WHAT IS CLAIMED IS:

8.

claim 7 wherein the vehicle is an aircraft.

1

2

1	1. A method for inhibiting wireless telecommunications within
2	a limited region of the telecommunications coverage comprising generating a noise
3	signal within a frequency range of the wireless telecommunications and broadcasting
4	the noise signal into the region.
1	2. A method for inhibiting wireless telecommunications as in
2	claim 1 wherein generating a noise signal comprises generating a wide band noise
3	signal and band pass filtering the wide band noise signal.
1	3. A method for inhibiting wireless telecommunications as in
2	claim 1 wherein broadcasting the noise signal comprises broadcasting using at least
3	one directional antenna to achieve the limited region.
1	4. A method for inhibiting wireless telecommunications as in
2	claim 1 wherein the wireless telecommunications is through spread spectrum, the
3	noise signal generated substantially across the spread spectrum.
1	5. A method for inhibiting wireless telecommunications as in
2	claim 1 further comprising controlling broadcasting the noise signal based on a
3	public event.
1	6. A method for inhibiting wireless telecommunications as in
2	claim 5 wherein the broadcast of the noise signal is automatically based on at least
3	one condition of the public event.
1	7. A method for inhibiting wireless telecommunications as in
2	claim 1 wherein the region is the inside of a vehicle.

A method for inhibiting wireless telecommunications as in

1	9. A method for inhibiting wireless telecommunications as in
2	claim 7 wherein the vehicle is an automotive vehicle.
1	10. A method for inhibiting wireless telecommunications as in
2	claim 9 further comprising controlling broadcasting the noise signal based on
3	detecting the presence of a telephone in a cradle.
1	11. A method for inhibiting wireless telecommunications as in
2	claim 9 further comprising controlling broadcasting the noise signal based on
3	detecting at least one condition of the automotive vehicle.
1	12. A method for inhibiting wireless telecommunications as in
2	claim 1 further comprising generating a plurality of noise signals, each signal within
3	a portion of the frequency range of the wireless telecommunication, and broadcasting
4	the noise signals into the region such that telecommunications is inhibited in the
5	overlap of the broadcasted noise signals.
1	13. A system for inhibiting wireless telecommunications within a
2	limited region of the telecommunications coverage comprising:
3	a radio frequency noise generator generating a noise signal covering
4	at least one frequency range of the wireless telecommunication;
5	at least one antenna in communication with the noise generator, the
6	at least one antenna broadcasting the noise signal into the region; and
7	control logic operative to initiate or suspend broadcasting of the noise
8	signal based on at least one control input.
1	14. A system for inhibiting wireless telecommunications as in
2	claim 13 wherein the radio frequency noise generator comprises:
3	a wide band noise source generating a wide band noise signal; and
4	a band pass filter accepting the wide band noise signal and producing
5	the noise signal within the frequency range of the wireless telecommunication.

7

8

1	15. A system for inhibiting wireless telecommunications as in
2	claim 13 wherein the wireless telecommunications is through spread spectrum, the
3	noise signal generated substantially across the spread spectrum.
1	16. A system for inhibiting wireless telecommunications as in
2	claim 13 wherein the region encompasses a public event, the at least one control
3	signal based on a condition occurring at the public event.
1	17. A system for inhibiting wireless telecommunications as in
2	claim 13 wherein the region is the inside of a vehicle.
1	18. A system for inhibiting wireless telecommunications as in
2	claim 17 wherein the vehicle is an aircraft.
1	19. A system for inhibiting wireless telecommunications as in
2	claim 17 wherein the vehicle is an automotive vehicle.
1	20. A system for inhibiting wireless telecommunications as in
2	claim 17 wherein the at least one control signal is based on detecting the presence of
3	a telephone in a cradle.
1	21. A system for inhibiting wireless telecommunications as in
2	claim 17 wherein the at least one control signal is based on detecting at least one
3	condition of the vehicle.
1	22. A system for inhibiting wireless telecommunications as in
2	claim 13 further comprising:
3	a plurality of radio frequency noise generators, each generator
4	generating a noise signal within a portion of the frequency range of the wireless
5	telecommunication; and
6	a plurality of antennas, each antenna in communication with one of the

generators, each antenna having an antenna coverage area, the limited region of the

telecommunications coverage formed by overlapping antenna coverage areas.