Theory of Languages and Automata

Chapter 3- The Church-Turing Thesis

Sharif University of Technology

- Several models of computing devices
 - ✓ Finite automata
 - Pushdown automata
- Tasks that are beyond the capabilities of these models
 - Much more powerful model
 - Proposed by Alan Turing in 1936

- Similar to a finite automaton
 - Unlimited memory
- Can do everything that a real computer can do
- Cannot solve certain problems
 - Beyond the theoretical limits of computation

- An infinite tape
 - A tape head to read and write symbols
- Initially contains the input string and blank everywhere else
- Outputs: accept and reject
 - ✓ By entering accepting and rejecting states
 - ✓ If it doesn't enter an accepting or a rejecting state, never halts

Differences with finite automata

- 1. A Turing machine can both write on the tape and read from it.
- 2. The read-write head can move both to the left and to the right.
- 3. The tape is infinite.
- 4. The special state for rejecting and accepting take effect immediately.

- $B = \{ w \# w | w \in \{0,1\}^* \}$
- O M_1
 - Accept if its input is a member of B
 - Reject, otherwise
- Strategy: zigzag to the corresponding places on the two sides of # and determine whether they match

Example (cont.)

- To keep track of which symbols have been checked already, M1 crosses off each symbol as it is examined
- Crossing off all the symbols: going to an accept state

Example (cont.)

- M_1 = "On input string w:
 - Lig-zag across the tape to corresponding positions in either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, *reject*. Cross off symbols as they are checked to keep track of which symbols correspond.
 - When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, *reject*; otherwise, *accept*."

Snapshots of Turing machine M_1 computing on input 011000#011000

Turing Machine (Formal Definition)

- A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - *Q* is the set of states,
 - 2. \sum is the input alphabet not containing the *blank symbol* \bigsqcup ,
 - 3. Γ is the tape alphabet where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - 4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - 5. $q_0 \in Q$ is the start state,
 - 6. $q_{accept} \in Q$ is the accept state, and
 - 7. $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$.

Computation of a Turing Machine

- Initially receives its input on the leftmost n squares of the tape
 - ✓ The rest is blank
- The head starts on the leftmost square of the tape
- The first blank on the tape: the end of the input

- The computation proceeds according to the rules
 - Transition function
- If M tries to move its head to the left off the lefthand end of the tape, the head stays in the same place
- The computation continues until it enters either the accept or reject states
 - ✓ If neither occurs, it goes forever

- The current state, the current tape contents, the current head location
 - ✓ Changes occur, as the Turing machine computes

A Turing machine with configuration 1011q701111

Configuration (cont.)

- The **Start Configuration** of M on input w is q_0w .
- In an Accepting Configuration, the state of the configuration is q_{accept} .
- In a **Rejecting Configuration**, the state of the configuration is q_{reject} .
- A Halting Configuration is either an accepting configuration or a rejecting configuration.

Suppose that we have a, b, and c in Γ , as well as u and v in Γ^* and states q_i and q_j . In that case uaq_ibv and uq_iacv are two configurations, Say that

uaqibv yields uqiacv

If in the transition function $\delta(q_i,b)=(q_j,c,L)$. That handles the case where the Turing machine moves leftward. For a rightward move, say that

 uaq_ibv yields $uacq_iv$

if $\delta(q_i,b)=(q_i,c,R)$.

8

Equivalent Transition Function

The transition function could have been defined equivalently

$$\delta: Q' \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$$

- O is Q, without q_{accept} and q_{reject}
- *M* accepts input w, if a sequence of configurations $C_1, C_2, ..., C_k$ exists:
 - 1. C_1 is the start configuration of M on input w,
 - 2. each C_i yields C_{i+1} , and
 - 3. C_k is an accepting configuration.

The Language of a Turing Machine

The collection of strings that M accepts is the language of M, or the language recognized by M, denoted L(M).

Turing-recognizable language

- **Definition:** Call a language *Turing-recognizable* if some Turing machine recognizes it.
- Three outcomes on an input:
 - Accept
 - Reject
 - Loop
- Sometimes distinguishing a machine that is looping from one that is taking a long time, is difficult.

Turing-decidable language

- Definition: Call a language Turing-decidable or simply decidable if some Turing machine decides it.
- Turing machines that halt on all inputs
 - Never loop
 - Deciders

8

Example 1

$$A = \{0^{2^n} \mid n \ge 0\}$$

- M_1 = "On input string w:
 - 1. Sweep left to right across the tape, crossing off every other 0.
 - 2. If in stage 1 the tape contained a single 0, accept.
 - 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
 - 4. Return the head to the left-hand end of the tape.
 - 5. Go to stage 1."

Example 1 (formal description)

- $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$, and
 - $\Gamma = \{0, x, \sqcup\}$
 - We describe δ with a state diagram
 - The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} .

Example 1 (state diagram)

Example 1 (sample run on input 0000)

 q_1 0000

 $⊔ q_2$ 000

 $\sqcup \mathbf{x}q_300$

 $\sqcup \mathbf{x} \mathbf{0} q_4 \mathbf{0}$

 $\sqcup \mathbf{x} \mathbf{0} \mathbf{x} q_3 \sqcup$

 $\sqcup \mathbf{x} \mathbf{0} q_5 \mathbf{x} \sqcup$

 $\sqcup xq_50x \sqcup$

 $\sqcup q_5 \mathbf{x} \mathbf{0} \mathbf{x} \sqcup$

 q_5 \cup \mathbf{x} 0 \mathbf{x} \cup

 $\sqcup q_2 \mathbf{x} \mathbf{0} \mathbf{x} \sqcup$

 $\sqcup \mathbf{x} q_2 \mathbf{0} \mathbf{x} \sqcup$

 $\sqcup xxq_3x\sqcup$

 $\sqcup xxxq_3 \sqcup$

 $\sqcup xxq_5x\sqcup$

 $\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$

 $\sqcup q_5 \mathbf{x} \mathbf{x} \mathbf{x} \sqcup$

 q_5 UXXXU

 $\sqcup q_2 \mathbf{X} \mathbf{X} \mathbf{X} \sqcup$

 $\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$

 $\sqcup xxq_2x \sqcup$

 $\sqcup xxxq_2 \sqcup$

 $\sqcup XXX \sqcup q_{accept}$

- $\circ B = \{ w \# w \mid w \in \{0,1\}^* \}$
- $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - $Q = \{q_1, ..., q_{14}, q_{accept}, q_{reject}\},$
 - $\Sigma = \{0,1,\#\}, \text{ and } \Gamma = \{0,1,\#,x,\sqcup\}.$
 - We describe δ with a state diagram
 - The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} .

Example 2 (state diagram)

0

Example 3

- $C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}.$
- M_3 = "On input string w:
 - Scan the input from left to right to determine whether it is a member of $a^+b^+c^+$ and *reject* if it isn't.
 - 2. Return the head to the left-hand end of the tape.
 - 3. Cross off an *a* and scan to the right until a *b* occurs. Shuttle between the *b*'s and the *c*'s, crossing off one of each until all *b*'s are gone. If all *c*'s have been crossed off and *b*'s remain, *reject*.
 - 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, accept; otherwise, reject."

0

Example 4

- $E = \{ \#x_1 \#x_2 \# ... \#x_l | each x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}.$
- M_4 = "On input w:
 - Place a mark on top of the leftmost tape symbol. If that symbol was a blank, *accept*. If that symbol was a #, continue with the next stage. Otherwise, *reject*.
 - Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so *accept*.
 - By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, *reject*.
 - 4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so *accept*.
 - 5. Go to stage 3."

Multitape Turing Machine

- Like an ordinary machine with several tapes
- Each tape has its own head
- Initially the input appears on tape 1
- Transition function:

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

k is the number of tapes

The expression

$$\delta(q_i, a_1, ..., a_k) = (q_i, b_1, ..., b_k, L, R, ..., L)$$

means that, if the machine is in state q_i and heads 1 through k are reading symbols a_1 through a_k , the machine goes to state q_j , writes symbols b_1 through b_k , and directs each head to move left or right, or to stay put, as specified.

Theorem: Every multitape Turing machine has an equivalent single-tape Turing machine.

Example

Representing three tapes with one

9

Simulation Procedure

- $S = \text{``On input } w = w_1 \dots w_n$:
 - 1. First *S* puts its tape into the format that represents all k tapes of *M*. The formatted tape contains

$$\dot{w_1}w_2 \dots w_n \# \dot{\sqcup} \# \dot{\sqcup} \# \dots \#$$

- To simulate a single move, *S* scans its tape from the first #, which marks the left-hand end, to the (k+1)st #, which marks the right-hand end, in order to determine the symbols under the virtual heads. Then *S* makes a second pass to update the tapes according to the way that *M*'s transition function dictates.
- 3. If at any point *S* moves one of the virtual heads to the right onto a #, this action signifies that *M* has moved the corresponding head onto the previously unread blank portion of that tape. So *S* writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right. Then it continues the simulation as before."

Nondeterministic Turing Machine

- At any point in a computation the machine may proceed according to several possibilities.
- Transition function

$$\delta: Q \times \Gamma \longrightarrow P(Q \times \Gamma \times \{L, R\})$$

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

FIGURE 3.17 Deterministic TM D simulating nondeterministic TM N

Simulation Procedure

- 1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
- 2. Copy tape 1 to tape 2.
- 3. Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4. Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
- 4. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N's computation by going to stage 2.

Theorem

- A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.
- **PROOF:** Any deterministic TM is automatically a nondeterministic TM, and so one direction of this theorem follows immediately. The other direction follows from Theorem 3.16.

- We can modify the proof of Theorem 3.16 so that if N always halts on all branches of its computation, D will always halt. We call a nondeterministic Turing machine a *decider* if all branches halt on all inputs. Exercise 3.3 asks you to modify the proof in this way to obtain the following corollary to previous theorem.
- **COROLLARY:** A language is decidable if and only if some nondeterministic Turing machine decides it.

- Loosely defined: a Turing Machine with an attached printer
 - Printer: an output device
- Every time the Turing Machine wants to add a string to the list, it sends the string to the printer

Enumerators

- An enumerator E starts with a blank input tape.
- If it doesn't halt, it may print an infinite list of strings.
- The language enumerated by E: the collection of all the strings that it eventually prints out.
- A language is Turing-recognizable if and only if some enumerator enumerates it.

Theorem

- A language is Turing-recognizable if and only if some enumerator enumerates it.
- **PROOF** First we show that if we have an enumerator *E* that enumerates a language A, a TM M recognizes A. The TM *M* works in the following way.
- o M = "On input w:
- 1. Run E. Every time that E outputs a string, compare it with w.
- 2. If we ever appears in the output of *E*, *accept*."

Clearly, M accepts those strings that appear on E's list. Now we do the other direction. If TM M recognizes a language A, we can construct the following enumerator E for A. Say that s_1 , s_2 , s_3 ,... is a list of all possible strings in Σ^* .

- \bullet E = "Ignore the input.
- 1. Repeat the following for $i = 1, 2, 3 \dots$
- 2. Run M for i steps on each input, s_1, s_2, \ldots, s_i .
- 3. If any computations accept, print out the corresponding s_i ".

Equivalence with Other Models

All variants of Turing Machine models share the essential feature of Turing Machines: unrestricted access to unlimited memory!

Definition of Algorithm

- Informally, an algorithm is a collection of simple instructions for carrying out some task.
- Even though algorithms have had a long history, the notion of algorithm itself was not defined precisely until the twentieth century.
- The definition came in the 1936 papers of Alonzo Church and Alan Turing

Hilbert's 23 Problems

- Hilbert's problems are twenty-three problems in mathematics published by German mathematician David Hilbert in 1900.
- They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics.

Continuum Hypothesis

- ordinal a. By Cantor's Theorem, we have $2^{\aleph a} \ge \aleph_{a+1}$ for any ordinal a.
- Do we have equality or not?
- The famous *Continuum Hypothesis* asserts that $2^{\aleph 0} = \aleph_1$.
- This was one of the problems posed in 1900 to the mathematical community by David Hilbert, to guide the development of mathematics in the twentieth century.

Continuum Hypothesis (con.)

- o Godel proved $2^{\aleph 0} = \aleph_1$ cannot be disproved in ZFC.
- Thirty years later, however, Cohen, showed that $2^{\aleph 0} = \aleph_1$ cannot be proved in ZFC either. By a new technique known as forcing, he constructed a model of ZFC in which $2^{\aleph 0} = \aleph_2$.

Hilbert's 1st & 10th Problems

- Paul Cohen received the Fields Medal during 1966 for his work on the first problem.
- The negative solution of the tenth problem during 1970 by Yuri Matiyasevich (completing work of Martin Davis, Hilary Putnam, and Julia Robinson) generated similar acclaim.
- Aspects of these problems are still of great interest today.

Hilbert's 10th Problem

$$6. x. x. x. y. z. z = 6x^3yz^2$$

is a term with coefficient 6, and

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

is a polynomial with four terms over the variables x, y, and z. For this discussion,

we consider only coefficients that are integers. A *root* of a polynomial is an assignment of values to its variables so that the value of the polynomial is 0. This polynomial has a root at x = 5, y = 3, and z = 0. This root is an *integral root* because all the variables are assigned integer values. Some polynomials have an integral root and some do not!

HILBERT's Problem(Cont.)

- Hilbert's tenth problem was to devise an algorithm that tests whether a polynomial has an integral root. He did not use the term *algorithm* but rather " a process according to which it can be determined by a finite number of operations."
- Interestingly, in the way he phrased this problem, Hilbert explicitly asked that an algorithm be "devised." Thus he apparently assumed that such an algorithm must exist-someone need only find it.

Church-Turing Thesis

Intuitive notion of algorithms

equals

Turing machine algorithms

 $D = \{p | p \text{ is a polynomial with an integral root}\}$. Hilbert's tenth problem asks in essence whether the set D is decidable.

 $D1 = \{p | p \text{ is a polynomial over } x \text{ with an integral root} \}.$

Here is a TM M1 that recognizes D1:

M1 = "The input is a polynomial p over the variable x.

- 1. Evaluate p with x set successively to the values 0, 1, -1, 2, -2,
- 3, 3.... If at any point the polynomial evaluates to 0, accept. "

For the multivariable case, we can present a similar TM M that recognizes D. Here M goes through all possible settings of its variables to integral values.

Both M1 and M are recognizers but not deciders

Church-Turing Thesis (Cont.)

We can convert M1 to be a decider for D1 because we can calculate bounds within which the roots of a single variable polynomial must lie and restrict the search to these bounds. In fact, one can prove that the roots of such a polynomial must lie between the values

$$\pm k c_{\text{max}} / c_1$$

where k is the number of terms in the polynomial, c_{max} is coefficient with the largest absolute value, and c_1 is the coefficient of the highest order term.

Terminology for describing Turing Machines

- The input to a Turing Machine is a string.
- If we want to provide an object, rather than a string, it must be represented as a string.
- The notion for the encoding of an object O into its representation as a string is <O>
- Break the algorithm into stages
- The first line of the algorithm describes the input to the machine

- $A = \{\langle G \rangle | G \text{ is a connected undirected graph} \}$
- The following is a high-level description of a TM M that decides A.
- M = "On input (G), the encoding of a graph G:
 - 1. Select the first node of G and mark it.
 - 2. Repeat the following stage until no new nodes are marked:
 - 3. For each node in G, mark it if it is attached by an edge to a node that is already marked.
 - 4. Scan all the nodes of G to determine whether they all are marked. If they are, *accept*; otherwise, *reject*."

Example (Cont.)

Mow <G> encodes the graph G as a string

$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

A list of the nodes of G followed by a list of the edges of G