

Polar3[™] HiPerFET[™] Power MOSFET

IXFK150N30P3 IXFX150N30P3

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum F	Ratings
V _{DSS}	T _J = 25°C to 150°C	300	V
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, R_{_{\rm GS}} = 1\text{M}\Omega$	300	V
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	V
I _{D25}	T _C = 25°C	150	Α
I _{DM}	$T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	375	Α
IA	$T_{c} = 25^{\circ}C$	75	Α
I _A E _{AS}	$T_{c} = 25^{\circ}C$	4	J
$\mathbf{P}_{_{\mathrm{D}}}$	T _C = 25°C	1300	W
dv/dt	$I_{_{S}} \le I_{_{DM}}, \ V_{_{DD}} \le V_{_{DSS}}, \ T_{_{J}} \le 150^{\circ}C$	35	V/ns
T		-55 +150	°C
T _{IM}		150	°C
T _{stg}		-55 +150	°C
T _L	Maximum Lead Temperature for Soldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C
M _d	Mounting Torque (TO-264)	1.13/10	Nm/lb.in
F _c	Mounting Force (PLUS247)	20120 /4.527	N/lb
Weight	TO-264	10	g
	PLUS247	6	<u>g</u>

			cteristic	Values Max	
$(I_J = 25 \text{ C})$	onless Otherwise Specified)	Min.	Тур.	IVIAX	·
BV _{DSS}	$V_{GS} = 0V, I_{D} = 3mA$	300			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 8mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			25	μА
	T _J = 125°	C		1	mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$			19	mΩ

 $\begin{array}{lll} \textbf{V}_{\text{DSS}} & = & 300 \textbf{V} \\ \textbf{I}_{\text{D25}} & = & 150 \textbf{A} \\ \textbf{R}_{\text{DS(on)}} & \leq & 19 m \Omega \\ \textbf{t}_{\text{rr}} & \leq & 250 \text{ns} \end{array}$

G	=	Gate	D	=	Drain
S	=	Source	Tab	=	Drain

Features

- Dynamic dv/dt Rating
- Avalanche Rated
- Fast Intrinsic Diode
- Low Q_G
- Low R_{DS(on)}
- Low Drain-to-Tab Capacitance
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings

Applications

- DC-DC Converters
- Battery Chargers
- Switch-Mode and Resonant-Mode Power Supplies
- Uninterrupted Power Supplies
- AC Motor Drives
- High Speed Power Switching Applications

Symbol Test Conditions Characteristics Charact		cteristic Values		
$(T_J = 25^{\circ}C$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$	65	110	S
C _{iss}			12.1	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1910	pF
C _{rss}			40	pF
\mathbf{R}_{Gi}	Gate Input Resistance		1.0	Ω
t _{d(on)}	Resistive Switching Times		44	ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		30	ns
t _{d(off)}	$R_{G} = 10$ (External)		74	ns
t , <i>J</i>			12	ns
$\mathbf{Q}_{g(on)}$			197	nC
Q _{gs}	$V_{_{\mathrm{GS}}} = 10 \mathrm{V}, V_{_{\mathrm{DS}}} = 0.5 \bullet V_{_{\mathrm{DSS}}}, I_{_{\mathrm{D}}} = 0.5 \bullet I_{_{\mathrm{D25}}}$		70	nC
Q_{gd}			65	nC
R _{thJC}	_			0.096 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

Symbol Test Conditions		Char	Characteristic Values			
$(T_{J} = 2)$	25°C, L	Inless Otherwise Specified)	Min.	Тур.	Max.	
I _s		$V_{GS} = 0V$			150	Α
I _{SM}		Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			600	Α
V _{sD}		$I_{\rm F}$ = 100A , $V_{\rm GS}$ = 0V, Note 1			1.5	V
t _{rr})	I _ε = 75A, -di/dt = 100A/μs			250	ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	}	•		2.9		μC
I _{RM}	J	$V_R = 100V, V_{GS} = 0V$		23.0		Α

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

7,005,734 B2 7,157,338B2

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Maximum Transient Thermal Impedance

SYMBOL	INCHES		MILLIMETERS	
SIMBOL	MIN	MAX	MIN	MAX
Α	.185	.209	4.70	5.31
A1	.102	.118	2.59	3.00
b	.037	.055	0.94	1.40
b1	.087	.102	2.21	2.59
b2	.110	.126	2.79	3.20
С	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
E	.760	.799	19.30	20.29
е	.215	BSC	5.46 BSC	
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
١	.779	.842	19.79	21.39
L1	.087	.102	2.21	2.59
ØΡ	.122	.138	3.10	3.51
øP1	.270	.290	6.86	7.37
Q	.240	.256	6.10	6.50
Q1	.330	.346	8.38	8.79
ØR	.155	.187	3.94	4.75
ØR1	.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

PLUS247™ Outline

	=	Gate
2,	4	= Drain
3	=	Source

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
Α1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
۵	.045	.055	1.14	1.40
b2	.075	.087	1.91	2.20
b4	.115	.126	2.92	3,20
\bigcirc	.024	،031	0.61	0.80
	.819	.840	20.80	21.34
D1	.650	.690	16.51	17,53
D2	.035	.050	0.89	1.27
Ы	.620	.635	15.75	16.13
E1	.520	.560	13.08	14.22
υ	.215	BSC	5.45 BSC	
	.780	.810	19.81	20.57
L1	.150	.170	3.81	4.32
Q	.220	.244	5.59	6.20
R	.170	190،	4.32	4.83

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.