公報 (A) 盂 华 噩 **(23)** (19) 日本国格群庁 (JP)

(11) 特許出顧公開每号

特開平10-171156

(43)公開日 平成10年(1998)6月26日

		325	384
	80/6		
FI	G03G		
400			
裁別記号			
		280/6	
(51) Int.CL*	G 0 3 G		

審査請求 未請求 請求項の数42 〇1 (全36 頁)

(21) 出版排号	特 國 平9-277160	(71) 田岡人 000001007	000001007
			キャノン株式会社
(22) 出版日	平成9年(1997)10月9日		東京都大田区下丸子3丁目30番2号
		(72) 免明者	松水 點
(31)優先権主張器号	特顯平8-268299		東京都大田区下丸子3丁目30番2号キャノ
(32) 優先日	日 6 日 00 (9661) 8 本		ン株式会社内
(33) 優先権主張國	日本(1P)	(72) 発明者	班上 正
			東京都大田区下丸子3丁目30番2号キヤノ
			ン株式会社内
		(72) 究明者	大野子
			東京都大田区下丸子3丁目30番2号キセノ
			ン株式会社内
		(74) 代理人	中型十 九郎 第一

(54) 【発明の名称】 静電荷像現像用トナー及び面像形成方法

性。耐ブロッキング性ともに良好である静電荷像現像用 【映題】 転写紙によらず低。風定着性、耐オフセット トナーを旋供すること。

ている静電荷像現像用トナーは、(a) 損失弾性率と貯 る温度が55~10℃の温度領域に存在し、そのときの 【解決手段】 結着樹脂,着色剤及びワックスを含有し 模容性形の比 (G′′ /G′ = tan b) ガ1.0とな (G' 110) と貯蔵弾性率 (G' 140) の比 (G' 110 /G' 140) が2~2のである静電荷線現像用トナー。 路柱母が1.5×108Pa以下であり、(b) 野樹窟 本形 (G, 40) と野根御本路 (G, 50) の比 (G, 40/ (G, 10) と貯蔵海性等(G, 100)の比(G, 10/G, 10/100)が50~250であり、(e)貯蔵強性等 G, 20) が1. 5~5. 0でわり、(c) 貯蔵資性率 (G, 20) と野栖谷神段 (G, 60) との比 (G, 20/ C, 40) が3~20であり、(4) 貯瀬寧柱舟

する静電荷像現像用トナー。

特許請求の範囲

【謝求項1】 結着樹脂、着色剤及びワックスを含有し ている静電荷像現像用トナーにおいて、

(a) 損失資性容と貯蔵資性率の比(G"/G'=ta n b) が1. 0となる温度が55~70℃の温度領域に **存在し、かし、そのときの容在母が 1.5×10⁸ Pa** 以下であり、 40) と温度 . 5 50℃における貯蔵弾性率 (G'₅₀)の比 (G' (b) 温度40℃における貯蔵弾性率(G'

(c) 貯蔵弾性率 (G′₅₀) と温度60℃における貯蔵 容科像 (G, 60) との比 (G, 20/G, 60) が3~20 G' 50) 11. 5~5. 0 cby.

100℃における貯蔵弾性學(G'100)の比(G'70 (4) 温度70℃における貯蔵弾性率(G'70)と温度 /G' 100) #50~250tbb.

(G' 110 /G' 140) が2~20であることを特徴と (e) 温度110℃における貯蔵弾性率(G'110)と 温度140℃における貯蔵弾性率(G'140)の比

【請求項2】 数トナーは、比 (G" /G') が1.0 きの弾性略が1×10⁷ Pa~1. 3×10⁸ Paであ ることを特徴とする請求項1に記載の静電荷像現像用ト となる温度が58~68℃の温度領域に存在し、そのと

ることを特徴とする請求項1に記載の静電荷像現像用ト きの資件路が3×10⁷ Pa~1.0×10⁸ Paであ [請求項3] 数トナーは、比 (G* /G') が1.0 となる温度が59~65℃の温度領域に存在し、そのと

[請求項4] 数トナーは、歓貯破弾性率 (G'40)と 1.8~4.0であることを特徴とする請求項1乃至3 数貯蔵資性粉 (G' 50) との比 (G' 40/G' 50) が のいずれかに記載の静電荷像現像用トナー。

[請求項5] 数トナーは、数貯蔵弾性率(G'40)と 2. 0~3. 5であることを特徴とする請求項1乃至3 数貯蔵資本母 (G′50) との比 (G′40/G′50) が のいずれかに記載の静電荷像現像用トナー。 [諸水道6] 数トナーは、数形蔵容性形(G, 20)と 数貯蔵資本母 (G, 60) との比 (G, 50/G, 60) が4 ~15であることを特徴とする請求項1乃至5のいずれ かに配載の静電荷像現像用トナー。

双形破容性母(C, 60)との比(C, 50/C, 60)が5 [請求項7] 数トナーは、数貯蔵降性率 (G, 50)と ~10式あることを特徴とする請求項1乃至5のいずれ かに記載の静電荷像現像用トナー。 【諸次項8】 数トナーは、数貯殻弾性率 (G, 10) と数貯殻弾性率 (G, 100) との比 (G, 10/G, 100) が60~240であることを特徴とする請求項1万至7

【酵水項9】 数トナーは、数貯蔵弾性率 (G'70)と が10~220であることを特徴とする請求項1乃至1 数形態溶血粉 (G′100) との比 (G′70/G′ のいずれかに記載の静電荷像現像用トナー。 のいずれかに記載の静電荷像現像用トナー。

特開平10-171156

8

G' 140) が2.5~18であることを特徴とする詩次 項1乃至9のいずれかに記載の静電荷像現像用トナー。 110) と数形数容柱段 (G' 140) との比 (G' 110 【開水項10】 版トナーは、敷貯蔵海性率 (G' 10 【諸米項11】 数トナーは、数貯蔵溶性格 (G'

G'140) が3~15であることを特徴とする時水項1 ユニット及び (メタ) アクリル酸エステルモノマーユニ ットを有するブロック共宜合体を含有していることを特 散とする請求項1乃至11のいずれかに記載の静電荷像 【酵水項12】 「数結着相脂は、芳香抜ビニルモノマー 乃至9のいずれかに配載の静電荷像現像用トナー。 110) と数貯蔵容性略 (G' 140) との比 (G'

とを特徴とする請求項1乃至12のいずれかに配載の静 対して10重量%以上、核結婚樹脂に含有されているこ 【請求項13】 数プロック共竄合体は、全結着樹脂に 電荷像現像用トナー。 現像用トナー。 ន

【請求項14】 数プロック共重合体は、芳香族ピニル モノマー及び (メタ) アクリル酸エステルモノマーをパ キサイド基の開製反応が起る10時間半域温度の差が5 C以上であるラジカル重合開始剤を用いて、重合反応温 度を5℃以上変えてラジカル質合に合成されたものであ **ーオキサイド基を分子内に2個以上有し、各々のパーオ** ることを特徴とする請求項1乃至13のいずれかに記載

[韻水項15] 結着補脂は、芳香族ピニルモノマー及 び(メタ)アクリル酸エステルモノマーを下配化学式 (1), (2), (3) 又は(4) の静電荷像現像用トナー。 ಜ

R-00-C-R-C-00-R

Ξ

8 R-00-R-00-R 3

€ -(C - R.s - CO-(R.s - O)=C - R.s - C - CO)=

8

 R_8 , R_{10} , R_{11} 及び R_{12} は、炭架数 $2 \sim 3\,0$ の 直鎖、分岐または環状のアルキル基または炭架数 $6 \sim 2$ し、mは1~20の監数を扱わす。」で示されるラジカ ル重合開始剤を用いて、重合反応温度を5℃以上変えて 0のアリール基を示し、これらは同じであっても相互に ラジカル監合して合成された共監合体を含有しているこ 異なっていてもよい。k, nは2~50の整数を扱わ (式中、R1, R2, R3, R4, R5, R6, ස

配析像現像用トナー。

リル酸エステルモノマーを重量比で20:1~1:1で 【請求項16】 数結着相暗は、(i)芳香族ピニルモ 1 4 一単独または芳香族ピニルモノャーと(メタ)アク 既合したモノマー混合物と、下配化学式(1),

(2), (3), 又は(4)

3 8 R - 00 - C - R - C - 00 - R R-00-R-00-R

ල -(R, -00 - C - R, - C - 00 - R)+ 3 -(c) - Rus - Co - (Rus - O)- C - Rus - C - 00)-

R8 · R9 · R10 · R11及UR12は、炭素数2~30の 0のアリール基を示し、これらは同じであっても相互に し、mは1~20の整数を扱わす。」で表わされるラジ カル重合開始剤を含むモノマー組成物を50~120℃ 直儺、分岐または環状のアルキル基または炭素数 6~2 (式中、R1, R2, R3, R4, R5, R6, R7, 異なっていてもよい。k, nは2~50の数数を救わ で重合反応を行なう第1の重合反応工程;

する少なくとも2段階の異なる温度で重合反応する工程 は芳香族ピニルモノマーと (メタ) アクリル酸エステル モノマーを重量比で1:20~1:1で低台したモノマ 一混合物を再度添加して第1の重合反応よりも5℃以上 (ii) (メタ)アクリル酸エステルモノマー単独また 高い温度で置合反応を行なう第2の重合反応工程;を有 を経て合成された共宜合体を含有していることを特徴と する請求項1乃至14のいずれかに配載の静電荷像現像

と(メタ)アクリル酸エステルモノヤーを監量比で1: 20~1:1で混合したモノマー混合物と、下配化学式 [請求項17] 蚊結着樹脂は、(i) (メタ) アクリ **小酸エステルモノゥー単独または芳香族ピニルモノャー** (1), (2), (3), 又注(4)

3 8 R-00-R-00-R

8 € -(C - R. - CO-(R. - O)-C - R. - C - OO)-- 00 - C - R - C - 00 - R.

し、mは1~20の監数を安わす。」で安わされるラジ 0のアリール基を示し、これらは同じであっても相互に カル重合開始剤を含むモノマー組成物を50~120℃ 異なっていてもよい。k, nは2~50の整数を嵌わ で重合反応する工程;

少なくとも2段階の異なる温度で重合反応する工程を経 モノマーと(メタ)アクリル酸エステルモノマーを宣量 比で20:1~1:1で混合したモノマー混合物を再度 **添加して温度55℃以上で塩合反応する工程;からなる** て合成された共国合体を含有していることを特徴とする 請求項1乃至14のいずれかに記載の静電荷像現像用ト (ii) 芳香族ピニルモノマー単独または芳香族ピニル 2

[請求項18] **該結婚樹脂は、2,500~50,0** 000数平均分子曲 (Mn) 及び10,000~1,5 とを特徴とする請求項1乃至17のいずれかに配載の静 00,000の**国**量平均粒子量 (Mw)を有しているこ 電荷像現像用トナー。

とを特徴とする請求項1乃至18のいずれかに配載の静 [請求項19] 数トナーは、数トナーのTHF可容分 のGPCによる分子量分布において、分子量12,00 200,000の倒板にそれぞれピークを有しているこ 0~40,000の倒域及び分子量50,000~1, 電荷像現像用トナー。

[請求項20] 数トナーは、数トナーのTHF可容分 のGPCによる分子量分布において、分子量45,00 0以下の低分子量領域の面積 (L) と分子量45,00 0を超える高分子量徴域の面徴 (H) との比が下記関係 (L) : (H) = 1:9 \sim 9.5 \sim 0.5

を満足することを特徴とする請求項1乃至19のいずれ かに記載の静電荷像現像用トナー。

[諸水項21] 静電路像保持体に保持されている静電 智像をトナーにより現像し、トナー画像を形成する現像

に転写されたトナー画像を加熱定着手段により数記録材 数トナー画像を記録材に転写する転写工程及び数記録材 に加熱定着する定着工程、を有する画像形成方法におい 数トナーは、結着樹脂、着色剤及びワックスを含有して

6

(a) 損失弾性率と貯蔵弾性率の比(G"/G'=ta n b) が1. 0となる温度が55~10℃の温度倒域に 存在し、かつ、そのときの海性帯が1.5×10⁸ Pa (b) 温度40℃における貯蔵弾性率 (G′₄₀) と温度 50℃における貯蔵学性率 (G′50)の比 (G′ G' 50) #1. 5~5. 0789.

(c) 数貯蔵弾性率 (G[′]50⁾ と温度 6 0 ℃における貯

概容執母 (G, eo) との比 (G, eo/G, eo) が3~2

8

Rg, Rg, R10, R11及びR12は、炭漿数2~30の 直儺、分岐または環状のアルキル基または炭粟数6~2

(式中、R1, R2, R3, R4, R5, R6, R7,

(d) 温度70 じにおける貯蔵弾性率 (G^7_{70}) と温度 100℃における貯蔵弾性率 (G′₁₀₀)の比 (G′ (G' 100) 150~250€89.

(e) 温度110℃における貯蔵荷性率(G'110)と (G'110 /G'140)が2~20であることを特徴と 温度140℃における貯蔵弾性率 (G′₁₄₀)の比

ときの資料路が1×10⁷ Pa~1. 3×10⁸ Paで 0となる温度が58~68℃の温度倒域に存在し、その [諸状版22] 数トナーは、九 (G" /G')が1. あることを特徴とする請求項21に記載の画像形成方

2

0となる温度が59~65℃の温度倒域に存在し、その ときの資性略が3×10⁷ Pa~1.0×10⁸ Paで [時状項23] 数トナーは、比 (G* /G′) が1. あることを特徴とする請求項21に記載の画像形成方

と校貯機弾性格 (G′50) との比 (G′40/G′50) が 1.8~4.0であることを特徴とする請求項21乃至 【請求項24】 数トナーは、数貯蔵弾性略 (G⁷40) 23のいずれかに記載の画像形成方法。

2. 0~3. 5であることを特徴とする請求項21乃至 ä 4~15であることを特徴とする請求項21乃至25の [請求項25] 数トナーは、数貯蔵弾性略 (G'40) 【請求項26】 版トナーは、核貯蔵学性率 (G' 50) と数野樹谷柱母 (G′50) との比 (G′40/G′50) と数形骸容払砕 (G, f0) との比 (G, 50/G, 60) 23のいずれかに記載の画像形成方法。

と数形破容性帯 (G′60) との比 (G′50/G′60) が 5~10であることを特徴とする請求項21乃至25の 「静水項27】 数トナーは、数貯蔵降性率 (G'50) いずれかに配載の画像形成方法。 いずれかに記載の画像形成方法。

100)が70~220であることを特徴とする請求項2 G' 149() が2. 5~18であることを特徴とする請求 100)が60~240であることを特徴とする請求項2 110)と数形態溶性器(G′140)との比(G′110 / 【請求項28】 数トナーは、数貯蔵弾性率 (G'70) œ 10) と数形態資本時 (G' 140) との比 (G' 110 と数野糖溶体格 (G, 100) との比 (G, 20/G) と数貯積資料等 (G, 100) との比 (G, 10/G, [請求項29] 数トナーは、数貯蔵弾性率 (G' 【請求項30】 版トナーは、数貯蔵資料率 (G、 項21万至29のいずれかに配載の画像形成方法。 【請求項31】 数トナーは、数貯蔵弾性母 (G/ 1乃至27のいずれかに記載の画像形成方法。 1乃至27のいずれかに記載の画像形成方法。

特開平10-171156

€

ットを有するブロック共重合体を含有していることを特 ユニット及び (メタ) アクリル数エステルモノマーユニ 散とする請求項21乃至31のいずれかに記載の画像形 [請求項32] 数結着機脂は、芳香族ピニルモノマー

対して10重量%以上、蚊結着樹脂に含有されているこ とを特徴とする請求項21万至32のいずれかに記載の 【請求項33】 数プロック共宜合体は、全結着相脂に 画像形成方符。

キサイド瓶の開製反応が超る10時間半減温度の熱が5 度を5℃以上変えてラジカル重合に合成されたものであ 【請求項34】 蚊ブロック共気合体は、芳香族ピニル モノマー及び (メタ) アクリル酸エステルモノマーをパ **一才キサイド基を分子内に2個以上有し、各々のパーオ で以上であるラジカル重合開始剤を用いて、重合反応温** ることを特徴とする請求項21乃至33のいずれかに記 戦の画像形成方法。

【語水項35】 結着樹脂は、芳香族ピニルモノャー及 ぴ(メタ)アクリル酸エステルモノマーを下配化学式 (1), (2), (3) 又は(4) ន

R - 00 - C - R - C - 00 - R

8 R-00-R-00-R

9 {R, -00 - C - R - C - 00 - R+

€ (女中、R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁及UR₁₂は、炭架敷2~30の 国職、分岐または環状のアルキル基または炭素製6~2 し、mは1~20の数数を扱わす。」で示されるラジカ ル重合開始剤を用いて、重合反応温度を5℃以上変えて とを特徴とする請求項21乃至34のいずれかに記載の 0のアリール基を示し、これらは同じであっても相互に ラジカル重合して合成された共重合体を含有しているこ 異なっていてもよい。k, nは2~50の監数を表わ ಣ

【請求項36】 数結着樹脂は、(i)芳香族ピニルモ ノレー単独または芳香族ピニルモノマーと(メタ)アク リル酸エステルモノマーを重量比で20:1~1:1で 混合したモノマー混合物と、下記化学式(1), 6

(2), (3), 双片(4)

ය

1 乃至29のいずれかに記載の画像形成方法。

æ

8	2
R-00-C-R-C-00-R	R 00 - R 00 - R.

[式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₉ , R₁₀, R₁₁及びR₁₂は、炭素数2~30の し、mは1~20の整数を装わす。] で表わされるラジ カル重合開始剤を含むモノマー組成物を50~120℃ 直鎖、分岐または環状のアルキル基または炭繋数6~2 0のアリール基を示し、これらは同じであっても相互に 異なっていてもよい。k, nは2~50の監数を表わ で重合反応を行なう第1の重合反応工程:

は芳香族どニルモノマーと(メタ)アクリル酸エステル モノマーを塩量比で1:20~1:1で混合したモノマ 一混合物を再度添加して第1の重合反応よりも5℃以上 する少なくとも2段階の異なる温度で重合反応する工程 する酵水項21万至34のいずれかに配載の画像形成方 (ii) (メタ)アクリル酸エステルモノマー単独また 高い温度で重合反応を行なう等2の重合反応工程;を有 を経て合成された共重合体を含有していることを特徴と

[請求項37] 飲結着樹脂は、(i) (メタ) アクリ **小酸エステルモノヤー単独または芳香族どニルモノヤー** と(メタ)アクリル酸エステルモノマーを餌由比で1: 20~1:1で混合したモノマー混合物と、下記化学式 (1), (2), (3), 又注(4)

$$(R_{n}-\infty-\overset{\square}{C}-R_{n}-\overset{\square}{C}-\infty-R_{n},$$

$$(3)$$

$$(6)$$

$$(6)$$

$$(6)$$

$$(7)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(8)$$

$$(7)$$

$$(9)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(8)$$

$$(9)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(8)$$

$$(8)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

$$(9)$$

【式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ . R₇ , R₈ , R₉ , R₁₀ , R₁₁及びR₁₂は、放棄数2~30の 0のアリール基を示し、これらは同じであっても相互に し、mは1~20の監数を扱わす。〕で安わされるラジ カル塩合開始剤を含むモノマー組成物を50~120℃ 直儺、分岐またけ頭状のアルキル基または炭菜数6~2 **異なっていてもよい。k. n.は2~50の慰教を安む** で宜合反応する工程:

ය 比で20:1~1:1で混合したモノマー混合物を再度 (ii) 芳香族ピニルモノヤー単独または芳香族ピニル モノマーと(メタ)アクリル酸エステルモノマーを監由

とを特徴とする請求項21乃至37のいずれかに記載の 少なくとも2段階の異なる温度で重合反応する工程を経 [請求項38] **該結**着樹脂は、2,500~50,0 00の数平均分子曲 (Mn) 及び10,000~1,5 00,000の**国**量平均粒子量 (Mw)を有しているこ **私加して温度55℃以上で重合反応する工程;からなる** て合成された共重合体を含有していることを特徴とする 請求項21乃至34のいずれかに記載の画像形成方法。 画像形成方法。

とを特徴とする請求項21乃至38のいずれかに配載の 【請求項39】 数トナーは、数トナーのTHF可容分 のGPCによる分子量分布において、分子量12,00 200,000の敵後にそれぞれピークを有しているこ 0~40,000の倒核及び分子曲50,000~1, 画像形成方法。

2

のGPCによる分子量分布において、分子量45,00 【請求項40】 数トナーは、数トナーのTHF可容分 0以下の低分子量倒域の面積 (L) と分子量45,00 0 を超える高分子量領域の面積 (H) との比が下記関係

を満足することを特徴とする請求項21乃至39のいず (L) : (H) = 1:9 \sim 9.5 \sim 0.5

れかに記載の画像形成方法。

(耐水項41) 核静電階像保持体は、電子写真用感光 **体であることを特徴とする請求項21乃至40のいずれ** かに記載の画像形成方法。 (請求項42) 「数加熱定着手段は、加熱ローラー及び 加圧ローラーを有する加熱加圧ローラー定着装置である ことを特徴とする請求項1乃至41のいずれかに記載の 画像形成方法。

[発明の詳細な説明] 8

0001

電荷像現像用トナー及び数トナーを用いた画像形成方法 [発明の属する技術分野] 本発明は、電子写真法、静電 **記録法、参覧印刷法の如き画像形成方法に用いられる静**

[0002]

て紙の如き記録材にトナー画像を転写した後、加熱,圧 【従来の技術】電子写真法としては米国特許第2,29 多数の方法が知られている。一般には光導电体物質を利 次いで数静電荷像をトナーを用いて現像し、必要に応じ 力、加敷加圧或いは溶剤蒸気によりトナー画像を記録材 7,691号明梅香、帶公昭42-23910号公賴及 び棒公路43-24748中公館に配載されている哲へ 用し、種々の手段により核光体上に静電荷像を形成し、 に定着し、定着画像を得るものである。 \$

[0003] 上述の最終工程であるトナー画像を紙の如 き配録材に定着する工程に関して種々の方法や装置が開 発されているが、現在最も一般的な方法は熱ローラー又 は耐熱フィルムを介した固定発熱ヒータによる圧着加熱

一に対し離型性を有する釈ローラーの表面と記録材であ る被定着シートのトナー画像面を加圧下で接触しながら 即録材を通過せしめることによりトナー画像の定着を行 なうものである、この方法は黙ローラーの表面と記録材 上のトナー画像とが加圧下で接触するため、トナー画像 [0004] 加熱ローラーによる圧増加熱方式は、トナ を記録材上に定着する際の熱効率が極めて良好であり、 迅速に定着を行うことができる。

記録材にこれが再転移し、記録材を汚す「オフセット現 般に定着速度が遅い場合は、加熱ローラーの表面温度は ーを定着させる為に加黙ローラーからトナーに与える黙 【0005】加熱ローラー疫面とトナー画像とが加圧下 で、かつ、トナー画像が路融状態で接触する為に、トナ 一画像の一部が定着ローラー表面に付着し転移し、次の 比較的低く散定され、定着速度が速い場合は、加圧ロー ラーの表面温度は比較的高く設定される。これは、トナ 象」が定着速度及び定着温度の影響を大きく受ける。 **量を、定着速度によらずほぼ一定にするためである。**

いかから

形成している為、特に定着選度が限く、加熱ローラーの **数面温度が高い系においては、加勲ローラーに接触する** の温度差が、大となる為に、加熱ローラーの表面温度が [0006] 記録材上のトナーは、何層かのトナー層を トナー酒と、記録材に後触している最下層のトナー酒と 高い場合には、最上層のトナーがオフセット現象を起こ しやすく、加熱ローラーの装面温度が低い場合は、最下 題のトナーは十分に答けない為に、記録材にトナーが定 着せず「低温オフセット」という現象が起きやすい。

をアンカーリングさせる方法が、通常行われている。こ でき、最上トナー層の高温オフセット現象を訪ぐことは [0007] この問題を解決する方法として、定権速度 が速い場合には、定着時の圧力を上げ、記録材へトナー の方法だと、加勲ローラー温度をある程度下げることが 可能となる。しかし、トナーにかかるせん断力が非常に 大となる為に、記録材が定着ローラーに巻きつき、巻き **しきオフセットが発生したり、定着ローラーから配録材** を分離するための分離爪の分離あとが定着画像に出現し ン画破が掛つしながれれて、トナーが味びむられりつた やすい。さらには、圧力が高いがゆえに、定権時にライ 定着画像の画質劣化を生じ易い。

[0008] 高速定着では、一般的には、低速定着の場 **合より溶酸粘度の低いトナーを用い、加敷ローラーの教** 面温度を下げ定着圧力を下げることにより、高温オフセ ットや巻きしきオフセットを防止ししし、トナー画像を **応着している。しかし、この核な溶脱粘度の低いトナー** を低波定着に用いると、高温でオフセット現象が発生し

再生紙を含む多種多様な転写紙に対しても等しく良 [0009] 定婚において、低速から高波虫で適用でき 5定着温度倒数の広い、耐オフセット性にすぐれ、か 好な定着性を示すトナーが特望されている。

フトーン部の定着性が低下する。この現象は特に高速定 **ぬにないて、酸剤である。いたは、ハーフトーン部分の** トナーの戦り曲が少なく、記録材の回部に簡写されたト ナーは、加密ローラーから与えられる歌曲が少なく、さ らに定着圧力も、記録材の凸部によって回館への圧力が **存断される為に膨くなるからである。 ハーファーン部分** で被定着シートの凸部に低耳されたトナーは、トナー層 厚が薄い為に、トナー粒子1個当りにかかるせん断力は 0010]トナーの小粒径化により、画像の解像力や 群隊関が上がる一方で、小粒径のトナーで形成したく一 オフセット現象が発生しやすく、低画質の定着画像とな トナー層庫の厚いベタ黒部分に比べ大きいものとなり、 特別410-171156

エステル樹脂を結着樹脂とし、95℃で特定の貯蔵粘性 【0011】特開平1-128071号公報には、ポリ 率を有する電子写真現像用トナーが開示されているが、 いまだ定着性及び耐オフセット性を改善する必要があ [0012] 特開平4-353866号公報には、貯蔵 **译性率の降下開始温度が100~110℃の範囲内にを** り、150℃において特定の貯蔵弾性率を有し、損失弾 性母のピーク温度が125℃以上であるレオロジー発性 を有する電子写真用トナーが開示されている。しかしな がら、貯蔵弾性率及び損失弾性率ともに小さすぎ、かつ 損失弾性母のピーク温度が高すぎるため、低温定着性は 改善されず、貯蔵弾性率及び損失弾性率ともに低すぎる ために、耐熱性が低い。 [0013] 特閏46-59504号公報には、特定の トナーが10~120℃で特定の貯蔵消性率を有し、1 30~180℃で特定の損失弾性率を有する静電荷像現 象用トナーが開示されている。しかしながら、70~1 20℃の貯蔵弾性率が大きく、130~180℃の損失 単性率は小さいために小粒径磁性トナーの場合には低温 [0014] 特開平1-224103号公報には、分子 **内に過酸化物基を2個有する重合開始剤を用いたトナー 再樹脂に用いられる禹分子量樹脂の製造方法が開示され ている。しかしながら、南分子由柏脂の製造しかできな 構造を有するポリエステル樹脂をパインダー樹脂とし、** で定着されにくく、耐オフセット性も改善が望まれる。 ಜ

mer Journal, 24, 971 (1992) (C 【0012】 **就分子器文様46巻(2)** 81~87ペ - スには、ポリメリックペルオキシドを用いた名フッ葉 プロック共宣合体の合成に関する報告があり、Poly は分子内に 2 個の通敬化物 基を有するラジカル 氫合関始 別の反応機構に関する報告がされている。

いためにトナーの低温定着性は改善されない。

【0016】小粒径の磁性トナーの磁性体の含有曲が多 い場合に定着性の問題が顕著である。 レオロジーの観点 からすれば、トナーに含有される着色剤の増加は貯蔵導 性率及び損失弾性率を増大する傾向にあり、使用する転

でにおける貯蔵弾性率(G'inn)及び温度60℃にお ける貯蔵衛性邸 (G^{、60}) と温度70℃における貯蔵部 性 (C' 10) との比 (G' 60/G' 10) を規定したト [0011] 特閏P8-234480号公額 (対応政治 **停許出額公開EP-A0718703)は、温度100** ナーを槌架している。

/m² の転写紙や120g/m² の転写板に定着する場 合には、定着時に下部ローラー(加圧ローラー)側から ドが速い定着条件で定着した場合に、トナーに対して充 分に繋が付与されなくなり、また、敷の付与も均一でな くなるため、定着性が低下し、定着画像の画像濃度が低 定着時に定着器より一定量以上の熱量が供給される場合 には迅速に落勝し、強固に転写材上に固定、定着される ものである。また、耐ブロッキング性に関しても、示益 (Tg) 近傍での温度においても充分に高い貯蔵弾柱率 集、変形することが少ないものであるから定着性と耐ブ ロッキング性に優れ、かつ寒冷時において電源投入直後 の黙が記録材に奪われてしまうことから答に定着スピー **走査無量計(DSC)により測定されるガラス転移温度** の下部ローラーが充分に加熱されていない状態でも優れ た定着性が得られるものの、記録材が厚みのある80g 下する傾向にあり、さらに改良すべき点を有している。 「0018」このトナーは、その結算社包な体柱から、 を有するために、高温の環境に長時間放置されても磁 [0019]

の如き問題点を解決した静電塔像現像用トナー及び画像 [発明が解決しようとする瞑題] 本発明の目的は、上述 形成方法を提供することである。

れに伴う着色刻(特に磁性体)の含有量が増大しても良 [0020] 本発明の目的は、トナーの小粒径化及びこ 好な定着性を示す静電荷像現像用トナー及び画像形成方

【0021】本発明の目的は、再生紙を含めた多種多様 な転写紙に対しても良好に定着し得る静電荷像現像用ト **吊を施供することである。**

[0022] 本発明の目的は、低速から高速複写機に至 オフセット性、耐ブロッキング性、消動性にすぐれた静 電荷像現像用トナー及び画像形成方法を提供することで るまで、良好に対応し得、定着性が良好であり、かつ耐 ナー及び画像形成方法を提供することである。

てもすぐれた定着性を示し、かつ、良画質の定着画像を 得ることのできる静電荷像現像用トナー及び画像形成方 [0023] 本発明の目的は、ハーフトーン部分におい 符を協供することである。 【0024】本発明の目的は、低速から高速複写機に至 るまで、カブリがなく、高徹茂のコピー画像が得られる 静電荷像現像用トナー及び画像形成方法を提供すること

の厚い転写紙に対しても良好な定着性を有し、かつ、定 [0025] 本発明の目的は、808/m2以上の厚み 着スピードがより高強となり、かつ更に厚みの厚い12 0g/m2以上の転写紙に対しても良好な定着性を有す る静電荷像現像用トナー及び画像形成方法を提供するも

[0026]

[瞑題を解決するための手段] 上記目的は、以下の本発 明の権成により適成される。

【0027】本発明は、結婚樹脂,着色剤及びワックス を含有している静電荷像現像用トナーにおいて、豚トナ =tan b) が1.0となる温度が55~70℃の温度 倒域に存在し、かつ、そのときの弾性略が1. 5×10 8 Pa以下であり、(b)温度40℃における貯蔵弾性 ーは、(a)損失弾性率と貯蔵弾性率の比(G* /G′ 率 (G′40) と温度50℃における貯蔵弾性率

(G' 50) の比 (G' 40/G' 50) が1.5~5.0であり、(c) 貯蔵弾性率 (G' 50) と温度60℃におけ る貯蔵資本格 (G, 60) との比 (G, 20/G, 60) が3 の比 (G' 110 /G' 140) が2~20であることを称 100) の比 (G' 70/G' 100) が50~250であ ~20であり、(d) 温度70℃における貯蔵弾性率 110)と温度140℃における貯蔵弾性率 (G′140) (G′70) と温度100℃における貯蔵学性率 (G′ 9. (e) 温度110℃における貯蔵弾性率 (G' 徴とする静電荷像現像用トナーに関する。

/G' 50 が1.5~5.0であり、(c) 貯蔵資性母 との比(G, 50/G, 60)が3~20であり、(d)温 度70℃における貯蔵等性帯 (G'70)と温度100℃ 形成する現像工程、数トナー画像を記録材に転写する転 [0028] さらに本発明は、静電階像保持体に保持さ れている静電潜像をトナーにより現像し、トナー画像を 写工程及び数記録材に転写されたトナー画像を加熱定着 手段により数配録材に加熱定着する定着工程、を有する 画像形成方法において、数トナーは、結婚樹脂、着色剤 及びワックスを含有しており、蚊トナーは、(a)損失 かし、そのときの容私母が1. 5×108 Pョ以下ため 1. 0となる温度が55~70℃の温度領域に存在し、 (G' 50) と温度60℃における貯蔵弾性率(G' 60) 路柱母と貯蔵海柱母の比 (C. /C/ = tan b) が 9、(b)温度40℃における貯蔵弾性率(G'₄₀) 温度50℃における貯蔵弾性率 (G′₅₀)の比 (G′ における貯蔵弾性略 (G' 100) の比 (G' 70/G' \$ 8

100) が50~250であり、(e) 温度110℃にお ける貯蔵弾性率 (G' 110) と温度 1 4 0 Cにおける貯 数資本格 (G′ 140)の比 (G′ 110 / G′ 140)が2 [0029] 上配トナーは、比 (G" /G')が1.0 となる温度が58~68℃の温度倒城に存在し、そのと **きの容在母が1×10⁷ Pa~1.3×10⁸ Paでお** ~20であることを特徴とする画像形成方法に関する。

٠٠;

ることが好ましい。

(0030) 上記トナーは、比(G"/G")が1.0 きの資性格が3×10⁷ Pa~1.0×10⁸ Paであ となる温度が59~65℃の温度倒域に存在し、そのと

رد 数形蔵資性母 (G′50) との比 (G′40/G′50) が [0031] 上記トナーは、蚊野政学性容 (G' 40) 1.8~4.0であることが好ましい。

数形骸弾柱母 (G′20) との比 (G′40/G′20) が [0032]上記トナーは、紋貯蔵弾性略 (G′40) 2.0~3.5であることが好ましい。

【0040】上記プロック共宜合体は、全括着樹脂に対 して10重量%以上、政結婚樹脂に含有されていること

2

【0039】上配結着樹脂は、芳香族ピニルモノマーユ トを有するプロック共宜合体を含有していることが好ま

[0038] 上記トナーは、数貯蔵学性型 (G' 110)

と数野巌寧祖母(G'140)との比(G'110 /G′

140)が3~15であることが好ましい。

×と数形態容和形(G′140)との比(G′110 ∕G′

140) が2. 5~18であることが好ましい。

特別410-171156

œ

ニット及び (メタ) アクリル酸エステルモノマーユニッ

(C, 50) と なり被導性等(G' 60) との比(G' 50/G' 60) が4 ~15であることが印ま!!. [0034] 上記トナーは、数計蔵等体格 (G'50) [0033]上記トナーは、数野瀬寧冉欅 (G/

オキサイド基を分子内に2個以上有し、各々のパーオキ サイド基の開製反応が超る10時間半減温度の整が5℃ 以上であるラジカル重合開始剤を用いて、重合反応温度 を5℃以上変えてラジカル重合に合成されたものである

【0041】上記プロック共宜合体は、芳香族ピニルモ ノマー及び (メタ) アクリル酸エステルモノマーをパー

が好ましい。

[0035]上記トナーは、蚊貯蔵弾性率 (G'70)と 数形蔵資本路(G、100)との比(G、10/G、100) が60~240であることが好ましい。

[0042] 上記結着樹脂は、芳香族ピニルモノマー及

ことが好ましい。

ន

ぴ(メタ)アクリル酸エステルモノマーを下配化学式

(1), (2), (3) 又估(4)

[0043]

[0036] 上記トナーは、飲貯蔵弾性率 (G'70) と 及野藤寄柱帯 (G′100) との比 (G′70/G′100) [0037] 上記トナーは、該貯蔵弾性率 (G/ 0 が10~220であることが好ましい。

Ξ

$$R_{1} = 00 - \frac{1}{C} - R_{2} - \frac{1}{C} = 00 - R_{2})_{T}$$
(3)

(式中、R₁, R₂, R₃, R₄, R₅, R₆, R₇,R₈, R₉, R₁₀, R₁₁及びR₁₂は、炭素数2~30の 直儺、分岐または環状のアルキル基または炭繋数6~2 0のアリール基を示し、これらは同じであっても相互に し、mは1~20の整数を表わす。] で示されるラジカ ル重合開始剤を用いて、重合反応温度を5℃以上変えて ラジカル鱼合して合成された共重合体を含有しているこ 異なっていてもよい。k, nは2~50の数数を後わ

ル酸エステルモノヤーを重量比で20:1~1:1で硫 **ァー単独または芳香族ピニルモノマーと(メタ)アクリ** 【0044】上記結婚樹脂は、(i) 芳香族ピニルモノ 合したモノマー混合物と、下配化学式(1),(2), \$

とが好せしい。

(3), 以は(4)

[0045]

6

特開平10-171156

3

8

ල

$$(R_{s} - 00 - \frac{0}{C} - R_{s} - \frac{0}{C} - 00 - R_{s})_{t}$$

$$0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$(C - R_{ts} - CO - (R_{ts} - O)_{ts} C - R_{t1} - \frac{0}{C} - 00)_{ts}$$

€

タ) アクリル酸エステルモノマー単独または芳香族ピニ 【式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₉ , R₁₀ , R₁₁及びR₁₂は、炭索数2~30の ルモノマーと (メタ) アクリル酸エステルモノマーを盤 **量比で1:20~1:1で混合したモノマー混合物を再** 度添加して第1の重合反応よりも5℃以上高い温度で重 し、mは1~20の監数を扱わす。」で扱わされるラジ [0046] 上記結婚樹脂は、(i)(メタ)アクリル 数エステルモノマー単独または芳香族ピニルモノマーと (メタ) アクリル酸エステルモノマーを重量比で1:2 直観、分岐または環状のアルキル基または炭漿数6~2 0のアリール基を示し、これらは同じであっても相互に カル重合開始剤を含むモノマー組成物を50~120℃ で重合反応を行なう第1の重合反応工程;(ii)(メ **合反応を行なう第2の重合反応工程;を有する少なくと** も2段階の異なる温度で重合反応する工程を経て合成さ 異なっていてもよい。k, nは2~50の監数を安わ れた共重合体を含有していることが好ましい。

が好ましい。

8 Ξ R - 00 - C - R - C - 00 - R R. - 00 - R. - 00 - R.

9 - R. - 00 - C' - R. - C - 00 - R. Y.

€ {式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₉ , R₁₀ R₁₁及びR₁₂は、段類数2~30の し、mは1~20の監数を表わす。〕で致わされるラジ カル重合開始剤を含むモノマー組成物を50~120℃ で重合反応を行なう第1の重合反応工程; (ii) 芳香 直鎖、分岐または環状のアルキル基または炭素数6~2 0のアリール基を示し、これらは同じであっても相互に 抜アニルモノマー単独または 声格抜アニルモノマーと 異なっていてもよい。k, n:12~50の監数を扱わ

1~1:1で混合したモノマー混合物を再度添加して温 度55℃以上で重合反応する工程;からなる少なくとも 2.段階の異なる温度で置合反応する工程を経て合成され (メタ) アクリル酸エステルモノマーを重量比で20: た共宜合体を含有していることが好ましい。

0の数平均分子量 (Mn) 及び10,000~1,50 [0048]上記結着樹脂は、2,500~50,00 0, 000の盧金平均粒子量 (Mw)を有していること

GPCによる分子量分布において、分子量12,000 ~40,000の倒垃及び分子盘50,000~1,2 [0049] 上記トナーは、数トナーのTHF可容分の 00,000の色類にそれぞれピークを有していること

【0050】上記トナーは、繋トナーのTHF可容分の GPCによる分子量分布において、分子量45,000 以下の低分子量倒板の面積 (L) と分子量45,000 を超える高分子盘領域の面積(H)との比が下配関係 (L) : (H) = 1:9 \sim 9, 5 \sim 0, 5 ន

10051] 上記静電階像保持体は、電子写真用感光体 を満足することが好ましい。

0~1:1で混合したモノマー混合物と、下配化学式

(1), (2), (3), XH (4) [0047]

[0052] 上記加熱定着手段は、加黙ローラー及び加 圧ローラーを有する加熱加圧ローラー定着装置であるこ であることが好ましい。 とが好ましい。

を示すトナーを得るためには、特定なレオロジー特性を 有する結着樹脂あるいはトナーを用いることが重要であ 入直後から良好な定着性を示し、さらに、厚さの厚い記 録材に対して遠い定着スピードであっても良好な定着性 [発明の実施の形態] 本発明者の検討によれば、着色剤 で熱ロール定着器を用いて良好な定着性と耐プロッキン グ性を両立させ、かつ寒冷時においても複写機の電源投 (特に磁性体) の含有量が増加し、小粒径化したトナー \$

際に配写紙全体が等しく加索される様な状態での定着性 に関するものであり、厚みが厚い転写紙を用いた場合の は、厚みが比較的薄い転写紙を用いて定着器を通過した [0054] 総採むら哲られているレオロジー幹柱で

ಜ

棋に、瓶写紙が定着器を通過しても転写紙全体が箏しく 加熱されにくい状態での定着性の向上も要望されてい [0055] 本発明のトナーは、損失弾性率と貯蔵弾性 率の比 (G″ /G′) が1.0となる温度が温度55~ 70℃の倒板に存在し、かつそのときの降性移が1.5 ×108 Pa以下となる。

れば当然のことではあるが、トナーに合有される結婚樹 [0056] 本発明者の検討によれば、比G' /G" が 脂が実質的に熱変形を開始する温度であり、この温度で G"が1. 0となる温度は55~70℃、好ましくは5 8~68℃、さらに好ましくは59~65℃の倒板にあ ることがよく、そのときの弾性率は1. 5×10⁸ Pa a、更に好ましくは3×10⁷ Pa~1.0×10⁸ P 1. 0となる温度はG'及びG"の物理的な意味を考え 以下、好ましくは3×10⁷ Pa~1. 3×10⁸ P の資性母は黙愛形の大小を示すものである。比G'/ a であることが良い。

満となる場合にはトナーの保存性が損われ、70℃を超 える場合にはトナーの定着性が損われる。G' /G" が 1. 0となる温度での磁性率が1. 5 P a を超える場合 【0057】G' /G" が1.0となる温度が55℃未 にはその温度によらず定着性が損われることがあり好ま

う観点からは定着器の微妙な温度のふれ、異なる種類の 速度差による影響を大きく受け、極端な場合には転写紙 は密接な関係がある。すなわち、転写紙上のトナーが定 着器を通過して加熱定着される際に、トナーの熱変形を 容易にし、定着を強実に行うにはトナーに含有される結 着樹脂がガラス状態からガラス転移状態、さらに溶融に 至る一連の相変化を滑らかに行う必要がある。この結婚 樹脂の状態の変化は貯蔵弾性率の温度依存性を測定する ことで知ることができる。ガラス状態にある結婚樹脂の 洋性率の急激な変化としてあらわれ、トナーの定着とい 配写板を用いた場合には、配写板の哲異による獣の伝道 上の最上層の定着ローラーと接触するトナーのみが容融 するだけで、下層のトナーは全く溶融せず実質的に来定 一に含有される結婚根脂が実質的にガラス状態、ガラス 貯蔵弾性率の温度依存性がないか、小さい場合にはガラ ス状態からガラス配移状態、さらに溶融への移行が貯蔵 /G' 100 及びG' 110 /G' 140 は、各々、トナ し、本発明者の検討によれば、これとトナーの定着性と 転移状態及び溶融状態の貯蔵弾性率の温度依存性を示 100581G' 40/G' 50, G' 50/G' 60, G'

[0059] 本発明において、G' 40/G' 50は1.5 0、更に好ましくは2、0~3、5であることが良い。 ~5. 0であることが良く、好ましくは1. 8~4.

着性を示すトナーが得られず、G′40/G′50が5、0 40/G′50が1.5未満となる場合には安定した定

を超える場合にはトナーの保存性が損われる場合があり

G′60が20を超える場合にはトナーの保存性が損われ くは5~10であることが良い。G′50/G′60が3米 【0060】本発明において、G′50/G′60は3~2 Oであることが良く、好ましくは4~15、更に好まし 満となる場合には100g/m2 以上の厚手の転写板 を用いた場合に定着不良となる場合があり、G'50V

る協合がわり好せしくない。

用いた場合にホットオフセットを生じる場合があり好ま G' 70/G' 100 が50未満となる場合には100g /m2 以上の厚みの厚い転写紙を用いた場合に定格不 良となる場合があり、G'70/G'100 が250を超 [0061] 本発明において、G'70/G'100 は5 える場合には45g/m2 以下の耳みの薄い転写紙を 0~250であることが良く、好ましくは60~24 0、更に好ましくは70~220であることが良い。 これが, 2

【0062】本発明において、G' 110 /G' 140 は /G' 140 が2未満となる場合には100g/m² 以 上の厚みの厚い転写紙を用いた場合に充分な定着性が得 られない場合があり、G' 110 /G' 140 が20を超 を用いてもホットオフセットを生じる場合があり好まし える場合には $100 \mathrm{g/m}^2$ 以上の庫みの厚い転写紙 2~20であることが良く、好ましくは2. 5~18、 更に好ましくは3~15であることが良い。G' 110 くない。

特性を有するトナーの結婚補脂としては、芳香族ピニル モノマーユニットと (メタ) アクリル酸エステルモノマ **ーユニットを有するプロック共宜合体を含有することが** [0063] 本発明において、上記の特定のレオロジー

[0064] このプロック共気合体は、全結整樹脂に対 して10重量%以上、好ましくは、25重量%以上、よ り好ましくは、45重盘%以上トナーに含有されている なました。

[0065] このブロック共宜合体としては、下記の4 ことが良い。

[0066] (i) 芳香族ピニルモノマーユニットのみ によって構成されるプロックと (メタ) アクリル酸エス アルモノマーユニットのみによって構成されるプロック とを有するプロック共国合体。 **し**の形態がある。 **\$**

[0067] (ii) 芳香族ピニルモノマーユニット及 ぴ (メタ) アクリル酸エステルモノマーユニットによっ て構成されるブロックと(メタ)アクリル酸エステルモ ノケーユニットのみによって構成されるプロックとを有

【0068】(iii) 芳香族ピニルモノサーコニット 及び (メタ) アクリル酸エステルモノマーユニットによ **して棒成されるプロックと芳俗版ピニルモノターユニッ** するブロック共宜合体。 ജ

特開平10-171156

好ましくは1℃以上、さらに好ましくは10℃以上であ るラジカル重合開始剤を用いて重合温度差5℃以上、好

*の開製反応が起る10時間半減期温度の差が5℃以上、

ន

ましくは1℃以上、さらに好ましくは10℃以上変えて

ラジカル重合して合成することが可能である。

【0069】 (i v) 芳香族ピニルモノマーコニット及び (メタ) アクリル敵エステルモノマーコニットによっ 及び (メタ) アクリル酸エステルモノマーユニットによ トのみによって構成されるプロックとを有するプロック て構成されるプロックと芳香珠ピニルモノマーユニット [0010] 上記のような芳香族ピニル (メタ) アクリ って構成されるプロックとを有するプロック共竄合体。

١

【0071】このようなパーオキサイド基を2個以上有するラジカル重合開始剤としては、下配化合式(1)~

(4) で扱わされるものが挙げられる。

[0072]

[410]

ド基を分子内に2個以上有し、各々のパーオキサイド基* Q Q Q と (メタ) アクリル酸エステルモノマーをパーオキサイ ル酸エステルブロック共亀合体、芳香族ピニルモノマー

Ξ

8

ල

$$R_1 - 00 - R_2 - 00 - R_3$$

0 0 0
 $R_1 - 00 - R_3$

3

(式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₉ R₁₀, R₁₁及びR₁₂は、炭素数2 **は段素数6~20のアリール基を示し、これらは同じで** ~30の直鎖状、分岐状または環状のアルキル甚、また あっても相互に異なっていてもよく、 k及びnは2~5 0の監数を扱わし、mは1~20の監数を扱わす。]

【0073】化学式(1)で被わされるラジカル塩合開始割としては、例えば以下の例示化合物(1-1)~

(1-4)を挙げることができる。

[0074]

[411]

(12)

特開平10-17115.6

 $CH_b = \begin{pmatrix} CH_b & 0 & CH_b \\ -CO & -C & -CH_b & -CH_b & -CH_b & -C & -CC & -CC \\ -CH_b & -C & -CC & -CC & -CC & -CC \\ -CH_b & -CC & -CC & -CC & -CC & -CC \\ -CH_b & -CC & -CC & -CC & -CC & -CC & -CC \\ -CH_b & -CC \\ -CH_b & -CC \\ -CH_b & -CC & -CC$

列示化合物 (1-2)

列示化合物 (1-3)

列永化合物(1-4)

 $CH_3CH_4CH_4-C-CO-C \longrightarrow \begin{bmatrix} CH_3 & CH_4 \\ -1 & -1 \\ -1 & -1 \end{bmatrix}$ $CH_3CH_4CH_4 \longrightarrow C-CH_3CH_4CH_4$ $CH_3CH_4CH_4 \longrightarrow C-CH_3CH_4CH_4$

[0075] 化学式(2) で衰わされるラジカル塩合関 [0076] 始刻としては、例えば以下の例示化合物(2-1)~ 30 [外12]

(2-1)を挙げることができる。

特関平10-171156

例示化合物(2-7)

[0077] 化学式 (3) で扱わされるラジカル宣合関 40 始剤としては、例えば以下の例示化合物(3-1)~

(3-5)を挙げることができる。

[0078]

[413]

特別平10-17115₆

(14)

例示化合物 (3-2)

$$0 & 0 \\ -(CH_2), - OOC - (CH_3), - COO)_{2}$$

例示化合物 (3-5)

$$\begin{cases} 0 & 0 \\ -(CH_a)_b - 00 - C - (CH_a)_b - C - 00)_a \end{cases}$$

$$\begin{matrix} 0 & 0 \\ C & CHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHLCHL - C + (OCHLCH)_{3} O - C - O - O)_{7} \\ C & CHLCHLCHLCHLCHLCHLCHLCHLOHLOHLCHLOH$$

例示化合物 (4-2)

例示化合物 (4-3)

を用いて重合体を製造するにわたっては、全モノマー1 00重量部に対して0.01~10重量部使用すること

始剤は、2種以上併用することができるし、或いは、以 【0082】化学式(1)~(4)で扱わされる重合関 下に挙げるラジカル重合開始剤と併用することもでき

[0083] 化学式 (1) ~ (4) で扱わされる氫合賦

2, 2' ーアゾピス (4ーメトキシー2, 4ージメサル パレロニトリル)、2,2,-Tソピス(-2,4-ジ 始剤と併用することができるラジカル重合関始剤として チルブチロニトリル)、ジメチルー2、2、ーTゾピス インプチレート、1、1、1・アンピス(1ーシクロヘキ は、例えば、2,2, - アゾピスイソプチロニトリル、 メサルバレロにトリル)、2、2' ーナンピス (ー2メ ナンガルボニトリル)、2-(カーベホイルアン)-イ

ピス (2ーメチループロパン)、メチルエチルケトンパ トリメチルペンタン)、2-フェニルアソー2,4ージ ーオキサイド、1. 1, 3, 3ーテトラメチルブチルハ メサルー4ーメトキシバレロニトリル、2,2, ーアン ーオキサイド、アセチルアセトンパーオキサイド、シク ロヘキサノンパーおキサイドなどのケトンパーおキサイ ド、1-ブサルクミルパーおキサイド、ジークミルパー ソプチロニトリル、2-2'-アゾピス(2,4,4-ド類、2, 2ービス(t ープチルパーオキシ)ブタン、 1 - ブチルハイドロパーオギサイド、クメンハイドロバ オキサイド、a, a' ーピス(tープチルパーオキシイ イドロペーオキサイド、ジー・レブチルペーオキサイ

ホニルパーオキサイド、1ープチルパーオキンアセテー ンプロピク) ヘンガン、インブチルペーガキサイド、ギ ド、ラウロイルパーオキサイド、3, 5, 5ートリメチ パーオキンジカーボネート、ジーnープロピルパーオキ パーオキシカーボネート、アセチルシクロヘキシルスル ト、セーブチルバーオキシインブチレート、セーブチル **ラヘキサノイグペーゼキサイド、ペンンイグペーゼキサ** イド、ロートリオイルパーオキサイド、ジーインプロピ ルパーオキシジカーボネート、ジー2-エチルヘキシル カーボネート、ジーメトキシインプロピルパーメキシジ シジガーボチート、ジー2ー HトキシHチルペーおキツ カーボネート、ジ (3ーメサ セー3ーメトキシブチル) クタノイルパーオキサイド、デカノイルパーオキサイ

[0084]これらの重合開始剤で好ましく用いられる カスーオキシクメン、ジー・1111111キシドの台 き有機過酸化物、アンピスインブチロニトリル、ジアン アミノアンペンゼンの哲きアンおよびジアン化合物が利 n - ブチルー4,4-ジ(t - ブチルパーオキシ)パレ レート、ジクミルパーオキシド、a, a' ーピス(tー **ナチルペーオキシジインプロピル) ベンゼン、1ープチ** ものとしたは、具体包には、ペンンイルバーオキシド、

【0085】本発明に係る重合関始剤はパーオキサイド である。祖度差が5℃未満となる場合には生成する重合 2とする)が5℃以上の温度差となるものであり、好ま しくは7℃以上、更に好ましくは10℃以上となる場合 基を分子内に 2個以上有するものであり、各々のパーオ キサイド基の開製反応が起る温度を 10時間半域期温度 (以下、反応温度とする) で扱わした場合に、第1のパ と第2のパーオキサイド甚の反応温度(以下、反応温度 体が実質的にランダム共重合体となり、本発明のトナー 一オキサイド基の反応温度(以下、反応温度1とする) の有する特定な粘弾性挙動を示すことが困難となる。

[0086] 本発明に係る盧合開始剤を用いて重合体を 製造するにあたっては大別すると次の2方法により行う ことができる。

物と、本発明に係る重合開始剤を混合し、反応温度1を 【0081】1) 芳香 抜ピニルモノャー単独または芳香 一を重量比で20:1~1:1で混合したモノァー組成 抜ピニルモノマーと (メタ) アクリル酸エステルモノマ 基準にして±20℃の任意の反応温度で重合し、次に

一を重量比で20:1~1:1で混合したモノマー組成 タ) アクリル酸エステルモノマーと芳香族ピニルモノマ 物を添加し、第1段階の反応温度より5℃以上高い温度 (メタ) アクリル酸エステルモノマー単独または (メ で重合する。

し、反応温度1を基準にして±20℃の任意の反応温度 単独または(メタ)アクリル酸エステルモノマーと芳香 で重合し、次に芳香族ピニルモノマー単独または芳香族 を重量比で20:1~1:1で混合したモノマー組成物 族ピニルモノマーを重量比で20:1~1:1で配合し ピニルモノマーと (メタ) アクリル酸エステルモノマー を添加し、第1段階の反応温度より5℃以上高い温度で 【0088】2)(メタ)アクリル酸エステルモノマー たモノマー組成物と、本発明に係る重合開始剤を混合

[0089] 化学式 (1) ~ (4) で衰わされる氫合開 始剤を2個以上併用する場合は、各々の重合開始剤の反 **応温度1及び反応温度2をもとにして2点以上の反応温** 度で重合体を製造することができる。

重合する。

ート、セーブチルパーオキンベンゾエイト、セーブチル

パーオキンネオデカノエイト、セーブチルパーオキン2 -エチルヘキサノエイト、t -ブチルパーオキシラウレ ペーオキシインプロピケガーボネート、ジー・コンチル パーオキシインフタレート、モーブチルペーオキシアル 【0090】本発明のトナーの結婚樹脂のガラス転移温 頭は40~80℃、好ましくは、45~80℃、さらに 好ましくは55~10℃でやることが良い。トナーの結

レフタレート、ジーt-ブチルパーオキシアゼレートが

あげられる。

カーボネート、t-アミルパーオキン2-Hチルヘキサ

ノHしト、ジーェーブチルペーメキシヘキキヘイドロテ

着樹脂の数平均分子量 (Mn) は2,500~50,0 ~20,000であることが良い。トナーの結婚樹脂の 00であることが好ましく、より好ましくは3,000 000であることが好ましく、より好ましくは25,0 **塩量平均分子量 (Mw) は10,000~1,500,** 00~1, 250, 000 tb5.

でを超える場合には、トナーの低温定着性が著しく悪化 【0091】トナーの祐着樹脂のガラス転移温度が40 で未満の場合には、トナーの低温定着性は若干改良され るもの、耐ブロッキング性が悪化し好ましくなく、80 する場合があり好ましくない。

着性が損なわれる場合があり好ましくない。

が2500米隣の場合、又は重量平均分子量 (Mw) が くなく、数平均分子量 (Mn) が50000を超える場 台、又は111年平均分子量(Mw)が150000を超 える場合には、いずれも低温定着性が損なわれる場合が 10000米満の場合には、いずれも耐オフセット性及 び/又は耐ブロッキング性が悪化する場合があり好まし 【0092】トナーの結婚被胎の数平均分子由 (Mn) もり年ましくない。

る場合があり好ましくない。

【0093】トナーをテトラヒドロフランに溶解し、そ 0,000の倒換に存在するピークがメインピークでも の認液(THF可容分)のゲルパードエーションクロト 000~38,000、より好ましくは15,000~ 35,000の低分子量倒域、及び分子量50,000 000,000の高分子量領域にそれぞれピークを有し トグラフィ(GPC)による分子由分布測定において、 ~1, 200, 000、母ましくは80, 000~1, 分子曲12,000~40,000、好ましくは13, 100,000、より好ましくは100,000~1, ていることが好ましい。 特に分子出12.000~4 ることが好ましい。

~40,000の低分子由領域にピークが存在するもの **量分布において、分子量12,000~40,000の** 000~1,200,000の高分子由倒校にピークが 悪化する場合があり好ましくなく、分子量12,000 の、分子曲50.000~1,200,000の高分子 量領域にピークが存在せず、分子量1,200,000 良される可能性があるものの、低温定着性が悪化する場 存在せず、分子量40,000より大きく50,000 米満の倒城にピークが存在する場合には、低温定着性は 若干改良される可能性があるものの、耐オフセット性が を超える領域に存在する場合には、耐オフセット性は改 低分子量領域にピークが存在するものの、分子量50, 合があり好ましくない。

存在セナ、分子由12,000米徴の領域にピークが存 00の高分子量倒核にピークが存在するものの、分子量 12,000~40,000の協分子由敵為にピークが [0095] トナーのTHF可容分のGPCによる分子 量分布において、分子量50,000~1,200,

特別 10-171156

0,000未満の領域にピークが存在する場合には、耐 ~1、200、000の褐分子曲倒板にピークが存在す るものの、分子由12,000~40,000の倒板に オフセット性は改良される可能性があるものの、低温定 在する場合には、低温定着性は若干改良される可能性が あるものの、耐ブロッキング性、耐オフセット性ともに 悪化する場合があり好ましくなく、分子量50,000 ピークが存在せず、分子曲40,000より大きく5

最分布において、分子量12,000~40,000の [0096] トナーのTHF可容分のGPCによる分子 低分子量領域のみにピークが存在する場合には、耐オフ 分子盘50,000~1,200,000の高分子盘領 域のみにピークが存在する場合には、定着性が損なわれ セット性が著しく損なわれる場合があり好ましくなく、 2

(L): (H) =1:9~9.5:0.5、始ましくは [0097] 本発明において、トナーのTHF可容分の GPCによる分子量分布捌定において、分子量45,0 00以下の低分子量領域の面積(L)と、分子量45, 2:8~9:1、より好ましくは3:7~8.5:1. 000より大きい高分子量倒域の面積 (H) との比が

5 の危阻にをることが好ましい。

(L) が1に対して、高分子虫倒岐(H)が9を超える 協合には、耐オフセット性が向上するものの、低温定着 未満の場合には、低温定着性は若干改良される可能性が あるものの、耐オフセット性、耐ブロッキング性ともに 性が低下する場合があり好ましくない。低分子盘領域 (L)が9.5に対して、高分子由倒岐(H)が0. 【0098】この面積化において、低温分子量領域

損なわれ好ましくない。

【0094】トナーのTHF可容分のGPCによる分子

【0099】本発明に係る重合開始剤を用いて製造され 重合体の分子量は、重量平均分子量 (Mw) が5000 100万であり、Mw/Mnが100以下であることが 良く、好ましくはMwが1万~120万であり、Mnが **る芳香族とニルー(メタ)アクリル数エステルブロック** ~200万であり、数平均分子曲 (Mn) が2000~ 9, Mn 1 1 1 0 0 0 ~ 5 0 1 T t b 9, Mw/Mn 1 1. 5000~10万であり、Mw/Mnが10以下であ 9、更に好ましくはMwが1万5000~10万であ å

000米組の協合には、本税即のトナーのフォロジー特 性を適成することが難しく、Mwが200万を超える場 合又はMnが100万を超える場合には、本発明の目的 である多種多様な紙種に対する良好な定着性を満足する [0100] Mwが5000未満の場合又は、Mnが2 ことが難しく、Mw/Mnが100を超える場合にはト ナーの記プロッキング性が悪くなる場合がある。 5~40であることが良い。

【0101】本発明に係る重合開始剤で製造される重合 体は、溶液塩合法、塊状重合法、懸濁重合法及び乳化重

S

が、好ましくは溶液室合法及び懸濁室合法により製造す 合法いずれの製造法によっても製造することができる ることである。

チルスチレン、pーtertーブチルスチレン、pーn - ドデンルスチレンが挙げられるが、好ましくはスチレ [0102] 本発明に係るプコック共重合体に用いられ る芳香族ピニルモノャーとしては、スチレン、ローメチ ン、ローメトキンスチレン、ローフェニルスチレン、ロ -クロルスチレン、3, 4-ジクロルスチレン、p-エ チルスチレン、2,4-ジメチルスチレン、ローn-ブ - ヘキシルスチレン、p - n - オクチルスチレン、p n-ノニルスチレン、p-n-デシルスチレン、p-n ン、o-メサルスチレン、B-メサルスチレン、ローメ ルスチレン、Bーメチルスチレン、ローメチルスチレ

数インプチル、メタクリル酸n-オクチル、メタクリル りル酸ステアリル、メタクリル酸フェニル、メタクリル - ヒドロキシエチルが挙げられるが、好ましくはアクリ 【0103】 (メタ) アクリル酸エステルモノマーとし リル酸プロピル、メタクリル酸n-ブサル、メタクリル 酸ドデンル、メタクリル酸2 - エチルヘキシル、メタク エチルの如きューメチレン脂肪抜モノカルボン酸エステ **小類:アクリル酸メチル、アクリル酸エチル、アクリル** 酸n-ブチル、アクリル酸インブチル、アクリル酸プロ てはメタクリル酸メチル、メタクリル酸エチル、メタク 数ジメサルアミノエチル、メタクリル酸ジエチルアミノ ル、アクリル酸2-ヒドロキンエチル、メタクリル酸2 ピル、アクリル酸n-オクチル、アクリル酸ドデシル、 アクリル酸3-エチルヘキシル、アクリル酸ステアリ ル、アクリル酸2-クロルエチル、アクリル酸フェニ ル酸ブチル、アクリル酸2-エチルヘキシルである。

[0105] この街のモノャーとしては、エチレン、プ ュニットを上記 (i) ~ (i v) の4 つの形態で説明し アクリル餃エステルブロック 共置合体は、他のモノマー た各プロックに含有することも可能である。

[0104] 本発明において、芳香族ピニルー (メタ)

ン類:塩化ビニル、塩化ビニリデン、臭化ビニル及び沸 ロアフン、ブチフン及びインブチァンの哲やコチァンド **飽和モノオレフィン類:ブタジエンの如き不飽和ポリエ 化アニケの臼やくロゲン化アニケ酸:酢酸アニケ、プロ** アギン製アニク及びスンプエ製アニケの首もアニケドメ アル製:アニガメサグエーアガ、アニグエチグエーアプ 盤:アリラメチラケトン、アーラくキッラケトン及びメ **チケインプロペークケトンの ast ピールケトン類: Nー** 及びピニルインプチルエーティの知きピニルエーテル

和酸のエステル、二塩基酸のジェステル類が挙げられ

[0106] さらに、セレイン酸、シトテコン酸、イタ コン酸、アルケニルコハク酸、ファル酸及びメサコン酸 **駿無木物、イタコン酸無木物及びアルケニルコこク酸無** 木物の臼き 不飽 石二塩 無酸 無木物 ; レフイン酸メチガン **ーフエステル、カレイン酸エチルハーフエステル、カレ** フエステル、シトラコン散エチルハーフエステル、シト の白き不包を二個基際、レフイン酸無木物、ツトシコン イン酸ブサルハーフエステル、シトラコン酸メチルハー **ラコン骰ブサルハーレエステル、イタコン骸メサルハー**

ル、ファル酸メチルハーフエステル及びメサコン酸メチ ン酸無水物及びケイに酸無水物の如きa,B-不飽和酸 アルケニルマロン酸、アルケニルグルタル酸、アルケニ **ケアンアン酸、これのの酸無木物及びこれののモノエス** ルハーフエステルの如き不飽和二塩基酸のハーフエステ **ラ・ジメヤクトワイン製及ワジメヤグレトク製の哲やド 飽和二塩基酸エステル;アクリル酸、メタクリル酸、ク** ロトン酸及びケイヒ酸の如きa,B-不飽和酸;クロト テルの如きカルボキシル基を有するモノマーが挙げられ 無水物:数a, B-不飽和酸と低級脂肪酸との無水物; フエステル、アルケニルコハク酸メチルハーフエステ

ケルスチレンかわる。

体の金モノマーユニット基準で、好ましくは、25%以 【0101】これらの他のモノマーは、プロック共重合 セット性あるいは低温定着性と耐プロッキング性を両立 し、かつ、トナーの現像性を損なう可能性が低く好まし 12%以下で含有されていることが低温定着性と耐オフ 下、より好ましくは、18%以下、さらに好ましくは、

ールワックス及びモンタン酸エステルワックスの如き脂 グランシン酸、エレオステアリン酸及びベリナリン酸の ハアルコール、ぺくו トアハコール、カルナウピハアル 鎖のアルキル甚を有する長鎖アルキルアルコール類の如 **【0108】トナーに含有されるワックスは、低分子曲** スタリンワックス及びパラフィンワックスの如き脂肪酸 **段化木繋系ワックス:酸化ポリエチレンワックスの如き** 脂肪族炭化水業系ワックスの酸化物;脂肪族炭化水業系 ワックスのブロック共宜合物;カルナパワックス、サゾ 坊酸エステルを主成分とするワックス類;及び脱酸カル ナパワクスの如き脂肪酸エステル類の一部または全部を ステアリン酸、モンタン酸及び長儼のアルキル甚を有す 如き不飽和脂肪酸類;ステアリンアルコール、アラルキ コール、セリルアルコール、メリンルアルコール及び長 や包括アグローク盤;ソグパトールの灯を多角アグロー ル類:リモール酸アミド、オレイン酸アミド及びラウリ ポリエチレン、低分子由ポリプロピレン、マイクロクリ ン酸アミドの如き脂肪酸アミド類:メチレンピスステア る長鶴アルキルカルボン酸類の如き飽和直鐵脂肪酸類; 脱酸化したものが挙げられる。さちに、パルミチン酸、

4

8

単体もしくはメタクリル酸糖準体;後述のa.B-下餡

アニケアロール、N-アニルセルパソール、N-アニル

インドール及びNIピニケピコリドンの笞きNIピニグ クリロニトリル及びアクリルアミドの如きアクリル酸糖

化合物;ピニルナフタリン類;アクリロニトリル、メタ

ン酸カルシウム、ステアリン酸亜鉛及びステアリン酸マ **ゲネシウムの如き脂肪酸金属塩 (一般に金属石けんとい** リン酸アミド、エチレンピスカプリン酸アミド、エチレ リン酸アミドの如き飽和脂肪酸ピスアミド類;エチレン アスオフイン敷とミド、ヘキサメチァンガスオフイン敷 N, N, ージオワイクセスツン酸トミドの召き不飽布脂 防敵アミド類;m-キシレンピスステアリン酸アミド及 びN,N' ージステアリルイソフタル酸アミドの如き芳 **香族系ピスアミド類;ステアリン酸カルシウム、ラウリ** われているもの);脂肪族炭化水漿系ワックスにスチレ ンやアクリル酸の如きビニル系モノマーを用いてグラフ ト化させたワックス類;ペヘニン酸モノグリセリドの如 ンピスラウリン酸アミド及びヘキサメチレンピスステア アミド、N, N' -ジオレイルアジピン酸アミド及び

5乃至160℃の領域、より好ましくは、10~160 【0109】本発明においてトナーは、示差走査釈量計 で盥庇されるDSC曲様において、好ましくは、温度6 **との飯板、さらに好ましくは12~155℃の飯板に吸** 熱メインピークを有することがトナーの低温定着性及び 耐オフセット性の点で好ましい。 【0110】さらに好ましくは、トナーは、永樹港海敷 **量針で測定されるDSC曲線において、温度72~15** 熱ショルダーとを有していることが低温定着、耐オフセ ット性及び耐ブロッキング性の点で好ましい。

ンピークが65℃未満の協合には、トナーのガラス既移 トナーの耐ブロッキング性が低下し、160℃を超える 場合には、トナーに含有される結着樹脂のガラス状態か ら溶融に至る相変化を滑らかに行うことが阻害される場 【0111】このトナーのDSC曲様における吸乾メイ 温度付近での貯蔵弾性率が低くなりすぎる場合があり、 合があり、トナーの低温定着性が低下する。

[0112] トナーのDSC曲様において、温度65万 **量針による温度30~200℃の範囲におけるワックス** のDSC曲様において、最大吸熱ピークに対応する温度 をワックスの融点と定義すると、ワックスとしては、融 融点が10~115℃であるものが良い。高融点ワック 至160℃の個域に明瞭な吸転ピークを形成するために は、使用するワックスが限定される。後述の示益走査熱 フセット性を向上させるために、機能分離していること 低融点ワックス成分及び相対的に融点の高い高融点ワッ クス成分の少なくとも2種類で形成されていることが好 ましい。より具体的には、低融点ワックス成分は融点が 65~190℃であることが好ましく、より好ましくは ワックスにおいても、トナーの低温定着性及び耐高温オ が好ましいことから、ワックスは、相対的に融点の低い 点が65~160℃であるものが好ましく使用される。

特関平10-171156

ス成分は、融点が120~160℃であることが好まし

く、より好ましくは融点が125~155℃でわり、さ 【0113】低融点ワックス成分の融点が65℃未満と なる場合には、トナーのガラス転移温度付近での貯蔵導 性容が低くなりすぎる場合があり、トナーの耐ブロッキ ング性が低下する。高融点ワックス成分の融点が160 **でを超える場合には、トナーに含有される結婚制脂のガ** ラス状態から溶融に至る相変化を滑らかに行うことが阻 【0114】低融点ワックス成分と高融点ワックス成分 とを組み合わせて使用することにより、トナーのDSC **抽様に形仮の吸乾メインアーク及び吸敷サンアーク又は** らに好ましくは融点が130~150℃のものが良い。 10 客される場合があり、トナーの低温定着性が低下する。 ショルダーを好適に形成することができる。

【0115】更に好ましくはワックスは、低融点ワック ス成分と高融点ワックス成分とからなり、低融点ワック ス成分及び高融点ワックス成分は下配条件

性治脂の水素添加によって得られるヒドロキンル基を有

するメチルエステル化合物が挙げられる。

き脂肪酸と多価アルコールの部分エステル化合物:植物

80 4 The + Ton \$ 110 Tur-Tur≥20 式中、TMは低融点ワックス成分の融点を示し、TM は高融点ワックス成分の融点を示す。)を満足している

(エトル゙) と高融点ワックス成分の融点 (エ゙ルト) との粒が [0117] さらに、低階点ワックス成分の融点

[0118] 本発明のトナーに用いられるワックスにお 30 いて、低融点ワックス成分と高融点ワックス成分の使用 30万至90℃であることが好ましい。

く、より好ましくは1/14~4/1であり、更に好ま しくは1/9~2/1である。上配配合割合を構足する ことにより、低融点ワックス成分と高融点ワックス成分 性、耐オフセット性を、より向上させることが可能であ 比率は低量比で1/19~9/1であることが好まし の客与によったトナーの低温定着性、耐ブロッキング

【0119】低融点ワックス成分及び高融点ワックス成 分以外に本発明の効果を阻害しない範囲で他の第37ッ クス成分を、低温定着性、耐プロッキング性又は耐オフ セット性の欲妙な瞑整のために1種以上含有させること ができる。他のワックス成分の含有量は全ワックス量に **対した20角曲%以下であり、融点は60~150℃が** 【0120】本発明のトナーにおいて、ワックスは結婚 樹脂100氟量部に対して1~20氟量部含有させるこ 更に好ましくは3~15重量部である。上記含有量でワ ックスをトナーが含有することにより、トナーの低温定 とが好ましく、より好ましくは2~17重量桁であり、 着性、耐プロッキング性及び耐オフセット性を向上さ 8

あることが好ましい。

せ、さらに、トナー粒子からの遊離ワックス粒子の量を 低下させることが可能である。

ス状炭化水類が多く得られるアーゲ法(固定触媒床を使 好ましく用いられる。母体としての段化水繋は、金属酸 ックス:南分十曲のアルキレンポリャーを駅分解して得 繋からなる合成ガスからアーゲ荘により得られるポリメ チレンの炭化水漿の蒸留製分から、あるいはこれらを水 緊疹加して得られる合成炭化大器のワックスがよい。 更 に、プレス発汗法、溶剤法、真空蒸留の利用や分別結晶 化物系触媒(多くは2種以上の多元系)を使用した、一 数化炭素と水蟒の反応によって合成されるポリメチレン [0121] 本発明において、好ましく用いられる低酸 **点ワックス成分としては、分岐の少ない長橇アルキル基** グラー触媒で箘合した低分子曲のアルキレンポリャーワ **われるアクキコンポリターワックス:一般化校群及び木** 方式により成化水繋ワックスの分別を行ったものがより を有する炭化水素ワックスが挙げられる。具体的にはア **ルキレンを高圧下でラジカル 盤合めるいは低圧下でチー** ヒドロコール法(流動触媒床を使用)、あるいはワック ワックスが挙げられる。さらに、例えばジントール法、 用)により得られるワックスが挙げられる。

核にして毎られた安盤アルギルアルコールは、分岐が少 することにより、長鐵アルギルアルコールを得る。この なくて小さく、さらに分子虫分布がシャープであり、本 [0122] 上記長億アルキル基は末端の一部が水酸基 基、エステル基、エトキツ基、スルホニル基等)で置換 用いて簠合し簋合終了後、酸化して、触媒金属とポリエ チャンとのアルコキシドを生成する。いの後、加水分解 **衣の製油により得られる。 エチレンをチーグラー触媒を** 及び酸基から誘導される官能基 (例えばカルボキンル されていてもよい。 長鶴アルキルアルコールは例えば、 発明の目的にそったものである。

ン共重合体が挙げられる。具体的には、例えばアルキレ ス;高分子曲のアルキレンポリャーを敷分解して得られ るアルキレンポリマーワックス;一酸化炭漿及び水漿か らなる合成ガスからアーゲ笹により得られるポリメチレ [0123] 本発明において好ましく用いられる高融点 ワックス成分としては、分岐の少ないより長뚝のアルキ **ル茲を有する段化水類ワックス及びエチレン・プロピレ** ンの炭化水紫の蒸留敷分から、あるいはこれのを水紫添 ンを高圧下でラジカル舞合もるいは低圧下でチーグラー 触媒で餌合した低分子歯のア ウキレンポリマーワック **右して毎られる台成炭化水群のワックスがよい。**

テル)、無水シレイン酸等と共宜合体を形成していても 【0124】上紀長鐵アルキル基は末端の一部が水酸基 及び水酸基から誘導される官能基(例えばカルポキシル **私、エステル基、エトキシ基、スルホニル基等)で置換** されていてもよく、スチレン (メタ) アクリル酸 (エス

S [0125] 本発明において守ましく用いられる低融点

ックス成分は1,000~25,000の重量平均分子 以下、好ましくは2.3以下であるのが良い。 高融点ワ い。高融点ワックス成分のMw/Mnは20以下、好ま ワックス成分は300~2,000の歯歯平均分子歯を 有することが好ましく、より好ましくは350~1,8 量を有し、好ましくは1,500~20,000、さち **に好ましくは2, 000~180, 000であるのが良** いるワックスは、本発明の重合体を結婚樹脂として含有 するトナーの低温定着性、耐ブロッキング性及び耐オフ 00である。低融点ワックス成分のMw/Mnは2、8 しくは15以下であるのが良い。これら条件を満足して セット性、をより向上させることができる。

[0126] 本発明において好ましく用いられる低融点 ワックス成分と高融点ワックス成分の組合せとしては、

例えば以下に挙げる組合せがある。

0℃であり、盧盘平均分子量が400~1,500であ 【0127】(1)低融点段化水器ワックス成分と高限 点ワックス成分の組合せ:低融点段化水業ワックス成分 は分岐の少ない長鐵アルキル甚を有し、融点が10~9 り、Mw/Mnが1.5~2であるものが良い。

ルキル基を有する炭化水漿ワックスまたはポリエチレン **であり、組曲平均分子曲が1,500~20,000で** [0128] 高融点ワックス成分は分岐の少ない長億ア ・プロピレン共<u>車合体であり、</u>融点が120~160℃ あり、Mw/Mnが2~15であるものが良い。

[0129] (2) 低融点設化水業ワックス成分と高融 **点置換アルキルワックス成分の組合せ:低融点ワックス** 成分は、上記(1)で示した低融点段化水紫系ワックス 成分と同様のものを使用する。

[0130] 高融点置換アルギルワックス成分は分岐の 基及び/またはカルボキシル基であり、置換基を有する アルキル成分が全ワックス中の50重量%以上含有され 的に水漿原子以外の置換基を有し、置換基としては水酸 るものが好ましい。さらに高融点置換アルキルワックス 成分は、融点が120~150℃であり、重量平均分子 少ない景鏡アルギル甚を有し、末端もしくは分子内の一 曲が1,000~10,000であり、Mw/Mnが 1. 5~2. 5であるものが好ましい。

ックスは融点が80~115℃であり、重量平均分子量 高融点ワックス成分の組合せ:低融点置換アルキル系ワ を有するアルキル成分が全ワックス中の40重量%以上 含有されているものが好ましい。 低融点置換アルキルワ **【0131】 (3) 低融点置換アルギルワックス成分と** ックスは分岐の少ない長儀アルキル基を有し、末端もし くは分子内の一部に水梁原子以外の置換基を有し、置換 基は水酸基及び/またはカルポキシル基であり、 置換基 #400~1, 500 cby, Mw/Mn#1. 5~ 2. 5であるものが良い。 4

[0132] 高融点ワックス成分は、前記 (1) で示し た高融点ワックスと同様のものを使用できる。

特開平10-171156

【0140】 荷観制御剤としては、以下のものが挙げら を用いても良い。荷電制御剤は、結婚樹脂100塩量部 当り0. 1~10重曲部、好ましくは0. 1~5重量部 使用するのが好ましい。

【0141】例えば有機金属錯体、キレート化合物、有 体;芳香族ヒドロキシカルボン敷、芳香族ジカルボン酸 化合物の金属館体又は金属塩が挙げられる。他には、芳 **毎抜ハイドロキシカルボン酸、芳香族モノ及びポリカル ポン酸及びその無木物、そのエステル類;ピスフェノー** 被金属塩が挙げられる。具体的には、モノアゾ金属錯 ルのフェノール誘導体類が挙げられる。

タイト、マグヘマイト、フェライトの如き酸化鉄、及び 他の金属酸化物を含む酸化鉄:Fe, Co, Niのよう Pb, Mg, Ni, Sn, Zn, Sb, Be, Bi, C d, Ca, Mn, Se, Ti, W, Vのような金属との [0142] 本発明のトナーを磁性トナーとして用いる 場合、磁性トナーに含まれる磁性材料としては、マグネ な金属、あるいは、これらの金属とAI, Co, Cu, 合金、およびこれらの混合物が挙げられる。

【0143】具体的には、磁性材料としては、四三酸化 鉄 (Fe3 O4)、三二酸化鉄 (y-Fe2 O3)、酸 化鉄亜鉛(ZnFe₂O₄)、酸化鉄イントリウム(Y 3 Fe₅ O₁₂)、酸化鉄カドミウム (CdFe₂ O

4)、酸化鉄ガドリニウム (Gdg Fes -012)、酸 化鉄鋼 (CuFe₂O₄)、酸化鉄鉛 (PbFe₁₂-O 19) 、酸化鉄ニッケル (NiFe_{2.04})、酸化鉄ネオ ジム (NdFe₂O₃)、酸化鉄パリウム (BaFe₁₂ O₁₉) 、 数化鉄マグネツウム (MgFe₂O₄) 、 数化 鉄マンガン (Mn F e 2 Oq) 、酸化鉄ランタン (L a FeOil)、敷恕 (Fe)、コバルト嶅 (Co)、ニツ ケル粉 (Ni) が挙げられる。上述した磁性材料を単独 で或いは2種以上の組合せて使用する。特に好適な磁性 **材料は、四三酸化鉄又はッー三二酸化鉄の微粉末であ**

೫

【0144】これらの袖路性体は早均粒径が0.1~2 um (より好ましくは0.1~0.5 mm)で、10K エルステッド印加での磁気条件が抗磁力20~150エ ルステッド、飽和酸化50~200emu/g (好まし <は50~100emu/g)、残留磁化2~20em

0~200重量部、好ましくは20~150重量部使用 [0145] 結着樹脂100重量部に対して、磁性体1 ロ/mのものが砕ましい。 するのが良い。

【0146】 磁性体の他に、婚色効としては、カーボン プラック、チタンホワイトやその他の顔朴及び/又は梁 料を用いることができる。例えば本発明のトナーを磁性 カラートナーとして使用する場合には、染料としては、

C. 1. #41011211. C. 1. #410112

F4. C. 1. Tシッドレッド1、C. 1. ペーシック

ය

[0133] (4) 低融点置換アルキル采ワックスと高 軽点置換アルキルワックスの組合せ:低融点置換アルキ ル系ワックスは、上記(3) で示した低融点アルキル系 ワックスと同様のものを使用できる。

(2) で示した高融点置換アルキル系ワックスと同様の [0134] 高融点置換アルキル系ワックスは、前記 ものを使用できる。

一的特性を効率良く発現させるためには、結婚樹脂及び の混合が不適切な方法でなされた場合には、本来の良好 【0135】本部型のトナーにおいて、 胫后の1メロジ ワックスの選択と組合せが重要であり、更に結婚補脂と ワックスとの適切な混合が重要である。すなわち、結着 **樹脂及びワックスが適切に踏択されたとしても、これら** なレオロジー的な特性を発揮することができないからで [0136] 本発明のトナーにおいて好ましく用いられ る結婚樹脂とワックスの混合方法を以下に説明する。

特徴を発現させるためには、低弾性率結増相脂成分と高 弾性率結婚補脂成分と高融点ワックス成分と低融点ワッ [0137] 本発明のトナーにおいて、その粘弾性的な クス成分とを併せて用いることであり、種々の方法によ

発乾固する方法が挙げられる。さらに、有機溶剤を用い 具体的には結婚樹脂のみを加熱溶融し低融点ワックス成 分を添加する方法、結婚樹脂を有機溶剤に加熱溶解し低 法及び結婚相間の合成工程で低融点ワックス成分を添加 低融点ワックス成分を含有する結婚補脂、着色剤(磁性 **体)とヘンシェルミキサーの如きほ合機で攪拌配合した** 組合機で攪拌混合したのちに溶融混練することにより混 **応じて第3のワックス成分をあらかじめ容融混合しても** 良い。他のワックスの欲加方法としては結婚樹脂を有機 ずに結婚根脂を加熱溶酸しワックスを添加する方法があ ス成分を溶融混合したものを使用することができる。他 のワックスの添加方法は結着樹脂の合成工程でワックス を添加する方法である。この場合でもワックスはあらか る。他のワックスの奈加方法としては、低融点ワックス 融点ワックス成分を篏加後、有機溶剤を蒸発乾固する方 する方法である。この場合には、高融点ワックス成分は 【0138】一般的には粉砕した個々のワックスを結婚 **樹脂及び着色剤(磁性体)とヘンシェルミキサーの如き** 合する。ワックスの低融点成分、高融点成分及び必要に 路剤に加熱路解し、その後ワックスを添加し、路剤を蒸 る。これらの方法によりワックスを結婚補脂中に敬加す 分,高融点ワックス成分及び必要に応じて第3のワック じめ容融混合し成分を調整したものを用いることができ 成分のみを結婚性脂にあらかじめ添加する方法である。 る場合には、ワックスはあらかじめ低融点ワックス成

臨在をさらに安定化させる地に必要に応じて街鶴制御樹 [0139] 本発明の静電荷像現像用トナーは、その帯 のちに溶融説様することによりトナーに添加される。

特開平10-171156

NCG、タートラジンレーキ、モリブゲンオレンジ、パ ジジンオレンジG、カドミウムレッド、ペーセネントレ メトベイオフシトB、メチルベイオフシトワーキ、ロベ レッド1、C. 1. モーダントレッド30、C. 1. ダ C. 1. ペーシックブルー3. C. 1. ペーシックブル ー5, C. 1. モーダントブルー7, C. 1. ダイレク 1. ペーシックグリーン6がある。頗料としては、ミネ ーレネントオワンジGTR、ピランロンオワンジ、ベン レーキ、フタロシアニングルー、ファーストメガイブル ラルファストイエロー、ネーブルイエロー、ナフトール イスローS、くンポイイローG、ベートネントイイロー ッド4R、ウオッチングレッドカルシウム塩、エオシン ルトブルー、アルカリブルーレーキ、ピクトリアブルー B、セラカイトグリーンワーキ、ファイナルイHローグ ワーキ、グリリアントカーミン3B、レンガン核、クト 112171-1, C. 1. 4112171-2, C. 1. アシッドブルー9. C. 1. アシッドブルー15. ー、インダンスレンブルーBC、ピグメントグリーン トグリーン6、C. 1. ペーンックグリーン4、C. リーンのがある。

成分系現像剤用の非磁性フルカラートナーとして使用す る。 レゼンタ 用着色顔粒としては、C. 1. ピグメント Lyk1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 【0147】本発明のトナーを二成分系現像剤用又は一 る場合には、着色剤として、次の様なものが挙げられ 1, 12, 13, 14, 15, 16, 17, 18, 1 9, 21, 22, 23, 30, 31, 32, 37, 3 49, 50. 8, 39, 40, 41, 48

[0151] イエロー用物の樹萃としては、C. I. ピ 11, 12, 13, 14, 15, 16, 17, 23, 6 グメントイエロー1, 2, 3. 4, 5. 6, 7. 10. 5, 73, 83, C. 1. パットイエロー1, 3, 20 が挙げられる。

[0152] 非磁性カラートナーにおいて、着色剤の使 用曲は結婚樹脂100厘曲部に対して、0.1~60億 由部好せしくは0. 5~50知由部である。

るものである。例えば、フッ化ビニリデン徴粉末、ポリ 【0153】本独明のトナーに消費権向上部を設加(毎 ることにより、流動性が核加前後を比較すると増加し得 に外添)しても良い。流動性向上剤は、トナーに添加す

S

6. 201, 209, C. 1. ピグメントパイオレット 4. 68, 81, 83, 87, 88, 89, 90, 11 *2. 53, 54, 55, 57, 58, 60, 63, 6 2, 114, 122, 123, 163, 202, 20 19, C. I. パットレッド1, 2, 10, 13, 1 5, 23, 29, 35が挙げられる。

3, 84, 100, 109, 121, C. I. ディスパ 3. 14, 21, 27, C. 1. ディスパースパイオレ 23, 24, 27, 29, 32, 34, 35, 36, 3 7, 38, 39, 40, C. 1. ペーシックバイオレッ カラー画像の画質の点からより好ましい。 マゼンタ用染 ーメレッド9、C. I. ンルベントバイオレット8, 1 染料と顔料と併用してその鮮明度を向上させた方がフル 2. 9. 12, 13, 14, 15, 17, 18, 22, F1, 3, 7, 10, 14, 15, 21, 25, 26, 【0148】上記類料を単独で使用しても構わないが、 3, 24, 25, 27, 30, 49, 81, 82, 8

【0149】シアン用着色顔粒としたは、C. 1. アグ 27, 28の塩基性染料が挙げられる。

メントブルー2, 3, 15, 16, 17, C. I. パッ トブルー 6. C. 1. アシッドブルー 4 5又は次式で示 される構造を有するフタロシアニン骨格にフタルイミド メチル基を1~5個置換した銅フタロシアニン顔料が準

[0150]

[416]

40 末:湿式製法シリカ、乾式製法シリカの如き微粉末シリ カ、微粉末酸化チタン、微粉末アルミナ、それらをシラ ンカップリング型、チタンカップリング艦、シリコーン オイルにより装面処理を施した処理シリカ、処理酸化タ テトラフルオロエチレン微粉末の如きフッ葉系樹脂粉 タン、処理アルミナがある。 【0154】好ましい流動性向上剤としては、ケイ繋ハ ロゲン化合物の蒸気相酸化により生成された微粉体でも り、いわゆる乾式枯シリカ又はヒュームドシリカと称さ 中における熱分解酸化反応を利用するもので、基礎とな れるものである。例えば、四塩化ケイ葉ガスの酸水礬焔 る反応式は次の様なものである。

生成された市販のシリカ微粉体としては、例えば以下の しく、特に好ましくは、0.002~0.2ょmの範囲 【0157】ケイ繋ハロゲン化合物の蒸気相酸化により *として、0.001~2ヵmの範囲内であることが好ま 特開平10-171156 様な商品名で市販されているものがある。 200 内のシリカ徴粉体を使用するのが良い。 [0158] (22) AEROSIL (日本アエロジル社) してはそれらも包含する。その粒径は、平均の一次粒径* ゲン化合物と共に用いることによってシリカと他の金属 酸化物の複合微粉体を得ることも可能であり、シリカと 【0156】この製造工程において、塩化アルミニウム 又は協化チタンの他の金属ハロゲン化合物をケイ群ハロ SiC12 +2H2 +O2 →SiO2 +4HC1 [0155]

MOX170 (WACKER-CHEMIE GMBH社) Ca-O-Sil (CABOT Co. 社) Wacker HDK N 20

EH-5

T30 T40

N 2 0 E

380

TT600

MOX80 COK84 MS-7 MS-75 HS-5 V 1 5

M-5

300

D-C Fine Silica (ダウコーニングCo. 社)

Fransol (Fransil社)

おいて、メタノール衛定試験によって測定された様本化 [0159] さらには、数ケイ繋ハロゲン化合物の気相 酸化により生成されたシリカ微粉体に疎水化処理した処 **埋シリカ微粉体がより好ましい。 数処理シリカ微粉体に** 度が30~80の範囲の値を示すようにシリカ微粉体を 処理したものが特に好ましい。

【0160】珠水化方法としては、シリカ微粉体と反応 は、ケイ葉ハロゲン化合物の蒸気相酸化により生成され あるいは物理吸着する有機ケイ葉化合物等で化学的に処 理することによって付与される。好ましい方法として たシリガ微粉体を有機ケイ葉化合物で処理する。

【0161】有機ケイ繋化合物としては、ヘキサメチル ン、トリメチルエトキンシラン、ジメチルジクロルシラ ン、メチルトリクロルシャン、アリルジメチルクロルシ **ラン、アリカフェニカジケロカシラン、ベンジカジメチ** ジンケザン、トリメチルシラン、トリメチルクロルシラ αークロルエチレントリクロルシラン、ロークロルエチ ルトリダロルシラン、クロルメチルジメチルクロルンラン **ルクロルシラン、プロムメチルジメチルクロルシラン、**

ルメルカプタン、トリオルガノシリルアクリレート、ピ シラン、ヘキサメチルジシロキサン、1、3ージピニル ロキサン単位を有し末端に位置する単位にそれぞれ1個 キサン錚がある。 からに、ジメチルシリコーンオイルの 如きシリコーンオイルが挙げられる。これらは1種ある コルジメチルアセトキシシラン、ジメチルHトキシシラ ン、ジメチルジメトキシション、ジフェニルジエトキシ テトラメチルジンロキサン、1,3ージフェニルテトラ メチルジシロキサンおよび1分子当り2から12個のシ **杤のSiに結合した水酸基を含有するジメチルポリシロ** ン、トリオクガノシリたメガカプタン、トリメチバシリ いは2種以上の混合物で用いられる。 ణ

【0162】猟動性向上剤として、前近した乾式法シリ は、アミノ基を有するシリコーンオイルで処理した正常 カを、次に挙げるアミノ基を有するカップリング剤取い 既性疎水柱シリカを使用しても良い。

83

特関平10-171156

43 Hanchachachasi (Ocha)a

HINCHICHICHISI (OCALI)

HINCHICHICHISI (OCHS)2

HANCH,CHANHCH,CH,CH,Si (OCH,)

HINCONHCHICHICHISI (OC.H.),

HANCH-CHANHCH-CHACHASI (OCHA).

HINCH CHINHCH CHINHCH CHICKSI (OCH.)

HICOCOCHICHINHCHICHICHISI (OCHI)

H,C,OCOCH,CH,NHCH,CH,NHCH,CH,CH,Si (OCH,),

H,C,OCOCH,CH,NHCH,CH,NHCH,CH,NHCH,NHCH,CH,CH,SI (OCH,),

HICOCOCHICHINHCHICHINHCHICHISI (OCHI)

Han-O-Si (OCHa),

O NHCHECHICHESI (OCHS)

Hanchachanhcha—(O)— Chachasi (OCHa)a

Hancha — (O) — CHACHASI (OCHA)

HANCHACHANHCH2—(O)—CH4CH2Si (OCH8)

[0164] [418]

- CHICHICHISI (OCHI) 45

* [0166] [419]

特別平10-171156

(54)

(H₂CO)_sSiCH₂CH₂CH₂ - NHCH₂

(HCCO) SICH CHACH

(H.C.O) SICH CH.CH.

H-CNHCH-CH-CH-Si (OC.H.)

HAN (CHACHANH) CHACHACHASI (OCHA)

H₂C - NHCONHC₃H₆Si (OCH₃)₃

鎖にアミノ甚を育する部分構造を具備しているアミノ変 [0165] シリコーンオイルとしたは一般に牧人の回 **有シリコーンギイラなどが用いられる。**

ても良いし、また帯電性を損ねない範囲でハロゲン等の 基、アルキレン基、フェニレン基はアミンを含有してい リール基を表わす。但し、上記アルキル基、アリール 置換基を有していても良い。m及nは正の整数を示

ルコキン基を殺わし、Rg はアルキレン基又はフェニレ ン基を扱わし、 R_3 及び R_4 は水祭、アルキル甚又はア

10 (式中、R」は水獺、アルギル苗、アリール苗、又は7

[0167] そのようなアミノ慈を有するシリコーンオ イルとしては例えば以下のものがある。

*20 [0168]

既 アミン当由		3500	360	830	7600	2000	1900	3800	4400	320	320	8800	3800	3800	
25℃における粘度	(cps)	1200	0 9	7.0	250	3500	750	1700	0 6	2 0	2 0	0.6	2300	3500	
	商品名	SF8417(トーレ・ツリコーン社製)	KF393 (価額化学社製)	KF857 (信越化学社製)	KF860 (信極化学社製)	KF861 (信越化学社製)	KF862 (信越化学社製)	KF864 (街越化学社製)	KF865 (信越化学社製)	KF369(右極化学社製	KF383 (信頼化学社製)	X-22-3680 (信報化学社製)	X-22-380D (佰超化学社製)	X-22-3801C (信越化学社製)	

X-22-3810B (個超化学社製) (g/eqiv)で、分子虫を1分子あたりのアミン数 【0169】アミン当量とは、アミン1個あたりの当量

[0170] 消動性向上剤は、BET法で瀏定した鎮操 吸着による比表面積が30 ${
m m}^2$ / ${
m g}$ 以上、好ましくは50 ${
m m}^2$ / ${
m g}$ 以上のものが良好な材果を与える。トナー1 【0171】本発明の静電荷像現像用トナーを作製する には紡鴦樹脂、着色剤及び/又は磁性体、荷電制御剤ま たはその他の欲加刻を、ヘンジェルミキサー、ボールミ ルの如き混合機により充分混合し、ニーダー、エクスト 00個量部に対して流動性向上到0.01~8個量部、 好ましくは0.1~4重量部使用するのが良い。

[0172] 本発明のトナーは、盧盘平均粒径3乃至9 40 μm (より好ましくは、3~8μm) を有することが解 像性,画像濃度の点で好ましく、小粒径トナーであって

に固化物を粉砕し、粉砕物を分級して本発明のトナーを

得ることができる。

ルミキサーの如き混合機により充分混合し、トナー粒子 【0173】 さむに、消售和向上燃とトナーかくソシェ **数面に流動性向上剤を有するトナーを得ることができ** も良好に加聚加圧定着され得る。

[0174] 本発明のトナーのレオロジー特性の測定及

[0175] (1) トナー及び枯着樹脂のレオロジー特 びその他の物性の測定方法を以下に示す。

て樹脂類を互いに相答せしめ、溶融配練物を冷却固化後 ルーダーの如き熱湿複機を用いて溶融、捏和及び橡肉し

お資柱割庇装置(フオメーター)KDAーII野(フオ 9 mm、穿性母が低い場合には直径25mmのパラレル 【0176】 勘定治具:彈性率が高い場合には直径 2. メトリックス社製)を用いて創定を行う。

たは直径約25mm,厚さ2~3mmの円盤状就特に成 容融後に直径約8mm,高さ2~5mmの円柱状式料ま [0177] 遡定試料:トナーまたは結構樹脂を加熱。 型して使用する。

例定強の設定:初期値を0.1%に設定し、自動測定モ [0178] 測定固放数:6.28ラジアン/秒 ードに卜鮫所か作り。

[0179] 女女の毎長補正:自動測応モードにて聞

【0180】 測定温度:25℃より150℃までの毎分 1 ℃の割合で昇温する。

[0181] 遡応結果の例を図1に示す。

キンエルマー社製)を用いてASTM D3418-8 示整徵定熟曲計 (DSC徵定装置),DSC−7 (パー [0182] (2) ワックスの融点測定

[0183] 趙定式挙は2~10mg、好ましくは5m 2に知じて測定する。

として空のアルミパンを用い、別定温度範囲30~20 0℃の間で、昇塩速度10℃/minで常温常温下で割 [0184] これをアルミパン中に入れ、リファレンス gを積密に秤盘する。 定を行う。

[0185] この昇福過程で、温度30~200℃の範 **囲におけるDSC曲様のメインパークの吸ぎパークが纬**

[0186] この吸熱メインピークの温度をもってワッ [0187] (3) トナーのDSC曲様の資応 クスの融点とする。

上記ワックスの融点の測定と同様にして、トナーの昇温 [0188] (4) 結婚樹脂のガラス配移温度 (Tg) 過程におけるDSC曲線を測定する。

示整走査熱量計 (DSC測定装置), DSC-7 (パー キンエルケー社製)を用いてASTM D3418-8 2に堕じて測定する。

[0189] 遡応資料は5~20mg、好ましくは10 0℃の間で、昇温速度10℃/minで常温等週下で割 [0190] これをアルミパン中に入れ、リファレンス として空のアルミパンを用い、湖定温度範囲30~20 mgを積密に秤盘する。

[0191] この昇福過程で、温度40~100℃の航 [0192] このときの吸敷パークが出る前と出た後の **餌におけるメインパーケの吸敷がークが得られる。**

ペースラインの中国点の様と示説黙曲様との交点を本稿

ゲルパーミエーションクロケトグラフィ (GPC) 徴応 [0193] (5) ワックスの分子量分布の勘定 被揮:GPC-150C (ウォーターズ社) 明におけるガラス転移温度TBとする。

路採:ロージクロロふひおひ(0、1%アイドノーグ際 温度:135℃

カラム:GMH-HT30cm2蓮 (東ソー社製)

組 1.0m1/min

[0194]以上の条件で測定し、試料の分子量質出に もたったは単分数ポリスチャン模型製料をにより作成した 試料:0、15%の試料を0、4ml位入

分子盘較正曲線を使用する。さらに、Mark-Hou

wink粘膜式から導き出される模質式でポリエチレン

[0195] (6) 重合体、トナーの結婚補脂及びトナ 一のTHF 阿路分の分子自分布の遺伝 数算することによって算出される。

GPCによるクロマトグラムの分子盘は次の条件で測定

1×104, 1. 1×105, 3. 9×105, 8. 6 定化させ、この温度におけるカラムに、溶媒としてテト ルに禁通し(130℃,15分)したものを用いる。試 い、少なくとも10点程度の模型ポリスチレン試料を用 いるのが適当である。検出器にはRI(屈折率)検出器 【0196】40℃のヒートチャンパー中でカラムを安 試科が結婚物脂原料の場合は、結婚物脂原料をロールミ 料祿度として0,05~0,6塩曲%に調整した樹脂の 資料の分子曲型底にあたっては、資料の有する分子曲分 布を、数種の単分散ポリスチレン標準試料により作製さ る。核曲様作成用の蘇蔔ボリステァン質型としたは、例 文氏, Pressure Chemical Co. 製 ラヒドロフラン(THF)を毎分1mlの流速で流す。 THF試料用約を50~200μ1柱入して遡庇する。 あるいは、東部ソーダL模社製の分子曲が6×10², 2.1×10^3 , 4×10^3 , 1.75×10^4 , 5.×10⁵, 2×10⁶, 4, 48×10⁶ のものを用 れた検由線の対数値とカウント数との関係から算出す ន ജ

[0197] カラムとしては、10³ ~2×10⁶ の分 子 母領城を的確に測定するために、 市販のポリスチレン ゲルカラムを複数組合せるのが良く、例えば、Wate KA-801, 802, 803, 804, 805, 8 rs社製のμーstyragel 500, 10³, 1 04 , 105の組合せや、昭和電工社製のshodex 06,807の組合せが好ましい。

【0198】次に本発明の画像形成方法に関して説明す

像形成方法を実施し得る画像形成装置の一例にしいた説 【0199】図2及び図3を参照しながら、本発明の画 明する。一次帯電器2で静電荷像保持体(感光体)1数 છ

[0202] 現像部における磁性トナー粒子の転移に際

バイアスが凹加されている。 特許トナー破け、中間積ゆ 磁性トナー像または正荷電性磁性トナー像が配録材P上 へ静電転写される。除電手段22で除電後、感光体1か ら分離された配録材Pは、ヒータ21を内包している加 **ザ光による露光5により静電階像 (例えば、イメージス** により現像する。現像領域において感光体1の導電性基 2により交互パイアス,パルスパイアス及び/又は直流 体を介して、又は、介さずに転写材へ転写される。記録 材Pが撤送されて、転写前にくると転写帯電器3により 記録材Pの背面(感光体側と反対面)から正極性又は負 極性の帯電をすることにより、感光体玻面上の負荷電性 釈加圧ローラー定着器7により配録材P上のトナー画像 面を負極性又は正極性に帯電し、アナログ**威**光又はレー キャニングによりデジタル楷像)を形成し、磁性ブレー ド11と、段極N1・N2 , S1 及びS2 を有する段石 23を内包している現像スリーブ4とを具備する現像器 9の磁性トナー13で静電階像を反転現像又は正規現像 体16と現像スリーブ4との間で、パイアス印加手段1 は、加熱加圧定着される。

ス區光6により除電され、再度、一次帯電器2により帯 【0200】転写工程後の感光体1に残留する磁性トナ **一は、クリーニングブレード8を有するクリーニング年** 殴む除去される,クリーニング後の感光体1は、イヤー 電工程から始まる工程が繰り返される。

光体1と現像スリーブ4の間隙と同等又は間隙よりも降 を調節することにより、現像スリーブ表面速度が感光体 【0201】静電荷像保持体 (例えば感光ドラム) 1は は、現像部において静電荷像保持体1接面と同方向に進 むように回覧する。茅袋性の円筒状の現像スリーブ4の 内部には、磁界発生手段である多極永久磁石(マグネッ トロール)23が回転しないように配されている。現像 らに釈默の路柱ドクタープレード 17を円筒状の現像ス い磁性トナー層を形成する。現像スリーブ4の回転速度 1の表面の速度と実質的に等速、もしくはそれに近い速 い。現像簡単において現像スリーブ4に交流パイアスま もよい。この交無パイアスは!が200~4,000日 く。トナー哲枠なとしての非路柱円筒の現像メリーグ4 かし現像スリーブ4の敷固と駐伍トナー粒子との軽複に よって、磁性トナー粒子はトリボ電荷が与えられる。さ m)、多種永久毀石の一つの駐極位置に対向して配置す ることにより、段性トナー層の厚さを薄く(30μm~ 300㎡m) 且の均一に規制した、現像倒転における感 敗となるようにする。 磁性ドクターブレード 17として 鉄のかわりに永久磁石を用いて対向磁極を形成してもよ たはパルスパイアスをパイアス手段12により印加して 器9内の磁性トナー13は現像スリーブ4に選布され、 欧光暦15及び導電性基体16を有し、矢印方向に動 リーブ4の**装面に近接して(関隔50 mm~500 m** z、Vppが500~3,000Vであれば良い。

し、感光体面の静電的力及び交流パイアスまたはパルス パイアスの作用によって磁性トナー粒子は静電荷像側に **格観中10-171156** (36)

ゴムの如き弾柱材料で形成された弾柱プレードを用いた 【0203】特和ブワード11のかむりに、シリコーン 押圧によって磁性トナー層の層厚を規制し、現像スリー **ノ上に併住トナーを迯布しても良い。**

[0204]図5は、本発明の画像形成方法を実施し得 る画像形成装置の他の例を示す。 【0205】 一次特配手段としての被触(ローラー) 特 電手段119により静電荷像保持体としての感光ドラム 5 によるイメージスキャニングにより デジタル指領が感 において感光ドラム101の導電性基体は接地されてお 13により記録材Pの背面(概光ドラム側と反対面)か 5個圧印加手段114で帯電されることにより、感光ド ラム101の表面上に形成されているトナー画像が接触 101から分離された配録材Pは、定着手段としての加 7によって記録材P上のトナー画像の定着処理がなされ 101の牧団を食権性に特徴し、アーボー光の観光11 **ブ108が具備されている現像装置によって、上記のデ** ジタル糖像が、ホッパー103内の路掛トナー104に よって反転現像される。図5に示すように、現像領域D り、現像スリーブ108にはパイアス印加手段109に **転写手段113で記録材P上へ転写される。 億光ドラム** 熱加圧ローラー定着器117に搬送され、数定着器11 光ドラム101上に形成される。トナー層厚規制部材と しての容性規制プレード111を有し、多極米久邸石1 05が内包されているトナー担持体としての現像スリー アスが印加されている。配録材Pが撤送されて転写部に **來ると、転写手段としての接触(ローラー)転写手段 1** より交互パイアス、パルスパイアス及び/又は直消パイ ಜ ន

[0206] 転写工程後の感光ドラム101に残留する **段在トナー104は、クリーニングブレード118aを** 有するクリーニング手段118で除去される。残留する 磁性トナー104が少ない場合にはクリーニング工程を 省くことも可能である。クリーニング後の感光ドラム1 手段119による帯電工程から始まる上配工程が繰り返 れ、再度、一次帯電手段としての接触(ローラー)帯電 01は、必要によりイレース臨光116により除憶さ

(即七、静電階像保持体) 101は彪光層及び導電性基 体を有するものであり、矢印方向に動く。トナー担特体 である非磁性の円筒の現像スリーブ108は、現像倒域 に回転する。現像スリーブ108の内部には、磁界発生 手段である多極永久磁石(マグネットロール)105が 回転しないように配されている。現像剤容器103内の Dにおいて啓光ドラム101の表面と同方向に進むよう 段性トナー104は、現像スリーブ108上に強布され [0207] 上記の一連の工程において、啓光ドラム ಜ

ム101の数面の速度と実質的に等速、若しくはそれに **て担持され、且つ現像スリーブ108の製面との摩擦及** 数け、トナー暦の耳さを辞く(30~300ヵm)且つ 均一に規制して、現像倒掉Dにおける感光ドラム101 と現像スリーブ108との間隙よりも薄いトナー層を形 スリーブ108に現像パイアス朝圧として、交流パイア ス又はパルスパイアスをパイアス印加手段109により い。現像領域口における磁性トナーの転移に躱し、感光 成させる。現像スリーブ108の回転選買を調整するこ とによって、現像スリーブ108の数面速度が感光ドラ 近く速度となるようにする。現像領域Dにおいて、現像 **5人又は昭和トナー回士の辞儀によった、例えば、ゥイ** ナスのトリボ亀街が与えられる。更に、路柱規制プレー ド111を現像スリーブ108を母性的に押圧する様に 印加してもよい。この交流パイアスは「が200~4. 000Hz, V_{pp}å500~3, 000Vであればよ

[0208] 上述の本発明の画像形成装置をファクシミ リのプリンターに適用する場合には、光像臨光しは受信 データをプリントするための庭光になる。図6はこの場 合の1例をブロック図で示したものである。 イ、 会社 r ナーに 夢 色 語 像 回 に 各 覧 する。

ドラム101の表面の静電気力、及び交流パイアス又は

パケスパイアスの哲を現像パイアス間圧の作用によっ

2を通してプリンター139に送られる。画像メモリに **は所定の画像ゲータが記憶される。 プリンタコントロー** ラー138はプリンター139を艶飾している。134 [0209] コントローラー131は画像院取断130 の全体はCPU137により割卸されている。 画像結取 部からの航政データは、送信回路133を通して相手局 に送信される。相手局から受けたデータは受信回路13 とブリンター139を慰御する。 コントローラー131 は包括である。

リンタコントローテー138に複合化された1ページの して接続されたリモート端末からの画像情報)は、受信 回路132で復聞された後、CPU137は画像情報の して、少なくとも1ページの画像がメモリ136に結婚 は、メモリ136より1ページの画像情報を観み出しプ は、CPU137からの1ページの画像情報を受け取る とそのページの画像情報記録を行うよく、 プリンタ13 **【0210】回線135から受信された画像 (回線を介** 複号信号を行い順次画像メモリ136に格納される。そ されると、そのページの画像記録を行う。CPU137 画像情報を送出する。プリンタコントローラー138

[0211] 尚、CPU137は、プリンタ139によ [0212]以上の様に、画像の受信と記録が行われ る記録中に、次のページの受信を行っている。

[0213]

S [実施例] 以下、実施例によって本発明を説明する。

[0214] 本発明の重合体の製造:

で加敷し、第1段階の重合反応として、スチレンモノマ (2-5) 2. 3 重量部及びキシレン100 重量部から なる第1のモノマー組成物を2時間かけて満下し、その 皆,撹枠機,温度計,登琳導入管及び商下装置を備えた 反応容器に投入した後に査禁を通気しながら 100℃ま 温度で8時間保持した。次に第2段階の重合反応とし (製造例1) 精製したキツレン200億由部を、設筑 **一78重量部、ラジカル重合開始剤として例示化合物**

て、反応容器を120℃まで加熱してアクリル酸ブチル モノマー22重由部及びキツレン50重量部からなる第 2のモノマー組成物を1時間かけて満下し、その温度で 5時間保持し重合反応を終了し、重合体(1)のキツレ [0215] 得られた重合体(1)のキシレン溶液から 成圧下でキシレンを留去することにより重合体 (1)の 固形物を得た。

[0216] 得られた重合体 (1) は、Mw=1890 0, Mn=9800, Mw/Mn=1.9, Tg=6 1.8℃であった。

【0217】 得られた重合体 (1) の¹ H-NMRスペ ットのみから構成されるブロック重合体に起因すると推 これを図8に示す比較製造例1のランダム共重合体から なる風合体 (19) の¹ H-NMRスペクトルと比較し たところ、重合体(1)では一部、ランダム共宜合体が 生成しているが、同時にアクリル酸ブチルモノマーユニ クトルを捌定したところ、図りに示す様な結果を得た。 定される新たなシグナルを3.8ppm付近に検出し 【0218】 (製造例2) 第1段階の重合反応としてモ プチルモノマー8重量部とし、第2段階の重合反応とし **トアクリル酸プチルモノマー22重量部とした以外は製** ノトーがメチァンホノトートの鱈虫笛、トマイン製ホノ ಜ

[0219] 得られた重合体 (2) は、Mw=1990 0, Mn=8100, Mw/Mn=2. 5739, Tg =62.4℃であった。

造例1と同様にして、戯合体 (2) を得た。

[0220] (製造例3) 第1段階の重合反応としてア 5) 2. 3 直量部及びキシレン8 0 重量部からなる第1 のモノマー組成物を用い、第2段階の重合反応としてス チレンモノマー18 重由部及びキシレン50 重量部から なる第2のモノマー組成物を用いた以外は製造例1と同 クリル酸ブチルモノマー22盧盘韶、例示化合物(2-様にして、重合体(3)を得た。

[0221] 得5れた重合体 (3) は、Mw=2910 0, Mn=12400, Mw/Mn=2, 4, Tg=6 8℃であった。 [0222] (製造例4) ラジカル塩合開始剤として例 示化合物 (3-4)を用いて第1段階の重合反応を90 **でで7時間行ない、第2段階の重合反応を115℃で8**

(38)

特闘平10-171156

時間行なった以外は製造例1と同様にして、館合体

[0223] 得られた重合体 (4) は、Mw=2450 0, Mn = 12300, Mw/Mn = 2. 0, Tg = 69℃であった。

行なった以外は製造例1と同様にして、重合体(5)を 【0224】(製造例5)ラジカル重合開始剤として例 1. 5重量部を用いて、第1段階の重合反応を75℃で 6時間行ない、第2段階の監合反応を105℃で7時間 示化合物(1-2)1重量部と例示化合物(1-3)

[0225] 得られた重合体 (5) は、Mw=1690 0, Mn = 7700, Mw/Mn = 2. 2, Tg = 59. 7℃であった。 【0226】(製造例6)ラジカル盤合開始剤として例 示化合物 (3-3) 2重量部を用い、第1段階の重合反 応を113℃で4時間行ない、第2段階の重合反応を1 40℃から時間行なった以外は製造例1と回接にした、 重合体(6)を得た。 [0227] 得5れた塩合体 (6) は、Mw=2190 0, Mn = 9500, Mw/Mn = 2. 3, Tg = 61. 1 とであった。

量部とアクリル酸プチルモノマー6 重量部に変更し、第 て、第1のモノター組成物のモノターをスチレン51組 2段階の氫合反応において、第2のモノマーを組成物の チルモノマー17 重量部に変更した以外は製造例1と同 モノマーをスチレンモノマー20鱼量部とアクリル酸ブ [0228] (製造例1) 第1段階の重合反応におい 様にして、重合体(1)を得た。

[0229] 得られた重合体 (7) は、Mw=2340 0, Mn=9100, Mw/Mn=2. 6, Tg=5 8. 2℃であった。

エンに変更して、さらにラジカル重合開始剤として例示 化合物 (3-2) 2 重量部に変更した第1のモノマー組 成物を用いて第1段階の重合反応を75℃で6時間行な った後、反応容器の温度90℃として5時間重合反応を 【0230】(製造例8)反応溶媒をキシレンからトル 行なった後、製造例1と同様にして第2段階の重合反応 を行なって重合体(8)を得た。

[0231] 得られた氫合体 (8) は、Mw=2350 0, Mn=11000, Mw/Mn=2. 1, Tg=6 9℃であった。

2盤合部及びキシレン50 監量部からなる第1のモ リル酸ブチルモノマー22重量部、ラジカル重合開始剤 として例示化合物(2-5) 2 重量部及びキシレン50 ノマー組成物を用いて第1段階の重合反応を75℃で4 時間行ない、次に反応容器の温度を90℃として、アク [0232] (製剤図9) ステンナントー50個曲 部、ラジカル重合開始剤として倒示化合物(3-2)

下し、その温度で3時間保持した。次に反応容器の温度 を120℃としてスチレンモノャー28 氫量倒とキシレ て商下し、その温度で4時間保持し塩合反応を終了した [0233] 得られた重合体 (9) は、Mw=2080 0, Mn = 8100, Mw/Mn = 2, 6759, Tg ン50賃量部からなる第3のモノァー溶液を2時間かけ 以外は製造例1と同様にして、重合体(9)を得た。 =53.3℃であった。

量を0.07重量部に変更した第1のモノマー組成物を 用いて、第1段階の重合反応を82℃で12時間行なっ た後、反応容器の温度を95℃として10時間反応を行 ノマー10 重量部に変更し、ラジカル重合開始剤の使用 なった後、製造例1と同様にして第2段階の重合反応を 【0234】(駄海壑10)モノャーとしたメチレンキ 2

000, Mn=148000, Mw/Mn=2, 678 [0235] 得られた重合体 (10) は、Mw=381 行なって国合体(10)を得た。 9. TB=54. 1℃であった。

 15重量部及びキシレン50重量部からなる第1の モノマー組成物を用いて第1段階の重合反応を98℃で 28旗曲部を1時間かけて満下してその温度を20時間 【0236】(製造例11)スチレンモノマー72重量 保持して第2段階の重合反応を終了することにより、重 第2のモノマー組成物としてアクリル数プチルモノマー 10時間行ない、次に反応容器の温度を123℃にし、 部、ラジカル重合開始剤として例示化合物(3-3) 合体 (11) を得た。 ន

000, Mn=177000, Mw/Mn=2. 6. T [0237] 得られた餌合体 (11) は、Mw=461

ー72個最初とジピニルペンポンモノャー0.005個 【0238】 (製造例12) モノャーをスチレンモノャ **量部に変更した第1のモノマー組成物を用いて第1段階** の重合反応を行なった以外は製造例9と同様にして、重 R=57.5℃であった。 合体 (12) を得た。 ಜ

[0239] 得られた重合体 (12) は、Mw=549 000, Mn=189000, Mw/Mn=2.9, T g=57.6℃であった。

最部に変更した第1のモノマー組成物を用いて第1段階 [0240] (製猫倒13) ホノャーとしたスチレンホ ノヤー68 短曲部とヤレイン数モノグチルモノヤー4箇 のラジカル戯合を行なった以外は製造例10と同様にし \$

000, Mn=169000, Mw/Mn=2. 8, T [0241] 得られた重合体 (13) は、Mw=473 て、重合体 (13) を得た。

(10) 50 塩量部をキシレン400 重量部に溶解して 反応容器に投入した以外は製造例1と同様にして、 重合 [0242] (製造例14) 製造例10で得た重合体 g=57.9℃であった。

谷 (14) を得た。 ය

亀田部からなる第2のモノマー組成物を2時間かけて満

[0243] 得られた<u>笛合体</u>は、Mw=103000、 Mn=9700, Mw/Mn=10. 6, Tg=56,

[0244] (製造倒15) 製造倒8において、第1段 路の重合反応終了時点で反応溶媒であるトルエンを可能 なかぎり加熱することなく域圧留去することにより、分 子内に亀合開始剤に由来する過酸化物基を有する中間体

重量部となる量と、スチレンモノマー50重量部、アク [0245] この中間体 (1) を固形分に換算して30 リル酸ブチルモノマー20 鱼由部及び t ーアミルパーオ キシ2-エチルヘキサノエートロ.2簠鱼部からなるモ ノマー組成物を閲製した。遠流笛,撹枠機,閻度計及び 査異導入管を備えた反応容器に投入された0.1 重量% のポリピニルアルコール 0. 1 重量%を含む脱気した脱 イオン水250重量部に、上記モノマー組成物を投入し の温度で5時間反応を行なった。次に反応容器を95℃ 等られた慰迦樹脂粒子を認別し、水洗し、乾燥して重合 て影濁液を調製した。反応容器を13℃まで加熱してそ まで昇退して更に2時間反応して重合反応を終了した。

000, Mn=14500, Mw/Mn=12, 5, T [0246] 得られた重合体 (15) は、Mw=181 8=58. 4 C t 80 t.

体 (15)を称た。

[0247] (製造例16) 製造例15において、中間 価重能、シアーケくンガンホノゥーの. 01価重能かつ **体(1)を容解するモノマー組成物のモノマーをスチレ** ンモノャー50塩量部、アクリル酸ブチルモノャー20 た以外は同様にして、重合体(16)を得た。

[0248] 得られた重合体 (16) は、Mw=238 000, Mn = 119000, Mw/Mn = 20. 0. Tg=58. 1℃であった。

応を行う前にキシレン200重由部に融点69.3℃の して重合反応を行うことにより、段化水繋ワックスを含 [0249] (製造例17) 製造例1において、重合反 **段化水繋系ワックスを14重量部添加した以外は同様に** 有する風合体(17)を得た

[0250] 得られた戯合体 (17) は、Mw=231 00, Mn=7900, Mw/Mn=2, 9, Tg=6 0. 3℃であった。 [0251] (製造例18) 製造例11に於て、重合反 **朽を行う档にキツレン200個銀部に撥成135℃のポ** リプロプレンワックスを9重量部添加した以外は同様に して重合反応を行うことにより、炭化水禁ワックスを含 有する重合体(18)を得た。 [0252] 得られた国合体 (18) は、Mw=482 000. Mn=173000. Mw/Mn=2. 8. T

28 8=56.7Ctbot.

ル重合開始剤量を5重量部とした以外は同様にして重合 **【0253】 (製造例19) 製造例1において、ラジカ** 反応を行うことにより、戯合体(19)を得た。 [0254] 梅5れた重合体 (19) はWw=1130 0, Mn=4500, Mw/Mn=2. 5, Tg=6 0. 1℃であった。

下装置を備えた反応容器に投入した後に蛮栗を通気しな **韶、アクリル酸プチルモノマー22重量部、ラジカル重** 合開始剤として例示化合物(2~5) 2.3 重量部及び キシレン100重量部からなるモノマー組成物を2時間 [0255] (比較製造例1) 精製したキツレン200 重量部を、遠流管,撹拌機,温度計, 连索導入管及び滴 かけて摘下し、その温度で8時間保持して鱼合反応を終 がら110℃まで加熱し、スチレンモノャー78 国由 丁することで重合体 (20)を得た。

[0256] 得られた重合 (20) は、Mw=1320 0, Mn = 5700, Mw/Mn = 2. 3, Tg = 6

【0257】得られた宣合(20)の¹ H-NMRスペ ル重合開始初として例示化合物(2-5)0. 15 重量 **応を行ない、次に110℃まで加熱して3時間反応を行** 【0258】 (比較製造例2) スチワンホノレー18組 **量部、アクリル酸ブチルモノマー22盤量部及びラジカ** 部からなるモノター組成物を、0.1重量%のポリピニ **ハアハコールを含む脱気した脱イオン水250氫由部を** いれたオートクレーブに投入し、90℃で8時間重合反 クトルを測定したところ図8に示すような結果を得た。 なって重合体(21)を得た。 0. 4℃であった。 ន

【0259】得5九七重合体(21)は、Mw=426 000, Mn=164000, Mw/Mn=2, 600 9. T8=60. 9℃であった。 ຊ

数化ペンンイル3 氫曲部とした以外は比較製造例1と同 【0260】(比較製造例3)ラジカル鱼合開始剤を過 様にして比較用塩合体 (22) を得た。 [0261] 得られた重合体 (22) は、Mw=121 00, Mn=5900, Mw/Mn=2. 1, Tg=6 0. 1℃であった。 【0262】 (比較製造例4) 製造例15で使用した中 40 間体 (1) に代えて重合体 (20) 30重量部を使用し た以外は製造例15と同様にして重合体(23)を得 【0263】得られた重合体 (23) は、Mw=179 000, Mn = 7900, Mw/Mn = 22, 7, Tg =58.2Cであった。

[0264] (財格例1)

影濁重合法により製造したスチレン・アクリル酸ブチル共重合体 (Mw=51 70年年前 30無由部 1000, Mw/Mn=2. 6. Tg=61. 3C) 組合体(1)

な容波状態とし、域圧下有機溶剤を留去して結婚樹脂組 [0265] 上記の樹脂混合物を有機溶剤に溶解し均一 成物(A)を得た。

[0266] 得られた結婚樹脂組成物 (A) は、ガラス*

(P) 翰柏存: (P-拉拉伯的. 2 mm) (a) 結着樹脂組成物 (A)

(c) モノアン金属錯体: (食荷包性制御剤)

(d) ワックス:ポリプロピレンワックス(エチレンを約5塩量%共重合した 4 重量部

ワックス; 融点135℃、Mw=8500、Mn=1100)

[0268] 上記材料をヘンジェルミキサーで前還合し 10 した。

た後、130℃で二軸院練押出機によって溶融路線を行 後、ジェット気流を用いた微粉砕機を用いて粉砕し、更 に風力分极機を用いて分級し、重量平均粒径6.4 mm た。この磁性トナー粒子100重量部に対し、負荷電性 1. 0 重量的をヘンジェルミキサーにて外部窓加して路 なった。張棣物を放発後、カッターミルで租粉砕した の負帯電性絶縁性磁性トナー粒子(磁性トナー)を得 疎水性乾式シリカ (BET比安面積300m² /g) 枯トナー (1) とした。

[0269] 得られたトナーは、トナーのTHF可答分 のGPCによる分子母分布において、分子由18200 にメインピークを及び分子由413000にサブピーク 【0210】いの積布下ナーのフォロジー都有か刨炉ナ nmの円柱状式やか作製し、無筋に絞って直径1. 9m mのセレイテッド型のパラレルプレート上に固定し、貯 蔵婦性専及び損失強性率の温度依存性を測定した。 婦性 るためにトナーを加熱、溶融し、直径約8mm、高さ3 率の温度依存性の測定結果を図1に示す。 【0271】ワックスの分散性を評価するために上記磁 30倍)で一視野中の約500個のトナー粒子を観察し たところ、遊離したワックスの存在を示す輝点は視野に 性トナーを光学取微鏡に偏光板をとりつけて低倍率(約 9~10点みられるだけであり良好であった。

機 (キヤノン製GP-215) に用いて10万枚の連続 [0272] この磁性トナーを図5に示すデジタル模写 闽出し耐久を行なった。

V及び交流パイアスV_{pp}800V(1800Hz)を印 加した。感光ドラム上の磁性トナー像を転写手段によっ ローラー及び加圧ローラーを有する加熱加圧手段で定着 [0273] デジタル複写機においては、直径30mm 欧光ドラムに、一次裕電器で-100Vに荷亀し、レー **声光に てった メージスキャンコングに アリアジタ 小猫** 像を形成し、4種の磁極(現像磁極は950ガウス)を 有する固定磁石を内包している現像スリーブにより摩擦 て普通紙に静電転写し、普通紙を除電して後に普通紙を 愍光ドラムから分離し、 笹通紙上の磁性トナー像を加熱 のアルミニウム製シリンダー上にOPC感光層を有する [02元4] 現像スリーブには、直流パイアスー600 帯電された負帯電性絶縁性磁性トナーで反転現像した。

*転移温度 6 1. 6℃、数平均分子量 (Mn) 1220 **年間平10-171156** 0、個盘平均分子虫 (Mw) 149000であった。 [0267]

8

100鱼母部 90重量部 2 重量部

1. 4、10万枚耐久終了時点で1. 43とほとんど変 [0275] 画像濃度は耐久初期 (1~10枚目) で

ム上を詳細に観察したとろこ、遊離したワックスの付着 し、外部駆動装置をとりつけ150mm/秒で定着ロー 改造した。定着テストは温度3~5℃に制御された恒温 槽内で実施し、定着ローラーが槽内温度と一致したのを 良好であった。10万枚耐久終了時点でOPC感光ドラ もみられずOPC啓光ドラム装面にも目立つ損傷はみら ラーを回転させ、温度制御装置をとりつけて、100~ 250℃の範囲で定着ローラーの温度を変えられる様に 化セゲ、ライン画像の宗教、太りの如き画質変化もなく れなかった。画像上にはOPC核光ドラム按面の損傷に [0276] 次にデジタル複写機の定着器をとりはず 起因すると推定される画像欠陥はなかった。

が130℃に達した直後に60g/m 2 の転写紙を用い 80g/m² 及び120g/m² と順次変えて定増テス 確認後に電威を投入し、上部ローラー (加熱ローラー) て定着テストを行なった。次に転写紙を50g/m² トを実施した。 ន

[0211] 以上の様な定着テストの結果、60g/m 2 で發度応価枠17%であり、50g/m², 80g/ $m m^2$ 及び $120\,{
m g/m^2}$ の各転写紙を用いた場合の設度 低下率は、9%,21%及び24%と実用上問題ないレ ベルでもった。50℃に温度制御された恒温相内に20 日間放置して耐ブロッキング性試験を行なったところ、 流動性の致化はみられず良好かむした。 ಜ

[0278] (実施例2) ワックスを融点69℃の炭化 水繋系ワックス2重量部と実施例1で用いた融点135 **わのポリプロピレンワックス3位量部とを容配混合して** 調製した低融点ワックスと高融点ワックスの均一混合物 を使用した以外は、実施例1と阿拔にして磁性トナー 6

(2)を得た。トナーの物性及び評価結果を殺1及び2

に示す。

て、魚合体(1)70塩量部と重合体(13)30塩量 [0279] (実施例3) 結落樹脂組成物 (A) に代え 部とを有機溶剤に溶解して均一に混合した後に有機溶剤 を留去して調製した結着樹脂組成物(B)を用いた以外 は、実施例1と同様にして駐告トナー(3)を得た。ト

【0280】 (実施例4) ワックスを映施例2で用いた ナーの物性及び評価結果を数1及び2に示す。

S

特開平10-171156 (31)

特関平10-171156

(32)

(36)		103011トナーの物性及び評自結果を教1及ひ2に d.) J で10回答り、幾り制役の譲伐塔Fやを関係し		[0302] (実施例12) 実施例17結準補脂組成物 [0312]	(A) の掲製に用いた組合体(1) のかわりに組合体 ランク10…強度低下降 1%未満	2	日子 は 日本 の ない 川	では、米宮空」の回路にして発向でナー(12)を レンク 8…後戌戌を予りです、米宮空」の回路にして発向でナー(12)を レンク 8…後戌戌		[0303] トナーの物性及び評価結果を表え及び2に ランク 6…譲度低下降 16~20%	ルンケール…随即年上級	4一般の首() イン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10 ノノツ 4…銀成時上号	ランク 3…強度低下率	(20)を用いて観製した結婚組制組成物 (K)を用い - ランク 2…資度低下降 36~40%	ルンク 1… 路野年下級	「	1 1 1 1 1 1 1 1 1 1				職資性等及び損失彈性等の温度位存性を創定した。 弾性 が移行しているか否かで評価した。	母の通度佐存性の遡定結果を図4に示す。 20 【0314】	[0306] 英稿例1と同様にして比較用トナー (1) テンク5…トナーが移行せず	を評価したところ、表1及び2に示す様に明らかに劣る ランク4…にへ軽微の歯のトナーが移行		(比較例2) 結着棋脂組成物 (A) に代え			(全	。 結 着 樹脂組成物	4	8	て、値合体(22)、70億量部と値合体(21)30 ランク5…変化なし	ŦĮ.	ジゲは狭箱倒った回接にして比較用トナー(3)を律 ワンク3…ほぐれにへい	た。トナーの物性及び評価結果を救1及び2に示す。 ランク2…流動性なし	[0309] (比較例4) 実施例1で結婚機能組成物 ランク1…ケーキング		り製造したステレン・アクリル酸プチル共富合体に代え、 部分の最大画像藻膜) は、Macbeth RD918	て値合体(20)70種曲部と値合体(22)30種曲 (トクペス社製)にて遡応した。	的を用いて関製した結婚相指組成物 (M) を用いた以外 【0318】トナーにおけるワックス分散性の評価	は実施例1と同様にして比較用トナー(4)を帯た。ト 40 トナーを光学観微鏡に腐光板をとりつけ低倍容(例えば	ナーの物性及び評価結果を表1及び2に示す。 50~100倍)で観察し、トナー粒子300個当りで	[0310] 評価方法について以下に説明する。 トナー粒子から遊離しているワックス粒子の存在を示す	【0311】 定始在評価(加聚ローラー表面温度110 薄点の数を選応した。	(2)	冶影ローシーの牧園通駅 1 1 0 0 6 、 6 0 g / m 2 、 6 アンク 6 … 魔光肉や過した難点なし	0g/m2、80g/m2、及び120g/m2の各階 ランク4…1~10個の関係	に作成したトナーの未定着画像を定着し、定		ens cleaning paper "daspe ランク1…51個以上の輝点がある。	
		* パーン、反升トを取る色や知力した者を配置の多(こ)	を用いた以外は実施例4と同様にして磁性トナー(5)	か等た。	[0282]		\$ th \$ 6 c c	40届用部	30年中的	30萬由部	※大学の田27年間割りが存在者の名を入り、 多田27年に入り、 19年の19年の19年の19年の19年の19年の19年の19年の19年の19年の	3 3	写扱たって発向トイー	[0285]		とこを申接	は日本の		は米宮の4と回扱にして角白トナー(7)が年だ。	[0288]		7 0 重量部	30億無部	女体を用いて閲覧した結婚樹脂組成物 (F)を用いた以外	は実施例4と同様にして磁性トナー(8)を得た。	[0291]		20年起	30種曲部	11: 、	61.0℃) 50種曲部	◆体を用いて調製した結婚樹脂組成物 (G)を用いた以外		[0294]		20 鱼虫 部	10萬量部	契舷例1で用いた影濁重合荘により製造したスチレン・アクリル酸ブチル共重	20個母部	実施9.8 7用いた溶液塩合法により製造したスチンン・アクリル酸ブチル共量	50 監由部	*体を用いて閲製した結婚樹脂組成物(H)を用いた以外	40 は実施例2と同様にしてトナーを調製し、磁性トナー	(10) を飾た。	[0297]	7 4 复量部	30萬曲部	体を用いて観製した結婚樹脂組成物 (1)を用いた以外	は実施例のと回様にしたヤナーを閲覧し、路柱トナー		[030]	7 4 国母部	
(16)	AC THE THE PARTY OF THE PARTY O	ものを使用した女々は、米色を3と回収にして独在トナ	一(4)を得た。トナーの物性及び評価結果を数1及び		[0281] (実施例5) 結婚樹脂組成物 (A) に代え	アージアご 元子 角心 哲学 有路 改修 門 致 第一 プロー が 数 第 米	**************************************	新始代語:国心体(1)	国合体(3)	無合体 (11)	78.9 17	3		[0284] (実施例6) 装施例1で結婚相脂組成物	(A) の閲製に用いた鱼合体に代えて、以下に示す鱼合※	打着神服·集心状 (1)	(*) 土口田:80:315034	0.2.8.6 トナーの影性及う評価格米を数 1 及び2 に		[0287] (実施例1) 実态例1で結着樹脂組成物	(A) の閲製に用いた重合体に代えて、以下に示す重合★	結準使脂:與合体 (9)	気合体 (11)	[0289] トナーの物性及び評価結果を数1及び2に		[0290] (単権図8) 単権例1で結婚権指組成物	(A) の閲製に用いた気合性に代えて、以下に示す気合な	(1) (1)	(2) (2) (2)	一二: 、、) 怒液質合法により製造したスチレン・	500, Mw/Mn=2. 3, Tg=61. 0°C)	[0292] トナーの物性及び評価結果を数1及び2に		[0293] (実施例9) 実施例1で結婚樹脂組成物	(A) の閲覧に用いた重合体に代えて、以下に示す重合◆	結踏被胎:盧合体·(1)	国合体 (13)	実施例1で用いた観濁重合法により重	4	実施例.8で用いた溶液重合法により	中本	[0295] トナーの物性及び評価結果を表1及び2に	40	【0296】 (実施例10) 実施例1で結婚樹脂組成物	(A) の閲覧に用いた重合体に代えて、以下に示す重合*	重合体 (17)	组合体(11)	[0298] トナーの物性及び評価結果を表1及び2に		[0299] (実施例11) 実施例1で結構機間組成物	(A) の閲製に用いた重合体に代えて、以下に示す重合	重合体(17)	

特閣平10-171156 (33)

特開平10-171156

34)

8

[兼]

팏

	142	特鲁截组组成物及 社宣合体	3.000 ck		トナーのTHP可商分のGPCによる分子書	GPCK & 6 97
	括卷着四组成协作号	ガラス価格	整工税的工量	数平均分下量 图量平均分下量	アーク在田	位田
	又は配合体符号	JE (Te: C)	(SAS)	(Mw)	x428-9	+16-4
1 死異保	林岩岩田組成物 (A)	6.18	12200	149000	18200	419000
英胞例2	粉雪椒咖啡成物 (A)	218	12100	147000	18100	413000
突厥列3	结合制造组成物 (B)	59.7	12300	116000	18300	368000
实施例4	核響機觀組成物 (B)	29.3	12400	118000	18500	366000
和	結婚機關組成物 (C)	1.09	13200	133000	20300	409000
東橋別6	均等衡配組成物 (D)	6.73	15400	136000	00122	412000
2.胎頭球	拉着电影机成物 (E)	999	14300	142000	21300	434000
安康河8	枯春椒類組成物 (P)	603	11500	146000	17400	443000
英糖例9	特看影影組成物 (G)	6.63	00611	141000	17700	000287
01展開30	格容量数组成物 (H)	6.83	00661	143000	20800	425000
灾施州1	結構機別組成物 (D	283	14100	146000	21100	439000
灾施列 2	档着微胞组成物 (J)	58.7	0014	123000	10300	428000
1 総御事	(五) 保护性理解	8.09	2200	158000	11800	449000
比較例2	第合体 (23)	58.2	0064	179000	168000	•
६ अध्यक्ष	枯岩橄脂组成物 (L.)	2'09	2400	122000	12300	394000
比較別4	特響機能組成物 (N)	8'09	0018	125000	11900	384000

* * [表2] [0321]

														ı				
		1-4-	トナーのレオロジー特性	- C-	#1		Ĭ.	68		K		定着テスト	Ϋ́		ホットオフセッ	74,1		70,
	2/ 3	* -1.02 tz				ľ	25	MARK 7		i		野	=		33		7777	***
	38	(%d)	; ; ;	<u> </u>	7 :		338	44-78 47-78 1-34-84	E82	≥ < 8	P / 100	± 200€ / 3€	'#80g/d 120g/	120gr/	208/12	120g.	3) BEE	50℃,20 日放軍
I MERCE	603	83×10°	22	89	8	33	134.8	-	4.	5	3778	85.76	67.789.79	3776	65275	57.76	7224	3676
KING 3	633	8.1 × 10°	22	9	8	23	20	1389	4.1	3		٢	9	9	7	5	1	Þ
XTRM3	878	7.2 × 10°	97	879	116	4.3	134.6	-	971	1.45	8	7	1	8	8	9	1	9
KIRN4	603	91×63	7.6	99	081	£.3	111	134.1	er1	1.45	8		8	9	•	9	1	1
SIGNE	0.18	6.1 × 10°	978	072	8	9.0	70.4	1340	111	1.47	8	8	8	1	9	9	1	1
XILLI S	58.4	01×8'B	2.2	18	991	4.0	202	1387	597	1.45	10	8	8	8	1	9	þ	Þ
XXXIII	188	6.1×10°	17	51	130	3.7	208	1342	877	1.45	10	01	8	8	1	5	Þ	Þ
EREFI 8	9 129	4.5 × 10°	0%	23	170	77	133.7	t	98"1	1,38	7	8	9	9	9	2	8	8
EMEN 9	989	4.2 × 10°	20	å	2	ន	3	1	1.97	1,42	7	7	8	9	5	5	8	7
O MARKET	808	7.2 × 10°	8.8	87	š	2	ş	1362	 8	1.45	8	-	1	•	•	8	7	7
ERECT!	91.0	5.1 × 10°	82	92	ī	27	Ş	136.9	1.67	1.48		a	7	8	9	9	9	3
X MARKET	1.09	1.4 × 10°	2	2	240	2.2	11	134.3	38	134		7	8	8	4	3	3	9
HERFIT	189	2.0 × 10°	17	87	316	91	교		1.2	1.25	2	1	1	1	5	9	2	9
t88912	808	1.9 × 10°	1.4	3	ឱ	1.2	38		1.15	27	6	2	2	-	2	2	1	2
tteen3	989	1.8 × 10°	en.	69	3	61	822		07	1.05	E.	9	2	2	-	3	2	1
LEREN 4	129	1.8 × 10°	רו	24	88	2	3	٠	3	0.85	6	~	-	-	9		2	s

ものである。 【発明の効果】本発明の静電者像現像用トナーは、転写板の厚みが厚い紙であっても低温定着性、耐オフセット [0322]

【図面の簡単な説明】 【図1】本発明のトナーのレオロジー特性を示すグラフ 性、耐ブロッキング性及び多数枚耐久性等に優れている 50 である。

119 接触 (ローラー) 帯電手段 接触 (ローラー) 転写手段 1188 クリーニングブレード 118 加熱加圧ローラー定着器 17 磁性ドクターブレード パイアス印加電圧 パイアス印加手段 一成分系現像剤 多極永久磁石 現像スリーブ 114 電圧印加手段 116 イワース開光 23 多極永久磁石 11 発和/レード 10 101 概光ドラム 103 現像剤容器 16 導電性基体 120 現像手段 発在トナー 2.2 除電手段 115 紀光 15 晚光面 21 2-4 P 被配像材 105 1 1 3 104 108 109 1 2 ន ファクシミリ装置のプリンターに適用する場合のプロッ [図7] 製造例1で製造した重合体 (1) の¹ H-NM [図4] 比較用トナーのレオロジー特性を示すグラフや [図3] 図2に示す画像形成装置の現像制の拡大図を示 [図5] 本発明の画像形成方法を実施し得る画像形成装 [図6] 本発明の画像形成方法を用いた画像形成装置を [図8] 比較製油図1で製油した価合体 (20) の1 H 【図2】本発明のトナーが適用し得る画像形成装置の一 -NMRスペクトルのチャートを示す図である。 Rのスペクトルのチャートを示す囚むある。 質の他の例を示す説明図である。 加熱加圧ローラー定権器 クリーニングブレード 例を示す説明図である。 1 静电荷像保持体 イフース既光 現像スリーブ 一次帯電器 配互格電器 [符号の説明] ク図を示す。

...;·

特闘平10-171156 (補正)

|公報種別|| 特許法第17条の2の規定による補正の掲載 発行目] 平成13年9月26日 (2001.9.26) [部門区分] 第6部門第2区分

(公開番号) 特開平10−171156

[公開日] 平成10年6月26日 (1998. 6.26)

[年通号数] 公開特許公報10-1712

[出題番号] 特閣平9-277160

|国際特許分類数 7 版|

9/087

[F1]

0030

80/6

325

[提出日] 平成12年12月14日 (2000. 12. [中統補正位]

[手舵補正1]

[補正対象項目名] 特許請求の範囲 [補正対象母類名] 呪語曲

[楠正方法] 変更

[梅正内容]

[請求項1] 結婚樹脂、着色剤及びワックスを含有し 【辞評請状の範囲】

ている静思荷像現像用トナーにおいて、

(a) 超失済性率と貯蔵浴性等の比 (G" /G' = t a 放トナーは、

(b) 温度40℃における貯蔵等性器 (G′₄₀) と温度 n b) が1. 0となる温度が55~70℃の温度領域に 存在し、かつ、そのときの降性略が1.5×108 P a以下であり

(c) 野藤谷和母 (C[']50) と硝度60℃における野藤 資和母 (C[']60) との比(G[']50[']60['] が3~20 50℃における貯蔵資性率 (G′₅₀)の比 (G′₄₀/ G' 50) 11. 8-4. 0 thy.

(4) 温度 70 ℃における貯蔵弾性率 (G′7n) と温度 100℃における貯蔵浴性率 (G' 100)の比 (G' 10/6 100)が50~250であり

(G'110 /G'140) が2~20であることを辞録 と周度140℃における貯蔵弾性率 (G'140)の比 (e) 温度110℃における貯蔵母性率 (G'110) とする静電荷像現像用トナー。

[請求項2] 数トナーは、光 (G" /G')が1.0 となる温度が58~68℃の温度倒転に存在し、そのときの弾性中が1×10⁷ Pa~1. 3×10⁸ Paで あることを特徴とする請求項1に記載の静電荷像現像用

となる温度が59~65℃の温度徴転に存在し、そのときの弾性率が 3×10^7 Pa $\sim 1.0 \times 10^8$ Paで |課状項3|| 数トナーは、比 (G" /G') が1.0 **わることを特徴とする請求項1に記載の静電荷像現像用**

[請求項4] 欧トナーは、欧貯蔵弾性率(G'40)と [諸水頂5] 数トナーは、数貯蔵等性母(G'50)と [部状項 6] 数トナーは、数貯蔵等性形 (G, 20)と 数形類溶社路 (G, 60) との比 (G, 50/G, 60) が5 数形蔵容柱段 (G′60) との比 (G′50/G′60) が4 ~15であることを特徴とする請求項1乃至4のいずれ 2. 0~3. 5であることを特徴とする静水項1乃至3 ~10であることを特徴とする請求項1乃至4のいずれ 数貯蔵弾性母 (G' 50) との比 (G' 40/G' 50) が のいずれかに記載の静電荷像現像用トナー。 かに配載の静電荷像現像用トナー。 かに配敷の静電荷像現像用トナー。

[請求項7] 数トナーは、数貯蔵資性率 (G'70)と 100)が70~220であることを特徴とする耐水項 110)と稼貯蔵弾性率(G' 140)との比(G' 110 /G' 140)が2.5~18であることを特徴とす る請求項1万至8のいずれかに記載の静電荷像現像用ト 100)が60~240であることを特徴とする請求項 [請求項8] 数トナーは、数貯蔵弾性率 (G⁷70) 乃至6のいずれかに記載の静電荷像現像用トナー。 1 乃至 6 のいずれかに記載の静電荷像現像用トナー。 蔡郡撤資本格(G′100)との比(G′70/G′ 数形類容和母 (G, 100) との兄 (G, 10/G, 【諸水項 9】 敷トナーは、敷貯蔵弾性率 (G/

[瑞米<u>頃10] 数トナーは、数</u>貯蔵容益路 (G'110) と数形蔵導性率 (G' 140) との比 (G' 110 / G' 140) が3~15であることを特徴とする詩求項

徴とする請求項1万至10のいずれかに記載の静電荷像 ユニット及び(メタ)アクリル酸エステルモノマーユニ ットを有するブロック共重合体を含有していることを特 【請求項11】 数結整樹脂は、芳香族ピニルモノマー 1万至8のいずれかに記載の静電荷像現像用トナー。

ることを特徴とする請求項1乃至12のいずれかに記載 【請求項14】 結着推開は、芳香族アニルモノマー及

の静電荷像現像用トナー。

び(メタ)アクリル酸エステルモノャーを下記化学式

(1), (2), (3) 双比(4)

キサイド基の開製反応が超る10時間半減温度の整が5 **で以上であるラジカル重合開始剤を用いて、重合反応温** 度を5℃以上変えてラジカル重合に合成されたものであ

ーオキサイド基を分子内に2個以上有し、各々のパーオ

【請求項12】 数プロック共重合体は、全結着樹脂に 対して10個量%以上、数据着樹脂に含有されているこ とを特徴とする請求項1乃至11のいずれかに記載の静 電荷像現像用トナー。

モノマー及び (メタ) アクリル酸エステルモノマーをパ O [請求項13] 数プロック共働合体は、芳香族ピニル

Ξ

3

$$\begin{pmatrix} 0 & 0 & 0 \\ | & | & | & | \\ (C - R_{10} - CO - (R_{10} - O)_{10} C - R_{11} - C - OO)_{11} \end{pmatrix}$$
(4)

2~30の直儺、分岐または瓊状のアルキル甚または炭 (式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₉ , R₁₀ R₁₁及びR₁₂は、炭素数

[諸水項15] 数祐着権指は、(i) 芳谷供アニルキ ノマー単独または芳香族ピニルモノマーと(メタ)アク リル酸エステルモノマーを塩盘比で20:1~1:1で

記載の静電荷像現像用トナー。

混合したモノマー混合物と、下配化学式(1)。

(2), (3), 又は(4)

ても相互に異なっていてもよい。 k, nは2~50の整 上変えてラジカル宣合して合成された共宜合体を含有し 繋数6~20のアリール基を示し、これらは同じであっ 数を数わし、mは1~20の監数を致わす。] で示され るラジカル重合開始剤を用いて、重合反応温度を5℃以

 Θ

$$\begin{pmatrix} 0 & 0 & 0 \\ (R_{7} - 0.0 - C - R_{4} - C - 0.0 - R_{4})_{V} \end{pmatrix}$$
 (3)

 (式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₁₀ R₁₁及びR₁₂は、段楽数 2~30の直鐵、分岐または葉状のアルキル基または段 紫数6~20のアリール揺を示し、これらは同じであっ ても相互に異なっていてもよい。 k,nは2~50の数 数を安わし、mは1~20の整数を安わす。〕で要わさ れるラジカル 重合開始剤を含むモノマー組成物を50~

(ii) (メタ)アクリル酸エステルモノマー単独また は芳香族ピニルモノマーと(メタ)アクリル酸エステル モノマーを重量比で1:20~1:1で混合したモノマ 一混合物を再度添加して第1の重合反応よりも5℃以上 高い温度で重合反応を行なう第2の重合反応工程;を有 する少なくとも2段階の異なる温度で重合反応する工程 120℃で気合反応を行なう第1の重合反応工程;

[請求項16] 数括着樹脂は、(i) (メタ) アクリ **人数エステクモノセー単領または芳柏板アニグモノャー**

$$R_1 - 00 - C - R_2 - C - 00 - R_3$$

数を扱わし、mは1~20の整数を表わす。〕で扱わさ ても相互に異なっていてもよい。 k, nは2~50の整 れるラジカル重合開始剤を含むモノマー超成物を50~ 2~30の直儺、分岐または環状のアルキル基または段 禁数6~20のアリール基を示し、いれらは同じかかり (式中、R₁ , R₂ , R₃ , R₄ , R₅ , R₆ , R₇ , R₈ , R₁₀ R₁₁及びR₁₂は、炭素数 120℃で重合反応する工程:

少なくとも2段階の異なる温度で重合反応する工程を経 モノマーと (メタ) アクリル彼エステルモノマーを重量 比で20:1~1:1で混合したモノマー混合物を再度 **添加して温度55℃以上で重合反応する工程:からなる** て合成された共重合体を含有していることを特徴とする (ii) 芳香族ピニルモノマー単独または芳香族ピニル 請求項1乃至13のいずれかに記載の静電荷像現像用ト [請求項17] 該結整樹脂は、2,500~50,0 00の数平均分子曲 (Mn) 及び10,000~1,5 00.000の<u>国</u>量平均粒子量 (Mw)を有しているこ とを特徴とする請求項1乃至16のいずれかに記載の静 国荷像現像用トナー。

[請求項18] 数トナーは、数トナーのTHF可容分 とを特徴とする請求項1乃至17のいずれかに記載の静 のGPCによる分子量分布において、分子量12.00 0~40,000の領域及び分子量50,000~1, 200,000の倒板にそれぞれピークを有しているこ 電荷像現像用トナー。

|神水項19| 数トナーは、数トナーのTHF可容分 のGPCによる分子由分布において、分子由45,00 0以下の低分子量倒域の面積 (L) と分子量45,00 0を超える高分子量領域の面積 (H) との比が下記関係 を満足することを特徴とする請求項1乃至18のいずれ

かに記載の静電荷像現像用トナー。

と(メタ)アクリル酸エステルモノマーを監盘比で1: 20~1:1で混合したモノマー混合物と、下記化学式 (1), (2), (3), 文件(4)

Ξ

$$-\overset{\parallel}{C} - R_{b} - \overset{\parallel}{C} - 00 - R_{b})_{F}$$
 (3)

櫓像をトナーにより現像し、トナー画像を形成する現像 [請求項20] 静電階像保持体に保持されている静電

に転写されたトナー画像を加熱定着手段により数配録材 数トナー画像を記録材に転写する転写工程及び体記録材 に加熱定着する定着工程、を有する画像形成方法におい **嫁トナーは、結着樹脂、着色剤及びワックスを含有して** 15.9

数トナーは

(a) 損失弾性容と貯蔵弾性容の比 (G" /G' = t a n b) が1. 0となる温度が55~70℃の温度領域に 存在し、かつ、そのときの頃性母が1.5×10⁸ P

(b) 温度40℃における貯蔵弾性率(G, $_{40}$) と温度50℃における貯蔵弾性率(G, $_{50}$)の比(G, $_{40}$ / a以下であり、

(c) 数貯蔵学性率 (G'₅₀) と温度 6 0 Cにおける貯 概容体格 (G′60) との比 (G′50/G′60) が3~2 G' 50) #1. 8~4. 0759. 0000

(4) 温度 7 0 Cにおける貯蔵弾性率 (G′70) と温度 100℃における貯蔵降性事(G、100)の比(G、

(G' 110 /G' 140) が2~20であることを移動 (e) 温度110℃における貯蔵弾性率 (G'110) と温度140℃における貯蔵弾性率 (G'140)の比 70/G' 100) #50~250 CBD.

0となる温度が58~68℃の温度領域に存在し、その ときの頃性母が1×10⁷ Pa~1.3×10⁸ Pa であることを特徴とする諸坎頂20に記載の画像形成方 [諸水項 2 1] 数トナーは、比(G* /G′)が1. とする画像形成方法。

0となる温度が59~65℃の温度倒域に存在し、その [瑞长風22] 数トナーは、比(G" /G')が1.

ときの資在粉が3×10⁷ Pa~1.0×10⁸ Pa であることを特徴とする請求項20に記載の画像形成方

と数形板容科母(G′50)との比(G′40/G′50)が 2. 0~3. 5であることを特徴とする請求項20乃至 [請求項23] 数トナーは、数貯額等性母 (G, 40) 22のいずれかに配載の画像形成方法。

と数貯蔵資性母 (G′60) との比 (G′50/G′60) が 4~15であることを特徴とする請求項20乃至23の 【請求項24】 数トナーは、数貯蔵弾性率 (G⁷50) いずれかに記載の画像形成方法。

散とする請求項20万至29のいずれかに記載の画像形

【請求項31】 数プロック共重合体は、全結着樹脂に 対して10重量%以上、酸結準樹脂に含有されているこ とを特徴とする請求項20万至30のいずれかに記載の

ットを有するプロック共宜合体を含有していることを特

G' 140) が3~15であることを特徴とする請求項 [請求項30] 「数結着樹脂は、芳香族ピニルモノマー ユニット及び (メタ) アクリル散エステルモノャーユニ

20万至27のいずれかに記載の画像形成方法。

)と数貯蔵資性形(G′140)との比(G′110

[静水項29] 数トナーは、数貯蔵弾性率(G'110

特開平10-171156 (相正)

3

と数形蔵容性枠(G、60)との比(G、20/G、60)が 5~10であることを特徴とする時水項20万至23の [請水項<u>25</u>] 数トナーは、数貯蔵弾性率 (G⁷50) いずれかに記載の画像形成方法。

[請求項32] 餃ブロック共宜合体は、芳香族ピニル

画像形成方法。

モノマー及び(メタ)アクリル酸エステルモノマーをパ キサイド基の開製反応が起る10時間半減温度の差が5

ーオキサイド基を分子内に2個以上有し、各々のパーオ

と数形版資本券 (G'100) との比 (G'70/G'100)が60~240であることを特徴とする請求項20 [排水項26] 核トナーは、核貯殻弾性率 (G'70) |請求項27| 数トナーは、数貯蔵等性率(G'70) 乃至25のいずれかに記載の画像形成方法。

ることを特徴とする請求項20万至31のいずれかに記 [請求項33] 結着樹脂は、芳香族ピニルモノマー及

数の画像形成方法

ぴ (メタ) アクリル酸エステルモノマーを下配化学式

(1), (2), (3) 又は(4)

で以上であるラジカル宣合開始剤を用いて、塩合反応温 度を5℃以上変えてラジカル重合に合成されたものであ

> と数野巌海社路 (G' 100) との比 (G' 70/G' 100)が10~220であることを特徴とする請求項20 [耐水項28] 版トナーは、飲貯蔵学性學 (G'110 乃至25のいずれかに記載の画像形成方法。

G' 140) が2. 5~18であることを特徴とする詩)と数貯蔵資性率 (G′140) との比 (G′110 本項20万至27のいずれかに記載の画像形成方法。 0

$$R_1 - 00 - C - R_2 - C - 00 - R_3$$

Ξ

2~30の直儺、分岐または環状のアルキル基または炭 紫数6~20のアリール基を示し、これらは同じであっ ても相互に異なっていてもよい。k, nは2~50の数 数を扱わし、mは1~20の監数を扱わす。」で示され 上変えてラジカル重合して合成された共宜合体を含有し るラジカル重合開始剤を用いて、重合反応温度を5℃以 [式中、R1 , R2 , R3 , R4 , R5 , R6 , R₇ , R₈ , R₉ , R₁₀, R₁₁及びR₁₂は、炭素数

に記載の画像形成方法。

[請求項34] 数結着樹脂は、(i) 芳香族ピニルモ ノマー単独または芳香族ピニルモノマーと(メタ)アク りル酸エステルモノマーを重量比で20:1~1:1で 既合したモノマー配合物と、下配化学式(1),

(2), (3), 又は(4)

ていることを特徴とする請求項20万至32のいずれか

$$- \cos - \dot{c} - R_8 - \dot{c} - \cos - R_8$$
 (1)

$$R_{\rm a} - 00 - R_{\rm b} - 00 - R_{\rm b}$$

8

$$(R_{r} - OO - \frac{1}{C} - R_{r} - \frac{1}{C} - OO - R_{s}),$$
(3)

₹

一混合物を再度添加して第1の重合反応よりも52以上 2~30の直儺、分岐または霜状のアルキル基または炭 ても相互に異なっていてもよい。k,nは2~50の弦 れるラジカル重合関始剤を含むモノマー組成物を50~ (ii) (メタ) アクリル酸エステルモノマー単独また モノマーを重量比で1:20~1:1で混合したモノマ R7 , R8 , R9 , R10, R11及びR12社、炭漿漿 ₩数6~20のアリール勘を示し、これらは同じためっ 数を扱わし、mは1~20の監数を致わす。] で扱わさ は芳香族ピニルモノマーと(メタ)アクリル酸エステル 120℃で重合反応を行なう第1の重合反応工程:

を経て合成された共重合体を含有していることを特徴と する少なくとも2段階の異なる温度で重合反応する工程 する請求項 20万至32のいずれかに記載の画像形成方 高い温度で重合反応を行なう第2の重合反応工程;を有

[諸求項35] 数結着無脂は、(i) (メタ)アクリ 20~1:1で混合したモノマー混合物と、下記化学式 **小数エステルモノター単独または芳香族とニルモノター** と(メタ)アクリル酸エステルモノマーを顱出比で1; (1), (2), (3), 文件(4)

Ξ

$$R_1 - 00 - C - R_2 - C - 00 - R_3$$

$$R_2 - 00 - R_3 - 00 - R_4$$
(2)

$$\begin{pmatrix} 0 & 0 \\ 1 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$
(3)

€

R1 , R8 , R9 , R10 R11及びR12は、 炭紫数 れるラジカル重合開始剤を含むモノマー組成物を50~ 2~30の直儺、分岐または環状のアルキル基または炭 ても相互に異なっていてもよ*い。*k.nは2~50の数 数を扱わし、mは1~20の整数を扱わす。」で扱わさ 舷数6~20のアリール箱を示し、これのは回じかむり 120℃で重合反応する工程:

[請求項36] 数結婚樹脂は、2.500~50,0 少なくとも2段階の異なる温度で重合反応する工程を経 て合成された共宜合体を含有していることを特徴とする (ii) 芳香族とニルモノャー単独または芳香族ピニル モノマーと(メタ)アクリル酸エステルモノマーを重量 比で20:1~1:1で混合したモノマー混合物を再度 称加して温度55℃以上で重合反応する工程;からなる 請求項20万至32のいずれかに記載の画像形成方法。

000数平均分子量 (Mn) 及び10,000~1,5 とを特徴とする請求項20万至35のいずれかに配載の 00,000回回田中均粒子曲 (Mw)を有しているこ 画像形成方法。

とを特徴とする請求項20万至36のいずれかに記載の 【諸状仏31】 数トナーは、数トナーのTHF可答分 のGPCによる分子量分布において、分子量12,00 200,000の飯板にそれぞれピークを有しているこ 0~40,000の倒域及び分子量50,000~1, 画像形成方法。

【謝水項38】 数トナーは、数トナーのTHF可溶分 のGPCによる分子量分布において、分子量45,00 0以下の低分子出倒域の面積(L)と分子量45,00 0を超える高分子量領域の面積 (H) との比が下配関係 (L) : (H) = 1:9 \sim 9.5 \sim 0.5

を摘足することを特徴とする請求項<u>20</u>乃至<u>37</u>のいず

~ ~;

たかに記載の画像形成方法。

帯鼠坪10-171156 (補圧)

9

[請求項39] 該静電階像保持体は、電子写真用感光 体であることを特徴とする請求項20乃至 38のいずれ かに記載の画像形成方法。 【請求項40】 敷加熱定着手段は、加熱ローラー及び 加圧ローラーを有する加熱加圧ローラー定着装置である ことを特徴とする請求項21乃至39のいずれかに記載 の画像形成力符。

| 年稅権圧2]

【梅正対象項目名】0027 [補正対象告類名] 明紺春

[補正方法] 変更 [福正内容] [0027] 本発明は、結婚樹脂、着色剤及びワックス

50) の比 (G' 40/G' 50) が1.8~4.0であり、(c) 貯蔵弾性率(G' 50) と温度60℃における貯蔵 =tans) が1.0となる温度が55~70℃の温度 容和器 (G, 60) との兄 (G, 20/G, 60) が3~20 を含有している静電荷像現像用トナーにおいて、核トナーは、 (a) 損失弾性率と貯蔵弾性率の比 (G" /G' 倒板に存在し、かつ、そのときの弾性帯が11.5×10 3 Pa以下でわり、(b) 温度40℃における貯蔵導 性器 (G, 40) と温度50℃における貯蔵弾性器 (G' であり、(d) 温度70℃における貯蔵弾性率

(G'70) と温度100℃における貯蔵降性等 (G'10/C'100) がち0~250であ 比(G'110 /G'140)が2~20であることを称 7. (e) 温度110℃における貯蔵学性率 (G'110) と温度140℃における貯蔵容柱母(G'₁₄₀)の 徴とする静電荷像現像用トナーに関する。

[権正対象書類名] 明紺春

【補正対象項目名】0028

[楠正方法] 変更

[0028] さちに本発明は、静電路像保持体に保持さ

れている静電簡像をトナーにより現像し、トナー画像を 形成する現像工程、数トナー画像を記録材に転写する転 写工程及び該記録材に転写されたトナー画像を加熱定着 手段により歓記録材に加熱定着する定着工程、を有する 画像形成方法において、数トナーは、結婚樹脂、着色剤 (c) 郡廢路和 及びワックスを含有しており、蚊トナーは、(a)損失 かつ、そのともの資格的が1.5×10⁸ Pa以下で あり、(b) 温度40℃における貯蔵弾性率(G'₄₀) 弾性母と貯蔵弾性母の比 (G" /G' = tan b) が 1. 0となる温度が55~10℃の温度領域に存在し、 と温度50℃における貯蔵降性枠(G′₅₀)の比(G′ 40/G′50)が1.8~4.0であり、(c)原母(C′50)と温度60℃における貯蔵海住卒

9、(d) 復度70℃における貯蔵資性路(G'70)と 110 /G'140)が2~20であることを特徴とする 温度110℃における貯蔵荷性容(G'110)と温度 (G' 70/G' 100) が50~250であり、(e) (G' 60) との比(G' 50/G' 60) が3~20であ 140℃における貯蔵資性率 (G'₁₄₀)の比 (G' 温度100℃における貯蔵弾性率 (G'100)の比 画像形成方法に関する。

[手統補正4]

[福正対象項目名] 0031 [補正対象審類名] 明細魯

[補正対象舂類名] 明細哲 [梅正方法] 削除 [手統補正5]

[補正対象項目名] 0059

[補正方法] 変更 (福田内谷)

[0059] 本発明において、G′40/G′50は1.8 ~4. 0であることが良く、好ましくは2. 0~3. 5 であることが良い。G' 40/G' 50が1. 5未満となる 場合には安定した定着性を示すトナーが得られず、G′

10/6′50が5.0を超える場合にはトナーの保存性が 損われる場合があり好ましくない。