Logic and Hybrid Systems

Manasvi Saxena

Formal Systems Lab, UIUC

Hybrid Systems

- Dynamical Systems exhibiting both discrete (jump) and continuous (flow) behaviors.
- Serve as models of physical systems, from thermostats to trains.
- Continuous dynamics specified using Differential Equations.

Main focus - Differential Dynamic Logic for Hybrid Systems (Andre Platzer).

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.
- Dynamic Logic for Hybrid Programs, a generalization of Dynamic Logic.

- Main focus Differential Dynamic Logic for Hybrid Systems (Andre Platzer).
- Practical deductive verification of hybrid systems.
- Introduces Hybrid Program program notation for hybrid systems.
- Dynamic Logic for Hybrid Programs, a generalization of Dynamic Logic.
- Suited for automation.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Hybrid Automata

- Commonly used to model Hybrid Systems, via Graphs.
- Nodes specify continuous dynamics. Edges describe discrete transitions.
- Intuitive, but not suitable for deductive verification.

Figure: Hybrid Automata (simplified) of a Train Control System

Motivations

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.

- First Order Logic No builtin means for referring to state transitions.
- ► **Temporal Logics** Modal operators allow referring to state transitions. But valid formulas only express generic facts.
- Dynamic Logic (DL) Combines operational system models with operators for reasoning.
 - ▶ Provides parameterized modal operators, $[\alpha]$, $\langle \alpha \rangle$ that refer to states reachable by system α .
 - $[\alpha]\phi$ expresses all states reachable by α satisfy ϕ , allowing reasoning about discrete systems.
 - Say $(b > 0) \rightarrow [a := -b](a < 0)$ expresses a discrete transition. We can prove $(b > 0) \vdash (a < 0)[b/a]$ using DL's calculus.
 - No built in notion for describing or reasoning about continuous dynamics.

- ▶ Generalize DL so operational models α can be used in modal formulas like $[\alpha]\phi$. dL refers to generalized models as "Hybrid Programs".
- ▶ A compositional calculus for verification. Decompose $[\alpha]\phi$ into an equivalent formula $[\alpha_1]\phi_1 \wedge [\alpha_2]\phi_2$.
- ▶ Prove subsystems and subproperties $[\alpha_i]\phi_i$ independently and combine results conjuntively.
- Complete relative to handling of differential equations.

dL formulas built over

- ▶ V, set of real-valued logical variables and signature Σ containing functions, predicate symbols over reals, like $0, 1, +, \geq$.
- Signature Σ containing functions and predicates, like 0,1 ≥. Σ also contains System State Variables. Unlike rigid symbols, like 1,2, their interpretation can change from state to state.
- ▶ Set Trm(Σ , V) of *terms* defined as classical FOL polynomial (or rational) expressions over V with additional skolem terms $s(X_1, \ldots, X_n)$, where $X_1, \ldots, X_n \in V$.

Hybrid Programs

Consider $x_i \in \Sigma$, θ_i , $\vartheta_i \in \text{Trm}(\Sigma, V)$ for $1 \le i \le n$, χ a (Σ, V) FOL-formula, $\alpha, \beta \in \text{HP}(\Sigma, V)$ Set $\text{HP}(\Sigma, V)$, is defined inductively as -

- $(x_1 := \theta_1, \dots, x_n = \theta_n) \in \mathsf{HP}(\Sigma, V)$
- $(x'_1 = \vartheta_i, \dots, x'_n = \theta_n) \& \chi \in HP(\Sigma, V)$. $x'_i = \vartheta_i$ is a differential equation where x'_i is the first order time derivative of x_i .
- $(?\chi) \in \mathsf{HP}(\Sigma, V)$.
- $ho \quad \alpha \cup \beta \in \mathsf{HP}(\Sigma, V).$
- \bullet α ; $\beta \in HP(\Sigma, V)$.
- \bullet $\alpha^* \in HP(\Sigma, V)$.

Hybrid Program Example

Figure: Hybrid Automata of Simple Train Control System

Hybrid Program Example

Figure: Hybrid Automata of Simple Train Control System

$$q := accel;$$
 $((?q = accel; z' = v, v' = a))$
 $\cup (?q = accel \land z \ge s; a := -b; q := brake; ?v \ge 0)$
 $\cup (?q = brake; z' = v, v' = a\&v \ge 0)$
 $\cup (?q = brake \land \le 1; a := a + 5; q := accel))*$

Syntax and Semantics

dL Formulas

Some Notation

- Kripke semantics states of the Kripke model represent hybrid system states.
- Interpretation I assigns functions and relations over Reals to rigid symbols Σ.
- ▶ A state is a map $\nu : \Sigma_{\mathit{fl}} \to \mathbb{R}$.
- ▶ Assignment of logical variables is a map $\eta: V \to \mathbb{R}$.
- Note the difference between Logical and State Variables. The evaluation of a state variable "evolves" across states. Logical Variables can be quantified over, but not state variables.

Syntax and Semantics

dL Valuation of dL Terms

Say $val_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

Syntax and Semantics

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

▶ (State Variables) $val_{I,\eta}(\nu, a) = \nu(a), x \in \Sigma_{fl}$

Syntax and Semantics

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

- (State Variables) $val_{I,\eta}(\nu,a) = \nu(a), x \in \Sigma_{fl}$
- ▶ (Logical Variables) $val_{I,\eta}(\nu,x) = \eta(x), x \in V$

dL Valuation of dL Terms

Say $\mathit{val}_{I,\eta}(\nu,\cdot)$ is evaluation w.r.t. interpretation I, assignment η and state ν .

- (State Variables) $val_{I,\eta}(\nu,a) = \nu(a), x \in \Sigma_{fl}$
- ▶ (Logical Variables) $val_{l,n}(\nu, x) = \eta(x), x \in V$
- (Rigid Symbols) $val_{I,\eta}(\nu, f(\theta_1, \dots, \theta_n)) = f_I(val_{I,\eta}(\nu, \theta_1), \dots, val_{I,\eta}(\nu, \theta_n))$ where f is n-ary rigid symbol in Σ

Valuation of dL Formulas

- $ightharpoonup val_{l,\eta}(\nu,p(\theta_1,\ldots,\theta_n)) = p_l(val_{l,\eta}(\nu,\theta_1),\ldots,val_{l,\eta}(\nu,\theta_n))$
- ▶ $val_{I,\eta}(\nu,\varphi \wedge \psi) = \top$ iff $val_{I,\eta}(\nu,\varphi) = \top \wedge val_{I,\eta}(\nu,\psi) = \top$. Similarly for \rightarrow , \neg , \lor
- ▶ $val_{I,\eta}(\nu,\exists x.\,\varphi) = \top$ iff $val_{I,\eta[x\mapsto d]}(\nu,\varphi) = \top$ for some $d\in\mathbb{R}$

Valuation of dL Formulas

- $ightharpoonup val_{l,\eta}(\nu,p(\theta_1,\ldots,\theta_n)) = p_l(val_{l,\eta}(\nu,\theta_1),\ldots,val_{l,\eta}(\nu,\theta_n))$
- ▶ $val_{I,\eta}(\nu,\varphi \wedge \psi) = \top$ iff $val_{I,\eta}(\nu,\varphi) = \top \wedge val_{I,\eta}(\nu,\psi) = \top$. Similarly for \rightarrow , \neg , \lor
- ▶ $val_{l,\eta}(\nu,\exists x.\,\varphi) = \top$ iff $val_{l,\eta[x\mapsto d]}(\nu,\varphi) = \top$ for some $d\in\mathbb{R}$
- $val_{I,\eta}(\nu, [\alpha]\varphi) = \top$ iff $val_{I,\eta}(\omega, \varphi) = \top$ for all states ω with $(\nu, \omega) \in \rho_{I,\eta}(\alpha)$.
- ▶ $val_{I,\eta}(\nu, \langle \alpha \rangle \varphi) = \top$ iff $val_{I,\eta}(\omega, \varphi) = \top$ for some state ω with $(\nu, \omega) \in \rho_{I,\eta}(\alpha)$.