## \_\_\_\_\_

# PROJECT - 1

# Sai Teja Cherukuri (50418484) 10<sup>th</sup> October 2021

\_\_\_\_\_

# 1. Project Overview

The goal of the project is to perform classification using machine learning. In the first part of the project, I have performed Data Pre-processing. Then, I trained the model using gradient descent for logistic regression and calculated the accuracy by tested the model on the testing set. Later I implemented Neural networks using different regularization methods and then calculated accuracy for each of them.

## 2. Dataset

To implement machine learning models with Pima Indian Diabetes dataset with 768 samples, I have split the data samples as Training, Validation and Testing, each constituting of 60%, 20% and 20% respectively of the overall data. Training dataset has 460 samples, Validation dataset has 154 samples and Testing dataset has 154 samples.

# 3. Python Editor

I have used Jupiter Notebook on Google Collab for implementation and shared.

## 3.1 Data processing

#### 1. Extract feature values from the data

I have processed the given CSV dataset (diabetes.csv) and extracted the features (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age)

#### 2. Correlation matrix

Correlation matrix is constructed showing correlation coefficients between features.

#### 3. Data Normalization

- Normalization of data is done to scale the feature values to a particular range, else they will over-estimate or under-estimate the importance of each feature.
- Next, I removed the Outcome column from the dataset to extract the features alone.
- Now process the feature dataset to contain values between 0 and 1 inclusive, by using the Min-Max Scaler method from sklearn.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

## 4. Data Partitioning

I have partitioned the data into Training, Validation and Testing sets using *train\_test\_split* function from sklearn in 60%, 20% and 20% manner.



## 5. Model Building

#### Part – 1: Implementing Logistic Regression

First, I have applied Transpose for Training, Validation and Testing matrices so we can perform multiplications.

Then I have initialized the weights as numpy array having the dimension as one and filled with 0.01 and bias is initially assigned to zero.

Then taking the pre-processed dataset, I have defined the sigmoid activation function and gradient descent. Logistic regression is mainly used for binary classification, hence the outputs are always between 0 and 1. The role of sigmoid function is to convert linear model to predicted output.

Here we take a linear model (z) of form  $\mathbf{Z} = \mathbf{W} * \mathbf{X} + \mathbf{B}$ , where W is the weights matrix and B is the bias

$$S(x)=rac{1}{1+e^{-x}}$$
  $S(x)$  = sigmoid function  $e$  = Euler's number

Now, I have used the Forward-Backward propagation to find gradient descent and cost function.

#### Forward propagation:

• For the Forward propagation, we need to find to value of z. It is expressed in the form of linear expression of line.

$$z = \sigma(W^T * X + b)$$

$$z = np.dot(w.T,train_x) + b$$

• Then apply sigmoid function of z to calculate cost of the function.

$$A = sigmoid(z)$$

• Then we find the loss for each feature by the below equation.

Loss = 
$$Y * log (A) + (1 - A) * log (1 - A)$$

• Next we find the Cost function which is Summation of losses of all features divided by total number of data entries.

#### Cost function:

$$cost = -\frac{1}{m} \sum_{i=1}^{m} [Y * log(A) + (1 - A) * log(1 - A)]$$

## Backward propagation:

• For the Backward propagation, we need to traverse the graph downward, hence we find derivative. (formulae as below)

$$dW = \frac{\partial COST}{\partial W} = (A - Y) * X^{T}$$
 $dB = \frac{\partial COST}{\partial B} = (A - Y)$ 

• Hence using Forward and Backward propagation, gradient descent is applied and we get the derivative weight and derivative bias.

Now I declared Logistic regression function using training data, learning rate and Epochs (number of iterations):

- 1. Inside the function, we call the **Update** function with training data, learning rate and Epochs to update the Weights and Bias.
- 2. Using the Weight and Bias parameters, we call the **Prediction** function passing these as parameters
- 3. In the Predict function, I have taken the default threshold as 0.5 and made the prediction (If data value is less than 0.5, then we predict as 0 (meaning the patient has no diabetes), else if the data value is greater than 0.5, then we predict as 1 (meaning the patient has diabetes)

## Visualization for Validation dataset

I have plotted two graphs as below:

- 1. Cost vs Number of Iterations
- 2. Accuracy vs Number of Iterations

Accuracy achieved = 77.27 %





## Visualization for Testing dataset

I have plotted two graphs as below:

- 1. Cost vs Number of Iterations
- 2. Accuracy vs Number of Iterations





**Part – 2: Implementing Neural Networks** 

- First we load the libraries Sequential and Dense from Keras.
- Now, we start building the artificial neural network which is a sequential model of 3 layers.
  - 1. The first layer will have 12 neurons and uses the ReLu activation function.
  - 2. The Second layer will have 15 neurons and used ReLu activation function.
  - 3. Last layer which is the Output layer has only 1 neuron which uses Sigmoid function.



- Next, I have used a Regularization technique in the model to reduce model overfitting.
  - o I have used L1 Regularization for first layer and L2 Regularization for second layer.

Regularization is a technique which makes modifications to the algorithm such that the machine learning model becomes better.

Here, I have used L1 and L2 regularization methods which are the most common types of regularization. These update the cost function of the model by adding a regularization term.

Cost function = Loss (say, binary cross entropy) + Regularization term

Due to the addition of this regularization term, the values of weight matrices decrease because it assumes that a neural network with smaller weight matrices leads to simpler models. Therefore, it will also reduce overfitting of the model.

## L2 Regularization:

• This regularization is also known as Weight decay. This method forces the weights to decay towards zero.

Cost function = Loss + 
$$\frac{\lambda}{2m} * \sum ||w||^2$$

## L1 Regularization:

O This method applies a penalty to the absolute value of the weights. Unlike L2 regularization, the weights may be reduced to zero.

$$Cost function = Loss + \frac{\lambda}{2m} * \sum ||w||$$

Here lambda ( $\lambda$ ) is the regularization parameter, it is the hyperparameter whose value is optimized for better results.

- I have used Regularization parameter ( $\lambda$ ) as 0.01
- Now, we compile the model with loss function as 'Binary\_crossentropy' (as we need the output to be 0/1) and I have used Stochastic Gradient Descent 'sgd' optimizer to improve upon the loss. I have added 'Accuracy' to the metrics to measure the accuracy of the model.
  - I have used a tunable hyper parameter for SGD optimiser with a learning\_rate
     = 0.01
- Next, we train the model using fit method with a batch size of 32 and 1000 Epochs (Number of iterations).
- Also, gave the model validation data by splitting the training data into 20%.

#### **Visualization for Model's Training Loss and Validation Loss:**

I have plotted the Training and Validation Loss with respect to Epoch as below:



The model loss is decreasing significantly after 200 Epochs

## Visualization for Model's Training Accuracy and Validation Accuracy:

I have plotted the Training and Validation Accuracy with respect to Epoch as below:



• Now, we evaluate the model on the testing data set by predicting that all the values which are less than 0.5 as 0 and values which are greater than 0.5 as 1.

The Testing Accuracy achieved using the above model = 81.16 %

# Part – 3: Implement different regularization methods for the Neural Networks

#### Regularization method: Dropout

- Dropout is one of the regularization techniques, which is the most used one.
- In this method, it randomly selects some nodes and removes them, so each iteration has different set of nodes and hence this results in a different set of outputs.
- Dropout method produces best results when applies on larger datasets.

Here, I have used probability of dropping = 0.15

- I have used the same hyper-parameters as previous model (Epochs = 1000 and Batch size = 32)
- I have used Stochastic Gradient Descent 'sgd' optimizer to improve upon the loss. I have added 'Accuracy' to the metrics to measure the accuracy of the model.
  - I have used a tuneable hyper parameter for SGD optimiser with a learning\_rate = 0.01
- Also, gave the model validation data by splitting the training data into 20%.

## Visualization for Model's Training Loss and Validation Loss:

I have plotted the Training and Validation Loss with respect to Epoch as below:



## Visualization for Model's Training Accuracy and Validation Accuracy:

I have plotted the Training and Validation Accuracy with respect to Epoch as below:



• Now, we evaluate the model on the testing data set by predicting that all the values which are less than 0.5 as 0 and values which are greater than 0.5 as 1.

The Testing Accuracy achieved using the above model = 77.92 %

#### Regularization method: L2

- Similar to above model explained in part 2, I have implemented the model with L2 regularization.
- Batch size = 1000 and Epochs = 32
- Regularization parameter = 0.01 and Learning rate for SGD Optimizer = 0.01

## Visualization for Model's Training Loss and Validation Loss:

I have plotted the Training and Validation Loss with respect to Epoch as below:



#### Visualization for Model's Training Accuracy and Validation Accuracy:

I have plotted the Training and Validation Accuracy with respect to Epoch as below:



• Now, we evaluate the model on the testing data set by predicting that all the values which are less than 0.5 as 0 and values which are greater than 0.5 as 1.

The Testing Accuracy achieved using the above model = **79.87** %

## **Comparison between Dropout and L2:**

- Though both methods (Dropout and L2) are used to reduce over-fitting, there is difference in execution and usage.
- The main idea of dropout is to randomly drop the neurons during the training so that the model doesn't overly depend upon the neurons for the output.
- Dropout method provides higher predictive accuracy than L2 for larger networks, but for smaller networks like our case, L2 regularization yields better results.
- Comparing the above model results, we can see L2 regularization yielded slightly better accuracy than dropout.

## **Conclusion:**

- We have implemented a logistic regression model developed with gradient descent yielded an accuracy of 80.51%.
- Splitting dataset into 60% training and 20% Validation dataset, helped in tuning the hyper parameters which improved the accuracy of the model.
- Implemented Neural networks with L1, L2 and Dropout regularization methods
- Neural network with L2 regularization method yielded better results than the Dropout as we have a smaller network.

## **References:**

- 1. Build Your Own Artificial Neural Network Using Python (https://randerson112358.medium.com/build-your-own-artificial-neural-network-using-python-f37d16be06bf)
- 2. Overview of Regularization Techniques in Deep Learning (<a href="https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/">https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/</a>)
- 3. Analysis of Regularization between Dropout and L2 in Neural Networks (https://uksim.info/isms2016/CD/data/0665a174.pdf)