Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ

по дисциплине «Представление и обработка информации в интеллектуальных системах» на тему
Двусвязный неориентированный граф

Выполнил: Е. Д. Васильков

Студент группы 121703

Проверил: А. Г. Загорский

Содержание

Bı	ведение																			3
1	Список понятий .																			4
2	Алгоритм																			11
3	Тестовые примеры																			12
38	аключение																			26
Cı	писок использованні	ЫХ	и	C	ГС)Ч	ΗΙ	1К	OE	3										26

Введение

Двусвязный неориентированый граф — это связный граф, в котором отсутвуют точки сочленения и удаление любой вершины не приводит к потере связности. Граф называется связным, если между каждой парой вершин существует ребро. Вершина в неориентированном связном графе является точкой сочленения, если ее удаление разъединяет граф.

По соглашению две вершины, соединенные ребром, образуют двусвязный граф. Для графа с более чем двумя вершинами указанные выше свойства должны присутствовать, чтобы он был двусвязным.

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей.

Задача: Определить, является ли неориентированный граф двусвязным.

1 Список понятий

1. Для наглядности продемонстрирована иерархия различных типов графовых структур рассмотренных далее (Это неполная иерархия из OSTIS GT)

Рисунок 1.1 – Иерархия графовых структур

- 2. Графовая структура (абсолютное понятие) это такая одноуровневая реляционная структура, объекты которой могут играть роль либо вершины, либо связки:
 - 2.1. Вершина (относительное понятие, ролевое отношение).
 - 2.2. Связка (относительное понятие, ролевое отношение).

Рисунок 1.2 – Графовая структура

- 3. Гиперграф (абсолютное понятие) это такая графовая структура, в которой связки могут связывать только вершины:
 - 3.1. Гиперсвязка (относительное понятие, ролевое отношение);
 - 3.2. Гипердуга (относительное понятие, ролевое отношение) ориентирванная гиперсвязка.
 - 3.3. Гиперребро (относительноепонятие, ролевоеотношение) неориентированная гиперсвязка.

Рисунок 1.3 – Гиперграф

- 4. Псевдограф (абсолютное понятие) это такой гиперграф, в котором все связки должны быть бинарными:
 - 4.1. Бинарная связка (относительное понятие, ролевое отношение) гиперсвязка арности 2;
 - 4.2. Ребро (относительное понятие, ролевое отношение) неориентированная гиперсвязка;

- 4.3. Дуга (относительное понятие, ролевое отношение) ориентированная гиперсвязка;
- 4.4. Петля (относительное понятие, ролевое отношение) бинарная связка, у которой первый и второй компоненты совпадают.

Рисунок 1.4 – Псевдограф

5. Мультиграф (абсолютное понятие) – это такой псевдограф, в котором не может быть петель:

Рисунок 1.5 – Мультиграф

6. Граф (абсолютное понятие) – это такой мультиграф, в котором не может быть кратных связок, т.е. связок у которых первый и второй компоненты совпадают:

Рисунок 1.6 – Граф

7. Неориентированный граф (абсолютное понятие) – это такой граф, в котором все связки являются ребрами:

Рисунок 1.7 – Неориентированный граф

8. Ориентированный граф (абсолютное понятие) - это такой граф, в котором все связки являются дугами:

Рисунок 1.8 – Ориентированный граф

9. Связный граф (абсолютное понятие) – граф, содержащий только одну компоненту связности.

Рисунок 1.9 – Связный граф

10. Компонента связности графа (абсолютное понятие) — такое подмножество вершин графа, для любых двух вершин которого существует путь из одной в другую, и не существует пути из вершины этого подмножества в вершину не из этого подмножества.

Рисунок 1.10 – Компонента связности

11. Точка сочленения (абсолютное понятие) - вершина графа, при удалении которой количество компонент связности возрастает.

Рисунок 1.11 – Точка сочленения

12. Двусвязный граф (абсолютное понятие) — это связный граф, в котором отсутвуют точки сочленения и удаление любой вершины не приводит к потере связности.

Рисунок 1.12 – Двусвязный граф

2 Алгоритм

График (vertexes) будет хранить информацию о вершинах в следствии обхода графа. Первая компонента кортежа графика хранит порядок посещённых вершин. Вторая компонента хранит минимальное количество шагов, за которое вершина может быть посещена из её поддерева.

- 1. Создаём пустой график vertexes.
- 2. Создаём пустой график articulation points, в котором будут хранитья точки сочленения графа.
- 3. Выбираем первую вершину.
- 4. Создаём кортеж в графие vertexes.
- 5. На место первой компоненты записываем порядок посещённой вершины.
 - 5.1. Если у вершины есть ребро, инцидентное с её предком (обратного ребра), то на место второй компоненты записывается первая компонента кортежа предка.
 - 5.2. Иначе, на место второй компоненты записывается первая копонента кортежа.
- 6. Выбираем следующую вершину, смежную с предыдущей.
 - 6.1. Если смежная вершина отсутствует, то переходим к пункту 7.
 - 6.2. Если смежная вершина присутствует, то переходим к пункту 4.
- 7. Снова выбираем первую вершину.
 - 7.1. Если существует потомок у которого значение второй компоненты меньше, чем выбранной вершины, то на место второй компоненты выбранной вершины записывается наименьшее значение её потомка.
 - 7.2. Если первая компонента кортежа выбранной вершины меньше или равна второй компоненте потомка этой вершины, то заносим кортеж в график articulation points.
 - 7.2.1. Если выбранная вершина является последней, то переходим к пункту 8.
 - 7.2.2. Иначе берём следующую смежную вершину и переходим к пункту 7.2.
- 8. Если график articulation points является пустым, то:
 - 8.1. исходный граф является двусвязным.
 - 8.2. Алгоритм завершён.
- 9. Если график articulation points не является пустым, то:
 - 9.1. в графике присутствуют точки сочленения и исходный граф не является двусвязным.
 - 9.2. Алгоритм завершён.

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

Тест 1 Вход: Определить, является ли граф двусвязным.

Рисунок 3.1 – Вход теста 1

Шаги:

- 1. Создаём пустой график vertexes.
- 2. Создаём пустой график articulation points, в котором будут хранитья точки сочленения графа.
- 3. Выбираем первую вершину (А).
- 4. Создаём кортеж в графике vertexes.
- 5. На место первой компоненты записываем порядок посещённой вершины <1, ...>.
- 6. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <1, 1>.

Рисунок 3.2 – Вершина А

- 7. Выбираем следующую вершину (В), смежную с предыдущей.
- 8. Создаём кортеж в графике vertexes.
- 9. На место первой компоненты записываем порядок посещённой вершины <2, ...>.
- 10. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <2, 2>.

Рисунок 3.3 – Вершина В

- 11. Выбираем следующую вершину (С), смежную с предыдущей.
- 12. Создаём кортеж в графике vertexes.
- 13. На место первой компоненты записываем порядок посещённой вершины <3, ...>.
- 14. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <3, 3>.

Рисунок 3.4 – Вершина С

- 15. Выбираем следующую вершину (D), смежную с предыдущей.
- 16. Создаём кортеж в графике vertexes.

- 17. На место первой компоненты записываем порядок посещённой вершины <4, ...>.
- 18. Так как у вершины есть ребро, инцидентное с её предком (обратное ребро), то на место второй компоненты записывается первая компонента кортежа предка (вершины B) <4, 2>.

Рисунок 3.5 – Вершина D

- 19. Выбираем следующую вершину (Е), смежную с предыдущей.
- 20. Создаём кортеж в графике vertexes.
- 21. На место первой компоненты записываем порядок посещённой вершины <5, ...>.
- 22. Так как у вершины есть ребро, инцидентное с её предком (обратное ребро), то на место второй компоненты записывается первая компонента кортежа предка (вершины A) <5, 1>.

Рисунок 3.6 – Вершина Е

- 23. Снова выбираем первую вершину.
- 24. Так как вершина (A) является корнем, то не существует потомка, у которого значение второй компоненты меньше, чем у корня. Поэтому значение второй компоненты остаётся неизменной <1, 1>.
- 25. Выбираем следующую вершину (В).
- 26. Так как существует потомок, у которого значение второй компоненты меньше, чем выбранной вершины (В), то на место второй компоненты выбранной вершины записывается наименьшее значение её потомка <2, 1>.
- 27. В связи что перва компонента выбранной вершины больше второй компоненты, то данная вершина не может быть точкой сочленения.
- 28. Выбираем следующую вершину (С).
- 29. Так как существует потомок, у которого значение второй компоненты меньше, чем выбранной вершины (С), то на место второй компоненты выбранной вершины записывается наименьшее значение её потомка <3, 1>.
- 30. В связи что перва компонента выбранной вершины больше второй компоненты, то данная вершина не может быть точкой сочленения.
- 31. Выбираем следующую вершину (D).
- 32. Так как существует потомок, у которого значение второй компоненты меньше, чем выбранной вершины (D), то на место второй компоненты выбранной вершины записывается наименьшее значение её потомка <4, 1>.
- 33. В связи что перва компонента выбранной вершины больше второй компоненты, то данная вершина не может быть точкой сочленения.

- 34. Выбираем следующую вершину (Е).
- 35. Так как вершина (Е) является листом, значение второй компоненты остаётся неизменной <5, 1>.
- 36. В связи с тем, что в график articulation points не было добавлено ни одного кортежа, то исходный граф является двусвязным.

Выход: Граф является двусвязным

Рисунок 3.7 – Выход теста 1

Тест 2 Вход: Определить, является ли граф двусвязным.

Рисунок 3.8 – Вход теста 2

Шаги:

1. Создаём пустой график vertexes.

- 2. Создаём пустой график articulation points, в котором будут хранитья точки сочленения графа.
- 3. Выбираем первую вершину (А).
- 4. Создаём кортеж в графике vertexes.
- 5. На место первой компоненты записываем порядок посещённой вершины <1, ...>.
- 6. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <1, 1>.

Рисунок 3.9 – Вершина А

- 7. Выбираем следующую вершину (В), смежную с предыдущей.
- 8. Создаём кортеж в графике vertexes.
- 9. На место первой компоненты записываем порядок посещённой вершины <2, ...>.
- 10. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <2, 2>.

Рисунок 3.10 – Вершина В

- 11. Выбираем следующую вершину (С), смежную с предыдущей.
- 12. Создаём кортеж в графике vertexes.
- 13. На место первой компоненты записываем порядок посещённой вершины <3, ...>.
- 14. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <3, 3>.

Рисунок 3.11 – Вершина С

15. Выбираем следующую вершину (D), смежную с предыдущей.

- 16. Создаём кортеж в графике vertexes.
- 17. На место первой компоненты записываем порядок посещённой вершины <4, ...>.
- 18. Так как у вершины нет ребра, инцидентного с её предком (обратного ребра), на место второй компоненты записывается первая копонента кортежа <4, 4>.

Рисунок 3.12 – Вершина D

- 19. Выбираем следующую вершину (Е), смежную с предыдущей.
- 20. Создаём кортеж в графике vertexes.
- 21. На место первой компоненты записываем порядок посещённой вершины <5, ...>.
- 22. Так как у вершины есть ребро, инцидентное с её предком (обратное ребро), то на место второй компоненты записывается первая компонента кортежа предка (вершины C) <5, 3>.

Рисунок 3.13 – Вершина Е

- 23. Снова выбираем первую вершину.
- 24. Так как вершина (A) является корнем, то не существует потомка, у которого значение второй компоненты меньше, чем у корня. Поэтому значение второй компоненты остаётся неизменной <1, 1>.
- 25. Выбираем следующую вершину (В).
- 26. Так как не существует потомока, у которого значение второй компоненты меньше, чем выбранной вершины (В), то на место второй компоненты выбранной вершины записывается значение первой компоненты <2, 2>.
- 27. В связи что первая компонента выбранной вершины равна второй компоненте, то данная вершина является точкой сочленения и добавляем кортеж <2,2> в график articulation points.
- 28. Выбираем следующую вершину (С).
- 29. Так как не существует потомока, у которого значение второй компоненты меньше, чем выбранной вершины (С), то на место второй компоненты выбранной вершины записывается значение первой компоненты <3, 3>.
- 30. В связи что первая компонента выбранной вершины равна второй компоненте, то данная вершина является точкой сочленения и добавляем кортеж <3,3> в график articulation points.
- 31. Выбираем следующую вершину (D).
- 32. Так как существует потомок, у которого значение второй компоненты меньше, чем выбранной вершины (D), то на место второй компоненты выбранной вершины записывается наименьшее значение её потомка <4, 3>.
- 33. В связи что первая компонента выбранной вершины больше второй ком-

- поненты, то данная вершина не может быть точкой сочленения.
- 34. Выбираем следующую вершину (Е).
- 35. Так как вершина (Е) является листом, значение второй компоненты остаётся неизменной <5, 3>.
- 36. В связи с тем, что в график articulation points было добавлено два кортежа <2, 2> и <3, 3>, то в исходном графе есть точки сочленения В и С и он не является двусвязным.

Выход: Граф не является двусвязным.

Рисунок 3.14 – Выход теста 2

Тест 3 Вход: Определить, является ли граф двусвязным.

Рисунок 3.15 – Вход теста 3

Выход: Граф не является двусвязным.

Рисунок 3.16 – Выход теста 3

Тест 4 Вход: Определить, является ли граф двусвязным.

Рисунок 3.17 – Вход теста 4

Выход: Граф является двусвязным.

Рисунок 3.18 – Выход теста 4

Тест 5 Вход: Определить, является ли граф двусвязным.

Рисунок 3.19 – Вход теста 5

Выход: Граф является двусвязным.

Рисунок 3.20 – Выход теста 5

Заключение

В заключении отчета сделаем краткие выводы по результатам проделанной работы:

- Получили навыки формализации и обработки информации с использованием семантических сетей.В частности формализавали различные типы графовых структур.
- Рассмотрели актуальную задачу, является ли неориентированный граф двусвязным.

Список использованных источников

- [1] База знаний по теории графов OSTIS GT [Электронный ресурс] / проект OSTIS, 2022. Режим доступа: http://ostisgraphstheo.sourceforge.net. (Дата обращения: 18.05.2022).
- [2] Лазуркин, Д.А. Руководство к выполнению расчетной работы по курсам ОИИ и ППвИС / Д.А. Лазуркин. 2013. Р. 126.
 - [3] Оре, О. Теория графов / О. Оре. Наука, 1980. Р. 336.