

Deep learning and applications - Part 2

Sylvain Lobry

11/11/2023

What can you do with an image?

Input image

What can you do with an image?

What can you do with an image?

What can you do with an image?

Classification

"Cat"

What can you do with an image?

Classification

"Cat"

What can you do with an image?

Classification

"Cat"

Object detection

What can you do with an image?

Classification

"Cat"

Object detection

Task of object detection

Objective:

get a set of bounding boxes associated to an objet

Output = { $(Bbox_1, class_1), ... (Bbox_n, class_n)$ }

Task of object detection

Compared to classification:

- + Spatial information
- + Can describe more
- More complicated

Compared to semantic segmentation:

- + Much more simple
- + Sufficient in most cases

Why do we need it?

Face recognition

Image: CNET

Why do we need it?

Remote sensing

Image source: https://captain-whu.github.io/DOTA/index.htm

Why do we need it?

- Security scans at airports
- Trash detection
- Crop monitoring
- Autonomous vehicles...

Bounding box

Rectangle delineating the object

- Rectangle delineating the object
- 3 options:
 - (x,y) of top left corner and width/height

- Rectangle delineating the object
- 3 options:
 - (x,y) of top left corner and width/height
 - (x,y) of the center and width/height

- Rectangle delineating the object
- 3 options:
 - (x,y) of top left corner and width/height
 - (x,y) of the center and width/height
 - (x,y) of top left and bottom right corners
- In any case, bounding box = 4 variables
- Coordinates and width/height are normalized by the size of the image.

UNIVERSITÉ DE PARIS

Object detection

Evaluation of a bounding box

IoU (Intersection over Union) a.k.a. Jaccard index

IoU is then thresholded to determine whether The bounding box is accurate

Naïve object detection

Naïve object detection

Naïve object detection

Naïve object detection

Naïve object detection

Naïve object detection

- And you can slide a new window with a different bounding box size...
- Not efficient AT ALL...

Naïve object detection - take 2

Previous approach does not really work as you have to make as many inference pass as the number of Bounding boxes tested...

Idea from Sermanet et. al. : sliding window can be seen as a convolution! It could be as a Fully Convolutionnal Network (FCN).

Careful: only spatial dimensions indicated. Multi-dimensional output!

Naïve object detection - take 2

Previous approach does not really work as you have to make as many inference pass as the number of Bounding boxes tested...

Idea from Sermanet et. al. : sliding window can be seen as a convolution! It could be as a Fully Convolutionnal Network (FCN).

Non-maximum suppresion

<u>Problem</u>: you might have more than one detection for each object...

Non-maximum suppresion

<u>Problem</u>: you might have more than one detection for each object...

We want to remove least confident predictions: Non-maximum suppression (NMS)

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence Step2: select the most confident box as the reference.

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

Step3: select the second most confident box:

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

Step3: select the second most confident box:

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

Step3: select the second most confident box:

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

UNIVERSITÉ DE PARIS

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Example on windows: darker frame = better confidence on the detection.

Step1: for each class, order bounding boxes by decreasing order of confidence

Step2: select the most confident box as the reference.

- -- IoU with reference > threshold?
- --- remove
- -- else
- --- keep

Non-maximum suppresion

Important: to be done for each object separatly!

Recap

We have seen:

- What is a bounding box
- How to evaluate its accuracy
- How to suppress multiple detections

Questions?

Recap

We have seen:

- What is a bounding box
- How to evaluate its accuracy
- How to suppress multiple detections

But... How do you get the bounding boxes? 2 options:

- Hardcoded bounding boxes (a.k.a. anchor boxes)
- Try to predict the bounding boxes (a.k.a. region proposal)

Anchor box

Anchor box

Divide the image into a grid

Anchor box

- Divide the image into a grid
- For each cell, define B bounding boxes (here B = 2)

Anchor box

- Divide the image into a grid
- For each cell, define B bounding boxes (here B = 2)
- Prediction for each grid cell:

$$(x_1, y_1, w_1, h_1, p_1, ..., x_B, y_B, h_B, w_B, p_B, c_1, c_2)$$
Box 1 Box B Classes

YOLO

Put everything we have seen until now (prediction based on anchor boxes, NMS): YOLO

Recap

We have seen:

- What is a bounding box
- How to evaluate its accuracy
- How to suppress multiple detections

But... How do you get the bounding boxes? 2 options:

- Hardcoded bounding boxes (a.k.a. anchor boxes)
- Try to predict the bounding boxes (a.k.a. region proposal)

R-CNN

1) Region proposal algorithm: selective search [1]: semantic segmentation + grouping

R-CNN

- 1) Region proposal algorithm: selective search [1]: semantic segmentation + grouping -> select ~2000 regions
- 2) Classification of the regions by a CNN -> R-CNN [2]

R-CNN vs YOLO

R-CNN: Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR

YOLO: Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-

time object detection. CVPR

Improvements over the two types of algorithms in the past years

Let's code!