Noise-contrastive estimation of normalising constants and GANs

Fonctions génériques

Algorithme d'Hasting

Utilité : simuler selon $p_m(., \psi)$ pour un paramètre ψ choisi.

Argument	Type	Exemple	Indication
X	vecteur	reauchy $(100, 0, 1)$	notre échantillon de densité inconnue
n	entier	100	taille de la simulation
psi	vecteur	c(0,1)	paramètres de la fonction h
h	fonction		fonction qui retourne $\overline{p_m}(.,\psi)$

Note: on peut très certainement écrire sous forme matricielle cette fonction pour une meilleure performance.

MC MLE

Utilité: retourne une estimation des paramètres selon la méthode décrite dans le papier de Geyer.

```
mc_mle = function(x, n, psi, h){

y = hasting(x, n, psi, h)

L = function(theta){
   return(sum(log(h(x,theta)/h(x,psi))) - n*log(mean(h(y,theta)/h(y,psi))))}
}

theta = optim(
   par = rep(1,length(psi)),
   gr = "CG",
```

```
control = list(fnscale=-1),
  fn = L
) $par

return(theta)
}
```

NCE

Utilité : Retourne l'estimation de la constante et des paramètres.

Argument	Type	Exemple	Indication
X	vecteur	reauchy $(100, 0, 1)$	notre échantillon de densité inconnue
law_y	fonction	rnorm	fonction qui retourne un échantillon suivant la loi p_n
n	entier	100	taille de l'échantillon de bruit suivant la loi p_n
params_y	vecteur	c(0,1)	arguments de la fonction law_y
log_pm	fonction		fonction qui retourne le logarithme de la densité p_m
log_pn	fonction		fonction qui retourne le logarithme de la densité p_n
size_theta	entier	3	taille de θ , vaut habituellement 2 ou 3
method	string	"CG"	méthode d'optimisation, habituellement "CG" ou "BFGS"

```
nce = function(x, law_y, n, params_y, log_pm, log_pn, size_theta, methode = "CG"){
    y = do.call(law_y,c(list(n),params_y))
    m = length(x)

h = function(u, theta){
    return( 1 / (1 + n/m * exp(log_pn(u) - log_pm(u, theta))))
}

J = function(theta){
    return( sum(log(h(x, theta))) + sum(log(1 - h(y, theta))))
}

theta = optim(
    par = rep(1, size_theta),
    gr = methode,
    control = list(fnscale=-1),
    fn = J
)$par

return(c(theta[-1], exp(-theta[1])))
}
```

Graphiques

```
library(ggplot2)
library(reshape)
```

Utilité : afficher l'histogramme pour un échantillon de données x.

```
print_hist = function(x) {
    df = data.frame(x = x)
    hist_x = ggplot(df, aes(x=x)) + geom_histogram(aes(y = stat(count) / sum(count)), bins = 20, color="wind print(hist_x)
}
```

Utilité : afficher l'évolution des paramètres au fur et à mesure de l'augmentation de n (la dimension de l'échantillon de bruit)

```
evolution_paramètres = function(x, law_y, params_y, log_pm, log_pn, nb_of_params, taille, precision, la
  # Creation de l'abscisse
 m = length(x)
 N = seq(10, m*taille, length.out = precision)
  # Creation de l'ordonnée
  theta = c()
  for (n in N) {
   theta = append(theta, nce(x, law_y, n, params_y, log_pm, log_pn, nb_of_params, methode))
  # Formatage des données
  theta = t(rbind(matrix(theta, nrow = nb_of_params), N))
  df = as.data.frame(theta)
  df_melted = melt(df, id.vars = 'N')
  # Plot
  plot_df = ggplot(df_melted, aes(x = N, y = value)) +
  geom_line(aes(color = variable, group = variable)) +
  geom_point(aes(color = variable, group = variable)) +
  labs(title = "Evolution des paramètres", x = "n", y = "Paramètres", color = "Légende") +
  scale_color_manual(labels = labels, values = c("blue", "red", "orange"))
 print(plot_df)
  return(theta)
```

Exemple basique: la loi normale

}

Soit x l'échantillon de taille m obtenu selon la loi de densité inconnue p_d .

On considère ici que p_d appartient à la famille de fonctions paramétrées par $\theta = (c, \mu, \sigma)$ suivante :

$$p_m(u;\theta) = \frac{1}{Z(\mu,\sigma)} \times exp \left[-\frac{1}{2} \left(\frac{u-\mu}{\sigma} \right)^2 \right] \quad \text{d'où} \quad ln(p_m(u;\theta)) = c - \frac{1}{2} \left(\frac{u}{\sigma} - \frac{\mu}{\sigma} \right)^2$$

$$\log_p m = \text{function(u,theta)} \{ \text{return(theta[1] - 1/2 * (u/theta[3] - theta[2]/theta[3]) ** 2)}$$

$$\text{# theta[1] = c / theta[2] = mu / theta[3] = sigma }$$

```
log_pn_cauchy = function(u){
  return(log(dcauchy(u, mean(x), sd(x))))
}

m = 1000
  n = 10000
  x = rnorm(m, 2, 4)
  size_theta = 3

nce(x, rcauchy, n, c(mean(x),sd(x)), log_pm, log_pn_cauchy, size_theta)
```

[1] 2.116156 3.859399 9.586867

 $evolution_paramètres(x, rcauchy, c(mean(x), sd(x)), log_pm, log_pn_cauchy, size_theta, 10, 10, c("mu", "log_pm, log_pm, log_pm, log_pm, log_pm, log_$

Evolution des paramètres


```
##
                                        N
   [1,] 3.730738 4.702334 9.107638
                                       10
##
   [2,] 2.112044 3.794790 9.455434
                                     1120
##
##
   [3,] 2.149987 3.879013 9.791419
                                     2230
   [4,] 2.134822 3.889779 9.963229
##
   [5,] 2.113100 3.862205 9.723734
                                     4450
##
   [6,] 2.166638 3.903222 9.883796
                                     5560
  [7,] 2.173730 3.793722 9.492571
                                     6670
   [8,] 2.127916 3.917009 9.815996
   [9,] 2.116594 3.894621 9.788233
                                     8890
## [10,] 2.168869 3.857940 9.658979 10000
```