Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИНФОРМАТИКА 1	ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ		
КАФЕДРА	ИУ1 – СИСТЕМЫ	А ВТОМАТИЧЕСКОГО УПР	<u>РАВЛЕНИЯ</u>	
	ЛАБОРАТ	ГОРНАЯ РАБОТ	A № 3	
«ЧАСТ	ГОТНЫЕ ХАРАКТЕ	ЕРИСТИКИ ДИНАМИЧ	ІЕСКИХ ЗВЕНЬЕВ»	
по курсу:	курсу: «ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ»			
Студент:	ИУ2-61	(Подпись, дата)	Аветисян Н. О.	
Преподаватель:		(Подпись, дата)	Лобачев И.В.	

Вариант 1

Задание:

С помощью пакета MatLab построить ЛЧХ каждого типового звена (см. табл.). Определить влияние коэффициентов, входящих в описание каждого звена, на параметры ЛАЧХ и ЛФЧХ, в том числе: — как меняется ширина асимптотических участков ЛАЧХ и ЛФЧХ; — как меняется положение точек пересечения осей ЛАЧХ.

	Таблица
Типовые динамические звенья	

Типовые динамические звенья				
1	Название звена	ПФ звена		
1	Интегрирующее	$W(s) = \frac{K}{s}$		
2	Дифференцирующее	W(s) = Ks		
3	Усилительное (безынерционное)	W(s) = K		
4	Апериодическое 1-го порядка (инерционное)	$W(s) = \frac{K}{Ts+1}$		
5	Апериодическое 2-го порядка (все корни вещественные)	$W(s) = rac{K}{T_2^2 s^2 + T_1 s + 1}; \; T_1 \geq 2T_2$		
6	Колебательное*	$W(s) = \frac{K}{T_2^2 s^2 + T_1 s + 1}; \ T_1 < 2T_2$		
7	Консервативное	$W(s) = \frac{K}{Ts^2 + 1}$		
8	Интегрирующее с запаздыванием (реальное интегрирующее)	$W(s) = \frac{K}{s(Ts+1)}$		
9	Дифференцирующее с запаздыванием (реальное дифференцирующее)	$W(s) = \frac{Ks}{Ts+1}$		
10	Форсирующее	W(s) = K(Ts+1)		
11	Изодромное	$W(s) = \frac{K(Ts+1)}{s}$		

- Вариант 1 => K = 1(нельзя, слишком просто) $=> \Pi$ усть K = 5
- $K = 5 \Rightarrow T1 = K / 10 = 0.5$
- $K = 5 \Rightarrow T2 = K / 2 = 2.5$
- $K_var = [5, 8];$
- $T1_var = [0.5, 0.8];$
- $T2_var = [2.5, 4];$

Теоретическая часть

Метод частотных характеристик используется для анализа динамических свойств систем автоматического управления (САУ) путем подачи на вход системы гармонических сигналов различных частот и измерения реакции системы. Исследуя амплитудные и фазовые изменения выходного сигнала, можно получить информацию о поведении системы на разные частотные воздействия.

Принцип работы метода

- На вход системы подается гармонический сигнал $x = a \sin(wt)$, a -амплитуда, w -частота.
- Выходной сигнал будет иметь амплитуду A_1 и отличаться от входного по фазе на величину ψ (фазовый сдвиг): $y = A_1 \sin(wt + \psi)$
- Усиление по амплитуде определяется как отношение амплитуды выходного сигнала к амплитуде входного: $\frac{A_1}{a}$

Амплитудная и фазовая частотные характеристики (АЧХ и ФЧХ)

- **АЧХ** описывает зависимость амплитуды выходного сигнала от частоты входного сигнала.
- **ФЧХ** представляет зависимость фазового сдвига выходного сигнала от частоты входного сигнала.

Экспериментальное и теоретическое определение частотных характеристик

- Экспериментально частотные характеристики можно получить, используя генератор гармонических колебаний и измерительную аппаратуру для анализа амплитуды и фазы.
- Теоретически АЧХ и ФЧХ могут быть получены из передаточной функции W(s) системы путем подстановки s = jw.

Логарифмические частотные характеристики (ЛЧХ)

- ЛАЧХ выражается в децибелах (дБ) и определяется как $L(w) = 20 \lg A(w)$
- **ЛФЧХ** представляет зависимость фазы в логарифмическом масштабе частот.

Преимущества метода

- Позволяет экспериментально и теоретически оценить поведение системы при различных частотах воздействия.
- Предоставляет возможность анализа динамических свойств системы без необходимости знать детальные параметры всех ее компонентов.
- ЛЧХ упрощает анализ системы, позволяя использовать асимптотические приближения для типовых динамических звеньев.

1) Интегрирующее звено

$$W(s) = \frac{K}{s}$$

Рис. 1 ЛАФЧХ интегрирующего звена

ЛАЧХ:

- о Амплитуда уменьшается с увеличением частоты, следуя правилу -20 дБ/декаду, что указывает на постепенное ослабление высоких частот.
- о При увеличении К характеристика параллельно сдвигается вверх.

- Фазовый сдвиг строго -90° на всех частотах, что иллюстрирует чисто интегрирующий характер звена, приводящий к задержке сигнала по фазе.
- о При увеличении К фазовый сдвиг не меняется и также равна -90°.

2) Дифференцирующее звено

$$W(s) = Ks$$

Рис. 2 ЛАФЧХ дифференцирующего звена

ЛАЧХ:

- о Амплитуда возрастает с ростом частоты, показывая +20 дБ/декаду, что означает усиление высокочастотных сигналов.
- о При увеличении К характеристика параллельно сдвигается вверх.

- о Фазовый сдвиг стабильно +90°, что демонстрирует предварение фазы сигнала, типичное для дифференцирующих операций.
- о При увеличении K фазовый сдвиг не меняется и также равна +90°.

3) Усилительное звено

$$W(s) = K$$

Рис. З ЛАФЧХ усилительного звена

ЛАЧХ:

- о Амплитудная характеристика остается неизменной на всех частотах, отражая линейное усиление без частотной зависимости.
- о При увеличении К характеристика параллельно сдвигается вверх.

- \circ Фаза не испытывает изменений (0°), обеспечивая передачу сигнала без временного сдвига.
- \circ При увеличении K фазовый сдвиг не меняется и также равна 0° .

4) Апериодическое звено 1-го порядка

$$W(s) = \frac{K}{Ts + 1}$$

Рис. 4 ЛАФЧХ апериодического звена 1-го порядка

ЛАЧХ:

- о Амплитуда уменьшается после частоты среза с наклоном -20 дБ/дек, указывая на умеренное ослабление высоких частот.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о При увеличении Т характеристика уменьшается частота среза.

- \circ Фаза плавно переходит от 0° до -90° , что свидетельствует о наличии временного сдвига, увеличивающегося с частотой.
- \circ При увеличении K фазовый сдвиг не меняется.
- о При увеличении Т переход становится более пологим.

5) Апериодическое звено 2-го порядка

$$W(s) = \frac{K}{T_2^2 s^2 + 2T_1 s + 1} , T_1 \ge 2T_2$$

Рис. 5 ЛАФЧХ апериодического звена 2-го порядка

ЛАЧХ:

- о Наблюдается более крутой спад амплитуды после частоты среза (около -40дБ/дек), показывая сильное подавление высоких частот.
- о При увеличении К характеристика параллельно сдвигается вверх.
- \circ T_1 и T_2 влияют на частоту среза.

- \circ Фаза изменяется от 0° до -180°, где более высокие порядки увеличивают интенсивность и скорость фазового перехода.
- о При увеличении К фазовый сдвиг не меняется.
- \circ T₁ и T₂ влияют на полгость перехода и на частоту пика(-90°).

6) Колебательное звено

$$W(s) = \frac{K}{T_2^2 s^2 + 2T_1 s + 1} , T_1 < 2T_2$$

Рис. 6 ЛАФЧХ колебательного звена

ЛАЧХ:

- о Характеризуется резонансным пиком на определенной частоте, после которого следует резкий спад, что указывает на возможность усиления сигнала в узком диапазоне частот.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о T₁ и T₂ влияют на частоту среза и частоту пика.

- \circ Фаза проходит через -90° на резонансной частоте, изменяясь от 0° до 180° , что свидетельствует о значительных фазовых искажениях при резонансе.
- о При увеличении К фазовый сдвиг не меняется.
- \circ T₁ и T₂ влияют на резкость перехода и на частоту пика (-90°).

7) Консервативное звено

$$W(s) = \frac{K}{Ts^2 + 1}$$

Рис. 7 ЛАФЧХ консервативного звена

ЛАЧХ:

- о Присутствует выраженный резонансный пик без затухания после него, что может приводить к сильному усилению на резонансной частоте.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о Твлияет на частоту среза и частоту пика.

- Резкое изменение фазы от 0° до -180° около резонанса указывает на потенциальные проблемы с устойчивостью системы
- о При увеличении К фазовый сдвиг не меняется.
- о Твлияет на частоту резкого перехода.

8) Интегрирующее с запаздыванием звено (реальное интегрирующее)

$$W(s) = \frac{K}{s(Ts+1)}$$

Рис. 8 ЛАФЧХ интегрирующего с запаздыванием звена

ЛАЧХ:

- о Подобно обычному интегрирующему звену, но с дополнительным спадом из-за запаздывания, амплитуда уменьшается с увеличением частоты.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о Т тоже влияет на наклон.

- о Фазовый сдвиг включает в себя как стандартные -90°, так и дополнительное снижение, вызванное задержкой
- о При увеличении К фазовый сдвиг не меняется.
- о Твлияет на пологость перехода.

9) Дифференцирующее с запаздыванием звено (реальное дифференцирующее)

$$W(s) = \frac{Ks}{Ts + 1}$$

Рис. 9 ЛАФЧХ дифференцирующего с запаздыванием звена

ЛАЧХ:

- о Возрастание амплитуды с частотой с модификацией за счет влияния запаздывания, что усугубляет высокочастотные изменения.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о Т тоже влияет на наклон и амплитуду.

- о Включает +90° стандартного дифференцирования плюс дополнительное снижение фазы, пропорциональное задержке
- о При увеличении К фазовый сдвиг не меняется.
- о Твлияет на пологость перехода.

10) Форсирующее звено

$$W(s) = K(Ts + 1)$$

Рис. 10 ЛАФЧХ форсирующего звена

ЛАЧХ:

- Появление наклона +20 дБ/декаду на определённой частоте.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о Т тоже влияет на частоту появление наклона и на уровень наклона.

- о С запаздыванием (зависит от T) поднимается от 0 до +90°.
- о При увеличении К фазовый сдвиг не меняется.
- Твлияет частоту при котором фаза достигает +45°.

11) Изодромное звено

$$W(s) = \frac{K(Ts+1)}{s}$$

Рис. 11 ЛАФЧХ изодромного звена

ЛАЧХ:

- Изначально имеет наклон -20 дБ/декаду из-за интегратора, но с повышением частоты наклон увеличивается, стремясь достичь 0 дБ/декаду.
- о При увеличении К характеристика параллельно сдвигается вверх.
- о Т влияет на частоту при котором начинается увеличение наклона.

- \circ С запаздыванием (зависит от T) поднимается от -90 до 0 \circ .
- о При увеличении К фазовый сдвиг не меняется.
- Твлияет частоту при котором фаза достигает -45°.