华中科技大学计算机学院 《计算机通信与网络》实验报告

实验名称	使用网络模拟器 PacketTracer

姓 名	班级	学 号	得 分

教师评语:

一 实验环境

- 1. 实验环境: 运行 Windows 10 64 位操作系统的 PC 机一台
- 2. PacketTracer 版本: 7.0.0.0202

二 实验目的

- 1. 正确安装和配置网络模拟器软件 PacketTracer。
- 2. 掌握使用 PacketTracer 模拟网络场景的基本方法,加深对网络环境、网络设备和网络协议交互过程等方面的理解。
 - 3. 观察与 IP 网络接口的各种网络硬件及其适用场合。

三 实验内容及步骤

3.1 软件安装

在思科官方网站中注册帐号并下载安装 PacketTracer,安装完成后,界面如下图:

图 1 PacketTracer 界面

下方提供了各种常见的网络设备,如 PC、交换机、路由器等等,我们可以直接拖动来搭建网络拓扑。

3.2 简单网络拓扑绘制

在工作区添加两台 PC 和一台 2960 交换机,用直通线连接如下:

图 2 搭建简单的网络拓扑

在上图中,绿色灯代表网络线路已联通正常,橙色代表网络线路无法联通, 需等待几秒钟。

待交换机两侧的等都变成绿色之后,进行一下简单的 ping 测试。

双击主机 0,选择 Config/FastEthernet0,配置 IP 和子网掩码如下: IP 选择静态配置,地址为 192.168.1.1,子网掩码为 255.255.255.0

	FastEthernet0
Port Status Bandwidth	✓ On 100 Mbps 10 Mbps ✓ Auto
Duplex	Half Duplex Full Duplex Auto
MAC Address	00E0.F90C.D396
IP Configuration DHCP Static IP Address Subnet Mask	192. 168. 1. 1 255. 255. 255. 0
IPv6 Configuration DHCP Auto Config Static IPv6 Address Link Local Address:FE80::2	

图 3 配置主机 0 的 IP

类似的,将主机 1 的 IP 地址配置为 192.168.1.2。然后双击主机 0,选择 Desktop/Command Prompt,执行 ping 192.168.1.2,测试是否可以 ping 通主机 1。

```
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>
```

图 4 ping 测试

观察到主机 1 给出了相应,验证网络拓扑配置正确。

3.3 观察与 IP 网络接口的各种网络硬件

在工作区添加一个路由器 2620XM,双击并选择 Physical/Modules,添加模 块 NM-1FE-2X 如下图:

图 5 路由器模块观察

通过拖动左边的模块,可以查看各个模块的接口情况。通过网上查阅资料,了解到各个模块的作用如下:

模块	作用
NM-1FE-FX	1 口快速以太网模块 FX 光纤接口
NM-1FE-TX	1 口快速以太网模块 TX 双绞线接口
NM-2FE2W	2 口 10/100 以太网 2 个广域网卡插槽
NM-8AM	8 口模拟 Modem 网络模块

NM 盖板可以保护内部的电子元件.有助于保持足够的冷却气流

表 1 路由器 2620XM 各模块作用

3.4 网络拓扑 (含路由器) 配置

NM cover plate

增添路由器等设备,重新构建网络拓扑,在工作区添加两台 PC 机和一台 1 841 路由器,选择自动添加链路,结果如下图,链路两端亮红灯表示链路不通:

图 6 新构建的网络拓扑

接下来配置网络设备,双击主机 2,选择 Desktop/IP Configration, IP 地址设置为 192.168.1.2,子网掩码设置为 255.255.255.0,默认网关设置为 192.168.1.1,如下图:

图7 主机IP配置

同样我们双击主机 3,设置 IP 地址为 192.168.2.2,子网掩码为 255.255.255. 0,默认网关为 192.168.2.2。

同时,路由器和交换机不同,交换机不需要配置但路由器需要手动配置,双击路由器,选择 Config/FastEthernet0/0,选择 IP Configuration,设置 IP 地址为 192.168.1.1,子网掩码为 255.255.255.0,选择 Config/FastEthernet0/1,设置 IP 地址为 192.168.2.1,子网掩码为 255.255.255.0,如下图:

图 8 路由器 IP 配置

当我们配置好 IP 之后,将端口的状态 Port Status 设置为 ON,就可以发现链路两端已经变成了绿色,如下图:

图 9 IP 配置完成后的网络拓扑

四 实验结果

4.1 ping 命令观察

接着就可以进行观察实验了,点击 PacketTracer 右下角进入模拟模式,双击 主机 2,执行 ping 192.168.2.2,同时点击模拟面板的自动捕获/播放,系统会开始演示 ping 命令的数据包传递过程,具体的过程如下图:

图 10 PacketTracer 模拟模式

我们可以看到数据包的传递过程:

图 11 PacketTracer 模拟数据包传递

在主机 2 上, 执行 ping 192.168.2.2, 尝试 ping 主机 3:

```
C:\>ping 192.168.2.2 with 32 bytes of data:

Request timed out.

Reply from 192.168.2.2: bytes=32 time=4ms TTL=127

Ping statistics for 192.168.2.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 4ms, Maximum = 4ms, Average = 4ms

C:\>
```

图 12 主机 2 尝试 ping 主机 3

当一打开端口,模拟就可以开始捕获结果。

一段时间以后,观察模拟面板中的事件列表,可以看到从打开端口开始到整个 ping 命令执行结束的过程中,捕获到的数据包如下:

Vis.	Time(sec)	Last Devi	At Devic	Type	Info	^
	99.396	===	路由器1	ARP		100
	99.396	10070	主机3	ARP		
	99.396		路由器1	ARP		
	99.396	2000	主机2	ARP		
	99.397	路由器1	主机3	ARP		
	99.397	主机3	路由器1	ARP		
	99.397	路由器1	主机2	ARP		
	00 207	±0.0	였나 모.	ADD		~

图 13 ping 命令模拟结果(一)

图 14 ping 命令模拟结果(二)

分析前两张图,从99.396 时刻到99.397 时刻是路由器刚刚打开端口的时刻,各个设备(路由器、两台主机)分别使用ARP包获取自身的MAC地址并存储在ARP表中,同时路由器的两个端口,主机2和主机3都广播发送ARP包(99.397 时刻的ARP包均为请求包)。

Vis.	Time(sec)	Last Devi	At Devic	Type	Info	^
(9)	159. 406		路由器1	ARP		
	159. 407	路由器1	主机3	ARP		
	159.408	主机3	路由器1	ARP		
	165.408	<u>124</u> 0	主机2	ICMP		has
	165.409	主机2	路由器1	ICMP		
	165.410	路由器1	主机3	ICMP		
	165.411	主机3	路由器1	ICMP		v
	165 410	吸出 554	T#0-	TOWN		•

图 15 ping 命令模拟结果(三)

从图二和图三可以看出,从 159.403 时刻开始, ping 命令执行, 简单分析一下过程:

主机 2 首先需要向路由器发送 ICMP 包,但主机 2 并没有路由器的 MAC 地址,于是首先 159.404 时刻,主机 2 向路由器(192.168.1.1)发送 ARP 包,路由器在 159.405 时刻,向路由器发送 ARP 应答包,在 159.406 时刻,路由器成功将 ICMP 包发向路由器。

159.407 和 159.408 两个时刻的数据包均为 ARP 应答包,发送成功之后,主机 3 的 ARP 表中就有了路由器 1 的 MAC 地址,此时,主机 2、路由器、主机 3 已经可以互相通信。

但此时 ping 命令已经超时,在命令行(图 12)中也可以看到第一个包是丢失了的,没有再继续发送。

Vis.	Time(sec)	Last Devi	At Devic	Type	Info
	165. 412	路由器1	主机2	ICMP	
	166.414	STEEL STEEL	主机2	ICMP	
	166.415	主机2	路由器1	ICMP	
	166.416	路由器1	主机3	ICMP	
	166.417	主机3	路由器1	ICMP	
	166.418	路由器1	主机2	ICMP	
	167.419	2 <u>25</u> 2	主机2	ICMP	
	167 100	†±110	· 아 마 모 ·	TOWN	

图 16 ping 命令模拟结果(四)

7.05° × 7.0	列表	The contract on	Terrostower es	T asy	No. or	700
Vis.	Time(sec)	Last Devi	At Devic	Type	Info	^
	166.417	主机3	路由器1	ICMP		
	166.418	路由器1	主机2	ICMP		
	167.419	2000	主机2	ICMP		
	167.420	主机2	路由器1	ICMP		
	167. 421	路由器1	主机3	ICMP		
	167.422	主机3	路由器1	ICMP		
	167.423	路由器1	主机2	ICMP		~
	1010 070		吸出吗,	ADD	5	×

图 17 ping 命令模拟结果 (五)

此后,从 165.408 时刻开始,ICMP 包正常传输,按照主机 2->路由器,路由器->主机 3,主机 3->路由器,路由器->主机 2 的顺序发送数据包。

4.2 tracert 命令观察

在主机 2 上, 执行 tracert 192.168.2.2, 点击自动捕获/播放, 终端输出如下图:

图 18 tracert 命令输出

一段时间以后,观察模拟面板中的事件列表,可以看到从打开端口开始到整个 ping 命令执行结束的过程中,捕获到的数据包如下:

Vis.	Time(sec)	Last Devi	At Devic	Type	Info	^
	150.084	<u> </u>	主机2	ICMP		100
	150.085	主机2	路由器1	ICMP		
	150.085	N-Nor	路由器1	ICMP		
	150.086	路由器1	主机2	ICMP		
	150.188	<u> 20.700</u> 0)	主机2	ICMP		
	150.189	主机2	路由器1	ICMP		
	150.189	100	路由器1	ICMP		_
	1E0 100	吹出 嬰 4	→ ±0.5	TOWN		~

图 19 tracert 命令演示结果(一)

Vis.	Time(sec)	Last Devi	At Devic	Type	Info	^
	150.190	路由器1	主机2	ICMP		
	150.294	1944	主机2	ICMP		
	150.295	主机2	路由器1	ICMP		
	150.295	\$. 	路由器1	ICMP		
	150.296	路由器1	主机2	ICMP		
	150.396	2 <u>444</u>	主机2	ICMP		
	150.397	主机2	路由器1	ICMP		~
	1EA 200	吸出吗。	†±∏o	TOWN		捕获到:

图 20 tracert 命令演示结果(二)

观察结果可以发现,从 150.084 时刻开始到 150.296 时刻,是 tracert 的第一级,主机 2 向路由器发送了 3 个包,路由器做出应答,同时也可以看见发送的 I CMP 包到路由器之后就被自己丢掉了,符合 tracert 设置的 TTL。

图 21 tracert 命令演示结果 (三)

图 22 tracert 命令演示结果(四)

从 150.397 时刻开始,即是 tracert 第二级的 3 个 ICMP 包发送的流程,主机 2->路由器,路由器->主机 3,主机 3->路由器,路由器->主机 2。

4.3 复杂拓扑

简单的利用主机,交换机,路由器构建如下的网络拓扑:

图 22 tracert 命令演示结果(四)

配置左边三个主机的 IP 为 192.168.1.2~192.168.1.4,右边三个主机为 192.16 8.2.2~192.168.2.4,配置路由器同上。

简单在主机 0 上执行以下 ping 192.168.2.4 命令,可以清晰地看到数据包整个的发送过程,包括 ARP 和交换机 STP 的广播,ICMP 包的传递等等。

图 23 模拟运行截图

五 实验中的问题及心得

5.1 实验中的问题

1.ARP包的原理与功能?

ARP(地址解析协议),其基本功能为透过目标设备的 IP 地址,查询目标设备的 MAC 地址。在以太网协议中规定,同一局域网中的一台主机要和另一台主机进行直接通信,必须要知道目标主机的 MAC 地址。但是在 TCP/IP 协议中,网络层和传输层只关心目标主机的 IP 地址。于是就需要一种协议,将网络层地址转换为链路层地址,这就是 ARP。

当一台主机接收到 ARP 请求包之后,会发送对应的 ARP 应答包,其中包含自己的 MAC 地址;当一台主机接收到 ARP 应答包之后,会将对应的 MAC 地址和 IP 地址记录到本机的 ARP 表中,这样就可以进行 MAC 地址和 IP 地址之间的转换了。

5.2 实验总结

本次实验练习了使用 PacketTracer 软件,了解了如何使用它来模拟真实的网络,同时也亲手模拟了一下两个常见命令的数据包发送方式,同时也查阅了解了一些上课中还没有讲到的问题,收获很多。