

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P1

FEBRUARY/MARCH 2012

MEMORANDUM

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
O	Opinion/Example
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off

This memorandum consists of 12 pages.

$\begin{array}{c} 2\\ NSC-Memorandum \end{array}$

QUESTION 1 [33 MARKS]			
Ques		Explanation	AS
1.1.1	$\frac{3}{4}$ of $\sqrt{9.673} - 0.5$ (5.9352 + 2.16937) = 73.763 558 4.052 285 = 69.711 273 \checkmark A	1A simplifying 1R rounding off	12.1.1
	≈ 69,71 √ R	Answer only full marks	
1.1.2	22,25% of R136,00 OR \checkmark M $= \frac{22,25}{100} \times R136$ 0,2225 × R136	1M using percentage	12.1.1
	$= R30,26 \checkmark CA = R30,26 \checkmark CA$	1CA simplification	
	OR $\frac{22,25}{100} \times R136 \checkmark M$		
	$= R30,26 \checkmark CA$	Answer only full marks (2)	
1.1.3	$450 \text{ m} = (450 \div 1\ 000) \text{ km}$ = 0,45 km \checkmark A	1A answer (1)	12.3.2
1.1.4	5,34 million = 5,34 × 1 000 000 = 5 340 000 ✓ A	1A solution (1)	12.1.1
1.1.5	Price per egg = $\frac{R7,92}{6}$ \checkmark M	1M dividing by 6	12.3.2 12.1.1
	= R1,32 ✓CA	1 CA simplification	
		Answer only full marks (2)	
1.1.6	Total number of days from Jan. to Jul. = $31 + 28 + 31 + 30 + 31 + 30 + 31$ = $212 \checkmark A$ So, the 200^{th} day is in July $\checkmark CA$	1A total days 1CA month Answer only full marks	12.1.2 12.3.2
	aht recerved	(2)	turn over

$\begin{array}{c} 3 \\ NSC-Memorandum \end{array}$

Ques	Solution	Explanation	AS
1.2.1	19:00 OR 7 pm OR 19H00 ✓✓A	2A answer	12.1.1 12.3.1
		(2)	
	./ CE		12.2.1
1.2.2	Wage = R18,00 × 12 × $2\frac{1}{2}$ SF	1 SF substitution	
	= R540 √ CA	1CA simplification	
		Answer only full marks	
		(2)	12.2.1
1.3.1	Total Income = profit + expenses		12.2.1 12.1.1
	= R135 400 + R235 656 ✓ SF	1SF substitution	
	= R371 056 ✓ CA	1CA simplification	
		Answer only full marks	
		(2)	
1.3.2	Sihle's share = R135 400 - R54 160	1A Sihle's share	12.1.1
	$= R81 240^{\checkmark} A$	1M Writing as a ratio	
	Ratio = 54 160 : 81 240 ✓ M	1CA simplified ratio	
	= $2 : 3$ OR $1 : 1,5$ \checkmark CA		
	OR 27 080 : 40 620 OR 13 540 : 20 310	Accept any simplified form of the ratio	
	OR 5 416 : 8 124	(3)	
1.3.3	An increase of 8% implies 108 % \checkmark_{M} Profit in 2011 = $\frac{108}{100} \times \mathring{R}135400$ OR 1,08 × R135400	1M concept of increase 1A simplification	12.1.1
	= R146 232 ✓CA OR	1CA solution	
	Increased amount = $\frac{8}{100}$ × R135 400 OR 0,08 × R135 400		
	= R10 832 ✓A	1A simplification	
	Profit in 2011 = R135 400 + R10 832 \checkmark M	1M concept of increase	
	= R146 232 ✓CA	1CA solution	
		Answer only full marks	
		(3)	

Copyright reserved

Ques	Solution	Explanation	AS
1.4.1	0; 24; 38; 38; 42; 50; 52; 56; 86 ✓A	1A answer (1)	12.4.2
1.4.2	38 ✓A	1A answer (1)	12.4.3
1.4.3	Mean = $\frac{52 + 86 + 24 + 38 + 56 + 42 + 0 + 50 + 38}{9}$	1M finding mean	12.4.3
	$=\frac{386}{9} \checkmark A$	1A adding	
	= 42,8888 ≈ 42,89 ✓R	1R rounding	
		Answer only full marks (3)	
1.5.1	Internet ✓RG	1RG reading from the graph (1)	12.4.4
1.5.2	Difference = $60.5\% - 48.4\%$ M = 12.1% ✓ A	1M subtracting 1A solution	12.4.4 12.1.1
		Answer only full marks (2)	
1.5.3	Computers ✓RG	1RG reading from the graph (1)	12.4.4
1.5.4	Number of schools = $\frac{24.6}{100} \times 2.500$ \checkmark M	1 M % calculation	12.1.1
	= 0.246×2500 = $615 \checkmark CA$	1 CA simplification	
		Answer only full marks	
		(2)	

QUESTION 2 [32 MARKS]			
Ques	Solution	Explanation	AS
2.1.1	$\mathbf{A} = R150\ 000\ (1+0.066)^3 \checkmark SF$	2 SF substitution	12.1.1
	= R181 703,32 ✓ CA	1 CA solution (3)	
2.1.2	R1,00 (ZAR) = ¥ 0,89 (CNY)		12.1.1
	Amount = $15\ 000 \times 0.89 \checkmark M$ = $13\ 350\ \text{CNY}$	1M multiplying 1 A solution (2)	
2.2.1 a	Number of coloureds = 4 424 100 ✓RT ✓A	1RT reading from table 1A writing correctly (2)	12.4.1
2.2.1 b	Number of white females = 2 277 400 ✓RT ✓A	1RT reading from table 1A writing correctly (2)	12.4.1
2.2.2	$A = 24\ 329\ 000 - (19\ 314\ 500 + 646\ 600 + 2\ 243000)^{\checkmark}M$ $= 2\ 124\ 900\ \checkmark A$	1M subtracting 1A value of A	12.4.1 12.1.1
	OR	OR	
	$A = 4 \ 424 \ 100 - 2 \ 299 \ 200 \checkmark M$ $= 2 \ 124 \ 900 \ \checkmark A$	1M subtracting 1A value of A	
	B = $49\ 320\ 500 - (39\ 136\ 200 + 4\ 433\ 100 + 4\ 472\ 100)$ = $1\ 279\ 100\ \checkmark A$	1M subtracting 1A value of B	
	OR	OR	
	B = 635 700 + 643 400 ✓M = 1 279 100 ✓A	1M adding 1A value of B	
	\checkmark M $C = 39\ 682\ 600 + 4\ 424\ 100 + 1\ 299\ 900 + 4\ 584\ 700$ $= 49\ 991\ 300\ \checkmark$ A	1M adding 1A value of C	
	OR $C = 24\ 329\ 000 + 25\ 662\ 300 \checkmark M$ $= 49\ 991\ 300 \checkmark A$	OR 1M adding 1A value of C	
		Answer only full marks (6)	
		(6)	

Ques	Solution	Explanation	AS
			12.4.1
2.2.3	Difference = $19314500 - 18901000 \checkmark RT$	1RT reading values from table	12.1.1
	$= 413\ 500 \ \checkmark A$	1A answer	
		Answer only full marks (2)	
	/DT	(2)	12.4.1
2.2.4	Asian females = $\frac{\sqrt{RT}}{25\ 662\ 300} \times 100\%$	1RT reading values from table	12.1.1
	= 2,546% = 2,55% ✓A	1A simplification (2)	
2.2.5	Male increase = 460 300 ✓ A Female increase = 210 500 ✓ A ∴ Males had the greatest increase ✓ A	1A increase in males 1A increase in females 1A answer (3)	
2.3.1	R75 ✓ ✓ RG (accept any amount between R73 and R77)	2RG reading from the graph (2)	12.2.3
2.3.2	24 single trips ✓✓RG	2RG reading from the graph (2)	12.2.3
2.3.3	Number of single trips = $3 \times 2 = 6 \checkmark A$	1A number of single trips	12.1.1 12.2.3
	$Cost = R 45 \checkmark \checkmark RG$	2RG reading from the graph	
	(accept any amount between R43 and R47) OR	OR	
	✓✓RG Cost of 3 single trips = R22,50 (accept any amount between R22 and R23)	2RG reading from the graph	
	Cost of 3 return trips/6 single trips = $2 \times R22,50$ = $R45,00 \checkmark A$	1A solution (3)	
	(accept any amount between R43 and R47)		12.1.1
2.3.4	Cost of 22 single trips = R165,00 ✓ RG (accept any amount between R163 and R167)	2RG reading from the graph	12.1.1
	Cost of 44 single trips /22 return trips $= 2 \times R165 \longrightarrow A$ $= R330$ (accept any amount between R326 and R334)	1A solution (3)	
	(accept any amount octroon 1020 and 1037)		

QUESTION 3 [17 MARKS]				
Ques	Solution	Explanation		AS
3.1.1	$Cost = 3 \times R5,75 + 5 \times R1,25 \checkmark SF$ $= R23,50 \checkmark CA$	1SF substitution in formula 1CA solution		12.2.1
			(2)	
3.1.2	Number of carrots = $\frac{R31,75 - (4 \times R5,75)}{R1,25}$ SF = $\frac{R8,75}{R1,25}$	1SF substitution in formula		12.2.1
	= 7 ✓ CA	1CA simplification	(2)	
3.2.1	Area = $2.5 \text{ m} \times 1.5 \text{ m}^{\checkmark} \text{ SF}$ = $3.75 \text{ m}^2 \checkmark \text{ CA}$	1SF substitution in formula 1CA solution	(2)	12.3.1
3.2.2	Volume = 2,5 m × 1,5 m × 7,5 cm = 2,5 m × 1,5 m × 0,075 m ✓ C = 0,28125 m ³ ≈ 0,28 m ³ ✓ CA OR Volume = 3,75 m ² × 7,5 cm ✓ SF = 3,75 m ² × 0,075 m ✓ C = 0,28125 m ³ ≈ 0,28 m ³ ✓ CA	1SF substitution in formula 1C conversion 1CA solution 1SF substitution in formula 1C conversion 1CA solution	(3)	12.3.1 12.3.2

Ques	Solution	Explanation	AS
3.3.1 (a)	A = 100 % − (48 % + 10,6 % + 2,7 % + 31,5 %) ✓M = 7,2 % ✓CA	1M adding to 100% 1CA solution	12.4.1
		(2)	
3.3.1 (b)	Packets of cabbage seeds = 48% of $525 \checkmark M$ = 0.48×525	1M calculating %	12.4.4 12.1.1
()	= 252 ✓ CA	1Ca solution (2)	
3.3.2	Cucumbers 10% Tomatoes 10% A Pumpkin 50%	1A for pumpkin 1A beans 1A for tomatoes 1A for cucumbers 1M labelling	12.4.2
	Beans 30%	(5)	

Ques	FION 4 [28 MARKS] Solution	Explanation	AS
Zucs	Solution	L'APIAHAUVII	12.2.1
4.1.1	$\mathbf{P} = R600,00 \checkmark \checkmark A$	2 A value of P	12.2.1
	$Q = R800,00 + 1000 \times R0,05 \checkmark SF$	1SF substitution	
	$= R850 \checkmark A$	1 A solution	
		(4)	
4.1.2	Cost per month	1A R600	12.2.1
	Cost per month A A A	1A more than 2 500	
	= $R600,00 + (number of copies more than 2 500) \times R0,10$	1A cost per copy	
	✓ A ✓ A OR ✓ A	OR	
		1A R600	
	Where n is the number of copies more than 2 500	1A more than 2 500	
		1A cost per copy	
		(3)	12.2.2
4.1.3	COST OF RENTING A PHOTOCOPIER		12.2.2
	1200	Company B	
	1100		
	1000	A	
	900	Company A	
	VA VA		
	800		
	700		
	00		
	Š 500		
	400		
	300		
	200		
	100		
	0		
	0 1000 2000 3000 4000 5000 6000 Copies Made	7000 8000	
	1.4 straight line starting at (0 · 900) to (2 000 · 900)		
	1A straight line starting at (0; 800) to (3 000; 800) 1A straight line from (3 000; 800) to (8 000; 1 050)		
	1A all points plotted correctly		
	1A label		
		(4)	

Ques	Solution	Explanation	AS
4.1.4	6 000 copies ✓✓RT/RG	2RG/RT reading from graph/table (2)	12.2.3
4.1.5	Saving = $R1\ 050 - R1\ 000 \checkmark RG/RT$ = $R50 \checkmark CA$ Company A \checkmark A	1RT/RG reading 1 CA answer 1A answer (3)	12.2.3 12.1.1
4.2.1	Stationery room ✓A Kitchen ✓A	1A correct 1A correct (2)	12.3.4
4.2.2	Actual width = 1,33 cm \times 300 \checkmark M = 399 cm \checkmark A = 3,99 m \checkmark C	1M using the scale 1A actual width 1C conversion (3)	12.3.3 12.3.2
4.3.1	NUMBER OF COPIES MADE 500 400 400 A A A A A Day of the week	5A mark for each bar correctly plotted 1A correct graph (6)	12.4.2
4.3.2	Wednesday ✓A	1A solution (1)	12.4.4

QUESTION 5 [18 MARKS]			
Ques	Solution	Explanation	AS
5.1.1 a	Volume = 3,14 × (0,998 m) ² × 2,498 m SF = 7,81237m ³ ≈ 7,812 m ³ ✓ CA	1A value of radius 1SF substitution into formula 1CA simplification (3)	12.3.1
5.1.1 b	Height = $\frac{80}{100}$ × 2,498 m ✓ M OR 0,80 × 2,498 m M = 1,9984 m ≈ 1,998 m ✓ CA = 1,9984 m ≈ 1,998 m ✓ CA	1M calculating % 1CA solution (2)	12.1.1
5.1.2	Surface area of the tank $\checkmark A \qquad \checkmark A$ = 3,14 × 1 m × (2 × 2,5 m + 1 m) = 3,14 m × 6 m $\checkmark S$ = 18,84 m ² \checkmark CA \checkmark A	1A substituting height 1A substituting radius 1S simplification 1CA answer 1A correct unit (5)	12.3.1
5.1.3	5 mm in 1 minute, so average rate = 5 mm/min \checkmark SF Time taken = $\frac{1200 \text{ mm}}{5 \text{ mm/min}}$ OR $\frac{1200 \text{ mm}}{5 \times 60 \text{ mm/hour}}$ C $= 240 \text{ min} \checkmark \text{CA}$ $= 4 \text{ hours } \checkmark \text{CA}$	1SF substituting 1CA solution 1 C conversion	12.1.1 12.2.1 12.3.2
5.2.1	$= 4 \text{ hours } \checkmark C$ $7,5 \times A = 30 \checkmark M$ $A = \frac{30}{7,5} \text{ workers}$ $= 4 \text{ workers} \checkmark CA$	(3) 1M multiplying/dividing 1CA simplification	12.2.1
	B × 8 = 30 \checkmark M B = $\frac{30}{8}$ hours = 3,75 hours \checkmark CA	1M multiplying/dividing 1CA simplification (4)	
5.2.2	Inverse proportion OR indirect proportion ✓A	1A answer (1)	12.2.1

QUESTION 6 [21 MARKS]			
Ques	Solution	Explanation	AS
			12.1.1
6.1.1	$2 \text{ tanks} = 2 \times 26 \text{ gallons}$		
	= 52 gallons \checkmark A	1A solution	
		(1	
		(1	
			12.3.3
6.1.2	16 gallons ✓✓A	2A reading value	
	(accept values more than 15 but less than 17,5)	(2)
			12.3.3
6.1.3	3 gallons ✓✓A	2A reading value	
	(accept any value from 3 to 5)	(2	,
	(decept any variet from 5 to 5)	(2	
	10 11 10 15161		12.3.2
6.1.4	18 gallons = $18 \times 4,546$ litres	1M multiplying by conversion	1
	= 81,83 litres ✓ A	factor	
		1A solution (2))
			12.1.1
6.1.5	Cost = $15,76$ litres \times R9,92 per litre \checkmark M	1M multiplying	
0.1.0	$= R156,34 \checkmark A$		
	- K130,34		
	√ F	1F correct formula 1SF substitution	12.1.1
6.1.6	Percentage decrease = $\frac{0.86}{9.92} \times 100\%$ \checkmark SF	151 Substitution	
	= 8.66935 %		
	≈ 8,67 % ✓A	1A solution (3	
		(3	12.3.4
6.2.1	B 2 or 2 B $\checkmark \checkmark$ A	2A correct grid reference	
		(2	
6.2.2	Karoo National Park ✓A	2A for two names	12.3.4
0.2.2	Bontebok National Park ✓ A		
	DUNICUUK NAUUHAI FAIK · 11	(2	<i>'</i>
6.2.3	North West ✓✓A	2 A direction	12.3.4
0.2.5	The state of the s	(2)
			12.2.1
6.2.4	Average speed = $\frac{153 \text{ km}}{\text{VSF}}$	1SF substitution	12.3.2
0.2.7	Average speed = $\frac{153 \text{ km}}{\frac{1}{2} \text{ hour } \checkmark \text{M}}$	1M dividing by $\frac{1}{2}$	
	$2 = 306 \text{ km per hour } \checkmark \text{CA}$	1CA solution	
	- 500 km per nour • CA	(3)