

Einführung in das Operations Research I Netzplantechnik

Prof. Stefan Nickel

Institut für Operations Research – Diskrete Optimierung und Logistik

Gliederung

- 0. Einführung
- 1. Kernkonzepte der linearen Optimierung
- 2. Erweiterungen und Anwendungen der linearen Optimierung
- 3. Graphentheorie
- 4. Netzplantechnik

Gliederung

- 4. Netzplantechnik
 - Einführung und grundlegende Definitionen
 - Vorgangsknotennetzpläne
 - Strukturplanung
 - Zeitplanung
 - Stochastische Zeitplanung
 - Vorgangspfeilnetzpläne
 - Struktur- und Zeitplanung
 - Kostenplanung

- Mit Hilfe der Netzplantechnik lassen sich große und / oder komplexe Projekte planen und kontrollieren
- Beispiele für solche Projekte
 - Projekte im Bereich Forschung und Entwicklung
 - Bauprojekte
 - Projekte der betrieblichen Organisation
 - Planung und Durchführung von Großveranstaltungen

Rolle der Netzplantechnik im Projektablauf

- Im Allgemeinen lassen sich Projekte, die mit der Netzplantechnik geplant werden, in einzelne Vorgänge oder Aktivitäten unterteilen
- Definitionen
 - Ein Vorgang ist ein Zeit erforderndes Geschehen mit definiertem Anfang und Ende
 - Ein Ereignis ist ein Zeitpunkt, der das Eintreten eines bestimmten Projektzustandes markiert
 - Ein Meilenstein ist ein Ereignis, dem bei der Projektdurchführung eine besondere Bedeutung zukommt

- Es gilt
 - Jeder Vorgang besitzt genau ein Anfangs- und ein Endereignis
 - Das Projekt beginnt mit einem Startereignis (Projektanfang) und endet mit einem Endereignis (Projektende)
 - Alle Ereignisse und Vorgänge des Projekts werden bei der Planung in einem Netzplan (als dessen Elemente) zusammengefasst
 - Zusätzlich zu den Elementen enthält ein Netzplan noch verschiedene Reihenfolgebeziehungen zwischen den einzelnen Vorgängen und Ereignissen

- Darstellungsarten von Netzplänen
 - Ein Netzplan (Projektstruktur) kann mit Hilfe eines gerichteten Graphen mit Kanten- und / oder Knotenbewertung dargestellt werden

- Darstellungsarten von Netzplänen
 - Vorgangsknotenorientierte Netzpläne
 - Vorgänge werden als Knoten dargestellt
 - Reihenfolgebeziehungen werden als Pfeile dargestellt
 - Vorgangspfeilorientierte Netzpläne
 - Vorgänge werden als Pfeile dargestellt, wobei Knoten die Ereignisse des Projekts repräsentieren
 - Reihenfolgebeziehungen werden ebenfalls durch Pfeile dargestellt, wobei gegebenenfalls zusätzliche Scheinvorgänge eingeführt werden müssen

Planungs- und Durchführungsphasen im Projektmanagement

- Strukturplanung
 - Phase 1
 - Zerlege das Projekt in Vorgänge und Ereignisse
 - Ermittle die Reihenfolgebeziehungen zwischen den einzelnen Vorgängen und Ereignissen
 - Damit erhält man eine sogenannte Vorgangsliste des Projekts
 - Phase 2
 - Bilde die Ablaufstruktur des Projekts durch einen Netzplan ab
 - Dabei hängt die genaue Vorgehensweise von der benutzten Netzplantechnik-Methode ab (z.B. vorgangsknoten- oder vorgangspfeilorientierte Darstellung)

- Zeitplanung
 - Die Zeitplanung bestimmt anhand des Netzplans die folgenden Werte
 - Früheste und späteste Anfangs- und Endzeitpunkte für die einzelnen Vorgänge des Projekts
 - Projektdauer
 - Zeitreserven (Pufferzeiten)
 - Bemerkung
 - Im Anschluss an die Struktur- und Zeitplanung k\u00f6nnen weitere Phasen mit unterschiedlichem Augenmerk zum Einsatz kommen, z.B.
 - Kapazitätsplanung
 - Kostenplanung

Gliederung

- 4. Netzplantechnik
 - Einführung und grundlegende Definitionen
 - Vorgangsknotennetzpläne
 - Strukturplanung
 - Zeitplanung
 - Stochastische Zeitplanung
 - Vorgangspfeilnetzpläne
 - Struktur- und Zeitplanung
 - Kostenplanung

- Strukturplanung
 - Bei Vorgangskontennetzplänen werden die Vorgänge des Projekts mit Hilfe von Knoten und die Reihenfolgebeziehungen mit Hilfe von gerichteten Kanten dargestellt
 - Vorgang
 - Dauer von Vorgang i
 - Mindestabstand zwischen
 Ende von i und Anfang von j

- Strukturplanung
 - Reihenfolgebeziehungen
 - Die Vorgänge h und k sind die direkten Vorgänger von Vorgang i, d.h. V(i) = {h, k}; die Vorgänge j und l sind die direkten Nachfolger von Vorgang i, d.h. N(i) = {j, l}

Ein Teil von Vorgang i ist der Vorgänger von Vorgang j (Vorgang i wird in die beiden Teilvorgänge i₁ und i₂ unterteilt)

- Strukturplanung
 - Reihenfolgebeziehungen
 - Beginnt und/oder endet ein Projekt zugleich mit mehreren Vorgängen, so führen wir einen Scheinvorgang Beginn und/oder einen Scheinvorgang Ende ein

- Strukturplanung
 - Zeitliche Mindest- und Maximalabstände zwischen Vorgängen

Beschreibung	Bezeichnung	Symbol
Mindestabstand von Ende i bis Anfang j Maximalabstand von Ende i bis Anfang j	Normalfolge	$rac{t_{ij}}{ar{t}_{ij}}$
Mindestabstand von Anfang i bis Anfang j Maximalabstand von Anfang i bis Anfang j	Anfangsfolge	$t^A_{ij} \ ar{t}^A_{ij}$
Mindestabstand von Ende <i>i</i> bis Ende <i>j</i> Maximalabstand von Ende <i>i</i> bis Ende <i>j</i>	Endfolge	$t^E_{ij} \ ar{t}^E_{ij}$
Mindestabstand von Anfang i bis Ende j Maximalabstand von Anfang i bis Ende j	Sprungfolge	$t_{ij}^S \ ar{t}_{ij}^S$

- Strukturplanung
 - Zeitliche Mindest- und Maximalabstände zwischen Vorgängen
 - Es reicht aus sich auf Mindestabstände bei Normalfolgen zu beschränken, da alle anderen Abstände sich in solche transformieren lassen
 - Dabei gelten die folgenden Regeln (mit d_i : Dauer des Vorgangs i)

Gegeben	Transformation in Normalfolge
$ar{t}_{ij}$	$t_{ji} = -\bar{t}_{ij} - d_i - d_j$
t_{ij}^A	$t_{ij} = t_{ij}^A - d_i$
$ar{t}_{ij}^A$	$t_{ji} = -\bar{t}_{ij}^A - d_j$
t^E_{ij}	$t_{ij} = t_{ij}^{\it E} - d_j$
$ar{t}^E_{ij}$	$t_{ji} = -\bar{t}_{ij}^E - d_i$
t_{ij}^S	$t_{ij} = t_{ij}^{S} - d_i - d_j$
$ar{t}_{ij}^{S}$	$t_{ji} = -ar{t}_{ij}^S$

- Strukturplanung
 - Repräsentation von Mindest- und Maximalabständen in Netzplänen
 - Zuerst werden alle Mindest- und Maximalabstände in Mindestabstände bei Normalfolge transformiert
 - Diese Mindestabstände werden dann als Kantenbewertungen an den gerichteten Kanten, die die Reihenfolgebeziehungen repräsentieren, dargestellt
 - Somit lässt sich ein Vorgangsknotennetzplan als (knoten- und kanten-) bewerteter gerichteter Graph mit einer Quelle und einer Senke darstellen

- Strukturplanung
 - Beispiel: Bau eines Hauses
 - Vorgangsliste

i	Vorgang	d_i	V(i)	$t_{hi} (h \in V(i))$	$\bar{t}_{hi} (h \in V(i))$
1	V_1 : Baustelle einrichten	2			
2	V_2 : Bodenplatte betonieren	3	1		
3	V_3 : Wasseranschluss	3	2	-2	
4	V_4 : Maurerarbeiten Rohbau	5	2	1	
5	V₅: Dach	3	4		3
6	V_6 : Wasser- und Elektroinstallation	2	3 4	2 1	
7	V_7 : Isolierung und Außenputz	4	5 6	1	
8	V_8 : Innenausbau	3	3 6		7
9	V ₉ : Einrichtung	2	7 8	1	

- Strukturplanung
 - Beispiel: Bau eines Hauses
 - Damit ergibt sich folgender Netzplan

				Karisruner institt	at fur rechnologie
i	Vorgang	d_i	V(i)	$t_{hi} (h \in V(i))$	$\bar{t}_{hi}(h \in V(i))$
1	V ₁ : Baustelle einrichten	2			
2	V ₂ : Bodenplatte betonieren	3	1		
3	V ₃ : Wasseranschluss	3	2	-2	
4	V ₄ : Maurerarbeiten Rohbau	5	2	1	
5	V₅: Dach	3	4		3
6	V_6 : Wasser- und Elektroinstallation	2	3 4	2 1	
7	V_7 : Isolierung und Außenputz	4	5 6	1	
8	V ₈ : Innenausbau	3	3 6		7
9	V₀: Einrichtung	2	7 8	1	

- Zeitplanung
 - Mit Hilfe des Netzplans, der die Struktur des Projekts wiedergibt, kann man nun eine Zeit- oder Terminplanung durchführen, die die folgenden Werte bestimmt
 - Früheste und späteste Anfangs- und Endzeitpunkte
 - Projektdauer
 - Zeitreserven (Pufferzeiten)

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte
 - Voraussetzungen
 - Netzplan mit n Knoten (Vorgängen) i = 1, ..., n
 - Knoten 1 sei die einzige Quelle und Knoten n die einzige Senke des Netzplans
 - Definitionen
 - Frühestmöglicher Anfangszeitpunkt von Vorgang i
 - Frühestmöglicher Endzeitpunkt von Vorgang i
 - FAZ_1 : = 0 Projekt startet im Zeitpunkt 0

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte
 - Weiterhin definiert man unter der Bedingung, dass das Projekt frühestmöglich beendet sein soll (d.h. zum Zeitpunkt FEZ_n), die folgenden Zeiten

SAZ_i Spätestmöglicher Anfangszeitpunkt von Vorgang i

SEZ_i Spätestmöglicher Endzeitpunkt von Vorgang i

■ $SEZ_n := FEZ_n$ Projekt endet frühestmöglich

- Alle diese Werte lassen sich durch eine sogenannte Vorwärts- und eine Rückwärtsrechnung bestimmen
- Die genaue Ausführung hängt davon ab, ob der Netzplan kreisfrei ist oder nicht

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Kreisfreie Netzpläne
 - In einem kreisfreien Netzplan lassen sich die Knoten (Vorgänge)
 i = 1, ..., n derart durchnummerieren, dass für alle Kanten (i, j) die Beziehung
 i < j gilt</p>
 - Eine solche Sortierung der Knoten nennt man topologisch und einen Netzplan mit entsprechend sortierten Knoten nennt man topologisch sortiert

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Kreisfreie Netzpläne
 - In einem topologisch sortierten Netzplan ergeben sich die Zeiten FAZi und FEZi somit durch folgende Vorwärtsrechnung
 - $FAZ_i := \max\{FEZ_j + t_{ji} \mid j \in V(i)\}$
 - $\blacksquare \quad FEZ_i \coloneqq FAZ_i + d_i$
 - Setzt man nun SEZ_n : = FEZ_n erhält man die Zeiten SAZ_i und SEZ_i durch folgende Rückwärtsrechnung
 - $SAZ_i := SEZ_i d_i$
 - $SEZ_i := \min \{ SAZ_j t_{ij} \mid j \in N(i) \}$

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Kreisfreie Netzpläne
 - Vernachlässigt man im Netzplan des letzten Beispiels die gestrichelten Pfeile, so ergeben sich folgende Anfangs- und Endzeiten

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
FAZ	0	2	3	6	11	12	15	14	20
FEZ	2	5	6	11	14	14	19	17	22
SEZ	2	5	10	11	15	14	19	20	22
SAZ	0	2	7	6	12	12	15	17	20

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Netzpläne mit Kreisen nichtpositiver Länge
 - Zur Berechnung der Zeiten FAZ_i , FEZ_i , SAZ_i und SEZ_i in Netzplänen mit Kreisen nichtpositiver Länge kann man für die Vorwärts- und Rückwärtsrechnung jeweils eine modifizierte Form des Breadth-First-Algorithmus zur Bestimmung kürzester Wege verwenden
 - Aufgrund der Suche nach längsten Wegen, muss nun vorausgesetzt werden, dass alle Kreise keine positive Länge haben
 - Ein Netzplan mit einem Kreis positiver Länge hat keine zulässige Lösung, da er nicht realisierbar ist
 - Die Vorgänge werden in der Datenstruktur Q vom Typ Queue verwaltet

- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Netzpläne mit Kreisen nichtpositiver Länge Breadth-First-Algorithmus für längste Wege von der Quelle

```
Input: Netzplan G = (V, E, t, d) mit V = \{1, 2, ..., n\}, Quelle 1, Senke n, Knotenbewertungen d_i,
       Kantenbewertungen t_{ii}, G hat keine Kreise positiver Länge
begin
  Q_A := 1, Q_E := 1, FAZ(1) := 0, FEZ(1) := d_1, FAZ(i) := -\infty für alle i \ne 1, beendet := false
   repeat
     forall j \in N(Q_A)
        if FAZ(j) < FEZ(Q_A) + t_{Q_Aj}
           FAZ(j) := FEZ(Q_A) + t_{Q_Aj}, FEZ(j) := FAZ(j) + d_i
           if j \notin Q then S(Q_F) := j Q_F := j end
        end
     end
     if Q_A \neq Q_E then Q_A := S(Q_A) else beendet := true end
   until beendet
end
Output: FAZ(i) und FEZ(i) sind früheste Anfangs- bzw. Endzeitpunkte FAZ_i und FEZ_i von Vorgang i
```


- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Netzpläne mit Kreisen nichtpositiver Länge Breadth-First-Algorithmus für längste Wege zur Senke

```
Input: Netzplan G = (V, E, t, d) mit V = \{1, 2, ..., n\}, Quelle 1, Senke n, Knotenbewertungen d_i,
       Kantenbewertungen t_{ij}, G hat keine Kreise positiver Länge, FEZ_n
begin
  Q_A := n, Q_E := n, SEZ(n) := FEZ_n, SAZ(n) := SEZ(n) - d_n, SEZ(i) := \infty für alle i \neq n, beendet := false
   repeat
     forall j \in V(Q_A)
        if SEZ(j) > SAZ(Q_A) - t_{iQ_A}
           SEZ(j) := SAZ(Q_A) - t_{iQ_A}, SAZ(j) := SEZ(j) - d_i
           if j \notin Q then S(Q_F) := j Q_F := j end
        end
     end
     if Q_A \neq Q_E then Q_A := S(Q_A) else beendet := true end
   until beendet
end
Output: SAZ(i) und SEZ(i) sind späteste Anfangs- bzw. Endzeitpunkte SAZ_i und SEZ_i von Vorgang i
```


- Zeitplanung
 - Bestimmung der frühesten und spätesten Zeitpunkte: Netzpläne mit Kreisen nichtpositiver Länge
 - Nach Ausführung des Breadth-First-Algorithmus für längste Wege von der Quelle stehen in FAZ(i) bzw. FEZ(i) die frühesten Anfangs- bzw. Endzeitpunkte FAZ_i bzw. FEZ_i für Vorgang i
 - Nach Ausführung des Breadth-First-Algorithmus für längste Wege zur Senke stehen in SAZ(i) bzw. SEZ(i) die spätesten Anfangs- bzw. Endzeitpunkte SAZ_i bzw. SEZ_i für Vorgang i

Zeitplanung

Bestimmung der frühesten und spätesten Zeitpunkte: Netzpläne mit

Kreisen nichtpositiver Länge

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
FAZ	0	2	4	6	11	12	15	14	20
FEZ	2	5	7	11	14	14	19	17	22
SEZ	2	5	10	11	15	14	19	20	22
SAZ	0	2	7	6	12	12	15	17	20

- Zeitplanung
 - Ein Netzplan mit einem Kreis positiver Länge kann zeitlich nicht konsistent sein, was dazu führt, dass es keine Lösung gibt
 - Ob ein Kreis positiver Länge vorhanden ist oder nicht kann man durch die Häufigkeit der Wertänderung von FAZ(1), ..., FAZ(n) bzw. SEZ(1), ..., SEZ(n) in den Breadth-First-Algorithmen ablesen
 - Ist diese Zahl für einen Knoten größer als n, so liegt ein Kreis positiver Länge vor

- Zeitplanung
 - Kritische Wege und Vorgänge
 - In einem Netzplan bezeichnet man einen längsten Weg von der Quelle zur Senke als (zeit-) kritischen Weg
 - Weiterhin heißen alle Vorgänge auf einem solchen Weg (zeit-) kritische Vorgänge
 - Für diese Vorgänge gilt $FAZ_i = SAZ_i$ und $FEZ_i = SEZ_i$
 - → Wird der Beginn eines kritischen Vorgangs verzögert oder verlängert sich die Vorgangsdauer, so erhöht sich die Projektdauer um denselben Wert

34

- Zeitplanung
 - Pufferzeiten
 - Pufferzeiten sind Zeitspannen, um die der Anfang eines Vorgangs und damit der ganze Vorgang gegenüber einem definierten Zeitpunkt verschoben werden kann bei bestimmter Beeinflussung der zeitlichen Bewegungsmöglichkeiten umgebender Vorgänge
 - Man kann vier verschiedene Arten von Pufferzeiten unterscheiden
 - Gesamte Pufferzeit eines Vorgangs i $GP_i := SEZ_i - FAZ_i - d_i = SAZ_i - FAZ_i$
 - Freie Pufferzeit eines Vorgangs i $FP_i := \min\{FAZ_j t_{ij} \mid j \in N(i)\} FEZ_i$
 - Freie Rückwärtspufferzeit eines Vorgangs i $FRP_i := SAZ_i - \max\{SEZ_i + t_{ii} \mid j \in V(i)\}$
 - Unabhängige Pufferzeit eines Vorgangs i $UP_i := \max\{0, \min\{FAZ_j t_{ij} \mid j \in N(i)\} \max\{SEZ_k + t_{ki} \mid k \in V(i)\} d_i\}$
 - Es gilt $GP_i \ge FP_i \ge UP_i$ und $GP_i \ge FRP_i \ge UP_i$

Zeitplanung

	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8	V_9
GP	0	0	3	0	1	0	0	3	0
FP	0	0	3	0	1	0	0	3	0
FRP	0	0	0	0	1	0	0	3	0
UP	0	0	0	0	1	0	0	0	0

- Zeitplanung
 - Um die wichtigsten Informationen der Zeitplanung im Netzplan zu repräsentieren, kann man für die Knoten in Vorgangsknotennetzplänen die Darstellungsform MPM (Metra Potential Method) wählen

i	d_i			
FAZ_i	SAZ_i			
FEZ_i	SEZ_i			
GP_i				

- Zeitplanung
 - Für das Beispiel ergibt sich der folgende MPM-Netzplan, der die Strukturund Zeitplanung enthält mit farblich gekennzeichnetem kritischen Weg

- Zeitplanung
 - Lineare Optimierung
 - Vorwärts- und Rückwärtsrechnung zur Bestimmung der frühest- und spätestmöglichen Anfangs- und Endzeitpunkte der einzelnen Vorgänge lassen sich auch mit Hilfe von linearen Optimierungsproblemen lösen
 - Dazu sei ein Vorgangsknotennetzplan mit n Knoten gegeben, wobei Knoten 1 die einzige Quelle und Knoten n die einzige Senke ist
 - Weiterhin seien alle Mindest- und Maximalabstände in Mindestabstände bei Normalfolge transformiert

- Zeitplanung
 - Lineare Optimierung: Vorwärtsrechnung
 - Zur Ermittlung der frühesten Anfangszeitpunkte der einzelnen Vorgänge kann man das folgende lineare Problem aufstellen (Variablen FAZ_i für i = 1, ..., n)

min
$$F(FAZ) = \sum_{i=1}^{n} FAZ_{i}$$
s.t.
$$FAZ_{j} + d_{j} + t_{ji} \leq FAZ_{i} \quad i = 2, ..., n, \quad j \in V(i)$$

$$FAZ_{1} = 0$$

$$FAZ_{i} \geq 0 \quad i = 1, ..., n$$

Nach der Lösung dieses linearen Problems erhält man die Werte für die frühesten Endzeitpunkte FEZ_i durch $FEZ_i := FAZ_i + d_i$

- Zeitplanung
 - Lineare Optimierung: Rückwärtsrechnung
 - Zur Ermittlung der spätesten Endzeitpunkte der einzelnen Vorgänge kann man das folgende lineare Problem aufstellen (Variablen SEZ_i für i=1,...,n)

$$\max F(SEZ) = \sum_{i=1}^{n} SEZ_{i}$$
s.t. $SEZ_{j} - d_{j} - t_{ij} \ge SEZ_{i}$ $i = 1, ..., n - 1, \quad j \in N(i)$

$$SEZ_{n} = FEZ_{n}$$

$$SEZ_{i} \ge 0 \quad i = 1, ..., n$$

Nach der Lösung dieses linearen Problems erhält man die Werte für die spätesten Anfangszeitpunkte SAZ_i durch $SAZ_i := SEZ_i - d_i$

Gliederung

- 4. Netzplantechnik
 - Einführung und grundlegende Definitionen
 - Vorgangsknotennetzpläne
 - Strukturplanung
 - Zeitplanung
 - Stochastische Zeitplanung
 - Vorgangspfeilnetzpläne
 - Struktur- und Zeitplanung
 - Kostenplanung

- Für die meisten Vorgänge innerhalb eines Projekts lässt sich die exakte Vorgangsdauer nur schwer vorhersagen
 - → Unsicherheit der Eingabedaten
- Aus diesem Grund wurde ein Verfahren namens PERT (Program Evaluation and Review Technique) entwickelt, welches die folgenden Werte für jeden Vorgang des Projekts benutzt
 - Realistische Schätzung der Vorgangsdauer (Statistik: Schätzung des Modus)
 - Optimistische Schätzung der Vorgangsdauer
 - Pessimistische Schätzung der Vorgangsdauer
- Bei PERT handelt es sich um eine ereignisorientierte Netzplandarstellung (ohne weitere Details)

- 1. Annahme
 - Die Dauer eines Vorgangs i wird mit Hilfe einer Zufallsvariablen Die beschrieben
 - Dabei wird die zugehörige Wahrscheinlichkeitsverteilung als Beta-Verteilung angenommen
 - Aufgrund dieser Annahme kann der Erwartungswert von D_i dann wie folgt approximiert werden

$$\mu_i = \frac{1}{3} \left(2m_i + \frac{1}{2} (a_i + b_i) \right) = \frac{a_i + 4m_i + b_i}{6}$$

- lacktriangle Der Modus m_i wird doppelt gewichtet
- Der Mittelwert $\frac{a_i+b_i}{2}$ wird einfach gewichtet

- 2. Annahme
 - Da sich bei der Beta-Verteilung (aber z.B. auch bei der Normalverteilung), mehr oder weniger die ganze Masse der Verteilung innerhalb des Intervalls

$$(\mu_i - 3\sigma_i, \mu_i + 3\sigma_i)$$

befindet, kann die Varianz von D_i wie folgt approximiert werden

$$\sigma_i^2 = \left(\frac{b_i - a_i}{6}\right)^2$$

Beispiel: Wahrscheinlichkeitsverteilung der Dauer eines Vorgangs

- Beispiel: Bau eines Hauses
 - Vorgangsliste

i	Vorgang	a_i	m_i	b_i	μ_i	σ_i^2
1	V_1 : Baustelle einrichten	1	2	3	2	1/9
2	V_2 : Bodenplatte betonieren	2	2.5	6	3	4/9
3	V_3 : Wasseranschluss	2	3	4	3	1/9
4	V ₄ : Maurerarbeiten Rohbau	1	5.5	7	5	1
5	V₅: Dach	1.5	3	4.5	3	1/4
6	V_6 : Wasser- und Elektroinstallation	1	2	3	2	1/9
7	V_7 : Isolierung und Außenputz	1	4.5	5	4	4/9
8	V_8 : Innenausbau	2	2	8	3	1
9	V_9 : Einrichtung	2	2	2	2	0

 Die Erwartungswerte sind dabei gleich den Vorgangsdauern im deterministischen Fall

- Wahrscheinlichkeitsverteilung der Projektdauer
 - Mit Hilfe der Zufallsvariablen für die einzelnen Vorgänge kann nun auch die gesamte Projektdauer als Zufallsvariable D modelliert werden
 - Dabei sind folgende Fragen zu beantworten
 - Wie groß ist der Erwartungswert (μ) dieser Zufallsvariable?
 - Wie groß ist die Varianz (σ^2) dieser Zufallsvariable?
 - Welche Wahrscheinlichkeitsverteilung hat diese Zufallsvariable?
 - Zur Beantwortung dieser Fragen werden weitere vereinfachende Annahmen getroffen

- Annahme 3
 - Der erwartete zeit-kritische Weg (mean critical path) ist der längste Weg im Netzplan (egal wie lange die einzelnen Vorgänge tatsächlich dauern), wenn alle Vorgänge die Dauer μ_i haben
- Annahme 4
 - Die Zufallsvariablen D_i für die einzelnen Vorgänge sind statistisch unabhängig

- lacktriangle Mit den Annahmen ergeben sich folgende Werte für μ und σ
 - Summe über die Erwartungswerte μ_i der Vorgänge i, die auf dem erwarteten zeit-kritischen Weg liegen
 - Summe der Varianzen σ_i^2 der Vorgänge i, die auf dem erwarteten zeitkritischen Weg liegen
 - Beispiel: Bau eines Hauses
 - Zeit-kritischer Weg wie im deterministischen Fall
 - $\mu = 22$
 - $\sigma^2 = 2\frac{1}{9}$

- Annahme 5
 - **D** ist normalverteilt mit Erwartungswert μ und Varianz σ^2
 - Annahme 5 beruht auf der Anwendung des zentralen Grenzwertsatzes
- Mit Hilfe dieser Annahme kann dann die Wahrscheinlichkeit dafür, dass D eine vorgegebene Zeit d (Deadline) einhält oder nicht, bestimmt werden

$$P(D \le d) = \Phi\left(\frac{d-\mu}{\sigma}\right)$$

■ Dabei ist $\mathcal{N}(0,1)$ die Standardnormalverteilung, deren Werte für die Verteilungsfunktion Φ anhand von Tabellen bestimmt werden können

- Beispiel: Bau eines Hauses
 - Wahrscheinlichkeit, dass Projekt spätestens zum Zeitpunkt d = 22 beendet ist

$$P(D \le 22) = \Phi\left(\frac{22 - \mu}{\sigma}\right) = \Phi(0) = 0.5$$

• Wahrscheinlichkeit, dass Projekt spätestens zum Zeitpunkt d=20 beendet ist

$$P(D \le 20) = \Phi\left(\frac{20 - \mu}{\sigma}\right) = \Phi(-1.38) = 0.0838$$

• Wahrscheinlichkeit, dass Projekt spätestens zum Zeitpunkt d = 24 beendet ist

$$P(D \le 24) = \Phi\left(\frac{24 - \mu}{\sigma}\right) = \Phi(1.38) = 0.916$$

Gliederung

- 4. Netzplantechnik
 - Einführung und grundlegende Definitionen
 - Vorgangsknotennetzpläne
 - Strukturplanung
 - Zeitplanung
 - Stochastische Zeitplanung
 - Vorgangspfeilnetzpläne
 - Struktur- und Zeitplanung
 - Kostenplanung

53

- Struktur- und Zeitplanung
 - In einem Vorgangspfeilnetzplan werden die Vorgänge als (gerichtete) Kanten dargestellt und die Knoten des Netzplans werden als Ereignisse interpretiert
 - Jedem Vorgang wird eine gerichtete Kante mit Anfangs- und Endknoten zugeordnet
 - i Startereignis
 - *j* Endereignis
 - Dauer des Vorgangs
 - Name Name des Vorgangs (z.B. (i, j))
 - Es gilt: Jeder Vorgangsknotennetzplan kann in einen Vorgangspfeilnetzplan überführt werden und umgekehrt
 - Struktur- und Zeitplanung funktionieren ähnlich zu dem für Vorgangsknotennetzpläne vorgestellten Vorgehen
 - → Keine weiteren Details

- Kostenplanung
 - Zusätzlich zur Struktur- und Zeitplanung kann man auch Kosten in die Planung eines Projekts mit einbeziehen
 - Dazu gehen wir von folgenden Annahmen aus
 - Das Projekt sei in der Form eines kreisfreien Vorgangspfeilnetzplans G = (V, E) gegeben, der n Knoten hat und genau eine Quelle (Knoten 1) und eine Senke (Knoten n) besitzt
 - Die Dauer eines Vorgangs ist keine Konstante mehr, sondern kann in gewissen Grenzen variieren

- Kostenplanung
 - Ziel ist die Bestimmung der einzelnen Vorgangsdauern, bei denen die Gesamtkosten des Projekts minimal werden

In diesem Zusammenhang sind zwei Kostenfaktoren gegeneinander abzuwägen

- Vorgangskosten: Je schneller die einzelnen Vorgänge ausgeführt werden, desto höher sind die Bearbeitungskosten
- Projektkosten: Je schneller das Projekt beendet ist, desto niedriger sind diese Kosten (z.B. Opportunitätskosten oder Konventionalstrafen)

- Kostenplanung
 - Minimierung der Vorgangskosten bei gegebener Projektdauer
 - Variablen
 - **Bearbeitungsdauer von Vorgang** (i,j)
 - \blacksquare FZ_i Eintrittszeitpunkt von Ereignis i
 - Parameter
 - l_{ij} Untergrenze für Bearbeitungsdauer von Vorgang (i, j)
 - u_{ij} Obergrenze für Bearbeitungsdauer von Vorgang (i,j)
 - Lineare Kostenfunktion für Vorgang (i, j)
 - $F_{V_{ij}}(d_{ij}) = a_{ij} b_{ij}d_{ij} \text{ mit } a_{ij}, b_{ij} \ge 0$
 - Man nennt die Kosten b_{ij}
 die Beschleunigungskosten des Vorgangs (i, j)

- Kostenplanung
 - Minimierung der Vorgangskosten bei gegebener Projektdauer
 - Lineares Optimierungsproblem

$$\min F(FZ,d) = \sum_{(i,j) \in E} (a_{ij} - b_{ij}d_{ij})$$
s.t. $-FZ_i + FZ_j - d_{ij} \ge 0 \quad (i,j) \in E$

$$-FZ_1 + FZ_n = D$$

$$l_{ij} \le d_{ij} \le u_{ij} \quad (i,j) \in E$$

$$FZ_i, d_{ij} \ge 0 \quad i \in V, (i,j) \in E$$

- Kostenplanung
 - Minimierung der Gesamtkosten des Projekts
 - Bei der Minimierung der Gesamtkosten des Projekts werden Vorgangs- und Projektkosten berücksichtigt
 - Dabei kann man die Projektkosten z.B. mit Hilfe der linearen Kostenfunktion f + gD ausdrücken, wobei f fixe und g variable Kosten sind
 - Weiterhin ist D eine Variable für die Projektdauer
 - Die Gesamtkostenfunktion kann man dann als Zielfunktion verwenden

- Kostenplanung
 - Minimierung der Gesamtkosten des Projekts
 - Lineares Optimierungsproblem

$$\min F(FZ, d, D) = \sum_{(i,j) \in E} (a_{ij} - b_{ij}d_{ij}) + f + gD$$
s.t. $-FZ_i + FZ_j - d_{ij} \ge 0 \quad (i,j) \in E$

$$-FZ_1 + FZ_n = D$$

$$l_{ij} \le d_{ij} \le u_{ij} \quad (i,j) \in E$$

$$FZ_i, d_{ij}, D \ge 0 \quad i \in V, (i,j) \in E$$

- Kostenplanung
 - Minimierung der Gesamtkosten des Projekts Beispiel
 - Projekt mit 5 Vorgängen
 - Kantenbewertungen [l_{ij}, u_{ij}] geben die Unter- und Ober- grenzen der Vorgangsdauern an

- Vorgangsdauerabhängige Kostenfunktionen
 - Für Vorgänge (1,2) und (2,4): $7 d_{ij}$
 - Für Vorgänge (1,3) und (3,4): $11 2d_{ij}$
 - Für den Vorgang (2,3) sind die Kosten immer gleich 4
- Annahme: Projektkosten sind durch 1.5D gegeben
- Gesamtkostenfunktion

$$F(d,D) = 4 + 7 - d_{12} + 7 - d_{24} + 11 - 2d_{13} + 11 - 2d_{34} + 1.5D$$

= $40 - d_{12} - d_{24} - 2d_{13} - 2d_{34} + 1.5D$

$$(1,2) / (2,4)$$
: $7 - d_{ij}$
 $(1,3) / (3,4)$: $11 - 2d_{ij}$
 $(2,3)$: 4

- Kostenplanung
 - Minimierung der Gesamtkosten des Projekts Beispiel
 - Lineares Optimierungsproblem

$$\min \ 40 - d_{12} - d_{24} - 2d_{13} - 2d_{34} + 1.5D$$
 s.t. $-FZ_1 + FZ_2 - d_{12} \ge 0$
$$-FZ_1 + FZ_3 - d_{13} \ge 0$$

$$-FZ_2 + FZ_3 - 4 \ge 0$$

$$-FZ_2 + FZ_4 - d_{24} \ge 0$$

$$-FZ_3 + FZ_4 - d_{34} \ge 0$$

$$3 \le d_{12}, d_{24} \le 6$$

$$2 \le d_{13}, d_{34} \le 4$$

$$-FZ_1 + FZ_4 - D = 0$$

$$FZ_1, \dots, FZ_4, d_{12}, \dots, d_{24}, D \ge 0$$

Optimale Lösung (z.B. via CPLEX Optimization Studio):

$$D = 11$$
, $d_{12} = 3$, $d_{13} = 4$, $d_{24} = 6$, $d_{34} = 4$, $FZ_1 = 0$, $FZ_2 = 3$, $FZ_3 = 7$, $FZ_4 = 11$