18 The photograph shows a musical instrument called a violin.

The violin has four strings. Each string is held in a fixed position by a peg and at the bridge.

When a string is plucked, a stationary wave forms on the string.

í	ິລ `	Fynla:	in how	a stationary	i wave forms	on the string.
١	a	LAPIA	111 110 00	a stationary	wave lolling	on the sumg.

 	 	 	 	 	 •	 	 	 	

(3)

(4)

(b) The simplest stationary wave that can be formed on the string has a node (N) at each end and an antinode (A) at the centre, as shown.

The frequency of this wave is called the fundamental frequency.

The strings on a violin have different fundamental frequencies, as shown in the table.

String	Fundamental frequency/Hz
1	196
2	294
3	440
4	659

The tension in one of the strings is 71.5 N. The length of the string is 32 cm and the mass per unit length of the string is $2.03 \times 10^{-3} \text{kg m}^{-1}$.

Deduce whether this is string 1, 2, 3 or 4.
