What is claimed is:

1. A dye mixture comprising a reactive dye having at least one structural unit of formula

$$\begin{array}{c|c}
 & O=C \\
 & N=N \\
 & N=N \\
 & N+2 \\
 &$$

together with a reactive dye of formula

$$(Q_{1})_{0-3} = N = N$$

$$+ N_{3}S$$

$$+ N_{3}$$

wherein

 $(Q_1)_{0-3}$ and $(Q_2)_{0-3}$ each independently of the other denote from 0 to 3 identical or different substituents selected from the group halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, carboxy and sulfo, Z_1 and Z_2 are each independently of the other a fibre-reactive radical, at least one fibre-reactive radical being contained in the dye of formula (1) and the dye of formula (2) containing at least one fibre-reactive radical Z_1 or Z_2 .

2. A dye mixture according to claim 1, wherein the reactive dye having at least one structural unit of formula (1) corresponds to a dye of formula

WO 2004/069937 PCT/EP2004/000676

- 38 -

$$\begin{array}{c} COOH \\ D_1-N=N-N=N-D_2 \\ H_2N \\ N-D_3 \end{array} \tag{1a},$$

wherein

 D_1 , D_2 and D_3 are each independently of the others the radical of a diazo component of the benzene or naphthalene series, wherein at least one of the radicals D_1 , D_2 and D_3 contains a fibre-reactive radical.

3. A dye mixture according to claim 1 or claim 2, wherein

D₁, D₂ and D₃ each independently of the others correspond to a radical of formula (5) or (6)

$$(Q_3)_{0.3}$$
 (5) or

$$(Z_4)_{0-1}$$
 $N=N-K-$
(6)

wherein

K is the radical of a coupling component of formula (7a) or (7b)

HO₃S
$$\stackrel{\text{OH}}{\stackrel{\text{1}}{=}}$$
 $\stackrel{\text{2}}{\stackrel{\text{3}}{=}}$ (7b)

and

 Z_3 and Z_4 are each independently of the other a radical of formula (3a), (3b), (3c), (3d), (3e) or (3f)

$$-SO_{2}-Y$$

$$-NH-CO-(CH_{2})_{1}-SO_{2}-Y$$

$$-CONR_{2}-(CH_{2})_{m}-SO_{2}-Y$$

$$-NH-CO-CH(Hal)-CH_{2}-Hal$$

$$-NH-CO-C(Hal)=CH_{2}$$

$$-NR_{1a}$$

$$-NR_{1a}$$

$$-NR_{1a}$$

$$-NR_{1a}$$

$$-NR_{1a}$$

$$-NR_{1a}$$

$$-NR_{1b}$$

$$-N$$

wherein

R_{1a} and R₂ are hydrogen,

Hal is bromine,

Y is vinyl, β -chloroethyl or β -sulfatoethyl,

 T_1 is C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy, amino, N-mono- or N,N-di- C_1 - C_4 alkylamino unsubstituted or substituted in the alkyl moiety or moieties by hydroxy, sulfato or by sulfo, morpholino, or phenylamino or N- C_1 - C_4 alkyl-N-phenylamino (wherein the alkyl is unsubstituted or substituted by hydroxy, sulfo or by sulfato) each unsubstituted or substituted in the phenyl ring by sulfo, carboxy, acetylamino, chlorine, methyl or by methoxy, or naphthylamino unsubstituted or substituted by from 1 to 3 sulfo groups, or is a fibre-reactive radical of formula (4b'), (4c') or (4d')

$$-NH-(CH_2)_{2-3}-O-(CH_2)_{2-3}-SO_2Y$$
 (4b'),

$$H$$
, CH_3 , C_2H_5
 $-N$
 SO_2-Y
(4c') or

$$-NH-$$
CO-NH-(CH₂)₂₋₃-SO₂-Y (4d')

and Y is as defined above,

X₁ is chlorine or fluorine,

m and I are each independently of the other the number 2 or 3,

 $(R_4)_{0\cdot3}$ and $(Q_3)_{0\cdot3}$ each independently of the other denote from 0 to 3 identical or different substituents selected from the group halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, carboxy and sulfo, R_5 is hydrogen, sulfo or C_1 - C_4 alkoxy unsubstituted or substituted in the alkyl moiety by hydroxy or by sulfato, and

 R'_{5a} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_2 - C_4 alkanoylamino, ureido or a radical of formula (3f) wherein the radicals R_{1a} , T_1 and X_1 are as defined above.

4. A dye mixture according to any one of claims 1 to 3, wherein the radicals D_1 , D_2 and D_3 each independently of the others correspond to a radical of formula (5a), (5b), (5c), (5d), (5e) or (6a)

$$\begin{array}{c|c}
 & 3 \\
 & 4 \\
 & (SO_2-Y)_{0-1} \\
 & (Q_3)_{0-2}
\end{array}$$
(5a),

$$(SO_3H)_{0-1}$$

 $\frac{3}{4}$ CO-NH- $(CH_2)_m$ -SO₂-Y (5c),

$$SO_3H$$

$$3 \text{ NH-CO-Y}_1$$
(5d),

$$(Y-O_2S)_{0-1}$$
 $N=N$
 R'_{5a}
(6a)

 R'_{5} is hydrogen, sulfo or ethoxy unsubstituted or substituted in the alkyl moiety by hydroxy or by sulfato,

 R'_{5a} is hydrogen, methyl, ethyl, methoxy, ethoxy, acetylamino, propionylamino or ureido, $(Q_3)_{0-2}$ denotes from 0 to 2 identical or different substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo,

 Y_1 is a group -CH(Br)-CH₂-Br or -C(Br)=CH₂, Y is vinyl, β-chloroethyl or β-sulfatoethyl, and m is the number 2 or 3.

5. A dye mixture according to any one of claims 1 to 4, wherein the reactive dye of formula (2) is a dye of formula

(3f),

$$(Q_1)_{0-2}$$
 $N = N$
 $N = N$
 $(Q_2)_{0-2}$
 Z_1
 $(2a),$

wherein

 $(Q_1)_{0-2}$ and $(Q_2)_{0-2}$ each independently of the other denote from 0 to 2 identical or different substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo, and Z_1 and Z_2 are as defined in claim 1.

6. A dye mixture according to claim 5, wherein

 Z_1 and Z_2 are each independently of the other a radical of formula (3a), (3b), (3c), (3d), (3e) or (3f)

wherein

Y is vinyl, β -chloroethyl or β -sulfatoethyl,

Hal is bromine,

R₂ and R_{1a} are hydrogen,

I and m are each independently of the other the number 2 or 3,

X₁ is fluorine or chlorine,

 T_1 is C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy, amino, N-mono- or N,N-di- C_1 - C_4 alkylamino unsubstituted or substituted in the alkyl moiety or moieties by hydroxy, sulfato or by sulfo, morpholino, or phenylamino or N- C_1 - C_4 alkyl-N-phenylamino (wherein the alkyl is unsubstituted or substituted by hydroxy, sulfo or by sulfato) each unsubstituted or substituted in the phenyl ring by sulfo, carboxy, acetylamino, chlorine, methyl or by methoxy, or naphthylamino

unsubstituted or substituted by from 1 to 3 sulfo groups, or T_1 is a fibre-reactive radical of formula (4a'), (4b'), (4c'), (4d') or (4f')

$$-NH-(CH_2)_{2\cdot 3}-O-(CH_2)_{2\cdot 3}-SO_2Y$$
 (4b'),

$$-NH \xrightarrow{\text{(SO}_3H)_{1\cdot2}} NH\text{-CO-Y}, \tag{4f'),}$$

wherein

Y is as defined above, and

 Y_1 is a group -CH(Br)-CH₂-Br or -C(Br)=CH₂.

7. A dye mixture according to any one of claims 1 to 6, comprising a dye of formula

$$\begin{array}{c} COOH \\ D_1 - N = N - D_2 \\ H_2 N & N + D_3 \end{array}$$
 (1a)

together with a dye of formula

$$(Q_1)_{0-2}$$
 $N = N$
 $N = N$
 $N = N$
 $(Q_2)_{0-2}$
 Z_1
 $(Q_2)_{0-2}$
 Z_2
 $(2a),$

D₁, D₂ and D₃ are each independently of the others a radical of formula (5a), (5b) or (6a)

$$(SO_3H)_{0-3}$$
 (5b) or

$$(Y-O_2S)_{0-1} \xrightarrow{(SO_3H)_{1-2}} N = N \xrightarrow{R'_5} R'_5$$

$$(6a),$$

wherein

R'₅ is hydrogen, sulfo or ethoxy unsubstituted or substituted in the alkyl moiety by hydroxy or by sulfato,

R'_{5a} is hydrogen, methyl, ethyl, methoxy, ethoxy, acetylamino, propionylamino or ureido, $(Q_1)_{0-2}$, $(Q_2)_{0-2}$ and $(Q_3)_{0-2}$ each independently of the other denote from 0 to 2 identical or different substituents selected from the group C_1 - C_4 alkyl, C_1 - C_4 alkoxy and sulfo,

Y is vinyl or β -sulfatoethyl, and

 Z_1 and Z_2 are each independently of the other a radical of formula (3a), (3b), (3c), (3d), (3e) or (3f)

$$-NH-CO-(CH2)1-SO2-Y (3b),$$

Y is vinyl, β -chloroethyl or β -sulfatoethyl,

Hal is bromine,

R_{1a} and R₂ are hydrogen,

I and m are each independently of the other the number 2 or 3,

X₁ is fluorine or chlorine, and

T₁ is a fibre-reactive radical of formula (4b'), (4c') or (4d')

wherein

Y is as defined above.

8. A dye mixture according to any one of claims 1 to 7, which additionally comprises a dye of formula

$$D_{6}-N=N$$

$$HO_{3}S$$

$$N=N-D_{7}$$
(8)

 R_6 and R_7 are each independently of the other hydrogen or C_1 - C_4 alkyl, and D_6 and D_7 are each independently of the other the radical of a diazo component of the benzene or naphthalene series.

- 9. Use of a dye mixture according to any one of claims 1 to 8 in the dyeing or printing of hydroxyl-group-containing or nitrogen-containing fibre materials.
- 10. Use according to claim 9, wherein cellulosic fibre materials, especially cotton-containing fibre materials, are dyed or printed.
- 11. An aqueous ink comprising a dye mixture according to claim 1.
- 12. Use of an aqueous ink according to claim 11 in an inkjet printing method for the printing of hydroxyl-group-containing or nitrogen-containing fibre materials.