Exercise 2.6: Relations, Functions, and Inverses Cheatsheet

1. Binary Relation

Definition: A binary relation from set A to set B is any subset of the Cartesian product $A \times B$. If A = B, it's a relation on A. It's a set of ordered pairs (x, y), where $x \in A$, $y \in B$.

Analogy: Like a friendship list pairing students from Group A with friends in Group B.

Example (Q.1, Exercise 2.6):

- Set: $A = \{1, 2, 3, 4\}.$
- Cartesian Product: $A \times A = \{(1, 1), (1, 2), \dots, (4, 4)\}$ (16 pairs).
- Relation: $r_1 = \{(x, y) \mid y = x\} = \{(1, 1), (2, 2), (3, 3), (4, 4)\}.$
- Explanation: Pairs each element with itself.

2. Domain and Range

Definition:

- **Domain**: Set of all first elements (x) in the relation's ordered pairs.
- Range: Set of all second elements (y) in the ordered pairs.

Analogy: In a dance, domain is students from Group A who danced; range is their partners from Group B. **Example** (Q.1, Exercise 2.6):

- Relation: $r_3 = \{(x,y) \mid x+y<5\} = \{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\}.$
- **Domain**: $\{1, 2, 3\}$ (first elements).
- Range: $\{1, 2, 3\}$ (second elements).
- **Explanation**: Not all elements of $A = \{1, 2, 3, 4\}$ (e.g., 4) are used.

3. Function

Definition: A relation $f: A \to B$ where each element in A maps to exactly one element in B.

Analogy: A vending machine where each button (input) gives exactly one item (output).

Example (Q.2, Exercise 2.6):

- Relation: $r_1 = \{(x, y) \mid y = x\}$ on \mathbb{R} .
- Why a Function?: Each x maps to one y = x (e.g., $x = 2 \rightarrow y = 2$).
- Compare: $r_3 = \{(x, y) \mid x + y < 5\}$ is not a function (e.g., $x = 1 \to y = 2, 3$).

4. Vertical Line Test

Definition: A relation is a function if any vertical line intersects its graph at most one point, ensuring each x maps to one y.

Analogy: A vending machine's log where each button press yields one item.

Example 1: $r_1 = \{(x, y) \mid y = x\}.$

- **Graph**: Line y = x.
- **Test**: Vertical line at x=2 intersects at (2,2), one point.
- Conclusion: Function.

 ${f Visualization}:$

Example 2: $r_3 = \{(x, y) \mid x + y < 5\}.$

- **Graph**: Region below y = 5 x.
- **Test**: Vertical line at x = 1 intersects all points (1, y), y < 4, multiple points.
- Conclusion: Not a function.

Visualization:

5. Types of Functions

5.1 Into Function

Definition: Range is a proper subset of B (Range $(f) \subset B$). Some elements in B are not outputs.

Analogy: A vending machine where some items can't be dispensed.

Example (Q.3, Exercise 2.6):

- Function: $f = \{(1,2), (3,4), (5,6)\}, A = \{1,3,5\}, B = \{2,4,6,8\}.$
- **Domain**: $\{1, 3, 5\}$.
- Range: $\{2,4,6\}$.
- Why Into?: Range $\neq B$ (8 not an output).

 ${\bf Visualization:}$

5.2 Onto (Surjective) Function

Definition: Range equals B (Range(f) = B). Every element in B is an output.

Analogy: Every item in the vending machine can be dispensed.

Example (Q.3, Exercise 2.6):

- Function: $f = \{(c_1, m_1), (c_2, m_1), (c_3, m_2)\}, A = \{c_1, c_2, c_3\}, B = \{m_1, m_2\}.$
- **Domain**: $\{c_1, c_2, c_3\}$.
- Range: $\{m_1, m_2\}$.
- Why Onto?: Range = B.

Visualization:

5.3 Injective (One-to-One) Function

Definition: No two distinct elements in A map to the same element in B. Range has no repeated elements.

Analogy: Each vending machine item comes from a unique button.

Example (Q.3, Exercise 2.6):

- Function: $f = \{(1, a), (2, b)\}, A = \{1, 2\}, B = \{a, b, c\}.$
- **Domain**: $\{1, 2\}$.
- **Range**: $\{a, b\}$.
- Why Injective?: Each output from a unique input.
- Why Into?: Range $\neq B$ (no output to c).

Visualization:

5.4 Bijective (One-to-One and Onto) Function

Definition: Both injective (no repeated outputs) and onto (range = B). A one-to-one correspondence.

Analogy: Each vending machine item has exactly one button, covering all items.

Example (Q.3, Exercise 2.6):

- Function: $f = \{(1, a), (2, b), (3, c)\}, A = \{1, 2, 3\}, B = \{a, b, c\}.$
- **Domain**: $\{1, 2, 3\}$.

- **Range**: $\{a, b, c\}$.

- Why Bijective?: Injective (unique outputs) and onto (range = B).

Visualization:

6. Inverse of a Relation/Function

Definition: The inverse of a relation $R \subseteq A \times B$ is $R^{-1} \subseteq B \times A$, obtained by swapping pairs: if $(x,y) \in R$, then $(y,x) \in R^{-1}$. For R^{-1} to be a function, each element in the domain of R^{-1} (range of R) must map to exactly one element (i.e., R must be injective).

Analogy: Like reversing a vending machine: items (outputs) become buttons, and buttons (inputs) become items

Example (Q.4, Exercise 2.6):

- Relation: $r = \{(2,1), (3,2), (4,3), (5,4), (6,5)\}, A = \{2,3,4,5,6\}, B = \{1,2,3,4,5\}.$
- **Domain**: $\{2, 3, 4, 5, 6\}$.
- Range: $\{1, 2, 3, 4, 5\}$.
- Is r a Function?: Yes, each input maps to one output.
- Inverse: $r^{-1} = \{(1,2), (2,3), (3,4), (4,5), (5,6)\}.$
- Is r^{-1} a Function?: Yes, each input (1, 2, 3, 4, 5) maps to one output (injective r).

Visualization:

