Points and Threads

Input file: standard input
Output file: standard output

Time limit: 4 seconds
Memory limit: 256 megabytes

There are n points on a line, numbered $1, 2, \ldots n$, where the point i is located at position x_i . Your aim is to connect these n points using n-1 threads, such that, one can go from any one of the points to any other point using these threads.

For each point i, you can buy a thread at a cost of a_i per unit length. To directly connect two points i and j, you need to buy a thread of length $|x_i - x_j|$, at either point i or point j. Hence, the cost of directly connecting points i and j with a thread equals $\min(a_i, a_j) \cdot |x_i - x_j|$.

Find the cost of connecting the n points using n-1 threads, as required.

Input

The first line contains $t(1 \le t \le 1000)$, the number of test cases. Then, the test cases follow, each consisting of three lines:

- The first line of each testcase contains n $(1 \le n \le 2 \cdot 10^5)$, the number of points.
- The second line contains n space separated integers, $x_1, x_2, \dots x_n$, where $1 \le x_i \le 10^9$ denotes the position of the i^{th} point for all i.
- The third line contains n space separated integers, $a_1, a_2, \dots a_n$, where $1 \le a_i \le 10^9$ for all i denotes the cost per unit length of buying a thread at point i.

The sum of n over all testcases doesn't exceed $2 \cdot 10^5$.

Output

Print a single line per testcase, containing the minimum cost for connecting the n points.

Example

standard input	standard output
1	5
3	
1 3 4	
1 11 111	

Note

There are three points. The cost of directly connecting points 1 and 2 equals $\min(1,11) \cdot |3-1| = 2$. The cost of directly connecting point 2 and 3 equals $\min(11,111) \cdot |4-3| = 11$, and the cost of directly connecting points 1 and 3 equals $\min(1,111) \cdot |4-1| = 3$.

It is optimal to use two threads, one for a direct connection between points 1 and two, and another for a direct connection between points 1 and 3. Hence, the total optimal cost equals 2 + 3 = 5.