ACHTUNG: Eine Verbreitung der Unterlagen außerhalb der Vorlesung bzw. der dazugehörigen Übungen ist nicht gestattet!

Diese Vorlesung basiert auf: Hering et al., "Physik für Ingenieure"

ISSN 0937-7433 ISBN 978-3-642-22568-0 e-ISBN 978-3-642-22569-7 DOI 10.1007/978-3-642-22569-7 Springer Heidelberg Dordrecht London New York

9. Festkörperphysik

ausgewählte Kapitel

Überblick:

- Bindung in Festkörpern
- Kristalline Strukturen
- Elektronen im Festkörper
- Bandstruktur
- Metalle und Ladungstransport
- Halbleiter

Zentral für Bereiche wie Nanotechnologie, Mikroelektronik, Werkstofftechnik (z.B. metallische, magnetische, amorphe, keramische ... Werkstoffe), Halbleitertechnik, ...

Mit Abstand größter Teilbereich der Physik!

9.1 Struktur fester Körper

9.1.1 Kristallbindungsarten

In Festkörpern relevante Bindungsarten elektrostatischer Natur (magnetische Kräfte vernachlässigbar)

Van der Waals Wechselwirkung:

Ursprung: Elektronendichte in Atomen fluktuiert (nur im zeitlichen Mittel konstant) \rightarrow zeitlich schwankende Dipolmomente

- ightarrow induzieren Dipolmomente in Nachbaratomen ightarrow Anziehung
- Manifestation der korrelierten Bewegung von Elektronen
- Tritt in allen Materialien auf
- Vergleichsweise schwach (0.02 eV/Atom bis 0.1 eV/Atom)
- > dominant in Edelgas- und Molekülkristallen
- Sehr kurzreichweitig

Abstoßung bei kleinen Abständen:

Pauli-Prinzip: Jeder elektronische Zustand ist durch maximal ein Elektron besetzbar.

Bei gerader Zahl von Elektronen und ohne Magnetfeld: Jedes Orbital (räumlicher Elektronenzustand) ist durch ein Spin-up und ein Spin-down Elektron besetzbar.

Spin: relativistische Eigenschaft von Elektronen, die mit einem magnetischen Moment verbunden ist

Ursprung der Abstoßung: Kommen sich Elektronenwolken benachbarter Atome zu nahe, so müssen Elektronen in höhere Zustände angeregt werden, damit das Pauli-Prinzip nicht verletzt wird (Zustände "sind ja schon besetzt") → kostet Energie → extrem starke Abstoßung bei kleinen Abständen.

Kovalente (homöopolare) Bindung:

Ursprung: Jeweils zwei benachbarte Atome teilen sich ein Elektronenpaar → Energiegewinn = Anziehung

- ➤ Orbitale haben bestimmte geometrische Form → Bindungen stark gerichtet!
- Zusammen mit der hohen Bindungsstärke (mehrere eV/Atom) ergibt das harte, schwer verformbare Materialien.
- Besonders relevant für Elemente der 3. bis 5. Hauptgruppe des Periodensystems (vielfach Halbleiter)

Tetraederstruktur der vier sp³ Hybridorbitale von C bzw. Si

Form der Orbitale erzwingt bestimmte Anordnung der Atome – z.B. verbundene Tetraeder

Ionische Bindung:

Ursprung: In Materialien, die aus zwei Atomen stark unterschiedlicher Elektronegativität bestehen (z.B. Salze aus Alkalimetall und Halid) – fast vollständiger Ladungsübertrag – z.B. Na+ (Kation) und Cl- (Anion) in NaCl → Coulombanziehung zwischen Kationen und Anionen

- Kräfte langreichweitig
- Treten in Materialien aus unterschiedlichen Atomen immer zu einem gewissen Grad auf

$$E_B \propto \frac{1}{r}$$

NaCl Struktur

Metallbindung:

Ursprung: Valenzelektronen von den Atomen "abgegeben" – Wechselwirken mit positiven Atomrümpfen → energetische Absenkung (= Anziehung)

Bindung isotrop (= nicht direktional)

- Dicht gepackte Strukturen
- Atome leicht verschiebbar

9.1.2 Kristalline Strukturen

Die Atome in vielen technisch relevante Festkörper sind räumlich periodisch angeordnet = die Materialien haben eine kristalline Struktur!

polykristallin = Festkörper besteht aus vielen
Kristalliten unterschiedlicher Orientierung (häufig
bei Metallen)

einkristallin = Festkörper besteht aus einem Kristall (zumeist nötig für Halbleiteranwendungen)

Amorphe Stoffe (ohne Periodizität) z.B.: Gläser, viele Kunststoffe ...

Beschreibung der Kristallstruktur:

Kristallgitter = Punktgitter

Einheitszelle: Volumen, das im Raum periodisch wiederholt wird

Aufgespannt durch Basisvektoren

Basis = Gruppe von Atomen, die an jedem Punkt des Gitters sitzt

Beispiel CsCI: Einfach kubisches Kristallgitter mit Basis bestehend aus Cs+ an (0,0,0) und Cl- an (1/2,1/2,1/2)

Siehe auch:

http://lampx.tugraz.at/~hadley/ss1/skriptum/outline.php

Beispiel: Proteinkristall mit aus zehntausenden Atomen bestehender Basis

Chem. Commun., 2016, 52, 6496--6512

Einteilung in 7 Kristallsysteme und 14 Bravais-Gitter:

Kristallsysteme:

Unterscheidung, ob Basisvektoren unterschiedlich lang bzw. orthogonal zueinander sind.

Bravais-Gitter:

- Auch zentrierte Strukturen werden betrachtet
- Nur inäquivalenteStrukturen berücksichtigt

	primitiv	raum- zentriert	basis- zentriert	flächen- zentriert
kubisch a = b = c $\alpha = \beta = \gamma = 90^{\circ}$				
tetragonal $a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$				
orthorhombisch $a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$				
hexagonal $a = b \neq c$ $\alpha = \beta = 90^{\circ}$ $\gamma = 120^{\circ}$				
rhomboedrisch a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$				
monoklin $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}$ $\beta \neq 90^{\circ}$				
triklin a ≠ b ≠ c α ≠ β ≠ γ ≠ 90°; ≠ 120°				

Dicht gepackte Strukturen:

hexagonal dichteste

schaften	nachenzentnert	Kugelpackung
Elementar- zelle		
		I

Kugelmodell

Typisch für Metalle mit isotropen Bindungen

₊ B

Dicht gepackte Flächen: (111) Ebene bzw. Sechseckfläche

Abb. aus: Hering et al., "Physik für Ingenieure"

http://en.wikipedia.org/wiki/Image:Close_packing.svg#file

Typische Strukturen von Halbleitern:

Diamantsruktur (C, Si, Ge)

- tetrahedrale Bindungsstruktur (sp3-hybridisierte Atome)
- niedrige Raumfüllung (34%)
- kubisch-flächenzentriertes Gitter
- Basis: gleiche Atome bei (0,0,0) (1/4,1/4,1/4)

Figure 23 Crystal structure of diamond, showing the tetrahedral bond arrangement.

Zinkblendestruktur:

- Häufig bei binärenVerbindungshalbleitern
- Äquivalent zu
 Diamantstruktur mit Basis aus zwei verschiedenen
 Atomen

Crystal	a	Crystal	a
SiC	$4.35\mathrm{\AA}$	ZnSe	$5.65\mathrm{\AA}$
ZnS	5.41	GaAs	5.65
AlP	5.45	AlAs	5.66
GaP	5.45	InSb	6.46

9.2 Elektronen in Festkörpern

Spezifischer Widerstand variiert über 25 Größenordnungen!

1 ppm Fremdatome in Ge vermindert ρ von 45 Ω cm auf 10⁻² Ω cm !

9.2.1 Das Energiebändermodell

- Atom: Lösung der Schrödinger-Gleichung liefert diskrete Energieniveaus, die von Elektronen besetzt werden können (Orbitale)
- Molekül: Orbitale koppeln und spalten energetisch in bindende und antibindende Orbitale auf.
- Festkörper: Energieniveaus so dicht, dass sie zu enem Band (= Bereich mit erlaubten und verbotenen Zuständen) verschmelzen.

Elektronen im Festkörper: Innerhalb erlaubter Energiebänder

dazwischen: verbotene Energielücken, in denen es keine Zustände gibt.

Höherenergetische Bänder:

Elektronen ferner vom Kern

→ stärkerer Überlapp → breitere Bänder (dann Überlapp verschiedener Bänder möglich)

Entscheidende Frage: Bis zu welcher Energie sind die Zustände besetzt? (Beachte: Bestimmte Zahl an Elektronen im Festkörper und jedes Orbital nur durch 2 Elektronen besetzbar!)

- Valenzband: höchste vollständig gefüllte Band
- Leitungsband: niedrigstes teilweise gefülltes od

Physik ET / Physik TE

Metall/ elektrischer Leiter:

- Leitungsband nur teilweise mit Elektronen besetzt
- Oft: nur halb gefülltes s-band (z.B. Cu mit nur einem 4s Elektron)
- Besetzte und unbesetzte Zustände sind unmittelbar benachbart!

Halbleiter:

Voll besetztes Valenzband und leeres Leitungsband durch (kleine) Energielücke getrennt

Bandstruktur:

Darstellung der möglichen Energieeigenzustände als Funktion des Impulses, p (bzw. Wellenvektors, k mit p=ħk)

z.B.: Modell der freien Elektronen

$$\Psi(\vec{r},t) = Ae^{i\vec{k}\vec{r}}$$

$$E_{\vec{k}} = \frac{\hbar^2 \vec{k}^2}{2m} = \frac{\vec{p}^2}{2m}$$

Sinnvoll, da für Stoß- und Anregungsprozesse (z.B.: Absorption bzw. Emission eines Photons) Energie- und Impulserhaltung gelten.

Als Folge der Periodizität des Kristals gilt (in 1D, ohne

Erklärung):

$$\varepsilon(k) = \varepsilon\left(k + \frac{2\pi}{a}\right) = \frac{\hbar^2\left(k + \frac{2\pi}{a}\right)^2}{2m}$$

Dann reicht es aber, die Bandstruktur zwischen $-\pi/a$ und π/a (in der so genannten 1. Brillouin'schen Zone) zu kennen!

a ... Gitterkonstante

Besetzung der Zustände im thermodynamischen Gleichgewicht:

- ➤ T = 0 K: Zustände bis zur Fermi-Energie, E_F, besetzt und darüber leer (Stufenfunktion)
- ightharpoonup T > 0 K: Elektronen bekommen kinetische Energie und Besetzungswahrscheinlichkeit wird um E_F herum "ausgeschmiert".

Bandstruktur im realen Festkörper:

> Keine freien Elektronen, sondern gitterperiodisches Potential (aufgrund der periodisch angeordneten Atome)

Energie der Wellenfunktion hängt von deren "Lage" relativ zum periodischen Potential ab – gezeigtes Beispiel: stehende Wellen (= Wellenfunktionen mit $k=\pm \pi/a$)

→ es entstehen Energielücken!

9.2.2 Metalle

Elektronen im Leitungsband näherungsweise sehr gut durch Modell der freien Elektronen beschrieben!

Entscheidend für Eigenschaften der Elektronen ist deren Bandstruktur!

$$E_{\vec{k}} = \frac{\hbar^2 \vec{k}^2}{2m} = \frac{\vec{p}^2}{2m}$$

Mittlere Geschwindigkeit der e- in entsprechend FD-Statistik gefülltem Band (bzw. einem vollständig gefüllten Band):

$$\overline{\vec{v}} = \frac{1}{N} \sum_{i=1}^{N} \vec{v}_{i} = \frac{1}{N} \frac{\hbar}{m} \sum_{i=1}^{N} \vec{k}_{i} = 0$$

Kompensation von:

$$\vec{k}_i$$
 und $-\vec{k}_i$

Elektrische Leitung:

Folge des Anlegens eines Feldes für Elektronen in einem teilweise gefüllten Band*:

Beschleunigung der Elektronen:

$$\frac{d\vec{v}_d}{dt} = -\frac{e\vec{E}}{m} - \frac{v_d}{\tau}$$

Änderung der (mittleren) Driftgeschwindigkeit

Beschleunigung durch elektrisches Feld

Verzögerung der Elektronen durch Streuprozesse prop. V_d mit Relaxationszeit τ .

^{*} Vollständig gefülltes Band: keine unbesetzten Zustände energetisch in der nähe, in die Elektronen angeregt werden könnten → Vollständig gefüllte Bänder tragen nicht zum Ladungstransport bei !

Streuprozesse im Kristall verhindern, dass Elektronen immer weiter beschleunigt werden.

- Streuung an Phononen (Quanten der Gitterschwingung)
 - nimmt mit der Temperatur zu
- Streuung an Störungen des Gitters (Gitterfehler, Dotieratome, Korngrenzen …)
 - weitgehend temperaturunabhängig

Stationärer Zustand ($t\rightarrow \infty$; $dv_d/dt=0$) für zeitlich konstantes Feld E_0 :

$$\vec{v}_{d,0} = -\frac{e}{m} \tau \vec{E}_0 = -\mu \vec{E}_0$$

Proportionalitätskonstante µ ... Ladungsträgerbeweglichkeit

Zusammenhang zwischen Driftgeschwindigkeit und Stromdichte:

$$\vec{j} = -en\vec{v}_{d,0}$$

n ... Elektronendichte im Leitungsband

Ohm'sches Gesetz:

$$\vec{j} = \frac{e^2}{m} n \tau \vec{E}_0 = e n \mu \vec{E}_0 = \sigma \vec{E}_0$$

σ ... Leitfähigkeit

$$\sigma = en\mu$$

Leitfähigkeit nimmt proportional zur Ladungsträgerdichte und zur Ladungsträgerbeweglichkeit zu.

Temperaturabhängigkeit der , Leitfähigkeit von Metallen:

unterschiedlicher Reinheit (nach Saeger)

9.2.3 Halbleiter

Gruppen des Periodensystems zur Kombination der Elemente Beispiele

IV IV–IV

III–V II–VI Si, Ge, Sn (grau)

GaAs, InSb

SiC

ZnTe, CdSe, HgS

auch:

- ternäre und quarternäre anorganische Halbleiter
- > organische Halbleiter

T = 0: voll besetztes Valenzband, leeres Leitungsband

→ keine elektrische Leitfähigkeit

Eigenleitung von Halbleitern:

T > 0: Fermi-Dirac Verteilung "ausgeschmiert" → Elektronen werden über die Energielücke vom Valenz- ins Leitungsband angeregt

Im thermodynamischen Gleichgewicht: Gleichgewichtskonzentration von Elektronen und Löchern im Leitungs- bzw. Valenzband

Ladungstransport im nicht vollständig gefüllten Valenzband: entweder durch Transport sehr vieler negativer Ladungen in bestimmte Richtung oder weniger positiver Ladungen (Defektelektronen, Löcher) in Gegenrichtung beschreibbar.

Leitfähigkeit eines Halbleiters:

$$\sigma = e(n\mu_n + p\mu_p)$$

n, μ_n ... Dichte und Beweglichkeit der Elektronen

p, μ_p ... Dichte und Beweglichkeit der Löcher

Für die Eigenleitung gilt:

$$n = p = n_i$$

n_i ... intrinsische Ladungsträgerdichte

Verteilung der beweglichen Ladungsträger über Energie:

$$n(E) = D_e(E)f(E)$$
$$p(E) = D_h(E)(1 - f(E))$$

 $D_e, D_h \dots$

Zustandsdichten im Leitungs- bzw. Valenzband

Zustandsdichte: Zahl der Zustände im Energieintervall zwischen E und E+dE

In Halbleitern typischerweise:

$$D_e(E) \propto \sqrt{E - E_L}$$
 $D_h(E) \propto \sqrt{E_V - E}$

Abb. 9.41 Zustandsdichte D(E), Besetzungswahrscheinlichkeit f(E) und Trägerdichte n(E) sowie p(E)eines reinen Halbleiters

Temperaturabhängigkeit der Elektronen- und Lochdichten:

$$n = \int_{CB} D_e(E) f(E) dE$$

Solange E_F weit von den Bandkanten entfernt ist, ersetzt man im Integral die FD Statistik durch klassische Boltzmann-Statistik

$$f(E) = e^{-\frac{E - E_F}{k_B T}}$$

$$n(T, E_F) = N_L(T)e^{-\frac{E_L - E_F}{k_b T}}$$

N₁ ... effektive Zustandsdichte des Leitungsbandes

$$p(T, E_F) = N_V(T)e^{-\frac{E_F - E_V}{k_b T}}$$

n exponentiell von Abstand von E_F von Bandkanten und (näherungsweise) von 1/T abhängig.

Temperaturabhängigkeit der Leitfähigkeit:

- Primär Folge der Temperaturabhängigkeit der Ladungsträgerkonzentration.
- Leitfähigkeit nimmt im intrinischen Halbleiter signifikant mit der Temperatur zu

Lage der Fermienergie in einem intrinsischen Halbleiter:

intrinsischer Halbleiter: n=p

$$E_F = \frac{E_L + E_V}{2} + \frac{k_B T}{2} \ln \frac{N_V}{N_L}$$

- > T=0 K: E_F in der Mitte der Bandlücke
- T>0 K: geringe Abweichungen davon

Egbert Zojer Physik ET / Physik TE

Störstellenleitung:

Dotierung: Einbau von Fremdatomen (im ppm Konzentrationsbereich) mit mehr oder weniger Valenzelektronen.

Einbau von Donatoren:

- Halbleiter wird n-Typ (n-Leiter)
- lonisierte Störstellen →
 zusätzliche Elektronen im
 Leitungsband als
 Majoritätsladungsträger

Einbau von Akzeptoren:

- Halbleiter wird p-Typ (p-Leiter)
- lonisierte Störstellen →
 zusätzliche Löcher im
 Valenzband als
 Majoritätsladungsträger

T=0 K:

○ Störstellen neutral → verschwindend geringe Leitfähigkeit

Tiefe Temperaturen:

 \circ E_F zwischen Störstellenniveau und Bandkante \to Störstellen teilweise

Höhere Temperaturen:

 \circ E_F tiefer in der Bandlücke \rightarrow Störstellen de facto vollständig ionisiert

Halbleiterbauelemente bei Raumtemperatur typischerweise im Bereich der Störstellenerschöpfung

Ladungsträgerkonzentration = Dotierkonzentration

$$n = n_D$$

für n-Dotierung:

für p-Dotierung:

$$p = n_A$$

Abb. 9.43 Ladungsträgerdichte in n-Typ-Silicium in Abhängigkeit von der Temperatur. Dotierung:

Phosphor, $n_{\rm D} = 10^{15} \, {\rm cm}^{-3}$

Optische Eigenschaften:

Einfachste Vorstellung:

Absorption: Anregung eines Elektrons von einem besetzten Zustand im Valenzband in einen unbesetzten Zustand im Leitungsband

= Erzeugung eines Elektron-Loch Paares durch Zerstörung eines Photons

Spontane (stimulierte) Emission: Spontaner (stimulierter) Übergang eines Elektrons von einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im Valenzband

= Erzeugung eines Photons durch Rekombination eines Elektrons mit einem Loch.

Wie kommen viele Elektronen ins Leitungs- und Löcher ins Valenzband? Injektion von Minorittsladungsträgern im pn-Übergang

Egbert Zojer Physik ET / Physik TE

Direkter Halbleiter:

Valenzbandmaximum und Leitungsbandminimum liegen beim gleichen k-Vektor

z.B.: GaAs, GaN, ...

Photonen:

K-Vektor von Photonen ist auf der gezeigten Skala verschwindend klein!

Optische Übergänge sind im Bandbild vertikale Übergänge.

Optische Übergänge sind in direkten Halbleitern ab hf~E_q effizient möglich

Indirekter Halbleiter:

Valenzbandmaximum und Leitungsbandminimum liegen beim verschiedenen k-Vektoren z.B.: Si, Ge, ...

- Energie- und Impulserhaltung!
- \rightarrow Anregung des Elektrons allein durch Photon um E_q nicht möglich!

- Gleichzeitig Erzeugung oder Vernichtung eines Phonons (Quant der Gitterschwingungen mit kleiner Energie und großem Impuls)
- Absorption unwahrscheinlicher 3-Teilchen Prozess!

pn-Übergang:

- Grundelement der meisten Halbleiterbauelemente
- Übergang zwischen p- und n-leitendem Gebiet

Konzentrationsgradient:

- Elektronen diffundieren vom n-Gebiet ins p-Gebiet und Löcher in die umgekehrte Richtung
- → durch Rekombination von Elektronen und Löchern im Grenzgebiet entsteht eine Verarmungszone

Bereich mit stark reduzierter Dichte an beweglichen Ladungsträgern

Raumladungszonen aufgrund der unkompensierten geladenen Donator und Akzeptoratome

Ladungsneutralität:

$$d_n n_D = d_p n_A$$

Potentialverlauf aus Lösung der Poissongleichung

$$\frac{d^2\varphi}{dx^2} = -\frac{\rho}{\varepsilon_0 \varepsilon_r}$$

Feld in der Verarmungszone:

$$\vec{E} = -grad \ \varphi = -\frac{\partial \varphi}{\partial x} \vec{e}_x$$

Beispiel: Berechnen Sie den Potential- und Feldverlauf unter der Annahme eines abrupten Einsetzens der Verarmungszone (abrupt-junction approximation)

Für den Spannungsabfall über den Übergang (Diffusionsspannung) ergibt sich:

$$U_d = \frac{e}{2\varepsilon_r \varepsilon_0} \left(n_D d_n^2 + n_A d_p^2 \right)$$

Die muss gleich der Spannung sein, die sich aus dem Unterschied der Positionen der Fermi-Energien im p- und im n-Bereich ergibt:

n-Gebiet

p-Gebiet

Es gilt allgemein: In einem Bauelement im thermodynamischen Gleichgewicht ist E_F konstant!

Egbert Zojer Physik ET / Physik TE

Somit erhält man für die Breite der Verarmungszone:

$$d = d_n + d_p = \sqrt{\frac{2\varepsilon_r \varepsilon_0 U_d}{e} \frac{n_A + n_D}{n_A n_D}}$$

Strom durch den pn-Übergang:

Ohne angelegte Spannung: p-Gebiet n-Gebiet

Kreise: geladene Dotieratome

Kein Netto-Stromfluss: Diffusionsstrom aufgrund der Konzentrationsgradienten und Driftstrom aufgrund der Felder in der Verarmungszone halten sich die Waage

Polung in Vorwärtsrichtung:

- Potentialsprung über Verarmungszone verkleinert
- Verarmungszone verkleinert
- Driftstrom reduziert
- Verstärkte Diffusion und Minoritätsladungsträgerinjektion = Injektion von Elektronen in p-Halbleiter und von Löchern in n-Halbleiter
- → Stromfluss + Rekombinationsprozesse (wichtig z.B. für LED!)

Polung in Sperrrichtung:

- > Potentialsprung über Verarmungszone vergrößert
- > Verarmungszone vergrößert
- Diffusionsstrom reduziert
- > Es fließt der sehr kleine Sättigungsstrom

Idealisierte Kennlinie:

Shockley Gleichung

$$I = I_S \left(e^{rac{eU}{k_B T}} - 1
ight)$$
 mit $I_S \propto e^{rac{-E_S}{k_B T}}$

I_S ... Sättigungsstrom (1 nA für Si, 1 μA für Ge)

Typische Kennlinien

Durchbruch in Sperrichtung bei hohen Feldern:

- Zener Effekt (Tunneln)
- Lawineneffekt (Elektronen haben genug Energie um bei Stoß neue Elektron-Loch Paare anzuregen)

