Matematická logika

2. prednáška

- Teória a model
- Odvodzovanie formúl
- Logický dôkaz
- Úplnosť

Definícia.

- (1) **Teóriou** T výrokovej logiky je ľubovolná neprázdna množina formúl, $T = \{\varphi_1, \varphi_2, ..., \varphi_n\} \subset \Omega(P)$.
- (2) Ak pre teóriu T existuje taká interpretácia τ , pre ktorú sú všetky formuly pravdivé, $val_{\tau}(\varphi_i)=1$, pre i=1,2,...,n, potom táto špecifikácia τ sa nazýva **model teórie**.
- (3) Teória T je konzistentná, ak má model.

$$T = \left\{ \underbrace{\left(p \lor q\right) \Rightarrow \left(p \land q\right)}_{\varphi_{1}}, \underbrace{\left(p \Rightarrow q\right) \land \left(q \Rightarrow p\right)}_{\varphi_{2}}, \underbrace{\left(\neg p \land \neg q\right) \Rightarrow \left(p \Rightarrow q\right)}_{\varphi_{3}} \right\},$$

$\varphi_1 = 0$	$(p \vee$	(q)	\Rightarrow ($(p \land$	(q)
ΥΙ '	$(P \cdot)$	7)	, ,	(\mathbf{P}^{-1})	~ <i>1</i>

		,	/	· · · · · · · · · · · · · · · · · · ·
1	2	3	4	5
p	q	$p \lor q$	$p \wedge q$	$3 \Rightarrow 4$
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

	/		1	
$\varphi_2 =$	$(p \Rightarrow q)$	$) \wedge ($	$a \Rightarrow$	p
	(I I)	'	\ 1	1)

1	2	3	4	5
p	q	$p \Rightarrow q$	$3 \wedge q$	$4 \Rightarrow p$
0	0	1	0	1
0	1	1	1	0
1	0	0	0	1
1	1	1	1	1

$$\varphi_3 = (\overline{p} \wedge \overline{q}) \Rightarrow (p \Rightarrow q)$$

1	2	3	4	5	6	7
p	q	$\neg p$	$\neg q$	3∧4	$p \Rightarrow q$	$5 \Rightarrow 6$
0	0	0	0	0	1	1
0	1	1	0	0	1	1
1	0	1	0	0	0	1
1	1	1	1	1	1	1

$$\tau_1 = (p/0, q/0)$$
a $\tau_2 = (p/1, q/1)$

Definícia. Formula φ je **tautologickým dôsledkom** teórie T (čo označíme $T \models \varphi$), ak každý model teórie T je aj modelom formuly φ (t.j. formula φ je v ňom pravdivá).

- Majme teóriu $T = \{\phi_1, \phi_2, ..., \phi_n\}$, potom pre každú interpretáciu τ , ktorá je modelom teórie T platí, že pravdivostné hodnoty všetkých formúl sú 1, $val_{\tau}(\phi_i) = 1$.
- Nech φ je *tautologickým dôsledkom* teórie T, potom pre každý model interpretáciu τ platí: $val_{\tau}(\varphi) = val_{\tau}(\varphi_i) = 1$, pre i = 1, 2, ..., n.

Nech teória *T* je definovaná rovnako ako v predchádajúcom príklade

$$T = \left\{ \underbrace{\left(p \lor q\right) \Rightarrow \left(p \land q\right)}_{\varphi_{1}}, \underbrace{\left(p \Rightarrow q\right) \land \left(q \Rightarrow p\right)}_{\varphi_{2}}, \underbrace{\left(\neg p \land \neg q\right) \Rightarrow \left(p \Rightarrow q\right)}_{\varphi_{3}} \right\}$$

má dva modely určené špecifikáciami premenných $\tau_1 = (p/0, q/0)$ a $\tau_2 = (p/1, q/1)$. Uvažujem formulu $\varphi = (p \equiv q)$, formula je *tautologickým dôsledkom* teórie T, pretože pre oba modely τ_1 a τ_2 je formula pravdivá, $val_{\tau_1}(\varphi) = 1$ resp. $val_{\tau_2}(\varphi) = 1$.

- Nech $T = \emptyset$ je prázdna teória (neobsahuje žiadnu formulu), formálne môžeme teda povedať, že ľubovolná špecifikácia τ je modelom tejto teórie.
- Ak formula φ je *tautológia* (pre každú špecifikáciu τ platí $val_{\tau}(\varphi) = 1$), potom $\varnothing \models \varphi$, alebo jednoduchšie $\models \varphi$.

Veta. Nech T je teória $a \varphi$, ψ sú formuly. Ak súčasne platí $T \vDash \varphi \Rightarrow \psi$ $a T \vDash \varphi$, potom $T \vDash \psi$.

Z predpokladov vety vyplýva, že existuje taký model τ teórie T, že formuly $\varphi \Rightarrow \psi$ a φ sú pravdivé, $val_{\tau}(\varphi \Rightarrow \psi) = val_{\tau}(\varphi) = 1$, potom z vlastností implikácie vyplýva (pozri tabuľku 1.1), že platí aj $val_{\tau}(\psi) = 1$. To znamená, že formula ψ logický vyplýva z teórie T, $T \models \psi$, čo bolo potrebné dokázať.

Veta. Nech formula φ je **tautologickým dôsledkom** teórie $T = \{\varphi_1, \varphi_2, ..., \varphi_n\}$, potom formula $\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_n \Rightarrow \varphi$ je tautológia.

Ak existuje taká interpretácia premenných τ , že $val_{\tau}(\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_n \Rightarrow \varphi) = 0$, potom musí súčasne platiť $val_{\tau}(\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_n) = 1$ a $val_{\tau}(\varphi) = 0$, čo je však v protiklade s predpokladom vety.

Predpokladajme, že teória T je nekonzistentná, t.j. nemá model, potom pre každú špecifikáciu premenných τ platí $val_{\tau}(\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_n) = 0$, to znamená, že pre ľubovolnú špecifikáciu τ je výrok $\varphi_1 \wedge \varphi_2 \wedge ... \wedge \varphi_n \Rightarrow \varphi$ pravdivý, čiže táto formula je tautológia, tým sme dokázali, že *pre nekonzistentnú teóriu* T *každá formula* φ *je jej tautologickým dôsledkom*

•

Nech $T = \{p \land \neg p\}$ je teória obsahujúca jednu formulu - kontradikcia, ktorá je pre každú pravdivostnú hodnotu premennej p je nepravdivá, $val_{p=0,1}(p \land \neg p) = 0$, potom však formula $(p \land \neg p) \Rightarrow \varphi$ je tautológiou, čiže platí $\{p \land \neg p\} \models \varphi$.

Odvodzovanie formúl výrokovej logiky, logický dôkaz

Logický dôkaz je presne špecifikovaný spôsob odvodzovania výrokových formúl tautológií, pričom sa vychádza z niekoľko málo vopred daných tautológií (axióm), z ktorých pomocou presne formulovaného spôsobu dôkazu zostrojujeme nové tautológie.

Pravidlá odvodzovania

(1) *Pravidlo modus ponens* (pravidlo odlúčenia) . Ak formuly φ a $\varphi \Rightarrow \psi$ sú pravdivé, potom je pravdivá aj formula ψ . Toto pravidlo sa zapisuje aj ako schéma

$$\varphi \Rightarrow \psi$$

(2) **Pravidlo substitúcie**. Nech φ je tautológia, ktorá obsahuje výrokové premenné $(p_1, p_2, ..., p_n)$. Nech $\{\psi_1, \psi_2, ..., \psi_n\}$ je množina ľubovolných formúl (ktorých počet je rovnaký ako počet premenných v φ). Nech formula ψ vznikne z φ tak, že každá premenná je substituovaná formulou ψ_i , pre i = 1, 2, ..., n

$$\Psi = A(p_1/\Psi_1, p_2/\Psi_2, ..., p_n/\Psi_n)$$

Potom takto vytvorená formula ψ je opäť tautológia.

(3) *Pravidlo nahradenia ekvivalentých podformúl*. Nech ϕ je tautológia a nech ψ vznikne z ϕ substitúciou jej ľubovolnej podformuly $\phi' \subset \phi$ formulou ψ' , ktorá je s ňou ekvivalentná, $\phi' \equiv \psi'$

$$\psi = \varphi(\varphi'/\psi')$$

potom aj ψ je tautológia

$$\varphi = \left(\left(\left(p \vee (q \wedge r) \right) \Rightarrow \left(\left(p \vee q \right) \wedge (p \vee r) \right) \right) \right),$$

vyberieme si podformulu $\varphi' = (p \lor q)$, nahradíme ju za ekvivalentnú formulu $\psi' = (\overline{p} \Rightarrow q)$, týmto spôsobom zostrojíme novú tautológiu, ktorá má tvar

$$\Psi = ((p \lor (q \land r)) \Rightarrow ((\overline{p} \Rightarrow q) \land (p \lor r))).$$

Definícia.

- (1) Formula φ je **bezprostredným logickým dôsledkom** množiny formúl T, ak vznikne aplikáciou jedného z pravidiel logického dôkazu na formuly z T.
- (2) Formula φ je **logickým dôsledkom** množiny formúl T (čo označíme $T \vdash \varphi$, ak $T = \emptyset$, potom $\vdash \varphi$), ak $\varphi \in T$, alebo je bezprostredným logickým dôsledkom T, alebo je bezprostredným logickým dôsledkom T rozšírenej o niektoré jej bezprostredné logické dôsledky.
- (3) **Dôkazom** formuly φ z množiny T je každá konečná postupnosť formúl $\varphi_1, \varphi_2, ..., \varphi_n$, pričom $\varphi = \varphi_n$ a každá formula z tejto postupnosti je buď bezprostredným logickým dôsledkom niektorých formúl z T alebo formúl $\varphi_1, \varphi_2, ..., \varphi_{i-1}$.

$$T = \left\{ \underbrace{p \Rightarrow p \vee q}_{\varphi_1}, \underbrace{p \vee \neg p}_{\varphi_2}, \underbrace{p \Rightarrow (q \Rightarrow p)}_{\varphi_3} \right\}.$$

Krok 1. Na φ_3 aplikujeme pravidlo substitúcie, premennú p nahradíme φ_2 $\varphi_2(p/p \vee \neg p) = \varphi_2' = (p \vee \neg p) \Rightarrow (q \Rightarrow (p \vee \neg p))$

Krok 2. Použijeme pravidlo modus ponens vzhľadom k φ₂

$$\frac{p \vee \neg p}{\left(p \vee \neg p\right) \Rightarrow \left(q \Rightarrow \left(p \vee \neg p\right)\right)}$$
$$q \Rightarrow \left(p \vee \neg p\right)$$

Krok 3. Formula $\varphi = (q \Rightarrow (p \lor \neg p))$ je logickým dôsledkom množiny $T \vdash q \Rightarrow (p \lor \neg p)$.

Hilbertov systém axióm výrokovej logiky

$$Ax_{1}. \ \varphi \Rightarrow (\psi \Rightarrow \varphi)$$

$$Ax_{2}. \ (\varphi \Rightarrow (\psi \Rightarrow \omega)) \Rightarrow ((\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow \omega))$$

$$Ax_{3}. \ (\varphi \land \psi) \Rightarrow \varphi$$

$$Ax_{4}. \ (\varphi \land \psi) \Rightarrow \psi$$

$$Ax_{5}. \ \varphi \Rightarrow (\psi \Rightarrow (\varphi \land \psi))$$

$$Ax_{6}. \ \varphi \Rightarrow (\varphi \lor \psi)$$

$$Ax_{7}. \ \psi \Rightarrow (\varphi \lor \psi)$$

$$Ax_{8}. \ (\varphi \Rightarrow \omega) \Rightarrow ((\psi \Rightarrow \omega) \Rightarrow ((\varphi \lor \psi) \Rightarrow \omega))$$

$$Ax_{9}. \ (\varphi \Rightarrow \psi) \Rightarrow ((\varphi \Rightarrow \neg \psi) \Rightarrow \neg \varphi)$$

$$Ax_{10}. \ \neg \neg \varphi \Rightarrow \varphi$$

$$\vdash \varphi \Rightarrow \varphi$$
.

1.krok dôkazu.

V Ax_1 vykonáme substitúciu $\psi/(\varphi \Rightarrow \varphi)$, dostaneme $\varphi \Rightarrow ((\varphi \Rightarrow \varphi) \Rightarrow \varphi)$.

2.krok dôkazu.

V Ax_2 vykonáme substitúciu $\psi/(\varphi \Rightarrow \varphi)$ a ω/φ , dostaneme $(\varphi \Rightarrow ((\varphi \Rightarrow \varphi) \Rightarrow \varphi)) \Rightarrow ((\varphi \Rightarrow (\varphi \Rightarrow \varphi)) \Rightarrow (\varphi \Rightarrow \varphi))$

3. Krok dôkazu.

V Ax_1 vykonáme substitúciu ψ/φ , dostaneme $\varphi \Rightarrow (\varphi \Rightarrow \varphi)$.

4. krok dôkazu.

Aplikujeme modus ponens na formuly z 2. a 1. kroku, dostaneme

$$(\varphi \Rightarrow (\varphi \Rightarrow \varphi)) \Rightarrow (\varphi \Rightarrow \varphi)$$

5.krok dôkazu.

Aplikujeme modus ponens na formuly z 3. a 4. kroku, dostaneme $\phi \Rightarrow \phi$, čo bolo treba dokázať.

Veta o dedukcii.

Nech T je množina formúl a φ , ψ sú nejaké dve formuly, potom $T \vdash \varphi \Rightarrow \psi$ platí práve vtedy a len vtedy ak $T \cup \{\varphi\} \vdash \psi$ $(T \vdash \varphi \Rightarrow \psi) \quad \text{vtt} \quad (T \cup \{\varphi\} \vdash \psi)$

Tato veta umožňuje podstatné skrátenie dôkazov formúl výrokovej logiky. Môžeme ju chápať ako nové (štvrté) pravidlo odvodzovania.

Dokážte $\vdash \varphi \Rightarrow \varphi$ pomocou vety o dedukcii, pričom $T = \{\varphi\}$.

- 1. krok dôkazu. $\{\phi\} \vdash \phi$.
- 2. krok dôkazu. Použitím vety o dedukcii dostaneme $\vdash (\phi \Rightarrow \phi)$

Všeobecné vlastnosti výrokovej logiky

- Výroková logika je **rozhodnuteľná**, existuje algoritmus (napr. tabuľková metóda), pomocou ktorého jednoznačne rozhodneme, či daná výroková formula je tautológia, kontradikcia alebo splniteľná.
- Formálny systém výrokovej logiky je **korektný**, ak každá dokázaná formula z axióm je tautológia. Rozhodnutie o tom, či výroková logika je korektná, sa redukuje na rozhodnutie o tom, či pravidlá odvodzovania sú korektné.
- Výroková logika je úplná ak každá tautológia je dokázateľná z axióm.

Nech φ je formula, ktorá má premenné $r_1, r_2, ..., r_m$ a nech τ je interpretácia týchto premenných, potom

$$r^{(\tau)} = \begin{cases} r & (ak \ val_{\tau}(r) = 1) \\ \neg r & (ak \ val_{\tau}(r) = 0) \end{cases}$$

Churchova veta. Nech φ je formula, ktorá obsahuje n výrokových premenných $p_1, p_2, ..., p_n$ a nech τ je interpretácia týchto premenných, potom pre každú interpretáciu τ platí

$$\left\{p_1^{(\tau)}, p_2^{(\tau)}, ..., p_n^{(\tau)}\right\} \vdash \varphi^{(\tau)}$$

Dôkaz tejto vety sa vykoná pomocou indukcie podľa zložitosti konštrukcie formuly φ.

Postova veta. Pre l'ubovolnú výrokovú formulu ϕ vzťah $\vdash \phi$ platí práve vtedy a len vtedy, ak $\models \phi$, t.j. formuly logicky dokázateľné z axióm výrokovej logiky sú tautológie.

Množina T sa nazýva **nerozporná**, ak súčasne logicky nevyplývajú z T tak formula φ , ako aj jej negácia $\neg \varphi$, t.j. súčasne neplatia vzťahy $T \vdash \varphi$ a $T \vdash \neg \varphi$.

Postova veta v silnejšej verzii.

- (a) Množina *T* je splniteľná práve vtedy, keď je nerozporná.
- (b) Pre l'ubovolnú výrokovú formulu φ vzťah $T \vdash \varphi$ platí práve vtedy, ak $T \vDash \varphi$.

Postova veta *o úplnosti* patrí medzi základné výsledky výrokovej logiky. Na jej základe vieme, že každá formula je tautológia vtedy a len vtedy ak je logicky dokázateľná z axióm.

Syntaktický pojem logickej dokázateľnosti splýva so sémantickým pojmom tautologickej dokázateľnosti, čo je jedinečná vlastnosť výrokovej logiky a ojedinelá vlastnosť formálnych systémov, kde obvykle existuje zreteľná demarkačná čiara medzi syntaxom a sémantikou daného systému.

Výroková logika je

- korektná (ak každá dokázaná formula z axióm je tautológia),
- **nerozporná** (ak zo systému axióm súčasne logicky nevyplývajú formuly φ a $\neg \varphi$),
- úplná (ak každá tautológia je logicky dokázateľná z axióm.),
- **rozhodnuteľná** (existuje jednoduchý algoritmus, pomocou ktorého sme schopný rozhodnúť či pre dané pravdivostné hodnoty premenných je formula pravdivá alebo nie).

The End

The newest calculator: 16 bit, with hi-tech monitor, including mouse ...

It is not worth it - in six months it will cost you half as much

