Topic 1: The Linux Community and a Career in Open Source

1.1 Linux Evolution and Popular Operating Systems

• Linux Distributions:

- Debian: A stable and versatile Linux distribution that forms the base for other distributions like Ubuntu.
- Ubuntu (LTS): A popular, user-friendly Linux distro derived from Debian, focused on long-term support releases.
- o CentOS: Community version of Red Hat Enterprise Linux, known for stability.
- Red Hat: A commercial distribution widely used in enterprise environments.
- openSUSE and SUSE: Open-source and enterprise-focused distributions, respectively.
- o Linux Mint: Designed for ease of use and derived from Ubuntu/Debian.
- Scientific Linux: Tailored for scientific and academic use.
- o OpenSUSE

• Embedded Systems:

- Raspberry Pi: A small, affordable computing platform for learning and experimentation.
- Raspbian (now Raspberry Pi OS): A Debian-based OS optimized for Raspberry Pi hardware.
- Android: A Linux-based operating system for mobile and embedded devices.

• Linux in the Cloud:

- o Dominates cloud computing due to scalability, flexibility, and open-source nature.
- Popular in major cloud platforms like AWS, Azure, and Google Cloud.

1.2 Major Open Source Applications

- Desktop Applications:
 - LibreOffice: Office suite for word processing, spreadsheets, and presentations.
 - Thunderbird:
 - Email client with calendar and task integration.
 - Access and manage emails here
 - Replacement for Microsoft Outlook
 - Firefox: A widely-used open-source web browser.
 - Can be opened using the command: firefox
 - GIMP: Advanced image editing software, an open-source alternative to Photoshop.
 - VLC: Media Player for video and music files
 - Impress: Replacement for Microsoft Powerpoint
 - PostFix: Mail transfer service

- Inkscape: A vector graphics editor that can handle graphical line drawings.
- o wnCloud: self hosting file service
- Server Applications:
 - Apache HTTPD and NGINX: Leading web servers used to host websites.
 - Listens for network requests and responds to them
 - MariaDB and MySQL: Popular database management systems for web applications.
 - o Samba: Used for file sharing between Linux and Windows systems.
- Development Languages:
 - Popular programming languages supported on Linux: C, Java, Python, PHP, Perl, and shell scripting.
- Package Management Tools:
 - o dpkg and apt-get: For managing Debian-based distributions like Ubuntu.
 - o rpm and yum: For managing Red Hat-based distributions like CentOS.

1.3 Open Source Software and Licensing

- Open Source Philosophy:
 - Encourages collaboration, transparency, and community-driven development.
- Open Source Licensing:
 - o Copyleft: Requires derivative works to be open-sourced (e.g., GPL).
 - General Public License (GPL) guarantees users the freedom to run, study, share, and modify the software
 - Permissive: Allows proprietary code use (e.g., BSD, MIT licenses).
 - Free Software License: Gives conditions for modifying and distributing the licensed software
- Organizations:
 - Free Software Foundation (FSF): Advocates for free software.
 - Open Source Initiative (OSI): Promotes and protects open-source software.
- Value Proposition
 - Security
 - Affordability
 - Transparency
 - Interoperability
 - Scalability
 - Localization
- Key Terms:
 - FOSS (Free and Open Source Software): Software that is free to use, modify, and distribute
 - FLOSS (Free/Libre Open Source Software): Highlights both "free as in freedom"
 and "free as in no cost."

1.4 ICT Skills and Working in Linux

- Desktop Skills:
 - Using browsers, managing privacy settings, and saving web content.
 - Private Browsing History is not stored locally
 - Creating documents and presentations with open-source tools like LibreOffice.
- Command Line Skills:
 - Navigating and executing commands in the terminal.
 - Understanding password and privacy tools.
- Industry Uses of Linux:
 - Widely used in cloud computing for scalability and cost-effectiveness.
 - o Supports virtualization technologies like Docker and Kubernetes.
- Terms
 - o tty
- The UNix name for a physical or virtual terminal connection
- Desktop Environments
 - o a graphical user interface (GUI) that provides a visual way for users to interact with the Linux operating system
 - o Popular Ones Include:
 - Cinnamon, Gnome, KDE, XFCE, Unity, and Mate
- Virtual Appliance
 - A pre-integrated, self contained system that is made by combining a software application with just enough OS for it to run optimally on industry standard hardware or a virtual machine.

Topic 2: Finding Your Way on a Linux System

2.1 Command Line Basics

- Basic Shell:
 - The bash shell is the most common command-line interface for Linux systems.
- Command Line Syntax:
 - Commands follow a format of <command> [options] [arguments].
- Variables
 - Follow the format of:
 - variable name = \$(command)
 - Or
 - variable name = 'command'
- Environment Variables (MUST BE IN CAPS):
 - PATH: Specifies directories where the system looks for executables.

- Allows for commands to be executed without knowing where they are located
- o export: Adds or modifies environment variables.
- Quoting:
 - Use " " (double quotes) to preserve spaces but allow variable expansion.
 - Use '' (single quotes) to preserve literal text.
 - Use \ (backslash) to escape special characters.
- Grep
 - Character Classes with Square Brackets []
 - Match specific characters:
 - Example: [aeiou] matches any vowel.
 - Character ranges:
 - [a-z]: Matches any lowercase letter.
 - [A-Z]: Matches any uppercase letter.
 - [0-9]: Matches any digit.
 - [A-Za-z0-9]: Matches alphanumeric characters.
 - Negation:
 - [^xyz]: Matches any character except x, y, or z.
 - Regular Expressions
 - Basic Regular Expressions (BRE)
 - Anchors:
 - ^: Matches the start of a line.
 - Example: grep '^Hello' filename
 - \$: Matches the end of a line.
 - Example: grep 'world\$' filename
 - Dot .:
 - Matches any single character.
 - Example: grep 'h.t' filename matches hat, hot, etc.
 - Asterisk *:
 - Matches zero or more occurrences of the preceding character.
 - Example: grep 'lo*ng' filename matches lng, long, loooong.
 - Escape Sequences \:
 - Used to interpret special characters literally.
 - Example: grep '\\$50' filename matches \$50.
 - Extended Regular Expressions (ERE)
 - Enable with grep -E or egrep.
 - Or |:
 - Matches one pattern or another.

- Example: grep -E 'cat|dog' filename
- Parentheses ():
 - o Group patterns.
 - Example: grep -E '(cat|dog)s?' matches cat, cats, dog, or dogs.
- Plus +:
 - Matches one or more occurrences of the preceding character.
 - Example: grep -E 'go+gle' filename matches gogle, google, etc.
- Question Mark ?:
 - Matches zero or one occurrence of the preceding character
 - Example: grep -E 'colou?r' filename
 - matches color and colour.
- Fixed-String Search
 - Use grep -F or fgrep to search for patterns as is (no regex interpretation)
 - Example: grep -F '[abc]' filename matches the literal [abc]
- Case Sensitivity
 - Ignore case:
 - o Use grep -i
 - Example: grep -i 'pattern' filename
- Whole Word Search
 - Use grep -w to match only whole words
 - Example: grep -w 'word' filename
- Line Numbers and Context
 - Show line numbers:
 - Use grep -n.
 - Example: grep -n 'pattern' filename.
 - Show surrounding lines (context):
 - -A N: Show N lines after the match.
 - o -B N: Show N lines before the match.
 - -C N: Show N lines before and after the match.
 - Example: grep -C 2 'pattern' filename.
- Inverted Search
 - Use grep -v to exclude lines matching the pattern.
 - Example: grep -v 'error' filename.
- Count Matches
 - Use grep -c to count lines that match the pattern.
 - o Example: grep -c 'pattern' filename.

- Match Only Entire Lines
 - Use grep -x to match lines where the entire line matches the pattern.
 - Example: grep -x 'complete line' filename.
- File Names
 - Search recursively:
 - Use grep -r to search in files within a directory recursively.
 - Example: grep -r 'pattern' /path/to/directory.
 - Show only file names:
 - Use grep -1.
 - Example: grep -l 'pattern' filename.
- Binary Files
 - Search binary files:
 - Use grep --binary-files=text.
 - Example: grep --binary-files=text 'pattern' binaryfile.
 - Suppress binary output:
 - Use grep -I.
 - Example: grep -I 'pattern' filename.
- Additional Options
 - Word Boundaries:
 - \circ Use \vee and \triangleright to match the beginning and end of a word.
 - Example: grep '\<word\>' filename.
 - Quiet Mode:
 - Use grep -q to suppress output and return exit status only.
 - -c to clear a users history

2.2 Using the Command Line to Get Help

- Help Systems:
 - o man: Manual pages for detailed documentation of commands.
 - Have a Name, Config. and Return value section
 - man Options
 - -k <keywork>
 - o search all man pages for keyword
 - o info: Provides more detailed and structured documentation.
 - o locate: Quickly finds files by name on the system.
 - which: searches for executable programs or scripts located in the PATH variable
 - o /usr/share/doc/: Directory containing system documentation.
 - whereis: lets users locate the executable, source, and man page files for any command

o apropos: searches man page names and description for a user supplied keyword

2.3 Using Directories and Listing Files

- Files and Directories:
 - Files and directories are case-sensitive in Linux.
 - Hidden files: Start with a dot (.), viewable with ls -a.
 - Hidden files are created by adding a "." before the filename
 - Example
 - o example.txt -> .example.txt
- Home Directories:
 - Each user has a home directory (e.g., /home/username).
 - Shortcut: ~ represents the home directory.
- Navigation:
 - o cd: Changes the current directory.
 - o . and ..: Represent the current and parent directories, respectively.
- Listing Files:
 - o ls: Lists files and directories.
 - Common options: -l for long format, -a for hidden files, -R for recursive listings.

2.4 Creating, Moving, and Deleting Files

- File Operations:
 - o mv: Moves or * renames files *
 - o cp: Copies files.
 - o rm: Deletes files.
 - o touch: Creates an empty file.
- Directory Operations:
 - o mkdir: Creates directories.
 - o rmdir: Removes empty directories.
- Key Features:
 - File and directory names are case-sensitive.
 - Use globbing (e.g., *, ?) for pattern matching.
 - ? is used to represent a single character before or after its appearance
 - * is used to represent any amount of character before of after its appearance

Topic 3: The Power of the Command Line

3.1 Archiving Files on the Command Line

• Files and Directories:

- o Archiving allows grouping multiple files into one for easy storage or transfer.
- Common Tools:
 - o tar: Creates archive files.
 - Common options:
 - -c: Create an archive.
 - **-**x: Extract an archive.
 - -v: Verbose output (shows progress).
 - -f: Specify the file name for the archive.
 - Example: tar -cvf archive.tar file1 file2.
 - Compression Tools:
 - gzip, bzip2, xz: Compress archives.
 - Gzip
 - Bzip2 Used to compress a single file using the Burrows Wheeler algorithm
 - zip/unzip: Compress and extract files in .zip format.

3.2 Searching and Extracting Data from Files

- Search Tools:
 - o grep: Searches for patterns in files.
 - Example: grep "pattern" file.txt.
 - o cat: allows the creation of single or multiple files, view file contents, concatenate files, and redirect output in the terminal to a file.
 - o less, head, tail: Display file contents with control over what to view.
 - Less
 - Head
 - Tail
- -c to print the last X bytes of a file to the screen
- Sorting and Extracting:
 - o sort: Sorts file content line by line.
 - o cut: Extracts specified columns or fields from a file.
 - o wc: Counts words, lines, and characters in a file.
- Regular Expressions (Regex):
 - Used for pattern matching.
 - Examples:
 - .: Matches any character.
 - []: Matches a set of characters.
 - *: Matches zero or more repetitions.
 - ?: Matches zero or one repetition.
- Redirection using >
 - Happens first so:

- sort data.txt > data.txt
 - Will not return anything because the file text is transferred to the new file already

3.3 Turning Commands into a Script

- Shell Scripting Basics:
 - A script automates repetitive command-line tasks.
 - Start scripts with a shebang (#!) to specify the interpreter (e.g., #!/bin/bash).
- Key Elements:
 - Variables: Store values for reuse.
 - Example: name="Linux".
 - Arguments: Passed to scripts using \$1, \$2, etc.
 - \$1 would be the first command line argument
 - \$2 would be the second command line argument
 - Loops: Automate repetitive actions.
 - o STD
 - STDIN is represented by the file descriptor number 0
 - STDOUT is represented by the file descriptor number 1
 - STDERR is represented by the file descriptor number 2
 - o \d
- Option to add the date to the prompt in the shell
- Discarding errors from command output
 - command >file 2>/dev/null
 - 2 represents the error descriptor, where errors are written to
 - > redirects it to the right, which is /dev/null, the standard Linux device where you send output that you want to be ignored
 - 2>&1 redirects the standard output and standard error to the same file
- Text Editors:
 - o vi and nano: Common editors for writing scripts.
- Exit Status:
 - Scripts return an exit code (0 for success, non-zero for errors).

Topic 4: The Linux Operating System

4.1 Choosing an Operating System

- Operating Systems:
 - Windows: Proprietary, GUI-focused, limited CLI usage.
 - o macOS: Unix-based, GUI-focused, designed for Apple hardware.
 - Linux: Open-source, CLI and GUI support, versatile and customizable.
- Distribution Life Cycle:

- o Includes beta versions, stable releases, and end-of-life (EOL) cycles.
- GUI vs CLI:
 - o GUI: User-friendly interface with graphical elements.
 - o CLI: Efficient for advanced users, automation, and scripting.

C

- Relevant Files, Terms, Utilities:
 - o GUI vs CLI, lifecycle management.

4.2 Understanding Computer Hardware

- Key Components:
 - Motherboard: Connects all hardware components.
 - o Processor (CPU): Executes instructions and processes data.
 - Memory (RAM): Stores data temporarily for fast access.
 - o Storage:
 - HDD: Large-capacity magnetic storage.
 - SSD: Faster, solid-state storage.
 - Partitions: Logical divisions of storage devices (/dev/sd*).
 - Partitions on these disks can range from 1 (for the first partition) to 16 (for the sixteenth partition). If you have a few ide/pata devices installed in a system, they will be hda (the first device), hdb (the second device), hdc (the third device), and so on. Each partition on that device will append a number to it, so the second partition on the first device would be /dev/hda2.
 - Modern software uses sda, sdb since HDDs are outdated
 - Optical Drives
 - CD 700MB
 - DVD 4.7GB
- Peripherals:
 - Input/output devices like keyboards, mice, and monitors.
- Drivers:
 - o Software that allows the OS to interact with hardware.
- Architecture
 - Know what version of Linux to be installed with hardware
 - \blacksquare 32 Bit = x86
 - uses 4GB RAM max
 - 64 Bit = x64

4.3 Where Data is Stored

- Storage Locations:
 - o Programs and Configuration:

- /etc/
 - Stores config files in a Linux system
- /usr/bin/
- Processes:
 - /proc/
 - The /proc tree originated in System V Unix, where it only gave information about each running process, using a /proc/\$PID/stuff scheme. Linux greatly extended that, adding all sorts of information about the running kernel's status. The intended purpose for the /proc virtual filesystem is to provide an interface into the kernel and its processes.
 - /sys/
 - Interacts with the kernel and system as a whole
- o Logs:
 - /var/log/, accessed with tools like syslog or dmesg.
 - syslog: system logs
 - dmesg: kernel logs
 - o "kernel ring buffer"
- Kernels and Drivers
 - /boot
 - The /boot directory contains the kernel, its associated files, and its needed drivers to boot up the operating system during the startup process.
- Memory Information: ps, top, free
 - Ps (Process Status) shows top processes running on the system
 - Top Provides a real-time, dynamic view of system processes.
 - Free show memory usage
- Optical Media
 - ISO File System (isofs) is the file system for optical disc media

4.4 Your Computer on the Network

- Networking Basics:
 - LAN: Local Area Network connects devices within a small area.
 - DNS: Resolves domain names to IP addresses.
 - IPv4 and IPv6: Internet protocols for addressing devices.
 - DHCP: automatic IP addressing
 - Manual, Automatic, and Dynamic are the 3 mechanisms
 - TCP/IP
 - Set of networking protocols that allows two or more computers to communicate

- Networking Commands:
 - o ping: Checks connectivity to another device.
 - o netstat/ss: Shows network connections and ports.
 - o ifconfig/ip addr show: Displays network interface configurations.
 - lo is the loopback interface and is always present
 - Config files: /etc/resolv.conf (DNS), /etc/hosts.
 - Route: used to show/manipulate the IP routing table

Topic 5: Security and File Permissions

5.1 Basic Security and Identifying User Types

- User Types:
 - o Root User:
 - The superuser with unrestricted access to the system.
 - Used sparingly for administrative tasks.
 - Represented by the GID of 0
 - Standard Users:
 - Regular users with limited access to system resources.
 - Begin at UID 1000 and increment by 1 for each additional user.
 - System Users:
 - Non-login accounts used by system services.
- Key Files:
 - o /etc/passwd: Stores user account information.
 - "Defines all users on a linux system"
 - /etc/shadow: Stores encrypted user passwords.
 - The last 6 fields provide password aging and account lockout features
 - o /etc/group: Lists group memberships.
- Commands:
 - o id: Displays user ID, group ID, and group memberships.
 - o last: Shows the last login of users.
 - root tty2 Wed Sep 29 21:11 21:11 (00:00)
 - o who: Displays currently logged-in users.
 - w: displays more info about logged on users and what they are doing
- Privilege Elevation:
 - o sudo: Runs commands as another user (typically root).
 - o su: Switches to another user account.

5.2 Creating Users and Groups

- User and Group Management:
 - Users and groups allow controlled access to system resources.

• Key Files:

- o /etc/passwd: Stores user account details.
- o /etc/shadow: Contains password and expiration information.
- o /etc/group: Lists group memberships.
- o /etc/skel/: Template directory for creating new user home directories.

• Commands:

- o useradd: Creates a new user.
 - -d to specify the users home directory location instead of using the default
 - -m to create a user without a home directory
- o groupadd: Creates a new group.
- o passwd: Sets or changes user passwords.
- o chgrp to change group ownership of a file
- o chown to change the owner of a file
- o chmod to change permissions of UGO to a file

5.3 Managing File Permissions and Ownership

- File Permissions:
 - o Permissions determine who can read, write, or execute a file.
 - Represented as rwx (read, write, execute).
 - Example: -rwxr-xr--
 - Owner: rwx (read, write, execute).
 - Group: r-x (read, execute).
 - Others: r-- (read only).
 - Rwt
 - Indicates that the directory is globally writable, but only the owner can delete their own files within the directory
 - Use umask to change the default permissions for files and directories at the time of creation
- Ownership:
 - Each file has an owner and group.
 - Commands:
 - ls -l: Displays file permissions and ownership.
 - chmod: Changes file permissions.
 - chown: Changes file ownership.

5.4 Special Directories and Files

- Special Directories:
 - o /tmp/ and /var/tmp/:
 - Temporary directories for storing files.
 - /tmp/ is cleared upon reboot, while /var/tmp/ persists across reboots.

- Special Permissions:
 - o Sticky Bit:
 - Applied to directories to restrict file deletion to the owner.
 - Example: chmod +t /tmp/.
- Symbolic Links:
 - Shortcuts or pointers to other files or directories.
 - Command: In -s target link_name. file to the screen at once

1st Attempt Notes

- To remove a directory
 - rm -r
 - rmdir
- Study tar a little bit more
 - Create a compressed archive
 - tar -cf archive name.tar files to include
 - Extract an archive:
 - tar -xf archive.tar
- Where does Linux store its documentation, usage, and example files?
 - /usr/share/doc
- How to get more info on how to use a command in Linux?
 - info command
 - command -help
 - man command
 - apropos command
- If someone has experience with Red hat linux enterprise but does not want to pay for the license, what is the closest free alternative to it?
 - CentOS
 - Fedora
 - Oracle Linux
 - Debian
- What is the default package manager on RHEL?
 - yum/dnf
 - Rpm (Low Level)
- Root User is what UID?
 - 0
- Understanding the rwx permissions
 - First letter
 - D for directory
 - "-" for file
 - Last letter

- T instead of X means it's sticky
 - Only the owner of the directory can delete or modify files within the directory
- What is used to resolve DNS queries
 - Host
- Where do you find config files?
 - /etc
- What is dmesg
 - Shows kernel log messages
 - A command on most Unix-like OS that prints the message buffer of the kernel
 - Contains messages produced by the device drivers and serves to show the kernel's log messages to the screen
- Understand common Linux Apps
 - Thunderbird
 - Mail client
 - Apache
 - Web server
 - GIMP
 - Image manipulation
 - Postfix
 - Mail Server
 - Routes and delivers electronic mail
- How do you split long commands in the Linux terminal?

_ \

- Two extensions to use tar on?
 - -bz2+gz

_