Поиск изоморфных подграфов

Применение графов в биологии:

- молекулярные сети
- белковые сети

Цель: избавиться от неудачных "матчей" максимально недорого

Основные понятия

Изоморфизм

Мономорфизм

Густой(плотный) и редкий графы

Принцип работы алгоритмов

1. Построение дерева области поиска (Search space tree)

2. Уменьшение этого дерева, путем отсекания целых веток

	Search Stratergy	Reduce Search Space	Preprocessing Data	x Data Structure	
FocusSearch [29]	Static Semi-target dependent	Local domain reduction	Yes	List	
Lad [<u>30</u>]	Dynamic Target dependent	Domain reduction until convergence	Yes	Matrix	
VFlib [<u>3</u>]	Dynamic Target dependent	Two-Look-Head pruning rules	No	List	
RI	Static Target independent	Fast and light pruning rules	No	List	

Дерево области поиска

VFLib

Учитывая частичное решение, берет несматченные вершины шаблона, имеющие общие ребра с уже сматченными, аналогично берет несматченные вершины целевого графа, имеющие общие ребра с уже сматченными

VFLib. "Заглядывания"

Две вершины (u и u') можно считать сматченными, если:

- 1. Они обе соседи уже сматченных
- 2. Число несматченных, смежных с u, меньше или равно числу несматченных, смежных с u'
- 3. Число оставшихся несматченных, смежных с u, меньше или равно числу несматченных, смежных с u'

LAD

Идея:

Две вершины шаблона не могут быть сматченны с одной и той же вершиной в целевом графе в частичном решении с условием сохранения соответствия ребра между ними. Это ограничение применяется до сходимости (отсюда определение Domain reduction until convergence)

FocusSearch

Идея в предподготовке:

- 1. The first one, called prematch, fills domains by filtering them using vertex invariants based on labels and topology.
- 2. Аналогично LAD. Две вершины шаблона не могут быть сматченны с одной и той же вершиной в целевом графе в частичном решении с условием сохранения соответствия ребра между ними.

Далее вершины располагают в таком порядке, что каждая вершина из шаблона во главе последовательности, а далее располагаем вершины в порядке уменьшения общих веток с частичным решением.

Существуют также и другие подходы, но они основаны на вероятностных функциях

RI

	Search Stratergy	Reduce Search Space	Preprocessing Data	x Data Structure List	
FocusSearch [29]	Static Semi-target dependent	Local domain reduction	Yes		
Lad [30]	Dynamic Target dependent	Domain reduction until convergence	Yes	Matrix	
VFlib [<u>3</u>]	Dynamic Target dependent	Two-Look-Head pruning rules	No	List	
RI	Static Target independent	Fast and light pruning rules	No	List	

RI алгоритм

- 1. Упорядочивание вершин GreatestConstraintFirst
- 2. Непосредственно match ReduceSearch

RI - упорядочивание вершин

RI - reduce search

$$M(u_i) = u_i$$

- 1. u_i и $M(u_i)$ еще не сматченны
- 2. u_i и $M(u_i)$ соответствуют друг другу $(lab(u_i) == lab(M(u_i))$
- 3. Число ребер в целевом графе, смежных с $M(u_i) >=$ аналогичному числу ребер в шаблоне
- 4. Все ребра из данного частичного пути, смежные с \mathbf{u}_{i} , также соответствуют друг другу.

Версии алгоритма RI

RI-Ds: добавляет проверку на ребрах в областях для вершин

Ri-DsPm: добавляет идею из FocusSearch(Called prematch, fills domains by filtering them using vertex invariants based on labels and topology.) Т.е. фильтрует области при помощи инвариантов вершины, основанных на соседних метках (label) и топологии.

Table 1Statistics of biochemical datasets.

	Min Vertices	Min Edges	Max Vertices	Max Edges	Avg (SD) Vertices	Avg (SD) Edges	Avg (SD) Degree	Total Labels	Avg (SD) Labels
AIDS	4	8	245	500	44.98	93.91	4.17	62	4.36
Small Sparse					(21.68)	(45.05)	(2.28)		(0.86)
PDBSv1	240	480	33067	61546	5663.6	86661.27	3.21	14	5.9
Large Sparse					(6954.82)	(12365.7)	(2.52)		(1.04)
PDBSv2	1683	3414	7979	16302	3614.1	7386.2	4.08	13	4.63
Medium Sparse					(1772.06)	(3814.08)	(17.47)		(0.76)
PDBSv3	7	16	883	18832	376.86	8679.48	44.78	21	18.86
Small Dense					186.66	3814.08	(17.47)		(3.48)
Graemlin	1081	12961	6726	230468	3167.6	87759.6	48.14	31676	3167.6
Medium Dense					(1568.66)	(75939.2)	(63.61)		(1568.66)
PPI	5720	51464	12575	332458	7827.1	107135	28.66	78271	7827.1
Large Dense					(2120.15)	(82730.9)	(47.44)		(2120.15)