det
$$\overline{x}_{j}$$
 = arithmetic mean of girst j numbers

 \overline{x}_{j+1} = """ " $j+1$ "

 \overline{x}_{j+1} = $\frac{1}{j+1}$ $\sum_{i=1}^{j+1} x_{i}$ = $\frac{1}{j+1}$ $\sum_{i=1}^{j+1} (x_{i} + x_{j+1})$

= $\frac{1}{j+1}$ $\sum_{i=1}^{j+1} x_{i}$ = $\frac{1}{j+1}$ $\sum_{i=1}^{j+1} (x_{i} + x_{j+1})$

Thus to compute \overline{x}_{j+1} you need to know only \overline{x}_{j} and of course the new data value x_{j+1} . You do not need to (x_{j}) over the entire dataset to find \overline{x}_{j+1} .

For the standard deviation, we have

 $|x_{j+1}| = \sum_{i=1}^{j} (x_{i} - \overline{x}_{j+1})^{2} + (x_{j+1} - \overline{x}_{j+1})^{2}$

= $\sum_{i=1}^{j} (x_{i} - \overline{x}_{j})^{2} + (x_{j+1} - \overline{x}_{j})^{2} + (x_{j+1} - \overline{x}_{j+1})^{2}$

= $\sum_{i=1}^{j} (x_{i} - \overline{x}_{j})^{2} + (x_{j+1} - \overline{x}_{j})^{2} + (x_{j+1} - \overline{x}_{j})^{2}$

+ $(x_{j+1} - \overline{x}_{j+1})^{2}$

$$J_{j+1} = (j-1)s_{j}^{2} + j\left(\frac{x_{j+1} - \overline{x_{j}}}{j+1}\right)^{2}$$

$$-2j\left(\frac{\sum_{i=1}^{2}(x_{i} - \overline{x_{j}})}{j+1}\right)\left(\frac{x_{j+1} - \overline{x_{j}}}{j+1}\right)^{2}$$

$$= (j-1)s_{j}^{2} + j\left(\frac{x_{j+1} - \overline{x_{j}}}{j+1}\right)^{2} + \left(\frac{x_{j+1} - \overline{x_{j+1}}}{j+1}\right)^{2}$$

$$= (j-1)s_{j}^{2} + j\left(\frac{x_{j+1} - \overline{x_{j}}}{j+1}\right)^{2} + \left(\frac{x_{j+1} - \overline{x_{j+1}}}{j+1}\right)^{2}$$

$$\longrightarrow see formula for mean$$

$$J_{j+1} = (1-J_{j})s_{j}^{2} + (\overline{x_{j+1} - \overline{x_{j}}})^{2} + (\overline{x_{j+1} - \overline{x_{j+1}}})^{2}$$
This is the formula to update the standard deviation.