

بسم الله الرحمن الرحيم

Project Title: Transistor-Level XNOR Gate Design

• Author: Ahmed Assem Mohamed

1. Abstraction

This report presents the design and implementation of a XNOR gate at the transistor level, leveraging 130nm MOSFET technology. The circuit was meticulously developed and simulated using Cadence Virtuoso.

2. Logic Function and Truth Table

$$Y = \sim (IN0 \land IN1)$$

IN0	IN1	Y (IN0 XNOR IN1)
0	0	1
0	1	0
1	0	0
1	1	1

3. Circuit Design

3.1. Schematic

3.2. Design Approach

• 130nm CMOS process

• 1.2V VDD

• INPUTS: IN0, IN1

OUTPUT: OUT

• Input Parameter: WN_XNOR

• It is designed using TGL and CMOS INV

• Sizes: INV: 5*WN_XNOR, TGL: WN_XNOR

 why? the INV should be stronger than the XNOR, why exactly 5? to be stronger and not to be too large, but this is only by intuition(not a simulation result)

3.3. Symbol

4. Simulation and Results

Note: the simulation result is performed with an input f = 333.3MHZ for IN1, while for IN2 1/3 * f