IEEE International Symposium on Network Coding (NetCod 2013), Calgary, Canada, June 7-9, 2013

Reconstruction and Repair Degree of Fractional Repetition Codes Krishna Gopal Benerjee, Manish K. Gupta and Nikhil Agrawal

Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar, India.

Abstract

Given a Fractional Repetition (FR) code, finding the reconstruction and repair degree in a Distributed Storage Systems (DSS), with parameters (n, k, d), is an important problem. In this work, we present algorithms for computing the reconstruction and repair degree of FR codes.

Algorithm for Reconstruction Degree k_{upp}^{\star}

REQUIRE: Node packet distribution of FR code after removing the last packet θ from all n nodes of $V^n = \{V_1, V_2, ..., V_n\}$. **ENSURE:** k_{upp}^{\star} = Reconstruction degree

- 1. For $1 \le i, j, m \le n$, if $\exists V_i \& V_j s.t. V_j \subseteq V_i$ then delete all such V_j for all possible nodes V_i and list remaining collection of nodes as $V^m = \{V_{i_1}, V_{i_2}, ..., V_{i_m}\}, |V_{i_j}| = \alpha_{i_j} = \text{number of packets in node } V_{i_j}.$
- 2. Let $V^l = \{V_{i_j} \in V^m | 1 \le j \le m \& |V_{i_j}| = \max\{\alpha_{i_j}\}\}.$
- 3. Pick an arbitary set $V_{i_j} \in V^l$, and call this set as P. Set the counter $k_{\lambda} = 1, 1 \le k_{\lambda} \le m$ and $1 \le \lambda \le |V^l| = l$.
- 4. If $\exists V_{i_{j'}}(1 \leq j' \leq m) \in V^m \ s.t. \ V_{i_{j'}} \cap P = \phi \ \text{then go to step 5}$ otherwise jump to step 6.
- 5. Pick $V_{i_{j''}}(1 \le j'' \le m) \in V^m$ which has max cardinality among all $V_{i_{j''}}$ in V^m with $V_{i_{j''}} \cap P = \phi$. Update $P = P \bigcup V_{i_{j''}}$, update counter $k_{\lambda} = (k_{\lambda} + 1)$ and go to step 4.
- 6. If $\exists V_{i_r} (1 \le r \le m) \in V^m \ s.t. \ V_{i_r} \not\subset P$ then go to step 7 otherwise go to step 8.
- 7. Pick $V_{i_{r'}}(1 \le r' \le m) \in V^m$ which has maximum $|V_{i_{r'}} \setminus P|$ among all $V_{i_{r'}} \in V^m$ having the condition $V_{i_{r'}} \not\subset P$ then update $P = P \bigcup V_{i_{r'}}$, update counter $k_{\lambda} = (k_{\lambda} + 1)$ and go to step 6.
- 8. If $1 \le \lambda < l$, then store k_{λ} in k'_{λ} and set $k_{\lambda} = k_{(\lambda+1)}$ and perform step 4 for $P = V_{i_{j'''}}(1 \le j''' \le m) \in V^l$ $s.t.V_{i_{j'''}} \ne V_{i_j} \in V^l$, otherwise report $k^{\star}_{upp} = \min \{k'_{\lambda}\}_{\lambda=1}^{l}$.

Algorithm to Compute Repair Degree d_i

REQUIRE: Incidence matrix $M_{n \times \theta}$ of FR code and H_j . **ENSURE:** Repair degree d_i for a node $U_i, 1 \le i \le n$.

- 1. For each node $i, 1 \le i \le n$ let $S_i^{\{i\}} = \{H_j \setminus \{i\} | i \in H_j, 1 \le j \le \theta\}$. Set $q = 1, 1 \le q \le n$.
- 2. Compute $T \subseteq \{1, 2, ..., \theta\}$ s.t. |T| > 1 is maximum among all possible subsets and for $t \in T$, $H_t \setminus \{i\} \in S_i^{\{i\}}$, and $\bigcap H_t \setminus \{i\} \neq \phi$. Set counter $l_q(1 \le q \le n) = |T| 1$. Store l_q in l_q' .
- 3. Update $S_i^{\{i\}} = S_i^{\{i\}} \setminus (H_t \setminus \{i\}), \forall t \in T$.
- 4. If $S_i^{\{i\}} = \phi$ or singleton set or $H_r \setminus \{i\} \cap H_s \setminus \{i\} \in S_i^{\{i\}} = \phi \ \forall 1 \le r, s \le n$ then $d_i = \alpha_i \sum_{\lambda=1}^q l'_{\lambda}$, where $\alpha_i = |V_i|$, otherwise set q = q + 1 and go to step 2.

Remark

1. If k^* (spacific reconstruction degree of FR code) is the smallest set of nodes in a FR code, once contacted will reconstruct the whole data then

$$k^{\star} \leq k_{upp}^{\star}$$
 (Out put of algorithm 1).

2. $k^* \leq k_{FR}$, where k_{FR} (actual reconstruction degree of FR code) is the smallest set of **any** nodes, once contacted will reconstruct the entire data.

References

- 1. S. El Rouayheb and K. Ramchandran, *Fractional repetition codes for repair in distributed storage systems*, in Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, Oct. 2010, pp. 1510 1517.
- 2. M. K. Gupta, A. Agrawal, and D. Yadav, *On weak dress codes for cloud storage*, CoRR, vol. abs/arXiv/1302.3681, 2013.
- 3. S. Anil, M. K. Gupta, and T. A. Gulliver, *Enumerating some fractional repetition codes*, CoRR, vol. abs/1303.6801, 2013.

