Section 13 Math 2202

Line Integrals, Gradient/Conservative Vector Fields and Green's Theorem

- 1. A conservative/gradient vector field **F** is one where $\mathbf{F} = \nabla f$ for some function f(x,y).
 - (a) Check that $\mathbf{F}(x,y) = xy^2\mathbf{i} + x^2y\mathbf{j}$ is a conservative vector field.
 - (b) Find f such that $\nabla f = \mathbf{F}$.
 - (c) Find the value of $\int_C \mathbf{F} \, d\mathbf{r}$ where C is the line between (-1,4) and (3,5). (Remember the Fundamental Theorem of Calculus for Line Integrals: if $\mathbf{F} = \nabla f$ and is a continuous vector field and C is smooth, then the integral $\int_C \mathbf{F} \, d\mathbf{r} = ...$)

(d) (Extra) For some extra practice, parameterize the line between (-1,4) and (3,5) and compute the line integral without FTC.

2. The following fields are conservative/gradient. Find f such that $\nabla f = \mathbf{F}$.

(a)
$$\mathbf{F}(x,y) = (3x^2 - 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$$

(b)
$$\mathbf{F}(x,y) = (xy\cos(xy) + \sin(xy))\mathbf{i} + (x^2\cos(xy))\mathbf{j}$$

(c)
$$\mathbf{F}(x,y) = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}$$