Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>N3149</u>	_К работе допущен
Студент Синюта Анастасия	_Работа выполнена
Преподаватель Иванов Виктор Юревич	Отчет принят

Рабочий протокол и отчет по лабораторной работе №2.04

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ

1. Цель работы.

Цель работы - определение коэффициента внутреннего трения касторового масла методом Стокса. Проверка справедливости формулы Стокса для шариков разного диаметра.

- 2. Задачи, решаемые при выполнении работы.
 - Измерение диаметра шариков.
 - Измерение времени погружения шариков разных диаметров в жидкость(масло).
- 3. Объект исследования.

Шарики разного диаметра и касторовое масло в сосуде.

4. Метод экспериментального исследования.

Многократные измерения диаметров шариков при помощи микроскопа. Измерение времени падения шариков с помощью секундомера.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

$$d = x_2 - x_1$$
 - диаметр шариков

 $r=rac{lphaar{d}}{2}$ - радиус шариков, lpha - цена деления микроскопа, $ar{d}$ - усредненное значение диаметров

 $v=rac{l}{t}$ - скорость падения шариков, где t - время прохождения расстояния l.

$$\eta = rac{2}{9} rac{r^2(
ho -
ho_0)}{v} g k$$
 - коэффициент вязкости.

 $k=rac{1}{1+rac{2.4r}{R}}$ - поправочный коэффициент.

Исходные данные:

Таблица 1

таолица т			
$(R \pm \Delta R) \ c_M$	2,95	±	0,05
$(\rho \pm \Delta \rho) \ \epsilon/cm^3$	7,80	±	0,10
$(\rho_0 \pm \Delta \rho_0) \ \epsilon/cm^3$	0,96	±	0,04
$(lpha\pm\Deltalpha)$ мм/дел	0,266	±	0,001
$(l \pm \Delta l)$ cm	15	±	0,10
$(g \pm \Delta g) \ \text{M/c}^2$	9,8	±	0,029

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Микроскоп	Оптический	0–8 дел	0,266 мм/дел
2	Секундомер	Механический	0-50 сек	0,1 сек

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 3. Схема установки

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Первый шарик					
N опыта	1	2	3	4	5
х2 дел	7,57	7,37	7,48	7,33	7,34
х1 дел	0,13	0,08	0,07	0,05	0,06
d дел	7,44	7,29	7,41	7,28	7,28
$(t \pm \Delta t) c$	11,	,6	±	0	,10

Второй шарик					
N опыта 1 2 3 4 5					
х2 дел	6,64	6,74	6,75	6,71	6,63
х1 дел	0,70	0,80	0,83	0,77	0,69
d дел	5,94	5,94	5,92	5,94	5,94
$(t \pm \Delta t) c$	18,3	37	±	0	,10

Третий шарик					
N опыта	1	2	3	4	5
х2 дел	5,58	5,68	5,48	5,52	5,57
х1 дел	1,94	2,02	1,76	1,81	1,93
d дел	3,64	3,66	3,72	3,71	3,64
$(t \pm \Delta t) c$ 45,72 \pm 0,10				,10	

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2

Первый шарик					
$(d^-\!\!\pm\!\Delta d^-\!)$ дел	7,34	±	0,0266		
$(r\pm\Delta r)$ мм	0,976	±	0,0035		
$(v \pm \Delta v) M/c$	0,013	<u>±</u>	0,00014		
$(k \pm \Delta k)$	0,926				
$(\eta \pm \Delta \eta) \Pi a \cdot c$	1,02	±	0,02		

Таблица 3

Второй шарик					
$(d^-\pm \Delta d^-)$ дел	5,94	±	0,0266		
$(r\pm\Delta r)$ мм	0,789 ± 0,0035				
$(v \pm \Delta v) M/c$	0,008 ± 0,00007				
$(k \pm \Delta k)$	0,940				
$(\eta \pm \Delta \eta) \Pi a \cdot c$	1,07 ± 0,02				

Таблина 4

	1001114				
Третий шарик					
$(d^-\pm \Delta d^-)$ дел	$(\pm \Delta d) \partial e \pi$ 3,67 \pm 0,0266				
$(r \pm \Delta r)$ мм	0,489 ± 0,0035				
$(v \pm \Delta v) M/c$ 0,000 \pm 0,0002					
$(k \pm \Delta k) 0,962$					
$(\eta \pm \Delta \eta) \Pi a \cdot c$	1,04	±	0,02		

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\frac{\Delta r}{r} = \frac{\Delta d}{d}$$

$$\frac{\Delta v}{v} = \sqrt{\left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta t}{t}\right)^2}$$

$$\frac{\Delta \eta}{\eta} = \left[\left(2\frac{\Delta r}{r}\right)^2 + \left(\frac{\Delta v}{v}\right)^2 + \left(\frac{\Delta g}{g}\right)^2 + \frac{\left(\Delta \rho\right)^2 + \left(\Delta \rho_0\right)^2}{\left(\rho - \rho_0\right)^2}\right]^{\frac{1}{2}}$$

- 11. Графики (перечень графиков, которые составляют Приложение 2).
- 12. Окончательные результаты.

$$\eta 1 \pm \Delta \eta 1 = 1,02 \pm 0,02$$
 Па· $c - \partial$ ля первого шарика $(r = 1 \text{ мм})$ $\eta 2 \pm \Delta \eta 2 = 1,07 \pm 0,02$ Па· $c - \partial$ ля второго шарика $(r = 0,8 \text{ мм})$ $\eta 3 \pm \Delta \eta 3 = 1,04 \pm 0,02$ Па· $c - \partial$ ля первого шарика $(r = 0,5 \text{ мм})$

13. Выводы и анализ результатов работы.

В пределах погрешности полученные значения совпадают, следовательно, зависимости коэффициента вязкости от радиуса шарика не наблюдается. Вязкость жидкости зависит от температуры, исходя из табличных данных при 19 $^{\circ}$ C η = 1,07 Па*с (справочник), наши значения в пределах погрешности совпадают со справочным значением, значит, можно утверждать корректность полученных данных.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).