Introduction

Max Turgeon

STAT 3150-Statistical Computing

Course Outline

Lecture schedule

We meet twice a week on WebEx:

- Tuesday 10am to 11:20am
 - · Traditional Lecture
- Thursday 10am to 11:20am
 - · Discussion & Question Period

Both weekly meetings will be recorded and available on UM Learn

Personal Work

- We won't have time to cover all the material with only one lecture per week.
 - You're responsible for covering the *other half* of the material on your own.
 - Mainly through interactive tutorials (more on this later), but keep an eye on UM Learn for quizzes, extra course notes, examples, exercises, etc.

Textbook

Assessments

- Goal: More, lower-stake assessments (instead of a couple high-stake exams).
 - · 6 assignments (10% each)
 - · 2 midterms and 1 final (15% each)
 - · Class participation (5%)

Assignments

- · Assignments will be **entirely** done with Rmarkdown.
 - · So are the slides!
- Your "zero-th" assignment is due next Monday.
 - It isn't worth any point, it's just to make sure that your computer can create PDF files from Rmarkdown files.
 - · Follow the instructions on UM Learn

By the way, should I already know R?

- Short answer: you should have learned R in STAT 2150.
- Slightly longer answer: forgetting is human, we'll relearn together as needed.
 - Concepts will be introduced as needed, and through examples.
 - See UM Learn for extra reading material on R.
- · Important: Let me know if some of the code isn't clear!
 - In particular, Thursdays can be used to go into more detail.

Class participation

- Two equally weighted components:
 - Summary quizzes on UM Learn (one per module + academic integrity)
 - In-class participation/Discussion groups

What is statistical computing? i

- At a basic level, statistical computing is using computational tools to solve statistical problems.
 - · It is an integral part of modern statistics.
- · But what kind of problems?

- Let's say you derived the asymptotic distribution of an estimator. How well does it perform in finite sample sizes?
 - Generate multiple datasets under the model and compute your estimator to get an estimate of the distribution.

What is statistical computing? ii

- You're doing Bayesian modeling. How do I compute the posterior distribution of my parameters?
 - Use importance sampling and/or Monte Carlo integration.
 - STAT 4150: Construct a Markov chain whose stationary distribution is your posterior distribution.
- I don't think the assumptions are met. How do I get valid confidence intervals and hypothesis tests?
 - Use bootstrap and/or permutation tests.
- My estimator has no closed-form solution. How do I compute it?
 - Use optimisation methods.