Comparison of Catalogs

Table of contents

Γhe data	2
How are we going to compare the data?	2
Scatter plots and R^2 calculation	2
Comparable data	3
Coordinates	3
Right Ascension	4
Declination	4
Distance	5
Velocities	5
Heliocentric radial Velocity	6
Scatter Grid	7
Heatmap	8
Morphology and Geometry	8
Galaxy Types	9
Inclination	11
Major Axis	12
Luminosities	13
Magnitudes	14
-	15
	15
	16
•	17
	18
	18
	20
•	20
	22
	22

Stellar Masses Comparison																23
${\rm Heatmap} $																24
Plot Grid \dots																25
Density Grid																26

The data

In this script we will compare 2 catalogs Kovlakas et al. (2021) and Karachentsev and Kaisina (2013)

- The data have been joined based on their position in the sky (Ra, Dec, Distance).
- We use TOPCAT to create two joins, an inner and an outer join
- We will use the inner join for 1-1 comparisons
- If we see that the data are similar we can use the outer join

The dataset we are going to use consists of 296 galaxies and 168 columns.

How are we going to compare the data?

Scatter plots and \mathbb{R}^2 calculation

- 1. R^2 : Measures the proportion of variance explained by the linear model.
- 2. Slope of the Fitted Line: Should be close to 1 for a 1-1 correlation.¹
- 3. Pearson Correlation ρ : Measures the strength and direction of the linear relationship between two variables, ranging from -1 to 1. ²
- 4. <u>Plots</u>: Plots are essential for visually assessing the relationship between two datasets, identifying correlations, trends, and outliers, and evaluating the fit of linear models.
- Histograms: Because not all of our data have the same number of counts, the comparison with histograms between data that are not the same, doesn't help us right now.³ This is why we will only use histograms for comparing the distribution of same-data columns normalized by their maximum value

¹Some data seem to have a very good linear correlation but they have many outliers. This is why we will clip the outliers with $\sigma > 3$

²In simple linear regression, R^2 is the square of the Pearson correlation coefficient ρ .

 $^{^{3}}$ When we will use the outer join table we could use histograms due to the large number of counts.

- Correlation Heatmaps: A correlation heatmap is a graphical tool that displays the correlation between multiple variables as a color-coded matrix. It's like a color chart that shows us how closely related different variables are.
 - In a correlation heatmap, each variable is represented by a row and a column, and the cells show the correlation between them. The color of each cell represents the strength and direction of the correlation, with darker colors indicating stronger correlations.
- Kernel Density Estimate (KDE) plot: The KDE plot visually represents the distribution of data, providing insights into its shape, central tendency, and spread.
- 5. Percentage change: We can calculate the percentage change of the data for each galaxy and then we can see if the data are similar, based on minimum, the maximum and the mean value of the difference.

$$\text{Percentage change} = \frac{V_{Hecate} - V_{LCV}}{V_{Hecate}} \cdot 100\%$$

Comparable data

Coordinates

LCV	HECATE	Description	Pearson Correlation [-1,1]
Ra_1	RA_2	Right Ascension	0.972
Dec_1	DEC_2	Declination	1.0
Dis	D	Distance	1.0

Right Ascension

Declination

Distance

Velocities

LCV	HECATE	Description	Linear Correlation		
RVel (km/s)	V (km/s)	V (km/s) Heliocentric radial velocity			
$\begin{array}{c} \rm VLG~(km/s) \\ \rm cz~(km/s) \end{array}$	$V_{ m VIR}~({ m km/s})$	Radial velocity Heliocentric velocity Virgo-infall corrected radial velocity			

Heliocentric radial Velocity

Scatter Grid

[?] The close correlation between all of the velocities, could be due to the fact that all of them measure the velocity of each galaxy, but from a different frame of reference.

Heatmap

Morphology and Geometry

			Pearson Correlation
LCV	HECATE	Description	[-1,1]
TType	T (with errors)	Numerical Hubble	0.6685
		type following the de	
		Vaucouleurs system	
inc	INCL	Inclination (deg)	0

LCV	HECATE	Description	Pearson Correlation [-1,1]
a26_1 (Major)	R1 (Semi-major axis)	angular diameter (arcmin)	0.992

Galaxy Types

Hubble stage T	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
de Vaucouleurs class Approximate Hubble class	cE	E E	E+	S0-	S00 S0	S0+	S0/a S0/a		Sab Sa-b			Sc	Scd Sc	Sd

Percentage change:

Table 5

	Percentage change	Percentage change, after 3 sigma clip
count	267	228
mean	-21	-3
std	191	17
\min	-2,400	-67
50%	0	0
max	1,100	70

Inclination

	inc	INCL	Percentage Change [%]
count	296	262	256
mean	59	59	-0

	inc	INCL	Percentage Change [%]
std	19	23	0
\min	17	0	-3
25%	45	45	-0
50%	60	62	0
75%	72	77	0
max	90	90	1

We can see that for values in the range [$\sim 30^{\circ}$, $\sim 80^{\circ}$], the values of the LCV inclination are higher. However, since their means, median, min and maxes are similar and the percentage change is practically 0% (mean, median, $\sigma = 0$ with a range [-3%, 1%]), we can ignore the differences and assume they are the same values.

Major Axis

it is not very clear if we truly have a correlation or not. We need to see the linear correlation of the decimal logarithms.

Luminosities

LCV	HECATE	Description	Pearson Correlation [-1,1]
logKLum	$logL_K$		0.379

	$\log(L_K)_\{LCV\}\$$	$\log(L_K)_{HEC}$	Percentage Change [%]
count	296	94	94
mean	8	9	0
std	1	1	17
\min	4	5	-48
50%	8	9	-0
max	11	11	40

Magnitudes

			Pearson Correlation
LCV	HECATE	Description	[-1,1]
mag_B (with errors)	BT (with errors)		0.992
Kmag	K	2MASS band	0.348
		magnitude (both)	

B mag

K mag

	Percentage Change [%]	Percentage Change, after 3 sigma clip $[\%]$
count	94	94
mean	2	2
std	29	29
\min	-84	-84
50%	-0	-0
max	74	74

Percentage change Distribution [%]

Absorption

LCV	HECATE	Description	Pearson Correlation [-1,1]
AB	\overline{AG}	$\begin{array}{c} {\rm Galactic} \\ {\rm extinction/absorption} \\ {\rm in~B~band} \end{array}$	0.914
AB_int	AI	Internal/Intrinsic B band extinction/absorption	0

Galactic

Internal

Here we can see an attempt to correlate the internal absorption of the two catalogs, however as it is very clear, there is no correlation, since even their distributions are not similar.

SFR

LCV	HECATE	Description	Count
	logSFR_TIR	Decimal logarithm of	35
		the total-infrared SFR	
		estimate [Msol/yr]	
	$\log SFR_FIR$	Decimal logarithm of	38
		the far-infrared SFR	
		estimate [Msol/yr]	
	$logSFR_60u$	Decimal logarithm of	64
		the 60um SFR	
		estimate [Msol/yr]	
	$logSFR_12u$	Decimal logarithm of	23
		the 12um SFR	
		estimate [Msol/yr]	
	$\log SFR_22u$	Decimal logarithm of	14
		the 22um SFR	
		estimate [Msol/yr]	
	$\log SFR_HEC$	Decimal logarithm of	81
		the homogenised SFR	
		estimate [Msol/yr]	
	$\log { m SFR_GSW}$	Decimal logarithm of	0
		the SFR in GSWLC-2	
		[Msol/yr]	
SFRFUV		FUV derived integral	257
-		star formation rate	
SFRHa		H{alpha} derived	249
		integral star	
		formation rate	

Heatmap

Scatter Grid

<Figure size 3000x2400 with 0 Axes>

Density Grids

It is possible we dont see a good correlation because we dont have a big enough common sample

Masses

LCV	HECATE	Description	Count
$-\log$ M26		Log mass within	263
		Holmberg radius	
\log MHI		Log mass within	269
		Holmberg radius	
	$\log M_HEC$	Decimal logarithm of	87
		the stellar mass	
		[Msol]	
	$\log M_GSW$	Decimal logarithm of	0
		the stellar mass in	
		GSWLC-2 [Msol]	
logStellarMass		Stellar Mass from	296
		$M_*/L=0.6$	

Stellar Masses Comparison

Percentage change Distribution [%]

	Percantage Change [%]
count	87
mean	4
std	16

	Percantage Change [%]
min	-43
50%	1
max	42

Heatmap

Plot Grid

Density Grid

Karachentsev, Igor D., and Elena I. Kaisina. 2013. "STAR FORMATION PROPERTIES IN THE LOCAL VOLUME GALAXIES VIA H AND FAR-ULTRAVIOLET FLUXES." AJ 146 (3): 46. https://doi.org/10.1088/0004-6256/146/3/46.

Karachentsev, Igor D., Dmitry I. Makarov, and Elena I. Kaisina. 2013. "UPDATED NEARBY GALAXY CATALOG." AJ 145 (4): 101. https://doi.org/10.1088/0004-6256/145/4/101. Kovlakas, K., A. Zezas, J. J. Andrews, A. Basu-Zych, T. Fragos, A. Hornschemeier, K. Kouroumpatzakis, B. Lehmer, and A. Ptak. 2021. "The Heraklion Extragalactic Cat-

alogue (HECATE): A Value-Added Galaxy Catalogue for Multimessenger Astrophysics." Monthly Notices of the Royal Astronomical Society 506 (September): 1896-1915. https://doi.org/10.1093/mnras/stab1799.