N_1 Définitions et propriétés

D Fonction inverse

Une fonction **inverse** f est définie par $f(x) = \frac{1}{ax+b}$ où a et b sont deux nombres réels tels que $a \neq 0$. (c'est l'inverse d'une fonction affine).

P Ensemble de définition

Soit f une fonction inverse telle que $f(x)=rac{1}{ax+b}$ alors son ensemble de définition est :

$$\mathcal{D}_f = \mathbb{R} \setminus \{\frac{-b}{a}\} =]-\infty; \frac{-b}{a} \left[\cup \right] \frac{-b}{a}; +\infty \left[-\frac{b}{a} \right]$$

 $\mathcal{D}_f=\mathbb{R}ackslash\{rac{-b}{a}\}=]-\infty;rac{-b}{a}\left[\cup
ight]rac{-b}{a}\;;+\infty[$ En effet comme on ne peut pas "diviser" par 0, il faut donc que ax+b
eq 0

P Tableau de variation

On considère une fonction inverse $f(x)=rac{1}{ax+b}$ avec a
eq 0. Si a=0 cette fonction inverse est **constante** et vaut $f(x) = \frac{1}{h}$.

si a < 0

Pour chaque fonction inverse suivante, dresser le tableau de variation :

$$\boxed{1} f_1 = \frac{1}{2x-4}$$

$$f_2 = rac{1}{12-6x}$$

$$\boxed{3} f_3 = \frac{1}{-x-2}$$

$$\boxed{4} f_4 = \frac{1}{x}$$

$$f_5 = \frac{1}{\frac{x}{3}+1}$$

$$\boxed{6} \quad f_6 = \frac{1}{2 - \sqrt{2}x}$$

N_2 Représentation graphique d'une fonction inverse

P Représentation graphique

On considère une fonction inverse $f(x)=rac{1}{ax+b}$. La représentation graphique \mathcal{C}_f de f est une **hyperbole**.

Pour chaque fonction inverse suivante, tracer la représentation graphique :

$$f_1 = \frac{1}{3x-9}$$

$$f_3=\frac{1}{-x-1}$$

$$\boxed{4} f_4 = \frac{1}{x}$$

$$f_5 = \frac{1}{\frac{x}{2}-1}$$

$$\boxed{ 6} \ f_6 = \frac{1}{1-\sqrt{2}x}$$

Signe d'une fonction inverse

P Signe d'une fonction inverse

On considère une fonction inverse $f(x)=rac{1}{ax+b}$:

$siu \sim 0$	si	\boldsymbol{a}	>	0
--------------	----	------------------	---	---

lacksquare	$-\infty$	$\frac{-b}{a}$		+∞
f(x)		_	+	

si a < 0

$oldsymbol{x}$	$-\infty$	<u>-</u>	$\frac{-b}{a}$	+∞
f(x)		+	_	

Déterminer le tableau de signe de chaque fonction suivante :

$$f_1 = \frac{-7}{x-4}$$

$$f_3 = \frac{-9}{-2x-2}$$

$$\boxed{4} f_4 = \frac{3}{x}$$

$$f_5 = \frac{-1}{\frac{x}{2}+1}$$

$$\boxed{ 6 } f_6 = \frac{3}{1-\sqrt{3}x}$$

 N_4 Fonction $\frac{1}{u}$

Soit u une fonction définie sur D_u telle pour tout $x \in D_u$; u(x)
eq 0

D Définition

La fonction $rac{1}{u}$ est définie sur D_u et par : $(rac{1}{u})(x) = rac{1}{u(x)}$

Propriété : variations

Si u est monotone sur un intervalle I et si pour tout $x \in I$, $u(x) \neq 0$ alors la fonction $\frac{1}{u}$ a le sens de variation contraire à celui de u sur I.

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$f_2 = \frac{1}{r^2}$$

$$f_3 = \frac{1}{r^2 + 1}$$

N₅ Fonction homographique

D Fonction homographique

Une fonction **homographique** f est définie par $f(x) = \frac{ax+b}{cx+d}$ où a, b, c et d sont quatre nombres réels tels que $c \neq 0$. (c'est le quotient de deux fonctions affines).

P Ensemble de définition

Soit f une fonction homographique telle que $f(x) = \frac{ax+b}{cx+d}$ alors son ensemble de définition est :

$$\mathcal{D}_f = \mathbb{R}ackslash \{rac{-d}{c}\} =]-\infty; rac{-d}{c}\left[\cup
ight]rac{-d}{c}\,; +\infty \left[$$

En effet comme on ne peut pas "diviser" par 0, il faut donc que $cx+d \neq 0$

Pour chaque fonction homographique suivante, donner l'ensemble de définition :

$$f_1 = \frac{9x - 8}{3x - 4}$$

$$\boxed{\begin{array}{c} 4 \end{array} f_4 = \frac{9-2x}{x}}$$

$$f_5 = \frac{-x-3}{\frac{2x}{7}-1}$$

Signe d'une fonction homographique

P Signe

Soit f une fonction homographique telle que $f(x)=rac{ax+b}{cx+d}$ avec a
eq 0 et c
eq 0 :

Dans le cas où
$$\dfrac{-b}{a}\leqslant \dfrac{-d}{c}$$

$oldsymbol{x}$	$-\infty$	$\frac{-b}{a}$		$\frac{-d}{c}$	+∞
(ax+b)	_	- 0	+		+
(cx+d)	_	-	_	ø	+
f(x)	+	- 0	_		+

Dans le cas où
$$\dfrac{-b}{a}\geqslant \dfrac{-d}{c}$$

$oldsymbol{x}$	$-\infty$	$\frac{-d}{c}$		$\frac{-b}{a}$		+∞
(ax+b)	_	o	_		+	
(cx+d)	_		+	Ó	+	
f(x)	+		_	0	+	

Pour chaque fonction homographique suivante, dresser un tableau de signes :

$$\boxed{4} \quad f_4 = \frac{-9+2x}{3x}$$

n°1 Fonction f

Soit f la fonction définie par $f(x)=rac{x}{x+1}$

- $oxedsymbol{1}$ Donner l'ensemble de définition de $oldsymbol{f}$
- Dresser le tableau de signes de $m{f}$
- Recopier et compléter le tableau suivant :

$oldsymbol{x}$	-4	-3	-2	-1	0	1	2	3	4
f(x)									

Tracer la représentation graphique de $m{f}$