Mini-Projet : Alignement de séquences

Amann Emmanuelle & Malonda Clément

Table des matières

1	Introduction	2
2	Méthode naïve par énumération	2
3	Programmation dynamique 3.1 pour le calcul de la distance d'édtion	3 3
4	Amélioration de la compléxité spatiale du calcul de la distance	3
5	Amélioration de la compléxité spatiale du calcul d'un alignement optimal par la méthode "diviser pour régner"	3

1 Introduction

Question 1 Soient (\bar{x}, \bar{y}) et (\bar{u}, \bar{v}) deux alignements respectivement de (x, y) et (u, v). \bar{x} et \bar{y} sont aligné et donc sont de même longueur $(|\bar{x}| = |\bar{y}|)$. De même pour l'alignement (\bar{u}, \bar{v}) , $(|\bar{x}| = |\bar{y}|)$.

A partir de ces deux affirmations, nous pouvont dire que la concaténation de \bar{x} et \bar{u} , $\bar{x}.\bar{u}$ ainsi que la concaténation de \bar{y} et \bar{v} , $\bar{y}.\bar{v}$ sont de même longueur.

Question 2

2 Méthode naïve par énumération

Question 3

Question 4

Question 5

Question 6

Tâche A

3 Programmation dynamique

- 3.1 pour le calcul de la distance d'édtion
- 3.2 pour le calcul d'un alignement optimal
- 4 Amélioration de la compléxité spatiale du calcul de la distance
- 5 Amélioration de la compléxité spatiale du calcul d'un alignement optimal par la méthode "diviser pour régner"