Allele sharing for mixtures

Consider marker i with mixture $M_i=(A_{i1},\ldots,A_{iI})$ and corresponding allele frequencies p_{i1},\ldots,p_{iI} . The number of alleles the defendant shares with the mixture for this marker is denoted Z_i . Let $S_i=p_{i1}+\cdots+p_{iI}$ be the sum of the allele frequencies at marker i. Then a direct argument gives (calculations assume HWE and H_d)

$$P(Z_i = 0) = (1 - s_i)^2$$

 $P(Z_i = 1) = 2s_i(1 - s_i)$
 $P(Z_i = 2) = s_i^2$

Let $Z=Z_1+\cdots+Z_I$ be the total number of alleles shared and ${\bf w}=(w_1,\ldots,w_I)$ where $w_i=\{0,1,2\}$ one of these values. Then a for a $k=0,\ldots,I,\ldots,2I$,

$$w_i = \{0,1,2\}$$
 one of these values. Then a for a $k = 0, ...$

$$P(Z = k) = \sum_{\substack{\text{all permutations in } w: \sum w_i = k}} \prod_{i=1}^{I} P(Z_i = w_i)$$

Here "all permutations" means all possible ordered combinations of the elements in the vector \mathbf{w} . Note here that RMNE simplifies to $P(Z=2I)=\prod_{i=1}^{I}P(Z_i=2)$.

Implementation:

Consider that we want to calculate (Z = 16), where I = 10

- 1) First, calculate $P(Z_i = w_i)$ for each locus i and $w_i \in \{0,1,2\}$
- 2) Let $x = \{w_1, w_2, \dots, w_9, w_{10}\}$ a vector with 0,1 or 2 elements
- 3) Find all the possible sequences such that sum(x) = 16 (by recursion) and $length(x) \le 10$ by recursion
 - a. 247 sequences satisfy this.
- 4) Find the unique sequences where the loci-order does not matter (combinations), and zero is removed
 - a. 3 unique sequences satisfies this:
 - i. 1111222222
 - ii. 11222222
 - iii. 2222222
- 5) For each of the 3 sequences:
 - a. Permutate the order of the digits in each of the 3 unique sequences to obtain L permutated sequences.
 - i. L=210 for i.
 - ii. L=360 for ii.

- iii. L=45 for iii.
- b. From this we obtain a (L x I) matrix A with elements 0, 1 or 2.
- c. Construct another (L x I) matrix B with elements

i.
$$B_{l,i} = P(Z_i = A_{l,i})$$

- d. From this, calculate $S = \sum_{l} \prod_{i} B_{l,i}$
 - i. Note: $S = \sum_{l} \exp(\sum_{i} log B_{l,i})$
- 6) Sum S together for each of the 3 unique sequences to calculate P(Z=16)