Intro to ML

December 6th, 2021

CHAPTER 12: Deep Learning

Deep Neural Networks

- Many hidden layers
 - Problematic in training: chain rule multiplication of derivatives (vanish of gradients or explosion)
- End-to-end training
- Learn increasingly abstract representations with minimal human contribution
 - Layers of abstraction in intuitive
 - Vision, speech, language, and so on

Representation learning is really the KEY behind Deep learning

Activation function: Rectified Linear Unit (ReLU)

$$ReLU(a) = \begin{cases} a & \text{if } a > 0 \\ 0 & \text{otherwise} \end{cases}$$

- Does not saturate for large a
- Leads to a sparse representation
 - Some of the nodes will results in 0
- No learning for a<0, be careful with initialization
 - Initialization should make sure all weights are positive
- Leaky ReLU: {a if a>0, α a otherwise, α is set 0.01)

Generalizing Backpropagation

Backward

Forward

$$\Delta w_{khj} = \eta \sum_t e_{kh}^t f'(z_{kh}^t) z_{k-1,j}^t$$

- If k is the output layer, there is no layer k+1
 - e_{kh}^t is the derivative of the error function with respect to the output \mathbf{z}_{kh} .
- If not, follow the previous backward rules
- f' is the derivative of the activation function

 Then follow simple stochastic gradient descent for every weight to update the model parameter

Improving Training Convergence

 Gradient decent. Simply, local, changes uses only the values of the presynaptic and postsynaptic and the error (suitably backpropagated) – can converge slowly

 Momentum. At each update, also add a fraction of the average of past gradients (t denotes iteration):

$$s_i^t = \alpha s_i^{t-1} + (1-\alpha) \frac{\partial E^t}{\partial w_i}$$
 Running average of past gradient $\Delta w_i^t = -\eta s_i^t$

Adaptive Learning Factor

 RMSprop. Make update inversely proportional to the sum of past gradients, so, update more when gradient is small and less where it is large.

$$\Delta w_i^t = -\frac{\eta}{\sqrt{r_i^t}} \frac{\partial E^t}{\partial w_i}$$

Magnitude of the gradient

where r_i is the accumulated past gradient,

$$r_i^t = \rho r_i^{t-1} + (1 - \rho) \left| \frac{\partial E^t}{\partial w_i} \right|^2$$

p is generally set at 0.999

ADAM: Adaptive Learning Factor w/ Momentum

First moment – just the gradient (momentum)

$$s_i^t = \alpha s_i^{t-1} + (1 - \alpha) \frac{\partial E^t}{\partial w_i}$$

$$\Delta w_i^t = -\eta \frac{S_i^t}{\sqrt{\tilde{r}_i^t}}$$

$$r_i^t = \rho r_i^{t-1} + (1 - \rho) \left| \frac{\partial E^t}{\partial w_i} \right|^2$$

Second moment –square of gradient (adaptive learning factor)

Initially both s and r terms are 0, so we bias-correct them (both α and ρ are <1, so they get smaller as t gets large):

$$\tilde{s}_i^t = \frac{s_i^t}{1 - \alpha^t} \text{ and } \tilde{r}_i^t = \frac{r_i^t}{1 - \rho^t}$$

Correction for different iterations

Batch Normalization

• Z-normalize hidden unit values (m and s are mean and stdev over the current minibatch):

$$\tilde{a}_j = \frac{a_j - m_j}{s_j}$$

• Can then rescale (γ and β are also learned):

$$\hat{a}_j = \gamma_j \tilde{a}_j + \beta_j$$

Regularization: Weight Decay

- If a weight is 0, we have a simpler model.
- Initially all weights are close to 0 and they are moved away as learning proceeds.
- Early stopping: Stop before too many weights are updated.
- Weight decay: Add a term that penalizes non-zero weights:

$$E' = E + \frac{\lambda}{2} \sum_{i} w_i^2 \qquad \Delta w_i = -\eta \frac{\partial E}{\partial w_i} - \lambda' w_i$$

Regularization: Dropout

- What if we drop them certain nodes completely?
- Reduce the number of parameters in a 'random' fashion to ensure less overfitting and more robust results

Input or hidden unit dropped out (output set to 0) with probability *p* in each minibatch

Regularization: Convolutions

• Each unit is connected to a small set of units in the preceding layer. In images, this corresponds to a local patch (LeCun et al 1989).

Regularization: Weight Sharing

The same weights are used in different locations

1d example with 1x4 convolutions and weight sharing

1,	1,0	1,	0	0
0,,0	1,	1,0	1	0
0,,1	0,	1,	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

[0 0 0] 0 1 0 Identity 0 0 0 0 0 0 1 -4 1 **Edge detection** 1 0 5 -1 Sharpen $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ Box blur (normalized) Gaussian blur (approximation)

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

Multiple Convolutional Layers

LeNet-5 (LeCun et al 1998)

Has approximately 60K weights and trained on 60K examples (MNIST data set)