

This course was developed as a part of the VLIR-UOS Cross-Cutting project s:

•Statistics: 2011-2016, 2017.

•Statistics: 2017.

Statistics for development: 2018-2020.

The >eR-Biostat initiative
Making R based education materials in
statistics accessible for all

An introduction to R: Short Version (2017)

Part 4: statistical modeling 2

Developed by

Dan Lin (Hasselt University) and Ziv Shkedy (Hasselt University)

LAST UPDATE: 15/10/2017

ER-BioStat

Overview

- 1. Two-way ANOVA.
- 2. More about two-way ANOVA.
- 3. More about linear regression.

Statistical modeling: Two-way ANOVA

Model formulation

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \varepsilon_{ijk}$$

- μ Overall mean
- α_i Main effect of factor A
- β_j Main effect of factor B
- $\alpha \beta_{ij}$ Interaction effect
- \mathcal{E}_{ijk} Random error

Example 1: Reading the data

```
> spwh3<-read.table('c:\\projects\\wseda\\spwh3.txt',
   header=FALSE,na.strings="NA", dec=".")
> names(spwh3)<-c("id","y","x1","gender")</pre>
```

Example 1: The data

Both x1 and gender are numerical objects !!!!

For an ANOVA model the independent variables are suppose to be factors.

Example 2: The data

```
y f1 f2
   10 A1 B1
  11 A1 B1
3
   12 A1 B1
4 9 A2 B1
5 7 A2 B1
6 6 A2 B1
7 11 A1 B2
  13 A1 B2
8
9
   14 A1 B2
10 7 A2 B2
11 5 A2 B2
12 8 A2 B2
```

Two factors: f1 and f2

Three observations per combination.

Which null hypotheses we test?

$$H_0: \alpha_1 = \alpha_2$$
 No treatment effect of factor A

$$H_0: \beta_1 = \beta_2$$
 No treatment effect of factor B

No interaction effects

$$H_0: \alpha\beta_{11} = \alpha\beta_{12} = \alpha\beta_{21} = \alpha\beta_{22}$$

Example 1: A model without interaction

Example 1: A model with interaction

```
fit.2<-aov(y~as.factor(x1)+as.factor(gender)
+as.factor(x1)*as.factor(gender))
```

```
> anova(fit.2)
Analysis of Variance Table
Response: y
                               Df Sum Sq Mean Sq F value Pr(>F)
                                2 1034.81 517.40 2171.959 <2e-16
as.factor(x1)
as.factor(gender)
                                1 1509.98 1509.98 6338.599 <2e-16 ***
as.factor(x1):as.factor(gender)
                                    0.04
                                            0.02
                                                    0.091 0.9131
Residuals
                               54 12.86 0.24
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
>
```

Example 1: Testing model 1 versus model 2

> anova(fit.1,fit.2)

```
Analysis of Variance Table
Model 1: y ~ as.factor(x1) + as.factor(gender)
Model 2: y ~ as.factor(x1) + as.factor(gender) + as.factor(x1) * as.factor(gender)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 56 12.9073
2 54 12.8639 2 0.0434 0.091 0.9131
```

F-test for the interaction

Example 2: A model without interaction

```
> fit.1<-aov(y~f1+f2)</pre>
> anova(fit.1)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
f1
          1 70.083 70.083 31.4066 0.0003325 ***
         1 0.750 0.750 0.3361 0.5763122
f2
Residuals 9 20.083 2.231
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

Example 2: A model with interaction

```
> fit.2 < -aov(v \sim f1 + f2 + f1 * f2)
> anova(fit.2)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
                                        Pr(>F)
f1
           1 70.083 70.083 35.0417 0.0003539
f2
           1 0.750 0.750 0.3750 0.5572922
f1:f2
           1 4.083 4.083 2.0417 0.1909016
Residuals 8 16.000 2.000
                               '**' 0.01 '*' 0.05 '.' 0.1 ' '
                0 '***' 0.001
Signif. codes:
```

Example 2: Testing model 1 versus model 2

> anova(fit.1,fit.2)

```
Analysis of Variance Table

Model 1: y ~ f1 + f2

Model 2: y ~ f1 + f2 + f1 * f2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 9 20.083
2 8 16.000 1 4.0833 2.0417 0.1909
```

F-test for the interaction

Example 2: means by factor level

```
> tapply(y,f1,mean)
          A2
11.83333 12.00000
                Factor 1
> tapply(y,f2,mean)
     B1
            B2
9.166667 14.666667
                Factor 2
> ind<-list(f1,f2)
> ind
[[1]]
[[2]]
> m<-tapply(y,ind,mean)</pre>
> m
       B1
             B2
                  Cell means
  11.000000 12.66667
   7.333333 16.66667
```

Interaction plot: Example 2

Cell means

B1 B2 A1 11.000000 12.666667 A2 7.333333 6.666667

Example 3: The data

```
y f1 f2
   10 A1 B1
  11 A1 B1
   12 A1 B1
4 9 A2 B1
5 7 A2 B1
6 6 A2 B1
 11 A1 B2
  13 A1 B2
9
   14 A1 B2
  17 A2 B2
11 15 A2 B2
12 18 A2 B2
```

Two factors: f1 and f2

Three observations per combination.

Example 3: A model with interaction

```
> fit.2 < -aov(v \sim f1 + f2 + f1 * f2)
> anova(fit.2)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
                                        Pr(>F)
f1
              0.083 0.083 0.0417 0.8433536
f2
           1 90.750 90.750 45.3750 0.0001471
f1:f2 1 44.083 44.083 22.0417 0.0015517
Residuals 8 16.000 2.000
                               '**' 0.01 '*' 0.05 '.' 0.1 ' '
                0 '***
                        0.001
Signif. codes:
```

Example 3: means by factor level

```
> tapply(y,f1,mean)
          A2
11.83333 12.00000
                Factor 1
> tapply(y,f2,mean)
     B1
            B2
9.166667 14.666667
                Factor 2
> ind<-list(f1,f2)
> ind
[[1]]
[[2]]
> m<-tapply(y,ind,mean)</pre>
> m
       B1
             B2
                  Cell means
  11.000000 12.66667
   7.333333 16.66667
```

Interaction plot: Example 3

Cell means

B1 B2 A1 11.000000 12.66667 A2 7.333333 16.66667

Statistical modeling: More about two-way ANOVA

Reading the data

```
> spwh3<-read.table('c:\\projects\\wseda\\spwh3.txt',
header=FALSE,na.strings="NA", dec=".")
> names(spwh3)<-c("id","y","x1","gender")
> attach(spwh3)
```

Two-way ANOVA model

```
> fit.2<-aov(y~as.factor(x1)+as.factor(gender)+as.factor(x1)*as.factor(gender))</pre>
> anova(fit.2)
Analysis of Variance Table
Response: y
                               Df Sum Sq Mean Sq F value Pr(>F)
as.factor(x1)
                                2 1034.81 517.40 2171.959 <2e-16 ***
as.factor(gender)
                                1 1509.98 1509.98 6338.599 <2e-16 ***
as.factor(x1):as.factor(gender)
                                    0.04
                                            0.02
                                                    0.091 0.9131
Residuals
                               54 12.86 0.24
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '1
```

Stepwise procedure

```
> slm1 <- step(fit.2)</pre>
Start: ATC=-80.4
y ~ as.factor(x1) + as.factor(gender) + as.factor(x1) * as.factor(gender)
                                Df Sum of Sq RSS
                                                        AIC
                                       0.043 12.907 -84.193
- as.factor(x1):as.factor(gender) 2
                                              12.864 -80.395
<none>
Step: AIC=-84.19
v ~ as.factor(x1) + as.factor(gender)
                   Df Sum of Sq
                                 RSS
                                          AIC
                                 12.91 -84.19
<none>
- as.factor(x1) 2 1034.81 1047.72 175.60
- as.factor(gender) 1 1509.98 1522.89 200.04
```

Stepwise procedure

Statistical modeling: More about Linear regression

Reading the data

```
> spwh2<-read.table('c:\\projects\\wseda\\spwh2.txt',</pre>
header=FALSE,
                              ,na.strings="NA", dec=".")
+
> dim(spwh2)
[1] 100 5
> names(spwh2)<-c("id","y","x1","x2","x3")</pre>
> attach(spwh2)
        The following object(s) are masked from spwh2 (
position 3 ):
         id x1 x2 x3 y
```

Fitting two models

Testing model 1 versus model 2

```
> anova(fit.1,fit.2)
Analysis of Variance Table

Model 1: y ~ x1 + x2
Model 2: y ~ x1 + x2 + x3
  Res.Df  RSS Df Sum of Sq   F  Pr(>F)
1    97 586.74
2    96 20.77 1  565.97 2615.4 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1</pre>
```

- > par(mfrow=c(2,2))
 > plot(fit.2)

Single terms deletions

```
> drop1(fit.2, test="F")
Single term deletions
Model:
y \sim x1 + x2 + x3
      Df Sum of Sq RSS AIC F value Pr(F)
                    20.8 -149.1
<none>
             76.6 97.4 3.4 354.21 < 2.2e-16
x1
       1 7865.3 7886.1 442.8 36347.01 < 2.2e-16 ***
x2
           566.0 586.7 182.9 2615.44 < 2.2e-16 ***
x3
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

AIC and likelihood

```
> AIC(fit.2)
[1] 136.6403
> logLik(fit.2)
'log Lik.' -63.32017 (df=5)
```