Geometrical Transformation Techniques

S. No	Techniques	Description	Advantages	Remarks
1.	Rotation	Rotating the image at arbitrary angles with respect to random centre or fixed centre.	Improves the model's generalizability, makes the model robust to variations in terms of orientation of the data.	It makes the model robust to variations to some extend but it is very inefficient approach as we need to generate new data and train it.
2.	Shifting	We will shift the image at random number of pixels both horizontally as well as vertically.	It handles the issues of positional bias of the model. And ensures that the model stands robust to shift variations in the input.	Since, CNNs are translation equivariant to some extent, the impact of this technique is not that much.
3.	Scaling	We will zoom in or zoom out the image at random ratio.	It helps the model to stand robust to variations in the scale /size of the subject in the frame.	It makes the model robust to scale variations to some extend but it is inefficient as need to generate new data for already existing data. And also, it does not guarantee that the model is invariant to scale.
4.	Sheering	We will sheer or rotate the image with respect to imaginary axis which rotate the image in terms of depth.	It helps the model to understand the structure of the object better so that the model can perform well in real-time.	It is one of high impacting technique in the model's generalizability. But we can still incorporate the information in the architecture (which is better approach).
5.	Flipping	We will flip or invert the spatial information with respective to x-axis or y-axis.	It helps the model to understand the relative information of the pixels. It helps the model in developing the symmetrical kernels.	It is one of the high impacting techniques. As we are making the kernels symmetric, we can improve the activations of the kernels for various features.

	T			
		We will change the resolution of	This technique helps the	Resizing has its
		the image. Increasing the pixels or	model to detect the	disadvantage as we
		decreasing the pixels.	features much better as	need to change the
			we are conveying the	input layer for different
6.	Resizing		model that for the single	resolution.
			image, it can be	
			represented with a	
			smaller number of pixels	
			or many pixels. So, we will	
			be forcing model to	
			detect the structures.	
		We will select only a specific part of	It improves the model's	It is very good
		the image and discard the rest of	generalizability as we are	technique to improve
		the image. The way we can select	showing only some part	the models. It gives us
		part of the image can be random.	of the subject. That's, we	the impact of two
			are hiding some parts of	techniques one is
			the object and training. It	scaling and another one
7.	Cropping		improves the inference	is occlusion. But the
			mechanism of the model,	issues with this
			as it need to infer the	technique is that if the
			object based on less	cropped part is not
			information.	having the subject or
				the subject is not
				properly visible, then
				that can harm the
				performance of the
				model.
		We will wrap the image into	It improves the model's	It is a good technique to
		different deformations.	ability to withstand small	improve the model's
			variations in the structure	performance but it is
8.	Distortion		of the object.	limited is where is can
				be used and improper
				usage can harm the
				performance.

Color Space Transformation Techniques

Color Space Transformation Techniques				
S. No	Techniques	Description	Advantages	Remarks
1.	Brightness	We will increase or decrease the brightness of the image. This is done by increasing every pixel value at some ratio.	It improves the model's robustness to lightning conditions.	It is one of the best techniques to ensure that the model develop certain thresholds that are activated irrespective of lighting conditions. In other words, the model considers structure rather than pixel values.
2.	Contrast	We will increase or decrease the contrast of the image. It is done by increasing the brightness of bright areas and increasing the darkness of dark areas.	It improves the edge detection of the model as edges are nothing but sudden change in the intensity of bright region and dark region.	It is very good technique to improve the edge detection of the model but we can get the most out of it, if we combine this technique with some other augmentation technique.
3.	Gamma	It is used to correct the brightness of the image as the brightness values represented by the camera is different to the brightness values represented by the monition. So, correct the different as similar to human view of brightness we are using gamma.	Improves in making the model invariant to brightness.	Rather than gamma, directly handling brightness improves the model's robustness to lightning conditions.
4.	Saturation	It is used to adjust the color intensity of an image for a particular color. It does this but increasing or decreasing the related pixel values.	It improves the color dependency of the model.	It is a good technique if we need to maintain the information color specific class.
5.	Hue	It is used to produce different shades of a same color.	It is improving the model's performance on different shades of a same color.	It is a good technique if we need to make the model perform same on different shades of same color.

6.	RGB to HSV	Here, instead of using RGB color format, we will use HSV format.	In HSV, we have a clear advantage of isolated information. So, Hue, Saturation and Value are represented in 3 separate channels.	inputted RGB image into HSV before passing it into the model. But it may
7.	RGB to YIQ	Here, instead of using RGB color format, we will use YIQ format. Y - Luminance, I - In-Phase, Q = Quadrature.	Here, Y = Stores the information of the brightness, I = Stores color from Orange to Blue, Q = From Purple to Green	same as above
8.	RGB to YUV	Here, we will be using YUV format. Y = Luma, U = Blue - Luma, V = Red - Luma.	Y = Brightness, U = Blue projection, V = Red Production	Same as above

	Spatial Augmentation Techniques				
S. No	Technique	Description	Advantages	Remarks	
1.	Random Erasing	Here, randomly we will generate coordinates of a block which can be filed with noise or neutral colors like grey and placed on the image.	This creates effect of occlusion and forces the model to look for the other features.	It is great technique to force the model to look for other parts of subject but due to its random nature, it may harm the performance of the model, if there are too many new images where the complete subject is blocked.	
2.	CutMix	It is the next version of random erasing. Here, after selecting the random box, we will fill that with another image in the training dataset	The main goal if this technique is to improve the efficiency of the computation. Here, the operations performed on the blocked area in the random erasing is not wasted as we fill that with another image.	It is good technique to improve the generalizability of the model. But, CNNs are known to be sensitive to edges, those edges can influence the inference mechanism. And also, the CutMix approach	

				does not make any sense to a human.
3.	MixUp	Here, we will select two random images which are belonging to same class and we will stack them or mix them in such a way that the features from both images are preserved.	produces additional constraint on the data	

	Kernel Based Techniques				
S. No	Techniques	Description	Advantages	Remarks	
1.	Blurring	We will perform a convolution on the image with a specific kernel that spreads the edge details of the image or it blurs the image.	By blurring the image, we are guiding the model to look for shapes and structures rather than texture or pixel level information.	It is good technique but the amount of blur and the image will decide its impact.	
2.	Sharpening	It is opposite to Blurring	BY sharpening, we will force the model to look for the texture information.	If we have noisy pixel, then the model will learn and this can harm the performance of the model.	
3.	Laplacian	It is a specific kernel using which we can detect edges.	It guides the model in the detect of edges.	Since, it only displays edges, the model may not make sense of the information it learned or it may just not able to apply that in the real-time data.	
4.	Noise Injection	We will augment at pixel level with random values or in order words, we will damage some of the pixel level information using noise.	As we are damaging some of the pixel level information. The model is forced to become less sensitive to the noise. This in turn improves the generalizability of the model.	It is good technique but the amount of impact varies based on the data. And also, there are ways in which we can ensure that the model is less sensitive to noise by adding blur pool layers which is much better approaches as we are addressing at architecture level.	

There are many kernel/filters which can output image in different forms. Each of them has its own advantage.

	Deep Learning Techniques				
S. No	Techniques	Description	Advantages	Remarks	
	Neural Style	Here, using neural network we will	Even after converting	Whenever, we are using	
	Transfer	convert a normal image into	the entire image into	NN, the biggest	
		something of an art form.	some art, we are still	disadvantage we have it	
1.			preserving the	the computation. So,	
			information of main	we cannot implement	
			structures in the image.	this in the runtime	
			This helps the model in	augmentation.	
			better structure		
			detection.		
		Here, we have concept of Generator	The main advantage of	Computation and	
		and Discriminator. The goal of the	GANs, it is that they can	amount of other	
		generator is to generate a new	generate realistic	resources required are	
2.	GAN based	image that cannot be detected by	images. Due to that, we	the biggest	
		the discriminator that it is an	can consider the new	disadvantage of this	
		computer generated image.	generated image as	approach.	
			original image. This		
			overall improves the		
			quality of the data.		

	4 New Techniques of Augmentation				
S. No	Techniques	Description	Advantages	Remarks	
		In this approach, we will train the	It is an efficient	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	
		model on the existing data and after	technique as it directly	augmentation, we need	
		that, we will extract the feature	depends on the model's		
		vectors of the last layer and find the	performance, so we are	and generate data. This	
		top n (n can be 1 - 6), and fill these	addressing according to	can be time consuming.	
		spots with a neutral color like gray	the model. As we are	And also, sometimes, if	
1.		and blur the edges of the spot. And	block the high activated	the subject is very small	

	Activation Suppression	also, we will apply a stylizing effect like oil paint, cartoonization, etc.	regions, the model is forced to learn the other features. And with oil paint augmentation, the model is guided to learn the structures rather than pixel level information.	in the frame, then those suppressions can completely cover the subject and this can have negative effect. But this can be handled if we reduce the number of suppressions or the size of each suppression.
2.	1 Pixel Shift	In this approach, we will flip the image and shift the image one pixel both horizontally as well as vertically.	The main motive regarding this technique is to handle the issue of max pooling. In Max pooling, we will totally neglect the information of even spaced pixels, so, but flipping and shifting, we are preserving that information. This technique can improve the performance of the model where we need to learn texture information.	It is simple technique which ensures that the model has all the information. But, the effect of this technique is negligible if texture information is not the required one.
3.	Adaptive Color Scheme	In this approach, for each image we will extract the histogram information and find the top least shades in the image and overlay those particular shades.	In technique is inspired from contrast learning. So, as we are providing the shades on the image which are not at all in the image, we will be forcing the model to look for features rather than getting biased with color.	It is good technique but it is naïve in its approach as we cannot be sure that training with those particular shades guarantees that the model is invariant to colors.
		In this approach, we will divide an image into 9 equal tiles and shuffle them.	This technique is developed to ensure that the model learns the spatial information of related features. This is one of the fundamental flaws of CNNs. So, using this	The main issue with this technique can be the generation time. And also, for some images where the whole subject is fitted into a single tile, the effect of this technique is
4.	Tiles Shuffle		technique we can address this issue to some extent. And	negligible

	another advantage is	
	that, using this	
	technique, we can	
	generate as much data	
	as we want.	

	Methods of Training During Execution			
S. No	Techniques	Description	Advantages	Remarks
1.	Sequential Learning	Here, we will place the augmentations of the same image at same place and pass into the model sequentially.	This approach has benefit of learning the required information for the augmentation batch of same image as everything is provided sequentially. Otherwise, the model weights keep fluctuating from one image to another. So, we can say that this approach will improve the training time.	In order to do this, we need all augmentations generated before training and placed sequentially. This can be a tedious task.
2.	Contrastive Learning	Here, we will provide the contrastive features for the model. Due to this, it is can improve is range of feature detection.	For example, we will provide image with high brightness and low brightness and pass it into the model. As we are providing two extremities, the model will expand its range for feature detection.	In order to do this, we need to find ways of contrastive features for every aspect.
3.	Isolated Learning	Here, rather than combining all generated images into a single folder, we will keep the separated.	Here, the idea is to isolate the model training to fixed augmentation, due to that, the model is forced to look for specific augmentation. The training is faster as we need to handle only less data at a time.	This sometimes can have negative effect as the model may be guided more towards the augmentation rather than generalization. In other words, overfitting.
		Here, the idea is that, whenever it is possible to transfer the information, we will simply transfer it, rather	In this approach, we will train the model to learn the required features,	This main disadvantage of this approach is that, the efficiency that we

	Transfer	than	learning	the	additional	after th	nat, i	n orde	r to	are talking a	bout	is only
4.	Learning	inform	iation sepai	rately.		make	it	rotati	onal	achieve	if	the
						invarian	it, we	will sir	nply	knowledge		is
						transfer	th	e lea	rned	transferable	.	
						informa	tion	to	the			
						rotated	ker	rnels.	This			
						approac	ch is	an effic	cient			
						way o	of i	using	the			
						resource	es a	s well	as			
						informa	ition.		The			
						training	time	and siz	ze of			
						model d	can l	be redu	uced			
						drastica	lly		if			
						impleme	ente	d corre	ctly.			