On Possibilistic Gödel modal logics: an axiomatization and neighbourhood semantics

Ricardo Òscar Rodríguez¹ and Lluís Godo²

¹Universidad de Buenos Aires, Argentina.

²IIIA - CSIC, Barcelona, Spain

Many Val 2015, Les Diablerets, Switzerland, Dec. 11-13, 2015

On possibilistic modal logics defined over MTL-chains

Félix Bou, Francesc Esteva and Lluís Godo

IIIA - CSIC, Barcelona, Spain

Many Val 2015, Les Diablerets, Switzerland, Dec. 11-13, 2015

PREAMBLE

P. Hájek, D. Harmancová, F. Esteva, P. Garcia, L. G.

On Modal Logics for Qualitative Possibility in a Fuzzy Setting

In *Proc. of the 94 Uncertainty in Artificial Intelligence Conference* (UAI'94), 278–285, Morgan Kaufmann, 1994

—MVDKD45: a modal logic over a finitely-valued Łukasiewicz logic to capture possibilistic reasoning on many-valued events—

Aim: generalize the approach to possibilistic modal logics over an arbitrary finite MTL-chain

OUTLINE

- Motivation and related work
- $ightharpoonup Pos(\mathbf{A}^c_\Delta)$: a possibilistic modal logic over a finite MTL-chain \mathbf{A}
- Open problems and conclusions

OUTLINE

- ► Motivation and related work
- $ightharpoonup Pos(\mathbf{A}^c_{\Delta})$: a possibilistic modal logic over a finite MTL-chain \mathbf{A}
- Open problems and conclusions

MODAL LOGICS OF BELIEF

- ▶ Epistemic modal logics: reasoning about an agent's beliefs
 - non-modal (objective) φ : what is true in the actual world
 - modal $\Box \varphi$: what is believed by an agent
- Modal logic of belief KD45:
 - relational (Kripke) semantics M = (W, R, e): epistemic state = $R \subseteq W \times W$ serial, euclidean and transitive

$$(M, w) \models \Box \varphi$$
 if $(M, w') \models \varphi$ for all w' such that $(w, w') \in R$

- simpler but equivalent semantics M = (W, E, e): epistemic state = non-empty $E \subseteq W$

$$(M, w) \models \Box \varphi \text{ if } (M, w') \models \varphi \text{ for all } w' \in E$$

FROM SETS TO GRADED EPISTEMIC STATES

 Graded epistemic states: enriching an epistemic state with a ranking of plausibility

$$\pi: W \to [0,1]$$

- $-\pi(w) < \pi(w')$: w' is more plausible than w; $\exists w \text{ s.t. } \pi(w) = 1$
- $-\pi(w) = 0$: w is discarded
- $\pi(w) = 1$: w is totally plausible
- ▶ From E's to π 's: Possibilistic models $M = (W, \pi, e)$
 - to what extent all plausible worlds satisfy φ :

$$N(\varphi) = \inf\{1 - \pi(w) \mid (M, w) \models \varphi\}$$

- to what extent there exists a plausible world sastifying φ :

$$\Pi(\varphi) = \sup \{ \pi(w) \mid (M, w) \models \varphi \} = 1 - N(\neg \varphi)$$

• $(W, \pi, e) \equiv (M, \{E_{\lambda}\}_{\lambda}, e)$, nested set of KD45 models

SOME MODAL-LIKE FORMALISMS

Two-tiered logics, non-nested modalities:

- ▶ Possibilistic logic (Dubois-Prade et al., 80's)
 - ▶ Weighted formulas: $(\varphi, \lambda) \equiv \Box_{\lambda} \varphi$, where $\varphi \in \mathcal{L}_{CPL}, \lambda \in (0, 1]$.
 - Semantics: $N(\varphi) \ge \lambda$
 - ▶ Weighted MP: $\Box_{\lambda}\varphi$, $\Box_{\mu}(\varphi \to \psi) \vdash \Box_{\lambda \land \mu}\psi$
- Generalized possibilistic logic: Boolean combination of $\Box_{\lambda}\varphi'$ s

(K)
$$\Box_{\lambda}(\varphi \to \psi) \to (\Box_{\lambda}\varphi \to \Box_{\lambda}\psi)$$

(D) $\Diamond_1 \top$

(Nes)
$$\square_{\lambda_1} \varphi \rightarrow \square_{\lambda_2} \varphi$$
, if $\lambda_1 \geq \lambda_2$

Easily extendable to a full (multi-)modal KD45 system

- ► Fuzzy logic approach: truth-value($\Box \varphi$) := $N(\varphi)$ (Hájek et al.) φ 's are Boolean propositions, $\Box \varphi$'s are fuzzy propositions
 - (Ł) Łukasiewicz logic axioms
 - (K) $\Box(\varphi \to \psi) \to_{\ell} (\Box \varphi \to_{\ell} \Box \psi)$
 - (D) ◊T

GENERALIZING TO THE MV SETTING

- $[0,1]_*$: MTL-algebra
 - ▶ many-valued possibilistic Kripke models: $M = (W, \pi, e)$, where $e: W \times Var \rightarrow [0, 1]$, and $\pi: W \rightarrow [0, 1]$
 - to what extent all plausible worlds satisfy φ :

$$e(w, \Box \varphi) = N(\varphi) = \inf_{w'} \pi(w') \to e(w', \varphi)$$

- to what extent some plausible world satisfies φ :

$$e(w, \diamond \varphi) = \Pi(\varphi) = \sup_{w'} \pi(w') * e(w', \varphi)$$

- ▶ If we define $R(w, w') = \pi(w')$, then M = (W, R, e) is a mv-KD45 model:
 - seriality: $\exists w'$ s.t. R(w, w') = 1
 - transitivity: $R(w, w') * R(w', w'') \le R(w, w'')$
 - euclidean: $R(w, w') * R(w, w'') \le R(w', w'')$

SOME MODAL-LIKE ACCOUNTS

Two-tiered (fuzzy) logics:

- ▶ L₁: logic of the φ 's L₂: logic of the $\Box \varphi$'s and $\Diamond \varphi$'s
- So far, basically, two choices: both some variants of Łukasiewicz logic (Flaminio et al.) or Gödel logic (Dellunde et al.)
- ▶ For instance, for $L_1 = L_2 = L_k$ with truth-constants:

(K)
$$\Box(\psi \to_{\mathbb{L}} \varphi) \to_{\mathbb{L}} (\Box \psi \to_{\mathbb{L}} \Box \varphi)$$

(D) $\Diamond \top$
 $\bar{r} \leftrightarrow_{\mathbb{L}} \Box(\bar{r}, \text{ for } r \in \{0, 1/k, \dots, (k-1)/k, 1\}$

- ► To get completeness, one usually requires L₂ to be strongly complete
- ► For uncertainty two-tiered logics: (Flaminio et al. 2011) For a general theory: (Cintula-Noguera, 2014)

SOME MODAL ACCOUNTS

A full fledged (fuzzy) modal logic: the L_k -based modal logic MVKD45 (Hájek et al., 94)

- ▶ Finite set of propositional variables $p_1 ... \land p_n$
- ► $M = (W, \pi, e)$, with $\pi : W \to \{0, 1/k, \dots, (k-1)/k, 1\}$

$$e(w, \Box \varphi) = \min_{w'} \{ \neg \pi(w') \lor e(w', \varphi) \}$$
$$e(w, \Diamond \varphi) = \max_{w'} \{ \pi(w') \land e(w', \varphi) \}$$

▶ This particular semantics for \Box (it is not based on \rightarrow_L) was chosen because of axiom (K)

SOME MODAL ACCOUNTS (2)

Notation: $(r)\varphi := (\bar{r} \leftrightarrow \varphi)^k$; **mec**: $(r_1)p_1 \land \ldots \land (r_n)p_n$

Axiomatics:

► Axioms of KD45:

$$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$$
$$\Box\varphi \leftrightarrow \Box\Box\varphi$$
$$\Diamond\varphi \leftrightarrow \Box\Diamond\varphi$$
$$\Diamond\top$$

- Possibilistic axioms:

$$((r) \diamond \varphi \land E) \rightarrow (\leq r)(\varphi \land \diamond E)$$
, with $E \in \mathbf{mec}$
 $(r) \diamond \varphi \rightarrow \bigvee_{E \in \mathbf{mec}} (\geq r) \diamond (E \land (r)(\varphi \land \diamond E))$, with $r > 0$

Deductions rules are modus ponens and necessitation for \Box (from φ infer $\Box \varphi$).

OUTLINE

- Motivation and related work
- ► $Pos(\mathbf{A}^{c}_{\Delta})$: a possibilistic modal logic over a finite MTL-chain \mathbf{A}
- Open problems and conclusions

The logic $Pos(\mathbf{A}^{c}_{\Lambda})$ defined

We fix:

- a finite MTL-chain $\mathbf{A} = (A, \wedge, \vee, *, \rightarrow, 0, 1)$
- finitely many propositional variables $Var = \{p_1, \dots, p_n\}$

We let:

▶ $\Lambda(\mathbf{A}_{\Delta}^c)$ be the finitely-valued propositional logic of the MTL-chain \mathbf{A} expanded with Δ and truth-constants \bar{r} for $r \in A$: $\Gamma \models_{\mathbf{A}_{\Delta}^c} \varphi$ if for all \mathbf{A} evaluation e, if $e(\psi) = 1$ for all $\psi \in \Gamma$ then $e(\varphi) = 1$.

Language of $Pos(\mathbf{A}^c_{\wedge})$:

- ▶ expand that of $\Lambda(\mathbf{A}^c_{\Lambda})$ with \square and \diamondsuit
- ▶ abbreviations: $(r)\varphi := \Delta(\bar{r} \leftrightarrow \varphi)$; **mec**: $(r_1)p_1 \land \ldots \land (r_n)p_n$

THE LOGIC $Pos(\mathbf{A}_{\Lambda}^{c})$ DEFINED: SEMANTICS

A-valued possibilistic Kripke frame:
$$F = \langle W, \pi \rangle$$
, where $W \neq \emptyset$ and $\pi : W \longrightarrow A$ s.t. $\exists w \in W$ with $\pi(w) = 1$

A-valued possibilistic Kripke model: $K = \langle W, e, \pi \rangle$ where $\langle W, \pi \rangle$ is an **A-**valued poss. frame and $e : W \times Var \longrightarrow A$

 $ightharpoonup \|\cdot\|_{K,w}$ as usual for variables, connectives and truth-constants

$$\|\diamondsuit\varphi\|_{K} = \max_{u \in W} \{\pi(u) * \|\varphi\|_{K,u}\}$$
$$\|\Box\varphi\|_{K} = \min_{u \in W} \{\pi(u) \to \|\varphi\|_{K,u}\}$$

 $(K, w) \models \varphi \text{ if } \|\varphi\|_{K, w} = 1$

Logical consequence: $\Gamma \models \varphi$, for any $K = (W, e, \pi)$ and $w \in W$, if $(K, w) \models \psi$ for every $\psi \in \Gamma$, then $(K, w) \models \varphi$

THE LOGIC $Pos(\mathbf{A}^c_{\Lambda})$ DEFINED: SEMANTICS

 $K = (W, e, \pi)$ is reduced when for any $w, w' \in W$, if $e(w, \cdot) = e(w', \cdot)$ then w = w', and hence $\pi(w) = \pi(w')$.

Since *Var* and *A* are finite, only finitely-many reduced models. And we can restrict ourselves to reduced models:

For any model K there is a reduced model K' such that $\|\varphi\|_K = \|\varphi\|_{K'}$ for any formula φ

Hence:

 Modulo semantical equivalence, there are only a finite number of different formulas

THE LOGIC $Pos(\mathbf{A}_{\Lambda}^{c})$ DEFINED: SEMANTICS

Some further remarks:

- ▶ \Box and \Diamond are not dual: $\Diamond \varphi$ is not equivalent to $\neg \Box \neg \varphi$, unless **A** is an IMTL-algebra
- But, due to the presence of truth-constants, they are indeed inter-definable:

$$-\Box \varphi \text{ as } \bigwedge_{r \in A} (\Diamond(r)\varphi \to \overline{r})$$
$$-\Diamond \varphi \text{ as}$$

$$(>0) \Box \neg \varphi \land \left(\bigwedge_{r \in A \setminus 0} \left((1) \Box (\varphi \to \overline{r}) \land (<1) \Box (\varphi \to \overline{r^-}) \right) \to \overline{r} \right)$$

Axiom (K) is not valid in general
 This is in contrast with Hájek's et al. MVKD45

The logic $Pos(\mathbf{A}^c_{\Lambda})$ defined: Syntax

- Recall $\mathit{Pos}(\mathbf{A}^{c}_{\Delta})$ is defined on top of $\Lambda(\mathbf{A}^{c}_{\Delta})$

 $\Lambda(\mathbf{A}_{\Delta}^{c})$ can be axiomatized, relatively to one for $\Lambda(\mathbf{A})$ with only MP as rule, by adding:

- \blacktriangleright axioms and necessitation rule for Δ
- book-keeping axioms:

$$\begin{array}{l} (\overline{r}\&\overline{s}) \leftrightarrow \overline{r\odot s} \\ (\overline{r} \to \overline{s}) \leftrightarrow \overline{r \Rightarrow s} \\ (\overline{r} \land \overline{s}) \leftrightarrow \overline{\min(r,s)} \\ \Delta \overline{r} \leftrightarrow \overline{\Delta r}, \end{array}$$

witnessing axiom:

$$\bigvee_{r\in A}(\varphi\leftrightarrow \overline{r}).$$

THE LOGIC $Pos(\mathbf{A}^c_{\Lambda})$ DEFINED: SYNTAX

The logic $Pos(\mathbf{A}^c_{\Lambda})$ is syntactically defined by:

- ▶ Axioms and rules of $\Lambda(\mathbf{A}^c_{\Delta})$
- ► Axioms from KD45:
 - $(4) \quad \Box \varphi \leftrightarrow \Box \ \Box \varphi$
 - $(5) \ \Diamond \varphi \leftrightarrow \Box \Diamond \varphi$
 - (D) ♦T
 - (4') $(r) \Box \varphi \leftrightarrow \Box (r) \Box \varphi$, for each $r \in A$ (5') $(r) \diamond \varphi \leftrightarrow \Box (r) \diamond \varphi$, for each $r \in A$
- ▶ Possibilistic axioms (for each $r \in A$):
 - (NII) $\Box(\varphi \to \overline{r}) \leftrightarrow (\Diamond \varphi \to \overline{r})$ (III) $((r)\Diamond \varphi \land E) \to (\leq r)(\varphi \& \Diamond E)$, with $E \in \mathbf{mec}$ (II2) $(r)\Diamond \varphi \to \bigvee_{E \in \mathbf{mec}} (\geq r)\Diamond (E \land (r)(\varphi \& \Diamond E))$, with r > 0
- ► The monotonicity rule for \Box : if $\varphi \to \psi$ is a theorem, infer $\Box \varphi \to \Box \psi$

About $(\Pi 1)$ and $(\Pi 2)$

Recall:

- $-\Pi(\varphi) = \max_{w} \pi(w) \wedge \|\varphi\|_{w}$
- a m.e.c E represents a possible world w_E , so $\Pi(E) = \pi(w_E)$

(III)
$$((r) \diamond \varphi \land E) \rightarrow (\leq r)(\varphi \& \diamond E)$$
, with $E \in \mathbf{mec}$

If
$$\Pi(\varphi) = r$$
 then $\pi(w) \wedge \|\varphi\|_w \leq r$

(II2)
$$(r) \diamond \varphi \rightarrow \bigvee_{E \in \mathbf{mec}} (\geq r) \diamond (E \wedge (r)(\varphi \& \diamond E))$$
, with $r > 0$

If $\Pi(\varphi) = r$ then there is w such that $\pi(w) \wedge \|\varphi\|_w = r$

TOWARDS COMPLETENESS

B-formulas: propositional combinations of formulas of the type $\Delta \varphi$, in particular $(r)\varphi$.

 $T \cup \{\psi\} \vdash \varphi \text{ iff } T \vdash \Delta \psi \to \varphi$

A theory *T* is a set of B-formulas.

Define $T \approx T'$ if for each r and φ , $T \vdash (r) \Diamond \varphi$ iff $T' \vdash (r) \Diamond \varphi$.

Let *T* be complete and consistent. Then:

- for every φ there exists a unique r such that $T \vdash (r)\varphi$
- ▶ there is a unique E_T ∈ **mec** such that $T \vdash E_T$
- ▶ for any φ , if $T \vdash (r) \diamondsuit \varphi$ then the following conditions hold:
 - (a) For any $T' \approx T$, $T' \vdash (\leq r)(\varphi \& \Diamond E_{T'})$
 - (b) There is $T_{\varphi} \approx T$ and $E_{\varphi} \in \mathbf{mec}$ such that $T_{\varphi} \vdash (r)(\varphi \& \Diamond E_{\varphi})$

CANONICAL MODEL

Assume $\Gamma \not\vdash \varphi$ and let T_0 be a complete theory extending Γ and $T_0 \not\vdash \varphi$.

Define the possibilistic Kripke model

$$K_0 = (W_0, e_0, \pi_0)$$

where

- $Varrow W_0 = \{T_0\} \cup \{T_{\varphi} \mid T_{\varphi} \approx T_0, \varphi \text{ formula}\}$
- ▶ $e_0: W_0 \times Var \rightarrow A$ is defined by $e_0(T, p) = r$ whenever $T \vdash (r)p$
- ▶ $\pi_0: W_0 \to A$ is defined by $\pi_0(T) = r$ if $T \vdash (r) \diamondsuit E_T$.

Truth Lemma: For each ψ , r and $T \in W_0$,

$$T \vdash (r)\psi$$
 iff $\|\psi\|_{T,K_0} = r$.

COMPLETENESS

 $Pos(\mathbf{A}_{\Delta}^{c})$ is strongly complete w.r.t. the class of *A*-valued possibilistic Kripke frames, that is, the following are equivalent:

- (1) $\Gamma \vdash \varphi$
- (2) $\Gamma \models \varphi$
- (3) For any *reduced* possibilistic Kripke model $K = (W, e, \pi)$ and $w \in W$, $\Gamma \models_{w,K} \varphi$.

This trivially implies that $Pos(\mathbf{A}^{c}_{\Delta})$ is decidable.

OUTLINE

- Motivation and related work
- $ightharpoonup Pos(\mathbf{A}^c_{\Delta})$: a possibilistic modal logic over a finite MTL-chain \mathbf{A}
- ► Open problems and conclusions

CONCLUSIONS AND OPEN PROBLEMS

- Hájek et al.'s MVKD45 has been generalized to a wide family of logics over finite MTL-chains
- ▶ With a slightly different semantics: min replaced by *, max(1 x, y) replaced by \rightarrow

Open Problems

- ► Extension to infinite-valued logics?
- Ongoing work using neighborhood semantics
- In the many-valued case: KD45 semantics = Possibilistic semantics?

Félix Bou, Francesc Esteva, L. G. "On possibilistic modal logics defined over MTL-chains" In *Petr Hájek on Mathematical Fuzzy Logic*, Franco Montagna (ed.) Outstanding Contributions to Logic, no. 6, Springer, pp. 225-244, 2015

ANNOUNCEMENT

16th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems 20-24 June 2016, Eindhoven, The Netherlands

Special Session on

Graded and Many-Valued Modal Logics

Submission deadline: January 8 Notification of acceptance: March 1

Conference: June 20-24

Organisers: Bruno Teheux and Lluis Godo