CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method for converting a two-dimensional image to a three-dimensional
2	image for display through a micro optical medium, comprising:
3	inputting to a digital computer a 2D file representing a two dimensional
4	image;
5	displaying a two-dimensional image corresponding to said 2D file;
6	generating a depth map corresponding to said two-dimensional image;
7	receiving a user-entered depth command assigning a first depth value to a
8	portion of said depth map corresponding to a first area;
9	assigning a second depth value to a portion of said depth map not
10	corresponding to said first area;
11	generating a parallax image of said two-dimensional image shifting said
12	first area with respect to an area of said two-dimensional image within said first
13	area, said shifting based on said first depth value and said second depth value;
14	displaying an anaglyph image based on said two-dimensional image and
15	said parallax image;
16	receiving a user-entered rendering command and, in response, generating
17	a rasterized, interlaced image file including alternating strips of said two-
18	dimensional image and said parallax image for printing on a micro optical media; 57

- 19 and
- printing said interlaced image file on said micro optical medium.
 - 1 2. A method according to claim 1 further comprising:
 - 2 receiving a user-entered outlining command identifying said first area of
 - 3 said two-dimensional image.
 - 1 3. A method according to claim 2 wherein said receiving a user-entered
 - 2 outlining command includes receiving, via a graphical user interface, a trace
 - 3 command identifying an outer peripheral line of said first area.
 - 1 4. A method according to claim 1 wherein said generating a parallax image
 - 2 of said two-dimensional image includes pre-shifting said first area in a direction
 - 3 opposite a direction of said shifting, such that when said image is viewed through
 - 4 said micro-optical medium it appears at a lateral position substantially co-located
 - 5 with its original position within said image.
 - 1 5. A method for converting a two-dimensional image to a three-dimensional
 - 2 image for display through a micro optical medium, comprising:
 - inputting to a digital computer a 2D file representing a two dimensional
 - 4 image;
 - 5 displaying a two-dimensional image corresponding to said 2D file;

6 generating a multi-layer information file having information defining a

7	multi-layer image, said defining including establishing a number of layers and a
8	parallax information establishing a distance between at least a first and a second
9	of said layers;
10	receiving external commands associating a first area of said two-
11	dimensional image to said first layer of a multi-layer image and associating a
12	second area of said two-dimensional image to said second layer of said multi-
13	layer image;
14	generating a first projection of said image of said multi-layered image
15	representing a left eye view and a second projection of said multi-layer image
16	representing a right eye view, said projection based on;
17	displaying an anaglyph image based on said first projection and second
18	projection;
19	receiving external layer movement commands changing said distance
20	between said first layer and said second layer;
21	displaying an updated anaglyph image based on said received layer
22	movement commands;
23	generating at least a first frame and a second frame, said first frame
24	representing a projection of said multiplayer image onto a first left eye image

onto a first right eye image plane;

generating an interlaced file including alternating strips of said first frame
and said second frame; and

plane and said second frame representing a projection of said multiplayer image

printing said interlaced image file on said micro optical medium.

25

26

27

28

29