

Today's Menu

Learning objective: Understand how closed-loop system properties van be modified using feedback

- Part 1: Root Locus Plots
 - What are root locus plots? (Summary of pencasts/book)
 - Sketching Rules
 - Examples of sketching
- Part 2: Quiz

Part 1: Root Locus Plots (Section 5.1, 5.2 and 5.6.1)

Root Locus Plots

Learning objective: Understand how closed-loop system properties van be modified using feedback

Section 5.1 of the book:

- Closed-loop poles of transfer function $T(s) = \frac{kL(s)}{1+kL(s)}$ change when gain k changes
- Computed using characteristic equation 1 + kL(s) = 0
- Important for stability and dynamic response
- Take transfer function $L(s) = \frac{b(s)}{a(s)}$

Root Locus Plots

Learning objective: Understand how closed-loop system properties van be modified using

feedback

Why learn plotting root loci:

- Not to design compensators (in this course)
- Time domain maps to s-domain (revisit Section 3.4)
- Understand what compensator is needed to satisfy performance requirements
- Understand fundamental limitations (Module 6)

Root Locus Plots

Root Locus is the set of values for s for which 1 + kL(s) = 0 holds as function of $k \in [0, \infty)$.

$$1 + kL(s) = 0 \Leftrightarrow L(s) = \frac{b(s)}{a(s)} = \frac{-1}{k}$$

Consequence: The root locus of L(s) is the set of points in the s-plane where $\angle L(s) = -180^{\circ}$.

- Angle from a zero to test point s_0 is denoted by ψ_i
- Angle from a pole to test point s_0 is denoted ϕ_i

$$L(s_0) = \frac{(s_0 - z_1)(s_0 - z_2) \dots (s_0 - z_m)}{(s_0 - p_1)(s_0 - p_2) \dots (s_0 - p_n)}$$

$$\angle L(s_0) = \sum \psi_i - \sum \phi_i$$
 = multiple of -180°

Sketching Root Locus Plots

Summary of the rules of Section 5.2:

- Rule 1: n branches start at the poles and m branches end at the zeros
 - If there are more poles than zeros, n-m loci go to infinity
 - If there are more zeros than poles, m-n loci come from infinity
- Rule 2: The loci are on the real axis to the left of an odd number of poles and zeros
- Rule 3: Asymptotes have angle $\frac{180^o + 360^o(l-1)}{n-m}$ with $l=1,\ldots,n-m$ center point $\frac{\sum p_i \sum z_i}{n-m}$
- Rule 4: For simple poles and zeros (multiplicity 1, for higher multiplicity, see book)
 - Departure angles: $\phi_{dep} = \sum_i \psi_i \sum_{i \neq dep} \phi_i 180^o$
 - Arrival angles: $\psi_{arr} = \sum_i \phi_i \sum_{i \neq arr} \psi_i + 180^\circ$
- Rule 5: Branches approach a point of q roots with angles $\frac{180^{\circ} + 360^{\circ}(l-1)}{q}$ for l=1,...,q

- Rule 1: n branches start at the poles and m branches end at the zeros
- Rule 2: The loci are on the real axis to the left of an odd number of poles and zeros
- Rule 3: Asymptotes have angle $\frac{180^o+360^o(l-1)}{n-m}$ with $l=1,\ldots,n-m$ center point $\frac{\sum p_l-\sum z_l}{n-m}$
- Rule 4: For simple poles and zeros
 - Departure angles: $\phi_{dep} = \sum_i \psi_i \sum_{i \neq dep} \phi_i 180^o$
 - Arrival angles: $\psi_{arr} = \sum_i \phi_i \sum_{i \neq arr} \psi_i + 180^o$
- Rule 5: Branches approach a point of q roots with angles $\frac{180^{\circ}+360^{\circ}(l-1)}{q}$

$$L(s) = \frac{1}{s(s-1)}$$

- Rule 1: 2 branches start at the poles, and they go to infinity (there are no zeros)
- Rule 2: Real segment $0 \le s \le 1$ is part of the locus
- Rule 3: Asymptotes have angle $\pm 90^{\circ}$ and center point $\frac{1}{2}$
- Rule 4: Departure angles (no arrival angles, because no zeros)
 - Around $p_1=0$, we have $\phi_2=180^o$, so departure angle $\phi_{dep}=-360^o=0$
 - Around $p_2=1$, we have $\phi_1=0^o$, so departure angle $\phi_{dep}=-180^o=180^o$
 - Also follows from rule 3
- Rule 5: breakout angles $\pm 90^{\circ}$ (from rule 3)

$$L(s) = \frac{1}{s(s-1)}$$

- Rule 1: n branches start at the poles and m branches end at the zeros
- Rule 2: The loci are on the real axis to the left of an odd number of poles and zeros
- Rule 3: Asymptotes have angle $\frac{180^o + 360^o(l-1)}{n-m}$ with $l=1,\ldots,n-m$ center point $\frac{\sum p_i \sum z_i}{n-m}$
- Rule 4: For simple poles and zeros
 - Departure angles: $\phi_{dep} = \sum_i \psi_i \sum_{i \neq dep} \phi_i 180^o$
 - Arrival angles: $\psi_{arr} = \sum_i \phi_i \sum_{i \neq arr} \psi_i + 180^\circ$
- Rule 5: Branches approach a point of q roots with angles $\frac{180^{\circ}+360^{\circ}(l-1)}{a}$

Summary of the rules:

- Rule 1: 2 branches start at the poles and 1 branches ends at the zero
- Rule 2: Real segments $0 \le s \le 1$ and $s \le -1$ are part of the locus
- Rule 3: Asymptote has angle 180°
- Rule 4: Departure and arrival angles

• Around
$$p_1 = 0$$
, $\phi_{dep} = 0^o - 180^0 - 180^o = -360^o = 0^o$

• Around
$$p_2 = 1$$
, $\phi_{dep} = 0^o - 0^0 - 180^o = -180^o = 180^o$

• Around
$$z_1 = -1$$
, $\psi_{arr} = 2 \cdot 180^o + 180^o = 540^o = 180^o$

• Rule 5: breakout angles $\pm 90^{\circ}$

$$L(s) = \frac{s+1}{s(s-1)}$$

- Rule 1: 2 branches start at the poles and end at zeros, one branch goes to infinity
- Rule 2: Real segments $s \le -1$ are part of the locus
- Rule 3: Asymptote have angle -180° and center point $\frac{1}{2}$
- Rule 4: Departure angles (no arrival angles, because no zeros)
 - Around $p_1=j$, we have $\phi_2=90^o$ and $\phi_3=45^o$ and $\psi_{1,2}=\pm 90^o$, so $\phi_{dep}=-315^o=45^o$ Around $z_1=2j$, we have $\phi_{1,2}=90^o$ and $\phi_3\approx 60^o$ and $\psi_2=90^o$, so $\psi_{arr}=-30^o$
- Rule 5: no multiple roots on locus

Negative Root Locus (Section 5.6.1)

$$L(s) = \frac{b(s)}{a(s)} = \frac{b_0 s^m + b_1 s^{m-1} + b_2 s^{m-2} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + \dots + a_{n-1} s + a_n}$$

	$K > 0$ and $a_0 = \boldsymbol{b_0} = 1$	$K < 0$ and $a_0 = b_0 = 1$
Rule 1	n branches start at the poles and m branches end at the zeros	
Rule 2	The loci are on the real axis to the left of an odd number of poles and zeros	The loci are on the real axis to the left of an even number of poles and zeros
Rule 3	Asymptotes have angle $\frac{180^o+360^o(l-1)}{n-m}$ with $l=1,\ldots,n-m$ Center point $\frac{\sum p_i-\sum z_i}{n-m}$	Asymptotes have angle $\frac{360^o(l-1)}{n-m}$ with $l=1,\ldots,n-m$ Center point $\frac{\sum p_i - \sum z_i}{n-m}$
Rule 4	Departure angles: $\phi_{dep} = \sum_i \psi_i - \sum_{i \neq dep} \phi_i - 180^o$ Arrival angles: $\psi_{arr} = \sum_i \phi_i - \sum_{i \neq arr} \psi_i + 180^o$	Departure angles: $\phi_{dep} = \sum_i \psi_i - \sum_{i \neq dep} \phi_i$ Arrival angles: $\psi_{arr} = \sum_i \phi_i - \sum_{i \neq arr} \psi_i$
Rule 5	Branches approach a point of q roots with angles $\frac{180^{\circ}+360^{\circ}(l-1)}{q}$ for $l=1,,q$	

Note: if $b_0 = -1$, multiply L(s) with -1 and take K < 0

Part 2: Quiz

Quiz on Root Locus – Question 1/4

Given $L(s) = \frac{1}{s(s+1)(s+3)}$. What is the point of intersection of the asymptotes and the real axis?

- a) -0.67
- b) -1
- c) -1.33
- d) -1.67

Quiz on Root Locus – Question 2/4

What is the corresponding plant transfer function L(s) for the given root locus?

a)
$$L(s) = \frac{(s+1)}{s(s+2)^2(s+3)}$$

b) $L(s) = \frac{(s+1)}{s(s+2)(s+3)^2}$

b)
$$L(s) = \frac{(s+1)}{s(s+2)(s+3)^2}$$

c)
$$L(s) = \frac{1}{s(s-1)(s+2)(s+3)}$$

d) $L(s) = \frac{(s+1)}{s(s+2)(s+3)}$

d)
$$L(s) = \frac{(s+1)}{s(s+2)(s+3)}$$

Quiz on Root Locus – Question 3/4

What is the corresponding plant transfer function L(s) for the given root locus sketch?

a)
$$L(s) = \frac{(s+1)}{(s+2)(s+4)(s+7)}$$

b) $L(s) = \frac{(s+4)}{(s+1)(s+2)(s+7)}$

b)
$$L(s) = \frac{(s+4)}{(s+1)(s+2)(s+7)}$$

c)
$$L(s) = \frac{(s+7)}{(s+1)(s+2)(s+4)}$$

d)
$$L(s) = \frac{(s+1)(s+2)}{(s+7)(s+4)}$$

Quiz on Root Locus – Question 4/4

Given $L(s) = \frac{1-s}{s(s+3)}$ and k > 0. Find the corresponding root locus.

a)
$$L(s) = \frac{(s-1)}{s(s+3)}$$

b)

c)
$$L(s) = \frac{(1-s)}{s(s+3)}$$

d)

Wrap up

Learning objective: Understand how closed-loop system properties van be modified using feedback

- Part 1: Main Takeaways
 - Plotting root loci links open-loop behaviour to closed-loop behaviour
 - Understand why some systems become closed-loop unstable
 - Understand fundamental limitations (lecture 6)
 - Assess how adding poles and zeros in the compensator will change the closed-loop behaviour
 - Root loci can be sketched using simple rules
 - Designing controller using root loci is not a course objective (Exam: Section 5.1 5.3)
 - Matlab commands: rlocus or sisotool
- Part 2: Quiz
 - Sketching root loci

Suggested Reading, Exercises and Preview

- Practice with Exercise Set 2
- Watch video material / read book of Module 3 before Tuesday
 - Frequency Response / Bode diagrams

