UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Cálculo Vetorial

Lista 01 26 de Dezembro de 2015

Exemplo de domínio limitado cuja fronteira não tem conteúdo nulo: Considere o subconjunto de $B \subset \mathbb{R}^3$ dado por:

$$B = \{(x, y, z) \in \mathbb{R}^3 / x, y, z \in [0, 1] \cap \mathbb{Q}\}\$$

ou seja,

$$B = ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q}).$$

A fronteira de B é o cubo unitário $C = [0,1] \times [0,1] \times [0,1]$, de volume v(C) = 1. Então, para todo $0 < \epsilon < 1$ e qualquer conjunto finito de paralelepípedos A_1, \ldots, A_n tais que

$$C \subset A_1 \cup \cdots \cup A_n$$

teremos

$$\epsilon < 1 \le \sum_{i=1}^{n} v(A_i).$$

Logo ${\cal C}$ não tem conteúdo nulo.

FIGURE 1. Conjunto B

FIGURE 2. Fronteira do conjunto B

Então, mesmo tomando uma função contínua e bastante simples, tal qual $f: B \to \mathbb{R}$ dada por f(x,y,z)=1, a soma de Riemann - e consequentemente a integral tripla - não vai convergir. Basta verificar que dada uma partição de B e tomando os $X_{ijk} \in B$, teremos

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(X_{ijk}) \Delta x_i \Delta y_j \Delta z_k = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} \Delta x_i \Delta y_j \Delta z_k = v(B) = v(C) = 1.$$

Por outro lado, se os $X_{ijk} \notin B$

$$\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} 0\Delta x_i \Delta y_j \Delta z_k = 0.$$

Então tomando os limites com essas partições teremos resultados diferentes, logo o limite não existe.

Exercícios

- (1) Calcule as integrais triplas:
 - a) $\iiint_B xyz^2 dx dy dz \text{ onde } B = [0, 1] \times [0, 2] \times [1, 3].$
 - b) $\iiint_B 2y \operatorname{sen}(yz) dx dy dz$ onde B é o paralelepípedo limitado por $x = \pi$, $y = \frac{\pi}{2}$, $z = \frac{\pi}{3}$ e os planos coordenados.
 - c) $\int_{1}^{3} \int_{x}^{x^{2}} \int_{0}^{\ln z} xe^{y} dy dz dx$.
 - d) $\int_{1/3}^{1/2} \int_0^{\pi} \int_0^1 zx \operatorname{sen}(xy) dz dy dx$.
 - e) $\iiint_B xydxdydz$ onde B é o sólido limitado pelos cilindros parabólicos $x=y^2$ e $y=x^2$ e pelos planos z=0 e z=x+y.
 - f) $\iiint_B dx dy dz$ onde B é o conjunto $x^2 + y^2 \le z \le 2x$.
 - g) $\iiint_B x dx dy dz$ onde B é o conjunto $x^2 + y^2 \le 4$, $x \ge 0$ e $x + y \le z \le x + y + 1$.
 - h) $\iiint_{B} 2z dx dy dz \text{ onde } B \text{ \'e o conjunto } 4x^2 + 9y^2 + z^2 \leq 4 \text{ e } z \geq 0.$

Lembrete: Equação de um elipsóide centrado na origem.:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Bons estudos!

Bibliografia:

Stewart, J. - Cálculo Vol II

Flemming, D. - Cálculo B

Howard, A. - Cálculo Vol II

Guidorizzi, H. - Um curso de cálculo Vol 3.