Section 1: natural numbers

We want to *rigorously* go over the calculus material. Before integration and differentiation, we need to describe *numbers*.

We use set theory to describe the set $\mathbb{N} = \{1, 2, 3, \ldots\}^1$ of natural numbers, and their "good" (useful) properties.

¹0 ∉ N

Peano Axioms (Postulates), pp. 1-2 of textbook

- (N1) \mathbb{N} contains a distinguished element 1.
- (N2) Every $n \in \mathbb{N}$ has its *successor* in \mathbb{N} , denoted by $\mathbf{S}(n)$ (the book denotes the successor by n+1).
- (N3) 1 is not a successor of any element of \mathbb{N} .
- (N4) If m and n have the same successor, then m = n.
- **(N5)** If $A \subset \mathbb{N}$ is such that $1 \in A$, and $\mathbf{S}(n) \in A$ whenever $n \in A$, then $A = \mathbb{N}$.

The successor map **S** is injective (can you give a definition of injectivity?).

If
$$S(n) = S(m)$$
, then $n = m$, by (N4).

Is **S** is *surjective*? No: by (N3), no $k \in \mathbb{N}$ satisfies S(k) = 1.

More about Peano Axioms

- **(N1)** \mathbb{N} contains a distinguished element 1.
- (N2) Every $n \in \mathbb{N}$ has its *successor* in \mathbb{N} , denoted by $\mathbf{S}(n)$ (the book denotes the successor by n+1).
- (N3) 1 is not a successor of any element of \mathbb{N} .
- (N4) If m and n have the same successor, then m = n.
- (N5) If $A \subset \mathbb{N}$ is such that $1 \in A$, and $\mathbf{S}(n) \in A$ whenever $n \in A$, then $A = \mathbb{N}$.

What are elements of $\mathbb N$ with no predecessors? 1 is the only one.

- 1 is not a successor of anything.
- Suppose, for the sake of contradiction, that $m \in \mathbb{N} \setminus \{1\}$ has no predecessor. Let $A = \mathbb{N} \setminus \{m\}$. Then (i) $1 \in A$, and (ii) if $n \in A$, then $n+1 \in A$. By (N5), $A = \mathbb{N}$, a contradiction.

Uniqueness of $\mathbb N$

Theorem (Uniqueness of \mathbb{N})

Suppose X is a set with a distinguished element 1' and the successor map \mathbf{S}' , satisfying (N1-5). Then there exists a bijection $\Phi: \mathbb{N} \to X$ so that $\Phi(1) = 1'$, and, for every n, $\Phi(\mathbf{S}(n)) = \mathbf{S}'(\Phi(n))$.

Example of a set *X* satisfying the Peano Axioms.

Let $X = \{0, 1, 2, ...\}$ (non-negative integers), 1' = 0, $\mathbf{S}'(x) = x + 1$. Check: (N1-5) hold.

Define
$$\Phi: \mathbb{N} \to X: n \mapsto n-1$$
. Then $\Phi(1) = 0 = 1'$, and

$$\Phi(S(n)) = S(n) - 1 = (n+1) - 1 = (n-1) + 1 = S'(\Phi(n)).$$

All five Peano Axioms are needed to describe N

Example of a family satisfying (N1-4), failing (N5).

Let $X = \{(a, b) : a \in \mathbb{N}, b \in \{1, 2\}\}.$

Distinguished element: $\mathbf{1} = (1, 1)$.

Successor map: (a, b) + 1 := (a + 1, b).

 $A = \{(a,1) : a \in \mathbb{N}\}$ contains $\mathbf{1}$, and $n \in A \Rightarrow n+1 \in A$.

However, $A \neq X$. So, (N5) fails; you can check that the other four axioms hold.

Mathematical induction: theory

Theorem (Principle of mathematical induction)

Suppose $(P_n)_{n\in\mathbb{N}}$ is a list of statements, and

- \bullet P_1 is true.
- ② If $n \in \mathbb{N}$, and P_n is true, then P_{n+1} is true.

Then P_n is true for any $n \in \mathbb{N}$.

Proof. Let $A = \{n \in \mathbb{N} : P_n \text{ holds } \}$. Then (1) $1 \in A$, and (2) if $n \in A$, then $n + 1 \in A$. By (N5), $A = \mathbb{N}$.

Mathematical induction: algorithm (from Section 1)

Algorithm for proving P_1, P_2, \ldots by induction:

- **1** Basis for induction: prove that P_1 holds.
- ② Induction step: if $n \in \mathbb{N}$, and P_n [the induction hypothesis] holds, then P_{n+1} holds as well.

Then P_n holds for any $n \in \mathbb{N}$.

Example. Prove that, for any
$$n \in \mathbb{N}$$
, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

Notation:
$$\sum_{k=1}^{n} k = 1 + 2 + \ldots + n$$
.

We can use Peano Axioms to define addition (won't do this, for lack of time).

Prove: for any
$$n \in \mathbb{N}$$
, $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

Proof by induction.
$$P_n$$
 states that " $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$."

Basis for induction. We need to verify P_1 . This is easy: $1=\frac{1(1+1)}{2}$.

Induction step. We need to show that, if $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$, then $\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}$.

$$\sum_{k=1}^{n+1} k = \frac{(n+1)(n+2)}{2}.$$

$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1), \text{ hence, by the induction hypothesis,}$$

$$\sum_{k=1}^{n+1} k = \frac{n(n+1)}{2} + (n+1) = (n+1) \left(\frac{n}{2} + 1\right) = \frac{(n+1)(n+2)}{2},$$
just as we wanted.

Math 447: natural numbers

Another example of mathematical induction

Prove that, for any $n \in \mathbb{N}$, $5 \mid 6^n - 1$.

a | b means "a divides b."

Proof. Use induction; P_n reads "5 | $6^n - 1$."

Basis for induction. Verify P_1 : 5 divides $6^1 - 1 = 5$.

Induction step. Show that, if $5 \mid 6^n - 1$ (this is our induction hypothesis), then $5 \mid 6^{n+1} - 1$.

Need to connect $6^{n+1} - 1$ with $6^n - 1$.

Write $6^{n+1} - 1 = 6 \cdot 6^n - 1 = 6(6^n - 1) + 5$.

If $5 | 6^n - 1$, then $5 | 6(6^n - 1) + 5$.

The set \mathbb{Z} of integers (Section 2)

This topic will be covered in the next lecture

We are not trying to *construct* \mathbb{Z} from \mathbb{N} ; however, we *describe* properties of \mathbb{Z} .

Addition: an operation $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, and $\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$.

Properties of addition on ${\mathbb Z}$

- (A1) Associativity: for $a, b, c \in \mathbb{Z}$, a + (b + c) = (a + b) + c.
- (A2) Commutativity: for $a, b \in \mathbb{Z}$, a + b = b + a.
- (A3) Existence of neutral element: \exists element $0 \in \mathbb{Z}$ s.t. 0 + a = a $\forall a \in \mathbb{Z}$.
- (A4) Existence of opposite: $\forall a \in \mathbb{Z} \exists x \in \mathbb{Z} \text{ s.t. } a + x = 0 \text{ (this } x \text{ is denoted by } -a).$

Why is \mathbb{Z} better than \mathbb{N} ?

Properties of addition on $\ensuremath{\mathbb{Z}}$

- (A1) Associativity: for $a, b, c \in \mathbb{Z}$, a + (b + c) = (a + b) + c.
- (A2) Commutativity: for $a, b \in \mathbb{Z}$, a + b = b + a.
- (A3) Existence of neutral element: \exists element $0 \in \mathbb{Z}$ s.t. 0 + a = a $\forall a \in \mathbb{Z}$.
- (A4) Existence of opposite: $\forall a \in \mathbb{Z} \exists x \in \mathbb{Z} \text{ s.t. } a + x = 0 \text{ (this } x \text{ is denoted by } -a).$
- (A1), (A2) hold for $\mathbb N$ as well. However, (A3), (A4) fail for $\mathbb N$.
- \mathbb{Z} is "better" than \mathbb{N} .

If $+: S \times S \to S$ satisfies (A1-4), then (S, +, 0) is called an abelian (commutative) group.

Examples of abelian groups: $(\mathbb{Z},+,0)$, $(\mathbb{Q},+,0)$, $(\mathbb{R},+,0)$.

Uniqueness of 0 and -a; subtraction

Observation. The neutral element is unique.

Proof. If
$$0,0'$$
 are neutral elements, then $0 = 0 + 0' = 0'$.

Observation. For $a \in \mathbb{Z}$, its opposite -a is unique.

Proof. Suppose
$$a + x = 0 = a + x'$$
. Then $x = x + 0 = x + (a + x') = (x + a) + x' = 0 + x' = x'$.

Observation. For $a, b \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ s.t. a + x = b. We denote this x by b - a.

Proof. (1) Existence. Take
$$x = b + (-a)$$
, then $x + a = (b + (-a)) + a = b + ((-a) + a) = b + 0 = b$.

(2) Uniqueness. If
$$a + x = b$$
, then $(a + x) + (-a) = b + (-a)$.

LHS =
$$(x + a) + (-a) = x + (a + (-a)) = x + 0 = x$$
, so $x = b + (-a)$.

 \mathbb{N} has only addition, but no subtraction, due to the lack of (A3-4).