Lecture 12 - Linear Regression

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- I. Minimal example
- ② Ⅱ. 선형회귀의 일반식
- III. Performance Measure
- 4 IV. Built-in R function
- V. Multiple Linear Regression

I. Minimal example

Motivation

I. Minimal example

Minimal setting

- 어떤 실험으로 3개의 표본을 얻었고, 각 표본의 (X,Y) 수치가 다음과 같다.
 - $\bullet \ (X_1,Y_1) = (-1,1)$
 - $\bullet \ (X_2,Y_2) = (1,0)$
 - $\bullet \ (X_3,Y_3) = (3,5)$

선형회귀(Linear regression)의 목적

I Minimal example

0000000000

• 관측치들의 "중간"을 통과하는 직선 함수를 찾아내는 것이다.

- 주어진 X_i 에 대해서 \widehat{Y}_i 를 만든다.
 - \widehat{Y}_i 는 Y_i 에 대한 추정치에 해당한다.
 - ullet 회귀직선은 $Y_i \widehat{Y_i}$ 의 크기가 작게 되도록 중간을 잘 지나가야 된다.
- 수식으로 요약하면 아래와 같다.
 - $\widehat{Y}_i = \alpha + \beta X_i$
 - $\epsilon_i = Y_i \widehat{Y}_i$
 - $Y_i = \alpha + \beta X_i + \epsilon_i$

잔차(residual)의 의미

I Minimal example

0000000000

- ullet 실제값 (Y_i) 과 회귀모형을 이용한 추정치 $(\widehat{Y_i})$ 의 차이이다.
- $\bullet \ \epsilon_i = Y_i \widehat{Y}_i$
- 회귀모형(regression model)이 미처 설명하지 못하는 부분에 해당하므로 **에러(error)** 의 의미를 가진다.

회귀모형을 만드는 것

$$\widehat{Y}_i = \alpha + \beta X_i$$

$$\epsilon_i = Y_i - \widehat{Y}_i$$

• 회귀모형을 만드는 것은 각각의 샘플에서 발생하는 잔차의 총합을 줄이는 α 와 β 를 찾는 것이다.

회귀 분석의 목적함수

잔차의 총합에 대한 정의

- 방법 1. 적절한 α 와 β 를 찾아서 $|\epsilon_1|+|\epsilon_2|+|\epsilon_3|$ 를 최소화 한다.
- 방법 2. 적절한 α 와 β 를 찾아서 $\epsilon_1^2+\epsilon_2^2+\epsilon_3^2$ 를 최소화 한다.
- 방법 1
 - 비전문가에게 설명하기 쉽다.
 - Outlier에 대한 영향이 방법2보다 적다.
- 방법 2
 - 최소자승법(LS, least-square method)이라고 불린다.
 - 미분후에 연속함수가 등장하기에 계산이 쉽다.
 - Outlier에 대한 영향이 크며, 이에 대한 대안으로 여러가지의 회귀분석에 대한 변형 기법들이 발전되어 있다.

Risk, Loss, Cost, and Penalty.

I Minimal example

00000000000

- 방법 1의 절대값 함수나 방법 2의 제곱 함수는
 - 하나의 샘플에 대한 에러를 측정하는 함수이며, 음수값을 가질 수 없다.
 - 고전통계에서는 Risk 함수라고 부른다.
 - 기계학습에서는 Loss 함수라고 부른다.
- Risk함수나 Loss함수의 합은
 - 모형에서 최소화시켜야할 목적함수에 해당한다.
 - 고전통계에서는 Penalty 함수라고 부른다.
 - 기계학습에서는 Cost 함수라고 부른다.
- 벌점과 벌금이 최적의 운전 습관을 결정하듯이, Penalty함수가 α 와 β 를 찾아 회귀모형을 결정한다.
- "If you cannot measure it, you cannot improve it." Peter Drucker

Minimal example의 α 와 β 를 찾기

Step 0. Setting

0.
$$(X_1,Y_1)=(-1,1)$$
, $(X_2,Y_2)=(1,0)$, $(X_3,Y_3)=(3,5)$

1.
$$\widehat{Y}_i = \alpha + \beta X_i$$

2.
$$\epsilon_i = Y_i - \widehat{Y}_i$$

3.
$$L = \epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2$$

4. L을 최소화 하는 α 와 β 를 찾자!

Step 1.
$$\widehat{Y}_i = \alpha + \beta X_i$$

$$\begin{array}{lcl} \widehat{Y_1} & = & \alpha + \beta X_1 = \alpha + \beta (-1) \\ \widehat{Y_2} & = & \alpha + \beta X_2 = \alpha + \beta (1) \\ \widehat{Y_3} & = & \alpha + \beta X_3 = \alpha + \beta (3) \end{array}$$

Step 2.
$$\epsilon_i = Y_i - \widehat{Y}_i$$

$$\begin{array}{lll} \epsilon_1 & = & Y_1 - \widehat{Y_1} = 1 - (\alpha - \beta) \\ \epsilon_2 & = & Y_2 - \widehat{Y_2} = 0 - (\alpha + \beta) \\ \epsilon_3 & = & Y_3 - \widehat{Y_3} = 5 - (\alpha + 3\beta) \end{array}$$

Step 3.
$$L=\epsilon_1^2+\epsilon_2^2+\epsilon_3^2$$

$$L := \epsilon_1^2 + \epsilon_2^2 + \epsilon_3^2$$

$$= (1 - \alpha + \beta)^2 + (\alpha + \beta)^2 + (5 - \alpha - 3\beta)^2$$

$$= 3\alpha^2 + 11\beta^2 + 6\alpha\beta - 12\alpha - 28\beta + 26$$
(1)

Step 4. Minimization

- (Review) $y = 3x^2 5x + 4$ 가 최소가 되는 x의 지점은 y' = 6x 5가 0이 되는 지점인 x = 5/6 이다.
- ullet 마찬가지로 L이 최소가 되는 지점에서는
 - L을 α에 관하여 미분한 것이 0이 된다.
 - L을 β에 관하여 미분한 것이 0이 된다.

$$\frac{\partial L}{\partial \alpha} = 6\alpha + 6\beta - 12 \tag{2}$$

IV. Built-in R function

$$\frac{\partial \alpha}{\partial \alpha} = 6\alpha + 6\beta - 12 \tag{2}$$

$$\frac{\partial L}{\partial \beta} = 22\beta + 6\alpha - 28 \tag{3}$$

- 위의 두 식이 모두 0이 되는 lpha와 eta의 값은 $\hat{lpha}=1$. $\hat{eta}=1$ 이다
- 따라서 선형회귀식은 $\widehat{Y}_i = 1 + X_i$ 이다.

IV. Built-in R function

정리

- 몇 가지 용어
 - α : intercept
 - β : slope
 - $\sum \epsilon_i^2$: 잔차의 제곱합 (Sum of Squared Error, SSE)

Ⅱ. 선형회귀의 일반식

통계 · 연구 방법론

Setting

- Given (X_i, Y_i) , i = 1, 2, 3, ..., n,
- ullet We shall find a linear relationship between X and Y , $Y_i=\alpha+\beta X_{\underline{i}}+\epsilon_i$,
- where $L=\sum \epsilon_i^2$ is to be minimized by choosing the suitable $\hat{\alpha}$ and $\hat{\beta}$.

Step 1. Normal equation (정규방정식)

$$L = \sum \epsilon_i^2 = \sum (Y_i - \widehat{Y}_i)^2 = \sum (Y_i - \alpha - \beta X_i)^2$$

$$\frac{\partial L}{\partial \alpha} = -\sum 2(Y_i - \alpha - \beta X_i) = 0$$

$$\Rightarrow \sum Y_i = \sum (\alpha + \beta X_i)$$

$$\Rightarrow \frac{\sum Y_i}{n} = \alpha + \beta \frac{\sum X_i}{n}$$

$$\Rightarrow \overline{Y} = \alpha + \beta \overline{X}$$
(5)

$$\frac{\partial L}{\partial \beta} = -\sum 2(Y_i - \alpha - \beta X_i)X_i = 0 \tag{6} \label{eq:delta}$$

$$\Rightarrow \sum (Y_i - \alpha - \beta X_i) X_i = 0$$

$$\Rightarrow \sum (Y_i - \widehat{Y}_i) X_i = 0$$
(7)

통계 · 연구 방법론

Step 2. α 와 β 의 계산

$$\begin{array}{rcl} \widehat{Y}_i & = & \alpha + \beta X_i \\ \overline{Y} & = & \alpha + \beta \overline{X} \text{ (from (5))} \end{array} \tag{8}$$

• 위의 두 식에서 각각 좌변과 우변을 빼주면, 아래의 등식이 성립한다. $(\alpha$ 를 제거하는 일종의 수학적 트릭)

$$\begin{split} &\Rightarrow \quad \widehat{Y}_i - \overline{Y} = \beta(X_i - \overline{X}) \\ &\Rightarrow \quad \widehat{Y}_i - Y_i + Y_i - \overline{Y} = \beta(X_i - \overline{X}) \\ &\Rightarrow \quad (\widehat{Y}_i - Y_i) + (Y_i - \overline{Y}) = \beta(X_i - \overline{X}) \\ &\Rightarrow \quad (\widehat{Y}_i - Y_i)(X_i - \overline{X}) + (Y_i - \overline{Y})(X_i - \overline{X}) = \beta(X_i - \overline{X})^2 \\ &\Rightarrow \quad \sum (\widehat{Y}_i - Y_i)(X_i - \overline{X}) + \sum (Y_i - \overline{Y})(X_i - \overline{X}) = \beta \sum (X_i - \overline{X})^2 \end{split}$$

통계 · 연구 방법론

(Step 2. continued)

• 마지막 식에서 좌변의 첫 번째 항은 0이다 (Step. 3에 의해서). 따라서 아래와 같이 $\hat{\beta}$ 와 $\hat{\alpha}$ 에 대한 식을 얻는다.

$$\hat{\beta} = \frac{\sum (Y_i - \overline{Y})(X_i - \overline{X})}{\sum (X_i - \overline{X})^2} = \frac{SXY}{SXX} \tag{9}$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X} \text{ (from (5))}$$

Step 3. Why
$$\sum (\widehat{Y}_i - Y_i)(X_i - \overline{X}) = 0$$
?

$$\begin{split} & \sum (\widehat{Y_i} - Y_i)(X_i - \overline{X}) \\ = & \sum (\widehat{Y_i} - Y_i)(X_i) - \overline{X} \sum (\widehat{Y_i} - Y_i) \\ = & 0 - 0 \end{split}$$

(First term: from (7), Second term: sum of residuals)

General formula to the minimal example.

1. Data

n <- length(X)

2. Some statistics

mean(X)

[1] 1

mean(Y)

[1] 2 sum(X^2)

[1] 11

sum(Y^2) ## [1] 26

sum(X*Y)

[1] 14

3. Estimators

•
$$SXY = \sum X_i Y_i - n \overline{XY}$$

•
$$SXX = \sum X_i^2 - n\overline{X}^2$$

•
$$\hat{\beta} = \frac{SXY}{SXX}$$

•
$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{X}$$

SXY <- sum(X*Y)-n*mean(X)*mean(Y)

 $SXX \leftarrow sum(X^2)-n*mean(X)^2$

beta_hat <- SXY/SXX

beta_hat

[1] 1

alpha_hat <- mean(Y)-beta_hat*mean(X)</pre>

alpha_hat

[1] 1

Ⅱ. 선형회귀의 일반식

III. Performance Measure

000

Notations

- Y_a: 실제값
- \widehat{Y}_i : 추정값
- Y: Y_i 들의 평균

$$\begin{split} \sum (Y_i - \overline{Y})^2 &= \sum (Y_i - \widehat{Y}_i + \widehat{Y}_i - \overline{Y})^2 \\ &= \sum [(Y_i - \widehat{Y}_i) + (\widehat{Y}_i - \overline{Y})]^2 \\ &= \sum [(Y_i - \widehat{Y}_i)^2 + (\widehat{Y}_i - \overline{Y})^2 + 2(Y_i - \widehat{Y}_i)(\widehat{Y}_i - \overline{Y})] \\ &= \sum (Y_i - \widehat{Y}_i)^2 + \sum (\widehat{Y}_i - \overline{Y})^2 \\ SST &= SSE + SSR \end{split}$$

SST

- Sum of Squared Total
- Y_i 의 편차의 제곱합
- $Y_i \supseteq$ total variation
- Regression으로 설명해야할 타겟

SSE

- Sum of Squared Error
- 에러의 제곱합, 잔차의 제곱합
- Cost 함수. Penalty 함수에 해당
- 작을수록 좋음
- SST에 비해서 상대적으로 작으면 좋음
- 모델의 개선을 통해서 향상 시킬수 있는 영역

SSR

- SST중에서 Regression하는 부분
- 클수록 좋음
- $R^2 = \frac{\bar{SSR}}{\bar{SST}}$ 은 전체의 variation (SST)를 Regression이 설명하는 비율을 의미하며, 회귀에서 가장 중요한 퍼포먼스 척도가 된다.

IV. Built-in R function

IV. Built-in R function

Ⅱ. 선형회귀의 일반식

##

Call:

$lm(formula = Y \sim X)$

Coefficients:

I. Minimal example

(Intercept)

1

```
summary(lm(Y \sim X))
##
## Call:
## lm(formula = Y \sim X)
##
## Residuals:
## 1 2 3
## 1 -2 1
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.000
                            1.658 0.603
                                            0.655
## X
                 1.000
                            0.866 1.155 0.454
##
## Residual standard error: 2.449 on 1 degrees of freedom
## Multiple R-squared: 0.5714, Adjusted R-squared: 0.1429
## F-statistic: 1.333 on 1 and 1 DF, p-value: 0.4544
```

통계 · 연구 방법론 28 / 33 Lecture 12 - Linear Regression

I. Minimal example

V. Multiple Linear Regression

통계 · 연구 방법론

summary(mtcars)

##	mpg	cyl	disp	hp
##	Min. :10.40	Min. :4.000	Min. : 71.1	Min. : 52.0
##	1st Qu.:15.43	1st Qu.:4.000	1st Qu.:120.8	1st Qu.: 96.5
##	Median :19.20	Median :6.000	Median :196.3	Median :123.0
##	Mean :20.09	Mean :6.188	Mean :230.7	Mean :146.7
##	3rd Qu.:22.80	3rd Qu.:8.000	3rd Qu.:326.0	3rd Qu.:180.0
##	Max. :33.90	Max. :8.000	Max. :472.0	Max. :335.0
##	drat	wt	qsec	vs
##	Min. :2.760	Min. :1.513	Min. :14.50	Min. :0.0000
##	1st Qu.:3.080	1st Qu.:2.581	1st Qu.:16.89	1st Qu.:0.0000
##	Median :3.695	Median :3.325	Median :17.71	Median :0.0000
##	Mean :3.597	Mean :3.217	Mean :17.85	Mean :0.4375
##	3rd Qu.:3.920	3rd Qu.:3.610	3rd Qu.:18.90	3rd Qu.:1.0000
##	Max. :4.930	Max. :5.424	Max. :22.90	Max. :1.0000
##	am	gear	carb	
##	Min. :0.0000	Min. :3.000	Min. :1.000	
##	1st Qu.:0.0000	1st Qu.:3.000	1st Qu.:2.000	
##	Median :0.0000	Median :4.000	Median :2.000	
##	Mean :0.4062	Mean :3.688	Mean :2.812	
##	3rd Qu.:1.0000	3rd Qu.:4.000	3rd Qu.:4.000	
##	Max. :1.0000	Max. :5.000	Max. :8.000	

통계 · 연구 방법론 30 / 33 Lecture 12 - Linear Regression

- \bullet Y: mpg
- $\bullet \ X_1 \colon \mathsf{disp}$
- $\bullet \ X_2 : \mathrm{wt}$

##

```
lm(mtcars\$mpg \sim mtcars\$disp + mtcars\$wt)
```

```
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp + mtcars$wt)
##
## Coefficients:
## (Intercept) mtcars$disp mtcars$wt
## 34.96055 -0.01772 -3.35083
```

$$\widehat{Y} = \alpha + \beta_1 X_1 + \beta_2 X_2$$

$$\widehat{Y} = 34.96 - 0.018 X_1 - 3.35 X_2$$

```
summarv(lm(mtcars$mpg ~ mtcars$disp + mtcars$wt))
##
## Call:
## lm(formula = mtcars$mpg ~ mtcars$disp + mtcars$wt)
##
## Residuals:
##
      Min
               10 Median
                               30
                                     Max
## -3.4087 -2.3243 -0.7683 1.7721 6.3484
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.96055 2.16454 16.151 4.91e-16 ***
## mtcars$disp -0.01773 0.00919 -1.929 0.06362 .
## mtcars$wt -3.35082 1.16413 -2.878 0.00743 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.917 on 29 degrees of freedom
## Multiple R-squared: 0.7809, Adjusted R-squared: 0.7658
## F-statistic: 51.69 on 2 and 29 DF, p-value: 2.744e-10
```

"Man can learn nothing unless he proceeds from the known to the unknown - Claude Bernard"

통계 · 연구 방법론 33 / 33 Lecture 12 - Linear Regression