열번째 주 셋째날 ovrit 데이터 센터, 클러스터, 네트워크, 계정 구성 등

노트북: 필기노트

만든 날짜: 2019-07-31 오후 9:15 **업데이트**: 2019-08-07 오전 12:42

작성자: 이종민 **태그**: 가상화

URL: http://speller.cs.pusan.ac.kr/results

44day

ovirt 실제 구성 형태

데이터 센터

모든 물리적 및 논리적 자원을 포함한 최상위 조직 객체 단일 데이터 센터는 독립적인 가상화 환경이다. 각 각이 독립.

스토리지 컨테이너

스토리지 유형 및 도메인 정보가 저장, 해당 데이터 센터의 모든 클러스터에서 사용 가능 모든 호스트 클러스트는 같은 스토리지 도메인에 액세스 가능

네트워크 컨테이너

데이터 센터의 논리 네트워크 정보 저장 (가상 망이 구성 되어있다) 네트워크 주소, VLAN 태그, STP 지원 등 상세 정보 포함 트래픽 분리를 위해 다수의 논리 네트워크 구성 가능

물리적으로 독립적 형태를 만들긴 어렵다. -> 비용이 많이든다.

클러스터 컨테이너

호환되는 프로세서 코어를 가진 호스트 그룹

마이그레이션 도메인, 하나의 데이터센터에 여러 클러스터 연결 가능 -> 옮겨지는 범위 (가상 머신을 실행시킬 수 있는 범위)

소프트웨어 브릿지

가상네트워크 <----> 물리네트워크를 네트워크 연결 해주는 것

cluster maintenance -> 한 군데 모아준다. every distributed -> 사양에 상관없이? 분산해서 준다. (대충 사전적 의미)

클러스터

동일한 아키텍처 및 CPU 모델을 공유 혼합 사용 시 공통기능만큼 다운그레이드가 된다.

default 빈 클러스터를 생성, 추가 클러스터는 관리 포털을 사용하여 생성 cpu 유형 및 네트워크 선택. (자동 탐지)

계정 관리

Idap을 이용해서 사용자 제공한다. (엔진 이외는 Idap으로 계정 설정)

role 이용한 사용자 접근제어를 한다. / 역할 설정, 구성, 특정 사용자 역할 설정도 가능하다. ovirt 인증 모델은 사용자, 작업 및 객체를 기반으로 한다.

role 종류

관리자 역할 - 실제, 가상 리소스를 관리

사용자 역할 - 포털에 대한 액세스 허용, 포털에세 보고 수행 할 수 있는 작업을 결정

추가 계정, 호스트 추가 및 제거는 책 읽어보면 될 거 같다.

네트워크 관리

vlan또는 물리 네트워크로 분리 -> 보안 및 성능향상: vlan을 쓰면 비용적으로 유용하다.

논리 네트워크

management network : 구성 요소 간의 통신 지원 (engine - host 간의 명령어 전달 대역폭소모가 적다. 자원을 많이 안먹는다)

display network : 가상머신의 디스플레이 용도 (console / 스파이스 프로토콜)

migraation network : 라이브 마이그레이션 전용 네트워크 설정 가능, 안정성 확보 (가장 안정성, 속도가 중요하다)

storage network : 호스트 또는 가상멋니에 대한 스토리지 접근 용도 (ISO 설치, 불러올 때 느려도 지장 없다) / data , iso 부팅

네트워크 부분도 딱히 중요한 게 없는 것 같다. 나중에 필요하면 책 참고를 하면 될 것 같다.