

6 - BÚSQUEDA HEURÍSTICA

- **1.** ¿Cuál es la diferencia entre las búsquedas de la escalada simple y la escalada por máxima pendiente?
- **2.** Explique qué son los problemas de máximo local, meseta y cresta y como pueden resolverse.
- 3. Explique cómo funciona el algoritmo primero el mejor
- **4.** Explique que representa la función f'(n) = g(n) + h'(n) en el algoritmo A*
- **5.** Explique cómo funciona el algoritmo A*
- **6.** Utilice el algoritmo escalada por máxima pendiente y A* para encontrar un camino entre las ciudades de ARAD (nodo inicial) y BUCAREST (nodo objetivo) según las rutas indicadas en el siguiente mapa:

- **7.** El método de la escalada simple:
 - [] Siempre encuentra la solución, si es que existe
 - [] No siempre encuentra la solución a pesar de que esta exista
 - [] Crea una solución aunque no exista y la devuelve como admisible
- **8.** En una función heurística f'(n) = g(n) + h'(n) que se evaluá el nodo "n"; h'(n) que representa:
 - [] El costo real del camino hasta el nodo actual
 - [] El costo aproximado del camino hasta el nodo actual
 - [] El costo real del camino hasta el nodo objetivo
 - [] El costo aproximado del camino hasta el nodo objetivo.
- **9.** ¿Qué diferencia existe entre un método de búsqueda sistemático (primero en profundidad) y un método de búsqueda heurístico?

Inteligencia Artificial I

- **10.** Explique cómo se soluciona el problema de meseta en la búsqueda primero en amplitud.
- **11.** Dado el siguiente problema implementar las alternativas de solución aplicando:
 - Búsqueda mediante escalada simple
 - Búsqueda por máxima pendiente
 - Algoritmo A*

Movimientos permitidos: al casillero vacío advacente u horizontal

ESTADO INICIAL

ESTADO FINAL

- **12.** El método de la escalada por máxima pendiente:
 - [] Siempre encuentra la solución, si es que existe
 - [] No siempre encuentra la solución a pesar de que esta exista
 - [] Crea una solución aunque no exista y la devuelve como admisible
- **13.** Dada la función de evaluación para una búsqueda utilizando el algoritmo A*:

$$f'(n) = g(n) + h'(n)$$

que sucede si:

g(n)= cte desde ni a nj

$$h'(n) = 0$$

14. Utilice el algoritmo A* para encontrar la ruta más corta entre A y K. Ejemplifique cómo esta búsqueda falla cuando h(n) sobrestima el costo de alcanzar la meta.

Dista	ancia L. Recta a K
A =	88
B =	40
C =	32
D =	70
E =	50
F =	10
G =	20
H =	70
I =	80
J =	20
K =	00

- **15.** Explique el problema de la sobrestimación y subestimación de h´ en el algortimo A*
- **16.** Dado el siguiente gráfico, realice búsqueda para encontrar el camino desde el estado inicial hasta el estado final implementando A* considerando la siguiente heurística:
 - a) (-1) Por cada bloque apoyada correctamente, caso contrario (+1)
 - b) Considere el costo real de cada transición de estado igual a 1 en todos los casos.

Dibuje el árbol que se genera en cada transición.

Los operadores a considerar son:

- i) Apilar x sobre y (x,y). Condición x e y libres
- ii) Apilar x sobre mesa (x,mesa). Condiciones x libre y x no en mesa.

	С	Α	
	Α	В	
	В	С	
Е	stado	Estad	0
Inicial		Final	

17. Aplicar, escalada simple, escalada por máxima pendiente y A* para el siguiente problema de búsqueda. Estado inicial A y estado final G.

	Heurística	
Α	45	
В	20	
С	50	
D	20	
Е	35	
F	15	
G	00	
Н	90	
Ι	15	
J	10	
K	90	

- **18.** Dado el siguiente grafo aplique el algoritmo A* y encuentre el camino entre los nodos L y B. ¿El algoritmo encuentra el camino óptimo? Dado el siguiente grafo aplique:
 - a) A^* que encuentre el camino entre los nodos L y B. ¿El algoritmo encuentra el camino óptimo?
 - b) Escalada por máxima pendiente. ¿El algoritmo encuentra el camino de solución?

Nodo	Línea Recta a B
L	50
W	90
Z	80
P	70
X	10
R	15
A	30
В	0
С	55

19. Dado el siguiente grafo aplique: a. A* que encuentre el camino desde X hasta Z utilizando el orden de expansión alfabético de los nodos. ¿El algoritmo encuentra el camino óptimo?

Inteligencia Artificial I

Estado	H
X	50
H	50
G	20
L	15
E	95
J	40
I	50
F	85
В	45
C	40
D	10

Z

0

Heurística Utilizada

- **20.** Dado los siguientes grafos aplique los siguientes algoritmos para encontrar el camino desde el nodo inicial hasta el nodo final (utilice orden de expansión alfabético):
 - a) Escalada simple y máxima pendiente. Muestre el árbol generado.
 - b) A*. Muestre el árbol generado.

21. Dados los siguientes problemas de mundo de bloques, utilice los algoritmos escalada simple, por máxima pendiente y A* para encontrar un camino de solución desde el estado inicial hasta el estado final. Defina al menos dos heurísticas distintas de cero y el orden de aplicación de los operadores.

Operadores:

- **Op1.** Apilar_sobre (x, y). Condiciones x e y libres.
- **Op2**. Apilar_ sobre (x, mesa). Condiciones x libre y x no en mesa.

Inteligencia Artificial I

