DM 16 : un corrigé

Partie I : applications bilinéaires

- 1°) \diamond Pour tout $x, y, z, t \in \mathbb{R}$ et pour tout $\alpha \in \mathbb{R}$, on a bien : $(\alpha x + y)z = \alpha(xz) + (yz)$ et $x(\alpha z + t) = \alpha(xz) + (xt)$. Ainsi, $(x, y) \longmapsto xy$ est une application bilinéaire de \mathbb{R}^2 dans \mathbb{R} .
- \diamond On suppose que A est une \mathbb{K} -algèbre. Alors le calcul précédent est encore valable : Pour tout $x, y, z, t \in A$ et pour tout $\alpha \in \mathbb{K}$, on a bien : $(\alpha x + y)z = \alpha(xz) + (yz)$ et $x(\alpha z + t) = \alpha(xz) + (xt) : (x, y) \longmapsto xy$ est une application bilinéaire de A^2 dans A.
- **2°)** Soit $f_0, f_1 \in E, g_0, g_1 \in F$ et $\alpha \in \mathbb{C}$.

$$b(\alpha f_0 + f_1, g_0) = \int_0^1 (\alpha f_0(t) + f_1(t))(g_0(t) + 2g_0'(t)) dt$$

$$= \alpha \int_0^1 f_0(t)(g_0(t) + 2g_0'(t)) dt + \int_0^1 f_1(t)(g_0(t) + 2g_0'(t)) dt$$

$$= \alpha b(f_0, g_0) + b(f_1, g_0), \text{ et}$$

$$b(f_0, \alpha g_0 + g_1) = \int_0^1 f_0(t)(\alpha g_0(t) + 2\alpha g_0'(t) + g_1'(t) + 2g_1'(t)) dt$$

$$= \alpha \int_0^1 f_0(t)(g_0(t) + 2g_0'(t)) dt + \int_0^1 f_0(t)(g_1(t) + 2g_1'(t)) dt$$

$$= \alpha b(f_0, g_0) + b(f_0, g_1),$$

donc b est bien une application bilinéaire.

3°) D'après le cours, l'ensemble $\mathcal{F}(E \times F, G)$ des applications de $E \times F$ dans G est un \mathbb{K} -espace vectoriel, car G est un \mathbb{K} -espace vectoriel. Montrons que B(E, F; G) est un sous-espace vectoriel de $\mathcal{F}(E \times F, G)$.

Déjà, l'application identiquement nulle est clairement bilinéaire, donc $B(E, F; G) \neq \emptyset$. Soit $f, g \in B(E, F; G)$ et $\alpha \in \mathbb{K}$.

Soit $x, y \in E$, $z, t \in F$ et $\beta \in \mathbb{K}$.

$$(\alpha f + g)(\beta x + y, z) = \alpha f(\beta x + y, z) + g(\beta x + y, z)$$

$$= \alpha (\beta f(x, z) + f(y, z)) + \beta g(x, z) + g(y, z) \text{ et}$$

$$\beta (\alpha f + g)(x, z) + (\alpha f + g)(y, z) = \beta \alpha f(x, z) + \beta g(x, z) + \alpha f(y, z) + g(y, z),$$

donc $(\alpha f + g)(\beta x + y, z) = \beta(\alpha f + g)(x, z) + (\alpha f + g)(y, z).$

De même, on montre que $(\alpha f + g)(x, \beta z + t) = \beta(\alpha f + g)(x, z) + (\alpha f + g)(x, t)$, donc $\alpha f + g \in B(E, F; G)$, ce qu'il fallait démontrer.

4°) Lorsque $b \in B(E, F; G)$ et $x \in E$, notons b(x, .) l'application de F dans G définie par : pour tout $y \in F$, b(x, .)(y) = b(x, y).

```
Pour tout z, t \in F et \alpha \in \mathbb{K},
b(x,.)(\alpha z + t) = b(x,\alpha z + t) = \alpha b(x,z) + b(x,t) = \alpha b(x,.)(z) + b(x,.)(t),
donc b(x,.) \in L(F,G).
Ainsi, l'application \varphi(b): x \longmapsto b(x, .) est une application de E dans L(F, G).
Vérifions que \varphi(b) est linéaire : soit x, y \in E et \alpha \in \mathbb{K}. Pour tout z \in F,
[\varphi(b)(\alpha x + y)](z) = b(\alpha x + y, z) = \alpha b(x, z) + b(y, z) = [\alpha \varphi(b)(x) + \varphi(b)(y)](z), donc
\varphi(b)(\alpha x + y) = \alpha \varphi(b)(x) + \varphi(b)(y).
Ainsi \varphi est une application de B(E, F; G) dans L(E, L(F, G)).
Il reste à montrer que c'est un isomorphisme.
Soit b, b' \in B(E, F; G) et \alpha \in \mathbb{K}. Pour tout (x, y) \in E \times F,
\varphi(\alpha b + b')(x)(y) = (\alpha b + b')(x, y) = \alpha b(x, y) + b'(x, y) = [\alpha \varphi(b) + \varphi(b')](x, y), \text{ donc } \varphi
est linéaire.
Soit b \in \text{Ker}\varphi. Pour tout (x,y) \in E \times F, 0 = \varphi(b)(x)(y) = b(x,y), donc b = 0. Ainsi,
\text{Ker}\varphi = \{0\}, \text{ donc } \varphi \text{ est injective.}
Soit \ell \in L(E, L(F, G)). Pour tout (x, y) \in E \times F, posons b(x, y) = \ell(x)(y). On vérifie
que b est bilinéaire de E \times F dans G. De plus, pour tout (x,y) \in E \times F,
```

 $\varphi(b)(x)(y) = b(x,y) = \ell(x)(y)$, donc $\varphi(b) = \ell$, ce qui prouve que φ est surjective. On a donc montré que l'application $b \longmapsto (x \longmapsto b(x,.))$ est un isomorphisme de

Partie II: unicité du produit tensoriel

B(E, F; G) dans L(E, L(F, G)).

- 5°) Soit G un \mathbb{K} -espace vectoriel. Lorsque $\ell \in L(P,G)$, u étant une application de $E \times F$ dans P, par composition, $\ell \circ u$ est une application de $E \times F$ dans G. De plus, $\ell \circ u$ est bien une application bilinéaire : en effet, pour tout $x,y \in E, z,t \in F$ et $\alpha \in \mathbb{K}$, $\ell \circ u(\alpha x + y,z) = \ell(\alpha u(x,z) + u(y,z)) = \alpha \ell(u(x,z)) + \ell(u(y,z))$, pour bilinéarité de u puis par linéarité de ℓ , donc $\ell \circ u(\alpha x + y,z) = \alpha \ell \circ u(x,z) + \ell \circ u(y,z)$. De même, on vérifie que $\ell \circ u(x,\alpha z + t) = \alpha \ell \circ u(x,z) + \ell \circ u(x,t)$. Ainsi $\varphi : \ell \longmapsto \ell \circ u$ est une application de L(P,G) dans B(E,F;G). Il reste à montrer qu'elle est linéaire. Soit $\ell,\ell' \in L(P,G)$ et $\alpha \in \mathbb{K}$. Pour tout $(x,y) \in E \times F$, $\varphi(\alpha \ell + \ell')(x,y) = (\alpha \ell + \ell')(u(x,y)) = \alpha \ell(u(x,y)) + \ell'(u(x,y)) = [\alpha \varphi(\ell) + \varphi(\ell')](x,y)$, ce qu'il fallait démontrer.
- 6°) D'après l'énoncé, P muni de u est un produit tensoriel de E par F si et seulement si, pour tout \mathbb{K} -espace vectoriel G, pour toute application bilinéaire b de $E \times F$ dans G, il existe une unique application linéaire ℓ de P dans G telle que $b = \ell \circ u$.
- \diamond Supposons que P' muni de u' est un produit tensoriel de E par F. u' est une application bilinéaire de $E \times F$ dans P', donc en appliquant l'affirmation précédente avec G = P' et b = u', il existe une application linéaire h de P dans P' telle que $u' = h \circ u$.

Mais (P, u) et (P', u') jouent des rôles symétriques, donc il existe également une application linéaire h' de P' dans P telle que $u = h' \circ u'$.

On en déduit que $u = h' \circ h \circ u = Id_P \circ u$, or d'après la propriété énoncée en début de question avec G = P et b = u il existe une unique application h'' de P dans P telle que $u = h'' \circ u$, donc $h' \circ h = Id_P$. Par symétrie, on obtient également que $h \circ h' = Id_{P'}$, donc h est une bijection linéaire, c'est un isomorphisme de P dans P'.

 $\diamond~$ Supposons qu'il existe un isomorphisme h de P et P' tel que $u'=h\circ u.$

Soit G un \mathbb{K} -espace vectoriel.

Notons
$$\varphi_0: L(P,G) \longrightarrow B(E,F;G)$$
 et $\varphi_1: L(P',G) \longrightarrow B(E,F;G)$
 $\ell \longmapsto \ell \circ u$ et $\ell \circ h \circ u$.

On sait que φ_0 est un isomorphisme et il s'agit de montrer que φ_1 est un isomorphisme.

Notons
$$\Psi: L(P',G) \longrightarrow L(P,G)$$

 $\ell' \longmapsto \ell' \circ h$

Pour tout $\ell' \in L(P',G)$, $\varphi_0 \circ \Psi(\ell') = \varphi_0(\ell' \circ h) = \ell' \circ h \circ u = \varphi_1(\ell')$, donc $\varphi_1 = \varphi_0 \circ \Psi$, et il suffit de montrer que Ψ est un isomorphisme. C'est clair car on vérifie que Ψ est bien linéaire et que si l'on note $\Psi' = (\ell \longmapsto \ell \circ h^{-1})$, alors $\Psi \circ \Psi' = Id_{L(P,G)}$ et $\Psi' \circ \Psi = Id_{L(P',G)}$.

Partie III: quotient d'espaces vectoriels

7°) Pour tout $x \in E$, $x - x = 0 \in F$, car F est un sous-espace vectoriel, donc x R x, ce qui prouve que R est réflexive.

Soit $x, y \in E$ tels que x R y. Alors $y - x = -(x - y) \in F$ car $x - y \in F$ et car F est un sous-espace vectoriel, donc y R x, ce qui prouve que R est symétrique.

Soit $x, y, z \in E$ tels que x R y et y R z. Alors $x - y \in F$ et $y - z \in F$, or F est stable pour l'addition, donc $x - z = x - y + y - z \in F$. Ainsi, x R z, ce qui prouve que R est transitive.

On a donc montré que R est une relation d'équivalence.

 8°)

 \diamond Pour montrer que cette définition de l'addition dans E/F est correcte, il faut établir que la quantité $\overline{x+y}$ dépend seulement de \overline{x} et de \overline{y} , c'est-à-dire que si $\overline{x'}=\overline{x}$ et $\overline{y'}=\overline{y}$, alors $\overline{x'+y'}=\overline{x+y}$. C'est vrai car si $\overline{x'}=\overline{x}$ et $\overline{y'}=\overline{y}$, alors $x-x'\in F$ et $y-y'\in F$, donc $(x+y)-(x'+y')=(x-x')+(y-y')\in F$ puis $\overline{x'+y'}=\overline{x+y}$.

De même, il faut montrer que $\overline{\alpha x}$ ne dépend que de \overline{x} (et de α) : supposons que $\overline{x} = \overline{x'}$. Alors $x - x' \in F$, mais F est un sous-espace vectoriel, donc $\alpha(x - x') \in F$, puis $\overline{\alpha x} = \overline{\alpha x'}$.

Il est clair que pour tout $x, y \in E$ et $\alpha \in \mathbb{K}$, $\overline{x} + \overline{y} \in E/F$ et $\alpha \overline{x} \in E/F$.

- \diamond Les propriétés caractéristiques d'un K-espace vectoriel pour E/F se déduisent alors facilement de celles de E :
 - Pour tout $x, y, z \in E$, $\overline{x} + (\overline{y} + \overline{z}) = \overline{x + (y + z)} = \overline{(x + y) + z}$, car l'addition dans E est associative, donc $\overline{x} + (\overline{y} + \overline{z}) = (\overline{x} + \overline{y}) + \overline{z}$. Ainsi l'addition dans E/F est aussi associative.
 - De même, on montre la commutativité : $\overline{x} + \overline{y} = \overline{y} + \overline{x}$.
 - Pour tout $x \in E$, $\overline{0} + \overline{x} = \overline{x}$, donc $\overline{0}$ est neutre.

— Pour tout $x \in E$, $\overline{x} + \overline{-x} = \overline{0}$, donc $\overline{-x}$ est le symétrique de \overline{x} , ce qui permettra d'écrire que $\overline{-x} = -\overline{x}$.

On a ainsi montré que (E/F, +) est un groupe abélien.

De plus, on vérifie facilement que, pour tout $x, y \in E$, pour tout $\alpha, \beta \in \mathbb{K}$,

- $-\alpha(\overline{x}+\overline{y})=(\alpha\overline{x})+(\alpha\overline{y}),$
- $-(\alpha+\beta)\overline{x}=(\alpha\overline{x})+(\beta\overline{x}),$
- $-(\alpha\beta)\overline{x} = \alpha(\beta\overline{x})$ et
- $-1_{\mathbb{K}}\overline{x}=\overline{x}.$

Ainsi, (E/F, +, .) est bien un K-espace vectoriel.

9°) Posons $f:\ G\longrightarrow E/F \atop x\longmapsto \overline{x}$. D'après la question précédente, pour tout $x,y\in G$

et $\alpha \in \mathbb{K}$, $f(\alpha x + y) = \alpha f(x) + f(y)$, donc f est une application linéaire.

Soit $x \in \text{Ker } f$. Alors $\overline{x} = 0 = \overline{0}$, donc $x \in F$. Ainsi, $x \in F \cap G = \{0\}$, donc $\text{Ker } f = \{0\}$, ce qui prouve que f est injective.

Soit $z \in E/F$. Il existe $x \in E$ tel que $z = \overline{x}$. Mais E = F + G, donc il existe $y \in F$ et $t \in G$ tel que x = y + t. Alors $z = \overline{y} + \overline{t} = \overline{t}$, car $y \in F$ donc $\overline{y} = \overline{0} = 0$. Ainsi, z = f(t), ce qui prouve que f est surjective.

Ainsi f est un isomorphisme de G sur E/F, ce qu'il fallait démontrer.

 10°)

puis
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$
. Ainsi $F \cap G = \{0\}$.

$$\Rightarrow \text{ Soit } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3. \text{ On cherche } \lambda \in \mathbb{R} \text{ et } a, b \in \mathbb{R} \text{ tels que}$$

$$X = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} a \\ b \\ -a - b \end{pmatrix}. \text{ On doit avoir } \lambda + a = x, \ \lambda + b = y \text{ et } \lambda - a - b = z. \text{ En}$$

sommant ces trois égalités, on obtient $3\lambda = x + y + z$.

Posons donc $\lambda = \frac{1}{3}(x+y+z)$, $a=x-\lambda$ et $b=y-\lambda$. Alors, on vérifie que $\lambda + a = x$, $\lambda + b = y$ et $\lambda - a - b = z$: pour la dernière égalité,

$$\lambda + b = y$$
 et $\lambda - a - b = z$. Pour la definere égante, $\lambda - a - b = \frac{1}{3}(x + y + z) - (x - \frac{1}{3}(x + y + z) - (y - \frac{1}{3}(x + y + z)) = z$.

Ainsi,
$$X = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} a \\ b \\ -a - b \end{pmatrix} \in G + F$$
, donc $E = F + G$. On a vu que $F \cap G = \{0\}$,

donc
$$E/F = \operatorname{Im}(f) = f(G) = \{f(\lambda e) / \lambda \in \mathbb{R}\}, \text{ en posant } e = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Ainsi, $E/F = \{\lambda \overline{e} / \lambda \in \mathbb{R}\}$, donc E/F est l'espace vectoriel engendré par le vecteur \overline{e} . Or $e \neq 0$ et f est injective, donc $\overline{e} \neq 0$, ce qui prouve que E/F est bien une droite vectorielle.

Partie IV: existence du produit tensoriel

11°) D'après le cours, \mathbb{K}^I est un \mathbb{K} -espace vectoriel, donc il s'agit de montrer que $\mathbb{K}^{(I)}$ est un sous-espace vectoriel de \mathbb{K}^I .

La famille nulle appartient à $\mathbb{K}^{(I)}$, donc $\mathbb{K}^{(I)} \neq \emptyset$.

Soit $((a_i), (b_i), \alpha) \in \mathbb{K}^{(I)} \times \mathbb{K}^{(I)} \times \mathbb{K}$.

Soit $i \in I$. Si $a_i = 0$ et $b_i = 0$, alors $\alpha a_i + b_i = 0$. La contraposée de cette implication est: $\forall i \in I \ [\alpha a_i + b_i \neq 0 \Longrightarrow (a_i \neq 0 \text{ ou } b_i \neq 0)], \text{ donc}$

 $\{i \in I/\alpha a_i + b_i \neq 0\} \subset (\{i \in I/a_i \neq 0\} \cup \{i \in I/b_i \neq 0\}), \text{ ainsi } \{i \in I/\alpha a_i + b_i \neq 0\}$ est fini, ce qui prouve que $\alpha(a_i) + (b_i) \in \mathbb{K}^{(I)}$, ce qu'il fallait démontrer.

12°) \diamond Soit $(\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}$. $\sum_{i \in I} \alpha_i c_i = \sum_{\substack{i \in I \text{tel que } \alpha_i \neq 0}} \alpha_i (\delta_{i,j})_{j \in I}$. Il s'agit bien d'une somme finie, donc $\sum_{i \in I} \alpha_i c_i = \left(\sum_{\substack{i \in I \text{que } \alpha_i \neq 0}} \alpha_i \delta_{i,j}\right)_{j \in I} = (\alpha_j)_{j \in I} = (\alpha_i)_{i \in I}$.

finie, donc
$$\sum_{i \in I} \alpha_i c_i = \left(\sum_{\substack{i \in I \\ \text{tel que } \alpha_i \neq 0}} \alpha_i \delta_{i,j}\right)_{j \in I} = (\alpha_j)_{j \in I} = (\alpha_i)_{i \in I}.$$

 \diamond Soit $x = (x_i)_{i \in I} \in \mathbb{K}^{(I)}$. Pour tout $(\alpha_i) \in \mathbb{K}^{(I)}$, on vient de montrer que

 $x = \sum_{i \in I} \alpha_i c_i \iff x = (\alpha_i)_{i \in I}$, donc cela prouve l'existence et l'unicité d'une famille

 $(\alpha_i) \in \mathbb{K}^{(I)}$ telle que $x = \sum_{i \in I} \alpha_i c_i,$ ce qu'il fallait démontrer.

13°) Notons $u: E \times F \longrightarrow P \atop (e,f) \longmapsto \overline{c_{e,f}}$. Soit $e,e' \in E, f \in F$ et $\alpha \in \mathbb{K}$. $u(\alpha e + e', f) = \overline{c_{\alpha e + e', f}}$, or $c_{\alpha e + e', f} - \alpha c_{e, f} - c_{e', f} \in A_1 \subset S$, donc

 $0 = \overline{c_{\alpha e + e', f} - \alpha c_{e, f} - c_{e', f}} = \overline{c_{\alpha e + e', f}} - \alpha \overline{c_{e, f}} - \overline{c_{e', f}} = \overline{u(\alpha e + e', f)} - \alpha u(e, f) - u(e', f)$ On a donc prouvé que $u(\alpha e + e', f) = \alpha u(e, f) + u(e', f)$.

De même on montre que $u(e, \alpha f + f') = \alpha u(e, f) + u(e, f')$, donc u est bilinéaire.

14°) Soit G un K-espace vectoriel et $b \in B(E, F; G)$. Il s'agit de montrer qu'il existe une unique application linéaire $\ell \in L(P,G)$ telle que $b = \ell \circ u$.

 \diamond Commençons par l'unicité : supposons que $\ell, \ell' \in L(P,G)$ et $b = \ell \circ u = \ell' \circ u$. Alors, pour tout $(x,y) \in E \times F$, $\ell(\overline{c_{x,y}}) = \ell'(\overline{c_{x,y}})$, donc $\overline{c_{x,y}} \in \operatorname{Ker}(\ell - \ell')$. On en déduit que $\operatorname{Ker}(\ell - \ell')$ contient $V = \operatorname{Vect}(\{\overline{c_{x,y}} / (x,y) \in E \times F\})$, or $V = \left\{\sum_{(x,y) \in E \times F} \alpha_{x,y} \overline{c_{x,y}} / (\alpha_{x,y}) \in \mathbb{K}^{(E \times F)}\right\} = \left\{\sum_{(x,y) \in E \times F} \alpha_{x,y} \overline{c_{x,y}} / (\alpha_{x,y}) \in \mathbb{K}^{(E \times F)}\right\}$

or
$$V = \left\{ \sum_{(x,y) \in E \times F} \alpha_{x,y} \overline{c_{x,y}} / (\alpha_{x,y}) \in \mathbb{K}^{(E \times F)} \right\} = \left\{ \sum_{(x,y) \in E \times F} \alpha_{x,y} \overline{c_{x,y}} / (\alpha_{x,y}) \in \mathbb{K}^{(E \times F)} \right\}$$

donc $V = {\overline{X} / X \in Q}$, car $(c_{x,y})_{(x,y) \in E \times F}$ est une base de Q. Ainsi, V = P, donc $\operatorname{Ker}(\ell - \ell') = P$, donc $\ell - \ell' = 0$, ce qui prouve l'unicité.

Montrons que
$$L$$
 est linéaire : Soit $X = (\alpha_{x,y}) \in Q$, $Y = (\beta_{x,y}) \in Q$ et $\lambda \in \mathbb{K}$.
$$L(\lambda X + Y) = L((\lambda \alpha_{x,y} + \beta_{x,y})) = \sum_{(x,y) \in E \times F} (\lambda \alpha_{x,y} + \beta_{x,y}) b(x,y) = \lambda L(X) + L(Y).$$

Montrons que $S \subset \text{Ker}(L)$: Soit $e, e' \in E, f \in F$ et $\alpha \in \mathbb{K}$. Par linéarité de L, $L(c_{\alpha e+e',f} - \alpha c_{e,f} - c_{e',f}) = L(c_{\alpha e+e',f}) - \alpha L(c_{e,f}) - L(c_{e',f})$, puis par définition de L, $L(c_{\alpha e+e',f} - \alpha c_{e,f} - c_{e',f}) = b(\alpha e + e',f) - \alpha b(e,f) - b(e',f)$, or b est bilinéaire, donc $c_{\alpha e + e', f} - \alpha c_{e, f} - c_{e', f} \in \text{Ker}(L).$

De même, on montre que, pour tout $e \in E$, $f, f' \in F$ et $\alpha \in \mathbb{K}$,

 $c_{e,\alpha f+f'} - \alpha c_{e,f} - c_{e,f'} \in \text{Ker}(S)$, donc Ker(S) contient $\text{Vect}(A_1 \cup A_2) = S$.

Ainsi, pour tout $X,Y \in Q$ tels que $\overline{X} = \overline{Y}, X - Y \in S$, donc L(X - Y) = 0, donc L(X) = L(Y). Ainsi, L(X) ne dépend que de \overline{X} , donc on peut poser, pour tout $X \in Q$, $\ell(\overline{X}) = L(X)$. Ceci définit une application ℓ de P dans G. Montrons que ℓ convient.

Pour tout $X, Y \in Q$ et $\alpha \in \mathbb{K}$,

$$\ell(\alpha \overline{X} + \overline{Y}) = \ell(\overline{\alpha X} + \overline{Y}) = L(\alpha X + Y) = \alpha L(X) + L(Y) = \alpha \ell(\overline{X}) + \ell(\overline{Y}),$$

donc $\ell \in L(P, G)$.

Soit $(x,y) \in E \times F$. $\ell \circ u(x,y) = \ell(\overline{c_{x,y}}) = L(c_{x,y}) = b(x,y)$, donc $\ell \circ u = b$, ce qu'il fallait démontrer.

$Partie\ V: Newton \iff Leibniz$

15°) Par récurrence sur n, on montre que, pour tout $n \in \mathbb{N}$ et $t \in \mathbb{R}$, $\frac{d^n}{dt^n}(e^{at}) = a^n e^{at}$. Posons $f(t) = e^{at}$ et $g(t) = e^{bt}$. Soit $n \in \mathbb{N}$.

Partons de la formule de Leibniz : pour tout $t \in \mathbb{R}$, $(fg)^{(n)}(t) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(t)g^{(n-k)}(t)$,

or
$$fg(t) = e^{(a+b)t}$$
, donc on obtient : $(a+b)^n e^{(a+b)t} = \sum_{k=0}^n \binom{n}{k} a^k e^{at} b^{n-k} e^{bt}$. On en déduit

la formule du binôme de Newton en simplifiant par $e^{(a+b)t}$, qui est bien non nul.

- 16°) L'application $(f,g) \mapsto f' \otimes g$ est clairement bilinéaire de $E \times E$ dans $E \otimes E$, donc par définition du produit tensoriel, il existe une unique application linéaire d_1 de $E \otimes E$ dans $E \otimes E$ telle que, pour tout $(f,g) \in E^2$, $d_1(f \otimes g) = f' \otimes g$. Un raisonement similaire établit l'existence et l'unicité de d_2 et de p.
- 17°) Soit $f, g \in E$. $dp(f \otimes g) = d(fg) = f'g + fg'$ et $p(d_1+d_2)(f\otimes g)=p(f'\otimes g+f\otimes g')=f'g+fg'$, par linéarité de p, donc pour tout $f, g \in E, dp(f \otimes g) = p(d_1 + d_2)(f \otimes g).$

Or d'après la question 14, avec les notations de cette question, pour tout $z \in P = E \otimes F$, il existe $(\alpha_{x,y})_{(x,y)\in E\times F}$

tel que
$$z = \overline{(\alpha_{x,y})_{(x,y)\in E\times F}} = \overline{\sum_{(x,y)\in E\times F} \alpha_{x,y} c_{x,y}} = \sum_{(x,y)\in E\times F} \alpha_{x,y} \overline{c_{x,y}},$$

donc $z = \sum_{(x,y)\in E\times F} \alpha_{x,y} x\otimes y.$

Ainsi, avec les notations de la question actuelle, $E \otimes E = \text{Vect}(\{f \otimes g \ / \ f, g \in E\})$. Or on vient de voir que $\text{Ker}(dp - p(d_1 + d_2))$ contient $\{f \otimes g \ / \ f, g \in E\}$, donc il contient $E \otimes E$. Ainsi, $dp - p(d_1 + d_2) = 0$.

On a donc prouvé que $dp = p(d_1 + d_2)$. On en déduit alors facilement par récurrence sur n que, pour tout $n \in \mathbb{N}$, $d^n p = p(d_1 + d_2)^n$.

18°) Pour tout $f, g \in E$, $d_1d_2(f \otimes g) = d_1(f \otimes g') = f' \otimes g' = d_2d_1(f \otimes g)$. Ainsi, $\operatorname{Ker}(d_1d_2 - d_2d_1)$ contient $\{f \otimes g \mid f, g \in E\}$ et comme précédemment, on en déduit que $d_1d_2 = d_2d_1$. On peut donc appliquer la formule du binôme de Newton à $(d_1 + d_2)^n$

dans l'anneau
$$(L(E \otimes E), +, \circ)$$
: si l'on fixe $n \in \mathbb{N}$, $(d_1 + d_2)^n = \sum_{k=0}^n \binom{n}{k} d_1^k d_2^{n-k}$.

On en déduit alors la formule de Leibniz : pour tout $f,g\in E$

$$(fg)^n = d^n p(f \otimes g) = p(d_1 + d_2)^n (f \otimes g) = p\Big(\sum_{k=0}^n \binom{n}{k} d_1^k d_2^{n-k}\Big) (f \otimes g),$$

donc
$$(fg)^n = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$$
.