# Second order ordinary differential equations

## Nguyen Thu Huong



School of Applied Mathematics and Informatics Hanoi University of Science and Technology

November 25, 2020

## Content

- Definitions and Notations
  - Second order ODEs without x or y

- Second order linear DEs
  - Homogeneous equation
    - Homogeneous second order linear equations with constant coefficients

## Content

- Definitions and Notations
  - Second order ODEs without x or y

- Second order linear DEs
  - Homogeneous equation
    - Homogeneous second order linear equations with constant coefficients

## Second order ODEs

A second order differential equation has the form

- F(x, y, y', y'') = 0.
- y''(x) = G(x, y, y').

A second order **linear** differential equation has the form y'' = f(x) - g(x)y - p(x)y'.

$$y'' + p(x)y' + q(x)y = f(x)$$

p(x), q(x): coefficients, f(x): right hand side of the equation. We restrict  $x \in I \subset \mathbb{R}$  in which p(x), q(x), f(x) are continuous.

## Theorem (Existence and Uniqueness theorem)

Consider the initial value problem (IVP)

$$\begin{cases} y'' = f(x, y, y'), x \in U_{\varepsilon}(x_0), \\ y(x_0) = y_0, y'(x_0) = y'_0. \end{cases}$$

Assume that the function f(x, y, y'):  $D \subset \mathbb{R}^3 \to \mathbb{R}$  and its partial derivatives  $f_y'(x, y, y')$ ,  $f_{y'}'(x, y, y')$  are **continuous** on D,  $(x_0, y_0, y_0') \in D$ . Then there exists a unique solution y(x) in a vinicity  $(x_0 - \varepsilon, x_0 + \varepsilon)$ .

Under the assumption on continuity of p(x), q(x), f(x), the IVP

$$y'' + p(x)y' + q(x)y = f(x), y(x_0) = y_0, y'(x_0) = y'_0$$

has exactly one solution on I.

#### Definition

- **1** General solution  $y = \varphi(x, C_1, C_2)$  such that
  - $\varphi(x, C_1, C_2)$  satisfies the equation for all  $C_1, C_2$ .
  - Given an initial value  $(x_0, y_0, y_0') \in D$ , we can find  $C_1^0, C_2^0$  such that  $\varphi(x, C_1^0, C_2^0)$  solves the IVP.
- **2** Particular solution  $y = \varphi(x, C_1^0, C_2^0)$  which is obtained from the **general solution**.

### Example

Spring-mass system kx'' + mx = 0 has general solution  $x(t) = C_1 \cos \omega t + C_2 \sin \omega t$ ,  $\omega = \sqrt{\frac{k}{m}}$ .  $x(t) = A \cos \omega t$  is a particular which satisfies the initial values x(0) = A, x'(0) = 0,  $C_1 = A$ ,  $C_2 = 0$ .

### General form of second order ODEs

$$F(x, y, y', y'') = 0.$$

- Equations without y: F(x, y', y'') = 0.
- 2 Equations without x: F(y, y', y'') = 0.

000

# Equations without y

• Equations without y: F(x, y', y'') = 0. (Reduction of order) Set y' = p, then y'' = p', we obtain F(x, p, p') = 0 $\Rightarrow y' = p = \varphi(x, C_1) \Rightarrow y = \Phi(x, C_1, C_2)$ .

### Example

Solve the equation xy'' + 2y' = 12x.

# Equations without x

2 Equations without x: F(y, y', y'') = 0. Set y' = p, p = p(y).

$$y''(x) = p'(x) = p'(y)y'(x) = p'(y).p.$$

The equation reads as G(y, p, p') = 0 (first order ODE).  $\Rightarrow p = \varphi(y, C_1) \Leftrightarrow y' = \varphi(y, C_1)$  (first order equation).

### Example

Solve the equation  $y''(1+y) = y'^2 + y'$ .

## Content

- Definitions and Notations
  - Second order ODEs without x or y

- 2 Second order linear DEs
  - Homogeneous equation
    - Homogeneous second order linear equations with constant coefficients

$$y'' + p(x)y' + q(x)y = f(x)$$
 (1)

where p(x), q(x), f(x) are continuous on I.

 $f(x) \equiv 0$ : corresponding homogeneous equation.

 $f(x) \neq 0$ : inhomogeneous equation.

$$Ly = y'' + p(x)y' + q(x)y$$
 then  $L(y_1 + y_2) = Ly_1 + Ly_2$ .

## Theorem (Superposition of solutions)

#### Assume that

- $y_1$  is a solution of the equation  $y'' + p(x)y' + q(x)y = f_1(x)$ ,
- $y_2$  is a solution of the equation  $y'' + p(x)y' + q(x)y = f_2(x)$ .

Then  $y_1 + y_2$  solves the equation

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x).$$

## Theorem (Structure of the solution)

The general solution of the inhomogeneous equation has the form

$$y = \bar{y} + y^*$$

- $\bar{y}$  is the general solution of the corresponding homogeneous equation y'' + p(x)y' + q(x)y = 0.
- $y^*$  is a particular solution of the inhomogeneous equation (1).

$$y'' + p(x)y' + q(x)y = 0.$$
 (2)

#### Theorem

If  $y_1(x)$ ,  $y_2(x)$  are solutions of (2) then  $y(x) = C_1y_1(x) + C_2y_2(x)$ ,  $C_1, C_2 \in \mathbb{R}$  is also a solution of (2).

Conversely, is any solution of (2) of this form?

# Linear dependence VS linear independence

#### Definition

The functions  $y_1(x), y_2(x)$  are called linearly independent on I if

$$k_1y_1(x) + k_2y_2(x) = 0 \,\forall \, x \in I$$
 implies that  $k_1 = k_2 = 0$ .

 $y_1(x), y_2(x)$  are called linearly dependent on I if there exist  $k_1, k_2$  not both zero such that

$$k_1y_1(x) + k_2y_2(x) = 0 \,\forall \, x \in I.$$

### Example

- $\bullet$   $e^{x}$ ,  $e^{2x}$ .
- $\bullet$   $x, x^2$ .

## Wronsky determinant

### **Definition**

Wronsky determinant of the two solutions  $y_1(x), y_2(x)$  is

$$W(y_1, y_2)(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1.$$

When  $y_1, y_2$  are clear, we denote by W(x).

### Theorem

If the solutions  $y_1(x), y_2(x)$  are linearly dependent on [a, b] then W(x) = 0 for all  $x \in [a, b]$ .

#### **Theorem**

Let  $y_1, y_2$  be two solutions of the homogeneous equation on I. Then the following are equivalent

- $\mathbf{0}$   $y_1, y_2$  are linearly independent.
- **2**  $W(y_1, y_2)(x_0) \neq 0$  for some  $x_0 \in I$ .
- **3**  $W(y_1, y_2)(x) \neq 0$  for all  $x \in I$ .

Proof. W(x) satisfies that  $W' + p(x)W = y_1Ly_2 - y_2Ly_1 = 0$ .

$$W(x) = W(x_0)e^{-\int\limits_{x_0}^{x} p(t)dt}, \forall x \in I.$$

# Structure of solutions to the homogeneous equations

#### Theorem

Assume that  $y_1(x), y_2(x)$  are two linearly independent solutions of the equation

$$y'' + p(x)y' + q(x)y = 0.$$

Then the general solution is

$$\bar{y}(x) = C_1 y_1(x) + C_2 y_2(x).$$

### Proof.

- $y_1, y_2$  are solutions then  $C_1y_1 + C_2y_2$  is also a solution.
- Plugging the initial conditions  $y(x_0) = y_0, y'(x_0) = y'_0$ , we get  $\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) = y_0 \\ C_1 y'_1(x_0) + C_2 y'_2(x_0) = y'_0. \end{cases}$

 $y_1, y_2$  are linearly independent, so  $W(y_1, y_2)(x_0) \neq 0 \Rightarrow$  we get unique solutions  $C_1^0$  và  $C_2^0$ .

## Reduction of order

Question: Given a particular solution to the homogeneous equation, find a second particular solution  $y_2(x)$  which is linearly independent with  $y_1(x)$ .

We look for  $y_2(x) = u(x).y_1(x)$ , where  $u(x) \not\equiv C$ :

$$W(x) = \begin{vmatrix} y_1 & y_1 u \\ y'_1 & (y_1 u)' \end{vmatrix} = -y_1^2 u' \neq 0.$$

## Theorem (Liouville formula)

 $y_2(x)$  can be found as

$$y_2(x) = y_1(x) \int \frac{e^{-\int p(x)dx}}{y_1^2(x)} dx.$$

### Example

Solve the following differential equations

- $y'' + \frac{x}{1-x}y' \frac{1}{1-x}y = 0$ , given a particular solution  $y_1 = e^x$ .
- $x^2y'' + xy' y = 0$ ,  $y_1 = x$ .
- xy'' + 2y' + xy = 0,  $y_1 = \frac{\sin x}{x}$ .

# Homogeneous equations with constant coefficients

The corresponding homogeneous equation

$$y'' + py' + qy = 0.$$

Solve the characteristic equation

$$k^2 + pk + q = 0. (3)$$

- **1** (3) has two distinct **real roots**  $k_1 \neq k_2$ , then  $\bar{v} = C_1 e^{\mathbf{k}_1 x} + C_2 e^{\mathbf{k}_2 x}$ .
- ② (3) has a **double root**  $k_1 = k_2 = k$ , then  $\bar{y} = (C_1x + C_2)e^{kx}$ .
- (3) has two **complex conjugate roots**  $k_{1,2} = \alpha \pm i\beta$ , then  $\bar{y} = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$ .

### Example

Solve the equations

• 
$$y'' - 3y' + 2y = 0$$
.

• 
$$y'' + 2y' + y = 0$$
.

• 
$$y'' + 6y' + 10y = 0$$
,  $y(0) = -1$ ,  $y'(0) = 2$ .