Лабораторная работа №2

Задание 1

Представлено в пяти вариантах. Везде требуется найти оценку указанным методом, смещение, дисперсию, среднеквадратическую ошибку и указать свойства оценок. Также провести эксперимент при указанных параметрах по следующей схеме:

- 1. Задайте массив объемов выборки
- 2. Для каждого объема выборки n сгенерируйте m выборок из вашего распределения и для каждой сгенерированной выборки посчитайте оценку параметра согласно полученной формуле
- 3. Обработайте результаты (посчитайте выборочные характеристики для разницы между оценкой и реальным параметром для каждого объема выборки, количество выборок, для которых оценка отличается от реального параметра более чем на заданный вами порог и т.п.), визуализируйте результат.

Сами варианты:

- 1. Методом моментов найти оценку параметра θ равномерного распределения на $[-\theta, \theta]$. Эксперимент при $\theta = 10$. Подсказка: в зависимости от выбранной функции g(x) можно оценить не θ , а θ^2 (и написать выкладки относительно оцениваемой функции θ^2).
- 2. Методом моментов найти оценку квадрата масштабирующего параметра θ распределения Лапласа (сдвиг считать нулевым). Эксперимент при $\theta=0.5$. Указание: для плотности используйте параметризацию $f_{\theta}(x)=\frac{1}{2\theta}\exp\{-\frac{|x|}{\theta}\}$.
- 3. Методом максимального правдоподобия найти оценку параметра θ биномиального распределения $Bin(m,\theta)$, считая m известным. Эксперимент при m=4, $\theta=1/5$.
- 4. Найти оценку максимального правдоподобия параметра θ для распределения с плотностью

$$f_{\theta}(x) = \frac{3x^2}{\sqrt{2\pi}} \exp\left(-\frac{(\theta - x^3)^2}{2}\right).$$

Эксперимент при $\theta = 5$. **Подсказка**: здесь распределение не стандартное, так что имеет смысли генерировать величины по схеме $X = F^{-1}(Y)$, где $U \sim U[0,1]$, F^{-1} – обратная к функции распределения (в данном случае она выражается через квантильную функцию стандартного нормального закона и арифметические операции).

5. С помощью метода моментов найти оценку параметра θ распределения с плотностью

$$f_{\theta}(x) = \frac{1}{(k-1)!\theta^k} x^{k-1} e^{-x/\theta} \mathbb{1}(x>0),$$

если $k \in \mathbb{N}$ – известный параметр. Эксперимент при $\theta = 2, k = 3.$

Задание 2

Найдите байесовскую оценку параметра θ (относительно среднеквадратической ошибки). Проведите эксперимент по схожей схеме, что и в предыдущей задаче.

Сами варианты (сначала указывается семейство распределений для выборки, затем – априорное распределение параметра, в конце – значения параметров для эксперимента):

1.
$$\mathcal{N}(\theta, b^2)$$
; $\mathcal{N}(\mu, \sigma^2)$; $\mu = 0, b = \sigma = 1$.

- 2. $Pois(\theta); \Gamma(k,\lambda), \lambda > 0, k \in \mathbb{N}$ (при решении явно указывайте используемую параметризацию); $\alpha = k = 1$.
- 3. Geom (θ) ; Be(a, b), a, b > 0; a = b = 1.
- 4. $\exp(\theta); \ \Gamma(k,\lambda), \ \lambda > 0, \ k \in \mathbb{N}$ (при решении явно указывайте используемую параметризацию); $k = \lambda = 1$.