

I.
Theoretical

What is Vis? Why do it?

II. Practical

Data Types
Datasets

Week 2 Oct 20, 2015

Ι.

Theoretical

What is Vis? Why do it?

II.

Practical

Data Types Datasets

Week 2 Oct 20, 2015

What is Vis?

"Computer-based visualization systems provide visual representations of datasets designed to help people carry out **tasks** more effectively."

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational **decision-making** methods."

Munzner, 2014

images about numbers

The Data Discovery Horse Track

augmenting human capabilities

"The visual system provides a very high bandwidth channel to our brains." Munzner, 2014

Colin Ware on Visual Perception

"The visual system has its own rules, We can easily see patterns presented in certain ways, but if they are presented in other ways, they become invisible...When data is presented in certain ways, the patterns can be readily perceived. If we can understand how perception works, our knowledge can be translated into rules for displaying information. Following perception-based rules, we can present our data in such a way that the important and informative patterns stand out. If we disobey the rules, our data will be incomprehensible or misleading."

How many nines are there?

7	4	7	7	5	5	2	7	4	7	1	7
2	4	9	2	5	7	7	2	6	1	7	2
7	1	7	6	9	3	4	7	5	1	2	7
4	5	1	6	3	3	8	4	8	6	6	4
8	6	5	6	4	9	3	8	9	1	9	8
3	3	8	1	5	2	2	3	6	3	9	3
7	4	6	4	5	6	3	7	7	9	1	7
3	9	1	3	3	6	1	3	3	1	8	3
8	8	1	1	8	7	5	8	1	7	4	8
3	3	6	9	2	8	9	3	7	5	7	3
2	4	4	4	2	8	2	2	9	2	8	2

How many nines are there?

7	4	7	7	5	5	2	7	4	7	1	7
2	4	9	2	5	7	7	2	6	1	7	2
7	1	7	6	9	3	4	7	5	1	2	7
4	5	1	6	3	3	8	4	8	6	6	4
8	6	5	6	4	9	3	8	9	1	9	8
3	3	8	1	5	2	2	3	6	3	9	3
7	4	6	4	5	6	3	7	7	9	1	7
3	9	1	3	3	6	1	3	3	1	8	3
8	8	1	1	8	7	5	8	1	7	4	8
3	3	6	9	2	8	9	3	7	5	7	3
2	4	4	4	2	8	2	2	9	2	8	2

Anscombe's Quartet

Can you describe these four datasets (x,y)?

1							
X	у						
10.0	8.04						
8.0	6.95						
13.0	7.58						
9.0	8.81						
11.0	8.33						
14.0	9.96						
6.0	7.24						
4.0	4.26						
12.0	10.84						
7.0	4.82						
5.0	5.68						

I	П								
X	у								
10.0	9.14								
8.0	8.14								
13.0	8.74								
9.0	8.77								
11.0	9.26								
14.0	8.10								
6.0	6.13								
4.0	3.10								
12.0	9.13								
7.0	7.26								
5.0	4.74								

ı	III							
X	y							
10.0	7.46							
8.0	6.77							
13.0	12.74							
9.0	7.11							
11.0	7.81							
14.0	8.84							
6.0	6.08							
4.0	5.39							
12.0	8.15							
7.0	6.42							
5.0	5.73							

IV							
X	у						
8.0	6.58						
8.0	5.76						
8.0	7.71						
8.0	8.84						
8.0	8.47						
8.0	7.04						
8.0	5.25						
19.0	12.50						
8.0	5.56						
8.0	7.91						
8.0	6.89						

Statistics to the rescue?

Property	Value
Mean of x in each case	9 (exact)
Sample variance of x in each case	11 (exact)
Mean of y in each case	7.50 (to 2 decimal places)
Sample variance of y in each case	4.122 or 4.127 (to 3 decimal places)
Correlation between x and y in each case	0.816 (to 3 decimal places)
Linear regression line in each case	y = 3.00 + 0.500x (to 2 and 3 decimal places, respectively)

How about visualizing them?

Francis Anscombe

Static vs. Interactive

Static

Interactive

Richly Interactive

The Design Space

Chart Suggestions—A Thought-Starter

"45 Ways to Communicate Two Quantities"

The Design Space

Chess Positions Galore

François Labelle has calculated the number of distinct chess positions by ply, or move. The number increases dramatically with each successive move as the below line chart (with logarithmic y-axis) depicts. After just 5 moves each (or, by ply #10), the possibilities have reached staggering proportions

Source: http://wismuth.com/chess/statistics-positions.html

Tasks, Effectiveness, and Validation

MY FANTASY HOOPS DRAFT ASSISTANT

Jeff Teague

Marcin Gortat

Gordon Hayward

PG

С

Unselected Player

How does this work?

Select Player

Select Player

Player 12

NBA DRA	FT		ICTAN	IT		_	players by				rs by a position
MBA)		AJJ	I IVI	••		Tot	al		•	All	•
y @pgilks					0. 1			2014		50%	Player 1
		Total	Points	Blocks	Steals	Assists	Rebounds	ЗРМ	FT%	FG%	Select Player ▼
Stephen Curry	PG						ļ				Player 2
James Harden	SG										Select Player ▼
Anthony Davis	PF					Ė					
Chris Paul	PG			I I			ı jı				Player 3
DeAndre Jordan	С										Select Player ▼
LeBron James	SF										Player 4
John Wall	PG			i			į	į	į	į	Select Player ▼
Klay Thompson	SG						i i				Player 5
Pau Gasol	PF					į			į		Select Player ▼
Damian Lillard	PG						i				Player 6
Marc Gasol	С										Select Player ▼
Russell Westbro	PG										
Tim Duncan	PF								Ė		Player 7
Rudy Gobert	С										Select Player ▼
Draymond Green	PF										Player 8
Kyrie Irving	PG										Select Player ▼
Eric Bledsoe	PG										Player 9
Paul Millsap	PF										Select Player ▼
Al Horford	С										Player 10
Danny Green	SG					li					Select Player ▼
DeMarcus Cousi	С					i			į		
Andre Drummond	С										Player 11

Hiking the Washington Trails

@ OpenStreetMap contributors

How to find an effective design

6 Principles of Communicating Data

1	know your goal	Who? identify your target audience What? articulate your intended message Why? define the desired effect
2	use the right data	Necessary: get data that supports your point Sufficient: enough data to draw conclusions Relevant: eliminate any extraneous data
3 vi:	select suitable sualizations ¹	Quantitative: position > length > angle >area Ordinal: position > gray ramp > color ramp Nominal: position > shape > color hue
4	design for aesthetics	Clean up fonts, borders, gridlines, alignment Add graphic elements that aid cognition Ensure data is not occluded or distorted
5	choose medium & channel	Medium: static, interactive, or animated?Channel: standalone, recorded, remote, liveMode: broadcast or directed?
6	check the results	Reach: did you reach your target audience? Understanding: did they get it? Impact: did they react in the desired way?

From Communicating Data With Tableau, chapter 1

¹ Ref: Tableau, http://bit.ly/great-vis

Copyright © 2014 Ben Jones

I.

Theoretical

What is Vis? Why do it?

II.

Practical

Data Types
Datasets

Week 2 Oct 20, 2015

"'Data! Data! he cried impatiently.

'I can't make bricks without clay!"

Semantics...

Basil 7 S Pear

Semantics matter

ID	Name	Age	Shirt Size	Favorite Fruit
1	Amy	8	S	Apple
2	Basil	7	S	Pear
3	Clara	9	M	Durian
4	Desmond	13	L	Elderberry
5	Ernest	12	L	Peach
6	Fanny	10	S	Lychee
7	George	9	M	Orange
8	Hector	8	L	Loquat
9	Ida	10	M	Pear
10	Amy	12	M	Orange

Not bicycle passes, *registered* bicycle passes

Ebola deaths in West Africa, 2014

Data Source: http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html

Types of data

Qualitative (nominal)

Arizona, New York, Texas Sarah, John, Maria Coors, Bud Light, Stella Artois

Qualitative (ordinal)

Gold, silver, bronze
Excellent health, good health, poor health
Love it, like it, hate it

Quantitative

Weight (10 lbs, 20 lbs, 5000 lbs)
Cost (\$50, \$100, \$0.05)
Discount (5%, 10%, 12.8%)

Attributes

Attributes

→ Attribute Types

→ Categorical

→ Ordered

→ Ordinal

→ Quantitative

Ordering Direction

→ Sequential

→ Diverging

→ Cyclic

How Much vs. How Many

How Many

How Much

For Next Week

Readings

Read Munzner's *Visualization Analysis & Design"* ch 3-4 Read Jones's *"Communicating Data with Tableau"* ch 4-5

Homework Assignment #2 (Due before class on 10/27)

- Find one dataset that includes at least one quantitative and one categorical attribute (data type).
- Create a visualization that shows "how much" and "how many"
- Publish your visualization to Tableau Public, and upload the Viz URL