Definitions	Advantage Function	Policy Gradient
$V^{\pi}(s_t) \triangleq \mathbb{E}_{s_{t+1:\infty}, a_{t:\infty}} \left[\sum_{\ell=0}^{\infty} r_{t+\ell} \right]$ $Q^{\pi}(s_t, a_t) \triangleq \mathbb{E}_{s_{t+1:\infty}, a_{t+1:\infty}} \left[\sum_{\ell=0}^{\infty} r_{t+\ell} \right]$	$A^{\pi}(s_t, a_t) \triangleq Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$	$g \triangleq \mathbb{E}_{s_{0:\infty}, a_{0:\infty}} \left[\sum_{t=0}^{\infty} A^{\pi}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t s_t) \right]$
	γ : introduces bias, lowers variance	
$V^{\pi,\gamma}(s_t) \triangleq \mathbb{E}_{s_{t+1:\infty}, a_{t:\infty}} \left[\sum_{\ell=0}^{\infty} \gamma^{\ell} r_{t+\ell} \right]$ $Q^{\pi,\gamma}(s_t, a_t) \triangleq \mathbb{E}_{s_{t+1:\infty}, a_{t+1:\infty}} \left[\sum_{\ell=0}^{\infty} \gamma^{\ell} r_{t+\ell} \right]$	$A^{\pi,\gamma}(s_t, a_t) \triangleq Q^{\pi,\gamma}(s_t, a_t) - V^{\pi,\gamma}(s_t)$	$g^{\gamma} \triangleq \mathbb{E}_{s_{0:\infty}, a_{0:\infty}} \left[\sum_{t=0}^{\infty} A^{\pi, \gamma}(s_t, a_t) \nabla_{\theta} \log \pi_{\theta}(a_t s_t) \right]$
	λ : tunes the bias-variance trade-off for the approximation of $A^{\pi,\gamma}$	
$\delta_t \triangleq r_t + \gamma V^{\pi,\gamma}(s_{t+1}) - V^{\pi,\gamma}(s_t)$ $\delta_t^V \triangleq r_t + \gamma V_{\phi}^{\pi,\gamma}(s_{t+1}) - V_{\phi}^{\pi,\gamma}(s_t)$	$\hat{A}_t^{\mathrm{GAE}(\gamma,\lambda)} riangleq \sum_{\ell=0}^{\infty} (\gamma\lambda)^\ell \delta_{t+\ell}^V$	$\hat{g} \triangleq \mathbb{E}_{s_{0:\infty}, a_{0:\infty}} \left[\sum_{t=0}^{\infty} \hat{A}_t^{\text{GAE}(\gamma, \lambda)} \nabla_{\theta} \log \pi_{\theta}(a_t s_t) \right]$