Recovering Behavioral Dynamics with Gaussian Process Factor Analysis

Mason del Rosario – MAE 298 – 2019-June-06

Background: Dimensional Reduction

- Neural population datasets have grown in size
- Dimensional Reduction
 - 1. Retain statistical power of individual trials
 - 2. Analysis of population-level response structure
 - 3. Facilitate exploratory data analysis (EDA)

Background: Dimensional Reduction

- Neural population datasets have grown in size
- Dimensional Reduction
 - 1. Retain statistical power of individual trials
 - 2. Analysis of population-level response structure
 - Facilitate exploratory data analysis (EDA)

Background: PCA vs. LFA

Given a set of observations

$$\{X_1, X_2, \dots, X_p\}$$

Principal Component Analysis (PCA)

$$PC_1 = a_1 X_1 + \dots + a_p X_p$$

$$PC_2 = b_1 X_1 + \dots + b_p X_p$$

$$\vdots$$

$$PC_n = z_1 X_1 + \dots + z_p X_p$$

Seeks to find PCs/subspace which explains variance in data; *model-free*

Latent Factor Analysis (LFA)

$$X_1 = \alpha_1 f_1 + \dots + \alpha_m f_m + w_1$$

$$X_2 = \beta_1 f_1 + \dots + \beta_m f_m + w_2$$
:

$$X_p = \gamma_1 f_1 + \dots + \gamma_p f_m + w_m$$

Seeks to explain data assuming underlying dynamics; *model-based*

Background: Latent vs. Behavioral Dynamics

- Latent trajectories converge based on event
- Do latent factor trajectories have temporal correlation with behavioral signals of interest?

Goals

Goals

- 1. Optimize hyperparameters (i.e. input bin size, dimensionality of latent space) to minimize spike count prediction error.
- 2. Use GPFA (a form of LFA) on tilt data to visualize latent trajectories.

Goals/Hypotheses

Goals

- 1. Optimize hyperparameters (i.e. input bin size, dimensionality of latent space) to minimize spike count prediction error.
- 2. Use GPFA (a form of LFA) on tilt data to visualize latent trajectories.

Hypotheses

- 1. Hyperparameters
 - 1. Bin size should be small to capture timing information
 - Dimensionality should be similar to that of behavioral data
- 2. Latent trajectories
 - Should converge to common subspace
 - 2. Should explain behavioral data

Methods: GPFA

- Gaussian Process Factor Analysis (GPFA) is a form of Latent Factor Analysis
- Latent variables evolve as a Gaussian process
- Goal: find model parameters (e.g., covariance matrix)
- Python implementation by Macke (<u>Github</u>)

Gaussian Process Factor Analysis (GPFA)

$$X_{1,t} = \alpha_1 f_{1,t} + \dots + \alpha_m f_{m,t} + w_{1,t}$$

$$X_{2,t} = \beta_1 f_{1,t} + \dots + \beta_m f_{m,t} + w_{2,t}$$

$$\vdots$$

$$X_{p,t} = \gamma_1 f_{1,t} + \dots + \gamma_p f_{m,t} + w_{m,t}$$

$$\mathbf{f}_t = \begin{bmatrix} f_{1,t} & \dots & f_{m,t} \end{bmatrix}^T$$

$$\mathbf{f}_1 \sim \mathcal{N}(\mathbf{f}_0, Q_0)$$

$$\mathbf{f}_t | \mathbf{f}_{t-1} \sim \mathcal{N}(A\mathbf{f}_{t-1} + B\mathbf{u}_t, Q)$$

GPFA: Data Workflow

GPFA: Data Workflow

GPFA: Parameter Estimation

GPFA: Parameter Estimation

Results: Tilt Task

Event	Left	Right
event_1	Extension	Flexion
event_3	Extension	Flexion
event_4	Flexion	Extension
event_6	Flexion	Extension

Results: Hyperparameter Optimization

Hyperparameter	Optimal Range
Bin Size	2 to 5ms
Latent Dimensionality	3 to 5

Normalized Mean-square Error

$$E_{\text{pred}} = \frac{E\left[(\hat{X} - X)^2\right]}{\sigma_X^2}$$

Discussion: Hyperparameter Optimization

- Lower bin size (i.e., 2ms) yields lower prediction error
 - Computationally prohibitive O(T^2)
- Used 'Online' method;
 subsampling of trials
 - Stochasticity in prediction/noise in error

Bin Size: 2ms - Latent Dimensionality: 3

Bin Size: 2ms - Latent Dimensionality: 5

Results: Latent Trajectories

- Bin size=5ms
- Highest variance trajectories
- Unclear as to whether these converge to a planar subspace

Results: Event-sorted Trajectories

- Correct trials/per event
- Trajectory endpoints (blue = start, purple = end)
- Planar subspace still inconclusive

Event_1: Behavioral vs. Latent Trajectories

Positive temporal correlation between right hindlimb force and latent blue trajectory. Right hindlimb flexion encoded in blue latent factor? Expect left hemisphere neurons to fire.

Event_1: Behavioral vs. Latent Trajectories

Correlation less obvious...

Event_3: Behavioral vs. Latent Trajectories

Event_4: Behavioral vs. Latent Trajectories

Negative temporal correlation between right hindlimb force and latent blue trajectory? **Positive** temporal correlation between left hindlimb force and latent blue trajectory?

Event_6: Behavioral vs. Latent Trajectories

Negative temporal correlation between right hindlimb force and latent blue trajectory? **Positive** temporal correlation between left hindlimb force and latent blue trajectory?

Conclusions/Future Work

Hyperparameters

- 5ms, p=5 are optimal
- Noise higher batch count; more compute?

Latent factors

- Planar subspace convergence = not evident
 - Try more/different latent dimensionality?
- Single factor loading
- Correlation with behavioral data = not apparent
 - More quantitative comparison (e.g. cross-correlation, optimal linear estimation)
 - Spike rate-based optimization

Methods

- Other estimation methods?
 - Gaussian variational inference

Questions?