DSC 207 - PYTHON FOR DATA SCIENCE

COVID-19 SPREAD ANALYSIS

İLKAY ALTINTAŞ, PH.D.

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

By the end of this video, you will be able to:

- Generate valuable statistics about a Covid-19 spread dataset
- Summarize basics steps in data science applied to a sample dataset
- Visualize predictive algorithms along with understanding process of generating insight

Covid-19 Case Study - Acquiring Data

Data on COVID-19 (coronavirus) by Our World in Data

March Download our complete COVID-19 dataset : CSV | XLSX | JSON

Our complete COVID-19 dataset is a collection of the COVID-19 data maintained by *Our World in Data*. We will update it daily throughout the duration of the COVID-19 pandemic (more information on our updating process and schedule here). It includes the following data:

Metrics	Source	Updated	Countries
Vaccinations	Official data collated by the Our World in Data team	Every weekday	218
Tests & positivity	Official data collated by the Our World in Data team	Weekly	178
Hospital & ICU	Official data collated by the Our World in Data team	Daily	47
Confirmed cases	JHU CSSE COVID-19 Data	Daily	216
Confirmed deaths	JHU CSSE COVID-19 Data	Daily	216
Reproduction rate	Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C	Daily	191
Policy responses	Oxford COVID-19 Government Response Tracker	Daily	187
Other variables of interest	International organizations (UN, World Bank, OECD, IHME)	Fixed	241

Source: https://github.com/owid/covid-19-data/tree/master/public/data

• Initial step in the Data Science Process - fetch/collect the appropriate data

- Explore & Visualize
- Perform Data Cleaning

- Feature Selection
- Model Selection
- Analyze the results

Present your findings

ACT

Use them

Covid-19 Case Study - Prepare


```
[4] df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 177844 entries, 0 to 177843
Data columns (total 16 columns):

	, , , , , , , , , , , , , , , , , , , ,	- / -			
#	Column	Non-Null Count	Dtype		
0	iso_code	177844 non-null	object		
1	continent	167420 non-null	object		
2	location	177844 non-null	object		
3	date	177844 non-null	object		
4	total_cases	171501 non-null	float64		
5	new_cases	171279 non-null	float64		
6	new_cases_smoothed	170110 non-null	float64		
7	total_cases_per_million	170707 non-null	float64		
8	population	176733 non-null	float64		
9	population_density	158415 non-null	float64		
10	median_age	146933 non-null	float64		
11	gdp_per_capita	146418 non-null	float64		
12	female_smokers	111363 non-null	float64		
13	male_smokers	109836 non-null	float64		
14	handwashing_facilities	72165 non-null	float64		
15	human_development_index	143233 non-null	float64		
<pre>dtypes: float64(12), object(4)</pre>					
memory usage: 21.7+ MB					

 Visualizing various features and their types with pandas functions

Covid-19 Case Study - Prepare: Clean


```
df['new_cases'] = df['new_cases'].fillna(0)
df['total_cases'] = df['total_cases'].fillna(0)
df['new_cases'] = df['new_cases'].clip(lower=0)
df['new_cases_smoothed'] = df['new_cases_smoothed'].clip(lower=0)
df['total_cases'] = df['total_cases'].clip(lower=0)
```

- Why do we need to clean data?
 - i. Handle missing entries
 - ii. Filter unwanted outliers
 - iii. NULLs
- How do we clean Covid-19 data?
 - i. Negative value for "new_cases" doesn't make sense
 - ii. Clip negative values to zero

Covid-19 Case Study - Visualizing Data

- We have global time series data on Covid-19 cases throughout the world.
 We create visualizations on this, to better understand data distribution.
- Figure 1 is a line plot, demonstrating comparative rise/fall of Covid-19 cases across the globe during the given time.
- Figure 2 is a distribution of Covid-19 cases by date.
- Contd.

Covid-19 Case Study – More Visualization

Covid-19 Case Study - Spread Analysis

How did Covid-19 spread in initial few weeks?

i. Frequency of
 occurrence of a
 country in new_cases
 ranking is considered
 as a sustained
 measure of spread in
 the region.

Week 13-17

Is it possible to improve this measure?

Covid-19 Case Study - Predictive Models: Linear Regression

- For a given set of attributes (e.g., median_age, population_density, etc.), how do we predict number of cases?
- Given demographic information about a region, can we predict rise of Covid-19 cases?

Covid-19 Case Study - More Models: Decision Tree Classifier

- For a given set of attributes

 (e.g., median_age,
 population_density, etc.),
 predict the continent from where the data point is coming.
- This model helps in identifying unlabeled/mislabeled data for future data points.