6.6 Integration and Differentiation

Problem 6.R:13. Let $f(x) = \int_{t=x}^{t=x+1} \sin(t^2) dt$.

a. Show that when x > 0, $|f(x)| < \frac{1}{x}$.

Proof. Note that x > 0 implies that the limits of integration are correct. Make the substitution $t^2 = u$ to get

$$f(x) = \frac{1}{2} \int_{u=x^2}^{u=(x+1)^2} u^{-\frac{1}{2}} \sin(u) du$$

Integrate by parts with $a = u^{\frac{1}{2}}$ and $db = \sin(u)$ to get

$$f(x) = \frac{1}{2} \left[-u^{-\frac{1}{2}} \cos(u) \right]_{x^2}^{(x+1)^2} - \frac{1}{2} \int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} \cos(u) du \right]$$
$$= \frac{\cos(x^2)}{2x} - \frac{\cos((x+1)^2)}{2(x+1)} - \frac{1}{4} \int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} \cos(u) du$$

Evaluating the integral on the right, $cos(x) \ge -1$, so

$$\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} \cos(u) du \ge -\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} du = 2\left(\frac{1}{x+1} - \frac{1}{x}\right)$$

Substituting,

$$f(x) \le \frac{\cos(x^2)}{2x} - \frac{\cos((x+1)^2)}{2(x+1)} - \frac{1}{2(x+1)} + \frac{1}{2x}$$
$$= \frac{\cos(x^2) + 1}{2x} - \frac{\cos((x+1)^2) + 1}{2(x+1)}$$
$$\le \frac{2}{2x} = \frac{1}{x}$$

Since $\cos(t) \le 1$. To show that $f(x) \ge -\frac{1}{x}$, it suffices to show that $f(x) \le \frac{1}{x}$.

$$-f(x) = \frac{\cos((x+1)^2)}{2(x+1)} - \frac{\cos(x^2)}{2x} + \frac{1}{4} \int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} \cos(u) du$$

By a similar argument as before, $\cos(x) \leq 1$, so

$$\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} \cos(u) du \le \int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} du = 2\left(\frac{1}{x} - \frac{1}{x+1}\right)$$

Substituting,

$$-f(x) \le \frac{\cos((x+1)^2)}{2(x+1)} - \frac{\cos(x^2)}{2x} + \frac{1}{2x} - \frac{1}{2(x+1)}$$
$$\le \frac{1}{2(x+1)} + \frac{1}{2x} + \frac{1}{2x} - \frac{1}{2(x+1)}$$
$$= \frac{1}{x}$$

b. Prove that there exists constant c and function r(x) with $|r(x)| < \frac{c}{x}$ such that

$$2xf(x) = \cos(x^2) - \cos((x+1)^2) + r(x)$$

Proof. I will assume that x>0, as the expression $\frac{c}{x}$ doesn't make much sense for x=0, and it's impossible for $|r(x)|<\frac{c}{x}$ to be true for both positive and negative x while c is constant.

From results in Part a,

$$2xf(x) = \cos(x^2) - \frac{x}{x+1}\cos((x+1)^2) - \frac{x}{2}\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}}\cos(u)du$$
$$= \cos(x^2) - \cos((x+1)^2) + \frac{1}{x+1}\cos((x+1)^2) - \frac{x}{2}\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}}\cos(u)du$$

From the above, it's clear that $r(x) = \frac{1}{x+1}\cos((x+1)^2) - \frac{x}{2}\int_{x^2}^{(x+1)^2}u^{-\frac{3}{2}}\cos(u)du$. Now it remains to show that $|r(x)| < \frac{c}{x}$. Using that $\cos(t)$ and $-\cos(t)$ is are bounded above by 1,

$$r(x) \le \frac{1}{x+1} + \frac{x}{2} \int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}} du = \frac{1}{x+1} - x \left[\frac{1}{x+1} - \frac{1}{x} \right] = \frac{2}{x+1} < \frac{2}{x}$$

Similarly,

$$-r(x) = -\frac{1}{x+1}\cos((x+1)^2) + \frac{x}{2}\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}}\cos(u)du$$
$$\ge -\frac{1}{x+1} - \frac{x}{2}\int_{x^2}^{(x+1)^2} u^{-\frac{3}{2}}du = -\frac{2}{x+1} \ge -\frac{2}{x}$$

Thus $|r(x)| < \frac{3}{x}$.

c. Find the upper and lower limits of xf(x) as x approaches infinity. We know from previous results that

$$xf(x) = \frac{\cos(x^2)}{2} - \frac{\cos((x+1)^2)}{2} + s(x)$$

where $|s(x)| \leq \frac{1}{x}$. $\lim_{x\to\infty} s(x) = 0$, so the upper and lower limits of s(x) are also 0.

Note that by the periodicity of cosine, for $n \in N$, $\cos(\sqrt{2\pi n}^2) = 1$. We now show that there exist infinite $n \in N$ such that $\cos((\sqrt{2\pi n} + 1)^2) = \cos(2\pi n + 2\sqrt{2\pi n} + 1) = -1$, thus implying that $\limsup_{n \to \infty} xf(x) = 1$.

Theorem 1. Let $\delta > 0$. Then there exist infinite natural numbers a such that $|2\sqrt{2a\pi} + 1 - \pi| < \delta \pmod{2\pi}$. In other words, $2\sqrt{2a\pi} + 1$ becomes arbitrarily close to a number of the form $b\pi$, where b is an odd number.

To prove this, we will need to analyze the behavior of $g(x) = 2\sqrt{2\pi}\sqrt{x} + 1$, then evaluate it at specifically chosen a's. We first start by analyzing the Taylor series of \sqrt{x} .

Lemma 2. The Taylor series of \sqrt{x} about $x_0 > 0$ is

$$\sqrt{x_0} + \frac{1}{2(1!)} x_0^{-\frac{1}{2}} (x - n) + \sum_{i=2}^{\infty} \frac{(-1)^{i-1}}{2^i} \frac{1(3)(5)...(2i - 3)}{i!} x_0^{-i + \frac{1}{2}} (x - x_0)^i$$

with radius of convergence $R = x_0$.

Proof. The first few terms of the Taylor series are

$$T(x) = \sqrt{x_0} + \frac{1}{2(1!)}x_0^{-\frac{1}{2}}(x - x_0) - \frac{1}{2^2(2!)}x_0^{-\frac{3}{2}}(x - x_0)^2 + \frac{3}{2^3(3!)}x_0^{-\frac{5}{2}}(x - x_0)^3 \dots$$

To find the radius of convergence, note that

$$\frac{1(3)(5)...(2i-3)}{2^i} < \frac{1}{2} \left(\frac{1}{2}\right) \left(\frac{3}{2}\right) \left(\frac{5}{2}\right) \dots \frac{2i-3}{2} < \frac{1}{2} 1(2)(3) \dots i = \frac{1}{2}i!$$

implying that when $x > x_0$,

$$\frac{1(3)(5)...(2i-3)}{2^{i}(i!)}x_0^{-i+\frac{1}{2}}(x-x_0)^{i} < \frac{\sqrt{x_0}}{2}\left(\frac{x}{x_0}-1\right)^{i}$$

Since T(x) is alternating, it converges when $\frac{x}{x_0} - 1 < 1 \rightarrow x \in [x_0, 2x_0)$. When $x < x_0$.

$$T(x) = \sqrt{x_0} + \frac{1}{2(1!)} x_0^{-\frac{1}{2}} (x - n) - \sqrt{x_0} \sum_{i=2}^{\infty} \frac{1(3)(5)...(2i - 3)}{2^i (i!)} \left(1 - \frac{x}{x_0}\right)^i$$

Since

$$\frac{1(3)(5)...(2i-3)}{2^{i}(i!)} \left(1 - \frac{x}{x_0}\right)^{i} < \frac{1}{2} \left(1 - \frac{x}{x_0}\right)^{i}$$

and the right series is a convergent geometric series under the assumption that $x \in (0, x_0], T(x)$ converges.

We next show that viewed as a sequence over the natural numbers, (g_n) 's differences between terms become arbitrarily small.

Lemma 3. Let
$$(g_n) = 2\sqrt{2\pi}\sqrt{n} + 1$$
 for $n \in N$, and $\Delta g_n = g_{n+1} - g_n = 2\sqrt{2}(\sqrt{n+1} - \sqrt{n})$. Then $\lim_{n \to \infty} \Delta g_n = 0$.

Proof. It suffices to show that $\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n} = 0$. From the results in Theorem 2, the Taylor series of \sqrt{x} at n is

$$\sqrt{n+x} = \sqrt{n} + \frac{1}{2(1!)}n^{-\frac{1}{2}}(x) + \sum_{i=2}^{\infty} \frac{(-1)^{i-1}}{2^i} \frac{1(3)(5)...(2i-3)}{i!} n^{-i+\frac{1}{2}}(x)^i$$

Since the series is alternating and convergent, its partial sums that have a positive term as their highest power are larger than the series. Thus

$$\sqrt{n+1} < \sqrt{n} + \frac{1}{2\sqrt{n}}$$

implying

$$0 \le \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}$$

implying that $\lim_{n\to\infty} \sqrt{n+1} - \sqrt{n} = 0$.

We are now in the position to prove Theorem 1.

Proof. Let (g_n) be the sequence defined by $g_n = 2\sqrt{2\pi}\sqrt{n} + 1 - \pi$. Since $\lim_{n \to \infty} \Delta g_n = 0$, there exists $n_0 \in \mathbb{N}$ such that $n \ge n_0$ implies that $\Delta g_n < \delta$. This, combined with (g_n) being strictly increasing and $\lim_{n \to \infty} g_n = \infty$, imply that (g_n) passes through all numbers greater than g_{n_0} while increasing to infinity, while taking step sizes less than δ .

Specifically, for any natural number b such that $2\pi b > g_{n_0}$, there exists an $a \ge n_0$ in the natural numbers such that

$$g_a \le 2\pi b < g_{a+1}$$

 $\Delta g_a < \delta$ implies

$$|\Delta g_a - 2\pi b| < \delta$$

which is equivalent to

$$|2\sqrt{2\pi}\sqrt{a} + 1 - (2b+1)\pi| < \delta$$

The theorem follows because for distinct b, (g_n) being strictly increasing implies that the a's are distinct.

The results of the main problem now follow.

Lemma 4.
$$\limsup_{n\to\infty} xf(x) = \frac{\cos(x^2)}{2} - \frac{\cos((x+1)^2)}{2} + s(x) = 1$$

Proof. From Theorem 1 and the continuity of $\cos(x)$, for all $\epsilon > 0$, there exist infinite $n \in \mathbb{N}$ such that $\cos(x^2) = \cos(\sqrt{2\pi n}^2) = 1$ and $|\cos((x+1)^2) + 1| = |\cos((\sqrt{2\pi n} + 1)^2) + 1| < \epsilon$. As previously established, $\limsup_{x \to \infty} s(x) = 0$.

Corollary 5.
$$\liminf_{n\to\infty} x f(x) = \frac{\cos(x^2)}{2} - \frac{\cos((x+1)^2)}{2} + s(x) = -1$$

Proof. Add π to the a's in Lemma 4.

d. Does $\int_0^\infty \sin(t^2)dt$ converge?

Theorem 6. $\int_0^\infty \sin(t^2) dt$ converges.

Proof. For finite n,

$$\int_0^n \sin(t^2)dt = \int_0^1 \sin(t^2)dt + f(1) + f(2) \cdots + f(n-1)$$

$$= \int_0^1 \sin(t^2)dt + \sum_{i=1}^{n-1} f(i)$$

$$= \int_0^1 \sin(t^2)dt + \frac{1}{2} \sum_{i=1}^{n-1} \left[\frac{\cos(i^2)}{i} - \frac{\cos\left((i+1)^2\right)}{i} \right] + \frac{1}{2} \sum_{i=1}^{n-1} \frac{r(i)}{i}$$

Taking limits as n approaches infinity, $\sum_{i=1}^{\infty} \frac{r(i)}{i}$ converges due to a comparison with $\sum_{i=1}^{\infty} \frac{1}{i^2}$. To show convergence, we have to show that $\sum_{i=1}^{\infty} \frac{\cos(i^2)}{i} - \frac{\cos((i+1)^2)}{i}$

converges. Writing out the first few terms of the partial sum,

$$\sum_{i=1}^{n-1} \frac{\cos(i^2)}{i} - \frac{\cos\left((i+1)^2\right)}{i} = \frac{\cos(1)}{1} - \frac{\cos(4)}{1} + \frac{\cos(4)}{2} - \frac{\cos(9)}{2} + \frac{\cos(9)}{3} - \frac{\cos(16)}{3} \dots$$

$$= \frac{\cos(1)}{1} - \frac{\cos(4)}{1*2} - \frac{\cos(9)}{2*3} \dots - \frac{\cos\left((n-1)^2\right)}{(n-2)(n-1)} - \frac{\cos(n^2)}{n-1}$$

$$= \frac{\cos(1)}{1} - \frac{\cos(n^2)}{n-1} - \sum_{i=1}^{n-2} \frac{\cos\left((i+1)^2\right)}{i(i+1)}$$

Taking the limits as n goes to infinity, $\frac{\cos(n^2)}{n-1}$ goes to zero. The sum on the right is absolutely convergent by comparing it with $\sum_{i=1}^{\infty} \frac{1}{i^2}$, so the sum on the right is convergent. Thus $\sum_{i=1}^{\infty} \frac{\cos(i^2)}{i} - \frac{\cos\left((i+1)^2\right)}{i}$, and by extension $\int_0^{\infty} \sin(t^2) dt$, converge.

Problem 6.R.14. let $f(x) = \int_{x}^{x+1} \sin(e^{t}) dt$.

a. Show that $e^x|f(x)| < 2$.

Proof. Making the substitution $u = e^t$,

$$f(x) = \int_{e^x}^{e^{x+1}} \frac{\sin(u)}{u} du$$

Integrating by parts with $a = u^{-1}$ and $db = \sin(u)$,

$$f(x) = -u^{-1}\cos(u)\Big|_{e^x}^{e^{x+1}} - \int_{e^x}^{e^{x+1}} u^{-2}\cos(u)du$$
$$= \frac{\cos(e^x)}{e^x} - \frac{\cos(e^{x+1})}{e^{x+1}} - \int_{e^x}^{e^{x+1}} u^{-2}\cos(u)du$$

implies

$$xf(x) = \cos(e^x) - e^{-1}\cos(e^{x+1}) - e^x \int_{e^x}^{e^{x+1}} u^{-2}\cos(u)du$$

$$\leq 1 + \frac{1}{e} + e^x \int_{e^x}^{e^{x+1}} u^{-2}du$$

$$= 1 + \frac{1}{e} - e^x \left[\frac{1}{u}\right]_{e^x}^{e^{x+1}}$$

$$= 1 + \frac{1}{e} + 1 - \frac{1}{e} = 2$$

Similarly,

$$xf(x) \ge -1 - \frac{1}{e} - e^x \int_{e^x}^{e^{x+1}} u^{-2} du = -2$$

b. Show that $e^x f(x) = \cos(e^x) - e^{-1} \cos(e^{x+1}) + r(x)$, where $|r(x)| < Ce^{-x}$, for some constant C.

Proof. From the form above, it's clear that $r(x)=-e^x\int_{e^x}^{e^{x+1}}u^{-2}\cos(u)du$. Integrating by parts with $a=u^{-2}$ and $db=\cos(u)$,

$$\begin{split} r(x) &= -e^x \left[u^{-2} \sin(u) \Big|_{e^x}^{e^{x+1}} + 2 \int_{e^x}^{e^{x+1}} u^{-3} \sin(u) du \right] \\ &= \frac{\sin(e^x)}{e^x} - \frac{\sin(e^{x+1})}{e^{x+2}} - 2e^x \int_{e^x}^{e^{x+1}} u^{-3} \sin(u) du \\ &\leq \frac{1}{e^x} + \frac{1}{e^{x+2}} + 2e^x \int_{e^x}^{e^{x+1}} u^{-3} du \\ &= \frac{1}{e^x} + \frac{1}{e^{x+2}} - e^x \left[\frac{1}{e^{2x+2}} - \frac{1}{e^x} \right] = \frac{2}{e^x} \end{split}$$

Similarly,

$$r(x) \ge -\frac{1}{e^x} - \frac{1}{e^{x+2}} - 2e^x \int_{e^x}^{e^{x+1}} u^{-3} du = \frac{-2}{e^x}$$

Problem 6.R.15. Let f be real and continuously differentiable on [a,b], with f(a)=f(b)=0 and $\int_a^b f^2(x)dx=1$. Prove that $\int_a^b x f(x)f'(x)dx=-\frac{1}{2}$ and $\int_a^b [f'(x)]^2 dx \int_a^b x^2 f^2(x)dx>\frac{1}{4}$.

Proof. Integrating $\int_a^b f^2(x)dx$ by parts with $a=f^2(x)$ and db=1,

$$1 = \int_{a}^{b} f^{2}(x)dx = xf^{2}(x)\Big|_{a}^{b} - 2\int_{a}^{b} xf(x)f'(x)dx = -2\int_{a}^{b} xf(x)f'(x)dx$$

Similarly, by the Cauchy-Schwartz inequality,

$$\frac{1}{2} = \left| \int_{a}^{b} x f(x) f'(x) dx \right| \le \left[\int_{a}^{b} (f'(x))^{2} dx \right]^{\frac{1}{2}} \left[\int_{a}^{b} x^{2} f^{2}(x) dx \right]^{\frac{1}{2}}$$

Lemma 7. $\int_{a}^{b} (f'(x))^{2} dx > 0$

Proof. f(a) = f(b) = 0 implies that if f is a constant function, it must be the zero function. $\int_a^b f^2(x) dx \neq 0$ implies that f is not the zero function. Thus, f' is not the zero function. Since f' is continuous, ${f'}^2$ is continuous and nonzero, implying that $\int_a^b (f'(x))^2 dx > 0$.

Lemma 8. $\int_{a}^{b} x^{2} f^{2}(x) dx > 0$

Proof. f is continuous and nonzero implies that f^2 and x^2f^2 are continuous and nonzero.

The Cauchy-Schwartz inequality only holds with equality when at least one of the vectors has norm zero. Since $\int_a^b (f'(x))^2 dx$ and $\int_a^b x^2 f^2(x) dx$ are nonzero, the inequality is strict.

Problem 6.R.16. For $1 < s < \infty$, define

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

a. Prove that

$$\zeta(s) = s \int_{1}^{\infty} \frac{[x]}{x^{s+1}} dx$$

where [x] denotes the greatest integer $\leq x$.

Proof. Denote $f_N(s) = s \int_1^N \frac{[x]}{x^{s+1}} dx$ for $N \in \mathbb{N}$, N > 1. Splitting the integral and evaluating the greatest integer function,

$$f_N(s) = s \int_1^N \frac{[x]}{x^{s+1}} dx$$

$$= s \left(\int_1^2 \frac{1}{x^{s+1}} dx + \int_2^3 \frac{2}{x^{s+1}} dx + \dots + \int_{N-1}^N \frac{N-1}{x^{s+1}} dx \right)$$

$$= s \sum_{i=1}^{N-1} i \int_i^{i+1} \frac{1}{x^{s+1}} dx = -\sum_{i=1}^{N-1} i (x)_i^{i+1} = \sum_{i=1}^{N-1} i \left(\frac{1}{i^s} - \frac{1}{(i+1)^s} \right)$$

$$= 1 \left(\frac{1}{1^s} - \frac{1}{2^s} \right) + 2 \left(\frac{1}{2^s} - \frac{1}{3^s} \right) + 3 \left(\frac{1}{3^s} - \frac{1}{4^s} \right) + \dots + (N-1) \left(\frac{1}{(N-1)^s} - \frac{1}{N^s} \right)$$

$$= \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots + \frac{1}{(N-1)^s} - \frac{N-1}{N^s}$$

$$= \sum_{i=1}^{N-1} \frac{1}{i^s} - \frac{N-1}{N^s}$$

Let $\zeta_N(s) = \sum_{i=1}^N \frac{1}{i^s}$ be the nth partial sum of $\zeta(s)$. Taking the difference between $f_N(s)$ and $\zeta_N(s)$,

$$|f_N(s) - \zeta_N(s)| = \left| \sum_{i=1}^{N-1} \frac{1}{i^s} - \sum_{i=1}^N \frac{1}{i^s} - \frac{N-1}{N^s} \right|$$
$$= \frac{1}{N^{s-1}}$$

Since s > 1, the difference goes to 0 as n approaches infinity.

b. Prove that

$$\zeta(s) = \frac{s}{s-1} - s \int_{1}^{\infty} \frac{x - [x]}{x^{s+1}} dx$$

Problem 6.6:1. On [a,b], let α be a strictly increasing function and f a continuous function, and for $x \in [a,b]$ define $F(x) = \int_a^x f(t) d\alpha(t)$. Show that for all $x \in [a,b]$, $\frac{dF(x)}{d\alpha(x)} = f(x)$, where the left-hand side is defined as $\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)}$, and the equality includes the assertion that the limit exists.

Proof. First, we note that because $f \in \Re(\alpha)$ on [a, b]

$$F(x) - F(t) = \int_{a}^{x} f(s)d\alpha(s) - \int_{a}^{t} f(s)d\alpha(s) = \int_{t}^{x} f(x)d\alpha(s)$$

For all partitions P,

$$\int_{t}^{x} f(s)d\alpha(s) \leq \sum_{x_{i} \in P} M_{i} \Delta \alpha_{i}$$

$$\leq \left(\sup_{s \in [x,t]} f(s)\right) \sum_{x_{i} \in P} \Delta \alpha_{i}$$

$$= \left(\sup_{s \in [x,t]} f(s)\right) (\alpha(x) - \alpha(t))$$

Since $\alpha(x)$ is strictly increasing, $\alpha(x) - \alpha(t) > 0$ when $x \neq t$, so

$$\frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \sup_{s \in [x, t]} f(s)$$

Taking the limit as t approaches x on both sides gives

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le \lim_{t \to x} \sup_{s \in [x, t]} f(s)$$

Lemma 9.

$$\lim_{t \to x} \sup_{s \in [x,t]} f(s) = f(x)$$

Proof. Let x_n be an arbitrary sequence such that $\forall n \in \mathbb{N}, x_n > x$ and $\lim_{n \to \infty} x_n = x$. Since $[x, x_n]$ is a closed, bounded interval on \mathbb{R} and f is continuous, there exists a sequence of points $p_n \in [x, x_n]$ such that $f(p_n) = \sup_{s \in [x, x_n]} f(s)$. $x_n \to x$ implies $p_n \to x$ by the Squeeze Theorem, and the continuity of f implies that $f(p_n) \to f(x)$.

Thus

$$\lim_{t \to x} \frac{F(x) - F(t)}{\alpha(x) - \alpha(t)} \le f(x)$$

The analogous result for the lower integral and the Squeeze Theorem complete the proof.

Problem 6.6:2.

(a). Show that if f is continuous, then

$$\int_{t-a}^{b} \left(\int_{s-a}^{t} f(s)ds \right) dt = \int_{t-a}^{b} (b-t)f(t)dt$$

Proof. Let $x \in [a, b]$. Define $P(x) = \int_{t=a}^{x} \left(\int_{s=a}^{t} f(s) ds \right) dt$ and $Q(x) = \int_{t=a}^{x} (x - t) f(t) dt$.

f(t) being continuous on [a,b] implies that it is Riemann-integrable. This implies that $f^*(t) = \int_{s=a}^t f(s)ds$ is continuous, and that $P(x) = \int_a^x f^*(t)dt$ is continuous and differentiable. Similarly, (b-t)f(t) is continuous on [a,b], so Q(x) is continuous and differentiable.

By the Fundamental Theorem of Calculus,

$$P'(x) = \int_{s=a}^{x} f(s)ds$$

For Q(x), since t and tf(t) are Riemann-integrable,

$$Q(x) = x \int_{t=a}^{x} f(t)dt - \int_{t=a}^{x} tf(t)dt$$

x is trivially differentiable. Since t and tf(t) are continuous,

$$Q'(x) = \int_{t=a}^{x} f(t)dt + xf(x) - xf(x) = \int_{t=a}^{x} f(t)dt$$

Thus, P'(x) = Q'(x). Integrating both sides from a to c, then setting c = b, produces the desired result.

(c). Show that the result of Part (a) continues to hold if f is merely assumed Riemann-integrable, but not necessarily continuous.

Proof. P(x) has the same derivative as in Part (a), as the derivation only assumed that P(x) is Riemann-integrable. Similarly, for $x_0 \in [a, b]$ where $f(x_0)$ is continuous, the above derivations hold for Q(x).

Let x_0 be a point where $f(x_0)$ is discontinuous. First, we will prove two lemmas.

Lemma 10. If f(x) is bounded, then $(x-x_0)f(x)$ is continuous at x_0 .

Proof. Let $M = \sup |f(x)|$. Then $(x - x_0)f(x) \le |(x - x_0)f(x)| \le |(x - x_0)|M$, which can be made arbitrarily small.

Lemma 11. If f(x) is continuous, then $(x - x_0)f(x)$ is differentiable at x_0 with derivative $f(x_0)$.

Proof. By the definition of differentiability,

$$\lim_{x \to x_0} \frac{(x - x_0)f(x) - (x_0 - x_0)f(x_0)}{x - x_0} = \lim_{x \to x_0} f(x) = f(x_0)$$

by continuity.

We can rewrite Q(x) as

 $Q(x) = \int_{t=a}^{x} ((x - x_0) + (x_0 - t))f(t)dt = (x - x_0) \int_{t=a}^{x} f(t)dt + \int_{t=a}^{x} (x_0 - t)f(t)dt$

because the sub-functions are trivially Riemann-integrable. $\int_{t=a}^{x} f(t)$ is a continuous function, so by Lemma 11 $(x-x_0) \int_{t=a}^{x} f(t) dt$ is differentiable at $x=x_0$ with derivative $\int_{t=a}^{x_0} f(t) dt$. Similarly, f(t) is bounded because it is Riemann-integrable, so by Lemma 10 $(x_0-t)f(t)$ is continuous at $t=x_0$. Therefore $\int_{t=a}^{x} (x_0-t)f(t) dt$ is differentiable at $x=x_0$, with derivative 0.

Therefore, Q(x) is differentiable at $x = x_0$, and $Q'(x_0) = \int_{t=a}^{x} f(t)dt$. The proof then follows using the same logic as in Part (a).

Problem 6.6:4. Let f be a function on [a, b], and α , β monotonically increasing nonnegative functions on [a, b] such that $f \in \mathfrak{R}(\alpha) \cap \mathfrak{R}(\beta)$, $\alpha \in \mathfrak{R}(\beta)$, and $\beta \in \mathfrak{R}(\alpha)$. Prove that

$$\int f d(\alpha \beta) = \int f \alpha d(\beta) + \int f \beta d(\alpha)$$

Proof. First note that $f\alpha \in \mathfrak{R}(\beta)$ and $f\beta \in \mathfrak{R}(\alpha)$. Also note that $\alpha\beta$ is monotonically increasing, so $\alpha\beta$ is a valid integrator.

Theorem 12. Under the assumptions of Problem 6.6.4, $f \in \Re(\alpha\beta)$.

Proof. First note that by expanding the terms,

$$\alpha_i \beta_i - \alpha_{i-1} \beta_{i-1} = (\alpha_i - \alpha_{i-1})(\beta_i - \beta_{i-1}) + \alpha_{i-1}(\beta_i - \beta_{i-1}) + \beta_{i-1}(\alpha_i - \alpha_{i-1})$$

Writing out the difference between the upper and lower Riemann sums,

$$\sum_{i=1}^{n} (M_i - m_i)(\alpha_i \beta_i - \alpha_{i-1} \beta_{i-1})$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i \Delta \beta_i + \sum_{i=1}^{n} (M_i - m_i) \alpha_{i-1} \Delta \beta_i + \sum_{i=1}^{n} (M_i - m_i) \beta_{i-1} \Delta \alpha_i$$

$$\leq \alpha(b) \sum_{i=1}^{n} (M_i - m_i) \Delta \beta_i + \alpha(b) \sum_{i=1}^{n} (M_i - m_i) \Delta \beta_i + \beta(b) \sum_{i=1}^{n} (M_i - m_i) \Delta \alpha_i$$

The third line follows because all terms are positive, and α and β are monotonically increasing. Because $f \in \mathfrak{R}(\alpha) \cap \mathfrak{R}(\beta)$, there exist partitions that make the third line arbitrarily small.

Now we prove the main result. For arbitrary $\epsilon > 0$, let P_1 , P_2 , and P_3 be partitions of [a,b] such that

- (1) $U(P_1, f, \alpha\beta) L(P_1, f, \alpha\beta) < \epsilon$
- (2) $U(P_2, f\alpha, \beta) L(P_2, f\alpha, \beta) < \epsilon$
- (3) $U(P_3, f\beta, \alpha) L(P_3, f\beta, \alpha) < \epsilon$

Let P be their common partition. Let $x_0 < x_1 ... < x_n$ denote the points of P. For all i in (1, 2...n), let $t_i \in (x_{i-1}, x_i)$ be arbitrary, fixed points, and let $P^* = (x_0, t_1, x_1 ... x_{i-1}, t_i, x_i ... t_n, x_n)$. Trivially, P^* partitions [a, b] and is a refinement of P

Consider $\int f d(\alpha \beta)$ and its associated Riemann-Stieltjes sum over P^* . Since P^* is a refinement of P_1 , for arbitrary points $u_i \in [x_{i-1}, t_i]$ and $v_i \in [t_i, x_i]$,

$$\left| \sum_{i=1}^{n} \left[f(u_i)(\alpha_{t_i}\beta_{t_i} - \alpha_{x_{i-1}}\beta_{x_{i-1}}) + f(v_i)(\alpha_{x_i}\beta_{x_i} - \alpha_{t_i}\beta_{t_i}) \right] - \int fd(\alpha\beta) \right| < \epsilon$$

Letting $u_i = x_{i-1}$ and $v_i = x_i$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_{i-1}} (\alpha_{t_i} \beta_{t_i} - \alpha_{x_{i-1}} \beta_{x_{i-1}}) + f_{x_i} (\alpha_{x_i} \beta_{x_i} - \alpha_{t_i} \beta_{t_i}) \right] - \int f d(\alpha \beta) \right| < \epsilon$$

Now consider $\int f\alpha d(\beta)$ and its associated Riemann-Stieltjes sum over P. Letting $u_i = x_i$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_i} \alpha_{x_i} (\beta_{x_i} - \beta_{x_{i-1}}) \right] - \int f \alpha d(\beta) \right| < \epsilon$$

Similarly, considering $\int f \beta d(\alpha)$ over P and letting $u_i = x_{i-1}$ for all i,

$$\left| \sum_{i=1}^{n} \left[f_{x_{i-1}} \beta_{x_{i-1}} (\alpha_{x_i} - \alpha_{x_{i-1}}) \right] - \int f \beta d(\alpha) \right| < \epsilon$$

Adding the inequalities and using the Triangle Inequality gives

$$\left| \int f d(\alpha \beta) - \int f \alpha d(\beta) - \int f \beta d(\alpha) \right|$$

$$+ \sum_{i=1}^{n} \left[- \left[f_{x_{i-1}} (\alpha_{t_i} \beta_{t_i} - \alpha_{x_{i-1}} \beta_{x_{i-1}}) + f_{x_i} (\alpha_{x_i} \beta_{x_i} - \alpha_{t_i} \beta_{t_i}) \right] \right|$$

$$+ f_{x_i} \alpha_{x_i} (\beta_{x_i} - \beta_{x_{i-1}}) + f_{x_{i-1}} \beta_{x_{i-1}} (\alpha_{x_i} - \alpha_{x_{i-1}}) \right] \left| < 3\epsilon \right|$$

Simplifying,

$$\left| \int f d(\alpha \beta) - \int f \alpha d(\beta) - \int f \beta d(\alpha) + \sum_{i=1}^{n} \left[(f_{x_i} - f_{x_{i-1}})(\alpha_{t_i} \beta_{t_i} - \alpha_{x_i} \beta_{x_{i-1}}) \right] \right| < 3\epsilon$$

To analyze the sum on the right, note that

$$\left| \sum_{i=1}^{n} \left[(f_{x_{i}} - f_{x_{i-1}})(\alpha_{t_{i}}\beta_{t_{i}} - \alpha_{x_{i}}\beta_{x_{i-1}}) \right| \right.$$

$$\leq \sum_{i=1}^{n} \left| f_{x_{i}} - f_{x_{i-1}} \right| \left| \alpha_{t_{i}}\beta_{t_{i}} - \alpha_{x_{i}}\beta_{x_{i-1}} \right|$$

$$\leq \sum_{i=1}^{n} \left(\sup_{x \in [x_{i-1}, x_{i}]} f(x) - \inf_{x \in [x_{i-1}, x_{i}]} f(x) \right) \left(\alpha_{x_{i}}\beta_{x_{i}} - \alpha_{x_{i-1}}\beta_{x_{i-1}} \right)$$

$$< \epsilon$$

The second inequality comes from noticing that t_i is in (x_{i-1}, x_i) , and that α and β are weakly increasing. The third inequality comes from P being a refinement of P_1 . Thus

$$\left|\int fd(\alpha\beta)-\int f\alpha d(\beta)-\int f\beta d(\alpha)\right|<4\epsilon$$
 Which can be made arbitrarily close to 0.