(1) Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be the map

$$(u, v, w) = F(x, y) = (x, y, xy).$$

Let $p = (x, y) \in \mathbb{R}^2$. Compute $F_*(\frac{\partial}{\partial x}|_p)$ as a linear combination of $\partial/\partial u$, $\partial/\partial v$ and $\partial/\partial w$ at F(p).

(2) Let G be a Lie group with multiplication map $\mu: G \times G \to G$ and identity element e. Show that the differential at the identity of the multiplication map μ is addition:

$$\mu_{*,(e,e)}: T_eG \times T_eG \to T_eG, \qquad \mu_{*,(e,e)}(X_e, Y_e) = X_e + Y_e.$$

(Note that $T_{(p,q)}(M \times N)$ is isomorphic to $T_pM \times T_qN$ via the differentials of the two projections $\pi_1: M \times N \to M, \ \pi_2: M \times N \to N.$)

- (3) Let $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ be the sphere in \mathbb{R}^3 . Consider the function $h: S^2 \to \mathbb{R}$ given by h(x, y, z) = z. Find the critical points of h on S^2 .
- (4) A C^{∞} map $f: M \to N$ is said to be transversal to a submanifold $S \subset N$ if for every $p \in f^{-1}(S)$,

$$f_*(T_p M) + T_{f(p)} S = T_{f(p)} N.$$

(If A and B are subspaces of a vector space, their sum A+B is the subspace consisting of all a+b with $a \in A$ and $b \in B$. The sum need not be a direct sum.) The goal of this exercise is to prove the *transversality theorem*: if a C^{∞} map $f: M \to N$ is traversal to a regular submanifold S of codimension k in N, then $f^{-1}(S)$ is a regular submanifold of codimension k in M.

Let $p \in f^{-1}(S)$ and $(U, x^1, ..., x^n)$ be an adapated chart centered at f(p) for N relative to S such that $U \cap S = Z(x^{n-k+1}, ..., x^n)$, the zero set of the functions $x^{n-k+1}, ..., x^n$. Define $g: U \to \mathbb{R}^k$ to be the map

$$g = (x^{n-k+1}, \dots, x^n).$$

- (a) Show that $f^{-1}(U) \cap f^{-1}(S) = (g \circ f)^{-1}(0)$.
- (b) Show that $f^{-1}(U) \cap f^{-1}(S)$ is a regular level set of the function $g \circ f : f^{-1}(U) \to \mathbb{R}^k$.
- (c) Prove the transversality theorem.