Simulated Annealing Global Optimization

Sequoia Andrade

Computational Statistics, December 12th, 2023

Table of Contents

- Motivation
- 2 General Idea
- Notation
- 4 Algorithm
- Theory
- 6 Example

Goal: Find the global maxima

Figure: Example function

The primary motivation of simulated annealing is to identify global maxima

• What are some methods used to identify global maxima?

The primary motivation of simulated annealing is to identify global maxima

- What are some methods used to identify global maxima?
 - differentiation
 - gradient decent
 - brute force
 - hill climbing

The primary motivation of simulated annealing is to identify global maxima

- What are some methods used to identify global maxima?
 - differentiation
 - gradient decent
 - brute force
 - hill climbing
- What are some limitations of these methods?

The primary motivation of simulated annealing is to identify global maxima

- What are some methods used to identify global maxima?
 - differentiation
 - gradient decent
 - brute force
 - hill climbing
- What are some limitations of these methods?
 - need explicit function
 - stuck on local maxima
 - computational efficiency

The primary motivation of simulated annealing is to identify global maxima

- What are some methods used to identify global maxima?
 - differentiation
 - gradient decent
 - brute force
 - hill climbing
- What are some limitations of these methods?
 - need explicit function
 - stuck on local maxima
 - computational efficiency

Simulated Annealing approximates the global maxima in cases where exact methods fail

Background

- Published my Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller alongside the Metropolis-Hastings MCMC method [Metropolis et al., 1953]
- The term "annealing" comes from metallurgy and is a method to make materials more pliable by altering the temperature
- In the family of Monte Carlo Optimization algorithms [Robert et al., 1999]
- Can be used to solve the traveling salesman problem [Wikipedia contributors, 2023]

Recall: What are the key ideas of the MH algorithm?

Recall: What are the key ideas of the MH algorithm?

- Monte Carlo method involves random sampling
- Uses adaptive acceptance/rejection method to move towards samples of higher probability
- Lower probability states are still achievable

Recall: What are the key ideas of the MH algorithm?

- Monte Carlo method involves random sampling
- Uses adaptive acceptance/rejection method to move towards samples of higher probability
- Lower probability states are still achievable

Simulated Annealing follows the same general idea:

- Randomly sample proposal locations
- Accept or reject proposal based on acceptance probability, which is a function of the current conditions
- Move towards areas of higher probability, leads to convergence

The variable that controls the acceptance probability is called temperature

The variable that controls the acceptance probability is called **temperature**

Inspired by molecule movement

The variable that controls the acceptance probability is called **temperature**

- Inspired by molecule movement
- High temperature allows the simulation to jump around to different states more freely

The variable that controls the acceptance probability is called **temperature**

- Inspired by molecule movement
- High temperature allows the simulation to jump around to different states more freely
- Lower temperature results in smaller jumps around the state space

The variable that controls the acceptance probability is called **temperature**

- Inspired by molecule movement
- High temperature allows the simulation to jump around to different states more freely
- Lower temperature results in smaller jumps around the state space
- Temperature decreases over each iteration, resulting in convergence

Simple example

[Wikipedia contributors, 2023]

Simulated Annealing: Notation

Notation

- i ith iteration
- n total iterations
- f(x) function to optimize
- \bullet T_i temperature, a function of i
- X_i state at step i
- u_i proposal state at step i
- $A(X_i, X_{i+1}, T_i)$ acceptance probability to move from state i to state i+1 given temperature

Simulated Annealing: Notation

Notation

- i ith iteration
- n total iterations
- f(x) function to optimize
- T_i temperature, a function of i
- X_i state at step i
- u_i proposal state at step i
- $A(X_i, X_{i+1}, T_i)$ acceptance probability to move from state i to state i+1 given temperature

Definition

$$A(X_{i}, X_{i+1}, T_{i}) = \begin{cases} 1 & \text{if } f(x_{i+1}) \ge f(x_{i}) \\ e^{\frac{f(x_{i+1}) - f(x_{i})}{T_{i}}} \end{cases}$$

Simulated Annealing: Algorithm

Algorithm

```
for i in (1:n) do
    u_i \sim U(a,b)
   p_i \sim U(0,1)
   if f(u_i) \ge f(x_i) then x_{i+1} = u_i
    else
       A(x_i, u_i) = \min(e^{\frac{f(u_i) - f(x_i)}{T_i}}, 1)
       if p_i < A(x_i, u_i) then x_{i+1} = u_i
       else
         x_{i+1} = x_i
   end if end if T_{i+1} = T(i+1)
end for
```

Simulated Annealing: Algorithm

Algorithm

```
for i in (1:n) do
    u_i \sim U(a, b)
   p_i \sim U(0,1)
   if f(u_i) \ge f(x_i) then x_{i+1} = u_i
   else
       A(x_i, u_i) = \min(e^{\frac{f(u_i) - f(x_i)}{T_i}}, 1)
       if p_i < A(x_i, u_i) then
          x_{i\perp 1} = u_i
       else
          x_{i+1} = x_i
       end if
   end if
    T_{i+1} = T(i+1)
end for
```

- Where (a, b) is the support of f(x)
- Note that (a, b) can be specified to be a neighborhood, r, around a given x_i , e.g., $a_i = max(a, x_i r), b_i = min(b, x_i + r)$

Consider the acceptance probability, $A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$

• What happens if the temperature is very large?

Consider the acceptance probability, $A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$

- What happens if the temperature is very large?
 - \bullet The difference between the proposal and current is dominated by the temperature \to more likely to accept lower values

11 / 16

Consider the acceptance probability, $A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$

- What happens if the temperature is very large?
 - ullet The difference between the proposal and current is dominated by the temperature o more likely to accept lower values
- What happens if the temperature is small?

Consider the acceptance probability, $A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$

- What happens if the temperature is very large?
 - The difference between the proposal and current is dominated by the temperature → more likely to accept lower values
- What happens if the temperature is small?
 - The difference between the proposal and current must be more significant → less likely to accept lower values

Consider the acceptance probability,
$$A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$$

- What happens if the temperature is very large?
 - ullet The difference between the proposal and current is dominated by the temperature ullet more likely to accept lower values
- What happens if the temperature is small?
 - \bullet The difference between the proposal and current must be more significant \to less likely to accept lower values

Example temperature functions include:

- T(i) = 1/log(i)
- $T(i+1) = T_i/\alpha$

Theory: Acceptance Probability

The probability of a specified end state is related to the Boltzman distribution and is given by:

$$P(x) = \frac{e^{f(x)/T}}{NC}$$

Where $NC = \sum_{s \in X} e^{f(s)/T}$

Hence, the state, x^* , which maximizes f is the most probable end state.

Sequoia Andrade

Theory: Acceptance Probability

The probability of a specified end state is related to the Boltzman distribution and is given by:

$$P(x) = \frac{e^{f(x)/T}}{NC}$$

Where $NC = \sum_{s \in X} e^{f(s)/T}$

Hence, the state, x^* , which maximizes f is the most probable end state.

When considering the acceptance probability, $A(x_i, x_{i+1}) = e^{\frac{f(x_{i+1}) - f(x_i)}{T_i}}$:

- Moves to new states are directly related to the probability of the end state
- If $f(x_{i+1})$ is much smaller than $f(x_i)$, the acceptance probability is much lower

Theory: Convergence Theorem

It can be proven that Simulated Annealing converges for the discrete state space [Robert et al., 1999]

Definition (Hajec, 1988)

Given a state space S and a function f to be maximized, let O be the set of local maxima on S, O^* be the set of global maxima on S.

Define:

- a state s_j that can be reached at altitude h from state s_i if there exists a sequence of states, $s_1,...s_n$ linking s_i and s_j such that $h(s_k) \ge h$ for k = 1,...,n.
- the height of maximum s_i is the largest d_i such that there exists a state s_j where $f(s_j) > f(s_i)$ can be reached at altitude $h(s_i) + d_i$ from s_i .

Theory: Convergence Theorem

It can be proven that Simulated Annealing converges for the discrete state space [Robert et al., 1999]

Theorem (Hájec, 1988)

Consider a system in which it is possible to link two arbitrary states by a finite sequence of states. If, for every h > 0 and every pair (s_i, s_j) , s_i can be reached at altitude h from s_j if and only if s_j can be reached at altitude h from s_i , and if (T_i) decreases toward 0, the sequence X_i defined by simulated annealing satisfies:

$$\lim_{i\to\infty}P(x_i\in O^*)=1$$

if and only if

$$\sum_{i=1}^{\infty} \exp(-D/T_i) = +\infty$$

With $D = mind_i : s_i \in O - O^*$

Theory: Convergence Theorem

It can be proven that Simulated Annealing converges for the discrete state space [Robert et al., 1999]

Theorem (Hájec, 1988)

Consider a system in which it is possible to link two arbitrary states by a finite sequence of states. If, for every h > 0 and every pair (s_i, s_j) , s_i can be reached at altitude h from s_j if and only if s_j can be reached at altitude h from s_i , and if (T_i) decreases toward 0, the sequence X_i defined by simulated annealing satisfies:

$$\lim_{i\to\infty}P(x_i\in O^*)=1$$

if and only if

$$\sum_{i=1}^{\infty} \exp(-D/T_i) = +\infty$$

With $D = mind_i : s_i \in O - O^*$

Hence, the simulated annealing algorithm converges to the global maxima so long as the temperature decreases according to the constraint on D.

Simulated Annealing: Example

Example 1: Find the global maximum of $h(x) = [cos(50x) + sin(20x)]^2$ using Simulated Annealing.

(example 5.5 in Monte Carlo Statistical Methods textbook)

Example 2: Using Simulated Annealing, find the global minimum of:

$$h(x,y) = (x sin(20y) + y sin(20x))^2 cosh(sin(10x)x) + (x cos(10y) - y sin(10x))^2 cosh(cos(20y)y)$$

(example 5.3 in Monte Carlo Statistical Methods textbook)

15 / 16

Sequoia Andrade Simulated Annealing December 12th, 2023

References

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines.

The journal of chemical physics, 21(6):1087–1092.

Robert, C. P., Casella, G., and Casella, G. (1999). Monte Carlo statistical methods, volume 2. Springer.

Wikipedia contributors (2023). Simulated annealing — Wikipedia, the free encyclopedia. [Online; accessed 11-December-2023].