Circuitos Combinatorios Y Algebra Booleana

08/02/2021

Contents

Circuitos Combinatorios	1
Compuertas lógicas	1
Ejemplo 1	2
Ejemplo 2	3
Mintermino	3
Maxitermino	4
Expresiones booleanas	4
Diseño de Circuitos	4
Ejercicio 1	4
Ejercicio 2	5

Circuitos Combinatorios

En una computadora, todo se puede reducir a combinaciones de bits. Entonces solo se necesitan 2 niveles de voltaje. Por ejemplo, un voltaje alto representa un 1 y un voltaje bajo representa un 0. Un circuito combinatorio carece de memoria.

Compuertas lógicas

Las operaciones se hacen con "compuertas". Están AND, OR, NOT, etc. Estas actúan como los conectivos lógicos.

Compuertas lógicas Símbolos

ActualidadTecnologica.com

Ejemplo 1

Ejemplo: Analice el siguiente circuito combinatorio

Para los valores

$$x_1 = 1$$
 $x_2 = 0$ $x_3 = 1$

$$y = \neg((x_1 \land x_2) \lor x_3)$$

Al entrar las primeras 2 señales, nos da como resultado falso $(1 \land 0 = 0)$. Y luego con la tercera nos queda verdadero $(0 \lor 1 = 1)$. Luego la negamos $(\neg 1 = 0)$. Como resultado nos queda 0.

Ejemplo 2

EXPRESIÓN BOOLEANA

Ejemplo 2: Dibuje el circuito para la siguiente expresión y escriba la tabla lógica para el circuito obtenido

x_1	x_2	x_3	$(x_1 \wedge (\overline{x}_2 \vee x_3)) \vee x_2$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	1
0	0		0
0	0	0	0

Mintermino

Es un producto booleano en el que cada variable aparece solo una vez, y sus operadores son: ${\tt AND}$ y ${\tt NOT}.$

Maxitermino

Es una expresión booleana que se compone de variables y los operadores \mathtt{OR} y $\mathtt{NOT}.$

Expresiones booleanas

Una expresión lógica se puede representar de forma canónica usando minterminos y maxiterminos.

Α	В	С	f(A,B,C)
1	1	1	(1)
1	1	0	0
1	0	1	0
1	0	0	(1)
0	1	1	0
0	1	0	0
0	0	1	(1)
0	0	0	0

La salida del circuito que tiene por entrada tres variables se puede escribir de la siguiente forma

$$f(A,B,C) = ABC + AB'C' + A'B'C$$

Diseño de Circuitos

Ejercicio 1

DISEÑO DE CIRCUITOS

Ejemplo: Un bombillo es controlado por dos interruptores. Cada interruptor tiene dos estados, abierto o cerrado. El bombillo se debe prender únicamente cuando ambos interruptores están abiertos o cuando ambos están cerrados. Diseñe el circuito para controlar el bombillo

Entrada: El estado de los 2 interruptores

Salida: 1 si el bombillo debe prender, 0 si no

DISEÑO DE CIRCUITOS

$$f(x,y) = xy + xy'$$

Ejemplo:

	X	Υ	f(X,Y)	
×Υ	1	1	1 ←	_ Enlandida
	1	0	0	
+	0	1	0	
x'ı'	0	0	1 👉	- enendida

Nos interesan los valores de la función cuando el valor es 1, por lo tanto

$$f(X,Y) = XY + X'Y'$$

Ejemplo: f(X,Y) = XY + X'Y'

Ejercicio 2

Un jurado calificador esta conformado por una terna (tres personas), la cual da su aprobación si al menos dos de los tres están de acuerdo. Es decir si dos o mas de ellos votan a favor.

Construya la expresión booleana que representa el enunciado anterior y dibuje el circuito.

Þ

Ejercicio:

X	Υ	Z	f(X,Y,Z)
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

f(XYZ)=XYZ+XYZ'+XY'Z+X'YZ

