

AVM Technical Note

IPv6-Unterstützung in der FRITZ!Box

Inhalt

Einleitung	. 3
Welche Geräte unterstützen IPv6?	
Routing-Durchsatz	. 3
Dual Stack	. 3
Dual Stack Lite	. 3
Welche Verfahren unterstützt FRITZ!Box, wenn der Internetanbieter natives IPv6 unterstützt?	. 4
In welcher Reihenfolge werden IPv4 und IPv6 ausgehandelt?	. 5
Welche Verfahren unterstützt FRITZ!Box, wenn der Internetanbieter kein natives IPv6 unterstützt?	5
FRITZ!Box und IPv6 im Heimnetzwerk	. 5
Welche FRITZ!Box-Dienste sind IPv6-fähig?	. 6
Unterstützte RFCs und Drafts	7

Einleitung

FRITZ!Box unterstützt IPv6 in zahlreichen Aspekten. Dieses Papier gibt einen Überblick über die aktuell unterstützen Protokolle und versucht, häufig gestellte technische Fragen zur IPv6-Implementierung in der FRITZ!Box zu beantworten.

Welche Geräte unterstützen IPv6?

Alle Geräte, die mindestens eine 2 an der zweiten Stelle ihrer Modellnummer tragen, unterstützen IPv6. Beispiele: **FRITZ!Box** Fon WLAN 7**2**70, 7**3**90, 7**3**30, 7**3**60, 7**3**60 SL, 6**3**20, 6**3**60, 3**3**70 unterstützen IPv6. FRITZ!Box Fon WLAN 7**1**70 unterstützt IPv6 nicht. Ausnahme: das Modell 7270**v1** unterstützt IPv6 nicht.

Neben den FRITZ!Box-Modellen wird IPv6 auch von den folgenden Geräten unterstützt: FRITZ!WLAN Repeater 300E, FRITZ!WLAN Repeater N/G und alle FRITZ!WLAN USB Sticks.

Routing-Durchsatz

Der IPv6-Durchsatz entspricht den Werten, die auch mit IPv4 erzielt werden. Geräte mit Paketprozessoren zeigen auch bei IPv6 einen deutlichen Leistungssprung gegenüber Geräten ohne Hardware-Beschleunigung.

Dual Stack

FRITZ!Box unterstützt Dual-Stack-Verbindungen. Das bedeutet, dass sowohl natives IPv6 als auch natives IPv4 mit dem Internetanbieter ausgehandelt wird.

Dieser Ansatz führt dazu, dass Heimnetze über natives IPv6 mit dem IPv6-Internet verbunden sind, löst aber ohne weitere Maßnahmen noch nicht die IPv4-Adressknappheit. Die IPv4-Adressknappheit kann durch zusätzliches Carrier Grade NAT (CGN) im Dual-Stack-Betrieb gelöst werden. Der Anbieter vergibt in diesem Fall für die IPv4-Verbindung RFC-1918-Adressen. Neben dem Vorteil, dass IPv4-Geräte so ohne Veränderung weiter funktionieren, birgt dieser Ansatz ähnlich wie von UMTS bekannt jedoch einige Nachteile:

- Doppelte NAT-Instanz: Sowohl FRITZ!Box als auch das CGN-Gerät beim Anbieter führen jeweils NAT aus. Viele IPv4-Anwendungen sind mittlerweile NAT-kompatibel. Einige sind jedoch nicht dafür ausgelegt, durch zwei NAT-Instanzen hindurch zu funktionieren.
- Portfreigaben in die Richtung des Heimnetzwerks sind nicht mehr einfach möglich, da die Einstellungen des Anbieter-CGNs in aller Regel nicht vom Anwender verändert werden können.
- Fernzugang/VPN und Fernwartung (https) über IPv4 funktionieren meist nicht.

Dual Stack Lite

FRITZ!Box unterstützt auch das Verfahren "Dual Stack Lite". In diesem Modus wird ausschließlich eine native IPv6-Verbindung zum Internetanbieter aufgebaut. IPv4-Pakete werden dann in IPv6-Paketen getunnelt und zu einem Gateway beim Anbieter (AFTR) gesendet. Das AFTR-Gateway leitet diese Pakete in das IPv4-Internet weiter und packt die Antworten aus dem IPv4-Internet wieder in IPv6-Pakete ein, die dann zur FRITZ!Box gesendet werden. In diesem Modus erfolgt Network Address Translation (NAT) für IPv4 nicht mehr in der FRITZ!Box, sondern ausschließlich im AFTR-Server. Dieser Ansatz bietet gegenüber dem Dual-Stack-Modell einige Vorteile:

- Nur eine Sorte Pakete, nämlich IPv6-Pakete, werden über die WAN-Strecke des Endanwenders übertragen. Es sind somit weniger Verwaltungsinformationen pro Endanwender im BRAS notwendig als im Dual-Stack-Ansatz.
- Nur eine NAT-Instanz ist aktiv. Nahezu alle IPv4-Anwendungen funktionieren abgehend damit.
- Portfreigaben sind über das Port Control Protocol (PCP) möglich (in Vorbereitung)
- Fernwartung (https) und Fernzugang (VPN) über IPv4 funktionieren, nachdem per PCP der https-Port bzw. der UDP-NAT-Traversal-Port freigegeben wurde.

Momentan werden verschiedene Ansätze für ein Port Control Protocol diskutiert. Sobald AFTR-Gateways als Gegenstelle verfügbar sind, wird der Ansatz, der sich durchgesetzt hat, in FRITZ!Box integriert werden.

Welche Verfahren unterstützt FRITZ!Box, wenn der Internetanbieter natives IPv6 unterstützt?

Für eine native IPv6-Internetverbindung werden seitens der FRITZ!Box die folgenden Angaben benötigt: linklokale Adresse, global gültige WAN-Adresse, LAN-Präfix und DNS-Server.

Generell wird nur die link-lokale Adresse über ein linkspezifisches Protokoll ausgehandelt. Alle weiteren Aushandlungen geschehen unabhängig von der Verbindungsart. Eine link-lokale Adresse ist die Voraussetzung für alle weiteren Schritte.

- **DSL:** Die link-lokale Adresse wird im PPP-Fall über IPv6CP ausgehandelt. In der Verbindungsart "bridged" wird die link-lokale Adresse aus der MAC-Adresse der FRITZ!Box berechnet und per DAD überprüft (SLAAC RFC 2462).
- **Cable/Docsis:** Die link-lokale Adresse wird aus der MAC-Adresse der FRITZ!Box berechnet und per DAD überprüft (SLAAC RFC 2462).
- **Ethernet:** Die link-lokale Adresse wird aus der MAC-Adresse der FRITZ!Box berechnet und per DAD überprüft (SLAAC RFC 2462).

Nachdem eine link-lokale Adresse vorhanden ist, bezieht FRITZ!Box mit Hilfe der folgenden Verfahren die folgenden Angaben: eine global gültige WAN-Adresse, über IPv6 erreichbare DNS-Server, das gegebenenfalls verfügbare AFTR-Gateway und ein global gültiges Präfix für das Heimnetzwerk.

- 1. Zunächst wird versucht, die **WAN-Adresse** aus dem **Router Advertisement** des Anbieters abzuleiten. Falls Angaben über DNS-Server im Router Advertisement vorhanden sind (RFC 5006), werden diese übernommen.
- 2. Anschließend wird über **DHCPv6** ein global gültiges Präfix (**IA_PD**) für das Heimnetzwerk angefragt. Sofern in Schritt 1 keine globale WAN-Adresse für die FRITZ!Box ermittelt werden konnte, wird über DHCPv6 nun eine solche Adresse angefordert (**IA_NA**). Ebenso werden DNS- und NTP-Server über DHCPv6 (**DNS_SERVERS, NTP_SERVER**) angefordert, falls noch keine aus Schritt 1 bekannt sind.
- 3. Falls weiterhin keine WAN-Adresse bekannt ist, wird das erste /64-Netz aus dem zugewiesenen LAN-Präfix für das WAN-Interface der FRITZ!Box genutzt.

Neben der automatischen Ermittlung der Angaben unterstützt FRITZ!Box auch die manuelle Konfiguration aller in diesem Abschnitt beschriebenen Werte.

In welcher Reihenfolge werden IPv4 und IPv6 ausgehandelt?

Dies hängt von der Einstellung in der FRITZ!Box ab:

- Im Modus "Immer eine native IPv4-Anbindung nutzen" wird zunächst eine native IPv4-Verbindung aufgebaut. Falls per DHCPv4 ein 6RD-Gateway gelernt wurde, wird ein 6RD-Tunnel aufgebaut. Ansonsten wird versucht, eine native IPv6-Verbindung aufzubauen (Dual Stack).
- Im Modus "Immer eine native IPv6-Anbindung nutzen" wird zunächst natives IPv6 ausgehandelt. Falls per DHCPv6 ein AFTR-Gateway bezogen wurde, wird für IPv4 das DS-Lite-Verfahren genutzt. Falls kein AFTR-Gateway bekannt ist oder die native IPv6-Verbindung nicht aufgebaut werden konnte, wird natives IPv4 aufgebaut.

Welche Verfahren unterstützt FRITZ!Box, wenn der Internetanbieter kein natives IPv6 unterstützt?

FRITZ!Box unterstützt als Übergangstechnologie zahlreiche Tunnelprotokolle, um über eine IPv4-Anbindung getunnelt auf das IPv6-Internet zuzugreifen. Generell gilt: alle Protokolle basieren auf dem IP-Protokoll 6in4 (IP-Protokoll 41). Alle Tunnelprotokolle werden innerhalb des FRITZ!Box-Routing-Stacks nicht hardwarebeschleunigt und sind kein vollwertiger Ersatz für eine native IPv6-Anbindung. Ein vorgelagertes NAT-Gerät (z.B. Carrier Grade NAT oder ein vorgelagerter NAT-Router im Heimnetzwerk) verhindert meistens den Einsatz der Tunnelprotokolle.

- 6to4: dieses Protokoll ist ohne Anmeldung über viele IPv4-Verbindungen nutzbar. Es wird automatisch das nächstgelegene 6to4-Gateway ermittelt. Das IPv6-Präfix wird automatisch aus der IPv4-Adresse abgeleitet. Da es einige fehlkonfigurierte 6to4-Gateways im Internet gibt, ist dieses Protokoll nicht immer zuverlässig.
- SIXXS: erfordert eine Anmeldung beim Anbieter SixXS. Es wird ein statisches Präfix vergeben, so dass immer die gleichen global gültigen Adressen im Heimnetzwerk genutzt werden.
- 6in4: hier werden der entfernte Tunnelendpunkt und das LAN-Präfix manuell konfiguriert.
- 6RD: Tunnelendpunkt und IPv6-Präfix werden manuell konfiguriert oder per DHCPv4 provisioniert.

FRITZ!Box und IPv6 im Heimnetzwerk

FRITZ!Box verteilt im Heimnetzwerk das vom Internetanbieter zugewiesene global gültige Präfix über Router-Advertisement-Nachrichten. Alle Stationen im Heimnetzwerk können sich so mit Hilfe des SLAAC-Verfahrens selbst Adressen zuweisen.

Das vom Internetanbieter zugewiesene Präfix muss mindestens die Größe /64 haben, da dies das kleinstmögliche Subnetz für Ethernet-basierte Heimnetzwerkstandards (WLAN, Ethernet, PLC, ...) ist. Für die uneingeschränkte Nutzung aller Funktionen ist ein größeres Subnetz notwendig, z.B. /56, sonst kann das Heimnetzwerk nicht in verschiedene Subnetze segmentiert werden, wie sie beispielsweise für den WLAN-Gastzugang benötigt werden.

Welche FRITZ!Box-Dienste sind IPv6-fähig?

IPv6-fähige Dienste im Heimnetzwerk:

- FRITZ!NAS-Zugang über SMB sowie über FTP/FTPS
- Die Benutzeroberfläche kann mit http oder https via IPv6 erreicht werden.
- Der DNS-Resolver der FRITZ!Box unterstützt Anfragen nach IPv6-Adressen (AAAA Records) und kann Anfragen über IPv6 an den vorgelagerten DNS-Resolver des Internetanbieters stellen.
- Verteilen des global gültigen Präfix über Router Advertisement
- WLAN-Gastzugang: Trennung zwischen Heimnetzwerk und WLAN-Gästen mittels IPv6-Subnets.

IPv6 fähige Dienste im Internet:

- FRITZ!NAS-Zugang über FTPS
- Stateful Inspection Firewall
- Remote Provisioning (TR-069)
- NTP
- Fernwartung über https
- DynDNS (in Vorbereitung, abhängig von der IPv6-Unterstützung seitens des Anbieters)
- VoIP (in Vorbereitung, abhängig von der IPv6-Unterstützung seitens des Anbieters)

Unterstützte RFCs und Drafts

- RFC 1981 Path MTU Discovery for IPv6
- RFC 2375 IPv6 Multicast Address Assignments
- RFC 2428 FTP Extensions for IPv6 and NATs
- RFC 2460 Internet Protocol IPv6 Specification
- RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Version 6
- RFC 2464 Transmission of IPv6 over Ethernet Networks
- RFC 2472 IP Version 6 over PPP
- RFC 2473 Generic Packet Tunneling in IPv6 Specification
- RFC 3056 Connection of IPv6 Domains via IPv4 Clouds
- RFC 3068 An Anycast Prefix for 6to4 Relay Routers
- RFC 3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
- RFC 3587 IPv6 Global Unicast Address Format
- RFC 3596 DNS Extensions to Support IP Version 6
- RFC 3633 IPv6 Prefix Options for DHCP Version 6
- RFC 3646 DNS Configuration options for DHCP for IPv6
- RFC 3736 Stateless DHCP Service for IPv6
- RFC 3769 Requirements for IPv6 Prefix Delegation
- RFC 4191 Default Router Preferences and More-Specific Routes (teilweise, keine more-specific routes)
- RFC 4193 Unique Local IPv6 Unicast Addresses
- RFC 4241 A Model of IPv4/IPv6 Dual Stack Internet Access Service
- RFC 4242 Information Refresh Time Option for DHCPv6
- RFC 4291 IPv6 Addressing Architecture (Obsoletes RFC 3513)
- RFC 4294 IPv6 Node Requirements
- RFC 4339 IPv6 Host Configuration of DNS Server Information Approaches
- RFC 4443 ICMPv6 for the IPv6 Specification
- RFC 4472 Operational Considerations and Issues with IPv6 DNS
- RFC 4795 Link-Local Multicast Name Resolution (LLMNR)
- RFC 4861 Neighbor Discovery for IPv6
- RFC 4862 IPv6 Stateless Address Autoconfiguration
- RFC 4942 IPv6 Transition-Coexistence Security Considerations
- RFC 5006 IPv6 Router Advertisement Option for DNS Configuration
- RFC 5175 IPv6 Router Advertisement Flags Options
- RFC 5569 IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)
- RFC 5908 Network Time Protocol (NTP) Server Option for DHCPv6
- RFC 5969 IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) -- Protocol Specification
- RFC 6092 Simple Security in IPv6 Gateway CPE
- RFC 6204 Basic Requirements for IPv6 Customer Edge Routers
- RFC 6334 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Option for Dual-Stack Lite Routers