Groups

July 19, 2024

Inverse of Group element c

Name	Group (Set)	Operation	Form of Element	Identity	Inverse	Abelian
Integers	Z	Addition	k	0	-k	~
Integers modulo n	\mathbb{Z}_n	Addition mod <i>n</i>	k	0	n-k	~
Rational Numbers	Q	Multiplication	m/n	1	n/m	~
Real Numbers	R*	Multiplication	x	1	1/x	~
Complex Numbers	€*	Multiplication	a + bi	1	$\frac{1}{a^2 + b^2}a - \frac{1}{a^2 + b^2}bi$	~
Vector Space	\mathbb{R}^n	Componentwise addition	(a_1,a_2,\ldots,a_n)	(0,0,,0)	$(-a_1,-a_2,\ldots,-a_n)$	~
General Linear Group	GL(2, F)	Matrix multiplication	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $ad - bc \neq 0$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{ad - bc}{ad - bc} \end{bmatrix}$	Х
Special Linear Group	SL(2,F)	Matrix multiplication	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $ad - bc = 1$	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\left[\begin{smallmatrix} d & -b \\ -c & a \end{smallmatrix} \right]$	Х
Symmetric Group	S_n	Composition of permutations	Permutations of n element: $\sigma \in S_n$	Identity permutation e	Inverse ${\rm permutation} \; \sigma^{-1}$	×
Dihedral Group	D_n	Composition of symmetries	Rotations r^k and reflections sr^k , $k \in \{0, 1,, n-1\}$	Identity symmetry e	$r^{-k} = r^{n-k},$ $(sr^k)^{-1} = sr^{-k}$	×
Quaternion Group	Q8	Quaternion multiplication	Quaternions: $\pm 1, \pm i, \pm j, \pm k$	1	$-a \text{ for } a \in \{i, j, k\},$ $-1 = 1^{-1}, -i =$ $i^{-1}, -j = j^{-1}, -k =$ k^{-1}	×

Symmetric Groups

	e	(12)	(23)	(13)	(123)	(132)
е	е	(12)	(23)	(13)	(123)	(132)
(12)	(12)	e	(123)	(132)	(23)	(13)
(23)	(23)	(132)	e	(123)	(13)	(12)
(13)	(13)	(123)	(132)	е	(12)	(23)
(123)	(123)	(13)	(12)	(23)	(132)	е
(132)	(132)	(23)	(13)	(12)	e	(123)

Table 1: Symmetric Group S_3

D: (C-1)	Addition	Multiplication	Additive	Multiplic	ativeorm of	Commutative	
Ring (Set)	Operation	Operation	Identity	Identity Elemen		Commutative	
Integers $\mathbb Z$	Standard addition +	Standard multiplication ·	0	1	Integers	Yes	
Real Numbers $\mathbb R$	Standard addition +	Standard multiplication ·	0	1	Real numbers	Yes	
Complex Numbers C	Standard addition +	Standard multiplication ·	0	1	$a + bi$ where $a, b \in \mathbb{R}$	Yes	
Polynomials with Real Coefficients $\mathbb{R}[x]$	Polynomial addition	Polynomial multiplication	0 (zero polyno- mial)	1 (con- stant polyno- mial)	$a_n x^n + \dots + a_1 x + a_0$	Yes	
Matrices $M_n(\mathbb{R})$	Matrix addition	Matrix multiplication	Zero matrix	Identity matrix	$n \times n$ matrices	No	
Integers Modulo n $\mathbb{Z}/n\mathbb{Z}$	Addition modulo n	Multiplication modulo <i>n</i>	0	1	{0,1,, <i>n</i> -1}	Yes	

Group (Set)	Operation	Identity	Form of Element	Normal Subgroups	Abelian
Symmetric Group S ₃	Composition of permutations	Identity permutation <i>e</i>	Permutations of 3 elements	{e, (123), (132)}, {e, (12), (13), (23), (123), (No (132)}
Dihedral Group D_4	Composition of symmetries	Identity symmetry e	Rotations r^k and reflections sr^k , $k \in \{0,1,2,3\}$	$\{e, r, r^2, r^3\},\$ $\{e, r^2, s, sr^2\}$	No
Quaternion Group Q ₈	Quaternion multiplica- tion	1	Quaternions $\pm 1, \pm i, \pm j, \pm k$	$\{1,-1\}, \{1,-1,i,-i\},\$ $\{1,-1,j,-j\},\$ $\{1,-1,k,-k\}$	No
Integers Modulo $n \mathbb{Z}/n\mathbb{Z}$	Addition modulo <i>n</i>	0	$\{0,1,\ldots,n-1\}$	All subgroups are normal	Yes

Ring (Set)	Addition Operation	Multiplication Operation	Additive Identity	Multiplicative Identity	Form of Element
Matrices $M_n(\mathbb{R})$	Matrix addition	Matrix multiplication	Zero matrix	Identity matrix	$n \times n$ matrices
Quaternions H	Quaternion addition	Quaternion multiplication	0	1	$a + bi + cj + dk$ where $a, b, c, d \in \mathbb{R}$
Differential Operators	Operator addition	Operator composition	Zero operator	Identity operator	$\sum a_i \frac{d^i}{dx^i}$
Group Rings $\mathbb{R}[G]$	Group ring addition	Group ring multiplication	Zero element	Identity element	$\sum a_g g$ where $a_g \in \mathbb{R}$ and $g \in G$
Endomorphism Rings End(V)	Function addition	Function composition	Zero map	Identity map	Linear transformations on vector space V
Octonions O	Octonion addition	Octonion multiplication	0	1	$a+be_1+ce_2+de_3+ee_4+fe_5+ge_6+he_7$ where $a,b,c,d,e,f,g,h\in\mathbb{R}$

Typo	Ideal	Principal	Prime	Maximal
Type	luear	Ideal	Ideal	Ideal
Definition	A subset closed under addition and multi- plication by any ring element	An ideal generated by a single element	An ideal where if $ab \in I$, then $a \in I$ or $b \in I$	An ideal such that there are no larger ideals except the ring itself
Is an Ideal	0	0	0	0
Can be Principal	0	0	0	О
Is Prime	X	X	0	0
Is Maximal	X	X	X	0

Ring (Set)	Principal Ideals	Prime Ideals	Maximal Ideals
\mathbb{Z}	(2), (3), (5)	(2), (3), (5)	(2), (3), (5)
$\mathbb{R}[x]$	$(x), (x-1), (x^2+1)$	(x)	(x-1)
$\mathbb{C}[x]$	(x), (x-i), (x+i)	(x-i),(x+i)	(x-i),(x+i)
$\mathbb{Z}/6\mathbb{Z}$	(2),(3)	None	(2),(3)
$\mathbb{Z}[i]$	(1+i),(2)	(1 + i)	(1 + i)
$\mathbb{Z}/p\mathbb{Z}$ where p is prime	(0),(1)	(0)	(0)
\mathbb{R}	(0)	None	(0)
C	(0)	None	(0)
$\mathbb{Z}[x]$	(2), (3), (x)	(x), (2)	None
$M_n(\mathbb{R})$	(E_{11})	None	None
ℍ (Quaternions)	(1+i)	None	None

Ring (Set)	Principal Ideals	Prime Ideals	Maximal Ideals
\mathbb{Z}	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$
	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$
	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$
D[]	$(x) = \{xf(x) \mid f(x) \in$	$(x) = \{xf(x) \mid f(x) \in$	$(x-1) = \{(x-1)f(x) \mid$
$\mathbb{R}[x]$	$\mathbb{R}[x]$	$\mathbb{R}[x]$	$f(x) \in \mathbb{R}[x]$
	$(x-1) = \{(x-1)f(x) \mid$		
	$f(x) \in \mathbb{R}[x]$		
	$(x^2+1) = \{(x^2+1)f(x) \mid$		
	$f(x) \in \mathbb{R}[x]$		
@[]	$(x) = \{xf(x) \mid f(x) \in$	$(x-i) = \{(x-i)f(x) \mid$	$(x-i) = \{(x-i)f(x) \mid$
$\mathbb{C}[x]$	$\mathbb{C}[x]$	$f(x) \in \mathbb{C}[x]\}$	$f(x) \in \mathbb{C}[x]$
	$(x-i) = \{(x-i)f(x) \mid$	$(x+i) = \{(x+i)f(x) \mid$	$(x+i) = \{(x+i)f(x) \mid$
	$f(x) \in \mathbb{C}[x]\}$	$f(x) \in \mathbb{C}[x]\}$	$f(x) \in \mathbb{C}[x]\}$
	$(x+i) = \{(x+i)f(x) \mid$		
	$f(x) \in \mathbb{C}[x]\}$		
$\mathbb{Z}/6\mathbb{Z}$	$(2) = \{0, 2, 4\}$	None	$(2) = \{0, 2, 4\}$
	$(3) = \{0, 3\}$		$(3) = \{0, 3\}$
7[;]	$(1+i) = \{(1+i)z \mid z \in $	$(1+i) = \{(1+i)z \mid z \in$	$(1+i) = \{(1+i)z \mid z \in$
$\mathbb{Z}[i]$	$\mathbb{Z}[i]$ }	$\mathbb{Z}[i]\}$	$\mathbb{Z}[i]\}$
	$(2) = \{2z \mid z \in \mathbb{Z}[i]\}$		
$\mathbb{Z}/p\mathbb{Z}$ where p is prime	$(0) = \{0\}$	$(0) = \{0\}$	$(0) = \{0\}$
	$(1) = \mathbb{Z}/p\mathbb{Z}$		
\mathbb{R}	$(0) = \{0\}$	None	$(0) = \{0\}$
C	$(0) = \{0\}$	None	$(0) = \{0\}$
$\mathbb{Z}[x]$	$(2) = \{2f(x) \mid f(x) \in$	$(2) = \{2f(x) \mid f(x) \in$	None
$\mathbb{Z}[x]$	$\mathbb{Z}[x]$	$\mathbb{Z}[x]$	None
	$(3) = \{3f(x) \mid f(x) \in$		
	$\mathbb{Z}[x]$		
	$(x) = \{xf(x) \mid f(x) \in$	$(x) = \{xf(x) \mid f(x) \in$	
	$\mathbb{Z}[x]$	$\mathbb{Z}[x]$	
$M_n(\mathbb{R})$	$(E_{11}) = \{AE_{11}B \mid A, B \in$	None	None
1V1N (112)	$M_n(\mathbb{R})$ }	TNOTIC	TNOTIC
H (Quaternions)	$(1+i) = \{(1+i)q \mid q \in$	None	None
** (Quaterinois)	\mathbb{H}	1 10110	TVOIC

Ring (Set)	Principal Ideals	Prime Ideals	Maximal Ideals
\mathbb{Z}	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$
	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$
	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$
$\mathbb{R}[x]$	$(x) = \{xf(x) \mid f(x) \in \mathbb{R}[x]\}$	(x)	(x-1)
	$(x-1) = \{(x-1)f(x) \mid$		
	$f(x) \in \mathbb{R}[x]$		
	$(x^2+1) = \{(x^2+1)f(x) \mid $		
	$f(x) \in \mathbb{R}[x]$		
$\mathbb{C}[x]$	$(x) = \{xf(x) \mid f(x) \in \mathbb{C}[x]\}$	(x-i)	(x-i)
	$(x - i) = \{(x - i)f(x) \mid f(x) \in \mathbb{C}[x]\}$	(x+i)	(x+i)
	$(x+i) = \{(x+i)f(x) \mid$		
	$f(x) \in \mathbb{C}[x]\}$		
$\mathbb{Z}/6\mathbb{Z}$	$(2) = \{0, 2, 4\}$	None	$(2) = \{0, 2, 4\}$
	$(3) = \{0, 3\}$		$(3) = \{0, 3\}$
$\mathbb{Z}[i]$	$ (1+i) = \{(1+i)z \mid z \in $	(1+i)	(1+i)
<i>□</i> [<i>ι</i>]	$\mathbb{Z}[i]\}$	(1 1 1)	(1 1 1)
	$(2) = \{2z \mid z \in \mathbb{Z}[i]\}$		
$\mathbb{Z}/p\mathbb{Z}$ where p is prime	$(0) = \{0\}$	(0)	(0)
	$(1) = \mathbb{Z}/p\mathbb{Z}$		
\mathbb{R}	$(0) = \{0\}$	None	(0)
\mathbb{C}	$(0) = \{0\}$	None	(0)
$\mathbb{Z}[x]$	$(2) = \{2f(x) \mid f(x) \in \mathbb{Z}[x]\}$	(2)	None
	$(3) = \{3f(x) \mid f(x) \in$		
	$\mathbb{Z}[x]$		
	$(x) = \{xf(x) \mid f(x) \in \mathbb{Z}[x]\}$	(x)	
$M_n(\mathbb{R})$	$(E_{11}) = \{AE_{11}B \mid A, B \in M_n(\mathbb{R})\}$	None	None
\mathbb{H} (Quaternions)	$(1+i) = \{(1+i)q \mid q \in \mathbb{H}\}$	None	None

Ring (Set)	Examples of Ideals	Examples of Principal Ideals	Examples of Prime Ideals	Examples of Maximal Ideals
\mathbb{Z}	(0), (2), (3)	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$	$(2) = \{2k \mid k \in \mathbb{Z}\}$
	(4), (6)	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$	$(3) = \{3k \mid k \in \mathbb{Z}\}$
	(0)	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$	$(5) = \{5k \mid k \in \mathbb{Z}\}$
$\mathbb{R}[x]$	(0),(x),(x-1)	$(x) = \{xf(x) \mid f(x) \in \mathbb{R}[x]\}$	(x)	(x - 1)
	$(x^2 + 1)$	$(x-1) = \{(x-1)f(x) \mid f(x) \in \mathbb{R}[x]\}$		
		$(x^2+1) = \{(x^2+1)f(x) \mid f(x) \in \mathbb{R}[x]\}$		
$\mathbb{C}[x]$	(0),(x),(x-i)	$(x) = \{xf(x) \mid f(x) \in \mathbb{C}[x]\}$	(x-i)	(x-i)
	(x+i)	$(x-i) = \{(x-i)f(x) \mid f(x) \in \mathbb{C}[x]\}$	(x+i)	(x+i)
		$(x+i) = \{(x+i)f(x) \mid f(x) \in \mathbb{C}[x]\}$		
$\mathbb{Z}/6\mathbb{Z}$	(0), (2), (3)	$(2) = \{0, 2, 4\}$	None	(2) = {0,2,4}
		$(3) = \{0, 3\}$		$(3) = \{0, 3\}$
$\mathbb{Z}[i]$	(0), (1+i), (2)	$(1+i) = \{(1+i)z \mid z \in \mathbb{Z}[i]\}$	(1 + i)	(1 + i)
		$(2) = \{2z \mid z \in \mathbb{Z}[i]\}$		
$\mathbb{Z}/p\mathbb{Z}$ where p is prime	(0), (1)	$(0) = \{0\}$	(0)	(0)
		$(1) = \mathbb{Z}/p\mathbb{Z}$		
\mathbb{R}	(0)	$(0) = \{0\}$	None	(0)
C	(0)	$(0) = \{0\}$	None	(0)
$\mathbb{Z}[x]$	(0), (2), (3)	$(2) = \{2f(x) \mid f(x) \in \mathbb{Z}[x]\}\$	(2)	None
		$(3) = \{3f(x) \mid f(x) \in \mathbb{Z}[x]\}\$		
		$(x) = \{xf(x) \mid f(x) \in \mathbb{Z}[x]\}\$	(x)	
$M_n(\mathbb{R})$	$(0), (E_{11})$	$(E_{11}) = \{AE_{11}B \mid A, B \in M_n(\mathbb{R})\}$	None	None
II (Quaternions)	(0), (1+i)	$(1+i) = \{(1+i)q \mid q \in \mathbb{H}\}$	None	None