Universidade Federal Fluminense

LISTA 4 - 2007-2

EGM - Instituto de Matemática

GMA - Departamento de Matemática Aplicada

Derivadas parciais de ordem superior

2. Uma função $z = f(x_1, ..., x_n)$ é harmônica se ela satisfaz a equação de Laplace $\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + ... + \frac{\partial^2 z}{\partial x_n^2} = 0.$ Mostre que a função $z = f(x, y) = x^3 - 3xy^2$ é harmônica.

Quais das funções dos exercícios 3. a 8. satisfazem a equação de Laplace?

3.
$$z = f(x, y) = \ln \sqrt{x^2 + y^2}$$

6.
$$z = f(x, y, z) = e^x \sin y + e^y \sin z$$
.

4.
$$z = f(x, y) = x^2 - y^2$$
.

7.
$$z = f(x, y) = \arctan(x/y)$$

5.
$$z = f(x, y) = y^3 + 3x^2y$$
.

8.
$$z = f(x, y) = \ln(x/y)$$
.

- 9. Verifique que $u = \operatorname{sen}(k x) \cdot \operatorname{sen}(ak t)$ satisfaz a equação da onda $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
- 10. No estudo da penetração da geada em uma rodovia, a temperatura T no instante t e à profundidade x pode ser dada aproximadamente por $T = T_0 \, e^{-\lambda \cdot x} \, \sin{(\omega \, t \lambda \, x)}$, em que T_0 , ω e λ são constantes. Mostre que T satisfaz a equação unidimensional do calor: $\frac{\partial T}{\partial t} = k \, \frac{\partial^2 T}{\partial x^2}$, com $k = 2 \, \lambda^2 / w$.

RESPOSTAS DA LISTA 4

- 3. Sim
- 4. Sim
- 5. Não
- 6. Sim
- 7. Sim
- 8. Não