NCSU Python Exploratory Data Analysis

Non-Linear Transformations: Data Pre-processing

- **Ladder of Roots of Power**
- Log transformation
- **Box-Cox transformation**
- **Rank transformation**
- Change the shape of distribution
- **Transforming for linearity, constant** spread, and normality
- Logit & probit for skewed proportions

Prof. Nagiza F. Samatova

samatova@csc.ncsu.edu **Department of Computer Science**

North Carolina State University

Motivating Example #1:

- Linear least squares regression makes strong assumptions about the data:
 - Linear relation between predictors and response
 - Equal variance (i.e., constant spread)
 - Normal distribution (of the response variable)
- Transforming the data can help satisfy these assumptions.
- It can also assist in examining the data.

Motivational Example #2

- A common task is to model the joint distribution of many random variables
 - E.g., for imputing missing values
- BUT modeling moderate-sized joint distribution is difficult
 - Exception: multivariate normal model
 - Idea: First transform each variable to have marginal normal distribution, model, then transform back
 - Extremely useful approach for many modeling tasks
 - Mathematical details can be complex, but implementation is straightforward

Why to Transform Data?

- Better examine a distribution
- Meet modeling assumptions
- Allow simpler modeling options
- Many statistical models are based on the mean
 - thus require that the mean is an appropriate measure of central tendency (i.e., the distribution is approximately normal)
- Linear least squares regression assumes that the relationship between two variables is linear:
 - Often we can "straighten" a nonlinear relationship by transforming one or both of the variables
 - Often transformations will 'fix' problem distributions so that we can use least-squares regression
 - When transformations fail to remedy these problems, another option is to use nonparametric regression, which makes fewer assumptions about the data
- Disadvantage of transformations:
 - interpretation may become more difficult

Transformations

- Quantitative Variables
 - Powers, Inverse Powers, and Roots based transformations
 - Logarithmic transformations
 - Box-Cox transformation
 - Rank transformation
- Proportions, Percentages, and Rates
 - logit
 - probit

Transformations QUANTITATIVE VARIABLES

Quantitative Variable Transformations: Powers and Roots

Family of Powers and Roots

Transforming Skewness

- Problems with skewed distribution
 - Data difficult to examine because most observations are in a small part of the data range.
 - Outlying values in the direction opposite to the skew may be invisible.
 - Least squares regression traces the conditional mean of Y given the X's.
 - The mean is not a good summary of the center of a skewed distribution.

Right skew (positive skew) \rightarrow compress large values \rightarrow descend the ladder of powers \rightarrow p < 1
Left skew (negative skew) \rightarrow compress small values \rightarrow ascend the ladder of powers \rightarrow p > 1

The Ladder of Powers and Roots

- Descending the ladder (p < 1):
 - compresses large values of X and
 - spreads out small values of X
- Ascending the ladder (p > 1):
 - compresses small values of X and
 - spreads out large values of X
- As *p* moves away from 1 in either direction:
 - the transformation becomes more powerful

Right skew (positive skew) → compress large values

→ descend the ladder of powers → p < 1

Left skew (negative skew) → **compress small values**

 \rightarrow ascend the ladder of powers \rightarrow p > 1

The Negative Values: Use a Positive Start

- All the X values must be POSITIVE
 - If not, this can be solved by adding a start value
 - Otherwise, power transformations will not be monotone:
 - thus changing the order of the data

X	X ²	X	$(X+3)^2$
-2 0	4	-2	1 9
0	0	0	9
1	1	1	16
2	1 4	2	16 25
	'		

add a start value to make X values positive

Effectiveness of Power Transformations

- Power transformations are ONLY effective if the ratio of the largest data value to the smallest data value is large (> 5)
 - If the ratio is very close to 1, the power transformation is almost linear and ineffective

X	$\log_{10} X$		X	$\log_{10}(X-1990)$
1991	3.2990	199	1	0
1992	3.2992	199	92	.301
1993	3.2995	199	93	.477
1994	3.2997	199)4	.602

Quantitative Variable: Log Transformations

- $\bullet X_{\text{new}} = \log_{10} X$
 - preferred in practice because it is easier to interpret
 - increasing X_{new} by 1 is the same as multiplying X by 10
 - in terms of results, it matters little which base is used
 - changing base is equivalent to multiplying *X* by a constant
- The base of the natural logarithm (e=2.718)
- Log transformations are undefined for $X \leq 0$

$$\log_e X = \lim_{p \to 0} \frac{X^p - 1}{p}$$

Log Transformations

- Data values varying by several orders of magnitude may lead to unstable model fits or make patterns difficult to visualize
 - E.g., income, sales, account sizes, etc.
 - Log transformation can reduce the large value effects, and make trends more apparent

Log Transformations with Non-Positive Data

- Log transformation only applies to positive data
 - If you have few non-positive values, use log(x-c), where $c < \min x_i$
 - If you have all negative values, use log(-x)
 - If have many positive and negative values, use signed log transform:
 - $sign(x) \times log(|x|+1)$, where 0 is preserved

Transforming Positively Skewed Distributions

- The example below shows how a log10 transformation can fix a positive skew
 - (A): The density estimate for average income for occupations from the Canadian Prestige data and a Q–Q (quantile-quantile) plot
 - (B): the density estimate for the transformed income and Q–Q (quantile-quantile) plot:

Take-aways: Family of Powers and Roots

- The family of powers and roots (X^p or $(X^p-1)/p$):
- Ascending the ladder of powers (p > 1) spreads out large values and compresses small values.
- Descending the ladder of powers (p < 1) does the opposite.

Transforming Non-Linearity between X and Y

- An important use of transformations is to "straighten" the relationship between two variables
 - This is possible only when the nonlinear relationship is simple and monotone
 - Simple implies that the curvature does not change
 - there is one curve
 - Monotone implies that the curve is always positive or always negative

simple and monotone

monotone but not simple

simple but not monotone

The Bulging Rule: Correct Non-Linearity between X and Y

- Tukey and Mosteller's Rule, 1977
- Add proper constants to the original X and Y so that they are both positive
 - If it is multiple regression, transform X only
- Transform X to X^p and/or Y to Y^q
 - ullet p and q are determined by the shape in each quadrant of the plot

The Bulging Rule

- 1st quadrant: Data shape
 - go up-ladder for X, Y or both
- 2nd quadrant: Data shape
 - go down-ladder for X, and/or
 - go up-ladder for Y
- 3rd quadrant: Data shape
 - go down-ladder for X, Y or both
- 4th quadrant: Data shape
 - go up-ladder for X, and/or
 - go down-ladder for Y

Up the Ladder: Power Greater than 1 Down the Ladder: Power Less Than 1

Example: Non-Linearity: Income & Infant Mortality

Transforming Non-Linearity: Income & Infant Mortality

Keep interpretability in mind. If p = .1 seems best for the data, it is often better to use the log transformation (p = 0), because this is easier to interpret.

Linear Model: Income & Infant Mortality

Linear model after transformations								
	Estimate	Std. Error	t value	Pr(> t)				
(Intercept)	3.1034	0.1375	22.57	0.0000				
log.income	-0.5118	0.0512	-9.99	0.0000				

- A linear model fits well after transformation
 - blue dashed regression line
- Since both variables are transformed by the log10 the coefficients are easy to interpret:
 - An increase in income by 1% is associated, on average, with a .51% decrease in infant mortality

Caution: Non-Linear Transformation

- When a nonlinear transformation is performed strictly on an empirical basis, extrapolation beyond the range of the data is extremely dangerous.
- On the other hand, if guided by strong theory, such extrapolation might be reasonable.

Take-aways: Transforming Nonlinearity

- Why do we want things to be linear?
 - Linear relationships are simple, and there is nice statistical theory for these models.
 - If there are several independent variables, nonparametric regression may be infeasible
- Simple monotone nonlinearity can be corrected
 - direction of curvature does not change
 - correction using
 - a transformation in the family of powers and roots
- Example: quadratic function two possible transformations
- Mosteller and Tukey's Bulging rule
- Consider how transformation affects symmetry.
 - If the dependent variable already was symmetric,
 - then try to leave this one untouched.
- And again, keep in mind interpretability.

Quantitative Variable BOX-COX TRANSFORMATION

Box-Cox Transformations

- Box and Cox (1964) present a class of transformations of positive values of y
 designed to stabilize residual variances and linearize fit
- Such a transformation of y can work well when the raw data show heterogeneity of error variance
- The Box-Cox family is defined in terms of a parameter λ :

$$y_{\lambda} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ log y, & \lambda = 0 \end{cases}$$

Transforming Non-constant Spread (Heteroscedasticity)

- Differences in spread are often related to differences in level
- When spread is positively related to level:
 - higher level → higher spread (common)
 - compress large values
 - transform down the ladder of powers and roots: p < 1</p>
- When spread is negatively related to level:
 - lower level → higher spread (rare)
 - spread out large values
 - transform up the ladder of powers and roots: p > 1
- Unequal spread and skewness often occur together
 - can be corrected together
 - E.g.: transform Y down the ladder to correct both issues

higher level -> higher spread

Box-Cox Transformations: Dealing with Heteroscedasticity

After Box-Cox Transformation with λ

Box-Cox Transformation: Dealing with Skew

Take-Aways: Powers & Roots

- Power transformations of Y (or sometimes X) can correct problems with normality of errors, or residuals:
 - Transforming Y down the ladder can correct positive skew in the errors (common problem)
 - Transforming Y up the ladder corrects negative skew in the errors
- Power transformations of Y (or X) can stabilize the variance of the errors
- Power transformations of X (or sometimes Y) can make many nonlinear relationships nearly linear
 - Use Box-Cox transformations of X or Y in R using:
 - xp = car::bcPower(x, p)

Quantitative Variable RANK TRANSFORMATION

Rank Transformation

- Rank transformation is central to methods in nonparametric statistics
 - Assume sample values $x_1, x_2, ..., x_n$
 - Define r_i as the rank of x_i , with rank 1 for the smallest and rank n for the largest
- Rank-transformed data:
 - $r_1, r_2, ..., r_n$ or
 - \bullet $\frac{r_1}{n}, \frac{r_2}{n}, \dots, \frac{r_n}{n}$

Rank-based Transformation for Normality

- Let Φ^{-1} denote the inverse cumulative distribution function of a standard normal random variable:
 - E.g.: $\Phi^{-1}(0.975) = 1.96$
 - qnorm() function in R

$$ullet$$
 $\Phi^{-1}\left(\frac{r_1}{n}\right)$, $\Phi^{-1}\left(\frac{r_2}{n}\right)$, ..., $\Phi^{-1}\left(\frac{r_n}{n}\right)$

- follow normal distribution
- $\Phi^{-1}(p)$ represents $100 \times p^{th}$ percentile
- of the standard normal distribution

Take-Aways: Rank Transformations

- Data transformation can simplify interpretation and analysis
 - Many methods critically assume normality
 - "Nonparametric" or "distribution-free methods tend to work from rank transformations

Transformations PROPORTIONS, PERCENTAGES AND RATE

Proportions: Transformations: logit and probit

- Power transformations will not work for proportions (including percentages and rates) if the data values approach the boundaries of 0 and 1
- Skewed Proportion Distributions
 - logit transformation
 - probit transformation
- Logit Transformation
 - removes the boundaries of the scale
 - spreads out the tails of the distribution and
 - makes the distribution symmetric about 0
- Probit Transformation
 - if their scales are equated

$$\operatorname{logit} \simeq (\pi/\sqrt{3}) \times \operatorname{probit}$$

$$P \to \operatorname{logit}(P) = \log_e \frac{P}{1 - P}$$

Proportions: logit transformations

- Transformation is nearly linear for proportions between .20 and .80
- Values close to 0 and 1 are spread out at an increasing rate, however
- Transformed variable is now centered at 0 rather than .5

$$P \to \mathsf{logit}(P) = \mathsf{log}_e \frac{P}{1 - P}$$

