Xbox Repair Guide [main]

Xbox Community

2021-12-04

Contents

Prerequisites	5
Introduction	7
Literature	9
Methods	11
math example	11
Applications	13
Example one	13
Example two	13
Final Words	15

4 CONTENTS

Prerequisites

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c^2$.

The **bookdown** package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.name/tinytex/.

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter . If you do not manually label them, there will be automatic labels anyway, e.g., Chapter .

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```


Figure 1: Here is a nice figure!

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 1.

8 INTRODUCTION

Table 1: Here is a nice table!

Sepal.Length	${\bf Sepal. Width}$	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package in this sample book, which was built on top of R Markdown and $\bf knitr$.

Literature

Here is a review of existing methods.

10 INTRODUCTION

Methods

We describe our methods in this chapter.

Math can be added in body using usual syntax like this

math example

p is unknown but expected to be around 1/3. Standard error will be approximated

$$SE = \sqrt(\frac{p(1-p)}{n}) \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

You can also use math in footnotes like this¹.

We will approximate standard error to 0.027^2

$$SE = \sqrt{(\frac{p(1-p)}{n})} \approx \sqrt{\frac{1/3(1-1/3)}{300}} = 0.027$$

 $^{^1}$ where we mention $p=\frac{a}{b}$ 2p is unknown but expected to be around 1/3. Standard error will be approximated

12 INTRODUCTION

Applications

Some significant applications are demonstrated in this chapter.

Example one

Example two

Final Words

We have finished a nice book.