

I-But

- ✓ Connaitre et savoir utiliser la verrerie pour les différentes manipulations
- ✓ Apprendre à préparer une solution à partir d'un solide, d'un liquide par dissolution et par dilution d'une solution mère

II-Notions théoriques:

- ➤ Présentation du matériel utilisé dans un laboratoire de chimie
- > Définition de la solution et de la concentration

Verrerie usuelle (1)

Bécher

Récipient cylindrique à fond plat muni d'un bec verseur et de graduations imprécises.

Utilisé pour:

- > Transvaser des solutions
- ➤ Stocker une solution avant un prélèvement
- > Faire certains dosages

Verrerie usuelle (2)

Erlenmeyer

Récipient constitué d'une base conique et d'un col cylindrique

Il est préférable pour :

- > Conserver des produits volatils
- ➤ Limite les projections lors d'une réaction exothermique
- Réaliser des dosages volumétriques

Verrerie usuelle (3)

Tube à essai

Tube cylindrique étroit ouvert dans sa partie supérieure à base arrondie

- ➤ Réaliser des tests sur une réaction chimique
- > Fait intervenir des petites quantités
- > Peu être chauffé au bec bunsen

Verrerie pour mesure (1)

Eprouvette graduée

■ Constituée d'un cylindre gradué, ouvert haut et muni d'un bec verseur

■ Fermée en bas reposant sur un pied pour assurer sa stabilité.

 Mesure avec une précision moyenne de 0,5 mL

Verrerie pour mesure (2)

Lecture du volume:

- ✓ En bas du ménisque
- ✓ Œil à la même hauteur que le bas du ménisque

$$V = 7,3 \text{ mL}$$

Verrerie pour mesure (3)

Pipette graduée

Sous forme de tube fin gradué

Utilisée pour :

- * Prélever de façon précise des petits volumes
- * Mesurer des volumes

Lecture se fait au même niveau que bas du ménisque

Verrerie pour mesure (4)

Pipette graduée de 10 mL

Pipette de 10 mL graduée de zéro jusqu'à 10 mL

Pipette de 10 mL graduée de zéro jusqu'à 9 mL

Verrerie pour mesure (5)

Pipette jaugée

Plus précise que la pipette graduée

Possède une ou deux graduations appelées trait de jauge

Le volume mesuré:

- *Entre les deux traits de jauge pour une pipette à deux traits
- *Entre le trait et l'extrémité pour une pipette à un seul trait

Verrerie pour mesure (6)

Fiole jaugée

- Récipient à fond plat et col étroit
- Possède une seule graduation appelée trait de jauge
- •Permet de préparer des solutions à des concentrations connues à partir de:
 - * un solide
 - * une solution plus concentrée (dilution)

Verrerie pour mesure (7)

Burette

- -Se constitue d'un tube gradué ouvert en haut et fermé en bas par un robinet
- -Principalement utilisé lors des dosages volumétriques
- -Permet le contrôle de l'écoulement de la solution

Accessoires divers (1)

Propipette

- -Formée d'une poire en caoutchouc et de robinet à bille: A, S et E
- -Utilisée avec une pipette pour prélever un volume

-Le rôle des trois robinets est:

A: Vide la poire d'air

S: Permet de remplir la pipette

E: Permet de verser le liquide

Accessoires divers (2)

Pissette

Utilisée principalement pour :

*Stocker les solvant à grande utilisation (eau, acétone)

* Laver la verrerie

*Ajuster les volumes

Accessoires divers (3)

Balance

Permet d'effectuer une pesée de masse avec une précision de 0,001 g

Spatule

Permet de prélever un solide en poudre fine, en copeaux, etc

Réalisation d'une pesée (1)

Verre de montre

Utilisé lors de la pesée de petites quantités

1. Placer le verre de montre sur le disque de la balance et appuyer sur tare pour mettre à zéro

Réalisation d'une pesée (2)

2. Mettre Le solide dans le verre de montre qui a été utilisé lors de la tare

3. Le récipient est à nouveau posé sur la balance. La balance indiquera la masse du solide

Accessoires divers (4)

Entonnoir

Il existe deux types d'entonnoirs:

Entonnoir pour solide qui permet d'introduire une poudre ou un solide

Entonnoir à liquide qui sert à remplir la burette, flacons

La solution

Une solution est une phase liquide résultant de la dissolution d'un ou plusieurs soluté (cors dissout utilisé en petite quantité) dans un solvant (utilisé en grande quantité)

La solution

Solution homogène

se constitue d'une seule phase (On ne peut pas différencier le soluté du solvant)

Exemple: Sel et l'eau

Solution hétérogène

se constitue de deux phases ou plus

Exemple: l'huile et l'eau

La concentration

La solution se caractérise par sa concentration, c'est le rapport entre la quantité de soluté et la quantité totale d'une solution

La concentration peut s'exprimer sous différentes formes

- ✓ La concentration molaire (C_M)
- ✓ La normalité (N)
- ✓ La concentration massique ou titre massique (C_m)
- ✓ La molalité

La concentration molaire C_M (mol/L)

- C'est la concentration la plus couramment utilisée
- Elle est définit comme étant le nombre de mole de soluté présent dans un litre de solution
- Son unité est le mol/L, elle se calcule par la relation C= n/V

Exemple

Soit une solution aqueuse de NaCl de concentration 0,5mol/L ou 0,5M

Dans cette solution nous avons 0,5 mol de NaCl dans 1 littre de solution de NaCl

Le titre massique ou concentration massique $C_m(g/mol)$

- C'est la masse de soluté en gramme dissout dans un litre de solution
- Elle s'exprime en g/L
- La relation entre la concentration massique et la concentration molaire est donnée par la loi

 $C_m = M \times C_M$ où M: La masse molaire du soluté

C_M: La concentration molaire

Exemple:

Calculer la concentration massique d'une solution aqueuse de KBr 0.5 M. On donne M_{KBr} 119g/mol

Pour trouver C_m de la solution de KBr, nous allons directement appliquer la relation

$$C_{\rm m} = M \times C_{\rm M}$$
 $C_{\rm m} = 119 \text{ (g/mol)} \times 0.5 \text{(mol/L)}$ $C_{\rm m} = 59.5 \text{ g/L}$

La normalité N (equiv/mol)

La concentration équivalente ou la normalité se définit par le nombre d'équivalent gramme (n) de soluté contenus dans un litre de solution

Le nombre n dépend de la nature du soluté

■ Si le soluté est un acide, le n correspond au nombre de proton libéré

Exemple

Considérons une solutions aqueuse de H₂SO₄

Dans ce cas, le soluté est un acide fort H₂SO₄ et le solvant est l'eau. Sa réaction de dissociation dans l'eau donne

$$H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$$
 $n = 2$ car $2H^+$ libérés par H_2SO_4

■ Si le soluté est une base, le n correspond au nombre de OH- libéré

Exemple

Prenons une solutions aqueuse de NaOH

Soluté: NaOH (base forte) Solvant: eau

Le NaOH libère un OH- lorsqu'il est dissout dans l'eau

NaOH
$$\xrightarrow{\text{H}_2\text{O}}$$
 OH⁻ + Na⁺ $\mathbf{n} = \mathbf{1}$

✓ On peut calculer la normalité N partir de la concentration molaire selon la relation

$$N = n \times C_M$$

Exemple

Calculer la normalité d'une solution aqueuse de HCl de concentration 0,2M

Nous allons appliquer la loi qui donne la relation entre C_M et N

$$N = n \times C_M$$

On doit déterminer dans un premier temps le n

Dans ce cas le soluté est un acide fort, il faut donc chercher le nombre de H⁺ libéré par le HCl

$$HC1 \xrightarrow{H_2O} H^+ + C1^-$$

Selon la réaction de dissociation, on note que le HCl libère un seul proton

$$n = 1$$
 $N = C_M = 0.2N$

La molalité M(mol/kg)

- C'est le nombre de moles de soluté par kilogramme de solvant (mol.Kg⁻¹)
- Son unité est le mol/Kg¹; o

La masse volumique p

La masse volumique représente la masse d'une substance se trouvant dans un volume donné

- Elle est donnée par la relation $\rho = m/v$ m: La masse v/v Le volume
- Son unité dépend des unités choisies pour la masse et le volume (généralement g.cm-3).

La densité d

Elle correspond à la masse volumique d'une solution par rapport à la masse volumique d'eau à la même température. Cette grandeur ne possède pas d'unité $\frac{d_{\text{solution}}}{d_{\text{solution}}} = \frac{\rho_{\text{solution}}}{\rho_{\text{eau}}}$

Préparation d'une solution aqueuse de concentration précise

Par dissolution d'un solide(solution de NaCl 0,5 M)

Calculer la masse de NaCl à peser:

$$m = n \times M$$
 avec $n = C \times V$

$$m = C \times V \times M \dots 1$$

Le sel n'est pas pur à 100%, il faut donc calculer la masse m'

En remplaçant 1 dans 2 :

$$m' = (C \times V \times M)/p \mid AN \mid : m' = 3,78 g$$

Mode opératoire

Peser NaCl à l'aide d'une balance, spature et verre de montre

Ajouter de l'eau distillée jusqu'au 3/4

Transvaser m_{NaCl} pesée dans une fiole de V approprié

Boucher et agiter de façon à dissoudre la totalité du soluté

Compléter avec de l'eau distillée jusqu'au trait de jauge (attention au ménisque)

Boucher et agiter pour homogénéise la solution

À partir d'un liquide (solution d'acide acétique 0,01M

Calculer le volume de CH₃COOH à prélever

* Calcul de m CH3COOH

$$m = C \times V \times M$$

$$V=100 \text{ mL}$$

$$AN m = 60 mg$$

$$M = 60g/mol$$

$$V = m/p$$

p: masse volumique

$$p$$
CH3COOH = 1,049 g/cm3

AN: V = 57 mL

Manipulation des acides

Acide: substance dangereuse à manipuler avec précaution Préparation d'une solution acide:

- * Versez lentement l'acide dans l'eau
 - * Jamais le contraire \implies Projection de matière

Préparation d'une solution aqueuse de CH₃COOH (1)

Verser un volume d'eau dans la fiole

À l'aide d'une pipette prélever 57 mL de la solution mère

Transvaser le volume dans une fiole jaugée

Ajouter de l'eau distillée jusqu'au 3/4 de la fiole

Compléter jusqu'au trait de jauge

Boucher et agiter

Boucher et agiter

Par dilution de solution concentrée

La dilution

un procédé qui consistant à obtenir une solution finale de concentration inférieure à celle de départ, par ajout de solvant

Le facteur de dilution F

On appelle facteur de dilution:

- * C_{mère} / C_{fille}
- * V_{fille} / $V_{\text{mère}}$

Calculer Vmère à prélever

Lors de l'ajout de solvant Le nombre de moles de soluté dissous ne varie pas.

n soluté (avant dilution) = n (soluté après dilution)

Delà, on peut écrire la loi de dilution suivante:

Cmère x Vmère = Cfille x Vfille

$$\longrightarrow$$
 Vmère = $\frac{\text{Cfille x Vfille}}{\text{Cmère}}$

Avec : Cmère : 0,5 M

Cfille : 0,05 M

Vfille: 100 mL

AN: $Vm\`ere = 10 mL$

Mode opératoire

À l'aide d'une pipette prélever 10 mL de la solution mère

Compléter jusqu'au trait de jauge

Transvaser le volume dans une fiole jaugée

Boucher et agiter

Incertitude dans les mesures

Erreurs systématiques:

Dues à l'utilisation des instruments imparfaits

Erreurs

Erreurs accidentelles:

Dues à la manipulation de l'opérateur

Calcul d'Incertitude (1)

*Cas d'une concentration

$$C = n/V$$
 avec $n = m/M$ $C = m/M \times V$

1. Introduire Ln:

$$Ln C = Ln m - Ln M - Ln V$$

2. Passer au quantités différentielles associées:

$$\frac{dC}{C} = \frac{dm}{m} - \frac{dM}{M} - \frac{dV}{V}$$

Sachant que
$$\int \frac{dC}{C} = Ln C + Constante$$

Calcul d'Incertitude (2)

3. Passer au quantités finies:

$$\frac{\Delta C}{C} = \frac{\Delta m}{m} + \frac{\Delta M}{M} + \frac{\Delta V}{V}$$

4. Erreur absolue:

$$\Delta C = C \times \left(\frac{\Delta m}{m} + \frac{\Delta M}{M} + \frac{\Delta V}{V} \right)$$

- * Δm : erreur de la pesée, $\Delta m = 0,001$ g
- * ΔM : erreur sur la masse molaire, $\Delta M/M = 2\%$
- * ΔV : erreur de la fiole utilisée, $\Delta V = 0,1 \text{ mL}$

Calcul d'Incertitude (3)

5. Ecriture finale:

$$C = C + \Delta C$$

Incertitude relative(%):

Incertitude relative =
$$\left| \frac{\Delta C}{C} \right| \times 100$$

*Cas d'un dosage d'un acide par une base

Au point équivalent: Ca Va = CB VB

$$CA = \frac{CB \times VB}{CA}$$

Passer directement aux quantités finies:

$$\frac{\Delta CA}{CA} = \frac{\Delta CB}{CB} + \frac{\Delta VB}{VB} + \frac{\Delta VA}{VA}$$

4. Erreur absolue:

$$\Delta CA = CA \times \left[\frac{\Delta CB}{CB} + \frac{\Delta VB}{VB} + \frac{\Delta VA}{VA} \right]$$

 \triangle CB: erreur sur la concentration de la base

 ΔVB : erreur de la burette

ΔVA: erreur de la pipette ou éprouvette

CB: concentration de la base

VB: volume équivalent lu sur la burette

VA: volume de l'acide prélevé à doser