Financial Analytics Project 1

Data Loading

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv(r"/content/Financial Analytics data.csv")
```

Data Exploration and Understanding

df.head()

Next steps: Generate code with df View recommended plots

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 488 entries, 0 to 487 Data columns (total 5 columns): # Column Non-Null Count Dtype 0 S.No. 488 non-null int64 1 Name 488 non-null object Mar Cap - Crore 479 non-null float64 Sales Qtr - Crore 365 non-null float64 4 Unnamed: 4 94 non-null float64 dtypes: float64(3), int64(1), object(1) memory usage: 19.2+ KB

df.describe()

	S.No.	Mar Cap - Crore	Sales Qtr - Crore	Unnamed: 4	\blacksquare
count	488.000000	479.000000	365.000000	94.000000	11.
mean	251.508197	28043.857119	4395.976849	1523.870106	
std	145.884078	59464.615831	11092.206185	1800.008836	
min	1.000000	3017.070000	47.240000	0.000000	
25%	122.750000	4843.575000	593.740000	407.167500	
50%	252.500000	9885.050000	1278.300000	702.325000	
75%	378.250000	23549.900000	2840.750000	2234.815000	
max	500.000000	583436.720000	110666.930000	7757.060000	

Data Cleaning and Preprocessing

```
nan_sales = df['Sales Qtr - Crore'].isna()
nan_sales

0    False
1    False
2    False
3    False
```

```
4
            False
     483
            False
     484
            False
     485
            False
     486
            False
     487
             True
     Name: Sales Qtr - Crore, Length: 488, dtype: bool
df.fillna(0, inplace = True)
df['Sales Qtr (in Crore)'] = df['Sales Qtr - Crore'] + df['Unnamed: 4']
df.head()
```

s	.No.	Name	Mar Cap - Crore	Sales Qtr - Crore	Unnamed:	Sales Qtr (in Crore)	
0	1	Reliance Inds.	583436.72	99810.00	0.0	99810.00	11
1	2	TCS	563709.84	30904.00	0.0	30904.00	
2	3	HDFC Bank	482953.59	20581.27	0.0	20581.27	
3	4	ITC	320985.27	9772.02	0.0	9772.02	
3	4	ITC	320985.27	9772.02	0.0	9772.02	

Next steps:

Generate code with df

View recommended plots

Dropping the redundant values

Sales Qtr (in Crore)	Mar Cap - Crore	Name	S.No.	
99810.00	583436.72	Reliance Inds.	1	0
30904.00	563709.84	TCS	2	1
20581.27	482953.59	HDFC Bank	3	2
9772.02	320985.27	ITC	4	3
16840.51	289497.37	HDFC	5	4
609.61	3031.50	Prime Focus	495	482
790.17	3029.57	Lak. Vilas Bank	496	483
249.27	3026.26	NOCIL	497	484
511.53	3024.32	Orient Cement	498	485
2840.75	3017.07	Natl.Fertilizer	499	486
		olumno	wo v 1 o	470 ro

479 rows × 4 columns

Next steps: Generate code with df View recommended plots

plt.figure(figsize=(12,6))

```
plt.hist(df['Mar Cap - Crore'].dropna(), bins = 30, color = 'red', alpha = 0.7)
plt.title("Mar Cap - Crore Distribution")
plt.xlabel('Mar Cap - Crore')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(12,6))

plt.hist(df['Sales Qtr (in Crore)'].dropna(), bins = 30, color = 'Blue', alpha = 0.7)
plt.title("Sales Quarter (in Cr) Distribution")
plt.xlabel('Sales Qtr - in Crore')
plt.ylabel('Frequency')
plt.show()
```


 $\verb"import plotly.express as px"$

```
fig = px.box(df, x='Mar Cap - Crore', orientation='h')
```

fig.update_layout(title=f'Boxplot for Mar Cap - Crore', xaxis_title='Mar Cap - Crore', yaxis_title='Distribution')
fig.show()

\supseteq

Boxplot for Mar Cap - Crore

fig1 = px.box(df, x = 'Sales Qtr (in Crore)', orientation = 'h')
fig1.update_layout(title = 'Boxplot for Sales Qtr', xaxis_title = 'Sales Qtr (in Crore)', yaxis_title = 'Distribution')
fig1.show()

Boxplot for Sales Qtr

 $df_sale_0 = df[(df['Mar\ Cap\ -\ Crore']\ !=\ 0)\ \&\ (df['Sales\ Qtr\ (in\ Crore)']\ ==\ 0)] df_sale_0$

Sales Qtr (in Crore)	Mar Cap - Crore	Name	S.No.	
0.0	61776.92	Bharti Infra.	50	49
0.0	14845.05	Info Edg.(India)	176	171
0.0	13401.76	Max Financial	192	185
0.0	10864.53	Bombay Burmah	231	224
0.0	10074.36	Sundaram Clayton	248	241
0.0	8587.04	Mahindra CIE	271	258
0.0	6176.23	Prism Cement	327	314
0.0	5497.40	GE Power	345	332
0.0	5300.00	MMTC	351	338
0.0	4721.49	Swan Energy	383	370
0.0	4558.06	Shoppers St.	387	374
0.0	4487.31	Stand.Chart.PLC	392	379
0.0	4293.42	Ujjivan Fin.Ser.	406	393
0.0	4278.31	Jindal Saw	409	396
0.0	4198.33	Linde India	411	398
0.0	4074.37	JP Associates	422	409
0.0	3973.50	HMT	431	418
0.0	3835.73	Gayatri Projects	437	424
0.0	3597.60	JP Power Ven.	459	446
0.0	3529.87	Amber Enterp.	464	451
0.0	3452.57	Hind.Construct.	472	459

Next steps: Generate code with df_sale_0

View recommended plots

Feature Engineering

```
def market_cap_to_sales_ratio(row):
   if row['Sales Qtr (in Crore)'] != 0:
       return row['Mar Cap - Crore'] / row['Sales Qtr (in Crore)']
   else:
       return 0
df['Market Cap-to-Sales Ratio'] = df.apply(market_cap_to_sales_ratio, axis=1)
```

!	S.No.	Name	Mar Cap - Crore	Sales Qtr (in Crore)	Market Cap-to-Sales Ratio
0	1	Reliance Inds.	583436.72	99810.00	5.845474
1	2	TCS	563709.84	30904.00	18.240676
2	3	HDFC Bank	482953.59	20581.27	23.465685
3	4	ITC	320985.27	9772.02	32.847382
4	5	HDFC	289497.37	16840.51	17.190535
482	495	Prime Focus	3031.50	609.61	4.972851
483	496	Lak. Vilas Bank	3029.57	790.17	3.834074
484	497	NOCIL	3026.26	249.27	12.140490
485	498	Orient Cement	3024.32	511.53	5.912302
486	499	Natl.Fertilizer	3017.07	2840.75	1.062068

Next steps: Generate code with df View recommended plots

```
df_d = df[(df['Sales Qtr (in Crore)'] == 0)]
df_d
```

	S.No.	Name	Mar Cap - Crore	Sales Qtr (in Crore)	Market Cap-to-Sales Ratio
49	50	Bharti Infra.	61776.92	0.0	0.0
171	176	Info Edg.(India)	14845.05	0.0	0.0
185	192	Max Financial	13401.76	0.0	0.0
224	231	Bombay Burmah	10864.53	0.0	0.0
241	248	Sundaram Clayton	10074.36	0.0	0.0
258	271	Mahindra CIE	8587.04	0.0	0.0
314	327	Prism Cement	6176.23	0.0	0.0
332	345	GE Power	5497.40	0.0	0.0
338	351	MMTC	5300.00	0.0	0.0
370	383	Swan Energy	4721.49	0.0	0.0
374	387	Shoppers St.	4558.06	0.0	0.0
379	392	Stand.Chart.PLC	4487.31	0.0	0.0
393	406	Ujjivan Fin.Ser.	4293.42	0.0	0.0
396	409	Jindal Saw	4278.31	0.0	0.0
398	411	Linde India	4198.33	0.0	0.0
409	422	JP Associates	4074.37	0.0	0.0
418	431	HMT	3973.50	0.0	0.0
424	437	Gayatri Projects	3835.73	0.0	0.0
446	459	JP Power Ven.	3597.60	0.0	0.0
451	464	Amber Enterp.	3529.87	0.0	0.0
459	472	Hind.Construct.	3452.57	0.0	0.0

Next steps: Generate code with df_d View recommended plots

df.sort_values('Market Cap-to-Sales Ratio', ascending = False)

	S.No.	Name	Mar Cap - Crore	Sales Qtr (in Crore)	Market Cap-to-Sales Ratio			
0	1	Reliance Inds.	583436.72	99810.00	5.845474			
1	2	TCS	563709.84	30904.00	18.240676			
2	3	HDFC Bank	482953.59	20581.27	23.465685			
3	4	ITC	320985.27	9772.02	32.847382			
4	5	HDFC	289497.37	16840.51	17.190535			
482	495	Prime Focus	3031.50	609.61	4.972851			
483	496	Lak. Vilas Bank	3029.57	790.17	3.834074			
484	497	NOCIL	3026.26	249.27	12.140490			
485	498	Orient Cement	3024.32	511.53	5.912302			
486	499	Natl.Fertilizer	3017.07	2840.75	1.062068			
479 rows x 5 columns								

479 rows × 5 columns

```
Next steps: Generate code with df

View recommended plots

top_companies = df.nlargest(50, 'Market Cap-to-Sales Ratio')

plt.figure(figsize=(12,6))
plt.bar(top_companies['Name'], top_companies['Market Cap-to-Sales Ratio'], color='blue')
plt.title('Top 50 Companies by Market Cap-to-Sales Ratio')
plt.xlabel('Company Names')
plt.ylabel('Market Cap-to-Sales Ratio')
plt.xticks(rotation=45, ha='right')
plt.show()
```

Top 50 Companies by Market Cap-to-Sales Ratio


```
plt.figure(figsize=(12,6))
plt.hist(df['Market Cap-to-Sales Ratio'].dropna(), bins = 30, color = 'Blue', alpha = 0.7)
plt.title("Market Cap-to-Sales Ratio Distribution")
plt.xlabel('Market Cap-to-Sales Ratio')
plt.ylabel('Frequency')
plt.show()
```



```
plt.figure(figsize=(10, 6))
plt.scatter(df['Mar Cap - Crore'], df['Sales Qtr (in Crore)'], color='blue', alpha=0.7)
# Set plot title and labels
plt.title('Scatterplot Market Cap vs. Qtr Sales')
plt.xlabel('Market Cap (in Crore)')
plt.ylabel('Sales Quarter (in Crore)')
plt.show()
```

Scatterplot Market Cap vs. Qtr Sales


```
correlation_data = df[['Mar Cap - Crore', 'Sales Qtr (in Crore)', 'Market Cap-to-Sales Ratio']]
correlation_matrix = correlation_data.corr()
plt.figure(figsize=(12,6))
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', linewidths=.5)
plt.title('Correlation Heatmap - Mid Cap vs. Qtr Sales vs. Market Cap-to-Sales Ratio',fontsize = 14)
plt.xticks(rotation=0)
plt.yticks(rotation=0)
```



```
fig2 = px.box(df, x = 'Market Cap-to-Sales Ratio', orientation = 'h')
fig2.update_layout(title = 'Boxplot for Market Cap-to-Sales Ratio', xaxis_title = 'Market Cap-to-Sales Ratio', yaxis_title = 'Distribut:
fig2.show()
```

Boxplot for Market Cap-to-Sales Ratio


```
Q1 = df['Market Cap-to-Sales Ratio'].quantile(0.25)
Q3 = df['Market Cap-to-Sales Ratio'].quantile(0.75)

IQR = Q3 - Q1

lowerbound = Q1 - 1.5 * IQR
higherbound = Q3 + 1.5 * IQR

df_cleaned = df[(df['Market Cap-to-Sales Ratio'] >= lowerbound) & (df['Market Cap-to-Sales Ratio'] <= higherbound)]
df_cleaned</pre>
```

	S.No.	Name	Mar Cap - Crore	Sales Qtr (in Crore)	Market Cap-to-Sales Ratio	\blacksquare		
0	1	Reliance Inds.	583436.72	99810.00	5.845474	ıl.		
1	2	TCS	563709.84	30904.00	18.240676	+/		
2	3	HDFC Bank	482953.59	20581.27	23.465685	_		
3	4	ITC	320985.27	9772.02	32.847382			
4	5	HDFC	289497.37	16840.51	17.190535			
482	495	Prime Focus	3031.50	609.61	4.972851			
483	496	Lak. Vilas Bank	3029.57	790.17	3.834074			
484	497	NOCIL	3026.26	249.27	12.140490			
485	498	Orient Cement	3024.32	511.53	5.912302			
486	499	Natl.Fertilizer	3017.07	2840.75	1.062068			
449 rows × 5 columns								

```
plt.figure(figsize=(12,6))

plt.hist(df_cleaned['Mar Cap - Crore'].dropna(), bins = 30, color = 'red', alpha = 0.7)
plt.title("Mar Cap - Crore Distribution")
plt.xlabel('Mar Cap - Crore')
plt.ylabel('Frequency')
plt.show()
```

Mar Cap - Crore Distribution

plt.figure(figsize=(12,6))

plt.hist(df['Sales Qtr (in Crore)'].dropna(), bins = 30, color = 'blue', alpha = 0.7)
plt.title("Sales Qtr (in Crore) Distribution")
plt.xlabel('Sales Qtr (in Crore)')
plt.ylabel('Frequency')
plt.show()


```
correlation_data = df_cleaned[['Mar Cap - Crore', 'Sales Qtr (in Crore)','Market Cap-to-Sales Ratio']]
correlation_matrix = correlation_data.corr()

plt.figure(figsize=(12, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5)

plt.title('Correlation Heatmap - Market Cap vs. Qtr Sales vs. Market Cap-to-Sales Ratio',fontsize = 14)
plt.xticks(rotation=0)
plt.yticks(rotation=0)
plt.show()
```



```
top_companies = df_cleaned.nlargest(10, 'Market Cap-to-Sales Ratio')
plt.figure(figsize=(12,6))
plt.bar(top_companies['Name'], top_companies['Market Cap-to-Sales Ratio'], color='skyblue')
plt.title('Top 10 Companies based on Market Cap-to-Sales Ratio')
plt.xlabel('Name of Company')
plt.ylabel('Market Cap-to-Sales Ratio')
plt.xticks(rotation=45, ha='right')
plt.show()
```

Top 10 Companies based on Market Cap-to-Sales Ratio

Boxplot for Market Cap-to-Sales Ratio