

STM32F101xF STM32F101xG

XL-density access line, ARM[®]-based 32-bit MCU with 768 KB to 1 MB Flash, 15 timers, 1 ADC and 10 communication interfaces

Datasheet - production data

Features

- Core[®]: ARM 32-bit Cortex[®]-M3 CPU with MPU
 - 36 MHz maximum frequency,
 1.25 DMIPS/MHz (Dhrystone 2.1)
 performance
 - Single-cycle multiplication and hardware division

Memories

- 768 Kbytes to 1 Mbyte of Flash memory (dual bank with read-while-write capability)
- 80 Kbytes of SRAM
- Flexible static memory controller with 4
 Chip Select. Supports Compact Flash,
 SRAM, PSRAM, NOR and NAND
 memories
- LCD parallel interface, 8080/6800 modes
- Clock, reset and supply management
 - 2.0 to 3.6 V application supply and I/Os
 - POR, PDR, and programmable voltage detector (PVD)
 - 4-to-16 MHz crystal oscillator
 - Internal 8 MHz factory-trimmed RC
 - Internal 40 kHz RC with calibration capability
 - 32 kHz oscillator for RTC with calibration

Low power

- Sleep, Stop and Standby modes
- V_{BAT} supply for RTC and backup registers
- 1 x 12-bit, 1 µs A/D converters (up to 16 channels)
 - Conversion range: 0 to 3.6 V
 - Temperature sensor
- 2 × 12-bit D/A converters
- DMA
 - 12-channel DMA controller
 - Peripherals supported: timers, ADC, DAC, SPIs, I²Cs and USARTs
- Up to 112 fast I/O ports

- 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant
- Debug mode
 - Serial wire debug (SWD) & JTAG interfaces
 - Cortex-M3 Embedded Trace Macrocell™
- Up to 15 timers
 - Up to ten 16-bit timers, with up to 4 IC/OC/PWM or pulse counters
 - 2 × watchdog timers (Independent and Window)
 - SysTick timer: a 24-bit downcounter
 - 2 × 16-bit basic timers to drive the DAC
- Up to 10 communication interfaces
 - Up to 2 x I²C interfaces (SMSTM32F101xF, STM32F101xG7816 interface, LIN, IrDA capability, modem control)
 - Up to 3 SPIs (18 Mbit/s)
- CRC calculation unit, 96-bit unique ID
- ECOPACK[®] packages

Table 1. Device summary

Reference	Part number		
STM32F101xF	STM32F101RF STM32F101VF STM32F101ZF		
STM32F101xG	STM32F101RG STM32F101VG STM32F101ZG		

Contents

1	Intro	duction	l	9
2	Desc	cription		. 10
	2.1	Device	overview	11
	2.2	Full co	mpatibility throughout the family	. 14
	2.3		ew	
		2.3.1	ARM [®] Cortex [™] -M3 core with embedded Flash and SRAM	
		2.3.2	Memory protection unit	
		2.3.3	Embedded Flash memory	
		2.3.4	CRC (cyclic redundancy check) calculation unit	. 15
		2.3.5	Embedded SRAM	
		2.3.6	FSMC (flexible static memory controller)	. 16
		2.3.7	LCD parallel interface	. 16
		2.3.8	Nested vectored interrupt controller (NVIC)	. 16
		2.3.9	External interrupt/event controller (EXTI)	. 16
		2.3.10	Clocks and startup	. 17
		2.3.11	Boot modes	. 17
		2.3.12	Power supply schemes	. 17
		2.3.13	Power supply supervisor	. 17
		2.3.14	Voltage regulator	. 18
		2.3.15	Low-power modes	. 18
		2.3.16	DMA	. 18
		2.3.17	RTC (real-time clock) and backup registers	. 19
		2.3.18	Timers and watchdogs	. 19
		2.3.19	I ² C bus	. 21
		2.3.20	Universal synchronous/asynchronous receiver transmitters (USARTs)	. 21
		2.3.21	Serial peripheral interface (SPI)	. 21
		2.3.22	GPIOs (general-purpose inputs/outputs)	. 21
		2.3.23	ADC (analog to digital converter)	. 21
		2.3.24	DAC (digital-to-analog converter)	. 22
		2.3.25	Temperature sensor	. 22
		2.3.26	Serial wire JTAG debug port (SWJ-DP)	. 22
		2.3.27	Embedded Trace Macrocell™	. 22

3	Pino	uts and	pin descriptions	23
4	Mem	ory ma	pping	34
5	Elect	trical ch	naracteristics	35
	5.1	Param	eter conditions	35
		5.1.1	Minimum and maximum values	35
		5.1.2	Typical values	35
		5.1.3	Typical curves	35
		5.1.4	Loading capacitor	35
		5.1.5	Pin input voltage	36
		5.1.6	Power supply scheme	36
		5.1.7	Current consumption measurement	37
	5.2	Absolu	te maximum ratings	37
	5.3	Operat	ing conditions	39
		5.3.1	General operating conditions	39
		5.3.2	Operating conditions at power-up / power-down	39
		5.3.3	Embedded reset and power control block characteristics	40
		5.3.4	Embedded reference voltage	41
		5.3.5	Supply current characteristics	41
		5.3.6	External clock source characteristics	49
		5.3.7	Internal clock source characteristics	53
		5.3.8	PLL characteristics	55
		5.3.9	Memory characteristics	55
		5.3.10	FSMC characteristics	56
		5.3.11	EMC characteristics	75
		5.3.12	Absolute maximum ratings (electrical sensitivity)	77
		5.3.13	I/O current injection characteristics	77
		5.3.14	I/O port characteristics	79
		5.3.15	NRST pin characteristics	84
		5.3.16	TIM timer characteristics	86
		5.3.17	Communications interfaces	86
		5.3.18	12-bit ADC characteristics	92
		5.3.19	DAC electrical specifications	97
		5.3.20	Temperature sensor characteristics	99
6	Pack	age cha	aracteristics	100

Contents

8	Revi	sion his	story 113
7	Part	numbe	ring 112
		6.2.2	Evaluating the maximum junction temperature for an application 111
		6.2.1	Reference document
	6.2	Therm	al characteristics110
		6.1.3	LQFP64, 10 x 10 mm, 64 pin low-profile quad flat package 107
		6.1.2	LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package 104
		6.1.1	LQFP144, 20 x 20 mm, 144-pin thin quad flat package
	6.1	Packa	ge mechanical data100

List of tables

Table 4	Device summers:	4
Table 1.	Device summary	
Table 2.	STM32F101xF and STM32F101xG features and peripheral counts	
Table 3.	STM32F101xx family	
Table 4.	STM32F101xF and STM32F101xG timer feature comparison	
Table 5.	STM32F101xF/STM32F101xG pin definitions	
Table 6.	FSMC pin definition	
Table 7.	Voltage characteristics	
Table 8.	Current characteristics	
Table 9.	Thermal characteristics	
Table 10.	General operating conditions	. 39
Table 11.	Operating conditions at power-up / power-down	. 39
Table 12.	Embedded reset and power control block characteristics	. 40
Table 13.	Embedded internal reference voltage	. 41
Table 14.	Maximum current consumption in Run mode, code with data processing	
	running from Flash	. 42
Table 15.	Maximum current consumption in Run mode, code with data processing	
	running from RAM	. 42
Table 16.	Maximum current consumption in Sleep mode, code running from Flash or RAM	
Table 17.	Typical and maximum current consumptions in Stop and Standby modes	
Table 18.	Typical current consumption in Run mode, code with data processing	
rabio ro.	running from Flash	46
Table 19.	Typical current consumption in Sleep mode, code running from Flash or RAM	
Table 20.	Peripheral current consumption	
Table 21.	High-speed external user clock characteristics.	
Table 21.	Low-speed user external clock characteristics	
Table 22.	HSE 4-16 MHz oscillator characteristics	
Table 23.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 24.	HSI oscillator characteristics (ILSE = 32.766 KHz)	
Table 25.	LSI oscillator characteristics	
Table 27.	Low-power mode wakeup timings	
Table 28.	PLL characteristics	
Table 29.	Flash memory characteristics	
Table 30.	Flash memory endurance and data retention	
Table 31.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	
Table 32.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	
Table 33.	Asynchronous multiplexed NOR/PSRAM read timings	
Table 34.	Asynchronous multiplexed NOR/PSRAM write timings	
Table 35.	Synchronous multiplexed NOR/PSRAM read timings	
Table 36.	Synchronous multiplexed PSRAM write timings	
Table 37.	Synchronous non-multiplexed NOR/PSRAM read timings	
Table 38.	Synchronous non-multiplexed PSRAM write timings	. 67
Table 39.	Switching characteristics for PC Card/CF read and write cycles in	
	attribute/common space	. 72
Table 40.	Switching characteristics for PC Card/CF read and write cycles in I/O space	. 73
Table 41.	Switching characteristics for NAND Flash write cycles	
Table 42.	EMS characteristics	. 76
Table 43.	EMI characteristics	
Table 44.	ESD absolute maximum ratings	. 77

List of tables

Table 45.	Electrical sensitivities	. 77
Table 46.	I/O current injection susceptibility	. 78
Table 47.	I/O static characteristics	
Table 48.	Output voltage characteristics	. 82
Table 49.	I/O AC characteristics	. 83
Table 50.	NRST pin characteristics	. 84
Table 51.	TIMx characteristics	. 86
Table 52.	I ² C characteristics	. 87
Table 53.	SCL frequency (f _{PCLK1} = 36 MHz, V _{DD} = V _{DD I2C} = 3.3 V)	. 88
Table 54.	STM32F10xxx SPI characteristics	
Table 55.	SPI characteristics	. 90
Table 56.	ADC characteristics	. 93
Table 57.	R _{AIN} max for f _{ADC} = 14 MHz	. 94
Table 58.	ADC accuracy - limited test conditions	. 94
Table 59.	ADC accuracy	. 95
Table 60.	DAC characteristics	. 97
Table 61.	TS characteristics	. 99
Table 62.	LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data	101
Table 63.	LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data	104
Table 64.	LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data	107
Table 65.	Package thermal characteristics	110
Table 66.	STM32F101xF and STM32F101xG ordering information scheme	
Table 67.	Document revision history	113

List of figures

Figure 1.	STM32F101xF and STM32F101xG access line block diagram	12
Figure 2.	Clock tree	13
Figure 3.	LQFP144 pinout	23
Figure 4.	LQFP100 pinout	24
Figure 5.	LQFP64 pinout	25
Figure 6.	Memory map	34
Figure 7.	Pin loading conditions	36
Figure 8.	Pin input voltage	36
Figure 9.	Power supply scheme	36
Figure 10.	Current consumption measurement scheme	37
Figure 11.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
_	code with data processing running from RAM, peripherals enabled	43
Figure 12.	Typical current consumption in Run mode versus frequency (at 3.6 V) -	
_	code with data processing running from RAM, peripherals disabled	43
Figure 13.	Typical current consumption on V _{BAT} with RTC on vs. temperature at	
_	different V _{BAT} values	45
Figure 14.	Typical current consumption in Standby mode versus temperature at	
_	different V _{DD} values	45
Figure 15.	High-speed external clock source AC timing diagram	50
Figure 16.	Low-speed external clock source AC timing diagram	50
Figure 17.	Typical application with an 8 MHz crystal	52
Figure 18.	Typical application with a 32.768 kHz crystal	53
Figure 19.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms	57
Figure 20.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	58
Figure 21.	Asynchronous multiplexed NOR/PSRAM read waveforms	59
Figure 22.	Asynchronous multiplexed NOR/PSRAM write waveforms	61
Figure 23.	Synchronous multiplexed NOR/PSRAM read timings	62
Figure 24.	Synchronous multiplexed PSRAM write timings	64
Figure 25.	Synchronous non-multiplexed NOR/PSRAM read timings	66
Figure 26.	Synchronous non-multiplexed PSRAM write timings	67
Figure 27.	PC Card/CompactFlash controller waveforms for common memory read access	69
Figure 28.	PC Card/CompactFlash controller waveforms for common memory write access	69
Figure 29.	PC Card/CompactFlash controller waveforms for attribute memory read	
_	access	70
Figure 30.	PC Card/CompactFlash controller waveforms for attribute memory write	
	access	71
Figure 31.	PC Card/CompactFlash controller waveforms for I/O space read access	71
Figure 32.	PC Card/CompactFlash controller waveforms for I/O space write access	72
Figure 33.	NAND controller waveforms for read access	74
Figure 34.	NAND controller waveforms for write access	74
Figure 35.	NAND controller waveforms for common memory read access	74
Figure 36.	NAND controller waveforms for common memory write access	75
Figure 37.	Standard I/O input characteristics - CMOS port	80
Figure 38.	Standard I/O input characteristics - TTL port	
Figure 39.	5 V tolerant I/O input characteristics - CMOS port	81
Figure 40.	5 V tolerant I/O input characteristics - TTL port	
Figure 41.	I/O AC characteristics definition	
Figure 42.	Recommended NRST pin protection	85

Figure 43.	I ² C bus AC waveforms and measurement circuit ⁽¹⁾	88
Figure 44.	SPI timing diagram - slave mode and CPHA=0	91
Figure 45.	SPI timing diagram - slave mode and CPHA=1 ⁽¹⁾	91
Figure 46.	SPI timing diagram - master mode ⁽¹⁾	92
Figure 47.	ADC accuracy characteristics	
Figure 48.	Typical connection diagram using the ADC	96
Figure 49.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	96
Figure 50.	Power supply and reference decoupling (VREF+ connected to VDDA)	97
Figure 51.	12-bit buffered /non-buffered DAC	99
Figure 52.	LQFP144, 20 x 20 mm, 144-pin thin quad flat	
	package outline	100
Figure 53.	Recommended footprint	102
Figure 54.	LQFP144 marking (package top view)	103
Figure 55.	LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline	104
Figure 56.	Recommended footprintt	105
Figure 57.	LQFP100 marking (package top view)	106
Figure 58.	tLQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline	107
Figure 59.	Recommended footprintt	108
Figure 60.	LQFP64 marking (package top view)	109
Figure 61.	LQFP64 P _D max vs. T _A	111

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F101xF and STM32F101xG XL-density access line microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2: Full compatibility throughout the family.

The XL-density STM32F101xx datasheet should be read in conjunction with the STM32F10xxx reference manual.

For information on programming, erasing and protection of the internal Flash memory please refer to the *STM32F10xxx Flash programming manual*.

The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com.

For information on the Cortex[®]-M3 core please refer to the Cortex[®]-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.

2 Description

The STM32F101xF and STM32F101xG access line family incorporates the high-performance ARM® Cortex®-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory up to 1 Mbyte and SRAM of 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All devices offer one 12-bit ADC, ten general-purpose 16-bit timers, as well as standard and advanced communication interfaces: up to two I²Cs, three SPIs and five USARTs.

The STM32F101xx XL-density access line family operates in the –40 to +85 °C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F101xx XL-density access line microcontroller family suitable for a wide range of applications such as medical and handheld equipment, PC peripherals and gaming, GPS platforms, industrial applications, PLC, printers, scanners alarm systems, power meters, and video intercom.

2.1 Device overview

The STM32F101xx XL-density access line family offers devices in 3 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

Figure 1 shows the general block diagram of the device family.

Table 2. STM32F101xF and STM32F101xG features and peripheral counts

Perip	oherals	STM32I	-101Rx	STM32I	F101Vx	STM32F101Zx		
Flash memory		768 KB	1 MB	768 KB	1 MB	768 KB	1 MB	
SRAM in Kbytes	8	0	8	0	80)		
FSMC	N	0	Ye	es	Ye	s		
Time	General-purpose			10	0			
Timers	Basic	2						
	SPI			3	3			
Communication interfaces	I ² C	2						
menaeee	USART	5						
GPIOs		5	1	80		11	112	
12-bit ADC		1						
Number of chann	nels	16						
12-bit DAC		YES						
Number of chann	nels	2						
CPU frequency		36 MHz						
Operating voltage	е	2.0 to 3.6 V						
Operating tempe	Ambient temperature: -40 to +85 °C (see <i>Table 10</i>) Junction temperature: -40 to +105 °C (see <i>Table 10</i>)							
Package		LQF	P64	LQFP	100 ⁽¹⁾	LQFF	P144	

^{1.} For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

Figure 1. STM32F101xF and STM32F101xG access line block diagram

- 1. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C).
- 2. AF = alternate function on I/O port pin.

Figure 2. Clock tree

- When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.
- 2. To have an ADC conversion time of 1 μ s, APB2 must be at 14 MHz or 28 MHz.

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices, and the STM32F101xF and STM32F101xG are referred to as XL-density devices.

Low-, high-density and XL-density devices are an extension of the STM32F101x8/B medium-density devices, they are specified in the STM32F101x4/6, STM32F101xC/D/E and STM32F101xF/G datasheets, respectively.

Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM densities, and additional peripherals like FSMC and DAC. XL-density devices bring greater Flash and RAM capacities, and more features, namely an MPU, a higher number of timers and a dual bank Flash memory, while remaining fully compatible with the other members of the family.

The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD, STM32F101xE, STM32F101xF and STM32F101xG are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F101xx access line family is fully compatible with all existing STM32F103xx performance line and STM32F102xx USB access line devices.

	Memory size										
Pinout	Low-density devices		Medium-density devices		High-density devices			XL-density devices			
	16 KB 32 KB Flash Flash ⁽¹⁾		64 KB 128 KB Flash Flash		256 KB Flash	384 KB Flash	512 KB Flash	768 KB Flash	1 MB Flash		
	4 KB RAM	6 KB RAM	10 KB RAM	16 KB RAM	32 KB RAM	48 KB RAM	48 KB RAM	80 KB RAM	80 KB RAM		
144								5 × USARTs			
100			3 × USARTs 3 × 16-bit timers 2 × SPIs, 2 × I2Cs, 1 × ADC		5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I ² Cs, 1 × ADC, 1 × DAC FSMC (100 and 144 pins)			10 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I ² Cs, 1 × ADC, 1 × DAC FSMC (100 and 144 pins), Cortex-M3 with MPU, Dual bank Flash memory			
64	2 × USARTs 2 × 16-bit timers 1 × SPI, 1 × I ² C 1 × ADC										
48	. ,.50										
36					_						

Table 3. STM32F101xx family

14/115 DocID16553 Rev 3

For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.

2.3 Overview

2.3.1 ARM[®] Cortex[™]-M3 core with embedded Flash and SRAM

The ARM® Cortex®-M3 processor is the latest generation of ARM® processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM[®] core in the memory size usually associated with 8- and 16-bit devices.

The STM32F101xF and STM32F101xG access line family having an embedded ARM[®] core, is therefore compatible with all ARM[®] tools and software.

Figure 1 shows the general block diagram of the device family.

2.3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.3.3 Embedded Flash memory

768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The second bank is either 256 or 512 Kbytes depending on the device. This gives the device the capability of writing to one bank while executing code from the other bank (read-while-write capability).

2.3.4 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.3.5 Embedded SRAM

80 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.6 FSMC (flexible static memory controller)

The FSMC is embedded in the STM32F101xF and STM32F101xG access line family. It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR and NAND.

Functionality overview:

- The three FSMC interrupt lines are ORed in order to be connected to the NVIC
- Write FIFO
- Code execution from external memory except for NAND Flash and PC Card
- The targeted frequency is HCLK/2, so external access is at 18 MHz when HCLK is at 36 MHz

2.3.7 LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

2.3.8 Nested vectored interrupt controller (NVIC)

The STM32F101xF and STM32F101xG access line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.9 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines.

16/115 DocID16553 Rev 3

2.3.10 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) domain and the low-speed APB (APB1) domain. The maximum frequency of the AHB and APB domains is 36 MHz. See *Figure 2* for details on the clock tree.

2.3.11 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash: you have an option to boot from any of two memory banks. By
 default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash
 memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The bootloader is located in system memory. It is used to reprogram the Flash memory by using USART1.

2.3.12 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA} , V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 9: Power supply scheme.

2.3.13 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 12: Embedded reset and power control block characteristics for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.14 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.15 Low-power modes

The STM32F101xF and STM32F101xG access line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note:

The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.3.16 DMA

The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose and basic timers TIMx, DAC and ADC.

57

2.3.17 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are forty-two 16-bit registers used to store 84 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.18 Timers and watchdogs

The XL-density STM32F101xx access line devices include up to ten general-purpose timers, two basic timers, two watchdog timers and a SysTick timer.

Table 4: STM32F101xF and STM32F101xG timer feature comparison compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM9, TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TIM10, TIM11, TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table 4. STM32F101xF and STM32F101xG timer feature comparison

General-purpose timers (TIMx)

There are 10 synchronizable general-purpose timers embedded in the STM32F101xF and STM32F101xG XL-density access line devices (see *Table 4* for differences).

TIM2, TIM3, TIM4, TIM5

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F101xF and STM32F101xG access line devices.

These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or

one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.

Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

• TIM10, TIM11 and TIM9

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

TIM13, TIM14 and TIM12

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM13 and TIM14 feature one independent channel, whereas TIM12 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.19 I²C bus

Up to two I²C bus interfaces can operate in multi-master and slave modes. They support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F101xF and STM32F101xG access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.21 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.22 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

2.3.23 ADC (analog to digital converter)

A 12-bit analog-to-digital converter is embedded into STM32F101xF and STM32F101xG access line devices. It has up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.3.24 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V_{RFF+}

Seven DAC trigger inputs are used in the STM32F101xF and STM32F101xG access line family. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

2.3.25 **Temperature sensor**

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < V_{DDA} < 3.6 V. The temperature sensor is internally connected to the ADC IN16 input channel which is used to convert the sensor output voltage into a digital value.

Serial wire JTAG debug port (SWJ-DP) 2.3.26

The ARM® SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

2.3.27 Embedded Trace Macrocell™

The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

22/115 DocID16553 Rev 3

3 Pinouts and pin descriptions

Figure 3. LQFP144 pinout

1. The above figure shows the package top view.

Figure 4. LQFP100 pinout

1. The above figure shows the package top view.

<u>______</u> 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 ^{†3}48 🗖 V_{DD_2} $V_{BAT} \square$ 47 V_{SS 2} PC13-TAMPER-RTC 2 46 PA 13 PC14-OSC32_IN d 3 45 🗖 PA 12 PC15-OSC32_OUT 🗖 44 🗖 PA 11 PD0-OSC_IN 43 PA 10 PD1-OSC_OUT NRST ☐ 7 42 🗖 PA9 PC0 **□**8 41 🗖 PA8 LQFP64 40 PC9 PC1 🗖 9 PC2 d 39 PC8 10 PC3 🗖 11 38 PC7 V_{SSA} □ 12 37 PC6 V_{DDA} □ 13 36 PB15 PA0-WKUP **1**4 35 PB14 34 PB13 PA1 □ 15 PA2 □ 33 PB12 ai14392

Figure 5. LQFP64 pinout

1. The above figure shows the package top view.

Table 5. STM32F101xF/STM32F101xG pin definitions

	Pins						Alternate functions ⁽⁴⁾	
LQFP144	LQFP64	LQFP100	Pin name		I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
1	-	1	PE2	I/O	FT	PE2	TRACECLK / FSMC_A23	
2	1	2	PE3	I/O	FT	PE3	TRACED0 / FSMC_A19	
3	-	3	PE4	I/O	FT	PE4	TRACED1 / FSMC_A20	
4	-	4	PE5	I/O	FT	PE5	TRACED2 / FSMC_A21	TIM9_CH1
5	-	5	PE6	I/O	FT	PE6	TRACED3 / FSMC_A22	TIM9_CH2
6	1	6	V _{BAT}	S		V _{BAT}		
7	2	7	PC13-TAMPER-RTC ⁽⁵⁾	I/O		PC13 ⁽⁶⁾	TAMPER-RTC	

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

	Pins					WISZFTUTXG	Alternate functions ⁽⁴⁾		
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
8	3	8	PC14-OSC32_IN ⁽⁵⁾	I/O		PC14 ⁽⁶⁾	OSC32_IN		
9	4	9	PC15-OSC32_OUT ⁽⁵⁾	I/O		PC15 ⁽⁶⁾	OSC32_OUT		
10	-	-	PF0	I/O	FT	PF0	FSMC_A0		
11	-	-	PF1	I/O	FT	PF1	FSMC_A1		
12	-	-	PF2	I/O	FT	PF2	FSMC_A2		
13	-	-	PF3	I/O	FT	PF3	FSMC_A3		
14	-	-	PF4	I/O	FT	PF4	FSMC_A4		
15	-	-	PF5	I/O	FT	PF5	FSMC_A5		
16	-	10	V_{SS_5}	S		V _{SS_5}			
17	-	11	V_{DD_5}	S		V_{DD_5}			
18	-	-	PF6	I/O		PF6	FSMC_NIORD	TIM10_CH1	
19	-	-	PF7	I/O		PF7	FSMC_NREG	TIM11_CH1	
20	-	-	PF8	I/O		PF8	FSMC_NIOWR	TIM13_CH1	
21	-	-	PF9	I/O		PF9	FSMC_CD	TIM14_CH1	
22	-	-	PF10	I/O		PF10	FSMC_INTR		
23	5	12	OSC_IN	I		OSC_IN		PD0 ⁽⁷⁾	
24	6	13	OSC_OUT	0		OSC_OUT		PD1 ⁽⁷⁾	
25	7	14	NRST	I/O		NRST			
26	8	15	PC0	I/O		PC0	ADC_IN10		
27	9	16	PC1	I/O		PC1	ADC_IN11		
28	10	17	PC2	I/O		PC2	ADC_IN12		
29	11	18	PC3	I/O		PC3	ADC_IN13		
30	12	19	V_{SSA}	S		V_{SSA}			
31	-	20	V_{REF}	S		V_{REF}			
32	-	21	V _{REF+}	S		V _{REF+}			
33	13	22	V_{DDA}	S		V_{DDA}			
34	14	23	PA0-WKUP	I/O		PA0	WKUP/ USART2_CTS ⁽⁸⁾ / ADC_IN0 / TIM5_CH1/ TIM2_CH1_ETR ⁽⁸⁾		

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

	Pins						Alternate functions ⁽⁴⁾		
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
35	15	24	PA1	I/O		PA1	USART2_RTS ⁽⁸⁾ / ADC_IN1 / TIM5_CH2 TIM2_CH2 ⁽⁸⁾		
36	16	25	PA2	I/O		PA2	USART2_TX ⁽⁸⁾ / TIM5_CH3 / ADC_IN2/ TIM2_CH3 ⁽⁸⁾ / TIM9_CH1		
37	17	26	PA3	I/O		PA3	USART2_RX ⁽⁸⁾ /TIM5_CH4/ ADC_IN3 / TIM2_CH4 ⁽⁸⁾ / TIM9_CH2		
38	18	27	V_{SS_4}	S		V_{SS_4}			
39	19	28	V _{DD_4}	S		V _{DD_4}			
40	20	29	PA4	I/O		PA4	SPI1_NSS/ DAC_OUT1 / ADC_IN4 / USART2_CK ⁽⁸⁾		
41	21	30	PA5	I/O		PA5	SPI1_SCK / DAC_OUT2 / ADC_IN5		
42	22	31	PA6	I/O		PA6	SPI1_MISO / ADC_IN6 / TIM3_CH1 ⁽⁸⁾ / TIM13_CH1		
43	23	32	PA7	I/O		PA7	SPI1_MOSI / ADC_IN7 / TIM3_CH2 ⁽⁸⁾ / TIM14_CH1		
44	24	33	PC4	I/O		PC4	ADC_IN14		
45	25	34	PC5	I/O		PC5	ADC_IN15		
46	26	35	PB0	I/O		PB0	ADC_IN8 / TIM3_CH3 ⁽⁸⁾		
47	27	36	PB1	I/O		PB1	ADC_IN9 / TIM3_CH4 ⁽⁸⁾		
48	28	37	PB2	I/O	FT	PB2/BOOT1			
49	-	-	PF11	I/O	FT	PF11	FSMC_NIOS16		
50	-	-	PF12	I/O	FT	PF12	FSMC_A6		
51	-	-	V _{SS_6}	S		V _{SS_6}			
52	-	-	V _{DD_6}	S		V _{DD_6}			
53	_	_	PF13	I/O	FT	PF13	FSMC_A7		
54	_	_	PF14	I/O	FT	PF14	FSMC_A8		
55	_	-	PF15	I/O	FT	PF15	FSMC_A9		
56	_	-	PG0	I/O	FT	PG0	FSMC_A10		
57	-	-	PG1	I/O	FT	PG1	FSMC_A11		

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

	Pins		Table 3. 31W321				Alternate functions ⁽⁴⁾		
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
58	-	38	PE7	I/O	FT	PE7	FSMC_D4		
59	-	39	PE8	I/O	FT	PE8	FSMC_D5		
60	-	40	PE9	I/O	FT	PE9	FSMC_D6		
61	-	-	V _{SS_7}	S		V _{SS_7}			
62	-	-	V _{DD_7}	S		V _{DD_7}			
63	-	41	PE10	I/O	FT	PE10	FSMC_D7		
64	-	42	PE11	I/O	FT	PE11	FSMC_D8		
65	-	43	PE12	I/O	FT	PE12	FSMC_D9		
66	-	44	PE13	I/O	FT	PE13	FSMC_D10		
67	-	45	PE14	I/O	FT	PE14	FSMC_D11		
68	-	46	PE15	I/O	FT	PE15	FSMC_D12		
69	29	47	PB10	I/O	FT	PB10	I2C2_SCL / USART3_TX ⁽⁸⁾	TIM2_CH3	
70	30	48	PB11	I/O	FT	PB11	I2C2_SDA / USART3_RX ⁽⁸⁾	TIM2_CH4	
71	31	49	V _{SS_1}	S		V _{SS_1}			
72	32	50	V _{DD_1}	S		V _{DD_1}			
73	33	51	PB12	I/O	FT	PB12	SPI2_NSS ⁽⁸⁾ / I2C2_SMBA / USART3_CK ⁽⁸⁾		
74	34	52	PB13	I/O	FT	PB13	SPI2_SCK ⁽⁸⁾ / USART3_CTS ⁽⁸⁾		
75	35	53	PB14	I/O	FT	PB14	SPI2_MISO ⁽⁸⁾ / USART3_RTS ⁽⁸⁾ / TIM12_CH1		
76	36	54	PB15	I/O	FT	PB15	SPI2_MOSI ⁽⁸⁾ / TIM12_CH2		
77	-	55	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX	
78	-	56	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX	
79	-	57	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK	
80	-	58	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS	
81	-	59	PD12	I/O	FT	PD12	FSMC_A17 TIM4_CH USART3_I		
82	-	60	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2	
83	-	-	V _{SS_8}	S		V _{SS_8}			

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

Pins							Alternate functions ⁽⁴⁾		
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾		Main function ⁽³⁾ (after reset)	Default	Remap	
84	-	-	V _{DD_8}	S		V _{DD_8}			
85	-	61	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3	
86	-	62	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4	
87	-	-	PG2	I/O	FT	PG2	FSMC_A12		
88	-	-	PG3	I/O	FT	PG3	FSMC_A13		
89	-	-	PG4	I/O	FT	PG4	FSMC_A14		
90	-	-	PG5	I/O	FT	PG5	FSMC_A15		
91	-	-	PG6	I/O	FT	PG6	FSMC_INT2		
92	-	-	PG7	I/O	FT	PG7	FSMC_INT3		
93	-	-	PG8	I/O	FT	PG8			
94	-	-	V _{SS_9}	S		V _{SS_9}			
95	-	-	V _{DD_9}	S		V _{DD_9}			
96	37	63	PC6	I/O	FT	PC6		TIM3_CH1	
97	38	64	PC7	I/O	FT	PC7		TIM3_CH2	
98	39	65	PC8	I/O	FT	PC8		TIM3_CH3	
99	40	66	PC9	I/O	FT	PC9		TIM3_CH4	
100	41	67	PA8	I/O	FT	PA8	USART1_CK / MCO		
101	42	68	PA9	I/O	FT	PA9	USART1_TX ⁽⁸⁾		
102	43	69	PA10	I/O	FT	PA10	USART1_RX ⁽⁸⁾		
103	44	70	PA11	I/O	FT	PA11	USART1_CTS		
104	45	71	PA12	I/O	FT	PA12	USART1_RTS		
105	46	72	PA13	I/O	FT	JTMS-SWDIO		PA13	
106	-	73			No	t connected			
107	47	74	V_{SS_2}	S		V _{SS_2}			
108	48	75	V _{DD_2}	S		V _{DD_2}			
109	49	76	PA14	I/O	FT	JTCK- SWCLK		PA14	
110	50	77	PA15	I/O	FT	JTDI	SPI3_NSS	TIM2_CH1_ETR/ PA15 /SPI1_NSS	
111	51	78	PC10	I/O	FT	PC10	UART4_TX	USART3_TX	

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

Pins							Alternate funct	Alternate functions ⁽⁴⁾		
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap		
112	52	79	PC11	I/O	FT	PC11	UART4_RX	USART3_RX		
113	53	80	PC12	I/O	FT	PC12	UART5_TX	USART3_CK		
114	-	81	PD0	I/O	FT		FSMC_D2 ⁽⁹⁾			
115	-	82	PD1	I/O	FT		FSMC_D3 ⁽⁹⁾			
116	54	83	PD2	I/O	FT	PD2	TIM3_ETR / UART5_RX			
117	-	84	PD3	I/O	FT	PD3	FSMC_CLK	USART2_CTS		
118	-	85	PD4	I/O	FT	PD4	FSMC_NOE	USART2_RTS		
119	-	86	PD5	I/O	FT	PD5	FSMC_NWE	USART2_TX		
120	-	-	V _{SS_10}	S		V _{SS_10}				
121	-	-	V _{DD_10}	S		V _{DD_10}				
122	-	87	PD6	I/O	FT	PD6	FSMC_NWAIT	USART2_RX		
123	-	88	PD7	I/O	FT	PD7	FSMC_NE1 / FSMC_NCE2	USART2_CK		
124	-	-	PG9	I/O	FT	PG9	FSMC_NE2 / FSMC_NCE3			
125	-	ı	PG10	I/O	FT	PG10	FSMC_NE3 / FSMC_NCE4_1			
126	-	-	PG11	I/O	FT	PG11	FSMC_NCE4_2			
127	-	-	PG12	I/O	FT	PG12	FSMC_NE4			
128	-	-	PG13	I/O	FT	PG13	FSMC_A24			
129	-	-	PG14	I/O	FT	PG14	FSMC_A25			
130	-	-	V _{SS_11}	S		V _{SS_11}				
131	-	-	V _{DD_11}	S		V _{DD_11}				
132	-	-	PG15	I/O	FT	PG15				
133	55	89	PB3	I/O	FT	JTDO	SPI3_SCK	TIM2_CH2 /PB3 TRACESWO SPI1_SCK		
134	56	90	PB4	I/O	FT	NJTRST	SPI3_MISO	PB4 / TIM3_CH1 SPI1_MISO		
135	57	91	PB5	I/O		PB5	I2C1_SMBA/ SPI3_MOSI	TIM3_CH2 / SPI1_MOSI		
136	58	92	PB6	I/O	FT	PB6	I2C1_SCL / TIM4_CH1 ⁽⁸⁾	USART1_TX		

30/115 DocID16553 Rev 3

Alternate functions⁽⁴⁾ **Pins** level⁽²⁾ Type⁽¹⁾ Main **QFP144** LQFP100 function⁽³⁾ LQFP64 Pin name Default 0 (after reset) Remap I2C1_SDA / FSMC_NADV / TIM4_CH2⁽⁸⁾ 59 93 PB7 I/O FT PB7 USART1 RX 137 138 60 94 BOOT0 I BOOT0 TIM4 CH3 (8) / TIM10 CH1 I/C 139 61 95 PB8 FT PB8 I2C1 SCL TIM4 CH4 (8) / TIM10 CH1 140 62 96 PB9 I/O FT PB9 I2C1 SDA TIM4 ETR(8) / FSMC NBL0 141 97 PE0 I/O FT PE₀ 98 PE1 I/O FT PF1 FSMC_NBL1 142 143 99 S 63 V_{SS 3} V_{SS 3} S 144 64 100 V_{DD_3} V_{DD_3}

Table 5. STM32F101xF/STM32F101xG pin definitions (continued)

- 1. I = input, O = output, S = supply.
- 2. FT = 5 V tolerant.
- 3. Function availability depends on the chosen device.
- 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).
- 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual
- 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available from the STMicroelectronics website: www.st.com.
- 9. For devices delivered in LQFP64 packages, the FSMC function is not available.

Table 6. FSMC pin definition

	FSMC										
Pins	CF	CF/IDE	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽¹⁾					
PE2			A23	A23		Yes					
PE3			A19	A19		Yes					
PE4			A20	A20		Yes					
PE5			A21	A21		Yes					
PE6			A22	A22		Yes					
PF0	A0	A0	A0			-					
PF1	A1	A1	A1			-					
PF2	A2	A2	A2			-					
PF3	A3		А3			-					
PF4	A4		A4			-					
PF5	A5		A5			-					
PF6	NIORD	NIORD				-					
PF7	NREG	NREG				-					
PF8	NIOWR	NIOWR				-					
PF9	CD	CD				-					
PF10	INTR	INTR				-					
PF11	NIOS16	NIOS16				-					
PF12	A6		A6			-					
PF13	A7		A7			-					
PF14	A8		A8			-					
PF15	A9		A9			-					
PG0	A10		A10			-					
PG1			A11			-					
PE7	D4	D4	D4	DA4	D4	Yes					
PE8	D5	D5	D5	DA5	D5	Yes					
PE9	D6	D6	D6	DA6	D6	Yes					
PE10	D7	D7	D7	DA7	D7	Yes					
PE11	D8	D8	D8	DA8	D8	Yes					
PE12	D9	D9	D9	DA9	D9	Yes					
PE13	D10	D10	D10	DA10	D10	Yes					
PE14	D11	D11	D11	DA11	D11	Yes					
PE15	D12	D12	D12	DA12	D12	Yes					
PD8	D13	D13	D13	DA13	D13	Yes					

Table 6. FSMC pin definition (continued)

	FSMC										
Pins	CF	CF/IDE	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽¹⁾					
PD9	D14	D14	D14	DA14	D14	Yes					
PD10	D15	D15	D15	DA15	D15	Yes					
PD11			A16	A16	CLE	Yes					
PD12			A17	A17	ALE	Yes					
PD13			A18	A18		Yes					
PD14	D0	D0	D0	DA0	D0	Yes					
PD15	D1	D1	D1	DA1	D1	Yes					
PG2			A12			-					
PG3			A13			-					
PG4			A14			-					
PG5			A15			-					
PG6					INT2	-					
PG7					INT3	-					
PD0	D2	D2	D2	DA2	D2	Yes					
PD1	D3	D3	D3	DA3	D3	Yes					
PD3			CLK	CLK		Yes					
PD4	NOE	NOE	NOE	NOE	NOE	Yes					
PD5	NWE	NWE	NWE	NWE	NWE	Yes					
PD6	NWAIT	NWAIT	NWAIT	NWAIT	NWAIT	Yes					
PD7			NE1	NE1	NCE2	Yes					
PG9			NE2	NE2	NCE3	-					
PG10	NCE4_1	NCE4_1	NE3	NE3		-					
PG11	NCE4_2	NCE4_2				-					
PG12			NE4	NE4		-					
PG13			A24	A24		-					
PG14			A25	A25		-					
PB7			NADV	NADV		Yes					
PE0			NBL0	NBL0		Yes					
PE1			NBL1	NBL1		Yes					

^{1.} Ports F and G are not available in devices delivered in 100-pin packages.

4 Memory mapping

The memory map is shown in *Figure 6*.

Figure 6. Memory map

57

34/115 DocID16553 Rev 3

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V $_{DD}$ \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 7.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 8.

5.1.6 Power supply scheme

Figure 9. Power supply scheme V_{BAT} Backup circuitry (OSC32K,RTC, 1.8-3.6V Wake-up logic Backup registers) Ю GP I/Os Logic Kernel logic (CPU. Digital & Memories) Regulator 11 × 100 nF $+ 1 \times 4.7 \mu F$ V_{SS1/2/.../11} V_{DDA} LVREF+ Analog: 10 nF V_{REF} ADC/ RCs, PLL $+1 \mu F$ DAC V_{SSA} ai15401

Caution: In *Figure* 9, the 4.7 μ F capacitor must be connected to V_{DD3} .

5//

5.1.7 Current consumption measurement

IDD_VBAT VBAT VDD VDD VDDA

Figure 10. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 7: Voltage characteristics*, *Table 8: Current characteristics*, and *Table 9: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DD} – V _{SS}	External main supply voltage (including V_{DDA} and V_{DD}) ⁽¹⁾	-0.3	4.0	,
V _{IN} ⁽²⁾	Input voltage on five volt tolerant pin	V _{SS} – 0.3	V _{DD} + 4.0	V
V _{IN} (-)	Input voltage on any other pin	V _{SS} - 0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins		50	
V _{SSX} - V _{SS}	Variations between all the different ground pins		50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5. maximum rati sensi	ngs (electrical	

Table 7. Voltage characteristics

All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

^{2.} V_{IN} maximum must always be respected. Refer to *Table 8: Current characteristics* for the maximum allowed injected current values.

Table 8. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	ΣI_{VDD} Total current into V_{DD}/V_{DDA} power lines (source) ⁽¹⁾		
Σl _{VSS}	Total current out of V _{SS} ground lines (sink) ⁽¹⁾	150	
	Output current sunk by any I/O and control pin	25	
I _{IO}	Output current source by any I/Os and control pin	- 25	mA
. (2)	Injected current on five volt tolerant pins ⁽³⁾	-5/+0	
I _{INJ(PIN)} ⁽²⁾	Injected current on any other pin ⁽⁴⁾	± 5	
Σl _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

- All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- 2. Negative injection disturbs the analog performance of the device. See note 3 below Table 59 on page 95.
- Positive injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 7: Voltage characteristics* for the maximum allowed input voltage values.
- 4. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 7: Voltage characteristics* for the maximum allowed input voltage values.
- 5. When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 9. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

5.3 Operating conditions

5.3.1 General operating conditions

Table 10. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	36	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	36	
V _{DD}	Standard operating voltage		2	3.6	V
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC not used)	Must be the same potential	2	3.6	V
VDDA,	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾	2.4	3.6	v
V _{BAT}	Backup operating voltage		1.8	3.6	V
		LQFP144		666	
P_{D}	Power dissipation at T _A = 85 °C ⁽³⁾	LQFP100		434	mW
		LQFP64		444	
TA	Ambient temperature	Maximum power dissipation	-4 0	85	°C
IA	Ambient temperature	low-power dissipation ⁽⁴⁾	-4 0	105	°C
TJ	Junction temperature range		-40	105	°C

^{1.} When the ADC is used, refer to Table 56: ADC characteristics.

5.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 11* are derived from tests performed under the ambient temperature condition summarized in *Table 10*.

Table 11. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
t	V _{DD} rise time rate		0	8	us/V
ι√DD	V _{DD} fall time rate		20	8	μο/ ν

^{2.} It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and operation.

^{3.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 6.2: Thermal characteristics on page 110*).

^{4.} In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax (see *Table 6.2: Thermal characteristics on page 110*).

5.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 12* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 12. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	V
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	V
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	V
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	V
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	V
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	V
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	V
V	Programmable voltage	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V_{PVD}	detector level selection	PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	V
		PLS[2:0]=100 (falling edge)	2.37	2.48	2.59	V
		PLS[2:0]=101 (rising edge)	2.57	2.68	2.79	V
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	V
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	V
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	V
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	V
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	V
V _{PVDhyst} ⁽²⁾	PVD hysteresis			100		mV
	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
V _{POR/PDR}	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽²⁾	PDR hysteresis			40		mV
t _{RSTTEMPO} ⁽²⁾	Reset temporization		1.5	2.5	3.5	ms

^{1.} The product behavior is guaranteed by design down to the minimum $V_{\mbox{\scriptsize POR/PDR}}$ value.

^{2.} Guaranteed by design, not tested in production.

5.3.4 Embedded reference voltage

The parameters given in *Table 13* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +85 °C	1.16	1.20	1.24	V
T _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage			5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV			10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient				100	ppm/ °C

Table 13. Embedded internal reference voltage

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK/2}, f_{PCLK2} = f_{HCLK}

The parameters given in *Table 14* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

^{1.} Shortest sampling time can be determined in the application by multiple iterations.

^{2.} Guaranteed by design, not tested in production.

42/115

Table 14. Maximum current consumption in Run mode, code with data processing running from Flash

Symbol	Parameter	Conditions		Max ⁽¹⁾	l lmi4
			Conditions f _{HCLK}		T _A = 85 °C
			36 MHz	41	
		External clock ⁽²⁾ , all peripherals enabled	24 MHz	29	
			16 MHz	22	
,	Supply current		8 MHz	12.5	mA
I _{DD}	in Run mode	External clock ⁽²⁾ , all peripherals disabled	36 MHz	24	IIIA
			24 MHz	17.5	
			16 MHz	14	
			8 MHz	8.5	

- 1. Guaranteed by characterization results, not tested in production.
- 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM

Symbol	Parameter	Conditions	f	Max ⁽¹⁾	Unit
	Farameter		f _{HCLK}	T _A = 85 °C	Offic
			36 MHz	37	
		External clock ⁽²⁾ , all peripherals enabled	24 MHz	26.5	
			16 MHz	19	
	Supply current in		8 MHz	11.5	A
I _{DD}	Run mode		36 MHz	20.5	mA
		External clock ⁽²⁾ all	24 MHz	15	
		peripherals disabled	16 MHz	11	
			8 MHz	7.5	

- 1. Guaranteed by characterization results, tested in production at V_{DD} max, f_{HCLK} max.
- 2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

DocID16553 Rev 3

Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM

Symbol	Parameter	Conditions		Max ⁽¹⁾	Unit
Symbol	Parameter		Conditions f _{HCLK}		T _A = 85 °C
			36 MHz	27.5	
	Supply current in	External clock ⁽²⁾ all peripherals enabled	24 MHz	20	
			16 MHz	15	
		Supply current in	8 MHz	9	mA
I _{DD}	Sleep mode		36 MHz	6.9	IIIA
		External clock ⁽²⁾ , all	24 MHz	5.9	
		peripherals disabled	16 MHz	5.4	
			8 MHz	4.7	

Guaranteed by characterization results, tested in production at V_{DD} max, f_{HCLK} max with peripherals enabled.

Table 17. Typical and maximum current consumptions in Stop and Standby modes

		arameter Conditions		Typ ⁽¹⁾		Max	
Symbol	Parameter			V _{DD} / V _{BAT} = 2.4 V	V _{DD} /V _{BA} = 3.3 V	T _A = 85 °C	Unit
	Supply current	Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)		34.5	35	379	
I _{DD}	in Stop mode	Regulator in Low-power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)		24.5	25	365	
-00		Low-speed internal RC oscillator and independent watchdog ON		3	3.8		μΑ
	Supply current in Standby	Low-speed internal RC oscillator ON, independent watchdog OFF		2.8	3.6		
	mode	Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF		1.9	2.1	5 ⁽²⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.05	1.1	1.4	2 ⁽²⁾	

^{1.} Typical values are measured at T_A = 25 °C.

^{2.} External clock is 8 MHz and PLL is on when $f_{\mbox{\scriptsize HCLK}}$ > 8 MHz.

^{2.} Guaranteed by characterization results, not tested in production.

Figure 13. Typical current consumption on V_{BAT} with RTC on vs. temperature at different V_{BAT} values

Figure 14. Typical current consumption in Standby mode versus temperature at different V_{DD} values

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK/4}, f_{PCLK2} = f_{HCLK/2}, f_{ADCCLK} = f_{PCLK2}/4
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}$, $f_{PCLK2} = f_{HCLK}$, $f_{ADCCLK} = f_{PCLK2}/2$

The parameters given in *Table 18* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 18. Typical current consumption in Run mode, code with data processing running from Flash

		Parameter Conditions		Typ ⁽¹⁾	Typ ⁽¹⁾	
Symbol	Parameter		f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			36 MHz	28.5	18.7	
			24 MHz	24.1	12.8	
			16 MHz	14	9.2	
			8 MHz	7.7	5.4	
		External clock ⁽³⁾	4 MHz	4.6	3.4	
	Supply current in	SIGGIN.	2 MHz	3	2.3	
			1 MHz	2.2	1.8	
			500 kHz	1.7	1.5	
			125 kHz	1.4	1.3	mA
I _{DD}	Run mode		36 MHz	27.5	17.5	IIIA
			24 MHz	18.9	11.6	
		Running on high speed	16 MHz	12.2	8.2	
		internal RC	8 MHz	7.2	4.8	
		(HSI), AHB prescaler	4 MHz	4	2.7	
		used to	2 MHz	2.3	1.7	1
		reduce the frequency	1 MHz	1.5	1.2	
			500 kHz	1.1	0.9	
			125 kHz	0.75	0.7	

^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

^{3.} External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM

				Typ ⁽¹⁾	Typ ⁽¹⁾	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			36 MHz	17.7	4	
			24 MHz	12.2	3.1	
			16 MHz	8.4	2.3	
			8 MHz	4.6	1.5	
		External clock ⁽³⁾	4 MHz	3	1.3	
			2 MHz	2.15	1.25	
			1 MHz	1.7	1.2	
			500 kHz	1.5	1.15	
	Supply current in		125 kHz	1.35	1.15	mA
I _{DD}	Sleep mode		36 MHz	17	3.35	MA
			24 MHz	11.6	2.3	
		Running on High	16 MHz	7.7	1.6	
		Speed Internal	8 MHz	3.9	0.8	1
		RC (HSI), AHB prescaler used to	4 MHz	2.3	0.7	
		reduce the	2 MHz	1.5	0.6	
		frequency	1 MHz	1.1	0.5	
			500 kHz	0.9	0.5	
			125 kHz	0.7	0.5	

^{1.} Typical values are measures at T_A = 25 °C, V_{DD} = 3.3 V.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 20*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 7.

^{2.} Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

^{3.} External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz.

Table 20. Peripheral current consumption

	Peripheral	Typical consumption at 25 °C ⁽¹⁾	Unit
	TIM2	0.8	
	TIM3	0.8	
	TIM4	0.8	
	TIM5	0.75	
	TIM6	0.3	
	TIM7	0.3	
	TIM12	0.5	
	TIM13	0.4	
ADD4	TIM14	0.4	A
APB1	SPI2	0.3	mA
	SPI3	0.3	
	USART2	0.35	
	USART3	0.35	
	USART4	0.35	
	USART5	0.35	
	I2C1	0.3	
	I2C2	0.3	
	DAC ⁽²⁾	1.05	
	GPIOA	0.35	
	GPIOB	0.4	
	GPIOC	0.4	
	GPIOD	0.4	
	GPIOE	0.4	
	GPIOF	0.4	
	GPIOG	0.4	
	TIM1	1	
APB2	TIM8	1	mA
	TIM9	0.5	
	TIM10	0.4	
	TIM11	0.4	
	ADC1 ⁽³⁾	1.4	
	SPI1	0.3	
	USART1	0.6	

^{1.} f_{HCLK} = 36 MHz, f_{APB1} = $f_{HCLK/2}$, f_{APB2} = f_{HCLK} , default prescaler value for each peripheral.

^{2.} Specific conditions for DAC: EN1, EN2 bits in the DAC_CR register are set to 1 and the converted value set to 0x800.

3. Specific conditions for ADC: $f_{HCLK} = 28$ MHz, $f_{APB1} = f_{HCLK/2}$, $f_{APB2} = f_{HCLK}$, $f_{ADCCLK} = f_{APB2}/2$, ADON bit in the ADC_CR2 register is set to 1.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Table 21. High-speed external user clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
$t_{w(HSE)} \ t_{w(HSE)}$	OSC_IN high or low time ⁽¹⁾		5			ns
$t_{r(HSE)} \ t_{f(HSE)}$	OSC_IN rise or fall time ⁽¹⁾				20	113
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾			5		pF
DuCy _(HSE)	Duty cycle		45		55	%
ΙL	OSC_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$			±1	μΑ

^{1.} Guaranteed by design, not tested in production

Low-speed external user clock generated from an external source

The characteristics given in *Table 22* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

Table 22. Low-speed user external clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency ⁽¹⁾			32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V _{SS}		0.3V _{DD}	V
$\begin{matrix} t_{\text{w(LSE)}} \\ t_{\text{w(LSE)}} \end{matrix}$	OSC32_IN high or low time ⁽¹⁾		450			ns
$t_{r(LSE)} \ t_{f(LSE)}$	OSC32_IN rise or fall time ⁽¹⁾				50	113

Table 22. Low-speed user external clock characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾			5		pF
DuCy _(LSE)	Duty cycle		30		70	%
ΙL	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$			±1	μA

^{1.} Guaranteed by design, not tested in production.

Figure 15. High-speed external clock source AC timing diagram

Figure 16. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 23*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency		4	8	16	MHz
R _F	Feedback resistor			200		kΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S) ⁽³⁾	R _S = 30 Ω		30		pF
i ₂	HSE driving current	V_{DD} = 3.3 V V_{IN} = V_{SS} with 30 pF load			1	mA
9 _m	Oscillator transconductance	Startup	25			mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized		2		ms

Table 23. HSE 4-16 MHz oscillator characteristics⁽¹⁾⁽²⁾

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

^{1.} Resonator characteristics given by the crystal/ceramic resonator manufacturer.

^{2.} Guaranteed by characterization results, not tested in production.

^{3.} The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

^{4.} t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Γ

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 24. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

	Table 24. LSE oscillator characteristics (f _{LSE} = 32.768 kHz) ⁽¹⁾ (2)						
Symbol	Parameter	Conditions		Min	Тур	Max	
R _F	Feedback resistor				5		
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S)	R _S = 30 KΩ				15	
la .	I SE driving current	V _{DD} = 3.3 V				1 4	

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
R _F	Feedback resistor				5		MΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S)	R _S = 30 KΩ				15	pF
I ₂	LSE driving current	$V_{DD} = 3.3 \text{ V}$ $V_{IN} = V_{SS}$				1.4	μΑ
9 _m	Oscillator transconductance			5			μA/V
			T _A = 50 °C		1.5		
			T _A = 25 °C		2.5		
			T _A = 10 °C		4		
(3)	Otantum time	V _{DD} is	T _A = 0 °C		6		<u> </u>
t _{SU(LSE)} ⁽³⁾	Startup time	stabilized	T _A = -10 °C		10		S
			T _A = -20 °C		17		
			T _A = -30 °C		32		
			T _A = -40 °C		60		1

^{1.} Guaranteed by characterization results, not tested in production.

Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers"

 $t_{\text{SU(LSE)}}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note:

For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution:

To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of C_L = 6 pF, and C_{stray} = 2 pF, then $C_{L,1}$ = $C_{L,2}$ = 8 pF.

Figure 18. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Table 25. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency				8		MHz
DuCy _(HSI)	Duty cycle			45		55	%
		User-trimmed register ⁽²⁾	User-trimmed with the RCC_CR register ⁽²⁾			1 ⁽³⁾	%
	Accuracy of the HSI	-	$T_A = -40 \text{ to } 105 ^{\circ}\text{C}$	-2		2.5	%
ACC _{HSI}	oscillator	Factory-	$T_A = -10 \text{ to } 85 ^{\circ}\text{C}$	-1.5		2.2	%
		calibrated ⁽⁴⁾	T _A = 0 to 70 °C	-1.3		2	%
			T _A = 25 °C	-1.1		1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time			1		2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption				80	100	μΑ

^{1.} V_{DD} = 3.3 V, T_A = -40 to 85 °C unless otherwise specified.

- Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com.
- 3. Guaranteed by design, not tested in production.
- 4. Guaranteed by characterization results, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 26. LSI oscillator characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} (3)	LSI oscillator startup time			85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption		0.65	1.2	μA

- 1. V_{DD} = 3 V, T_A = -40 to 85 °C unless otherwise specified.
- 2. Guaranteed by characterization results, not tested in production.
- 3. Guaranteed by design, not tested in production.

Wakeup time from low-power mode

The wakeup times given in *Table 27* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 27. Low-power mode wakeup timings

Symbol	Parameter		Unit
t _{WUSLEEP} (1)	Wakeup from Sleep mode	1.8	μs
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	116
WUSTOP` '	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} (1)	Wakeup from Standby mode	50	μs

 The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Value **Symbol** Unit **Parameter** Max⁽¹⁾ Min⁽¹⁾ Тур PLL input clock⁽²⁾ 1 8.0 25 MHz f_{PLL_IN} PLL input clock duty cycle 40 60 % PLL multiplier output clock 16 36 MHz f_{PLL} OUT PLL lock time 200 μs **t**LOCK Jitter 300 Cycle-to-cycle jitter ps

Table 28. PLL characteristics

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 85 °C unless otherwise specified.

Max⁽¹⁾ **Symbol Conditions** Min Unit **Parameter** Тур $T_A = -40$ to +85 °C 70 16-bit programming time 40 52.5 t_{prog} μs Page (2 KB) erase time $T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$ 20 40 ms t_{ERASE} $T_A = -40 \text{ to } +85 \text{ }^{\circ}\text{C}$ t_{ME} Mass erase time 20 40 ms Read mode f_{HCLK} = 36 MHz with 1 28 mA wait state, $V_{DD} = 3.3 \text{ V}$ Write mode $f_{HCLK} = 36 \text{ MHz}, V_{DD} =$ 7 mΑ 3.3 V Supply current I_{DD} Erase mode f_{HCLK} = 36 MHz, V_{DD} = 5 mΑ Power-down mode / Halt, μΑ 50 $V_{DD} = 3.0 \text{ to } 3.6 \text{ V}$ 2 V Programming voltage 3.6 V_{proq}

Table 29. Flash memory characteristics

^{1.} Guaranteed by characterization results, not tested in production.

Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Value	Unit
Symbol	raiailletei	Conditions	Min ⁽¹⁾	Oilit
N _{END}	Endurance	$T_A = -40 ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$	10	kcycles
+	Data retention	T _A = 85 °C, 1 kcycle ⁽²⁾	30	Years
t _{RET}	Data retention	T _A = 55 °C, 10 kcycle ⁽²⁾	20	IEdis

Table 30. Flash memory endurance and data retention

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 19 through Figure 22 represent asynchronous waveforms and Table 31 through Table 34 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Cycling performed over the whole temperature range.

Figure 19. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Note: FSMC_BusTurnAroundDuration = 0.

Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾ (2)

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	5t _{HCLK} + 0.5	5t _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	1.5	ns
t _{w(NOE)}	FSMC_NOE low time	5t _{HCLK} – 1	5t _{HCLK} + 1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	3	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0.5	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2t _{HCLK} - 1	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	2t _{HCLK} - 1	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾ (2)

Symbol	Parameter	Min	Max	Unit
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	0	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 2	ns

^{1.} $C_L = 15 pF$.

Figure 20. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} + 0.5	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	t _{HCLK} - 0.5	t _{HCLK} + 1	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK} - 0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} - 1.5	-	ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid	-	t _{HCLK}	ns

^{2.} Guaranteed by characterization results, not tested in production.

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	0	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

- 1. C_L = 15 pF.
- 2. Guaranteed by characterization results, not tested in production.

Figure 21. Asynchronous multiplexed NOR/PSRAM read waveforms

Table 33. Asynchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7t _{HCLK} + 0.5	7t _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	3t _{HCLK} + 0.5	3t _{HCLK} + 1.5	ns
t _{w(NOE)}	FSMC_NOE low time	4t _{HCLK} – 1	4t _{HCLK} + 1	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	0	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	0	1	ns
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} + 0.5	t _{HCLK} + 2	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK}	-	ns

Table 33. Asynchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	t _{HCLK} -2	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0.5	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	4t _{HCLK} - 0.5	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	4t _{HCLK} - 1	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

^{1.} $C_L = 15 pF$.

^{2.} Guaranteed by characterization results, not tested in production

Figure 22. Asynchronous multiplexed NOR/PSRAM write waveforms

Table 34. Asynchronous multiplexed NOR/PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
$t_{w(NE)}$	FSMC_NE low time	5t _{HCLK} + 0.5	5t _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} + 1	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	3t _{HCLK} – 1	3t _{HCLK} + 2	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK} - 0.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	3.5	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	0	1	ns
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} + 0.5	t _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK} – 0.5	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	4t _{HCLK} – 2	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid		t _{HCLK} + 6	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK} – 0.5	-	ns

^{1.} C_L = 15 pF.

^{2.} Guaranteed by characterization results, not tested in production..

Synchronous waveforms and timings

Figure 23 through Figure 26 represent synchronous waveforms and Table 36 through Table 38 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC WriteBurst Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Figure 23. Synchronous multiplexed NOR/PSRAM read timings

577

Table 35. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	55.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	0.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	0.5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	1.5	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	14	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	11	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0.5	-	ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	2	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 pF$.

^{2.} Guaranteed by characterization results, not tested in production..

Figure 24. Synchronous multiplexed PSRAM write timings

577

Table 36. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_Nex low (x = 02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	1	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	1	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	1	-	ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	1.5	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	10	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	1	-	ns
t _{d(CLKL-Data)}	FSMC_A/D[15:0] valid after FSMC_CLK low	-	6	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	1	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 pF$.

^{2.} Guaranteed by characterization results, not tested in production.

Figure 25. Synchronous non-multiplexed NOR/PSRAM read timings

Table 37. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.6	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	0.5	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	1	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)		0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 025)	2	-	ns
t _{d(CLKL-NOEL)}	FSMC_CLK low to FSMC_NOE low	-	t _{HCLK} + 1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	3.5	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 pF$.

2. Guaranteed by characterization results, not tested in production.

Figure 26. Synchronous non-multiplexed PSRAM write timings

Table 38. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	27.6	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	0.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	1.5	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	1	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	0.5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	1.5	-	ns
t _{d(CLKL-NWEL)}	FSMC_CLK low to FSMC_NWE low	-	1	ns
t _{d(CLKL-NWEH)}	FSMC_CLK low to FSMC_NWE high	1.5	-	ns
t _{d(CLKL-Data)}	FSMC_D[15:0] valid data after FSMC_CLK low	-	2.5	ns
t _{d(CLKL-NBLH)}	FSMC_CLK low to FSMC_NBL high	0.5	-	ns

Table 38. Synchronous non-multiplexed PSRAM write timings⁽¹⁾⁽²⁾ (continued)

Symbol	Parameter	Min	Max	Unit
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	7		ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2		ns

^{1.} $C_L = 15 pF$.

PC Card/CompactFlash controller waveforms and timings

Figure 27 through *Figure 32* represent synchronous waveforms and *Table 40* and *Table 41* provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x04;
- COM.FSMC WaitSetupTime = 0x07;
- COM.FSMC_HoldSetupTime = 0x04;
- COM.FSMC_HiZSetupTime = 0x00;
- ATT.FSMC SetupTime = 0x04;
- ATT.FSMC_WaitSetupTime = 0x07;
- ATT.FSMC_HoldSetupTime = 0x04;
- ATT.FSMC HiZSetupTime = 0x00;
- IO.FSMC_SetupTime = 0x04;
- IO.FSMC WaitSetupTime = 0x07;
- IO.FSMC_HoldSetupTime = 0x04;
- IO.FSMC_HiZSetupTime = 0x00;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

^{2.} Guaranteed by characterization results, not tested in production.

Figure 27. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

Figure 28. PC Card/CompactFlash controller waveforms for common memory write access

Figure 29. PC Card/CompactFlash controller waveforms for attribute memory read access

1. Only data bits 0...7 are read (bits 8...15 are disregarded).

Figure 30. PC Card/CompactFlash controller waveforms for attribute memory write access

1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).

Figure 31. PC Card/CompactFlash controller waveforms for I/O space read access FSMC_NCE4_1 FSMC_NCE4_2 th(NCE4_1-AI) FSMC_A[10:0] FSMC_NREG FSMC NWE FSMC_NOE FSMC_NIOWR td(NIORD-NCE4 1) · ^tw(NIORD) FSMC_NIORD $t_{su(D-NIORD)} + t_{d(NIORD-D)}$ FSMC_D[15:0] • ai14899B

Figure 32. PC Card/CompactFlash controller waveforms for I/O space write access

Table 39. Switching characteristics for PC Card/CF read and write cycles in attribute/common space

Symbol	Parameter	Min	Max	Unit
t _{v(NCEx-A)}	FSMC_NCEx low to FSMC_Ay valid	-	0	ns
t _{h(NCEx-AI)}	FSMC_NCEx high to FSMC_Ax invalid	0	-	
t _{d(NREG-NCEx)}	FSMC_NCEx low to FSMC_NREG valid	-	2	
t _{h(NCEx-NREG)}	FSMC_NCEx high to FSMC_NREG invalid	t _{HCLK} + 4	-	
t _{d(NCEx_NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5t _{HCLK} + 1	
t _{d(NCEx_NOE)}	FSMC_NCEx low to FSMC_NOE low	-	5t _{HCLK} + 1	
t _{w(NOE)}	FSMC_NOE low width	8t _{HCLK} - 0.5	8t _{HCLK} + 1	
t _{d(NOE-NCEx}	FSMC_NOE high to FSMC_NCEx high	5t _{HCLK} - 0.5	-	
t _{su(D-NOE)}	FSMC_D[15:0] valid data before FSMC_NOE high	32	-	
t _{h(NOE-D)}	FSMC_NOE high to FSMC_D[15:0] invalid	t _{HCLK}	-	
t _{w(NWE)}	FSMC_NWE low width	8t _{HCLK} – 1	8t _{HCLK} + 4	
t _{d(NWE_NCEx)}	FSMC_NWE high to FSMC_NCEx high	5t _{HCLK} + 1.5	-	
t _{d(NCEx-NWE)}	FSMC_NCEx low to FSMC_NWE low	-	5t _{HCLK} + 1	
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	11t _{HCLK}	-	
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13t _{HCLK} + 2.5	-	

Table 40. Switching characteristics for PC Card/CF read and write cycles in I/O space

Symbol	Parameter	Min	Max	Unit
tw _(NIOWR)	FSMC_NIOWR low width	8 THCLK	-	ns
tv _(NIOWR-D)	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5 THCLK - 4	ns
th _(NIOWR-D)	FSMC_NIOWR high to FSMC_D[15:0] invalid	11THCLK - 7	-	ns
td _(NCE4_1-NIOWR)	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5THCLK+ 1	ns
th _(NCEx-NIOWR)	FSMC_NCEx high to FSMC_NIOWR invalid	5THCLK - 2.5	-	ns
td _(NIORD-NCEx)	FSMC_NCEx low to FSMC_NIORD valid	-	5THCLK - 0.5	ns
th _(NCEx-NIORD)	FSMC_NCEx high to FSMC_NIORD) valid	5 THCLK - 0.5	-	ns
tw _(NIORD)	FSMC_NIORD low width	8THCLK	-	ns
tsu _(D-NIORD)	FSMC_D[15:0] valid before FSMC_NIORD high	28		ns
td _(NIORD-D)	FSMC_D[15:0] valid after FSMC_NIORD high	3		ns

NAND controller waveforms and timings

Figure 33 through *Figure 36* represent synchronous waveforms and *Table 40* and *Table 41* provide the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC SetupTime = 0x00;
- COM.FSMC_WaitSetupTime = 0x02;
- COM.FSMC HoldSetupTime = 0x02;
- COM.FSMC HiZSetupTime = 0x00;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC WaitSetupTime = 0x02;
- ATT.FSMC_HoldSetupTime = 0x01;
- ATT.FSMC_HiZSetupTime = 0x00;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

FSMC_NCEx Low

ALE (FSMC_A17)
CLE (FSMC_A16)

FSMC_NWE

FSMC_NOE (NRE)

td(ALE-NOE)

th(NOE-ALE)

FSMC_D[15:0]

ai14901b

Figure 33. NAND controller waveforms for read access

Figure 34. NAND controller waveforms for write access

Figure 35. NAND controller waveforms for common memory read access

57

Figure 36. NAND controller waveforms for common memory write access

Table 41. Switching characteristics for NAND Flash write cycles⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FSMC_NWE low width	3t _{HCLK}	3t _{HCLK}	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15:0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15:0] invalid	2t _{HCLK} + 2	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3t _{HCLK} + 1.5	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3t _{HCLK} + 8	-	ns
t _{d(ALE-NOE)}	FSMC_ALE valid before FSMC_NOE low	-	2t _{HCLK}	ns
t _{h(NOE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	2t _{HCLK}	-	ns

^{1.} $C_L = 15 pF$.

5.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (Electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 42*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol Level/Class **Parameter Conditions** $V_{DD} = 3.3 \text{ V, LQFP144,}$ Voltage limits to be applied on any I/O pin to V_{FESD} $T_A = +25 \, ^{\circ}C$, $f_{HCLK} = 36 \, MHz$ 2B induce a functional disturbance conforms to IEC 61000-4-2 Fast transient voltage burst limits to be $V_{DD} = 3.3 \text{ V, LQFP144,}$ $T_A = +25 \, ^{\circ}C$, $f_{HCLK} = 36 \, MHz$ applied through 100 pF on V_{DD} and V_{SS} 4A V_{EFTB} conforms to IEC 61000-4-4 pins to induce a functional disturbance

Table 42. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Max vs. [fHSE/fHCLK] **Monitored Conditions** Unit **Symbol Parameter** frequency band 8/36 MHz 0.1 MHz to 30 MHz 8 $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ }^{\circ}\text{C},$ 30 MHz to 130 MHz 27 dBµV LQFP144 package Peak level S_{EMI} compliant with 130 MHz to 1 GHz 26 IEC 61967-2 SAE EMI Level 4

Table 43. EMI characteristics

5.3.12 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/ANSI/ESD STM5.3.1 standard.

Table 44. ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit	
V _{ESD(HBM)}		T _A = +25 °C, conforming to JESD22-A114	2	2000	V	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	II	500	V	

^{1.} Guaranteed by characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78 IC latch-up standard.

Table 45. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +85 °C conforming to JESD78A	II level A

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in *Table 46*

Table 46. I/O current injection susceptibility

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	
	Injected current on all FT pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

5.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under the conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Table 47. I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Standard IO input low level voltage		-0.3		0.28*(V _{DD} -2 V)+0.8 V	V
V _{IL}	IO FT ⁽¹⁾ input low level voltage		-0.3		0.32*(V _{DD} -2V)+0.75 V	٧
	Standard IO input high level voltage		0.41*(V _{DD} -2 V)+1.3 V		V _{DD} +0.3	٧
V _{IH}	IO FT ⁽¹⁾ input high level	V _{DD} > 2 V	0.42*()/ 2.1/)+1.1/		5.5	V
	voltage	$V_{DD} \le 2 V$	0.42*(V _{DD} -2 V)+1 V		5.2	V
V _{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾		200			mV
, i,yo	IO FT Schmitt trigger voltage hysteresis ⁽²⁾		5% V _{DD} ⁽³⁾			mV
	Input lookage current (4)	V _{SS} ≤ V _{IN} ≤ V _{DD} Standard I/Os			±1	
l _{lkg}	Input leakage current (4)	V _{IN} = 5 V I/O FT			3	μA
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	40	50	kΩ
C _{IO}	I/O pin capacitance			5		pF

FT = Five-volt tolerant. In order to sustain a voltage higher than V_{DD}+0.3 the internal pull-up/pull-down resistors must be disabled.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 37* and *Figure 38* for standard I/Os, and in *Figure 39* and *Figure 40* for 5 V tolerant I/Os.

^{2.} Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results, not tested in production.

^{3.} With a minimum of 100 mV.

^{4.} Leakage could be higher than max. if negative current is injected on adjacent pins.

^{5.} Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

Figure 37. Standard I/O input characteristics - CMOS port

Figure 39. 5 V tolerant I/O input characteristics - CMOS port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxedV_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ± 3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*:

- The sum of the currents sourced by all the I/Os on V_{DD} , plus the maximum Run consumption of the MCU sourced on V_{DD} , cannot exceed the absolute maximum rating I_{VDD} (see *Table 8*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS} (see *Table 8*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Table 48. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ , I _{IO} = +8 mA,		0.4	V
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{\text{IO}} - +6 \text{ m/A},$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾ I _{IO} = +8 mA		0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{10} - 40 \text{ MA}$ 2.7 V < V _{DD} < 3.6 V	2.4		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +20 mA ⁽⁴⁾		1.3	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3		V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾		0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4		V

^{1.} The $I_{\rm IO}$ current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of $I_{\rm IO}$ (I/O ports and control pins) must not exceed $I_{\rm VSS}$.

^{2.} TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

^{3.} The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} .

^{4.} Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 41* and *Table 49*, respectively.

Unless otherwise specified, the parameters given in *Table 49* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Table 49. I/O AC characteristics⁽¹⁾

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	2	MHz
10	t _{f(IO)out}	Output high to low level fall time	C = 50 pE // = 2 // to 2 6 //	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	0 - 50 - 5 \ - 2 \ \ - 2 \ \ - 2 \ \ \ - 2 \ \ \ - 2 \ \ \ - 2 \ \ \ \	25 ⁽³⁾	
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	25 ⁽³⁾	ns
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	50	MHz
	F _{max(IO)out}	ax(IO)out Maximum Frequency ⁽²⁾	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	30	MHz
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	20	MHz
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	5 ⁽³⁾	
11	$t_{f(IO)out}$	Output high to low level fall time	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	8 ⁽³⁾	
			$C_L = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 2.7 \text{ V}$	12 ⁽³⁾	
		Output low to high level rise	C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	ns
	t _{r(IO)out}	time	$C_L = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	8 ⁽³⁾	
			C _L = 50 pF, V _{DD} = 2 V to 2.7 V	12 ⁽³⁾	
-	t _{EXTIPW}	Pulse width of external signals detected by the EXTI controller		10	ns

The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

^{2.} The maximum frequency is defined in *Figure 41*.

^{3.} Guaranteed by design, not tested in production.

Figure 41. I/O AC characteristics definition

5.3.15 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 47*).

Unless otherwise specified, the parameters given in *Table 50* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage		-0.5		0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage		2		V _{DD} +0.5	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis			200		mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse				100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse		300			ns

Table 50. NRST pin characteristics

^{1.} Guaranteed by design, not tested in production.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

Figure 42. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 50. Otherwise the reset will not be taken into account by the device.

5.3.16 TIM timer characteristics

The parameters given in *Table 51* are guaranteed by design.

Refer to Section 5.3.13: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Conditions Min **Symbol Parameter** Max Unit 1 t_{TIMxCLK} Timer resolution time t_{res(TIM)} $f_{TIMxCLK} = 36 MHz$ 27.8 ns 0 f_{TIMxCLK}/2 MHz Timer external clock f_{EXT} frequency on CH1 to CH4 $f_{TIMxCLK} = 36 MHz$ 0 18 MHz Res_{TIM} Timer resolution 16 bit 16-bit counter clock period 65536 1 t_{TIMxCLK} when internal clock is tCOUNTER f_{TIMxCLK} = 36 MHz 0.0278 1820 selected μs 65536 × 65536 t_{TIMxCLK} t_{MAX COUNT} Maximum possible count $f_{TIMxCLK} = 36 \text{ MHz}$ 119.2 s

Table 51. TIMx⁽¹⁾ characteristics

5.3.17 Communications interfaces

I²C interface characteristics

The STM32F101xF and STM32F101xG access line I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 52*. Refer also to *Section 5.3.13: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

^{1.} TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

Table 52. I²C characteristics

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode I ² C ⁽¹⁾⁽²⁾		Unit
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7		1.3		116
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
$t_{r(SDA)} \ t_{r(SCL)}$	SDA and SCL rise time		1000	-	300	ns
$t_{f(SDA)} \ t_{f(SCL)}$	SDA and SCL fall time		300		300	
t _{h(STA)}	Start condition hold time	4.0		0.6		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		μs
C _b	Capacitive load for each bus line		400		400	pF
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	μs

^{1.} Guaranteed by design, not tested in production.

f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve the fast mode I²C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast mode maximum clock speed of 400 kHz.

The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.

^{4.} The minimum width of the spikes filtered by the analog filter is above $t_{SP}(max)$.

Figure 43. I²C bus AC waveforms and measurement circuit⁽¹⁾

- 1. Measurement points are done at CMOS levels: $\rm 0.3V_{DD}$ and $\rm 0.7V_{DD}$
- R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. V_{DD_I2C} is the I2C bus power supply.

Table 53. SCL frequency $(f_{PCLK1} = 36 \text{ MHz}, V_{DD} = V_{DD_I2C} = 3.3 \text{ V})^{(1)(2)}$

f _{SCL}	I2C_CCR value
(kHz)	$R_P = 4.7 \text{ k}\Omega$
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

- 1. R_P = External pull-up resistance, f_{SCL} = I^2C speed,
- 2. For speeds around 200 kHz, the tolerance on the achieved speed is of $\pm 5\%$. For other speed ranges, the tolerance on the achieved speed $\pm 2\%$. These variations depend on the accuracy of the external components used to design the application.

47/

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 54Table 55* are derived from tests performed under ambient temperature, f_{PCLKX} frequency and V_{DD} supply voltage conditions summarized in *Table 10*.

Refer to Section 5.3.13: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Table 54. STM32F10xxx SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	CDI alaak franssanas	Master mode		10	N 41 1-
1/t _{c(SCK)}	SPI clock frequency	Slave mode		10	MHz
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	73		
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
(1)		Master mode - SPI1	3		
$t_{su(MI)}^{(1)}^{(1)}$ $t_{su(SI)}^{(1)}$	Data input setup	Master mode - SPI2	5		
*Su(SI)		Slave mode	4		
t _{h(MI)} (1)		Master mode - SPI1	4		
^t h(MI) ` ′	Data input hold time	Master mode - SPI2	6		
t _{h(SI)} ⁽¹⁾		Slave mode	5		ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access	Slave mode, f _{PCLK} = 36 MHz, presc = 4	0	55	
4(00)	time	Slave mode, f _{PCLK} = 20 MHz		4t _{PCLK}	
t _{dis(SO)} (1)(3)	Data output disable time	Slave mode	10		
t _{v(SO)} (1)	Data output valid time	Slave mode (after enable edge)		25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)		6	
t _{h(SO)} ⁽¹⁾	Data output hold	Slave mode (after enable edge)	25		
t _{h(MO)} ⁽¹⁾	time	Master mode (after enable edge)	6		

^{1.} Guaranteed by characterization results, not tested in production.

^{2.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

^{3.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Table 55. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	CDI alogic fraguency	Master mode		18	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode		18	IVITZ
$t_{r(SCK)} \ t_{f(SCK)}$	SPI clock rise and fall time	Capacitive load: C = 30 pF		8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}		
$t_{\text{w(SCKL)}}^{(1)}$	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)} (1)	Data input setup time	Master mode	5		
t _{su(MI)} (1) t _{su(SI)} (1)	Data input setup time	Slave mode	5		
t _{h(MI)} (1)	Data input hold time	Master mode	5		
t _{h(SI)} ⁽¹⁾	Data iriput riolu tirrie	Slave mode	4		ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3t _{PCLK}	
t _{dis(SO)} (1)(3)	Data output disable time	Slave mode	2	10	
t _{v(SO)} (1)(1)	Data output valid time	Slave mode (after enable edge)		25	
t _{v(MO)} ⁽¹⁾⁽¹⁾	Data output valid time	Master mode (after enable edge)		5	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15		
t _{h(MO)} ⁽¹⁾	Data output noid time	Master mode (after enable edge)	2		

^{1.} Guaranteed by characterization results not tested in production.

^{2.} Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

^{3.} Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 44. SPI timing diagram - slave mode and CPHA=0

^{1.} Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 46. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 56* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 10*.

Note: It is recommended to perform a calibration after each power-up.

Table 56. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Power supply		2.4		3.6	V
V _{REF+}	Positive reference voltage		2.4		V_{DDA}	V
I _{VREF}	Current on the V _{REF} input pin			160	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency		0.6		14	MHz
f _S ⁽²⁾	Sampling rate		0.05		1	MHz
f (2)	External trigger frequency	f _{ADC} = 14 MHz			823	kHz
f _{TRIG} ⁽²⁾	External trigger frequency				17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾		0 (V _{SSA} or V _{REF} - tied to ground)		V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See Equation 1 and Table 57 for details			50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance				1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor				8	pF
t _{CAL} ⁽²⁾	Calibration time	f _{ADC} = 14 MHz	5.	.9		μs
'CAL'	Calibration time		8	3		1/f _{ADC}
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 14 MHz			0.214	μs
4at	latency				3 ⁽⁴⁾	1/f _{ADC}
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 14 MHz			0.143	μs
чатг	latency				2 ⁽⁴⁾	1/f _{ADC}
t _S ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107		17.1	μs
	Camping and		1.5		239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		0	0	1	μs
(0)	Total conversion time	f _{ADC} = 14 MHz	1		18	μs
t _{CONV} ⁽²⁾	(including sampling time)		14 to 252 (t _S for sa successive approx			1/f _{ADC}

- 1. Guaranteed by characterization results, not tested in production.
- 2. Guaranteed by design, not tested in production.
- 3. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to *Section 3: Pinouts and pin descriptions* for further details.
- 4. For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table* 56.

$$\begin{aligned} & \textbf{Equation 1: R_{AIN} \max_{T_S} formula:} \\ & R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times ln(2^{N+2})} - R_{ADC} \end{aligned}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 57. R_{AIN} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

T _s (cycles)	t _S (μs)	R_{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

^{1.} Guaranteed by design, not tested in production.

Table 58. ADC accuracy - limited test conditions⁽¹⁾⁽²⁾

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	f _{PCLK2} = 28 MHz,	±1.3	±2	
EO	Offset error	f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ, V_{DDA} = 3 V to 3.6 V, T_{A} = 25	±1	±1.5	
EG	Gain error	°C	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±0.7	±1	
EL	Integral linearity error	$V_{REF+} = V_{DDA}$	±0.8	±1.5	

^{1.} ADC DC accuracy values are measured after internal calibration.

^{2.} ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.13 does not affect the ADC accuracy.

^{3.} Guaranteed by characterization results, not tested in production.

		, , , , , , , , , , , , , , , , , , ,			
Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	f = 20 MHz	±2	±5	
EO	Offset error	f_{PCLK2} = 28 MHz, f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω ,	±1.5	±2.5	
EG	Gain error	V _{DDA} = 2.4 V to 3.6 V	±1.5	±3	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±1	±2	
EL	Integral linearity error	, is a canonation	±1.5	±3	

Table 59. ADC accuracy⁽¹⁾ (2)(3)

- 1. ADC DC accuracy values are measured after internal calibration.
- 2. Better performance could be achieved in restricted V_{DD} , frequency, V_{REF} and temperature ranges.
- 3. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 5.3.13 does not affect the ADC accuracy.
- 4. Preliminary values.

Figure 47. ADC accuracy characteristics

STM32F10xxx Sample and hold ADC converter 0.6 V $R_{AIN}^{(1)}$ R_{ADC}(1) AINx 12-bit converter C_{ADC}(1) parasitic ai14139d

Figure 48. Typical connection diagram using the ADC

- Refer to *Table 56* for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 49 or Figure 50, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

Figure 49. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

Figure 50. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.19 DAC electrical specifications

Table 60. DAC characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
V_{DDA}	Analog supply voltage	2.4		3.6	V	
V _{REF+}	Reference supply voltage	2.4		3.6	V	V _{REF+} must always be below V _{DDA}
V_{SSA}	Ground	0		0	V	
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5			kΩ	
R _O ⁽²⁾	Impedance output with buffer OFF			15	kΩ	When the buffer is OFF, the minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽²⁾	Capacitive load			50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT	Lower DAC_OUT voltage with buffer ON	0.2			V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at V _{RFF+} =
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON			V _{DDA} – 0.2	V	3.6 V and (0x155) and (0xEAB) at V _{REF+} = 2.4 V.
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF		0.5		mV	It gives the maximum output
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF			V _{REF+} – 1LSB	V	excursion of the DAC.

Table 60. DAC characteristics (continued)

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)			220	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs.
	DAC DC current consumption			380	μΑ	With no load, middle code (0x800) on the inputs.
I _{DDA}	DAC DC current consumption in quiescent mode ⁽³⁾			480	μΑ	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs.
DNL ⁽¹⁾	Differential non linearity Difference between two			±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)			±2	LSB	Given for the DAC in 12-bit configuration.
(1)	Integral non linearity (difference between measured value at			±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽¹⁾	Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)			±4	LSB	Given for the DAC in 12-bit configuration.
				±10	mV	
Offset ⁽¹⁾	Offset error (difference between measured value at Code (0x800) and the			±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V.
	ideal value = V _{REF+} /2)			±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V.
Gain error ⁽¹⁾	Gain error			±0.5	%	Given for the DAC in 12bit configuration.
t _{SETTLING} (1)	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB		3	4	μs	$C_{LOAD} \le 50 \text{ pF, } R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽¹⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)			1	MS/s	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$
t _{WAKEUP} (1)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)		6.5	10	μs	$C_{LOAD} \le 50$ pF, $R_{LOAD} \ge 5$ k Ω input code between lowest and highest possible ones.
PSRR+ (2)	Power supply rejection ratio (to V _{DDA}) (static DC measurement		– 67	– 40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

^{1.} Preliminary values.

^{2.} Guaranteed by design, not tested in production.

^{3.} Quiescent mode refers to the state of the DAC when a steady value is kept on the output so that no dynamic consumption is involved.

Buffer(1)

R L

12-bit digital to analog converter

C L

ai17157V3

Figure 51. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.20 Temperature sensor characteristics

Table 61. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature		±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4		10	μs
T _{S_temp} (3)(2)	ADC sampling time when reading the temperature			17.1	μs

- 1. Preliminary values.
- 2. Guaranteed by design, not tested in production.
- 3. Shortest sampling time can be determined in the application by multiple iterations.

6 Package characteristics

6.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

6.1.1 LQFP144, 20 x 20 mm, 144-pin thin quad flat package

Figure 52. LQFP144, 20 x 20 mm, 144-pin thin quad flat package outline

1. Drawing is not to scale.

577

Table 62. LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data

Oh al		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α			1.60			0.0630
A1	0.050		0.15	0.0020		0.0059
A2	1.350	1.400	1.45	0.0531	0.0551	0.0571
b	0.170	0.220	0.27	0.0067	0.0087	0.0106
С	0.090		0.20	0.0035		0.0079
D	21.800	22.000	22.20	0.8583	0.8661	0.874
D1	19.800	20.000	20.20	0.7795	0.7874	0.7953
D3		17.500			0.689	
E	21.800	22.000	22.20	0.8583	0.8661	0.874
E1	19.800	20.000	20.20	0.7795	0.7874	0.7953
E3		17.500			0.689	
е		0.500			0.0197	
L	0.450	0.600	0.75	0.0177	0.0236	0.0295
L1		1.000			0.0394	
k	0°	3.5°	7°	0°	3.5°	7°
ccc		0.080			0.0031	

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. Recommended footprint

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Device marking

Figure 54. LQFP144 marking (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.1.2 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package

Figure 55. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline SEATING PLANE С 0.25 mm GAUGE PLANE ccc C D D1 D3 의 대 ш PIN 1 **IDENTIFICATION** 1L_ME_V5

1. Drawing is not to scale.

Table 63. LQPF100 - 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

Cumbal		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
Α			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090		0.200	0.0035		0.0079	
D	15.800	16.000	16.200	0.622	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3		12.000			0.4724		
Е	15.800	16.000	16.200	0.622	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3		12.000			0.4724		

DocID16553 Rev 3 104/115

Table 63. LQPF100 - 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
е		0.500			0.0197		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1		1.000			0.0394		
k	0°	3.5°	7°	0°	3.5°	7°	
ccc		0.08	•		0.0031		

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

75 0.5 16.7 14.3 16.7 14.3 16.7 16.7 16.7 16.7 16.7 16.7

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Device marking

Product identification⁽¹⁾

STM32F101

Optional gate mark
Revision code

YWW

Pin 1
indentifier

Figure 57. LQFP100 marking (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

MSv36148V1

6.1.3 LQFP64, 10 x 10 mm, 64 pin low-profile quad flat package

SEATING PLANE

O.25 mm

GAUGE PLANE

D1

D3

33

D3

TIDENTIFICATION

SW_ME_V3

Figure 58. tLQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 64. LQFP64 - 10 x 10 mm, 64 pin low-profile quad flat package mechanical data

Symbol		millimeters				
Symbol	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090		0.200	0.0035		0.0079
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D.		7.500				
E	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.00	10.200	0.3858	0.3937	0.4016
е		0.500			0.0197	

ai14909c

Table 64. LQFP64 - 10 x 10 mm, 64 pin low-profile quad flat package mechanical data (continued)

Symbol		millimeters		inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Max		
k	0°	3.5°	7°	0°	3.5°	7°		
L	0.450	0.600	0.75	0.0177	0.0236	0.0295		
L1		1.000			0.0394			
ccc	0.080			0.0031				
N	Number of pins							
	64							

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 59. Recommended footprintt

48

0.3

12.7

10.3

10.3

17

12.7

12.7

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

Device marking

Figure 60. LQFP64 marking (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

6.2 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 10: General operating conditions on page 39*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \sum (V_{OL} \times I_{OL}) + \sum ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

- and the state of					
Symbol	Parameter	Value	Unit		
	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch	30			
Θ_{JA}	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W		
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45			

Table 65. Package thermal characteristics

6.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

6.2.2 Evaluating the maximum junction temperature for an application

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Table 66: STM32F101xF and STM32F101xG ordering information scheme*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. Here, only temperature range 6 is available (–40 to 85 °C).

The following example shows how to calculate the temperature range needed for a given application, making it possible to check whether the required temperature range is compatible with the STM32F10xxx junction temperature range.

Example: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} + 8 \times 20 \text{ mA} \times 1.3 \text{ V} = 272 \text{ mW}$

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW

 $P_{Dmax} = 175 + 272 = 447 \text{ mW}$

Thus: P_{Dmax} = 447 mW

Using the values obtained in *Table 66* T_{Jmax} is calculated as follows:

For LQFP64, 45 °C/W

 T_{lmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C

This is within the junction temperature range of the STM32F10xxx ($-40 < T_J < 105$ °C).

7 Part numbering

Table 66. STM32F101xF and STM32F101xG ordering information scheme

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID16553 Rev 3

8 Revision history

Table 67. Document revision history

Date	Revision	Changes	
27-Oct-2009	1	Initial release.	
	2	LQFP64 package mechanical data updated: see Figure 58: tLQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline and Table 64: LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data.	
		Internal code removed from Table 66: STM32F101xF and STM32F101xG ordering information scheme.	
		Updated note 2 below Table 52: I2C characteristics	
		Updated Figure 43: I2C bus AC waveforms and measurement circuit(1)	
		Updated Figure 42: Recommended NRST pin protection	
		Updated note 1 below Table 47: I/O static characteristics	
		Updated Table 20: Peripheral current consumption	
15-Nov-2010		Updated Table 14: Maximum current consumption in Run mode, code with data processing running from Flash	
		Updated Table 15: Maximum current consumption in Run mode, code with data processing running from RAM	
		Updated Table 16: Maximum current consumption in Sleep mode, code running from Flash or RAM	
		Updated Table 17: Typical and maximum current consumptions in Stop and Standby modes	
		Updated Table 18: Typical current consumption in Run mode, code with data processing running from Flash	
		Updated Table 19: Typical current consumption in Sleep mode, code running from Flash or RAM	
		Updated Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz)	
		Updated Figure 19: Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms on page 57	
		Added Section 5.3.13: I/O current injection characteristics on page 99.	

Table 67. Document revision history (continued)

Date I	Revision	Changes
25-Nov-2014	3	Updated number of ADCs in Table 2: STM32F101xF and STM32F101xG features and peripheral counts. Modified Section 2.3.22: GPIOs (general-purpose inputs/outputs) on page 21. Added note below Figure 3: LQFP144 pinout, Figure 4: LQFP100 pinout, and Figure 5: LQFP64 pinout. Modified OSC_IN, OSC_OUT, PD0, PD1, PB8, PB9 and PF8 in Table 5: STM32F101xF/STM32F101xG pin definitions on page 25/ Updated notes related to parameters not tested in production in the whole document. Modified notes in Table 7: Voltage characteristics on page 37 and Table 8: Current characteristics on page 38. Removed ADC2/3 and CAN from Table 20: Peripheral current consumption on page 48. Modified t _w (HSE) value in Table 21: High-speed external user clock characteristics on page 49. Updated Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 52. Changed JESD22-C101 to ANSI/ESD STM5.3.1 in Section : Electrostatic discharge (ESD). Updated Section 5.3.10: FSMC characteristics on page 56. Updated Figure 41: I/O AC characteristics definition. Updated conditions related to Section : I2C interface characteristics on page 86. Modified Table 52: I2C characteristics on page 87, updated Figure 43: I2C bus AC waveforms and measurement circuit(1) and V _{DD} /V _{DD} _I2C conditions in Table 53: SCL frequency (fPCLK1= 36 MHz, VDD = VDD_I2C = 3.3 V) on page 88. Modified Section : Output driving current on page 81. Modified Table 52: I2C characteristics on page 87 and updated Figure 43: I2C bus AC waveforms and measurement circuit(1). Modified Figure 46: SPI timing diagram - master mode(1) on page 92. Modified notes in Table 56: ADC characteristics on page 93 and Table 59: ADC accuracy on page 95. Updated I _{DDA} definition in Table 60: DAC characteristics on page 97 and removed comment related to the offset parameter for ±10 mV.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

