Week 5 outline

Chapter 4. Review circular motion Chapter 5. The Laws of Motion

Uniform circular motion = object moves at constant speed in a circular path.

Time to make one cycle = period = T = circumf/speed

Total acceleration – sum of tangential and centripetal components

Physics I Week 5 Monday outline

```
Hwk: Ch. 3 P. 1,3,6,...,39, Due today at SA 111.

Ch. 4 Read Sec. 4.1-4.8, Read 3.9 (rel. vel.)

MiscQ 1-11 (odd)

Probs. 1-5,7,12-14, + next Mon

Notes: Lab this week is "Projectile Motion"

Quiz 2 results: mean=7.9/10.

(Can go over next time.)

"NEW STUFF" has lecture notes from Fri.
```

TODAY: Forces (Ch. 4)
Contact vs Field forces
Newton's first law (and frames of reference)

Forces – the *cause* of acceleration

Forces are vectors

Forces act between systems (the dashed boxes)

Types of forces

contact forces

tension – pulling apart compression – pushing together shear – pushing tangentially torsion - twisting

Types of forces

Field forces

gravitational electric magnetic

The 4 Fundamental forces

Gravity

Electromagnetic Force

Nuclear Strong Force – holds nuclei together

Nuclear Weak force – decay of n and p

Isaac Newton (1642 - 1727)

3 laws of motion

1 law of Universal Gravitation

Newton's 1st law = inertial frames of reference exist such that an object will move with a constant velocity if no forces act upon it.

Overthrows Aristotle and medieval thought:

"natural state" is at rest

"impetus" pushes an arrow along

The woman standing on the beltway sees the man moving with a slower speed than does the woman observing the man from the stationary floor.

Each person is in a different inertial frame-of-reference.

Newton's 2nd law = the acceleration of an object is proportional to the net force and inversely proportional to the mass.

If same force acts on m1, m2, and m1+m2, the accelerations are different.

Newton's 2nd law (cont.)

Example: gravity

Weight = the force of gravity on an object

Mass = the amount of matter in an object

Newton's 3rd law (cont.)

"For every action there is an equal but opposite reaction." "Forces come in equal but opposite pairs."

$$F_{12} = -F_{21}$$

Newton's 3rd law (cont.)

Gravity and the electromagnetic forces obey Newton's 3rd.

Fig. 5.5, p. 111

Newton's 3rd law (cont.)

Apparent weight may differ from weight in accelerating reference frames or when buoyant forces are present.

When the elevator accelerates upward, the spring scale reads a value greater than the weight of the fish.

When the elevator accelerates downward, the spring scale reads a value less than the weight of the fish.

The Application of Newton's Laws

Problem solving method

- 1. Conceptualize
- What is problem asking for?
- Write down knowns and unknowns.
- Draw picture.
- 2. Categorize
- Equilibrium problem object stationary (or constant velocity)
- Newton's 2nd law problem object accelerates
- 3. Analyze
- Isolate object of interest and draw forces acting on it.
- Don't draw the forces object exerts on surroundings (usually).
- Form equations for x and y components independently.
- Plug and chug.
- 4. Finalize check units, dimensions, etc.

The Application of Newton's Laws

Find the normal force in each case if m=1 kg. (Use g=10 m/s²)

Note: if m=5 kg, you get a more realistic normal force in (c).

The Application of Newton's Laws

Find the acceleration vector for the 0.2 kg hockey puck.

a

Fig. 5.11, p. 116

Fig. 5.10, p. 114

Fig. 5.14, p. 120

Fig. P5.28, p. 133

Close-up of surfaces.

Close-up of surfaces.

TABLE 5.1

Coefficients of Friction

	μ_s	$oldsymbol{\mu}_k$
Rubber on concrete	1.0	0.8
Steel on steel	0.74	0.57
Aluminum on steel	0.61	0.47
Glass on glass	0.94	0.4
Copper on steel	0.53	0.36
Wood on wood	0.25 - 0.5	0.2
Waxed wood on wet snow	0.14	0.1
Waxed wood on dry snow		0.04
Metal on metal (lubricated)	0.15	0.06
Teflon on Teflon	0.04	0.04
Ice on ice	0.1	0.03
Synovial joints in humans	0.01	0.003

Note: All values are approximate. In some cases, the coefficient of friction can exceed 1.0.

Fig. 5.18, p. 124