Digital Electronic Circuits Section 1 (EE, IE)

Lecture 1

Why Digital?

- Popular terms of current times:
 - Digital Clock, Digital Camera, Digital Money, Digital Media, ...
- Prefix 'Digital' associates a term with digital technology.
- Digital technology is considered more efficient for reasons such as:
 - Easy to store, copy, compress
 - Various transmission options
 - Flexibility in processing
 - Inexpensive building block

- Immunity: noise, interference
- Error correction, encryption
- Analysis of data

What is Digital?

- Digital signals represent only finite number of discreet values (2 valued: Binary).
 - Signal is discreet by nature Signal, analog by nature, converted to discreet

Digital systems represent and manipulate digital signals.

Manipulation of Digital Signals

- Switching is key to manipulation of digital signals.
- Digital data storage involves switching.

Switching & Logic Operation

Realization of AND

V_1	V_2	V_o
L	L	L
H	L	L
L	H	L
H	H	H

$$V_1$$
 V_2 V_2

Switching & Logic Operation

Realization of OR

V_1	V_2	V_o
L	L	L
H	L	H
L	H	H
H	H	H

$$V_1$$
 V_2
 V_2

Switching & Logic Operation

Realization of NOT

Switching Circuits

Realization of Tristate

	V_{i}	G	V_o
•	L	L	Open
	H	L	Open
	L	H	L
	H	H	H

Diode as a switch

• Realization of AND, OR logic

Possibility of realizing NOT logic

Transistor as a switch

Realization of NOT gate (inverter), Input-Output Characteristics

For quantitative analysis:

- $R_B = 10 \text{ k}\Omega$
- $R_c = 1 k\Omega$
- $\bullet \quad \beta_{\rm F} = 50$
- $V_{BE(ON)} = V_{BE(Sat)} = 0.7V$
- V_{CE(Sat)} = 0.2V

Transistor as a switch **Cut-off region**

- Base current $I_B = 0$ till $V_{BE} < 0.7V$ i.e. $V_{in} < 0.7V$.
- Transistor is *cut off* and $I_c = 0$ with $V_{out} = 5V$ over entire range.
- When V_{in} is increased beyond 0.7V, base current begins to flow and the transistor moves from cut off region to normal active region.
- The coordinate, $V_{in} = 0.7V$, $V_{out} = 5V$ mark first transition point in the transfer function of this circuit. This is also termed as *breakpoint* or *edge of cutoff* (EOC).

Transistor as a switch

Active region

- Applying KVL along V_{in} , R_B , V_{BE} , Ground $I_B = (V_{in} V_{BE(on)})/R_B$
- In active region, $I_C = \beta_F I_B$ (as long as $V_{CE(sat)}$)
- Applying KVL along V_{cc} , R_C , V_{CE} , Ground $V_{out} = V_{CC} I_C R_C = V_{CC} \beta_F I_B R_C$
- Combining, $V_{out} = V_{CC} - \beta_F R_C (V_{in} - V_{BE(on)})/R_B$

Transistor as a switch

Saturation region

- As V_{in} (or I_B) is increased a second transition point is reached when V_{out} = V_{CE(sat)}.
- The values of I_C and I_B for this condition (the subscript EOS means edge of saturation):

$$I_{C(EOS)} = (V_{CC} - V_{CE(sat)})/R_C = (5-0.2)/1 = 4.8 mA$$
 and
$$I_{B(EOS)} = I_{C(EOS)}/\beta_F = 4.8/50 = 0.096 mA$$
 Then
$$V_{in(EOS)} = V_{BE(on)} + I_{B(EOS)}R_B = 0.7 + (0.096)(10) = 1.66 V$$

• Thus $V_{in} \ge 1.66V$ the transistor saturates. (Saturating Logic)

Input-Output Mapping

Noise Margin, Transition width and Logic swing

$$NM_1 = V_{11} - V_{01} = 0.7 - 0.2 = 0.5V$$

$$NM_H = V_{OH} - V_{IH} = 5.0 - 1.66 = 3.34V$$

Transition width =
$$V_{IH} - V_{IL}$$

= 1.66 - 0.7 = 0.96V

Logic swing =
$$V_{OH} - V_{OL}$$

= 5 - 0.2 = 4.8V

Fanout

Input to driver transistor: HIGH

- When V_{in} is HIGH, driver transistor is saturated and V_{out} will be LOW.
- With V_{CE(sat)} = 0.2V all the load gates will be in the OFF state.
- No restriction on number of load gates

Fanout

Input to driver transistor: LOW

- When V_{in} is LOW, driver transistor will be OFF and V_{out} will be at HIGH level.
- A limit in the fanout is set when the voltage at V_{out} is insufficient to saturate load gate transistors.
- Note that V_{IH} = 1.66V
- For driver, $I_{C(driver)} = (V_{CC} V_{out})/R_C = (5 1.66)/1 = 3.34 \text{ mA}$
- For load, $I_{B(load)} = (V_{out} V_{BE(sat)})/R_{B}$ = (1.66 - 0.7)/10 = 0.096 mA $N = I_{C(driver)}/I_{B(load)} = 34.79 \rightarrow 34$

Fanout

Effect of noise margin

- For a 0.5V noise margin,

 Minimum HIGH level voltage at V_{out} $V_{OH} = V_{IH} + NM_{H} = 1.66 + 0.5 = 2.16V$
- Similar calculation as before with V_{out} at 2.16V gives

$$I_{C(driver)} = (V_{CC} - V_{out})/R_C = (5 - 2.16)/1 = 2.84 \text{ mA}$$
 $I_{B(load)} = (V_{out} - V_{BE(sat)})/R_B = (2.16 - 0.7)/10 = 0.15 \text{ mA}$
 $N = I_{C(driver)}/I_{B(load)} = 19.4 \rightarrow 19$

An increased NM_H reduces fanout even further

Other factors:

Variation in β_F , $V_{BE(sat)}$, $V_{CE(sat)}$, V_{CC} , R_C , R_B .

References:

- ☐ Grinich, V.H., and H.G. Jackson, Introduction to Integrated Circuits, McGraw-Hill
- ☐ Donald P. Leach, Albert P. Malvino and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Herbert Taub, and Donald Schilling, Digital Integrated Electronics, McGraw Hill
- ☐ M. Morris Mano, and Michael D. Ciletti, Digital Design 5e, Pearson