Introduction to Artificial Intelligence Homework 4

1. Implementation Details

Environment:

I implemented a k-armed Gaussian bandit environment. To achieve this, I implemented 3 functions required by the PDF file:

- reset(): Initialize the bandit with μ sampled from $\mu_i \sim N(0,1)$ and clear the logs of actions and rewards.
- > step(): Execute one pull of the selected arm and return the observed reward.
 - For the stationary case, each arm's reward is drawn from a Gaussian distribution $N(\mu_i, 1)$.
 - For the non-stationary cases, which means stationary=False, all μ will perform a Gaussian random walk at every time step, i.e., $\mu_i \leftarrow \mu_i + \epsilon, \epsilon \sim N(0, 0.01^2)$.
- > export history(): Return all past actions and rewards.

Agent:

I follow an ε-greedy action-value strategy, utilizing 3 methods:

- reset(): Setting estimate vector Q and counter N to all 0s.
- \triangleright select_action(): Choose an arm according to an ε-greedy policy.
 - **Exploration:** With probability ε , select a random arm.
 - Exploitation: Otherwise, choose the best action where an arm whose current estimate Q_i is maximal. If there are multiple best actions, randomly choose one.
- > update q(): Update the value estimate of the chosen arm, a, just pulled.
 - Learning rate η : If a fixed learning-rate α is provided, use $\eta = \alpha$.

 Otherwise, use the sample-average rate: $\eta = \frac{1}{N_a}$.
 - Update method:

$$Q(a) \leftarrow Q(a) + \eta \cdot (R - Q(a)).$$

Increment counter N_a by 1.

2. Experiment Results

• Part 3: Setting stationary=True, sample-average, $\varepsilon = \{0, 0.01, 0.1\}$

- A. Pure exploitation (ε =0.0) quickly plateaus on a suboptimal arm, so both its average reward and optimal-action rate stagnate at the lowest level.
- B. Moderate exploration (ϵ =0.01) discovers the optimal arm more reliably than ϵ = 0 while barely sacrificing early reward, leading to higher final reward and optimal-action percentage.
- C. High exploration (ϵ =0.1) finds the optimal arm fastest, giving the highest optimal-action rate, and ultimately surpasses ϵ = 0.01 in average reward once the cost of exploration is offset.
- Part 5: Setting stationary=False, sample-average, $\varepsilon = \{0, 0.01, 0.1\}$

- A. Pure exploitation ($\varepsilon = 0$) cannot rediscover arms whose means have drifted, so both its average reward and optimal-action rate stay low and even decline.
- B. High exploration (ϵ = 0.1) reacts quickly at first, achieving the highest early optimal-action rate, but its constant probing adds noise. Combined with the slow-adapting sample-average estimate, this causes a gradual drop in optimal-action rate and leaves its final reward below that of ϵ = 0.01.
- C. Moderate rate ($\varepsilon = 0.01$) strikes the best balance: it refreshes knowledge often enough to track the drifting optimum, yet avoids the excessive variance of $\varepsilon = 0.1$, ending with the highest average reward and the most sustained

optimal-action percentage.

• Part 7: Setting stationary=False, α =0.1, ϵ ={0, 0.01, 0.1}

- A. Pure exploitation ($\varepsilon = 0$): With α fixed at 0.1, every new reward quickly influences the value estimate, so even $\varepsilon = 0$ can climb well above its Part-5 performance; but without exploration, it levels off lowest in both metrics.
- B. High exploration ($\varepsilon = 0.1$) keeps finding the current best arm fastest, giving the top optimal-action percentage (≈ 0.80). However, its frequent random pulls add variance, so its average reward lags slightly behind $\varepsilon = 0.01$.
- C. Moderate exploration (ϵ =0.01) strikes the best balance: enough exploration to track drifting optima, yet few enough random pulls that its average reward ends highest while its optimal-action rate stays close to that of ϵ = 0.1.

3. Discussion:

I ran one more little test just accidentally: kept $\varepsilon = 0$ and only changed the step-size α . Turns out $\alpha = 0.1$ outperforms $\alpha = 0.01$ significantly.

I think it's all about how fast the Q-values can 'forget' old rewards: with $\alpha = 0.1$, the agent's memory only stretches back about 10 pulls, so it notices the drift almost right away and jumps to the new best arm. In contrast, $\alpha = 0.01$ clings to a 100-step history, basically sleeping through the change and sticking to a now-suboptimal arm for ages.