Recherche dichotomique dans un tableau trié

Données: un entier e, un tableau trié T de n cases

Résultat: un booléen indiquant si $e \in T$

Données: un entier e, un tableau trié T de n cases

Résultat: un booléen indiquant si $e \in T$

```
int deb, fin
// si e est dans le tableau alors son indice est dans
  [deb, fin]
```

Données: un entier e, un tableau trié T de n cases

Résultat: un booléen indiquant si $e \in T$

```
int deb, fin
// si e est dans le tableau alors son indice est dans
[deb, fin]
deb \leftarrow 1; fin \leftarrow n;
```

```
Données: un entier e, un tableau trié T de n cases
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
   [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb \leq fin
faire
```

Données: un entier e, un tableau trié T de n cases **Résultat**: un booléen indiquant si $e \in T$ int deb, fin // si e est dans le tableau alors son indice est dans [deb, fin] $deb \leftarrow 1$; $fin \leftarrow n$; tant que deb < finfaire $mil \leftarrow (deb + fin) div 2$ si T[mil] = e alors retourner vrai;

```
fin
retourner
```

```
Données: un entier e, un tableau trié T de n cases
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
    [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb < fin
faire
   mil \leftarrow (deb + fin) div 2
   si T[mil] = e alors retourner vrai;
                  alors
   si
   sinon
   fin
```

```
Données: un entier e, un tableau trié T de n cases
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
    [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb < fin
faire
   mil \leftarrow (deb + fin) div 2
   si T[mil] = e alors retourner vrai;
                  alors
   si
   sinon
   fin
```

```
Données: un entier e, un tableau trié T de n cases
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
   [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb < fin
faire
   mil \leftarrow (deb + fin) div 2
   si T[mil] = e alors retourner vrai;
   si T[mil] < e alors
   sinon
   fin
```

retourner

Données: un entier e, un tableau trié T de n cases

```
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
    [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb < fin
faire
   mil \leftarrow (deb + fin) div 2
   si T[mil] = e alors retourner vrai;
   si T[mil] < e alors
      deb \leftarrow 1 + mil
   sinon
   fin
```

retourner

Données: un entier e, un tableau trié T de n cases

Résultat: un booléen indiquant si $e \in T$ int deb, fin // si e est dans le tableau alors son indice est dans [deb, fin] $deb \leftarrow 1$; $fin \leftarrow n$; tant que deb < finfaire $mil \leftarrow (deb + fin) div 2$ si T[mil] = e alors retourner vrai;si T[mil] < e alors $deb \leftarrow 1 + mil$ sinon \mid fin \leftarrow mil -1fin

retourner

Données: un entier e, un tableau trié T de n cases

```
Résultat: un booléen indiquant si e \in T
int deb, fin
// si e est dans le tableau alors son indice est dans
    [deb, fin]
deb \leftarrow 1; fin \leftarrow n;
tant que deb < fin
faire
    mil \leftarrow (deb + fin) div 2
   si T[mil] = e alors retourner vrai;
   si T[mil] < e alors
    deb \leftarrow 1 + mil
   sinon
    \mid fin \leftarrow mil -1
    fin
```