Numerical Methods for Differential Equations FMNN10/NUMN32 Tony Stillfjord, Gustaf Söderlind

Review questions and study problems, week 4

1. True or false (justify your answer): Consider the Sturm-Liouville problem

$$\frac{d}{dx}\left((1-0.8\sin^2 x)\frac{dy}{dx}\right) - \lambda y = 0, \quad y(0) = y(\pi) = 0.$$

The following discretization

$$\frac{p_{n-1}y_{n-1} - 2p_ny_n + p_{n+1}y_{n+1}}{\Delta x^2} = \lambda_{\Delta x}y_n, \quad n = 1:N$$

$$y_0 = y_{N+1} = 0$$

where
$$p_n = 1 - 0.8 \sin^2 \frac{n\pi}{N+1}$$
 is of order 2.

- 2. Give a 4×4 example of
 - A tridiagonal symmetric Toeplitz matrix
 - A skew-symmetric Toeplitz matrix
 - A lower triangular Toeplitz matrix
- 3. Solve the linear difference equation

$$6u_{j+2} - 5u_{j+1} + u_j = 0 (j = 0 : N - 1)$$

$$u_0 = 1, u_{N+1} = 0.$$

- 4. True or false (justify your answer): If $\lambda[T]$ are the eigenvalues of T and $\lambda[S]$ the eigenvalues of S, then $\lambda[T] + \lambda[S]$ are the eigenvalues of T + S.
- 5. Let λ be an eigenvalue of the invertible matrix A. Show that $1/\lambda$ is an eigenvalue of A^{-1} .
- 6. True or false: If $Au = \lambda u$, then e^{tA} has the eigenvalues $e^{t\lambda}$.
- 7. In class we determined the eigenvalues of

$$T_{\Delta x} = \frac{1}{\Delta x^2} \operatorname{tridiag}(1 - 2 \ 1)$$

- (a) Sketch the location of the eigenvalues in the complex plane.
- (b) Sketch the location of the eigenvalues of $T_{\Delta x}^{-1}$. (Make sure that your sketches have some "reasonable scaling," e.g. by indicating where the eigenvalues are in relation to the unit circle.)
- (c) If $\Delta x \to 0$, where will the eigenvalues of $T_{\Delta x}^{-1}$ "cluster"?
- 8. Let $A \in \mathbb{R}^{N \times N}$ be a normal matrix with the eigenvalues λ_k , $k = 1, \ldots, N$. What are ||A|| and $||A^{-1}||$?
- 9. Consider the discretization $T_{\Delta x}u = f$ of the Poisson equation y'' = f, and a discretization $T_{\Delta x}v = f + e$ of the perturbed problem $y'' = f + \epsilon$, where the function ϵ represents measurement errors. Using the previous question and what you know about $\lambda_k[T_{\Delta x}]$, how much can the solutions differ? That is, provide a bound on ||u v||.
- 10. Consider the (vector-valued) initial value problem $\frac{d}{dt}u = T_{\Delta x}u$ with initial condition u(0) = v. Its solution is given by $u(t) = e^{tT_{\Delta x}}v$.
 - (a) Give an upper bound for $\|e^{tT_{\Delta x}}\|_2$ for $t \geq 0$.
 - (b) Sketch the location of the eigenvalues of $e^{tT_{\Delta x}}$ in the complex plane. (You may consider time t to be a fixed parameter.)
 - (c) Where do the eigenvalues of $e^{tT_{\Delta x}}$ "cluster" as $\Delta x \to 0$ for t fixed?
 - (d) Where do they go as $t \to \infty$ for Δx fixed?
 - (e) Can you give or suggest an upper bound for the *inverse* $\|e^{-tT_{\Delta x}}\|_2$ (where t > 0)? How does that inverse behave as $\Delta x \to 0$?
 - (f) Suppose we solve this initial value problem using the explicit Euler method. What condition on the time step Δt is a minimum requirement for stability?
 - (g) Same question for the implicit Euler method.
 - (h) Which method is suitable when $\Delta x \to 0$?

This constitutes a prequel for next week's material on *parabolic* problems; $\frac{d}{dt}u = T_{\Delta x}u$ is a spatial discretization of the parabolic partial differential equation $\frac{d}{dt}u = \frac{d^2}{dx^2}u$ known as the *heat equation*.

- 11. In class we determined the eigenvalues of symmetric Toeplitz matrix $T = \text{tridiag}(1 \ 0 \ 1)$ analytically.
 - (Difficult) Determine, with a similar methodology, the eigenvalues of the skew symmetric Toeplitz matrix $S = \text{tridiag}(-1 \ 0 \ 1)$.
- 12. Let y' be approximated by the second order, symmetric difference quotient $S_{\Delta x} = S/(2\Delta x)$. What are the

- (a) eigenvalues of $S_{\Delta x}$
- (b) Euclidean norm of $S_{\Delta x}$
- (c) Euclidean norm of $e^{tS_{\Delta x}}$, $t \in \mathbb{R}$?

Hint: Every skew-symmetric matrix is *normal*, and the exponential of a skew-symmetric matrix is skew-symmetric.

- 13. (Difficult) Consider the 2pBVP -u''-u'-u=f(x) with u(0)=u(1)=0.
 - (a) Find a value $\mu > 0$ such that

$$\left\langle \left(-\frac{\mathrm{d}^2}{\mathrm{d}x^2} - \frac{\mathrm{d}}{\mathrm{d}x} - 1 \right) u, u \right\rangle \ge \mu \|u'\|_2^2.$$

Does the problem have a unique solution for every right-hand side f? (Use Lax Milgram lemma as presented in the lecture notes.)

- (b) Introduce a suitable grid and discretize the equation above. Use the same techniques as in the previous problem to show that your discretization has a unique solution for every right-hand side f.
- (c) Let $u_{\Delta x}$ denote the solution vector on the grid. Give a bound for $||u_{\Delta x}||_{\Delta x}$.
- 14. Consider the 2pBVP $-u'' \omega^2 y = g(x)$ with homogeneous boundary data u(0) = u(1) = 0.
 - (a) For what values of the parameter ω can you guarantee that there is a unique solution?
 - (b) Let $\omega = \pi$. What happens with the analytical solution? Why?