Kontni automati nadaljevanje

1. Brez grafične ponazoritve zapišite tabelo prehodov (δ) za deterministični končni avtomat iz 14. naloge 1. vaj.

$$p = {123456} \\ m = 6$$

2	0	0	0	1	1	1	1	2	2	2	,
l	٨	b	þ	٨	b	þ	þ	D	a	b	
k	21	21	0	32	³ 2	1	0	43	2	43	٠٠,
p[2]· l	Λ	b	þ	٥٥	ab	ab	ab	aaa	aaa	aab	
											•

def Construct J(p): m = 1p1 for 2 = 0 .. m do for l∈ Z do k = min (m+1, 2+2) repeat k = k-1until p[2]. l vsebuje p[k] kot priporo J[2, e] = k

	2	0	0	0	1	1	1	1	2	2	2	,
	l	٨	b	b	٨	b	þ	þ	٨	a	b	
	k	21	21	0	32	³ 2	1	0	43	2	43	٠٠,
	p[2]· e	٨	b	þ	٥٥	ab	ab	ab	aaa	aaa	aab	
~	p[k]	٨	a	٤	۵۵	oa	a	٤	aab	M	aab	• • •
	J[2,6]	1		0	2			0		2	3	
	Carry based of											

Na koncu dobimo za vsako stanje in znak abecede Tyredrost v J-tabeli.

drugi a je vedno pripona pripona prvemu, zato od citamo K

2. Dan imamo naslednji nedeterminističen končni avtomat

Poiščite ustrezen determinističen končni avtomat.

Izpisemo si J-tabelo za automat:

_ J	a	b
0	1	0
1	2	/
2	/	1,2
`		problen

Zapišeš vse neprazne podwrožice stary, hi jih je 2121-1. Za stanje 21/2 naredis unijo stanj 21 in 22 glede na stolpce (za vsak m! znak). Napišeš samo dosegljiva stanja, t.j. ta ki se pojavijo v tabeli.

_ 5	a	b
0	1	0
1	2	/
2	/	1,2
1,2	1,2	0

Konava stanja se ohranjo, zato to inel tudi vovi kA F= 220, 213.

g Morali smo dodat sauro ero stanje. Dobimo :

3. Poiščite determinističen končni avtomat za nedeterminističen končni avtomat:

7	\Rightarrow
= = 221, 823	
2 = {a, b }	

		-
_ ర్	٥	Ь
O	1,2	9
	0	/
2	/	3
3	2	1,3
1,2	0	3
0,3	1,2	0,1,3
1,3	0,2	1,3
0,2	1,2	0,3
0,1,3	0,1,2	0,1,3
0,1,2	0,1,2	0,3

tgrdi se tudi, da po kreaciji nove J-tabele kateri od starih stanj odpade, saj vi poti varj - 21 v tem primeru. 4. Dana imamo regularna izraza

$$r_1 = a^* + b^*$$
 in
$$r_2 = ab^* + ba^* + b^*a + (a^*b)^*.$$

Poiščite besede, ki

(a) spadajo v $L(r_1)$ toda ne v $L(r_2)$.

- (b) spadajo v $L(r_2)$ toda ne v $L(r_1)$.
- (c) spadajo v oba, $L(r_1)$ in $L(r_2)$.
- (d) ne spadajo niti v $L(r_1)$ niti v $L(r_2).$

b) Katere iz L(12) re razume 1,2.

c) $L(r_1) \cap L(r_2) = \{a, b, \epsilon, bb, bbb, ... \}$ = $\{a^*, b^*, \epsilon \}$ a) T.j. L(G)\L(G)
• L(G) = {\xi}, a, b, aa, bb, aaa, bbb,...}

poljubre wroge a ali b

· L(r₂) = ξε, α, αb, αbb,..., b, ba, baa,..., bba, bbb α,..., aab, αααb,..., bb, bbb,...ξ

Katere besede torej "rz" ne razume? Poljubro mrogo a toda veĉ (ali enako) 2-krat:

vsaj 1 b

d) Katerih besed ne razumeta ota?.

• r² ne razume veckratnih porovitev a (samo a)

• r³ ne razume besed z a IN b ⇒ vedro a in b skupaj

⇒ {ab, axb,..., abb,..., aba, abaa,... aba, abba,...,

(ab), αxb,..., abb,..., aba, abaa,... aba, abba,...,
 ba, ba(a,... bb(a,... baba, baaba,... babba,...,
 bbaba,... babaa,... ξ
 3 aba abaa abba baba baaba babba

= \(\frac{2}{3} aba, \text{ aba, ..., baba, baaba, ..., babba, ..., baba, baaba, ..., babaa, ..., \(\frac{2}{3} \)

5. Poiščite regularen izraz, ki ustreza determinističnemu končnemu avtomatu

12 DKA dobino regulatorni irraz preko naslednje formule:

$$L(p, q, k+1) = L(p, q, k) \cup L(p, k+1, k) \cup L(k+1, k+1, k)^* L(k+1, q, k)$$

Velja L(p, 2, j), kjer p, 2 ∈ 2 in j ≥ 0. To je mn.

vseh besed, ki omogozajo, da naŝ automat pride iz stanja p v g. brez da bi pri tem uporabili stanje većje od 1. Primer direktne povezave:

$$L(p, q, 0) \Rightarrow P$$

Osrovna ideja: predp. da je za nek k^{70} L(p,q,k) regulatorni jezik za $tp,q \in Q$. Vprašamo se kako pridemo do $L(p,q,k+1)^{n}$? \Leftrightarrow Kako sestavimo tako besedo v tem jeziku? Imamo 2 možnosti:

1. Beseda ne gre preko k+1, zato je ta v L(p,2,k).

2. Beseda gre iz p v k+1, ki je vajvišje stanje na poti. Lahko da se bo k+1 stanje večkrat vrnilo vase, ampak uttimativno pride na koncu do g iz k+1.

To pojasnjuje zgomija enazba.

Naloga: 20 = 1, 2 = 1 ali 2, 1 = 3

 $r(1,1,3) = r(1,1,2) + r(1,3,2) r(3,3,2) r(3,1,2) \Rightarrow r(M) = r(1,1,3) + r(1,2,3)$ iznacurano po formul

$$r(1,1,2) = r(1,1,1) + r(1,2,1)r(2,2,1)*r(2,1,1)$$

$$= r(1,1,1) + r(1,2,1)r(2,2,1)*$$

$$= \alpha*\alpha = \alpha*$$

• • • 722 • •

6. Poiščite regularen izraz, ki ustreza determinističnemu končnemu avtomatu

7. Poiščite regularen izraz, ki ustreza determinističnemu končnemu avtomatu

Neformalen (praktičen) postopek: Ta tkončno stanje obravnavamo tmožno pot od začetnega stanja. (20=1)

F=2: bb^* F=4: iwa dve wozwi poti:

1. a

2. bb^*cd Pezultat je unija vseh: $r(M) = bb^* + a + bb^*cd$

! ⇒ izbriŝemo ero konĉno stanje > obravravamo poti, drugega konĉnega stanja do začetnega.

· Vzporedne poti: +

· Zaporedne poti: * (množenje)

· Cikli/zanke: *

$$\Gamma_2 = (00)^* (1+01) ((0+1)1 + 0(0+1) + (00)^* (1+01))^*$$

- 8. Zapišite π tabelo za naslednje vzorce (besede):
 - (a) $p_1 = \mathsf{ABCDABEABF}$
 - (b) $p_2 = \mathsf{ABCDCABFABC}$
 - (c) $p_3 = \mathsf{ABABABAB}$

			_								
a)	Pı	A	B	С	D	A	В	E	A	В	F
	TT(P1)	0	0	0	0	1	2	0	1	2	0

- b) P₂ A B C D C A B F A B C T(P₂) 0 0 0 0 0 1 2 0 1 2 3
- T(P₃) 0 0 1 2 3 4 5 6