EMTH210 Tutorial 3: Line Integrals and Differentials

For the week starting Monday 02 March.

Preparation problems (homework)

1. Find the equation of the tangent plane to the surface

$$z = q(x, y) = 4x^3y^2 + 2y$$

at the point $(x_0, y_0, z_0) = (1, -2, 12)$.

2. Find the equation of the tangent plane to the surface

$$f(x, y, z) = x^2 + 2y^2 + 3z^2 = 15$$

at the point $(x_0, y_0, z_0) = (2, 2, 1)$.

3. A farmer's fence runs Eastwards up a hill. Using x to denote horizontal distance, the fence starts at x=0 and ends at x=3. The height of the fence above the end at x=0 is given by the function $y=x\sqrt{x}$.

Calculate the length of the farmer's fence.

4. Find the length of the curve given by

$$y = \cosh(x)$$

from x = -1 to x = 1. (There are notes on the hyperbolic functions in the Resources and Revision material section of Learn.)

5. Calculate the work done by the force

$$F = \mathbf{i} - y\mathbf{j} + xyz\mathbf{k}$$

in moving a particle from (0,0,0) to (1,-1,1) along the curve $x=t,\,y=-t^2,\,z=t$ for $0\leq t\leq 1.$

6. Evaluate

$$\int (x \, \mathrm{d}y - y \, \mathrm{d}x)$$

along the part of the unit circle from (x,y) = (0,-1) to (0,1) which lies in the half plane satisfying $x \ge 0$.

1

- 7. For each of the following functions f, find the differential df
 - (a) $f = x^3 + y^2$

(c) $f = e^{x/y} \cos(z^2 y)$

(b) $f = (x - y)\cos(x + y)$

- (d) $f = \tan^{-1}(y/x) + \ln(z)$
- 8. Find the Jacobian matrix for each of the following functions.

(a)
$$\mathbf{F}(x,y) = \begin{pmatrix} 3y^2 + 2e^x \\ \ln(yx) \end{pmatrix}$$

(b)
$$\mathbf{F}(x, y, z) = \begin{pmatrix} \sin(xy) + xz^2 \\ y\cos(z) - x \end{pmatrix}$$

Problems for the tutorial

9. Evaluate

$$\int (y\,\mathrm{d}x + x\,\mathrm{d}y)$$

along each of the following curves from (-1,1) to (1,1):

(a)
$$y = x^2$$
 (b) $y = |x|$

Briefly state why you would expect the answer to be the same for both integrals.

10. Let C be the curve consisting of the quarter circle from (1,0) to (0,1) followed by the line segment from (0,1) to (2,1) Calculate

$$\int xy\,\mathrm{d}x + y^2\,\mathrm{d}y$$

along C.

- 11. A helical wire is given parametrically by $x = \cos(\theta)$, $y = \sin(\theta)$ and $z = 0.2\theta$. The mass per unit length is given by $1 + 0.1\theta$. Calculate the mass of 3 turns of the helix from $\theta = 0$ to 6π .
- 12. A planet of mass M has its centre fixed at the origin. The gravitational potential energy of a mass m at a point $\mathbf{r} = (x, y, z)$ is V = -GMm/r, where $r = \sqrt{x^2 + y^2 + z^2}$ and where G is a positive constant. The force on m is given by $F = -\nabla V$.

Calculate F and show that $F \bullet d\mathbf{r}$ is exact.

Hence calculate the work done by F on a particle which travels from infinity to \mathbf{r} .

- 13. What is meant when a differential is said to be exact, or not exact (inexact)?
- 14. For each of the following differentials df, find f or show that df is not exact.
 - (a) $df = \ln(y) dx + (x/y) dy$
 - (b) df = (y+z) dx + (x+z) dy 2z dz
 - (c) df = (y+x) dx + (y-x) dy
 - (d) df = (y+z) dx + (x+z) dy + (x+y) dz
- 15. First, show that the following integral is independent of the path.

$$\int_{(0,0)}^{(2,-1+\frac{\pi}{6})} \left(\sin(x+2y) + x\cos(x+2y) \right) dx + 2x\cos(x+2y) dy.$$

2

Next, evaluate it in two ways by:

- (a) finding a function f(x,y) such that df is the integrand; and by
- (b) integrating along any convenient path between the endpoints.