equations word

Anaya Hall 4/1/2019

i: Index of county (1, ..., n)j: Index of facilities (1, ..., m)

$$CO_{2}e = \sum_{i=1}^{n} TC_{i}S_{i} + \sum_{i=1}^{n} (1 - \sum_{j=1}^{m} s_{ij})W_{i} \cdot f + \sum_{j=1}^{m} (1 - \sum_{i=1}^{n} d_{ij})TC_{i} \cdot g + \sum_{i=1}^{n} \sum_{j=1}^{m} h \cdot D_{ij}s_{ij}W_{i} + \sum_{i=1}^{n} \sum_{j=1}^{m} h \cdot L_{ji}d_{ji}TC_{i} + \sum_{j=1}^{m} s_{ij}W_{i} + \sum_{j=1}^{n} \sum_{i=1}^{m} h \cdot L_{ji}d_{ji}TC_{i} + \sum_{j=1}^{m} s_{ij}W_{i} + \sum_{j=1}^{n} \sum_{i=1}^{m} h \cdot L_{ji}d_{ji}TC_{i} + \sum_{j=1}^{m} s_{ij}W_{i} + \sum_{j=1}^{m} \sum_{i=1}^{m} h \cdot L_{ji}d_{ji}TC_{i} + \sum_{j=1}^{m} \sum_{i=1}^{$$

$$Cost = \sum_{i=1}^{n} \sum_{j=1}^{m} d \cdot D_{ij} s_{ij} W_i + \sum_{i=1}^{n} \sum_{j=1}^{m} e \cdot L_{ji} d_{ji} TC_i + \sum_{i=1}^{n} k \cdot TC_i$$

subject to:

$$\begin{split} I_j &\leq F_j \\ TC_i &\leq C_i \\ \sum_{j=1}^m s_{ij} \leq 1 \\ \sum_{i=1}^n d_{ij} \leq 1 \\ 0 &\leq s_{ij} \leq 1 \\ 0 &\leq d_{ij} \leq 1 \end{split}$$

where

 D_{ij} : distance to haul to facility j (f_j) from county i (c_i) (km) L_{ji} : distance from f_j to c_i working land (km) W_i : Waste available in county i

 F_j : Intake capacity of facility j

 C_i : Amount of output county i can take in (based on amount of land)

 s_{ij} : proportion of W_i to send to f_j

 d_{ji} : proportion of facility f_j output to send to c_i working land

and

 S_i : sequestration potential per ton (?) compost applied in county c_i

c : conversion factor of waste into compost (%)

f: emission factor for waste left in county $(\frac{CO2_e}{ton})$

g : emission factor for compost stranded at facility $(\frac{CO2_e}{ton})$

e : cost to haul away from facility to land $(\frac{\$}{ton\cdot km})$

d: cost to haul to facility from county $(\frac{\$}{ton \cdot km})$

h: transportation emission factor $(\frac{CO2_e}{ton \cdot km})$ (separate??) k: cost to apply compost to fields $(\frac{\$}{ton})$ t: cost to apply compost to fields $(\frac{CO2_e}{ton})$

Intake for each facility is sum of the proportion taken in from c_i for i=1,...,n $I_j=\sum_{i=1}^n s_{ij}W_i$

Output of each facility is equal to intake converted into compost $O:=c\cdot I$:

Total compost applied in each county is the sum of the proportion of output from f_j for j = 1, ..., m $TC_i = \sum_{j=1}^m d_{ij} O_j$