14.12.2021

Seminar 11 – SLR parser

Ex.: Given the grammar $G = (\{E, T\}, \{+, (,), id, const\}, P, E)$

$$S \rightarrow E$$

- $P: (1) E \rightarrow T$
 - $(2) E \rightarrow E + T$
 - $(3) T \rightarrow (E)$
 - (4) $T \rightarrow id$
 - (5) $T \rightarrow const$,

parse the sequence w = id + const using an SLR parser.

I. Compute canonical collection of states @B David T.

```
s_0 = \operatorname{closure}(\{[S \to E]\}) = s_0 = \operatorname{closure}(\{[S \to E]\}) = \{[S \to E], [E \to T], [E \to E + T], [T \to E]\}\}
(E)_1, [T \to id]_1, [T \to const]_1\}
s_1 = \operatorname{Goto}(s_0, E) = \operatorname{closure}(\{[S \to E], [E \to E + T]\}) = \{[S \to E], [E \to E + T]\}\}
s_2 = \operatorname{Goto}(s_0, T) = \operatorname{closure}(\{[E \to T]\}) = \{[E \to T]\}\}
s_3 = \operatorname{Goto}(s_0, id) = \operatorname{closure}(\{[T \to id]\}) = \{[T \to id]\}\}
s_4 = \operatorname{Goto}(s_0, const) = \operatorname{closure}(\{[T \to const]\}) = \{[T \to const]\}\}
s_5 = \operatorname{Goto}(s_0, () = \operatorname{closure}(\{[T \to (E)]\}) = \{[T \to (E)], [E \to T], [E \to E + T], [T \to (E)], [T \to id], [T \to const]\}\}
s_6 = \operatorname{Goto}(s_1, +) = \operatorname{closure}(\{[E \to E + T]\}) = \{[E \to E + T], [T \to (E)], [T \to id], [T \to const]\}
s_7 = \operatorname{Goto}(s_5, E) = \operatorname{closure}(\{[T \to (E)], [E \to E + T]\}) = \{[T \to (E)], [E \to E + T]\}\}
\operatorname{Goto}(s_5, T) = \operatorname{closure}(\{[T \to id]\}) = s_3
\operatorname{Goto}(s_5, const) = \operatorname{closure}(\{[T \to const]\}) = s_4
```

Goto(
$$s_5$$
, () = closure({[$T \to (.E)$]}) = s_5
 s_8 = Goto(s_6 , T) = closure({[$E \to E + T$.]}) = {[$E \to E + T$.]}
Goto(s_6 , id) = closure({[$T \to id$.]}) = s_3
Goto(s_6 , $const$) = closure({[$T \to const$.]}) = s_4
Goto(s_6 , () = closure({[$T \to (.E)$]}) = s_5
 s_9 = Goto(s_7 ,) = closure({[$T \to (E)$.]}) = {[$T \to (E)$.]}
Goto(s_7 , +) = closure({[$E \to E + .T$]}) = s_6

II. Fill in SLR parse table

$$FOLLOW(E) = FOLLOW(T) = \{\epsilon, +, \}$$

ACTION

GOTO

	+	()	id	const	<u>\$</u>	E	T
0		Shift 5		Shift 3	Shift 4		1	2
1	Shift 6					accept		
2	Reduce		Reduce			Reduce		
	1		1			1		
3	Reduce		Reduce			Reduce		
	4		4			4		
4	Reduce		Reduce			Reduce		
	5		5			5		
5		Shift 5		Shift 3	Shift 4		7	2
6		Shift 5		Shift 3	Shift 4			8
7	Shift 6		Shift 9					
8	Reduce		Reduce			Reduce		
	2		2			2		
9	Reduce		Reduce			Reduce		
	3		3			3		

III. Parse the sequence @B Alin T.

Work stack	Input stack	Output
\$0	id + const \$	eps
\$ 0 <mark>id 3</mark>	+ const \$	eps
\$ 0 <mark>T 2</mark>	+ const \$	4
\$0E1	+ const \$	14

\$0E1+6	const \$	14
\$ 0 E 1 + 6 const 4	\$	14
\$0 <mark>E1+6T8</mark>	\$	514
\$0E1	\$	2514
\$ accept	\$	2514