北京大学数学科学学院期末试题

2012 - 2013 学年 第一学期

考试科目:		数学分析 (III)		考试时间:		13 年	1月	11日
姓	名:			学	号: _			

本试题共 $\underline{\Lambda}$ 道大题满分 $\underline{100}$ 分

1. (10) 计算:

$$\int \int_{|x|+|y|\leq 1} \sin^3(x+y) dx dy.$$

- 2. (10) 设物质曲面 S 为密度为 1 的球面 $x^2 + y^2 + z^2 = 1$ 的上半部分 (即 $S = \{(x, y, z); x^2 + y^2 + z^2 = 1, z \ge 0\}$), 试求它的质心坐标.
- 3. (15) 计算积分

$$\int \int_{S} \tan \frac{x^2}{1+|x|+|y|} dy dz + z^2 \sin x dz dx + z^3 dx dy,$$

其中曲面 S 为单位球面的上半部分,即 $\{(x,y,z); x^2+y^2+z^2=1, z\geq 0\}$,取上侧.

- 4. (10) 证明积分 $\int_{\Gamma} (2x \cos(xy) x^2y \sin(xy)) dx x^3 \sin(xy) dy$ 在 R^2 中与路 线无关并求出 $(2x \cos(xy) x^2y \sin(xy)) dx x^3 \sin(xy) dy$ 的一个原函数.
- 5. (15) 设 $D \subset R^2$ 为一个单连通区域, f(x,y) 在 D 内具有二阶连续偏导数,证明: f(x,y) 在 D 内调和(即 f(x,y) 在 D 内满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$)的充分必要条件是:对于 D 内的任何光滑 Jordan 曲线 Γ 有 $\int_{\Gamma} \frac{\partial f}{\partial \mathbf{n}} ds = 0$,其中 \mathbf{n} 是 Γ 的外法向.
- 6. (10) 设 $I(x) = \int_1^x (e^{-xy^2} + \frac{\sin(xy)}{y}) dy$. 求 I'(x).
- 7. (10) 设 f(x) 在 [0,1] 连续且 $\int_0^1 \frac{f(x)}{x(1-x)} dx$ 收敛, 证明 $I(t) = \int_0^1 x^t (1-x)^t f(x) dx$ 在 $[-1,+\infty)$ 上连续.
- 8. (10) 试讨论 $\int \int_{\mathbb{R}^2} \frac{\sin(x^2+y^2)^2}{x^2+y^2+1} dx dy$ 的敛散性.
- 9. (10) 设 $D \subset R^2$ 为一个无界闭区域且对于 $\forall r > 0, D$ 与 $\{(x,y); x^2 + y^2 \le r$ 的交是一个可求面积的闭区域,试构造 R^2 内的一个连续函数 f(x,y) 使得 $\int \int_D f(x,y) dx dy$ 收敛而 $\int \int_D f^2(x,y) dx dy$ 发散.

@赛艇先生收集