CARNEGIE MELLON UNIVERSITY

ROBOTICS CAPSTONE PROJECT

System Readiness Review

Friction Force Explorers:

Don Zheng Neil Jassal Yichu Jin Rachel Holladay

supervised by Dr. Cameron RIVIERE

Contents

1	Bui 1.1 1.2	Electromechanical Updates 1.1.1 Electrical Updates 1.1.2 Mechanical Updates Software Update 1.2.1 Locomotion 1.2.2 Localization 1.2.3 Scheduling, Distribution and Planning (SDP)	2 2 2 2 2 2 2 3
	1.3	1.2.4 User Interface	3
2	2.1 2.2	bject Management Work Breakdown Schedule	5 18
3	3.1 3.2	Objectives Tree	18 19 27
4	Ris	sk Management	2 8
5	Tes	sting and Evaluation Plan	31
Т.	•+	C.D.	
ш.	ISU	of Figures	
L.	1 2 3 4 5	Annotated AprilTag testing setup	3 3 5 6 7
L.	1 2 3 4 5 6 7 8 9 10	Annotated AprilTag testing setup Drawing Interface for Inputting Requests Full WBS for the project Electromechanical WBS section Software WBS section Integration WBS section Schedule via Gantt Chart Full Objectives Tree Objectives Tree: Is Safe Branch Objectives Tree: Is Portable Branch	3 5 6 7 8 18 20 21 22
L	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Annotated AprilTag testing setup Drawing Interface for Inputting Requests Full WBS for the project Electromechanical WBS section Software WBS section Integration WBS section Schedule via Gantt Chart Full Objectives Tree Objectives Tree: Is Safe Branch Objectives Tree: Is Portable Branch Objectives Tree: Drawing Tool is Easy to Operate Branch Objectives Tree; Is Mobile Branch Objectives Tree: User-Friendly Branch Objectives Tree: Performance Guarantees Branch	3 5 6 7 8 18 20 21
	1 2 3 4 5 6 7 8 9 10 11 12 13	Annotated AprilTag testing setup Drawing Interface for Inputting Requests Full WBS for the project Electromechanical WBS section Software WBS section Integration WBS section Schedule via Gantt Chart Full Objectives Tree Objectives Tree: Is Safe Branch Objectives Tree: Is Portable Branch Objectives Tree: Drawing Tool is Easy to Operate Branch Objectives Tree; Is Mobile Branch Objectives Tree: User-Friendly Branch	

1 Build Progress

This section details system development and progress made since the last milestone presentation. Progress is split into three major sections: electromechanical, software, and integration. Electromechanical updates detail chassis build progress, as well as setup of the electronics to drive the motors for locomotion and using the writing implement. Software updates describe progress towards subsystem completion. Integration details updates made with regard to integrating the electromechanical and software systems, and testing functionality.

1.1 Electromechanical Updates

1.1.1 Electrical Updates

Electrical progress is separated into two main parts: connecting the motors to the motor controller and Raspberry Pi, and powering the motors and Raspberry Pi controller. Each of the motors was wired up to an Adafruit Motor Controller for easy use, which mounts as a shield on top of the Pi. For the time being, we have chosen not to connect the motor encoders. Given that we are using localization for motions, and vector directions for the robots are updated at every control loop iteration, we have hypothesized that localization will be enough to ensure accurate motion. The robots will never be moving more than a few inches without updated directional commands, making fine tuned encoder-based motor control unnecessary.

The battery packs for the Raspberry Pi and motors were directly connected to the respective pieces of hardware. Until the electronics mount is built, we have been placing the battery packs on the robot, or holding them during testing. We plan to attach them to the mount using velcro.

1.1.2 Mechanical Updates

YJ: Talk about webcam jig YJ: Building new robot, motor shafts, etc.

1.2 Software Update

We detail the software progress made across the following subsystems. Most subsystems have reached the point of usability, and at this point most additions enhance ease-of-use and functionality.

1.2.1 Locomotion

The locomotion subsystem has been fully implemented as a part of the onboard controller code. The subsystem is capable of determining motor commands based on a target vector direction to move the robot along the specified vector. The robots have mecanum wheels and can therefore move omnidirectionally. This fact, coupled with the fact that we plan to only have to move along fixed straight-line vectors as specified by the SDP subsystem, means the robots never have to rotate. The goal of locomotion is only to translate along vectors, and never rotate. However, implementation of the mecanum control equations includes the ability to have the robots rotate during operation. The main use of rotation will be to correct any rotational error detected by the localization subsystem.

1.2.2 Localization

The localization subsystem has been completed, and is successfully able to use a combination of the AprilTags library, and Boost Python to transmit position and orientation of each AprilTag back to the controller. The controller then computes an affine warp using the specified corner tags, and warps the coordinates into a fixed dimension space. For example, if the input space is from coordinates (0,0) to (10,10), the controller will warp the space from pixel coordinates to the (0,0), (10,10) frame. While this can potentially warp the image being drawn as it stretches to accommodate a fixed input space, the change in dimensions is small enough not to affect output quality. Orientation of the robots is also computed, and will be sent to the robots to correct any rotational error. Fig.1 shows an annotated test image of the six AprilTags to be used, with their respective labels and tags marked for visualization.

Figure 1: Annotated AprilTag testing setup

1.2.3 Scheduling, Distribution and Planning (SDP)

In advance of SDP integration we formatted our planner to take as input a standarized message type. Additionally, we added flexibility to the planning system by allowing inputs of arbitrary dimension. Given an input of size M by N the planner will re-scale the drawing to match the size of the drawing surface, X by Y. Following these updates the current planner was integrated into main code base. We look forward to testing it and adding on-board collision prevention soon.

1.2.4 User Interface

We completed development of a UI that allows users to draw the lines they would like the robots to complete. The interface is shown in Fig.2. The user drags their mouse to draw a series of lines. The user has the option to clear their current drawing, allowing them to start over. Once the user is finished they can input the filename under which they would like to save the drawing and exit the tool. The tool records the line drawing and saves it to our database. We envision using this tool to create our own drawings and to add an interactive element to our demo.

Figure 2: Drawing Interface for Inputting Requests

1.3 Integration Updates

System integration has involved assembling the electronics - including the motors and Raspberry Pi controller, and attaching them correctly to the mechanical system. For now, we were able to combine the locomotion subsystem with the onboard controller to send vector commands to the motors. The robot

is able to move omnidirectionally and correct for rotation, however without localization it is impossible to detect rotational error. After running some simple motion tests without the encoder, we found that the robot was well within our positional accuracy requirements, and we do not believe the encoders will be necessary. Once localization is connected to the onboard system, we will be able to confirm that the encoders are not necessary.

Next steps involve integrating the communication and localization systems. Current tests used the onboard system only to run locomotion commands. The first task is to enable offboard communication to send locomotion commands to the robot. Once consistent and accurate communication is established, localization will be added. Using localization, we can begin running simple plans that move the robot from point to point within the designated drawing space.

Parallel testing will involve the writing implement. Now that the robots can move individually, testing and improvements to writing while drawing will start. Tests of writing quality during various motions and writing speed limits will be done to ensure we can meet quality and consistency requirements for the final drawing.

2 Project Management

2.1 Work Breakdown Schedule

In this section, we present the Work Breakdown Schedule for the project.

Figure 3: Full WBS for the project

Figure 4: Electrome@nanical WBS section

Figure 5: Software WBS section

Figure 6: Integration WBS section

The WBS dictionary entries include more information on each of the work elements of the project. Information such as estimates for the amount of time each task will take and their dependencies will help us adhere to our schedule, while determining the owner of each task will improve tractability of the workflow.

WBS#:	1.1.1	Task:	Finalize CAD Design	
Est. Effort (hrs):	3	Owner:	Eric	
Resources:	CAD software	Work products:	CAD files	
Description:	Update the CAD	design to fit the f	inal design of the robot	
Input:	Previous designs, new design ideas and requirements			
Dependencies:	Complete design review			
Risks:	Designs cannot be completed on time			

WBS#:	1.1.2	Task:	Obtain Parts	
Est. Effort (hrs):	20	Owner:	Don	
Resources:	Parts list	Work products:	Parts order receipt	
Description:	Finalize the parts list, and contact the necessary people to ensure that parts are ordered			
Input:	CAD designs, electronics designs			
Dependencies:	Finalized CAD designs			
Risks:	Parts ordering procedure is more time consuming than expected			

WBS#:	1.1.3.1	Task:	Fabricate Chassis	
Est. Effort (hrs):	4	Owner:	Eric	
Resources:	CAD designs, MechE shop	Work products:	Chassis components	
Description:	Use the Mechanical Engineering machine shop to fabricate components necessary to build the chassis			
Input:	CAD designs, parts			
Dependencies:	Obtain parts			
Risks:	Machine shop is not available, injury from operating machines			

WBS#:	1.1.3.2	Task:	Fabricate Writing Tool
Est. Effort (hrs):	4	Owner:	Eric
Resources:	CAD designs, MechE shop	Work products:	Writing tool components
Description:	Use the Mechanical Engineering machine shop to fabricate components necessary to build the writing implement		
Input:	CAD designs, parts		
Dependencies:	Obtain parts		
Risks:	Machine shop is not available, injury from operating machines		

WBS#:	1.1.4.1	Task:	Assemble Camera Rig	
Est. Effort (hrs):	3	Owner:	Don	
Resources:	Scrap wood	Work products:	Camera rig	
Description:	Build the rig used to hold the camera for the vision system above the drawing space			
Input:	Measurements from demo space			
Dependencies:	Confirmation of demo space location			
Risks:	No extra wood is available, demo space does not have adequate room for the camera rig			

WBS#:	1.1.4.2	Task:	Assemble Robot Agents	
Est. Effort (hrs):	5	Owner:	Eric ▼	
Resources:	Tools, fasteners	Work products:	Two robot agents	
Description:	Use fabricated components to build the two robot agents in the system			
Input:	Fabricated components			
Dependencies:	Fabricate chassis and fabricate writing tool			
Risks:	Parts are broken during assembly, extra parts or fasteners are needed			

WBS#:	1.1.5	Task:	Mechanical Testing
Est. Effort (hrs):	3	Owner:	All
Resources:	Tools, fasteners	Work products:	Two robot agents
Description:	Perform mechanical testing on the robots in accordance with our testing guidelines		
Input:	Mechanically complete robots		
Dependencies:	Assemble robot agents		
Risks:	Tests are failed, and significant time or extra resources are needed to correct the tests		

WBS#:	1.2.1	Task:	Software Arch. Design	
Est. Effort (hrs):	3	Owner:	All	
Resources:	None	Work products:	Function headers	
Description:	Design function I/O, and create function headers for all files we will use in the robot			
Input:	Software flowchart, decisions on software libraries			
Dependencies:	Complete design review			
Risks:	Selected software libraries have compatability issues			

WBS#:	1.2.2.1	Task:	Localization Subsystem	
Est. Effort (hrs):	6	Owner:	Neil	
Resources:	AprilTag library	Work products:	Working localization	
Description:	Fill in the function headers for the localization system to develop an end-to-end localization solution for the robots			
Input:	Function headers and design for localization system			
Dependencies:	Software architecture design			
Risks:	Localization system or library is unable to perform to expectations			

WBS#:	1.2.1	Task:	Locomotion Subsystem	
Est. Effort (hrs):	5	Owner:	Don	
Resources:	Adafruit Motor controller library	Work products:	Control system for motors, robust motion model	
Description:	Create a complete set of functions that can be used to direct the robots around the workspace			
Input:	Software flowchart, decisions on software libraries			
Dependencies:	Software architecture design			
Risks:	Interfacing issues with motors, damanged electronics hardware, unreliable motion models			

WBS#:	1.2.1	Task:	User Interface Subsystem	
Est. Effort (hrs):	4	Owner:	Rachel	
Resources:	Various UI libraries	Work products:	User interface including calls to other subsystems	
Description:	Create a visually appealing and intuitive user interface for the robot system			
Input:	Software flowchart, decisions on software libraries			
Dependencies:	Software architecture design			
Risks:	Libraries are not available			

WBS#:	1.2.2.4	Task:	Comunication
Est. Effort (hrs):	8	Owner:	Neil
Resources:	Wireless comm. libraries	Work products:	Functions for sending info. back and forth from robots
Description:	Create a reliable and the central d		system between the robots nit
Input:	Software flowcha	art, decisions on s	software libraries
Dependencies:	Software archited	cture design	
Risks:	Wireless hardwa other software or		interfaces poorly with

WBS#:	1.2.2.5	Task:	SDP Subsystem					
Est. Effort (hrs):	15	Owner:	Rachel					
Resources:	SDP research, implementations	Work products:	Complete SDP functions					
Description:		Create a flexible scheduling, distribution, and planning ubsystem that efficiently assigns work to robots						
Input:	Software flowcha	art, decisions on s	software libraries					
Dependencies:	Software archited	cture design						
Risks:	SDP algorithms a	are not efficient e	nough to meet requirements					

WBS#:	1.2.3	Task:	Subsystem Testing
Est. Effort (hrs):	4	Owner:	All
Resources:	Software subsystems	Work products:	Complete software subsystems
Description:		•	nsure that they give ed with testing inputs
Input:	Completed softw	are subsystems	
Dependencies:	All software subs	ystem tasks	
Risks:	Software subsyst	•	mented incorrectly and do

WBS#:	1.3.1	Task:	Software Integration			
Est. Effort (hrs):	3	Owner:	All			
Resources:	Software subsystems	Work products:	Complete software pipeline			
Description:	Test integration of all software components by creating an end to end pipeline consisting of all software subsystems					
Input:	Completed and in	dividually verified	software subsystems			
Dependencies:	Subsystem testing]				
Risks:	Subsystems cann	ot integrate with e	ach other			

WBS#:	1.3.2	Task:	Full System Integration						
Est. Effort (hrs):	3	Owner:	All						
Resources:	S.W. and H.W. subsystems	Work products:	Working robot system						
Description:	Complete integra	Complete integration of software components with hardware components							
Input:	Completed and in subsystems	ndividually verifie	d software and hardware						
Dependencies:	Software integrate	tion							
Risks:	Software and harmodels do not we		erface with one another,						

WBS#:	1.3.3	Task:	Requirements Testing						
Est. Effort (hrs):	5	Owner:	All						
Resources:	Working robot	Work products:	Complete, working robot system						
Description:	•	erify the reliability and effectiveness of the robot by conducting our full testing suite							
Input:	Unverified but wo	orking robot syste	em						
Dependencies:	Full system integ	ration							
Risks:	Robot fails tests,	need to rework s	some subsystems						

2.2 Schedule

Fig.7 shows our current progress towrads meeting our schedule. At this point, the electromechanical design is slightly behind - the camera rig assembly is still being built, and the second robot has not been constructed yet. The camera rig has been recently updated in design, and parts have been ordered. We do not expect assembly to take long, or hinder progress in integration. The second robot parts have already been ordered. We delayed building it to ensure we could finalize the robot design before building a second one.

Software implementation at this point is complete. All of the major subsystems are functional, and the only additions are to enhance or add additional features. Other software changes are being done for integration, to allow the various subsystems to work with the hardware, or with each other. The software design and implementation has reached usability and is therefore on schedule.

Integration is will underway, which is the majority of the work we have left. Some subsystems have been integrated, and others are actively being worked on. Motion onboard the robot is completed, and there are plans to finish integrating the communication and localization subsystems within the next week.

Figure 7: Schedule via Gantt Chart

3 Requirements Tracking

For readbility we provide a summary of our requirements below.

Requirement	Title
FR1	Omnidirectional Movement
FR2	Autonomous
FR3	Robots Localize Globally and Locally
FR4	Within Bounds
FR5	Insert Writing Tools
FR6	Remove Writing Tools
FR7	Replace Writing Tools
FR8	Coordination
FR9	Drive Control System
F10	Turn on or off writing tool
F11	Input Drawing Plan
F12	Robots Know Progress
F13	Kill Switch
F14	User Interface to Robot
NFR1	Docmentation
NFR2	Error Handling
NFR3	Weight Restriction
NFR4	Size Restriction
NFR5	Efficiency
NFR6	Quality
NFR7	Battery Power
NFR8	Reliability
NFR9	Reliable Communication
NFR10	Budget
NFR11	Safe
NFR12	Positional Accuracy
NFR13	Rotation Accuracy
NFR14	Tool Switching Duration

3.1 Objectives Tree

We created an objectives tree to better organize our requirements, and prioritize them based on system purposes and goals. After analysis of our requirements, we formed the objectives tree in Fig.8 with the following categories:

- 1. Is Safe (Fig.9)
- 2. Is Portable (Fig.10)
- 3. Drawing Tool is Easy to Operate (Fig.11)
- 4. Is Mobile (Fig.12)
- 5. User-Friendly (Fig.13)
- 6. Performance Guarantees (Fig.14)

The category for 'Is Safe' (Fig.9) encompasses requirements for the robot staying within bounds, maintaining reliable communication, existence of a kill switch, and overall safe operation. These requirements breakdown how safe usage of the robot can be achieved, through both system design and user operation.

'Is Portable' (Fig.10) specifies system constraints that enable the robots to be able to be transported easily. The battery-powered requirement ensures the robots do not need external power during operation. Weight and size requirements were further categorized into physical constraints, to emphasize the importance of those requirements on portability outside of system operation.

Subtree 'Drawing Tool is Easy to Operate' (Fig.11) ensures the writing tool is easy to maintain and use both during and before or after system operation. The main subtree describes tool maintenance. Requirements under maintenance include inserting, removing, and replacing the tool, as well as duration

requirements for replacing the writing tool. Other requirements in this category relate to having the ability to enage or disengage the writing tool. This requirement is involved with system operation, and ensures the robot can change the tool status so the robots can move regardless of whether it is drawing.

The 'Is Mobile' (Fig.12) tree categorizes mobility requirements and constraints for the robot agents. Both positional and rotational accuracy are categorized under their own Accuracy subtree. Other leaves in this subtree ensure the robot agents have their own drive control systems, can localize, and are able to move autonomously in any direction on a 2D plane.

We also chose to separate out requirements that relate to engaging the user and enable a user-friendly experience. These fall under the 'User-Friendly' subtree (Fig.13). Both documentation and budget requirements were categorized here - these requirements are more likely to be for users interested in adapting or recreating our system. As a result, other requirements were further categorized into a user-interaction subtree. These constraints denote existence of a UI, error handling, and the ability for users to input their drawing plan.

The final categorization, 'Performance Guarantees' (Fig.14) denotes overall system requirements to ensure the final drawing meets specifications. These requirements include ensuring the robots know their own progress, and coordinate with each other. In addition, requirements specifying system efficiency, reliability, and overall drawing quality fell into this category.

Figure 8: Full Objectives Tree

20

Figure 9: Objectives Tree: Is Safe Branch

Figure 10: Objectives Tree: Is Portable Branch

Figure 11: Objectives Tree: Drawing Tool is Easy to Operate Branch

 $\begin{array}{c} 24 \\ \text{Figure 12: Objectives Tree; Is Mobile Branch} \end{array}$

Figure 13: Objectives Tree: User-Friendly Branch

Figure 14: Objectives Tree: Performance Guarantees Branch

3.2 Requirements Traceability Matrix

We present our requirements traceability matrix in Fig.15. We categorize our requirements into functional and nonfunctional requirements. For each requirement, we classify which subsystem it relates to: writing, communication, locomotion, localization, SDP (scheduling, distribution and planning) and mechanical structure. Each requirement is colored green if initial testing has shown that we achieve the requirement.

	Subsystems	Writing	Communication	Locomotion	Localization	SDP	Mechanical Structure
	FR1: Omnidirectional Motion			Х			
	FR2: Autonomous			X	X	Х	
	FR3: Localize Globally and Locally				X		
	FR4: Within Bounds			Х	Х		
	FR5: Insert Tool	X					
	FR6: Remove Tool	X					
Functional	FR7: Replace Tool	X					
Requirements	FR8: Coordination					Х	
	FR9: Drive Control			Х			
	FR10: Turn on/off Tool	X					
	FR11: Input Plan		X			Х	
	FR12: Know Progress		X		Х	Х	
	FR13: Kill Switch	X	X	X			
	FR14: User Interface		X			Х	
	NFR1: Documentation	X	X	X	X	Χ	X
	NFR2: Error Handling	X	X	X	X	Χ	X
	NFR3: Weight Restriction						X
	NFR4: Size Restriction						X
	NFR5: Efficiency					Χ	
	NFR6: Quality	X		X	X		
	NFR7: Battery Power	X		X			
Requirements	NFR8: Reliability	X	X	X	Х	Х	X
	NFR9: Reliable Communication		X				
	NFR10: Budget						X
	NFR11: Safe			Х	X	X	X
	NFR12: Positional Accuracy			Х	X		
	NFR13: Rotational Accuracy			X	X		
	NFR14: Tool Switching Duration	X					X

Figure 15: Requirements Traceability Matrix $\,$

4 Risk Management

In this section, we revisit the risks defined by our previous document. The risk tables have been updated with the actions we've taken to address the risks.

Figure 16: Risk 1: Defective Parts

Figure 17: Risk 2: Unavailable Member

Risk ID:	Risk Title:		Risk Owner:								
	Breaking par	rts I	Eric								
Description	n:										
Parts unex improper u		as a result of a	accidents or								
Conseque	onsequences: Risk Type:			Consequen	ce						
We need to parts, expe time and b	ending extra	Parts		1		2	3	4	5	5	
Risk Redu	ction Plan:	Expected Outo	come							4	
We will pra	when	Few parts will					x			3	
working wi order extra	th parts and s in case	even if they do have extras or								1	Likelihood

Figure 18: Risk 3: Breaking Parts

Risk ID:	Risk Title:	i.	Risk Owner:								
	Mecanum Drive Too 4 Unstable		Eric								
Descriptio	n:										
	mechanism for ole or unreliable										
Conseque	ences:	Risk Type:		Consequen	ice						
the drive n	ed to redesign nechanism,			1		2	3		4	5	
time and e	considerable effort	Design flaw									5
Risk Redu	iction Plan:	Expected Ou	tcome							4	ı
								X		3	3
time in our	illd enough r schedule to	The instability								2	2
	t if necessary, se suspension	from the whe manageable	els will be								Likelihood

Figure 19: Risk 4: Mecanum Drive Too Unstable

Risk ID:	Risk Title:	Risk Owner:								
	Localization 5 enough	not precise	Neil							
Description	n:									
ensure tha	zation system is at the drawings ations of input		nough to							
Conseque	nces:	Risk Type:		Consequen	ce					
the localization	ed to redesign ation system			1	2		3	4	5	
or redefine requireme		Design flaw							5	
Risk Redu	ction Plan:	Expected Ou	tcome						4	
We will tes									3	
on in orde	n system early r to catch any					X			2	
design flav system	ws within the	Localization enough for o							1	Likelihood

Figure 20: Risk 5: Localization not precise enough

Risk ID:	Risk ID: Risk Title: Unexpected Budget		Risk Owner:							
			Rachel							
Descriptio	n:									
	ectedly run out than expected t									
Conseque	nces:	Risk Type:		Consequen	ce					
our projec	to scale down t, or possibly			1	2	3	4	5		
even acqu through ot	ire funds her means	Logicstical							5	
Risk Redu	iction Plan:	Expected Out	come						4	
We will lea			×						3	
budget in		We will have a	that		х				2	
unexpected situations occur		essential com be acquired	ponents will						1	Likelihood

Figure 21: Risk 6: Unexpected Budget Overruns

5 Testing and Evaluation Plan

YJ: Eric update this with new information