

Bases de données Algèbre Relationnelle

MME HIBA LAHMER

2 A

2021/2022

Plan

- Introduction
- La Sélection
- L'Union
- L'Intersection
- •La différence
- Produit Cartésien
- Jointure

Introduction

Le modèle relationnel est un modèle d'organisation des données sous forme de relations (tables), Les colonnes des tables s'appellent des attributs et les lignes des n-uplets ou enregistrements.

l'algèbre relationnelle est un ensemble d'opérations manipulant des relations.

- ✓ **l'union** de deux relations
- ✓ **l'intersection** de deux relations
- ✓ La différence de deux relations,
- ✓ Sélectionner une partie de la relation,
- Effectuer des produits cartésiens ou des projections.

Une **requête** est une expression algébrique qui s'applique à un ensemble de relations (opérandes)et produit une nouvelle relation (le résultat de la requête).

La sélection

La sélection $T = \sigma_c(R)$ ou T = SELECTION (R, condition) permet d'extraire de la relation R les lignes les qui satisfont un critère de sélection C

Le critère C peut être:

- Une comparaison d'un attribut A_i à une constante a ou un autre attribut A_i (>, \geq , <, \leq , =, \neq).
- Une combinaison de critères en utilisant les opérateurs logiques NON, ET (Λ), OU (V)

Exemple:

EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana
	4	Ksouri	Ridha	Tunis

Nous voulons sélectionner les employés qui habitent à Ariana?

La sélection

EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana
	4	Ksouri	Ridha	Tunis

• Exemple: Resultat = $\sigma_{villeEmp='Ariana'}$ (EMPLOYE)

EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana

Resultat = SELECTION (**EMPLOYE**, villeEmp='Ariana')

Une condition est exprimée à l'aide des opérateurs arithmétiques (=, >, =, <=, <>) ou logiques de base (ET, OU, NON).

La projection

La projection

 $T = \prod_{A, B, C}(R)$ extrait de la relation R un

sous-ensemble d'attributs {A, B, C}

Notation:

Resultat = PROJECTION (EMPLOYE,

nomEmp,prEmp)

EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
1 2 3 4	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana
	4	Ksouri	Ridha	Tunis

Resultat = $\Pi_{\text{nomEmp, prEmp}}$ (EMPLOYE)

EMPLOYE	nomEmp	prEmp
	Salmi	Lamia
	Mejri	Leyla
	Gasmi	Hamed
	Ksouri	Ridha

L'Union

L'union **T = R U S** entre deux relations R et S **ayant le même schéma**, contient tous les tuples appartenant aux deux relations R et S

R	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana

S	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	4	Ksouri	Ridha	Tunis

Resultat = R UNION S
Ou

Resultat = **UNION**(R, S)

R U S	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana
	4	Ksouri	Ridha	Tunis

L'Intersection

L'intersection $T = R \cap S$ entre deux relations R et S ayant le même schéma, contient tous les tuples appartenant à la fois à R et à S.

R	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana

$\mathbf{R} \cap \mathbf{S}$	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis

S	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	4	Ksouri	Ridha	Tunis

Resultat = INTERSECTION(R1, R2)

La différence

La différence T = R - S entre deux relations R et S ayant le même schéma, permet de retirer de R tous les tuples qui existent dans S.

R	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana

S	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	1	Salmi	Lamia	Tunis
	4	Ksouri	Ridha	Tunis

Resultat = **DIFFERENCE** (R,S)

R - S	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
	2	Mejri	Leyla	Ariana
	3	Gasmi	Hamed	Ariana

Produit Cartésien

Le produit cartésien $T = R \times S$ entre deux relations R et S, permet de créer une nouvelle relation T où chaque tuple de R est associé à chaque tuple de S.

R	<u>idEmp</u>	nomEmp	prEmp
	1	Salmi	Lamia
	2	Mejri	Leyla
	3	Gasmi	Hamed

S	nomPrj
	SiteWebEsptit
	SiteWehCluh

RxS	idEmp	nomEmp	prEmp	nomPrj
	1	Salmi	Lamia	SiteWebEsprit
	2	Mejri	Leyla	SiteWebEsprit
	3	Gasmi	Hamed	SiteWebEsprit
	1	Salmi	Lamia	SiteWebClub
	2	Mejri	Leyla	SiteWebClub
	3	Gasmi	Hamed	SiteWebClub

Jointure

La jointure $T = R \bowtie_{A=B} S$ est équivalente à

Produit cartésien R x S et restriction A=B sur les attributs A de R et B de S.

La jointure consiste à rapprocher les lignes de deux relations pour lesquelles les valeurs d'un (ou plusieurs) attributs sont identiques.

$$R \bowtie_{c} S \Leftrightarrow \sigma_{c}(RxS)$$

ça s'exprime souvent sous forme d'égalité liant un attribut de S à un attribut de R

Jointure

Exemple: EMPLOYE ⋈ idEmp = idEmp ENFANT

R = JOINTURE (EMPLOYE, ENFANT,

EMPLOYE.prEmp= ENFANT.prEmp)

ENFA NT	#idE mp	<u>prEnf</u>
	1	Lina
	2	Eya
	2	Moham ed
	2	Beya
	4	Samar
	4	Wided
	4	Youssef
	4	Hamza

	EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp
		1	Salmi	Lamia	Tunis
		2	Mejri	Leyla	Ariana
		3	Gasmi	Hamed	Ariana
		4	Ksouri	Ridha	Tunis

EMPLOYE	<u>idEmp</u>	nomEmp	prEmp	#villeEmp	prEnf
	1	Salmi	Lamia	Tunis	Lina
	2	Mejri	Leyla	Ariana	Eya
	2	Mejri	Leyla	Ariana	Mohamed
	2	Mejri	Leyla	Ariana	Beya
	4	Ksouri	Ridha	Tunis	Samar
	4	Ksouri	Ridha	Tunis	Wided
	4	Ksouri	Ridha	Tunis	Youssef
	4	Ksouri	Ridha	Tunis	Hamza