Step-1

We have to find that why canâ \in TMt a 1 by 3 system have $x_p = (2,4,0)$ and

 $x_n =$ any multiple of (1,1,1)

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Let $\begin{bmatrix} x_3 \end{bmatrix}$ be the solution of the systems and $\begin{bmatrix} x_2, x_3 \end{bmatrix}$ are free variables.

Then x_1 = linear combinaton of x_2, x_3

 $Let^{X_1} = ax_2 + bx_3 + c$

Step-2

Therefore

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} ax_2 + bx_3 + c \\ x_2 \\ x_3 \end{bmatrix}$$

$$= \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} a \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} b \\ 0 \\ 1 \end{bmatrix}$$

Step-3

0

Therefore the particular solution is in the form $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Therefore a 1 by 3 system can not have

 $x_p = (2,4,0)$ and $x_n = \text{any multiple of } (1,1,1)$