V203

Verdampfungswärme und Dampfdruck-Kurve

 $\begin{array}{ccc} {\it Theodor\ Zies} & {\it Tom\ Troska} \\ {\it theodor.zies@tu-dortmund.de} & {\it tom.troska@tu-dortmund.de} \end{array}$

Durchführung: 11.01.2022 Abgabe: 18.01.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1.	Zielsetzung	3
2.	Theorie	3
3.	Durchführung 3.1. Messung bis 100 kPa 3.2. Messung von 100 bis 1500 kPa	
4.	Auswertung4.1. Verdampfungswärme von Wasser bis 100 kPa	
5.	Diskussion	12
Lit	teratur	12
Α.	• 6	13

1. Zielsetzung

In diesem Versuch soll die Verdampfungswärme von destilliertem Wasser ermittelt werden. Dafür wird das destillierte Wasser erhitzt und die Temperaturabhängigkeit des Dampfdruckes gemessen. Aus der resultierenden Dampfdruckkurve kann anschließend die gesuchte Verdampfungswärme berechnet werden.

2. Theorie

Wasser kann, so wie viele andere Stoffe, in drei verschiedenen Phasen vorliegen, nämlich fest, flüssig oder gasförmig. Welcher dieser drei Zustände angenommen wird, hängt dabei von dem jeweiligen Druck p und der Temperatur T ab. In Abbildung 1 ist qualitativ dargestellt, wann welche Phasen vorliegen.

Abbildung 1: Qualitatives Zustandsdiagramm von Wasser. [3]

Wasser beginnt zu sieden, wenn es sich nahe dem Übergang zwischen flüssig und gasförmig befindet. Diese Trennung der Phasen wird durch die sogenannte Dampfdruckkurve beschrieben, hier können die beiden Phasen koexistieren. Befindet man sich auf der Dampfdruckkurve, dann sind p und T voneinander abhängig.

Ihr Verlauf wird durch die Verdampfungswärme L charakterisiert, dies ist eine stoff- und temperaturabhängige Größe. Im Bereich der Messung ist L nahezu unabhängig von der Temperatur und kann daher als konstant angenommen werden. Die Verdampfungswärme beschreibt, wie viel Energie notwendig ist, um eine bestimmte Stoffmenge zu verdampfen. Genauer betrachtet setzt sich L aus der inneren und äußeren Verdampfungswärme zusammen:

$$L = L_{\rm i} + L_{\rm a} \tag{1}$$

Dabei beschreibt $L_{\rm i}$ die Arbeit zur Überwindung der molekularen Anziehungskräfte, während $L_{\rm a}$ für die benötigte Energie steht, um das Volumen des Stoffes zu vergrößern. Der analytische Verlauf der Dampfdruckkurve wird durch die Clausius-Clapeyronsche Gleichung festgelegt, wobei $V_{\rm D}$ und $V_{\rm F}$ für das Volumen vor und nach dem verdampfen stehen:

$$(V_{\rm D}-V_{\rm F}){\rm dp}=\frac{L}{T}{\rm dT} \eqno(2)$$

Nimmt man an, dass $V_{\rm D}$ gegenüber $V_{\rm F}$ vernachlässigt werden kann, dann lässt sich $V_{\rm D}$ durch die ideale Gasgleichung

$$pV = RT \tag{3}$$

beschreiben. Da L, wie bereits erwähnt, als konstant angenommen wird, kann (2) durch folgende Funktion p(T) gelöst werden:

$$p(T) = p_0 e^{-\frac{L}{R} \cdot \frac{1}{T}}.$$
(4)

Diese Funktion beschreibt also den Verlauf der Dampfdruckkurve und kann zur Bestimmung von L verwendet werden, wenn der Kurvenverlauf bereits gegeben ist.

3. Durchführung

Die Temperaturabhängigkeit des Dampfdruckes soll im Bereich $5\,\mathrm{kPa}$ bis $1500\,\mathrm{kPa}$ gemessen werden. Dafür muss für die niedrigen Drücke unter $100\,\mathrm{kPa}$ ein anderer Versuchsaufbau als für die hohen Drücke über $100\,\mathrm{kPa}$ verwendet werden.

3.1. Messung bis 100 kPa

Im ersten Versuchsteil wird die Messung für kleine Drücke durchgeführt. Der verwendete Versuchsaufbau ist in Abbildung 2 dargestellt.

Zuerst wird die Apperatur mit der Wasserpumpe nahezu vakuumiert, sodass ein Druck unter 5 kPa gemessen wird. Anschließend erhitzt die Heizhaube das Wasser im Mehrhalskolben ausgehend von 20 °C solange, bis ein Dampfdruck von 100 kPa erreicht wird. Dabei wird in Abständen von 2 °C der jeweilige Dampfdruck abgelesen und notiert.

Abbildung 2: Versuchsaufbau für kleinen Druck unter 100 kPa. [3]

3.2. Messung von 100 bis 1500 kPa

Im zweiten Versuchsteil werden nun die höheren Drücke betrachtet. Der neue Versuchsaufbau ist in Abbildung 3 zu sehen.

Die Heizwicklung wird eingeschaltet und das Wasser im Kolben erhitzt. Sobald $100\,\mathrm{kPa}$ Dampfdruck erreicht ist, wird die Temperatur das erste Mal abgelesen und festgehalten. Anschließend wird dies in $100\,\mathrm{kPa}$ Schritten wiederholt, bis der angestrebte Druck von $1500\,\mathrm{kPa}$ erreicht wird.

Abbildung 3: Versuchsaufbau für großen Druck bis 1500 kPa. [3]

4. Auswertung

4.1. Verdampfungswärme von Wasser bis 100 kPa

Der Umgebungsdruck p_0 wird vor Beginn der Messreihe zu $p_0=101,7\,\mathrm{kPa}$ bestimmt. Die Messwerte für die Gastemperatur T und des Drucks p werden tabellarisch erfasst und anschließend graphisch in Abbildung 4 dargestellt.

Tabelle 1: Messwertepaare Temperatur Tund Druck pmit $p \leq 100\,\mathrm{kPa}.$

$T/^{\circ}C$	p / mbar	<i>T</i> / K	p/kPa
26	107	299	10,7
28	110	301	11,0
30	116	303	11,6
32	120	305	12,0
34	125	307	12,5
36	129	309	12,9
38	134	311	13,4
40	139	313	13,9
42	143	315	14,3
44	148	317	14,8
46	153	319	15,3
48	159	321	15,9
50	165	323	16,5
52	171	325	17,1
54	177	327	17,7
56	185	329	18,5
58	200	331	20,0
60	218	333	21,8
62	238	335	$23,\!8$
64	257	337	25,7
66	277	339	27,7
68	302	341	30,2
70	327	343	32,7
72	353	345	35,3
74	382	347	38,2
76	414	349	$41,\!4$
78	448	351	44,8
80	482	353	48,2
82	525	355	$52,\!5$
84	562	357	56,2
86	601	359	60,1
88	637	361	63,7
90	676	363	67,6

Tabelle 1: Messwertepaare Temperatur T und Druck p mit $p \leq 100\,\mathrm{kPa}$. (Fortsetzung)

92	696	365	69,6
94	726	367	72,6
96	756	369	75,6
98	776	371	77,6
100	785	373	78,5
102	789	375	78,9
104	794	377	79,4
106	803	379	80,3
108	820	381	82,0
110	836	383	83,6
112	850	385	85,0
114	864	387	86,4

Abbildung 4: Graphische Darstellung der Messwertpaare aus Tabelle 1 mit Ausgleichsgerade.

Mithilfe der Python-Erweiterung scipy [2] wird eine lineare Ausgleichsrechnung durchgeführt und es ergibt sich eine Ausgleichsgerade vom Typ

$$\ln\left(\frac{p}{p_0}\right) = (3220 \pm 80) \,\mathrm{K} \,\frac{1}{T} + (1 \pm 8).$$

Dies enstpricht der logarithmierten Form von (4) und somit ergibt sich die Verdamp-

fungswärme L zu

$$\frac{L}{R} = (3220 \pm 80) \text{ K}$$

$$\Leftrightarrow L = (26.8 \pm 0.7) \frac{\text{kJ}}{\text{mol}}.$$

Für die Gaskonstante R wird hier der Wert $R=8,314\,\mathrm{J/(mol\,K)}$ [1] verwendet. Um die innere Verdampfungswärme L_i zu bestimmen wird der Zusammenhang (1), sowie die allgemeine Gasgleichung (3) verwendet. Zunächst wird die äußere Verdampfungswärme L_a für eine Temperatur $T=373\,\mathrm{K}$ abgeschätzt:

$$L_{a} = pV = RT$$
$$= 3{,}101 \frac{\text{kJ}}{\text{mol}}$$

Folglich ergibt sich für die innere Verdampfungswärme $L_{\rm i}$ der Wert

$$\begin{split} L_{\rm i} &= L - L_{\rm a} \\ &= (26.8 \pm 0.7) \, \frac{\rm kJ}{\rm mol} - 3.101 \, \frac{\rm kJ}{\rm mol} \\ &= (23.7 \pm 0.7) \, \frac{\rm kJ}{\rm mol}. \end{split}$$

Bezieht sich die Verdampfungswärme nun nicht mehr auf eine mol-Masse, sondern auf einzelne Moleküle, muss $L_{\rm i}$ durch die Avogadro-Konstante $N_{\rm A}=6.02\cdot 10^{23}\, {\rm 1/mol}$ [1] geteilt werden. Zur Übersichtlichkeit wird $L_{\rm i,M}$ in eV angegeben:

$$L_{\rm i,M} = (0.278 \pm 0.007) \, {\rm eV}$$

4.2. Temperaturabhängigkeit der Verdampfungswärme von 100 bis 1500 kPa

Um die Abhängigkeit der Verdampfungswärme von der Temperatur L(T) zu bestimmen, muss die Clausius-Clapeyronsche Gleichung (2) umgestellt werden:

$$\Rightarrow L = T(V_{\rm D} - V_{\rm F}) \frac{\mathrm{d}p}{\mathrm{d}T}$$

Der Wert für $V_{\rm D}$ lässt sich für größere Drücke nicht mehr mit der allgemeinen Gasgleichung abschätzen. Stattdessen wird folgende Näherung verwendet:

$$\left(p + \frac{\tilde{a}}{V_{\rm D}^2}\right) V_{\rm D} = RT \qquad \qquad \tilde{a} = 0.9 \, \frac{\mathrm{J \, m}^3}{\mathrm{mol}^2}$$

Umgestellt zu $V_{\rm D}$ ergibt sich dann

$$V_{\rm D} = \frac{RT}{2} \pm \sqrt{\frac{R^2T^2}{4} - \tilde{a}p}.$$

Ingesamt folgt dann für L:

$$L(T) = \frac{T}{p} \left(\frac{RT}{2} \pm \sqrt{\frac{R^2 T^2}{4} - \tilde{a}p} \right) \frac{\mathrm{d}p}{\mathrm{d}T}$$
 (5)

Um die benötigte Funktion p(T) zu bestimmen, werden die Messwerte für den Druck p und die Temperatur T verwendet. Diese sind in Tabelle 2 aufgeführt.

Tabelle 2: Messwertepaare Temperatur Tund Druck pmit $100\,\mathrm{kPa} \leq p \leq 1500\,\mathrm{kPa}$

p / mbar	T/°C	p/kPa	T/K
1	117	100	390
2	134	200	407
3	141	300	414
4	148	400	421
5	154	500	427
6	161	600	434
7	167	700	440
8	172	800	445
9	176	900	449
10	180	1000	453
11	184	1100	457
12	187	1200	460
13	191	1300	464
14	194	1400	467
15	197	1500	470

Zur Ermittlung von p(T) wird mit scipy eine Ausgleichsrechnung durchgeführt. Die Daten und der zugehörige Fit sind in Abbildung 5 dargestellt. Die Ausgleichsfunktion wird hierbei durch ein allgemeines Polynom 3. Grades definiert. Das Polynom lässt sich bestimmen zu

$$p(T) = a \cdot T^3 + b \cdot T^2 + c \cdot T + d$$

mit den Parametern

$$a = (0,000 65 \pm 0,000 29) \frac{\text{kPa}}{\text{K}^3}$$

$$b = (-0,7 \pm 0,4) \frac{\text{kPa}}{\text{K}^2}$$

$$c = (240 \pm 160) \frac{\text{kPa}}{\text{K}}$$

$$d = (2800 \pm 2300) \text{kPa}.$$

Die Ableitung dieser Ausgleichsfunktion nach der Temperatur wird ebenfalls benötigt:

$$\frac{\mathrm{d}p}{\mathrm{d}T} = 3a \cdot T^2 + 2b \cdot T + c$$

Abbildung 5: Graphische Darstellung der Messwertpaare aus Tabelle 2 mit Ausgleichspolynom 3. Grades.

Werden nun die Funktionen p(T) und $\frac{\mathrm{d}p}{\mathrm{d}T}$ in (5) eingesetzt, ergeben sich 2 Funktionen für L:

$$\begin{split} L_{-}(T) &= \frac{T(3a \cdot T^2 + 2b \cdot T + c)}{a \cdot T^3 + b \cdot T^2 + c \cdot T + d} \left(\frac{RT}{2} - \sqrt{\frac{R^2 T^2}{4} - \tilde{a}(a \cdot T^3 + b \cdot T^2 + c \cdot T + d)} \right) \\ L_{+}(T) &= \frac{T(3a \cdot T^2 + 2b \cdot T + c)}{a \cdot T^3 + b \cdot T^2 + c \cdot T + d} \left(\frac{RT}{2} + \sqrt{\frac{R^2 T^2}{4} - \tilde{a}(a \cdot T^3 + b \cdot T^2 + c \cdot T + d)} \right) \end{split}$$

Zum Zwecke der Veranschaulichung werden diese Funktionen auch graphisch dargestellt.

Abbildung 6: Funktion $L_{-}(T)$.

Abbildung 7: Funktion $L_{+}(T)$.

5. Diskussion

Im Folgenden wird die in 4.1 berechnete Verdampfungswärme mit einem Literaturwert [1] verglichen.

$$\begin{split} L_{\mathrm{exp}} &= (26.8 \pm 0.7) \, \frac{\mathrm{kJ}}{\mathrm{mol}} \\ L_{\mathrm{lit}} &= 40.65 \, \frac{\mathrm{kJ}}{\mathrm{mol}} \end{split}$$

Die Abweichung vom Literaturwert liegt somit bei ca. 34% und ist damit so groß, dass die Messung den Literaturwert nicht bestätigen kann. Aufgrund von einer Undichtigkeit der Apperatur in Abbildung 2 an einem Ventil der Woulffschen Flasche wurde die Messung des Dampfdruckes verfälscht.

Dieser Fehler spiegelt sich auch in Abbildung 4 wider, die Messwerte weichen deutlich von der erwarteten exponentiellen Natur ab und streuen daher stark um die Ausgleichsgerade. Für die Zeitabhängigkeit von L haben sich zwei mögliche mathematische Funktionen ergeben. Dabei stellt jedoch nur die Funktion L_+ in Abbildung 7 eine physikalisch sinnvolle Modellierung dar, da die Verdampfungswärme mit steigender Temperatur logischerweise abnehmen muss.

Literatur

- [1] Horst Czichos und Manfred Hennecke. HÜTTE Das Ingenieurwissen. Springer, 2008. ISBN: 9783540718512.
- [2] Eric Jones, Travis E. Oliphant, Pearu Peterson u. a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [3] Versuch V203: Verdampfungswärme und Dampfdruck-Kurve. TU Dortmund, Fakultät Physik.

A. Anhang

A.1. Originaldaten

10g - Das	Magnetische Mo	001	
3 1/2-6			
203 - Vach,	TP STATE THE		
Ung Sungs drack:	1.017750		
11 tenpodu			
7/00	D/mber	TYPE	PInbar
	63		
18,5		60	218
120	92	62	238
122	83	64	257
0 24	91/	66	277
26	\$ 107	68	302
73	40	70	327
28	110	72	353
30	116	74	382
	120	76	414
32			448
34	125	78	482
36	129	96	
0 38	134	32	524
40	139	84	562
42	143	36	601
4	148	38	637
46	153	00	676
48	159	02	606
50	165	94	726
52	171	96	756
	177		776
54		98	785
56	185	100	
58	200	102	789 /-

	104	794	
	106	203	
	108	920	
	110	9 36	
	112	950	
	114	864	
	ME		
	118	Abbruch, 1000 w Ben mid	the state of the s
	120	eneith.	
	110	Temperatu stast milit men	h
	0 2		
	Die	Weltste Plasto was with dicht	
	2 ,1		
1	7. Messung	p> 1 6av	
	To	D bow	
			15
	117	1	
	134	2	
	141	3	
	148	4	
	154	5	
	161	6	
	167	7	
	172	8	
	176	9	
	180	10	
		M	
	184	12	
	191		
	104	13	