MATH 7510 Homework 3

Andrea Bourque

September 2021

1 Problem 1

Let $f:A\to B$ and $g:C\to D$ be continuous. Prove $f\times g$ is continuous.

Proof. Since the sets $U \times V$, where U, V are open in B, D respectively, form a basis for the topology on $B \times D$, it suffices to show that $(f \times g)^{-1}(U \times V)$ is open in $A \times C$. $(f \times g)^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V)$, and since f, g are continuous, $f^{-1}(U)$ is open in A, and $g^{-1}(V)$ is open in C. Thus $(f \times g)^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V)$ is open in $A \times C$.

2 Problem 2

Show that a retraction $r: X \to A$ is a quotient map.

Proof. Since $A \subset X$ and r(a) = a for $a \in A$, we have r is surjective, since any $a \in A$ has at least one preimage, e.g. a. If U is open in A, then $r^{-1}(U)$ is open in X, since r is continuous. Now suppose $U \subset A$ and $r^{-1}(U)$ is open in X. Consider $V = r^{-1}(U) \cap A$. By definition, V is open in A. If $x \in V$, then since $x \in A$, r(x) = x. Since $x \in r^{-1}(U)$, $r(x) \in U$. Thus $x \in U$, showing $x \in U$. Now let $x \in U$. Since $x \in V$ is open in $x \in V$. Thus $x \in V$ is open in $x \in V$. Thus $x \in V$ is open in $x \in V$. Thus $x \in V$ is open in $x \in V$. Thus $x \in V$ is open in $x \in V$.

3 Problem 4

Let $f:[0,1] \to [0,1]$ be continuous. Prove there is some $x \in [0,1]$ such that f(x) = x.

Proof. Note that g(x) = f(x) - x is also continuous on [0,1]. If f(0) = 0 or f(1) = 1, we are done. Thus, suppose $f(0) \neq 0$ and $f(1) \neq 1$, or $g(0) \neq 0$ and $g(1) \neq 0$. $g(0) = f(0) \in [0,1]$, but it is not zero, so we have g(0) > 0. g(1) = f(1) - 1, and $f(1) \in [0,1]$, so $g(1) \in [-1,0]$. Again, $g(1) \neq 0$, so g(1) < 0. Since [0,1] is connected, the intermediate value theorem implies there is some $x \in (0,1)$ with g(x) = 0, which means f(x) = x.

4 Problem 5

Let $f: S^1 \to \mathbb{R}$ be continuous. Show that there is $x \in S^1$ such that f(x) = f(-x).

Proof. Note that g(x) = f(x) - f(-x) is also a continuous function $S^1 \to \mathbb{R}$. We have g(-x) = f(-x) - f(x) = -g(x). If $g(x) \neq 0$, then g(-x) has the opposite sign as g(x). Then, since S^1 is connected, the intermediate value theorem implies that there must be some x' with g(x') = 0, or f(x') = f(-x').