Отчет по лабораторной работе № 6 по курсу "Фундаментальная информатика"

Студент группы М80-109Б-22 Федоров Алексей Алекс	еевич, № 20
--	-------------

Контакты:

Email: hedgefog@yandex.ru, Telegram: @hedgefo9

Работа выполнена: «30» октября 2022г.

Преподаватель: каф. 806 Сысоев Максим Алексеевич

Отчет сдан « » _____20_ г., итоговая оценка ___

Подпись преподавателя

- 1. Тема: Программирование Диаграмм Тьюринга
- 2. Цель работы: Составить машину Тьюринга в четверках по условию задачи
- 3. Задание 8 Перевод числа из двоичной системы счисления в шестнадцатеричную (логарифмическая сложность)
- 4. Оборудование (студента):

Процессор Ryzen 5 3500U @ 8x 2.1GH с ОП 14900 Мб, НМД 677 Гб. Монитор 2160x1440

5. Программное обеспечение (студента):

Операционная система семейства: *linux*, наименование: *ubuntu*, версия 18.10 *cinnamon* интерпретатор команд: *bash* версия 4.4.19.

Система программирования -- версия --, редактор текстов *етасs* версия 25.2.2

6. Идея, метод, алгоритм

Для перевода числа из двоичной системы счисления в шестнадцатеричную нужно мысленно справа налево разбить его на части по 4 цифры (в случае если количество разрядов не кратно 4, то дописать слева от числа столько незначащих нулей, чтобы стало кратно) и заменять каждую часть согласно Таблице 1 (где 0000 — это 0, а 1111 — это F).

Мой алгоритм:

- 1) Скопировать число, сдвинуть его на 4 ячейки вправо, удалить все незначащие нули (проходя слева направо), добавить слева от числа незначащие нули, чтобы количество разрядов было кратно 4 (или если было уже кратно, то ничего не добавлять)
- **2)** Заменить 1-ый разряд текущей части на соответствующую данной части 16-ричную цифру, а остальные 3 разряда затереть пробелами
- 3) Если слева ещё есть необработанная часть, то перейти к пункту 2, иначе перейти к пункту 4
- **4)** Сдвинуть получившиеся разряды вправо друг к другу, а затем получившееся шестнадцатеричное число сдвинуть влево так, чтобы между входными данными и результатом был 1 пробел Таблица 1.

Двоичное	Шестнадцатеричное	Первёрнутое
0000	0	0000
1000	8	0001
0100	4	0010
1100	С	0011
0010	2	0100
1010	A	0101
0110	6	0110
1110	E	0111
0001	1	1000
1001	9	1001
0101	5	1010
1101	D	1011
0011	3	1100
1011	В	1101
0111	7	1110
1111	F	1111

7. Сценарий выполнения работы

Тесты

Входные данные	Выходные данные	Результат работы программы	Вердикт
"10111"	"10111 17"	"10111 17"	OK
"10101110"	"10101110 AE"	"10101110 AE"	OK
"0000000101111"	"0000000101111 2F"	"0000000101111 2F"	OK
"001001000110100"	"001001000110100 1234"	"001001000110100 1234"	OK
"000000"	"000000 0"	"000000 0"	OK

8. Распечатка протокола

Диаграммы Машины Тьюринга

> Главная диаграмма для преобразования двоичного числа в шестнадцатеричное число

▶ Поддиаграмма для очистки символа, который находится справа от текущего

Поддиаграмма для перевода части из 4 двоичных цифр в шестнадцатеричную цифру

> Поддиаграмма для сдвига символа вправо

Поддиаграмма для сдвига слова влево

Поддиаграмма для сдвига слова вправо

> Поддиаграмма для нормализации входных данных

9. <u>Дневник отладки</u> должен содержать дату и время сеансов отладки и основные события (ошибки в сценарии и программе, нестандартные ситуации) и краткие комментарии к ним. В дневнике отладки приводятся сведения об использовании других ЭВМ, существенном участии преподавателя и других лиц в написании и отладке программы.

№	Лаб. или дом.	Дата	Время	Событие	Действие по исправлению	Примечание
				Я сильно устал и начал	Я поспал (1 час, к	Проблема плохо решена (потом
1	дом	31.10.2022	05:00	зевать	сожалению)	досплю)

10. Замечания автора

Нет замечаний

11. Выводы

Благодаря этой лабораторной работе я научился работать с Диаграммами Тьюринга. За время работы я понял зачем они нужны: для упрощённой и более наглядной работы с Машиной Тьюринга. Она (машина) очень простая с точки зрения наличия встроенных функций (их почти нет), из-за чего писать на ней очень тяжело и муторно, процесс доставляет большое количество страданий. Однако благодаря наглядности, наличию встроенных функций (диаграмм) и возможности составлять свои поддиаграммы процесс написания ускоряется. Лабораторная мне не понравилась, т. к. пришлось «переключаться» в другой режим программирования, много прокрастинировать и нервничать. Кроме того, интерфейс программы очень неудобный, нет подсказок, горячих клавиш (даже Ctrl+C и Ctrl+V), несколько раз я терял часть написанного кода из-за багов в диаграммере, из-за этого процесс написания существенно замедляется.