Statistiques

Généralités :

- 1. Population : univers statistique (représenté par Ω) : ensembles étudiés par la statistique (45 clowns ont participé à une étude sur leur âge et leur taille) -> des clowns
- 2. Individus : unités statistiques (représentés par ω) : éléments des ensembles (45 clowns ont participé à une étude sur leur âge et leur taille) -> 45
- 3. Recensement : étude de tous les individus d'une population finie
- 4. Sondage: observation d'une partie de la population
- 5. Echantillon (représenter par E): le sous ensemble étudié, lors d'un sondage ($E \subset \Omega$)
- 6. Observations : nbr d'unités statistiques x nbr de variables (45 clowns ont participé à une étude sur leur âge et leur taille) -> 2 x 45 = 90
- 7. Variables, caractères : ensemble de caractéristiques décrivant les individus d'une population. (45 clowns ont participé à une étude sur leur âge et leur taille) -> âge, taille

Types de variables statistiques :

- 1. Quantitatives (nombres, chiffres, etc...) -> numériques **ATTENTION** (date de naissance)
 - Continues, assimilées : mesure, quantité (poids, taille, R = nombres réels)
 - Discrètes: comptage (années, N = entiers naturels, 0 1 2 3 4 5 6 ...)
- 2. Qualitatives (mots, expressions, etc...)
 - Nominale : aucun ordre (nom, prénom, code postal, adresse, tél, email ...)
 - Ordinale : qui peut se classer (un peu, bcp, moyen, entre 400 et 500, plus de 500, moins de 400)

Ex: Votre genre de BD préféré: (a) humour, (b), (c), (d), (e), (f) classer de 1-6 (1=préféré)

- Préférence : (a) rang attribué aux BD d'humour, modalités : 1/2/3/4/5/6, type : numérique (b)... (c)... (d)...

Diagramme en bâtons (variable quantitative/numérique discrète)

- 1. Tableau des scores bruts (tous les chiffres mélangés sous forme de tableau)
- 2. Tableau des scores ordonnés (mettre les chiffres dans l'ordre)

- ⇒ J = simplement les données
- ⇒ Xj = intensité de la douleur
- \Rightarrow n = la somme des effectifs (72)
- ⇒ f = fréquence
- ⇒ nj = effectifs (nbr de fois)

4	Α	В	C	D	E	F	G	Н	1	J
1	j	1	2	3	4	5	6	7	8	9
2	Xj	2	3	4	5	6	7	8	9	10
3	nj	1	10	10	6	13	19	10	2	1
4	fj	1/72	10/72	10/72	6/72	13/72	19/72	10/72	2/72	1/72
5	fj (%)	1,4	13,9	13,9	8,3	18,1	26.4	13.9	2,8	1,4

0.0550

0.0055

0.0155

[90: 100]

0.2650

0.0265

[80: 90]

0.1400

0.0140

4. Jamovi: entrer les données -> analyse -> exploration -> descriptives -> sélectionner la variable -> cocher Frequency tables -> cocher N et Missing

Histogramme (variable quantitative continue/assimilée)

1. Estimation du nbr de classes K

$$K = \lceil \log_2 n \rceil + 1 = \lceil \log_2 200 \rceil + 1 = (7.644) + 1 = 8 + 1 = 9$$

2. Calcul de l'empan

$$Empan = \max(X) - \min(X) = 140 - 62 = 78$$

3. Calcul de la largeur des classes ai

$$\frac{Empan}{K} = 8.667$$

 $\log_2(n) = \frac{\log n}{\log n}$

4. Ajustement de la largeur des classes a_j Comme 5 < 8.667 < 10, nous donnerons finalement à chaque classe j une largeur égale à $a_j = 10$.

- 5. Tableau des données regroupées en classe
- 6. Historigramme
- 7. Historigramme au tableau des données

log(n) log(2)	50/2000 - 40/2000 -	
	월 30/2000 -	
sama alagas i una	월 20/2000 -	

0.0350

0.0270

Reconstituez, à partir de l'histogramme représenté ci-dessous, le tableau des données regroupées en classes (n = 1000).

i	1	2	3	4	
$[e_{i-1}; e_i[$	[350; 450[[450; 500[[500; 700[[700; 850]	
c_i	400	475	600	775	
a_i	100	50	200	150	150-0,0
d_i	0.0039	0.0046	0.0016	0.0004	1)
f_i	0.39	0.23	0.32	0.06	
n_i	390	230	320	60	0,00 - 1000

Diagramme en tuyau d'orgue (variable qualitative)

- 1. Tableau des effectifs
- 2. Jamovi: analyses -> exploration -> descriptives -> plots -> bar plot
 - La largeur des tuyau n'a pas d'importance (similaires)

n_i 18 18 31 5 i^{n_i} 25% 25% 431% 6,9	alisaho	tête ^{j~}	ventre	dos	antre
1 hij 25% 25% 431% 6,9	nj	18	8 L	31	5
0 10,	fizhj	25 <i>%</i>	25 %	43,1%	6,9%

Diagramme en Camembert

	Se	Sexe					
	Fille	Garçon	Total				
n_{j}	59	13	72				
$\overline{f_j}$	81.9%	18.1%	100%				
θ_j	295°)	65°/	360°				
		<u> </u>					

Chaque modalité est associée à une part de Camembert!

$$\theta_j = 360^\circ \times f_j$$

Ofth = 360° x 0,819 = 895° / Ogarçon = 300° x 0,181 = 65°

La Médiane (M)

- JAMOVI: Analyses -> explorations -> descriptives -> statistiques -> median -> cocher N
- Mettre les résultats dans l'ordre et prendre le résultat du centre (si impair)
- Attention si pair : prendre les deux au centre et faire la moyenne des deux $\frac{\chi_{i} \cdot \chi_{i}}{2}$

La Moyenne (X) Mean

- Multiplication de tous les scores entre eux, puis diviser par le nbr total de scores multipliés
- JAMOVI :: Analyses -> explorations -> descriptives -> statistiques -> mean -> cocher N

Le Mode (Mo)

- La valeur la + fréquente de la recherche -> exemple :

					_			ce que cesi
Score	1	2	3	4	5	6	7	là qu'il y on a le t
Effectif								

- Certaines distributions peuvent avoir plusieurs modes, ou pas de mode du tout (tous pareils)

Caractéristiques de dispertion

Résumé

	mode	mediane?	mayenne	
nominale				+
ordinale	\times	\times		L
numé rique	X	×	×	+
			1	1

Fonction Quantile (à partir d'une fonction de répartition et de n)

- 1. Fonction de répartition F(x)
- Chaque point = x_i
- Espace (vertical) entre chaque trait = n_i

j	1	2	3	4	5	6	7	8
×j	93	96	99	100	103	104	105	107
п	3	1	2	5	1	1	1	1
f,	3/15	1/15	2/15	5/15	1/15	1/15	1/15	1/15
Fil	3/16	4/15	6/15	11/15	12/15	13/15	14/15	15/15

- 2. Fonction Quantile F⁻¹(α)
- Déterminer les quartiles : Q1 = 0,25 / Q2 = 0,5 = Médiane /Q3= 0,75 -> divided per 4
- Déterminer les déciles : D1= 0,1 / 0,2 / 0,3 / 0,4 / 0,5 / 0,6 / 0,7 / 0,8 / 0,9 -> **Divided per 10**
- Déterminer les centiles : C1= 0,01 / C50 = 0,5 = Médiane -> divided per 100
- **Jamovi :** Entrer les données, (dans une colonne) -> Mettre variable (continous) -> Analyses -> exploration -> Descriptives -> variable (la colonne)
- → Cocher: Median, Mode, Mean, Min, Max, Box Plot, Frequency tables
- 3. (Extrapolation linéaire)

Intervalle interquartile (IQR ou IIQ)

IIQ = Q3 - Q1

Boîte à moustache

Adjacente inf : plus petite valeur observée supérieure ou égale à Q1 –1,5 (Q3-Q1)

Adjacente sup: plus grande valeur observée inférieur ou égale à Q3 + 1,5 (Q3-Q1)

Ecart type/Standart deviation (s): Analyse -> exploration -> descriptives -> statistics -> ...

Variance (s²) -> Les valeurs qui augmentent le plus la variante sont les valeurs qui sont les plus éloignées de la moyenne Données extrêmes : point au-dessus de la moustache

Caractéristiques de forme

Skewness /coeficient d'asymétrie (g1)

$$Q_1 = \frac{M_3}{S^3}$$

$$m_3 = (x_1 - \overline{x})^3 + (x_1 - \overline{x})^3$$

Kurtosis /coeficient d'applatissement (g2)

$$g_2 = \frac{m_4}{S^4}$$

$$M_{+} = (x_{i} - \overline{x})^{\iota_{+}} (x_{i} - \overline{x})^{\iota_{+}}$$

	Condition	Réponse	Effectif
1	Son	Juste	10
2	Son	Faux	28
3	Vidéo	Juste	17
4	Vidéo	Faux	18
5	Son + Vidéo	Juste	9
6	Son + Vidéo	Faux	23

Identification du gagnant	Son	vidéo	Son + vid	60
. oui	10	17	9	36
NOV	28	18	23	69
	38	35	32	105

Table de contingence = n_{ii}:

- 1. Saisir les données
- 2. Chemin = Analyse Frequencies Contingency Tables Independent Samples
- 3. Remplir -> Rows (Réponse) Columns (Condition) Counts (Effectif)

Distribution conditionnelle de Y:

- 1. Faire table de contingence
- 2. Cocher « Column » (sous Cells Percentages)
- ⇒ Si les distributions conditionnelles de Y sont toutes les mêmes = Y ne dépend pas de X, sinon Y dépend de X

Distribution conditionnelle de X:

- 1. Faire table de contingence
- 2. Cocher « Row » (sous Cells Percentages)
- ⇒ Si les distributions conditionnelles de X sont toutes les mêmes = X ne dépend pas de Y, sinon X dépend de Y

Indépendance des variables X et Y :

- a. Les distributions conditionnelles de Y sont les mêmes
- b. Les distributions conditionnelles de X sont les mêmes
- c. L'effectif associé à (i; j) = $\frac{n_i \times n_j}{n_j}$
- d. La fréquence associée à la cellule (i : j) = $f_{ij} = f_i \times f_j$ (Rappel: $f_i = n_i/n$) et $f_i = n_i/n$)

Tableau des effectifs théoriques = ei (correspond à la situation d'indépendance) :

- 1. Reprendre les données de la table de contingence (même chemin, remplissage)
- 2. Cocher « Expected » (sous Cells Counts)

Tableau des résidus :

- 1. Permet de comparer le tableau des effectifs théoriques et la table de contingence
- 2. Contingence (n_{ij}) Effectif (e^{ij}) -> (10 13 = -3)

Tableau des résidus standardisés :	nij - e:j	taille	. defe	V	
1	<u> </u>	df^{\star}	small	medium	large
➡ Intéressant si la valeur est supérieure ou égale à 2	1e;;	1	.10	.30	.50
	•	2	.07	.21	.35
Règle d'interprétation de Cohen :	→	3	.06	.17	.29
Walang da Wildang (Albahan ana antara antara)		4	.05	.15	.25
Valeur du Khi carré (distance entre nii et eii):		_	0.4	10	00

- 1. Après avoir fait une table de contingence et un tableau des effectifs théoriques
- 2. Cocher « X² » (sous Statistics)
- 3. Chiffre recherché = croisement X² et Value
- \Rightarrow $X^2_{max} = n [min (1; J) -1] => 105 [min (2; 3) -1] => 105 [2 -1] => 105 [1] = 105 (dépendance_{max} fonctionnelle)$
- \Rightarrow $X^2_{min} = 0$ (situation d' indépendance)

Coefficient de contingence et V de Cramer :

- □ Indice ne dépendant plus ni de « n » ni de la dimension de la table de contingence
- → Cocher « Contingency coefficient et Phi and Cramer's V » sous (Statistics Nominal)
- 1. C (coefficient de contingence) = $\sqrt{\frac{\chi^2}{\chi^2+n}}$ -> (C < 1) et en situation d'indépendance (C = 0)
- 2. Φ (phi) = $\sqrt{\frac{\chi^2}{n}}$ -> situation d'indépendance (Φ = 0), Dépendance fonctionnelle (Φ ≥ 1) 3. V (V de Cramer) = $\sqrt{\frac{\chi^2}{\chi^2_{max}}}$ -> X2 = 0, V = 0 / X2max = X2 , V = 1

Liaison entre deux variables ordinales (Mesure d'un degré d'accord):

- 1. Calculer la concordance (en dessous à droite) -> C
- 2. Calculer la discordance (en dessous à gauche) -> D
- 3. Claculer les paires ex-eaquo 1' (lignes) -> Nx
- 4. Calculer les paires ex-eaquo 2' (colones) -> Ny

Faire diagramme de dispertion avec Jamovi :

- Tableau des données (attentions variables numériques) -> exploration -> Sactterplot

Etude de diagramme de dispertion (corréaltion graphique):

absence de liaison E(Y|X=X) = Ae

absence de liaison en mayenne nous pas en variance

dependence linsoire car mayorne sont doctors our use light droite occurred by a pure E(V | X = x) = a + bx pense

Coefficient de Spearman (rs):

- 1. Calculer les rangs (rg_x et rg_y)
- ⇒ La donnée la plus basse = 1, puis la suivante = 2, etc. (si plusieurs fois la même valeur, on fait la moyenne)
- 2. Calculer d_i et d_i²
- \Rightarrow d_i = (rg_y rg_x) et di² = di x di
- 3. Analyse -> regression -> correlation Matrix
- ⇒ Force de corrélation -> 0-0.19 très faible / 0.2-0.39 faible / 0.4-0.59 modéré / 0.6-0.79 forte / 0.8-1 très forte

Liaison entre deux variables numériques, Bravais-Pearson (rxy)

- Jamovi -> Analyse -> regression -> correlation Matrix
- ⇒ Interprétation : valeur absolue entre 0-1 (-1) -> 0-0.5 = faible / 0.5-1 = forte / 0 et indé = réciproque fausse !!!

| Txy | = 1 si & seulement si tous les points sont places sur une nême alroite

Estimation d'une proportion (ponctuelle)

- 1. Individus statistiques : n = nbr de quartiers (97) / nbr total d'individu (160)
- 2. n_a = nbr de pépins (26) / nbr d'individu avec tel caractéristique (30)
- 3. $f_A = 26/97 = 0.268 // 30/160 = 0.188$
- 4. $\hat{\pi}$ = f_A = 26,8%
- 5. Estimation de $\hat{\pi}$ par intervalle de confiance
- ⇒ Méthode exacte/binomiale -> Jamovi -> Analyses -> Frequencies -> 2 outcomes (binomial test)
- 6. Précision -> inversement proportionnelle à la variance F -> accroître la précision = augmenter n (taille d'échantillon
- 7. SE: (erreur standart -> écart type de la distribution)

Statistiques 6

	Condition	Réponse	Effectif
1	Son	Juste	10
2	Son	Faux	28
3	Vidéo	Juste	17
4	Vidéo	Faux	18
5	Son + Vidéo	Juste	9
6	Son + Vidéo	Faux	23

Identification du gagnant	Son	vidéo	Son + video	
. oui	10	17	9	36
NON	28	18	23	69
	38	35	32	105

Table de contingence = n_{ii}:

- 4. Saisir les données
- 5. Chemin = Analyse Frequencies Contingency Tables Independent Samples
- 6. Remplir -> Rows (Réponse) Columns (Condition) Counts (Effectif)

Distribution conditionnelle de Y:

- 3. Faire table de contingence
- 4. Cocher « Column » (sous Cells Percentages)
- ➡ Si les distributions conditionnelles de Y sont toutes les mêmes = Y ne dépend pas de X, sinon Y dépend de X

Distribution conditionnelle de X :

- 3. Faire table de contingence
- Cocher « Row » (sous Cells Percentages)
- ⇒ Si les distributions conditionnelles de X sont toutes les mêmes = X ne dépend pas de Y, sinon X dépend de Y

Indépendance des variables X et Y :

- e. Les distributions conditionnelles de Y sont les mêmes
- f. Les distributions conditionnelles de X sont les mêmes
- g. L'effectif associé à (i; j) = $\frac{n_i \times n_j}{n_j}$
- h. La fréquence associée à la cellule (i ; j) = $f_{ij} = f_i \times f_j$ (Rappel : $f_i = n_i/n$ et $f_i = n_i/n$)

Tableau des effectifs théoriques = ei (correspond à la situation d'indépendance) :

- 3. Reprendre les données de la table de contingence (même chemin, remplissage)
- 4. Cocher « Expected » (sous Cells Counts)

Tableau des résidus :

- 3. Permet de comparer le tableau des effectifs théoriques et la table de contingence
- 4. Contingence (n_{ij}) Effectif (e^{ij}) -> (10 13 = -3)

Tableau des résidus standardisés :

2		Ni) - 6:1
⇒	Intéressant si la valeur est supérieure ou égale à 2	1e:j

	TOLLUK	. aepo	•	
	df^{\star}	small	medium	large
	1	.10	.30	.50
	2	.07	.21	.35
•	3	.06	.17	.29
	4	.05	.15	.25
	5	.04	.13	.22

Lalla do Kok

Règle d'interprétation de Cohen : -----Valeur du Khi carré (distance entre n_{ii} et e_{ii}):

- 4. Après avoir fait une table de contingence et un tableau des effectifs théoriques
- 5. Cocher « X² » (sous Statistics)
- 6. Chiffre recherché = croisement X² et Value
- \Rightarrow $X^2_{max} = n [min (I; J) -1] => 105 [min (2; 3) -1] => 105 [2 -1] => 105 [1] = 105 (dépendance_{max} fonctionnelle)$
- \Rightarrow $X^{2}_{min} = 0$ (situation d' indépendance)

Coefficient de contingence et V de Cramer :

- ⇒ Indice ne dépendant plus ni de « n » ni de la dimension de la table de contingence
- → Cocher « Contingency coefficient et Phi and Cramer's V » sous (Statistics Nominal)
- 4. C (coefficient de contingence) = $\sqrt{\frac{\chi^2}{\chi^2+n}}$ -> (C < 1) et en situation d'indépendance (C = 0)
- 5. Φ (phi) = $\sqrt{\frac{x}{n}}$ -> situation d'indépendance (Φ = 0), Dépendance fonctionnelle (Φ ≥ 1) 6. V (V de Cramer) = $\sqrt{\frac{x}{x^2}}$ -> X^2 = 0, V = 0 / X^2 _{max} = X^2 , V = 1