december 21st, 2024

exoplanet classification

single host star mass vs planet orbit semi-major axis

- single host stars only.
- added solar system planets for references.
- HZ inner and outer boundaries are calculated according to the paper.

graph from Seager's paper:

star mass vs planet orbit semi-major axis

- include all the host stars.
- added solar system planets for references.

single host star graph (from previous slide):

neural networks classifier

• goal: classify exoplanet habitability (binary classifier)

training data processing

- join NASA 09-15-2024 data with <u>HWC data</u> from PHL.
- HWC data has a "P_HABITABLE" data field that can be used as label
- training data preprocessing:
 - remove data fields that are not relevant to training
 - drop data fields with too much missing values
 - for categorical data fields:
 - filling missing values with mode
 - encode with LabelEncoder
 - o for numeric data fields:
 - filling missing values with <u>MICE imputation</u>
 - use <u>SMOTEENN</u> to oversample and downsample to overcome sample imbalances
 hz_label=0, count=4520 (98.798%)
 hz_label=1, count=55 (1.202%)

training features and correlation analysis

correlation analysis removes highly correlated features:

- pl_orbeccen
- pl_insol
- sy_gaiamag

ends up with 17 features in the training data

17 Features in the final training data:

Data	columns (tota	l 17 columns):	
#	Column	Non-Null Count	Dtype
0	sy_pnum	8924 non-null	int64
1	pl_orbper	8924 non-null	float64
2	pl_orbsmax	8924 non-null	float64
3	pl_rade	8924 non-null	float64
4	pl_bmasse	8924 non-null	float64
5	pl_bmassprov	8924 non-null	int64
6	st_teff	8924 non-null	float64
7	st_rad	8924 non-null	float64
8	st_mass	8924 non-null	float64
9	st_met	8924 non-null	float64
10	st_metratio	8924 non-null	int64
11	st_logg	8924 non-null	float64
12	ra	8924 non-null	float64
13	dec	8924 non-null	float64
14	sy_dist	8924 non-null	float64
15	sy_vmag	8924 non-null	float64
16	sy_kmag	8924 non-null	float64

neural networks classifier

```
dnn classifier = keras.Sequential([
    layers.Dense(64, kernel_regularizer=regularizers.l2(0.01), activation='relu', input_shape=[17]),
    layers.Dropout(rate=0.5),
    layers.BatchNormalization(),
    layers.Dense(32, kernel_regularizer=regularizers.l2(0.01), activation='relu'),
    layers.Dropout(rate=0.5),
    layers.BatchNormalization(),
    layers.Dense(16, kernel_regularizer=regularizers.l2(0.01), activation='relu'),
    layers.Dropout(rate=0.5),
    layers.BatchNormalization(),
    layers.Dense(1, activation='sigmoid')])
optimizer = keras.optimizers.Adam(learning rate=0.0005)
                                                           dnn_classifier.compile(
                                                               optimizer=optimizer,
                                                               loss='binary_crossentropy',
                                                               metrics=['binary accuracy'])
                                                           dnn_classifier training history = dnn_classifier.fit(
                                                               features train, labels train,
                                                               validation_data=(features_test, labels_test),
                                                               shuffle=True,
                                                               batch size=1024,
                                                               epochs=50,
                                                               callbacks=[early_stopping])
```

neural networks classifier - initial results

future work

- explore graphs related to Seager's paper
- fine tune neural networks classifier
 - simpler model architecture: less layers, less connected units
 - hyperparameter tuning (learning rate, batch size, etc.)