p8104_hw1_ps3194

Pangsibo Shen

9/19/2020

Problem 1

Prove the second half of the DeMorgan's Laws. i.e.

$$(A \cap B)^c = A^c \cup B^c$$

solution: we need to prove that $(A \cap B)^c \subset (A^c \cup B^c)$ and $A^c \cup B^c \subset (A \cap B)^c$

- (i):
- $\forall x \in (A \cap B)^c$ definition of complement
- $\Rightarrow x \notin (A \cap B)$ proof by contradiction
- $\Rightarrow x \notin A \text{ or } x \notin B \text{ definition of complement}$
- $\Rightarrow x \in A^c$ or $x \in B^c$ definition of union
- $\Rightarrow x \in A^c \text{ or } x \in B^c \text{ we get } (A \cap B)^c \subset (A^c \cup B^c)$
- (ii):
- $\forall x \in A^c \cup B^c$ definition of union
- $\Rightarrow x \in A^c$ or $x \in B^c$ definition of complement
- $\Rightarrow x \notin A \text{ or } x \notin B \text{ proof by contradiction}$
- $\Rightarrow x \notin (A \cap B)$ definition of complement
- $\Rightarrow x \in (A \cap B)^c$ we get $A^c \cup B^c \subset (A \cap B)^c$
- (i) + (ii) by definition of set equality
- $\Rightarrow (A \cap B)^c = A^c \cup B^c$ complete the proof