Discrete Distributions

Following a list of discrete distributions, abbreviations, their probability functions, means, variances, and characteristic functions.

An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.

Distribution, notation	Probability function	EX	Var X	$\varphi_X(t)$
One point $\delta(a)$	p(a) = 1	a	0	e^{ita}
Symmetric Bernoulli	$p(-1) = p(1) = \frac{1}{2}$	0	1	$\cos t$
Bernoulli Be (p) , $0 \le p \le 1$	$p(0) = q, \ p(1) = p; \ q = 1 - p$	p	pq	$q + pe^{it}$
Binomial $Bin(n, p), n = 1, 2,, 0 \le p \le 1$	$p(k) = \binom{n}{k} p^k q^{n-k}, \ k = 0, 1, \dots, n; \ q = 1 - p$	np	npq	$(q + pe^{it})^n$
Geometric $\operatorname{Ge}(p), \ 0 \leq p \leq 1$	$p(k) = pq^k, \ k = 0, 1, 2, \dots; \ q = 1 - p$	$\frac{q}{p}$	$\frac{q}{p^2}$	$\frac{p}{1 - qe^{it}}$
First success $Fs(p), \ 0 \le p \le 1$	$p(k) = pq^{k-1}, \ k = 1, 2, \dots; \ q = 1 - p$	$\frac{1}{p}$	•	$\frac{pe^{it}}{1 - qe^{it}}$
Negative binomial NBin (n, p) , $n = 1, 2, 3,$, 0	$p(k) = {n+k-1 \choose k} p^n q^k, \ k = 0, 1, 2,;$ q = 1 - p	$n\frac{q}{p}$	$n\frac{q}{p^2}$	$\left(\frac{p}{1-qe^{it}}\right)^n$
Poisson $Po(m), m > 0$	$p(k) = e^{-m} \frac{m^k}{k!}, \ k = 0, 1, 2, \dots$	m	m	$e^{m(e^{it}-1)}$
Hypergeometric $H(N,n,p),\ n=0,1,\ldots,N,$ $N=1,2,\ldots,$ $p=0,\frac{1}{N},\frac{2}{N},\ldots,1$	$p(k) = \frac{\binom{Np}{k} \binom{Nq}{n-k}}{\binom{N}{n}}, k = 0, 1, \dots, Np;$ $q = 1 - p;$ $n - k = 0, \dots, Nq$	np	$npq \frac{N-n}{N-1}$	*

Continuous Distributions

Following is a list of some continuous distributions, abbreviations, their densities, means, variances, and characteristic functions. An asterisk (*) indicates that the expression is too complicated to present here; in some cases a closed formula does not even exist.

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Uniform/Rectangular	1			
U(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U(0,1)	$f(x) = 1, \ 0 < x < 1$	$\frac{1}{2}$	$\frac{1}{12}$	$rac{e^{it}-1}{it}$
U(-1,1)	$f(x) = \frac{1}{2}, x < 1$	0	$\frac{1}{3}$	$\frac{\sin t}{t}$
riangular				
$\mathrm{Tri}(a,b)$	$f(x) = \frac{2}{b-a} \left(1 - \frac{2}{b-a} \left x - \frac{a+b}{2} \right \right)$	$\frac{1}{2}(a+b)$	$\frac{1}{24}(b-a)^2$	$\left(\frac{e^{itb/2} - e^{ita/2}}{\frac{1}{2}it(b-a)}\right)^2$
	a < x < b			
Tri(-1,1)	$f(x) = 1 - x , \ x < 1$	0	$\frac{1}{6}$	$\left(\frac{\sin\frac{t}{2}}{\frac{t}{2}}\right)^2$
xponential	$f(x) = \frac{1}{a} e^{-x/a}, \ x > 0$	a	a^2	$\frac{1}{1-ait}$
$\operatorname{Exp}(a), \ a > 0$	u			1-ait
mma	$f(x) = \frac{1}{\Gamma(p)} x^{p-1} \frac{1}{a^p} e^{-x/a}, \ x > 0$	pa	pa^2	$\frac{1}{(1-ait)^p}$
$\Gamma(p,a), \ a > 0, \ p > 0$	1 (p)			(1 (000)
ni-square	$f(x) = \frac{1}{\Gamma(\frac{n}{2})} x^{\frac{1}{2}n-1} \left(\frac{1}{2}\right)^{n/2} e^{-x/2}, \ x > 0$	n	2n	$\frac{1}{(1-2it)^{n/2}}$
$\chi^2(n), n = 1, 2, 3, \dots$	$1\left(\frac{1}{2}\right)$			$(1-2it)^{i\gamma}$
aplace	$f(x) = \frac{1}{2a} e^{- x /a}, -\infty < x < \infty$	0	$2a^2$	$\frac{1}{1+a^2t^2}$
L(a), a > 0	24			$1 + u^- \iota^-$
eta	$f(x) = \frac{\Gamma(r+s)}{\Gamma(r)\Gamma(s)} x^{r-1} (1-x)^{s-1},$	$\frac{r}{r+s}$	$\frac{rs}{(r+s)^2(r+s+1)}$	*
$\beta(r,s), r,s>0$	1 (1)1 (0)	1 0	(1 + 9) (1 + 9 + 1)	
	0 < x < 1			

Continuous Distributions (continued)

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Weibull $W(\alpha, \beta), \alpha, \beta > 0$	$f(x) = \frac{1}{\alpha \beta} x^{(1/\beta)-1} e^{-x^{1/\beta}/\alpha}, \ x > 0$	$\alpha^{\beta} \Gamma(\beta+1)$	$a^{2eta}ig(\Gamma(2eta+1)\ -\Gamma(eta+1)^2ig)$	*
Rayleigh $\operatorname{Ra}(\alpha), \alpha > 0$	$f(x) = \frac{2}{\alpha} x e^{-x^2/\alpha}, \ x > 0$	$\frac{1}{2}\sqrt{\pi\alpha}$	$\alpha(1-rac{1}{4}\pi)$	*
Normal $N(\mu,\sigma^2), \\ -\infty < \mu < \infty, \sigma > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(x-\mu)^2/\sigma^2},$ $-\infty < x < \infty$	μ	σ^2	$e^{i\mu t - \frac{1}{2}t^2\sigma^2}$
N(0,1)	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty$	0	1	$e^{-t^2/2}$
Log-normal $ LN(\mu,\sigma^2), \\ -\infty < \mu < \infty, \ \sigma > 0 $	$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} e^{-\frac{1}{2}(\log x - \mu)^2/\sigma^2}, \ x > 0$	$e^{\mu + \frac{1}{2}\sigma^2}$	$e^{2\mu} \left(e^{2\sigma^2} - e^{\sigma^2} \right)$	*
(Student's) t $t(n), n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})} \cdot d\frac{1}{(1+\frac{x^2}{n})^{(n+1)/2}},$ $-\infty < x < \infty$	0	$\frac{n}{n-2}, n > 2$	*
(Fisher's) F $F(m, n), m, n = 1, 2, \dots$	$f(x) = \frac{\Gamma(\frac{m+n}{2})(\frac{m}{n})^{m/2}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \cdot \frac{x^{m/2-1}}{(1+\frac{mx}{n})^{(m+n)/2}},$	$\frac{n}{n-2}$,	$\frac{n^2(m+2)}{m(n-2)(n-4)} - \left(\frac{n}{n-2}\right)^2,$	*
	x > 0	n > 2	n > 4	

B Some Distributions and Their Characteristics

Continuous Distributions (continued)

Distribution, notation	Density	EX	$\operatorname{Var} X$	$\varphi_X(t)$
Cauchy				
C(m,a)	$f(x) = \frac{1}{\pi} \cdot \frac{a}{a^2 + (x - m)^2}, \ -\infty < x < \infty$	A	A	$e^{imt-a t }$
C(0,1)	$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2}, \ -\infty < x < \infty$	A	A	$e^{- t }$
Pareto	$f(x) = \frac{\alpha k^{\alpha}}{x^{\alpha+1}}, \ x > k$	$\frac{\alpha k}{\alpha - 1}$, $\alpha > 1$	$\frac{\alpha k^2}{(\alpha-2)(\alpha-1)^2}, \ \alpha > 2,$	*
$Pa(k, \alpha), k > 0, \alpha > 0$		a 2	(a 2)(a 1)	