1a	1b	1c	2a	2b	2c	3a	3b	3c	3d	\sum
10	10	10	10	10	10			*	_	60

PROVA 2, MA 327, 27/10/2009

NOME: Carlos Polachini Zanoveli J. Turma: C RA: 090683

- 1. a) Definir transformação linear.
- b) Seja $V = \mathbb{R}^3$, defina $v_1 = (1,1,2)$, $v_2 = (1,1,1)$, $v_3 = (1,2,1)$, e $w_1 = (1,-3,0)$, $w_2 = (10,2,7)$, $w_3 = (10,7,8)$. Mostrar que existe um único operador linear $T: V \to V$ tal que $T(v_i) = w_i$, i = 1, 2, 3.
 - c) Encontrar a matriz de T na base canônica de \mathbb{R}^3 .
- 2. a) Se $T: V \to W$ é uma transformação linear, definir o núcleo e a imagem de T.
 - b) Seja $T: P_2 \rightarrow P_2$ a função definida por

$$T(a_0 + a_1x + a_2x^2) = (-2a_0 - 3a_1 + 4a_2) + (4a_0 - 10a_1 + 8a_2)x + (6a_0 - 7a_1 + 4a_2)x^2.$$

Mostrar que T é um operador linear em P_2 e encontrar a matriz de T na base 1, x, x^2 de P_2 .

- c) Encontrar o núcleo e a imagem de T. Qual o posto da matriz de T?
- 3. Responder falsa ou verdadeira a cada uma das afirmações abaixo. Justifique as suas respostas! Respostas sem a devida justificativa não serão consideradas.
- a) Se $T:V\to W$ é uma transformação linear então $T(\mathbf{0}_V)=\mathbf{0}_W$ onde 0 é o vetor nulo do respectivo espaço.
- b) Seja P_n o espaço vetorial dos polinômios em uma variável x, com coeficientes reais e de grau $\leq n$. A função $T: P_4 \to P_3$, T(f(x)) = f'(x-1), $f(x) \in P_4$, é uma transformação linear.
- c) Seja V um espaço vetorial com produto interno $\langle x,y\rangle$, e sejam $\alpha=\{v_1,v_2,\ldots,v_n\}$ e $\beta=\{w_1,w_2,\ldots,w_n\}$ duas bases ortonormais de V. Se $A=(a_{ij})$ é a matriz de mudança da base α para a base β , então para todo par (i,j) vale $a_{ij}=\langle v_j,w_i\rangle$.
- d) Se $T: \mathbb{R}^n \to \mathbb{R}^m$ é uma transformação linear injetora e $m \leq n$ então T é isomorfismo de \mathbb{R}^n e \mathbb{R}^m .