Titrimetric determination of I-Ascorbic acid (Vitamin C)

Titration method - Redox Titration Using Iodine Solution

Theory: Iodimetric titration

|-ascorbic acid

I-dehydroxyascorbic acid

$$I_2 + C_6H_8O_6 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$
vitamin C
oxidized
vitamin C

None of these substances have a distinctive color. **How will we know how much I₂ to add?**

After all the vitamin C has reacted, excess I₂ begins to react with starch indicator solution to form a colored complex

Reagents: Freshly boiled & cooled water, 0.1N iodine solution, 1 N sulfuric acid, 1% Starch solution

Procedure Sample: 120 mg of Ascorbic Acid

Titrimetric system:

Mode: Direct titration

Titrant: 0.1 N I₂ solution

Endpoint detection: Visual, using indicator (1% starch solution)

Blank solution: 50 mL of freshly boiled & cooled water, 10 mL of

1N sulfuric acid, and 3 mL of 1% starch solution

Procedure

Blank estimation: Take blank solution & titrate against 0.1 N I_2 solution. End point marked by appearance of blue color. Let the volume of titrant consume be B

Actual estimation: Dissolve the given sample (120g of Ascorbic acid) in 50 mL of freshly boiled & cooled water. Then, add 10 mL of 1N sulfuric acid, and 3 mL of 1% starch solution. Titrate against 0.1 N I₂ solution until a persistent blue color is obtained. Let the volume of titrant consume be V. Then, calculate the percentage of ascorbic acid in the given sample

OBSERVATION:

Blank Estimation :				Actual Estimation			
Burette: 0.1 N I ₂ Solution				Burelle: 0.1 N I, Solution			
Pipette: 10ml. 1 N H, S0, solution + 50 ml.				Pipette: Weigh sample + 50 ml. Freshly			
Freshly boiled and cooled water.							
Indicator: 1% starch solution. (1/4 TT)				1 N H ₂ SO ₄			
Endpoint: Appearance of blue color				Indicator: 1% starch solution. (1/4 TT) Endpoint: Appearance of blue color			
Concurrent Burette Reading = A mL				Concurrent Burette Reading = B mL			
1.B.R.	F.B.R.	Diff	Concurrent		F.B.R.	Diff	Concurrent
0	0.1	0.		0	10.1	10.1	
0	G-1	0-1	0-1	0	10	lo	10.1
0	G-1	01		0	10:1	(0.1	
0	0-1	0-1		0	10.1	(0-)	

$$I_2 + C_6H_8O_6 \rightarrow C_6H_6O_6 + 2H^+ + 2I^-$$
vitamin C

oxidized
vitamin C

1 eq $I_2 \equiv 1$ eq of Ascorbic acid

CALCULATION:

$$1N = \frac{1 \ gm.eq.}{1 \ L}$$

1000 ml 1 N I₂ Solution = 88 gm of / - ascorbic acid

1 ml 0.1 N I₂ Solution = 8.8 mg of / - ascorbic acid

(B-A) ml 0.1 N I, Solution. = 8.8 X (B-A) mg of / - ascorbic acid

D = ____ mg of / - ascorbic acid

Now percentage purity of /-ascorbic acid = 100 X D/wt of sample

RESULT:

Percentage purity of give sample of l-Ascorbic acid = $\frac{D}{120}$ x 100