TERMODINAMICA

Bilancio di massa m = $\sum m^{.IN} - \sum m^{.OUT}$ con m =dm/dt portata di massa

Legge dei gas perfetti PV=nRT

Lavoro di espansione/compressione $W_{EC} = -\int PAdx = -\int PdV$

Lavoro di shaft (rotazione) W_s=-∫VdP

Lavoro di flusso W_{flow}=(PV)ⁱⁿm^{.in}-(PV)^{out}m^{.out}

Flusso di calore Q =dU/dt con U energia interna

Bilancio di energia in un sistema chiuso(1mo principio TD): $\Delta U=Q+W_{FC}$

Bilancio di energia in stato stazionario di un sistema aperto

 $0 = \sum [U + PV + v^2/2g_c + gz/g_c]^{IN} m^{.IN} - \sum [U + PV + v^2/2g_c + gz/g_c]^{OUT} m^{.OUT} + Q + W_s$

Entalpia H≡U+PV=Q+W_S

Relazione di Mayer $C_p = R + C_v \text{ con } C_p = (dH/dT)_{P \text{ cost}} e C_v = (dU/dT)_{V \text{ cost}}$

Energia interna e Entalpia per gas ideali $\Delta U = \int C_V(T) dT e \Delta H = \int C_P(T) dT$

Equazioni per un processo reversibile in un sistema chiuso per un gas ideale

- In funzione di T e V: dW=-RTdV/V ; dQ=C_vdT+RTdV/V
- In funzione di T e P: dW=-RdT+RTdP/P ; dQ=CpdT-RTdP/P
- In funzione di V e P: dW=-PdV; $dQ=C_V/R^*(VdP) + C_P/R^*(PdV)$

Processo isotermico(T cost)

- ∆U=∆H=0
- Q=-nRTIn(V_2/V_1)=nRTIn(P_2/P_1)
- W=nRTIn(V_2/V_1)=-nRTIn(P_2/P_1) [Q=-W]
- $\Delta S = nRln(V_2/V_1) = nRln(P_1/P_2)$

Processo isobaro(P cost)

- $\Delta U = \int C_V(T) dT$
- $\Delta H = \int C_P(T) dT = Q$
- W=-R(T_2 - T_1)=-P(V_1 - V_2)

Processo isocoro(V cost)

- $\Delta U = \int C_V(T) dT = Q$
- $\Delta H = \int C_p(T) dT$
- W=0

Processo Adiabatico(Q=0)

- ΔQ=0
- $T_2/T_1 = (V_1/V_2)^{R/CV}$; $T_2/T_1 = (P_2/P_1)^{R/Cp}$; $P_2/P_1 = (V_1/V_2)^{Cp/CV}$
- W= $\Delta U = \int C_{V}(T)dT$
- $\Delta H = \int C_{P}(T) dT$
- ΔS=0

Entropia

- Macroscopica dS≡dQ_{rev}/T_{svs}
- Microscopica $S_i \equiv kln(p_i)$ oppure $\Delta S \equiv kln(p_2/p_1)$ dove p_i è il numero di microstati e $k = R/N_A$ è la costante di Boltzmann

Densità molare p=n/V

Densità di massa p=m/V

Frazione molare $x_i=n_i/n_{tot}=p_i/p_{tot}=C_i/C_{tot}$ con p pressione parziale

Frazione di massa x_i=m_i/m_{tot}

Concentrazione di massa soluto C_i = $m_i/V_{soluzione}$

Concentrazione molare soluto $C_i = p/MW$ com MW peso molecolare oppure $C_i = n_i/V_{soluzione}$

Portata molare $M_i = -Q(C_i^{OUT} - C_i^{IN})$

Viscosità cinematica $\nu=\mu/\rho$ con μ viscosità dinamica e ρ densità

Numero di Reynolds Re= ρ Lv/ μ =Lv/ ν dove L e v sono rispettivamente la lunghezza e la velocità caratteristiche (forze inerziali/volume \div forze viscose/volume)

- Condotto cilindrico: L=diametro, v=<v> quindi Re= ρ d<v>/ μ (v_{max} = Δ Pr²/4 μ L con r raggio del cilindro, <v>= v_{max} /2, Q= Δ Pr⁴/8 μ L che è l'**EQUAZIONE DI POISEUILLE**)
- <u>Condotto rettangolare</u>: L=D_h=diametro idraulico=2wh/w+h e v=<v> w è la larghezza del condotto e h l'altezza quindi Re= $_{\mathbb{P}}$ D_h<v>/ μ (la è v_{max}= Δ Ph²/8 μ L e <v>=2v_{max}/3, la portata è Q=<v>wh)

se Re<2100 è un flusso laminare, se Re>4000 è un flusso turbolento

Numero di Peclet Pe=vL/D_{ij} (se Pe<1 allora è maggiore la diffusione rispetto alla convezione, se Pe \rightarrow 0 allora domina la diffusione)

Stream lines $dr/v=dx/v_x=dy/v_y=dz/v_z$ dove v è campo di velocità costante

Shear stress (Legge di Newton della viscosità) $\tau_{yx} = \mu y_x = \mu dv_x/dy$ dove y_x è lo shear rate e τ_{yx} è lo shear stress o sforzo di taglio perpendicolare a y nella direzione di x

- In un piano scorrevole: $\tau_{vx} = \mu v/h$ con v velocità con cui scorre il piano(?)
- Condotto rettangolare: $\tau_{yx} = \frac{-\Delta P}{L} y|_{y=-h/2} = \Delta Ph/2L$
- Condotto cilindrico: τ_{rz} =- Δ Pr/2L con r raggio del cilindro

Reologia dei fluidi non newtoniani: viscosità apparente $\eta_{ann} = \tau_{vx} / \gamma_{x}$

 $\eta_{app}=m|\chi_x|^{n-1}$ (se n=1 allora è un fluido newtoniano con m= μ se n<1 è un fluido pseudoplastico, se n>1 allora è un fluido dilatante)

Reologia e flusso del sangue: misurazione della viscosità del sangue $\gamma_r = dv_z/dr \le v / 2R = Q/2\pi R^3$ con R raggio condotto. Il rapporto $Q/2\pi R^3$ è la *velocità ridotta* U allora $\gamma_r = kU$ dove k è costante e per fluidi newtoniani, k=8 **Diffusione in soluzioni concentrate** $J_{ix} = -D_{ii}C/RT \cdot \nabla (\mu_i)$ con $\mu_i = \mu_i^0 + RT \ln(a_i)$ potenziale chimico del componente

i-esimo e a = y*x, attività del componente i-esimo

Quindi $J_{ix} = -D_{ii}C_{i}\nabla (ln(y*x_{i}))$

Diffusione nei Gas N_1 =- $CD_{ij} \nabla (x_1)$ + $(N_1$ + $N_2)$ [es <u>evaporazione liquido con pareti</u>]. Di solito N_2 =0 (flusso d'aria ad es) quindi $N_{1\nu}$ =- CD_{ij} / $(1-x_1)$ * dx_1 /dy.

 $dx_1/(1-x_1)=\ln(1-x_1)=-C_1y+C_2$ che si trovano con le condizioni al contorno.

Prima legge di Fick per soluzioni diluite J_{ix} (o N_{ix} per v=0)=- D_{ij} dC/dx (in tutte le direzioni si considera il gradiente di concentrazione)

- Per gas ideali: $J_i = -CD_{ii} \nabla(x_i)$
- Quando c'è la convezione oltre la diffusione: $N_i = -D_{ii} \nabla (C_i) + C_i v_s$, v_s è la velocità del solvente

Diffusione in stato-stazionario in una dimensione

• Coordinate rettangolari: $\delta C_i/\delta t = -\delta N_{ix}/\delta x + R_i$ con R_i reazioni chimiche

Diffusione in stato stazionario in una dimensione (seconda legge di Fick)

 $\delta C_i/\delta t = D_{ii}\delta^2 C_i/\delta t^2$ (quindi con reazioni chimiche R_i=0)

Ma in stato stazionario il primo membro è 0 perché è tutto costante rispetto al tempo

[es diffusione in stato stazionario tra membrane]

Se quindi il primo membro è uguale a zero, anche la derivata seconda è uguale a zero quindi C_i=Ax+B e A e B costanti si trovano con le condizioni al contorno

Si trova quindi che il flusso diffusivo del soluto attraverso le membrane N_{ix} =- $D_{i,eff}$ dC_i/dx = $D_{i,eff}$ $(\phi)/L^*(C_0-C_L)$

Pressione valida solo per flusso laminari di fluidi Newtoniani ΔP=32μ<ν>L/D² con D diametro del condotto

Conservazione della massa/materia: equazione di continuità $\delta \rho / \delta t = -\nabla \cdot (\rho v)$

Conservazione della massa per fluidi incomprimibili ∇•v=0 (ρ è costante)

Conservazione della massa per una miscela (bilancio in termini molari) $\delta C_i/\delta t = -\nabla \cdot N_i + R_i$

Conservazione della massa per soluzioni diluite $\delta \text{Ci}/\delta t + \mathbf{v} \cdot \nabla (C_i) = D_{ii} \nabla^2 (C_i) + R_i$

Conservazione del momento lineare: equazioni di Navier-Stokes (in tre dimensioni e per un fluido newtoniano incomprimibile) (su lpad, L22)

Fattore di frizione di Fanning $f = \Delta P^*D/2 \rho < v >^2 L$ (per flussi laminari f = 16/Re [Re<2100], per flussi turbolenti $f = 0.079/Re^{0.25}$ [Re>4000])

Flusso diffusivo e convettivo allo strato limite(strato vicino all'oggetto che si muove grazie al No-Slip cioè l'aderenza delle particelle ai bordi) $N_{i\nu}(y=0)\sim D_{ii}C_0/L$ •Sc $^{1/3}$ •Re $^{1/2}$

In termini del coefficiente di trasporto medio di materia N_{iv}(y=0)=k_m*ΔC_i

Coefficiente di trasporto di materia medio k_m=1/SJ_S k_{loc}dS

- $\underline{k_{loc}}$ di flussi laminari lungo un piatto piano: 0.323 D_{ij}/z (Re) $^{\Lambda}$ / $_{2}$ (Sc) $^{\Lambda}$ / $_{3}$ dove Re=<v>z/ $_{v}$ e Sc= $_{v}/D_{ij}$ (ci può essere espresso il numero di Sherwood in funzione di Re e Sc secondo Sh=a*Re b Sc c che rappresenta il rapporto tra il coefficiente di scambio di materia k_{loc} lungo L e il coefficiente diffusivo Dij cioè Sh= k_{loc} L/ D_{ij})
- <u>k_{ioc} di flussi laminari in un cilindro</u>: 3.657D_{ii}/diametro
- \underline{k}_{loc} di flussi laminare in un canale:3.1058D_{ij}/4H*(<v>H^2/4D_{ij}z)^1/3 con 2H=altezza del canale (rettangolare?) **Legge di Henry**:
- in funzione della concentrazione molare del soluto: C=kP
- In funzione della frazione molare del soluto: P=kx dove P è la pressione parziale

Trasporto di massa attraverso le membrane

- Portata molare del sangue: dM_i=-Q_sdC_{is}
- Portata molare del dializzato: $dM_i = Q_D dC_{iD}$ (caso equicorrente col sangue), $dM_i = -Q_D dC_{iD}$ (caso controcorrente col sangue)
- Portata molare dello scambio attraverso la membrana: $dM_i=k_0(C_{iS}-C_{iD})dA_m$ con k_0 coefficiente di trasporto di massa (conduttanza), il cui reciproco, la resistenza è $1/k_0=1/k_D+1/P_m+1/k_S \Rightarrow R_0=R_D+R_m+R_S$ con k_D quella del dializzato, k_S quella del sangue e P_m è la permeabilità della membrana

Velocità di reazione

- Definizione: R_i=dN_i/Vdt=dC_i/dt con V volume (può essere sostituito con S superficie a seconda del sistema considerato)
- In stato-stazionario: -R_i=Q(C_{i0}-C_i)/V
- Cinetica di reazione: $R=kC_A{}^aC_B{}^bC_C{}^c$ (l'esponente a si trova con $a=ln(R)/ln(C_A)$ vale lo stesso per b; k è costante rispetto alla temperatura)
- Reazioni di primo ordine(del tipo A → B+C): -dC_A/dt=k₁C_A
- Reazioni di secondo ordine(del tipo A + A → A₂): -dC₄/dt=k₂C²₄
- Reazioni di secondo ordine(del tipo A + B → AB): -dC_A/dt=k₂C_AC_B
- Reazioni reversibili(del tipo A + B ↔ C): dC_C/dt=k₂C_AC_B k₋₁C_C
- Reazioni sequenziali(del tipo A → B → C):

 $-dC_A/dt=k_1C_A$ $dC_B/dt=k_1C_A-k_2C_B$ $dC_C/dt=k_2C_B$

Equazione di Michaelis-Menten (Cinetiche Enzimatiche) $R_s = R_{max}C_s/K_M + C_s$ con $K_M = k_1 + k_2/k_1$ costante di M-M. (Se $C_s < < K_M \Rightarrow R_s = R_{max}C_s/K_M$; se $C_s > > K_M \Rightarrow R_s = R_{max}$)

Bilancio di materia per il substrato $\delta Ci/\delta t = R_s$

Regolazione dell'attività enzimatica (su ultime pagine delle ultime slides L33/L35, i 3 tipi)