CONVOLUTIONAL NEURAL NETWORK

Image Classification

Objective: - CATS vs DOGS Classification using Convolutional Neural Networks and Data Augmentation

Data Source: https://www.kaggle.com/datasets/salader/dogs-vs-cats

The dataset I'll be using consists of numerous images classified into two categories: cats and dogs. Each image has been labeled to facilitate a binary classification task. These images provide a rich dataset for training the classifier.

Model 1 Summary:

I used convolutional neural networks with 32, 64 and 128 layers.

Model: "sequential_5"

Layer (type)	Output Shape	Param #
conv2d_15 (Conv2D)	(None, 254, 254, 32)	896
<pre>max_pooling2d_15 (MaxPooli ng2D)</pre>	(None, 127, 127, 32)	0
conv2d_16 (Conv2D)	(None, 125, 125, 64)	18496
<pre>max_pooling2d_16 (MaxPooli ng2D)</pre>	(None, 62, 62, 64)	0
conv2d_17 (Conv2D)	(None, 60, 60, 128)	73856
<pre>max_pooling2d_17 (MaxPooli ng2D)</pre>	(None, 30, 30, 128)	0
flatten_5 (Flatten)	(None, 115200)	0
dense_15 (Dense)	(None, 128)	14745728
dense_16 (Dense)	(None, 64)	8256
dense_17 (Dense)	(None, 1)	65

Total params: 14847297 (56.64 MB) Trainable params: 14847297 (56.64 MB) Non-trainable params: 0 (0.00 Byte)

Training and Validation Graph:

Results: Achieved 80% Accuracy on Validation data.

As we can see that our model is performing well on train data but not performing well on Validation Data that indicates that there is overfitting occurring.

Model 2

These are the ways to deal with overfitting problem:

- 1. Data Augmentation
- 2. L1/L2 Regularizer
- 3. Dropout

Model2 Summary:

I used convolutional neural networks with 32, 64 and 128 layers with BatchNormalization and Dropout

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 254, 254, 32)	896
<pre>batch_normalization (Batch Normalization)</pre>	(None, 254, 254, 32)	128
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 127, 127, 32)	0
conv2d_4 (Conv2D)	(None, 125, 125, 64)	18496
<pre>batch_normalization_1 (Bat chNormalization)</pre>	(None, 125, 125, 64)	256
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None, 62, 62, 64)	0
conv2d_5 (Conv2D)	(None, 60, 60, 128)	73856
<pre>batch_normalization_2 (Bat chNormalization)</pre>	(None, 60, 60, 128)	512
<pre>max_pooling2d_5 (MaxPoolin g2D)</pre>	(None, 30, 30, 128)	0
<pre>flatten_1 (Flatten)</pre>	(None, 115200)	0
dense_3 (Dense)	(None, 128)	14745728
dropout (Dropout)	(None, 128)	0
dense_4 (Dense)	(None, 64)	8256
dropout_1 (Dropout)	(None, 64)	0
dense_5 (Dense)	(None, 1)	65

Total params: 14848193 (56.64 MB) Trainable params: 14847745 (56.64 MB) Non-trainable params: 448 (1.75 KB)

Training and Validation Graph:

Accuracy

Loss

Conclusion: As we can see from both Model's accuracy plot, Model 2 has performed better as its validation accuracy is increases with each epoch and the gap between Training accuracy and Validation accuracy has reduced.