6 Funkcje Ciągłe

- 1. Def. Funkcja $f:D\to\mathbb{R}$ gdzie $D\subset\mathbb{R}$ jest ciągła w punkcie $a\in D \overset{(\mathrm{CH})}{\Longleftrightarrow} \forall_{\{x_n\}\in D} \lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} f(x_n) = 0$ $f(a) \stackrel{\text{(CC)}}{\Longleftrightarrow} \forall_{\epsilon>0} \exists_{\delta>0} \forall_{x \in D} |x-a| < \delta \implies |f(x) - f(a)| < \epsilon$
 - (a) T: Jeśli $a \in D$ jest punktem skupienia D, to f jest ciągła w punkcie $a \iff \lim_{x\to a} f(x) = f(a) \iff \lim_{x\to 0^-} f(x) = f(a)$ $\lim_{x\to 0^+} f(x)$

Funkcje $c, x, |x|, \sin x, \cos x$ są ciągłe

2. Twierdzenie 6.1: Jeśli funkcje $f,g:D\to\mathbb{R}$, gdzie $D\subset\mathbb{R}$ są ciągłe w punkcie $a\in D$, to

f+g, f-g, fgteż są ciągłe w punkcie a
 $\frac{f}{a}$ też jest ciągła w punkcie ajeśl
i $\forall_{x\in D}g(x)\neq 0$

Ď: Twierdzenie to wynika z def. Heinego ciągłości funkcji i z tw. o ciągłości działań arytmetycznych Wnioski:

- (a) Każdy wielomian $w(x) = \sum_{k=0}^{n} a_k x^k$ jest funkcją ciągłą
- (b) Każda funkcja wymierna $\frac{w_1(x)}{w_2(x)}$ jest funkcją ciągłą
- (c) Funkcje $\tan x$ i $\cot x$ sa ciagłe
- 3. Twierdzenie 6.2: Złożenie funkcji ciągłych jest funkcją ciągłą. Dokładniej, jeśli $D_1, D_2 \subset \mathbb{R}$ i $f: D_1 \to D_2$ jest ciągła w punkcie $a \in D_1$ i $g: D_2 \to \mathbb{R}$ jest ciągła w punkcie f(a), to złożenie $g \circ f(g \circ f(x) := g(f(x)))$ jest ciągłe w punkcie aPrzykład Funkcja $f(x) = \sin |x|$ jest ciągła

Funkcja odwrotna do funkcji ciągłej nie musi być funkcją ciągłą - musi być odwracalna

4. Twierdzenie 6.3 (o ciągłości funkcji odwrotnej): Jeśli P to przedział i $f:P\to Y\subset\mathbb{R}$ jest ciągła i odwracalna, to funkcja odwrotna $f^{-1}: Y \to P$ też jest funkcją ciągłą.

Wniosek: Funkcja cyklometryczne, tzn $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$ to funkcje ciagłe jako funkcje odwrotne

- 5. Def. Do funkcji elementarnych będziemy zaliczać:
 - (a) wielomiany $w(x) = \sum_{k=0}^{n} a_k x^k$
 - (b) funkcje wymierne $\frac{w_1(x)}{w_2(x)}$
 - (c) funkcja pierwiastek $\sqrt[n]{x}$, $n \in \mathbb{N}$
 - (d) funkcje trygonometryczne i cyklometryczne
 - (e) funkcje wykładnicza a^x gdzie a > 0Jak rozumieć a^x gdy a > 0 i $x \in \mathbb{R}$?
 - i. Dla $x = 0, a^x = a^0 = 1$
 - ii. Dla $x \in \mathbb{N}, a^x = a \cdot \cdots \cdot a$ (x czynników)
 - iii. Jeśli $x \in \mathbb{Z}$ i x < 0 to $a^x = \frac{1}{a^{-x}}$
 - iv. Jeśli $x\in\mathbb{Q},$ czyli $x=\frac{n}{m},$ gdzie $n\in\mathbb{N},$ $n\in\mathbb{Z},$ to $a^x=a^{\frac{n}{m}}=\sqrt[m]{a^n}$
 - v. A co jeśli $x \notin \mathbb{O}$?

Def. Jeśli $a \in [1,\infty)$, to $a^x := \sup\{a^q : q \in \mathbb{Q} \land q \leq x\}$ - zbiór niepusty i ograniczony z góry, np. przez $a^{\lfloor x \rfloor + 1}$ ⇒ ma skończony kres górny Jeśli $a \in (0,1)$, to $a^x := \frac{1}{(\frac{1}{2})^x}$

- (f) funkcję logarytmiczną $\log_a x$
- 6. Twierdzenie 6.4 (własności potegowania):
 - (a) Jesli $a, b > 0, x, y \in \mathbb{R}$, to $a^{x+y} = a^x \cdot a^y, (a^x)^y = a^{xy}, (ab)^x = a^x \cdot b^x$
 - (b) Jeśli $a \in (1, \infty)$, to funkcja $f(x) = a^x$ jest rosnąca i jej zbiór wartości to $(0, \infty)$
 - (c) Jeśli $a \in (0,1)$, to funkcja $f(x) = a^x$ jest malejąca i jej zbiór wartości to $(0,\infty)$
- 7. Twierdzenie 6.5: Funkcja $f: \mathbb{R} \to \mathbb{R}, f(x) = a^x$, gdzie a > 0 jest ciągła, tzn $\forall_{x_0 \in \mathbb{R}} \lim_{x \to x_0} a^x = a^{x_0}$
- 8. Def. Niech $a \in (0,1) \cup (1,\infty)$. Funkcją logarytmiczną nazywamy funkcję $f:(0,\infty) \to \mathbb{R}, f(x) = \log_a x$, która jest funkcją odwrotna do funkcji $g: \mathbb{R} \to (0, \infty), g(x) = a^x$

Uwaga: Funkcja logarytmiczna jest funkcja ciagła jako funkcja odwrotna do funkcji ciagłej określonej na przedziale

- 9. Funkcja pierwiastek: Na ćwiczeniach, pokazalismy, że $\forall_{g\geq 0}\forall_{\{x_n\}\in[0,\infty)}\lim_{x\to\infty}x_n=g\iff\lim_{x\to\infty}\sqrt[4]{x_n}=\sqrt[4]{g}$ Analogicznie mozna wykazać, że powyższy fakt zachodzi nie tylko dla pierwiastka stopnia 4 ale dowolnego stopnia $k\in\mathbb{N}$ Warunek ten oznacza, że $f(x)=\sqrt[k]{x}$ jest funkcją ciągłą w dowolnym punkcie g
- 10. Twierdzenie 6.6: Każda funkcja elementarna jest funkcją ciągłą.
- 11. Def (funkcje hyperboliczne):

(a)
$$\sinh x := \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

(b)
$$\cosh x := \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

(c)
$$\tanh x := \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \ x \in \mathbb{R}$$

(d)
$$\coth x := \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \ x \in \mathbb{R} \setminus \{0\}$$

- (e) Uwagi:
 - i. Pomiędzy funkcjami hiberbolicznymi zachodzą **podobne** związki jak pomiędzy funkcjami trygonometrycznymi, np:

$$sinh 2x = \frac{e^{2x} - e^{-2x}}{2} = 2 \cdot \frac{e^x + e^{-x}}{2} \cdot \frac{e^x - e^{-x}}{2} = 2 \sinh x \cosh x$$

$$cosh^2 x - \sinh^2 x = \frac{e^{2x} + 2 + e^{-2x}}{4} - \frac{e^{2x} - 2 + e^{-2x}}{4} = 1$$

- ii. Funkcje hiperboliczne są ciągłe, np $\sinh x = \frac{1}{2}(e^x e^{-x})$
- iii.