EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

26 de janeiro de 2016

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

1. (4 valores) No circuito representado no diagrama, determine a potência média fornecida pela fonte, sabendo que esta tem frequência de 30 Hz e voltagem máxima de 9 V.

2. (4 valores) A espira triangular na figura tem um vértice na origem, o vértice P no eixo dos z, a 30 cm da origem, e o vértice Q no eixo dos y, a 40 cm da origem. Existe um campo magnético uniforme $\vec{B} = 0.05\,\hat{\imath} + 0.03\,\hat{\jmath} - 0.08\,\hat{k}$ (em teslas) e na espira circula corrente de intensidade I = 23.4 mA, no sentido indicado na figura. (a) Calcule a força magnética sobre cada um dos três lados da espira. (b) Calcule a força magnética total sobre a espira.

PERGUNTAS. Avalia-se unicamente a **letra** que apareça na caixa de "Resposta". **Cotação**: certas, 0.8 valores, erradas, -0.2, em branco ou ilegível, 0.

3. No circuito representado no diagrama, determine a intensidade da corrente final (após a fonte ter estado ligada muito tempo) através da resistência de 1 k Ω .

- (A) 2.5 mA
- (C) 1.0 mA
- (E) 10.0 mA

- **(B)** 4.0 mA
- (**D**) 5.0 mA

Resposta:

- 4. Uma bobina tem indutância de 32 mH e resistência de 50 Ω . Calcule o módulo da impedância da bobina, para uma tensão alternada com frequência de 150 Hz.
 - (A) 80.2Ω
- (C) 29.2Ω
- (**E**) 69.3 Ω

- **(B)** 160.3 Ω
- **(D)** 58.4Ω

Resposta:

5. Num sistema de três cargas pontuais, $q_1 = 2$ nC, $q_2 = 3$ nC e $q_3 = 2$ nC, a distância entre as cargas 1 e 2 é 2 cm, entre as cargas 1 e 3 é 3 cm, e entre as cargas 2 e 3 é 4 cm. Calcule a relação entre as forças elétricas produzidas pelas cargas 1 e 2 sobre a carga 3.

- (A) 64/27
- (**C**) 8/9
- (E) 3/4

- **(B)** 32/27
- **(D)** 3/8

Resposta:

6. No circuito da figura, determine o valor da carga armazenada no condensador de 5 nF.

- (A) 11.25 nC
- **(D)** 45 nC
- (**B**) 20 nC

(E) 5 nC

(C) 4 nC

Resposta:

- 7. Num condutor ligado a uma pilha com f.e.m. de 1.5 V, circulam 7×10^{16} eletrões de condução durante 5 segundos. Calcule a energia fornecida pela pilha durante esse intervalo.
 - (A) 16.8 mJ
- (C) 53.76 mJ
- **(E)** 67.2 mJ

- **(B)** 5.04 mJ
- (**D**) 31.92 mJ

Resposta:

9.	Resposta: A figura mostra as linhas de um campo magnétic no plano da folha, e quatro cargas pontuais com ve mesmo plano nos sentidos dos vetores na figura. So cargas atua uma força magnética no sentido para ca \vec{B}	locidades no 14. bre quais das	intensidade da corren interruptor estiver fec 9 V T	te que circula pela rechado. R2 R1 9 V (C) 0.514 mA	$g_2 = 21 \text{ k}\Omega$. Calcule a esistência R_2 quando o $\frac{1}{2}$ 9 V (E) 1.932 mA
	$\bigcirc q_4$	15.	(B) 0.429 mA Resposta: Quando o sinal de ent	(D) 0.643 mA trada num circuito é	$V_e(t)$ e o sinal de saída
	(A) $q_1 e q_4$ (D) Unicamente q_4	q_A	é $V(t)$, a função de transferência é:		
	(B) $q_1 e q_2$ (E) Unicamente q_1		$\frac{1}{s+1} + \frac{1}{s+2}$ Determine a equação diferencial do circuito.		
	(C) $q_2, q_3 e q_4$	1-	Determine a equação diferencial do circuito.		
	Resposta: Quando o sinal de entrada num circuito é $2 e^{-2t}$, o sinal de saída é igual a $2 e^{t/2} - 2 e^{-2t}$. Encontre a função de transferência do circuito. (A) $\frac{3 s}{s-1}$ (C) $\frac{5}{2 s-1}$ (E) $\frac{3}{s-1}$		(A) $\dot{V} + 1V = \dot{V}_e + 2V_e$ (B) $\ddot{V} + 1\dot{V} + V = \dot{V}_e + 2V_e$		
			(C) $\ddot{V} + 1\dot{V} + 2V = \dot{V}_e + 2V_e$ (D) $\ddot{V} + 3\dot{V} + 2V = 2\dot{V}_e + 3V_e$ (E) $\ddot{V} + 3\dot{V} + 2V = V_e$		
	(B) $\frac{5 \cdot 1}{2 \cdot s - 1}$ (D) $\frac{2 \cdot s - 1}{2 \cdot s - 1}$		Resposta: Um quadrado com 1 cm de lado encontra-se numa região do		
11.	Determine a corrente eficaz num indutor de 12 mH ligado a ma fonte ideal de tensão alternada, com tensão máxima 75 V e		espaço onde existe um campo elétrico uniforme, com módulo de 9 kN/C, e numa direção que faz um ângulo de 60° com o quadrado. Calcule o valor absoluto do fluxo elétrico através do quadrado.		
	frequência de 30 Hz.		(A) $0.078 \text{ kN} \cdot \text{m}^2/\text{C}$	(D) 0.9	$N \cdot m^2/C$
	(A) 117.2 A (C) 23.4 A (E) 21	11.0 A	(B) $0.045 \text{ kN} \cdot \text{m}^2/\text{C}$	(E) 0.7	8 N·m²/C
	(B) 4.7 A (D) 7.8 A		(C) $0.45 \text{ N} \cdot \text{m}^2/\text{C}$		
	Resposta:		Resposta:		
12.	A carga positiva num dipolo elétrico é $4.8\times10^{-19}\mathrm{C}$ e encontra-se a uma distância de $6.4\times10^{-10}\mathrm{m}$ da carga negativa. Determine o valor do potencial elétrico num ponto que se encontra a $9.2\times10^{-10}\mathrm{m}$ de cada uma das cargas.		Calcule a resistência de uma lãmpada incandescente de 4 W e 12 V, nas condições normais de operação.		
			(A) 24.0 Ω	(C) 18.0Ω	(\mathbf{E}) 14.4 Ω
	(A) 4.2 V (C) $5.1 \times 10^9 \text{ V}$ (E) ze	ero	(B) 36.0Ω	(D) 72.0Ω	
	(B) 9.4 V (D) 1.7 V		Resposta:		
	Resposta:				

8. Quando a temperatura é 20°C, a resistência de um fio de cobre 13. Um fio retilíneo, muito comprido, com carga linear de 9 μC/m,

(E) 85.6 m

z = 15 m.

(A) 10.8 kN/C

encontra-se sobre o eixo dos z. Calcule o módulo do campo elétrico no ponto P, com coordenadas x=4 m, y=12 m e

(E) 5.4 kN/C

(C) 13.5 kN/C

com 2.1 mm de diâmetro é 0.42 Ω . Calcule o comprimento do

fio, sabendo que a resistividade do cobre a 20°C é $17~\text{n}\Omega\text{-m}$.

(**C**) 111.2 m

(D) 599.0 m

(**A**) 445.0 m

(B) 171.1 m

Regente: Jaime Villate

Resolução do exame de 26 de janeiro de 2016

Problemas

Problema 1. Usando unidades de $k\Omega$ para a impedância e μF para a capacidade, o tempo deverá ser medido então em ms, a frequência em kHz e a indutância em H. A impedância equivalente nos terminais da fonte é então:

$$Z = 1 + 0.020 s + \frac{8\left(\frac{1}{2s}\right)}{8 + \frac{1}{2s}} = \frac{16 s^2 + 801 s + 450}{800 s + 50}$$

A frequência s, em unidades de kHz, é neste caso:

$$s = i 2\pi f = i 0.06\pi$$

Usando o Maxima, a impedância complexa é então

$$(\%i1)$$
 Z: subst $(s=\%i*0.06*\%pi, (16*s^2+801*s+450)/(800*s+50))$ \$

E a potência média fornecida pela fonte é

$$\bar{P} = \frac{1}{2} V_{\text{max}} I_{\text{max}} \cos \varphi_Z = \frac{V_{\text{max}}^2 \cos \varphi_Z}{2 |Z|}$$

Ou seja:

Como a voltagem foi dada em volts e a impedância em $k\Omega$, as unidades desta potência calculada são mW.

Problema 2. (b) É conveniente começar por calcular a alínea b, que ajudará no cálculo da alínea a. Como o campo magnético é constante, a expressão da força magnética sobre o fio retilíneo entre os pontos $P \in Q$ é

$$\vec{F}_{PQ} = \overline{PQ} (\vec{I} \times \vec{B}) = I (\vec{r}_{PQ} \times \vec{B})$$

Onde \overline{PQ} é a distância entre os pontos P e Q e \vec{r}_{PQ} é o vetor com origem em P e fim em Q. Assim sendo, a força total sobre a espira é

$$\vec{F} = I \left(\vec{r}_{\rm PQ} \times \vec{B} \right) + I \left(\vec{r}_{\rm QO} \times \vec{B} \right) + I \left(\vec{r}_{\rm OP} \times \vec{B} \right) = I \left(\vec{r}_{\rm PQ} + \vec{r}_{\rm QO} + \vec{r}_{\rm OP} \right) \times \vec{B} = 0$$

Porque a soma dos três vetores entre os parêntesis é igual a zero.

(a) Usando unidades de mA para a corrente, mm para as distâncias e T para o campo, as forças calculadas estarão todas em μN. A força sobre o segmento entre O e P é:

$$\vec{F}_{\rm OP} = 23.4 \, \left(300 \, \hat{k}\right) \times \left(0.05 \, \hat{\imath} + 0.03 \, \hat{\jmath} - 0.08 \, \hat{k}\right) = -210.6 \, \hat{\imath} + 351 \, \hat{\jmath}$$

No segmento entre Q e O é:

$$\vec{F}_{\text{QO}} = 23.4 \ (-400 \, \hat{\jmath}) \times \left(0.05 \, \hat{\imath} + 0.03 \, \hat{\jmath} - 0.08 \, \hat{k}\right) = 748.8 \, \hat{\imath} + 468 \, \hat{k}$$

E como a soma das três forças é nula, a força sobre o segmento entre P e Q é:

$$\vec{F}_{\rm PQ} = -\vec{F}_{\rm OP} - \vec{F}_{\rm QO} = -538.2\,\hat{\imath} - 351\,\hat{\jmath} - 468\,\hat{k}$$

Perguntas

- **3.** D
- **6.** B
- **9.** B
- **12.** E
- **15.** D

- **4.** D
- **7.** A
- **10.** C
- **13.** D
- **16.** E

- **5.** B
- **8.** E
- **11.** C
- **14.** B
- **17.** B