Applications of Genomic Selection in (North American) beef cattle

Dorian Garrick dorian@iastate.edu

Industry Structure

- Most cow-calf operations do not record pedigree nor individual animal performance
 - They represent about 29 million beef cows
 - And almost 6 million replacement heifers
 - Average herd size 40 cows
 - Predominantly natural mating
 - They represent the bull buying sector
 - At 1 bull per 15 cows there would be 2 million sires
 - At 4 year lifespan they buy 0.5 million bulls per year

Bull breeding herds

- Most (but not all) bull breeders are affiliated with a breed association
- Breed associations maintain pedigrees, issue registration certificates and run "national" genetic evaluations at varying frequencies
- There are probably about 600,000 beef cattle registrations per year
 - American Angus Association registers 300,000

The Big Picture

Consumer Satisfaction

Animal Welfare

Disease Suffering Mortality Environmental Care

Air Water Soil Visual Purchase Cost

Relative to alternatives

Immediate Eating Quality

Tenderness Taste Long-term Impact of consumption

Human healthfulness
Cancer
Obesity
Diabetes
Heart Disease

Production Efficiency Inputs & Outputs

Improving Consumer Satisfaction

Existing EBVs from NCE

Animal Welfare	Environmental Care	Purchase Cost	Immediate Eating Quality	Long-term Impact of consumption
Disease Suffering Mortality	Air Water Soil Visual	Relative to alternatives	Tenderness Taste	Human healthfulness Cancer Obesity Diabetes
				Heart Disease

Production Efficiency Inputs & Outputs

Consumer Satisfaction

Existing EBVs from NCE

Desired EBVs from new approaches

Animal	Environmental	Purchase	Immediate	Long-term
Welfare	Care	Cost	Eating Quality	Impact of consumption
Disease	Air	Relative to	Tenderness	Human healthfulness
Suffering	Water	alternatives	Taste	Cancer
Mortality	Soil			Obesity
	Visual			Diabetes
				Heart Disease

Production Efficiency Inputs & Outputs

Feed Intake

Pinkeye GHG/CO2 Reproduction

Calving Ease Growth Ultrasound REA, IMF, FAT

Fatty Acids? Minerals?

Industry Structure

Current Genetic Evaluation

Current Genetic Evaluation

Current Genetic Evaluation

(Australia)	(AAA)	(AAA)	(ASA and partners)	(Genno)
Post NCE blending	DGV as co	• -	Post NCE blending	ssGBLUP

IGS

ABRI

Breedplan

AGI

AGI

LGS

Change in AHA Predictive Accuracy

Genetic Correlations Trait	2010 (800)	2011 (1,081)	2012 (1,081)	2013 (2,980)
Birth weight	0.40	0.43	0.52	0.68
Weaning wt	0.34	0.32	0.38	0.52
Yearling wt	0.33	0.30	0.44	0.60
Milk	0.21	0.22	0.26	0.37
Calving Ease D		0.43	0.42	0.68
Calving Ease M		0.18	0.20	0.51
Fat	0.43	0.40	0.44	0.48
Marbling	0.29	0.27	0.27	0.43
Ribeye Area	0.41	0.36	0.45	0.49
Scrotal Circum	0.25	0.28	0.27	0.43
Mature Cow wt				0.64
Average (% gVar)	0.33 (11%)		0.37 (13%)	0.52 (27%)

Prediction of Shorthorn only from other Breeds

	Angus	Brangus	Gelbvieh	Hereford	Limousin	Red Angus	Simmental
Birth Weight	0.08	-0.05	0.09	0.23	0.18	0.40	0.37
Calving ease direct	0.05	-0.01	-0.16	0.17	0.15	0.23	0.30
Calving ease maternal	0.09	0.00		0.08	0.15	0.06	0.07
Carcass Weight	0.20	0.05	0.07		-0.10	0.23	0.20
Fat tickness	0.17	0.02		0.11		0.08	0.01
Milk	0.09	-0.04	0.16	-0.06	0.02	0.03	-0.06
Marbling	0.03	-0.04	0.11	-0.07	-0.08	0.09	0.17
Rib eye area	0.03	0.01	0.12	-0.07	-0.01	0.05	0.08
Weaning weight	0.12	-0.10	0.07	0.15	-0.02	0.15	0.09
Yearling weight	0.09	0.00	-0.08	0.14	0.02	0.13	0.13

Across breed prediction does not work if the breed is not in training

Predictions in US Breeds

Trait	RedAngus (6,412)	Angus (3,500)	Hereford (2,980)	Simmental (2,800)	Limousin (2,400)	Gelbvieh (1,321)+
BirthWt	0.75	0.64	0.68	0.65	0.58	0.62
WeanWt	0.67	0.67	0.52	0.52	0.58	0.52
YlgWt	0.69	0.75	0.60	0.45	0.76	0.53
Milk	0.51	0.51	0.37	0.34	0.46	0.39
Fat	0.90	0.70	0.48	0.29		0.75
REA	0.75	0.75	0.49	0.59	0.63	0.61
Marbling	0.85	0.80	0.43	0.63	0.65	0.87
CED	0.60	0.69	0.68	0.45	0.52	0.47
CEM	0.32	0.73	0.51	0.32	0.51	0.62
SC		0.71	0.43		0.45	
Average	0.67	0.69	0.52	0.47	0.57	0.56

Genomic Prediction Pipeline

Selection Index Assumptions

$$varegin{bmatrix} \widehat{u} \ \widehat{u} \end{bmatrix} = egin{bmatrix} r_p^2 & r_p^2 r_m^2 \end{bmatrix} egin{bmatrix} r_p^2 \ r_p^2 & r_m^2 \end{bmatrix} egin{bmatrix} r_p^2 \ r_p^2 & r_m^2 \end{bmatrix} egin{bmatrix} r_p^2 \ r_m^2 \end{bmatrix} egi$$

$$varigg[u - \widehat{u} \ m - \widehat{m} igg] = igg[egin{array}{ccc} 1 - r_p^2 & (1 - r_p^2) (1 - r_m^2) \ (1 - r_p^2) (1 - r_m^2) & 1 - r_m^2 \end{array} igg]_{0}$$

15

Blending

$$\widehat{u_n} = \frac{(1 - r^2)(\widehat{u_p} - \mu_{u_p}) + (1 - a^2)(\widehat{m} - \mu_m)}{1 - r^2 a^2}$$

$$Rel_n = 1 - \frac{(1 - r^2)(1 - a^2)}{1 - r^2a^2}$$

where $\widehat{u_p}$ is the previous national EBV with $Rel_p = a^2$ and \widehat{m} is the MBV (DGV) with genetic correlation r^2

Extended Blending

 Desirable for relatives of blended animals to benefit (in accuracy) from genotyping of their relatives – first extend the DGV to nongenotyped

Elements of inverse relationship matrix (sparse)

DGV of non-genotyped animals

DGV of genotyped animals

Extended Blending

- Desirable for relatives of blended animals to benefit (in accuracy) from genotyping of their relatives – second compute their reliability
- Take advantage of partitioned matrix result

$$A^{11} = (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1}$$

$$R_{DGV}^2 = \{diag[A_{11}] - diag[(A^{11})^{-1}]\}/diag[A_{11}]$$

Then blend nongenotyped relatives

Properties of BLUP (1 of 2)

Provided the model is correct:

$$cov(u, \hat{u}) = var(\hat{u})$$
 Quantify from inverse MME Or approximate from MME

Then

$$\beta_{u/\hat{u}} = \frac{\text{cov}(u, \hat{u})}{\text{var}(\hat{u})} = 1 \quad (exactly)$$

Although
$$E[u] = 0$$
, $E[u/\hat{u}] = \hat{u}$

Properties of BLUP (2 of 2)

Provided the model is correct:

$$cov(u, \hat{u}) = var(\hat{u})$$

• Then $r_{u,\hat{u}} = \frac{\text{cov}(u,\hat{u})}{\sqrt{\text{var}(\hat{u})\text{var}(u)}} = \sqrt{\frac{\text{var}(\hat{u})}{\text{var}(u)}}$

And

$$\operatorname{var}(\hat{u}) = r^2 \operatorname{var}(u)$$

Diagnostics of Good Behavior

- Regression of more accurate (blended) on less accurate (EBV or MBV) should be 1
- Correlation of less accurate EBV with change in EBV (from less accurate to more accurate) should be zero

Validation of Birth Weight (AHA)

-10

-5

5

National EBV

10

15

20

5

0

MBV

Impact on Accuracy--%GV=10%

Genetic correlation=0.3

Blending will not improve the accuracy of a bull that already has a reliable EBV

Impact on Accuracy--%GV=40%

Genetic correlation=0.64

Blended EBVs are equally likely to be better or worse than the preblended EBVs

Genotype Counts in early 2014

Breed	9k	GGP-LD	50k	GGP-HD	BOS-1	700k HD	TOTAL
AAN		911	13,409	787		947	16,054
BRG			1,128	173		243	1,544
BSH			325			136	461
СНА			1,617			525	2,142
GVH	186	209	1,643	371	414	430	3,253
HER			7,064	1,887	471	850	10,272
LIM		429	3,420	8	461	675	4,993
NEL						2,571	2,571
RAN			1,931	1,183	226		3,340
RDP			1,394				1,394
SIM	5,223	7,026	6,501	1,347	1,601	674	22,372
TOTALS	5,409	8,575	38,432	5,756	3,173	7,051	68,396

Lower Density Panels

Trait	Actual	Imputed	
Birth Weight	0.67	0.65	
Calving Ease Direct	0.68	0.67	Actual = 50k Imputed = 10k
Calving Ease Maternal	0.51	0.50	(from GGP-LD)
Fat Thickness	0.47	0.46	
Marbling	0.42	0.42	
Mature cow weight	0.64	0.62	
Rib Eye Muscle Area	0.49	0.46	
Scrotal Circumference	0.43	0.42	
Weaning Weight Direct	0.53	0.50	
Weaning Weight Maternal	0.37	0.35	
Yearling Weight	0.61	0.59	
Mean	0.53	0.51	26

Who is being genotyped?

- Originally primarily widely-used AI sires
- Augmented with sires used in herds that wanted to predict young animals
- Just a few of the most promising young bulls
- Now often all the sale bulls and some heifers being genotypes

• But what is the impact of genotyping on ΔG ?

(Black) Angus Genetic Trends

Red Angus Association Genetic Trends

Red Angus Carcass Genetic Trends

Red Angus Reproductive Genetic Trends

Future Developments - GBS

Trait	Black	Hereford	Gelbvieh	Limousin	Red	Simmental	Trait	
	Angus				Angus		Average	
Birth weight	93	84	81	76	100	93	87	
Calving ease D.	85	90	85	93	96	91	90	
Calving ease M.	88	72	90	90	89	84	85	
Carcass weight	91	-	90	92	87	87	89	
Fat thickness	81	83	70	-	57	105	79	GeneSeek
Heifer Preg	-	-	-	-	108	-	108	
Marbling	95	73	87	71	95	99	87	Pre-production
Milk	89	69	87	112	52	98	85	genotyping-by-
Post-wean ADG	101	78	77	73	85	73	81	sequencing
Rib eye area	85	83	51	79	99	92	82	panel
Stayability	-	-	-	-	94	88	91	
Weaning eight	91	84	87	77	84	91	86	
Yearling weight	97	84	91	80	84	83	86	
Breed Average	91	80	81	84	87	90	86	

Summary

- What are the opportunities for the use of genomic selection in beef cattle
 - Huge opportunities for traits not easily improved by conventional selection
 - Unfortunately, these traits are not practical for implementing genomic selection without massive phenotyping and industry re-organisation
 - Some opportunities to screen bulls for sale
 - But this may not improve the bull breeding business
 - Some opportunities to improve bull fathers

Summary

- How is genomic selection used in beef cattle?
 - Using combined panel that can simultaneously
 - Determine or verify parentage
 - Screen various recessive conditions
 - Impute to panels used to predict the routinely evaluated traits produced by National Cattle Evaluation
 - Hard to determine the extent intensities of selection or generation intervals of various selection pathways are being altered
 - Potential to increase selection of unregistered animals and erode the demand for bulls from bull breeding herds

Summary

- What are the challenges for further advancing the use of genomic selection in beef cattle?
 - The value proposition is poorer than in other industries
 - Works better for some traits than others
 - The regression of phenotype on DGV is often <1</p>
 - Poorly evaluated animals may have large var(u-hat)

Need Better Tools

- The genome is heterogeneous and quality of marker panels is poor in some genomic locations
 - Imputation limited by quality of actual genotypes
- The reference (sequence) genome has limitations
 - Need long reads eg PAC Bio
 - May need breed specific reference
 - Need more and better annotation
- Need to discover more causal mutations

Need More Data

- More phenotypes and genotypes!
 - Both nature and scope