Natural Language Processing – Motivation & Mechanics

By Karthikeyan Sankaran

Why is Analytics fundamental & fascinating?

Data Science & ML can have great impact on industries

MCKINSEY GLOBAL INSTITUTE
THE AGE OF ANALYTICS:
COMPETING IN A
DATA-DRIVEN WORLD
DECEMBER 2016

SOURCE: McKinsey Global Institute analysis

My Analytics Mindmap

Global Trends in Society

Macro-economy

Business Fundamentals

Specific Industry Domain

Analytical use cases

Analytical
Platforms &
Techniques

Data Management

Reporting & Self-service

Quantitative Techniques

Performance Mgmt

Insight Delivery

Analytics for Business Value

http://bit.ly/31KArT8

Scan for New Products

Evaluate Maturity

Monitor Ecosystem

Leverage Resources

Map to make sense of the data science space

Category 6: Reinforcement Learning / AI

Navigating the Data Science World http://bit.ly/datascienceworld **Focus in on Process** Focus in on System **Focus in on Data** (generating the data) **Category 12: Process Mining Category 10: Bayesian Inference** Category 1: Supervised ML on **Category 7: Scalable ML** / Probabilistic Programming **Structured Data Category 8: Optimization** Category 2: Unsupervised ML on **Category 11: Business Process Structured Data Simulations Category 9: ML in Production** Category 3: Supervised ML on **Time-series data Category 4: Supervised ML on Unstructured Data Category 5: Unsupervised ML on Natural Language Unstructured Data Processing (NLP)**

Why is Text Analytics Important

Lots of unstructured text – 80% of data in organization is unstructured and text data is rapidly growing

2 Text packs a lot of information

3 Text Analytics is the foundation to higher levels of cognitive technologies & to artificial intelligence

NLP in 1 Slide

Let's start with this sample text data

Unstructured Data

Document = Text Data corresponding to each row in the table

Corpus = Collection of all documents across all rows in the table

Words = Each word in the Text Data Row

Action 1: Extract Text, Pre-process, Create DTM & TFIDF

by TF-IDF

9

Action 2: Utilize the Bag of Words Model for Supervised ML

Two Problems with the Bag of Words modelling:

- 1) Number of words in the corpus can be very high dimensional
- 2) Till now we are treating words as being independent of one another, which is not a good assumption in the case of text / language

Action 3: Dimensionality Reduction

Document Term Matrix (DTM)

Latent Semantic Analysis (LSA)

(Basically SVD on the DTM)

Document ID	Dim 1	Dim 2	Dim 3	 Dim K
Doc1	0.75	0.39	0.02	 0.1
Doc2	-0.27	-0.93	0.34	 0.44
Doc3	0.45	0.78	-0.01	 0.23

- K Dimensions where K < N</p>
- Dimensions may not be interpretable

Latent Dirichlet Allocation (LDA)

(Uses Probability Distributions to predict words in topics. Softmax to assign probabilities)

Document ID	Topic 1	Topic 2	Topic 3	Topic X
Doc1	0.9	0	0.1	0
Doc2	0.7	0.2	0	0.1
Doc3	0.5	0.2	0.3	0

- > X Topics where X < N
- Documents → Topics → Words
- > Topics can be interpreted by visualizing the collection of words

Action 4: Utilize All / Some Features for Supervised ML

Features

Dependent Variable

Action 4: Derive Similarities (among words, documents & topics)

Salient Points:

- 1. Each word has a N dimensional vector associated with it. That is each word lives within a N-dimensional space
- 2. Intuition is that words that are similar / replacement of one another (not synonyms) are close to each other
- 3. The N-dimensions are not interpretable by a human
- 4. Word Algebra is possible as it is just addition or subtraction of vectors (Famous example: King Man + Woman = Queen)
- 5. We can find similar words both semantically (Land:Run::Water:Swim) and syntactically (walk:walking::run:running)

- ➤ Continuous Bag of Words (CBOW) Predicting the 'word' given the 'context'
- > Skip-gram Predicting the 'context' given the 'word'

Action 5: Derive Similarities (among words, documents & topics)

Doc2Vec – Finding similarities among documents

Helps to find similar documents as each document is represented by a vector

Topic + Word Vectors (Ida2Vec) – Illustration with an example

Some Useful Resources

1. Patrick's Harrison's talk at PyData 2016	https://www.youtube.com/watch?v=6zm9NC9uRkk

2. Chris Moody's (Stichfix) talk https://www.youtube.com/watch?v=vkfXBGnDplQ

3. DiceTech GitHub https://github.com/DiceTechJobs/ConceptualSearch

4. John Savage talk on Kaggle Home Depot competition <a href="https://www.youtube.com/watch?v="http

Leading up to the Social Media Analytics Workshop...

Thank You

- Karthikeyan Sankaran, Director, LatentView Analytics
- Email ID Karthikeyan.Sankaran@latentview.com
- LinkedIn http://in.linkedin.com/in/karthikeyansankaran
- Twitter @karthikonbi

What are the dimensions of Analytics?

Use Case **Interpret Analytics** Domain Business Formulation Expertise Output Data Engineering & Data Quality & **Understand** Data datasets Architecture Governance Select the right Math / Understand the Evaluating the techniques & code output of algos algorithms Quant Understand the IT Build the tech Software Tech / infrastructure Engineering / SDLC Ecosystem Software