Professor: Fred Khoury

- 1. Convert the angle to decimal degrees and round to the nearest hundredth of a degree.
 - *a*) 74° 8′ 14″
- b) 34° 51′ 35″
- c) 274° 18′ 59″
- 2. Convert the angle to degrees, minutes, and seconds.
 - *a*) 34.817°
- b) 59.0854°
- c) 89.9004°

- **3.** Convert to exact radians.
 - *b*) 215°
- b) 390°
- c) 144°
- d) 249.8°

- **4.** Convert to exact degrees
 - a) $\frac{17\pi}{12}$
- b) $\frac{7\pi}{8}$
- c) $\frac{9\pi}{4}$
- 5. If $\cos \theta = \frac{2}{3}$ and θ terminates in quadrant IV, find $\tan \theta$ and $\csc \theta$.
- **6.** If $\csc \theta = -\frac{13}{5}$ and θ terminates in quadrant III, find $\cot \theta$
- 7. If $\sin \theta = \frac{12}{13}$ and θ terminates in QII, find each of the following:
 - a) $\cos \theta$
- b) $\cot \theta$
- c) $\csc \theta$
- 8. If the terminal ray of an angle θ contains (4, -2), find the exact values of:
 - a) $\sin \theta$
- b) $\sec \theta$
- $c) \tan \theta$
- d) $\cos^2 \theta$
- **9.** Find the lengths of the missing sides and angles for each triangle:
 - a) $B = 79.2^{\circ}$, $C = 35.1^{\circ}$, a = 11.3
 - b) $A = 120^{\circ}$, a = 20, b = 40
 - c) $A = 47^{\circ}$, a = 80, b = 70
 - d) $B = 47^{\circ}$, a = 20, b = 18
 - e) $A = 56^{\circ}$, b = 20, c = 30
 - $f) \quad a = 20, \ b = 30, \ c = 11$
 - g) $B = 70^{\circ}$, $C = 10^{\circ}$, a = 3
 - h) a = 8, b = 14, c = 15

10. Find the value of x for the indicated figure

11. Find the value of x for the indicated figure

12. Find h as indicated in the figure.

13. Solve for x in the indicated figure:

14. Find the missing sides and angles in the right triangle shown below:

15. An 18 foot ladder is placed against a building so that its lower end is 3.5 feet from the base of the building. What angle does the ladder make with the ground?

2

16. Find the length of the diagonal of the rectangular box shown below:

- 17. A ship travels for 25 miles at a bearing of S 13° E. It then changes direction and travels for 16 more miles at a bearing of N 77° E. Determine the ship's distance and bearing from its starting point.
- 18. From an airplane flying at 38,000 feet above the ground, a pilot sees two towns along a line directly below the path of the plane. The angles of depression to the towns are 10° and 75° . How many *miles* apart are the towns?

- **19.** Consider the 3-dimensional figure shown below. Find each of the following:
 - *a*) the length of BE.
 - b) the length of BG.
 - c) the angle between BE and BG, rounded to the nearest tenth of a degree.

20. Find the amplitude, period, phase shift, and the vertical translation, and vertical asymptote, and then sketch the graph of the equation

$$a) \quad y = 2 - 4\cos\left(x + \frac{\pi}{6}\right)$$

$$d) \quad y = 1 - 2\cot 2\left(x + \frac{\pi}{2}\right)$$

$$b) \quad y = -2\sin\left(x - \frac{2\pi}{3}\right)$$

$$e) \quad y = 2 + \frac{1}{4}\sec\left(\frac{1}{2}x - \pi\right)$$

c)
$$y = -3\tan\left(2x + \frac{\pi}{3}\right)$$

$$f) \quad y = \csc\left(2x - \frac{\pi}{4}\right)$$

Solution

- a) 74.137° b) 34.86° c) 274.32° 1.

- 2.
- a) 34° 49′ 1.2″ b) 59° 5′ 7″ c) 89° 54′ 1″
- a) $\frac{43\pi}{36}$ rad b) $\frac{13\pi}{6}$ rad c) $\frac{4\pi}{5}$ rad d) 4.36 rad **3.**

- *a*) 255° 4.
- *b*) 157.5°
- c) 405°

5.
$$\tan \theta = -\frac{\sqrt{5}}{2}, \quad \csc \theta = -\frac{3}{\sqrt{5}}$$

- 6. $\frac{12}{5}$
- 7. $a) -\frac{5}{13}$ $b) -\frac{5}{12}$ $c) \frac{13}{12}$
- **8.** a) $-\frac{1}{\sqrt{5}}$ b) $\frac{\sqrt{5}}{2}$ c) $-\frac{1}{2}$ d) $\frac{4}{5}$
- a) $A \approx 65.7^{\circ}$, $b \approx 12.2$, $c \approx 7.13$ 9.
 - b) no triangle possible
 - c) $B \approx 40^{\circ}$, $C \approx 93^{\circ}$, $c \approx 110$
 - d) Triangle # 1: $A \approx 54^{\circ}$, $C \approx 79^{\circ}$, $c \approx 24$; triangle #2: $A \approx 126^{\circ}$, $C \approx 7^{\circ}$, $c \approx 3.0$
 - e) $B \approx 41^{\circ}$, $C \approx 83^{\circ}$, $a \approx 25$
 - f) $A \approx 20^{\circ}$, $B \approx 149^{\circ}$, $C \approx 11^{\circ}$
 - g) $A \approx 100^{\circ}$, $b \approx 2.86$, $c \approx 0.53$
 - h) $A \approx 31.8^{\circ}$, $B \approx 67.2^{\circ}$, $C \approx 81^{\circ}$
- **10.** 13.8
- 11. 12.7 ft
- **12.** 252
- **13.** 11.0
- $A \approx 54.0^{\circ}$, $B \approx 36.0^{\circ}$, $a \approx 13.7$ ft **14.**
- 78.8° **15.**
- 16. 5
- dist: 29.7 mi bearing: S 45.6° E **17.**
- **18.** ≈ 38.9 mi
- **19.** a) $\sqrt{13}$ b) $\sqrt{29}$ c) 48.0°

20. a) $y = 2 - 4\cos\left(x + \frac{\pi}{6}\right)$

 $b) y = -2\sin\left(x - \frac{2\pi}{3}\right)$

 $c) y = -3\tan\left(2x + \frac{\pi}{3}\right)$

d) $y = 1 - 2\cot 2\left(x + \frac{\pi}{2}\right)$

e) $y = 2 + \frac{1}{4}\sec(\frac{1}{2}x - \pi)$

 $f) \ \ y = \csc\left(2x - \frac{\pi}{4}\right)$

