Primal/Dual Decomposition Methods

Daniel P. Palomar

The Hong Kong University of Science and Technology (HKUST)

ELEC5470/IEDA6100A - Convex Optimization
The Hong Kong University of Science and Technology (HKUST)
Fall 2020-21

Outline of Lecture

- Subgradients
- Subgradient methods
- Primal decomposition
- Dual decomposition
- Summary

(Acknowledgement to Stephen Boyd for material for this lecture.)

Gradient and First-Order Approximation

• Recall basic inequality for convex differentiable f:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$
 $\forall \mathbf{y}$

- ullet First-order approximation of f at ${\bf x}$ is a global underestimator, a supporting hyperplane.
- What if *f* is not differentiable?
- ullet The answer is given by the concept of subgradient.

Subgradient of a Function

ullet g is a subgradient of f (not necessarily convex) at ${f x}$ if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^{T}(\mathbf{y} - \mathbf{x})$$
 $\forall \mathbf{y}$

Subgradient of a Function

- g is a subgradient if and only if $f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} \mathbf{x})$ is a global affine underestimator of f.
- If f is convex and differentiable, then $\nabla f(\mathbf{x})$ is a subgradient of f at \mathbf{x} .
- Subgradients come up in several contexts:
 - algorithms for nondifferentiable convex optimization
 - convex analysis, e.g., optimality conditions and duality for nondifferentiable problems.

Example of Subgradient

• Consider $f = \max\{f_1, f_2\}$ with f_1 and f_2 convex and differentiable

- Subgradient at point x:
 - If $f_1(\mathbf{x}) > f_2(\mathbf{x})$, the subgradient is unique $\mathbf{g} = \nabla f_1(\mathbf{x})$.
 - If $f_2(\mathbf{x}) > f_1(\mathbf{x})$, the subgradient is unique $\mathbf{g} = \nabla f_2(\mathbf{x})$.
 - If $f_1(\mathbf{x}) = f_2(\mathbf{x})$, the subgradients form an interval $[\nabla f_1(\mathbf{x}), \nabla f_2(\mathbf{x})]$.

Subdifferential

- The set of all subgradients of f at \mathbf{x} is called the subdifferential of f at \mathbf{x} and is denoted $\partial f(\mathbf{x})$.
- $\partial f(\mathbf{x})$ is a closed convex set (can be empty).
- If f is convex:
 - $-\partial f(\mathbf{x})$ is nonempty for $\mathbf{x} \in \text{relint dom } f$
 - if f is differentiable at \mathbf{x} , then $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$ (i.e., a singleton).
 - If $\partial f(\mathbf{x}) = \{\mathbf{g}\}\$, then f is differentiable at \mathbf{x} and $\mathbf{g} = \nabla f(\mathbf{x})$.

Example of Subdifferential

• Consider f(x) = |x|:

Subgradient Calculus

- Weak subgradient calculus: formulas for finding one subgradient $\mathbf{g} \in \partial f(\mathbf{x})$.
- Strong subgradient calculus: formulas for finding the whole subdifferential $\partial f(\mathbf{x})$, i.e., all subgradients of f at \mathbf{x} .
- Many algorithms for nondifferentiable convex optimization require only one subgradient, so weak calculus suffices.
- Some algorithms and optimality conditions need the whole subdifferential.
- In practice, if you can compute $f(\mathbf{x})$, you can usually compute a subgradient $\mathbf{g} \in \partial f(\mathbf{x})$.

Some Basic Rules

(From now on, we will assume that f is convex and $\mathbf{x} \in \text{relint dom } f$.)

- $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$ if f is differentiable at \mathbf{x}
- Scaling: $\partial (\alpha f) = \alpha \partial f$ (assuming $\alpha > 0$)
- Addition: $\partial (f_1 + f_2) = \partial f_1 + \partial f_2$ (addition of sets)
- Affine transformation of variables: if $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$, then $\partial g(\mathbf{x}) = \mathbf{A}^T \partial f(\mathbf{A}\mathbf{x} + \mathbf{b})$
- Finite pointwise maximum: if $f = \max_i f_i$, then

$$\partial f(\mathbf{x}) = \mathsf{Co} \bigcup \{ \partial f_i \mid f_i(\mathbf{x}) = f(\mathbf{x}) \},$$

i.e., convex hull of union of subdifferentials of active functions at x.

Optimality Conditions: Unconstrained Case

• Recall that for f convex and differentiable, \mathbf{x}^* minimizes $f(\mathbf{x})$ if and only if:

$$\mathbf{0} = \nabla f\left(\mathbf{x}^{\star}\right).$$

ullet The generalization to nondifferentiable convex f is

$$\mathbf{0}\in\partial f\left(\mathbf{x}^{\star}\right).$$

Proof. By definition:

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \mathbf{0}^T (\mathbf{y} - \mathbf{x}^*) \qquad \forall \mathbf{y}.$$

Example: Piecewise Linear Maximization

- We want to minimize $f(\mathbf{x}) = \max_i \{\mathbf{a}_i^T \mathbf{x} + b_i\}$.
- \mathbf{x}^* minimizes $f(\mathbf{x}) \Longleftrightarrow \mathbf{0} \in \partial f(\mathbf{x}^*) = \mathsf{Co}\left\{\mathbf{a}_i \mid \mathbf{a}_i^T \mathbf{x} + b_i = f(\mathbf{x}^*)\right\} \Longleftrightarrow$ there is a λ with

$$\lambda \geq 0$$
, $\mathbf{1}^T \lambda = 1$, $\sum_i \lambda_i \mathbf{a}_i = 0$

where $\lambda_i = 0$ if $\mathbf{a}_i^T \mathbf{x}^* + b_i < f(\mathbf{x}^*)$.

• Interestingly, these are exactly the KKT conditions for the problem in epigraph form:

minimize
$$t$$
 subject to $\mathbf{a}_i^T\mathbf{x} + b_i \leq t, \qquad i = 1, \cdots, m$.

Optimality Conditions: Constrained Case

minimize
$$f_0(\mathbf{x})$$
 subject to $f_i(\mathbf{x}) \leq 0, \qquad i = 1, \cdots, m$

where each f_i is convex, defined on \mathbb{R}^n (hence subdifferentiable) and strict feasibility holds (Slater's condition).

The KKT necessary and sufficient conditions are

$$f_i(\mathbf{x}^*) \leq 0,$$
 $\lambda_i^* \geq 0$
$$\mathbf{0} \in \partial f_0(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(\mathbf{x}^*)$$
 $\lambda_i^* f_i(\mathbf{x}^*) = 0$ (complementary slackness).

Numerical Methods for Nondifferentiable Problems

- In R, we can always use the bisection method for nondifferentiable functions to reduce the interval (uncertainty) by half at each step.
- Can we generalize this to R^n ? The problem is that R^n is not ordered, as opposed to R.
- The answer is: yes. These methods are called *localization methods*:
 - cutting-plane methods (date back to the 1960s in the Russian literature): the uncertainty set is a polyhedron
 - ellipsoid method (goes back to the 1970s in the Russian literature): the uncertainty set is an ellipsoid.
- Another convenient method is the *subgradient method*.

Subgradient Method

• $Subgradient\ method$ is a simple algorithm (looks similar to a gradient method) to minimize a nondifferentiable convex function f:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{g}^{(k)}$$

where

- $-\mathbf{x}^{(k)}$ is the kth iterate
- $\mathbf{g}^{(k)}$ is any subgradient of f at $\mathbf{x}^{(k)}$
- $-\alpha_k > 0$ is the kth stepsize
- Note that it is not a descent method (unlike a gradient method), so we need to keep track of the best point so far:

$$f_{\mathrm{best}}^{(k)} = \min_{i=1,\cdots,k} f\left(\mathbf{x}^{(i)}\right).$$

Stepsize Rules

- Different stepsize methods:
 - constant stepsize: $\alpha_k = \alpha$
 - constant step length: $\alpha_k = \gamma / \|\mathbf{g}^{(k)}\|$ (so $\|\mathbf{x}^{(k+1)} \mathbf{x}^{(k)}\|_2 = \gamma$)
 - square summable but not summable: stepsizes satisfying

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty$$

nonsummable diminishing: stepsizes satisfying

$$\lim_{k \to \infty} \alpha_k = 0, \qquad \sum_{k=1}^{\infty} \alpha_k = \infty.$$

Convergence Results

Under some technical conditions (boundedness of optimum value, boundedness of subgradients by G), the limiting value of the subgradient method $\bar{f} = \lim_{k \to \infty} f_{\text{best}}^{(k)}$ satisfies:

- constant stepsize: $\bar{f} f^* \leq G^2 \alpha/2$, i.e., converges to $G^2 \alpha/2$ suboptimal (converges to f^* if f differentiable and α small enough)
- \bullet constant step length: $\bar{f}-f^\star \leq G\gamma/2$, i.e., converges to $G\gamma/2$ -suboptimal
- ullet diminishing stepsize rule: $\bar{f}=f^{\star}$, i.e., converges.

Example: Piecewise Linear Minimization

• Consider the following nondifferentiable optimization problem:

minimize
$$f(\mathbf{x}) = \max_i \{\mathbf{a}_i^T \mathbf{x} + b_i\}$$
.

 \bullet To find a subgradient, simply choose an index j for which

$$\mathbf{a}_{j}^{T}\mathbf{x} + b_{j} = \max_{i} \left\{ \mathbf{a}_{i}^{T}\mathbf{x} + b_{i} \right\}$$

and take $\mathbf{g} = \mathbf{a}_j$.

• The subgradient update is

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{a}_j^{(k)}.$$

Example: Piecewise Linear Minimization (II)

- \bullet Problem instance with n=20 variables, m=100 terms, $f^\star \approx 1.1$
- Constant step length, first 100 iterations, $f^{(k)} f^*$:

Example: Piecewise Linear Minimization (III)

ullet Constant step length, $f_{\mathrm{best}}^{(k)} - f^{\star}$:

Example: Piecewise Linear Minimization (IV)

• Diminishing stepsize rule $(\alpha_k = 0.1/\sqrt{k})$ and square summable stepsize rule $(\alpha_k = 1/k)$:

Projected Subgradient Method for Constrained Optimization

• Consider the following constrained optimization problem:

• The projected subgradient method guarantees that each update produces a feasible point via a projection:

$$\mathbf{x}^{(k+1)} = \left[\mathbf{x}^{(k)} - \alpha_k \mathbf{g}^{(k)}\right]_{\mathcal{X}}$$

where $[\cdot]_{\mathcal{X}}$ denotes projection onto the convex set \mathcal{X} .

Decomposition Methods

- The idea of a decomposition method is to solve a problem by solving smaller subproblems coordinated by a master problem.
- Different reasons to use a decomposition method:
 - to allow the resolution of a problem otherwise unsolvable for memory reasons (useful in areas such as biology or image processing)
 - to speed up the resolution of the problem via parallel computation
 - to solve the problem in a distributed way (desirable for some wireless networks)
 - to derive nice, insightful, and efficient numerical algorithms as alternative to the use of general-purpose interior-point methods.

Decomposition Methods (II)

• In some (few) fortunate cases, problems decouple naturally:

minimize
$$f_1\left(\mathbf{x}_1\right) + f_2\left(\mathbf{x}_2\right)$$
 subject to $\mathbf{x}_1 \in \mathcal{X}_1$, $\mathbf{x}_2 \in \mathcal{X}_2$.

- We can solve for x_1 and x_2 separately (in parallel).
- Even if they are solved sequentially, there is still the advantage of memory and of speed (if the computational effort is superlinear in problem size).

Decomposition Methods (III)

- In general, however, problems do not decouple so easily and that's when can resort to decomposition methods.
- There are two main types of decompostion methods:
 - primal decomposition:
 - * deals with complicating variables that couple the subproblems
 - * the primal master problem controls directly the resources
 - dual decomposition:
 - * deals with complicating constraints that couple the subproblems
 - * the dual master problem controls the prices of the resources.

Primal Decomposition

• Consider the following problem with a coupling variable:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{y}}{\mathsf{minimize}} & f_1\left(\mathbf{x}_1,\mathbf{y}\right) + f_2\left(\mathbf{x}_2,\mathbf{y}\right) \\ \mathsf{subject to} & \mathbf{x}_1 \in \mathcal{X}_1, \quad \mathbf{x}_2 \in \mathcal{X}_2 \\ & \mathbf{y} \in \mathcal{Y}. \end{array}$$

- y is the complicating variable or coupling variable.
- When y is fixed the problem is separable in x_1 and x_2 and then decouples into two subproblems that can be solved independently.
- x_1 and x_2 are local or private variables; and y can be interpreted as a global or public variable that serves as an interface or boundary variable between the two subproblems.

Primal Decomposition (II)

ullet For a given fixed ${f y}$ we define the subproblems:

subproblem 1: minimize_{$\mathbf{x}_1 \in \mathcal{X}_1$} $f_1(\mathbf{x}_1, \mathbf{y})$

subproblem 2: minimize_{$\mathbf{x}_2 \in \mathcal{X}_2$} $f_2(\mathbf{x}_2, \mathbf{y})$

with optimal values $f_1^{\star}(\mathbf{y})$ and $f_2^{\star}(\mathbf{y})$.

• Since $\min_{\mathbf{x},\mathbf{y}} f \equiv \min_{\mathbf{y}} \min_{\mathbf{x}} f$, it follows that the original problem is equivalent to the $master\ primal\ problem$:

minimize_{$$\mathbf{y} \in \mathcal{Y}$$} $f_1^{\star}(\mathbf{y}) + f_2^{\star}(\mathbf{y})$.

Primal Decomposition (III)

Observations:

- ullet subproblems can be solved independently for a given ${f y}$
- we don't have a closed-form expression for each function $f_i^{\star}(\mathbf{y})$ and its corresponding gradient or subgradient (differentiable?)
- ullet instead, to evaluate each function $f_i^\star(\mathbf{y})$ at some point \mathbf{y} we need to solve an optimization problem
- interestingly, we can easily obtain a subgradient of $f_i^{\star}(\mathbf{y})$ "for free" when we evaluate the function.

Primal Decomposition: Solving the Master Problem

- If the original problem is convex, so is master problem.
- To solve the master problem, we can use different methods such as
 - bisection (if y is scalar)
 - gradient or Newton method (if f_i^* differentiable)
 - subgradient, cutting-plane, or ellipsoid method.
- The subgradient method is very simple and allows itself to distributed implementation; however, its converge is slow in practice.
- Projected subgradient method:

$$\mathbf{y}(k+1) = [\mathbf{y}(k) - \alpha_k (\mathbf{s}_1(k) + \mathbf{s}_2(k))]_{\mathcal{V}}$$

where $\mathbf{s}_{i}(k)$ is a subgradient of $f_{i}^{\star}(\mathbf{y}(k))$.

Primal Decomposition Algorithm

repeat

1. Solve the suproblems:

Find $\mathbf{x}_1(k) \in \mathcal{X}_1$ that minimizes $f_1(\mathbf{x}_1(k), \mathbf{y}(k))$, and a subgradient $\mathbf{s}_1(k) \in \partial f_1^{\star}(\mathbf{y}(k))$.

Find $\mathbf{x}_2(k) \in \mathcal{X}_2$ that minimizes $f_2(\mathbf{x}_2(k), \mathbf{y}(k))$, and a subgradient $\mathbf{s}_2(k) \in \partial f_2^{\star}(\mathbf{y}(k))$.

2. Update the complicating variable to minimize the primal master subproblem:

$$\mathbf{y}(k+1) = \left[\mathbf{y}(k) - \alpha_k \left(\mathbf{s}_1(k) + \mathbf{s}_2(k)\right)\right]_{\mathcal{V}}.$$

3. k = k + 1

Primal Decomposition: Subgradients

Lemma: Let $f^{\star}(\mathbf{y})$ be the optimal value of the convex problem

minimize
$$f_0(\mathbf{x})$$
 subject to $h_i(\mathbf{x}) \leq y_i, \quad i = 1, \dots, m.$

A subgradient of $f^{\star}(\mathbf{y})$ is $-\boldsymbol{\lambda}^{\star}(\mathbf{y})$.

Proof. The Lagrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = f_0(\mathbf{x}) + \boldsymbol{\lambda}^T (\mathbf{h}(\mathbf{x}) - \mathbf{y})$. Then,

$$f^{\star}(\mathbf{y}_{0}) = f_{0}(\mathbf{x}^{\star}(\mathbf{y}_{0}))$$

$$= g(\boldsymbol{\lambda}^{\star}(\mathbf{y}_{0}))$$

$$\leq L(\mathbf{x}, \boldsymbol{\lambda}^{\star}(\mathbf{y}_{0})) = f_{0}(\mathbf{x}) + \boldsymbol{\lambda}^{\star T}(\mathbf{h}(\mathbf{x}) - \mathbf{y}_{0})$$

$$= f_{0}(\mathbf{x}) + \boldsymbol{\lambda}^{\star T}(\mathbf{h}(\mathbf{x}) - \mathbf{y}) + \boldsymbol{\lambda}^{\star T}(\mathbf{y} - \mathbf{y}_{0})$$

$$\leq f_{0}(\mathbf{x}) + \boldsymbol{\lambda}^{\star T}(\mathbf{y} - \mathbf{y}_{0}) \quad \forall \mathbf{y}$$

where the last inequality holds for any x such that $h(x) \leq y$. In particular,

$$egin{array}{lll} f^{\star}\left(\mathbf{y}_{0}
ight) & \leq & \min \limits_{\mathbf{h}\left(\mathbf{x}
ight) \leq \mathbf{y}} f_{0}\left(\mathbf{x}
ight) + oldsymbol{\lambda}^{\star T}\left(\mathbf{y} - \mathbf{y}_{0}
ight) \ & = & f^{\star}\left(\mathbf{y}
ight) + oldsymbol{\lambda}^{\star T}\left(\mathbf{y} - \mathbf{y}_{0}
ight) \end{array}$$

or

$$f^{\star}(\mathbf{y}) \geq f^{\star}(\mathbf{y}_0) - \boldsymbol{\lambda}^{\star T}(\mathbf{y} - \mathbf{y}_0).$$

Lemma: Let $f^{\star}(\mathbf{y})$ be the optimal value of the convex problem

minimize
$$f_0(\mathbf{x}, \mathbf{y})$$
 subject to $h_i(\mathbf{x}) \leq y_i, \quad i = 1, \dots, m.$

A subgradient of $f^{\star}(\mathbf{y})$ is $(\mathbf{s}_{0}(\mathbf{x}^{\star}(\mathbf{y}),\mathbf{y}) - \boldsymbol{\lambda}^{\star}(\mathbf{y})).$

Dual Decomposition

Consider the following problem with a coupling constraint:

minimize
$$f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2)$$
 subject to $\mathbf{x}_1 \in \mathcal{X}_1, \quad \mathbf{x}_2 \in \mathcal{X}_2$ $\mathbf{h}_1(\mathbf{x}_1) + \mathbf{h}_2(\mathbf{x}_2) \leq \mathbf{h}_0$

- $\mathbf{h}_1(\mathbf{x}_1) + \mathbf{h}_2(\mathbf{x}_2) \leq \mathbf{h}_0$ is the complicating or coupling constraint.
- If the coupling constraint is relaxed with a Lagrange multiplier λ , then the problem decouples into two subproblems that can be solved independently.
- \mathbf{x}_1 and \mathbf{x}_2 are local or private variables; and $\boldsymbol{\lambda}$ can be interpreted as a global or public price variable that serves as an interface or boundary variable between the two subproblems.

Dual Decomposition (II)

• The partial Lagrangian after relaxing the coupling constraint is:

$$L\left(\mathbf{x}, \boldsymbol{\lambda}\right) = f_1\left(\mathbf{x}_1\right) + f_2\left(\mathbf{x}_2\right) + \boldsymbol{\lambda}^T\left(\mathbf{h}_1\left(\mathbf{x}_1\right) + \mathbf{h}_2\left(\mathbf{x}_2\right) - \mathbf{h}_0\right).$$

The dual function is

$$g(\lambda) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \lambda)$$

$$= \inf_{\mathbf{x}_1 \in \mathcal{X}_1} \left\{ f_1(\mathbf{x}_1) + \lambda^T \mathbf{h}_1(\mathbf{x}_1) \right\}$$

$$+ \inf_{\mathbf{x}_2 \in \mathcal{X}_2} \left\{ f_2(\mathbf{x}_2) + \lambda^T \mathbf{h}_2(\mathbf{x}_2) \right\} - \lambda^T \mathbf{h}_0$$

which clearly decouples.

Dual Decomposition (III)

ullet For a given fixed $oldsymbol{\lambda}$ we define the subproblems:

subproblem 1: $\min_{\mathbf{x}_1 \in \mathcal{X}_1} f_1(\mathbf{x}_1) + \boldsymbol{\lambda}^T \mathbf{h}_1(\mathbf{x}_1)$

subproblem 2: $\min_{\mathbf{x}_2 \in \mathcal{X}_2} f_2(\mathbf{x}_2) + \boldsymbol{\lambda}^T \mathbf{h}_2(\mathbf{x}_2)$

with optimal values $g_1(\lambda)$ and $g_2(\lambda)$.

• From strong duality, the original problem is equivalent to the master $dual\ problem$:

$$\mathsf{maximize}_{\boldsymbol{\lambda} \geq \mathbf{0}} \quad g_1\left(\boldsymbol{\lambda}\right) + g_2\left(\boldsymbol{\lambda}\right) - \boldsymbol{\lambda}^T \mathbf{h}_0.$$

Dual Decomposition (IV)

Observations:

- ullet subproblems can be solved independently for a given $oldsymbol{\lambda}$
- we don't have a closed-form expression for each function $g_i(\lambda)$ and its corresponding gradient or subgradient (differentiable?)
- instead, to evaluate each function $g_i(\lambda)$ at some point λ we need to solve an optimization problem
- as in the primal case, we can easily obtain a subgradient of $g_i(\lambda)$ "for free" when we evaluate the function.

Dual Decomposition: Solving the Master Problem

- The dual master problem is always convex regardless of the original problem. However, we still need convexity to have strong duality (under some constraint qualifications like Slater's condition).
- To solve the master problem, we can use different methods such as
 - bisection (if λ is scalar)
 - gradient or Newton method (if g_i differentiable)
 - subgradient, cutting-plane, or ellipsoid method.
- Projected subgradient method:

$$\lambda(k+1) = \left[\lambda(k) + \alpha_k \left(\mathbf{s}_1(k) + \mathbf{s}_2(k) - \mathbf{h}_0\right)\right]^+$$

where $\mathbf{s}_{i}(k)$ is a subgradient of $g_{i}(\boldsymbol{\lambda}(k))$.

Dual Decomposition Algorithm

repeat

1. Solve the suproblems:

Find $\mathbf{x}_1(k) \in \mathcal{X}_1$ that minimizes $f_1(\mathbf{x}_1(k)) + \boldsymbol{\lambda}(k)^T \mathbf{h}_1(\mathbf{x}_1(k))$, and a subgradient $\mathbf{s}_1(k) \in \partial g_1(\boldsymbol{\lambda}(k))$.

Find $\mathbf{x}_2(k) \in \mathcal{X}_2$ that minimizes $f_2(\mathbf{x}_2(k)) + \boldsymbol{\lambda}(k)^T \mathbf{h}_2(\mathbf{x}_2(k))$, and a subgradient $\mathbf{s}_2(k) \in \partial g_2(\boldsymbol{\lambda}(k))$.

2. Update the complicating variable to minimize the primal master subproblem:

$$\lambda(k+1) = \left[\lambda(k) + \alpha_k \left(\mathbf{s}_1(k) + \mathbf{s}_2(k) - \mathbf{h}_0\right)\right]^+.$$

3. k = k + 1

Dual Decomposition: Subgradients

Lemma: Let $g(\lambda)$ be the dual function corresponding to the problem

minimize
$$f_0(\mathbf{x})$$
 subject to $h_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m.$

A subgradient of $g(\lambda)$ is $h(\mathbf{x}^{\star}(\lambda))$.

Proof. The Lagrangian is $L(\mathbf{x}, \boldsymbol{\lambda}) = f_0(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{h}(\mathbf{x})$ and the dual function $g(\boldsymbol{\lambda}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})$. Then,

$$g(\lambda) = \inf_{\mathbf{x}} f_0(\mathbf{x}) + \lambda^T \mathbf{h}(\mathbf{x})$$

$$\leq f_0(\mathbf{x}^*(\lambda_0)) + \lambda^T \mathbf{h}(\mathbf{x}^*(\lambda_0))$$

$$= f_0(\mathbf{x}^*(\lambda_0)) + \lambda_0^T \mathbf{h}(\mathbf{x}^*(\lambda_0)) + (\lambda - \lambda_0)^T \mathbf{h}(\mathbf{x}^*(\lambda_0))$$

$$= g(\lambda_0) + (\lambda - \lambda_0)^T \mathbf{h}(\mathbf{x}^*(\lambda_0)).$$

Summary

- We have described the concept of subgradient as a generalization of gradient.
- We have considered subgradient methods as formally similar to gradient methods.
- Finally, we have derived the two basic decomposition techniques:
 - primal decomposition
 - dual decomposition.