Системы переписывания термов. Завершаемость

Теория формальных языков *2021* г.

Основные понятия

Определение

Сигнатура — множество пар $\langle f, n \rangle$ из имени конструктора f и его местности n.

Нульместные конструкторы выполняют роль констант.

Определение

Пусть V — множество переменных, F — множество конструкторов; множество термов T(F) над F определяется рекурсивно:

- все элементы V термы;
- ullet если $\langle f, n \rangle$ конструктор и t_1, \ldots, t_n термы, то $f(t_1, \ldots, t_n)$ терм;
- других термов нет.

Системы переписывания термов

TRS

Пусть V — множество переменных, F — множество конструкторов (сигнатура); T(F) — множество термов над множеством конструкторов F. TRS — набор правил переписывания вида $\Phi_i \to \Psi_i$, где Φ_i , Ψ_i — термы в T(F). Правило переписывания $\Phi_i \to \Psi_i$ применимо к терму t, если t содержит подтерм, который можно сопоставить с Φ_i .

Если к терму t не применимо ни одно правило переписывания TRS, терм называется нормализованным.

Конфлюэнтность

Определение

TRS называется конфлюэнтной, если для любых двух термов t, s, которые получаются переписыванием одного и того же терма $\mathfrak u$, существует терм $\mathfrak v$ такой, что t, s оба переписываются в $\mathfrak v$.

Формально:

$$\forall u, t, s(u \rightarrow^* t \& u \rightarrow^* s \Rightarrow \exists v(t \rightarrow^* v \& s \rightarrow^* v))$$

Конфлюэнтные системы поддаются распараллеливанию и легко оптимизируются.

- \rightarrow переписывание за 1 шаг;
- \to^* переписывание за произвольное число шагов, начиная с 0.

- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

Пример Хетта

$$f(x, x) \rightarrow a$$

 $f(x, g(x)) \rightarrow b$
 $c \rightarrow g(c)$

Терм, где нарушается конфлюэнтность?

- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

Пример Клопа

 $A \rightarrow CA$

 $Cz \rightarrow Dz(Cz)$

 $Dzz \rightarrow F$

Способы преобразовать А?

- Недетерминированные.
- Нет ограничений на порядок применения правил.
- Не обязательно конфлюэнтны.
- Могут порождать бесконечные цепочки.

Пример Тойямы

TRS 1:

$$f(0,1,x) \rightarrow f(x,x,x)$$

• TRS 2:

$$g(x, y) \rightarrow x$$

$$g(x, y) \rightarrow y$$

Как можно вычислить f(g(0,1), g(0,1), g(0,1))?

Фундированность

Определение

Частичный порядок \leq является фундированным (wfo) на множестве M, если в M не существует бесконечных нисходящих цепочек относительно \leq (иногда используют термин анти-нётеровый, или просто нётеровый).

Частичный порядок \leq является монотонным в алгебре A, если $\forall f, t_1, ..., t_n, s, s' (s \leq s' \Rightarrow f(t_1, ..., s, ..., t_n) \leq f(t_1, ..., s', ..., t_n))$ (строго монотонным, если при этом неверно обратное).

Завершаемость

Определение

Фундированная монотонная алгебра (ФуМА) над множеством функциональных символов F — это фундированное множество $\langle A, > \rangle$ такое, что для каждого функционального символа $f \in F$ существует функция $f_A : A^n \to A$, строго монотонная по каждому из аргументов.

Определим расширение произвольного отображения σ из множества переменных в A следующим образом:

- $[x, \sigma] = \sigma(x)$;
- $[f(t_1,\ldots,t_n),\sigma]=f_A([t_1,\sigma],\ldots,[t_n,\sigma]).$

Завершаемость

Совместность

TRS $\{l_i \to r_i\}$ совместна с ФуМА $A \Leftrightarrow$ для всех i и для всех σ выполняется условие $[l_i, \sigma] > [r_i, \sigma]$.

Теорема

TRS не порождает бесконечных вычислений (завершается), если и только если существует совместная с ней ФуМА.

ФуМА, совместные с TRS

Стандартные способы определения f_A :

- лексикографический порядок на множестве имён F
 + отношение подтерма;
- построение монотонно возрастающей (по каждому аргументу) числовой функции, соответствующей f_A .

Оба случая подразумевают, что в построенной модели целое больше части, т.е. всегда выполняется f(t)>t.

Лексикографический порядок > lo

Определение

 $f(t_1,\dots,t_n)>_{lo}g(u_1,\dots,u_m)$ (этот порядок также называют порядком Кнута-Бендикса) если и только если выполнено одно из условий:

- **2** $\exists i (1 \leq i \leq n \& t_i >_{lo} g(u_1, ..., u_m));$
- (f = g) & $\forall i (1 \le i \le n \Rightarrow f(t_1, \dots, t_n) >_{lo} u_i)$ и n-ка (t_1, \dots, t_n) лексикографически больше, чем (u_1, \dots, u_n) (т.е. первый её не совпадающий с u_i элемент t_i удовлетворяет условию $t_i >_{lo} u_i$).

Примеры

Проверить завершаемость TRS методом $>_{\mathrm{lo}}$:

$$\begin{array}{l} f(g(x)) \rightarrow g(h(x,x)) \\ g(f(x)) \rightarrow h(g(x),x) \end{array}$$

- Первое правило переписывания вынуждает либо $g(x)>_{lo}g(h(x,x))$ (по условию 1 или 2) что невозможно, потому что x должно лексикографически оказаться больше h(x,x) (по условию 4); либо f>g и f(g(x))>h(x,x) (по условию 3). В этом случае можно взять также f>h. Неравенство f(g(x))>x выполняется тривиально.
- Второе правило переписывания удовлетворяет условию завершаемости по условию 2, например, если показать, что $f(x)>_{lo}h(g(x),x)$. Уже имеем f>h, поэтому достаточно показать $f(x)>_{lo}g(x)$ и $f(x)>_{lo}x$. Оба условия тривиально выполняются из допущений выше.

Примеры

Проверить завершаемость TRS методом построения монотонной функции:

$$f(g(x,y)) \rightarrow g(h(y),x)$$

 $h(f(x)) \rightarrow f(x).$

- Завершаемость по второму правилу переписывания автоматически выполняется по свойству подтерма. Поэтому то, что функция f стоит на двух его сторонах, не дает никаких указаний относительно того, стоит ли делать f_A быстро растущей или медленно. Все подсказки содержатся только в первом правиле переписывания.
- По первому правилу переписывания видно, что f_A надо делать большой (f стоит только слева), а h нет (h есть только справа). Положим $f_A(x) = 10 * (x+1)$, $h_A(x) = x+1$. Тогда должно выполняться $10 * (g_A(x,y)+1) > g(y+1,x)$. Этому неравенству удовлетворяет, например, $g_A(x,y) = x+y$.

Общие комментарии

- Не обязательно добиваться выполнения неравенства на образах f_A на всём множестве \mathbb{N} . Поскольку любой отрезок \mathbb{N} от k и до бесконечности фундирован, а все образы f_A монотонны, они замкнуты на этом отрезке. Поэтому, если неравенство не выполняется для нескольких первых чисел натурального ряда, этим можно пренебречь.
- Если не получается применить $>_{lo}$ или подобрать числовую функцию, это ещё не значит, что TRS не завершается. См. пример Зантемы: $f(g(x)) \to g(f(f(x)))$.

Ординаль

Определение

Рассмотрим множество M с определенным на нем полным (линейным, фундированным) порядком <. Ординал τ — это порядок множества $\langle M, < \rangle$ (иногда в виде τ рассматривается само это множество). Если существует биекция f из $\langle M, < \rangle$ в $\langle M', <' \rangle$, являющаяся гомоморфизмом, то M и M' имеют одинаковые порядки.

Ординал любого множества $\{1,2,...,k\}$, где $k\in\mathbb{N}$ — это k. Ординал \mathbb{N} — это ω .

Математика мыльных пузырей

Фон-Неймановское представление ординалов:

- $\hat{0} = \emptyset$
- $\hat{1} = \{\emptyset\}$
- $\hat{2} = \{\emptyset, \{\emptyset\}\}$
- . . .
- $k + 1 = \{\hat{0}, \hat{1}, \dots, \hat{k}\}$

Предельные ординалы

Определение

Ординал au предельный, если не существует au_0 такого, что $au = au_0 + 1$.

Существование предельных ординалов делает ординальную арифметику некоммутативной, поскольку правый элемент сложения и умножения может поглощать левый.

Ординальная арифметика

• Сложение:

$$lpha+0=lpha;$$
 $lpha+(eta+1)=(lpha+eta)+1;$ eta — предельный $\Rightarrow lpha+eta=\lim_{\gamma$

• Умножение:

$$lpha*0=0;$$
 $lpha*(eta+1)=(lpha*eta)+lpha;$ eta — предельный $\Rightarrow lpha*eta=\lim_{\gamma$

• Экспоненциация:

$$egin{aligned} & lpha^0 = 1; \ & lpha^{(eta+1)} = (lpha^eta) * lpha; \ & eta & - \ \mbox{предельный} \ \Rightarrow \ & lpha^eta = \mbox{lim}_{\gamma < eta}(lpha^\gamma). \end{aligned}$$

Дистрибутивность только левая: $\alpha*(\beta+\gamma)=\alpha*\beta+\alpha*\gamma$.

Примеры ординальных вычислений

• Вычислим $(\omega+1)+\omega*2$. Умножение можно раскрыть стандартным образом, поскольку 2 — не предельный ординал. Получается $\omega+1+\omega+\omega$. Чтобы вычислить $1+\omega$, перейдём к пределу: $\lim_{\gamma<\omega}(1+\gamma)$. Искомый предел есть ω , и результат — $\omega+\omega+\omega$, который можно свернуть в $\omega*3$ по правилу умножения.

Примеры ординальных вычислений

- Вычислим $(\omega+1)+\omega*2$. Умножение можно раскрыть стандартным образом, поскольку 2 не предельный ординал. Получается $\omega+1+\omega+\omega$. Чтобы вычислить $1+\omega$, перейдём к пределу: $\lim_{\gamma<\omega}(1+\gamma)$. Искомый предел есть ω , и результат $\omega+\omega+\omega$, который можно свернуть в $\omega*3$ по правилу умножения.
- Вычислим $\omega * \omega^{\omega} + \omega^{\omega^{\omega}}$. Здесь все ординалы предельные, поэтому сразу же строим предел для подтерма $\omega * \omega^{\omega}$: $\lim_{\gamma < \omega^{\omega}} (\omega * \gamma)$. Поскольку γ включает ряд ω^k , предел будет равен ω^{ω} . Осталось вычислить $\lim_{\gamma < \omega^{\omega^{\omega}}} (\omega^{\omega} + \gamma)$. По аналогичным соображениям получается ординал $\omega^{\omega^{\omega}}$.

Трансфинитная индукция

Если T(0) и для выполнено $\forall \beta(\beta<\alpha\Rightarrow T(\beta))\Rightarrow T(\alpha)$, тогда $\forall \alpha(T(\alpha)).$

Выбор множества ординалов в качестве ФуМА — лёгкий способ доказывать завершаемость TRS.

- Не надо подбирать точные значения коэффициентов.
- Существенно расширяется класс TRS, для которых можно проверить завершаемость методом построения ФуМА.

Функция Аккермана

Функция, растущая быстрее всех элементарных

```
Ack(0,m) = m+1;

Ack(n,0) = Ack(n-1, 1);

Ack(n,m) = Ack(n-1, Ack(n, m-1)).
```

Положим $f_{Ack}(n, m) = \omega^{n+1} + m$.

Проверим условия завершаемости: $\omega+m>m+1$ $\omega^{n+1}>\omega^n+1$ $\omega^{n+1}+m>\omega^n+1$ воспользуемся левой дистрибутивностью: $\omega^n+\omega^{n+1}=\omega^n*(1+\omega)$. Но $1+\omega=\omega$, откуда следует неравенство выше.

Гидра Гудстейна

Рассмотрим g(N,k) — экспоненциальное представление числа N в алфавите $\{1,\ldots,k\}$.

Пример: $g(11, 2) = 2^{(2+1)} + 2 + 1$.

Рассмотрим G(N, m), где N записана в виде g(N, m+1). Формально заменим все m+1 на m+2 в этом представлении, а затем вычтем из результата 1.

Будем шаг за шагом применять к результату преобразование G, увеличивая m.

Утверждение

$$\forall N \exists m (G(G(...G(N, 2)...), m) = 0).$$

Смертность гидры Гудстейна

Сопоставим числу N функцию оценки f(N,m), которая рассматривает g(N,m)-представление числа N и заменяет в нём все числа m на ω . Покажем, что f(N,m)>f(G(N,m+1)-1,m+1).

Смертность гидры Гудстейна

Сопоставим числу N функцию оценки f(N,m), которая рассматривает g(N,m)-представление числа N и заменяет в нём все числа m на ω . Покажем, что f(N,m)>f(G(N,m+1)-1,m+1).

Рассмотрим терм G(N,m+1) до вычитания 1, но после замены всех оснований с m на m+1. Очевидно, f(N,m)=f(G(N,m+1),m+1). После вычитания 1 и построения новой m+1-экспоненциальной формы происходит переход через предельный ординал в f(G(N,m+1),m+1) и замена его некоторым заведомо меньшим (предшествующим) ординалом. Если такой переход не происходит, значит, в f(G(N,m+1),m+1) есть слагаемое с основанием ω^0 , и тогда f(G(N,m+1)-1,m+1)=f(G(N,m+1),m+1)-1.

Червь Беклемишева

Пусть $A=n_0\dots n_k$ — последовательность цифр (червь); m — параметр (срок эволюции). Пусть червь эволюционирует следующим образом:

- $n_0 = 0 \Rightarrow A[m] = n_1 \dots n)_k$
- $n_0 = n + 1 \Rightarrow$ ищем максимальный начальный сегмент червя в алфавите цифр, больших или равных n. Пусть такой сегмент это B. Тогда $A[n] = (nB)^{m+1}C$.

Утверждение

Все черви Беклемишева умирают.

 ${\rm B^-}$ — последовательность, где каждая цифра уменьшена на 1 по сравнению с ${\rm B}$.

Построим оценочную функцию о. Если $A=0^k$, тогла o(A)=k. Иначе строим разбиение $A=A_10A_2...0A_n$, где не все A_i пусты и все A_i не содержат нулей. Положим $o(A)=\omega^{o(A_n^-33)}+\cdots+\omega^{o(A_1^-)}$.

•
$$o(\varepsilon) =$$

 ${\rm B^-}$ — последовательность, где каждая цифра уменьшена на 1 по сравнению с ${\rm B}$.

Построим оценочную функцию о. Если $A=0^k$, тогла o(A)=k. Иначе строим разбиение $A=A_10A_2...0A_n$, где не все A_i пусты и все A_i не содержат нулей. Положим $o(A)=\omega^{o(A_n^-33)}+\cdots+\omega^{o(A_1^-)}$.

- $o(\varepsilon) = 0$
- o(0A) =

 ${\rm B^-}$ — последовательность, где каждая цифра уменьшена на 1 по сравнению с ${\rm B}$.

Построим оценочную функцию о. Если $A=0^k$, тогла o(A)=k. Иначе строим разбиение $A=A_10A_2...0A_n$, где не все A_i пусты и все A_i не содержат нулей. Положим $o(A)=\omega^{o(A_n^-33)}+\cdots+\omega^{o(A_1^-)}$.

•
$$o(\varepsilon) = 0$$

•
$$o(0A) = o(A) + 1$$

•
$$B \neq 0^k \Rightarrow o(B0A) =$$

 ${\rm B^-}$ — последовательность, где каждая цифра уменьшена на 1 по сравнению с ${\rm B}.$

Построим оценочную функцию о. Если $A=0^k$, тогла o(A)=k. Иначе строим разбиение $A=A_10A_2...0A_n$, где не все A_i пусты и все A_i не содержат нулей. Положим $o(A)=\omega^{o(A_n^-33)}+\cdots+\omega^{o(A_1^-)}$.

•
$$o(\varepsilon) = 0$$

•
$$o(0A) = o(A) + 1$$

•
$$B \neq 0^k \Rightarrow o(B0A) = o(A) + o(B)$$

•
$$B \in \{1..9\}^+ \Rightarrow o(B) =$$

 ${\rm B^-}$ — последовательность, где каждая цифра уменьшена на 1 по сравнению с ${\rm B}.$

Построим оценочную функцию о. Если $A=0^k$, тогла o(A)=k. Иначе строим разбиение $A=A_10A_2...0A_n$, где не все A_i пусты и все A_i не содержат нулей. Положим $o(A)=\omega^{o(A_n^-33)}+\cdots+\omega^{o(A_1^-)}$.

•
$$o(\varepsilon) = 0$$

•
$$o(0A) = o(A) + 1$$

$$\bullet \ B \neq 0^k \Rightarrow o(B0A) = o(A) + o(B)$$

•
$$B \in \{1..9\}^+ \Rightarrow o(B) = \omega^{o(B^-)}$$

Допустим, что для червей с элементами меньше k выполнено o(A)>o(A[m]). Докажем это неравенство для червей с элементами вплоть до k.

Допустим, что для червей с элементами меньше k выполнено o(A)>o(A[m]). Докажем это неравенство для червей с элементами вплоть до k.

Рассмотрим $A=A_10\dots0A_k$, положим $C=A_20\dots0A_k$, тогда $A=A_10C$, причем одно из них непусто. Если $A_1=\varepsilon$, утверждение очевидно. Пусть $A_1\neq \varepsilon$. Тогда $A[m]=(A_1[m])0C$.

ullet Если $A_1[\mathfrak{m}]=0^k$, тогда $A_1=1$. Тогда

Допустим, что для червей с элементами меньше k выполнено o(A)>o(A[m]). Докажем это неравенство для червей с элементами вплоть до k.

Рассмотрим $A=A_10\dots0A_k$, положим $C=A_20\dots0A_k$, тогда $A=A_10C$, причем одно из них непусто. Если $A_1=\varepsilon$, утверждение очевидно. Пусть $A_1\neq \varepsilon$. Тогда $A[m]=(A_1[m])0C$.

- ullet Если $A_1[m] = 0^k$, тогда $A_1 = 1$. Тогда $o(A) = o(C) + \omega > o(C) + k + 1$.
- $egin{aligned} egin{aligned} \mathbf{e} & \mathbf{E}$ сли $A_1 = 1\mathbf{B}, \ \mathbf{torga} \ A_1[\mathbf{m}] = (\mathbf{oB})^{\mathfrak{m}+1}, \ \mathbf{o}(A_1) = \omega^{\mathbf{o}((1\mathbf{B})^-)} = \omega^{\mathbf{o}(B^-)+1} \ \mathbf{u} \ \mathbf{o}(A_1[\mathbf{m}]) = \omega^{\mathbf{o}(B^-)} * (\mathfrak{m}+1) + 1. \end{aligned}$
- ullet Если $A_1=(\mathfrak{n}+1)B$, где $\mathfrak{n}>0$, тогда $A_1^-[\mathfrak{m}]=(A_1[\mathfrak{m}])^-$, $\mathfrak{o}(A_1)=\omega^{\mathfrak{o}(A_1^-)}>\omega^{\mathfrak{o}(A_1^-[\mathfrak{m}])}.$