Lenguajes Formales, Autómatas y Computabilidad

Propiedades de Lenguajes Regulares

Primer Cuatrimestre 2025

Bibliografía: Capítulo 4, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

El conjunto de los lenguajes regulares está cerrado por union, intersección y complemento.

Es decir, el conjunto de los lenguajes regulares incluidos en Σ^* es un álgebra Booleana de conjuntos.

Demostración: el conjunto delos lenguajes regulares está cerrado por unión

Sean L_1 y L_2 lenguajes regulares. Debemos pobar que $L_1 \cup L_2$ es regular. Sean AFDs $M_1 = \langle Q_1, \Sigma, \delta_1, q_1, F_1 \rangle$ y $M_2 = \langle Q_2, \Sigma, \delta_2, q_2, F_2 \rangle$, $\delta_1 : Q_1 \times \Sigma \to Q_1$, $\delta_2 : Q_2 \times \Sigma \to Q_2$, donde $Q_1 \cap Q_2 = \emptyset$ tales que $L_1 = \mathcal{L}(M_1)$ y $L_2 = \mathcal{L}(M_2)$.

Definimos AFND- λ $M=< Q, \Sigma, \delta, q_0, F>$, con $\delta: Q\times (\Sigma\cup\{\lambda\})\to \mathcal{P}(Q)$ donde

- ▶ q_0 es un nuevo estado es decir, $q_0 \notin Q_1$ y $q_0 \notin Q_2$.
- $Q = Q_1 \cup Q_2 \cup \{q_0\}.$
- \blacktriangleright si $\lambda \notin L_1$ y $\lambda \notin L_2$ entonces $F = F_1 \cup F_2$. Sino, $F = F_1 \cup F_2 \cup \{q_0\}$.
- ▶ $\delta(q_0, \lambda) = \{q_1, q_2\}.$ ▶ $\forall q \in Q_1, \forall a \in \Sigma, \ \delta(q, a) = \{\delta_1(q, a)\}.$
- $\forall q \in Q_1, \forall a \in \Sigma, \delta(q, a) = \{\delta_1(q, a)\}.$ $\forall q \in Q_2, \forall a \in \Sigma, \delta(q, a) = \{\delta_2(q, a)\}.$

Notemos que $Cl_{\lambda}(q_0)=\{q_0,q_1,q_2\}$ y para todo $q\neq q_0$, $Cl_{\lambda}(q)=\{q\}$.

Notemos que para todo $q \in Q_1$, $a \in \Sigma$, $\delta(q,a) = \{\delta_1(q,a)\}$, y para todo $q \in Q_2$, $a \in \Sigma$, $\delta(q,a) = \{\delta_2(q,a)\}$.

Por definición tenemos $\mathcal{L}(M)=\{w\in\Sigma^*:\hat{\bar{\delta}}(q_0,w)\cap F\neq\emptyset\}$ donde

$$\overline{\delta}:Q\times\Sigma\to\mathcal{P}(Q)$$
,

$$\overline{\delta}(q, a) = Cl_{\lambda} \left(\bigcup_{p \in Cl_{\lambda}(q)} \delta(p, a) \right)$$

$$\widehat{\overline{\delta}}: Q \times \Sigma^* \to \mathcal{P}(Q),$$

$$\widehat{\overline{\delta}}(q,\lambda) = Cl_{\lambda}(q),$$

$$\widehat{\overline{\delta}}(q, xa) = \bigcup_{p \in \widehat{\overline{\delta}}(q, x)} \overline{\delta}(p, a).$$

Caso $w = \lambda$.

$$\begin{split} \lambda \in \mathcal{L}(M_) &\Leftrightarrow \hat{\bar{\delta}}(q,\lambda) \cap F \neq \emptyset \\ &\Leftrightarrow \{q_0,q_1,q_2\} \cap F \neq \emptyset, \quad \text{porque } \hat{\bar{\delta}}(q,\lambda) = Cl_\lambda(q_0) \\ &\Leftrightarrow q_1 \in F_1 \text{ o } q_2 \in F_2, \quad \text{por def de } M \\ &\Leftrightarrow \lambda \in (\mathcal{L}(M_1) \text{ o } \lambda \in \mathcal{L}(M_2) \\ &\Leftrightarrow \lambda \in (\mathcal{L}(M_1) \cup \mathcal{L}(M_2)). \end{split}$$

Caso $w \neq \lambda$. Consideremos $\hat{\delta_1}: Q_1 \times \Sigma^* \to Q_1$, $\hat{\delta_1}(q,\lambda) = q$, $\hat{\delta_1}(q,xa) = \delta_1(\hat{\delta_1}(q,x),a)$

$$\delta_1: Q_1 \times \Sigma^* \to Q_1, \ \delta_1(q,\lambda) = q, \ \delta_1(q,xa) = \delta_1(\delta_1(q,x),a)
\delta_2: Q_2 \times \Sigma^* \to Q_2, \ \hat{\delta_2}(q,\lambda) = q, \ \hat{\delta_2}(q,xa) = \delta_2(\hat{\delta_2}(q,x),a)$$

Demostremos que para todo $q \in Q$, $w \in \Sigma^+$,

$$\widehat{\overline{\delta}}(q_0, w) = \{\widehat{\delta_1}(q_1, w)\} \cup \{\widehat{\delta_2}(q_2, w)\}$$

Para w = a.

$$\hat{\overline{\delta}}(q_0, a) = \overline{\delta}(q_0, a) = Cl_{\lambda}\left(\bigcup_{p \in Cl_{\lambda}(q_0)} \delta(p, a)\right) = \{\delta_1(q_1, a)\} \cup \{\delta_2(q_2, a)\}.$$

Para w=xa, con $x\in \Sigma^+$, es decir $|x|\geq 1$. Supongamos la propiedad vale para x.

$$\begin{split} \hat{\overline{\delta}}(q_0, xa) &= \cup_{p \in \hat{\overline{\delta}}(q_0, x)} \overline{\delta}(p, a) \\ &= \cup_{p \in (\{\delta_1(q_1, x)\} \cup \{\delta_2(q_2, x)\})} \overline{\delta}(p, a), \quad \text{por HI} \\ &= \left(\cup_{p \in \{\hat{\delta_1}(q_1, x)\}} \{\delta_1(p, a)\} \right) \cup \left(\cup_{p \in \{\hat{\delta_2}(q_1, x)\}} \{\delta_2(p, a)\} \right) \\ &= \{\delta_1(\hat{\delta_1}(q_1, x), a)\} \cup \{\delta_2(\hat{\delta_2}(q_1, x), a)\} \\ &= \{\hat{\delta_1}(q_1, xa)\} \cup \{\hat{\delta_2}(q_1, xa)\}. \end{split}$$

$$\begin{split} w \in \mathcal{L}(M) &\Leftrightarrow \widehat{\overline{\delta}}(q_0, w) \cap F \neq \emptyset \\ &\Leftrightarrow \{\widehat{\delta_1}(q_1, w), \widehat{\delta_2}(q_2, w)\} \cap (F_1 \cup F_2) \neq \emptyset \\ &\Leftrightarrow \widehat{\delta_1}(q_1, w) \in F_1, \ \circ \ \widehat{\delta_2}(q_1, w) \in F_2 \\ &w \in \mathcal{L}(M_1) \cup \mathcal{L}(M_2). \end{split}$$

Demostración: El conjunto de lenguajes regulares es cerrado por complemento.

Sea
$$M=(Q,\Sigma,\delta,q_0,F)$$
 completo, con $\delta:Q\times\Sigma\to Q$ y sea $M'=(Q,\Sigma,\delta,q_0,Q\setminus F)$. Usamos $\widehat{\delta}:Q\times\Sigma^*\to Q$, $\widehat{\delta}(q,\lambda)=q$, $\widehat{\delta}(q,xa)=\delta(\widehat{\delta}(q,x),a)$, Sea $w\in\Sigma^*$.
$$w\in\mathcal{L}(M) \text{ si y solo si } \widehat{\delta}(q_0,w)\in F$$
 si y solo si $\widehat{\delta}(q_0,w)\not\in (Q\setminus F)$ si y solo si $w\not\in\mathcal{L}(M')$.

El conjunto de lenguajes regulares es cerrado por intersección.

Sean L_1 y L_2 regulares.

$$L_1 \cap L_2 = \overline{\overline{L_1 \cap L_2}} = \overline{\overline{L_1} \cup \overline{L_2}}.$$

Dado que los lenguajes regulares están cerrdos por unión y complemento, concluimos que $L_1 \cap L_2$ es regular.

Una demostración alternativa

El conjunto de lenguajes regulares está cerrado por intersección.

Dados M_1 y M_2 AFDs, definimos M' tal que $\mathcal{L}\left(M'\right)=\mathcal{L}\left(M_1\right)\cap\mathcal{L}\left(M_2\right)$. Sea $M^{'}=< Q', \Sigma, \delta', q_0', F'>$ con

$$Q' = Q_1 \times Q_2$$

$$\delta'((q,r),a)=(\delta_1(q,a),\delta_2(r,a))$$
 para $q\in Q_1$ y $r\in Q_2$

$$q_0' = (q_{0_1}, q_{0_2})$$

$$F' = F_1 \times F_2$$

entonces

$$\begin{split} \alpha &\in \mathcal{L}(M^{'}) \quad \Leftrightarrow \quad \widehat{\delta'}\left(\left(q_{0_{1}},q_{0_{2}}\right),\alpha\right) \in F' \\ & \Leftrightarrow \quad \left(\widehat{\delta_{1}}\left(q_{0_{1}},\alpha\right),\widehat{\delta_{2}}\left(q_{0_{2}},\alpha\right)\right) \in F_{1} \times F_{2} \\ & \Leftrightarrow \quad \left(\widehat{\delta_{1}}\left(q_{0_{1}},\alpha\right) \in F_{1}\right) \; \mathsf{y} \; \left(\widehat{\delta_{2}}\left(q_{0_{2}},\alpha\right) \in F_{2}\right) \\ & \Leftrightarrow \quad \alpha \in \mathcal{L}\left(M_{1}\right) \; \mathsf{y} \; \alpha \in \mathcal{L}\left(M_{2}\right). \end{split}$$

El conjunto de los lenguajes regulares está cerrado por concatenacion.

El conjunto de los lenguajes regulares está cerrado por reversa.

La unión finita y la intersección finita de lenguajes regulares dan por resultado un leguaje regular.

Demostración.

Debemos ver que

$$\forall n \in \mathbb{N}, \ \bigcup_{i=1}^n L_i \text{ es regular, y } \forall n \in \mathbb{N}, \ \bigcap_{i=1}^n L_i \text{ es regular.}$$

Por inducción en n.

- Caso base n=0: $\bigcup_{i=0}^{0} L_i = \emptyset$ es regular.
- ► Caso inductivo:

Supongamos que para $n>0, \ \bigcup_{i=1}^n L_i$ es regular. Veamos que vale

para
$$n+1$$
.

$$\bigcup_{i=1}^{n+1}L_i=\bigcup_{i=1}^nL_i\cup L_{n+1}$$
 es regular, por ser la union de dos regulares.

La demostración para \cap es similar.

Todo lenguaje finito es regular.

Demostración.

Sea L un lenguaje finito, con n cadenas, $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$.

Para cada $i=1,2,\ldots n$, sea $L_i=\{\alpha_i\}$.

Entonces $L = \bigcup_{i=1}^{n} {\{\alpha_i\}}.$

Como cada $\{\alpha_i\}$ es regular, entonces L también lo es.

Definición

Un conjunto A de números naturales es decidible si hay un algoritmo que para cualquier número natural responde si pertenece o no al conjunto A.

La definición de decidibilidad se extiende a otros conjuntos que los naturales, y a otros problemas que la pertenecia. En cada caso significa la existencia de un algoritmos que resuelve la pregunta por sí o por no.

Los siguentes problemas sobre lenguajes regulares son decidibles:

Vacuidad: Dado $L \subseteq \Sigma^*$ regular, $i \in L = \emptyset$?

Pertenencia: Dado $L\subseteq \Sigma^*$ regular y dada un palabra $w\in \Sigma^*$, ¿ $w\in L$?

- 1. (Pertenencia) Para toda $\alpha \in \Sigma^*$, ¿pertenece α a L? Sí. Sea AFD M tal que $\mathcal{L}(M) = L$. Si α es aceptada, entonces pertenece a L y sino no.
- 2. (Vacuidad): Dado el lenguaje regular L, Se construye su AFD M tal que $\mathcal{L}\left(M\right)=L$ Se determina el conjunto A de estados alcanzables. Si $F\cap A=\emptyset$ entonces el lenguaje L es vacío y sino no.
- 3. (Equivalencia) Dados los lenguajes regulares L_1 y L_2 , Es decidible si $\mathcal{L}(M_1)=\mathcal{L}(M_2)$?
 Sí . Dados los lenguajes regulares L_1 y L_2 , aceptados por los AFDs M_1 y M_2 respectivamente

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$$

es vacío entonces L_1 y L_2 son equivalentes, sino no lo son.

Ejercicios

- 1. Indicar Verdadero o Falso y justificar: Sean L_1 y L_2 lenguajes sobre el alfabeto Σ , tal que $L_1 \cup L_2$ es regular. Entonces, tanto L_1 como L_2 son regulares.
- 2. Dar un algoritmo de decisión que determine si el lenguaje aceptado por un autómata finito es el conjunto de todas las cadenas del alfabeto.