

Sugarcane grading from photos using machine learning

Group: 39

Student: Phuong Pham - 56070503447 - phuongmaipham@icloud.com

Advisor: Dr. Sally E. Goldin

Content

- >> Problem insight
- >> Proposed method
- >> Expected results
- >> Deliverables

Sugarcane statistics

Source: CROP DIVERSIFICATION IN THAILAND - Chavalvut Chainuvati* and Withaya Athipanan**

Sugarcane health - important to predict the yield

Close up of a sugarcane bunch

Why do we do this project?

Why do we do this project?

Cane companies can survey only 10% of their fields

Why do we do this project?

Why do we do this project?

>> We need a convenient way to classify cane quality over a large area

Mobile phone photos

Problem insight Example data

Problem insight Example data

Medium

Problem insight Example data

Why do we do this project?

>> A machine learning method to classify cane quality using mobile phone photos

Proposed Method

Proposed method

Proposed method

What we attempt to do

- >> Implement several ML models
 - >> Try them with different parameters

>> Results & method evaluations

Proposed method Machine learning method

>> Many possibilities (NN, NaiveBayes)

- >>> Which features to extract?
- >>> One view different images

Proposed method Machine learning method

>> Convolutional neural networks!

- >>> automatically learn the important features for decision making
- >>> Good approach to tell different between objects in the same breed

Proposed method Convolutional neural network

Proposed method

Convolutional neural network -convolutional layer

Proposed method

Convolutional neural network -pooling layer

Proposed method Cons

>> Requires very LARGE dataset

>> Processing speed: **SLOW**!!!

Proposed method

Data Augmentation

- >> Scaling
- >> Brightness adjust
- >> Contrast adjust
- >> Flipping
- >> Size normalisation

Proposed method

Hardware - NVIDA Geforce Titan X

>> Computing
capacity >= 3.0

>> NVIDA card - CUDA tool kit - GPU

Expected results

Expected results

>> Data analysis and justification of the chosen model and its appropriate parameters

Deliverables

Deliverables Term 1

- >> Experimental data set
- >> Experimental design
- >> Some prototypes including preprocessing code
- >> Decision about frameworks & learning methods

Deliverables Term 2

- >> Complete experimental design
- >> Software test bed
- >> Results & data analysis

Questions