

CoDeNet: Efficient Deployment of Input-Adaptive Object Detection on Embedded FPGAs

Qijing Jenny Huang*, Dequan Wang*, Zhen Dong*, Yizhao Gao †, Yaohui Cai ‡, Tian Li ‡, Bichen Wu, Kurt Keutzer, John Wawrzynek

University of California, Berkeley

†University of Chinese Academy of Science

‡Peking University

Outline

- Motivation
- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Embedded Computer Vision

Applications

CV Kernels/Tasks

Embedded Platforms

Robots

Drones

Autonomous Vehicles

Security Cameras

Mobile Phones

Image Classification

Object Detection

Semantic Segmentation

Motivation

- Deployment challenges:
 - 1. Inefficient Model Designs
 - 2. Limited compute resources
 - 3. Real-time requirements
- Object detection:
 - More sensitive to spatial variance of objects compared with image classification

Goals

Accuracy

Efficiency

• Codesign **algorithms** and **accelerators** that satisfy embedded system constraints and are pareto-optimal for the accuracy-latency tradeoffs.

Outline

- Motivation
- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Deformable Convolution

 Deformable Convolution is an input-adaptive dynamic operation that samples inputs from variable spatial locations

Outline

- Motivation
- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Algorithm Modification:

0. Original Deformable

Hardware Optimization:

- Preloads weights to on-chip buffer
- Loads input and offsets directly from DRAM

Algorithm Modification:

1. Depthwise Deformable

Accuracy ¹(AP): **42.9**

Hardware Optimization:

Reduce the total MACs

Algorithm Modification:

2. Bounded Range

Accuracy ¹(AP): **41.0**

Hardware Optimization:

 Buffers inputs in the on-chip line buffer to allow spatial reuse

↓ 1.9

Algorithm Modification:

3. Rectangular Shape

Accuracy ¹(AP): **41.1**

Hardware Optimization:

Improves on-chip memory bandwidth

↑ 0.1

I. Algorithm Modifications

- c. Bounded Range restricts the range of offsets
- d. Square Shape limits the geometry to a rectangle shape
- e. Rounded Offsets rounds the fractional offsets to integer
- f. **Depthwise** replaces full conv with 3x3 dw

- More regular access patterns
- More efficient operators

II. Hardware Optimizations

(2) Caching (3) Buffering (4) Parallel Ports

- a. **Baseline** loads input features with dynamic offsets from DRAM directly
- b. **Caching** adds LLC to leverage temporal and spatial locality
- c. **Buffering** uses on-chip BRAM to buffer all inputs from limited range
- d. **Parallel Ports** increases on-chip bandwidth with constrained shape

- Exploit locality
- Exploit on-chip bandwidth

Operation Accuracy

Object Detection Accuracies

Operation Depth	Danthariaa	e Bound	Square	VOC		COCO						
	Depthwise			AP	AP50	AP75	AP	AP50	AP75	APs	APm	APl
3×3			*	39.2	60.8	41.2	21.4	36.5	21.5	7.3	24.1	33.0
3×3	✓			39.1	60.9	40.9	19.8	34.3	19.7	6.3	22.6	31.5
5×5	✓			40.6	62.4	42.6	21.3	36.4	21.3	6.7	23.7	34.2
7×7	✓			41.9	63.8	43.8	21.7	37.2	21.5	6.9	24.0	35.2
9×9	✓			42.3	64.8	44.3				ev.		
deform	✓			42.9	64.4	45.7	23.0	38.4	23.3	6.9	24.4	37.8
deform	✓	✓		41.0	63.0	42.9	21.3	36.4	21.1	7.2	23.6	34.4
deform	✓	✓	✓	41.1	63.1	43.7	21.5	36.8	21.5	6.5	23.7	34.8

5x less compute

< 2 AP change

- 3x3 deformable conv is more efficient than large convolution kernels
- The codesigned deformable conv still achieves good accuracy
 - 1.8 AP difference on Pascal VoC and 1.5 AP difference on COCO

Operation Performance

Hardware Performance

Operation	Original	Deformable	Bound	Square	Without LLC		With LLC	
Operation Original		Delormable	(buffered) (multi-ported)		Latency (ms)	GOPs	Latency (ms)	GOPs
	√				43.1	112.0	41.6	116.2
Full		✓		1.36x	59.0	81.8	42.7	113.1
3×3 Conv		✓	✓	1.50%	43.4	111.5	41.8	115.5
		✓	✓	✓	43.4	111.5	41.8	115.6
	✓				1.9	9.7	2.0	9.6
Depthwise		✓		9.76x	20.5	0.9	17.8	1.1
3×3 Conv		\checkmark	✓	3.70X	3.0	6.2	3.4	5.5
		✓	✓	✓	2.1	9.2	2.3	8.2

1.36× and 9.76× speedup for full and depthwise deformable conv

Outline

- Motivation
- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Building Blocks

Simple building blocks to reduce the hardware complexity

ShuffleNetV2 + CenterNet¹

 Anchor-free detection system to reduce the postprocessing overhead for Non Maximum Suppression (NMS)

Detection Heads

(b) center heatmap (c) width & height

(d) local shift

- The center heatmap
- 2. The object size
- The local offset

Quantization

- Quantize the corresponding weights and activations
- Round and bound the sampling offsets of the deformable convolution

Simplified Operations Types

- 1. 1x1 convolution
- 2. 3x3 depthwise (deformable) convolution
- 3. Quantization
- 4. Split, shuffle, concatenation

Overall Accelerator Architecture

 Dataflow architecture for executing a subgraph of 1x1 conv and 3x3 dw deformable conv

Outline

- Motivation
- Deformable Convolution
- Operation Codesign
- Detection System Codesign
- Results

Experimental Setup

Avnet Ultra96 Board (Xilinx ZU3EG FPGA)

Resource Utilization:

. =	3	┕╵	Н	ı

LUT	FF	BRAM	DSP
34144 (48.4%)	41827 (29.6%)	216 (100%)	360 (100%)

CoDeNet Configurations

Detector	Resolution	DownSample	Weights	Activations	Model Size	MACs	AP50
Tiny-YOLO	416×416	MaxPool	32-bit	32-bit	60.5 MB	3.49 G	57.1
CoDeNet1× (config a)	256×256	Stride4	32-bit	32-bit	6.06 MB	0.29 G	53.0
Cobenctia (coming a)	230×230	Struc4	4-bit	8-bit	0.76 MB	0.29 G	51.1
CoDeNet1× (config b)	256×256	Stride2+MaxPool	32-bit	32-bit	6.06 MB	0.29 G	57.5
CoDenetta (coming b)			4-bit	8-bit	0.76 MB	0.29 G	55.1
CoDeNet1× (config c)	512×512	Stride4	32-bit	32-bit	6.06 MB	1.14 G	64.6
Cobenetia (coming c)			4-bit	8-bit	0.76 MB	1.14 G	61.7
CoDeNet2× (config d)	512×512	Stride4	32-bit	32-bit	23.2 MB	3.54 G	69.6
CoDervetz (coming d)	312×312	Silide4	4-bit	8-bit	2.90 MB	3.54 G	67.1
CoDeNet2× (config e)	512×512	Stride2+MaxPool	32-bit	32-bit	23.2 MB	3.58 G	72.4
CoDervet2x (coming e)	312/312	Striuc2+Waxi 001	4-bit	8-bit	2.90 MB	3.58 G	69.7

- Higher accuracy
- 10x smaller without quantization, 79.6x smaller with quantization

Accuracy-Latency Tradeoff

- 4-bit weights, 8-bit activations
- Batch size 1
- On VOC dataset

Results

	Platform	Input Resolution	Framerate (fps)	Test Dataset	Precision	Accuracy
Finn-R [2] [28]	Ultra96	H	16	VOCAT	w1a3	AP50(50.1)
Tiny-Yolo-v2 [11]	Zynq-706 XC7Z045	224×224	43.1	VOC07	w16a16	AP50(48.5)
Ours (config a)		256×256	32.2			AP50(51.1)
Ours (config b)		256×256	26.9			AP50(55.1)
Ours (config c)	Ultra96	512 × 512	9.3	VOC07	w4a8	AP50(61.7)
Ours (config d)		512×512	5.2			AP50(67.1)
Ours (config e)		512×512	4.6			AP50(69.7)

• Our accelerator both achieves high accuracy (AP50(55.1)) and good framerate (26.9FPS).

Results

	Test Dataset	Precision	Accuracy	Framerate (fps)
FINN-R ¹	VOC07	w1a3	AP50(50.1)	16
Ours (a)			AP50(51.1)	32.2
Ours (b)		w4a8	AP50(55.1)	26.9
Ours (c)	VOC07		AP50(61.7)	9.3
Ours (d)			AP50(67.1)	5.2
Ours (e)			AP50(69.7)	4.6

 Our accelerator both achieves high accuracy (AP50(55.1)) and good framerate (26.9FPS).

Conclusion

Our codesigned input-adaptive object detection pipeline can achieve both high accuracy and good efficiency on embedded FPGAs

Questions?

Email: qijing.huang@berkeley.edu

Access to code:

https://github.com/hqjenny/CoDeNet

Example Sample Distance

Distance Distribution on 5000 images from COCO

