Low Reynolds number gravitational settling of a sphere through a fluid-fluid interface: Modelling using a boundary integral method

Paul Jarvis^{*1}, Jon Blundy¹, Katharine Cashman¹, Herbert E Huppert^{1,2}, and Heidy Mader¹

¹School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK

²Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK

Abstract

1 Introduction

2 Theoretical Development

The problem being modelled is the low Reynolds number gravitational settling of a sphere towards an initially horizontal interface separating two density stratified, immiscible, semi-infinte fluids (figure 1). The fluids are characterised by the velocity $\mathbf{u}_l(\mathbf{x})$ and pressure

 $^{{\}rm *Corresponding\ author:paul.jarvis@bristol.co.uk}$

Figure 1: Diagrammatic representation of the system. A sphere falls under gravity, at low Reynolds number, towards an initially horizontal interface between two density stratified, immiscible semi-infinite fluids. See table 1 for definition of symbols.

 $p_l(\mathbf{x})$ fields where l=1,2 denotes the fluid and \mathbf{x} is a position vector. The dynamic pressure is defined as

$$p_{d,l}(\mathbf{x}) = p_l(\mathbf{x}) - \rho_l \mathbf{g} \cdot \mathbf{x},\tag{1}$$

where \mathbf{g} is acceleration due to gravity.

Table 1: Definition of symbols.

Symbol	Definition
a	Sphere radius
$\mathbf{g} = (-9.81 \text{m s}^{-2})\mathbf{\hat{z}}$	Acceleration due to gravity
\mathcal{I}	Surface of interface

l=1,2	Fluid label
m	Outward normal to sphere surface
n	Normal to interface (points into fluid 1)
$p_l(\mathbf{x})$	Pressure field of fluid l
$p_{\mathrm{d},l}(\mathbf{x})$	Dynamic pressure of fluid l
s	Arc length along interface measured from axis
\mathcal{S}	Surface of sphere
$\mathbf{u}_l(\mathbf{x})$	Velocity field of fluid l
\mathcal{V}_l	Volume of fluid l
x	Position vector
$\hat{\mathbf{z}}$	Unit vector in the upward vertical direction
η_l	Viscosity of fluid l
θ	Polar angle with respect to sphere centre
$ ho_l$	Density of fluid l
$ ho_{ m s}$	Sphere density
σ	Interfacial Tension
ϕ	Azimuhtal angle with respect to axis of motion