Principles of Mathematical Analysis

1 Measure Theory

1.1 Riemann Integral

For a bounded function $f:[a,b] \to \mathbb{R}$ and any partition of the interval [a,b], $P=\{a=x_0 < x_1 < \ldots < x_n = b\}$, we consider on each subinterval $I_j = [x_{j-1}, x_j], \quad j=1,\ldots,n$, the quantities:

$$M_j = \sup_{x \in I_j} f(x), \quad m_j = \inf_{x \in I_j} f(x).$$

We also define the upper and lower sums of f with respect to the partition P as:

$$U_f(P) = \sum_{j=1}^n M_j(x_j - x_{j-1}), \quad L_f(P) = \sum_{j=1}^n m_j(x_j - x_{j-1}).$$

For any two partitions P and Q of [a, b], we have:

$$L_f(P) \leq \text{Area under } f \leq U_f(Q).$$

If P has a value I such that:

$$\sup_{P} L_f(P) = I = \inf_{P} U_f(P),$$

then we say that f is Riemann integrable on [a,b] and define the Riemann integral of f over [a,b] as:

$$\int_{a}^{b} f(x) \, dx = I.$$

Continuous functions on closed intervals are Riemann integrable.

1.2 The Lebesgue Integral

A bounded function $f:[a,b] \to \mathbb{R}$ is said to be *Lebesgue integrable* on [a,b] if the set of points where f is discontinuous has zero measure.

A set $B \subset \mathbb{R}$ has measure zero if for every $\varepsilon > 0$, it can be covered by a countable collection of open intervals $\{(a_n, b_n)\}$ such that:

$$B \subset \bigcup_{n=1}^{\infty} (a_n, b_n)$$
 and $\sum_{n=1}^{\infty} (b_n - a_n) < \varepsilon$.

1.2.1 Example: Dirichlet Function

The Dirichlet function:

$$f(x) = \chi_{\mathbb{Q}}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}, \end{cases}$$

On the interval [0,1]:

We see that f is not Riemann integrable since it is discontinuous everywhere. But consider,

$$\mathbb{Q} = \{q_1, q_2, q_3, \ldots\}$$

and define:

$$f_1(x) = \chi_{\{q_1\}}(x) \to \text{integrable on } [0,1]$$

 $f_2(x) = \chi_{\{q_1,q_2\}}(x) \to \text{integrable on } [0,1]$

:

$$f_n(x) = \chi_{\{q_1,q_2,\dots,q_n\}}(x) \to \text{integrable on } [0,1]$$

Then,

$$\lim_{n \to \infty} f_n(x) = \chi_{\mathbb{Q}}(x).$$

1.2.2 Characteristic Function

For any set $A \subset \mathbb{R}$, the characteristic function $\chi_A : \mathbb{R} \to \{0,1\}$ is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A. \end{cases}$$

$$\int_0^1 f_1(x) \, dx = 0 = \int_0^1 f_2(x) \, dx = \dots = \int_0^1 f_n(x) \, dx = 0.$$

Let

$$f_n(x) = \begin{cases} x^n & \text{if } 0 \le x < 1, \\ 0 & \text{if } 1 \le x. \end{cases}$$

Then, with $f_n(x)$ continuous on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x \le 1. \end{cases}$$

so we can see that there is a discontinuity at x = 1.

Example

Let

$$f_n(x) = \begin{cases} -1 & \text{if } x \le -\frac{1}{n}, \\ \sin\left(\frac{n\pi x}{2}\right) & \text{if } -\frac{1}{n} \le x \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le x. \end{cases}$$

Then, with $f_n(x)$ continuous and differentiable on \mathbb{R} , we have:

$$\lim_{n \to \infty} f_n(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Example

The Dirichlet function is not integrable but it is the limit of a sequence of integrable functions, all with integral equal to zero.

We need to define a new kind of convergence.

1.3 Convergences

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges punctually to a function f on Dom(f) if:

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in Dom(f).$$

$$\forall \varepsilon > 0, \quad \forall x \in Dom(f), \quad \exists N(\varepsilon, x) \in \mathbb{N} : n > N \implies |f_n(x) - f(x)| < \varepsilon.$$

A sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to a function f on Dom(f) if:

$$\forall \varepsilon, \exists N : n > N \implies |f_n(x) - f(x)| < \varepsilon, \forall x \in Dom(f).$$

Example

Let

$$f_n(x) = \frac{1}{n}\sin(nx), \quad x \in \mathbb{R}. \to^{n \to \infty} f(x) = 0.$$

1.3.1 Uniform Convergence

1. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous, then:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

- 2. If $\{f_n\}_{n\in\mathbb{N}}$ converges uniformly to f on [a,b] and each f_n is continuous in [a,b], then f is continuous on [a,b].
- 3. If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of differentiable functions on [a,b] that converges punctually to some continuous function f on [a,b] and if the sequence of derivatives $\{f'_n\}_{n\in\mathbb{N}}$ converges uniformly to some continuous function g, then f is differentiable on (a,b) and:

$$f'(x) = g(x) = \lim_{n \to \infty} f'_n(x).$$

1.3.2 Henri Lebesgue (1875-1941)

How can we count money in bills?

- 1. Add each amount as the bills come in. (Riemann)
- 2. Make groups by denomination and count each group. (Lebesgue)

This is the idea behind the Lebesgue integral.

1.4 Cantor Ternary Set

Step 1: [0,1]

Step 2: Remove middle third

Step 3: Remove middle thirds of remaining

The Cantor set C is obtained by removing the open middle third of each remaining interval at each step. Then,

$$C = [0,1] \setminus J = \bigcup_{n=1}^{\infty} J_n,$$

where J is the union of all removed intervals and J_n is the set remaining after n steps. For the measure of C:

$$|J| = \sum_{n=1}^{\infty} |J_n| = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots = 1.$$

Thus, the measure of the Cantor set C is:

$$|C| = |[0,1]| - |J| = 1 - 1 = 0.$$

The Cantor set is not empty; it contains points such as 0, 1, and all endpoints of the removed intervals. It has the following properties:

- It does not contain any intervals.
- It is closed and bounded, hence compact.
- It is a perfect set, which means it is closed and every point is an accumulation point.
- It is uncountable, because there is a bijection between the Cantor set and the interval [0, 1] using ternary representation:

$$\Phi : [0,1] \to C$$
,

where each $x \in C$ is expressed in base 3, and has the form:

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \quad a_n \in \{0, 2\}.$$

Then, for each $x \in [0,1]$ we define:

$$x = \sum_{n=1}^{\infty} \frac{b_n}{2^n}, \quad b_n \in \{0, 1\}.$$

We can then define:

$$\Phi(x) = \sum_{n=1}^{\infty} \frac{2b_n}{3^n}.$$

Now, $2b_n \in \{0,2\}$ so $\Phi(x) \in C$. This function is bijective, hence C is uncountable.

2 Measurable Spaces and Topological Spaces

A Topological Space (X, \mathcal{T}) is a collection \mathcal{T} of subsets of a set X in a topology such that:

- The empty set \emptyset and the whole set X are in \mathcal{T} .
- The union of any collection of sets in \mathcal{T} is also in \mathcal{T} .
- The intersection of any finite number of sets in \mathcal{T} is also in \mathcal{T} .

Example: The Real Line

Let $X = \mathbb{R}$ and \mathcal{T} be the collection of all open intervals (a, b) where a < b and $a, b \in \mathbb{R}$. Then $(\mathbb{R}, \mathcal{T})$ is a topological space. One can observe that if, for instance, we take the intersection of open intervals like:

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\},\$$

which is not an open set, hence the requirement for finite intersections.

The sets in a topology \mathcal{T} are called *open sets*. For example, with $X = \overline{\mathbb{R}} = [-\infty, \infty]$, the open sets are all intervals of the form (a, b) where a < b. Then, we say that $(\overline{\mathbb{R}}, \mathcal{T})$ is a topological space.

2.1 Metric Spaces

A set X is a metric space if there exists a distance function $d: X \times X \to [0, \infty)$, such that for all $x, y, z \in X$:

- d(x,y) = 0 if and only if x = y (identity of indiscernibles).
- d(x,y) = d(y,x) (symmetry).
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

An open ball of center $x \in X$ and radius r > 0 is defined as:

$$B(x,r) = \{ y \in X : d(x,y) < r \}.$$

2.2 Continuity

A function $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ is continuous at a point $x_0\in[a,b]$ if for every $\varepsilon>0$, there exists a $\delta>0$ such that for all $x\in[a,b]$:

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.$$

2.2.1 Neighborhoods

A neighborhood of a set A is any open set that contains A. If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces, and $f: X \to Y$ is a mapping, then f is continuous at a point $x_0 \in X$ if for every neighborhood V of $f(x_0)$ in Y, there exists a neighborhood U of x_0 in X such that:

$$f(U) \subset V$$
.

Observation

This is equivalent to the ε - δ definition on the \mathbb{R}^n spaces.

2.2.2 Global Continuity

If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and $f: X \to Y$ is a mapping, then f is globally continuous if:

$$f^{-1}(V) = \{x \in X : f(x) \in V\} \in \mathcal{T}_X, \quad \forall V \in \mathcal{T}_Y.$$

where $f^{-1}(V)$ is the preimage of V under f.

So, f is continuous if the preimage of every open set in Y is an open set in X.

2.2.3 Proposition

If (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces and $f: X \to Y$ is a mapping, then f is continuous if it is continuous at every point $x \in X$.

2.3 Measurable Spaces

A collection \mathcal{A} of subsets of a space X is a σ -algebra if:

- 1. $\emptyset \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^C \in \mathcal{A}$.
- 3. If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection with each $A_j\in\mathcal{A}$, then:

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$$

The sets of \mathcal{A} are called measurable sets. The pair (X, \mathcal{A}) is called a measurable space. If the third property holds for finite collections, then \mathcal{A} is called an algebra.

Example

Is \mathbb{R} with the topology of the usual open sets a σ -algebra? No, because

$$(a,b) \in \mathcal{T}$$
 but $(a,b)^C = (-\infty, a] \cup [b,\infty) \notin \mathcal{T}$.

Example

The collection $\mathcal{P}(X)$, the power set of X, is a σ -algebra on X. On X, the collection $\{\emptyset, X\}$ is the smallest σ -algebra.

2.3.1 Properties of measurable spaces

If (X, \mathcal{A}) is a measurable space, then:

- 1. If $\emptyset \in \mathcal{A}$, then $\emptyset^C = X \in \mathcal{A}$.
- 2. If $A_1, A_2, \ldots, A_n \in \mathcal{A}$, then:

$$\bigcup_{j=1}^{n} A_j \in \mathcal{A}.$$

3. If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection with each $A_j\in\mathcal{A}$ then, following the second property of σ -algebras:

$$A_i^C \in \mathcal{A}, \quad \forall j \in \mathbb{N}.$$

Then, by the third property of σ -algebras:

$$\bigcup_{j=1}^{\infty} A_j^C \in \mathcal{A}.$$

Finally, by the second property again:

$$\left(\bigcup_{j=1}^{\infty} A_j^C\right)^C = \bigcap_{j=1}^{\infty} A_j \in \mathcal{A}.$$

4. If $A, B \in \mathcal{A}$, then:

$$A \setminus B = A \cap B^C \in \mathcal{A}.$$

2.3.2 Proposition

If $S \subset \mathcal{P}(X)$, then $\sigma(S)$ is called the σ -algebra generated by S:

$$\sigma(S) = \mathcal{A}_S = \bigcap \{\mathcal{A} : \mathcal{A} \text{ is a } \sigma\text{-algebra and } S \subseteq \mathcal{A} \subseteq \mathcal{P}(X)\}.$$

Example

Let $X = \{1, 2, 3, 4\}$ and $S = \{\{1\}, \{3, 4\}\}$. Then:

$$\sigma(S) = \{\emptyset, X, \{1\}, \{2, 3, 4\}, \{3, 4\}, \{1, 2\}, \{2\}, \{1, 3, 4\}\}.$$

2.3.3 Borel σ -algebra

The Borel σ -algebra on X, denoted by $\mathcal{B}(X)$, is the σ -algebra generated by the open sets of X,

$$\mathcal{B}(X) = \sigma(\mathcal{T}(X)).$$

Its elements are called *Borel sets*.

Example

The Borel σ -algebra on \mathbb{R} , $\mathcal{B}(\mathbb{R})$, contains all open intervals, closed intervals, countable sets, and complements of these sets. Examples of these Borel sets include:

$$(a,b), [a,b], (a,b], [a,b), \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q}, \{x\}, \mathbb{R}, \emptyset.$$

3 Measurable functions and Integration

A mapping $f:(X,\mathcal{A})\to (Y,\mathcal{T})$, where (X,\mathcal{A}) is a measurable space and (Y,\mathcal{T}) is a topological space, is said to be a *measurable function* if the preimage of every open set in Y is a measurable set in X. Formally, for every open set $V\in\mathcal{T}_Y$, we have:

$$f^{-1}(V) = \{x \in X : f(x) \in V\} \in \mathcal{A}.$$

Observation

A mapping $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ between two topological spaces is continuous if

$$\forall V \in \mathcal{T}_V, \quad f^{-1}(V) \in \mathcal{T}_X.$$

Example

If (X, \mathcal{A}) is a measurable space and $A \in \mathcal{A}$, then the characteristic function $\chi_A : X \to \{0, 1\}$ defined by:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{if } x \notin A, \end{cases}$$

is a measurable function.

Now, let us consider $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{T})$. For any $V\in\mathcal{T}$, we have:

$$V = (a, b)$$
 or $V = (a, b) \cup (c, d) \cup \dots$

Then, we can analyze the preimage of V under f:

$$f^{-1}(V) = \begin{cases} A, & \text{if } 1 \in V \\ X \setminus A, & \text{if } 1 \notin V \end{cases}$$

Since both A and $X \setminus A$ are in A, it follows that χ_A is a measurable function.

Let $X = \{1, 2, 3\}$ and $\mathcal{A} = \{\emptyset, X\}$. Define $f: X \to \mathbb{R}$ by:

$$f(1) = f(2) = f(3) = 5.$$

Then, for any open set $V \subset \mathbb{R}$:

$$f^{-1}(V) = \begin{cases} X, & \text{if } 5 \in V \\ \emptyset, & \text{if } 5 \notin V \end{cases}$$

Since both X and \emptyset are in A, f is a measurable function.

3.1 Composition of Functions and Measurability

Consider two topological spaces (Y, \mathcal{T}_Y) and (Z, \mathcal{T}_Z) , and a continuous function $g: Y \to Z$:

- 1. If (X, \mathcal{T}_X) is a topological space and $f: X \to Y$ is continuous, then the composition $h = g \circ f: X \to Z$ is continuous.
- 2. If (X, A) is a measurable space and $f: X \to Y$ is measurable, then the composition $h = g \circ f: X \to Z$ is measurable.

Proof. Consider any open set $V \in \mathcal{T}_Z$. Since g is continuous, the preimage $g^{-1}(V) \in \mathcal{T}_Y$ (it is also an open set, now in \mathbb{T}_Y). And then, $f^{-1}(g^{-1}(V)) \in \mathcal{T}_X$ (that is, it is an open set in \mathbb{T}_X). Observe that the preimage of $g^{-1}(V)$ under f is:

$$h^{-1}(V) = (g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)).$$

Now consider any open set $V \in \mathcal{T}_Z$. Since g is continuous, the preimage $g^{-1}(V) \in \mathcal{T}_Y$. And then, $f^{-1}(g^{-1}(V)) \in \mathcal{A}$ (that is, it is a measurable set in \mathcal{A}).

On \mathbb{R} with \mathcal{T} the topology of the open sets, the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is generated by the open sets of \mathbb{R} . Then $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is a measurable space.

3.2 Theorem: Characterizations of Measurable Functions

Given a measurable space (X, \mathcal{A}) and $f: X \to \mathbb{R}$, the following statements are equivalent:

- 1. f is measurable.
- 2. For every $a \in \mathbb{R}$, the set $\{x \in X : f(x) > a\} \in \mathcal{A}$.
- 3. For every $a \in \mathbb{R}$, the set $\{x \in X : f(x) \ge a\} \in \mathcal{A}$.
- 4. For every $a \in \mathbb{R}$, the set $\{x \in X : f(x) < a\} \in \mathcal{A}$.
- 5. For every $a \in \mathbb{R}$, the set $\{x \in X : f(x) \leq a\} \in \mathcal{A}$.
- 6. For every $a, b \in \mathbb{R}$ with a < b, the set $\{x \in X : a < f(x) < b\} \in \mathcal{A}$.
- 7. The preimage of every open, closed, or Borel set in \mathbb{R} is in A.

3.3 Lemma

Given a measurable function $f:(X,\mathcal{A})\to(\mathbb{R},\mathcal{T})$, the family of sets:

$$\mathcal{A}_f = \{ B \in \mathbb{R} : f^{-1}(B) \in \mathcal{A} \}$$

is a σ -algebra on \mathbb{R} , and it is called the *image* σ -algebra. Then \mathcal{A}_f contains the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ because by definition,

$$(a, \infty) \in \mathcal{A}_f$$
 for all $a \in \mathbb{R}$.

Proof. To show that A_f is a σ -algebra, we need to verify the three properties:

- 1. Since $f^{-1}(\emptyset) = \emptyset$ and $\emptyset \in \mathcal{A}$, we have $\emptyset \in \mathcal{A}_f$.
- 2. If $B \in \mathcal{A}_f$, then $f^{-1}(B) \in \mathcal{A}$. Since \mathcal{A} is a σ -algebra, $f^{-1}(B)^C = f^{-1}(B^C) \in \mathcal{A}$. Thus, $B^C \in \mathcal{A}_f$.
- 3. If $\{B_j\}_{j\in\mathbb{N}}$ is a countable collection with each $B_j \in \mathcal{A}_f$, then $f^{-1}(B_j) \in \mathcal{A}$ for all j. Since \mathcal{A} is a σ -algebra, we have:

$$\bigcup_{j=1}^{\infty} f^{-1}(B_j) = f^{-1}\left(\bigcup_{j=1}^{\infty} B_j\right) \in \mathcal{A}.$$

Therefore, $\bigcup_{j=1}^{\infty} B_j \in \mathcal{A}_f$.

3.4 Measure and Measure Space

A measure on a measurable space (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, \infty]$ such that:

- 1. $\mu(\emptyset) = 0$.
- 2. If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection of pairwise disjoint sets in \mathcal{A} , then:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j).$$

The triple (X, \mathcal{A}, μ) is called a measure space.

Observation

Also, there exist negative measures, where $\mu: \mathcal{A} \to [-\infty, \infty]$, and complex measures, where $\mu: \mathcal{A} \to \mathbb{C}$. Furthermore, if $\mu(X) = 1$, then (X, \mathcal{A}, μ) is called a *probability space*.

Example

Consider the space $X = \{1, 2, 3\}$ and the σ -algebra $\mathcal{A} = \{\emptyset, X, \{1, 2\}, \{3\}\}$. Define the measure $\mu : \mathcal{A} \to [0, \infty)$ by:

$$\mu(\emptyset) = \mu(\{1,2\}) = 0, \quad \mu(X) = \mu(\{3\}) = 1.$$

Observe that (X, \mathcal{A}, μ) is a probability space. Also, the measure is countably additive since:

$$\mu(X) = 1 = \mu(\{1, 2\}) + \mu(\{3\}) = 0 + 1 = 1.$$

Observation

On any set X with the σ -algebra \mathcal{A} , we can define a measure $\mu : \mathcal{A} \to [0, \infty]$ using a weight function:

$$p: X \to [0, \infty], \quad p(x)$$
 is the weight of x.

If $A \in \mathcal{A}$, then:

$$\mu(A) = \sum_{x \in A} p(x) := \sup_{\{x_1, \dots, x_n\} \subseteq A} \sum_{j=1}^n p(x_j).$$

Example

On $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$, we can use the weight function $p(x) = 1, \forall x \in \mathbb{N}$. Then, we obtain the *counting* measure:

$$\mu(A) = \sum_{x \in A} 1 = |A|.$$

Example

Now let p(x) = 1 for x = a, and p(x) = 0 for $x \neq a$. Then, we obtain the *Dirac-\delta* measure at a:

$$\mu(A) = \sum_{x \in A} p(x) = \begin{cases} 1 & \text{if } a \in A, \\ 0 & \text{if } a \notin A. \end{cases}$$

3.5 Theorem: Properties of Measures

Let (X, \mathcal{A}, μ) be a measure space. Then,

1. If $A_1, A_2, \ldots, A_n \in \mathcal{A}$ disjoint, then:

$$\mu\left(\bigcup_{j=1}^{n} A_j\right) = \sum_{j=1}^{n} \mu(A_j).$$

Proof. Define $\emptyset = A_{n+1}, A_{n+2}, \dots$ Then, by the properties of measures:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j) = \sum_{j=1}^{n} \mu(A_j) + \sum_{j=n+1}^{\infty} \mu(\emptyset) = \sum_{j=1}^{n} \mu(A_j) + 0 = \sum_{j=1}^{n} \mu(A_j).$$

2. If $A, B \in \mathcal{A}$ and $A \subseteq B$, then:

$$\mu(A) \le \mu(B)$$
.

And if $\mu(A) < \infty$, then:

$$\mu(B \setminus A) = \mu(B) - \mu(A).$$

Proof. Since $A \subseteq B$, we can write $B = A \cup (B \setminus A)$ with A and $B \setminus A$ disjoint. Then, by the properties of measures:

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

If $\mu(A) < \infty$, then rearranging gives:

$$\mu(B \setminus A) = \mu(B) - \mu(A).$$

3. If $\{A_j\}_{j\in\mathbb{N}}$ is a sequence of sets in \mathcal{A} (i.e., $A_1\subseteq A_2\subseteq A_3\subseteq\ldots$), then:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) \le \sum_{j=1}^{\infty} \mu(A_j).$$

4. If $\{A_i\}_{i\in\mathbb{N}}$ is a sequence of increasing sets in \mathcal{A} (i.e., $A_1\subseteq A_2\subseteq A_3\subseteq\ldots$), then:

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} \mu(A_n) = \sup_{n \in \mathbb{N}} \mu(A_n).$$

5. If $\{A_j\}_{j\in\mathbb{N}}$ is a sequence of decreasing sets in \mathcal{A} (i.e., $A_1\supseteq A_2\supseteq A_3\supseteq\ldots$) and $\mu(A_1)<\infty$, then:

$$\mu\left(\bigcap_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} \mu(A_n) = \inf_{n \in \mathbb{N}} \mu(A_n).$$

Example

Let $X = \mathbb{N}$ and $A_n = \{n, n+1, n+2, \ldots\}$. Consider the counting measure μ on $\mathcal{A} = \mathcal{P}(\mathbb{N})$. Then:

$$A_1 \supset A_2 \supset A_3 \supset \dots$$
 and $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Thus:

$$\mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \mu(\emptyset) = 0.$$

However, $\mu(A_1) = \infty$, so the condition $\mu(A_1) < \infty$ is necessary.

3.6 Completion of Measure Spaces

A property is said to hold *almost everywhere* (a.e.) if it holds everywhere except on a set of measure zero. A set with measure zero is called a *null set*.

Consider the space $X = \{1, 2, 3\}$ with the σ -algebra $\mathcal{A} = \{\emptyset, X, \{1, 2\}, \{3\}\}$ and the measure $\mu : \mathcal{A} \to [0, \infty)$ defined by:

$$\mu(\emptyset) = \mu(\{1,2\}) = 0, \quad \mu(X) = \mu(\{3\}) = 1.$$

Then, the set $\{1,2\}$ is a null set since $\mu(\{1,2\}) = 0$, and (X, \mathcal{A}, μ) is a measure space. Let us define the functions $f, g: X \to \mathbb{R}$ by:

$$f(1) = f(2) = f(3) = 3, \quad g(x) = x.$$

Then, f(x) = g(x) almost everywhere since they differ only on the null set $\{1, 2\}$. However, f is measurable while g is not, because:

$$g^{-1}((2,4)) = \{3\} \in \mathcal{A},$$

but

$$g^{-1}((0,2)) = \{1\} \notin \mathcal{A}.$$

A measure space (X, \mathcal{A}, μ) is said to be *complete* if every subset E of a null set N is measurable.

$$\forall N \in \mathcal{A} \text{ with } \mu(N) = 0, \quad \forall E \subseteq N, \quad E \in \mathcal{A}.$$

Example

Consider $X = \mathbb{N}$ with the σ -algebra $\mathcal{A} = \mathcal{P}(\mathbb{N})$ and a counting measure μ . Since the only null set is \emptyset , every subset of a null set is measurable. Thus, $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ is a complete measure space.

Now, consider a Dirac- δ measure μ at $a \in \mathbb{R}$ on $\mathcal{P}(\mathbb{R})$. The Dirac measure is defined by:

$$\mu(E) = \begin{cases} 1 & \text{if } a \in E, \\ 0 & \text{if } a \notin E. \end{cases}$$

In this case, the null set is \emptyset , and every subset of \emptyset is measurable. Thus, $(\mathbb{R}, \mathcal{P}(\mathbb{R}), \mu)$ is also a complete measure space.

3.7 Theorem: Completion of a Measure Space

Given a measure space (X, \mathcal{A}, μ) , we can construct its completion $(X, \overline{\mathcal{A}}, \overline{\mu})$ as follows:

- 1. Define $\mathcal{N} = \{ N \in \mathcal{A} : \mu(N) = 0 \}$ as the collection of null sets.
- 2. Define $\overline{A} = \{A \cup N : A \in A, N \in \mathcal{N}\}$ as the collection of sets formed by the union of a measurable set and a null set.
- 3. Define $\overline{\mu}: \overline{\mathcal{A}} \to [0, \infty]$ by:

$$\overline{\mu}(A \cup N) = \mu(A), \text{ for } A \in \mathcal{A}, N \in \mathcal{N}.$$

Then, $(X, \overline{\mathcal{A}}, \overline{\mu})$ is a complete measure space. Furthermore, $\overline{\mathcal{A}}$ is the smallest σ -algebra containing \mathcal{A} , and $\overline{\mu}$ is a complete measure extending μ .

Proof. To show that $\overline{\mathcal{A}}$ is a σ -algebra, we need to verify the three properties:

1. Since $\emptyset \in \mathcal{A}$ and $\emptyset \in \mathcal{N}$, we have $\emptyset = \emptyset \cup \emptyset \in \overline{\mathcal{A}}$.

2. If $B = A \cup N \in \overline{\mathcal{A}}$ with $A \in \mathcal{A}$ and $N \in \mathcal{N}$, then:

$$B^{C} = (A \cup N)^{C} = A^{C} \cap N^{C} = (A^{C} \cap X) \cup (A^{C} \cap N^{C}).$$

Since $A^C \in \mathcal{A}$ and $N^C \in \mathcal{A}$, we have $B^C \in \overline{\mathcal{A}}$.

3. If $\{B_j\}_{j\in\mathbb{N}}$ is a countable collection with each $B_j=A_j\cup N_j\in\overline{\mathcal{A}}$, where $A_j\in\mathcal{A}$ and $N_j\in\mathcal{N}$, then:

$$\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} (A_j \cup N_j) = \left(\bigcup_{j=1}^{\infty} A_j\right) \cup \left(\bigcup_{j=1}^{\infty} N_j\right).$$

Since $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$ and $\bigcup_{j=1}^{\infty} N_j \in \mathcal{N}$, we have $\bigcup_{j=1}^{\infty} B_j \in \overline{\mathcal{A}}$.

Now we need to check wether $\overline{\mu}$ is well-defined on $\overline{\mathcal{A}}$ and satisfies the properties of a measure:

1. For any $B = A \cup N \in \overline{\mathcal{A}}$ with $A \in \mathcal{A}$ and $N \in \mathcal{N}$, we have:

$$\overline{\mu}(B) = \overline{\mu}(A \cup N) = \mu(A) \ge 0.$$

2. If $\{B_j\}_{j\in\mathbb{N}}$ is a countable collection of pairwise disjoint sets in $\overline{\mathcal{A}}$, where $B_j = A_j \cup N_j$ with $A_j \in \mathcal{A}$ and $N_j \in \mathcal{N}$, then:

$$\bigcup_{j=1}^{\infty} B_j = \left(\bigcup_{j=1}^{\infty} A_j\right) \cup \left(\bigcup_{j=1}^{\infty} N_j\right).$$

Since the B_j are pairwise disjoint, the A_j are also pairwise disjoint. Thus, by the properties of measures:

$$\overline{\mu}\left(\bigcup_{j=1}^{\infty} B_j\right) = \mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j) = \sum_{j=1}^{\infty} \overline{\mu}(B_j).$$

Example

Consider the space $X = \{1, 2, 3\}$ with the σ -algebra $\mathcal{A} = \{\emptyset, X, \{1, 2\}, \{3\}\}$ and the measure $\mu : \mathcal{A} \to [0, \infty)$ defined by:

$$\mu(\emptyset) = \mu(\{1,2\}) = 0, \quad \mu(X) = \mu(\{3\}) = 1.$$

Then, the null set is $\mathcal{N} = \{\emptyset, \{1, 2\}\}$. The completion of the measure space is given by:

$$\overline{\mathcal{A}} = \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, X\} = \mathcal{P}(X).$$

The completed measure $\overline{\mu}: \overline{\mathcal{A}} \to [0, \infty)$ is defined by:

$$\overline{\mu}(\emptyset) = \overline{\mu}(\{1\}) = \overline{\mu}(\{2\}) = \overline{\mu}(\{1,2\}) = 0, \quad \overline{\mu}(\{3\}) = \overline{\mu}(\{1,3\}) = \overline{\mu}(\{2,3\}) = \overline{\mu}(X) = 1.$$

3.8 Semi-algebra

A collection $\mathcal{E} \subseteq \mathcal{P}(X)$ is called a *semi-algebra* if:

- 1. $\emptyset \in \mathcal{E}$.
- 2. If $A, B \in \mathcal{E}$, then $A \cap B \in \mathcal{E}$.
- 3. If $A \in \mathcal{E}$, then $A^C = B_1 \cup B_2 \cup \ldots \cup B_n$ where $B_j \in \mathcal{E}$ for $j = 1, 2, \ldots, n$.

On \mathbb{R} , the collection of all intervals of the form:

$$(a,b), [a,b), (a,b], [a,b], (-\infty,a), (-\infty,a], (a,\infty), [a,\infty),$$

where $a, b \in \mathbb{R}$, is a semi-algebra.

A set function $\mu: X \to [0, \infty]$ is σ -finite if

$$X = \bigcup_{j=1}^{\infty} X_j, \quad X_j \in X, \quad \mu(X_j) < \infty \text{ for all } j.$$

and we say that X is σ -finite with respect to μ .

3.9 Operations with infinity

The following conventions are used when dealing with infinity in measure theory:

- $a + \infty = \infty + a = \infty$ for any $a \in [0, \infty]$.
- $a \cdot \infty = \infty \cdot a = \infty$ for any $a \in (0, \infty]$.
- $0 \cdot \infty = \infty \cdot 0 = 0$.
- Cancellation law: If $a, b \in [0, \infty]$ and $c \in (0, \infty]$, then:

$$a+c=b+c \implies a=b.$$

• If $a, b \in [0, \infty]$ and $c \in (0, \infty)$, then:

$$a \cdot c = b \cdot c \implies a = b.$$

3.10 Outer Measure

An outer measure on a set X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that:

- 1. $\mu^*(\emptyset) = 0$.
- 2. If $A \subseteq B \subseteq X$, then $\mu^*(A) \leq \mu^*(B)$.
- 3. If $\{A_j\}_{j\in\mathbb{N}}\subseteq\mathcal{P}(X)$, then:

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^*(A_j).$$

Example

Consider the set $X = \{1, 2, 3\}$ and define the function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by:

$$\mu^*(A) = \begin{cases} 0 & \text{if } A = \emptyset, \\ 1 & \text{if } A \neq \emptyset. \end{cases}$$

Then, μ^* is an outer measure on X since it satisfies the three properties:

1.
$$\mu^*(\emptyset) = 0$$
.

2. If $A \subseteq B$, then:

$$\mu^*(A) \le \mu^*(B)$$

holds trivially since both sides are either 0 or 1.

3. For any collection $\{A_j\}_{j\in\mathbb{N}}$, we have:

$$\mu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \mu^*(A_j)$$

since the left side is either 0 or 1, and the right side is at least 0.

Remark

Given an outer measure μ^* on a set X, a set $A \subseteq X$ is said to be μ^* -measurable if:

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C)$$
 for all $E \subseteq X$.

3.11 Caratheodory-Hopf's Theorem

Consider $\mathcal{M} = \{ M \subseteq X : M \text{ is } \mu^*\text{-measurable} \}$. Then:

- 1. \mathcal{M} is a σ -algebra.
- 2. The restriction $\mu = \mu^*|_{\mathcal{M}}$ is a complete measure on \mathcal{M} .

To define an outer measure, we can start with a semi-algebra. Consider a semi-algebra $\mathcal{E} \subseteq \mathcal{P}(X)$ and a countably additive function $\mu_0 : \mathcal{E} \to [0, \infty]$. Then, we can define an outer measure μ^* for all $A \subseteq \mathcal{P}(X)$:

$$\mu^*(A) = \inf \left\{ \sum_{j=1}^{\infty} \mu_0(E_j) : A \subseteq \bigcup_{j=1}^{\infty} E_j, E_j \in \mathcal{E} \right\}.$$

and define $\mathcal{M} = \{ M \subseteq X : M \text{ is } \mu^*\text{-measurable} \}$. Then:

- 1. μ^* is an outer measure and $\mu^*|_{\mathcal{M}} = \mu$ is a complete measure on \mathcal{M} , where μ extends μ_0 .
- 2. If μ_0 is σ -finite, then μ is the unique extension of μ_0 to a measure on $\sigma(\mathcal{E})$.

3.12 Semi-open Intervals and Elementary Measure

A semi-open interval in \mathbb{R}^n is a set of the form:

$$I = I_1 \times I_2 \times \ldots \times I_n$$

where each I_j is a semi-open interval in \mathbb{R} . The collection \mathcal{E} of all semi-open intervals in \mathbb{R}^n forms a semi-algebra. Furthermore, $\sigma(\mathcal{E})$ is the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$.

The elementary measure μ_0 of a semi-open interval $I = I_1 \times I_2 \times \ldots \times I_n$ is defined as:

$$\mu_0(I) = \prod_{j=1}^n (b_j - a_j),$$

where $I_j = [a_j, b_j)$ for j = 1, 2, ..., n. If any I_j is of the form $(-\infty, b_j)$ or $[a_j, \infty)$ (i.e., unbounded), we set $\mu_0(I) = \infty$. Also, $\mu_0(I_j = \emptyset) = 0$. This elementary measure μ_0 is countably additive on the semi-algebra \mathcal{E} . It is σ -finite since:

$$X = \bigcup_{i=1}^{\infty} X_n$$
 such that $\mu_0(X_n) < \infty$.

3.13 Theorem: Lebesgue Measure

There exists a unique measure space $(\mathbb{R}^n, \mathcal{M}, m)$ such that

$$\mathcal{M} = \overline{\mathcal{B}(\mathbb{R}^n)}$$
 and $m|_{\mathcal{E}} = \mu_0$.

In particular,

- 1. $\forall M \in \mathcal{M}, m = B \cup N$ where $B \in \mathcal{B}(\mathbb{R}^n)$ and N is a null set, i.e., m(N) = 0.
- 2. $\forall N \in \mathcal{M}$ with m(N) = 0, there exists $B \in \mathcal{B}(\mathbb{R}^n)$ such that $N \subseteq B$ and m(B) = 0.

This unique measure m is called the *Lebesgue measure* on \mathbb{R}^n . The Lebesgue measure fulfills the following properties:

1. Define $\mathcal{N} = \{N \in \mathcal{M} : m(N) = 0\}$ as the collection of null sets. Then, if $\{N_k\}_{k=1}^{\infty} \subseteq \mathcal{N}$ is a sequence of null sets, we have:

$$\bigcup_{k=1}^{\infty} N_k \in \mathcal{N}.$$

- 2. If $a \in \mathbb{R}^n$ is a point, then $\{a\} \in \mathcal{N}$ and $m(\{a\}) = 0$.
- 3. If $A \subseteq \mathbb{R}^n$ is countable, then $A \in \mathcal{N}$ and m(A) = 0.
- 4. There exist non-countable sets in \mathcal{N} . For example, the Cantor ternary set $\mathcal{C} \subseteq [0,1]$ is uncountable and $m(\mathcal{C}) = 0$.
- 5. If $H \subseteq \mathbb{R}^n$ is a shifted (n-1)-dimensional hyperplane, then $H \in \mathcal{N}$ and m(H) = 0.
- 6. The Borelian σ -algebra $\mathcal{B}(\mathbb{R}^n)$ is strictly contained in \mathcal{M} , i.e., $\mathcal{B}(\mathbb{R}^n) \subsetneq \mathcal{M} \subsetneq \mathcal{P}(\mathbb{R}^n)$.
- 7. If $A \subset \mathbb{R}^n$ is an open set, then $A \in \mathcal{M}$ and m(A) > 0.
- 8. If $K \subset \mathbb{R}^n$ is a compact set (i.e., closed and bounded), then $K \in \mathcal{M}$ and $m(K) < \infty$.

9. The Lebesgue measure m is regular, i.e., for every $A \in \mathcal{M}$:

$$m(A) = \inf\{m(U) : U \supseteq A, U \text{ open}\} = \sup\{m(K) : K \subseteq A, K \text{ compact}\}.$$

3.13.1 Theorem: Heine-Borel

On \mathbb{R}^n , a set K is compact if and only if it is closed and bounded. In general, on a topological space, a set is compact if for any $\{B_i\}_{i\in A}$ such that:

$$K \subset \bigcup_{j \in A} B_j,$$

there exists a finite subcover $\{B_{j_1}, B_{j_2}, \dots, B_{j_n}\}$ such that:

$$K \subset \bigcup_{i=1}^{n} B_{j_i}$$
.

A measure μ on a topological space with its Borel σ -algebra is called a *Radon measure* if it is finite on compact sets and outer regular on Borel sets.

Observation

The Lebesgue measure m on \mathbb{R}^n is a Radon measure. What are the other Radon measures on \mathbb{R}^n ?

3.13.2 Theorem: Characterization of Radon Measures on \mathbb{R}^n

The Lebesgue measure m is the unique translation-invariant Radon measure on \mathbb{R}^n (up to a multiplicative constant).

1. $(\mathbb{R}^n, \mathcal{M}, m)$ is translation-invariant, i.e., for any $A \in \mathcal{M}$ and any $x \in \mathbb{R}^n$:

$$m(A+x) = m(A),$$

where $A + x = \{a + x : a \in A\}.$

2. If $\mu: \mathcal{M} \to [0, \infty]$ is another translation-invariant Radon measure on \mathbb{R}^n , then there exists a constant k > 0 such that:

$$\mu(A) = k \cdot m(A)$$
 for all $A \in \mathcal{M}$.

3.14 Lebesgue-Stieltjes Measure

Observe that a measure μ on $\mathcal{B}(\mathbb{R})$ satisfies:

$$\mu((-\infty,t])$$
 $t \in \mathbb{R}$ is an increasing function and

$$\mu((a,b]) = \mu((-\infty,b] \setminus (-\infty,a]) = \mu((-\infty,b]) - \mu((-\infty,a]) \quad \text{for } a < b.$$

We define $g(t) = \mu((-\infty, t])$ for $t \in \mathbb{R}$. Then g is an increasing function and we have the following theorem:

3.14.1 Theorem: Lebesgue-Stieltjes Measure

Let $g: \mathbb{R} \to \mathbb{R}$ be an increasing function. Then, there exists a unique Radon measure μ_g on $\mathcal{B}(\mathbb{R})$ such that

$$\mu_g((a,b]) = g(b^+) - g(a^+)$$
 for all $a < b$.

where:

$$g(t^+) = \lim_{x \to t^+} g(x)$$
 and $g(t^-) = \lim_{x \to t^-} g(x)$.

The measure μ_g is called the Lebesgue-Stieltjes measure with distribution function g.

Observation

If we consider g a right-continuous increasing function, then:

$$g(t^+) = \lim_{x \to t^+} g(x) = g(t).$$

Thus, in this case:

$$\mu_g((a,b]) = g(b) - g(a)$$
 for all $a < b$.

Example

Consider the function

$$g(x) = \begin{cases} x & \text{if } x < 0, \\ 2x + 1 & \text{if } 0 \le x < 1, \\ 4 & \text{if } 1 \le x \end{cases}$$

Then, g is an increasing right-continuous function. Then, it defines a Lebesgue-Stieltjes measure μ_g . For example:

$$\mu_q((0,2]) = g(2^+) - g(0^+) = 4 - 1 = 3.$$

Observation

If μ is a Radon measure on $\mathcal{B}(\mathbb{R})$, then there exists a unique increasing function $g: \mathbb{R} \to \mathbb{R}$ such that $\mu = \mu_g$.

3.14.2 Properties of Lebesgue-Stieltjes Measure

Let $g: \mathbb{R} \to \mathbb{R}$ be an increasing function and μ_g be the associated Lebesgue-Stieltjes measure.

a)
$$\mu_g(\lbrace x \rbrace) = g(x^+) - g(x^-)$$
 for all $x \in \mathbb{R}$.

b) g is continuous at x if and only if $\mu_g(\{x\}) = 0$.

- c) $\mu_a([a,b]) = g(b^+) g(a^-)$ for all a < b.
- d) $\mu_a((a,b)) = g(b^-) g(a^+)$ for all a < b.
- e) $\mu_q([a,b)) = g(b^-) g(a^-)$ for all a < b.
- f) If $I \subset \mathbb{R}$ is an interval, then $\mu_g(I) = 0$ if and only if g is constant on I.

Consider the function in the previous example:

$$g(x) = \begin{cases} x & \text{if } x < 0, \\ 2x + 1 & \text{if } 0 \le x < 1, \\ 4 & \text{if } 1 \le x \end{cases}$$

Then, the associated Lebesgue-Stieltjes measure μ_q satisfies:

- $\mu_g(\{0\}) = g(0^+) g(0^-) = 1 0 = 1.$
- $\mu_q(\{1\}) = g(1^+) g(1^-) = 4 3 = 1.$
- $\mu_q((0,1)) = g(1^-) g(0^+) = 3 1 = 2.$
- $\mu_q([0,1]) = g(1^+) g(0^-) = 4 0 = 4.$

4 Integration

A simple function on a measure space (X, \mathcal{A}, μ) is a measurable function whose change consists of a finite number of values. Then, it is of the form:

$$s(x) = \sum_{j=1}^{n} c_j \chi_{A_j}(x),$$

where $c_j \in [0, \infty)$, $A_j \in \mathcal{A}$ for $j = 1, 2, \dots, n$, and χ_{A_j} is the characteristic function of A_j .

Example

$$s(x) = \chi_{[a,b]}(x)$$
 is simple, and so is $s(x) = \chi_{\mathbb{Q}}(x)$.

4.1 Theorem: Approximation of measurable functions

For any measurable function $f: X \to [0, \infty]$, there exists a sequence of simple functions $\{s_n\}_{n=1}^{\infty}$ such that:

- 1. $0 \le s_n(x) \le s_{n+1}(x) \le f(x)$ for all $x \in X$.
- 2. $\lim_{n\to\infty} s_n(x) = f(x)$ for all $x \in X$.

Proof. For each $n \in \mathbb{N}$, define the simple function $s_n : X \to [0, \infty)$ by:

$$s_n(x) = \sum_{j=0}^{n2^n - 1} \frac{j}{2^n} \chi_{A_{j,n}}(x) + n \chi_{A_{n,n}}(x),$$

where:

$$A_{j,n} = \left\{ x \in X : \frac{j}{2^n} \le f(x) < \frac{j+1}{2^n} \right\} \text{ for } j = 0, 1, \dots, n2^n - 1,$$

and

$$A_{n,n} = \{x \in X : f(x) \ge n\}.$$

Then, it is easy to verify that the sequence $\{s_n\}_{n=1}^{\infty}$ satisfies the required properties.

4.2 Integral of a simple function

Let $s: X \to [0, \infty)$ be a simple function of the form:

$$s(x) = \sum_{j=1}^{n} c_j \chi_{A_j}(x),$$

where $c_j \in [0, \infty)$, $A_j \in \mathcal{A}$ for j = 1, 2, ..., n. Then, the integral of s with respect to the measure μ is defined as:

$$\int_X s \, d\mu = \sum_{j=1}^n c_j \mu(A_j).$$

The itegral of a positive measurable function $f: X \to [0, \infty]$ is defined as:

$$\int_X f \, d\mu = \sup \left\{ \int_X s \, d\mu : 0 \le s \le f, s \text{ is simple} \right\}.$$

This integral is called the *Lebesgue integral* of f with respect to the measure μ .

Example

Consider the Dirichlet function of \mathbb{Q} , defined as:

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

Then, we can compute the Lebesgue integral of f with respect to the Lebesgue measure m:

$$\int_{\mathbb{R}} \chi_{\mathbb{Q}} dm = m(\mathbb{Q}) \cdot 1 + m(\mathbb{I}) \cdot 0 = 0.$$

4.3 Properties of the Lebesgue Integral

Let $f,g:X\to [0,\infty]$ be measurable functions and $A,B,E\in\mathcal{A}.$ Then:

1.

$$\int_{E} f \, d\mu = \int_{X} f \chi_{E} \, d\mu.$$

Proof. With f measurable, $\exists \{s_n\}_{n=1}^{\infty}$ simple functions such that $s_n \nearrow f$. Consider $f(x)\chi_E(x)$, then $\{r_n(x) = s_n(x)\chi_E(x)\}_{n=1}^{\infty}$ is a sequence of simple functions such that $r_n \nearrow f\chi_E$. Thus:

$$\int_X f\chi_E d\mu = \lim_{n \to \infty} \int_X r_n d\mu = \lim_{n \to \infty} \int_X s_n \chi_E d\mu = \lim_{n \to \infty} \int_E s_n d\mu = \int_E f d\mu.$$

2.

$$\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu.$$

Proof. Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ be sequences of simple functions such that $s_n \nearrow f$ and $t_n \nearrow g$. Then, $s_n + t_n \nearrow f + g$. Thus:

$$\int_{E} (f+g) d\mu = \lim_{n \to \infty} \int_{E} (s_n + t_n) d\mu = \lim_{n \to \infty} \left(\int_{E} s_n d\mu + \int_{E} t_n d\mu \right) = \int_{E} f d\mu + \int_{E} g d\mu.$$

3.

$$\int_{E} \lambda f \, d\mu = \lambda \int_{E} f \, d\mu \quad \text{for any } \lambda \in \mathbb{R}.$$

4. If $f(x) \leq g(x)$ for all $x \in E$, then:

$$\int_E f \, d\mu \le \int_E g \, d\mu.$$

5. If $A \subseteq B$, then:

$$\int_{A} f \, d\mu \le \int_{B} f \, d\mu.$$

6. If f = 0 almost everywhere on E, that is, $\mu(\{x \in E : f(x) \neq 0\}) = 0$, then:

$$\int_{E} f \, d\mu = 0.$$

7. If $\mu(E) = 0$, then:

$$\int_{E} f \, d\mu = 0.$$

8. If $A \cap B = \emptyset$, then:

$$\int_{A\cup B} f\,d\mu = \int_A f\,d\mu + \int_B f\,d\mu.$$

9. If f = g almost everywhere on X, then:

$$\int_X f \, d\mu = \int_X g \, d\mu.$$

4.4 General Functions

Given a function $f: X \to [-\infty, \infty]$, we can write it as:

$$f = f^+ - f^-,$$

where:

$$f^+(x) = \max\{f(x), 0\}$$
 and $f^-(x) = \max\{-f(x), 0\}.$

Both f^+ and f^- are non-negative measurable functions.

Then, we define the integral of f as:

$$\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu,$$

provided that at least one of the integrals on the right-hand side is finite.

4.5 Lebesgue Space

On a measure space (X, \mathcal{A}, μ) , the Lebesgue space $L^1(X, \mu)$ is defined as:

$$L^1(X,\mu) = \left\{ f: X \to \mathbb{R} \text{ measurable}: \int_X |f| \, d\mu < \infty \right\}.$$

The elements of $L^1(X,\mu)$ are equivalence classes, where two functions f and g are considered equivalent if they are equal almost everywhere, i.e., $\mu(\{x \in X : f(x) \neq g(x)\}) = 0$. These functions are called *Lebesgue-integrable functions*.

Example

With the Lebesgue measure m on \mathbb{R} , the function $f(x) = \frac{1}{x^2}$ is in $L^1([1,\infty],m)$, but not in $L^1([0,1],m)$.

Example

On \mathbb{N} , consider the counting measure μ defined by $\mu(A) = |A|$ for any $A \subseteq \mathbb{N}$. Then, $L^1(\mathbb{N}, \mu)$ is the space formed by functions $f : \mathbb{N} \to \mathbb{R}$ such that:

$$\sum_{n=1}^{\infty} |f(n)| < \infty.$$

So f is such that the series $\sum_{n=1}^{\infty} f(n)$ is absolutely convergent (i.e., convergent regardless of the order of its terms).

Example

Now, consider again on \mathbb{N} , the counting measure μ . Let $f(x) = \frac{(-1)^n}{2^n}$. Then, $f \in L^1(\mathbb{N}, \mu)$ since:

$$\int_{\mathbb{N}} |f| \, d\mu = \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{2^n} \right| = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1 < \infty.$$

4.6 Corollary

 $L^1(\mu)$ is a vector space, that is if $f, g \in L^1(\mu)$ and $\alpha, \beta \in \mathbb{R}$, then:

$$\alpha f + \beta g \in L^1(\mu)$$
, and $\int_X (\alpha f + \beta g) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu$.

Remark

If $f \in L^1(\mu)$, then:

$$|f| \in L^1(\mu)$$
 and $\left| \int_X f \, d\mu \right| \leq \int_X |f| \, d\mu$

4.7 Theorem: Monotone Convergence

Consider a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$ such that:

- 1. $0 \le f_n(x) \le f_{n+1}(x) \le \infty$ for all $x \in X$ and $n \in \mathbb{N}$.
- 2. $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in X$.

Then:

$$\int_X f(x) d\mu = \int_X \lim_{n \to \infty} f_n(x) d\mu = \lim_{n \to \infty} \int_X f_n(x) d\mu.$$

This integral may be infinite.

Example

On $X = [0, \infty]$, we define

$$f_n(x) = \begin{cases} 1 - x^n & \text{if } 0 \le x < 1, \\ 0 & \text{if } 1 \le x \end{cases}$$

for $n \in \mathbb{N}$. Then,

$$0 \le f_n(x) \le f_{n+1}(x) \le 1$$
 for all $x \in [0, \infty]$

and

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 1 & \text{if } 0 \le x < 1, \\ 0 & \text{if } 1 \le x \end{cases} = f(x).$$

Thus, by the Monotone Convergence Theorem:

$$\int_0^\infty f(x) \, dm = \int_0^\infty \lim_{n \to \infty} f_n(x) \, dm = \lim_{n \to \infty} \int_0^\infty f_n(x) \, dm.$$

Now, we compute:

$$\int_0^\infty f_n(x) \, dm = \int_0^1 (1 - x^n) \, dm = \left[x - \frac{x^{n+1}}{n+1} \right]_0^1 = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

Thus:

$$\int_0^\infty f(x) \, dm = \lim_{n \to \infty} \frac{n}{n+1} = 1.$$

Example

Now consider the sequence of functions

$$f_n(x) = \begin{cases} 2^n & \text{if } 0 \le x < \frac{1}{2^n}, \\ 0 & \text{if } \frac{1}{2^n} \le x \end{cases}$$

for $n \in \mathbb{N}$. Then,

$$0 \le f_n(x) \le f_{n+1}(x) \le \infty$$
 for all $x \in [0, \infty]$

and

$$\lim_{n \to \infty} f_n(x) = 0 \text{ for all } x \in [0, \infty].$$

Thus, by the Monotone Convergence Theorem:

$$\int_0^\infty f(x) dm = \int_0^\infty \lim_{n \to \infty} f_n(x) dm = \lim_{n \to \infty} \int_0^\infty f_n(x) dm.$$

Now, we compute:

$$\int_0^\infty f_n(x) \, dm = \int_0^{\frac{1}{2^n}} 2^n \, dm = 2^n \cdot \frac{1}{2^n} = 1.$$

Thus:

$$\int_0^\infty f(x) \, dm = \lim_{n \to \infty} 1 = 1.$$

4.7.1 Proof of the Monotone Convergence Theorem

We know that:

$$\left\{ \int_X f_n(x) \, d\mu \right\}_{n=1}^{\infty}$$

is an increasing sequence, since $f_n(x) \leq f_{n+1}(x)$ for all $x \in X$. Thus, the limit:

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu$$

exists (possibly infinite). Also, since $f_n(x) \leq f_{n+1}(x)$ for all $x \in X$, we have:

$$\int_X f_n(x) d\mu \le \int_X f_{n+1}(x) d\mu \quad \text{for all } n \in \mathbb{N},$$

and

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu \le \int_X f(x) \, d\mu.$$

To prove the reverse inequality, consider an increasing sequence of simple functions approximating each f_n :

$$r_{1,1}, r_{1,2}, \dots, r_{1,k_1} \nearrow f_1,$$

 $r_{2,1}, r_{2,2}, \dots, r_{2,k_2} \nearrow f_2,$

$$r_{n,1}, r_{n,2}, \ldots, r_{n,k_n} \nearrow f_n$$
.

Define a new sequence of simple functions $\{s_m\}_{m=1}^{\infty}$ as follows:

$$s_m = \max\{r_{n,k} : n, k \le m\}.$$

Then, $s_m \nearrow f$ as $m \to \infty$. Thus:

$$\int_X f(x) d\mu = \lim_{m \to \infty} \int_X s_m(x) d\mu \le \lim_{n \to \infty} \int_X f_n(x) d\mu. \quad \Box$$

4.8 Corollary

For a sequence of positive measurable functions $\{f_n\}_{n=1}^{\infty}$:

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 for all $x \in X$,

we have:

$$\int_X f(x) d\mu = \sum_{n=1}^{\infty} \int_X f_n(x) d\mu.$$

Proof. Define the sequence of functions:

$$s_k(x) = \sum_{n=1}^k f_n(x)$$
 for $k \in \mathbb{N}$.

Then, $s_k(x) \nearrow f(x)$ as $k \to \infty$. Thus, by the Monotone Convergence Theorem:

$$\int_X f(x) d\mu = \lim_{k \to \infty} \int_X s_k(x) d\mu = \lim_{k \to \infty} \sum_{n=1}^k \int_X f_n(x) d\mu = \sum_{n=1}^\infty \int_X f_n(x) d\mu. \quad \Box$$

4.9 Fatou's Lemma

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of non-negative measurable functions on X. Then:

$$\int_{X} \liminf_{n \to \infty} f_n(x) \, d\mu \le \liminf_{n \to \infty} \int_{X} f_n(x) \, d\mu.$$

Proof. Define the sequence of functions:

$$g_n(x) = \inf_{k \ge n} f_k(x)$$
 for $n \in \mathbb{N}$.

Then, $g_n(x) \nearrow \liminf_{n \to \infty} f_n(x)$ as $n \to \infty$. Thus, by the Monotone Convergence Theorem:

$$\int_X \liminf_{n \to \infty} f_n(x) \, d\mu = \lim_{n \to \infty} \int_X g_n(x) \, d\mu.$$

Also, since $g_n(x) \leq f_n(x)$ for all $x \in X$ and $n \in \mathbb{N}$, we have:

$$\int_X g_n(x) d\mu \le \int_X f_n(x) d\mu \quad \text{for all } n \in \mathbb{N}.$$

Thus:

$$\lim_{n \to \infty} \int_X g_n(x) \, d\mu \le \liminf_{n \to \infty} \int_X f_n(x) \, d\mu. \quad \Box$$

Consider the sequence of functions:

$$f_n(x) = \begin{cases} \chi_{[0,1]}(x) & \text{if } n \text{ is odd,} \\ 1 - \chi_{[0,1]}(x) & \text{if } n \text{ is even.} \end{cases}$$

Then, for all $x \in \mathbb{R}$:

$$\liminf_{n \to \infty} f_n(x) = 0.$$

Thus:

$$\int_{\mathbb{D}} \liminf_{n \to \infty} f_n(x) \, dm = \int_{\mathbb{D}} 0 \, dm = 0.$$

On the other hand:

$$\int_{\mathbb{R}} f_n(x) dm = \begin{cases} 1 & \text{if } n \text{ is odd,} \\ \infty & \text{if } n \text{ is even.} \end{cases}$$

Thus:

$$\liminf_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, dm = 0.$$

Therefore, Fatou's Lemma holds:

$$\int_{\mathbb{R}} \liminf_{n \to \infty} f_n(x) \, dm = 0 \le 0 = \liminf_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, dm.$$

4.10 Theorem: Dominated Convergence

Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of measurable functions on X such that:

- 1. $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in X$.
- 2. There exists a function $g \in L^1(X, \mu)$ such that $|f_n(x)| \leq g(x)$ for all $x \in X$ and $n \in \mathbb{N}$.

Then:

$$\int_X f(x) \, d\mu = \lim_{n \to \infty} \int_X f_n(x) \, d\mu, \quad f \in L^1(X, \mu) \quad \text{and} \quad \lim_{n \to \infty} \int_X |f_n(x) - f(x)| \, d\mu = 0.$$

Proof. Each $f_n \in L^1(\mu)$, and so is f, since:

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le g(x)$$
 for all $x \in X$.

Also, since:

$$|f_n(x) - f(x)| \le |f_n(x)| + |f(x)| \le g(x) + g(x) = 2g(x)$$
 for all $x \in X$,

we have:

$$2g(x) - |f_n(x) - f(x)| \ge 0$$
 for all $x \in X$.

Thus, by Fatou's Lemma:

$$\int_X \liminf_{n \to \infty} \left(2g(x) - |f_n(x) - f(x)| \right) d\mu \le \liminf_{n \to \infty} \int_X \left(2g(x) - |f_n(x) - f(x)| \right) d\mu.$$

Now, since:

$$\liminf_{n \to \infty} (2g(x) - |f_n(x) - f(x)|) = \int_X 2g(x) - \limsup_{n \to \infty} |f_n(x) - f(x)| = 2g(x) - 0 = 2g(x),$$

we have:

$$\int_{X} 2g(x) d\mu \le \liminf_{n \to \infty} \left(2 \int_{X} g(x) d\mu - \int_{X} |f_n(x) - f(x)| d\mu \right).$$

Thus:

$$\limsup_{n \to \infty} \int_X |f_n(x) - f(x)| \, d\mu \le 0.$$

Since the integral is non-negative, we conclude that:

$$\lim_{n \to \infty} \int_X |f_n(x) - f(x)| d\mu = 0.$$

Finally, by the triangle inequality:

$$\left| \int_X f_n(x) d\mu - \int_X f(x) d\mu \right| \le \int_X |f_n(x) - f(x)| d\mu,$$

we have:

$$\lim_{n \to \infty} \left| \int_X f_n(x) d\mu - \int_X f(x) d\mu \right| = 0.$$

Example

Let us consider:

$$\lim_{n \to \infty} \int_0^1 \frac{\log(n+x)}{n} \cdot \sin(x) \, dx.$$

We have:

$$|f_n(x)| = \left| \frac{\log(n+x)}{n} \cdot \sin(x) \right| \le \left| \frac{\log(n+x)}{n} \right| \le 1 \in L^1([0,1]).$$

So with g(x) = 1, we can apply the Dominated Convergence Theorem:

$$\lim_{n \to \infty} \int_0^1 \frac{\log(n+x)}{n} \cdot \sin(x) \, dx = \int_0^1 \lim_{n \to \infty} \frac{\log(n+x)}{n} \cdot \sin(x) \, dx = \int_0^1 0 \cdot \sin(x) \, dx = 0.$$

4.11 Corollary: Uniform Convergence

Let X, \mathcal{A}, μ be a <u>finite</u> measure space, that is, $\mu(X) < \infty$. If a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$ converges <u>uniformly</u> to a function f on X, then $f \in L^1(X, \mu)$ and:

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu = \int_X f(x) \, d\mu.$$

Proof. The limit of f(x) satisfies:

$$\inf_{n} |f_n(x)| \le |f(x)| \le \sup_{n} |f_n(x)| \quad \text{for all } x \in X.$$

Since $f_n \in L^1(\mu)$, f is also integrable. Besides, by the uniform convergence:

$$\exists N \in \mathbb{N} : |f_n(x) - f(x)| < \epsilon \text{ for all } n \ge N \text{ and } x \in X.$$

Also:

$$|f_n(x)| \le |f(x)| + \epsilon \implies \int_X |f_n(x)| d\mu \le \int_X |f(x)| d\mu + \epsilon \mu(X) < \infty.$$

Thus, by the Dominated Convergence Theorem:

$$\lim_{n \to \infty} \int_X f_n(x) \, d\mu = \int_X f(x) \, d\mu.$$

4.12 Corollary

Let X, \mathcal{A}, μ be a measure space and $f_n : X \to \mathbb{R}$ be a sequence of measurable functions such that:

$$\sum_{n=1}^{\infty} \int_{X} |f_n(x)| \, d\mu < \infty.$$

Then $f \in L^1(X, \mu)$,

$$\sum_{n=1}^{\infty} f_n(x) \text{ converges to } f: X \to \mathbb{R},$$

and

$$\int_X f(x) d\mu = \sum_{n=1}^{\infty} \int_X f_n(x) d\mu.$$

Proof. Define:

$$g_N(x) = \sum_{n=1}^{N} f_n(x)$$

Then:

$$\int_{X} |g_{N}(x)| d\mu \le \sum_{n=1}^{N} \int_{X} |f_{n}(x)| d\mu \le \sum_{n=1}^{\infty} \int_{X} |f_{n}(x)| d\mu < \infty.$$

Thus, $g_N \in L^1(X, \mu)$ for all $N \in \mathbb{N}$. Now,

$$\sum_{n=1}^{\infty} \int_X f_n(x) d\mu = \int_X \sum_{n=1}^{\infty} f_n(x) d\mu,$$

and finally:

$$\lim_{N \to \infty} \sum_{n=1}^{N} \int_{X} f_n(x) d\mu = \int_{X} \lim_{N \to \infty} g_N(x) dx.$$