Advanced Metrics

Problem Set 1

Hans Martinez

Feb, 2021

Question 1

Comparing different quadrature rules to calculate the integral:

 $\$ \Phi_{\mu,\sigma} = \int_{-\infty}^{a} \phi(x)dx \$\$

- 1. Gauss-Legendre between \$(\mu 4\sigma, a)\$.
- 2. Gauss-Chebyshev with change of variables (COV).
- 3. Gauss-Hermite with COV.

For the Gauss-Chevyshev COV, I used $\rho(y)=\ln(y+1)-\ln(2)+a$, which maps $[-1,1] \to [-\inf y,a]$. For Gauss-Hermite, $\rho(y)=e^{-y}+a$ which maps $[-\inf y,a]$.

The next table summarizes the results.

\$\mu\$	\$\sigma\$	а	Gauss-Legendre	Gauss-Chebyshev	Gauss-Hermite
-1	0.5	-2.5	0.01460856	0.01703302	0.01628041
-1	0.5	-1.75	0.14208332	0.14488280	0.14076644
-1	0.5	-1	0.49766113	0.50080450	0.49416151
-1	0.5	-0.25	0.85323895	0.85606443	0.84864305
-1	0.5	0.5	0.98071371	0.98223965	0.97563008
-1	5	-16	0.00000000	0.00000000	0.00000000
-1	5	-8.5	0.00039812	0.00039904	0.00039085
-1	5	-1	0.49999976	0.50394920	0.49813474
-1	5	6.5	1.00001041	0.52275421	1.06847568
-1	5	14	1.01309803	0.00007890	0.21901183
1	0.5	-0.5	0.01460856	0.01703302	0.01628041
1	0.5	0.25	0.14208332	0.14488280	0.14076644
1	0.5	1	0.49766113	0.50080450	0.49416151
1	0.5	1.75	0.85323895	0.85606443	0.84864305

\$\mu\$	\$\sigma\$	а	Gauss-Legendre	Gauss-Chebyshev	Gauss-Hermite
1	0.5	2.5	0.98071371	0.98223965	0.97563008
1	5	-14	0.00000000	0.00000000	0.00000000
1	5	-6.5	0.00039812	0.00039904	0.00039085
1	5	1	0.49999976	0.50394920	0.49813474
1	5	8.5	1.00001041	0.52275421	1.06847568
1	5	16	1.01309803	0.00007890	0.21901183

We can observe that integral results from the three quadrature rules are very close across the whole distribution when \$\sigma\$ is low. However, when the \$\sigma\$ is high, we start getting odd results in the upper tail of the distribution, like probabilities above 1 for example.

Question 2