TD Data Science

The following exercises are meant to illustrate Gabriel Peyré's Mathematics of Data course (mathematical-tours. qithub. io). Some of them are adapted from the past years' exams.

Please refer to Geert-Jan Huizing (huizing@ens. fr) for questions these exercises and their solutions.

Exercises

[**] Coordinate descent (same as last week)

We let $f: \mathbb{R}^p \to \mathbb{R}$. Coordinate descent is an optimization method that tries to minimize f alternatively with respect to individual coordinates.

We denote w^t the iterates. At iteration t, we chose an index $i \in \{1, ..., p\}$ and try to minimize f with respect to w_i^t without changing the other coordinates w_j^t , $j \neq i$. More formally, we define $\varphi_i(x, w) = f(w_1, ..., w_{i-1}, x, w_{i+1}, w_p)$ and set at each iteration:

$$w_i^{t+1} = \arg\min_{x} \varphi_i(x, w^t)$$
 and $w_j^{t+1} = w_j^t$ for $j \neq i$

The index i is typically chosen as cyclic: $i = 1 + (t \mod p)$. Therefore, at iteration 1, the coordinate 1 is updated, at iteration 2, the coordinate 2 is updated, ..., at iteration p the coordinate p is updated and at iteration p+1 the coordinate 1 is modified again.

1. Assume that f is the quadratic function:

$$f(w) = \frac{1}{2} \langle w, Aw \rangle - \langle b, w \rangle$$

Compute the update rule to minimize φ_i .

2. At iteration t+1, we update the coordinate i. Demonstrate that

$$f(w^{t+1}) - f(w^t) = -\frac{(Aw^t - b)_i^2}{2A_{ii}} \le -\frac{(Aw^t - b)_i^2}{2A_{\text{max}}}$$

where $A_{max} = \max_i A_{ii}$

3. At iteration t, the coordinate that is updated is i such that $(Aw^t - b)_i^2$ is maximal. Show that

$$f(w^{t+1}) - f(w^t) \le -\frac{\|Aw^t - b\|^2}{2pA_{\max}}$$

4. Let $w^* = A^{-1}b$. Demonstrate that $||Aw - b||^2 \ge 2\sigma_{\min}(A)(f(w) - f(w^*))$.

Provide a convergence rate for the coordinate descent method. What is the difference with gradient descent? When is it faster, or slower? Hint: what is the link between A_{max} and $\sigma_{max}(A)$?

[★★] Inverse problems

L2 regularization We consider $f_0 \in \mathbb{R}^n$ a discrete signal. We only observe the signal $y \stackrel{\text{def.}}{=} f_0 \star h + \varepsilon$, where $h \in \mathbb{R}^n$ is a low-pass filter and $\varepsilon \in \mathbb{R}^n$ is noise. For some $\lambda \in \mathbb{R}^*_+$, we look for

$$\arg\min_{f\in\mathbb{R}^n}\frac{1}{2}\left\|f\star h-y\right\|^2+\frac{\lambda}{2}\left\|f\right\|^2.$$

1. Using the Fourier decomposition, prove that for an optimal $f \in \mathbb{R}^n$,

$$\hat{f}_k = \frac{\hat{h}_k^*}{|\hat{h}_k|^2 + \lambda} \hat{y}_k.$$

2. Why does $\lambda > 0$ improve the deconvolution in presence of noise?

Sobolev regularization For $f \in \mathbb{R}^n$, we denote $Gf = (f_i - f_{i-1})_i$ (we consider indexes modulo n).

- 1. What is the adjoint operator $G^{\top}: \mathbb{R}^n \to \mathbb{R}^n$ for the canonical inner product? *i.e.* $\langle Gf, u \rangle = \langle f, G^{\top}u \rangle$.
- 2. Show that G, G^{\top} and $L \stackrel{\text{def.}}{=} GG^{\top}$ are discrete convolution operators and give their associated filters g, \tilde{g} and ℓ .
- 3. Compute the discrete Fourier coefficients \hat{g} . Express $\hat{\tilde{g}}$ and \hat{l} as a function of \hat{g} .
- 4. We now consider the problem

$$\arg\min_{f\in\mathbb{R}^n}\frac{1}{2}\left\|f\star h-y\right\|^2+\frac{\lambda}{2}\left\|Gf\right\|^2.$$

Using the Fourier decomposition and the results from part 2, prove that for an optimal $f \in \mathbb{R}^n$,

$$\hat{f}_k = \frac{\hat{h}_k^*}{|\hat{h}_k|^2 + \lambda \hat{\ell}_k} \hat{y}_k.$$

5. How does this expression differ from part 1?

Total Variation regularization We define $\forall x \in \mathbb{R}$, $||x||_{\varepsilon} \stackrel{\text{def.}}{=} \sqrt{x^2 + \varepsilon^2}$ and $\forall f \in \mathbb{R}^d$, $||f||_{1,\varepsilon} \stackrel{\text{def.}}{=} \sum_i ||f_i||_{\varepsilon}$.

For a linear operator H, we recall the chain rule: $\nabla(\varphi \circ H)(f) = H^{\top}(\nabla \varphi)(Hf)$ where H^{\top} is the adjoint of H.

- 1. Compute $\nabla \|\cdot\|_{1,\varepsilon}$.
- 2. Compute the gradient of $J_{\text{TV}}^{\varepsilon}: f \mapsto \|Gf\|_{1,\varepsilon}$.
- 3. We now consider the deconvolution problem with ε -smoothed TV regularization:

$$\arg\min_{f\in\mathbb{R}^n}\mathcal{E}(f), \text{ where } \mathcal{E}(f) \stackrel{\text{\tiny def.}}{=} \frac{1}{2} \left\|f\star h - y\right\|^2 + \lambda \left\|Gf\right\|_{1,\varepsilon}$$

2

Compute $\nabla \mathcal{E}$.

[$\star\star$] Wasserstein distances (exam 2019) We recall what the Wasserstein-1 distance on a metric space X equipped with a distance d can be computed as

$$W_1(\alpha, \beta) = \sup_{f} \left\{ \int f d(\alpha - \beta) \text{ s.t. } \text{Lip}(f) \leq 1 \right\}$$

where the Lipschitz constant of a function $f: \mathcal{X} \to \mathbb{R}$ is $\operatorname{Lip}(f) \stackrel{\text{def.}}{=} \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x,y)}$.

1. For some random vector Z on some space Z and some function $\Phi: Z \times \mathcal{F} \to \mathbb{R}$ show that

$$\sup_{f \in \mathcal{F}} \mathbb{E}_Z(\Phi(Z, f)) \le \mathbb{E}_Z(\sup_{f \in \mathcal{F}} \Phi(Z, f))$$

where \mathbb{E}_Z is the expectation with respect to Z.

2. We consider 2n independent random variables $X = (x_i)_{i=1}^n$ and $Y = (y_j)_{j=1}^n$, which are identically distributed with law respectively α and β . We denote $\hat{\alpha} \stackrel{\text{def.}}{=} \frac{1}{n} \sum_i \delta_{x_i}$ and $\hat{\beta} \stackrel{\text{def.}}{=} \frac{1}{n} \sum_j \delta_{y_j}$. Show that

$$\mathbb{E}(W_1(\hat{\alpha}, \hat{\beta})) \ge W_1(\alpha, \beta)$$

where the expectation is computed with respect to (X, Y).

3. If $\varphi: \mathcal{X} \to \mathcal{Y}$ is a Lipschitz mapping between two metric spaces $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$, show that

$$W_1(\varphi_\#\alpha, \varphi_\#\beta) \le \operatorname{Lip}(\varphi)W_1(\alpha, \beta)$$

where $\varphi_{\#}$ is the push-forward operator and $\operatorname{Lip}(\varphi) \stackrel{\text{\tiny def.}}{=} \sup_{x \neq y} \frac{d_{\mathcal{Y}}(f(x), f(y))}{d_{\mathcal{X}}(x, y)}$.

4. We recall that the W_2 distance on \mathbb{R}^d is defined as

$$W_2(\alpha, \beta) \stackrel{\text{\tiny def.}}{=} \min_{\pi_1 = \alpha, \pi_2 = \beta} \int \|x - y\|^2 d\pi(x, y).$$

We denote $m_{\alpha} = \int d\alpha$ the mean vector. We denote $\alpha_0 = T_{-m_{\alpha} \#} \alpha$ the centered distribution, which uses the pushforward by $T_{-m_{\alpha}} : x \mapsto x - m_{\alpha}$. Show that

$$W_2(\alpha, \beta)^2 = W_2(\alpha_0, \beta_0)^2 + ||m_\alpha - m_\beta||^2.$$

- 5. Show without using optimal transport that the discrete measures $\mu_n \frac{1}{n} \sum_k \delta_{k/n}$ converge weakly toward the uniform measure \mathcal{U} on [0,1].
- 6. Compute $W_1(\mu_n, \mathcal{U})$ and $W_2(\mu_n, \mathcal{U})$. Why does this solve the previous question?

Solutions

Coordinate descent

- 1. The gradient of f is $\nabla f(w) = Aw b$, hence it is canceled wrt to coordinate i when $\langle a_i, w \rangle = b_i$, with a_i the i-th column of A. In turn, this is canceled w.r.t. w_i for $w_i = \frac{1}{A_{ii}}(b_i \sum_{j \neq i} A_{ij}w_j)$.
- 2. Here, we are optimizing a 1-d quadratic function of the form

$$\psi(x) = \alpha x^2 + \beta x + \gamma$$

for which simple computations yield

$$\psi(x^*) - \psi(x) = -\alpha(x - x^*)^2$$

In our case, we have $\alpha = \frac{1}{2}A_{ii}$, so we get

$$f(w^{t+1}) - f(w^t) = -\frac{1}{2} A_{ii} (w_i^t - \frac{1}{A_{ii}} (b_i - \sum_{i \neq i} A_{ij} w_j^t))^2$$

which gives the advertised result. We then simply uper-bound A_{ii} by A_{max} .

3. Taking inequalities in the correct order, we get

$$||Aw - b||^2 = \sum_{j=1}^{n} (Aw^t - b)_j^2$$
 (1)

$$\leq p(Aw^t - b)_i^2 \tag{2}$$

since $(Aw^t - b)_i^2$ is maximal. We therefore obtain the proposed inequality.

4. We have

$$||Aw - b||^2 = ||A(w - w^*)||^2$$
(3)

$$\geq \sigma_{min}(A)\langle A(w-w^*), w-w^*\rangle \tag{4}$$

$$= 2\sigma_{min}(A)(f(w) - f(w^*))$$
 (5)

Plugging everything together we obtain

$$f(w^{t+1}) - f(w^t) \le -\frac{\sigma_{\min}(A)}{pA_{\max}} (f(w^t) - f(w^*))$$
 (6)

and unfolding that recursion gives

$$f(w^t) - f(w^*) \le (1 - \frac{\sigma_{min}(A)}{pA_{max}})^t (f(w^0) - f^*)$$

this is linear convergence. This should be compared to gradient descent convergence rate which is

$$f(w^t) - f(w^*) \le (1 - \frac{\sigma_{min}(A)}{\sigma_{max}(A)})^t (f(w^0) - f^*)$$

We have $A_{max} \leq \sigma_{max}(A)$, hence $\frac{\sigma_{min}(A)}{\sigma_{max}(A)} \leq \frac{\sigma_{min}(A)}{A_{max}}$. In practice, doing p iterations of CD is about as costly as one iteration of GD, hence the convergence of CD is faster, about the same when $A_{max} = \sigma_{max}(A)$, and better and better as A_{max} gets smaller than σ_{max} .

Inverse problems

L2 regularization

1. Since the discrete Fourier basis is orthogonal, we can separate the problem into the following subproblems:

$$\arg\min_{\hat{f}_k} \frac{1}{2} |\hat{f}_k \hat{h}_k - \hat{y}_k|^2 + \frac{\lambda}{2} |\hat{f}_k|^2.$$

At optimality we have

$$\hat{f}_k |\hat{h}_k|^2 - \hat{y}_k \hat{h}_k^* + \lambda \hat{f}_k = 0,$$

So

$$\hat{f}_k = \frac{\hat{h}_k^*}{|\hat{h}_k|^2 + \lambda} \hat{y}_k.$$

2. When $\lambda = 0$, $\|\hat{f}_k - \hat{f}_{0,k}\| = \left|\frac{\hat{\varepsilon}_k}{\hat{h}_k}\right|$. The noise is thus amplified for small values of \hat{h}_k , which is the case in high-frequency since h is a low-pass filter.

Sobolev regularization

1. By change of variable,

$$\langle Gf, u \rangle = \sum_{i} (f_i - f_{i-1})u_i = \sum_{i} f_i u_i - \sum_{i} f_i u_{i+1} = \sum_{i} f_i (u_i - u_{i+1})$$

So
$$G^{\top}u = (u_i - u_{i+1})_i$$
.

2. $g = [1, 0, \dots, 0, -1], \ \tilde{g} = [1, -1, 0, \dots, 0], \ \text{and} \ \ell = [2, -1, 0, \dots, 0, -1].$ One can notice $\tilde{g}_i = g_{-i}$ and $\ell_i = g_i + \tilde{g}_i$

3. $\hat{g}_k = 1 - e^{\frac{2ik\pi}{n}}$, $\hat{g}_k = 1 - e^{-\frac{2ik\pi}{n}} = \hat{g}_k^*$, and $\hat{\ell}_k = 2 - e^{-\frac{2ik\pi}{n}} - e^{\frac{2ik\pi}{n}} = 2i\sin(k\pi/n)(e^{-\frac{ik\pi}{n}} - e^{\frac{ik\pi}{n}}) = 4\sin^2(k\pi/n) = |\hat{g}_k|^2$

4. Since the discrete Fourier basis is orthogonal, we can separate the problem into the following subproblems:

$$\arg\min_{\hat{f}_k} \frac{1}{2} |\hat{f}_k \hat{h}_k - \hat{y}_k|^2 + \frac{\lambda}{2} |\hat{f}_k \hat{g}_k|^2.$$

At optimality we have

$$\hat{f}_k|\hat{h}_k|^2 - \hat{y}_k\hat{h}_k^* + \lambda \hat{f}_k\hat{\ell}_k = 0,$$

So

$$\hat{f}_k = \frac{\hat{h}_k^*}{|\hat{h}_k|^2 + \lambda \hat{\ell}_k} \hat{y}_k.$$

5

5. This penalizes the high frequencies

TV regularization

1. $\nabla \|\cdot\|_{1,\varepsilon}(f) = \left(\frac{f_n}{\|f_n\|_{\varepsilon}}\right)_n = \mathcal{N}_{\varepsilon}(f)$, the smooth normalization.

2. We use the chain rule and conclude $\nabla J^{\varepsilon}_{TV}(f) = G^{\top} \mathcal{N}_{\varepsilon}(Gf)$

3. We take h symmetrical so $\nabla \mathcal{E}(f) = h \star (f \star h - y) - G^{\top} \mathcal{N}_{\varepsilon}(Gf)$