Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №2 Вариант 2

Численное решение нелинейных уравнений и систем

Выполнил:

Брагин Роман Андреевич

Проверил:

Рыбаков Степан Дмитриевич

г. Санкт-Петербург 2025

1) Вычислительная реализация задачи:

Нелинейное уравнение: $f(x) = -1,38 x^3 - 5,42 x^2 + 2,57 x + 10,95$

1) Графическое отделение корней:

Определим интервалы изоляции корней табличным способом:

x	f(x)
-4.0	2.2700
-3.5	-5.2725
-3.0	-8.2800
-2.5	-7.7875
-2.0	-4.8300
-1.5	-0.4425
-1.0	4.3400
-0.5	8.4825
0.0	10.9500
0.5	10.7075
1.0	6.7200
1.5	-2.0475
2.0	-16.63

По этой таблице мы получили 3 интервала (-4,-3.5),(-1.5,-1),(1,1.5)

Уточним корни через методы:

1)Для уточнения правого корня используем метод *Простой итерации*

Проверим условие сходимости метода на выбранном промежутке:

Правый промежуток (1,1.5)

$$f(x) = -1,38 x^{3} - 5,42 x^{2} + 2,57 x + 10,95 = 0$$

$$f'(x) = -4.14x^{2} - 10.84x + 2.57$$

$$f'(a) = -12.41 < 0, f'(b) = -23.005 < 0$$

$$max(|f'(a)|, |f'(b)|) = 23,005 \rightarrow \lambda = \frac{1}{max} \frac{1}{(|f'(x)|)} = \frac{1}{23,005}$$

$$\varphi(x) = x + \lambda f(x) = x + \frac{-1,38x^{3} - 5,42x^{2} + 2,57 x + 10,95}{23,005}$$

$$\varphi'(x) = 1 + \lambda f'(x) = 1 + \frac{-4,14x^{2} - 10,84x + 2,57}{23,005}$$

На отрезке начального приближения [1, 1.5] функция $\varphi(x)$ определена, непрерывна и дифференцируема.

$$|\varphi'(a)| = 0.461$$

 $|\varphi'(b)| = 0$
 $|\varphi'(x)| \le q$, $z \partial e q = 0.461$

 $0 \le q < 1 \to$ итерационная последовательность сходится, скорость сходимости высокая, $0 \le q < 0.5 \to$ критерий окончания итерационного процесса $|x_{k+1} - x_k| \le \varepsilon$,

Nº	X _k	X _{k+1}	$f(x_{k+1})$	X _{k+1} - X _k
1	1.500	1.411	-0.091	0.089
2	1.411	1.40704	-0.00834798	0.00396
3	1.40704	1.40668	-0.000833168	0.00036
4	1.40668	1.40664	0.00000163104	0.00004

Правый корень $x_3 = 1.4$

2)Для уточнения левого корня используем Метод хорд

$$(-4, -3.5)$$

Используем формулу метода Хорд:

$$x_0 = a - \frac{b - a}{f(b) - f(a)} f(a)$$

Nº	а	b	x	f(a)	f(b)	f(x)	$x_{k+1}-x$
1	-4.0	-3.5	-3.8495	2.27	-5.2725	-0.54	0.1505
2	-4.0	-3.8495	-3.8785	2.27	-0.54	0.01	0.0290
3	-3.8785	-3.8495	-3.879	0.01	-0.54	-0.002	0.0005
4	-3.8785	-3.879	-3.879	0.01	-0.002	0.0001	0.0000

<u>Левый корень</u> $x_1 = -3.87$

3)Для уточнения центрального корня используем Метод секущих

$$(-1.5, -1)$$

Используем формулу метода Секущих:
$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$$

Nº	x_{k-1}	x_k	x_{k+1}	$f(x_{k-1})$	$f(x_k)$	$x_{k+1} - x_k$
1	-1.5	-1.0	-1.4537	-0.4425	4.34	0.4537
2	-1.0	-1.4537	-1.4537	4.34	0.0	0.0

<u>Центральный корень</u> $x_1 = -1.45$

Итог: если посмотреть на график, то все корни совпадают с точностью $\varepsilon = 10^{-2}$

2. Решение системы нелинейных уравнений

1. $\{tg(xy+0.1)=x^2; x^2+2y^2=1, \text{ Метод Ньютона}\}$

Решение:

| $\frac{1}{3}(xy+0,1) = x^{2}$ | $\frac{1}{3}(x,y) = 0$ | $\frac{1}{9}(xy+0,1)$ | $\frac{1}{3}(x,y) = 0$ | $\frac{1}{9}(xy+0,1)$ | $\frac{1}{9}(x,y) = 0$ | $\frac{1}{9}(xy+0,1)$ | $\frac{1}{9}(xy+0,1) = x^{2}$ | $\frac{1}{9}(xy+0,1)$

1 y sec (xy+0,1) DX - 21X + X sec (xy+0,1) sy = = x² - +g (xy+0,1) 2x DX + 4y Dy = 1-x² - Ly² X0 = -0,12; y0 =0,7 -1 AX + 0,077 Ay = 0,0154 -- AX = -0,0014 1 -0,20X + 2,804 = 0,01 Ay = 0,0019 x, = x + AX = -0,1214 g, = yo + Ay = 0, 7019 1x, -x01 6 8, 14, -40168 > > 1-0,1214 +0,1215E, 19,7019-0,715E -ombem (-0,1214; 0,7019) Auarorumo (0,698; 0,506) 1-0,638;-0,506) 10,1214, -0,7019)

Ответ

(-0.1214, 0.7019), (0.698, 0.506), (-0.698, -0.506), (0.1214, -0.7019)

2) Программная реализация задачи:

Решение нелинейных уравнений

- 1. Метод половинного деления
- 2. Метод Ньютона
- 3. Метод простой итерации

Решение систем нелинейных уравнений

1. Метод простой итерации

