Assignment 1 (30% final grade)

5LPB0: Phased Arrays and Smart Antennas

Learning objective

You will develop your own Matlab tool for simulating phased arrays based on the theory provided in the lectures. In this way you will learn (hands-on) to apply the theory of array antennas. Each group will write a short report (2-3 pages) using the IEEE journal paper template, including abstract, overview of requirements, theory, results, conclusions and references. Use the book "Modern Antennas and Microwave Circuits: A complete master-level course, by A.B. Smolders" (see CANVAS chapters 2, 4 and 6) as background material.

Planning

• Hand-out: 21 April 2020

• Hand-in report (IEEE journal paper template): 19 May 2020 (send to: <u>a.b.smolders@tue.nl</u>)

Assignment per group

Each group will get an individually-tuned assignments, see table below.

Group	Assignment description	Deliverables
Group 1	 Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90° < θ <90°), Gain, beamwidth for the case: N_x=100, d_x=0.475λ, f=1 GHz, θ₀=35° Extend the program with a non-uniform taper (window). Use a Taylor tapering with -22 dB sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results. Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the 2D radiation pattern in (u,v) coordinates for the case N_x=22, N_y=22, d_x=0.475λ, d_y=0.475λ, f=1 GHz, (θ₀, φ₀)=(35°,45°). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Taylor tapering. Now introduce non-ideal radiating elements. Use 	Deliverables Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	electric dipoles along the ϕ =0° axis (in the xy-plane)	

	Leader to the standard A. A. C. H. L. H.	
	(see book, chapter 4). Again calculate the radiation	
	pattern, gain, beamwidth and max. SLL for the planar	
	array. Compare and explain results with the isotropic	
	case.	- (:=== 6
2	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
	array of isotropic elements with uniform tapering.	pages with plots and
	Determine the 1D radiation pattern (-90°< θ <90°),	explanation of your
	Gain, beamwidth for the case: $N_x=150$, $d_x=0.55\lambda$, $f=2$	results. Add the Matlab
	GHz, θ_0 =-25°	code in the appendix.
	 Extend the program with a non-uniform taper 	
	(window). Use a Chebyshev tapering with -27 dB	
	sidelobes. Determine the Gain, Beamwidth and	
	maximum sidelobe level and compare this with the	
	case of uniform tapering. Explain results.	
	 Determine the frequency for which the first grating 	
	lobe appears in the radiation pattern. Explain result.	
	 Extend the program to a two-dimensional planar array. 	
	Plot the 2D radiation pattern in (u,v) coordinates for	
	the case N_x =25, N_y =25, d_x =0.45 λ , d_y =0.45 λ f=1.8 GHz,	
	(θ_0, ϕ_0) =(-25°,90°). Determine the Gain, beamwidth,	
	max sidelobe level (SLL) in case of uniform tapering and	
	Chebyshev tapering.	
	 Now introduce non-ideal radiating elements. Use 	
	electric dipoles along the ϕ =45° axis (in the xy-plane)	
	(see book and course Microwave Engineering and	
	Antennas). Again calculate the radiation pattern, gain,	
	beamwidth and max. SLL for the planar array. Compare	
	and explain results with the isotropic case. What can	
	you say about the polarization of the far-field pattern?	
3	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
	array of isotropic elements with uniform tapering.	pages with plots and
	Determine the 1D radiation pattern (-90° θ <90°),	explanation of your
	Gain, beamwidth for the case: $N_x=115$, $d_x=\lambda/2$, f=3 GHz,	results. Add the Matlab
	$\theta_0 = 45^0$	code in the appendix.
	Extend the program with a non-uniform taper	
	(window). Use a Hamming taper with that provides a -	
	25 dB peak sidelobe level. Determine the Gain,	
	Beamwidth and maximum sidelobe level and compare	
	this with the case of uniform tapering. Explain results.	
	Determine the frequency for which the first grating	
	lobe appears in the radiation pattern. Explain result.	
	 Extend the program to a two-dimensional planar array. 	
	Plot the radiation pattern in (u,v) coordinates for the	
	case $N_x=22$, $N_y=22$, $d_x=0.4\lambda$, $d_y=0.4\lambda$ f=3 GHz, $(\theta_0,$	
	ϕ_0)=(45°,-90°). Determine the Gain, beamwidth, max	
	sidelobe level (SLL) in case of uniform tapering and	
	Hamming tapering.	
	Hamming tapering.	

			,
	•	Now introduce non-ideal radiating elements. Use half-wavelength dipoles along the $\phi = -45^{\circ}$ axis (in the xy-plane) (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. What can you say about the polarization of the far-field pattern?	
4	•	Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =98, d _x = λ /2, f=4 GHz, θ ₀ =-35°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	•	Extend the program with a non-uniform taper (window). Use a Gaussian tapering with -22 dB first sidelobe level. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results.	
	•	Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the	
		case $N_x=18$, $N_y=18$, $d_x=0.45\lambda$, $d_y=0.45\lambda$ f=4 GHz, $(\theta_0, \phi_0)=(-20^0, -45^0)$. Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Gaussian tapering.	
	•	Now introduce non-ideal radiating elements. Use half-wavelength dipoles the along the ϕ =90° axis (in the xy-plane) (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. What can you say about the polarization of the far-field pattern?	
5	•	Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90° < θ <90°), Gain, beamwidth for the case: N _x =112, d _x = λ /2, f=5 GHz, θ ₀ =-45°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	•	Extend the program with a non-uniform taper (window). Use a Taylor tapering with -35 dB sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results.	
	•	Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result.	

		T
	 Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the case N_x=24, N_y=24, d_x=λ/2, d_y=λ/2 and f=5 GHz, (θ₀, φ₀)=(-45⁰,135⁰). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Taylor tapering. Now introduce non-ideal radiating elements. Use a horn antenna with size a=0.45λ and b=0.3λ and electric field in the aperture directed in the y-direction (modeled as a uniform magnetic current distribution along the x-direction), (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. 	
6	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =88, d _x =0.6 λ , f=6 GHz, θ 0=-35°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	 Extend the program with a non-uniform taper (window). Use a cosine-squared (cos²(πx/Kd), with x <kd 2)="" and="" beamwidth="" case="" compare="" determine="" explain="" gain,="" level="" li="" maximum="" of="" results.<="" sidelobe="" tapering.="" the="" this="" uniform="" with=""> </kd>	
	 Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the case N_x=19, N_y=19, d_x=0.55λ, d_y=0.55λ and f=6 GHz, (θ₀, φ₀)=(-35⁰,45⁰). Determine the Gain, beamwidth, max 	
	sidelobe level (SLL) in case of uniform tapering and	
	cosine-squared tapering.Now introduce non-ideal radiating elements.	
	Use a horn antenna with size $a=0.45\lambda$ and $b=0.25\lambda$ and electric field in the aperture directed in the x-direction (modeled as a uniform magnetic current distribution along the y-direction), see course Microwave	
	Engineering and Antennas. Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case.	
7	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90° < θ <90°), Gain, beamwidth for the case: N _x =100, d _x =0.65 λ , f=1	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	GHz, θ_0 =35°	code in the appendix.

	 Extend the program with a non-uniform taper (window). Use a Taylor tapering with -32 dB sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results. Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the 2D radiation pattern in (u,v) coordinates for 	
	 the case N_x=20, N_y=20, d_x=0.55λ, d_y=0.55λ f=1 GHz, (θ₀, φ₀)=(25⁰,45⁰). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Taylor tapering. Now introduce non-ideal radiating elements. Use half- 	
	wavelength dipoles along the ϕ =45° axis (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case.	
8	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =160, d _x =0.6 λ , f=2 GHz, θ_0 =-25°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	 Extend the program with a non-uniform taper (window). Use a Chebyshev tapering with -36 dB sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results. 	
	Determine the frequency for which the first grating	
	 lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. 	
	Plot the 2D radiation pattern in (u,v) coordinates for	
	the case N _x =25, N _y =25, d _x =0.55 λ , d _y =0.55 λ f=2 GHz, (θ_0 ,	
	ϕ_0)=(-15 0 ,90 0). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Chebyshev tapering.	
	 Now introduce non-ideal radiating elements. Use half-wavelength dipoles along the φ=-90° axis (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. What can you say about the polarization of the far-field pattern? 	
9	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°),	Paper (IEEE format), max 4 pages with plots and explanation of your

r	T		
	•	Gain, beamwidth for the case: $N_x=118$, $d_x=0.575\lambda$, $f=5$ GHz, $\theta_0=-45^0$ Extend the program with a non-uniform taper (window). Use a Taylor tapering with -28 dB sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results. Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the case $N_x=24$, $N_y=24$, $d_x=0.55\lambda$, $d_y=0.55\lambda$ and $f=5$ GHz, $(\theta_0, \phi_0)=(-45^0,135^0)$. Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Taylor tapering.	results. Add the Matlab code in the appendix.
	•	Now introduce non-ideal radiating elements. Use magnetic dipoles (small loop antenna) along the z-axis (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case.	
10	•	Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =85, d _x =0.6 λ , f=6 GHz, θ_0 =-35°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	•	Extend the program with a non-uniform taper (window). Use a cosine-squared ($\cos^2(\pi x/Kd)$, with $ x < Kd/2$) tapering. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results.	
	•	Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the case N _x =19, N _y =19, d _x =0.625 λ , d _y =0.625 λ and f=6 GHz, (θ_0 , ϕ_0)=(-35°,45°). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and cosine-squared tapering.	
	•	Now introduce non-ideal radiating elements. Use electric dipoles along the ϕ =135 0 axis (in the xy-plane) (see course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case.	
11	•	Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering.	Paper (IEEE format), max 4 pages with plots and

	ı	2	
		Determine the 1D radiation pattern ($-90^{\circ} < \theta < 90^{\circ}$),	explanation of your
		Gain, beamwidth for the case: $N_x=140$, $d_x=0.625\lambda$, $f=2$	results. Add the Matlab
		GHz, θ_0 =-15 ⁰	code in the appendix.
	•	Extend the program with a non-uniform taper	
		(window). Use a Chebyshev tapering with -32 dB	
		sidelobes. Determine the Gain, Beamwidth and	
		maximum sidelobe level and compare this with the	
		case of uniform tapering. Explain results.	
	•	Determine the frequency for which the first grating	
		lobe appears in the radiation pattern. Explain result.	
	•	Extend the program to a two-dimensional planar array.	
		Plot the 2D radiation pattern in (u,v) coordinates for	
		the case N_x =25, N_y =25, d_x =0.525 λ , d_y =0.525 λ f=2.75	
		GHz, (θ_0, ϕ_0) =(15°,90°). Determine the Gain,	
		beamwidth, max sidelobe level (SLL) in case of uniform	
		tapering and Chebyshev tapering.	
	•	Now introduce non-ideal radiating elements. Use half-	
		wavelength dipoles along the ϕ =180° axis (see book	
		and course Microwave Engineering and Antennas).	
		Again calculate the radiation pattern, gain, beamwidth	
		and max. SLL for the planar array. Compare and explain	
		results with the isotropic case. What can you say about	
		the polarization of the far-field pattern?	
12	•	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
		array of isotropic elements with uniform tapering.	pages with plots and
		Determine the 1D radiation pattern (-90°< θ <90°),	explanation of your
		Gain, beamwidth for the case: $N_x=98$, $d_x=0.625\lambda$, $f=6.5$	results. Add the Matlab
		GHz, $\theta_0 = 35^0$	code in the appendix.
	•	Extend the program with a non-uniform taper	
		(window). Use a cosine-squared ($\cos^2(\pi x/Kd)$, with	
		x <kd)="" 2="" beamwidth<="" determine="" gain,="" tapering.="" th="" the=""><th></th></kd>	
		and maximum sidelobe level and compare this with the	
		case of uniform tapering. Explain results.	
	•	Determine the frequency for which the first grating	
		lobe appears in the radiation pattern. Explain result.	
	•	Extend the program to a two-dimensional planar array.	
		Plot the radiation pattern in (u,v) coordinates for the	
		case N _x =21, N _y =21, d _x =0.5 λ , d _y =0.5 λ and f=5 GHz, (θ ₀ ,	
		ϕ_0)=(35°,45°). Determine the Gain, beamwidth, max	
		sidelobe level (SLL) in case of uniform tapering and	
		cosine-squared tapering.	
		Now introduce non-ideal radiating elements.	
		Use a horn antenna with size $a=0.45\lambda$ and $b=0.35\lambda$ and	
		electric field in the aperture directed in the x-direction	
		(modeled as a uniform magnetic current distribution	
		along the y-direction), see course Microwave	
		Engineering and Antennas. Again calculate the	

	radiation nattorn gain becaused the and reasy CU for	<u> </u>
	radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the	
	isotropic case.	
13	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
	array of isotropic elements with uniform tapering.	pages with plots and
	Determine the 1D radiation pattern (-90°< θ <90°),	explanation of your
	Gain, beamwidth for the case: $N_x=125$, $d_x=0.575\lambda$, f=2	results. Add the Matlab
	GHz, θ_0 =25 $^{\circ}$	code in the appendix.
	Extend the program with a non-uniform taper	
	(window). Use a Taylor tapering with -26 dB sidelobes.	
	Determine the Gain, Beamwidth and maximum	
	sidelobe level and compare this with the case of	
	uniform tapering. Explain results.	
	Determine the frequency for which the first grating	
	lobe appears in the radiation pattern. Explain result.	
	Extend the program to a two-dimensional planar array. Plot the 2D radiation pattern in (u, v) coordinates for	
	Plot the 2D radiation pattern in (u,v) coordinates for the case N_x =25, N_v =25, d_x =0.525 λ , d_v =0.525 λ f=2 GHz,	
	(θ_0, ϕ_0) =(45°,0°). Determine the Gain, beamwidth, max	
	sidelobe level (SLL) in case of uniform tapering and	
	Taylor tapering.	
	Now introduce non-ideal radiating elements. Use half-	
	wavelength dipoles along z-axis (see book and course	
	Microwave Engineering and Antennas). Again calculate	
	the radiation pattern, gain, beamwidth and max. SLL	
	for the planar array. Compare and explain results with	
	the isotropic case. What can you say about the	
1.4	polarization of the far-field pattern?	Dan an (IEEE famoust)
14	 Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. 	Paper (IEEE format), max 4 pages with plots and
	Determine the 1D radiation pattern (-90° < θ < 90°),	explanation of your
	Gain, beamwidth for the case: $N_x=110$, $d_x=0.625\lambda$, $f=10$	results. Add the Matlab
	Gain, beanward for the case. $N_x=110$, $\alpha_x=0.025$ %, $\gamma=10$	code in the appendix.
	 Extend the program with a non-uniform taper 	
	(window). Use a Taylor tapering with -24 dB sidelobes.	
	Determine the Gain, Beamwidth and maximum	
	sidelobe level and compare this with the case of	
	uniform tapering. Explain results.	
	 Determine the frequency for which the first grating 	
	lobe appears in the radiation pattern. Explain result.	
	Extend the program to a two-dimensional planar array.	
	Plot the radiation pattern in (u,v) coordinates for the	
	case $N_x=18$, $N_y=20$, $d_x=0.625\lambda$, $d_y=0.55\lambda$ and $f=10$ GHz,	
	$(\theta_0, \phi_0) = (35^0, 45^0)$. Determine the Gain, beamwidth, max	
	sidelobe level (SLL) in case of uniform tapering and	
	Taylor tapering.Now introduce non-ideal radiating elements.	
	wow introduce non-ideal radiating elements.	

	Use a horn antenna with size $a=0.6\lambda$ and $b=0.3\lambda$ and	
	electric field in the aperture directed in the x-direction	
	(modeled as a uniform magnetic current distribution	
	along the y-direction), see course Microwave	
	Engineering and Antennas. Again calculate the	
	radiation pattern, gain, beamwidth and max. SLL for	
	the planar array. Compare and explain results with the	
4-	isotropic case.	5 (1555.5 1)
15	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
	array of isotropic elements with uniform tapering.	pages with plots and
	Determine the 1D radiation pattern (-90°< θ <90°),	explanation of your
	Gain, beamwidth for the case: $N_x=160$, $d_x=0.6\lambda$, $f=2$	results. Add the Matlab
	GHz, θ_0 =-25 0	code in the appendix.
	 Extend the program with a non-uniform taper 	
	(window). Use a Chebyshev tapering with -36 dB	
	sidelobes. Determine the Gain, Beamwidth and	
	maximum sidelobe level and compare this with the	
	case of uniform tapering. Explain results.	
	 Determine the frequency for which the first grating 	
	lobe appears in the radiation pattern. Explain result.	
	 Extend the program to a two-dimensional planar array. 	
	Plot the 2D radiation pattern in (u,v) coordinates for	
	the case N _x =25, N _y =25, d _x =0.45 λ , d _y =0.45 λ f=7 GHz, (θ_0 ,	
	ϕ_0)=(60°,0°). Determine the Gain, beamwidth, max	
	sidelobe level (SLL) in case of uniform tapering and	
	Chebyshev tapering.	
	 Now introduce non-ideal radiating elements. Use half- 	
	wavelength dipoles along the -z axis (see book and	
	course Microwave Engineering and Antennas). Again	
	calculate the radiation pattern, gain, beamwidth and	
	max. SLL for the planar array. Compare and explain	
	results with the isotropic case. What can you say about	
	the polarization of the far-field pattern?	
16	Develop a matlab program to simulate a linear phased	Paper (IEEE format), max 4
	array of isotropic elements with uniform tapering.	pages with plots and
	Determine the 1D radiation pattern (-90°< θ <90°),	explanation of your
	Gain, beamwidth for the case: $N_x=112$, $d_x=0.625\lambda$, $f=11$	results. Add the Matlab
	Gain, bean width for the case. $N_x=112$, $d_x=0.025$ %, $I=11$	code in the appendix.
	 Extend the program with a non-uniform taper 	осас и спо аррепами
	(window). Use a cosine-squared ($\cos^2(\pi x/Kd)$, with	
	x <kd)="" 2="" beamwidth<="" determine="" gain,="" tapering.="" th="" the=""><th></th></kd>	
	and maximum sidelobe level and compare this with the	
	case of uniform tapering. Explain results.	
	Determine the frequency for which the first grating	
	lobe appears in the radiation pattern. Explain result.	
	Extend the program to a two-dimensional planar array.	
	Plot the radiation pattern in (u,v) coordinates for the	

	 case N_x=21, N_y=21, d_x=0.625λ, d_y=0.5λ and f=11 GHz, (θ₀, φ₀)=(60⁰,45⁰). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and cosine-squared tapering. Now introduce non-ideal radiating elements. Use a horn antenna with size a=0.6λ and b=0.3λ and electric field in the aperture directed in the x-direction (modeled as a uniform magnetic current distribution along the y-direction), see course Microwave Engineering and Antennas. Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. 	
17	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =124, d _x =0.45 λ , f=12 GHz, θ_0 =65°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	 Extend the program with a non-uniform taper (window). Use a cosine-squared (cos²(πx/Kd), with x <kd 2)="" beamwidth<br="" determine="" gain,="" tapering.="" the="">and maximum sidelobe level and compare this with the case of uniform tapering. Explain results.</kd> 	
	 Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result. Extend the program to a two-dimensional planar array. Plot the radiation pattern in (u,v) coordinates for the 	
	case $N_x=20$, $N_y=20$, $d_x=0.45\lambda$, $d_y=0.6\lambda$ and $f=12$ GHz, $(\theta_0, \phi_0)=(65^0,45^0)$. Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and cosine-squared tapering.	
	 Now introduce non-ideal radiating elements. Use a horn antenna with size a=0.4λ and b=0.45λ and electric field in the aperture directed in the x-direction (modeled as a uniform magnetic current distribution along the y-direction), see course Microwave Engineering and Antennas. Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. 	
18	• Develop a matlab program to simulate a linear phased array of isotropic elements with uniform tapering. Determine the 1D radiation pattern (-90°< θ <90°), Gain, beamwidth for the case: N _x =130, d _x =0.65 λ , f=15 GHz, θ_0 =20°	Paper (IEEE format), max 4 pages with plots and explanation of your results. Add the Matlab code in the appendix.
	 Extend the program with a non-uniform taper (window). Use a Chebyshev tapering with -28 dB 	

- sidelobes. Determine the Gain, Beamwidth and maximum sidelobe level and compare this with the case of uniform tapering. Explain results.
- Determine the frequency for which the first grating lobe appears in the radiation pattern. Explain result.
- Extend the program to a two-dimensional planar array. Plot the 2D radiation pattern in (u,v) coordinates for the case $N_x=25$, $N_y=25$, $d_x=0.6\lambda$, $d_y=0.45\lambda$ f=15 GHz, (θ_0 , ϕ_0)=(20°,-90°). Determine the Gain, beamwidth, max sidelobe level (SLL) in case of uniform tapering and Chebyshev tapering.
- Now introduce non-ideal radiating elements. Use half-wavelength dipoles along the ϕ =-180° axis (see book and course Microwave Engineering and Antennas). Again calculate the radiation pattern, gain, beamwidth and max. SLL for the planar array. Compare and explain results with the isotropic case. What can you say about the polarization of the far-field pattern?