Code No: 151AE

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, December - 2019/January - 2020

APPLIED PHYSICS (Common to ECE, EIE)

Max. Marks: 7	75
	Max. Marks: 7

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b as sub questions.

	PART - A	
		(25 Marks
1.a)	Explain wave particle duality.	[2]
b)	Define diffusion and drift mechanisms.	[2]
c)	Illustrate about LED materials.	[2]
d)	What is coherence?	[2]
e)	What are piezoelectric materials?	[2]
f)	Explain about Heisenberg's uncertainty principle.	[3]
g)	What is Fermi level?	[3]
h)	Illustrate working of a PIN diode.	[3]
i)	Explain losses in optical fibers.	[3]
j)	Define ampere's and Faraday's law.	[3]
	PART – B	(50 Marks
2.a)	Discuss about de Broglie's hypothesis.	
b)		[5+5]
0,	OR	[575]
3.a)		
b)		[5+5]
0)	Explain the Both interpretation of wave function.	[575]
4.a)	Estimate concentration of electrons in n-type semiconductor.	
b)	하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용하는 사용	[5+5]
	OR	
5.a)	Explain the phenomena of carrier generation and recombination.	
b)	Discuss about working, IV characteristics of Zener diode.	[5+5]
6-1		
6.a)		15.51
b)	Explain figures of merits of a LED device. OR	[5+5]
7.a)		
b)	Evaluate working of a solar cell in terms of characteristics.	[5+5]
w)	L'undate working of a solar cen in terms of endracteristics.	212

3.a)	Explain interaction of radiation with matter.		
b)	Discuss working principle and applications of Ruby laser.		[5+5]
	OR		
a)	Derive an expression for numerical aperture of an optical fiber.		
b)	Compare working of step index and graded index fibers.		[5+5]
(0.a)	Write a note on Maxwell's equations.		
b)	Explain classification of magnetic materials.		[5+5]
	OR		
1.a)	Derive an expression for internal fields in a solid.		
b)	Discuss about hysteresis behavior of ferromagnetic material.		[5+5]