Ordinary character table of $G \cong C4 \times A4$:

Trivial source character table of $G \cong C4 \times A4$ at $p = 2$:																					
Normalisers N_i		N_1		N_2 P_2	N_3		N_4	_	N_5	N_6	N_7	N_8	N_9			N_{10}		N_{11}	N_{12}	N	V_{13}
p-subgroups of G up to conjugacy in G		P_1		P_2	P_3		P_4	-	P_5	P_6	P_7	P_8	P_9			P_{10}		P_{11}	P_{12}	\overline{P}	213
Representatives $n_j \in N_i$	1a	3a	3b	1a 1a	a = 3a	3b	1a	1a $3a$	3b	1 <i>a</i>	1a	$1a \mid 1a$	3a	3b	1 <i>a</i>	3a	3b	1a	1a	1a 3a	3b
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	16	4	-	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$			4 * E(3)	$0 \mid 0$	0	0	0	0 0	0	0	0	$0 \mid 0$	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	16	4 * E(3)	$4*E(3)^2$	$0 \mid 0$	0	0	0	0 0	0	0	0	$0 \mid 0$	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$	24	0	0	8 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$		2	2	0 8	2	2	1 4 1	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1		\ /		2 * E(3)	$2 * E(3)^2$	0	0 0	0	0	0	$0 \mid 0$	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16}$	8	$2 * E(3)^2$	2 * E(3)	0 8	$2 * E(3)^2$	2 * E(3)	0	0 0	0	0	0	$0 \mid 0$	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 2 \cdot \chi_6 + 1 \cdot \chi_7 + 2 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16}$	24	0	0	0 0	0	0	8	0 0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$		4	4	4 0	0	0	0	4 4	4	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16}$	1	\ /	4 * E(3)	4 0	0	0	0	4 4 * E(3)		0	0	$0 \mid 0$	0	0	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	4 * E(3)	$4 * E(3)^2$	4 0	0	0	0	4 4 * E(3)	$3) 4 * E(3)^2$	0	0	0 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16}$	12	0	0	4 12	2 0	0	4	0 0	0	4	0	0 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16}$	12	0	0	4 0	0	0	8	0 0	0	0	4	0 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	12	0	0	0 12	2 0	0	0	0 0	0	0	0	4 0	0	0	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	1		0 4	_	1	0	0 0	0	0	0	0 4	1	1	0	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	E(3)	$E(3)^2$	0 4	E(3)	$E(3)^{2}$	0	0 0	0	0	1 - 1	0 4	- ()	$E(3)^{2}$	1	0	0	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	4	$E(3)^{2}$	E(3)	$0 \mid 4$	$E(3)^{2}$	E(3)	0	0 0	0	0	0	$0 \mid 4$	$E(3)^{2}$	E(3)	0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$		2	2	2 2	2	2	2	2 2	2	2	2	0 0	0	0	2	2	2	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1	\ /	2 * E(3)	$2 \mid 2$	$2 * E(3)^2$	2 * E(3)		2 2 * E(3)	, , ,	2	2	$0 \mid 0$	0	0			2 * E(3)	0	0	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2 * E(3)	$2 * E(3)^2$	$2 \mid 2$	2 * E(3)	$2 * E(3)^2$	2	2 2 * E(3)	$3) 2 * E(3)^2$	2	2	$0 \mid 0$	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	6	0	0	2 6	0	0	2	0 0	0	2	0	$2 \mid 6$	0	0	0	0	0	2	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	6	0	0	2 6	0	0	2	0 0	0	2	0	4 0	0	0	0	0	0	0	2	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	1	1	1	1 1	1	1	1	1 1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} $	1	$E(3)^{2}$	E(3)	1 1	$E(3)^{2}$	E(3)	1	1 $E(3)^2$	E(3)	1	1	$1 \mid 1$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	1	1 E(3)	E(3)

- $P_2 = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,27)(28,29)(32,48)(33,34)(35,36)(39,40)(43,44)]) \cong C2$
- $P_3 = Group([(1,4)(2,8)(3,12)(5,15)(6,16)(7,19)(9,22)(10,23)(11,25)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(26,39)(27,40)(30,42)(33,43)(34,44)(37,46)(41,47)(45,48)]) \cong \mathbb{C}_2$
- $P_4 = Group([(1,31)(2,38)(3,42)(4,17)(5,16)(6,15)(7,46)(8,24)(9,23)(10,22)(11,47)(12,30)(13,29)(14,28)(18,48)(19,37)(20,36)(21,35)(25,41)(26,40)(27,39)(32,45)(33,44)(34,43)]) \cong \mathbb{C}_2$
- $P_6 = Group([(1,4)(2,8)(3,12)(5,15)(6,16)(7,19)(9,22)(10,23)(11,25)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(26,39)(27,40)(30,42)(33,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,27)(28,29)(32,48)(33,34)(35,36)(39,40)(43,44)]) \cong C2 \times C2$
- $P_7 = Group([(1,31)(2,38)(3,42)(4,17)(5,16)(6,15)(7,46)(8,24)(9,23)(10,22)(11,47)(12,30)(13,29)(14,28)(19,37)(20,36)(21,35)(25,41)(26,40)(27,39)(32,45)(33,44)(34,43),(1,6)(2,10)(3,14)(4,16)(5,17)(7,21)(8,23)(9,24)(11,27)(12,29)(13,30)(15,31)(18,34)(19,36)(20,37)(22,38)(25,40)(26,41)(28,42)(32,44)(33,45)(35,46)(39,47)(43,48)] \\ \cong C_2 \times C_2 \times C_3 \times C_3 \times C_4 \times C_4$
- $P_8 = Group([(1,9,4,22)(2,15,8,5)(3,20,12,35)(6,24,16,38)(7,28,19,13)(10,31,23,17)(11,33,25,43)(14,37,29,46)(18,39,32,26)(21,42,36,30)(27,45,40,48)(34,47,44,41),(1,4)(2,8)(3,12)(5,15)(6,16)(7,19)(9,22)(10,23)(11,25)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(26,39)(27,40)(30,42)(33,43)(34,44)(37,46)(41,47)(45,48)]) \cong C4$
- $P_{10} = Group([(1,4)(2,8)(3,12)(5,15)(6,16)(7,19)(9,22)(10,23)(11,25)(13,28)(24,38)(25,49)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(25,47)(26,27)(28,29)(28,29)$
- $P_{11} = Group([(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,27)(28,29)(32,48)(33,34)(35,36)(39,40)(43,44)]) \cong C4 \times C2$
- $P_{12} = Group([(1,10,4,23)(2,16,8,6)(3,21,12,36)(5,24,15,38)(7,29,19,14)(9,31,22,17)(11,34,25,44)(13,37,28,46)(18,40,32,27)(20,42,35,30)(26,45,39,48)(33,47,43,41), (1,4)(2,8)(3,12)(5,15)(6,16)(7,19)(9,22)(10,23)(11,25)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(32,48)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,27)(28,29)(32,48)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,27)(28,29)(32,48)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,14)(15,16)(18,45)(19,46)(20,21)(22,23)(25,47)(26,2$
- $P_{13} = Group([1,4)(2,8)(3,12)(5,40)(43,40)(33,45)(35,40)(43,40)(13,4$

 $N_1 = Group([1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,14,21)(2,3,43)(13,44)(37,46)(14,27)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), \\ (1,3,11)(2,7,18)(4,42,32)(23,34)(34,44)(37,46)(41,47)(45,48), \\ (1,4,12,25)(5,14,41)(6,30,26)(43,42)(23,34)(34,44)(37,46)(41,47)(45,48), \\ (1,4,12,25)(5,14,41)(6,30,26)(43,42)(23,34)(34,44)(37,46)(41,47)(45,48), \\ (1,4,12,25)(5,14,41)(6,30,26)(43,42)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,34)(23,3$

 $N_2 = Group([1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,37)(12,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,37)(2$

 $\chi_5 \mid 3 \quad 3 \quad 3 \quad 3 \quad -1 \quad -1 \quad -1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ $\begin{vmatrix} \chi_7 & 3 & -3 & 3 & -3 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{vmatrix}$

 $\chi_4 \mid 1 - E(4) - 1 \quad E(4) \quad 1 - E(4) \quad 1 \quad -E(4) \quad 1 \quad -E(4) \quad -1 \quad E(4) \quad 1 \quad -E(4) \quad -1 \quad E(4)$

 $\begin{vmatrix} \chi_{12} \\ \chi_{12} \end{vmatrix} \begin{vmatrix} 1 \\ -E(4) \end{vmatrix} - \begin{vmatrix} E(4) \\ -E(3) \end{vmatrix} - \begin{vmatrix} E(4) \\ -E(3) \end{vmatrix} - \begin{vmatrix} E(3) \\ -E(12) \end{vmatrix} - \begin{vmatrix} E(3) \\ -E(3) \end{vmatrix} + \begin{vmatrix} E(3) \\ -E$ $\begin{vmatrix} \chi_{14} & 1 & E(4) & -1 & -E(4) & 1 & E(4) & -1 & -E(4) & E(3)^2 & E(12)^{11} & -E(3)^2 & -E(12)^{11} & E(3) & E(12)^7 & -E(3) & -E(12)^7 \end{vmatrix}$ $\begin{vmatrix} \chi_{15} \end{vmatrix} 1 \quad -1 \quad 1 \quad -1 \quad 1 \quad -1 \quad 1 \quad -1 \quad E(3)^2 \quad E(3)^2 \quad E(3)^2 \quad E(3) \quad E(3$ $\chi_{16} \mid 1 - E(4) - 1 \quad E(4) \quad 1 - E(4) \quad -1 \quad E(4) \quad E(3)^2 - E(12)^{11} - E(3)^2 \quad E(12)^{11} \quad E(3) - E(12)^7 - E(3) \quad E(12)^7$

 $N_4 = Group([(1,31)(2,38)(3,42)(4,17)(5,16)(6,17)(7,20)(8,22)(10,23)(11,25)(13,28)(14,29)(17,31)(18,32)(20,35)(21,36)(24,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(25,39)(27,41)(29,42)(32,43)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(27,34)(34,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(2,24)(33,44)(37,46)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,48)(41,47)(45,48), (1,17)(45,48)(41,47)(45,$

 $N_5 = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,41)(12,42)(13,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,18,25,32)(13,20,28,35)(14,21,29,36)(17,24,31,38)(26,33,39,43)(27,34,40,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(3,37,42,46)(41,45,47,48),(1,2,4,8)(3,37,42,46)(41,45,47,48),(1,2,4,8)(3,37,42,46)(41,45,47,48),(1,2,4,8)(3,37,42,46)(41,45,47,48),(1,2,4,8)(3,34,43,43)(35,36)(39,40)(43,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(33,44)(35,36)(39,40)(43,44)(30,37,42,46)(41,45,47,48),(1,2,4,8)(33,44)(33$

 $N_6 = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(2,39)(27,40)(32,43)(34,44)(37,46)(41,47)(45,48)(1,2)(23,38)(27,34)(34,44)(37,46)(41,47)(45,48)(1,2)(23,38)(27,34)(34,44)(37,46)(41,47)(45,48)(1,2)(23,38)(27,34)(34,44)(37,46)(41,47)(45,48)(1,2)(23,38)(27,34)(34,44)(37,46)(41,47)(45,48)(1,2)(23,38)(27,34$

 $N_9 = Group([1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,18,23)(13,24,31$ $N_{10} = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(24,31)(13,24$ $N_{11} = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(9,10)(11,25)(13,20)(23,43)(34,44)(37,46)(41,47)(45,48), (1,2,4,8)(3,7,12,19)(5,9,15,22)(6,10,16,23)(11,25)(13,20)(13,20)(23,33)(24,31)(24,$

 $N_{12} = Group([(1,17)(2,24)(3,30)(4,31)(5,6)(7,37)(8,38)(2,11,236)(24,33)(24,31)(34,44)(13,42,24)(13,43)(24,31,38)(26,33,34)(35,43)(34,44)(37,48)(14,42)(13,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(26,33,34)(35,43)(36,43,34)(36,43,34)(36,43,34)(36,43,34)(36,43,34)(36,43,34)(36,43)(36,43,34)(36,43$ $S_{13} = G_{13} = G$