Single Electron NN

Nicholas Todoroff

July 19, 2018

Event → Cell Prediction → Point Prediction

- Line read from the input file
- ▶ Beginning 256 elements arranged into a 16×16 array E assuming column-major ordering
- Normalized by dividing by maximum energy

Event → Cell Prediction → Point Prediction

- ► Single 3 × 3 convolution layer
- ▶ Produces cell-wise probability distribution *X* of electron starting position
- Essentially trains to select the highest energy cell
- Learned parameters:

		onvolutio	Bias		
1	0.9939	3.9430	1.0285 3.9563 1.0783		
I	3.9849	4.7335	3.9563	$3.1200 \cdot 10^{-9}$	
١	0.9052	3.9405	1.0783		

Event → Cell Prediction → Point Prediction

- ► Selects the most probable cell *p* from the previous layer
- ▶ Transforms $X \mapsto X'$ such that X'_p is the central element of X'
- ▶ Applies activation function σ (ReLU)
- ► Applies a dense NN with one hidden layer of 512 neurons
- Normalizes output by the factor 48/16 (detector size / width in cells)
- Outputs starting position P of the electron relative to the center p' of p

Example

$$X = \frac{1}{19} \begin{pmatrix} 1 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}, \quad p = (1,3), \quad X' = \frac{1}{19} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 3 & 4 & 0 & 0 \\ 1 & 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

Mathematical Description

Definitions

- $E \in \mathbf{R}^{16 \times 16}, X \in \mathbf{R}^{16 \times 16}, X' \in \mathbf{R}^{31 \times 31}$
- $C \in \mathbb{R}^{3 \times 3}, \ W_1, W_2 \in \mathbb{R}^{512 \times 961}, b \in \mathbb{R}, \ b_1 \in \mathbb{R}^{512}, \ b_2 \in \mathbb{R}^2$
- $ho p = (p_1, p_2), p' = (p'_1, p'_2)^T, P = (P_1, P_2)^T$

Model

$$P = b_2 + W_2 \sigma(b_1 + W_1 \sigma([X']))$$
 $X'_{ij} = egin{cases} X_{i+
ho_1-16,\,j+
ho_2-16} & ext{if } 1 \leq i+
ho_1-16 \leq 16 ext{ and} \ & 1 \leq j+
ho_2-16 \leq 16, \ 0 & ext{otherwise.} \end{cases}$

$$X_{ij} = (C * E)_{ij} + b, \quad p = \max_{q} X_{q}, \quad p'_{1} = \frac{48}{16} \left(p_{1} - \frac{1}{2} \right) - \frac{48}{2}, \quad p'_{2} = \text{similar}$$

Optimization

Loss Function:

$$F(X, P, Q) = -\ln(\epsilon + \max(0, X_P)) - \sum_{r \neq P} \ln(1 + \epsilon - \min(1, X_r))$$

 $+ \lambda ||P - Q||^2$

- ▶ For the tested model, $\epsilon = 0.01$, $\lambda = 1$
- ▶ Used the ADAM solver with a learning rate $\eta = 0.01$
 - Not as harsh as gradient descent
- Negligible difference in performance after training for second epoch

Results

Error Histogram: Training Set

Results

Error Histogram: Validation Set

Results

Statistics

"Random" selects highest energy cell, then a uniformly random point within that cell

Model Prediction Statistics

Model	Set	Mean	Mode	Stdev	P(< 3 mm)	90 th -	95 th -	99 th -%tile
Random	Train	1.823	1.712	1.115	89.40%	3.036	3.426	4.176
	Valid	1.819	1.543	1.107	89.60%	3.024	3.411	4.150
Other	Train	1.216	1.041	0.700	99.78%	1.860	2.045	2.472
	Valid	1.215	1.945	0.700	99.80%	1.859	2.043	2.472

All numbers are in units of mm (sans percentages)