EE 115 Homework 3

1) (**30 points**) Sketch the spectra (i.e., Fourier transforms) of the following functions. If the spectrum is complex, sketch its real and imaginary parts (unless zero) separately.

a)
$$m(t) = \operatorname{sinc}(2t) = \frac{\sin(\pi 2t)}{\pi 2t}$$
. Hint: $F\{\operatorname{sinc}(t)\} = \operatorname{rect}(f)$ and $F\{\operatorname{sinc}(at)\} = \frac{1}{a}\operatorname{rect}(f/a)$ with $a>0$, $F\{\cdot\}$ denoting Fourier transform, and $\operatorname{rect}(f) = \begin{cases} 1, & |f|<1/2\\ 0, & |f|>1/2 \end{cases}$.

- b) $m(t)2\cos(2\pi 5t)$.
- c) $m(t)2\sin(2\pi 5t)$.
- 2) (30 points) Assume m(t) = 2 sinc(2t).
 - a) Determine its Hilbert transform $\hat{m}(t)$. Hint: first determine the Fourier transform $\hat{M}(f)$ of $\hat{m}(t)$, and then compute the inverse Fourier transform of $\hat{M}(f)$.
 - b) Sketch M(f) and $\hat{M}(f)$ for $-\infty < f < \infty$.
 - c) Sketch m(t) and $\hat{m}(t)$ for $-\infty < t < \infty$.
- 3) (40 points) Let $u(t) = a(t)\cos(2\pi f_c t) b(t)\sin(2\pi f_c t)$ where both a(t) and b(t) are baseband (or equivalently lowpass) signals with bandwidth $B \ll f_c$. Draw a diagram with mixers and lowpass filters (LPF) to retrieve a(t) and b(t) from u(t).

October 18, 2025 DRAFT