Can Computers Understand What is Happening? Probabilistic Complex Event Recognition

Alexander Artikis^{1,2} Periklis Mantenoglou^{1,3}

¹NCSR Demokritos, Athens, Greece ²University of Piraeus, Greece ³NKUA, Greece

https://cer.iit.demokritos.gr

Human Activity Recognition

https://cer.iit.demokritos.gr (activity recognition)

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.

Event Calculus*

- A logic programming language for representing and reasoning about events and their effects.
- Key components:
 - event (typically instantaneous).
 - fluent: a property that may have different values at different points in time.
- Built-in representation of inertia:
 - F = V holds at a particular time-point if F = V has been initiated by an event at some earlier time-point, and not terminated by another event in the meantime.

^{*}Kowalski and Sergot, A Logic-based Calculus of Events. New Generation Computing, 1986.


```
\begin{array}{l} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \end{array}
```

holdsAt($close(P_1, P_2) = false, T$).

0.70 :: happensAt(walking(mike), 1). 0.46 :: happensAt(walking(sarah), 1).


```
0.70 :: happensAt(walking(mike), 1).
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                     0.46 :: happensAt(walking(sarah), 1).
  happensAt(walking(P_1), T),
  happensAt(walking(P_2), T),
                                                     P(initiatedAt(moving(mike, sarah) = true, 1)) =
  holdsAt(close(P_1, P_2) = true, T),
                                                       P(\mathsf{happensAt}(walking(mike), 1)) \times
  holdsAt(orientation(P_1, P_2) = true, T).
                                                       P(\mathsf{happensAt}(walking(sarah), 1)) \times
terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                       P(\text{holdsAt}(close(mike, sarah) = true, 1)) \times
  happensAt(walking(P_1), T),
                                                       P(holdsAt(orientation(mike, sarah) = true, 1))
  holdsAt(close(P_1, P_2) = false, T).
                                                       = 0.7 \times 0.46 \times 1 \times 1 = 0.32
```



```
\begin{split} & \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ & \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ & \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ & \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ & \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ & \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ & \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ & \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \end{split}
```

```
\begin{array}{l} 0.70:: \mathsf{happensAt}(\mathit{walking}(\mathit{mike}), \ 1). \\ 0.46:: \mathsf{happensAt}(\mathit{walking}(\mathit{sarah}), \ 1). \\ \\ P(\mathsf{holdsAt}(\mathit{CE} = \mathsf{true}, t)) = \\ P(\mathsf{initiatedAt}(\mathit{CE} = \mathsf{true}, t-1) \lor \\ (\mathsf{holdsAt}(\mathit{CE} = \mathsf{true}, t-1) \land \\ \neg \ \mathsf{terminatedAt}(\mathit{CE} = \mathsf{true}, t-1))) \end{array}
```



```
\begin{array}{ll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \\ \end{array} \\ \begin{array}{ll} \textbf{0.70} :: \textbf{happensAt}(\textit{walking}(\textit{mike}), \ 1). \\ \textbf{0.46} :: \textbf{happensAt}(\textit{walking}(\textit{mike}), \ 1). \\ \textbf{0.46
```



```
\begin{array}{lll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{frue}, \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \\ \end{array} \\ \begin{array}{ll} \textbf{P(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{2}) \land \\ \textbf{p(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{2}) \land \\
```



```
 \begin{array}{ll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \\ \end{array} \right. \\ \begin{array}{ll} \textbf{P(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, 21)) = \\ \textbf{P(initiatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, 20) \lor \\ \textbf{(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, 20) \lor \\ \textbf{-terminatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, 20)))) \\ = 0 + 0.32 \times 1 - 0 \times 0.32 \times 1 = 0.32 \\ \end{array} \right.
```



```
0.39 :: happensAt(walking(mike), 21).
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                   0.28 :: happensAt(walking(sarah), 21). · · ·
  happensAt(walking(P_1), T),
  happensAt(walking(P_2), T),
                                                   P(initiatedAt(moving(mike, sarah) = true, 21)) =
  holdsAt(close(P_1, P_2) = true, T),
                                                     P(happensAt(walking(mike), 21)) \times
  holdsAt(orientation(P_1, P_2) = true, T).
                                                     P(happensAt(walking(sarah), 21)) \times
terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
                                                     P(\text{holdsAt}(close(mike, sarah) = true, 21)) \times
  happensAt(walking(P_1), T),
                                                     P(holdsAt(orientation(mike, sarah) = true, 21))
  holdsAt(close(P_1, P_2) = false, T).
                                                     = 0.39 \times 0.28 \times 1 \times 1 = 0.11
```



```
 \begin{array}{ll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \\ \end{array} \right. \\ \begin{array}{ll} \textbf{P(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{22})) = \\ \textbf{P(initiatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{21}) \lor \\ \textbf{(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{21}) \lor \\ \textbf{-terminatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \textit{21}))) \\ = \textbf{0.11} + \textbf{0.32} \times \textbf{1} - \textbf{0.11} \times \textbf{0.32} \times \textbf{1} = \textbf{0.39} \\ \end{array} \right.
```



```
0.18 :: happensAt(walking(mike), 41).
initiatedAt(moving(P_1, P_2) = true, T) \leftarrow
  happensAt(walking(P_1), T),
  happensAt(walking(P_2), T),
  holdsAt(close(P_1, P_2) = true, T),
  holdsAt(orientation(P_1, P_2) = true, T).
terminatedAt(moving(P_1, P_2) = true, T) \leftarrow
  happensAt(walking(P_1), T),
  holdsAt(close(P_1, P_2) = false, T).
```

```
0.79 :: happensAt(inactive(sarah), 41). · · ·
  P(happensAt(walking(mike), 41)) \times
```

```
P(\mathbf{terminatedAt}(moving(mike, sarah) = \mathsf{true}, 41)) =
  P(holdsAt(close(mike, sarah) = false, 41))
  = 0.18 \times 1 = 0.18
```



```
 \begin{array}{ll} \textbf{initiatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{happensAt}(\textit{walking}(P_2), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{true}, \ T), \\ \textbf{holdsAt}(\textit{orientation}(P_1, P_2) = \mathsf{true}, \ T). \\ \textbf{terminatedAt}(\textit{moving}(P_1, P_2) = \mathsf{true}, \ T) \leftarrow \\ \textbf{happensAt}(\textit{walking}(P_1), \ T), \\ \textbf{holdsAt}(\textit{close}(P_1, P_2) = \mathsf{false}, \ T). \\ \end{array} \right. \\ \begin{array}{ll} \textbf{0.18} :: \textbf{happensAt}(\textit{walking}(\textit{mike}), \ 41). \\ \textbf{0.79} :: \textbf{happensAt}(\textit{inactive}(\textit{sarah}), \ 41). \\ \textbf{0.79} :: \textbf{happensAt}(\textit{inactive}(\textit{sarah}), \ 41). \\ \textbf{0.79} :: \textbf{happensAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \ 42)) = \\ \textbf{P}(\textbf{initiatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \ 41) \lor \\ \textbf{(holdsAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \ 41) \lor \\ \textbf{-terminatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \ 41))) \\ \textbf{-terminatedAt}(\textit{moving}(\textit{mike}, \textit{sarah}) = \mathsf{true}, \ 41)) \\ \textbf{-te
```


 $^{{}^{\}displaystyle *}$ Skarlatidis et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.

Higher accuracy than crisp reasoning in the presence of:

- several initiations and terminations;
- few probabilistic conjuncts.

 $^{^{*}\}mathsf{Skarlatidis}$ et al, A Probabilistic Logic Programming Event Calculus. Theory & Practice of Logic Programming, 2015.

 Interval Probability: average probability of the time-points it contains.

- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.

- Interval Probability: average probability of the time-points it contains.
- Probabilistic Maximal Interval:
 - interval probability above a given threshold;
 - no super-interval with probability above the threshold.
- Probabilistic maximal interval computation via maximal non-negative sum interval computation.

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1

Tim	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

$$L[i] = In[i] - \mathcal{T}$$

Time	e 1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5

$$\sum_{i=s}^{e} L[i] \geq 0 \Leftrightarrow P([s,e]) \geq \mathcal{T}$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9

$$prefix[i] = \sum_{j=1}^{i} L[j]$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp										-0.9

$$dp[10] = \max_{10 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp									-0.9	-0.9

$$dp[9] = \max_{9 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp								-0.9	-0.9	-0.9

$$dp[8] = \max_{8 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp							-0.9	-0.9	-0.9	-0.9

$$dp[7] = \max_{7 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp						-0.4	-0.9	-0.9	-0.9	-0.9

$$dp[6] = \max_{6 \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dp[i] = \max_{i \le j \le 10} (prefix[j])$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = \left\{ egin{array}{ll} dp[e] - prefix[s-1] & ext{if } s > 1 \ dp[e] & ext{if } s = 1 \end{array}
ight.$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[s, e] = \left\{ egin{array}{ll} dp[e] - prefix[s-1] & ext{if } s > 1 \\ dp[e] & ext{if } s = 1 \end{array}
ight.$$

$$\textit{dprange}[\textit{s}, \textit{e}] \geq \textit{0} \Rightarrow \exists \textit{e}^*: \textit{e}^* \geq \textit{e}, \ \textit{P}([\textit{s}, \textit{e}^*] \geq \mathcal{T})$$

	ΛΨ									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

	Λ₩									
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,1] = \mathit{dp}[1] = 0.1 \geq 0$$

	\uparrow	\Downarrow								
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

	\uparrow	\Downarrow								
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 2] = dp[2] = 0.1 \ge 0$$

	\uparrow		\Downarrow							
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,3] = \mathit{dp}[3] = 0.1 \geq 0$$

	\uparrow			\Downarrow						
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,4] = \mathit{dp}[4] = 0.1 \geq 0$$

	\uparrow				\Downarrow					
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[1,5] = \mathit{dp}[5] = 0 \geq 0$$

	\uparrow					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 6] = dp[6] = -0.4 < 0$$

	\uparrow					\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[1, 6] = dp[6] = -0.4 < 0$$

		\uparrow				\Downarrow				
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[2, 6] = dp[6] - prefix[1] = 0.1 \ge 0$$

		\uparrow					\Downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$\mathit{dprange}[2,7] = \mathit{dp}[7] - \mathit{prefix}[1] = -0.4 < 0$$

		\uparrow					\downarrow			
Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

$$dprange[2, 7] = dp[7] - prefix[1] = -0.4 < 0$$

Time	1	2	3	4	5	6	7	8	9	10
In	0	0.5	0.7	0.9	0.4	0.1	0	0	0.5	1
L	-0.5	0	0.2	0.4	-0.1	-0.4	-0.5	-0.5	0	0.5
prefix	-0.5	-0.5	-0.3	0.1	0	-0.4	-0.9	-1.4	-1.4	-0.9
dp	0.1	0.1	0.1	0.1	0	-0.4	-0.9	-0.9	-0.9	-0.9

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval.

Complexity

The computation of probabilistic maximal intervals is linear to the dataset size.

^{*}Artikis et al, A Probabilistic Interval-based Event Calculus for Activity Recognition. Annals of Mathematics and Artificial Intelligence, 2021.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

- Windowing.
- Probabilistic maximal interval computation.
- Caching potential starting points.
 - Discard time-point t iff there is a t'<t that can be the starting point of a probabilistic maximal interval including t.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Online Interval-based Recognition: Properties

Memory Minimality

A time-point is cached iff it may be the starting point of a future probabilistic maximal interval.

Interval Computation Correctness

An interval is computed iff it is a probabilistic maximal interval given the data seen so far.

Complexity

The computation of probabistic maximal intervals is linear to the window and memory size.

 Complex event duration statistics favor more recent potential starting points.

^{*}Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. https://github.com/Periklismant/oPIEC

 Complex event duration statistics favor more recent potential starting points.

^{*}Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. https://github.com/Periklismant/oPIEC

 Complex event duration statistics favor more recent potential starting points.

^{*}Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. https://github.com/Periklismant/oPIEC

- Complex event duration statistics favor more recent potential starting points.
- Comparable accuracy to batch reasoning.

^{*}Mantenoglou et al, Online Event Recognition over Noisy Data Streams. International Journal of Approximate Reasoning, 2023. https://github.com/Periklismant/oPIEC

Indicative Experimental Results

 $^{^*}$ McAreavey et al., The event calculus in probabilistic logic programming with annotated disjunctions. AAMAS, 2017.

[†]D'Asaro et al., Probabilistic reasoning about epistemic action narratives. Artificial Intelligence, 2021.

Complex event recognition over noisy streams:

ullet Probabilistic reasoning o robust complex event recognition.

Complex event recognition over noisy streams:

- ullet Probabilistic reasoning o robust complex event recognition.
- ullet Interval-based reasoning o improved predictive accuracy.

Complex event recognition over noisy streams:

- Probabilistic reasoning \rightarrow robust complex event recognition.
- Interval-based reasoning → improved predictive accuracy.
- ullet Optimal Stream compression o run-time performance.
- ullet Optimal stream compression o correct complex event recognition.

Complex event recognition over noisy streams:

- Probabilistic reasoning \rightarrow robust complex event recognition.
- Interval-based reasoning → improved predictive accuracy.
- Optimal Stream compression \rightarrow run-time performance.
- Optimal stream compression → correct complex event recognition.
- Direct routes to neuro-symbolic learning → end-to-end optimisation of simple and complex event recognition.

Complex event recognition over noisy streams:

- Probabilistic reasoning \rightarrow robust complex event recognition.
- Interval-based reasoning → improved predictive accuracy.
- Optimal Stream compression \rightarrow run-time performance.
- Optimal stream compression → correct complex event recognition.
- Direct routes to neuro-symbolic learning → end-to-end optimisation of simple and complex event recognition.

Next:

Forecast complex events.