Creating Digital Products Part 2 : Software

Cambridge Game Creators London – 2015-05-21

Laurent Pinchart laurent.pinchart@ideasonboard.com

Problem Definition

Problem Definition

Fixed Logo

Fixed Logo

Animation, Feedback

Full Graphics Stack

Traditional Linux Graphics Architecture

- DDX Device Dependent X driver. Handles initialization, manages the display, performs 2D accelerated rendering.
- DRM Direct Rendering Manager. Subsystem of the Linux kernel responsible for interfacing with GPUs.
- **EFL**, **GTK+**, **Qt** Open-source graphical toolkits.
- EGL Interface between rendering APIs and the underlying native platform windowing system.
- FBDEV Frame Buffer Device. Subsystem of the Linux kernel responsible for accessing the display framebuffer.
- GLES GL Embedded System. Embedded profile of the OpenGL API.
- KMS Kernel Mode Setting. Subsystem of the Linux kernel responsible for interfacing with display controllers. Handles mode setting and hardware composition.
- Mesa (3D) Open-source implementation of the EGL, GL, GLES, ...
 APIs.
- Xlib Reference implementation of the client side of the X11 protocol.
- Xorg Reference implementation of the server side of the system.

Linux Kernel Display APIs

FBDEV vs. DRM

Source: http://xkcd.com/619/

	DRM	FB
Dynamic Allocation	Yes	No
Multiple Buffers	Yes	panning
Import	dmabuf	No
Export	dmabuf mmap	mmap

	DRM	FB
Formats	4CC	RGB 4CC
Enumeration	Planes	No
Negotiation	No	No
Atomicity	Yes	No

	DRM	FB
Overlays	Yes	No
Rotation	Yes	No
Scaling	Yes	No
Cropping/Panning	Yes	Yes

Source: http://valdodge.com/2010/07/

CAMPUS LONDON

Mailing List Traffic

Cumulative Changes - Drivers CambridgeGameCreators

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SOON:
SITUATION:
THERE ARE
15 COMPETING
STANDARDS.

Source: http://xkcd.com/927/

Use Cases - FBDEV

(that's it...)

Everything

Use Cases – DRM/KMS

Beyond X11

Wayland Graphics Stack

The DRM and KMS APIs

- Memory Management
- Command Stream
- Vertical Blanking
- Version, Authentication, Master, ...

- Device Model
- Frame Buffer
- Modes
- Page Flip
- Planes
- Cursor, Gamma, ...

Device Model - SoC

Composition

Overlay Plane(s)

LONDON

LONDON

KMS – Modes (2/2)

KMS – Mode Setting

KMS Programming Example

Code Ahead

Error handling omitted for readability


```
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

int main(int argc, char **argv)
{
         return 0;
}
```



```
/*
  * Open
  *
  * #include <xf86drm.h>
  *
  * int drmOpen(const char *name, const char *busid);
  */
int fd;

fd = drmOpen("imx-drm", NULL);
```



```
Get resources
  #include <xf86drmMode.h>
 * drmModeResPtr drmModeGetResources(int fd);
 * void drmModeFreeResources(drmModeResPtr ptr);
drmModeResPtr resources;
uint32_t crtc_id;
uint32_t connector_id;
resources = drmModeGetResources(fd);
crtc_id = resources->crtcs[0];
connector_id = resources->connectors[0];
```



```
Get modes
  #include <xf86drmMode.h>
   drmModeConnectorPtr drmModeGetConnector(int fd,
               uint32_t connectorId);
 * void drmModeFreeConnector(drmModeConnectorPtr ptr);
drmModeConnectorPtr connector;
drmModeModeInfo mode;
uint32_t width;
uint32_t height;
connector = drmModeGetConnector(fd, connector_id);
mode = connector->modes[0];
width = mode.hdisplay;
height = mode.vdisplay;
```



```
* Create buffer
  #include <drm.h>
  #include <drm_mode.h>
  #define DRM_IOCTL_MODE_CREATE_DUMB ...
 * int drmIoctl(int fd, unsigned long request, void *arg);
 * /
struct drm_mode_create_dumb bo_create;
memset(&bo_create, 0, sizeof(bo_create));
bo_create.bpp = 32;
bo_create.width = width;
bo_create.height = height;
drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &bo_create);
```



```
* Fill buffer
 * #include <drm.h>
 * #include <drm_mode.h>
 * #include <xf86drm.h>
  #define DRM_IOCTL_MODE_MAP_DUMB ...
  int drmIoctl(int fd, unsigned long request, void *arg);
struct drm_mode_map_dumb bo_map;
memset(&bo_map, 0, sizeof(bo_map));
bo_map.handle = bo_create.handle;
drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &bo_map);
```



```
* Fill buffer
  #include <sys/mman.h>
 * void *mmap(void *addr, size_t length, int prot,
              int flags, int fd, off_t offset)
 * int munmap(void *addr, size_t length);
void *mem;
mem = mmap(0, bo_create.size, PROT_READ | PROT_WRITE,
           MAP_SHARED, fd, bo_map.offset);
fill_pattern(DRM_FORMAT_ARGB8888, mem, width, height,
             bo_create.pitch);
munmap(mem, bo_create.size);
```



```
* Create frame buffer
  #include <drm fourcc.h>
  #include <xf86drmMode.h>
   int drmModeAddFB2(int fd, uint32_t width,
         uint32_t height, uint32_t pixel_format,
         uint32_t bo_handles[4], uint32_t pitches[4],
         uint32_t offsets[4], uint32_t *buf id,
         uint32_t flags);
 * /
uint32_t handles[4] = { bo_create.handle, };
uint32_t pitches[4] = { bo_create.pitch, };
uint32_t offsets[4] = \{ 0, \};
uint32_t fb_id;
drmModeAddFB2(fd, width, height, DRM_FORMAT_ARGB8888,
              handles, pitches, offsets, &fb_id, 0);
```


Create Frame Buffer


```
/*
  * Get plane resources
  *
  * #include <xf86drmMode.h>
  *
  * drmModePlaneResPtr drmModeGetPlaneResources(int fd);
  * void drmModeFreePlaneResources(drmModePlaneResPtr ptr);
  */
drmModePlaneResPtr planes;
uint32_t plane_id;
planes = drmModeGetPlaneResources(fd);
plane_id = planes->planes[0];
```


Get Plane Resources

```
Set the plane
   #include <xf86drmMode.h>
   int drmModeSetPlane(int fd,
          uint32_t plane_id, uint32_t crtc_id,
          uint32_t fb_id, uint32_t flags,
          uint32_t crtc_x, uint32_t crtc_y,
          uint32_t crtc_w, uint32_t crtc_h,
          uint32_t src_x, uint32_t src_y,
          uint32_t src_w, uint32_t src_h);
 * /
drmModeSetPlane(fd, plane_id, crtc_id, fb_id, 0,
         width / 4, height / 4, width / 2, height / 2,
         0, 0, (width / 2) << 16, (height / 2) << 16);
```



```
List plane properties
  #include <drm mode.h>
  #include <xf86drmMode.h>
  drmModeObjectPropertiesPtr drmModeObjectGetProperties(
         int fd, uint32_t object_id, uint32_t object_type);
  void drmModeFreeObjectProperties(
         drmModeObjectPropertiesPtr ptr);
drmModeObjectPropertiesPtr properties;
properties = drmModeObjectGetProperties(fd, plane_id,
                       DRM_MODE_OBJECT_PLANE);
```



```
Find alpha property
  #include <xf86drmMode.h>
   drmModePropertyPtr drmModeGetProperty(int fd,
                                  uint32_t propertyId);
  void drmModeFreeProperty(drmModePropertyPtr ptr);
drmModePropertyPtr property;
unsigned int i;
for (i = 0; i < properties->count_props; ++i) {
        property = drmModeGetProperty(fd,
                               properties->props[i]);
        if (!strcmp(property->name, "alpha"))
                break;
```


Find Alpha Property

- Atomic Update
- Page Flip
- Cursor
- Events

•

3D Acceleration

Free vs. Proprietary

	Free	Proprietary
Performance	+(+)	++(+)
Features	+(+)	++
Security	+	_
Kernel	open	open/ closed
Evolutions	yes	vendor lock-in

- http://nouveau.freedesktop.org/wiki/
- http://limadriver.org/
- https://github.com/freedreno
- https://github.com/kusma/tegra-re
- https://github.com/etnaviv/etna_viv
- https://github.com/hermanhermitage/ videocoreiv/

Web

Images

Videos

News

Shopping

Maps

Books

About 4,190 results

Any country

Country: the UK

Any time

Past hour Past 24 hours Past week Past month

All results

Past year

Verbatim

Vivante GPU (Freescale i.MX6) - SDKs - StreamComputing

streamcomputing.eu/knowledge/sdks/vivante-gpu/ -

Vivante has created the GPU-drivers, but you have to contact the chip-maker to obtain ... i.mx6 ubuntu opengl install; opencl imx6; alternativ driver vivante g2000 ...

laanwi/etna viv GitHub

https://github.com/laanwj/etna_viv -

14 Oct 2014 ... Project Etnaviv is an open source user-space **driver** for the **Vivante** GCxxx ... MX6 , GCABI **imx6** or imx6_v4_0_0 depending on BSP); GC1000.

OpenCL on imx6 | Freescale Community

https://community.freescale.com/thread/306852 -

30 Apr 2013 ... Kernel **driver** for **vivante**. **vivante** vdk. open cl headers. I'm not really sure where to find the **vivante** components here. I've downloaded the SDK ...

Vivante and opengl broken on imx6 board 22 Nov 2013

Want to try hard float vivante drivers for MX6? 7 May 2013

The computing power of the Vivante's GC2000 GPU in i.mx6q ... 21 Mar 2013

OpenGL ES on i.MX6 with X11 - GPU SDK 14 Feb 2013

i.MX6Q: i.MX 6Quad Processors - Quad Core, High Performance ...

www.freescale.com/webapp/sps/site/prod_summary.jsp?code=i... ▼

Order, Part Number, Suggested **Drivers**, Package Freescale **iMX6**: Soluciones multicore escalables para los nuevos retos de experiencia para el usuario:La ...

Reverse Engineering

Reverse Engineering

commit b13a0a9e2922cbfbf7b400f4f0fd0acd19f941df

Author: Alexandre Courbot <acourbot@nvidia.com>

Date: Sat Jul 26 18:41:41 2014 +0900

drm/nouveau/gk20a: reclocking support

Add support for reclocking on GK20A, using a statically-defined pstates table. The algorithms for calculating the coefficients and setting the clocks are directly taken from the ChromeOS kernel.

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>

Assembling the Pieces

DD-WRT

Austrumi

((ux Linux

College

CollegeLinux

DRUID

back track

Linux

aLinux

Asianux

Asianux

blag

CentOS

CentOS

CRUX

DeLi Linux

DeLi Linux

CASVS

Easys Linux

linux

Edu Pup.org

Ø

EnGarde

Feather

Feather Linux

19

Foresight

Foresight

GEE BO

Ö

hakin9

Haking

iPodLinux iPod Linux

fedora

gentoo linux

GoboLinux

mmmm

Distributions

YOCTO PROJECT

Buildroot OpenEmbedded / Yocto Buildroot OpenEmbedded / Yocto No runtime package management needed. Upgrades are done system-wide. Fixed-functionality systems, like Systems on which functionality needs to be

Credit: http://free-electrons.com/pub/conferences/2012/lsm/buildroot/

dynamically added (apps, etc.)

LONDON

Meta-Distributions

industrial systems.

- FBDEV, DRM/KMS
- Bare, X11, Wayland
- Mainline, BSP
- Distribution

Resources

laurent.pinchart@ideasonboard.com

Thank you.

