

MBA EM DATA SCIENCE & AI

APPLIED STATISTICS

AULA 5 Teorema do Limite Central Intervalo de Confiança Técnicas Supervisionadas Regressão Linear Simples e Múltipla

Dicas de Leitura

. • +

.

Teorema do Limite Central

Para amostras aleatórias simples $(X_1, X_2, ..., X_n)$, retiradas de uma população com média μ e variância σ^2 finita, a distribuição amostral da média \overline{X} aproxima-se, para n grande, de uma distribuição normal, com média μ e variância σ^2/n .

"Se o tamanho da amostra é suficientemente grande, a distribuição das médias amostrais pode ser aproximada por uma distribuição normal, mesmo que a população original não seja normalmente distribuída."

Teorema do Limite Central

Figura 1 - Histogramas correspondentes às distribuições amostrais de \overline{X} para amostras extraídas de algumas populações.

Fonte: Bussab & Morettin, Estatística Básica, 9ª edição, São Paulo: Saraiva, 2017.

Intervalos de Confiança

☐ Intervalos de confiança

$$P[(\bar{x} - 1.96.dp(\bar{x}) \le \bar{X} \le \bar{x} + 1.96.dp(\bar{x})] = 0.95$$

Distribuição da média amostral segundo o modelo normal com parâmetros (\bar{x} ; $dp(\bar{x})$

O uso da distribuição normal como modelo para a distribuição da média amostral possibilita esperar que 95% das estimativas sejam diferentes do valor populacional por no máximo 1.96 desvios padrão.

Ciência de dados (Data Science)

Ciência de dados (Data Science)

O que é um modelo?

Modelo 1

-Posso ter mais de um modelo?

Modelo 1 Modelo 2

- Um modelo é só um modelo!

Realidade

Modelos

Isso não é um cachimbo!

René Magritte, 1929

Aprendizagem de máquina

As técnicas de aprendizagem de máquina envolvem diversas finalidades, podendo ser supervisionadas ou não supervisionadas.

FIVE WBA+

Aprendizagem não supervisionada

As técnicas de Machine Learning envolvem diversas finalidades, podendo ser supervisionadas ou não supervisionadas.

FIND MBA+

Aprendizagem supervisionada

As técnicas aprendizagem de máquina envolvem diversas finalidades, podendo ser supervisionadas ou não supervisionadas.

TÉCNICAS SUPERVISIONADAS

Regressão

- As técnicas quantitativas são aplicadas nas condições:
 - Informações do passado disponíveis;
 - Informações quantificáveis em forma numérica;
 - Assumir a hipótese de que algo dos padrões do passado irá se repetir no futuro (hipótese de continuidade).

Regressão

REGRESSÃO Técnica estatística que relaciona, funcionalmente, uma variável dependente às suas possíveis variáveis explicativas Não-Linear LINEAR ✓ SIMPLES: uma variável explicativa ✓ MÚLTIPLA: duas ou mais variáveis explicativas

REGRESSÃO LINEAR SIMPLES

Exemplo 1

O departamento de RH de uma empresa deseja avaliar a eficácia dos testes aplicados para a seleção de funcionários. Para tanto, foi sorteada uma amostra aleatória de 50 funcionários que fazem parte da empresa e que passaram pelo processo de seleção que utilizou os tais testes. Para cada um dos funcionários foi registrada a nota média nos testes de criatividade, raciocínio mecânico, raciocínio abstrato e habilidade matemática (notas de 0 a 26). Ainda, após 6 meses da contratação, foi calculado um escore que indica o seu desempenho profissional (0 a 120).

Pergunta: existe alguma relação entre o escore de desempenho dos funcionários e a nota média nos testes?

Por onde começar ?

- Diagrama de dispersão: recurso gráfico que nos permite visualizar o comportamento conjunto das duas variáveis.
- O Coeficiente de correlação linear: mede a intensidade da associação linear existente entre as variáveis.

Diagrama de dispersão

Coeficiente de Correlação Linear

- Definição: Medida de associação linear entre duas variáveis quantitativas (varia entre −1 e +1).
 - Valores próximos a +1: indicam forte relação linear positiva;
 - Valores próximos a -1: indicam forte relação linear negativa;
 - Valores próximos a zero: indicam ausência de relação linear.

Calculando...

```
pearsonr(df['Nota_mEdia'], df['Desempenho'])

PearsonRResult(statistic=0.7621262240493802, pvalue=1.2828363756657115e-10)
```

A estatística exibida é dita correlação de Pearson

Correlação

 $p < \alpha$: Rejeita a Hipótese Nula, ou seja, há correlação ao nível de significância α .

 $p >= \alpha$: Não Rejeita a Hipótese Nula, ou seja, não há correlação ao nível de significância α.

Calculando...

P-valor do teste de correlação de Pearson

há correlação ao nível de significância 5%.

Apesar de iniciar...

- Ainda não conseguimos mensurar a relação entre as medidas e muito menos predizer uma em relação a outra.
- Precisamos da técnica Regressão Linear

Regressão Linear Simples

Conceito

MODELO PROBABILÍSTICO

y = Componente Determinístico + Erro Aleatório

onde y é a variável dependente

Escrever a equação linear envolve dois parâmetros:

- ✓ O Intercepto de y
- ✓ A inclinação da reta

Regressão Linear Simples

Voltando ao problema...

```
sbn.histplot(x = 'Desempenho', data = df, bins = 10)
```

<Axes: xlabel='Desempenho', ylabel='Count'>

Teste 1, 2, 3, ... Testando...

stats.shapiro(df['Desempenho'])

ShapiroResult(statistic=0.9837684570670189, pvalue=0.7176472808181578)

FIV'D WBY

Testes de Normalidade

H0: Os dados seguem distribuição normal.

H1: Os dados não seguem distribuição normal.

Testes

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

 $p < \alpha$: Rejeita a Hipótese Nula, ou seja, não é normal ao nível de significância α .

 $p >= \alpha$: Não rejeita a Hipótese Nula, ou seja, é normal ao nível de significância α .

FIND MBA+

Teste de Normalidade de Shapiro Wilks

```
stats.shapiro(df['Desempenho'])
```


É considerado normal!

Regressão Linear Simples

Comando OLS da biblioteca statsmodels

import statsmodels.api as sm

results = $sm.OLS(y, X_sm).fit()$

Muito simples !!!

Lá no Python...

```
# mostrando as estatísticas do modelo
results.summary()
```

OLS Regression Results

Dep. Variable: Desempenho R-squared: 0.581 Model: OLS Adj. R-squared: 0.572 Method: Least Squares F-statistic: 66 51 Date: Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-10 Time: 19.04.00 Log-Likelihood: -162.22

 No. Observations: 50
 AIC:
 328.4

 Df Residuals:
 48
 BIC:
 332.3

Df Model: 1

Covariance Type: nonrobust

 const
 std err
 t
 P>|t|
 [0.025]
 0.975]

 const
 68.5097
 3.754
 18.251
 0.000
 60.962
 76.057

 Nota_mEdia
 1.8101
 0.222
 8.156
 0.000
 1.364
 2.256

 Omnibus:
 0.813
 Durbin-Watson:
 2.255

 Prob(Omnibus):
 0.666
 Jarque-Bera (JB):
 0.906

 Skew:
 0.239
 Prob(JB):
 0.636

Kurtosis: 2.545 Cond. No. 71.1

Como interpretar os coeficientes?

$$\frac{3}{3} \circ \hat{y} = 68,51 + 1,81x$$

68,51: valor médio do desempenho dos funcionários que tiraram média igual a zero nos testes de admissão.

1,81: variação média no desempenho dos funcionários, quando aumenta-se a nota média obtida nos testes de admissão em 1 unidade.

. . .

Lá no Python...

```
# mostrando as estatísticas do modelo
results.summary()
```

```
OLS Regression Results
```

Dep. Variable: Desempenho R-squared: 0.581 Model: OLS Adj. R-squared: 0.572 Method: Least Squares F-statistic: 66 51 Date: Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-10 Time: 19.04.00 Log-Likelihood: -162.22

 No. Observations: 50
 AIC:
 328.4

 Df Residuals:
 48
 BIC:
 332.3

Df Model: 1

Covariance Type: nonrobust

 const
 68.509
 7 3.754
 18.251
 0.000
 60.962
 76.057

 Nota_mEdia
 1.8101
 0.222
 3.156
 0.000
 1.364
 2.256

 Omnibus:
 0.813
 Durbin-Watson:
 2.255

 Prob(Omnibus):
 0.666
 Jarque-Bera (JB):
 0.906

 Skew:
 0.239
 Prob(JB):
 0.636

 Kurtosis:
 2.545
 Cond. No.
 71.1

Teste de Hipóteses

TESTANDO OS PARÂMETROS B'S

$$H_0: B_i = 0$$

$$H_1$$
: $B_i \neq 0$

$$t = \frac{B_i}{erro\ padrao(B_i)}$$
 com gl = n - p

Quando t > $t_{\alpha /\!\!\!/} \Rightarrow$ região de rejeição

$$IC: \overline{b}_i + t_{\frac{\alpha}{2}}Sb_i$$

Lá no Python...

```
# mostrando as estatísticas do modelo
results.summary()
```

OLS Regression Results

Dep. Variable: Desempenho R-squared: 0.581 Model: OLS Adj. R-squared: 0.572 F-statistic: Method: Least Squares 66 51 Date: Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-10 Time: 19.04.00 Log-Likelihood: -162.22

 No. Observations: 50
 AIC:
 328.4

 Df Residuals:
 48
 BIC:
 332.3

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025 0.975]

 const
 68.5097 3.754 18.25 1 0.000 6 0.962 76.057

 Nota_mEdia 1.8101 0.222 8.156 0.000 1 364 2.256

 Omnibus:
 0.813
 Durbin-Watson:
 2.255

 Prob(Omnibus):
 0.666
 Jarque-Bera (JB):
 0.906

 Skew:
 0.239
 Prob(JB):
 0.636

Kurtosis: 2.545 Cond. No. 71.1

R² (R-quadrado)

O coeficiente de determinação ou R-quadrado representa a proporção da variância na variável dependente que é explicada pelo modelo de regressão linear. É uma pontuação sem escala, ou seja, independentemente dos valores serem pequenos ou grandes, o valor de R ao quadrado será menor que um.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

$$egin{array}{ll} \hat{y} & - & ext{Valor predito} \ ar{y} & - & ext{Valor médio} \end{array}$$

FIAP MBA+

```
# mostrando as estatísticas do modelo
results.summary()
```

OLS Regression Results

Dep. Variable: Desempenho

> Model: OLS

Least Squares

Date: Time:

19.04.00

No. Observations: 50

Method:

Df Residuals:

Df Model:

Covariance Type: nonrobust

coef std err t const

68.5097 3.754 18.251 0.000 60.962 76.057

Nota_mEdia 1.8101 0.222 8.156 0.000 1.364 2.256

0.813 **Durbin-Watson**: 2.255 Omnibus: Prob(Omnibus): 0.666 Jarque-Bera (JB): 0.906 0.239 Skew: Prob(JB): 0.636

2.545 Cond. No. 71.1 Kurtosis:

R-squared:

P>|t| [0.025 0.975]

Adj. R-squared: 0.572

F-statistic: 66.51

0.581

Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-10 Log-Likelihood: -162.22

> AIC: 328.4

> BIC: 332.3

Como ler o R²?

• 58% das variações no desempenho dos funcionários após 3 meses de trabalho são explicadas pela nota média obtida nos testes de admissão.

FIAP MBA+

```
# mostrando as estatísticas do modelo
results.summary()
```

OLS Regression Results

Dep. Variable: Desempenho

> Model: OLS

Least Squares

Date: Time:

19.04.00

No. Observations: 50

Method:

Df Residuals:

Df Model:

Covariance Type: nonrobust

coef std err t const

68.5097 3.754 18.251 0.000 60.962 76.057

Nota_mEdia 1.8101 0.222 8.156 0.000 1.364 2.256

0.813 **Durbin-Watson**: 2.255 Omnibus: Prob(Omnibus): 0.666 Jarque-Bera (JB): 0.906 0.239 Skew: Prob(JB): 0.636

2.545 Cond. No. 71.1 Kurtosis:

R-squared:

P>|t| [0.025 0.975]

Adj. R-squared: 0.572

F-statistic: 66.51

0.581

Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-10 Log-Likelihood: -162.22

> AIC: 328.4

> BIC: 332.3

R² - Ajustado

O R quadrado ajustado é uma versão modificada do R quadrado, e é ajustado para o número de variáveis independentes no modelo, e sempre será menor ou igual a R².

Na fórmula abaixo de n é o número de observações nos dados e k é o número de variáveis independentes nos dados.

$$R_{adj}^2 = 1 - \left[\frac{(1-R^2)(n-1)}{n-k-1} \right]$$

Bom pra comparar modelos de regressões

FIAP MBA+

Lá no Python...

```
# mostrando as estatísticas do modelo
results.summary()
```

OLS Regression Results

Dep. Variable: Desempenho R-squared: 0.581

Model:

OLS Adj. R-squared: 0.572

Method: Least Squares F-statistic: 66.51

Date:

Mon, 09 Sep 2024 Prob (F-statistic): 1.28e-1

Time: 19.04.00 Log-Likelihood: -162.22

No. Observations: 50

AIC: 328.4

Df Residuals:

BIC: 332.3

Df Model:

Covariance Type: nonrobust

t P>|t| [0.025 0.975] coef std err

68.5097 3.754 18.251 0.000 60.962 76.057 const

Nota_mEdia 1.8101 0.222 8.156 0.000 1.364 2.256

0.813 **Durbin-Watson**: 2.255 Omnibus: Prob(Omnibus): 0.666 Jarque-Bera (JB): 0.906

0.239 Skew: Prob(JB): 0.636

2.545 Cond. No. 71.1 Kurtosis:

Forma de avaliar se as suposições colocadas no desenvolvimento do modelo não foram violadas

$$\hat{\boldsymbol{e}}_i = \boldsymbol{y}_i - \hat{\boldsymbol{y}}_i$$

Pelo gráfico de dispersão, visualizamos o comportamento dos resíduos

LINEARIDADE

Gráfico de dispersão dos valores preditos (y) e o resíduo ⇒ os resíduos devem estar distribuídos aleatoriamente.

IGUALDADE DE VARIÂNCIA

Quando o gráfico de dispersão dos Resíduos Studentizados, contra o valor predito, indica que a extensão dos resíduos aumentam com a magnitude dos valores preditos:

IGUALDADE DE VARIÂNCIA

Quando o gráfico de dispersão dos Resíduos Studentizados, contra o valor predito, indica que a extensão dos resíduos aumentam com a magnitude dos valores preditos:

NORMALIDADE

Pelo histograma dos resíduos padronizados pode-se analisar a suposição de normalidade.

Testar Normalidade com algum teste estudado (Shapiro- Wilks).

- $\dot{\bullet}$ R²
- R² ajustado
- MAE
- MSE
- RMSE

MAE

O erro médio absoluto representa a média da diferença absoluta entre os valores reais e previstos no conjunto de dados.

Ele mede a média dos resíduos no conjunto de dados.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$\hat{y} - \text{Valor predito}$$

O erro quadrático médio representa a média da diferença quadrática entre os valores originais e previstos no conjunto de dados. Ele mede a variância dos resíduos.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$egin{array}{ll} ar{y} & - & ext{Valor predito} \ ar{y} & - & ext{Valor médio} \end{array}$$

Raiz quadrada do erro quadrático médio. Mede o desvio padrão dos resíduos.

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

 $egin{array}{ll} \hat{y} & - & ext{Valor predito} \ ar{y} & - & ext{Valor médio} \end{array}$

Como predizer o modelo?

MAE

→ 4.96

MSE

∑ 38.51

RMSE

```
RMSE = MSE**(1/2)
RMSE.round(2)

6.21
```

Regressão Linear Múltipla

Modelo Linear Múltiplo: $Y=B_0+B_1X_1+B_2X_2+B_3X_3+...+B_nX_n+e$

```
X_1, X_2, X_3, ..., X_n = variáveis independentes
```

Y = variável dependente

 $B_o = constante$

B₁,B₂,B₃,....,B_n = coeficientes de regressão associados às n variáveis

Exemplo 2

Fazer um modelo de regressão linear para a base salario.csv e tentar predizer o salário.

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADO

profleandro.ferreira@fiap.com.br

