● 随机变量— Random Variable

In the late 1940s, William Feller (1906-1970) was working on his book

An introduction to probability theory and its applications, 1950, 1968

While Joseph Doob (1910-2004) was working on his book $Stochastic\ Processes,\ 1953$

As Doob recalled: While working my book I had an argument with Feller. He asserted that everyone said "random variable" and I asserted that everyone said "chance variable". We obviously had to use the same name in our books, so we decided the issue by a stochastic procedure. That is, we tossed for it and he won.

- 随机变量
- 什么是随机变量?

随机变量是定义在概率空间上取实数值的可测函数

回忆: 概率空间 (Ω, A, P) 是随机现象的数学描述

引入随机变量可以更好地使用现代数学工具分析随机现象

随机变量自然地出现在所讨论的随机现象中

- (1) 掷殺子,记录出现的点数
- (2) 测试灯泡的寿命
- (3) 测量物体的长度

有时,很容易定义一个随机变量

- (1) 抛硬币, 出现正面, 赢一元钱; 出现反面, 输一元钱
- (2) 重复做试验,观察试验结果,记录成功的次数

根据随机变量取值的特点,可分为

- (1) 离散型随机变量
- (2) 连续型随机变量
- (3) 一般型随机变量

不仅研究随机变量的取值, 而且研究取每个值的可能性大小—分布 取有限或可列个值的随机变量称为离散型随机变量 假定 (Ω, A, P) 是概率空间,

$$X:\Omega\longmapsto R$$

取值 x_1, x_2, \dots, x_N , $N < \infty$ 或 $N = \infty$ 取每个值的概率大小

$$P(X = x_i) = p_i, \quad i = 1, 2, \dots, N$$

• 分布列:

$$X \sim \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_i & \cdots & x_N \\ p_1 & p_2 & \cdots & p_i & \cdots & p_N \end{array}\right)$$

• 注:

$$p_i > 0, \quad \sum_{i=1}^N p_i = 1$$

(2) 对任意Borel 集*B*,

$$P(X \in B) = \sum_{i: x_i \in B} p_i$$

特别,

$$P(X \le x) = \sum_{i:x_i \le x} p_i$$

$$P(X > x) = \sum_{i:x_i > x} p_i$$

$$P(a < X \le b) = \sum_{i:a < x_i \le b} p_i$$

- 离散型随机变量的典型例子
- 1. 退化分布

$$X \sim \begin{pmatrix} c \\ 1 \end{pmatrix}$$

注: 常数可看成是退化随机变量

2. 两点分布

$$X \sim \begin{pmatrix} 1 & 0 \\ p & q \end{pmatrix}, \quad 0$$

注:两点分布适用于描述"正面、反面"; "成功、失败": "正常、维修"等随机现象

3. 二项分布

$$X \sim \left(\begin{array}{cccc} 0 & 1 & \cdots & k & \cdots & n \\ q^n & npq^{n-1} & \cdots & C_n^k p^k q^{n-k} & \cdots & p^n \end{array}\right)$$

$$0$$

简记 $X \sim B(n, p)$

• 注: (1) 二项分布适用于n重Bernoulli试验。 记P(A) = p, X表示A发生的次数。

$$P(X = k) = C_n^k p^k q^{n-k}, \quad k = 0, 1, \dots, n$$

(2) 二项展开系数

$$(p+q)^n = \sum_{k=0}^n C_n^k p^k q^{n-k}$$

(3) X最可能的值

$$\frac{p_k}{p_{k+1}} = \frac{C_n^k p^k q^{n-k}}{C_n^{k+1} p^{k+1} q^{n-k+1}}$$

$$= \frac{(k+1)q}{(n-k)p}$$

$$\begin{cases} <1, & k+1 < (n+1)p \\ >1, & k+1 > (n+1)p \end{cases}$$

所以,

当(n+1)p 是整数时,

$$p_{(n+1)p-1} = p_{(n+1)p}$$
, 达到最大

当
$$(n+1)p$$
 不是整数时,取整数部分 $[(n+1)p]$

$$p_{[(n+1)p]}$$
, 达到最大

 $p = 0.1_{\text{(blue)}, } p = 0.5_{\text{(green) and}} p = 0.5_{\text{(red)}}$

Binomial Calculator: Online Statistical Table

Use the Binomial Calculator to compute individual and cumulative binomial probabilities. For help in using the calculator, read the Frequently-Asked Questions or review the Sample Problems.

To learn more about the binomial distribution, go to Stat Trek's tutorial on the binomial distribution.

Enter a value in each of the first three text boxes (the unshaded boxes). Click the Calculate button. The Calculator will compute Binomial and Cumulative Probabilities.
Probability of success on a single trial
Number of trials
Number of successes (x)
Binomial probability: P(X = x)
Cumulative probability: P(X = x)
Cumulative probability: P(X = x)
Cumulative probability: P(X > x)
Cumulative probability: P(X = x)

4. Poisson分布

$$X \sim \left(\begin{array}{cccc} 0 & 1 & \cdots & k & \cdots \\ e^{-\lambda} & \lambda e^{-\lambda} & \cdots & \frac{\lambda^k}{k!} e^{-\lambda} & \cdots \end{array}\right), \quad \lambda > 0$$

简记 $X \sim \mathcal{P}(\lambda)$

X 取非负整数值,

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, \cdots$$

注: (1)

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = 1$$

- (2) Poisson分布是Poisson过程的基础,用于描述随机服务系统
- (3) 当k足够大时,

$$P(X \ge k) = \sum_{l=k} \frac{\lambda^l}{l!} e^{-\lambda}$$
$$\approx \frac{\lambda^k}{k!} e^{-\lambda}$$

因此, X 只集中在小值上。

The following is the plot of the Poisson probability density function for four values of $\boldsymbol{\lambda}$

Poisson Distribution Calculator: Online Statistical Table

The Poisson Calculator makes it easy to compute individual and cumulative Poisson probabilities. For help in using the calculator, read the Frequently-Asked Questions or review the Sample Problems.

To learn more about the Poisson distribution, read Stat Trek's tutorial on the Poisson distribution.

Enter a value in BOTH of the first two text boxes. Click the Calculate button. The Calculator will compute the Poisson and Cumulative Probabilities.
Poisson random variable (x)
Average rate of success
Poisson probability: P(X = x)
Cumulative probability: P(X < x)
Cumulative probability: $P(X \leq x)$
Cumulative probability: P(X > x)

Cumulative probability: P(X = x)

- Poisson分布和二项分布之间有着下列关系
- Poisson 极限定理

假设 $S_n \sim B(n, p_n)$ 。 当 $n \to \infty$, $np_n \to \lambda > 0$ 。 那么对任意k > 0

$$P(S_n = k) \to \frac{\lambda^k}{k!} e^{-\lambda} = P(X = k), \quad n \to \infty$$

证明:固定k.

由于
$$S_n \sim B(n, p_n)$$

$$P(S_n = k) = \frac{n!}{k!(n-k)!} p_n^k (1-p_n)^{n-k}$$

$$= \frac{1}{k!} \cdot n(n-1) \cdot \dots \cdot (n-k+1) \cdot \frac{1}{n^k} \cdot (np_n)^k$$

$$\cdot (1 - \frac{\lambda}{n} + o(\frac{1}{n}))^{n-k}$$

$$\to \frac{\lambda^k}{k!} e^{-\lambda}, \quad n \to \infty.$$

例. Poisson approximation

Consider a video-poker plays who plays 1000 hands of five-card draw per day for 365 consecutive days. What is the probability that he is dealt a pat royal flush exactly once; at least once?

We have n = 365000 independent Bernoulli trials, each with success probability

$$p = \frac{4}{2598900} = \frac{1}{649740}$$

Let $\lambda = np$. The exact binomial and approximation Poisson probabilities of exactly one success are

$$\binom{n}{1}p(1-p)^{n-1} \approx 0.320319294, \quad e^{-\lambda}\lambda \approx 0.320318939$$

For at least one success, they are

$$1 - \binom{n}{0} p(1-p)^{n-1} \approx 0.429797431, \quad 1 - e^{-\lambda} \lambda \approx 0.429797186$$

We see that the approximation is quite good!

- Siméon-Denis Poisson (21 June 1781 25 April 1840), was a French mathematician, geometer, and physicist.
- http://en.wikipedia.org/wiki/Sim

5. 几何分布

考虑随机试验E和事件A,P(A) = p,0 。独立重复<math>E,直至A发生,记录所做的试验次数,记为X.

■ X 取正整数值, 1,2,···

$$P(X = k) = pq^{k-1}$$
, 几何级数

• 分布列

$$X \sim \begin{pmatrix} 1 & 2 & \cdots & k & \cdots \\ p & pq & \cdots & pq^{k-1} & \cdots \end{pmatrix}, \quad 0$$

6. 超几何分布

考虑随机抽样。假设N件产品中含有M件次品,现随机抽样n($\leq N$)件,用X表示n件产品中次品数。

• $0 \le X \le \min\{M, n\}$

$$P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

• 证明

$$\sum_{k=0}^{\min\{M,n\}} \frac{C_{M}^{k} C_{N-M}^{n-k}}{C_{N}^{n}} = 1$$

- 连续型随机变量具有以下特点
- (1) 随机变量取值是一个或几个区间
- (2) 存在一个函数p(x)

$$p(x) \ge 0, \quad \int_{-\infty}^{\infty} p(x)dx = 1$$

使得对任何Borel集B,

$$P(X \in B) = \int_{B} p(x)dx$$

简记 $X \sim p(x)$

- $\pi p(x) \to X$ 的密度函数; 类似于物体质量密度。
- 注:

$$P(X = x) = 0, \quad x \in R$$

$$P(X \in (a,b]) = \int_a^b p(x)x, \quad a < b$$

- 连续型随机变量的例子
- 1. 均匀分布

考虑随机试验:向(a,b)上随机投点,记落点的位置为X。那么

(1) X 落在(a,b)上每一点都是等可能的,

$$P(X=x)=0$$

(2) X 落在(a,b)上任何一个子区间的概率只与区间长度有关,与区间位置无关。一般地,

$$P(X \in A) = \frac{|A|}{b-a}, \quad A \subseteq (a,b)$$
可测

• X 是连续型随机变量, 简记 $X \sim U(a,b)$

$$X \sim p(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b) \\ 0, & 其他 \end{cases}$$

2. 指数分布

如果X取非负实数,且具有下列密度函数

$$p(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \mbox{ \begin{tikzpicture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0$$

那么称X服从参数为 λ 的指数分布,简记 $X \sim \exp(\lambda)$ • 注: (1)

$$p(x) \ge 0, \quad \int_{-\infty}^{\infty} p(x)dx = 1$$

- (2) 指数分布通常用于描述人、零件的寿命
- (3) 指数分布与Poisson分布有着密切联系

- (2) 指数分布通常用于描述人、零件的寿命
- (3) 指数分布与Poisson分布有着密切联系

(4)

$$P(X > x) = e^{-\lambda x}, \quad x \ge 0$$

表明X取大值的可能性迅速衰减

(5)无记忆性

$$P(X > x + y | X > y) = \frac{P(X > x + y)}{P(X > y)}$$
$$= e^{-\lambda x}$$
$$= P(X > x)$$

6. 正态分布

假设随机变量X取所有实数值,并具有下列密度

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

那么称X是服从正态分布的随机变量,简记 $X \sim N(\mu, \sigma^2)$

- 注: $(1) -\infty < \mu < \infty, \sigma > 0$
- (2) 当 $\mu=0,\sigma^2=1$ 时,称 $X\sim N(0,1)$ 是服从标准正态分布的随机变量

验证

$$\int_{-\infty}^{\infty} p(x)dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= 1$$

经过变换, 只要证明

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1$$

考虑

$$\left(\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx \right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy$$

作极坐标变换:

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy = \int_{0}^{\infty} \int_{0}^{2\pi} \frac{1}{2\pi} e^{-\frac{r^2}{2}} r dr d\theta$$
$$= 1$$

- 正态分布密度函数曲线具有良好的性质
- (1) 对称性: 关于 $x = \mu$ 对称
- (2) 光滑性: p(x)任意次可微
- (3) 单调性: $ex = \mu$ 的左边,单调增加; $ex = \mu$ 的右边,单调减少
- (4) y = 0是渐近线: 当 $x \to \pm \infty$ 时, $p(x) \to 0$
- (5) 最大值: P(x)在 $x = \mu$ 处取最大值 $\frac{1}{\sqrt{2\pi}\sigma}$
- (6) 倒钟形曲线
- (7) σ 变大,曲线变平坦; σ 变小,曲线变陡峭

(8)

$$P(X > \mu + \sigma x) = \int_{\mu + \sigma x}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u-\mu)^2}{2\sigma^2}} du$$
$$= \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$
$$\sim \frac{1}{\sqrt{2\pi}x} e^{-\frac{x^2}{2}}, \quad x \to \infty$$

类似地,

$$P(X < \mu - \sigma x) \sim \frac{1}{\sqrt{2\pi}x} e^{-\frac{x^2}{2}}, \quad x \to \infty$$

(9) X的取值集中在[$\mu - 3\sigma, \mu + 3\sigma$]里

$$P(|X - \mu| \le 3\sigma) \approx 0.9997$$

(10) 正态分布表可查

◆ 许多随机变量既不是离散型,也不是连续型随机变量。例. *X*取非负实数,

$$P(X=0) = \frac{1}{2}$$

$$P(X > x) = \frac{1}{2}e^{-x}, \quad x > 0$$

X 是混合型随机变量

• 随机变量

假定 (Ω, A, P) 是一概率空间,函数

$$X: \Omega \mapsto R$$

如果对任意Borel集B,

$$\{\omega: X(\omega) \in B\} \in \mathcal{A}$$

那么称X为随机变量 特别,

$$\{\omega : X(\omega) \le x\}, \{\omega : X(\omega) > x\}, \{\omega : a < X(\omega) \le b\} \in \mathcal{A}$$

• 分布函数

假定X是 (Ω, \mathcal{A}, P) 上的随机变量。定义函数 $F: R \mapsto [0, 1]$ 如下:

$$F(x) = P(\omega : X(\omega) \le x), \quad x \in R$$

称F为X的分布函数。

• 离散型随机变量的分布函数

假定

$$X \sim \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_i & \cdots & x_N \\ p_1 & p_2 & \cdots & p_i & \cdots & p_N \end{array}\right)$$

那么

$$F(x) = \sum_{i:x_i < x} p_i, \quad x \in R$$

F(x) 是一个阶梯型函数

例. 假定

$$X \sim \left(\begin{array}{ccc} -\frac{1}{4} & 0 & \frac{1}{2} \\ \frac{1}{8} & \frac{1}{2} & \frac{3}{8} \end{array} \right)$$

$$F(x) = \begin{cases} 0, & x < -\frac{1}{4} \\ \frac{1}{8}, & -\frac{1}{4} \le x < 0 \\ \frac{5}{8}, & 0 \le x < \frac{1}{2} \\ 1, & \frac{1}{2} \le x \end{cases}$$

• 连续型随机变量的分布函数

假定X是连续型随机变量, $X \sim p(x)$ 。那么

$$F(x) = P(X \le x)$$
$$= \int_{-\infty}^{x} p(u)du$$

F(x)是连续函数,并且有导数

$$F'(x) = p(x)$$

例1. 均匀分布的分布函数 假定 $X \sim U(a,b)$,那么

$$F(x) = \int_{-\infty}^{x} p(u)du$$

$$= \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \ge x < b \\ 1, & x \ge b \end{cases}$$

F(x)在(a,b)内线性增长

例2. 指数分布的分布函数 假定 $X \sim \exp(\lambda)$,那么

$$F(x) = \int_{-\infty}^{x} p(u)du$$
$$= \begin{cases} 0, & x < 0\\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

例3. 正态分布的分布函数 假定 $X \sim N(0,1)$,那么

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

- 没有显性表达式。
- 当随机变量服从标准正态分布时,通常用 $\Phi(x)$ 表示其分布函数。
- $\Phi(x)$ 的值可以通过查表得到 如,

$$\Phi(1) =, \quad \Phi(2) =, \quad \Phi(3) =$$

• 分布函数的性质

回忆

$$F(x) = P(X \le x)$$

F具有下列性质

(1)

$$\lim_{x \to -\infty} F(x) = 0, \quad \lim_{x \to \infty} F(x) = 1$$

- (2) F(x) 单调不减
- (3) *F*(*x*) 左极限存在, 右连续

上述性质很容易从概率P的性质推导

- 通常具有上述(1), (2), (3)的实函数F为分布函数
- 给定这样的函数F,一定能找到一个概率空间 (Ω, \mathcal{A}, P) 和
- 一个随机变量 $X: \Omega \mapsto R$,使得

$$F(x) = P(X \le x)$$

• 随机变量的函数

前一节,介绍了一些简单随机变量 但实际问题中通常需要考虑复杂随机变量,它们大多是上 述简单随机变量的函数

如,

- (1) 赌博往往更关心输赢钱数和赌资,投掷骰子或硬币只是工具
- (2) 如何收取保费依赖于寿命长短,并不是简单的比例关系

一般地,人们需要考虑

$$Y = f(X), \quad Y(\omega) = f(X(\omega))$$

其中X 是一个已知的随机变量,f是一个函数

- 问题:
- (1) Y确实是一个随机变量吗?
- (2) 如何计算Y的分布?

(1) 什么条件下Y 是一个随机变量吗?

• 当f是可测函数时,Y是一个随机变量

$$B$$
可测 $\Longrightarrow f^{-1}(B) = \{x : f(x) \in B\}$ 可测

$$\{Y\in B\}=\{f(X)\in B\}$$

$$\{f(X) \in B\} = \{X \in f^{-1}(B)\} \in \mathcal{A}$$

- 常见的函数都是可测的 如,
- (1) 连续函数
- (2) 分段连续函数
- (3) 单调函数
- (4) 分段单调函数

(2) 如何计算Y的分布?

● 当X是离散型随机变量时,Y仍是离散型随机变量。 其取值和分布可以通过直接计算得到

例1. 假定

$$X \sim \left(\begin{array}{rrr} -1 & 0 & 1 & 2 \\ \frac{1}{8} & \frac{1}{2} & \frac{1}{8} & \frac{1}{4} \end{array} \right)$$

求 $Y = X^2$ 的分布列

$$Y \sim \left(\begin{array}{ccc} 1 & 0 & 4 \\ \frac{1}{8} + \frac{1}{8} & \frac{1}{2} & \frac{1}{4} \end{array} \right)$$

一般地,假定

$$X \sim \begin{pmatrix} x_1 & x_2 & \cdots & x_i & \cdots & x_N \\ p_1 & p_2 & \cdots & p_i & \cdots & p_N \end{pmatrix}$$
$$Y = f(X)$$

$$\{f(x_1), f(x_2), \cdots, f(x_N)\} = \{y_1, y_2, \cdots, y_k\}$$

$$y_1, y_2, \cdots, y_k$$
 互不相同

(2)

$$P(Y = y_l) = \sum_{i: f(x_i) = y_l} p_i$$

• 当X是连续型随机变量时,Y不一定是连续型随机变量。依赖于函数f的性质,没有统一的计算公式例. 假设 $X \sim N(0,1)$,

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$

求Y = f(X)的分布?

$$Y \sim \left(\begin{array}{cc} -1 & 1\\ \frac{1}{2} & \frac{1}{2} \end{array} \right)$$

例2. 假设 $X \sim \exp(\lambda)$,

$$f(x) = \begin{cases} 0, & x \le 0\\ \log x, & x > 0 \end{cases}$$

求
$$Y = f(X)$$
的分布?

对任意 $-\infty < y < \infty$,

$$P(Y \le y) = P(\log X \le y)$$
$$= P(X \le e^y)$$
$$= 1 - e^{-\lambda e^y}$$

Y是连续型随机变量

例3. 假设 $X \sim N(0,1)$,求Y = |X|的分布? Y只取非负实数值。对任意 $y \ge 0$,

$$P(Y \le y) = P(|X| \le y)$$

$$= P(-y \le X \le y)$$

$$= P(X \le y) - P(X \le -y)$$

$$= \Phi(y) - \Phi(-y)$$

Y是连续型随机变量,具有密度函数

$$Y \sim \Phi'(y) + \Phi'(-y) = \frac{\sqrt{2}}{\sqrt{\pi}}e^{-\frac{y^2}{2}}, \quad y \ge 0$$

例4. 假设 $X \sim N(\mu, \sigma^2)$,求 $Y = \frac{X-\mu}{\sigma}$ 的分布?对任意 $-\infty < y < \infty$,

$$P(Y \le y) = P(\frac{X - \mu}{\sigma} \le y)$$

$$= P(X \le \mu + \sigma y)$$

$$= \int_{-\infty}^{\mu + \sigma y} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(u - \mu)^2}{2\sigma^2}} du$$

$$= \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

• $Y \sim N(0,1)$

一般地,

• 假设 $X \sim p_X(x)$, f = f(x)具有反函数 f^{-1} ,并且 f^{-1} 可导。那么Y = f(X)仍是连续型随机变量,具有密度函数

$$Y \sim p_Y(y) = p_X(f^{-1}(y))|(f^{-1})'(y)|$$

其中y位于f的值域中

例. 假设X具有连续的分布函数F(x),求Y = F(X)的分布?

注意,F(x)具有良好的性质:

 $0 \le F(x) \le 1$, 单调不减, 右连续.

定义

$$F^{-1}(y) = \inf\{x : F(x) > y\}$$

$$P(Y \le y) = P(F(X) \le y)$$

= $P(X \le F^{-1}(y))$
= $F(F^{-1}(y)) = y$, $0 \le y \le 1$

• $Y \sim U(0,1)$

$$P(Y \le y) = P(F^{-1}(X) \le y)$$
$$= P(X \le F(y))$$
$$= F(y)$$

• $Y \sim F(x)$

- 人们经常需要研究和使用随机向量
- (1) 抽查高考考生成绩
- (2) 婴儿体检
- (3) 飞行器在空中的位置
- 一般地,给定概率空间 (Ω, A, P) ,

$$\mathbf{X}: \Omega \mapsto R^m, \quad \mathbf{X}(\omega) = (X_1(\omega), X_2(\omega), \cdots, X_m(\omega))$$

其中, X_1, X_2, \cdots, X_m 都是随机变量

称X为m-维随机向量

•对于随机向量X, 不仅需要研究每个分量的分布, 而且需要研究各个分量之间的关系,即联合分布 为便于理解概念,我们着重介绍2-随机向量 高维情形可以类似讨论 正如以前一样,我们首先介绍离散型随机向量。

• 给定概率空间 (Ω, A, P) ,(X, Y)是2-随机向量。 假设X取值为 x_1, x_2, \cdots ;Y取值为 y_1, y_2, \cdots 。那么 称(X, Y)为离散型随机向量 记

$$p_{ij} = P(X = x_i, Y = y_j), \quad i, j = 1, 2, \cdots$$

$$p_{ij} \ge 0, \quad \sum_{i,j} p_{ij} = 1$$

称

$$((x_i, y_j), p_{ij})_{i,j=1}^{\infty}$$

为随机向量(X,Y)的联合分布。

对任意Borel集A, B,

$$P(X \in A, Y \in B) = \sum_{i: x_i \in A, j: y_j \in B} p_{i,j}$$

特别,

$$P(X \le x, Y \le y) = \sum_{i: x_i \le x, j: y_i \le y} p_{ij}$$

• 边际分布

X,Y的分布可以由 p_{ij} 计算得到

$$X \sim \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_i & \cdots \\ p_1 & p_2 & \cdots & p_i & \cdots \end{array}\right)$$

其中

$$p_{i\cdot} = \sum_{j=1}^{\infty} p_{ij}$$

$$p_{i\cdot} > 0, \quad \sum_{i=1}^{\infty} p_{i\cdot} = 1$$

类似地,

$$Y \sim \left(\begin{array}{cccc} y_1 & y_2 & \cdots & y_j & \cdots \\ p_{\cdot 1} & p_{\cdot 2} & \cdots & p_{\cdot j} & \cdots \end{array}\right)$$

其中

$$p_{\cdot j} = \sum_{i=1}^{\infty} p_{ij}$$
$$p_{\cdot j} > 0, \quad \sum_{j=1}^{\infty} p_{\cdot j} = 1$$

● 边际分布由联合分布所惟一确定 但边际分布不能惟一决定联合分布

例. 一罐子里装有2个白球,3个黑球。现随机依次抽取两球,每次一个。分别用X,Y表示第一、二次取得白球的个数。求(X,Y)的联合分布?

显然,X, Y都只取0, 1两个值。向量(X, Y)取4对值:

下面求取每对值的联合分布。 按(1) 放回, (2) 无放回进行讨论。

• (1) 放回

$$P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0 | X = 0) = \frac{3}{5} \cdot \frac{3}{5}$$

$$P(X = 0, Y = 1) = P(X = 0) \cdot P(Y = 1 | X = 0) = \frac{3}{5} \cdot \frac{2}{5}$$

$$P(X = 1, Y = 0) = P(X = 1) \cdot P(Y = 0 | X = 1) = \frac{2}{5} \cdot \frac{3}{5}$$

$$P(X = 1, Y = 1) = P(X = 1) \cdot P(Y = 1 | X = 1) = \frac{2}{5} \cdot \frac{2}{5}$$

• (2) 无放回

$$P(X = 0, Y = 0) = P(X = 0) \cdot P(Y = 0 | X = 0) = \frac{3}{5} \cdot \frac{2}{4}$$

$$P(X = 0, Y = 1) = P(X = 0) \cdot P(Y = 1 | X = 0) = \frac{3}{5} \cdot \frac{2}{4}$$

$$P(X = 1, Y = 0) = P(X = 1) \cdot P(Y = 0 | X = 1) = \frac{2}{5} \cdot \frac{3}{4}$$

$$P(X = 1, Y = 1) = P(X = 1) \cdot P(Y = 1 | X = 1) = \frac{2}{5} \cdot \frac{1}{4}$$

下面求X,Y的边际分布

• (1) 放回

$$X \sim \left(\begin{array}{cc} 0 & 1\\ \frac{3}{5} & \frac{2}{5} \end{array}\right)$$

$$Y \sim \left(\begin{array}{cc} 0 & 1\\ \frac{3}{5} & \frac{2}{5} \end{array}\right)$$

• (2)无放回

$$X \sim \left(\begin{array}{cc} 0 & 1\\ \frac{3}{5} & \frac{2}{5} \end{array}\right)$$

$$Y \sim \left(\begin{array}{cc} 0 & 1\\ \frac{3}{5} & \frac{2}{5} \end{array}\right)$$

• 条件分布

第一章学习了事件的条件概率。对于固定的 x_i, y_j ,我们得到

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i, Y = y_j)}{P(X = x_i)}$$
$$= \frac{p_{ij}}{p_{i}}$$

如果 x_i, y_j 变化,那么我们可以得到条件分布:

给定 $X = x_i$ 的条件下,Y可取值 $y_1, y_2, \dots, y_j, \dots$ 概率分别为

$$P(Y = y_j | X = x_i) = \frac{p_{ij}}{p_{i.}}$$

• 条件分布列

$$Y|X = x_i \sim \left(\begin{array}{cccc} y_1 & y_2 & \cdots & y_j & \cdots \\ \frac{p_{i1}}{p_{i\cdot}} & \frac{p_{i2}}{p_{i\cdot}} & \cdots & \frac{p_{ij}}{p_{i\cdot}} & \cdots \end{array}\right)$$

类似地,

$$X|Y = y_j \sim \left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_i & \cdots \\ \frac{p_{1j}}{p_{\cdot j}} & \frac{p_{2j}}{p_{\cdot j}} & \cdots & \frac{p_{ij}}{p_{\cdot j}} & \cdots \end{array}\right)$$

● 独立随机变量(离散型)

假设(X,Y)是离散型随机向量(分布表如上)。如果

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j), \quad \forall i, j$$

即

$$p_{ij} = p_{i\cdot} \cdot p_{\cdot j}, \quad \forall i, j$$

那么称X和Y相互独立

注: (1) 随机变量的独立型不同于事件的独立。它要求对所有的i, j,事件 $X = x_i$ 和事件 $Y = y_j$ 相互独立

(2) 如果存在一对i,j使得

$$P(X = x_i, Y = y_j) \neq P(X = x_i)P(Y = y_j)$$

那么X和Y不相互独立

例. 随机向量(X,Y)分布如下:

$$P(X = 1, Y = 1) = \frac{1}{6}, \quad P(X = 2, Y = 1) = \frac{1}{3}$$

$$P(X = 1, Y = 2) = \frac{1}{9}, \quad P(X = 2, Y = 2) = a$$

$$P(X = 1, Y = 3) = \frac{1}{18}, \quad P(X = 2, Y = 3) = b$$

(1) 各概率之和为1

$$\frac{1}{6} + \frac{1}{3} + \frac{1}{9} + a + \frac{1}{18} + b = 1$$

(2) 边际分布分别为

$$X \sim \left(\begin{array}{cc} 1 & 2\\ \frac{1}{6} + \frac{1}{9} + \frac{1}{18} & \frac{1}{3} + a + b \end{array}\right)$$

$$Y \sim \left(\begin{array}{ccc} 1 & 2 & 3\\ \frac{1}{6} + \frac{1}{3} & \frac{1}{9} + a & \frac{1}{18} + b \end{array}\right)$$

(3) 独立性条件

$$P(X = 1, Y = 2) = P(X = 1)P(Y = 2)$$

$$P(X = 1, Y = 3) = P(X = 1)P(Y = 3)$$

即

$$\frac{1}{9} = \frac{1}{3} \cdot (\frac{1}{9} + a), \qquad a = \frac{2}{9}$$
$$\frac{1}{18} = \frac{1}{3} \cdot (\frac{1}{18} + b), \qquad b = \frac{1}{9}$$

将 $a = \frac{2}{9}, b = \frac{1}{9}$ 代入联合分布中,验证其他独立性条件

• 连续型随机向量

给定概率空间 (Ω, \mathcal{A}, P) ,(X, Y)是其上的随机向量。如果存在p(x, y)使得

$$P(x,y) \ge 0, \quad \int_{-\infty}^{\infty} p(x,y) dx dy = 1$$

并且对任意Borel 集 $A, B \subset R$,

$$P(X \in A, Y \in B) = \int_{A} \int_{B} p(u, v) du dv$$

那么称(X,Y)是连续型随机向量,具有密度函数p(x,y)特别,对任意 $x,y\in R$

$$P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u, v) du dv$$

• 边际分布

显然, 如果(X,Y)是连续型随机向量,那么X,Y 都是连续型随机变量。

并且,

$$X \sim p_X(x), \quad Y \sim p_Y(y)$$

其中

$$p_X(x) = \int_{-\infty}^{\infty} p(x, y) dy, \quad p_Y(y) = \int_{-\infty}^{\infty} p(x, y) dx$$

同样,联合分布惟一决定边际分布;边际分布不能决定联合分布

例1. 矩形区域上的均匀分布 假设 $(a,b) \times (c,d)$ 是一个矩形区域,如果随机向量(X,Y)具有密度函数

$$p(x,y) = \begin{cases} \frac{1}{(b-a)(d-c)} & (x,y) \in (a,b) \times (c,d) \\ 0 & \text{ } \sharp \text{ } \vdots \end{cases}$$

那么(X,Y)是(a,b)×(c,d)上的均匀分布注:

- (1) (X,Y)落在 $(a,b) \times (c,d)$ 上每一点都是等可能的;
- (2) 落在子区域G上的可能性只与G的面积大小成比例,与位置无关。

如果(X,Y)是 $(a,b) \times (c,d)$ 上的均匀分布,那么

$$P(X \le x) = P(X \le x, Y < \infty)$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{\infty} p(u, v) du dv$$

$$= \begin{cases} 0 & x < a \\ \frac{x-a}{(b-a)} & a \le x < b \\ 1 & x \ge b \end{cases}$$

所以,X是(a,b)上的均匀分布 类似地,Y是(c,d)上的均匀分布 例2. 单位圆上的均匀分布 假设B((0,0),1)是中心在(0,0)处的单位圆。如果随机向量(X,Y)具有密度函数

$$p(x,y) = \begin{cases} \frac{1}{\pi} & (x,y) \in B((0,0),1) \\ 0 & \text{ 其它} \end{cases}$$

那么称(X,Y)为单位圆上的均匀分布

注:

- (1) (X,Y)落在B((0,0),1)上每一点都是等可能的;
- (2) 落在子区域G上的可能性只与G的面积大小成比例,与位置无关。

边际分布X的分布

$$X \sim p_X(x) = \int_{-\infty}^{\infty} p_{x,y} dy$$

$$= \begin{cases} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy & -1 < x < 1 \\ 0 &$$
其它
$$= \begin{cases} \frac{2\sqrt{1-x^2}}{\pi} & -1 < x < 1 \\ 0 &$$
其它

类似地, X的分布

$$Y \sim p_Y(y) = \int_{-\infty}^{\infty} p_{x,y} dx$$

$$= \begin{cases} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx & -1 < y < 1 \\ 0 & \text{#$\dot{\Xi}$} \end{cases}$$

$$= \begin{cases} \frac{2\sqrt{1-y^2}}{\pi} & -1 < y < 1 \\ 0 & \text{#$\dot{\Xi}$} \end{cases}$$

注:例1,2尽管联合都是均匀分布,但边际分布完全不同

例3. 联合正态分布

如果随机向量(X,Y)具有密度函数: $\forall x,y \in R$

$$p(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}$$

那么称(X,Y)服从二元联合正态分布, $\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho$ 为参数.

简记

$$(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2; \rho)$$

\bullet 验证p(x,y)确实是密度函数

$$\begin{split} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} & \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ & e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]} dx dy = 1 \end{split}$$

经过变换:
$$u = \frac{x-\mu_1}{\sigma_1}$$
, $v = \frac{y-\mu_2}{\sigma_2}$,等价于

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}\left[x^2 - 2\rho xy + y^2\right]} dx dy = 1$$

左边进行配方,得

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}(x-\rho y)^2} e^{-y^2} dx dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(1-\rho^2)}} e^{-\frac{1}{2(1-\rho^2)}(x-\rho y)^2} dx \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2} dy$$

$$= 1 \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2} dy = 1$$

• 边际分布

假设 $(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2; \rho)$, 求X, Y的边际分布?

$$X \sim p_X(x)$$

$$p_X(x) = \int_{-\infty}^{\infty} p(x,y)dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

$$e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{2\sigma_2^2}\right]}dy$$

进行配方得,

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_2} e^{-\frac{1}{2(1-\rho^2)\sigma_2^2} \left(y-\mu_2-\frac{\sigma_2\rho(x-\mu_1)}{\sigma_1}\right)^2} dy$$
$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

因此,

$$X \sim N(\mu_1, \sigma_1^2)$$

类似地,

$$Y \sim N(\mu_2, \sigma_2^2)$$

• 条件分布

假设(X,Y)是连续型随机向量,具有联合密度函数p(x,y)。 下面讨论条件分布

给定
$$X = x$$
,求 Y 的分布?

$$\mathbb{P}P(Y \le y|X = x)$$

注意
$$P(X = x) = 0$$
,我们采用

$$P(Y \le y | X = x) = \lim_{\varepsilon \to 0} P(Y \le y | x - \varepsilon < X \le x + \varepsilon)$$

$$P(Y \le y | X = x) = \lim_{\varepsilon \to 0} \frac{P(Y \le y, x - \varepsilon < X \le x + \varepsilon)}{P(x - \varepsilon < X \le x + \varepsilon)}$$

$$= \lim_{\varepsilon \to 0} \frac{P(Y \le y, x - \varepsilon < X \le x + \varepsilon)}{P(x - \varepsilon < X \le x + \varepsilon)}$$

$$= \lim_{\varepsilon \to 0} \frac{\int_{x - \varepsilon}^{x + \varepsilon} \int_{-\infty}^{y} p(u, v) du dv / (2\varepsilon)}{\int_{x - \varepsilon}^{x + \varepsilon} p_X(u) du / (2\varepsilon)}$$

$$= \frac{\int_{-\infty}^{y} p(x, v) dv}{p_X(x)}$$

给定X = x下,Y具有密度函数

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}$$

类似地,

给定Y = y下,X具有密度函数

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

考虑 $(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2; \rho)$ 。 求 $p_{X|Y}(x|y), p_{Y|X}(y|x)$?

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$$

$$= \frac{\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]}{\frac{1}{\sqrt{2\pi}\sigma_2}e^{-\frac{(y-\mu_2)^2}{\sigma_2^2}}}$$

进行整理得,

$$p_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi(1-\rho^2)}\sigma_1} e^{-\frac{\left(x-\mu_1 - \frac{\sigma_1}{\sigma_2}(y-\mu_2)\right)^2}{2\sigma_1^2(1-\rho^2)}}$$

即固定y,

$$X|Y = y \sim N(\mu_1 + \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2))$$

类似地,固定x,

$$Y|X = x \sim N(\mu_2 + \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2))$$

● 独立随机变量(连续型)

假设
$$(X,Y) \sim p(x,y)$$
, $X \sim p_X(x), Y \sim p_Y(y)$ 。 如果

$$p(x,y) = p_X(x)p_Y(y), \quad \forall x, y$$

那么称X,Y相互独立

回忆,假设(X,Y)是离散型随机向量,具有分布 p_{ij} . 如果

$$p_{ij} = p_{i\cdot}p_{\cdot j}, \quad \forall i, j$$

那么称X,Y相互独立

例1. 如果(X,Y)是矩形区域 $(a,b) \times (c,d)$ 上的均匀分布,那么X,Y相互独立

例2. 如果(X,Y)是单位圆B((0,0),1)上的均匀分布,那么X,Y不相互独立

例3. 如果 $(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2; \rho)$, 那么

- (1) 当 $\rho = 0$ 时,X, Y相互独立
- (2) 当 $\rho \neq 0$ 时,X,Y不相互独立

- 存在随机向量(X,Y),既不是离散型,也不是连续型的。
- 例. 考虑随机向量(X,Y),其中 $X \sim U(0,1)$, $Y \sim B(n,X)$ 。
- \bullet 对于一般的随机向量(X,Y),我们主要利用其分布函数

$$F(x,y) = P(X \le x, Y \le y)$$

来进行研究

注:

(1) 如果(X,Y)是离散型,那么

$$F(x,y) = \sum_{i: x_i \le x, j: y_j \le y} p_{ij}$$

(2) 如果(X,Y)是连续型,那么

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v) du dv$$

F(x,y)具有下列基本性质: (1)

$$F(-\infty, y) = F(x, -\infty) = 0, \quad F(+\infty, +\infty) = 1$$

- (2) F(x,y)关于x和y单调不减
- (3) F(x,y)关于x和y左极限存在,右连续
- (4)

$$P(a < X \le b, c < Y \le d) = F(a, c) + F(b, d) - F(a, d) - F(b, d)$$

上述性质可以从概率的基本性质推出

• 边际分布

假设(X,Y)具有分布函数F(x,y),那么X,Y的分布函数分别为

$$F_X(x) = P(X \le x)$$

$$= P(X \le x, Y < +\infty)$$

$$= F(x, +\infty)$$

$$F_Y(y) = P(Y \le y)$$

$$= P(X < +\infty, Y \le y,)$$

$$= F(+\infty, y)$$

• 条件分布

假设(X,Y)具有分布函数F(x,y),那么给定X=x,Y的条件分布函数为

$$P(Y \le y | X = x) = \lim_{\varepsilon \to 0} P(Y \le y | x - \varepsilon < X \le x + \varepsilon)$$
$$= \lim_{\varepsilon \to 0} \frac{F(x + \varepsilon, y) - F(x - \varepsilon, y)}{F_X(x + \varepsilon) - F_X(x - \varepsilon)}$$

类似地,

$$P(X \le x | Y = y) = \lim_{\varepsilon \to 0} P(X \le x | y - \varepsilon < Y \le y + \varepsilon)$$
$$= \lim_{\varepsilon \to 0} \frac{F(x, y + \varepsilon) - F(x, y - \varepsilon)}{F_Y(y + \varepsilon) - F_Y(y - \varepsilon)}$$

• 独立随机向量

假设(X,Y)具有分布函数F(x,y),边际分布为 $F_X(x)$, $F_Y(y)$. 如果

$$F(x,y) = F_X(x)F_Y(y), \quad \forall x, y \in R$$

那么称X, Y相互独立 \bullet

X,Y 相互独立

1

 $P(X \in A, Y \in B) = P(X \in A)P(Y \in B), \quad \forall A, B \text{ Borel }$

• 如果X,Y相互独立,那么对任意Borel函数f,g,f(X),g(Y)相互独立 如,如果X,Y相互独立,那么 X^2,Y^2 也相互独立 例.

• 多维随机向量

假设 (Ω, A, P) 是给定的概率空间,

$$\mathbf{X} = (X_1, X_2, \cdots, X_m) : \Omega \mapsto R^m$$

如果对任意Borel 集 $B \subset R^m$,

$$\{\omega: \mathbf{X}(\omega) \in B\} \in \mathcal{A}$$

那么称X为m-维随机向量

● m-元联合分布函数

假设 $\mathbf{X} = (X_1, X_2, \cdots, X_m)$ 是m-维随机向量,其联合分布函数为

$$F_{\mathbf{X}}(\mathbf{x}) = P(X_1 \le x_1, \cdots, X_m \le x_m)$$

其中 $\mathbf{x} = (x_1, \cdots, x_m).$

• 边际分布*X*_i的边际分布为

$$F_{X_i}(x_i) = P(X_i \le x_i)$$

= $F(+\infty, \dots, x_i, \dots, +\infty)$

• 独立随机变量

假设 $\mathbf{X} = (X_1, X_2, \cdots, X_m)$ 是m-维随机向量,其联合分布 函数为 $F_{\mathbf{X}}(\mathbf{x})$,边际分布为 $F_{X_i}(x_i)$, $i = 1, \cdots, m$ 。如果对所 有 $\mathbf{x} = (x_1, \cdots, x_m)$,

$$F_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{m} F_{X_i}(x_i)$$

那么称 X_1, X_2, \cdots, X_m 相互独立

- •注:如果 X_1, X_2, \cdots, X_m 相互独立,那么
- (1) $X_{i_1}, \dots, X_{i_k}, k \leq m$ 相互独立
- (2) $f_1(X_1), f_2(X_2), \cdots, f_m(X_m)$ 相互独立

(3) $\mathbf{f}(x_1, x_2, \dots, x_k)$, $\mathbf{g}(x_1, x_2, \dots, x_l)$ 分别是k 元和l元Borel可测函数,其中 $k+l \leq m$ 。如果 $A, B \subset 1, 2, \dots, m$, $\sharp A = k, \sharp B = l$,并且 $A \cap B = \emptyset$,那么 $\mathbf{f}(X_i, i \in A)$ 和 $\mathbf{g}(X_i, i \in B)$ 相互独立

● 随机向量的运算复杂多变,没有统一法则。 本节仅介绍一些常用的运算,如加、减、乘、除,线性变 换和极值等 ● 从随机变量的加、减开始 假设(*X*, *Y*)是离散型随机向量,分布为

$$P(X = x_i, Y = y_j) = p_{i,j}$$

求Z =: X + Y的分布

- (1)Z的所有可能取值为 $x_i + y_j$, $i, j = 1, 2, \cdots$ 。 将这些值重新记做 z_k , $k = 1, 2, \cdots$,注意这些值互不相同
- (2) Z取每个值 z_k 的概率

$$P(Z = z_k) = \sum_{i,j:x_i + y_j = z_k} p_{ij}, \quad k = 1, 2, \cdots$$

特别,如果X,Y相互独立,那么可利用 $p_{ij} = p_{i\cdot}p_{\cdot j}$,其中 $p_{i\cdot}$ 是 $X = x_{i}$ 的分布, $p_{\cdot j}$ 是 $Y = y_{j}$ 的分布.

假设(X,Y)是连续型随机向量,具有分布密度p(x,y) 求Z =: X + Y的分布?

- (1) Z仍是连续型随机变量,具有密度函数。需确定取值范围
- (2) 计算Z的分布函数 $F_Z(z)$

$$F_{Z}(z) = P(X + Y \le z)$$

$$= \int_{(x,y):x+y \le z} p(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} p(x,y) dx dy$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} p(x,y-x) dx dy$$

Z的密度函数 $p_Z(z)$

$$p_Z(z) = \int_{-\infty}^{\infty} p(x, z - x) dx$$

• 当X, Y相互独立时,Z的密度函数 $p_Z(z)$ 为

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx$$

• 减法类似

如,假设(X,Y)是连续型随机向量,具有分布密度p(x,y) 求Z=:Y-X的分布?

Z的密度函数 $p_Z(z)$

$$p_Z(z) = \int_{-\infty}^{\infty} p(x, z + x) dx$$

当X, Y相互独立时,Z的密度函数 $p_Z(z)$ 为

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z+x) dx$$

- 例1. Bernoulli 随机变量之和 假设 $X \sim B(n,p), Y \sim B(m,p)$,并且X, Y相互独立。 求X + Y的分布?
- (1) X + Y取值为 $0, 1, 2 \cdots, m + n$
- (2) 取每个值的概率

$$P(X + Y = k) = \sum_{l=0}^{k} P(X = l, Y = k - l)$$
$$= \sum_{l=0}^{k} P(X = l)P(Y = k - l)$$

$$= \sum_{l=0}^{k} C_n^l p^l (1-p)^{n-l} C_m^{k-l} p^{k-l} (1-p)^{m-(k-l)}$$
$$= C_{n+m}^k p^k (1-p)^{m+n-k}$$

• 独立Bernoulli 随机变量的和仍是Bernoulli 随机变量

- 例2. Poisson 随机变量之和假设 $X \sim \mathcal{P}(\lambda), Y \sim \mathcal{P}(\mu)$,并且X, Y相互独立。求X + Y的分布?
- (1) X + Y的取值为 $0, 1, 2, \cdots$
- (2) 取每个值的概率

$$P(X + Y = k) = \sum_{l=0}^{k} P(X = l, Y = k - l)$$
$$= \sum_{l=0}^{k} P(X = l)P(Y = k - l)$$

$$= \sum_{l=0}^{k} \frac{\lambda^{l} e^{-\lambda}}{l!} \cdot \frac{\mu^{k-l} e^{-\mu}}{(k-l)!}$$
$$= \frac{(\lambda + \mu)^{k}}{k!} e^{-(\lambda + \mu)}$$

• 独立Poisson 随机变量的和仍是Poisson 随机变量

- 例3. 均匀随机变量之和 假设 $X \sim U(0,1), Y \sim U(0,1), 并且X, Y相互独立。$ 求<math>Z =: X + Y的分布?
- (1) Z的取值为[0,2]
- (2) 取每个值的概率密度函数

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx$$
$$= \int_{0}^{z} dx = z$$

当
$$1 < z < 2$$

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx$$
$$= \int_{z-1}^{1} dx = 2 - z$$

• 例4. 指数随机变量之和

假设 $X \sim \exp(1), Y \sim \exp(1),$ 并且X, Y相互独立。 求Z =: X + Y的分布?

- (1) Z的取值为 $(0,\infty)$
- (2) 取每个值的概率密度函数

$$p_Z(z) = \int_{-\infty}^{\infty} p_X(x) p_Y(z - x) dx$$
$$= \int_0^z e^{-x} e^{-(z - x)} dx$$
$$= z e^{-z}, \quad z > 0$$

• 例5. 正态随机变量之和假

设 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2),$ 并且X, Y相互独立。 求Z =: X + Y的分布?

- (1) Z的取值为 $(-\infty,\infty)$
- (2) 取每个值的概率密度函数

$$p_{Z}(z) = \int_{-\infty}^{\infty} p_{X}(x) p_{Y}(z - x) dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{1}} e^{-\frac{(x - \mu_{1})^{2}}{2\sigma_{1}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{2}} e^{-\frac{(z - x - \mu_{2})^{2}}{2\sigma_{2}^{2}}} dx$$

$$= \frac{1}{\sqrt{2\pi}(\sigma_{1}^{2} + \sigma_{2}^{2})} e^{-\frac{(z - (\mu_{1} + \mu_{2}))^{2}}{2(\sigma_{1}^{2} + \sigma_{2}^{2})}}$$

• 独立正态随机变量的和仍是正态随机变量

●随机向量的乘、除运算我们仅以连续型随机向量为例。离散型更简单些

m 假设(X,Y)是连续型随机向量,具有分布密度p(x,y) 求Z =: XY的分布?

- (1) Z 仍是连续型随机变量,需确定其取值范围
- (2) 计算Z的分布函数 $F_Z(z)$

注意X,Y=0的概率为0

$$F_{Z}(z) = P(XY \le z)$$

$$= \int_{(x,y):xy \le z} p(x,y) dx dy$$

$$= \int_{-\infty}^{0} \int_{z/x}^{\infty} p(x,y) dy dx + \int_{0}^{\infty} \int_{-\infty}^{z/x} p(x,y) dy dx$$

$$= -\int_{-\infty}^{z} \int_{-\infty}^{0} \frac{1}{x} p(x,\frac{y}{x}) dx dy + \int_{-\infty}^{z} \int_{0}^{\infty} \frac{1}{x} p(x,\frac{y}{x}) dx dy$$

Z的密度函数 $p_Z(z)$

$$p_Z(z) = -\int_{-\infty}^0 \frac{1}{x} p(x, \frac{z}{x}) dx + \int_0^\infty \frac{1}{x} p(x, \frac{z}{x}) dx$$
$$= \int_{-\infty}^\infty \frac{1}{|x|} p(x, \frac{z}{x}) dx$$

• 当X, Y相互独立时,Z的密度函数 $p_Z(z)$ 为

$$p_{Z}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} p(x, \frac{z}{x}) dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{|x|} p_{X}(x) p_{Y}(\frac{z}{x}) dx$$

• 除法类似

假设(X,Y)是连续型随机向量,具有分布密度p(x,y)求 $Z=:\frac{Y}{X}$ 的分布?

- (1) Z 仍是连续型随机变量
- (2) Z的密度函数 $p_Z(z)$

$$p_Z(z) = \int_{-\infty}^{\infty} |x| p(x, zx) dx$$

• 当X, Y相互独立时,Z的密度函数 $p_Z(z)$ 为

$$p_Z(z) = \int_{-\infty}^{\infty} |x| p_X(x) p_Y(zx) dx$$

例1. 假设 $X \sim U(0,1), Y \sim U(0,1),$ 并且X, Y相互独立。 求Z =: XY的分布?

- (1) Z的取值为(0,1)
- (2) 取每个值的概率密度函数

$$p_{Z}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} p_{X}(x) p_{Y}(\frac{z}{x}) dx$$

$$= \int_{z}^{1} \frac{1}{x} p_{X}(x) p_{Y}(\frac{z}{x}) dx$$

$$= \int_{z}^{1} \frac{1}{x} dx$$

$$= |\ln z|, \quad 0 < z < 1$$

例2. 假设 $X \sim U(0,1), Y \sim U(0,1),$ 并且X, Y相互独立。 求 $Z =: \frac{Y}{N}$ 的分布?

- (1) Z的取值为(0,∞)
- (2) 取每个值的概率密度函数

$$p_Z(z) = \int_{-\infty}^{\infty} |x| p_X(x) p_Y(zx) dx$$
$$= \int_{0}^{1} x dx = \frac{1}{2}$$

当
$$z > 1$$

$$p_Z(z) = \int_{-\infty}^{\infty} |x| p_X(x) p_Y(zx) dx$$
$$= \int_{0}^{\frac{1}{z}} x dx = \frac{1}{2z^2}$$

即

$$p_Z(z) = \begin{cases} \frac{1}{2}, & 0 < z < 1\\ \frac{1}{2z^2}, & z \ge 1 \end{cases}$$

例3. 假设 $X \sim N(0,1), Y \sim N(0,1)$,并且X, Y相互独立。 求 $Z =: \frac{Y}{X}$ 的分布?

- (1) Z的取值为 $(-\infty,\infty)$
- (2) 取每个值的概率密度函数

$$p_{Z}(z) = \int_{-\infty}^{\infty} |x| p_{X}(x) p_{Y}(zx) dx$$

$$= \int_{-\infty}^{\infty} |x| \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}x^{2}}{2}} dx$$

$$= \frac{1}{\pi} \int_{0}^{\infty} x e^{-\frac{x^{2}(1+z^{2})}{2}} dx$$

$$= \frac{1}{\pi} \cdot \frac{1}{1+z^{2}}, \quad -\infty < z < \infty$$

• 我们仅考虑连续型随机向量的变换。

假设(X,Y)为连续型随机向量,具有联合密度函数 $p_{(X,Y)}(x,y)$.

变换如下:

$$\begin{cases} U = f_1(X, Y) \\ V = f_2(X, Y) \end{cases}$$

求(U,V)的分布?

• 基本方法

$$P(U \le u, V \le v)$$

$$= P(f_1(X, Y) \le u, f_2(X, Y) \le v)$$

$$= P((X, Y) \in \{(x, y) : f_1(x, y) \le u, f_2(x, y) \le v\})$$

$$= \int_{(x, y): f_1(x, y) \le u, f_2(x, y) \le v} p(x, y) dx dy$$

一般情况下,很难给出一般性定理计算(U,V)的分布. 依赖于 f_1 , f_2 所确定的积分区域

仅考虑特殊情形。

假设 f_1, f_2 存在逆变换,即

$$\begin{cases} X = g_1(U, V) \\ Y = g_2(U, V) \end{cases}$$

进一步假设

 g_1, g_2 可导,Jacobi变换存在,行列式为

$$J = \det \begin{pmatrix} \frac{\partial g_1}{\partial u} & \frac{\partial g_1}{\partial v} \\ \frac{\partial g_2}{\partial u} & \frac{\partial g_2}{\partial v} \end{pmatrix}$$

那么(U,V)是连续型随机向量,具有联合密度函数 $p_{(U,V)}(u,v)$ 对于u,v属于 f_1,f_2 的值域,有

$$p_{(U,V)}(u,v) = p_{(X,Y)}(g_1(u,v), g_2(u,v))|J|$$

例1. 假设 $X \sim N(0,1), Y \sim N(0,1)$,并且X, Y相互独立。 定义

$$\begin{cases} U = X + Y \\ V = X - Y \end{cases}$$

求(U,V)的分布密度? 逆变换:

$$\begin{cases} X = \frac{1}{2}(U+V) \\ Y = \frac{1}{2}(U-V) \end{cases}$$

Jacobi行列式为

$$J = \frac{1}{2}$$

(X,Y)的联合密度函数为

$$p_{X,Y}(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$$

(U, V)的联合密度函数为

$$p_{U,V}(u,v) = \frac{1}{2\pi} e^{-\frac{(\frac{1}{2}(u+v))^2 + (\frac{1}{2}(u-v))^2}{2}} |J|$$
$$= \frac{1}{4\pi} e^{-\frac{u^2+v^2}{4}}$$

因此, U, V相互独立, 且

$$U \sim N(0,2), \quad V \sim N(0,2)$$

例2. 假设 $(X,Y) \sim N(\mu_1, \sigma_1^2, \mu_2, \sigma_2^2, \rho)$ 。定义

$$\left(\begin{array}{c} U \\ V \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{c} X \\ Y \end{array}\right)$$

求(U,V)的分布密度?

记

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

并假设A可逆

$$\left(\begin{array}{c} X \\ Y \end{array}\right) = A^{-1} \cdot \left(\begin{array}{c} U \\ V \end{array}\right)$$

• Jacobi 行列式

$$J = |A^{-1}| = |A|^{-1}$$

● (X,Y)联合密度函数可以写成

$$p_{(X,Y)}(x,y) = \frac{1}{2\pi|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})'\Sigma^{-1}(\vec{x}-\vec{\mu})}$$

其中

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}, \quad \vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \vec{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

● (U, V)联合密度函数为

$$p_{(U,V)}(u,v) = \frac{1}{2\pi|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(A^{-1}\vec{u}-\vec{\mu})'\Sigma^{-1}(A^{-1}\vec{u}-\vec{\mu})} ||A|^{-1}|$$

$$= \frac{1}{2\pi|A'\Sigma A|^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{u}-A\vec{\mu})'(A'\Sigma A)^{-1}(\vec{u}-A\vec{\mu})}$$

其中

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \vec{u} = \begin{pmatrix} u \\ v \end{pmatrix}$$

因此,

$$(U, V) \sim N(A\vec{\mu}, A'\Sigma A)$$

将 $A\vec{\mu}$, $A'\Sigma A$ 展开,可写出5个参数。

联合正态随机向量的线性组合仍是联合正态随机向量

例3. 假设 $X \sim N(0,1), Y \sim N(0,1)$, 定义

$$\begin{cases} r = \sqrt{X^2 + Y^2} \\ \theta = \arctan \frac{Y}{X} \end{cases}$$

 $\vec{x}(r,\theta)$ 的分布密度? 逆变换为

$$\begin{cases} X = r\cos\theta \\ Y = r\sin\theta \end{cases}$$

●Jacobi 行列式

$$J = r$$

• (r, θ) 的联合密度函数为

$$p_{(r,\theta)}(r,\theta) = \frac{1}{2\pi} e^{-\frac{1}{2}((r\cos\theta)^2 + (r\sin\theta)^2)} r$$
$$= \frac{1}{2\pi} r e^{-\frac{r^2}{2}}$$

$$r \sim p_r(r) = re^{-\frac{r^2}{2}}, \quad r > 0$$
$$\theta \sim p_\theta(\theta) = \frac{1}{2\pi}, \quad 0 < \theta < 2\pi$$

- •称r为Rayleigh 分布, θ 为均匀分布
- $\bullet r$, θ 相互独立

例4. 假设X,Y相互独立,服从参数为1的指数分布,即 $X,Y\sim\exp(1)$. 求 $U=X+Y,V=\frac{Y}{X}$ 的分布?

• 我们采用先求联合分布,再求边际分布的方法注意

$$\begin{cases} U = X + Y \\ V = \frac{Y}{X} \end{cases}$$

逆变换为

$$\begin{cases} X = \frac{U}{1+V} \\ Y = \frac{UV}{1+V} \end{cases}$$

Jacobi 行列式为

$$J = \frac{U}{(1+V)^2}$$

(X,Y)的联合密度函数为

$$p_{(X,Y)}(x,y) = e^{-(x+y)}, \quad x,y > 0$$

● (U, V)的联合密度函数为

$$p_{(U,V)}(u,v) = e^{-(\frac{u}{1+v} + \frac{uv}{1+v})} \frac{u}{(1+v)^2}$$
$$= ue^{-u} \cdot \frac{1}{(1+v)^2}, \quad u,v > 0$$

由于上式中变量u, v分离,因此U, V相互独立。容易看出

$$U \sim p_U(u) = ue^{-u}, \quad u > 0$$

$$V \sim p_V(v) = \frac{1}{(1+v)^2}, \quad v > 0$$

• 极值随机变量

假设 X_1, X_2, \dots, X_n 是概率空间 (Ω, \mathcal{A}, P) 上的随机变量。 对 $\omega \in \Omega$,将 $X_1(\omega), X_2(\omega), \dots, X_n(\omega)$ 进行排序:

$$X_{(1)}(\omega) \le X_{(2)}(\omega) \le \dots \le X_{(n)}(\omega)$$

称 $X_{(1)}, X_{(2)}, \cdots X_{(n)}$ 为次序随机变量

特别, $X_{(1)}$ 为极小值, $X_{(n)}$ 为极大值, $X_{(k)}$ 为第k小值

• 极大值

假设 X_1, X_2, \dots, X_n 是独立随机变量,具有相同分布函数F(x)。求 $X_{(n)}$ 的分布?

$$F_{X_{(n)}}(x) = P(X_{(n)} \le x) = P(\max_{1 \le i \le n} X_i \le x)$$

$$= P(\bigcap_{i=1}^n \{X_i \le x\})$$

$$= \prod_{i=1}^n P(X_i \le x)$$

$$= F^n(x)$$

 \bullet 假设分布函数F(x)有密度函数 $p_{X_{(n)}}(x)$,那么 $X_{(n)}$ 也具有密度函数

$$p_{X_{(n)}}(x) = nF(x)^{n-1}F'(x)$$

• 极小值

假设 X_1, X_2, \dots, X_n 是独立随机变量,具有相同分布函数F(x)。求 $X_{(1)}$ 的分布?

$$P(X_{(1)} > x) = P(\min_{1 \le i \le n} X_i > x)$$

$$= P(\bigcap_{i=1}^{n} \{X_i > x\})$$

$$= \prod_{i=1}^{n} P(X_i > x)$$

$$= (1 - F(x))^n$$

分布函数为

$$F_{X_{(1)}}(x) = P(X_{(1)} \le x) = 1 - P(X_{(1)} > x)$$
$$= 1 - \prod_{i=1}^{n} (1 - F(x))^{n}$$

 \bullet 假设分布函数F(x)有密度函数 $p_{X_{(1)}}(x)$,那么 $X_{(1)}$ 也具有密度函数

$$p_{X_{(1)}}(x) = n(1 - F(x))^{n-1}F'(x)$$

• 第k 小值 假设 X_1, X_2, \dots, X_n 是独立连续随机变量,具有相同分布函数F(x),密度函数p(x)。求 $X_{(k)}$ 的分布密度? $X_{(k)}$ 的分布密度为

$$p_{X_{(k)}}(x) = (n - k + 1)C_n^{k-1}F^{k-1}(x)p(x)(1 - F(x))^{n-k}$$

例. 假设 X_1, X_2, \dots, X_n 是独立连续随机变量,服从(0,1)上均匀分布。求 $X_{(1)}$, $X_{(n)}$ 的分布密度? $X_{(1)}$ 的分布密度

$$p_{X_{(1)}}(x) = n(1-x)^{n-1}, \quad 0 < x < 1$$

 $X_{(n)}$ 的分布密度

$$p_{X_{(n)}}(x) = nx^{n-1}, \quad 0 < x < 1$$