What is Rendering?

Rendering = turn Geometry into Image

rendering

Rendering Pipeline

What For?

- Insights into how things work
 - Understanding algorithms
- Insights into how fast things work
 - Performance
- The pipeline is the "engine" that creates images from 3D scenes
- Usually in hardware (on graphics card)
- CPU side only tells hardware what triangles to render (game play, AI, Collision detection, ...), GPU does the rest
- What is the rest?

Rendering Pipeline

Rendering Pipeline

Geometry Processing

- Task: "geometrical" (2D, 3D) operations on the input data (triangles)
 - Animate objects
 - Move objects
 - Move the camera
 - Project onto screen (3D to 2D)
 - Clipping (avoid triangle(s) (parts) outside screen)
 - Execute geometrical shaders (tessellation, geometry, vertex, ...)

Rasterization

Task: turn output from geometry stage into fragments (potential

pixels)

Fragment Operations

- Task: mainly combining and/or filtering of fragments to get pixels
- Filtering by
 - Zbuffer test (resolve visibility)
 - Alpha test (filter transparent fragments via threshold)
 - Stencil test, scissor test, write mask
- Combining by
 - Blending operations (for semi transparency)
 - Logical operations (logical combinations of fragments and framebuffer)

