### Content

- Differencing Masks
  - 1<sup>st</sup> derivative masks
  - 2<sup>nd</sup> derivative masks
  - · Laplacian mask

Computer Vision / Image Formation (Artificial and Biological)

## **Difference Masks**

As well as calculating averages (as with box and Gaussian masks), convolution can also be used to calculate differences.

The difference between pixel values measures the gradient of the intensity values.

#### Hence:

- smoothing masks approximate integration
- difference masks approximate differentiation



### 1<sup>st</sup> derivative mask

Estimate of gradient is  $\frac{\Delta y}{\Delta x}$  i.e.:  $(i_2-i_1)$ 



Computer Vision / Low-Level Vision (Artificial)

### 2<sup>nd</sup> derivative mask

Estimate of change of gradient is  $(i_3-i_2)-(i_2-i_1)$ 



### Difference masks for different directions

vertical

horizontal

diagonals **←** Mask orientation

horizontal

vertical

diagonals **←** Orientation of intensity change detected

#### 1<sup>st</sup> derivative masks:





#### 2<sup>nd</sup> derivative masks:

$$\begin{array}{c|c}
-1 \\
2 \\
\approx -\delta^2/\delta y^2
\end{array}$$



| -1 | 0 | 0  |
|----|---|----|
| 0  | 2 | 0  |
| 0  | 0 | -1 |

Computer Vision / Low-Level Vision (Artificial)

# Difference mask example

### **Original Images**



Images convolved with vertical difference mask

 $(-\delta^2/\delta v^2)$ 





## Difference mask example

### Original Images



Images convolved with horizontal difference mask



$$(-\delta^2/\delta x^2)$$





Computer Vision / Low-Level Vision (Artificial)

# Difference mask example

### Original Images





Images convolved with diagonal difference mask

| -1 | 0 | 0  |
|----|---|----|
| 0  | 2 | 0  |
| 0  | 0 | -1 |





# Difference mask example

**Original Images** 





Images convolved with diagonal difference mask

| onioo maon |   |    |
|------------|---|----|
| 0          | 0 | -1 |
| 0          | 2 | 0  |
| -1         | 0 | 0  |





Computer Vision / Low-Level Vision (Artificial)

# Difference mask example

Original Images





Images convolved with vertical + horizontal + both diagonal difference mask

| -1 | -1 | -1 |  |
|----|----|----|--|
| -1 | 8  | -1 |  |
| -1 | -1 | -1 |  |





 $\approx -\delta^2/\delta x^2 - \delta^2/\delta y^2$ 

Computer Vision / Low-Level Vision (Artificial)

# The Laplacian mask

The final example be seen as a combination of 2<sup>nd</sup> derivative difference masks in each direction.

It therefore detects intensity discontinuities at all orientations.

| -1 | -1 | -1 |
|----|----|----|
| -1 | 8  | -1 |
| -1 | -1 | -1 |

$$\approx -\delta^2/\delta x^2 - \delta^2/\delta y^2$$

Called the Laplacian mask.

However, note that strictly the Laplacian should be the additive inverse of this mask.

Computer Vision / Low-Level Vision (Artificial)