```
## NASA rocket data example

## From: R.S. Jankovsky, T.D. Smith, A.J. Pavli (1999). "High-Area-Ratio Rocket

## Nozzle at High Combustion Chamber Pressure-Experimental and Analytical

## Validation".

# setwd(...) first if your CSV file is somewhere else

rocket <- read.csv("csv/rocket.csv")

# output all data in rocket vector

rocket</pre>
```

```
##
     thrust nozzle propratio
## 1
      488.0
            1
                      3.97
## 2
     481.6
                      5.91
               1
## 3
     485.9
               1
                      4.98
## 4
     486.0
               1
                      4.91
## 5
     484.5
              1
                      3.89
## 6
     483.8
               1
                     5.80
## 7
     463.2
               0
                     5.99
## 8
     471.2
               0
                     4.95
## 9
      469.5
               0
                     3.91
## 10 470.5
               0
                     5.85
## 11 469.5
               0
                      4.71
## 12 465.7
               0
                      3.84
```

Y (thrust) is the response variable, and there are two explanatory variables x_1, x_2 (nozzle, propratio) where nozzle is coded as 1 if it's large.

```
# Scatter plots where mfrow is used to put multiple plots on one image
par(mfrow = c(1, 2))
plot(rocket$nozzle,
    rocket$thrust,
    ylab = "Thrust",
    xlab = "Nozzle size (1 = large)")
plot(rocket$propratio,
    rocket$thrust,
    ylab = "Thrust",
    xlab = "Propellant to fuel ratio")
```


Residuals:

```
##
      Min
               1Q Median
                              3Q
    -3.37
             0.58 233.12 469.50 471.20
##
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
             485.0
                          141.2
                                  3.435 0.00558 **
## nozzle
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 345.8 on 11 degrees of freedom
## Multiple R-squared: 0.5175, Adjusted R-squared: 0.4736
## F-statistic: 11.8 on 1 and 11 DF, p-value: 0.005575
anova(m1)
## Analysis of Variance Table
##
## Response: thrust
              Df Sum Sq Mean Sq F value
                                              Pr(>F)
## nozzle
               1 836.67
                         836.67 118.7377 1.743e-06 ***
## propratio 1
                   9.53
                            9.53
                                    1.3524
                                              0.2748
                            7.05
## Residuals 9 63.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
On the left it's Y (response variable) and on the right it's x_1, x_2 (explanatory variables). From summary, we
get the estimate vector \hat{\beta} = (473.6039, 16.7383, -1.0948)^{\top}.
# Manual beta estimates where rep is used to make the columns of 1s
X <- cbind(rep(1, 12), rocket$nozzle, rocket$propratio) # X matrix</pre>
y <- matrix(rocket$thrust, ncol = 1) # response vector
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% y
beta_hat
##
               [,1]
## [1,] 473.603924
## [2,] 16.738319
         -1.094822
## [3,]
solve is used for the inverse. ** is used for matrix-matrix multiplication, and t(X) is used for transposing
# Manual sigma estimate
mu_hat <- X %*% beta_hat # fitted values</pre>
e <- y - mu_hat # residuals
sigma_hat <- sqrt((t(e) %*% e) / 9) # Note n-p-1 = 12-2-1 = 9
sigma_hat
##
           [,1]
## [1,] 2.6545
sigma_hat <- sqrt(sum(e ^ 2) / 9) # equivalent</pre>
sigma_hat
## [1] 2.6545
  • \hat{\boldsymbol{\mu}} = X\hat{\boldsymbol{\beta}}
  • e = y - \hat{\mu}
```

```
• \hat{\sigma} = \sqrt{\left(\sum_{i=1}^{n} e_i^2\right)/9} = 2.6545, or
   • \hat{\sigma} = \sqrt{(e^{\top}e)/9} = 2.6545
# Covariance matrix of beta_hat
vcov(m1)
                 (Intercept)
                                    nozzle
                                             propratio
## (Intercept) 22.238325 -1.02316688 -4.32080608
## nozzle
                   -1.023167 2.34987593 -0.03102117
                   -4.320806 -0.03102117 0.88631920
## propratio
sqrt(diag(vcov(m1))) # SEs of individual betas
## (Intercept)
                                 propratio
                       nozzle
     4.7157528
                   1.5329305
                                 0.9414453
# Manual
se_beta <- sigma_hat * sqrt(diag(solve(t(X) %*% X)))</pre>
se_beta
## [1] 4.7157528 1.5329305 0.9414453
   • Se(\hat{\beta}) = \hat{\sigma}\sqrt{(X^{\top}X)^{-1}} = (4.71, 1.53, 0.94)^{\top}
# Estimate the mean response for units with small nozzle and propellant ratio 5.5
# include a 95% CI
predict(
  object = m1,
  newdata = data.frame(nozzle = 0, propratio = 5.5),
  interval = "confidence",
  level = 0.95
)
##
           fit
                      lwr
## 1 467.5824 464.7929 470.3719
Therefore, \hat{y}_0 = 467.58. The 95% confidence interval for the mean response given x_0 is [464.7929, 470.3719].
# Manual calculation
x0 \leftarrow matrix(c(1, 0, 5.5), nrow = 1)
y0 hat <- x0 %*% beta hat
y0_hat
##
              [,1]
## [1,] 467.5824
# mu0 is also known as \hat{Y}_0
se_mu0 <- sigma_hat * sqrt(x0 %*% solve(t(X) %*% X) %*% t(x0))</pre>
se_mu0
              [,1]
##
## [1,] 1.233132
crit val <-qt(0.975, 9)
ci_lo <- y0_hat - crit_val * se_mu0</pre>
ci_hi <- y0_hat + crit_val * se_mu0
c(y0_hat, ci_lo, ci_hi)
```

[1] 467.5824 464.7929 470.3719

```
• x_0 = \begin{bmatrix} 1 & 0 & 5.5 \end{bmatrix}
   • \hat{y}_0 = x_0 \hat{\beta} = 467.5824
   • Se(\hat{Y}_0) = \hat{\sigma} \sqrt{x_0 (X^\top X)^{-1} x_0^\top} = 1.233132
Therefore, \hat{y}_0 = 467.58. The 95% confidence interval for the mean response given x_0 is [464.7929, 470.3719].
# Predict the value of the response for a unit with small nozzle and propellant ratio 5.5
# include a 95% PI
predict(
  object = m1,
  newdata = data.frame(nozzle = 0, propratio = 5.5),
  interval = "prediction",
  level = 0.95
)
##
            fit
                       lwr
                                 upr
## 1 467.5824 460.9612 474.2036
Therefore, y_0 = 467.5824. The 95% prediction interval for the response (y_0) given x_0 is [460.9612474.2036].
# Manual calculation for an individual
x0 \leftarrow matrix(c(1, 0, 5.5), nrow = 1)
y0_hat <- x0 %*% beta_hat
se_y0 <- sigma_hat * sqrt(1 + x0 %*% solve(t(X) %*% X) %*% t(x0))
se_y0
##
              [,1]
## [1,] 2.926941
crit_val <- qt(0.975, 9)
pi_lo <- y0_hat - crit_val * se_y0</pre>
pi_hi <- y0_hat + crit_val * se_y0</pre>
c(y0_hat, pi_lo, pi_hi)
## [1] 467.5824 460.9612 474.2036
```

• $Se(Y_0 - \hat{Y}_0) = \hat{\sigma}\sqrt{1 + x_0(X^\top X)^{-1}x_0^\top} = 2.926941$