Q1. Write the following bijections as products of disjoint cycles and state their order in the group S_9 :

(i) $f: [9] \longrightarrow [9]$ defined by: for all $n \in [9]$,

$$f(n) = \begin{cases} n+3 & \text{if } n+3 < 9, \\ n+3-9 & \text{if } n+3 \ge 9 \end{cases}$$

- (ii) (13)(203)(16)(38)(14)(234)
- (iii) (1203)(245)(231)(105)
- (iv) (45)(123)(456)(12)

(4 marks)

Q2. Write the following bijections as products of 2-cycles and state whether they are even or odd:

- (i) (1256)(12439)
- (ii) $f: [9] \longrightarrow [9]$ defined by: for all $n \in [9]$,

$$f(n) = \begin{cases} n+2 & \text{if } n+2 < 9, \\ n+2-9 & \text{if } n+2 \ge 9 \end{cases}$$

- (iii) (0124)(2198)(132568)
- (iv) (120)(94567)(0427)

(4 marks)

Q3. Prove that

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

(2 marks)

Q4. What is coefficient of $x^{31}y^4$ in the expansion of $((x+y)^8+y)^7$? (2 mark)

Q5. Find the greatest term in the expansion of $(1+4x)^9$ when $x=\frac{1}{3}$. (2 marks)

Q6. Prove that $|S_n| = n!$. (2 marks)

Q7. Let (G,\cdot) be a group.

- (i) Prove that the identity element of (G, \cdot) is unique.
- (ii) Prove that for all $x \in G$, x has a unique inverse.

(2 marks)

Q8. Let $n \geq 3$ and consider S_n .

- (i) We say that a 2-cycle (pq) is adjacent if p = k and q = k + 1. Prove that for all $\sigma \in S_n$, if σ can be written as an odd number of 2-cycles, then σ can be written as an odd number of adjacent 2-cycles, and if σ can be written as a product of an even number of 2-cycles, then σ can be written as an even number of adjacent 2-cycles.
- (ii) For all $\sigma \in S_n$, define

$$P(\sigma) = |\{(k, l) \in [n] \times [n] \mid (k < l) \land (\sigma(l) < \sigma(k))\}|$$

Prove that if (pq) is an adjacent cycle and $\sigma \in S_n$, then $P((pq)\sigma) = P(\sigma) \pm 1$.

- (iii) Prove that no $\sigma \in S_n$ is both even and odd.
- (iv) The Alternating Group on [n], denoted A_n , is the set of all even bijections in S_n . Prove that A_n is a subgroup of S_n .
- (v) Prove that $|A_n| = \frac{n!}{2}$.

(12 marks)

Q9. Let (G,\cdot) be a group. Let $x,y\in G$ be such that $xyx^{-1}=y^2$ and $y\neq e$.

- (i) Show that $x^5yx^{-5} = y^{32}$.
- (ii) If the order of x is 5, then what is the order of y? Justify your answer.

(6 marks)