Soluzioni prova scritta parziale n. 1

Analisi Matematica B, 2021/22

18.12.2021

1. Determinare il carattere della serie

$$\sum_{k=0}^{+\infty} \frac{(k!)^m}{(mk)!} x^k$$

al variare di $m \in \mathbb{N}$ e di $x \in \mathbb{R}$.

Svolgimento. Posto $a_k = \frac{(k!)^m}{(mk)!} x^k$ si ha

$$\frac{|a_{k+1}|}{|a_k|} = \frac{\frac{((k+1)!)^m}{(mk+m)!} \cdot |x|^{k+1}}{\frac{(k!)^m}{(mk)!} \cdot |x|^k}
= \frac{(k+1)^m}{(mk+m) \cdot (mk+m-1) \cdots (mk+1)} \cdot |x|
\sim \frac{k^m}{(mk)^m} \cdot |x| \to \frac{|x|}{m^m} \quad \text{per } k \to +\infty.$$

Dunque se $|x| < m^m$ il limite del rapporto è inferiore a 1 e dunque la serie data è assolutamente convergente. Se $|x| > m^m$ il limite del rapporto è superiore a 1 e dunque $|a_k| \to +\infty$ e la serie non può essere convergente $(a_k \to 0$ è condizione necessaria per la convergenza).

Se $|x| = m^m$ si ha

$$\frac{|a_{k+1}|}{|a_k|} = \frac{(k+1)^m}{(mk+m)\cdot(mk+m-1)\cdots(mk+1)} \cdot m^m$$

$$= \frac{k+1}{k+1} \cdot \frac{k+1}{k+\frac{m-1}{m}} \cdots \frac{k+1}{k+\frac{1}{m}}$$

$$\geq 1.$$

Dunque $|a_{k+1}| \ge |a_k|$ cioè $|a_k|$ è crescente. Essendo $a_k \ne 0$ si ha $\lim |a_k| > 0$ e quindi la condizione necessaria $a_k \to 0$ non è verificata e la serie non è convergente.

2. Al variare di $\alpha \in \mathbb{R}$ calcolare, se esiste, il limite della successione definita ricorsivamente:

$$\begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{a_n^2 + 2a_n}{3}. \end{cases} \text{ oppure } \begin{cases} a_0 = \alpha \\ a_{n+1} = \frac{2a_n - a_n^2}{3}. \end{cases}$$

Per $\alpha = \frac{1}{2}$ e $\lambda > \frac{2}{3}$ calcolare in oltre il limite

$$\lim_{k \to +\infty} \frac{a_k}{\lambda^k}.$$

Svolgimento. Consideriamo la successione $a_{n+1}=f(a_n)$ con $f(x)=\frac{x^2+2x}{3}$. Il caso $f(x)=\frac{2x-x^2}{3}$ è analogo ma tutti i segni vengono opposti.

Il grafico della funzione f(x) è una parabola rivolta verso l'alto con vertice nel punto (x,y)=(-1,f(-1))=(-1,-1/3). Dunque la funzione f è strettamente decrescente sull'intervallo $(-\infty,-1]$ e strettamente crescente sull'intervallo $[-1,+\infty)$.

I punti fissi di f, ovvero le soluzioni di f(x) = x sono x = 0 e x = 1.

Nell'intervallo [0,1] la funzione f è crescente dunque l'intervallo è invariante perché se $0 \le x \le 1$ si ha $f(0) \le f(x) \le f(1)$ cioè $0 \le f(x) \le 1$. Dunque se $\alpha \in [0,1]$ si ha $a_n \in [0,1]$ per ogni n. Su tale intervallo inoltre si ha $f(x) \le x$ e dunque $a_{n+1} = f(a_n) \le a_n$ e la successione è quindi decrescente. La successione ha quindi limite: $a_n \to \ell$ e si deve avere $\ell \in [0,1]$ visto che $a_n \in [0,1]$. Essendo inoltre a_n decrescente si ha $\ell \le a_0 = \alpha$. Passando al limite nell'uguaglianza $a_{n+1} = f(a_n)$ si scopre infine che ℓ è un punto fisso di f. Se $\alpha < 1$ sarà quindi $\ell = 0$, se invece $\alpha = 1$ si avrà $a_n = 1$ e quindi $\ell = 1$.

Anche l'intervallo $(1, +\infty)$ è invariante in quanto su tale intervallo la funzione f è strettamente crescente e quindi se x > 1 si ha f(x) > f(1) = 1. Essendo inoltre f(x) > x si trova che se $\alpha > 1$ la successione a_n è crescente. Dunque se $\alpha > 1$ si ha $a_n \to \ell$ con $\ell \ge \alpha > 1$. Non può dunque convergere ad un punto fisso e quindi per esclusione deve essere divergente: $\ell = +\infty$.

Anche l'intervallo [-2,0] è invariante perché su tale intervallo si ha $-\frac{1}{3} \le f(x) \le 0$ e dunque $f(x) \in [-1/3,0] \subset [-2,0]$ se $x \in [-2,0]$. Dunque se $\alpha \in [-2,0]$ si ha $a_n \in [-2,0]$ per ogni n. Su tale intervallo si ha inoltre $f(x) \ge x$ dunque la successione a_n è crescente e si ha $a_n \to \ell$ con $\ell \in [-2,0]$. Necessariamente ℓ è un punto fisso di f e dunque deve essere $\ell = 0$.

Se $\alpha \in (-3, 2]$ si ha $a_0 = \alpha$ e $a_1 = f(\alpha) \in [0, 1)$. Ci si riconduce quindi ad un caso precedente e la successione a_n risulta essere convergente a 0.

Se $\alpha = -3$ si ha $a_0 = -3$, $a_1 = f(-3) = 1$ e dunque $a_n = 1$ per $n \ge 1$. La succesione dunque ha limite $\ell = 1$.

Se $\alpha < -3$ si ha $a_0 = \alpha < -3$ e $a_1 = f(\alpha) > 1$. Ci si riconduce quindi al caso $\alpha > 1$ e dunque anche in questo caso $a_n \to +\infty$.

Veniamo ora al limite di $\frac{a_n}{\lambda^n}$. Osserviamo che

$$a_{n+1} = \frac{a_n^2 + 2a_n}{3} = a_n \cdot \frac{2 + a_n}{3}.$$

Quando $\alpha=\frac{1}{2}$ sappiamo che $a_n\to 0$ e $a_n\geq 0$. Dunque per ogni $\varepsilon>0$ esiste N tale che per ogni $n\geq N$ si ha $0\leq a_n<\varepsilon$. Dunque per n>N si ha $\frac{2+a_n}{3}<\frac{2}{3}+\frac{\varepsilon}{2}$. Ed essendo $\lambda>\frac{2}{3}$ possiamo prendere ε sufficientemente piccolo in modo che sia $\frac{2+a_n}{3}<\mu$ per un qualche $\mu<\lambda$. Allora si ha, per ogni $n\geq N$:

$$0 \le a_{n+1} = a_n \cdot \frac{2 + a_n}{3} \le a_n \cdot \mu.$$

Induttivamente si trova:

$$a_{N+1} \le a_N \cdot \mu,$$

$$a_{N+2} \le a_{N+1} \cdot \mu \le a_N \cdot \mu^2$$

$$\dots$$

$$a_{N+k} \le a_N \cdot \mu^k$$

e dunque

$$\frac{a_{N+k}}{\lambda^{N+k}} \le \frac{a_N \cdot \mu^k}{\lambda^{N+k}} = \frac{a_N}{\lambda^N} \cdot \left(\frac{\mu}{\lambda}\right)^k \to 0 \quad \text{per } k \to +\infty.$$

Significa che il limite richiesto è pari a 0.

3. Al variare di $\alpha > 0$ calcolare

$$\lim_{n \to +\infty} \sum_{k=1}^{n^2} \frac{1}{(n^3+k)^{\alpha}} \qquad \text{oppure} \qquad \lim_{n \to +\infty} \sum_{k=1}^n \frac{1}{(n^3+k^2)^{\alpha}}.$$

Svolgimento. Per la prima variante basta osservare che per $k=1,\ldots,n^2$ si ha

$$\frac{1}{(n^3+n^2)^{\alpha}} \leq \frac{1}{(n^3+k)^{\alpha}} \leq \frac{1}{(n^3+1)^{\alpha}}$$

da cui

$$\frac{n^2}{(n^3+n^2)^{\alpha}} \le \sum_{k=1}^{n^2} \frac{1}{(n^3+k)^{\alpha}} \le \frac{n^2}{(n^3+1)^{\alpha}}.$$

Ma per $n \to +\infty$ si ha

$$\frac{n^2}{(n^3+n^2)^{\alpha}} \sim \frac{n^2}{(n^3+1)^{\alpha}} \sim n^{2-3\alpha}$$

che tende a 0 se $\alpha>\frac23$, tende a 1 se $\alpha=\frac23$ e tende a $+\infty$ se $\alpha<\frac23$. Per confronto dall'alto e dal basso, la sommatoria tende agli stessi valori.

Per la seconda variante, per $k=1,\dots,n$ si ha

$$\frac{1}{(n^3+n^2)^{\alpha}} \leq \frac{1}{(n^3+k^2)^{\alpha}} \leq \frac{1}{(n^3+1)^{\alpha}}$$

da cui

$$\frac{n}{(n^3 + n^2)^{\alpha}} \le \sum_{k=1}^{n} \frac{1}{(n^3 + k^2)^{\alpha}} \le \frac{n}{(n^3 + 1)^{\alpha}}.$$

Stavolta la sommatoria risulta asintoticamente equivalente a $n^{1-3\alpha}$.