PLACMA SHEATH AND OBJECTS IN PLACMA

This object could be a probe, dust or surface of space craft.

- Electrons are fast, they will attach to the
 Surface and will make the object Ve charged.
- The negatively charged object now has lower potential w.r.t. the background placma. Hence inward electric field.
- The field will atteract ions in the vicinity and repel the electrons. (mostly). The electrons which have higher velocity still can reach the surface.

Eventually, there will be a cloud of ions around the object to shield the electric field.

IN SUMMARY, THE DEBYE SPHERE IS BEING FORMED, WHICH IS A140 KNOWN AS DEBYE SHEATH.

NOTE; THE CHARGING OF THE SPHERE WILL
DEPEND ON THE SURFACE CONDITIONS, AND THE
TYPE OF THE MATERIAL (IR. CONDUCTIVE INSULATOR)
APART FROM TRESE, THE GEOMETRY IS ALSO
IMPORTANT.

DENGITY DISTRIBUTION AROUND THE OBJECT

- @ The presheath electric field is responsible for the acceleration of ions to Bohm Velocity (VB)
- Bohm velocity is considered to be one of the important criteria to develop ion sheath and the spatial point points the sheath edge.

$$\frac{1}{2}mV_3^2 = q\Delta\phi$$

$$=) \Delta\phi = 0.5\left(\frac{kT_e}{q}\right)$$

A COMPLETE CHARGING SCENARIO

POTENTIAL OF THE OBJECT

$$\frac{dQ}{dt} = C \frac{dV}{dt}$$

In steady state, dQ ≈0

$$\sum_{i,e} I_{i,e} \approx 0$$

The stationary state in charging is defined or or referred to the point when the charge of the object does not change anymore. i.e. there is a balance between Ie and Ii.

PEL POTENTIAL

LARGE OBJECT (PLANAR SHEATH)

LARGE OBJECT \longrightarrow γ_o (radius of the object) $>> \lambda_D$

CURRENT TO THE SURFACE

$$T_i = j_i \cdot A$$

Considering, Maxwellian distr.

$$f(v) dv = 4\pi u^2 \left(\frac{m}{2\pi \kappa_T}\right)^{3/2} \ell \frac{mv^2}{2\kappa r_{dV}}$$

Electron

collecting surface.

This term decides

how much electron is capable of overcoming the sheath potential.

Ie =
$$-\frac{1}{4}$$
 A e $n_e \sqrt{\frac{8 \text{ KTe}}{\pi m_e}} e^{-e\phi/\text{KTe}}$

For love, all imoning ions to the surface will be absorbed by the surface.

FOR A STATIONARY SITUATION!

$$\sum_{j} I_{j} = 0$$

Ie + I; = 0 USING EXPRESSIONS FOR

$$=) \quad \phi_{FL} = -\frac{\kappa T_e}{e} \ln \frac{\langle v_e \rangle}{\langle v_i \rangle} + \phi_o$$
Teference potential

Small factor $\Rightarrow \Rightarrow = -\frac{\kappa T_e}{20} m \left(\frac{T_e m_i}{T_{ij}} \right)$ NOTE: It only comes for SPACE PLASMA DTHERWISE

PFL ~- Te

For example, In Hydrogen plaçma PFL ≈ -3.75 KTE For COLD IONS: (Te>>Ti)

$$\Phi_{FL} = -\frac{KTe}{2e} \left[ln \left(\frac{m'_i}{2\pi m_e} \right) + l \right] + \phi_o$$

$$-\frac{KTe}{2e}$$

responsible for ion acceleration to Bohm Vel.

IRVING LANGMUIR (1881-1957)

LANGMUIR PROBES are one of the most used and fundamental diagnostics for any plasma environments.

WHAT ARE LANGMUIR PROBES ??

LANGMUIR Probes are thin metalic bodies with specific shapes that collects electrons and ions to provide a diagnostics of the plasma.

WHAT ARE THE MOST COMMONLY USED SHAPES?

1. Cylindrical 2. Planar 3. Spherical

LANGMUIR PROBES ARE INSERTED INTO
PLASMA AND THEY ARE CONNECTED TO
A POTENTIAL SOURCE WHICH ALLOWS THEM TO
COLLECT CHARGED PARTICLES WITH DIFFERENT ENERGIES.

