CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – DES SOLUTIONS À LA MAIN

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

l. Ce qui nous intéresse	2
2. Notations utilisées	2
3. Les carrés parfaits	3
3.1. Structure	3
3.2. Distance entre deux carrés parfaits	3
4. Avec 2 facteurs	5
5. Avec 3 facteurs	6
S. Avec 4 facteurs	7
7. Avec 5 facteurs	8
3. Avec 6 facteurs	10
O. Avec 7 facteurs	13
0. Avec 8 facteurs	14
1 Sources utilisées	16

Date: 25 Jan. 2024 - 6 Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdos démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $n(n+1) \cdots (n+k)$ n'est jamais le carré d'un entier.

Dans ce document, nous proposons quelques cas particuliers résolus de façon « adaptative » à la sueur des neurones ; le but recherché est de fournir différentes approches même si parfois cela peut prendre plus de temps.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- $\forall (n,k) \in \mathbb{N}^* \times \mathbb{N}$, $\pi_n^k = \prod_{i=0}^k (n+i)$. Par exemple, $\pi_n^0 = n$, $\pi_n^1 = n(n+1)$ et $\pi_{n+2}^3 = (n+2)(n+3)(n+4)(n+5)$.
- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$ est l'ensemble des carrés parfaits. On note aussi ${}^{2}\mathbb{N} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}$. \mathbb{N}_{sf} est l'ensemble des naturels non nuls sans facteur carré 2 .
- \mathbb{P} désigne l'ensemble des nombres premiers. $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*, v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- $2 \mathbb{N}$ désigne l'ensemble des nombres naturels pairs. $2 \mathbb{N} + 1$ est l'ensemble des nombres naturels impairs.
- $(a \pm b)$ est un raccourci pour (a + b)(a b).

^{1.} J. London Math. Soc. 14 (1939).

^{2.} En anglais, on dit « square free ».

3. Les carrés parfaits

3.1. Structure.

Fait 3.1. $\forall n \in {}_*^2\mathbb{N}$, s'il existe $m \in {}_*^2\mathbb{N}$ tel que n = fm alors $f \in {}_*^2\mathbb{N}$.

 $D\'{e}monstration$. Clairement, $\forall p \in \mathbb{P}$, nous avons $v_p(fm) \in 2\mathbb{N}$ et $v_p(m) \in 2\mathbb{N}$ qui donnent $v_p(f) \in 2\mathbb{N}$ car $v_p(fm) = v_p(f) + v_p(m)$.

Fait 3.2. $\forall (a,b) \in \mathbb{N}^* \times \mathbb{N}^*$, si $a \wedge b = 1$ et $ab \in {}^2_*\mathbb{N}$, alors $a \in {}^2_*\mathbb{N}$ et $b \in {}^2_*\mathbb{N}$.

Démonstration. Clairement, $\forall p \in \mathbb{P}$, nous avons $v_p(ab) \in 2\mathbb{N}$. Or $p \in \mathbb{P}$ ne peut diviser à la fois a et b, donc $\forall p \in \mathbb{P}$, $v_p(a) \in 2\mathbb{N}$ et $v_p(b) \in 2\mathbb{N}$, autrement dit $(a,b) \in {}_*^2\mathbb{N} \times {}_*^2\mathbb{N}$.

Fait 3.3. Soit $(a,b) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que $ab \in {}^2_*\mathbb{N}$, ainsi que $(\alpha,\beta,A,B) \in (\mathbb{N}_{sf})^2 \times \mathbb{N}^2$ tel que $a = \alpha A^2$ et $b = \beta B^2$. Nous avons alors forcément $\alpha = \beta$.

Démonstration. Le fait 3.1 donne $\alpha\beta \in {}^2_*\mathbb{N}$. De plus, $\forall p \in \mathbb{P}$, nous avons $v_p(\alpha) \in \{0,1\}$ et $v_p(\beta) \in \{0,1\}$. Finalement, $\forall p \in \mathbb{P}$, $v_p(\alpha) = v_p(\beta)$, autrement dit $\alpha = \beta$.

3.2. Distance entre deux carrés parfaits.

Fait 3.4. Soit $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que N > M.

- (1) $N^2 M^2 \ge 2N 1$, d'où l'impossibilité d'avoir $N^2 M^2 < 3$.
- (2) $N^2 M^2 = 3$ uniquement si (N, M) = (2, 1).
- (3) Notons nb_{sol} le nombre de solutions $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ de $N^2 M^2 = \delta$.

Pour $\delta \in [1; 20]$, nous avons:

- (a) $nb_{sol} = 0$ si $\delta \in \{1, 2, 4, 6, 10, 14, 18\}$.
- (b) $nb_{sol} = 1$ si $\delta \in \{3, 5, 7, 8, 9, 11, 12, 13, 16\}$.
- (c) $nb_{sol} = 2 \text{ si } \delta = 15$.

Démonstration.

- (1) Comme $N-1 \geq M$, nous obtenons : $N^2-M^2 \geq N^2-(N-1)^2=2N-1$.
- (2) Le point précédent permet d'utiliser le programme Python suivant afin d'obtenir les nombres de solutions indiqués.
- (3) Notant $\delta = N^2 M^2$, nous avons $2N 1 \le \delta$, soit $N \le \frac{\delta + 1}{2}$. Ceci permet de limiter notre zone de recherche à $N \in [\![1\,;2]\!]$, ce qui permet de conclure.
- (4) Il suffit de s'appuyer sur le programme Python donné dans la page suivante. \Box

Finissons par une jolie formule même si elle ne nous sera pas d'une grande aide dans la suite.

Fait 3.5.
$$\forall (N, M) \in \mathbb{N}^* \times \mathbb{N}^*$$
, si $N > M$, alors $N^2 - M^2 = \sum_{k=M+1}^{N} (2k-1)$.

Démonstration.
$$N^2 = \sum_{k=1}^{N} (2k-1)$$
 donne l'identité indiquée³.

^{3.} La formule utilisée est facile à démontrer algébriquement, et évidente à découvrir géométriquement.

```
from math import sqrt, floor

def sol(diff):
    solfound = []

for i in range(1, (diff + 1) // 2 + 1):
    tested = i**2 - diff

    if tested < 0:
        continue

    tested = floor(sqrt(i**2 - diff))

    if tested == 0:
        continue

    if tested**2 == i**2 - diff:
        solfound.append((i, tested))

    return solfound</pre>
```

4. Avec 2 facteurs

Fait 4.1. $\forall n \in \mathbb{N}^*, n(n+1) \notin {}^2\mathbb{N}$.

Preuve 1. Il suffit de noter que
$$n^2 < n(n+1) < (n+1)^2$$
.

Preuve 2. Supposons que $\pi_n^1 = n(n+1) \in {}^2_*\mathbb{N}$.

Comme $n \wedge (n+1) = 1$, le fait 3.2 donne $(n,n+1) \in {}^2_* \mathbb{N} \times {}^2_* \mathbb{N}$, d'où l'existence de deux carrés parfaits non nuls distants de 1. D'après le fait 3.4, ceci est impossible.

Preuve 3. Supposons que $\pi_n^1 = n(n+1) = N^2$ où $N \in \mathbb{N}^*$.

Nous obtenors une contradiction comme suit.

$$n(n+1) = N^{2}$$

$$\iff 2\sum_{k=1}^{n} k = \sum_{k=1}^{N} (2k-1)$$

$$n(n+1) = 2\sum_{k=1}^{n} k \text{ et } N^{2} = \sum_{k=1}^{N} (2k-1).$$

$$\implies \sum_{k=1}^{n} 2k = \sum_{k=1}^{N} 2k - N$$

$$\iff \sum_{k=1}^{n} 2k = \sum_{k=1}^{N} 2k - N$$

$$\iff \sum_{k=n+1}^{N} 2k - N = 0$$

$$\iff \sum_{k=n+1}^{N-1} 2k + N = 0$$

$$N > n \ car \ N^2 - n^2 = n > 0.$$

$$N > 0 \ rend \ impossible \ la \ derni\`ere \ \'egalit\'e.$$

$$\iff \sum_{k=n+1}^{N-1} 2k + N = 0$$

5. Avec 3 facteurs

Fait 5.1. $\forall n \in \mathbb{N}^*$, $n(n+1)(n+2) \notin {}^2\mathbb{N}$.

Preuve 1. Supposons que $\pi_n^2 \in {}_*^2\mathbb{N}$.

Posant m=n+1, nous avons $\pi_n^2=(m-1)m(m+1)=m(m^2-1)$ où $m\in\mathbb{N}_{\geq 2}$. Comme $m\wedge(m^2-1)=1$, le fait 3.2 donne $(m,m^2-1)\in {}^2_*\mathbb{N}\times {}^2_*\mathbb{N}$. Or, $m^2-1\in {}^2_*\mathbb{N}$ est impossible d'après le fait 3.4.

Preuve 2. Supposons que $\pi_n^2 \in {}_*^2\mathbb{N}$.

Comme $p \in \mathbb{P}_{>2}$ ne peut diviser au maximum qu'un seul des trois facteurs n, (n+1) et (n+2), nous savons que $\forall p \in \mathbb{P}_{>2}$, $\forall i \in \llbracket 0 ; 2 \rrbracket$, $v_p(n+i) \in 2\mathbb{N}$. Mais que se passe-t-il pour p=2? Supposons d'abord $n \in 2\mathbb{N}$.

- \bullet Posant n=2m, nous avons $\pi_n^2=4m(2m+1)(m+1)$, d'où $m(2m+1)(m+1)\in {}^2_*\mathbb{N}$.
- Comme $v_2(2m+1)=0$, nous savons que $2m+1\in {}^2_*\mathbb{N}$.
- Donc $m(m+1) \in {}^2_*\mathbb{N}$ via le fait 3.1, mais le fait 4.1 interdit cela.

Supposons maintenant $n \in 2\mathbb{N} + 1$.

- Nous savons que $n \in {}^2_*\mathbb{N}$ via $v_2(n) = 0$.
- On conclut comme dans le cas précédent mais en passant via (n+1)(n+2).

6. Avec 4 facteurs

Fait 6.1.
$$\forall n \in \mathbb{N}^*, \ n(n+1)(n+2)(n+3) \notin {}^2\mathbb{N}$$
.

Preuve 1. Nous pouvons ici faire les manipulations algébriques naturelles suivantes qui cherchent à obtenir le même coefficient pour n dans chaque parenthèse.

$$\pi_n^3 = n(n+3) \cdot (n+1)(n+2)$$

$$= (n^2 + 3n) \cdot (n^2 + 3n + 2)$$

$$= m(m+2)$$

$$= m^2 + 2m$$

$$= (m+1)^2 - 1$$

Comme m>0, $(m+1)^2-1\notin{}^2\mathbb{N}$ d'après le fait 3.4, c'est-à-dire $\pi_n^3\notin{}^2\mathbb{N}$.

 $Preuve\ 2.$ En « symétrisant » certaines expressions, nous obtenons les manipulations algébriques suivantes.

$$\pi_n^3 = n(n+1)(n+2)(n+3)$$

$$= \left(x \pm \frac{3}{2}\right)\left(x \pm \frac{1}{2}\right)$$

$$= \left(x^2 - \frac{9}{4}\right)\left(x^2 - \frac{1}{4}\right)$$

$$= (y \pm 1)$$

$$= y^2 - 1$$

$$= \left(\left(n + \frac{3}{2}\right)^2 - \frac{5}{4}\right)^2 - 1$$

$$= \left(n^2 + 3n + 1\right)^2 - 1$$

On conclut comme dans la première preuve.

7. Avec 5 facteurs

Fait 7.1.
$$\forall n \in \mathbb{N}^*, n(n+1)(n+2)(n+3)(n+4) \notin {}^2\mathbb{N}$$
.

Preuve 1. Supposons que $\pi_n^4 \in {}_*^2\mathbb{N}$.

Clairement, $\forall p \in \mathbb{P}_{>3}$, $\forall i \in [0;4]$, $v_p(n+i) \in 2\mathbb{N}$. Pour p=2 et p=3, nous avons les alternatives suivantes pour chaque facteur (n+i) de π_n^4 .

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Comme nous avons cinq facteurs pour quatre alternatives, ce bon vieux principe des tiroirs va nous permettre de lever des contradictions très facilement.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\,\mathbf{1}]$. Dans ce cas, on sait juste que $(n+i,n+i')\in{}^2\mathbb{N}\times{}^2\mathbb{N}$. Or $n\notin{}^2\mathbb{N}$ puisque sinon $n(n+1)(n+2)(n+3)(n+4)\in{}^2\mathbb{N}$ donne $(n+1)(n+2)(n+3)(n+4)\in{}^2\mathbb{N}$ via le fait 3.1, mais ceci contredit le fait 6.1. De même, $n+4\notin{}^2\mathbb{N}$. Dès lors, nous avons $\{n+i,n+i'\}\subseteq\{n+1,n+2,n+3\}$, d'où l'existence de deux carrés parfaits non nuls éloignés de moins de 3, et ceci contredit le fait 3.4.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A2}]$. Dans ce cas, le couple de facteurs est (n, n+3), ou (n+1, n+4).
 - (1) Supposons d'abord que n et (n+3) vérifient $[\mathbf{A2}]$. Comme $\forall p \in \mathbb{P} - \{3\}$, $v_p(n) \in 2\mathbb{N}$ et $v_p(n+3) \in 2\mathbb{N}$, mais aussi $v_3(n) \in 2\mathbb{N} + 1$ et $v_3(n+3) \in 2\mathbb{N} + 1$, nous avons $n = 3N^2$ et $n+3 = 3M^2$ où $(N,M) \in (\mathbb{N}^*)^2$. Or, ceci donne $3 = 3M^2 - 3N^2$, puis $M^2 - N^2 = 1$ qui contredit le fait 3.4.
 - (2) De façon analogue, on ne peut pas avoir (n+1) et (n+4) vérifiant $[\mathbf{A2}]$.
- Deux facteurs différents (n+i) et (n+i') vérifient [A3]. Comme dans le point précédent, c'est impossible car on aurait $2 = 2M^2 - 2N^2$, ou $4 = 2M^2 - 2N^2$ qui contredirait le fait 3.4. En effet, ici les couples possibles sont (n, n+2), (n, n+4), (n+2, n+4) et $(n+1, n+3)^4$.
- Deux facteurs différents (n+i) et (n+i') vérifient $[{\bf A4}]$. Ceci donne deux facteurs différents divisibles par 6, mais c'est impossible.

Bien que longue, la preuve suivante se comprend bien, car nous ne faisons qu'avancer à vue, mais avec rigueur.

Preuve 2. Supposons que $\pi_n^4 \in {}_*^2\mathbb{N}$.

Posant m=n+2, nous avons $\pi_n^4=m(m\pm 2)(m\pm 1)=m(m^2-1)(m^2-4)$ où $m\in\mathbb{N}_{\geq 3}$. Pour la suite, on pose $u=m^2-1$ et $q=m^2-4$.

Supposons d'abord que $m \in {}^2_*\mathbb{N}$.

 \bullet De $muq\in {}^2_*\mathbb{N}$, nous déduisons que $uq\in {}^2_*\mathbb{N}$ via le fait 3.1.

^{4.} A priori, rien n'empêche d'avoir n, (n+2) et (n+4) vérifiant tous les trois $[\mathbf{A} \mathbf{3}]$.

- Comme u q = 3, nous savons que $u \land q \in \{1, 3\}$.
- Si $u \wedge q = 1$, alors $(u, q) \in {}^2_*\mathbb{N} \times {}^2_*\mathbb{N}$ d'après le fait 3.2. Ensuite, le fait 3.4 impose d'avoir (u, q) = (4, 1), d'où $m^2 1 = 4$, mais ceci est impossible ⁵.
- Si $u \wedge q = 3$, alors $\forall p \in \mathbb{P} \{3\}$, $v_p(u) \in 2\mathbb{N}$ et $v_p(q) \in 2\mathbb{N}$, mais aussi $v_3(u) \in 2\mathbb{N} + 1$ et $v_3(q) \in 2\mathbb{N} + 1$. Donc $u = 3U^2$ et $q = 3Q^2$ avec $(U, Q) \in (\mathbb{N}^*)^2$. Or u q = 3 donne $U^2 Q^2 = 1$, et le fait 3.4 nous indique une contradiction.

Supposons maintenant que $m \notin {}^{2}_{*}\mathbb{N}$.

- Montrons que $u \notin {}^{2}\mathbb{N}$ et $q \notin {}^{2}\mathbb{N}$.
 - (1) $u\in {}^2\mathbb{N}$ donne $m^2-1\in {}^2\mathbb{N}$, puis m=1 via le fait 3.4, mais ceci est impossible puisque $m\in\mathbb{N}_{\geq 3}$.
 - (2) $q \in {}^{2}\mathbb{N}$ donne $m^{2} 4 \in {}^{2}\mathbb{N}$, puis la contradiction m = 2 via le fait 3.4.
- Donc $m = \alpha M^2$, $u = \beta U^2$, $q = \gamma Q^2$ où $(M, U, Q) \in (\mathbb{N}^*)^3$ et $\{\alpha, \beta, \gamma\} \subset \mathbb{N}_{sf} \cap \mathbb{N}_{>1}$.
- Notons que $\beta \neq \gamma$, car, dans le cas contraire, $3 = u q = \beta (U^2 Q^2)$ fournirait $\beta = 3$ puis $U^2 Q^2 = 1$, et ceci contredirait le fait 3.4.
- Nous avons $m \wedge u = 1$, $m \wedge q \in \{1, 2, 4\}$ et $u \wedge q \in \{1, 3\}$ avec $m \wedge u = m \wedge q = u \wedge q = 1$ impossible car sinon on aurait $(m, u, q) \in ({}^{2}\mathbb{N})^{3}$ via $muq \in {}^{2}\mathbb{N}$ et le fait 3.2.
- Clairement, $\forall p \in \mathbb{P}_{>3}$, $(v_p(m), v_p(u), v_p(q)) \in (2\mathbb{N})^3$.
- Les points précédents donnent $\{\alpha,\beta,\gamma\}\subseteq\{2,3,6\}$ avec de plus $\beta\neq\gamma$, ainsi que $\alpha\wedge\beta=1$, $\alpha\wedge\gamma\in\{1,2\}$ et $\beta\wedge\gamma\in\{1,3\}$. Notons au passage que $\alpha\wedge\beta=1$ implique $(\alpha,\beta)=(2,3)$, ou $(\alpha,\beta)=(3,2)$. Via le tableau « mécanique » ci-après, nous obtenons que forcément $(\alpha,\beta,\gamma)=(2,3,2)$ ou $(\alpha,\beta,\gamma)=(2,3,6)$. Le plus dur est fait!

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	2	1	2	1	√
2	3	6	1	2	3	√
3	2	3	1	3	1	\boxtimes
3	2	6	1	3	2	\boxtimes

- $(\alpha, \beta, \gamma) = (2, 3, 2)$ nous donne $m = 2M^2, u = 3U^2$ et $q = 2Q^2$, d'où la contradiction $3 \cdot 4M^2U^2Q^2 \in {}^2_*\mathbb{N}$.
- $(\alpha, \beta, \gamma) = (2, 3, 6)$ nous donne $m = 2M^2$, $m^2 1 = 3U^2$ et $m^2 4 = 6Q^2$, mais ce qui suit lève une autre contradiction.
 - Travaillons modulo 3. Nous avons $m \equiv 2M^2 \equiv 0$ ou -1. Or $m^2 1 = 3U^2$ donne $m^2 \equiv 1$, d'où $m \equiv -1$, puis $3 \mid m-2$, et enfin $6 \mid m-2$ puisque m est pair.
 - Posant m-2=6r et notant s=m+2, nous avons $6rs=6Q^2$, puis $rs=Q^2$.
 - $-s \notin {}^2\mathbb{N}$. Sinon $(m-2)(m-1)m(m+1) \in {}^2\mathbb{N}$ via $(m-2)(m-1)m(m+1)(m+2) \in {}^2\mathbb{N}$ et le fait 3.1, mais ceci ne se peut pas d'après le fait 6.1.
 - Les deux résultats précédents et le fait 3.3 donnent $(\pi, R, S) \in \mathbb{N}_{sf} \times (\mathbb{N}^*)^2$ tel que $r = \pi R^2$ et $s = \pi S^2$ avec $\pi \in \mathbb{N}_{>1}$.
 - Dès lors, $4=s-6r=\pi(S^2-6R^2)$ donne $\pi=2$, d'où $m+2=2S^2$.
 - Finalement, $m=2M^2$ et $m+2=2S^2$ donnent $2=2(S^2-M^2)$, soit $1=S^2-M^2$, ce qui contredit le fait 3.4.

^{5.} On peut aussi noter que le fait 5.1 lève une contradiction car nous avons $m \in {}^2\mathbb{N}$ et $u \in {}^2\mathbb{N}$ qui donnent $(m-1)m(m+1) \in {}^2\mathbb{N}$.

8. Avec 6 facteurs

Fait 8.1.
$$\forall n \in \mathbb{N}^*, \ \pi_n^5 \notin {}^2\mathbb{N}$$
.

La démonstration suivante se trouve dans l'article « Solution of a Problem » ⁶ de G. W. Hill et J. E. Oliver. Une petite simplification a été faite pour arriver à $\pi_n^5 = (a-4)a(a+2)$.

Preuve 1. Supposons que $\pi_n^5 \in {}^2\mathbb{N}$.

Commençons par de petites manipulations algébriques où la première modification fait apparaître le même coefficient pour n dans chaque parenthèse.

$$\pi_n^5 = n(n+5) \cdot (n+1)(n+4) \cdot (n+2)(n+3)$$

$$= (n^2 + 5n)(n^2 + 5n + 4)(n^2 + 5n + 6)$$

$$= x(x+4)(x+6)$$

$$= (a-4)a(a+2)$$

$$x = n^2 + 5n \in \mathbb{N}_{\geq 6}$$

$$a = x+4 \in \mathbb{N}_{\geq 10}$$

Nous avons $a \in \mathbb{N}_{\geq 10}$ vérifiant $a(a+2)(a-4) \in {}^2_*\mathbb{N}$. Posons $a = \alpha A^2$ où $(\alpha, A) \in \mathbb{N}_{sf} \times \mathbb{N}^*$, de sorte que $\alpha(\alpha A^2+2)(\alpha A^2-4) \in {}^2_*\mathbb{N}$ via le fait 3.1. De plus, $\alpha \in \mathbb{N}_{sf}$, donc $\alpha \mid (\alpha A^2+2)(\alpha A^2-4)$, d'où $\alpha \mid 8$, et ainsi $\alpha \in \{1,2\}^7$. Nous allons voir que ceci est impossible.

Supposons que $\alpha = 1$.

 $\bullet\,$ Notons les équivalences suivantes.

$$(A^2+2)(A^2-4) \in {}^2_*\mathbb{N}$$

$$\iff (u+3)(u-3) \in {}^2_*\mathbb{N}$$

$$\downarrow u = A^2-1 \text{ où } -1 = \frac{2-4}{2}.$$

$$\iff u^2-9 \in {}^2_*\mathbb{N}$$

• Ensuite, prenant $m \in \mathbb{N}^*$ tel que $m^2 = u^2 - 9$, le fait 3.4 donne (u, m) = (5, 4) d'où la contradiction suivante.

$$u = 5 \iff A^2 - 1 = 5$$
$$\iff A^2 = 6$$
 \rightarrow 6 \neq 2\mathbb{N}.

Supposons que $\alpha = 2$.

• Notons l'équivalence suivante.

$$2(2A^{2}+2)(2A^{2}-4) \in {}_{*}^{2}\mathbb{N}$$

$$\iff 2(A^{2}+1)(A^{2}-2) \in {}_{*}^{2}\mathbb{N}$$

$$Via \ 4 \cdot 2(A^{2}+1)(A^{2}-2) .$$

• Ensuite, en travaillant modulo 3, nous avons $2(A^2+1)(A^2-2) \equiv -4 \equiv -1$ qui ne correspond pas à un carré modulo 3.

Bien que très longue ⁸, la preuve suivante est simple à comprendre car elle ne fait que dérouler le fil des faits découverts.

Preuve 2. Supposons que $\pi_n^5 \in {}^2\mathbb{N}$.

- 6. The Analyst (1874).
- 7. On comprend ici le choix d'avoir $\pi_n^5 = (a-4)a(a+2)$.
- 8. Ce sera notre dernière tentative de démonstration à faible empreinte cognitive.

$$2^{6}\pi_{n}^{5} = (y \pm 5)(y \pm 3)(y \pm 1)$$

$$\iff 2^{6}\pi_{n}^{5} = (z - 25)(z - 9)(z - 1)$$

$$\iff 2^{6}\pi_{n}^{5} = (u - 8)(u + 8)(u + 16)$$

$$z = y^{2}$$

$$\iff 2^{6}\pi_{n}^{5} = (u - 8)(u + 8)(u + 16)$$

$$u = z - 17 \text{ où } 17 = \frac{25 + 9}{2} .$$

Notant a=u-8, b=u+8 et c=u+16, où $u=(2n+5)^2-17\in 2\mathbb{N}$, nous avons les faits suivants.

- $u \in \mathbb{N}_{>32} \operatorname{car} (2+5)^2 17 = 32$.
- $(a,b,c) \in (\mathbb{N}_{\geq 24})^3$ avec $abc \in {}^2_*\mathbb{N}$ puisque $2^6\pi_n^5 \in {}^2_*\mathbb{N}$.
- $a \wedge b \mid 16 \text{ via } b a = 16$.
- $a \wedge c \mid 24 \text{ via } c a = 24$.
- $b \wedge c \mid 8 \text{ via } c b = 8$.
- En particulier, $\forall p \in \mathbb{P}_{>3}$, $(v_n(a), v_n(b), v_n(c)) \in (2\mathbb{N})^3$.

Démontrons qu'aucun des trois entiers a, b et c ne peut être un carré parfait.

- Commençons par supposer que $(a,b,c) \in {}^2_*\mathbb{N} \times \mathbb{N}^* \times \mathbb{N}^*$. Dans ce cas, $bc \in {}^2_*\mathbb{N}$ via le fait 3.1, soit $(u+8)(u+16) \in {}^2_*\mathbb{N}$. En posant w=u+12, on arrive à $(w-4)(w+4) \in {}^2_*\mathbb{N}$, soit $w^2-16 \in {}^2_*\mathbb{N}$, d'où (w,m)=(5,3) grâce au fait 3.4. Or $u \in \mathbb{N}_{>32}$ donne $w \in \mathbb{N}_{>20}$, d'où une contradiction.
- Supposons maintenant que $(a,b,c) \in \mathbb{N}^* \times_*^2 \mathbb{N} \times \mathbb{N}^*$. Dans ce cas, $ac \in_*^2 \mathbb{N}$, soit $(u-8)(u+16) \in_*^2 \mathbb{N}$. En posant w=u+4, on arrive à $(w-12)(w+12) \in_*^2 \mathbb{N}$, soit $w^2-144 \in_*^2 \mathbb{N}$. Notant $m \in \mathbb{N}^*$ tel que $m^2=w^2-144$, nous arrivons à $w^2-m^2=144$, d'où $(w,m) \in \{(13,5),(15,9),(20,16),(37,35)\}^9$. Comme $u \in 2 \mathbb{N}$ donne $w \in 2 \mathbb{N}$, nécessairement (w,m)=(20,16), mais les équivalences suivantes lèvent une contradiction.

$$u+4=20 \iff u=16$$

$$\iff (2n+5)^2-17=16$$

$$\iff (2n+5)^2=33$$

$$\downarrow 33 \notin {}^2\mathbb{N}$$

• Supposons enfin que $(a, b, c) \in \mathbb{N}^* \times \mathbb{N}^* \times_*^2 \mathbb{N}$.

Dans ce cas, $ab \in {}^2_*\mathbb{N}$, soit $(u-8)(u+8) \in {}^2_*\mathbb{N}$, c'est-à-dire $u^2-64 \in {}^2_*\mathbb{N}$. Notant $m \in \mathbb{N}^*$ tel que $m^2=u^2-64$, nous arrivons à $u^2-m^2=64$. Ceci n'est possible que si $(u,m) \in \{(10,6),(17,15)\}$. Or $u \in \mathbb{N}_{\geq 32}$ donne une contradiction.

Donc $a = \alpha A^2$, $b = \beta B^2$ et $c = \gamma C^2$ avec $(A, B, C) \in (\mathbb{N}^*)^3$ et $\{\alpha, \beta, \gamma\} \subset \mathbb{N}_{sf} \cap \mathbb{N}_{>1}$, ceci nous donnant les faits suivants.

- $\alpha \wedge \beta \in \{1, 2\}$ d'après $a \wedge b \mid 16$.
- $\alpha \wedge \gamma \in \{1, 2, 3\}$ d'après $a \wedge c \mid 24$.
- $\beta \wedge \gamma \in \{1,2\}$ d'après $b \wedge c \mid 8$.
- $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\} \text{ car } \forall p \in \mathbb{P}_{>3}, (v_p(a), v_p(b), v_p(c)) \in (2\mathbb{N})^3.$

^{9.} Le programme reproduit après la preuve du fait 3.4 donne rapidement cet ensemble de couples.

En fait, α , β et γ sont différents deux à deux.

- Démontrons que $\alpha \neq \beta$.

 Dans le cas contraire, $16 = b a = \alpha(B^2 A^2)$ et $\alpha > 1$ donnent $B^2 A^2 \in \{1, 2, 4, 8\}$, puis forcément $B^2 A^2 = 8$ avec (B, A) = (3, 1) d'après le fait 3.4. Comme de plus, $\alpha = 2$, nous obtenons a = 2 qui contredit $a \in \mathbb{N}_{\geq 24}$.
- Nous avons aussi $\beta \neq \gamma$. Dans le cas contraire, $8 = c - b = \beta(C^2 - B^2)$ et $\beta > 1$ donnent $C^2 - B^2 \in \{1, 2, 4\}$, mais c'est impossible d'après le fait 3.4.
- Enfin, $\alpha \neq \gamma$. Dans le cas contraire, $C^2 - A^2 \in \{1, 2, 3, 4, 6, 8, 12\}$ car $24 = c - a = \alpha(C^2 - A^2)$ et $\alpha > 1$. Le fait 3.4 ne laisse plus que les possibilités suivantes.
 - (1) $C^2-A^2=3$ n'est possible que si (C,A)=(2,1). Comme de plus $\alpha=8$, nous avons a=8 qui contredit $a\in\mathbb{N}_{>24}$.
 - (2) $C^2-A^2=8$ n'est possible que si (C,A)=(3,1). Comme de plus $\alpha=3$, nous avons a=3 qui contredit $a\in\mathbb{N}_{\geq 24}$.
 - (3) $C^2-A^2=12$ n'est possible que si (C,A)=(4,2). Comme de plus $\alpha=2$, nous avons a=8 qui contredit $a\in\mathbb{N}_{\geq 24}$.

Comme $\{\alpha, \beta, \gamma\} \subseteq \{2, 3, 6\}$, $\alpha \land \beta \in \{1, 2\}$, $\alpha \land \gamma \in \{1, 2, 3\}$ et $\beta \land \gamma \in \{1, 2\}$, et comme de plus α , β et γ sont différents deux à deux, il ne nous reste plus qu'à analyser les cas suivants. La lumière est proche...

α	β	γ	$\alpha \wedge \beta$	$\alpha \wedge \gamma$	$\beta \wedge \gamma$	Statut
2	3	6	1	2	3	\boxtimes
2	6	3	2	1	3	\boxtimes
3	2	6	1	3	2	✓
3	6	2	3	1	2	\boxtimes
6	2	3	2	3	1	✓
6	3	2	3	2	1	\boxtimes

Traitons les deux cas restants en nous souvenant que a = u - 8, b = u + 8 et c = u + 16.

- Supposons $(\alpha, \beta, \gamma) = (3, 2, 6)$, autrement dit $a = 3A^2$, $b = 2B^2$ et $c = 6C^2$. Travaillons modulo 3 afin de lever une contradiction.
 - (1) $a \equiv u 2$ et $a \equiv 3A^2 \equiv 0$ donnent $u \equiv 2$.
 - (2) D'autre part, $b \equiv 2B^2 \equiv 0$ ou 2. Or $b \equiv u+2 \equiv 1$ lève une contradiction.
- Supposons $(\alpha, \beta, \gamma) = (6, 2, 3)$, autrement dit $a = 6A^2$, $b = 2B^2$ et $c = 3C^2$. La preuve précédente s'adapte directement car $a \equiv 6A^2 \equiv 0$ et $b \equiv 2B^2$ modulo 3.

9. Avec 7 facteurs

Fait 9.1.
$$\forall n \in \mathbb{N}^*, \pi_n^6 \notin {}^2\mathbb{N}$$
.

La très jolie démonstration suivante vient d'un échange sur https://math.stackexchange.com (voir la section 11). Nous avons juste comblé quelques rares oublis, et apporté de petites simplifications.

Preuve. Supposons que $\pi_n^6 \in {}_*^2\mathbb{N}$.

Commençons par quelques observations immédiates.

- $\forall p \in \mathbb{P}_{>5}$, $\forall i \in [0; 6]$, $v_p(n+i) \in 2\mathbb{N}$.
- $\exists u \in \{0,1,2\}$ tel que $\{u,u+2,u+4\} \subset 2\mathbb{N}+1$. Nous avons alors $\forall p \in \mathbb{P}_{>5} - \{2\}$, $(v_p(u),v_p(u+2),v_p(u+4)) \in (2\mathbb{N})^3$. Donc, pour tout naturel $m \in \{u,u+2,u+4\}$, il existe $M \in \mathbb{N}^*$ tel que $m=M^2$, $m=3M^2$, $m=5M^2$ ou $m=15M^2$.
- Parmi les trois naturels u, u + 2 et u + 4, ...
 - -il en existe un, et un seul, divisible par $3\,,$ comme on le constate vite en raisonnant modulo $3\,,$
 - au plus un est divisible par 5,
 - au plus un est un carrée parfait d'après le fait 3.4.

Donc, il existe $(M,P,Q) \in (\mathbb{N}^*)^3$ tel que $\{u,u+2,u+4\} = \{M^2,3P^2,5Q^2\}$. Ceci permet de considérer les trois cas suivants qui lèvent tous une contradiction.

- Supposons avoir $u = M^2$.
 - (1) Comme $\{u+2, u+4\} = \{3P^2, 5Q^2\}$, nous savons que $3 \nmid (u+3)$ et $5 \nmid (u+3)$, d'où $u+3=2^aT^2$ avec $(a,T) \in \mathbb{N} \times \mathbb{N}^*$.
 - (2) Modulo 4, $u \equiv M^2 \equiv 1$ car $u \in 2\mathbb{N} + 1$, donc $u + 3 \equiv 0$, d'où $a \geq 2$.
 - (3) Modulo 8, $u \equiv M^2 \equiv 1$ car $u \in 2\mathbb{N} + 1$, donc $u + 3 \equiv 4$, d'où a = 2.
 - (4) Dès lors, $u+3\in{}^2\mathbb{N}$, puis (u,u+3)=(1,4) via le fait 3.4.
 - (5) Forcément n = u = 1, mais $v_7(\pi_1^6) = 1$ contredit $\pi_n^6 \in {}_*^2\mathbb{N}$.
- Supposons maintenant que $u + 4 = M^2$.

Comme $\{u,u+2\}=\{3P^2,5Q^2\}$, la preuve précédente s'adapte à (u+1,u+4) pour obtenir la contradiction n=0.

• Supposons enfin que $u + 2 = M^2$.

Démontrons qu'en fait $\{u, u+4\} = \{3P^2, 5Q^2\}$ est impossible en travaillant modulo 4.

- (1) Si $(u, u + 4) = (3P^2, 5Q^2)$, alors $u \equiv 0$ ou 3 et $u + 2 \equiv 1$ se contredisent.
- (2) Si $(u, u + 4) = (5Q^2, 3P^2)$, on obtient une contradiction comme ci-dessus.

10. Avec 8 facteurs

Fait 10.1.
$$\forall n \in \mathbb{N}^*, \, \pi_n^7 \notin {}^2\mathbb{N}$$
.

La démonstration très astucieuse suivante est proposée dans un échange sur https://math.stackexchange.com (voir la section 11). Comme pour le cas de quatre facteurs, l'algèbre va nous permettre d'aller très vite.

Preuve.

- L'une des preuves du fait 6.1 nous donne $n(n+1)(n+2)(n+3) = (n^2+3n+1)^2-1$. En particulier, $(n+4)(n+5)(n+6)(n+7) = (n^2+11n+29)^2-1$.
- L'idée astucieuse va être de considérer les deux expressions suivantes qui viennent de $\pi_n^7 = (f(n)^2 1)(g(n)^2 1)$.
 - (1) $f(n) = n^2 + 3n + 1$.
 - (2) $g(n) = n^2 + 11n + 29$.
- Nous avons les manipulations algébriques naturelles suivantes.

$$\begin{split} \pi_n^7 &= \left(f(n)^2 - 1 \right) \left(g(n)^2 - 1 \right) \\ &= (a^2 - 1)(b^2 - 1) \\ &= a^2b^2 - a^2 - b^2 + 1 \\ &= a^2b^2 - (a - b)^2 - 2ab + 1 \\ &= a^2b^2 - 2ab + 1 - (a - b)^2 \\ &= (ab - 1)^2 - (a - b)^2 \\ &< (ab - 1)^2 \end{split} \quad \begin{array}{c} a = f(n) \ et \ b = g(n) \ . \\ a = f(n) \ et \ b = g(n) \ . \\ Choisir \ (a - b)^2 \ au \ lieu \ de \ (a + b)^2 \ va \ nous \ permettre, \\ un \ plus \ bas, \ de \ ne \ pas \ trop \ nous \ éloigner \ de \ \pi_n^7 \ . \\ b = a = 8n + 28 > 0 \ . \end{split}$$

Donc $\pi_n^7 < (f(n)g(n) - 1)^2$.

• Le point précédent rend naturel de tenter de démontrer que $(f(n)g(n)-2)^2 < \pi_n^7$, car, si tel est le cas, π_n^7 sera encadré par les carrés de deux entiers consécutifs, et forcément nous aurons $\pi_n^7 \notin {}^2\mathbb{N}$. Ce qui suit montre que notre pari est gagnant dès que $n \geq 4$. Que c'est joli!

Le site https://www.wolframalpha.com nous donne sans effort cognitif ¹⁰ ce qui suit (les « transhumanophobes » se reporteront à la remarque qui suit).

$$a^{2} + b^{2} - 4ab + 3$$

$$= -2(n^{2} + 7n)^{2} + 36(n^{2} + 7n) + 729$$

$$= -2m^{2} + 36m + 729$$

$$= -2(m - 9)^{2} + 891$$

$$m = n^{2} + 7n$$

Or, $n^2+7n-9=0$ admet pour pour unique racine positive $n=\frac{-7+\sqrt{85}}{2}\approx 1,1$, donc $a^2+b^2-4ab+3$ décroît en fonction de n à partir de n=2. Les calculs suivants donnent alors que $a^2+b^2-4ab+3<0$ pour $n\geq 4$.

^{10.} Il faut vivre avec son temps...

• Nous venons de voir que $(ab-2)^2 < \pi_n^7 < (ab-1)^2$ sur $\mathbb{N}_{\geq 4}$, donc $\pi_n^7 \notin {}^2\mathbb{N}$ dès que $n \in \mathbb{N}_{\geq 4}$, mais pour $n \in \{1,2,3\}$, $v_7(\pi_n^7) = 1$ donne $\pi_n^7 \notin {}^2\mathbb{N}$, ce qui permet de conclure.

Remarque 10.1. Voici comment obtenir une preuve 100% non silliconé. Pour cela, commençons par les manipulations algébriques naturelles suivantes qui cherchent à obtenir le même coefficient pour n dans chaque parenthèse, tout en passant d'un polynôme de degré 8 à un polynôme de degré 4.

$$\pi_n^7 = n(n+7) \cdot (n+1)(n+6) \cdot (n+2)(n+5) \cdot (n+3)(n+4)$$

$$= (n^2 + 7n) \cdot (n^2 + 7n + 6) \cdot (n^2 + 7n + 10) \cdot (n^2 + 7n + 12)$$

$$= m(m+6)(m+10)(m+12)$$

$$\downarrow m = n^2 + 7n$$

Nous décidons d'offrir un 1^{er} rôle à la variable $m=n^2+7n$. Voyons où cela nous mène...

$$a^2 + b^2 - 4ab + 3$$

$$= a(a-4b) + b^{2} + 3$$

$$= (m-4n+1)(-3m-20n-115) + (m+4n+29)^{2} + 3$$

$$= -3m^{2} - (8n+118)m + (4n-1)(20n+115) + m^{2} + 2(4n+29)m + (4n+29)^{2} + 3$$

$$= -2m^{2} - 60m + 729 + 672n + 96n^{2}$$

$$= -2m^{2} - 60m + 729 + 96(n^{2} + 7n)$$

$$= -2m^{2} - 60m + 729 + 96m$$

$$= -2m^{2} + 36m + 729$$

11. Sources utilisées

Fait 7.1.

• Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré? » sur le site lesmathematiques.net.

La démonstration via le principe des tiroirs trouve sa source dans cet échange.

• L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.

Cet article a fortement inspiré la longue preuve.

Fait 8.1.

Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.

La courte démonstration est donnée dans cet échange. Vous y trouverez aussi un très joli arqument basé sur les courbes elliptiques rationnelles.

Fait 9.1.

Un échange consulté le 3 février 2024, et titré « Proof that the product of 7 successive positive integers is not a square » sur le site https://math.stackexchange.com.

La courte démonstration est donnée dans cet échange, mais certaines justifications manquent.

Fait 10.1.

Un échange consulté le 4 février 2024, et titré « How to prove that the product of eight consecutive numbers can't be a number raised to exponent 4? » sur le site https://math.stackexchange.com.

La démonstration astucieuse vient de l'une des réponses de cet échange, mais la justification des deux inégalités n'est pas donnée.