2019 -

(1st Semester)

Time: 3 hours

Full Marks: 60

Answer all the Parts as per directed

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words as far as practicable

(DIGITALLOGIC)

PART-I

L.	rm m me	Dianks :		
FG.			-	Ct = 3

- (a) 1001011 represent a binary number whose decimal equivalent is _____.
- (b) The number of digits in octal system is

1 × 8

- Write the Boolean expressions in sum of products form of Y = (B+D)(A'+B'+C).
 - (f) Convert decimal number 214 to its octal equivalent.
- Write the behavioral model of a simple AND gate.
 - (h) Briefly explain about EPROM.
 - (A) Realize the OR gate and AND gate using NOR gate.
- State de Morgan's theorem and absorption, law.

PART-IV: IS WILL TO BE THE PART-IV

Answer all questions:

6 × 4

4. (a) Implement the function

$$F = (AB + A'B')(CD' + C'D)$$

using (1) NAND gates (ii) NOR gates.

6

- (f) What is flash memory?
- (g) Subtract (11010)₂ (10000) by using 2's complement.
- (h) What is a PAL?
 - (i) Find the unknown base $(240)_{10} = (1430)_{1}$.
 - (i) What is FPGA?

PART-III

- 3. Answer any eight questions:
- 2×8
- (a) Simplify the Boolean expression

$$Y = A + AB + ABC$$

- (b) Draw a 2 bit by 2 bit Binary multiplier 3/6 circuit.
 - (c) Why a pulse transition circuit is used in the clock circuit of an edge triggered JK Flip-Flop?
- Prove the distributive property of Boolean algebra.

(d)	A device which converts BCD to seven			
	S. Caned			
. (e)	form of logical expression is suitable for realization of digital circuit using only NAND gates.			
(()	The registers which are used to simply store the data are called			
(g)	A 32 × 10 ROM contains adecoder.			
	The Boolean expression $A \cdot B' + A' \cdot B + A \cdot B$ is equivalent to			
	PART-II			
An	swer any eight questions: $1\frac{1}{2} \times 8$			
(a)	What is NOR gates ?			
1-(5)	What are the outputs of half-subtractor?			
.(0)	What is EEPROM?			
(tl)	What is a latch?			
1 (e)	Define shift register.			

	(b)	Solve using k-map.	6
	٠	Σ (0, 1, 2, 5, 7, 8, 9, 10, 15, 18)	v
5.	(a)	Multiply (+14) and (-6) using Booth's algorithm. Or	6
س	(b)	Briefly explain a 4 bit carry-look ahead adder.	6
6.	(a)	Design a 3-bit binary counter using T flip-flop. Or	6
بي.	(b)	Explain a 4-to-1 line multiplexer with logic diagram and function table.	6
7.	(a)	Write notes on: (i) Asynchronous DRAMS	6
. (١٠.	(ii) Flash memory.	

Or

- (b) Write notes on:
 - (i) Synchronous DRAMS
 - (ii) PROM.

SH CSE — 02 (Model Syllabus)

1st Semester Examination, 2021

Time: 3 hours

Full Marks: 60

Answer from all the Parts as per direction

The figures in the right-hand margin indicate marks

Candidates are required to answer in their own words

as far as practicable

(DIGITAL LOGIC)

PART - I

- Answer the followings within one word/one sentences:
 - (a) The decimal equivalent of the binary number (101.01), is _____.
 - (b) Number of digits in binary number is _____.
 - (c) The 2's complement of a binary number 10010 is _____.

(d)	IEEE single precision floating point number					
	is bits.					

- (e) What is register?
- (f) What symbol used for NOR gate?
- (g) PROM stands for _____
- (h) What is dynamic memory?

PART - II

- 2. Answer any eight of the following questions within two or three sentences each: $1\frac{1}{2} \times 8$
 - (a) Find the binary equivalent of decimal number (37.12)₁₀.
 - (b) State Demorgan's law of Boolean algebra.
 - (c) Define K-map of 3-variable.
 - (d) Find 1's complement of the binary number 100011.
 - (e) Define guard bits.
 - (f) What is sequential circuit?

- (g) Define fast adder.
- (h) Give an example of shift register.
- (i) What is RAM?
- (j) What is cost of memory?

PART - III

- 3. Answer any eight questions within 75 words 2 x 8 each:
 - (a) Define the maxterm of the logical expression.
 - (b) Why NAND and XOR called universal set of gates.
 - (c) What is underflow condition in addition of signed numbers?
 - (d) What is UP counters?
 - (e) Define signed number.
 - (f) What is 4 × 1 multiplexer?
 - (g) Define finite state machine.
 - (h) How to measure size of memory?

- (i) What is DRAM?
- (i) What is semiconductor memory?

PART - IV

Answer all questions:

6 x 4

- 4. (a) If $x, y \in B$, where B is Boolean algebra Prove that, x + (x, y) = x.
 - (b) Simplify the following Boolean expression:(A+B).(A+C)

Or

- (c) Write the Product of Sum (POS) of the expression using K-map F (A, B, C, D) = ∑ (1, 2, 4, 8, 12, 13)
- (d) Draw the logic circuit of (X, Y') + (X' + Y').
- 5. (a) Multiple (-5) and (-10) using Booth's algorithm.

Or

- (b) Add the numbers using 2's complement.
 - (i) 24 + (-11)
 - (ii) (-38) + (-10)
- 6. (a) Discuss state table, diagram and state equation of JK flip-flop.

Or

- (b) Design a 2 to 4 decoder circuit.
- 7. Write short notes on (any two):
 - (i) RAMBUS memory
 - (ii) Asynchronous DRAM
 - (III) Secondary Storage
 - (iv) Flash memory.