

Temporal convolutional networks for musical audio beat tracking – Davies & Bock (2019)

Matthew Rice 220503466

What is Beat Tracking?

From S Dixon slides on Rhythm and Metre:

- Pulse an equally spaced sequence of perceived accents in time
- Primary pulse(beat/tactus) rate at which one taps along with music
- Constant tempo/timing not assumed

Example

THE WONDERFUL WORLD OF THE YOUNG

Words and Music by SID TEPPER and ROY C. BENNETT

Previous Work

- Beat Tracking by Dynamic Programming (Daniel P. W. Ellis 2007)
 - Match Onset Strength to estimated global tempo
- An Efficient State-Space Model for Joint Tempo and Meter Tracking (Krebs et al. 2015)
 - Efficient implementation of Dynamic Bayesian Network (DBN) for improved accuracy (> 15%)
- Joint Beat and Downbeat Tracking with RNNs (Bock et al. 2016)
 - Use RNN to predict musical onsets combined with DBN to find global best state sequence
 - Limitations: RNNs hard to train, uninterpretable, and inefficient

Main Idea: Use TCN instead of RNN

TCN + Conv. Layers

- + Efficiency
- + Interpretability
- + GPU parallelizable
- Similar performance to RNN

WaveNet (Oord et al. 2016)

Introduction of Temporal Convolutional Network (TCN) – Uses stacked dilated causal convolutions

Image from VU Amsterdam: Lecture 5.4 - CNNs for Sequential Data, (Nov. 04, 2020).

Datasets

TABLE II

OVERVIEW OF THE DATASETS USED FOR TRAINING AND EVALUATION.

Dataset	# files	length
Ballroom [22], [23] ¹ Beatles [19] Hainsworth [24] Simac [25]	685 180 222 595	5 h 57 m 8 h 09 m 3 h 19 m 3 h 18 m
SMC [26]	217	2h 25 m
GTZAN [20], [21]	999	8 h 20 m

Method

Formulation: Treat problem as binary classification task Input data format

- Song:
 - Spectrogram: (batch, bands, time windows)
- Labels
 - (batch, time windows)
 - 0 \rightarrow no beat
 - 1 \rightarrow beat
 - $0.5 \rightarrow 2$ locations adjacent to beat

Method

TABLE I OVERVIEW OF SIGNAL PROCESSING AND LEARNING PARAMETERS Signal Conditioning $44.1 \, \text{kHz}$ Audio sample rate Window shape Hann Window & FFT size 2048 samples Hop size 10 ms Filterbank freq. range 30...17000 Hz Sub-bands per octave 12 Total number of bands 81 Conv. Block Number of filters 16, 16, 16 Filter size 3×3 , 3×3 , 1×8 Max. pooling size 1×3 , 1×3 , — Dropout rate 0.1Activation function ELUTCN

20,...,10

16

5

0.1

ELU

Adam

0.001

sigmoid

binary cross-entropy

Number of stacks

Number of filters

Spatial dropout rate

Output activation function

Activation function

Dilations

Filter size

Training

Optimizer

Batch size

Learning rate

Loss function

Results

TABLE III
OVERVIEW OF BEAT TRACKING PERFORMANCE.

	F-measure	CMLc	CMLt	AMLc	AMLt	D
Ballroom						
TCN	0.933	0.864	0.881	0.909	0.929	3.456
BLSTM [5]	0.917	0.832	0.849	0.905	0.926	3.539
BLSTM [6]	0.938	0.872	0.892	0.932	0.953	3.397
Hainsworth						
TCN	0.874	0.755	0.795	0.882	0.930	3.518
BLSTM [5]	0.884	0.769	0.808	0.873	0.916	3.507
BLSTM [6]	0.871	0.732	0.784	0.849	0.910	3.395
SMC						
TCN	0.543	0.315	0.432	0.462	0.632	1.574
BLSTM [5]	0.529	0.296	0.428	0.383	0.567	1.460
BLSTM [6]	0.516	0.307	0.406	0.429	0.575	1.514
GTZAN						
TCN	0.843	0.695	0.715	0.889	0.914	3.096
BLSTM [5]	0.864	0.750	0.768	0.901	0.927	3.071
BLSTM [6]	0.856	0.716	0.744	0.876	0.919	3.019

Limitations

No joint beat and downbeat tracking

Large number of parameters not completely tuned

Inference slower than BLSTM (but still faster than real-time)

Non-causal TCN layers inhibit realtime tasks

Implications

- TCNs can be adapted from music generation domain to beat tracking (and perhaps other domains!)
- TCNs are efficient compared to RNNs while achieving similar performance
 - 35% of weights of RNN approach
 - 60x training speed up on GPU
- Reusing post-processing ideas such as DBN are essential to improving accuracy