# REAL TIME EYE DETECTION AND TRACKING METHOD FOR DRIVER ASSISTANCE SYSTEM

#### A PROJECT REPORT

#### Submitted by

ACHUDAN. T.S (Reg. No.201402001) GOBINATH. N (Reg. No. 201402031) KIRUBAKARAN. K (Reg. No. 201402053)

In partial fulfilment for the award of the degree of

### **BACHELOR OF ENGINEERING**

in

ELECTRICAL AND ELECTRONICS ENGINEERING



# DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING MEPCO SCHLENK ENGINEERING COLLEGE, SIVAKASI

(An Autonomous Institution affiliated to Anna University Chennai)



**APRIL 2018** 

# **BONAFIDE CERTIFICATE**

AND TRACKING METHOD FOR DRIVER ASSISTANCE SYSTEM is the bonafide work of ACHUDAN T.S.(201402001), GOBINATH N.(201402031), KIRUBAKARAN K. (201402053) who carried out the research under my supervision. Certified further, that to the best of my knowledge the work reported here in does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

Mr. A. Sivaprakash, M.E., Supervisor, Assistant Professor (Sr.gr), Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Sivakasi. **Dr. N.Senthil Kumar**, M.E., Ph.D., Head of the Department, Senior Professor, Department of Electrical and Electronics Engineering, Mepco Schlenk Engineering College, Siyakasi.

Submitted for viva-voce Examination held at MEPCO SCHLENK ENGINEERING COLLEGE, SIVAKASI (AUTONOMOUS) on ......

**Internal Examiner.** 

**External Examiner.** 

#### **ACKNOWLEDGEMENT**

We are grateful to mention the people whose constant inspiration, guidance and blessing made our project a successful one.

We thank god for his substantial blessing and mercy at all stages of the completion our project. Taking opportunity, I thank my parents and friends for their sacrifice in supporting us.

We feel ourselves honoured to place warm salutation to the management of **MEPCO SCHLENK ENGINEERING COLLEGE (AUTONOMOUS) SIVAKASI**, which gave us an opportunity to have the strong base in Electrical and Electronics Engineering.

We express our sincere thanks to **Dr.S.ARIVAZHAGAN**, **M.E.,Ph.D.**, Principal of Mepco Schlenk Engineering College (Autonomous) Sivakasi, for giving us a comfortable environment.

We express our sincere thanks to **Dr.N.SENTHIL KUMAR, M.E.,Ph.D.**, Senior Professor, Head of the Electrical and Electronics Engineering Department at Mepco schlenk Engineering College (Autonomous) Sivakasi for his kind support and encouragement.

We express our sincere thanks to **Mr. A. SIVAPRAKASH, M.E.,** Assistant Professor(Sr.gr), Department of Electrical and Electronics Engineering Department at Mepco Schlenk Engineering College (Autonomous) Sivakasi, for his valuable guidance in completion of project Work.

We like to thank all the staff members in Electrical and Electronics Engineering Department of Mepco Schlenk Engineering College for their Valuable suggestions.

### **Abstract**

Drowsiness and fatigue of automobile drivers reduce the driver's abilities of vehicle control, natural reflex, recognition and perception. Such diminished vigilance level of drivers is observed at night driving or overdriving, causing accident and pose severe threat to society. Therefore it is very much necessary in automobile industry to incorporate driver assistance system that can detect drowsiness and fatigue of the drivers. This project presents a non-intrusive prototype computer vision system for monitoring a driver's vigilance in real time. Eye tracking is one of the key technologies for future driver assistance systems since human eyes contain much information about the driver's condition such as gaze, attention level, and fatigue level. One problem common to many eye tracking methods proposed so far is their sensitivity to lighting condition change. This tends to significantly limit their scope for automotive applications. This project describes real time eye detection and tracking method that works under variable and realistic lighting conditions.

## **TABLE OF CONTENTS**

| CONTENTS             |         |                                               | PAGE NO |
|----------------------|---------|-----------------------------------------------|---------|
| Bonafide certificate |         |                                               | II      |
| Acknowledgement      |         |                                               | III     |
| Abstract             |         |                                               | IV      |
| List of figures      |         |                                               | VI      |
| CHAPTER 1            |         | INTRODUCTION                                  |         |
|                      | 1.1     | PROBLEM DESCRIPTION                           | 1       |
|                      | 1.2     | OBJECTIVE                                     | 1       |
|                      | 1.3     | BLOCK DIAGRAM                                 | 2       |
|                      | 1.4     | TOOLS USED                                    | 3       |
|                      | 1.5     | COST ESTIMATION                               | 3       |
| CHAPTER 2            |         | TOOLS                                         |         |
|                      | 2.1     | OPENCV                                        | 4       |
|                      | 2.2     | DLIB                                          | 5       |
|                      | 2.3     | NUMPY                                         | 10      |
|                      | 2.4     | SPICY                                         | 11      |
|                      | 2.5     | PYGAME                                        | 12      |
|                      | 2.6     | IMUTILS                                       | 13      |
|                      | 2.7     | RESIZING                                      | 13      |
| CHAPTER 3            |         | IMAGE PROCESSING TECHNIQUES AND EAR           |         |
|                      | 3.1     | TYPES OF IMAGE PROCESSING TECHNIQUES          | 14      |
|                      | 3.1.1   | BINARIZATION                                  | 14      |
|                      | 3.1.2   | PIXELATION                                    | 15      |
|                      | 3.1.3   | SHAPE MODEL                                   | 16      |
|                      | 3.1.3.a | TREE BASED SVM                                | 16      |
|                      | 3.1.3.b | ACTIVE APPEARANCE MODEL                       | 16      |
|                      | 3.2     | FACIAL LANDMARK USING 68 POINT SHAPE          | 17      |
|                      |         | PREDICTOR                                     |         |
|                      | 3.2.1   | UNDERSTANDING DLIB'S FACIAL LANDMARK DETECTOR | 20      |
|                      | 3.3     | DETECTING FACIAL LANDMARK WITH                | 21      |
|                      | 3.3     | DLIB,OPENCV AND PYTHON                        | 21      |
|                      | 3.4     | FACIAL LANDMARK VISUALIZATION                 | 25      |
|                      | 3.5     | POSITIONING OF CAMERA                         | 25      |
|                      | 3.6     | EYE ASPECT RATIO                              | 26      |
| CHAPTER 4            |         | WORKING                                       |         |
|                      | 4.1     | FLOW CHART                                    | 27      |
|                      | 4.2     | WORKING                                       | 29      |
| CHAPTER 5            |         | OUTPUT AND RESULT                             |         |
|                      | 5.1     | OUTPUT                                        | 30      |
|                      | 5.2     | ADVANTAGES                                    | 36      |
|                      | 5.3     | APPLICATIONS                                  | 36      |
| CHAPTER 6            |         | CONCLUSION AND FUTURE SCOPE                   |         |
|                      | 6.1     | CONCLUSION                                    | 37      |
|                      | 6.2     | FUTURE SCOPE                                  | 37      |
| REFERENCE            |         |                                               | 38      |
| WEI EWEINCE          |         |                                               | 30      |
|                      |         |                                               |         |
| APPENDIX             |         | PROGRAMMING                                   | 39      |

## **LIST OF FIGURES**

| S. NO | FIG N.O | FIGURE NAME                           | PAGE N.O |
|-------|---------|---------------------------------------|----------|
| 1     | 1.1     | COMPLETE BLOCK DIAGRAM OF THE PROJECT | 2        |
| 2     | 2.1     | DLIB INSTALLATION                     | 6        |
| 3     | 2.2     | SETTING UP ENVIRONMENT VARIABLES      | 7        |
| 4     | 2.3     | ENVIRONMENT VARIABLES                 | 8        |
| 5     | 2.4     | BUILDING DLIB                         | 9        |
| 6     | 2.5     | TESTING DLIB – C++                    | 9        |
| 7     | 2.6     | INSTALLATION COMMAND                  | 10       |
| 8     | 2.7     | TESTING DLIB – PYTHON                 | 10       |
| 9     | 2.8     | RESIZING                              | 13       |
| 10    | 3.1     | BINARIZATION                          | 15       |
| 11    | 3.2     | PIXELATION                            | 15       |
| 12    | 3.3     | TREE BASED SVM AND AAM                | 17       |
| 13    | 3.4     | FACIAL LANDMARKS                      | 20       |
| 14    | 3.5     | DETECTING FACIAL LANDMARKS WITH       | 21       |
|       |         | DLIB,OPENCV AND PYTHON                |          |
| 15    | 3.6     | shape_to_np FUNCTION                  | 21       |
| 16    | 3.7     | IMPORTED LIBRARIES                    | 22       |
| 17    | 3.8     | INITIALIZING DLIB'S FACE DETECTOR AND | 22       |
|       |         | FACIAL LANDMARK PREDICTOR             |          |
| 18    | 3.9     | DETECTING FACIAL LANDMARKS            | 23       |
| 19    | 3.10    | OBTAINING FACE WITH BOUNDING BOX      | 24       |
| 20    | 3.11    | UPGRADING IMUTILS                     | 25       |
| 21    | 3.12    | EXECUTION COMMAND                     | 25       |
| 22    | 3.13    | POSITIONING THE CAMERA                | 25       |
| 23    | 3.14    | EAR POINTS                            | 26       |
| 24    | 4.1     | FLOWCHART PART 1                      | 27       |
| 25    | 4.2     | FLOWCHART PART 2                      | 28       |
| 26    | 4.3     | FLOWCHART PART 3                      | 29       |
| 27    | 5.1     | STRAIGHT VIEW – EYES CLOSE            | 30       |
| 28    | 5.2     | STRAIGHT VIEW – EYES OPEN             | 31       |
| 29    | 5.3     | TOP VIEW – EYES OPEN                  | 32       |
| 30    | 5.4     | TOP VIEW – EYES CLOSE                 | 33       |
| 31    | 5.5     | BOTTOM VIEW – EYES OPEN               | 34       |
| 32    | 5.6     | BOTTOM VIEW – EYES CLOSE              | 35       |