Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Fresnelsche Formeln und und Polarisation

Praktikant: Felix Kurtz

Versuchspartner: Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

Betreuer: Phillip Bastian

Versuchsdatum: 06.03.2015

Eingegangen	am:	

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3	
2	Theorie 2.1 Fresnelsche Formeln	3 3 3	
3	Durchführung	4	
4		5 5 7	
5	Diskussion	7	
6	Anhang	8	

1 Einleitung

In diesem Versuch steht die elektromagnetische Natur des Lichts im Vordergrund. So kann man Licht *polarisieren*. Dieses Phänomen ist zum Beispiel wichtig für 3D-Filme. Außerdem soll der *Brewster-Winkel* vermessen werden. Unter diesem Winkel ist der reflektierte Anteil minimal.

Bei der Messung spielt die Doppelbrechung eine große Rolle.

2 Theorie

2.1 Fresnelsche Formeln

Maxwellsche Gleichungen Stetigkeit an Grenzübergängen Reflexionskoeffizienten

$$r_s = -\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} \tag{1}$$

$$r_p = \frac{\tan(\alpha - \beta)}{\tan(\alpha + \beta)} \tag{2}$$

Dabei gilt das Snellius'sche Brechungsgesetz

$$n_1 \sin \alpha = n_2 \sin \beta \,. \tag{3}$$

Intensität Energieerhaltung Transmission

2.2 Brewster-Winkel

Nach (2) verschwindet der Reflexionskoeffizient r_p , wenn $\alpha + \beta = 90^{\circ}$, denn dann ist $\tan(\alpha + \beta) = \infty$. Setzt man nun die Beziehung (3) ein, kann man diesen Einfallswinkel α_B , den sogenannten *Brewster-Winkel*, über

$$\tan \alpha_{\rm B} = \frac{n_2}{n_1} \tag{4}$$

berechnen, bei dem keine Reflexion von parallelem Licht auftritt. Dies ist auch in Abbildung 1 gut zu erkennen. Diesen Effekt kann man plausibel machen, wenn man sich die Atome im zweiten Medium als Hertzsche Dipole vorstellt. Diese strahlen nämlich nicht in der Schwingungsrichtung der Dipolmomente.

2.3 Doppelbrechung

anisotrop optische Achse zwei Brechungsindizes ordentlicher und außerordentlicher Strahl Nicol-Prisma

Abbildung 1: Fresnelkoeffizienten für $n_1 = 1$ und $n_2 = 1.51$.

3 Durchführung

Zuerst muss der Strahlengang justiert werden. Dazu wird das evtl. noch im Strahlengang stehende Glasprisma entfernt und Polarisator und Analysator durchlässig gedreht. Mit den Linsen bildet man das grüne Lichtbündel scharf auf das Okular ab. Nun wird die Polarisationsrichtung justiert. Dabei wird das kleine Nicolsche Prisma auf den Drehteller gestellt. Die optische Achse des Prismas zeigt nach oben. Man entfernt den Analysator und dreht den Polarisator, so dass im Okular kein Strahl mehr zu sehen ist. Dann steht der Polarisator parallel zur Einfallsebene. Jetzt wird dieser um 45° gedreht. Die eine Hälfte ist nun parallel, die andere senkrecht zur Einfallsebene polarisiert. Danach wird das Glasprisma auf dem Drehteller justiert. Meist sind Markierungen schon vorhanden. Man prüft, ob man den Strahl durch das Okular beobachten kann, wenn der Schwenkarm nicht sowie um 90° ausgelenkt ist. Sollte dies nicht der Fall sein, muss nachjustiert werden.

Nun kann man den Reflexionskoeffizienten messen. Dazu wird der Analysator wieder in den Strahlengang gestellt. In 5°-Schritten wird der Schwenkarm nun von 0° bis 90° ausgelenkt. Dabei dreht man den Analysator immer so, dass Dunkelheit im Okular herrscht. Der so eingestellte Winkel wird an der Winkelskala abgelesen und notiert.

Zuletzt wird der Brewster-Winkel gemessen. Dazu muss der Polarisator wieder um 45°

zurück gedreht werden, damit das Licht parallel polarisiert ist. Der Analysator wird entfernt. Man bestimmt mehrmals den Auslenkwinkel des Schwenkarms, bei dem ein Intensitätsminimum des reflektierten Strahls durch das Okular beobachtet wird.

Abbildung 2: Versuchsaufbau schematisch. [?, Datum: 23.03.2015]

Abbildung 3: Strahlengang im Nicolschen Prisma. [?, Datum: 23.03.2015]

4 Auswertung

4.1 Drehung der Schwingungsebene

Aus dem χ^2 -Fit der Theoriekurve erhält man

$$n = 1.405 \pm 0.019$$
.

4.2 Brechungsindex aus $\gamma=45^{\circ}$

$$\sigma_n = \frac{\sigma_\alpha}{\cos^2 \alpha} \tag{5}$$

Abbildung 4: Drehwinkel γ gegen den Auftreffwinkel α aufgetragen.

Abbildung 5: γ gegen α im Bereich $\gamma=45^{\circ}$: lineare Regression und Brewster-Winkel

Aus der linearen Regression: $\alpha = 53.8^{\circ} \pm 1.8^{\circ}$.

$$n = 1.37 \pm 0.10$$
.

4.3 Brewster-Winkel

	Φ [°]	α [°]	n
Alle Werte	66.6 ± 0.6	56.7 ± 0.3	1.522 ± 0.018
erste Messreihe	66.4 ± 0.9	56.8 ± 0.5	1.53 ± 0.03
zweite Messreihe	67.0 ± 0.5	56.50 ± 0.25	1.511 ± 0.015
Michael	67.3 ± 0.5	56.35 ± 0.25	1.502 ± 0.015
Felix	65.9 ± 1.0	57.1 ± 0.5	1.55 ± 0.03

Tabelle 1: Brewster-Winkel.

5 Diskussion

Abbildung 6: γ gegen α : γ um 5° nach oben verschoben für $\alpha \leq 67.5^{\circ}$.

6 Anhang