"Strong" mathematical induction

Let P be a property of integers.

Take any integer n_0 .

To prove P(n) for all integers $n \ge n_0$, it suffices to prove that for all $n \ge n_0$,

if P(m) for all m s.t. $n_0 \le m < n$, then P(n).

Notice that here you get a "stronger" induction hypothesis: instead of assuming P(n-1) in order to prove P(n), you can assume P(m) for all $m \in \{n_0, n_0+1, \ldots, n-1\}$.

That's why this is called "strong" mathematical induction.

But where's the base case?

Well, notice what happens when $n = n_0$: the IH is empty!

Example of strong mathematical induction

Typical first example involves Fibonacci numbers, defined recursively as follows.

$$F_0 = 0$$

 $F_1 = 1$
 $F_{n+2} = F_n + F_{n+1}$

"Weak" induction can be less convenient for proofs about F_n for all $n \in \mathcal{N}$, since F_{n+2} is defined in terms of both F_n and F_{n+1} .

Claim: For every
$$n \in \mathcal{N}$$
,
$$\sum_{i=0}^n F_i = F_{n+2} - 1 \, .$$

Proof by strong mathematical induction on $n \ (n \ge 0)$.

IH: For all
$$k$$
 s.t. $0 \le k < n$,
$$\sum_{i=0}^k F_i = F_{k+2} - 1 \,.$$
 NTS:
$$\sum_{i=0}^n F_i = F_{n+2} - 1$$

We'll consider three cases. . .

Claim: For every
$$n \in \mathcal{N}$$
, $\sum_{i=0}^{n} F_i = F_{n+2} - 1$.
IH: For all $k < n$, $\sum_{i=0}^{k} F_i = F_{k+2} - 1$.
NTS: $\sum_{i=0}^{n} F_i = F_{n+2} - 1$.

Consider three cases.

Case 1:
$$n = 0$$
. $\sum_{i=0}^{0} F_i = F_0$
= (Fi

Case 2:
$$n = 1$$
.

Case 3:
$$n \ge 2$$
.

Case 3:
$$n \ge 2$$

Lase 3:
$$n \ge 2$$
.

$$\sum_{i=0}^{n} F_{i} = \sum_{i=0}^{n-2} F_{i} + (F_{n-1} + F_{n})$$

$$= (F_{n} - 1) + (F_{n-1} + F_{n})$$

 $= (F_n + F_{n+1}) - 1$ $= F_{n+2} - 1$

 $\sum_{i=0}^{1} F_i = F_0 + F_1$

$$\sum_{i=0}^{n-2} F_i + (F_{n-1} + F_n)$$

$$= \sum_{i=0}^{n} F_i + (F_{n-1} + F_n)$$

= $(F_n - 1) + (F_{n-1} + F_n)$
= $(F_n - 1) + F_{n+1}$

 $= (F_0 + 1) - 1$

 $= F_2 - 1$

 $= (1+F_2)-1$

 $= F_3 - 1$

$$+F_n$$

$$+F_n$$
)

$$+F_n$$
)

$$(\operatorname{\mathsf{IH}})$$
 $(\operatorname{\mathsf{IH}})$ $(\operatorname{\mathsf{IH}})$ $(\operatorname{\mathsf{defn}} F_{n+1},\ n \neq 0)$

$$= (F_1 + F_2) - 1 (defn F_1) = F_3 - 1 (defn F_3)$$

(defn
$$F_2$$
)

$$(defn F_2)$$

$$= (F_0 + F_1) - 1 (defn F_1) = F_2 - 1 (defn F_2)$$

 $(n \geq 2)$

(defn F_{n+2})

(IH)

Format for strong mathematical induction proof

In this class, please use the format of the previous example for proofs by strong mathematical induction.

Essential elements:

- Say what you are proving.
- Say that the proof is by strong mathematical induction, and make it clear what is playing the role of n₀.
- ▶ State the induction hypothesis (IH) and what you need to show (NTS).
- ▶ Divide the argument into cases, as needed.
- Indicate clearly where and how you use the IH.

Notice that in the proof format I am recommending, you are free to devise cases according to the needs of the argument. (Of course your cases must be exhaustive.) There is no "separate" base case or induction case.