DÉRIVÉE D'UNE FONCTION

EXTREMUM LOCAL ET THÉORÈME DE ROLLE

1 Extremum local

Définition 1 Soient f une fonction dérivable sur un intervalle I et a un point de I.

- 1. On dit que a est un point critique de f si f'(a) = 0.
- 2. Dire que f(a) est un maximum local (resp. minimum local) signifie que l'on peut trouver un intervalle J inclus dans I et contenant a ($\exists \alpha > 0$, $]a \alpha, a + \alpha[\subset I)$, tel que, pour tout x de J, $f(x) \leq f(a)$ (resp. $f(x) \geq f(a)$).
- 3. On appelle extremum local, un maximum ou un minimum local.

Théorème 1 (Caractérisation d'un extremum) Soient f une fonction dérivable sur un intervalle I ouvert et $a \in I$.

- 1. Si f(a) est un extremum local alors f'(a) = 0.
- 2. Si f'(a) s'annule en a en changeant de signe, alors f(a) est un extremum local.

2 Théorème de Rolle

Théorème 2 Soit $f:[a,b] \to \mathbb{R}$ une fonction telle que :

- 1. f est continue sur [a, b],
- 2. f est dérivable sur a, b,
- 3. f(a) = f(b),

alors il existe $c \in]a,b[$ telle que f'(c)=0.

1 IONISX