AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

Claims 1-21. (cancelled).

- 22. (currently amended): A cross-linked polymer formed by
- a) radical polymerisation of radical polymerisable monomers including
 - i) a zwitterionic monomer having the formula: Y-B-X

wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms up to and including perfluorinated chains, or if X contains a carbon-carbon chain between B and the centre of permanent position charge or if Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group selected from groups, IVC, IVD and IVF in which

group IVC has the formula

where

the groups R⁷ are the same or different and each is hydrogen or C₁₋₄ alkyl, and e is form from 1 to 4;

group IVD has the formula

$$\begin{array}{c|c} CH_2 & O & \\ \hline \\ CH_2 & O & P \\ \hline \\ CH_2 & O \\ \hline \\ CH_2 & O \\ \hline \\ CH_2 & O \\ \hline \end{array}$$

wherein

the groups R^8 are the same or different and each is hydrogen or C_{1-4} alkyl, R^{8a} is hydrogen or a group $-C(O)B^1R^{8b}$ wherein R^{8b} is hydrogen or methyl, B^1 is a valence bond or straight or branched alkylene, oxaalkylene or olig-oxaalkyene group, and f is from 1 to 4; and if B is other than a valence bond z is 1 and if b is a valence bond z is 0, if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

group IVE has the formula

wherein

the groups R^9 are the same or different and each is hydrogen or C_1 - C_4 alkyl, R^{9a} is hydrogen or a group, $-C(O)B^2R^{9b}$ wherein R^{9b} is hydrogen or methyl, B^2 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, and g is from 1 to 4; and

if B is other than a valence bond z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

group IVF has the formula

wherein

the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, R^{10a} is hydrogen or a $-C(O)B^3R^{10b}$ group wherein R^{10b} is hydrogen or methyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, and h is from 1 to 4; and

if B is other than a valence bond z is 1 and if B is a valence bond z is 0 if X is directly bonded to the oxygen or nitrogen and otherwise z is 1 and;

Y is an ethylenically unsaturated polymerisable group selected from

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

A is -O- or - NR^1 where R^1 is hydrogen or a C_1 - C_4 alkyl group or R^1 is -B-X where B and X are as defined above; and

 $K^2 \text{ is a group - } (CH_2)_pOC(O)\text{--}, -(CH_2)_pC(O)O\text{--}, -(CH_2)_pOC(O)O\text{--}, -(CH_2)_pNR^2\text{--}, -(CH_2)_pNR^2C(O)\text{--}, -(CH_2)_pNR^2C(O)\text{--}, -(CH_2)_pNR^2C(O)NR^2\text{--}, -(CH_2)_pNR^2C(O)NR^2\text{--}, (in which the groups R^2 are the same or different)}$

- $(CH_2)_pO$, - $(CH_2)_pSO_3$ -, or, optionally in combination with B, a valence bond and p is from 1 to 12 and R^2 is hydrogen or a C_1 - C_4 alkyl group and

ii) a monomer having a reactive group of the formula general formula (XII)

$$Y^2$$
— B^7 — Q^3 (XII)

where

Y² is an ethylenically unsaturated polymerisable group selected from

$$H_2C$$
 R^{26}
 C
 T
 C
 K^2

where

R²⁶ is hydrogen or C₁-C₄ alkyl;

T is -O- or NR^{27} or , wherein R^{27} is hydrogen or a C_1 - C_4 alkyl group or R^{27} is a $-\!\!-\!\!-\!\!B^7Q_3$ group ;

B⁷ is a valence bond a straight or branched alkylene oxaalkylene or oligo-oxaalkylene group;

 $K^2 \text{ is a group } - (CH_2)_q OC(O) -, - (CH_2)_q C(O)O -, - (CH_2)_q OC(O)O -, - (CH_2)_q NR^{20} -, - (CH_2)_q NR^{20}C(O)O -, - (CH_2)_q C(O)NR^{20} -, - (CH_2)_q NR^{20}C(O)O -, - (CH_2)_q OC(O)NR^{20} -, - (CH_2)_q NR^{20}C(O)NR^{20} - (in which the groups <math>R^{20}$ are the same or different), - $(CH_2)_q O$ - or - $(CH_2)_q SO_3$ - or , or a valence bond and q is from 1 to 12 and R^{20} is hydrogen or C_1 - C_4 alkyl group; and

 Q^3 is a reactive group selected from the groups consisting of aldehyde groups; silane and siloxane groups containing one or more substituents selected from halogen atoms and C_{1-4} -alkoxy groups; hydroxyl; amino; carboxyl; epoxy; -CHOHCH₂Hal (in which Hal is selected from chlorine, bromine and iodine atoms); succinimido; tosylate; triflate; imidazole carbonylamino; optionally substituted triazine groups; cinnamyl; ethylenically and acetylenically unsaturated groups; acetoacetoxy; methylol; and chloroalkylsulphone groups; and

- b) cross-linking the polymer by forming cross-linkages between groups Q³ derived from the said monomer having a reactive group.
- 23. (previously presented): A polymer according to claim 22 in which Q³ is selected from the group consisting of aldehyde, silane and siloxane groups containing one or more substituents selected from halogen atoms and C₁-₄ alkoxy groups, amino, epoxy, CHOHCH₂Hal (in which Hal is halogen), succinimido, tosylate, triflate, imidazolecarbonyl amino and optionally substituted triazine groups.
- 24. (previously presented): A polymer according to claim 22 in which the group Q³ is selected from the group consisting of amino, acetylenically unsaturated hydrocarbon groups, 3-chloro-2-hydroxypropyl and 3-trimethyoxy silyl propyl.
- 25. (previously presented): A polymer according to claim 22 in which the said monomer having a reactive group is selected from the group consisting of 2-aminoethylmethacrylate, 7-dodecynmethacrylate, 3-chloro-2-hydroxypropylmethacrylate and 3-(trimethoxysilyl) propylmethacrylate.
- 26. (previously presented): A polymer according to claim 22 in which said radical polymerisable monomers include a comonomer having the general formula (VI)

$$Y^1$$
-Q (VI)

where

Y¹ is an ethylenically unsaturated polymerisable group selected from

where

R¹⁴ is hydrogen or C₁-C₄ alkyl,

A' is -O- or -NR¹⁵- where R¹⁵ is hydrogen or a C₁-C₄ alkyl group or R¹⁵ is a group Q;

 $K^{1} \text{ is a group } - (CH_{2})_{I}OC(O)-, -(CH_{2})_{I}C(O)O-, -(CH_{2})_{I}OC(O)O-, -(CH_{2})_{I}OC(O)O-, -(CH_{2})_{I}NR^{16}-, -(CH_{2})_{I}NR^{16}CH(O)O-, -(CH_{2})_{I}OC(O)NR^{16}-, -(CH_{2})_{I}NR^{16}CH(O)O-, -(CH_{2})_{I}OC(O)NR^{16}-, -(CH_{2})_{I}NR^{16}C(O)NR^{16}- (in which the groups <math>R^{16}$ are the same or different), -(CH_{2})_IO-, -(CH_{2})_ISO₃, a valence bond and I is from 1 to 12 and R^{16} is hydrogen or a C_{1} - C_{4} alkyl group; and

Q is selected from the group consisting of straight and branched alkyl, alkoxyalkyl and (oligo-alkoxy)alkyl groups containing 6 to 24 carbon atom, any of which groups is unsubstituted or substituted by one or more fluorine atoms and optionally contains one or more carbon-carbon double or triple bonds; and siloxane groups (CR^{16a}₂)_{qq}(SiR^{16b}₂)(OSiR^{16b}₂)_{pp}R^{16b} in which each group R^{16a} is the same or different and is selected from the group consisting of hydrogen, alkyl groups of 1 to 4 carbon atoms and aralkyl groups, each group R^{16b} is alkyl of 1 to 4 carbon atoms, qq is from 1 to 6 and pp is from 0 to 49.

27. (previously presented): A polymer according to claim 26 in which Y¹ is

$$H_2C \stackrel{\mathsf{R}^{14}}{==} C \stackrel{\mathsf{C}}{==} C \stackrel{\mathsf{C}}{=} A$$

in which

R¹⁴ is methyl;

A' is -O-; and

Q is an alkyl group of the formula - $(CR^{17}_2)_mCR^{17}$ wherein the groups - (CR^{17}) - are the same or different and in each group - (CR^{17}_2) - the groups R^{17} are the same or different and each group R^{17} is selected from the group

consisting of hydrogen, C_{1-4} -alkyl and -fluoroalkyl and fluorine and m is in the range 5 to 23.

- 28. (previously presented): A polymer according to claim 27 in which the said comonomer is selected from the group consisting of n-dodecyl methacrylate, octadecyl methacrylate, hexadecylmethacrylate, 1H, 1H, 2H, 2H-heptadecafluorodecylmethacrylate, p-octyl styrene, p-dodecyl styrene and monomethacryloyloxypropyl terminated siloxanes.
- 29. (previously presented): A polymer according to claim 28 in which the said comonomer is dodecyl methacrylate.
- 30. (previously presented): A polymer according to claim 22 in which the said radical polymerisable monomers include a diluent monomer selected from the group consisting of C₁₋₄ -alkyl(alk)acrylates, N, N-dialkylamino alkyl(alk)acrylates containing 1 to 4 carbon atoms in each N-alkyl group and 1 to 4 carbon atoms in the alkylene group, C₁₋₄ alkyl(alk)acrylamide, hydroxy C₁₋₄ -alkyl(alk)acrylate, N-vinyl lactam having 5-7 atoms in the lactam ring, styrene, derivatives of styrene having ring substituents selected from C₁₋₄ alkyl groups and halogen atoms, polyhydroxyl (alk)acrylates, alkenes, butadiene, maleic anhydride and acrylonitrile.
- 31. (previously presented): A polymer according to claim 30 in which the diluent monomer is selected from hydroxy C_{1-4} -alkyl(alk)acrylates and polyhydroxyl(alk)acrylates.
- 32. (previously presented): A polymer according to claim 22 in which the said radical polymerisable monomers include at least 5% by weight zwitterionic monomer and at least 0.1% by weight monomer having a reactive group.
- 33. (previously presented): A polymer according to claim 22 in which the said radical polymerisable monomers include at least 5% by weight zwitterionic monomer and 0.1% to 20% by weight monomer having a reactive group.

- 34. (previously presented): A polymer according to claim 30 in which the said radical zwitterionic monomers include at least 5% by weight, at least 0.1% by weight monomer having a reactive group and 5 to 20% by weight diluent monomer.
- 35. (previously presented): A polymer according to claim 26 in which the said radical polymerisable monomers include at least 5% by weight zwitterionic monomer, at least 0.1% by weight monomer having a reactive group and 5 to 90% by weight of said comonomer.
- 36. (previously presented): A polymer according to claim 22 in which said cross-linkage is by direct reaction of groups Q³ with one another.
- 37. (currently amended): A polymer according to claim 22 in which said cross-linkage is by reaction_reaction_of groups Q³ with a reactive bridging molecule.
- 38. (currently amended): A process in which a cross-linkable polymer is cross-linked by forming cross-linkages between reactive groups Q⁵ on the polymer wherein the cross-linkable polymer is formed by
- a) radical polymerisation of radical polymerisable monomers including
 - i) a zwitterionic monomer having the formula:

Y-B-X

wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms up to and including perfluorinated chains, or if X contains a carbon-carbon chain between B and the centre of permanent position charge or if Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group selected from groups, IVC, IVD and IVF in which

group IVC has the formula

$$\begin{array}{c|c} O & \\ \hline \\ O & \\ \hline \\ O & \\ \end{array}$$
 O — (CH₂)_e — N⁺(R⁷)₃ (IVC)

where

the groups R⁷ are the same or different and each is hydrogen or C₁₋₄ alkyl, and e is from 1 to 4;

group IVD has the formula

wherein

the groups R^8 are the same or different and each is hydrogen or C_{1-4} alkyl, R^{8a} is hydrogen or a $-C(O)B^1R^{8b}$ group wherein R^{8b} is hydrogen or methyl, B^1 is a valence bond or straight or branched alkylene, oxaalkylene or olig-oxaalkyene group, and f is from 1 to 4; and if B is other than a valence bond z is 1 and if b is a valence bond z is 0, if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1;

group IVE has the formula

IVE

wherein

the groups R^9 are the same or different and each is hydrogen or C_1 - C_4 alkyl, R^{9a} is hydrogen or a $-C(O)B^2R^{9b}$ group, wherein R^{9b} is hydrogen or methyl, B^2 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, and g is from 1 to 4; and

if B is other than a valence bond z is 1 and if B is a valence bond z is 0 if X is directly bonded to an oxygen or nitrogen atom and otherwise z is 1; and

group IVF has the formula

$$R^{10a}$$
— CH_2 O $||$ CH — O — P — O — $(CH_2)_hN^+(R^{10})_3$ $||$ O .

wherein

the groups R^{10} are the same or different and each is hydrogen or C_{1-4} alkyl, R^{10a} is hydrogen or a $-C(O)B^3R^{10b}$ group wherein R^{10b} is hydrogen or methyl, B^3 is a valence bond or a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene group, and h is from 1 to 4; and

if B is other than a valence bond z is 1 and if B is a valence bond z is 0 if X is directly bonded to the oxygen or nitrogen and otherwise z is 1 and;

Y is an ethylenically unsaturated polymerisable group selected from

wherein:

R is hydrogen or a C₁-C₄ alkyl group;

A is -O- or - NR^1 where R^1 is hydrogen or a C_1 - C_4 alkyl group or R^1 is -B-X where B and X are as defined above; and

 $\label{eq:K2} K^2 \text{ is a group - } (CH_2)_pOC(O)\text{--}, -(CH_2)_pC(O)O\text{--}, -(CH_2)_pOC(O)O\text{--}, -(CH_2)_pNR^2\text{--}, -(CH_2)_pNR^2C(O)\text{--}, -(CH_2)_pC(O)NR^2\text{--}, -(CH_2)_pNR^2C(O)\text{--}, -(CH_2)_pNR^2C(O)NR^2\text{--}, -(CH_2)_pNR^2C(O)NR^2\text{--}, (in which the groups R^2 are the same or different)}$

- $(CH_2)_pO$, - $(CH_2)_pSO_3$ -, or, optionally in combination with B, a valence bond and p is from 1 to 12 and R² is hydrogen or a C₁-C₄ alkyl group and

ii) a monomer having a reactive group of the formula general formula (XII)

$$Y^2 - B^7 - Q^3 \qquad (XII)$$

where

Y² is an ethylenically unsaturated polymerisable group selected from

where

R²⁶ is hydrogen or C₁-C₄ alkyl;

T is -O- or NR²⁷ or , wherein R²⁷ is hydrogen or a C_1 - C_4 alkyl group or R²⁷ is a —B⁷ Q_3 group ;

B⁷ is a valence bond a straight or branched alkylene oxaalkylene or oligo-oxaalkylene group;

 $K^2 \text{ is a group } - (CH_2)_q OC(O) -, - (CH_2)_q C(O)O -, - (CH_2)_q OC(O)O -, - (CH_2)_q NR^{20} -, - (CH_2)_q NR^{20}C(O)O -, - (CH_2)_q C(O)NR^{20} -, - (CH_2)_q NR^{20}C(O)O -, - (CH_2)_q OC(O)NR^{20} -, - (CH_2)_q NR^{20}C(O)NR^{20} - (in which the groups <math>R^{20}$ are the same or different), - (CH_2)_qO- or - (CH_2)_qSO₃- or , or a valence bond and q is from 1 to 12 and R^{20} is hydrogen or C_1 - C_4 alkyl group; and

Q³ is a reactive group selected from the groups consisting of aldehyde groups; silane and siloxane groups containing one or more substituents

selected from halogen atoms and C₁₋₄ -alkoxy groups; hydroxyl; amino; carboxyl; epoxy; -CHOHCH₂Hal (in which Hal is selected from chlorine, bromine and iodine atoms); succinimido; tosylate; triflate; imidazole carbonylamino; optionally substituted triazine groups; cinnamyl; ethylenically and acetylenically unsaturated groups; acetoacetoxy; methylol; and chloroalkylsulphone groups.

- 39. (previously presented): A process according to claim 38 in which Q³ is selected from the group consisting of aldehyde, silane and siloxane groups containing one or more substituents selected from halogen atoms and C₁-₄ alkoxy groups, amino, epoxy, CHOHCH₂Hal (in which Hal is halogen), succinimido, tosylate, triflate, imidazolecarbonyl amino and optionally substituted triazine groups.
- 40. (previously presented): A process according to claim 38 in which the group Q³ is selected from the group consisting of amino, acetylenically unsaturated hydrocarbon groups, 3-chloro-2-hydroxypropyl and 3-trimethyoxy silyl propyl.
- 41. (previously presented): A process according to claim 38 in which the said monomer having a reactive group is selected from the group consisting of 2-aminoethylmethacrylate, 7-dodecynmethacrylate, 3-chloro-2-hydroxypropylmethacrylate and 3-(trimethoxysilyl) propylmethacrylate.
- 42. (previously presented): A process according claim 38 in which said radical polymerisable monomers include a comonomer having the general formula (VI).

 Y^1-Q

(VI)

where

Y¹ is an ethylenically unsaturated polymerisable group selected from

where

R¹⁴ is hydrogen or C₁-C₄ alkyl,

A' is -O- or -NR¹⁵- where R¹⁵ is hydrogen or a C_1 - C_4 alkyl group or R¹⁵ is a group Q;

 K^1 is a group - $(CH_2)_IOC(O)$ -, - $(CH_2)_IC(O)O$ -, - $(CH_2)_IOC(O)O$ -, - $(CH_2)_INR^{16}$ -, - $(CH_2)_INR^{16}C(O)$ -, - $(CH_2)_IC(O)NR^{16}$ -, - $(CH_2)_INR^{16}CH(O)O$ -, - $(CH_2)_IOC(O)NR^{16}$ -, - $(CH_2)_INR^{16}C(O)NR^{16}$ - (in which the groups R^{16} are the same or different), - $(CH_2)_IO$ -, - $(CH_2)_ISO_3$, a valence bond and I is from 1 to 12 and R^{16} is hydrogen or a C_1 - C_4 alkyl group; and

Q is selected from the group consisting of straight and branched alkyl, alkoxyalkyl and (oligo-alkoxy)alkyl groups containing 6 to 24 carbon atom, any of which groups is unsubstituted or substituted by one or more fluorine atoms and optionally contains one or more carbon-carbon double or triple bonds; and siloxane groups (CR^{16a}₂)_{qq}(SiR^{16b}₂)(OSiR^{16b}₂)_{pp}R^{16b} in which each group R^{16a} is the same or different and is selected from the group consisting of hydrogen, alkyl groups of 1 to 4 carbon atoms and aralkyl groups, each group R^{16b} is alkyl of 1 to 4 carbon atoms, qq is from 1 to 6 and pp is from 0 to 49.

43. (previously presented): A process according claim 38 in which Y¹ is

$$H_2C = C - C - A$$

in which

R¹⁴ is methyl;

A' is -O-; and

Q is an alkyl group of the formula $-(CR^{17}_2)_mCR^{17}$ wherein the groups $-(CR^{17})$ - are the same or different and in each group $-(CR^{17}_2)$ - the groups R^{17} are the same or different and each group R^{17} is selected from the group consisting of hydrogen, C_{1-4} -alkyl and -fluoroalkyl and fluorine and m is in the range 5 to 23.

- 44. (previously presented): A process according to claim 43 in which the said comonomer is selected from the group consisting of n-dodecyl methacrylate, octadecyl methacrylate, hexadecylmethacrylate, 1H, 1H, 2H, 2H-heptadecafluorodecylmethacrylate, p-octyl styrene, p-dodecyl styrene and monomethacryloyloxypropyl terminated siloxanes.
- 45. (previously presented): A process according to claim 44 in which the said comonomer is dodecyl methacrylate.
- 46. (previously presented): A process according to claim 38 in which the said radical polymerisable monomers include a diluent monomer selected from the group consisting of C₁₋₄ -alkyl(alk)acrylates, N, N-dialkylamino alkyl(alk)acrylates containing 1 to 4 carbon atoms in each N-alkyl group and 1 to 4 carbon atoms in the alkylene group, C₁₋₄ alkyl(alk)acrylamide, hydroxy C₁₋₄ -alkyl(alk)acrylate, N-vinyl lactam having 5-7 atoms in the lactam ring, styrene, derivatives of styrene having ring substituents selected from C₁₋₄ alkyl groups and halogen atoms, polyhydroxyl (alk)acrylates, alkenes, butadiene, maleic anhydride and acrylonitrile.
- 47. (previously presented): A process according to claim 46 in which the diluent monomer is selected from hydroxy C₁₋₄ -alkyl(alk)acrylates and polyhydroxyl(alk)acrylates.
- 48. (previously presented): A process according to claim 38 in which the said radical polymerisable monomers include at least 5% by weight zwitterionic monomer and at least 0.1% by weight monomer having a reactive group.
- 49. (previously presented): A process according to claim 38 in which the said radical polymerisable monomers include at least 5% by weight

zwitterionic monomer and 0.1% to 20% by weight monomer having a reactive group.

- 50. (previously presented): A polymer according to claim 46 in which the said radical zwitterionic monomers include at least 5% by weight, at least 0.1% by weight monomer having a reactive group and 5 to 20% by weight diluent monomer
- 51. (previously presented): A process according to claim 42 in which the said radical polymerisable monomers include at least 5% by weight zwitterionic monomer, at least 0.1% by weight monomer having a reactive group and 5 to 90% by weight of said comonomer.
- 52. (previously presented): A process according to claim 38 in which said cross-linkage is by direct reaction of groups Q³ with one another.
- 53. (previously presented): A process according to claim 38 in which said cross-linkage is by reaction of groups Q³ with a reactive bridging molecule.
- 54. (previously presented): A polymer according to claim 22 in which X is said group IVC.
- 55. (previously presented): A process according to claim 38 in which X is said group IVC.