

7 de fevereiro de 2022 Duração: 2 horas e 30 minutos

<u>Justifique</u> todas as suas respostas, indicando os cálculos efetuados e/ou os conceitos teóricos utilizados.

- 1. (40 pts) Seja $g(x) = 2 \operatorname{arcsen}(\operatorname{tg} x)$ onde $D_g \subset] \frac{\pi}{2}, \frac{\pi}{2}[.$
 - (a) Determine o domínio de g, D_q .
 - (b) Caracterize a função inversa de g, indicando o domínio, o contradomínio e a expressão analítica que a define.
 - (c) Justifique que g atinge mínimo e máximo globais no seu domínio e calcule esses valores.
 - (d) Sabendo que

$$\int f(x) dx = g(x) + C, C \in \mathbb{R},$$

determine f(0).

- 2. (30 pts) Calcule:
 - (a) o integral definido $\int_1^5 \frac{2x}{\sqrt{2x-1}} dx$;
 - (b) a família de primitivas $\int (2x^3 + x) \arctan x \, dx$.
- 3. (30 pts) Dada uma função $f:[3,+\infty[\to\mathbb{R},$ considere o integral impróprio de 1ª espécie

$$\int_{3}^{+\infty} f(x) \, dx.$$

- (a) Suponha que o integral impróprio referido acima é convergente. Explicite o significado matemático desta afirmação.
- (b) Enuncie um teorema que lhe permite comparar a natureza de uma série numérica real com a de um integral impróprio adequado.
- (c) Aplicando o teorema referido em (b) estude a natureza da série de

$$\sum_{n=3}^{+\infty} \frac{1}{n \ln n \left(\ln(\ln n) \right)}.$$

4. (28 pts) Determine a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta:

(a)
$$\sum_{n=3}^{+\infty} (-1)^n \left(1 - \frac{2}{n}\right)^{n^2}$$
;

(b)
$$\sum_{n=1}^{+\infty} \frac{n}{n^2 + 1} \cos[(n+1)\pi].$$

- 5. (15 pts) Mostre que a equação $x^2 = x \operatorname{sen} x + \cos x$ tem exatamente duas soluções em \mathbb{R} .
- 6. (25 pts) Sejam $\varphi : \mathbb{R} \to \mathbb{R}$ uma função contínua, positiva e derivável em \mathbb{R} e $f : \mathbb{R} \to \mathbb{R}$ a função definida por

$$f(x) = \int_{x}^{x^2} \varphi(t) dt, \ x \in \mathbb{R}.$$

- (a) Mostre que f é duas vezes derivável e determine expressões para f' e f''.
- (b) Prove que f é estritamente decrescente em] $-\infty,0[$.
- (c) Estude o sinal de f em \mathbb{R} .

Fórmulas trigonométricas $\sec u = \frac{1}{\cos u} \left| \csc u = \frac{1}{\sin u} \right| \cot u = \frac{\cos u}{\sin u} \left| 1 + tg^2 u = \sec^2 u \right| 1 + \cot u = \csc^2 u$ $\sec^2 u = \frac{1 - \cos(2u)}{2} \left| \cos^2 u = \frac{1 + \cos(2u)}{2} \right| \cos(u + v) = \cos u \cos v - \sin u \sin v$ $\sin(u + v) = \sin u \cos v + \sin v \cos u$

$$\int u' \sec u = \ln|\sec u + \operatorname{tg} u| \parallel \int u' \operatorname{cosec} u = -\ln|\operatorname{cosec} u + \operatorname{cotg} u|$$

Formulário de Derivadas				
Função	Derivada	Função	Derivada	
$Ku \ (K \in \mathbb{R})$	Ku'	$\ln u $	$\frac{u'}{u}$	
u^r	$r u^{r-1} u'$	$\log_a u \ (a > 0 \ \mathrm{e} \ a \neq 1)$	$\frac{u'}{u \ln a}$	
e^u	$u'e^u$	$a^u (a > 0 e a \neq 1)$	$a^u \ln a u'$	
sen u	$u'\cos u$	$\cos u$	$-u' \operatorname{sen} u$	
$\operatorname{tg} u$	$u'\sec^2 u$	$\cot g u$	$-u'\csc^2 u$	
$\sec u$	$\sec u \operatorname{tg} u u'$	$\operatorname{cosec} u$	$-\csc u \cot u u'$	
arcsen u	$\frac{u'}{\sqrt{1-u^2}}$	$\arccos u$	$-\frac{u'}{\sqrt{1-u^2}}$	
$\operatorname{arctg} u$	$\frac{u'}{1+u^2}$	$\operatorname{arccotg} u$	$-\frac{u'}{1+u^2}$	
$\operatorname{senh} u$	$u'\cosh u$	$\cosh u$	$u'\operatorname{senh} u$	

7.

$\begin{array}{c} 7~{\rm de~fevereiro~de~2022} \\ {\rm Duração:~2~horas~e~30~minutos} \end{array}$

Responda nesta folha e entregue-a juntamente com as restantes folhas de prova.

Nome:	N° Mec.:
Classificação Questão 7:	
(22 pts) Dans and a uma das questãos sequintes assimale a	on o o o o o o o o o o o o o o o o o o
(32 pts) Para cada uma das questões seguintes, assinale a d	
(a) Sejam $f \in g$ as funções definidas por $f(x) = -\arccos(x)$	
(A) $\lim_{x \to -4^{-}} \frac{f(x)}{g(x)} = +\infty.$	
(B) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = -\infty$	
(C) $\lim_{x \to -4^{-}} \frac{f(x)}{g(x)} = 0.$	
= \ /	
(D) $\lim_{x \to -4^-} \frac{f(x)}{g(x)} = -\frac{1}{3}$	
(b) Seja f uma função contínua em $[8,13]$, derivável em $]8$, $f(13)=0$. Seja ainda g uma função definida em $[8,13]$ Pode afirmar-se que existe $t\in]8,13[$ tal que	
(A) $f(t) = \frac{1}{3} f'(t)$	
(B) $f(t) = 3 f'(t)$	
(C) $g'(t) = \frac{1}{3}g(t)$	
(D) $g'(t) = 3 g(t)$	
(c) Seja f uma função real de variável real de domínio $\mathbb R.$	
impróprio	$x \rightarrow +\infty$
$\int_{1}^{+\infty} \frac{f(x)}{x^2} dx$	
<i>J</i> 1	
(A) é convergente	
(C) é igual a $+\infty$.	
(D) é igual a 2	
(d) A área da região limitada pelas curvas de equação y dada por	$=\sqrt[3]{x}$, $y = x^2$ e $x = -1$ pode ser
(A) $\int_{-1}^{1} (\sqrt[3]{x} - x^2) dx$	
J-1	
(B) $\int_{-1}^{1} (x^2 - \sqrt[3]{x}) dx$	
(C) $\int_{-1}^{0} (\sqrt[3]{x} - x^2) dx + \int_{0}^{1} (x^2 - \sqrt[3]{x}) dx$	
(D) $\int_{-1}^{0} (x^2 - \sqrt[3]{x}) dx + \int_{0}^{1} (\sqrt[3]{x} - x^2) dx$	