DR. FRANCESCO GALLINARO TUTORAT: MAX HERWIG

Modelltheorie

Blatt 9 Abgabe: 9.01.2024, 12 Uhr

Aufgabe 1 (6 Punkte).

Sei λ eine unendliche Kardinalzahl. Ziel dieser Aufgabe ist die Konstruktion einer linearen Ordnung der Kardinalität echt größer als λ mit einer dichten Teilmenge der Größe höchstens λ .

Dazu wähle eine Kardinalzahl μ kleinstmöglich mit $2^{\mu} > \lambda$ (wieso gibt es ein solches μ ?) und betrachte die Menge

$$P = \{f : \mu \to 2 \mid \text{ es existiert kein } \alpha < \mu \text{ mit } f(\beta) = 1 \text{ für alle } \beta > \alpha \}$$

- a) Zeige, dass die Vorschrift $f < g \Leftrightarrow$ es gibt ein $\alpha < \mu$ mit $f \upharpoonright_{\alpha} = g \upharpoonright_{\alpha}$ und $f(\alpha) < g(\alpha)$ eine lineare Ordnung auf P definiert.
- b) Zeige, dass $Q = \{ f \in P \mid \text{ es existiert ein } \alpha < \mu \text{ mit } f(\beta) = 0 \text{ für alle } \beta > \alpha \}$ dicht in P (bezüglich der Topologie mit Basis aller offenen Intervalle) ist.
- c) Zeige, dass P Kardinalität $2^{\mu} > \lambda$ hat, jedoch Q höchstens der Mächtigkeit λ ist.

Aufgabe 2 (8 Punkte).

Sei T eine \mathcal{L} -Theorie und $\phi[x,y]$ eine \mathcal{L} -Formel derart, dass für jedes n aus \mathbb{N} ein Modell $\mathcal{M}_n \models T$ sowie Elemente $a_1, b_1, \ldots, a_n, b_n$ existieren mit $\mathcal{M}_n \models \phi[a_i, b_j] \Leftrightarrow i \leq j$.

- a) Zeige, dass es für jede unendliche lineare Ordnung I ein Modell $\mathcal{M} \models T$ mit einer ununterscheidbaren Folge $(a_i, b_i)_{i \in I}$ so gibt, dass $\mathcal{M} \models \phi[a_i, b_j] \Leftrightarrow i \leq j$ in I.
- b) Zeige, dass T nicht ω -stabil sein kann.

Hinweis: Setze $I = \mathbb{Q}$ und betrachte Typen über $B = \{b_q\}_{q \in \mathbb{Q}}$

c) Schließe daraus, dass die Theorie DLO in der Sprache $\mathcal{L} = \{<\}$ nie λ -stabil ist.

Hinweis: Setze *I* die Ordnung aus der Aufgabe 1.

Aufgabe 3 (6 Punkte).

Beschreibe den definierbaren und algebraischen Abschluss der endlichen Teilmengen A in den folgenden \mathcal{L} -Strukturen \mathcal{M} :

- a) Für \mathcal{M} den abzählbaren Zufallsgraph in der Sprache $\mathcal{L} = \{R\}$.
- b) Für $\mathcal{L} = \{E\}$ und \mathcal{M} den Fraïssé Limes der Klasse \mathcal{K} aller endlich erzeugten \mathcal{L} -Strukturen \mathcal{A} für die $E^{\mathcal{A}}$ eine Äquivalenzrelation ist, deren Klassen alle höchstens 3 Elemente besitzen (vgl. Blatt 8, Aufgabe 1).

Nun betrachte den Körper \mathbb{R} in der Ringsprache (siehe Blatt 2, Aufgabe 2 b)).

c) Für n ungerade sei die Formel $\phi[x, \bar{y}] = x^n + y_{n-1} \cdot x^{n-1} + \ldots + y_0 = 0$ gegeben. Zeige, dass für jedes Tupel \bar{a} aus \mathbb{R} die Elemente der Erfüllungsmenge $\phi[\mathbb{R}, \bar{a}]$ definierbar über \bar{a} sind.

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.