

Supported by:

Rakamin Academy

www.rakamin.com

Career Acceleration School

Kelompok 5:

Alfin Dwisatrio
Wildan Ryan
Dionisius Himando
Laurensia Vanida
Aldi Wachid Arifin
Kartika Novitasari

Data Preprocessing

Splitting Data

Sebelum melakukan data cleansing dan feature engineering, tim kami melakukan splitting data. Jumlah data trainingnya jadi **7.699** dari 10.999, sedangkan data testnya berjumlah **3.300**.

Handle Missing Values

Untuk mengecek data yg kosong/hilang, kami menggunakan fungsi .info() dan .isna().sum()

```
Int64Index: 7699 entries, 6381 to 10863
Data columns (total 10 columns):
                        Non-Null Count Dtype
    Column
    Warehouse_block
                        7699 non-null object
    Mode of Shipment
                        7699 non-null object
    Customer care calls 7699 non-null int64
    Customer rating
                        7699 non-null int64
    Cost_of_the_Product 7699 non-null int64
    Prior purchases
                        7699 non-null int64
    Product importance
                       7699 non-null object
    Gender
                        7699 non-null object
    Discount_offered
                        7699 non-null int64
    Weight in gms
                        7699 non-null
                                       int64
dtypes: int64(6), object(4)
.info()
```

```
Warehouse block
Mode of Shipment
                        0
Customer care calls
                       0
Customer rating
                        0
Cost of the Product
                       0
Prior purchases
                        0
Product importance
                       0
Gender
Discount offered
                       0
Weight_in_gms
dtype: int64
```

.isna().sum()

Hasilnya tidak ada data yang yang bernilai kosong/hilang

Handle Duplicate Data

Untuk mengecek apakah ada data yg duplikat di fitur data, kami menggunakan fungsi .duplicated().sum()

Xtrain.duplicated().sum()
0

Hasilnya tidak ada data yang sama/duplikat

Handle Outliers

Di dalam data, ada 2 fitur yang memiliki outliers yaitu **Prior_purchases** dan **Discount_offered**. Untuk menghapus outlier di 2 fitur tersebut, kami menggunakan **IQR** (**Interquartile Range**). Berikut adalah fungsi yang kami gunakan :

```
print(f'Jumlah baris sebelum memfilter outlier: {len(Xtrain)}')

filtered_entries = np.array([True] * len(Xtrain))
for col in ['Prior_purchases', 'Discount_offered']:
    Q1 = Xtrain[col].quantile(0.25)
    Q3 = Xtrain[col].quantile(0.75)
    IQR = Q3 - Q1
    low_limit = Q1 - (IQR * 1.5)
    high_limit = Q3 + (IQR * 1.5)

    filtered_entries = ((Xtrain[col] >= low_limit) & (Xtrain[col] <= high_limit)) & filtered_entries

Xtrainout = Xtrain[filtered_entries]

print(f'Jumlah baris setelah memfilter outlier: {len(Xtrainout)}')</pre>
```

Hasil setelah outlier dihapus:

Jumlah baris sebelum memfilter outlier: 7699 Jumlah baris setelah memfilter outlier: 5557

Feature Transformation

Feature Transformation kami lakukan pada fitur **Discount_offered** yang distribusi datanya cenderung **right-skewed** dengan fungsi **np.log.** Setelahnya, kami menghapus fitur data Discount_offered dan menggunakan data setelah fungsi log digunakan.

Hasilnya, distribusi fitur Discount_offered terlihat normal, tidak skewed lagi.

Feature Encoding

Karena data bertipe kategorikal maka kami melakukan Label Encoding dan One Hot Encoding (OHE).

Label Encoding digunakan pada fitur **Gender** dan **Product_Importance**, sedangkan OHE pada fiture **Mode_of Shipment**

Gender	Weight_in_gms	log_Discount_offered	enc_gender
М	1327	2.197225	0
F	1522	2.397895	1
М	4539	2.079442	0
F	4766	0.693147	1
М	5659	0.693147	0

Hasil label encoding pada fitur Gender. Male: 0, Female: 1

Product_importance	Gender	Weight_in_gms	$log_Discount_offered$	enc_gender	enc_Product_importance
medium	М	1510	1.791759	0	1
medium	F	1113	2.302585	1	1
low	F	4742	2.079442	1	0
high	F	4260	1.791759	1	2
low	F	5219	2.079442	1	0

Hasil label encoding pada fitur Product Importance. Low: 0, Medium: 1, High: 2

Mode_of_Shipment	mode_Flight	mode_Road	mode_Ship
Ship	0	0	1
Ship	0	0	1
Flight	1	0	0
Flight	1	0	0
Ship	0	0	1

Hasil OHE pada fitur Mode_of Shipment.

Handle Class Imbalance

Untuk mengecek adanya class imbalance, kami mengecek distribusi di fitur Reached.on.Time_Y.N.

Berdasarkan nilainya, Not on time 4605 – **59, 81%** On time 3094 – **40,19%**

Berdasarkan derajat ketimpangan data, data kami tidak termasuk dalam kategori Mild / Moderate / Extreme. Maka, data kami tidak termasuk dalam kategori imbalance.

Feature Engineering

Feature Selection

Berdasarkan heatmap, tidak ada fitur yang redundan, sehingga tidak perlu di drop.

Maka, kami memutuskan untuk menggunakan semua fitur karena fitur yang ada di data kami tidak banyak.

Feature Engineering

Feature Extraction

Kami menambahkan fitur **weight_category** dari fitur **Weight_in_gms**. Kami mengelompokan berdasarkan nilai minimal dan maksimal dari fitur ini. Berikut adalah pembagian berdasarkan beratnya :

• 0-2000 gr : **Light**

• 2000-5000 gr : **Medium**

di atas 5000 gr : Heavy

Berikut adalah contoh dari pembagian kategori berdasarkan beratnya

weight_category	Weight_in_gms
medium	4967
medium	4432
medium	2381
medium	4808
medium	4867
heavy	5331
medium	4958
light	1906
medium	4010
heavy	5345

medium 2277 heavy 1843 light 1437 Name: weight category, dtype: int64

Setelah dilakukan pembagian kategori, mayoritas termasuk dalam **Medium** category.

Feature Engineering

Feature Addition

Di dalam tahap ini, berikut adalah fitur-fitur yang kami bisa tambahkan untuk membantu maksimalisasi penggunaan data di dalam ecommerce :

- 1. Shipment Date (Tanggal pengiriman barang)
 - Fitur ini bisa membantu customer dan perusahaan shipping untuk mengecek kapan barang dikirim, bisa juga untuk memberi estimasi barang akan sampai
- 1. Revenue (Cost Discount offer)
 - Fitur ini untuk melihat seberapa besar pendapatan ecommerce setelah memberikan diskon untuk customer, sehingga bisa digunakan untuk pertimbangan pemberian diskon di periode berikut
- 1. Order Date (Tanggal pemesanan sekaligus pembayaran)
 - Fitur ini bisa membantu perusahan mengecek seberapa efektif dan efisien proses packing barang setelah customer melakukan pemesanan dan pembayaran.
- 1. Membership status (status customer berdasarkan banyaknya transaksi)
 - Fitur ini untuk melihat loyalitas setiap customer berdasarkan pengulangan transaksinya. Perusahaan bisa memberikan reward untuk customer yang melakukan transaksi berkali2 di ecommerce.

Git

GITHUB KELOMPOK 5 :

https://github.com/aldiwachid/E-Commerce-Shipping-Data-.git