

CSD2181/2183 — Data Structure

Exercises

Nisha Jain

Assistant Professor nisha.jain@singaporetech.edu.sg

SingaporeTech.edu.sg

Introduction — Data Structure Exercises

https://www.classpoint.app/

Introduction — Data Structure Exercises

- Purpose: to reinforce what you have learned and practiced in lectures.
- The exercise session is conducted face to face in class.
- It consists of a few MCQs to be solved within class.
- Limited time is given for each question (answer will be discussed afterwards).
- You are required to login to ClassPoint with your student ID.
- So, bring along your laptop or devices with Internet access.
- Attendance is compulsory and there is no make up.
- Exercises are marked considering your overall performance in the module.

Exercise Hashing

11.1 Consider the hash function below in an open addressing hash table h(k) = k %7

Assuming double hashing with g(k) = 5 - k%5Determine number of probes after inserting 72

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

11.1 Consider the hash function below in an open addressing hash table h(k) = k %7

Assuming double hashing with g(k) = 5 - k%5Determine number of probes after inserting 72

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

$$h(k) = 72 \% 7 = 2$$

 $g(k) = 5 - 72 \% 5 = 3$
 $h(k) + g(k) = 2+3 = 5$
 $h(k)+2g(k) = 2+6 = 8\%7 = 1$

11.2 Consider the hash function below in a chaining hash table h(k) = k % 7

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

11.2 Consider the hash function below in a chaining hash table h(k) = k %7

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

11.3 Consider the hash function below in a chaining hash table h(k) = k %7

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

11.3 Consider the hash function below in a chaining hash table h(k) = k %7

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4
- F. 5

11.4 Determine the load factor of the given chaining hash table.

- A. 1
- B. 2
- C. 3/6
- D. 3/7
- E. 5/7
- F. 14/3

11.4 Determine the load factor of the given chaining hash table.

- A. 1
- B. 2
- C. 3/6
- D. 3/7
- E. 5/7
- F. 14/3

Exercise 2-3 Search Trees

11.5 Consider the following 2-3 tree, how many nodes will it have after inserting 15?

- A. 1
- B. 2
- C. 3
- D. 4

11.5 Consider the following 2-3 tree, how many nodes will it have after inserting 15?

- **A.** 1
- B. 2
- C. 3
- D. 4

11.6 Consider the following 2-3 tree, how many nodes will it have after inserting 30?

- **A.** 1
- B. 2
- C. 3
- D. 4

11.6 Consider the following 2-3 tree, how many nodes will it have after inserting 30?

- **A.** 1
- B. 2
- C. 3
- D. 4

11.7 Consider the following 2-3 tree, what is the inorder traversal of the tree?

- A. ABCDEFGHIJK
- B. EBFGCHAIJDK
- C. EBFCGHAIDJK
- D. EFHBHCIJKDA
- E. ABEFCGHDIJK

11.7 Consider the following 2-3 tree, what is the inorder traversal of the tree?

- A. ABCDEFGHIJK
- B. EBFGCHAIJDK
- C. EBFCGHAIDJK
- D. EFHBHCIJKDA
- E. ABEFCGHDIJK

11.8 Consider the following 2-3 tree, how many splits after inserting 22?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.8 Consider the following 2-3 tree, how many splits after inserting 22?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.9 Consider the following 2-3 tree, how many merge after removing 29?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.9 Consider the following 2-3 tree, how many merge after removing 29?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.10 Consider the following 2-3 tree, how many merge after removing 14?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.10 Consider the following 2-3 tree, how many merge after removing 14?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.11 Consider the following 2-3 tree, how many merge after removing 12?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

11.10 Consider the following 2-3 tree, how many merge after removing 12?

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

The End