VERMES MIKLÓS Fizikaverseny 2017, február 27. II. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

X. osztály

I. feladat

Egy fűtetlen, $V = 30 m^2$ térfogatú szoba, normál fizikai körülmények között ($t_0 = 0$ °C, $p_0 = 10^5$ Pa) található, kétatomos gáznak tekinthető levegőjét felmelegítjük $t = 20^{\circ}$ C hőmérsékletre. Feltételezzük, hogy a szobát nem tekinthetjük zárt fizikai rendszernek. Határozzátok meg a levegő belső energiáját!

a) A kezdeti állapotban.	5 p
b) A végső állapotban.	2 p
c) Hasonlítsátok össze az előző két alnonthan kanott eredményt és magyarázzátok a jelenségetl	3 n

II. feladat

Egy kétatomos gáz olyan állapotváltozást (melegítést) szenved, melynek során $\frac{p^3}{v^4}$ =állandó, ahol a p a gáz nyomása és v_t a molekulák termikus sebessége.

a) Ábrázoljátok grafikusan az átalakulást $p - V$ koordináta rendszerben!	4 p
b) Határozzátok meg a gáz mólhőjét!	2 p
c) Számítsátok ki a megadott folyamat során a gáz belső energiájának változását, a gáz által cse	erélt hőt
és a gáz által végzett mechanikai munkát, a gáz kezdeti p_1 nyomása és V_1 térfogata függve	enyében,
tudva, hogy a végső nyomás a kezdeti nyomás kilencszerese lesz $p_2 = 9p_1!$	4 p
Adott: $R = 8.31 \frac{J}{M}$	

III. feladat

Egy $S = 166, 2 \cdot 10^{-6} m^2$ keresztmetszetű súrlódásmentes dugattyúval ellátott hengerben egy gázkeverék található. A keverék $N_1 = 2 \cdot 10^{20}$ oxigén molekulából $\mu_1 = 32 \frac{g}{mol}$, illetve $N_2 = 6 \cdot 10^{20}$ hidrogén $\mu_2 = 2 \frac{g}{mol}$ molekulából áll. A dugattyút és a henger alját $k=166,2\frac{N}{m}$ állandójú rugóval kötjük össze, amint a mellékelt ábra szemlélteti. Kezdetben, a nyújtatlan rugóhoz kötött dugattyú egyensúlyban található $T_1 = 301,15 \text{ K}$ hőmérsékleten. Ismerve a légköri nyomást $p_0 = 10^5$ Pa határozzátok meg!

