In [1]:

```
import pandas as pd
import numpy as np
```

In [2]:

```
df=pd.read_csv(r"https://github.com/YBI-Foundation/Dataset/raw/main/Fruits.csv")
```

In [3]:

```
df.head()
```

Out[3]:

	Fruit Category	Fruit Name	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
0	1	Apple	192	8.4	7.3	0.55
1	1	Apple	180	8.0	6.8	0.59
2	1	Apple	176	7.4	7.2	0.60
3	1	Apple	178	7.1	7.8	0.92
4	1	Apple	172	7.4	7.0	0.89

In [4]:

df.info()

float64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 59 entries, 0 to 58
Data columns (total 6 columns):

Column Non-Null Count Dtype ----Fruit Category int64 0 59 non-null 1 Fruit Name 59 non-null object 2 Fruit Weight 59 non-null int64 3 Fruit Width 59 non-null float64 float64 4 Fruit Length 59 non-null

5 Fruit Colour Score 59 non-null
dtypes: float64(3), int64(2), object(1)

memory usage: 2.9+ KB

```
In [5]:
```

```
df.describe()
```

Out[5]:

	Fruit Category	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
count	59.000000	59.000000	59.000000	59.000000	59.000000
mean	1.949153	141.796610	7.105085	7.693220	0.762881
std	0.775125	67.335951	0.816938	1.361017	0.076857
min	1.000000	58.000000	5.800000	4.000000	0.550000
25%	1.000000	82.000000	6.600000	7.200000	0.720000
50%	2.000000	154.000000	7.200000	7.600000	0.750000
75%	3.000000	167.000000	7.500000	8.200000	0.810000
max	3.000000	362.000000	9.600000	10.500000	0.930000

In [6]:

```
df.shape
```

Out[6]:

(59, 6)

In [7]:

```
df.columns
```

Out[7]:

In [8]:

```
df['Fruit Category'].value_counts()
```

Out[8]:

- 2 24
- 1 19
- 3 16

Name: Fruit Category, dtype: int64

In [9]:

```
df['Fruit Category'].mean()
```

Out[9]:

1.9491525423728813

In [10]:

```
y=df['Fruit Category']
```

```
In [11]:
    y.shape
Out[11]:
    (59,)
```

```
In [12]:
```

у

Out[12]:

- 0 1 1 1 2 1 3 1 4 1 5 1 6 1
- 7 1 8 1
- 9 1 10 1
- 11 1 12 1
- 13 1 14 1
- 15 1
- 16 1 17 1
- 181192
- 20 2
- 21222
- 23 2
- 24 2
- 252262
- 27 2
- 28 2
- 292302
- 31 2
- 32 2
- 33 2
- 34 235 2
- 36 2
- 37 ₂
- 38 2 39 2
- 40 2
- 41 2 42 2
- 42 2 43 3
- 44 3
- 45 3 46 3
- 47 3
- 48 3 49 3
- 49 3 50 3
- 51 3
- 52533

x.shape

Out[15]:

(59, 4)

In [16]:

Х

Out[16]:

	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
0	192	8.4	7.3	0.55
1	180	8.0	6.8	0.59
2	176	7.4	7.2	0.60
3	178	7.1	7.8	0.92
4	172	7.4	7.0	0.89
5	166	6.9	7.3	0.93
6	172	7.1	7.6	0.92
7	154	7.0	7.1	0.88
8	164	7.3	7.7	0.70
9	152	7.6	7.3	0.69
10	156	7.7	7.1	0.69
11	156	7.6	7.5	0.67
12	168	7.5	7.6	0.73
13	162	7.5	7.1	0.83
14	162	7.4	7.2	0.85
15	160	7.5	7.5	0.86
16	156	7.4	7.4	0.84
17	140	7.3	7.1	0.87
18	170	7.6	7.9	0.88
19	86	6.2	4.7	0.80
20	84	6.0	4.6	0.79
21	80	5.8	4.3	0.77
22	80	5.9	4.3	0.81
23	76	5.8	4.0	0.81
24	342	9.0	9.4	0.75
25	356	9.2	9.2	0.75
26	362	9.6	9.2	0.74
27	204	7.5	9.2	0.77
28	140	6.7	7.1	0.72
29	160	7.0	7.4	0.81
30	158	7.1	7.5	0.79
31	210	7.8	8.0	0.82
32	164	7.2	7.0	0.80
33	190	7.5	8.1	0.74

	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
34	142	7.6	7.8	0.75
35	150	7.1	7.9	0.75
36	160	7.1	7.6	0.76
37	154	7.3	7.3	0.79
38	158	7.2	7.8	0.77
39	144	6.8	7.4	0.75
40	154	7.1	7.5	0.78
41	180	7.6	8.2	0.79
42	154	7.2	7.2	0.82
43	97	7.2	10.3	0.70
44	70	7.3	10.5	0.72
45	93	7.2	9.2	0.72
46	80	7.3	10.2	0.71
47	98	7.3	9.7	0.72
48	87	7.3	10.1	0.72
49	66	5.8	8.7	0.73
50	65	6.0	8.2	0.71
51	58	6.0	7.5	0.72
52	59	5.9	8.0	0.72
53	60	6.0	8.4	0.74
54	58	6.1	8.5	0.71
55	58	6.3	7.7	0.72
56	58	5.9	8.1	0.73
57	76	6.5	8.5	0.72
58	59	6.1	8.1	0.70

In [17]:

from sklearn.model_selection import train_test_split

In [18]:

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=2529)

In [19]:

x_train.shape,x_test.shape,y_train.shape,y_test.shape

Out[19]:

((41, 4), (18, 4), (41,), (18,))

In [20]:

from sklearn.linear_model import LogisticRegression

```
In [21]:
model=LogisticRegression(max iter=500)
In [22]:
model.fit(x_train,y_train)
Out[22]:
LogisticRegression(max_iter=500)
In [23]:
y_pred=model.predict(x_test)
In [24]:
y_pred.shape
Out[24]:
(18,)
In [25]:
y_pred
Out[25]:
array([3, 3, 2, 2, 2, 2, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 1, 3], dtype=int64)
In [26]:
model.predict_proba(x_test)
Out[26]:
array([[2.41440823e-03, 3.19602832e-03, 9.94389563e-01],
       [2.13636686e-03, 2.41088316e-03, 9.95452750e-01],
       [4.00713921e-01, 5.98801995e-01, 4.84084907e-04],
       [4.38508421e-01, 5.61489561e-01, 2.01838911e-06],
       [4.08812155e-01, 5.91163054e-01, 2.47913524e-05],
       [4.53047378e-01, 5.46412072e-01, 5.40550585e-04],
       [2.52140320e-01, 7.01792506e-01, 4.60671740e-02],
       [8.65690885e-03, 1.85201915e-03, 9.89491072e-01],
       [4.95658388e-01, 5.04155906e-01, 1.85706289e-04],
       [6.04386045e-01, 3.95200213e-01, 4.13741999e-04],
       [1.42148981e-02, 1.02038825e-02, 9.75581219e-01],
       [5.75888601e-01, 4.23396386e-01, 7.15013131e-04],
       [4.17772607e-01, 5.82227393e-01, 1.38895267e-13],
       [7.45978364e-04, 1.09458392e-04, 9.99144563e-01],
       [6.72406526e-01, 3.27585801e-01, 7.67370983e-06],
       [3.63778424e-01, 6.36123746e-01, 9.78292814e-05],
       [5.76163921e-01, 4.23820424e-01, 1.56544095e-05],
       [5.00270216e-03, 3.81395515e-03, 9.91183343e-01]])
In [27]:
from sklearn.metrics import confusion_matrix,classification_report
```

```
In [28]:
```

```
print(confusion_matrix(y_test,y_pred))
```

[[4 2 0]

[0 6 0]

[0 0 6]]

In [29]:

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
1	1.00	0.67	0.80	6
2	0.75	1.00	0.86	6
3	1.00	1.00	1.00	6
accuracy			0.89	18
macro avg	0.92	0.89	0.89	18
weighted avg	0.92	0.89	0.89	18

In [30]:

```
df_new=df.sample(1)
```

In [31]:

df_new

Out[31]:

	Fruit Category	Fruit Name	Fruit Weight	Fruit Width	Fruit Length	Fruit Colour Score
21	2	Orange	80	5.8	4.3	0.77

In [32]:

```
x_new=df_new[['Fruit Weight','Fruit Width','Fruit Length','Fruit Colour Score']]
```

In [33]:

x_new.shape

Out[33]:

(1, 4)

In [34]:

```
y_pred_new=model.predict(x_new)
```

```
In [35]:

y_pred_new

Out[35]:
array([2], dtype=int64)

In [36]:

model.predict_proba(x_new)

Out[36]:
array([[0.2040408 , 0.75236662, 0.04359259]])
```