

Stepper motor

Overview

This is a step motor test experiment.

Specification

Please view "Stepper-Motor.pdf"

Path: \Public_materials\Datasheet\ Stepper-Motor.pdf

Pin definition

Hardware required

Material diagram	Material name	Number
	Step motor	1
Edward ⁽¹⁾	ULN2003 step motor driver board	1
	Raspberry Pi Board	1

V1.0

smraza

a maritallorinto	T-Cobbler Plus	1
	40P GPIO Cable	1
	Breadboard	1
	Jumper wires	Several

Connection diagram

Connection

RPI	Stepper Motor	
GPIO17	IN1	
GPIO18	IN2	
GPIO27	IN3	
GPIO22	IN4	
"+"	5V0	
" – "	GND	

Sample code

Note: sample code under the **Sample code** folder #include <wiringPi.h> #include <stdio.h> #include <unistd.h> #include <stdlib.h>

#define CLOCKWISE 1

#define COUNTER_CLOCKWISE 2

smraza

```
V1.0
#define pinA 0
#define pinB 1
#define pinC 2
#define pinD 3
void delayMS(int x);
void rotate(int* pins, int direction);
int main(void)
    printf( "Welcome to Smraza\n");
    printf( "Raspberry Pi Stepper motor test program\n" );
    printf( "Press Ctrl+C to exit\n" );
  int pins[4] = {pinA, pinB, pinC, pinD};
  if (-1 == wiringPiSetup()) {
    printf("Setup wiringPi failed!");
    return 1;
  }
  /* set mode to output */
  pinMode(pinA, OUTPUT);
  pinMode(pinB, OUTPUT);
  pinMode(pinC, OUTPUT);
  pinMode(pinD, OUTPUT);
                    // wait for a stable status
  delayMS(50);
  for (int i = 0; i < 500; i++) {
    rotate(pins, CLOCKWISE);
  }
  return 0;
}
/* Suspend execution for x milliseconds intervals.
   @param ms Milliseconds to sleep.
*/
void delayMS(int x) {
  usleep(x * 1000);
}
```

- /* Rotate the motor.
- * @param pins A pointer which points to the pins number array.
- \star @param direction CLOCKWISE for clockwise rotation, COUNTER_CLOCKWISE for counter clockwise rotation.

V1.0


```
void rotate(int* pins, int direction) {
  for (int i = 0; i < 4; i++) {
     if (CLOCKWISE == direction) {
       for (int j = 0; j < 4; j++) {
          if (j == i) {
            digitalWrite(pins[3 - j], 1); // output a high level
            digitalWrite(pins[3 - j], 0); // output a low level
          }
    } else if (COUNTER_CLOCKWISE == direction) {
        for (int j = 0; j < 4; j++) {
           if (j == i) {
              digitalWrite(pins[j], 1); // output a high level
           } else {
              digitalWrite(pins[j], 0); // output a low level
           }
        }
      }
      delayMS(4);
   }
}
```

Compiling: g++ -o stepper_motor stepper_motor.c -lwiringPi

Run: sudo ./stepper_motor

Tips: Press "Ctrl+C" to exit

Application effect

When you are running program, then you can control the relay by the screen tips.