Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos Numéricos	Apellidos: González Pradas	07/04/2020	
	Nombre: Ernesto		

Actividades

Laboratorio: Áreas e integración

Objetivos

A través de esta actividad podrás comprender qué es la integración y su relación con problemas de tipo geométrico. Para realizarla puedes emplear la calculadora *online* WIRIS (https://calcme.com/a) o Matlab (https://matlab.mathworks.com/).

Descripción

Calcula el área de las dos partes en que la parábola $y^2 = 4x$ divide al círculo $x^2 + y^2 = 8$. Representando ambas funciones en el mismo plano.

Resolución

Primero representamos gráficamente las funciones, tanto de la parábola como de la circunferencia. Para ello declaramos la función y le damos al icono de "Dibujar":

Asignatura	Datos del alumno	Fecha
Cálculo y Métodos Numéricos	Apellidos: González Pradas	07/04/0000
	Nombre: Ernesto	07/04/2020

Obtenemos los puntos de corte de la parábola y la circunferencia resolviendo el sitema de ecuaciones:

Al obtener nuestros puntos de corte, vemos que nuestro $\alpha = 2*sqrt(3) - 2$ que es aproximadamente $\alpha = 1,46$.

$$\alpha = 2 \cdot \sqrt{3} - 2$$
 Definir

Por lo tanto, tenemos que nuestros puntos de intersección entre la parábola y circunferencia son $(\alpha, 2*sqrt(\alpha))$ y $(\alpha, -2*sqrt(\alpha))$.

A continuación para poder calcular la región en azul solo necesitamos calcular el área en rojo y multiplicarlo por 2 (ya que son dos áreas rojas) y restárselo al área de la mitad del círculo en nuestro caso 4π . Para ello calculamos la integral definida de 0 a α , despejenado la y en ambas ecuaciones e igualándolas:

despYlgualamosEcuaciones = $\sqrt{8-x^2} - 2\sqrt{x}$ Definir

$$\int_{0}^{\alpha} despYlgualamosEcuaciones dx = 1.5858 \text{ calc}$$

Tenemos que el área de la parte roja es 1.5858:

areaZonaRoja = 1.5858 Definir

Para calcular el área azul, como hemos dicho en el párrafo de arriba, simplemente restamos al área de la mitad de la circunferencia, en nuestro caso 4π menos dos veces el área de la zona roja:

```
areaZonaAzul = 4 \cdot \pi - 2 \cdotareaZonaRoja Definir
areaZonaAzul = 4 \cdot \pi - 3.1716 calc
```

Nuestro área buscada es $4\pi - 3.1716$ u² que es aproximadamente 9.3948 u².

Extensión máxima de la actividad: 5 páginas.

Rúbrica

Asignatura	Datos del alumno	Fecha	
Cálculo y Métodos Numéricos	Apellidos: González Pradas	07/04/0000	
	Nombre: Ernesto	07/04/2020	

Áreas e integración (valor real: 5 puntos)	Descripción	Puntuación máxima (puntos)	Peso %
Criterio 1	El planteamiento es correcto	5	50 %
Criterio 2	Los resultados devueltos son correctos	4	40 %
Criterio 3	El gráfico es correcto	1	10 %
		10	100 %