$\sqcup \sqcup (a)^3 M \ge 0$ s.t. $|f|,|g| \le M$ as continuous function on the compact set is bounded. Let $^{V}E>0$ be given. Let δ_{1} , $\delta_{2}>0$ be δ that satisfies the definition of absolute continuity corresponding to fly with $\frac{E}{2M}$, resp.

Set $\delta = \min(\delta_1, \delta_2)$ and let $\{(a_i, b_i)\}$ be a finite collection of disjoint intervals with $\sum_{i=1}^{n} |b_i - a_i| < \delta$. For VE>0,

$$\begin{split} \sum_{k=1}^{n} |f_{q}(b_{k}) - f_{q}(a_{k})| &= \sum_{k=1}^{n} |f_{q}(b_{k}) - f(a_{k})g(b_{k})| + f(a_{k})g(b_{k})| - f_{q}(a_{k})| \\ &\leq \sum_{k=1}^{n} |f(b_{k}) - f(a_{k})| |g(b_{k})| + |g(b_{k}) - g(a_{k})| |f(a_{k})| \leq \xi_{m} \end{split}$$

(2) let $F(x) = f(x) \cdot g(x) \rightarrow by$ (1), absolutely conti on [a,b]. Pone by $F(b) - F(a) = \int_a^b F'(x) \cdot dx$ & linearity of integral,

Pone by
$$F(b) - F(a) = \int_a^b F'(x) dx & linearity of integral.$$

2 By Lemma 14.4, it suffices to show that F is absolutely continuous. Let V E>0 be given. As f is integrable, If $I < \infty$ a.e. Thus we can find M>0 s.t. If I < M a.e. Set $\delta = \mathcal{E} / M > 0$ and let $\{(a_{\hat{\epsilon}}, b_{\hat{\epsilon}})\}$ be a finite collection of disjoint intervals with $\sum_{\hat{\epsilon}=1}^{n} |b_{\hat{\epsilon}} - a_{\hat{\epsilon}}| < \delta$.

$$\sum_{i=1}^{n} |F(b_i) - F(a_i)| = \sum_{i=1}^{n} \left| \int_{a_i}^{b_i} f(x) \cdot dx \right| \leq \int_{U(a_i,b_i)} |f| \cdot dx \leq M \cdot \sum_{i=1}^{n} |b_i - a_i| < \epsilon_m$$

Let F be Cantor - Lebesque function

Since
$$f$$
 is continuous: $\exists N \in \mathbb{N}$ s.t. $|x-y| \leq \frac{1}{N} \longrightarrow |f(y) - f(\pi)| < \frac{\varepsilon}{2}$ let $g(x) = \sum_{i=1}^{N} \left\{ f\left(\frac{\dot{z}-1}{N}\right) + \left[f\left(\frac{\dot{z}}{N}\right) - f\left(\frac{\dot{z}-1}{N}\right)\right] F\left(Nx - \dot{z} + 1\right) \right\} \cdot \chi_{\left[\frac{\dot{z}-1}{N}, \frac{\dot{z}}{N}\right)}(x) + f(1) \cdot \chi_{\left\{1\right\}}(x)$

Let
$$\forall x \in [0,1)$$
 be given. $(f(1) - g(1) = 0 \text{ clearly})$
 $\Rightarrow \exists i \in \{1,2,\dots,N\}$ s.t. $x \in \left[\frac{j-1}{N}, \frac{j}{N}\right]$

Then
$$|f(x) - g(x)| \le |f(x) - f(\frac{j}{N})| \cdot k + |f(x) - f(\frac{j-1}{N})| \cdot (|-k|) < \frac{\xi}{2}$$

Thus for $Va\in(0,1)$, $f'\leq M_A$ a.e. as f' is conti on [a,1]. Hence f is absolutely conti on $\{a_i\}$: for disjoint $\{(a_j,b_j)\}$ with $\sum_{j=1}^n |b_j-a_j| < \delta = \frac{\mathcal{E}}{M_A}$. then $\sum_{j=1}^n |f(b_j)-f(a_j)| = \sum_{i=1}^n |\int_{a_i}^{b_i} f'| \leq \mathcal{E}$.

But not BV([0,1]). Thus not absolutely conti on [0,1]
$$\chi_0 = 0 < \chi_1 < \chi_2 < \cdots < \chi_{2N} = 1. \quad \text{Let} \quad \chi_{2n+1} = \left(2n\pi + \frac{\pi}{2}\right)^{-2} \\ \chi_{2n} = \left(2n\pi\right)^{-2} \qquad \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j})\right| \geq \sum_{j=1}^{N} \frac{1}{2\pi j + \frac{\pi}{2}} \\ \chi_{2n} = \left(2n\pi\right)^{-2} \qquad \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j})\right| \geq \sum_{j=1}^{N} \frac{1}{2\pi j + \frac{\pi}{2}} \\ \chi_{2n} = \left(2n\pi\right)^{-2} \qquad \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j})\right| \geq \sum_{j=1}^{N} \frac{1}{2\pi j + \frac{\pi}{2}} \\ \chi_{2n} = \left(2n\pi\right)^{-2} \qquad \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j})\right| \geq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1}) - f(\chi_{j+1})\right| \leq \lim_{j \to \infty} \left|f(\chi_{j+1}) - f(\chi_{j+1})\right|$$

2 Yes febv([0,1]) $\rightarrow f = f_1 - f_2$ for some increasing $\sim^3 f'$ a.e. as $^3 f_1', f_2'$ a.e.

Also $f' \in L'$ on [0,1] as $f_1' \& f_2'$ locally integrable and [0,1] is compact.

Thus
$$f' \in L'$$
.

$$\Rightarrow \lim_{\alpha \to 0+} \int_{a}^{x} f' dt = \lim_{\alpha \to 0+} (f(x) - f(\alpha)) = f(x) - f(0)$$

|| D.C.T.

$$\int_{a\to 0+}^{1} f' \cdot \chi_{[a,x]} = \int_{0}^{x} f'$$

$$\int_{a\to 0+}^{x} f' \cdot \chi_{[a,x]} = \int_{0}^{x} f'$$

$$\int_{0}^{x} f(x) \text{ is abs contion } [0,1] \text{ by } [4.2]$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \left| \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right| \le M$$

$$|f'(x)| = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f$$

$$|f(y) - f(x)| = |\int_{x}^{y} f'| \le \int_{x}^{y} |f'| \le M \cdot |y - x|$$

$$\therefore f \text{ is } AC$$

° F' -
$$\sum_{n=1}^{N} F_n' \ge D$$
 a.e. By N→ ∞ , F' $\ge \sum F_n'$ a.e.

② $F' \le \sum F_n'$ a.e. Note that $\sum_{n=N+1}^{\infty} F_n$ is also increasing & right conti.

$$\int_{0}^{1} F' - \sum_{n=1}^{N} F'_{n} \leq \sum_{n=N+1}^{\infty} F_{n}(1) - \sum_{n=N+1}^{\infty} F_{n}(0). \text{ As } F(0) \leq F(1) < \infty \text{ , RHS} \rightarrow 0 \text{ as } N \rightarrow \infty.$$

Hence for $\forall \varepsilon > 0$, for sufficiently large N, $\int_0^1 F' \leq \int_0^1 \sum_{n=1}^N F_n' + \varepsilon$ As Fn increasing, $F_n' \geq 0$ a.e. thus $\int_0^1 F' \leq \varepsilon + \int_0^1 \sum_{n=1}^\infty F_n'$ as $N \to \infty$ by M.C.T. As ε arbitrary, $\int_0^1 F' \leq \int_0^1 \sum_{n=1}^\infty F_n'$. As $F' \geq \sum_{n=1}^\infty F_n' \geq 0$ non-negative, $F' \leq \sum_{n=1}^\infty F_n'$ a.e.,

* Another solution

Let λ , λ_n be Lebesgue - Stieltjes measure w.r.t. $F\&F_n$ resp. Then λ ((a,b]) = $\sum_{n=1}^{\infty} F_n(b) - F_n(a) = \sum_{n=1}^{\infty} \lambda_n((a,b])$ Thus, by Exercise 4.1., $\lambda = \sum_{n=1}^{\infty} \lambda_n$

By lebesque decomposition w.r.t. m, $\lambda = \ell + \nu$ From prop. 14.7 $\ell(A) = \int_A f \cdot dm$ where F' = f $\lambda_n = \ell_n + \nu_n$ $\ell_n(A) = \int_A f_n \cdot dm$ where $\ell_n(A) = \int_A f_n \cdot dm$

By Exercise 13.11, by uniqueness of Lebesgue decomposition, $F' = \sum_{n=1}^{\infty} F_n'$ a.e.

As A is Lebesgue measurable, 3 open set $G \supset A$ s.t. $m(G-A) < \delta$, i.e. $m(G) < \delta$. Since G is open, it can be written as disjoint union of open intervals: $G = \bigcup_{i=1}^{n} (A_i, b_i)$ Then, as $m(G) = \sum_{i=1}^{\infty} (b_i - a_i) < \delta$, $\sum_{i=1}^{\infty} |f(b_i) - f(a_i)| < \delta$ by abs conti. As f is conti on $[a_i, b_i]$, it has the maximum at f_i , f_i resp. where $[f_i, f_i] \subset [a_i, b_i]$ Note that $f(A \cap [a_i, b_i]) \subseteq f([a_i, b_i]) \subseteq [f(p_i), f(q_i)]$ $\text{``} m(f(A)) = m(f(\mathcal{\tilde{U}}_{1}^{0}A \cap [a_{i},b_{i}])) = m(\mathcal{\tilde{U}}_{1}^{0}f(A \cap [a_{i},b_{i}])) \leq \mathcal{\tilde{Z}}_{1}^{0} m(f(A \cap [a_{i},b_{i}]))$ $\leq \sum_{i=1}^{n} \left| f(\xi_i) - f(\rho_i) \right| < \varepsilon$ by absconti. $(\sum |\rho_i - \xi_i| \leq \sum |\alpha_i - b_i|)$

$$\begin{cases}
x^{2} \sin(1/x^{2}) & x \neq 0 \\
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
2x \sin(1/x^{2}) - \frac{1}{x} \cos(1/x^{2}) & x \neq 0. \\
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
2x \sin(1/x^{2}) - \frac{1}{x} \cos(1/x^{2}) & x \neq 0. \\
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\uparrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) = \begin{cases}
0 & x = 0
\end{cases}$$

$$\downarrow'(x) =$$

But it is not bounded variation on [0,1]. Consider the following partition $0 < x_0 < x_1 < \cdots < x_{2N} < 1$ where $x_{2n+1} = (2n\pi + \frac{\pi}{2})^{-1/2}$ $x_{2n} = (2n\pi)^{-1/2}$ Then $\sum |f(\chi_{2n+1}) - f(\chi_{2n})| \ge \sum_{n=1}^{N} \frac{1}{2n\pi + \pi/2}$

Since RHS diverges as $N \rightarrow -\infty$, f can't be of bounded variation

Set 8>0 that satisfies the definition of absolutely continuity of f.

1 Note that
$$\{f \neq 0\} = \bigcup_{k \neq 0} \{x \in B(0,k) : |f(x)| > \frac{1}{\lambda}\}$$

👖 let be given.

9 Note that $\{f \neq 0\} = \bigcup_{k,l \in \mathbb{N}} \{x \in B(0,k) : |f(x)| > \frac{1}{L}\}$ As $m(\{f \neq 0\}) > 0$, $\exists k_0$, $l_0 \in \mathbb{N}$ and $\exists \epsilon > 0$ s.t. $m(\{x \in B(0,k_0) : |f(x)| > \frac{1}{L_0}\}) > \epsilon$.

Then
$$Mf(x) \ge \frac{1}{m(\beta(x,|x|+k_0))} \int_{\beta(x,|x|+k_0)} |f(y)| \cdot dy \ge \frac{1}{m(\beta(x,|x|+k_0))} \int_{\beta(0,k_0)} |f(y)| \cdot dy > \frac{\varepsilon/l_0}{m(\beta(x,|x|+k_0))}$$

Hence,
$$\int_{IR^n} Mf(x) \cdot dx > \int_{IR^n} \frac{\mathcal{E}/l_0}{m(\mathcal{B}(x, |x|+k_0))} \propto \int \frac{\mathcal{C}_n \cdot (\mathcal{E}/l_0)}{(|x|+k_0)^n} \cdot dx = \int_0^{\infty} \frac{\mathcal{C}_n}{(k_0+r)^n} \cdot \frac{\mathcal{E}}{l_0} \cdot r^{n-1} \cdot s_n \cdot dr$$

$$\geq \int_{k_n}^{\infty} \frac{\mathcal{E} \cdot c_n \cdot s_n}{l_0} \cdot \frac{r^{n-1}}{2^n \cdot r^n} \cdot dr = \infty$$

$$f(x) = \sum_{n=1}^{\infty} \frac{\lfloor 2^n x \rfloor}{2^n} \quad \text{on } [0,1] \quad \text{onot constant on any open interval.}$$

$$\lim_{h\to 0} \frac{\frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \lim_{N\to\infty} \frac{1}{h} \sum_{n=1}^{N} \left(\lfloor 2^n (x+h) \rfloor - \lfloor 2^n x \rfloor \right)}{\lim_{N\to\infty} \sum_{n=1}^{N} \lim_{h\to 0} \frac{\lfloor 2^n (x+h)-2^n x \rfloor}{h}} \quad \text{Note that floor function } \quad \text{I.s. continexcept on integer values of } x.$$

Let
$$q_n(y) = \sum_{i=1}^{2^n} \chi_{\underbrace{f([t_{i+i,n}, t_n))}}(y) + \chi_{\underbrace{f([b])}}(y) \sim Borel measurable}$$

$$t_{in} = a + \frac{b-a}{2^n} i$$

Note that $g_n \leq g_{n+1}$ from the fact that $\chi_{AUB} \leq \chi_A + \chi_B$

Also, $\lim_{n\to\infty} g_n = M$ as we expect: for $f^{-1}\{y\} = \{a_1, a_2, \dots\}$, we can set partition by setting sufficiently large n. $\{t_{i-1}, t_{i-1}\}$ s.t. $a_j \in [t_{z_j - l, n}, t_{z_j, n}]$ for each $j \in IN$ and $z_j s$ are different for different j.

Claim: $V_f([a,b]) = \int M \cdot dy \stackrel{MCT}{=} \sup \int q_n \cdot dy$

 $pf) \leq)$ Take any partition $x_0 = a < x_1 < \dots < x_n = b$.

Then variation $\sum_{i=0}^{n} |f(x_i) - f(x_{i-1})| \le \sum_{i=n}^{n-1} m \left(f(\epsilon x_{i-1}, x_i) \right) = \sum_{i=0}^{n-1} \int \chi_{f[x_{i-1}, x_i)} dm$ $= \int_{\xi=0}^{\frac{p-1}{2}} \chi_{f([x_{i-1},x_{i}))}(y) dy \leq \int M(y) dy$

$$\geq$$
) For $\forall n \in \mathbb{N}$, f conti on $[t_{i+1,n}, t_{in}]$. \Rightarrow For each i , let x_{2i-1} be minimum pt (exist) x_{2i} be maximum pt.

And
$$x_0 = A$$
 WLOG, let $x_{22-1} < x_{2i}$

$$x_2 x_{11} = b.$$

$$\int_{\mathbb{T}^n} (y) \cdot dy \leq \sum_{\substack{i=1 \ 2^{n-1}}}^{2^{n-1}} |f(x_{2i}) - f(x_{2i-1})|$$

$$\leq \sum_{i=1}^{2^{n-1}} |f(x_i) - f(x_{i-1})| \leq V_f[a,b]_{\bullet}$$

since $\sum_{i=1}^{n-1} \chi_{f(Ex_i,x_{i+1})}(y) \le M(y) = |f^{-1}\{y\}|$: if $a_j \in f^{-1}(\{y\})$, then each a_j falls into at most one subinterval partitioned by xi.

> Thus it follows that the total # of such subintervals would be no more than $|f^{-1}\{y\}|$. It could be lesser since some aj may share a subinterval.

Let
$$E_n = \left(-\frac{1}{n+1} - \frac{\alpha}{n(n+1)}, -\frac{1}{n+1}\right) \cup \left(\frac{1}{n+1}, \frac{1}{n+1} + \frac{\alpha}{n(n+1)}\right) \rightarrow \left\{E_n \mid n \in |N|\right\}$$
 pairwise disjoint. $E = \bigcup_{n=1}^{\infty} E_n$. From $m\left(E_k \cap \left[-\frac{1}{n}, \frac{1}{n}\right]\right) = \frac{2\alpha}{k(k+1)} \quad \forall k \geq n \quad \text{(otherwise } 0\text{)}$

① $r = \frac{1}{n}$ for some $n \in \mathbb{N}$

$$\frac{\mathsf{m}(\mathsf{E}\cap\mathsf{I}^{-\frac{1}{\mathsf{n}},\frac{1}{\mathsf{n}}])}{2/\mathsf{n}} = \frac{\mathsf{n}}{2}\sum_{k=\mathsf{n}}^{\mathsf{o}\mathsf{q}}\frac{2\mathsf{q}}{\mathsf{k}(\mathsf{k}+\mathsf{1})} = \mathsf{q}.$$

② $r \in (\frac{1}{n+1}, \frac{1}{n})$ for some $n \in \mathbb{N}$

$$m (E \cap [-r,r]) \ge \frac{2\alpha}{n+1}$$

$$m (E \cap [-r,r]) \le \frac{2\alpha}{n}$$

$$As nell, \frac{1}{n} \le \frac{2}{n+1} < 2r \Rightarrow \frac{1}{n} = \frac{1}{n+1} \left(\frac{1}{n} + 1 \right) \le r \left(1 + 2r \right)$$

$$\frac{1}{n+1} = \frac{1}{n} \left(1 - \frac{1}{n+1} \right) \ge r \left(1 - 2r \right)$$

$$\circ \circ \alpha(|-2r) \leq \frac{m(E \cap [-r,r])}{2r} \leq \alpha(|+2r)$$

$$\lim_{r\to 0+} \frac{m(E \cap [-r,r])}{2r} = \alpha$$