Statistique UCAO-IEG : Licence 1 Année Universitaire 2018-2019

Prof. Armel YODE Université Félix Houphouet Boigny UFR Mathématiques et Informatique Nous avons confiance en Dieu; que tous les autres apportent des justificatifs. [Edwards Deming, Professeur de statistique, 1900 -1993]

Table des matières

1	Inti	roduct	ion		9		
	1.1	1.1 Terminologie de base			9		
	1.2		_		10		
		1.2.1		re qualitatif	10		
		1.2.2		re quantitatif	11		
			1.2.2.1	_	11		
			1.2.2.2	_	11		
	1.3	Effect	if, fréquer	nces	12		
	1.4			énérale des tableaux statistiques	13		
2	Rep	orésent	tations g	raphiques	15		
	2.1	Introd	$\frac{1}{1}$	 	15		
	2.2			secteurs	15		
	2.3	_		barres, diagramme en bâtons	17		
	2.4	_	ogramme				
	2.5			fréquences cumulées	21		
		2.5.1		n caractère qualitatif ordinal	21		
		2.5.2		n caractère quantitatif discret	21		
		2.5.3		n caractère quantitatif continu	23		
3	Par	amètr	es numéi	riques	27		
	3.1	Paran	nètres de 1	tendance centrale	27		
		3.1.1	Le mode	e	27		
			3.1.1.1	Caractère quantitatif discret	27		
			3.1.1.2	Caractère quantitatif continu	27		
			3.1.1.3	Remarques	28		
		3.1.2	La moye	enne arithmétique	28		
			3.1.2.1	Données brutes	28		

			3.1.2.2 Données rangées : caractère quantitatif	
				29
			3.1.2.3 Données rangées : caractère quantitatif	
				29
			1	29
		3.1.3	v C 1	29
		3.1.4	v i	29
		3.1.5	v 1 1	30
		3.1.6		30
			1	30
			1	30
			1	30
		3.1.7	±	31
		3.1.8		32
		3.1.9		33
	3.2		1	35
		3.2.1		36
		3.2.2	v	36
		3.2.3	, , , ,	37
		3.2.4	1	38
		3.2.5		38
	3.3	-		38
		3.3.1		39
		3.3.2		39
		3.3.3		39
	3.4			10
		3.4.1		10
		3.4.2		10
		3.4.3	L'aplatissement	12
4	To all	: a a a a t	atisticus a	15
4	4.1		•	ьэ 15
	4.1			45 15
	4.2	4.2.1		45 15
		4.2.1 $4.2.2$		46 16
		4.2.2	-	ŧΟ
				16
			,	40 17
	4.3	Indias		±1 17
	4.3	4.3.1	v 1	ι 18
		4.3.1	Indice de Laspeyres	ŧΟ

		4.3.2 4.3.3 4.3.4 4.3.5	Indice de Paasche L'indice de Fisher Comparaison Indices de prix, de quantité et de valeur	48 48 49 51
5	Sta		es à deux variables	53
	5.1		luction	53
	5.2	Génér		53
		5.2.1	Distribution conjointe	53
		5.2.2	Distributions marginales	55
		5.2.3	Distributions conditionnelles	56
		5.2.4	Indépendance	57
	5.3		n entre deux caractères qualitatifs	57
		5.3.1	Mesure de l'intensité de la liaison	57
		5.3.2	Coefficient de Cramer	58
	٠.	5.3.3	Exemple	58
	5.4		n entre deux caractères quantitatifs	59
		5.4.1	Représentation graphique : nuage de points	59
		5.4.2	Covariance, coefficient de correlation linéaire	60
		5.4.3	Regression linéaire	61
		5.4.4	Exemple 1 : Taux de cholestérol en fonction de	<i>C</i> 1
		F 4 F	l'âge	61 63
	E E	5.4.5	Exemple 2 : Taille en fonction du poids tère quantitatif et caractère qualitatif	63
	5.5	5.5.1	Rapport de correlation	63
		5.5.1 $5.5.2$	Exemple	64
		5.5.2	Exemple	04
6	Ana	alyse d	lescriptive d'une série chronologique	67
	6.1		ntation	67
		6.1.1	Définitions	67
		6.1.2	Les composantes d'une série chronologique	68
		6.1.3	Représentations graphiques	70
		6.1.4	Modélisation d'une série chronologique	70
		6.1.5	Choix du modèle	73
			$6.1.5.1$ Méthode de la bande \dots	73
			6.1.5.2 Méthode du profil	73
			6.1.5.3 Méthode du tableau de Buys et Ballot .	73
	6.2		ation de la tendance	73
		6.2.1	Méthode des moindres carrés	73
			6.2.1.1 Tendance linéaire	73
			6.2.1.2 Tendance polynomiale	74

Armel Yodé

	6.2.2	Moyennes mobiles	74
	6.2.3	Méthode de Mayer	75
6.3	Variat	tions saisonnières	75
	6.3.1	Estimation des coefficients saisonniers du modèle	
		additif	75
	6.3.2	Estimation des coefficients saisonniers du modèle	
		multiplicatif	76
6.4	Désais	sonnalisation	76
6.5	Estim	ation des variations résiduelles	77

Chapitre 1

Introduction

La statistique est l'ensemble des méthodes et des techniques destinées à la collecte, l'exploration, l'analyse et l'interprétation des données. Elle a pour objectif de mettre en évidence des informations cachées dans ces données en vue généralement de prendre une décision concernant le phénomène ayant généré ces données. La statistique se divise généralement en deux grandes parties :

- la statistique descriptive qui a pour but d'obtenir un résumé des données ;
- la statistique inférentielle qui a pour but d'utiliser les données afin de tester des hypothèses, de rechercher des modèles ou de faire des prévisions.

1.1 Terminologie de base

Population : C'est l'ensemble sur lequel porte l'étude statistique. La population que l'on envisage en statistique dépend du domaine que l'on traite, et peut donc aussi bien être constituée d'êtres humains que d'animaux, d'objets, voire d'événements.

Individu ou unité statistique : C'est un élément de la population.

Echantillon: C'est un sous-ensemble de la population; l'échantillon doit être représentatif de la population, c'est à dire qu'il doit refléter fidèlement sa composition et sa complexité; en effet, les informations obtenues à partir de l'échantillon doivent

pouvoir être étendues, sans erreur grave, à l'ensemble de la population.

Enquête statistique : C'est l'opération consistant à collecter des données sur l'ensemble des individus d'un échantillon ou éventuellement la population entière.

Recensement : C'est la collecte des données effectuée sur toute la population.

Sondage : C'est la collecte des données effectuée sur un échantillon de la population.

Caractère : C'est une grandeur ou un attribut observable sur un individu. Parfois, on emploie le terme de variable statistique au lieu de caractère.

Modalité : C'est un état du caractère ; les modalités d'un caractère sont exhaustives et incompatibles, c'est à dire que chaque individu présente une et une seule modalité du caractère.

Série statistique : C'est la suite des valeurs du caractère observée sur chaque individu de l'ensemble étudié (population ou échantillon).

1.2 Caractères

On distingue deux types de caractères : le caractère qualitatif et le caractère quantitatif.

1.2.1 Caractère qualitatif

Le caractère est dit qualitatif si ses modalités sont non mesurables. Le caractère qualitatif est dit ordinal s'il existe un ordre entre ses modalités. Dans le cas contraire, il est dit qualitatif nominal.

Exemple 1. Caractère qualitatif ordinal.

- Population : la classe.

- Individu : un étudiant

- Caractère : décision du jury

- Modalités : ajourné, passable, assez-bien, bien, très bien.

Exemple 2. Caractère qualitatif nominal.

- Population : la classe.

- Individu : un étudiant

- Caractère : groupe sanguin.

- Modalités : A, B, AB et O.

1.2.2 Caractère quantitatif

Lorsque les modalités d'un caractère sont mesurables, on dit que ce caractère est quantitatif.

1.2.2.1 Caractère quantitatif discret

Le caractère quantitatif est dit discret lorsqu'il ne peut prendre que des valeurs isolées notées par exemple x_1,x_2,\ldots,x_k où k est le nombre de modalités.

Exemple 3. - Population: le personnel d'une entreprise

- Individu : un employé

- Caractère : nombre d'enfants

- Modalités: 0, 1, 2, 3, 4, 5, 6 et 7.

1.2.2.2 Caractère quantitatif continu

Le caractère quantitatif est dit continu lorsqu'il peut prendre n'importe quelle valeur d'un intervalle de l'ensemble des nombres réels \mathbb{R} . Dans ce cas, l'intervalle des valeurs possibles est divisé en k classes

$$[a_0, a_1], [a_1, a_2], \dots, [a_{k-1}, a_k], \text{ où } a_0 < a_1 < \dots < a_{k-1} < a_k.$$

 a_{j-1} et a_j sont les frontières de la j-ième classe, $c_j = \frac{a_{j-1} + a_j}{2}$ est le centre de celle-ci. L'amplitude de cette classe est $a_j - a_{j-1}$. Dans la suite, on supposera que les observations d'une classe sont concentrées au centre.

Exemple 4. - Population : l'ensemble des ouvriers d'une entreprise

- $Individu: un\ ouvrier$

- Caractère : salaire mensuel net (en milliers francs)

- Modalités: [80, 100], [100, 110], [110, 120], [120, 130] et [130, 150].

La répartition en classes des données nécessite de déefinir a priori le nombre de classes J et donc l'amplitude de chaque classe. Il existe des formules qui nous permettent détablir le nombre de classes et l'intervalle de classe (l'amplitude) pour une série statistique de n observations.

- La règle de Sturge : $J = 1 + (3.3 * log_{10}(n))$
- La règle de Yule : $J = 2.5n^{1/4}$.

L'intervalle de classe est obtenue ensuite de la manière suivante : longueur de l'intervalle = $(x_{max} - x_{min})/J$, ou x_{max} (resp. x_{min}) désigne la plus grande (resp. la plus petite) valeur observée.

1.3 Effectif, fréquences

On observe un caractère X présentant k modalités, sur n individus. L'effectif n_i de la i-ème modalité du caractère est le nombre d'individus qui possède cette modalité. On a

$$n = n_1 + \ldots + n_k = \sum_{i=1}^k n_i.$$

On appelle fréquence de la i-ème modalité le rapport

$$f_i = \frac{n_i}{n}$$
.

La fréquence est la proportion par rapport au nombre d'observations, des individus pour lesquels le caractère prend la valeur x_i ou appartient à la classe $[a_i, a_{i+1}[$. Elle est un nombre réel compris entre 0 et 1. Nous avons

$$\sum_{i=1}^{k} f_i = 1.$$

On exprime la fréquence souvent en pourcentage.

On suppose que les modalités du caractère quantitatif étudié sont rangées par ordre croissant. L'effectif cumulé croissant de la i-ème modalité est la somme des effectifs des modalités inférieures ou égales à cette modalité :

$$N_i = \sum_{j=1}^i n_j.$$

La fréquence cumulée croissante de la i-ème modalité est la somme des fréquences des modalités inférieures ou égales à cette modalité :

$$F_i = \sum_{j=1}^i f_j.$$

Cette fréquence représente la proportion des observation inférieures ou égales à la *i*-ème modalité du caractère quantitatif si il est discret ou bien inférieures à la borne supérieure du *i*-ème intervalle s'il est continu.

L'effectif cumulé décroissant de la i-ème modalité est la somme des effectifs des modalités supérieures ou égales à cette modalité :

$$D_i = \sum_{j=i}^k n_j$$

La fréquence cumulée décroissante de la i-ème modalité est la somme des fréquences des modalités supérieures ou égales à cette modalité :

$$G_i = \sum_{j=i}^k f_j.$$

1.4 Présentation générale des tableaux statistiques

On considère un échantillon de taille n issu d'une population. Pour chaque individu, on fait une observation concernant le caractère X comportant k modalités M_1, M_2, \ldots, M_k . On obtient une série statistique x_1, \ldots, x_n . Les données recueillies, appelées données brutes, sont soumises à un premier traitement afin d'en faciliter à la fois la présentation et l'exploitation. Cela consiste à classer chacun des n individus dans les k sous-ensembles définis par les diverses modalités du caractère X. Pour chaque modalité M_i , on pourra inscrire dans le tableau statistique son effectif n_i , son effectif cumulé croissant ou décroissant, sa fréquence f_i et sa fréquence cumulée croissante ou décroissante. On prendra toujours soin de préciser dans la présentation du tableau :

- la population étudiée et le caractère;
- l'origine du renseignement.

Modalité	Effectif	Effectif Cumulé	Fréquence	Fréquence cumulée
M_1	n_1	n_1	$f_1 = \frac{n_1}{n}$	$F_1 = f_1$
M_2	n_2	$n_1 + n_2$	$f_2 = \frac{n_2}{n}$	$F_2 = f_1 + f_2$
:	:	<u>:</u>	:	:
M_{j}	$M_j \qquad \qquad n_j \qquad \qquad n = \sum_{i=1}^j n_i$		$f_j = \frac{n_j}{n}$	$F_j = \sum_{i=1}^j f_i$
:	:	<u>:</u>	:	:
M_k	n_k	$n = \sum_{i=1}^{k} n_i$	$f_k = \frac{n_k}{n}$	$F_k = \sum_{i=1}^k f_i = 1$

Table 1.1 – Tableau statistique d'un caractère

La présentation des données sous forme de tableaux est intéressante car elle propose un premier résumé. On dégage ainsi les tendances de la population. Ces tableaux vont nous permettre de faire des représentations graphiques. L'idée sera de rendre compte visuellement du résumé que nous avons commencé. Ensuite, pour les caractères quantitatifs, nous chercherons à résumer numériquement l'information.

Chapitre 2

Représentations graphiques

2.1 Introduction

La représentation graphique a pour objectif de visualiser la distribution des données. Dans ce chapitre, nous passons en revue les principales représentations graphiques utilisées dans les analyses statistiques. Selon le type de variable statistique étudié, on a recours à des graphiques différents.

2.2 Diagrammes à secteurs

Les diagrammes à secteurs conviennent pour représenter les effectifs et les fréquences des caractères qualitatifs ou des caractères quantitatifs discrets. Un diagramme en secteurs est un graphique constitué d'un cercle divisé en secteurs dont les angles au centre sont proportionnels aux effectifs (ou aux fréquences). L'angle α_i d'une modalité d'effectif n_i ou de fréquence f_i est donné en dégrés par

$$\alpha_i = \frac{n_i}{n} \times 360 = f_i \times 360.$$

Exemple 5. Caractère qualitatif:

Continent	Effectif	Fréquence (%)
Afrique	168238	44.7
Europe	164542	43.72
Amérique	27540	7.32
Asie	15058	4.00
Océanie	1014	0.27
Total	376392	100

Table 2.1 – Répartition des touristes et visiteurs arrivés à l'aéoroport Félix Houphouet-Boigny par continent de provenance en 1999

Source : Ministère de l'Economie et des Finances, 2007.

2.3 Diagramme en barres, diagramme en bâtons

Les diagrammes en barres et les diagrammes en bâtons conviennent pour représenter les fréquences des caractères qualitatifs ou quantitatifs discrets. Les modalités du caractère sont en abscisse et les fréquences sont en ordonné. Dans le cas d'un caractère qualitatif nominal, la position des modalités n'a pas de signification particulière. Si le caractère est qualitatif ordinal ou quantitatif discret, on placera les modalités dans leur ordre naturel.

- Le digramme en barres : à chaque modalité du caractère, on associe un rectangle de base constante dont la hauteur est proportionnelle à la fréquence.
- Le diagramme en bâtons : à chaque modalité du caractère, on fait correspondre un segment vertical de longueur proportionnelle à la fréquence de cette modalité.

Exemple 6. Le tableau suivant donne la répartition selon le groupe sanguin de 50 individus pris au hasard dans une population :

ĺ	Groupe sanguin	A	B	AB	0
ĺ	Effectif	25	10	12	3

1. Déterminer la variable statistique et son type.

Variable statistique : groupe sanguin Nature : qualitative nominale.

2. Donnez une représentation graphique qui fasse apparaître l'importance relative des différents groupes sanguins.

Nous pouvons faire un diagramme en barres ou un diagramme en secteurs

Exemple 7. A Cauphygombokro, en vue d'instaurer la taxe d'habitation, une enquête portant sur le nombre de pièces du logement occupé a été réalisée auprès des ménages. Cette enquête a donné les résultats suivants :

FIGURE 2.1 – Diagramme en barres de la répartition des individus selon le groupe sanguin

Nomrbe de pièces	Nombre de ménages
1	20
2	40
3	40
4	60
5	40

1. Caractériser la distribution (population, individu, caractère, nature du caractère, modalités)

Population : l'ensemble des ménages de Cauphygombokro

Individu : un ménage

Caractère : nombre de pièces du logement occupé

 $Modalit\'{e}s: 1,2,3,4,5.$

2. Tracer le diagramme en bâtons.

2.4 Histogramme

L'histogramme est la représetation graphique de la distribution des effectifs ou des fréquences d'une variable statistique continue. Pour construire l'histogramme, on place en abscisse les différentes extrémités a_i des classes, puis on trace, pour chaque classe, un rectangle parallèle aux axes, de telle sorte que la partie parallèle à l'axe des abscisses ait une longueur correspondant à l'amplitude de la classe et que la surface du rectangle soit proportionnelle à l'effectif (ou à la fréquence) de la classe (ceci afin de bien visualiser l'importance de chaque classe).

- Choix de l'unité d'amplitude u : on retiendra par exemple le pgcd des diverses amplitudes.
- Expression des amplitudes dans cette nouvelle unité d'amplitude :

$$e_i = \frac{a_i - a_{i-1}}{u}$$

- La hauteur h_i de chaque rectangle est égale à

$$h_i = \frac{f_i}{a_i}$$

de telle sorte que la surface des rectangles représentatifs est égale à la fréquence de la classe correspondante.

FIGURE 2.2 – Diagramme en bâtons de la répartition des ménages selon le nombre d'enfants

Salaire	Effectif	Fréquence (%)	Fréquence cumulées (%)
[80, 100[26	18.6	18.6
[100, 110[33	23.5	42.1
[110, 120[64	45.8	87.9
[120, 130[7	5.0	92.9
[130, 150[10	7.1	100
Total	140	100	

TABLE 2.2 – Répartition des ouvriers selon leur salaire mensuel net (en milliers francs).

Exemple 8. Traçons l'histogramme des fréquences.

2.5 Diagramme de fréquences cumulées

2.5.1 Cas d'un caractère qualitatif ordinal

2.5.2 Cas d'un caractère quantitatif discret

C'est la représentation graphique de la fonction ${\cal F}_X$ définie par

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1 \\ F_i & \text{si } x_i \le x < x_{i+1} \ i = 1, \dots, k-1, \\ 1 & \text{si } x \ge x_k \end{cases}$$

ou

$$F_X(x) = \begin{cases} 0 & \text{si } x < x_1 \\ N_i & \text{si } x_i \le x < x_{i+1} \ i = 1, \dots, k-1, \\ n & \text{si } x \ge x_k \end{cases}$$

Exemple 9. Répartition des ménages selon le nombre de pièces du logement occupé

	Eff	Freq	FreqCum
1	20	10	10
2	40	20	30
3	40	20	50
4	60	30	80
5	40	20	100

FIGURE 2.3 – Histogramme des fréquences de la répartition des ouvriers selon leur salaire mensuel net

$$F(x) = \begin{cases} 0 & si \ x < 1 \\ 10 & si \ 1 \le x < 2 \\ 30 & si \ 2 \le x < 3 \\ 50 & si \ 3 \le x < 4 \\ 80 & si \ 4 \le x < 5 \\ 100 & x \ge 5 \end{cases}$$

2.5.3 Cas d'un caractère quantitatif continu

La courbe cumulative est la représentation graphique de la fonction cumulative. Les observations étant groupées par classe, on ne connait de cette fonction que les valeurs qui correspondent aux extrémités supérieures de chaque classe et pour lesquelles elle est égale à la fréquence cumulée F_i :

$$F(a_i) = F_i$$

Exemple 10. Dans notre exemple, nous avons :

$$F(80) = 0$$

$$F(100) = 0.186$$

$$F(110) = 0.421$$

$$F(120) = 0.879$$

$$F(130) = 0.929$$

$$F(150) = 1.$$

FIGURE 2.4 – Courbe cumulative de la répartition des ménages selon le nombre de pièces du logement occupé

FIGURE 2.5 – Courbe cumulative de la répartition des ouvriers selon leur salaire mensuel net.

Chapitre 3

Paramètres numériques

On distingue les paramètres de tendance centrale (ou de position ou de localisation), les paramètres de dispersion, les paramètres de concentration et les paramètres de forme.

3.1 Paramètres de tendance centrale

Les paramètres de tendance centrale ont pour objet de résumer la série d'observations par une valeur considérée comme représentative. Selon les cas, certains sont plus appropriés que d'autres.

3.1.1 Le mode

Le mode peut être calculé pour tous les types de caractère (quantitatif ou qualitatif). Le mode n'est pas nécessairement unique.

3.1.1.1 Caractère quantitatif discret

Le mode d'un caractère quantitatif discret est la valeur pour laquelle la fréquence est la plus élevée. Graphiquement, le mode est la modalité qui correspond au sommet du diagramme en bâton.

3.1.1.2 Caractère quantitatif continu

Le mode est plus difficile à définir dans le cas d'un caractère quantitatif continu. Lorsque les données sont regroupées en classes, on définit

FIGURE 3.1 – Détermination du mode dans le cas d'un caractère continu

la classe modale. La classe modale n'est pas la classe de plus grande fréquence mais la classe de plus grande densité c'est à dire de plus grande fréquence par amplitude. Il est néanmoins possible de déterminer une valeur unique comme mode.

La classe modale $[x_i, x_{i+1}[$ étant déterminée, le mode M_0 est égale est :

$$M_0 = x_i + \frac{\Delta_1}{\Delta_1 + \Delta_2} (x_{i+1} - x_i).$$

Lorsque les classes adjacentes à la classe modale ont des densités de fréquences égales, le mode coincide avec le centre de la classe modale.

3.1.1.3 Remarques

- Le mode dépend beaucoup de la répartition en classes.

_

3.1.2 La moyenne arithmétique

3.1.2.1 Données brutes

Pour une série statistique x_1, x_2, \ldots, x_n , on définit la moyenne par

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i.$$

C'est la somme de toutes les observations divisée par le nombre total des observations.

3.1.2.2 Données rangées : caractère quantitatif discret

Pour un caractère quantitatif discret dont les n observations sont rangées selon ses k modalités x_1, \ldots, x_k d'effectifs respectifs n_1, \ldots, n_k , la moyenne est

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^k n_i x_i.$$

3.1.2.3 Données rangées : caractère quantitatif continu

Pour un caractère quantitatif continu dont les n observations ont été réparties dans k intervalles $([a_{i-1}, a_i])_{i=1,\dots,k}$, la moyenne est

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} n_i c_i$$

où $c_i = \frac{a_{i-1} + a_i}{2}$ est le centre de la classe $[a_{i-1}, a_i]$.

3.1.2.4 Remarques

- La moyenne n'est pas nécessairement une valeur observable du caractère.
- La moyenne est sensible aux valeurs extrêmes ou atypiques.

3.1.3 La moyenne géométrique

La moyenne géométrique est définie par

$$G = {}^{n}\sqrt{\prod_{i=1}^{n} x_{i}^{n_{i}}} = \left(\prod_{i=1}^{n} x_{i}^{n_{i}}\right)^{1/n} \qquad x_{i} \ge 0.$$

3.1.4 La moyenne harmonique

La moyenne harmonique, H, est l'inverse de la moyenne arithmétique des inverses des obervations :

$$H = \frac{n}{\sum_{i=1}^k \frac{n_i}{x_i}}.$$

3.1.5 La moyenne quadratique

La moyenne quadratique est définie par

$$Q = \sqrt{\frac{1}{n} \sum_{i=1}^{k} n_i x_i^2}.$$

Remarque 1. Pour toute série statistique, l'inégalité suivante est vérifiée :

$$H < G < \bar{x}_n < Q.$$

3.1.6 La médiane

La médiane M_e est la valeur du caractère pour laquelle la fréquence cumulée est égale à 0.5. Elle correspond donc au centre de la série statistique classée par ordre croissant ou à la valeur pour laquelle 50% des valeurs observées sont supérieures et 50% sont inférieures.

3.1.6.1 Caractère quantitatif discret

On procède ainsi après avoir rangé les n observations x_1, x_2, \ldots, x_n par ordre croissant $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$:

- si n est impair, alors n=2m+1 et la médiane est la valeur $M_e=x_{(m+1)}.$
- si n est pair, alors n=2m et une médiane est une valeur quelconque entre $x_{(m)}$ et $x_{(m+1)}$; $(x_{(m)},x_{(m+1)})$ est appelé intervalle médian. Dans ce cas, on prend souvent le milieu comme médiane, c'est à dire

$$M_e = \frac{x_{(m)} + x_{(m+1)}}{2}.$$

3.1.6.2 Caractère quantitatif continu

On utilisera la méthode de l'interpolation linéaire exposée ci-dessous.

3.1.6.3 Remarques

- La médiane peut être calculéee pour un caractère quantitatif et pour un caractère qualitatif ordinal.
- La médiane est plus robuste que la moyenne car elle n'est pas influencée par les valeurs extrêmes.
- La médiane est influencée par le nombre d'observations.

3.1.7 Les quantiles

Le quantile d'ordre α est la valeur x_{α} du caractère qui laisse une proportion α des observations en dessous et $1-\alpha$ des observations au dessus d'elle. Les fractiles sont les quantiles qui partitionnent les données triées en classes de taille égale. Les fractiles les plus utilisés sont les quartiles, les déciles et les centiles.

Les quartiles sont au nombre de trois.

- Le premier quartile Q_1 est le quantile d'ordre $\frac{1}{4}$; c'est la valeur du caractère telle qu'il ait 25% des observations qui lui soient inférieures et 75% supérieures.
- Le deuxième quartile Q_2 est le quantile d'ordre $\frac{1}{2}$, est la médiane.
- Le troisième quartile Q_3 est la quantile d'ordre $\frac{3}{4}$; c'est la valeur du caractère telle que 75% des observations lui soient inférieures et 25% supérieures.

Les quartiles Q_1 , Q_2 et Q_3 partagent la série ordonnée en quatre groupes de même effectif (25% chacun).

Remarque 2. Un décile est l'une des neuf valeurs qui partagent la série ordonnée en 10 groupes de même effectif (10% chacun). Un centile est l'une des cent valeurs qui partagent la série ordonnée en 100 groupes de même effectif (1% chacun).

Détermination pratique de la médiane

On utilise le tableau des effectifs cumulés ou des fréquences cumulées.

Caractère quantitatif discret : s'il existe une modalité x_j du caractère telle que $N_{j-1} < \alpha n \le N_j$ ou $F_{j-1} < \alpha \le F_j$ alors le quantile d'ordre α est x_j .

Caractère quantitatif continu : soit la première classe dont la fréquence empirique est supérieure ou égale à α . Notons là $C_i = [a_{i-1}, a_i]$ et appelons F_i sa fréquence cumulée. Si $F_i = \alpha$, le quantile est a_i . Dans le cas contraire, $F_i > \alpha$, considérons les points de coordonnées (a_{i-1}, F_{i-1}) et (a_i, F_i) , F_{i-1} est la fréquence cumulée de la classe précédant C_i si elle existe, 0 sinon. La droite passant par ces deux points passe par un point d'ordonées α dont l'abscisse est x_{α} .

a_{i-1}	F_{i-1}
x_{α}	α
a_i	F_i

On tire x_α à partir de la formule suivante :

$$\frac{x_{\alpha} - a_{i-1}}{\alpha - F_{i-1}} = \frac{a_i - a_{i-1}}{F_i - F_{i-1}}.$$

Par suite

$$x_{\alpha} = a_{i-1} + (a_i - a_{i-1}) \frac{\alpha - F_{i-1}}{F_i - F_{i-1}}.$$

Exemple 11. Détermination des quartiles.

On considère le tableau statistique 8.

100	18.6
Q_1	25
110	42.1

Par suite

$$Q_1 = 100 + (110 - 100) \frac{25 - 18.6}{42.1 - 18.6} = 102.72$$

110	42.1
Q_2	50
120	87.9

Par suite

$$Q_2 = 110 + (120 - 110) \frac{50 - 42.1}{87.9 - 42.1} = 111.72$$

110	42.1
Q_3	75
120	87.9

Par suite

$$Q_3 = 110 + (120 - 110) \frac{75 - 42.1}{87.9 - 42.1} = 117.18$$

3.1.8 Boîte à moustaches

La boîte à moustaches ou boxplot est un diagramme qui permet de représenter la distribution d'un caractère. Ce diagramme est composé de :

- un rectangle qui s'étend du premier au troisième quartile; le rectangle est divisé par une ligne correspondant à la médiane;

- ce rectangle est complété par deux segments de droites ; pour les dessiner, on calcule d'abord les bornes

$$b^- = Q_1 - 1.5(Q_3 - Q_1)$$

$$b^+ = Q_3 + 1.5(Q_3 - Q_1).$$

Les valeurs au-délà des moustaches sont des valeurs hors norme éventuellement suspectes ou aberrantes mais pas nécessairement.

Ce diagramme est utilisé notamment pour comparer un même caractère dans deux ou plusieurs échantillons de tailles différentes.

3.1.9 La médiale

La médiale est la valeur du caractère qui partage la valeur totale ou la masse totale en deux parties égales. La médiale se détermine par interpolation linéaire sur les valeurs globales relatives cumulées croissantes.

Soit X un caractère continu dont les observations sont rangées dans les classes $[a_{i-1},a_i[,\,k=1,\ldots,k.$ Soit n_i l'effectif de la classe $[a_{i-1},a_i[$ et $c_i=\frac{a_{i-1}+a_i}{2}$ son centre.

• On appelle $n_i c_i$ la valeur globale (v.g.) associée à la classe $[a_{i-1}, a_i]$.

X	Effectif	Centre	v. g.	V.g.r.	v.g.r.c.c.
$[a_0, a_1[$	n_1	$c_1 = \frac{a_0 + a_1}{2}$	n_1c_1	$q_1 = \frac{n_1 c_1}{\sum_{i=1}^k n_1 c_1}$	$V_1 = q_1$
$[a_1, a_2[$	n_2	$c_2 = \frac{a_1 + a_2}{2}$	n_2c_2	$q_2 = \frac{n_2 c_2}{\sum_{i=1}^k n_i c_i}$	$V_2 = q_1 + q_2$
:	÷	:	•	:	i i
:	:	:	:	:	÷ :
$[a_{i-1}, a_i[$	n_i	$c_i = \frac{a_{i-1} + a_i}{2}$	$n_i c_i$	$q_i = \frac{n_i c_i}{\sum_{i=1}^k n_i c_i}$	$V_i = \sum_{j=1}^i q_j$
:	:	:	:	:	i:
:	:	:	:	:	:
$[a_{k-1}, a_k[$	n_k	$c_k = \frac{a_0 + a_1}{2}$	$n_k c_k$	$q_k = \frac{n_k c_k}{\sum_{i=1}^k n_i c_i}$	$V_k = \sum_{j=1}^k q_j = 1$
Total	n				

Table 3.1 – Tableau de calcul de la médiale

- $\sum_{i=1}^{n} n_i c_i$ est appelée valeur totale ou masse totale du caractère étudié.
 $q_i = \frac{n_i c_i}{n}$ est la valeur globale relative (v.g.r.) associée à la $\sum_{i=1}^{n} n_i c_i$

classe $[a_{i-1}, a_i]$. q_i désigne la part, dans la valeur totale, detenur par les individus ayant une valeur du caractère appartenant à la classe $[a_{i-1}, a_i]$.

• $V(a_i) = V_i = \sum_{j=1}^i q_j$ est appelée valeur globale relative cumulée croissante (v.g.r.c.c). Elle indique la part, dans la valeur totale, detenue par les individus ayant une valeur du caractère appartenant à la classe $[a_{i-1}, a_i]$.

La médiale M vérifie V(M) = 0.5. La détermination de la médiale se fait en deux étapes :

- 1. Soit la première classe $[a_{i-1}, a_i]$ dont la valeur globale relative cumulée croissante V_i est supérieure ou égale à 0.5. Si $V_i = 0.5$ alors la médiale est $M = F_i$. Sinon, nous avons $V_{i-1} < 0.5 < V_i$.
- 2. Par interpolation linéaire, on calcule la valeur de la médiale :

$$\begin{array}{c|cc}
a_{i-1} & V_{i-1} \\
M & 0.5 \\
a_i & V_i
\end{array}$$

$$\frac{a_i - a_{i-1}}{V_i - V_{i-1}} = \frac{M - a_{i-1}}{0.5 - V_{i-1}} \Leftrightarrow M = a_{i-1} + \frac{0.5 - V_{i-1}}{V_i - V_{i-1}} (a_i - a_{i-1}).$$

Exemple 12. La médiale est le niveau de salaire qui divise en deux la masse salariale : les salaires inférieurs à la médiale représentent la moitié de la masse salariale et ceux supérieurs à la médiale représentent aussi la moitié de la masse salariale.

Classe de salaire	Effectif	Centre	Masse	Valeur globale	Valeur glaobale
(en milliers francs)		$de\ classe$	salariale	relative	relative cumulée
[80, 100[26	90	2340	15.15	15.15
[100, 110[33	105	3465	22.44	37.59
[110, 120[64	115	7360	47.67	85.26
[120, 130[7	125	875	5.67	90.93
[130, 150[10	140	1400	9.07	100
Total	140		15440		

110	37.59
M	50
120	85.26

$$M = 110 + (120 - 110) \times \frac{50 - 37.59}{65.26 - 37.59}$$

3.2 Paramètres de dispersion

Exemple 13. Deux groupes d'étudiants ont été observés selon la note obtenue en statistique descriptive :

Gr	oupe 1	2	5	10	10	10	15	18
Gr	oupe 2	8	9	10	10	10	11	12

Pour le groupe 1 : $M_{01} = M_{e1} = \overline{X}_1 = 10$ Pour le groupe 2 : $M_{02} = M_{e2} = \overline{X}_2 = 10$.

On remarque que les deux séries présentent un même mode, une même médiane et une même moyenne. Cependant, leur distribution se fait d'une manière nettement différente. En effet, contrairement au groupe 1, les notes du groupe 2 ne s'écartent pas trop des valeurs centrales $(Me = \bar{X} = 10)$. Ainsi, les indicateurs de tendance centrale peuvent s'avèrer insuffisant pour permettre à eux seuls de résumer et de comparer deux ou plusieurs séries statistiques, d'où la nécessité de calculer d'autres indicateurs dits de dispersion.

Les paramètres de dispersion servent à préciser la variabilité de la série statistique, c'est à dire à résumer l'éloignement de l'ensemble des observations par rapport à leur tendance centrale.

3.2.1 L'étendue

On appelle étendue l'écart entre la plus grande valeur et la plus petite valeur. Posons

$$x_{min} = \min(x_1, \dots, x_n) \quad x_{max} = \max(x_1, \dots, x_n).$$

L'etendue est définie par

$$E = x_{max} - x_{min}.$$

Plus l'étendue est faible, plus la série est moins dispersée. L'inconvénient majeur de l'étendue est qu'il ne dépend que des valeurs extrêmes qui sont souvent exceptionnelles et aberrantes.

3.2.2 L'écart moyen absolu

Pour un caractère quantitatif discret dont les n observations sont rangées selon ses k modalités x_1, \ldots, x_k d'effectifs respectifs n_1, \ldots, n_k , l'écart absolu moyen est le nombre

$$EMA = \frac{1}{n} \sum_{i=1}^{k} n_i \mid x_i - \bar{x}_n \mid .$$

Pour un caractère quantitatif continu dont les n observations ont été réparties dans k intervalles $([a_i, a_{i+1}])_{i=1,\dots,k}$, l'écart absolu moyen est

le nombre

$$EMA = \frac{1}{n} \sum_{i=1}^{k} n_i \mid c_i - \bar{x}_n \mid,$$

où $c_i = \frac{a_i + a_{i+1}}{2}$ est le centre de la classe $[a_i, a_{i+1}]$.

Remarque 3. On appelle écart absolu par rapport à la médiane M_e :

$$EMA_1 = \frac{1}{n} \sum_{i=1}^{k} n_i | x_i - M_e |.$$

Cet indicateur de dispersion tient compte de tous les écarts entre les valeurs observées et la moyenne arithmétique. Son inconvénient est qu'il n'est pas commode pour le calcul algébrique vu la présence de l'expression de la valeur absolue. Une solution alternative consiste à considérer la moyenne des carrés des écarts et de calculer ensuite la racine carrée.

3.2.3 Variance, écart-type

Pour un caractère quantitatif discret dont les n observations sont rangées selon ses k modalités x_1, \ldots, x_k d'effectifs respectifs n_1, \ldots, n_k ,

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^k n_i (x_i - \bar{x})^2.$$

Pour un caractère quantitatif continu dont les n observations ont été réparties dans k intervalles $([a_i,a_{i+1}])_{i=1,\ldots,k}$, la variance est

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{k} n_{i} (c_{i} - \bar{x})^{2}.$$

où $c_i = \frac{a_i + a_{i+1}}{2}$ est le centre de la classe $[a_i, a_{i+1}]$.

L'écart-type σ est la racine carrée de la variance.

La variance mesure la dispersion des valeurs autour de la moyenne. La variance est exprimée dans le carré de l'unité de mesure de la variable. C'est la raison pour laquelle on ne doit pas interpréter la variance mais plutôt sa racine carrée : l'écart-type. L'écart-type est utilisé comme un

indicateur de la dispersion de la série statistique. Plus il est grand, plus la dispersion des observations autour de la moyenne de la variable est forte, plus la population est hétérogène.

3.2.4 L'écart inter-quartile

L'intervalle interquartile est l'intervalle $[Q_1, Q_3]$. L'écart interquartile est défini par

$$IQ = Q_3 - Q_1.$$

Nous avons 50% des observations qui se trouvent entre Q_1 et Q_3 . Ainsi, 50% des observations s'étalent sur un intervalle de longueur égale à $Q_3 - Q_1$. Plus l'intervalle interquartiles est petit, plus la dispersion est faible et plus la population est homogène.

Cette quantité mesure la dispersion autour de la médiane. Plus IQ est grand, plus il existe des valeurs éloignées de la médiane.

3.2.5 Le Coefficient de variation

Le coefficient de variation CV est défini comme le rapport de l'écart-type à la moyenne :

$$CV = \frac{\sigma}{\bar{x}}.$$

C'est un nombre sans dimension qui mesure la proportion de la moyenne expliquée par l'écart-type. Le coefficient de variation permet de comparer deux ou plusieurs distributions exprimées dans des unités différentes et qui n'ont pas le même ordre de grandeur (les moyennes sont différentes). Le coefficient de variation est souvent exprimé en pourcentage. Plus le coefficient de variation est faible, plus la dispersion est faible et plus la population est homogène.

3.3 Les paramètres de concentration

La notion de concentration tient une place importante dans les études économiques; on parle de concentration des entreprises, de concentration du pouvoir ou de la richesse, etc. L'étude de concentration ne s'applique qu'à des variables statistiques continues à valeurs positives et cumulables. Il est clair qu'elle ne peut s'appliquer à des ensembles d'individus classés selon l'âge, la taille ou le poids, parce que la somme

des âges par exemple d'une population n'a pas de signification. Elle a pour but de mesurer les inégalités de répartition d'une masse totale.

3.3.1 L'écart entre médiane et médiale

On appelle écart médiale-médiane d'une série statistique, le nombre défini par :

$$\Delta M = M - M_e.$$

Cet écart nous fournit un premier renseignement sur la concentration d'une distribution statistique.

- Si $\Delta M = 0 \Leftrightarrow M = M_e$ alors alors la concentration est nulle et la répartition de la valeur totale est parfaitement égalitaire.
- Si $\Delta M \neq 0$ alors la répartition de la valeur totale n'est pas égalitaire. Cependant, aucune information sur l'intensité de cette inégalité ne peut être avancée.
- Pour comparer la concentration de deux ou plusieurs séries statistiques, on peut utiliser le rapport $\frac{\Delta M}{E}$. La concentration d'une série est d'autant plus forte que le rapport est élevé. (E représente l'etendue de la série).

3.3.2 La courbe de Lorenz

La courbe de Lorenz est obtenue en reliant, par des segments de droites, les points de coordonnées (F_i, V_i) , i = 0, ..., k avec $(F_0, V_0) = (0, 0)$. Plus la courbe de Lorenz s'éloigne de la première bissectrice, plus la concentration est forte et plus la répartition est inégalitaire.

3.3.3 L'indice de Gini

On appelle surface de concentration, qu'on note S, la surface comprise entre la première bissectrice et la courbe de Lorenz. Dans un repère orthonormé, soient les points $O=(0,0),\,A=(1,1)$ et B=(1,0). L'indice de Gini I est le rapport entre la surface de concentration et la surface du triangle OAB. Nous avons alors

$$I = 2S = 1 - \sum_{i=1}^{k} \frac{n_i}{n} (V_i + V_{i-1}).$$

L'indice de Gini est compris entre 0 et 1. Plus l'indice de Gini tend vers 1, plus la concentration est forte. Plus l'indice de Gini tend vers 0, plus la concentration est faible.

3.4 Paramètres de forme

Les paramètres de forme permettent d'avoir une idée staisfaisante et plus précise sur la forme de la distribution. On distingue les coefficients d'asymétrie et les coefficients d'aplatissement.

Une distribution est dite symétrique si les observations également dispersées de part et d'autre de la valeur centrale. Dans le cas contraire, la distribution est dite asymétrique ou dissymétrique.

3.4.1 Moments

Pour un caractère quantitatif discret dont les n observations sont rangées selon ses k modalités x_1, \ldots, x_k d'effectifs respectifs n_1, \ldots, n_k , le moment centré d'ordre r est défini par

$$\mu_r = \frac{1}{n} \sum_{i=1}^k n_i (x_i - \bar{x})^r.$$

Pour un caractère quantitatif continu dont les n observations ont été réparties dans k intervalles $([a_i, a_{i+1}])_{i=1,\dots,k}$, le moment centré d'ordre r est défini par

$$\mu_r = \frac{1}{n} \sum_{i=1}^k n_i (c_i - \bar{x})^r,$$

où $c_i = \frac{a_i + a_{i+1}}{2}$ est le centre de la classe $[a_i, a_{i+1}]$.

Remarque 4. $\mu_0 = 1$, $\mu_1 = 0$ et μ_2 est la variance.

3.4.2 Asymétrie

Le coefficient d'asymétrie de Pearson

Dans une distribution faiblement asymétrique, c'est la position du mode par rapport à la moyenne (ou à la médiane) qui caractérise l'asymétrie. Le coefficient d'asymétrie de Pearson est défini par :

$$s = \frac{\bar{X} - M_0}{\sigma}.$$

Le coefficient d'asymétrie de Fisher

Le Coefficient d'asymétrie de Fisher permet de quantifier le degré de déviation de la forme de la distribution par rapport à une distribution symétrique. Il est défini par

$$s = \frac{\mu_3}{\mu_2^{3/2}}.$$

Le coefficient d'asymétrie de Yule

On compare ici létalement de la courbe de distribution à gauche de la médiane et l'étalement à droite et à rapporter leur diiférence à leur somme. Le coefficient d'asymétrie de Yule est défini par :

$$s = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{Q_3 - Q_1} = \frac{Q_1 + Q_3 - 2Q_2}{Q_3 - Q_1}.$$

Interprétation

Quelque soit la formule adoptée, nous avons l'interprétation suivante. Ces coefficients n'ont d'intérât que dans la mesure où ils permettent de comparer les formes de deux ou plusieurs distributions; bien entendu, les comparaison ne sont valables que si la même formule est retenue pour les diverses distributions.

- 1. $\gamma_1=0$ indique une distribution parfaitement symétrique. Dans ce cas $M_e=M_0=\bar{x}$.
- 2. $\gamma_1>0$ indique une distribution unimodale étalée vers la droite. Dans ce cas $M_0 < M_e < \bar{x}$
- 3. $\gamma_1 < 0$ indique une distribution unimodale étalée vers la gauche. Dans ce cas $\bar{x} < M_e < M_0$

3.4.3 L'aplatissement

On compare la courbe de fréquence de la distribution à la courbe de fréquence de la distribution normale considérée comme la distribution idéale. On fait apparaître ainsi l'aplatissement ou l'allongement au voisinage du mode. Quand la courbe est plus aplatie que la courbe normale, on dit qu'elle est platicurtique; quand elle est plus aigue, on dit qu'elle est leptocurtique; une courbe normale est dite mésocurtique.

Le coefficient d'aplatissement de Fisher est :

$$\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3 \quad \mu_2 \neq 0.$$

1. $\gamma_2 = 0$: la distribution est normale

2. $\gamma_2 > 0$: la distribution est aigue.

3. $\gamma_2 < 0$: la distribution est aplatie.

Remarque 5. Les coefficients de kurtosis et de skewness peuvent être utilisés pour s'assurer que les variables suivent une distribution normale. On estime que le coefficient de symétrie ou skewness doit être inférieur à 1 et le coefficient d'aplatissement ou kurtosis doit être inférieur à 1.5 pour considérer que la variable suit bien une loi normale.

Chapitre 4

Indices statistiques

4.1 Introduction

Un indice est un instrument statistique permettant de caractériser la variation relative d'un ensemble complexe entre deux situations de temps ou de lieu appelées date de référence et date courante. Deux catégories d'indices peuvent être distinguées selon le type de grandeur étudiée. Ainsi, si l'on considère le prix d'un produit, la production d'une entreprise donnée, le cours de l'action d'une société particulière, il s'agit de grandeurs simples au sens où la grandeur est un nombre ne prenant qu'une seule valeur dans une situation donnée. Les indices calculés sur la base de ces grandeurs sont appelés **indices élémentaires.** En revanche, le niveau général des prix, la production industrielle, le cours des actions sont des grandeurs complexes dans la mesure où leur calcul nécessite d'agréger un ensemble de valeurs hétérogènes (prix des différents produits, production de diverses industries, cours de différentes actions). Les indices calculés sur la base de ces grandeurs sont appelés **indices synthétiques.**

4.2 Indices élémentaires

4.2.1 Définitions

Soit X une grandeur prenant la valeur X_t à la date t. La date peut se rapporter au temps, à l'espace ou à l'évolution de tout autre critère.

Définition 1. On appelle indice élémentaire de la grandeur X à la date t par rapport à la date 0 la quantité définie par

$$I_{t/0} = \frac{X_t}{X_0}.$$

Exemple 14. La populaion ivoirienne est passée de 16 millions en 1998 à 22 millions en 2013. L'indice de la population ivoirienne en 2013 par rapport à 1998 est $I_{2013/1998} = 137.5$, soit une augmentation de 37.5% en 15 ans.

L'indice élémentaire est le plus simple de tous les indices. Il permet d'évaluer l'évolution de X entre la date de reférence 0 et la date courante t. Etant sans dimension, il permet aussi de comparer l'évolution de deux ou plusieurs grandeurs de nature éventuellement différentes, mesurées en unités différentes sur une même période.

Remarque 6. Un indice élémentaire $I_{t/0}$ est équivalent à une variation pourcentage de $(I_{t/0} - 1) * 100$.

Remarque 7. Dans la pratique, on exprime un indice élémentaire en pourcentage :

$$I_{t/0} = 100 \times \frac{X_t}{X_0}.$$

4.2.2 Propriétés d'un indice

4.2.2.1 Circularité (ou transférabilité ou transitivité)

L'indice de la date 0 par rapport à la date de référence t doit être égal au produit de l'indice de la date t par rapport à la date u par l'indice de la date u par rapport à la date 0:

$$I_{t/0} = I_{t/u} \times I_{u/0}.$$

La circularité permet de changer de base en passant de la date de référence 0 à la date de référence u. En effet, nous obtenons

$$I_{t/u} = \frac{I_{t/0}}{I_{u/0}}.$$

La circularité entraîne la propriété d'enchaînement :

$$I_{t/0} = I_{t/t-1} \times I_{t-1/t-2} \times \cdots \times I_{1/0}.$$

On obtient l'indice à la date t par rapport à la date 0 en faisant le produit des indices intermédiaires d'une date par rapport à la précédente. On dit alors que l'on peut chaîner les évolutions.

4.2.2.2 Réversibilité

L'indice de la date de référence par rapport à la date t doit être égal à l'inverse de l'indice de la date t par rapport à la date de référence :

$$I_{1/0} = \frac{1}{I_{0/1}}.$$

Cette propriété est intéressante lorsqu'on se refère à un critère autre que le temps.

4.3 Indices synthétiques

Les indices élémentaires retracent l'évolution d'une seule grandeur parfaitement définie et homogène. Pour suivre les variations de grandeurs complexes qui sont composées d'un nombre plus ou moins important de grandeurs simples, on utilise les indices synthétiques. Un indice synthétique groupe en un nombre unique des indices élémentaires de même nature. Toute la difficulté réside dans le choix des règles qui détermineront l'indice synthétique. On établit alors une distinction entre l'indice simple et l'indice pondéré :

- a) L'indice est simple lorsque les indices élémentaires qui composent l'indice synthétique entrent une fois et une fois seulement dans le calcul.
- b) L'indice est pondéré lorsque les indices élémentaires composants n'entrent pas pour parties égales dans le calcul. Cette manière de faire est déterminée par le souci d'accorder plus d'importance à certains produits plutôt qu'à d'autres. On affecte donc à chaque indice élémentaire un poids ou coefficient de pondération différent, compte tenu de l'importance que l'ont veut attribuer à chaque produit, et l'on obtient un indice synthétique qui est une moyenne pondérée des indices élémentaires composants.

Un indice synthétique est une combinaison d'indices élémentaires. Les trois indices synthétiques classiques sont le Laspeyres, le Paasche et le Fisher.

Soit X une grandeur complexe constituée de k grandeurs simples

$$X^1, \ldots, X^k$$
.

L'indice élémentaire de la grandeur simple X^i à la date t par rapport à la date de reférence 0 est défini par

$$I_{t/0}^i = \frac{X_t^i}{X_0^i}.$$

Soient

- ω_0^i l'importance relative de la grandeur simple X^i à la date de référence 0
- ω_t^i l'importance relative de la grandeur simple X^i à la date courante t

4.3.1 Indice de Laspeyres

Définition 2. L'indice de Laspeyres est la moyenne arithmétique pondérée des indices élémentaires par les coefficients de pondération de la date de référence ω_0^i :

$$L_{t/0} = \sum_{i=1}^{k} \omega_0^i I_{t/0}^i.$$

L'indice de Laspeyres ne présente ni la propriété de circularité, ni celle de la reversibilité.

4.3.2 Indice de Paasche

Définition 3. L'indice de Paasche est la moyenne harmonique pondéré des indices élémentaires par les ω_t^i de la date courante :

$$\frac{1}{P_{t/0}} = \sum_{i=1}^{k} \frac{\omega_t^i}{I_{t/0}^i}$$

L'indice de Paasche ne possède ni la propriété de circularité ni celle de la réversibilité.

4.3.3 L'indice de Fisher

Définition 4. L'indice de Fisher est la moyenne géométrique des indices de Laspeyres et de Paasche :

$$F_{t/0} = \sqrt{L_{t/0} \times P_{t/0}}.$$

L'avantage de l'indice de Fisher est qu'il jouit de la propriété de réversibilité. Ce qui fait de lui un outil privilégié dans les comparaisons géographiques.

4.3.4 Comparaison

Il n'existe pas de critère général permettant de statuer sur la supériorité d'un indice synthétique par rapport à un autre. Il est cependant possible de présenter les principaux avantages et inconvénients de ceuxci.

Supposons que l'on étudie l'évolution de la consommation d'un panier composé de plusieurs biens.

- Indice de Laspeyres. Les coefficients de pondération sont fixes, c'est-à-dire que l'on suppose que la structure de la consommation ne se modifie pas sur la période étudiée. En conséquence, si l'on considère que les coefficients de pondération sont fixés à la date de référence, plus la date courante est éloignée de cette date, plus il est probable que la structure du panier de biens du consommateur se soit modifiée et plus le risque que les coefficients de pondération soient obsolètes est important. Pour cette raison, le principal inconvénient attribué à l'indice de Laspeyres est qu'il tend à surestimer l'effet de l'évolution des prix sur le pouvoir d'achat du consommateur dans la mesure où il ne tient pas compte d'éventuelles substitutions entre les biens du panier considéré.
- Indice de Paasche. Les coefficients de pondération sont ceux de la date courante. Ceux-ci évoluent donc avec les prix, c'est-à-dire que la part des différents biens au sein du panier considéré évolue en même temps que les prix. Le calcul de l'indice de Paasche nécessite en conséquence de disposer simultanément des données relatives aux prix et aux quantités à chaque date considéré (et non plus seulement des prix comme dans le cas de l'indice de Laspeyres). Le principal inconvénient tient ici en une difficulté de calcul supplémentaire liée à la disponibilité des données, expliquant pourquoi l'indice de Laspeyres est plus fréquemment utilisé que l'indice de Paasche. Du fait de la variabilité des coefficients de pondération, l'indice de Paasche tend, au contraire de l'indice de Laspeyres, à sous-estimer l'effet de l'évolution des prix sur le pouvoir d'achat du consommateur. Il est important de souligner que les modifications de la structure de

- consommation ne dépendent évidemment pas que de l'évolution des prix relatifs des biens composant le panier.
- Agrégation. Les indices de Laspeyres et de Paasche ont des structures de moyenne. On peut calculer la moyenne arithmétique d'un ensemble à partir des moyennes des sous-ensembles qui le composent. Il en résulte que l'indice de Laspeyres (resp. de Paasche) d'un ensemble peut s'obtenir à partir des indices des groupes formant cet ensemble en leur appliquant la formule de Laspeyres (resp. de Paasche.

Exemple 15. Entre janvier 2006 et janvier 2010, l'évolution des prix et du nombre d'exemplaires de journaux vendus en un mois par une société de presse éditant trois journaux mensuels A, B et C a été la suivante :

	Jann	vier 2013	Janvier 2017	
	Prix Quantité		Prix	$Quantit\'e$
Journal A	1600	8000	1900	6500
Journal B	2600	4000	2950	5000
Journal C	3275	2000	4000	1500

1. La variation de recettes de la société de presse entre janvier 2013 et Janvier 2017 est de 11.26%, en effet :

$$V_{2017/2013} \times 100 = \frac{33100000}{29750000} \times 100 \approx 111, 26.$$

- 2. Cette variation fait intervenir un effet quantité et un effet prix qu'on peut évaluer en calculant les indices des prix et des quantités de Paasche et Laspeyres:
- 3. La variation de la valeur globale peut être décomposée en ses deux effets prix et quantité. En effet, à partir de la formule

On peut établir le schéma de decomposition donné

Qualité	Laspeyres	Paasche	Fisher
Réversibilité	non	non	oui
	mais: $L_{0/t} = \frac{1}{P_{t/0}}$	mais: $P_{0/t} = \frac{1}{L_{t/0}}$	
Transitivité	non	non	non
Agrégation	oui	oui	non
Emploi	Couramment utilisé	peu utilisé	quasiment inusité

4.3.5 Indices de prix, de quantité et de valeur

On s'interesse à l'évolution des dépenses concernant un groupe de k biens de consommation étiquétés de 1 à k entre les dates 0 et 1. Nous notons

 p_t^j : prix du bien j à la date t

 q_t^j : quantité du bien j à la date t.

La dépense consacrée au bien j à la date t est $D_t^j = p_t^j q_t^j$. Le budget total consacré au groupe de k biens de consommation est

$$D_t = \sum_{j=1}^k p_t^j q_t^j.$$

On appelle coefficient budgétaire du bien j à la date t la part du budget total consacré au bien j :

$$\omega_t^j = \frac{p_t^j q_t^j}{\sum_{j=1}^k p_t^j q_t^j}$$

Le coefficient budgétaire mesure l'importance relative des différents biens dans le budget total.

Les indices élémentaires entre les dates 0 et 1 des grandeurs considérées sont par définition :

- $I_{1/0}(p^j) = \frac{p_1^j}{p_0^j}$: indice de prix du bien j

- $I_{1/0}(q^j) = \frac{q_1^j}{q_0^j}$: indice de quantité du bien j

-
$$I_{1/0}(D^j)=rac{p_1^jq_1^j}{p_0^jq_0^j}$$
 : indice de dépense du bien j

Ces trois indices sont liés par la relation suivante

$$I_{1/0}(D^j) = I_{1/0}(p^j)I_{1/0}(q^j).$$

L'indice de la dépense total est défini par

$$I_{1/0}(D) = \frac{D_1}{D_0} = \frac{\sum_{j=1}^k p_1^j p_1^j}{\sum_{j=1}^k p_0^j p_0^j}.$$

Pour les indices de Laspeyres et de Paasche, les coefficients budgétaires s'imposent comme coefficients de pondération.

Indice de	Prix	Quantité
Laspeyres	$L_{1/0}(p) = \frac{\sum_{j=1}^{k} p_1^j q_0^j}{\sum_{j=1}^{k} p_0^j q_0^j}$	$L_{1/0}(q) = \frac{\sum_{j=1}^{k} p_0^j q_1^j}{\sum_{j=1}^{k} p_0^j q_0^j}$
Paasche	$P_{1/0}(p) = \frac{\sum_{j=1}^{k} p_1^j q_1^j}{\sum_{j=1}^{k} p_0^j q_1^j}$	$P_{1/0}(q) = \frac{\sum_{j=1}^{k} p_1^j q_1^j}{\sum_{j=1}^{k} p_1^j q_0^j}$

Les indices de Laspeyres et de Paasche se présentent ainsi comme des rapports de dépenses où le facteur (prix ou quantité) autre que celui considéré est constant. L'indice de Laspeyres utilise les constantes de la date de référence tandis que l'indice de Paasche utilise celles de la date courante.

Chapitre 5

Statistiques à deux variables

5.1 Introduction

La question centrale de ce chapitre est relative aux statistiques bivariées (deux variables). Comment juger de l'intensité de la dépendance statistique esntre deux variables?

Répondre statistiquement à cette question dépend de la nature des deux variables étudiées. Trois combinaisons sont possibles :

- Deux variables qualitatives :
- Une variable qualitative et une variable quantitative :
- Deux variables quantitatives

L'analyse dans ce cas n'est plus univariée mais bien bivariée. On analyse de manière simultanée les caractéristiques des individus suivant deux variables.

5.2 Généralités

5.2.1 Distribution conjointe

Soit une population comprenant n individus pour chacun desquels on a fait une observation concernant simultanément les caractères X et Y. Le caractère X comporte les k modalités X_1, \dots, X_k et le caractère Y, les l modalités Y_1, \dots, Y_l . L'opération préliminaire de mise en ordre

des observations va consister à classer chacun des n individus dans les $k \times l$ sous-ensembles définis par le croisement des caractères X et Y. A chacun des sous-ensembles correspond une case du tableau statistique à double entrée où figurent en ligne les modalités de X et en colonne les modalités de Y (tableau à k lignes et l colonnes). Ce tableau est appelé tableau de contingence.

On note n_{ij} l'effectif des individus présentant à la fois la modalité X_i et la modalité Y_j . La fréquence des individus présentant à la fois la modalité X_i et la modalité Y_j est

$$f_{ij} = \frac{n_{ij}}{n}.$$

La distribution conjointe des caractères X et Y est donnée par le tableau de contingence :

X	Y_1	Y_2		Y_j		Y_l
X_1	n_{11}	n_{12}		n_{1j}		n_{1l}
X_2	n_{21}	n_{22}		n_{2j}		n_{2l}
:	:	:	:	:	:	
X_i	n_{i1}	n_{i2}		n_{ij}		n_{il}
:	:	:	:	:	:	:
X_k	n_{k1}	n_{k2}		n_{kj}		n_{kl}

Exemple 16. Deux variables qualitatives : répartition de 20 personnes selon le genre et le statut d'activité :

Statut Genre	Actifs occupés	$Ch\^{o}meurs$	Inactifs
Masculin	5	5	1
Féminin	4	3	4

Exemple 17. Deux variables quantitatives continues : répartition de 19 adolescents selon la taille et le poids.

Taille Poids	[20, 40[[40,60[[60, 80]
[120, 140[1	0	0
[140, 160[6	4	0
[140, 160[0	6	2

Exemple 18. Une variable quantitative continue et une variable qualitative : Répartition d'un groupe de 50 personnes réparties par âge et par genre, tous âgés de moins de 45 ans.

Age $Genre$	Homme	Femme
[0, 18[10	20
[18, 45[5	15

5.2.2 Distributions marginales

Le nombre d'individus présentant la modalité X_i du caractère X $n_{i\bullet}$ est

$$n_{i\bullet} = \sum_{j=1}^{l} n_{ij}.$$

La fréquence de la modalité X_i est donnée par

$$f_{i\bullet} = \frac{n_{i\bullet}}{n}.$$

Le nombre d'individus présentant la modalité Y_j du caractère Y est

$$n_{\bullet j} = \sum_{i=1}^{k} n_{ij}.$$

La fréquence de la modalité Y_j est donnée par

$$f_{\bullet j} = \frac{n_{\bullet j}}{n}.$$

Nous avons

$$n = \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} = \sum_{i=1}^{k} n_{i\bullet} = \sum_{j=1}^{l} n_{\bullet j}$$

$$\sum_{i=1}^{k} \sum_{j=1}^{l} f_{ij} = \sum_{i=1}^{k} f_{i\bullet} = \sum_{j=1}^{l} f_{\bullet j} = 1.$$

La distribution marginale de X est donnée par le tableau ci-dessous :

Modalités de X	Effectif	Fréquence
X_1	$n_{1\bullet}$	$f_{1\bullet}$
X_2	$n_{2\bullet}$	f_{2ullet}
:	:	:
X_i	$n_{i\bullet}$	$f_{i\bullet}$
i:	:	:
X_k	$n_{k\bullet}$	$f_{k\bullet}$
total	n	1

La distribution marginale de Y est donnée par le tableau ci-dessous :

Modalités de Y	Effectif	Fréquence
Y_1	$n_{ullet 1}$	$f_{ullet 1}$
Y_2	$n_{ullet 2}$	$f_{\bullet 2}$
:	:	:
Y_j	$n_{ullet j}$	$f_{ullet j}$
i:	:	:
Y_l	$n_{ullet l}$	$f_{ullet l}$
total	n	1

5.2.3 Distributions conditionnelles

Les distributions conditionnelles s'obtiennent en fixant la valeur d'une des deux variables.

La distribution conditionnelle de Y sachant $X=X_i$ est donnée par :

$Y X = X_i$	Y_1	 Y_j	 Y_l	Total
Effectif	n_{i1}	 n_{ij}	 n_{il}	$n_{i\bullet}$

Remarque 8. Nous pouvons ainsi définir k distributions conditionnelles de Y.

La distribution conditionnelle de X sachant $Y=Y_j$ est donnée par

$X Y=Y_j$	X_1	 X_j	 X_k	Total
Fréquence	n_{1j}	 n_{ij}	 n_{kj}	$n_{ullet j}$

Remarque 9. Nous pouvons aussi définir l distributions conditionnelles de X.

5.2.4 Indépendance

On dit que les caractères X et Y sont satistiquement indépendants dans l'ensemble des n individus considérés si toutes les distributions conditionnelles de X sont identiques à la distribution marginale en X.

Indépendance entre X et Y \iff Pour tous (i,j), $f_{i/j} = f_{i\bullet}$

Puisque

$$f_{i \neq j} = \frac{n_{ij}}{n_{\bullet j}} = \frac{\frac{n_{ij}}{n}}{\frac{n_{\bullet j}}{n}} = \frac{f_{ij}}{f_{\bullet j}},$$

alors

$$f_{ij} = f_{\bullet j} f_{i \times j}$$
.

Ainsi, nous obtenons

Indépendance entre
$$X$$
 et $Y \iff$ Pour tous (i, j) , $f_{ij} = f_{i \bullet} f_{\bullet j}$
 \iff Pour tous (i, j) , $n_{ij} = n_{i \bullet} n_{\bullet j}$

Par symétrie :

Indépendance entre X et
$$Y \iff$$
 Pour tous (i,j) , $f_{j/i} = f_{\bullet j}$

Lorsque deux variables dépendent statistiquement l'une de l'autre, on cherche à évaluer l'intensité de leur liaison et, dans le cas de deux variables quantitatives, on examine si on peut les considérer liées par une relation linéaire.

5.3 Liaison entre deux caractères qualitatifs

5.3.1 Mesure de l'intensité de la liaison

L'intensité de la liaison entre deux caractères qualitatifs est mesurée par

$$\chi^{2} = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{\left(n_{ij} - \frac{n_{i \bullet} n_{\bullet j}}{n}\right)^{2}}{\frac{n_{i \bullet} n_{\bullet j}}{n}}.$$

Le χ^2 est toujours positif ou nul.

Définition 5.

X et Y sont indépendants $\Leftrightarrow f_{ij} = f_{i \bullet} f_{\bullet j} \ i = 1, \dots, k, \ j = 1, \dots, l.$

Remarque 10. Nous avons

$$f_{ij} = f_{i \bullet} f_{\bullet j} \Leftrightarrow \frac{n_{ij}}{n} = \frac{n_{\bullet j}}{n} \times \frac{n_{i \bullet}}{n}$$
$$\Leftrightarrow n_{ij} = \frac{n_{\bullet j} \times n_{i \bullet}}{n}$$

De ce fait on a $\chi^2=0$ si et seulement si $n_{ij}=\frac{n_{i\bullet}n_{\bullet j}}{n_{i\bullet}n_{\bullet j}}$. χ^2 mesure l'écart entre les effectifs observés n_{ij} et ceux attendus $\frac{n_{i\bullet}n_{\bullet j}}{n}$ sous l'hypothèse d'indépendance. On dira que X et Y ne sont pas indépendants si χ^2 est trop grand.

5.3.2 Coefficient de Cramer

Le coefficient de Cramer est défini par

$$C = \sqrt{\frac{\chi^2}{n \min(k-1, l-1)}}.$$

Nous avons $0 \le C \le 1$. Si $C \approx 0$, les deux caractères sont indépendants. Si C=1, on parle de dépendance entre X et Y.

5.3.3 Exemple

Nous voulons étudier la liaison entre le type de musique X et l'âge Y. X a trois modalités (chansons, jazz, classique) et Y a quatre modalités (jeunes, adulte femme, adulte homme, vieux). Voici le tableau de contingence :

	Jeunes	Adulte femme	Adulte homme	Vieux	Total
Chansons	69	172	133	27	401
Jazz	41	84	118	11	254
Classique	18	127	157	43	345
Total	128	383	408	81	1000

Etudions la liaison entre X et Y. Nous avons

$$\chi^2 = \sum_{i=1}^{3} \sum_{j=1}^{4} \frac{\left(n_{ij} - \frac{n_{i\bullet} n_{\bullet j}}{n}\right)^2}{\frac{n_{i\bullet} n_{\bullet j}}{n}} = 52.9138.$$

Le coefficient de Cramer est

$$C = \sqrt{\frac{\chi^2}{1000 \min(2, 3)}} = \sqrt{\frac{\chi^2}{2000}} \approx 0.16.$$

La dépendance entre X et Y est très faible.

5.4 Liaison entre deux caractères quantitatifs

5.4.1 Représentation graphique : nuage de points.

On suppose que les deux caractères X et Y sont quantitatifs. Pour chaque individu i, on connaît le couple de valeurs (X_i,Y_i) qui lui est attaché. Sur un graphique à axes de coordonnées rectangulaires, nous pouvons représenter chaque élément, par un point d'abscisse X_i et d'ordonnée Y_i . Ce graphique est appelé graphique de corrélation ou nuage de points. Schématiquement, le nuage peut revêtir trois aspects :

- Les points représentatifs sont distribués sur toute la surface du graphique, à peu près comme s'ils avaient été placés au hasard.
 C'est le signe qu'il n'y a aucun lien entre les deux variables X et Y : on dit qu'elles sont indépendantes;
- 2. Les points représentatifs sont , au contraire rangés le long d'une courbe (droite, arc de cercle,...). Une loi rigoureuse préside alors aux relations entre les deux variables. A chaque valeur de X correspond une seule valeur de Y. On dit qu'il y a liaison fonctionnelle entre Y et X
- 3. La plupart des phénomènes identifiés à des distributions à deux variables se trouvent entre ces deux extrèmes. Les points représentatifs se distribuent dans une région privilégiée du dessin. Moins le nuage de points a d'épaisseur et plus on se trouve proche de la liaison fonctionnelle : on dit qu'il y a une forte corrélation entre les deux variables. Inversement, plus le nuage de points s'étale, moins ses limites sont précises, plus on est proche de l'indépendance : la corrélation est faible.

5.4.2 Covariance, coefficient de correlation linéaire

La covariance entre les caractères X et Y est défini par

$$Cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X}_n)(Y_i - \overline{Y}_n)$$
$$= \frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \overline{X}_n \overline{Y}_n.$$

La covariance est un indice symétrique, c'est à dire, Cov(X,Y) = Cov(Y,X) et peut prendre toute valeur (négative, nulle ou positive). Le coefficient de correlation linéaire entre les caractères X et Y est défini par

$$r_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

où σ_X et σ_Y les écart-types respectifs de X et σ_Y , sont définis

$$\sigma_X = \left(\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right)^{1/2} \quad \sigma_Y = \left(\frac{1}{n}\sum_{i=1}^n (Y_i - \overline{Y}_n)^2\right)^{1/2}.$$

Nous avons:

- 1. $-1 < r_{XY} < 1$.
- 2. Si $r_{XY} > 0$ alors les deux variables évoluent dans le même sens.
- 3. Si $r_{XY} < 0$ alors les deux variables n'évoluent pas dans le même sens.
- 4. $|r_{XY}| = 1 \iff$ les *n* points (X_i, Y_i) sont alignés.
- 5. $r_{XY}=0 \iff$ Pas de liaison linéaire, mais possibilité d'une liaison d'un autre type.
- 6. X et Y indépendantes $\Longrightarrow r_{XY} = 0$.

Remarque 11. • La covariance dépend des unités de mesure dans lesquelles sont exprimées X et Y. Le coefficient de corrélation est un indice de liaison sans unité.

- La covariance et le coefficient de corrélation ne permettent de mettre en évidence qu'une relation linéaire entre X et Y.
- Si deux variables sont statistiquement indépendantes (aucun lien), la corrélation est nulle, mais l'inverse est faux : il peut exister un lien autre que linéaire entre elles.

5.4.3 Regression linéaire

Si $|r_{XY}| \simeq 1$, on peut supposer que X est cause de Y. Il est naturel de chercher, dans un ensemble donné de fonctions, la fonction de X approchant Y "le mieux possible" au sens d'un certain critère. On dit que l'on fait la regression de Y sur X. Si l'on choisit pour ensemble de fonctions celui des fonctions affines du type (aX+b), on parle de regression linéaire. C'est le choix que l'on fait le plus fréquemment dans la pratique, le critère le plus usuel étant celui des moindres carrés.

Le critère des moindres carrés. Il consiste à minimiser la quantité

$$S(a,b) = \sum_{i=1}^{n} [Y_i - (aX_i + b)]^2.$$

Solution. La minimisation de S en a et b fournit la solution suivante :

$$a = \frac{Cov(X, Y)}{\sigma_X^2} \qquad b = \bar{y} - a\bar{x}.$$

La droite d'équation y = ax + b est appelée droite de régression de Y sur X. Elle passe par le point $(\overline{X}_n, \overline{Y}_n)$.

5.4.4 Exemple 1 : Taux de cholestérol en fonction de l'âge

Sur un échantillon de 10 sujets d'âges différents, on a recueilli les données expérimentales suivant :

- âge en année
- la concentration sanguine du cholestérol (en g/L).

Age $(\lambda$	- /										
gl (Y_i)) 1	.6	2.5	2.2	1.4	2.7	1.8	2.1	1.5	2.8	2.6

Le taux de cholestérol est-il lié à l'âge? La relation fonctionnelle est-elle linéaire? Peut-on prévoir le taux de cholestérol attendu à 35 ans, 75 ans?

1. Représentation du nuage de points.

Les points sont rangés le long d'une droite. On peut donc supposer l'existence d'une relation linéaire entre l'age et le taux de cholesterol.

2. Le coefficient de corrélation est donné par :

$$r_{XY} = \frac{\sum_{i=1}^{10} x_i y_i - 12\overline{x}_{12} \overline{y}_{12}}{\sqrt{\sum_{i=1}^{10} x_i^2 - 12(\overline{x}_{12})^2} \sqrt{\sum_{i=1}^{10} y_i^2 - 12(\overline{y}_{12})^2}} \approx 0.95$$

Le coefficient de corrélation est positif. Ce qui signifie que l'age et le taux de cholesterol évolue dans le même sens. De plus ils sont fortement corrélés; ce qui confirme la relation linéaire entre l'age et le taux de cholesterol.

3. Estimation des paramètres

$$a = \frac{\sum_{i=1}^{10} x_i y_i - 12\overline{x}_{12} \overline{y}_{12}}{\sum_{i=1}^{10} x_i^2 - 12(\overline{x}_{12})^2} = 0.03$$

$$b = \overline{y}_{12} - \hat{a}\overline{x}_{12} = 0.92$$

4. La droite de regression est

$$gl = 0.03 * age + 0.92$$

5. Prévisions A 35 ans le taux de cholestérol prédit est gl=0.03*35+0.92=1.97 A 75 ans le taux de cholestérol prédit est gl=0.03*75+0.92=3.17

5.4.5 Exemple 2 : Taille en fonction du poids

On dispose des mesures de taille et de poids de 19 adolescents. La variable X correspond à la taille et la variable Y, le poids.

Taille (X_i)	140	161	155	148	155	123	160	140	165	172	155
Poids (Y_i)	38.2	44.3	46.1	38.2	50.5	22.4	40.4	34.7	50.5	50.5	38.1

Taille (X_i)								
Poids (Y_i)	57.3	39.3	46.1	37.1	45.9	66.3	60	50.5

5.5 Caractère quantitatif et caractère qualitatif

5.5.1 Rapport de correlation

Soient n observations portant simultanément sur un caractère qualitatif X à k modalités et sur un caractère quantitatif Y. Les observations du caractère quantitatif Y se répartissent dans les k modalités de X. Nous notons $n_{i\bullet}$ le nombre d'observations de Y relatifs à la i-ème modalité de X, Y_{ij} la j-ème mesure de Y pour la i-ème modalité de X et \overline{Y}_i la moyenne des observations dans la i-ème modalité

$$\overline{Y}_i = \frac{1}{n_{i\bullet}} \sum_{j=1}^{n_{i\bullet}} Y_{ij}.$$

La moyenne des observations de Y dans la popultion entière est

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n n_{i \bullet} \overline{Y}_i.$$

On définit :

- la variance intra-groupe

$$V_{intra} = \frac{1}{n} \sum_{i=1}^{k} n_{i \bullet} \sigma_i^2$$

avec

$$\sigma_i^2 = \frac{1}{n_{i\bullet}} \sum_{j=1}^{n_{i\bullet}} (Y_{ij} - \overline{Y}_i)^2$$

- la variance inter-groupe

$$V_{inter} = \frac{1}{n} \sum_{i=1}^{k} n_{i\bullet} (\overline{Y}_i - \overline{Y}_n)^2$$

Formule de décomposistion de la variance totale σ^2 :

$$\sigma^2 = V_{intra} + V_{inter}.$$

Le rapport de corrélation est défini par

$$\eta_{Y|X}^2 = \frac{V_{inter}}{\sigma^2}$$

 $\eta_{X|Y}^2$ est un nombre compris entre 0 et 1.

- $\eta_{X|Y}^2 = 0 \Rightarrow V_{inter} = 0 \Rightarrow \overline{Y}_i = \overline{Y}_n$. Ce qui signifie que les moyennes de Y sont les mêmes dans toutes les modalités de X. En moyenne, les données ne diffèrent pas selon qu'elles se trouvent dans telle ou telle modalité de X.
- $\eta_{X|Y}^2 = 1 \Rightarrow V_{intra} = 0 \Rightarrow Y_{ij} = \overline{Y}_i$. Les données diffèrent d'un groupe à l'autre mais à l'interieur même de chaque groupe, il n'y a aucune variabilité.

Remarque 12. Si $\eta_{X|Y}^2$ est proche de 1, c'est que le caractère X explique une grande partie de la variabilité des données alors que si sa valeur est proche de 0, elle n'en explique que très peu.

5.5.2 Exemple

Liaison entre le sexe (caractère X) et le salaire (caractère Y). Le caractère X admet deux modalités : femme et homme. Salaire des femmes

1955	1764	1668	1441	1970	1795	1716	1911	1660	2001
1744	1676	1695	1652	1626	1698	1656	1739	1789	1716
1684	1445	1646	1617	1630	1440	1850	1252	1493	1537

Salaire des hommes

Soient n_F , l'effectif des femmes ; \overline{Y}_F la moyenne des salaires des femmes ; σ_F^2 la variance des salaires des femmes ; n_H , l'effectif des hommes ; \overline{Y}_H la moyenne des salaires des hommes ; σ_H^2 la variance des salaires des hommes ; \overline{Y} la moyenne générale des salaires (hommes et femmes). Nous avons

$$\begin{split} n_F &= 30 \quad \overline{Y}_F = 1682.2 \quad \sigma_F^2 = 26959.56 \\ n_H &= 20 \quad \overline{Y}_H = 2022.6 \quad \sigma_F^2 = 9925.44 \\ \overline{Y} &= \frac{30\overline{Y}_F + 20\overline{Y}_H}{30 + 20} = 1818.36 \end{split}$$

La variance inter-groupe est:

$$V_{inter} = \frac{1}{50} \left\{ n_F \left(\overline{Y}_F - \overline{Y} \right)^2 + n_H \left(\overline{Y}_H - \overline{Y} \right)^2 \right\} = 27809.32$$

La variance totale est $\sigma^2 = 47955.23$. Le rapport de correlation est

$$\eta_{Y|X} = \frac{V_{inter}}{\sigma^2} \approx 0.58.$$

On peut considérer que le caractère sexe explique environ 58% de la variabilité des salaires observés.

Chapitre 6

Analyse descriptive d'une série chronologique

6.1 Présentation

6.1.1 Définitions

On appelle série chronologique ou série temporelle, une suite finie de données quantitatives indexée par le temps. Nous la noterons $(X_t, t \in \mathbb{T})$ et l'ensemble \mathbb{T} est appelé espace des temps :

$$\mathbb{T} = \{1, \dots, T\}.$$

On donne deux dimensions au temps:

- le mois, unité de référence correspondant aux dates d'observation; le mois peut être le mois véritable mais également le trimestre, le semestre, etc.
- l'année composée d'un nombre p de mois ; le nombre p est appelé période ; par exemple, p=4 pour les observations trimestrielles, p=12 pour les observations mensuelles.

Soit X_t l'observation d'une grandeur X à la date t. Si les observations sont faites sur n années, et chaque année contenant p mois, on notera X_{ij} l'observation du mois j de l'année i. Nous avons $X_{ij} = X_t$ avec

t=(i-1)p+j. Le mois t est le j-ème mois de la i-ème année. Le nombre total d'observations est T=np.

t	1	2	 T
X_t	X_1	X_2	 X_T

Mois Années	mois 1	mois 2	 mois j	 mois p
année 1	X_{11}	X_{12}	 X_{1j}	 X_{1p}
année 2	X_{21}	X_{22}	 X_{ij}	 X_{2p}
:				
année i	X_{i1}	X_{i2}	 X_{ij}	 X_{ip}
:				
année n	X_{n1}	X_{n2}	 X_{nj}	 X_{np}

Exemple 19. Chiffre d'affaires trimestriel d'une entreprise (en millions de francs)

t		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X	t	2	8	6	12,5	5	10.5	9	15	7	12	10,5	17	8.5	14.5	12	19

Mois Années	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
1976	2	8	6	12.5
1977	5	10.5	9	15
1978	7	12	10.5	17
1979	8.5	14.5	12	19

Exemple 20. Chiffre d'affaires trimestriel d'une entreprise (en millions de francs)

6.1.2 Les composantes d'une série chronologique

Soit $(X_t, t \in \mathbb{T})$ une série chronologique. On distingue différentes composantes fondamentales dans une série chronologique :

- la tendance ou tend T_t indiquant l'évolution à long terme du phénomène. Elle traduit le comportement "moyen" de la série.

Mois Années	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
2000	5,5	6,3	16,9	32,4
2001	23,1	17,5	37,8	62,7
2002	40,6	28,7	58,7	93,3
2003	58,5	39,9	79,5	123,1

- la composante saisonnière S_t correspond à un comportement qui se répète avec une certaine périodicité p (p=12 pour des données mensuelles, p=4 pour des données trimestrielles...). Ce sont des fluctuations s'inscrivant dans le cadre de l'année et qui se reproduisent de facon plus ou moins identiques d'une année à l'autre; la période notée p des variations saisonnières est la longueur exprimée en unité de temps séparant deux variations saisonnières dues à un même phénomène.
- la composante résiduelle ε_t représentant des fluctuations irrégulières et imprévisibles; ces fluctuations supposées en général de faible amplitude; elles traduisent l'effet des facteurs perturbateurs non permanents (grèves, guerre, intempéries,...)

Remarque 13. Ces trois composantes ne sont pas toujours simultanément présentes dans une série chronologique. Certaines séries n'ont pas de tendance, d'autres n'ont aucune composante saisonnière. D'autres n'ont pas de composantes résiduelle.

Nous supposons que:

- le mouvement saisonnier est périodique :

$$S_t = S_{t+p} = S_{t+2p} = \dots;$$

le mouvement saisonnier relatif au mois j est

$$S_{ij} = S_j$$
 quelque soit l'année i .

- Principe de conservation des aires : sur une année, l'influence des variations saisonnières est nulle.

Le traitement des séries chronologiques peut avoir pour objectifs d'isoler et estimer une tendance, isoler et estimer une composante saisonnière, et désaisonnaliser la série, de réaliser une prévision, de construire un modèle explicatif en terme de causalité.

6.1.3 Représentations graphiques

Les deux représentations de la série temporelle conduisent à deux types de représentations graphiques :

- Le chronogramme : on représente dans un repère orthonormé les points (t, X_t) que l'on relie par des segments de droite ; ce graphique permet une analyse sur l'ensemble des n années. l'étude d'une série chronologique commence par l'examen de son chronogramme ; Il en donne une vue d'ensemble, montre certains aspects, comme des valeurs atypiques, d'éventuelles ruptures, un changement dans la dynamique de la série.
- On représente les points (j, Y_{ij}) que l'on relie par des segments de droites, ceci pour chacune des années i; ce graphique permet une analyse année par année et une comparaison entre les différentes années

6.1.4 Modélisation d'une série chronologique

Un modèle est une image simplifiée de la réalité qui vise à traduire les mécanismes de fonctionnement du phénomène étudié et permet de mieux les comprendre. On distingue deux types de modèles : les modèles déterministes et les modèles stochastiques. Dans ce cours, nous nous limitons aux modèles déterministes. Les deux modèles déterministes les plus utilisés sont :

1. le modèle additif correspondant à des variations saisonnières dont la composition avec la tendance conduit à une modulation d'amplitude constante :

$$X_t = T_t + S_t + \varepsilon_t.$$

Principe de conservation des aires : $\sum_{j=1}^{p} S_j = 0$.

2. le modèle multiplicatif correspondant à une modulation d'amplitude variable croissante avec la tendance :

$$X_t = T_t \times (1 + S_t) \times (1 + \varepsilon_t).$$

Principe de conservation des aires : $\sum_{j=1}^{p} S_j = 0$.

6.1.5 Choix du modèle

6.1.5.1 Méthode de la bande

On utilise le graphe de la série et la droite passant par les minima et celle passant par les maxima. Si ces deux droites sont parallèles, le modèle est additif. Si les deux droites ne sont pas parallèles, le modèle est multiplicatif.

6.1.5.2 Méthode du profil

On utilise le graphique des courbes superposées. Si les différentes courbes sont parallèles, le modèle est additif. Sinon le modèle est multiplicatif.

6.1.5.3 Méthode du tableau de Buys et Ballot

On calcule les moyennes et écarts-types pour chacune des périodes considérées et on calcule la droite des moindres carrés $\sigma=a\bar{x}+b$. Si a est nul, c'est un modèle additif, sinon , le modèle est multiplicatif.

6.2 Estimation de la tendance

6.2.1 Méthode des moindres carrés

6.2.1.1 Tendance linéaire

On ajuste le nuage de points (t, X_t) à une droite d'équation at + b où le couple (a, b) minimise la distance

$$\sum_{t=1}^{T} (X_t - (at + b))^2.$$

Nous obtenons

$$a = \frac{cov(t, X)}{var(t)} \quad b = \bar{X} - a\bar{t}$$

οù

$$cov(t, X) = \frac{1}{T} \sum_{t=1}^{T} t X_t - \bar{t} \bar{X} \quad var(t) = \frac{1}{T} \sum_{t=1}^{T} t^2 - \bar{t}^2$$
$$\bar{X} = \frac{1}{T} \sum_{t=1}^{T} X_t \quad \bar{t} = \frac{1}{T} \sum_{t=1}^{T} t.$$

Remarque 14. La droite des moindres carrés ajuste au mieux au sens des moindres carrés (c'est celle qui passe le plus près de l'ensemble des points), mais elle ne modélise pas toujours bien la tendance.

6.2.1.2 Tendance polynomiale

On peut utiliser la méthode des moindres carrés afin d'ajuster le nuage de points (t, X_t) à un polynôme de degré choisi. L'observation du graphe de la série donne une idée du degré du polynôme (selon la forme de la courbe).

6.2.2 Moyennes mobiles

Le principe de cette technique est de construire une nouvelle série en calculant des moyennes arithmétiques successives de longueur p fixée à partir des données originales. Les moyennes mobiles de longueur égale à la période p permettent d'éliminer ou d'amortir les composantes saisonnière et résiduelle. On procède ainsi au lissage de la courbe pour mettre en évidence la tendance générale.

• On appelle moyenne mobile centrée de longueur impaire p = 2k + 1 à l'instant t la valeur moyenne des observations

$$M_t = \frac{X_{t-k} + X_{t-k+1} + \ldots + X_{t-1} + X_t + X_{t+1} + \ldots + X_{t+k}}{p}$$

• On appelle moyenne mobile centrée de longueur paire p=2k à l'instant t la valeur moyenne

$$M_t = \frac{0.5X_{t-k} + X_{t-k+1} + \dots + X_{t-1} + X_t + X_{t+1} + \dots + 0.5X_{t+k}}{p}$$

Remarque 15. La tendance à la date t peut être estimée par la moyenne mobile centrée à la date t de lonqueur la période p si

- la tendance présente une faible courbure
- les variations saisonnières sont périodiques de période p et ont une influence nulle sur l'année
- les variations résiduelles sont de faible amplitude.

Remarque 16. Les moyennes mobiles peuvent être influencées par les valeurs extrêmes. Dans ce cas, on pourrait calculer les médianes mobiles de même ordre. Les moyennes mobiles donnent une meilleure estimation que les moindres carrés.

6.2.3 Méthode de Mayer

On ajuste le nuage de points (t, X_t) à une droite passant par les deux points (\bar{t}_1, \bar{X}_1) et (\bar{t}_2, \bar{X}_2) calculés de la manière suivante :

- on découpe la série en deux parties de même effectif
- pour chacune des deux parties, on calcule la moyenne des t et celle des $X_t:(\bar{t}_1,\bar{X}_1)$ et (\bar{t}_2,\bar{X}_2) ; on peut calculer les points médians au lieu des moyennes; cela permet de limiter l'influence des valeurs extrêmes.
- il reste à tracer la droite passant par les deux points.

6.3 Variations saisonnières

6.3.1 Estimation des coefficients saisonniers du modèle additif

- **Etape 1 :** On effectue un lissage par la méthode des Moyennes Mobiles afin d'obtenir une première évaluation de la tendance de la série; on notera M_{ij} la série obtenue.
- **Etape 2 :** on calcule les différences entre les observations et les moyennes mobiles :

$$X_{ij} - M_{ij}$$

pour les valeurs de i disponibles, soit $i = k + 1, \dots, n - k$.

Etape 3 : on calcule la moyenne $S_{j}^{'}$ définie par

$$S_{j}^{'} = \frac{1}{n} \sum_{i=1}^{n} (X_{ij} - M_{ij})$$

Etape 4: on calcule la moyenne

$$M^{'} = \frac{1}{p} \sum_{j=1}^{p} S_{j}^{'}$$

Etape 5: on estime S_j par $\overline{S}_j = S'_j - M'$

6.3.2 Estimation des coefficients saisonniers du modèle multiplicatif

Etape 1 : On effectue un lissage par la méthode des Moyennes Mobiles afin d'obtenir une première évaluation de la tendance de la série ; on notera M_{ij} la série obtenue.

Etape 2: on calcule les rapports des observations aux moyennes mobiles:

$$\frac{X_{ij}}{M_{ij}}$$

pour les valeurs de i disponibles, soit $i = k + 1, \dots, n - k$

Etape 3: on calcule la moyenne des rapports

$$S_{j}^{'} = \frac{1}{n} \sum_{i=1}^{n} \frac{X_{ij}}{M_{ij}}$$

Etape 4: on calcule la moyenne

$$M^{'} = \frac{1}{p} \sum_{j=1}^{p} S_{j}^{'}$$

Etape 5: on estime S_j par $\overline{S}_j = S'_j - M'$

6.4 Désaisonnalisation

On appelle série désaisonnalisée, la série chronologique X_t à laquelle on a enlevé les variations saisonnières. On la notera X_t^* .

- Modèle additif : $X_{i,j}^* = X_{i,j} \overline{S}_j$

Remarque 17. - Les données X_t^* sont directement comparables car débarrassées de l'effet des saisons et donc du caractère propre de chaque mois. On peut donc comparer par exemple les données du mois de janvier à celles du mois d'aoùt.

- On peut avoir une meilleure estimation de la tendance à partir de la série désaisonnalisée.

6.5 Estimation des variations résiduelles

La série ajustée est définie par $\hat{X}_{ij} = \hat{T}_{ij} + \overline{S}_j$ dans le cas du modèle additif et par $\hat{X}_{ij} = \hat{T}_{ij}\overline{S}_j$ dans le cas du modèle multiplicatif. \hat{T}_{ij} et \overline{S}_j représentent respectivement les estimations de la composante tendancielle et celles des variations saisonnières. Dans les deux cas, une estimation des variations résiduelles est obtenue en posant

$$\hat{E}_{ij} = X_{ij} - \hat{X}_{ij}.$$