Static Automatic Batching In TensorFlow

Ashish Agarwal Google Brain

Dynamic Automatic Batching

Static Automatic Batching

Loop Vectorization

for i in range(n): c[i] = a[i] * b[i]

c = a * b

Tensor IR allows getting rid of loops!

Vectorization In TensorFlow

fn is the loop body. pfor semantically runs n iterations in parallel, and stacks their outputs.

vectorized map(fn, inp)

Maps fn on each row slice of inp. Similar to pfor(lambda i: fn(tf.gather(inp, i)), tf.shape(inp)[0]).

Vectorization In TensorFlow

```
# Forward pass auto-batching
tf.vectorized_map(model_fn, inputs)

# Per-example gradients
tf.vectorized_map(lambda z: tf.gradients(model_fn(z), variables), inputs)

# Jacobian
tf.vectorized_map(lambda z: tf.gradients(z, variables), outputs)

# TensorFlow jacobian API
tf.GradientTape.jacobian(output, inp)
tf.GradientTape.batch_jacobian(output, inp)
```

Benchmarks

- Tested jacobians, per-example gradients, auto-batching on different models & platforms
- Up to 2 orders of magnitude speedups from vectorization
- Up to an order of magnitude speedup compared to dynamic batching
- On-par with manual batching

Vectorization In Action

Vectorization Challenges

- Handling nested control flow
- Handling stateful operations
- Handling complex data structures
- Leveraging loop invariance

Thank You!