Pick and Place Task using Franka Panda Arm

Project Scope

Develop inverse kinematic solver for pick-place task (7 DOF). Detect the objects using April-tag based vision system.

Maximize the number of blocks stacked in 5 min.

Path Planning

Predefined poses to reduce IK computation time. Separate strategies for static vs. dynamic block grasping.

Vision System - April Tags PnP pose estimation algorithm. Transformation Matrix:

$$H_{block}^{arm} = H_{ee}^{arm}.H_{camera}^{ee}.H_{block}^{camera}$$

Iterative Inverse Kinematic Solver

Coordinate Frames and D-H Parameters:

Underdetermined System of Linear Eqs. - Pseudoinverse (n>6) $\mathbf{J}(q)\dot{q} = \xi$, given ξ solve for \dot{q} , $\text{null}(\mathbf{J}(q)) \neq 0$ with $\mathbf{J}(q) \in \mathbb{R}^{6 \times n}, \dot{q} \in \mathbb{R}^{n \times 1}, \xi \in \mathbb{R}^{6 \times 1}$ $\{\dot{q} \mid \mathbf{J}(q)\dot{q} = \xi\} = \{\dot{q}^* + z | z \in \text{null}(\mathbf{J}(q))\}\$ z can be used to optimize a secondary $\dot{\vec{q}}^*$ is one particular task such as obstacle, singularity or joint solution to $\vec{\xi} = I(\vec{q})\vec{q}$ limit avoidance! How do we solve for $\dot{\vec{q}}^*$? How do we define z ?

The IK pseudoinverse is

 $\dot{\vec{q}} = J^T (JJ^T)^{-1} \vec{\xi} = J^+ \vec{\xi}$ is the minimum norm $\|\vec{q}\|$ solution $\vec{\xi} = J(\vec{q})\dot{\vec{q}}$

Nullsnace projection operator

 $z = (I - \mathbf{J}(q)^{\dagger} \mathbf{J}(q))b, \forall b \in \mathbb{R}^n$

For a small time step, incremental joint angle value:

$$q = \text{initial configuration}$$

$$\mathbf{while} \ error > \epsilon \ \text{and} \ iter < iter_{max} \ \mathbf{do}$$

$$\text{Calculate error} \ e \ \text{as a function of} \ \mathbf{T}_n^0(q) - \mathbf{H}$$

$$\text{Calculate gradient} \ J^+e$$

$$\Delta q = \alpha J^+e$$

$$\text{Update} \ q = q + \Delta q$$

$$\mathbf{end} \ \mathbf{while}$$

$$b_i = -k_1 \left(\frac{q_i - \bar{q}_i}{c^+} \right), k_1 > 0 \right] \quad \Delta q = J^+e + (I - J^+J)b$$

Pseudocode

Initialize robot, gripper, vision system, and transformation matrices.

while task active do

GoTo Capture image pose, detect static blocks, save transform positions. for each static block do

Move to scan \rightarrow grasp \rightarrow stack.

end for

while true do

Move to wait position, detect block, compute grasp pose grasp block, Solve IK (DLS), stack.

end while

end while

Return to home position, display results

Key Challenges & Solutions

<u> </u>	
Challenge	Solution
Singularity avoidance	Damped least squares method.
Block orientation	Geometric trick for gripper alignment.
Dynamic block timing	Wait-and-pick strategy.
Gripper-table collision	10° gripper tilt .

Results

Stacked 6 blocks in 5 mins: 90 seconds to grab/stack 4 static blocks.

210 seconds for the dynamic blocks.

Competition winners!

Key Learnings

Accurate mathematical implementation is critical.

Understanding of April Tags and coordinate transformations.

Lighting conditions affect vision system performance.

Future Work

Optimize vision system for dynamic blocks.

Quantify vision system noise.

Use April Tags for platform detection as well.