Topic 5 – Big O Notation

Topics

- Introduction
- Programming Revision
- Methods and Objects
- Arrays and Array Algorithms
- Big O Notation
- Sorting Algorithms
- Stacks and Queues
- Linked Lists
- Recursion
- Bit Manipulation

Algorithm Efficiency

- Throughout the course we will seek to design efficient algorithms
- But how can we come up with a universal standard for algorithm efficiency?
- Imagine I compare my dice program with yours
- I run my program on my fast office computer
- You run your program on a slower lab machine

my computer

your lab machine

Running Times

5 Dice rolled 1 million times

	Running Time
My computer	40ms
Your computer	1000ms

- Which Dice algorithm is better?
 - Mine or yours?
- This comparison is unfair because the performances of the two computers are different

The metre

- Historically, (1889-1960) the metre was defined by the French Academy of Sciences
- It was the length between two marks on a platinum-iridium bar
- 1/10 millionth of the distance from the equator to the North Pole through Paris
- Every measurement was based on this bar

Algorithm Efficiency

- In the same way, we could try running all algorithms on the same computer
- But is this a good universal standard?
- We would need to have a single benchmark machine on which all of the world's programs were tested

386 25Mhz with 2MB RAM

 This machine would quickly become antiquated and need to be updated, invalidating the previous measurements

Running Times

	1 million rolls	2 million rolls	3 million rolls
My computer	40ms	160ms	360ms
Your computer	1000ms	2000ms	3000ms

- Which Dice algorithm is better?
 - Mine or yours?
- This comparison is unfair because the performances of the two computers are different

Standard measure

- The relationship between the increase in the size of a problem and the increase in the running time is platform independent (apart from a constant)
- No matter what platform you run it on, the same relationship will emerge
- We therefore use this relationship to define algorithm efficiency
- Knowing the relationship is very useful for predicting how long an algorithm will take to run on a particular problem

Big O Notation

- We use Big O Notation to describe this ratio
- We are not concerned with the actual time it takes to run the algorithm
 - 100 ms on a laptop
 - 10 ms on a supercomputer
- We want a way to describe the rate with which the running time of the algorithm increases compared to the rate at which the size of the problem (n) increases
- Big O is always concerned with worst case time requirement

Examples

- O(n) The rate at which the running time increases is proportional to the rate at which the size increases
 - Example. If the running time is 100n + 53 or 2n 1000, then we say it is O(n).
 - Note. We don't care about the constant.
- $O(n^2)$ Running time increases proportional to the square of the size of the problem
 - Example. If the running time is $5n^2-99n+1$, then we say it is $O(n^2)$
- O(1) Running time is not related to the size of the problem
 - The running time is a constant
- $O(\log n)$ Time increases slowly at log the rate of the size
 - Example. If the running time is $10 \log n + 100$, then we say it is $O(\log n)$

Question

- We already know that
 - $O(100n + 53 \text{ or } 2n 1000) \rightarrow O(n)$
 - $O(5n^2 99n + 1) \rightarrow O(n^2)$
 - $0(99) \to 0(1)$
 - $O(10\log n + 100) \rightarrow O(\log n)$
- So,
 - $O(1000 \log n + 3n^2 + 3n + 1) \rightarrow$?

Question

- We already know that
 - $O(100n + 53 \text{ or } 2n 1000) \rightarrow O(n)$
 - $O(5n^2 99n + 1) \rightarrow O(n^2)$
 - $O(99) \to O(1)$
 - $O(10\log n + 100) \rightarrow O(\log n)$
- So,
 - $O(1000 \log n + 3n^2 + 3n + 1) \rightarrow O(n^2)$
 - Because $n^2 > \log n$ when n is large enough

Big O graph

Low-order Curves

Insertion in an Unordered Array

- For insertion into an unordered array running time doesn't depend on the size of the array – we just stick the element on at the end
- We can say that running time (T) = some constant time
 (K) which won't change → T = K
- K can depend on factors such as the speed of the computer, the amount of RAM etc.
- We don't care what K actually is Big O Notation is only concerned with describing the relationship between the running time and the size of the problem
- We just say the algorithm is O(1) running time is unaffected by n

Linear Search

- We have to search through all the elements in an array
- On average, we'll have to check half of them
- So $T = K \times \frac{n}{2}$
- Because K is a constant, $\frac{K}{2}$ will still be a constant (value doesn't depend on n)
- So $T = K \times n$
- This algorithm is O(n)

Binary Search

- We have already shown that iterations = $log_2(size)$
- Therefore $T = K \times log_2(n)$
- As it happens $log_2(n) = \frac{log_{10}(n)}{log_{10}(2)}$
- Incorporating the above equation to T, we get

$$T = (1/\log_{10}(2)) \times K \times \log_{10}(n)$$

- $(1/log_{10}(2)) \times K$ is just a constant which is irrelevant to Big O Notation
- This algorithm is

 $O(\log n)$

Operations in an Ordered Array

- Ordered arrays are handy because we can use binary search on them and this is $O(\log n)$
- However, if we want to insert or delete we have to make space / remove a space
- On average, we will have to move half of the items up or down $\Rightarrow K \times \frac{n}{2}$
- Therefore, these operations are O(n)

Running times in Big O Notation

Algorithm	Running Time
Linear Search	O(n)
Binary Search	$O(\log n)$
Insertion in unordered array	0(1)
Insertion in ordered array	O(n)
Deletion in unordered array	O(n)
Deletion in ordered array	O(n)

Expressing iterations in terms of n

- Usually we can look at a piece of code and derive a function $f\left(n\right)$ which describes the number of loop steps in it
 - How many loop iterations in this code?
 - In other words, how many time will counter++ be run?

```
for (int i = 10; i < n; i++){
    for (int j = 10; j > 0; j--) {
        counter++;
    }
}
```

Expressing iterations in terms of n

```
for (int i = 10; i < n; i++){
    for (int j = 10; j > 0; j--) {
        counter++;
    }
}
// Run (n-10) times
// Run 10 times
```

Analysis:

```
i = 10: "for (int j = 10; j > 0; j--){counter++;}" runs 10 times
i = 11: "for (int j = 10; j > 0; j--){counter++;}" runs 10 times
...
i = n-1: "for (int j = 10; j > 0; j--){counter++;}" runs 10 times
```

- There are (n 10) * 10 iterations = 10n 100
- Thus, its running times in Big O notation is O(n)

Formalities

- Formal mathematical definition of Big O
- A function f(n) = O(g(n)) if
 - ullet a positive real number c and positive integer n_0 exist such that

$$f(n) \le c \times g(n)$$
 for all $n \ge n_0$

- Example. 10n 100 = O(n)
 - We set c = 20 and $n_0 = 1$
 - We have $20n (10n 100) = 10n + 100 \ge 0$ for all $n \ge 1$
 - Thus, $10n 100 \le 20n$ for all $n \ge 1$

More examples

- Example. $9n^2 + 100n = O(n^2)$
 - We set c = 10 and $n_0 = 100$
 - We have $10n^2 (9n^2 + 100n) = n^2 100n \ge 0$ for all $n \ge 100$
 - Note. $100^2 = 10000 \ge 100n = 10000$
 - Thus, $9n^2 + 1000n \le 10n^2$ for all $n \ge 100$
- Example. $20n^3 100n^2 + 50n 75 = O(n^3)$
 - We set c = 30 and $n_0 = 10$
 - We have $30n^3 (20n^3 + 50n) = 10n^3 50n \ge 0$ for all $n \ge 10$, and $20n^3 + 50n \ge 20n^3 100n^2 + 50n 75$
 - Thus, $20n^3 100n^2 + 50n 75 \le 30n^3$ for all $n \ge 10$

Graph

$$f(n) \le c \times g(n)$$
 for all $n \ge n_0$

• $c \times g(n)$ is the upper bound on f(n) when n is sufficiently large

Interpretation

- We want to describe how the size of a function f(n) (which describes the running time of a program) increases as n gets really huge
- The biggest power of *n* will always dominate
- Accordingly, we pick this as the Big O complexity g(n)
- We don't care about constants
- To justify that this pick is a good description of f(n), we show that f(n) is always bounded by the Big O complexity g(n) (multiplied by some constant, which doesn't matter as we don't care about constants!) as long as n is bigger than some value n_0
- In other words, to show g(n) provides a good description of f(n) we show that $f(n) \le c \times g(n)$ for all $n \ge n_0$

Interpretation

- For example $O(n^2)$ is a good description of $3n^2+5n+2$ since n^2 multiplied by the arbitrary constant 10 will always be bigger than $3n^2+5n+2$ for every value of n greater than 1
- $O(n^2)$ manages to capture the behavior of this function as n becomes bigger (with only a constant amount of inaccuracy)
- We don't care that $3n^2 + 5n + 2$ could be up to 10 times bigger than $O(n^2)$
- 10 is only a constant and in the long run as n gets huge, constants will become insignificant

Example

- The function $10n^2$ will always exceed $3n^2+5n+2$, so long as n is 2 or greater
- Therefore $3n^2 + 5n + 2$ is $O(n^2)$ because...
 - $10n^2 = 3n^2 + 5n^2 + 2n^2$ which is > than $3n^2 + 5n + 2$ when $n \ge 2$

•
$$3n^2 = 3n^2$$

- $5n^2 > 5n$
- $2n^2 > 2$

Explain?

- I'm looking for the Big O function which is the closest description of the performance of my function (i.e. computer program)
- My function must be bounded by the Big O function beyond a certain problem size n_0
- The Big O function can be multiplied by any constant in order to meet this requirement
- For example, if I describe my function as being O(n), what I mean is that my function always has a running of less than $k \times n$ when n is bigger than n_0
 - k can be a million, a billion, a trillion, it doesn't matter
 - n_0 can be any value too, but it is usually more sensible to keep it low
 - Even though it is huge, 2100 is actually a constant because it has no n term

Example

- Show that f(n) = 5n + 3 = O(n)
 - ullet Find a g(n), c and n_0 such that $f(n) \leq c imes g(n)$ for all $n \geq n_0$
 - How about g(n) = n, c = 8, $n_0 = 1$?
 - $f(n) \le 8n$ for every value of n greater than 1
 - 5n + 3 is always less than 5n + 3n when n is at least 1
 - Therefore, we can say f(n) is O(n)
- Why don't we let $g(n) = n^2$?
- Although the conclusion is correct since f(n) will always be less than $O(n^2)$ as well, this is not the closest description of the algorithm

Example

- 8n will always bound 5n + 3 when n is bigger than 1
- Therefore, we can say that a program with 5n+3 steps is O(n)
- Of course, it would also be bounded by 6n but so long as we show it for any constant then that's sufficient

Usage

- Always use the most parsimonious formula for the Onotation.
- We write

$$3n^2 + 2n + 5 = O(n^2)$$

- The followings are all correct but we want the most concise
 - $3n^2 + 2n + 5 = O(3n^2 + 2n + 5)$
 - $3n^2 + 2n + 5 = O(n^2 + n)$
 - $3n^2 + 2n + 5 = O(100n^2)$
- Note. $3n^2 + 2n + 5 \neq O(1000n)$

Tip

- ullet In order to figure out what the order of a function is, just look at the highest order of n
- If there's an n^2 term, then the formula is $O(n^2)$
- Always put g(n) equal to this power
 - $g(n) = n^2$
- Now choose c so that it equals the sum of all the variables in the function
 - If $f(n) = 3n^2 + 2n + 5$, then choose c to be 10 = 3 + 2 + 5
- This makes it easy to show that $3n^2 + 2n + 5 < 3n^2 + 2n^2 + 5n^2$
- Finally, figure out what value n_0 needs to have in order to make the above statement $f(n) \le c \times g(n)$ true

Example of O-notation

- Show that $3n^2 + 2n + 5 = O(n^2)$
 - $g(n) = n^2$, c = 10, $n_0 = 1$
 - Pick c = 10 because it's easy to show $10n^2 \ge 3n^2 + 2n + 5$
 - $10n^2 = 3n^2 + 2n^2 + 5n^2$
 - $10n^2 = 3n^2 + 2n^2 + 5n^2 \ge 3n^2 + 2n + 5$ for all $n_0 = 1$
 - Note.
 - $3n^2 = 3n^2$
 - $2n^2 > 2n$
 - $5n^2 \ge 5$

Formalities

The following identities hold for Big O notation:

$$O(k \times f(n)) = O(f(n))$$

 If an algorithm is doubled in complexity, it still has the same Big O Notation

$$O(f(n) + g(n)) = O(f(n)) + O(g(n))$$

- If we run one algorithm after the other, the complexity is added
- However, if algorithm 1 is $O(n^2)$ and algorithm 2 is O(n) then $O(n^2+n)$ can be more parsimoniously described as $O(n^2)$

$$O(f(n) \times g(n)) = O(f(n)) \times O(g(n))$$

• If algorithm 1 is $O(n^2)$ and algorithm 2 is O(n) and one algorithm is run inside the other as a loop then the Big O Notation is $O(n^3)$

Big-O Examples

7n - 2 is O(n)

- need c > 0 and $n_0 \ge 1$
- such that $7n-2 \le cn$ for $n \ge n_0$
- this is true for c=9 and $n_0=1$

$3n^3 + 20n^2 + 5$ is $O(n^3)$

- need c>0 and $n_0\geq 1$ such that $3n^3+20n^2+5\leq cn^3$ for $n\geq n_0$
- this is true for c=28 and $n_0=1$

$3 \log n + 5$ is $O(\log n)$

- need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \log n$ for $n \ge n_0$
- this is true for c=8 and $n_0=2$
 - Note that $\log 2 = \log_2 2 = 1$ so n_0 has to be 2 before $\log n$ exceeds 1

Keeping it simple

- $f(n) = 10n + 25n^2$ is $O(n^2)$
- $f(n) = 20n \log n + 5n \text{ is } O(n \log n)$
- $f(n) = 12n \log n + 0.05n^2$ is $O(n^2)$
- $f(n) = n^{\frac{1}{2}} + 3n \log n$ is $O(n \log n)$

• Note. for $k \ge 2$, $O(n^{k+1}) \ge O(n^k) \ge O(n \log n) \ge O(n) \ge O(n^{\frac{1}{2}}) \ge O(\log n) \ge O(1)$

Getting Big O of a program

- When trying to determine the Big O Notation of a computer program, look at the loop structure
- Statements that are run the same number of times regardless of the size of the problem are just constants
- All you're interested in is how increasing the size of n increases the number of iterations of the loops
- Increasing the size of n will only have an effect is there a loop structure which depends on n
 - A single loop running n times indicates O(n)
 - A nested loop each running n times indicates $O(n^2)$

Picturing Efficiency

Consider this algorithm:

```
for( int i = 1; i <= n; i++) {
    sum = sum + i;
}

1 2 3 n
```

- The work done by the body of the loop (i.e. sum = sum + i) requires a constant amount of time O(1)
- This body is executed n times
- Therefore, the algorithm is O(n)

Picturing Efficiency

```
X X X
for( int i = 1; i <= n; i++) {
  for( int j = 1; j <= n; j++) {
     sum sum + i;
```

- n steps of work are repeated n times
- An $O(n^2)$ algorithm

Shaking hands at a party

- If there are n people at the party, we will need to shake n-1 hands
- The next person will have to shake n-2 hands (they don't have to shake your hand again)
- The last person has to shake 0 hands because everybody has already shaken his hand
- Total number of handshakes is

$$(n-1) + (n-2) + \dots + 0 = \frac{n \times (n-1)}{2} = \frac{1}{2}n^2 - \frac{1}{2}n$$

• Using our usual methodology we can show that this is $O(n^2)$

Compute average of array

```
double average(int[] array) {
   double sum = 0;
   int n = array.length;
   for (int i = 0; i < n; i++) {
      sum += array[i];
   return sum / n;
```

• One loop running n times = O(n)

Nested Loops

```
double sum = 0;
for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
        sum += 5;
    }
}</pre>
```

• Nested for loops each running n times = $O(n^2)$ steps

Loop running constant number of times

 Suppose that your implementation of a particular algorithm appears in Java as follows:

- Two loops running to n, third loop runs a constant number of times is $O(n^2)$
 - It is $O(n \times n \times 10) = O(10n^2) = O(n^2)$

How about this loop?

```
for(int i = 0; i < 10; i++) {
    for(int j = 0; j < 20; j++) {
        counter++;
    }
}</pre>
```

- Analyze the complexity of the above algorithm
- Notice that the loops do not depend on the size of n
- ullet No matter what size n is, the loops will run the same number of times
- Therefore, the running time will always be the same
- The order of the above algorithm is O(1)

Exam Question

• A function involves the following number of steps where n is the size of the problem:

$$f(n) = \log n + \frac{n}{2} + 5$$

• State the Big-O complexity of the function and prove that this is the case using the mathematical definition.

Exam Question

$$f(n) = \log n + \frac{n}{2} + 5$$

- We set g(n) = n since n is the biggest term
- Let c = 7 since there are 7 units in the function
- We must show $c \times g(n) \ge f(n)$ above some threshold n_0
- Thus, $7n = n + n + 5n \ge \log n + \frac{n}{2} + 5$ as long as $n \ge 1$
- That is f(n) is O(n)

Timing Programs

- You can check how long your program has been running
- There is a System method that allows us to store the current value of the system clock
- By comparing two different system clock values we can figure out how long the program has been running

```
long start = System.currentTimeMillis();
long elapsed = System.currentTimeMillis() - start;
```

