Lecture 12.

- Basie Machine Learning
 - Optimization
 - Convexity
 - Gradient Descent

Roadmap

- 1 Privacy Attacks
 - Reconstruction attacks
 - Attack on K- Anon. (Composition).
- 2 Differential Privacy.
 - Randomired Response Composition
- Laplace Mech.
- Exp. Mech.
- Gaussian Mech.

Group Privacy

- 4 Fairness in ML.
 - Consequential decision-making
- (?) Cryptography. (?) Local Model of DP.

- (3) Applications.
- DP ML.
- DP Synthetic Data.

Linear Regression

	total_bill	tip
0	16.99	1.01
1	10.34	1.66
2	21.01	3.50
3	23.68	3.31
4	24.59	3.61
5	25.29	4.71
6	8.77	2.00
7	26.88	3.12
8	15.04	1.96
9	14.78	3.23
10	10.27	1.71
11	35.26	5.00
12	15.42	1.57
13	18.43	3.00
14	14.83	3.02
15	21.58	3.92

labeled example
$$(x_i, y_i)$$

$$X_i = \text{total boil}$$

$$Y_i = \text{tip.}$$

$$\min_{W \in \mathbb{R}} \sum_{i=1}^{n} (w x_i - y_i)^2$$

$$Squared loss.$$

Linear Classification

 $Z_i = y_i \langle w, \chi_i \rangle$ $\uparrow \qquad \uparrow$ $\pm 1 \qquad \text{want to metch}$ $\text{sign of } y_i$

Logistic loss : $\frac{n}{n}$ $\ln \left(1 + \exp(-z_i)\right)$.

(Private) Optimization.

Given a clota set
$$X = (X_1, ..., X_n)$$

loss function: l

feasible set of parameters: $C \subseteq R^d$

(weights)

Empirical Risk Minimization (ERM):

$$L(w; x) = \frac{1}{n} \sum_{i=1}^{n} l(w; x_i) + \Lambda(w)$$

Empirical Risk.

Poptional Regularization

for example 2 ||w||₂

Goal: Find
$$\hat{w} \in C$$
 such that
$$L(\hat{w}, x) - \min_{w \in C} L(w, x) \quad \text{is "small".}$$
"Regret"
$$\text{difference w.r.t. the "best"}$$

Empirical Risk:
$$L(w; x) = \frac{1}{n} \sum_{i=1}^{n} l(w; x_i)$$

Population Risk: $L(w; P) = \mathbb{E}\left[l(w; x_i)\right]$

Usually, ER is a good proxy for PR.

Differential Privary \Rightarrow Preventing overfitting.

Examples of loss functions:
$$\chi = ((\chi_1, y_1), \dots, (\chi_n, y_n))$$

Squared loss
$$L(w; x) = \frac{1}{n} \sum_{i=1}^{n} (\langle w, x_i \rangle - y_i)^2$$

Hinge loss $L(w; x) = \frac{1}{n} \sum_{i=1}^{n} (1 - y_i \langle w, x_i \rangle)_+$
(used in support vector machine)
$$(a)_+ = \begin{cases} a & \text{if } a > 0 \\ 0 & \text{o/w.} \end{cases}$$

Convexity. (Sets and functions)

• $C \subseteq \mathbb{R}^d$ is convex if $\forall x, y \in \mathbb{C}$, $t \in [0,1]$ $t \cdot x + (1-t) \cdot y \in C$ line segment

• $f: C \longrightarrow \mathbb{R}$ is convex if $\forall x, y \in C$

(non-convex) Local Hope: Global min

$$\ell : \mathcal{C} \times \mathcal{X} \longrightarrow \mathcal{R}$$

$$\ell(w, x)$$
 measures "loss"

$$L: C \longrightarrow \mathbb{R}$$

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} l(w, x_i)$$

$$\frac{1}{C}(w) = \underset{w' \in C}{\operatorname{arg min}} \|w - w'\|_{2}$$

$$||Projection||$$