Write your name here Surname	Other nan	nes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Unit 6: Chemistry Lal		
Thursday 28 January 2016 - Time: 1 hour 15 minutes	– Afternoon	Paper Reference WCH06/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 9 4 2 A 0 1 1 6

Turn over ▶

Answer ALL the questions. Write your answers in the spaces provided.

1 The inorganic salt **A** has one cation and one anion. Complete the table below.

	Test	Observations	Inferences
(a)	Observe the appearance of A	A is a brown powder	The part of the Periodic Table in which the metal element in A is likely to be found is
(b)	Dissolve A in the minimum volume of concentrated hydrochloric acid	A yellow solution forms	The formula of the cation in A could be
(c)	Gradually dilute a portion of the solution from (b) with distilled water	The yellow solution turns dark green then pale blue	The formula of the cation in A is confirmed as
(d)	Place a sample of solid A in a test tube and heat it strongly	A pale green gas is evolved which turns damp blue litmus paper red and then bleaches it	The gas is So the anion in A is
		A white solid residue remains	
(e)	Add dilute hydrochloric acid to the white solid obtained in (d)	A colourless solution forms	The white solid is
	Shake the mixture vigorously	The colourless solution turns blue	The type of reaction which results in the change from colourless to blue is

the test.	(2)
(g) Suggest a test to confirm the identity of the anion in A . Give the result of the test.	
	(2)
(h) Give the formulae of the ions that give the yellow colour to the solution described	
in (b), and the green colour to the solution described in (c).	
	(2)
ellow colour	
reen colour	
(Total for Question 1 = 13 ma	rks)

2 Isophorone is a colourless liquid with a peppermint smell, found in cranberries. The structure of isophorone is shown below.

(a) There are two functional groups present in isophorone.

Name these functional groups and describe a **chemical** test and its result that could be used to identify each functional group.

(4)

Functional group	Test	Result

(b) Isophorone has several proton environments that would produce peaks in its proton nuclear magnetic resonance (nmr) spectrum. One of the environments is circled on the structure of isophorone shown below.

(i) The circled proton environment produces a peak in the low resolution nmr spectrum.

State and explain the splitting pattern that you would expect in this peak in the **high** resolution proton nmr spectrum of the molecule.

(1)

(ii) On the structure of isophorone shown below, circle each of the other proton environments that would produce a peak in the **low** resolution proton nmr spectrum of the molecule. Indicate clearly if any of the proton environments are identical.

(2)

(Total for Question 2 = 7 marks)

- 3 This question is about a student experiment to prepare crystals of iron(II) sulfate-7-water (FeSO₄.7H₂O) and then to determine the number of moles of water of crystallization in the sample which they have prepared.
 - (a) Each student was given 5.00 g of iron filings which was added to excess dilute sulfuric acid, warmed and allowed to stand until no further reaction occurred. The resulting solution was cooled and filtered, and the required crystals were obtained from the filtrate.
 - (i) Calculate the minimum volume of dilute sulfuric acid of concentration 2.00 mol dm⁻³ required to react completely with 5.00 g of pure iron filings. The equation for this reaction is

$$Fe(s) + H2SO4(aq) \rightarrow FeSO4(aq) + H2(g)$$
(2)

(ii) Why was the reaction mixture filtered?

(1)

(iii) Describe how pure crystals of iron(II) sulfate-7-water are obtained from the filtrate.	
	(2)
(iv) One student obtained a yield of 89.5% from this preparation.	
Taking the formula of the crystals as $FeSO_4.7H_2O$, calculate the mass of iron(II) sulfate-7-water obtained by this student. Assume that the iron filings were pure.	
	(3)

(b)	A second student dissolved 6.75 g of their prepared crystals in about 150 cm ³ of dilute sulfuric acid in a beaker and used this solution to prepare exactly 250.0 cm ³ of a solution for titration.	
	25.0 cm ³ samples of this final solution were further acidified with dilute sulfuric acid	d.
	These samples were titrated with potassium manganate(VII) solution to determine the number of moles of water of crystallization per mole of iron(II) sulfate.	
	(i) Describe in outline how you would prepare the 250.0 cm ³ of the solution for titration from the solution obtained by dissolving 6.75 g of the crystals in 150 cm ³ of dilute sulfuric acid.	
		(3)

(ii) Suggest what would happen to the solution of iron(II) sulfate if it was prepared using distilled water, rather than dilute sulfuric acid as the solvent. Describe and explain what you would see.

(2)

(iii) Describe the end point of the titration.

(1)

(iv) Using 6.75 g of their crystals and the method described in (b), the student obtained a mean titre of 25.35 cm³.

The concentration of the potassium manganate(VII) solution was 0.0195 mol dm⁻³ and the equation for the titration reaction is

$$MnO_{4}^{-} \; + \; 8H^{+} \; + \; 5Fe^{2+} \; \rightarrow \; Mn^{2+} \; + \; 5Fe^{3+} + \; 4H_{2}O$$

Calculate the molar mass of the crystals and hence the number of moles of water of crystallization per mole of iron(II) sulfate in the student's crystals. You must show your working.

(4)

(Total for Question 3 = 21 marks)

(c)		hird student carried out the experiment described in (b) and found that there s 7.1 mol of water of crystallization per mole of the iron(II) sulfate.	
	(i)	The total experimental uncertainty associated with the determination of the molar mass is approximately $\pm0.9\%$.	
		Use these data to show that the result obtained by this student is within this experimental uncertainty.	
			(2)
	(ii)	Most of the students in the class obtained values higher than the Data Book value of 7. Suggest a reason for this.	(1)

10

BLANK PAGE

4 Steam distillation is one method used to separate organic compounds from mixtures.

Some information about nitrobenzene is summarised in the table below.

Molecular formula	$C_6H_5NO_2$
Appearance	Oily yellow liquid
Density	1.20 g cm ⁻³
Boiling temperature	211°C
Solubility in water	0.19 g / 100 g of water at 20°C

(a) The diagram below shows a steam distillation apparatus used to extract nitrobenzene from a reaction mixture.

(i) Identify substance A.

(1)

(ii) Explain the purpose of the part of the apparatus labelled B .	(1)
(iii) On the diagram below, draw and label the contents of the receiver at the end of the steam distillation.	(2)
(b) The nitrobenzene may be further purified by simple distillation.	
Describe the steps needed before the product of steam distillation can be further distilled. Any apparatus or chemicals needed for these steps should be named but practical details are not required.	
	(3)

(c) A bottle of nitrobenzene has the hazard labels shown below.

(i) Complete the table above with the meaning of each symbol.

(1)

(ii) Suggest **one** change or addition to the **apparatus** in part (a) that would reduce the risk from **both** these hazards.

(1)

(Total for Question 4 = 9 marks)

TOTAL FOR PAPER = 50 MARKS

BLANK PAGE

The Periodic Table of Elements

pa	80	Ru	[222]	xenon 54	Xe	131.3	Kr krypton 36	Ar argon 18	20.2 Ne neon	He helium 2	0 (8)
een report	62	At	[210]	53	- indipoi	126.9	Br bromine 35	35.5 Cl chlorine 17	19,0 F fluorine 9	(17)	7
116 have b ticated	84	Po	[506]	fellurium 52	Te	127.6	Se selenium 34	32.1 S sulfur 16	16.0 O oxygen 8	(16)	٥
Elements with atomic numbers 112-116 have been reported but not fully authenticated	83	Bi bismuth	209.0	antimony 51	Sb	121.8	AS arsenic 33	31.0 P phosphorus 15	14.0 N nitrogen 7	(15)	0
atomic nun but not fu	78	Pb	207.2	50	Sn	118.7	Ge germanium 32	Si Siticon 14	12.0 C carbon 6	(14)	r
ents with	S S	TI	204.4	andium 49	- L	114.8	Ga gallium 31	27.0 AI atuminium 13	10.8 B boron 5	(13)	n
Еет	90	Hg	9.002	cadmium 48	2	112.4	Zn zinc 30	(12)			
Rg centgenium 111	6	Au	197.0	silver 47	Age	107.9	Cu copper 29	(11)			
Mt Ds Rg meitnerium damstadtum roentgenium	8/	Pt platinum	195.1	palladium 46	Pd	106.4	Ni nicket 28	(01)			
Mt neitnerium 109	//	lridium	192.2	rhodium 45	F S	102.9	Co cobalt 27	(6)			
Hs hassfum r	0/	OS	190.2	ruthenium 44	Ru	101.1	Fe iron 26	(8)		1.0 Hydrogen	
Bh bohrium 107	(2)	Re	186.2	um technetium 43	_	[86]	Mn manganese 25	(7)			
Sg seaborgium 106	14	W	183.8	molybdenum 42	Mo	6.56	Cr chromium r 24	(9)	nass ool umber		
dubmium s	/3	Ta	180.9	41 41		67.6	V vanadium 23	(5)	relative atomic mass atomic symbol name atomic (proton) number	Key	
Rf nutherfordlum 104	7/	Hf	178.5	40	Zr	91.2	Ti titanium 22	(4)	relativ ato i atomic		
Ac* Rf actinium nuherfordlum 89 104	/6	La*	138.9	yttnum 39		88.9	Scandium 21	(3)			
Ra radium 88	80	P	137.3	strontium 38	Sr	9.78	Ca calcium 20	24.3 Mg magnesium 12	9.0 Be	(2)	4
Fr francium 87	22	Cs	132.9	37	_	85.5	K potassium 19	Na Sodium 11	6.9 Li lithium 3	(β)	

in	
9	
ē	
S	
a	
E	
B	
4	
등	
+	

* Actinide series

0	141	144	[147]	150	152	157	159	163	165	167	169	173	175
di.	Pr	PN	Pm	Sm	Eu	Р	T	Ď	Н	H	TT	ΛP	P.
E	ргазеходутнит	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
	59	09	19	62	63	64	65	99	67	89	69	20	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	[257]
-	Pa	ח	Q.	Pu	Am	5	BK	ຽ	Es	Fm	PW	%	۲
orium	protactinium	uranium	neptunium	plutonium	americium	CURUM	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	16	92	93	94	95	96	46	86	66	100	101	102	103