

Faculty of Veterinary and Agricultural Sciences

Cells to Systems Lecture 9: Transport of molecules across cell membranes Video 1

Dr Laura Dooley Senior Lecturer

laura.dooley@unimelb.edu.au

VETS30015 / VETS90121

Lecture 9: ILOs

- Describe the composition of the cell membrane and explain how the distribution of phospholipids and proteins influences the membrane permeability to ions, hydrophilic and hydrophobic compounds, and cell-cell communication
- Describe how cells regulate the movement of substances across their membranes and the role of diffusion, facilitated diffusion, and primary and secondary active transport mechanisms
- Explain how energy from the Na+ and K+ electrochemical gradients across the plasma membrane are maintained

Transport of fluid and molecules across cell membranes

- Movement of fluid and solutes from blood to interstitial fluid (L8)
 - Diffusion, osmosis
 - Bulk flow and Starling' Forces
- Movement of fluid and solutes from interstitial fluid into cells (L9)
 - Diffusion
 - Facilitated Diffusion
 - Active Transport
 - Co-transport

Key functions of biological membranes

1. Selective Barrier

Regulates flow of material into and out of the cell

2. Organization

- Form compartments (e.g. organelles)
- Help maintain separate and distinct molecular environments

3. Transport

 Contain specific molecular pumps and channels for transporting solutes

4. Controlling information flow

- Specific receptors for external signalling
- Generate chemical & electrical signals

5. Cell-cell interactions

- Cell recognition
- Cell adhesion

6. Reactions

Enzyme activity

Cell membrane structure and composition

The cell membrane is composed of a phospholipid bilayer that regulates entry and exit of fluid and molecules

Plasma membrane Structure:

- Phospholipid bilayer
- Proteins
 - Integral, surface
- Cholesterol
- Carbohydrates linked to proteins & lipids

Fluid mosaic model:

- Membrane proteins move freely in the lipid layer
- Ever-changing pattern of proteins
- Cytoskeleton can restrict proteins to specific areas of cell membrane

Phospholipid bilayer

- Lipid bilayer
- Phospholipids
 - Have a hydrophilic
 - Polar 'head group'
 - Attracted to water
 - Hydrophobic
 - Non polar 'tail' region
 - Fatty acids
 - Cholesterol molecules are tucked between phospholipid molecles – support membrane fluidity

Lipid bilayer permeability: determined by size & solubility in lipid

Hydrophobic (lipid soluble)

Diffuses quickly

Hydrophilic (lipid insoluble)

Hydrophilic (polar) substances in membrane are sparingly soluble

1. Nonpolar molecules

Pass freely e.g., fatty acids, steroid hormones, CO₂, & O₂ (act as nonpolar – because they are linear)

2. Small uncharged polar molecules

Pass freely but more slowly than nonpolar molecules e.g., H₂O

3. Large polar molecules & ions

Don't pass freely (e.g. glucose, Na+)

4. Macromolecules

Don't pass (e.g. proteins, polysaccharides, nucleic acids)

Plasma Membrane Proteins: integral and peripheral

Integral membrane protein: permanently attached to the cell membrane lipid bilayer

- Some span the entire membrane (e.g. ion channels, hormone receptors
- -Others are embedded (e.g. enzymes)

Peripherally associated membrane proteins: not permanently attached to the cell membrane lipid bilayer

 Non-covalently bound, often attached to integral proteins (e.g. regulatory proteins, transporter proteins, enzymes)

A: peripheral protein, B: α helix, single span C: α helix, triple span, D:embedded, but not spanning membrane, E: Linked to phospholipid by an oligosaccharide, F: Direct link to a fatty acid

Functions of the membrane proteins

Enzymatic activity:

- Control chemical reactions inside or outside cell

Transport:

- Form hydrophilic channels across lipid bilayer
- Highly selective channels

Transport

Cell-cell recognition

Enzymatic activity

Intercellular joining

Signal transduction

Attachtment

 Proteins that connect the cell to extracellular matrix

Attachment

Signal transduction

that receive

Receptor proteins

external signals

Intercellular joining

- Cell adhesion molecules
- Form loops or hooks to grip other cells

Cell recognition:

- Facilitate cell-to-cell interactions
- Cell's ability to recognise 'self'

Membrane channels

- The protein transmembrane channels that permit simple diffusion:
 - pores and channels (gated)

- Types of gated ion channels
 - voltage-gated, e.g. Na+ or K+ (specific channel for each)
 - Chemical or ligand-gated, e.g. acetylcholine
 - mechanically-gated, e.g. sound waves in inner ear open ion channels

Transport across biological membranes

1. Simple diffusion

Down a concentration or electrical gradient

- Through membrane (lipid-soluble molecules)
- Through pores integral cell membrane protein, e.g. aquaporin for water
- Through protein channels selectively permeable, may be gated, eg ion channels

2. Facilitated Diffusion

- Down a concentration or electrical gradient
 - Carrier mediated need integral membrane protein
 - Transporter is specific for the molecule
 - Rate limited by binding and conformational change in carrier protein; eg glucose, amino acids

3. Active transport

- Up a concentration or electrical gradient
 - Carrier mediated and energy dependent

Facilitated diffusion

- Use of a carrier protein to facilitate transfer across membrane, down a concentration gradient
- Molecule binds to a receptor within the carrier protein
- Binding triggers a shape (conformation) change of carrier protein allowing entry to the opposite side of the membrane
- Release returns carrier protein's shape to the original or unoccupied state.
- Carrier proteins demonstrate specificity
- Transport rate is limited by concentration of molecule and number of channels (receptors become saturated)
- Examples: glucose (in most cells) and amino acids

Concentration of substance

Faculty of Veterinary and Agricultural Sciences

Cells to Systems Lecture 9: Transport of molecules across cell membranes Video 2

Dr Laura Dooley Senior Lecturer

laura.dooley@unimelb.edu.au

VETS30015 / VETS90121

Transport across biological membranes

1. Simple diffusion

Down a concentration or electrical gradient

- Through membrane (lipid-soluble molecules)
- Through pores integral cell membrane channel, e.g. aquaporin for water
- Through protein channels selectively permeable, may be gated, eg ion channels

2. Facilitated Diffusion

- Down a concentration or electrical gradient
 - Carrier mediated need integral membrane protein
 - Transporter is specific for the molecule
 - Rate limited by binding and conformational change in carrier protein; eg glucose, amino acids

3. Active transport

- Up a concentration or electrical gradient
 - Carrier mediated and energy dependent

Active transport

- Use of protein carrier to carry a specific substance
- Transported against concentration or electrochemical gradient
- Requires expenditure of energy (in the form of ATP) to drive carrier
- Active transport mechanisms are often called 'pumps'
- Primary active transport directly uses chemical energy (primarily ATP) to move molecules
- Secondary active transport uses an electrochemical gradient – generated by active transport – as an energy source to move molecules against their gradient. It does not directly require a chemical source of energy such as ATP.

Primary active transport example: Na⁺-K⁺ ATPase pump

- Membrane of all cells contains an active Na⁺-K⁺ ATPase pump
- Functions to concentrate Na⁺ in the ECF and K⁺ in the ICF
- 3 receptors for Na⁺ inside cell & 2 receptors for K⁺ outside cell
- ATPase activated when ions bind → cleaves 1 molecule of ATP

 Liberated energy causes conformational change in carrier which flips the ions across the membrane

Primary active transport example: Na⁺-K⁺ ATPase pump

Functions:

- Establishes Na⁺ and K⁺ concentration gradients across the cell membrane → interior of cell negative with respect to exterior → critical for propagation of action potentials in nerves and for muscle contraction
- 2. Regulates cell volume by controlling solute concentrations— minimise osmotic effects that would induce swelling/shrinking of cell
- Energy used also indirectly serves as energy source for cotransport of glucose and amino acids through secondary active transport
- Similar primary active transport pumps for Ca²⁺ and H⁺

Secondary active transport

Secondary active transport uses an electrochemical gradient – generated by active transport – as an energy source to move molecules against their gradient.

For example:

- Intestinal and kidney cells actively transport glucose and amino acids up their concentration gradients
- Co-transport carriers have two binding sites one for Na⁺ an the other for the nutrient molecule (e.g. glucose)
- When both glucose and Na⁺ are bound to the carrier, it changes shape and opens to the inside of the cell both Na⁺ and glucose are released into the ICF
- Released Na⁺ is quickly pumped out again by the Na⁺-K⁺
 ATPase pump, to keep the intracellular Na⁺ low (maintaining Na⁺
 concentration gradient across membrane)

Vesicular transport

- Some large molecules/multimolecular materials are too large for channels and carriers
- They are transferred in a membrane-enclosed vesicle → vesicular transport
- Vesicular transport requires energy → active transport mechanism
- Transport into the cell = endocytosis; Transport out of cell = exocytosis
- Three forms of endocytosis:
 - 1. pinocytosis non-selective uptake of ECF
 - 2. receptor-mediated endocytosis (large molecule)
 - 3. phagocytosis (multimolecular particles)

- 1. Vesicle buds off from plasma membrane
- Vesicle transported intact, releasing contents to exterior by exocytosis or fuses with a lysosome
- 3. Membrane components recycled to the plasma membrane

Membrane potential

- All cell membranes have a membrane potential due to difference in the relative number of cations and anions in the ICF and ECF
- The ions primarily responsible are Na+, K+, and negatively charged intracellular proteins
- Negatively charged intracellular proteins cannot permeate the membrane → unbalanced distribution → ICF is more negative than ECF

- 20% of membrane potential is generated by the Na+-K+ ATPase pump (active transport mechanism)
- The rest is generated through the passive diffusion of Na+ and K+ down concentration gradients

Ion concentrations and electrochemical gradients

Extracellular fluid		Intracellular fluid
Blood plasma	Interstitial fluid	Intracellular fluid
1.0 litre*	3 litre*	8 litres*
[Na+]= 153 mM	[Na+]= 145 mM	[Na+]= 10-15 mM
[K+]= 4.7 mM	[K+]= 4.5 mM	[K+]= 120-140 mM
[Cl-]= 110 mM	[Cl-]= 116 mM	[Cl-]= 20 mM Range 3-30mM
	1.0.4.1.4.4.	FO 8 3 0004 NE

- For K+, the concentration gradient would tend to move the ion out of the cell, but the electrical gradient would tend to move K+ into the cell
 - →K⁺ diffuses out of the cell down its concentration gradient until electrical forces prevent further net diffusion
- More diffusion (leak) channels for K^+ than $Na^+ \rightarrow so$ more K^+ leaves than Na^+ enters
- Negative ions that can't easily diffuse remain in ICF
 - → Results in a net **negative** charge within the cell

(a)

© 2011 Pearson Education, Inc.

Membrane potential

At resting membrane potential:

- Passive leaks of Na+ and K+ down their electrochemical gradients
- This is counterbalanced by the Na+-K+ ATPase pump
- No net movement of Na+ and K+
 → membrane potential remains constant

Transport of fluid and molecules across cell membranes

- Movement of fluid and solutes from blood to interstitial fluid (L8)
 - Diffusion, osmosis
 - Bulk flow and Starling' Forces
- Movement of fluid and solutes from interstitial fluid into cells (L9)
 - Diffusion
 - Facilitated Diffusion
 - Active Transport
 - Co-transport

