1. Sea $(B_i)_{i\in I}$ una familia de bolas abiertas y disjuntas de \mathbb{R}^n . Probar que el conjunto I es contable.

Arranco on R

Son disjunter

ls times un record adentes

4 le signo ere reciond e ere bole

#I \ # Q

- 2. Sea $F \subset \mathbb{R}$ un conjunto cerrado, F' el conjunto de sus puntos de acumulación y $A = F \setminus F'$ el conjunto de sus puntos aislados.
 - (a) Probar que A es a lo sumo numerable.
 - (b) Sea B=F'. ¿Puede B tener puntos aislados? En caso afirmativo, dar un ejemplo. En caso contrario, dar una demostración.

a) Usando el 1

Contro una bola en cada punto aislado

Radio como d. entre puntos sobre Z.

Asigno un recional en cada bala

3. Sean $f, g : \mathbb{R} \to \mathbb{R}$ dos funciones tales que f y g son continuas en 0 y f(0) > g(0). Probar que existe $\delta > 0$ tal que $\inf_{\substack{|x| < \delta}} f(x) > \sup_{\substack{|x| < \delta}} g(x)$.

in
$$f(x) > \sup_{|x| < \delta} g(x)$$

$$(\forall x \in \mathbb{R}) \forall \epsilon > 0$$
, $\exists \delta > 0$
 $s: d(x, b) < \delta \Rightarrow d(f(x), f(y)) < \epsilon$
 $f(\mathcal{B}(x, \delta)) \subseteq \mathcal{B}(f(x), \epsilon)$

$$E_0 \times = 0$$
,
 $\forall \varepsilon > 0, \exists \delta > 0$ /
 $\exists \delta (0, \delta) < \delta \Rightarrow \delta (f(0), f(\delta)) < \varepsilon$

 \Rightarrow 5i tomo $\delta = min \{\delta_1, \delta_2\}$

→ Probé que existe 5>0.

- 4. Decidir en cada caso si las siguientes afirmaciones son verdaderas o falsas, dando un contraejemplo sin son falsas o una demostración si son verdaderas: Sea (E, d) espacio métrico y $A, B \subseteq E$;
 - (a) Si $A \subsetneq B$, entonces $\overline{A} \subsetneq B$;
 - (b) $(A \setminus B)^{\circ} = A^{\circ} \setminus B^{\circ}$;
 - (c) $\partial(\overline{A}) \subseteq \partial(A)$.

a)
$$A \subset B$$
 $\stackrel{?}{\Rightarrow}$ $\overline{A} \subset B$

si
$$A = A^{\circ}$$
 δ $\overline{A} = B$ \Rightarrow $\overline{A} = B$

Si
$$A = (0,1)$$

$$B = [0,1]$$

$$Falso$$

$$A = [-1, 1]$$
 $B = \{0\}$ — int. vector on dist. 1.

c)
$$\overline{A} = A \cup \partial A$$

 $\partial A = \overline{A} \setminus A^{\circ} \Rightarrow \overline{A} = A^{\circ} \Leftrightarrow \partial A$
 $\partial A = \overline{A} \cap \overline{A^{\circ}}$

So
$$x \in \partial \overline{A}$$
 $\forall r$?

$$\Rightarrow \exists y \in \mathcal{B}(x,r), y \in \overline{A} \land y \in \overline{A}^{c}$$

$$\forall \varphi \in (A^{\circ})^{c}$$

Desig, Triang,

5:
$$A = \emptyset$$
 $\Rightarrow \partial A = \mathbb{R}$ $\Rightarrow \overline{A} = \mathbb{R}$

6. Sea, (E,d) y (E',d') espacios métricos. Definimos en $E\times E'$ la función \overline{d} como

$$\overline{d}((x,x'),(y,y')) := \sqrt{d(x,y)^2 + d'(x',y')^2}.$$

Probar que $(E \times E', \overline{d})$ es un espacio métrico.

7. Sea, (E,d) y (E',d') espacios métricos y $f:E\to E'$ una funión contínua. Probar que el conjunto $gráfico\ de\ f$ definido como

$$G(f) = \{(x, f(x)) : x \in E\},\$$

es cerrado en $E \times E'$ con la mátrica \overline{d} del ejercicio anterior.

G(f) er are d (=>

1. To de succión convergente, la hace on G(f)

 $\leq \infty \left(x_n, f(x_n)\right) \subseteq G(f)$, con

 $(x_n, \ell(x_n)) \longrightarrow (x, \ell(x))$

 $\chi \in E$

cono f:E→E

f(x) e E'

Por convergnce de coordenades

 $\chi_n \rightarrow \chi$

B

$$f(x_n) \rightarrow f(x)$$

Como x e E y f: E > E'

 $\Rightarrow f(x) \in E'$

 $f(x) \in E'$

$$\therefore (x, f(x)) \in G(f) = \{(x, f(x)) : x \in E \}$$

Find mente

2-) DE LA LISTA. QVQ! $G(g) \subseteq G(g)$ (Q, b) $G(g) = \sum_{i \in I} V_{i} = \sum_{i \in I} \int_{i \in I} ((a,b),(x,f(x))) < \Gamma$ comp & continua, $J \in S = 0 / d(x,a) < E \Rightarrow d'(f(x),f(a)) < E$ $f(a,x) \notin \overline{J}((a,b),(x,f(x))) < E \Rightarrow d'(f(x),f(a)) < E$ $f(a,x) \notin \overline{J}((a,b),(x,f(x))) < E \Rightarrow \overline{J}((a,b),(x,f(x))) < E'$ $f(a,x) \notin \overline{J}((a,b),(x,f(x))) < E \Rightarrow \overline{J}((a,b),(x,f(x))) < E'$ $f(a,x) \notin \overline{J}((a,b),(x,f(x))) < E \Rightarrow \overline{J}((a,b),(x,f(x))) < E$

8. (a) Probar que si $K \subseteq \mathbb{R}^n$ es compacto, entonces $\overline{K^{\circ}}$ también lo es.

(b) Sea $K \subseteq \mathbb{Q}$ dado por $K = \{x \in \mathbb{Q} : 0 < x^2 < 2\}$. ¿Es $\overline{K^{\circ}}$ compacto?

$$= \left(0, \sqrt{2}\right) \cap \mathbb{Q}$$

$$(0,12)^{C} = (-\infty,0) \cup (52,+\infty) \cap 0$$
 er doi er b

9. Sea (E,d) un espacio métrico. Para $K\subseteq E$ y $\varepsilon>0$ definimos

$$B(K,\varepsilon) = \bigcup_{x \in K} B(x,\varepsilon).$$

Probar que si K es compacto y $U\subseteq E$ es un abierto tal que $K\subseteq U$, entonces existe $\varepsilon>0$ tal que $B(K,\varepsilon)\subseteq U$.