Grundlagen der Programmierung (Vorlesung 6)

Ralf Möller, FH-Wedel

- Vorige Vorlesung:
 - Boole'sche Logik & Boole'sche Algebra
 - Normalformen
- Inhalt dieser Vorlesung
 - Das Resolutionsverfahren
- Lernziele:
 - Anwendung des Resolutionsverfahrens
 - Lösen von Logeleien

Danksagung

Die Folien zu Normalformen und Kalkülen wurden übernommen von Javier Esparza (http://www.brauer.in.tum.de/lehre/logik/SS99/)

Resolvent

Definition Seien K_1 , K_2 und R Klauseln. Dann heißt R Resolvent von K_1 und K_2 , falls es ein Literal L gibt mit $L \in K_1$ und $\overline{L} \in K_2$ und R die Form hat:

$$R = (K_1 - \{L\}) \cup (K_2 - \{\overline{L}\}).$$

Hierbei ist \overline{L} definiert als

$$\overline{L} = \begin{cases} \neg A_i \text{ falls } L = A_i, \\ A_i \text{ falls } L = \neg A_i. \end{cases}$$

Wir stellen diesen Sachverhalt durch folgendes Diagramm dar (Sprechweise: R wird aus K_1 , K_2 nach L resolviert).

Wir vereinbaren ferner, daß die leere Menge, die ebenfalls als Resolvent auftreten kann (falls $K_1 = \{L\}$ und $K_2 = \{\overline{L}\}$ für ein Literal L) mit dem speziellen Symbol \square bezeichnet wird. Dieses Symbol wird verwendet, um eine unerfüllbare Formel zu bezeichnen.

Resolutions–Lemma

Resolutions-Lemma

Sei F eine Formel in **KNF**, dargestellt als Klauselmenge. Ferner sei R ein Resolvent zweier Klauseln K_1 und K_2 in F. Dann sind F und $F \cup \{R\}$ äquivalent.

Beweis:

Sei A eine zu F (und damit auch zu $F \cup \{R\}$) passende Belegung.

Falls $A \models F \cup \{R\}$, dann gilt natürlich (erst recht) $A \models F$.

Sei als umgekehrt angenommen, daß $A \models F$, d.h. also für alle

Klauseln $K \in F$ gilt $A \models K$. Der Resolvent R habe die Form $R = (K_1 - \{L\}) \cup ((K_2 - \{\overline{L}\}) \text{ mit } K_1, K_2 \in F \text{ und } L \in K_1, \overline{L} \in K_2.$

Fall 1: $A \models L$.

Dann folgt wegen $A \models K_2$ und $A \not\models \overline{L}$, daß $A \models (K_2 - \{\overline{L}\})$, und damit $A \models R$.

Fall 2: $A \not\models L$.

Dann folgt wegen $A \models K_1$, daß $A \models (K_1 - \{L\})$ und damit $A \models R$.

Res(F)

Definition

Sei F eine Klauselmenge. Dann ist Res(F) definiert als

$$Res(F) = F \cup \{R | R \text{ ist Resolvent zweier Klauseln in } F\}.$$

Außerdem setzen wir:

$$Res^{0}(F) = F$$

 $Res^{n+1}(F) = Res(Res^{n}(F))$ für $n \ge 0$.

und schließlich sei

$$Res^*(F) = \bigcup_{n \ge 0} Res^n(F).$$

Resolutionssatz

Eine Klauselmenge F ist unerfüllbar genau dann, wenn

$$\Box \in Res^*(F)$$

Die Supermann-Logelei in Aussagenlogik

- \blacksquare SBVK \land SBVW \rightarrow SBV
- $\neg SBVK \rightarrow SM$
- $\neg SBVW \rightarrow SB$
- -SBV
- $SE \rightarrow \neg (SM \lor SB)$

Formelmenge F

Folgerung

Lösen des Folgerungsroblems durch Resolution

- Behaupten des Gegenteils durch Negation der Folgerung: ¬ ¬ SE
- Umwandlung der Hypothesenformelmenge in Konjunktion
- Umwandlung der Konjunktion in konjunktive Normalform notiert in Klauselform
- Hinzufügung der negierten Folgerung in KNF notiert in Klauselform
- Zeige: $\Box \in Res^*(F \bigcup \{,,Negierte Folgerung''\})$

Zusammenfassung, Kernpunkte

- "Rechnen" mit Formeln
 - Algebra
 - Transformationsgesetze
- Kalkül : Resolution
- Anwendung
 - Programmtransformation (kommt bald)
 - Lösen von Logeleien

Was kommt beim nächsten Mal?

Prädikatenlogik erster Stufe