Data Science SS20

Machine Learning V

Non-Linear Models – Part I

Machine Learning IV

Outline

- Part I: The Need for non-linear models
- Part I: Extending the simple linear classifier
 - Adding non-linearity
 - Simple Neural Networks
- Part II: Support Vector Machines
 - Linear SVMs
 - The "Kernel-Trick"

Recall: Data Science Workflow

Recall: Classification

Supervised Learning: Annotated Training Data

Recall: Classification

LEARNING: is a optimization problem → Finding the best function separating

Recall: Linear Classifier

A Simple Linear Model: binary classification

Parameterization of prediction function f with d-dimensional data as:

$$f(x) = y' = sgn(w^T x + b) = sgn(\sum_{j=0}^{d} x_j w_j + b_j)$$

With data samples $x \in \mathbb{R}^d$

Model parameters $w \in \mathbb{R}^d$

Model: hyper plane

(Obviously), linear models have limitations

Consider this very simple binary classification Example:

How to separate "green" from "red" with a linear Model (= hyper plane)?

Simple counter example

$$x \in \mathbb{R}^d$$

(Obviously), linear models have limitations

Consider this very simple binary classification Example:

How to separate "green" from "red" with a linear Model (= hyper plane)?

Simple counter example

(Obviously), linear models have limitations

Consider this very simple binary classification Example:

Simple counter example

- → known as "X-Or" Problem
- → one reason for the so-called "Al Winter"

Caused by the Minsky book On the shortcomings of the First neural networks...

$$x \in \mathbb{R}^d$$

(Obviously), linear models have limitations

More simple (binary 2D) examples:

Why are linear models working at all?

Why are linear models working at all?

- → very high dimensional feature spaces often time allow linear models to Separate the data
- → very simple (linear) model even can be of advantage in theses settings:
 - "curse of dimensionality"
 - Avoid overfitting

Three canonical ways (we already saw two of them):

Three canonical ways:

1. extracting non-linear features:

Three canonical ways:

1. extracting non-linear features:

NOTE: just an example, usually not That simple for real data.

→ see ML Part VII

$$T(x) = (x_1x_2)^3$$
Feature extraction

$$x \in \mathbb{R}^d$$

Three canonical ways:

2. use ensembles of linear models (like Random Forrest)

Three canonical ways:

2. use ensembles of linear models → approximation of non-linear models by piece-wise linear models

Three canonical ways:

3. use non-linear functions

Three canonical ways:

3. use non-linear functions

How to parameterize the non-linear model?

Adding non-linearity to our simple linear classifier

Note: for simplicity we neglect b

(assuming b=0), for real problems:

Analog Optimization with b...

Step I: add a very simple element-wise non-linear mapping.

(like in the previous feature extraction example)

Adding non-linearity to our simple linear classifier

$$f(x) = y' = w^T x = \sum_{j=0}^d w_j x_j$$

$$f(x) = \phi(w^T x)$$

What are good choices for these functions?

Adding non-linearity to our simple linear classifier

What are good choices for these functions?

Properties:

- Between 0 and 1 → pseudo probability interpretation
- Stable range of output → gradient optimization

Common choices:

- Sigmoid function
- Tanh
- ..

Adding non-linearity to our simple linear classifier

$$f(x) = y' = w^T x = \sum_{j=0}^{d} w_j x_j$$

$$f(x) = \phi_3(w_3\phi_2(W_2\phi_1(W_1x)))$$

W are now Matrices to produce vector outputs (recall multi class formulation for linear models)

Step II: concatenate several of these operations

(like we do in the ensemble approach)

Let's display this in a slightly different way (no change in math formulation!)

$$f(x) = y' = w^T x = \sum_{j=0}^d w_j x_j$$

$$f(x) = \phi_3(w_3\phi_2(W_2\phi_1(W_1x)))$$

Matrix/Vector Mult

Let's display this in a slightly different way (no change in math formulation!)

$$f(x) = y' = w^T x = \sum_{j=0}^{d} w_j x_j$$

$$f(x) = \phi_3(w_3\phi_2(W_2\phi_1(W_1x)))$$

Note: there is a theoretical prove that we need only two concatenations to approximate any smooth function if the W are large enough!

Matrix/Vector Mult

For training (optimization), we need to add loss function

→ same approach as in the linear case:

$$\underset{w}{\arg\min} \sum_{i=0}^{N} L(y_i, f(x))$$

Matrix/Vector Mult

For training (optimization), we need to add loss function

→ same approach as in the linear case:

$$\arg\min_{y_i} \sum_{i=0}^{N} L(y_i, f(x))$$

→ solve by gradient descent optimization

Loss Function

Matrix/Vector Mult

Recall OVERFITTING

Model "to close" to train data

With non-linear model much more likely to happen in practice.

→ we need to work against this...

Adding regularization term to the Loss function

→ here L2 regularization:

Scalar hyper parameter: impact of regularization

Adding regularization term to the Loss function

→ here L2 regularization:

$$\underset{w}{\operatorname{arg\,min}} \sum_{i=0}^{N} L(y_i, f(x)) + \lambda \sum_{j} w_j^2$$

→ L1 regularization:

$$\underset{w}{\arg\min} \sum_{i=0}^{N} L(y_i, f(x)) + \lambda \sum_{j} |w_j|$$

Regularization will punish high parameter values

- → smoother model
- → training errors allowed!

You probably have not noticed, but we just build a simple neural network!

Reinterpretation – no change in mathematical formulation!

A "neuron" (after Rosenblatt's Perceptron)

Biological model (from wikipedia)

Rosenblatt's perceptron model (from wikipedia)

Reinterpretation – no change in mathematical formulation!

A "neuron" (after Rosenblatt's Perceptron)

Scalar Product

Non-linear element-wise function

Rosenblatt's perceptron model (from wikipedia)

Reinterpretation – no change in mathematical formulation!

A simple ("fully connected") Neural Network:

"Neurons" → Scalar Product turns into Matrix Mult

Reinterpretation – no change in mathematical formulation!

A deeper ("fully connected") Neural Network:

"Layer of the Network

Training still via optimization of $\sum_{i=1}^{N} L(v_i, f(x)) + \lambda \sum_{i=1}^{N} w^2$

$$\underset{w}{\operatorname{arg\,min}} \sum_{i=0}^{N} L(y_i, f(x)) + \lambda \sum_{j} w_j^2$$

A Note on "DEEP LEARNING"

This is more than just many layers! → different network topology and operators

Discussion

Part II coming up ...