Correctness of Algorithm

An algorithm is correct if it satisfies its specifications

Specifications are often written using preconditions and postconditions

Precondition: a statement involving the variable used in the algorithm. It says that certain facts must be true before an execution of the algorithm begins, it can describe the allowable input

Postcondition: a statement about the variables used in the algorithm, it says that certain facts must be true when an execution of the algorithm ends, it often describes the correct outputs for a given input

Partially correct: the algorithm is partially correct IFF

if i) The precondition holds, ii) the algorithm is executed, and iii) it eventually halts then the postcondition holds

Total correctness: the algorithm is partially correct and has termination

Example

- 1. $z \leftarrow 0$
- 2. $w \leftarrow y$
- 3. while $w \neq 0$ do
- 4. $z \leftarrow z + w$
- 5. $w \leftarrow w 1$

Precondition: $y \in \mathbb{N}$, postcondition: $z = \frac{(1+y)y}{2}$

If y < 0, the algorithm doesn't halt

Specifications for Search(A: Array, k: key)

Preconditions: A is an array and k has the same type as elements in A Postconditions: Return $i \in \mathbb{Z}^+$. $i \le \text{len}(A)$ and A[i] = k, if such i exists, otherwise return 0 And A, k are not changed by the program

Specification for BinarySearch(A: Array, k: key)

Precondition: A is sorted in non-decreasing order

Postcondition: same as Search

Specification for Sort(A: Array)

Precondition: elements in A are from a totally ordered domain Postcondition: the multiset of elements in A remains unchanged,

And the elements are in non-decreasing order ($i \le i \le j \le$

 $len(A)IMPLIES A[i] \le A[j]$

Specification for Merge (A: Array, B: Array)

Precondition: A, B are sorted in non-decreasing order and are from the same totally ordered domain

Postcondition: The multiset of elements in C is equal to the union of the multisets of elements in A and B $\,$

And the elements of C are in non-decreasing order.

Example

MergeSort(A: Array, n: int)

- 1. if n > 1, then
- 2. $m \leftarrow [n/2]$
- 3. $U \leftarrow A[1, m]$
- 4. $V \leftarrow A[m+1, n]$
- 5. MergeSort(U, m)

- 6. MergeSort(V, n m)
- 7. $A \leftarrow Merge(U, V)$

Proof For $n \in \mathbb{N}$, let $P(n) \coloneqq$ for all arrays A, A[1 ... n] with elements have a totally ordered domain, if MergeSort(A, n) is performed, then it eventually halts at which time A is sorted in non-drecreasing order and the multiset of elements in A is unchanged

Let $n \in \mathbb{N}$ be arbitrary, let $A[1 \dots n]$ be an arbitrary array of elements from a toally ordered domain

Assume $\forall m \in \mathbb{N}. (m < n \text{ IMPLIES P}(m))$

Suppose n=0,1, then the test on line 1 fails, algorithm halts and A is unchanged, A is vacuously in non-decreasing order

By generalization, P(0), P(1)

Suppose n>1, then the test on line 1 succeeds, $m=\lceil n/2\rceil$, so $0\le m, m-n< n$ By induction hypothesis, after MergeSort(U, m) and MergeSort(V, n-m), U, V are soted in non-decreasing order, the multiset of elements in U is the multiset of elements of A[1 ... m] and the multiset of elements in V is the multiset of elements of A[m+1 ... m] It follows from the specification of Merge(U, V) thata after A \leftarrow Merge(U, V) is performed, the elements in A are sorted in non-decreasing order, and the multiset of A is the union of the multiset of elements in U and V

Then, the multiset of A is unchanged

By generalization and strong induction, $\forall n \in \mathbb{N}$. P(n)

Example

QuickSort(A)

- 1. if length(A) > 1 then
- 2. $p \leftarrow A[1]$
- 3. partition A into

 $L \leftarrow$ multiset of elements in A that are less than p

 $E \leftarrow$ multiset of elements in A that are equal to p

 $G \leftarrow$ multiset of elements in A that are greater than p

- 4. QuickSort(L)
- 5. QuickSort(G)
- 6. $A \leftarrow L + E + G$

Proof For all $n \in \mathbb{N}$, let $P(n) \coloneqq$ for all arrays A, A[1 ... n] with elements have a totally ordered domain, if QuickSort(A, n) is performed, then it eventually halts at which time A is sorted in non-drecreasing order and the multiset of elements in A is unchanged

Let $n \in \mathbb{N}$ be arbitrary, let $A[1 \dots n]$ be an arbitrary array of elements from a toally ordered domain

Assume $\forall m \in \mathbb{N}. (m < n \text{ IMPLIES P}(m))$

Suppose n=0,1, then the test on line 1 fails, algorithm halts and A is unchanged, A is vacuously in non-decreasing order

By generalization, P(0), P(1)

Suppose n > 1, then the test on line 1 succeeds, p = A[1]

By line 3, \forall l \in L. \forall e \in E. \forall g \in G. l \leq e \leq g

Since $A[1] \in E$, |L| < n, |G| < n, by induction hypothsis, L, G are each sorted in non-decreasing order and multiset of L, G are unchanged

By line 6, the multiset of elements in A is the union of the multiset of L, E, G, which is A's partitions, which the multiset is unchanged

By generalization and strong induction, $\forall n \in \mathbb{N}$. P(n)