Generalidades de la materia

Dr. Ing. Rodrigo Gonzalez

rodralez@ingenieria.uncu.edu.ar

Control y Sistemas

Facultad de Ingeniería, Universidad Nacional de Cuyo

Summary

- Introducción
- 2 Horarios
- Metodología
- Cronograma
- 6 Regularización
- Parciales
- Anteproyecto
- 8 Herramientas
- 9 Proyecto final

Introducción

- La materia cuenta con 5 unidades.
- 15 clases en total.
- Se regulariza aprobando 2 parciales.
- Se aprueba presentando un proyecto mecatrónico a nivel simulación.

Horarios

- Clases: martes de 8:30 a 12:30 hs.
- Consulta: jueves de 14 a 15 hs.
- Mesa: martes de 15 hs en adelante.

Metodología

- Clases teórico prácticas.
- Primera parte, se dicta la teoría.
- Segunda parte, se realiza la práctica.

Cronograma

	Fecha	Tema	Unidad
1	06/03/2018	Transformada Z. Modelos Discretos.	Unidad 1
2	13/03/2018	Representación finita de números reales en formato punto fijo.	Unidad 1
3	20/03/2018	Representación finita de números reales en formato punto flotante.	Unidad 1
4	27/03/2018	Procesamiento digital de señales analógicas.	Unidad 2
5	03/04/2018	Filtros FIR.	Unidad 2
6	10/04/2018	Filtros IIR.	Unidad 2
7	17/04/2018	Sistemas no lineales. Modelado. Identificación. <u>Linealización.</u> PARCIAL 1.	Unidad 3
8	24/04/2018	Introducción a SimScape, Sistemas mecánicos, eléctricos y masa- resorte. RECUPERATORIO 1.	Unidad 3
9	01/05/2018	Modelado de sistemas hidráulicos.	Unidad 3
10	08/05/2018	Modelado de sistemas neumáticos.	Unidad 3
11	15/05/2018	Controladores PID de 1er y segundo orden (PID, PI-D, I-PD)	Unidad 4
12	22/05/2018	Controladores PID discretos.	Unidad 4
13	29/05/2018	Control óptimo y robusto. PARCIAL 2.	Unidad 4
14	05/06/2018	Desarrollo de Proyecto Mecatrónico, RECUPERATORIO 2.	Unidad 5
15	12/06/2018	Desarrollo de Proyecto Mecatrónico.	Unidad 5

Regularización

- Tener 75 % de asistencia.
- Participar en clase del 75 % de las actividades prácticas.
- Aprobar los 2 parciales, o sus recuperatorios.
- Presentar un anteproyecto mecatrónico de carácter individual.

Parciales

- Martes 17 de abril.
- Martes 29 de mayo.
- Los parciales se toman en la segunda parte de la clase.
- Se evalúan contenidos teórico prácticos.

Anteproyecto

- Título del proyecto final.
- Objetivos que se pretenden alcanzar.
- Breve descripción del proyecto a desarrollar con al menos la siguiente información:
 - Descripción de la planta a controlar.
 - Identificación de las variables de entrada y salida del sistema.
 - Tipo de control a implementar.
 - Herramientas de simulación que se usarán.

Herramientas

- MATLAB.
- SIMULINK / SIMSCAPE.
- Programación en C.
- Todas las filmimas se pueden bajar de http://github.com/rodralez/control.

Proyecto final

- Se debe modelar y controlar de un sistema mecatrónico a nivel simulación de mediana complejidad.
- El control del sistema debe ser discreto.
- Se debe incluir el modelado de un sensor con salida ruidosa. Se debe incluir un filtro anti-aliasing y proponer un filtrado adicional con el objetivo de mitigar el ruido.
- Se debe demostrar una correcta respuesta del sistema completo ante la presencia de ruido y perturbaciones.
- El uso de precisión punto fijo para la implementación del controlador discreto y los algoritmos de DSP se considera un plus.
- Se considera un plus que el alumno solucione un problema real con su proyecto final.
- Se debe redactar un informe del proyecto final desarrollado.