Data Science Capstone Week 3 Assignment - PART 1

Intent: Scrape a Wikipedia page and extract a pandas dataframe containing Toronto Postalcodes, Borough, and Neighborhood

Import Pandas Library

...to provide the Dataframe container as well as the scraper "read_html" command

```
In [242]:
```

```
import pandas as pd
import numpy as np
```

Import Urllib Library

packages imported

...to read the HTML code into a string variable "jenhtml" ... this will facilitate the execution of pandas.read_html the scaping command

```
In [243]:
```

```
import urllib.request
import urllib.parse
import urllib.error

!conda install -c conda-forge lxml --yes
import lxml

print("packages imported")

Solving environment: done

==> WARNING: A newer version of conda exists. <==
    current version: 4.5.11
    latest version: 4.7.11

Please update conda by running
    $ conda update -n base -c defaults conda

# All requested packages already installed.</pre>
```

Open and Read Wikipedia Page into a String Variable

...to read the HTML code into a string variable "jenhtml" ... this will facilitate the execution of pandas.read_html the scraping command

```
In [244]:
```

```
jenurl = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M"
print(jenurl)
```

https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M

```
In [245]:
```

```
jenhtmlStr = urllib.request.urlopen(jenurl).read()
```

In [246]:

```
jendf = pd.read_html(jenhtmlStr)[0]
jendf.head()
```

Out[246]:

Neighbourhood	Postcode Borough		
Not assigned	Not assigned	M1A	0
Not assigned	Not assigned	M2A	1
Parkwoods	North York	МЗА	2
Victoria Village	North York	M4A	3
Harbourfront	Downtown Toronto	M5A	4

In [247]:

```
jendf.shape
```

Out[247]:

(288, 3)

Drop Rows with Missing Boroughs

In [248]:

```
jendf = jendf[jendf.Borough != "Not assigned"]
jendf.head()
```

Out[248]:

Neighbourhood	Postcode Borough		Postcode	
Parkwoods	North York	МЗА	2	
Victoria Village	North York	M4A	3	
Harbourfront	Downtown Toronto	M5A	4	
Regent Park	Downtown Toronto	M5A	5	
Lawrence Heights	North York	M6A	6	

Combine Rows of Postcode-sharing Neighborhoods

- · determine which postcodes have more than one neighborhood
- · for each multiply-used postal code:

Replace all multiply-used rows of the same postal code with just one row.

The new value for the "Neighbourhood" field will be a list of the former neighborhoods that appeared in the individual rows corresponding to the shared zipcode.

Find the multiply-used Postcodes by performing a df.value_counts()

```
In [249]:
```

```
mycounts = jendf["Postcode"].value_counts()
mycounts.head()

Out[249]:
```

```
M8Y 8
M9V 8
M5V 7
M9B 5
M8Z 5
```

Name: Postcode, dtype: int64

Form a LIST of Postcodes that have more than one neighborhood

```
In [250]:
```

```
postcodeList = mycounts.index.values.tolist()
pcodeList = []
for pcode in postcodeList:
    if mycounts.loc[pcode] > 1:
        pcodeList.append(str(pcode))

print(len(pcodeList))
neighList = []
boroList = []
```

57

Update the Dataframe by deleting duplications and augmenting 'Neighborhood' if necessary

The algorithm employed is:

For each postal code "pc" in pcodeList (created above):

- 1. Select and extract all rows in main dataframe "jendf" with postalcode "pc" and place into another temporary dataframe called 'tempDF'
- 2. Form a new neighborhood String by extracting all individual neighborhoods in tempDF, putting them in a list, and invoking "join" with comma as delimiter
- 3. Save the new neighborhood string 'nStr' in a list; save its borough in a list called "boroList"

After the loop, save all collected information in a dictionary: "nndict"

In [251]:

```
#initialize lists
boroList = []
neighList = []
nList = list()
# Traverse pcodeList to create the new 'Neighbourhood' strings
for pc in pcodeList:
   nList = []
   # 1. select and extract all rows in main dataframe "jendf" with
        Postalcode "pc" and place into another temporary dataframe 'tempDF'
   tempdfSeries = jendf.Postcode == pc
   tempDF = jendf[tempdfSeries]
   # -----
   # 2a. Form a new neighborhood String by extracting all individual neighborhood
         in tempDF and putting them in a list
   nList = tempDF['Neighbourhood'].values.tolist()
   # -----
   # 2b. invoke python function 'join()' with comma as delimiter
   jenDelimiter = ', '
   nStr = jenDelimiter.join(nList)
   # -----
        Save the new neighborhood string 'nStr' in a list; save its borough in a
list
   neighList.append(nStr)
   jenBoro = str(tempDF.iloc[0,1])
   boroList.append(jenBoro)
## end FOR LOOP
# Store all the collected information in a "New Neighbourhood" dictionary
nnDict = dict()
nnDict['Postcode'] = pcodeList
nnDict['Borough'] = boroList
nnDict['Neighbourhood'] = neighList
```

Remove Redundancy in Dataframe by deleting multiple rows and finally replacing 'Neighborhood' if necessary

The algorithm employed is:

- A. Delete all postalcode duplicates from our original DF called "jendf"
- B. Create a new pandas dataframe "newNeighDF" to concatenate with our original DF "jendf"
- C. Merge the new dataframe "newNeighDF" into original "jendf" by using the pandas "concat" command

A. Delete all postalcode duplicates

```
In [252]:
```

```
# A. Delete all postalcode duplicates
jendf.drop_duplicates('Postcode', keep=False, inplace=True)
```

B. Create a new pandas dataframe "newNeighDF" to concatenate with our original DF "jendf"

```
In [254]:
```

```
newNeighDF =pd.DataFrame(data=nnDict)
newNeighDF.head()
```

Out[254]:

Neighbourhood	Borough	Postcode	
Humber Bay, King's Mill Park, Kingsway Park So	Etobicoke	M8Y	0
Albion Gardens, Beaumond Heights, Humbergate,	Etobicoke	M9V	1
CN Tower, Bathurst Quay, Island airport, Harbo	Downtown Toronto	M5V	2
Cloverdale, Islington, Martin Grove, Princess	Etobicoke	М9В	3
Kingsway Park South West, Mimico NW, The Queen	Etobicoke	M8Z	4

C. Merge the new dataframe "newNeighDF" into original "jendf" by using the pandas "concat" command

In [256]:

```
jenFrames = [jendf, newNeighDF]
postalDF = pd.concat(jenFrames)
postalDF.reset_index(drop=True,inplace=True)
postalDF.head(20)
```

Out[256]:

	Postcode	Borough Neighbourhood	
0	МЗА	North York	Parkwoods
1	M4A	North York	Victoria Village
2	M7A	Queen's Park	Not assigned
3	М9А	Etobicoke	Islington Avenue
4	МЗВ	North York	Don Mills North
5	М6В	North York	Glencairn
6	M4C	East York	Woodbine Heights
7	M5C	Downtown Toronto	St. James Town
8	М6С	York	Humewood-Cedarvale
9	M4E	East Toronto	The Beaches
10	M5E	Downtown Toronto	Berczy Park
11	M6E	York	Caledonia-Fairbanks
12	M1G	Scarborough	Woburn
13	M4G	East York	Leaside
14	M5G	Downtown Toronto	Central Bay Street
15	M6G	Downtown Toronto	Christie
16	M1H	Scarborough	Cedarbrae
17	М2Н	North York	Hillcrest Village
18	М4Н	East York	Thorncliffe Park
19	M1J	Scarborough	Scarborough Village

Replace "Not assigned" Neighbourhood values

Employ the following algorithm:

- (1) Extract all rows in dataframe postalDF with Neighbourhood = 'Not assigned' into a new dataframe naNeighDF
- (2) In dataframe naNeighDF assign "Neighbourhood" column to be equal to "Borough" column
- (3) Delete all rows from original dataframe postalDF with Neighbourhood = 'Not assigned'
- (4) Concatenate the two dataframes postalDF and naNeighDF into regionsTorontoDF

```
In [257]:
```

```
# (1) Extract all rows in dataframe 'newNeighDF' with Neighbourhood = 'Not assigne
d' into a new dataframe naNeighDF
naNeighDF = postalDF[postalDF.Neighbourhood=='Not assigned']
naNeighDF
```

Out[257]:

	Postcode Boro		Neighbourhood
2	M7A	Queen's Park	Not assigned

In [258]:

```
#(2) In dataframe "naNeighDF" assign "Neighbourhood" column to be equal to "Boroug
h" column
naNeighDF['Neighbourhood']=naNeighDF['Borough']
naNeighDF
```

```
/home/jupyterlab/conda/envs/python/lib/python3.6/site-packages/ipykerne l_launcher.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[258]:

Postcode		Borough	Neighbourhood
2	M7A	Queen's Park	Queen's Park

```
In [259]:
```

```
naNeighDF.head(10)
```

Out[259]:

Postcode Borough Neighbourhood

M7A Queen's Park Queen's Park

In [260]:

```
# (3) Delete all rows from original dataframe "postalDF" with "Neighbourhood = 'Not
assigned'"
postalDF = postalDF[postalDF.Neighbourhood!='Not assigned']
```

In [261]:

```
#(4) Concatenate the two dataframes <b>postalDF </b> and <b>naNeighDF</b> into regi
onsTorontoDF

myframes = [postalDF, naNeighDF]
regionsTorontoDF = pd.concat(myframes)
regionsTorontoDF.shape
```

Out[261]:

(103, 3)

In [262]:

regionsTorontoDF.reset_index(drop=True,inplace=True)
regionsTorontoDF.head(14)

Out[262]:

Neighbourhood	Postcode Borough		Postcode	
Parkwoods	North York	МЗА	0	
Victoria Village	North York	M4A	1	
Islington Avenue	Etobicoke	М9А	2	
Don Mills North	North York	МЗВ	3	
Glencairn	North York	М6В	4	
Woodbine Heights	East York	M4C	5	
St. James Town	Downtown Toronto	M5C	6	
Humewood-Cedarvale	York	M6C	7	
The Beaches	East Toronto	M4E	8	
Berczy Park	Downtown Toronto	M5E	9	
Caledonia-Fairbanks	York	М6Е	10	
Woburn	Scarborough	M1G	11	
Leaside	East York	M4G	12	
Central Bay Street	Downtown Toronto	M5G	13	

In [263]:

regionsTorontoDF.shape

Out[263]:

(103, 3)