Name: Sourav Bikash

Roll No.:11012338

Submission Date: 22/03/2013 Time:23:59 hrs.

Aim of the Problem:

The problem discusses variation reduction techniques. The first part uses the Monte Carlo estimation technique. Then some standard variation reduction techniques are used:

- 1) antithetic variables.
- 2) control variables.

Part I:

This question wants us to calculate the estimate and confidence interval using the Monte Carlo estimation technique.

Implementation using R:

```
#this program returns an estimate of the stated distribution
estimate<-function(n)
{
       s<-0;
       for(i in 1:n)
       {
               u1=runif(1,min=0,max=1);
               y=rexp(1,rate=sqrt(u1));
               s<-s+y;
       }
       s < -(s/n);
       return(s);
}
k<-estimate(100000);
#this gives the confidence interval
estimate<-function(n)
```

```
{
       RN<-NULL;
       RN1<-NULL;
       s<-0;s1<-0;s2<-0;
       for(i in 1:n)
       {
               u1=runif(1,min=0,max=1);
               y=rexp(1,rate=sqrt(u1));
               s<-s+y;
               RN1 < -c(RN1,y);
       }
       s1<-s/n;#this is the mean
       RN < -c(RN,s1);
       s2<-(sqrt(var(RN1))/sqrt(n));</pre>
       RN<-c(RN,s2);
       return(RN);
}
k<-estimate(100000);
i1<-k[1]-(qnorm(0.025)*k[2]);
i2 < -k[1] + (qnorm(0.025)*k[2]);
print(paste(i1));
print(paste(i2));
```

M value	Estimate Confidence Interval	
100	1.997705	(1.47,2.54)
1000	2.078379	(1.72806,2.16931)
10000	1.98996	(1.904,2.0506)
100000	1.990829	(1.8954,2.02881)

Part II:

Here we have to repeat the same exercise using antithetic variables.

Implementation using R:

```
# the program uses antithetic variables to calculate the estimate
estimate<-function(n)</pre>
{
       s<-0;
       for(i in 1:n)
       {
              u1=runif(1,min=0,max=1);
              y1=rexp(1,rate=sqrt(u1));
              y2=rexp(1,rate=sqrt(1-u1));
              s < -s + 0.5*(y1+y2);
       s<-(s/n);# the estimate
       return(s);
for(i in 2:5)
       print(paste(10^i));
       k<-estimate(10<sup>i</sup>);
       print(k);
#this calculates the confidence intervals
estimate<-function(n)</pre>
       s<-0;
       RN<-NULL;
       RN1<-NULL;
       for(i in 1:n)
              u1=runif(1,min=0,max=1);
              y1=rexp(1,rate=sqrt(u1));
              y2=rexp(1,rate=sqrt(1-u1));
              RN1 < -c(RN1,(0.5*(y1+y2)));
              s < -s + 0.5*(y1+y2);
       }
       RN<-c(RN,(s/n));# the estimate
       RN<-c(RN,(var(RN1)/sqrt(n)));
       return(RN);
for(i in 2:5)
{
       print(paste(10^i));
       k<-estimate(10<sup>i</sup>);
       i1<-k[1]-(qnorm(0.025)*k[2]);
       i2<-k[1]+(qnorm(0.025)*k[2]);
       print(paste(i1));
       print(paste(i2));
```

```
}
#this calculates the variation reduction percentage
estimateredv<-function(n)
{
       s<-0;
       RN<-NULL;
       RN1<-NULL;
       for(i in 1:n)
       {
              u1=runif(1,min=0,max=1);
              y1=rexp(1,rate=sqrt(u1));
              y2=rexp(1,rate=sqrt(1-u1));
              RN<-c(RN,y1);
              RN1<-c(RN1,y2);
              s < -s + 0.5*(y1+y2);
       }
       v1<-var(RN);
       v2<-var(RN1);
       cv<-cor(RN,RN1);</pre>
       v<-0.25*((v1)+(v2)+2*cv*(sqrt(v1*v2)));
       #return(cv);
       return((1-(v/v1))*100);#return variance reduction percentage
for(i in 2:5)
{
       print(paste(10^i));
       k<-estimateredv(10<sup>^</sup>i);
       print(k);
}
```

M value	Estimate	Confidence Int	Var. Red. %
100	1.72367	(1.143,2.739)	64.79
1000	1.972666	(1.636,1.98)	67.99
10000	2.037286	(1.808,2.25)	46.53
100000	1.991796	(1.942,2.051)	82.1

Part III:

here we have to use control variate technique to calculate the same thing again.

Implementation using R:

```
u1<-runif(1,min=0,max=1);
              y<-rexp(1,rate=sqrt(u1));</pre>
              RN<-c(RN,y);
              RN1<-c(RN1,sqrt(u1));
       s<-cov(RN,RN1);</pre>
       #s1<-var(RN);
       s2<-var(RN1);
       cval<--(s/s2);
       z<-mean(RN)+cval*(mean(RN1)-mean(mean(RN1)));</pre>
       return(z);
for(i in 2:5)
       print(paste(10^i));
       k<-estimate(10<sup>^</sup>i);
       print(k);
}
#this gives the variance reduction percentage
estimate<-function(n)
{
       s<-0;
       RN<-NULL;
       RN1<-NULL;
       for(i in 1:n)
       {
              u1<-runif(1,min=0,max=1);
              y<-rexp(1,rate=sqrt(u1));
              RN<-c(RN,y);
              RN1<-c(RN1,sqrt(u1));
       s<-cor(RN,RN1);</pre>
       #s1<-var(RN);
       s2<-var(RN);
       vaw<-var(RN)-(s*s)/var(RN);</pre>
       return(s*s*100);
}
for(i in 2:5)
       print(paste(10^i));
       k<-estimate(10^i);</pre>
       print(k);
}
```

Assignment IX

M value	Estimate	Confidence Int	Var. Red. %
100	2.23	(1.7803,2.146)	24.34
1000	1.872666	(1.9507,2.05)	18.55
10000	2.046286	(1.987,2.0213)	10.24
100000	1.994394	(1.9943,2.00526)	7.73