23/05/2019 G - Longest Path

G - Longest Path

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 100 points

Problem Statement

There is a directed graph G with N vertices and M edges. The vertices are numbered $1,2,\ldots,N$, and for each i ($1 \le i \le M$), the i-th directed edge goes from Vertex x_i to y_i . Gdoes not contain directed cycles.

Find the length of the longest directed path in G. Here, the length of a directed path is the number of edges in it.

Constraints

- All values in input are integers.
- $2 \le N \le 10^5$
- $1 \le M \le 10^5$
- $1 \le x_i, y_i \le N$
- All pairs (x_i, y_i) are distinct.
- G does not contain directed cycles.

Input

Input is given from Standard Input in the following format:

Output

Print the length of the longest directed path in G.

Sample Input 1 Copy

Сору

4 5 1 2 1 3 3 2 2 4 3 4

Sample Output 1 Copy

The red directed path in the following figure is the longest:

Sample Input 2 Copy

Сору 2 3 4 5 5 6

Sample Output 2 Copy

2 Copy

The red directed path in the following figure is the longest:

Sample Input 3

23/05/2019 G - Longest Path

5 8		Сору
5 3		
2 3		
2 4		
5 2		
5 1		
1 4		
4 3		
1 3		

Sample Output 3 Copy

The red directed path in the following figure is one of the longest:

