Optimal, Truthful, and Private Securities Lending

Emily Diana, Michael Kearns, Seth Neel, Aaron Roth

University of Pennsylvania ediana@wharton.upenn.edu

December 13, 2019

Overview

- Motivation
- 2 Model
- Results
 - Optimal Allocation Rule
 - Dominant-Strategy Truthfulness
 - Private Auction Formulation
- Summary

Motivation

Motivated by challenges associated with securities lending, the mechanism underlying short selling of stocks in financial markets

Motivation

Motivated by challenges associated with securities lending, the mechanism underlying short selling of stocks in financial markets

 Consider allocation of a scarce commodity in settings in which privacy concerns or demand uncertainty may be in conflict with truthful reporting

Motivation

Motivated by challenges associated with securities lending, the mechanism underlying short selling of stocks in financial markets

- Consider allocation of a scarce commodity in settings in which privacy concerns or demand uncertainty may be in conflict with truthful reporting
- Want to construct a privacy protecting allocation mechanism that motivates truthful reporting without sacrificing too much utility

ullet Lender distributes up to V shares to n clients over time horizon T

- ullet Lender distributes up to V shares to n clients over time horizon T
- At each time t, client i draws from a joint distribution over usages and requests, $Q_{it}(u_{it}, r_{it})$, but only request is visible to lender

- ullet Lender distributes up to V shares to n clients over time horizon T
- At each time t, client i draws from a joint distribution over usages and requests, $Q_{it}(u_{it}, r_{it})$, but only request is visible to lender
- Lender chooses share allocation $S_t = \{s_{it}\}$ s.t. $\sum_i s_{it} \leq V$

- ullet Lender distributes up to V shares to n clients over time horizon T
- At each time t, client i draws from a joint distribution over usages and requests, $Q_{it}(u_{it}, r_{it})$, but only request is visible to lender
- Lender chooses share allocation $S_t = \{s_{it}\}$ s.t. $\sum_i s_{it} \leq V$
- Client's payoff is number of shares actually used, and lender's utility for allocation rule A is:

$$v(A) = \sum_{i} \mathbb{E}_{Q_{it},A}[\min(A(r_1,\ldots,r_n;Q_1,\ldots,Q_n)_i,u_{it})]$$

- ullet Lender distributes up to V shares to n clients over time horizon T
- At each time t, client i draws from a joint distribution over usages and requests, $Q_{it}(u_{it}, r_{it})$, but only request is visible to lender
- Lender chooses share allocation $S_t = \{s_{it}\}$ s.t. $\sum_i s_{it} \leq V$
- Client's payoff is number of shares actually used, and lender's utility for allocation rule A is:

$$v(A) = \sum_{i} \mathbb{E}_{Q_{it},A}[\min(A(r_1,\ldots,r_n;Q_1,\ldots,Q_n)_i,u_{it})]$$

Table: Sample Truthful Distribution

r _{it}	0	1	2
0	1/3	0	0
1	0	1 3	0
2	0	0	1/3

Table: Sample Untruthful Distribution

r _{it}	0	1	2
0	<u>1</u>	$\frac{1}{9}$	$\frac{1}{9}$
1	0	$\frac{1}{6}$	$\frac{1}{6}$
2	0	0	_{3}

Optimal Allocation Rule

Given knowledge of Q_i , the lender can compute the posterior distribution $Q_i(u_i|r_i)$ on the true demand u_i given r_i , via Bayes' rule:

$$Q_{i}(u_{i}|r_{i}) = \frac{Q_{i}(r_{i}|u_{i})U_{i}(u_{i})}{\sum_{u'} Q(r_{i}|u')U_{i}(u')}$$

Optimal Allocation Rule

Given knowledge of Q_i , the lender can compute the posterior distribution $Q_i(u_i|r_i)$ on the true demand u_i given r_i , via Bayes' rule:

$$Q_{i}(u_{i}|r_{i}) = \frac{Q_{i}(r_{i}|u_{i})U_{i}(u_{i})}{\sum_{u'} Q(r_{i}|u')U_{i}(u')}$$

Algorithm 2 Greedy Allocation Rule

```
Input: n, \{Q_i(u_i|r_i)\}_{i\in[n]}, V
Output: feasible allocation S = \{s_i\}.

procedure \text{GREEDY}(n, \{Q_i(u_i|r_i)\}_{i\in[n]}, V)
Initialize s_i = 0, \ \forall i. \triangleright number of shares allocated to client i
for t = 1 \dots V do

Let i^* = \operatorname{argmax}_i T_i(s_i + 1|r_i)
update s_i \leftarrow s_i + 1
```

Optimal Allocation Rule

Theorem: The allocation returned by *Greedy*, *S*, maximizes the expected payoff for the lender:

$$S \in rg \max_{S: \sum_i s_i = V} v(S) = \sum_i \mathbb{E}_{Q_i(u|r_i)}[\min(s_i, u_i)]$$

Dominant-Strategy Truthfulness

Given that the lender is solving the allocation problem optimally for the reported Q distributions, truth telling is a dominant strategy:

Theorem: Fix a set of choices Q_{-i} and reports r_{-i} for all clients other than i, and a realization of client i's usage $u_i \sim U_i$. Let Q_i^T denote the truthful strategy $Q_i^T(r_i|u_i) = \mathbf{1}_{r_i}$, and let $Q_i(r_i|u_i)$ denote any other strategy. Let A denote the lender's optimal allocation. Then:

$$v_A^i(Q_i) \leq v_A^i(Q_i^T)$$

Dominant-Strategy Truthfulness

Auction Formulation

 Optimal allocation policy can be implemented as a virtual ascending auction among clients

Auction Formulation

- Optimal allocation policy can be implemented as a virtual ascending auction among clients
- Bidders (clients) have decreasing marginal valuation functions for up to *U* units of each good (stock)

Auction Rule

return S

Algorithm 3 Auction Rule

```
Input: \alpha > 0, n, \{v_i\}_{i \in [n]}, U, V
                                             \triangleright valuations v_i: [U] \rightarrow [0,1] satisfy DMR property
  Output: feasible allocation S.
procedure Auction(\alpha, U, V)
                                                             \triangleright goods currently allocated to player i
    Initialize array S of length n, S[i] \leftarrow 0 \forall i
    Initialize cB \leftarrow n, T_B \leftarrow 0
                                                                   bids in current round, total bids
    Set the price p=0, m=1
                                                   \triangleright m is index of good currently being allocated
    while cB \neq 0 do
                                                       > terminate if there are 0 bids in the round
         cB \leftarrow 0
         for i = 1 \dots n do
              Let \Delta_i = v_i(S[i] + 1) - v_i(S[i])

    ▶ marginal utility of additional good

             if \Delta_i \geq p then
                  cB \leftarrow cB + 1, S[i] \leftarrow S[i] + 1, m \leftarrow (m+1) \pmod{V}
                  S[i_m] \leftarrow S[i_m] - 1
                                                                         \triangleright i_m is player holding good m
                  if T_B \pmod{V} = 0 then
                                                                       \triangleright increment price every V bids
                      p \leftarrow p + \alpha
```

• We modify auction to guarantee joint differential privacy by

- We modify auction to guarantee joint differential privacy by
 - Reporting number of bids placed so far with a differentially private estimator

- We modify auction to guarantee joint differential privacy by
 - Reporting number of bids placed so far with a differentially private estimator
 - Allowing the algorithm to stop early

- We modify auction to guarantee joint differential privacy by
 - Reporting number of bids placed so far with a differentially private estimator
 - Allowing the algorithm to stop early
 - 3 Running the auction with V-E shares, where E corresponds to error of differentially private bid counter

- We modify auction to guarantee joint differential privacy by
 - Reporting number of bids placed so far with a differentially private estimator
 - Allowing the algorithm to stop early
 - 3 Running the auction with V-E shares, where E corresponds to error of differentially private bid counter
- Then, truthful reporting is still an approximately dominant strategy

Approximate Optimality and Truthfulness

Finally, if clients are allowed to adapt strategies with time, joint differential privacy enforces truthfulness as an approximately dominant strategy and guarantees near optimality

Theorem: Let A be a private auction with appropriate values of U,V,ϵ and ρ such that A is $(\epsilon',\beta/T)$ -JDP with $\epsilon'=\tilde{O}(\epsilon/\sqrt{T})$ and outputs S such that $E[V(S)] \geq (1-\rho)OPT_V - \rho$. Take β,ρ such that $\sqrt{\beta+(1-\beta)\rho} \leq \beta^2/T$. Then for a $(1-\beta)$ fraction of the n clients i, let L^t_{i*} denote the truthful strategies, and let L^t_i be any other set of strategies. Then a private greedy allocation rule for the private auction satisfies:

$$v_i(L_i^1,\ldots,L_i^n) \leq e^{2\epsilon}v_i(L_{i*}^1,\ldots,L_{i*}^n) + 2\beta UT + e^{\epsilon}\frac{\beta^2}{1-\beta^2/T}$$

$$v_A(L_{i*}^t) \geq (1-\rho)OPT_V - \rho T$$
,

where OPT_V denotes the lender's optimal utility.

Summary

- Without privacy constraints, we construct an optimal greedy allocation for which truthfulness is a dominant strategy
- With privacy constraints (joint differential privacy) our allocation mechanism is still nearly optimal and truthfulness is still an approximately dominant strategy

Selected References

- Ekkehart Boehmer and Juan Wu (2013), Short selling and the price discovery process, *Review of Financial Studies*.
- Hubert Chan, Elaine Shi, and Dawn Song (2011), Private and continual release of statistics, ACM Trans. Inf. Syst. Secur.
- Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan (2010), Boosting and differential privacy, Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS 10 51-60.
- Kuzman Ganchev, Michael Kearns, Yuriy Nevmyvaka, and Jennifer Wortman Vaughan (2010), Censored Exploration and the Dark Pool Problem, *Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence* 185–194.
- Arpita Ghosh and Aaron Roth (2015), Selling privacy at auction, *Games and Economic Behavior* 91:334–346.
- Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven Wu (2014), Private matchings and allocations, Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing 21–30.
- Michael Kearns, Mallesh Pai, Aaron Roth, and Jonathan Ullman (2014), Mechanism design in large games: Incentives and privacy, *Proceedings of the 5th conference on Innovations in theoretical computer science* 403–410.
- aehoon Lee and Sang-gyung Jun, After-hours block trading, short sales, and information leakage: Evidence from Korea, *The Journal of Applied Business Research* 33(2).
- lexander S, Kelso and Vincent Crawford (1982), Job matching, coalition formation, and gross substitutes, *Econometrica* 50(6):1483–1504.
- Hanwen Sun and Shuxing Yin (2017), Information leakage in family firms: Evidence from short selling around insider sales, *The Journal Corporate Finance.*