Complex Numbers: A complex number is an ordered pair (a, b), where is computed by multiplying each coordinate of the vector by λ : $a,b\in\mathbf{R}$, but we will write this as a+bi

The set of all complex numbers is denoted by C

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}\$$

Addition and multiplication on C are defined by

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

here $a, b, c, d \in \mathbf{R}$

Properties of complex arithmetic:

commutativity

$$\alpha\,+\,\beta\,=\,\beta\,+\,\alpha$$
 and $\alpha\,\beta\,=\,\beta\,\alpha$ for all $\alpha\,,\,\beta\,\in\,{\bf C}$

$$(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda) \text{ and } (\alpha\beta)\lambda=\alpha(\beta\lambda) \text{ for all } \alpha, \text{ properties } \mathbf{C}$$

identities

$$\lambda\,+\,0\,=\,\lambda$$
 and $\lambda\,1\,=\,\lambda$ for all $\lambda\,\in\,{f C}$

multiplicative inverse for every $\alpha \in \mathbf{C}$ with $\alpha \neq 0$, there exists a unique

 $\beta \in \mathbf{C}$ such that $\alpha \beta = 1$ distributive property

$$\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$$
 for all $\lambda, \alpha, \beta \in \mathbf{C}$

 $-\alpha$, subtraction, $1/\alpha$, division: Let α , $\beta \in \mathbf{C} \cdot \text{Let} - \alpha$ denote the the function defined by additive inverse of α . Thus $-\alpha$ is the unique complex number such that

$$\alpha + (-\alpha) = 0$$

· Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

For $\alpha \neq 0$, let $1/\alpha$ denote the multiplicative inverse of α . Thus $1/\alpha$ is The number -1 times a vector: (-1)v = -v for every $v \in V$

$$\alpha(1/\alpha) = 1$$

Division on C is defined by

$$\beta/\alpha = \beta(1/\alpha)$$

 ${\it list, length:}$ Suppose n is a nonnegative integer. A list of length n is an ordered collection of n elements (which might be numbers, other lists, or more abstract entities) separated by commas and surrounded by parentheses. A list of length n

$$(x_1, \ldots, x_n)$$

Two lists are equal if and only if they have the same length and the same elements in the same order. $\mathbb{F}^n : \mathbf{F}^n$ is the set of all lists of length n of elements of \mathbf{F} :

$$\mathbf{F}^n = \left\{ \left(x_1, \dots, x_n\right) : x_j \in \mathbf{F} \text{ for } j = 1, \dots, n \right\}$$

For $(x_1, \ldots, x_n) \in \mathbf{F}^n$ and $j \in \{1, \ldots, n\}$, we say that x_j

is the $j^{ ext{th}}$ coordinate of (x_1,\dots,x_n) addition in \mathbb{F}^n : Addition in \mathbb{F}^n : Addition in \mathbb{F}^n is defined by adding corresponding coordinates:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

Commutativity of addition in \mathbb{F}^n : If $x, y \in \mathbb{F}^n$, then x + y =o: Let o denote the list of length n whose coordinates are all o

 $0 = (0, \ldots, 0)$

scalar multiplication in \mathbb{F}^n : The product of a number λ and a vector in \mathbf{F}^n

$$\lambda (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n)$$

here $\lambda \in \mathbf{F}$ and $(x_1, \ldots, x_n) \in \mathbf{F}^n$

Section 1.B

 $rac{ddition, \, scalar \, multiplication:}{} \cdot \,$ An addition on a set $\, V \,$ is a function that assigns an element $u+v\in V$ to each pair of elements $u,v\in V\cdot A$ scalar multiplication on a set V is a function that assigns an element $\lambda v \in V$ to each $\lambda \in \mathbf{F}$ and each $v \in V$ ${\it Vector Space}$: A vector space is a set ${\it V}$ along with an addition on ${\it V}$ and a scalar

multiplication on V such that the following properties hold: commutativity

$$u \, + \, v \, = \, v \, + \, u \text{ for all } u \, , \, v \, \in \, V$$

associativity
$$(u+v)+w=u+(v+w)$$
 and $(ab)v=a(bv)$ for all $u,v,w\in V$

and all
$$a, b \in \mathbf{F}$$

additive identity there exists an element $0 \in V$ such that v + 0 = v for all $v \in V$ additive inverse for every $v \in V$, there exists $w \in V$ such that v+w=0 multiplicative identity 1v=v for all $v\in V$ distributive

a(u+v) = au+av and (a+b)v = av+bv for all $a, b \in \mathbf{F}$ and

all
$$u, v \in V$$

vector, point: Elements of a vector space are called vectors or points. real vector space, complex vector space: • A vector space over R is called a real additive inverse for every $\alpha \in \mathbf{C}$, there exists a unique $\beta \in \mathbf{C}$ such that vector space. A vector space over \mathbf{C} is called a complex vector space. \mathbb{F}^S : · If S is a set, then \mathbb{F}^S denotes the set of functions from S to \mathbb{F} · For $f,\,g\,\in\,\mathbf{F}^{S}$, the sum $f\,+\,g\,\in\,\mathbf{F}^{S}$ is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in S ullet$ For $\lambda \in {f F}$ and $f \in {f F}^S$, the product $\lambda f \in {f F}^S$ is

$$(\lambda f)(x) = \lambda f(x)$$

for all
$$x \in \mathcal{X}$$

Unique Additive Identity: A vector space has a unique additive identity Unique additive inverse: Every element in a vector space has a unique additive

The number o times a vector: 0v = 0 for every $v \in V$

A number times the vector o: a0 = 0 for every $a \in \mathbf{F}$