# Group Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today, or rigorous. Any result of the above is not the author's fault.

#### These notes are in progress.

## 0 Notation

We commonly deal with the following concepts in Group Theory which I will abbreviate as follows for brevity:

| Term                                               | Notation       |
|----------------------------------------------------|----------------|
| $\{1,2,\ldots\}$                                   | N              |
| $\{0,1,2,\ldots\}$                                 | $\mathbb{N}_0$ |
| The set of primes                                  | ${\mathbb P}$  |
| $(F \setminus \{0_F\}, \times)$                    | $F^*$          |
| (invertible $n \times n$ matrices on $F, \times$ ) | $GL_n(F)$      |

# Contents

| 0 | Not  | ation                                         | 1 |
|---|------|-----------------------------------------------|---|
| 1 | The  | Fundamentals                                  | 6 |
|   | 1.1  | Binary Operations                             | 6 |
|   | 1.2  | Groups                                        | 6 |
|   |      | 1.2.1 Distinct Powers of Group Elements       | 6 |
|   |      |                                               | 6 |
|   |      | 1.2.3 Cyclic Groups                           | 6 |
|   |      | 1.2.4 Dihedral Groups                         | 7 |
|   |      | 1.2.5 The Infinite Cyclic/Dihedral Group      | 7 |
|   |      | 1.2.6 Torsion Groups                          | 7 |
|   | 1.3  | <i>p</i> -groups                              | 7 |
|   | 1.4  | Subsets of Groups                             | 8 |
|   |      | 1.4.1 Set Multiplication                      | 8 |
|   |      | 1.4.2 Centre                                  | 8 |
|   |      | 1.4.3 Properties of Sets                      | 8 |
|   | 1.5  | Order                                         | 8 |
|   | 1.6  | Isomorphisms                                  | 9 |
|   | 1.7  | Subgroups                                     | 9 |
|   |      | 1.7.1 The Product of Subgroups                | 0 |
|   |      | 1.7.2 The Subgroup Test                       | 0 |
|   |      | 1.7.3 The Intersection of Subgroups           | 0 |
|   | 1.8  | Generated Subgroups                           | 1 |
|   | 1.9  | Cyclic Groups                                 | 1 |
|   | 1.10 | Cosets                                        | 2 |
|   |      | 1.10.1 A Bijection from Left to Right Cosets  | 2 |
|   |      | 1                                             | 2 |
|   |      | 1.10.3 Index                                  | 2 |
|   |      | 1.10.4 Lagrange's Theorem                     | 2 |
|   | 1.11 | Outer Direct Product                          | 3 |
|   |      | 1.11.1 Properties of the Outer Direct Product | 3 |
|   |      | 1.                                            |   |
| 2 |      | 1                                             | 4 |
|   | 2.1  | 1                                             | 4 |
|   | 2.2  | Homomorphisms and Generating Sets             | 4 |
| 3 | Aut  | omorphisms 1                                  | 5 |
|   | 3.1  | -                                             | 5 |
|   | 3.2  | •                                             | 5 |
|   |      |                                               |   |

|    |                                                     | 3.2.1 Conjugations on Subgroups                                  | 15                         |
|----|-----------------------------------------------------|------------------------------------------------------------------|----------------------------|
| 4  | 4.1<br>4.2<br>4.3<br>4.4                            | mal and Characteristic Subgroups  Properties of Normal Subgroups |                            |
| 5  | Quot                                                | tient Groups                                                     | 18                         |
| 6  | The                                                 | Homomorphism Theorem                                             | 19                         |
| 7  |                                                     | First Isomorphism Theorem The Order of the Product               | <b>19</b> 20               |
| 8  | The                                                 | Second Isomorphism Theorem                                       | 21                         |
| 9  | The                                                 | Correspondence Theorem                                           | 21                         |
|    | 10.1<br>10.2<br>10.3<br>10.4<br><b>Dire</b><br>11.1 | Commutator Subgroups                                             | 23 24 24 25 25             |
|    | 11.3<br>11.4                                        | Isomorphism between Products                                     | 26<br>27<br>27             |
| 12 | 12.1<br>12.2<br>12.3<br>12.4<br>12.5                | tely Generated Abelian Groups  Classification of Cyclic Groups   | 29<br>29<br>30<br>31<br>31 |

|    | 12.7 Decomposition of Finite Abelian $p$ -groups                                                                                                                                                                                                                                                                                                                                                               | 32                                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|    | 12.8 Homomorphism from $\mathbb{Z}^n$ to Sequences                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
|    | 12.9 One-way Inverses on Homomorphisms to $\mathbb{Z}^n$                                                                                                                                                                                                                                                                                                                                                       | 33                                                                         |
|    | 12.10Abelian Groups with $\mathbb{Z}^n$ Quotients                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
|    | 12.11Finitely Generated Subgroups                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                         |
|    | 12.12Fundamental Theorem of Finitely Generated Torsion-free Abelian                                                                                                                                                                                                                                                                                                                                            |                                                                            |
|    | Groups                                                                                                                                                                                                                                                                                                                                                                                                         | 34                                                                         |
|    | 12.13Fundamental Theorem of Finitely Generated Abelian Groups                                                                                                                                                                                                                                                                                                                                                  | 35                                                                         |
|    | v                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
| 13 | Symmetric Groups                                                                                                                                                                                                                                                                                                                                                                                               | 36                                                                         |
|    | 13.1 Cycles                                                                                                                                                                                                                                                                                                                                                                                                    | 36                                                                         |
|    | 13.2 Permutations as Disjoint Cycles                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                         |
|    | 13.3 Cycle Type                                                                                                                                                                                                                                                                                                                                                                                                | 37                                                                         |
|    | 13.4 Conjugacy in $S_n$                                                                                                                                                                                                                                                                                                                                                                                        | 37                                                                         |
|    | 13.5 Conjugacy and Cycle Type                                                                                                                                                                                                                                                                                                                                                                                  | 38                                                                         |
|    | 13.6 Parity of Transposition Representations                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
|    | 13.7 Signature                                                                                                                                                                                                                                                                                                                                                                                                 | 38                                                                         |
|    | 13.8 The Signature Homomorphism                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
|    | 13.9 Alternating Groups                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
|    | 13.10Subgroups of Index 2 in $S_n$                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |
|    | 13.11Alternating Groups generated by 3-Cycles                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
| 14 | Group Actions                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                         |
|    | 14.1 The Orbit and Stabiliser                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
|    | 14.2 The Orbit-Stabiliser Theorem                                                                                                                                                                                                                                                                                                                                                                              | 41                                                                         |
|    | 14.3 Relation via the Orbit                                                                                                                                                                                                                                                                                                                                                                                    | 41<br>42                                                                   |
|    | 14.3 Relation via the Orbit                                                                                                                                                                                                                                                                                                                                                                                    | 41<br>42<br>42                                                             |
|    | 14.3 Relation via the Orbit14.4 Fixed Points14.5 The Conjugation Action                                                                                                                                                                                                                                                                                                                                        | 41<br>42<br>42<br>43                                                       |
|    | 14.3 Relation via the Orbit14.4 Fixed Points14.5 The Conjugation Action14.6 Partitioning on Conjugacy Classes                                                                                                                                                                                                                                                                                                  | 41<br>42<br>42<br>43<br>43                                                 |
|    | 14.3 Relation via the Orbit14.4 Fixed Points                                                                                                                                                                                                                                                                                                                                                                   | 41<br>42<br>42<br>43<br>43<br>43                                           |
|    | 14.3 Relation via the Orbit14.4 Fixed Points14.5 The Conjugation Action14.6 Partitioning on Conjugacy Classes                                                                                                                                                                                                                                                                                                  | 41<br>42<br>42<br>43<br>43<br>43                                           |
|    | 14.3 Relation via the Orbit14.4 Fixed Points14.5 The Conjugation Action14.6 Partitioning on Conjugacy Classes14.7 The Orbit-Stabiliser Theorem for Conjugation14.8 The Class Equation                                                                                                                                                                                                                          | 41<br>42<br>43<br>43<br>43<br>43                                           |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points                                                                                                                                                                                                                                                                                                                                                                 | 41<br>42<br>43<br>43<br>43<br>43                                           |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points                                                                                                                                                                                                                                                                                                                                                                 | 41<br>42<br>43<br>43<br>43<br>43<br>44<br>44                               |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  5 Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups                                                                                                                                             | 411<br>422<br>433<br>433<br>434<br>444<br>444<br>444                       |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  5 Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups  15.3 Sylow's First Theorem                                                                                                                 | 411<br>422<br>433<br>433<br>434<br>444<br>444<br>445                       |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups  15.3 Sylow's First Theorem  15.4 Sylow Subgroups                                                                                             | 411<br>422<br>433<br>433<br>433<br>434<br>444<br>444<br>445<br>466         |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups  15.3 Sylow's First Theorem  15.4 Sylow Subgroups  15.5 Closure of p-groups under Conjugacy                                                   | 411<br>422<br>433<br>433<br>434<br>444<br>444<br>445<br>466<br>466         |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  5 Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups  15.3 Sylow's First Theorem  15.4 Sylow Subgroups  15.5 Closure of p-groups under Conjugacy  15.6 Sylow's Second Theorem                    | 41<br>42<br>43<br>43<br>43<br>43<br>44<br>44<br>45<br>46<br>46<br>46       |
| 15 | 14.3 Relation via the Orbit 14.4 Fixed Points 14.5 The Conjugation Action 14.6 Partitioning on Conjugacy Classes 14.7 The Orbit-Stabiliser Theorem for Conjugation 14.8 The Class Equation  5 Sylow's Theorems 15.1 Cauchy's Theorem 15.2 Order of p-groups 15.3 Sylow's First Theorem 15.4 Sylow Subgroups 15.5 Closure of p-groups under Conjugacy 15.6 Sylow's Second Theorem 15.7 Order of Sylow Subgroups | 41<br>42<br>42<br>43<br>43<br>43<br>44<br>44<br>44<br>46<br>46<br>46<br>46 |
| 15 | 14.3 Relation via the Orbit  14.4 Fixed Points  14.5 The Conjugation Action  14.6 Partitioning on Conjugacy Classes  14.7 The Orbit-Stabiliser Theorem for Conjugation  14.8 The Class Equation  5 Sylow's Theorems  15.1 Cauchy's Theorem  15.2 Order of p-groups  15.3 Sylow's First Theorem  15.4 Sylow Subgroups  15.5 Closure of p-groups under Conjugacy  15.6 Sylow's Second Theorem                    | 411<br>422<br>433<br>433<br>433<br>434<br>444<br>444<br>445<br>466         |
| 15 | 14.3 Relation via the Orbit 14.4 Fixed Points 14.5 The Conjugation Action 14.6 Partitioning on Conjugacy Classes 14.7 The Orbit-Stabiliser Theorem for Conjugation 14.8 The Class Equation  5 Sylow's Theorems 15.1 Cauchy's Theorem 15.2 Order of p-groups 15.3 Sylow's First Theorem 15.4 Sylow Subgroups 15.5 Closure of p-groups under Conjugacy 15.6 Sylow's Second Theorem 15.7 Order of Sylow Subgroups | 41<br>42<br>42<br>43<br>43<br>43<br>44<br>44<br>44<br>46<br>46<br>46<br>46 |

| 15.9 Sylow Subgroups of Abelian Gr | Groups |
|------------------------------------|--------|
|------------------------------------|--------|

## 1 The Fundamentals

#### 1.1 Binary Operations

A binary operation on a set X is a map  $X \times X \to X$ .

Take a binary operation \* on a set X, we say that \* is associative if for all x, y, z in X:

$$x * (y * z) = (x * y) * z.$$

Furthermore, we say e in X is an identity element of \* if for all x in X:

$$e * x = x * e$$
,

and we say that y in X is the inverse to x if x \* y and y \* x are both identities of \*.

#### 1.2 Groups

A group (G,\*) is a non-empty set G combined with a binary operation \* such that:

- \* is associative,
- G contains an identity for \*,
- for each element in G, there exists some inverse in G with respect to \*.

#### 1.2.1 Distinct Powers of Group Elements

For an element x in a group G, we have that the powers of x are distinct up to the order of x.

#### 1.2.2 Symmetric Groups

For a set X, the set of bijections  $X \to X$  is a group under function composition denoted by  $\operatorname{Sym}(X)$ . We typically write  $\operatorname{Sym}(\{1, 2, \dots, n\})$  as  $S_n$ .

#### 1.2.3 Cyclic Groups

If we consider a regular n-gon  $P_n$ , we take rotations of  $\frac{2\pi}{n}$  radians about the centre to be r and can define:

$$C_n = \{e, r, r^2, \dots, r^{n-1}\},\$$

to be the group of rotational symmetries of  $P_n$ , the cyclic group on  $P_n$ .

#### 1.2.4 Dihedral Groups

If we consider again, a regular n-gon  $P_n$  and take:

r = a rotation of  $\frac{2\pi}{n}$  radians about the centre, s = reflection in some fixed line of symmetry,

then we have that:

$$Sym(P_n) = \{e, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\},\$$

called the dihedral group, denoted by  $D_{2n}$ .

#### 1.2.5 The Infinite Cyclic/Dihedral Group

A map  $\varphi$  from  $\mathbb{Z} \to \mathbb{Z}$  is a symmetry if for some n and m in  $\mathbb{Z}$ :

$$|\varphi(m) - \varphi(n)| = |m - n|.$$

Taking r to be the symmetry  $n \mapsto n+1$ , we can define the infinite cyclic group:

$$C_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots\}.$$

Taking s to be the symmetry  $n \mapsto -n$ , we can define the infinite dihedral group:

$$D_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots, r^{-2}s, r^{-1}s, s, rs, r^2s\}.$$

#### 1.2.6 Torsion Groups

A group is a torsion group if every element has finite order and torsion-free if every non-identity element has infinite order.

#### 1.3 p-groups

For p in  $\mathbb{P}$ , we say that a group G is a p-group if the order of each element of G is a power of p.

#### 1.4 Subsets of Groups

#### 1.4.1 Set Multiplication

For X, Y subsets of a group (G, \*), we define:

$$X * Y = \{x * y : x \in X, y \in Y\},\$$

the product set of X and Y (which is a subset of G). We have that \* is an associative binary operation on  $\mathcal{P}(G)$ . Additionally, we define:

$$X^{-1} = \{x^{-1} : x \in X\}.$$

However, these definitions do not define a group on  $\mathcal{P}(G)$  as an inverse does not necessarily exist for each element, despite the existence of an identity  $\{e_G\}$ .

#### 1.4.2 Centre

For a group G, the centre of G is the set of elements that commute with all elements of G, denoted by Z(G):

$$Z(G) = \{ z \in G : gz = zg, \forall g \in G \}.$$

We have that Z(G) is a subgroup.

#### 1.4.3 Properties of Sets

For a group (G, \*) with  $X \subseteq G$ , we have some defined properties:

- X is symmetric if for each x in X,  $x^{-1}$  is also in X,
- X is closed under \* if for all x, y in X, x \* y is in X.

#### 1.5 Order

For a group G = (X, \*), G has order |X|. The order of an element x of X is defined as follows:

$$|x| = \infty$$
 if  $x^n \neq e_G$  for any  $n$  in  $\mathbb{N}$ ,  $|x| = \min\{n \in \mathbb{N} \mid x^n = e_G\}$  otherwise.

Taking x in X, if x has finite order, then:

- 1.  $x^n = e_G$  if and only if |x| divides n,
- 2.  $x^n = x^m$  if and only if |x| divides m n,

and if x has infinite order:

3.  $x^n = x^m$  if and only if n = m.

*Proof.* For (1), we take n = q|x| + r for some q in  $\mathbb{Z}$ , r in  $\{0, 1, \ldots, |x| - 1\}$ . Thus:

$$x^n = x^{q|x|}x^r,$$
  
=  $e_G^q x^r,$   
=  $x^r,$ 

and we can see that  $x^r = e_G$  if and only if r = 0 as r < |x| and |x| is minimal. Thus,  $x^n = e_G$  if and only if r = 0 which occurs if and only if |x| divides n.

For (2) and (3), we take x to have any order and consider:

$$x^n = x^m,$$
  
$$x^{m-n} = e_G.$$

Thus, if  $|x| < \infty$  then |x| divides m - n by (1) and if  $|x| = \infty$  then m - n = 0 by the definition of order.

#### 1.6 Isomorphisms

For (G,\*),  $(H,\circ)$  groups, an isomorphism  $\varphi:G\to H$  is a bijection such that  $\varphi(x*y)=\varphi(x)\circ\varphi(y)$  for all x,y in G. If such a map exists, we say G is isomorphic to H, denoted by  $G\cong H$ .

We can restrict isomorphisms to subgroups, compose them, or take the inverse and the result will be an isomorphism.

## 1.7 Subgroups

A subset X of a group (G, \*) is a subgroup if and only if (X, \*) (with \* restricted to X, for which X must be closed under \*) is a group, denoted by  $X \leq G$  (or if  $X \neq G, X < G$ ).

Alternatively, we have that X is a subgroup if and only if:

- $e_G$  is in X,
- X is closed under \*,
- X is symmetric under \*.

#### 1.7.1 The Product of Subgroups

For  $H, K \leq G, HK$  is a subgroup of G if and only if HK = KH.

*Proof.* By the alternate definition of a subgroup above, we know that for a subgroup X of G, X contains  $e_G$ , and X is closed and symmetric under \*.

Suppose  $HK \leq G$ , thus:

$$HK = (HK)^{-1}$$
$$= K^{-1}H^{-1}$$
$$= KH$$

Now, suppose HK = KH:

- $e_G = e_G e_G$  is in HK,
- (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK,
- $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$ ,

so HK is a subgroup.

#### 1.7.2 The Subgroup Test

For X a subset of a group G, X is a subgroup if and only if  $X \neq \emptyset$  and  $x^{-1}y$  is in X for each x, y in X.

*Proof.* Suppose  $X \leq G$ , then  $e_G$  is in X so  $X \neq \emptyset$ . For x, y in  $X, x^{-1}$  is also in X by the inverse rule of subgroups, so  $x^{-1}y$  is also in X by the closure of subgroups.

Suppose  $X \neq \emptyset$  and for each x, y in  $X, x^{-1}y$  is also in X. Taking x, y in X, we have that  $x^{-1}x = e_G$  is also in X. Also,  $x^{-1}e_G = x^{-1}$  is in X. Finally,  $xy = (x^{-1})^{-1}y$ .  $\square$ 

#### 1.7.3 The Intersection of Subgroups

We have that for a group G with A a set of subgroups of G:

$$\bigcap_{a \in \mathcal{A}} a,$$

is a subgroup of G.

*Proof.* We will use the subgroup test. We set X to be the intersection of the subgroups in A, X must be non-empty as each subgroup must contain  $e_G$ . Taking x, y in X, for each a in A, we know that x and y are in a. As a is a subgroup,  $x^{-1}$  and thus  $x^{-1}y$  are in a. As a is arbitrary,  $x^{-1}y$  must be in X.

#### 1.8 Generated Subgroups

For a group G with  $X \subseteq G$  non-empty, we define the subgroup generated by X as:

$$\langle X \rangle = \bigcap_{A \le G: X \subseteq A} A,$$

the intersection of all the subgroups containing X. This can also be called the smallest subgroup containing X.

Alternatively, we have that:

$$\langle X \rangle = \Gamma(X) = \{x_1 x_2 \cdots x_n : x_i \in X \cup X^{-1}, m \in \mathbb{N}\}.$$

*Proof.* We can see that  $\Gamma(X) \subseteq \langle X \rangle$  as  $\langle X \rangle$  contains X and is a subgroup so it contains all the finite products of elements of  $X \cup X^{-1}$  by closure and existence of inverses.

If we can show that  $\Gamma(X)$  is a subgroup, then that would mean  $\langle X \rangle \subseteq \Gamma(X)$  as  $\Gamma(X)$  contains X so would have been included in the intersection used to generate  $\langle X \rangle$ . We know that  $\Gamma(X)$  is non-empty as X is non-empty and taking x, y in  $\Gamma(X)$ , for some n, m in  $\mathbb{N}$ , we have that:

$$x = x_1 x_2 \cdots x_n,$$
  
$$y = y_1 y_2 \cdots y_m,$$

by the definition of  $\Gamma(X)$ . For each  $x_i$  with i in [n], we know that  $x_i^{-1}$  is in  $\Gamma(X)$  as  $X^{-1} \subseteq \Gamma(X)$  so:

$$x^{-1}y = (x_1x_2 \cdots x_n)^{-1}y$$
  
=  $x_n^{-1}x_{n-1}^{-1} \cdots x_1^{-1}y_1y_2 \cdots y_m$ ,

is in  $\Gamma(X)$  by its definition. Thus,  $\Gamma(X)$  is a subgroup as required.

## 1.9 Cyclic Groups

A group G is cyclic if it is generated by a single element. Elements in G that generate G are called generators. Supposing G is cyclic:

- For x a generator of G,  $G = \{x^n : n \in \mathbb{Z}\},$
- $\bullet$  G is abelian,
- $G \cong C_{|G|}$ ,
- For X < G, X is cyclic.

#### 1.10 Cosets

For a group G with  $H \leq G$  and x in G, the subset xH is a left coset of H in G and similarly, Hx is a right coset. We have some properties of left cosets:

- For h in H, hH = H = Hh,
- For g in  $G \setminus H$  we cannot say gH = Hg in general,
- G is the union of all the left cosets,
- For x, y in G, xH = yH if and only if x is in yH,
- For x, y in G, either xH = yH or  $xH \cap yH = \emptyset$ ,
- For all x in G, |xH| = |H|.

#### 1.10.1 A Bijection from Left to Right Cosets

For a group G with  $H \leq G$ , the map  $xH \mapsto Hx^{-1}$  is a bijection from the set of left cosets to the set of right cosets.

#### 1.10.2 A Equivalence Relation on Cosets

We can define an equivalence relation  $\sim$  on a group G with  $H \leq G$  by setting:

$$x \sim y \iff y \in xH$$
,

where xH is the equivalence class containing x.

#### 1.10.3 Index

For a group G with  $H \leq G$ , the number of distinct left cosets of H in G is called the index of H in G, denoted by [G:H] (the choice of left cosets here is arbitrary due to the bijection between the coset types).

#### 1.10.4 Lagrange's Theorem

For a finite group G with  $H \leq G$ , |G| = [G:H]|H|.

This means, for any subgroup  $H \leq G$ , its index and order divide the order of G. Thus, for G a finite group:

- For x in G, |x| divides |G|,
- If G has prime order, G is cyclic and every non-identity element is a generator,
- For p in  $\mathbb{P}$  with  $P, Q \leq G$  and |P| = |Q| = p,  $P \cap Q = \emptyset$  or P = Q.

#### 1.11 Outer Direct Product

For  $G_1, \ldots, G_n$  groups, we set:

$$G_1 \times \cdots \times G_n = \{(a_1, \dots, a_n) : a_i \in G_i, i \in [n]\},$$

and define a binary operation on  $G = G_1 \times \cdots \times G_n$  by:

$$(a_1,\ldots,a_n)(b_1,\ldots,b_n)=(a_1b_1,\ldots,a_nb_n).$$

G is a group under this operation.

#### 1.11.1 Properties of the Outer Direct Product

For  $G_1, \ldots, G_n$  groups, with  $G = \prod_{i \in [n]} G_i$ :

- $|G| = \prod_{i \in [n]} |G_i|$ ,
- $Z(G) = \prod_{i \in [n]} Z(G_i),$
- If G is cyclic,  $G_i$  is cyclic for each i in [n],
- For all  $\sigma$  in  $S_n$ ,  $G \cong \prod_{i \in [n]} G_{\sigma(i)}$ ,
- For the integers  $1 \le n_1 < n_1 < \dots < n_r < n$ ,

$$G \cong (G_1 \times \cdots \times G_{n_1}) \times (G_{n_1+1} \times \cdots \times G_{n_2}) \times \cdots \times (G_{n_r+1} \times \cdots \times G_n),$$

• For  $H_1, \ldots, H_n$  groups with  $G_i \cong H_i$  for each i in [n]  $G \cong \prod_{i \in [n]} H_i$ .

## 2 Homomorphisms

For G, H groups, a homomorphism  $\varphi: G \to H$  is a map that for all x, y in G satisfies:

$$\varphi(xy) = \varphi(x)\varphi(y).$$

The image and kernel are defined as expected:

$$Im(\varphi) = \{ \varphi(g) : g \in G \},$$
  
 
$$Ker(\varphi) = \{ g \in G : \varphi(g) = e_H \}.$$

#### 2.1 Properties of Homomorphisms

For G, H groups and  $\varphi: G \to H$  a homomorphism, we have that:

- 1.  $\varphi(e_G) = e_H$ ,
- 2.  $Ker(\varphi)$  is a subgroup of G,
- 3.  $\operatorname{Im}(\varphi)$  is a subgroup of H,
- 4.  $\varphi$  is injective if and only if  $Ker(\varphi) = \{e_G\},\$
- 5.  $\varphi(x^{-1}) = \varphi(x)^{-1}$  for every x in G,
- 6. For  $x_1, \ldots, x_n$  in G,  $\varphi(x_1 \cdots x_n) = \varphi(x_1) \cdots \varphi(x_n)$ .

These properties lead us to the following:

- For a finitely ordered element g in G,  $|\varphi(g)|$  divides |g| by (6),
- If G is a p-group for p in  $\mathbb{P}$ , the image of every homomorphism on G is a p-group also.

We can restrict homomorphisms to subgroups or compose them and the result will be a homomorphism.

## 2.2 Homomorphisms and Generating Sets

For G, H groups, a homomorphism  $\varphi: G \to H$ , and  $X \subseteq G$ , we have that  $\varphi(\langle X \rangle) = \langle \varphi(X) \rangle$ .

Furthermore, for another homomorphism  $\psi: G \to H$  with X being a generating set for G, if  $\varphi(x) = \psi(x)$  for each x in X, then  $\varphi = \psi$ .

## 3 Automorphisms

An automorphism is an isomorphism from a group to itself. The set of all automorphisms on a group G is denoted by Aut(G) which is a group under composition.

#### 3.1 Inner Automorphisms

For a group G, we have that  $\varphi: G \to G$  defined for some g in G as  $x \mapsto g^{-1}xg$  is an automorphism. Any automorphism of this form is called an inner automorphism.

*Proof.* For x, y in G:

$$\varphi(xy) = g^{-1}xyg$$

$$= g^{-1}xe_Gyg$$

$$= g^{-1}xgg^{-1}yg$$

$$= \varphi(x)\varphi(y),$$

so  $\varphi$  is a homomorphism. We can see that  $g^{-1}xg = e_G$  implies that  $x = gg^{-1} = e_G$  so  $Ker(\varphi) = \{e_G\}$ . Finally, we see that  $x = g^{-1}(gxg^{-1})g$  so  $\varphi$  is surjective as x is arbitrary in G. Thus,  $\varphi$  is an automorphism.

#### 3.2 Conjugation

The operation performed by inner automorphisms is called conjugation by an element. For a group G with x, y, g in G and  $X \subseteq G$ :

- $g^{-1}xg$  is the conjugation of x by g,
- $g^{-1}xg$  is denoted by  $x^g$ ,
- $g^{-1}Xg$  is similarly denoted by  $X^g$ ,
- x and y are said to be conjugate if there exists some g in G such that  $x = y^g$ .

#### 3.2.1 Conjugations on Subgroups

For G a group with  $H \leq G$  and g in G,  $H^g$  is a subgroup of G and  $H^g \cong H$ .

Two subgroups  $H, K \leq G$  are said to be conjugate if there exists some g in G with  $H = K^g$ .

## 4 Normal and Characteristic Subgroups

For a group G, a subgroup H of G is normal if for each g in G, gH = Hg. This is denoted by  $H \triangleleft G$ .

We say H is a characteristic subgroup if for every  $\varphi$  in  $\operatorname{Aut}(G)$ ,  $\varphi(H) = H$  (denoted by  $H \leq G$ ). We know characteristic subgroups are normal as  $\operatorname{Aut}(G)$  contains inner automorphisms.

## 4.1 Properties of Normal Subgroups

We have that for a group G, the set of normal subgroups on G is closed under set multiplication and intersection. For G, H. groups with  $\varphi: G \to H$  a homomorphism, we have that:

- 1. If  $K \leq G$  then  $\varphi(K) \leq H$ ,
- 2. If  $K \subseteq G$  then  $\varphi(K) \subseteq \varphi(G)$ ,
- 3. If K < H then  $\varphi^{-1}(K) < G$ ,
- 4. If  $K \leq H$  then  $\varphi^{-1}(K) \leq G$ .

Using  $K = \{e_H\}$  in (4), we can see that  $Ker(\varphi) \subseteq G$ . Furthermore, every normal subgroup is the kernel of some homomorphism.

## 4.2 A Test for Normal and Characteristic Subgroups

Let G be a group with  $H \leq G$ :

- 1. If for every g in  $G, H^g \subseteq H$  then  $H \subseteq G$ ,
- 2. If for every  $\varphi$  in  $\operatorname{Aut}(G)$ ,  $\varphi(H) \subseteq H$  then  $H \underset{\text{char}}{\trianglelefteq} G$ .

*Proof.* (2) Suppose that  $\varphi(H) \subseteq H$  for each  $\varphi$  in  $\operatorname{Aut}(G)$ . We take  $\varphi$  in  $\operatorname{Aut}(G)$ ,  $\varphi^{-1}$  is also an isomorphism so is also in  $\operatorname{Aut}(G)$ . We have that  $\varphi^{-1}(H) \subseteq H$  by our assumption, applying  $\varphi$  to both sides, we see that  $H \subseteq \varphi(H)$  so combined with our assumptions,  $H = \varphi(H)$  as required.

(1) We can perform the same argument as (2) by using the fact that the inverse of an inner automorphism is also an inner automorphism.  $\Box$ 

#### 4.3 Normal Subgroups of Index 2

For a group G with  $H \leq G$  and [G:H] = 2,  $H \leq G$ .

*Proof.* Taking x in G, suppose x is in H, then xH = H = Hx.

Suppose x is not in H, then  $xH \neq H$  as x is in xH. Thus, xH and H are disjoint cosets of H and as [G:H]=2,  $G=H\cup xH$  the disjoint union of these cosets. So,  $xH=G\backslash H$ . We can apply this reasoning to the right coset and deduce that xH=Hx as required.

#### 4.4 Properties of the Centre

For a group G, Z(G) is a characteristic subgroup of G and every subgroup of Z(G) is normal.

*Proof.* We know that  $Z(G) \leq G$ . We take  $\varphi$  in  $\operatorname{Aut}(G)$  and take z in Z(G). We take an arbitrary g in G, as z is in Z(G), zg = gz, thus  $\varphi(z)\varphi(g) = \varphi(g)\varphi(z)$  as  $\varphi$  is a homomorphism. Furthermore,  $\varphi(z)h = h\varphi(z)$  for every h in G as  $\varphi$  is surjective. Thus,  $\varphi(z)$  is in Z(G) as required.

Taking  $H \leq Z(G)$ , we know that for all g in G, h in H, gh = hg as h is in Z(G). Thus, gH = Hg for all g in G.

## 4.5 Simple Groups

A non-trivial group is simple if its only normal subgroups are itself and the trivial subgroup.

# 5 Quotient Groups

For a group G with  $H \subseteq G$ , G/H is a group under set multiplication and for every a, b in G satisfies:

$$(aH)(bH) = (ab)H.$$

Furthermore, we have  $\pi: G \to G/H$  the mapping  $g \mapsto gH$  is a surjective homomorphism with kernel H.

*Proof.* We know set multiplication is associative so, we take a, b in G, and see that:

$$(aH)(bH) = aHbH$$
  
=  $(ab)(HH)$  (*H* is normal)  
=  $(ab)H$ . (*H* is a subgroup)

Thus, G/H is closed under the operation. We take the identity to be  $e_GH$  and for g in G, the inverse of gH is  $g^{-1}H$ . So, G/H is a group under set multiplication.

 $\pi$  is trivially surjective, for g in  $\operatorname{Ker}(\pi)$ , gH = H which means g is in H. The converse is true as H is a subgroup. Thus,  $\pi$  is a homomorphism.

The group G/H with the operation of set multiplication is called the quotient group of G by H. We call  $\pi$  on this quotient group the quotient homomorphism from G to G/H.

# 6 The Homomorphism Theorem

For G, H groups with  $\varphi: G \to H$  a homomorphism, we let  $\pi: G \to G/\operatorname{Ker}(\varphi)$  be the quotient homomorphism. There exists an isomorphism  $\psi: G/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi)$  such that  $\varphi = \psi \circ \pi$ .

If  $\varphi$  is injective, this shows that  $G \cong \operatorname{Im}(\varphi)$ .

*Proof.* We set  $I = \operatorname{Im}(\varphi)$  and  $K = \operatorname{Ker}(\varphi)$ , and define  $\psi : G/K \to I$  by  $gK \mapsto \varphi(g)$ . We then consider:

$$(gK = hK) \iff (g^{-1}h \in K)$$

$$\iff (\varphi(g^{-1}h) = e_H)$$

$$\iff (\varphi(g)^{-1}\varphi(h) = e_H)$$

$$\iff (\varphi(g) = \varphi(h)).$$

So, the map is well-defined and injective. Furthermore,  $\psi(\pi(g)) = \psi(gK) = \varphi(g)$ . Consider:

$$\psi(ghK) = \varphi(gh)$$

$$= \varphi(g)\varphi(h)$$

$$= \psi(gK)\psi(hK),$$

so  $\psi$  is a homomorphism and is trivially surjective as required.

## 7 The First Isomorphism Theorem

For a group G with  $N \subseteq G$ ,  $\pi: G \to G/N$  the quotient homomorphism, and  $H \subseteq G$ :

- 1.  $H \cap N \leq H$ ,
- 2.  $\pi(H) \cong H/(H \cap N)$ .

*Proof.* We write  $\pi|_H$  for the restriction of  $\pi$  to H. Note that  $\pi|_H: H \to G/N$  is a homomorphism. Furthermore:

$$\operatorname{Im}(\pi|_H) = \pi(H),$$
  
 $\operatorname{Ker}(\pi|_H) = H \cap \operatorname{Ker}(\pi) = H \cap N.$ 

As the kernel of a homomorphism is a normal subgroup in the domain,  $H \cap N \leq H$ . The homomorphism says that  $\pi(H) \cong H/H \cap N$ . Additionally, we have that  $HN \leq G$  and  $\pi(H) = HN/N$ .

*Proof.* We know that  $HN \leq G$  if and only if HN = NH which is implied by the normality of N. We consider the group:

$$\begin{split} HN/N &= \Big(\{hnN: h \in H, n \in N\}, \times \Big), \\ &= \Big(\{hN: h \in H\}, \times \Big), \\ &= \pi(H). \end{split} \tag{$N$ is a subgroup}$$

As required.  $\Box$ 

#### 7.1 The Order of the Product

Let G be a group with  $N \subseteq G$ , and  $H \subseteq G$ . If HN is finite, then:

$$|HN| = \frac{|H||N|}{|H \cap N|}.$$

*Proof.* We can see that:

$$\frac{|HN|}{|N|} = [HN : N]$$
 (By Lagrange's Theorem)  

$$= |\pi(H)|$$
 (By the above)  

$$= [H : H \cap N]$$
 (By the First Isomorphism Theorem)  

$$= \frac{|H|}{|H \cap N|},$$
 (By Lagrange's Theorem)

as required.  $\Box$ 

## 8 The Second Isomorphism Theorem

For a group G with  $N \leq H \leq G$ , and  $N, H \subseteq G$ , we have that  $H/N \subseteq G/N$  and  $(G/N)/(H/N) \cong G/H$ .

*Proof.* We let  $\varphi: G/N \to G/H$  be defined by  $gN \mapsto gH$ . We have that:

$$aN = bN \Rightarrow ab^{-1} \in N \subseteq H \Rightarrow aH = bH$$
.

so  $\varphi$  is well-defined. It is a homomorphism because:

$$\varphi(aNbN) = \varphi(abN)$$

$$= abH$$

$$= aHbH$$

$$= \varphi(aN)\varphi(bN),$$

and is trivially surjective. Considering:

$$Ker(\varphi) = \{gN : gH = eH\}$$
$$= \{gN : g \in H\}$$
$$= H/N,$$

we have that  $H/N \leq G/N$  as it is the kernel of a homomorphism and that  $(G/N)/(H/N) \cong G/H$  by the homomorphism theorem.

## 9 The Correspondence Theorem

For a group G with  $N \subseteq G$  and  $\pi: G \to G/N$  the quotient homomorphism. We have that:

- 1. If  $K \subseteq G/N$  then:
  - (a)  $K \leq G/N$  if and only if K = H/N for some  $H \leq G$  containing N,
  - (b)  $K \leq G/N$  if and only if K = H/N for some  $H \leq G$  containing N,
- 2. If  $N \subseteq H \subseteq G$  then:
  - (a)  $H \leq G$  if and only if  $H = \pi^{-1}(K)$  for some  $K \leq G/N$ ,
  - (b)  $H \subseteq G$  if and only if  $H = \pi^{-1}(K)$  for some  $K \subseteq G/N$ .

*Proof.* We have already proved the  $(\Leftarrow)$  direction in (4.1).

- (1)(a) Note that  $K = \pi(\pi^{-1}(K))$ . By the  $(\Rightarrow)$  direction of (2)(a), we know that  $\pi^{-1}(K)$  is a subgroup of G and contains N as it's a subgroup. So,  $\pi(\pi^{-1}(K)) = \pi^{-1}(K)/N$ . Taking  $H = \pi^{-1}(K)$  proves the  $(\Rightarrow)$  direction of (1)(a).
- (1)(b) To prove the ( $\Rightarrow$ ) direction of (1)(b), we just need to prove that  $K \leq G/N$  implies that  $\pi^{-1}(K) \leq G$  which we proved in the ( $\Leftarrow$ ) direction of (2)(b).
- (2) We know that H is a union of left cosets of N as it's a subgroup, this means that  $H = \pi^{-1}(\pi(H))$ . We apply (4.1) again with  $\phi = \pi$  and get the ( $\Rightarrow$ ) direction of (2).

## 10 Commutators

For x, y in a group G, we define the commutator of x and y as:

$$[x,y] = x^{-1}y^{-1}xy.$$

This can be considered as the 'cost' of commuting x and y:

$$xy = yx[x, y].$$

Note that for a homomorphism  $\varphi$  with domain G, we have that  $\varphi([x,y]) = [\varphi(x), \varphi(y)]$ .

## 10.1 Commutator Subgroups

For a group G with  $H, K \leq G$ , we define a subgroup [H, K] by:

$$[H, K] = \langle [h, k] : h \in H, k \in K \rangle.$$

The subgroup [G, G] is called the commutator subgroup. Furthermore, if G is abelian,  $[G, G] = \{e_G\}$ .

#### 10.2 Commutator Subgroup of Characteristic Subgroups

For a group G with  $H, K \underset{\text{char}}{\unlhd} G$ ,  $[H, K] \underset{\text{char}}{\unlhd} G$ . Furthermore,  $[G, G] \underset{\text{char}}{\unlhd} G$ .

*Proof.* We take  $\varphi$  in Aut(G):

$$\varphi([H, K]) = \varphi(\langle [h, k] : h \in H, k \in K \rangle)$$

$$= \langle \varphi([h, k]) : h \in H, k \in K \rangle$$

$$= \langle [\varphi(h), \varphi(k)] : h \in H, k \in K \rangle$$

$$= \langle [h, k] : h \in H, k \in K \rangle \qquad (H, K \leq G)$$

$$= [H, K],$$

as required.

#### 10.3 Abelian Quotients

For a group G with  $H \subseteq G$ , G/H is abelian if and only if  $[G, G] \subseteq H$ . Furthermore, this shows that a quotient of G is abelian if and only if it is isomorphic to a quotient of G/[G, G] (by the second isomorphism theorem).

*Proof.* We take  $\pi: G \to G/H$  to be the quotient homomorphism.

 $(\Rightarrow)$  If G/H is abelian then we take x, y arbitrary in G. We have that  $\pi([x,y]) = [\pi(x), \pi(y)] = e_G H$ . Thus, [x,y] is in H. Thus, as x, y are arbitrary,  $[G,G] \subseteq H$ .

 $(\Leftarrow)$  If  $[G,G] \subseteq H$  then for every xH,yH in G/H we have that:

$$[xH, yH] = (x^{-1}H)(y^{-1}H)(xH)(yH)$$
  
=  $[x, y]H$   
=  $H$ .

Thus, G/H is abelian.

#### 10.3.1 Quotients of Abelian Groups

Every quotient of an abelian group is abelian.

*Proof.* If G is abelian then  $[G, G] = \{e_G\}$ . So, for each  $H \leq_{\text{char}} G$  we have  $[G, G] \subseteq H$  and so G/H is abelian by the above.

#### 10.4 The Abelianisation

For a group G, the abelianisation of G is the quotient group G/[G,G]. This group is always abelian and is the largest possible abelian quotient of G.

It can be that  $G/[G,G] = \{e_G\}$  ([G,G] = G). These groups are called perfect. An example is non-abelian simple groups as  $[G,G] \subseteq G$ .

## 11 Direct Products

We have already seen the outer direct product as:

$$G_1 \times \cdots \times G_n = \{(g_1, \dots, g_n) : g_i \in G_i\},\$$

for groups  $G_1, \ldots, G_n$  which forms a group with component-wise group operations.

For a group G with  $H_1, \ldots, H_n \leq G$ . We say G is the inner direct product of  $H_1, \ldots, H_n$  if:

- $G = H_1 \times \cdots \times H_n$ ,
- $H_i \cap (H_1 \times \cdots \times H_{i-1} \times H_{i+1} \times \cdots \times H_n) = \{e_G\}$  for all i in [n].

We have that  $|G| = \prod_i H_i$ .

## 11.1 Component Groups

We let  $G = G_1 \times \cdots \times G_n$ , for each i in [n], we set:

$$\widehat{G}_i = \{(e, \dots, e, g_i, e, \dots, e) : g_i \in G_i\}.$$

We have that:

- 1. For each i in [n],  $\widehat{G}_i \subseteq G$ ,
- 2. For each i in [n],  $\widehat{G}_i \cong G_i$ ,
- 3. G is the inner direct product of  $\widehat{G}_1, \ldots, \widehat{G}_n$ .

*Proof.* (1) We can see that:

$$\psi((g_1,\ldots,g_n)) = (g_1,\ldots,g_{i-1},e,g_{i+1},\ldots g_n),$$

is a homomorphism with kernel  $\widehat{G}_i$ . Thus,  $\widehat{G}_i \leq G$ .

(2) We can see that:

$$\varphi_i((e,\ldots,e,g_i,e,\ldots,e))=g_i,$$

is an isomorphism. Thus,  $\widehat{G}_i \cong G_i$ .

(3) We have that  $G = \widehat{G}_1 \cdots \widehat{G}_n$  as:

$$(g_1, \ldots, g_n) = (g_1, e, \ldots)(e, g_2, e, \ldots) \cdots (e, \ldots, e, g_n).$$

Furthermore,  $\widehat{G_i} \cap G_i' = \{e\}$  where  $G' = \widehat{G_1}, \ldots, \widehat{G_{i-1}}, \widehat{G_{i+1}}, \ldots G_n$  as the elements of  $G_i'$  are of the form  $(g_1, \ldots, g_{i-1}, e, g_{i+1}, \ldots, g_n)$  whereas elements of  $\widehat{G_i}$  are of the form  $(e, \ldots, e, g_i, e, \ldots, e)$ . Thus, the only element in common is  $e_G$ .

#### 11.2 The Commutator of Normal Subgroups

For a group G with  $H, K \subseteq G$ ,  $[H, K] \subseteq H \cap K$ .

*Proof.* For h in H and k in K,  $[h, k] = h^{-1}k^{-1}hk$ . But:

- $h^{-1}k^{-1}h$  is in  $h^{-1}Kh = K$ ,
- $k^{-1}hk$  is in  $k^{-1}Hk = H$ ,

so [h, k] is in  $H \cap K$ .

Furthermore, if  $G = H_1 \times \cdots \times H_n$  is an inner direct product, then for  $i \neq j$  both in [n], we have that the elements of  $H_i$  commute with the elements of  $H_i$ .

*Proof.* The definition of the inner direct product means that  $H_i \cap H_j = \{e\}$ . This means that  $[H_i, H_j] = \{e\}$  as required.

#### 11.3 Isomorphism between Products

For a group G the inner direct product of subgroups  $H_1, \ldots, H_n, G \cong H_1 \times \cdots \times H_n$ .

*Proof.* We define  $\varphi: H_1 \times \cdots \times H_n \to G$  by:

$$\varphi((h_1,\ldots,h_n))=h_1\cdots h_n,$$

which is a homomorphism by the commutativity of  $H_i$  and  $H_j$  (where  $i \neq j$ ). The definition of the inner direct product implies that it is surjective. We take  $(h_1, \ldots, h_n) \in \text{Ker}(\varphi)$ :

$$h_1 \cdots h_n = e$$

$$\Longrightarrow h_i^{-1} = h_1 \cdots h_{i-1} h_{i+1} \cdots h_n$$

$$\Longrightarrow h_i^{-1} \in H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n)$$

$$\Longrightarrow h_i^{-1} = e.$$

Thus, as i was chosen arbitrarily,  $(h_1, \ldots, h_n) = (e, \ldots, e)$ . Thus,  $\varphi$  is an isomorphism.

#### 11.4 Criteria for Inner Direct Products

#### 11.4.1 By Unique Compositions

For a group G with  $H_1, \ldots, H_n$  normal subgroups of G, G is an inner direct product of  $H_1, \ldots, H_n$  if and only if for all g in G, there exists a unique  $h_i$  in each  $H_i$  such that  $g = \prod_i h_i$ .

*Proof.* ( $\Rightarrow$ ) By the definition, we have  $g = \prod_i h_i$  for some  $h_i$  in each  $H_i$  so it suffices to show this product is unique. We suppose that:

$$\prod_{i} k_i = g = \prod_{i} h_i,$$

for some  $k_i$ ,  $h_i$  in each  $H_i$ . We fix i and see that:

$$e = g^{-1}g$$

$$= h_n^{-1} \cdots h_1^{-1} k_1 \cdots k_n$$

$$= h_1^{-1} k_1 \cdots h_n^{-1} k_n$$

$$= h_i^{-1} k_i h_1^{-1} k_1 \cdots h_{i-1}^{-1} k_{i-1} h_{i+1}^{-1} k_{i+1} \cdots h_n^{-1} k_n$$

$$k_i^{-1} h_i = h_1^{-1} k_1 \cdots h_{i-1}^{-1} k_{i-1} h_{i+1}^{-1} k_{i+1} \cdots h_n^{-1} k_n$$

$$\in H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n)$$

$$= \{e\}.$$

as G is the direct product of  $H_1, \ldots, H_n$  which means elements from differing subgroups commute. Thus, for each i,  $h_i = k_i$ .

 $(\Leftarrow)$  Clearly  $G = H_1 \cdots H_n$  so it suffices to show that:

$$H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n) = \{e\}$$

for each i. We take x in this intersection:

$$x = h_i = h_1 \cdots h_{i-1} h_{i+1} \cdots h_n$$
$$e \cdots e h_i e \cdots e = h_1 \cdots h_{i-1} e h_{i+1} \cdots h_n,$$

which, by the uniqueness of the composition of x, means that x = e as required.  $\square$ 

## 11.4.2 By the Size

For G a finite group with  $H_1, \ldots, H_n \leq G$  such that  $G = H_1 \cdots H_n$ . G is an inner direct product if and only if  $|G| = \prod_i |H_i|$ .

*Proof.*  $(\Rightarrow)$  As G is an inner direct product we have the result.

 $(\Leftarrow)$  As  $|G| = \prod_i |H_i|$ , each  $h_1 \cdots h_n$  product of elements in  $H_1 \cdots H_n$  are distinct. By the above, this means G is an inner direct product.

## 12 Finitely Generated Abelian Groups

We will write  $\mathbb{Z}^n = \{(m_1, \dots, m_n) : m_1, \dots, m_n \in \mathbb{Z}\}$  and  $e_i = (0, \dots, 1, \dots, 0) \in \mathbb{Z}^n$  with 1 in the  $i^{\text{th}}$  entry. These are the standard generators for  $\mathbb{Z}^n$ .

For some n in  $\mathbb{N}$ , we write  $\mathbb{Z}_n$  to be the integers modulo n which is a group under addition. Additionally,  $n\mathbb{Z}$  is a subgroup of  $\mathbb{Z}$  and  $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$ .

## 12.1 Classification of Cyclic Groups

For a cyclic group G, if |G| = n finite, we have that  $G \cong \mathbb{Z}_n$ . Otherwise,  $G \cong \mathbb{Z}$ .

*Proof.* We choose x as a generator of G. We take  $\varphi : \mathbb{Z} \to G$  to be defined as  $\varphi(m) = x^m$ . We can see that  $\varphi$  is a surjective homomorphism. If  $|x| = \infty$  then  $\text{Ker}(\varphi) = \{0\}$ , otherwise,  $\text{Ker}(\varphi) = |x|\mathbb{Z}$ . By the homomorphism theorem:

$$G = \operatorname{Im}(\varphi) \cong \mathbb{Z}/\operatorname{Ker}(\varphi).$$

The result follows as  $\mathbb{Z}/\operatorname{Ker}(\varphi) = \mathbb{Z}$  if  $|x| = \infty$  and  $\mathbb{Z}_{|x|}$  otherwise.

#### 12.2 The Torsion Subgroup

For an abelian group G with  $T \subseteq G$  the set of elements in G of finite order and a prime p with  $G_p \subseteq T$  the set of elements in T of with order equal to a power of p. We have that  $G_p \subseteq T \subseteq G$  and G/T is torsion-free with T called the torsion subgroup of G and  $G_p$  called the p-primary component of G.

*Proof.* We suppose x and y are in T with |x| = k, |y| = m. We know that km(x-y) = 0 so  $|x-y| \le km < \infty$ , thus (x-y) is in T so T is a subgroup of G by the subgroup test.

Furthermore, |x - y| must divide km so if x and y are in  $G_p$  then km is a power of p. Thus, |x - y| is a power of p so (x - y) is in  $G_p$ . Again, by the subgroup test,  $G_p$  is a subgroup of T.

Suppose z+T has finite order for some z in G. If so, there exists some m in  $\mathbb{N}$  with mx+T=T, in particular mx is in T. By the definition of T, there exists some n in  $\mathbb{N}$  with nmx=0. But, this would mean x has finite order so x is in T. Thus, G/T is torsion-free.

#### 12.3 The Primary Decomposition Theorem

For a finite abelian group G, we take  $p_1, \ldots, p_k$  to be the prime factors of |G|. We have that  $G = G_{p_1} \oplus \cdots \oplus G_{p_k}$ .

*Proof.* We take x in G, by Lagrange's Theorem, we have that  $x = p_1^{l_1} \cdots p_k^{l_k}$  for some  $l_1, \ldots, l_k$  in  $\mathbb{N}_0$ . For each i in [k], we set:

$$n_i = \prod_{j \in [k] \setminus \{i\}} p_j^{l_j},$$

and note that  $|n_i x| = p_i^{l_i}$  so  $n_i x$  is in  $G_{p_i}$ . Clearly  $\gcd(n_1, \ldots, n_k) = 1$ , so by the Euclidean algorithm there exists  $m_1, \ldots, m_k$  such that  $m_1 n_1 + \cdots + m_k n_k = 1$ . Thus:

$$x = \left(\sum_{i=1}^{k} m_i n_i\right) \cdot x$$
$$= \sum_{i=1}^{k} m_i (n_i x)$$
$$\in \sum_{i=1}^{k} G_{p_i}.$$

Thus,  $G = G_{p_1} + \dots + G_{p_k}$ .

We now consider  $x_i$ ,  $x_i'$  in  $G_{p_i}$  for each i in [k] such that  $\sum_{i \in [k]} x_i = \sum_{i \in [k]} x_i'$ . We write  $y_i = x_i - x_i'$  so that  $\sum_{i \in [k]} y_i = 0$ . Furthermore, we say  $|y_i| = p_i^{d_i}$  and set:

$$r_i = \prod_{j \in [k] \setminus \{i\}} |y_i| = \prod_{j \in [k] \setminus \{i\}} p_j^{d_j}.$$

As  $|y_i|$  divides  $|r_j|$  for all  $j \in [k] \setminus \{i\}$ , we know that  $r_i y_j = 0$ . This implies that  $r_i y_i = 0$  as  $\sum_{i=1}^k y_i = 0$ .

Moreover, as  $r_i$  and  $p_i$  are coprime by definition, the Euclidean algorithm implies that there exists a, b in  $\mathbb{Z}$  such that:

$$ar_{i} + bp_{i}^{d_{i}} = 1,$$

$$\Rightarrow y_{i} = (ar_{i} + bp_{i}^{d_{i}})y_{i},$$

$$\Rightarrow y_{i} = ar_{i}y_{i} + bp_{i}^{d_{i}}y_{i},$$

$$\Rightarrow y_{i} = 0 + 0 = 0,$$

so  $x_i = x_i'$  for each i in [k]. Thus, our compositions are unique as required.

#### 12.4 Finitely Generated Abelian Torsion Groups

A finitely generated torsion group is finite.

*Proof.* We take  $x_1, \ldots, x_n$  to be the finite generating set for an abelian torsion group G so:

$$G = \{l_1x_1 + \dots + l_nx_n : 0 \le l_i < |x_i|\},\$$

which is finite since  $|x_i| < \infty$  for all i in [n].

#### 12.5 Order of Elements in p-groups

For a prime p and a p-group G, we take g in G. We set k in  $\mathbb{N}$  to  $np^r$  with n, p coprime and r in  $\mathbb{N}_0$ . If  $p^r \leq |g|$  then  $|g^k| = \frac{|g|}{p^r}$ .

*Proof.* We know that  $|g| = p^m$  for some m as G is a p-group. For d in  $\mathbb{N}$ :

$$(g^k)^d = e$$

$$\iff g^{dnp^r} = e$$

$$\iff p^m \text{ divides } dnp^r$$

$$\iff p^m \text{ divides } dp^r$$

$$\iff p^{m-r} \text{ divides } d,$$

thus,  $|g^k| = p^{m-r} = \frac{|g|}{p^r}$  as required.

#### 12.6 Elements with Coset Order

For G a finite abelian p-group for some prime p. We take g in G to have maximum order. For every x in G, there exists y in  $x + \langle g \rangle$  such that the order of y in G is equal to the order of  $x + \langle g \rangle$  in  $G/\langle g \rangle$ .

Proof. We write  $x + \langle g \rangle = p^m$  for some m, noting that  $p^m \cdot x$  is in  $\langle g \rangle$  so  $p^m \cdot x = l \cdot g$  for some l in  $\mathbb{N}_0$  (if l = 0 we are done). We write  $l = np^r$  with n, p coprime. If  $p^r \geq |g|$  then  $l \cdot g = 0$  and  $|x| = p^m$  and we are done. Otherwise, we use the result above to see that  $|l \cdot g| = \frac{|g|}{p^r}$  and  $|p^m x| = \frac{|x|}{p^m}$  so  $\frac{|g|}{p^r} = \frac{|x|}{p^m}$ . The maximality of g implies that  $|g| \geq |x|$  so  $r \geq m$  and thus  $p^m$  divides l. We define:

$$y = x - \frac{l}{p^m} \cdot g,$$

thus  $p^m y = p^m (x - np^{r-m}g) = 0$  so  $|y| \le p^m$ . But, as y is in  $x + \langle g \rangle$ ,  $|y| \ge p^m$  so  $|y| = p^m$  as required.

#### 12.7 Decomposition of Finite Abelian p-groups

For a finite abelian p-group G with p prime, there exists a k in  $\mathbb{N}_0$  and  $m_1, \ldots, m_k$  in  $\mathbb{N}$  such that  $G \cong \mathbb{Z}_{p^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{m_k}}$ .

*Proof.* It is sufficient to show that for  $x_1, \ldots, x_k$  in G, G is an inner direct sum:

$$G = \langle x_1 \rangle \oplus \cdots \oplus \langle x_k \rangle. \tag{*}$$

If  $G = \{0\}$  then this is trivial so we assume |G| > 1. By strong induction, we assume every group of order lesser to that of G is of the form shown in (\*).

We take g in G to have maximum order,  $g \neq e$  as our group is non-trivial so  $|G/\langle g \rangle| < |G|$  so by induction, there exists  $x_1, \ldots, x_k$  in G such that:

$$G/\langle q \rangle = \langle x_1 + \langle q \rangle \rangle \oplus \cdots \oplus \langle x_k + \langle q \rangle \rangle.$$

The previous result implies that we can assume that  $|x_i| = |x_i + \langle g \rangle|$ , so:

$$|G/\langle g\rangle| = |\langle x_1 + \langle g \rangle\rangle| \cdots |\langle x_k + \langle g \rangle\rangle|$$
  
=  $|x_1| \cdots |x_k|$ ,

which combined with Lagrange's theorem means that:

$$|G| = [G : \langle g \rangle]$$

$$= |G/\langle g \rangle| \cdot |g|$$

$$= |x_1| \cdots |x_k| \cdot |g|.$$

We want to show that  $G = \langle x_1 \rangle + \cdots + \langle x_k \rangle + \langle g \rangle$  so for all h in G,  $h = ng + \sum_{i=1}^k l_i x_i$  for some  $l_1, \ldots, l_k, n$  in  $\mathbb{N}_0$ . By (\*) we know that:

$$h + \langle g \rangle = (l_1 x_1 + \dots + l_k x_k) + \langle g \rangle$$

$$\implies h \in (l_1 x_1 + \dots + l_k x_k) + \langle g \rangle$$

$$\implies h = l_1 x_1 + \dots + l_k x_k + ng \text{ for some } n.$$

As we have that G is a sum of  $\langle x_1 \rangle, \ldots, \langle x_k \rangle, \langle g \rangle$  and its size is a product of the size of these groups, G is an inner direct product of said elements as required.

## 12.8 Homomorphism from $\mathbb{Z}^n$ to Sequences

For n in  $\mathbb{N}$  and an abelian group G, and every  $g_1, \ldots, g_n$  in G, there exists a unique homomorphism  $\varphi : \mathbb{Z}^n \to G$  satisfying  $\varphi(e_i) = g_i$  for all i. In particular,  $\varphi((m_1, \ldots, m_1)) = m_1 g_1 + \cdots + m_n g_n$ .

*Proof.* This is trivially a homomorphism and is unique as homomorphisms are defined by the images of a set of generators.  $\Box$ 

#### 12.9 One-way Inverses on Homomorphisms to $\mathbb{Z}^n$

For an abelian group G and  $\alpha: G \to \mathbb{Z}^n$  is a surjective homomorphism, there exists an injective homomorphism  $\beta: \mathbb{Z}^n \to G$  such that  $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$  (the identity on  $\mathbb{Z}^n$ ).

*Proof.* If n=0, this is trivial. Otherwise, there exists  $g_1, \ldots, g_n$  in G such that  $\alpha(g_i)=e_i$  for all i as  $\alpha$  is surjective. The previous result states that there exists a homomorphism  $\beta$  from  $\mathbb{Z}^n$  to G such that  $\beta(e_i)=g_i$  for all i. This gives us that  $(\alpha \circ \beta)(e_i)=e_i$  which defines  $\alpha \circ \beta$  as homomorphisms are defined by the images of a set of generators. Thus,  $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$ .

We can see that:

$$\ker(\beta) \subseteq \ker(\alpha \circ \beta)$$

$$= \ker(\iota_{\mathbb{Z}^n})$$

$$= \{0\}.$$

Thus,  $ker(\beta) = \{0\}$  so  $\beta$  is injective as required.

#### 12.10 Abelian Groups with $\mathbb{Z}^n$ Quotients

For an abelian group G with  $H \leq G$  satisfying  $G/H \cong \mathbb{Z}^n$  for some n in  $\mathbb{N}_0$ , we have that  $G = H \oplus K$  for some  $K \leq G$  satisfying  $K \cong \mathbb{Z}^n$ .

*Proof.* We consider  $\pi: G \to G/H$  the quotient homomorphism and  $\psi: G/H \to \mathbb{Z}^n$  an isomorphism. We set  $\alpha = \psi \circ \pi$  from G to  $\mathbb{Z}^n$ , which is a surjective homomorphism. The previous result gives us  $\beta: \mathbb{Z}^n \to G$  an injective homomorphism with  $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$ . We note that  $H = \ker(\alpha) \leq G$  and set  $K = \beta(\mathbb{Z}^n) \leq G$ . Furthermore, as  $\beta$  is injective,  $K \cong \mathbb{Z}^n$ .

Given g in G:

$$\alpha(g - (\beta \circ \alpha)(g)) = \alpha(g) - \alpha((\beta \circ \alpha)(g))$$

$$= \alpha(g) - ((\alpha \circ \beta) \circ \alpha)(g)$$

$$= \alpha(g) - \alpha(g)$$

$$= 0.$$

therefore  $(g - (\beta \circ \alpha)(g))$  is in  $\ker(\alpha) = H$  so g is in  $(\beta \circ \alpha)(g) + H$  in particular, g is in K + H = H + K. As  $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$ ,  $\ker(\alpha) \cap \beta(\mathbb{Z}^n) = \{0\}$  which means  $H \cap K = \{0\}$ . Thus,  $G = H \oplus K$  as required.

#### 12.11 Finitely Generated Subgroups

For a finitely generated abelian group G with  $H \leq G$  satisfying  $G/H \cong \mathbb{Z}^n$  for some n in  $\mathbb{N}_0$ , H is finitely generated.

*Proof.* We know that  $G \cong H \oplus \mathbb{Z}^n$  by the previous result. The projection  $\pi$  from  $H \oplus \mathbb{Z}^n$  onto H defined by  $(h, z) \mapsto h$  is a homomorphism. Since  $H \oplus \mathbb{Z}^n$  is finitely generated, H is finitely generated by these generators under  $\pi$ .

## 12.12 Fundamental Theorem of Finitely Generated Torsionfree Abelian Groups

For n in  $\mathbb{N}$  and G a finitely generated torsion-free abelian group generated by at most n elements,  $G \cong \mathbb{Z}^k$  for some  $k \leq n$ .

*Proof.* We take  $\{g_1, \ldots, g_n\}$  to be a generating set of G. If n = 1, G is cyclic and has infinite order so  $G \cong \mathbb{Z}$ . Otherwise, we set:

$$H = \{x \in G : \exists m \in \mathbb{N} \text{ such that } mx \in \langle g_n \rangle \},$$

and observe that H is a subgroup via the subgroup test. We consider the quotient G/H and the quotient homomorphism  $\pi:G\to G/H$ . We know that G/H is torsion-free as:

$$k\pi(x) = 0 \Longrightarrow \pi(kx)$$
 $\Longrightarrow kx \in H$ 
 $\Longrightarrow lkx \in \langle g_n \rangle \text{ for some } l$ 
 $\Longrightarrow x \in H$ 
 $\Longrightarrow \pi(x) = 0.$ 

So 0 is the only element of finite order in G/H as  $\pi$  is surjective. Furthermore,  $g_n$  is also in H so G/H is generated by  $\{\pi(g_1), \ldots, \pi(g_{n-1})\}$ . By induction on n,  $G/H \cong \mathbb{Z}^k$  for some  $k \leq n-1$ . By a previous result,  $G \cong H \oplus \mathbb{Z}^k$  so it's sufficient to show that  $H \cong \{0\}$  or  $\mathbb{Z}$ .

We know that H is torsion-free as it's a subgroup of G, we consider  $H/\langle g_n \rangle$  which is finitely generated via  $\pi$  and the quotient homomorphism to  $H/\langle g_n \rangle$  and a torsion group as for all h in H, there's some l such that  $l(h + \langle g_n \rangle) = \langle g_n \rangle$ . In particular,  $H/\langle g_n \rangle$  is finite with size m for instance. Thus, for all h in H,  $m(h + \langle g_n \rangle) = \langle g_n \rangle$  so mh is in  $\langle g_n \rangle$ . We define  $\varphi : H \to \langle g_n \rangle$  by  $h \mapsto mh$  which is clearly a homomorphism and injective as H is torsion-free (so mh = 0 implies that h = 0). So,  $H \cong \varphi(H) \leq \langle g_n \rangle$ , in particular, H is cyclic. Thus,  $H \cong \mathbb{Z}$  because H has infinite order and is cyclic as required.

# 12.13 Fundamental Theorem of Finitely Generated Abelian Groups

Suppose G is a finitely generated abelian group, there exists non-negative integers n and k, primes  $p_1, \ldots, p_k$ , and natural numbers  $n_1, \ldots, n_k$  such that:

$$G \cong \mathbb{Z}_{p_1^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{m_k}} \oplus \mathbb{Z}^n$$

*Proof.* We take  $T \leq G$  to be the torsion subgroup. As G is finitely generated, G/T is also and by the previous result,  $G/T \cong \mathbb{Z}^n$  for some n. By more previous results, we know that  $G \cong T \oplus \mathbb{Z}^n$  and T is finitely generated and hence finite. Again, we know that there are finitely many primes  $p_1, \ldots, p_m$  such that  $G_{p_i} \neq \{0\}$ , each  $G_{p_i}$  is finite, and  $T = G_{p_1} \oplus \cdots \oplus G_{p_m}$ . We know that each  $G_{p_i} = \mathbb{Z}_{p_i^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p_i^{m_d}}$  which gives us the result.

## 13 Symmetric Groups

For a set X, a permutation of X is a bijection from X to X, the set of all permutations of X forms a group under composition denoted by  $\operatorname{Sym}(X)$ . For n in  $\mathbb{N}$ , we write  $\operatorname{Sym}([n])$  as  $S_n$ . Note that  $|\operatorname{Sym}(X)| = |X|!$ .

*Proof.* We prove this by considering the number of bijections between sets X, Y of size n. For n = 1,  $f = \{(x, y) : x \in X, y \in Y\}$  has only one pair. For n > 1:

$$\begin{split} m &= \sum_{y \in Y} |\{ \text{bijections from } X \text{ to } Y : x \mapsto y \}| \\ &= \sum_{y \in Y} |\{ \text{bijections from } X \backslash \{x\} \text{ to } Y \backslash \{y\} \}| \\ &= \sum_{y \in Y} (n-1)! \\ &= n \cdot (n-1)! \\ &= n!, \end{split}$$

as required.

#### 13.1 Cycles

For k in  $\mathbb{N}$ , a permutation f in  $S_n$  is called k-cycle if there are k distinct members  $i_1, \ldots, i_k$  in [n] such that:

$$f(i_j) = \begin{cases} i_{j+1} & j \in [k-1] \\ i_1 & j = k, \end{cases}$$

in which case, we write  $f = (i_1, \ldots, i_k)$ . A 2-cycle is called a transposition and cycles  $(i_1, \ldots, i_k), (j_1, \ldots, j_l)$  are disjoint if  $\{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_l\} = \emptyset$ . Furthermore:

- A k-cycle has order k,
- $(i_1, \ldots, i_k) = (i_2, \ldots, i_k, i_1),$
- $(i_1, \ldots, i_k)^{-1} = (i_k, \ldots, vi_1),$
- $(i_1,\ldots,i_k)=(i_1,i_2)(i_2,i_3)\cdots(i_{k-1},i_k),$
- Disjoint cycles commute.

#### 13.2 Permutations as Disjoint Cycles

For n in  $\mathbb{N}$ , each element of  $S_n$  can be written as a product of disjoint cycles with lengths summing to n which is unique up to reordering. Every element can also be written as a product of transpositions.

From this, we can see that  $S_n$  is generated by the set of transpositions on 1,  $\{(1,2),(1,3),\ldots,(1,n)\}$  as (1,i)(1,j)(1,i)=(i,j).

#### 13.3 Cycle Type

For f in  $S_n$  written as a product of disjoint cycles with lengths summing to n, we take  $l_1, \ldots, l_k$  be the lengths of these cycles in descending order. The k-tuple  $(l_1, \ldots, l_k)$  is the cycle type of f.

From this, we can see that  $|f| = \text{lcm}(l_1, \dots, l_k)$ .

#### 13.4 Conjugacy in $S_n$

For all g in  $S_n$  with  $i_1, \ldots, i_k$  distinct elements of [n]:

$$g(i_1,\ldots,i_k)g^{-1}=(g(i_1),\ldots,g(i_k)).$$

*Proof.* For k = 1,  $(i_1) = e$  so  $g(i_1)g^{-1} = gg^{-1} = e = (g(i_1))$ . For k = 2 and x in  $S_n \setminus \{g(i_1), g(i_2)\}$ :

$$g(i_1, i_2)g^{-1}(g(i_1)) = g(i_2),$$
  

$$g(i_1, i_2)g^{-1}(g(i_2)) = g(i_1),$$
  

$$g(i_1, i_2)g^{-1}(x) = gg^{-1}(x)$$
  

$$= x,$$

so  $g(i_1, i_2)g^{-1} = (g(i_1), g(i_2))$ . For k > 2,  $(i_1, \dots, i_k) = (i_1, i_2) \cdots (i_{k-1}, i_k)$  so:

$$g(i_1, \dots, i_k)g^{-1} = g(i_1, i_2) \cdots (i_{k-1}, i_k)g^{-1}$$

$$= g(i_1, i_2)g^{-1}g \cdots g^{-1}g(i_{k-1}, i_k)g^{-1}$$

$$= (g(i_1), g(i_2)) \cdots (g(i_{k-1}), g(i_k))$$

$$= (g(i_1), \dots, g(i_k)),$$

as required.  $\Box$ 

#### 13.5 Conjugacy and Cycle Type

For x, y in  $S_n$ , x and y are conjugate if and only if they have the same cycle type.

*Proof.* We take the cycle type of x be  $(l_1, \ldots, l_k)$  so:

$$x = (a_1^{(1)}, \dots, a_{l_1}^{(1)}) \cdots (a_1^{(k)}, \dots, a_{l_k}^{(k)}),$$

with each value in [n] corresponding to some  $a_j^{(r)}$ . For g in  $S_n$ :

$$gxg^{-1} = g(a_1^{(1)}, \dots, a_{l_1}^{(1)})g^{-1}g \cdots g^{-1}g(a_1^{(k)}, \dots, a_{l_k}^{(k)})g^{-1}$$
$$= (g(a_1^{(1)}), \dots, g(a_{l_1}^{(1)})) \cdots (g(a_1^{(k)}), \dots, g(a_{l_k}^{(k)})),$$

with the disjoint property of the cycles preserved as the contrary would contradict the disjoint property of the cycles of x. Thus, all conjugates of x have the same cycle type as x.

For y in  $S_n$  with cycle type equal to  $(l_1, \ldots, l_k)$ :

$$y = (b_1^{(1)}, \dots, b_{l_1}^{(1)}) \cdots (b_1^{(k)}, \dots, b_{l_k}^{(k)}),$$

with each value in [n] corresponding to some  $b_j^{(r)}$ . We define g in  $S_n$  by  $g(a_i^{(j)}) = b_i^{(j)}$  and see that:

$$gxg^{-1} = y,$$

using the previous result.

## 13.6 Parity of Transposition Representations

For x in  $S_n$  with  $x = t_1 \cdots t_r = s_1 \cdots s_k$  and each  $t_i$ ,  $s_i$  a transposition,  $r \equiv k \mod 2$ .

## 13.7 Signature

For x in  $S_n$  with  $x = t_1 \cdots t_r$  and each  $t_i$  a transposition, the signature of x is defined as:

$$\varepsilon(x) = \begin{cases} 1 & r \equiv 0 \bmod 2 \\ -1 & \text{otherwise.} \end{cases}$$

#### 13.8 The Signature Homomorphism

For n in  $\mathbb{N}$ ,  $\varepsilon: S_n \to (\{-1,1\}, \times)$  is a homomorphism.

*Proof.* For x, y in  $S_n$  with  $x = x_1 \cdots x_r$  and  $y = y_1 \cdots y_s$  where each  $x_i$  and  $y_j$  is a transposition:

$$\varepsilon(xy) = \varepsilon(x_1 \cdots x_r y_1 \cdots y_s)$$

$$= (-1)^{r+s}$$

$$= (-1)^r (-1)^s$$

$$= \varepsilon(x)\varepsilon(y).$$

#### 13.9 Alternating Groups

We define the alternating group  $A_n$  to be the set of even permutations in  $S_n$ . Thus,  $A_n \leq S_n$ .

Proof. 
$$A_n = \operatorname{Ker}(\varepsilon)$$
.

## 13.10 Subgroups of Index 2 in $S_n$

For n > 1,  $H \leq S_n$  has index 2 if and only if  $H = A_n$ .

*Proof.* ( $\Rightarrow$ ) We know that  $H \subseteq S_n$  so we consider  $S_n/H$  which must have order 2 as H has index 2. Thus,  $S_n/H \cong C_2 \cong (\{-1,1\},\times)$  so there's a surjective homomorphism  $\pi$  from  $S_n$  to  $(\{-1,1\},\times)$  with kernel H. For  $t_1$ ,  $t_2$  transpositions, there exists g such that  $t_1 = g^{-1}t_2g$  so:

$$\pi(t_1) = \pi(g)^{-1}\pi(t_2)\pi(g)$$

$$= \pi(t_2)\pi(g)^{-1}\pi(g)$$

$$= \pi(t_2),$$
(({-1,1}, ×) is abelian)

meaning  $\pi$  takes the same value k on all transpositions. The set of transpositions T generates  $S_n$  so  $\pi(T)$  generates  $(\{-1,1\},\times)$  but  $\pi(T)=\{k\}$  so k=-1. Thus, for  $x=x_1\cdots x_r$  a product of transpositions,  $\pi(x)=(-1)^r=\varepsilon(x)$  so  $\pi=\varepsilon$ . As such,  $H=\mathrm{Ker}(\pi)=\mathrm{Ker}(\varepsilon)=A_n$ .

(
$$\Leftarrow$$
) By the homomorphism theorem,  $\operatorname{Im}(\varepsilon)\cong S_n/\operatorname{Ker}(\varepsilon)=S_n/A_n$ . So,  $[S_n:A_n]=|\{-1,1\}|=2$ .

## 13.11 Alternating Groups generated by 3-Cycles

For n in  $\mathbb{N}$ ,  $A_n$  is generated by its subset of 3-cycles.

*Proof.* Each element of  $A_n$  is a product of an even number of transpositions, so a product of permutations of the form (i,j)(k,l). It suffices to show that these permutations must be 3-cycles.

Case 1 If  $\{i, j\} = \{k, l\}$ , as (i, j) = (j, i), (i, j)(k, l) = e, a product of zero 3-cycles.

Case 2 If  $|\{i,j\} \cap \{k,l\}| = 1$ , we take j = k without loss of generality so:

$$(i,j)(k,l) = (i,j)(j,l)$$
  
=  $(i,j,l)$ ,

a 3-cycle.

Case 3 If i, j, k, and l are all distinct then:

$$(i, j)(k, l) = (i, j)(j, k)(j, k)(k, l)$$
  
=  $(i, j, k)(j, k, l)$ ,

a product of two 3-cycles.

## 14 Group Actions

For a group G and a non-empty set X, an action of G on X is a homomorphism  $\varphi: G \to \operatorname{Sym}(X)$ . We say that:

- the action is faithful if  $\varphi$  is injective,
- the action is transitive if for all x, y in X, there exists g in G such that  $\varphi(g)(x) = y$ .

We will abbreviate  $\varphi(g)(x)$  to  $g \cdot x$ .

#### 14.1 The Orbit and Stabiliser

For a group G acting on a set X, for each x in X:

$$Orb_G(x) = G \cdot x = \{g \cdot x : g \in G\},$$
  
$$Stab_G(x) = G_x = \{g \in G : g \cdot x = x\},$$

are the orbit and stabiliser of x, respectively.

#### 14.2 The Orbit-Stabiliser Theorem

For a group G acting on a set X with x in X,  $\operatorname{Stab}_G(x)$  is a subgroup of G and there is a well-defined bijection  $\varphi$  from  $\operatorname{Orb}_G(x)$  to  $G/\operatorname{Stab}_G(x)$  defined by:

$$\varphi(q \cdot x) = q \operatorname{Stab}_{G}(x).$$

If G is finite,  $|G| = |\operatorname{Orb}_G(x)| \cdot |\operatorname{Stab}_G(x)|$ .

*Proof.* We want to show that  $\operatorname{Stab}_G(x) \leq G$ . As the action is a homomorphism,  $e \cdot x = x$ , so e is in  $\operatorname{Stab}_G(x)$ . For g, h in  $\operatorname{Stab}_G(x)$ , then:

$$(gh) \cdot x = g \cdot (h \cdot x)$$
 (action is homomorphic)  
=  $g \cdot (x)$   
=  $x$ .

For g in  $\operatorname{Stab}_G(x)$ :

$$g^{-1} \cdot (g \cdot x) = x \iff g^{-1} \cdot x = x$$
  
 $\iff g^{-1} \in \operatorname{Stab}_G(x),$ 

so  $\operatorname{Stab}_G(x) \leq G$ . We know that  $\varphi$  is well-defined and injective as:

$$[g \cdot x = h \cdot x] \iff h^{-1}g \cdot x = x$$

$$\iff h^{-1}g \in \operatorname{Stab}_{G}(x)$$

$$\iff g \in h \operatorname{Stab}_{G}(x)$$

$$\iff g \operatorname{Stab}_{G}(x) = h \operatorname{Stab}_{G}(x).$$

As  $\varphi$  is trivially surjective, it is a well-defined bijection as required.

#### 14.3 Relation via the Orbit

For a group G acting on a set X, we define an equivalence relation on X by  $x \sim y$  if y is in  $\mathrm{Orb}_G(x)$ . The orbits of elements x in G are the equivalence classes of this relation, so they partition X.

*Proof.* Reflexivity For all x in X, we have that  $e \cdot x = x$  so  $x \sim x$ .

**Symmetry** If  $g \cdot x = y$  then  $g^{-1} \cdot y = x$ .

**Transitivity** If  $x \sim y \sim z$  then there exists g such that  $y = g \cdot x$  and h such that  $z = h \cdot y$  so  $z = (hg) \cdot x$  so  $x \sim z$ .

#### 14.4 Fixed Points

For a group G acting on a set X, x in X is a fixed point for this action if  $Orb_G(x) = \{x\}$ . We write  $Fix_G(X)$  for the set of fixed points of this action.

For X finite, we write  $\mathcal{O}_G(X)$  for the set of orbits of X under this action. For each orbit O in  $\mathcal{O}_G(X)$ , we pick can arbitrary element  $x_O \in O$  and see that:

$$|X| = |\operatorname{Fix}_G(X)| + \sum_{O \in \mathcal{O}_G(X), |O| > 1} [G : \operatorname{Stab}_G(x_O)].$$

*Proof.* We have that:

$$|X| = \sum_{O \in \mathcal{O}_G(X)} |O|$$
 (Relation via the Orbit)  

$$= |\operatorname{Fix}_G(X)| + \sum_{O \in \mathcal{O}_G(X), |O| > 1} |O|$$
  

$$= |\operatorname{Fix}_G(X)| + \sum_{O \in \mathcal{O}_G(X), |O| > 1} [G : \operatorname{Stab}_G(x_O)].$$
 (Orbit-Stabiliser)

#### 14.5 The Conjugation Action

For a group G, acting on itself via the conjugacy action  $(g \cdot x = gxg^{-1})$ , we take x in G. The conjugacy class of x, denoted by  $x^G$ , is defined by:

$$x^G = \{gxg^{-1} : g \in G\} = \text{Orb}_G(x).$$

The centraliser of x, denoted by  $C_G(x)$ , is defined by:

$$C_G(x) = \{g \in G : gxg^{-1} = x\} = \operatorname{Stab}_G(x).$$

For  $H \leq G$ , the normaliser of H in G, denoted by  $N_G(H)$ , is defined by:

$$N_G(H) = \{ g \in G : gHg^{-1} = H \}.$$

We note that this is the stabiliser of H under the conjugation action of G onto the set of subgroups of G.

#### 14.6 Partitioning on Conjugacy Classes

For a group G, the conjugacy classes of G partition G.

#### 14.7 The Orbit-Stabiliser Theorem for Conjugation

For a group G with x in G,  $C_G(x) \leq G$  and there exists a well-defined bijection  $\varphi$  from  $x^G$  to  $G/C_G(x)$  defined by:

$$\varphi(gxg^{-1}) = gC_G(x).$$

If G is finite,  $|G| = |x^G||C_G(x)|$ . If we apply this to the conjugation action of G onto the set of its subgroups, we get that:

$$|\{K \leq G : K \text{ is conjugate to } H\}| = [G : N_G(H)].$$

## 14.8 The Class Equation

For a finite group G, we write C for the set of conjugacy classes of G, for each conjugacy class C, we can pick an arbitrary element  $g_C$  and see that:

$$|G| = |Z(G)| + \sum_{C \in \mathcal{C}(G), |C| > 1} [G : C_G(g_C)].$$

## 15 Sylow's Theorems

#### 15.1 Cauchy's Theorem

For a finite group G and a prime p such that p divides |G|, G contains an element of order p.

*Proof.* We first prove the theorem for abelian groups, then for all groups.

**Abelian Case** Suppose G is abelian. If |G| = p, then G is cyclic with a generator of order p. So, we consider |G| > p and proceed by induction on |G|. We take g in  $G \setminus \{e\}$ , if p divides |g|, we take  $g^{\frac{|g|}{p}}$ . Otherwise, by Lagrange's theorem,  $|G| = |g| \cdot [G : \langle g \rangle]$  so p divides  $[G : \langle g \rangle]$ . Thus,  $G/\langle g \rangle$  is an abelian group of order strictly less than |G|, so by induction, it contains an element of order p,  $h\langle g \rangle$ . We write n = |h|, we have that:

$$(h\langle g\rangle)^n = h^n\langle g\rangle = e\langle g\rangle = \langle g\rangle,$$

so p divides n. Thus,  $h^{\frac{n}{p}}$  has order p in G as required.

We remove our supposition that G is abelian. As before, if |G| = p, then G is cyclic with a generator of order p. So, we consider |G| > p and proceed by induction on |G|. If p divides |Z(G)|, as Z(G) is abelian, we are done. Otherwise, we consider the class equation:

$$|G| = |Z(G)| + \sum_{C \in \mathcal{C}(G), |C| > 1} [G : C_G(g_C)].$$

As p divides |G| but not |Z(G)|, there is some term of the summation that is not divisible by p. Thus, there exists g in G such that  $g \in C$  where C is a conjugacy class of size at least 2 and  $[G:C_G(g)]$  is not divisible by p. But, Lagrange's theorem implies that  $|C_G(g)|$  is divisible by p as:

$$|G| = |C_G(g)|[G:C_G(g)].$$

Since  $|C| \geq 2$ , g is not central in G, so  $C_G(g) \neq G$ . By induction,  $C_G(g)$  contains an element of order p. Hence, G does.

## 15.2 Order of p-groups

For a prime p and a finite group G, G is a p-group if and only if  $|G| = p^m$  for some m in  $\mathbb{N}$ .

*Proof.* If  $|G| = p^m$  for some m in  $\mathbb{N}$  then every element has order dividing  $p^m$  by Lagrange's theorem. As such, G is a p-group. Conversely, if |G| is divisible by some prime  $q \neq p$ , then Cauchy's theorem imples that G has an element of order q, which is not a power of p.

#### 15.3 Sylow's First Theorem

We consider a prime p and a finite group G with  $|G| = p^r m$  for some r in  $\mathbb{N}_0$  and some m in  $\mathbb{N}$  such that p does not divide m. We have that for every k in  $\mathbb{N}_0$ , there exists a subgroup of G of order  $p^k$  if and only if k < r.

*Proof.* We note that when k > r,  $p^k$  cannot divide  $p^r m$  as we've defined it so by Lagrange's theorem, there's no subgroup of size  $p^k$ . Thus, we consider k in  $[r]_0$ . The theorem is trivial when  $G = \{e\}$ , so we assume |G| > 1 and proceed by induction on |G|.

Case 1 We suppose that p divides |Z(G)|. Cauchy's theorem implies that there is a central element x of order p, thus  $\langle x \rangle \subseteq G$ . We consider  $G/\langle x \rangle$  which has size  $p^{r-1}m$  so by induction has subgroups of order  $p^k$  for k in  $[r-1]_0$  denoted by  $H_0, \ldots, H_{r-1}$  with each i in  $[r-1]_0$  yielding  $|H_i| = p^i$ .

We take  $\pi$  from G to  $G/\langle x \rangle$  to be the quotient homomorphism and note that by the correspondence theorem, for all i in  $[r-1]_0$ ,  $\pi^{-1}(H_i) \leq G$  and so:

$$|\pi^{-1}(H_i)| = |\langle x \rangle| \cdot |H_i| = p|H_i| = p^{i+1}.$$

Thus, since we have the trivial subgroup of order 1, we have subgroups of order  $1, p, \ldots, p^r$  as required.

Case 2 We suppose that p does not divide |Z(G)|. We take C to be the set of conjugacy classes in G and for each c in C, we pick an element  $g_C$  in C and use the class equation:

$$|G| = |Z(G)| + \sum_{C \in \mathcal{C}, |C| \ge 2} [G : C_G(g_C)].$$

Thus, there must be some g not in Z(G) such that  $[G:C_G(g)]$  is not divisible by p so:

$$\frac{|G|}{|C_G(g)|},$$

is not divisible by p. However, since |G| is divisible by  $p^r$ ,  $|C_G(g)|$  must be also. As g is not in Z(G),  $C_G(g) \neq G$  so  $|C_G(g)| < |G|$ . By induction,  $C_G(g)$  contains subgroups of order  $1, p, \ldots, p^r$  which are also subgroups of G.

#### 15.4 Sylow Subgroups

For a prime p and a group G, a p-subgroup  $H \leq G$  is a Sylow p-subgroup if it is not a subgroup of any other p-subgroup of G. We write  $\operatorname{Syl}_p(G)$  for the set of these subgroups and  $n_p(G)$  for the quantity of them.

#### 15.5 Closure of p-groups under Conjugacy

For a prime p and a group G with  $H \leq G$  a p-group, for every g in G,  $H^g$  is also a p-group. If H is a Sylow p-group, so is  $H^g$ .

*Proof.* As conjugacy is an automorphism,  $H^g$  is another p-group. If H is a Sylow p-subgroup and  $H^g$  is not, then  $H^g$  must be a proper subgroup of some other p-group  $K \leq G$ . But,  $K^g$  is another p-subgroup and:

$$H = g^{-1}(gHg^{-1})g < g^{-1}Kg,$$

which contradicts the fact that H is a Sylow p-group.

#### 15.6 Sylow's Second Theorem

For a prime p and a finite group G, the Sylow p-groups of G are all conjugate to each other.

Proof. We write  $|G| = p^r m$  with p not dividing m. By Sylow's first theorem, we have that there exists a Sylow p-subgroup  $P \leq G$  with  $|P| = p^r$ . We will show P is conjugate to an arbitrary Sylow p-subgroup H. We take H to act on G/P via  $h \cdot gP = (hg)P$  and  $\mathcal{O}$  to be the set of orbits of this action. The orbits partition G/P so  $m = [G:P] = \sum_{O \in \mathcal{O}} |O|$ . But, m is not divisible by p so there must be some orbit O with |O| not divisible by p. The orbit-stabiliser theorem gives us that:

$$|H| = |O| \cdot |\operatorname{Stab}_H(x)|,$$

for some x in G/P, so |O| divides |H|. Since H is a p-group, |O| must be a power of p. Thus, |O| = 1 and as such, the action of H on G/P has a fixed point, for some g in G and for all h in H:

$$HgP = gP \iff g^{-1}HgP = P$$
$$\iff g^{-1}Hq \subseteq P.$$

By the closure of Sylow p-subgroups under conjugacy and the definition of Sylow p-subgroups,  $g^{-1}Hg$  must be equal to P.

## 15.7 Order of Sylow Subgroups

For a prime p and a finite group G with  $|G| = p^r m$  where r is in  $\mathbb{N}_0$ , m is in  $\mathbb{N}$ , and p doesn't divide m, every Sylow p-subgroup of G has order  $p^r$ .

*Proof.* This is a consequence of Sylow's first and second theorems.  $\Box$ 

## 15.8 The Quantity of Sylow Subgroups

For a finite group G and  $P \leq G$  a Sylow p-subgroup,  $n_p(G) = [G : N_G(P)]$ . In particular,  $P \subseteq G$  if and only if P is the unique Sylow p-subgroup of G.

*Proof.* By Sylow's second theorem:

$$n_p(G) = |\{H \le G : H \text{ is conjugate to } P\}|$$
  
=  $[G : N_G(P)],$ 

as required.

#### 15.9 Sylow Subgroups of Abelian Groups

For a finite abelian group G,  $n_p(G) = 1$  for all primes p.

*Proof.* We have that  $n_p(G) = [G: N_G(P)] = 1$  as  $N_G(P) = G$ .