Introduction to Deep Learning

Antonio Valerio Miceli Barone

amiceli@inf.ed.ac.uk

10 March 2020

- Big data "Data is the New Oil" - Clive Humby, 2006
- Artificial intelligence
 "AI is the New Electricity" Andrew Ng, 2016

- Big data "Data is the New Oil" - Clive Humby, 2006
- Artificial intelligence "Al is the New Electricity" - Andrew Ng, 2016
- Applications
 - Image classification

- Big data "Data is the New Oil" - Clive Humby, 2006
- Artificial intelligence "AI is the New Electricity" - Andrew Ng, 2016
- Applications
 - Image classification

■ Image generation

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \bigcirc$

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \bigcirc$

■ Machine translation

The cat sat on the mat \rightarrow Die Katze saß auf der Matte

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \bigcirc$

■ Machine translation

The cat sat on the mat ightarrow Die Katze saß auf der Matte

Atari

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \bigcirc$

Machine translation

The cat sat on the mat \rightarrow Die Katze saß auf der Matte

Atari

Go

- Applications
 - Automatic speech recognition
 - Text-to-speech Siri, Alexa, Google Home, ...
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \bigcirc$

■ Machine translation

The cat sat on the mat \rightarrow Die Katze saß auf der Matte

i

Go

Dota 2

Starcraft II

- **Applications**
 - Automatic speech recognition
 - Text-to-speech

Siri, Alexa, Google Home, ...

Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$ You can't believe what you're looking at because it's so hideous to behold. $\rightarrow \odot$

Machine translation

The cat sat on the mat → Die Katze saß auf der Matte

Atari Go

Protein folding Quantum physics

Computational fluid dynamics

Machine learning

- Machine learning
 - Automatically create models of the world from data, such that these models can make automatic predictions or decisions

- Machine learning
 - Automatically create models of the world from data, such that these models can make automatic predictions or decisions
 - Statistics
 - Use data to understand how the world works

- Machine learning
 - Automatically create models of the world from data, such that these models can make automatic predictions or decisions
 - Statistics
 - Use data to understand how the world works
 - Artificial intelligence
 - Make machines smart

- Machine learning
 - Automatically create models of the world from data, such that these models can make automatic predictions or decisions
 - Statistics
 - Use data to understand how the world works
 - Artificial intelligence
 - Make machines smart
 - "Al is whatever hasn't been done yet" Larry Tesler

■ Training set:

<i>X</i> ₁	<i>x</i> ₂	<i>y</i>
1.00	1.15	False
-0.58	0.04	True
-0.38	-0.82	False
0.16	-0.01	False
0.29	1.31	True
-0.66	-0.24	True
-0.80	-1.50	False
-0.14	0.66	True
-0.09	0.66	True
0.48	0.41	False

■ Training set:

<i>X</i> ₁	<i>X</i> ₂	<i>y</i>
1.00	1.15	False
-0.58	0.04	True
-0.38	-0.82	False
0.16	-0.01	False
0.29	1.31	True
-0.66	-0.24	True
-0.80	-1.50	False
-0.14	0.66	True
-0.09	0.66	True
0.48	0.41	False

Find decision boundary

■ Training set:

<i>X</i> ₁	<i>X</i> ₂	y
1.00	1.15	False
-0.58	0.04	True
-0.38	-0.82	False
0.16	-0.01	False
0.29	1.31	True
-0.66	-0.24	True
-0.80	-1.50	False
-0.14	0.66	True
-0.09	0.66	True
0.48	0.41	False

- Find decision boundary
- Test point:

$$\begin{array}{c|cc} x_1 & x_2 & y \\ -0.40 & 0.50 & ? \end{array}$$

■ Training set:

<i>X</i> ₁	<i>X</i> ₂	y y
1.00	1.15	False
-0.58	0.04	True
-0.38	-0.82	False
0.16	-0.01	False
0.29	1.31	True
-0.66	-0.24	True
-0.80	-1.50	False
-0.14	0.66	True
-0.09	0.66	True
0.48	0.41	False

- Find decision boundary
- Test point:

$$\begin{array}{c|ccccc} x_1 & x_2 & y \\ -0.40 & 0.50 & True \end{array}$$

Make a prediction

- Supervised learning
 - Training set of N labeled examples

$$(x^{(1)}, x^{(2)}, \dots x^{(N)})$$

 $(y^{(1)}, y^{(2)}, \dots y^{(N)})$

- Supervised learning
 - Training set of N labeled examples

$$(x^{(1)}, x^{(2)}, \dots x^{(N)})$$

 $(y^{(1)}, y^{(2)}, \dots y^{(N)})$

Find a parameter θ for a function f that computes y from x $y = f_{\theta}(x)$

Supervised learning

■ Training set of *N* labeled examples

$$(x^{(1)}, x^{(2)}, \dots x^{(N)})$$

 $(y^{(1)}, y^{(2)}, \dots y^{(N)})$

- Find a parameter $\hat{\theta}$ for a function f that computes y from x $y = f_{\theta}(x)$
- Or a conditional probability distribution $p_{\theta}(y|x)$

Supervised learning

■ Training set of N labeled examples

$$(x^{(1)}, x^{(2)}, \dots x^{(N)})$$

 $(y^{(1)}, y^{(2)}, \dots y^{(N)})$

- Find a parameter θ for a function f that computes y from x $y = f_{\theta}(x)$
- Or a conditional probability distribution $p_{\theta}(y|x)$
- Inputs \hat{x} can be arbitrary (e.g. text, images, speech)
 - But for now we assume $x \in \mathbb{R}^d$

Supervised learning

■ Training set of N labeled examples

$$(x^{(1)}, x^{(2)}, \dots x^{(N)})$$

 $(y^{(1)}, y^{(2)}, \dots y^{(N)})$

- Find a parameter $\hat{\theta}$ for a function f that computes y from x $y = f_{\theta}(x)$
- Or a conditional probability distribution $p_{\theta}(y|x)$
- Inputs \hat{x} can be arbitrary (e.g. text, images, speech)
 - But for now we assume $x \in \mathbb{R}^d$
- Outputs y
 - Discrete labels: classification problem
 - Continuous values: regression problem

- In the previous example
 - Inputs x: 2D vectors
 - Outputs y: binary classes
 - Linear model

$$f_{\theta}(x) = (w_1 \cdot x_1 + w_2 \cdot x_2 + b \ge 0)$$

Model parameter $\theta = (w_1, w_2, b)$

- In the previous example
 - Inputs x: 2D vectors
 - Outputs y: binary classes
 - Linear model

$$f_{\theta}(x) = (w_1 \cdot x_1 + w_2 \cdot x_2 + b \ge 0)$$

- Model parameter $\theta = (w_1, w_2, b)$
- \blacksquare Machine learning: find θ that fits the training data the best
 - We need to operationalize what we mean by "best"

- In the previous example
 - Inputs x: 2D vectors
 - Outputs y: binary classes
 - Linear model

$$f_{\theta}(x) = (w_1 \cdot x_1 + w_2 \cdot x_2 + b \ge 0)$$

- Model parameter $\theta = (w_1, w_2, b)$
- lacksquare Machine learning: find $\ddot{\theta}$ that fits the training data the best
 - We need to operationalize what we mean by "best"
 - Loss function $L(y, \hat{y})$
 - Measures how much the predicted label $\hat{y} = f_{\theta}(x)$ differs from the true label y

- In the previous example
 - Inputs x: 2D vectors
 - Outputs y: binary classes
 - Linear model

$$f_{\theta}(x) = (w_1 \cdot x_1 + w_2 \cdot x_2 + b \ge 0)$$

- Model parameter
 - $\theta=(w_1,w_2,b)$
- lacktriangle Machine learning: find $\ddot{\theta}$ that fits the training data the best
 - We need to operationalize what we mean by "best"
 - Loss function $L(y, \hat{y})$
 - Measures how much the predicted label $\hat{y} = f_{\theta}(x)$ differs from the true label y
 - Optimization problem

$$\overset{*}{\theta} = \operatorname{argmin} \frac{1}{N} \sum_{i} L(y^{(i)}, f_{\theta}(x^{(i)}))$$

■ How to train?

- In the previous example
 - Inputs x: 2D vectors
 - Outputs y: binary classes
 - Linear model

$$f_{\theta}(x) = (w_1 \cdot x_1 + w_2 \cdot x_2 + b \geq 0)$$

- Model parameter $\theta = (w_1, w_2, b)$
- lacktriangle Machine learning: find $\dot{\theta}$ that fits the training data the best
 - We need to operationalize what we mean by "best"
 - Loss function $L(y, \hat{y})$
 - Measures how much the predicted label $\hat{y} = f_{\theta}(x)$ differs from the true label y
 - Optimization problem

$$\overset{*}{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i} L(y^{(i)}, f_{\theta}(x^{(i)}))$$

- How to train?
 - Make the model probabilistic

■ Test set:

■ Test set:

Points close to the decision boundary should have $p \approx 0.5$

Test set:

- Points close to the decision boundary should have $p \approx 0.5$
- Pre-activation: $z = w^T x + b$ ranges from $-\infty to\infty$, equal to 0 on the boundary

■ Test set:

- Points close to the decision boundary should have $p \approx 0.5$
- Pre-activation: $z = w^T x + b$ ranges from $-\infty to\infty$, equal to 0 on the boundary
- Rescale to (0,1) with the **logistic** sigmoid function σ $p(y|z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$

Logistic regression

- Pre-activation: $z = w^T x + b$
- Rescale to (0, 1) with the **logistic** sigmoid function σ $p(y|z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$

inary cross-entropy
$$F(\theta) = -\frac{1}{N} \sum_i y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log (1 - z^{(i)})$$

Logistic regression

- Pre-activation: $z = w^T x + b$
- Rescale to (0, 1) with the **logistic** sigmoid function σ $p(y|z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$
- Loss function: negative log-likelihood of the data under the model $L(y, p_{\theta}(.|x)) = -\log p_{\theta}(y|x)$

inary cross-entropy
$$F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log (1 - z^{(i)})$$

- Pre-activation: $z = w^T x + b$
- Rescale to (0,1) with the **logistic** sigmoid function σ $p(y|z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$
- Loss function: negative log-likelihood of the data under the model $L(y, p_{\theta}(.|x)) = -\log p_{\theta}(y|x)$
- Training objective $\stackrel{*}{\theta} = \underset{\theta}{\operatorname{argmin}} F(\theta)$ $F(\theta) = -\frac{1}{N} \sum_{i} \log p_{\theta}(y^{(i)}|x^{(i)})$

inary cross-entropy
$$F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log (1 - z^{(i)})$$

- Pre-activation: $z = w^T x + b$
- Rescale to (0,1) with the **logistic** sigmoid function σ $p(y|z) = \sigma(z) = \frac{1}{1 + \exp(-z)}$
- Loss function: negative log-likelihood of the data under the model $L(y, p_{\theta}(.|x)) = -\log p_{\theta}(y|x)$
- Training objective $\stackrel{*}{\theta} = \underset{\theta}{\operatorname{argmin}} F(\theta)$ $F(\theta) = -\frac{1}{N} \sum_{i} \log p_{\theta}(y^{(i)}|x^{(i)})$

Binary cross-entropy
$$F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log (1 - z^{(i)})$$

Optimize the binary cross-entropy

Optimize the binary cross-entropy

$$\theta = \underset{\theta}{\operatorname{argmin}} F(\theta)
F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log(1 - z^{(i)})$$

- Differentiate $F(\theta)$ with respect to θ
- The gradient must be zero at the minimum

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

Optimize the binary cross-entropy

- Differentiate $F(\theta)$ with respect to θ
- The gradient must be zero at the minimum

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

 Modern deep learning tools (PyTorch, Tensorflow) automate the computation of the gradient

Optimize the binary cross-entropy

$$\theta = \underset{\theta}{\operatorname{argmin}} F(\theta)
F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log(1 - z^{(i)})$$

- Differentiate $F(\theta)$ with respect to θ
- The gradient must be zero at the minimum

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

- Modern deep learning tools (PyTorch, Tensorflow) automate the computation of the gradient
- In this simple model there is only one stationary point: the global minimum

Optimize the binary cross-entropy

$$\theta = \underset{\theta}{\operatorname{argmin}} F(\theta)
F(\theta) = -\frac{1}{N} \sum_{i} y^{(i)} \log z^{(i)} + (1 - y^{(i)}) \log(1 - z^{(i)})$$

- Differentiate $F(\theta)$ with respect to θ
- The gradient must be zero at the minimum

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

- Modern deep learning tools (PyTorch, Tensorflow) automate the computation of the gradient
- In this simple model there is only one stationary point: the global minimum
- For more complicated deep learning models there are many stationary points

Solve approximately

$$\nabla_{\theta}F(\overset{*}{\theta})=0$$

Solve approximately

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

- Full-batch gradient descent
 - $\alpha :=$ learning rate
 - $\theta := \text{initial guess (e.g. random or all zeros)}$ while not converged
 - - $\bullet := \theta \alpha \cdot \nabla_{\theta} F(\theta)$

Solve approximately

$$\nabla_{\theta} F(\overset{*}{\theta}) = 0$$

- Full-batch gradient descent
 - $\alpha := \text{learning rate}$
 - $\theta := \text{initial guess (e.g. random or all zeros)}$ while not converged

$$\theta := \theta - \alpha \cdot \nabla_{\theta} F(\theta)$$

- If the learning rate is small enough, the algorithm converges close to a local minimum
- A global minimum in this case

- Full-batch gradient descent
 - Each iteration requires evaluating all the training examples
 - an be quite slow
 - can overfit

- Full-batch gradient descent
 - Each iteration requires evaluating all the training examples
 - an be quite slow
 - can overfit
- Stochastic gradient descent
- At each iteration, evaluate a proxy objective $\tilde{F}(\theta, B)$ defined only on a small random mini-batch of training examples

- Full-batch gradient descent
 - Each iteration requires evaluating all the training examples
 - can be quite slow
 - can overfit
- Stochastic gradient descent
- At each iteration, evaluate a proxy objective $\tilde{F}(\theta, B)$ defined only on a small random mini-batch of training examples
- Algorithm:
 - $\quad \blacksquare \ \alpha := \text{learning rate}$
 - \blacksquare $N_B :=$ batch size
 - $\theta := \text{initial guess (e.g. random or all zeros)}$
 - while not converged
 - \blacksquare $B := \text{random subset of training data of size } N_B$
 - $\blacksquare \ \theta := \theta \alpha \cdot \nabla_{\theta} \tilde{F}(\theta, B)$

- Full-batch gradient descent
 - Each iteration requires evaluating all the training examples
 - can be quite slow
 - can overfit
- Stochastic gradient descent
- At each iteration, evaluate a proxy objective $\tilde{F}(\theta, B)$ defined only on a small random mini-batch of training examples
- Algorithm:
 - $\quad \blacksquare \ \alpha := \text{learning rate}$
 - \blacksquare $N_B :=$ batch size
 - lacktriangledown $\theta := initial guess (e.g. random or all zeros)$
 - while not converged
 - B := random subset of training data of size N_B
 - $\bullet \theta := \theta \alpha \cdot \nabla_{\theta} \tilde{F}(\theta, B)$
- $lackbox{} \nabla_{\theta} \tilde{F}(\theta, B)$ is an unbiased estimator of $\nabla_{\theta} F(\theta)$
- Converges with probability 1

■ What if the output are in more than two classes?

- What if the output are in more than two classes?
- C: number of classes
- output y is one-hot $y \in \{0, 1\}^C$ s.t. $\sum_j y_j = 1$

- What if the output are in more than two classes?
- C: number of classes
- output y is one-hot $y \in \{0, 1\}^C$ s.t. $\sum_j y_j = 1$
- define C linear models

- What if the output are in more than two classes?
- C: number of classes
- output y is one-hot $y \in \{0, 1\}^C$ s.t. $\sum_i y_i = 1$
- define C linear models In matrix form:

$$z = W \cdot x + b$$

where:

 $b \in \mathcal{R}^C$ and $z \in \mathcal{R}^C$ are vectors

 $W \in \mathcal{R}^{d \times C}$ is a matrix

- What if the output are in more than two classes?
- C: number of classes
- output y is one-hot $y \in \{0, 1\}^C$ s.t. $\sum_i y_i = 1$
- define C linear models In matrix form:

$$z = W \cdot x + b$$

where:

 $b \in \mathcal{R}^C$ and $z \in \mathcal{R}^C$ are vectors

 $W \in \mathbb{R}^{d \times C}$ is a matrix

■ Normalize probabilities: softmax $p(y_j|z) = \frac{\exp z_j}{\sum_{j'} \exp z_{j'}}$

$$p(y_j|z) = \frac{\exp z_j}{\sum_{j'} \exp z_{j'}}$$

- What if the output are in more than two classes?
- C: number of classes
- output y is one-hot $y \in \{0, 1\}^C$ s.t. $\sum_i y_i = 1$
- define C linear models In matrix form:

$$z = W \cdot x + b$$

where:

 $b \in \mathcal{R}^C$ and $z \in \mathcal{R}^C$ are vectors

 $W \in \mathbb{R}^{d \times C}$ is a matrix

■ Normalize probabilities: softmax $p(y_j|z) = \frac{\exp z_j}{\sum_{j'} \exp z_{j'}}$

$$p(y_j|z) = \frac{\exp z_j}{\sum_{j'} \exp z_{j'}}$$

Loss function: categorical cross-entropy $L(y, p_{\theta}(.|x)) = -\sum_{i} \log p_{\theta}(y_{i}|x)$

Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$

Example

$$F(\theta) = \theta^2 + 0.2$$

 $\nabla_{\theta} F(\theta) = \theta$

- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

$$\begin{array}{c|c} \theta & \nabla_{\theta} F(\theta) \\ 1.0 & 2.0 \end{array}$$

0.0 theta 0.5 1.0 1.5 2.0

-2.0 -1.5 -1.0 -0.5

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

$$\begin{array}{c|c}
\theta & \nabla_{\theta} F(\theta) \\
1.0 & 2.0 \\
0.6 & 1.2
\end{array}$$

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

$$\begin{array}{c|c} \theta & \nabla_{\theta} F(\theta) \\ 1.0 & 2.0 \\ 0.6 & 1.2 \\ 0.36 & 0.72 \\ \end{array}$$

0.0 0.5 1.0 1.5 2.0

theta

-1.0 -0.5

-2.0 -1.5

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

$$\begin{array}{c|c} \theta & \nabla_{\theta} F(\theta) \\ 1.0 & 2.0 \\ 0.6 & 1.2 \\ 0.36 & 0.72 \\ 0.22 & 0.43 \\ \end{array}$$

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

$$\begin{array}{c|ccc} \theta & \nabla_{\theta} F(\theta) \\ 1.0 & 2.0 \\ 0.6 & 1.2 \\ 0.36 & 0.72 \\ 0.22 & 0.43 \\ 0.13 & 0.26 \\ \end{array}$$

- Example $F(\theta) = \theta^2 + 0.2$ $\nabla_{\theta} F(\theta) = \theta$
- Gradient descent update $\theta := \theta 0.2 \cdot \nabla_{\theta} F(\theta)$
- Iterations:

θ	$\nabla_{\theta} F($
1.0	2.0
0.6	1.2
0.36	0.72
0.22	0.43
0.13	0.26
0.08	0.16

 Sometimes the data is not linearly separable

- Sometimes the data is not linearly separable
- Feature engineering
 - Find a preprocessing transformation that makes the data linearly separable

- Sometimes the data is not linearly separable
- Feature engineering
 - Find a preprocessing transformation that makes the data linearly separable
 - For example

$$x_2 := \sqrt{x_2}$$

- Sometimes the data is not linearly separable
- Feature engineering
 - Find a preprocessing transformation that makes the data linearly separable
 - For example
 - $x_2 := \sqrt{x_2}$
 - Now we can find a decision hyperplane

XOR problem

<i>x</i> ₁	x_2	y
-1.0	-1.0	False
-1.0	1.0	True
1.0	-1.0	True
1.0	1.0	False

XOR problem

<i>x</i> ₁	<i>X</i> ₂	У
-1.0	-1.0	False
-1.0	1.0	True
1.0	-1.0	True
1.0	1.0	False

■ Not linearly separable

XOR problem

<i>X</i> ₁	<i>X</i> ₂	У
-1.0	-1.0	False
-1.0	1.0	True
1.0	-1.0	True
1.0	1.0	False

- Not linearly separable
- But becomes trivial if we define $x_3 = x_1x_2$

XOR problem

<i>X</i> ₁	x_2	y
-1.0	-1.0	False
-1.0	1.0	True
1.0	-1.0	True
1.0	1.0	False

- Not linearly separable
- But becomes trivial if we define $x_3 = x_1x_2$
- Solution: ignore x_1 and x_2 and use the sign of x_3

XOR problem

<i>X</i> ₁	<i>X</i> ₂	У
-1.0	-1.0	False
-1.0	1.0	True
1.0	-1.0	True
1.0	1.0	False

- Not linearly separable
- But becomes trivial if we define $x_3 = x_1 x_2$
- Solution: ignore x₁ and x₂ and use the sign of x₃
- The XOR problem caused research in neural networks to be abandoned from the 70s to the mid 80s

- Feature engineering used to be common until the new deep learning revival of the mid 2010s.
- It can be quite hard and labor-intensive

- Feature engineering used to be common until the new deep learning revival of the mid 2010s.
- It can be quite hard and labor-intensive
- Images
 - Edge features
 - Corner feature
 -

- Feature engineering used to be common until the new deep learning revival of the mid 2010s.
- It can be quite hard and labor-intensive
- Images
 - Edge features
 - Corner feature
 - ...
- Text
 - Word n-grams
 - Character n-grams
 - Part-of-Speech tags
 - Syntactic dependency relations
 -

- Feature engineering used to be common until the new deep learning revival of the mid 2010s.
- It can be guite hard and labor-intensive
- Images
 - Edge features
 - Corner feature
 - ...
- Text
 - Word n-grams
 - Character n-grams
 - Part-of-Speech tags
 - Syntactic dependency relations
- Can we learn non-linear features automatically?

■ Simplest deep feed-forward neural network

- Simplest deep feed-forward neural network
- Hidden layer(s) computes non-linear features

- Simplest deep feed-forward neural network
- Hidden layer(s) computes non-linear features
 - \blacksquare Activation function σ provides non-linearity

- Simplest deep feed-forward neural network
- Hidden layer(s) computes non-linear features
 - lacktriangle Activation function σ provides non-linearity
 - Deep linear models collapse to shallow linear models

- Simplest deep feed-forward neural network
- Hidden layer(s) computes non-linear features
 - \blacksquare Activation function σ provides non-linearity
 - Deep linear models collapse to shallow linear models
- Fully connected

Equations

$$h^{(0)} = x$$

$$h^{(k)} = \sigma_h(W^{(k)} \cdot h^{(k-1)} + b^{(k)})$$

$$p(y) = \sigma_{out}(W^{out} \cdot h^{(K)} + b^{out})$$

■ K hidden layers of width $d^{(k)}$, $W(k) \in \mathcal{R}^{d^{(k-1)} \times d^{(k)}}$

Equations

$$h^{(0)} = x$$

$$h^{(k)} = \sigma_h(W^{(k)} \cdot h^{(k-1)} + b^{(k)})$$

$$p(y) = \sigma_{out}(W^{out} \cdot h^{(K)} + b^{out})$$

- **K** hidden layers of width $d^{(k)}$, $W(k) \in \mathcal{R}^{d^{(k-1)} \times d^{(k)}}$
- Usually the output activation function σ_{out} and the hidden activation function σ_h are different

■ Hyperbolic tangent $tanh(z) = \frac{exp(2z)-1}{exp(2z)+1}$

- Hyperbolic tangent $tanh(z) = \frac{exp(2z)-1}{exp(2z)+1}$
 - Bounded within (-1, 1)
 - Smooth

- Hyperbolic tangent $tanh(z) = \frac{exp(2z)-1}{exp(2z)+1}$
 - Bounded within (-1, 1)
 - Smooth
 - Mostly used in recurrent neural networks

■ Hyperbolic tangent

$$\tanh(z) = \frac{\exp(2z) - 1}{\exp(2z) + 1}$$

- Bounded within (-1, 1)
- Smooth
- Mostly used in recurrent neural networks
- Rectified Linear Unit relu(z) = max(0, z)

- Hyperbolic tangent $tanh(z) = \frac{exp(2z)-1}{exp(2z)+1}$
 - Bounded within (-1, 1)
 - Smooth
 - Mostly used in recurrent neural networks
- Rectified Linear Unit relu(z) = max(0, z)
 - Unbounded
 - Piecewise linear
 - Differentiable almost everywhere

- Hyperbolic tangent $tanh(z) = \frac{exp(2z)-1}{exp(2z)+1}$
 - Bounded within (-1, 1)
 - Smooth
 - Mostly used in recurrent neural networks
- Rectified Linear Unit relu(z) = max(0, z)
 - Unbounded
 - Piecewise linear
 - Differentiable almost everywhere
 - Most common choice in feed-forward neural networks

■ How many layers, and how big?

- How many layers, and how big?
 - No hard rule, trial and error

- How many layers, and how big?
 - No hard rule, trial and error
- Do we need more than one hidden layer?

- How many layers, and how big?
 - No hard rule, trial and error
- Do we need more than one hidden layer?
 - One **sufficiently large** hidden layer is enough for universal approximation
 - In practice deeper networks generalize much better

- How many layers, and how big?
 - No hard rule, trial and error
- Do we need more than one hidden layer?
 - One **sufficiently large** hidden layer is enough for universal approximation
 - In practice deeper networks generalize much better

Stochastic Gradient Descent

- Stochastic Gradient Descent
- Non-convex optimization
 - Multiple local minima
 - Local maxima
 - Saddle points

- Stochastic Gradient Descent
- Non-convex optimization
 - Multiple local minima
 - Local maximaSaddle points
- Larger width: easier optimization
 - In the 90s it was believed that neural networks were too hard to optimize
 - In the 2010s modern GPUs enabled training wider networks, which converge more easily

- Stochastic Gradient Descent
- Non-convex optimization
 - Multiple local minima
 - Local maximaSaddle points
- Larger width: easier optimization
 - In the 90s it was believed that neural networks were too hard to optimize
 - In the 2010s modern GPUs enabled training wider networks, which converge more easily
- Larger depth: harder optimization
 - Vanishing gradients (bad stationary points)
 - Exploding gradients (numerical divergences)

 Deep neural networks can be trained effectively

- Deep neural networks can be trained effectively
- as long as we are careful
 - Optimizers
 - Initialization
 - Residual trick
 - Normalization layers
 - . . .

SGD with Momentum

- Add a velocity to the updates
- Algorithm:
 - lacktriangleq lpha := learning rate
 - $\beta :=$ momentum rate
 - $N_B :=$ batch size
 - $\theta := \text{initial guess (e.g. random or all zeros)}$
 - $\Delta \theta := 0$
 - while not converged
 - B := random subset of training data of size N_B

 - $\theta := \theta + \Delta \theta$

Parameter initalization

Can we initialize the parameters to zero?

Parameter initalization

- Can we initialize the parameters to zero?
- No, we need a random initialization

Parameter initalization

- Can we initialize the parameters to zero?
- No, we need a random initialization
- Glorot / He initializations
 - biases initialized to 0
 - For RELU layers (He) $W \sim N(0, 2/d^{(k-1)})$
 - For tanh or output layers (Glorot) $W \sim N(0, 1/d^{(k-1)})$

Residual trick

■ How to train very very deep networks (hundreds of layers)?

Residual trick

- How to train very very deep networks (hundreds of layers)?
- Add a skip connection to the layers

$$h^{(0)} = x$$

$$h^{(1)} = \sigma_h(W^{(1)} \cdot h^{(0)} + b^{(1)})$$

$$h^{(k)} = h^{(k-1)} + \sigma_h(W^{(k)} \cdot h^{(k-1)} + b^{(k)})$$

$$p(y) = \sigma_{out}(W^{out} \cdot h^{(K)} + b^{out})$$

Residual trick

- How to train very very deep networks (hundreds of layers)?
- Add a skip connection to the layers

$$h^{(0)} = x$$

$$h^{(1)} = \sigma_h(W^{(1)} \cdot h^{(0)} + b^{(1)})$$

$$h^{(k)} = h^{(k-1)} + \sigma_h(W^{(k)} \cdot h^{(k-1)} + b^{(k)})$$

$$p(y) = \sigma_{out}(W^{out} \cdot h^{(k)} + b^{out})$$

Hidden layers must have the same size

■ How do we actually compute the gradients of a deep network?

$$h^{(k)} = f^{(k)}(h^{(k-1)}, W^{(k)})$$

 $F = L(h^{(K)})$

How do we actually compute the gradients of a deep network?

$$h^{(k)} = f^{(k)}(h^{(k-1)}, W^{(k)})$$

 $F = L(h^{(K)})$

■ Compute the gradient of F w.r.t. the last parameter $W^{(K)}$

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}W^{(K)}} &= \frac{\mathrm{d}L}{\mathrm{d}h^{(K)}} \cdot \frac{\mathrm{d}h^{(K)}}{\mathrm{d}W^{(K)}} \\ \frac{\mathrm{d}h^{(K)}}{\mathrm{d}W^{(K)}} &= \frac{\mathrm{d}}{\mathrm{d}W^{(K)}} f^{(K)}(h^{(K-1)}, W^{(K)}) \end{split}$$

How do we actually compute the gradients of a deep network?

$$h^{(k)} = f^{(k)}(h^{(k-1)}, W^{(k)})$$

 $F = L(h^{(K)})$

Compute the gradient of F w.r.t. the last parameter $W^{(K)}$

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}W^{(K)}} &= \frac{\mathrm{d}L}{\mathrm{d}h^{(K)}} \cdot \frac{\mathrm{d}h^{(K)}}{\mathrm{d}W^{(K)}} \\ \frac{\mathrm{d}h^{(K)}}{\mathrm{d}W^{(K)}} &= \frac{\mathrm{d}}{\mathrm{d}W^{(K)}} f^{(K)}(h^{(K-1)}, W^{(K)}) \end{split}$$

Assume that the derviative of any f^(k) w.r.t. any of its inputs is efficiently computable given the other input

Compute the gradient of F w.r.t. the second last parameter $W^{(K-1)}$

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}W^{(K-1)}} &= \frac{\mathrm{d}L}{\mathrm{d}h^{(K)}} \cdot \frac{\mathrm{d}h^{(K)}}{\mathrm{d}h^{(K-1)}} \cdot \frac{\mathrm{d}h^{(K-1)}}{\mathrm{d}W^{(K-1)}} \\ \frac{\mathrm{d}h^{(K)}}{\mathrm{d}h^{(K-1)}} &= \frac{\mathrm{d}}{\mathrm{d}h^{(K)}} f^{(K)} \big(h^{(K-1)}, W^{(K)} \big) \\ \frac{\mathrm{d}h^{(K-1)}}{\mathrm{d}W^{(K-1)}} &= \frac{\mathrm{d}}{\mathrm{d}W^{(K-1)}} f^{(K-1)} \big(h^{(K-2)}, W^{(K-1)} \big) \end{split}$$

Compute the gradient of F w.r.t. the second last parameter $W^{(K-1)}$

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}W^{(K-1)}} &= \frac{\mathrm{d}L}{\mathrm{d}h^{(K)}} \cdot \frac{\mathrm{d}h^{(K)}}{\mathrm{d}h^{(K-1)}} \cdot \frac{\mathrm{d}h^{(K-1)}}{\mathrm{d}W^{(K-1)}} \\ \frac{\mathrm{d}h^{(K)}}{\mathrm{d}h^{(K-1)}} &= \frac{\mathrm{d}}{\mathrm{d}h^{(K)}} f^{(K)} \big(h^{(K-1)}, W^{(K)} \big) \\ \frac{\mathrm{d}h^{(K-1)}}{\mathrm{d}W^{(K-1)}} &= \frac{\mathrm{d}}{\mathrm{d}W^{(K-1)}} f^{(K-1)} \big(h^{(K-2)}, W^{(K-1)} \big) \end{split}$$

- And so on . . .
- Each $\frac{dF}{dW^{(k)}}$ can be computed locally from
 - The saved activation: $h^{(k-1)}$
 - The **adjoint**: $\frac{dL}{dh(K)} \cdot \frac{dh(K)}{dh(K-1)} \cdot \cdot \cdot \cdot \frac{dh(k+1)}{dh(k)}$

- Forward pass:
 - For k in range [1, K]
 - Store in memory $h^{(k-1)}$
 - $\begin{array}{l}
 h^{(k)} := \\
 f^{(k)}(h^{(k-1)}, W^{(k)})
 \end{array}$
 - Store in memory h^(K)
 - Return $L(h^{(K)})$

- Forward pass:
 - For k in range [1, K]
 - Store in memory $h^{(k-1)}$
 - $\begin{array}{c}
 h^{(k)} := \\
 f^{(k)}(h^{(k-1)}, W^{(k)})
 \end{array}$
 - Store in memory h^(K)
 - Return $L(h^{(K)})$

- Backward pass:
 - lacksquare $h^{(K)} :=$ retrive from memory
 - adjoint := $\frac{dL}{dh(K)}$
 - For k in range [K, 1]
 - $h^{(k-1)}$:= retrive from memory

 - adjoint := adjoint $\cdot \frac{\mathrm{d}}{\mathrm{d}h^{(k-1)}} f^{(k)}(h^{(k-1)}, W^{(k)})$
 - Return $\frac{dF}{dW^{(k)}}$ for all k

- Reverse-mode automatic differentiation
 - In the general case, the feed-forward neural network is a graph

- Reverse-mode automatic differentiation
 - In the general case, the feed-forward neural network is a graph
 - Feed-forward neural networks are always DAGs
 - Recurrent neural networks directed graphs with cycles

- Reverse-mode automatic differentiation
 - In the general case, the feed-forward neural network is a graph
 - Feed-forward neural networks are always DAGs
 - Recurrent neural networks directed graphs with cycles
 - For each node, add the **adjoints** coming from all its outgoing edges

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. \rightarrow \bigcirc

One label per sentence

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $ightarrow \mathbb{O}$

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. ightarrow \odot

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging John loves Mary → NOUN VERB NOUN
 - One label per word

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging John loves Mary → NOUN VERB NOUN
 - One label per word
 - E.g. Part-of-speech tagging, Named entity recognition, ...

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. $\rightarrow \bigcirc$

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging John loves Mary → NOUN VERB NOUN
 - One label per word
 - E.g. Part-of-speech tagging, Named entity recognition, ...
- Sequence-to-sequence
 - The cat sat on the mat \rightarrow Die Katze saß auf der Matte
 - Source and target can be have different length and different vocabularies

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. ightarrow \odot

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging John loves Mary → NOUN VERB NOUN
 - One label per word
 - E.g. Part-of-speech tagging, Named entity recognition, ...
- Sequence-to-sequence

The cat sat on the mat \rightarrow Die Katze saß auf der Matte

- Source and target can be have different length and different vocabularies
- E.g. Machine translation, text summarization, dialogue systems, ...

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. ightarrow \odot

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging

John loves Mary → NOUN VERB NOUN

- One label per word
- E.g. Part-of-speech tagging, Named entity recognition, ...
- Sequence-to-sequence The cat sat on the mat → Die Katze saß auf der Matte
 - = 0
 - Source and target can be have different length and different vocabularies
 - E.g. Machine translation, text summarization, dialogue systems, ...
- Parsing
 - Use specialized algorithms
 - Can be reduced to sequence-to-sequence

- Natural language processing tasks
 - Text classification

The world contains many terrible video game movies. This isn't one of them. ightarrow \odot

- One label per sentence
- E.g. sentiment analysis, topic classification, political polarity classification, ...
- Text tagging

John loves Mary → NOUN VERB NOUN

- One label per word
 - E.g. Part-of-speech tagging, Named entity recognition, ...
- Sequence-to-sequence

The cat sat on the mat → Die Katze saß auf der Matte

- Source and target can be have different length and different vocabularies
- E.g. Machine translation, text summarization, dialogue systems, ...
- Parsing
 - Use specialized algorithms
 - Can be reduced to sequence-to-sequence
 - Used to be more important in the past

- Natural language processing pipeline
 - Segmentation
 - Tokenization
 - 3 Vectorization
 - Machine learning modelPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Tokenization
 - 3 Vectorization
 - Machine learning model Machine learninPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - Tokenization
 - 3 Vectorization
 - Machine learning model
 - Machine learningPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide segments into tokens (words)
 - 3 Vectorization
 - Machine learning model
 - Machine learningPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide segments into tokens (words)
 - Usually rule-based, ML for some languages without spaces
 - 3 Vectorization
 - Machine learning model Machine learningPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide segments into tokens (words)
 - Usually rule-based, ML for some languages without spaces
 - 3 Vectorization
 - Map each token to an integer number in a fixed range
 - Machine learning model
 - 5 Postprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide segments into tokens (words)
 - Usually rule-based, ML for some languages without spaces
 - 3 Vectorization
 - Map each token to an integer number in a fixed range
 - Each integer corresponds to an one-hot vector
 - Machine learning modelPostprocessing

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide seaments into tokens (words)
 - Usually rule-based, ML for some languages without spaces
 - 3 Vectorization
 - Map each token to an integer number in a fixed range
 - Each integer corresponds to an one-hot vector
 - Machine learning modelPostprocessing
 - - Task dependent

- Natural language processing pipeline
 - Segmentation
 - Divide text into segments (usually sentences)
 - Rule-based heuristics (e.g. recognize newline, ".", and so on)
 - 2 Tokenization
 - Divide seaments into tokens (words)
 - Usually rule-based, ML for some languages without spaces
 - 3 Vectorization
 - Map each token to an integer number in a fixed range
 - Each integer corresponds to an one-hot vector
 - Machine learning modelPostprocessing
 - - Task dependent
 - E.g. devectorization, detokenization, ...

- Let *V* be the size of the vocabulary
- Assign to each token type t an id in [1, V]

- Let *V* be the size of the vocabulary
- Assign to each token type t an id in [1, V]
 - What is the size of the vocabulary?

- Let *V* be the size of the vocabulary
- Assign to each token type t an id in [1, V]
 - What is the size of the vocabulary?
 - It is effectively unbounded
 - Names of people, places, companies, ...
 - Number, dates, ...
 - Acronyms, codes, spelling errors, ...

- Let V be the size of the vocabulary
- Assign to each token type t an id in [1, V]
 - What is the size of the vocabulary?
 - It is effectively unbounded
 - Names of people, places, companies. ...
 - Number, dates, ...
 - Acronyms, codes, spelling errors, ...
 - A few token types are very common, but most tokens just appear once

From Wikipedia

■ Either pick a fixed size *V* (e.g. 10,000 words)

From Wikipedia

- Either pick a fixed size *V* (e.g. 10,000 words)
- Or pick a minimum word frequency Q (e.g. 10 times in the training corpus)

From Wikipedia

- Either pick a fixed size *V* (e.g. 10,000 words)
- Or pick a minimum word frequency Q (e.g. 10 times in the training corpus)
- Replace all other words with a special symbol "<unk>"

From Wikipedia

■ Input: sequence of M integer token ids $[t_1, t_2, \dots, t_M]$

From Wikipedia

Input: sequence of M integer token ids

$$[t_1,t_2,\ldots,t_M]$$

- Map to one-hot vectors $e_i \in \{0, 1\}^V$ $e_{i,i} = 1$ if $t_i = j$, 0 otherwise
- Multiply by an embedding matrix $W \in \mathcal{R}^{d_{emb} \times V}$ $h_i^{(0)} = W \cdot e_i$

From Wikipedia

Word vectorization

Input: sequence of M integer token ids

$$[t_1, t_2, \ldots, t_M]$$

- Map to one-hot vectors $e_i \in \{0, 1\}^V$ $e_{i,j} = 1$ if $t_i = j$, 0 otherwise
- Multiply by an embedding matrix $W \in \mathcal{R}^{d_{emb} \times V}$

$$h_i^{(0)} = W \cdot e_i$$

■ This is equivalent of just selecting the *i*-th row of *W*

From Wikipedia

Word vectorization

Input: sequence of M integer token ids

$$[t_1, t_2, \ldots, t_M]$$

■ Map to one-hot vectors $e_i \in \{0,1\}^V$

$$e_{i,j} = 1$$
 if $t_i = j$, 0 otherwise

■ Multiply by an embedding matrix $W \in \mathcal{R}^{d_{emb} \times V}$

$$h_i^{(0)} = W \cdot e_i$$

- This is equivalent of just selecting the *j*-th row of *W*
- Can be done efficiently with an Embedding layer

From Wikipedia

Simple linear model

Simple linear model

$$h^{(1)} = \frac{1}{M} \sum_{i=1}^{M} h_i^{(0)}$$

$$p(y) = \text{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

Simple linear model

$$h^{(1)} = \frac{1}{M} \sum_{i=1}^{M} h_i^{(0)}$$

 $p(y) = \text{softmax}(W^{out} \cdot h^{(1)} + b^{out})$

Often is a strong baseline

Simple linear model

$$h^{(1)} = \frac{1}{M} \sum_{i=1}^{M} h_i^{(0)}$$

$$p(y) = \text{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

- Often is a strong baseline
- Ignores word order (e.g. "dog bites man = man bites dog")

Simple linear model

$$h^{(1)} = \frac{1}{M} \sum_{i=1}^{M} h_i^{(0)}$$

$$p(y) = \text{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

- Often is a strong baseline
- Ignores word order (e.g. "dog bites man = man bites dog")
- Ignores relations between words

Deep neural network

Deep neural network

$$h_i^{(1)} = \text{ReLU}(\sum_{y=-s}^{s} W_y^{(1)} \cdot h_{y+i}^{(0)} + b^{(1)})$$

$$h^{(2)} = \frac{1}{M'} \sum_{i=1}^{M'} h_i^{(1)}$$

$$p(y) = \operatorname{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

■ Kernel size: 2s + 1 (e.g. 3)

Deep neural network

$$h_i^{(1)} = \text{ReLU}(\sum_{y=-s}^{s} W_y^{(1)} \cdot h_{y+i}^{(0)} + b^{(1)})$$

$$h^{(2)} = \frac{1}{M'} \sum_{i=1}^{M'} h_i^{(1)}$$

$$p(y) = \operatorname{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

- Kernel size: 2s + 1 (e.g. 3)
- At each position i the convolution computes a linear layer within a fixed window

Deep neural network

$$h_i^{(1)} = \text{ReLU}(\sum_{y=-s}^{s} W_y^{(1)} \cdot h_{y+i}^{(0)} + b^{(1)})$$

$$h^{(2)} = \frac{1}{M'} \sum_{i=1}^{M'} h_i^{(1)}$$

$$p(y) = \operatorname{softmax}(W^{out} \cdot h^{(1)} + b^{out})$$

- Kernel size: 2s + 1 (e.g. 3)
- At each position i the convolution computes a linear layer within a fixed window
- The weight matrix depends on the offset y and is shared over different i

 More concretely, ignoring ReLUs and biases

$$\begin{array}{l} \textit{h}_{2}^{(1)} = \textit{W}_{-1}^{(1)} \cdot \text{"The"} + \textit{W}_{0}^{(1)} \cdot \text{"cat"} + \textit{W}_{+1}^{(1)} \cdot \text{"sat"} \\ \textit{h}_{3}^{(1)} = \textit{W}_{-1}^{(1)} \cdot \text{"cat"} + \textit{W}_{0}^{(1)} \cdot \text{"sat"} + \textit{W}_{+1}^{(1)} \cdot \text{"on"} \\ \textit{h}_{4}^{(1)} = \textit{W}_{-1}^{(1)} \cdot \text{"sat"} + \textit{W}_{0}^{(1)} \cdot \text{"on"} + \textit{W}_{+1}^{(1)} \cdot \text{"the"} \\ & \dots \end{array}$$

 More concretely, ignoring ReLUs and biases

$$\begin{array}{l} h_2^{(1)} = W_{-1}^{(1)} \cdot \text{"The"} + W_0^{(1)} \cdot \text{"cat"} + W_{+1}^{(1)} \cdot \text{"sat"} \\ h_3^{(1)} = W_{-1}^{(1)} \cdot \text{"cat"} + W_0^{(1)} \cdot \text{"sat"} + W_{+1}^{(1)} \cdot \text{"on"} \\ h_4^{(1)} = W_{-1}^{(1)} \cdot \text{"sat"} + W_0^{(1)} \cdot \text{"on"} + W_{+1}^{(1)} \cdot \text{"the"} \\ & \dots \end{array}$$

Captures word n-grams

 More concretely, ignoring ReLUs and biases

$$\begin{split} h_2^{(1)} &= W_{-1}^{(1)} \cdot \text{"The"} + W_0^{(1)} \cdot \text{"cat"} + W_{+1}^{(1)} \cdot \text{"sat"} \\ h_3^{(1)} &= W_{-1}^{(1)} \cdot \text{"cat"} + W_0^{(1)} \cdot \text{"sat"} + W_{+1}^{(1)} \cdot \text{"on"} \\ h_4^{(1)} &= W_{-1}^{(1)} \cdot \text{"sat"} + W_0^{(1)} \cdot \text{"on"} + W_{+1}^{(1)} \cdot \text{"the"} \\ & \dots \end{split}$$

- Captures word n-grams
- We can have multiple layers, of course

Supervised machine learning

- Supervised machine learning
 - Linear classifiers
 - Logistic regression
 - Softmax regression

- Supervised machine learning
 - Linear classifiers
 - Logistic regressionSoftmax regression
 - Deep neural networks
 - Fully-connected
 - Convolutional

- Supervised machine learning
 - Linear classifiers
 - Logistic regressionSoftmax regression
 - Deep neural networks
 - Fully-connected
 - Convolutional
- Training algorithms
 - Stochastic gradient descent
 - Stochastic gradient descent with momentum
 - Backpropagation to compute gradient

- Supervised machine learning
 - Linear classifiers
 - Logistic regressionSoftmax regression
 - Deep neural networks
 - Fully-connected
 - Convolutional
- Training algorithms
 - Stochastic gradient descent
 - Stochastic gradient descent with momentum
 - Backpropagation to compute gradient
- Processing text as input
 - Preprocessing
 - Vectorization

- Unsupervised machine learning
 - Language models
 - Unsupervised word embeddings (Glove, FastText)

- Unsupervised machine learning
 - Language models
 - Unsupervised word embeddings (Glove, FastText)
- Semi-supervised machine learning
 - Fine-tuning
 - Contextual word embeddings (BERT, GPT-2)

- Unsupervised machine learning
 - Language models
 - Unsupervised word embeddings (Glove, FastText)
- Semi-supervised machine learning
 - Fine-tuning
 - Contextual word embeddings (BERT, GPT-2)
- Model architectures
 - Recurrent neural networks
 - Transformers

- Unsupervised machine learning
 - Language models
 - Unsupervised word embeddings (Glove, FastText)
- Semi-supervised machine learning
 - Fine-tuning
 - Contextual word embeddings (BERT, GPT-2)
- Model architectures
 - Recurrent neural networks
 - Transformers
- Limitations of deep learning
 - Out-of-domain generalization brittleness
 - Adversarial examples
 - Ethical issues

Resources

- Deep learning frameworks
 - PyTorch https://pytorch.org/
 - Tensorflow https://www.tensorflow.org/

Resources

- Deep learning frameworks
 - PyTorch https://pytorch.org/
 - Tensorflow https://www.tensorflow.org/
- NI P toolkits
 - AllenNLP https://allennlp.org/
 - Stanford CoreNLP https://stanfordnlp.github.io/CoreNLP/
 - NLTK https://www.nltk.org/
 - Moses (includes sentence splitters, tokenizers)
 https://github.com/moses-smt/mosesdecoder

Resources

- Deep learning frameworks
 - PyTorch https://pytorch.org/
 - Tensorflow https://www.tensorflow.org/
- NI P toolkits
 - AllenNLP https://allennlp.org/
 - Stanford CoreNLP https://stanfordnlp.github.io/CoreNLP/
 - NLTK https://www.nltk.org/
 - Moses (includes sentence splitters, tokenizers) https://github.com/moses-smt/mosesdecoder
- Repositories
 - awesome-nlp https://github.com/keon/awesome-nlp
 - Reading material
 - Tools
 - Datasets

Exam

- Write a paper (2-3 pages) on the course
 - Either summarize all the course or focus on one specific topic

Exam

- Write a paper (2-3 pages) on the course
 - Either summarize all the course or focus on one specific topic
- OR
- Write a short proposal (2-3 pages) for a project on Deep Learning for NLP that will be completed at the end of the next part

Exam

- Write a paper (2-3 pages) on the course
 - Either summarize all the course or focus on one specific topic
- OR
- Write a short proposal (2-3 pages) for a project on Deep Learning for NLP that will be completed at the end of the next part
- Submit before the start of the next part

Thanks for your attention

Thanks for your attention Course material: https://github.com/Avmb/IntroDeepLearning