《网络空间安全概论》实验报告

一、实验目的

- 1. 掌握学习并掌握图像信息隐藏的基本原理和方法.
- 2. 实现基于 LSB 的信息隐藏和提取算法.
- 3. 用卡方检测对可疑图像进行 LSB 隐写检测.

二、实验项目内容

- 1. 使用 LSB 算法在图片中隐藏如下信息: CQUWATERMASKEXP.
- 2. 从被隐藏数据的图片中解析出如上信息,建议使用 Matlab.
- 3. 用卡方检测算法对可疑图像进行检测.

三、实验设计

1. LSB 算法在图片中隐藏信息

1.1 实验原理

首先读入图片,准备待隐藏的信息,将其转换为二进制(需要用加密算法进行加密)。遍历图像,对像素的最低 1bit 置 0,同时在该比特位写入 1位二进制表示隐藏的信息

1.2 过程设计

对于 LSB 实验,采用 Matlab 语言进行编写,环境为 R2022b 版本. 首先将待加密的文本转化为二进制的字符串的格式,然后随机生成 与二进制字符串等长度的密钥 key,然后调用实验中的

encrypt_binary()函数将二进制信息与 key 进行异或运算进行加密,然后读取准备好的图像转化为 R,G,B 二进制三元组,先将最低位置 0,然后再与加密后的信息逐个进行异或操作,最后输出含有隐藏信息的图片。

2. LSB 算法从图片中获取信息

1.1 实验原理

首先根据 key 预知隐藏信息量(等同于 key),然后提取出像素的最低 1bit,组合成连续 bit 数据,转换为 ASCII 码对比是否与隐藏信息一致。

1.2 过程设计

首先读取含有隐藏信息的图像,根据 kev 的长度逐位获取像素最低位 的值,然后将提取出来的信息与 key 进行异或操作得到最终二进制字符 串,最后再将二进制字符串转化为 ASCII 与实际文本对比。

3. 用卡方检测算法对可疑图像进行检测

调用实验中的 detect steganography()函数读取包含隐藏信息和未包含 隐藏信息的图像,计算每个像素值的期望频率并计算其卡方值,设置自 定义阈值后判断卡方值是否超过阈值。若超过,则可能包含隐藏信息; 反之则可能不包含隐藏信息。

四、实验过程或算法

1. LSB 算法在图片中隐藏信息

• 首先, 读取待隐藏的信息 encrypt text, 并将其转化为二进制字符 串,同时编写二进制字符串转化为 ASCII 函数, 检验其是否转换正确。

```
% 将待隐藏的信息转化为二进制字符串
    encrypt text = 'COUWATERMASKEXP';
    encrypt_text_binary = string_to_binary(encrypt_text);
    fprintf("待隐藏信息二进制为:\n %s \n", encrypt_text_binary)
    % 检测二进制转化为字符串是否正确
    raw_text = binary_to_string(encrypt_text_binary);
    fprintf("待隐藏信息为:\n %s \n", raw_text)
其中普通字符串转化为二进制字符串的实现为:
        function binary = string to binary(text)
           binary = '';
           for i = 1:length(text)
               binary = strcat(binary, dec2bin(text(i), 8));
           end
        end
二进制字符串转化为普通字符串的实现为:
        function text = binary_to_string(binary)
           text = '';
           for i = 1:8:length(binary)
              tmp byte = binary(i:i+7);
               text = strcat(text, char(bin2dec(tmp_byte)));
           end
        end

    然后随机生成与二进制字符串等长的密钥 key,传递给
```

- encrypt in image() 函数进行隐藏,其中 raw2.png 是不包含隐藏信息的图 像。
- encrypt in image() 函数的实现:

```
function encrypt_in_image(path, encrypt_text1, key)
% 将字符串转为二进制
binary_text = string_to_binary(encrypt_text1);
% 读取图像
img = imread(path);
% 加密
binary_text = encrypt_binary(binary_text, key);
% 判断图像大小是否能容纳隐藏信息
if length(binary_text) > size(img, 1) * size(img, 2) * size(img, 3)
disp('图像无法隐藏下加密信息');
return;
end
```

采用 imread 读取图像,并对原始信息采用 key 进行加密,本文直接 采用简单的异或运算进行加密得到加密文本,实现如下。并判断文本长 度是否超过图片能够容纳加密信息。

```
% 加密二进制信息
function result_binary_str = encrypt_binary(binary_text_str, key_binary)
% 将字符串形式的二进制文本转换为数字数组
binary_text = double(binary_text_str) - 48; % 将字符转换为数字('0' 对应
% 逐位异或操作
result_binary = xor(binary_text, key_binary);
% 将结果转换为字符串形式的二进制
result_binary_str = char(result_binary + 48); % 将数字转换为字符
end
```

然后先将最低像素置为 0,再将加密信息隐藏到最低位,最后输出隐藏后的图像 encrypted_image.png.

```
% 隐藏信息
idx = 1;
for x = 1:size(img, 1)
    for y = 1:size(img, 2)
        for z = 1:size(img, 3)
           if idx <= length(binary_text)</pre>
               pl = bitand(img(x, y, z), hex2dec('FE')); % 低位置为6
               pl = bitor(pl, str2double(binary_text(idx))); % 隐藏信息
               img(x, y, z) = pl;
               idx = idx + 1:
           else
               break;
           end
       end
   end
end
% 输出包含隐藏信息的图像
imwrite(img, 'encrypted_image.png');
disp('加密完成, 加密后的图像为encrypted_image.png');
```

2. 从图像中获取隐藏信息

- 读取 encrypted_image.png 图像,并传入密钥 key,调用decrypt_from_image() 函数获取信息。
- decrypt from image() 函数的实现:

```
function decrypted text = decrypt from image(path, key)
    % 获取隐藏有信息的图片
   img = imread(path);
   % 获取二进制信息
   binary = '';
   idx = 1:
    for x = 1:size(img, 1)
       for y = 1:size(img, 2)
            for z = 1:size(img, 3)
               if idx <= length(key)</pre>
                   pl = img(x, y, z);
                   binary = strcat(binary, num2str(bitget(pl, 1)));
                   idx = idx + 1;
                else
                   break
               end
           end
       end
    end
    binary_text = binary(1:length(key));
    binary text = decrypt binary(binary text, key);
   decrypted text = binary to string(binary text);
```

通过 key 的长度预知隐藏信息的长度,逐位获取像素的最低位进行拼接,其次调用解密函数 decrypt text()函数进行解密,实现如下:

```
% 解密二进制信息
function result_binary_str = decrypt_binary(binary_text_str, key_binary)
% 将字符串形式的二进制文本转换为数字数组
binary_text = double(binary_text_str) - 48; % 将字符转换为数字('0' 对应
% 逐位异或操作
result_binary = xor(binary_text, key_binary);
% 将结果转换为字符串形式的二进制
result_binary_str = char(result_binary + 48); % 将数字转换为字符
end
```

最后再将二进制字符串转化为普通字符串,与实际字符串进行对 比,判断是否一致,若一致则说明加解密过程正确;反之,则不正确。

```
% 进行信息解密
decrypted_text = decrypt_from_image('encrypted_image.png', key);
fprintf('解密后的信息为 %s\n', decrypted_text);
if strcmp(encrypt_text, decrypted_text)
    disp('加解密成功!');
end
```

3. 使用卡方检测算法对可以图像进行检测

将含有隐藏信息的图像读入 detect_steganography()函数,将图像转换为一维向量后计算每个像素值的期望频率,并计算卡方值。使用 Matlab 的 chi2inv 函数设置阈值,本实验中以 chi2inv(0.95,1)模拟卡方分布并返回阈值,若计算的卡方值大于阈值,则判定图像中可能存在隐藏信息。

```
% 提取LSB
lsb_r = bitget(r, 1);
lsb_g = bitget(g, 1);
lsb_b = bitget(b, 1);
% 将所有通道的LSB合并为一个序列
lsb_all = [lsb_r(:); lsb_g(:); lsb_b(:)];
% 假设没有隐藏信息时,LSB应该是随机的,即0和1出现的概率应该是相等的
observed_0 = sum(lsb_all == 0);
observed_1 = sum(lsb_all == 1);
expected_0 = length(lsb_all) / 2;
expected_1 = length(lsb_all) / 2;
chi_squared = ((observed_0 - expected_0)^2 / expected_0) + ((observed_1 - expected_1)^2 / expected_1);
% 使用95%的胃信度(即5%的显著性水平)进行检验!:
alpha = 0.05;
df = 1; % 自由度
critical_value = chi2inv(1-alpha, df);
disp("检测卡方值为:");
disp(chi_squared);
disp("临界值为:");
disp(critical value):
% 比较卡方统计量和临界值
if chi squared > critical value
   disp('图像可能包含隐藏信息');
   disp('图像可能没有包含隐藏信息');
end
```

五、验过程中遇到的问题及解决情况

1. 问题:由 randi 生成的随机数无法直接与二进制字符串进行异或运算.

解决: 将二进制字符串通过强制转换转化为 double 型的数字,再与随机数 key 进行异或操作。最后再将结果强制转化为 char 字符串。

2. 问题: 在从图像中提取信息时程序运行时间过长。

解决: 因为图像像素值密度过大,如果将所有信息提取后再截断会耗时很久甚至无法与运行完成,因此只需根据 key 的长度提取到信息的长度即可中断操作。

六、实验结果及分析和(或)源程序调试过程

1. LSB 加解密结果

- 待隐藏信息为: CQUWATERMASKEXP
- 待隐藏信息的二进制为:

• 生成的密钥 key 为:

• 加密后的二进制为:

• 不含加密信息的图像:

• 含有加密信息的图像:

可以看出两张图像几乎毫无差别,达到了 LSB 的效果。

• **解密后的信息为**: CQUWATERMASKEXP, 与原始信息一致, 说明加解密过程正确。

D密后的信息为: 10110111111001011100010110110

加密完成,加密后的图像为encrypted_image.png 解密后的信息为 CQUWATERMASKEXP 加解密成功!

2. 卡方检测

首先对比不含隐藏信息的图像和含有隐藏信息的图像的直方图,可以发现两张图几乎毫无差别,这是因为由于加密的信息转化为二进制形式仅有120bit大小,远小于给定的图像的像素值bit,因此即使将信息隐藏到原始图像中,对整体像素的分布的影响也很小。

图 1 不含隐藏信息的图像直方图分布

图 2 含隐藏信息图像直方图分布

同时对两张图进行检验,得到相同类似的结果,可以看出不含隐藏信息的卡方值要小于含隐藏信息的值,但两者均被判断为可能不含隐藏信息。这是因为在本实验中即使对图像信息进行了数据隐藏,但是因为隐藏的数据量过小,难以对原始像素分布产生较大的影响,导致隐藏了信息的图像经过卡方检测也被认定为不含隐藏信息。

-----对不含隐藏信息进行检测------检测卡方值为:

1.3859

临界值为:

3.8415

图像可能没有包含隐藏信息

-----对含隐藏信息进行检测-----

检测卡方值为:

1.4072

临界值为:

3.8415

图像可能没有包含隐藏信息