ESTRUTURAS DE DADOS II

MSC. DANIELE CARVALHO OLIVEIRA

MESTRE EM CIÊNCIA DA COMPUTAÇÃO – UFU
BACHAREL EM CIÊNCIA DA COMPUTAÇÃO - UFJF

3 PONTES DE KÖNIGSBERG (1736)

Em Königsber, Alemanha, um rio que passava pela Cidade tinha uma ilha e, logo depois de passar por essa ilha se bifurcava em 2 ramos. Nessa região existiam 7 pontes, como mostra a figura.

4 PONTES DE KÖNIGSBERG (1736)

É possível andar por toda a cidade de tal modo que cada ponte seja atravessada exatamente uma vez?

5 PONTES DE KÖNIGSBERG (1736)

Na teoria de grafos, um caminho completo com as propriedades descritas acima de não retraçar nenhum arco é chamado de CAMINHO EULERIANO

6 OUTRO EXEMPLO

• Existe um caminho euleriano para o grafo abaixo:

7 O QUE SÃO GRAFOS

Conjunto de pontos e linhas que conectam os pontos.

• Grafo é um modelo matemático que representa relações entre objetos.

8 O QUE SÃO GRAFOS

 Grafos são estruturas de dados largamente usadas em computação.

- Exemplos de aplicações são:
 - Modelagem de circuitos digitais
 - Representação de processos em sistemas paralelos ou distribuídos,
 Redes
 - Redes Sociais
 - Recuperação de Informação

9 O QUE SÃO GRAFOS

• Similar a árvores e listas, com menos restrições

II DEFINIÇÃO

- Um Grafo é um par ordenado G = (V, E)
 - V é um conjunto finito não-vazio. Os elementos de V são denominados vértices.
 - E é um conjunto finito de pares ordenados de vértices. Os elementos de E são denominados arestas.
 - Dois vértices ligados por uma aresta são denominados adjacentes

- $G=(V(G), E(G), \psi_G)$, onde
 - $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
 - $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
 - ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

I3 EXEMPLO I:

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $G=(V(G), E(G), \psi_G)$, onde
 - $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
 - $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
 - Ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

IS EXEMPLO I:

- $G=(V(G), E(G), \psi_G)$, onde
 - $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
 - $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
 - Ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $G=(V(G), E(G), \psi_G)$, onde
 - $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
 - $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
 - ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G :
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G:
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G:
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G:
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$
- $E(G)=\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$
- ψ_G:
 - $\psi_G(e_1) = (v_1, v_2), \psi_G(e_2) = (v_2, v_3),$
 - $\psi_G(e_3) = (v_3, v_3), \psi_G(e_4) = (v_3, v_4),$
 - $\psi_G(e_5) = (v_2, v_4), \psi_G(e_6) = (v_4, v_5),$
 - $\psi_G(e_7) = (v_2, v_5), \psi_G(e_8) = (v_2, v_5)$

- $H=(V(H), E(H), \psi_H)$, onde
 - $V(H) = \{u, v, w, x, y\}$
 - $E(H)=\{a, b, c, d, e, f, g, h\}$
 - ψ_G :
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $H=(V(H), E(H), \psi_H)$, onde
 - $V(H) = \{u, v, w, x, y\}$
 - $E(H)=\{a, b, c, d, e, f, g, h\}$
 - ψ_G :
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $V(H) = \{u, v, w, x, y\}$
- $E(H)=\{a, b, c, d, e, f, g, h\}$
- ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

- $H=(V(H), E(H), \psi_H)$, onde
 - $V(H) = \{u, v, w, x, y\}$
 - $E(H)=\{a, b, c, d, e, f, g, h\}$
 - ψ_G:
 - $\psi_G(a) = (u, v), \psi_G(b) = (u, u),$
 - $\psi_G(c) = (v, w), \psi_G(d) = (w, x),$
 - $\psi_G(e) = (v, x), \psi_G(f) = (w, x),$
 - $\psi_G(g) = (u, x), \psi_G(h) = (x, y)$

34 OUTRA FORMA DE REPRESENTAR: EXEMPLO

- $V = \{0,1,2,3,4\}$
- $E = \{(1,2), (1,3), (1,4), (3,4)\}$

CONCEITOS DE GRAFOS

36 GRAFO PLANAR

38

- Adjacência
- Laço
- Link
- Arestas Múltiplas
- Multigrafo
- Vértice Isolado

39 GRAFO TRIVIAL E GRAFO SIMPLES

40 NOTAÇÃO

- G: Grafo com conjunto de vértices V(G) e conjunto de arestas E(G).
- n: número de vértices de G
- m: número de arestas de G
- m <= $\binom{n}{2}$ m <= $\frac{n(n-1)}{2}$

41 GRAFO COMPLETO

43 GRAFO REGULAR

Não é Grafo Regular

Grafo Regular de grau 3

44 OUTROS EXEMPLOS

45 ISOMORFISMO

- Dois grafos G e H são idênticos se
 - V(G)=V(H);
 - E(G)=E(H);
 - $\psi_G = \psi_H$

46 ISOMORFISMO ENTRE GRAFOS

 Um isomorfismo entre dois grafos é uma bijeção f de V(G) em V(H) tal que

$$(u,v) \in V(G) \qquad \qquad (f(u),f(v)) \in V(H)$$

47 EXEMPLO: $G \cong H$?

Para mostrar que dois grafos são isomorfos, devemos indicar um isomorfismo entre eles.

48 SUBGRAFO

49 PASSEIO

50 CAMINHO SIMPLES, TRAJETO E CICLOS

- Quando todos os vértices de um passeio são distintos, recebe o nome de caminho simples.
- Quando todas as arestas são distintas, o caminho recebe o nome de trajeto
- Um ciclo é um caminho v_1, v_2, \dots, v_k , tal que $v_1 = v_k$ e $k \geq 3$

• Caminho simples: 2,1,3,4

• Trajeto: 1,3,4,1,2

• Ciclo: 1,3,4,1

52 GRAFO CONEXO E DESCONEXO

53 GRAFO COMPLEMENTAR

54 GRAFO PONDERADO

55 DIGRAFO

56 DIGRAFO

Grafo Orientado

• Deve-se respeitar a orientação das arestas

57 DIGRAFO

- Grau de entrada: número de arestas que incidem no vértice
 - Vértice Fonte: grau de entrada = 0
- Grau de saída: número de arestas que partem do vértice
 - Vértice Sumidouro: grau de saída = 0

58 CLASSES ESPECIAIS DE GRAFOS

 Grafo Bipartido: é aquele em que o conjunto de vértices pode ser particionado em dois subconjuntos X e Y, tal que cada aresta tem um extremo em X e um em Y.

59 CLASSES ESPECIAIS DE GRAFOS

 Grafo Bipartido Completo: é um grafo bipartido com bipartição (X,Y) em que cada vértice de X é adjacente a cada vértice de Y.

Se |X|=m e |Y|=n, então denotamos tal grafo por Km,n

60 EXERCÍCIOS

• I. Mostre que os seguintes grafos não são isomorfos:

61 ÁRVORES

- Um Grafo T(V, E)
 - Não possui ciclos
 - Conexo
 - Seja $v \in V$, se v possui grau menor ou igual a I, então v é uma folha
 - Uma árvore com n vértices possui n-1 arestas.
 - Um grafo G é uma árvore, se, e somente se, existir um único caminho entre cada par de vértices de G.

Exercício

- Quantos vértices e quantas arestas tem o grafo da dama 3-por-3?
- Defina o grafo do rei, o grafo do bispo, o grafo do cavalo e o grafo da torre 4-por-4. Quantos vértices e quantas arestas tem cada grafo?
- O grafo das palavras é definido assim: cada vértices é uma palavra da língua portuguesa e duas palavras são adjacentes se diferem em exatamente uma posição. Por exemplo, rato e ralo são adjacentes, enquanto ralo e rota não são. Faça uma figura da parte do grafo definida pelas palavras abaixo:
- caiado cavado cavalo girafa girava ralo ramo rata rato
- remo reta reto rota vaiado varado virada virado virava

64 EXEMPLOS

 Vértices são adjacentes se uma dama do jogo de xadrez pode saltar de um deles para o outro em um só movimento.

• Ex. Grafo do cavalo

FIM DA AULA 10

Próxima aula:

Grafos: Representação e Busca