Algèbre 2

Dimension finie

Question 1/29

 $Mat_{\mathcal{B}}(u)$ est inversible

Réponse 1/29

 $u \in \mathrm{GL}(E)$

La réciproque est vraie

Question 2/29

Dimension d'une somme directe

Réponse 2/29

$$\dim\left(\bigoplus_{i=1}^{n}(E_i)\right) = \sum_{i=1}^{n}(\dim(E_i))$$

Question 3/29

Matrice associée à une composition

Réponse 3/29

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(g \circ f) = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(g) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$$

Question 4/29

Endomorphisme diagonalisable

Réponse 4/29

Il existe une base \mathcal{B} dans laquelle $\operatorname{Mat}_{\mathcal{B}}(u)$ est diagonale

Question 5/29

Produit matriciel avec l'évaluation

Réponse 5/29

$$[f(X)]_{\mathcal{C}} = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)[X]_{\mathcal{B}}$$

Question 6/29

Matrices semblables

Réponse 6/29

$$A \in \mathcal{M}_n(K), B \in \mathcal{M}_n(K)$$

 $\exists (P) \in \operatorname{GL}_n(K), B = P^{-1}AP$

Question 7/29

Formule de Grassmann

Réponse 7/29

$$\dim(E+F) = \dim(E) + \dim(F) - \dim(E \cap F)$$

Question 8/29

Rang d'une famille

Réponse 8/29

$$\operatorname{rg}(x_1, \dots, x_n) = \dim(\operatorname{Vect}(x_1, \dots, x_n))$$

Question 9/29

Conservation de l'image et du noyau pour les matrices

Réponse 9/29

$$M \in \mathcal{M}_{n,p}(K), P \in \operatorname{GL}_n(K), Q \in \operatorname{GL}_n(K)$$

$$\ker(PM) = \ker(M)$$

$$\operatorname{Im}(MQ) = \operatorname{Im}(M)$$

Question 10/29

Forme linéaire

Réponse 10/29

Application linéaire (sur un \mathbb{K} -espace vectoriel E) de E vers \mathbb{K} Un élément de $\mathcal{L}(E,\mathbb{K})$

Question 11/29

Propriétés de la trace

Réponse 11/29

C'est une forme linéaire
$$\operatorname{tr}(A) = \operatorname{tr}(A^{\top})$$
 $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Si M et N sont semblables, tr(N) = tr(M)

Question 12/29

Matrice de passage

Réponse 12/29

$$P_{\mathcal{B}_1}^{\mathcal{B}_2} = \operatorname{Mat}_{\mathcal{B}_2,\mathcal{B}_1}(\operatorname{id}) = [\mathcal{B}_2]_{\mathcal{B}_1}$$

Question 13/29

Matrices équivalentes

Réponse 13/29

$$N \in \mathcal{M}_n(K), M \in \mathcal{M}_n(K)$$

 $\exists (P,Q) \in \operatorname{GL}_n(K)^2, N = PMQ$

Question 14/29

Effet d'une composition sur le rang

Réponse 14/29

$$rg(v \circ u) \leq min(rg(u), rg(v))$$

Si v est injective, $rg(v \circ u) = rg(u)$
Si u est surjective, $rg(v \circ u) = rg(v)$

Question 15/29

Dimension d'un supplémentaire S de F dans E

Réponse 15/29

$$\dim(S) = \dim(E) - \dim(F)$$

Question 16/29

Dimension de $\mathcal{L}(E, F)$

Réponse 16/29

$$\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$$

Question 17/29

Matrice diagonalisable

Réponse 17/29

Matrice semblable à une matrice diagonale

Question 18/29

Hyperplan

Réponse 18/29

$$\exists \in E^* \setminus \{0\}, \ H = \ker(\varphi)$$

$$\varphi \text{ est l'équation caractéristique de } H$$

Question 19/29

Classification des matrices équivalentes par le rang

Réponse 19/29

N est équivalent à M si et seulement si $\operatorname{rg}(M) = \operatorname{rg}(N)$

Question 20/29

Dimension d'un produit cartésien

Réponse 20/29

$$\dim(E \times F) = \dim(E) + \dim(F)$$

Question 21/29

Trace d'un projecteur et d'une symétrie

Réponse 21/29

$$tr(p) = rg(p)$$
$$tr(s) = n - 2 rg(s - id)$$

Question 22/29

Rang d'une application linéaire

Réponse 22/29

$$rg(u) = dim(Im(u))$$

Question 23/29

Théorème du rang

Réponse 23/29

$$\dim(\ker(f)) + \operatorname{rg}(f) = \dim(E)$$

Question 24/29

Majoration du rang d'une application linéaire $u \in \mathcal{L}(E, F)$

Réponse 24/29

$$rg(u) \leq min(dim(E), dim(F))$$

Question 25/29

Formule de changement de base

Réponse 25/29

$$\mathcal{B}_1$$
, \mathcal{B}_2 des bases de E , \mathcal{C}_1 , \mathcal{C}_2 des bases de F

$$\operatorname{Mat}_{\mathcal{B}_2,\mathcal{C}_2}(f) = P_{\mathcal{C}_2}^{\mathcal{C}_1} \operatorname{Mat}_{\mathcal{B}_1,\mathcal{C}_1}(f) P_{\mathcal{B}_1}^{\mathcal{B}_2}$$

$$= \left(P_{\mathcal{C}_1}^{\mathcal{C}_2}\right)^{-1} \operatorname{Mat}_{\mathcal{B}_1,\mathcal{C}_1}(f) P_{\mathcal{B}_1}^{\mathcal{B}_2}$$

Question 26/29

Image d'une matrice

Réponse 26/29

$$\operatorname{Im}(M) = \operatorname{Vect}(C_1(M), \cdots, C_n(M))$$

Question 27/29

Trace d'une matrice

Réponse 27/29

$$A \in \mathcal{M}_n(K)$$
$$\operatorname{tr}(A) = \sum_{i=1}^{n} ([A]_{i,i})$$

Question 28/29

Conservation du rang pour les matrices

Réponse 28/29

$$M \in \mathcal{M}_{n,p}(K), P \in \mathrm{GL}_n(K), Q \in \mathrm{GL}_n(K)$$

 $\mathrm{rg}(PMQ) = \mathrm{rg}(M)$

Question 29/29

Dual

Réponse 29/29

 E^*

 $\mathcal{L}(E, \mathbb{K})$ constitué des formes linéaires