First Order Design

Consider two lenses $\phi 1$ and $\phi 2$ separated by a distance d1. The object is placed at Infinity and the image should be formed in the right plane to $\phi 2$.

Consider a ray parallel to axis at height y0 and u0=0

	0	1	2	3
φ	0	ϕ_1	φ_2	0
d		d_1	d_2	
у	y 0	y 0	$y_0(1-d_1\phi_1)$	0
u	0	- φ ₁ y ₀	$-y_0(\phi_1 + \phi_2 - d_1\phi_1\phi_2)$	
			$d_1\phi_1\phi_2$)	

$$\begin{split} y_1 &= y_0 \\ u_1 &= 0 - (\phi_1{}^*\ y_0) = -\ \phi_1 y_0 \\ y_2 &= y_1 + (d_1\ {}^*\ (-\ \phi_1 y_0)) = y_0 (1-\ d_1\phi_1) \\ u_2 &= -\ \phi_1 y_0 - \phi_2 y_0 (1-\ d_1\phi_1) = -\ y_0 (\phi_1 + \phi_2 - d_1\phi_1\phi_2) = -\ y_0 \phi \\ \phi \ \text{is effective power of the system} \\ \text{Surface 3 is image plane. And } y_3 &= 0 \\ y_3 &= y_0 (1-\ d_1\phi_1) + d_2 [-\ y_0 (\phi_1 + \phi_2 - d_1\phi_1\phi_2)] = 0 \\ y_0 (1-\ d_1\phi_1) &= d_2 [y_0 (\phi_1 + \phi_2 - d_1\phi_1\phi_2)] \end{split}$$

$$y_0(1-d_1\phi_1)=d_2y_0\phi$$

$$d_2 = (1 - d_1 \phi_1) / \phi$$

$$d_1 + d_2 < 300$$
mm

Config1 (EFL F=400mm):

$$\Phi = 1/F = 1/400$$

Assume
$$f_1 = 200 \text{mm} \rightarrow \phi_1 = 1/200$$

Assume
$$d_1 + d_2 = 250 \text{mm}$$

$$d_2 = 400(1 - d_1\phi_1) = 400 - 2d_1$$

$$250 = 400 - d_1$$

 $d_1 = 150 \text{ mm}$

$$d_2 = 100$$

$$\Phi = \phi_1 + \phi_2 - d_1\phi_1\phi_2$$

$$1/400 = 1/200 + \varphi_2 - (150) (1/200)\varphi_2$$

$$-1/400 = 0.25 \ \phi_2$$

$$\Phi_2 = -1/100 \rightarrow f_2 = -100$$
mm

These f₁ and f₂ remian constant in Config2 and Config3

Config2(EFL=35cm):

$$\Phi = \phi_1 + \phi_2 - d_1\phi_1\phi_2$$

$$1/350 = 1/200 + (-1/100) - d_1(1/200)(-1/100)$$

$$1/350 + 1/200 = d_1/(20000)$$

$d_1 = 157.14 \text{ mm}$

$$d_2 = 350(1 - d_1\phi_1) = 350(1 - (157.14/200))$$

$d_2 = 75$ mm

Config3(EFL=30cm):

$$\Phi = \phi_1 + \phi_2 - d_1\phi_1\phi_2$$

$$1/300 = 1/200 + (-1/100) - d_1(1/200)(-1/100)$$

$$1/300 + 1/200 = d_1/(20000)$$

$d_1 = 166.67 \text{ mm}$

$$d_2 = 300(1 - d_1\phi_1) = 300(1 - (166.67/200))$$

$d_2 = 50$ mm

	EFL(mm)	f ₁ (mm)	f ₂ (mm)	d₁ (mm)	d ₂ (mm)	TOTR(mm)
Config1	400	200	-100	150	100	250
Config2	350	200	-100	157.14	75	232.14
Config3	300	200	-100	166.67	50	216.67