- 1. Pro následující dvojice množin rozhodněte, zda je mezi nimi nějaká inkluze, nebo dokonce rovnost. Předpokládejme, že A, B_1, \ldots, B_n, X a Y jsou libovolné množiny.
 - a) $A \cap (B_1 \cup \ldots \cup B_n)$ vs. $(A \cap B_1) \cup \ldots \cup (A \cap B_n)$,
 - b) $A \setminus (B_1 \cup \ldots \cup B_n)$ vs. $(A \setminus B_1) \cup \ldots \cup (A \setminus B_n)$,
 - c) $2^{X \cup Y}$ vs. $2^X \cup 2^Y$.
- 2. Mějme množiny $A = \{1, ..., k\}$ a $B = \{1, ..., \ell\}$.
 - a) Kolik existuje funkcí z A do B?
 - b) Kolik existuje prostých funkcí z A do B?
- 3. Označme $T = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ množinu všech uspořádaných trojic reálných čísel. Rozhodněte, zda následující relace jsou ekvivalence na T.
 - a) Trojice (x_1, x_2, x_3) je v relaci E_1 s trojicí (y_1, y_2, y_3) , právě když $x_1 = y_1$.
 - b) Trojice (x_1, x_2, x_3) je v relaci E_2 s trojicí (y_1, y_2, y_3) , právě když $x_1 = y_1$ nebo $x_2 = y_2$ nebo $x_3 = y_3$.
 - c) Trojice (x_1, x_2, x_3) je v relaci E_3 s trojicí (y_1, y_2, y_3) , právě když existují indexy $i, j \in \{1, 2, 3\}$ takové, že $x_i = y_j$.
- 4. Popište třídy ekvivalencí následujících ekvivalencí na nějaké množině X.
 - a) $X = \mathbb{Z}$. $xRy \Leftrightarrow |x| = |y|$.
 - b) $X=2^{\{1,...,n\}}$ pro nějaké $n\in\mathbb{N}.$ $xRy\Leftrightarrow \text{mezi }x$ a y existuje bijekce.
 - c) $X = \mathbb{Z}$. $xRy \Leftrightarrow 7 \mid (x y)$.
- 5. Najděte na nějaké nekonečné množině částečné uspořádání (ne nutně lineární), které má právě jeden maximální prvek, ale tento prvek není největší.

Definice. Částečné uspořádání na množině A se nazývá $lineární^2$ pokud jsou v něm každé dva prvky A porovnatelné.

- 6. Dokažte, že pro lineárně uspořádanou množinu (X, \preceq) a $x \in X$ platí, že x je největší, právě když je x maximální.
- 7^* . Pro množinu přirozených čísel $\mathbb N$ najděte dvě neizomorfní lineární uspořádání.

¹ Můžete mi věřit, že jsou to vskutku ekvivalence.

 $^{^2\,}$ Občas se dá také setkat s pojmem $\mathit{úpln\acute{e}}.$