Today

- Inference algorithms intro
- Frequentist inference algorithms
 - sampling distribution algorithm
 - coverage algorithm (confidence intervals)

Inference algorithms

Scope and veracity of inference depends on study design

Statistical inference

- Judge the accuracy of an estimation or prediction algorithm
 - Efron & Hastie 2016
- Reliability
- Uncertainty

ISO definition of accuracy: the closeness of a measurement to the true value Two components: bias, variance

Different inference problems

Estimation

Infer a property of a population (e.g. mean) from a sample

Model comparison (weigh evidence)

Infer the data generating process from among a set of candidate datagenerating processes

Hypothesis test (association)

Infer that y is associated with x

Causation (by experiment or observation)

Infer that x causes y
Infer the size of an effect due to an intervention (estimation)
Infer that an intervention had an effect (H-test)

Prediction

Predict the value of a new observation or population state (extrapolation or interpolation)

Predict the population state in the future (forecast/extrapolation)

"Dumb" - doesn't say about reliability

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - •
 - •
 - •
 - looking forward: predicting new data and testing against them

•

These are two big ideas in data science

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - frequentist (sampling distribution)
 - likelihood (probability accounting)
 - Bayesian (likelihood + belief updating)
 - looking forward: predicting new data and testing against them

•

These are two big ideas in data science

- Inference algorithm
 - looking back: considering all the ways data could have happened
 - frequentist (sampling distribution)
 - likelihood (probability accounting)
 - Bayesian (likelihood + belief updating)
 - looking forward: predicting new data and testing against them
 - cross validation, AIC, machine learning

These are two big ideas in data science

Frequentist inference

- Frequentist probability = long-run frequency
 - -e.g. tossing a coin

$$P(heads) = \lim_{n \to \infty} \frac{\sum heads}{n}$$

Sample vs population statistic

- Population statistic
 - e.g. mean weight
 - there is a true value
 - "fixed" not random
- Sample statistic
 - e.g. mean of sample
 - random variable

Sampling distribution

- Frequentist notion of looking back: considering all the ways data could have happened
- Imaginary repeated sampling from the data generating process

Sampling distribution algorithm

- Data generating process repeated many times
- Each time calc sample statistic

```
repeat very many times
sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic
```

Make the algorithm

What is the mean weight of an individual of this species?

repeat very many times
sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic

Important: population statistic, sample statistic

Sampling distribution

132 orange-spotted warblers. 1 indicates infected

Take a sample: sample(pathogen,10)

0 1 0 0 0 0 0 1 0 0 pathogen prevalence = 0.2

Our scientific observation

Pathogen status (not infected=0, infected=1)

True prevalence is 0.424

Sampling distribution algorithm

repeat very many times

sample n units from the population
calculate the sample statistic
plot sampling distribution (histogram) of the sample statistic

for pathogen prevalence

for a large number of repeated samples
randomly sample 10 birds from the population
calculate the prevalence in the sample
plot sampling distribution (histogram) of prevalence

The sampling distribution for prevalence

The sampling distribution for prevalence

The sampling distribution for prevalence

Confidence interval

 An interval calculated by some procedure that would contain (or cover) the true population value 95% of the time, if sampling and calculating an interval were repeated a very large number of times

Confidence = reliability of the procedure

Construct an interval to cover true value

Normal distribution approximating the true sampling distribution

Plug in principle

- We don't know the true sampling distribution or its parameters
- Plug in the sample instead as an estimate
 - in this example we can use the standard error of the sample as an estimate of the standard deviation of the sampling distribution

Coverage

```
repeat very many times
sample n units from the population
calculate the sample statistic
calculate the interval for the sample statistic
calculate frequency true value is in the interval
```

Calibrates the degree of confidence in the procedure

First 100 95% confidence intervals

95.6% of the intervals cover the true value In first 100, 6 do not cover the true value (we expect about 5/100)