OM-S20-17: Duality - I

C. V. Jawahar

IIIT Hyderabad

http://preon.iiit.ac.in/om_quiz

13 Mar 2020

Introductory Example

$$Z = \min 6x_1 + 4x_2 + 2x_3$$

Subject to:

$$4x_1 + 2x_2 + x_3 \ge 5$$

 $x_1 + x_2 \ge 3$
 $x_2 + x_3 \ge 4$
 $x_i \ge 0, \ \forall i = 1, 2, 3.$

- $6x_1 + 4x_2 + 2x_3 \ge 4x_1 + 2x_2 + x_3 \ge 5$.
- $6x_1 + 4x_2 + 2x_3 \ge (4x_1 + 2x_2 + x_3) + (x_1 + x_2) \ge 5 + 3 = 8$.
- $6x_1 + 4x_2 + 2x_3 \ge (4x_1 + 2x_2 + x_3) + 2(x_1 + x_2) \ge 5 + 2 \cdot 3 = 11.$
- $6x_1+4x_2+2x_3 \ge (4x_1+2x_2+x_3)+(x_1+x_2)+(x_2+x_3) \ge 5+3+4=12.$

Receipie for Creating Dual Problems

PRIMAL	DUAL
$X_1, X_2,, X_n$	<i>y</i> ₁ , <i>y</i> ₂ ,, <i>y</i> _{<i>m</i>}
A	A^T
b	С
С	b
Max c [™] X	Min b ^T Y
<u>≤</u> <u>≥</u> =	$y_i \geq 0$
<u> </u>	$y_i \leq 0$
=	$y_i \in R$
$x_j \geq 0$	j^{th} constraint \geq
$x_j \leq 0$	j^{th} constraint \leq
$x_j \in \mathbf{R}$	j th constraint =

Examples/Problems

$$x_1 + 2x_2 \le 2$$

 $2x_1 + x_2 \le 2$
 $x_1 \ge 0; x_2 \ge 0$

What is the primal and dual optima?

2 $\min x_1 - x_2$ Subject to:

$$2x_1 + 3x_2 - x_3 + x_4 \le 0$$
$$3x_1 + x_2 + 4x_3 - 2x_4 \ge 3$$
$$-x_1 - x_2 + 2x_3 + x_4 = 6$$
$$x_1 \le 0; x_2, x_3 \ge 0; x_4 \in R$$

Diet problem

• n food and m nutritions. Problem: Find a healthy diet of minimum cost. A is $m \times n$

$$\min c^T x$$

Subject to

$$Ax \le b$$
; and $x \ge 0$

 Assume pills-seller has a way of supplying the nutrients directly. Seller wants to charge as much as he can for the nutrients. To be competitive with normal foods, the equivalent in pills of a food must cost less than the cost of the food.

$$\max b^T y$$

Subject to:

$$A^T y \leq c$$
 and $y \geq 0$

MaxFlow-MinCut

$$\begin{array}{lll} \textit{Max} & \textit{x}_{\textit{su}} + \textit{x}_{\textit{sv}} \\ \textit{s.t} & \textit{x}_{\textit{su}} + 0 + 0 + 0 + 0 \leq 10 \\ & 0 + \textit{x}_{\textit{sv}} + 0 + 0 + 0 \leq 5 \\ & 0 + 0 + \textit{x}_{\textit{uv}} + 0 + 0 \leq 15 \\ & 0 + 0 + x_{\textit{uv}} + 0 + 0 \leq 15 \\ & 0 + 0 + 0 + x_{\textit{ut}} + 0 \leq 5 \\ & 0 + 0 + 0 + 0 + x_{\textit{vt}} \leq 10 \\ & \textit{x}_{\textit{su}} - \textit{x}_{\textit{uv}} - \textit{x}_{\textit{ut}} = 0 \\ & \textit{x}_{\textit{sv}} + \textit{x}_{\textit{uv}} - \textit{x}_{\textit{vt}} = 0 \\ & \textit{x}_{\textit{sv}} + \textit{x}_{\textit{uv}} - \textit{x}_{\textit{vt}} = 0 \\ & \textit{y}_{\textit{i}} \geq 0 \\ & \textit{u}_{\textit{i}} \in \mathbf{R} \end{array}$$

 u_u is 1 if u is in the cut with set S and 0 otherwise. Similarly u_v is a variable for vertex v.