Decision Tree

Machine Learning Study 2022

Kim Suhyun

Jan 10 2022

Department of Statistics Chung-Ang University

Contents

Theoretical Part

- 1. Terminologies
- 2. Tree Algorithm
- 3. Pros & Cons

Python code

- 1. DecisionTreeClassifier
- 2. Control the complexity of Decision Tree
- 3. Visualization
- 4. Attributes
- 5. DecisionTreeRegressor

Thanks you.

Theoretical Part

0. Supervised Learning

Classification

• Logistic Regression, Tree, Random Forest, SVM

Regression

• Linear Regression, Tree, Random Forest

Ensemble

- Bagging : Random Forest
- Boosting : Gradient boosting, Xgboost, LightGBM
- 이때 앙상블은 서로 다른 또는 같은 알고리즘을 결합하는 것이다.
 다시말해 매우 많은 여러개의 약한 학습기를 결합해서 확률적인 보완을 수행하고
 오류가 발생하는 부분에 대한 가중치를 update 해나가며 예측 성능을 높이는 것이다.

1. Terminologies

Figure 1: Root & Leaf nodes

Parent node : node before split

Child node : node after split

• Split criterion : a certain variable value used for split a node

• Root node : node that only has child nodes but no parent node

• Leaf nodes : nodes that only have a parent node but no child nodes

1. Decision Tree

Figure 2: Desision Tree, set of rules

For example, Rain - not Windy \rightarrow Play !

2. Tree Algorithm

CART

- binary split
- Gini Impurity(Classification) & SSE(Regression)

C4.5 & C5.0

- Multi split(classification) & Binary split(Regression)
- Entropy Inpurity

CHAID

- Multi split
- χ^2 (classification) & ANOVA F (regression)

2. Tree Algorithm, CART

CART, Classification And Regression Tree

Generate a set of rules by recursively partitioning the entire datasets to increase the purity of the partitioned area (Breiman, 1984)

- Recursive Partitioning
- Pruning

Goodness of Split: Impurity of a node

- \rightarrow Impurity Measure
 - Impurity of Classification Tree is measured by Gini index & Deviance

$$I(A) = \sum_{i=1}^{d} (R_i (1 - \sum_{k=1}^{m} p_{ik}^2))$$

, where $R_i =$ proportion of cases in ractangle R_i among the training data.

$$D_i = -2\sum_k n_{ik}log(p_{ik})$$

- , where $p_{ik} = \text{probability of class } k \text{ in node } I, \text{ for } i : \text{node index, } k : \text{class index}$
- Impurity of Regression: (Variance) SSE

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

8

Figure 3: Let's calculate the information gain

The Best split is maximize the information gain

Then repeat the splitting for each node

Income	Lot size	Ownership
33.0	18.8	Non-owner
47.4	16.4	Non-owner
49.2	17.6	Non-owner
51.0	14.0	Non-owner
59.4	16.0	Non-owner
60.0	18.4	Owner
63.0	14.8	Non-owner
64.8	17.2	Non-owner
66.0	18.4	Non-owner
84.0	17.6	Non-owner
85.5	16.8	Owner
108.0	17.6	Owner

Figure 4: Example : Riding Mowers

Order records according to one variable

Figure 5: Now we get Full Tree

Recursive partitioning is completed when every leaf node has 100% purity (pure node)

Figure 6: Error rate versus Max tree depth

Why we do Pruning?

- Full tree has risk of overfitting & poor generalization ability
- pre-pruning
- post-pruning

Figure 7: Full Tree versus Pruned Tree

2-2. CART, Pruning

Stopping Rule

- When every node is pure node(purity 100%)
- When the impurity is minimum (could not have lower value)
- By the Parameter setting, prepruning

Cost complexity

$$CC(T) = Err(T) + \alpha(T)$$

- CC(T) : cost complexity of a tree
- ullet ERR(T): proportion of the misclassified records in the validation data
- ullet α : penalty factor attached to the tree size
- ullet L(T): the number of Leaf node

Pros

- Decision tree covers both Classification & Regression.
- Simple to interpret & understand 직관적
- 이상치, 노이즈에 큰 영향 없음
- 균일도 에만 초점 가능(전처리-스케일링, 정규화등 크게 불필요)
- 모형에 가정이 필요없는 비모수적 모형이다. 즉 정규 가정이 필요 없음

Cons

- 일반화가 어려움 : 불안정성 : 학습데이터에 따른 차이 큼 : 모델 variance 큼
- 오버피팅 가능성 높음
- 변수간 상호작용 불가능

Python code

1. DecisionTreeClassifier

```
from sklearn.datasets import load_breast_cancer
cancer = load breast cancer()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    cancer.data, cancer.target, stratify=cancer.target, random_state=42)
from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(random state=0)
tree.fit(X_train, v_train)
print("훈련 세트 정확도: {:.3f}".format(tree.score(X_train, y_train)))
print("테스트 세트 정확도: {:.3f}".format(tree.score(X_test, y_test)))
```

2. Control the complexity of Decision Tree, parameters

DecisionTreeClassifier can control the complexity of Decision Tree by parameters options, **prepruning**

```
tree = DecisionTreeClassifier(random_state=0)
```

tree = DecisionTreeClassifier(random_state=0, max_depth=4)

- max_depth : 최대 깊이 설정
- min_samples_split : 분할되기 위해 노드가 가지고 있어야하는 최소 샘플 수
- min_samples_leaf : 분할되기 위해 노드가 가져야하는 최소 샘플 수
- max_leaf_nodes : 리프 노드가 가지고 있어야하는 최소 샘플 수
- max_features : 리프 노드의 최대 수

DecisionTreeClassifier.cost_complexity_pruning_path provides another option to control the size of a tree, **post pruning**

- This pruning technique is parameterized by the cost complexity parameter, ccp_alpha.
- It returns the effective alphas and the corresponding total leaf impurities at each step of the pruning process.
- As alpha increases, more of the tree is pruned, which increases the total impurity of its leaves.

```
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = DecisionTreeClassifier(random state=0)
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(random state=0, ccp alpha=ccp alpha)
    clf.fit(X_train, y_train)
   clfs.append(clf)
print(
    "Number of nodes in the last tree is: {} with ccp_alpha: {}".format(
        clfs[-1].tree_.node_count, ccp_alphas[-1]
```

Number of nodes in the last tree is: 1 with ccp_alpha: 0.3272984419327777

```
clfs = clfs[:-1]
ccp_alphas = ccp_alphas[:-1]
train_scores = [clf.score(X_train, y_train) for clf in clfs]
test_scores = [clf.score(X_test, y_test) for clf in clfs]
fig, ax = plt.subplots()
ax.set_xlabel("alpha")
ax.set_ylabel("accuracy")
ax.set_title("Accuracy vs alpha for training and testing sets")
ax.plot(ccp_alphas, train_scores, marker="o", label="train", drawstyle="steps-p
ax.plot(ccp_alphas, test_scores, marker="o", label="test", drawstyle="steps-pos
ax.legend()
plt.show()
```


Figure 8: Accuracy versus alpha for training and test sets

3. Visualization

3. Visualization

Figure 9: Decision tree of caner data

4. DecisionTreeClassifier, Attributes

plot_feature_importances_cancer(tree)

```
feature_importances_: between 0 and 1

def plot_feature_importances_cancer(model):
    n_features = cancer.data.shape[1]
    plt.barh(np.arange(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), cancer.feature_names)
    plt.xlabel("특성 중요도")
    plt.ylabel("특성")
    plt.ylabel("특성")
```


Figure 10: Feature importance

4. DecisionTreeClassifier, Attributes

Attributes: classes_: ndarray of shape (n_classes,) or list of ndarray

The classes labels (single output problem), or a list of arrays of class labels (multi-output problem).

feature_importances_: ndarray of shape (n_features,) Return the feature importances.

The second secon

max_features_: int

The inferred value of max_features.

n_classes_ : int or list of int

The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems).

n_features_: int

DEPRECATED: The attribute $n_features_i$ is deprecated in 1.0 and will be removed in 1.2.

n_features_in_: int

Number of features seen during fit.

New in version 0.24.

feature_names_in_: ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

n outputs : int

The number of outputs when fit is performed.

tree : Tree instance

The underlying Tree object. Please refer to help(sklearn.tree._tree. for attributes of Tree object and Understanding the decision tree structure for basic usage of these attributes.

5. DecisionTreeRegressor: Ram Price

```
import os
ram prices = pd.read csv(os.path.join(mglearn.datasets.DATA PATH, "ram price.csv"))
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression
# 2000년 이전을 훈련 데이터로, 2000년 이후를 테스트 데이터로 만듭니다
data_train = ram_prices[ram_prices.date < 2000]
data_test = ram_prices[ram_prices.date >= 2000]
# 가격 예측을 위해 날짜 특성만을 이용합니다
X_train = data_train.date.to_numpy()[:, np.newaxis]
# 데이터와 타깃 사이의 관계를 간단하게 만들기 위해 로그 스케일로 바꿉니다
v_train = np.log(data_train.price)
tree = DecisionTreeRegressor().fit(X train, v train)
linear_reg = LinearRegression().fit(X_train, v_train)
# 예측은 전체 기간에 대해서 수행합니다
X all = ram prices.date.to numpv()[:, np.newaxis]
pred tree = tree.predict(X all)
pred lr = linear reg.predict(X all)
# 예측한 값의 로그 스케일을 되돌립니다
price tree = np.exp(pred tree)
price_lr = np.exp(pred_lr)
```

5. DecisionTreeRegressor: Ram Price

Figure 12: Predictors of ram price data

DecisionTreeRegressor can not predict the range outside of the training set

Thanks you.