

Digital Signal Processing Laboratory

Final Practice DTMF (dual tone multi-frequency)

1 Introduction

When a user presses a key on their telephone corresponding to the digit they want to dial, two tones of different frequencies are sent. This technique is called dual tone multi-frequency dialing (DTMF). The tones can be seen in the figure, one per column and one per row, where the key is pressed.

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	A
770 Hz	4	5	6	В
852 Hz	7	8	9	C
941 Hz	*	0	#	D

On a standard phone the fourth column does not appear.

2 Objective of the project

The objective of this project is the development of a DTMF decoder, programmed in MATLAB, and based on the International Telecommunications Union (ITU) Q.24 standard [1], [2].

For this project you will be supplied with test files with recordings of DTMF signals sampled at 8KHz:

TEST_01.m: file the sequence: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, #, *

TEST_02.m: file the sequence: 9, 2, 8, 6, 7, 3, 5, 4, 1

TEST_X1.m: unknown sequence.

TEST_X2.m: unknown sequence.

TEST_X3.m: unknown sequence.

TEST_X4.m: unknown sequence.

3 Project phases

3.1 Analysis and design

Feasibility study: Previous analysis that will contain at least the following sections:

- Detailed description of multi-frequency dual tone detection. Highlight the main parameters that must be considered when programming.
- Detailed explanation of the Goertzel algorithm.

Software design: In this phase the prototype functions to be used in the project will be specified, not the code.

As an example, a possible prototype function of the Goertzel algorithm is presented:

```
function [Xo] = Goertzel(x,fs,fo)
% Goertzel algorithm function that calculates the Fourier transform value at
% frequency fo of the sampled signal x
%
% Input parameters
% x: input sequence
% fs: sampling frequency
% fo: frequency at which we want to calculate the Fourier transform
%
% Output parameters
% Xo: Fourier transform at fo
```

Results of the **Analysis and design** phase must be written in **deliverable 1**.

3.2 Coding, integration, and tests

Coding of the prototype functions, integration and test with the project attached files.

Results of the Coding, integration, and tests phase must be written in deliverable 2.

4 Deliverables

Deliverable 1. Corresponding to section 3.1 analysis and design (*UP TO*: 26/11/2021).

Deliverable 2. Corresponding to section 3.2 coding, integration, and tests (*UP TO:* 17/12/2021).

In this deliverable, the code of the prototype functions will be added. Also, this deliverable includes the demonstration of the practice.

Bibliography

- [1] ITU-T Recommendation Q.24: MULTIFREQUENCY PUSH-BUTTON SIGNAL RECEPTION
- [2] Application Note AT&T: Dual-Tone Multifrequency Receiver Using the WE DSP32 Digital Signal Processor
- [3] Discrete-time Signal Processing, Alan V. Oppenheim and Ronald W. Schafer, Prentice Hall