第2章 可判定性

Review

- 1. Computer Models (Automatas)
 - ① FA ⇔ RL(Regular Language)&RE
 - ② PDA ⇔ CFL(Context-free language)&CFG
 - ③ TM → TM-Recognizable ,TM-Decidable
 - (4) Recursion Theorem
- 2. Church-Turing Thesis

Decide(判定) 与 Recognize(识别)有何区别?

Decidable: accept, reject (halting

machine)

Recogniable: accept,reject,loop

Decidable languages

Recognizable languages

Decidability

We are now ready to tackle the question 问题:

What can computers do and what not? 计算机 能做什么,不能作什么? 不容易直接回答

转化为 考虑下列问题

Which languages are TM-decidable, Turing-recognizable, or neither?
那些是图灵可识别,可判定或都不是? 容易多了

Assuming the Church-Turing thesis, these are fundamental properties of the languages.

Describing TM Programs

Three Levels of Describing algorithms:算法三层次

- formal (state diagrams, CFGs, et cetera) 状态图文法
- implementation (pseudo-Pascal) 实现(伪码)
- high-level (coherent and clear English) 高级

Describing input / output format:

TMs allow only strings $\in \Sigma^*$ as input/output. 简单、明文串 If our X and Y are of another form (graph, Turing machine, polynomial), then we use < X,Y> to denote 'some kind of encoding $\in \Sigma^*$ '. 编码

Deciding Regular Languages

The <u>acceptance problem</u> for deterministic finite automata is defined by:

 $A_{DFA} = \{ \langle B, \omega \rangle \mid B \text{ is a DFA that accepts w } \}$

注意,A_{DFA}是 DFA 和字符串的对子的集合,判定是指能对其一分为二,对子可编码成01串,所以,A_{DFA}是语言。

问题 "DFA B 是否接受输入 ω "与问题 "<B, ω >是否是 A_{DFA} 的元素是相同的。

一些<mark>计算问题</mark>也可表示成检查<mark>语言的隶属问题</mark>,证明 一个语言是否可判定的与证明一个计算问题是否可判定的 是同一回事。

A_{DFA} is Decidable (Thm. 4.1)

Proof: Let the input <B,w> be a DFA with B=(Q, Σ , δ , q_{start}, F) and w $\in \Sigma^*$.

The TM performs the following steps:

- Check if B and w are 'proper', if not: "reject"
- 2) Simulate B on w with the help of two pointers: $P_q \in Q$ for the internal state of the DFA, and $P_w \in \{0,1,\ldots,|w|\}$ for the position on the string. While we increase P_w from 0 to |w|, we change P_q according to the input letter w_{Pw} and the transition function value $\delta(P_q, w_{Pw})$.

形式审查 内容审查

造TM,抄袭 DFA状态转 移,放弃写 功能和左移 动功能,模拟 DFA

- 3) If B accept w, then M accepts; otherwise M reject.
- Thm.4.1 证明A_{DFA}是可判定的,即证明了问题"一个给 定的有穷自动机是否接受一个给定的串"是可判定的◎ 图像大学

Deciding NFA 定理4.2

```
The acceptance problem for nondeterministic FA A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \} is a TM decidable language 注意,A_{NFA}是 NFA 和 语言的对子 的集合,TM 能对其一分为二,对子可编码成01串,所以 问题 是 语言. Proof: Let the input \langle B, w \rangle be an NFA with B = (Q, \Sigma, \delta, q_{start}, F) and w \in \Sigma^*. 造TM M2如下:bool M2(A_{NFA})
```

{把ANFA转换成 //调用自动机确定化程序

return (M1(A_{DFA}); // 调用上页结果的TM M1

 $A_{DFA} = \{ \langle C, w \rangle \mid C \text{ is an DFA that accepts } w \}$

Regular Expressions 定理4.3

The acceptance problem

A_{REX} = { <R,w> | R is a regular expression that can generate w } is a Turing-decidable language.
语言与正则表达式对子的集合 是 识别与被识别 的关系

Proof Theorem 4.3. On input <R,w>:

- 1. Check if R is a proper regular expression and w a proper string //形式检查
- 2. Convert R into a DFA B // RE→DFA
- 3. Run earlier TM for A_{DFA} on <B,w>//调用上页结果

Emptiness Testing 空集合问题 Thm. 4.4

Another problem relating to DFAs is the emptiness problem: <A>表示A的编码,源程序或EXE $E_{DFA} = \{<A> \mid A \text{ is a DFA with L(A)} = \emptyset \}$ E-Empty 识别空语言的DFA(编码后)的集合,定出它的边界在 E_{DFA} 之中的不识别任何语言,之外的识别一个语言。

意义: 作为引理 用于证明相等问题是可判定的。

How to decide this language?

This language concerns the behavior of the DFA A on all possible strings.

Less obvious than the previous examples.

不像以前问题那样显然

Proof for DFA-Emptiness

- Algorithm for E_{DFA} on input $A=(Q,\Sigma,\delta,q_{start},F)$:
- 1) If A is not proper DFA: "reject" //形式审查
- 2) Make set S with initially S={ q_{start}}
- 3) Repeat |Q| times:
 - a) If S has an element in F then "reject"
 - //传销到了终止态,传销路径被接受,接受集非空
 - b) Otherwise, add to S the elements that can be δ -reached from S via:
 - "If $\exists q_i \in S$ and $\exists s \in \Sigma$ with $\delta(q_i, s) = q_j$, then q_i goes into S_{new} "
 - //从S起,滚雪球或传销式地发展下家,发展进入S中
 - If final $S \cap F = \emptyset$ "accept"
 - //始终没发展终止态,不接受任何语言,则是空的 注意。现在可以用算法表示(不死循环的)图灵机了。

DFA-Equivalence Thm 4.5

A problem that deals with two DFAs A and B:

Theorem C4.5: EQ_{DFA} is TM-decidable. 可判定

Proof: Look at the *symmetric difference* between the two languages:二者相等←→对称差为空

$$(L(A) \cap \overline{L}(B)) \cup (\overline{L}(A) \cap L(B))$$

对称差由RE的交补并合成,因而是RE. 问题转化为对称差的空问题判定(已经证明是可判定的).

Proof Theorem 4.5 (cont.)

上页给了思想,这里还是给出算法(比TM说起来简单)

Algorithm on given <A,B>:

- 1) If A or B are not proper DFA: "reject"//形式审查
- 2) Construct a third DFA C that accepts the language (with standard transformations).

$$(L(A) \cap \overline{L}(B)) \cup (\overline{L}(A) \cap L(B))$$

- Decide with the TM of the previous theorem whether or not C∈E_{DFA}
- 4) If C∈E_{DFA} then "accept"; //对称差空,相等 If C∉E_{DFA} then "reject" "; //对称差不空,不等

Context-Free Languages

Similar languages for context-free grammars:

A_{CFG} = { <G,w> | G is a CFG that generates w } 生成与被生成关系 问题 A--Accept

E_{CFG} = { <G> | G is a CFG with L(G)=∅ } 空问题 E--Empty EQ_{CFG} = { <G,H> | G and H are CFGs with L(G)=L(H) } 相等问题

The problem with CFGs and PDAs is that they are inherently nondeterministic. 天生不确定

Chomsky NF

A context-free grammar $G = (V,\Sigma,R,S)$ is in Chomsky normal form if every rule is of the form $A \to BC(- f h h h h)$ or $A \to x($ 修止符) with variables $A \in V$ and $B,C \in V \setminus \{S\}$, and $x \in \Sigma$ For the start variable S we also allow " $S \to \epsilon$ " 简单而不失威力,理论推导时方便

Chomsky NF grammars are easier to analyze.

The derivation $S \Rightarrow^* w$ requires 2|w|-1 steps (apart from $S \Rightarrow \varepsilon$) 见课本p157 习题2.26. 重要:派生w 的派生式长度固定。易检查。派生时步数虽多,但简单

Deciding CFGs (1)

<G,w> 编码,相当于 EXE +参数串

Proof: Perform the following algorithm:

- 1) Check if G and w are proper, if not "reject" //形式检查 //下面作内容检查:
- 1) Rewrite G to G' in Chomsky normal form //简化
- 2) Take care of w=ε case via S→ε check for G'//先处理特例
- 3) List all G' derivations of length 2|w|-1//按长度检查派生式
- 4) Check if w occurs in this list; //是否有一个能派生出w if so "accept"; if not "reject" //定出受拒

Deciding CFGs (2)

Theorem 4.7: The language $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ is TM-decidable. CFG的空问题是可判定的

现在可用算法代替TM,等价但比TM简洁

Proof: Perform the following algorithm:

- 1) Check if G is proper, if not "reject"//形式审查
- 2) Let G=(V,Σ,R,S), define set T=Σ //从叶子开始倒查
- 3) Repeat |V| times:
 - Check all rules $B \rightarrow X_1 ... X_k$ in R
 - If $B \notin T$ and $X_1 ... X_k \in T^k$ then add B to T / / 倒传销,找上家
- 4) If S∈T then "reject", otherwise "accept" //根是上家,接收

Equality CFGs 意料之外的结果: 相等问题不可判定

What about the equality language

EQ_{CFG} = { <G,H> | G and H are CFGs with L(G)=L(H) }? 相等问题

- 复习: DFA: 空问题→对称差→相等问题 可判定

为什么这次不灵了?对称差用了 RL 对补、交 封闭。 而CFL 对补、交 不封闭,导致的不同。

太顺利的平移对研究者不利,结果平凡,无人看重

Later we will see that EQ_{CFG} is not TM-decidable.举例证明即可

Thm 4.8 each CFL is decidable

设 A is CFL 求证 存在 TM M, such that A=L(M)

Proof // TM 调用TM 设G是识别A的 CFG,由定理4.6,可以造TM S,对w in A,S 可判定集合 { <G,w>IG是识别w 的 CFG},即 S(<G,w>) 一定停机且返回 true 或 false.(不死循环)

造TM M2如下: Bool M2(w) { return(S (<G,w>); } //ホ

FIGURE **4.10**The relationship among classes of languages

Decidable

复习:

- 1. 本章研究的主题是:算法求解问题的能力。结论是:有些问题是不可解的,即有些计算问题是不可判定的。
- 2. 计算问题可以用语言来描述
 - ① 计算问题:检测一个特定的DFA B是否接受一个给定的串W。
 - ② 语言A_{DFA},包含了所有DFA及其接受的串的编码,其中 A_{DFA} ={<B,W>|B is DFA, w is string,B accept w}。
 - ③ 上述的计算问题可以用语言A_{DFA}来描述。
- 3. 证明一个计算问题是可判定的,与证明一个语言是可判 定的是等价的。

Halting Problem

下列问题可判定

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$ $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$ are TM decidable.

问题是:

- 1. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \text{ is TM-Decidable or TM-Recognable?}$
- 2. Is one TM U capable of simulating all other TMs?(Universal TM)

A_{TM} 又称为 接受问题 或停机问题,停机问题 可被识别,但不能被判定。

Universal TM

引入通用图灵机的直观概念

Win中模拟DOS上的dir WinExec("command.com/C","dir");

Win 是TM, Dos 是TM, Dos可以编码成为串"M"

仿真时,Win相当于通用图灵机

Win("M","dir")

{分配M所需的空间S,

把"M"复制到S上去;

在Win的监控下,在S上运行DOS,运行 dir,

善后,退出;

- } 用3带机
- 1. Win 仿真控制带
- 2. 被模拟机带S: Dos
- 3. 演算带,Buff当前内容

Universal TM

Given a description <M,w> of a TM M and input w, can U simulates M on w?

We can do so via a <u>universal TM</u> U (2-tape):

- 1) Check if M is a proper TM Let M = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- 2) Write down the starting configuration $< q_0 w >$ on the second tape
- 3) Repeat until halting configuration is reached:
 - Replace configuration on tape 2 by next configuration according to δ
- 4) "Accept" if q_{accept} is reached; "reject" if q_{reject}

```
简言之: bool U(M,w)
{ return( M (w) ) ;} //如果M不死循环, U也不死循环
```


A_{TM} is decidable?

A_{TM} = {<M,w> | M is a TM that accepts w } is TM-recognizable, but can we also *decide* it ?

The problem lies with the cases when M does not halt on w. In short: the halting problem.

问题焦点: M 死循环的判断。所以A_{TM}又称停机问题 精确的停机问题应该是:

 $HALT_{TM} = \{ \langle M, w \rangle | TM M halts for w \}$

We will see that this is an insurmountable problem: in general one cannot decide if a TM will halt on w or not, hence A_{TM} is undecidable.

先揭谜底: 停机问题不可判定, 从而A_{TM}不可判定 为证明它, 先补充一系列预备知识,

Mappings and Functions 用映射比较集合大小

The function F:A→B maps one set A to another set B:

F is <u>one-to-one</u> (injective 内射,不同源有不同像,源<一像) if every $x \in A$ has a unique image F(x): If F(x)=F(y) then x=y.

F is <u>onto</u> (surjective满射) if every $z \in B$ is 'hit' by F:If $z \in B$ then there is an $x \in A$ such that F(x)=z.

F is a <u>correspondence</u> (bijection双射) between A and B if it is both one-to-one and onto. 规模相同

Cardinality

A set S has k elements if and only if there is a bijection possible between S and {1,2,...,k}.

S and {1,...,k} have the same <u>cardinality (集的势)</u>.

If there is a surjection possible from $\{1,...,n\}$ to S, then $n \ge |S|$.

We can generalize this way of comparing the sizes of sets to infinite ones.

Countable Infinite Sets

A set S is <u>infinite</u> if there exists a surjective function $F:S \rightarrow N$.
基数>=自然数集数

"The set N has not more elements than S."

A set S is <u>countable</u> if there exists a surjective function F:N→S "The set S has not more elements than N."

有限集可数,与自然数集合等势可数

A set S is <u>countable infinite</u> if there exists a bijective function F:N→S. 可数无穷,与N 等势 "The sets N and S are of equal size."

Countable Infinite Sets

有理数集合可数 每个 n/m 都能被数到

Diagonalization 对角线方法

Theorem 4.17 R is uncountable

n	f(n)	
1	3.14159	
2	55.5555	
3	0.12845	x = 0.4641
4	0.50000	
	*	
:	:	

x is not f(n) for any n because it differs from f(n) in the nth fractional digit.

Counting TMs 有多少图灵机

Corollary 4.18 Some languages are not Turing-recognizable.

Observation: Every TM has a finite description; there is only a countable number of different TMs. (A description <M> can consist of a finite string of bits, and the set {0,1}* is countable.) C语言程序,只有可数个,文章只有可数篇,同理,图灵机由有限个字符描述,编码后按字典序排,只有可数个。

Our definition of Turing recognizable languages is a mapping between the set of TMs $\{M_1, M_2, ...\}$ and the set of languages $\{L(M_1), L(M_2), ...\} \subseteq \mathcal{P}(\Sigma^*)$.

Counting Languages

There are uncountable many different languages over the alphabet Σ ={0,1} (the languages L \subseteq {0,1}*). With the lexicographical ordering ε ,0,1,00,01,... of Σ *, every L coincides with an infinite binary sequence via its characteristic sequence (特征序列) χ_L .

Example for L= $\{0,00,01,000,001,...\}$ with χ_L = 0101100...

Counting TMs and Languages

There is a bijection between the set of languages over the alphabet Σ ={0,1} and the uncountable set of infinite bit strings {0,1} N . There are uncountable many different

languages $L \subseteq \{0,1\}^*$. 语言 不可数

➤ Hence there is no surjection (满射) possible from the countable set of TMs to the set of languages.

Specifically, the mapping L(M) is not surjective.

但图灵机(程序、系统)只有可数个

Conclusion: There are languages that are not Turing-recognizable. (A lot of them.)
不可识别的的语言不但存在,而且占了绝大部分。

停机问题A_{TM} 不可判定 (A - Accept, 应称为接受问题)

停机问题: Consider again the acceptance language $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$. 这里,集合: 一切合乎条件的元素,包括 A_{TM} 自己,自己判定自己, 突破点就在就在这里,

Proof that A_{TM} is not TM-decidable (Thm. C5.9)

(反证法) Assume that TM G decides A_{TM}:

$$H\langle M, w \rangle = \begin{cases} \text{"accept" if M accepts w} \\ \text{"reject" if M does not accept w} \end{cases}$$

用C语言描述: bool H(M,w) { return(M(w); } //组件调用

From H we construct a new TM D that will get us into trouble... 拟造D,导出矛盾

Proving Undecidability

窍门: 把M自己搅进去, 让他自己判定自己, 导出矛盾 The TM D works as follows on input <M> (a TM):

- 1) Run H on <M,<M>> //让M的编码串作自己的输入
- 2) Disagree with the answer of H //相当于对角线反码 (The TM D always halts because H always halts.)

In short:
$$D\langle M \rangle = \begin{cases} \text{"accept" if } H \text{ rejects } \langle M, \langle M \rangle \rangle \\ \text{"reject" if } H \text{ accepts } \langle M, \langle M \rangle \rangle \end{cases}$$

Hence:
$$D\langle M \rangle = \begin{cases} \text{"accept" if M does not accept } \langle M \rangle \\ \text{"reject" if M does accept } \langle M \rangle \end{cases}$$

D也是一切中的一个,Now run D on <D> ("on itself")...

Proving Undecidability

Result:矛盾

$$D\langle D\rangle = \begin{cases} \text{"accept" if D does not accept } \langle D\rangle \\ \text{"reject" if D does accept } \langle D\rangle \end{cases}$$

This does not make sense: D only accepts if it rejects, and vice versa. (Note again that D always halts.)

Contradiction: A_{TM} is not TM-decidable.

This proof used diagonalization implicitly...

Review of Proof (1)

'Acceptance behavior' of M_i on <M_j>

图灵机输入串						
	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •	
M_1	accept		accept			
M_2	accept	accept	accept	accept		
M_3					• • •	
M_4	accept	accept				
•			•		•	

Review of Proof (2)

	$\left\langle M_{1} ight angle$	$\langle { m M_2} angle$	$\langle M_3 \rangle$	$\left\langle M_4 \right angle$	• • •
$\overline{M_1}$	accept	reject	accept	reject	
M_2	accept	accept	accept\	accept	
M_3	reject	reject	reject	∖reject	• • •
M_4	accept	accept	reject	reject	
•			•		•

'Deciding behavior' of H on <M_i,<M_j>>,拟用对角线上反码构造图灵机D

Review of Proof (3)

Review of Proof (3)

TM-Unrecognizable

A_{TM} is not TM-decidable, but it is TM-recognizable. What about a language that is not recognizable?

Proof: Run the recognizing TMs for A and Ā in parallel on input x. Wait for one of the TMs to accept. If the TM for A accepted: "accept x"; if the TM for Ā accepted: "reject x". 并行或分时并发识别A和Ā,其中之一结束就结束

TM-Unrecognizable

```
Theorem 4.16: If a language A
Proof: □ 显然。
     → 并行或分时并发 识别A和Ā,有一个结束就结束
给定TM M1 定义 步进图灵机
Bool Step_M1(w,n)
 { 在M1运行n步的基础上(状态,带位置)再运行一步
  if M1到达终止状态 return(true); else return false;
                               A接受W,则
设M2是识别补集的TM 类似地定义 Step_M2(w,n)
                               Step_M1(w,n)为
下面是 判定A的并行TM M:
                               真
bool M(w)
 { n=0; stop=false; while (1 stop)
    { stop=Step M1(w,n) | !Step M2(w,n)); n++;}
```

TM-Unrecognizable

```
Theorem 4.16: If a language A
 Proof: □ 显然。
      ← 并行或分时并发 识别A和Ā,有一个结束就结束
给定TM M1 定义 步进图灵机
Bool Step M1(w,n)
 {在M1运行n步的基础上(状态,带位置)再运行一步
  if M1到达终止状态 return(true); else return false;
                                A拒绝W,则
设M2是识别补集的TM 类似地定义 Step_M2(w,n)
下面是 判定A 的并行TM M:
                                ! Step_M1(w,n)
                               为真
bool M(w)
 { n=0; stop=false; while (! stop)
    { stop=Step_M1(w,n) || !Step_M2(w,n)); n++;}
   return stop;
```

Ā_{TM} is not TM-Recognizable

停机问题的补问题是不可识别的

反证法: 已知 A_{TM} 可识别,如果其补集可识别,则由上面定理。推出停机问题可判定,与前面结果矛盾。

直观:语言总集不可数,可识别的集合A是可数集合,其补集是不可数的,集合太大,当然不可识。

We call languages like Ā_{TM} <u>co-TM recognizable</u> 它不一定 是可识别的

TM-recognizable 语言族B

TM decidable

co-TM recognizable 语言族B~

Things that TMs Cannot Do:

The following languages are also unrecognizable:

To be precise:

- E_{TM} is co-TM recognizable
- EQ_{TM} is not even co-Turing recognizable
- •还需要预备知识,在后面章节讨论

小结与回顾

- Chapter 9:
 - 1. Deciding RL properties
 - 2. Deciding context-free languages
 - 3. The Halting Problem
 - 4. Countable and uncountable infinities
 - 5. Diagonalization arguments

