

v.20201117

Arquitecturas Virtuales

Depto. de Arquitectura de Computadores Universidad de Málaga

© 2013-18 Guillermo Pérez Trabado, Eladio Gutiérrez Carrasco, Julián Ramos Cózar

El resurgir de la virtualización

- Años 70: uso de las primeras máquinas virtuales
 - 1972: IBM VM/370 (puede ejecutar incluso una MV en otra MV)
- Años 90:
 - Intel x86 se convierte en una arquitectura predominante
 - Los "commodity OSs" carecen de prestaciones empresariales
- ~1999: VMware pionera en virtualización de plataformas basadas en x86

• • Arquitectura Intel x86

Generation	First introduced	Prominent Consumer CPU brands	linear / physical address space	Notable (new) features
1 (IA-16)	1978	Intel 8086, Intel 8088	46 hit / 20 hit	first x86 microprocessors
2	1982	Intel 80186, Intel 80188, NEC V20	16-bit / 20-bit (segmented)	hardware for fast address calculations, fast mul/div etc
		Intel 80286	16-bit (30-bit virtual) / 24-bit (segmented)	MMU, for protected mode and a larger address space
3 (IA-32)	1985	Intel 80386, AMD Am386		32-bit instruction set, MMU with paging
4	1989	Intel 486	32-bit (46-bit	risc-like pipelining, integrated FPU, on-chip cache
5	1993	Pentium, Pentium MMX	virtual) / 32-bit	superscalar, 64-bit databus, faster FPU, MMX
5/6	1996	Cyrix 6x86, Cyrix MII		register renaming, speculative execution

• • Arquitectura Intel x86

Generation	First introduced	Prominent Consumer CPU brands	linear / physical address space	Notable (new) features
6	1995	Pentium Pro, AMD K5, Nx586 (1994)		u-op translation, PAE (not K5, Nx586), integrated L2 cache (not K5, Nx586)
	1997	AMD K6/-2/3, Pentium II/III	as above / 36 -bit	L3-cache support, 3D Now, SSE
7	1999	Athlon, Athlon XP	physical (PAE)	superscalar FPU, wide design (<i>up to three x86 instr./clock</i>)
	2000	Pentium 4		deeply pipelined, high frequency, SSE2, hyper-threading
8 (x86-64)	2003	Athlon 64, Opteron	64 hit / 40 hit	x86-64 instruction set , on-die memory controller, hypertransport
	2004	Pentium 4 Prescott	64-bit / 40-bit physical in first	very deeply pipelined, very high frequency, SSE3, Intel VT-x (2005)
9	2006	Intel Core 2	impl.	low power, multi-core, lower clock frequency, SSE4 (Penryn)
10	2007,08	AMD Phenom, Phenom II, Intel Core i3, i5,i7	as above / 44-bit physical for Beckton Core i7	monolithic quad-core, 128 bit FPUs, SSE4a, HyperTransport 3 or QuickPath, native memory controller, on-die L3 cache, modular design
11	2010	Intel Sandy Bridge, AMD Bulldozer		SSE5/AVX, highly modular design

Modos de ejecución IA-32

Modo protegido

Es el modo de funcionamiento normal del procesador, en el que están disponibles todas sus características.

Modo (de direccionamiento) real

Es un modo de compatibilidad con el 8086, salvo por la capacidad de cambiar a modo protegido.

El procesador siempre comienza su ejecución en este modo (tras el arranque o un RESET).

Modos de ejecución x86-64

System Management Mode (SMM)

- conocido como ring "-2"
- implica la suspensión del cualquier modo normal
- es similar a una interrupción no enmascarable (#SMI)
- disparado por eventos del hardware
- ejecuta una rutina en el hardware del fabricante
- máximo nivel de privilegio
- instrucción especial para salir de este modo (RSM = resume from SMM)

- La arquitectura x86 "no es virtualizable" (en sentido estricto)
- Hay instrucciones "malas"

- instrucciones críticas que no causan traps cuando se ejecutan sin privilegio, ó
- permiten a la MV "fisgonear" en el hipervisor
 - SGDT,SIDT,SLDT: Store Descriptor Table Registers
 - SMSW: Store Machine Status word
 - PUSHF(D),POPF(D): Access EFLAGS
 - LAR,LSL,VERR, VERW, POP, PUSH, CALL/JMP,INT, RET, STR, MOV: These instructions reference
 the privilege levels or can let a VM see the current privilege level without notifying the VMM:
- Estrategia: virtualizar el set de instrucciones
 IA-32 con traducción binaria just-in-time
 - 1998: VMWare U.S. Patent 6,397,242

Soporte HW: Intel VT-x

 Para solventar estos problemas, Intel introduce un nuevo modo de operación en la arquitectura x86

VMX Root Mode

- Todas las instrucciones en este modo no son diferentes a las de la arquitectura tradicional
- El software antiguo (*legacy*) debería de ejecutarse correctamente en este modo
- El hipervisor debe correr en el modo privilegiado de este modo para tener control sobre todos los recursos

VMX Non-Root Mode

- Se rediseñan todas las instrucciones críticas (sensitive)
- Las instrucciones críticas provocan un trap que pasa la CPU a modo root
- El sistema operativo guest debe ejecutarse en este modo pudiendo ser virtualizado completamente mediante "trap and emulate".

Soporte HW: Intel VT-x

S.O. tradicional

Con soporte HW

Modelo Trap and emulate

Ilustraciones: System Virtualization, Yeh-Ching Chung http://www.cs.nthu.edu.tw/~ychung/syllabus/Virtualization.htm

MV (context) switch

- VMM switches different VMs with Intel VT-x :
 - VMXON/VMXOFF
 - These two instructions are used to turn on/off CPU Root Mode.
 - VM Entry
 - This is usually caused by the execution of VMLAUNCH/VMRESUME instructions, which will switch CPU mode from Root Mode to Non-Root Mode.
 - VM Exit
 - This may be caused by many reasons, such as hardware interrupts or sensitive instruction executions.
 - Switch CPU mode from Non-Root Mode to Root Mode.

VT-x: System State Management

- Intel introduces a more efficient hardware approach for register switching, VMCS (Virtual Machine Control Structure):
 - State Area
 - Store Host OS system state when VM-Entry.
 - Store Guest OS system state when VM-Exit.
 - Control Area
 - Control instruction behaviors in Non-Root Mode.
 - Control VM-Entry and VM-Exit process.
 - Exit Information
 - Provide the VM-Exit reason and some hardware information.
- Whenever VM Entry or VM Exit occur, CPU will automatically read or write corresponding information into VMCS.

Soporte HW

 No sólo para la CPU, también para la memoria, red, E/S, ...

	Solución Hardware		
	Intel	AMD	
Instrucciones privilegiadas	VT-x	AMD-V	
Virtualización de la RAM	EPT (Extended Page Tables)	NPT (Nested Paging)	
Virtualización de la E/S	VT-d (Virtualization Technology for Directed I/O)	AMD-Vi (también llamado IOMMU)	

Virtualizadores para plataformas x86

Un poco más de historia ...

Ilustración: Understanding Full Virtualization, Paravirtualization, and Hardware Assist, 2008, Vmware Tech. Report

- Software de escritorio (hipervisores tipo 2)
 - Vmware workstation, player, fusion

- Sofware de servidor (hipervisores tipo 1)
 - VMware vSphere (ESXi)
- Muchos otros productos de virtualización dirigidos a infraestructuras virtuales:
 - vCloud,
 - Virtual desktops, ...

Kernel-based Virtual Machine

- solución open-source
- convierte Linux en un hipervisor
 - formado por módulos de kernel (uno para la infraestructura de virtualización, kvm.ko y otro dependiente de la CPU del host kvm-intel.ko)
- Componentes:
 - Virtualization API (libvirt)
 - Managers: virsh (CLI), virt-manager (GUI)

• • • | QEMU

- QEMU = Quick Emulator
- Creado originalmente por Fabrice Bellard
- Considerado "la navaja suiza" de los virtualizadores

- Free software (GPL salvo algunas partes)
- Virtualización nativa tipo hosted (x86/x86-64) o bien emulación
- En linux, puede hacer uso de KVM (Kernel Virtual Machine) como acelerador (ambas plataformas, virtual y real, x86)
- Permite emular una gran variedad de plataformas y formatos:

QEMU targets: x86_64, i386, arm, m68k, mips, ppc64, sparc64, cris, mips64, ppcemb, mips64el, mipsel, microblaze, ppc, sparc, ...

VirtualBox (Hosted hypervisor)

- Software de virtualización para x86 / x86-64, originalmente de Sun
- 2007: VirtualBox Open Edition, se ofrece como software abierto bajo GPL
- Disponible en MS Windows, Linux, Solaris,
 Mac OS X y alguna otra plataforma
- Compatibilidad con discos imágenes de VMware (.vmdk) y MS VirtualPC

Oracle VM Server (Bare metal)

Instalable en servidores x86 y SPARC

 Hiper-V: orientado a servidores (hipervisor bare metal con maquina privilegiada)

- Orígenes: proyecto de la universidad de Cambridge a finales de los 90
 - 2002: se convierte en un proyecto de código abierto
 - 2004: se funda XenSource, pero el proyecto open source sigue abierto
 - 2007: Citrix adquiere XenSource
- Hipervisor bare metal con máquina privilegiada

Ilustración: Virtualization essentials. M. Portnoy. 2012

Otras soluciones (sin hipervisor)

Otras soluciones: containers

Fuente:

A Brief History of Containers, Jeff Victor & Kir Kolyshkin, 2015

• • • ¿Qué es un container?

o Idea:

- MV ligera (arranque rápido, clonado eficiente, mínima instalación ...)
- Se busca una aproximación lo más próximo posible a los 3 principios de P&G
- Estandarización, portabilidad

Es virtualización a nivel de SO, pero no es una MV:

- Usa el kenel del host
- No puede arrancar un kernel propio (ni diferente)
- ... ni tiene sus drivers
- ... ni necesita algunos demonios o servicios (syslogd, cron, ...), ni un proceso PID 1 (init), ...

¿De qué está hecho un container?

- Basicamente: Es un conjunto de procesos visibles al host pero que mantienen cierto aislamiento entre ellos
- Container = chroot on steroids
- o Conjuga 3 elementos (perspectiva Unix/linux):
 - Sandboxing:
 - chroot
 - Mapeo de identificadores:
 - namespaces
 - nsenter
 - Control de recursos
 - cgroups

Fuente: Container's Anatomy: Namespaces, cgroups, and some filesystem magic, Jérôme Petazzoni, 2015

| Container orchestration

- Gestión y control del ciclo de vida de los containers en especial en grandes infraestructuas.
 - Aprovisionamiento y despliege
 - Redundancia / diponibilidad
 - Equilibrado de carga, migración de containers entre hosts
 - Exposición de servicios hacia el exterior
 - Monitorización de recuros
 - Configuración

• • Otras soluciones **XPROXMOX**

- Distribución de linux bare metal
- Combina dos tecnologías de virtualización:
 - hipervisor KVM
 - containers LXC
- Gestor de MVs a través de un interfaz web