

طراحی جمع کننده ۲۰-بیتی انتخابگرنقلی $^{\ \prime}$ مفروض است (طول طبقات میتواند متفاوت باشد و هزینه d گیت را d فرض کنید).

به فیلم ضمیمه شده مراجعه شود

۱. اعداد ۳ بیتی دودویی بدون علامت $A=a_2a_1a_0$ و $B=b_2b_1b_0$ و $B=a_2a_1a_0$ مفروضاند. خروجی مدار زیر کدام است؟ برای پاسخ خود دلیل بیاورید.

گزینه ۳

 $D = d_2 d_1 d_0 > 3$ يس اگر $d_2 = 1$ يعنى اگر

$$S = 2A + 2B + 2$$

و در غير اينصورت:

$$S = 2A + 2B$$

۲. فرض کنید قرار است ۱۵ عدد ۳۲بیتی را با استفاده از تعدادی جمع کننده ی ذخیره کننده ی نقلی و یک جمع کننده ی آبشاری در مرحله ی آخر جمع کنیم. تاخیر و هزینه ی این مدار را محاسبه کنید. همچنین مشخص کنید که جمع کننده ی آبشاری مرحله ی آخر چند بیتی خواهد بود.

با تشکر از خانم اویار حسینی

¹ Carry select adder

² 32-bit carry save adder

³ Ripple adder

۳. فرض کنید در جمع کننده پیشبینی کننده ی رقم نقلی^۱، تاخیر تولید ارقام نقلی برابر ۱۰۰ نانوثانیه باشد و همچنین هر تمام جمع کننده ۵ دارای تاخیر ۵۰ نانوثانیه است. برای جمع دو عدد چهاربیتی تاخیر جمع - کننده آبشاری^۱ و جمع کننده پیشبینی کننده رقم نقلی را به دست بیاورید.

⁴ Carry look-ahead adder

⁵ Full adder

⁶ Ripple adder