ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПЕНСАТОРЫ СИЛЬФОННЫЕ МЕТАЛЛИЧЕСКИЕ ДЛЯ ТРУБОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И ТЕПЛОВЫХ СЕТЕЙ.

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Издание официальное

ГОССТАНДАРТ РОССИН: Москва

Предисловие

- 1 РАЗРАБОТАН И ВНЕСЕН специальным конструкторско-технологическим бюро «Компенсатор» и Всероссийским научно-исследовательским институтом стандартизации (ВНИИстандарт) Госстандарта России
- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 6.06.94 № 163
- 3 Учтены требования международных стандартов JISB 2352—1977 «Компенсаторы сильфонные трубопроводные» DIN 30681—74 «Компенсаторы для газовых установок. Стальные сильфонные компенсаторы» BS 6129—81 «Соединения сильфонные гофрированные для пневмосистем. Ч1. Металлические сильфонные гофрированные соединения»
- 4 ВВЕДЕН ВПЕРВЫЕ

С. Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Россин

СОДЕРЖАНИЕ

1 Область применения														1
2 Нормативные ссылки			•	•	•	•	•	•	•	•	•	٠	•	1
3 Обозначения и сокращ	ения		•	•	•	•		•	٠	•	•	٠	•	1
4 Типы и основные парам	OTHE	, .	•	•	•	•	•	•		٠	•		•	- 2
5 Требования надежность 6 Требования стойность	e e (zibi	٠.		•	•	•	•	•	•	٠				- 3
6 Требования стойкости к	DHOD						•		•	٠				31
6 Требования стойкости к	ыден	111111 11	150.5	дене	.11911	им					-			31
7 Требования безопасности			•	•	•		•							32
8 Требования охраны прир 9 Требования транскортабо	ОДЫ		•	•	•									33
9 Требования транспортабе	TIBIII.	жи			•									33
10 Требования стандартиза	шш	н ут	нфи	каци	111	•								33
11 Требования технологичн	OCTR													33
12 Конструктивные требова Приложение А	ини													33
Tiphenometric A														26

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

КОМПЕНСАТОРЫ СИЛЬФОННЫЕ МЕТАЛЛИЧЕСКИЕ ДЛЯ ТРУБОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ И ТЕПЛОВЫХ СЕТЕЙ

Типы, основные параметры и общие технические требования

Metal bellows expansion joints for the pipelines of electric power stations and heat-supply systems.

Types, basic papameters and general technical requirements.

Дата введения 1995-01-01

гобласть применения

Настоящий стандарт распространяется на металлические сильфонные компенсаторы (далее — компенсаторы), предназначенные для герметичного соединения перемещающихся элементов трубопроводов электрических станций и тенловых сетей.

Безопасность и сохранение окружающей среды обеспечивается выполнением требований, установленных пунктами 5.2, 6.1, 7.1—7.5,

12.5, 12.6 и разделом 8.

Стандарт не распространяется на компенсаторы, предназначенные для магистральных нефтепроводов и газопроводов.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 12.2.003—91 Система стандартов безопасности труда

(ССБТ). Общие требования безопасности.

ГОСТ 12.3.003—86 ССБТ. Работы электросварочные. Общие требования безопасности.

ГОСТ 12.3.025--80 ССБТ. Обработка металлов резаинем.

ГОСТ 356—80 Арматура и детали трубопроводов. Давления условные, пробные и рабочие. Ряды.

ГОСТ 380-88 Сталь углеродистая обыкновенного качества.

Марки.

ГОСТ 4543—71 Прокат из легированной конструкционной стали. Технические условия.

ГОСТ 5632—72 Стали высоколегированные и сплавы коррознонно-стойкие, жаростойкие и жаропрочные. Марки.

ГОСТ 10704—91 Трубы стальные электросварочные прямошов-

ные. Сортамент.

ГОСТ 12815—80 Фланцы арматуры, соединительных частей и трубопроводов на Ру от 0,1 до 20,0 МПа (от 1 до 200 кгс/см²). Тилы. Присоединительные размеры и размеры уплотнительных поверхностей.

ГОСТ 14771—76 Дуговая сварка в защитном газе. Соединення

сварные. Основные типы, конструктивные элементы и размеры.

ГОСТ 15150-69 Машины, приборы и другие технические изде-

лия. Исполнения для различных климатических районов.

Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 1050—88 Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструктивной стали. Общие технические условия.

ГОСТ 20072—74 Сталь теплоустойчивая. Технические условия. ГОСТ 23170—78 Упаковка для изделий машиностроения. Общие

требования.

ГОСТ 25756-83 Компенсаторы и уплотнения сильфонные. Тер-

мины и определения.

ГОСТ 27036—86 Компенсаторы и уплотнения сильфонные металлические. Общие технические условия.

ГОСТ 28697—90 Программа и методика испытаний сильфонных

компенсаторов и уплотнений. Общие требования.

ГОСТ Р 50392—92 Арматура для компенсаторов и уплотнений сильфонных металлических. Типы, основные параметры и размеры. Общие технические требования.

з обозначения и сокращения

Перечень обозначений, применяемых в данном стандарте:

L — длина сильфонного компенсатора,

D — наружный диаметр присоединительного патрубка,

 D_1 — днаметр расположения присоединительных отверстий,

d — диаметр присоединительных отверстий,

 d_1 — внутренний диаметр сильфонного компенсатора,

п — количество присоединительных отверстий,

11 — габаритный размер сильфонного компенсатора,

DN — условный проход сильфонного компенсатора,

Р М — условное давление сильфонного компенсатора,

 $\lambda-1$ — симметричный осевой ход (\pm) ,

 $\gamma-1$ — симметричный угловой ход (\pm) , $\delta-1$ — симметричный сдвиг (\pm) .

4 ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

4.1 Типы, основные параметры и базовые размеры должны отражаться в технических заданиях на проектирование и в пормативно-технической документации на продукцию в порядке, установлен-

ном настоящим стандартом.

1.2 Компенсаторы должны иметь минимально возможные жесткость и коэффициент местного сопротивления среды, протекающей через изделие. Численные значения жесткости, эффективной площади и допустимая величина отклонения при различных перемещениях (сжатие—растяжение, сдвиг, поворот), а также величина коэффициента местного сопротивления должны быть указаны в нормативно-технической документации на продукцию.

1.3 Амплитуды перемещений должны обеспечивать необходимую

наработку и вероятность безотказной работы.

Зависимость величины наработки от амилитуд перемещений, равно как и зависимость амплитуд перемещений от наработки, должна устанавливаться в технических условиях на продукцию. В технических условиях на продукцию могут быть установлены несколько значений наработки и несколько значений соответствующих им амплитуд перемещений и (или) приведена их графическая зависимость.

1.4 Срок службы и срок сохраняемости изделий до ввода в эксплуатацию устанавливаются разработчиком в зависимости от условий эксплуатации и степени воздействия нагрузок на изделия, но

не менее установленного в 5.1.

1.5 На базе приведенных в стандарте типов компенсаторов (таблица 1) и исполнений (рисунки 1—8) могут быть разработаны другие типы и исполнения в зависимости от показателей назначения, предусмотренных техническим заданием, с приведенными в стандарте характеристиками или превышающими их. Базовые размеры компенсаторов установлены в таблицах 2—9, рисунки 1—8 устанавливают составные части изделий, не определяя их конструкцию.

Таблица 1. Типы и основные параметры компенсаторов

	-			•				 -	
		Na	P.V.	×	поминоводи	Температура	CKODOCTE		Номер
Наименование не D.V. мм (кгс) (krc)	Д.У. мм	 :	(Krc.	(Krc/cm²)	проводимая среда	тумпература проводимой среды, °С	скорость среды, м/с, не более	рисун-	таб- лицы
Компенсатор 01	01				Жилкость	Or —60	œ		
фланцевый 02 65—500 1,0(65—500		1,0(1,0(1,0)	Газ	70 + 990	112.0	-	- 27
03	1	-7,	7,	—2,5(25)	Жидкость	Οτ —50	8		İ
04	04				Газ	70 + 300	120		-
Компенсатор 21	21				Жидкость	Or —60	8		
под приварку 22 50—500 1,0(- 50-500		1,0(1,0(1.0)	Fa3	70 + 56U	120	2	m
23 — 6,3			9	3 (63)	Жидкость	Or —50	8	i	,
24	24	-			Fa3	10 +300	1120		
Компенсатор 01	0.01				Жидкость	Or —60	∞		
поворотный 02 65—500 1.,0 (65—500		1,0(1,0(10),	Газ	то +260	120	3	4
03		1,6(1,6(16)	Жилкость	Or -50	8)•	•
04	04				Газ	70 +300	120		
Компенсатор 21	21				Жилкость	Or —60	8		
поворотный 22 50500 1,0(10)—	50500		1,0(10	— — ((Газ	70 + 560	120	4	ĸ
23 —6,3		6,3	6,3	(63)	Жидкость	Or50	8	•)
24	24				Газ	10 + 300	120		
		_					***		

Продолжение таблицы 1

1-		1				<u> </u>			1					
Номер	таб-			9				7				α		
	рисун- ка			ಬ				9.				7	•	
	Скорость среды. м/с. не более	8	120	8	120	&	120	∞	120	∞	120	∞	120	
-	Температура проводимой среды, С	Or60	70 + 960	От —50	10 +300	Or —60	70 + 560	От —50	10 + 300	Or —60	nac+ or	OT 50	70 + 300	
	Проводимая среда	Жилкость	Газ	Жидкость	Газ	Жилкость	Fa3	Жилкость	Газ	Жилкость	Газ	Жилкость	Fas	
	<i>PN</i> , МПа (кгс/см²)		0.25(2.5) — $2.5(2.5)$ — $2.5(2.5)$	(07)0,7		0.63(6,3)—	6,3(63)	$-(\tilde{\mathbf{e}},\tilde{\mathbf{e}})$	-2.5(25)			0,25(2,5)—	-2,5(25)	
	БИ, мм		65—500			50—500		600—2200				65500		
эи	Исполнен	0.1	02	03	04	21	22	23	24	01	.20	03	04	
	Наименование	Компенсатор	фланцевый			Компенсатор	осевои под приварку			Компенсатор	универсальный фланцевый			
	пиТ			K100				,				1112	- VIII	

Окончание таблицы 1

, –		_	,			_		_	
Номер	таб.						6		
	рисун- ка	_					∞		
,	Скорость среды, м/с, не более		0	c	9	120	o	0	120
	Температура проводимой среды, °С		Or60	00 - 01	1000 + OM		Or - 50	000	100s + 0t
	Проводимая среда		Жилкость		T. 23		Жилкость		ra3
	<i>PN</i> . МПа . (кгс/см²)		0,63(6,3)—	6,3(63)			0,63(6.3)—	-2.5(25)	(21) - (
	ДΝ, мм		50-200				600-1400		
эин	Исполне		2.1		22		23	č	- 5.7 - 5.7
	Наименование		Компенсатор	универсальный	под приварку				
	пнТ					_			_

Примечания

 На рисунках 1—8 приведены компенсаторы, применяемые для газообразных сред, компенсаторы для жидких сред не имеют направляющего патрубка, в остальном аналогичны, приведенным на рисунках 1—8.

2. Под термином «жидкости и газы» следует понимать данное состояние любого вещества, не вызывающего коррозию материала внутренней полости (наружной поверхности) компенсаторов. Из проводимых и окружающих сред не должны выпадать в осадок и накапливаться между стенками гофров твердые частицы, препятству-

Тип К001 Исполнение 02, 04

I= сильфон; 2= фланец; 3= ограничительная стяжка; 4= направляющий патрубок; 5= кожух

Рисунок 1

Тип К001 Исполнение 22, 24

I — сильфон; 2 — присоединительный патрубок; 3 — ограничительная стяжка; 4 — направляющий патрубок; 5 — кожух

Рисунок 2

· FOCT P 50671-94

Таблица 2. Базовые размеры компенсаторов тип K001, исполневие 01—04 мм

•			3 (V)		
DN	PN, МПа (кгс/см²)	Н, не более	L. не более	d ₁ , не менее	Амплитуда сдвига 6—1 не менес
65	1,0 (10);	235	225	50	10
	2,5 (25)	245			
80	1,0 (10); 1,6 (16)		210	60	
	2,5 (25)	255	210		
100	1,0 (10)		-	80	
·	1,6 (16); 2,5 (25); 1,0 (10)	275	230	,	
125	166 (16)	280		105	
	2,5 (25);	300	270		III.
150	1,0 (10)		235	130	7
150	1,6 (16)	310		130	
	2,5 (25)	335	275		
200	1,0 (10)	380	240	160	
	1,6 (16)	385	305	- " "	
	2,5 (25)	420	315		
	1,0 (10)	435	280		
250	1,6 (16)	440	315	210	
	2,5 (25)	500 .	325		·
1	Į		·	Į	ł

MM

D N	P.N., МПа (кгс/см²)	И. не более	L, не болес	<i>d</i> ₁. не менее	Амилитуда сдвига б.—1 не менее
300	1,0 (10); 1,6 (16)	495	300 315	260	
	2,5 (25); 1,0 (10)	545	335 310		
350	1,6 (16)	580	340	310	
	2,5 (25)	610	365		
400	1,0 (10)	595	325		7
400	1.6 (16)	640	370	360	'
	2,5 (25)	665	390		
450	1,0 (10)	730	420	425	
+50	1,6 (16)	740 .	405		
500	1,0 (10)	780	460	480	
500	1,6 (16)	800	390	700	

Таблица 3. Базовые размеры компенсаторов тип K001, исполнение 21—24 мм

DN	PN. MIla (Krc/cm²)	И. не более	<i>L.</i> , не более	<i>d</i> ;. не менсе	Амплитуда сдвига б —1 не менее
50	1,0 (1)0); 1,6 (16); 2,5 (25)	200	255	4 5	5
	4,0 (40); 6,3 (63)	220	230		

мм

			M M		
DN	<i>PN</i> . МПа (кге/см²)	И, пе более	L, не более	<i>d</i> ₁ , не менее	Амплитуда сдвига б —1 не менее
65	1,0 (10); 1,6 (16)	235	255	50	
	2,5 (25); 4,0 (40); 6,3 (63)	245			
80	1,0 (10); 1,6 (16)		250	60	
	2,5 (25); 4,0 (40); 6,3 (63)	255			
	1,0 (10)				
100	1,6 (16); 2,5 (25); 4,0 (40); 6,3 (63)	275	260	85	
	1,0 (10)	275	260		7
125	1,6 (16)	280		105	
	2,5 (25); 4,0 (40);	,	300		
	6,3 (63)	300	320		
150	1,0 (10)		305	135	
190	1,6 (16)	310		199	
	2,5 (25)	335	250		
	4,0 (40); 6,3 (63)	380	350		
	1,0 (10)		270	100	
200	1,6 (16)	385	335	160	

ММ

	150 4 10.04	. IV	1 M		
DΝ̈́	PN, МПа (кгс/см²)	И. не болес	L, не более	d ₁ , не менее	Амилитуда едвига б —1 не менее
200	2,5 (25)	420	345	160	
200	4,0 (40); 6,3 (63)	440	400	100	
	1,0 (10)	435	310		
	1,6 (16)	440	345		
250	2,5 (25)	500	355	210	
	4,0 (40); 6,3 (63)	525	460		
	1,0 (10); 1,6 (16)	495	330 345		
300	2,5 (25); 4,0 (40); 6,3 (63)	545	480	260	
	1,0 (10)	545	480		7
-	1,6 (16)	580	370		
350	2,5 (25)	610	395	310	
	4,0 (40); 6,3 (63)	635	480		
	1,0 (10)	595	355		
400	1,6 (16)	640	400	0.00	
400	2,5 (25)	665	420	360	
	4,0 (40); 6,3 (63)	700	500		
	4,0 (40);				

Окончание таблицы 3

MM

DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L,</i> не более	d ₄ , не менес	Амплитуда сдвига δ1 не менее
450	1,6 (16)	730 740	450 435	42 5	
	2,5 (25); 4,0 (40); 6,3 (63)	780	520		7
500	1,0 (10)	790 800	490	4 80	
	2,5 (25); 4,0 (40); 6,3 (63)	850	650		

Пример условного обозначения фланцевого сдвигового компенсатора, типа K001, исполнения 03 на условное давление 1,6 МПа ($16~\rm krc/cm^2$) с условным проходом 200 мм:

Компенсатор К001.03—16—200 ГОСТ Р 50671—94

Тип К010 Исполнение 02, 04

1- сильфон; 2- фланец; 3- направляющий патрубок; 4- вилка; 5- палец; 6- карданное кольцо Рисунок 3

Тип K010 Исполнение 22, 24

1 ← сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — вилка; δ — палец; δ — карданное кольцо

Рисунок 4

ΓΟCT P 50671--94

Таблица 4. Базовые размеры компенсаторов тип K010, исполнение 01—04 мм

		N	1 M		
DN	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	d ₁ , не менее	Амплитуда поворота у — I не менее
65	1,0 (10)	235	215	50	
	1,6 (16)	245	225		
80	1,6 (16)	260	200 215	60	
100	1,0 (10)	265	200		
100	1,6 (16)	280	2:15	85	,
125	1,0 (4/0)	290	220	105	
	1,6 (16)	305	235		
150	1,0 (10)	335	225	130	l l
·	<u>l,6 (16)</u>	340	240		
200	1,0 (10)	410		160	
	1,6 (16)	425	295	-	10°
250	1,6 (16)	490 530	305	210	
300	1,0 (10)	555	300	200	
	1,6 (16)	585	310	260	
350	1,0 (10)	635	310	310	
· ·	1,6 (16)	660	360		
400	1,0 (10)	720	325	360	
	1,6 (16)	745	390		
450	1,0 (10)	805	430 455	425	
· · · · · · · · · · · · · · · · · · ·	1,0 (10)	865	495		
500	1,6 (16)	965	470	480	

Таблица 5. Базовые размеры компенсаторов тип K010, исполнение 21-24 мм

	· · · · · · · · · · · · · · · · · · ·		М М		
DN	PN, МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	<i>d₁</i> , не менее	Амплитуда поворота р —1 не менее
	1,0 (10)	2/05	220		
50	1,6 (16); 2,5 (25)	22 0	230	45	7°
·	4,0 (40); 6,3 (63)	235	2/40		
	1,0 (10)		2/45		·
65	1,6 (16); 2,5 (25); 4,0 (40); 6,3 (63)	245	2 55	50	
	1,0 (10)				
80	1,6 (16)	260	·	60	
	2,5 (25); 4,0 (40); 6,3 (63)	270	260		
	1,0 (10)				10.0
100	1,6 (16)	280	265	85	10°.
	2,5 (25); 4,0 (40); 6,3 (63)	290			
	1,0 (10)				·
125	1,6 (16)	305	270	105	
	2,5 (25); 4,0 (40); 6,3 (63)	3 35			
	·			,	

мм

	1	1	MM	1 ,	· · · · · · · · · · · · · · · · · · ·
DN	PN, МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	<i>d</i> ₁ , не менее	Амплитуда поворота у —1 не менее
	1,0 (10)	335			
150	1,6 (1 6)	340	280	130	
	2,5 (25); 4,0 (40); 6,3 (63)	355	200		
	1,0 (10)	410			
200	1,6 (16)	4/25	330	160	
	2,5 (25); 4,0 (40); 6,3 (63)	· 4 90	335		
	1,0 (10)				
250	1,6 (16)	530		2/10	10°
	2,5 (25); 4,0 (40); 6,3 (63)	560	340		*
	1,0 (10)				·
300	1,6 (16)	585		260	
	2,5 (25); 4,0 (40); 6,3 (63)	635	350		
	1,0 (10)	· · · · ·			
350	1,6 (16)	660	390	310	
	2,5 (25); 4,0 (40); 6,3 (63)	720	400		
	_				

MM

	D N	<i>PN</i> , МПа (кгс/см²)	<i>Н</i> , не более	L, не более	d s, не менее	Амплитуда поворота у — 1 не менее
	400	1,0 (10)	720	400	200	
	400	2,5 (25);	745	420	360	
-		4,0 (40); 6,3 (63)	805	460		
	450	1,6 (16)	835		425	1/0°
		2,5 (25); 4,0 (40); 6,3 (63)	865	470		
		1,0 (10)	-			
	500	2,5 (25);	965	480	480	-
		4,0 (40); 6,3 (63)	1000		,	,

Пример условного обозначения поворотного компенсатора под приварку, типа K010, исполнения 22 на условное давление 1,0 МПа ($10~{\rm krc/cm^2}$) с условным проходом $150~{\rm mm}$:

Компенсатор К010.22—10—150 ГОСТ Р 50671—94

Тип К100 Исполнение 02, 04

1 — сильфон; 2 — фланец; 3 — направляющий патрубок; 4 — кожух Рисунок 5

Тип К 100 Исполнение 22, 24

1 — сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — кожух

Рисунок 6

Таблица 6. Базовые размеры компенсаторов тип K100, исполнение 01—04 мм

DN	PN. МПа (кгс/см²)	<i>Н</i> , не более	L, не болес	d ₁ , н е м енее	Амплитуда хо да <i>X—</i> 1 не менее	
65	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	205	255	50	30	
80	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	220	. 215	60	-	
100	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	240	210	85		
125	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	260	235	105	35	
150	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	290	240	130	40	
2 00	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345		160	45	
250	0,25 (2,5); 0,63 (6,3)	400	280	2:10	55	
200	1,0 (10); 1,6 (16); 2,5 (25)	415		211.0	55	

FOCT P 50671-94

Окончание таблицы 6

MM

DN	<i>PN</i> . МПа (кгс/см²)	<i>Н</i> . не более	<i>L</i> , не более	<i>d</i> ₁, не менее	Амплитуда хода λ—1 не менее
	0,25 (2,5); 0,63 (6,3)	465			
300	1.0 (10); 1.6 (16) 2.5 (25)	470	2 95	260	65
350	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	515	305	310	75
400	0,25 (2,5); 0,63 (6.3)	565	205		20
400	1,0 (10); 1,6 (16); 2,5 (25)	580	325	360	80
450	0,25 (2,5); 0,63 (6,3)	615	400	405	
450	1,0 (10); 1,6 (16); 2,5 (25)	635	400:	425	85
500	0,25 (2,5); 0.63 (6,3)	670		400	
500	1,0 (10); 1,6 (16); 2,5 (25)	685	440	480	

Таблица 7. Базовые размеры компенсаторов тип K100, исполнение 21-24 мм

DN	<i>PN</i> . МПа (кгс/см²)	. Н. не более	L, не более	d ₁ , не менее	Амплитуда хода 2—1 нс менее
50	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	190	240	45	20
	4,0 (40); 6,3 (63)	200			
65	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	210		50	
	4,0 (40); 6,3 (63)	220	255		30
80 .	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225		60	
	4,0 (40); 6,3 (63)	235			
100	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	260	85	35
	4,0 (40); 6,3 (63)	240			}
	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	250			
1:25	4,0 (40); 6,3 (63)	260	270	105	35

Продолжение таблицы 7

ММ

DN	PN. МПа (кгс/см²)	Н. не более	L. не более	d ₁ . не менее	Амплитуда хода λ—1 не менее
150	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	275	270	135	40
	4,0 (40); 6,3 (63)	300			
200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345	290	160	45
	4,0 (40); 6,3 (63)	380			
250	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	400	310	210	55
	4,0 (40); 6,3 (63)	430	325		
300	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	465	310	260	65
	4,0 (40); 6,3 (63)	500			
350	0,63 (63); 1,0 (10); 1,6 (16); 2,5 (25)	515	325	310	75
	4,0 (40); 6,3 (63)	530	350		

МM

		,	ММ		
DN	<i>PN</i> , МПа (кгс/см²)	Н, не более	 не более	d 1, не менее	Амплитуда хо да λ — 1 не менее
400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	565	350	360	80
-	4,0 (40); 6,3 (63)	600	375		
450	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	635	390	410	85
	4,0 (40); 6,3 (63)	650	400		
500	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	685	440	460	85
	4,0 (40); 6,3 (63)	700	445	·	-
600	0,63 (6,3) 1,0 (10); 1,6 (16); 2,5 (25)	765	450	575	
700	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	875		680	90
800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	980	455	775	

	with the state of		1/1 1/1		<u> </u>
DΝ	<i>PN</i> , МПа (кгс/см²)	Н. не более	не более	d 1, не менее	Амилитуда хода λ—1 не менее
900	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25);	1090	455	875	90
1000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1205		980	95
1200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1420	470	1180	
1400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1640	460	1385	
1600	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1860	500	1580	
1800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2060	520	1780	100
2000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2260	550	1960	
2200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	2460	600	2160	

Тип К111 Исполнение 02, 04

I — сильфон; 2 — фланец; 3 — направляющий патрубок; 4 — кожух Рисунок 7

Tun K111

1 — сильфон; 2 — присоединительный патрубок; 3 — направляющий патрубок; 4 — кожух

Рисунок 8

TOCT P 50671-94

Таблица 8. Базовые размеры компейсаторов тип K111, исполнение 01---04

		}			Амплитуда, не менее			
DN	РЙ, МПа (кгс/см²)	И, не более	<i>L</i> . не более	d ₁ , не менее	хода 2 1	сдвига 8 —1	поворота ў 1	
65	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	205	255	50				
80	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	220	015	60	15			
100	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	240	215	85		7	10 °	
125	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	260	235	105				
150	0,25 (2,5); 0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	290		130				
200	0,25 (2,5); 0,63 (6,3)	330	240	160				
200	1,0 (10); 1,6 (16); 2,5 (25)	345		100	20			
0.50	0,25 (2,5); 0,63 (6,3);	400		6.10				
250	1,0 (10); 1,6 (16); 2,5 (25)	4.15	280	210				

Окончание таблицы 8

MM

	i —			M	M					
		PN. MHa	H	L.		As	пплитуда	ì. [i	е менее	
	DN	(Kre/cm ²)	ие более	д. Но боле	d ₁ . не менес	$\lambda = \sqrt{\frac{\chi_0}{\lambda}}$	хода 2 —1 сдвига 2 —1 8 —1		поворота у · 1	
		0,25 (2,5) 0,63 (6,3)	; 465							
-	300	1,0 (10); 1,6 (16); 2,5 (25)	470	295	260					
		0.25 (2.5); 0.63 (6.3)	515							
	350	1,0 (10); 1,6 (16); 2,5 (25)	520	305	310					
		$ \begin{array}{c c} 0.25 & (2.5); \\ 0.63 & (6.3) \end{array} $	565							
	400	1,0 (10); 1,6 (16); 2,5 (25)	580	325	360	30	. 7		10	
	170	0,25 (2,5); 0,63 (6,3)	615							
	450	1,0 (10); 1,6 (16); 2,5 (25)	635	400	425					
	500	0,25 (2,5); 0,63 (6,3)	670							
	500	1,0 (10); 1,6 (16); 2,5 (25)	685	440	480					

FOCT P 50671-94

Таблица 9. Базовые размеры компенсаторов тип K111, исполнение 21-24 мм

			MM				
	·				Амџа	тгуда.	не менее
DŅ TH	PN, МПа (кгс/см²)	- II . не более	L, не более	d ₁ . не менес	хода λ —1	сдвига δ1	поворота $\gamma-1$
50	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	190	240	45	10	5	7°
	4,0 (40); 6,3 (63);	200					
65	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	210		50			
	4,0 (40); 6,3 (63)	220	255				
80	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	200	60			
	4,0 (40); 6,3 (63)	235					
100	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	225	26 0	85	15	7	10°
	4,0 (40); 6,3 (63)	2 40					
125	0.63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	250	270	105			
	4,0 (40); 6,3 (63)	260	210				

					Амил	итуда,	не менее
DN	PN, МПа (кгс/см²)	11, не более	L. не более	d:, не менее	хода λ —1	едвига 81	поворота у —1
150	0,63 (6,3); 1,0 (10); 1,6 (16);	275	270	135			
	2,5 (25); 4,0 (40); 6,3 (63)	300					
200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	345	290	160	20		
	4,0 (40); 6,3 (63)	380	300			!	
250	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	400	310	210			
	4,0 (40); 6,3 (63)	430	325			7	10 °
300	-0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	465	310	260			
w	4,0 (40); 6,3 (63)	500					
350	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	515	325	310	25		
	4,0 (40); 6,3 (63)	530	350				
		1		. 1			

Продолжение таблицы 9

MM

			M M				
					Амплитуда.		не менее
DN	PN, МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не более	<i>d</i> ₁, не менее	хода λ—1	сдвига δ —1	поворота у —1
400	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	565	350	360			
	4,0 (40); 6,3 (63)	600	375				
450	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	635	390	410	30	7	10°
	4,0 (40); 6,3 (63)	650	400				
500	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	685	440	460			
	4,0 (40); 6,3 (63)	700	445				
600	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	765	450	575			
700	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	875	455	680	35	6	9°
800	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	980	455	775			-
900	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1090		875	40	5	6 °
. 1	ı	,	1	1	1		1

DN	PN, МПа (кгс/см²)	<i>Н</i> , не более	<i>L</i> , не бо лее	<i>d</i> ₁ , не мен е е	Амплитуда, не мен е е		
					хода λ —1	сдвига δ —1	поворота у l
1000	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1205	470	980			6°
1200	0,63 (6,3); 1,0 (10); 1,6 (16); 2,5 (25)	1420		1180	40	5	
1400	0,63 (6,3); l,0 (10); l,6 (16); 2,5 (25)	1640	460	1385	-	•	4 °

5 ТРЕБОВАНИЯ НАДЕЖНОСТИ

- 5.1 Полный назначенный срок службы компенсаторов должен быть не менее 20 лет, срок сохраняемости до ввода в эксплуатацию не менее 5 лет.
- 5.2 Вероятность безотказной работы компенсаторов на любом из перемещений (сжатие—растяжение, сдвиг, поворот) для наработки, установленной в соответствии с пунктом 1.3 должна быть не менее 0,9 при условном давлении проводимой среды.
- 5.3 Правила приемки компенсаторов, программы и методики испытаний должны соответствовать требованиям ГОСТ 27036 и ГОСТ 28697.

6 ТРЕБОВАНИЯ СТОЙКОСТИ К ВНЕШНИМ ВОЗДЕЙСТВИЯМ

6.1 Қомпенсаторы должны быть вибропрочными и ударостойкими.

Уровень вибропрочности по амплитуде виброускорения в контролируемом диапазоне частот, а также уровень ударостойкости по длительности импульса, направлению воздействия; количеству ударных воздействий и ударному ускорению устанавливаются разработчиком и согласовываются с заказчиком (основным потребителем),

Пример — компенсаторы должны быть вибропрочными в диапазоне частот от 5 до 60 Гц при амплитудах виброускорения не более 19,6 м/с². Компенсаторы должны быть ударостойкими при пятикратном воздействии ударных нагрузок в продольном и поперечном направлениях с параметрами: ударное ускорение не более 981 м/с², длительность импульса не более 1—10 мс.

6.2 Компенсаторы должны сохранять технические характеристи-

ки после дегазации и дезактивации.

6.3 Требовання к компенсаторам в части воздействия климатических факторов внешней среды должны соответствовать ГОСТ 15150.

- 6.4 Монтаж компенсаторов, а также защита от коррозни в период монтажа и эксплуатации, должны производиться по монтажным чертежам трубопроводов, систем, механизмов в соответствии с требованиями пормативно-технической документации на монтаж и эксплуатацию.
- 6.5 На весь период монтажа компенсаторы следует защищать от механических повреждений и воздействий агрессивных сред.

7 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

7.1 Требования, обеспечивающие безопасность, должны быть указаны в нормативно-технической документации на продукцию.

7.2 При разработке конструкторской и нормативно-технической документации на продукцию должны обеспечиваться требования:

- «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды», утвержденных Госгортехнадзором 01.01.90;
- «Специальных условий поставки оборудования, приборов, материалов изделий для объектов атомной энергетики», Москва, 1987 г.;
- «Правил устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок», введенных в действие 01.01.90 Госком по надзору за безопасным ведением работ в атомной энергетике.
- 7.3 Разработчики и изготовители компенсаторов должны быть аттестованы Госгортехнадзором РФ.
- $7.4~ \mathrm{П}$ ри изготовлении компенсаторов должны соблюдаться требования ГОСТ 12.3.025, ГОСТ 12.2.003 и ГОСТ 12.3.003.
- 7.5 При монтаже и эксплуатации компенсаторов должны выполняться требования, установленные нормативно-технической документацией на объект применения компенсаторов.

8 ТРЕБОВАНИЯ ОХРАНЫ ПРИРОДЫ

Требования, обеспечивающие сохранение окружающей среды, должны быть указаны в нормативно-технической документации на продукцию.

9 ТРЕБОВАНИЯ ТРАНСПОРТАБЕЛЬНОСТИ

9.1 Компенсаторы, упакованные в тару, могут транспортироваться всеми видами транспорта в соответствии с общими требованиями и нормами, действующими на данном виде транспорта.

9.2 Условия транспортирования продукции — по ГОСТ 15150;

воздействие механических факторов по ГОСТ 23170.

10 ТРЕБОВАНИЯ СТАНДАРТИЗАЦИЙ И УНИФИКАЦИИ

10.1 В конструкторской и нормативно-технической документации на компенсаторы должны применяться стандартизированные условные проходы (ГОСТ 27036), условные и пробные давления (ГОСТ 356), термины и определения (ГОСТ 25756).

10.2 В зависимости от показателей назначения и технических характеристик в конструкциях компенсаторов должны применяться многослойные и однослойные металлические сильфоны и арма-

тура по ГОСТ Р 50392.

Примечание. Допускается применение специальных сильфонов и арматуры, удовлетворяющих требованиям, предъявляемым к стандартизованным деталям.

11 ТРЕБОВАНИЯ ТЕХНОЛОГИЧНОСТИ

11.1 Конструкция сварных соединений должна обеспечивать возможность применения автоматической и полуавтоматической сварки и контроль качества сварных швов.

11.2 В конструкциях компенсаторов должны быть предусмотрены средства строповки для перегрузки и доставки изделий к месту

монтажа.

11.3 Защитные кожуха должны быть съемными.

12 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

12.1 Компенсаторы должны быть разработаны в соответствии с требованиями настоящего стандарта.

12.2 Детали компенсаторов должны быть изготовлены из материалов, указанных в табл. 10.

Таблица 10

Наименование детали		
Фланец ′	Сталь 08Х18Н10Т по ГОСТ 5632	0,1 02
	Сталь 12МХ по ГОСТ 20072	03, 04
Присоедини- тельный патрубок	Сталь 08Х18Н10Т по ГОСТ 5632	21, 22
тельный патруоок	Сталь 12МХ по ГОСТ 20072	23, 24
Сильфон	Сталь 10Х17Н13М2Т по ГОСТ 5632	01, 02, 21, 22
Сильфон	Сталь 08Х18Н10Т по ГОСТ 5632	03, 04, 23, 24
	Сталь 08КП по ГОСТ 1050	
Направляющий патрубок	Сталь 08Х18Н10Т по ГОСТ 5632	02, 04, 22, 24
Карданное кольцо	Сталь 08Х18Н10Т по ГОСТ 5632	01, 02, 21, 22
	Сталь 40Х по ГОСТ 4543	03, 04, 23, 24
Вилка	Сталь 08Х18Н10Т по ГОСТ 5632	01, 02, 21, 22
DANKA	Сталь 12МХ по ГОСТ 20072	03, 04, 23, 24
Палец	Сталь 40X по FOCT 4543	,,,
Кожух	Сталь 3 по ГОСТ 380	Все исполнения

Примечания

1 Допускается применение других материалов, обеспечивающих требования, предъявляемые настоящим стандартом и Госгортехнадзором России.

2 Воздействие химических элементов и соединений, содержащихся в проводимой и окружающей средах на детали и узлы компенсаторов не должно снижать уровень надежности, если ожидаемое снижение не установлено и не отражено в техническом задании.

Зависимость сроков службы сильфонных компенсаторов от воздействия проводимой среды приведена в приложении А.

12.3 Присоединительные патрубки компенсаторов должны иметь разделку кромки под сварку С-8 по ГОСТ 14771.

12.4 Присоединительные размеры фланцев (D_1, n, d) по ГОСТ 12815, присоединительных патрубков (D) по ГОСТ 10704.

12.5 Компенсаторы должны быть прочными при $P_{\rm неп}=1.5~{\rm P_y}.$ 12.6 Компенсаторы должны быть герметичными. Уровень герметичности устанавливается в конструкторской документации и технических условиях в зависимости от условий эксплуатации (проводимой среды).

Приложение **A** (рекомендуемое)

Сроки службы компенсаторов в зависимости от содержания хлоридов в сетевой воде

 Δg — содержание — клоридов в теплоносителе, мг/л; t — срок службы (ожидаемый)

УДК 629.12-56:006.354

П04

Ключевые слова: сильфонные компенсаторы, герметические соединения, трубопроводы электрических станций и тепловых сетей, тики, основные параметры, падежность, транспортабельность

ОКП 36 9574

Редактор А. Л. Владимиров Технический редактор В. Н. Прусакова Корректор Л. Я. Митрофанова

Сдано в набор 29.06.94. Подп. в печ. 17.04.94. Усл. печ. л. 2.56. Усл. кр.-отт. 2,56. Уч.-изд. л. 2,11. Тир. 427 экз. С 1581.

Ордена «Знак Почета» Издательство стандартов, 107076, Москва, Колодезный пер., 14. Калужская типография стандартов, ул. Московская, 256. Зак. 1288