# Gaussian Processes for Inference with Implicit Likelihoods

Murali Haran

Department of Statistics

Pennsylvania State University.

School of Statistics 40th Reunion University of Minnesota, May 2011.

#### This Talk

- I will discuss two of my current interdisciplinary research projects.
- The talk will be interspersed with quotes from U. of Minnesota professors. Some wise, some offbeat (but still enlightening.)
- Disclaimer: I will paraphrase from memory. I may misquote, misattribute quotes.

The first time you give a talk, you learn a lot and the audience learns nothing; the second time, the audience learns a lot, you learn nothing; after that, nobody learns anything. – Brad Carlin

## Complex Scientific Models

#### You could do worse than to talk to scientists - Charlie Geyer

- Scientists working in the physical and natural sciences are often interested in learning about the mechanisms or "laws" and processes underlying physical phenomena.
- ► These models may be useful for predictions/projections.
- Critical to work with the model provided by the scientists.
- These scientific models may be
  - Numerical solutions of mathematical (deterministic) models or stochastic models that reflect scientific processes.
  - Translated into computer code to study simulations of the physical processes for different parameters/conditions.

# Some Challenges Posed by Complex Models

When you give a talk, to a first approximation nobody knows what you are talking about. And nobody cares (as much as you.) – Bill Sudderth.

- More scientifically plausible models are typically more complex. Challenges:
  - Computationally expensive simulations.
  - May not be possible to write closed-form expressions relating input/parameters to output.
  - (When stochastic) The likelihood function may be very expensive to evaluate: hard to optimize or use Monte Carlo methods.
  - ► There are non-ignorable discrepancies between the model and reality.
- Likelihood is often implicit or has to be treated as such.

#### Two Examples

- I Climate: An Earth System Model of Intermediate Complexity (EMIC) for projecting the behavior of global ocean circulation systems.
  - Deterministic
  - Model runs are expensive
  - High-dimensional multivariate spatial process
- II Disease Dynamics: A Gravity Time Series Susceptible-Infected-Recovered (TSIR) model for the spread of infectious disease (measles).
  - Stochastic
  - Likelihood is expensive to evaluate
  - Space-time process with large number of "no incidence" observations (0s)

# The Meridional Overturning Circulation (MOC) and Climate Change



(plots: Rahmstorf (Nature, 1997) and Behl and Hovan)

## Climate Models: Learning About K<sub>v</sub>

"Collapse" of MOC may result in dramatic climate change.  $K_{\nu}$  is a key climate model parameter that influences the MOC.

- K<sub>v</sub> is a model parameter which quantifies the intensity of vertical mixing in the ocean, cannot be measured directly.
- ► Two sources of indirect information on K<sub>v</sub>:
  - Observations of two ocean "tracers", both provide information about K<sub>v</sub>: Carbon-14 (<sup>14</sup>C) and Trichlorofluoromethane (CFC11).
  - Climate model output of these two tracers at different values of K<sub>v</sub> from the University of Victoria(UVic) Earth System Climate Model (Weaver et. al. 2001): Y<sub>1</sub>(K<sub>v</sub>), Y<sub>2</sub>(K<sub>v</sub>)

## CFC-11 Example



- ► Bottom right: observations
- ▶ Remaining plots: climate model output at 3 settings of  $K_{\nu}$ .

#### Computer Models and Emulation

#### Statistical interpolation



Green inputs/output = training data.

Red = the input where predictions are desired.

Input and output are typically multivariate.

#### Computer Model Emulation

- ► Fit an emulator ("meta model") to a training set of runs from the complex computer model.
- Advantages:
  - Fast approximate simulator.
  - Uncertainties associated with interpolation (predictions), for example greater uncertainty where there is less training data information.
  - "Without any quantification of uncertainty, it is easy to dismiss computer models." (A.O'Hagan)
  - Now have a probability model.

## Modeling with Gaussian Processes

- Gaussian processes (GPs) are useful models for dependent processes, e.g. time series, spatial data.
- GPs are also very useful for modeling complicated functions.

Key idea: dependence (spatial random effects) adjusts for non-linear relationships between input and output.

#### Gaussian Process Model Basics

- ▶ Process at location  $\mathbf{s} \in D$ ,  $D \subset \mathbb{R}^d$  is  $Z(\mathbf{s}) = \mu_{\beta}(\mathbf{s}) + w(\mathbf{s})$ . Location  $\mathbf{s}$  may be physical or from "input space".
- ▶ Model dependence among spatial random variables by modeling  $\{w(\mathbf{s}) : \mathbf{s} \in D\}$  as a Gaussian process.
- ► For any *n* locations,  $\mathbf{s}_1, \ldots, \mathbf{s}_n$ ,  $\mathbf{w} = (w(\mathbf{s}_1), \ldots, w(\mathbf{s}_n))^T$  is multivariate normal.
- ▶ Parametric covariance function with parameters Θ. E.g. exponential covariance:

$$\operatorname{Cov}(Z(\mathbf{s}_i), Z(\mathbf{s}_j)) = \kappa \exp(-\|\mathbf{s}_i - \mathbf{s}_j\|/\phi), \ \kappa > 0, \phi > 0.$$
  
Here,  $\Theta = (\kappa, \phi).$ 

▶ Let  $\mathbf{Z} = (Z(\mathbf{s}_1), ..., Z(\mathbf{s}_n))^T$ , so

$$\mathbf{Z}|\Theta, \boldsymbol{\beta} \sim \textit{N}(\mu_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}(\Theta)).$$

#### **GP Linear Model Inference**

- ▶ Inference and prediction can be done via ML or Bayes.
- ▶ ML: maximize likelihood with respect to  $\Theta$ ,  $\beta$ .
- ► Bayes: prior on Θ, β; learn about π(Θ, β | Z) using Markov chain Monte Carlo (MCMC).

What's that four-letter word again? - Seymour Geisser

#### **GP Linear Model Prediction**

- ▶ Process at new locations  $\mathbf{s}_1^*, \dots, \mathbf{s}_m^* \in D$  be  $\mathbf{Z}^* = (Z(\mathbf{s}_1^*), \dots, Z(\mathbf{s}_m^*))^T$ .
- ▶ Under the GP assumption  $(\mu_1, \mu_2, \Sigma s)$  depend on  $\beta, \Theta$ ):

$$\begin{bmatrix} \mathbf{Z} \\ \mathbf{Z}^* \end{bmatrix} \mid \Theta, \beta \sim N \begin{pmatrix} \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \end{pmatrix}, \tag{1}$$

ML: use above with ML estimates plugged-in.

Bayes: use above, while averaging over  $\Theta$ ,  $\beta \mid \mathbf{Z}$ . This is the *posterior predictive distribution*.

#### GP Model for Dependence: Toy 1-D Example



It's always a good idea to have a toy example. – Galin Jones Toy examples don't teach you anything. – Charlie Geyer

# GP for Function Approximation: Toy 1-D Example



The red curves are interpolations using the same, simple GP model with constant mean  $\mu$ :

$$y(x) = \mu + w(x),$$

where  $\{w(x), x \in (0,20)\}$  is a zero-mean GP.

#### Summary of Inferential Problem

Let parameter of interest be  $\theta$  (here  $\theta = K_v$ ).

#### Statistical problem:

- ▶ Model output is a bivariate spatial process at each  $\theta$ :  $\mathbf{Y} = ((\mathbf{Y}_1(\psi_1), \mathbf{Y}_2(\psi_1)), (\mathbf{Y}_1(\psi_2), \mathbf{Y}_2(\psi_2)), \dots, (\mathbf{Y}_1(\psi_K), \mathbf{Y}_2(\psi_K)),$  where  $\{\psi_1, \psi_2, \dots, \psi_K\}$  is a set of plausible  $\theta$  values.
- ▶ Observations:  $\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2)$ .
- ▶ What can we learn about  $\theta$  given **Z**, **Y**?

# Bayesian Approach

#### A Bayesian framework is useful:

- ▶ There is usually real prior information about  $\theta$ .
- Access to the full posterior distribution is useful with potential multimodality and identifiability issues.
- If θ is multivariate, important to look at bivariate and marginal distributions (easier w/ sample-based approach).

Kennedy and O'Hagan (2001); Bayarri, Berger et al. (2007, 2008); Sanso et al. (2008); Higdon et al. (2008).

You shouldn't be reading papers, you should be writing them.

(Yeah!) - Jim Dickey

Even if you don't know the literature and reinvent something, you will probably end up doing something cool(er), so it doesn't matter. – Charlie Geyer

## Two-stage Approach to Inference

- 1. Find probability model for **Z** (data) using **Y** (simulations.)
  - Model relationship between Z = (Z<sub>1</sub>, Z<sub>2</sub>) and θ via flexible emulator for model output Y = (Y<sub>1</sub>, Y<sub>2</sub>).
  - Add model discrepancy and measurement error:

$$\mathsf{Z} = \eta(\mathsf{Y}, {\color{red} oldsymbol{ heta}}) + \delta(\mathsf{Y}) + \epsilon$$

where  $\delta(\mathbf{Y}) = (\delta_1 \ \delta_2)^T$  is the model discrepancy, also modeled as a GP.  $\epsilon = (\epsilon_1 \ \epsilon_2)^T$  is the observation error.

2. Prior for  $\theta$  + likelihood (based on above model) provides posterior distribution for  $\theta$ .

Need (i) flexible model for relationship between  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$  (two spatial fields), (ii) computational tractability.

## Step 1: Details

#### People don't care too much about the details. - Glen Meeden

Model (Y₁, Y₂) as a hierarchical model: Y₁|Y₂ and Y₂ as Gaussian processes (cf. Royle and Berliner, 1999.)

$$\begin{split} \mathbf{Y}_1 \mid \mathbf{Y}_2, \boldsymbol{\beta}_1, \boldsymbol{\xi}_1, \boldsymbol{\gamma} &\sim \textit{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}_1}(\boldsymbol{\theta}) + \mathbf{B}(\boldsymbol{\gamma})\mathbf{Y}_2, \boldsymbol{\Sigma}_{1.2}(\boldsymbol{\xi}_1)) \\ \mathbf{Y}_2 \mid \boldsymbol{\beta}_2, \boldsymbol{\xi}_2 &\sim \textit{N}(\boldsymbol{\mu}_{\boldsymbol{\beta}_2}(\boldsymbol{\theta}), \boldsymbol{\Sigma}_2(\boldsymbol{\xi}_2)) \end{split}$$

- ▶  $\mathbf{B}(\gamma)$  is a matrix relating  $\mathbf{Y}_1$  and  $\mathbf{Y}_2$ , with parameters  $\gamma$ .
- The covariances of the Gaussian processes depend on both s (spatial distance) and θ (distance in parameter space).
- $\triangleright$   $\beta$ s,  $\xi$ s are regression, covariance parameters.

## Step 2: Details

- ► Emulation: Fit GP via maximum likelihood, then obtain predictive distribution at locations of observations.
- ► Add model discrepancy and measurement error:

$$\mathbf{Z} = \boldsymbol{\eta}(\mathbf{Y}, \boldsymbol{\theta}) + \boldsymbol{\delta}(\mathbf{Y}) + \boldsymbol{\epsilon}$$

where  $\delta(\mathbf{Y}) = (\delta_1 \ \delta_2)^T$  is the model discrepancy, also modeled as a GP.  $\epsilon = (\epsilon_1 \ \epsilon_2)^T$  is the observation error.

- Model discrepancy term can make crucial adjustment to θ estimates (Bayarri, Berger et al. 2007; Bhat et al., 2010).
- ▶ Use Markov chain Monte Carlo (MCMC) to estimate  $\pi(\theta \mid \mathbf{Z}, \mathbf{Y})$ , integrating out remaining parameters.
- Separating stages: 'modularization' (e.g. Liu, Bayarri, Berger, 2009). Computational advantages + reduce identifiability issues.

#### Computational Issues

- ▶ Matrix computations are  $\mathcal{O}(N^3)$ , where N is the number of observations. Here:  $N \approx$  tens of thousands.
- Markov chain mixes slowly so need long MCMC runs.
- We use a reduced rank approach based on kernel mixing (Higdon, 1998): continuous process created by convolving a discrete white noise process with a kernel function.
- Special structure + Sherman-Woodbury-Morrison identity + Sylvester's Theorem used to reduce matrix computations.

#### Results for $K_{\nu}$ Inference



posteriors: only CFC-11, only  $\Delta^{14}C$ , both CFC-11 &  $\Delta^{14}C$ . Result:  $\mathbf{K_v}$  pdf suggests weakening of MOC in the future.

## Summary of Climate Model Inference

#### Two-stage approach:

- 1. Obtain a probability model connecting CFC-11,  $\Delta^{14}C$  tracer observations to  $\mathbf{K_v}$  by fitting a flexible Gaussian process model to climate model runs. Hierarchical model for multiple spatial processes + patterned covariances  $\Rightarrow$  flexible and computationally tractable.
- 2. Using this probability model, infer a posterior density for  $K_{\nu}$  from the observations.

We can use inferred  $K_{\nu}$  in the climate model to project the MOC. We find that the MOC weakens over the next 50 years.

#### II. Infectious Disease Models

You should not try to communicate more than one idea in a single talk. – Glen Meeden

- Gravity-TSIR model: Space-time model for the spread of measles. Unknown parameters of this model control the dynamics of the spread of this disease e.g. how the disease spreads as a function of distance between locations.
- ► Thousands of latent variables e.g. number of immigrants moving from one location to another.
- Rich space-time data set from England and Wales. Time points× locations = 546×952= 519,792.
   Potential for learning about parameters, but also poses

computational challenges.

## Inference for Gravity TSIR Model Parameters

An approximate grid-based Markov chain Monte Carlo approach provides a way out of the computational challenges.

Sounds good. - Luke Tierney

However, traditional likelihood-based/Bayesian inference does not result in a fitted model that reproduces scientifically relevant features of the data.

## Traditional Likelihood-Based Approach

Simulations from fitted model (Bayes/ML) do not match up well with the data for important characteristics of the process.





Just because it sounds like a good idea, that doesn't mean it's a good idea. – Charlie Geyer.

Most of the time when people think they are screwed, they aren't really screwed. Occasionally they *are* screwed. – Glen M.

## Inference for Gravity TSIR Model Parameters

#### You are thinking about it all wrong. - Charlie Geyer.

- ► Likelihood-based approaches do not take into account features that are of scientific interest.
- Instead, fit GP to summary statistics of model runs where summaries are based on scientifically relevant features.
- Inference based on using this GP with the data results in improved inference.

(Skipping lots of details, computational issues etc. ...)

## **GP-based Inference Using Key Summaries**

Simulations from fitted model are a much better match.





#### Summary

Gaussian processes are a powerful tool for problems where the likelihood is implicit and simulating from the model is expensive.

Try it, you'll like it. - Frank Martin.

- GPs are useful for deterministic and stochastic models.
- GP-based approach can be used to take into account the scientifically important features of the data; may be preferable to traditional likelihood-based approaches.
- Limitation: computationally intractable when the number of parameters of interest (dimensionality of  $\theta$ ) is large.

#### Collaborators

- K. Sham Bhat, Los Alamos National Laboratories.
- Roman Tonkonojenkov, Dept of Geosciences, Penn State University.
- Klaus Keller, Dept of Geosciences, Penn State University.
- Roman Jandarov, Dept of Statistics, Penn State University.
- Ottar Bjørnstad, Center for Infectious Disease Dynamics,
   Penn State University.

Woof. – Charlie Geyer Go have a beer. – Frank Martin

#### References

- Kennedy, M.C. and O'Hagan, A.(2001), Bayesian calibration of computer models, J. of Royal Statistical Society (B).
- Grenfell, B.T., Bjørnstad, O. N. and Kappey, J. (2001), "Traveling waves and spatial hierarchies in measles epidemics." *Nature*.
- Bhat, K.S., Haran, M., Tonkonojenkov, R., and Keller, K. (2011), "Inferring likelihoods and climate system characteristics from climate models and multiple tracers."
- ▶ Bhat, K.S., Haran, M. and Goes, M. (2010) "Computer model calibration with multivariate spatial output,"
- Jandarov, R., Haran, M., Bjornstad, O.N. and Grenfell, B. (2011) "Emulating a gravity model to infer the spatiotemporal dynamics of an infectious disease."

#### II. Infectious Disease Models

- Infectious disease models are useful for investigating key questions in biology. They are of practical use in the management and control of infectious diseases, including immunization and epidemic control strategies.
- Here: focus on statistical inference for the Gravity-TSIR model, which models spatiotemporal dynamics. This model presents several inferential and computational challenges.

## Simple SIR models

Basic SIR models classify individuals as one of **susceptible** (S), **infected** (I) or **recovered** (R).

- Individuals are born into the susceptible class.
- Susceptible individuals have never come into contact with the disease and are able to catch the disease, after which they move into the infected class.
- Infected individuals spread the disease to susceptibles, and remain in the infected class (the infected period) before moving into the recovered class.
- Individuals in the recovered class are assumed to be immune for life.

## Gravity T-SIR model

Extension of the discrete time-series SIR (T-SIR) model (Bjornstad et al.2002; Grenfell et al. 2002) with explicit formulation of the spatial transmission between different host communities.

#### Notation:

- ▶  $I_{k,t}$  number of **infected** individuals in city k at time t.
- ▶  $S_{k,t}$  number of **susceptible** individuals in city k at time t.
- $d_{k,i}$  **distance** between cities k and j.
- ▶  $N_{k,t}$  **population** of city k at time t.
- ▶  $B_{k,t}$  local number of new hosts (**births**) in city k at time t.
- L<sub>k,t</sub> number of infected people moved (**immigrants**) to city k at time t.
- ▶ *T* cities, *K* time points.

## Modeling incidences

#### Following Xia, Bjornstad and Grenfell (2004):

▶ Number of incidences of a disease at time t + 1 for city k,

$$I_{k,t+1} = \mathsf{Poisson}(\lambda_{k,t+1})$$
, where  $\lambda_{k,t+1} = \beta_t \mathcal{S}_{k,t} (I_{k,t} + L_{k,t})^{\alpha}$ .

•  $\alpha$ ,  $\{\beta_t\}$  are local transmission parameters.

## Modeling susceptibles

Number of susceptible individuals at time t + 1 for city k is then modeled via balance equation (Bartlett, 1957):

$$S_{k,t+1} = S_{k,t} + B_{k,t} - I_{k,t+1}$$

► Finally, unobserved number of infected immigrants moved to city *k* at time *t* is modeled as:

$$L_{k,t} = \text{Gamma}(m_{k,t}, 1),$$

where

$$m_{k,t} = \theta N_{k,t}^{\tau_1} \sum_{i=1, i \neq k}^{K} \frac{(J_{jt})^{\tau_2}}{d_{k,j}^{\rho}}, \quad \theta, \tau_1, \tau_2, \rho > 0.$$

#### Statistical inference for measles

#### Measles data

- The UK Registrar General's data for 952 cities in England and Wales for years 1944-1966 of biweekly incidences of measles. Very rich spatio-temporal data.
- Data for number of susceptibles from standard susceptible reconstruction algorithms (cf. Fine and Clarkson, 1982)

#### Parameters of the model:

- ▶ Reliable estimates of local transmission parameters  $\alpha$  and  $\{\beta_t\}$  are assumed known from previous work (Bjornstad et al. 2001).
- ▶ **Goal**: Infer unknown gravity parameters:  $\theta$ ,  $\tau_1$ ,  $\tau_2$ ,  $\rho$ .

## Challenges with likelihood-based inference

- ▶ Dimensions of the data (*TK*): 546\*952 = 519,792.
- ▶ Number of infected immigrants  $\{L_{k,t}\}$  are unobserved.
- ► The likelihood function is complicated:
  - Involves integrating over 519,792 latent variables.
  - Very expensive calculations per iteration.
- Approximate Bayesian computation (ABC) approaches are infeasible since simulating draws from this model is computationally expensive.

## A simplified model and gridded MCMC

Simplify the model by fixing the number of immigrants (latent variables) at their means.

- Likelihood evaluations are still very expensive.
- Studying likelihood surface, learning about variability of estimates is computationally infeasible.

#### Gridded Metropolis-Hastings:

- We evaluate expensive parts of the likelihood on a grid of parameter values (can use parallel processors for this) and store these in a look-up table.
- M-H algorithm on discretized parameter space (on grid).
   M-H ratio evaluation is now much faster.

#### Results

- ► The gridded MCMC algorithm produces posterior distributions similar to a non-gridded MCMC algorithm, but much faster.
- Conclusions based on a simulation study:
  - Serious identifiability issues. Can only infer 2 of the 4 parameters.
  - In simulation studies: posterior (and likelihood) surface is peaked away from the true parameter values. There's a significant shift (bias) in parameter estimates.

## Alternative approach

- Instead of likelihood-based approach, focus on important biological 'signatures' of the process. E.g. proportion of zeros (# of times no disease incidences in a city).
- ► Borrow ideas from computer model emulation, calibration (cf. Sacks et al., 1989.)
  - Simulate realizations from the gravity model at different parameter values.
  - 2. Use the signatures to define summary statistics.
  - 3. Find distance between summary statistics for the simulated process and the observations.
  - 4. Fit a Gaussian process to this distance, as a function of the parameters.
  - Can obtain a likelihood and perform Bayesian inference for the gravity model parameters using the observations.

## Inferential approach outline

- Gravity parameters,  $\Theta = (\theta, \tau_1, \tau_2, \rho)$ .
- ► Summary statistics (distance to observations) based on simulations at  $\Theta_i$ , i = 1, ..., n parameter settings,  $\mathbf{Y} = (\mathbf{Y}(\Theta_1), ..., \mathbf{Y}(\Theta_n))$ .
- Model stochastic model output **Y** using a Gaussian process: **Y** |  $\beta$ ,  $\xi \sim N(\mu_{\beta}(\Theta), \Sigma(\xi, \Theta))$ . Infer  $\beta$ ,  $\xi$ : regression, covariance parameters.
- ► Model summary statistic for real data set **Z**:
- ▶ **Z** =  $\eta$ (**Y**,  $\theta$ ) +  $\delta$ <sub>Ψ</sub>(**Y**,  $\Theta$ ) +  $\epsilon$ <sub> $\sigma$ <sup>2</sup></sub>(**Y**) where  $\eta$  is a random variable with predictive distribution derived above.  $\delta$  is a discrepancy function, modeled as Gaussian process, and  $\epsilon$  is a vector of i.i.d. errors.
- ▶ Infer posterior  $\pi(\Theta, \Psi, \sigma^2 \mid \mathbf{Z}, \mathbf{Y})$  using MCMC.

#### Conclusions

- Our GP-based emulation approach appears to produce unbiased estimates of the parameters.
- With estimated parameters, the model is able to reproduce well the signatures of the disease process.
- This is the first statistically rigorous approach to this problem: estimates of uncertainty, joint distributions of parameters, predictions/variability from fitted model.

#### Caveats and future work:

- Our statistical approach unearths serious identifiability issues: can still only learn about 2 parameters at most.
- Computational concerns only allow for a limited number of model forward runs.

## Key references

- Xia, Y. C., Bjørnstad, O. N. and Grenfell, B. T. (2004), Measles Metapopulation Dynamics: A gravity model for epidemiological coupling and dynamics, *American* Naturalist.
- Bjørnstad, O. N., Finkenstädt, B. and Grenfell, B. T.(2001), Dynamics of measles epidemics. I. estimating scaling of transmission rates using a time series SIR model, *Ecological Monographs*.
- Bhat, K.S., Haran, M., Tonkonojenkov, R., and Keller, K. (2011), Inferring likelihoods and climate system characteristics from climate models and multiple tracers.
- ▶ Bhat, K.S., Haran, M., and Goes, M. (2010),

Acknowledgment: Support from Bill and Melinda Gates