Nr Ćwiczenia 302	Data wykonania 07.01.2025	Wydział WIiT	Semestr 3	Grupa LAB L1
Prowadzący: mgr i	nż. Taras Zhezhera	Stanisław Fiedl	er	Ocena:

Sprawozdanie Laboratorium Fizyka dla informatyków

Wyznaczanie ogniskowych soczewek ze wzoru soczewkowego oraz metodą Bessela.

Stanisław Fiedler 160250

LAB 5, 7 stycznia 2025

Spis treści

Wstęp teoretyczny 1 Wyniki pomiarów $\mathbf{2}$ Opracowanie wyników 3 3 3.1.1 3 3.1.2 4 4 3.2.14 3.2.2 5 Wnioski 5

1 Wstęp teoretyczny

Soczewką jest ciało przeźroczyste o dwóch powierzchniach sferycznych. Wiązka promienie biegnąca równolegle do soczewki po przejściu przez nią skupi się w punkcie zwanym ogniskiem. Dobierając krzywizny buduje się soczewki skupiające i rozpraszające. Położenie ogniska zależy od współczynnika załamania materiału soczewki oraz promieni krzywizn.

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Soczewki odwzorowują obraz a jego położenie jest opisane równaniem soczewkowym:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{o}$$

Ogniskowa układu soczewek opisuje wzór:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

Uwzględniając symetrię wzoru soczewkowego i przekształcając go otrzymujemy wzór metody Bessela:

$$e = l - o' - p$$
$$f = \frac{l^2 - e^2}{4 \cdot l}$$

2 Wyniki pomiarów

I WYZA	ACTANIE C	DENISKOW 4CI+	SOUSEME		7
100cm, 91cm	, 82 cm	3050	= l + o' - p	DX = AA	MW
1) RG = 100 cm A p = 10, 9	p'= 84,7	L= 91 au		V= 80	2cm
B 17,2	87.4	17,9	12,1	18,6	63,1
C 28 2	717	30,3	60,6	41,0	41,0
A1 2413	89,1	24,8	79,5	25,4	969,8
A 2 18, 1 d=6,0	30,7	18, 2	31,4	1812	71,9
A3, d=6 16,5 B1, d=10 511	91,0	/6,Z 59,3	81.8	16,9	72,5
BZ, d=10 31,8 B3, d=10 30 27,9	85.2	32,7	75,6	30	64,2,
C1 C2 C3	3 RAK	OBRAZY			
PS A,	A 4 · · · ·				
PM B,	B 4.	1			
	701.				

3 Opracowanie wyników

3.1 Wzór soczewkowy

3.1.1 Obliczenia

Dla soczewki A i l=100cm:

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{o}$$

$$f_A = \left(\frac{1}{10,9} + \frac{1}{89,1}\right)^{-1} = 9,7119cm$$

Soczewka A.

l[cm]	100		91		82	
p[cm]	10.9	88.7	11.1	79.6	11.4	70.4
L J	89.1	11.3	79.9	11.4	70.6	11.6
$f_A[cm]$	9.7119	10.023	9.7460	9.9718	9.8151	9.9590

$$f_{AVG} = 9.871176, \sigma = 0.119098$$

Soczewka C

l [cm]	100		91		82	
p[cm]	28.2	71.7	30.3	60.6	41	41
o[cm]	71.8	28.3	60.7	30.4	41	41
$f_{C}\left[cm\right]$] 20.2476	20.2911	20.211	20.244	20.5	20.5

$$f_{AVG} = 20.332, \sigma = 0.132$$

Układ A1

l[cm]	100		91		82	
$p\left[cm\right]$	24.3	89.1	24.8	79.5	25.4	69.8
$o\left[cm\right]$	75.7	10.9	66.2	11.5	56.6	12.2
$f_{A1}[cm]$	18.395	9.711	18.041	10.046	17.532	10.384
$f_1[cm]$	8.154	7.057	8.127	7.125	8.085	7.190

$$f_{AVG} = 7.6237047, \sigma = 0.548665$$

Układ A2

$l\left[cm\right]$	100		91		82	
p[cm]	18.1	90.7	18.2	81.4	18.2	71.9
o[cm]	81.9	9.3	72.8	9.599	63.8	10.1
$f_{A2}\left[cm\right]$	14.823	8.435	14.56	8.587	14.160	8.855
$f_2[cm]$	7.827	6.766	7.797	6.803	7.751	6.868

$$f_{AVG} = 7.3026, \sigma = 0.5380103$$

Układ A3

l[cm]	100		91		82	
p[cm]	16.5	91	16.2	81.8	16.9	72.5
o[cm]	83.5	9	74.8	9.2	65.1	9.5
f[cm]	13.777	8.19	13.316	8.269	13.416	8.399
f[cm]	7.705	6.702	7.647	6.72	7.660	6.756

$$f_{AVG} = 7.19970, \sigma = 0.51751$$

3.1.2 Wyniki

$$f_A = 9, 9 \pm 0, 1 cm$$

 $f_C = 20, 33 \pm 0, 13 cm$
 $f_1 = 7, 6 \pm 0, 5 cm$
 $f_2 = 7, 3 \pm 0, 5 cm$
 $f_2 = 7, 2 \pm 0, 5 cm$

3.2 Metoda Bessela

3.2.1 Obliczenia

Dla soczewki A i l = 100cm:

$$e = l - o' - p$$

$$f = \frac{l^2 - e^2}{4l}$$

$$f_A = \frac{100^2 - (100 - 11, 3 - 10, 9)^2}{4 \cdot 100} = 9,867m$$

Soczewka A

l[cm]	100		91		82	
p[cm]	10.9	88.7	11.1	79.6	11.4	70.4
o[cm]		11.3		11.4		11.6
e[cm]	77.8		68.5		59	
f[cm]	9.867		9.85		9.887	

$$f_{AVG} = 9.8714, \sigma = 0.01169$$

Soczewka C

$l\left[cm\right]$	100		91		82	
p[cm]	28.2	71.7	30.3	60.6	41	41
o[cm]		28.3		30.4		41
e[cm]	43.5		30.3		0	
f[cm]	20.26		20.22		20.5	

$$f_{AVG} = 20.33238, \sigma = 0.11973$$

Układ A1

l[cm]	100		91		82	
p[cm]	24.3	89.1	24.8	79.5	25.4	69.8
$o\left[cm\right]$		10.9		11.5		12.2
$e\left[cm\right]$	64.8		54.7		44.4	
$f_{A1}[cm]$	14.502		14.529		14.489	
$f_1[cm]$	7.791		7.794		7.790	

$$f_{AVG} = 7.79204, \sigma = 0.00189$$

Układ A2

l[cm]	100		91		82	
p[cm]	18.1	90.7	18.2	81.4	18.2	71.9
o[cm]		9.3		9.59		10.1
$e\left[cm\right]$	72.6		63.2		53.7	
$f_{A2} [cm]$	11.823		11.776		11.708	
$f_{2}\left[cm ight]$	7.436		7.429		7.418	

$$f_{AVG} = 7.428023, \sigma = 0.00737$$

Układ A3

$l\left[cm\right]$	100		91		82	
$p\left[cm\right]$	16.5	91	16.2	81.8	16.9	72.5
$o\left[cm ight]$		9		9.2		9.5
$e\left[cm\right]$	74.5		65.6		55.6	
$f_{A3}[cm]$	11.12		10.927		11.07	
$f_3[cm]$	7.32		7.289		7.31	

$$f_{AVG} = 7.3088, \sigma = 0.0144$$

3.2.2 Wyniki

$$f_A = 9,87 \pm 0,01 \, cm$$

 $f_C = 20,3 \pm 0,1 \, cm$
 $f_1 = 7,792 \pm 0,002 \, cm$
 $f_2 = 7,428 \pm 0,007 \, cm$
 $f_2 = 7,309 \pm 0,014 \, cm$

4 Wnioski

Wyznaczone wartości obarczone są dużymi niepewnościami, odychylenie standardowe średniej dla układu soczewek A1 wynosi ponad 4. Wynonie więszej ilośći pomiarów mogłoby poprawić dokładność. Metoda Bessela nie jest obarczona tak dużymi niepewnościami.