Inter IIT Tech Meet 9.0

BOSCH'S ELECTRIC VEHICLE SIMULATION

Performance Baselining

Modeling and analysis

Electric Drive Dimensioning

Battery Dimensioning and Optimization

Electrical Architecture

Contents

Performance Baselining

Target Parameters

Vehicle segment chosen: Passenger Car (PC)

Seats

Drive Rear Wheel Battery Type Li-Polymer

Axle Ratio 1 (No differential)

CG Position, long 1260mm from front axle

CG Position, Vertical 546mm from ground

Mass Distribution 48:52 longitudinal

Mass (Curb Weight) Acceleration (0-100kph) Top Speed NEDC Range Aerodynamic drag coeff Area Rolling resistance coeff Starting gradability Wheel Radius	1200kg 7.4 sec 135 kph 160 km 0.3 2.05 0.009 25% 0.31
--	---

Max Torque @wheel	1531.4 Nm
Motor Max Torque(2)	190 Nm
Transmission Ratio	8.06
Coefficient of Friction	0.8
Max permissible tractive force	5817.02 N
Torque required @Max speed	193.17 Nm
Power Required @Max Speed	23.37 kW
Braking Distance(100kph - 0kph) 68 m	

Model and Analysis

• Results of the achieved target performance parameters of the vehicle

Basic schematic

Motor and Motor Controller Model(1/2)

Simulink model <u>link</u>

MODEL IN BRIEF

Motor and Motor Controller Model(2/2)

Blocks, subsystems and Functioning

PMSM Controller

Three Phase inverter

Three Phase current sensor

PMSM

Encoder

Battery

Motor and load inertia

PMSM Field-Oriented Control

Results

Velocity control of a PMSM with step change in reference speed from 0 rpm to 1000rpm.

Graph-1: Demanded Torque(yellow) and Actual Torque(blue)

Graph-2: Demanded speed(yellow) and Actual speed(blue)

Graph-3: Six Pulses

Graph-4: Three current signals

Velocity control of a PMSM with step change in reference

speed from 0 rpm to 1000rpm.

Electric Drive Dimensioning

Motors

Equations used in motor modeling

 $T_e = T_1 + J d\omega/dt + B\omega$

 $V_d = R_{sid} + L_d di_d / dt - N \omega i_q L_q$

 $V_q = R_s i_q + L_q di_q / dt + N\omega (i_d L_d + \tilde{\lambda}_m)$

Te = $1.5Niq(L_did + \tilde{\lambda}_m) - idiqIq)$

Where

Te = Electromagnetic Torque

TI = Load Torque

J = Intertia of rotor

 ω | = Rotor Speed

B = Viscous damping coefficient

Vd = d-axis voltage

Vq = q-axis voltage

Rs = Equivalent resistance of each stator winding

Ld = stator d-axis inductance

Lq = stator q-axis inductance

N = Number of pole pairs

λ_m = Permanent magnet flux linkage

Id = d-axis current

lq = q-axis current

Technical Data of Motor

Maximal motor torque = 95Nm

Continuous motor torque = 45Nm

Maximal rotation speed = 3000rpm

Peak Motor power = 32Kw

Continuous motor power = 18Kw

Motor efficiency = 85-94%

Wire connection: star

Motor Simulink Model

Stator d-axis inductance(Ld) = 1.7mh
Stator q-axis inductance(Lq)=3mh
Resistance of each stator winding(Rs)=0.15ohm
Inertia of Rotor(J)= 0.01kgm^2
Viscous damping coefficient(B)=0.001889Nms
Flux linkage = 0.2205weber
Number of pole pairs(N) = 4
Rotor type: Round

Motor Parameters

Electromagnetic Torque and Rotor speed at constant Load Torque vs Time

Efficiency Vs Load Torque

Inverter Simulink Model

Inverter

18

A three-phase inverter converts a DC input into a three-phase AC output. Its output delayed by an angle of 120° so as to generate a three-phase AC supply.

Specifications:

• Input Voltage: 333VDC

• Frequency: 50HZ

• Efficiency: >92%

• Power Factor: 0.85-1.00

• Using IGBT Diode to ensure fast switching speed

• Ambient Temperature -15 to 55 °C

Battery Dimensioning and Optimization

Regenerative Braking

Brake Torque Distribution Strategy

(1)

Regenerative Braking

Braking Torque vs Time as well as drive cycle

The first figure shows the regenerative torque

The second figure shows the front and rear wheel torques as well

Simulink Model

Battery Sizing

The function of the high voltage (HV) battery in an electric car is as an electrical energy storage system in the form of direct-current electricity (DC). On getting a signal from the controller, the battery will stream DC electrical energy to the inverter, converting it into a 3 phase AC wave that is to be used to drive the motor.

We have used a Lithium-Polymer (Li-Po) rechargeable battery as a reference for calculating different parameters.

Specifications:

- Voltage: 333 V
- Nominal voltage: 3.7 V
- Peak power: 35 KW
- Battery Size: 32 KWh
- Peak current: 105 A
- Cell capacity: 10.5 Ah
- Battery capacity: 96 Ah
- Max Continuous Discharge Current: 157.5A
- Total cells: 900
- Cells in series: 90
- Cells in parallel: 10

Electrical Architecture

Subsystem Overview

Tractive System

- Battery Pack
- Inverter
- Motors
- Motor Controller
- Measurement Points
- DC-DC Converter
- Charging System
- Overcurrent Protection

Low Voltage System

- BSPD
- Vehicle Control Units
- Torque Encoder
- Buck COnverter
- BMS
- IMD
- IMD/BMS Latch
- TSAL
- Pre-charge circuit
- Discharge circuit
- Shutdown system interlocks
- Sensors

Non-Electrical System

- Intertia Switch
- Shutdown Button
- Overall grounding and insulation

Block Level Representation of Systems

HV Wiring

LV Wiring

AUXILIARY FEATURES

Now a days, luxurious features are a very common thing in any passenger car. We are also installing some of those auxiliary features in our design.

- Air-conditioner
- Music system with USB/AUX/Radio/Bluetooth
- Lights
- Airbags

TRACTION BATTERY PACK

- Type: Rechargeable
 Lithium Polymer(Li-Po)
 battery
- Voltage: 333 V
- Nominal voltage: 3.7 V
- Peak current: 105 A
- Peak power: 35 KW
- Battery Size: 32 KWh
- Battery capacity: 96 Ah

INVERTER

It converts the DC current from battery pack into 3-phase AC current, for driving the electrical motor.

- Input Voltage: 333 VDC
- Frequency: 50 Hz
- Power factor: 0.85-1.00
- Efficiency: >92%
- Fan-cooling methodology

MOTOR

- 3-phase PMSM
- Dual motor configuration [rearwheel drive]
- Max input voltage: 320V
- maximum power of each motor is limited using the controller at peak power of 35 KW
- Cooling methodology: enclosed in a casing which also serves the purpose of cooling jackets

Key Components

GLV BTTERY

It is the usual 12V battery, which is used to provide electricity to power the vehicle accessories (lightings, multimedia, etc).

DC DC CONVERTER

It converts the high voltage DC power from the battery into low-voltage(12V).

BUCK CONVERTER

- It steps down the 12V DC
 power from the GLV battery to
 5V, which powers all the
 sensors and ECU.
- Input voltage: 12V
- Nominal output voltage: 5V

Charging System

Charger

We are using an onboard charger(OBC). It gets AC electricity from outside sources and stores this energy in the battery by converting it into DC electricity.

Charge-port

It enables the connection of the vehicle to an external power supply.

Level 1 and 2 Charging Station

BSPD

It latches the Tractive system from the battery by opening the shutdown circuit whenever accelerator pedal and brake pedal are applied simultaneously beyond a certain limit.

Pre-charge circuit

This circuit ensures that the motor controller capacitor is pre-charged before closing the second AIR. It uses an SPST relay AIR1 and an SPDT time delay relay with a delay time set, after which SPST relay AIR2 is powered.

DISCHARGE CIRCUIT

This circuit discharges the motor controller capacitors if the TS accumulator is disconnected. It consists of a DPDT relay and a discharge resistor wired parallel to the accumulator.

B M S

It monitors the temperature, voltage, and current of the battery.

I M D

It opens the shutdown circuit in case of any insulation fault between low voltage and high voltage, that is if the resistance between GLV and HV drops below the response resistance of IMD.

MAIN FUSE

Specifications:

- Voltage rating: 460 VDC
- Current rating: 40 A

Latching Circuit

It is designed such that if the BMS or IMD throws a fault, the shutdown circuit latches off.

TSAL

Sensors

1. Accelerometer

It detects the magnitude and direction of acceleration of the vehicle.

It is positioned near the centre of gravity of the vehicle.

2. Acceleration Pedal Position Sensor (APPS)

It transmits the position of the accelerator pedal. It is installed to the accelerator pedal.

3. Brake Pedal Sensor

It is installed to the brake pedal.

4. Brake System Pressure Sensor

It measures the high pressures in automotive braking systems.

It is installed in the T-joint of the brake circuit.

Sensors

5. Current Sensor

It detects the current in a wire coming from the accumulator.

It is installed with the wires of the accumulator.

6. Wheel Speed Sensor

It detects the wheel speed of a vehicle.

It is installed to the drive shaft.

7. Temperature Sensor

It measures the temperature of the cell.

It is installed to the negative terminal of the cell.

8. Steering Angle Sensor

It determines the direction in which the driver wants to steer. It is installed to the steering shaft.