Signed Numbers: Addition/ Subtraction

21 (2) (2)	Signed-1's ∠						
Decimal	Complement	اکاراداد	M	100			
+7	0111	no conversion	V	F	4 bit we.		
+6	→ 0110 b	± 2	0010	5 -	→ 0101	1	0001
+5	0101	(+) 3	+ 0011	-6	+ 10014	-7	+ 1000
+4	0100	<u> </u>	0101	-1	1110	-6	1001
+3	0011	_		No.	(0179) 1110 (0179) 1110	J	1001
+2	0010			tock	smt.		
+1	0001						
+0	0000	5	0101	-110 → -5	110 – 11) 1010		
-0	1111	-3	+(1100)	-2	110 -10+21101	M 40001	
-1	my fillo-000	l 			4	-	
-2	W 1101 -1	2	10001	-7	10111		
-3	1100	1111	+0001=		+0001		
-4	-1011-0100	-0011	0010		1000	_	
-5	1010		0010		1000		
-6	1001						
-7	1000						
-8	_						

Signed Numbers: Addition/ Subtraction

Decimal	Signed-1's Complement
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
+0	0000
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000
-8	i—

- The addition of 1's complement numbers may or may not be simple.

 n bit ____ added bit to added bit to the bit with bit
- In some cases, a correction is needed, which amounts to an extra addition that must be performed. ((2n full adders))
- Consequently, the time needed to add two 1's complement numbers may be twice as long as the time needed to add two unsigned numbers. Add/Sub → IV

Signed Numbers: Addition/ Subtraction

Decimal	Signed-2's Complement		
+7	0111	2	
+6	0110	2	
+5	0101	+3	4
+4	0100	 5	
+3	0011	5	
+2	0010		
+1	0001		
+0	0000	5	
-0		-3	_1
$\bigcirc 1$.	1111	-5 	+
$-\frac{1}{2}$	1110	2 July J	اجر
-3	1101	Phol -	
-4	1100		
-5	1011		
-6	1010		
-7	1001		
-8	1000		

Examples:

Read this respond

When not indicated the radix is 10.

• Perform addition and subtraction for unsigned numbers:

1)
$$(AA)_{16} + (12)_{16}$$
 $(AA)_{16} + (12)_{16}$ $(AA)_{16} + (AA)_{16} + (AA)_{16}$ $(AA)_{16} + (AA)_{16} + ($

• Perform addition and subtraction for signed numbers using r's and (r-1)'s representation:

1)
$$(AA)_{16} - (12)_{16}$$
 $(AA)_{16} + (EE)_{16} - 18$ $(23)_8 + (23)_8 - 46$
2) $(24)_5 - (32)_5$ $(24)_{16} + (22)_8 + (22)_8 - 46$

$$(198)_{16} + (22)_8 + (22)_8 - 27$$

$$(98)_{16} + (23)_8$$

Examples for Practice:

- Consider X=1010100 and Y=1000011. Find X-Y and Y-X using 1's complement
- Consider X=1010100 and Y=1000011. Find X-Y and Y-X using 2's complement
- Using 10's complement representation, subtract 72532 3250.
- Using 10's complement representation, subtract 3250-72532.

Binary Codes:

- A group of symbols is called as a code
- A digital data is represented, stored and transmitted as group of binary bits. This group is also called as **binary code**.
- A binary code is used to represent both number as well as alphanumeric letters and special characters.
- Useful in various applications, makes analysis and implementation easy since they are represented using 0 and 1

Binary Codes:	Decimal CASIN BCD W Digit 8421	nversion in the weighter the Excess-3	2421 and Excess-3 code
BCD and 2421 Codes are called with Weighted Codes:	2 0010 0011 0001 0011 0001 0011 0001	0000 = 00011 $0001 = 0100$ $0010 = 0101$ $0011 = 0110$ $0011 = 0110$ $0100 = 0111$ $0100 = 1001$ $1100 = 1010$ $1110 = 1010$ $1110 = 1011$ $1111 = 1100$	Complimenting Codes. Excess 3 Code is called an Unweighted Code.
Ospecimal Ospeci	Unused bit 1100 combinations 1110 1111	0101 0000 0110 0001 0111 0010 1000 1101 1001 1110 1010 1111	machine plementing calculator of 3110 (10)

Binary Codes:
Gray Code:

Also called the Reflected Binary Code and a Cyclic Binary Code.

Successive symbols differ only by one bit, minimum switching and hence minimum noise generated.

. Ned		_
Gray Code	Decimal Equivalent	Binary Code
0000	0	0000
0001	1	0001
$001\overline{1}$	2	0010
0010	3	0011
0110	4	0100
0111	5	0101
0101	6	0110
01 <u>00</u>	7	0111
$1\overline{100}$	8	1000
1101	9	1001
1111	10	1010
1110	11	1011
1010	12	1100
1011	13	1101
1001	14	1110
1000	15	1111
0000		

IIITD ECE 111 Section A

09Feb. 2022 10

Binary Code to Gray Code Conversion:

- Consider a given Binary Code and place a zero to the left of MSB.
- Compare the successive two bits, starting from extended MSB (zero). If the two bits are same, then the output is zero, otherwise 1.
 - Repeat till the LSB of Gray Code is reached. $g_3 = b_3$; $g_2 = b_3 \oplus b_2$; $g_1 = b_2 \oplus b_1$; $g_0 = b_1 \oplus b_0$

Decimal Equivalent	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1 <u>100</u> ←	1010
13	1101	1011
14	1110	1001
15	1111	1000

Gray Code to Binary Code Conversion:

• Consider a given Gray Code and and its Binary Code equivalent, their MSBs will be identical. For 4-bit representation, $b_3=g_3$

• Other bits of the output binary code can be obtained by checking Gray code bit at that index. If current Gray code bit is 0, then copy previous binary code bit, else copy invert of previous binary code bit. i.e., $b_2 = b_3 \oplus g_2 = g_3 \oplus g_2$. Similarly, $b_1 = b_2 \oplus g_1 = g_3 \oplus g_2 \oplus g_1$ and $b_0 = b_1 \oplus g_0 = g_3 \oplus g_2 \oplus g_1 \oplus g_0$.

Decimal Equivalent	Gray Code	Binary Code
0	0000	0000
1	0001	0001
2	0011	0010
3	0010	0011
4	0110	> 0100 .
5	0111	0101
6	0101	0110
7	0100	0111
8	1100	1000
9	1101	1001
10	-1111	1010
11	1110	1011
12	1010	1100
13	1011	1101
14	1001	1110
15	1000	1111

Homework:

Study various applications of Gray codes

consider dans de port de la port

- Design the binary to Gray code converter circuit where input is 3-bit binary number and output is 3-bit Gray code.
- Design the Gray to Binary code converter circuit where input is 3-bit Gray code and output is 3-bit binary number.