Eléments de théorie des groupes Résolutions des exercices

Enoncés de Josette Calais. Résolutions de Oestromemes abonnez vous

Table des matières

1	Structure de groupe	2

2 Classes modulo un sous-groupe 15

STRUCTURE DE GROUPE

1) Soit Z l'ensemble des entiers rationnels, muni de la loi de composition interne notée *, définie par :

$$*: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z},$$

 $(a,b) \mapsto a - b.$

- a) La loi * est-elle associative? commutative?
- b) Vérifier qu'il existe dans $(\mathbb{Z},*)$ un élément neutre à droit, c'est-à-dire un élément e tel que

$$\forall a \in \mathbb{Z}, \ a * e = a.$$

e est-il neutre dans $(\mathbb{Z}, *)$?

- c) Existe-t-il, pour tout $a \in \mathbb{Z}$, un symétrique à droite relativement à e,c'est-à-dire un élément a' tel que a*a'=e
- a) $\forall a,b,c \in \mathbb{Z}, (a*b)*c = a-b-c$, et a*(b*c) = a-b+c, la loi n'est pas associative. Et $2*1 = 1 \neq -1 = 1*2$ montre qu'elle n'est pas non plus commutative.
- b) On vérifie que 0 est un neutre à droite pour $*: \forall a \in \mathbb{Z}, \ a*0 = a-0 = a$. Il n'est cependant pas un neutre pour $*, \operatorname{car} 0 * a = -a \neq a$.
- c) $\forall a \in \mathbb{Z}, \ a * a' = e \Rightarrow a = a'$. Pour tout élément $a \in \mathbb{Z}, \ a$ est son propre inverse à droite.
- 2) Soit $\mathbb Q$ l'ensemble des nombres rationnels muni de la loi de composition interne notée * définie par :

$$*: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q},$$

 $(a,b) \mapsto a+b+ab.$

 $(\mathbb{Q}, *)$ est-il un groupe?

La loi * admet 0 comme élément neutre, en effet, a*0=0*a=a. Cependant, -1 n'est pas symétrisable par cette loi, car on a a*-1=a-1-a=-1, donc $(\mathbb{Q},*)$ n'est pas un groupe.

- 3) Soit G un ensemble non vide muni d'une loi de composition interne associative notée \cdot : on suppose que dans (G, \cdot) les deux conditions suivantes sont vérifiées :
 - 1° il existe un élément neutre à droite e (voir exercice 1);
 - 2° tout élément $x \in G$ admet un symétrique à droite, x' (voir exercice 1).

Démontrer que (G, \cdot) est un groupe; vérifier, par un contre exemple, que, sans l'associtivité de la loi \cdot , ce résultat n'est plus vrai.

Montrons que le symétrique à droite de tout élément a de G est aussi son symétrique à gauche.

$$aa' = e \Rightarrow a'(aa') = a',$$

 $\Rightarrow (a'a)a' = a'.$

En multipliant des deux cotés par le symétrique à droite de a', on obtient :

$$a'a = e$$
.

Ainsi, le symétrique à droite de a est aussi son symétrique à gauche.

Montrons que le neutre à droite de G est aussi un neutre à gauche, et donc un neutre tout court.

$$\forall a \in G, \ ea = (aa')a,$$

= $a(a'a),$
= $a.$

Ainsi, le neutre à droite de G est aussi un neutre à gauche.

 (G,\cdot) est donc un groupe.

On vérifie que pour $(\mathbb{Z}, -)$, la loi n'est pas associative, mais que 0 est un neutre à droite (et non à gauche) et que tout élément est symétrisable.

4) Soit G un ensemble fini, non vide, muni d'une loi de composition interne notée \cdot ; on suppose que la loi \cdot est associative et que dans (G, \cdot) tout élément est simplifiable à droite et à gauche.

Démontrer que (G, \cdot) est un groupe.

Tout les éléments étant simplifiables à droite implique que les applications :

$$\begin{array}{cccc} \tau_g^y:G & \to G &, & \tau_d^y:G & \to G \\ & x & \mapsto yx, & & x & \mapsto xy, \end{array}$$

Sont injectives. Le cardinal de G étant fini, ces translations sont bijectives.

Ainsi, pour a et b fixé, les équations a = xb et a = bx ont chacune une unique solution.

En particulier, pour chaque élément a de G, il existe des uniques e_d^a et e_g^a tel que $a = e_d^a a$ et $a = a e_d^a$. Vérifions qu'ils sont égaux :

$$\begin{split} \forall a \in G, \ aa &= aa, \\ a(e^a_g a) &= (ae^a_d)a, \\ ae^a_g a &= ae^a_d a, \\ ae^a_g &= ae^a_d \text{ (Simplifiation à droite)}, \\ e^a_g &= e^a_d \text{ (Simplifiation à gauche)}. \end{split}$$

Vérifions maintenant que tout les éléments ont le même neutre :

$$\forall a,b \in G, \quad ab = ab,$$

$$(ae^a)b = a(e^bb),$$

$$ae^ab = ae^bb,$$

$$ae^a = ae^b \text{ (Simplifiation à droite)},$$

$$e^a = e^b \text{ (Simplifiation à gauche)}.$$

Ainsi, dans G, il existe un unique élément neutre e.

Reste à montre que chaque élément a admet un unique inverse a^{-1} .

On sait que les équations e = ax et e = xa ont une unique solution chacune, notées respectivement a_g^* et a_d^* . Vérifions qu'il est le même des deux cotés, et est donc l'inverse de a.

$$\begin{split} \forall a \in G, \quad &a = a, \\ &a(a_g^*a) = (aa_d^*)a, \\ &aa_g^*a = aa_d^*a, \\ &a_q^* = a_d^* \text{ en simplifiant à droite et à gauche.} \end{split}$$

Chaque élément possède un unique inverse, et G possède un élément neutre pour la loi associative ·. Ainsi, (G, \cdot) est un groupe.

5) Soit G un groupe d'élément unité e vérifiant la condition (\mathcal{C}) :

$$\forall x \in G, \ x^2 = e.$$

- a) Donner au moins un exemple de groupe, non réduit à l'élément unité, vérifiant la condition (C).
- b) Démontrer que tout groupe vérifiant la condition (C) est abélien.
- a) Le groupe $\left(\frac{\mathbb{Z}}{2\mathbb{Z}},+\right)$ vérifie de façon évidente la condition.
- b) la condition (C) implique que chaque élément est son proper inverse, ainsi :

$$\forall a, b \in G, \quad (ab)^2 = e,$$

$$abab = e,$$

$$bab = a,$$

$$ab = ba.$$

Tout groupe vérifiant la propriété est donc abélien.

6) G étant un groupe, prouver que l'application $f: G \to G$, est une permutation de G et que f $x \mapsto x^{-1}$. est un automorphisme si et seulement si G est abélien.

Chaque élément d'un groupe possède un unique inverse, l'application est donc trivialement bijective. Supposons que G soit abélien :

$$\forall a, b \in G, \quad f(ab) = (ab)^{-1},$$

= $b^{-1}a^{-1},$
= $a^{-1}b^{-1},$
= $f(a)f(b).$

Donc abélien \Rightarrow automorphisme.

Supposons que f soit un automorphisme :

$$\forall a, b \in G, \quad f(ab) = f(a)f(b),$$

 $b^{-1}a^{-1} = a^{-1}b^{-1},$
 $ab = ba.$

ainsi, f est un automorphisme si et seulement si G est abélien.

7) Montrer que si G est un groupe fini d'ordre pair, il existe au moins un élément $x \neq e$, dans G, tel que $x^2 = e$.

Soit G d'ordre 2n, définissons la relation d'équivalence :

$$x\mathcal{R}y \Leftrightarrow x = y \text{ ou } x = y^{-1}.$$

Soit $\{x_i\}_{i\in I}$ une famille de représentants des classes modulo \mathcal{R} . On a $1 \leq \overline{x_1} \leq 2$. le groupe se partitionne en k classes d'un élément et l classes de deux éléments, et on a donc :

$$2n = k + 2l$$

Pour respecter la parité, il faut donc que k soit pair, et sachant que k > 1, qu'il existe au moins un élément différent du neutre tel que $x^2 = e$.

- 8) Dans l'ensemble des entiers \mathbb{Z} , on pose $U = \{-1, 1\}$.
- a) Vérifier que U est un groupe relativement à la multiplication des entiers, donc un sous-groupe de (\mathbb{Q}^*, \times) .
- b) Montrer que le groupe U est isomorphe au groupe $\left(\frac{\mathbb{Z}}{(2)},+\right)$.
- a) On a $U \subset \mathbb{Z}$. On vérifie aussi que, $\forall x, y \in U, xy \in U$ et $x^{-1} \in U$, c'est donc un sous-groupe de (Q^*, \times) .
- b) On pose l'application:

$$\varphi: \frac{\mathbb{Z}}{2\mathbb{Z}} \to U,$$

$$x \mapsto \left\{ \begin{array}{l} 1 \text{ si } x = \overline{0} \\ -1 \text{ si } x = \overline{1} \end{array} \right..$$

On vérifie de façon exhaustive que c'est un morphisme :

$$\begin{split} &\varphi(\overline{0+0})=1=1\times 1=\varphi(\overline{0})\varphi(\overline{0})\\ &\varphi(\overline{0+1})=-1=1\times -1=\varphi(\overline{0})\varphi(\overline{1})\\ &\varphi(\overline{1+0})=-1=-1\times 1=\varphi(\overline{1})\varphi(\overline{0})\\ &\varphi(\overline{1+1})=1=-1\times -1=\varphi(\overline{1})\varphi(\overline{1}) \end{split}$$

Elle est aussi bijective par définition, ainsi, U est isomorphe à $\left(\frac{\mathbb{Z}}{2\mathbb{Z}},+\right)$

9) Soit ${\bf D}$ le sous ensemble de ${\mathbb Q}$ formé par les nombres décimaux :

$$\mathbf{D} = \left\{ \frac{a}{10^n}; a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

Prouvez que **D** est un sous-groupe de $(\mathbb{Q}, +)$.

De façon évidente, $\mathbf{D} \subset \mathbb{Q}$. Soit $\frac{a}{10^n}, \frac{b}{10^m}$,

$$\frac{a}{10^n} - \frac{b}{10^m} = \frac{10^m a - 10^n b}{10^{n+m}}.$$

On a $10^m a - 10^n b \in \mathbb{Z}$, et $n + m \in \mathbb{N}$, donc $\frac{a}{10^n} - \frac{b}{10^m} \in \mathbf{D}$, ainsi $(\mathbb{D}, +)$ et un sous groupe de $(\mathbb{Q}, +)$

10) Soit, dans \mathbb{N} , un nombre premier p. On pose :

$$\mathbb{Q}_p = \left\{ \frac{a}{p^n}; a \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

- a) Vérifier que \mathbb{Q}_p est un sous-groupe de $(\mathbb{Q},+)$ et que $\mathbb{Q}_p = \bigcup_{n \in \mathbb{N}} \langle \frac{1}{p^n} \rangle$.
- b) Montrer que l'application $\varphi: \mathbb{Q}_p \to \mathbb{Q}_p$, est une permutation de \mathbb{Q}_p . L'application φ est-elle un $x \mapsto px$. automorphisme de $(\mathbb{Q}_p, +)$?

a) $\mathbb{Q}_p \in \mathbb{Q}$, et soit $\frac{a}{p^n}, \frac{b}{p^m} \in \mathbb{Q}_p$:

$$\frac{a}{p^n} - \frac{b}{p^m} = \frac{p^m a - p^n b}{p^{n+m}}.$$

On a $p^m a - p^n b \in \mathbb{Z}$, et $n + m \in \mathbb{N}$, donc $\frac{a}{p^n} - \frac{b}{p^m} \in \mathbb{Q}_p$, ainsi $(\mathbb{Q}_p, +)$ et un sous groupe de $(\mathbb{Q}, +)$. De

$$\bigcup_{n\in\mathbb{N}} \langle \frac{1}{p^n} \rangle = \left\{ \frac{a}{p^n}; \ a \in \mathbb{Z}, \ n \in \mathbb{N} \right\} = \mathbb{Q}_p.$$

b) φ est clairement injective. De plus, comme $\frac{a}{p^n} = p \frac{a}{p^{n+1}}$, on en déduite que ϕ est surjective, donc que c'est une permutation.

$$\forall x, y \in Q_p, \ \varphi(x+y) = p(x+y),$$
$$= px + py,$$
$$= \varphi(x) + \varphi(y).$$

ce qui prouve que φ est un morphisme, et donc un automorphisme.

11) Soit p un nombre premier dans \mathbb{N} . Vérifier les propriétés suivantes :

$$\{a + b\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\} < (\mathbb{R}, +)$$

 $\{a+b\sqrt{p};\ a\ {\rm et}\ b\ {\rm dans}\ \mathbb{Q}\ {\rm et}\ {\rm non\ simultan\'ement\ nuls}\ \}<(\mathbb{R}^*,\times)$

$$\{a + ib\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\} < (\mathbb{C}, +)$$

 $\{a+ib\sqrt{p}; a \text{ et } b \text{ dans } \mathbb{Q} \text{ et non simultanément nuls } \} < (\mathbb{C}^*,\times)$

On note que si p n'est pas un carré parfait, \sqrt{p} est irrationel, chaque élément du groupe s'écrit de façon unique et tout se passe nickel.

Posons $G = \{a + b\sqrt{p}; (a, b) \in \mathbb{Z} \times \mathbb{Z}\}$

De façon évidente, $G \subset \mathbb{R}$. Soit $a + b\sqrt{p}, a' + b'\sqrt{p} \in G$:

$$a + b\sqrt{p} - (a' + b'\sqrt{p}) = (a - a') + (b - b')\sqrt{p} \in G$$

Et idem pour les 3 autres flemme.

12) On pose :

$$\Gamma_{\infty} = \{ z \in \mathbb{C}; \ \exists n \in \mathbb{N}, z^n = 1 \}.$$

Vérifier que Γ_{∞} est un sous-groupe de (\mathbb{C}^*, \times) .

 $\Gamma_{\infty} \subset \mathbb{C}, \text{ soit } z_1, z_2 \in \Gamma_{\infty}, \text{ il existe } n_1, n_2 \in \mathbb{N} \text{ tel que } z_1^{n_1} = z_2^{n_2} = 1.$ On constate que $(z_1 z_2^{-1})^{n_1 n_2} = (z_1^{n_1})^{n_2} (z_2^{n_2})^{-n_1} = 1$, et donc $z_1(z_2)^{-1} \in \Gamma_{\infty}$, donc Γ_{∞} est un sous-groupe de (\mathbb{C}^*, \times).

13) A tout nombre réel a on associe l'application

$$\tau_a: \mathbb{R} \to \mathbb{R},$$

$$x \mapsto a + x.$$

Justifier la propriété :

 $T = \{\tau_a; a \in \mathbb{R}\}$ est un sous-groupe du groupe symétrique $S_{\mathbb{R}}$ et le groupe T est isomorphe au groupe $(\mathbb{R}, +)$.

Lemme (1.77)

14) On considère les groupes multiplicatifs \mathbb{R}^* , \mathbb{R}_+^* et \mathbb{C}^* (voir exemple (1.29)) et les applications :

$$f: \mathbb{R}^* \to R_+^*$$
, , où $|x|$ est la valeur absolue de x .

$$x \mapsto |x|.$$

et
$$g: \mathbb{C}^* \to \mathbb{R}_+^*$$
, , où $|z|$ est le module de z . $z \mapsto |z|$.

Vérifier que f et g sont des épimorphismes de groupes.

Déterminer les noyaux de f et g.

Soit x un élément de \mathbb{R}_+^* , on a f(x) = x, donc f est surjective, vérifions que c'est un morphisme :

$$\forall x, y \in \mathbb{R}, \ f(xy) = |xy|,$$
$$= |x||y|,$$
$$= f(x)f(y).$$

C'est donc un épimorphisme de groupe, déterminons son noyau :

$$\text{Ker } f = \{x \in \mathbb{R}^*, \ f(x) = 1\},$$

$$= \{x \in \mathbb{R}^*, \ |x| = 1\},$$

$$= \{-1, 1\}.$$

Soit x un élément de \mathbb{R}_+^* , on a g(x)=x, donc g est surjective, vérifions que c'est un morphisme :

$$\forall x, y \in \mathbb{R}, \ g(xy) = |xy|,$$
$$= |x||y|,$$
$$= g(x)g(y).$$

C'est donc un épimorphisme de groupe, déterminons son noyau :

$$\begin{aligned} \text{Ker } g &= \left\{ x \in \mathbb{C}^*, \ f(x) = 1 \right\}, \\ &= \left\{ x \in \mathbb{C}^*, \ |x| = 1 \right\}, \\ &= \mathbb{U}. \end{aligned}$$

15) Démontrer que l'application $\lambda: \mathbb{R} \to \mathbb{R}_+^*$, est un isomorphisme du groupe $(\mathbb{R}, +)$ sur le groupe $x \mapsto 10^x$. (\mathbb{R}_+^*, \times) .

Vérifions que c'est une morphisme :

$$\forall a, b \in \mathbb{R}, \lambda(a+b) = 10^{a+b},$$
$$= 10^{a}10^{b},$$
$$= \lambda(a)\lambda(b).$$

L'injectivité :

$$x \in \text{Ker } \lambda \Rightarrow 10^x = 1 \Rightarrow x = 0.$$

La surjectivité :

$$\forall y \in \mathbb{R}_+^*, \ \lambda(log_{10} \ y) = y.$$

Donc λ est une isomorphisme de groupe.

16)

a) Le centre d'un groupe G étant désigné par Z(G), démontrer la propriété :

$$H \le G \Rightarrow Z(G) \cap H \le Z(H)$$

- b) G et G' étant deux groupes, si f est un épimorphismes de G sur G', prouver que l'on a : $f(Z(G)) \leq Z(G')$
- a) Un élément de H qui commute avec tout les élements de G commute aussi avec tout les élément de H, d'ou $Z(G) \cap H \subset Z(H)$. De plus, l'intersection de sous-groupes est un sous-groupe, donc $Z(G) \cap H \leq Z(H)$.
- b) Soit $y \in f(Z(G))$, il existe $x \in Z(G)$ tel que y = f(x). f étant surjective, pour tout $z \in G'$, il existe $w \in G$ tel que z = f(w). On a donc :

$$yz = f(x)f(w) = f(xw) = f(wx) = f(w)f(x) = zy.$$

D'où $y \in Z(G')$, et comme f(Z(G)) est un sous-groupe de G' inclus dans Z(G'), on a bien $f(Z(G)) \le Z(G')$.

17) Soit S une partie non vide d'un groupe G; on pose :

$$C_G(S) = \{ g \in G; \ gx = xg, \ \forall x \in S \}.$$

- a) Vérifier que $C_G(S)$ est un sous-groupe de G. $C_G(S)$ est appelé le centralisateur de S dans G. Si $S = \{x\}$, on le note $C_G(x)$ et on l'appelle le centralisateur de X dans G.
- b) Z(G) étant le centre de G, démontrer la relaion : $\bigcap_{x \in G} C_G(x) = Z(G)$
- c) Pour $x \in G$, posons $H = C_G(x)$; Vérifier que $x \in Z(H)$.

a) Soit $h, g \in C_G(S)$, pour tout $x \in S$, on a :

$$(hg^{-1})x = hxg^{-1} = xhg^{-1}.$$

Donc $\forall h, g \in C_G(S), hg^{-1} \in C_G(S)$, c'est donc bien un sous-groupe de G.

b) $g \in Z(G) \Leftrightarrow \forall x \in G, \ gx = xg \Leftrightarrow \forall x \in G, \ g \in C_G(x) \Leftrightarrow g \in \bigcap_{x \in G} C_G(x)$

c)
$$H = C_G(x) \Leftrightarrow \forall h \in H, \ hx = xh \Leftrightarrow x \in Z(H).$$

18) Soit A, B, C trois parties non vides d'un groupe G.

Soit $H = \langle A, B \rangle$ le sous-groupe de G engendré par $A \cup B$.

Si $K = \langle A, B, C \rangle$ est le sous-groupe de G engendré par $A \cup B \cup C$, démontrer que $K = \langle H, C \rangle$.

Soit \mathcal{H}_S l'ensemble des sous groupe de G contenant S. Par définition,

$$H = \bigcap_{L \in \mathcal{H}_{A \cup B}} L, \quad K = \bigcap_{L \in \mathcal{H}_{A \cup B \cup C}} L.$$

Montrons que $\mathcal{H}_{A\cup B\cup C} = \mathcal{H}_{H\cup C}$

Soit $L \in \mathcal{H}_{A \cup B \cup C}$, comme $A \cup B \subset L$, on a $L \in \mathcal{H}_{A \cup B}$, et donc $L \in \mathcal{H}_{H \cup C}$.

De façon réciproque, soit $L \in \mathcal{H}_{H \cup C}$, on a $A \cup B \subset H \subset L$, donc $L \in \mathcal{H}_{A \cup B \cup C}$.

Ainsi, on a $\mathcal{H}_{A\cup B\cup C} = \mathcal{H}_{H\cup C}$, et donc que $K = \langle H, C \rangle$.

19) Démontrer que le groupe des quaternions (exemple (1.16)) est engendré par les matrices :

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

(j'ai repris la demo d'un mec, qui est pas complete je crois, la mienne a environ 200 indices avec des sommes donc chiant a taper)

Soit le groupe des quaternions :

$$\begin{cases}
q_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, q_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, q_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, q_4 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \\
q_5 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, q_6 = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, q_7 = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix}, q_8 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\end{cases}$$

On calcule bêtement $\langle A, B \rangle$ et cqfd.

20) Dans l'ensemble $M_2(\mathbb{R})$ des matrices carrées d'ordre 2 sur \mathbb{R} , on considère le sous-ensemble Γ tel que :

$$\Gamma = \left\{ \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} : x \in \mathbb{R}^* \right\}.$$

Démontrer que Γ est un groupe par rapport à la multiplication des matrices, mais que ce groupe n'est pas un sous-groupe de $GL_2(\mathbb{R})$.

Vérifier que le groupe Γ est isomorphe au groupe (\mathbb{R}^*, \times) .

Soit
$$\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix} \in \Gamma$:

$$\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} xy & xy \\ 0 & 0 \end{pmatrix} \in \Gamma.$$

De plus, pour tout $\begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix} \in \Gamma$, son inverse $\begin{pmatrix} 1/x & 1/x \\ 0 & 0 \end{pmatrix} \in \Gamma$, et $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ est le neutre pour la multiplication des matrices dans cet ensemble.

On sait la loi associative, ainsi, Γ est un groupe pour la multiplication des matrices.

Ce n'est cependant pas un sous-groupe de $GL_2(\mathbb{R})$, car elles ne sont pas inversibles, ayant toutes un déterminant nul.

On vérifie directement que $\varphi: \mathbb{R}^* \to \Gamma$, est un isomorphisme de groupe. $x \mapsto \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$.

21) Soit n > 1 dans \mathbb{N} et $\left(\frac{\mathbb{Z}}{(n)}, +\right)$ le groupe des classes de congruence modulo n. On considère la correspondance μ définie par :

$$\mu: \frac{\mathbb{Z}}{(n)} \times \frac{\mathbb{Z}}{(n)} \to \frac{\mathbb{Z}}{(n)},$$
$$(\overline{x}, \overline{y}) \mapsto \overline{xy}.$$

a) Prouver que la correspondance μ est une application [c'est-à-dire que : $(\overline{x'} = \overline{x} \text{ et } \overline{y'} = \overline{y} \Rightarrow \overline{x'y'} = \overline{xy})$]. En déduire que l'on peut définir dans $\frac{\mathbb{Z}}{(n)}$ une multiplication telle que $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$.

Montrer alors que $\frac{\mathbb{Z}}{(n)}$ est un anneau unitaire, et commutatif.

b) Soit, dans \mathbb{N} , un nombre premier p. On désigne par G_p l'ensemble des éléments non nuls de $\frac{\mathbb{Z}}{(p)}$. Prouver, en utilisant le résultat de l'exercice 4, que G_p est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(p)}$.

En conclure que $\frac{\mathbb{Z}}{(p)}$ est un corps.

- c) Vérifier que si n n'est pas premier $\frac{\mathbb{Z}}{(p)}$ n'est pas un corps.
- a) Soit $x,y,x',y'\in\mathbb{Z}$ tel que $\overline{x}=\overline{x'}$ et $\overline{y}=\overline{y}.$ On rappelle que :

$$\overline{x} = \overline{x'} \Leftrightarrow \exists k \in \mathbb{Z}, x = x' + kn, \overline{y} = \overline{y'} \Leftrightarrow \exists k' \in \mathbb{Z}, y = y' + k'n.$$

Ainsi:

$$\overline{xy} = \overline{(x'+kn)(y'+k'n)},$$

$$= \overline{x'y'+x'k'n+y'kn+kk'n^2},$$

$$= \overline{x'y'+n(x'k'+y'k+kk'n)},$$

$$= \overline{x'y'}.$$

la multiplication ainsi définie est associative, commutative, de neutre $\overline{1}$, et est distributive par rapport à l'addition. $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est donc un anneau unitaire commutatif.

- b) L'ensemble G_p est fini, est dans le a) on a montré que la loi de multiplication associée est associative. Montrons que chaque élément est simplifiable à droite et à gauche. Soit $\overline{a}, \overline{x}, \overline{y} \in G_p$ tel que $\overline{ax} = \overline{ay}$. On a $\overline{ax} = \overline{ay}$, autrement dit, que ax ay = a(x y) est un multiple de p, \overline{a} étant non nul, x y est un multiple de p, et donc que $\overline{x} = \overline{y}$. Par commutativité, tout les éléments sont simplifiable à droite et à gauche. D'après l'exo 4, G_p est un groupe. De plus, tout élément non nul de $\frac{\mathbb{Z}}{p\mathbb{Z}}$ est inversible, donc c'est un corps.
- c) Chapitre 3.
- 22) Vérifier que

$$\Gamma = \left\{I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \gamma_1 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \gamma_2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \gamma_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma_4 = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \gamma_5 = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}\right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$ isomorphe au groupe $GL\left(2,\frac{\mathbb{Z}}{(2)}\right)$.

Ecrire la table de multiplication du groupe Γ ; en déduire que Γ est isomorphe au groupe symétrique S_3 .

Toutes les matrices de cet ensemble ont pour déterminant 1, la multiplication des matrices est associative, et $I \in \Gamma$. Posons dès maintenant la table de multiplication de Γ :

On remarque que chaque élément possède un unique inverse. Γ est donc bien un sous-groupe de $GL(2,\mathbb{R})$. On constate que ce groupe de décompose en deux sous groupes, $H=\{I,\gamma_1,\gamma_2\}$ et $K=\{I,\gamma_4\}$, tel que $\Gamma=HK$. D'ou l'isomorphisme évident (aka, flemme de rédiger) avec $GL(2,\frac{\mathbb{Z}}{2\mathbb{Z}})$ et S_3 .

23)

a) Démontrer les résultats suivants :

$$\Gamma_1 = \left\{ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \gamma_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \gamma_2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$.

$$\Gamma_2 = \{1, i, -1, -i\}$$
 où $i^2 = -1$,

est un sous-groupe de (\mathbb{C}^*, \times) .

$$\Gamma_3 = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}\}$$

sous-ensemble de $\frac{\mathbb{Z}}{(5)}$ est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(5)}$.

b) Prouver que $\Gamma_1, \Gamma_2, \Gamma_3$ sont trois groupes isomorphes. Sont-ils cycliques?

De façon immédiate, on a que $\gamma_1 \subset GL(2,\mathbb{R})$, $\Gamma_2 \subset \mathbb{C}^*$ et $\Gamma_3 \subset \frac{\mathbb{Z}}{5\mathbb{Z}}$. Ecrivons leur table de Cayley pour vérifier la stabilité et l'existence d'un unique inverse.

On remarque que ce sont tous des groupes cyclique d'ordre 4, avec $\Gamma_1 = \langle \gamma_1 \rangle$, $\Gamma_2 = \langle i \rangle$ et $\Gamma_3 = \langle 2 \rangle$, ils sont donc tous isomorphes entre eux.

24)

a) Montrer que:

$$K_1 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$

est un sous-groupe de $GL(2,\mathbb{R})$ et que $K_2=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$, sous-ensemble de $\frac{\mathbb{Z}}{(8)}$, est un groupe par rapport à la multiplication définie dans $\frac{\mathbb{Z}}{(8)}$.

b) Vérifier que ces deux groupes sont isomorphes. Ces groupes sont-ils isomorphes au groupe de Klein?

25)

- a) Montrer que le groupe symétrique S_3 , les groupes Γ_2 et Γ_3 de l'exercice 23 et le groupe K_2 de l'exercice 24 admettent chacun une représentation matricielle fidèle de degré 2 sur \mathbb{R} .
- b) En associant à tout nombre complexe non nul a+ib la matrice $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, vérifier que le groupe multiplicatif \mathbb{C}^* admet aussi une représentation fidèle de degré 2 sur \mathbb{R} .

26) Soit P le plan affine euclidien. Si f est une isométrie du plan P, on dit qu'un point A est fixe pour f si f(A) = A.

On désigne par $\mathcal{I}(2)$ l'ensemble des isométries du plan P.

Si Δ est une droite de P, on note s_{Δ} la symétrie du plan par rapport à Δ ; s_{Δ} : $P \rightarrow P$, A' est tel $A \mapsto A'$.

que Δ est la médiatrice de AA'.

- a) Vérifier les propriétés suivantes :
 - L'identité de P, notée id_P , appartient à $\mathcal{I}(2)$.
 - quelle que soit la droite Δ , s_{Δ} appartient à $\mathcal{I}(2)$ et $s_{\Delta} \circ s_{\Delta} = id_P$.
 - Si f_1 et f_2 sont dans $\mathcal{I}(2)$, alors $f_2 \circ f_1 \in \mathcal{I}(2)$; $f_2 \circ f_1$ sera appelé le produit de f_1 et f_2 dans $\mathcal{I}(2)$.
- b) Soit $f \in \mathcal{I}(2)$; montrer que:
 - si f à deux points fixes distincts A et B, alors tout point de la droite AB est fixe pour f;
 - Si f à trois points fixes, A, B, C non alignés, alors $f = id_P$.
- c) Démontrer que toute isométrie $f \in \mathcal{I}(2)$ est le produit de 0, 1, 2, ou 3 symétries.
- d) Prouver que $\mathcal{I}(2)$ est un sous-groupe du groupe symétrique S_p et que $\mathcal{I}(2)$ est non-abélien.
- e) A tout vecteur v de l'espace vectoriel \mathbb{R}^2 on associe la translation de vecteur v du plan affine P, notée t_v . Montrer à l'aide de (c) que $t_v \in \mathcal{I}_2$ et que $\mathcal{T}(P) = \{t_v; v \in \mathbb{R}^2\}$ est un sous-groupe abélien de $\mathcal{I}(2)$, isomorphisme à $(\mathbb{R}^2, +)$.
- f) Soit O un point du plan P, pour $\alpha \in \mathbb{R}$; on note $r_{O,\alpha}$ la rotation du plan P de centre O et d'angle α . Montrer à l'aide de (c) que $r_{O,\alpha} \in \mathcal{I}(2)$. $\mathcal{R}(P,O)$ désignant l'ensemble de toutes les rotations $R_{O,\alpha}$ pour $\alpha \in \mathbb{R}$, vérifier que $\mathcal{R}(P,O) = \{r_{O,\alpha}; 0 \le \alpha < 2\pi\}$ et que $\mathcal{R}(P,O)$ est un sous-groupe abélien de $\mathcal{I}(2)$.

27) Notons \mathbb{C} le plan complexe, c'est-à-dire le plan affine euclidien \mathbb{R}^2 rapporté à un système d'axes orthonormés Oxy et dont tout point M(x,y) est considéré comme l'image du nombree complexe z=x+iy.

A toute famille de 4 nombres complexes (a, b, c, d) telle que $ad - bc \neq 0$, on associe l'application :

$$f: \mathbb{C} \to \mathbb{C},$$
 $z \mapsto \frac{az+b}{cz+d}, \text{ où } z \in \mathbb{C}...$

On remarque que si $c \neq 0$, le point $-\frac{d}{c}$ n'a aucune image par f; d'autre part le point $\frac{a}{c}$ n'est l'image d'aucun point de \mathbb{C} . Pour remédier à ces difficultés, on rajoute au plan complexe un point dit à l'infini et noté ∞ .

On pose
$$\tilde{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$
, pour $c \neq 0$, $f\left(-\frac{d}{c}\right) = \infty$ et $f(\infty) = \frac{a}{c}$.

Une application telle que f est appelée une homographie du plan complexe.

- a) Montrer que toute homographie f est une permutation de \mathbb{C} .
- b) Démontrer que l'ensemble $\mathcal H$ des homographies du plan complexe est un sous-groupe du groupe symétrique $S_{\tilde{\mathbb C}}.$
- c) En considérant le cas où c = 0, prouver que \mathcal{H} contient comme sous-groupes le groupe des similitudes et translations du plan complexe.
- d) Vérifier que l'homographie $z \mapsto \frac{1}{z}$ est le produit (commutatif) de l'inversion de centre O et de puissance 1. et de la symétrie par rapport à l'axe Ox.
- e) Démontrer que toute homographie f du plan complexe conserve les angles et leurs orientation, ce que l'on exprime en disant que f est une transformation conforme du plan.
- f) Prouver que les homographies:

$$f_1: z \mapsto z; \ f_2: z \mapsto -z; \ f_3: z \mapsto \frac{1}{z}; \ f_4: z \mapsto -\frac{1}{z}$$

forment un sous-groupe de \mathcal{H} isomorphe au groupe de Klein.

g) Prouver que les homographies :

$$g_1: z \mapsto z; \ g_2: z \mapsto \frac{1}{1-z}; \ g_3: z \mapsto \frac{z-1}{z},$$

$$g_4: z \mapsto \frac{1}{z}; \ g_5: z \mapsto 1 - z; \ g_6: z \mapsto \frac{z}{z - 1}$$

forment un sous-groupe de \mathcal{H} isomorphe au groupe symétrique S_3 .

28)

- a) Démontrer le corrolaire (1.49)
- b) Démontrer la proposition (1.53)

29) Soit E un ensemble non vide et G un groupe d'élément unité e. On désigne par G^E l'ensemble des applications f de E dans G. On considère la loi de composition définie dans G^E par :

$$G^E \times G^E \to G^E$$

 $(f,g) \mapsto fg,$

Où fg est telle que pour tout $x \in E$, (fg)(x) = f(x)g(x).

Prouver que (G^E) est ainsi muni d'une structure de groupe.

Vérifier que G^E est un groupe abélien si et seulement si G est abélien.

30) \mathbb{R} désignant le groupe additif des réels, on pose :

$$J = \{x \in \mathbb{R}; 0 \le x \le 1\}.$$

L'addition de \mathbb{R} induit dans l'ensemble \mathbb{R}^J une structure de groupe additif abélien.

- a) Vérifier les propriétés suivantes :
 - l'ensemble des fonctions $f \in \mathbb{R}^J$, continues sur J, est un sous-groupe de $(\mathbb{R}^J, +)$, que l'on notera $\mathcal{C}(J)$:
 - si, pour tout $a \in \mathbb{R}$, on note c_a la fonction constante de J dans \mathbb{R} telle que $c_a(x) = a$ pour tout $x \in J$, alors $\Gamma = \{c_a; a \in \mathbb{R}\}$ est un sous-groupe de $(\mathcal{C}(J), +)$.
- b) On considère les applications F_i de $\mathcal{C}(J)$ dans \mathbb{R} telles que :

$$F_1: f \mapsto f(1), \quad F_2: f \mapsto |f(0)|, \quad F_3: f \mapsto \int_0^1 f(x)dx$$

$$F_4: f \mapsto \frac{\pi}{3} \int_0^1 f(x) \cos \frac{\pi x}{6} dx, \quad F_5: f \mapsto \int_0^1 \cos \frac{\pi f(x)}{6} dx.$$

Déterminer les F_i qui sont des homomorphismes de groupes de $(\mathcal{C}(J), +)$ dans $(\mathbb{R}, +)$. Pour chacun des morphismes de groupes F_i , prouver que, quel que soit $a \in \mathbb{R}$, $F_i(c_a) = a$ et montrer qu'il existe un unique $m_i \in \mathbb{R}$ tel que $F_i(id_J - C_{m_i}) = 0$. En déduire que les Ker F_i sont deux à deux distincts.

c) Démontrer que pour tout $F \in Hom(\mathcal{C}(J), \mathbb{R})$, tel que $F(c_a) = a$, quel que soit $a \in \mathbb{R}$, on a

$$C(J) = \operatorname{Ker} F \oplus \Gamma.$$

En conclure qu'il existe de nombreux sous-groupes de $\mathcal{C}(J)$ tels que $\mathcal{C}(J) = H \oplus \Gamma$.

31) Soit deux groupes G_1 et G_2 .

- a) Prouver que les groupes $G_1 \times G_2$ et $G_2 \times G_1$ sont isomorphes.
- b) Γ_1 et Γ_2 étant aussi deux groupes, démontrer la propriété : $(\Gamma_1 \simeq G_1 \text{ et } \Gamma_2 \simeq G_2) \Rightarrow \Gamma_1 \times \Gamma_2 \simeq G_1 \times G_2$.
- c) Si H_1 et H_2 sont respectivement des sous-groupes de G_1 et G_2 , montrer que $H_1 \times H_2$ est un sous-groupe de $G_1 \times G_2$.

Déterminer tous les sous-groupes de $\frac{\mathbb{Z}}{(2)} \times \frac{\mathbb{Z}}{(2)}$; en déduire compte tenu des notations précedentes, qu'un sous-groupe de $G_1 \times G_2$ n'est pas nécessairement de la forme $H_1 \times H_2$.

32) Pour deux groupes G_1 et G_2 , démontrer les propriétés :

- a) $G_1 \simeq G_2 \Rightarrow Aut(G_1) \simeq Aut(G_2)$
- b) $G_1 \simeq G_2 \Rightarrow Int(G_1) \simeq Int(G_2)$.

33) Soit $\{G_i\}_{i\in I}$ une famille de groupes; montrer que, pour tout groupe G, l'ensemble $Hom\left(G,\prod_{i\in I}G_i\right)$ est équipotent à l'ensemble $\prod_{i\in I}Hom(G,G_i)$.

O		_			_	0
(''H	Λ	D	rп	гъ	E.	٠,

CLASSES MODULO UN SOUS-GROUPE

TEST	
TSOL .	