Fairness in Participatory Budgeting via Equality of Resources

Simon Rey

Joint work with Jan Maly, Ulle Endriss and Martin Lackner

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

AAMAS 2023

1. <u>Introduction</u>

Participatory Budgeting

© Marianne de Heer Kloots

\$: 7000\$

Participatory Budgeting

© Marianne de Heer Kloots

\$: 7000\$

Standard Model of Participatory Budgeting

Fairness is about distributing some *measure* fairly among the agents.

→ What is a good measure in the case of participatory budgeting?

Fairness is about distributing some *measure* fairly among the agents.

 \longrightarrow What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

Fairness is about distributing some *measure* fairly among the agents.

₩hat is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

CARDINAL UTILITY FUNCTIONS

- The satisfaction of an agent is obvious
- X Hard to elicit
- Does not allow for interpersonal comparisons

Fairness is about distributing some *measure* fairly among the agents.

→ What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

CARDINAL UTILITY FUNCTIONS

- The satisfaction of an agent is obvious
- X Hard to elicit
- Does not allow for interpersonal comparisons

APPROVAL-BASED SATISFACTION

- ✓ Easy to elecit
- ✓ Has a clear meaning
- $\begin{array}{c} \textbf{X} & \text{Unclear what proxy} \\ \text{for satisfaction to use} \\ |A \cap \pi| & c(A \cap \pi) \end{array}$

Fairness is about distributing some *measure* fairly among the agents.

→ What is a good measure in the case of participatory budgeting? *Satisfaction* is usually used.

CARDINAL UTILITY FUNCTIONS

- ✓ The satisfaction of an agent is obvious
- X Hard to elicit
- Does not allow for interpersonal comparisons

APPROVAL-BASED SATISFACTION

- ✓ Easy to elecit
- ✓ Has a clear meaning
- $\begin{array}{c} \textbf{X} & \text{Unclear what proxy} \\ \text{for satisfaction to use} \\ |A \cap \pi| & c(A \cap \pi) \end{array}$

We aim at *equity of resources* among the agents.

2. The Share

Definition

The share of an agent: the ressources spent on that specific agent $share(\pi,A_i) = \sum_{p \in \pi \cap A_i} \frac{c(p)}{|\{A' \in \mathbf{A} \mid p \in A'\}|}$

Definition

The share of an agent: the ressources spent on that specific agent , $share(\pi, A_i) = \sum_{p \in \pi \cap A_i} \frac{c(p)}{|\{A' \in \mathbf{A} \mid p \in A'\}|}$ The budget allocation The agent's ballot

Definition

$$share(\pi, A_i) \ge \min \left\{ share(A_i, i), \frac{b}{n} \right\}$$

$$share(\pi, A_i) \ge \min \left\{ share(A_i, i), \frac{b}{n} \right\}$$

$$share(\pi, A_i) \ge \min \left\{ share(A_i, i), \frac{b}{n} \right\}$$

$$share(\pi, A_i) \ge \min \left\{ share(A_i, i), \frac{b}{n} \right\}$$

$$share(\pi, A_i) \ge \min \left\{ share(A_i, i), \frac{b}{n} \right\}$$

A First Problem

$ \stackrel{\bigcirc}{\mathbf{S}} = 10$	Ò	[2]	Ò		5	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3+1/3
2	1		1			4 3 + 1/3
2	1			1		2 3+1/3

\bigcirc = 10	ā	2		Ē	[5]	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3+1/3
2	1		1			2 3 + 1/3
2	1			1		3 + 1/3

$ \stackrel{\bigcirc}{\widehat{\mathbf{s}}} = 10$		[2]	â		5	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3+1/3
2	1		1			2 3+1/3
2	1			1		2 3+1/3

$\stackrel{\circ}{\mathbb{S}} = 10$			Ó		ā	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	7
2	1		1			2 3 + 1/3
8	1			1		3 + 1/3

A First Problem

$ \stackrel{\bigcirc}{\mathbf{S}} = 10$	â	2	3	â	[5]	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3+1/3
2	1		1			2 3 + 1/3
8	1			1		4 3 + 1/3

$\stackrel{\mathcal{G}}{(5)} = 10$	1	2	Ē	Ė	5	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3 + 1/3
2	1		1			2 3 + 1/3
2	1			1		2 3 + 1/3

s = 10	1		â		â	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	3+1/3
2	1		1			2 3+1/3
2	1			1		0 3+1/3

$\stackrel{\bigcirc}{5} = 10$		2		Ė	â	
Cost	6	2	2	4	5	(Fair) Share
2	1	1		1	1	7
2	1		1			3 + 1/3
2	1			1		2 3+1/3

It is not possible to always provide fair share to everyone (and hard to know if we can).

Experimental Analysis

Instances: 353 instances from Pabulib with up to 65 projects.

Experimental Analysis

Instances: 353 instances from Pabulib with up to 65 projects.

Measure of Interest:

The average normalised L_1 distance to fair share:

$$1 - \frac{1}{n} \sum_{i \in \mathcal{N}} \frac{|share(\pi, i) - fairshare(i)|}{fairshare_i}$$

Experimental Analysis

Instances: 353 instances from Pabulib with up to 65 projects.

Measure of Interest:

The average normalised L_1 distance to fair share:

$$1 - \frac{1}{n} \sum_{i \in \mathcal{N}} \frac{|share(\pi, i) - fairshare(i)|}{fairshare_i}$$

Fair share can be provided in only one instance out of the 353 considered (with 3 projects and 198 voters).

Optimal L_1 Distance to Fair Share

Optimal L_1 Distance to Fair Share

→ We are far from achieving fair share.

Optimal L_1 Distance to Fair Share

→ It gets easier as the number of projects increase.

Optimal L_1 Distance to Fair Share – Preprocessing

Fair Share is hard to satisfy, *structurally* hard.

5. Approximate Fair Share

Two Relaxations — Fair Share up to One Project

Every agent is provided their fair share up to one project, i.e., for each agent there exists a project $p \in \mathcal{P}$ such that:

$$share(\pi \cup \{p\}, A_i) \ge fairshare_i$$

Two Relaxations — Fair Share up to One Project

Every agent is provided their fair share up to one project, i.e., for each agent there exists a project $p \in \mathcal{P}$ such that:

$$share(\pi \cup \{p\}, A_i) \ge fairshare_i$$

→ This is however still unsatisfiable (and again, hard to check whether it can be satisfied)...

A budget allocation π provides *local fair share* if there is no project $p \in \mathcal{P} \setminus \pi$ such that for every agent i approving of p we have:

$$share(\pi \cup \{p\}, A_i) < fairshare_i$$

A budget allocation π provides *local fair share* if there is no project $p \in \mathcal{P} \setminus \pi$ such that for every agent i approving of p we have:

$$share(\pi \cup \{p\}, A_i) < fairshare_i$$

- \longrightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
 - Either p can be selected without exceeding the budget limit; let's select it then!
 - Or, some i^* received more than their fair share; let's exchange a project from A_{i^*} with p!

A budget allocation π provides *local fair share* if there is no project $p \in \mathcal{P} \setminus \pi$ such that for every agent i approving of p we have:

$$share(\pi \cup \{p\}, A_i) < fairshare_i$$

- \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
 - Either p can be selected without exceeding the budget limit; let's select it then!
 - Or, some i^* received more than their fair share; let's exchange a project from A_{i^*} with p!

Local fair share is always satisfiable (and in polynomial time, through MES)!

A budget allocation π provides *local fair share* if there is no project $p \in \mathcal{P} \setminus \pi$ such that for every agent i approving of p we have:

$$share(\pi \cup \{p\}, A_i) < fairshare_i$$

- \rightarrow An explanation? If such a p exists, all supporters of p receive less than their fair share and:
 - \bullet Either p can be selected without exceeding the budget limit; let's select it then!
 - Or, some i^* received more than their fair share; let's exchange a project from A_{i^*} with p!

Local fair share is always satisfiable (and in polynomial time, through MES)!

→ But how does MES performs in terms of fair share?

Distance to Fair Share

Distance to Fair Share

 \longrightarrow MES rules approach fair share nicely, and MES_{cost} is particularly attractive.

A & & &.

ref ref Esterii Ester

Wrap-Up

We have:

- Argued for fairness in terms of equity of resources;
- ► Presented the share, one way to do it;
- → Discussed fair share in theoretical and experimental terms.

I want:

- Non-sequential rules satisfying strong requirements (when they exist);
- Rules providing satisfaction-based and effort-based fairness together.

THANKS!

