Self-Test 2, Page 195

- 1. \square 2. trap. 3. rect. 4. sq. 5. 11 6. 17, 67 7. 1. \angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4 (Given) 2. $\overline{HG} \parallel \overline{EF}$; $\overline{HE} \parallel \overline{GF}$ (If alt. int. $\triangle \cong$, lines \parallel .) 3. \overline{EFGH} is a \square . (Def. of \square) 4. $\overline{HG} \cong \overline{HE}$ (If 2 \triangle of a \triangle age \cong , sides opp. the \triangle are \cong .) 5. \overline{HGFE} is a rhom. (Thm. 5-17) 8. a. \square b. 1. \overline{PQRS} is a \square . (Given)
- 2. $\overline{PQ} \parallel \overline{SR}$ (Def. of \square) 3. X is the midpt. of \overline{PQ} ; Y is the midpt. of \overline{SR} . (Given) 4. $XQ = \frac{1}{2}PQ$; $YR = \frac{1}{2}SR$ (Midpt. Thm.) 5. PQ = SR (Thm. 5-1) 6. $\frac{1}{2}PQ = \frac{1}{2}SR$ (Mult. Prop. of =) 7. XQ = YR (Subst.)

8. XQRY is a □. (Thm. 5-5) c. trap. Chapter Review, Pages 197–198

- 1. 110 3. 28 5. GS = 5 or $\overline{SA} \parallel \overline{GN}$ 7. $\overline{AZ} \cong \overline{GZ}$ 9. Thm. 5-10 11. Thm. 5-11, part (2)
- 13. \square 15. rect. 17. Key steps of proof: I. DO = BO; AO = CO (Diags. \square bis. each other.)
- 2. EO = FO (Subtr. Prop. =) 3. AECF is a \square . (Thm. 5-7) 4. $\overline{BD} \perp \overline{AC}$ (Diags. of rhom. \perp .)
- 5. $\triangle COE \cong \triangle COF$ (SAS) 6. $\overline{CE} \cong \overline{CF}$ (CPCT) 7. AECF is a rhom. (Thm. 5-17) 19. \overline{ZO} , \overline{DI} 21. 4

Cumulative Review, Pages 200-201

1. one 3. If you enjoy winter weather, then you are a member of the skiing club. 5. Trans. Prop. 7. 180; \angle Add. Post. 9. \angle 1; If lines \parallel , corr. \triangle are \cong . 11. bis., \bot 13. a. $\triangle RTA$ b. \overline{DB} c. $m \angle E$ 15. 150, 150 17. 3r - s 19. bis. 21. 72, 36 23. ABC, BAC, ACD, CFD 25. $m \angle 1 = m \angle 4 = k$, $m \angle 2 = m \angle 3 = 45 - k$ 27. $\angle NOM$, $\angle LMO$, $\angle NMO$; Thm. 5-14 29. PQ, ON; Thm. 5-19 31. I. $\overline{AD} \cong \overline{BC}$; $\overline{AD} \parallel \overline{BC}$ (Given) 2. ABCD is a \square . (Thm. 5-5) 3. $\overline{DF} \cong \overline{BF}$ (Diags. \square bis. each other.) 4. $\angle DFG \cong \angle BFE$ (Vert. $\triangle \cong$.) 5. $\overline{DC} \parallel \overline{AB}$ (Def. of \square) 6. $\angle CDB \cong \angle ABD$ (If \parallel lines, alt. int. $\triangle \cong$.) 7. $\triangle DFG \cong \triangle BFE$ (ASA) 8. $\overline{EF} \cong \overline{FG}$ (CPCT)

Chapter 6

Written Exercises, Pages 206-207

1. a. No b. Yes c. Yes d. No e. Yes f. No 3. a. No b. No c. Yes d. Yes 5. j=2, k=1, l=4, m=3 7. 1. Vert. $\triangle \cong$ 2. \angle Add Post. 3. A Prop. of Ineq. 4. Subst. 9. 1. $m \angle ROS > m \angle TOV$ (Given) 2. $m \angle SOT = m \angle SOT$ (Reflex.) 3. $m \angle ROS + m \angle SOT > m \angle TOV + m \angle SOT$ (A Prop. of Ineq.) 4. $m \angle ROS + m \angle SOT = m \angle ROT$; $m \angle TOV + m \angle SOT = m \angle SOV$ (\angle Add. Post.) 5. $m \angle ROT > m \angle SOV$ (Subst.) 11. 1. $m \angle 1 > m \angle 2$; $m \angle 2 > m \angle 3$ (Ext. \angle Ineq. Thm.) 2. $m \angle 1 > m \angle 3$ (A Prop. of Ineq.) 3. $m \angle 3 = m \angle 4$ (Vert. $\triangle \cong$.) 4. $m \angle 1 > m \angle 4$ (Subst.)

Written Exercises, Pages 210-212

1. a. If $4n \neq 68$, then $n \neq 17$. b. If $n \neq 17$, then $4n \neq 68$. 3. a. If x + 1 is odd, then x is even. b. If x is even, then x + 1 is odd. 5. True. If I don't live in Calif., then I don't live in L.A.; true. If I live in Calif., then I live in L.A.; false. If I don't live in L.A., then I don't live in Calif.; false. 7. False. If M is not the midpt. of \overline{AB} , then $AM \neq MB$; false. If M is the midpt. of \overline{AB} , then AM = MB; true. If $AM \neq MB$, then AM = AMB; true. If $AM \neq AMB$, then $AMB \neq AMB$, then A

Mixed Review Exercises, Page 212

- 1. sometimes 2. sometimes 3. always 4. never 5. always 6. always 7. sometimes 8. $m \angle 1 = 60$, $m \angle 2 = 75$, $m \angle 3 = 45$, $m \angle 4 = 60$ 9. 95
- 12 / Selected Answers