

Консультант

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информат	ика и системы управлени	
КАФЕДРА	Системы обраб	ботки информации и упра	авления
РАСЧЕТІ	окоп-он	СНИТЕЛЬНАЯ	ЗАПИСКА
	К КУРС	ОВОЙ РАБОТЕ	•
	Н	A TEMY:	
	ешение кол	мплексной задачі	<i>u</i>
	машинн	юго обучения	
Студент <u>ИУ5П</u> (Группа	•	(Подпись, дата)	Донченко М.А. (Фамилия И.О.)
Руководитель курсо	вой работы	(Подпись, дата)	<u>Гапанюк Ю.Е.</u> (Фамилия И.О.)

(Подпись, дата)

(Фамилия И.О.)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТВЕРЖД. ующий каф	
		(Индекс)
~	»	(И.О.Фамилия) 20 г.
<u></u>		201.

ЗАДАНИЕ

на	выполнение ку	рсовои раооты	
по дисциплине	Технологии машинн	ого обучения	
Студент группы ИУ5Ц	-83Б		
	Донченко Мария Анд		
	(Фамилия, имя,	, отчество)	
Тема курсовой работы: <u>рег</u>	пение комплексной задач	чи машинного обучения	I
Направленность КР (учебна	учебная		* * * *
Источник тематики (кафедр	а, предприятие, НИР) <u> </u>	кафедра	
График выполнения работы	: 25% кнед., 50% к_	нед., 75% кнед.,	100% кнед.
Задание решение зада	чи машинного обучения	на основе материалов д	цисциплины.
Оформление курсовой рабо			
Расчетно-пояснительная зап	иска на <u>19</u> листах фор	омата А4.	
Дата выдачи задания «>	>20г.		
Руководитель курсовой ра	боты		Гапанюк Ю.Е.
Студент		(Подпись, дата)	(Фамилия И.О.) Донченко М.А.
		(Подпись, дата)	(Фамилия И.О.)

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре

Курсовая работа

по дисциплине "Технологии машинного обучения"

Задание:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использоват ь методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметро в. Сравнение качества полученных моделей с качеством baseline-моделей.

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде гр афиков и сделать выводы в форме текстового описания. Рекомендуется построе ние графиков обучения и валидации, влияния значений гиперпарметров на каче ство моделей и т.д.

```
import matplotlib.pyplot as plt
median absolute error, r2 score
    data out = data in.copy()
        new cols.append(new col name)
data = load data()
st.sidebar.header('Случайный лес')
max value=10, value=3, step=1)
st.sidebar.header('Градиентный бустинг')
```

```
max value=15, value=3, step=1)
st.write(data.head())
st.subheader('Размер датасета')
st.write(data.shape)
st.subheader('Количество нулевых элементов')
st.write(data.isnull().sum())
st.write(data['volatile acidity'].value counts())
st.subheader('Колонки и их типы данных')
st.write(data.dtypes)
st.subheader('Статистические данные')
st.write(data.describe())
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x=data['alcohol'], y=data['quality'])
plt.xlabel("alcohol")
plt.ylabel("quality")
st.pyplot(fig)
f1, ax = plt.subplots()
sns.boxplot(x=data['quality'])
st.pyplot(f1)
sns.violinplot(x=data['quality'])
st.pyplot(f)
st.subheader('Масштабирование данных')
plt.hist(data['quality'], 50)
st.pyplot(f)
st.subheader('Показать корреляционную матрицу')
fig1, ax = plt.subplots(figsize=(10, 5))
st.pyplot(fig1)
X_train, X_test, Y_train, Y_test, X, Y = preprocess_data(data)
st.subheader('RandomForestRegressor')
st.subheader('Средняя абсолютная ошибка:')
st.write(mean_absolute_error(Y_test, Y_predict))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, Y_predict))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y predict))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y predict))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X test['density scaled'], Y test, marker='o',
```

```
plt.scatter(X test['density scaled'], Y predict, marker='.',
plt.legend(loc='lower right')
plt.xlabel('density scaled')
plt.ylabel('price')
plt.plot(n estimators 1)
st.pyplot(fig1)
st.subheader('Нахождение лучшего случайного леса')
grid 2 = GridSearchCV(estimator=RandomForestRegressor(oob score=True,
random state=10),
                      param grid=params2,
grid 2.fit(X, Y)
st.write(grid 2.best params )
forest 3 = RandomForestRegressor(n estimators=75, oob score=True,
random state=5)
forest 3.fit(X, Y)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y predict3))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean squared error(Y test, Y predict3))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y predict3))
st.subheader('Коэффициент детерминации:')
st.write(r2 score(Y test, Y predict3))
fig1 = plt.figure(figsize=(7, 5))
ax = plt.scatter(X_test['density scaled'], Y test, marker='o',
plt.scatter(X_test['density_scaled'], Y predict3, marker='.',
plt.legend(loc='lower right')
plt.xlabel('density scaled')
plt.ylabel('price')
st.pyplot(fig1)
st.subheader('Градиентный бустинг')
grad = GradientBoostingRegressor(n estimators=n estimators 2,
grad.fit(X_train, Y_train)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean_absolute_error(Y_test, Y_grad_pred))
st.subheader('Средняя квадратичная ошибка:')
st.write(mean_squared_error(Y_test, Y_grad_pred))
st.subheader('Median absolute error:')
st.write(median_absolute_error(Y_test, Y_grad_pred))
st.write(r2 score(Y test, Y grad pred))
```

```
ax = plt.scatter(X test['density scaled'], Y test, marker='o',
plt.scatter(X test['density scaled'], Y grad pred, marker='.',
plt.legend(loc='lower right')
plt.xlabel('density scaled')
plt.ylabel('price')
plt.plot(random state 2)
st.pyplot(fig2)
st.subheader('Нахождение лучшего////')
grid gr = GridSearchCV(estimator=GradientBoostingRegressor(random state=10),
                       param grid=params,
grid gr.fit(X train, Y train)
st.write(grid gr.best params )
grad1 = GradientBoostingRegressor(n estimators=50, max features=1,
min samples leaf=0.01, random state=10)
grad1.fit(X train, Y train)
st.subheader('Средняя абсолютная ошибка:')
st.write(mean absolute error(Y test, Y grad pred1))
st.subheader( Средняя квадратичная ошибка: Т)
st.write(mean_squared_error(Y_test, Y_grad_pred1))
st.subheader('Median absolute error:')
st.write(median absolute error(Y test, Y grad pred1))
st.subheader('Коэффициент детерминации:')
st.write(r2_score(Y_test, Y_grad pred1))
plt.scatter(X_test['density scaled'], Y grad pred1, marker='.',
plt.legend(loc='lower right')
st.pyplot(fig1)
st.subheader('Построение линейной регрессии')
fig3 = plt.figure(figsize=(7, 5))
plt.scatter(X test['density scaled'], Y test, marker='s', label='TecToBag
plt.scatter(X test['density scaled'], lr y pred, marker='o',
plt.legend(loc='lower right')
```

```
plt.xlabel('density_scaled')
plt.ylabel('price')
plt.show()
st.pyplot(fig3)
st.subheader('Tree')
clf = tree.DecisionTreeClassifier()
fig5 = plt.figure(figsize=(7, 5))
plt.scatter(X test['density scaled'], Y test, marker='s', label='TecToBag
plt.scatter(X test['density scaled'], lr y pred, marker='o',
label='Предсказанные данные')
plt.legend(loc='lower right')
plt.xlabel('density scaled')
plt.ylabel('price')
plt.show()
st.pyplot(fig5)
st.subheader('Модель ближайших соседей для произвольного гиперпараметра К')
Regressor 5NN = KNeighborsRegressor(n neighbors = 5)
Regressor 5NN.fit(X train, Y train)
lr y pred = Regressor 5NN.predict(X test)
fig6 = plt.figure(figsize=(7, 5))
plt.scatter(X test['density scaled'], Y test, marker='s', label='Тестовая
plt.scatter(X_test['density_scaled'], lr_y pred, marker='o',
plt.legend(loc='lower right')
plt.xlabel('density scaled')
plt.ylabel('price')
st.pyplot(fig6)
```


Первые 5 значений

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	fı
0	7	0.2700	0.3600	20.7000	0.0450	
1	6.3000	0.3000	0.3400	1.6000	0.0490	
2	8.1000	0.2800	0.4000	6.9000	0.0500	
3	7.2000	0.2300	0.3200	8.5000	0.0580	
4	7.2000	0.2300	0.3200	8.5000	0.0580	

Размер датасета

(4898, 12)

Количество нулевых элементов

	0
fixed acidity	0
volatile acidity	0
citric acid	0
residual sugar	0
chlorides	0
free sulfur dioxide	0
total sulfur dioxide	0
density	0
рН	0
sulphates	0
alcohol	0

	volatile acidity
0.2800	263
0.2400	253
0.2600	240
0.2500	231
0.2200	229
0.2700	218
0.2300	216
0.2000	214
0.3000	198
0.2100	191
0.3200	182

Колонки и их типы данных

	0
fixed acidity	float64
volatile acidity	float64
citric acid	float64
residual sugar	float64
chlorides	float64
free sulfur dioxide	float64
total sulfur dioxide	float64
density	float64
рН	float64
sulphates	float64
alcohol	float64

Статистические данные

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides
count	4898	4898	4898	4898	4898
mean	6.8548	0.2782	0.3342	6.3914	0.0458
std	0.8439	0.1008	0.1210	5.0721	0.0218
min	3.8000	0.0800	0	0.6000	0.0090
25%	6.3000	0.2100	0.2700	1.7000	0.0360
50%	6.8000	0.2600	0.3200	5.2000	0.0430
75%	7.3000	0.3200	0.3900	9.9000	0.0500
max	14.2000	1.1000	1.6600	65.8000	0.3460

Масштабирование данных

Показать корреляционную матрицу

RandomForestRegressor

Средняя абсолютная ошибка:

0.6350566893424037

Средняя квадратичная ошибка:

1.606127461358693

Median absolute error:

0.0

Коэффициент детерминации:

Нахождение лучшего случайного леса

```
"n_estimators": 75
```

Средняя абсолютная ошибка:

0.6087955330761453

Средняя квадратичная ошибка:

0.9310949482596712

Median absolute error:

0.36000000000000003

Коэффициент детерминации:

Градиентный бустинг

Средняя абсолютная ошибка:

3.439577455813961

Средняя квадратичная ошибка:

16.36672227850483

Median absolute error:

3.858982186947001

Коэффициент детерминации:

Нахождение лучшего////

```
"max_features":1
   "min_samples_leaf":0.01
   "n_estimators":50
```

Средняя абсолютная ошибка:

1.8667782240435924

Средняя квадратичная ошибка:

5.9103563475457905

Median absolute error:

1.5414564804505195

Коэффициент детерминации:

Построение линейной регрессии

Tree

Модель ближайших соседей для произвольного гиперпараметра К

