7. Statistical Power

- Consider now that you plan an experiment with a treatment and control group
- But how many observations do you need in treatment and control group?
- In the past:
 - Experimental researchers often used simple rules of thumb
 - or decided based on the money available
- One problem:
 - If the treatment coefficient is not significant is this due to the absense of an effect or a lack of sample size?
 - Common (but problematic) practice of collecting more observations expost
- Analysis of statistical power helps to plan ahead in a more structured manner

7.1 The Key Idea

Statistical Power

- Aim: find a measure with which you can assess the ability of a statistical test to detect an effect, if the effect actually exists
- Note you can thus determine the power only for a specific effect size
- Question: "If the true effect is equal to a specific value of $\beta > 0$, what is the likelihood that the regression I run on my sample shows that the estimated $\hat{\beta}$ is statistically significant?"
- The statistical power is the probability that,
 - for a given effect size and given statistical significance level,
 - we will be able to reject the hypothesis that $\beta=0$, i.e. that the treatment has no effect
- 1 power is the probability of falsely not rejecting the null hypothesis (type II error)

If we plan to test H_0 : $\beta = 0$

- The significance level α is the probability of a type I error, i.e. the probability that we reject H_0 if it is in fact true
- For a given significance level, H_0 will be rejected if $\left|\frac{\widehat{\beta}}{SE(\widehat{\beta})}\right| > t_{\frac{\alpha}{2}}$ where $t_{\frac{\alpha}{2}}$ is the percentile in the t-distribution, i.e. $\Pr\left(|t| > t_{\frac{\alpha}{2}}\right) = \alpha$
- Suppose now that the true impact is $\beta > 0$

- The distribution on the left is the distribution of \hat{eta} under H_0
- For a given α , H_0 will be rejected if $\left|\frac{\widehat{\beta}}{SE(\widehat{\beta})}\right| > t_{\frac{\alpha}{2}}$
- The distribution on the right is the distribution of $\hat{\beta}$ if the true impact is equal to a specific $\beta>0$
- The power of the test for a true effect size of β is
 - the probability mass in the area under this curve
 - that falls to the right of the critical value $t_{\frac{\alpha}{2}}$
- It is the probability that we reject H_0 if it is false (& the true effect is β)

When do we have sufficient power to detect an effect of a specific size?

• To achieve a power of κ we thus must have that

$$\frac{\beta}{SE(\hat{\beta})} > t_{1-\kappa} + t_{\frac{\alpha}{2}}$$

• Only if this condition holds, an effect of size β will be significant at a level α with a probability larger than κ

Typical values used in the literature:

- For a power of 80%: $t_{0.2} \approx 0.84$
- with a significance level of 5% in a two-sided test: $t_{0.025} \approx 1.96$
- we must have that roughly

$$\frac{\beta}{SE(\hat{\beta})} > 2.8$$

7.2. Statistical Power in Experiments

- Suppose we are planning an experiment
- Treatment variable C_i indicates whether a subject is part of the treatment

$$Y_{C_i i} = \begin{cases} Y_{1i} & if \quad C_i = 1 \\ Y_{0i} & if \quad C_i = 0 \end{cases}$$

• Assume a population regression (i.e. a true treatment effect of β)

$$Y_i = \alpha + \beta C_i + \varepsilon_i$$

- When C is randomly assigned, the CIA holds and eta is the causal effect of the treatment
- By testing H_0 : $\beta=0$ we can test whether the treatment has a statistically significant effect on Y

- When conducting experiments we can (often) decide on the
 - total sample size n and the
 - proportion of treated objects p
- Recall that when C is a dummy then $\hat{\beta}$ is just the difference between the sample means between treatment and control group

$$\hat{\beta} = \underbrace{\frac{1}{pn} \sum_{C_i=1}^{I} Y_i}_{estimate \ of \ E[Y|C_i=1]} - \underbrace{\frac{1}{(1-p)n} \sum_{C_i=0}^{I} Y_i}_{estimate \ of \ E[Y|C_i=0]}$$

• Intuitively: we want to design our experiment such that we mimimize the variance in \hat{eta}

$$\hat{\beta} = \frac{1}{pn} \sum_{C_i = 1} Y_i - \frac{1}{(1 - p)n} \sum_{C_i = 0} Y_i$$

Hence

$$V[\hat{\beta}] = \frac{1}{(pn)^2} V\left[\sum_{C_i=1}^{n} Y_i\right] + \frac{1}{\left((1-p)n\right)^2} V\left[\sum_{C_i=0}^{n} Y_i\right]$$
$$= \frac{1}{pn} \sigma^2 + \frac{\sigma^2}{(1-p)n} = \left(\frac{1}{p} + \frac{1}{1-p}\right) \frac{\sigma^2}{n}$$
$$= \frac{1}{p(1-p)} \frac{\sigma^2}{n}$$

The variance of the estimate decreases (it becomes more precise) if

- n is large
- p=0.5 (as $\mathrm{argmax}_p p(1-p)=0.5$) i.e. treament & control group of the same size

The Minimum Detectable Effect Size

Now we can use that

$$V[\hat{\beta}] = \left(SE(\hat{\beta})\right)^2 = \frac{1}{p(1-p)} \frac{\sigma^2}{n}$$

• Hence the condition $\frac{\beta}{SE(\widehat{\beta})} > t_{1-\kappa} + t_{\frac{\alpha}{2}}$ is equivalent to

$$\beta > \left(t_{1-\kappa} + t_{\frac{\alpha}{2}}\right) \sqrt{\frac{1}{p(1-p)} \frac{\sigma^2}{n}}$$

- The value of β that satisfies this expression is the *minimum detectable effect* size for a given power (κ) , significance level (α) , sample size (n) and proportion of treated units p
- For p=0.5, $\alpha=0.05$ and $\kappa=0.8$ and using the approximate values $t_{0.2}\approx0.84$ and $t_{0.025}\approx1.96$

$$\beta > 5.6 \frac{\sigma}{\sqrt{n}}$$

With n observations & $\sigma=1$, the minimum detectable effect size $5.6\frac{\sigma}{\sqrt{n}}$ is

Determining Sample Size

- An important question in any experiment:
 How many observations do we need to detect a specific effect size?
- We can rearrange

$$n > \left(t_{1-\kappa} + t_{\frac{\alpha}{2}}\right)^2 \frac{1}{p(1-p)} \frac{\sigma^2}{\beta^2}$$

• For p=0.5, $\alpha=0.05$ and $\kappa=0.8$ and using the approximate values $t_{0.2}\approx0.84$ and $t_{0.025}\approx1.96$

$$n > 31.36 \left(\frac{\sigma}{\beta}\right)^2$$

• If n exceeds this value we will be able to detect a treatment difference of size β (i.e. obtain an effect that is statistically different from zero when the true effect size is β) with 80% probability

If we expect an effect size $\beta \& \sigma = 1$, the we need $n = 31.36 \frac{1}{\beta^2}$ observations

Python

Estimating Statistical Power in Python

- Statsmodels provides class TTestIndPower
- Import by from statsmodels.stats.power import TTestIndPower
- Perform power analysis for a t-test by:
 - analysis = TTestIndPower()
 - result = analysis.solve_power(effectSize, power=0.8, alpha=0.05)
 where you can substitute the respective effect size

- We can simulate different parameter constellations to plan a study
- Have to make assumptions/form beliefs prior to conducting experimental study
 - Variance of outcomes
 - Effect size: What magnitude do you expect?
 - In case of a fixed number of observations, given significance level and power: is the effect size sufficient?
 - Holding the number of observations, significance level and effect size constant, is power sufficiently high in order to conduct the experiment (cost-benefit analysis)?
- Information on these parameters can be derived from theory, prior empirical evidence, pilot studies