Límite, continuidad de la función

1.1. Limite de la magnitud variable, variable infinitamente grande

Definición 1.1 El número constante a se denomina límite de la variable x, si para cualquier número infinitesimal positivo ϵ prefijado, se puede indicar tal valor de la variable x, a partir del cual todos los valores posteriores de la misma satisfacen la desigualdad:

$$|x-a|<\epsilon$$

Si el número a es el límite de la variable x, se dice que x tiende al límite a; su notación es:

$$x \longrightarrow a$$
 ó $\lim x = a$

En términos geométricos la definición de limite puede enunciarse así: El número constante a es el limite de la variable x, si para cualquiera vecindad infinitesimal prefijada de radio ϵ y centro en el punto a, existe un valor de x tal que todo los puntos correspondientes a los valores posteriores de la variable se encuentren dentro de la misma vecindad.

Teorema 1.1 Una magnitud variable no puede tener dos límites.

Demostración.- En efecto, si lím x=a y lím x=b(a < b), entonces x debe satisfacer las dos desigual-dades simultáneamente: $|x-a| < \epsilon$ y $|x-b| < \epsilon$ siendo ϵ arbitrariamente pequeño, pero esto es imposible, si $\epsilon < \frac{b-a}{2}$

Definición 1.2 La variable x tiende al infinito, si para cualquier número positivo M prefijado se puede elegir un valor de x tal que, a partir de él todos los valores posteriores de la variable satisfagan la desigualdad |x| > M.

La variable x que tiende al infinito, se denomina infinitamente grande y esta tendencia se expresa así: $x \longrightarrow \infty$.

1.2. Limite de la función

Definición 1.3 Supongamos que la función y = f(x) está definida en determinada vecindad del punto a en ciertos puntos de la misma.

La función y=f(x) tiende al límite $b\ (y\to b)$ cuando x tienda a $a\ (x\to a)$, si para cada número positivo ϵ , por pequeño que éste sea, es posible indicar un número positivo δ tal que para todos los valores x, diferentes de a, que satisfacen la desigualdad: $|x-a|<\delta$, se verificará la desigualdad:

$$|f(x) - b| < \epsilon$$

Si b es el límite de la función f(x), cuando $x \to a$, su notación es:

$$\lim_{x \to a} f(x)$$

o bien $f(x) \to b$, cuando $x \to a$.

Si la variable y = f(x) tiende a un límite b, cuando x tiende a a, escribimos:

$$\lim_{x \to a} f(x) = b$$

Definición 1.4 La función f(x) tiende al límite b cuando $x \to \infty$, si para cualquier número positivo ϵ arbitrariamente pequeño existe un número positivo N tal que para todos los valores de x que satisfacen la desigualdad |x| > N, se cumpla la desigualdad

$$|f(x) - b| < \epsilon$$
.

1.3. Función que tiende al infinito. Funciones acotadas

Definición 1.5 La función f(x) tiende al infinito cuando $x \to a$, es decir, es una magnitud infinitamente grande cuando $x \to a$, si para cualquier número positivo M, por grande que sea, existe un valor $\delta > 0$ tal que para todos los valores de x diferentes de a y que satisfacen la condición $|x - a| < \delta$, se cumpla la desigualdad |f(x)| > M.

Si f(x) tiende al infinito cuando $x \to a$, se escribe

$$\lim_{x \to a} f(x) = \infty$$

Definición 1.6 La función y = f(x) se denomina acotada en el dominio dado de variación del argumento x, si existe un número positivo M tal que para todos los valores de x pertenecientes al dominio considerado se cumpla la desigualdad $|f(x)| \leq M$. Si el número M no existe, se dice que la función f(x) no está acotada en el dominio dado.

Definición 1.7 La función f(x) se denomina acotada, cuando $x \to a$, si existe una vecindad con centro en el punto a en la cual dicha función está acotada.

Definición 1.8 La función y = f(x) se denomina acotada, cuando $x \to \infty$, si existe un número N > 0 tal que para todos los valores de x que satisfacen la desigualdad |x| > N, la función f(x) esté acotada.

Teorema 1.2 Si $\lim_{x\to a} f(x) = b$, siendo b un número finito, la función f(x) está acotada cuando $x\to a$.

Demostración.- Por definición de límite se deduce que para $\epsilon > 0$ existe un número δ tal que $a - \delta < x < a + \delta$ se cumple la designaldad

$$|f(x) - b| < \epsilon$$

es decir

$$|f(x)| < |b| + \epsilon$$

.

Teorema 1.3 Si $\lim_{x\to a} f(x) - b \neq 0$, la función $y = \frac{1}{f(x)}$ está acotada, cuando $x\to a$.

Demostración.- De la hipótesis del teorema se deduce que para cualquier $\epsilon > 0$ arbitrario, en cierta vecindad del punto x = a tendremos: $|f(x) - b| < \epsilon$, δ $||f(x)| - |b|| < \epsilon$, δ $-\epsilon < |f(x)| - |b| < \epsilon$ δ $|b| - \epsilon < |f(x)| < |b| + \epsilon$. De las últimas designaldades se deduce:

$$\frac{1}{|b| - \epsilon} > \frac{1}{|f(x)|} > \frac{1}{|b| + \epsilon}$$

Al tomar, por ejemplo, $\epsilon = \frac{1}{10}|b|$ tenemos

$$\frac{10}{9|b|} > \frac{1}{|f(x)|} > \frac{10}{11|b|}.$$

lo que significa que la función $\frac{1}{f(x)}$ está acotada.

1.4. Infinitesimales y sus principales propiedades

Definición 1.9 La función $\alpha = \alpha(x)$ se denomina infinitamente pequeña (infinitesimal), cuando $x \to a$ o cuando $x \to \infty$, si $\lim_{x \to a} \alpha(x) = 0$ ó $\lim_{x \to \infty} \alpha(x) = 0$

Teorema 1.4 Si la función y = f(x) puede ser representada como suma del número constante b y la magnitud infinitamente pequeña α :

$$y = b + \alpha$$

se tiene que

$$\lim y = b \ (cuando \ x \to a \ ó \ x \to \infty)$$

Recíprocamente, si lím y = b, se puede escribir $y = b + \alpha$, de donde α es una magnitud infinitamente pequeña.

Demostración.- De la igualdad se deduce que $|y-b|=|\alpha|$. Pero cuando epsilon es arbitrario todos los valores de α , a partir de uno de ellos, satisfacen la desigualdad $|\alpha|<\epsilon$; entonces, para todos los valores de y, a partir de alguno de ellos, se cumplirá la desigualdad $|y-b|<\epsilon$, lo que significa que lím y=b. Recíprocamente: si lím y=b, entonces para epsilon arbitrario para todos los valores de y, a partir de uno de ellos, se verificará la desigualdad $|y-b|<\epsilon$. Pero, si designamos $y-b=\alpha$, entonces para todos los valores de α , a partir de alguno de ellos, tendremos $|\alpha|<\epsilon$, de lo que significa que α es una magnitud infinitamente pequeña.

Teorema 1.5 Si $\alpha = \alpha(x)$ tiende a cero, cuando $x \to a$ (o cuando $x \to \infty$), sin reducirse a cero, se tendrá que $y = \frac{1}{\alpha}$ tiende a infinito.

Demostración.- Por grande que sea M>0 se cumplirá la designaldad $\frac{1}{|\alpha|}>M$, siempre que se cumpla $|\alpha|>\frac{1}{M}$. La última designaldad se cumplirá para todos los valores de α , a partir de algunos de ellos, puesto que $\alpha(x)\to 0$.

Teorema 1.6 La suma algebraica de dos, tres o un número determinado de infinitesimales es una función infinitamente pequeña.

Demostración.- Nos limitaremos a dos sumando ya que la demostración es análoga para cualquier número de ellos.

Supongamos que $u(x) = \alpha(x) + \beta(x)$, donde $\lim_{x \to a} \alpha(x) = 0$ y $\lim_{x \to a} \beta(x) = 0$. Demostraremos que para cualquier $\epsilon > 0$ tan pequeño como se quiera, se encontrará $\delta > 0$ tal que, al satisfacer la desigualdad $|x - a| < \delta$, se verifica $|u| < \epsilon$. Puesto que $\alpha(x)$ es una magnitud infinitamente pequeña se encontrará δ tal que en la vecindad de radio δ_1 y centro ubicado en el punto a, se verificará, también $|\alpha(x)| < \frac{\epsilon}{2}$.

Luego puesto que $\beta(x)$ es una magnitud infinitamente pequeña, en la vecindad del punto a de radio δ_2 tendremos $|\beta(x)| < \frac{\epsilon}{2}$.

Tomemos δ igual a la menor de las magnitudes δ_1 y δ_2 . Entonces, en la vecindad del punto a de radio δ se cumplirán las desigualdades $|\alpha| < \frac{\epsilon}{2}$; $|\beta| < \frac{\epsilon}{2}$. Por tanto, en esta vecindad tendremos:

$$|u| = |\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

es decir, $|u| < \epsilon$, lo que se trataba de demostrar.

De modo análogo se demuestra el caso:

$$\lim_{x \to \infty} \alpha(x) = 0, \qquad \lim_{x \to \infty} \beta(x) = 0$$