# Tableaux multiples Et Données Evolutives 1

## **Méthode STATIS**

N. Niang Keita niang@cnam.fr

## **SOMMAIRE**

Introduction

La méthode STATIS

**Exemple: 1er tour scrutins élections présidentielles** 

La méthode STATIS DUALE

Application au contrôle des procédés à temps variable

## Introduction

- Cadre général: méthodes d'analyse simultanée de plusieurs tableaux de données
- Diverses situations:
  - pt variables mesurées sur nt individus à différentes dates: données évolutives
  - pt variables mesurées sur nt individus à différentes occasions (non temporel)
  - Plusieurs tableaux de contingence ou de proximités

## Introduction

- Plusieurs méthodes:
  - STATIS, STATIS DUALE
  - AFM
  - DACP
  - + AUTRES ANGLO SAXONS

### Méthodes STATIS

- Structuration de Tableaux A Trois Indices de la Statistique (Escoufier et L'Hermier des plantes (1976) + C.Lavit)
- permet l'exploration simultanée de plusieurs tableaux de données quantitatives:
- n individus et pt var différentes → STATIS
  - Privilégie la position des individus
- p var et n₁ individus différents → STATIS DUALE
  - Privilégie les relations entre variables

# L'approche de la méthode:

- Etude classique d'un tableau: l'analyse factorielle associe au tableau un ensemble de représentation graphiques (cercle de corrélations, plans factoriels)
- Plusieurs tableaux: études séparées→ trop de représentations indépendantes, pas pertinent; d'où:
- Recherche d'un ensemble unique de représentation, un résumé global, un compromis des tableaux

## Méthode STATIS

- Idée essentielle de la méthode:
- recherche d'une réponse à la question: les distances entre individus sont elles stables d'un tableaux à un autre ?
- Nécessité de trouver une structure commune aux études appelée intrastructure

## 4 étapes:

• Interstructure : étude globale des différences entre

tableaux

• Compromis : résumer les tableaux en un seul

représentatif selon certains critères

• Intrastructure : étude fine des différences entre

tableaux

• Trajectoires : évolution des individus ou variables

suivant les tableaux

## **Notations**

• On dispose de N tableaux **X**t à **p**t **variables** quantitatives décrivant les mêmes n individus

$$X_{i} = \begin{bmatrix} X_{11} & X_{21} & \cdots & X_{p_{1}} \\ Z & X_{12} & X_{22} & \cdots & X_{p_{1}2} \\ \vdots & \vdots & \ddots & \vdots \\ n & X_{1n} & X_{2n} & \cdots & X_{p_{m}} \end{bmatrix}$$



## Rappels ACP

- ACP classique : triplet (X, M, D)
  - facteurs principaux :  $MVu = \lambda u = (1)$
  - composantes principales : c = Xu

$$MX'DXu = \lambda u$$

$$XMX'DXu = \lambda Xu$$
  $X*(1)$ 

WDc= λc

W =matrice des produits scalaires entre individus Composantes principales  $WDc = \lambda c$ 

Etude de l'interstructure : analyse globale

- ACP particulière: 3 phases
- Définir un objet représentatif
- Définir une métrique pour distances entre objets
- Trouver une image des objets représentatifs

Interstructure : objet représentatif Wt

- Individu de l'ACP = objet représentatif d'un tableau X<sub>t</sub>
- $W_t = X_t M_t X_t$  caractérise  $(X_t, M_t, D)$

W<sub>t</sub> contient les produits scalaires entre individus = tous les liens inter individus

# Interstructure objet représentatif Wt

- On représente chaque étude  $(X_t, M_t, D)_{t=1, ..., N}$  par  $W_t$
- Même nombre d'individus

**D** = Matrice de poids des individus

$$X_{t} = \begin{bmatrix} X_{11} & X_{21} & \cdots & X_{P1} \\ 2 & X_{12} & X_{22} & \cdots & X_{P2} \\ \vdots & \vdots & \ddots & \vdots \\ n & X_{1n} & X_{2n} & \cdots & X_{Pn} \end{bmatrix}$$
 par 
$$\mathbf{W}_{t} = \mathbf{X}_{t} \mathbf{M}_{t} \mathbf{X}_{t}^{\prime}$$

 $X_{t} = \begin{cases} 1 \begin{bmatrix} X_{11} & X_{21} & \cdots & X_{p_{1}} \\ 2 & X_{12} & X_{22} & \cdots & X_{p_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ n \begin{bmatrix} X_{1n} & X_{2n} & \cdots & X_{p_{n}} \end{bmatrix} \end{cases}$  par  $\mathbf{W}_{t} = \mathbf{X}_{t} \mathbf{M}_{t} \mathbf{X}'_{t}$ • On associe un poids  $\pi_{t}$  à chaque  $\mathbf{W}_{t}$   $\Delta = \begin{bmatrix} \pi_{1} & 0 \\ \vdots & \vdots & \ddots \\ 0 & \pi_{N} \end{bmatrix}$ 

# Interstructure: métrique pour distances entre objets

• Metrique de l'ACP:

définir une distance entre objets Produit scalaire de Hilbert Schmidt:

$$\mathbf{S}_{tt'} = \langle \mathbf{W}_{t} | \mathbf{W}_{t'} \rangle_{HS} = Tr \left( \mathbf{D} \mathbf{W}_{t} \mathbf{D} \mathbf{W}_{t'} \right)$$

Si les objets Wt ont des normes très différentes:

$$\langle \mathbf{W}_{t} | \mathbf{W}_{t'} \rangle_{HS} = Tr \left( \mathbf{D} \mathbf{W}_{t} \ \mathbf{D} \mathbf{W}_{t'} \right) / \sqrt{Tr[\left( \mathbf{D} \mathbf{W}_{t} \right)^{2}]Tr[\left( \mathbf{D} \mathbf{W}_{t'} \right)^{2}]}$$

# Interstructure métrique pour distances entre objets

On reconnaît le **coefficient RV** (cf cours de Gonzalez):

On définit la matrice S qui contient les coefficients RV

On associe à chaque tableau un poids: 
$$\Delta = \begin{bmatrix} \pi_1 & 0 \\ \vdots & \ddots \\ 0 & \pi_N \end{bmatrix}$$

Comme en ACP on peut donc construire une image représentative des objets

Rque: S a tous ses termes positifs, on aura un facteur taille

# Interstructure image représentative des objets

- Rappel : STATIS = ACP particulière :
  - Individu =  $W_t$  = objet représentatif d'un tableau
  - Tableau de données = S = Matrice des coefficients RV (produits scalaires entre objets  $W_t$ ) et poids
  - Composante principale = vecteur propre de  $S\Delta$

# Interstructure image représentative des objets

#### • ACP de S∆

Les vecteurs propres de  $S\Delta$  associés aux deux plus grandes valeurs propres permettent la représentation des objets  $\mathbf{W}_1, \dots, \mathbf{W}_N$  sur le 1er plan factoriel :

- Les coordonnées des  $\mathbf{W}_t$  sur l'axe i sont contenues dans  $\mathbf{c}_{ti}$ :





|                | Extract L'analyse des données évolutives<br>methodes et applications. GEAI.                                                                                                                                                                                                                                                                                                     |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | methodes etablication GEDI                                                                                                                                                                                                                                                                                                                                                      |
|                | Scrutin 1969 Technic                                                                                                                                                                                                                                                                                                                                                            |
|                | dep GII DII GPI ATI NPI DI2 CN2 NP2                                                                                                                                                                                                                                                                                                                                             |
|                |                                                                                                                                                                                                                                                                                                                                                                                 |
|                | 95                                                                                                                                                                                                                                                                                                                                                                              |
|                | dep GII DII GPI DPI ATI NPI DI2 GI2 NP2                                                                                                                                                                                                                                                                                                                                         |
|                | 01 02 03 03                                                                                                                                                                                                                                                                                                                                                                     |
|                | 95                                                                                                                                                                                                                                                                                                                                                                              |
|                | Scrutin 1981                                                                                                                                                                                                                                                                                                                                                                    |
|                | dep GI1 DI1 GP1 AT1 NP1 DI2 GI2 NP2                                                                                                                                                                                                                                                                                                                                             |
| Exemple 1:     |                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 -            | 95                                                                                                                                                                                                                                                                                                                                                                              |
| l ler tour     |                                                                                                                                                                                                                                                                                                                                                                                 |
|                | 1 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                   |
| présidentielle | 95                                                                                                                                                                                                                                                                                                                                                                              |
| P              | Fig. 3.: Les tableaux de données étudiés.                                                                                                                                                                                                                                                                                                                                       |
|                | En 1969:  G11': Vote Defferre  G11': Vote Poher + Vote Pompidou  GP1: Vote Roard + Vote Duc!os + Vote Krivine  AT1: Vote Ducatel  NP1: Votes blancs et nuls + Abstention  L12: Vote Poher  L12: Vote Sulancs et nuls + Abstention  NP2: Votes blancs et nuls + Abstention |
|                | GII: Vote Mitterrand DII: 'Jote Giscard + Vote Muller + Vote Royer + Vote Chaban GPI: 'Vote Laguiller + Vote Krivine DPI: 'Vote Le Pen + Vote Renouvin ATI: 'Vote Héraut + Vote Sebag + Vote Dumont Votes blancs et nuls + Abstention GII: 'Vote Giscard d'Estaing NP2: 'Vote Sibanes et nuls + Abstention                                                                      |
|                | 9                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                                                                                                                                                                                                                                                                                                                                                 |





# Compromis-Intrastructure

## Interstructure = analyse globale

mise en évidence de ressemblances ou différences globales entre tableaux sans les expliquer.

Objectif de la suite = analyse plus fine pour expliquer

### Deux étapes:

- \* recherche d'un point de repère= compromis
- \* étude de l'intrastructure

# Recherche d'un compromis

Compromis = bon resumé, de même nature que les objets

solution: Wco moyenne pondérée des Wt

Les coefficients étant tels que W<sub>co</sub> soit le plus corrélé avec les W<sub>t</sub>



# Recherche d'un compromis

### Représentation et Interprétation

- 4 cas: \* Wt ont des normes voisines et des grands RV: existence d'une structure commune bien décrite par le compromis
  - \* un Wt différent des autres: il intervient peu dans la construction du compromis, robuste
  - \* Wt normes trop différentes: il faut normer
  - \* Wt très différents, RV faibles: pas de structure commune

# Intrastructure image représentative des points compromis

- ACP de W<sub>CO</sub>D
- Les vecteurs propres de  $W_{co}\mathbf{D}$  associés aux deux plus grandes valeurs propres fournissent une image euclidienne des points compromis
  - Les coordonnées compromis sur l'axe i sont contenues dans le vecteur  $\mathbf{c}_{CO.i}$ :

$$\mathbf{c}_{CO,i} = \sqrt{\delta_i} \, \mathbf{v}_i = \frac{1}{\sqrt{\delta_i}} \, \mathbf{W}_{co} \mathbf{D} \mathbf{v}_i$$
 jeme valeur propre de  $\mathbf{W}_{co} \mathbf{D}$ 



# Intrastructure : corrélation variablescompromis

- Chaque composante principale du compromis est un vecteur à n dimension, n étant le nombre d'individus des tableaux initiaux.
- Calcul de leurs corrélations avec les variables initiales des tableaux X<sub>t</sub>
- Représentation des cercles de corrélation
- Interprétation des axes pour expliquer les positions compromis des individus





# STATIS - Trajectoires des individus

• Méthode: technique des points supplémentaires:

Représentation sur l'image euclidienne compromis des *N* nuages des individus

$$\mathbf{c}_{CO\ t,i} = \frac{1}{\sqrt{\delta_i}} \mathbf{W}_t \mathbf{D} \mathbf{v}_i$$

• Remarque :  $\mathbf{c}_{CO,i}$  est le "centre de gravité" des points  $\mathbf{c}_{CO,t,i}$ 

## STATIS - Trajectoires des individus

- Objectif:
  - Mise en évidence des écarts entre les W<sub>t</sub> et avec le compromis au niveau individuel
  - Détection des individus responsables des écarts entre tableaux
- Définition :
  - On place les différentes positions d'un individu tel qu'il est décrit par chaque étude. Ces différentes positions définissent sa trajectoire

# Interprétation des trajectoires

- Deux classes de trajectoires des individus :
  - Peu étendue autour de sa position compromis = individus dont l'évolution suit l'évolution moyenne, écart par rapport à la moyenne régulier d'un tableau à l'autre
  - Trajectoire de grande amplitude = changement de structure suivant les tableaux, différence avec l'évolution moyenne

Rque: si les axes du compromis sont bien corrélés avec les variables on pourra expliquer les axes par les variables et on interprètera de façon détaillée les trajectoires des individus



## STATIS DUALE

- Même démarche que STATIS en prenant comme matrice représentant un tableau, V<sub>t</sub> la matrice de covariance des variables à la place des W<sub>t</sub>.
- On privilégie les variables au lieu des individus.
  - Interstructure: étude globale des variables
  - Compromis: moyenne pondérée des V<sub>t</sub>
  - Intrastructure: compromis des variables
  - Trajectoires de variables

## STATIS DUALE

Exemple d'application:

Contrôle de procédés par lots à temps variable