Biyoistatistik Lecture 9

Msc.Ali Mertcan KÖSE

İstanbul Kent Üniversitesi

Bağımsız İkiden fazla Gruplara İlişkin Hipotez Testleri

Amaç

2'den fazla bağımsız grubun sayısal bir değişken bakımından karşılaştırılması

- Parametrik test: Tek Yönlü Varyans Analizi
- Parametrik olmayan test: Kruskal Wallis testi

Parametrik test varsayımları sağlandığında ölçümle belirtilen bir değişken yönünden ikiden fazla bağımsız grubun ortalamaları arasında fark olup olmadığını test etmek için kullanılır. İki ortalama arasındaki farkın anlamlılık testi için gerekli varsayımlar varyans analizi için de geçerlidir.

Varsayımlar

- Karşılaştırılacak gruplar normal dağılım göstermeli
- Grupların varyansları homojen olmalı
- Gruplar birbirinden bağımsız olmalı

Hipotezler:

$$H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$

 H_a : En az bir μ_i farklıdır.

1	2	3	 k
x11	x12	x13	 x1k
x21	x22	x23	x2k
x31	x32	x33	x3k
xn11	xn22	xn33	 xnkk
T1	T2	T3	Tk
xort1	xort2	Xort3	Xortk

$$T.j = \sum_{i=1}^{n_j} x_{ij} = \mathrm{j.}$$
 sütunun toplamı $\bar{x}_{.j} = \frac{T_{.j}}{n_j} = \mathrm{j.}$ sütunun ortalaması
$$T.j = \sum_{i=1}^k T_{.j} = \sum_{j=1}^k \sum_{i=1}^k x_{ij} = \mathrm{B\"{u}}$$
tün gözlemlerin toplamı $\bar{x}_{..} = \frac{T_{..}}{N}$ $\mathrm{N} = \sum_{i=1}^k n_i$

Genel Kareler Toplamı

$$\mathsf{GNKT} = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x_{..}})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij} - \frac{\mathsf{T}^2}{N}$$

Grup İçi Kareler Toplamı

$$GIKT = \sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x_{ij}})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{T_{.j}^2}{n_j}$$

Gruplar Arası Kareler Toplamı

$$GAKT = \sum_{j=1}^{k} \sum_{i=1}^{n_j} n_j (x_{ij} - \bar{x_{ij}})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} \frac{T_{.j}}{n_j} - \frac{T^2}{N}$$

Gruplar Arası Kareler Ortalaması

$$\mathsf{GAKO} = \frac{\mathit{GAKT}}{k-1}$$

Gruplar İçi Kareler Ortalaması

$$GIKO = \frac{GIKT}{n-k}$$

$$F_h = \frac{GAKO}{GIKO}$$

DK	KT	SD	KO	F
Gruplar Arası Grup İçi Genel	GAKT GIKT GNKT	N-k		GAKO/GIKO

Varyans Analizi Sonucu Anlamlı Olduğunda Farklı Grupların Belirlenmesi

Varyans analizi sonucunda gruplar arasında fark yoksa işlemler sona erer. Ancak, gruplar arasında fark varsa, farklılığın hangi grup ya da gruplar arasında olduğu farklı yöntemlerle araştırılabilir. Bu yöntemlere post-hoc testleri denir. Bu yöntemlerde en çok kullanılanlar;

- LSD
- Tukey
- Benferroni
- Sidak
- Dunnett's C
- Dunnett's T3

LSD Testi Örneklem genişlikleri eşit olduğunda ($n_1 = n_2 = n_3 = ... = n_k = n$)

$$|\bar{x_i} - \bar{x_j}| \ge t\sqrt{\frac{2(GIKO)}{n}} \text{ p} < 0.05$$

Örneklem genişlikleri eşit olmadığında $(n_1 \neq n_2 \neq n_3 \neq ... \neq n_k)$

$$|\bar{x_i} - \bar{x_j}| \ge t\sqrt{GIKO\frac{1}{n_i} + \frac{1}{n_j}} \text{ p} < 0.05$$

Adölesan dönemindeki 90 kız, yaş gruplarına göre (11-14,15-18,19-24) 3 gruba ayrılmıştır. Günlük kilo başına tükettikleri kaloriler hesaplanmıştır. Yaş gruplarına göre tüketilen kaloriler bakımından farklılık var mıdır?

	11-14	15-18	19-24
	42.45	39.98	43.30
	46.81	45.29	42.85
	45.62	33.08	32.43
	53.82	38.60	46.81
	50.68	37.57	35.18
Toplam	1380.76	1193.82	1105.72
Ortalama	46.02	39.79	36.86

$$H_0: \mu_1 = \mu_2 = \mu_3 = \dots = \mu_k$$

 H_a : En az bir μ_i farklıdır.

GNKT =
$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_{..})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij} - \frac{T^2}{N} = 42.45^2 + 46.81^2 + ... + 35.18^2 - \frac{3680.30^2}{90}$$

= 154138.01-150495.65 = 3642.36

GIKT=
$$\sum_{j=1}^{k} \sum_{i=1}^{n_j} (x_{ij} - \bar{x_j})^2 = \sum_{j=1}^{k} \sum_{i=1}^{n_j} x_{ij}^2 - \frac{T_{,j}^2}{n_j} = 42.45^2 + 46.81^2 + ... + 35.18^2 - \left[\frac{1380.76^2}{30} + \frac{1193.82^2}{30} + \frac{1105.72^2}{30}\right]$$

=2327.31

GAKT = GNKT - GIKT = 3642.36 - 2327.31 = 1315.05

$$GIKO = GIKT/(90-3) = 2327.31/87 = 26.75$$

$$GAKO = GAKT/(3-1) = 1315.05/2 = 657.53$$

$$F = GAKO/GIKO = 657.53/26.75 = 24.58$$

DK	KT	SD	KO	F
Gruplar Arası Grup İçi Genel	1315.05 2327.31 3642.36	87	657.53 26.75	24.58

Grup ortalamaları arasında anlamlı bir farklılık vardır.

Gruplardaki kişi sayıları birbirine eşit olduğu için

$$|\bar{x}_i - \bar{x}_j| \ge t\sqrt{\frac{2(GIKO)}{n}}$$

|46.02-39.79|

$$H_0: \mu_1 = \mu_2 \ 1.98 \sqrt{\frac{2(26.75)}{30}} = 2.64 \rightarrow 6.23 > 2.64 \ H_0 \ \text{red}$$

$$H_0: \mu_1 = \mu_3 \ 1.98 \sqrt{\frac{2(26.75)}{30}} = 2.64 \rightarrow 9.16 > 2.64 \ H_0 \ \text{red}$$

$$H_0: \mu_2 = \mu_3 \ 1.98 \sqrt{\frac{2(26.75)}{30}} = 2.64 \rightarrow 2.93 > 2.64 \ H_0 \ \text{red}$$

Tek yönlü varyans analizinin parametrik olmayan karşılığıdır. Veriler ölçümle belirtildiği halde parametrik test varsayımları sağlanmıyorsa (gözlem sayısı az ya da gruplar normal dağılmıyor ise) Kruskal-Wallis testi kullanılır.

Bu testte ve parametrik olmayan diğer testlerde, gruplara ait ölçümlerin karşılaştırılmasında aritmetik ortalama yerine ortanca değer esas alınır.

Mann-Whitney U testinin 3 veya daha çok grup olduğu duruma genişletilmesidir.

Testin aşamaları şu şekilde gerçekleşir:

- k grubun $n_1, n_2, ..., n_k$ gözlemleri tek bir değişken altında küçükten büyüğe sıralanır. Tüm gözlemlere sıra numarası verilir.
- $oldsymbol{\circ}$ k grubun sıra numaraları ayrı ayrı toplanır (R_j) .
- Test istatistiği

$$KW = \frac{12}{n(n+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(n+1)$$

şeklinde hesaplanır.

 $R_j = \text{j.gruptaki sıra sayıları toplamı}$

 $n_i = \text{j.gruptaki gözlem sayısı}$

① Üç grup olduğunda ve her bir grupta beş ve daha az gözlem olduğunda hesaplanan KW istatistiği, özel tablolar kullanılarak karşılaştırılır. Bir ya da daha fazla grupta beşten fazla gözlem olduğunda ise KW, k-1 serbestlik dereceli χ^2 tablo değeriyle karşılaştırılır.

Test Sonucu Anlamlı olduğunda farklı grupların belirlenmesi

ANOVA'da olduğu gibi bu Kruskal-Wallis testi de tüm gruplar arasında anlamlı bir farklılık olduğunu vermez. Bunun için çoklu karşılaştırma yapmak gerekir.

$$|\bar{R}_i - \bar{R}_j| > t\sqrt{\frac{n(n+1)}{12} \frac{n-1-KW}{n-k} (\frac{1}{n_i} + \frac{1}{n_j})} \to p < 0.05$$

Üniversite öğrencilerinin çay içme miktarına göre hemoglobin düzeylerinin değişip değişmediği incelenmek istenmektedir. Bu amaçla 13 kişi "yemekten 1 saat önce veya sonra çay içenler", "yemekten 30 dakika önce ya da sonra çay içenler" ve "yemekle birlikte çay içenler" olmak üzere üç gruba ayrılmışlardır ve hemoglobin düzeyleri ölçülmüştür. Buna göre hemoglabin düzeyi çayın içilme zamanına göre değişmekte midir?

Hipotezler:

 H_0 : Kitle dağılımları benzerdir.

 H_1 : En az kitle dağılımı diğerinden farklıdır.

II	Ш
12.9(6.5)	10.9(1)
12.5(5)	11.5(4)
13(8)	11.2(3)
12.9(6.5)	11(2)
26	10
	12.9(6.5) 12.5(5) 13(8) 12.9(6.5)

- I.Yemekten 1 saat
- II. Yemekten 30 dakika önce ya da sonra çay içenler
- III. Yemekle birlikte çay içenler

$$\begin{aligned} &\mathsf{KW} = \frac{12}{n(n+1)} \sum_{j=1}^k \frac{R_j^2}{n_j} - 3(n+1) \\ &\frac{12}{13(13+1)} \left[\frac{55^2}{5} + \frac{26^2}{4} + \frac{10^2}{4} \right] - 3(13+1) = 10.68 \\ &\mathsf{KW}_{(5,4,4;0.05)} = 5.657 < \mathsf{KW} = 10.68 \\ &\mathsf{p} < 0.05, \ H_0 \ \text{red} \end{aligned}$$

Critical Values of the Kruskal-Wallis H Distribution Taken from Zar, 1984 Table B.12

n					9.92	0.01			0.001			n,			0 = 0.12	0.05	0.02	0.01		0.002	
- 2		1	4.571							7					4.594	5.819	7.332	8.378	9.373	10.516	11.31
2		1	4.255											- 1	4.575	5.003	7.355	8.405	9.495	10.805	11.70
2	2		4.500	4.714										- 1							
- 3	1	1	4.571	5.143								2		i	5.357	5.679					
3	2	1	4.556	5.361	6.250					2	2	2	2	. !	5.007	6.167	[0.007]	6.467			
3		i	4.622	5.600	6.489	47.2003	7.200							i							
2		1	4.500									1		- 1	5.113						
2			4.455	5.333	0.000							2		- 1	5.556	5.633	6.500				
- 3			4.556	5.208			7.000					2			5.511	5.333	6.978	7.133	7,533		
3	*	1	4.511	3.444	0.144	0.444	7.000			3	3	1			5.333	6.333					
- 3		1	4.709	5.791	6.564	0.745	7.310	0.016		3	3	2		i	5.689	6.244	6-649	7.200	7.400		
			4.167	4.957	16.6571	0.007					3		2	- 1	5.745	4.527	7.152	7.636	7.073	F+018	
4		1	4.555	5.455	6.630	7.036	7.262	7.055		3	3	3	ï	i	5,955	6.600	7.109	7.400	0.000	0.345	
4		1	4.545	5.596	6.712	7-144	7.598	8.227	8.909			3		- 1	5.579	0.727	7 +636	8.105	0.379	6.003	9.0
4	•		4.654	5.692	6.952	7.054	8.000	0.054	9.269	3	3	3	3		6.026	7.000	7.672	8.538	5.697	9.462	9.5
2		- 1	4.200	5.000							1			- 1							
2	2	i	9.373	5 - 15 0	6.000	6.533						i.	i	i	5.250	2.033					
3	1	1	+.215	4 - 95 0	0.044						2	2	i -	i	5.533	5-133	0.507	7.000			
3		i	4.091	9 - 25 1	6.124	6.909	7.182					2		- 1	5.755	5.545	7.091	7.391	7.204	8.291	
3	3		4.533	5.648	6.533	7.079	7.630	0.048	0.727		3	1			5.007	6-176	0.711	7.067			
	1		3.957	4.955	0.431	6.955	7.364					2		- 1	5,591	6.309	7.010	7.455	7,773	8-162	
		i	8.551	5.273	6.525	7.205	7,973	8.114	8+591			ž			5.750	6+621	7.530	7.071	8.273	8.689	
4		- 1	4.549	5.656	6.476	7.445	7.927	0.401	0.795		•	3		- 1	5.533	6.515	7.485	7.758	8.212	8+697	9.1
		1	4.619	5.657	6.953	7.760	0.109	8.865	9-166			3			3.072	0.795	7.793	0.333	0.710	9-167	0.4
5	t		1.1 29	5 - 127	6.145	7.309	0.102				3	3	3		6.016	6.984	7.995	0.659	9.253	9.709	10.0
5	,		4.623	5.336	6.446	7.338	0.131	6.446	7.330						5.182	5.915	7.091	7.909	7.909		
	,	i	4.515	5.795	0.000	7.578	8.316	8.809	9.521		ī	÷		- 1	5,558	6.306	7.264	7.000	0.341	0.591	9.1
- 15		1	4.523	5.550	7.000	7.623	0.523	9.103	9+606		ï	2		- 1	5,000	5.731	7.750	0.346	0.692	9.269	9.4
5		i i	4.742	5.700	7.220	8.000	8.700	9.020	9.920					i	2.522	6.022	7.500	8.231	0.503	9.038	9.3
ī	1										٠	3	ż	- (5.901	0.074	7.951	0.621	9.165	9.615	9.9
2			4.200	4.822								3			6.019	7.035	0-101	8.076	0.400	10-105	10.4
	,	i	2.515	5.345	6.102	6.982						ř		- 1	3,334	5 - 725	7.079	0.010	9.000	9.478	9.7
- 5		i i	3.999	4.855	6.236									- 1	5.914	6.957	0.157	0.071		10.043	10.4
3		i i	4.612	5 . 346	6.227	0.970	7.515	8 - 1 82						- 1	9,012	7.152	0.330	9.075		10.043	10.0
3	3	1	4.538	5.615	6.590	7.410	7.672	6.028	9.346						6.088	7.235	8.515	9.287	9.971	10.809	
			4.038	4.947	6.174	7.106	7.01+							. 1							
:			4.434	5.340	6-571	7.20.0	7.050	4.171	n.n27						3.755						
-			4.604	5,610	0.725	7.500	8.233	4.716	9-170		:			: 1	0.250	6.750					
		1	4.595	3 - 501	6.900	7.795	0.301	9.167	9,861					ii	6,500		(7,533)	7.533			
5		1	4.125	4.990	0.135	7+182	8.977	8.515						2 1	6.982	7.418	8.073	8.291	(8.727)	8.727	
5			4-190	5.338	6.585	7.376	0.196	0.967	9-109					. !							
3			4,535	5,602	6.029	7,590	8.314	24130	2.007						9,132	6.563					
3			4.522	5,661	7.210	7.936	8.643	9.458	9.960					: 1	0.139	6.983	7.500	7-600			
-		i	0.507	5.729	7.110	8.928	0.059	9,771	19.271						6.739	7.300	7.836	8.127	4.327	8.618	
5		i	4.000	4.945	0+266	7.121	8-165	9.077	9.492				ž.		4.955	7.602	0.303	0.602	0.945	9.273	. 9.3
		1	4.434	5.410	6.667	7.407	0.210	9.219	9.752		Ċ			. 1							
:			4,155	5,625	6.900	7.725	0.450		10-150					: !	0.311	7-111	7.467	8.073	0.245		
÷		1	4.545	5.724	7.107	8.000	0.754		10.242				;		0.500	7.591	8.258	8.576	8.924	9-167	9.3
0			4,942	5.755	7.152	0.124	0.987		10-524				2		7.025	7.910	8.258	9.115	9.474		
6		i	4.043	5.001	7.240	8555+8	9.170	10.107	10.609				ï		6.788	7.576	8.242	8.424		(9.455)	
														. !							
										3	4	1	2	: 1	7.121	7.769	8.590	9-051	9.410	9.769	9.5
													ŝ		7.121	8.000	8.879	9,451	9.846	10.330	
													3		7.21.0	8.000	9.267		10.333		

Figure 1: KW tablosu.

Gruplar	$ ar{R}_i - ar{R}_j $	KW	istatistiksel karar
1-2	4.5	2.115	p<0.05
1-3	8.5	2.115	p<0.05
2-3	4	2.229	p<0.05

ÖDEV 1

Egzersiz süreleri farklı gruplar arasında anksiyete skorları bakımından anlamlı farklılık var mıdır?(Anksiyete skorlarının normal dağılıma sahip olduğu bilinmektedir.)

grup1	grup2	grup3
5 saat	10 saat	15 saat
48	55	51
50	52	52
53	53	50
52	55	53
50	53	50

ÖDEV 2

Tıp eğitiminde kullanılan 4 farklı yöntemden sonra öğrencilerin başarı notları aşağıdaki gibidir. Başarı notları bakımından teknikler arasında anlamlı farklılık var mıdır?(Normal dağılıma uygun değildir.)

1	2	3	4
65	75	59	94
87	69	78	89
73	83	67	80
79	81	62	88