Reaction-diffusion model for oxidative aging of bitumen

Uwe Mühlich

Intro

Molecular structure

saturates²

$$\underset{\mathsf{resins}^2}{\mathsf{resins}^2}$$

aromatics / naphtenics²

¹[Akbarzadeh et al., 2007] ²[Soenen, 2017]

asphaltenes 1

source: http://www.interchem.at

$$\begin{array}{c}
O_2 \\
\hline
\end{array}$$

$$\begin{array}{c}
O \\
\parallel \\
S
\end{array}$$

$$H_2O$$

³[Petersen and Glaser, 2011]

Mixtures - partial mass balances

$$\rho_1 \leftarrow \frac{n_1 m_1}{V} \quad \rho_2 \leftarrow \frac{n_2 m_2}{V} \qquad \rho_3 \leftarrow \frac{n_3 m_3}{V}$$

Mixtures - partial mass balances

$$\rho_1 \leftarrow \frac{n_1 m_1}{V} \quad \rho_2 \leftarrow \frac{n_2 m_2}{V} \qquad \rho_3 \leftarrow \frac{n_3 m_3}{V}$$

$$\partial_{\tau}\rho_{1} + J'_{1} = r_{1}$$

$$\partial_{\tau}\rho_{2} + J'_{2} = r_{2}$$

$$\partial_{\tau}\rho_{3} + J'_{3} = r_{3}$$

$$\rho_1 \leftarrow \frac{n_1 m_1}{V} \quad \rho_2 \leftarrow \frac{n_2 m_2}{V} \qquad \rho_3 \leftarrow \frac{n_3 m_3}{V}$$

$$\partial_{\tau} \rho_{1} + J'_{1} = r_{1}$$

$$\partial_{\tau} \rho_{2} + J'_{2} = r_{2}$$

$$\partial_{\tau} \rho_{3} + J'_{3} = r_{3}$$

$$\partial_{\tau}\rho_3 + J_3' = r_3$$

$$\partial_{\tau}\rho_{\alpha} + J_{\alpha}' = r_{\alpha} , \quad \alpha = 1, ..., N$$

Mixtures - chemical potential

chemical potential

change in energy by removing / adding one unit of particles

pure substance

Mixtures - chemical potential

change in energy by removing / adding one unit of particles

pure substance

mixture

mass balances

TIP-framework used

$$\partial_{\tau}\rho_{\alpha} + J_{\alpha}' = r_{\alpha}$$

diffusion fluxes

$$J_{\alpha} = -\frac{1}{T} \sum_{\beta=1}^{\nu-1} L_{\alpha\beta} \left[\mu_{\beta} - \mu_{\nu} \right]'$$

reaction kinetics

$$r_{\alpha} = \Lambda s_{\alpha} M_{\alpha}$$

chemical potentials

$$\mu_{\alpha} = \mu_{\alpha}^{0} + RT \ln a_{\alpha}$$
$$= \mu_{\alpha}^{0} + RT \ln \chi_{\alpha} \gamma_{\alpha}$$

Define the players

- $\bigcirc O_2$
- $2 H_2O$
- aromatized (ARA*) with one S=O
- aromatizable compounds with traces of sulfur (ARA)
 - resins
 - aromatics
 - asphaltenes
- saturates

assumption:

every ARA member affected only once

⇒ average compounds

Define the players

 $\bigcirc O_2$

 $2 H_2O$

aromatized (ARA*) with one S=O

- aromatizable compounds with traces of sulfur (ARA)
 - resins
 - aromatics
 - asphaltenes
- saturates

assumption:

every ARA member affected only once

 \Longrightarrow average compounds

Typical elemental composition for heavy oil (Gateau et al., 2004).

Fraction	Weight percentage (%)	Elementary composition based on C ₂₀ + (%)				
		C	H	N	0	S
Asphaltene	14.1	83.8	7.5	1.3	1.7	4.8
Resin	37.3	82.8	8.9	1.5	2.0	4.3
Aromatic	37.2	84.3	10.0	< 0.3	1.1	4.0
Saturate	11.4	86.6	13.0	< 0.3	< 0.2	< 0.1

¹ From Venezuela reserve.

stoichiometry

$$1 O_2 + 1 ARA \rightleftharpoons 1ARA^* + 1 H_2 O$$

stoichiometric coefficients

$$s_1 = s_4 = -1$$
, $s_3 = s_2 = 1$, $s_5 = 0$.

molar fraction relations

$$\chi_3 = \chi_2,
\chi_5 = \chi_5^0 [1 - \chi_1 - \chi_2],
\chi_4 = [1 - \chi_5^0] [1 - \chi_1 - \chi_2] - \chi_2.$$

mass balances

$$\partial_{\tau}c_1 + \bar{J}_1' = -\Lambda$$
$$\partial_{\tau}c_2 = \Lambda$$

- O_2
- 2 H₂O3 ARA*
- 3 ARA²
- 5 saturates

 s_{α} stoichiometric coeff's

 χ_{α} molar fraction $\frac{n_{\alpha}}{n_{\mathrm{tot}}}$

 c_{lpha} molar concentrations $rac{
ho_{lpha}}{M_{lpha}}$

 M_{lpha} molecular mass

 Λ reaction rate density $\frac{r_{\alpha}}{s_{\alpha}M_{\alpha}}$

Regular solution type activity model [Vidal, 2003]

$$\ln \gamma_{\alpha} = \frac{v_{\alpha}^{*}}{RT} \left[\delta_{\alpha} - \bar{\delta} \right]^{2}$$

with

$$\bar{\delta} = \sum_{\alpha=1}^{N} \delta_{\alpha} \Phi_{\alpha}$$

$$\Phi_{\alpha} = \frac{v_{\alpha}^* \chi_{\alpha}}{\sum\limits_{\beta=1}^{N} v_{\beta}^* \chi_{\beta}} = \frac{v_{\alpha}^* \chi_{\alpha}}{V^*} .$$

O_2
H_2O
ARA*
ARA
saturates

χ_{α}	molar fraction $\frac{n_{\alpha}}{n_{\mathrm{tot}}}$
M_{α}	molecular mass
v_{α}^{*}	molar volume of pure
	substance in liquid state
δ_{lpha}	solubility parameter

 Φ_{α} volumetric fraction

diffusion part (constant T)

$$[\mu_2 - \mu_5]_{,j} = \beta_1 [\mu_1 - \mu_5]'$$

$$[\mu_3 - \mu_5]_{,j} = \beta_2 [\mu_1 - \mu_5]'$$

$$[\mu_4 - \mu_5]_{,j} = \beta_3 [\mu_1 - \mu_5]'$$

$$J_1 = -\frac{L_{11}^*}{T} [\mu_1 - \mu_5]'$$

potentials
$$\begin{bmatrix} J' & \frac{\partial []}{\partial x} \\ & \frac{RL_{11}^*}{\chi_1} \\ & & \text{(mobility)} \end{bmatrix}$$

chemical

$$A_{15} = \ln \frac{\gamma_1}{\gamma_5}$$

$$J_1 = -L\left\{ \left[1 + \frac{\chi_1}{1 - \chi_1 - \chi_2} + \chi_1 \frac{\partial A_{15}}{\partial \chi_1}\right] \chi_1' + \left[\frac{\chi_1}{1 - \chi_1 - \chi_2} + \chi_1 \frac{\partial A_{15}}{\partial \chi_2}\right] \chi_2' \right\}$$

diffusion part (constant T)

$$\begin{pmatrix} J_1 \\ \mathcal{L} \\ \mathcal{L}$$

$$\begin{aligned} [\mu_2 - \mu_5]_{,j} &= \beta_1 [\mu_1 - \mu_5]' \\ [\mu_3 - \mu_5]_{,j} &= \beta_2 [\mu_1 - \mu_5]' \\ [\mu_4 - \mu_5]_{,j} &= \beta_3 [\mu_1 - \mu_5]' \end{aligned}$$

$$J_1 = -\frac{L_{11}^*}{T} [\mu_1 - \mu_5]'$$

$$\begin{array}{ccc} 1 & O_2 \\ 2 & H_2O \\ 3 & \mathsf{ARA}^* \\ 4 & \mathsf{ARA} \\ 5 & \mathsf{saturates} \end{array}$$

potentials
$$\begin{bmatrix} J' & \frac{\partial []}{\partial x} \\ L & \frac{RL_{11}^*}{\chi_1} \\ \text{(mobility)} \end{bmatrix}$$

$$A_{15} = \ln \frac{\gamma_1}{\gamma_1}$$

chemical

$$J_{1} = -L \left\{ \left[1 + \frac{\chi_{1}}{1 - \chi_{1} - \chi_{2}} + \chi_{1} \frac{\partial A_{15}}{\partial \chi_{1}} \right] \chi_{1}' + \left[\frac{\chi_{1}}{1 - \chi_{1} - \chi_{2}} + \chi_{1} \frac{\partial A_{15}}{\partial \chi_{2}} \right] \chi_{2}' \right\}$$

approximate Λ by a polynomial in activities [Pekar M. and Samohyl I., 2014]

$$\begin{split} \Lambda \approx P_{\Lambda} &= B_0 \quad + \quad \frac{1}{2} B_{11} a_1^2 + B_{12} a_1 a_2 + B_{13} a_1 a_3 + B_{14} a_1 a_4 + B_{15} a_1 a_5 \\ &+ \quad \frac{1}{2} B_{22} a_2^2 + B_{23} a_2 a_3 + B_{24} a_2 a_4 + B_{25} a_2 a_5 \\ &+ \quad \frac{1}{2} B_{33} a_3^2 + B_{34} a_3 a_4 + B_{35} a_3 a_5 \\ &+ \quad \frac{1}{2} B_{44} a_4 + B_{45} a_4 a_5 \\ &+ \quad \frac{1}{2} B_{55} a_5^2 \end{split}$$

approximate Λ by a polynomial in activities [Pekar M. and Samohyl I., 2014]

$$\begin{split} \Lambda \approx P_{\Lambda} &= B_0 &+ \frac{1}{2} B_{11} a_1^2 + B_{12} a_1 a_2 + B_{13} a_1 a_3 + B_{14} a_1 a_4 + B_{15} a_1 a_5 \\ &+ \frac{1}{2} B_{22} a_2^2 + B_{23} a_2 a_3 + B_{24} a_2 a_4 + B_{25} a_2 a_5 \\ &+ \frac{1}{2} B_{33} a_3^2 + B_{34} a_3 a_4 + B_{35} a_3 a_5 \\ &+ \frac{1}{2} B_{44} a_4 + B_{45} a_4 a_5 \\ &+ \frac{1}{2} B_{55} a_5^2 \end{split}$$

equilibrium

• affinity
$$A = -\sum\limits_{\alpha=1}^{N} \mu_{\alpha} s_{\alpha}$$
 must vanish

$$\ln \left(\frac{a_1^{\ominus} a_4^{\ominus}}{a_2^{\ominus} a_3^{\ominus}} \right) = \frac{\mu_A^{\ominus}}{RT} \quad \rightarrow \quad K = \frac{a_1^{\ominus} a_4^{\ominus}}{a_2^{\ominus} a_3^{\ominus}}$$

 $lack \Lambda^\ominus=\Lambda(a_lpha=a_lpha^\ominus)$ must vanish too

approximate Λ by a polynomial in activities [Pekar M. and Samohyl I., 2014]

$$\begin{split} \Lambda \approx P_{\Lambda} &= B_0 &+ \frac{1}{2} B_{11} a_1^2 + B_{12} a_1 a_2 + B_{13} a_1 a_3 + B_{14} a_1 a_4 + B_{15} a_1 a_5 \\ &+ \frac{1}{2} B_{22} a_2^2 + B_{23} a_2 a_3 + B_{24} a_2 a_4 + B_{25} a_2 a_5 \\ &+ \frac{1}{2} B_{33} a_3^2 + B_{34} a_3 a_4 + B_{35} a_3 a_5 \\ &+ \frac{1}{2} B_{44} a_4 + B_{45} a_4 a_5 \\ &+ \frac{1}{2} B_{55} a_5^2 \end{split}$$

equilibrium

$$\bullet \ \ \text{affinity} \ A = -\sum\limits_{\alpha=1}^N \mu_\alpha s_\alpha \ \ \text{must vanish}$$

$$\ln \left(\frac{a_1^{\ominus} a_4^{\ominus}}{a_2^{\ominus} a_3^{\ominus}} \right) = \frac{\mu_A^{\ominus}}{R T} \quad \rightarrow \quad K = \frac{a_1^{\ominus} a_4^{\ominus}}{a_2^{\ominus} a_3^{\ominus}}$$

$$\bullet$$
 $\Lambda^{\ominus} = \Lambda(a_{\alpha} = a_{\alpha}^{\ominus})$ must vanish too

$$\Lambda = B_{14}[a_1 a_4 - K a_2 a_3]$$

intermediate result:

$$\Lambda = B_{14} \left[\chi_{1} \chi_{4} \exp\left(\frac{v_{1}^{*}}{RT} \left[\delta_{1} - \overline{\delta}\right]^{2} + \frac{v_{4}^{*}}{RT} \left[\delta_{4} - \overline{\delta}\right]^{2}\right) - \chi_{2} \chi_{3} \exp\left(\frac{v_{2}^{*}}{RT} \left[\delta_{2} - \overline{\delta}\right]^{2} + \frac{v_{3}^{*}}{RT} \left[\delta_{3} - \overline{\delta}\right]^{2}\right) K \right]$$

$$\Lambda = B_{14}\chi_1\chi_4 \exp\left(\frac{v_1^*}{RT} \left[\delta_1 - \bar{\delta}\right]^2 + \frac{v_4^*}{RT} \left[\delta_4 - \bar{\delta}\right]^2\right)$$

final result:

$$\Lambda = B_{14}\chi_1 \left[[1 - \chi_5^0] [1 - \chi_1 - \chi_2] - \chi_2 \right] \exp\left(\frac{v_1^*}{RT} \left[\delta_1 - \bar{\delta} \right]^2 + \frac{v_4^*}{RT} \left[\delta_4 - \bar{\delta} \right]^2 \right)$$

species		density	molecular weight	molar volume	solubility	
		g cm ³	g mol	cm ³ mol	√MPa	$\sqrt{\frac{g}{\text{cm } s^2}}$
oxygen water		1.114 0.988	32 18	28.0 18.2	14.0 48.0	44272.2 151790.4
ARA*		0.500	10	1709.0	20.0	63246.0
ARA	aromatics resins asphaltenes	1.006 1.054 1.200	440 990 4500	437.0 940.0 3750.0	21.0 19.0 20.0	
	average			1709.0	20.0	63246.0
saturates		0.887	370	417.0	16.5	52177.9

$$J_{1} = -L \left\{ \left[1 + \frac{\chi_{1}}{1 - \chi_{1} - \chi_{2}} + \chi_{1} \frac{\partial A_{15}}{\partial \chi_{1}} \right] \chi_{1}' + \left[\frac{\chi_{1}}{1 - \chi_{1} - \chi_{2}} + \chi_{1} \frac{\partial A_{15}}{\partial \chi_{2}} \right] \chi_{2}' \right\}$$

$$\Lambda = B_{14}\chi_1 \left[[1 - \chi_5^0][1 - \chi_1 - \chi_2] - \chi_2 \right] \exp \left(\frac{v_1^*}{RT} \left[\delta_1 - \bar{\delta} \right]^2 + \frac{v_4^*}{RT} \left[\delta_4 - \bar{\delta} \right]^2 \right)$$

- only 2 purely phenomenological parameters (L, B_{14})
- able to distinguish between different compositions
- diffusion not significantly affected by the oxidation process supports hypothesis of additional processes at molecular level

Akbarzadeh, K., Alboudwarej, H., Svrcek, W. Y., and Yarranton, H. W. (2005).

A generalized regular solution model for asphaltene precipitation from n-alkane diluted heavy oils and bitumens.

Fluid Phase Equilibria, 232(1):159 – 170.

Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., Kabir, S., Jamaluddin, A. J., Marshall, A. G., Rodgers, R. P., Mullins, O. C., and Solbakken, T. (2007).

Asphaltenes - problematic but rich in potential.

Asphalteries - problematic but non in potential.

Oilfield Review, (22 - 43).

Pekar M. and Samohyl I. (2014).

The Thermodynamics of Linear Fluids and Fluid Mixtures. Springer.

Petersen, J. C. and Glaser, R. (2011).

Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited.

Road Materials and Pavement Design, 12(4):795-819.

Powers, D. P. (2014).

Characterization and Asphaltene Precipitation Modeling of Native and Reacted Crude Oils.

PhD thesis, University of Calgary.

Soenen, H. (2017).

communication.

Vidal, J. (2003).

Thermodynamics.

Editions OPHRYS.

- second reaction C=O
- structure formation
- N₂ diffusion
- diffusion of rejuvenates
- mechanical part
- ...

- aging mortar
- diffusion rejuvenates
- mechanical properties

- aging asphalt
- diffusion rejuvenates
- mechanical properties