

#### Agenda

- Introduction
- Power-Driven Synthesis
- Power-Driven Fitting
- Clock Power Management
- Low-Power Design
- Conclusion



#### Introduction



# **Dynamic Power Dominant Focus of Power Optimization**



#### **Dynamic Power Optimization Flow**



#### **Power-Driven Synthesis**





Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation



#### **Power-Driven Synthesis Options**

- Extra effort
  - More power reduction
  - May increase compile time
- Normal compilation (Default)
  - Standard power reduction
  - No effect on compile time or design performance
- - No optimization



#### **Power-Driven Synthesis for RAM**

#### Memory Optimization

- Normal compilation Setting
  - Promote Read/Write Enable Signals to Clock Read/Write Enable Signals
- Extra effort Setting
  - Promote Read/Write Enable Signals to Clock Read/Write Enable Signals
  - AND Power-Aware Memory Balancing

#### Memory Balancing configures RAM for optimal need

- Default setting selects narrow/deeper memory configurations
  - e.g. 4 1k x4 blocks (x4=narrow; 1kwords=deeper)
- MW "Maximum Depth" option selects wider/shallow RAMs for power
  - e.g. 4 256 x16 blocks (x16=wider; 256words=shallow)
  - Access only valid memory slice, disable the rest
  - Does require additional decoder and mux logic however



#### **RAM Enable Optimization**

- Convert read/write enables to clock read/write enables
  - Shuts RAM down when unused, using less power



- Set RAM Block Type = "Auto"
  - Quartus II Power Optimizer chooses best RAM block configuration



#### **Memory Balancing**





#### **Maximum Depth Parameter**

| M4K Configuration        | Number of M4K Blocks | ALUTs |
|--------------------------|----------------------|-------|
| 4K × 1 (default setting) | 36                   | 0     |
| 2K × 2                   | 36                   | 40    |
| 1K×4                     | 36                   | 62    |
| 512 × 9                  | 32.                  | 143   |
| 256 × 18                 | 32                   | 302   |
| 128 × 36                 | 32                   | 633   |











M4K Blocks Configuration with Different Memory Depth and Width



#### **Power-Driven Fitting**





#### **Power-Driven Fitting Options**

#### Extra effort

- Optimizes at the expense of speed and compile time
  - Group high-toggling logic together to minimize routing loads
  - Group logic from same clock domains to minimize clock routing
- Runs PowerPlay Power Analyzer
  - Best with Value Charge Dump (.VCD) or Signal Activity (.SAF)

#### Normal compilation

- Optimizes without affecting speed or compile time
  - Uses power efficient DSP block configurations by swapping input operand order (transparent to designer)



# Minimize Routing Loads

- Minimize capacitance of high-toggling signals
- Timing constraints maintained





# **Minimize Clock Routing**

- Standard Place & Route
  - Places logic for optimal timing and routing usage
  - Minimizing clock power not high priority





# Minimize Clock Routing (ctd)

- Extra effort Place & Route
  - Groups logic from same clock domain with each other
  - Reduces utilized clock routing (and therefore switching power)





# **Power Optimization Flow (Default)**

- Straight-forward
- Longer compile times
- Not fully optimized for Power





# **Power Optimization Flow (for Power)**

- Accurate toggle rates from simulation
  - SAF provides design signal activity information
  - **Processes Power Analyzer input** constraints
- Even longer compile times
- **But fully optimized for Power**





# **Clock Power Management**

- Clocks represent a significant portion of Core Dynamic Power consumption
- Clock routing power is automatically optimized by the Quartus II software where possible
  - Clock domains (under Power-Driven Fitting)
- Dynamic clock-enables driven by internal logic provides further clock routing power reduction



#### **Dynamic Clock Enable**

Use Enable to shut down entire clock domains

- Entire clock domain unused in some cycles at times
- Use MegaWizard manager to generate these blocks
  - altclkctrl MegaFunction
- Consumes less power than routing a clock enable to all registers
- Available on global & regional clock network



 Quartus II can automatically promote register-level clock enables to LAB-block level Enables



#### **Coding Dynamic Clock Enables**

- LAB-wide clock enables allow clock gating at LAB level
- Shutting off LAB-wide clock enable lowers switching power
  - Global clock network remains unaffected
- Clock enables automatically promoted to LAB-wide enables
  - Must be coded correctly

```
always @ (posedge clk)
begin
  if (enable)
    reg <= new_value;
  else
    reg <= reg;
end;</pre>
```



# **Dynamic Clock Enable for RAMs**

- RAM power primarily from dynamic clocking
  - Pre-charge, discharge of RAM array
  - Reducing number of clock events reduces dynamic power.
- Address/data inputs have minimal effect on power
  - Internal memory circuitry active whether address or data has changed
- Use memory clock enable control in MegaWizard
  - Can obtain near zero dynamic power on cycles when RAM not accessed



#### Dynamic Clock Enable in MegaWizard





#### **Low-Power Design**

- Design techniques utilize specific architecture features, focusing on low power
- TriMatrix memory optimized for different RAM functions
  - Quartus II can select best size and configuration
  - Use altsyncram MegaFunction



- DSP Implementation
  - Mode Multiplication
  - Multiply-Accumulation
  - Multiply-Addition
  - Less power than using ALM





#### **Low-Power Design – Glitch Reduction**

- Some logic produces many edges/transitions per cycle
  - E.g. CRC/parity, combinational multipliers
  - Each transition, or glitch, results in unnecessary power consumption
  - Register inputs & outputs of to filter out "glitchy" behavior
  - Insert pipeline registers if possible





# Low-Power Design – Pipelining

- Effective for glitch prone arithmetic systems
- Advantages
  - Increased speed
  - Short logic depth
  - Reduced switching (less dynamic power)
- Disadvantages
  - Increased logic and register utilization
  - May increase power for designs with minimal glitches
  - Latency and throughput changed



#### **Power Optimization Advisor**



- Explains power analysis best practices
- Provides Optimization suggestions
- Highlights recommended settings not enabled in design



#### **Design Space Explorer**

- Searches Quartus options to find best implementation
  - "Search for Lowest Power"
  - Finds settings that minimize power while meeting timing constraints
  - "quartus\_sh –dse", or Tools Menu





#### Conclusion

- Power reduction is a major part of successful FPGA design
- Quartus II software provides options to reduce power
  - Power-Driven Synthesis
  - Power-Driven Fitting
- Low-Power Design techniques reduce power further
  - Adding Clock Enables can reduce switching power
  - Glitch-Removal, Pipelining also reduces power
- Power Optimization Advisor
- Design Space Explorer settings for lowest power

