

Recommending Crops To Farmers

Case 2 - Team 1:

Donnie Sengstack, Preston Abraham, Meena Muthusubramanian, Yilin Ye

Elevator Pitch

- Help farmers determine the best crops to grow in their fields based on climate and soil conditions
- Help farmers make decisions based on the financial returns of growing different crops
- Develop a simple dashboard that farmers can use to make these decisions
 - Dashboard let's farmers know the exact dollar amount they could expect from growing each crop

Our Data

- Collected by the Indian Chamber of Food and Agriculture
- 2200 rows, 8 columns (last updated 5 months ago)
- Soil Data
 - o pH
 - Nitrogen, Phosphorus, Potassium Levels
- Local Weather
 - Temperature
 - Humidity
 - o Rainfall
- Crop Suitable
 - 22 different types of crops that are suitable given the conditions
 - Examples: Rice, Corn, Chickpeas, Kidney beans, etc.

Additional Data

- 2020 Research Paper "Factors Affecting Yield of Crops" by Lilane and Mutengwa
- 22 Rows (one per crop), 7 Columns
- Helped us determine the financial and environmental benefits farmers would get from growing each crop by allowing us to explore:
 - Spacing
 - Yield
 - o Cost
 - Profit

Crop	Spacing	Yield(tonne/acre) [1 tonne=1000kg]	Cost of cultivation (in INR)	Profit (in INR)
chickpea	30 cm x 10 cm	0.8-1	9957	55043
apple	5-8m x 5-8m	30	65000	460000
papaya	2m x 2m	30	210000	279880
kidney beans	90cm x 90cm	1	15000	85000
pigeon peas	60-75cm x 30 cm	0.6 to 0.8	14047	30000

Profit Analysis

Pulses

Cereals

Fibre Crops

Plantation Crops

Total cost of 1 acre rice farming ~27,940

Yield: 23 quintals

Gross Returns: ~78,315

Farmers income - ~50,975

^{*}Costs are represented in INR

Profit Analysis

Comparing Cost to Plant and Profits

Profit Analysis

How much greater is the profit than the cost?

Our Assumptions

- Data on each crop represented good conditions for each crop
- Standardized crop data before splitting into a train set and a test set

Weather and Soil Influence

Humidity & Rainfall

 Moisture or drought stress accounts for about 30–70% loss of productivity of field crops during crop growth period

Temperature

 Heat stress contributed about 40% to overall yield loss of crops, ex: 1.0–1.7% yield loss per day in maize for every raise in temperature above 30°C

Soil Minerals (N, K, P)

The lack of these nutrients in the soil causes deficiencies in plants, and their excess leads to toxicities, which have negative impacts on crop yields.

Soil Ph Level

 Low soil pH significantly affects crop growth and therefore decreases yield. In maize for instance, soil acidity causes yield loss of up to 69%.

Weather EDA

Weather Variables

Weather EDA

Weather Variables: Distributions for Temperature

Weather EDA

Weather Variables

Soil EDA

Soil Variables

Soil EDA

Soil Variables

Modeling Process

- 1. Determine the best crop with classification
- Determine percent yield that each crop will have in the given conditions
- Combine percent yield with field size, crop value, and crop cultivation cost variables to determine expected profit for each crop

Model Info

Inputs:

- Soil Variables
- Climate Variables
- Desired Currency
- Field Area

Outputs:

- Recommendations for crops to plant
- Percentage yield for crop in each field
- Cost to grow each crop
- Profit that can be gain from growing each crop

Papaya	Bananas	Apple
Price	Price	Price
\$22.74	\$6.14	\$42.09
↑ 20.18	↑ 3.58	↑ 39.53
Cost of Cultivation	Cost of Cultivation	Cost of Cultivation
\$24.87	\$6.63	\$7.69
↑ 23.70	↑ 5.46	↑ 6.52
%Yield	%Yield	%Yield
68.62%	19.71%	77.26%

Model Info

Random Forest classifier

- Selected so that it would treat picking the right crop for a set of conditions as a classification problem.
- The high eventual accuracy gives us confidence that the model is able to distinguish the small changes in conditions that vary between all 22 crops.

Parameters

- Number of trees = 100
- Output
 Max Depth = 4
- Number of Features per Tree = 3

Our Model

Model Tuning: Max Tree Depth

- The first parameter chosen for tuning was Max Tree Depth
- The accuracy was considered acceptable after this so no further tuning was done

Our Dashboard

Crop Recommender System Dashboard

Try it yourself!

bit.ly/3p7RX5G

