Homework 2

ISyE 6420

Spring 2022

Use of unsolicited electronic and printed resources is allowed except the communication that violates Georgia Tech Academic Integrity Rules (e.g., direct communication about solutions with a third party, use of HW-solving sites, and similar). ¹

1. k-out-of-n and Weibull Lifetime. Engineering system of type k-out-of-n is operational if at least k out of n components are operational. Otherwise, the system fails. Suppose that a k-out-of-n system consists of n identical and independent elements for which the lifetime has Weibull distribution with parameters r and λ . More precisely, if T is a lifetime of a component,

$$P(T \ge t) = e^{-\lambda t^r}, t \ge 0.$$

Time t is in units of months, and consequently, rate parameter λ is in units (month)⁻¹. Parameter r is dimensionless.

Assume that n = 8, k = 4, r = 3/2 and $\lambda = 1/10$.

- (a) Find the probability that a k-out-of-n system is still operational when checked at time t=3.
- (b) At the check up at time t=3 the system was found operational. What is the probability that at that time exactly 5 components were operational?

Hint: For each component the probability of the system working at time t is $p = e^{-0.1}t^{3/2}$. The probability that a k-out-of-n system is operational corresponds to the tail probability of binomial distribution: $\mathbb{P}(X \ge k)$, where X is the number of components working. You can do exact binomial calculations or use binocdf in Octave/MATLAB (or dbinom in R, or scipy.stats.binom.cdf in Python when scipy is imported). Be careful with \le and <, because of the discrete nature of binomial distribution. Part (b) is straightforward Bayes formula.

2. Precision of Lab Measurements. The error X in measuring the weight of a chemical sample is a random variable with PDF

$$f(x) = \begin{cases} \frac{3x^2}{16}, & -2 < x < 2\\ 0, & \text{otherwise} \end{cases}$$

(a) A measurement is considered to be accurate if |X| < 0.5. Find the probability that a randomly chosen measurement can be classified as accurate.

 $^{^1}$ Course Material for ISyE6420 by Brani Vidakovic is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

- (b) Find the cumulative distribution function F(x) and sketch its graph.
- (c) The loss in thousands of dollars, which is caused by measurement error, is $Y = X^2$. Find the mean of Y (expected loss).
 - (d) Compute the probability that the loss is less than \$3.

3. 2-D Density Tasks. If

$$f(x,y) = \begin{cases} x+y, & 0 \le x \le 1; \ 0 \le y \le 1\\ 0, & \text{else} \end{cases}$$

Find:

- (a) marginal distribution $f_X(x)$.
- (b) conditional distribution f(y|x).

4. From the first page of Rand's book A Million Random Digits with 100,000 Normal Deviates.

10097	32533	76520	13586	34673	54876	80959	09117	39292	74945
37542	04805	64894	74296	24805	24037	20636	10402	00822	91665
08422	68953	19645	09303	23209	02560	15953	34764	35080	33606
99019	02529	09376	70715	38311	31165	88676	74397	04436	27659
12807	99970	80157	36147	64032	36653	98951	16877	12171	76833

The first 50 five-digit numbers form the Rand's "A Million Random Digits with 100,000 Normal Deviates" book (shown above) are rescaled to [0,1] (by dividing by 100,000) and then all numbers < 0.6 are retained. We can consider the n = 34 retained numbers as a random sample from uniform $\mathcal{U}(0,0.6)$ distribution.

0.10097	0.32533	0.13586	0.34673	0.54876	0.09117
0.39292	0.37542	0.04805	0.24805	0.24037	0.20636
0.10402	0.00822	0.08422	0.19645	0.09303	0.23209
0.02560	0.15953	0.34764	0.35080	0.33606	0.02529
0.09376	0.38311	0.31165	0.04436	0.27659	0.12807
0.36147	0.36653	0.16877	0.12171		

Pretend now that the threshold 0.6 is not known to us, that is, we are told that the sample is from uniform $\mathcal{U}(0,\theta)$ distribution, with θ to be estimated.

Let M be the maximum of the retained sample u_1, \ldots, u_{34} , in our case M = 0.54876. The likelihood is

$$f(u_1, \dots, u_{34} | \theta) = \prod_{i=1}^{34} \frac{1}{\theta} \mathbf{1}(\theta > u_i) = \theta^{-34} \mathbf{1}(\theta > M),$$

		TABLE OF	0.4410.044	D. C. T.			
		TABLE OF	KANDOM	DIGITS			1
00000	10097 32533	76520 13586		54876	80959 09		74945
00001	37542 04805	64894 74296	24805	24037	20636 10		91665
00002	08422 68953	19645 09303	23209	02560	15953 34		33606
00003	99019 02529	09376 70715		31165	88676 74		27659
00004	12807 99970	80157 36147	64032	36653	98951 16	877 12171	76833
00005	66065 74717	34072 76850	36697	36170	65813 39	885 11199	29170
00006	31060 10805	45571 82406	35303		86799 07		09732
00007	85269 77602	02051 65692	68665		73053 85		88579
00008	63573 32135	05325 47048	90553		28468 28		25624
00009	73796 45753	03529 64778		34282	60935 20		88435
			00000	0 1202	00000 20	011 00210	00430
00010	98520 17767	14905 68607	22109	40558	60970 93	433 50500	73998
00011	11805 05431	39808 27732	50725		29405 24		67851
00012	83452 99634	06288 98083	13746		18475 40		77817
00013	88685 40200	86507 58401	36766		90364 76		11062
00014	99594 67348	87517 64969	91826		93785 61		34113
	******	01011 01000	22020	00320	35705 01	20110	34113
00015	65481 17674	17468 50950	58047	76974	73039 57	186 40218	16544
00016	80124 35635	17727 08015	45318	22374	21115 78	253 14385	53763
00017	74350 99817	77402 77214	43236	00210	45521 64	237 96286	02655
00018	69916 26803	66252 29148	36936		76621 13		56418
00019	09893 20505	14225 68514		56788			14598
00020	91499 14523	68479 27686	46162	83554	94750 89	923 37089	20048
00021	80336 94598	26940 36858			53140 33		82341
00022	44104 81949	85157 47954			57600 40		06413
00023	12550 73742	11100 02040	12860		96644 89		25815

Figure 1: First page of RAND's book.

where $\mathbf{1}(A)$ is 1 if A is true, and 0 if A is false. Assume noninformative (Jeffreys') prior on θ ,

$$\pi(\theta) = \frac{1}{\theta} \mathbf{1}(\theta > 0).$$

Posterior depends on data via the maximum M and belongs to the Pareto family, $\mathcal{P}a(c,\alpha)$, with a density

$$\frac{\alpha c^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}(\theta > c).$$

- (a) What are α and c?
- (b) Estimate θ and calculate 95% equitailed credible set. Is the true value of parameter (0.6) in the credible set?

Hint: Expectation of the Pareto $\mathcal{P}a(c,\alpha)$ is $\frac{\alpha c}{\alpha-1}$ and CDF is $F(\theta) = [1 - (c/\theta)^{\alpha}] \mathbf{1}(\theta > c)$.