(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 August 2003 (14.08.2003)

PCT

(10) International Publication Number WO 03/065973 A2

(51) International Patent Classification?:

A61K

- (21) International Application Number: PCT/US02/34769
- (22) International Filing Date: 28 October 2002 (28.10.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/348,434

26 October 2001 (26.10.2001) US

- (71) Applicants (for all designated States except US): 1D BIOMEDICAL CORPORATION OF WASHINGTON [US/US]; 19204 North Creek Parkway, Suite 100, Bothell, WA 98011 (US). UNIVERSITY OF TENNESSEE RESEARCH CORPORATION [US/US]; 1534 White Avenue, Suite 403, Knoxville, TN 37996-1527 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): REDDISH, Mark, A. [US/US]; 18605 215th Way NE, Woodinville, WA

98072 (US). HU, Mary, Chaohong [CN/US]; 18209 76th Avenue West, Edmonds, WA 98026 (US). WALLS, Michael, A. [US/US]; 20040 61st Court Northeast, Kenmore, WA 98028-8533 (US). DALE, James, B. [US/US]; 72 Lombardy Road, Memphis, TN 38111 (US).

- (74) Agents: PEPE, Jeffrey, C. et al.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Scattle, WA 98104-7092 (US).
- (81) Designated States (national): AF, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

[Continued on next page]

(54) Title: MULTIVALENT STREPTOCOCCAL VACCINE COMPOSITIONS AND METHODS FOR USE

(57) Abstract: Compositions and methods for making and using therapeutic formulations of multivalent hybrid polypeptides comprising immunogenic peptides of M proteins from various different serotypes of group A streptococci and antibodies thereto are provided. Also provided are nucleic acids encoding such hybrid polypeptides. The hybrid polypeptide formulations may be used, for example, in methods for treating or preventing a microbial infection and eliciting a protective immune response having broadly protective opsonic antibodies in the absence of tissue cross-reactive antibodies.

ļ

WO 03/065973 A2

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

Published:

 without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MULTIVALENT STREPTOCOCCAL VACCINE COMPOSITIONS AND METHODS FOR USE

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application

No. 60/348,434 filed October 26, 2001. This provisional application is incorporated herein by reference in its entirety.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under Grant No. AI-10085 awarded by the National Institutes of Health, and support from the Department of Veteran Affairs, Merit Review funds. The government may have certain rights in this invention.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

10

The present invention relates generally to the prevention of infectious disease, and more specifically, to compositions comprising multivalent hybrid polypeptides having immunogenic M protein and Spa peptides capable of eliciting protective immunity.

DESCRIPTION OF THE RELATED ART

Group A streptococcal pharyngitis is one of the most common bacterial infections in school-age children. In addition to streptococcal pharyngitis, there may be associated nonsuppurative sequela, such as acute rheumatic fever (ARF). Although the incidence of ARF has declined in developed countries, the disease remains rampant in developing countries (Community prevention and control of cardiovascular diseases. Report of a WHO expert committee. World Health Organization. 1986:732). Another form of streptococcal infection is invasive, which afflicts thousands of children and adults each year, often resulting in death or significant morbidity (Stevens, *J. Infect. Dis.* 2:S366,

1999). Efforts to develop a vaccine that would prevent group A streptococcal infections have been ongoing for over eight decades (Dochez et al., J. Exp. Med. 30:179, 1919; Lancefield, J. Exp. Med. 47:91, 1928).

Hence, a need exists for identifying and developing compositions therapeutically effective against streptococcal infections, particularly those compositions that can function as a vaccine and elicit protective immunity. Furthermore, there is a need for vaccine formulations that can be varied to protect against or treatment for infection by different streptococcal serotypes. The present invention meets such needs, and further provides other related advantages.

10 SUMMARY OF THE INVENTION

20

25

The present invention provides the discovery of therapeutic formulations of multivalent hybrid polypeptides, particularly a cocktail of hybrid polypeptides useful for eliciting a protective immune response having broadly protective opsonic antibodies in the absence of tissue cross-reactive antibodies. Hybrid polypeptides of the invention comprise at least six different linked immunogenic peptides, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 30 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one serotype of group A streptococci.

In one aspect, the invention provides a hybrid polypeptide, comprising at least six different linked immunogenic peptides, wherein each peptide comprises an aminoterminal portion of a streptococcal M protein of at least 30 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least M5, M6, M14, M19, M24, and M29. In other embodiments, the polypeptide elicits an immune response against more than one antigen of group A streptococci comprising at least M2, M11, M22, M33, M43, M59, and M94, or at least M75, M76, M77, M89, M92, M101, and M114, or at least Spa, M1.0,

M1.2, M3, M12, M18, and M28, or against 27 or more antigens of group A streptococci. In more embodiments, the amino-terminal immunogenic peptide of the hybrid polypeptide is M24, M1, M2, or M89. In still other embodiments, the polypeptides are recombinant and the immunogenic peptides are linked in tandem, the polypeptides having a structure of M24-M5-M6-M19-M29-M14-M24, M2-M43-M94-M22-M11-M59-M33-M2, M89-M101-M77-M114-M75-M76-M92-M89, or M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0. In yet other embodiments, the hybrid polypeptides comprise the amino acid sequence of SEQ ID NOS:2, 4, 6, or 8. In other embodiments, the immunogenic peptides are linked by at least two amino acids encoded by a nucleic acid sequence that is a restriction enzyme recognition site, wherein the recognition site includes at least one of BamHI, ClaI, EcoRI, HindIII, KpnI, Ncol, Nhel, PmII, PstI, Sall, and XhoI. In further embodiments, any of the aforementioned hybrid polypeptides capable of eliciting at least one opsonic antibody that is not a tissue cross-reactive antibody in a subject, wherein the subject is a human or an animal. In more embodiments, any of the aforementioned hybrid polypeptides further comprising a carboxy-terminal tag, wherein the carboxy-terminal tag is selected from the group consisting of alkaline phosphatase, β-galactosidase, hexahistidine, FLAG[®], XPRESS[®], and GST. In still more embodiments, any of the aforementioned hybrid polypeptides or fusion proteins further comprise at least one additional carboxy-terminal amino acid, wherein the additional carboxy-terminal amino acid is a D-amino acid or cysteine.

10

15

20

25

In another aspect, the invention provides any of the aforementioned hybrid polypeptides or fusion proteins wherein the polypeptides are synthetic. In certain embodiments, the synthetic hybrid polypeptides have one or more amino acids altered to a corresponding D-amino acid or are linked to an alkane such as acrylamide or an analog or derivative thereof. In a further embodiment, the synthetic hybrid polypeptides have immunogenic peptides linked to form a lysine core-branched peptide.

In still another aspect, the invention includes a nucleic acid molecule comprising a sequence encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8. In a related embodiment, there is provided a nucleic acid expression construct comprising an

expression control sequence operably linked to a polynucleotide encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8. In other embodiments, the expression construct comprises a nucleic acid expression vector selected from the group comprising a plasmid, phagemid, shuttle vector, cosmid, or virus. In one embodiment, the vector is plasmid pT5 (SEQ ID NO:17). In still another embodiment, there is provided a host cell containing any of the aforementioned nucleic acid constructs. In yet other embodiments, the host cell is selected from a bacterium, a yeast cell, a nematode cell, an insect cell, or a mammalian cell. In one embodiment, the host cell is the bacterium *Escherichia coli*.

10

15

20

25

In a further aspect, the present invention provides a plurality of antibodies, comprising two or more different antibodies wherein each antibody is specific for a different immunogenic peptide of a hybrid polypeptide, the polypeptide comprises at least six different immunogenic peptides linked in tandem, each peptide comprises at least 30 amino acids and the amino-terminal peptide is reiterated as a carboxy-terminal peptide, wherein the polypeptide is capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least M5, M6, M14, M19, M24, and M29. In other embodiments, the plurality of antibodies are specific for more than one antigen of group A streptococci comprising at least M2, M11, M22, M33, M43, M59, and M94, or at least M75, M76, M77, M89, M92, M101, and M114, or at least Spa, M1.0, M1.2, M3, M12, M18, and M28, or specific for 27 or more antigens of group A streptococci. In yet other embodiments, any of the aforementioned antibodies wherein the hybrid polypeptides comprise the amino acid sequence of SEQ ID NOS:2, 4, 6, or 8. In other embodiments, any of the aforementioned antibodies are opsonic and not tissue cross-reactive in a subject. In one embodiment, the antibodies are polyclonal.

In yet another aspect, there is provided a method of producing a hybrid polypeptide, comprising culturing a host cell containing any of the aforementioned nucleic acid expression vectors comprising at least one expression control sequence operably mixed to a matrice acid molecule encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8, under conditions and for a time sufficient for expression of the polypeptide. In a related

aspect, the invention provides any of the aforementioned hybrid polypeptides produced by the aforementioned method.

In another aspect, there is provided a composition comprising a pharmaceutically acceptable carrier and any of the aforementioned hybrid polypeptides. In other aspects, the invention is a cocktail composition comprising a pharmaceutically acceptable carrier and a mixture of at least two or three of any of the aforementioned hybrid polypeptides. In one embodiment, the cocktail compositions include at least one of the hybrid polypeptides having a Spa immunogenic peptide. In other embodiments, provided are any of the aforementioned compositions wherein the hybrid polypeptides are mixed in equimolar amounts. In further embodiments, any of the aforementioned compositions further comprise an adjuvant such as alum or Freund's.

10

20

25

In still another aspect, the invention provides a method for preventing a microbial infection, comprising administering to a subject any of the aforementioned compositions at a dose sufficient to elicit antibodies specific for one or more hybrid polypeptide, wherein the antibodies are opsonic and are not tissue cross-reactive. In certain embodiments, the microbial infection being prevented is a streptococcal infection and in a related embodiment is a group A streptococcal infection. In some embodiments, any of the aforementioned compositions are administered to a subject by a route selected from enteral, parenteral, transdermal, transmucosal, or inhalation. In further embodiments, the compositions are administered to a human or animal subject and the compositions further comprise an adjuvant such as alum or Freund's. In another related aspect, there is provided isolated antibodies produced by the aforementioned methods for preventing a microbial infection. In certain embodiments, the antibodies produced by these methods will comprise at least one antibody specific for a M serotype not represented in a hybrid polypeptide, such as M4. In still another embodiment, there is provided a method for treating or preventing a microbial infection comprising administering to a subject a composition compilising a pharmaceulouly acceptable carrier and any of the aforementioned planarity of antibodies. In one embodiment, the subject is an animal or human.

BRIEF DESCRIPTION OF THE DRAWINGS

10

20

Figure 1 shows a schematic diagram of the four hybrid polypeptides used as a vaccinating agent. The oligonucleotide primers used to amplify a 5' emm gene fragment (i.e., immunogenic peptide) by PCR for each serotype were synthesized to include the indicated unique restriction enzyme sites, which encode amino acids that link the immunogenic peptides in tandem (indicated by the lines between the boxes). Each box represents an amino-terminal M protein immunogenic peptide, wherein the number within each box designates the serotype and the number below each box indicates the number of amino acids comprising each immunogenic peptide. Serotype M101 was formerly designated stNS5, serotype M114 was formerly designated st2967, and serotype M94 was formerly designated M13W and M13. The "6xHis" refers to the presence of a hexahistidine, which is optional.

Figures 2A to 2C show the nucleotide and amino acid sequence of hybrid polypeptide Hexavalent A.3. The restriction enzyme sites and the beginning point of each M serotype immunogenic peptide are indicated. Eleven Arg codons were optimized for expression in *E. coli* by mutating AGG/AGA codons to CGT/CGC codons (mutated bases are underlined).

Figures 3A to 3D show the nucleotide and amino acid sequence of hybrid polypeptide Hexavalent B.3a. The restriction enzyme sites and the beginning point of each M serotype immunogenic peptide are indicated. Nine Arg codons were optimized for expression in *E. coli* by mutating AGG/AGA codons to CGT/CGC codons (mutated bases are underlined).

Figures 4A to 4C show the nucleotide and amino acid sequence of hybrid polypeptide Hexavalent C.2. The restriction enzyme sites and the beginning point of each M serotype immunogenic peptide are indicated. Seven Arg codons were optimized for expression in *E. coli* by mutating AGG/AGA codons to CGT codons (mutated bases are

Figures 5A to 5C show the nucleotide and amino acid sequence of hybrid polypeptide Hexavalent D.3. The restriction enzyme sites and the beginning point of each

S of

10

20

25

M serotype immunogenic peptide are indicated. Five Arg codons were optimized for expression in *E. coli* by mutating AGG/AGA codons to CGT/CGC codons (mutated bases are underlined).

Figure 6 shows a summary of the 28 most common invasive group A streptococci M serotypes isolated in the U.S. between August 12, 2000 and July 16, 2001. The data were part of ongoing studies conducted by the Active Bacterial Core Surveillance Program of the Centers for Disease Control and Prevention. These 28 serotypes accounted for 92.1% of the 3,424 invasive isolates submitted during this period.

Figure 7 shows that type-specific M protein and Spa antibodies were elicited by a vaccinating agent comprising a cocktail of four different hybrid polypeptides (*i.e.*, a 27-valent vaccine) when examined by ELISA. Each bar represents serum from one rabbit.

Figure 8 shows the results of *in vitro* opsonization assays using immune sera, which were elicited in rabbits with a composition comprising a cocktail of four different hybrid polypeptides (*i.e.*, a 27-valent vaccine). A positive response was considered at least a 3-fold increase over opsonization with pre-immune (*i.e.*, 30% or greater opsonization). The pre-immune sera resulted in less than 10% opsonization of each streptococcal serotype. Each bar represents serum from one rabbit.

Figure 9 shows the results of bactericidal activity assays using immune sera, which were elicited in rabbits with a vaccinating agent comprising a cocktail of four different hybrid polypeptides (i.e., a 27-valent vaccine). A positive response was considered at least a 50% percent killing. Each bar represents serum from one rabbit.

Figure 10 shows that an immune response with bactericidal activity is elicited against group A streptococcal serotype 4, which is a serotype not represented in the 27-valent vaccinating agent. Each bar represents serum from one rabbit. Immune sera were from a rabbit immunized at 0, 4, and 8 weeks (stripped bar) and from a rabbit immunized at 0, 4, and 16 weeks (open bar). The serotype 4 streptococcal isolates were from five different geographic locations, including Florida (FL); Illinois (IL); California (CA); Connecticut (CT); and South Dakota (SD).

Figure 11 shows the geometric mean antibody titers before (Day 0) and after (Day 134) immunization of human subjects, as determined by ELISA. The graph is in a log₁₀ scale. Serotype M101 was formerly designated stNS5, serotype st2967 is now designated M114, and serotype M13 is now designated M94.

Figure 12 shows the natural log fold-increase in ELISA-determined antibody titer (bars) as compared to percent increase in Group A streptococcal killing by polymorphonuclear cells in 26 serotypes. Serotype M101 was formerly designated stNS5, serotype M114 was formerly designated st2967, and serotype M13 is now designated M94.

Figure 13 shows the fold-increase in geometric mean antibody titers in human subjects immunized with a hexavalent polypeptide (Hexa 1.2) as compared to the geometric mean antibody titers in human subjects immunized with a 27-valent cocktail of four hybrid multivalent polypeptides (Hexa A.3, Septa B.3a, Septa C.2, and Septa D.3; see Figure 1). Geometric mean antibody titers were calculated based on ELISAs against the six serotypes present in both vaccines.

DETAILED DESCRIPTION OF THE INVENTION

D 64

5

15

20

25

As noted above, the present invention is generally directed to hybrid polypeptides of streptococcal antigens and compositions thereof, which are capable of eliciting protective antibodies against streptococci. Furthermore, the compositions may include a single hybrid polypeptide or a combination of several different hybrid polypeptides, which may be useful to elicit an immune response against group A streptococci. In one aspect, one or more hybrid polypeptide may be formulated as a composition for simultaneously treating or preventing an infection by several different group A streptococcal scrotypes, as well as treating or preventing infection by serotypes not represented in the hybrid polypeptide(s). The present invention also provides isolated nucleic acids that encode such hybrid polypeptides, as well as methods of expressing and paraging such hybrid polypeptides. A hybrid polypeptide, as accentacid herein, comprises several different linked immunogenic peptides wherein each peptide comprises, for example, an amino-terminal portion of a streptococcal M protein and can elicit opsonic

antibodies specific for a particular group A streptococcal serotype without eliciting antibodies that are cross-reactive with host tissue.

The present invention also provides antibodies specific for each immunogenic peptide serotype included in a hybrid polypeptide or in a combination of hybrid polypeptides, as well as antibodies specific for serotypes not included in the hybrid polypeptide(s) (i.e., antibodies that confer cross-protection between serotypes). invention, therefore, relates generally to the surprising discovery that highly complex, multivalent hybrid polypeptide-based vaccines are feasible to simultaneously elicit broadly protective antibodies against several different streptococcal serotypes. Moreover, a composition comprising a cocktail of more than one multivalent hybrid polypeptide used as a vaccine unexpectedly elicits a much more robust antibody response in humans than does a composition comprising a single multivalent hybrid polypeptide, wherein the increase in antibody response also results in an increase in antibody function (i.e., increased ability to opsonize and/or to kill microorganisms). As used herein, a "cocktail" of hybrid polypeptides refers to a composition comprising at least two different hybrid polypeptides of this invention. Hence, the invention also relates generally to the surprising discovery that a cocktail of multivalent hybrid polypeptides can function synergistically to elicit a greater antibody response that is a protective immune response. Accordingly, the compositions and methods of the present invention may be readily used to treat or prevent streptococcal infections. Discussed in more detail below are hybrid polypeptides and assorted compositions thereof (including admixtures or cocktails) suitable for use within the present invention, as well as exemplary methods of making such hybrid polypeptides and compositions, and therapeutic uses thereof.

HYBRID POLYPEPTIDES

20

25

o or

The present invention is directed generally to multivalent immunogenic hybrid polypeptides of M proteins and M-tike proteins, including fusions to other proteins. The immunogenic M and M-like peptides may comprise any portion of an M protein that is immunogenic, which may or may not confer serotype specificity. A plurality of different

multivalent immunogenic hybrid polypeptides can be mixed or combined into a cocktail composition for use in eliciting a protective immune response. The present invention further provides methods for producing synthetic or recombinant multivalent immunogenic hybrid M polypeptides, including fusion proteins. For example, host cells containing hybrid polypeptide-encoding nucleic acid expression constructs may be cultured to produce recombinant hybrid polypeptides. Also contemplated are methods for treating or preventing a microbial infection or eliciting an immune response using a hybrid polypeptide or a combination of hybrid polypeptides (including fusion proteins).

By way of background and not wishing to be bound by theory, streptococcal species are Gram-positive bacteria that are grouped based on immunological differences in their cell wall polysaccharides and are designated, for example, group A, B, C, F, and G. Specifically, group A streptococci (GrAS) are clinically important microorganisms that colonize the throat and skin. GrAS are responsible for a variety of suppurative infections (e.g., strep throat, necrotizing fasciitis) and non-suppurative sequelae (e.g., acute rheumatic fever, reactive arthritis) (see generally Cunningham, Clin. Microbiol. Rev. 13:470, 2000). GrAS have two major, surface-exposed anti-phagocytic factors, capsule and M protein, which allow these organisms to colonize and survive in a host. The M protein, which is encoded by the emm gene, extends from the cell surface as an α-helical coiled-coil dimer that appears as a fibril on the surface of GrAS. The M proteins are a diverse group, which have been serologically separated into M protein serotypes.

10

15

20

25

Currently, more than 120 M protein serotypes have been identified, and within some serotypes there have been identified several subtypes. For example, without limitation, type 1 M protein has related subtypes 1.1-1.15, and type 12 has subtypes 12.1-12.9. In addition, as is known in the art, unclassified serotypes may have an initial designation (such as st2967) and ultimately receive a "final" classification (such as st2967 now being classified as M type 114), or previously classified serotypes may be reclassified which a different number (such as M12W is now reclassified as M134). In certain embodiments, amino-terminal portions of any one or more of known M protein from serotypes 1-120+, or from unknown serotypes, can be used to generate immunogenic

peptides for inclusion in multivalent immunogenic hybrid polypeptides of the instant invention. Any numerical ranges recited herein are to be understood to include any integer within the range and, where applicable (e.g., concentrations), fractions thereof, such as one tenth and one hundredth of an integer (unless otherwise indicated).

5

10

20

25

Furthermore, the M protein is part of a superfamily of proteins, which includes without limitation, immunoglobulin binding proteins (e.g., FrcA), M-like proteins (e.g., Mrp and Spa), and M proteins. Accordingly, as used herein, "M protein" refers to the superfamily of proteins, which includes any known or unknown M protein (with or without a designated serotype), as well as M-like proteins, such as Spa (see, e.g., Dale et al., J. Clin. Invest. 103:1261, 1999 and McLellan et al., Infect. Immun. 69:2943, 2001), Mrp (see, e.g., Boyle et al., J. Infect. Dis. 177:991, 1998), immunoglobulin binding proteins (see, e.g., Podbielski et al., Mol. Microbiol. 12:725, 1994; Whatmore and Kehoe, Mol. Microbiol. 11:363, 1994), and the like. As described herein and is understood in the art, the serotype of an M protein may be reclassified and result in a change to a different type, a new type, or even a subtype. Also, as used herein, "M protein serotype" or "M type" refers to all M proteins within that serotype, including all subtypes, related proteins, and the like. Furthermore, reference to a particular M type may be applied interchangeably as follows, by way of illustration and not limitation, serotype 1 M protein, type 1, M1, and the like, which as set forth above, includes all subtypes as well.

As described above, group A streptococci have developed a system for avoiding some of the antimicrobial defenses of a human host. Strains of streptococci that express capsule and M protein can evade phagocytosis by, for example, polymorphonuclear leukocytes or neutrophils and multiply in a host that has not been exposed to streptococci (i.e., have non-immune blood). Yet, a subject may develop resistance to a streptococcal infection if the host can produce protective antibodies directed against streptococci. Protection against GrAS generally correlates with the presence of opsonizing antibody against type-specific id protein (see, e.g., Lancefield, J. Immanol. 89:307, 1962), and the development of secretory or mucosal antibodies is suspected of playing an important role in preventing initial colonization by streptococci. However, the

pathogenesis of some of the non-suppurative sequelae may be due to host tissue cross-reaction with streptococcal antibodies. As used herein, "tissue cross-reactivity" means a host antigen shares at least one epitope with a foreign antigen, such as a streptococcal antigen. For example, the different antigens may share an identical amino acid sequence, may be homologous but non-identical, or may be dissimilar molecules with a shared epitope (e.g., protein and carbohydrate or protein and nucleic acid molecule). Thus, an effective vaccine against streptococcal infections would preferably elicit an immune response that includes antibodies that are not tissue cross-reactive (i.e., do not cause autoimmune disease) and are protective (i.e., opsonic) against many of the clinically important serotypes.

10

20

25

The present invention pertains to hybrid polypeptides or variants thereof having a plurality of immunogenic peptides from M or M-like proteins, or nucleic acid molecules encoding such polypeptides or variants thereof. As used herein, "immunogenic peptide" refers to any streptococcal peptide or polypeptide having at least one epitope capable of eliciting an immune response, which are the component units of the hybrid polypeptides. Preferably, the epitope is within an amino-terminal portion of a streptococcal M protein or Spa protein and more preferably is an opsonic epitope that does not elicit tissue cross-reactive antibodies.

The present invention also provides a rational vaccine design approach for selection of the streptococcal M protein serotypes to be included in the multivalent hybrid polypeptide vaccine. Some criteria that may be used, without limitation, include identifying the M protein serotypes that are frequent causes of uncomplicated pharyngitis, identifying the serotypes that are commonly recovered from normally sterile sites (i.e., invasive strains) (e.g., useful data may obtained from the Active Bacterial Core Surveillance of the Emerging Infections Program Network, supported by the Centers for Disease Control and Prevention; see also Beall et al., J. Clin. Microbiol. 35:1231, 1997; Senacrat et al., Emerg. Inject. Dis. 7.22, 2001), and identifying serotypes that are considered currently or historically "rheumatogenic" (Bisno AL. The concept of rheumatogenic and nonrheumatogenic group A streptococci. In: Reed SE, and J. B.

Zabriskie, ed. Streptococcal Diseases and the Immune Response. New York: Academic Press, 1980:789-803). Also useful is the amino-terminal peptide fragment of Spa, a new protective antigen that is expressed by several serotypes of group A streptococci (Dale et al., J. Clin. Invest. 103:1261, 1999), or any other streptococcal antigen capable of eliciting protective antibodies may be used.

As described herein and known in the art, M protein amino acid sequences selected for inclusion in a hybrid polypeptide are available at the CDC *emm* typing center website (www.cdc.gov/ncidod/biotech/strep/emmtypes.html). In addition, to eliminate the possibility of eliciting tissue cross-reactive antibodies, the amino-terminal regions of a mature M protein and Spa may be compared to known human proteins to detect any homology (e.g., using BlastP). Preferably, amino-terminal M protein portions having five or more contiguous amino acid matches with a human protein are excluded. In addition, the selected regions of the M peptides and Spa are preferably analyzed by the method of Hopp and Woods (Mol. Immunol. 20:483, 1983) to ensure the integrity of hydrophilic peaks. For example the Hopp and Woods method may be helpful in predicting that a particular immunogenic peptide from an M protein amino-terminal may best be fused with a certain subset of other immunogenic peptides and not with others.

10

15

20

25

In preferred embodiments, the hybrid polypeptides or variants, and combinations thereof, may be designed to be vaccines specific for streptococci associated with, for example, pharyngitis, scarlet fever, acute rheumatic fever, necrotizing facilitis, cellulitis, meningitis, pneumonia, toxic shock syndrome, bacteremia, septicemia, septic arthritis, pyoderma, skin infections, impetigo, erysipelas, soft-tissue infection, nephritis, pyrogenic reactions, and the like. Additionally, the vaccines may be designed to treat or prevent streptococcal infections in particular populations (e.g., immunocompromised patients, children, and elderly) particular geographic populations (e.g., Australian aborigines), and particular geographic locations (e.g., temperate regions or Scandinavian countries). Freferably, the amino-terminal portions of the different M proteins that comprise an immunogenic peptide can elicit opsonic antibodies that do not cross-react with host tissue.

In another preferred aspect, the M protein serotype is selected based on its prevalence on the most common streptococci known to currently be associated with a particular disease (e.g., serotypes associated with pharyngitis or skin infections) or sequelae. In a further preferred aspect, the instant invention may be used to design and generate a variety of different multivalent immunogenic hybrid polypeptides that may be directed to, or be admixed in particular groupings to address, shifts in prevalent streptococci. For example, as is known in the art, the most prevalent streptococci serotype associated with a disease today, such as ARF, may not be as prevalent or important 5, 10, or 15 years. In another example, a particular streptococcal serotype may be prevalent in Europe and suddenly become important in South America. Hence the immunogenic peptides that comprise a multivalent hybrid polypeptide may be changed, or different multivalent hybrid polypeptides may be mixed and matched to create a desired cocktail, designed for use in a particular population or location to attack the most clinically relevant streptococci as needed.

10

15

20

In certain preferred embodiments, an immunogenic peptide comprises an amino-terminal portion of a M protein or Spa protein having 10-70 amino acids, or any integer in that range; more preferably having 20-65 amino acids, or any integer in that range; and most preferably 30-60 amino acids, or any integer in that range. In particularly preferred embodiments, a hybrid polypeptide comprises at least six or seven different linked immunogenic peptides, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 30 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one serotype of group A streptococci. Preferably, a hybrid polypeptide is capable of eliciting an immune response against at least serotypes 5, 6, 14, 19, 24, and 29; or at least against serotypes 2, 11, 22, 33, 43, 59, and 94; or at least against serotypes 75, 76, 77, 89, 92, 101, and 114; or at least against serotypes 1.0, 1.2, 3, 12, 18, and 28. In another preferred embodiment, a hybrid polypeptide is capable of eliciting an immune response against a M serotype not represented in the hybrid polypeptide, such as serotype 4.

In certain embodiments, the hybrid polypeptides have at least 50% to 100% amino acid identity, or any integer in that range, to the amino acid sequence as set forth in SEQ ID NOS:2, 4, 6, and 8; preferably 60%-99% identity or any integer in that range, more preferably 70%-97% identity or any integer in that range, and most preferably 80%-95% identity or any integer in that range. As used herein, "percent identity" or "% identity" is the percentage value returned by comparing the whole of the subject polypeptide, peptide, or variant thereof sequence to a test sequence using a computer implemented algorithm, typically with default parameters. Sequence comparisons can be performed using any standard software program, such as BLAST, tBLAST, pBLAST, or MegAlign. Still others include those provided in the Lasergene bioinformatics computing suite, which is produced by DNASTAR® (Madison, Wisconsin). References for algorithms such as ALIGN or BLAST may be found in, for example, Altschul, J. Mol. Biol. 219:555-565, 1991; or Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919, 1992. BLAST is available at the NCBI website (www.ncbi.nlm.nih.gov/BLAST). Other methods for comparing multiple nucleotide or amino acid sequences by determining optimal alignment are well known to those of skill in the art (see, e.g., Peruski and Peruski, The Internet and the New Biology: Tools for Genomic and Molecular Research (ASM Press, Inc. 1997); Wu et al. (eds.), "Information Superhighway and Computer Databases of Nucleic Acids and Proteins," in Methods in Gene Biotechnology, pages 123-151 (CRC Press, Inc. 1997); and Bishop (ed.), Guide to Human Genome Computing, 2nd Edition, Academic Press, Inc., 1998). As used herein, "similarity" between two peptides or polypeptides is generally determined by comparing the amino acid sequence of one peptide or polypeptide to the amino acid sequence and conserved amino acid substitutes thereto of a second peptide or polypeptide. Fragments or portions of the hybrid polypeptides of the present invention may be employed for producing the corresponding full-length hybrid polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the rall-length hybrid polypoptides. Similarly, fragments or portions of the nucleic acids of the present invention may be used to synthesize full-length nucleic acids of the present invention.

25

The hybrid polypeptides and corresponding nucleic acids of the present invention are preferably provided in an isolated form, and in certain preferred embodiments, are purified to homogeneity. As used herein, the term "isolated" means that the material is removed from its original or natural environment. For example, a naturally occurring nucleic acid molecule or polypeptide present in a living animal or cell is not isolated, but the same nucleic acid molecule or polypeptide is isolated when separated from some or all of the co-existing materials in the natural system. The nucleic acid molecules, for example, could be part of a vector and/or such nucleic acids or polypeptides could be part of a composition and still be isolated in that such vector or composition is not part of its natural environment.

10

20

25

The present invention also pertains to hybrid polypeptides and variants thereof produced synthetically or recombinantly, and preferably recombinantly. immunogenic peptide components of the hybrid polypeptides may be synthesized by standard chemical methods, including synthesis by automated procedure. In general, immunogenic peptides are synthesized based on the standard solid-phase Fmoc protection strategy with HATU as the coupling agent. The immunogenic peptide is cleaved from the solid-phase resin with trifluoroacetic acid containing appropriate scavengers, which also deprotects side chain functional groups. Crude immunogenic peptide is further purified using preparative reversed-phase chromatography. Other purification methods, such as partition chromatography, gel filtration, gel electrophoresis, or ion-exchange chromatography may be used. Other synthesis techniques known in the art may be employed to produce similar immunogenic peptides, such as the tBoc protection strategy, use of different coupling reagents, and the like. In addition, any naturally occurring amino acid or derivative thereof may be used, including D- or L-amino acids and combinations thereof. In particularly preferred embodiments, a synthetic hybrid polypeptide of the invention will have a M2, M12, M24, or M89 immunogenic peptide at the amino-terminus.

As described herein, the hybrid polypeptides of the invention may be recombinant, wherein the hybrid polypeptide is expressed from a polynucleotide encoding a desired hybrid polypeptide that is operably linked to an expression control sequence (e.g.,

promoter) in a nucleic acid expression construct. In particularly preferred embodiments, a recombinant hybrid polypeptide of the invention will have a M2, M12, M24, or M89 immunogenic peptide at the amino-terminus. Some preferable recombinant hybrid polypeptides comprise immunogenic peptides linked in tandem having the structure of M24-M5-M6-M19-M29-M14-M24, M2-M43-M94-M22-M11-M59-M33-M2, M89-M101-M77-M114-M75-M76-M92-M89, or M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0, and any combination thereof. Most preferably, a hybrid polypeptide comprises the amino acid sequence of SEQ ID NOS:2, 4, 6, or 8, and variants thereof. As set forth above and herein, any M serotype may be included in the present invention, preferably serotypes 1.0, 1.2, 2, 3, 5, 6, 11, 12, 14, 18, 19, 22, 24, 28, 29, 33, 43, 59, 75, 76, 77, 89, 92, 94, 101, and 114 are included in the hybrid polypeptides. In certain preferred embodiments as described herein, hybrid polypeptides of the subject invention capable of eliciting at least one opsonic antibody that is not a tissue cross-reactive antibody in a subject, wherein the subject is an animal or a human.

In another preferred embodiment, the hybrid polypeptides are linked by at least two amino acids encoded by a nucleic acid sequence that is a restriction enzyme recognition site, wherein the restriction sites may be any one or more of BamHI, ClaI, EcoRI, HindIII, KpnI, NcoI, NheI, PmII, PstI, SalI, XhoI, and the like. Additional amino acid linkers may also be added synthetically as described herein. Preferably, the additional amino acids do not create any identity in sequence within a five amino acid stretch of a human protein. In addition, the hybrid polypeptides of the subject invention may further comprise at least one additional carboxy-terminal amino acid, wherein the additional amino acid is a D- or an L-amino acid. Any of the twenty naturally occurring amino acids or derivatives thereof may be added, such as cysteine, histidine, leucine, and glutamic acid. For example, the addition of cysteine may be useful to attach other constituents, such as a lipid, a carrier protein, and the like.

15

20

25

As described herein, the invention also provides hybrid polypeptide fusion proteins comprising hybrid polypeptides fused to an additional functional or non-functional polypeptide sequence that permits, for example by way of illustration and not limitation,

detection, isolation and/or purification of the hybrid polypeptide fusion proteins. For instance, an additional functional polypeptide sequence may be a tag sequence, which includes fusion proteins that may in certain embodiments be detected, isolated and/or purified by protein-protein affinity (e.g., receptor-ligand), metal affinity or charge affinity methods. In certain other embodiments the hybrid polypeptide fusion proteins may be detected by specific protease cleavage of a fusion protein having a sequence that comprises a protease recognition sequence, such that the hybrid polypeptides may be separable from the additional polypeptide sequence. In addition, the hybrid polypeptides may be made synthetically including additional amino acids, a carrier protein, or a tag sequence, which may be located at either the amino- or carboxy-terminal end. In particularly preferred embodiments, for example, recombinant hybrid polypeptides are fused in-frame to a carboxy-terminal tag, which tag may be any one of alkaline phosphatase, β-galactosidase, hexahistidine (6xHis), FLAG® epitope tag (DYKDDDDK, SEQ ID NO:18), or GST, and the like. Most preferred are hybrid polypeptide fusion proteins that facilitate affinity detection and isolation of the hybrid polypeptides and may include, for example, poly-His or the defined antigenic peptide epitopes described in U.S. Patent No. 5,011,912 and in Hopp et al., (1988 Bio/Technology 6:1204), or the XPRESS™ epitope tag (DLYDDDDK, SEQ ID NO:19; Invitrogen, Carlsbad, CA). The affinity sequence may be a hexa-histidine tag as supplied by a vector. For example, a pBAD/His (Invitrogen) or a pQE-30 (Qiagen, Valencia, CA) vector can provide a polyhistidine tag for purification of the mature protein fusion from a particular host, such as a bacterium. Alternatively, the affinity sequence may be added either synthetically or engineered into the primers used to recombinantly generate the nucleic acid sequence (e.g., using the polymerase chain reaction) encoding an immunogenic peptide of the multivalent hybrid polypeptide. Preferably, a multivalent hybrid polypeptide is fused to a polyhistidine and is encoded by a recombinant nucleic acid sequence encoding such a fusion protein.

15

20

25

The immunogenic populies may also be chemically himsel to form the desired hybrid polypeptides, including additional amino acid sequences, by a variety of methods, as provided herein and known in the art (see, generally, Jackson et al., Vaccine

18:355, 2000). Recombinant or synthetic peptides may be linked to form linear (see, e.g., Leclerc, et al., Eur. J. Immunol. 17:26, 1987 and Francis, et al., Nature 330:168, 1987) or branched (see, e.g., Fitzmaurice, et al., Vaccine 14:553, 1996) constructs, or may be linked using chemical ligation of epitopes (see, e.g., Tam and Spetzler, Biomed. Pept. Proteins Nucleic Acids 1:123, 1995; Rose, J. Am. Chem. Soc. 116:30, 1994; and Dawson, et al., Science 266:776, 1994). Peptides may also be linked via the multiple antigen peptide system to form branched hybrid polypeptides (see, e.g., Tam, Proc. Natl. Acad. Sci. USA 85:5409, 1988; U.S. Patent No. 5,229,490). The multiple antigen peptide system makes use of multifunctional core molecules where each functional group on the core molecule forms at least two branches, the principal units of which are also multifunctional. For example, lysine may be used as the core peptide because it has one carboxyl functional group and two (α and ε) amine functional groups. Each multifunctional unit in a branch provides a base for added growth, resulting in exponential growth of the dendritic polymer. Peptides may then be joined to the dendritic core using a linking molecule (e.g., glycine). The multiple antigen peptide system links a large number of synthetic peptides to the functional group of a dendritic core molecule providing a high concentration of synthetic peptides in a low molecular volume. Preferably, either two or three levels of geometrically branched lysines are used, wherein these lysine cores form a tetrameric and octameric core structure, respectively. The multiple antigen peptide system may also include a lipophilic anchoring moiety attached to the core molecule, thereby eliminating the need for an adjuvant formulated in a peptide vaccine otherwise requiring one for immunostimulation (see, e.g., U.S. Patent No. 5,580,563). In one preferred embodiment, a hybrid polypeptide of the invention comprises immunogenic peptides linked to form a lysine core-branched polypeptide.

10

15

20

25

Additionally, similar or different synthetic peptides may be linked by controlled polymerization through derivatization of the amino-terminus of a peptide with the acryloyl (CH₂=CH-) group using acryloyl chloride (see, e.g., O'Brien-Simpson, et al., J. Am. Chem. Soc. 119:1183, 1997; Jackson, et al., Vaccine 15:1697, 1997). The derivatized peptides are then polymerized singly, or in admixture with similarly derivatized

peptides, by free radical initiation of chain elongation. As a result, peptides are assembled into polymers in which the peptide determinants form side chains pendant from an alkane backbone. The hybrid polypeptides and fusion proteins as described herein may be constructed as set forth above. In one preferred embodiment, a hybrid polypeptide of the invention comprises immunogenic peptides linked by an alkane backbone. In certain embodiments, the alkane backbone is acrylamide or an analog or derivative thereof.

THERAPEUTIC FORMULATIONS AND METHODS OF USE

10

15

20

The invention also relates to pharmaceutical compositions that contain one or more hybrid multivalent polypeptides, which may be used to elicit an immune response. The invention further relates to methods for treating and preventing microbial infections by administering to a subject a hybrid polypeptide or a mixture of hybrid polypeptides at a dose sufficient to elicit antibodies specific for one or more hybrid polypeptide, as described herein. A hybrid polypeptide or a cocktail of hybrid polypeptides is preferably part of a pharmaceutical composition when used in the methods of the present invention.

In certain aspects, the invention provides a composition comprising a pharmaceutically acceptable carrier, diluent, or excipient, and any of the multivalent hybrid polypeptides of the subject invention and any combination thereof. A preferred embodiment is a pharmaceutically acceptable carrier and a mixture of at least two or three hybrid polypeptides of the subject invention. In yet another preferred embodiment, a hybrid polypeptide that comprises at least seven different immunogenic peptides linked in tandem, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 50 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one serotype of group A streptococci comprising at least serotypes 1.0, 1.2, 3, 12, 18, and 28, is combined with at least one other hybrid polypeptide of the subject invention and a pharmaceutically acceptable carrier. In a more preferred embodiment, a composition comprises a pharmaceutically acceptable carrier and a mixture of the hybrid polypeptides of SEQ ID NOS:2, 4, 6, and 8 or variants

thereof, and in other embodiment these four polypeptides or variants thereof are mixed in equimolar amounts and at least one of the hybrid polypeptides has a Spa peptide. In other embodiments, SEQ ID NOS:2, 4, 6, and 8 or variants thereof are provided with a polyhistidine tag or further comprise at least one additional amino acid, such as cysteine. Each of these formulations may further comprise an adjuvant, such as alum or Freund's, and a diluent such as water or PBS. Further, therapeutic compositions of the present invention should preferably be stable for several months and capable of being produced and maintained under sterile conditions.

10

20

25

The pharmaceutical composition will include at least one of a pharmaceutically acceptable vehicle, carrier, diluent, or excipient, in addition to one or more hybrid multivalent polypeptide or fusion protein thereof and, optionally, other components. For example, pharmaceutically acceptable carriers suitable for use with a composition of a hybrid polypeptide or fusion protein thereof, or cocktail of two or more hybrid polypeptide or fusion protein thereof, may include, for example, a thickening agent, a buffering agent, a solvent, a humectant, a preservative, a chelating agent, an adjuvant, and the like, and combinations thereof. Exemplary adjuvants are alum (aluminum hydroxide, REHYDRAGEL®), aluminum phosphate, proteosome adjuvant (see, e.g., U.S. Patent Nos. 5,726,292 and 5,985,284), virosomes, liposomes with and without Lipid A, Detox (Ribi/Corixa), MF59, or other oil and water emulsions type adjuvants, such as nanoemulsions (see, e.g., U.S. Patent No. 5,716,637) and submicron emulsions (see, e.g., U.S. Patent No. 5,961,970), and Freund's complete and incomplete. Pharmaceutically acceptable carriers for therapeutic use are well known in the pharmaceutical art, and as described herein and, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A.R. Gennaro, ed., 18th Edition, 1990) and in CRC Handbook of Food, Drug, and Cosmetic Excipients, CRC Press LLC (S.C. Smolinski, ed., 1992).

"Pharmaceutically acceptable salt" refers to salts of the compounds of the present invention derived from the combination of such compounds and an organic or inorganic acid (acid addition salts) or an organic or inorganic base (base addition salts).

The compounds of the present invention may be used in either the free base or salt forms, with both forms being considered as being within the scope of the present invention.

In addition, the pharmaceutical composition may further include a diluent such as water or phosphate buffered saline (PBS). Preferably, diluent is PBS with a final phosphate concentration ranges from about 0.1 mM to about 1 M, more preferably from about 0.5 mM to about 500 mM, even more preferably from about 1 mM to about 50 mM, and most preferably from about 2.5 mM to about 10 mM; and the final salt concentration ranges from about 100 mM to about 200 mM and most preferably from about 125 mM to about 175 mM. Preferably, the final PBS concentration is about 5 mM phosphate and about 150 mM salt (such as NaCl). In certain embodiments, any of the aforementioned pharmaceutical compositions comprising a cocktail of multivalent hybrid polypeptides of the instant invention are preferably sterile.

The compositions can be sterile either by preparing them under an aseptic environment and/or they can be terminally sterilized using methods available in the art. Many pharmaceuticals are manufactured to be sterile and this criterion is defined by the USP XXII <1211>. Sterilization in this embodiment may be accomplished by a number of means accepted in the industry and listed in the USP XXII <1211>, including gas sterilization, ionizing radiation or filtration. Sterilization may be maintained by what is termed asceptic processing, defined also in USP XXII <1211>. Acceptable gases used for gas sterilization include ethylene oxide. Acceptable radiation types used for ionizing radiation methods include gamma, for instance from a cobalt 60 source and electron beam. A typical dose of gamma radiation is 2.5 MRad. When appropriate, filtration may be accomplished using a filter with suitable pore size, for example 0.22 µm and of a suitable material, for instance Teflon. The term "USP" refers to U.S. Pharmacopeia (see www.usp.org; Rockville, MD).

20

25

The present invention also pertains to methods for preventing a microbial infection, comprising administering to a subject a composition of the subject invention at a dose sufficient to elicit antibodies specific for one or more hybrid polypeptide, wherein the antibodies are preferably opsonic and are not tissue cross-reactive. In certain embodiments

an infection is a streptococcal infection, such as a group A streptococcal infection. A subject suitable for treatment with a hybrid polypeptide formulation may be identified by well-established indicators of risk for developing a disease or well-established hallmarks of an existing disease. For example, indicators of an infection include fever, pus, microorganism positive cultures, inflammation, and the like. Infections that may be treated with a hybrid polypeptide of the subject invention include, without limitation, those caused by or due to microorganisms, whether the infection is primary, secondary, opportunistic, or the like. Examples of microorganisms include Gram-positive bacteria, such as streptococci.

10

15

20

25

The pharmaceutical compositions that contain one or more hybrid polypeptides may be in any form that allows for the composition to be administered to a subject, such as a human or animal. For example, multivalent hybrid polypeptide compositions of the present invention may be prepared and administered as a liquid solution or prepared as a solid form (e.g., lyophilized), which may be administered in solid form, or resuspended in a solution in conjunction with administration. The hybrid polypeptide composition is formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of the composition to a subject or patient or bioavailable via slow release. Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of one or more compounds of the invention in aerosol form may hold a plurality of dosage units. In certain preferred embodiments, any of the aforementioned pharmaceutical compositions comprising a hybrid polypeptide or cocktail of hybrid polypeptides of the invention are in a container, preferably in a sterile container.

In one embodiment, the therapeutic composition is administered orally, and a hybrid polypeptide or cocktail composition of the invention is taken up by cells, such as cells located in the lumen of the gut. Other typical routes of administration include, without limitation, enteral, parenteral, transformal/transmucosal, and inhalation. The term enteral, as used herein, is a route of administration in which the agent is absorbed through the gastrointestinal tract or oral mucosa, including oral, rectal, and sublingual. The term

parenteral, as used herein, describes administration routes that bypass the gastrointestinal tract, including intraarterial, intradermal, intramuscular, intranasal, intraocular, intraperitoneal, intravenous, subcutaneous, submucosal, and intravaginal injection or infusion techniques. The term transdermal/transmucosal, as used herein, is a route of administration in which the agent is administered through or by way of the skin, including topical. The term inhalation encompasses techniques of administration in which an agent is introduced into the pulmonary tree, including intrapulmonary or transpulmonary. Preferably, the compositions of the present invention are administered intramuscularly.

Depending upon the application, the dose of hybrid polypeptide in the compositions will vary, generally, from about 10 µg to about 10 mg, preferably from about 100 µg to 1 mg, more preferably from about 150 µg to 500 µg, and most preferably from about 200 µg to about 400 µg, in combination with the biologically acceptable excipient, adjuvant, binder, and/or diluent, including any integer with the dosing range. As used herein, the term "about" or "consists essentially of" refers to ± 10% of any indicated structure, value, or range. Booster immunizations may be given at multiple times, at desired intervals ranging from about 2 weeks to about 24 weeks, preferably 2, 4 and 8 week intervals, and more preferably 2, 4, and 16 week intervals, and even more preferably 0, 4, and 24 week intervals to maximize the immune response.

10

20

The invention further provides a plurality of antibodies produced by the method for preventing a microbial infection that comprises administering to a subject a composition of the subject invention at a dose sufficient to elicit antibodies specific for one or more hybrid polypeptide, wherein the antibodies are opsonic and are not tissue cross-reactive. In one embodiment, the antibodies comprise at least one antibody specific for a M serotype not represented in a hybrid polypeptide, such as type 4 M protein. In another embodiment, a method for treating or preventing a microbial infection comprises administering to a subject a composition comprising a pharmaceutically acceptable carrier and a plurality of antibodies of the subject invention.

ANTIBODIES AND ASSAYS

15

25

In another aspect, the hybrid polypeptides and variants thereof of the present invention are utilized to elicit antibodies specific for at least one epitope present on the hybrid polypeptides provided herein. Accordingly, the present invention also provides such antibodies. In preferred embodiments the antibodies bind to specific protective epitopes present on a M protein. Within the context of the present invention, the term "antibodies" includes polyclonal antibodies, monospecific antibodies, monoclonal antibodies, anti-idiotypic antibodies, fragments thereof such as F(ab')2 and Fab fragments, and recombinantly or synthetically produced antibodies. Such antibodies incorporate the variable regions that permit a monoclonal antibody to specifically bind, which means an antibody is able to selectively bind to a peptide produced from an emm or spa sequence of this invention. "Specific for" refers to the ability of a protein (e.g., an antibody) to selectively bind a polypeptide or peptide encoded by an emm or spa nucleic acid molecule or a synthesized hybrid polypeptide of this invention. Association or "binding" of an antibody to a specific antigen generally involve electrostatic interactions, hydrogen bonding, Van der Waals interactions, and hydrophobic interactions. Any one of these or any combination thereof can play a role in the binding between an antibody and its antigen. Such an antibody generally associates with an antigen, such as M protein, with an affinity constant (K_a) of at least 10⁴, preferably at least 10⁵, more preferably at least 10⁶, still more preferably at least 10⁷ and most preferably at least 10⁸. Affinity constants may be determined by one of ordinary skill in the art using well-known techniques (see Scatchard, Ann. N.Y. Acad. Sci. 51:660-672, 1949). The affinity of a monoclonal antibody or antibody can be readily determined by one of ordinary skill in the art (see Scatchard, Ann. N.Y. Acad. Sci. 51:660-672, 1949).

In addition, the term "antibody," as used herein, includes naturally occurring antibodies as well as non-naturally occurring antibodies, including, for example, single chain antibodies, chimeric, bifunctional and humanized antibodies, as well as antigen-binding fragments thereof. Such non-naturally occurring antibodies may be constructed using solid phase peptide synthesis, may be produced recombinantly, or may be obtained,

for example, by screening combinatorial libraries consisting of variable heavy chains and variable light chains (Huse et al., Science 246:1275-1281 (1989)). These and other methods of making, for example, chimeric, humanized, CDR-grafted, single chain, and bifunctional antibodies are well known in the art (Winter and Harris, Immunol. Today 14:243, 1993; Ward et al., Nature 341:544, 1989; Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1992; Borrabeck, Antibody Engineering, 2d ed., Oxford Univ. Press, 1995; Hilyard et al., Protein Engineering: A practical approach, IRL Press, 1992).

10

15

20

In a preferred embodiment, a plurality of antibodies comprises two or more different antibodies wherein each antibody is specific for a different immunogenic peptide of a hybrid polypeptide, the polypeptide comprises at least six different immunogenic peptides linked in tandem, each peptide comprises at least 30 amino acids and the aminoterminal peptide is reiterated as a carboxy-terminal peptide, wherein the polypeptide is capable of eliciting an immune response against more than one serotype of group A streptococci. Preferably, a hybrid polypeptide is capable of eliciting an immune response against at least serotypes 5, 6, 14, 19, 24, and 29; or at least against serotypes 2, 11, 22, 33, 43, 59, and 94; or at least against serotypes 75, 76, 77, 89, 92, 101, and 114; or at least against serotypes 1.0, 1.2, 3, 12, 18, and 28. In another preferred embodiment, a hybrid polypeptide is capable of eliciting an immune response against a M serotype not represented in the hybrid polypeptide, such as serotype 4. More preferably the antibodies are elicited by the hybrid polypeptides of SEQ ID NOS:2, 4, 6, and 8, individually or in combination, and most preferably at least one antibody is opsonic and not tissue crossreactive in a subject. As used herein, "opsonic" means any epitope that enhances phagocytosis of a cell or particle having the epitope. As commonly understood by those having ordinary skill in the art, "opsonic antibodies" are antibodies that facilitate phagocytic activity of a particle having the antigen, such as a bacterial cell. In yet another preferred embodiment, the antibodies elicited by the hybrid polypepsides of the invention are polyclonal.

Polyclonal antibodies can be readily generated by one of ordinary skill in the art from a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, turkeys, rabbits, mice, or rats. Briefly, the desired hybrid polypeptide or mixtures of hybrid polypeptides, or variants thereof are administered to immunize an animal through parenteral, intraperitoneal, intramuscular, intraocular, or subcutaneous injections. The immunogenicity of the hybrid polypeptide of interest may be increased through the use of an adjuvant, such as alum and Freund's complete or incomplete adjuvant. Following several booster immunizations over a period of weeks, small samples of serum are collected and tested for reactivity to the desired M peptide or Spa peptide. Particularly preferred polyclonal immune sera give a signal that is at least three times greater than background. Once the titer of the animal has reached a plateau in terms of its reactivity to the hybrid polypeptide, larger quantities of polyclonal immune sera may be readily obtained either by weekly bleedings or by exsanguinating the animal.

For example, the hybrid polypeptides of SEQ ID NOS:2, 4, 6, and 8 (see Figure 1) were purified, mixed in equimolar concentrations, and formulated with alum to contain 400 µg total protein and 750 µg alum in each 0.5 ml dose. Three rabbits each received three intramuscular injections of the hybrid polypeptide cocktail at either 0, 4, and 8 weeks or 0, 4, and 16 weeks, and immune serum was recovered at 18 weeks. The harvested sera were analyzed by ELISA, as described herein, using the purified recombinant dimeric peptide components of each of the larger vaccine polypeptides. Using ELISA (with purified recombinant dimeric immunogenic peptides of the hybrid molecule), the immune sera from rabbits immunized at 0, 4, and 16 weeks were found to contain high titers of antibodies against the vast majority of the M peptides and the Spa peptide contained in the hybrid polypeptides of the cocktail (Figure 3). In certain preferred embodiments, the polyclonal antibodies include those that are specific for group A streptococci of serotypes 5, 6, 14, 19, 24, and 29, or of serotypes 2, 11, 22, 33, 43, 59, and 94, or of serotypes 75, 76, 77, 89, 92, 101, and 114, or of scrotypes 1.0, 1.2, 3, 12, 18, and 28.

15

20

25

Monoclonal antibodies may also be readily generated using well-known techniques (see U.S. Patent Nos. RE 32,011, 4,902,614, 4,543,439, and 4,411,993; see also Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, Plenum Press, Kennett, McKearn, and Bechtol (eds.), 1980, and Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, 1988). Briefly, in one embodiment, a subject animal such as a rat or mouse is injected with a desired protein or peptide. If desired, various techniques may be utilized in order to increase the resultant immune response generated by the protein, in order to develop greater antibody reactivity. For example, the desired protein or peptide may be coupled to another carrier protein (such as ovalbumin, keyhole limpet hemocyanin (KLH), or E. coli labile toxin B subunit) or through the use of adjuvants (such as alum or Freund's complete and incomplete adjuvant) and the like.

Once suitable antibodies have been obtained, they may be isolated or purified by many techniques well known to those of ordinary skill in the art (see Antibodies: A Laboratory Manual, Harlow and Lane, supra). Suitable techniques include peptide or protein affinity columns, HPLC or RP-HPLC, purification on protein A or protein G columns, or any combination of these techniques. Within the context of the present invention, the term "isolated" as used to define antibodies or antibodies means "substantially free of other blood components."

15

20

25

Several assays are available as described herein to examine the activity of the antibodies elicited by the hybrid polypeptides of the subject invention. An exemplary assay is an opsonophagocytosis assay, which detects phagocytosis facilitated by the presence of opsonic antibodies present in test antisera. Briefly, the assay measures the amount of phagocytosis of selected bacterial cells by neutrophils after preincubating the cells in the presence or absence of antisera raised against, for example, hybrid polypeptide immunogens. Preincubation with the immune sera coats the cells with M protein reactive antibodies, some of which will be opsonic antibodies elicited from opsonic epitopes present on the M protein antigens. Preincubated, coated cells are then mixed with whole blood from an animal, typically a mammal for which opsonic protection is to be sought (e.g., a

human) to determine the percentage of neutrophils that associate with the bacterial cells, which is a measure of phagocytic activity facilitated by opsonic antibodies. Immune sera containing opsonic antibodies induce a higher percentage of neutrophils associated with the selected bacteria than does immune sera lacking opsonic antibodies. In a variation of this test, the bactericidal activity of immune sera may be tested by incubating the immune sera with fewer bacterial cells, incubating in blood for a longer period of time, and then plating the mixture on a culture medium to score for viable bacteria. The presence of opsonic antibodies in the immune sera increase the number of bacteria destroyed by phagocytosis and, therefore, lowers the number of colony forming units (CFUs) detected on the plate culture. Another exemplary assay analyzes bactericidal activity of the test antibodies (see Example 5).

NUCLEIC ACID MOLECULES AND HOST CELLS

20

25

The invention also encompasses isolated nucleic acid molecules comprising a sequence encoding a hybrid polypeptide wherein each peptide comprises an aminoterminal portion of a streptococcal M protein (e.g., SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16). Also provided by the present invention are nucleic acid expression constructs, and host cells containing such nucleic acids, which encode hybrid polypeptide and variants thereof, which hybrid polypeptides are capable of eliciting an immune response against more than one serotype of group A streptococci. This aspect of the invention pertains to isolated nucleic acid sequences encoding a hybrid polypeptide sequence as described herein, as well as those sequences readily derived from isolated nucleic acid molecules such as, for example, complementary sequences, reverse sequences and complements of reverse sequences.

"Nucleic acid" or "nucleic acid molecule" refers to any of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), oligonucleotides, fragments generated by the polymerase chain reaction (PCR), and fragments generated by any of ligation, scission, endonuclease action, and exonuclease action. Nucleic acids may be composed of monomers that are naturally occurring nucleotides (such as deoxyribonucleotides and

ribonucleotides), analogs of naturally occurring nucleotides (e.g., \alpha-enantiomeric forms of naturally-occurring nucleotides), or a combination of both. Modified nucleotides can have modifications in sugar moieties and/or in pyrimidine or purine base moieties. Sugar modifications include, for example, replacement of one or more hydroxyl groups with halogens, alkyl groups, amines, and azido groups, or sugars can be functionalized as ethers or esters. Moreover, the entire sugar moiety may be replaced with sterically and electronically similar structures, such as aza-sugars and carbocyclic sugar analogs. Examples of modifications in a base moiety include alkylated purines and pyrimidines, acylated purines or pyrimidines, or other well-known heterocyclic substitutes. Nucleic acid monomers can be linked by phosphodiester bonds or analogs of such linkages. Analogs of include phosphorothioate, phosphorodithioate, phosphodiester linkages phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoranilidate, phosphoramidate, and the like. The term "nucleic acid" also includes so-called "peptide nucleic acids," which comprise naturally occurring or modified nucleic acid bases attached to a polyamide backbone. Nucleic acids can be either single stranded or double stranded.

Further, an "isolated nucleic acid molecule" refers to a polynucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid construct, which has been separated from its source cell (including the chromosome it normally resides in) at least once in a substantially pure form. For example, a DNA molecule that encodes a Spa polypeptide, peptide, or variant thereof, which has been separated from a Streptococcus cell or from the genomic DNA of a Streptococcus cell, is an isolated DNA molecule. Another example of an isolated nucleic acid molecule is a chemically synthesized nucleic acid molecule. Nucleic acid molecules may be comprised of a wide variety of nucleotides, including DNA, cDNA, RNA, nucleotide analogues, or some combination thereof. In one preferred embodiment, an isolated nucleic acid molecule comprises a sequence encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or i.e.

15

20

25

In certain aspects, the invention relates to nucleic acid vectors and constructs that include nucleic acid sequences of the present invention, and in particular to

"nucleic acid expression constructs" that include any polynucleotide encoding a hybrid polypeptide as provided above; to host cells that are genetically engineered with vectors and/or constructs of the invention and to the production and use in methods for treating or preventing a microbial infection or eliciting an immune response. The hybrid polypeptides may be expressed in mammalian cells, yeast, bacteria or other cells under the control of appropriate expression control sequences. Cell-free translation systems may also be employed to produce such proteins using RNAs derived from the nucleic acid expression constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described, for example, by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, NY, (1989), and may include plasmids, cosmids, shuttle vectors, viral vectors and vectors comprising a chromosomal origin of replication as disclosed therein. In one preferred embodiment, a nucleic acid expression construct comprises an expression control sequence operably linked to a polynucleotide encoding a hybrid polypeptide of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, or 16. In another preferred embodiment, the nucleic acid expression construct has an inducible promoter, which may be lac, tac, trc, ara, trp, \(\lambda\) phage, T7 phage, and T5 phage promoter, and more preferably is a T5 phage promoter/lac operator expression control sequence as set forth in SEQ ID NO:17. The "expression control sequence" refers to any sequences sufficient to allow expression of a protein of interest in a host cell, including one or more promoter sequences, enhancer sequences, operator sequences (e.g., lacO), and the like. In certain embodiments, the hybrid polypeptideencoding nucleic acid is in a plasmid, more preferably in plasmid pT5 (SEQ ID NO:17) and the host cell is a bacterium, most preferably Escherichia coli.

10

15

20

It should be understood that hybrid polypeptide-encoding nucleic acid may be a variant of the natural sequence due to, for example, the degeneracy of the genetic code (including alleles). Briefly, such "variants" may result from natural polymorphisms or may be synthesized by recombinant methodology (e.g., to obtain codon optimization for expression in a particular host) or chemical synthesis, and may differ from wild-type polypeptides by one or more amino acid substitutions, insertions, deletions, or the like.

Variants encompassing conservative amino acid substitutions include, for example, substitutions of one aliphatic amino acid for another, such as Ile, Val, Leu, or Ala or substitutions of one polar residue for another, such as between Lys and Arg, Glu and Asp, or Gln and Asn. Such substitutions are well known in the art to provide variants having similar physical properties and functional activities, such as for example, the ability to elicit and cross-react with similar antibodies. Other variants include nucleic acids sequences that encode a hybrid polypeptide having at least 50%, 60%, 70%, 80%, 90% or 95% amino acid identity to SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16. Preferred embodiments are those having greater than 90% or 95% identity with the amino acid sequence of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16. As will be appreciated by those of ordinary skill in the art, a nucleotide sequence encoding an hybrid polypeptide or variant thereof may differ from the native sequences presented herein due to codon degeneracy, nucleotide polymorphism, or nucleotide substitution, deletion or insertion. Thus, in certain aspects the present invention includes all degenerate nucleic acid molecules that encode polypeptides and peptides comprising the amino acid sequence of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16. In another aspect, included are nucleic acid molecules that encode hybrid polypeptide variants having conservative amino acid substitutions or deletions or substitutions such that the hybrid polypeptide variant retains at least one epitope capable of eliciting antibodies specific for one or more streptococcal serotypes.

10

15

20

In certain aspects, a nucleic acid sequence may be modified to encode a hybrid polypeptide variant wherein specific codons of the nucleic acid sequence have been changed to codons that are favored by a particular host and can result in enhanced levels of expression (see, e.g., Haas et al., Curr. Biol. 6:315, 1996; Yang et al., Nucleic Acids Res. 24:4592, 1996). For example, certain codons of the immunogenic peptides obtained from streptococcal M proteins were optimized, without changing the primary sequence of the peptides, for improved expression in Escherichia coli. By way of illustration and not limitation, cleven of the thirteen arginine (Arg) codons of AGG/AGA in the hexavalent hybrid polypeptide as set forth in SEQ ID NO:9 were changed to the Arg codons of CGT/CGC as set forth in SEQ ID NO:1. Similarly, twelve of twenty AGG/AGA Arg

codons of SEQ ID NO:15 were optimized to CGT/CGC codons as set forth in SEQ ID NO:8; seven of thirteen AGG/AGA Arg codons of SEQ ID NO:11 were optimized to CGT/CGC codons as set forth in SEQ ID NO:3; and five of nine AGG/AGA Arg codons of SEQ ID NO:13 were optimized to CGT/CGC codons as set forth in SEQ ID NO:5. As is known in the art, codons may be optimized for whichever host the hybrid polypeptide is to be expressed in, including without limitation bacteria, fungi, insect cells, plant cells, and mammalian cells. Additionally, codons encoding different amino acids may be changed as well, wherein one or more codons encoding different amino acids may be altered simultaneously as would best suit a particular host (e.g., codons for arginine, glycine, leucine, and serine may all be optimized or any combination thereof). Alternatively, codon optimization may result in one or more changes in the primary amino acid sequence, such as a conservative amino acid substitution, addition, deletion, or combination thereof.

While particular embodiments of isolated nucleic acids encoding hybrid polypeptides are depicted in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, and 15, within the context of the present invention, reference to one or more isolated nucleic acids includes variants of these sequences that are substantially similar in that they encode native or non-native hybrid polypeptides with similar structure and ability to elicit serospecific antibodies to at least one immunogenic peptide subunit contained in the hybrid polypeptides of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16. As used herein, the nucleotide sequence is deemed to be "substantially similar" if: (a) the nucleotide sequence is derived from the coding region of a emm gene isolated from a streptococcus (including, for example, portions of the sequence or allelic variations of the sequences discussed above) and contains a M protein epitope with substantially the same ability to elicit opsonic antibodies protective against streptococci that are not tissue cross-reactive; (b) the nucleotide sequence is capable of hybridization to the nucleotide sequences of the present invention under moderate or high stringency; (c) the nucleotide sequences are degenerate (i.e., sequences which code for the same amino acids using a different codon sequences) as a result of the genetic code to the nucleotide sequences defined in (a) or (b); or (d) is a complement of any of the sequences described in (a), (b) or (c).

20

25

As used herein, two nucleotide sequences are said to "hybridize" under conditions of a specified stringency when stable hybrids are formed between substantially complementary nucleic acid sequences. Stringency of hybridization refers to a description of the environment under which hybrids are annealed and washed, which typically includes ionic strength and temperature. Other factors that might affect hybridization include the probe size and the length of time the hybrids are allowed to form. For example, "high," "medium" and "low" stringency encompass the following conditions or equivalent conditions thereto: high stringency is 0.1 x SSPE or SSC, 0.1% SDS, 65°C; medium stringency is 0.2 x SSPE or SSC, 0.1% SDS, 50°C; and low stringency is 1.0 x SSPE or SSC, 0.1% SDS, 50°C. As used herein, the term "high stringency conditions" means that one or more sequences will remain hybridized only if there is at least 95%, and preferably at least 97%, identity between the sequences. In preferred embodiments, the nucleic acid sequences that remain hybridized to a hybrid polypeptide-encoding nucleic acid molecule encode polypeptides that retain at least one epitope of a hybrid polypeptide encoded by a nucleic acid of any one of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, and 15.

10

15

20

25

Methods for producing the hybrid polypeptides of the subject invention are provided as well wherein any of the nucleic acid molecules and host cells described herein may be used. In a preferred embodiment, a method of producing a hybrid polypeptide comprises culturing a host cell containing a nucleic acid expression vector comprising at least one expression control sequence operably linked to a nucleic acid molecule encoding a hybrid polypeptide, such as a hybrid polypeptide as set forth in any one of SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, or 16, under conditions and for a time sufficient for expression of the polypeptide. In one particularly preferred embodiment, a hybrid polypeptide is produced by this method, and more preferably the hybrid polypeptides produced are of SEQ ID NOS:10, 12, 14, or 16, and more preferably the hybrid polypeptides produced are of SEQ ID NOS:2, 4, 6, or 8.

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

GENERATION OF RECOMBINANT MULTIVALENT AND INDIVIDUAL STREPTOCOCCAL PROTEINS

Once the specific 5' sequences of each *emm* and *spa* gene had been selected for inclusion in the vaccine, they were used to design four hybrid nucleic acid molecules, each containing 6-7 *emm* and/or *spa* coding sequences linked in tandem by unique restriction enzyme recognition sites (Figures 1-5). The four hybrid nucleic acid molecules were constructed using PCR-generated *emm* or *spa* nucleic acid molecules that were amplified from streptococcal genomic DNA of the corresponding serotype using oligonucleotide forward and reverse primers containing restriction enzyme sites at the 5' end. The PCR-generated fragments were purified, digested with the appropriate restriction enzymes, ligated using methods previously described (Dale *et al.*, *J. Immunol. 151*:2188, 1993; Dale, *Vaccine 17*:193, 1999), and then sequentially cloned into the expression vector pT5. Plasmid pT5 (SEQ ID NO:17) comprises a bacteriophage T5 promoter operably to *lac* operators, which means expression from the T5 promoter can be induced with isopropyl-beta-D-thiogalactopyranoside (IPTG).

10

20

The 5' emm fragment was reiterated at the 3' end of each hybrid nucleic acid molecule based on observations that an amino-terminal M protein peptide reiterated on the carboxy-terminus of a hybrid polypeptide appears to enhance or protect the immunogenicity of the adjacent M protein peptides (see Dale, Vaccine 17:193, 1999; WO 99/13084). In addition, the emm nucleic acid molecule cloned at the 3'-end of the hybrid molecule was engineered to include at the 5' end the following: (a) at least six histidine codons, (b) a XhoI restriction enzyme site, (c) optionally one or more amino acid codons (e.g., cysteine), and (d) at least one stop codon (TAA or TAG). Several of the Arg codons from each of the hexavalent and septovalent polypeptides were optimized (see Figures 2-5), without changing the primary amino acid sequence, for expression in E. coli, which yielded from about a 2-fold to about a 10-fold increase in polypeptide production.

The nucleic acid and amino acid sequences of the hybrid polypeptides used to make admixtures for immunizing rabbits and/or humans are set forth in SEQ ID NOS:1-16. Each expression plasmid construct of pT5 was used to transform *E. coli* strain JM105 (genotype F' traD36 lacI^qΔ(lacZ)M15proA⁺B⁺/thi rpsL (str') endA sbcB15 sbcC? hsdR4(r_k'm_k') Δ(lac-proAB). The sequence identity of each hybrid DNA molecule transformed into JM105 *E. coli* was verified by sequencing both strands. Expression of each component fusion protein was detected by SDS-PAGE analysis using whole cell lysates before and after 1 mM IPTG induction.

In addition to the hybrid multivalent polypeptides generated to immunize a particular subject, recombinant homodimeric peptides comprising a single serotype immunogenic peptide were expressed and purified to test immune sera elicited by the hybrid streptococcal polypeptides. Each *emm* or *spa* gene fragment, included in the hybrid nucleic acid molecules described above, was independently amplified by PCR, purified, and cloned sequentially into the expression vector pT5 as an in-frame dimer with a restriction enzyme site between each coding sequence. Each PCR-generated sequence was verified by sequencing both strands of the dimer-encoding nucleic acid molecule. Expression of each peptide in transformed JM105 *E. coli* was detected by SDS-PAGE analysis, as described above.

10

20

25

Each hybrid polypeptide encoded by the hybrid nucleic acid molecules was further analyzed by BlastP (matrix BLOSUM62) to assure that there were no significant homologies with human proteins in the GenBank database. The linking restriction enzyme sites between the *emm* and/or *spa* encoding nucleic acid molecules were selected to avoid creating a sequence encoding potential human tissue cross-reactive epitopes. Specifically, the two amino acid residues encoded by each restriction enzyme site along with the six flanking M protein or Spa residues on each side of the sites (14 residues in total) were searched using BlastP (matrix PAM30) to detect potential homologies with human proteins in the GenBank database. Any restriction enzyme site matching more than four contiguous amino acids of a human protein sequences was not used.

EXAMPLE 2

PURIFICATION OF MULTIVALENT AND INDIVIDUAL STREPTOCOCCAL PROTEINS

Each hybrid polypeptide and individual dimeric peptide was purified separately. Cell paste of *E. coli* JM105 expressing His-tagged hybrid polypeptide was lysed in phosphate buffered saline (PBS) by microfluidation (Microfluidics, Inc., Newton, MA). After centrifugation, the clarified lysate was batch adsorbed to nickel-loaded affinity chelate resin (Tosoh Biosep, Montgomeryville, PA), washed and eluted with a step gradient of imidazole in PBS. Fractions containing the eluted hybrid polypeptide were pooled, pumped through a 5 ml HITRAP® Q anion exchange cartridge (Amersham Pharmacia Biotech, Piscataway, NJ) and concentrated in a stir cell (Millipore, Bedford, MA). The concentrated hybrid polypeptide was further purified by size exclusion chromatography using a Superdex 200 column (600 cm length, Amersham Pharmacia Biotech) equilibrated with PBS. Fraction purity was monitored using SDS-PAGE and fractions containing pure hybrid polypeptide were pooled and stored at -20°C until use. Purity, identity and concentration of the hybrid polypeptide were further assessed by reverse-phase HPLC, amino acid analysis, and electrospray mass spectrometry.

Individual dimeric peptides were similarly purified, but with notable differences. *E. coli* JM105 expressing 6xHis-tagged dimeric peptide were lysed in PBS containing 8M urea for 3 hours with stirring. After centrifugation, the clarified lysate was batch adsorbed to nickel-loaded affinity chelate resin (Tosoh Biosep) and washed and eluted with a step gradient of imidazole in PBS. The eluted dimeric peptide was then loaded onto a preparative reverse-phase C4 column (Vydac, Hesperia, CA), washed, and eluted with increasing concentrations of acetonitrile in water containing 0.1% trifluoroacetic acid. Fractions of eluted dimeric peptide were monitored using SDS-PAGE. Fractions containing purified dimeric peptide were pooled and dialyzed against PBS before storage at -20°C.

20

25

EXAMPLE 3

FORMULATION OF HYBRID POLYPEPTIDE COCKTAIL AND IMMUNIZATION OF RABBITS

The four multivalent polypeptides (Hexa A.1 [SEQ ID NO:10], Septa B.2 [SEQ ID NO:16], Septa C.2 [SEQ ID NO:4], and Septa D.1 [SEQ ID NO:14]) were mixed in equimolar amounts and adsorbed to alum (REHYDRAGEL[®], low viscosity, Reheis, Inc., Berkeley Heights, NJ) to achieve a final protein concentration of 800 μg/ml and a final alum concentration of 1.5 μg/ml. This cocktail of immunogenic polypeptides represent at least 27 antigens.

New Zealand white rabbits were each immunized with 400 µg (i.e., about 100 µg of each multivalent polypeptide) of the vaccine via the intramuscular route at either 0, 4, and 8 weeks or 0, 4, and 16 weeks (see Dale, Vaccine 17:193, 1999). Serum was obtained prior to the first injection and two weeks after the final injection.

10

15

20

25

EXAMPLE 4

ELISA USING SERUM FROM IMMUNIZED RABBITS

Type-specific antibodies were detected by enzyme-linked immunosorbent assays (ELISAs) essentially by methods previously described (McLellan *et al.*, *Infect. Immun.* 69:2943, 2001). Briefly, microtiter wells were coated with purified recombinant dimeric M peptides (*i.e.*, copying the vaccine subunits and used as solid-phase antigens). Wells without peptide but containing all other reagents served as negative controls. The ELISAs were performed using pre-immune and immune rabbit sera. The sera were serially diluted in PBS (pH 7.4) with 0.05% TWEEN[®] 20, added to the wells, and incubated at 37°C for 2 hours. The wells were washed with 0.15% saline-TWEEN[®] 20. A horse radish peroxidase-conjugated goat immunoglobulin G (IgG) to rabbit immunoglobulins (IgG, IgA. and IgM) (ICN Biomedicals. Aurora, OH) diluted 1:2.000 was added and incubated at 37°C for 2 hours. The wells were then washed, 5-aminosalicylic acid was added, and the

 A_{450} was recorded after 15 minutes in an MR 600 microplate reader (Dynatech Laboratories, Inc., Chantilly, VA).

The immune sera from rabbits (obtained 2 weeks after the final immunization) contained high titers of antibodies to the majority of the M peptides contained in the vaccine (Figure 7). Antibody titers were determined for each of the 26 M peptides and Spa, a new protective antigen of group A streptococci (Dale et al., J. Clin. Invest. 130:1261, 1999). All pre-immune titers were less than 200. Out of the 81 immune serum titers determined (27 antigens x 3 rabbits), 69 titers (85%) increased by four-fold or greater over the pre-immune levels (Figure 7).

10 EXAMPLE 5

15

20

25

OPSONIZATION ASSAYS USING SERUM FROM IMMUNIZED RABBITS

Opsonic antibodies were detected by in vitro opsonization assays, essentially as previously described (Beachey et al., J. Exp. Med. 145:1469, 1977). The test mixture consisted of 0.05 ml of a standard suspension of streptococci grown to mid-log phase, 0.05 ml test serum, and 0.2 ml whole, heparinized (10 U/ml) nonimmune human blood. For these assays, the number of streptococcal CFU per leukocyte was approximately 10. The tubes were rotated end-over-end for 45 minutes at 37°C. Smears were then made on glass slides and stained with Wright's stain (Sigma Diagnostics, St. Louis, MO). Opsonization was quantitated by counting 50 consecutive neutrophils and calculating the percentage with associated streptococci (percent opsonization).

The pre-immune sera from all three rabbits resulted in \leq 10% opsonization of each of the 26 serotypes tested (data not shown), indicating that the donor blood used for these assays did not contain antibodies against the test organism and that each organism was fully resistant to opsonization in nonimmune blood. Using 30% opsonization in the presence of immune serum as a positive threshold result (i.e., three or more times the pre-immune level), 18 of the 26 serotypes (69%) were opsonized by at least one of three immune rabbit sera (Figure 8).

EXAMPLE 6

BACTERICIDAL ASSAYS USING SERUM FROM IMMUNIZED RABBITS

Bactericidal assays were performed similar to Example 5 (Lancefield, J. Exp. Med. 106:525, 1957) except that 0.05ml of Todd-Hewitt broth containing fewer 5 bacteria was added to 0.1 ml of test serum and 0.35 ml of blood and the mixture was rotated for three hours at 37°C. Then 0.1 ml aliquots of this mixture were added to melted sheep's blood agar, pour plates were prepared, and viable organisms (CFU) were counted after overnight incubation at 37°C. For each serotype tested, three different inocula were used to assure that the growth in blood containing pre-immune serum was optimal and was quantifiable. The results are expressed as percent killing, which was calculated using the following formula: [(CFU after three hours growth with pre-immune serum) - (CFU after three hours growth with immune serum)] + [CFU after three hours growth with preimmune serum x 100. Only those assays that resulted in growth of the test strain to at least eight generations in the presence of pre-immune serum were used to express percent killing in the presence of immune serum.

10

15

20

In all experiments, the test mixture containing pre-immune serum resulted in growth of the organisms to eight generations or more (data not shown), again indicating that the human blood did not contain opsonic antibodies against the test strains and that each organism was fully resistant to bactericidal killing in nonimmune blood. Using 50% reduction in growth after the three-hour rotation in immune serum compared to the preimmune serum (percent killing), bactericidal activity was observed against 22 of the 26 serotypes tested (Figure 9). When the results of the opsonization and bactericidal assays were combined, 24 of the 26 serotypes (92%) tested were opsonized by the immune sera in one or both assays.

EXAMPLE 7

ASSAYS TO DETECT TISSUE CROSS-REACTIVE ANTIBODIES IN IMMUNIZED RABBITS

Rabbit immune sera raised against a composition comprising a cocktail of four different hybrid polypeptides (*i.e.*, a 27-valent vaccine) were tested for the presence of tissue cross-reactive antibodies by indirect immunofluorescence assays (Dale and Beachey, *J. Exp. Med.* 161:113, 1985) using frozen sections (4 µm) of human myocardium, kidney, basal ganglia, cerebral cortex, and cartilage. The sections were placed on gelatin-coated slides and fixed with 1% paraformaldehyde for 10 min. The slides were washed with PBS, incubated with the immune sera diluted 1:5 in PBS for 30 minutes at room temperature, and washed thoroughly in PBS. The sections were then incubated with fluorescein-conjugated goat anti-rabbit IgG (Cappel, West Chester, PA) at a dilution of 1:40 in PBS for 30 minutes at room temperature. After washing, the slides were mounted in Gelvatol and examined in a fluorescent microscope. Rabbit anti-sera known to cross-react with human myocardium, kidney, and brain were used as positive controls and rabbit pre-immune sera as negative controls.

While the hybrid polypeptides elicited opsonic antibodies to most GrAS serotypes tested, none of the hybrid polypeptides elicited human cross-reactive antibodies. This indicates that the hybrid polypeptides, alone or in combination, do not contain potentially harmful autoimmune epitopes.

20 EXAMPLE 8

BACTERICIDAL ACTIVITY OF SERUM FROM IMMUNIZED RABBITS AGAINST OTHER SEROTYPES

Type 4 streptococci are relatively common causes of uncomplicated pharyngitis and invasive infections. Type 4 organisms currently account for 3.8% of all invasive infections and 8.6% of all pharyngitis isolates in the ongoing U.S. surveillance program (personal communication, S.T. Shulman). Not wishing to be bound by theory, it appears that purified recombinant type 4 M protein either does not evoke opsonic

antibodies or the type 4 streptococcal strains are resistant to opsonization. For this reason, the *emm*4 gene fragment was not included in the composition comprising the four hybrid polypeptides of Hexa A.1 [SEQ ID NO:10], Septa B.2 [SEQ ID NO:16], Septa C.2 [SEQ ID NO:4], and Septa D.1 [SEQ ID NO:14] (*i.e.*, the 27-valent vaccine). To determine whether any of the antibodies elicited by the 27-valent vaccine might be directed against cross-reactive opsonic epitopes on the surface of type 4 streptococci, bactericidal assays were performed using seven clinical isolates obtained from the U.S. Streptococcal Pharyngitis Surveillance Program (Figure 10).

Interestingly, bactericidal activity was detected against five of the seven

strains of type 4 streptococci. The strains isolated from patients in Florida (FL9) and

Illinois (IL23 and IL12) were opsonized by both of the 27-valent antisera tested. One of
the two antisera opsonized both isolates from California (CA8 and CA12), while the strains
from Connecticut (CT5) and South Dakota (SD32) were not opsonized by either antiserum
(Figure 10). The results suggest that the 27-valent cocktail vaccine can evoke antibodies
that cross-react with protective epitopes on the surface of some strains of type 4
streptococci. In addition, the data indicate that type 4 streptococci may be a heterogeneous
group of organisms that express different protective epitopes even though they all express
the type-specific M4 protein.

EXAMPLE 9

20 FORMULATION OF HYBRID POLYPEPTIDE COCKTAIL AND IMMUNIZATION OF HUMANS

25

The formulated bulk vaccine consists of the four recombinant proteins (Hexa A.3 [SEQ ID NO:2], Septa B.3a [SEQ ID NO:8], Septa C.2 [SEQ ID NO:4], and Septa D.3 [SEQ ID NO:6]) adsorbed onto aluminum hydroxide (final alum concentration of about 1.5 µg/ml) and diluted to a target concentration of about 400 µg/ml or about 800 µg/ml (100 µg/ml or 200 µg/ml, respectively, of each hybrid polypeptide) with phosphate buffered saline. This cocktail of immunogenic polypeptides represents at least 27 antigens.

Briefly, the calculated volumes of the purified hybrid polypeptides in PBS are measured out and added to a sterile polystyrene media bottle. The mixture is stirred until homogenous, and then diluted with an equal volume of sterile water for injection. This dilution step reduces the concentration of Na₂HPO₄ and NaCl in the mixture to the desired final concentration (5 mM phosphate, 150 mM NaCl, pH 7.5). The pooled HYBRID polypeptides are then passed through a sterilizing filter unit (MILLIPAK[®] 20, Millipore, Bedford, MA) using a peristaltic pump. If some peptides require some special conditions to homogenize or dilute, then the solutions are made separately and subsequently mixed with an adjustment to pH, as needed.

The required volume of recombinant hybrid polypeptides is measured out, and added to a formulation bottle. REHYDRAGEL® (low viscosity, Reheis, Inc., Berkeley Heights, NJ) is received as a sterile suspension of aluminum hydroxide in water for injection and is used without further preparation. The required volume of REHYDRAGEL® is measured out and added to the formulation bottle while stirring. The pH of the mixture is measured and adjusted to pH 7.5 - 7.7 using 1 M NaOH. Finally, formulation buffer is added to achieve the correct final volume and the mixture stirred for an additional 16 - 20 hours at room temperature. The bulk vaccine is divided into containers (sterile), samples are taken for testing, and the formulated vaccine is stored at 2-8 °C.

10

15

20

25

Human volunteers were screened and 30 healthy subjects aged 18-50 years were enrolled. Each subject was immunized with 400 μg of the cocktail vaccine composition via the intramuscular route at 0, 30, and 120 days. Serum was obtained prior to the first injection and at days 14, 30, 44, 60, 120, 134 and 150.

EXAMPLE 10

ELISA USING SERUM FROM IMMUNIZED HUMAN SUBJECTS

Type-specific antibodies were detected by ELISA, similar to the methods described in Example 4 (see also McLellan et al., Infect. Immun. 69:2943, 2001). Briefly,

microtiter wells were coated with purified recombinant dimeric M peptides (i.e., copying the vaccine subunits and used as solid-phase antigens). Wells without human sera but containing all other reagents served as negative controls. The ELISAs were performed using the collected human sera. The sera were serially diluted in PBS (pH 7.4) with 0.1% BSA and 0.05% TWEEN® 20, added to the wells, and incubated at 37°C for 2 hours. The wells were washed with PBS-0.05%TWEEN® 20. A horseradish peroxidase-conjugated goat immunoglobulin G (IgG) to human immunoglobulins (IgG, IgA, and IgM) (Jackson ImmunoResearch Laboratories, West Grove, PA) diluted 1:2,000 was added and incubated at 37°C for 1 hour. The wells were then washed, 1-StepTM Turbo TMB-ELISA substrate (Pierce, Rockford, IL) was added, 1 N sulfuric acid was added after 30 minutes. The $A_{450/595}$ was recorded in a V_{MAX} microplate reader (Molecular Devices, Sunnyvale, CA).

All of the immune sera from the human subjects (obtained at Day 134, which was two weeks after the third injection on Day 120) showed a statistically significant rise in antibody titer for all M antigens and the Spa antigen, with a p value < 0.001 (Figure 11). All subjects had a baseline level pre-immune titer for some antigens (Day 0) as seen in Figure 11 (Day 0, open bars). The geometric mean fold increase in serum antibody to all of the antigens in the 27-valent cocktail was 12.6-fold, with a minimum increase of three-fold and a maximum increase of over 68-fold. Overall, 26 out of the 27 antigens represented in the vaccine evoked at least a four-fold mean increase in antibody titer.

20 EXAMPLE 11

15

BACTERICIDAL ASSAYS USING SERUM FROM IMMUNIZED HUMAN SUBJECTS

Bactericidal assays were performed essentially as described in Example 6 (see also Lancefield, J. Exp. Med. 106:525, 1957). Only those assays that resulted in growth of the test strain in the presence of Day 0 serum were used to express percent killing in the presence of Day 134 scrum.

All subjects that showed a rise in antibody titers over baseline level preimmune titers also showed an increase over baseline levels bactericidal activity

(Figure 12). The geometric mean antibody titer increase was determined as in Example 10 and converted to log normal (Ln) for comparison to functional activity (bactericidal killing) of the same immune sera. Thus, there is a quantitative correlation between increased antibody titers and the ability of antibodies to induce bacterial killing.

5

15

EXAMPLE 12

ASSAYS TO DETECT TISSUE CROSS-REACTIVE ANTIBODIES IN SERUM FROM IMMUNIZED HUMAN SUBJECTS

Sera collected from human subjects, who were immunized with a 27-valent vaccine composition comprising a cocktail of four different hybrid polypeptides (Hexa A.3 [SEQ ID NO:2], Septa B.3a [SEQ ID NO:8], Septa C.2 [SEQ ID NO:4], and Septa D.3 [SEQ ID NO:6]), were tested for the presence of tissue cross-reactive antibodies as essentially described in Example 7.

Similar to the results observed in rabbits, none of the hybrid polypeptides elicited human cross-reactive antibodies. This indicates that the hybrid polypeptides, alone or in combination, do not contain potentially harmful human autoimmune epitopes.

EXAMPLE 13

COMPARISON OF HEXAVALENT VACCINE VERSUS 27-VALENT COCKTAIL VACCINE USED TO IMMUNIZED HUMAN SUBJECTS

A similar human trial was performed using single hexavalent polypeptide

20 Hexa 1.2, which has a structure of M24-M5-M6-M19-M1-M3-M24 (see Dale, Vaccine

17:193, 1999; WO 99/13084). Human volunteers were screened and 11 healthy subjects

were each immunized three times with 100 μg of Hexa 1.2 in the same formulation buffer

as used for the 27-valent vaccine composition comprising a cockteil of four different
hybrid polypeptides (Hexa A.3 [SEQ ID NO:2], Septa B.3a [SEQ ID NO:8], Septa C.2

[SEQ ID NO:4], and Septa D.3 [SEQ ID NO:6]). All six of the group A streptococcal

antigens of Hexa 1.2 (M24, M5, M6, M19, M1, and M3) are represented in two of the four multivalent polypeptides that comprise the 27-valent vaccine. ELISAs were then performed on sera from immunized subjects to identify type-specific antibodies for each of the Hexa 1.2 antigens, essentially as described in Example 10. The geometric mean titers were calculated using antibody titers from the 11 subjects that received the Hexa 1.2 multivalent polypeptide and using antibody titers from the 30 subjects in the 27-valent cocktail of four different multivalent polypeptides clinical trial, respectively (Figure 13). The fold-increase in antibody titers represents the fold rise in geometric mean titers after immunization as compared to the geometric mean titers before immunization.

Surprisingly, the subjects immunized with the 27-valent composition showed a much greater fold-increase in antibody titers overall than did the subjects who received the hexavalent composition (Figure 13). The 27-valent showed a greater fold-increase for all M antigens, ranging from about 1.1- to about a 4-fold increase. As noted above, the increase in antibody titer also correlates with an increase in bactericidal activity. Hence, the four multivalent peptides together unexpectedly showed a synergistic effect in evoking an immune response as compared to a single hexavalent peptide.

10

15

20

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

CLAIMS

- 1. A hybrid polypeptide, comprising at least six different linked immunogenic peptides, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 30 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least M5, M6, M14, M19, M24, and M29.
- 2. The hybrid polypeptide according to claim 1 wherein the amino-terminal immunogenic peptide of the polypeptide is M24.
- 3. The hybrid polypeptide according to claim 2 wherein the polypeptide is recombinant and the immunogenic peptides are linked in tandem, the polypeptide having a structure of M24-M5-M6-M19-M29-M14-M24.
- 4. A hybrid polypeptide according to claim 3 wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:2.
- 5. A hybrid polypeptide, comprising at least seven different linked immunogenic peptides, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 35 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least M2, M11, M22, M33, M43, M59, and M94.
- 6. The hybrid polypeptide according to claim 5 wherein the amino-terminal immunogenic peptide of the polypeptide is M2.

7. The hybrid polypeptide according to claim 6 wherein the polypeptide is recombinant and the immunogenic peptides are linked in tandem, the polypeptide having a structure of M2-M43-M94-M22-M11-M59-M33-M2.

- 8. A hybrid polypeptide according to claim 7 wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:4.
- 9. A hybrid polypeptide, comprising at least seven different linked immunogenic peptides, wherein each peptide comprises an amino-terminal portion of a streptococcal M protein of at least 40 amino acids, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least M75, M76, M77, M89, M92, M101, and M114.
- 10. The hybrid polypeptide according to claim 9 wherein the amino-terminal immunogenic peptide of the polypeptide is M89.
- 11. The hybrid polypeptide according to claim 10 wherein the polypeptide is recombinant and the immunogenic peptides are linked in tandem, the polypeptide having a structure of M89-M101-M77-M114-M75-M76-M92-M89.
- 12. A hybrid polypeptide according to claim 11 wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:6.
- 13. A hybrid polypeptide, comprising at least seven different immunogenic peptides linked in tandem, wherein each peptide comprises an amino-terminal portion of a surprocedular protein of acleast 50 amino acies and, and wherein the polypeptide has an amino-terminal peptide that is reiterated as a carboxy-terminal peptide and the polypeptide is

capable of eliciting an immune response against more than one antigen of group A streptococci comprising at least Spa, M1.0, M1.2, M3, M12, M18, and M28.

- 14. The hybrid polypeptide according to claim 13 wherein the amino-terminal immunogenic peptide of the polypeptide is M1.0.
- 15. The hybrid polypeptide according to claim 14 wherein the polypeptide is recombinant and the immunogenic peptides are linked in tandem, the polypeptide having a structure of M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0.
- 16. A hybrid polypeptide according to claim 15 wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:8.
- 17. The hybrid polypeptide according to any one of claims 3, 7, 11, and 15 wherein the immunogenic peptides are linked by at least two amino acids encoded by a nucleic acid sequence that is a restriction enzyme recognition site.
- 18. The hybrid polypeptide according to claim 17 wherein the nucleic acid sequence is a restriction enzyme recognition site; the recognition site being at least one of BamHI, Clal, EcoRI, HindIII, KpnI, Ncol, Nhel, PmII, PstI, Sall, and XhoI.
- 19. The hybrid polypeptide according to any one of claims 1-16 wherein the polypeptide is capable of eliciting at least one opsonic antibody that is not a tissue cross-reactive antibody in a subject.
- 20. The hybrid polypeptide according to claim 19 wherein the subject is a human or all adminal.

21. The hybrid polypeptide according to any one of claims 1-16 further comprising a carboxy-terminal tag.

- 22. The hybrid polypeptide according to claim 21 wherein the carboxy-terminal tag is selected from the group consisting of alkaline phosphatase, β -galactosidase, hexahistidine, epitope tag DYKDDDDK (SEQ ID NO:18), epitope tag DLYDDDDK (SEQ ID NO:19), and GST.
- 23. The hybrid polypeptide according to claim 22 wherein the carboxy-terminal tag is hexahistidine.
- 24. The hybrid polypeptide according to any one of claims 1-16 further comprising at least one additional carboxy-terminal amino acid.
- 25. The hybrid polypeptide according to claim 24 wherein the additional carboxy-terminal amino acid is a D-amino acid.
- 26. The hybrid polypeptide according to claim 24 wherein the additional carboxy-terminal amino acid is cysteine.
- 27. The hybrid polypeptide according to claim 23 further comprising at least one additional carboxy-terminal amino acid.
- 28. The hybrid polypeptide according to claim 27 wherein the additional carboxy-terminal amino acid is cysteine.
- 25. A hyprila polypophidde comprioning the anniho acid sequence of UEQ ID NOS:2, 4, 6, or 8.

30. A nucleic acid molecule comprising a sequence encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8.

- 31. A nucleic acid expression construct comprising an expression control sequence operably linked to a polynucleotide encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8.
- 32. The construct according to claim 31 wherein the expression control sequence is an inducible promoter.
- 33. The construct according to claim 32 wherein the inducible promoter is selected from the group consisting of a *lac*, *tac*, *trc*, *ara*, *trp*, λ phage, T7 phage, and T5 phage promoter.
- 34. The construct according to claim 32 wherein the inducible promoter is a T5 phage promoter.
- 35. The construct according to claim 31 wherein the construct comprises a nucleic acid expression vector selected from the group comprising a plasmid, phagemid, shuttle vector, cosmid, and virus.
- 36. The construct according to claim 31 wherein the construct comprises a nucleic acid expression vector, wherein the vector is a plasmid.
- 37. The construct according to claim 36 wherein the plasmid is pT5 (SEQ ID NO:17).
 - 38. A host cell containing a construct according to any one of claims 31-37.

39. The host cell of claim 38 wherein the host cell is selected from the group consisting of a bacterium, a yeast cell, a nematode cell, an insect cell, and a mammalian cell.

- 40. The host cell of claim 39 wherein the host cell is a bacterium, wherein the bacterium is *Escherichia coli*.
- 41. A method of producing a hybrid polypeptide, comprising culturing a host cell containing a nucleic acid expression vector comprising at least one expression control sequence operably linked to a nucleic acid molecule encoding a hybrid polypeptide of SEQ ID NOS:2, 4, 6, or 8, under conditions and for a time sufficient for expression of the polypeptide.
- 42. The method of claim 41 wherein the expression control sequence is an inducible promoter.
- 43. The method according to claim 42 wherein the inducible promoter is selected from the group consisting of a *lac*, *tac*, *trc*, *ara*, *trp*, λ phage, T7 phage promoter.
- 44. The method according to claim 42 wherein the inducible promoter is a T5 phage promoter.
- 45. The method according to claim 42 wherein the nucleic acid expression vector is pT5 (SEQ ID NO:17).
 - 46. A hybrid polypeptide produced according to the method of claim 45.
- 47. A composition, comprising a prantaceatically acceptable carrier and a hybrid polypeptide according to any one of claims 1-16, 29, and 46.

48. A composition, comprising a pharmaceutically acceptable carrier and a mixture of at least two of the hybrid polypeptides according to claims 1, 5, 9, and 13.

- 49. The composition according to claim 48 wherein the polypeptides comprise immunogenic peptides linked in tandem, wherein said at least two polypeptides comprise a structure of M24-M5-M6-M19-M29-M14-M24, M2-M43-M94-M22-M11-M59-M33-M2, M89-M101-M77-M114-M75-M76-M92-M89, or M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0.
- 50. A composition, comprising a pharmaceutically acceptable carrier and a mixture of the hybrid polypeptide according to claim 13 with at least one of the hybrid polypeptides according to any one of claims 1, 5, or 9.
- 51. The composition according to claim 50 wherein the polypeptides comprise immunogenic peptides linked in tandern, wherein the polypeptide according to claim 13 comprises a structure of M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0 and said at least one other polypeptide comprise a structure of M24-M5-M6-M19-M29-M14-M24, M2-M43-M94-M22-M11-M59-M33-M2, or M89-M101-M77-M114-M75-M76-M92-M89.
- 52. A composition, comprising a pharmaceutically acceptable carrier and a mixture of at least three of the hybrid polypeptides according to claims 1, 5, 9, and 13.
- 53. The composition according to claim 52 wherein the polypeptides comprise immunogenic peptides linked in tandem, wherein said at least three polypeptides comprise a structure of M24-M5-M6-M19-M29-M14-M24, M2-M43-M94-M22-M11-M59-M33-M2, M89-M101-M77-M114-M75-M76-M92-M89, or M1.0-M12-Spa-M28-M3-M1.2-M18-M1.0.
- mixture of hybrid polypeptides according to claims 4, 8, 12, and 16.

55. The composition according to claim 47 wherein the polypeptides are in equimolar amounts.

- 56. The composition according to claim 47 wherein at least one of the hybrid polypeptides includes a Spa immunogenic peptide.
 - 57. The composition according to claim 47 further comprising an adjuvant.
- 58. The composition according to claim 57 wherein the adjuvant is alum or Freund's.
- 59. The composition according to claim 54 further comprising an adjuvant, wherein said adjuvant is alum.
- 60. A method for preventing a microbial infection, comprising administering to a subject a composition according to claim 47 at a dose sufficient to elicit antibodies specific for one or more hybrid polypeptide, wherein the antibodies are opsonic and are not tissue cross-reactive.
- 61. The method for preventing an infection according to claim 60 wherein the microbial infection is a streptococcal infection.
- 62. The method for preventing an infection according to claim 60 wherein the streptococcal infection is a group A streptococcal infection.
- 63. The method for preventing an infection according to claim 60 wherein the hybrid polypeptide is administered by a route selected from the group consisting of enteral, parenteral, transdermal, transmucosal, and inhalation.

64. The method for preventing an infection according to claim 60 wherein the composition further comprises an adjuvant.

- 65. The method for preventing an infection according to claim 64 wherein the adjuvant is alum or Freund's.
- 66. The method for preventing an infection according to claim 60 wherein the subject is human or an animal.
 - 67. A plurality of antibodies produced by the method according to claim 60.
- 68. The plurality of antibodies according to claim 67 wherein the antibodies further comprise at least one antibody specific for a M protein antigen not represented in a hybrid polypeptide.
- 69. The plurality of antibodies according to claim 68 wherein the M protein antigen not represented in a hybrid polypeptide is M4.
- 70. A method for treating or preventing a microbial infection, comprising administering to a subject a composition comprising a pharmaceutically acceptable carrier and a plurality of antibodies according to claims 67.

2/22

Hexavalent A.3

M24---> ATG GTC GCG ACT CGC TCT CAG ACA GAT ACT CTG GAA AAA GTA CAA GAA CGT GCT Met Val Ala Thr Arg Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu Arg Ala GAC AAG TIT GAG ATA GAA AAC AAT ACG TTA AAA CTT AAG AAT AGT GAC TTA AGT --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Asp Lys Phe Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn Ser Asp Leu Ser TTT AAT AAA GCG TTA AAA GAT CAT AAT GAT GAG TTA ACT GAA GAG TTG AGT Phe Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu Leu Thr Glu Glu Leu Ser M5---> Pm1I AAT GCT AAA GAG AAA CTA CGT CAC GTG GCC GTG ACT CGC GGT ACA ATA AAT GAC Asn Ala Lys Glu Lys Leu Arg His Val Ala Val Thr Arg Gly Thr Ile Asn Asp CCG CAA AGA GCA AAA GAA GCT CTT GAC AAG TAT GAG CTA GAA AAC CAT GAC TTA Pro Gln Arg Ala Lys Glu Ala Leu Asp Lys Tyr Glu Leu Glu Asn His Asp Leu BamHI M6---> AAA ACT AAG GGA TCC CGT GTG TTT CCT CGC GGG ACG GTA GAA AAC CCG GAC AAA Lys Thr Lys Gly Ser Arg Val Phe Pro Arg Gly Thr Val Glu Asn Pro Asp Lys GCA CGA GAA CTT CTT AAC AAG TAT GAC GTA GAG AAC TCT ATG TTA CAA GCT AAT Ala Arg Glu Leu Leu Asn Lys Tyr Asp Val Glu Asn Ser Met Leu Gln Ala Asn

3/22

M19---> NcoI AAT GAC AAG TTA CCA TGG CGT GTG CGT TAT ACT CGC CAT ACG CCA GAA GAT AAG Asn Asp Lys Leu Pro Trp Arg Val Arg Tyr Thr Arg His Thr Pro Glu Asp Lys CTA AAA AAA ATT ATT GAC GAT CTT GAC GCA AAA GAA CAT GAA TTA CAA CAA CAG --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Leu Lys Lys Ile Ile Asp Asp Leu Asp Ala Lys Glu His Glu Leu Gln Gln Gln PstI M29---> AAT GAG AAG ITA TCT CTG CAG AAA GTG TAT ATT ACT CGT GGT ATG ACA AAA GAG Asn Glu Lys Leu Ser Leu Gln Lys Val Tyr Ile Thr Arg Gly Met Thr Lys Glu GAC GTA GAA AAA ATT GCT AAC AAC CTT GAC ATA GAA AAC CAT GGG TTA AAA CAA Asp Val Glu Lys Ile Ala Asn Asn Leu Asp Ile Glu Asn His Gly Leu Lys Gln KpnI CAG AAT GAA CAG TTA TCT ACT GAT AAA CAA GGT CTT GAA GAA CAG AAT GGT ACC Gln Asn Glu Gln Leu Ser Thr Asp Lys Gln Gly Leu Glu Glu Gln Asn Gly Thr M14---> GAT CGC GTT AGT CGT TCT ATG TCA CGC GAT GAT CTA TTA AAC AGG GCT CAG GAT Asp Arg Val Ser Arg Ser Met Ser Arg Asp Asp Leu Leu Asn Arg Ala Gln Asp CTT GAA GCA AAA AAC CAC GGG TTA GAA CAC CAG AAT ACT AAG TTA TCT ACT GAA Leu Glu Ala Lys Asn His Gly Leu Glu His Gln Asn Thr Lys Leu Ser Thr Glu

4/22

								,									
															I		
aat	AAA	ACG	CTT	CAA	GAA	CAA	GCA	GAA	GCA	CGC	CAG	AAA	gaa	ATC	GAT	GTC	GCG
																	• • •
Asn	Lys	Thr	Leu	Gln	Glu	Gln	Ala	Glu	Ala	Arg	Gln	Lys	Glu	He	Asp	Val	Ala
								837									864
ACT	CGC	TCT	CAG	ACA	GAT	ACT	CTG	GAA	AAA	GTA	CAA	gaa	CGT	GCT	GAC	AAG	Ш
Thr	Arg	Ser	Gln	Thr	Asp	Thr	Leu	Glu	Lys	Val	Gln	Glu	Arg	Ala	Asp	Lys	Phe
								_									
																	918
GAG	ATA	GAA	AAC	AAT	ACG	TTA	AAA	СТТ	AAG	AAT	AGT	GAC	TTA	AGT	Ш	AAT	AAT
Glu	He	Glu	Asn	Asn	Thr	Leu	Lys	Leu	Lys	Asn	Ser	Asp	Leu	Ser	Phe	Asn	Asn
AAA	GCG	TTA	AAA	GAT	CAT	AAT	GAT	GAG	TTA	ACT	GAA	GAG	TTG	AGT	AAT	GCT	AAA
Lys	Ala	Leu	Lys	Asp	His	Asn	Asp	Glu	Leu	Thr	Glu	Glu	Leu	Ser	Asn	Ala	Lys
GAG	AAA	CIA	CGI	CAC	CAC	CAC	CAC	CAC	CAC	ΙĿΆ	3						
Glu	Lys	Leu	Arg	His	His	HIS	H1\$	His	H1\$	stop)						

Septavalent B.3a

		M1	.0	->														
٠,				9		18			27			36			45			54
5'	Alt	i AAI	idi.	IGA	GGI	AAI	CCI	AGG	i GAA	GTT	ATA	GAA	GAI	CTT	GCA	GCA	AAC	: AAT
	Met	. Ası	n Gly	/ Asp	Gly	Asn	Pro	Arg	g G1u	ı Val	Ile	Glu	Asp	Leu	ı Ala	Ala	Asr	Asn
	CCC	: GC/	63 A ATA	-	AAT	72 ATA		TTA	81 CGT		: GAA	90 AAC		GAC	99 TT#		GCG	108 AGA
	Pro	Ala	a Ile	Glr	Asr	Ile	Arg	Leu	Arg	His	Glu	Asn	Lys	Asp	Leu	Lys	Ala	Arg
															(XhoI	-Sal	I)M12>
	TTA	040	117		4.70	126			135			144			153			162
	118	GAL	ı AAI	GLA	Alb	GAA	GII	GCA	GGA	AGA	GAI	Ш	AAG	AGA	GCT	CTC	GAC	GAT
	Leu	Glu	ı Asr	ı Ala	Met	Glu	Val	Ala	Gly	Arg	Asp	Phe	Lys	Arg	Ala	Leu	Asp	Asp
			171			180			189			198			207			216
	CAT	AGT	GAT	TTA	GTC	GCA	GAA	AAA	CAA	CGT	ΠA	GAA	GAT	TTA	GGA	CAA	AAA	TIT
	His	Ser	Asp	Leu	Val	Ala	Glu	Lys	Gln	Arg	Leu	Glu	Asp	Leu	Gly	Gln	Lys	Phe
	GAA	AGA	225 CTG		CAG	234 CGT	TCA	GAA	243 CTC	TAC	СП	252 CAG	CAA	TAC	261 TAT	GAT	AAT	270 AAA
	Glu	Arg	Leu	Lys	Gln	Arg	Ser	Glu	Leu	Tyr	Leu	Gln	Gln	Tyr	Tyr	Asp	Asn	Lys
														Baml	ΗI	Spa-	>	
	TO 4		279			288			297			306			315	·		324
	ICA	AAI	GGA	IAI	AAA	GGT	GAC	TGG	TAT	GTA	CAA	CAG	TTA	GGA	TCC	GAT	TCA	GTA
	Ser	Asn	Gly	Tyr	Lys	Gly	Asp	Trp	Tyr	Val	Gln	G1n	Leu	Gly	Ser	Asp	Ser	Val
	AGT	GGA	333 TTA	GAG	GTG	342 GCA	GAC	CCC	351 TCT	GAT		360 AAG	AAA	СТТ	369 ATT	gaa	TTA	378 GGT
	Ser	Gly	Leu	Glu	Val	Ala	Asp	Pro	Ser	Asp	Ser	Lys	Lys	Leu	Пe	Glu	Leu	Gly

6/22 TTG GCT AAA TAC CTT AAT GAT AAA TTA CCC TTT AAA ACT AAA GAA GAT TCA GAG Leu Ala Lys Tyr Leu Asn Asp Lys Leu Pro Phe Lys Thr Lys Glu Asp Ser Glu PstI M28---> ATT ITA TCA GAG TTA CGT GAT GTA TTA AAA AAT CTG CAG GAG TCT CCA AAA AGT --- --- --- --- --- --- --- --- --- --- --- --- --- ---Ile Leu Ser Glu Leu Arg Asp Val Leu Lys Asn Leu Gln Glu Ser Pro Lys Ser ACT GAG ACT TCT GCT AAT GGA GCT GAT AAA TTA GCT GAT GCA TAC AAC ACA TTG --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Thr Glu Thr Ser Ala Asn Gly Ala Asp Lys Leu Ala Asp Ala Tyr Asn Thr Leu CTT ACT GAA CAT GAG AAA CTC AGA GAT GAG TAT TAT ACA TTA ATT GAT GCT AAA -- --- --- --- --- --- --- --- --- --- --- --- ---Leu Thr Glu His Glu Lys Leu Arg Asp Glu Tyr Tyr Thr Leu Ile Asp Ala Lys M3---> KpnI GAA GAA GAA CCT CGC TAT AAA GCA TTG GGT ACC TTG TTA GAT CAG GTT ACA CAA --- --- --- --- --- --- --- --- --- --- --- --- ---Glu Glu Glu Pro Arg Tyr Lys Ala Leu Gly Thr Leu Leu Asp Gln Val Thr Gln TTA TAT ACT AAA CAT AAT AGT AAT TAC CAA CAA TAT AAT GCA CAA GCT GGC AGA Leu Tyr Thr Lys His Asn Ser Asn Tyr Gln Gln Tyr Asn Ala Gln Ala Gly Arg CTT GAC CTG AGA CAA AAG GCT GAA TAT CTA AAA GGC CTT AAT GAT TGG GCT GAG Leu Asp Leu Arg Gln Lys Ala Glu Tyr Leu Lys Gly Leu Asn Asp Trp Ala Glu KpnI M1.2---> CGC CTG TTA CAA GAG TTA AAT GGT ACC AAC AAT GAT GGT CGT TCT CGT GAC GTT Arg Leu Leu Gln Glu Leu Asn Gly Thr Asn Asn Asp Gly Arg Ser Arg Asp Val

7/22 ACG GAA GAG ATT GCA GCA AAC AAT ACC ACA GTA CAA AAT ATA CGT TTA CGT AAC Thr Glu Glu Ile Ala Ala Asn Asn Thr Thr Val Gln Asn Ile Arg Leu Arg Asn GAA AAC AAG AAC TTA AAA GCG AAA AAC GAG GAC TTA GAA GCG AGA TTA GAG AAT --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Glu Asn Lys Asn Leu Lys Ala Lys Asn Glu Asp Leu Glu Ala Arg Leu Glu Asn EcoRI M18---> GCA ATG AAT GTT GCA GGA CGC GAT TTT AAG CGT GCT GAA TTC GCA CCT CTT ACT Ala Met Asn Val Ala Gly Arg Asp Phe Lys Arg Ala Glu Phe Ala Pro Leu Thr CGT GCT ACA GCA GAC AAT AAA GAC GAA TTA ATA AAA AGA GCT AAC GGT TAT GAG --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Arg Ala Thr Ala Asp Asn Lys Asp Glu Leu Ile Lys Arg Ala Asn Gly Tyr Glu ATA CAG AAC CAT CAG TTA ACA GTT GAG AAT AAA AAA TTA AAA ACT GAT AAG GAA Ile Gln Asn His Gln Leu Thr Val Glu Asn Lys Lys Leu Lys Thr Asp Lys Glu Pm1 I M1.0---> CAG TTA ACA AAA GAG AAT GAT GAT TTA AAA CAC GTG AAC GGT GAT GGT AAT CCT Gln Leu Thr Lys Glu Asn Asp Asp Leu Lys His Val Asn Gly Asp Gly Asn Pro CGT GAA GTT ATA GAA GAT CTT GCA GCA AAC AAT CCC GCA ATA CAA AAT ATA CGT Arg Glu Val Ile Glu Asp Leu Ala Ala Asn Asn Pro Ala Ile Gln Asn Ile Arg TTA CGT CAC GAA AAC AAG GAC TTA AAA GCG AGA TTA GAG AAT GCA ATG GAA GTT Leu Arg His Glu Asn Lys Asp Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val

8/22

1251 1260 1269 1278 1287
GCA GGA CGT GAT TTT AAG CGT GCT CAC CAC CAC CAC CAC CAC CAC TAA 3'
Ala Gly Arg Asp Phe Lys Arg Ala His His His His His stop

Septavalent C.2

M2---> ATG AGT AAG AAC CCT GTC CCT GTC AAA AAA GAA GCA AAA TTA AGT GAA GCA GAA Met Ser Lys Asn Pro Val Pro Val Lys Lys Glu Ala Lys Leu Ser Glu Ala Glu TTA CAT GAC AAA ATT AAA AAC CTT GAA GAG GAA AAA GCA GAA TTA TTC GAG AAA Leu His Asp Lys Ile Lys Asn Leu Glu Glu Glu Lys Ala Glu Leu Phe Glu Lys (XhoI-SalI)M43---> CTC GAC GAA GAA CAC CCT GAC GTT GTC GCT GCT AGA GAA AGC GTA CTA AAT AAT Leu Asp Glu Glu His Pro Asp Val Val Ala Ala Arg Glu Ser Val Leu Asn Asn GTC CGT GTA CCG GGT ACA CTT TGG CTA CGT CAA AAA GAA GAA AAT GAC AAA CTT Val Arg Val Pro Gly Thr Leu Trp Leu Arg Gln Lys Glu Glu Asn Asp Lys Leu NheI AAA TTG GAA AAG AAA GGG CTT GAG ACT GAG TTA CAG GAA AAG GAA CAA GCT AGC --- --- --- --- --- --- --- --- --- --- --- --- --- ---Lys Leu Glu Lys Lys Gly Leu Glu Thr Glu Leu Gln Glu Lys Glu Gln Ala Ser M94---> GAA GAA GCA TCA AAT AAT GGG CAA CTC ACA TTA CAG CAT AAA AAT AAT GCA TTG Glu Glu Ala Ser Asn Asn Gly Gln Leu Thr Leu Gln His Lys Asn Asn Ala Leu ACT AGT GAG AAT GAG TCT CTT CGT CGT GAA AAA GAT CGT TAT TTG TAT GAA AAA Thr Ser Glu Asn Glu Ser Leu Arg Arg Glu Lys Asp Arg Tyr Leu Tyr Glu Lys

BamHI M22---> GAA GAA TTA GAA GGA TCC GAG TCA TCA AAT AAT GCG GAG TCA TCA AAC ATT TCT Glu Glu Leu Glu Gly Ser Glu Ser Ser Asn Asn Ala Glu Ser Ser Asn Ile Ser CAA GAA AGC AAA CTA ATA AAT ACA TTG ACT GAT GAA AAT GAG AAA CTC AGA GAA --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Gln Glu Ser Lys Leu Ile Asn Thr Leu Thr Asp Glu Asn Glu Lys Leu Arg Glu GAG CTC CAA CAG TAT TAT GCA TTA AGT GAT GCT AAA GAA GAA GAA CCT CGT TAT Glu Leu Gln Gln Tyr Tyr Ala Leu Ser Asp Ala Lys Glu Glu Glu Pro Arg Tyr PstI M11---> AAA GCA CTG CAG ACT GAA GTT AAG GCT GCG GGG CAA AGC GCT CCT AAA GGT ACA Lys Ala Leu Gln Thr Glu Val Lys Ala Ala Gly Gln Ser Ala Pro Lys Gly Thr . AAC GTG AGC GCA GAC CTA TAT AAT TCG CTA TGG GAT GAA AAT AAA ACT CTT AGA ---Asn Val Ser Ala Asp Leu Tyr Asn Ser Leu Trp Asp Glu Asn Lys Thr Leu Arg GAA AAA CAA GAA GAG TAT ATA ACA AAA ATT CAA AAT GAA GAG ACA AAA AAT AAA Glu Lys Gln Glu Glu Tyr Ile Thr Lys Ile Gln Asn Glu Glu Thr Lys Asn Lys KonI M59---> GGT ACC GAA CAA GCA AAA AAT AAT AAT GGG GAA CTC ACA TTA CAG CAA AAA TAC -- --- --- --- --- --- --- --- --- --- --- --- --- --- ---Gly Thr Glu Gln Ala Lys Asn Asn Asn Gly Glu Leu Thr Leu Gln Gln Lys Tyr GAT GCA TTG ACT AAT GAG AAT AAG TCT CTT CGT CGT GAG CGT GAT AAC TAT TTA Asp Ala Leu Thr Asn Glu Asn Lys Ser Leu Arg Arg Glu Arg Asp Asn Tyr Leu

		819			020	Nco		M33			016			055			064
AAT	TAT			GAA									GTA				
Asn	Tyr	Leu	Tyr	G1u	Lys	Pro	Trp	Glu	Glu	His	Glu	Lys	Val	Thr	Gln	Ala	Arg
GAA	GCG	873 GTT	ATC	AGA	882 GAG			891 CAG					πт		CCT		918 TTA
Glu	Ala	 Val	 Ile	 Arg	Glu	 Met	Gln	Gln	Arg	Gly	 Thr	 Asn	 Phe	Gly	Pro	 Leu	Leu
GCA	agt	927 ACA						945 AAT					стт	963 GAC	AAA	ACT	Pm1I 972 CAC
Ala	Ser	Thr	Met	Arg	Asp	Asn	His	Asn	Leu	Lys	Glu	Thr	Leu	Asp	Lys	 Thr	His
	M2																
CTC	ACT	981	440	сст				999					TTA		CAA		
	AGI		AAC							GAA	GCA			AG I	GAA	GCA	GAA.
Val	Ser	Lys	Asn	Pro	Val	Pro	Val	Lys	Lys	Glu	Ala	Lys	Leu	Ser	G1u	Ala	Glu
TTA	_	LO35 GAC	AAA										J GAA				080 AAA
Leu	His	Asp	Lys	Ile	Lys	Asn	Leu	Glu	Glu	 Glu	Lys	 Ala	Glu	 Leu	Phe	Glu	Lys
СТС		.089 CAC			L098 CAC			1107 TGA	3'								
Leu	Glu	His	His	His	His	His	 His	stop)								

Septavalent D.3

		M89	>															
	4.70	AOT	9	4.47	477	18		TOT					CAT					54
5'	AIG	AGI	GAC	AAI	AII	AAI	<u>[[G]</u>	101	GIC	ICI	610	A44	GAI	AAI	GAA	AAA	GAA	TTA
	Met	Ser	Asp	Asn	Ile	Asn	Arg	Ser	Va1	Ser	Val	Lys	Asp	Asn	Glu	Lys	Glu	Leu
			63			72			81			90			99			108
	CAT	AAC	AAA	ATT	GCA	GAC	CTT	GAA	GAG	GAA	AGG	GGT	GAA	CAT	CTA	GAC	AAA	ATA
	His	Asn	Lys	Ile	Ala	Asp	Leu	G1u	Glu	Glu	Arg	Gly	Glu	His	Leu	Asp	Lys	Ile
															Baml	ΗI	M10	l>
			117										4.07		153		007	162
	GAT	GAA	CTA	AAA	GAA	GAA	CIA	AAA	GCA	AAG	GAA	AAA	AGI	ICA	GGA	TCC	GCT	GAT
	Asp	Glu	Leu	Lys	Glu	Glu	Leu	Lys	Ala	Lys	Glu	Lys	Ser	Ser	Gly	Ser	Ala	Asp
			171			180			189			198			207			216
	CAC	CCT	AGC	TAT	ACC	GCT	GCT	AAA	GAT	GAA	GTA	CTA	AGT	AAG	TTC	TCT	GTA	CCG
	His	Pro	Ser	Tyr	Thr	Ala	Ala	Lys	Asp	Glu	Val	Leu	Ser	Lys	Phe	Ser	Val	Pro
			225			234			243			252			261			270
	GGT	CAT	GTT	TGG	GCA	CAT	GAA	AGA	GAA	AAA	AAT	GAC	AAA	CTT	AGC	TCG	GAA	AAT
	Gly	His	Val	Trp	Ala	His	Glu	Arg	Glu	Lys	Asn	Asp	Lys	Leu	Ser	Ser	Glu	Asn
													Nhe:	[M77-	>		
			279			288						306			315			324
	GAA	GGG	CTT	AAG	GCT	GGT	TTA	CAG	GAA	AAG	GAA	CAA	GCT	AGC	GAA	GGG	GTT	TCT
	Glu	Gly	Leu	Lys	Ala	Gly	Leu	Gln	Glu	Lys	Glu	Gln	Ala	Ser	Glu	Gly	Val	Ser
			333			342			351			360			369			378
	GTA	GGT	TCA	GAT	GCA	TCA	CTA	CAT	AAC	CGC	ATT	ACA	GAC	CTT	GAA	GAG	gaa	AGA
	Val	Gly	Ser	Asp	Ala	Ser	Leu	His	Asn	Arg	Ile	Thr	Asp	Leu	Glu	Glu	Glu	Arg

GAA	. 🗚		TTA			TTA						GAG				GAT	432 CAT
Glu	Lys	Leu	Leu	Asn	Lys	Leu	Asp	Lys	Val	Glu	Glu	Glu	His	Lys	Lys	Asp	His
		•	I			>		450			460			477			106
GAA	CAA	–	ACC		450 AGT												486 CCT
Glu	Gln	Gly	Thr	Asn	Ser	Lys	Asn	Pro	Ala	Pro	Ala	Pro	Ala	Ser	Ala	Val	Pro
GTC	AAA	495 AAA										TTA			AAA		540 CAA
Val	Lys	Lys	Glu	Ala	Thr	Lys	Leu	Ser	Glu	Ala	Glu	Leu	Tyr	Asn	Lys	Ile	Gln
		549			EEO			567			HI 576	M75	>	COC			F 04
GAA	СТТ												GAA	585 GAA	CGT	ACT	594 111
Glu	Leu	Glu	Glu	Gly	Lys	Ala	Glu	Leu	Phe	Gly	Ser	Glu	Glu	Glu	Arg	Thr	Phe
ACT	GAG	603 TTA		TAT				621 TAC				AAA			AAT		648 GAG
Thr	Glu	Leu	Pro	Tyr	Glu	Ala	Arg	Tyr	Lys	Ala	Trp	Lys	Ser	Glu	Asn	Asp	Glu
СТТ	CGG		AAT									AAT			CAA		702 AAG
Leu	Arg	Glu	Asn	Tyr	Arg	Arg	Thr	Leu	Asp	Lys	Phe	Asn	Thr	G1u	Gln	Gly	Lys
		711			700			Hind	III	M76-				747			75.6
ACT	ACG	711 <u>CGC</u>	ΠA	GAA	720 GAA	CAA	AAT	729 AAG	СТТ	GCG	738 GAC	GCG	AAC	747 TCG	AAA	AGC	756 GTT
Thr	Thr	Arg	Leu	Glu	Glu	Gln	Asn	Lys	Leu	Ala	Asp	Ala	Asn	Ser	Lys	Ser	Val
TCT	AAT	765 AGT	AAC	GTG	774 AGC	ATA	AAT	783 CTA	TAT	AAT	792 GAG	CTA	CAG	801 GCT	gaa	CAT	810 GAT
Ser	Asn	Ser	Asn	Val	Ser	Ile	Asn	Leu	Tyr	Asn	Glu	Leu	Gln	Ala	Glu	His	Asp

FIG. 5B

14/22

AAG	СТА	819 CAG	ACT	AAA							846 GAA					AAA	864 GAA
Lys	Leu	Gln	Thr	Lys	His	Glu	Glu	Leu	Leu	Ala	G1u	His	Asp	Ala	Leu	Lys	Glu
AAA	CAA		AAA		882 CAA		RI TTC				900 AGC					AGT	918 GGT
Lys	 Gln	 Asp	 Lys	 Asn	Gln	Glu	Phe	Asp	Asp	Arg	Ser	val	Ser	 Thr	 Asn	 Ser	Gly
AGC	GTG	927 AGC	ACA	CCA							954 GAA			963 GAC	CTA	TTG	972 GCT
Ser	Val	Ser	Thr	Pro	Tyr	Asn	Asn	Leu	Leu	Asn	Glu	Tyr	Asp	Asp	Leu	Leu	Ala
AAA	CAT	981 GGT	GAG	СТА		AGT		999 TAT			CTT			1017 AAA			1026 AAA
Lys	His	Gly	Glu	Leu	Leu	Ser	Glu	Tyr	Asp	Ala	Leu	Lys	Glu	Lys	Gln	Asp	Lys
		005			M89		,	1050		•	0.00			071		•	1000
AAT		1035 GAA		1	1044						1062 TCT			L071 GTC			080 AAT
	CAA	GAA	GCT	AGC	LO44 AGT	GAC	AAT 	ATT	AAT 	CGT		GTC	TCT	GTC	AAA 	GAT	AAT
Asn	CAA Gln	GAA G1u .089	GCT Ala	AGC Ser	1044 AGT Ser 1098	GAC Asp	AAT Asn	ATT Ile 1107	AAT Asn	CGT Arg	TCT Ser	GTC Val	TCT Ser	GTC Val	AAA Lys	GAT Asp	AAT Asn 1134
Asn	CAA Gln	GAA G1u .089	GCT Ala	AGC Ser	1044 AGT Ser 1098	GAC Asp	AAT Asn	ATT Ile 1107	AAT Asn	CGT Arg	TCT Ser	GTC Val	TCT Ser	GTC Val	AAA Lys	GAT Asp	AAT Asn 1134
Asn	CAA Gln AAA	GAA G1u .089 GAA	GCT Ala	AGC Ser	LO44 AGT Ser LO98 AAC	GAC Asp AAA	AAT Asn	Ile Ilo7 GCA	AAT Asn GAC	CGT Arg	TCT Ser	GTC Val	TCT Ser GAA	GTC Val 125 AGG	AAA Lys GGT	GAT Asp GAA	AAT Asn 1134 CAT
Asn GAA Glu	CAA Gln AAA Lys	GAA Glu .089 GAA Glu	GCT Ala TTA Leu	AGC Ser CAT His	1044 AGT Ser 1098 AAC Asn	GAC Asp AAA Lys	AAT Asn ATT Ile	Ile Ilo7 GCA Ala	AAT Asn GAC Asp	CGT Arg CTT Leu	TCT Ser 116 GAA	GTC Val GAG GIU	TCT Ser GAA GIu	GTC Val 125 AGG Arg	AAA Lys GGT Gly	GAT Asp GAA GIU	AAT Asn 1134 CAT His
GAA Glu	GAA AAA Lys GAC	GAA G1u 089 GAA G1u 143 AAA	GCT Ala TTA Leu	AGC Ser CAT His	LO44 AGT Ser LO98 AAC Asn	GAC Asp AAA Lys CTA	AAT Asn ATT Ile	Ile Ilo7 GCA Ala Il61 GAA	AAT Asn GAC Asp	CGT Arg	TCT Ser 1116 GAA Glu .170	GTC Val GAG Glu GCA	TCT Ser GAA Glu AAG	GTC Val 125 AGG Arg 179 GAA	AAA Lys GGT Gly AAA	GAT Asp GAA Glu AGT	AAT ASn 1134 CAT His 188 TCA
GAA Glu	CAA Gin AAA Lys GAC Asp	GAA G1u .089 GAA G1u .143 AAA Lys	GCT Ala TTA Leu ATA Ile	AGC Ser CAT His	1044 AGT Ser 1098 AAC ASN 1152 GAA Glu	GAC Asp AAA Lys CTA Leu	AAT Asn ATT Ile AAA Lys	Ile Ilo7 GCA Ala Il61 GAA	AAT Asn GAC Asp	CGT Arg	Ser 116 GAA Glu 170 AAA	GTC Val GAG Glu GCA	TCT Ser GAA Glu AAG	GTC Val 125 AGG Arg 179 GAA	AAA Lys GGT Gly AAA	GAT Asp GAA Glu AGT	AAT Asn 1134 CAT His 188 TCA

FIG. 5C

FIG. 12

1

SEQUENCE LISTING

<110> ID Biomedical Corporation of Washington
University of Tennessee Research Corporation
Reddish, Mark A.
Hu, Mary C.
Walls, Michael A.
Dale, James B.

<120> MULTIVALENT STREPTOCOCCAL VACCINE COMPOSITIONS AND METHODS FOR USE

<130> 481112.413PC

<140> PCT

<141> 2002-10-28

<160> 19

<170> PatentIn Ver. 2.1

<210> 1

<211> 1005

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (1):.(1002)

<220>

<223> Description of Artificial Sequence: Nucleic acid encoding Hybrid of Group A Streptococci M protein and M-like protein

<400> 1

atg gtc gcg act cgc tct cag aca gat act ctg gaa aaa gta caa gaa 48 Met Val Ala Thr Arg Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu 1 5 10 15

cgt gct gac aag ttt gag ata gaa aac aat acg tta aaa ctt aag aat 96 Arg Ala Asp Lys Phe Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn 20 25 30

agt gac tta agt ttt aat aat aaa gcg tta aaa gat cat aat gat gag 144 Ser Asp Leu Ser Phe Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu

tta act gaa gag ttg agt aat gct aaa gag aaa cta cgt cac gtg gcc 192 Leu Thr Glu Glu Leu Ser Asn Ala Lys Glu Lys Leu Arg His Val Ala 50 55 60

gtg act cgc ggt aca ata aat gac ccg caa aga gca aaa gaa gct ctt 240 Val Thr Arg Gly Thr Ile Asn Asp Pro Gln Arg Ala Lys Glu Ala Leu 65 70 75 80

gac aag tat gag cta gaa aac cat gac tta aaa act aag gga tcc cgt 288

gtg ttt cct cgc ggg acg gta gaa aac ccg gac aaa gca cga gaa Val Phe Pro Arg Gly Thr Val Glu Asn Pro Asp Lys Ala Arg Glu	Leu
100 · 105 110	
ctt aac aag tat gac gta gag aac tct atg tta caa gct aat aat Leu Asn Lys Tyr Asp Val Glu Asn Ser Met Leu Gln Ala Asn Asn 115 120 125	_
aag tta cca tgg cgt gtg cgt tat act cgc cat acg cca gaa gat Lys Leu Pro Trp Arg Val Arg Tyr Thr Arg His Thr Pro Glu Asp 130 135 140	-
cta aaa aaa att att gac gat ctt gac gca aaa gaa cat gaa tta Leu Lys Lys Ile Ile Asp Asp Leu Asp Ala Lys Glu His Glu Leu 145 150 155	
caa cag aat gag aag tta tct ctg cag aaa gtg tat att act cgt Gln Gln Asn Glu Lys Leu Ser Leu Gln Lys Val Tyr Ile Thr Arg 165 170 175	
atg aca aaa gag gac gta gaa aaa att gct aac aac ctt gac ata Met Thr Lys Glu Asp Val Glu Lys Ile Ala Asn Asn Leu Asp Ile 180 185 190	
aac cat ggg tta aaa caa cag aat gaa cag tta tct act gat aaa Asn His Gly Leu Lys Gln Gln Asn Glu Gln Leu Ser Thr Asp Lys 195 200 205	
ggt ctt gaa gaa cag aat ggt acc gat cgc gtt agt cgt tct atg Gly Leu Glu Glu Gln Asn Gly Thr Asp Arg Val Ser Arg Ser Met 210 220	
cgc gat gat cta tta aac agg gct cag gat ctt gaa gca aaa aac Arg Asp Asp Leu Leu Asn Arg Ala Gln Asp Leu Glu Ala Lys Asn 225 230 235	
ggg tta gaa cac cag aat act aag tta tct act gaa aat aaa acg Gly Leu Glu His Gln Asn Thr Lys Leu Ser Thr Glu Asn Lys Thr 245 250 255	
caa gaa caa gca gaa gca cgc cag aaa gaa atc gat gtc gcg act Gln Glu Gln Ala Glu Ala Arg Gln Lys Glu Ile Asp Val Ala Thr 260 265 270	
tct cag aca gat act ctg gaa aaa gta caa gaa cgt gct gac aag Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu Arg Ala Asp Lys 275 280 285	
gag ata gaa aac aat acg tta aaa ctt aag aat agt gac tta agt Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn Ser Asp Leu Ser 290 295 300	
aat aat aaa gcg tta aaa gat cat aat gat gag tta act gaa gag Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu Leu Thr Glu Glu 305 310 315	

3

agt Ser	aat Asn	gct Ala	aaa Lys	gag Glu 325	aaa Lys	cta Leu	cgt Arg	cac His	cac His 330	cac His	cac His	cac His	cac His	tga	1005
<21 <21	0> 2 1> 30 2> PI 3> Ai	RT	icia:	l Sed	queno	ce									
<22 <22	3> De		-		E Art				uence	e: Hy	ybrio	d of	Gro	ıp A	Streptococci M
	0> 2 Val	Ala	Thr	Arg 5	Ser	Gln	Thr	Asp	Thr 10	Leu	Glu	Lys	Val	Gln 15	Glu
Arg	Ala	Asp	Lys 20	Phe	G l u	Ile	Glu	Asn 25	Asn	Thr	Leu	Lys	Leu 30		Asn
Ser	Asp	Leu 35	Ser	Phe	Asn	Asn	Lys 40	Ala	Leu	Lys	Asp	His 45	Asn	Asp	Glu .
Leu	Thr 50	Glu	Glu	Leu	Ser	Asn 55	Ala	Lys	Glu	Lys	Leu 60	Arg	His	Val	Ala
Val 65	Thr	Arg	Gly	Thr	Ile 70	Asn	Asp	Pro	Gln	Arg 75	Ala	Lys	Glu	Ala	Leu 80
Asp	Lys	Tyr	Glu	Leu 85	Glu	Asn	His	Asp	Leu 90	Lys	Thr	Lys	Gly	Ser 95	Arg
Val	Phe	Pro	Arg 100	Gly	Thr	Val	Glu	Asn 105	Pro	Asp	Lys	Ala	Arg 110	Glu	Leu
Ļeu	Asn	Lys 115	Tyr	Asp	Val	Glu	Asn 120	Ser	Met	Leu	Gln	Ala 125	Asn	Asn	Asp
Lys	Leu 130	Pro	Trp	Arg	Val	Arg 135	Tyr	Thr	Arg	His	Thr 140	Pro	Glu	Asp	Lys
Leu 145	Lys	Lys	Ile	Ile		Asp			Ala	Lys 155	Glu	His	Glu	Leu	Gln 160
Gln	Gln	Asn	Glu	Lys 165	Leu	Ser	Leu	Gln	Lys 170	Val	Tyr	Ile	Thr	Arg 175	Gly
Met	Thr	Lys	Glu 180	Asp	Val	Glu	Lys	Ile 185	Ala	Asn	Asn	Leu	Asp 190	Ile	Glu
Asn	His	Gly 195	Leu	Lys	Gln	Gln	Asn 200	Glu	Gln	Leu	Ser	Thr 205	Asp	Lys	Gln
Gly	Leu 210	Glu	Glu	Gln	Asn	Gly 215	Thr	Asp	Arg	Val	Ser 220	Arg	Ser	Met	Ser

Arg As	Asp	Leu	Leu	Asn 230	Arg	Ala	Gln	Asp	Leu 235	Glu	Ala	Lys	Asn	His 240
Gly Le	ı Glu	His	Gln 245	Asn	Thr	Lys	Leu	Ser 250	Thr	Glu	Asn	Lys	Thr 255	Leu
Gln Gl	ı Gln	Ala 260	Glu	Ala	Arg	Gln	Lys 265	Glu	Ile	Asp	Val	Ala 270	Thr	Arg
Ser Gl	Thr 275	Asp	Thr	Leu	Glu	Lys 280	Val	Gln	Glu	Arg	Ala 285	Asp	Lys	Phe
Glu Il		Asn	Asn	Thr	Leu 295	Lys	Leu	Lys	Asn	Ser 300	Asp	Leu	Ser	Phe
Asn As: 305	Lys	Ala	Leu	Lys 310	Asp	His	Asn	Asp	Glu 315	Leu	Thr	Glu	Glu	Leu 320
Ser As	n Ala	Lys	Glu 325	Lys	Leu	Arg	His	His 330	His	His	His	His		

<210> 3 <211> 1107 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1104) <220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein atg agt aag aac cot gto cot gto aaa aaa gaa goa aaa tta agt gaa Met Ser Lys Asn Pro Val Pro Val Lys Lys Glu Ala Lys Leu Ser Glu 96 gca gaa tta cat gac aaa att aaa aac ctt gaa gag gaa aaa gca gaa Ala Glu Leu His Asp Lys Ile Lys Asn Leu Glu Glu Lys Ala Glu 25 tta ttc gag aaa ctc gac gaa gaa cac cct gac gtt gtc gct gct aga 144 Leu Phe Glu Lys Leu Asp Glu Glu His Pro Asp Val Val Ala Ala Arg gaa ago gta cta aat aat gto ogt gta oog ggt aca ott tgg ota ogt Glu Ser Val Leu Asn Asn Val Arg Val Pro Gly Thr Leu Trp Leu Arg caa aaa gaa gaa aat gac aaa ctt aaa ttg gaa aag aaa ggg ctt gag 240 Gln Lys Glu Glu Asn Asp Lys Leu Lys Leu Glu Lys Lys Gly Leu Glu 288 act gag tta cag gaa aag gaa caa gct agc gaa gaa gca tca aat aat

5

Thr	Glu	Leu	Gln	Glu 85	Lys	Glu	Gln	Ala	Ser 90	Glu	Glu	Ala	Ser	Asn 95	Asn	
					_	cat His				-	_		-			336
			_	_	-	aaa Lys	-	-		-		_		_	-	384
						tca Ser 135										432
	Glu	-				aat Asn		_		_	-					480
-	-				_	tat Tyr		_		-	-	_		-	-	528
_		-			-	ctg Leu	_		-	-	-	•	-			576
						aac Asn										624
	_	-				ctt Leu 215	_	-			-					672
				_		aca Thr						•		_		720
				-		aca Thr		_				-	_	_		768
						cgt Arg										816
						gaa Glu										864
_	-	-		-		atg Met 295		_								912
						cga Arg										960

-		act Thr			-	-			-		-			-	_	1008	
		agt Ser														1056	
		gca Ala 355														1104	
tga																1107	
<21 <21	٠		icial	l Sed	quen	ce	•										
	3> D	escr. rote:							uence	e: Hy	ybrid	d of	Grou	A qu	Strept	ococci	M
	0> 4 Ser	Lys	Asn	Pro 5	Val	Pro	Val	Lys	Lys 10	Glu	Ala	Lys	Leu	Ser 15	Glu		
Ala	Glu	Leu	His 20	Asp	Lys	Ile	Lys	Asn 25	Leu	Glu	Glu	Glu	Lys 30	Ala	Glu		
Leu	Phe	Glu 35	Lys	Leu	Asp	Glu	Glu 40	His	Pro	Asp	Val	Val 45	Ala	Ala	Arg		
Glu	Ser 50	Val	Leu	Asn	Asn	Val 55	Arg	Val	Pro	Gly	Thr 60	Leu	Trp	Leu	Arg		
Gln 65	Lys	Glu	Glu	Asn	Asp 70	Lys	Leu	Lys	Leu	Glu 75	Lys	Lys	Gly	Leu	Glu 80		
Thr	Glu	Leu	Gln	Glu 85	Lys	Glu	Gln	Ala	Ser 90	Glu	Glu	Ala	Ser	Asn 95	Asn		
Gly	Gln	Leu	Thr 100	Leu	Gln	His	Lys	Asn 105	Asn	Ala	Leu	Thr	Ser 110	Glu	Asn		
Glu	Ser	Leu 115	Arg	Arg	Glu	Lys	Asp 120	Arg	Tyr	Leu	Tyr	Glu 125	Lys	Glu	Glu		
Leu	Glu 130	Gly	Ser	Glu	Ser	Ser 135	Asn	Asn	Ala	Glu	Ser 140	Ser	Asn	Ile	Ser		
Gln 145	Glu	Ser	Lys	Leu	Ile 150	Asn	Thr	Leu	Thr	Asp 155	Glu	Asn	Glu	Lys	Leu 160		
Arg	Glu	Glu	Leu	Gln 165	Gln	Tyr	Tyr	Ala	Leu 170	Ser	Asp	Ala	Lys	Glu 175	Glu		

Glu Pro Arg Tyr Lys Ala Leu Gln Thr Glu Val Lys Ala Ala Gly Gln

Ser Ala Pro Lys Gly Thr Asn Val Ser Ala Asp Leu Tyr Asn Ser Leu

Trp Asp Glu Asn Lys Thr Leu Arg Glu Lys Gln Glu Glu Tyr Ile Thr 215

Lys Ile Gln Asn Glu Glu Thr Lys Asn Lys Gly Thr Glu Gln Ala Lys 230

Asn Asn Asn Gly Glu Leu Thr Leu Gln Gln Lys Tyr Asp Ala Leu Thr

Asn Glu Asn Lys Ser Leu Arg Arg Glu Arg Asp Asn Tyr Leu Asn Tyr 265

Leu Tyr Glu Lys Pro Trp Glu Glu His Glu Lys Val Thr Gln Ala Arg

Glu-Ala Val Ile Arg Glu Met Gln Gln Arg Gly Thr Asn Phe Gly Pro

Leu Leu Ala Ser Thr Met Arg Asp Asn His Asn Leu Lys Glu Thr Leu

Asp Lys Thr His Val Ser Lys Asn Pro Val Pro Val Lys Lys Glu Ala

Lys Leu Ser Glu Ala Glu Leu His Asp Lys Ile Lys Asn Leu Glu Glu 345 340

Glu Lys Ala Glu Leu Phe Glu Lys Leu Glu His His His His His His

<210> 5

<211> 1209

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (1)..(1206)

<223> Description of Artificial Sequence: Nucleic acid encoding Hybrid of Group A Streptococci M protein and M-like protein

<400> 5

atg agt gac aat att aat cgt tct gtc tct gtc aaa gat aat gaa aaa Met Ser Asp Asn Ile Asn Arg Ser Val Ser Val Lys Asp Asn Glu Lys

												agg Arg				96
												gca Ala 45				144
												gct Ala				192
-		-	_			-	_			-		gca Ala		-	-	240
												ctt Leu				288
	-	-	_	_		-	_	_		-		gta Val			_	336
												gaa Glu 125				384
					_		-	_	-			aaa Lys		_		432
-					_	_			-		-	cct Pro	_		_	480
-		-			_	-				-	-	gca Ala	-			528
				_		_				-	-	tta Leu				576
-	_	-	_								-	gca Ala 205	_			624
												tat Tyr.				672
	_	-							_		_	cgc Arg		_	•	720
		_			-			_		_	-	tct Ser		_		768

9

	245	2	250	255
Val Ser Ile			cag gct gaa cat gat Gln Ala Glu His Asp 270	
			gaa cat gat gct ctt Glu His Asp Ala Leu 285	
-	Lys Asn Gln G		gac cgg agc gtt tct Asp Arg Ser Val Ser 300	
			aac cta ttg aat gaa Asn Leu Leu Asn Glu 315	_
		ly Glu Leu I	tg agt gaa tat gat Leu Ser Glu Tyr Asp 330	
Lys Glu Lys			get age agt gae aat Ala Ser Ser Asp Asn 350	
•		•	aaa gaa tta cat aac Lys Glu Leu His Asn 365	
	Glu Glu Glu A		cat cta gac aaa ata His Leu Asp Lys Ile 380	
_			aaa agt tca cac cac Lys Ser Ser His His 395	
cac cac tga His His				1209
<210> 6 <211> 402 <212> PRT <213> Artific	cial Sequence			
	otion of Arti n and M-like		ence: Hybrid of Gro	up A Streptococci M
<400> 6 Met Ser Asp 7 1	Asn Ile Asn A 5	-	Ser Val Lys Asp Asn 10	Glu Lys 15
Glu Leu His A	Asn Lys Ile A 20	la Asp Leu G 25	lu Glu Glu Arg Gly 30	Glu His

Leu Asp Lys Ile Asp Glu Leu Lys Glu Glu Leu Lys Ala Lys Glu Lys Ser Ser Gly Ser Ala Asp His Pro Ser Tyr Thr Ala Ala Lys Asp Glu Val Leu Ser Lys Phe Ser Val Pro Gly His Val Trp Ala His Glu Arg Glu Lys Asn Asp Lys Leu Ser Ser Glu Asn Glu Gly Leu Lys Ala Gly Leu Gln Glu Lys Glu Gln Ala Ser Glu Gly Val Ser Val Gly Ser Asp Ala Ser Leu His Asn Arg Ile Thr Asp Leu Glu Glu Glu Arg Glu Lys Leu Leu Asn Lys Leu Asp Lys Val Glu Glu Glu His Lys Lys Asp His Glu Gln Gly Thr Asn Ser Lys Asn Pro Ala Pro Ala Pro Ala Ser Ala Val Pro Val Lys Lys Glu Ala Thr Lys Leu Ser Glu Ala Glu Leu Tyr 170 Asn Lys Ile Gln Glu Leu Glu Glu Gly Lys Ala Glu Leu Phe Gly Ser 180 185 Glu Glu Glu Arg Thr Phe Thr Glu Leu Pro Tyr Glu Ala Arg Tyr Lys Ala Trp Lys Ser Glu Asn Asp Glu Leu Arg Glu Asn Tyr Arg Arg Thr Leu Asp Lys Phe Asn Thr Glu Gln Gly Lys Thr Thr Arg Leu Glu Glu 235 230 Gln Asn Lys Leu Ala Asp Ala Asn Ser Lys Ser Val Ser Asn Ser Asn Val Ser Ile Asn Leu Tyr Asn Glu Leu Gln Ala Glu His Asp Lys Leu Gln Thr Lys His Glu Glu Leu Leu Ala Glu His Asp Ala Leu Lys Glu Lys Gln Asp Lys Asn Gln Glu Phe Asp Asp Arg Ser Val Ser Thr Asn 295 Ser Gly Ser Val Ser Thr Pro Tyr Asn Asn Leu Leu Asn Glu Tyr Asp Asp Leu Leu Ala Lys His Gly Glu Leu Leu Ser Glu Tyr Asp Ala Leu Lys Glu Lys Gln Asp Lys Asn Gln Glu Ala Ser Ser Asp Asn Ile Asn

11

340 345 350 Arg Ser Val Ser Val Lys Asp Asn Glu Lys Glu Leu His Asn Lys Ile Ala Asp Leu Glu Glu Glu Arg Gly Glu His Leu Asp Lys Ile Asp Glu 375 Leu Lys Glu Glu Leu Lys Ala Lys Glu Lys Ser Ser His His His 390 His His <210> 7 <211> 1287. <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1284) <220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein atg aac ggt gat ggt aat cet agg gaa gtt ata gaa gat ett gca gca Met Asn Gly Asp Gly Asn Pro Arg Glu Val Ile Glu Asp Leu Ala Ala aac aat ccc gca ata caa aat ata cgt tta cgt cac gaa aac aag gac Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu Asn Lys Asp 20 tta aaa gcg aga tta gag aat gca atg gaa gtt gca gga aga gat ttt 144 Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly Arg Asp Phe 35 aag aga gct ctc gac gat cat agt gat tta gtc gca gaa aaa caa cgt Lys Arg Ala Leu Asp Asp His Ser Asp Leu Val Ala Glu Lys Gln Arg 50 tta gaa gat tta gga caa aaa ttt gaa aga ctg aaa cag cgt tca gaa 240 Leu Glu Asp Leu Gly Gln Lys Phe Glu Arg Leu Lys Gln Arg Ser Glu 65 70 ctc tac ctt cag caa tac tat gat aat aaa tca aat gga tat aaa ggt Leu Tyr Leu Gln Gln Tyr Tyr Asp Asn Lys Ser Asn Gly Tyr Lys Gly 85 gac tgg tat gta caa cag tta gga tcc gat tca gta agt gga tta gag

Asp Trp Tyr Val Gln Gln Leu Gly Ser Asp Ser Val Ser Gly Leu Glu 100 105 110

						aag Lys 120								384
						ccc Pro								432
						gta Val								480
	-				-	aat Asn		_	-		_	-	_	528
						cat His								576
			-	-	-	gaa Glu 200	-		•		-	_		624
						çaa Gln								672
						gct Ala								720
-	•					aat Asn	-		-	 -	-			768
						gat Asp								816
						aca Thr 280								864
-		-				aaa Lys			-	_	-			912
						gga Gly								960
						gca Ala								1008
-	-					cag Gln			-		-			1056

340 345 350 aaa aaa tta aaa act gat aag gaa cag tta aca aaa gag aat gat gat Lys Lys Leu Lys Thr Asp Lys Glu Gln Leu Thr Lys Glu Asn Asp Asp 355 360 tta aaa cac gtg aac ggt gat ggt aat cct cgt gaa gtt ata gaa gat 1152 Leu Lys His Val Asn Gly Asp Gly Asn Pro Arg Glu Val Ile Glu Asp ctt gca gca aac aat ccc gca ata caa aat ata cgt tta cgt cac gaa 1200 Leu Ala Ala Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu aac aag gac tta aaa gcg aga tta gag aat gca atg gaa gtt gca gga 1248 . Asn Lys Asp Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly cgt gat ttt aag cgt gct cac cac cac cac cac cac taa 1287 Arg Asp Phe Lys Arg Ala His His His His His 420 <210> 8 <211> 428 <212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein

<400> 8

Met Asn Gly Asp Gly Asn Pro Arg Glu Val Ile Glu Asp Leu Ala Ala

Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu Asn Lys Asp

Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly Arg Asp Phe

Lys Arg Ala Leu Asp Asp His Ser Asp Leu Val Ala Glu Lys Gln Arg 55

Leu Glu Asp Leu Gly Gln Lys Phe Glu Arg Leu Lys Gln Arg Ser Glu

Leu Tyr Leu Gln Gln Tyr Tyr Asp Asn Lys Ser Asn Gly Tyr Lys Gly

Asp Trp Tyr Val Gln Gln Leu Gly Ser Asp Ser Val Ser Gly Leu Glu

Val Ala Asp Pro Ser Asp Ser Lys Lys Leu Ile Glu Leu Gly Leu Ala

Lys Tyr Leu Asn Asp Lys Leu Pro Phe Lys Thr Lys Glu Asp Ser Glu

	130					135					140				
Ile 145	Leu	Ser	Glu	Leu	Arg 150	Asp	Val	Leu	Lys	Asn 155	Leu	Gln	Glu	Ser	Pro 160
Lys	Ser	Thr	Glu	Thr 165	Ser	Ala	Asn	Gly	Ala 170	Asp	Lys	Leu	Ala	Asp 175	Ala
Tyr	Asn	Thr	Leu 180	Leu	Thr	Glu	His	Gl u 185	Lys	Leu	Arg	Asp	Glu 190	Tyr	Туг
Thr	Leu	Ile 195	Asp	Ala	Lys	Glu	Glu 200	Glu	Pro	Arg	Tyr	Lys 205	Ala	Leu	Gly
Thr	Leu 210		Asp	Gln	Val	Thr 215	Gln	Leu	Tyr	Thr	Lys 220	His	Asn	Ser	Asn
Tyr 225	Gln	Gln	Tyr	Asn	Ala 230	Gln	Ala	Gly	Arg	Leu 235	Asp	Leu	Arg	Gln	Lys 240
Ala	Glu	Tyr	Leu	Lys 245	Gly	Leu	Asn	Asp	Trp 250	Ala	Glu	Arg	Leu	Leu 255	Gln
Glu	Leu	Asn	Gly 260	Thr	Asn	Asn	Asp	Gly 265	Arg	Ser	Arg	Asp	Val 270	Thr	Glu
Glu	Ile	Ala 275	Ala	Asn	Asn	Thr	Thr 280	Val	Gln	Asn	Ile	Arg 285	Leu	Arg	Asn
Glu	Asn 2.90	Lys	Asn	Leu	Lys	Ala 295	Lys	Asn	Glu	Asp	Leu 300	Glu	Ala	Arg	Lei
Glu 305	Asn	Ala	Met	Asn	Val 310	Ala	Gly	Arg	Asp	Phe 315	Lys	Arg	Ala	Glu	Phe 320
Ala	Pro	Leu	Thr	Arg 325	Ala	Thr	Ala	Asp	Asn 330	Lys	Asp	Glu	Leu	Ile 335	Lys
Arg	Ala	Asn	Gly 340	Tyr	Glu	Ile	Gln	Asn 345	His	Gln	Leu	Thr	Val 350	Glu	Asr
Lys	Lys	Leu 355	Lys	Thr	Asp	Lys	Glu 360	Gln	Leu	Thr	Lys	Glu 365	Asn	Asp	Asp
Leu	Lys 370	His	Val	Asn	Gly	Asp 375	Gly	Asn	Pro	Arg	Glu 380	Val	Ile	Glu	Asp
Leu 385	Ala	Ala	Asn	Asn	Pro 390	Ala	Ile	Gln	Asn	Ile 395	Arg	Leu	Arg	His	Glu 400
Asn	Lys	Asp	Leu	Lys 405	Ala	Arg	Leu	Glu	Asn 410	Ala	Met	Glu	Val	Ala 415	Gly
Arg	Asp	Phe	Lys 420	Arg	Ala	His	His	His 425	His	His	His				

<210> 9 <211> 1008 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1005) <223> Description of Artificial Sequence: Nucleic acid encoding Hybrid of Group A Streptococci M protein and M-like protein <400> 9 atg gtc gcg act agg tct cag aca gat act ctg gaa aaa gta caa gaa 48 Met Val Ala Thr Arg Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu cgt gct gac aag ttt gag ata gaa aac aat acg tta aaa ctt aag aat Arg Ala Asp Lys Phe Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn agt gac tta agt ttt aat aat aaa gcg tta aaa gat cat aat gat gag 144 Ser Asp Leu Ser Phe Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu 40 192 tta act gaa gag ttg agt aat gct aaa gag aaa cta cgt cac gtg gcc Leu Thr Glu Glu Leu Ser Asn Ala Lys Glu Lys Leu Arg His Val Ala 240 gtg act agg ggt aca ata aat gac ccg caa aga gca aaa gaa gct ctt Val Thr Arg Gly Thr Ile Asn Asp Pro Gln Arg Ala Lys Glu Ala Leu 288 gac aag tat gag cta gaa aac cat gac tta aaa act aag gga tcc aga Asp Lys Tyr Glu Leu Glu Asn His Asp Leu Lys Thr Lys Gly Ser Arg gtg ttt cct agg ggg acg gta gaa aac ccg gac aaa gca cga gaa ctt 336 Val Phe Pro Arg Gly Thr Val Glu Asn Pro Asp Lys Ala Arg Glu Leu 105 ctt aac aag tat gac gta gag aac tot atg tta caa got aat aat gac 384 Leu Asn Lys Tyr Asp Val Glu Asn Ser Met Leu Gln Ala Asn Asn Asp 115 120 432 aag tta cca tgg aga gtg cgt tat act agg cat acg cca gaa gat aag Lys Leu Pro Trp Arg Val Arg Tyr Thr Arg His Thr Pro Glu Asp Lys 135 cta aaa aaa att att gac gat ctt gac gca aaa gaa cat gaa tta caa . 480 Leu Lys Lys Ile Ile Asp Asp Leu Asp Ala Lys Glu His Glu Leu Gln caa cag aat gag aag tta tct ctg cag aaa gtg tat att act agg ggt 528 Gln Gln Asn Glu Lys Leu Ser Leu Gln Lys Val Tyr Ile Thr Arg Gly 165 170

	aca Thr															576
	cat His															624
	ctt Leu 210	-	-	_				-	_	-	-			_		672
	gat Asp															720
	tta Leu															768
	gaa Glu															816
	cag Gln															864
	ata Ile 290	-			_				_		_	-		-		912
	aat Asn					-			-				-		_	960
-	aat Asn	-		-			•							-	tga	1008

<210> 10

<211> 335

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein

<400> 10

Met Val Ala Thr Arg Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu 1 5 10 15

Arg Ala Asp Lys Phe Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn 20 25 30

Ser Asp Leu Ser Phe Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu 40 Leu Thr Glu Glu Leu Ser Asn Ala Lys Glu Lys Leu Arg His Val Ala Val Thr Arg Gly Thr Ile Asn Asp Pro Gln Arg Ala Lys Glu Ala Leu Asp Lys Tyr Glu Leu Glu Asn His Asp Leu Lys Thr Lys Gly Ser Arg Val Phe Pro Arg Gly Thr Val Glu Asn Pro Asp Lys Ala Arg Glu Leu Leu Asn Lys Tyr Asp Val Glu Asn Ser Met Leu Gln Ala Asn Asn Asp · 115 Lys Leu Pro Trp Arg Val Arg Tyr Thr Arg His Thr Pro Glu Asp Lys 135 Leu Lys Lys Ile Ile Asp Asp Leu Asp Ala Lys Glu His Glu Leu Gln Gln Gln Asn Glu Lys Leu Ser Leu Gln Lys Val Tyr Ile Thr Arg Gly. Met Thr Lys Glu Asp Val Glu Lys Ile Ala Asn Asn Leu Asp Ile Glu Asn His Gly Leu Lys Gln Gln Asn Glu Gln Leu Ser Thr Asp Lys Gln Gly Leu Glu Glu Gln Asn Gly Thr Asp Arg Val Ser Arg Ser Met Ser Arg Asp Asp Leu Leu Asn Arg Ala Gln Asp Leu Glu Ala Lys Asn His 230 Gly Leu Glu His Gln Asn Thr Lys Leu Ser Thr Glu Asn Lys Thr Leu 245 Gln Glu Gln Ala Glu Ala Arg Gln Lys Glu Ile Asp Val Ala Thr Arg Ser Gln Thr Asp Thr Leu Glu Lys Val Gln Glu Arg Ala Asp Lys Phe Glu Ile Glu Asn Asn Thr Leu Lys Leu Lys Asn Ser Asp Leu Ser Phe Asn Asn Lys Ala Leu Lys Asp His Asn Asp Glu Leu Thr Glu Glu Leu Ser Asn Ala Lys Glu Lys Leu Arg His His His His His Cys 330

<21 <21 <21		194 NA	icia	l Se	quen	ce										
	1> C	DS 1)	(119	1)												
<22 <22	3> D					tifi cci										
atg	Ser	aag				cct Pro									gaa Glu	48
gca Ala	gaa Glu	tta Leu	cat His 20	gac Asp	aaa Lys	att Ile	aaa Lys	aac Asn 25	ctt Leu	gaa Glu	gag Glu	gaa Glu	aaa Lys 30	gca Ala	gaa Glu	96
tta Leu	ttc Phe	gag Glu 35	Lys	tta Leu	gat Asp	aaa Lys	gtt Val 40	gaa Glu	gaa Glu	gag Glu	cat His	aaa Lys 45	aaa Lys	gtt Val	gaa Glu	144
gaa Glu	gag Glu 50	His	gtc Val	gac Asp	gaa Glu	gaa Glu 55	cac His	cct Pro	gac Asp	gtt Val	gtc Val 60	gct Ala	gct Ala	aga Arg	gaa Glu	192
agc Ser 65	gta Val	cta Leu	aat Asn	aat Asn	gtc Val 70	cgt Arg	gta Val	ccg Pro	ggt Gly	aca Thr 75	ctt Leu	tgg Trp	cta Leu	cgt Arg	caa Gln 80	240
aaa Lys	gaa Glu	gaa Glu	aat Asn	gac Asp 85	aaa Lys	ctt Leu	aaa Lys	ttg Leu	gaa Glu 90	aag Lys	aaa Lys	ggg Gly	ctt Leu	gag Glu 95	act Thr	288
						caa Gln										336
caa Gln	ctc Leu	aca Thr 115	tta Leu	cag Gln	cat His	aaa Lys	aat Asn 120	aat Asn	gca Ala	ttg Leu	act Thr	agt Ser 125	gag Glu	aat Asn	gag Glu	384
tct Ser	ctt Leu 130	aga Arg	aga Arg	gaa Glu	aaa Lys	gat Asp 135	aga Arg	tat Tyr	ttg Leu	tat Tyr	gaa Glu 140	aaa Lys	gaa Glu	gaa Glu	tta Leu	432
gaa Glu 145	gga Gly	tcc Ser	gag Glu	tca Ser	tca Ser 150	aat Asn	aat Asn	gcg Ala	gag Glu	tca Ser 155	tca Ser	aac Asn	att Ile	tct Ser	caa Gln 160	480
gaa Glu	agc Ser	aaa Lys	cta Leu	ata Ile 165	aat Asn	aca Thr	ttg Leu	act Thr	gat Asp 170	gaa Glu	aat Asn	gag Glu	aaa Lys	ctc Leu 175	aga Arg	528

									tta Leu 185								576
									gaa Glu								624
									gca Ala								672
_	sp	_					_	-	aaa Lys		-						720
				_					aaa Lys			_		-			768
				_				_	caa Gln 265			_	_	-			816
_	_		_			-	_		aga Arg	-							864
		_				-			gaa Glu		-			-	-	-	912
A.	_	-		_		_		-	agg Arg							_	960
		•	-		•	-	-		cac His				_	_		_	1008
									gtc Val 345								1056
									aaa Lys								1104
	/S								gat Asp								1152
	75	-	_	_					cac His				-	taa			1194

<210> 12

<211> 397 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein Met Ser Lys Asn Pro Val Pro Val Lys Lys Glu Ala Lys Leu Ser Glu Ala Glu Leu His Asp Lys Ile Lys Asn Leu Glu Glu Glu Lys Ala Glu Leu Phe Glu Lys Leu Asp Lys Val Glu Glu Glu His Lys Lys Val Glu Glu Glu His Val Asp Glu Glu His Pro Asp Val Val Ala Ala Arg Glu Ser Val Leu Asn Asn Val Arg Val Pro Gly Thr Leu Trp Leu Arg Gln Lys Glu Glu Asn Asp Lys Leu Lys Leu Glu Lys Lys Gly Leu Glu Thr Glu Leu Gln Glu Lys Glu Gln Ala Ser Glu Glu Ala Ser Asn Asn Gly 105 Gln Leu Thr Leu Gln His Lys Asn Asn Ala Leu Thr Ser Glu Asn Glu 115 120 Ser Leu Arg Arg Glu Lys Asp Arg Tyr Leu Tyr Glu Lys Glu Glu Leu Glu Gly Ser Glu Ser Ser Asn Ala Glu Ser Ser Asn Ile Ser Gln Glu Ser Lys Leu Ile Asn Thr Leu Thr Asp Glu Asn Glu Lys Leu Arg 170 Glu Glu Leu Gln Gln Tyr Tyr Ala Leu Ser Asp Ala Lys Glu Glu Pro Arg Tyr Lys Ala Leu Gln Thr Glu Val Lys Ala Ala Gly Gln Ser 200 Ala Pro Lys Gly Thr Asn Val Ser Ala Asp Leu Tyr Asn Ser Leu Trp 215 Asp Glu Asn Lys Thr Leu Arg Glu Lys Gln Glu Glu Tyr Ile Thr Lys 230 235 Ile Gln Asn Glu Glu Thr Lys Asn Lys Gly Thr Glu Gln Ala Lys Asn 245

Asn Asn Gly Glu Leu Thr Leu Gln Gln Lys Tyr Asp Ala Leu Thr Asn 265 Glu Asn Lys Ser Leu Arg Arg Glu Arg Asp Asn Tyr Leu Asn Tyr Leu Tyr Glu Lys Pro Trp Glu Glu His Glu Lys Val Thr Gln Ala Arg Glu Ala Val Ile Arg Glu Met Gln Gln Arg Gly Thr Asn Phe Gly Pro Leu 310 315 Leu Ala Ser Thr Met Arg Asp Asn His Asn Leu Lys Glu Thr Leu Asp . 330 325 Lys Thr His Val Ser Lys Asn Pro Val Pro Val Lys Lys Glu Ala Lys Leu Ser Glu Ala Glu Leu His Asp Lys Ile Lys Asn Leu Glu Glu Glu Lys Ala Glu Leu Phe Glu Lys Leu Asp Lys Val Glu Glu His Lys 375 380 Lys Val Glu Glu His His His His His His Gys <210> 13 <211> 1212 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1209) <220> <223> Description of Artificial Sequence: Nucleic acid encoding Hybrid of Group A Streptococci M protein and M-like protein <400> 13 atg agt gac aat att aat aga tot gto tot gto aaa gat aat gaa aaa Met Ser Asp Asn Ile Asn Arg Ser Val Ser Val Lys Asp Asn Glu Lys gaa tta cat aac aaa att gca gac ctt gaa gag gaa agg ggt gaa cat Glu Leu His Asn Lys Ile Ala Asp Leu Glu Glu Glu Arg Gly Glu His 20 cta gac aaa ata gat gaa cta aaa gaa gaa cta aaa gca aag gaa aaa Leu Asp Lys Ile Asp Glu Leu Lys Glu Glu Leu Lys Ala Lys Glu Lys 40 35 agt toa gga too got gat cac cot ago tat acc got got aaa gat gaa Ser Ser Gly Ser Ala Asp His Pro Ser Tyr Thr Ala Ala Lys Asp Glu

50		55	60		
			t cat gtt tgg y His Val Trp 75		
			a aat gaa ggg u Asn Glu Gly 90		
			a ggg gtt tct u Gly Val Ser 5		
	His Asn Arg		c ctt gaa gag p Leu Glu Glu		
			a gaa gag cat u Glu Glu His 140		
-	-	-	t gec cct gcc o Ala Pro Ala 155	_	_
	_	•	a tta agt gaa s Leu Ser Glu 170	-	
	_		a aaa gca gaa y Lys Ala Glu 5		
	Arg Thr Phe		a cca tat gaa u Pro Tyr Glu		
			t cgg gaa aat u Arg Glu Asn 220		
tta gat aad Leu Asp Lys 225	ttt aat act Phe Asn Thr 230	gag caa gg Glu Gln Gl	t aag act acg y Lys Thr Thr 235	aga tta gaa Arg Leu Glu	gaa 720 Glu 240
			g aaa agc gtt r Lys Ser Val 250		
			a cag gct gaa u Gln Ala Glu 5		
cag act aaa Gln Thr Lys 275	His Glu Glu	cta ttg gct Leu Leu Ala 280	t gaa cat gat a Glu His Asp	gct ctt aaa Ala Leu Lys 285	gaa 864 Glu

		_				•		-	_		-	gtt Val				912
												aat Asn				960
												tat Tyr				1008
												gac Asp				1056
												cat His 365				1104
												aaa Lys				1152
		-	-			-	_	-		-		cac His				1200
	cac His	tgc Cys	tga											•		1212
<213	<210> 14 <211> 403 <212> PRT <213> Artificial Sequence															
	<pre><220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein</pre>															
<400)> 14	1														
Met 1	Ser	Asp	Asn	Ile 5	Asn	Arg	Ser	Val	Ser 10	Val	Lys	Asp	Asn	Glu 15	Lys	
Glu	Leu	His	Asn 20	Lys	Ile	Ala	Asp	Leu 25	Glu	Glu	Glu	Arg	Gly 30	Glu	His	
Leu	Asp	Lys 35	Ile	Asp	Glu	Leu	Lys 40	Glu	Glu	Leu	Lys	Ala 45	Lys	Glu	Lys	
Ser	Ser 50	Gly	Ser	Ala	Asp	His 55	Pro	Ser	Tyr	Thr	Ala 60	Ala	Lys	Asp	Glu	
Val 65	Leu	Ser	Lys	Phe	Ser 70	Val	Pro	Gly	His	Val 75	Trp	Ala	His	Glu	Arg 80	
Glu	Lys	Asn	Asp	Lys	Leu	Ser	Ser	Glu	neA	Glu	Gly	Leu	Lys	Ala	Gly	

				85					90					95	
Leu	Gln	Glu	Lys 100	Glu	Gln	Ala	Ser	Glu 105	Gly	Val	Ser	Val	Gly 110	Ser	Asp
Ala	Ser	Leu 1 1 5	His	Asn	Arg	Ile	Thr 120	Asp	Leu	Glu	Glu	Glu 125	Arg	Glu	Lys
Leu	Leu 130	Asn	Lys	Leu	Asp	Lys 135	Val	Glu	Glu	Glu	His 140	Lys	Lys	Asp	His
Glu 145	Gln	Gly	Thr	Asn	Ser 150	Lys	Asn	Pro	Ala	Pro 155	Ala	Pro	Ala	Ser	Ala 160
Val	Pro	Val	Lys	Lys 165	Glu	Ala	Thr	Lys	Leu 170	Ser	Glu	Ala	Glu	Leu 175	Tyr
Asn	Lys	Ile	Gln 180	Ģlu	Leu	Glu	Glu	Gly 185	Lys	Ala	Glu	Leu	Phe 190	Gly	Ser
Glu	Glu	Glu 195	Arg	Thr	Phe	Thr	Glu 200	Leu	Pro	Tyr	Glu	Ala 205	Arg	Tyr	Lys
Ala	Trp 210	_	Ser	Glu	Asn	Asp 215	Glu	Leu	Arg	Glu	Asn 220	Tyr	Arg	Arg	Thr
Leu 2 2 5	Asp ·	Lys	Phe	Asn	Thr 230	Glu	Gln	Gly	Lys	Thr 235	Thr	Arg	Leu	Glu	Glu 240
Gln	Asn	Lys	Leu	Ala 245	Asp	Ala	Asn	Ser	Lys 250	Ser	Val	Ser	Asn	Ser 255	Asn
Val	Ser	Ile	Asn 260	Leu	Tyr	Asn	Glu	Leu 265	Gln	Ala	Glu	His	Asp 270	Lys	Leu
Gln	Thr	Lys 275	His	Glu	Glu	Leu	Leu 280	Ala	Glu	His	Asp	Ala 285	Leu	Lys	Glu
Lys	Gln 290	Asp	Lys	Asn	Gln	Glu 295	Phe	Asp	Asp	Arg	Ser 300	Val	Ser	Thr	Asn
Ser 305	Gly	Ser	Val	Ser	Thr 310	Pro	Tyr	Asn	Asn	Leu 315	Leu	Asn	Glu	Tyr	Asp 320
Asp	Leu	Leu	Ala	Lys 325	His	Gly	Glu	Leu	Leu 330	Ser	Glu	Tyr	Asp	Ala 335	Leu
Lys	Glu	Lys	Gln 340	Asp	Lys	Asn	Gln	Glu 345	Ala	Ser	Ser	Asp	Asn 350	Ile	Asn
Arg	Ser	Val 355	Ser	Val	Lys	Asp	Asn 360	Glu	Lys	Glu	Leu	His 365	Asn	Lys	Ile
Ala	Asp 370	Leu	Glu	Glu	Glu	Arg 375	Gly	Glu	His	Leu	Asp 380	Lys	Ile	Asp	Glu
Le v 385	Lys	Glu	Glu	Leu	Lys 390	Ala	Lys	Glu	Lys	Ser 395	Ser	His	His	His	His 400

His His Cys

<21 <21	<210> 15 <211> 1290 <212> DNA <213> Artificial Sequence															
<22	<220> <221> CDS <222> (1)(1287)															
	<220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein															
	<400> 15 atg aac ggt gat ggt aat cot agg gaa gtt ata gaa gat ott gca gca 400 atg															
													Leu			48
			-					_		-		-	aac Asn 30	-	-	96
													aga Arg			144
-	_	-		-	-		_	_		-	-	-	aaa Lys		_	192
													cgt Arg			240
			_				_						tat Tyr			288
													gga Gly 110			336
	-	-			-	-	-			_	-		ggt Gly	_		384
				-								_	gat Asp			432
													gag Glu			480

26

145			150					155					160	
						gga Gly								528
						gag Glu 185								576
						gaa Glu								624
						tta Leu								672
			_		-	ggc Gly	-		_	_	-		-	720
						gat Asp								768
						ggt Gly 265								816
						gta Val								864
						aac Asn								912
	-	-	_	-		aga Arg	-		_	_	-	-		960
						gac Asp								1008
						aac Asn 345								1056
						cag Gln								1104
						aat Asn								1152

,

ψ,

WO 03/065973 PCT/US02/34769

27

ctt gca gca aac aat ccc gca ata caa aat ata cgt tta cgt cac gaa 1200 Leu Ala Ala Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu 390 395 aac aag gac tta aaa gcg aga tta gag aat gca atg gaa gtt gca gga 1248 Asn Lys Asp Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly 405 aga gat ttt aag aga gct cac cac cac cac cac cac tgc taa 1290 Arg Asp Phe Lys Arg Ala His His His His His Cys <210> ·16 <211> 429 <212> PRT -<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Hybrid of Group A Streptococci M protein and M-like protein <400> 16 Met Asn Gly Asp Gly Asn Pro Arg Glu Val Ile Glu Asp Leu Ala Ala Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu Asn Lys Asp Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly Arg Asp Phe Lys Arg Ala Leu Asp Asp His Ser Asp Leu Val Ala Glu Lys Gln Arg Leu Glu Asp Leu Gly Gln Lys Phe Glu Arg Leu Lys Gln Arg Ser Glu Leu Tyr Leu Gln Gln Tyr Tyr Asp Asn Lys Ser Asn Gly Tyr Lys Gly Asp Trp Tyr Val Gln Gln Leu Gly Ser Asp Ser Val Ser Gly Leu Glu 100 105 Val Ala Asp Pro Ser Asp Ser Lys Lys Leu Ile Glu Leu Gly Leu Ala 120 Lys Tyr Leu Asn Asp Lys Leu Pro Phe Lys Thr Lys Glu Asp Ser Glu 135 Ile Leu Ser Glu Leu Arg Asp Val Leu Lys Asn Leu Gln Glu Ser Pro Lys Ser Thr Glu Thr Ser Ala Asn Gly Ala Asp Lys Leu Ala Asp Ala Tyr Asn Thr Leu Leu Thr Glu His Glu Lys Leu Arg Asp Glu Tyr Tyr 185

Thr Leu Ile Asp Ala Lys Glu Glu Glu Pro Arg Tyr Lys Ala Leu Gly Thr Leu Leu Asp Gln Val Thr Gln Leu Tyr Thr Lys His Asn Ser Asn 215 220 Tyr Gln Gln Tyr Asn Ala Gln Ala Gly Arg Leu Asp Leu Arg Gln Lys 230 235 Ala Glu Tyr Leu Lys Gly Leu Asn Asp Trp Ala Glu Arg Leu Leu Gln Glu Leu Asn Gly Thr Asn Asn Asp Gly Arg Ser Arg Asp Val Thr Glu Glu Ile Ala Ala Asn Asn Thr Thr Val Gln Asn Ile Arg Leu Arg Asn Glu Asn Lys Asn Leu Lys Ala Lys Asn Glu Asp Leu Glu Ala Arg Leu Glu Asn Ala Met Asn Val Ala Gly Arg Asp Phe Lys Arg Ala Glu Phe Ala Pro Leu Thr Arg Ala Thr Ala Asp Asn Lys Asp Glu Leu Ile Lys 325 330 Arg Ala Asn Gly Tyr Glu Ile Gln Asn His Gln Leu Thr Val Glu Asn 345 Lys Lys Leu Lys Thr Asp Lys Glu Gln Leu Thr Lys Glu Asn Asp Asp Leu Lys His Val Asn Gly Asp Gly Asn Pro Arg Glu Val Ile Glu Asp Leu Ala Ala Asn Asn Pro Ala Ile Gln Asn Ile Arg Leu Arg His Glu 385 390 Asn Lys Asp Leu Lys Ala Arg Leu Glu Asn Ala Met Glu Val Ala Gly Arg Asp Phe Lys Arg Ala His His His His His Cys

<210> 17 <211> 5347

<212> DNA

<213> Artificial Sequence

<220>

•

<223> Description of Artificial Sequence: Vector

<400> 17

tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60

WO 03/065973

caqcqtqacc qctacacttg ccaqcqccct agcqcccqct cctttcqctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acqtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactettgt tecaaactgg aacaacacte aaccetatet eggtetatte 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacqcqaatt ttaacaaaat attaacqttt acaatttcag gtggcacttt 480 tcqqqqaaat qtqcqcqqaa cccctatttq tttatttttc taaatacatt caaatatgta 540 tecgeteatg aattaattet tagaaaaact categageat caaatgaaac tgcaatttat 600 tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660 actcaccgaq qcaqttccat aqqatqqcaa gatcctggta tcggtctgcg attccgactc 720 gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780 aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840 agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900 cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960 aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020 tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080 tggtgagtaa .ccatgcatca tcaggagtac. ggataaaatg cttgatggtc ggaagaggca 1140 taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200 ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260 togcacctga ttgcccgaca ttatogcgag cocatttata cocatataaa tcagcatoca 1320 tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380 cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500 gateettttt ttetgegegt aatetgetge ttgeaaacaa aaaaaceace getaceageg 1560 gtggtttgtt tgccggatca agagctacca actotttttc cgaaggtaac tggcttcagc 1620 agagegeaga taccaaatac tgtccttcta gtgtageegt agttaggeea ccacttcaag 1680 aactetgtag cacegectae ataceteget etgetaatee tgttaceagt ggetgetgee 1740 agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800 cagoggtogg gotgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860 accqaactga gatacctaca qcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920 aaggoggaca ggtatooggt aagoggcagg gtoggaacag gagagogcac gagggagott 1980 ccagggggaa acgcctggta totttatagt cctgtcgggt ttcgccacct ctgacttgag 2040 cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100 gcctttttac ggttcctggc cttttgctg ccttttgctc acatgttctt tcctgcgtta 2160 tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220 agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280 tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340 caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400 ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460 geteceggea teegettaca gacaagetgt gacegtetee gggagetgea tgtgteagag 2520 gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580 gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640 aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttccctgttt 2700 ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760 acgagagag atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820 ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880 tcaatqccag cqcttcqtta atacagatqt aggtqttcca caggqtagcc agcagcatcc 2940 tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000 cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060 gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120 ccqccaqcct aqccqqqtcc tcaacqacaq qaqcacqatc atqcqcaccc qtqqqqccqc 3180 catgoogge ataatggeet gettetegee gaaacgtttg gtggegggae cagtgaegaa 3240 ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300 getecagega aageggteet egeegaaaat gacceagage getgeeggea eetgteetac 3360 gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420 ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480 atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540

```
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
teggetgaat ttgattqeqa gtgagatatt tatgeeagee ageeagaege agaegegeeg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcqga taqttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tgqcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
qqqccagact qgaqgtqgca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tegeagaaac gtggetggee tggtteacca egegggaaac ggtetgataa gagacacegg 4560
catactotgc gacatogtat aacgttactg gtttcacatt caccaccotg aattgactot 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tetegacget etecettatg egacteetge attaggaage ageceagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
egageeegat etteeceate ggtgatgteg gegatatagg egeeageaac egeacetgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatcta atcataaaaa 4980
atttatttgc tttgtgagcg gataacaatt ataatagatt caattgtgag cggataacaa 5040
ttataataga ttcaattcta aatttacaag aatttcacac agaattcatt aaagaggaga 5100
aattacatat ggctagcatg actggtggac agcaaatggg tcgcggatcc gaattcgagc 5160
tecgtegaca agettgegge egeactegag caccaccacc accaccactg agateegget 5220
gctaacaaag cccgaaagga agctgagttg gctgctgcca ccgctgagca ataactagca 5280
taaccccttg gggcctctaa acgggtcttg aggggttttt tgctgaaagg aggaactata 5340
tccggat
```

```
<210> 18
 <211> 8
 <212> PRT
 <213> Artificial Sequence
 <220>
<223> Carboxy terminal tag sequence
 <400> 18
 Asp Tyr Lys Asp Asp Asp Lys
 <210> 19
 <211> 8
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Carboxy terminal tag sequence
 <400> 19
 Asp Leu Tyr Asp Asp Asp Lys
```

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

ADDED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.