Sequence Pattern mining

By

S. Jeba Priya

Sequence Pattern Mining

- Sequence database consists of sequences of ordered elements or events (with or without time)
- Sequential Pattern Mining is the mining of frequently occurring ordered events or subsequences as patterns
- Example:
 - Customer shopping sequences:
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Web access patterns, Weather prediction
- Usually categorical or symbolic data
 - Numeric data analysis Time Series Analysis

Sequence Pattern Mining

- I = {I₁, I₂, ...I_p} Set of items
- Sequence s = <e, e, e, e, ... e, >
 - Ordered list of events
 - Each event is an element of the sequence
 - In Shopping databases, event shopping trip in which customers bought items (x, x, ...x,)
 - All trips by customer form a sequence
 - Item can occur at most once in an event, but several times in a sequence
 - Sequence with length I: I-sequence
 - A sequence α = <a₁a₂...a_n> is a subsequence of β = <b₁b₂...b_n> denoted as α
 ⊆ β if there exists integers j₁, j₂, ... j_n between 1 and m such that a₁ ⊆ b_{j1}, a₂ ⊆
 b₂,... a_n ⊆ b_n
 - α = <(ab),d> and β = <(abc),(de)>

Sequence Pattern Mining

- A sequence database, S, is a set of tuples, <SID,s>, where SID is a sequence ID and s is a sequence
- A tuple <SID, s> is said to contain a sequence a, if a is a subsequence of s
- The support of a sequence α in a sequence database S is the number of tuples in the database containing α
- Given the minimum support threshold, a sequence a is frequent in sequence database S if support s(a) >= min sup
- A frequent sequence is called a sequential pattern
- A sequential pattern with length I is called an I-pattern

Sequence Patterns

```
SID Sequence

1 <a(abc)(ac)d(cf)>
2 <(ad)c(bc)(ae)>
3 <(ef)(ab)(df)cb>
4 <eg(af)cbc>
```

- Length of Sequence 1 9
- It contains 'a' multiple times but sequence 1 will contribute only one to the support of <a>
- Sequence <a(bc)df> Subsequence of Sequence 1
- Support for <(ab)c> is 2 (Present in 1 and 3)
 - Frequent as it satisfies minimum support of 2

Scalable Methods for Mining Sequential Patterns

- Full Set Vs Closed Set
 - A sequential patterns s is closed if there exists no s' where s' is a proper super-sequence of s and s' has same support as s
 - Subsequences of a frequent sequence are also ferquent
 - Mining closed sequential patterns avoids generation of unnecessary sub-sequences
- GSP Candidate generate and test approach on horizontal data format
- SPADE Candidate generate and test approach on vertical data format
- PrefixScan does not require candidate generation
- All approaches exploit Apriori property every non empty subsequence of a sequential pattern is a sequential pattern

GSP – Sequential Pattern Mining

- GSP (Generalized Sequential Patterns)
 - Multi-pass, Candidate generate and test approach proposed by Agrawal and Srikant
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - for each level (i.e., sequences of length-k) do
 - Scan database to collect support count for each candidate sequence
 - Generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
 - A (k-1)-sequence w, is merged with another (k-1)-sequence w, to produce a candidate k-sequence if the subsequence obtained by removing the first event in w, is the same as the subsequence obtained by removing the last event in w.
 - repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori
- Weakness : Generates large number of candidates

SPADE – Sequential Pattern Mining on Vertical data format

- SPADE Sequential PAttern Discovery using Equivalent classes
- Vertical data format <itemset: (sequence_ID, event_ID)>
- ID_list: Set of (sequence_ID, event_ID) pairs for a given itemset
- Mapping from horizontal to vertical format requires one scan
- Support of k-sequences can be determined by joining the ID lists of (k-1) sequences
 - To find candidate 2-sequences, all single items are joined if they are frequent, if they share the same sequence identifier and if their event identifier follows a sequential ordering
 - Patterns are grown similarly

Vertical Data Format

SID	EID	itemset
1	1	a
1.	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	€
2	3	bc
2	4	ac
3	1	ef
3	2	ab
3	3	df
3	4	<
3	5	b
-4	1	e
-4	2	g
4	3	af
-4	4	€
-4	5	ь
4	6	c

(a) vertical format database

a		- 48		b		b		
SED	EID	SED	EID					
1	1	1	2					
1	2	2	3					
3.	3	. 3	2					
2	1	3	5					
2	-4	-4	5					
3	2							
-6	3							

(b) ID lists for some 1-sequences

ab		bus			-
EID(a)	EID(h)	SID	EID(b)	EID(a)	
12	2	1	2	- 3	
11	3	2	3	-4	
2	5				
36	5				
	ab EID(a) 1 1 2 3	ab EID(a) EID(b) 1 2 1 3 2 5 3 5	ab EID(a) EID(b) SID 1 2 1 1 3 2 2 5 3 5	ab ba EID(a) EID(b) SID EID(b) 1 2 1 2 1 3 2 3 2 5 3 5	ab bu EID(a) EID(b) SID EID(b) EID(a) 1 2 1 2 3 1 3 2 3 4 2 5 5 5 3 5 5 5

(c) ID_lists for some 2-sequences

aba				
SID	EID(a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

(d) ID_lists for some 3-sequences

SPADE

- Reduces scans of the sequence database
- As the length of the frequent sequence increases, the size of ID_list decreases – results in fast joins
- But large set of candidates are still generated

Prefix Span

- Given a sequence α = <e₁e₂...e_n> (where each e_i corresponds to a frequent event), a sequence β = <e'₁e'₂...e'_m> (m<=n) is called a prefix of α iff</p>
 - e' = e, for i<=m-1</p>
 - e', ⊆ e,
 - All frequent items in (e,_e',) are alphabetically after those in e',
- Sequence γ = <e"_m e_{m+1}...e_n> is called the suffix of α wrt prefix β denoted as γ = α/β where e"_m = (e_m e'_m)

<a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>

```
Prefix Suffix (Prefix-Based Projection)

<a> (abc)(ac)d(cf)>
<a> <(_bc)(ac)d(cf)>
<a(ab)> <(_c)(ac)d(cf)>
```

Prefix Span

- Mining Sequential patterns:
 - {<x₁>,<x₂>,...<x_n>} complete set of length-1 sequential patterns.
 - The complete set of Sequential patterns in S can be partitioned into n disjoint subsets.
 - i subset is the set of sequential patterns with prefix <x>
 - α: length-I sequential pattern and {β₁, β₂,... βₙ} set of all length
 (I+1) sequential patterns with prefix α.
 - The complete set of sequential patterns with α as a prefix can be partitioned into m disjoint subsets
 - jⁿ subset is the set of patterns prefixed with β

Prefix Span - Example

- Step 1: find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
 - The ones having prefix <a>;
 - The ones having prefix ;
 - · ...
 - The ones having prefix <f>

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

PrefixSpan: Example

SID	sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

- Only need to consider projections w.r.t. <a>
 - <a>-projected database: (only first occurrence of a is considered) <(abc) (ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>
 - In <a> projected database frequent items are a:2, b:4, _b:2, c:4, d:2 and f:2
- Find all the length-2 seq. pat. Having prefix <a>: <aa>, <ab>, <ab>, <ab>, <ac>, <ad>, <af></ab>
 - Further partition into 6 subsets
 - Having prefix <aa> {< (_bc)(ac)d(cf)>, <(_e)>} No frequent subsequences
 - Having prefix <(ab)> <(_c)(ac)d(cf)> and <(df)cb>
 - ☐ Frequent patterns: <c> <d> <f> <dc> : <(ab)c> <(ab)d> <(ab)f> <(ab)dc>
 - Having prefix <ac> <(ac)d(cf)>, <(bc)(ae)>, ,
 - □ Frequent patterns: <a> <c> : <aca> <acb> <acc>

Prefix Span

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
 - Can be improved by pseudo-projections

Pseudo-projection

- Registers the index of the corresponding sequence and the starting position of the projected suffix in the sequence instead of physical projection
- Avoids physically copying postfixes
- Efficient in running time and space when database can be held in main memory
- For large data combination of physical and pseudo projection

Sequential Pattern Mining

- Performance rating : PrefixSpan, SPADE, GSP
- All three are slow when there is a large number of frequent subsequences
- Closed Sequential Patterns
 - Closed Subsequences contain no super sequence with the same support
 - Reduces number of sequences considered
 - CloSpan
 - Based on equivalence of projected databases
 - Two projected sequence databases are equivalent iff the total number of items match
 - CloSpan prunes non-closed sequences whenever two projected databases are exactly the same by stopping the growth of one
 - Requires Post-processing to eliminate any remaining non-closed sequential patterns
 - BIDE (Bidirectional Search) algorithm avoids additional checking

Sequential Pattern Mining

- Multi-dimensional, multi-level Sequential patterns
 - Additional information maybe associated with Sequence ID –
 Customer age, address, group and profession
 - Additional information associated with items item category, brand, model type, model number, place…
 - Example: "Retired customers who purchase a digital camera are likely to purchase a color printer within a month"
 - Additional information can be attached with Sequence ID / Item ID

Constraint based Mining of sequential pattern

- Un-focused mining reduces the efficiency and usability of frequent-pattern mining
- Constraint based mining incorporates user-specified constraints to reduce the search space
 - Regular expressions can be used to specify pattern templates
 - Helps to improve efficiency of mining and interestingness of patterns

Constraint based Mining of sequential pattern

Constraints related to duration T

- Constraints related to maximal or minimal length antimonotonic / monotonic constraints
- Anti-monotonic constraint: T<= 10</p>
- □ Monotonic : T > 10
- Succinct: T = 2005
- Periodic patterns related to sets of partitioned sequences such as every two weeks before and after an earthquake

Constraint based Mining

Event folding window w

- specifies the periodicity for treating events as occurring together
- w=0 No event sequence folding
- w=T time-insensitive frequent patterns

Gap between events

- Gap=0 Strictly consecutive sequential patterns
- min_gap and max_gap
- Exact gaps and approximate gaps

Serial Episodes

Set of events occurring in total order

Parallel Episodes

Occurrence order is trivial

Examples

- (A|B)C*(D|E) A and B first occur (relative order is unimportant) followed by any number of C events followed by D and E (in any order)
- C = <a*{bb|(bc)d|dd}> a-projected databases followed by SuffixSpan

Periodicity Analysis for Time-Related Sequential Data

- Periodicity analysis mining of periodic patterns searching for recurring patterns in time-related sequence data
 - Seasons, tides, traffic patterns, power consumption
 - Often performed over time-series data
 - Full periodic pattern
 - Every point in time contributes (precisely or approximately) to the periodicity
 - Example: All days in a year contribute to season cycle
 - Partial periodic pattern
 - Specifies periodic behavior of a time-related sequence at some but not all points of time
 - Example: ABC reads the paper between 7:00-7:30 am every week day

Periodicity Analysis for Time-Related Sequential Data

- Synchronous periodicity event occurs at a relatively fixed offset in each "stable" period
 - 3 pm every day
- Asynchronous periodicity event fluctuates in loosely defined period
- Precise or approximate depending on data value or offset within a period
- Mining partial periodicity leads to the discovery of cyclic or periodic association rules (rules that associate a set of events that occur periodically)
 - Example: If tea sells well between 3 5 pm dinner will also sell well between 7 – 9 pm on weekends