wine data analysis useing logistic regression

June 30, 2023

1 using machine learning

2 Problem Statement:

You work in XYZ Company as a Python developer. The company officials want you to build a data science model. Tasks To Be Performed: 1. Using sklearn import the wine dataset 2. Split the data into train and test set 3. Train the model 4. Make Predictions 5. Check the performance of the model using r2_score

```
[]:
     ## import the required library
[1]:
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: ## import your dataset
     data=pd.read_csv(r'C:/Users/Vikas/Downloads/wine.csv')
[3]:
    data
[3]:
                 Alcohol
                           Malic.acid
                                                                     Flavanoids
           Wine
                                          Ash
                                                Acl
                                                       Mg
                                                           Phenols
     0
              1
                    14.23
                                  1.71
                                         2.43
                                               15.6
                                                      127
                                                               2.80
                                                                            3.06
     1
              1
                   13.20
                                  1.78
                                         2.14
                                               11.2
                                                      100
                                                               2.65
                                                                            2.76
     2
              1
                   13.16
                                  2.36
                                         2.67
                                               18.6
                                                      101
                                                               2.80
                                                                            3.24
     3
              1
                   14.37
                                  1.95
                                         2.50
                                                                            3.49
                                               16.8
                                                      113
                                                               3.85
     4
              1
                   13.24
                                  2.59
                                         2.87
                                               21.0
                                                      118
                                                               2.80
                                                                            2.69
     173
              3
                   13.71
                                  5.65
                                         2.45
                                               20.5
                                                       95
                                                               1.68
                                                                            0.61
     174
              3
                   13.40
                                  3.91
                                         2.48
                                                               1.80
                                                                            0.75
                                               23.0
                                                      102
     175
              3
                   13.27
                                  4.28
                                         2.26
                                               20.0
                                                      120
                                                               1.59
                                                                            0.69
     176
              3
                   13.17
                                  2.59
                                         2.37
                                               20.0
                                                      120
                                                               1.65
                                                                            0.68
     177
              3
                    14.13
                                  4.10
                                        2.74
                                               24.5
                                                       96
                                                               2.05
                                                                            0.76
           Nonflavanoid.phenols
                                   Proanth
                                             Color.int
                                                          Hue
                                                                  OD
                                                                      Proline
     0
                            0.28
                                      2.29
                                                   5.64
                                                         1.04
                                                                3.92
                                                                          1065
     1
                            0.26
                                      1.28
                                                   4.38
                                                         1.05
                                                                3.40
                                                                          1050
```

2	0.30	2.81	5.68 1.	03 3.17	1185
3	0.24	2.18	7.80 0.	86 3.45	1480
4	0.39	1.82	4.32 1.	04 2.93	735
• •	•••	•••		•••	
173	0.52	1.06	7.70 0.	64 1.74	740
174	0.43	1.41	7.30 0.	70 1.56	750
175	0.43	1.35	10.20 0.	59 1.56	835
176	0.53	1.46	9.30 0.	60 1.62	840
177	0.56	1.35	9.20 0.	61 1.60	560

[178 rows x 14 columns]

```
[5]: ## i want to see the first five rows data.head()
```

```
Alcohol Malic.acid
[5]:
        Wine
                                      Ash
                                             Acl
                                                   Mg
                                                        Phenols Flavanoids \
                 14.23
     0
           1
                               1.71
                                     2.43
                                            15.6
                                                  127
                                                           2.80
                                                                        3.06
                               1.78
                                                                        2.76
     1
           1
                 13.20
                                     2.14
                                            11.2
                                                  100
                                                           2.65
     2
                 13.16
                               2.36
                                     2.67
                                            18.6
                                                  101
                                                           2.80
                                                                        3.24
     3
                 14.37
                               1.95
                                                                        3.49
           1
                                     2.50
                                            16.8
                                                  113
                                                           3.85
           1
                 13.24
                               2.59
                                     2.87
                                            21.0
                                                  118
                                                           2.80
                                                                        2.69
```

```
Nonflavanoid.phenols
                        Proanth Color.int
                                               Hue
                                                      OD
                                                          Proline
0
                   0.28
                             2.29
                                        5.64
                                             1.04 3.92
                                                              1065
1
                   0.26
                            1.28
                                              1.05 3.40
                                        4.38
                                                              1050
2
                   0.30
                            2.81
                                        5.68
                                              1.03 3.17
                                                              1185
3
                   0.24
                            2.18
                                        7.80 0.86 3.45
                                                             1480
4
                   0.39
                            1.82
                                        4.32 1.04 2.93
                                                              735
```

```
[4]: ## i want to see the all col data.columns
```

- [6]: ## i want to see the shape of data data.shape
- [6]: (178, 14)
- [7]: ## i want to see all information of my dataset.
 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype			
0	Wine	178 non-null	int64			
1	Alcohol	178 non-null	float64			
2	Malic.acid	178 non-null	float64			
3	Ash	178 non-null	float64			
4	Acl	178 non-null	float64			
5	Mg	178 non-null	int64			
6	Phenols	178 non-null	float64			
7	Flavanoids	178 non-null	float64			
8	Nonflavanoid.phenols	178 non-null	float64			
9	Proanth	178 non-null	float64			
10	Color.int	178 non-null	float64			
11	Hue	178 non-null	float64			
12	OD	178 non-null	float64			
13	Proline	178 non-null	int64			
11						

dtypes: float64(11), int64(3)

memory usage: 19.6 KB

[10]: ## i want to see the count, min max, std, data.describe().T

[10]:		count	mean	std	min	25%	\
	Wine	178.0	1.938202	0.775035	1.00	1.0000	
	Alcohol	178.0	13.000618	0.811827	11.03	12.3625	
	Malic.acid	178.0	2.336348	1.117146	0.74	1.6025	
	Ash	178.0	2.366517	0.274344	1.36	2.2100	
	Acl	178.0	19.494944	3.339564	10.60	17.2000	
	Mg	178.0	99.741573	14.282484	70.00	88.0000	
	Phenols	178.0	2.295112	0.625851	0.98	1.7425	
	Flavanoids	178.0	2.029270	0.998859	0.34	1.2050	
	Nonflavanoid.phenols	178.0	0.361854	0.124453	0.13	0.2700	
	Proanth	178.0	1.590899	0.572359	0.41	1.2500	
	Color.int	178.0	5.058090	2.318286	1.28	3.2200	
	Hue	178.0	0.957449	0.228572	0.48	0.7825	
	OD	178.0	2.611685	0.709990	1.27	1.9375	
	Proline	178.0	746.893258	314.907474	278.00	500.5000	
		50%	75 %	max			
Wine		2.000	3.0000	3.00			
	Alcohol		13.6775	14.83			
	Malic.acid	1.865	3.0825	5.80			
	Ash	2.360	2.5575	3.23			
	Acl	19.500	21.5000	30.00			
	Mg	98.000	107.0000	162.00			
	Phenols	2.355	2.8000	3.88			
	Flavanoids	2.135	2.8750	5.08			

```
Proanth
                               1.555
                                        1.9500
                                                    3.58
      Color.int
                               4.690
                                        6.2000
                                                   13.00
      Hue
                                                    1.71
                               0.965
                                        1.1200
      OD
                               2.780
                                        3.1700
                                                    4.00
      Proline
                             673.500 985.0000
                                                 1680.00
 [8]: ## i want to see the how much null values in my dataset
      data.isnull().sum()
 [8]: Wine
                               0
      Alcohol
                               0
      Malic.acid
                               0
      Ash
                               0
      Acl
                               0
      Mg
                               0
      Phenols
                               0
      Flavanoids
                               0
      Nonflavanoid.phenols
                               0
      Proanth
                               0
      Color.int
                               0
      Hue
                               0
      OD
                               0
      Proline
                               0
      dtype: int64
[80]:
 []:
[81]: \#\# here we divide the dataset into independent(x) & dependent(y).
      x=data.iloc[:,1:14].values
      y=data.iloc[:,0].values
[45]: x
[45]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
              1.065e+03],
             [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
              1.050e+03],
             [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
              1.185e+03],
             [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
             [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
              8.400e+02],
```

Nonflavanoid.phenols

0.340

0.4375

0.66

[1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00, 5.600e+02]])

[46]: y

[48]: ## we can visualize the data, sns.countplot(x='Wine',data=data)

[48]: <Axes: xlabel='Wine', ylabel='count'>


```
[50]: ## another way we can visualize the data sns.barplot(x='Wine',y='Proline',data=data)
```

[50]: <Axes: xlabel='Wine', ylabel='Proline'>


```
[61]: ## another way we can visualize the data sns.heatmap(data.corr(),linewidth=10,linecolor='g')
```

[61]: <Axes: >

3 what i mentioned above visualization is the 100% correlation

```
[82]: ##split the data into traning set and testing set,
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size=0.33, random_state=42)

[83]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.transform(x_test)

[84]: ## fitting the LogisticRegression into training set,
    from sklearn.linear_model import LogisticRegression
    logr=LogisticRegression(random_state=42)
    logr.fit(x_train,y_train)
```