Démonstration du Théorème de Bézout

Enoncé du théorème

Deux entiers relatifs a et b sont premiers entre eux **si et seulement si**, il existe deux entiers relatifs u et v tels que :

$$au + bv = 1$$

Si et seulement si => Implication dans les deux sens

Sens direct:

Immédiat grâce à l'identité de Bézout

Soit
$$a$$
 et $b \in Z$, $\exists (u, v) \in \mathbb{Z}^2 : au + bv = PGCD(a, b)$

lci, vu que PGCD (a,b) = 1, le théorème est validé dans ce sens.

Réciproque:

On suppose qu'il existe deux entiers u et v tels que

$$au + bv = 1$$
 Si $D = PGCD(a,b),$ alors $D \mid a$ et $D \mid b$ donc $D \mid au + bv$

Donc D divise 1. On a alors bien D = 1 car 1 est son seul diviseur et deux nombres tels que PGCD(a,b) = 1 sont forcément premiers entre eux.