Clase 3

jueves, 8 de agosto de 2024 15:28

Rectas y Planos

Rectas en R2 y en R3

La ecuación peneral de la recta en R2 es:

$$a \cdot x + by = c$$

Si b + O pademos reescribir la emación

$$k = \frac{2}{5}$$

Si k=0 (es decir, c=0), la ecuación queda

a.x + b.y =0

Observames que esta equación se puede escribir en terminos de un producto ponto entre [x] y [a]

En otras palabras: La recta corresponde la la vector [2]

En este caso, el vector n=[b] se dice el vecto normal a la recta.

La earación

se dice la forma normal de la recta.

Una forma equivalente de representar esta recta es considerar un vector d+0. Lueo, la recta es el conjunto de todos los vectores que se preden escribir come un múltiplo de d:

[x] = t.d para cierto tell la resta es el canjunto ben (d

Esta es la forma vectorial de esta reda Hasta el momento la forma normal y vectorial les hemo dado pare el caso de una recta que pasa por el origen. Que pasa si mestra recta no pasa por [8] ?

Seg p un punto sobre la recta y n un vector ortogonal a ella. Un vector $\begin{bmatrix} x \\ y \end{bmatrix}$ sera un vector de la recta si $\begin{bmatrix} x \\ y \end{bmatrix}$ -p ortogonal a n, es decir: $\begin{bmatrix} x \\ y \end{bmatrix}$ -p on =0 (=>) $\begin{bmatrix} x \\ y \end{bmatrix}$ on = p on

Definición La forma normal de la ecuación de una recta ℓ en \mathbb{R}^2 es

$$\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$$
 o $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$

donde **p** es un punto específico sobre ℓ y $\mathbf{n} \neq \mathbf{0}$ es un vector normal a ℓ .

La *forma general de la ecuación de* ℓ es ax + by = c, donde $\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$ es un vector normal para ℓ .

Para la forma vectorial, notamos que [5] sera parte de la recta si

[5] = p + t.d donde t \(\mathbb{R} \)

En otras palabras: La recta corresponde al conjunto Gen(d) traslac en P

Exactamente la misma idea funciona en R3. Más generalmente, definimos una recta en R° de ignal to

Definición La forma vectorial de la ecuación de una recta ℓ en \mathbb{R}^2 o \mathbb{R}^n es $\mathbf{x} = \mathbf{p} + t\mathbf{d}$

donde **p** es un punto específico sobre ℓ y **d** \neq **0** es un vector director para ℓ .

Las ecuaciones que corresponden a los componentes de la forma vectorial de l ecuación se llaman *ecuaciones paramétricas* de ℓ .

Importante: i) Hay infinitas maneras de escribio recta de forma vectoral de escribio di) Dos rectas

Ln:={p+t.d:teR} y Lz/p+t.d:teR}

serán paralelas si los vectores directores du son paralelas (es decir, una es multi plo del otro).

Planos en R³
Consideremas un vector no R³.
¿Cuales son los vectores ortogonales a n?

1 n

Sign ps el vector en dirección

1/9/24, 11:11 p.m.

Figura 1.59

n es ortogonal a un número infinito de vectores

De igual manera, si n es un vector oblicuo la vectores ortogonales a n sonnarán un plano.

	A = (3.69, 3.46, 2)
0	p: (x, y, z) A = 0 = 3.69x + 3.46y + 2z = 0
0	$n = A$ $= \begin{pmatrix} 3.69 \\ 3.46 \\ 2 \end{pmatrix}$

Please enable We

Luego, un plano que pasa por el origen es, el conjunte de todos los vectores [x] que satisface la emación

5/10

donde n es el vector normal al plana. Es de el plana corresponde à todos las vectores ortogonales Obs: Dado un plano, existen infinitos vectores

Find beopebra anterior Cané pasa si reemplazame

N par 2N o -1N 7

Similar al caso de la rectar en R, podemo:
o eneralizar la earación normal del plano lal caso
un plano que no pasa necesariamente por el origen.
Para ese, si p es un punto un plano P y p

es un punto (vector) analquiera de P, entonces
[\$\frac{x}{2}] pera un vector en P s; es que

donde n'es el vector normal al plano

La forma normal de la ecuación de un plano \mathcal{P} en \mathbb{R}^3 es

 $\mathbf{n} \cdot (\mathbf{x} - \mathbf{p}) = 0$ o $\mathbf{n} \cdot \mathbf{x} = \mathbf{n} \cdot \mathbf{p}$

donde **p** es un punto específico sobre \mathcal{P} y $\mathbf{n} \neq \mathbf{0}$ es un vector normal para \mathcal{P} .

La forma general de la ecuación de \mathcal{P} es ax + bv + cz = d, donde $\mathbf{n} =$

vector normal para \mathcal{P} .

Importante: Planos paraleles tienen les mismos vectores normales. Por ejemplo, los planos con emaciones

3x + 2y - z = 1 6x + 4y - 2z = 5

son planos distintos pero paraleles. Puede jugar con ejemplos similares en el siguiente Leogebra (mueva P con el cursor)

Ecuacion Normal Plano

Generalizamos el concepto de plano a mais dinensi nes de (la siguiente maneral.

Definición: Un hiperplano en \mathbb{R}^n es el conjunto

de $\frac{1}{2}$ (x, y, z) -P) n = 0

to dos +22 es 36 vectores $x = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ que satisfacen la

emación $(x-p) \cdot n = 0$ donde p y n son vectores en \mathbb{R}^n y $n \neq 0$.

donde p y n son vectores en Rⁿ y n ≠ 0.

Obs: Fin IR² un hiperplano es una recta. En IR³ un plano es un plano —

Recordenos de la Clase 2, que si u, v ∈ IR³ son dos vectores en IR³ distintas de 0, que no son para lelos , es decir, u no es multiplo de v (o sea, no existe un escalar t que haga que t·u=v), entonces (sen (n,v) es un plano en IR³ que pasa per 0.

Luego, un plano puede determinarse por un punto p y dos vectores directores u y v

$$\left| \hat{S} \right| - \mathbf{x} = \mathbf{p} + s\mathbf{u} + t\mathbf{v}$$

donde **p** es un punto sobre \mathcal{P} y **u**, y **v** son vectores directores para \mathcal{P} (**u** y **v** son distintos de cero y paralelos a \mathcal{P} , mas no mutuamente paralelos).

Las ecuaciones correspondientes a los componentes de la forma vectorial de la ecuación se llaman *ecuaciones paramétricas* de \mathcal{P} .

Observación: i) Si Pes un plano y P,Q,R son Puntos en plano, podemos tomar p= OP u= PQ y v= PR siempre y mando PQ y PR no suan paralelos ii) Existen infinitas mameras de escribir un pla de forma vectorial.

iii) S i dos planos son paralelos, podemos tomar mismos vectores directores.

Utilizamos la misma definición para determi lo que es un plano en Rⁿ: Def: Un plano P en Rⁿ, es el conjunto de

todos los vectores $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ que se pueden escribir la forma

x=p+s.u+t.v para viertos s,t el donde p, u y v son vectores en IR u y no son el vector O y no son paralelos entre

Importante: Las nociones de plance hiperpl

Sin embargo, las nociones no coinciden à si n & 3. Todanta no contames, com las he para entender esto completamente. Volveremes a punto más adelante.

9/10

1/9/24, 11:11 p.m. OneNote