Homework 3

Earle Aguilar 804501476 01-27-2017

3.4

Source	DF	SS	MS	F	P
Factor	4	987.71	246.93	33.10	≈ 0
Error	25	186.53	7.46		
Total	29	1174.24			

3.5

3.16

 \mathbf{a}

There are no signs that the temperature affects density. The p-value of the anova test is 0.1569.

```
m1 <- lm(Density ~ Temp, p16)
anova(m1)</pre>
```

b

TODO

 \mathbf{c}

There is no signs of non-constant variance in the residual plot.

```
par(mfrow=c(2,2))
plot(m1)
```


3.26

a

```
m2 \leftarrow lm(Life \sim Brand, p26)
anova(m2)
## Analysis of Variance Table
##
## Response: Life
##
             Df Sum Sq Mean Sq F value
## Brand
              2 1196.1 598.07
                                 38.338 6.141e-06 ***
##
  Residuals 12
                 187.2
                          15.60
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

The lives of the batteries are different. The p-value of the F-test produced by ANOVA is 6.141×10^{-6}

b

The residual plot shows that there is nothing wront. There is no trend line and the variance is constant.

par(mfrow=c(2,2)) plot(m2)

Factor Level Combinations

 \mathbf{c}

95% CI for Battery Brand 2

```
b <- p26[p26$Brand == 2,]
mean_b <- mean(b$Life)
sd_b <- sd(b$Life)
k <- qt(p = 0.975, 4)
se <- k * (sd_b/sqrt(5))
c(mean_b - se, mean_b +se)</pre>
```

Standardized residuals

[1] 74.62322 84.17678

99% CI for Difference of Means

```
c <- p26[p26$Brand == 3,]
mean_c <- mean(c$Life)
sd_c <- sd(c$Life)
s_pooled <- (4*sd_c^2 + 4*sd_b^2) / 8
D <- mean_b - mean_c
t <- qt(0.99, 8)
se <- t* sqrt(s_pooled*(2/5))
c(D - se, D+se)</pre>
```

```
## [1] -28.72872 -13.27128
```

 \mathbf{d}

TODO

3.27

 \mathbf{a}

There is no evidence that suggest the catalysts have an effect on the concentration.

```
m3 <- lm(Concentration ~ Catalyst, p27)
anova(m3)

## Analysis of Variance Table

##
## Response: Concentration

## Df Sum Sq Mean Sq F value Pr(>F)

## Catalyst 3 1605.9 535.29 1.0686 0.3901

## Residuals 16 8014.8 500.92
```

b

There are signs of non constant variance.

```
par(mfrow=c(2,2))
plot(m3)
```


 \mathbf{c}

```
c1 <- p27[p27$Catalyst == 1,]
mean_c1 <- mean(c1$Concentration)
sd_c1 <- sd(c1$Concentration)
t <- qt(0.99, 4)
se <- t * (sd_c1/ sqrt(5))
c(mean_c1 - se, mean_c1 + se)</pre>
```

[1] 54.35318 59.44682