STATE EXTRACTION BY DIMENSIONALITY REDUCTION

Wendelin Böhmer¹, Steffen Grünewälder² and Klaus Obermayer¹

Abstract

Real world data (e.g. video images) are usually high dimensional and present information highly mixed and noise afflicted. Most applications therefore require a dimensionality reduction or information filtering beforehand. Such filters have to present the desired information in an applicable fashion and have to make sure few are lost. Several methods exist that *learn* these filters from the statistics of presented training data (e.g. PCA, CCA, PLS or SFA [1]).

We used the unsupervised method of slow feature analysis (SFA) [2] to extract the position of a robot from the images of its head-mounted camera. To catch higher order correlations in video images, we constructed a kernelized SFA algorithm analogous to kernel PCA [4], which outperformed its linear counterpart considerably. In order to deal with the huge number of training samples needed to catch the statistics of real images, we employed a sparse kernel matrix approximation method first introduced by Csató and Opper [5]. The resulting feature space (an approximation of the space of trigonometric polynomials [3]) is particularly well suited to approximate continuous functions with a linear model, e.g. value functions in reinforcement learning. We demonstrated this by learning the robots control in a simple navigation task.

Reinforcement Learning

Q-Learning approach:

- Execute actions a_t in states $x_t \in \mathcal{X}$
- Draw actions from policy $a_t \sim \pi(x_t)$
- Next state is drawn $x_{t+1} \sim P(x_t, a_t)$ • Receive rewards $r_t \sim R(x_t, a_t, x_{t+1})$
- Estimate the expected discounted future reward given a choice a in x:

- Find the optimal policy $\pi^*(\cdot)$ that $\forall x \in \mathfrak{X} : \max Q^{\pi^*}(x, \pi^*(x))$
- Define $\pi^*(x)$ by always choosing $a^* = \arg \max_{\alpha} Q^{\pi^*}(x, a)$
- Policy iteration between Q-value estimation and policy improvement
- \mathfrak{X} is $continuous \Rightarrow Q^{\pi}(x, a)$ must be approximated, e.g. linear: $Q^{\pi}(x, a) \approx Q^{a}(x) = \boldsymbol{\varphi}(x)^{\top} \boldsymbol{w}^{a}$, with $\boldsymbol{\varphi} : \mathfrak{X} \mapsto \Phi$
- \Rightarrow Feature space Φ must facilitate function approximation!

Robot Navigation

- Hidden state $(x, y, \theta) \in \mathcal{X}$ (position x, y and orientation θ)
- Observation $z = g(x, y, \theta) \in \mathcal{Z}$ (images from head mounted camera)
- \Rightarrow Requires a mapping $\phi: \mathcal{Z} \mapsto \Phi$, with $\phi(g(x, y, \theta)) \approx \varphi(x, y, \theta)$

Slow Feature Analysis

- SFA [2] analyzes second order statistics of time series $z^{(1)}, \ldots, z^{(n)} \in \mathbb{Z}$
- \bullet Learns a set of mappings $\phi_i: \mathcal{Z} \mapsto \mathbb{R}$ that change slowly over time
- Infinite time series and unrestricted model class \Rightarrow Mappings become $trigonometric\ polynomials$ in the domain of a $hidden\ state\ x^{(t)} \in \mathfrak{X}$
- $x^{(t)}$ is the *minimal explanation* of $z^{(t)}$, in the sense that there exists an unknown invertible function $g: \mathfrak{X} \mapsto \mathfrak{Z}$ such that $\forall t: z^{(t)} = g(x^{(t)})$

Optimization Problem

min $s(\boldsymbol{\phi}_i) := \mathbb{E}[\dot{\boldsymbol{\phi}}_i^2]$ (Slowness) s.t. $\mathbb{E}[\boldsymbol{\phi}_i] = 0$ (Zero Mean) $\mathbb{E}[\boldsymbol{\phi}_i^2] = 1$ (Unit Variance) $\forall j \neq i : \mathbb{E}[\boldsymbol{\phi}_i \boldsymbol{\phi}_j] = 0$ (Decorrelation), $\forall j > i : s(\boldsymbol{\phi}_i) \leq s(\boldsymbol{\phi}_j)$ (Order)

Five optimal solutions for a two dimensional state space $(\mathfrak{X} = [a, b] \times [a, b])$:

Features of equal slowness can also exhibit an arbitrary rotation in their subspace, i.e. $s(\phi_i) = s(\phi_i) = s(a\phi_i + b\phi_i)$ with $a^2 + b^2 = 1$.

Linear SFA

- Given $\boldsymbol{z}^{(t)} \in \mathbb{R}^d$, assume $\boldsymbol{\phi}_i(\boldsymbol{z}) := \boldsymbol{w}_i^\top \boldsymbol{z} c_i$ to be an affine function
- Fulfill constrains (a-c); requires eigenvalue decomposition of $\mathbb{E}[zz^{\top}]$
- Minimize objective (d) by rotation to lowest eigenvectors of $\mathbb{E}[\dot{z}\dot{z}^{\top}]$
- Overall time complexity $\mathcal{O}(d^2n)$

Kernel SFA

- ullet Implicit projection $oldsymbol{\psi}(\cdot)$ in high dimensional feature space
- Positive semidefinite kernel function $k(\boldsymbol{z}, \boldsymbol{z'}) = \boldsymbol{\psi}(\boldsymbol{z})^{\top} \boldsymbol{\psi}(\boldsymbol{z'})$
- ullet Steps analogous to linear SFA (for projected data $oldsymbol{\Psi}_{it} = oldsymbol{\psi}_i(oldsymbol{z}^{(t)})$):
- a) Centered kernel matrix $\mathbf{K}_c = \mathbf{\Psi}_c^{\top} \mathbf{\Psi}_c = (\mathbf{I} \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) \mathbf{\Psi}^{\top} \mathbf{\Psi} (\mathbf{I} \frac{1}{n} \mathbf{1} \mathbf{1}^{\top})$
- b) Analogous to kernel PCA [4]: Let $cov(\psi(x)) = \frac{1}{n} \Psi_c \Psi_c^{\top} := \mathbf{U} \Lambda \mathbf{U}^{\top}$ and $\mathbf{K}_c = \Psi_c^{\top} \Psi_c := \mathbf{V} \Lambda \mathbf{V}^{\top}$, then $\mathbf{U} = \frac{1}{\sqrt{n}} \Psi_c \mathbf{V} \Lambda^{-1/2}$ [1]
- c) Sphered expanded data $\Psi_s = \frac{1}{\sqrt{n}} \mathbf{\Lambda}^{-1} \mathbf{V}^{\top} \mathbf{K}_c$
- d) Rotation to eigenvectors \mathbf{R} of $\dot{\mathbf{\Psi}}_s \dot{\mathbf{\Psi}}_s^{\top} = \frac{1}{n} \mathbf{\Lambda}^{-1} \mathbf{V}^{\top} \dot{\mathbf{K}}_c \dot{\mathbf{K}}_c \mathbf{V} \mathbf{\Lambda}^{-1}$

$$\Rightarrow \quad \boldsymbol{\phi}(\boldsymbol{z}) = \mathbf{W}^{\top} \boldsymbol{k}(\boldsymbol{z}) - \boldsymbol{c}$$
where $\mathbf{W} = \frac{1}{\sqrt{n}} (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}) \mathbf{V} \boldsymbol{\Lambda}^{-1} \mathbf{R}$ and $\boldsymbol{c} = \frac{1}{n} \mathbf{W}^{\top} \mathbf{K} \mathbf{1}$

• Raises time complexity to $O(n^3)$

Kernel Matrix Sparsification

- $\phi(z)$ depends on all training samples $k(z) = [k(z^{(1)}, z), \dots, k(z^{(n)}, z)]^{\top}$
- Express $\phi(\cdot)$ with subset $\{s^{(i)}\}_{i=1}^m \subset \{z^{(i)}\}_{i=1}^n$
- Select only samples that contribute to $\mathcal{A} := \mathbf{aff}\{\psi(s^{(i)})\}_{i=1}^m$ largely [5]
- After one pass, all $\psi(z^{(i)})$ lie within a sparsity threshold ϵ of \mathcal{A} , i.e.

$$\min_{\alpha} \|\boldsymbol{\psi}(\boldsymbol{z}) - \sum_{i=1}^{m} \alpha_i \boldsymbol{\psi}(\boldsymbol{s}^{(i)})\|_2^2 = k(\boldsymbol{z}, \boldsymbol{z}) - \boldsymbol{k}(\boldsymbol{z})^{\top} \mathbf{K}^{-1} \boldsymbol{k}(\boldsymbol{z}) \leq \epsilon^2$$

• The algorithm keeps track of \mathbf{K}^{-1} and has time complexity $\mathcal{O}(m^2n)$

Sparse Kernel SFA

- Using m support vectors, time complexity reduces to $O(m^2n)$
- \bullet Vary m to find a tradeoff between complexity and slowness
- Experiments with ego perspective images as inputs (see next section):

Robot Experiments

- Robots environment is a small rectangular room (wallpapered walls)
- Ego perspective images (head mounted camera) as states
- Choose between 3 actions: move forward and turn left/right 45°
- Goal area is not marked, but receives positive reward
- Positions close to walls are punished
- Least Squares Policy Iteration (LSPI) algorithm to learn policy π
- Estimate navigation performance of policy π : $\mathbb{E}\left[\frac{Q^{\pi}(x,\pi(x))}{Q^{\pi^*}(x,\pi^*(x))}\right]$

Simulated Experiment

- Control experiment with optimal features (left figure)
- 3D-model of real world experiment (photographed textures)
- Learn sparse kernel SFA features with 35,000 rendered images
- Learn policy for centered goal area (ca. 12,000 seen transitions)
- Policy needs more features to reach working regime (right figure)
- Navigation performance is lower (ca. 2-3 unnecessary steps)

Left: Control experiment on optimal features (1000 trajectories/estimation). $\hat{n} = \#$ training samples. Right: Simulated experiment with sparse kernel SFA features (8k/35k) (200 trajectories/estimation).

Real-World Experiment

- Same trajectories as in the simulated experiment (real images)
- Too time expensive to estimate navigation performance
- Two experiments with different reward (red goal areas):

Numbers indicate needed actions. 128 sparse kernel SFA features (8k/35k) are used for approximation.

- 75% success rate, but much more unnecessary steps
- Oscillatory behavior in areas of similar Q-value (⇒ strong noise)
- \Rightarrow Learned feature space works but not yet noise robust

Outlook

• Approximation in noise afflicted feature spaces

- External influences and a weak model class appear as *noise*
- ⊳ Can we give bounds and convergence statements?
- o SFA features do not take past observations into account
- ⊳ Can we construct a recurrent filter to reduce noise?

• Computational efficiency and alternative feature spaces

- Kernel expansion is computational very expensive
- \circ Trigonometric polynomials need support on the complete domain $\mathfrak X$
- ⊳ Can we learn a *sparse feature space* (e.g. Gaussian bells)?
- Hidden state might be high dimensional (e.g. moving humans)
- ▷ Can we filter out state dimensions that are *uncorrelated* to the target?

References

[1] Shawe-Taylor, J.; Cristianini, N.: Kernel Methods for Pattern Analysis, Cambridge University Press (2004)

[2] Wiskott, L.: Slow Feature Analysis: A Theoretical Analysis of Optimal Free Responses, Neural Computation 15(9): 2147-2177 (2003)

[3] Franzius, M.; Sprekeler, H.; Wiskott, L: Slowness and sparseness leads to place, head-direction and spartial-view cells, PLoS Computational Biology (2007)

[4] Schölkopf, B.; Smola, A. J.; Müller, K.-R.: Kernel principal component analysis, Artificial Neural Networks ICANN (1997)

[5] Csató, L.; Opper, M.: Sparse Online Gaussian Processes, Neural Computation 14(3): 641-668 (2002)