1 Set Theory

1.1 Basic Definitions

$$\mathbb{N} = \{0, 1, 2, \ldots\}$$
 natural numbers
$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$
 integers
$$\mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$$
 rationals
$$\mathbb{R} = \text{real numbers}$$

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
 complex numbers

Interval notation: $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$

Set-builder notation: $\{x \mid P(x)\}\$ where P(x) is a property of x

1.2 Set Operations

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
 union $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ intersection

Venn diagrams are used to visualize set operations.

$$A \setminus B = \{x \in A \mid x \notin B\}$$
 set difference $A \triangle B = (A \cup B) \setminus (A \cap B)$ symmetric difference

1.3 Properties

Let A_{α} be an indexed family of sets (where $\alpha \in I$).

$$\bigcup_{\alpha \in I} A_{\alpha} = \{x \mid x \in A_{\alpha} \text{ for some } \alpha \in I\}$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{x \mid x \in A_{\alpha} \text{ for every } \alpha \in I\}$$

De Morgan's Laws:

$$\overline{\bigcup_{\alpha \in I} A_{\alpha}} = \bigcap_{\alpha \in I} \overline{A_{\alpha}}$$
$$\overline{\bigcap_{\alpha \in I} A_{\alpha}} = \bigcup_{\alpha \in I} \overline{A_{\alpha}}$$

1.4 Functions

A function is a mapping or transformation from one set to another.

Let A, B be sets. $A \to B$ denotes a function from A to B.

Injective (one-to-one): If $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Surjective (onto): For every $y \in B$, there exists $x \in A$ such that f(x) = y.

Bijective: Both injective and surjective.

If $f: A \to B$ is bijective, then there exists an inverse function $f^{-1}: B \to A$.

1.5 Composition of Functions

If $f:A\to B$ and $g:B\to C$, then the composition $g\circ f:A\to C$ is defined by $(g\circ f)(x)=g(f(x)).$