Basic topology 2

Indicate which of the following sets are open, closed or neither, justifying the answer.

- 1. In \mathbb{R} : Let C = [a, b) $H = (-\infty, b)$.
- 2. In \mathbb{R} : Let $H = (-\infty, b)$.
- 3. In \mathbb{R} : $B = (-7,1) \cup (5,13)$.
- 4. In \mathbb{R}^2 : $B = \{(x, y) \in \mathbb{R}^2 | x > 0\}$.

Solution

1. The set C is not open. A set U is open if for every point x in U, there exists some radius r > 0 such that the open ball centered at x with radius r, denoted as B(x,r), is completely contained in U. The open ball B(x,r) consists of all points that are at a distance less than r from x.

In essence, an open set does not include its boundary. If you were "standing" at any point in an open set, you could move a small amount in any direction and still remain within the set. This won't happen in a.

The set is also not closed. To be closed it should be that $\overline{C} = C$. However, $\overline{C} = [a, b]$. Therefore, the set C is neither open nor closed.

2. The set H is not closed, since $H = (-\infty, b)$. The set $H = (-\infty, b)$ is an open interval on the real line. To demonstrate that H is open using the concept of balls, consider any point x within H. Since H includes all real numbers less than b, for any x in H, we can select a radius r such that r < b - x. This ensures that the open ball centered at x with radius r, denoted as B(x,r), is B(x,r) = (x-r,x+r), and is entirely contained within H.

Given that x < b and r < b - x, it follows that the upper bound of the ball, x + r, is less than b. Therefore, $B(x,r) \subseteq H$. As this condition is met for any point x in H, the set H is open by the definition of open sets in metric spaces.

3. To prove that $B = (-7, 1) \cup (5, 13)$ is open in \mathbb{R} , we must show that for every point x in B, there exists an open ball B(x, r) completely contained within B.

Consider any point x in (-7,1). Since x > -7 and x < 1, we can choose r to be $r = \min\{x + 7, 1 - x\}$. Thus, the open ball B(x,r) defined as (x - r, x + r) is contained within (-7,1).

For any point x in (5,13), we select r as $r = \min\{x - 5, 13 - x\}$. This ensures B(x,r) is contained within (5,13).

Since the union of two open sets is open, and both intervals (-7,1) and (5,13) are open, their union B is also open. Therefore, $B = (-7,1) \cup (5,13)$ is an open set in \mathbb{R} . And it is not a closed set because it does not coincide with its closure $\overline{B} = [-7,1] \cup [5,13]$.

4. The set B is the positive semiplane of x. B is not an open set, because for all points (x_0, y_0) that are on the y-axis, we cannot form a small ball that is contained in B.

The set B is closed, since for any of its points, including those on the y-axis, we can form a small ball that intersects with B.