## ELECTRICAL AND ELECTRONICS ENGINEERING

# PPT ON ELEMENTS OF ELECTRICAL AND ELECTRONICS ENGINEERING

**Topic Name :** Amplifier circuits: Two port devices and network

## Amplifier circuits: Two port devices and network

- Amplifier circuits are electronic devices designed to increase the amplitude of electrical signals.
- They play a crucial role in various applications, such as audio systems, communication systems, and instrumentation.
- Amplifiers can be classified based on different criteria, and one common classification is based on the number of ports.

## **Two-Port Devices**

- Two-port devices are electronic components or systems with two pairs of terminals, typically designated as ports.
- Amplifiers are often categorized as two-port devices because they have input and output ports.
- The input port is where the signal to be amplified is applied, and the output port is where the amplified signal is obtained.
- Two-port parameters help characterize the behavior of the amplifier.
- The most common two-port parameters are
- 1. voltage gain (Av),
- 2. current gain (Ai),
- 3. input impedance (Zin), and
- 4. output impedance (Zout).
- These parameters are essential for analyzing and designing amplifier circuits.

- Amplifier networks refer to the interconnection of various amplifier stages to achieve a desired overall system performance.
- Networks can be designed to provide specific gains, bandwidths, and impedance matching.
- Different amplifier configurations, such as common-emitter, common-collector, and common-base for bipolar junction transistors (BJTs), or common-source, common-drain, and common-gate for field-effect transistors (FETs), are used in amplifier networks.

## Types of Amplifier Networks:

## 1.Cascade Amplifier:

- 1. Multiple amplifier stages are connected in series.
- 2. Each stage contributes to the overall gain.

## 2. Cascode Amplifier:

- 1. Combines a common-emitter (or common-source) stage with a common-base (or common-gate) stage.
- 2. Provides high gain, high input impedance, and low output impedance.

## 3.Feedback Amplifier:

- 1. Utilizes feedback to control gain, improve stability, and reduce distortion.
- 2. Common types include voltage feedback and current feedback amplifiers.

## 4. Differential Amplifier:

- 1. Consists of two input terminals and amplifies the voltage difference between them.
- 2. Commonly used in operational amplifiers (op-amps) and differential amplifiers.

## 5. Power Amplifier:

- 1. Designed to deliver high power to the load.
- 2. Common classes include Class A, Class B, and Class AB amplifiers.

- Understanding the characteristics and parameters of two-port devices and designing amplifier networks are crucial for creating efficient and reliable amplification systems in electronic circuits.
- The choice of amplifier configuration depends on the specific requirements of the application, such as gain, bandwidth, input/output impedance, and power handling capabilities.

- Two-port devices and networks are fundamental components in the field of electrical engineering and electronics.
- Understanding the characteristics of two-port devices and their interconnections in networks is essential for analyzing and designing electronic systems.

#### Two-Port Devices:

- A two-port device is a circuit or system with two pairs of terminals, typically labeled as input and output.
- These devices are characterized by their input-output relationships and are often represented by two sets of voltage and current variables.
- The behavior of two-port devices is described by a set of parameters that relate the input and output variables.
- Common two-port devices include amplifiers, transformers, and transmission lines.

#### Two-Port Parameters:

- 1. Voltage Gain (Av): The ratio of the output voltage to the input voltage.
- 2.Current Gain (Ai): The ratio of the output current to the input current.
- 3.Input Impedance (Zin): The impedance seen at the input terminals when the output is open-circuited.
- **4.Output Impedance (Zout):** The impedance seen at the output terminals when the input is short-circuited.

#### Two-Port Networks:

- A two-port network is formed by the interconnection of two or more two-port devices. Networks are used to achieve specific signal processing functions, such as amplification, filtering, or impedance matching.
- The analysis of two-port networks involves the determination of overall network parameters based on the parameters of individual two-port devices.

## Types of Two-Port Networks:

#### 1.Cascade Network:

- 1. Two or more two-port devices are connected in series.
- 2. The overall transfer function is the product of the individual transfer functions.

#### 2.Parallel Network:

- 1. Two or more two-port devices are connected in parallel.
- 2. The overall transfer function is the sum of the individual transfer functions.

## 3.Hybrid Network:

- 1. Combines series and parallel connections of two-port devices.
- 2. Often used in communication systems.

#### 4.Lattice Network:

- 1. Complex network arrangement that may include feedback loops.
- 2. Used for specialized applications in RF (radio frequency) systems.

- Two-port devices and networks find applications in various electronic systems:
- > Amplifiers: Used to increase the strength of electrical signals.
- Filters: Networks can be designed to selectively pass or attenuate certain frequency components.
- Matching Networks: Used to match the impedance between different components for efficient power transfer.
- Communication Systems: Two-port networks are crucial in the design of RF and microwave systems.

- Understanding the behavior of two-port devices and how they can be interconnected in networks is vital for engineers working on the design and analysis of electronic circuits and systems.
- The use of mathematical models and parameters simplifies the analysis and optimization of complex networks in practical applications.

## Two Port Network

- Many complex, such as amplification circuits and filters, can be modeled by a two-port network model.
- A two-port network is represented by four external variables voltage  $V_1$  and current  $I_1$  at the input port, and voltage  $V_2$  and current  $I_2$  at the output port, so that the two-port network can be treated as a black box modeled by the relationships between the four variables  $V_1$ ,  $V_2$ ,  $I_1$  and  $I_2$ .
- ➤ There exist six different ways to describe the relationships between these variables, depending on which two of the four variables are given, while the other two can always be derived.



## Two Port Network

There are different parameters, needed to analyze a two port network.

If the network is linear, i.e., each variable can be expressed as a linear function of some two other variables, then we have the following models

- Z (or) Impedance Model
- Y (or) Admittance Model
- ABCD (or) Transmission Model
- H (or) Hybrid Model



 $V_1 = f_1(I_1, I_2)$  $V_2 = f_2(I_1, I_2)$ 

#### **Two Port Network**

**Z parameters** are also known as impedance parameters. When we use Z parameter for analyzing two part network, the voltages are represented as the function of currents.

$$V_1 = f_1(I_1, I_2)$$
 and  $V_2 = f_2(I_1, I_2)$ 

$$V_1 = Z_{11} I_1 + Z_{12} I_2 
V_2 = Z_{21} I_1 + Z_{22} I_2$$

$$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = Z \begin{bmatrix} I_1 \\ I_2 \end{bmatrix}$$

$$Z_{11}$$
 = Input impedance keeping output open =  $\frac{V_1}{I_1}$ ;  $I_2 = 0$ .

$$Z_{12}$$
 = Reverse transfer impedance keeping input open =  $\frac{V_1}{I_2}$ ;  $I_1 = 0$ .

$$Z_{22}$$
 = output impedance keeping input open =  $\frac{V_2}{I_2}$ ;  $I_1$  = 0.

$$Z_{21}$$
 = Forward transfer impedance keeping output open =  $\frac{V_2}{I_1}$ ;  $I_2 = 0$ .



#### **Two Port Network**

**Y** parameters are also known as admittance parameters. When we use Y parameter for analyzing two part network, the current are represented as the function of voltage. Y parameter is dual of Z parameters.

$$I_1 = f_1(V_1, V_2)$$
 and  $I_2 = f_2(V_1, V_2)$ 

$$\begin{array}{ll}
I_1 = Y_{11} V_1 + Y_{12} V_2 \\
I_2 = Y_{21} V_1 + Y_{22} V_2
\end{array} \qquad
\begin{bmatrix}
I_1 \\
I_2
\end{bmatrix} = \begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix} \begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = Y \begin{bmatrix}
V_1 \\
V_2
\end{bmatrix}$$



$$Y_{11}$$
 = Input admittance keeping output short circuited =  $\frac{I_1}{V_1}$ ;  $V_2 = 0$ .

$$Y_{12} = Reverse \ transfer \ admittance \ keeping \ input \ short \ circuited = \frac{I_1}{V_2}$$
;  $V_1 = 0$ .

$$Y_{22}$$
 = output admittance keeping input short circuited =  $\frac{I_2}{V_2}$ ;  $V_1 = 0$ .

$$Y_{21}$$
 = Forward transfer admittance keeping output short circuited =  $\frac{I_2}{V_1}$ ;  $V_2 = 0$ .



#### **Two Port Network**

ABCD parameters are also called Transmission parameters. Here, voltage and current and of input part are expressed in term of output part.

$$V_1 = f_1(V_2, I_2)$$
 and  $I_1 = f_2(V_2, I_2)$ 

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$



 $A = Reverse \ voltage \ gain \ keeping \ output \ open \ circuited = \frac{V_1}{V_2}$ ;  $I_2 = 0$ .

 $B = Reverse \ transfer \ impedance \ keeping \ output \ short \ circuited = \frac{V_1}{I_2}$ ;  $V_2 = 0$ .

 $C = Reverse \ transfer \ admittance \ keeping \ output \ opencircuited = rac{I_1}{V_2}$ ;  $I_2 = 0$ .

 $D = Reverse \ current \ gain \ keeping \ output \ short \ circuited = \frac{I_1}{I_2}$ ;  $V_2 = 0$ .



#### Two Port Network

*H parameters* also known as hybrid parameters. In hybrid parameter circuit, voltage gain, current gain, impedance and admittance are used to determines relation between current and voltage of two port network.

$$V_1 = f_1(I_1, V_2)$$
 and  $I_2 = f_2(I_1, V_2)$ 

$$V_1 = H_{11} I_1 + H_{12} V_2 
I_2 = H_{21} I_1 + H_{22} V_2$$

$$\begin{bmatrix} V_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ V_2 \end{bmatrix} = H \begin{bmatrix} I_1 \\ V_2 \end{bmatrix}$$



 $H_{11}$  = Input impedance keeping output short circuited =  $\frac{V_1}{I_1}$ ;  $V_2$  = 0.

$$H_{12}$$
 = Reverse voltage gain keeping input open =  $\frac{V_1}{V_2}$ ;  $I_1$  = 0.

$$H_{22}$$
 = output admittance keeping input open =  $\frac{I_2}{V_2}$ ;  $I_1 = 0$ .

$$H_{21}$$
 = Forward current gain keeping output short circuited =  $\frac{I_2}{I_1}$ ;  $V_2 = 0$ .



#### **Two Port Network Interrelations**

#### Z parameters

$$V_1 = f_1(I_1, I_2)$$
 and  $V_2 = f_2(I_1, I_2)$ 

$$V_1 = Z_{11} I_1 + Z_{12} I_2$$

$$V_2 = Z_{21} I_1 + Z_{22} I_2$$

$$Z_{11} = \frac{V_1}{I_1}$$
;  $I_2 = 0$ .  $Z_{12} = \frac{V_1}{I_2}$ ;  $I_1 = 0$ .

$$Z_{22} = \frac{V_2}{I_2}$$
;  $I_1 = 0$ .  $Z_{21} = \frac{V_2}{I_1}$ ;  $I_2 = 0$ .

#### ABCD parameters

$$V_1 = f_1(V_2, I_2)$$
 and  $I_1 = f_2(V_2, I_2)$ 

$$V_1 = AV_2 - BI_2$$
$$I_1 = CV_2 - DI_2$$

$$A = \frac{V_1}{V_2}$$
;  $I_2 = 0$ .  $B = \frac{V_1}{I_2}$ ;  $V_2 = 0$ .

$$C = \frac{I_1}{V_2}$$
;  $I_2 = 0$ .  $D = \frac{I_1}{I_2}$ ;  $V_2 = 0$ .

#### Y parameters

$$I_1 = f_1(V_1, V_2)$$
 and  $I_2 = f_2(V_1, V_2)$ 

$$I_1 = Y_{11} V_1 + Y_{12} V_2$$
  
$$I_2 = Y_{21} V_1 + Y_{22} V_2$$

$$Y_{11} = \frac{I_1}{V_1}$$
;  $V_2 = 0$ .  $Y_{12} = \frac{I_1}{V_2}$ ;  $V_1 = 0$ .

$$Y_{22} = \frac{I_2}{V_2}$$
;  $V_1 = 0$ .  $Y_{21} = \frac{I_2}{V_1}$ ;  $V_2 = 0$ .

#### H parameters

$$V_1 = f_1(I_1, V_2)$$
 and  $I_2 = f_2(I_1, V_2)$ 

$$V_1 = H_{11} I_1 + H_{12} V_2$$

$$I_2 = H_{21} I_1 + H_{22} V_2$$

$$H_{11} = \frac{V_1}{I_1}$$
;  $V_2 = 0$ .  $H_{12} = \frac{V_1}{V_2}$ ;  $I_1 = 0$ .

$$H_{22} = \frac{I_2}{V_2}$$
;  $I_1 = 0$ .  $H_{21} = \frac{I_2}{I_1}$ ;  $V_2 = 0$ .



- The h-parameters, also known as hybrid parameters, are a set of four linear circuit parameters that describe the relationship between voltage and current at the input and output ports of a two-port network.
- ➤ The h-parameters are widely used in the analysis and design of electronic circuits, especially for amplifiers and transistor-based devices. Here are some applications of h-parameters:

## Amplifier Design:

- The h-parameters are commonly used to design and analyze amplifiers, both for bipolar junction transistors (BJTs) and field-effect transistors (FETs).
- ➤ Engineers can use h-parameters to determine the voltage gain, current gain, input impedance, and output impedance of the amplifier, helping in optimizing the circuit for specific applications.

## Transistor Analysis:

- For transistor-based circuits, h-parameters provide a compact and convenient way to represent the transistor behavior in terms of a small-signal linear model.
- The h-parameters for a transistor can be determined experimentally or extracted from manufacturer datasheets and used for analyzing various transistor configurations.

## Small-Signal Analysis:

- 1. In small-signal analysis, which focuses on the linear behavior of a circuit around its operating point, h-parameters are particularly useful.
- 2. They help simplify the analysis of linear circuits by providing a linear model that relates small changes in input and output voltages and currents.

#### Cascaded Networks:

- 1. When cascading multiple two-port networks or amplifiers, the h-parameters can be used to determine the overall behavior of the cascaded system.
- 2. This simplifies the analysis of complex circuits by allowing engineers to analyze individual stages and then combine them.

## **Control Systems:**

- 1. In control systems, h-parameters can be employed to model the feedback network and understand the impact of feedback on the system's stability and performance.
- 2. They help in analyzing the feedback loops and designing systems with desired characteristics.

## Radio Frequency (RF) Systems:

- 1. In RF applications, h-parameters are valuable for designing and analyzing high-frequency circuits, such as RF amplifiers and mixers.
- 2. Engineers can use h-parameters to optimize the impedance matching and performance of RF systems.

#### Parameter Extraction:

- 1. H-parameters can be extracted from experimental measurements or obtained from manufacturer datasheets.
- 2. These parameters provide a valuable tool for predicting the behavior of a circuit under different operating conditions.

#### Network Analysis:

1. H-parameters facilitate the analysis of network parameters, such as input impedance, output impedance, and voltage/current gains, which are crucial for designing and optimizing circuits.

- In summary, h-parameters find extensive applications in the analysis and design of linear electronic circuits, especially in amplifier design and transistor-based systems.
- They provide a convenient way to represent and analyze the behavior of two-port networks in various applications.

## Thank You