Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Recordemos que...

Propiedad 1

Sea V un un espacio vectorial de dimensión finita con bases \mathcal{B} y \mathcal{B}' y sea $T:V\longrightarrow V$ una transformación lineal. Si A_T la matriz de T con respecto la base \mathcal{B} y A'_T la matriz de T con respecto a la base \mathcal{B}' , entonces

$$A'_T = P^{-1}A_T P,$$

donde $P = P_{\mathcal{B} \leftarrow \mathcal{B}'}$ es la matriz de cambio de base de \mathcal{B}' a \mathcal{B} .

Observación 1

Por la propiedad 1, las matrices que representan a una transformación lineal

$$T:V\longrightarrow V$$

con respecto a bases distintas de V, son semejantes.

Matriz semejante a una matriz diagonal

Ejemplo 1

Considere la transformación lineal $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + 2y \\ 3x + 4y \end{pmatrix}$$

y las bases de \mathbb{R}^2 , $\mathcal{B} = \{(1,0),(0,1)\}$ y $\mathcal{B}' = \{(1,-1),(2,3)\}$.

- \bigcirc Encuentre la matriz de representación A_T respecto a la base \mathcal{B} .
- Encuentre la matriz de representación A'_T respecto a la base \mathcal{B}' .
- Qué relación existe entre A_T y A'_T ?

Valores propios de matrices semejantes

Definición 1

Una matriz A de $n \times n$ se dice que **diagonalizable** si es semejante a una matriz diagonal D. Es decir, existe una matriz invertible P de $n \times n$ tal que

$$P^{-1}AP = D.$$

Propiedad 2

Si A y B son matrices semejantes, entonces tienen los mismos valores propios.

Valores propios de matrices semejantes

Propiedad 2

Si A y B son matrices semejantes, entonces tienen los mismos valores propios.

Ejemplo 2

Las matrices A y D son semejantes. Halle los valores propios de A.

$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -2 & 4 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Propiedad 3

Una matriz A de $n \times n$ es diagonalizable si y sólo si tiene n vectores propios linealmente independientes.

Observación 2

Cuando A es diagonalizable, $P^{-1}AP=D$, con D una matriz diagonal cuyos elementos de la diagonal son los valores propios de A y P una matriz cuyas columnas son respectivamente los n vectores propios LI de A.

Ejemplo de una matriz diagonalizable

Ejemplo 3

Si es posible, encuentre una matriz P que diagonalice a

$$A = \left(\begin{array}{rrr} -1 & 0 & 1\\ 3 & 0 & -3\\ 1 & 0 & -1 \end{array}\right).$$

Procedimiento

Sea A una matriz $n \times n$.

- Halle n vectores propios linealmente independientes $\mathbf{p}_1, \dots, \mathbf{p}_n$ de A, con valores propios correspondientes $\lambda_1, \ldots, \lambda_n$. Si no existen n vectores propios linealmente independientes, entonces A no es diagonalizable.
- \odot Si A tiene n vectores propios linealmente $\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n$, entonces defina

$$P = (\mathbf{p}_1 \mid \mathbf{p}_2 \mid \cdots \mid \mathbf{p}_n).$$

3 La matriz diagonal $D = P^{-1}AP$ tendrá los valores propios $\lambda_1, \ldots, \lambda_n$ en su diagonal principal. El orden de los vectores propios usados para formar a P, determina el orden en que aparecen los valores propios en la diagonal de D.

Ejemplo de una matriz no diagonalizable

Ejemplo 4

Determine si la matriz A es diagonalizable.

$$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array}\right)$$

Ejemplo de una matriz diagonalizable

Ejemplo 5

Si es posible, encuentre una matriz P que diagonalice a

$$A = \left(\begin{array}{rrr} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{array}\right).$$

Condiciones para que una matriz sea diagonalizable

Propiedad 4

Si A es una matriz $n \times n$ que tiene n valores propios distintos, entonces A es diagonalizable.

Ejemplo 6

Determine si la matriz A es diagonalizable.

$$A = \left(\begin{array}{ccc} 1 & -2 & 1\\ 0 & 0 & 1\\ 0 & 0 & -3 \end{array}\right)$$

Potencia de una matriz

Ejemplo 7

Calcule A^{10} si

$$A = \left(\begin{array}{cc} 0 & 1 \\ 2 & 1 \end{array}\right).$$

Condiciones para que una matriz sea diagonalizable

Propiedad 5

Sea A una matriz $n \times n$, con n vectores propios $\lambda_1, \ldots, \lambda_n$. Los siguientes enunciados son equivalentes:

- A es diagonalizable.
- La multiplicidad algebraica de λ_i es igual a su multiplicidad geométrica de λ_i , para $i=1,\ldots,m$, donde m es el número de raíces distintas del polinomio característico $p(\lambda)$.

Diagonalización de un operador

Ejemplo 8

Considere la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dada por

$$T(x, y, z) = (x - y - z, x + 3y + z, -3x + y - z).$$

Si es posible, encuentre una base $\mathcal B$ para $\mathbb R^3$ tal que la matriz de representación de T relativa a \mathcal{B} sea diagonal.

El crecimiento poblacional de una especie de venados se estudia en base a las hembras que son clasificadas en dos etapas de vida:

• Juvenil: < 1 año

• Adulta: ≥ 1 año

Las hembras adultas procrean en promedio 1.6 hembras cada año, y cada año sobreviven $30\,\%$ de las juveniles y $80\,\%$ de las adultas. Al inicio hay 20 juveniles y 100 adultas.

 ${\color{red} \bullet}$ Determine la población de hembras en cualquier año k.

Solución.

 j_k : número de hembras juveniles en el año k (desde el inicio del estudio). a_k : número de hembras adultas en el año k (desde el inicio del estudio).

• Al inicio:

$$j_0 = 20$$
 y $a_0 = 100$

• Población 1 año después:

$$\begin{array}{lll} j_1 & = & 0j_0 + 1.6a_0 \\ a_1 & = & 0.3j_0 + 0.8a_0 \end{array} \Leftrightarrow \begin{pmatrix} j_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} 20 \\ 100 \end{pmatrix}$$

Población 1 año después:

$$\begin{array}{cccc}
j_1 &=& 0j_0 + 1.6a_0 \\
a_1 &=& 0.3j_0 + 0.8a_0
\end{array} \Leftrightarrow \begin{pmatrix} j_1 \\ a_1 \end{pmatrix} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} 20 \\ 100 \end{pmatrix}$$

• Población 2 años después:

$$j_2 = 0j_1 + 1.6a_1$$
 \Leftrightarrow $\binom{j_2}{a_2} = \binom{0}{0.3} \binom{1.6}{0.8} \binom{j_1}{a_1}$

$$\Leftrightarrow \quad \begin{pmatrix} j_2 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 \end{pmatrix}^2 \begin{pmatrix} 20 \\ 100 \end{pmatrix}$$

 \bullet Población kaños después:

$$\mathbf{u}_k = \begin{pmatrix} j_k \\ a_k \end{pmatrix} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 \end{pmatrix}^k \begin{pmatrix} 20 \\ 100 \end{pmatrix} = A^k \mathbf{u}_0$$

Problema de la diagonalización

Si A tiene vectores propios \mathbf{v}_1 y \mathbf{v}_2 , con correspondientes valores propios λ_1 y λ_2 , entonces

$$\mathbf{u}_0 = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 \qquad \Longrightarrow \qquad A^k \mathbf{u}_0 = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2.$$

• El polinomio característico de la matriz de transición A:

$$p(\lambda) = |A - \lambda I| = \begin{vmatrix} -\lambda & 1.6 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = (-\lambda)(0.8 - \lambda) - 0.48 = \lambda^2 - 0.8\lambda - 0.48$$

• Los valores propios de la matriz de transición A:

$$\lambda^2 - 0.8\lambda - 0.48 = (\lambda - 1.2)(\lambda + 0.4) = 0 \implies \lambda = 1.2 \text{ y } \lambda = -0.4$$

• Espacio propio $E_{\lambda_1} = E_{1.2} = N_{A-1.2I}$:

$$(A-1.2I \mid \mathbf{0}) = \begin{pmatrix} -1.2 & 1.6 & 0 \\ 0.3 & -0.4 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 0.3 & -0.4 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

• Espacio propio $E_{\lambda_2} = E_{-0.4} = N_{A+0.4I}$:

$$(A+0.4I \mid \mathbf{0}) = \begin{pmatrix} 0.4 & 1.6 \mid 0 \\ 0.3 & 1.2 \mid 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 4 \mid 0 \\ 0 & 0 \mid 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

• Condiciones iniciales del problema:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{u}_0 \quad \Rightarrow \quad \begin{pmatrix} 4 & -4 & 20 \\ 3 & 1 & 100 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{105}{4} \\ 0 & 1 & \frac{85}{4} \end{pmatrix}$$

• Valores propios:

$$\lambda_1 = 1.2$$
 y $\lambda_2 = -0.4$

• Vectores propios:

$$\mathbf{v}_1 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v}_2 = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

 $\bullet A^{\mathbf{k}}\mathbf{u}_0 = c_1 \lambda_1^{\mathbf{k}} \mathbf{v}_1 + c_2 \lambda_2^{\mathbf{k}} \mathbf{v}_2:$

$$\mathbf{u}_{k} = \begin{pmatrix} j_{k} \\ a_{k} \end{pmatrix} = A^{k} \mathbf{u}_{0} = \frac{105}{4} (1.2)^{k} \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \frac{85}{4} (-0.4)^{k} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

El crecimiento poblacional de una especie de venados se estudia en base a las hembras que son clasificadas en dos etapas de vida:

• Juvenil: < 1 año

• Adulta: ≥ 1 año

Las hembras adultas procrean en promedio 1.6 hembras cada año, y cada año sobreviven $30\,\%$ de las juveniles y $80\,\%$ de las adultas. Al inicio hay 20 juvenilese y 100 adultas.

¿Cuál es la población 10 años después?

$$\begin{pmatrix} j_k \\ a_k \end{pmatrix} = \frac{105}{4} (1.2)^{\frac{k}{6}} \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \frac{85}{4} (-0.4)^{\frac{k}{6}} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$$

$$p_k = j_k + a_k = 7 \cdot \frac{105}{4} \cdot 1.2^k - 3 \cdot \frac{85}{4} \cdot (-0.4)^k$$

$$p_{10} = j_{10} + a_{10} = 7 \cdot \frac{105}{4} \cdot 1.2^{10} - 3 \cdot \frac{85}{4} \cdot 0.4^{10} \approx 1138$$

El crecimiento poblacional de una especie de venados se estudia en base a las hembras que son clasificadas en dos etapas de vida:

• Juvenil: < 1 año

• Adulta: ≥ 1 año

Las hembras adultas procrean en promedio 1.6 hembras cada año, y cada año sobreviven 30 % de las juveniles y 80 % de las adultas. Al inicio hay 20 juvenilese v 100 adultas.

¿Qué ocurre con la población a medida que pasan los años?

$$p_k = j_k + a_k = 7 \cdot \frac{105}{4} \cdot 1.2^k - 3 \cdot \frac{85}{4} \cdot (-0.4)^k$$

$$p_{\mathbf{k}} = 7 \cdot \frac{105}{4} \cdot 1.2^{\mathbf{k}} - 3 \cdot \frac{85}{4} (-0.4)^{\mathbf{k}} \rightarrow \infty$$
 cuando $\mathbf{k} \rightarrow \infty$

El crecimiento poblacional de una especie de venados se estudia en base a las hembras que son clasificadas en dos etapas de vida:

• Juvenil: < 1 año

• Adulta: > 1 año

Las hembras adultas procrean en promedio 1.6 hembras cada año, y cada año sobreviven $30\,\%$ de las juveniles y $80\,\%$ de las adultas. Al inicio hay $20\,$ juvenilese y 100 adultas.

Se debe controlar el crecimiento de la especie cazando un porcentaje de adultos. ¿Cuánto debe ser el porcentaje de caza para que la población se mantenga estable?

Solución.

h: proporción de caza de venados hembra de edad adulta.

• Población de hembras adultas k años después:

$$a_k = 0.3 j_{k-1} + (0.8 - h) a_{k-1}$$

• La matriz de transición resultante es:

$$A_{\mathbf{h}} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 - \mathbf{h} \end{pmatrix}$$

 \bullet Población de hembras adultas k años después:

$$a_k = 0.3 j_{k-1} + (0.8 - \frac{h}{}) a_{k-1}$$

• La matriz de transición resultante es:

$$A_{h} = \begin{pmatrix} 0 & 1.6 \\ 0.3 & 0.8 - h \end{pmatrix}$$

Condición de estabilidad para la población

Suponga que A_h tiene valores propios λ_1 y λ_2 .

 \circ Si $|\lambda_1| < 1$ y $|\lambda_2| < 1$, entonces

$$\mathbf{u}_k = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 \to \mathbf{0}$$
 cuando $k \to \infty$

y así la población tiende a extinguirse.

- \bullet Si $|\lambda_i|>1$ para algún i, entonces $\lambda_i\to\infty$ cuando $k\to\infty$ y en tal caso la población aumenta sin control.
- Para que la población se mantenga estable se necesita que $|\lambda_i| = 1$.

• El polinomio característico de la matriz de transición A_h :

$$p(\lambda) = |A_h - \lambda I| = \begin{vmatrix} -\lambda & 1.6 \\ 0.3 & 0.8 - h - \lambda \end{vmatrix} = \lambda^2 - (0.8 - h)\lambda - 0.48$$

• Los valores propios de la matriz de transición A_h :

$$\lambda = \frac{0.8 - \frac{h}{h} \pm \sqrt{(0.8 - \frac{h}{h})^2 - 4 \cdot 1 \cdot (-0.48)}}{2}$$

• Valor de h para la estabilidad de la población:

$$\frac{0.8 - h + \sqrt{(0.8 - h)^2 - 4 \cdot 1 \cdot (-0.48)}}{2} = 1$$

$$\sqrt{(0.8 - h)^2 - 4 \cdot 1 \cdot (-0.48)} = 1.2 + h$$

$$(0.8 - h)^2 - 4 \cdot 1 \cdot (-0.48) = (1.2 + h)^2$$

$$\vdots$$

$$h = 0.28 = 2$$

La sucesión de Fibonacci

En 1202, Leonardo Fibonacci, también llamado Leonardo de Pisa planteó el siguiente problema: un par de conejos comienzan a procrear a la edad de un mes, y a partir de ese momento tienen como descendencia una nueva pareja de conejos cada mes. Si comenzamos con un par de conejos y ninguno de los conejos nacidos a partir de este par muere, ¿cuántos pares de conejos tendremos al principio de cada mes?

Solución.

 x_n : número de parejas de conejos al inicio del mes n.

- •: pareja que no puede procrear.
- •: pareja que puede procrear.

 $\mathbf{x}_n = A^n \mathbf{x}_0$

- : pareja que no puede procrear.
- : pareja que puede procrear.

$$x_{n+1} = x_n + x_{n-1}$$

 $x_n = x_n, \quad n = 1, 2, \dots$

$$\begin{pmatrix} x_{n+1} \\ x_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_n \\ x_{n-1} \end{pmatrix} \implies \mathbf{x}_n = A \mathbf{x}_{n-1}$$

$$\mathbf{x}_{1} = A\mathbf{x}_{0}$$

$$\mathbf{x}_{2} = A\mathbf{x}_{1} = A(A\mathbf{x}_{0}) = A^{2}\mathbf{x}_{0}$$

$$\mathbf{x}_{3} = A\mathbf{x}_{2} = A(A^{2}\mathbf{x}_{0}) = A^{3}\mathbf{x}_{0} \implies \begin{pmatrix} x_{n+1} \\ x_{n} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n} \begin{pmatrix} x_{1} \\ x_{0} \end{pmatrix}$$

$$\vdots$$

Ejemplo 1

Considere la sucesión de Fibonacci

$$1, 1, 2, 3, 5, 8, 13, \dots x_n, \dots$$

- \odot Encuentre una fórmula explícita para hallar el término x_n de la sucesión de Fibonacci
- \bigcirc ¿A qué valor se aproxima x_{n+1}/x_n cuando $n \to \infty$?

Cadenas de Markov

Cadena de Markov

Un equipo de investigación de mercado realiza un estudio controlado para determinar cuáles marcas de celular prefieren las personas. La muestra consiste de 200 personas, y a cada una se le pide probar dos marcas (Samsung y iPhone) durante un periodo de varios meses. Con base en las respuestas de la encuesta, el equipo de investigación compila las siguientes estadísticas acerca de las preferencias de celulares.

- \bullet De quienes usan Samsung en cualquier mes, 70 % siguen usándolo el mes siguiente, mientras que el 30 % cambia a iPhone.
- \bullet De quienes usan i Phone en cualquier mes, 80 % siguen usándolo el mes siguiente, mientras que el 20 % cambian a Samsung.

Suponga que cuando inicia el estudio 120 personas usan Samsung y 80 personas usan iPhone. ¿Cuántas personas usarán cada marca 1 mes después? ¿Y 2 meses después? ¿Y un año después?

 $\begin{array}{ccc} & & \text{Presente} \\ \mathbf{S} & \mathbf{i} \\ \\ \text{Siguiente} & \mathbf{s} \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \\ \end{array} \right)$

$$\begin{array}{ccc} & & \frac{\text{Presente}}{s} & \\ & s & i \\ \\ \text{Siguiente} & s \left(\begin{array}{ccc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right) \end{array}$$

• Número de usuarios de Samsung y de iphone resp., despues de 1 mes:

$$\begin{array}{lll} 0.70(120) \, + \, 0.20(80) \, = \, 100 \\ 0.30(120) \, + \, 0.80(80) \, = \, 100 \end{array} \quad \Leftrightarrow \quad \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 120 \\ 80 \end{pmatrix} = \begin{pmatrix} 100 \\ 100 \end{pmatrix}$$

• Número de usuarios de Samsung y de iphone resp., despues de 2 meses:

$$\begin{array}{lll} 0.70(100) \, + \, 0.20(100) \, = \, 90 \\ 0.30(100) \, + \, 0.80(100) \, = \, 110 \end{array} \quad \Leftrightarrow \quad \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 90 \\ 100 \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}^2 \begin{pmatrix} 120 \\ 80 \end{pmatrix} = \begin{pmatrix} 90 \\ 100 \end{pmatrix}$$

$$\begin{array}{ccc} & & \mathbf{Presente} \\ & \mathbf{S} & \mathbf{i} \\ \\ \mathbf{Siguiente} & \mathbf{S} \left(\begin{array}{ccc} 0.7 & 0.2 \\ 0.3 & 0.8 \end{array} \right) \end{array}$$

• Número de usuarios de Samsung y de iphone resp., despues de 2 meses:

$$\begin{array}{cccc}
0.70(100) + 0.20(100) = 90 \\
0.30(100) + 0.80(100) = 110
\end{array} \Leftrightarrow \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 90 \\ 100 \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}^2 \begin{pmatrix} 120 \\ 80 \end{pmatrix} = \begin{pmatrix} 90 \\ 100 \end{pmatrix}$$

 $\bullet\,$ Número de usuarios de Samsung y de iphone resp., despues de k meses:

$$\mathbf{x}_k = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}^k \begin{pmatrix} 120 \\ 80 \end{pmatrix} = P^k \mathbf{x}_0$$

• Los vectores \mathbf{x}_k se denominan vectores de estado:

$$\mathbf{x}_k = P^k \, \mathbf{x}_0 = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}^k \begin{pmatrix} 120 \\ 80 \end{pmatrix}$$

• La matriz P se llama matriz de transición:

$$P = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}$$

- El anterior es un ejemplo simple de una cadena de Markov (finita): representa un proceso evolutivo que consiste de un número finito de estados. En cada paso o punto en el tiempo, el proceso puede estar en cualquiera de los estados; en el paso siguiente, el proceso puede permanecer en su estado presente o cambiar a uno de los otros estados.
- El estado hacia donde avanza el proceso en el siguiente paso y la probabilidad de hacerlo, depende solamente del estado presente y no de la historia pasada del proceso.

• En lugar de considerar los usuarios de Samsung y iPhone al inicio,

$$\mathbf{x}_0 = \begin{pmatrix} 120 \\ 80 \end{pmatrix}$$

podemos considerar los porcentajes de usuarios al inicio:

$$\mathbf{x}_0 = \begin{pmatrix} \frac{120}{200} \\ \frac{80}{200} \end{pmatrix} = \begin{pmatrix} 0.60 \\ 0.40 \end{pmatrix}$$

• En tal caso:

$$\mathbf{x}_1 = P \, \mathbf{x}_0 = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 0.60 \\ 0.40 \end{pmatrix} = \begin{pmatrix} 0.50 \\ 0.50 \end{pmatrix}$$

- Los vectores \mathbf{x}_k así generados tienen dos propiedades:
 - Sus entradas son no negativas
 - La suma de todas sus entradas es igual a 1.

A estos vectores se les llama vectores de probabilidad.

 Las probabilidades de transición dentro de la matriz de transición P se ordenan así: puede considerar a las columnas como el estado presente y las filas como estado siguiente:

$$P = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}$$
 Siguiente Siguiente

- ullet Las columnas de P son vectores de probabilidad (cualquier matriz cuadrada con esta propiedad se llama $matriz\ estoc\'astica$).
- Si P es matriz estocástica, entonces P^2 es estocástica (ejercicio).
- \bullet ¿Es P^2 una matriz de transición del mismo tipo? ¿Qué representan sus entradas?

- \bullet Sea $\left(P^{k}\right)_{ij}$ la entrada ij de $P^{k}.$ ¿Qué representa $\left(P^{k}\right)_{ij}?$
- ¿Qué representa $(P^2)_{21}$?

$$P^{2} = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} = \begin{pmatrix} 0.55 & 0.30 \\ 0.45 & 0.70 \end{pmatrix}$$

- Del estado A se puede llegar al estado B dos meses después de dos maneras distintas (marcadas con *)
- La persona puede seguir usando A después de 1 mes y luego cambiar a B con probabilidad 0.7(0.3) = 0.21
- La persona puede cambiar a B después de 1 mes y luego seguir con B con probabilidad 0.3(0.8) = 0.24.
- La suma de estas probabilidades produce una probabilidad total de 0.45.

- \bullet Del estado A se puede llegar al estado B dos meses después de dos maneras distintas (marcadas con *)
- La persona puede seguir usando A después de 1 mes y luego cambiar a B con probabilidad 0.7(0.3) = 0.21
- La persona puede cambiar a B después de 1 mes y luego seguir con B con probabilidad 0.3(0.8) = 0.24.
- La suma de estas probabilidades produce una probabilidad global de 0.45.

Propiedad 1

 $(P^k)_{ij}$ es la probabilidad de cambiar del estado j al estado i en k transiciones.

Hallar el número de usuarios de Samsung y iPhone en el mes k:

$$\mathbf{x}_k = P^k \, \mathbf{x}_0 = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix}^k \begin{pmatrix} 120 \\ 80 \end{pmatrix} = ?$$

Cadenas de Markov 00000000000000

Solución.

• El polinomio característico de la matriz de transcición A:

$$p(\lambda) = |P - \lambda I| = \begin{vmatrix} 0.7 - \lambda & 0.2 \\ 0.3 & 0.8 - \lambda \end{vmatrix} = \lambda^2 - 1.5\lambda + 0.5$$

• Los valores propios de la matriz de transcición A:

$$\lambda^2 - 1.5\lambda + 0.5 = (\lambda - 0.5)(\lambda - 1) = 0 \implies \lambda_1 = 0.5 \text{ y } \lambda_2 = 1$$

• Espacio propio $E_{\lambda_1} = E_{0.5} = N_{P-0.5I}$:

$$(A - 0.5I \mid \mathbf{0}) = \begin{pmatrix} 0.2 & 0.2 & | & 0 \\ 0.3 & 0.3 & | & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

• Espacio propio $E_{\lambda_2} = E_1 = N_{P-I}$:

$$(A - I \mid \mathbf{0}) = \begin{pmatrix} -0.3 & 0.2 & 0 \\ 0.3 & -0.2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

• Condiciones iniciales del problema:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{x}_0 \quad \Rightarrow \quad \begin{pmatrix} -1 & 2 & | & 120 \\ 1 & 3 & | & 80 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & | & -40 \\ 0 & 1 & | & 40 \end{pmatrix}$$

Información obtenida

• Valores propios:

$$\lambda_1 = 0.5$$
 y $\lambda_2 = 1$

• Vectores propios:

$$\mathbf{v}_1 = \begin{pmatrix} -1\\1 \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v}_2 = \begin{pmatrix} 2\\3 \end{pmatrix}$$

 $A^{\mathbf{k}} \mathbf{x}_0 = c_1 \lambda_1^{\mathbf{k}} \mathbf{v}_1 + c_2 \lambda_2^{\mathbf{k}} \mathbf{v}_2$

$$\mathbf{x}_{k} = A^{k} \mathbf{x}_{0} = -40(0.5)^{k} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + 40 \begin{pmatrix} 2 \\ 3 \end{pmatrix} = -\frac{40}{2^{k}} \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 80 \\ 120 \end{pmatrix}$$

Vector estacionario

Observación 1

Los vectores de estado \mathbf{x}_k se "aproximan" al vector $\mathbf{x} = (80, 120)$:

$$\mathbf{x}_k = -\frac{40}{2^k} \begin{pmatrix} -1\\1 \end{pmatrix} + \begin{pmatrix} 80\\120 \end{pmatrix} \rightarrow \begin{pmatrix} 80\\120 \end{pmatrix}$$
 cuando $k \rightarrow \infty$

Cadenas de Markov

$$P \mathbf{x} = \begin{pmatrix} 0.70 & 0.20 \\ 0.30 & 0.80 \end{pmatrix} \begin{pmatrix} 80 \\ 120 \end{pmatrix} = \begin{pmatrix} 80 \\ 120 \end{pmatrix} = \mathbf{x}$$

Definición (vector de estado estacionario)

Un vector de estado \mathbf{x} tal que $P\mathbf{x} = \mathbf{x}$ se llama vector de estado estacionario.

Observación 2

- Toda cadena de Markov con matriz estocástica positiva (todas sus entradas son positivas), tiene un único vector de probabilidad estacionario.
- ¿Cómo hallar el vector de probabilidad de estado estacionario?

Cadenas de Markov 000000000000

Vector estacionario

Ejemplo 2

Halle el vector de probabilidad que es vector estacionario para esta cadena de Markov.

Solución.

• \mathbf{x} vector estacionario $\iff P\mathbf{x} = \mathbf{x} \iff (P - I)\mathbf{x} = \mathbf{0}$.

$$\bullet \ (P - I \mid \mathbf{0}) = \begin{pmatrix} -0.3 & 0.2 \mid 0 \\ 0.3 & -0.2 \mid 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 3 & -2 \mid 0 \\ 0 & 0 \mid 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{x} = \begin{pmatrix} \frac{2}{3}t \\ t \end{pmatrix}$$

• **x** es vector de probabilidad $\Leftrightarrow \frac{2}{3}t + t = 1 \Leftrightarrow \mathbf{x} = \begin{pmatrix} \frac{2}{5} \\ \frac{3}{2} \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.6 \end{pmatrix}$

Clara Mejía Álgebra lineal elemental y aplicaciones

Ude@, 2006.

Stanley Grossman

Álgebra lineal

McGraw-Hill Interamericana, Edición 8, 2019.

David Poole

Álgebra lineal: una introducción moderna Cengage Learning Editores, 2011.

Bernard Kolman

Álgebra lineal Pearson Educación, 2006.

Ron Larson

Fundamentos de Álgebra lineal Cengage Learning Editores, 2010.

