

WHAT IS CLAIMED IS:

1           1. A single instruction, multiple data (SIMD) controller for processing a  
2 plurality of data streams in a digital subscriber line (DSL) system, comprising:  
3                 a plurality of circular buffer circuits coupled to store data from said plurality  
4 of data streams;  
5                 a plurality of address generation circuits coupled to access said data stored in  
6 said plurality of circular buffer circuits;  
7                 a plurality of processor circuits coupled to process said data accessed by said  
8 plurality of address generation circuits; and  
9                 a program control unit coupled to control said plurality of processor circuits  
10 with an instruction.

1           2. The controller of claim 1, wherein one of said plurality of circular  
2 buffer circuits comprises:  
3                 a first section coupled to store one or more symbols before being processed;  
4                 a second section coupled to store said one or more symbols being processed;  
5 and  
6                 a third section coupled to store said one or more symbols after being  
7 processed.

1           3. The controller of claim 1, wherein one of said plurality of address  
2 generation circuits comprises:  
3                 a symbol manager circuit coupled to generate an input base address, a  
4 processor base address, and an output base address,  
5                 wherein said one of said plurality of address generation circuits is further  
6 coupled to receive an input offset address, a processor offset address, and an output offset  
7 address, and to generate an input address, a processor address, and an output address in  
8 accordance with said input base address, said processor base address, and said output base  
9 address.

1           4. The controller of claim 1, wherein said plurality of processor circuits  
2 are further coupled to receive a plurality of enable signals and to selectively process said data  
3 based on said plurality of enable signals.

1               5.     The controller of claim 1, wherein said plurality of address generation  
2   circuits are further coupled to selectively generate a plurality of enable signals, depending  
3   upon whether a full symbol is ready for processing in each of said plurality of address  
4   generation circuits.

1               6.     The controller of claim 5, wherein said plurality of processor circuits  
2   are further coupled to receive said plurality of enable signals and to selectively process said  
3   data based on said plurality of enable signals.

1               7.     The controller of claim 1, wherein said plurality of address generation  
2   circuits are further coupled to selectively generate a plurality of enable signals, depending  
3   upon a difference between an input base address and a processor base address in each of said  
4   plurality of address generation circuits.

1               8.     A method of processing a plurality of data streams in a digital  
2   subscriber line (DSL) system, comprising the acts of:

3                 calculating a plurality of input addresses for said plurality of data streams  
4   based on a plurality of input base addresses and a plurality of input offset addresses;  
5                 storing a plurality of data from said plurality of data streams according to said  
6   plurality of input addresses;

7                 calculating a plurality of processor addresses for the stored plurality of data  
8   based on a plurality of processor base addresses and a plurality of processor offset addresses;  
9                 processing, using a single instruction, the stored plurality of data according to  
10   said plurality of processor addresses;

11                 calculating a plurality of output addresses for the processed plurality of data  
12   based on a plurality of output base addresses and a plurality of output offset addresses;

13                 outputting the processed plurality of data according to said plurality of output  
14   addresses; and

15                 updating said plurality of input base addresses, said plurality of processor base  
16   addresses, and said plurality of output base addresses.

a d d  
p l