3. Determinants and Diagonalization

3.1 The Laplace Expansion

• Determinants

Def. Let $X=\{1,2,\cdots,2,1\}$ A rearrangement of the elements of X is called a permutation of X. We denote the set of all permutations of X by S_n . Note that $|S_n|=n!$.

Eg. If
$$X=\{1,2,3\}$$
, then

$$S_3 = \{123, 132, 213, 231, 312, 321\}$$

A permutation $j_1j_2\dots j_n$ is said to have an inversion if a larger j_r precedes a smaller j_s . A permutation is called even, or odd even if the total number of inversions in it is even, or odd

Eg. The permutation $4312 \in S_4$ is odd.

Def. Let $A=[a_{ij}]$. We define

$$\det(A) = |A| = \sum_{\mathbf{i} \in \mathcal{I}} a_{\mathbf{i} \mathbf{i}_{\mathbf{i}}} a_{\mathbf{i}_{\mathbf{i}}} a_{\mathbf{i} \mathbf{i}_{\mathbf{i}}} a_{\mathbf{i} \mathbf{i}_{\mathbf{i}_{\mathbf{i}}} a_{\mathbf{i}_{\mathbf{i}}} a_{\mathbf{i}_{\mathbf{i}_{\mathbf{i}}}} a_{\mathbf{i}_{\mathbf{i}_{\mathbf{i}}}} a_{\mathbf{i}_{\mathbf{i}_{\mathbf{i}}}} a_{\mathbf{i}_{\mathbf{i}_{\mathbf{i}}}} a_{\mathbf{i}_{\mathbf$$

where the summation is over all permutations $j_1j_2\ldots j_n$ of n is integrable of n in n is taken as n in n in

otherwise.

[8]

Eg.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \quad \det(A) = a_{11}a_{22} - a_{12}a_{21}.$$

$$.7 = 2 \cdot 4 - 6 \cdot 3 = (A)$$
təb $\begin{bmatrix} 4 & 3 \\ 5 & 2 \end{bmatrix} = A$

Linear Algebra

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} + a_{13}a_{21}a_{32}$$

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$\begin{bmatrix} \varepsilon & 2 & 1 \\ \varepsilon & 1 & 2 \\ 2 & 1 & \varepsilon \end{bmatrix} = A$$

$$1 \cdot 2 \cdot \xi + \xi \cdot \xi \cdot 2 + 2 \cdot 1 \cdot 1 = (A) \text{tab}$$

$$.8 = 2 \cdot 2 \cdot 2 \cdot 2 - 1 \cdot 8 \cdot 1 - 8 \cdot 1 \cdot 8 -$$

 $-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$

Linear Algebra

If $A: 4 \times 4$, then $\det(A)$ has 24 terms.

If $A:5\times5$, then $\det(A)$ has 120 terms.

If $A:10\times 10$, then $\det(A)$ has 3,628,800 terms.

If $A: 20 \times 20$, then $\det(A)$ has

2, 432, 902, 008, 176, 640, 000 terms.

We need a practical definition.

Cofactor Expansion

Def. $A: A: n \times n$ matrix. Let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained from A by deleting the row i and column j. The (i,j)-cofactor of A is defined to be

$$.(i_i A) \operatorname{det}(I-) = i_i O$$

Note that the sign is given by the pattern

Eg.

Linear Algebra

$$OI = \begin{vmatrix} 1 - & \xi \\ & 1 \end{vmatrix}^{\xi + 2} (1 -) = \xi \zeta$$
, $OL = \begin{vmatrix} 1 & 0 \\ & 1 \end{vmatrix}^{\xi + 1} (1 -) = \xi \zeta$

$$C_{11} = \begin{vmatrix} 1 - & 1 \\ 1 - & 2 \end{vmatrix} = 4, \quad C_{33} = (-1)^{3+3} \begin{vmatrix} 3 & 1 \\ 4 & 5 \end{vmatrix} = 19.$$

$$\begin{bmatrix} 2 & 1 - & \xi \\ 0 & \delta & \hbar \\ 2 & 1 & 7 \end{bmatrix} = \hbar$$

[7]

Thm. [Laplace (Cofactor) Expansion - Stokes' Thm] Let $A=[a_{ij}]$. For each i and j,

$$\det(A) = a_{i1} \mathcal{O}_{i1} + a_{i2} \mathcal{O}_{i2} + a_{i4} \mathcal{O}_{in} = (A) \det(A)$$

$$= a_{i1} \mathcal{O}_{i1} + a_{i2} \mathcal{O}_{i2} + a_{i4} \mathcal{O}_{in} = a_{i4} \mathcal{O}_{i4}$$

1. Choose a row (resp. a column). S. Multiply each entry a_{ij} in the row (resp. the column) by the corresponding cofactor C_{ij} .

Kyu-Hwan Lee

3. Add all the results.

$$\begin{vmatrix} 4 & 8 - 2 \\ 1 & 1 & 2 \\ 1 & 2 - 0 \end{vmatrix} \mathcal{E} = \begin{vmatrix} 4 & 8 - 2 & 1 \\ 1 & 2 - 0 & 2 \\ 1 & 2 - 0 & 2 \end{vmatrix} \mathcal{E} = \begin{vmatrix} 4 & 8 - 2 & 1 \\ 1 & 2 - 0 & 2 \\ 1 & 2 - 0 & 2 \end{vmatrix}$$

.gЗ

Linear Algebra

• Geometric meaning of Determinant

For $A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$, $\det(A)$ is the (signed) area of the parallelogram determined by (a,c) and (b,d) in ${f R}^2$.

$$egin{array}{c|c} a & b \\ \hline c & b \\ \hline c & c \\ c & c \\ \hline c & c \\ c & c$$

Linear Algebra

$$\begin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \end{bmatrix} = (\pm)$$
 the volume of the parallelepiped in ${f R}^3$

For $A:n\times n$, $\det(A)$ is the (signed) n-volume of the n-parallelepiped determined by the n vectors in ${\bf R}^n$.

Properties of Determinant

Thm. Assume that
$$A=\begin{bmatrix}R_1\\R_2\\\vdots\\R_n\end{bmatrix}$$
 is an $n\times n$ matrix.

1. If $R_i=0$ for some i, then $\det(A)=0$. 2. If $R_i=R_j$ for some $i\neq j$, then $\det(A)=0$.

$$\begin{bmatrix} \vdots \\ i \\ H \\ \vdots \\ i \\ H \end{bmatrix} = -\det \begin{bmatrix} \vdots \\ i \\ i \\ H \\ \vdots \\ i \end{bmatrix}$$
 $\Rightarrow b \cdot \mathcal{E}$

4.
$$\det \begin{bmatrix} \vdots \\ kR_i \end{bmatrix} = k \det \begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$$
, and so $\det(kA) = k^nA$.

$$\mathcal{S}.$$
 det $\begin{bmatrix} \vdots \\ R_i'' + R_i'' \end{bmatrix} = \det \begin{bmatrix} \vdots \\ R_i'' \end{bmatrix} + \det \begin{bmatrix} \vdots \\ R_i'' \end{bmatrix}$

$$\begin{bmatrix} i \\ i \\ i \\ \vdots \\ i \end{bmatrix}$$
 \Rightarrow $\mathbf{b} = \begin{bmatrix} i \\ i \\ i \\ i \end{bmatrix}$ \Rightarrow $\mathbf{b} = \begin{bmatrix} i \\ i \\ i \\ i \end{bmatrix}$ \Rightarrow $\mathbf{b} = \begin{bmatrix} i \\ i \\ i \end{bmatrix}$

[14]

Thm. Assume that $A = \begin{bmatrix} C_1 & C_2 & \cdots & C_n \end{bmatrix}$.

I. If $C_i = 0$ for some i, then $\det(A) = 0$.

2. If $C_i = C_j$ for some $i \neq j$, then $\det(A) = 0$.

3. $\det \begin{bmatrix} \cdots & C_i & \cdots \end{bmatrix} = -\det \begin{bmatrix} \cdots & C_j & \cdots \end{bmatrix}$ to $\det \begin{bmatrix} \cdots & C_i & \cdots \end{bmatrix}$

 $4. \det \begin{bmatrix} \cdots & kC_i & \cdots \end{bmatrix} = k \det \begin{bmatrix} \cdots & C_i & \cdots \end{bmatrix}$

 $A_n = A_n = A_n + A_n = A_n$

 $\mathbf{E}.\det\left[\cdots \quad C_i'' + C_i'' \quad \cdots\right] = \det\left[\cdots \quad C_i'' \quad \cdots\right] + \det\left[\cdots \quad C_i'' \quad \cdots\right]$

6. $\det \begin{bmatrix} \cdots & C_i & \cdots & C_j & \cdots \end{bmatrix} = \det \begin{bmatrix} \cdots & C_i & \cdots & C_j & \cdots \end{bmatrix}$ and $C_i & \cdots & C_j & \cdots \end{bmatrix}$

[51]

.gЗ

$$\begin{bmatrix} \xi & I - & \xi \\ 2 & 8 & 7 \\ I & 2 & I - \end{bmatrix} = \begin{bmatrix} \xi & I - & \xi \\ 7 & 8 & 2 \\ I - & 2 & I \end{bmatrix} \quad , 0 = \begin{bmatrix} 2 & I - & \xi \\ 1 & \xi & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$0 = \begin{vmatrix} 2 & 1 & 2 \\ 4 & 0 & 4 \\ 1 & 8 & 1 \end{vmatrix}, \begin{vmatrix} 2 & 1 & 8 \\ 8 & 0 & 1 \\ 1 - 2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 8 \\ 9 & 0 & 8 \\ 1 - 2 & 1 \end{vmatrix}$$

$$\begin{vmatrix} 02 & 9 & 0 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 3 & 2 \\ 9 & 2 & 1 - \\ 1 & 1 & 2 \end{vmatrix}$$

Eg. The Vandermonde determinant

$$(1x - 2x)(1x - 8x)(2x - 8x) = \begin{vmatrix} 8x & 2x & 1x \\ 5x & 2x & 1x \\ 1 & 1 & 1 \end{vmatrix}$$

$$\cdot (ix - ix) \prod_{i > i} = \begin{vmatrix} 1 & \cdots & 1 & 1 \\ ux & \cdots & \frac{1}{2}x & \frac{1}{1}x \\ ux & \cdots & \frac{1}{2}x & \frac{1}{1}x \\ ux & \cdots & \frac{1}{2}x & \frac{1}{1}x \end{vmatrix}$$

Thm. If A is a triangular matrix, then det(A) is the product of entries of the main diagonal.

Proof. Use the cofactor expansion. \Box

Thm. Consider $\begin{bmatrix} A & A \\ X & A \end{bmatrix}$ and $\begin{bmatrix} A & A \\ X & O \end{bmatrix}$ in block form, where A and B are square matrices. Then

$$A ext{ fab } A ext{ fab} = \begin{bmatrix} A & O \\ X & A \end{bmatrix} ext{ fab}$$

 $\operatorname{\mathsf{bh}} A \operatorname{\mathsf{tab}} = egin{bmatrix} O & A \end{bmatrix} \operatorname{\mathsf{tab}}$

$$\det \begin{bmatrix} A & O \\ A & O \end{bmatrix} = \det A \det B.$$

$$.11 - = \begin{vmatrix} 8 & \xi \\ 1 - & 1 \end{vmatrix} = \begin{vmatrix} \xi & 1 - & 1 \\ 8 & 0 & \xi \\ 1 - & 0 & 1 \end{vmatrix} = \begin{vmatrix} \xi & 1 - & 1 \\ 3 & 1 & 2 \\ 1 - & 0 & 1 \end{vmatrix}$$

$$.1-= egin{array}{cccc} \xi & 1- & 1 \ 3 & 1 & 0 \ 1- & 0 & 0 \ \end{array}$$

$$. h = (2-)(2-) = \begin{vmatrix} 8 & 7 & | 1 & 2 & 1 \\ 8 & 7 & | 4 & 8 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 1 \\ 8 & 7 & 0 & 0 \\ 8 & 7 & 0 & 0 \end{vmatrix}$$

3.2 Determinants and Matrix Inverses

.mdT

$$A an A a$$

Proof. It is easy to see that $\det(EA) = \det E \det A$ for any elementary matrix E. Thus

$$\det(E_1E_2\cdots E_kA)=\det E_1\det E_2\cdots \det E_k\det A.$$

If $A \leadsto R$ in r.r.e.f., then $R=E_k\cdots E_1A$ and $A=E_1^{-1}E_2^{-1}\cdots E_k^{-1}B$. Note that E_i^{-1} is an elementary matrix for each i.

$$\det(AB) = \det(E_1^{-1}E_2^{-1}\cdots E_k^{-1}RB)$$
$$= \det(E_1^{-1})\cdots \det(E_k^{-1}) \det(RB).$$

$$(\det A)(\det B) = \det(E_1^{-1}E_2^{-1}\cdots E_k^{-1}R) \det B$$

$$= \det(E_1^{-1})\cdots \det(E_k^{-1}) \det R \det B.$$

We have only to show that $\det(RB)=\det R\det B$. Note that either R=I or R has a row of zeros. If R=I, then $\det(RB)=\det B=\det R\det R\det B$. If R has a row of zeros, then RB also has a row of zeros. Thus $\det(RB)=0=\det R\det R\det R$ also has a row of zeros.

Cor.

$$\det(A_1A_2\cdots A_{k-1}A_k) = \det(A_1) \det(A_2) \cdots \det(A_{k-1}) \det(A_k),$$

$$\det(A^k) = (\det A)^k.$$

Thm. A is invertible $\Leftrightarrow \det A \neq 0$. In this case,

$$\frac{1}{A \operatorname{tab}} = {}^{\mathrm{I}}(A \operatorname{tab}) = ({}^{\mathrm{I}}-A) \operatorname{tab}$$

Proof. If A is invertible, then $AA^{-1} = I$ and

$$I = \det I = \det(AA) \Rightarrow I = I \Rightarrow I = I$$

$$A \cdot \frac{1}{A o b} = {}^{1-} A o b$$
 and $A o b o b$, escape, $A o b o b$

Conversely, assume that $\det A \neq 0$. If $A \rightsquigarrow R$ in r.r.e.f. and $R = E_k \cdots E_1 A$, then either R = I or R has a row of zeros. Note that $\det E \neq 0$ for every elementary matrix E. Thus

$$0 \quad \neq \quad \det E_k \cdots \det E_1 \det A$$
$$= \quad \det (E_k \cdots E_1 A) = \det R.$$

Therefore, R cannot have a row of zeros, so R=I. \square

Eg.

$$0.0 \neq 0.0 = 0.0$$
, $0.0 \neq 0.0$

.∍ldity∍vni si A sudT

Eg. AB is invertible $\Leftrightarrow A$ and B are invertible.

.mdT

$$A tab = (^T A) tab$$

Proof. It is easy to see that $\det E^T = \det E$ for every elementary matrix E. If A is not invertible, then neither is A^T ; so $\det A = 0 = \det A^T$. If A is invertible, $A = E_k \cdots E_1$ and $A^T = E_1 \cdots E_k^T$.

$$\det A^{T} = \det E_{1}^{T} \cdots \det E_{k}^{T}$$

$$= \det E_{1} \cdots \det E_{k}$$

$$= \det E_{1} \Rightarrow \det A.$$

 $=(^T\! AA) and 1= 1$ and $I=^T\! AA=^T\! AA$ nədt , lenogodtvo **Eg.** A matrix is called orthogonal if $A^{-1} = A^{T_1}$. If A is

Classical Adjoint

.9.i ,xirtem rotoefoo əht to əsoqenert Def. The classical adjoint of A, denoted by adj(A), is the

$$T_{[ii}O] = (K)$$
ibs

$$A_{[i,i}] = (A)$$
lba

Eg.

[56]

Lem. Let
$$A=[i_i b]=A$$
 .m9 ${f J}$

$$a_{i1}C_{k1} + a_{i2}C_{k2} + \dots + a_{in}C_{kn} = 0 \text{ for } i \neq k$$

 $a_{1j}C_{1k} + a_{2j}C_{2k} + \dots + a_{nj}C_{nk} = 0 \text{ for } j \neq k.$

Proof. Let

$$A = \begin{bmatrix} C_1 & \cdots & C_i & \cdots & C_k & \cdots & C_n \end{bmatrix}$$

$$B = egin{bmatrix} C_1 & \cdots & C_i & \cdots & C_n \end{bmatrix}.$$

$$B = \begin{bmatrix} C_1 & \cdots & C_i & \cdots & C_i & \cdots & C_n \end{bmatrix}.$$

$$B = egin{bmatrix} C_1 & \cdots & C_i & \cdots & C_n \end{bmatrix}.$$

$$0 = \det B = a_{i1}C_{k1} + a_{i2}C_{k2} + \dots + a_{in}C_{kn}.$$

.mdT

$$I(A \text{ tab}) = A((A) \text{ jbs}) = ((A) \text{ jbs})A$$

If
$$\det A \neq 0$$
, then $A^{-1} = {}^{1-}A$ nəh $t \downarrow 0 \neq A$ təb $t \downarrow 1$

Proof. Write
$${\rm adj}(A)=[d_{ij}]$$
, and so $d_{ij}=C_{ji}$. Let
$$.[i_{ij}]=(A)[{\rm idj}(A)=X$$

$$\begin{cases} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{cases}$$
 if $\begin{cases} A \text{ the } \\ 0 \end{cases}$ $= A \text{ the } \\ A \text{ the } \\$

Rmk. The formula is not practical.

Eg.

$$^{1-n}(h ext{ tab}) = ((h) ext{ibs}) ext{tab}$$

Indeed, it follows from $A(\operatorname{adj}(A)) = (\operatorname{det} A)I$ that

$$a^n(A \operatorname{det}(A \operatorname{det}(A) \operatorname{ibs}) \operatorname{det}(A \operatorname{det}(A) \operatorname{det}(A) \operatorname{det}(A)$$

If $\det A \neq 0$ then divide it by $\det A$.

If $\det A \neq 0$ then divide it by $\det A$.

If $\det A = 0$, then $A(\operatorname{adj}(A)) = O$. If $\operatorname{adj}(A)$ is invertible, then A = O, so $\operatorname{adj}(A) = O$, a contradiction. Thus $\operatorname{adj}(A) = O$ then A = O and A = O then A = O and A = O then A

0 = ((A)ibb) and det(Aii(A)) = 0.

Cramer's Rule

Consider AX = B. If A is invertible, $X = A^{-1}B$.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 \\ C_1 \\ C_2 \\ C_3 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} \begin{bmatrix} C_2 \\ C_3 \\ C_4 \end{bmatrix} \begin{bmatrix} C_2 \\ C_5 \\ C_5 \end{bmatrix} \cdots \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_3} \end{bmatrix} \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_3} \\ C_{n_4} \end{bmatrix} \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_3} \\ C_{n_4} \end{bmatrix} \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_3} \\ C_{n_4} \\ C_{n_5} \end{bmatrix} \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_3} \\ C_{n_4} \\ C_{n_5} \end{bmatrix} \begin{bmatrix} C_{n_1} \\ C_{n_2} \\ C_{n_4} \\ C_{n_5} \\ C_$$

$$(i_n \mathcal{O}_n d + \dots + i_2 \mathcal{O}_{2i} + i_1 \mathcal{O}_{1d}) \frac{1}{A \operatorname{det} A} = i_x$$

Write

$$A = \begin{bmatrix} C_1 & \cdots & C_i & \cdots & C_n \end{bmatrix}$$

and let

$$A_i = \begin{bmatrix} C_1 & \cdots & C_{i-1} & B & C_{i+1} & \cdots & C_n \end{bmatrix}.$$

From the cofactor expansion, we have

$$.\frac{\mathrm{i}}{A + \mathrm{i}} \int_{A} \int_$$

Thm. [Cramer's Rule] If A is invertible, then the solution of the system AX=B is given by

$$\begin{bmatrix} {}_{1} h \operatorname{tab} \\ {}_{2} h \operatorname{tab} \\ \vdots \\ {}_{n} h \operatorname{tab} \end{bmatrix} \frac{1}{h \operatorname{tab}} = X$$

where A_i is the matrix obtained from A by replacing ith column by B.

-g3

$$1 = \xi x - 2x\xi + 1x\xi - \begin{cases}
1 = \xi x - 2x\xi + 1x\xi - \xi \\
\xi - \xi x - \xi x - \xi x - \xi x - \xi x
\end{cases}$$

[32]

Kyu-Hwan Lee

$$.8 - = \begin{vmatrix} 1 & \xi & 2 - \\ 4 & 2 & 1 \\ \xi - & 1 - & 2 - \end{vmatrix} = |\xi h| \qquad , \partial - = \begin{vmatrix} 1 - & 1 & 2 - \\ 1 - & 4 & 1 \\ 1 & \xi - & 2 - \end{vmatrix} = |\zeta h|$$

$$\cdot \begin{bmatrix} t \\ \xi \\ \zeta \end{bmatrix} = \begin{bmatrix} 8 - \\ 9 - \\ t - \end{bmatrix} \frac{\zeta - }{\zeta - } = \begin{bmatrix} \epsilon x \\ \zeta x \\ t x \end{bmatrix} = X$$

Rmk. Do you think it is practical?