Homework 3

46-923, Fall 2017

Due Thursday, November 16 at 3:00 PM

You should submit a single pdf file with your responses to the questions. There is nothing wrong with handwritten solutions; I am not asking you to learn Latex to complete the homework.

Please do not submit photos of your homework. Scanners are available for your use.

Question 1:

Assume that X_1, X_2, \ldots, X_n are i.i.d.~with mean μ and variance σ^2 . Both μ and σ^2 are unknown. Assume that the sample mean is $\overline{x} = 14.3$ and the sample standard deviation is s = 4.2.

- a. Without any further information, can you construct a valid 95% confidence interval for μ if n=40? If so, do it.
- b. Without any further information, can you construct a valid 95% confidence interval for μ if n = 10? If so, do it.
- c. If I told you that the X_i are normal, can you construct a valid 95% confidence interval for μ when n = 10? If so, do it.

Question 2:

Suppose that X_1, X_2, \ldots, X_n are i.i.d. from the Poisson(λ) distribution.

- a. Find the maximum likelihood estimator for λ .
- b. What is the standard error of the estimator found in part (a)?
- c. Suppose that a sample of size n = 5 is obtained:

Write out a statement reporting the best estimate of λ , along with the standard error of the estimator. This should be the type of statement you would include in a formal report.

Question 3:

Let X_1, X_2, \ldots, X_n be i.i.d. from the following distribution:

$$f_X(x) = \begin{cases} \frac{\alpha \lambda^{\alpha}}{x^{\alpha+1}} & x > \lambda, \ \alpha > 0, \ \lambda > 0 \\ 0 & \text{otherwise} \end{cases}$$

Assume that λ is a known constant, and show that the MLE for α is

$$\widehat{\alpha} = n / \left(\sum_{i=1}^{n} \log \left(\frac{X_i}{\lambda} \right) \right).$$

Comment: This is the Pareto distribution.

Question 4:

Let X_1, X_2, \ldots, X_n be a iid from the following distribution:

$$f_X(x;\theta) = \begin{cases} \frac{3x^2}{\theta^3} & 0 \le x \le \theta \\ 0 & \text{otherwise} \end{cases}$$

Here are some facts regarding estimation of θ :

- Method of moments estimator is $\hat{\theta}_1 = \frac{4\bar{X}}{3}$
- The maximum likelihood estimator is $\hat{\theta}_2 = X_{(n)}$, where $X_{(n)}$ is the maximum of the X_i .

Here are some useful results about this distribution that will help you do this problem.

$$\bullet \ E(X) = \frac{3}{4}\theta$$

$$V(X) = \frac{3}{80}\theta^2$$

•
$$f_{X_{(n)}}(x) = \frac{3nx^{3n-1}}{\theta^{3n}}, \quad 0 \le x \le \theta$$

•
$$V(X_{(n)}) = \frac{3n}{(3n+2)(3n+1)^2} \theta^2$$

Now, do the following:

- a. Show that $\hat{\theta}_1$ is an unbiased estimator for θ .
- b. Show that $\hat{\theta}_2$ is *not* an unbiased estimator for θ , and find bias $(\hat{\theta}_2) = [E(\hat{\theta}_2) \theta]$.
- c. Show that for n>2, even though $\hat{\theta}_1$ is unbiased and $\hat{\theta}_2$ is not, $\mathrm{MSE}(\hat{\theta}_2)<\mathrm{MSE}(\hat{\theta}_1)$