S.MT101 MATEMATUK 1

ЛЕКЦ 11. Функцийн шинжилгээ.

Багш С. Уранчимэг

2021 он

- Функцийн өсөх буурах завсар экстремумын цэг.
- Функцийн хамгийн их, хамгийн бага утга. (ХИУ, ХБУ)
- Функцийн хотгор, гүдгэр, нугаралтын цэг.
- Функцийн графикийн асимптот.
- Функцийн графикийг байгуулах.

Хэрэв
$$\forall x_1, x_2 \in (a,b)$$
 хувьд:
$$x_1 < x_2 \quad \text{үед} \quad \begin{array}{ccc} f(x_1) < f(x_2) & \text{өсөх} \\ & & \text{функц гэнэ.} \end{array}$$

$$f(x_1) > f(x_2) \quad \text{буурах}$$

Теорем (Функц өсөх (буурах) зайлшгүй нөхцөл.)

Хэрэв y=f(x) функц (a,b) дээр дифференциал
члагддаг ба

өсөж байвал
$$f'(x) \geq 0$$
 байна. буурч $f'(x) \leq 0$

Теорем (Функц өсөх (буурах) хүрэлцээтэй нөхцөл.)

Хэрэв f(x) функц [a,b] дээр тасралтгүй, (a,b) дээр дифференциалчлагддаг ба $\forall x \in (a,b)$ хувьд

$$f'(x)>0$$
 байвал $\mathrm{f}(\mathrm{x})$ функц өснө.
$$f'(x)<0$$
 буурна.

Тодорхойлолт

Хэрэв
$$\forall x \neq x_0 \in (x_0 - \delta, x_0 + \delta)$$
 хувьд

$$f(x)>f(x_0)$$
 байвал x_0 -ийг $y=f(x)$ -ийн локаль минумум максимум

цэг гэнэ.

Локаль минимум, максимум цэгийг экстремумын цэг гэнэ.

Функц хэдэн ч экстремумын цэгтэй байж болно.

Теорем (Экстремум байх зайлшгүй нөхцөл.)

Хэрэв x_0 нь f(x) функцийн экстремумын цэг бол

$$f'(x_0)=0$$

$$f'(x) = 0$$
, $\nexists f'(x)$, $f'(x) \to \infty$, $f'(x) \to -\infty$

цэгүүдийг функцийн экстремумын хувьд сэжигтэй цэг гэнэ.

Сэжигтэй цэг дээр функц экстремумтэй байх албагүй!

Теорем (Экстремум орших I хүрэлцээтэй нөхцөл)

Хэрэв f(x) функц x_0 экстремумын хувьд сэжигтэй цэгтэй ба

хэрэв,

$$\forall x \in (x_0 - \delta, x_0) \implies f'(x_0) < 0$$

 $\forall x \in (x_0, x_0 + \delta) \implies f'(x_0) > 0$ байх $\exists \delta \implies x_0$ минимум.

хэрэв,

$$\forall x \in (x_0 - \delta, x_0) \implies f'(x_0) > 0$$

 $\forall x \in (x_0, x_0 + \delta) \implies f'(x_0) < 0$ байх $\exists \delta \implies x_0$ максимум.

Теорем (Экстремум орших II хүрэлцээтэй нөхцөл)

f(x) функц x_0 экстремумын хувьд сэжигтэй цэгтэй ба $\exists f''(x_0)$ гэе. Хэрэв

- $f''(x_0) > 0$ бол x_0 минумум цэг
- $f''(x_0) < 0$ бол x_0 максимум цэг

байна.

y = f(x) функцийн тодорхойлогдох мужийг төгсгөлөг тооны монотон завсруудад хувааж болно.

Монотон завсар бүр нь функцийн экстремумын хувьд сэжигтэй цэгүүдээр зааглагдана.

Функцийн хамгийн их, хамгийн бага утга. (ХИУ, ХБУ)

Хэрэв f(x) функц [a,b] дээр тасралтгүй бол уг хэрчим дээр ХИУ, ХБУ авна.

ХИУ, ХБУ хэрчмийн дотоод цэг, эсвэл төгсгөлийн цэгүүд дээр авна.

ХИУ, ХБУ хэрчмийн дотоод цэг бол экстремум цэг байна.

Функцийн хамгийн их, хамгийн бага утга. (ХИУ, ХБУ)

(1.) еешиЖ

 $y=x-2\sin x$ функцийн ХИУ, ХБУ-ыг $[0,\pi]$ завсарт ол.

$$f(0) = 0$$

$$f(\pi) = \pi$$

$$f'(x) = 1 - 2\cos x = 0 \implies \cos x = \frac{1}{2} \implies x = \frac{\pi}{3}$$

$$f''(x) = 2 \sin x$$
 $f''(\frac{\pi}{3}) > 0 \implies f_{min}(\frac{\pi}{3}) = -0.6849$

$$XИУ = \pi$$
 $XБУ = -0.6849$

Функцийн хотгор, гүдгэр, нугаралтын цэг.

Тодорхойлолт

Хэрэв x_1 цэгийн орчны график, x_1 абцисстэй цэгт татсан шүргэгчийн дээд (доод) талд оршвол $(x_1, f(x_1))$ цэгийг f(x) функцийн графикийн хотгорын (гүдгэрийн) цэг гэнэ.

Теорем

f(x) функц x_1 цэг дээр тодорхойлогдсон бөгөөд $f''(x_1)$ тасралтгүй байг. Хэрэв f''(x)>0 [f"(x)<0] бол функцийн график $(x_1,f(x_1))$ цэг дээр хотойно [гүдийнэ].

Функцийн хотгор, гүдгэр, нугаралтын цэг.

Теорем (Нугаралтын цэгийн зайлшгүй нөхцөл.)

Хэрэв x_0 цэг дээр f(x) функц тасралтгүй II эрэмбийн уламжлалтай ба x_0 нугаралтын цэг бол

$$f''(x_0)=0$$

байна.

$$f''(x) = 0$$
, $\nexists f''(x)$, $f''(x) \to \infty$, $f''(x) \to -\infty$

цэгүүдийг функцийн графикийн нугаралтын хувьд сэжигтэй цэг гэнэ.

Функцийн графикийн нугаралтын хувьд сэжигтэй цэг бүр нугаралтын цэг байх албагүй!

Функцийн хотгор, гүдгэр, нугаралтын цэг.

Теорем (Нугаралтын цэгийн хүрэлцээтэй нөхцөл.)

f(x) функц 2 удаа тасралтгүй дифференциалчлагддаг ба f''(x) нь нугаралтын хувьд сэжигтэй цэгийг дайрч гарахдаа тэмдгээ эсрэгээр өөрчилбөл сэжигтэй цэг нугаралтын цэг байна.

Тодорхойлолт

y=f(x) функцийн хувьд координатын эхээс М цэг хязгааргүй холдоход функцийн графикийн $\mathrm{M}(\mathrm{x},\mathrm{f}(\mathrm{x}))$ цэгээс ямар нэг шулуун хүртэлх зай тэг рүү тэмүүлбэл уг шулууныг функцийн графикийн асимптот гэнэ.

Абсцисс тэнхлэгт перпендикуляр асимптотыг босоо асимптот гэнэ.

x=a шулуун нь y=f(x) функцийн босоо асимптот байх зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь

$$\lim_{x\to\pm a}f(x)$$

өрөөсгөл хязгааруудын ядаж нэг нь төгсгөлгүй байна.

Тасралтгүй функц босоо асимптотгүй.

$$\lim_{x\to\pm\infty}f(x)=b<\infty$$

бол y=b налуу асимптот байна. M цэгийн х координат нь $\pm\infty$ уруу тэмүүлэх үед

$$y = f(x)$$

функцийн

$$y = kx + b$$

налуу асимптот олдох зайлшгүй бөгөөд хүрэлцээтэй нөхцөл нь

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
$$b = \lim_{x \to \pm \infty} [f(x) - kx]$$

хязгаарууд оршин байх явдал юм.

Жишээ (2.)

 $y = \frac{1}{2} + \frac{1}{x-1}$ функцийн графикийг байгуул.

Бодолт. Функцийн тодорхойлогдох мужийг олбол,

$$x-1 \neq 0 \implies x \neq 1$$

Функцийн графикийн босоо асимптот:

$$x = 1$$

Хэвтээ асимптотыг олбол,

$$y = \lim_{x \to \pm \infty} \left[\frac{1}{2} + \frac{1}{x - 1} \right] = \frac{1}{2} \implies y = \frac{1}{2}$$

(3.)

y = x - 2 arctg x функцийн графикийг байгуул.

Бодолт. Функцийн тодорхойлогдох мужийг олбол,

$$x \in (-\infty, \infty)$$

Функцийн график босоо асимптотгүй.

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} (x - 2 \operatorname{arctg} x) = \pm \infty$$

Иймд хэвтээ асимптот байхгүй.

(3.)

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x - 2 \arctan x}{x} = 1$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} (x - 2 \arctan x - x) = \mp \pi$$

Эндээс

$$y = x + \pi$$
 $y = x - \pi$

налуу асимптотуудтай байна.

Багш С. Уранчимэг

Функцийн график байгуулах схем

- 1. Тодорхойлогдох муж олно.
- 2. Координатын тэнхлэгүүдтэй огтолцох цэгүүд олно.
- 3. Асимптот олно.
- 4. Өсөх буурах завсар, экстремумын цэг олно.
- 5. Хотгор гүдгэр байх завсар, нугаралтын цэг олно.
- 6. Функцийн график байгуулна.

Жишээ (4.)

 $y = \frac{x^3}{9-x^2}$ функцийн бүрэн шинжилгээ хийж графикийг байгуул.

Бодолт.

1. Тодорхойлогдох мужийг олбол:

$$9 - x^2 \neq 0$$
 $x \neq -3$ $x \neq 3$

$$D(x):]-\infty, -3[\cup]-3, 3[\cup]3, \infty[$$

2. x = 0 үед y = 0 учир координатын эхийг дайрна.

Жишээ (4.)

3. Асимптот олбол:

$$\lim_{x\to\pm\infty}\frac{x^3}{9-x^2}=\infty$$

хэвтээ асимптот байхгүй. Функц

$$x = \pm 3$$

цэг дээр тасралттай.

$$\lim_{x\to\pm 3} f(x) = \lim_{x\to\pm 3} \frac{x}{9-x^2} = \infty$$

учир

$$x = \pm 3$$

хоёр босоо асимптоттой байна.

Жишээ (4.)

3.

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^3}{(9 - x^2)x} = -1$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} (\frac{x^3}{9 - x^2} + x) =$$

$$= \lim_{x \to \pm \infty} \frac{x^3 + 9x - x^3}{9 - x^2} = \lim_{x \to \pm \infty} \frac{9x}{9 - x^2} = 0$$

Эндээс

$$y = -x$$

налуу асимптоттой байна.

Жишээ (4.)

4. Өсөх, буурах завсар экстремумын цэгээ олъё.

$$y' = \frac{3x^2(9 - x^2) + 2x \cdot x^3}{(9 - x^2)^2} = \frac{27x^2 - 3x^4 + 2x^4}{(9 - x^2)^2}$$
$$= \frac{27x^2 - x^4}{(9 - x^2)^2}$$
$$\frac{27x^2 - x^4}{(9 - x^2)^2} = 0 \implies 27x^2 - x^4 = 0$$
$$x = 0, \quad x = \pm 3\sqrt{3}, \quad x = \pm 3$$

гэсэн 5-н сэжигтэй цэг олдоно.

(4.)

X	$(-\infty, -3\sqrt{3})$	$-3\sqrt{3}$	$(-3\sqrt{3}, -3)$	-3	(-3,0)
<i>y'</i>	_	0	+	∄	+
У	¥	$\frac{9\sqrt{3}}{2}$	7	∄	7

X	0	(0,3)	3	$(3, 3\sqrt{3})$	$3\sqrt{3}$	$(3\sqrt{3},\infty)$
<i>y'</i>	0	+	∄	+	0	_
У	0	7	∄	7	$-\frac{9\sqrt{3}}{2}$	>

 $x = -3\sqrt{3}$ нь минимумын цэг, $x = 3\sqrt{3}$ нь максимумын цэг болно. Эдгээр цэг дээрх функцийн утгуудыг олбол:

$$f_{min}(-3\sqrt{3}) = \frac{9\sqrt{3}}{2}, \quad f_{max}(3\sqrt{3}) = -\frac{9\sqrt{3}}{2}$$

Жишээ (4.)

5. Хотгор гүдгэр байх завсар, нугаралтын цэг олъё.

$$y'' = \frac{(486x + 18x^3)}{(9 - x^2)^3}$$

$$\frac{(486x+18x^3)}{(9-x^2)^3}=0$$

Эндээс

$$x = 0, \quad x = -3, \quad x = 3$$

нугаралтын хувьд сэжигтэй цэг гарна.

(.) еешиЖ

X	$(-\infty, -3)$	-3	(-3,0)	0	(0,3)	3	$(3,\infty)$
<i>y'</i>	+	∄	_	0	+	∄	_
У	$\overline{}$	∄		0)	∄	

Нугаралтын цэгүүд:

$$x = 0, \quad x = \pm 3$$

6. Функцийн графикийг байгуулцгаая.

