MATE 5150: Asignacion #1

Due on Septiembre 5, 2024

Dr. Pedro Vasquez

Alejandro Ouslan

Problem 1

Find the equation of the plane through he following pairs of points in space. $P_1(1,1,1)$, $P_2(5,5,5)$, and $P_3(-6,4,2)$.

MATE 5150 (Dr. Pedro Vasquez): Asignacion #1

d

Problem 2

Show that the midpoint of the line segment joining the points (a,b) and (c,d) is $(\frac{a+c}{2},\frac{b+d}{2})$.

d

Problem 3

Let $S = \{0, 1\}$ and F = R. In $\mathcal{F}(\mathcal{S}, \mathcal{R})$, show that f = g and f + g = h, where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$.

d

Problem 4

Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in R$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$.

d

Problem 5

Let $V = \{(a_1, a_2) : a_1, a_2 \in R\}$. For (a_1, a_2) and (b_1, b_2) in V and $c \in R$, defin $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$. Is V a vector space over R with these operations? Justify your answer.

d

Problem 6

Prove that $A + A^t$ is symmetric for any matrix A.

d

Problem 7

Let W_1 , W_3 , and W_4 be as in Excersise 8. Describe $W_1 \cap W_3$, $W_1 \cap W_4$, and $W_3 \cap W_4$, and observe that each is a subspace of \mathbb{R}^3 .

d

Problem 8

Let $C^n(R)$ denote the set of all real-valued functions defined on the real line that have a continuous nth derivative. Prove that $C^n(R)$ is a subspace of $\mathcal{F}(R,R)$.

d