Octave and MATLAB for Engineering Applications

Andreas Stahel, Bern University of Applied Sciences, Switzerland

Version of 26th October 2021

About This Book

These lecture notes grew out of lectures at the Bern University of Applied Sciences (BFH). The main goal is to familiarize students with *Octave* or MATLAB, to be used to solve engineering problems. It not an introduction to programming, using MATLAB/*Octave*. It is assumed that the students are familiar with basic programming techniques, using a procedural programming language. The key part this book is chapter, 3 with many engineering applications of MATLAB and *Octave*.

The notes consist of three chapters.

- The first chapter is an introduction to the basic *Octave*/MATLAB commands and data structures. The goal is to provide simple examples for often used commands and point out some important aspects of programming in *Octave* or MATLAB. The students are expected to work through all of these sections. Then they should be prepared to use *Octave* and MATLAB for their own engineering projects.
- The second chapter presents a few commands for elementary statistics, illustrated by short demo codes. This chapter was never presented in class, but handed to the students as an aid to perform elementary statistical tasks.
- The third chapter consists of applications of MATLAB/Octave. Most topics were part of a Bachelor or Master thesis project at BFH-TI (Bern University of Applied Sciences, School of Engineering and Computer Science). In each section the question or problem is formulated and then solved with the help of Octave/MATLAB. This small set of sample applications with solutions should help you to solve your engineering problems. In class I usually selected a few of those topics and presented them to the students. As an essential part of the class the students had to select, formulate and solve a problem of their own.

First versions of these notes were based on *Octave* only, but by now (almost) all codes works with MATLAB too. Wherever possible I attempted to provide code working with both *Octave* and MATLAB. Most of the codes are available at ???

There is no such thing as "the perfect lecture notes" and improvements are always possible. I welcome feedback and constructive criticism. Please let me know if you use/like/dislike the lecture notes. Please send your observations and remarks to Andreas.Stahel@gmx.com.

Contents

1	Intr	oduction	n to Octave/MATLAB	1
	1.1	Startin	g up Octave or MATLAB and First Steps	1
		1.1.1	Starting up Octave	3
		1.1.2	Packages for Octave	7
		1.1.3	Information about the operating system and the version of <i>Octave</i> .	10
		1.1.4	Starting up MATLAB	12
		1.1.5	Calling the operating system and using basic Unix commands	13
		1.1.6	How to find out whether you are working with MATLAB or Octave.	14
		1.1.7	Where and how to get help	15
		1.1.8	Vectors and matrices	16
		1.1.9	Broadcasting	24
		1.1.10	Timing of code and using a profiler	25
		1.1.11	Debugging your code	26
		1.1.12	Command line, script files and function files	26
		1.1.13	Local and global variables, nested functions	28
		1.1.14	Very elementary graphics	29
		1.1.15	A breaking needle ploblem	30
	1.2		mming with Octave	35
		1.2.1	Displaying results and commenting code	35
		1.2.2	Basic data types	36
		1.2.3	Structured data types and arrays of matrices	38
		1.2.4	Built-in functions	42
		1.2.5	Working with source code	51
		1.2.6	Loops and other control statements	52
		1.2.7	Conditions and selecting elements	57
		1.2.8	Reading from and writing data to files	59
	1.3	Solvin	g Equations	64
		1.3.1	Systems of linear equations	64
		1.3.2	Zeros of polynomials	75
		1.3.3	Nonlinear equations	75
		1.3.4	Optimization	82
	1.4	Basic (Graphics	86
			2-D plots	87

viii CONTENTS

		1.4.2	Printing figures to files	 	 93
		1.4.3	Generating histograms	 	 97
		1.4.4	Generating 3-D graphics	 	 98
		1.4.5	Generating vector fields	 	 103
	1.5	Basic	Image Processing	 	 107
		1.5.1	First steps with images		
		1.5.2	Image processing and vectorization, edge detection	 	 114
	1.6	Ordina	ary Differential Equations	 	 122
		1.6.1	Using C++ code to speed up computations	 	 131
		1.6.2	ODE solvers in MATLAB/Octave	 	 132
		1.6.3	The command lsode () in Octave	 	 137
		1.6.4	Codes with fixed step size, Runge-Kutta, Heun, Euler	 	 138
		1.6.5	List of files		
2	Elen	nentary	Statistics With Octave/MATLAB		145
	2.1	•	uction	 	 145
	2.2	Comm	ands to Load Data from Files	 	 145
	2.3		ands to Generate Graphics used in Statistics		
		2.3.1	Histograms		
		2.3.2	Bar diagrams and pie charts		
		2.3.3	More plots		
	2.4	Data R	Reduction Commands		
		2.4.1	Basic data reduction commands		
		2.4.2	Data reduction commands for pairs of vectors	 	 154
		2.4.3	Data reduction commands for matrices		
	2.5	Perfor	ming Linear Regression	 	 156
		2.5.1	Using the command LinearRegression()		
		2.5.2	Using the command regress ()		
		2.5.3	Using the commands lscov(), polyfit() or ols()		
	2.6	Genera	ating Random Numbers		
	2.7		ands to Work with Probability Distributions		
		2.7.1	Discrete distributions	 	 163
		2.7.2	Continuous distributions		
	2.8	Comm	ands for Confidence Intervals and Hypothesis Testing	 	 173
		2.8.1	Confidence intervals	 	 173
		2.8.2	Hypothesis testing, p-value	 	 181
	2.9	List of	Files for Statistics	 	 191
3	Eng	ineering	g Applications		193
	3.1		rical Integration and Magnetic Fields	 	 196
		3.1.1	Basic integration methods if data points are given		196
		3.1.2	Basic integration methods for given functions		199
		3.1.3	Integration over domains in \mathbb{R}^2		
		3 1 4	6		206

CONTENTS ix

	3.1.5	Field along the central axis and the Helmholtz configuration	207
	3.1.6	Field in the plane of the conductor	210
	3.1.7	Field in the xz -plane	
	3.1.8	The Helmholtz configuration	214
	3.1.9	List of codes and data files	217
3.2	Linear	and Nonlinear Regression	217
	3.2.1	Linear regression for a straight line	219
	3.2.2	General linear regression, matrix notation	220
	3.2.3	Estimation of the variance of parameters, confidence intervals	221
	3.2.4	Estimation of variance of the dependent variable	224
	3.2.5	An elementary example	226
	3.2.6	Example 1: Intensity of light of an LED depending on the angle of	
		observation	231
	3.2.7	QR factorization and linear regression	236
	3.2.8	Weighted linear regression	237
	3.2.9	More commands for regression with <i>Octave</i> or MATLAB	239
	3.2.10	Code for the function LinearRegression()	242
	3.2.11	Example 2: Performance of a linear motor	
	3.2.12	Example 3: Calibration of an orientation sensor	246
	3.2.13	Example 4: Analysis of a sphere using an AFM	250
	3.2.14	Example 5: A force sensor with two springs	255
	3.2.15	Nonlinear regression, introduction and a first example	258
	3.2.16	Nonlinear regression with a logistic function	262
	3.2.17	Nonlinear regression with an arctan runction	265
	3.2.18	Approximation by a Tikhonov regularization	267
	3.2.19	A real world nonlinear regression problem	268
	3.2.20	The functions lsqcurvefit and lsqnonlin	273
	3.2.21	List of codes and data files	273
3.3	Regres	sion with Constraints	274
	3.3.1	Example 1: Geometric line fit	274
	3.3.2	An algorithm for minimization problems with constraints	275
	3.3.3	Example 1: continued	277
	3.3.4	Detect the best plane through a cloud of points	279
	3.3.5	Identification of a straight line in a digital image	281
	3.3.6	Example 2: Fit an ellipse through some given points in the plane	283
	3.3.7	List of codes and data files	291
3.4	Compu	tting Angles on an Embedded Device	291
	3.4.1	Arithmetic operations on a micro controller	292
	3.4.2	Computing the angle based on coordinate information	
	3.4.3	Error analysis of arctan–function	296
	3.4.4	Reliable evaluation of the arctan–function	296
	3.4.5	Implementations of the \arctan -function on micro controllers	297
	3.4.6	Chebyshev approximations	310
	3 4 7	List of codes and data files	314

X CONTENTS

3.5	Analys	is of Stock Performance, Value of a Stock Option	315
	3.5.1	Reading the data from the file, using dlmread()	315
	3.5.2	Reading the data from the file, using formatted reading	316
	3.5.3	Analysis of the data	318
	3.5.4	A Monte Carlo Simulation	321
	3.5.5	Value of a stock option : Black–Scholes–Merton	325
	3.5.6	List of codes and data files	330
3.6	Motion	Analysis of a Circular Disk	331
	3.6.1	Description of problem	331
	3.6.2	Reading the data	331
	3.6.3	Creation of movie	334
	3.6.4	Decompose the motion into displacement and deformation	335
	3.6.5	List of codes and data files	
3.7	Analys	is of a Vibrating Cord	338
	3.7.1	Design of the basic algorithm	340
	3.7.2	Analyzing one data set	345
	3.7.3	Analyzing multiple data sets	349
	3.7.4	Calibration of the device	355
	3.7.5	List of codes and data files	355
3.8	An Exa	ample for Fourier Series	
	3.8.1	Reading the data	
	3.8.2	Further information	
	3.8.3	Using FFT, Fast Fourier Transform	
	3.8.4	Moving spectrum	
	3.8.5	Determine the transfer function	
	3.8.6	List of codes and data files	
3.9	Grabbi	ng Data from the Screen and Spline Interpolation	
	3.9.1	Reading from an Octave/MATLAB graphics window by ginput()	
	3.9.2	Create xinput () to replace ginput ()	
	3.9.3	Reading an LED data sheet with <i>Octave</i>	
	3.9.4	Interpolation of data points	
	3.9.5	List of codes and data files	
3.10		ction of Circles and Spheres, GPS	
		Intersection of two circles	
		A function to determine the intersection points of two circles	
		Intersection of three spheres	
		Intersection of multiple circles	
		Intersection of multiple spheres	
		GPS	
		List of codes and data files	
3.11		ng a 3–D Object with a Laser	
		Reading the data	
	3.11.2	Display on a regular mesh	386

CONTENTS xi

	3.11.3	Rescan from a different direction and rotate the second result onto		
		the first result	387	
	3.11.4	List of codes and data files	388	
3.12	Transfe	er Functions, Bode and Nyquist plots	389	
	3.12.1	Create Bode and Nyquist plots, raw MATLAB/Octave Code	389	
	3.12.2	Create Bode and Nyquist plots, using the MATLAB-toolbox	392	
	3.12.3	Create Bode and Nyquist plots, using Octave commands	393	
	3.12.4	Some commands for control theory	393	
Bibliography			399	
List of Figures				
List	List of Tables			
Inde	X		407	