ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ THI KẾT THÚC HỌC KÌ II NĂM HỌC 2023-2024

---oOo----

Môn thi: Phương trình đạo hàm riêng

Mã môn học: **MAT3365**

Số tín chỉ: 3

Đề số:

Dành cho sinh viên khoá: K67

Ngành học: **Toán tin**

Thời gian làm bài **90 phút** (không kể thời gian phát đề)

Câu 1. (4 điểm) Xét bài toán biên Neumann trong quạt cho phương trình Poisson

$$\Delta u(x,y) = 1 \text{ trong } Q = \{(x,y) \in \mathbb{R}^2 : 1 < y < x, (x-1)^2 + (y-1)^2 < 1\},$$

với điều kiện biên Neumann $\partial_{\nu}u(x,y)=0$ khi (x-y)(1-y)=0 và

$$\partial_{\nu} u(x, y) = x + C \text{ khi } (x - 1)^2 + (y - 1)^2 = 1, 1 < y < x,$$

trong đó ν là pháp tuyến ngoài đơn vị, C là hằng số.

- (a) Tìm C để bài toán có nghiệm.
- (b) Bằng cách sử dụng tích phân năng lượng $I = \iint_Q [u_x^2(x,y) + u_y^2(x,y)] dxdy$ hãy chỉ ra rằng khi bài toán có nghiệm nó có vô số nghiệm, các nghiệm sai khác nhau hằng số.
- (c) Với C tìm được ở câu (a) giải bài toán biên đã cho. (Gợi ý: xét hệ tọa độ cực $x=1+r\cos\theta$, $y=1+r\sin\theta$.)

Câu 2. (3 điểm) Sử dụng công thức Poisson tính nghiệm tường minh bài toán biên - ban đầu

$$u_t(x,y,t) = 4\Delta u(x,y,t), 0 < x < \pi, y > 0, t > 0,$$

$$u(x,y,0) = \sin^3(x)\chi_{[0,1]}(y), 0 \le x \le \pi, y \ge 0,$$

$$u(0,y,t) = u(\pi,y,t) = u(x,0,t) = 0, 0 < x < \pi, y > 0, t > 0.$$

Câu 3. (5 điểm) Xét bài toán Cauchy cho phương trình truyền sóng

$$u_{tt}(x, y, z, t) = 9\Delta u(x, y, z, t) + f(x, y, z, t), (x, y, z) \in \mathbb{R}^3, t > 0,$$

với điều kiện ban đầu u(x,y,z,0)=0 và $u_t(x,y,z,0)=\psi(x,y,z)$, trong đó

$$\psi(x,y,z) = \begin{cases} 0 & \text{khi } z > -2, \\ 1 & \text{khi } z < -2, \end{cases} \text{ và } f(x,y,z,t) = \begin{cases} 1 & \text{khi } \sqrt{x^2 + y^2 + z^2} \le 1 - 3t, \\ 0 & \text{còn lại.} \end{cases}$$

Hãy tính u(0,0,100,t), t > 0.

Chú ý: Sinh viên được sử dụng tài liệu.

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI KẾT THÚC HỌC KÌ II, NĂM HỌC 2023-2024 Môn thi: Phương trình đạo hàm riêng

Mã môn học: **MAT3365** Số tín chỉ: **3** Đề số: **1** Dành cho sinh viên khoá: **K67** Ngành học: **Toán tin**

Lời giải 1. [4 điểm]

(a) Để bài toán có nghiệm ta cần	0.5
$\int_{C_0} \partial_{\nu} u(x,y) dS = \iint_{Q} \Delta u(x,y) dx dy = \pi/8$	
với $Co = \{(x-1)^2 + (y-1)^2 = 1, 1 < y < x\}$ nên $C = -(1/2 + 2\sqrt{2}/\pi)$. (b) Nếu u là nghiệm của bài toán đang xét dễ thấy $u + Const$ cũng là nghiệm. Ngược lại	
(b) Nều u là nghiệm của bài toán đang xét dễ thầy $u + Const$ cũng là nghiệm. Ngược lại giả sử u_1, u_2 là hai nghiệm. Khi đó hiệu $u = u_1 - u_2$ là nghiệm của phương trình Laplace trong hình quạt Q với điều kiện biên Neumann $\partial_{\nu}u = 0$ trên biên ∂Q .	0.5
Ta có, dùng công thức Green	0.5
$\int_{\partial Q} u \partial_{\nu} u dS = \iint_{Q} [\partial_{x} (u u_{x}) + \partial_{y} (u u_{y})] dx dy.$	
Do $u_{xx} + u_{yy} = 0$ trong Q và $\partial_{\nu} u = 0$ trên biên ∂Q ta có	
$\iint_{Q} [u_x^2 + u_y^2] dx dy = 0$	
Khi đó $u_x = u_y = 0$ hay $u = u_1 - u_2$ là hằng trong Q .	0.5
(c) Trong hệ tọa độ cực $x=1+r\cos\theta$, $y=1+r\sin\theta$ ta có $v(r,\theta)=u(r\cos\theta,r\sin\theta)$ "bị chặn" thỏa mãn	0.5
$v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = 1 \text{ trong } (0,1) \times (0,\pi/4)$	
với điều kiện biên $v_{ heta}(r,0)=v_{ heta}(r,\pi/4)=0$ và	
$v_r(1,\theta) = 1 + \cos\theta + C.$	
Ta có chuỗi nghiệm	0.5
$v(r, heta) = R_0(r) + \sum_{n=1}^{\infty} R_n(r) \cos(4n heta).$	0.5

Thay vào phương trình và phân tích phổ ta có	0.5
$R_0''(r) + \frac{1}{r}R_0'(r) = 1, R_n''(y) + \frac{1}{r}R_n'(r) - (4n)^2R_n(r) = 0, n \ge 1, \text{ khi } 0 < r < 1.$	
Khi đó, chú ý v bị chặn nên R_n bị chặn, ta có	
$R_0(r) = r^2/4 + a_0, R_n(r) = a_n r^{4n}, n \ge 1.$	
Thay vào điều kiện biên trên <i>Co</i> và phân tích phố ta có	0.5
$R'_0(1) = 1 + C + 2\sqrt{2}/\pi, R'_n(1) = 4(1/3 + (-1)^n/5)\sin(3n\pi/4)/(n\pi), n \ge 1.$	
Do đó a ₀ tùy ý và	
$a_n = \frac{((-1)^n/5 + 1/3)\sin(3n\pi/4)}{(n^2\pi)}, n \ge 1.$	
Vậy nghiệm của bài toán	
$u(x,y) = v(r,\theta) = a_0 + \frac{r^2}{4} + \sum_{n=1}^{\infty} \frac{((-1)^n/5 + 1/3)\sin(3n\pi/4)}{(n^2\pi)} r^{4n}\cos(4n\theta).$	

Lời giải 2. [3 điểm]

Thác triển điều kiện ban đầu: lẻ+tuần hoàn chu kỳ 2π theo x , lẻ theo y lên toàn mặt	0.5
phẳng:	
$\tilde{f}(x,y) = \sin^3(x) [\chi_{[0,1]}(y) - \chi_{[-1,0]}(y)].$	
Sử dụng công thức Poisson	0.5
$u(x,y,t) = \frac{1}{16\pi t} \int_{-\infty}^{\infty} \sin^3(X) e^{-\frac{(x-X)^2}{16t}} dX \int_{-\infty}^{\infty} (\chi_{[0,1]}(Y) - \chi_{[-1,0]}(Y)) e^{-\frac{(y-Y)^2}{16t}} dY.$	
$C\acute{o} \sin^3(X) = 3\sin(X)/4 - \sin(3X)/4$ nên	0.5
1 t^{∞} $(x, y)^2$ $3e^{-4t}\sin(x) - e^{-36t}\sin(3x)$	
$\frac{1}{4\sqrt{\pi t}} \int_{-\infty}^{\infty} \sin^3(X) e^{-\frac{(x-X)^2}{16t}} dX = \frac{3e^{-4t} \sin(x) - e^{-36t} \sin(3x)}{4}.$	
4√ // li J −∞	
$D_{x}^{2} = \frac{2}{x} + $	0.5
Đổi biến $w = (Y - y)/(4\sqrt{t})$ và chú ý hàm lỗi $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds$ ta có	0.5
$\int_{-\infty}^{\infty} \chi_{[a,b]}(Y) e^{-\frac{(y-Y)^2}{16t}} dY = 4\sqrt{t} \int_{\frac{a-y}{4\sqrt{t}}}^{\frac{b-y}{4\sqrt{t}}} e^{-w^2} dw = 2\sqrt{\pi t} \left(erf(\frac{b-y}{4\sqrt{t}}) - erf(\frac{a-y}{4\sqrt{t}}) \right).$	
Vậy nghiệm của bài toán	1
$u(x,y,t) = -\frac{3e^{-4t}\sin(x) - e^{-36t}\sin(3x)}{4} \times \frac{\left(erf(\frac{y+1}{4\sqrt{t}}) + erf(\frac{y-1}{4\sqrt{t}}) - 2erf(\frac{y}{4\sqrt{t}})\right)}{2}.$	

Lời giải 3. [5 điểm]

Tách nghiệm $u=u_1+u_2$ với $u_j, j=1,2$, là nghiệm của	0.5
$\begin{cases} u_{1tt} &= 9\Delta u_1, \\ u_1(x, y, z, 0) &= 0, \\ u_{1t}(x, y, z, 0) &= \psi(x, y, z), \end{cases} $ và $\begin{cases} u_{2tt} &= 9\Delta u_2 + f, \\ u_2(x, y, z, 0) &= 0, \\ u_{2t}(x, y, z, 0) &= 0. \end{cases}$	
Do $\psi(x,y,z)=\chi_{(-\infty,-2)}(z)$ chỉ phụ thuộc z nên u_1 chỉ phụ thuộc z . Dùng D'Alembert ta có $u_1(0,0,100,t)=\frac{1}{6}\int_{100-3t}^{100+3t}\chi_{(-\infty,-2)}(z)dz$	1
$= \begin{cases} 0 & \text{khi } 0 < t < 34, \\ \frac{t - 34}{2} & \text{khi } t > 34. \end{cases}$	0.5
Do $f(x,y,z,t)=\chi_{\Delta}(r,t)$ với $\Delta=\{0< r<1-3t\}, r=\sqrt{x^2+y^2+z^2}$ nên u_2 chỉ phụ thuộc r,t và $v=ru_2$ thỏa mãn $v_{tt}=9v_{rr}+r\chi_{\Delta} \text{ với } v(0,t)=0, v(r,0)=v_t(r,0)=0.$	1
Theo D'Alembert $v(0,0,100,t)=\frac{1}{6}\iint_{\Delta(t)}F(s,\tau)dsd\tau$ $v\acute{o}i\ \Delta(t)=\{0<\tau< t,100-3\tau< s<100+3\tau\},\ F(s,\tau)\ là thác triển lẻ theo s của s\chi_{\Delta}(s,\tau).$	1
Do đó $u_2(0,0,100,t) = \begin{cases} 0 & \text{khi } 0 < t < 33 \text{ hay } t > 101/3, \\ \frac{(t-33)^2(101-3t)}{1600} & \text{khi } 33 < t < 101/3, \end{cases}.$	0.5
Vậy $u(0,0,100,t) = \begin{cases} 0 & \text{khi } 0 < t < 33 \text{ hay } 101/3 < t < 34, \\ \frac{(t-33)^2(101-3t)}{1600} & \text{khi } 33 < t < 101/3, \\ \frac{t-34}{2} & \text{khi } t > 34. \end{cases}$	0.5

Hà Nội, ngày 16 tháng 05 năm 2024 NGƯỜI LÀM ĐÁP ÁN (ký và ghi rõ họ tên)

TS. Đặng Anh Tuấn