

دانشکدهی علوم ریاضی

احتمال و کاربرد ۳۱ فروردین ۱۳۹۸

تمرین: سری ۳

مهلت تحویل ۲۰ اردیبهشت

مدرّس: دكتر شهرام خزائي

- پاسخهای خود را در قالب StudentNumber.pdf روی سامانهی درس افزار آپلود کنید.
- تنها فرمت PDF قابل قبول است. از ارسال فایلهای تصویری و فشرده شده جدا خودداری کنید.
 - تمرینهای مشابه نمره دهی نخواهند شد.
 - ارسال پاسخها از طریق ایمیل قابل قبول نیست.
- حداكثر حجم فايل پاسخها يك مگابايت است. بنابراين توصيه مي شود پاسخهايتان را تايپ كنيد.
 - نوشتن تمرینات با استفاده از ۱۰، ۱۲ نمرهی اضافه دارد.
- مهلت تحویل پاسخها همواره تا ساعت ۲۳:۵۵ تاریخ ذکر شده در صورت تمرینهاست و تمدید نخواهد شد
 - ارسالهای پس از موعد، درصدی از نمرهی کامل را دریافت خواهند کرد.
- از مجموع ۱۱۰ نمره ی سؤالات کافی است به ۱۰۰ نمره پاسخ دهید و حل سؤالات بیشتر، نمره ی اضافه به همراه نخواهد داشت.
- سوالات خود پیرامون تمرینها را با arashashoori199821@gmail.com یا arashashoori199821@gmail.com
 شعرح نمایید.

پرسش ۱

توزیع توأم متغیرهای تصادفی X و Y داده شده است.

الف) توزیع حاشیه ای X و Y را محاسبه کنید. (Y نمره)

ب) استقلال یا عدم استقلال X و Y را بررسی کنید. (۲ نمره)

پ) براي تمام مقادير y که در ساپورت Y قرار دارند، E[X|Y=y] را به دست آوريد. حال با استفاده از اين مقادير به دست آمده، به طور شهودي استقلال يا عدم استقلال X و Y را نتيجه بگيريد. (Y نمره)

ت) مقدار $E[X^2 + Y^2 | XY < 10]$ را محاسبه کنید. (۲ نمره)

ث) تابع جرم احتمال متغیر تصادفی $Z=X^2+Y^2$ را محاسبه کنید. (۲ نمره)

	1	2	3	4	5	X
1	0.04	0.01	0	0.01	0.04	
2	0.12	0.03	0	0.03	0.12	
3	0.08	0.02	0	0.02	0.08	
4	0.16	0.04	0	0.04	0.16	
Y			•			,

پرسش ۲

الف) X یک متغیر تصادفی یکنواخت بین E[|X-a|] است $A<\infty$ المراج ال

ب) بخش قبل را به ازای اینکه X متغیر تصادفی نمایی با پارامتر λ باشد حل کنید. (Υ نمره)

پرسش ۳

الف) X نقطه X_1 و X_2 و X_3 به صورت تصادفی روی یک خط انتخاب می شوند. احتمال اینکه X_2 بین X_3 و الف) X_3 قرار گیرد چقدر است. X_3 نمره)

ب) دو نقطه ی x_1, x_2 در بازه ی(0,1) به صورت مستقل و با توزیع یکنواخت انتخاب می شوند.

را بدست آورید. (۳ نمره) $f_y(y).y = x_1 - x_2$

ج) بر روی یک دایره به شعاع R یک نقطه با توزیع $f_{\theta}(\theta)=a+bcos(\frac{\theta}{2})$ انتخاب میکنیم. به طوری که امید ریاضی a ، a شود. a را بدست آورید.(۴نمره)

د) فاصله نقطه را با نقطه $\theta=0$ روی دایره با r نمایش می دهیم. $f_r(r)$ را بدست آورید. (r نمره)

ه) E[r] را بدست آورید. (r نمره)

(ه) را بدست آورید. (r نمره) Var[r]

پرسش ۴

تابع چگالی توام X و Y به شکل زیر داده شده است.

$$f_{(x,y)} = \frac{1}{x^2 y^2} \qquad x \geqslant 1, y \geqslant 1$$

الف) تابع چگالی توام U=XY و U=X/Y را محاسبه کنید. (۶ نمره) ب) توزیع حاشیه ای U و V را محاسبه کنید. (۳ نمره)

يرسش ۵

 $X_{(1)}\leqslant X_{(2)}\leqslant n$ ابتدا n متغیر تصادفی مستقل و یکنواخت بین ۱ تا ۱ تولید میکنیم و سپس آن ها را به صورت $1\leqslant k\leqslant n+1$ داریم: 0

$$P(X_{(k)} - X_{(k-1)} > t) = (1-t)^n$$

که $X_{(0)} \equiv 0, X_{(n+1)} \equiv 1$ که که که ا

پرسش ۶

اگر X_1 و X_2 دو متغیر تصادفی مستقل نمایی با پارامتر های λ_1 و λ_2 باشند، توزیع $Z=X_1/X_2$ را بیابید و مقدار $P(X_1< X_2)$ را محاسبه کنید. (۴ نمره)

يرسش٧

الف) میخواهیم تابع توزیع احتمال وقوع یک پدیده را بررسی کنیم.

می دانیم اگر پدیده تا لحظه t اتفاق نیفتاده باشد، احتمال اینکه در این لحظه اتفاق افتد به t بستگی ندارد. فرم کلی توزیع احتمال وقوع این پدیده چگونه است. (۹ نمره)

ب) فرض کنید X_1, X_2, \dots, X_n متغیرهای تصادفی مستقل با توزیع نمایی باشند با پارامتر X_1, X_2, \dots, X_n تصادفی $Y = min(X_1, X_2, \dots, X_n)$ را بدست آورید. (۴ نمره)

ج) چراغ قوه ای داریم که به آن n باتری وصل کرده ایم. عمر هر باتری توزیع نمایی با پارامتر λ است. تا زمانی که همه باتری ها خراب نشده اند چراغ قوه کار میکند. امید ریاضی زمان کار کرد چراغ قوه را بدست آورید. (*)نمره)

پرسش ۸

فرض کنید درون یک ظرف N ذره داریم که میانگین انرژی هر کدام از ذرات E_0 است و داریم N ذره داریم که میانگین انرژی هر کدام از ذره سرعت ذرات است). توزیع سرعت انرژی ذره، m جرم ذره که برای همه ذرات ثابت در نظر گرفته شده و v اندازه سرعت ذرات است. میانگین سرعت ذرات در هر کدام از مولفه های v و v و v و v و v مستقل و گوسی (با واریانس یکسان) است. میانگین سرعت در هر کدام از راستاها صفر است. اندازه سرعت هر ذره را با v نمایش می دهیم و داریم: $v^2 = v_x^2 + v_y^2 + v_z^2$ تابع توزیع اندازه سرعت ذرات را به دست آورید. v نمره)

پرسش ۹

فرض کنید ذره ای از مبدا مختصات شروع به حرکت می کند. طول هر گام l_0 است و جهت آن در فضای m بعدی تصادفی است. بعد از N قدم:

الف) میانگین بردار فاصله را بدست آورید؟ (۱ نمره)

ب)مقدار $E[r^2]$ را به دست آورید (که r فاصله تا مبدا مختصات است). (v) نمره)

یرسش ۱۰

میخواهیم حرکت ولگرد تصادفی را در فضای پیوسته بررسی کنیم.

احتمال اینکه ذره در زمان t در بازه ی (X,X+dX) باشد را با P(t,X)dX نمایش می دهیم.

فرض کنید طول قدم های ذره ΔX (که به سمت صفر میل میکند) باشد و این حرکت Δt طول بکشد. به طوری

که $\frac{\Delta X^2}{\Delta t}$ ثابت است. ذره به احتمال $\frac{1}{2}$ به راست و به احتمال $\frac{1}{2}$ به چپ میرود.

الف) رابطه بازگشتی برای P(t,X) بنویسید. (۲ نمره)

ب)با بسط تیلور این تابع نشان دهید که (مقدار D یک ثابت است):(۴ نمره)

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial X^2}$$

د) یک رابطه گوسی برای P(t,X) حدس بزنید و نشان دهید این توزیع در رابطه قسمت ب صدق میکند. (tنمره)

پرسش ۱۱

این پرسش نمرهای ندارد و به عنوان تمرین غیرتحویبی درد. میخواهیم نشان دهیم توزیع دو جمله ای به ازای N های بزرگ شبیه توزیع گاوسی میشود. $P(n_1) = \frac{N!}{n_1!(N-n_1)!} p^{n_1} q^{N-n_1}$

$$P(n_1) = \frac{N!}{n_1!(N-n_1)!} p^{n_1} q^{N-n_1}$$

این توزیع را به صورت زیر پیوسته میکنیم.

$$P(n_1, n_1 + dn_1) = \frac{N!}{n_1!(N - n_1)!} p^{n_1} q^{N - n_1} dn$$

$$W(n_1) := \frac{N1}{n_1!(N - n_1)!} p^{n_1} q^{N - n_1}$$

فرض کنید به ازای n_1^* مقدار $W(n_1)$ بیشینه میشود.

 $n_1=n_1^*+\eta$ قرار دهید:

الف) lnW(n) را بنویسید و $\frac{dlnW(n)}{dn}$ را بدست آورید و با توجه به آن n_1^* را بدست آورید. راهنمایی:

$$\frac{dlnn!}{dn} = ln(n+1) \simeq ln(n)$$

بنویسید. lnW(n) بنویسید. $lnW(n_1)$ بنویسید $lnW(n_1)$ بنویسید.

ج) ازجملاتی که در بسط تیلور ضریب $\frac{1}{N}$ به توانی بزرگتر یا مساوی ۲ دارند صرف نظر کنید و W(n) را بدست