

Autodesk Robot Structural Analysis Professional 2020

Design of fixed beam-to-column connection

NF EN 1993-1-8:2005/NA:2007/AC:2009

Ratio **0.59**

GENERAL

Connection no.: 7

Connection name: Frame knee

Structure node: 38
Structure bars: 39, 42

GEOMETRY

COLUMN

Section: HEA 180

Bar no.: 39

 $\begin{array}{lll} \alpha = & -90.0 & \hbox{[Deg]} & \hbox{Inclination angle} \\ h_c = & 171 & \hbox{[mm]} & \hbox{Height of column section} \\ b_{fc} = & 180 & \hbox{[mm]} & \hbox{Width of column section} \end{array}$

 $\begin{array}{lll} t_{\text{wc}} = & 6 & [\text{mm}] & \text{Thickness of the web of column section} \\ t_{\text{fc}} = & 10 & [\text{mm}] & \text{Thickness of the flange of column section} \\ r_{\text{c}} = & 15 & [\text{mm}] & \text{Radius of column section fillet} \\ \end{array}$

 $\begin{array}{llll} r_c = & 15 & [mm] & \text{Radius of column section fillet} \\ A_c = & 45.25 & [cm^2] & \text{Cross-sectional area of a column} \\ I_{xc} = & 2510.29 & [cm^4] & \text{Moment of inertia of the column section} \end{array}$

Material: ACIER

 $f_{yc} = 235.00$ [MPa] Resistance

BEAM

Section: IPE 300 Bar no.: 42

 $\alpha = 11.3$ [Deg] Inclination angle $h_b = 300$ [mm] Height of beam section $b_f = 150$ [mm] Width of beam section $t_{wh} = 7$ [mm] Thickness of the web of

 $\begin{array}{llll} t_{\text{wb}} = & 7 & [\text{mm}] & \text{Thickness of the web of beam section} \\ t_{\text{fb}} = & 11 & [\text{mm}] & \text{Thickness of the flange of beam section} \\ r_{\text{b}} = & 15 & [\text{mm}] & \text{Radius of beam section fillet} \\ r_{\text{b}} = & 15 & [\text{mm}] & \text{Radius of beam section fillet} \\ \end{array}$

 $A_b = 53.81$ [cm²] Cross-sectional area of a beam $I_{xb} = 8356.11$ [cm⁴] Moment of inertia of the beam section

Material: ACIER

 $f_{yb} = 235.00$ [MPa] Resistance

BOLTS

The shear plane passes through the UNTHREADED portion of the bolt.

d = 12 [mm] Bolt diameter Class = 8.8 Bolt class

 $\begin{aligned} &\textbf{F}_{tRd} = & 48.38 & \textbf{[kN]} & \textbf{Tensile resistance of a bolt} \\ &\textbf{n}_h = & 2 & \textbf{Number of bolt columns} \\ &\textbf{n}_v = & 7 & \textbf{Number of bolt rows} \end{aligned}$

 $h_1 = 74$ [mm] Distance between first bolt and upper edge of front plate

Horizontal spacing $e_i = 70$ [mm]

Vertical spacing $p_i = 50;50;50;143;83;83$ [mm]

PLATE

 $h_p =$ 630 [mm] Plate height $b_p =$ 180 [mm] Plate width $t_p =$ 9 [mm] Plate thickness

Material: ACIER

 $f_{yp} = 235.00$ [MPa] Resistance

LOWER STIFFENER

150 [mm] Plate width $w_d =$ 11 Flange thickness $t_{fd} =$ [mm] 300 Plate height [mm] $h_d =$ 7 Web thickness [mm] $t_{wd} =$ 612 [mm] Plate length $I_d =$ $\alpha =$ 35.0 [Deg] Inclination angle

Material: ACIER

 $f_{ybu} = 235.00$ [MPa] Resistance

COLUMN STIFFENER

Upper

 $h_{su} = 152$ [mm] Stiffener height $b_{su} = 87$ [mm] Stiffener width $t_{hu} = 10$ [mm] Stiffener thickness

Material: ACIER E24

 $f_{ysu} = 235.00$ [MPa] Resistance

Lower

$h_{sd} =$	152	[mm]	Stiffener height
$b_{sd} =$	87	[mm]	Stiffener width
$t_{hd} =$	10	[mm]	Stiffener thickness

Material: ACIER E24

 $f_{ysu} = 235.00$ [MPa] Resistance

PLATE STRENGTHENING COLUMN WEB

Typ: unilateral

Material: ACIER E24

 $f_{va} = 235.00$ [MPa] Resistance

FILLET WELDS

a _w =	5	[mm]	Web weld
a _f =	5	[mm]	Flange weld
as =	5	[mm]	Stiffener weld
a _{fd} =	5	[mm]	Horizontal weld
$a_{p1} =$	1	[mm]	Horizontal weld
$a_{p2} =$	1	[mm]	Vertical weld

MATERIAL FACTORS

γмо =	1.00	Partial safety factor	[2.2]
γм1 =	1.00	Partial safety factor	[2.2]
γм2 =	1.25	Partial safety factor	[2.2]
γмз =	1.10	Partial safety factor	[2.2]

LOADS

Ultimate limit state

```
Cas 16: ULS /106/ 1*1.35 + 2*1.35 + 3*1.35 + 4*1.35 + 5*1.35 + 6*1.35 + 7*1.05 + e: 8*1.05 + 9*1.05 + 15*1.50
```

 $\begin{array}{lll} M_{b1,Ed} = & 58.22 & [kN^*m] & \mbox{Bending moment in the right beam} \\ V_{b1,Ed} = & 42.31 & [kN] & \mbox{Shear force in the right beam} \\ N_{b1,Ed} = & -22.17 & [kN] & \mbox{Axial force in the right beam} \\ \end{array}$

 $\begin{array}{lll} \mbox{M}_{c1,\mbox{Ed}} = & 58.22 & \mbox{[kN*m]} & \mbox{Bending moment in the lower column} \\ \mbox{V}_{c1,\mbox{Ed}} = & -22.18 & \mbox{[kN]} & \mbox{Shear force in the lower column} \\ \mbox{N}_{c1,\mbox{Ed}} = & -43.15 & \mbox{[kN]} & \mbox{Axial force in the lower column} \end{array}$

RESULTS

BEAM RESISTANCES

COMPRESSION

 $A_b = 53.81$ [cm²] Area EN1993-1-1:[6.2.4]

 $N_{cb,Rd} = A_b f_{yb} / \gamma_{M0}$

 $N_{cb,Rd} = 1264.54$ [kN] Design compressive resistance of the section EN1993-1-1:[6.2.4]

SHEAR

 $A_{vb} = 46.98$ [cm²] Shear area EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \sqrt{3}) / \gamma_{M0}$

$V_{cb,Rd} = 637.41$ [kN] Design sectional resistance for shear	EN1993-1-1:[6.2.6.(2)]
$V_{b1,Ed} / V_{cb,Rd} \le 1,0$ 0.07 < 1.00 verified	(0.07)
BENDING - PLASTIC MOMENT (WITHOUT BRACKETS)	
$W_{plb} = 628.36$ [cm ³] Plastic section modulus	EN1993-1-1:[6.2.5.(2)]
$M_{b,pl,Rd} = W_{plb} f_{yb} / \gamma_{M0}$	
$M_{b,pl,Rd} = 147.66$ [kN*m] Plastic resistance of the section for bending (without stiffeners)	EN1993-1-1:[6.2.5.(2)]
BENDING ON THE CONTACT SURFACE WITH PLATE OR CONNECTED ELEMENT	
$W_{pl} = 1445.52$ [cm ³] Plastic section modulus	EN1993-1-1:[6.2.5]
$M_{cb,Rd} = W_{pl} f_{yb} / \gamma_{M0}$	
$M_{cb,Rd} = 339.70$ [kN*m] Design resistance of the section for bending	EN1993-1-1:[6.2.5]
FLANGE AND WEB - COMPRESSION	
$M_{cb,Rd} = 339.70$ [kN*m] Design resistance of the section for bending	EN1993-1-1:[6.2.5]
h _f = 594 [mm] Distance between the centroids of flanges	[6.2.6.7.(1)]
F _{c,fb,Rd} = M _{cb,Rd} / h _f	[0 0 0 7 (4)]
F _{c,fb,Rd} = 571.92 [kN] Resistance of the compressed flange and web	[6.2.6.7.(1)]
WEB OR BRACKET FLANGE - COMPRESSION - LEVEL OF THE BEAM BOTTOM FLAN	GE
Bearing:	
β = 11.3 [Deg] Angle between the front plate and the beam	
$\gamma = 35.0$ [Deg] Inclination angle of the bracket plate	
$b_{eff,c,wb} = 169$ [mm] Effective width of the web for compression	[6.2.6.2.(1)]
$A_{vb} = 25.68$ [cm ²] Shear area	EN1993-1-1:[6.2.6.(3)]
$\omega = 0.88$ Reduction factor for interaction with shear	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 90.73$ [MPa] Maximum compressive stress in web	[6.2.6.2.(2)]
$k_{wc} = 1.00$ Reduction factor conditioned by compressive stresses	[6.2.6.2.(2)]
$A_s = 14.29$ [cm ²] Area of the web stiffener	EN1993-1-1:[6.2.4]
$F_{c,wb,Rd1} = [\omega k_{wc} b_{eff,c,wb} t_{wb} f_{yb} / \gamma_{M0} + A_s f_{yb} / \gamma_{M0}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd1} = 1193.17$ [kN] Beam web resistance	[6.2.6.2.(1)]
Buckling:	
d _{wb} = 249 [mm] Height of compressed web	[6.2.6.2.(1)]
$\lambda_p = 0.90$ Plate slenderness of an element	[6.2.6.2.(1)]
$\rho = 0.86$ Reduction factor for element buckling	[6.2.6.2.(1)]
$\lambda_s = 5.60$ Stiffener slenderness	EN1993-1-1:[6.3.1.2]
$\chi = 1.00$ Buckling coefficient of the stiffener	EN1993-1-1:[6.3.1.2]
$F_{c,wb,Rd2} = [\omega \text{ kwc } \rho \text{ beff,c,wb twb fyb / } \gamma_{M1} + A_s \chi \text{ fyb / } \gamma_{M1}] \cos(\gamma) / \sin(\gamma - \beta)$	
$F_{c,wb,Rd2} = 1123.87$ [kN] Beam web resistance	[6.2.6.2.(1)]
Resistance of the bracket flange	
$F_{c,wb,Rd3} = b_b t_b f_{yb} / (0.8^* \gamma_{M0})$	
$F_{c,wb,Rd3} = 471.47$ [kN] Resistance of the bracket flange	[6.2.6.7.(1)]
Final resistance:	
$F_{c,wb,Rd,low} = Min (F_{c,wb,Rd1}, F_{c,wb,Rd2}, F_{c,wb,Rd3})$	
$F_{c,wb,Rd,low} = 471.47$ [kN] Beam web resistance	[6.2.6.2.(1)]
COLUMN RESISTANCES	
O LO MA A LOIO PAROLO	
WEB PANEL - SHEAR	
$M_{b1,Ed} = 58.22$ [kN*m] Bending moment (right beam)	[5.3.(3)]
$M_{b2,Ed} = 0.00 \text{ [kN*m]}$ Bending moment (left beam)	[5.3.(3)]
$V_{c1,Ed} = -22.18$ [kN] Shear force (lower column)	[5.3.(3)]
$V_{c2,Ed} = 0.00$ [kN] Shear force (upper column)	[5.3.(3)]
z = 515 [mm] Lever arm	[6.2.5]
$V_{wp,Ed} = (M_{b1,Ed} - M_{b2,Ed}) / Z - (V_{c1,Ed} - V_{c2,Ed}) / 2$	F= 0 (0):
$V_{wp,Ed} = 124.06$ [kN] Shear force acting on the web panel	[5.3.(3)]

$\begin{array}{llllllllllllllllllllllllllllllllllll$	EN1993-1-1:[6.2.6.(3)] EN1993-1-1:[6.2.6.(3)] EN1993-1-1:[6.2.6.(3)] [6.2.6.1.(4)] [6.2.6.1.(4)]
$\begin{aligned} &M_{pl,stl,Rd} = 1.06 \text{ [kN*m] Plastic resistance of the lower transverse stiffener for bending} \\ &V_{wp,Rd} = 0.9 \text{ (}A_{vs}^*f_{y,wc} + A_{vp}^*f_{ya} \text{) / (}\sqrt{3} \gamma_{M0} \text{) + Min(4 M}_{pl,fc,Rd} \text{ / d}_s \text{ , (2 M}_{pl,fc,Rd} + M_{pl,stu,Rd} + M_{pl,stl,Rd} \text{) / }V_{wp,Rd} = 300.39 \text{ [kN]} \end{aligned}$ Resistance of the column web panel for shear	[6.2.6.1.(4)]
$V_{wp,Ed} / V_{wp,Rd} \le 1,0$ 0.41 < 1.00 verified	(0.41)
WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE	(0:11)
Bearing:	[6 2 6 2 (6)]
t _{wc} = 9 [mm] Effective thickness of the column web	[6.2.6.2.(6)]
beff,c,wc = 168 [mm] Effective width of the web for compression	[6.2.6.2.(1)]
$A_{vc} = 24.07 \text{ [cm}^2\text{] Shear area}$	EN1993-1-1:[6.2.6.(3)]
$\omega = 0.81$ Reduction factor for interaction with shear	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 151.02$ [MPa] Maximum compressive stress in web	[6.2.6.2.(2)]
$k_{wc} = 1.00$ Reduction factor conditioned by compressive stresses	[6.2.6.2.(2)]
$A_s = 17.40$ [cm ²] Area of the web stiffener	EN1993-1-1:[6.2.4]
$F_{c,wc,Rd1} = \omega k_{wc} b_{eff,c,wc} t_{wc} f_{yc} / \gamma_{M0} + A_s f_{ys} / \gamma_{M0}$	
$F_{c,wc,Rd1} = 697.43$ [kN] Column web resistance	[6.2.6.2.(1)]
Buckling:	
d _{wc} = 122 [mm] Height of compressed web	[6.2.6.2.(1)]
$\lambda_p = 0.50$ Plate slenderness of an element	[6.2.6.2.(1)]
$\rho = 1.00$ Reduction factor for element buckling	[6.2.6.2.(1)]
$\lambda_s = 2.31$ Stiffener slenderness	EN1993-1-1:[6.3.1.2]
$\chi_s = 1.00$ Buckling coefficient of the stiffener	EN1993-1-1:[6.3.1.2]
$F_{c,wc,Rd2} = \omega \text{ kwc } \rho \text{ beff,c,wc twc fyc} / \gamma_{M1} + A_s \chi_s \text{ fys} / \gamma_{M1}$	
$F_{c,wc,Rd2} = 697.43$ [kN] Column web resistance	[6.2.6.2.(1)]
Final resistance:	
$F_{c,wc,Rd,low} = Min (F_{c,wc,Rd1}, F_{c,wc,Rd2})$	
$F_{c,wc,Rd} = 697.43$ [kN] Column web resistance	[6.2.6.2.(1)]
WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM TOP FLANGE	
Bearing:	
$t_{wc} = 9$ [mm] Effective thickness of the column web	[6.2.6.2.(6)]
b _{eff,c,wc} = 166 [mm] Effective width of the web for compression	[6.2.6.2.(1)]
$A_{vc} = 24.07 \text{ [cm}^2\text{] Shear area}$	EN1993-1-1:[6.2.6.(3)]
$\omega = 0.82$ Reduction factor for interaction with shear	[6.2.6.2.(1)]
$\sigma_{\text{com,Ed}} = 151.02$ [MPa] Maximum compressive stress in web	[6.2.6.2.(2)]
$k_{wc} = 1.00$ Reduction factor conditioned by compressive stresses	[6.2.6.2.(2)]
$A_s = 17.40$ [cm ²] Area of the web stiffener	EN1993-1-1:[6.2.4]
$F_{c,wc,Rd1} = \omega k_{wc} b_{eff,c,wc} t_{wc} f_{yc} / \gamma_{M0} + A_s f_{ys} / \gamma_{M0}$	
$F_{c,wc,Rd1} = 694.97$ [kN] Column web resistance	[6.2.6.2.(1)]
Buckling:	
d _{wc} = 122 [mm] Height of compressed web	[6.2.6.2.(1)]
$\lambda_p = 0.49$ Plate slenderness of an element	[6.2.6.2.(1)]
$\rho = 1.00$ Reduction factor for element buckling	[6.2.6.2.(1)]
$\lambda_s = 2.31$ Stiffener slenderness	EN1993-1-1:[6.3.1.2]
$\chi_s = 1.00$ Buckling coefficient of the stiffener	EN1993-1-1:[6.3.1.2]
F _{c,wc,Rd2} = ω Kwc ρ beff,c,wc twc fyc / γ M1 + As χ s fys / γ M1	
F _{c,wc,Rd2} = 694.97 [kN] Column web resistance	[6.2.6.2.(1)]
Final resistance:	[(-/]
· marrodotarioo.	

 $F_{c,wc,Rd,upp} = 694.97$ [kN] Column web resistance

[6.2.6.2.(1)]

GEOMETRICAL PARAMETERS OF A CONNECTION

EFFECTIVE LENGTHS AND PARAMETERS - COLUMN FLANGE

Nr	m	mx	е	ex	р	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	leff,1,g	leff,2,g
1	20	_	55	_	50	126	148	126	148	113	99	99	99
2	20	-	55	-	50	126	149	126	149	100	50	50	50
3	20	-	55	-	50	126	149	126	149	100	50	50	50
4	20	_	55	-	97	126	149	126	149	193	97	97	97
5	20	_	55	-	113	126	149	126	149	226	113	113	113
6	20	_	55	-	83	126	149	126	149	166	83	83	83
7	20	_	55	_	83	126	148	126	148	146	115	115	115

EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE

Nr	m	m _x	е	ex	р	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	I _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	26	-	55	-	50	162	176	162	176	131	115	115	115
2	26	-	55	-	50	162	172	162	172	100	50	50	50
3	26	-	55	-	50	162	172	162	172	100	50	50	50
4	26	-	55	-	97	162	172	162	172	193	97	97	97
5	26	-	55	-	113	162	172	162	172	226	113	113	113
6	26	-	55	-	83	162	172	162	172	166	83	83	83
7	26	-	55	-	83	162	172	162	172	164	127	127	127

m - Bolt distance from the web

- Bolt distance from the beam flange m_{x} - Bolt distance from the outer edge е

- Bolt distance from the horizontal outer edge e_x

- Distance between bolts р

- Effective length for a single bolt in the circular failure mode - Effective length for a single bolt in the non-circular failure mode

- Effective length for a single bolt for mode 1 $I_{\rm eff,1}$ - Effective length for a single bolt for mode 2

leff,cp,g - Effective length for a group of bolts in the circular failure mode leff,nc,g - Effective length for a group of bolts in the non-circular failure mode

l_{eff,1,g} – Effective length for a group of bolts for mode 1 leff,2,q - Effective length for a group of bolts for mode 2

CONNECTION RESISTANCE FOR COMPRESSION

 $N_{j,Rd} = Min \ (\ N_{cb,Rd} 2 \ F_{c,wb,Rd,low} \ , \ 2 \ F_{c,wc,Rd,low} \ , \ 2 \ F_{c,wc,Rd,upp} \)$

 $N_{i,Rd} =$ 942.94 [kN] Connection resistance for compression [6.2]

0.02 < 1.00 $N_{b1.Ed} / N_{i.Rd} \leq 1.0$ verified (0.02)

CONNECTION RESISTANCE FOR BENDING

48.38 $F_{t,Rd} =$ [kN] Bolt resistance for tension [Table 3.4] $B_{p,Rd} =$ 89.17 [kN] Punching shear resistance of a bolt [Table 3.4]

F_{t.fc.Rd} – column flange resistance due to bending F_{t,wc,Rd} - column web resistance due to tension F_{t,ep,Rd} - resistance of the front plate due to bending

F_{t,wb,Rd} - resistance of the web in tension

 $F_{t,fc,Rd} = Min (F_{T,1,fc,Rd}, F_{T,2,fc,Rd}, F_{T,3,fc,Rd})$ [6.2.6.4], [Tab.6.2]

 $F_{t,wc,Rd} = \omega b_{eff,t,wc} t_{wc} f_{yc} / \gamma_{M0}$

[6.2.6.3.(1)]

$$\begin{split} F_{t,fc,Rd} &= Min~(F_{T,1,fc,Rd}~,~F_{T,2,fc,Rd}~,~F_{T,3,fc,Rd}) \\ F_{t,ep,Rd} &= Min~(F_{T,1,ep,Rd}~,~F_{T,2,ep,Rd}~,~F_{T,3,ep,Rd}) \\ F_{t,wb,Rd} &= b_{eff,t,wb}~t_{wb}~f_{yb}~/\gamma_{M0} \end{split}$$

RESISTANCE OF THE BOLT ROW NO. 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Component
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	82.65	Bolt row resistance
$F_{t,fc,Rd(1)} = 88.73$	88.73	Column flange - tension
$F_{t,wc,Rd(1)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(1)} = 82.65$	82.65	Front plate - tension
$F_{t,wb,Rd(1)}=270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta = 300.39$	300.39	Web panel - shear
$F_{c,wc,Rd} = 697.43$	697.43	Column web - compression
$F_{c,fb,Rd} = 571.92$	571.92	Beam flange - compression
$F_{c,wb,Rd} = 471.47$	471.47	Beam web - compression

RESISTANCE OF THE BOLT ROW NO. 2

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Component
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	39.27	Bolt row resistance
$F_{t,fc,Rd(2)} = 88.81$	88.81	Column flange - tension
$F_{t,wc,Rd(2)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(2)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(2)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1}^{1} F_{ti,Rd} = 300.39 - 82.65$	217.74	Web panel - shear
$F_{c,wc,Rd} - \sum_{1}^{1} F_{tj,Rd} = 697.43 - 82.65$	614.78	Column web - compression
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 571.92 - 82.65$	489.27	Beam flange - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{1} F_{tj,Rd} = 471.47 - 82.65$	388.82	Beam web - compression
$F_{t,fc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 142.64 - 82.65$	59.99	Column flange - tension - group
$F_{t,wc,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 270.90 - 82.65$	188.25	Column web - tension - group
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 121.92$ - 82.65	39.27	Front plate - tension - group
$F_{t,wb,Rd(2+1)}$ - $\sum 1^1 F_{tj,Rd} = 275.65 - 82.65$	193.00	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Component
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	34.53	Bolt row resistance
$F_{t,fc,Rd(3)} = 88.81$	88.81	Column flange - tension
$F_{t,wc,Rd(3)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(3)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(3)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1}^{2} F_{ti,Rd} = 300.39 - 121.92$	178.47	Web panel - shear
$F_{c,wc,Rd}$ - $\sum_{1}^{2} F_{tj,Rd} = 697.43 - 121.92$	575.51	Column web - compression
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 571.92 - 121.92$	450.00	Beam flange - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{2} F_{tj,Rd} = 471.47 - 121.92$	349.55	Beam web - compression
$F_{t,fc,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd} = 106.04 - 39.27$	66.77	Column flange - tension - group
$F_{t,wc,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd} = 189.88 - 39.27$	150.61	Column web - tension - group
$F_{t,fc,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 208.18 - 121.92$	86.26	Column flange - tension - group
$F_{t,wc,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 341.98 - 121.92$	220.05	Column web - tension - group
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 73.80 - 39.27$	34.53	Front plate - tension - group
$F_{t,wb,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd}$ = 166.85 - 39.27	127.58	Beam web - tension - group
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 158.82 - 121.92$	36.90	Front plate - tension - group

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Component
$F_{t,wb,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 359.07$ - 121.92	237.15	Beam web - tension - group

RESISTANCE OF THE BOLT ROW NO. 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Component
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	71.22	Bolt row resistance
$F_{t,fc,Rd(4)} = 88.81$	88.81	Column flange - tension
$F_{t,wc,Rd(4)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(4)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(4)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1}^{3} F_{ti,Rd} = 300.39 - 156.45$	143.94	Web panel - shear
$F_{c,wc,Rd} - \sum_{1}^{3} F_{tj,Rd} = 697.43 - 156.45$	540.98	Column web - compression
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 571.92 - 156.45$	415.47	Beam flange - compression
$F_{c,wb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 471.47 - 156.45$	315.02	Beam web - compression
$F_{t,fc,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 142.04 - 34.53$	107.51	Column flange - tension - group
$F_{t,wc,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 266.97 - 34.53$	232.44	Column web - tension - group
$F_{t,fc,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 207.59 - 73.80$	133.79	Column flange - tension - group
$F_{t,wc,Rd(4+3+2)} - \sum_{3} F_{tj,Rd} = 338.66 - 73.80$	264.86	Column web - tension - group
$F_{t,fc,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 284.68 - 156.45$	128.23	Column flange - tension - group
$F_{t,wc,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 446.71 - 156.45$	290.26	Column web - tension - group
$F_{t,ep,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 108.12 - 34.53$	73.59	Front plate - tension - group
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 244.44 - 34.53$	209.91	Beam web - tension - group
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 145.01 - 73.80$	71.22	Front plate - tension - group
$F_{t,wb,Rd(4+3+2)}$ - $\sum_3 F_{tj,Rd} = 327.86$ - 73.80	254.06	Beam web - tension - group
$F_{t,ep,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 230.04$ - 156.45	73.59	Front plate - tension - group
$F_{t,wb,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 520.08 - 156.45$	363.63	Beam web - tension - group

Additional reduction of the bolt row resistance

 $F_{t4,Rd} = F_{t1,Rd} \; h_4/h_1$

 $F_{t4,Rd} = 59.71$ [kN] Reduced bolt row resistance

 $F_{t4,Rd} = F_{t2,Rd} h_4/h_2$

 $F_{t4,Rd} = 31.26$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]FRA

[6.2.7.2.(9)]

RESISTANCE OF THE BOLT ROW NO. 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Component
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	81.95	Bolt row resistance
$F_{t,fc,Rd(5)} = 88.81$	88.81	Column flange - tension
$F_{t,wc,Rd(5)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(5)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(5)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1}^{4} F_{ti,Rd} = 300.39 - 187.71$	112.68	Web panel - shear
$F_{c,wc,Rd} - \sum_{1}^{4} F_{tj,Rd} = 697.43 - 187.71$	509.72	Column web - compression
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 571.92 - 187.71$	384.21	Beam flange - compression
$F_{c,wb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 471.47 - 187.71$	283.76	Beam web - compression
$F_{t,fc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 156.89 - 31.26$	125.63	Column flange - tension - group
$F_{t,wc,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 355.33 - 31.26$	324.07	Column web - tension - group
$F_{t,fc,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 222.43 - 65.79$	156.64	Column flange - tension - group
$F_{t,wc,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 412.26 - 65.79$	346.46	Column web - tension - group
$F_{t,fc,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 287.97 - 105.06$	182.91	Column flange - tension - group
$F_{t,wc,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 458.73 - 105.06$	353.67	Column web - tension - group
$F_{t,fc,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 365.07 - 187.71$	177.36	Column flange - tension - group

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Component
$F_{t,wc,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 526.27 - 187.71$	338.56	Column web - tension - group
$F_{t,ep,Rd(5+4)} - \sum_{4} {}^{4}F_{tj,Rd} = 141.88 - 31.26$	110.62	Front plate - tension - group
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 349.55 - 31.26$	318.29	Beam web - tension - group
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 191.51 - 65.79$	125.72	Front plate - tension - group
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 432.98 - 65.79$	367.18	Beam web - tension - group
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 228.41 - 105.06$	123.35	Front plate - tension - group
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 516.40 - 105.06$	411.34	Beam web - tension - group
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 313.43 - 187.71$	125.72	Front plate - tension - group
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 708.62 - 187.71$	520.91	Beam web - tension - group

Additional reduction of the bolt row resistance

 $F_{t5,Rd} = F_{t1,Rd} \; h_5/h_1$

 $F_{t5,Rd} = 37.84$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]

 $F_{t5,Rd} = F_{t2,Rd} h_5/h_2$

 $F_{t5,Rd} = 19.81$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]FRA

RESISTANCE OF THE BOLT ROW NO. 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Component
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	81.95	Bolt row resistance
$F_{t,fc,Rd(6)} = 88.81$	88.81	Column flange - tension
$F_{t,wc,Rd(6)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(6)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(6)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1} {}^{5} F_{ti,Rd} = 300.39 - 207.52$	92.87	Web panel - shear
$F_{c,wc,Rd}$ - $\sum_{1}^{5} F_{tj,Rd} = 697.43 - 207.52$	489.91	Column web - compression
$F_{c,fb,Rd}$ - $\sum_{1}^{5} F_{tj,Rd} = 571.92 - 207.52$	364.40	Beam flange - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{5} F_{tj,Rd} = 471.47 - 207.52$	263.95	Beam web - compression
$F_{t,fc,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 153.71 - 19.81$	133.90	Column flange - tension - group
$F_{t,wc,Rd(6+5)}$ - $\sum_5 F_{tj,Rd} = 338.00 - 19.81$	318.19	Column web - tension - group
$F_{t,fc,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 230.21 - 51.07$	179.13	Column flange - tension - group
$F_{t,wc,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 444.00$ - 51.07	392.93	Column web - tension - group
$F_{t,fc,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 295.75 - 85.60$	210.15	Column flange - tension - group
$F_{t,wc,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 484.46 - 85.60$	398.86	Column web - tension - group
$F_{t,fc,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 361.29 - 124.87$	236.42	Column flange - tension - group
$F_{t,wc,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd} = 517.17$ - 124.87	392.30	Column web - tension - group
$F_{t,fc,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 438.39 - 207.52$	230.87	Column flange - tension - group
$F_{t,wc,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 564.77 - 207.52$	357.24	Column web - tension - group
$F_{t,ep,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 139.66 - 19.81$	119.85	Front plate - tension - group
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 327.03 - 19.81$	307.21	Beam web - tension - group
$F_{t,ep,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 209.25$ - 51.07	158.18	Front plate - tension - group
$F_{t,wb,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 488.04 - 51.07$	436.96	Beam web - tension - group
$F_{t,ep,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 252.76 - 85.60$	167.16	Front plate - tension - group
$F_{t,wb,Rd(6+5+4+3)}$ - $\sum_{5}^{3} F_{tj,Rd} = 571.46 - 85.60$	485.86	Beam web - tension - group
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 289.66 - 124.87$	164.79	Front plate - tension - group
$F_{t,wb,Rd(6+5+4+3+2)}$ - $\sum_{5}^{2} F_{tj,Rd} = 654.89$ - 124.87	530.01	Beam web - tension - group
$F_{t,ep,Rd(6+5+4+3+2+1)}$ - \sum_{5}^{1} $F_{tj,Rd}$ = 374.68 - 207.52	167.16	Front plate - tension - group
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 847.11 - 207.52$	639.59	Beam web - tension - group

Additional reduction of the bolt row resistance

 $F_{t6,Rd} = F_{t1,Rd} \; h_6/h_1$

 $F_{t6,Rd} = 25.15$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]

 $F_{t6,Rd} = F_{t2,Rd} \ h_6/h_2$

 $F_{t6,Rd} = 13.17$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]FRA

RESISTANCE OF THE BOLT ROW NO. 7

F _{t7,Rd,comp} - Formula	F _{t7,Rd,comp}	Component
$F_{t7,Rd} = Min (F_{t7,Rd,comp})$	79.70	Bolt row resistance
$F_{t,fc,Rd(7)} = 88.58$	88.58	Column flange - tension
$F_{t,wc,Rd(7)} = 233.61$	233.61	Column web - tension
$F_{t,ep,Rd(7)} = 81.95$	81.95	Front plate - tension
$F_{t,wb,Rd(7)} = 270.40$	270.40	Beam web - tension
$B_{p,Rd} = 178.33$	178.33	Bolts due to shear punching
$V_{wp,Rd}/\beta - \sum_{1}^{6} F_{ti,Rd} = 300.39 - 220.69$	79.70	Web panel - shear
$F_{c,wc,Rd}$ - $\sum_{1}^{6} F_{tj,Rd} = 697.43 - 220.69$	476.74	Column web - compression
$F_{c,fb,Rd} - \sum_{1}^{6} F_{tj,Rd} = 571.92 - 220.69$	351.23	Beam flange - compression
$F_{c,wb,Rd}$ - $\sum_{1}^{6} F_{tj,Rd} = 471.47 - 220.69$	250.78	Beam web - compression
$F_{t,fc,Rd(7+6)} - \sum_{6} F_{tj,Rd} = 154.16 - 13.17$	140.99	Column flange - tension - group
$F_{t,wc,Rd(7+6)}$ - $\sum_{6}^{6} F_{tj,Rd} = 340.49 - 13.17$	327.33	Column web - tension - group
$F_{t,fc,Rd(7+6+5)}$ - $\sum_{6}^{5} F_{tj,Rd} = 234.55$ - 32.98	201.57	Column flange - tension - group
$F_{t,wc,Rd(7+6+5)}$ - $\sum_{6}^{5} F_{tj,Rd} = 459.90$ - 32.98	426.92	Column web - tension - group
$F_{t,fc,Rd(7+6+5+4)} - \sum_{6}^{4} F_{tj,Rd} = 311.05 - 64.24$	246.81	Column flange - tension - group
$F_{t,wc,Rd(7+6+5+4)} - \sum_{6}^{4} F_{tj,Rd} = 525.65 - 64.24$	461.41	Column web - tension - group
$F_{t,fc,Rd(7+6+5+4+3)} - \sum_{6}^{3} F_{tj,Rd} = 376.59 - 98.77$	277.82	Column flange - tension - group
$F_{t,wc,Rd(7+6+5+4+3)} - \sum_{6}^{3} F_{tj,Rd} = 550.51 - 98.77$	451.75	Column web - tension - group
$F_{t,fc,Rd(7+6+5+4+3+2)} - \sum_{6}^{2} F_{tj,Rd} = 442.13 - 138.04$	304.09	Column flange - tension - group
$F_{t,wc,Rd(7+6+5+4+3+2)}$ - $\sum 6^2 F_{tj,Rd} = 570.75$ - 138.04	432.71	Column web - tension - group
$F_{t,fc,Rd(7+6+5+4+3+2+1)}$ - \sum_{6}^{1} $F_{tj,Rd}$ = 519.23 - 220.69	298.54	Column flange - tension - group
$F_{t,wc,Rd(7+6+5+4+3+2+1)}$ - \sum_{6}^{1} $F_{tj,Rd}$ = 600.76 - 220.69	380.07	Column web - tension - group
$F_{t,ep,Rd(7+6)}$ - $\sum_{6}^{6} F_{tj,Rd} = 142.04 - 13.17$	128.87	Front plate - tension - group
$F_{t,wb,Rd(7+6)} - \sum_{6}^{6} F_{tj,Rd} = 351.15 - 13.17$	337.99	Beam web - tension - group
$F_{t,ep,Rd(7+6+5)}$ - $\sum_{6}^{5} F_{tj,Rd} = 214.33$ - 32.98	181.35	Front plate - tension - group
$F_{t,wb,Rd(7+6+5)}$ - $\sum_{6}^{5} F_{tj,Rd} = 539.70 - 32.98$	506.72	Beam web - tension - group
$F_{t,ep,Rd(7+6+5+4)} - \sum_{6}^{4} F_{tj,Rd} = 283.91 - 64.24$	219.67	Front plate - tension - group
$F_{t,wb,Rd(7+6+5+4)} - \sum_{6}^{4} F_{tj,Rd} = 700.71 - 64.24$	636.47	Beam web - tension - group
$F_{t,ep,Rd(7+6+5+4+3)} - \sum_{6} {}^{3}F_{tj,Rd} = 345.87 - 98.77$	247.10	Front plate - tension - group
$F_{t,wb,Rd(7+6+5+4+3)} - \sum_{6}^{3} F_{tj,Rd} = 784.13 - 98.77$	685.36	Beam web - tension - group
$F_{t,ep,Rd(7+6+5+4+3+2)} - \sum_{6}^{2} F_{tj,Rd} = 383.72 - 138.04$	245.69	Front plate - tension - group
$F_{t,wb,Rd(7+6+5+4+3+2)} - \sum_{6}^{2} F_{tj,Rd} = 867.56 - 138.04$	729.52	Beam web - tension - group
$F_{t,ep,Rd(7+6+5+4+3+2+1)} - \sum_{6}^{1} F_{tj,Rd} = 468.75 - 220.69$	248.06	Front plate - tension - group
$F_{t,wb,Rd(7+6+5+4+3+2+1)} - \sum_{6}^{1} F_{tj,Rd} = 1059.78 - 220.69$	839.09	Beam web - tension - group
Additional reduction of the helt resurregistence		

Additional reduction of the bolt row resistance

 $F_{t7,Rd} = F_{t1,Rd} \; h_7/h_1$

 $F_{t7,Rd} = 12.45$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]

 $F_{t7,Rd} = F_{t2,Rd} \; h_7/h_2$

 $F_{t7,Rd} = 6.52$ [kN] Reduced bolt row resistance

[6.2.7.2.(9)]FRA

SUMMARY TABLE OF FORCES

Nr	hj	$F_{tj,Rd}$	$F_{t,fc,Rd}$	F _{t,wc,Rd}	$F_{t,ep,Rd}$	$F_{t,wb,Rd}$	$F_{t,Rd}$	$B_{p,Rd}$
1	540	82.65	88.73	233.61	82.65	270.40	96.77	178.33
2	490	39.27	88.81	233.61	81.95	270.40	96.77	178.33
3	440	34.53	88.81	233.61	81.95	270.40	96.77	178.33
4	390	31.26	88.81	233.61	81.95	270.40	96.77	178.33
5	247	19.81	88.81	233.61	81.95	270.40	96.77	178.33

Nr	hj	$F_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	$F_{t,ep,Rd}$	$F_{t,wb,Rd}$	$F_{t,Rd}$	$\mathbf{B}_{p,Rd}$
6	164	13.17	88.81	233.61	81.95	270.40	96.77	178.33
7	81	6.52	88.58	233.61	81.95	270.40	96.77	178.33

CONNECTION RESISTANCE FOR BENDING M_{j,Rd}

 $M_{j,Rd} = \sum h_j F_{tj,Rd}$

 $M_{j,Rd} = 98.93$ [kN*m] Connection resistance for bending [6.2]

 $M_{b1,Ed} / M_{i,Rd} \le 1,0$ 0.59 < 1.00 verified (0.59)

CONNECTION RESISTANCE FOR SHEAR

$\alpha_{V} =$	0.60		Coefficient for calculation of Fv,Rd	[Table 3.4]
β Lf =	0.88		Reduction factor for long connections	[3.8]
$F_{v,Rd} =$	38.38	[kN]	Shear resistance of a single bolt	[Table 3.4]
$F_{t,Rd,max} =$	48.38	[kN]	Tensile resistance of a single bolt	[Table 3.4]
$F_{b,Rd,int} =$	78.84	[kN]	Bearing resistance of an intermediate bolt	[Table 3.4]
$F_{b,Rd,ext} =$	78.84	[kN]	Bearing resistance of an outermost bolt	[Table 3.4]

Nr	$F_{tj,Rd,N}$	$F_{tj,Ed,N}$	$F_{tj,Rd,M}$	$F_{tj,Ed,M}$	$F_{tj,Ed}$	$F_{vj,Rd}$
1	96.77	-3.17	82.65	48.64	45.48	50.99
2	96.77	-3.17	39.27	23.11	19.94	65.46
3	96.77	-3.17	34.53	20.32	17.15	67.04
4	96.77	-3.17	31.26	18.40	15.23	68.13
5	96.77	-3.17	19.81	11.66	8.49	71.95
6	96.77	-3.17	13.17	7.75	4.58	74.17
7	96.77	-3.17	6.52	3.84	0.67	76.38

 $F_{tj,Rd,N} \quad - \, Bolt \; row \; resistance \; for \; simple \; tension \;$

 $F_{tj,Ed,N}$ – Force due to axial force in a bolt row

 $F_{tj,Rd,M}$ – Bolt row resistance for simple bending

 $F_{tj,Ed,M}$ – Force due to moment in a bolt row

 $F_{tj,Ed}$ — Maximum tensile force in a bolt row

F_{vj,Rd} - Reduced bolt row resistance

 $F_{tj,Ed,N} = N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd}$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M}$

 $F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; (1 \; - \; F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}))$

 $V_{j,Rd} = n_h \sum_{1} {}^n F_{v_j,Rd}$ [Table 3.4]

 $V_{j,Rd} = 474.12$ [kN] Connection resistance for shear [Table 3.4]

 $V_{b1,Ed} / V_{j,Rd} \le 1,0$ 0.09 < 1.00 verified (0.09)

WELD RESISTANCE

$A_{w} = 93.63$	[cm ²]	Area of all welds		[4.5.3.2(2)]
$A_{wy} = 39.58$	[cm ²]	Area of horizontal welds		[4.5.3.2(2)]
$A_{wz} = 54.05$	[cm ²]	Area of vertical welds		[4.5.3.2(2)]
$I_{wy} = 39366.74$	[cm ⁴]	Moment of inertia of the weld arrangement	ent with respect to the hor. axi	s [4.5.3.2(5)]
$\sigma_{\perp max} = \tau_{\perp max} = -34.76$	[MPa]	Normal stress in a weld		[4.5.3.2(6)]
$\sigma_{\perp} = \tau_{\perp} = -33.03$	[MPa]	Stress in a vertical weld		[4.5.3.2(5)]
$\tau_{II} = 7.83$	[MPa]	Tangent stress		[4.5.3.2(5)]
$\beta_{\rm W} = 0.80$		Correlation coefficient		[4.5.3.2(7)]
$\sqrt{[\sigma_{\perp max}^2 + 3^*(\tau_{\perp max}^2)]} \le f_u$	/(βw*γм2)	69.52 < 365.00	verified	(0.19)
$\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{\parallel}^2)]} \le f_u/($	Вw*γм2)	67.44 < 365.00	verified	(0.18)
$\sigma_{\perp} \le 0.9 * f_u / \gamma_{M2}$		34.76 < 262.80	verified	(0.13)

CONNECTION STIFFNESS

t _{wash} =	3	[mm]	Washer thickness	[6.2.6.3.(2)]
$h_{head} =$	9	[mm]	Bolt head height	[6.2.6.3.(2)]
$h_{nut} =$	12	[mm]	Bolt nut height	[6.2.6.3.(2)]
$L_b =$	35	[mm]	Bolt length	[6.2.6.3.(2)]
$k_{10} =$	4	[mm]	Stiffness coefficient of bolts	[6.3.2.(1)]

STIFFNESSES OF BOLT ROWS

Nr	hj	k ₃	k 4	k ₅	k _{eff,j}	k _{eff,j} h _j	k _{eff,j} h _j ²
					Sum	20.04	807.82
1	540	3	10	4	1	5.64	305.00
2	490	1	5	2	1	2.86	140.26
3	440	1	5	2	1	2.57	113.12
4	390	3	9	4	1	3.85	150.33
5	247	3	11	4	1	2.74	67.72
6	164	2	8	3	1	1.45	23.78
7	81	3	11	5	1	0.93	7.61

7	81	3	11	5	1	0.93	7.61	
$k_{\text{eff,j}} = 1$	$/(\sum_3^5 (1 / k_{i,j})$)					[6.3.3.1.(2)]	
$z_{eq} = \sum_{j}$	i k _{eff,j} hj² / ∑j k∈	_{eff,j} h _j						
$z_{eq} =$	403	[mm]	Equivalent force	arm			[6.3.3.1.(3)]	
$k_{eq} = \sum_{j}$	$_{\rm i}$ $k_{\rm eff,j}$ $h_{\rm j}$ / $z_{\rm eq}$							
$k_{eq} =$	5 [m	ım] Equ	ivalent stiffness c	oefficient of a	bolt arrangemer	nt	[6.3.3.1.(1)]	
$A_{vc} = 2$	24.07 [cm ²]	Shear ar	ea				EN1993-1-1:[6.2.6.(3)]	
$\beta =$	1.00	Transfor	mation parameter	•			[5.3.(7)]	
z =	403 [mm]	Lever ar	m				[6.2.5]	
$k_1 =$	2 [mm]	Stiffness	coefficient of the	column web p	anel subjected	to shear	[6.3.2.(1)]	
$k_2 =$	∞	Stiffness	coefficient of the	compressed of	column web		[6.3.2.(1)]	
$S_{j,ini} = E$	$= z_{eq}^2 / \sum_{i} (1 / $	$k_1 + 1 / k_2$	+ 1 / k _{eq})				[6.3.1.(4)]	
$S_{j,ini} =$	53160.24	[kN*m]	Initial rotational	stiffness			[6.3.1.(4)]	
μ =	1.00		Stiffness coefficie	ent of a connec	ction		[6.3.1.(6)]	
$S_j = S_{j,ir}$	ni / μ						[6.3.1.(4)]	
$S_j =$	53160.24	[kN*m]	Final rotational s	stiffness			[6.3.1.(4)]	
Conne	Connection classification due to stiffness.							
$S_{j,rig} =$	22942.75	[kN*m]	Stiffness of a rig	id connection			[5.2.2.5]	

[5.2.2.5]

WEAKEST COMPONENT:

FRONT PLATE - TENSION

REMARKS

 $S_{j,ini} \geq S_{j,rig} \; RIGID$

Distance of bolts from an edge is too large. 97 [mm] > 76 [mm]Bolts vertical spacing is too large. 143 [mm] > 126 [mm]

 $S_{j,pin} = 1433.92$ [kN*m] Stiffness of a pinned connection

Connection conforms to the code	Ratio 0.59