1-3. 将下列数值转换成十进制数。

$$(1010.1011)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} = (10.6875)_{10}$$

$$(2E5.3)_{16} = 2 \times 16^2 + 14 \times 16^1 + 5 \times 16^0 + 3 \times 16^{-1} = (741.1875)_{10}$$

$$(35.36)_8 = 3 \times 8^1 + 5 \times 8^0 + 2 \times 8^{-1} + 6 \times 8^{-2} = (29.34375)_{10}$$

1-8. 将下列十进制数转换为二、八、十六进制数和 8421 BCD 码(要求转换误差不大于 **2**-⁴):

解:

十进	制	二进制	八进制	十六进制	8421BCD 码
12	7	1111111	177	7F	0001 0010 0111
254.	25	11111110.01	376.2	FE.4	001001010100.0010 0101

1-17. 设 X=+1110101, Y=+0101101, 用补码计算 Z=X-Y, 并求出真值。解: [X]_{*} =01110101, [-Y]_{*} =11010011, [X-Y]_{*} =[X]_{*} +[-Y]_{*} =01110101+11010011=01001000, 故 Z 的真值为+1001000。

1-18. 用二进制数的补码形式计算 2-9 、6+7、8-2 、4-9,给出计算过程。解: $2-9=2+(-9)=[2]_{lambda}+[-9]_{lambda}=00010+10111=11001,其原码为 10111(-7)。6+7=[6]_{lambda}+[7]_{lambda}=00110+00111=01101,其原码为 01101(+13)。8-2=8+(-2)=[8]_{lambda}+[-2]_{lambda}=01000+11110=00110,其原码为 00110(+6)。4-9=4+(-9)=[4]_{lambda}+[-9]_{lambda}=00100+10111=11011,其原码为 10101(-5)。$

2-4. 用逻辑代数证明下列各等式

(2)
$$(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$$

解: (2) 左边 =
$$(A + B)(\overline{A} + C)(B + C) = (AC + \overline{AB} + BC)(B + C)$$

= $ABC + \overline{AB} + BC + AC + \overline{ABC} = \overline{AB} + AC$
右边 = $\overline{AB} + AC$,左边 = 右边,等式成立。

(4)
$$(A+B)(A+B+C+D+E+F) = A+B$$

 $(A+B)(A+B+C+D+E+F)$
 $= (A+B)((A+B)+(C+D+E+F))$
 $= (A+B)(A+B)+(A+B)(C+D+E+F)$
 $= (A+B)+(A+B)(C+D+E+F)$
 $= (A+B)(1+(C+D+E+F))$
 $= A+B$

(5) $BC + D + \overline{D}(\overline{B} + \overline{C})(AD + B) = B + D$

$$BC + D + \overline{D}(\overline{B} + \overline{C})(AD + B) = BC + D + (\overline{B} + \overline{C})(AD + B)$$

$$= BC + D + A\overline{B}D + A\overline{C}D + B\overline{B} + B\overline{C} = B(C + \overline{C}) + D(1 + A\overline{B} + A\overline{C})$$

$$= B + D$$

2-5. 写出下列函数 F 的对偶函数 F^* 及反函数 \overline{F}

(2)
$$F = A + \overline{B + C}$$

 $F^* = \overline{A \cdot \overline{B \cdot C}}; \quad \overline{F} = A + \overline{B + C}$

(4)
$$F = (A+B) \cdot (\overline{B}+C) + AD + \overline{E}$$

$$F^* = (AB + \overline{B}C)(A + D)\overline{E}$$
; $\overline{F} = \overline{AB} + B\overline{C}(\overline{A} + \overline{D})E$

2-6. 画出下列各函数用与非运算表示的逻辑图(即只用与非门构建的电路实现以下逻辑函数)。

$$(2) \quad Y = \overline{A\overline{B} + \overline{A}B}$$

解: (2) 将函数转换为与非-与非的形式: $Y = \overline{AB} + \overline{AB} = \overline{AB} \cdot \overline{AB}$, 再画出其由与非门构建的电路图, 如图所示。

2-9. 将下列函数展开为最小项表达式。

(2)
$$F(A,B,C) = AB + BC + CA$$

$$F(A,B,C) = AB + BC + CA$$

$$= AB(C + \overline{C}) + (A + \overline{A})BC + CA(B + \overline{B})$$

$$= ABC + \overline{ABC} + A\overline{BC} + AB\overline{C}$$

$$= \sum m(3,5,6,7)$$
(3)
$$F(A,B,C,D) = \overline{\overline{AB} + A\overline{BD}} \cdot (\overline{B} + CD)$$

$$F(A,B,C,D) = \overline{\overline{AB} + A\overline{BD}} \cdot (\overline{B} + CD)$$

$$= (A + \overline{B})(A + B + \overline{D})(\overline{B} + CD)$$

$$= ABCD + A\overline{B}C\overline{D} + A\overline{B}C\overline{D} + \overline{AB}CD + \overline{AB}C\overline{D} + \overline{AB}C\overline{D}$$

$$= \sum m(0,1,2,3,8,10,15)$$

2-10. 将下列函数展开成最大项表达式。

(1)
$$F = A \oplus B + \overline{AC}$$

$$F = \overline{AB} + A\overline{B} + \overline{A} + \overline{C} = \overline{A} + A\overline{B} + \overline{C}$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \sum m(0,1,2,3,4,5,6) = \prod M(7)$$

(2)
$$F = (\overline{A} \oplus B) + A(B \oplus C)$$

$$F = (\overline{A} \oplus B) + A(B \oplus C) = \overline{AB} + AB + A(B\overline{C} + \overline{BC})$$

$$= \overline{ABC} + \overline{ABC} + AB\overline{C} + ABC + ABC$$

$$= \sum m(0,1,5,6,7) = \prod M(2,3,4)$$

2-11. 用公式法化简下列逻辑函数为最简与或表达式。

$$(3) Y_2 = A\overline{B} + \overline{A}CD + B + \overline{C} + D$$

$$Y_3 = A\overline{B} + \overline{A}CD + B + \overline{C} + D = A\overline{B} + B + \overline{C} + D$$

= $A + B + \overline{C} + D$

(4)
$$Y_4 = \overline{\overline{ACCDBD}} + \overline{BC} + \overline{\overline{ACD}} + \overline{\overline{A}} + \overline{\overline{BD}}$$

$$Y_{4} = \overline{\overline{ACCDBD}} + BC + \overline{\overline{ACD}} + A + \overline{\overline{BD}}$$

$$= \overline{\overline{\overline{BD}}} + BC + A + \overline{\overline{BD}}$$

$$= \overline{\overline{BD}} + BC + A + \overline{\overline{BD}}$$

$$= \overline{\overline{BD}} \cdot \overline{\overline{BC}} + A + \overline{\overline{BD}} = \overline{\overline{BC}} + A + \overline{\overline{BD}}$$

$$= \overline{\overline{B}} + \overline{\overline{C}} + A + B + \overline{\overline{D}} = 1$$

2-14. 用卡诺图化简下列函数。

(4)
$$Y_4 = \sum m(0,1,5,7,8,11,14) + \sum d(3,9,15)$$

化简得
$$Y_4 = \overline{BC} + CD + \overline{AD} + ABC$$

(5)
$$Y_5 = \sum m(2,4,6,7,12,15) + \sum d(0,1,3,8,9,11)$$

AB	00	01	11	10
00	X	X	X	1
01	1	0	1	1
11	1	0	1	0
10	X	X	X	0

CL AB	00	01	11	10
00	\widehat{X}	X	X	1
01_	1	0	1	1
11	1	0	1	0
10	X	X	X	0

解法一: 化简得 $Y_5 = \overline{CD} + CD + \overline{AC}$

解法二: 化简得 $Y_5 = \overline{CD} + CD + \overline{AD}$

3-5. 求图所示的电路的输出逻辑表达式。

解: $Y = \overline{ABCDE}$

3-6. 集成逻辑电路 74LS244 的内部部分结构如图题所示,试说明该电路的逻辑功能。

解: 当 G=1 时, 1Y1=1A1, 2Y1=2A1;

当 G=0 时,输出呈高阻态,传输中止。

开关功能

3-7. 分析如图所示的各 CMOS 电路图的逻辑功能。

解:图(a)可以分成左、中、右三部分,如图。

左边为三个 CMOS 反相器,E、F、G 分别为 \overline{A} 、 \overline{B} 、 \overline{C} 。中间部分是 E、F、G 的或非运算,H 得到 $\overline{E+F+G}$ 。右边为两个 CMOS 反相器,输出 $Y=\overline{K}=\overline{H}=H$ 。

則 $Y = \overline{E + F + G} = \overline{\overline{A} + \overline{B} + \overline{C}} = ABC$ 即图 (a)所示电路为三输入与门。

3-7. 分析如图所示的各 CMOS 电路图的逻辑功能。

图(b)可以分成左、中、右三部分,如图。

左边为三个 CMOS 反相器,分别输出 $\overline{A} \setminus \overline{B} \setminus \overline{C}$ 。

中间部分是 \overline{A} 、 \overline{B} 、 \overline{C} 的与非运算,即得到 $\overline{\overline{ABC}}$ 。右边

为 CMOS 反相器,输出 $Y = \overline{\overline{ABC}} = \overline{ABC} = \overline{A+B+C}$,即图 (b)所示电路为三输入或非门。

4-2. 已知逻辑电路如图所示,分析该电路的逻辑功能。

解:根据图得逻辑电路图表达式为

$$F = (A \oplus B)\overline{C} + (A \odot B)C = A \oplus B \oplus C$$

由表知,电路的逻辑功能是当输入有奇数个 1 时,输出 F 为 1

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

4-4. 用与非门及反相器设计一个带控制端的组合逻辑电路,当控制端 X=0 时, $F=A\oplus B$; 当控制端 X=1 时, $F=\overline{AB}$ 。

解: F 的表达式为 $F = \overline{X}(A \oplus B) + X \cdot \overline{AB} = \sum m(1,2,4,5,6)$ 用卡诺图化简函数 F,得 $F = A\overline{B} + X\overline{B} + \overline{AB}$

X	\boldsymbol{A}	\boldsymbol{B}	$oxed{F}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

XA B	0	1
00	0	
01	1	0
11	1	0
10		$\lceil 1 \rceil$

用与非门实现题意功能,将函数F转换为与非式,即

$$F = \overline{\overline{AB} + XB + \overline{AB}} = \overline{\overline{AB} \cdot \overline{XB} \cdot \overline{AB}}$$

电路图如上图所示。

4-9. 试分析图中用 74LS138 译码器构成的逻辑电路,写出输出端 F 的逻辑表达式,列出真值表,说明电路的逻辑功能。

解: $F(B,A,C) = \sum m(2,3,5,6) = \overline{B}A\overline{C} + \overline{B}AC + B\overline{A}C + BA\overline{C}$

4-13. 用译码器 74138 和适当的逻辑门实现函数 $F = \overline{ABC} + AB\overline{C} + AB\overline{C} + ABC$

解: $F = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC = \sum m(0,4,6,7)$

电路图如图所示。

4-14. 由双 4 选 1 数据选择器 74153 构成的电路如图所示,其内部的单 4 选 1 数据选择器的真值表如表所示。试写出 F 的表达式,并用最小项之和 Σ m 的形式表示。

输		入	输	出
В	\boldsymbol{A}	GN	Y	
×	×	1	0	
0	0	0	C_0	
0	1	0	C_1	
1	0	0	$egin{array}{c} C_0 \ C_1 \ C_2 \ C_3 \ \end{array}$	
1	1	0	C_3	

解:
$$F = A(\overline{BCD} + \overline{BCD} + B\overline{CD} + B\overline{CD}) + \overline{A}(\overline{BCD} + \overline{BCD} + BC)$$

 $= A\overline{BCD} + A\overline{BCD} + AB\overline{CD} + AB\overline{CD} + \overline{ABCD} + \overline{ABC$

4-18. 某大厅有一盏灯和分布在不同位置的四个开关(A、B、C、D)。试利用 4 选 1 数据选择器为大厅设计一个电灯开关控制逻辑电路,使得人们可以在大厅的任何一个位置控制灯的亮或灭。例如:可以用 A 开关打开,然后用 B (或 C、D、A)开关熄灭。

解:根据题意, $A \setminus B \setminus C \setminus D$ 四个开关被按动用 1 表示,未按用 0 表示,设灯为 Y,

亮为1,灭为0,列真值表如下。

由真值表可得表达式为

$$Y = \overline{ABCD} + \overline{ABCD} +$$

$$Y = \overline{AB}(\overline{CD} + C\overline{D}) + \overline{AB}(\overline{CD} + CD) + A\overline{B}(\overline{CD} + CD) + AB(\overline{CD} + C\overline{D})$$

$$= \overline{AB}(C \oplus D) + \overline{AB}(C \odot D) + A\overline{B}(C \odot D) + AB(C \oplus D)$$

$$+ \overline{AB}(C \oplus D) + \overline{AB}(C \oplus D) + \overline{AB}(C \oplus D)$$

电路图如图所示。

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0_
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

4-22. 用 74151 设计一个能实现两个 1 位二进制数全加器和全减器的组合逻辑电路。解:设M为加减控制端,当M=0 时,电路实现全加器的功能;当M=1 时,电路实现

全减器的功能; $A \setminus B \setminus C_i$ 为输入变量, S 为本位的和(差), C_o 为进位(借位)。

上,则而用了为用它,从\ D \ C_i /了和 D \ X 里, D /了个上口了作 X 上了, C_0 /了处	<u>''/-</u>	\ IH	1.4	0		
根据题意,列真值表,	M	A	В	C	S	C_o
				i		
	0	0	0	0	0	0
$S = M(ABC + ABC_i + ABC_i + ABC_i) + M(ABC_i + ABC_i + ABC_i + ABC_i)$	0	0	0	_1	1	0
$\frac{1}{\sqrt{4}}\frac{1}{\sqrt{2}}\frac{1}$	0	0	1	0	1	0
$=1\cdot (ABC_i + ABC_i + ABC_i + ABC_i)$	0	0	1	1	0	1
$C_o = \overline{M}(\overline{ABC_i} + A\overline{BC_i} + AB\overline{C_i} + AB\overline{C_i}) + M(\overline{ABC_i} + \overline{ABC_i} + \overline{ABC_i} + \overline{ABC_i})$	0	1	0	0	1	0
$C_o = M(ABC_i + ABC_i + ABC_i + ABC_i) + M(ABC_i + ABC_i + ABC_i + ABC_i)$	0_	1	0	1	0	1
$= \overline{M}(A\overline{B}C_i + AB\overline{C_i}) + M(\overline{AB}C_i + \overline{AB}\overline{C_i}) + 1 \cdot (\overline{AB}C_i + ABC_i)$	0	1	1	0	0	1
	0	1	1	1	1	1
	1	0	0	0	0	0
	1	0	0	1	1	1
	1	0	1	0	1	1
	1	0	1	1	0	1
	1	1	0	0	1	0
	1	1	0	1	0	0
	1	1	1	0	0	0
	1	1	1	1	1	1

4-30 根据图中的左右两个逻辑电路图,分别给出两图的逻辑函数。

(a)
$$F_1 = \overline{A}\overline{B} + \overline{A}B = \overline{A}$$
, $F_2 = A\overline{B} + \overline{A}B = A \oplus B$

(b)
$$D_0 = \overline{A}_1 \overline{A}_0 + \overline{A}_1 A_0 + A_1 A_0$$
, $D_1 = \overline{A}_1 A_0 + A_1 \overline{A}_0 = A_1 \oplus A_0$
 $D_2 = \overline{A}_1 A_0 + A_1 \overline{A}_0 + A_1 \overline{A}_0 = A_1 + A_0$, $D_3 = \overline{A}_1 \overline{A}_0 + A_1 \overline{A}_0 = \overline{A}_0$

5-2 设图 5-41 中的触发器的初态均为 0,试画出 Q端的波形。

5-5 如图 5-44 所示电路,已知 CLK 波形,画出 Q 端的波形图(设触发器初态为 0,且不考虑器件的传输延迟时间)。

5-6 如图 5-45 所示电路,已知 CLK 波形,画出 Q 端的波形(设触发器初态为 0,不考虑器件的传输延迟)。

7-3. 分析图所示电路。写出驱动方程、输出方程、状态方程、状态转换表,画出状态转换图。

解:根据逻辑电路得驱动方程为: $D_3 = Q_2 D_2 = Q_1 D_1 = \overline{Q_1 Q_3} \bullet \overline{\overline{Q_1 Q_3}} = Q_1 \circ Q_3$

输出方程为: $Z=Q_3$

状态方程为: $Q_3^{n+1} = Q_2 Q_2^{n+1} = Q_1 Q_1^{n+1} = \overline{Q_1Q_3} \cdot \overline{\overline{Q_1Q_3}} = Q_1 \circ Q_3$

状态转换表如表所示:

Q_3^n	Q_2^n	Q_1^n	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	1	0	1	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

状态转换图如图所示:

根据状态转换图得到此电路存在无效循环,不能自启动。

7-7. 试用 D 触发器设计一个"101"序列检测器,用于检测串行二进制序列,要求每当出现 "101"时,检测器输出为 1,否则输出为 0,画出逻辑电路图。其典型输入输出序列如下: 输入 X: 0101010001011; 输出 Z: 0001010000010

解:分析典型输入输出的序列,得到此检测器可重入,假设各状态如下;

S0=00 表示没有接收到 1 的状态; S1=01 表示收到一个 1 以后的状态; S2=10 表示收到 10 以后的状态;

根据题意得到状态转换图如图所示:

根据状态转换图得到状态转换表:

Q_1^n	Q_0^n	X	Q_1^{n+1}	Q_0^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	1

根据状态转换表,得到状态方程和输出方程并化简:

$$Q_{1}^{n+1} = \overline{Q_{1}^{n}} \cdot Q_{0}^{n} \cdot \overline{X}$$

$$Q_{0}^{n+1} = \overline{Q_{1}^{n}} \cdot \overline{Q_{0}^{n}} \cdot X + \overline{Q_{1}^{n}} \cdot Q_{0}^{n} \cdot X + Q_{1}^{n} \cdot \overline{Q_{0}^{n}} \cdot X = (\overline{Q_{1}^{n}} + Q_{0}^{n}) \cdot X + \overline{Q_{1}^{n}} \cdot X \cdot Q_{0}^{n}$$

$$= X \cdot \overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \cdot X \cdot Q_{0}^{n} = X \cdot (\overline{Q_{0}^{n}} + \overline{Q_{1}^{n}} \cdot Q_{0}^{n}) = X \cdot (\overline{Q_{0}^{n}} + \overline{Q_{1}^{n}})$$

$$= X \cdot (\overline{Q_{1}^{n} Q_{0}^{n}})$$

$$Z = Q_{1}^{n} \cdot \overline{Q_{0}^{n}} \cdot X$$

根据状态方程,检测自启动功能:

将
$$Q_1^n Q_0^n = 11$$
 带入求得 $Q_1^{n+1} Q_0^{n+1} = 00$, 如图所示:

$$Q_1Q_0$$

得到结果:可以自启动。

将 D 触发器的特性方程 $Q_1^{n+1} = D$

比对状态方程得到驱动方程为:

$$\begin{cases} \mathbf{D}_0 = X \bullet \overline{Q_1^n Q_0^n} \\ \mathbf{D}_1 = \overline{Q_1^n} \bullet \overline{Q_0^n} \bullet \overline{X} \end{cases}$$

根据驱动方程得到逻辑电路如图 7-3-21 所示:

7-12. 使用 JK 触发器,设计一个变模计数器。画出逻辑电路图,给出时序波形图。

要求: (1) 控制端 X=0 时, 计数器的模 M=3, 计数规律为:

$$00 \rightarrow 01 \rightarrow 10$$

(2) 控制端 X=1 时, 计数器的模 M=4, 计数规律为:

$$00 \rightarrow 01 \rightarrow 10 \rightarrow 11$$

解:根据题意,X=0时,计数器的模 M=3; X=1时,计数器的模 M=4。

Y。、Y1分别对应这两种模式输出的进位信号。

状态转换图如图。

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y_{0}	<i>Y1</i>
0	0	0	0	1	0	0
0	0	1	1	0	0	0
0	1	0	0	0	1	0
0	1	1	X	X	X	X
1	0	0	0	1	0	0
1	0	1	1	0	0	0
1	1	0	1	1	0	0
1	1	1	0	0	0	1

状态方程

$$Q_1^{n+1} = X Q_1 \overline{Q}_0 + \overline{Q}_1 Q_0$$

$$Q_0^{n+1} = X \overline{Q}_0 + \overline{Q}_1 \overline{Q}_0$$

得到输出方程:

$$\begin{cases} Y_0 = \overline{X}Q_1 \\ Y_1 = Q_1Q_0 \end{cases}$$

特性方程

$$J_1 = Q_0 \ K_1 = \overline{x} + Q_0$$
$$J_0 = x + \overline{Q_1} \quad K_0 = 1$$

根据驱动方程和输出方程画逻辑图如图所示:

7-14. 分析图所示计数器电路,指出计数器的模值,并画出其状态转换图,并指出 QD 信号的占空比。

根据状态转换表得到状态转换图:

解:根据分析逻辑电路,得到状态转换表:

Q_3	Q_2	Q_1	Q_0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1

Q3 的信号输出的占空比为 6/(5+6)=6/11

7-16. 试用 74LS161 实现模 6 计数器。要求使用 RCO进位置数法,画出逻辑电路图,状

计数	计	数音	器状	态
顺序	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
→10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

7-17.请用两片 74LS161 设计一个 72 分频电路,并使占空比为 50%。

解: ①级联法。

72 = 6×12, 故高位片做六进制,低位片 12 进制,其状态转移表如表所示,连接图如图

Q_{C}	Q_{B}	$Q_{\rm A}$
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
0	0	1 _

② 整体反馈法

Q_{C2}	$Q_{ m B2}$	Q_{A2}	Q_{D1}	$Q_{\rm C1}$	Q_{B1}	Q_{A1}
0	0	1	1	1	0	0 ←
0	1	1	1	1	1	1
1	0	0	0	0	0	0
·						
1	1	0	0	0	1	1 —

7-20. 已知 74LS194A 的功能表如下表所示。分析逻辑电路图,试画出其状态转移图(按 $Q_0Q_1Q_2Q_3$ 排列),并指出该电路的计数模值。

解:根据逻辑电路及 74LS194 的功能表,状态转移图:

9-3 若扩展成 1024×8 位 RAM 需要多少块 256×4 位 RAM? 画出连接图。

10-7 4位 R-2R 倒 T 型电阻网络 DAC 如图 10-36 所示,设基准电压 V_{REF} =-8V,试求输出电压 v_0 的表达式,当输入为 $d_3d_2d_1d_0$ =1011 时,求 v_0 的值。

$$V_0 = -\frac{V_{REF}R_F}{2^nR} \left(\sum_{i=0}^{n-1} 2^i d_i \right) = -\frac{8}{2^4} (2^0 \cdot 1 + 2^1 \cdot 1 + 2^2 \cdot 0 + 2^3 \cdot 1) = 5.5 V$$