(t),$$
 (impliziter Fall).

Die Definition der β_i bei den 4 betrachteten Verfahren ergibt

$$q(x+m)-q(x+m-\ell)=\int_{x+m-\ell}^{x+m}q'(t)\,dt=\sum_{j=0}^{m(-1)}\beta_jq'(x+j).$$

Dies ist genau die Eigenschaft (iii) in Satz 11.12.

Um zu zeigen, dass die Konsistenzordnung nicht größer als angegeben ist, wählt man beim Adams-Bashforth und beim Nyström-Verfahren ein Polynom q vom Grad m+1 mit

$$q'(x) = \prod_{j=0}^{m-1} (x-j).$$

Dann ist q'(j)=0 für $0 \le j \le m-1$, aber q'(x)>0 für x>m-1, also auch

$$q(m) - q(m-1) = \int_{-\infty}^{m} q'(x) dx > 0.$$

Also hat das Adams-Bashforth Verfahren nur die Konsistenzordnung m. Ebenso ist q(m)-q(m-2)=

$$\int_{m-2}^{m} q'(x) dx = \int_{m-1}^{m} \left(\prod_{j=1}^{m} (x-j) + \prod_{j=0}^{m-1} (x-j) \right) dx = \int_{m-1}^{m} \underbrace{(2x-m)}_{j=1} \prod_{j=1}^{m-1} (x-j) dx > 0.$$

Also hat auch das Nyström Verfahren nur die Konsistenzordnung m.

Ebenso wählt man beim Adams-Moulton und Milne-Simpson-Verfahren ein Polynom q vom Grad m+2 so, dass $q'(x)=\prod_{j=0}^m(x-j)$ gilt. Dann ist q'(j)=0 für $0\leq j\leq m$, aber q'(x)<0 für m-1< x< m, also

$$q(m) - q(m-1) = \int_{-m}^{m} q'(x) dx < 0.$$

Also hat das Adams-Moulton Verfahren nur die Konsistenzordnung m+1. Ebenso ist q(m)-q(m-2)=

$$\int_{m-1}^{m} \left(\prod_{i=1}^{m+1} (x-j) + \prod_{i=0}^{m} (x-j) \right) dx = \int_{m-1}^{m} (2x-m-1) \prod_{i=1}^{m} (x-j) dx \begin{cases} < 0 & \text{für } m \ge 3, \\ = 0 & \text{für } m = 2. \end{cases}$$

Also hat auch das Milne-Simpson-Verfahren für $m \ge 3$ nur die Konsistenzordnung m+1. Für m=2 erhält man die exakte Konsistenzordnung 4 direkt aus Teil (ii) von Satz 11.12.

Nun wenden wir uns den BDF-Formeln zu. Sei q ein Polynom vom Grad $\leq m$. Wir halten $x \in \mathbb{R}$ fest und wählen die Knoten $x, x+1, \ldots, x+m$ zur Darstellung mittels der zugehörigen Lagrange-Grundpolynome

$$q(t) = \sum_{i=0}^{m} q(x+j) \Lambda_j(t).$$

Hieraus ergibt sich sofort

$$\frac{q'(x+m)}{\Lambda'_m(x+m)} = \sum_{i=0}^m \frac{\Lambda'_j(x+m)}{\Lambda'_m(x+m)} q(x+j).$$

Dies ist die Eigenschaft (iii) in Satz 11.12, denn $\beta_m=1/\Lambda_m'(x+m)$ und $\alpha_j=\Lambda_j'(x+m)/\Lambda_m'(x+m)$ ergaben sich in 11.8.

Dass keine höhere Konsistenzordnung vorliegt, wird mit dem Polynom $q(x) = \prod_{j=0}^m (x-j)$ vom Grad m+1 gezeigt: wir haben

$$\sum_{i=0}^m \alpha_j q(j) = 0, \quad \text{aber} \quad \beta_m q'(m) \neq 0.$$

11.14 Bemerkung: Der erste von Null verschiedene Koeffizient

$$c_{p+1} := \sum_{j=0}^{m} \left[\frac{j^{p+1}}{(p+1)!} \alpha_j - \frac{j^p}{p!} \beta_j \right] \neq 0$$

wird als die "Fehlerkonstante" des Verfahrens der Ordnung p bezeichnet.

Die folgende Tabelle gibt die Fehlerkonstanten mehrerer Adams-Bashforth und Adams-Moulton-Verfahren an.

Adams-Bashforth (explizit)							
m	1	2	3	4			
р	1	2	3	4			
c_{p+1}	$\frac{1}{2}$	$\frac{5}{12}$	<u>3</u> 8	251 720			

Adams-Moulton (implizit)							
m	1	2	3	4			
р	2	3	4	5			
c_{p+1}	$-\frac{1}{12}$	$-\frac{1}{24}$	$-\frac{19}{720}$	$-\frac{3}{160}$			

11.15 Beispiel: Die allgemeine (implizite) lineare 2-Schrittmethode hat 6 Koeffizienten $\alpha_k, \beta_k, 0 \le k \le 2$, mit $\alpha_2 = 1$. Die Terme c_μ ergeben sich als

$$c_0 = \alpha_0 + \alpha_1 + 1$$

$$c_1 = \alpha_1 + 2 - (\beta_0 + \beta_1 + \beta_2)$$

$$c_2 = \frac{1}{2}(\alpha_1 + 4) - (\beta_1 + 2\beta_2)$$

$$c_3 = \frac{1}{6}(\alpha_1 + 8) - \frac{1}{2}(\beta_1 + 4\beta_2)$$

$$c_4 = \frac{1}{24}(\alpha_1 + 16) - \frac{1}{6}(\beta_1 + 8\beta_2)$$

$$c_5 = \frac{1}{120}(\alpha_1 + 32) - \frac{1}{24}(\beta_1 + 16\beta_2)$$
...

Um die Konsistenzordnung 3 zu erzielen, muss $c_0=c_1=c_2=c_3=0$ gelten. Dies wird mit $\alpha:=\alpha_0$ erfüllt, falls wir

$$\alpha_1 = -1 - \alpha, \ \beta_0 = -\frac{1}{12}(1 + 5\alpha), \ \beta_1 = \frac{2}{3}(1 - \alpha), \ \beta_2 = \frac{1}{12}(5 + \alpha)$$

setzen. Die allgemeine 2-Schrittmethode der Ordnung 3 hat also die Form (in Abhängigkeit vom Parameter α)

$$y_{k+2} - (1+\alpha)y_{k+1} + \alpha y_k = \frac{h}{12} \Big((5+\alpha)f_{k+2} + 8(1-\alpha)f_{k+1} - (1+5\alpha)f_k \Big).$$

Aus den Gleichungen $c_4 = -(1 + \alpha)/24$ und $c_5 = -(17 + 13\alpha)/360$ folgt:

(i) Für $\alpha = -1$ ergibt sich das Simpson-Milne Verfahren

$$y_{k+2} - y_k = \frac{h}{3}(f_{k+2} + 4f_{k+1} + f_k)$$

der Konsistenzordnung 4. Ihre Fehlerkonstante ist $c_5 = -1/90$.

(ii) Für $\alpha \neq -1$ ist die exakte Konsistenzordnung 3. Z.B. ergibt $\alpha = 0$ das implizite 2-Schrittverfahren von Adams-Moulton und $\alpha = -5$ ergibt das explizite Verfahren

$$y_{k+2} + 4y_{k+1} - 5y_k = h(4f_{k+1} + 2f_k).$$

Dieses Verfahren hat eine attraktive Form, da pro Schritt nur eine Auswertung von f erfolgt. Es ist jedoch praktisch unbrauchbar, da eine wichtige Eigenschaft der "Null-Stabilität" fehlt, die wir im Folgenden analysieren wollen: Kleine Rundungsfehler der Anfangswerte y_0, y_1 werden in jedem Schritt so verstärkt, dass nach wenigen Schritten vollkommen unbrauchbare Werte vorliegen (siehe Beispiel 11.16).

11.3 Null-Stabilität und Konvergenz von Mehrschrittverfahren

Das numerische Verhalten der Mehrschrittverfahren unter dem Einfluss von Rundungsfehlern wird durch die Analyse der linearen Differenzengleichungen vollständig erfasst.

11.16 Beispiel: Die (homogene) lineare Differenzengleichung

$$y_{k+2} + 4y_{k+1} - 5y_k = 0$$

mit den Anfangswerten $y_0=0$ und $y_1=0$ hat die triviale Lösung $y_k=0$ für alle $k\in\mathbb{N}_0$. Eine kleine Störung der Anfangswerte $y_0=\delta,\ y_1=\epsilon$ liefert hingegen

$$y_2 = 5\delta - 4\epsilon$$
, $y_3 = -20\delta + 21\epsilon$, $y_4 = 105\delta - 104\epsilon$, ...

und allgemein

$$y_k = \alpha(-5)^k + \beta$$
 mit $\alpha = \frac{1}{6}(\delta - \epsilon), \ \beta = \frac{1}{6}(5\delta + \epsilon).$

Diese Darstellung erhält man durch Berechnen der Nullstellen -5 und 1 des charakteristischen Polynoms $\rho(z)=z^2+4z-5=(z+5)(z-1)$ der Differenzengleichung. Sie zeigt, dass das Differenzenverfahren numerisch instabil ist, da Rundungsfehler sich sehr schnell verstärken.

11.17 Satz: Allgemeine Lösung der homogenen linearen Differenzengleichung

Gegeben sei die homogene lineare Differenzengleichung

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = 0, \quad k = 0, 1, \dots \quad (\alpha_{m} = 1).$$
 (*)

Wir bezeichnen mit $\rho(z) = \sum_{i=0}^{m} \alpha_j z^i$ das *charakteristische Polynom* der

Differenzengleichung.

Dann ist jede Lösung $(y_k)_{k\geq 0}$ von (*) eine Linearkombination der folgenden m linear unabhängigen Fundamentallösungen:

▶ Ist
$$\lambda \in \mathbb{C}$$
 eine *s*-fache Nullstelle von ρ , mit $s \in \mathbb{N}$, so setze

$$(y_k^{(2)})_{k\geq 0} = (k\lambda^{k-1})_{k\geq 0},$$

$$\vdots$$

 $(y_{\iota}^{(1)})_{k>0} = (\lambda^k)_{k>0},$

$$(y_k^{(s)})_{k\geq 0} = \left(\frac{k!}{(k-s+1)!}\lambda^{k-s+1}\right)_{k\geq 0}.$$

Beweis: Die Fundamentallösungen lösen die homogene Differenzengleichung:

 $\lambda \in \mathbb{C}$ sei s-fache Nullstelle von ρ , es gelte also

$$\rho(\lambda) = \rho'(\lambda) = \cdots = \rho^{(s-1)}(\lambda) = 0$$

und $\rho^{(s)}(\lambda) \neq 0$. Die Folge $(y_k^{(1)})_{k \geq 0}$ erfüllt die Beziehung

$$\sum_{i=0}^{m} \alpha_j y_{k+j}^{(1)} = \sum_{i=0}^{m} \alpha_j \lambda^{k+j} = \lambda^k \rho(\lambda) = 0, \qquad k \ge 0.$$

Analog folgt für $\nu = 2, \dots, s$

$$\sum_{i=0}^{m} \alpha_{j} y_{k+j}^{(\nu)} = \sum_{i=0}^{m} \alpha_{j} \frac{(k+j)!}{(k+j-\nu+1)!} \lambda^{k+j-\nu+1} = \frac{d^{\nu-1}}{dz^{\nu-1}} (z^{k} \rho(z))|_{z=\lambda}.$$

Mit der Leibniz-Regel der Differentiation folgt, dass der letzte Ausdruck 0 ergibt, also löst auch $(y_k^{(\nu)})_{k>0}$ die homogene Differenzengleichung.

Die Fundamentallösungen sind linear unabhängige Folgen:

Seien $\lambda_1,\ldots,\lambda_r$ die paarweise verschiedenen Nullstellen von ρ mit der jeweiligen Ordnung s_μ , $1 \leq \mu \leq r$. (Dann gilt $s_1 + \cdots + s_r = m$.) Weiter seien $(y_k^{(\mu,\nu)})_{k \geq 0}$ mit $1 \leq \mu \leq r$, $1 \leq \nu \leq s_\mu$, die Fundamentallösungen. Es genügt zu zeigen, dass die "Anfangsstücke" der Länge m dieser Folgen linear unabhängig sind. Dazu betrachten wir die quadratische Matrix

$$A = \begin{bmatrix} y_0^{(1,1)} & y_1^{(1,1)} & \cdots & y_{m-1}^{(1,1)} \\ \vdots & \vdots & & \vdots \\ y_0^{(1,s_1)} & y_1^{(1,s_1)} & \cdots & y_{m-1}^{(1,s_1)} \\ \vdots & \vdots & & \vdots \\ y_0^{(r,1)} & y_1^{(r,1)} & \cdots & y_{m-1}^{(r,1)} \\ \vdots & \vdots & & \vdots \\ y_0^{(r,s_r)} & y_1^{(r,s_r)} & \cdots & y_{m-1}^{(r,s_r)} \end{bmatrix}.$$

Im Fall $s_{\mu}=1$ für alle $1\leq \mu \leq r(=m)$ ist

$$A = \begin{bmatrix} y_0^{(1,1)} & y_1^{(1,1)} & \cdots & y_{m-1}^{(1,1)} \\ \vdots & \vdots & & \vdots \\ y_0^{(m,1)} & y_1^{(m,1)} & \cdots & y_{m-1}^{(m,1)} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ \vdots & & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{bmatrix}$$

die Vandermonde-Matrix zu den paarweise verschiedenen Nullstellen $\lambda_{\mu} \in \mathbb{C}$, $1 \leq \mu \leq m$. Diese Matrix ist regulär, vgl. Satz 4.3.5 (Numerik I).

Im allgemeinen Fall mehrfacher Nullstellen ergibt sich die Matrix des folgenden Hermite-Interpolationsproblems:

Bestimme das Polynom p vom Grad $\leq m-1$ zu den paarweise verschiedenen Knoten $\lambda_1,\ldots,\lambda_r\in\mathbb{C}$, das die Bedingungen

$$p^{(
u)}(\lambda_{\mu}) = c_{\mu}^{(
u)} \in \mathbb{C}, \qquad 1 \leq \mu \leq r, \quad 0 \leq \nu \leq s_{\mu},$$

erfüllt. Hierbei ist $\sum_{\mu=1}^{r} s_{\mu} = m$.

Die zur Basis der Monome gebildete Matrix ist

$$A = \begin{bmatrix} 1 & \cdots & \lambda_1^{s_1-1} & \cdots & \cdots & \lambda_1^{m-1} \\ \vdots & & & & & \vdots \\ 0 & \cdots & (s_1-1)! & \cdots & \cdots & \frac{(m-1)!}{(m-s_1)!} \lambda_1^{m-s_1} \\ \vdots & & & & & \vdots \\ \vdots & & & & & \vdots \\ 1 & \cdots & \cdots & \lambda_r^{s_r-1} & \cdots & \lambda_r^{m-1} \\ \vdots & & & & & \vdots \\ 0 & \cdots & \cdots & (s_r-1)! & \cdots & \frac{(m-1)!}{(m-s_r)!} \lambda_r^{m-s_r} \end{bmatrix}.$$

Sie ist regulär, siehe 4.3.13.

Die allgemeine Lösung ist Linearkombination der Fundamentallösungen:

Sei $(y_k)_{k\geq 0}$ eine Lösung der homogenen Differenzengleichung. Wir nennen die Fundamentallösungen der Einfachheit halber $(\xi_k^{(\mu)})_{k>0}$ mit $1\leq \mu\leq m$.

Weil die Anfangsstücke dieser Folgen eine Basis des \mathbb{C}^m bilden, gibt es eindeutig bestimmte Koeffizienten $c_1,\ldots,c_m\in\mathbb{C}$ mit

$$y_k = \sum_{\mu=1}^m c_\mu \xi_k^{(\mu)}, \qquad 0 \le k \le m-1.$$
 (**)

Wegen $\alpha_m = 1$ lässt sich die Differenzengleichung in der Form

$$y_{k+m} = -\sum_{j=0}^{m-1} \alpha_j y_{k+j}, \qquad k \in \mathbb{N}_0,$$

schreiben. Insbesondere erfüllt jede Fundamentallösung

$$\xi_{k+m}^{(\mu)} = -\sum_{i=0}^{m-1} \alpha_j \xi_{k+j}^{(\mu)}, \qquad k \in \mathbb{N}_0.$$

Aufgrund der Linearität überträgt sich mittels vollständiger Induktion die Beziehung (**) auch auf jedes $k \geq m$. \square

11.18 Bemerkung:

(i) Die Koeffizienten c_{μ} der einzelnen Fundamentallösungen sind durch die Angabe von Anfangswerten y_0,\dots,y_{m-1} eindeutig bestimmt; hierzu ist ein lineares Gleichungssystem mit der Transponierten der reguären Matrix A im Beweis zu lösen.

Beispiel: Die homogene Differenzengleichung

$$y_{k+2} + 4y_{k+1} - 5y_k = 0$$

in Beispiel 11.16 hat das charakteristische Polynom $\rho(z)=z^2+4z-5$ mit den einfachen Nullstellen $\lambda_1=-5,\ \lambda_2=1.$ Die allgemeine Lösung der homogenen Differenzengleichung lautet also

$$y_k = c_1(-5)^k + c_2, \qquad k \in \mathbb{N}_0,$$

mit Koeffizienten $c_1,c_2\in\mathbb{C}$. Zu den Anfangswerten $y_0=\delta$, $y_1=\epsilon$ ist

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -5 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \delta \\ \epsilon \end{bmatrix} = \frac{1}{6} \begin{bmatrix} \delta - \epsilon \\ 5\delta + \epsilon \end{bmatrix}.$$

(ii) Die inhomogene Differenzengleichung

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = \gamma_{k}, \quad k = 0, 1, \dots \qquad (\alpha_{m} = 1, \ \gamma_{k} \in \mathbb{C})$$

besitzt bei vorgegebenen Startwerten $y_0, y_1, \ldots, y_{m-1}$ eine eindeutige Lösung $(y_k)_{k \geq 0}$. Diese erhält man als *Superposition*

$$y_k = \widehat{y}_k + \widetilde{y}_k, \quad k = 0, 1, \dots,$$

wobei $(\widehat{y}_k)_{k\geq 0}$ eine spezielle Lösung der inhomogenen Differenzengleichung (mit beliebigen Startwerten $\widehat{y}_0,\ldots,\widehat{y}_{m-1}$) ist und $(\widetilde{y}_k)_{k\geq 0}$ die eindeutige Lösung der homogenen Differenzengleichung mit den Startwerten

$$\tilde{y}_\ell = y_\ell - \widehat{y}_\ell, \quad 0 \le \ell \le m-1,$$

ist.

Zur weiteren Untersuchung von Mehrschrittverfahren werden zwei charakteristische Polynome eingeführt.

11.19 Definition

Zu einem *m*-Schritt Verfahren

$$\sum_{i=0}^{m} \alpha_{j} y_{k+j} = h \sum_{i=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

mit $\alpha_m = 1$ definieren wir

- (i) das erste charakteristische Polynom $\rho(z) := \sum_{i=0}^{m} \alpha_j z^i$,
- (ii) das zweite charakteristische Polynom $\sigma(z) := \sum_{i=0}^{m} \beta_j z^i$.

11.20 Folgerung

Das Mehrschrittverfahren ist genau dann konsistent, wenn $\rho(1)=0$ und $\rho'(1)=\sigma(1)$ gilt.

Im Beispiel 11.16 sieht man, dass kleine Störungen der Anfangswerte "explodieren", wenn die Differenzengleichung unbeschränkte Fundamentallösungen besitzt. Wir wollen nun einen entsprechenden Stabilitätsbegriff einführen.

11.21 Definition: Null-Stabilität

Das lineare Mehrschrittverfahren heißt *Null-stabil*, wenn alle Fundamentallösungen der homogenen Differenzengleichung $\sum_{j=0}^{m} \alpha_j y_{k+j} = 0$, $k \ge 0$, beschränkte Folgen sind.

Als direkte Folgerung von Satz 11.17 ergibt sich die folgende Charakterisierung.

11.22 Satz: Wurzelbedingung

Das Mehrschrittverfahren ist genau dann Null-stabil, wenn keine Nullstelle des ersten charakteristischen Polynoms ρ einen Betrag größer als 1 hat und wenn alle Nullstellen vom Betrag 1 einfach sind.

Für die bereits vorgestellten Verfahren erhalten wir:

11.23 Korollar:

Die Adams-Bashforth, Adams-Moulton, Nyström und Milne-Simpson Verfahren sind Null-stabil. Die BDF-Verfahren sind Null-stabil nur für $1 \le m \le 6$.

Beweis:

- Für die m-Schritt Verfahren von Adams ist $\rho(z)=z^{m-1}(z-1)$, also $\lambda_1=0$ eine Nullstelle der Vielfachheit m-1 und $\lambda_2=1$ eine einfache Nullstelle.
- Für die Nyström und Milne-Simpson Verfahren ist $\rho(z)=z^{m-2}(z^2-1)$, also $\lambda_1=0$ eine Nullstelle der Vielfachheit m-2 und $\lambda_{2,3}=\pm 1$ jeweils einfache Nullstellen.

▶ Die BDF-Verfahren für $m \le 6$ erfüllen die Wurzelbedingung. Jedoch ist für jedes m > 6 die Wurzelbedingung verletzt. Die untenstehenden Grafiken zeigen die Nullstellen für $2 \le m \le 7$ (links) und $8 \le m \le 13$ (rechts). Für jedes $m \in \mathbb{N}$ ist z = 1 einfache Nullstelle, sie ist in beiden Grafiken nicht eingezeichnet.

Wurzeln für BDF mit m=2 (blau), 3 (cyan), 4 (magenta), 5 (rot), 6 (grün), 7 (gelb).

Wurzeln für BDF mit m=8 (blau), 9 (cyan), 10 (magenta), 11 (rot), 12 (grün), 13 (gelb)

Der Konvergenzbegriff wird wie bei den Einschrittverfahren definiert. Wir verwenden wieder die Bezeichnungen $y_k^{(h)}$, $h_{n,x}=\frac{x-x_0}{n}$, und definieren den globalen Diskretisierungsfehler

$$E_n(x) := y(x) - y_n^{(h_{n,x})}.$$

11.24 Definition: Konvergenz, Konvergenzordnung

Ein m-Schrittverfahren heißt konvergent in einem Rechteck $I \times G$, wenn für alle Anfangswertaufgaben

$$y' = f(x, y), \quad y(x_0) = y_0 \quad \text{mit } x_0 \in I,$$

mit $f \in C^1(I \times G)$, deren Lösung $y:I \to \mathbb{R}$ global existiert, aus der Bedingung

$$\lim_{n\to\infty}y_k^{(h_{n,x})}=y_0\quad\text{für}\quad 0\leq j\leq m-1$$

die Konvergenz des globalen Diskretisierungsfehlers

$$\lim_{n\to\infty} E_n(x) = 0$$

für alle $x \in I$ folgt.

Das Verfahren hat die Konvergenzordnung $p \in \mathbb{N}$, wenn für $f \in C^p(I \times G)$ aus der Bedingung

$$y(x_0 + kh_{n,x}) - y_k^{(h_{n,x})} = \mathcal{O}(|h_{n,x}|^p)$$

für $n \to \infty$ auch

$$E_n(x) = y(x) - y_n^{(h_{n,x})} = \mathcal{O}(|h_{n,x}|^p)$$

für alle $x \in I$ folgt.

Ziel dieses Abschnittes ist es, die folgende Äquivalenz zu zeigen, die als Konvergenzsatz von Dahlquist (1956) bekannt ist.

11.25 Konvergenzsatz von Dahlquist

Ein lineares *m*-Schritt Verfahren ist genau dann konvergent, wenn es konsistent und Null-stabil ist.

Der Beweis wird in drei Teilen erbracht.

1. Schritt: Konvergenz ⇒ Null-Stabilität

Betrachte die AWA

$$y'=0, \qquad y(x_0)=0,$$

mit der eindeutigen Lösung $y \equiv 0$. Das m-Schritt Verfahren lautet

$$y_{k+m}^{(h)} + \sum_{j=0}^{m-1} \alpha_j y_{k+j}^{(h)} = 0, \quad k = 0, 1, \dots$$
 (11.25a)

Dies ist eine homogene lineare Differenzengleichung.

Es sei $\lambda \in \mathbb{C}$ eine Nullstelle von ρ der Vielfachheit s. Als Startwerte wählen wir ein Vielfaches des Anfangsstücks der Fundamentallösung $y^{(s)}$ in Satz 11.17, also

$$y_k^{(h)} := \sqrt{|h|} \frac{k!}{(k-s+1)!} \lambda^{k-s+1}, \tag{11.25b}$$

für $0 \le k \le m-1$ (mit $y_k^{(h)} = 0$ für k < s-1). Bei festem $x > x_0$ und für $n \to \infty$ konvergiert $h = h_{n,x}$ gegen Null, also sind diese Werte konsistent mit dem Anfangswert $y(x_0) = 0$. Aus der Differenzengleichung (11.25a) erhalten wir (11.25b) für alle $k \in \mathbb{N}_0$. Dies ergibt

$$|E_n(x)| = \sqrt{\frac{x - x_0}{n}} \frac{n!}{(n - s + 1)!} \lambda^{n - s + 1}.$$

Diese Folge ist unbeschränkt in den beiden Fällen

- $|\lambda| > 1$ und s > 1,
- $|\lambda| = 1$ und s > 2.

Also ist in diesen Fällen das Verfahren nicht konvergent, was zu zeigen war.

2. Schritt: Konvergenz ⇒ Konsistenz

Wir zeigen die beiden Beziehungen $\rho(1) = 0$ und $\rho'(1) = \sigma(1)$.

 $\rho(1) = 0$: Betrachte nun die AWA

$$y'=0, \quad y(x_0)=1,$$

mit der eindeutigen Lösung $y\equiv 1$. Das m-Schritt Verfahren lautet wieder wie die homogene lineare Differenzengleichung (11.25a). Wir wählen die (exakten) Startwerte $y_k^{(h)}:=1$, $0\leq k\leq m-1$. Da die Startwerte unabhängig von der Schrittweite h sind, sind alle Folgenglieder $(y_k)_{k\geq 0}:=(y_k^{(h)})_{k\geq 0}$, die mit (11.25a) berechnet werden, ebenfalls unabhängig von h. Falls das m-Schritt Verfahren konvergent ist, ergibt sich bei beliebiger Vorgabe von $x\neq x_0$ hieraus

$$\lim_{n\to\infty} y_n = \lim_{n\to\infty} y_n^{(h_{n,x})} = y(x) = 1.$$

Setzen wir den Grenzwert in die Differenzengleichung (11.25a) ein, erhalten wir

$$0 = \lim_{k \to \infty} \left(y_{k+m} + \sum_{j=0}^{m-1} \alpha_j y_{k+j} \right) = 1 + \sum_{j=0}^{m-1} \alpha_j.$$

Damit gilt $\rho(1)=0$. Man beachte, dass $\rho'(1)\neq 0$ gelten muss, weil aus der Konvergenz ja die Null-Stabilität folgt, wie vorher gezeigt.

 $\rho'(1) = \sigma(1)$: Wir betrachten nun die AWA

$$y'=1, y(x_0)=0,$$

mit der eindeutigen Lösung $y(x) = (x - x_0)$. Das *m*-Schritt Verfahren lautet nun

$$y_{k+m}^{(h)} + \sum_{i=0}^{m-1} \alpha_j y_{k+j}^{(h)} = h \sum_{i=0}^m \beta_j, \quad k = 0, 1, \dots$$
 (11.25c)

Dies ist eine inhomogene lineare Differenzengleichung mit der konstanten rechten Seite $h\sigma(1)$. Wir setzen $\gamma:=\frac{\sigma(1)}{\rho'(1)}$ (beachte $\rho'(1)\neq 0$ wie oben) und wählen die Startwerte $y_k^{(h)}:=h\gamma k,\ 0\leq k\leq m-1.$ Diese sind mit dem Anfangswert $y(x_0)=0$ konsistent. Die eindeutige Lösung der Differenzengleichung (11.25c) zu diesen Startwerten ist

$$y_k^{(h)} = h\gamma k$$
 für alle $k \ge 0$,

wie wir durch Einsetzen in die Differenzengleichung leicht überprüfen: Verwendung der Gleichung $\rho(1)=0$ und der Definition von γ ergibt

$$h\gamma(k+m) + \sum_{j=0}^{m-1} \alpha_j h\gamma(k+j) = \underbrace{\rho(1)h\gamma k}_{=0} + h\gamma m + \sum_{j=0}^{m-1} \alpha_j h\gamma j = h\gamma \rho'(1) = h\sigma(1).$$

Andererseits folgt aus der Konvergenz des Verfahrens

$$x - x_0 = \lim_{n \to \infty} y_n^{(h_{n,x})} = \lim_{n \to \infty} \frac{x - x_0}{n} \gamma n = (x - x_0) \gamma.$$

Also erhalten wir $\gamma=1$, was der Behauptung $\rho'(1)=\sigma(1)$ entspricht.

Der 3. Schritt: Konsistenz+Null-Stabilität \Longrightarrow Konvergenz wird unter Einbeziehung der Konvergenzordnung neu formuliert.

Satz 11.26

Ist das m-Schritt Verfahren konsistent und Null-stabil, so ist es auch konvergent. Ist seine Konsistenzordnung $p \in \mathbb{N}$, so ist auch die Konvergenzordnung p.

Beweis: Schritt 3a. Wir betrachten eine feste AWA

$$y'=f(x,y), \quad y(x_0)=y_0$$

sowie ein Null-stabiles m-Schritt Verfahren der Konsistenzordnung p,

$$y_{k+m} + \sum_{j=0}^{m-1} \alpha_j y_{k+j} = h \sum_{j=0}^{m} \beta_j f_{k+j}$$

(mit $\alpha_m=1$). Die Schrittweite h und die Startwerte $y_0^{(h)},\ldots,y_{m-1}^{(h)}$ seien gegeben. (Wir lassen von nun an den oberen Index (h) weg.) Für die globalen Diskretisierungsfehler

$$E_k := y(x_k) - y_k, \quad k = m, m + 1, ...$$

leiten wir zunächst eine Rekursion her. Verwendung des lokalen Diskretisierungsfehlers $r(x_k,y(x_k),h)$ aus Definition 11.10 einerseits und Umstellen der Differenzengleichung andererseits ergibt

$$hr(x_{k}, y(x_{k}), h) = \sum_{j=0}^{m} \alpha_{j} y(x_{k+j}) - h \sum_{j=0}^{m} \beta_{j} f(x_{k+j}, y(x_{k+j})),$$

$$0 = \sum_{j=0}^{m} \alpha_{j} y_{k+j} - h \sum_{j=0}^{m} \beta_{j} f(x_{k+j}, y_{k+j}).$$

Subtraktion beider Gleichungen führt auf

$$hr(x_k, y(x_k), h) = \sum_{i=0}^m \alpha_i E_{k+j} - h \sum_{i=0}^m \beta_j \left[f(x_{k+j}, y(x_{k+j})) - f(x_{k+j}, y_{k+j}) \right].$$

Wegen $\alpha_m=1$ können wir diese Gleichung mit Hilfe einer "Übergangsmatrix" schreiben als

$$\begin{bmatrix} E_{k+1} \\ E_{k+2} \\ \vdots \\ E_{k+m-1} \\ E_{k+m} \end{bmatrix} = B_{\rho} \begin{bmatrix} E_{k} \\ E_{k+1} \\ \vdots \\ E_{k+m-2} \\ E_{k+m-1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h\gamma_{k} \end{bmatrix}, \qquad (11.25d)$$

wobei wir

$$B_{
ho} := \left[egin{array}{ccccc} 0 & 1 & 0 & \cdot & 0 \ 0 & 0 & 1 & & 0 \ dots & \ddots & \ddots & dots \ 0 & \cdots & \cdots & 0 & 1 \ -lpha_0 & -lpha_1 & \cdots & \cdots & -lpha_{m-1} \ \end{array}
ight]$$

und

$$\gamma_k := \sum_{i=0}^m \beta_j \left[f(x_{k+j}, y(x_{k+j})) - f(x_{k+j}, y_{k+j}) \right] + r(x_k, y(x_k), h)$$

setzen.

Schritt 3.b Die Matrix B_{ρ} ist die Frobenius-Begleitmatrix von ρ (man beachte wieder $\alpha_m=1$). Entwicklung der Determinante nach der letzten Zeile ergibt nämlich

$$\det(zI - B_{\rho}) = \sum_{j=0}^{m-2} \alpha_j z^j + (z + \alpha_{m-1}) z^{m-1} = \rho(z).$$

Nach der Voraussetzung der Null-Stabilität gilt also für jeden Eigenwert λ von $B_{
ho}$

$$|\lambda| < 1$$
 oder $(|\lambda| = 1 \text{ und } \lambda \text{ ist einfacher Eigenwert von } A)$.

Außerdem ist $\rho(1)=0$, also ist der Spektralradius von B_{ρ} genau 1. Mit einer leichten Verschärfung von Hilfssatz 8.1.8 folgern wir, dass dann eine Vektornorm $\|\cdot\|$ auf \mathbb{C}^m und eine zugehörige (Operator-)Norm $\||\cdot\||$ auf $\mathbb{C}^{m\times m}$ existieren mit

$$\||B_{
ho}\||=1=\inf\{p(B_{
ho});\; p\; \mathsf{nat}$$
ürliche Matrixnorm $\}.$

D.h. das Infimum aus Hilfssatz 8.1.8 wird unter der Zusatzannahme einfacher Eigenwerte vom Betrag ${\rm spr}(B_\rho)$ angenommen.

Schritt 3.c Mit dem Vektor $\vec{E}_k := [E_k, E_{k+1}, \dots, E_{k+m-1}]^T$ lautet die Übergangs-Relation (11.25d)

$$\vec{E}_{k+1} = B_{\rho}\vec{E}_k + h\gamma_k [0, 0, \dots, 0, 1]^T$$
.

Mit der soeben eingeführten Vektor- und Matrixnorm gilt dann

$$||E_{k+1}|| \le ||E_k|| + h|\gamma_k|c, \quad c := ||[0,0,\ldots,0,1]^T||.$$
 (11.25e)

Wir wollen das diskrete Gronwall-Lemma anwenden. Dazu müssen wir die Abhängigkeit von k beim zweiten Term der rechten Seite aufheben. Bezeichne L wieder die Lipschitz-Konstante von f. Die Definition von γ_k ergibt

$$|\gamma_k| \leq L \sum_{i=0}^m |\beta_j| |E_{k+j}| + |r(x_k, y(x_k), h)|.$$

Setzen wir noch $\beta := \max_{0 \le j \le m} |\beta_j|$, ergibt sich

$$|\gamma_k| \le L\beta \sum_{i=0}^m |E_{k+j}| + |r(x_k, y(x_k), h)|.$$

Wir wollen hier die Summe durch Anteile der Form $K \| \vec{E}_k \|$ bzw. $K \| \vec{E}_{k+1} \|$ in der konstruierten Vektornorm abschätzen. Dazu verwenden wir, dass auf \mathbb{C}^m alle Normen äquivalent sind, also eine Konstante K > 0 existiert mit

$$\sum_{i=0}^{m-1} |E_{k+j}| \le K \|\vec{E}_k\|, \quad \sum_{i=1}^m |E_{k+j}| \le K \|\vec{E}_{k+1}\|.$$

Hieraus folgt $\sum_{i=0}^m |E_{k+j}| \le K \|\vec{E}_k\| + K \|\vec{E}_{k+1}\|$, und aus (11.25e) wird die Abschätzung

$$\underbrace{(1 - hcKL\beta)}_{=:(1 - h\mu)} \|\vec{E}_{k+1}\| \leq \underbrace{(1 + hcKL\beta)}_{=:(1 + h\mu)} \|\vec{E}_{k}\| + hc|r(x_{k}, y(x_{k}), h)|.$$

Wird die Schrittweite h > 0 klein genug gewählt, so ist $1 - h\mu > 0$, und wir erhalten

nach Division
$$\|\vec{E}_{k+1}\| \leq \frac{1+h\mu}{1-h\mu} \|\vec{E}_k\| + \frac{hc}{1-h\mu} |r(x_k,y(x_k),h)|.$$

Schritt 3.d Das diskrete Gronwall-Lemma führt nun zum Abschluss des Beweises: Sei $f \in C^p(I \times G)$ und $y \in C^{p+1}(I)$ globale Lösung. Falls das Verfahren die Konsistenzordnung p besitzt, so gilt

$$\frac{hc}{1-hu}|r(x_k,y(x_k),h)|=\mathcal{O}(h^{p+1}),\quad h\to 0.$$

Wir setzen noch

$$\frac{1+h\mu}{1-h\mu}=:1+\delta(h)$$

und beachten, dass $\delta(h)=\mathcal{O}(h)$ für $h\to 0$ gilt. Für festes h liefert das Gronwall-Lemma 9.43 die Abschätzung

$$\|\vec{E}_k\| \leq \underbrace{e^{k\delta(h)}}_{\leq M_1 \text{ für } h \to 0} \|\vec{E}_0\| + \underbrace{\frac{(e^{k\delta(h)} - 1)h}{\delta(h)}}_{\leq M_2 \text{ für } h \to 0} \mathcal{O}(h^p), \quad h \to 0.$$

Wenn nun die Startwerte die Konsistenzbedingung in Definition 11.24 erfüllen, so ist durch die Normäquivalenz auch $\|\vec{E}_0\| = \mathcal{O}(h^p)$ für $h \to 0$. Damit folgt schließlich und endlich die Aussage von Satz 11.26.

11.27 Korollar

- ▶ Die expliziten *m*-Schritt Adams-Bashforth ($m \ge 1$) und Nyström-Verfahren $(m \ge 2)$ haben die Konvergenzordnung m.
- ▶ Die impliziten Adams-Moulton ($m \ge 1$) und Milne-Simpson-Verfahren ($m \ge 3$) haben die Konvergenzordnung
- m+1, das Milne-Simpson-Verfahren mit m=2 sogar die Konvergenzordnung 4.
- ▶ Die impliziten BDF-Verfahren mit m < 6 haben die Konvergenzordnung m.

11.28 Bemerkung:

(a) Der Beweis des Satzes 11.26 gibt sogar die a-priori Fehlerabschätzung

$$|y(x_n)-y_n| \leq K e^{\Gamma(x_n-x_0)} \left(\|E_0\|_\infty + (x_n-x_0) \max_k |r(x_k,y(x_k),h)| \right),$$

wobei die Konstanten K und Γ nur von der Lipschitz-Konstanten L von f sowie den Koeffizienten α_i , β_i abhängen.

(b) Dahlquist (Convergene and stability in the numerical integration of ordinary differential equations, Math. Scand. 4 (1956) 33-53) hat gezeigt, dass die maximal erreichbare Konsistenzordnung von Null-stabilen m-Schritt-Verfahren gegeben ist durch m+1, falls m ungerade, und m+2, falls m gerade ist. Demnach sind die impliziten Verfahren von Adams-Moulton und Milne-Simpson mit <u>ungeradem</u> m optimal. Weiterhin ist die Simpson Regel (m=2) optimal.

Mit ganz ähnlichem Beweis wie zu Satz 11.26 lässt sich auch wieder ein Stabilitätssatz bzgl. der Störung der Startwerte sowie der rechten Seite f zeigen.

11.29 Störungssatz:

Die Folge $(y_k)_{k\geq 0}$ sei Lösung der Differenzengleichung

$$\sum_{i=0}^m \alpha_j y_{k+j} = h \sum_{i=0}^m \beta_j f_{k+j}, \qquad k \ge 0,$$

zu den Anfangswerten y_0,\ldots,y_{m-1} . Weiter sei die Folge $(\tilde{y}_k)_{k\geq 0}$ Lösung der Differenzengleichung

$$\sum_{i=0}^{m} \alpha_j \tilde{\mathbf{y}}_{k+j} = h \sum_{i=0}^{m} \beta_j \tilde{\mathbf{f}}_{k+j}, \qquad k \ge 0,$$

zu gestörten Anfangswerten $\tilde{y}_k = y_k + \delta_k$, $0 \le k \le m-1$, und zur gestörten rechten Seite $\tilde{f}_i = f(x_i, \tilde{y}_i) + \epsilon_i$. Dann gilt

$$|\tilde{y}_n - y_n| \le Ke^{\Gamma(x_n - x_0)} \left(\max_{0 \le i \le m-1} |\delta_i| + \sum_{i=0}^{n-m} |\epsilon_i| \right).$$

Hierbei sind die Konstanten K und Γ bestimmt durch die Lipschitz-Konstante von f und die Koeffizienten α_j , β_j .

Nachtrag zum Beweis von Satz 11.26:

11.30 Lemma:

Für jede Matrix $A \in \mathbb{R}^{n \times n}$ gilt nach Lemma 8.1.8

$$\operatorname{spr}(A) = \inf\{\||A\|| : \||\cdot\|| \text{ ist eine natürliche Matrixnorm }\}.$$

Falls darüberhinaus für jeden Eigenwert λ von A mit $|\lambda| = \operatorname{spr}(A)$ die algebraische Vielfachheit mit seiner geometrischen Vielfachheit übereinstimmt, so wird dieses Infimum angenommen, d.h. es existiert eine natürliche Matrixnorm $\|\cdot\|$ mit

$$|||A||| = \operatorname{spr}(A).$$

Beweis: Genau wie in 8.1.8 wird eine entsprechende Matrixnorm konstruiert. Hierbei wird ausgenutzt, dass die Blöcke der Jordan-Normalform von A, die zu den betragsgrößten Eigenwerten gehören, Diagonalgestalt haben. \Box

11.31 Erweiterung auf sog. A-Verfahren

Die im Beweis von Satz 11.26 verwendete Iteration mit der Ubergangsmatrix B_{ρ} (=Frobenius-Begleitmatrix des Polynoms ρ) lässt sofort eine Verallgemeinerung zu: mit einer "allgemeinen" Matrix $A \in \mathbb{C}^{m \times m}$ definieren wir das vektor-wertige Verfahren

$$Z_{k+1} = AZ_k + h\Phi_k$$

mit Vektoren $Z_k \in \mathbb{R}^m$, $k \geq 0$, die in irgendeiner Weise den Bezug zur Lösung der Differentialgleichung in der Nähe von x_k beinhalten, also z.B.

- ▶ ein "Päckchen" von Werten der Lösung $Z_k = [y_k, y_{k+1}, \dots, y_{k+m-1}]^T$ wie in 11.26,
- ▶ Werte der Lösung und ihrer Ableitungen $Z_k = [y_k, hy'_k, \dots, \frac{h^{m-1}}{(m-1)!}y_k^{(m-1)}].$

Zur Verträglichkeit beider Seiten setzen wir voraus, dass beim Auftreten der exakt gleichen Komponente, z.B. $y_{(k+1)+j}$ auf der linken und $y_{k+(j+1)}$ auf der rechten Seite, eine triviale Gleichung wie etwa bei der ersten Zeile der Frobenius-Begleitmatrix vorliegt.

Der Vektor $\Phi_k = \Phi_k(x_k, Z_k, Z_{k+1}, h)$ übernimmt die Rolle einer Zuwachsfunktion.

Viele Untersuchungen zu linearen Mehrschrittverfahren lassen sich auf diese allgemeineren A-Verfahren ausdehnen.

11.32 Beispiel: Zu $Z_k = [y_{2k}, y_{2k+1}, y_{2k+2}]^T$ (hier also verbunden mit der Stelle x_{2k} anstatt x_k) setzen wir

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \gamma_2 & 1 \end{array} \right] Z_{k+1} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 \\ 0 & -\gamma_0 & -\gamma_1 \end{array} \right] Z_k + h \left[\begin{array}{ccc} 0 \\ \beta_0 f_{2k} + \beta_1 f_{2k+1} + \beta_2 f_{2k+2} + \beta_3 f_{2k+3} \\ \delta_0 f_{2k+1} + \delta_1 f_{2k+2} + \delta_2 f_{2k+3} + \delta_3 f_{2k+4} \end{array} \right].$$

Dies lässt sich sofort in die Form eines A-Verfahrens bringen. Die erste Zeile ist nur die Verträglichkeitsbedingung zwischen Z_k und Z_{k+1} . Die 2. und 3. Zeile beschreiben die abwechselnde Ausführung der beiden 3-Schritt-Verfahren

$$\begin{cases} y_{2k+3} + \alpha_2 y_{2k+2} + \alpha_1 y_{2k+1} + \alpha_0 y_{2k} &= h(\beta_0 f_{2k} + \beta_1 f_{2k+1} + \beta_2 f_{2k+2} + \beta_3 f_{2k+3}) \\ y_{2k+4} + \gamma_2 y_{2k+3} + \gamma_1 y_{2k+2} + \gamma_0 y_{2k+1} &= h(\delta_0 f_{2k+1} + \delta_1 f_{2k+2} + \delta_2 f_{2k+3} + \delta_3 f_{2k+4}). \end{cases}$$

Diesen zyklischen Wechsel zwischen verschiedenen Mehrschrittverfahren nennt man *lineare zyklische Verfahren*. Die Analyse von A-Verfahren liefert also auch Ergebnisse für solche verallgemeinerten Mehrschrittverfahren.

11.33 Beispiel: Das allgemeine *R*-stufige Runge-Kutta-Verfahren (Abschnitt 9.5) kann auch als lineares *A*-Verfahren geschrieben werden:

$$\begin{bmatrix} y_{k+1+a_1} \\ y_{k+1+a_2} \\ \vdots \\ y_{k+1+a_R} \\ y_{k+2} \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 1 \\ \vdots & & \vdots & \vdots \\ 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{k+a_1} \\ y_{k+a_2} \\ \vdots \\ y_{k+a_R} \\ y_{k+1} \end{bmatrix} + h \begin{bmatrix} \sum_{j=1}^R b_{1j} f(x_{k+1} + a_j h, y_{k+1+a_j}) \\ \sum_{j=1}^R b_{2j} f(x_{k+1} + a_j h, y_{k+1+a_j}) \\ \vdots \\ \sum_{j=1}^R b_{Rj} f(x_{k+1} + a_j h, y_{k+1+a_j}) \\ \sum_{j=1}^R c_j f(x_{k+1} + a_j h, y_{k+1+a_j}) \end{bmatrix}.$$

Diese Darstellung dient zur Untersuchung der Konsistenzordnung von Runge-Kutta Verfahren und zur Herleitung linearer Bedingungen an die Koeffizienten a_i , b_{ij} und c_i , vgl. die Bemerkung am Ende von Abschnitt 9.4.

Man beachte: diese Beschreibung ist selbst dann implizit, wenn das Runge-Kutta Verfahren explizit ist.

Die Stabilität der A-Verfahren wird durch eine entsprechende Bedingung gesichert.

11.34 Definition: Null-Stabilität von A-Verfahren

Das A-Verfahren heißt Null-stabil, wenn A die folgende Wurzelbedingung erfüllt: A besitzt keine Eigenwerte vom Betrag größer als Eins und für alle Eigenwerte von A vom Betrag 1 stimmt die algebraische Vielfachheit mit der geometrischen Vielfachheit überein.

Bemerkung: Eine Frobenius-Begleitmatrix B_{ρ} ist genau dann Null-stabil nach Definition 11.33, wenn das Polynom ρ Null-stabil nach Definition 11.21 ist.

Diese Tatsache ist nicht offensichtlich. Sie ergibt sich durch die spezielle Form der Frobenius-Begleitmatrix:

- Jeder Eigenwert λ der Frobenius-Begleitmatrix besitzt die algebraische
 Vielfachheit s, wobei s die Vielfachheit der Nullstelle λ zum Polynom ρ ist.
- Jeder Eigenwert λ der Frobenius-Begleitmatrix besitzt die geometrische Vielfachheit 1.

Die Behandlung der A-Verfahren verrät also, dass der Begriff der Null-Stabilität genau diese Eigenschaft der Frobenius-Begleitmatrix ausdrückt.

11.35 Bemerkung: Die Stabilität und Konsistenz von A-Verfahren kann wieder mit der Konvergenz in Zusammenhang gebracht werden. In der Regel ist die Konsistenzordnung eine untere Schranke für die Konvergenzordnung stabiler A-Verfahren. Jedoch kann die Konvergenzordnung auch höher sein als die Konsistenzordnung.

11.4 Absolute und A-Stabilität von Mehrschrittverfahren

Wie in Abschnitt 11.6 betrachten wir das Beispiel der monotonen und autonomen AWA

$$y'=\lambda y, \qquad y(x_0)=y_0\neq 0,$$

mit $\lambda \in \mathbb{C}$. Ihre Lösung ist $y : \mathbb{R} \to \mathbb{R}$, $y(x) = y_0 e^{\lambda(x-x_0)}$, ihr Betrag fällt im Fall $\operatorname{Re} \lambda < 0$ exponentiell gegen 0 für $x \to \infty$.

11.36 Betrachtung der numerischen Stabilität

Das lineare Mehrschrittverfahren

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = h \sum_{j=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

(mit $\alpha_m = 1$) ergibt für die obige AWA die Rekursion

$$\sum_{i=0}^{m} \alpha_{j} y_{k+j} = h\lambda \sum_{i=0}^{m} \beta_{j} y_{k+j}, \quad k = 0, 1, \dots$$

Dies lässt sich auch schreiben als eine homogene lineare Differenzengleichung

$$\sum_{i=0}^{m} (\alpha_j - h\lambda\beta_j)y_{k+j} = 0, \quad k = 0, 1, \dots$$

Die Beschränktheit der Folge (y_k) bei beliebigen Anfangswerten y_0, \ldots, y_{m-1} ist dasselbe wie die Null-Stabilität dieser neuen Differenzengleichung, also nach Satz 11.22 auch äquivalent zur Wurzelbedingung an das Polynom

$$\sum_{j=0}^{m} (\alpha_j - h\lambda\beta_j)z^j = \rho(z) - h\lambda\sigma(z).$$

11.37 Beispiel: Das 2-Schritt Adams-Bashforth-Verfahren

Lineare skalare Stabilitätsanalyse

11.38 Definition: Absolute Stabilität und A-Stabilität

a) Ein Mehrschrittverfahren heißt absolut-stabil für ein $\xi \in \mathbb{C} \setminus \{0\}$, wenn zu jeder AWA $y' = \lambda y$, $y(x_0) = y_0$ mit $\lambda \in \mathbb{C} \setminus \{0\}$ und zur Schrittweite $h \neq 0$ mit $h\lambda = \xi$ die Folge $(y_k)_{k \geq 0}$ beschränkt ist (bei beliebig gegebenen Startwerten y_0, \ldots, y_{m-1}). Die Menge

$$\mathrm{SG} := \{ \xi \in \mathbb{C} \setminus \{0\}; \text{ Verfahren ist stabil für } \xi \}$$

heißt das Stabilitätsgebiet des Mehrschrittverfahrens.

b) Ein Mehrschrittverfahren heißt *A-stabil*, wenn es für alle $\xi \in \mathbb{C} \setminus \{0\}$ mit $\operatorname{Re} \xi \leq 0$ absolut-stabil ist, d.h. wenn

$$\{\xi\in\mathbb{C}\setminus\{0\};\ \operatorname{Re}\xi\leq 0\}\subset\operatorname{SG}$$

gilt.

Als Folgerung von Satz 11.22 und der Vorüberlegung 11.36 erhalten wir die folgende Charakterisierung.

11.39 Satz:

Wie in 11.19 seien ρ und σ das 1. bzw. 2. charakteristische Polynom des Mehrschrittverfahrens. Es gilt $\xi \in \mathrm{SG}$ genau dann, wenn keine Nullstelle des $Stabilit ilde{a}tspolynoms$

$$S_{\xi}(z) := \rho(z) - \xi \sigma(z)$$

den Betrag größer als 1 hat und wenn alle Nullstellen vom Betrag 1 einfach sind, wenn also S_ξ die Wurzelbedingung 11.22 erfüllt.

11.40 Stabilitätsgebiete der Adams-Verfahren:

Das einzige A-stabile Verfahren ist die implizite Trapezregel (Adams-Moulton mit m=1). Mit wachsendem m verkleinert sich das reelle Stabilitätsintervall $\mathrm{SI}=\mathrm{SG}\cap\mathbb{R}$ sowohl bei den expliziten als auch bei den impliziten Verfahren. Eine Methode, um das Stabilitätsgebiet zu erhalten, ist die folgende:

1. Gesucht sind zunächst alle $\xi \in \mathbb{C} \setminus \{0\}$, für die die Gleichung

$$S_{\xi}(z) = \rho(z) - \xi \sigma(z) = 0 \iff T(z) := \frac{\rho(z)}{\sigma(z)} = \xi$$

keine Lösung $z\in\mathbb{C}$ mit |z|>1 besitzt (dies ist der "wesentliche Teil" der Wurzelbedingung). T ist eine rationale Funktion in \mathbb{C} .

- 1.a Hierfür zeichnen wir die Kurve aller Punkte T(z) mit |z|=1. Falls $\sigma(z)\neq 0$ für diese z, erhalten wir eine geschlossene Kurve in $\mathbb C$.
- 1.b Für kleines m (und zwar m=1,2,3 bei Adams-Bashforth und m=2,3,4,5 bei Adams-Moulton) ist SG das Innere dieser Kurve.
- 1.c Für größere m zeichnen wir mehrere Kurven T(z) mit festen Radien $|z|=r_j>1$ und streichen die Teile des Inneren, die von den neuen Kurven durchlaufen werden.
- 2. Für die Punkte ξ der Kurve in 1.a muss noch überprüft werden, ob sie einfache Nullstellen von $S_{\mathcal{E}}$ sind. Für eine mehrfache Nullstelle ist (im Fall $\sigma'(z) \neq 0$)

$$S'_{\xi}(z) = 0 \Leftrightarrow \frac{\rho'(z)}{\sigma'(z)} = \frac{\rho(z)}{\sigma(z)} = \xi \Leftrightarrow \rho'(z)\sigma(z) - \rho(z)\sigma'(z) = 0 \Leftrightarrow T'(z) = 0.$$

Der Punkt $\xi = T(z)$ mit |z| = 1 gehört also zu SG, falls $T'(z) \neq 0$ gilt.

Stabilitätsgebiete der Adams-Bashforth-Verfahren für m=1 (hellgrün) und m=2,3 (dunkler schattiert)

Stabilitätsgebiete der Adams-Moulton-Verfahren für m=2 (hellgrün) und m=2,3,4,5 (dunkler schattiert). Für m=1 ist SG die linke Halbebene, siehe 9.58(ii).

11.41 Stabilitätsgebiete der Nyström-Verfahren:

Bei den Nyström- und Milne-Simpson Verfahren enthält das Stabilitätsgebiet nur Punkte der imaginären Achse. Diese Verfahren sind also für steife AWA'n ungeeignet.

Beispiel: Die Mittelpunktregel (Nyström mit m = 2) ergibt

$$S_{\xi}(z)=z^2-1-2\xi z$$

mit 2 komplexen Nullstellen $z_{1,2}$. Wegen $z_1z_2=-1$ ist in der Regel eine der Nullstellen vom Betrag größer als 1, ausgenommen beide Nullstellen haben den Betrag 1 und erfüllen $z_1=-\overline{z_2}$. Dies sind doppelte Nullstellen im Fall $z_1=z_2=\pm i$. Einfache Nullstellen $z_1=e^{i\phi}$, $z_2=-e^{-i\phi}$ vom Betrag 1 ergeben den Wert $\xi=\frac{z_1+z_2}{2}=i\sin\phi$, also ist

$$SG = \{ it \mid t \in (-1,1) \}.$$

11.42 Stabilitätsgebiete der BDF-Verfahren:

Das implizite Euler-Verfahren (m=1) ist A-stabil. Die BDF-Verfahren mit $2 \le m \le 6$ sind zwar nicht A-stabil, ihr Stabilitätsgebiet enthält aber das Intervall $(-\infty,0)$, d.h. für reelle λ in der Modellgleichung gibt es keine Beschränkung der Schrittweite.

Mit Hilfe der Methode in 11.40 zeichnen wir jeweils das **Komplement** von SG in den Fällen $1 \le m \le 6$ (von innen nach außen).

11.5 Praktische Aspekte

In diesem Abschnitt sollen vier der wichtigsten Gesichtspunkte der praktischen Durchführung von Mehrschrittverfahren behandelt werden.

- 11.4.1 Berechnung der Startwerte
- 11.4.2 Lösung der impliziten Gleichungen
- 11.4.3 Prädiktor-Korrektor-Methode
- 11.4.4 Automatische Schrittweitensteuerung
- 11.4.5 Schrittweitenwechsel und Nordsieck-Formeln

11.5.1 Berechnung der Startwerte

Gegeben sei ein Mehrschrittverfahren

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = h \sum_{j=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

(mit $\alpha_m=1$) der Konvergenzordnung $p\in\mathbb{N}$. Um die Differenzengleichung rekursiv zur Berechnung von y_{k+m} , $k\geq 0$, anwenden zu können, müssen die Startwerte $y_0^{(h)},\ldots,y_{m-1}^{(h)}$ vorausberechnet werden. Hierzu verwendet man in der Regel eines der Einschrittverfahren aus Kapitel 9.

- Damit die Startwerte mindestens die Genauigkeit $\mathcal{O}(|h|^p)$ erzielen, genügt es, ein Einschrittverfahren der Konsistenzordnung p-1 zu benutzen. (Beachte: der "globale" Fehler für die ersten m-1 Schritte zur Schrittweite h ist nach dem Gronwall-Lemma beschränkt durch $c_1\|y(x_0)-y_0\|+c_2|h|^{p+1}$, wenn der lokale Diskretisierungsfehler des Einschrittverfahrens die Ordnung $\mathcal{O}(|h|^p)$ besitzt.)
- Dennoch wird man zur Sicherstellung höherer Genauigkeit der Startwerte ein Einschrittverfahren der Konsistenzordnung $\tilde{p} \geq p$ verwenden. Für die Adams-Bashforth und Adams-Moulton Verfahren der Ordnung 4 wird häufig das klassische Runge-Kutta-Verfahren für die Berechnung der Startwerte herangezogen.

11.5.2 Lösung der impliziten Gleichungen

Wir betrachten nun ein implizites m-Schrittverfahren

$$\sum_{j=0}^{m} \alpha_{j} y_{k+j} = h \sum_{j=0}^{m} \beta_{j} f_{k+j}, \quad k = 0, 1, \dots$$

(mit $\alpha_m = 1$, $\beta_m \neq 0$) der Konvergenzordnung p. Beispiele sind die Adams-Moulton und die Milne-Simpson Verfahren.

Die Differenzengleichung kann in die Form einer Fixpunktgleichung

$$y_{k+m} = h\beta_m f(x_{k+m}, y_{k+m}) + \underbrace{\sum_{j=0}^{m-1} \left[h\beta_j f_{k+j} - \alpha_j y_{k+j}\right]}_{\text{order}}$$

umgeformt werden.

 Ist f Lipschitz-beschränkt mit Lipschitz-Konstante L, so folgt die Kontraktionsbedingung

$$a := h\beta_m I < 1$$

direkt aus der Wahl von $h < \frac{1}{\beta_m L}$. Unter geeigneten Voraussetzungen an den Definitionsbereich von f konvergiert die Fixpunktiteration

$$y_{k+m}^{[t+1]} = h\beta_m f(x_{k+m}, y_{k+m}^{[t]}) + r_k$$

mindestens linear gegen y_{k+m} . Es gilt die a-priori Fehlerabschätzung

$$||y_{k+m}^{[t]} - y_{k+m}|| \le q^k ||y_{k+m}^{[0]} - y_{k+m}||.$$

- lst die Konstante $L\beta_m$ moderat (nahe bei 1), so erhöht sich die Genauigkeit der Iterierten $y_{k+m}^{[t]}$ in jedem Schritt um den Faktor h der Schrittweite (wegen $q = hL\beta_m$). Führt man p+1 Iterationsschritte durch, so wird
 - $\|y_{k+m}^{[p+1]} y(x_{k+m})\| \le \|y_{k+m}^{[p+1]} y_{k+m}\| + \|y_{k+m} y(x_{k+m})\| = E_{k+m} + \mathcal{O}(h^{p+1})$
 - mit dem globalen Diskretisierungsfehler $E_{k+m} \leq C_p h^p$ des (exakten) impliziten Verfahrens. Um die Konvergenzgüte des Verfahrens nicht nennenswert zu stören, wird man also p+1 Schritte der Fixpunktiteration durchführen.

 - Natürlich kann auch auf andere Verfahren zur Lösung nichtlinearer Gleichungen zurückgegriffen werden, etwa das Newton-Verfahren. Dies ist insbesondere dann sinnvoll, wenn die Lipschitzkonstante L von f groß ist und trotzdem mit großen Schrittweiten gerechnet werden soll (z.B. bei steifen Problemen, siehe Beispiel 9.59).

11.5.3 Prädiktor-Korrektor-Methode

Eine Verbesserung der Methode in 11.4.2 wird erzielt, wenn für die a-priori-Fehlerabschätzung der Fixpunktiteration bereits ein Startwert $y_{k+m}^{[0]}$ mit

$$y_{k+m}^{[0]} - y_{k+m} = \mathcal{O}(h^{p_1})$$

und großem Exponenten p_1 gewählt wird. Dies wird mit einer expliziten Mehrschrittmethode der Konsistenzordnung p_1-1 erreicht, dem sog. "Prädiktor" (P). Die Fixpunktiteration der impliziten Mehrschrittmethode wird als "Korrektor" (C) bezeichnet. Die so entstehenden Verfahren heißen Prädiktor-Korrektor-Methoden. Bezeichnet man die Auswertung von f_{k+m} noch mit (E) (für evaluation), so lassen sich die Prädiktor-Korrektor-Methoden mit fester Schrittzahl N der Fixpunktiteration kurz als

$$P(EC)^N$$
 oder $P(EC)^N E$

angeben. Der Algorithmus der ersten Form lautet wie folgt.

11.43 Prädiktor-Korrektor-Methode $P(EC)^N$

Gegeben sei die AWA y' = f(x, y), $y(x_0) = y_0$, die Schrittweite h sowie ein explizites *m*-Schritt-Verfahren (*P*) und ein implizites

 \tilde{m} -Schritt-Verfahren (C). Aus Effizienzgründen gelte $\tilde{m} \leq m$.

- 1. Berechne y_1, \ldots, y_{m-1} mit einem Einschrittverfahren und berechne die Werte f_k , $0 \le k \le m-1$.
- 2. Für k = 0, 1, ...

Berechne

$$y_{k+m}^{[0]} := \sum_{j=0}^{m-1} \left[h \beta_j^{(P)} f_{k+j} - \alpha_j^{(P)} y_{k+j} \right]. \tag{P}$$

Für $\ell = 1, \ldots, N$ berechne

$$f_{k+m}^{[\ell-1]} := f(x_{k+m}, y_{k+m}^{[\ell-1]}),$$

$$y_{k+m}^{[\ell]} := h\beta_m^{(C)} f_{k+m}^{[\ell-1]} + \sum_{i=0}^{m-1} \left[h\beta_j^{(C)} f_{k+j} - \alpha_j^{(C)} y_{k+j} \right].$$
(C)

Setze
$$y_{k+m} := y_{k+m}^{[N]}$$
 und $f_{k+m} := f_{k+m}^{[N-1]}$.

Bei der Variante der Form $P(EC)^N E$ wird zusätzlich noch $f_{k+m} = f_{k+m}^{[N]}$ berechnet.

Durch geeignete Wahl zweier Verfahren (P) und (C) passender Konvergenzordnung kann die Anzahl N der Iterationsschritte (und der Auswertungen von f) gering gehalten werden. Die Begründung im letzten Abschnitt ergibt folgendes Resultat.

11.44 Konvergenzordnung des Prädiktor-Korrektor-Verfahrens

Mit $p^{(P)}$ und $p^{(C)}$ bezeichnen wir die Konvergenzordnungen des Prädiktors bzw. Korrektors. Dann ist die Konvergenzordnung p des Prädiktor-Korrektor-Verfahrens in der $P(EC)^N$ bzw. $P(EC)^NE$ -Form mindestens

$$p = \min\{p^{(C)}, p^{(P)} + N\}.$$

Im Fall $p^{(C)} < p^{(P)} + N$ ist die Fehlerkonstante des kombinierten Verfahrens gleich der Fehlerkonstante des Korrektors.

In der Praxis verwendet man häufig die Adams-Bashforth (P) und Adams-Moulton Verfahren (C) der gleichen Konvergenzordnung und führt nur N=1 Iterationsschritt durch. Damit schlägt die deutlich kleinere Fehlerkonstante $c_{\rho+1}$ in 11.14 der Adams-Moulton-Verfahren auf die Konvergenz durch.

Beispiel: Die Fehlerkonstante des 4-Schritt Adams-Bashforth Verfahrens ist $C_5^{(P)}=\frac{251}{720}$. Kombiniert mit dem 3-Schritt Adams-Moulton Verfahren in der Form PEC (also nur 1 Schritt des Korrektors) ergibt sich die Fehlerkonstante $C_5^{(C)}=\frac{-19}{720}$. In jedem Schritt sind nur zwei Auswertungen von f erforderlich.

11.45 Bemerkung:

- Scheinbar sind die Prädiktor-Korrektor-Verfahren (mit N = 1) den expliziten Einschrittverfahren überlegen, da pro Schritt zur Schrittweite h mit nur 2 Auswertungen von f eine "beliebig" hohe Konvergenzordnung erzielt werden kann. Die genaue Fehleranalyse zeigt jedoch, dass zur Erzielung gleicher Genauigkeit die Mehrschrittverfahren mit deutlich kleinerer Schrittweite operieren müssen als z.B. das klassische Runge-Kutta-Verfahren der Ordnung 4.
- ▶ Durch die Festlegung der Schrittzahl N ist ein $P(EC)^N$ -Verfahren explizit.
 - Seine Null-Stabilität erhält es vom Korrektor, denn im letzten Schritt der Fixpunktiteration ist

$$\sum_{j=0}^{m} \alpha_{j}^{(C)} y_{k+j} = h \sum_{j=0}^{m} \beta_{j}^{(C)} f(x_{k+j}, y_{k+j}^{[N-1]}).$$

▶ Das Stabilitätsgebiet wird wieder durch Betrachtung der AWA $y' = \lambda y$, $y(x_0) = y_0 \neq 0$, ermittelt, siehe 11.46.

11.46 Stabilitätsgebiet der Prädiktor-Korrektor-Methoden:

Wir betrachten die lineare Modellgleichung $y'=\lambda y,\ y(x_0)=y_0\neq 0$ und setzen $\xi=\lambda h.$ Das Stabilitätsgebiet der $P(EC)^N$ -Methode lässt sich mit Satz 11.34 finden, indem das Verfahren als A-Verfahren 11.31 dargestellt wird. Wir betrachten nur den Fall $m^{(P)}-1=m^{(C)}=:m$, der allgemeine Fall lässt sich durch Anpassen erzielen. Sei

$$Z_k = [y_{k-1}, y_k, \dots, y_{k+m-1}, hf_{k-1}, hf_k, \dots, hf_{k+m-1}]^T \in \mathbb{R}^{2m+2}, \qquad k \geq 1.$$

▶ Der Prädiktor (ohne die Auswertung E für f_{k+m}) liefert dann den Startvektor der Fixpunktiteration

	. У _к -]	0				0			7
$Z_{k+1}^{[0]} =$: 0		I _m		: 0		0	
	$y_{k+m}^{[0]}$		$-\alpha_0^{(P)}$			$-\alpha_{m}^{(P)}$	$\beta_0^{(P)}$			$\beta_m^{(P)}$
	hf _k	=	0				0			
	$\vdots \\ \mathit{hf}_{k+m-1}$: 0		0		: 0		I _m	
	$hf_{k+m}^{[-1]}$		0	0		0	0	0		0

 Z_k

▶ Jeder Korrektor-Schritt (EC) (mit der "nachgeholten" Auswertung von f_{k+m}) für $0 \le t \le N-1$ ist gegeben durch

$$Z_{k+1}^{[t+1]} = \begin{bmatrix} y_k \\ \vdots \\ y_{k+m-1} \\ \hline y_{k+m}^{[t+1]} \\ hf_k \\ \vdots \\ hf_{k+m-1} \\ \hline hf_{k+m}^{[t]} \end{bmatrix} = \begin{bmatrix} I_m & 0 & 0 & 0 \\ \vdots & 0 & \vdots \\ -\alpha_0^{(C)} & \cdots & -\alpha_{m-1}^{(C)} & \xi \beta_m^{(C)} & \beta_0^{(C)} & \cdots & \beta_{m-1}^{(C)} & 0 \\ \hline & 0 & 0 & 0 & 0 \\ \hline \end{bmatrix}$$

N Schritte $(EC)^N$ besitzen als Übergangsmatrix die N-te Potenz der Matrix zu (EC). Wir verwenden die Abkürzung $\beta = \beta_m^{(C)}$ und

$$\tau_N = 1 + \xi \beta + \cdots (\xi \beta)^{N-1}, \qquad \tau_0 = 0,$$

und schreiben in den wichtigen Zeilen den Index j anstatt der Aufzählung der Einträge für $0 \le j \le m-1$. Man erhält per Induktion (spaltenweise Berechnung der einzelnen Blöcke bietet sich an)

	Γ	0		0 7
	I _m	: : 0	0	: 0
$Z_{k+1}^{[N]} =$	$-\alpha_j^{(C)} \tau_N$	$(\xi \beta)^N$	$\beta_j^{(C)} au_N$	0
		0		0
	0	: 0	I _m	: 0
	$-\alpha_j^{(C)}\xi\tau_{N-1}$	$\xi(\xi\beta)^{N-1}$	$\beta_j^{(C)} \xi au_{N-1}$	0

▶ Das $P(EC)^N$ -Verfahren für die Modellgleichung $y' = \lambda y$ (mit $\xi = h\lambda$) ergibt also

Das Stabilitätspolynom dieses A-Verfahrens ist das charakteristische Polynom dieser Matrix. Wir nennen die Einträge der m+1-ten Zeile kurz $-a_j$ bzw. b_j und die der letzten Zeile $-c_j$ bzw. d_j . Dann ergibt die Entwicklung nach der (m+1)-ten Zeile

$$S_{\xi}(z) = \left(z^{m+1} + \sum_{j=0}^{m} a_j z^j\right) \left(z^{m+1} - \sum_{j=0}^{m} d_j z^j\right) + \sum_{j=0}^{m} b_j z^j \sum_{j=0}^{m} c_j z^j.$$

Setzen wir die Werte a_i etc. ein und vereinfachen, so erhalten wir

$$S_{\xi}(z) = z^{m+2} \tau_{N} \left(\rho^{(C)}(z) - \xi \sigma^{(C)}(z) \right) + z \xi(\xi \beta)^{N-1} \left(\rho^{(P)}(z) \sigma^{(C)}(z) - \rho^{(C)}(z) \sigma^{(P)}(z) \right).$$

Der wesentliche Teil (d.h. bis auf Nullstellen in z=0) ist also für kleine Werte von $|\xi|$ nur eine geringe Störung des Stabilitätspolynoms des Korrektors.

Für die Matrix B_N in $P(EC)^N$ erhalten wir mittels Subtraktion des β -fachen der letzten Zeile von der mittleren Zeile (zusammen mit $\tau_N - (\xi\beta)\tau_{N-1} = 1$) den Ausdruck $\det(zI - B_N) =$

z	-1	0	I 1		
:	·.	:	0		
	Z .	•	0		
0	·1	0			
0	$\alpha_0^{(C)} \cdots z + \alpha_{m-1}^{(C)}$	0	$-\beta_0^{(C)} \cdots -\beta_{m-1}^{(C)} - \beta z$		
0		z	-1		
:	0	:	z ·.		
0		0	· . —1		
$\alpha_0^{(P)}\xi(\xi\beta)^{N-1}$	$\alpha_{j}^{(C)} \xi \tau_{N-1} + \alpha_{j+1}^{(P)} \xi (\xi \beta)^{N-1}$	$-\beta_0^{(P)}\xi(\xi\beta)^{N-1}$	$\begin{array}{c c} & \ddots & -1 \\ & -\beta_{j}^{(C)} \xi \tau_{N-1} - \\ & \beta_{j+1}^{(P)} \xi (\xi \beta)^{N-1} & ((+z)) \end{array}$		
			$\beta_{i+1}^{(P)}\xi(\xi\beta)^{N-1} \ ((+z))$		

wobei ((+z)) nur im letzten Diagonalelement hinzukommt. Wir erhalten hieraus
$$\det(zI - B_N) = z\rho^{(C)}(z) \left[z^{m+1} - \xi(\xi\beta)^{N-1}\sigma^{(P)}(z) - \xi\tau_{N-1}(z\sigma^{(C)}(z) - \beta z^{m+1}) \right] \\ + z\sigma^{(C)}(z) \left[\xi(\xi\beta)^{N-1}(\rho^{(P)}(z) - z^{m+1}) + \xi\tau_{N-1}(z\rho^{(C)}(z) - z^{m+1}) \right] \\ = z\rho^{(C)}(z) \left[\tau_N z^{m+1} - \xi(\xi\beta)^{N-1}\sigma^{(P)}(z) - \xi\tau_{N-1} z\sigma^{(C)}(z) \right] \\ + \xi z\sigma^{(C)}(z) \left[-\tau_N z^{m+1} + (\xi\beta)^{N-1}\rho^{(P)}(z) + \tau_{N-1} z\rho^{(C)}(z) \right] \\ = z^{m+2}\tau_N \left(\rho^{(C)}(z) - \xi\sigma^{(C)}(z) \right) + z\xi(\xi\beta)^{N-1} \left(\rho^{(P)}(z)\sigma^{(C)}(z) - \rho^{(C)}(z)\sigma^{(P)}(z) \right).$$

► Das $P(EC)^NE$ -Verfahren mit zusätzlicher Auswertung von

 $f_{k+m} = f(x_{k+m}, y_{k+m}^{[N]})$ am Ende der Fixpunktiteration hat das Stabilitätspolynom

$$S_{\xi}(z) = z\tau_N \left(\rho^{(C)}(z) - \xi \sigma^{(C)}(z) \right) + (\xi \beta)^N \left(\rho^{(P)}(z) - \xi \sigma^{(P)}(z) \right).$$

Für die Matrix \tilde{B}_N in $P(EC)^N E$ erhalten wir mittels Subtraktion des ξ -fachen der mittleren Zeile von der letzten Zeile den Ausdruck $\det(zI-\tilde{B}_N)=$

Z	-1		0			
:	z ·.		:		0	
0	٠.	· –1	0			
$\alpha_0^{(P)}(\xi\beta)^N$	$\alpha_j^{(C)} \tau_N +$	$-\alpha_{j+1}^{(P)}(\xi\beta)^N = ((+z))$	$-\beta_0^{(P)}(\xi\beta)^N$	- ß	$\beta_j^{(C)} \tau_N$	$-\beta_{j+1}^{(P)}(\xi\beta)^N$
0		((+2))	_	-1		
U			Z	-1		
:	0		:	z	٠.	
					•	
0			0		· · .	-1
0	0	$-\xi z$	0		0	z

wobei ((+z)) nur im mittleren Diagonalelement hinzukommt. Wir erhalten hieraus

$$\begin{aligned} \det(zI - \tilde{B}_N) &= z^{m+1} \left[z^{m+1} + (\xi \beta)^N (\rho^{(P)}(z) - z^{m+1}) + \tau_N (z \rho^{(C)}(z) - z^{m+1}) \right] \\ &- \xi z^{m+1} \left[(\xi \beta)^N \sigma^{(P)}(z) + \tau_N (z \sigma^{(C)}(z) - \beta z^{m+1}) \right] \\ &= z^{m+1} \left[-\xi \beta \tau_N z^{m+1} + (\xi \beta)^N \rho^{(P)}(z) + \tau_N z \rho^{(C)}(z) \right] \\ &- z^{m+1} \left[-\xi \beta \tau_N z^{m+1} + \xi (\xi \beta)^N \sigma^{(P)}(z) + \xi \tau_N z \sigma^{(C)}(z) \right] \\ &= z^{m+2} \tau_N \left(\rho^{(C)}(z) - \xi \sigma^{(C)}(z) \right) + z^{m+1} (\xi \beta)^N \left(\rho^{(P)}(z) - \xi \sigma^{(P)}(z) \right). \end{aligned}$$

11.5.4. Automatische Schrittweitensteuerung

Auch bei den Mehrschrittverfahren ist die Anpassung der Schrittweite h bei der laufenden Rechnung von Bedeutung. Allerdings führt dies zu größerem Aufwand, da mit jeder Änderung der Schrittweite (etwa mit Faktor 2 oder $\frac{1}{2}$) zusätzliche Werte y_k und f_k erforderlich werden.

- Falls die Schrittweite verdoppelt wird, so benötigt man bereits berechnete Werte, die evtl. nicht mehr im Speicher sind.
- Bei der Verkleinerung der Schrittweite treten neue x-Werte hinzu, für die keine Funktionswerte vorliegen.

Der Aufwand beim Schrittweitenwechsel ist daher vergleichbar mit dem zur Berechnung der Startwerte (siehe Abschnitt 11.4.1).

11.47 Diskussion: Milne's-Device zur Schrittweitensteuerung

Die Methode zur Steuerung der Schrittweite erfolgt (wie bei Einschrittverfahren) durch Schätzung des lokalen Diskretisierungsfehlers:

- ▶ Wir betrachten hier das Prädiktor-Korrektor-Verfahren $P(EC)^N$ bzw. $P(EC)^N E$ zu den Adams-Bashforth und Adams-Moulton Verfahren der Konsistenzordnung p=4 (also Adams-Bashforth mit m=4 und Adams-Moulton mit m=3). Die so gefundene Schrittweitensteuerung trägt den Namen "Milne's device".
- ▶ Bisher liege die Schrittweite h vor. Die neue Schrittweite \tilde{h} soll so gewählt werden, dass bei exakten Werten y_{k+j} und f_{k+j} , $0 \le j \le m-1$, der relative Fehler von y_{k+m} etwa gleich der Maschinengenauigkeit eps ist (hier eps = 10^{-17}), also

$$r(x_k, y(x_k), \tilde{h}) \approx ext{eps} rac{|y_{k+m-1}|}{\tilde{h}}.$$

Diese Forderung führt meist zu besseren Ergebnissen als die Kontrolle *TOL* des absoluten Fehlers in 9.63.

 Für den lokalen Diskretisierungsfehler der Prädiktor-Korrektor Methode erhalten wir aus Satz 11.44

$$r(x_k, y(x_k), h) = \tau_k h^4 + \mathcal{O}(h^5), \qquad \tau_k = c_5^{(C)} \frac{d^5 y}{dx^5} (x_k).$$

 $c_5^{(C)}=-\frac{19}{720}$ ist die Fehlerkonstante des Korrektors. Hier wird vorausgesetzt, dass die Lösung γ mindestens 5-mal stetig differenzierbar ist.

2. Einen Schätzwert für $\frac{d^5 Y}{dx^5}(x_k)$ erhalten wir aus den beiden Fehler-Darstellungen des Prädiktors und des Korrektors

$$y(x_{k+m}) - y_{k+m}^{[0]} = c_5^{(P)} h^5 \frac{d^5 y}{dx^5} (x_k) + \mathcal{O}(h^6),$$

$$y(x_{k+m}) - y_{k+m}^{[N]} = c_5^{(C)} h^5 \frac{d^5 y}{dx^5} (x_k) + \mathcal{O}(h^6)$$

mit den Fehlerkonstanten $c_5^{(P)}=\frac{251}{720}$ und $c_5^{(C)}=-\frac{19}{720}$. Auflösen nach $\frac{d^5y}{dx^5}(x_k)$ ergibt

$$\frac{d^5y}{dx^5}(x_k) = \frac{y_{k+m}^{[N]} - y_{k+m}^{[0]}}{h^5(c_5^{(P)} - c_5^{(C)})} + \mathcal{O}(h).$$

3. Dies liefert die Schätzwerte (vgl. 9.63)

$$\tilde{\tau}_{k} = \frac{c_{5}^{(C)}}{c_{5}^{(P)} - c_{5}^{(C)}} \frac{y_{k+m}^{[N]} - y_{k+m}^{[0]}}{h^{5}} \simeq 0.07 \frac{y_{k+m}^{[N]} - y_{k+m}^{[0]}}{h^{5}}$$

$$\tilde{\tau}_{h} = 0.07 \frac{y_{k+m}^{[N]} - y_{k+m}^{[0]}}{h} \approx r(x_{k}, y(x_{k}), h)$$

zur gegebenen Schrittweite h.

4. Um für die gesuchte Schrittweite \tilde{h} die Beziehung

$$r(x_k, y(x_k), \tilde{h}) pprox ilde{ au}_k \tilde{h}^4 pprox ext{eps} rac{|y_{k+m-1}|}{\tilde{h}}$$

zu erzielen, setzt man daher zunächst

$$\tilde{h} := h \cdot \left(\frac{\text{eps}|y_{k+m-1}|}{0.07|y_{k+m}^{[N]} - y_{k+m}^{[0]}|} \right)^{1/3}$$
=: α_k

Dann verfährt man wie folgt:

- a) Gilt $\alpha_k < 0.5$ (und ist $|y_{k+m-1}|$ mindestens $c \cdot \text{eps}$ mit geeignetem c, z.B. $c \geq 10^2$), so ist die Schrittweite zu halbieren oder das Verfahren bei zu kleiner Schrittweite abzubrechen.
- b) Gilt in mehreren aufeinanderfolgenden Schritten (etwa 2-3 Schritte) $\alpha_k > 2$, so ist die Schrittweite zu verdoppeln.

11.5.5 Schrittweitenwechsel und Nordsieck-Formeln

Beim Schrittweitenwechsel können "fehlende" y-Werte durch

- ▶ Einsatz eines Einschrittverfahrens der Ordnung $\geq p-1$,
- Interpolation zwischen den vorhandenen Werten y_{k+j} mit der Fehlerordnung $\geq p-1$

beschafft werden. Eine elegantere Methode besteht in der Modifikation des Mehrschrittverfahrens zu den sogenannten Nordsieck-Formeln.

11.48 Nordsieck-Formel zu den Adams-Moulton-Verfahren

Die Entstehung dieser Formeln soll anhand der Adams-Moulton Verfahren verdeutlicht werden. Grob gesagt ist die Nordsieck-Formel ein A-Verfahren, das alle Informationen des Mehrschrittverfahrens auf den einzigen Punkt x_{k+m-1} "konzentriert" und die gleiche Konsistenzordnung beibehält.

 Das Adams-Moulton-Verfahren besitzt die folgende Darstellung als A-Verfahren. Wir setzen

$$Z_k = [hf_k, \dots, hf_{k+m-2}, hf_{k+m-1}, y_{k+m-1}] \in \mathbb{R}^{m+1},$$

und erhalten

$$Z_{k+1} = \left[\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 0 \\ \beta_0 & \beta_1 & \cdots & \beta_{m-1} & 1 \end{array} \right] Z_k + hf_{k+m} \left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ 1 \\ \beta_m \end{array} \right].$$

Im Folgenden bezeichne B die angegebene Übergangsmatrix und $a := [0, \dots, 0, 1, \beta_m]^T$.

2. Mit $\ell = k + m - 1$ definieren wir den Vektor

$$V_k = V_k(h) := \left[\frac{h^m}{m!} y^{(m)}(x_\ell), \dots, \frac{h^2}{2} y''(x_\ell), h y'(x_\ell), y(x_\ell) \right]$$

der Funktions- und Ableitungswerte von y an der Stelle $x_\ell=x_{k+m-1}$. Durch Taylor-Entwicklung und Berücksichtigung der Konsistenzordnung m+1 erkennt man

$$hf_{k+j} = hf(x_{k+j}, y(x_{k+j})) + \mathcal{O}(h^{m+2}) = hy'(x_{k+j}) + \mathcal{O}(h^{m+2})$$
$$= \sum_{\nu=1}^{m} \frac{h^{\nu} y^{(\nu)}(x_{k+m-1})}{(\nu-1)!} (j-m+1)^{\nu-1} + \mathcal{O}(h^{m+1}).$$

für $0 \le j \le m-1$ sowie $y_{k+m-1} = y(x_{k+m-1}) + \mathcal{O}(h^{m+1})$. Setzen wir

$$T := \begin{bmatrix} t_{1,1} & \cdots & t_{1,m} & 0 \\ \vdots & & \vdots & \vdots \\ t_{m,1} & \cdots & t_{m,m} & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix},$$

mit $t_{j,
u} = (m -
u + 1)(j - m)^{m -
u}$ für $1 \leq j,
u \leq m$, so ist

$$Z_k = TV_k + \mathcal{O}(h^{m+1}).$$

3. Die Matrix T ist regulär (bis auf Multiplikation der Spalten und Vertauschung der Spalten ist der obere Block von T die Vandermonde-Matrix zu den Knoten $-m+1,\ldots,0$). Wir ersetzen nun V_k durch den Berechnungs-Vektor

$$W_k = W_k(h) = \left[\frac{h^m}{m!}y_{\ell}^{(m)}, \dots, \frac{h^2}{2}y_{\ell}^{\prime\prime}, hy_{\ell}^{\prime}, y_{\ell}\right]$$

mit Näherungswerten an die Funktions- und Ableitungswerte. Als Ersatz für die Adams-Moulton Formel $Z_{k+1} = BZ_k + hf_{k+m}a$ verwenden wir das A-Verfahren

$$W_{k+1}(h)=T^{-1}BTW_k(h)+hf_{k+m}T^{-1}a, \qquad k\in\mathbb{N}_0.$$
 Dieses A-Verfahren besitzt (mindestens) die gleiche Konvergenzordnung wie das

Adams-Moulton-Verfahren.

4. Der Schrittweitenwechsel ist bei diesem A-Verfahren sehr einfach zu realisieren: Entscheidet man sich bei Kenntnis von $W_k(h)$ für eine neue Schrittweite $\tilde{h} = \tau h$, so lautet der nächste Schritt

$$W_{k+1}(\tilde{h}) = T^{-1}BTW_k(\tilde{h}) + \tilde{h}f_{k+m}T^{-1}a, \qquad k \in \mathbb{N}_0.$$

Den erforderlichen Vektor $W_k(\tilde{h})$ erhält man sofort durch

$$W_k(\tilde{h}) = \left[egin{array}{cccc} au''' & & & & & \\ & & \ddots & & & \\ & & & au & & \\ & & & & au & \\ & & & & au & \\ & & & & au \end{array}
ight] W_k(h).$$

Es sind also keine weiteren Rechnungen zum Schrittweitenwechsel durchzuführen. Die Nordsieck Formeln sind deshalb weit verbreitete Modifikationen der Adams-Verfahren.

11.49 Beispiel: Adams-Moulton-Nordsieck Formel mit m = 3

Wir erhalten die Matrizen

$$T = \begin{bmatrix} 12 & -4 & 1 & 0 \\ 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad T^{-1} = \begin{bmatrix} \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} & 0 \\ \frac{1}{4} & -1 & \frac{3}{4} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Die Matrix-Form des Adams-Moulton-Verfahrens für m = 3 ist

$$\begin{bmatrix} hf_{k+1} \\ hf_{k+2} \\ hf_{k+3} \\ y_{k+3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{24} & -\frac{5}{24} & \frac{19}{24} & 1 \end{bmatrix} \begin{bmatrix} hf_k \\ hf_{k+1} \\ hf_{k+2} \\ y_{k+2} \end{bmatrix} + hf_{k+3} \begin{bmatrix} 0 \\ 0 \\ 1 \\ \frac{3}{8} \end{bmatrix}.$$

Also ergibt sich die Nordsieck-Formel als

$$\begin{bmatrix} \frac{h^3}{6} y_{\ell}^{\prime\prime\prime} \\ \frac{h^2}{2} y_{\ell}^{\prime\prime} \\ h y_{\ell}^{\prime} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{3} & -\frac{1}{6} & 0 \\ \frac{3}{4} & -\frac{1}{2} & -\frac{3}{4} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{1}{5} & \frac{1}{2} & \frac{5}{5} & 1 \end{bmatrix} \begin{bmatrix} \frac{h^3}{6} y_{\ell-1}^{\prime\prime\prime} \\ \frac{h^2}{2} y_{\ell-1}^{\prime\prime} \\ h y_{\ell-1}^{\prime} \end{bmatrix} + h f_{k+3} \begin{bmatrix} \frac{1}{6} \\ \frac{3}{4} \\ 1 \\ \frac{3}{2} \end{bmatrix}.$$