PMR3404 Controle I - Experiência 1: Matlab, Python Control System Toolbox, Controladores PID

			NOTA
Alunos do grupo			
1. Nome:	NUSP:	Turma:	
2. Nome:	NUSP:	Turma:	
3. Nome:	NUSP:	Turma:	
Data: / / Reposição? () S () N			

1 Entregas do relatório

Esse texto é uma combinação de apostila, roteiro experimental e espaços do tipo formulário para desenvolver as respostas e também inserir as figuras. Você deve preencher as seções que se encontram distribuídas pelo texto e são identificadas com o texto: Para você fazer.

O relatório deve **OBRIGATORIAMENTE** ser feito nesse mesmo formulário. As seguintes alternativas podem ser utilizadas:

- 1. O relatório pode ser preenchido a mão. Os gráficos podem ser impressos em papel e anexados ao final do relatório devidamente identificados. Ao finalizar todas as atividades você deve escanear o relatório (Utilize um aplicativo de celular como CamScanner, Adobe Scan, etc.) e salvar num arquivo PDF.
- 2. Alternativamente você pode preencher o formulário utilizando um programa para edição de PDFs.
- 3. Para os usuário de Latex/Overleaf a fonte *.tex tambem é fornecida porém com a utilização da fonte Computer Modern.

ATENCÃO

O relatório pode ser realizado invidualmente ou em duplas.

Relatórios em papel não serão aceitos.

Somente arquivos PDF serão aceitos.

O relatório completo deve ser composto de um único arquivo PDF.

2 Roteiro

Nessa primeira aula prática vamos introduzir a utilização do software MATLAB (Ou alternativamente Python) para o projeto de sistemas de controle em malha fechada utilizando controladores PID. As técnicas de projeto de sistemas de controle utilizando os requisitos de desempenho será o tema da segunda aula.

Os seguintes temas serão abordados:

- Modelagem de um sistema de controle de posicionamento de antena parabólica,
- Obtenção das funções de transferência de velocidade e de posição do sistema,
- Experimentos com controladores P, PI, PD serão realizados visando principalmente observar o efeito de cada componente: P, I e D sobre cada sistema.

3 Introdução

- 3.1 A Filosofia de projeto de sistemas de controle
- 3.2 Definição do sistema de controle em estudo

4 Funções de transferência

4.1 Sistema de controle de velocidade

Partindo do diagrama de blocos do sistema de controle de velocidade (Figura ??) é possível atingir a topologia do sistema de controle em malha fechada standard (Figura ??) através da manipulação do diagrama de blocos.

TSTC		

Por exemplo, se admitirmos que $K_{tac} = K_{pot2}$ podemos substituir os dois blocos por um único bloco colocado após o somador. É necessário agora estabelecer dois blocos que denominaremos controlador $H_{\omega}(s)$ e planta $G_{\omega}(s)$.

 ${\cal O}$ sistema de controle ficará definido como ilustrado na Figura 1

Figura 1: Redução do diagrama de blocos do sistema de controle de velocidade.

O controlador será definido através da seguinte forma geral:

$$H_{\omega}(s) = K_{tac}H_1(s). \tag{1}$$

Para o nosso propósito $H_1(s)$ pode ser uma constante K como ilustrado na Figura 1 mas estamos interessados em controladores mais complexos do tipo PID.

A planta pode ser escrita como:

$$\frac{\Omega_o(s)}{V_p(s)} = G_\omega(s) = \frac{K_1 K_m K_g}{(s+a)(s+a_m)}$$
(2)

Para você fazer 1. 1. Utilizar o script FTVelocidadeAntena.m ou FTVelocidadeAntena.py

2. Calcule a função de transferência do sistema com valores numéricos:

$$G_{\omega}(s) = \frac{\Omega(s)}{V_p(s)} = \frac{K_c}{s^2 + c_1 s + c_2}$$

3. Reescreva a função de transferência evidenciando os pólos:

$$G_{\omega}(s) = \frac{\Omega(s)}{V_p(s)} = \frac{K_d}{(s+d_1)(s+d_2)}$$

4. Reescreva a função de transferência evidenciando as constantes de tempo:

$$G_{\omega}(s) = \frac{\Omega(s)}{V_p(s)} = \frac{K_T}{(T_1 s + 1)(T_2 s + 1)}$$

5. Reescreva a função de transferência através da expansão em frações parciais:

$$G_{\omega}(s) = \frac{\Omega(s)}{V_p(s)} = \frac{A_1}{(s+d_1)} + \frac{A_2}{(s+d_2)}$$

6. Identifique os pólos do sistema $G_{\omega}(s)$:

pólo 1	
pólo 2	

7. Esboce abaixo a resposta a degrau do sistema:

4.2 Sistema de controle de posição angular

Da mesma forma, é possível partir do diagrama de blocos do sistema de controle de posição (Figura ??) e atingir a topologia do sistema de controle em malha fechada standard (Figura ??) através da manipulação do diagrama de blocos.

É necessário agora estabelecer dois blocos que denominaremos controlador $H_{\theta}(s)$ e planta $G_{\theta}(s)$.

O sistema de controle ficará definido como ilustrado na Figura 2:

Figura 2: Redução do diagrama de blocos do sistema de controle de posição angular.

O controlador será definido através da seguinte forma geral:

$$H_{\theta}(s) = K_{pot}H_1(s). \tag{3}$$

Para o nosso propósito $H_1(s)$ será representado por controladores c PID.

A planta pode ser escrita como:

$$\frac{\Theta_o(s)}{V_p(s)} = G_\theta(s) = \frac{K_1 K_m K_g}{s(s+a)(s+a_m)} \tag{4}$$

Para você fazer 2. 1. Utilizar o script FTPosicaoAntena.m ou FTPosicaoAntena.py

2. Calcule a função de transferência do sistema com valores numéricos:

$$G_{\theta}(s) = \frac{\Theta(s)}{V_p(s)} = \frac{K_c}{s^3 + c_1 s^2 + c_2 s + c_3}$$

3. Reescreva a função de transferência evidenciando os pólos:

$$G_{\theta}(s) = \frac{\Theta(s)}{V_p(s)} = \frac{K_d}{s(s+d_1)(s+d_2)}$$

4. Identifique os pólos do sistema $G_{\theta}(s)$:

pólo 1	
pólo 2	
pólo 3	

5. Esboce abaixo a resposta a degrau do sistema:

5 Controladores PID

O controlador PID pode ser escrito de diversas formas. Aqui vamos adotar o seguinte formato:

$$H_1(s) = K_p \left(1 + \frac{1}{T_i s} + T_d \frac{s}{\frac{T_d}{N} s + 1} \right),$$
 (5)

onde K_p é denominada constante proporcional, T_i é o tempo integral, T_d é o tempo derivativo e N é o parâmetro do filtro de 1a. ordem que possui um pólo em $s = -N/T_d$. O filtro é necessário para garantir estabilidade da parte derivativa.

O seu uso prático não necessariamente utiliza os três termos simultaneamente, dessa forma podemos observar a utilização de variações como controladores P, PI, PD e PID.

O sucesso industrial dos controladores PID se explica pelo fato de possuir flexibilidade suficiente para obter uma solução de controle para quase qualquer processo industrial.

Para demonstrar o papel de cada parâmetro do controlador PID realizaremos experimentos de simulação dos sistemas de controle de velocidade e de posição.

Utilizaremos para todos os experimentos de simulação os mesmos scripts:

- $1. \ {\tt ControleDeVelocidade_PID.m}, \ {\tt Exp1_ControleDeVelocidade_PID.py}, \ {\tt Exp1_ControleDeVelocidade_PID.ipynb}, \\$
- 2. ControleDePosicao_PID.m, Exp1_ControleDePosicao_PID.py, Exp1_ControleDePosicao_PID.ipynb.

Os parâmetros dos controladores PID devem ser alterados adequadamente para cada situação.

6 Controlador Proporcional

O controlador proporcional é o controlador mais simples possível e é definido aqui como $H_1(s) = K_p$. Algumas características dessa ação de controle:

- $\bullet\,$ O ganho proporcional K_p multiplica o sinal de controle proporcionalmente ao erro,
- Com o aumento do ganho proporcional o sistema reage mais rápido porém pode eventualmente levar a um sistema mais oscilatório, com maior sobressinal,
- Eventualmente o aumento do ganho proporcional leva o sistema para uma região instável.
- Ganhos proporcionais elevados reduzem a faixa linear de operação dos atuadores devido ao fenômeno de saturação.

A seguir algumas características desse controlador poderão ser observadas através de simulações do sistema de controle de velocidade e de posição

6.1 Controle de velocidade

Para você fazer 3. 1. Considerando que $H_{\omega}(s) = K_{tac}K_p$ e que:

$$G_{\omega}(s) = \frac{K_1 K_m K_g}{(s+a)(s+a_m)},\tag{6}$$

calcule o erro estático $\omega_{e_{ss}}$ do sistema de controle em malha fechada (Veja 1) para uma entrada degrau $\Omega_i(s) = A/s$. Utilize os seguintes resultados (As variáveis aqui se referem à Figura $\ref{eq:sigma}$):

•
$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) \tag{7}$$

•

$$\frac{E(s)}{R(s)} = \frac{1}{1 + GH(s)}. ag{8}$$

- 2. Utilizando o script de controle de velocidade realize simulações do sistema de controle em malha fechada com três valores do ganho proporcional do controlador $K_p = \{3.0, 5.0, 7.0\}$.
- 3. Identifique os pólos da malha aberta $GH_{\omega}(s)$ para cada um dos valores de K_p :

K_p	K_{p_1}	K_{p_2}	K_{p_3}
pólo 1			
pólo 2			

4. Identifique os pólos da malha fechada para cada um dos valores de K_p :

K_p	K_{p_1}	K_{p_2}	K_{p_3}
pólo 1			
pólo 2			

5. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

6. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

7. Preencha na tabela abaixo o erro estático para cada valor de K_p :

K_p	$\omega_{e_{ss}}$
K_{p_1}	
K_{p_2}	
K_{p_3}	

8. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

K_p	t_r	t_s	M_p	$\max v_p(t)$
K_{p_1}				
K_{p_2}				
K_{p_3}				

9. Como as grandezas t_r , t_s , M_p e $\max v_p(t)$ variam com a variação de K_p ?

6.2 Controle de posição

O sistema de controle de posição possui na malha aberta $GH_{\theta}(s)$ um integrador 1/s adicional e uma constante do potenciômetro K_{pot} da mesma ordem de magnitude de K_{tac} .

Será verificado que a introdução do integrador torna o sistema sistema mais lento o que requer a utilização de um ganho K_p bem maior. Entretanto o integrador transforma o sistema em um sistema do tipo 1. Como consequência o erro $\theta_{e_{ss}}$ se torna nulo para um sinal de referência do tipo degrau.

Para você fazer 4. 1. Considerando que $H_{\theta}(s) = K_{pot}K_p$ e que:

$$G_{\theta}(s) = \frac{K_1 K_m K_g}{s(s+a)(s+a_m)},\tag{9}$$

6 of 17 VISTO:_____

calcule o erro estático $\theta_{e_{ss}}$	$do\ sistema\ de$	controle em mali	na fechada (Ve	ja Figura 2) pe	ara uma entrada	$degrau \Theta_i(s) =$
A/s.						

- 2. Utilizando o script de controle de posição realize simulações do sistema de controle em malha fechada com três valores do ganho proporcional do controlador $K_p = \{10.0, 20.0, 50.0\}$.
- 3. Identifique os pólos da malha aberta $GH_{\theta}(s)$ para cada um dos valores de K_p :

K_p	K_{p_1}	K_{p_2}	K_{p_3}
pólo 1			
pólo 2			
pólo 3			

4. Identifique os pólos da malha fechada para cada um dos valores de K_p :

K_p	K_{p_1}	K_{p_2}	K_{p_3}
pólo 1			
pólo 2			
pólo 3			

5. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

6. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

7. Preencha na tabela abaixo o erro estático para cada valor de K_p:

K_p	$\theta_{e_{ss}}$
K_{p_1}	
K_{p_2}	
K_{p_3}	

8. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

K_p	t_r	t_s	M_p	$\max v_p(t)$
K_{p_1}				
K_{p_2}				
K_{p_3}				

9. Como as grandezas t_r , t_s , M_p e $\max v_p(t)$ variam com a variação de K_p ?

7 Controlador proporcional integral

O controlador PI pode ser escrito da seguinte forma:

$$H_1(s) = K_p \left(1 + \frac{1}{T_i s} \right) \tag{10}$$

O controlador PI combina o efeito proporcional e integral no mesmo controlador.

Sabemos pela seção anterior que para o controle de velocidade o integrador é fundamental para transformar o sistema de tipo 0 para um sistema de tipo 1 e dessa forma atingir erro estático $\omega_{e_{ss}}=0$ para sinais de referência do tipo degrau.

8 of 17

VISTO:_____

Para o controle de posição o sistema passa a ser do tipo 2 o que permite atingir erro estatico $\omega_{e_{ss}}=0$ para sinais de referência dos tipos degrau e rampa.

A presença de um segundo integrador no sistema de controle de posição torna a escolha dos parâmeros K_p e T_i bem mais difícil. Será ilustrado um conjunto de parâmetros que movimenta os pólos para uma região instável.

7.1 Controle de velocidade

Para você fazer 5. 1. Considerando que:

$$H_{\omega}(s) = K_{tac}K_p\left(1 + \frac{1}{T_i s}\right) \tag{11}$$

e

$$G_{\omega}(s) = \frac{K_1 K_m K_g}{(s+a)(s+a_m)},\tag{12}$$

calcule o erro estático $\omega_{e_{ss}}$ do sistema de controle em malha fechada para uma entrada degrau $\Omega_i(s) = A/s$.

- 2. Utilizando o script de controle de velocidade realize simulações do sistema de controle em malha fechada com três valores do tempo integral do controlador $T_i = \{0.1, 0.2, 0.5\}$ e valor de $K_p = 5.0$.
- 3. Escreva a função de transferência do sistema em malha aberta com valores numéricos:

$$GH_{\omega}(s)$$

4. Identifique os pólos de malha aberta $GH_{\omega}(s)$ para cada um dos valores de T_i :

	T_{i_1}	T_{i_2}	T_{i_3}
pólo 1			
pólo 2			
pólo 3			
zero			

5. Escreva a função de transferência em malha fechada do sistema com valores numéricos:

$$\frac{GH_{\omega}(s)}{1 + GH_{\omega}(s)}$$

6. Identifique os pólos da malha fechada para cada um dos valores de K_p :

	T_{i_1}	T_{i_2}	T_{i_3}
pólo 1			
pólo 2			
pólo 3			
zero			

7. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

8. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

9. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

T_i	t_r	t_s	M_p	$\max v_p(t)$
T_{i_1}				
T_{i_2}				
T_{i_3}				

10. Como as grandezas $t_r,\,t_s,\,M_p$ e $\max v_p(t)$ variam com a variação de T_i ?

7.2 Controle de posição

Aqui os controladores PI utilizarão os mesmo parâmetros utilizados para o controle de velocidade. A intenção é mostrar que esse sistema se torna facilmente instável.

Para você fazer 6. 1. Considerando que:

$$H_{\theta}(s) = K_{pot}K_p\left(1 + \frac{1}{T_i s}\right) \tag{13}$$

e

$$G_{\theta}(s) = \frac{K_1 K_m K_g}{s(s+a)(s+a_m)},$$
 (14)

 $calcule \ o \ erro \ estático \ \theta_{e_{ss}} \ do \ sistema \ de \ controle \ em \ malha fechada \ para \ uma \ entrada \ degrau \ \Theta_i(s) = A/s.$

- 2. Utilizando o script de controle de posição realize simulações do sistema de controle em malha fechada com três valores do tempo integral do controlador $T_i = \{0.1, 0.2, 0.5\}$ e valor de $K_p = 5.0$.
- 3. Escreva a função de transferência do sistema com valores numéricos:

$$GH_{ heta}(s)$$

4. Identifique os pólos de malha aberta $GH_{\theta}(s)$ para cada um dos valores de T_i :

K	T_{i_1}	T_{i_2}	T_{i_3}
pólo 1			
pólo 2			
pólo 3			
pólo 4			
zero			

5. Escreva a função de transferência em malha fechada do sistema com valores numéricos:

$GH_{\theta}(s)$	
$1 + GH_{\theta}(s)$	

6. Identifique os pólos da malha fechada para cada um dos valores de K_p :

K_p	K_{p_1}	K_{p_2}	K_{p_3}
pólo 1			
pólo 2			
pólo 3			
zero			

7. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

8. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

9. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

T_i	t_r	t_s	M_p	$\max v_p(t)$
T_{i_1}				
T_{i_2}				
T_{i_3}				

10. Como as grandezas $t_r,\,t_s,\,M_p$ e $\max v_p(t)$ variam com a variação de T_i ?

8 Controlador proporcional derivativo

O controlador PD pode ser escrito da seguinte forma:

$$H_1(s) = K_p(1 + T_d \frac{s}{\frac{T_d}{N}s + 1}), \tag{15}$$

O filtro de 1a. ordem que é definido como:

$$\frac{1}{\frac{T_d}{N}s+1},\tag{16}$$

é necessário para garantir que a parte derivativa seja um sistema causal (grau do polinômio do denominador igual ou maior que o grau do polinômio do numerador), o que garante a estabilidade numérica da simulação. Além disso, a componente derivativa gera valores de saída extremamente elevados para entradas rápidas, por exemplo, do tipo degrau (Para uma entrada degrau a derivada é infinita) ou ruídos de alta frequência. Quanto menor o valor de N menor a frequência de corte do filtro.

O controlador PD não possui obviamente integrador dessa forma para o sistema de controle de velocidade apesar de que uma resposta estável e rápida possa ser obtida o erro erro estático $\omega_{e_{ss}}$ não pode ser feito nulo.

8.1 Controle de velocidade

Para você fazer 7. 1. Considerando que: $H_{\omega}(s) = K_{tac}K_p(1 + T_d \frac{s}{\frac{T_d}{N}s + 1})$ e que

$$G_{\omega}(s) = \frac{K_1 K_m K_g}{(s+a)(s+a_m)},\tag{17}$$

calcule o erro estático $\omega_{e_{ss}}$ do sistema de controle em malha fechada para uma entrada degrau $\Omega_i(s) = A/s$.

- 2. Utilizando o script de controle de velocidade realize simulações do sistema de controle em malha fechada com três valores do tempo derivativo do controlador $T_d = \{0.1, 0.5, 1.5\}$, os outros parâmetros devem ser:
 - $K_p = 1.0$,
 - N = 1.0
- 3. Escreva a função de transferência do sistema em malha aberta com valores numéricos:

$GH_{\omega}(s)$	

4. Identifique os pólos de malha aberta $GH_{\omega}(s)$ para cada um dos valores de T_d :

	T_{d_1}	T_{d_2}	T_{d_3}
pólo 1			
pólo 2			
pólo 3			
zero			

5. Escreva a função de transferência em malha fechada do sistema com valores numéricos:

$GH_{\omega}(s)$	
$1 + GH_{\omega}(s)$	

6. Identifique os pólos da malha fechada para cada um dos valores de T_d :

	T_{d_1}	T_{d_2}	T_{d_3}
pólo 1			
pólo 2			
pólo 3			
zero			

7. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

8. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

9. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

T_d	t_r	t_s	M_p	$\max v_p(t)$
T_{d_1}				
T_{d_2}				
T_{d_3}				

10. Como as grandezas t_r , t_s , M_p e $\max v_p(t)$ variam com a variação de T_d ?

8.2 Controle de posição

Para você fazer 8. 1. Considerando que: $H_{\theta}(s) = K_{tac}K_{p}(1 + T_{d\frac{s}{N}s+1})$ e que

$$G_{\theta}(s) = \frac{K_1 K_m K_g}{s(s+a)(s+a_m)},\tag{18}$$

calcule o erro estático $\theta_{e_{ss}}$ do sistema de controle em malha fechada para uma entrada degrau $\Theta_i(s) = A/s$.

- 2. Utilizando o script de controle de posição realize simulações do sistema de controle em malha fechada com três valores do tempo derivativo do controlador $T_d = \{0.1, 0.5, 1.0\}$, os outros parâmetros devem ser:
 - $K_p = 10$,
 - N = 1
- 3. Escreva a função de transferência em malha aberta do sistema com valores numéricos:

$GH_{\theta}(s)$		

4. Identifique os pólos de malha aberta $GH_{\theta}(s)$ para cada um dos valores de T_d :

K	T_{d_1}	T_{d_2}	T_{d_3}
pólo 1			
pólo 2			
pólo 3			
pólo 4			
zero			

5. Escreva a função de transferência em malha fechada do sistema com valores numéricos:

$GH_{\theta}(s)$		
$1 + GH_{\theta}(s)$		

6. Identifique os pólos da malha fechada para cada um dos valores de K_p :

K	T_{d_1}	T_{d_2}	T_{d_3}
pólo 1			
pólo 2			
pólo 3			
pólo 4			
zero			

7. Compare a posição dos pólos de malha fechada em relação à posição dos pólos de malha aberta.

8. Esboce abaixo a resposta transitória para uma entrada do tipo degrau unitário.

9. Anote na tabela abaixo os valores obtidos para o tempo de subida t_r , tempo de acomodação t_s , Máximo sobresinal M_p da variável $\omega_o(t)$ e $\max v_p(t)$ (Valor máximo da saída do controlador $v_p(t)$)

T_d	t_r	t_s	M_p	$\max v_p(t)$
T_{d_1}				
T_{d_2}				
T_{d_3}				

10. Como as grandezas $t_r,\,t_s,\,M_p$ e $\max v_p(t)$ variam com a variação de T_d ?

9 Discussões

10 Conclusões