

AVALIAÇÃO DO CICLO DE VIDA

Universidade Estadual de Maringá
Curso de Graduação em Engenharia de Produção
Prof. Me. Juliana Adrian

Ciclo de vida do Produto-Perspectiva Ambiental

 O ciclo de vida de um produto que interessa à gestão ambiental refere-se ao ciclo físico formado pelos sucessivos estágios do processo de produção e comercialização.

Desde a origem dos recursos produtivos no meio ambiente até a disposição final após o uso ou consumo, passando pelos estágios intermediários, como beneficiamento, transportes, estocagens e outros, incluindo os reaproveitamentos na forma de reuso e reciclagem.

Ciclo de vida do Produto-Perspectiva Ambiental

Ciclo de Vida: estágios consecutivos e encadeados de um sistema de produto, desde a aquisição da matéria-prima ou de sua geração a partir de recursos naturais até a disposição final.

Ciclo de vida do Produto-Perspectiva Ambiental

A Avaliação do Ciclo de Vida (ACV), conhecida internacionalmente por LCA (Life Cycle Assessment), é uma **técnica de avaliação do impacto ambiental** associado a um **produto** ou serviço, **durante seu ciclo de vida**.

Através da análise do fluxo de materiais, energia e emissão de substâncias poluentes, a utilização da terra e de outros recursos naturais, em cada uma das fases, é possível quantificar e qualificar os potenciais danos ambientais ao longo do ciclo de vida do produto.

+ Impactos Ambientais Potenciais

A ABNT define Avaliação do Ciclo de Vida como:

Compilação e avaliação das entradas e saídas e dos impactos ambientais potenciais de um sistema de produto ao longo do seu ciclo de vida.

Seu foco são os aspectos e impactos ambientais potenciais ao longo do ciclo de vida de um produto (bem ou serviço), de acordo com a abordagem do berço ao túmulo.

Cradle-to-Grave

Origens da ACV

➤ O principal interesse da ACV surgiu incialmente devido aos gestores de grandes empresas de fabricação de bens de consumo que pretendiam demonstrar a superioridade dos seus produtos perante os concorrentes, na vertente ambiental.

Este interesse foi reforçado por campanhas das associações de consumidores exigindo "informação ambiental" sobre os produtos

que adquiriam.

Origens da ACV

O primeiro estudo que pode ser entendido como ACV foi realizado em 1965 nos Estados Unidos pela Coca-Cola, com o objetivo de identificar qual embalagem para refrigerantes teria as menores emissões e utilizaria menos recursos em sua fabricação.

O estudo fez um inventário das matérias-primas e dos combustíveis utilizados e das cargas ambientais do processo produtivo de cada embalagem. Ficou conhecido como Resource and Environmental Profile Analysis (REPA) (CURRAN, 2006).

Aplicações da ACV

- 1- Empresas;
- 2- Governo;
- 3- Sociedade.

Em empresas

É útil para comparar:

 o impacto ambiental de diferentes produtos com similar função (ex.: caneta x lápis);

 o impacto ambiental de diferentes tipos de tratamento de resíduos (ex.: incineração x aterro sanitário);

Em empresas

É útil para:

- o desenvolvimento de produtos;
- a escolha de tecnologias;
- a identificação da fase do Ciclo de Vida em que os impactos são maiores;
- a reformulação de produtos ou processo;
- seleção de fornecedores.
- ...certificações, rotulagens, entrar em um mercado internacional...

Qual o material (produto) de menor impacto ambiental?

Qual fase de maior impacto ambiental?

Consumo de energia

No Governo

É útil para:

Políticas: O uso da ACV auxilia na definição de políticas mais consistentes.

Países que usam: O Canadá, a França, a Alemanha, o Japão, a Holanda, a Noruega, a Suécia e os EUA.

Sociedade

- Escolha de produtos
- Decisões de compra
- Escolha de fornecedor

ACV- Normatização

A ACV é regulada por normas internacionais, como:

- NBR ISO 14040- Gestão Ambiental- Avaliação do Ciclo de Vidaprincípios e estruturas; e
- NBR ISO 14044- Gestão Ambiental- Avaliação do Ciclo de Vidarequisitos e guia.
- Essas normas apresentam recomendações, estrutura metodológica e requisitos para elaborar uma ACV com credibilidade e que gere resultados relevantes para os gestores.

Metodologia da ACV

- ➤ A metodologia da técnica de ACV inclui, de acordo com a ISO 14040, quatro fases principais, que se inter-relacionam:
 - 1. Definição do objetivo e escopo da análise;
 - 2. Inventário dos processos envolvidos, com enumeração das entradas e saídas do sistema;
 - 3. Avaliação dos impactos ambientais associados às entradas e saídas do sistema.
 - **4.** Interpretação dos resultados das fases de inventário e avaliação, tendo em consideração os objetivos do estudo.

Metodologia da ACV

• Fonte: ISO 14040

ACV- OBJETIVO

- Nessa fase é necessário que se defina se o objetivo do estudo é a comparação de produtos;
- Se há a intenção de atingir uma melhoria do produto ou projetar um novo;
- Ou se o que se pretende é obter informações a respeito dos possíveis impactos ambientais que esse produto pode gerar ao longo de seu ciclo de vida.
- É importante também que seja informado quem está realizando o estudo e a quem este se destina.

ACV-ESCOPO

O escopo refere-se à questões:

- Definição dos limites do sistema.
- O estabelecimento da função e da unidade funcional do sistema.

A definição dos limites do sistema.

 Os limites do sistema determinam quais conjuntos de processos devem ser incluídas na ACV.

 Os limites da ACV são geralmente apresentados em fluxogramas que indicam a sequência dos processos relacionados ao ciclo de vida do produto.

• ACV - ESCOPO

O estabelecimento da função e da unidade funcional do sistema.

Uma das considerações mais importantes que se deve fazer ao se definir o escopo de um estudo de ACV é o estabelecimento da característica de performance do produto a ser modelado, que recebem o nome de função.

Quando essa função é quantificada, a fim de se obter informações mais precisas, tem se o que é chamado de unidade funcional.

Função e Unidade funcional

- Unidade funcional é a referência, à qual são relacionadas às quantidades mencionadas no inventário.
- É uma unidade de medida da função realizada pelo sistema.

Ex. ACV aplicada a toalhas de papel e de pano.

Nesse caso, a **função das toalhas** poderia ser definida como sendo secar as mãos, e a **unidade funcional**, poderia ser caracterizada pela percentagem de umidade das mãos após o uso de cada tipo de toalha separadamente.

Ou também, a unidade funcional poderia ser o número de mãos que cada toalha consegue secar.

2- Inventário do ciclo de vida

- Consiste na coleta de dados e no processamento de cálculos.
- É um balanço entre o que entra no sistema em estudo e o que sai.

Consistindo basicamente em um balanço de massa e energia, no qual os fluxos de entrada devem corresponder a um fluxo de saída que é quantificado na forma de produto, resíduo ou emissão.

2-Inventário do ciclo de vida

Coleta de dados

- A coleta de dados é a tarefa que mais consome tempo e recursos da ACV.
- Dados confiáveis muitas vezes somente são obtidos através de medições locais, e o tempo e os recursos limitados podem não permitir investigações mais detalhadas.
- Por isso é necessário buscar identificar a abordagem mais simples.

2-Inventário do ciclo de vida

Forma de coleta:

- Medição averiguação in loco através de entrevista ou mensuração do dado;
 - Cálculo determinação do valor do dado através de equações;
- Literatura consulta às publicações técnico-científicas relativas ao tema do estudo, banco de dados de ACV's;
- Estimativas opiniões de especialistas ou técnicos envolvidos com o tema do estudo.

2-Inventário do ciclo de vida

ICV - Coleta dos dados

Fluxograma ou diagrama de blocos -> entradas e saídas;

 Tradução dos fluxos de massa e energia do ICV em impactos ambientais;

- Atribuição de responsabilidades ambientais aos fluxos do ICV;

- Escolha das categorias de impacto.

-A avaliação busca determinar a gravidade dos impactos.

Categoria de impacto	Impactos e efeitos		
Aquecimento global	Mudanças climáticas, condições extremas de tempo		
Diminuição da camada de ozônio	Aumento da intensidade dos raios UV, câncer de pele, danos ao sistema imunológico		
Formação fotoquímica do ozônio	Problemas respiratórios, danos a plantas, prejuízos materiais		
Eutrofização	Proliferação de algas, depleção de oxigênio		
Ecotoxicidade	Toxicidade aguda e crônica em ecossistemas		
Toxicidade humana	Toxicidade aguda e crônica ao homem		
Acidificação	Danos a vegetação, rios e lagos; prejuízos materiais		
Resíduos para aterro	Poluição de águas subterrâneas, corpos hídricos, ar e solo		

Etapas

Para isso são definidas as etapas: classificação e caracterização;

Classificação: qualitativo;

Caracterização: quantitativo;

Etapas

1- Classificação

Os **resultados** obtidos durante a fase de realização do inventário são analisados a partir dos **impactos ambientais que podem causar**.

A classificação é realizada com o objetivo de atribuir, a cada categoria escolhida, os dados correspondentes do inventário.

Etapas

2- Caracterização

Depois de estabelecidas as categorias de impacto, as **contribuições para cada impacto ambiental são quantificadas**, associando cada categoria às suas respectivas substâncias de referência.

Exemplo:

- Potencial de Aquecimento Global (PAG) Medida em relação ao efeito de kg de CO2- dióxido de carbono.
- Potencial de Acidificação (PA) Medida em relação ao efeito de kg de SO2- dióxido de enxofre.

Caracterização

Exemplo- Categoria de Impacto – **Aquecimento global:**

- Aumento da temperatura média do planeta devido a emissões de gases de efeito estufa;
- No caso do aquecimento global deve-se converter a contribuição de todos os gases que causam o aquecimento tomando-se como referência o CO2.
- O efeito de cada gás é expresso em termos da quantidade equivalente de CO2 que causaria o mesmo efeito de aquecimento.
- Kg CO2 –eq. (Ex: CH4 = 1 unidade de metano equivale a 21 unidades de CO2);

4-Interpretação

- Todas as considerações iniciais feitas para uma Avaliação do Ciclo de Vida afetam seu resultado final.
- Por isso, é necessário realizar ao término do estudo, antes de se elaborar o relatório final, uma avaliação dos resultados obtidos.

O objetivo da fase de interpretação é analisar os resultados, fazer conclusões, explicar as limitações e oferecer recomendações para uma análise completa do ciclo de vida do produto.

Softwares- ACV

umberto*

Softwares- ACV

Softwares- ACV

alyzing 1 p 'Ciclo de Vida dos Materiais (Juntos)'; Method: CML 2 baseline 2000 V2.04 / World, 1995 / characterization

Situação da ACV

Contexto mundial- utilizada em diferentes escalas:

Países com forte tradição (ex: Holanda, Dinamarca, Suíça)

Brasil - enfrenta dificuldades básicas:

- Ausência de banco de dados;
- Falta de recursos humanos;
- Limitado número de pesquisas.

ACV e PDP

ACV e o PDP

Todos os produtos, de alguma forma ou de outra, causam impactos sobre o meio ambiente.

- Estes impactos podem ocorrer durante todos os estágios do seu ciclo de vida, desde a extração de matérias primas, produção, uso, até a disposição final.
- A integração dos aspectos ambientais no projeto e desenvolvimento de produto tem por objetivo a redução dos impactos ambientais adversos do produto por todo o seu ciclo de vida.

ACV e o PDP

A ACV pode ser aplicada ao PDP para auxiliar em diversas finalidades.

Kits Cirúrgicos

KIT CIRÚRGICO DE ALGODÃO

KIT CIRÚRGICO NÃO TECIDO

ACV

VANTAGENS E DESVANTAGENS:

As fibras de algodão relaxam com o tempo e formam poros, fazendo com que o algodão deixe de ser impermeável, aumentando os riscos de contaminação;

A cada cirurgia é preciso lavar e esterilizar o kit cirúrgico de algodão, que segundo estudos médicos, deve ser reutilizado no máximo 6 vezes em processos cirúrgicos. A cada 1.000 kits de algodão lavados, são consumidos 67.000 litros de água;

Em contrapartida, o kit em PP é descartável e tende a substituir reutilizáveis, o que gera preocupações em relação a geração de resíduos.

RESULTADOS:

Os kits cirúrgicos de não tecido são mais eficientes na proteção tanto do paciente quanto dos profissionais de saúde. Reduzem o consumo de água e têm um impacto ambiental geral menor do que a alternativa de algodão, apesar de gerarem mais resíduos para o meio ambiente, por serem descartáveis. A lavagem obrigatória do kit de algodão para sua higienização e o uso de produtos químicos para sua esterilização são responsáveis pelo alto impacto ambiental dessa alternativa.

Exemplo de aplicação da ACV

Disponíveis no Moodlep para leitura.