Q1 Problem 13.5.4 Let a > 1 be an integer. Prove for any positive integers n, d that d divides n if and only if $a^d - 1$ divides $a^n - 1$.

Proof. If d divides n, i.e. n = dq for some positive integer q, then

$$a^{n} - 1 = a^{dq} - 1 = (a^{d} - 1)((a^{d})^{q-1} + (a^{d})^{q-2} + \dots + a^{d} + 1).$$

Evidently, $a^d - 1$ divides $a^n - 1$.

Now assume $a^d - 1$ divides $a^n - 1$. Since a > 1 and n, d are positive, then $a^d \le a^n$ implies $d \le n$. Euclidean division gives us n = dq + r for some nonnegative integers q, r, with r < d. We write

$$a^{n} - 1 = a^{dq+r} - 1$$

$$= (a^{dq+r} - a^{r}) + (a^{r} - 1)$$

$$= a^{r}(a^{dq} - 1) + (a^{r} - 1)$$

$$= a^{r}(a^{d} - 1) ((a^{d})^{q-1} + (a^{d})^{q-2} + \cdots + a^{d} + 1) + (a^{r} - 1).$$

Therefore, $a^d - 1$ divides

$$(a^{n}-1) - a^{r}(a^{d}-1) ((a^{d})^{q-1} + (a^{d})^{q-2} + \cdots + a^{d} + 1) = a^{r} - 1,$$

implying that either $a^d - 1 \le a^r - 1$ or $a^r - 1 = 0$. The former cannot be true, as it would imply $d \le r$, but we know r < d. Therefore, we must have $a^r - 1 = 0$, so r = 0. Hence, n = dq, meaning d divides n.

Conclude in particular that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.

Proof. If $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$, then $\mathbb{F}_{p^d}^{\times}$ is a subgroup of $\mathbb{F}_{p^n}^{\times}$ under multiplication. By Lagrange's theorem, $|\mathbb{F}_{p^d}^{\times}| = p^d - 1$ divides $|\mathbb{F}_{p^n}^{\times}| = p^n - 1$, and the previous result implies d divides n.

If d divides n, then p^d-1 divides p^n-1 , by the previous result. Moreover, it is essentially the same proof to show $x^{p^d-1}-1$ divides $x^{p^n-1}-1$ in any polynomial field. We deduce that $x^{p^d}-x$ divides $x^{p^n}-x$, telling us that $x^{p^d}-x$ splits completely in \mathbb{F}_{p^n} , the splitting field for $x^{p^n}-x$. Since \mathbb{F}_{p^d} is the unique splitting field of $x^{p^d}-x$ contained in $\overline{\mathbb{F}_p}$, then we must, therefore, have $\mathbb{F}_{p^d}\subseteq \mathbb{F}_{p^n}$.

Q2 Problem 13.5.6 Prove that $x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{n^n}^{\times}} (x - \alpha)$.

Proof. We have seen that $\mathbb{F}_{p^n} \subseteq \overline{\mathbb{F}_p}$ is precisely the set of p^n distinct roots of

$$x^{p^n} - x = x(x^{p^n - 1} - 1)$$

in $\overline{\mathbb{F}_p}$. So $\mathbb{F}_{p^n}^{\times}$ is a set of p^n-1 distinct roots of $x^{p^n-1}-1$ in $\overline{\mathbb{F}_p}$. Since $x^{p^n-1}-1$ has at most p^n-1 roots in $\overline{\mathbb{F}_p}$, counting multiplicity, and we know of at least p^n-1 distinct roots, then all roots must be simple. Since $\mathbb{F}_{p^n}^{\times}$ is precisely the set of p^n-1 distinct simple roots, then $x^{p^n-1}-1$ is separable with decomposition

$$x^{p^n-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x - \alpha).$$

Conclude that $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$ so the product of nonzero elements of finite fields is +1 if p = 2 and -1 if p is odd.

We evaluate the previous result at x = 0.

$$0^{p^{n}-1} - 1 = \prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} (0 - \alpha)$$

$$-1 = \prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} (-1)\alpha$$

$$-1 = (-1)^{p^{n}-1} \prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} \alpha$$

$$(-1)^{p^{n}} = (-1)^{2(p^{n}-1)} \prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} \alpha$$

$$(-1)^{p^{n}} = \prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}} \alpha$$

This value of the left-hand side is +1 if p=2, and -1 if p is odd.

For p odd and n = 1 derive Wilson's theorem: $(p - 1)! \equiv -1 \pmod{p}$.

In this case, the above result is $\prod_{\alpha \in \mathbb{F}_p} \alpha = -1$. Since the elements of $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ are the integers $0, 1, \ldots, p-1$, then $(p-1)! = \prod_{\alpha \in \mathbb{F}_p} \alpha = -1$ in \mathbb{F}_p . And equality in \mathbb{F}_p is precisely equivalence of integers modulo p, so this means $(p-1)! \equiv -1 \pmod{p}$.

Q3 Let F be a field and K be a splitting field of $f(x) \in F[x]$. Show that if f(x) is separable then K/F is separable.

Proof. Since f(x) splits completely in K[x], then $f(x) = a(x - \alpha_1) \cdots (x - \alpha_n)$ for some $a \in F^{\times}$ and $\alpha_1, \ldots, \alpha_n \in K$. Let $S = \{\alpha_1, \ldots, \alpha_n\}$ be the set of roots of f(x) (ignoring multiplicity, i.e., not a multiset), then f(x) splits completely over $F(S) \subseteq K$. And since K is a splitting field for f(x), then in fact F(S) = K. For each $\alpha \in S$, $f(\alpha) = 0$, so its minimal polynomial $m_{\alpha,F}(x) \in F[x]$ divides f(x). Since f(x) is separable, then $m_{\alpha,F}(x)$ must also be separable, otherwise $m_{\alpha,F}(x)$ would have some multiple roots. Therefore, α is separable over F, implying every element of S is separable over F. And since K = F(S), we conclude that K/F is separable.

Q4 Show that $\mathbb{F}_2[x]/(x^3+x+1) \cong \mathbb{F}_2[y]/(y^3+y^2+1)$ and find an explicit isomorphism.

Proof. We define a ring homomorphism

$$\varphi : \mathbb{F}_2[x] \to \mathbb{F}_2[y]$$

$$p(x) \mapsto p(y+1)$$

which is the evaluation of p(x) at $y+1 \in \mathbb{F}_2[y]$. We can see that φ is a ring isomorphism, with inverse given by the evaluation map $p(y) \mapsto p(x+1)$. Let $I = (x^3 + x + 1)$ and $J = (y^3 + y^2 + 1)$ denote the ideals in their respective polynomial rings. Composition of φ with the natural projection

$$\pi: \mathbb{F}_2[y] \to \mathbb{F}_2[y]/J$$

$$p(y) \mapsto \overline{p(y)}$$

yields a surjective ring homomorphism

$$\sigma = \pi \circ \varphi : \mathbb{F}_2[x] \to \mathbb{F}_2[y]/J.$$

From the first isomorphism theorem, we have

$$\mathbb{F}_2[x]/\ker\sigma\cong\mathbb{F}_2[y]/J$$
.

It remains to prove that $\ker \sigma = I$. By definition, $\ker \sigma$ is the set of elements $p(x) \in \mathbb{F}_2[x]$ such that $\varphi(p(x)) \in \ker \pi = J$. We compute

$$\varphi(x^3 + x + 1) = (y + 1)^3 + (y + 1) + 1$$

$$= (y + 1)(y^2 + 1) + y$$

$$= (y^3 + y + y^2 + 1) + y$$

$$= y^3 + y^2 + 1.$$

For any $p(x) \in I$, there is some $q(x) \in \mathbb{F}_2[x]$ such that $p(x) = q(x)(x^3 + x + 1)$, so

$$\varphi(p(x)) = \varphi(q(x))\varphi(x^3 + x + 1) = q(y+1)(y^3 + y^2 + 1) \in J.$$

Hence, $\varphi(I) \subseteq J$, so $I \subseteq \varphi^{-1}(J)$. And since $\varphi^{-1}(y^3 + y^2 + 1) = x^3 + x + 1$, then by the same argument, $\varphi^{-1}(J) \subseteq I$. Therefore, we obtain the equality $\ker \sigma = \varphi^{-1}(J) = I$.

Q5 Let F be a field of characteristic p. Show that if F is perfect, then $F = F^p$.

Proof. We will prove the contrapositive. Suppose $F \neq F^p$, and let $a \in F$ such that a is not a pth power in F. Consider the polynomial $x^p - a \in F[x]$. If $\alpha \in \overline{F}$ is a root of $x^p - a$, then $\alpha \notin F$ and $\alpha^p = a$. So in $\overline{F}[x]$,

$$x^p - a = x^p - \alpha^p = (x - \alpha)^p.$$

Therefore, α is the unique root of x^p-a in \overline{F} (equivalent to saying the Frobenius endomorphism on \overline{F} is injective). Since α is a root of x^p-a , then $m_{\alpha,F}(x) \mid (x-\alpha)^p$, so $m_{\alpha,F}(x) = (x-\alpha)^n$ for some $n \geq 1$. Since $\alpha \notin F$, then we must have $n \geq 2$, implying that α is a multiple root of $m_{\alpha,F}(x)$. In particular, $m_{\alpha,F}(x)$ is not separable, so α is algebraic but not separable over F. Therefore, $F(\alpha)/F$ is a finite field extension which is not separable, i.e., F is not perfect.