Алгебры

Харитонцев-Беглов Сергей

18 октября 2021 г.

Содержание

1.	Теория чисел		
	1.1	НОД, делимость, линейные диофантовы уравнения	1
2.	Про	должение теории чисел	4
	2.1	Пара комментариев про предыдущую лекцию	4
	2.2	Основная теорема арифметики	4
3.	Кол	ъца вычета и их друзья	6
	3.1	Группы	6
	3.2	Кольца	7
	3.3	Построение кольца вычетов	7
	3.4	Квадратное уравнение	9
	3.5	Китайская теорема об остатках	9
	3.6	Группы вычетов и криптографические протоколы	13
	3.7	Алгоритм RSA	14
	3.8	Генерация простых, тесты на простоту	14

1. Теория чисел

1.1. НОД, делимость, линейные диофантовы уравнения

Определение 1.1. Диофантовым уравнение называется уравнение, которое можно решить \mathbb{Z} .

Рассмотрим линейное диофантово уравнене

$$ax + by = c..$$

Если бы мы были в \mathbb{R} , то решение быстро бы нашлось: $y = \frac{c-ax}{b}$. Но в целых штуках такая штука не всегда будет решением, т.к. b не всегда делит c-ax.

Определение 1.2. a делится на b (a:b,b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Простые свойства:

- 1. $\forall a: 1|a$.
- $2. \forall a: a|a.$
- 3. $\forall a, b : c, k, l \in \mathbb{Z} \Rightarrow (ka + lb) : c$.

Доказательство.
$$a,b:c\Rightarrow \exists d,e: \begin{array}{l} a=c\cdot l \\ b=c\cdot e \end{array}$$
 . Тогда $ka+lb=k\cdot cd+l\cdot ce=c\cdot (kd+le)\Rightarrow$ $(ka+lb):c$

- 4. $\forall k \neq 0, k \in \mathbb{Z} : a : b \iff ak : bk$.
- 5. $a:b \iff a^2:b^2$.
- 6. $a:b \Rightarrow \begin{bmatrix} |a| > |b| \\ a = 0 \end{bmatrix}$.
- 7. $a:b,b:c \Rightarrow a:c$.
- 8. a:a.
- 9. $a:b, b:a \Rightarrow a = \pm b$.

Теорема 1.1 (О делении с остатком).
$$a,b \in \mathbb{Z}\exists ! (q,r) : \begin{cases} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{cases}$$

- **Доказательство**. Единственность. Пусть есть два результата: $a = b \cdot q_1 + r_1$ и $a = b \cdot q_2 + r_2$. Тогда приравняем: $b \cdot q_1 + r_1 = b \cdot q_2 + r_2 \iff b(q_1 q_2) = r_2 r_1 \xrightarrow{r_1, r_2 \in [0; |b| 1]} [|r_1 r_2| < |b|] |r_2 r_1 : b \Rightarrow r_2 r_1 = 0 \iff r_1 = r_2 \Rightarrow b(q_1 q_2) = 0 \iff q_1 = q_2$
 - Существование.

I.
$$a\geqslant 0, b\geqslant 0$$
.

— База: $a=0.\ 0=b\cdot 0+0.\ (0,0)$ — подходит.

— Переход: $a\to a+1$.

 $a=b\cdot q+r$, где $0\leqslant r< b$.

 $a+1=b\cdot q+(r+1)$.

* $r< b-1$. Тогда $r+1< b\Rightarrow (q,r+1)$ — подходит.

* $r=b-1$. Тогда $a+1=b\cdot q+b=b\cdot (q+1)\Rightarrow (q+1,0)$ — подходит.

II. a<0,b>0. $a<0\Rightarrow -a>0.$ Из I: $\exists (q,r): -a=b\cdot q+r$, где $0\leqslant r< b$. Соответственно a=-bq-r. -r=0. $a=b\cdot q+0\Rightarrow (-q,0)$ — подходит. $-r>0\Rightarrow r\in [1;b-1].$ $a=-bq-b+b-r=b\cdot (-q-1)+b-r\Rightarrow (-q-1,b-r)---$

III.
$$b < 0 \iff -b > 0$$
. $\exists q, r: a = (-b) \cdot q + r$, где $0 \leqslant r < |b|$, тогда $a = b(-q) + r \Rightarrow (-q, r)$ — подходит

Вернемся к диофантову уравнению ax + by = c, где a, b, c фиксированы, а x, y — переменные. Пусть только a, b — фиксированы. Тогда подумаем, когда же ax + by = c имеет решения. Тогда решим задачу: описать $\{ax + by \mid x, y \in \mathbb{Z}\} =: \langle a, b \rangle$

Пример. $\langle 1, b \rangle = \mathbb{Z}$

Пример. (4,6) = четные числа

Заметим:

- 1. $\forall m, n \in \langle a, b \rangle m + n \in \langle a, b \rangle$
- 2. $m \in \langle a, b \rangle \Rightarrow km \in \langle a, b \rangle \forall k$

Определение 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{\begin{array}{l} m,n\in I\Rightarrow m+n\in I \ (\text{замкнутость по сложению})\\ m\in I\Rightarrow \forall k\in \mathbb{Z}k\cdot m\in I \ (\text{замкнутость по домножению})\\ I\neq\varnothing \end{array}\right.$$

Пример. $\{0\}$ — идеал.

Пример. \mathbb{Z} — идеал (собственный).

Пример. $\langle a,b\rangle$ — идеал, порожденный a и b.

 $\forall a \in \mathbb{Z} \, \langle a \rangle = \{ax \mid x \in \mathbb{Z}\}$ — главный идеал (порожденный a).

Пример. $\{0\} = \langle 0 \rangle, \mathbb{Z} = \langle 1 \rangle, \langle 4, 6 \rangle = \langle 2 \rangle$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Доказательство. $I = \{0\}$ — ок. Тогда пусть $I \neq \{0\}$. Пусть $a \in I \land a < 0 \Rightarrow -a = (-1)a \in I \land -a \in \mathbb{N}$. То есть $I \cap \mathbb{N} \neq \emptyset$. Найдем наименьшее $r \in I \cap \mathbb{N}$. Проверим, что $I = \langle r \rangle$ (тогда I — главный). Надо проверить $\langle r \rangle \subset I \land I \subset \langle r \rangle$.

Глава #1 2 из 15 Автор: XБ

- $x \in \langle r \rangle$. То есть $x = r \cdot z$. Т.к. $r \in I$, то $r \cdot z \in I$ (по определению идеала), т.е. $\langle r \rangle \subset I$.
- Пусть $a \in I$. Поделим с остатком: $a = r \cdot q + r_1$, $0 \le r_1 < r$, то есть $r_1 = a r \cdot q = a + (-q) \cdot r$. Т.к. $r \in I \Rightarrow (-q) \cdot r \in I \land q \in I \Rightarrow a + (-q) \cdot r \in I$, т.е. $r_1 \in I$. Ho! $0 < r_1 < r$, а r m минимальное натуральное из I. Тогда $r_1 = 0 \Rightarrow a = r \cdot q$, т.е. $a \in \langle r \rangle$, а значит $I \subset \langle r \rangle$.

Определение 1.4. Пусть $a, b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a, b) = \gcd(a, b) = (a, b)$

Докажем единственность. $\begin{cases} a \vdots d, b \vdots d \\ a \vdots d_1, b \vdots d_1 \end{cases} \iff d \vdots d_1. \text{ Тогда } d \vdots d_1 \wedge d_1 \vdots d, \text{ а значит } d = \pm d_1.$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- 2. $\exists x, y \in \mathbb{Z} : d = ax + by$
- 3. ax + by = c имеет решение $\iff c : d$.

Доказательство. Докажем каждый пункт отдельно:

- Рассмотрим $\langle a,b \rangle$ идеал. Он главный по предыдущей теореме: $\exists d \, \langle a,b \rangle = \langle d \rangle$.
- $d \in \langle d \rangle = \langle a, b \rangle$. А значит $\exists x, y : d = ax + by$. $a = a \cdot 1 + b \cdot 0 \in \langle a, b \rangle = \langle d \rangle, \text{ значит } a \vdots d. \text{ Аналогично } b \vdots d.$ С другой стороны пусть $a \vdots d, b \vdots d,$ тогда $d = \underbrace{ax}_{\vdots d} + \underbrace{by}_{\vdots d} \vdots d$
- ax + by = c имеет решение $\iff c \in \langle a, b \rangle = \langle d \rangle$. А $c \in \langle d \rangle \iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма. $\begin{cases} ab:c \\ (a,c) = 1 \end{cases} \Rightarrow b:c.$

Доказательство. По условию $ab \dot{:} c$, значит $\exists x \in \mathbb{Z} : ab = c \cdot x$.

Так как (a,c)=1, то $\exists y,z\in\mathbb{Z}:ay+cz=1$. Тогда домножим все на b и получим aby+czb=b.

А значит
$$\begin{cases} aby:c \\ czb:c \end{cases}$$
 \Rightarrow $b:c$

Глава #1 3 из 15 Автор: XБ

2. Продолжение теории чисел

2.1. Пара комментариев про предыдущую лекцию

- 1. Для любого набора $a_1, \ldots, a_n \in \mathbb{Z} \ \exists \gcd(a_1, \ldots, a_n)$ и $\exists x_1, \ldots, x_n : \ HOД = x_1a_1 + \ldots + x_na_n$. HOД такое d, что $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$.
- 2. Алгоритм Евклида.
 - (a,b) = (a,b-a), но и $b = a \cdot q + r$, тогда (a,b) = (a,r).
 - Пусть $r = b \mod a$, $x_1, x_2 \in \mathbb{N}$. Сделаем последовательность $x_{n+1} = x_{n-1} \mod x_n$. Тогда $(x_1, x_2) = (x_3, x_4) = \dots$ Заметим, что x_n убывает.
 - Тогда существует такое x_n , что $(x_1, x_2) = (x_n, 0) = x_n$.

2.2. Основная теорема арифметики

 $extbf{Onpedenenue 2.1.} \ x \in \mathbb{Z}, x \neq 1,$ тогда x- простое число, если $x=x_1x_2 \iff egin{cases} x_1=\pm 1 \\ x_2=\pm 1 \end{cases} \ \ \forall x_1,x_2$

Свойство *. x — обладает свойством *, $\iff x \neq \pm 1 \land ab \vdots x \Rightarrow \begin{bmatrix} a \vdots x \\ b \vdots x \end{bmatrix}$

Утверждение 2.1. p — простое $\iff p$ — обладает свойством *.

Доказательство. • \Leftarrow Пусть p — простое и $p = x_1x_2$. Тогда x_1x_2 :p по *, $\begin{bmatrix} x_1 \\ x_2 \\ p \end{bmatrix}$. Пусть $x_1 = py. \ p = x_1x_2 = pyx_2. \ 1 = yx_2 \Rightarrow x_2 = \pm 1.$

• \Rightarrow . Пусть p — простое и $ab \dot{:} p$. $d = (a, p), \ d = d \cdot d_1, \ p$ — простое $\Rightarrow d = p \lor d = 1$. $d = p \Rightarrow a \dot{:} p$. $d = 1 \land (a, p) = 1$, по лемме $ab \dot{:} p \land (a, p) = 1 \Rightarrow b \dot{:} p$.

Теорема 2.2 (Основная теорема арифмктики). Пусть $n \in \mathbb{Z}, n \neq 0$. Тогда n единственным образом с точностью до перестановки сомножителей, представимо в виде $(p_i - \text{простые})$

$$n = \epsilon p_1 p_2 \dots p_n, \epsilon \pm 1 = \operatorname{sign}(n), p_1 < p_2 < \dots < p_n.$$

Доказательство. 1. Существование. От противного. Пусть ∃ нераскладываемое число. Рассмотрим минимальное такое число.

- \bullet x = 1 пустое произведение. Противоречие.
- \bullet x = p произведение из 1 члена. Противоречие.
- $x = x_1 x_2$. $x_1, x_2 = \pm 1 \Rightarrow x_1, x_2 < X \Rightarrow x_1, x_2$ раскладываемые. Или $x_1 = p_1 p_2 \dots p_n, x_2 = q_1 q_2 \dots q_m \Rightarrow x = p_1 p_2 \dots p_n q_1 q_2 \dots q_m$.

Автор: Харитонцев-Беглов Сергей

2. Единственность. Пусть есть плохие числа. X — минимальное из них. $q_1q_2\dots q_n=X=p_1p_2\dots p_m$. Значит $p_1p_2\dots p_m$: $q_1\Rightarrow p_1$: $q_1\lor p_2\dots p_m$: q_1 . Тогда $\exists p_i$: q_1 . Тогда можно поделить на q_1 , но p_i — простое, тогда p_i =. Рассмотрим $X'=\frac{X}{q_1}$. $q_2q_3\dots q_n=X'=p_1p_2\dots p_k$. X'< X, значит q=p. А значит противоречие.

Контр-примеры для О. Т. А:

- 1. Рассмотрим $2\mathbb{Z}$ множество четных чисел. Теперь 6 простое. и все (4k+2). Теперь как разложить на простые 60? $60=2\cdot 30$, а также $60=6\cdot 10$.
- 2. $\mathbb{Z} \cup \{\sqrt{5}\} = \{a+b\sqrt{5} \mid a,b \in \mathbb{Z}\}$. Заметим, что $\mathbb{Z} \subset \mathbb{Z}\{\sqrt{5}\}$ $4=2\cdot 2=\overbrace{(\sqrt{5}-1)(\sqrt{5}+1)}^{\text{простое}}$

Определение 2.2. $n \in \mathbb{Z}, n \neq 0, p$ — простое, тогда степень вхождения $(V_p(n) = k)$ p в n — $\max\{k \mid n:p^k\}$

В терминах разложения: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. $V_p(n)=a_i$, а если p нет в разложении, то $V_p(n)=0$.

Свойства: $V_p(n)$

- 1. $V_p(xy) = V_p(x) + V_p(y)$
- 2. $V_p(x+y) = \min(V_p(x), V_p(y)),$ и если $V_p(x) \neq V_p(y)$

Доказательство. $V_p(x)=a, V_p(y)=b$ и $x=p^a\cdot \widetilde{x}, y=p^b\cdot \widetilde{y}.$

Не умаляя общности: $a \geqslant b$. Тогда $x + y = p^a \widetilde{x} + p^b \widetilde{y} = p^b (p^{a-b} \widetilde{x} + \widetilde{y})$. Если a > b, то $p^{a-b} \widetilde{x} + \widetilde{y}$

не делится на p. А значит $V_p(x+y) = \min(V_p(x), V_p(y))$.

Еще следствия из О. Т. А.

- 1. $x:y \Rightarrow V_p(x) \geqslant V_p(y) \forall$ простого p
- 2. $x = p_1^{a_1} \dots p_n^{a_n}, y = p_1^{b_1} \dots p_n^{b_n} \Rightarrow (x, y) = p_1^{\min(a_1, b_2)} \dots p_n^{\min(a_n, b_n)}$
- 3. $x = z^k \iff \forall$ простого $p V_p(x) : k$
- 4. Количество натуральных делителей $x = \prod x_i^{a_i}$ равно $\tau(x) = \prod (a_i + 1)$

Доказательство. Делители X однозначно соотносятся с $\{(b_1, b_2, \dots, b_n) \mid 0 \leqslant b_i \leqslant a_i \quad \Box$

5. $\sigma(x)$ — сумма натуральных делителей x. Тогда $\sigma(x) = \frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}$

Доказательство. $\frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}=\prod \frac{p_i^{a_i+1}-1}{p_i-1}=\prod (1+p_i+\ldots+p_i^{a_i})=$ раскроем скобки. = сумма делителей.

6.

 $m{Onpedenetue~2.3.}~m-{
m HOK}~({
m LCM},~[a,b]),~{
m e}$ сли $m\.:a,m\.:b$ и $\forall n~n\.:a\wedge n\.:b\Rightarrow n\.:m$ $[a,b]=\prod p_i^{\max(a_i,b_i)}$

7. $a, b \in \mathbb{Z}$ (a, b) = 1 $ab = c^k \Rightarrow \exists c_1, c_2 \ a = c_1^k, b = c_2^k$

3. Кольца вычета и их друзья

Рассмотрим
$$a^2 - b^2 = 15^{2021} \iff (a - b)(a + b) = 3^{2021} \cdot 5^{2021} \Rightarrow \begin{cases} a + b = 3^k \cdot 5^l \\ a - b = 3^{2021 - k} \cdot 5^{2021 - l} \end{cases} \Rightarrow a = \frac{3^k \cdot 5^l + 3^{2021 - k} \cdot 5^{2021 - l}}{2}.$$

Уравнение $81a^2 - 169b^2 = 15^{2021}$ — тоже решается. А вот $a^2 - 2b^2 = 15^{2021} \iff (a - \sqrt{2}b)(s + \sqrt{2}b) = 3^{2021}5^{2021}$ уже не решается в целых чисел. Если вылезать, то надо расписывать разложение $a + \sqrt{2}b$, "3", "5" и единственность разложения на множители.

Еще один пример: $a^2 + b^2 = 15^{2021}$. Посмотрим на остатки от деления на 4: $a^2, b^2 \mod 4 \in \{0,1\}, 15^{2021} \mod 4 = 3$. Но для этого нам нужно понимать что-то по кольцо вычетов по модулю.

3.1. Группы

Определение 3.1. Группой называется пара (G,*), где G — множество, а $*: G \to G$ — бинарная операция, так что выполнены свойства:

- 1. $\forall a, b, c \in G : (a * b) * c = a * (b * c)$. Ассоциативность.
- 2. $\exists e \in G : a * e = e * a = a$. Существование нейтрального элемента.
- 3. $\exists a^{-1} : a * a^{-1} = a^{-1} * a = e$. Существование обратного элемента.

Несколько примеров:

- 1. $(\mathbb{Z}, +)$. $e = 0, a^{-1} = -a$.
- 2. $(\mathbb{Q} \setminus 0, \cdot), e = 1, a^{-1} = \frac{1}{a}$.
- 3. $(2^M, \triangle) \ e = \emptyset, A^{-1} = A.$

Определение 3.2. Группа G называется абелевой, если $\forall x,y \in G: x*y=y*x.$

Пример Главный пример группы. Пусть $G = S(M) = \{f : M \to M \mid f$ — биекция $\}$

- Ассоциативность упражнение.
- Нейтральный элемент f(x) = x, тождественное отображение.
- $f^{-1} =$ обратная функция. Она существует, так как f биекция.

Получили группы по композиции.

Пример. $M = \{1, 2, 3\}$. $f_1, f_2: M \to M$ — биекция. f_1 — меняет местами 1 и 2: $1 \to 2, 2 \to 1, 3 \to 3$, f_2 переставляет по циклу: $1 \to 2, 2 \to 3, 3 \to 1$. $f_2 \circ f_1: 1 \to 3, 2 \to 2, 3 \to 1$. $f_1 \circ f_2: 1 \to 1, 2 \to 3, 3 \to 2$. Ну значит группа не абелева.

Докажем простейшие свойства групп:

1. ∃! нейтральный элемент.

Доказательство: заметим, что $e_1 = e_1 * e_2 = e_2$

2. ∃! обратный элемент.

Доказательство: пусть b, c — обратные к a. Тогда (b*a)*c = e*c = c, но при этом b*(a*c) = b*e = b. Значит b = c.

3. $a * b = b * c \iff a = c$

Доказательство: $a * b = a * c \iff (a^{-1} * a) * b = (a^{-1} * a) * c \iff e * b = e * c \iff b = c$

3.2. Кольца

Определение 3.3. Кольцо — тройка $(R,+,\cdot)$ (R — множество, $+,\cdot:R\times R\to R)$, такая что:

1–4. (R, +) — абелева группа. Нейтральный элемент обозначается 0, обратный к a - -a.

5.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 и $(b+c) \cdot a = b \cdot a + b \cdot c$. Дистрибутивность.

Onpedenehue 3.4. Кольцо R называется ассоциативным, если выполнено

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

Onpedenehue 3.5. Кольцо R называется коммутативным, если

6.
$$a \cdot b = b \cdot a$$

Определение 3.6. Кольцо R называется кольцом с 1, если

7.
$$\exists 1 \in R : 1 \cdot a = a \cdot 1 = a$$

Пример. $(\mathbb{Z}, +, \cdot)$ — коммутативное ассоциативное кольцо с 1.

Определение 3.7. Коммутативное ассоциативное кольцо с 1 называется полем, если выполнена

8.
$$\forall a \in R \{0\} \exists b \in R \ ab = 1 \land 1 \neq 0$$

Пример. $(\mathbb{Q}, +, \cdot)$ — поле, а вот $(\mathbb{Z}, +, \cdot)$ — не поле.

3.3. Построение кольца вычетов

Определение 3.8. Пусть $a, b \in \mathbb{Z}$, говорят, что a сравнимо с b по модулю $n \ (a \equiv b \pmod n)$, если $n \mid a - b$. Эквивалентное определение: a и b имеют одинаковые остатки по модулю n.

Докажем, что сравнимость по модулю — отношение эквивалентности.

- $a \equiv a \pmod{n} \iff n \mid 0$
- $n|a-b \iff n|b-a \Rightarrow a \equiv b \pmod{n} \iff b \equiv a \pmod{n}$.
- Транзитивность...

Наблюдение. $a \in \mathbb{Z} \to \overline{a} = \{b \mid a \equiv b\} = \{a + kn \mid k \in \mathbb{Z}\}. \ \mathbb{Z} = \overline{0} \cup \overline{1}...$

Определение 3.9. Фактор множества по отношению \equiv обозначается $\mathbb{Z}/n\mathbb{Z}$.

 $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Элементы $\mathbb{Z}/n\mathbb{Z}$ называются классами вычетами по модулю.

1. $a \equiv b \pmod{n} \land c \equiv d \pmod{n} \iff a + c \equiv b + d \pmod{n} \land ac \equiv bd \pmod{n}$.

Доказательство
$$(a+c)-(b+d)=\underbrace{(a-b)}_{:_n}-\underbrace{(d-c)}_{:_n}$$
: n .

Доказательство ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d):n.

Значит класс суммы и произведения зависит только от классов множителей и слагаемых.

Теорема 3.1. Пусть $n \in \mathbb{N}$. Тогда класс $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$, где $\overline{a} + \overline{b} = \overline{a + b} \wedge \overline{a} \cdot \overline{b} = \overline{a \cdot b}$ — ассоциативное коммутативное кольцо с единицей.

Доказательство. Все аксиомы — следствия из
$$\mathbb{Z}$$
. Докажем для примера $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})=\overline{a}+\overline{b}+\overline{c}=\overline{a}+(\overline{b}+\overline{c})=\overline{a}+(\overline{b}+\overline{c})$.

Закон сокращения не очень работает в кольце вычетов по модулю: $2 \cdot 1 = 2 \cdot 4 \pmod 6$, но $1 \neq 4 \pmod 6$.

Определение 3.10. Пусть R — коммутативное ассоциативное кольцо с единицей. Тогда $\forall a \in R: a$ — делитель $\Rightarrow \exists B \neq 0: ab = 0$.

Пример. n — составное $n=p_1p_2$ в $\mathbb{Z}/n\mathbb{Z}\overline{p_1p_2}=\overline{n}=0$. Значит p_1,p_2 — делители числа.

Лемма. $\forall a, b, c \in Rab = ac \land a$ — не делитель $0 \Rightarrow b = c$.

Доказательство.
$$ab = ac$$
: $ab - ac = 0 \iff a(b - c) = 0$. a — не делитель $0 \Rightarrow b - c = 0 \iff b = c$.

Лемма. $a \in Ra$ — обратим $\Rightarrow a$ — не делитель 0.

Доказательство. Пусть
$$ab = 0 \Rightarrow a^{-1}(ab) = a^{-1} \cdot 0 = (a^{-1}a)b = 0 \Rightarrow b = 0.$$

Замечание. Обратное неверно: в \mathbb{Z} 2 – не делитель нуля, но $\frac{1}{2} \notin \mathbb{Z}$.

Теорема 3.2. $\forall a \in \mathbb{Z} : \overline{a} \in \mathbb{Z}/n\mathbb{Z}$. Тогда:

- 1. \overline{a} обратим \iff (a, n) = 1
- 2. \overline{a} делитель нуля \iff $(a,b) \neq 1$.

Доказательство. \overline{a} — обратим $\iff \exists \overline{b} : \overline{a} - \overline{b} = \overline{1} \iff existsb : ab = 1 \pmod{n} \iff \exists b : ab - 1 : n \iff \exists b, k : ab - 1 = nk \iff \exists b, k : ab - nk = 1 \iff (a, n) = 1.$

 $(a,n)=1\Rightarrow \overline{a}$ — обратим \Rightarrow не делитель нуля.

$$(a,n)=d>1, a=dx.$$
 Тогда $\overline{a}\cdot \frac{\overline{n}}{\overline{d}}=\overline{d}x\frac{\overline{n}}{\overline{d}}=\overline{nx}=0$ и $\frac{\overline{n}}{\overline{d}}\neq 0.$ Значит $9<|\frac{n}{d}|< n.$

Cnedcmeue. n — простое $\Rightarrow \mathbb{Z}/n\mathbb{Z}$ — поле.

Доказательство. Достаточно проверить существование обратного. $\overline{a} \neq \overline{0} \iff a /: n \iff (a, n) = 1 \iff a -$ обратим.

Определение 3.11. \forall ассоциативного кольца с 1 R: R — называется кольцом без делителей 0 (область целостности), если делитель 0 только 0. $ab=0 \iff a=0 \lor b=0$.

Замечание. R — область $\Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2 \ (a \neq 0)$.

Вернемся к диофантову уравнению ax + by = 1, (a, b) = 1. Тогда $ax = c \pmod{b}$ и $by = c \pmod{a}$. Тогда $\overline{ax} = \overline{c}$ в $\mathbb{Z}/n\mathbb{Z} \xrightarrow{(a,b)=1} \overline{x} = \overline{a}^{-1}\overline{c} \pmod{b}$. Тогда $x = x_0 + kb$.

3.4. Квадратное уравнение

Посмотрим на $x^2 + px + q = 0$ в $\mathbb{Z}/n\mathbb{Z}$. Работает ли $x_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$. Есть проблемки:

- 1. $p^2 4q$ не квадрат в $\mathbb{Z}/n\mathbb{Z}$ (не решений).
- 2. 2 = 0. Или $\nexists 2^{-1}$ (нельзя поделить на два).
- 3. n не простое. Тогда $(x-x_1)(x-x_2)\dots = 0$. Тогда не следует, что $x=x_1 \vee x = x_2$. Пример: $x^2-1=0 \pmod 8$

3.5. Китайская теорема об остатках

Чтобы решать такие уравнения можно свести к простым модулям при помощи китайской теоремы об остатках.

Вопрос такой: как связаны $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$, $\mathbb{Z}/mn\mathbb{Z}$. Пусть $P_m: \mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z}$, а $P_m n\mathbb{Z} \mapsto \mathbb{Z}/mn\mathbb{Z}$.

Определение 3.12. Гомоморфизмом колец $f: R_1 \mapsto R_2$ называется такое отображение, что $\forall r_1, r_1 \in R_1: f(r_1 + r_2) = f(r_1) + f(r_2), f(r_1 r_2) = f(r_1) \cdot f(r_2), f(1) = 1.$

Определение 3.13. Гомоморфизмом группы $f: G_1 \mapsto G_2$ называется такое отображение, что $\forall g_1, g_2: f(g_1g_2) = f(g_1) \cdot f(g_2)$.

Замечание. f — гомоморфизм групп $G_1,G_2\Rightarrow f(e_{G_1})=e_{g_2}$. В частности f — гомоморфизм колец $R_1,R_2\Rightarrow f(0_{R_1})=0_{R_2}$.

Доказательство.
$$f(e_{G_1}) = f(e_{G_1} \cdot e_{G_1}) = f(e_{G_1}) \cdot f(e_{G_1})$$
. Дальше сокращаем.

Существует $P_{mn,m}: P_{mn,m} \cdot P_{mn} = P_m$.

Доказательство.
$$P_{mn,m}(\overline{a_{mn}}) = \overline{a_m}$$
.

$$Koppeкmнocmь. \ \overline{a_m} = \overline{b_m n} \iff a \equiv b \pmod{mn} \iff a - b : mn \Rightarrow a - b : m \Rightarrow \overline{a_m} = \overline{(b_m)}$$

Аналогично существует гомоморфизм $P_{mn,n}$. То есть $\overline{a_{mn}} \to (\overline{a_m}, \overline{a_n})$ — отображение. То есть $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Отступление.

Определение 3.14. R_1, R_2 — кольца. Рассмотрим $(R_1 \times R_2, +, \cdot) : (r_1, r_2) +_{R_1 \times R_2} (r_1' r_2') \coloneqq (r_1 +_{R_1} r_2, r_2 +_{R_2} r_2')$. Тоже самое для умножения. Тогда $R_1 \times R_2$ — тоже кольцо.

Итак мы построили гомоморфизм $\mathbb{Z}/mn\mathbb{Z} \mapsto \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$. Подумаем про его свойства. Вопервых заметим, что слева mn элементов, но и справа mn элементов!

Определение 3.15. Биективный гомоморфизм (групп, колец, ...) (называется изоморфизмом, \cong) если каждом a_i задано ровно одно b_j и наоборот.

Теорема 3.3 (Китайская теорема об остатках). Пусть (m,n)=1, тогда $\mathbb{Z}/mn\mathbb{Z}\cong\mathbb{Z}/m\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}$.

Доказательство.

1. $i_{m,n}$ — инъективно. Пусть $i_{m,n}(\overline{a_{m,n}}) = (\overline{a_m}, \overline{a_n}), i_{m,n}(\overline{b_{n,m}}) = (\overline{b_m}, \overline{b_n}) \Rightarrow a - b : m \wedge a - b : n \xrightarrow{(n,m)=1} a - b : mn$.

2. $i_{m,n}: a \mapsto B$ инъективно: $|A| = |B| \Rightarrow i_{m,n}$ — суръективно.

Теорема 3.4 (КТО 2). $m_1, m_2, m_3, \ldots, m_n \in \mathbb{Z} \wedge (m_i, m_j) = 1 \Rightarrow \mathbb{Z}/m_1, m_2, \ldots, m_n \mathbb{Z} \mapsto \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}$ $\mathbb{Z}/m_2\mathbb{Z}\dots$ - изоморфизм колец.

Теорема 3.5 (КТО без колец). $\forall m_1, \dots, m_n \in \mathbb{Z}, \ \forall a_1, \dots, a_n \ (m_i, m_j) = 1 \Rightarrow \exists x_0 \in Zx \equiv a_1$ $\pmod{m_1} \land \ldots \land x \equiv a_n \pmod{m_n} \iff x \equiv x_0 \pmod{\prod_i m_i}$

To есть по факту мы хотим получить обратную функцию к $f_{m_1,m_2,\dots}:\overline{a_{m_1m_2m_3}}\mapsto (\overline{a_{m_1}},\overline{a_{m_2}},\overline{a_{m_3}}).$ Пусть тогда $g=f^{-1}$. Заметим, что g — гомоморфизм колец. Раз g сохраняет операции, то $g(\overline{x}, \overline{y}, \overline{z}) = g(\overline{x}, 0, 0) + g(0, \overline{y}, 0) + g(0, 0, \overline{z}) = \overline{x}g(1, 0, 0) + \overline{y}g(0, 1, 0) + \overline{z}g(0, 0, 1).$

Пусть
$$x = g(1, 0, 0) \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_2} \\ x \equiv 0 \pmod{m_3} \end{cases} \iff \begin{cases} x \equiv 1 \pmod{m_1} \\ x \equiv 0 \pmod{m_1} \end{cases}$$
.

В группе $\forall a \neq e \ \forall x : ax \neq x$. Тогда посмотрим группу $(\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}) \supset \{(a,0) \mid a \in \mathbb{Z}/m\mathbb{Z}\} \cong$ $\mathbb{Z}/m\mathbb{Z}$.

Тогда для любого $n \in \mathbb{N} : n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_3} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}$.

Пример. Для того, чтобы решить $b^2 = a$ надо решить $b_i^2 = a$ для все состовляющих.

Определение 3.16. Пусть C — группа $(a \in C)$, тогда порядок элемента a: $\operatorname{ord}(a) = \{\min k \in C\}$ $\mathbb{N} \mid a^k = 1$ А если такого k нет, то $\operatorname{ord}(a) = \infty$

Лемма. Пусть G — группа $(a \in G)$. $\langle a \rangle = \{a, a^2, \dots; a^{-1}, (a^{-1})^2, \dots, e\} = \{a^k \mid k \in \mathbb{Z}\}$. Тогда $(\langle a \rangle, *)$ — группа.

Доказательство. Проверим замкнутость относительно операций: 0-рной $(\{\dot{j} \rightarrow e)$, унарной $a \to a^{-1}$, бинарной $(a, b) \to a * b$.

- $e = a^0 \in \langle a \rangle$
- $b \in \langle a \rangle . b = a^k \Rightarrow b^{-1} = a^{-k} \in \langle a \rangle .$
- $b, c \in \langle a \rangle$. $b = a^k, c = a^l \Rightarrow bc = a^{k+l} \in \langle a \rangle$.

Определение 3.17. $\langle a \rangle$ называется циклической группой, порожденной a.~G- циклическая группа $\iff \exists a \in GG \cong \langle a \rangle$

Теорема 3.6. ord $a = \infty \Rightarrow \langle a \rangle \cong (\mathbb{Z}, +)$. ord $a = k \in \mathbb{N} \Rightarrow \langle a \rangle \cong (\mathbb{Z}/k\mathbb{Z}, +)$

Доказательство. $f:(\mathbb{Z},+)\to\langle a\rangle$. То есть $k\mapsto a^k$. $f(k+l)=a^{k+l}=a^k\cdot a^l=f(k)+f(l)$. Тогда f — сюръекция по определению циклической группы.

Докажем инъективность. Пусть $a^k = a^l \iff a^{k-l} \cdot a^l = ea^l \iff a^{k-l} = e$. Ho ord $a = \infty$! Значит k - l = 0.

Теперь ord $a \neq \infty$. Тогда построим $f: \mathbb{Z}/k\mathbb{Z} \to \langle a \rangle$, то есть $\overline{m_k} \mapsto a^m$.

Корректность: $\overline{m_k} = \overline{n_k} \Rightarrow (m-n)$:k. То есть $m = n + k \cdot l$. Значит $a^m = a^{n+k \cdot l} \iff a^m = a^m = a^{n+k \cdot l}$ $a^n \cdot a^{kl} = a^m$.

Суръективность/инъективность: смотри выше. Или ниже, ну тут бан короче.

Простыми словами, если ord $a = \infty \Rightarrow$ в последовательности $\{a^i\}$ - элементы не повторяются. А если ord $a \neq \infty$, то элементы повторяются с периодом k, а внутри элементы не повторяются.

Теорема 3.7 (Теорема Лангранжа). Пусть G — группа. $\forall G$ — n-элементная группа, тогда $\forall a \in G : n : \text{ord } a$

Доказательство. Пусть ord a=k. Рассмотрим отображение $m_a(x)=ax$. $m_aG\to G$. Нарисуем граф отображений (вершины — элементы G, ребра (стрелки) — $x\to a_x$). $x\to ax\to a^2x\to a^3x\to\ldots\to a^kx\to x$, так как для $\forall i,j\leqslant k:a^ix=a^jx\Rightarrow a^i=a^j$.

Значит все элементы G разбиваются на циклы длины k. Следовательно n:k.

Следствие. G — конечная группа $(a \in G) \Rightarrow a^{|G|} = e$

Доказательство. ord a=k. $n=k\cdot l$ по теореме Лагранжа. Тогда $a^n=a^{k\cdot l}=\left(a^k\right)^l=e^l=e$

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$. $\overline{a}^x = \underbrace{\overline{a} + \overline{a} + \overline{a} + \overline{a}}_{x \text{ раз}} = \overline{x}\overline{a}$.

Пример. p — простое.

 $G:=(\mathbb{Z}/p\mathbb{Z}\setminus\{0\},\cdot).$ |G|=p-1. Тогда $a^{p-1}=1.$ Малая теорема Ферма.

На языке сравнений: $a \in \mathbb{Z}, a:p \Rightarrow a^{p-1} - 1:p \iff a^{p-1} \equiv 1 \pmod{p}$.

Пример. $(\mathbb{Z}/p\mathbb{Z},+)$ — циклическая группа. А вот с G из предыдущего пункта — тоже, если p — простое. Но не очев.

Утверждение 3.8. G — группа (|G|=n). G — циклическая $\iff \exists a \in G : \text{ord } a=n$. МТФ: $\overline{a}, \overline{a}^2, \ldots$ — периодична с периодом p-1. Утверждение: $\exists \overline{a} : p-1$ — наименьший период этой последовательности.

Замечание. Пусть G — группа, |G|=p — простое. Тогда $G\cong (\mathbb{Z}/p\mathbb{Z},+)$. G — циклическая.

Доказательство. Возьмем $a \neq e$. Тогда $p \operatorname{ord} a \Rightarrow \operatorname{ord}(a) = 1 \vee \operatorname{ord}(a) = p \Rightarrow a = e \vee \langle a \rangle = G \Rightarrow G$ — циклическая $\Rightarrow G \cong (\mathbb{Z}/p\mathbb{Z}, +)$.

Определение 3.18. R — ассоциативное кольцо, тогда $R^* = \{a \in R | \exists a^{-1}\}$ — группа обратимых элементов.

Проверим, что R^* — группа.

- Проверим замкнутость. $a, b \in R^* \Rightarrow \exists a^{-1} \exists b^{-1} : (ab)^{-1} = b^{-1}a^{-1}$.
- $1 \in R^*$.
- $a \in R^* : \exists a^{-1} \Rightarrow \exists (a^{-1})^{-1} = a$, значит $a^{-1} \in R^*$.

Замечание. $a^n=1\Rightarrow\in R^*$. Т.к. тут записано, что $a\cdot a^{n-1}=1$ — то есть он обратим.

Рассмотрим $R=\mathbb{Z}/n\mathbb{Z}$. Тогда $R^*=\{\overline{a}\in\mathbb{Z}/n\mathbb{Z}\mid \exists \overline{b}:\overline{a}=\overline{b}=1\}=\{\overline{a}\in\mathbb{Z}/n\mathbb{Z}\mid (a,n)=1\}$. Тогда $|R^*|=\varphi(n)$ — функция Эйлера.

Теорема 3.9 (Теорема Эйлера). $\forall b \in (\mathbb{Z}/n\mathbb{Z})^* = b^{\varphi(n)} = 1$

Теорема 3.10 (Теорема Эйлера). $\forall a \in \mathbb{Z} : (a,n) = 1 \Rightarrow a^{\varphi(n)} \equiv 1 \pmod n$

Эффективно вычислим $\varphi(n)$:

1. $n = p^k, p - \text{простое.}$

$$\varphi(n) = \{x \in \{1, \dots, p^k\} \mid (x, p^k) = 1\} = \{x \in \{1, \dots, p^k\} \mid x \not : p\} = p^k - |\{p, 2p, \dots, p^k\}| = p^k - p^{k-1}.$$

2. $n - \text{составное. } n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$

По КТО:

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times \ldots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}).$$

. Тогда заметим, что

$$(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}\times\ldots\times\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*=(\mathbb{Z}/p_1\mathbb{Z})^*\times\ldots\times(\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*.$$

Так как если (x_1, \ldots, x_k) — обратим, то x_i — обратимы.

Из этого получаем, что

$$\varphi(n) = |(\mathbb{Z}/n\mathbb{Z})^*| = |(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \ldots \times \mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^*| = \prod_{i=1}^k |(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*.$$

Получили формулу из а). Применим её:

$$\varphi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1}) \dots (p_k^{\alpha_k} - p_k^{\alpha_k - 1}) = n \cdot (1 - \frac{1}{p_1}) \cdot \dots \cdot (1 - \frac{1}{p_k}).$$

Теорема 3.11 (Теорема о первообразном корне). $p \in \mathbb{Z}$ — простое $\Rightarrow (\mathbb{Z}/p\mathbb{Z})*$ — циклическая.

Доказательство. В ноябре.

Посмотрим на устройство $\mathbb{Z}/p\mathbb{Z}$. $\exists a \in Z : \{\overline{a}, \overline{a^2}, \dots, \overline{a^{p-1}}\} = \{\overline{1}, \dots, \overline{p-1}\}.$

Тогда как устроены $(\mathbb{Z}/n\mathbb{Z})^*$ в общем случае?

Отступление: группа, порожденная множеством.

Определение 3.19. G-группа $S \subset G$ — подгруппа, порожденная множеством S.

1. Наименьшая (по включению) подгруппа G, содержащая S.

Замечание. $H - \text{подгруппа } G: H \leq G.$

Замечание. $\{H_i\}_{i\in I}: H_i\leqslant G\Rightarrow \bigcap H_i\leqslant G.$

2. (Явное описание). $\langle S \rangle = \{a_1^{\varepsilon_1} a_2^{\varepsilon_2} \dots a_k^{\varepsilon_k} \mid a_i \in S, \varepsilon = \pm 1\}.$

Докажем, что 1) равно 2).

Доказательство.

- 1. Пусть $a_1, a_2, \dots, a_k \in S$. Тогда для любой $H \leqslant G \ h \supset S$ верно:
 - (a) $a_i \in H$.
 - (b) $a_i^{\varepsilon_i} \in H$, так как H замкнута относительно $^{-1}$
 - (c) $a_1^{\varepsilon_1}a_2^{\varepsilon_2}\dots a_k^{\varepsilon_k}\in H$, так как H замкнуто относительно \cdot .

Значит $H\supset \langle S\rangle \Rightarrow \langle S\rangle \subset \prod_{H\leqslant G\wedge H\supset S}$.

С другой стороны $H = \langle S \rangle \Rightarrow H \supset S \land H \leqslant G. \langle S \rangle$ — подгруппа:

$$(a_1^{\varepsilon_1} \dots a_k^{\varepsilon_k}) \cdot (b_i^{\mu_i}) = \prod_i ????.$$

Теорема 3.12. $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая $\iff \begin{cases} n=p^k & p>2$ — простое $n=2p^k & \text{ см. выше} \\ n=2\vee n=4 \end{cases}$

 $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$. Тогда $(\mathbb{Z}/n\mathbb{Z})^*=(\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^* imes\dots imes(\mathbb{Z}/p_k^{\alpha_k})^*$.

Общее утверждение: G_1, G_2, G — группы (конечные).

- 1. $G \cong G_1 \times G_2$. $(|G_1|, |G_2|) \neq 1 \Rightarrow G$ не циклическая.
- 2. () $|G_1|, |G_2|$) = 1 и G_1, G_2 циклическая $\Rightarrow G_1 \times G_2$ циклическая. (KTO).

Тогда $\forall a \in G_1, b \in G_2 a^{|G_1|} = e_{G_1} \wedge b^{|G_2|} = e_{G_2} \Rightarrow (a,b)^{\operatorname{lcm}(|G_1|,|G_2|)} = (e,e) \Rightarrow \forall x \in G_1 \times G_2 : ord(x) \leqslant \operatorname{lcm}(|G_1|,|G_2|) < |G_1| \cdot |G_2| = |G_1 \times G_2| \Rightarrow G_1 \times G_2 - \text{не циклическая.}$

Замечание. $a^{\varphi(n)}=1$. Точна ли оценка $\varphi(n)$? Если $(\mathbb{Z}/n\mathbb{Z})^*$ — циклическая (например, n — простое). Тогда да. Иначе пусть $n=pq,\ p,q$ — простые. Тогда по Эйлеру $a^{(q-1)(p-1)}=1$, а на самом деле $a^{\frac{(q-1)(p-1)}{2}}=1$.

Доказательство. $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$. Тогда $|(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^*|=p_i^{\alpha_i}-p_i^{\alpha_i-1}$:2, кроме случая $p_i=2, a_i=1$. Поэтому, если k>2 или k=2 $p_1^{\alpha_1}, p_2^{\alpha_2} \neq 2^1 \Rightarrow p_i^{\alpha_i}-p_i^{\alpha_i-1}$ — не циклическая Rightarrow $(\mathbb{Z}/n\mathbb{Z})*$ — не простое. Остались случаи $k=1, n=p^a, k=2n=2\cdot p^a$.

Случай $n=2p^a, p\neq 2.$ $(\mathbb{Z}/n\mathbb{Z})^*\times (\mathbb{Z}/p^a\mathbb{Z})^*=(\mathbb{Z}/p^a\mathbb{Z})^*$ — свели к случаю 1.

Пусть $n=p^a$. p=2, a=1,2 — очев. $a>2\Rightarrow (\mathbb{Z}/2^a\mathbb{Z})^*$ — не циклическая. Пусть циклическая, тогда $(\mathbb{Z}/2^a\mathbb{Z})^*=\langle x\rangle$, ord $x=2^{a-1}$. Тогда в $(\mathbb{Z}/2^a\mathbb{Z})^*$: $y^2=1\iff\exists k(x^k)^2=1\iff x^{2k}=1$. $2k!2^{a-1}\wedge 2k!2^{a-2}\Rightarrow k=0 \lor k=2^{a-2}$. y^2 — имеет два решения.

Теорема 3.13. $a \in (\mathbb{Z}/p\mathbb{Z})^*$. Тогда $x^2 = a$ имеет решение $\iff a^{\frac{p-1}{2}} = 1$

Доказательство.

- \Rightarrow . $a = x^2 \Rightarrow a^{\frac{p-1}{2}} = (x^2)^{\frac{p-1}{2}} = x^{p-1} = 1$ (MTb).
- \Leftarrow . $a^{\frac{p-1}{2}} = 1$. $\exists c : (\mathbb{Z}/p\mathbb{Z})^* = \langle c \rangle$. $\exists k : a = c^k$. Тогда $a^{\frac{p-1}{2}} = (c^k)^{\frac{p-1}{2}} \iff c^{\frac{k(p-1)}{2}} = 1$ Та как ord $\frac{k(p-1)}{2}$: p-1. Тогда $\frac{k}{2 \in \mathbb{Z}}$, то есть k=2l. $a=c^{2l}=(c^l)^2$.

3.6. Группы вычетов и криптографические протоколы

Главное отображение, которое нас интересует — $p_k: (\mathbb{Z}/p\mathbb{Z})^* \to (\mathbb{Z}/p\mathbb{Z})^*: p_k(x) = x^k$.

Заметим, что если $(p-1,k)=1\Rightarrow p_k$ — биекция: $p_k^{-1}(x)=x^l$, где $l:kl=1\pmod{p-1}$. $x\to x^k\to (x^k)^l=x^{kl}=x^1=1.$ $x\to (x^l)\to (x^l)^k=x.$

А если $(p-1,k) \neq 1$, то p_k — не биекция. Если $p-1=k\cdot s$ и g — первообразный корень, то ord g=p-1 и $(g^s)^k=1$. Тогда $1^k=1$ — не инъекция.

Классический протокол шифровки: протокол с закрытым ключом (ключ — способ шифровки / дешифровки).

Пусть Алиса(А) и Боб(В) хотят обмениваться информацией. Хотят придумать закрытый ключ путем пересылки сообщений.

Протокол Диффи-Хеллмана: А и В хотят сгенерировать закрытый ключ $m \in \mathbb{N}$.

Глава #3

- 1. Придумывают большое число p.
- 2. Придумывают a первообразный корень по модулю p: $\operatorname{ord}_p(\overline{a}) = p 1$.
- 3. А: берет $x \in \mathbb{Z}$ (лучше (x, p-1) = 1) и посылает $a^x \pmod{B}$.
- 4. B: берет $y \in \mathbb{Z}$, $a^y \pmod{A}$
- 5. А вычисляет $(a^x)^y = a^{yx} \pmod{p}$.
- 6. В: вычисляет $(a^y)^x = a^{xy} \pmod{p}$.

Чтобы взломать надо найти x, y. Если есть x, то посчитать a^x просто, а вот наоборот — сложно.

Получили ключ a^{xy} .

3.7. Алгоритм RSA

RSA — Rivest, Shamir, Adleman.

RSA — шифрование с открытым ключом:

- 1. А: придумывает p,q большие простые. Вычисляет $\varphi(pq)=(p-1)(q-1).$ p,q,(p-1)(q-1) закрытая часть ключа.
- 2. Выбирает $d:\in \mathbb{Z}$ (d, p-1)=(d, q-1)=1. p, q, d— закрытая часть.
- 3. Открытый ключ n=pq и $e\in\mathbb{Z}:de\equiv\pmod{(p-1)(q-1)}$. Решение Л.Д.У.
- 4. В: хочет послать сообщение $(x \in \mathbb{Z}, (x, n) = 1)$ А: он посылает $x^e \pmod{n}$.
- 5. А: получает $y = x^e$ и вычисляет $y^d = (x^e)^d = x^{ed} = x^{k \cdot \varphi(n) + 1} = x \pmod{n}$.

Устойчивость: чтобы взломать, надо знать (p-1)(q-1), то нам надо просто знать p,q. Но мы не умеем делать это быстро.

3.8. Генерация простых, тесты на простоту

Теорема 3.14. $\pi(n)$ — количество простых на [1,n]. Тогда $\lim_{n\to+\infty} = \frac{\pi(n)}{\frac{n}{\ln n}} = 1$.

 $\pmb{Cnedcmeue}$. Случайное число на 1, n — простое с вероятностью $\frac{1}{\ln n}$

Способ генерации: возьмем p_1, p_2, \ldots, p_k — простые (небольшие). Попробуем $n = p_1^{a_1} p_2^{a_2} \ldots p_l^{a_k} + 1$, где a_i — произвольные степени. Получили Тест Люка.

Теорема 3.15 (Тест Люка). Пусть $b \in \mathbb{Z}$, такое что $b^{n-1} = 1 \pmod n$ и $b^{\frac{n-1}{p_i}} \neq 1 \pmod n$. Тогда b — простое.

Доказательство. $b^{n-1}=1\Rightarrow \operatorname{ord}_n(\overline{b_n})$ – делитель n-1. $b^{\frac{n-1}{p_i}}\neq\Rightarrow \operatorname{ord}_n(\overline{b_n})$ — не делитель $\frac{n-1}{p_i}$ для любого $p_i\Rightarrow\operatorname{ord}(\overline{b_n})=n-1\Rightarrow |(\mathbb{Z}/n\mathbb{Z})^*|\geqslant n-1\Rightarrow n$ — простое.

Замечание. n — простое, b — подходит $\iff b$ — первообразные корень. Их $\varphi(n-1)$. Пусть $\varphi(n-1) > \frac{n-1}{10}$, значит через к тестов будет вероятность проиграть $\left(\frac{9}{10}\right)^k$, что мало.

Замечание. Числа Люка — неоч для RSA: n=pq, p, q — числа Люка. Такие числа с большой вероятностью факторизуются: Выбираем $a \in \mathbb{Z}$, дальше $a \to a^2 \to (a^2)^3 \to \dots$, то есть вычисляем $a^{k!} \pmod{n}$. Помним, что $p-1 = \prod p_i^{a_i}, q-1 = \prod p_i^{b_i}$.

Рассмотрим $K_p = \min\{a^{k!} \equiv 1 \pmod (p) \mid k \in \mathbb{N}\}.$

 k_p, k_q - не велики. Действительно: $k_p : \prod p_i^{a_i}$.

скорее всего $k_p \neq k_q$. Не умаляя общности считаем $k_p < k_q$, тогда $(a^{k_p!}, n) = p$.

Тест Ферма: $n \in \mathbb{N}, a \in [1, ..., n-1]$. Если $a^{n-1} \not\equiv 1 \pmod{n}$, значит n— составное.

Определение 3.20. Если n — составное, но $a^{n-1} \equiv 1 \pmod{n}$, то a — свидетель простоты.

Если n — составное, то или свидетелей $\leqslant \frac{\varphi(n)}{2} \leqslant \frac{n-1}{2}$, или любое взаимно простое с a является свидетелем простоты. Свидетели образуют подгруппу, а значит либо это вся группа,либо там $\leqslant \frac{\varphi(n)}{2}$ элементов.

Пусть там меньше половины, тогда после k итераций вероятность проиграть $\frac{1}{2^k}$, что довольно хорошо.

Тест Рабина-Миллера. Пусть $n-1=2^s\cdot m$. Тогда, если n- простое, то $x^2\equiv 1\pmod n$ $\Rightarrow x=\pm 1\pmod n$. Тогда берем $a\in (\mathbb{Z}/n\mathbb{Z})^*$. Считает $a^m,(a^m)^2,\ldots,(a^m)^{2^s}$. Так как n- простое \Rightarrow или $a^m=1$, или есть -1, а потом 1.

Условие Миллера-Рабина работает для $\forall a \in [1..\sqrt[7]{n}]$ или $\in [1..\log^2 n]$, если верим в гипотезу Римана.

Но Рабин заметил, что вероятность ошибиться для составного $\frac{\varphi(n)}{4}$