

Pré-Modelagem em Ciência de Dados

Prof. Rilder S. Pires

MBA em Ciência de Dados

Pré-Modelagem em Ciência de Dados

Encontros:

- ▶ Módulo 1: 09, 10 e 11 de dezembro de 2021
- ▶ Módulo 2: 13, 14 e 15 de janeiro de 2022
- ▶ Módulo 3: 27, 28 e 29 de janeiro de 2022

Projeto Final:

► Análise de Dados Sócio-Econômicos das Mesoregiões Cearenses

Pergunta Norteadora:

Quão diferente são as Mesoregiões Cearenses?

Observações:

- Dados da Plataforma SIDRA-IBGE
- ▶ Produção Agrícola Municipal (https://sidra.ibge.gov.br/tabela/5457)
- ► Produto Interno Bruto dos Municípios (https://sidra.ibge.gov.br/tabela/5938)
- Estimativas de População: (https://sidra.ibge.gov.br/tabela/6579)
- Entregar os notebooks com códigos e explicações.

No módulo passado...'

Aula 1:

- Revisão: Distribuições
- ▶ Parte Teórica: Distribuições Discretas
- ▶ Parte Prática: Exemplos, Exploração dos Dados

Aula 2:

- Parte Teórica: Distribuições Contínuas
- Parte Prática: Exemplos, Exploração dos Dados

Aula 3:

- ▶ Parte Teórica: Princípio de Pareto e Distribuições Multivariadas
- ▶ Parte Prática: Exemplos, Exploração dos Dados

Pré-Modelagem em Ciência de Dados

Ementa:

- ► Conceitos de Axiomas da Probabilidade
- ► Atribuições das Probabilidades
- ▶ O que é uma variável aleatória?
- ▶ Distribuição de Probabilidade Discretas:
 - ▶ Distribuição de Bernoulli,
 - ► Distribuição Binomial,
 - ▶ Distribuição de Poisson,
 - Distribuição Geométrica e Hipergeométrica
- Distribuições Contínuas:
 - ▶ Distribuição Uniforme,
 - ▶ Distribuição Exponencial,
 - Distribuição Normal ou Gaussiana,
 - Cálculo de Probabilidade em Distribuições Normais e Funções lineares de Distribuições Normais.
- Inferência Estatística: Noções de amostragem e estimação.

Revisão: Distribuições

Variável Discreta

Função de Probabilidade:

Variável Contínua

Função Densidade de Probabilidade:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt.$$

Valor Esperado de uma Variável Aleatória

Definição:

▶ O valor esperado, média ou primeiro momento de uma variável aleatória X é definido como sendo:

$$\mathbb{E}(X) = \begin{cases} \sum_{x} x f(x) & \text{se } X \text{ \'e discreta} \\ \int x f(x) dx & \text{se } X \text{ \'e contínua} \end{cases}$$

ightharpoonup Assumiremos a seguinte notação para o valor esperado de X.

$$\mathbb{E}(X) = \mu_X = \mu$$

Variância

Definição:

▶ Seja X uma variável aleatória com média μ , a variância de X é definida como:

$$\mathbb{V}(X) = \mathbb{E}((X - \mu)^2)$$

lacktriangle Assumindo que a variância existe, desvio padrão de X é:

$$\operatorname{sd}(X) = \sigma_X = \sigma = \sqrt{\mathbb{V}(X)}$$

Pré-Modelagem em Ciência de Dados

Inferência Estatística

Introdução:

- Inferência Estatística é o processo de usar dados para inferir a distribuição que o gerou.
- ▶ Uma pergunta típica em Inferência Estatística é: Dada uma amostra $X_1, ..., X_n$, como inferimos F?
- ► Em alguns casos, nós queremos inferir apenas alguma característica de F como a sua média.

Modelos Paramétricos e Não-Paramétricos:

- ightharpoonup Um modelo estatístico $\mathcal F$ é um conjunto de distribuições.
- ▶ Um modelo paramétrico é um conjunto \mathcal{F} que pode ser parametrizado por um número finito de parâmetros.
- ▶ Um modelo não-paramétrico é um conjunto \mathcal{F} que NÃO pode ser parametrizado por um número finito de parâmetros.

Modelo Paramétrico:

 \blacktriangleright Por exemplo, se nós assumirmos que os dados vêm de uma Distribuição Normal, então o modelo ${\mathcal F}$ é

$$\mathcal{F} = \left\{ f(x; \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\}, \mu \in \mathbb{R}, \sigma > 0 \right\}.$$

Esse é um exemplo de um modelo de dois parâmetros.

Modelo Não-Paramétrico:

▶ Por exemplo, seja X_1, \ldots, X_n observações independentes de uma distribuição cumulativa F. Suponha que queremos estimar F assumindo apenas que:

$$F \in \mathcal{F}_{ALL} = \{ \text{todas as distribuições cumulativas} \}.$$

Conceitos Fundamentais:

Muitos problemas de inferência podem ser identificados como sendo um dos seguintes tipos: estimação, conjuntos de confiança ou teste de hipótese.

Estimativa Pontual:

- ▶ Uma estimativa pontual trata de fornecer um único "melhor palpite" de alguma quantidade de interesse. A quantidade de interesse pode ser:
- ▶ um parâmetro em um modelo paramétrico,
- ightharpoonup um distribuição cumulada F,
- ightharpoonup uma função de densidade de probabilidade f,
- ightharpoonup uma função de regressão r
- ou uma previsão para um valor futuro Y de alguma variável aleatória.

Estimativa Pontual:

- \blacktriangleright Por convenção, denotamos uma estimativa pontual de θ por $\hat{\theta}.$
- ▶ Obs: θ é uma quantidade desconhecida fixa. A estimativa $\hat{\theta}$ depende dos dados, então $\hat{\theta}$ é uma variável aleatória.
- ▶ Matematicamente, um estimador $\hat{\theta}_n$ de um parâmetro $\hat{\theta}$ é alguma função de X_1, \ldots, X_n :

$$\hat{\theta}_n = g(X_1, \dots, X_n).$$

▶ O viés de um estimador é definido por

$$vi\acute{e}s(\hat{\theta}_n) = \mathbb{E}_{\theta}(\hat{\theta}_n) - \theta.$$

dizemos que o estimador é **não enviesado** se $\mathbb{E}_{\theta}(\hat{\theta}_n) = \theta$.

▶ Dizemos que um estimador é consistente se

$$\hat{\theta}_n \to \hat{\theta}$$

Estimativa Pontual:

▶ A qualidade de uma estimativa é as vezes obtida pelo erro quadrático médio (MSE):

$$MSE = \mathbb{E}_{\theta}((\hat{\theta}_n - \theta)^2)$$

▶ O MSE pode também ser escrito como

$$MSE = vi\acute{e}s^{2}(\hat{\theta}_{n}) + \mathbb{V}_{\theta}(\hat{\theta}_{n})$$

Regressão:

- ► Regressão é um método para estudar a relação que existe entre uma variável Y e outra X:
- ▶ A meta é estimar a função de regressão r(x) a partir de dados da forma:

$$(Y_1, X_1), \ldots, (Y_n, X_n) F_{X,Y}.$$

Regressão Linear Simples:

A versão mais simples de regressão ocorre quando X_i é unidimensional e r(x) assume a forma linear:

$$r(x) = \beta_0 + \beta_1 x$$

Regressão Linear Simples:

▶ Definição:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

onde $\mathbb{E}(\epsilon_i|X_i) = 0$ e $\mathbb{V}(\epsilon_i|X_i) = \sigma^2$

- ightharpoonup onde os parâmetros do modelo são β_0 , β_1 e σ^2
- ► A reta ajustada é

$$\hat{r}(x) = \hat{\beta}_0 + \hat{\beta}_1 x$$

onde os valores ajustados são $\hat{Y}_i = \hat{r}(X_i)$ e os resíduos são $\hat{\epsilon}_i = Y_i - \hat{Y}_i$

▶ A soma residual dos quadrados é definida como:

$$RSS = \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

As estimativas de mínimos quadrados são valores $\hat{\beta}_0$ e $\hat{\beta}_1$ que minimizam o RSS.

Projeto Final:

Projeto Final:

 ${\bf Perguntas}$

Projeto Final:

Perguntas

1. Qual a distribuição da "diversidade" dos municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?

Projeto Final:

- 1. Qual a distribuição da "diversidade" dos municípios da sua região?
- 2. Qual a distribuição dos valores de produção agrícola dos municípios da sua região?
- 3. Qual a distribuição dos valores de produção do principal produto para municípios da sua região?
- 4. e para o Ceará?
- 5. Quais outras variáveis podemos considerar?

Fim

Obrigado pela atenção!