Decision and Utilities CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

- Introduction
 - Agent
- Utility Theory
 - Preference
- 3 Decision
 - Decision
- 4 Value of Information
 - Uncertainty Reduction

- Introduction
 - Agent
- 2 Utility Theory
 - Preference
- 3 Decision
 - Decision
- 4 Value of Information
 - Uncertainty Reduction

Agent

- State
- Action
- Consequence
- Goal
- Utility

Maximize Expected Utility

Application

0

Algorithmic trading High frequency trading

- Introduction
 - Agent
- Utility Theory
 - Preference
- 3 Decision
 - Decision
- 4 Value of Information
 - Uncertainty Reduction

Preference

Model agent's preference

- $A \succ B$ the agent prefer A over B
- $A \sim B$ the agent is indifferent between A and B
- $A \succsim B$ the agent prefers A over B or is indifferent between them

Lottery

$$L = [p_1, S_1; p_2, S_2; \cdots p_n, S_n]$$

- a set of outcomes $\{S_1, S_2, \cdots S_n\}$
- each outcome occurs a probability p_i

$$\bullet \ \sum_{i=1}^n p_i = 1$$

ullet each outcome S_i can either be an atomic state or another lottery

Principles

Orderability

• Exactly one of $(A \succ B)$, $(A \prec B)$, or $(A \sim B)$ holds.

Transitivity

•
$$(A \succ B) \land (B \succ C) \Longrightarrow (A \succ C)$$
.

Continuity

•
$$A \succ B \succ C \Longrightarrow \exists p[p, A : 1 - p, C] \sim B$$
.

Principles

Substitutability

•
$$A \sim B \Longrightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C].$$

Monotonicity

•
$$A \succ B \Longrightarrow (p > q \Longleftrightarrow [p, A; 1-p, B] \succ [q, A; 1-q, B]).$$

Decomposability

•
$$[p, A; 1-p, [q, B; 1-q, C]] \sim [p, A; (1-p)q, B; (1-p)(1-q), C].$$

From Preference to Utility

Existence of Utility Function

•
$$U(A) > U(B) \iff A \succ B$$

•
$$U(A) = U(B) \iff A \sim B$$

From Preference to Utility

Expected Utility of a Lottery

$$U([p_1, S_1; \cdots; p_n, S_n]) = \sum_i p_i U(S_i)$$

- Introduction
 - Agent
- Utility Theory
 - Preference
- 3 Decision
 - Decision
- Value of Information
 - Uncertainty Reduction

Decision making

$$a^* = \arg\max_a EU(u \mid e, a)$$

Utility Function

- U(S)
- ullet worst u_{\perp} and best $u_{ op}$
- ullet standard lottery $[p,u_{\perp};(1-p),u_{\top}]$
- Risk-Seeking
- Risk-Averse
- Risk-Neutral

Utility Function

Bernoulli's Model of Different Risk Perspectives

Source: Begg, Bratvold and Campbell, Decision-Making Under Uncertainty

Multi-Attribute Utility

- Usually there are multiple attributes to be considered in decision making.
- Example : New airport location
 - the cost of the land
 - the distance from centers of population
 - the noise of flight
 - safety

Multi-Attribute Utility

A vector of attributes
$$\mathbf{x} = \langle x_1, \cdots, x_n \rangle$$

- ullet dominance : better or equivalent in all the attributes \succsim
- **strict dominance** : better in all the attributes >
- non-dominance: at least better in one attributes than any other solution
 - Pareto-optimal

Multi-Attribute Utility

- Introduction
 - Agent
- Utility Theory
 - Preference
- 3 Decision
 - Decision
- 4 Value of Information
 - Uncertainty Reduction

Value of information

- the benefit from uncertainty reduction
- the cost of collecting information
- decision making
 - whether it is worth to collect the information
- Example oil drill