Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithmns and Datastructures, January 2017

Feedback

Exercises Lecture

Sorted Sequences

Linked Lists

Binary Search Trees

Feedback

Exercises Lecture

Sorted Sequences

Linked Lists

Binary Search Trees

Feedback from the exercises

Feedback from the exercises

■ The few people who gave feedback wrote that it was simple to doable.

- The few people who gave feedback wrote that it was simple to doable.
- Mastertheorem already on exercise sheet, but not in lecture

- The few people who gave feedback wrote that it was simple to doable.
- Mastertheorem already on exercise sheet, but not in lecture
- Missing support in forum

Feedback from the lecture

January 2017

Feedback from the lecture

Added german lecture recordings to current semester page

Feedback from the lecture

- Added german lecture recordings to current semester page
- Lecture recordings are now password protected

Feedback Exercises Lecture

Sorted Sequences

Linked Lists

Binary Search Trees

Introduction

Introduction

Structure:

■ We have a set of keys mapped to values

Introduction

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>
- We need the following operations:

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>
- We need the following operations:
 - insert(key, value): Insert the given pair

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>
- We need the following operations:
 - insert(key, value): Insert the given pair
 - remove(key): Remove the pair with the given key

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>
- We need the following operations:
 - insert(key, value): Insert the given pair
 - remove(key): Remove the pair with the given key
 - lookup(key): Find the element with the given key, if it is not available find the element with the smallest key >key

- We have a set of keys mapped to values
- We have a ordering < applied to the keys</p>
- We need the following operations:
 - insert(key, value): Insert the given pair
 - remove(key): Remove the pair with the given key
 - lookup(key): Find the element with the given key, if it is not available find the element with the smallest key >key
 - next()/previous(): Returns the element with the next bigger/smaller key. This enables iteration over all elements.

Sorted Sequences Introduction

Introduction

Application examples:

■ Example: Database for books, products or apartments

Introduction

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€
 - This is called a range query

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€
 - This is called a range query
 - We can implement this with a combination of lookup(key) and next()

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€
 - This is called a range query
 - We can implement this with a combination of lookup(key) and next()
 - It's not essential if an apartments exists with exactly 400€ monthly rent

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€
 - This is called a range query
 - We can implement this with a combination of lookup(key) and next()
 - It's not essential if an apartments exists with exactly 400€ monthly rent
- We do not want to sort all elements every time on an insert operation

Introduction

- Example: Database for books, products or apartments
- Large number of records (data sets / tuples)
- Typical query: Return all apartments with a monthly rent between 400€ and 600€
 - This is called a range query
 - We can implement this with a combination of lookup(key) and next()
 - It's not essential if an apartments exists with exactly 400€ monthly rent
- We do not want to sort all elements every time on an insert operation
- How could we implement this?

Implementation 1 (not good) - Static Array

3	5	9	14	18	21	26	40	41	42	43	46	
---	---	---	----	----	----	----	----	----	----	----	----	--

Implementation 1 (not good) - Static Array

Static array:

3	5	9	14	18	21	26	40	41	42	43	46	1
---	---	---	----	----	----	----	----	----	----	----	----	---

■ lookup in time $O(\log n)$

Implementation 1 (not good) - Static Array

3	5 9	9 14	18	21	26	40	41	42	43	46	
---	-----	------	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with **binary search**

Implementation 1 (not good) - Static Array

3	5 9	9 14	18	21	26	40	41	42	43	46	
---	-----	------	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with binary search
 - Example: lookup(41)

Implementation 1 (not good) - Static Array

3	5	9	14	18	21	26	40	41	42	43	46	
---	---	---	----	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with binary search
 - Example: lookup(41)
- \blacksquare next / previous in time O(1)

Implementation 1 (not good) - Static Array

3	5	9	14	18	21	26	40	41	42	43	46	
---	---	---	----	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with binary search
 - Example: lookup(41)
- \blacksquare next / previous in time O(1)
 - They are next to each other

Implementation 1 (not good) - Static Array

3	5	9	14	18	21	26	40	41	42	43	46	
---	---	---	----	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with binary search
 - Example: lookup(41)
- \blacksquare next / previous in time O(1)
 - They are next to each other
- insert and remove up to $\Theta(n)$

Implementation 1 (not good) - Static Array

3	5	9	14	18	21	26	40	41	42	43	46	
---	---	---	----	----	----	----	----	----	----	----	----	--

- lookup in time $O(\log n)$
 - with binary search
 - Example: lookup(41)
- \blacksquare next / previous in time O(1)
 - They are next to each other
- insert and remove up to $\Theta(n)$
 - We have to copy up to *n* elements

Sorted Sequences Implementation 2 (bad) - Hash Table

Hash map:

Sorted Sequences

Implementation 2 (bad) - Hash Table

Hash map:

 \blacksquare insert and remove in O(1)

- \blacksquare insert and remove in O(1)
 - If the hash table is big enough and we use a good hash function

- \blacksquare insert and remove in O(1)
 - If the hash table is big enough and we use a good hash function
- lookup in time O(1)

 \blacksquare insert and remove in O(1)

Implementation 2 (bad) - Hash Table

- If the hash table is big enough and we use a good hash function
- lookup in time O(1)
 - if element with exactly this key exists, otherwise we get None as result
- next / previous in time up to $\Theta(n)$

- \blacksquare insert and remove in O(1)
 - If the hash table is big enough and we use a good hash function
- lookup in time O(1)
 - if element with exactly this key exists, otherwise we get None as result
- next / previous in time up to $\Theta(n)$
 - The order of the elements is independent of the order of the keys

Sorted Sequences

Implementation 3 (good?) - Linked List

Runtimes for doubly linked lists:

- Runtimes for doubly linked lists:
 - \blacksquare next / previous in time O(1)

- Runtimes for doubly linked lists:
 - \blacksquare next / previous in time O(1)
 - insert and remove in O(1)

- Runtimes for doubly linked lists:
 - \blacksquare next / previous in time O(1)
 - insert and remove in O(1)
 - lookup in time $\Theta(n)$

- Runtimes for doubly linked lists:
 - \blacksquare next / previous in time O(1)
 - \blacksquare insert and remove in O(1)
 - lookup in time $\Theta(n)$
- Not yet what we want, but structure is related to binary search trees

- Runtimes for doubly linked lists:
 - \blacksquare next / previous in time O(1)
 - \blacksquare insert and remove in O(1)
 - lookup in time $\Theta(n)$
- Not yet what we want, but structure is related to binary search trees
- Lets have a closer look

Structure

Feedback Exercises Lecture

Sorted Sequences

Linked Lists

Binary Search Trees

Introduction

Introduction

Linked list:

Dynamic datastructure

Introduction

- Dynamic datastructure
- Number of elements changeable

Introduction

REIBURG

- Dynamic datastructure
- Number of elements changeable
- Data elements can be simple types or composed datastructures

Introduction

- Dynamic datastructure
- Number of elements changeable
- Data elements can be simple types or composed datastructures
- Elements are linked through references / pointer to the predecessor / successor

Introduction

- Dynamic datastructure
- Number of elements changeable
- Data elements can be simple types or composed datastructures
- Elements are linked through references / pointer to the predecessor / successor
- Single / Doubly linked lists possible

- Dynamic datastructure
- Number of elements changeable
- Data elements can be simple types or composed datastructures
- Elements are linked through references / pointer to the predecessor / successor
- Single / Doubly linked lists possible

Figure: Linked list

Introduction

Introduction

Properties in comparison to an array:

■ Minimal extra space for storing pointer

- Minimal extra space for storing pointer
- We do not need to copy elements on insert or remove

- Minimal extra space for storing pointer
- We do not need to copy elements on insert or remove
- The number of elements can be simply modified

- Minimal extra space for storing pointer
- We do not need to copy elements on insert or remove
- The number of elements can be simply modified
- No direct access of elements
 - ⇒ We have to iterate over the list

Variation

List with head / last element pointer:

Figure: Singly linked list

Figure: Singly linked list

Head element has pointer to first list element

Figure: Singly linked list

- Head element has pointer to first list element
- May also hold additional information:

Figure: Singly linked list

- Head element has pointer to first list element
- May also hold additional information:
 - Number of elements

Variation

Doubly linked list:

Doubly linked list:

Figure: Doubly linked list

Doubly linked list:

Figure: Doubly linked list

■ Pointer to successor element

Doubly linked list:

Figure: Doubly linked list

- Pointer to successor element
- Pointer to predecessor element

Figure: Doubly linked list

- Pointer to successor element
- Pointer to predecessor element
- Iterate forward and backward

Implementation - Node/Element - Java

N SEBURG

public class Listelem

```
UNI
REIBURG
```

```
public class Listelem
{    //2 fields: integer and reference
```

```
JNI
```

```
public class Listelem
{    //2 fields: integer and reference
    //private only available in class
    private int data;
    private Listelem next;
```



```
public class Listelem
{    //2 fields: integer and reference
    //private only available in class
    private int data;
    private Listelem next;

    //2 constructors: for instance of class
    public Listelem(int d)
    { data = d; next = null; }
```

```
public class Listelem
{ //2 fields: integer and reference
    //private only available in class
    private int data;
    private Listelem next;
    //2 constructors: for instance of class
    public Listelem(int d)
    { data = d; next = null; }
    public Listelem(int d, Listnode n)
    { data = d; next = n; }
```

```
public class Listelem
{ //2 fields: integer and reference
    //private only available in class
    private int data;
    private Listelem next;
    //2 constructors: for instance of class
    public Listelem(int d)
    { data = d; next = null; }
    public Listelem(int d, Listnode n)
    { data = d; next = n; }
    //adopted from Mary K. Vernon
    //Introduction to Data Structures
```



```
//Function to read and write private fields
public int getData() {return data; }
public void setData(int d) { data = d; }
```



```
//Function to read and write private fields
public int getData() {return data; }
public void setData(int d) { data = d; }

public Listelem getNext() { return next; }
public void setNext(Listelem n) { next = n; }
```



```
Z W
```

```
//Function to read and write private fields
public int getData() {return data; }
public void setData(int d) { data = d; }

public Listelem getNext() { return next; }
public void setNext(Listelem n) { next = n; }

//Integer represents possible data, e.g.
//self defined refence datatypes
```



```
class Listelem
{
```



```
class Listelem
{
private:
   int data;
   Listelem* next;
```



```
class Listelem
{
private:
   int data;
   Listelem* next; //Pointer instead of reference
```



```
class Listelem
private:
  int data;
  Listelem* next: //Pointer instead of reference
public:
  Listelem(int d)
  { data = d; next = NULL; }
  Listelem(int d, Listelem* n)
  { data = d; next = n; }
```



```
int getData() { return data; }
void setData(int d) {data = d; }
```

```
int getData() { return data; }
void setData(int d) {data = d; }

Listelem* getNext() { return next; }
void setNext(Listelem* n) { next = n; }
}
```

```
class Node:
    """ Defines a node of a singly linked
        list.
    def __init__(self, value, nextNode):
        self.value = value
        self.nextNode = nextNode
    def __init__(self, value):
        self.value = value;
        self.nextNode = None
```

Usage examples

Creating linked lists - Python:

Usage examples

Creating linked lists - Python:

first = Node(7)
$$\begin{array}{c}
\text{first} & \rightarrow & \text{None} \\
\hline
7
\end{array}$$

Creating linked lists - Python:

Inserting a node after node cur:

Implementation - Insert

Inserting a node after node cur:

Implementation - Insert

Inserting a node after node cur:

 \blacksquare ins = Node(n)

$$\blacksquare$$
 ins = Node(n)

Implementation - Insert

Inserting a node after node cur :

Implementation - Insert

Inserting a node after node cur:

ins.nextNode = cur.nextNode

ins.nextNode = cur.nextNode

Implementation - Insert

Inserting a node after node cur:

Implementation - Insert

Inserting a node after node cur:

cur.nextNode = ins

cur.nextNode = ins

Implementation - Insert

Inserting a node after node cur - single line of code:

Inserting a node after node cur - single line of code:

Inserting a node after node cur - single line of code:

cur.nextNode = Node (value ,cur.nextNode)

Inserting a node after node cur - single line of code:

cur.nextNode = Node (value ,cur.nextNode)

Implementation - Remove

Removing a node cur:

■ Find the predecessor of cur:

```
pre = first
while pre.nextNode != cur:
    pre = pre.nextNode
```


■ Find the predecessor of cur:

```
pre = first
while pre.nextNode != cur:
    pre = pre.nextNode
```

■ Runtime of O(n)

■ Find the predecessor of cur:

```
pre = first
while pre.nextNode != cur:
    pre = pre.nextNode
```

- Runtime of O(n)
- Does not work for first node!

■ Find the predecessor of cur:

```
pre = first
while pre.nextNode != cur:
    pre = pre.nextNode
```

- \blacksquare Runtime of O(n)
- Does not work for first node!

Implementation - Remove

Removing a node cur:

Implementation - Remove

Removing a node cur:

■ Update the pointer to the next element: pre.nextNode = cur.nextNode

- Update the pointer to the next element: pre.nextNode = cur.nextNode
- cur will get automatically destroyed if no more references exist (cur=None)

- Update the pointer to the next element: pre.nextNode = cur.nextNode
- cur will get automatically destroyed if no more references exist (cur=None)

Implementation - Remove

Removing the first node:

Removing the first node:

Removing the first node:

Update the pointer to the next element:

```
first = first.nextNode
```

Removing the first node:

- Update the pointer to the next element:
 - first = first.nextNode
- cur will get automaticly destroyed if no more references exist (cur=None)

- Update the pointer to the next element:
 - first = first.nextNode
- cur will get automaticly destroyed if no more references exist (cur=None)


```
Removing a node cur: (General case)
```

```
if cur == first:
    first = first.nextNode
else:
    pre = first
    while pre.nextNode != cur:
        pre = pre.nextNode

pre.nextNode = cur.nextNode
```

Implementation - Head Node

Implementation - Head Node

Using a head node:

Advantage:

Implementation - Head Node

- Advantage:
 - Deleting the first node is no special case

Implementation - Head Node

- Advantage:
 - Deleting the first node is no special case
- Disadvantage
 - We have to consider the first node at other operations

Implementation - Head Node

- Advantage:
 - Deleting the first node is no special case
- Disadvantage
 - We have to consider the first node at other operations
 - Iterating all nodes
 - Counting of all nodes

- Advantage:
 - Deleting the first node is no special case
- Disadvantage
 - We have to consider the first node at other operations
 - Iterating all nodes
 - Counting of all nodes
 - **.**.

- Advantage:
 - Deleting the first node is no special case
- Disadvantage
 - We have to consider the first node at other operations
 - Iterating all nodes
 - Counting of all nodes
 - **...**


```
class LinkedList:
    def init (self):
        self.itemCount = 0
        self.head = Node()
        self.last = self.head
    def size(self):
        return self.itemCount
    def isEmpty(self):
        return self.itemCount == 0
```

```
def append(self, value):
def insertAfter(self, cur, value):
def remove(self, cur):
def get(self, position):
def contains(self, value):
```



```
/**
 * A singly linked list with data type int.
 */
public class LinkedList {
    private long itemCount;
    private Node head;
    private Node last;
    public LinkedList() {
        itemCount = 0;
        head = new Node();
        last = head;
```

```
NI
REIBUR
```

```
public int size() {
        return itemCount;
    public boolean isEmpty() {
        return (itemCount == 0);
public void add (int data) { ... }
    public void insertAfter(Node cur, int data)
        { ... }
    public void remove(Node cur) { ... }
    public Node get(int position) { ... }
    public boolean contains( int data) { ... }
```

Implementation

Head, last:

Head, last:

Head, last:

■ Head points to the first node, last to the last node

Head, last:

- Head points to the first node, last to the last node
- We can append elements to the end of the list in O(1) through the last node

Implementation

Head, last:

- Head points to the first node, last to the last node
- We can append elements to the end of the list in O(1) through the last node
- We have to keep the pointer to last updated after all operations

Implementation - Append

Appending an element:

Appending an element:

Appending an element:

Appending an element:

■ The pointer to last avoids the iteration of the whole list

Inserting after node cur:

Implementation - Insert After

Inserting after node cur:

Implementation - Insert After

Inserting after node cur:

■ The pointer to head is not modified

Inserting after node cur:

■ The pointer to head is not modified

```
def insertAfter(self, cur, value):
    if cur == last:
        # also update last node
        append(value)
    else:
        # last node is not modified
        cur.nextNode = Node(value, \
              cur.nextNode)
        itemCount += 1
```

Remove node cur:

Implementation - Remove

Remove node cur:

Implementation - Remove

Remove node cur:

■ Searching the predecessor in O(n)

Remove node cur:

■ Searching the predecessor in O(n)

```
def remove(self, cur):
    pre = first
    while pre.nextNode != cur:
        pre = pre.nextNode

    pre.nextNode = cur.nextNode
    itemCount -= 1

if pre.nextNode == None:
    last = pre
```

Implementation - Get

Getting a reference to node at pos:

Implementation - Get

Getting a reference to node at pos:

Implementation - Get

Getting a reference to node at pos:

■ Iterate the entries of the list until at position (O(n))

Getting a reference to node at pos:

■ Iterate the entries of the list until at position (O(n))

```
def get(self, pos):
    if pos < 0 or pos >= itemCount:
        return None

    cur = head
    for i in range(0, pos):
        cur = cur.nextNode

    return cur
```

Implementation - Contains

Searching a value:

Implementation - Contains

Searching a value:

First element is head without an assigned value

Implementation - Contains

Searching a value:

- First element is head without an assigned value
- Iterate the entries of the list until value found (O(n))

Searching a value:

- First element is head without an assigned value
- Iterate the entries of the list until value found (O(n))

```
def contains(self, value):
    cur = head

for i in range(0, itemCount):
    cur = cur.nextNode
    if cur.value == value:
        return true

return false
```

Runtime

Runtime

Runtime:

■ Singly linked list:

Runtime

- Singly linked list:
 - \blacksquare next in O(1)

Runtime

- Singly linked list:
 - \blacksquare next in O(1)
 - \blacksquare previous in $\Theta(n)$

Runtime

- Singly linked list:
 - \blacksquare next in O(1)
 - previous in $\Theta(n)$
 - insert in O(1)

Runtime

- Singly linked list:
 - next in O(1)
 - \blacksquare previous in $\Theta(n)$
 - insert in O(1)
 - \blacksquare remove in $\Theta(n)$

Runtime

- Singly linked list:
 - \blacksquare next in O(1)
 - \blacksquare previous in $\Theta(n)$
 - insert in O(1)
 - \blacksquare remove in $\Theta(n)$
 - lookup in $\Theta(n)$

Runtime

- Singly linked list:
 - \blacksquare next in O(1)
 - \blacksquare previous in $\Theta(n)$
 - insert in O(1)
 - \blacksquare remove in $\Theta(n)$
 - lookup in $\Theta(n)$
- Better with doubly linked lists

Each node has a reference to its successor and its predecessor

- Each node has a reference to its successor and its predecessor
- We can iterate the list forward and backward

- Each node has a reference to its successor and its predecessor
- We can iterate the list forward and backward

Linked Lists Doubly Linked List

Doubly linked list:

■ It is helpful to have a head node

- It is helpful to have a head node
- We only need one head node if we connect the list cyclic

- It is helpful to have a head node
- We only need one head node if we connect the list cyclic

Runtime

Runtime

Runtime:

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)
 - each element has a pointer to pred-/sucessor

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)
 - each element has a pointer to pred-/sucessor
 - insert and remove in O(1)

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)
 - each element has a pointer to pred-/sucessor
 - \blacksquare insert and remove in O(1)
 - a constant number of pointers needs to be modified

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)
 - each element has a pointer to pred-/sucessor
 - \blacksquare insert and remove in O(1)
 - a constant number of pointers needs to be modified
 - lookup in $\Theta(n)$

Runtime

- Doubly linked list:
 - \blacksquare next and previous in O(1)
 - each element has a pointer to pred-/sucessor
 - \blacksquare insert and remove in O(1)
 - a constant number of pointers needs to be modified
 - lookup in $\Theta(n)$
 - Even if the elements are sorted we can only retrieve them in $\Theta(n)$.
 - Why?

Linked list in book:

Linked list in memory:

Structure

Feedback Exercises Lecture

Sorted Sequences

Linked Lists

Binary Search Trees

Runtime of a search tree:

 \blacksquare next and previous in O(1)

II IBURG

- \blacksquare next and previous in O(1)
 - pointers corresponding to linked list

Introduction

- \blacksquare next and previous in O(1)
 - pointers corresponding to linked list
- insert and remove in O(log n)

- \blacksquare next and previous in O(1)
 - pointers corresponding to linked list
- \blacksquare insert and remove in $O(\log n)$
 - We will see why

- \blacksquare next and previous in O(1)
 - pointers corresponding to linked list
- insert and remove in $O(\log n)$
 - We will see why
- lookup in O(log n)

- \blacksquare next and previous in O(1)
 - pointers corresponding to linked list
- insert and remove in $O(\log n)$
 - We will see why
- lookup in O(log n)
 - The structure helps searching efficiently

Idea:

EIBURG

Idea:

■ We define a total order for the search tree

Idea:

- We define a total order for the search tree
- All nodes of the left subtree have smaller keys than the current node

Idea:

- We define a total order for the search tree
- All nodes of the left subtree have smaller keys than the current node
- All nodes of the right subtree have bigger keys than the current node

Introduction

Figure: A binary search tree

Introduction

Figure: Another binary search tree

Introduction

Figure: Not a binary search tree

Binary Search Trees Implementation

BURG BURG

Implementation

- For the heap we had all elements stored in an array
- Here we link all nodes through pointer / references, like linked lists

Implementation

- For the heap we had all elements stored in an array
- Here we link all nodes through pointer / references, like linked lists
- Each node has a pointer / reference to its children (leftChild / rightChild)

- For the heap we had all elements stored in an array
- Here we link all nodes through pointer / references, like linked lists
- Each node has a pointer / reference to its children (leftChild / rightChild)
- Null for missing children

Implementation:

- For the heap we had all elements stored in an array
- Here we link all nodes through pointer / references, like linked lists
- Each node has a pointer / reference to its children (leftChild / rightChild)

Null for missing children

7

18

None

None None

None

None None None

Binary Search Trees Implementation

BURG BURG

ZE ZE

Implementation

Implementation:

■ We create a sorted doubly linked list of all elements

Implementation

- We create a sorted doubly linked list of all elements
- This enables an efficient implementation of (next / previous)

- We create a sorted doubly linked list of all elements
- This enables an efficient implementation of (next / previous)

Figure: Binary search tree with links

Implementation - Lookup

Implementation - Lookup

- Definition:
 - "Search the element with the given key. If no element is found return the element with the next (bigger) key."

- Definition:
 - "Search the element with the given key. If no element is found return the element with the next (bigger) key."
- We search from the root downwards:

- Definition:
 - "Search the element with the given key. If no element is found return the element with the next (bigger) key."
- We search from the root downwards:
 - Compare the searched key with the key of the node

- Definition:
 - "Search the element with the given key. If no element is found return the element with the next (bigger) key."
- We search from the root downwards:
 - Compare the searched key with the key of the node
 - Go to the left / right until the child is None or the key is found

Lookup:

- Definition:
 - "Search the element with the given key. If no element is found return the element with the next (bigger) key."
- We search from the root downwards:
 - Compare the searched key with the key of the node
 - Go to the left / right until the child is None or the key is found
 - If the key is not found return the next bigger one

Implementation - Lookup

For each node applies the total order:

Implementation - Lookup

For each node applies the total order:

keys of left subtree < node.key < keys of right subtree

keys of left subtree < node.key < keys of right subtree

keys of left subtree < node.key < keys of right subtree

keys of left subtree < node.key < keys of right subtree

keys of left subtree < node.key < keys of right subtree

Implementation - Insert

Implementation - Insert

Insert:

 $\hfill\blacksquare$ We search for the key in our search tree

Implementation - Insert

- We search for the key in our search tree
- If a node is found we replace the value with the new one

Implementation - Insert

- We search for the key in our search tree
- If a node is found we replace the value with the new one
- Else we insert a new node

Implementation - Insert

- We search for the key in our search tree
- If a node is found we replace the value with the new one
- Else we insert a new node
- If the key was not present we get a None entry

Implementation - Insert

- We search for the key in our search tree
- If a node is found we replace the value with the new one
- Else we insert a new node
- If the key was not present we get a None entry
- We insert the node there

- We search for the key in our search tree
- If a node is found we replace the value with the new one
- Else we insert a new node
- If the key was not present we get a None entry

Figure: Binary search tree with total order "<"

Implementation - Remove

Implementation - Remove

NI REBURG

Remove: Case 1: The node "5" has no children

■ Find parent of node "5" ("6")

- Find parent of node "5" ("6")
- Set left / right child of node "6" to None depending on position of node "5"

- Find parent of node "5" ("6")
- Set left / right child of node "6" to None depending on position of node "5"

Figure: Binary search tree with total order "<"

- Find parent of node "5" ("6")
- Set left / right child of node "6" to None depending on position of node "5"

Figure: Binary search tree after deleting node "5"

Implementation - Remove

Implementation - Remove

NI

Remove: Case 2: The node "12" has one child

■ Find the child of node "12" ("14")

Implementation - Remove

Remove: Case 2: The node "12" has one child

- Find the child of node "12" ("14")
- Find the parent of node "12" ("8")

Remove: Case 2: The node "12" has one child

- Find the child of node "12" ("14")
- Find the parent of node "12" ("8")
- Set left / right child of node "8" to "14" depending on position of node "12" (skip node "14")

- Find the child of node "12" ("14")
- Find the parent of node "12" ("8")
- Set left / right child of node "8" to "14" depending on position of node "12" (skip node "14")

Figure: Binary search tree with total order "<"

- Find the child of node "12" ("14")
- Find the parent of node "12" ("8")
- Set left / right child of node "8" to "14" depending on position of node "12" (skip node "14")

Figure: Binary search tree after delting node "12"

Implementation - Remove

Implementation - Remove

NI SEBURG

Remove: Case 3: The node "4" has two children

■ Find the successor of node "4" ("5")

Implementation - Remove

- Find the successor of node "4" ("5")
- Replace the value of node "4" with the value of node "5"

- Find the successor of node "4" ("5")
- Replace the value of node "4" with the value of node "5"
- Delete node "5" (the successor of node "4") with remove-case 1 or 2

- Find the successor of node "4" ("5")
- Replace the value of node "4" with the value of node "5"
- Delete node "5" (the successor of node "4") with remove-case 1 or 2
- There is no left node because we are deleting the predecessor

- Find the successor of node "4" ("5")
- Replace the value of node "4" with the value of node "5"
- Delete node "5" (the successor of node "4") with remove-case 1 or 2
- There is no left node because we are deleting the

- Find the successor of node "4" ("5")
- Replace the value of node "4" with the value of node "5"
- Delete node "5" (the successor of node "4") with remove-case 1 or 2
- There is no left node because we are deleting the

Runtime Complexity

Runtime Complexity

How long takes insert and lookup?

■ Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)

- Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)
- Best case with $d = \log n$ the runtime is $\Theta(\log n)$

- Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)
- Best case with $d = \log n$ the runtime is $\Theta(\log n)$
- Worst case with d = n the runtime is $\Theta(n)$

- Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)
- Best case with $d = \log n$ the runtime is $\Theta(\log n)$
- Worst case with d = n the runtime is $\Theta(n)$
- If we **always** want to have a runtime of $\Theta(\log n)$ then we have to rebalance the tree

- Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)
- Best case with $d = \log n$ the runtime is $\Theta(\log n)$
- Worst case with d = n the runtime is $\Theta(n)$
- If we **always** want to have a runtime of $\Theta(\log n)$ then we have to rebalance the tree

Figure: Degenerated binary

- Up to $\Theta(d)$, with d being the depth of the tree (The longest path from the root to a leaf)
- Best case with $d = \log n$ the runtime is $\Theta(\log n)$
- Worst case with d = n the runtime is $\Theta(n)$
- If we **always** want to have a runtime of $\Theta(\log n)$ then we have to rebalance the tree

Figure: Degenerated binary tree d = n

Figure: Complete binary tree $d = \log n$

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

Linked List

[Wik] Linked list https://en.wikipedia.org/wiki/Linked_list

■ Binary Search Tree

```
[Wik] Binary search tree
    https:
    //en.wikipedia.org/wiki/Binary_search_tree
```