ÉRETTSÉGI VIZSGA • 2008. május

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2008. május 14. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok sz	záma
Tisztázati	
Piszkozati	

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fizika — emelt szint	Azonosító jel:							

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét! A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 0812 2 / 16 2008. május 14.

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. Egy testet háromféleképpen hajítunk el. Az elhajítás után melyik esetben lesz a test gyorsulása a legnagyobb? (A légellenállás elhanyagolható.)
 - A) Ha függőlegesen fölfelé dobjuk.
 - B) Ha lefelé hajítjuk.
 - C) Ha vízszintesen hajítjuk el.
 - **D)** Mindhárom esetben egyforma lesz a gyorsulás.

2 pont	

- 2. Egy radioaktív izotóp felezési ideje 1 óra. Kezdetben 100 radioaktív atommag volt egy mintában. Mit állíthatunk a radioaktív magok számáról pontosan egy óra elteltével?
 - A) A radioaktív magok száma pontosan 50.
 - **B)** A radioaktív magok száma körülbelül 50.
 - C) A radioaktív magok száma nem jósolható meg pontosan, de biztosan több, mint 40.

3. Az ábrán egy négyütemű belsőégésű motor idealizált *p–V* diagramját láthatjuk. Mi történhet a *b* szakaszon?

- A) A levegő-benzingőz keveréket berobbantja egy elektromos szikra.
- **B)** A levegő-benzingőz keveréket hirtelen összenyomja a dugattyú.
- C) A levegő-benzingőz keverék munkát végez.

2 pont

	_								
Fizika — emelt szint	Azonosító jel:								

- 4. Az alábbi lehetőségek közül válassza ki azt a jelenségkört, amelyre nem alkalmazhatóak Kepler törvényei!
 - A) A bolygók körül keringő holdak mozgása.
 - B) Egy távoli csillag körül keringő bolygók mozgása.
 - C) A Naprendszerben keringő üstökösök mozgása.
 - **D)** Mindhárom esetben alkalmazhatóak.

5. Két kiskocsi, m_1 és m_2 tömegűek, amelyeket vízszintes kötéllel egymáshoz erősítettünk, súrlódásmentesen mozoghatnak. Az elöl lévő m_2 tömegű kocsihoz az ábra szerint csigán átvetett kötéllel m_3 tömegű testet kötünk, amely függőlegesen mozoghat. A kötelek és a csiga ideális. Lehet-e nagyobb a 2.

kiskocsi és 3. test közötti kötelet feszítő erő, mint az 1. és a 2. kiskocsi közötti kötélben ébredő erő?

- A) Nem, soha nem lehet nagyobb.
- **B)** Igen, mindig nagyobb.
- C) A tömegadatok pontos ismerete nélkül nem dönthető el ez a kérdés.

- 6. Egy telepre a belső ellenállásával megegyező külső ellenállást kapcsolunk. Mit állíthatunk a telepben folyó áramról?
 - A) A telepben folyó áram a rövidzárási áram fele.
 - B) A telepben folyó áram megegyezik a rövidzárási árammal.
 - C) A telepben folyó áram a rövidzárási áram kétszerese.

2 nont	
2 pont	

F	izika –	– emelt szint	A	Azonosító jel:												
7.	duga gáz v gáz i meg	hőszigetelő tartályt l attyú választ két rész van. Kezdetben a dug nyomása, sem pedig s a két oldalon. A dug állapodik. Eredeti he	re, a két olo gattyú rögz a hőmérsék attyú rögzí	dalon az zítve var klete nei tését fel	zono 1, és m eg loldj	os f sei gye: juk	ajta m a zik , és 1		vá:		\dagger \dagg		. T	V ₂	zete?	
	A) B) C)	A kisebb nyomású o A kisebb hőmérsékle A nyugvópont helyz ismeretében határozl	etű oldal irá ete csak a n	nyában.	és h	őm	érsél	clet	visz	zony	yok					
												2	pont			
8.	Mi a	különbség a hidrogó Az abszorpciós színk	-							-		k je	llege	köz	ött?	
	B) C) D)	Az abszorpciós színk Nincs különbség, mi Nincs különbség, mi	ndkét színk	ép vona	las.		ped	ig v	ona	alas						
												2	pont			
9.		feszültségforrásra ki yan változik a konde				emo	ezeit	las	san	elt	ávol	ítju	k egy	ymá	stól.	
	A) B) C)	A kondenzátor kapad A kondenzátor kapad A kondenzátor kapad	citása csökk													
												2	nont			

Fiz	ika —	– emelt szi	nt				Azon jel												
	Az al	brának m lsó téglát oróbáljuk	hirtele	n mo	zdulat	tal	vízs	zint	es i	rán	ybaı		_						-
	A)B)C)	Az alsó t nincsen s Az alsó t súrlódási Az alsó t rá.	úrlódá églát c erő kis	s. sak ak sebb, 1	kor rá mint a	ntha fels	atjuk ső té	ki a gla s	a fe súly	lső ⁄a.	alól,	ha	a k	ét 1	tégl	a k	özti	nk	
																	2 p	ont	
1	folya	dioaktív t matban 8 yamatban	8 alfa-b					_									_		
	A) B) C) D)	6 8 16 32																	
																	2 p	ont	
i	irány	ember a p vozza a pi sugár? (A	sztoly	célke	resztjé	ét, h	ogy	por	itos										Hová
	A) B) C)	Kissé a c Pontosan Kissé a c	oda ke	ell cél	ozni, a	hol	a cé	eltáb	la k	ÖZE	pét l	átja	ι.						
		1	-														2 p	ont	
																		В	

13. Egy alumínium rúd 20 °C-on pontosan 1 m hosszú. 40 °C-ra felmelegítve 1,0005 m hosszú lesz. Milyen hosszú a rúd 120 °C-on?

- **A)** 1,0025 m hosszú.
- **B)** 1,025 m hosszú.
- C) 1,0030 m hosszú.

14. Az alábbi rajz két rögzített pontszerű töltést ábrázol. Hova kellene elhelyezni egy harmadik, pozitív pontszerű töltést, hogy az egyensúlyban legyen? (Q > 0)

- A) Az "A" pontba.
- **B)** A "B" pontba.
- C) A "C" pontba.
- **D)** A "D" pontba.

15. A Mars felszínén a gravitációs gyorsulás a földi érték harmada. Mit állíthatunk a marsbeli első kozmikus sebességről?

- A) A marsbéli első kozmikus sebesség nagyobb, mint a földi.
- **B)** A marsbéli első kozmikus sebesség a földivel egyenlő.
- C) A marsbéli első kozmikus sebesség kisebb, mint a földi.

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalra írhatja.

1. A csúszási és tapadási súrlódás

A dörzsölődést tekinthetjük a csúszásban és a gördülésben. Az első esetben a mozdulónak mindenkor huzamosan egy lapja vásik, dörzsölődik, pl. a száné, a gördülő mozdulásokban szüntelen más-más része kopik, s dörzsölődik, pl. ha golyóbis gördül az asztalon.

Varga Márton: A gyönyörű természet tudománya (1808)

Írja le a címben szereplő két jelenség lényegét! Mutassa be a csúszási és tapadási súrlódási erő nagyságát leíró összefüggést, a benne szereplő mennyiségeket, s egy-egy szabadon választott konkrét példában adja meg a súrlódási erők nagyságát és irányát! Ismertessen egy gyakorlati példát a csúszási vagy a tapadási súrlódás hasznos voltára! Mutasson be egy gyakorlati példát a csúszási vagy a tapadási súrlódás káros voltára is! Adjon meg egy eljárást a tapadási együttható mérésére!

2. Egy termodinamikai körfolyamat elemzése

A gőzerőművek használata rövid idő alatt nagyon elhatalmazott, és számos eszközök mozgásba hozására alkalmaztatott. Ide tartoznak a malmok, olaj-, cukor- és egyéb gyárak, ekék, lőszerek, könyvnyomdák, fenyőmetszők, hajók, kocsik, s több efféle.

Carnot (1796-1832)

Schirkhuber Móric: Az elméleti is tapasztalati természetrajz alaprajza (1851)

Hőerőgépet hozunk létre izoterm és izochor szakaszokból álló körfolyamat segítségével. Ábrázolja a körfolyamatot a p(V) diagramon! Jellemezze a folyamat egyes szakaszait energetikai szempontból! Hasonlítsa össze az azonos típusú részfolyamatokban a gáz hőigényét, illetve munkáját! Mutassa be az ábrán a körfolyamat hasznos munkáját!

Azonosító								
jel:								

3. A mérés mint kölcsönhatás

A természetjelenetek folyamának vizsgálása alatt, mind az észlelésnél, mind a kémlelésnél ami mérhető előjön, az szabatosan mérettessék meg. Ebből látszik a mértan viszonya a természettanhoz, jelesül, hogy a természetjelenetek pontos fejtegetése a mértanban mozog.

Varga János: Természettan (1850)

A hőmérséklet mérése kapcsán mutassa be a mérőműszer és a mérendő objektum közötti kölcsönhatás következményeit! Hogyan lehet ebben az esetben a kölcsönhatás következtében fellépő hibát csökkenteni? Ismertesse az ideális mérőműszer sajátságait az áram- és a feszültségmérő példáján! Miben más a mérőberendezés és a mikrovilág részecskéjének kapcsolata a makroszkopikus világban megszokott mérésekhez képest? Mutassa be egy konkrét példán! Ismertesse a hely-impulzus mennyiségpárra vonatkozó Heisenberg-féle határozatlansági relációt, értelmezze a benne szereplő mennyiségeket! Milyen új ismeretet tartalmaz a határozatlansági reláció a mikrovilág részecskéinek mérhetőségével kapcsolatban?

Kifejtés	Tartalom	Összesen
5 pont	18 pont	23 pont

Fizika — emelt szint	Azonosító jel:								
	Jei.								

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Mindkét végén rögzített, 3 m hosszú kötélen 20 Hz frekvenciájú állóhullámokat alakítottunk ki. A végpontokat leszámítva 3 csomópont keletkezett.
 - a) Készítsen rajzot! Mekkora a hullámhossz?
 - b) Mekkora sebességgel terjednek a hullámok a kötélben?
 - c) Mekkora egy csomópont és egy ezzel szomszédos duzzadóhely távolsága?

a)	b)	c)	Összesen
5 pont	3 pont	2 pont	10 pont

- 2. Négy 10 Ω nagyságú ellenállást az ábra szerint összekapcsolunk. Ezután $U=15~{
 m V}$ feszültséget kapcsolunk az A és B pontok közé.
 - a) Mekkora áram folyik ebben az esetben az R_4 ellenálláson?
 - b) Mekkora lesz a D és C pontok közti feszültség?
 - c) Melyik ellenálláson szabadul fel a legtöbb hő? Mennyi hő szabadul fel 10 s alatt ezen az ellenálláson?

a)	b)	c)	Összesen
3 pont	3 pont	5 pont	11 pont

3. Egy nukleáris technológiát alkalmazó üzemből műszaki hiba miatt radioaktív jódizotópot tartalmazó víz szivárog folyamatosan a közeli folyóba. A folyó partján kilométerenként mérőállomások vannak, ahol a vízminták aktivitását mérik. Az első állomás az üzemtől egy kilométerre található, az itt kivett vízminta aktivitása a mérések szerint az elfogadott határérték nyolcszorosa. A jódizotóp felezési ideje 2,5 óra, a folyó sebessége 6 km/h, a vizsgált szakaszon

az első három mérőállomás

állandó. Tegyük fel, hogy a szennyezés a folyó vizében egyenletesen elkeveredik, mire az a mérőállomásokhoz ér.

- a) Mekkora folyószakasz minősül radioaktívan szennyezettnek, azaz mekkora folyószakaszon haladja meg a vízminták aktivitása az elfogadott határértéket?
- b) Hányadik mérőállomáson lesz a vízminta aktivitása az elfogadott határérték kétszerese?

írásbeli vizsga 0812 12 / 16 2008. május 14.

a)	b)	Összesen
7 pont	5 pont	12 pont

4. Egy függőleges üvegcsőben ideálisnak tekinthető gáz van, amelyet egy súrlódásmentesen mozgó dugattyú zár be. A gázoszlop magassága a csőben kezdetben $h_1=20\,\mathrm{cm}$. A gázt $t_2=50\,^{\circ}\mathrm{C}$ -ra felmelegítjük, a dugattyú eközben valamelyest feljebb emelkedik a csőben. Ezután egy súlyt helyezünk óvatosan a dugattyúra, és azt tapasztaljuk, hogy miközben a gáz hőmérséklete $t_3=t_2=50\,^{\circ}\mathrm{C}$ marad, a dugattyú pont visszakerül eredeti helyzetébe ($h_3=h_1$). Ezután $t_4=80\,^{\circ}\mathrm{C}$ -ra kell emelni a gáz hőmérsékletét, hogy a dugattyú ismét elérje az iménti magasságot ($h_4=h_2$).

- a) Mennyivel emelkedett meg a dugattyú, amikor $t_2 = 50$ °C -ra melegítettük a gázt?
- b) Mennyi a gáz kezdeti t_1 hőmérséklete?
- c) Hány százalékkal nagyobb a gáz nyomása a 3-as helyzetben, mint az 1-es helyzetben?

írásbeli vizsga 0812 14 / 16 2008. május 14.

a)	b)	c)	Összesen
5 pont	5 pont	4 pont	14 pont

Fizika —	emelt	szint

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
I. Feleletválasztós kérdéssor	30	
II. Esszé: tartalom	18	
II. Esszé: kifejtés módja	5	
III. Összetett feladatok	47	
ÖSSZESEN	100	

	-
javító tanár	

Dátum:

	elért pontszám	programba beírt pontszám
I. Feleletválasztós kérdéssor		
II. Esszé: tartalom		
II. Esszé: kifejtés módja		
III. Összetett feladatok		

javító tanár	jegyző
Dátum:	Dátum: