The Convolution Approach to Queuing Networks

Daniel A. Menascé
Department of Computer Science
www.cs.gmu.edu/faculty/menasce.html

© 1999-2001 D. A. Menascé. All Rights Reserved.

Convolution Algorithm

- Developed by J. P. Buzen in his doctoral dissertation at Harvard in 1971.
- Basic: recurrence relation to compute the normalization constant of a product-form QN.
- Performance metrics can be obtained from the normalization constant.

2

Product Form Solution- Single Class – Load Independent Devices

State probability:
$$P_{n_1,\dots,n_K} = \frac{1}{G(N)} \prod_{k=1}^K D_k^{n_k}$$

Where G(N) is a normalization constant such that

$$\sum_{\vec{x} \in S(N,K)} \prod_{k=1}^{K} D_k^{n_k} = 1 \quad \text{and} \quad S(N,K) = \left\{ (n_{1,...,n_K}) \mid \sum_{k=1}^{K} n_k = N \right\}$$

© 1999-2001 D. A. Menascé. All Rights Reserved.

Buzen's Convolution Expression

$$g_k(n) = g_{k-1}(n) + D_k g_k(n-1)$$

where

$$g_k(n) = \sum_{\vec{x} \in S(n,k)} \prod_{i=1}^k D_i^{n_i}$$

Note that the normalization constant is

$$G(N) = G_{\kappa}(N)$$

© 1999-2001 D. A. Menascé. All Rights Reserved.

1

Buzen's Convolution Expression Example

- Let n=3 and k=2.
- Then $S(3,2) = \{(0,3),(1,2),(2,1),(3,0)\}$

$$\begin{split} g_2(3) &= D_1^0 D_2^3 + D_1^1 D_2^2 + D_1^2 D_2^1 + D_1^3 D_2^0 \\ g_1(3) &= D_1^3 = D_1^3 \times 1 = D_1^3 D_2^0 \\ g_2(2) &= D_1^0 D_2^2 + D_1^1 D_2^1 + D_1^2 D_2^0 \\ g_2(3) &= D_1^3 D_2^0 + D_2 (D_1^0 D_2^2 + D_1^1 D_2^1 + D_1^2 D_2^0) = \\ &= D_1^3 D_2^0 + D_1^0 D_2^3 + D_1^1 D_2^2 + D_1^2 D_2^1 \end{split}$$

© 1999-2001 D. A. Menascé. All Rights Reserved.

5

Convolution Algorithm

$$\begin{split} g_{1}(0) &= 1 \\ g_{1}(n) &= g_{0}(n) + D_{1}g_{1}(n-1) = D_{1}g_{1}(n-1) \\ g_{k}(0) &= 1 \quad \forall \quad k \\ & g_{k}(n-1)_{\mathbf{X}} \quad D_{k} \\ & \downarrow \\ & g_{k-1}(n) - + \rightarrow g_{k}(n) \end{split}$$

6

Matrix g

Demands		2	1.8	1.5		
			Devices		Throughput	
	_	1	2	3		
	0	1.000	1.000	1.000	0.000000	
	1	2.000	3.800	5.300	0.188679	
	2	4.000	10.840	18.790	0.282065	
	3	8.000	27.512	55.697	0.337361	
	4	16.000	65.522	149.067	0.373637	
	5	32 000	149 939	373 540	0.399066	

© 1999–2001 D. A. Menascé. All Rights Reserved.

Performance Metrics

• Throughput:

$$X_0(N) = \frac{G(N-1)}{G(N)}$$

• Utilization

$$U_k(N) = D_k X_0(N) = D_k \frac{G(N-1)}{G(N)}$$

8

Performance Metrics

• Mean Queue Length (for LI devices)

$$\overline{n}_i(N) = \sum_{n=1}^N D_i^n \frac{G(N-n)}{G(N)}$$

• Recursive Equation for Queue Length:

$$\overline{n}_k(N) = U_k(N) \times [1 + \overline{n}_k(N-1)]$$

9