Druga školska zadaća, 23. XI. 2006. grupe R2, R4, R6, R8; varijanta **A**

- 1. (2 boda) Jesu li skupovi $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ i **R** ekvipotentni? Odgovor obrazložite! **Rješenje:** f(x) = tgx je bijekcija.
- 2. (3 boda) Na skupu Y svih nepraznih podskupova skupa $X = \{a, b, c, d\}$ zadana je relacija ekvivalencije ρ sa $A \rho B$ onda i samo onda ako postoji bijekcija $f: A \to B$.
 - a) Izračunaj kardinalni broj kvocijentnog skupa $|Y/\rho|$.
 - b) Ispiši sve elemente razreda $[\{a, b, c\}]$.

Rješenje: $|Y/\rho| = 4$, $[\{a, b, c\}] = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$

3. (2 boda) U jednoj vreći nalazi se n predmeta, a u drugoj m predmeta. Iz prve vreće izvadimo r predmeta, iz druge izvadimo s predmeta, te izvađene predmete nanižemo. Koliko različitih nizova tako možemo dobiti, uz pretpostavku da su svi predmeti međusobno različiti?

Rješenje: $\binom{n}{r}\binom{m}{s}(r+s)!$.

4. (3 boda) Na koliko načina možemo 6 jabuka rasporediti u 10 različitih kutija? Na koliko načina to možemo učiniti uz dodatni uvjet da niti u jednoj kutiji ne bude više od dvije jabuke?

Rješenje: a) $\binom{6+10-1}{6} = \binom{15}{6}$, b) jedine mogućnosti su da imamo tri kutije s po dvije jabuke, ili dvije kutije s po dvije jabuke i dvije kutije u kojima je po jedna jabuka, ili jednu s dvije jabuke i četiri s jednom jabukom, konačno zadnja varijanta je da imamo šest kutija s po jednom jabukom, stoga je ukupni broj svih mogućnosti $\binom{10}{3} + \binom{10}{2} \binom{8}{2} + \binom{10}{1} \binom{9}{4} + \binom{10}{6} = 2850$.

Druga školska zadaća, 23. XI. 2006. grupe R2, R4, R6, R8; varijanta **B**

1. (2 boda) Jesu li skupovi $\langle 0, \pi \rangle$ i **R** ekvipotentni? Odgovor obrazložite! **Rješenje:** Funkcija f(x) = ctqx je bijekcija.

- 2. (**3 boda**) Na skupu **N** zadana je relacija ρ s $x \rho y$ onda i samo onda ako je $x \cdot y$ kvadrat nekog prirodnog broja.
 - a) Dokaži da je ρ relacija ekvivalencije.
 - b) Nađi najmanji element razreda [600].

Rješenje: min[600] = 6

3. (**2 boda**) Zadani su skupovi $A = \{1, 2, 3, 4, 5, 6\}$ i $B = \{a, b, c, d, e\}$. Koliko ima permutacija skupa $A \cup B$ kojima su na prva tri mjesta elementi iz A a na posljednja dva mjesta elementi iz B?

Rješenje: $\binom{6}{3} \cdot 3! \cdot 6! \cdot \binom{5}{2} \cdot 2! = 1728000$

4. (3 boda) Na koliko načina možemo 15 jednakih čokoladica podijeliti na devetero djece? Na koliko načina to možemo učiniti uz dodatne uvjete da dvoje djece ne dobije niti jednu čokoladicu, a preostala djeca barem jednu?

Rješenje: $\binom{15+9-1}{15} = 490314$, a broj podjela uz dodatni uvjet je $\binom{14}{8}\binom{9}{2} = 108108$, jer je $\binom{8+7-1}{8}$ broj podjela 15 čokoladica na sedmero djece kada svako dijete dobije jednu čokoladicu, dok je $\binom{9}{2}$ broj odabira para djece koje ne dobije niti jednu čokoladicu.