Scilab Textbook Companion for Signals And Systems by P. R. Rao¹

Created by
Satyam Agrawal
B.Tech
Instrumentation Engineering
Krishna Institute Of Engineering and Technology
College Teacher
Varun Gupta
Cross-Checked by
Chaitanya

June 24, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Signals And Systems

Author: P. R. Rao

Publisher: TMH Education Pvt. Ltd., New Delhi

Edition: 5

Year: 2011

ISBN: 978-0-07-066927-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Signals Continuous and Discrete time	12
2	Laplace and Z Transform	34
3	Fourier Series of Continuous Time Signals	49
4	The Continuous Time Fourier Transform	62
5	Fourier Representation of Discrete Time Signals	85
6	Sampling and Reconstruction of Bandlimited Signals	107
7	Systems	119
8	Systems Time and Frequency Domain Analysis	149
9	Convolution and Correlation Continuous Time Signals	164
10	Discrete Time Convolution and Correlation	180
11	Hilbert Transform Continuous and Discrete	190

List of Scilab Codes

Exa 1.1	Finding Fundamental Period
Exa 1.3.a	Periodicity
Exa 1.3.b	Periodicity and fundamental period
Exa 1.4	Fundamental Period
Exa 1.5	Fundamental Period
Exa 1.6	Fundamental Period
Exa 1.7	Even and odd Components
Exa 1.11	Waveforms
Exa 1.12	Time Scaling
Exa 1.13	Plot at a particular sampling frequency
Exa 2.1	Laplace Transform
Exa 2.2	Inverse Laplace
Exa 2.3	Initial Value Theorem
Exa 2.4	Laplace Transform
Exa 2.6	Circuit Current
Exa 2.7	Inverse Laplace Transform
Exa 2.8	Inverse Laplace Transform
Exa 2.9	Circuit Current
Exa 2.10	Laplace Transform
Exa 2.15	Laplace Transform
Exa 2.16	Laplace Transform
Exa 2.17	Laplace Transform
Exa 2.19	Laplace Transform
Exa 2.21	Unilateral Z Transform
Exa 2.29	Z Transform
Exa 2.37	Inverse Z Transform
Exa 2.38.a	Inverse Z Transform
	Inverse Z Transform

Exa 2.39	Inverse Z Transform
Exa 2.40	Inverse Z Transform
Exa 3.13	Complex Fourier Exponential Series 49
Exa 3.14	Complex Fourier Exponential Series
Exa 3.16	Complex Fourier Exponential Series
Exa 3.17	Complex Fourier Exponential Series 60
Exa 3.18	Trignometric Series 61
Exa 4.1	Magnitude and Phase Spectra
Exa 4.2	Magnitude and Phase Spectra 66
Exa 4.3	Magnitude and Phase Spectra
Exa 4.4	Energy at output
Exa 4.5	Fourier Transform
Exa 4.6	Convolution
Exa 4.7	Energy in Signal
Exa 4.11	Fourier Transform
Exa 4.14	Fourier Transform
Exa 4.17	Fourier Transform
Exa 5.1	DTFT
Exa 5.2	DTFT and Spectra
Exa 5.3	Inverse Fourier
Exa 5.4	Inverse Fourier
Exa 5.5	Fourier series
Exa 5.9.i	DTFT
Exa 5.9.ii	DTFT
Exa 5.9.iii	DTFT
Exa 5.11	Inverse Fourier
Exa 5.13	Circular Convolution
Exa 5.14	Circular Convolution
Exa 5.16	DTFT
Exa 5.18	DFT coefficients
Exa 6.1	Sampling and Reconstruction
Exa 6.2	Sampling and Reconstruction
Exa 6.3	Minimum Number of samples
Exa 6.4	Minimum Sampling Frequency
Exa 6.5	LPF output
Exa 6.6	Sampling Frequency
Exa 6.8	Minimum Sampling Frequency
Exa 7.1	Properties of System

Exa 7.3	System Properties
Exa 7.4	System Properties
Exa 7.5	System Properties
Exa 7.6	System Properties
Exa 7.7	Properties of System
Exa 7.8	Properties of System
Exa 7.9	Properties of System
Exa 7.10	Output of an LTI
Exa 7.11	Convolution
Exa 7.14	Impulse and Step response
Exa 7.15	Impulse and Step Response
Exa 7.19	Convolution
Exa 7.22	Convolution
Exa 7.23	Convolution
Exa 7.24	Step Response
Exa 7.25	Step response
Exa 7.33	Magnitude and Phase Response 146
Exa 8.1	Magnitude and Phase Responses 149
Exa 8.2	Transfer Function of system
Exa 8.3	Magnitude and Phase Responses 152
Exa 8.4	system response
Exa 8.5	System function
Exa 8.8	Transfer function
Exa 8.9	Transfer function by block diagram reduction 161
Exa 8.10	Realization Structure
Exa 8.12	Transfer function Realization
Exa 8.13	Parallel form realization
Exa 9.1	Convolution
Exa 9.3	Convolution
Exa 9.4	Autocorrelation
Exa 9.5	Autocorrelation
Exa 9.6	Autocorrelation
Exa 9.7	Autocorrelation
Exa 9.10	Autocorrelation Function 177
Exa 9.11	PSD
Exa 10.1	Cross Correlation
Exa 10.2	Cross Correlation Sequence
Exa 10.4	Auto Correlation 184

Exa 10.5	Auto Correlation .											184
Exa 10.8	Auto Correlation .											186
Exa 10.11	System response .											187
Exa 11.1	Hilbert Transform											190
Exa 11.2	Hilbert Transform											193
Exa 11.3	Hilbert Transform											195
Exa 11.6	Hilbert Transform											198

List of Figures

1.1	Finding Fundamental Period	.3
1.2		4
1.3		6
1.4	Periodicity and fundamental period	7
1.5	Fundamental Period	9
1.6		20
1.7	Fundamental Period	22
1.8		24
1.9	Even and odd Components	25
1.10	Waveforms	27
		28
		3 0
1.13	Time Scaling	31
1.14	Plot at a particular sampling frequency	33
2.1	Laplace Transform	39
2.2	Laplace Transform	1
2.3		12
2.4		13
3.1	Complex Fourier Exponential Series	60
3.2		51
3.3		63
3.4		64
3.5		66
3.6		8
3.7		69
4.1	Magnitude and Phase Spectra	3

4.2	Magnitude and Phase Spectra 64
4.3	Magnitude and Phase Spectra 60
4.4	Magnitude and Phase Spectra 6
4.5	Magnitude and Phase Spectra 69
4.6	Magnitude and Phase Spectra
4.7	Fourier Transform
4.8	Fourier Transform
4.9	Convolution
4.10	Fourier Transform
4.11	Fourier Transform
4.12	Fourier Transform
4.13	Fourier Transform
	DITIPIT
5.1	DTFT
5.2	DTFT
5.3	DTFT and Spectra
5.4	DTFT and Spectra
5.5	Inverse Fourier
5.6	Inverse Fourier
5.7	Inverse Fourier
5.8	Inverse Fourier
5.9	Inverse Fourier
5.10	Inverse Fourier
6.1	Sampling and Reconstruction
6.2	Sampling and Reconstruction
6.3	Sampling and Reconstruction
6.4	Sampling and Reconstruction
6.5	LPF output
6.6	LPF output
0.0	Dir output
7.1	Output of an LTI
7.2	Convolution
7.3	Impulse and Step response
7.4	Impulse and Step response
7.5	Impulse and Step Response
7.6	Impulse and Step Response
7.7	Convolution

7.8	Convolution	0
7.9	Convolution	2
7.10	Step Response	4
7.11	Step response	5
7.12	Magnitude and Phase Response	7
7.13	Magnitude and Phase Response	8
8.1	Magnitude and Phase Responses	0
8.2	Magnitude and Phase Responses	1
8.3	Transfer Function of system	3
8.4	Magnitude and Phase Responses	5
8.5	Magnitude and Phase Responses	6
8.6	system response	8
8.7	System function	0
9.1	Convolution	5
9.2	Convolution	6
9.3	Autocorrelation	8
9.4	Autocorrelation	9
9.5	Autocorrelation	0
9.6	Autocorrelation	2
9.7	Autocorrelation	3
9.8	Autocorrelation	5
9.9	Autocorrelation	6
9.10	PSD	8
10.1	Cross Correlation	1
10.2	Cross Correlation Sequence	2
10.3	Auto Correlation	3
	Auto Correlation	5
10.5	Auto Correlation	6
10.6	System response	8
11.1	Hilbert Transform	1
11.2	Hilbert Transform	2
11.3	Hilbert Transform	3
	Hilbert Transform	4
11.5	Hilbert Transform	6
	Hilbert Transform	

11.7	Hilbert	Transform													199
11.8	Hilbert	Transform													200

Chapter 1

Signals Continuous and Discrete time

Scilab code Exa 1.1 Finding Fundamental Period

```
1 // Scilab Code for Example 1.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 // Determine whether the given signal is periodic or
4 //x(t) = 10*(cos(10*pi*t))^2
5 clc;
6 clear;
7 syms t;
8 x=10*(\cos(10*\%pi*t))^2;
9 \text{ disp}(x, 'x(t)');
10 t=0:0.01:1;
11 x=10*(cos(10*\%pi*t))^2;
12 t=0:0.01:1;
13 plot(t,x,'r')
14 title('x(t)');
15 xlabel('Time in seconds');
16 disp('the signal is plotted and it shows it is
      periodic');
```


Figure 1.1: Finding Fundamental Period

Scilab code Exa 1.3.a Periodicity

Figure 1.2: Finding Fundamental Period

```
5 clc;
6 clear;
7 syms t;
8 x=3*cos(0.4*%pi*t)+2*sin(0.66*t);
9 disp(x,'x(t)');
10 t=0:1/50:50;
11 x=3*cos(0.4*%pi*t)+2*sin(0.66*t);
12 t=0:1/50:50;
13 plot(t,x);
14 title('x(t)');
15 xlabel('Time in seconds');
16 disp('plotted the signal and shown that it is not periodic and is increasing');
```

Scilab code Exa 1.3.b Periodicity and fundamental period

```
1 // Scilab Code for Example 1.3(b) of Signals and
      systems by
2 //P. Ramakrishna Rao
3 // Determine whether the given signal is periodic or
      not
4 //x(t) = 5*cos((4/3)*t) + 3*sin(t)
5 clc;
6 clear;
7 syms t;
8 x=5*\cos((4/3)*t)+3*\sin(t);
9 \text{ disp}(x, 'x(t)');
10 t=0:1/80:80;
11 x=5*cos((4/3)*t)+3*sin(t);
12 t=0:1/80:80;
13 plot(t,x);
14 title('x(t)');
15 xlabel('Time in seconds');
```


Figure 1.3: Periodicity

Figure 1.4: Periodicity and fundamental period

16 disp('plotted the signal and shown that it is periodic with a period of LCM of 2pi and (2pi /(4/3)');

Scilab code Exa 1.4 Fundamental Period

```
4 //x(t)=cos(7*t)+sin(4*t)
5 clc;
6 clear;
7 syms t;
8 x=sin(4*t)+cos(7*t);
9 disp(x,'x(t)');
10 t=0:1/12:12
11 x=sin(4*t)+cos(7*t);
12 t=0:1/12:12;
13 plot(t,x);
14 title('x(t)');
15 xlabel('Time in seconds');
16 disp('plotted the signal and shown that it is periodic with period of 2pi');
```

Scilab code Exa 1.5 Fundamental Period

```
// Scilab Code for Example 1.5 of Signals and systems
by
//P.Ramakrishna Rao
//Determine whether the given signal is periodic or
not
//x(t)=cos(t)+sin(sqrt(2)*t)
clc;
clear;
syms t;
x=cos(t)+sin(sqrt(2)*t);
disp(x,'x(t)');
for t=0:1:100;
x(t+1)=cos(t)+sin(sqrt(2)*t);
end
t=0:1:100;
plot(t,x);
```


Figure 1.5: Fundamental Period

Figure 1.6: Fundamental Period

```
15 title('x(t)');
16 xlabel('Time in seconds');
17 disp('plotted the signal and shown that it is not periodic');
```

Scilab code Exa 1.6 Fundamental Period

```
not
4 clc;
5 clear;
6
7 n=0:1:10;
8 x(n+1)=2*sin(0.8*%pi*n);
9 a=gca();
10 a.x_location="origin";
11 a.y_location="origin";
12 n=0:1:10;
13 plot2d3(n,x,9);
14 title('x(n)');
15 disp('ploting the signal and showing that it is periodic with period of 5');
```

Scilab code Exa 1.7 Even and odd Components

```
1 // Scilab Code for Example 1.7 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 clear;
4 clc;
5 n=1;
6 for t = -10:0.1:10;
7
       //Function for Even signal
       y1(n)=0.5*(exp(-t)*u(t)+exp(t)*u(-t));
9
       n=n+1;
10 \text{ end}
11 a=gca();
12 a.x_location="origin";
13 a.y_location="origin";
14 t = -10:0.1:10;
15 // Plot of Even Signal
```


Figure 1.7: Fundamental Period

```
16 plot(t,y1);
17 title('y1(t)');
18 xlabel('Time in seconds');
19 n=1;
20 for t = -1:0.01:1;
21
       //Function for Odd signal
22
       y2(n)=0.5*(exp(-t)*u(t)-exp(t)*u(-t));
23
       n=n+1;
24 end
25 figure(1);
26 a=gca();
27 a.x_location="origin";
28 a.y_location="origin";
29 t = -1:0.01:1;
30 //Plot of Odd Signal
31 plot(t,y2)
32 disp('plotted the signal both in even and odd forms'
     );
33 title('y2(t)');
34 xlabel('Time in seconds');
```

Scilab code Exa 1.11 Waveforms

Figure 1.8: Even and odd Components

Figure 1.9: Even and odd Components

```
-1) + abs(t-3) *u(t-3);
8 end
9 t = -3:1:3;
10 //for the main given signal
11 a=gca();
12 a.x_location="origin";
13 a.y_location="origin";
14 plot(t,y);
15 title('Main Signal)');
16 \, dy = 0 * y;
17 for i=1:6
18 dy(i)=(y(i+1)-y(i))/1;
19 end
20 //for the derivative of the given signal
21 figure(1);
22 a=gca();
23 a.x_location="origin";
24 a.y_location="origin";
25 plot2d2(t,dy);
26 title('Derivative of Signal');
27 \, dy2 = 0 * dy;
28 	 dy2(1) = dy(1) - 0;
29 for i=1:6
30 dy2(i+1)=(dy(i+1)-dy(i))/1;
31 end
32 //for the impulse response representation or second
      derivative
33 figure(2);
34 \ a=gca();
35 a.x_location="origin";
36 a.y_location="origin";
37 plot2d3(t,dy2,-5);
38 title('Impulse response representation');
```


Figure 1.10: Waveforms

Figure 1.11: Waveforms

Scilab code Exa 1.12 Time Scaling

```
1 // Scilab Code for Example 1.12 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 clc;
4 clear;
5 \quad x = -2:1:3;
6 y=[-1.5,2,2,1,-1.5,2.5];
7 // Plot of x(n)
8 plot2d3(x,y,5);
9 xtitle ('Time Scaling x(n)');
10 a = gca(); // get the current axes
11 a.x_location = "origin";
12 a.y_location = "origin";
13 x = -2:1:3;
14 y = [0, -1.5, 2, -1.5, 0, 0];
15 figure(1);
16 // Plot of x(2n)
17 plot2d3(x,y,5);
18 a = gca(); // get the current axes
19 a.x_location = "origin";
20 a.y_location = "origin";
21 xtitle ('Time Scaling x(2n)');
```

Scilab code Exa 1.13 Plot at a particular sampling frequency

Figure 1.12: Time Scaling

Figure 1.13: Time Scaling

Figure 1.14: Plot at a particular sampling frequency

Chapter 2

Laplace and Z Transform

Scilab code Exa 2.1 Laplace Transform

```
//Scilab Code for Example 2.1 of Signals and systems
by
//P.Ramakrishna Rao
//Laplace Transform
clear;
clc;
syms t s X
X=laplace(exp(-3*t)*cos(2*%pi*100*t),t,s)
disp('On Simplification')
//After Simplifying the above equation
X=(s+3)/((s+3)^2 + (200*%pi)^2);
disp("Re(s)>-3",X,"X(s)");
//Re(s)>-3
```

Scilab code Exa 2.2 Inverse Laplace

```
1 //Scilab Code for Example 2.2 of Signals and systems by
```

```
2 //P.Ramakrishna Rao
3 //Inverse Laplace Transform
4 clc;
5 clear;
6 syms t s
7 X=(s+2)/(s^2+8*s+25)
8 f4=ilaplace(X);
9 disp(f4*'u(t)',"x(t)=");
10 //t>=0
```

Scilab code Exa 2.3 Initial Value Theorem

```
1 // Scilab Code for Example 2.3 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 \text{ syms s0};
6 s = \%s;
7 I = (s+8)/(s^2+6*s+13)
8 i = pfss(s*I)
9 disp(i(1), "sF(s)(1)=")
10 disp(i(2), "sF(s)(2)=")
11 I1=(2*s0-13)/(s0^2+6*s0+13);
12 I2=1;
13 Io1=limit(I1,s0,10^8);
14 Io2=limit(I2,s0,10^8);
15 Ix=2-((25*s0+26)/(s0^2+6*s0+13));
16 f0=(Io1)+(Io2);
17 f0_dash=limit(Ix,s0,10^8);
18 disp(f0, 'INITIAL VALUE OF f(t) i.e. f(0)=');
19 disp(abs(f0_dash), 'INITIAL VALUE OF f(t) i.e. f''(0)
     = ');
```

Scilab code Exa 2.4 Laplace Transform

```
//Scilab Code for Example 2.4 of Signals and systems
by
//P.Ramakrishna Rao
clear;
clc;
//Time shifted laplace Transform
syms t y s a0;
y=laplace('t*exp(-s*a0)',t,s);
disp("Re(s)>0",y,"X(s)");
```

Scilab code Exa 2.6 Circuit Current

Scilab code Exa 2.7 Inverse Laplace Transform

```
1 // Scilab Code for Example 2.7 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 // Unilateral Laplace Transform using partial
      fraction
4 clear;
5 clc;
6 syms ts;
7 s = %s;
8 a1=pfss((s+3)/(s^2+3*s+2))
9 f1=ilaplace(a1(1))
10 f2=ilaplace(a1(2))
11 fy = f1 + f2
12 disp(fy*'u(t)',"i) f(t)=")
13 a2=pfss((2*s-1)/(s^2+2*s+1))
14 a2(1)=2/(s+1)
15 \quad a2(2) = -3/(s+1)^2
16 f1=ilaplace(a2(1))
17 f2=ilaplace(a2(2))
18 \text{ fz=f1+f2}
19 disp(fz*'u(t)',"ii) f(t)=")
```

Scilab code Exa 2.8 Inverse Laplace Transform

```
//Scilab Code for Example 2.8 of Signals and systems
by
//P.Ramakrishna Rao
//Unilateral Laplace Transform
clear;
clc;
syms t s
s=%s;
a=ilaplace(1/(s^3+s^2))
b=a-3;
disp(a*'u(t)'+b*'u(t-3)',"x(t)=")
```

Scilab code Exa 2.9 Circuit Current

Scilab code Exa 2.10 Laplace Transform

```
1 // Scilab Code for Example 2.10 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 //The value of X(s) is found by solving the
      differential equation
4 clear;
5 clc;
6 syms ts;
7 s = %s;
8 X = pfss((s^2+8*s+6)/((s+2)*(s+3)*s));
9 X(1) = 1/s;
10 f1=ilaplace(X(1))
11 f2=ilaplace(X(2))
12 f3=ilaplace(X(3))
13 fz=f1+f2+f3;
14 disp(fz*'u(t)',"c) x(t)=");
```


Figure 2.1: Laplace Transform

Scilab code Exa 2.15 Laplace Transform

```
8 disp(y,"X(s)=");
9 disp("Re(s)>-3");
10 y=5/(s+3);
11 plzr(y);
```

Scilab code Exa 2.16 Laplace Transform

```
//Scilab Code for Example 2.16 of Signals and
systems by
//P.Ramakrishna Rao
clear;
clc;
syms t y;
s=%s;
y=laplace(2*exp(-2*t)+3*exp(-3*t),t,s);
disp(y,"X(s)=");
y=(2/(s+2))+(3/(s+3));
plzr(y);
```

Scilab code Exa 2.17 Laplace Transform

Figure 2.2: Laplace Transform

Figure 2.3: Laplace Transform

```
10 y=(-2/(s-2))+(-3/(s-3));
11 plzr(y);
```

Scilab code Exa 2.19 Laplace Transform

Figure 2.4: Laplace Transform

```
6  s=%s;
7  y=laplace(exp(-t)-exp(2*t),t,s);
8  disp(y,"X(s)=");
9  y=(1/(s+1))-(1/(s-2));
10  plzr(y);
```

Scilab code Exa 2.21 Unilateral Z Transform

```
1 // Scilab Code for Example 2.21 of Signals and systems by
2 //P.Ramakrishna Rao
```

```
3 //Z- transform of a^n u(n)
4 clear;
5 clc;
6 close;
7 syms a n z;
8 x1 =1/2;
9 x2=1/3;
10 X1= symsum (x1*(z^(-n)),n ,0, %inf);
11 X2= symsum (x2*(z^(-n)),n ,0, %inf);
12 X=X1+X2;
13 //Display the result
14 disp (X,"Z-transform of u(n) is:");
15 disp('ROC is the Region |z|> 1/2');
```

Scilab code Exa 2.29 Z Transform

```
//Scilab Code for Example 2.29 of Signals and
systems by
//P.Ramakrishna Rao
//Z- transform of a^n u(n)
clear;
clc;
clc;
syms a n z;
x = 1;
x = symsum (x*(z^(-n)),n ,0, %inf);
//Display the result
disp (X,"Z-transform of u(n) is:");
disp('ROC is the Region |z|> 1')
```

Scilab code Exa 2.37 Inverse Z Transform

```
1 // Scilab Code for Example 2.37 of Signals and
      systems by
2 //P. Ramakrishna Rao
\frac{3}{\sqrt{\text{Inverse Z Transform : ROC } 1 < |z| < 2}}
4 clear;
5 clc;
6 z = \%z;
7 syms n z1;
8 //To find out Inverse z transform z must be linear z
9 X = (z*(z^2-z+1))/((z-0.5)*(z-2)*(z-1))
10 X1 = denom(X);
11 \text{ zp = } roots(X1);
12 X1 = (z1*(z1^2-z1+1))/((z1-0.5)*(z1-2)*(z1-1))
13 F1 = X1*(z1^(n-1))*(z1-zp(1))
14 F2 = X1*(z1^(n-1))*(z1-zp(2))
15 F3 = X1*(z1^(n-1))*(z1-zp(3))
16 h1 = limit(F1,z1,zp(1));
17 disp(h1*'u(-n-1)', 'h1[n]=')
18 h2 = limit(F2,z1,zp(2));
19 disp((h2)*'u(n)', 'h2[n]=')
20 \text{ h3} = limit(F3, z1, zp(3));
21 disp((h3)*'u(n)', 'h3[n]=')
22 disp((h3)*'u(n)'+(h2)*'u(n)'-(h1)*'u(-n-1)', 'h[n]=')
23 ///Result
24 // h[n] = 1* 0.5 ^n *u(n) - 2*u(n) - 2* 2^n *u(-n -
      1)
```

Scilab code Exa 2.38.a Inverse Z Transform

```
5 clc;
6 z = \%z;
7 syms n z1;
8 //To find out Inverse z transform z must be linear z
      = z1
9 X = z^2/(z^2+3*z+2);
10 X1 = denom(X);
11 \text{ zp = } roots(X1)
12 X1 = z1^2/(z1^2+3*z1+2);
13 F1 = X1*(z1^(n-1))*(z1-zp(1));
14 F2 = X1*(z1^(n-1))*(z1-zp(2));
15 h1 = limit(F1,z1,zp(1));
16 disp(h1*'u(n)', 'h1[n]=')
17 h2 = limit(F2,z1,zp(2));
18 disp((h2)*'u(n)', 'h2[n]=');
19 disp((h1)*'u(n)'+(h2)*'u(n)', 'h[n]=');
20 ///Result
21 // h[n] = (2(-2)^n+1 - (-1)^n)*u(n)
```

Scilab code Exa 2.38.b Inverse Z Transform

```
13 F1 = X1*(z1^(n))*(z1-zp(1));

14 h1 = limit(F1,z1,zp(1))

15 disp(-(h1)*'u(-n-1)','h[n]=');

16 ///Result

17 // h[n]= (- (- 4)^n)*u(-n-1)
```

Scilab code Exa 2.39 Inverse Z Transform

```
1 //Scilab Code for Example 2.39 of Signals and
      systems by
2 //P. Ramakrishna Rao
\frac{3}{\sqrt{\text{Inverse Z Transform : ROC}}} |z| > 2
4 clear;
5 clc;
6 \quad z = \%z;
7 syms n z1;
8 //To find out Inverse z transform z must be linear z
       = z1
9 X = 2/(z^{-1}+2);
10 X1 = denom(X);
11 \text{ zp = } roots(X1)
12 \times 1 = z1/(z1+0.5);
13 F1 = X1*(z1^(n-1))*(z1-zp(1));
14 \text{ h1} = limit(F1, z1, zp(1))
15 disp(-(h1)*'u(-n-1)', 'h[n]=');
16 ///Result
17 // h[n] = (-(-0.5)^n)*u(-n-1)
```

Scilab code Exa 2.40 Inverse Z Transform

```
1 // Scilab Code for Example 2.40 of Signals and systems by2 //P. Ramakrishna Rao
```

```
3 / Inverse Z Transform : ROC |z| > 2
4 clear;
5 clc;
6 z = \%z;
7 syms n z1;
8 //To find out Inverse z transform z must be linear z
9 X = z^2/((z-0.5)*(z-1));
10 X1 = denom(X);
11 \text{ zp = } \text{roots}(X1)
12 X1 = z1^2/((z1-0.5)*(z1-1));
13 F1 = X1*(z1^(n-1))*(z1-zp(1));
14 F2 = X1*(z1^(n-1))*(z1-zp(2));
15 h1 = limit(F1,z1,zp(1));
16 disp(h1*'u(n)', 'h1[n]=')
17 h2 = limit(F2,z1,zp(2));
18 disp((h2)*'u(n)', 'h2[n]=');
19 disp(-(h1)*'u(-n-1)'-(h2)*'u(-n-1)', 'h[n]=');
20 //// Result
21 // h[n] = ((0.5)^n - 2) *u(-n-1)
```

Chapter 3

Fourier Series of Continuous Time Signals

Scilab code Exa 3.13 Complex Fourier Exponential Series

```
1 //Scilab Code for Example 3.13 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 //Complex Exponential Fourier Expansion
4 //A = 3.14 or pi
5 clear;
6 close;
7 clc;
8 \text{ TO} = 4;
9 t = -5.99:0.01:6;
10 t_temp=0.01:0.01:T0/2;
11 s=length(t)/length(t_temp);
12 x = [];
13 for i=1:s
  if modulo(i,2) ==1
                           then
```


Figure 3.1: Complex Fourier Exponential Series

Figure 3.2: Complex Fourier Exponential Series

```
x=[x -ones(1,length(t_temp))*%pi];
15
16
        else
17
            x=[x ones(1,length(t_temp))*%pi];
18
        end
19 end
20 figure(1);
21 title('Signal');
22 ylabel('x(t)');
23 xlabel('t');
24 plot(t,x,'r')
25 \text{ w0=\%pi/2};
26 \text{ for } k = -10:10
27
        cc(k+11,:) = exp(-\%i*k*w0*t);
       ck(k+11) = x * cc(k+11,:) '/length(t);
28
        if abs(ck(k+11))<0.01 then
29
        ck(k+11)=0;
30
        else if real(ck(k+11))<0.1
31
32
        ck(k+11) = %i * imag(ck(k+11));
33
        end
34
        end
35
        if k==0 then
            c0 = ck(k+11);
36
37
        end
38 end
39 q = abs(ck);
40 figure(2);
41 title('Magnitude Spectrum');
42 ylabel('|cn|');
43 xlabel('fo');
44 f = -10:1:10;
45 plot2d3(f,q)
```


Figure 3.3: Complex Fourier Exponential Series

Figure 3.4: Complex Fourier Exponential Series

Scilab code Exa 3.14 Complex Fourier Exponential Series

```
1 //Scilab Code for Example 3.14 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 //CTFS coefficients of a periodic signal
4 //x(wt) = Asin wt, 0 < wt < pi, and 0, pi < |t| < 2 * pi
5 clear;
6 clc;
7 \quad A = 6;
8 T = 2 * \%pi;
9 T1 = T/2;
10 t = 0:0.01:T1;
11 Wo = 2*\%pi/T;
12 xt = A*sin(Wo*t);
13 for k = 0:6
     C(k+1,:) = exp(-sqrt(-1)*Wo*t.*k);
14
     c(k+1) = xt*C(k+1,:)'/length(t);
15
     if(abs(c(k+1)) \le 0.01)
16
17
       c(k+1)=0;
18
     end
19 end
20 c = c';
21 c_{conj} = real(c(:)) - sqrt(-1) * imag(c(:));
22 ck = [c_{conj}(\$:-1:1)', c(2:\$)];
23 k = 0:6;
24 k = [-k(\$:-1:1),k(2:\$)];
25 figure(1);
26 c = gca();
27 c.y_location = "origin";
28 c.x_location = "origin";
29 //c \cdot data_bounds = [-2, 0; 2, 2];
30 plot2d(t,xt,5)
31 poly1 = c.children(1).children(1);
32 \text{ poly1.thickness} = 3;
33 title('x(t)')
34 xlabel('t')
35 figure(2);
```


Figure 3.5: Complex Fourier Exponential Series

```
36  c = gca();
37  c.y_location = "origin";
38  c.x_location = "origin";
39  plot2d3('gnn',k,abs(ck),9)
40  poly1 = c.children(1).children(1);
41  poly1.thickness = 3;
42  title('|ck|')
43  xlabel('k')
```

Scilab code Exa 3.16 Complex Fourier Exponential Series

```
1 //Scilab Code for Example 3.16 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 //A = \%pi or 3.14
4 clear;
5 clc;
6 //Trignometric Fourier Coefficients
7 \text{ for } n=0:5
8 a(n+1) = integrate('t*cos(2*\%pi*n*t)', 't', 0, 1);
10 for n=0:5
11 b(n+1) = integrate('t*sin(2*\%pi*n*t)', 't', 0, 1);
13 disp(\%pi*a(1), "an(a0)")
14 disp("an(a1-->a5)")
15 \text{ for } n=1:5
16 disp(2*a(n+1)*%pi)
17 \text{ end}
18 disp("bn(b1-->b5)")
19 for n=1:5
20 disp(2*%pi*b(n+1))
21 end
22 //CTFS coefficients of a periodic signal
23 / x(t) = t
24 t = 0:0.01:1;
25 \text{ xt } = 2 * \% pi * t;
26 //
27 \text{ for } k = 0:6
     C(k+1,:) = exp(-sqrt(-1)*2*%pi*t*k);
     c(k+1) = xt*C(k+1,:)'/length(t);
29
     if(abs(c(k+1)) <= 0.01)
30
31
        c(k+1)=0;
32
     end
33 end
34 \ c = c';
35 c_conj = real(c(:))-sqrt(-1)*imag(c(:));
36 \text{ ck} = [c\_conj(\$:-1:1)',c(2:\$)];
37 k = 0:6;
```


Figure 3.6: Complex Fourier Exponential Series

```
38 k = [-k($:-1:1),k(2:$)];
39 c = gca();
40 c.y_location = "origin";
41 c.x_location = "origin";
42 plot2d3('gnn',k,abs(ck))
43 poly1 = c.children(1).children(1);
44 poly1.thickness = 3;
45 title('|ck|')
46 xlabel('k')
```


Figure 3.7: Complex Fourier Exponential Series

Scilab code Exa 3.17 Complex Fourier Exponential Series

```
1 //Scilab Code for Example 3.17 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 //CTFS coefficients of a periodic signal
4 //x(wt) = Asin wt, 0 < wt < pi
5 clear;
6 close;
7 clc;
8 \quad A = 3.14;
9 T = \%pi;
10 \text{ T1} = \text{T/2};
11 t = 0:0.01:T1;
12 Wo = 2*\%pi/T;
13 xt = A * sin(Wo*t);
14 //
15 for k =0:6
    C(k+1,:) = \exp(-\operatorname{sqrt}(-1) * \operatorname{Wo} * t. * k);
16
17
     c(k+1) = xt*C(k+1,:)'/length(t);
     if(abs(c(k+1)) \le 0.01)
18
19
        c(k+1)=0;
20
     end
21 end
22 c = c';
23 c_{conj} = real(c(:)) - sqrt(-1) * imag(c(:));
24 \text{ ck} = [c\_conj(\$:-1:1)', c(2:\$)];
25 k = 0:6;
26 k = [-k(\$:-1:1),k(2:\$)];
27 c = gca();
28 c.y_location = "origin";
29 c.x_location = "origin";
30 //c \cdot data_bounds = [-2, 0; 2, 2];
31 plot2d(t,xt,5)
32 poly1 = c.children(1).children(1);
33 poly1.thickness = 3;
34 title('x(t)')
35 \text{ xlabel('t')}
```

```
36 figure(1);
37 c = gca();
38 c.y_location = "origin";
39 c.x_location = "origin";
40 plot2d3('gnn',k,abs(ck))
41 poly1 = c.children(1).children(1);
42 poly1.thickness = 3;
43 title('|ck|')
44 xlabel('k')
```

Scilab code Exa 3.18 Trignometric Series

```
1 // Scilab Code for Example 3.18 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 //A = \%pi or 3.14
4 clear;
5 clc;
6 //Trignometric Fourier Coefficients
7 a(1)=integrate('sin(w)', 'w',0,%pi);
8 for n=1:8
9 a(2*n+1) = integrate('sin(w+2*n*w)', 'w', 0, \%pi) +
      integrate ('\sin(w-2*w*n)', 'w',0,%pi);
10 \, \text{end}
11 for n=0:8
12 b(n+1)=0;
13 end
14 disp(abs(a(1)), "an(a0)");
15 disp("an(a1-->a8)");
16 n=1:8;
17 disp(2*a(n+1));
18 disp("bn(b1-->b8)");
19 n=1:8;
20 disp(b(n));
```

Chapter 4

The Continuous Time Fourier Transform

Scilab code Exa 4.1 Magnitude and Phase Spectra

```
1 // Scilab Code for Example 4.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 // Plotting Magnitude and Phase spectrum
4 clc;
5 clear;
6 \quad A=8;
7 Dt = 0.005;
8 T1=4;
9 t=-T1/2:Dt:T1/2;
10 q=length(t)
11 for i=-(q/2)+1:q/2
       if i > -q/4 \& i < q/4 then
12
13
       xt(i+(q/2))=A;
14
       else xt(i+(q/2))=0;
```


Figure 4.1: Magnitude and Phase Spectra

Figure 4.2: Magnitude and Phase Spectra

```
15
            end
16 \text{ end}
17 \text{ Wmax} = 2*\%pi*1;
                     //Analog Frequency = 1Hz
18 K = 4;
19 k = 0:(K/1000):K;
20 W = k*Wmax/K;
21 \text{ xt} = \text{xt'};
22 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
23 \text{ XW}_{\text{Mag}} = \text{real}(\text{XW});
24 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
25 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
26 [ XW_Phase ,db] = phasemag (XW);
27 XW_Phase =[-mtlb_fliplr(XW_Phase),XW_Phase(2:1001)];
28 // Plotting the Function
29 subplot(2,1,1);
30 \quad a = gca();
31 a.data_bounds=[-4,0;4,2];
32 a.y_location="origin";
33 plot(t,xt);
34 xlabel('t in sec.');
35 title('Continous Time Signal x(t)');
36 // Plotting Magnitude Reponse of CTS
37 subplot(2,1,2);
38 \quad a = gca();
39 a.y_location="origin";
40 plot(W/(2*%pi), XW_Mag);
41 xlabel('Frequency in Hz');
42 title('Continuous time Fourier Transform X(jW)');
43 // Plotting Phase Reponse of CTS
44 figure(1);
45 \ a = gca \ ();
46 a.y_location = "origin";
47 a.x_location = "origin";
48 plot (W/(2*\%pi),-XW_Phase *\%pi /180);
49 xlabel ('Frequency in Hz');
50 ylabel ( ^{\prime}<\!\!\mathrm{X(jW)} ^{\prime} )
51 title ( ' Phase Response (CTFT) in Radians ')
```


Figure 4.3: Magnitude and Phase Spectra

Scilab code Exa 4.2 Magnitude and Phase Spectra

Figure 4.4: Magnitude and Phase Spectra

```
6 clc;
7 close;
8 // Analog Signal
9 A =1; //Amplitude
10 T=1;
11 Dt = 0.005;
12 t = 0:Dt:10;
13 xt = A*exp(-t/T);
14 // Continuous-time Fourier Transform
                             //Analog Frequency = 1Hz
15 \text{ Wmax} = 2*\%pi*1;
16 K = 4;
17 k = 0:(K/1000):K;
18 W = k*Wmax/K;
19 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
20 \text{ XW}_{\text{Mag}} = abs(XW);
21 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
22 \text{ XW}_{\text{Mag}} = [\text{mtlb}_{\text{fliplr}}(\text{XW}_{\text{Mag}}), \text{XW}_{\text{Mag}}(2:1001)];
23 [XW_Phase,db] = phasemag(XW);
24 XW_Phase = [-mtlb_fliplr(XW_Phase),XW_Phase(2:1001)
      ];
25 // Plotting Continuous Time Signal
26 a = gca();
27 a.y_location = "origin";
28 plot(t,xt);
29 xlabel('t in sec.');
30 \text{ ylabel}('x(t)')
31 title('Continuous Time Signal')
32 figure
33 // Plotting Magnitude Response of CTS
34 subplot(2,1,1);
35 \ a = gca();
36 a.y_location = "origin";
37 plot(W, XW_Mag);
38 xlabel('Frequency in Radians/Seconds---> W');
39 ylabel('abs(X(jW))')
40 title ('Magnitude Response (CTFT)')
41 // Plotting Phase Reponse of CTS
```


Figure 4.5: Magnitude and Phase Spectra

Figure 4.6: Magnitude and Phase Spectra

Scilab code Exa 4.3 Magnitude and Phase Spectra

```
1 //Scilab Code for Example 4.3 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 //x(t) = A*cos w0*t*gate(t/T)
4 //T=1/2*fo
5 // fo = 0.5 Hz
6 clear;
7 clc;
8 // Fourier Transform
9 \quad A = 1;
10 T=0.5;
11 fo=1/(2*T);
12 Wo = 2 * \%pi * fo;
13 for f=-20:1:20;
14 X(f+21) = A*integrate('cos(Wo*t)*cos(2*\%pi*f*t)', 't'
      ,-0.25,0.25);
15 end
16 disp(X, X(0)—>X(20);
17 t = -0.25:0.01:0.25;
18 q = \cos(Wo*t);
19 a = gca();
20 a.y_location = "origin";
21 a.x_location = "origin";
22 plot(t,q);
23 xlabel ('Time in Seconds');
24 title ('Signal x(t)');
25 figure(1);
26 \ a = gca \ ();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 f = -20:1:20;
30 plot (f, X);
```

```
31 xlabel ('Frequency in Hz'); 32 title ('Continuous Time Fourier Transform X(jW)');
```

Scilab code Exa 4.4 Energy at output

```
1 //Scilab Code for Example 4.4 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 clear;
4 clc;
5 / X(f) = A*T/1 + j*2*pi*f*T
6 syms f w;
7 \quad A = 1;
8 T = 1;
9 X = (A^2*T^2)/(1+4*\%pi^2*f^2*T^2)
10 disp('Putting f = tan @');
11 disp('Total Energy:');
12 Ex=integrate('(A^2*T)/(2*\%pi)', 'w',-%pi/2,%pi/2)
13 disp('Energy Contained in the Output Signal');
14 Ey=integrate ('(A^2*T)/(2*\%pi)', 'w', -\%pi/4, \%pi/4)
15 e = Ey * 100 / Ex;
16 disp(e, 'Percentage Energy Contained in the Output:')
```

Scilab code Exa 4.5 Fourier Transform

```
1 // Scilab Code for Example 4.5 of Signals and systems by
2 //P. Ramakrishna Rao
```


Figure 4.7: Fourier Transform

Figure 4.8: Fourier Transform

```
3/x(t)=\cos pi*t, |t|>0.5, zero otherwise
4 clear;
5 clc;
6 // Fourier Transform
7 for f = -20:1:20;
8 X(f+21) = integrate('cos(\%pi*t)*cos(2*\%pi*f*t)', 't'
      ,-0.5,0.5);
9 end
10 disp(X, 'X(0)-->X(20)');
11 t = -0.5:0.01:0.5;
12 q = cos(\%pi*t);
13 \ a = gca \ ();
14 a.y_location = "origin";
15 a.x_location = "origin";
16 plot(t,q);
17 xlabel ('Time in Seconds');
18 title ('Signal x(t)');
19 figure(1);
20 \ a = gca \ ();
21 a.y_location = "origin";
22 a.x_location = "origin";
23 f = -20:1:20;
24 plot (f, X);
25 xlabel ('Frequency in Hz');
26 title ('Continuous Time Fourier Transform X(jW)');
```

Scilab code Exa 4.6 Convolution

Figure 4.9: Convolution

```
5 close;
6 disp("X(w) = 1/(a+jw)^2 = 1/(a+jw)*1/(a+jw)");
7 disp("exp(-a*t)*u(t) <--> 1/(a+jw) ");
8 disp("therefore x(t)=convolution(2*sinc(2*t),(sinc t
     ) ^2");
9 a=2;
10 n=1;
11 for t = -10:0.1:10
12 y1(1,n)=(sinc(t))^2;
13 y2(1,n)=2*sinc(2*t);
14 n=n+1;
15 z = conv(y1, y2);
16 \text{ end}
17 t = -20:0.1:20;
18 a=gca();
19 a.y_location = "origin";
20 a.x_location = "origin";
21 plot(t,z);
22 title ('Convolution of x(t) and y(t)')
```

Scilab code Exa 4.7 Energy in Signal

Scilab code Exa 4.11 Fourier Transform

```
//Scilab Code for Example 4.11 of Signals and
systems by
//P.Ramakrishna Rao
//Find system function and output of the system
clear;
clc;
syms a t;
for n=1:10;
h=t^(n-1)*%e^(-a*t);
H=laplace(h,t,'jw');
disp(H,'SYSTEM FUNCTION X(f)=',h,'For x(t)=');
end
```

Scilab code Exa 4.14 Fourier Transform

Figure 4.10: Fourier Transform

Figure 4.11: Fourier Transform

```
10 disp("Guassian pulse signal x(t) = (1/sqrt(2)*\%pi)*exp
       (-a*t^2)");
11 \operatorname{disp}("X(w) = \operatorname{integral}(\exp(-a*t^2)*\exp(-\%i*w*t)) \text{ w.r.t}
        dt");
12 \operatorname{disp}(\mathrm{"d}(\mathrm{X}(\mathrm{w}))/\mathrm{dw} = -\mathrm{\%i*w}/(2*a)*integral(\exp(-a*t^2)*
       \exp(-\%i*w*t))");
13 disp("d(X(w))/dw=-w*X(w)/2a");
14 disp("solving this we get X(w)=A*exp(-w^2/4a)")
15 disp("A=sqrt(%pi/a)");
16 d=gca()
17 plot(t,x);
18 poly1=d.children.children;
19 poly1.thickness=3;
20 poly1.foreground=2;
21 xtitle('x(t)','t')
22 \quad A = 1;
23 \text{ f=t};
24 Xf = A * exp(-2 * \%pi^2 * f^2);
25 figure(1);
26 d = gca()
27 plot(f, Xf);
28 poly1=d.children.children;
29 poly1.thickness=3;
30 poly1.foreground=2;
31 xtitle('X(f)','f')
```

Scilab code Exa 4.17 Fourier Transform

```
1 // Scilab Code for Example 4.17 of Signals and systems by
2 //P.Ramakrishna Rao
```


Figure 4.12: Fourier Transform

Figure 4.13: Fourier Transform

```
3 clear;
4 clc;
5 // Fourier Transform of x(t)
6 n=1;
7 for t = -10:0.1:10;
       x(1,n)=1/(1+t^2);
9
       n=n+1;
10 \, \text{end}
11 \ a = gca \ ();
12 a.y_location = "origin";
13 a.x_location = "origin";
14 t = -10:0.1:10;
15 plot(t,x);
16 xlabel ('Time in Second');
17 title ('x(t)');
18 disp("By Duality Theorem Fourier Transform of x(t)
      is:");
19 disp("\%pi*exp(-|w|)");
20 n = 1;
21 for w = -10:0.1:10;
22
       X(1,n) = \%pi * exp(-abs(w));
23
       n=n+1;
24 end
25 figure(1);
26 \ a = gca \ ();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 w = -10:0.1:10;
30 plot(w,X);
31 xlabel ('Frequency in Radians/Second');
32 title ('X(w)');
```

Chapter 5

Fourier Representation of Discrete Time Signals

Scilab code Exa 5.1 DTFT

```
1 // Scilab Code for Example 5.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 // Discrete Time Fourier Transform of
4 //x [n] = (a^a bs(n)) 0 < a < 1
5 clear;
6 clc;
7 close;
8 // DTS Signal
9 \ a = 0.5;
            //0 < a < 1
10 \text{ max\_limit} = 10;
11 n = -max_limit+1:max_limit-1;
12 x = a^abs(n);
13 // Discrete-time Fourier Transform
14 \text{ Wmax} = 2*\%pi;
15 K = 4;
16 k = 0:(K/1000):K;
17 W = k*Wmax/K;
18 XW = x* exp(-sqrt(-1)*n'*W);
```

Scilab code Exa 5.2 DTFT and Spectra

```
//Scilab Code for Example 5.2 of Signals and systems
by
//P.Ramakrishna Rao
//Discrete Time Fourier Transform of
//x[n]= 1 , 0=<n<=3
clear;
close;
Close;
// DTS Signal
N1 = 3;
n = 0:N1;
x = ones(1,length(n));
// Discrete-time Fourier Transform</pre>
```


Figure 5.1: DTFT

Figure 5.2: DTFT

```
13 Vmax = 2*\%pi;
14 K = 4;
15 k = 0:(K/1000):K;
16 W = k*Wmax/K;
17 XW = x* exp(-sqrt(-1)*n'*W);
18 \times W_{Mag} = real(XW);
19 [XW_Phase,db] = phasemag(XW);
20 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
21 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
22 XW_Phase = [-mtlb_fliplr(XW_Phase), XW_Phase(2:1001)
     ];
23 \ a = gca();
24 a.y_location = "origin";
25 a.x_location = "origin";
26 plot2d3('gnn',n,x);
27 xtitle('Discrete Time Sequence x[n]')
28 figure(1);
29 \ a = gca();
30 a.y_location = "origin";
31 a.x_location = "origin";
32 plot2d(W,abs(XW_Mag));
33 title('Discrete Time Fourier Transform X(exp(jW))')
34 figure (2);
35 \quad a = gca();
36 a.y_location = "origin";
37 a.x_location = "origin";
38 plot2d(W,XW_Phase);
39 title('Phase Response \langle (X(jW))')
```

Scilab code Exa 5.3 Inverse Fourier

Figure 5.3: DTFT and Spectra

Figure 5.4: DTFT and Spectra

```
1 //Scilab Code for Example 5.3 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 //Inverse Fourier Transform
6 \quad w = -20:20;
7 X=4*(\cos(w))^2;
8 a = gca();
9 a.y_location = "origin";
10 a.x_location = "origin";
11 plot(w, X);
12 title("X(e^jw)");
13 xlabel("Frequency in Radians/sec");
14 figure(1);
15 n = -50:50;
16 x=2*sinc(n)+sinc(n+2)+sinc(n-2);
17 \ a = gca \ ();
18 a.y_location = "origin";
19 a.x_location = "origin";
20 plot2d3(n,x);
21 title("x(n)");
22 xlabel("Time in sec");
```

Scilab code Exa 5.4 Inverse Fourier

Figure 5.5: Inverse Fourier

Figure 5.6: Inverse Fourier

```
5 clear;
6 clc;
7 close;
8 N = 1;
9 N1 = -3*N:3*N;
10 xn = [zeros(1, N-1), 1];
11 x = [1 xn xn xn xn xn xn];
12 ak = 1/N;
13 XW = 2*\%pi*ak*ones(1,2*N);
14 \text{ Wo} = 2*\%pi/N;
15 \quad n = -N:N-1;
16 W = Wo*n;
17 \ a = gca();
18 a.y_location ="middle";
19 a.x_location = "origin";
20 plot2d3('gnn',W,XW,2);
21 poly1 = a.children(1).children(1);
22 poly1.thickness = 3;
23 xlabel('W');
24 title('DTFT of Periodic Impulse Train')
25 figure(1);
26 \ a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 plot2d3('gnn',N1,x,2);
30 poly1 = a.children(1).children(1);
31 poly1.thickness = 3;
32 xlabel('n');
33 title ('Periodic Impulse Train x(n)')
```

Scilab code Exa 5.5 Fourier series

Figure 5.7: Inverse Fourier

Figure 5.8: Inverse Fourier

```
1 //Scilab Code for Example 5.5 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 clear;
4 clc;
5 x = [1,2,3,2,1];
6 q = 0;
7 	 for n=1:5
8
       q=x(n)+q;
9 end
10 disp(q,'(a) X(e^j*0)');
11 q=0;
12 for n = -2:2
       q=((-1)^n)*x(n+3)+q;
13
14 end
15 disp(q, '(c) X(e^j*pi)');
16 disp('(d) X(e^j*pi)=2*pi*x(0)');
17 disp(2*%pi*x(3));
18 q = 0;
19 for n = -2:2
20
       q=(x(n+3))^2+q;
21 end
22 disp(q*2*\%pi,'(e) | X(e^j*w)|^2');
```

Scilab code Exa 5.9.i DTFT

```
9 x1=a1^n;
10 x2=a2^n;
11 w=2;
12 n=0:100;
13 z = (exp(-\%i*w*n));
14 for n=0:33;
       X(n+1)=z(n+1)*x1(3*n+1);
15
       q=X(n+1)+q;
16
17 end
18 disp(q, 'Y1(e^2j) at a=0.5');
19 for n=0:33;
20
       X(n+1)=z(n+1)*x2(3*n+1);
21
       q = X(n+1) + q;
22 \quad end
23 disp(q, 'Y1(e^2j) at a=-0.5');
```

Scilab code Exa 5.9.ii DTFT

```
1 // Scilab Code for Example 5.9(ii) of Signals and
      systems by
2 //P.Ramakrishna Rao
3 clc;
4 clear;
5 q=0;
6 a1=0.5
7 a2 = -0.5;
8 n=1:101;
9 x1=a1^n;
10 x2=a2^n;
11 w=2;
12 n=0:100;
13 z = (exp(-\%i*w*n));
14 for n=0:33;
15
       X(n+1)=z(n+1)*x1(n+1);
16
       q=X(n+1)+q;
```

```
17 end

18 disp(q, 'Y2(e^2j) at a=0.5');

19 for n=0:33;

20    X(n+1)=z(n+1)*x2(n+1);

21    q=X(n+1)+q;

22 end

23 disp(q, 'Y2(e^2j) at a=-0.5');
```

Scilab code Exa 5.9.iii DTFT

```
1 // Scilab Code for Example 5.9(iii) of Signals and
      systems by
2 //P.Ramakrishna Rao
3 clc;
4 clear;
5 q = 0;
6 \text{ a1=0.5}
7 a2 = -0.5;
8 n=1:101;
9 x1=a1^n;
10 x2=a2^n;
11 w = 2;
12 n = 0:100;
13 z = (exp(-\%i*w*n));
14 for n=0:33;
       X(n+1)=z(n+1)*x1(n+1)*cos(0.4*\%pi*n);
15
       q = X(n+1) + q;
16
17 end
18 disp(q, 'Y3(e^2j) at a=0.5');
19 for n=0:33;
       X(n+1)=z(n+1)*x2(n+1)*cos(0.4*\%pi*n);
20
21
       q=X(n+1)+q;
22 \text{ end}
23 disp(q, 'Y3(e^2j) at a=-0.5');
```

Scilab code Exa 5.11 Inverse Fourier

```
1 //Scilab Code for Example 5.11 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 \text{ wc}=1;
6 y = 1;
7 for n=-%pi:%pi/80:%pi
       if n<-wc | n>wc then
9
            X(1,y)=1;
10
            y = y + 1;
       else X(1,y)=0;
11
12
            y = y + 1;
13
       end
14 end
15 n=-\%pi:\%pi/80:\%pi;
16 \ a = gca \ ();
17 a.y_location = "origin";
18 a.x_location = "origin";
19 plot(n, X);
20 xlabel ('Frequency in Radians/Seconds');
21 title ('X(e^jw))
                                 Wc=1');
                          at
22 A = 1 / \% pi;
23 \text{ for } k = -10:10
       x(k+11) = A*integrate('cos(w*k)', 'w', wc, \%pi);
24
25 end
26 figure (1);
27 k = -10:10;
28 \ a = gca \ ();
29 a.y_location = "origin";
30 a.x_location = "origin";
31 plot2d3(k,x);
```


Figure 5.9: Inverse Fourier

```
32 xlabel ( 'Time in Seconds' ); 33 title ( 'x(n) at Wc=1');
```

Scilab code Exa 5.13 Circular Convolution

```
1 // Scilab Code for Example 5.13 of Signals and systems by
2 //P.Ramakrishna Rao
3 // Circular Convolution
```


Figure 5.10: Inverse Fourier

```
4 clear;
5 //First Causal sequence
6 x=[1,4,3,2;2,1,4,3;3,2,1,4;4,3,2,1]
7 //Second Sequence
8 y=[4;3;2;1]
9 //Conolution
10 z=x*y;
11 disp(z, 'Convolution Of x & y is:')
```

Scilab code Exa 5.14 Circular Convolution

```
1 // Scilab Code for Example 5.14 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 // Circular Convolution
4 clear;
5 clc;
6 close;
7 // First Causal sequence
8 x = [1,1,1,1,1;1,-\%i,-1,\%i;1,-1,1,-1;1,\%i,-1,-\%i]
9 y1 = [1;2;3;4];
10 y2 = [4;3;2;1];
11 X = x * y1;
12 disp(X, 'Vector X(0)—>X(3)')
13 Y = x * y2;
14 disp(Y, 'Vector Y(0)—>Y(3)')
15 for n=1:4;
16
       Z(n,1) = X(n,1) * Y(n,1);
17 \text{ end}
18 q=4*x^-1;
19 disp(q,'IDFT matrix');
20 z=0.25*q*Z;
21 disp(z, 'IDFT of Vector Z(0)-->Z(3)')
```

Scilab code Exa 5.16 DTFT

```
1 // Scilab Code for Example 5.16 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 clc;
4 clear;
5 q=0;
6 x = [1, 2, 3, 4];
7 w = 0;
8 n=0:3;
9 z = (exp(-\%i*w*n));
10 for n=0:3
       X(n+1)=z(n+1)*x(n+1);
11
12
       q=X(n+1)+q;
13 end
14 disp(q, 'X(0)->zeroth DFT coefficient');
15 q=0;
16 w = \%pi/2;
17 n=0:3;
18 z = (exp(-\%i*w*n));
19 for n=0:3
20
       X(n+1)=z(n+1)*x(n+1);
       q=X(n+1)+q;
21
22 \quad end
23 disp(q, 'X(1) -> first DFT coefficient');
24 q = 0;
25 \text{ w=\%pi;}
26 n = 0:3;
27 z = (exp(-\%i*w*n));
28 \text{ for } n=0:3
29
       X(n+1)=z(n+1)*x(n+1);
        q = X(n+1) + q;
30
31 end
```

```
disp(ceil(q),'X(2)->second DFT coefficient');
q=0;
w=3*%pi/2;
n=0:3;
c=(exp(-%i*w*n));
for n=0:3
    X(n+1)=z(n+1)*x(n+1);
q=X(n+1)+q;
end
disp(q,'X(3)->third DFT coefficient');
```

Scilab code Exa 5.18 DFT coefficients

```
//Scilab Code for Example 5.18 of Signals and
systems by
//P.Ramakrishna Rao
//Given signal x(n)
clear;
clc;
x=[1,2,3,4];
X=fft(x);
disp(X,'FFT of given signal is:X(0)-->X(3)')
```

Chapter 6

Sampling and Reconstruction of Bandlimited Signals

Scilab code Exa 6.1 Sampling and Reconstruction

```
1 // Scilab Code for Example 6.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 //Sampling of signal
4 clc;
5 clear f n X X_delta w;
6 \text{ fs} = 200;
7 \text{ for } f = -200:200
       X(f+201)=5*[delta(f-75)+delta(f+75)];
9 end
10 figure(1);
11 f = -200:200;
12 plot2d3(f,X,-2);
13 title('X(f)');
14 xlabel('---> f');
15 w = 1;
16 n = -1;
17
       for f = -275:275
       X_{delta1}(f+276) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
```

```
*fs+75)];
19
        end
20 n=n+1;
21
       for f = -275:275
22
        X_{delta2}(f+276) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
           *fs+75)];
23 end
24 n=n+1;
        for f = -275:275
25
26
        X_{delta3}(f+276) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
           *fs+75)];
27 \text{ end}
28 X_delta=X_delta1+X_delta2+X_delta3;
29 figure (2);
30 f = -275:275;
31 plot2d3(f, X_delta, -2);
32 title('X_delta(f) at fs = 200');
33 \text{ xlabel}('---> f');
```

Scilab code Exa 6.2 Sampling and Reconstruction

```
//Scilab Code for Example 6.2 of Signals and systems
by
//P.Ramakrishna Rao
//Sampling of signal and aliasing due to low
Sampling frequency
clc;
clear f n X X_delta X_delta1 X_delta2 X_delta3 w;
fs=100;
for f=-200:200
X(f+201)=5*[delta(f-75)+delta(f+75)];
```


Figure 6.1: Sampling and Reconstruction

Figure 6.2: Sampling and Reconstruction

```
9 end
10 figure(1);
11 f = -200:200;
12 plot2d3(f,X,-2);
13 title('X(f)');
14 xlabel('---> f');
15 w = 1;
16 n = -2;
17
       for f = -175:175
       X_{delta1}(f+176) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
18
          *fs+75)];
19
20 n=n+1;
       for f = -175:175
21
       X_delta2(f+176) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
22
          *fs+75)];
23 end
24 n=n+1;
       for f = -175:175
25
        X_{delta}(f+176) = fs*5*[delta(f-n*fs-75)+delta(f-n)]
26
          *fs+75)];
27 \text{ end}
28 n=n+1;
       for f = -175:175
29
30
       X_delta4(f+176)=fs*5*[delta(f-n*fs-75)+delta(f-n
          *fs+75)];
31 end
32 n=n+1;
       for f = -175:175
       X_{delta5(f+176)=fs*5*[delta(f-n*fs-75)+delta(f-n)]
34
          *fs+75)];
35 end
36 X_delta=X_delta1+X_delta2+X_delta3+X_delta4+X_delta5
37 figure (2);
38 f = -175:175;
39
40 plot2d3(f, X_delta, -2);
```


Figure 6.3: Sampling and Reconstruction

```
41 title('X_delta(f) at fs=100');
42 xlabel('---> f');
43 //The Presence of the 25 HZ component in the
        spectrum of x_delta(t)
44 //Due to effect of Aliasing
```

Scilab code Exa 6.3 Minimum Number of samples

1 // Scilab Code for Example 6.3 of Signals and systems

Figure 6.4: Sampling and Reconstruction

```
by
2 //P.Ramakrishna Rao
3 //Minimum no. of samples required
4 clc;
5 clear;
6 syms t;
7 x=10*cos(6*%pi*t)+4*sin(8*%pi*t);
8 disp(x,'x(t)');
9 disp('Maximum Frequency component present: 4 Hz');
10 fs=2*4;
11 disp(fs,'Minimum Sampling Frequency to avoid distortion is:');
```

Scilab code Exa 6.4 Minimum Sampling Frequency

```
//Scilab Code for Example 6.4 of Signals and systems
by
//P.Ramakrishna Rao
//Sampling Frequency
clc;
clear;
//x(t)=100*(sinc(100*t))^2;
fo=100;
fs=2*fo;
disp(fs,'Minimum Sampling Frequency to avoid distortion is:');
```

Scilab code Exa 6.5 LPF output

```
4 clear;
6 for f = -100:100
       X(f+101) = delta(f+100) + delta(f-100) + 3*[delta(f-100)]
          +90)+delta(f-90)];
8 end
9 f = -100:100;
10 a = gca();
11 a.x_location="origin";
12 a.y_location="origin";
13 plot2d3(f,X,-2);
14 title('Spectrum of x(t)');
15 xlabel('--> f');
16 \text{ fs} = 150;
17 n = -1; f - n * f s
       for f = -275:275
18
       X_delta1(f+276) = delta(f-n*fs+100) + delta(f-n*fs
19
           -100) +3*[delta(f-n*fs+90)+delta(f-n*fs-90)];
20
       end
21 n=n+1;
22
       for f = -275:275
       X_{delta2}(f+276) = delta(f-n*fs+100) + delta(f-n*fs
23
           -100) + 3*[delta(f-n*fs+90)+delta(f-n*fs-90)];
24 end
25 n=n+1;
26
       for f = -275:275
27
       X_delta3(f+276) = delta(f-n*fs+100) + delta(f-n*fs)
           -100) +3*[delta(f-n*fs+90)+delta(f-n*fs-90)];
28 end
29 X_delta=X_delta1+X_delta2+X_delta3;
30 figure (2);
31 f = -275:275;
32 plot2d3(f, X_delta, -2);
33 title('X_delta(f) at fs=150');
34 \text{ xlabel}('---> f');
```


Figure 6.5: LPF output

Scilab code Exa 6.6 Sampling Frequency

Figure 6.6: LPF output

```
6 syms t;
7 x=12*cos(800*%pi*t)*cos((1800*%pi*t))^2;
8 disp(x,'x(t)');
9 disp('Maximum Frequency component present: 2200 Hz');
10 fs=2*2200;
11 disp(fs,'Minimum Sampling Frequency to avoid distortion is(Hz):');
```

Scilab code Exa 6.8 Minimum Sampling Frequency

```
//Scilab Code for Example 6.8 of Signals and systems
by
//P.Ramakrishna Rao
//Sampling Frequency of BPS
clc;
clear;
disp('Maximum Frequency component present: 25 kHz');
fs=2*25000;
disp(fs,'Minimum Sampling Frequency to avoid distortion is:(Hz)');
```

Chapter 7

Systems

Scilab code Exa 7.1 Properties of System

```
1 // Scilab Code for Example 7.1 of Signals and systems
      by
2 //P.Ramakrishna Rao
3 clc;
4 clear;
5 a0=2;
6 a1=2;
7 a2=4;
8 x1=[1,3,5,7];
9 	 x2 = [2,4,6,8];
10 for t=1:4
       y1(1,t)=a0+a1*x1(t)+a2*(x1(t))^2;
11
       y2(1,t)=a0+a1*x2(t)+a2*(x2(t))^2;
12
13 end
14 b1=2;
15 b2=3;
16 \quad x=b1*x1+b2*x2;
17 disp('y(n) does not depend on past inputs');
18 disp('Hence the system is Static');
19 disp(x, 'The input to the system is:');
20 \text{ for } t=1:4
```

```
21    q(1,t)=a0+a1*x(t)+a2*(x(t))^2;
22 end
23 disp(q,'This input gives the output:');
24 y=b1*y1+b2*y2;
25 disp(y,'For the system to be linear the output should be:');
26 disp('Hence the system is not linear');
```

Scilab code Exa 7.3 System Properties

```
1 // Scilab Code for Example 7.3 of Signals and systems
2 //P.Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(n) = x(n) - x(n-1);
7 disp('y(n) depends upon past inputs also');
8 disp('Output at n=2 depends upon value of x at n=1')
9 disp('Hence the system is Dynamic');
10 x1 = [1,3,5,7,2];
11 x2=[2,4,6,8,3];
12 \text{ for } n=2:5
       y1(1,n)=x1(n)-x1(n-1)
13
       y2(1,n)=x2(n)-x2(n-1)
14
15 end
16 b1=2;
17 b2=3;
18 x = b1 * x1 + b2 * x2
19 disp(x, 'The input to the system is:');
20 \text{ for } n=2:5
       q(1,n)=x(n)-x(n-1);
21
22 \text{ end}
23 y=b1*y1+b2*y2;
```

Scilab code Exa 7.4 System Properties

```
1 // Scilab Code for Example 7.4 of Signals and systems
       bv
2 //P. Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //v(t) = x(2*t)
7 disp('y(t)) depends upon past inputs for t<0');
8 disp('y(t)) depends upon future inputs for t>0');
9 disp('Hence the system is Dynamic');
10 x1=[1,3,5,7,2,5,3,9]; //Random Variable
11 x2=[2,4,6,8,2,4,2,1];
12 \text{ for } t=1:4
13
       y1(1,t)=x1(2*t);
14
       y2(1,t)=x2(2*t);
15 end
16 b1=2;
17 b2=3;
18 x=b1*x1+b2*x2;
19 disp(x, 'The input to the system is:');
20 \text{ for } t=1:4
21
       q(1,t)=x(2*t);
22 end
23 disp(q, 'This input gives the output:');
24 y = b1 * y1 + b2 * y2;
25 disp(y, 'For the system to be linear the output
      should be: ');
26 disp('Hence the system is linear');
```

```
27 disp('For a delay (T) of 2 seconds');
28 disp('At t=3 seconds:');
29 t=3;
30 a=x(1,2*t-2);
31 b=y(1,t-2);
32 c=x(1,2*t-4);
33 disp(a,'x(2t-T):');
34 disp(b,'is not equal to y(2t-T):');
35 disp(c,'while x(2t-2*T):');
36 disp('Hence the system is Time variant');
```

Scilab code Exa 7.5 System Properties

```
1 // Scilab Code for Example 7.5 of Signals and systems
2 //P. Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(t) = x(2*n)
7 disp('y(n)) depends upon past inputs for n<0');
8 disp('y(n)) depends upon future inputs for n>0');
9 disp('Hence the system is Dynamic');
10 x1=[1,3,5,3,2,5,3,9];/random variable
11 x2=[2,4,6,4,2,4,2,1];
12 for n=1:4
       y1(1,n)=x1(2*n);
13
14
       y2(1,n)=x2(2*n);
15 end
16 b1=2;
17 b2=3;
18 x=b1*x1+b2*x2;
19 disp(x, 'The input to the system is:');
20 \text{ for } n=1:4
21
       q(1,n)=x(2*n);
```

```
22 \text{ end}
23 disp(q, 'This input gives the output:');
24 y = b1 * y1 + b2 * y2;
25 disp(y, 'For the system to be linear the output
      should be: ');
26 disp('Hence the system is linear');
27 disp('For a delay (n0) of 2 seconds');
28 disp('At n=3 seconds:');
29 t = 3;
30 \quad a=x(1,2*n-2);
31 b=y(1,n-2);
32 c=x(1,2*n-4);
33 disp(a, 'x(2n-n0): ');
34 disp(b, 'is not equal to y(2n-n0):');
35 disp(c, 'while x(2n-2*n0):');
36 disp('Hence the system is Time variant');
```

Scilab code Exa 7.6 System Properties

```
1 //Scilab Code for Example 7.6 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(n)=x(n)-x(n-1);
7 x = [2,4,3,6,7]
8 \text{ for } n=2:5
       y(1,n)=x(n)-x(n-1);
9
10 \, \text{end}
11 disp(y, 'This input gives the output:');
12 disp('For a shift (n0) of 2 seconds');
13 disp('At n=3 seconds:');
14 n=5;
15 b=y(n-2);
```

```
16 a=x(n-2)-x(n-2-1);
17 disp(a, 'x(n-2): ');
18 disp(b, 'is equal to y(n-2): ');
19 disp('Hence the system is Shift invariant/fixed');
```

Scilab code Exa 7.7 Properties of System

```
1 // Scilab Code for Example 7.7 of Signals and systems
2 //P. Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(t) = n *x(n)
7 disp('y(n) depends only upon present inputs');
8 disp('(i) Hence the system is Dynamic');
9 x1=[1,3,5,3,2,5,3,9];//random variable
10 x2=[2,4,6,4,2,4,2,1];
11 for n=1:4
       y1(1,n)=n*x1(n);
12
13
       y2(1,n)=n*x2(n);
14 end
15 b1=2;
16 b2=3;
17 x=b1*x1+b2*x2;
18 disp(x, 'The input to the system is:');
19 for n=1:4
20
       q(1,n)=n*x(n);
21 end
22 disp(q, 'This input gives the output:');
23 y = b1 * y1 + b2 * y2;
24 disp(y, 'For the system to be linear the output
      should be: ');
25 disp('(ii)
              Hence the system is linear');
26 disp('For a delay (n0) of 2 seconds');
```

```
27 disp('At n=3 seconds:');
28 t=3;
29 a=x(1,n-2);
30 b=y(1,n-2);
31 c=2*x(1,n-2);
32 disp(a, 'x(n-n0):');
33 disp(b, 'is not equal to y(n-n0):');
34 disp(c, 'while (n-n0)*x(n-n0):');
35 disp('(iii) Hence the system is Time variant');
```

Scilab code Exa 7.8 Properties of System

```
1 // Scilab Code for Example 7.8 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(t) = sum(x(n)), n-2 <= n = < n+2
7 x1=[1,3,5,3,0,0,0,0,0]; //random variable
8 x2=[2,4,6,4,0,0,0,0,0,0];
9 \text{ for } n=1:4
       y1(1,n)=x1(n)+x1(n+1)+x1(n+2)+x1(n+3)+x1(n+4);
10
11
       y2(1,n)=x2(n)+x2(n+1)+x2(n+2)+x2(n+3)+x2(n+4);
12 end
13 b1=2;
14 b2=3;
15 x=b1*x1+b2*x2;
16 disp(x, 'The input to the system is:');
17 for n=1:4
       q(1,n)=x(n)+x(n+1)+x(n+2)+x(n+3)+x(n+4);
18
19 end
20 disp(q, 'This input gives the output:');
21 y = b1 * y1 + b2 * y2;
22 disp(y, 'For the system to be linear the output
```

```
should be: ');
23 disp('(i) Hence the system is linear');
```

Scilab code Exa 7.9 Properties of System

```
1 //Scilab Code for Example 7.9 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 clc;
4 clear x y1 y y2 q t n;
5 clear;
6 //y(t) = \exp |x(n)|
7 x1=[1,3,5,3];//random variable
8 \times 2 = [2, 4, 6, 4];
9 \text{ for } n=1:4
       y1(1,n) = exp(abs(x1(n)));
10
       y2(1,n) = exp(abs(x2(n)));
11
12 end
13 b1=2;
14 b2=3;
15 \quad x=b1*x1+b2*x2;
16 disp(x, 'The input to the system is:');
17 \text{ for } n=1:4
18
       q(1,n) = \exp(abs(b1*(x1(n))+b2*(x2(n))));
19 end
20 disp(q, 'This input gives the output:');
21 y=b1*y1+b2*y2;
22 disp(y, 'For the system to be linear the output
      should be: ');
23 disp('(ii) Hence the system is not linear');
24 disp('For a delay (n0) of 2 seconds');
25 disp('At n=3 seconds:');
26 n = 4;
27 a = \exp(abs(x1(n-2)));
28 b=y1(1,n-2);
```

```
29 disp(a, 'e^x(n-n0): ');
30 disp(b, 'is equal to y(n-n0): ');
31 disp('(iii)) Hence the system is Time invariant');
```

Scilab code Exa 7.10 Output of an LTI

Scilab code Exa 7.11 Convolution

Figure 7.1: Output of an LTI

```
8 n = -2:2;
9 c = gca();
10 c.y_location = "origin";
11 c.x_location = "origin";
12 plot2d2(n,x,2);
13 title('x(t)')
14 xlabel('t')
15 figure(1);
16 n = -2:2;
17 c = gca();
18 c.y_location = "origin";
19 c.x_location = "origin";
20 plot2d2(n,y,5);
21 title('y(t)')
22 xlabel('t')
23 z = conv(x,y);
24 figure(2);
25 \quad n = -3:5;
26 c = gca();
27 c.y_location = "origin";
28 c.x_location = "origin";
29 plot(n,z,2);
30 title('Convoluted signal z(t)')
31 xlabel('t')
```

Scilab code Exa 7.14 Impulse and Step response

Figure 7.2: Convolution

```
6 syms s t R C;
7 Y1 = (1/(R*C))/(s+1/(R*C));
8 disp(Y1, 'Laplace Transform Of differential Equation
      is: ')
9 y11=ilaplace(Y1,s,t);
10 disp(y11, 'The Impulse Response of the System is:');
11 for k=0:10;
       y1(k+1) = exp(-k);
12
13 end
14 k=0:10;
15 plot(k,y1);
16 title('System Response to impulse input');
17 Y2=(1/(R*C))/(s^2+s/(R*C));
18 disp(Y2, 'Laplace Transform Of differential Equation
      is: ')
19 y22=ilaplace(Y2,s,t);
20 disp(y22, 'The Step Response of the System is:');
21 \text{ for } k=0:10;
       y2(k+1)=1-exp(-k);
22
23 end
24 figure(1);
25 \text{ k=0:10};
26 plot(k, y2);
27 title('System Response to Step input');
```

Scilab code Exa 7.15 Impulse and Step Response

```
1 // Scilab Code for Example 7.15 of Signals and systems by
2 //P. Ramakrishna Rao
3 // Plotting the impulse and step responses
```


Figure 7.3: Impulse and Step response

Figure 7.4: Impulse and Step response

```
4 clc;
5 clear;
6 syms s t R L;
7 Y1 = (1/s) - (1/(s + (R/L)));
8 disp(Y1, 'Laplace Transform Of differential Equation
      is: ')
9 y1=ilaplace(Y1,s,t);
10 disp(y1, 'The Step Response of the System is:');
11 // Taking R/L=1;
12 \text{ for } k=0:10;
       y1(k+1)=1-exp(-k);
13
14 end
15 \text{ k=0:10};
16 plot(k,y1);
17 title('System Response to Step input');
18 Y2 = (1/(s+(R/L)));
19 disp(Y2, 'Laplace Transform Of differential Equation
      is: ')
20 y2=ilaplace(Y2,s,t);
21 disp(y2, 'The Impulse Response of the System is:');
22 \text{ for } k=0:10;
       y2(k+1) = exp(-k);
23
24 end
25 figure (1);
26 k=0:10;
27 plot(k,y2);
28 title('System Response to impulse input');
```

Scilab code Exa 7.19 Convolution

```
1 // Scilab Code for Example 7.19 of Signals and
```


Figure 7.5: Impulse and Step Response

Figure 7.6: Impulse and Step Response $\,$

```
systems by
2 //P.Ramakrishna Rao
3 // Convolution of two signals
4 clc;
5 clear;
6 clear x y n;
7 x = [2, -1, 1, 0, 2];
8 y = [1, 0, -1, 2];
9 n = -1:3;
10 c = gca();
11 c.y_location = "origin";
12 c.x_location = "origin";
13 plot2d3(n,x,-5);
14 title('x(k)')
15 xlabel('k')
16 figure(1);
17 n=0:3;
18 c = gca();
19 c.y_location = "origin";
20 c.x_location = "origin";
21 plot2d3(n,y,-5);
22 title('y(k)')
23 xlabel('k')
24 z = conv(x,y);
25 figure(2);
26 \quad n = -1:6;
27 c = gca();
28 c.y_location = "origin";
29 c.x_location = "origin";
30 \text{ plot2d3}(n,z,-5);
31 title ('Convoluted signal
                                   z(t),)
32 xlabel('t')
```


Figure 7.7: Convolution

Scilab code Exa 7.22 Convolution

```
1 //Scilab Code for Example 7.22 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 //Convolution of two signals
4 clc;
5 clear;
6 clear x y n;
7 \text{ for } n=0:10;
       x(n+1) = (3/4)^n*u(n);
8
9 end
10 c = gca();
11 c.y_location = "origin";
12 c.x_location = "origin";
13 n=0:10;
14 plot2d3(n,x,-4);
15 title('x(n)')
16 xlabel('n')
17 for n=0:10;
18
       y(n+1)=u(n);
19 end
20 figure (1);
21 n=0:10;
22 c = gca();
23 c.y_location = "origin";
24 c.x_location = "origin";
25 plot2d3(n,y,-4);
26 title('y(k)')
27 xlabel('k')
28 z = conv(x,y);
29 figure (2);
30 n = 0:20;
31 c = gca();
32 c.y_location = "origin";
33 c.x_location = "origin";
34 plot2d3(n,z,-4);
                             w(t)');
35 title ('Convoluted signal
```


Figure 7.8: Convolution

```
36 xlabel('t');  
37 disp(z(1),'z(0)',z(4),'z(3)',z(6),'z(5)',z(11),'z (10)');
```

Scilab code Exa 7.23 Convolution

```
5 clear;
6 clear x y n;
7 \text{ for } n=0:10;
       x(n+1) = (0.5)^n*u(n-2);
9 end
10 c = gca();
11 c.y_location = "origin";
12 c.x_location = "origin";
13 n=0:10;
14 plot2d3(n,x,-4);
15 title('x(n)')
16 xlabel('n')
17 for n=0:10;
       y(n+1)=u(n);
18
19 end
20 figure(1);
21 n=0:10;
22 c = gca();
23 c.y_location = "origin";
24 c.x_location = "origin";
25 plot2d3(n,y,-4);
26 title('y(k)')
27 xlabel('k')
28 z = conv(x,y);
29 figure (2);
30 n=0:20;
31 c = gca();
32 c.y_location = "origin";
33 c.x_location = "origin";
34 plot2d3(n,z,-4);
35 title ('Convoluted signal
                                  z(t),)
36 xlabel('t')
```


Figure 7.9: Convolution

Scilab code Exa 7.24 Step Response

```
1 // Scilab Code for Example 7.24 of Signals and
     systems by
2 //P. Ramakrishna Rao
3 // Plotting the step response
4 clc;
5 clear;
6 syms z n;
7 y1=2*(1-0.5^n);
8 disp(y1*'u(n)', 'The step Response of the System is:'
     );
  for n=0:10;
       q(n+1)=2*(1-0.5^n);
10
11 end
12 n=0:10;
13 plot(n,q);
14 title('Step Response g(n)');
15 xlabel('n-->');
```

Scilab code Exa 7.25 Step response

```
//Scilab Code for Example 7.25 of Signals and
systems by
//P.Ramakrishna Rao
//Plotting the impulse and step responses
clc;
clear;
syms z a n;
Y1=(2*z/(z-a));
disp(Y1, 'Z Transform Of differential Equation is:')
y12=2*a^n;
disp(y12, 'The Unit Sample Response of the System is:
```


Figure 7.10: Step Response

Figure 7.11: Step response

```
');
11 y2=2*(a^n-1)/(a-1);
12 disp(y2, 'The Step Response of the System is:');
13 q=1;
14 a=0.5;
15 for k=0:0.1:5;
16 y2(q)=2*((a^k-1)/(a-1));
17 q=q+1;
18 end
19 k=0:0.1:5;
20 plot(k,y2);
```

Scilab code Exa 7.33 Magnitude and Phase Response

```
1 // Scilab Code for Example 7.33 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 // Plotting the magnitude and phase responses
4 clc;
5 clear;
6 T = 1;
7 n = 1;
8 \text{ for } w=0:0.1:20;
       hmag(n) = 2*sin(w*T/2);
10
       n=n+1;
11 end
12 n=1;
13 for w=0:0.1:20;
       hphase(n)=\%pi/2-(w*T/2);
14
       n=n+1;
15
16 \, \text{end}
17 // Magnitude plot
18 w=0:0.1:20;
19 plot(w,hmag);
20 title('Magnitude Plot');
21 xlabel('w');
22 ylabel('|H(e^jw)|');
23 figure(1);
24 //Phase Plot
25 \quad w = 0:0.1:20;
26 plot(w,hphase);
27 title('Phase Plot');
28 xlabel('w');
29 ylabel('theta(wT)');
```


Figure 7.12: Magnitude and Phase Response

Figure 7.13: Magnitude and Phase Response

Chapter 8

Systems Time and Frequency Domain Analysis

Scilab code Exa 8.1 Magnitude and Phase Responses

```
1 // Scilab Code for Example 8.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 // First Order causal LTI system
4 clear;
5 clc;
6 syms s t;
7 Y=1/(s+6);
8 h = \exp(-6*t);
9 H=laplace(h,t,'jw');
10 disp(H, "H(w)=");
11 n=1;
12 for w = -5*2*\%pi:0.01:5*2*\%pi
13
       Hmag(n)=1/sqrt(36+w^2)
14
       Hphs(n) = -atan(w/6);
       n=n+1;
15
16 end
17 w = -5*2*\%pi:0.01:5*2*\%pi;
18 plot(w, Hmag);
```


Figure 8.1: Magnitude and Phase Responses

```
19 title('Impulse Response');
20 ylabel('Amplitude');
21 xlabel('time in seconds');
22 figure(1);
23 w=-5*2*%pi:0.01:5*2*%pi;
24 plot(w,Hphs);
25 title('Phase Response');
26 ylabel('theta(w)');
27 xlabel('w in radians/second');
```


Figure 8.2: Magnitude and Phase Responses

Scilab code Exa 8.2 Transfer Function of system

```
1 // Scilab Code for Example 8.2 of Signals and systems
      by
2 //P. Ramakrishna Rao
3 //Second order system
4 clear;
5 clc;
6 syms t;
7 L=1;
8 R=1.2;
9 C=10^-6;
10 Rcr=2*sqrt(L/C);
11 eta=R/Rcr;
12 disp(eta, 'Damping Ratio=', Rcr, 'Critical Resistance (
     ohm)','(i)');
13 Wn=1/sqrt(L*C);
14 disp(Wn, 'Undamped Natural Frequency(Hz)', '(ii)');
15 n=1;
16 h=(1250*sin(800*t))*exp(-600*t);
17 H=laplace(h,t,'jW');
18 for t=0:0.1:2;
19
       h(n) = (1250*sin(800*t))*exp(-600*t); //Impulse
          Response
20
       n=n+1;
21 end
22 t=0:0.1:2;
23 plot(t,h);
24 title('Impulse Response');
25 ylabel('Amplitude');
26 xlabel('time in seconds');
27 disp(H, '(iv) Transfer Function(H(jw)):');
```


Figure 8.3: Transfer Function of system

Scilab code Exa 8.3 Magnitude and Phase Responses

```
1 //Scilab Code for Example 8.3 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 syms n w;
6 h = (0.3)^n;
7 disp(h, 'The impulse response of the system is:');
8 H=1/(1-(0.3*exp(-\%i*w)));
9 disp(H, 'The Transfer function of the system is:');
10 n=1;
11 for w = -\%pi : 0.1 : \%pi
       Hmag(n) = 1/sqrt(1.09 - (0.6*cos(w)));
12
       Hphs(n) = -atan(0.3*sin(w)/(1-0.3*cos(w)));
13
14
       n=n+1;
15 end
16 \text{ w=-\%pi:0.1:\%pi;}
17 c = gca();
18 c.y_location = "origin";
19 c.x_location = "origin";
20 c.thickness=2;
21 plot(w, Hmag);
22 title ('Magnitude Sketch');
23 ylabel('Amplitude');
24 xlabel('W in radians');
25 figure(1);
26 \text{ w=-\%pi:0.1:\%pi;}
27 c = gca();
28 c.y_location = "origin";
29 c.x_location = "origin";
30 c.thickness=2;
31 plot(w, Hphs);
32 title('Phase Response');
33 ylabel('theta(w)');
34 xlabel('W in radians')
```


Figure 8.4: Magnitude and Phase Responses

Scilab code Exa 8.4 system response

Figure 8.5: Magnitude and Phase Responses

```
6 \quad z = \%z;
7 syms n z1;
8 X = (z-1)/((z+(1/2))*(z-(1/5)))
9 disp(X, '(i) System Function is: ');
10 X1 = denom(X);
11 \text{ zp = } roots(X1);
12 X1 = (z1-1)/((z1+(1/2))*(z1-(1/5)));
13 F1 = X1*(z1^(n-1))*(z1-zp(1))
14 	ext{ F2} = X1*(z1^(n-1))*(z1-zp(2))
15 \text{ h1} = limit(F1, z1, zp(1))
16 \text{ h2} = limit(F2, z1, zp(2))
17 h = h1+h2;
18 disp('(iv) Unit sample response sequence:')
19 disp(h*"u(n)", 'h[n]=');
20 \quad for \quad n=0:10;
       w(n+1)=(-5.714*(0.2)^n-4.285*(-0.5^n));
21
22 \text{ end}
23 n=0:10;
24 plot(n,w);
25 title('(iii) Unit Sample Response Sequence');
26 disp('where z=e^jw', X, '(i) Transfer Function is:');
```

Scilab code Exa 8.5 System function

```
//Scilab Code for Example 8.5 of Signals and systems
by
//P.Ramakrishna Rao
//Second Order System
clear;
clc;
z = %z;
syms n z1;
X = z^2/(z-0.5)^2
```


Figure 8.6: system response

```
9 disp(X, '(i) System Function is: ');
10 X1 = denom(X);
11 \text{ zp = } roots(X1);
12 X1 = z1^2/(z1-0.5)^2;
13 F1 = X1*(z1^(n-1))*(z1-0.5)^2;
14 \text{ h1} = limit(F1, z1, zp(1));
15 h = h1;
16 disp('(iii) Unit step response sequence:')
17 disp(h*"u(n)", 'h[n]=');
18 for n=0:20;
19
       w1(n+1)=1-(0.5)^n;
20 end
21 n = 0:20;
22 plot(n,w1);
23 title('(ii) Unit Sample Response Sequence');
24 disp('where z=e^jw', X, '(iv) Transfer Function (H(e^
      jw))is:');
```

Scilab code Exa 8.8 Transfer function

Figure 8.7: System function

```
13 disp(Z, '(b) LC Low pass Filter: H(s)');
```

Scilab code Exa 8.9 Transfer function by block diagram reduction

```
1 //Scilab Code for Example 8.9 of Signals and systems
       by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 syms G1 G2 G3 G4 H1 H2 s;
6 \text{ G1=s/(s+5)};
7 G2=10/(s+10);
8 \text{ H1=s};
9 \text{ H2=1/s};
10 disp('(i) Shifting the take off point');
11 H1=H1/G2;
12 disp('(ii) Solving second Feedback Loop');
13 G3 = H1 - 1;
14 disp('(iii) Solving first Feedback Loop');
15 G4=G2/(1+G2*H2);
16 \ Z = G1 * G3 * G4;
17 disp(Z, '(iv) The Transfer Function is: ');
```

Scilab code Exa 8.10 Realization Structure

```
8 H=s^3/(s^3+6*s^2++11*s+6);
9 H1=denom(H);
10 a=roots(H1);
11 H2=5*(s1^3/(s1-a(1)))*(s1/(s1-a(2)))*(s1/(s1-a(3)));
12 disp(H2,'(ii) Cascade Form: H(s)');
13 h1=s1^3*(s1-a(1))/((s1+1)*(s1+2)*(s1+3));
14 h2=s1^3*(s1-a(2))/((s1+1)*(s1+2)*(s1+3));
15 h3=s1^3*(s1-a(3))/((s1+1)*(s1+2)*(s1+3));
16 A = limit(h1,s1,a(1))/(s-a(1));
17 B = limit(h2,s1,a(2))/(s-a(2));
18 C = limit(h3,s1,a(3))/(s-a(3));
19 Z=5*(1+A+B+C);
20 disp(Z,'(iii))Parallel Form Realization: H(s)');
```

Scilab code Exa 8.12 Transfer function Realization

```
1 //Scilab Code for Example 8.12 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 //Second Order LSI system
4 z = \%z;
5 s = %s;
6 X=z^-1/(0.7*z^-2-3.7*z^-1+3);
7 [A]=pfss(z^-1/(0.7*z^-2-3.7*z^-1+3))
8 \times 1 = horner(A(1),z)
9 \times 2 = horner(A(2),z)
10 q = denom(X);
11 \quad a = roots(q)
12 H = [x1 \ x2 \ z/3];
13 disp(H, '(a) H(z) = ');
14 clear z;
15 syms z n;
16 F1 = ((1/6)*(z/(z-1))*z^{(n-1)}*(z-a(1)))
17 F2 = ((0.7/54)*(z/(z-0.233333))*z^(n-1)*(z-a(2)))
18 w1=limit(F1,z,a(1))
```

```
19  w2=limit(F2,z,a(2))
20  w=w1+w2;
21  disp(w,'(b) h(n))=');
22  z=%z;
23  x11=z*x1/3
24  x12=z*x2/3
25  disp(x11,"(c) Parallel realization: H1(z)");
26  disp(x12," H2(z)")
```

Scilab code Exa 8.13 Parallel form realization

```
1 //Scilab Code for Example 8.13 of Signals and
      systems by
2 //P. Ramakrishna Rao
3 clear;
4 clc;
5 \text{ syms z1};
6 z=\%z;
7 H = poly(0, 'z');
8 H=z*(z+0.5)*(z+0.25)/((z-0.5)*(z-0.25)*(z-0.125));
9 H1 = denom(H);
10 \text{ a=roots}(H1)
11 h1=(z1+0.5)*(z1+0.25)/((z1-0.5)*(z1-0.25)*(z1-0.125)
     )*(z1-a(1));
12 h2=(z1+0.5)*(z1+0.25)/((z1-0.5)*(z1-0.25)*(z1-0.125)
      )*(z1-a(2));
13 h3=(z1+0.5)*(z1+0.25)/((z1-0.5)*(z1-0.25)*(z1-0.125)
      )*(z1-a(3));
14 A=z*limit(h1,z1,a(1))/(z-a(1));
15 B=z*limit(h2,z1,a(2))/(z-a(2));
16 C=z*limit(h3,z1,a(3))/(z-a(3));
17 Z=A+B+C;
18 disp(Z, 'Parallel Form Realisation: H(z)');
```

Chapter 9

Convolution and Correlation Continuous Time Signals

Scilab code Exa 9.1 Convolution

```
1 // Scilab Code for Example 9.1 of Signals and systems
       by
2 //P.Ramakrishna Rao
3 // Convolution of two signals
4 clc;
5 n=1;
6 for t = -10:0.1:10
       x(n)=5*cos(t);
       y(n)=2*exp(-abs(t));
9
       n=n+1;
10 \text{ end}
11 z=conv(x,y);
12 t2 = -20:0.1:20;
13 plot2d(t2,z);
14 title('Output signal');
15 xlabel('Time t \longrightarrow');
```


Figure 9.1: Convolution

Figure 9.2: Convolution

Scilab code Exa 9.3 Convolution

```
//Scilab Code for Example 9.3 of Signals and systems
by
//P.Ramakrishna Rao
//Convolution of two signals
clc;
clear;
n=1;
for t=-5:0.1:5
```

```
x(n) = -2*u(t-0.5) + 2*u(t-1.5);
8
       y(n)=(t+1)*u(t+1)-(t+1)*u(t-2);
9
10
       n=n+1;
11 end
12 z = conv(x,y);
13 t = -5:0.1:5;
14 plot2d2(t,x,5);
15 title('x(t)');
16 figure(1);
17 t = -5:0.1:5;
18 plot2d(t,y,2);
19 title('y(t)');
20 figure (2);
21 t = -10:0.1:10;
22 plot2d(t,z,6);
23 title('Convolution');
```

Scilab code Exa 9.4 Autocorrelation

```
//Scilab Code for Example 9.4 of Signals and systems
by
//P.Ramakrishna Rao
clc;
clear;
T=1;
n=1;
x(n)=10*cos(%pi*t/T);
n=n+1;
end
t=-T/2:0.01:T/2;
plot(t,x);
title('x(t)');
```


Figure 9.3: Autocorrelation

Figure 9.4: Autocorrelation

```
14 disp('Rxx(0)=Energy of signal');
15 Rxx=integrate('50*(1+\cos(2*\%pi*t/T))','t',-T/2,T/2);
16 disp(Rxx,'Rxx(0)=');
```

Scilab code Exa 9.5 Autocorrelation

```
1 // Scilab Code for Example 9.5 of Signals and systems by
2 //P. Ramakrishna Rao
```


Figure 9.5: Autocorrelation

```
3 clc;
4 clear;
5 clear z x y t T;
6 n = 1;
7 for t = -10:0.01:10;
       x(n) = exp(-t)*u(t);
9
       n=n+1;
10 \, \text{end}
11 t = -10:0.01:10;
12 plot(t,x);
13 title('x(t)');
14 n=1;
15 for T = -10:0.1:0;
       z(n) = integrate('exp(-t) * exp(T-t)', 't', 0, 1000);
16
17
       n=n+1;
18 end
19 n=1;
20 for T=0.1:0.1:10;
       z(n+101) = integrate('exp(-t)*exp(T-t)', 't', T
22
       n=n+1;
23 end
24 figure(1);
25 \quad T = -10:0.1:10;
26 plot(T,z);
27 title('Rxx(T)');
28 xlabel('t in seconds');
```

Scilab code Exa 9.6 Autocorrelation

```
1 //Scilab Code for Example 9.6 of Signals and systems
```


Figure 9.6: Autocorrelation

Figure 9.7: Autocorrelation

```
by
2 //P. Ramakrishna Rao
3 clc;
4 clear;
5 clear z x y t T;
6 \quad A = 1;
7 n = 1;
8 \text{ wo} = 2 * \% \text{pi};
9 theta=%pi/2;
10 for t = -5:0.01:5;
11
        x(n) = A * cos(wo*t+theta);
12
        n=n+1;
13 end
14 t = -5:0.01:5;
15 plot(t,x);
16 title('x(t)');
17 n=1;
18 for T = -5:0.1:5;
        z(n) = (A^2/2) * cos(wo*T);
19
20
        n=n+1;
21 end
22 figure(1);
23 T = -5:0.1:5;
24 plot(T,z);
25 title('Rxx(T)');
26 xlabel('t in seconds')
```

Scilab code Exa 9.7 Autocorrelation

```
1 //Scilab Code for Example 9.7 of Signals and systems by
```


Figure 9.8: Autocorrelation

Figure 9.9: Autocorrelation

```
2 //P. Ramakrishna Rao
3 clc;
4 clear;
5 clear z x y t T A;
6 \quad A = 4;
7 T0 = 2;
8 n = 1;
9 for T=0:0.1:T0;
10
        if T<T0/2 then
            x(n)=A;
11
12
        else x(n)=0;
13
            end
14
       n=n+1;
15 end
16 \quad T = 0:0.1:T0;
17 plot2d2(T,x,6);
18 title('x(t))');
19 xlabel('t in seconds');
20 n = 1;
21 for T=0:0.1:T0;
22
        z(n) = (1/T0) * integrate('A^2', 't', T, T0/2);
23
       n=n+1;
24 end
25 \quad T = 0:0.1:T0;
26 figure(1);
27 plot(T,z);
28 title('Rxx(T)');
29 xlabel('T in seconds');
```

Scilab code Exa 9.10 Autocorrelation Function

```
1 // Scilab Code for Example 9.10 of Signals and systems by
2 //P.Ramakrishna Rao
3 // Maximum Value of Auto-Correlation Function
```


Figure 9.10: PSD

```
4 clc;
5 clear;
6 disp('Maximum Value of ACF=Rxx(0)');
7 x=200*integrate('exp(-2*t)','t',0,1000);
8 disp(x,'Energy in x(t)=');
```

Scilab code Exa 9.11 PSD

```
1 // Scilab Code for Example 9.11 of Signals and systems by2 //P.Ramakrishna Rao
```

```
3 //Power Spectral Density
4 clear;
5 clc;
6 clear f n;
7 fo=2;
8 n=1;
9 RC=1/(2*\%pi*10^3);
10 \ w=4*\%pi*10^3
11 H=1/(1+\%i*w*RC);
12 disp(H, 'H(f)');
13 X = (abs(H))^2;
14 for f = -5:5
15
       Pxx(n) = 25*[delta(f-fo)+delta(f+fo)];
       Pyy(n) = X*Pxx(n);
16
17
       n=n+1;
18 \text{ end}
19 disp(Pxx, 'Pxx=');
20 disp(Pyy, 'Pyy=');
21 	ext{ } f = -5:5;
22 plot2d3(f,Pyy,-2);
23 title('Power Spectral Density');
24 ylabel('Pyy(f)');
25 xlabel('f in Hz');
```

Chapter 10

Discrete Time Convolution and Correlation

Scilab code Exa 10.1 Cross Correlation

```
1 // Scilab Code for Example 10.1 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 // Cross Correlation
4 clear;
5 clc;
6 x = [2, -1, 1, 0, 2];
7 y = [0, 1, 0, -1, 2];
8 //computation of cross correlation sequence;
9 \text{ n1} = \max(\text{size}(y)) - 1;
10 n2 = \max(size(x))-1;
11 r = xcorr(x,y,n1);
12 n = -4:4;
13 a=gca();
14 a.x_location="origin";
15 a.y_location="origin";
16 plot2d3(n,r,-9);
```


Figure 10.1: Cross Correlation

Figure 10.2: Cross Correlation Sequence

```
17 title('Cross-Correlation seguence output');
```

Scilab code Exa 10.2 Cross Correlation Sequence

Figure 10.3: Auto Correlation

```
7  y=[0,3,0,-3,6];
8  //computation of cross correlation sequence;
9  n1 = max(size(y))-1;
10  n2 = max(size(x))-1;
11  r = xcorr(x,y,n1);
12  n=-4:4;
13  a=gca();
14  a.x_location="origin";
15  a.y_location="origin";
16  plot2d3(n,r,-9);
17  title('rxy_cross-correlation');
```

Scilab code Exa 10.4 Auto Correlation

```
//Scilab Code for Example 10.4 of Signals and
systems by
//P.Ramakrishna Rao
//Auto Correlation
clear;
clc;
x=[-1,1,-1];
//computation of auto correlation sequence;
r = xcorr(x);
n=-2:2;
a=gca();
a.x_location="origin";
a.y_location="origin";
plot2d3(n,r,-9);
title('rxx_auto-correlation');
```

Scilab code Exa 10.5 Auto Correlation

Figure 10.4: Auto Correlation

Figure 10.5: Auto Correlation

```
13 length(x)
14 //computation of auto correlation sequence;
15 r = xcorr(x);
16 n=-60:60;
17 a=gca();
18 a.x_location="origin";
19 a.y_location="origin";
20 plot2d3(n,r,-4);
21 title('rxx_auto-correlation');
```

Scilab code Exa 10.8 Auto Correlation

```
1 //Scilab Code for Example 10.8 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 //Auto Correlation
4 clear;
5 clc;
6 clear x n a;
7 k=1;
8 a=0.8;
9 for n = -30:30;
       x(k)=a^(n)*u(n);
10
11
       k=k+1;
12 end
13 length(x)
14 //computation of auto correlation sequence;
15 r = xcorr(x);
16 n = -60:60;
17 a=gca();
18 a.x_location="origin";
19 a.y_location="origin";
20 plot2d3(n,r,-4);
21 title('rxx_auto-correlation');
```

Scilab code Exa 10.11 System response

Figure 10.6: System response

```
8 x = [1,1,1,1,0,0];
9 y = [1,3,6,10,12,12,10,6,3,1];
10 h(1) = y(1)/x(1);
11 for n=2:7
12
       for k=1:n-1
            z(k) = (h(k)*x(n-k));
13
       h(n) = (y(n) - sum(z));
14
15
        end
16 end
17 disp(h, 'h(n)');
18 \quad n=1:7;
19 a=gca();
20 \text{ a.x\_location="origin"};
21 a.y_location="origin";
22 plot2d3(n,h,-4);
23 title('System Response h(n)');
```

Chapter 11

Hilbert Transform Continuous and Discrete

Scilab code Exa 11.1 Hilbert Transform

```
1 //Scilab Code for Example 11.1 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 // Hilbert Transform
4 clc;
5 clear;
6 n = 1;
7 for t = -1:0.01:1
       xr(n) = sin(2*\%pi*t);
9
       n=n+1;
10 \text{ end}
11 //Computing Hilbertb Transform
12 x=hilbert(xr);
13 t = -1:0.01:1;
14 plot(t,xr);
```


Figure 11.1: Hilbert Transform

Figure 11.2: Hilbert Transform

Figure 11.3: Hilbert Transform

```
15 title('Given Signal x(t)');
16 xlabel('time t—>');
17 figure(1);
18 t=-1:0.1:1;
19 plot(t,imag(x));
20 title('Hilbert Transform');
21 xlabel('time t—>');
```

Scilab code Exa 11.2 Hilbert Transform

Figure 11.4: Hilbert Transform

```
1 // Scilab Code for Example 11.2 of Signals and
      systems by
2 //P.Ramakrishna Rao
3 // Hilbert Transform
4 clc;
5 clear;
6 n = 1;
7 for t = -1:0.01:1
       xr(n) = cos(2*\%pi*t);
9
       n=n+1;
10 \, \text{end}
11 //Computing Hilbertb Transform
12 x=hilbert(xr);
13 t = -1:0.01:1;
14 plot(t,xr);
15 title('Given Signal x(t)');
16 xlabel('time t-->');
17 figure (1);
18 t = -1:0.01:1;
19 plot(t, imag(x));
20 title('Hilbert Transform');
21 xlabel('time t—>');
```

Scilab code Exa 11.3 Hilbert Transform

Figure 11.5: Hilbert Transform

Figure 11.6: Hilbert Transform

```
6 clear;
7 n=1;
8 \text{ for } t = -1:0.01:1
       xr(n) = exp(%i*2*%pi*t);
10
       n=n+1;
11 end
12 //Computing Hilbertb Transform
13 x1=hilbert(real(xr));
14 x2=hilbert(imag(xr));
15 x = x1 + x2;
16 t = -1:0.01:1;
17 plot(t,xr);
18 title('Given Signal x(t)');
19 xlabel('time t->');
20 figure (1);
21 t = -1:0.01:1;
22 plot(t,imag(x));
23 title('Hilbert Transform');
24 xlabel('time t \rightarrow');
```

Scilab code Exa 11.6 Hilbert Transform

```
//Scilab Code for Example 11.6 of Signals and
systems by
//P.Ramakrishna Rao
//Hilbert Transform
clc;
clear A T t x;
T=2;
A=1;
n=1;
```


Figure 11.7: Hilbert Transform

Figure 11.8: Hilbert Transform

```
9 for t = -10:0.01:10;
       if t > -T/2 \& t < T/2 then
10
11
            x(n) = A;
12
            n=n+1;
13
        else x(n)=0;
14
            n=n+1;
15
        end
16 end
17 t = -10:0.01:10;
18 // Signal x(t)
19 plot(t,x);
20 title('Given Signal x(t)');
21 xlabel('time t \rightarrow');
22 //Computing Hilbert Transform
23 xr=hilbert(x);
24 xr_imag=imag(xr);
25 figure(1);
26 t = -10:0.01:10;
27 plot(t,xr_imag);
28 title('Hilbert transform and associated signal');
29 xlabel('time t \longrightarrow');
```