Report: Tomorrowland Festival Search Implementation

1. Problem Overview

The objective was to design a search algorithm to plan a festival visit across venues while **covering all music genres** within a limited festival duration. Each venue has:

- A start time and end time.
- A genre associated with it.
- A parent-child relationship forming a time-feasible tree where a child venue can only be visited after its parent ends.

The search goal was to find a **sequence of venue visits** that covers **all genres** without exceeding the festival's end time.

2. Implementation Details

2.1 Time-Feasible Tree Generation

- A generate time feasible tree function was implemented to create a tree of venues:
 - o Nodes are generated with **non-decreasing start times**.
 - o Each node has **exactly one parent** chosen among feasible previous nodes.
 - o Every genre is guaranteed to appear at least once.
- The tree is represented using:
 - o Venue objects with children for explicit connectivity.
 - o A NetworkX DiGraph for visualization.

2.2 Search Algorithms

Three search strategies were implemented:

1. BFS (Breadth-First Search)

- a. Explores nodes level by level.
- b. Guarantees the shortest path in terms of number of moves.

2. DFS (Depth-First Search)

- a. Explores nodes by diving deep along each branch before backtracking.
- b. Can be faster but does not guarantee minimal paths.

3. Best-First Search (H2 & H3 heuristics)

- a. Priority queue selects nodes with lowest heuristic value.
- b. Heuristics measure remaining genres and time:

- i. **H2:** genres left + (current time / festival end)
- ii. **H3:** genres left * (1 + current_time / festival_end)
- c. Focuses on promising paths that maximize genre coverage early.

2.3 State Representation

Each search state contains:

(time t, current venue id, covered genres set, path taken)

- move gen generates feasible successors:
 - O Children nodes whose start >= current time.
- goal test checks if all genres are covered and festival end time is respected.

3. Performance Evaluation

The algorithms were run on the same generated tree with 40 nodes and 10 genres.

Algorit hm	Path Lengt h	Nodes Expande d	Notes
BFS	10 venues	N/A	Finds a valid path efficiently; explores level-wise.
DFS	10 venues	N/A	Finds a different valid path; may explore deeper irrelevant branches first.
Best- First H2	10 venues	N/A	Heuristic-guided; path similar to BFS but explores more promising branches first.
Best- First H3	10 venues	N/A	Path identical to H2 in this instance; heuristic slightly more aggressive with time weighting.

Observations:

- BFS and Best-First often find paths starting from **early nodes**, covering genres in chronological order.
- DFS tends to explore later branches first, leading to different solutions.
- Best-First heuristics (H2, H3) help **prioritize venues that cover more genres quickly**, often reducing unnecessary exploration.

5. Conclusion

- The implementation successfully generates a time-feasible venue tree.
- All three search algorithms can find valid paths covering **all genres**, but they differ in traversal order and path characteristics.
- **Best-First search** (H2, H3) is effective in guiding exploration toward high-value nodes, demonstrating the **impact of heuristics** in combinatorial path planning.
- BFS guarantees minimal moves, DFS can explore longer or alternative paths, and Best-First heuristics provide a **balance between path optimality and exploration efficiency**.