REFLEXIÓN NORMAL

CAPÍTULO 7: Reflexión Normal entre dos Medios Dieléctricos	Concepto	Desarrollo del Tema	Demostrar Fórmula	Práctico
7.1. Introducción	X	X		
7.1.1. Condiciones de continuidad en dos medios dieléctricos		X		
7.2. Coeficiente de reflexión ($\Gamma_{\rm E}$)		X	X	07.01.51
7.3. Coeficiente de refracción (T _E)		X	X	07.02.52
7.4. Coeficiente de reflexión ($\Gamma_{\rm H}$) del campo H		X	X	07.03.53
7.5. Coeficiente de refracción (T _H) del campo H		X	X	07.04.54
7.6. Conclusiones	X		X	
7.7. Reflexión y transmisión en cualquier medio		X	X	
7.8. Impedancia de campo	X		X	

CAPÍTULO 8: Reflexión Normal sobre un Conductor Perfecto	Concepto	Desarrollo del Tema	Demostrar Fórmula	Práctico
8.1. Introducción		X		
8.2. Cálculo del Campo Eléctrico Total			X	08.01.55
8.3. Cálculo del Campo Magnético Total			X	08.02.56
8.4. Conclusión	X			08.03.57

CAPÍTULO 9: Cálculo Analítico y Gráfico del	Concepto	Desarrollo	Demostrar	Práctico
Campo Total en Reflexión Normal		del Tema	Fórmula	
9.1. Distribución de tensión y corriente en medios	X			
con reflexiones	21			
9.1.1. Línea de transmisión con carga a circuito abierto		X		
9.2. Teorema del coseno	X		X	09.01.58
9.3. Diagrama de Crank	X	X		09.03.60
9.3.1. Relación de onda estacionaria	X		X	09.02.59
9.3.2. Procedimiento de cálculo de la distribución de			X	09.04.61
campo			A	09.04.01
9.3.3. Cálculo de la distancia al máximo			X	
9.3.4. Cálculo de la distancia al mínimo			X	
9.4. Construcción del Ábaco de Smith	X		X	09.05.62
9.4.1. Familia de curvas de parte real de la impedancia			X	09.06.63
normalizada constante			Λ	09.00.03
9.4.2. Familia de curvas de parte imaginaria de la			X	09.07.64
impedancia normalizada constante			A	09.07.04
9.5. Ábaco de Smith	X	X	X	
9.5.1. Escalas circulares en Diagramas de Smith		X		
9.5.2. Escalas Radiales en Diagramas de Smith		X		
9.5.3. Descripción detallada de las Escalas Radiales		X	X	
9.5.4. Ubicación de impedancias y admitancias		X		09.08.65
normalizadas en el ábaco				09.09.66
9.5.5. Cálculo de distancias entre impedancias o entre		X		00 10 67
admitancias		A		09.10.67

LÍNEAS DE TRANSMISIÓN, ADAPTACIÓN

CAPÍTULO 12: Líneas de Transmisión	Concepto	Desarrollo del Tema	Demostrar Fórmula	Práctico
12.1. Teoría de circuitos y de líneas de transmisión	X	der Terria	Tomaia	
12.1.1. Introducción		X		
12.2. Parámetros distribuidos de la línea		X		
12.2.1. Nociones y unidades		X		
12.3. Análisis de la línea como cuadripolo		X	X	
12.4. Impedancia característica aplicada a la línea (En				12.01.77
función de los parámetros distribuidos)			X	12.02.78
12.5. Coeficiente de reflexión en líneas de transmisión			X	12.03.79
12.6. Periodo transitorio en línea de transmisión con				
fuente de tensión continua			X	
12.7. Ecuaciones básicas del telegrafista		X	X	
12.8. Ecuaciones de onda en el medio conductor		X	X	
12.9. Calculo de amplitudes A1 y A2		X	X	
12.9.1. Calculo de las constantes en el extremo		W	N/	
generador		X	X	
12.9.2. Calculo de las constantes en el extremo		v	v	
receptor		X	X	
12.10. Coeficiente de reflexión	X			
12.10.1. Coeficiente de reflexión en el generador			X	12.10.86
12.10.2. Coeficiente de reflexión en el receptor (carga)			X	12.11.87
12.11. Calculo de impedancia en cualquier punto de la			v	12.04.80
línea de transmisión			X	12.09.85
12.11.1. Funciones hiperbólicas			X	
12.11.2. Calculo de zi para una línea con atenuación	X	X	X	12.05.81
nula ($\alpha = 0$)	Λ	Λ	Λ	12.06.82
12.11.3. Análisis para una línea sin perdidas con carga	X	X	X	12.07.83
en corto circuito	Λ	Λ	Λ	12.07.03
12.11.4. Análisis para una línea sin perdidas con carga	X	X	X	12.08.84
en circuito abierto	A	Λ	Λ	12.00.04
CAPÍTULO 13: Adaptación de Líneas de	Concepto	Desarrollo	Demostrar	Práctico
Transmisión	,	del Tema	Fórmula	Tractico
13.1. Adaptación con un STUB. Introducción	X	X		
13.2. Impedancia y admitancia normalizada de carga	X	X		
13.3. Coeficiente de reflexión y R.O.E.	X	X		
13.4. Distancia de la carga a los puntos de adaptación		X		
13.5. Relación entre la longitud del stub y la		X		
admitancia en sus terminales de entrada		11		
13.5.1. Pasos para la adaptación con 1 ramal				13.01.88
sintonizador (STUB)		X		13.02.89
12 (A 1 + 1/ 1 GTEV TD C				13.03.90
13.6. Adaptación con dos STUBS	X	X		12.04.04
13.6.1. Pasos para la adaptación con 2 ramales		X		13.04.91
sintonizadores (2 STUB)	\$ 7			13.05.92
13.7. Separación standard entre los STUBS	X	X		13.06.93
13.7.1. Separación $3\lambda / 8 = 0.375 \lambda$		X		
13.7.2. Separación $\lambda = 0.25 \lambda$		X		
13.7.3. Separación $\lambda \ = 0.125 \lambda$		X		
13.8 ROE entre STUBS (ROE _{ES})		X		

Concepto: El Alumno debe ser capaz de explicar el tema con sus propias palabras.

Desarrollar Tema: El Alumno debe ser capaz de explicar coherentemente los distintos pasos que constituyen el tema, expresando una secuencia teórica, dando ejemplos y respondiendo preguntas.

Demostrar Fórmula: El Alumno debe ser capaz de desarrollar desde una fórmula básica la obtención de la fórmula solicitada.

Práctico: El Alumno debe ser capaz de realizar los ejercicios planteados en la guía de prácticos de la Materia.