Optical power measurements (1)

- ☐ The optical power measurement is fundamental for the metrology of the optical fibers: almost all the optical instruments include a power meter
- □ Absolute measurements: traceable to the International System of Units (SI)
 - optical sources characterization
 - characterization of optical detectors and receivers
 - safety measurements (laser safety)
- □ Relative measurements: not necessarily traceable measurements
 - loss/attenuation measurements
 - gain measurements
 - insertion loss measurements

Optical power measurements (2)

- ☐ The optical power measurements are commonly based on electrical power measurements.
- □An optical power measured value must be traceable to the international unit of power which is defined by means of electrical quantities (electrical power reference).
- ☐ The optical power measurement can be based on thermoelectric detectors or on electronic photo-detectors.

feature	thermoelectric	electronic
dependence on wavelength	very low, wide range	very high, short range (2:1)
auto-calibration	yes	no
sensitivity	low, >10mW	very high, < 1 pW
uncertainty	down to +/-1%	down to +/-2%

Thermoelectric detectors: substitution radiometry

Thermoelectric detectors: substitution radiometry

- a) the light beam, whose power has to be measured, enters the detector
- b) at the thermal equilibrium, the temperature difference between the absorber and the thermal mass is proportional to the incident optical power:

$$\Delta T \propto P_{opt}$$

c) this temperature difference ΔT is measured by means of a thermopile

Thermoelectric detectors

- d) the light beam is stopped with a shutter and the electrical heater is switched on
- e) the supply power of the heater is regulated in order to stabilize a new thermal equilibrium at the same temperature difference ΔT previously recorded (in step b)
- f) the electrical power P_e now supplying the heater is measured: it is the result of the measurement since we can say that

$$P_{opt} = P_e$$

the measurement is therefore based on the direct comparison between an optical power and an electrical power

p-i-n photo-detectors

- the pin photodiode is a photon-to-electron converter: the incoming photons are absorbed by the intrinsic (i) layer made by a low band-gap material
- equivalent circuit

IL : current generated by incident light (proportional to light level)

Vp : voltage across diode

ID: diode current

Cj: junction capacitance Rsh: shunt resistance

I': shunt resistance current

Rs: series resistance Vo: output voltage Io: output current

- ☐ MATERIAL: Si, Ge, InGaAs
- ☐ Efficiency up to 90%
- ☐ Fast response time, bandwidth up to 100 GHz
- □ Avalanche photo-detectors (APD): lower speed (few GHz BW), higher sensitivity

p-i-n photo-detectors

□ basic circuits

PIN photodiodes

☐ the responsivity gives the intensity of photo-current per unit of optical power (A/W):

$$r = \frac{I}{P_{opt}} = r(\lambda) \quad \left[\frac{A}{W}\right]$$

□optical dB vs electrical dB: a change of -3 dB (halving) of the incident optical power induces a halving of the photo-current corresponding to a -6 dB variation of the electrical power at the receiver output

Spectral responsivity of photo-detectors

□temperature dependence:

the cut-off wavelength λ shifts of about 1 nm/K for the InGaAs and germanium diodes

Optical power emitted by a broadband source

- \Box given the source power spectral density $p(\lambda)$
- ☐ the total emitted optical power is

$$P_{TOT} = \int p(\lambda) d\lambda$$

- \Box given the photo-diode responsivity $r(\lambda)$
- ☐ the total photo-current is:

$$I_{TOT} = \int r(\lambda) \cdot dP = \int r(\lambda) \cdot p(\lambda) d\lambda$$

☐ in case of a broadband light source we cannot directly use a photo-diode to measure the emitted total power

Relative responsivity

☐ the responsivity of a photo-diode is usually expressed as:

$$r(\lambda) = r(\lambda_0) \cdot \underbrace{r_{rel}f(\lambda)}_{\text{relative responsivity}} = r_{\lambda_0} \cdot r_{rel}(\lambda)$$

☐ the total photo-current is:

$$I_{TOT} = \int r(\lambda) \cdot dP = r_{\lambda_0} \cdot \int r_{rel}(\lambda) \cdot p(\lambda) d\lambda$$

Relative power spectral density

□ we can express the source power spectral density as:

$$p(\lambda) = p(\lambda_0) \cdot \underbrace{f(\lambda)}_{\text{relative power density}} = p_{\lambda_0} \cdot f(\lambda)$$

☐ the total photo-current is:

$$I_{TOT} = \int r(\lambda) \cdot p(\lambda) d\lambda = p_{\lambda_0} \cdot r_{\lambda_0} \int f(\lambda) \cdot r_{rel}(\lambda) d\lambda$$

Optical power emitted by a mono-chromatic source

☐ the emitted optical power is concentrated only on one wavelength, therefore the total photo-current is:

$$I = \int r(\lambda) \cdot p(\lambda) d\lambda = r_{\lambda_0} \cdot r_{rel}(\lambda_s) \cdot p(\lambda_s) \cdot 1 \equiv r_{\lambda_0} \cdot r_{rel}(\lambda_s) \cdot P_{TOT}$$

 \Box by measuring I, we obtain: $P_{TOT} = \frac{I}{r_{\lambda_0} \cdot r_{rel}(\lambda_s)}$

Optical power emitted by a LED

$$P_{LED} = \int p_{\lambda_S} \cdot f(\lambda) d\lambda = p_{\lambda_S} \cdot \int f(\lambda) d\lambda$$

- \Box the emitted optical power is spread over a wavelength range around λ_s , where the responsivity is not constant
- ☐ the total photo-current is:

$$I = \int r(\lambda) \cdot p(\lambda) d\lambda = r_{\lambda_0} \cdot p_{\lambda_S} \cdot \int r_{rel}(\lambda) \cdot f(\lambda) d\lambda =$$

$$= r_{\lambda_0} \frac{P_{LED}}{\int f(\lambda) d\lambda} \int r_{rel}(\lambda) \cdot f(\lambda) d\lambda$$

 \Box by measuring I , we obtain: $P_{LED} = \frac{\mathit{I}}{r_{\lambda_0}} \frac{\int f(\lambda) d\lambda}{\int r_{rel}(\lambda) \cdot f(\lambda) d\lambda}$

Optical power emitted by a LED

$$P_{LED} = \int p_{\lambda_S} \cdot f(\lambda) d\lambda = p_{\lambda_S} \cdot \int f(\lambda) d\lambda$$

$$\Box P_{LED} = \frac{I}{r_{\lambda_0}} \frac{\int f(\lambda) d\lambda}{\int r_{rel}(\lambda) \cdot f(\lambda) d\lambda}$$

☐ if a) the emission spectrum is symmetric and b) the responsivity linearly changes with λ , then we can proceed as with a laser source:

$$P_{LED} = \frac{I}{r_{\lambda_0} \cdot r_{rel}(\lambda_s)}$$
 (1)

normally we have to apply a correcting factor to the value given by relation (1)

Power meters with photo-detectors

- □accurate power measurements only when:
 - an individual correction for each wavelength is applied
 - the temperature is well stabilized
 - the photo-detector has a good spatial homogeneity
 - reflections are minimized
 - a low polarization dependence is guaranteed

Non-linearity of the power meters

- □ a photo-detector has a typical dynamic of six or more decades
- detector nonlinearities
 - noise effect at the lowest levels of the optical power
 - supra-linearity at the medium power levels
 - saturation at high power levels
- □ electronic nonlinearities
 - offset of the amplifier at low power levels
 - saturation of the amplifier at high power level
 - ranging discontinuities due to the non-matching amplifier gains

cont.

Photo-detector noise

□the current noise can be represented as noise equivalent (optical) power (NEP):

$$NEP = \frac{1}{r} \sqrt{\left[i_n^2\right]} = \frac{1}{r} \sqrt{2eB_n(2I_{dark} + r \cdot P_{opt})} \qquad \left[\frac{W}{\sqrt{Hz}}\right]$$

where: R is the responsivity, I_{dark} is the dark current, B_n is the noise equivalent bandwidth, and P_{opt} is the incoming optical power

$$\square SNR = \frac{P_{opt}}{NEP}$$

Absolute optical power measurements

- □ production tests
- \Box for the highest power levels (> 100 mW) it is necessary to insert an attenuator do avoid the photo-detector damage
- \Box when the light source has a wide emission spectrum, since the detector responsivity is a function of λ , the power meter reading could need a correction

Power meter calibration

- ☐ we must have a photo-detector traced to international standard units
- ☐ the responsivity curve is constructed point by point

Uncertainty of the optical power measurement

- □Fluctuations of the power of the testing laser source: the main cause can be related to the high sensitivity to optical feedback. The inaccuracy can be very high if no caution is used.
- □ Power meter calibration (see the user manual and the calibration certificate of the instrument): the best instruments declare an accuracy of +/- 2%.
- **□**Systematic errors:
 - short knowledge of the spectral characteristic of the optical source
 - the geometry of the real light beam is different from the specified one

