

目录

D1 移动平台	使用手册	2
D1 移动平	台硬件连接	2
用电脑控制	制 D1 移动平台建图和导航	3
1.1.1	环境准备一电脑 ROS 平台安装	3
1.1.2	搭建 EAI 的 Dashgo 环境	7
1.1.3	电脑启动并控制 D1 平台移动建图	8
用安卓手机	机 APP 控制 D1 移动平台建图和导航1	L 2
1.1.4	手机 APP—EAIGO 建图和导航1	!2
1.1.5	APP 直接选择已有的地图开始导航1	16
1.1.6	APP 其他功能操作 1	!7
修订历史	1	۱9

D1 移动平台使用手册

D1 移动平台硬件连接

正常情况,在出厂时,各硬件都会连接好,若拔插过,请确保按下图把接好硬件

电脑. 安卓手机。 导 航 Arduino 电机控制板↓ USB-B 型口₽ Port1₽ 模 无线 WIFI 外接4个超声波↓ 块。 路由器。 雷达电源 局域网口。 Port2₽ Data⊬ 雷达。 内 数据转接 置 Pow 板↓ XX 🗆 🗸 沱 接底盘 5V 供电 螺

如上图是导航模块的接口:

Port1 接底盘

Port2 接雷达,用于建图,导航避障

Port3 和 Port4 预留使用

接底盘 5V 供

•₽

仪↩

用电脑控制 D1 移动平台建图和导航

1.1.1 环境准备—电脑 ROS 平台安装

ROS 平台必须运行在 ubuntu linux 平台,因此电脑需要先安装 ubuntu 平台,然后再安装 ROS 平台,已电脑安装 ubuntu 16.04 平台,并安装相应的 ROS kinetic 版本,(若电脑安装的是 ubuntu 14.04 ,则 ROS 需要安装 indigo 版本)。

Ubuntu 平台的安装可参照:

在 win7 上安装双平台 ubuntu: https://blog.csdn.net/eaibot/article/details/53640828

直接安装 ubuntu 平台: https://jingyan.baidu.com/article/3c48dd348bc005D10be358eb.html

配置 Ubuntu 软件仓库

配置你的 Ubuntu 软件仓库(repositories) 以允许 "restricted"、"universe" 和 "multiverse"这三种安装模式,服务器要选择国内的。

平台设置》软件和更新》 Ubuntu 软件,将设置修改成如下图所示:

平台设置》软件和更新》其它软件,将设置修改成如下图所示:

点击 关闭(C) 按钮, 等待缓存更新完成。

配置 ROS 的 apt 源

ROS 的 apt 源有官方源、国内 USTC 源或新加坡源可供选择,选择其一就可以了,建议使用国内 USTC 源或新加坡源,安装速度会快很多。(安装过程中,建议使用有线网络,不容易出错。)

◆ 方式一: 官方源

\$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu \$(lsb_release -sc) main" > \
 /etc/apt/sources.list.d/ros-latest.list'
\$ sudo apt-key adv --key server hkp://ha.pool.sks-keyservers.net:80 --recv-key \
 421C365BD9FF1F717815A3895523BAEEB01FA116
\$ sudo apt-get update

方式二: 国内 USTC 源

URL: http://mirrors.ustc.edu.cn/ros/

\$ sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ \
\$DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list'

 $\$ sudo apt-key adv --key server hkp://ha.pool.sks-keyservers.net:80 --recv-key \ 421C365BD9FF1F717815A3895523BAEEB01FA116

\$ sudo apt-get update

◆ 方式三:新加坡源

URL: http://mirror-ap.packages.ros.org/

\$ sudo sh -c '. /etc/lsb-release && echo "deb http://mirror-ap.packages.ros.org/ros/ubuntu/ \ \$DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list'

\$ sudo apt-key adv --key server hkp://ha.pool.sks-keyservers.net:80 --recv-key \

421C365BD9FF1F717815A3895523BAEEB01FA116

\$ sudo apt-get update

sudo apt-get update 执行更新有时因为网络原因可能出现错误(若不是 ros 安装源错误均可继续 ros 安装操作),可重新执行命令进行更新。

安装 ROS 软件包

\$ sudo apt-get install ros-kinetic-desktop-full

\$ sudo apt-get install python-rosinstall

升级了 71 个软件包,新安装了 799 个软件包,要卸载 0 个软件包,有 314 个软件包未被升级。

需要下载 390 MB 的软件包。

解压缩后会消耗掉 1,620 MB 的额外空间。

sudo apt-get install ros-kinetic-desktop-full 安装 ROS Kinetic 时,如果在下载完时,没有进行解压,再/opt/下没有 ROS 目录,可能是更新源选错了,导致没下载完,无法解压安装 ROS,需要更换到国内源,然后 sudo apt-get update 重新安装

配置环境变量

\$ sudo rosdep init

\$ rosdep update

\$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

\$ source ~/.bashrc

测试 ROS 安装是否成功

在终端输入 roscore -h,输出如下所示,表示安装成功。

\$ roscore -h

Usage: roscore [options]

roscore will start up a ROS Master, a ROS Parameter Server and a rosout logging node

Options:

- -h, --help show this help message and exit
- -p PORT, --port=PORT master port. Only valid if master is launched
- -v verbose printing

See http://www.ros.org/wiki/roscore

在终端输入 roscore, 输出如下所示,表示环境配置成功, ros 正常运行。

eaibot@eaibot:~\$ roscore

... loggingto

/home/eaibot/.ros/log/45d93ed8-a23a-11D1-99b1-4437D13de0fc/roslaunch-eaibot-3460.log

Checking log directory for disk usage. This may takeawhile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://eaibot:35377/

ros_comm version 1.11.20

SUMMARY

PARAMETERS

* /rosdistro: kinetic

* /rosversion: 1.11.20

NODES

COPYRIGHT 2015-2017 EAI TEAM


```
auto-starting new master
process[master]: started with pid[3472]
ROS_MASTER_URI=http://eaibot:11311/

setting /run_id to 45d93ed8-a23a-11D1-99b1-4437D13de0fc
process[rosout-1]: started with pid[3485]
started core service [/rosout]
```

1.1.2 搭建 EAI 的 Dashgo 环境

设置用户的串口读取权限

\$ sudo usermod -a -G dialout your_user_name

your_user_name 替换为实际用户名。

安装依赖包

```
\ sudo apt-get install git python-serial ros-kinetic-serial g++ \ ros-kinetic-turtlebot-rviz-launchers ros-kinetic-teleop-twist-keyboard \ ros-kinetic-move-base-msgs libghc-sdl-image-dev libsdl-imagK2.2-dev \ ros-kinetic-navigation ros-kinetic-slam-gmapping ros-kinetic-teb-local-planner
```

如果出现报错,将libsdl-imagK2.2-dev 删除,然后重新安装依赖包。

获取并编译 dashgo_ws 工程包

请确认自己的环境是 Ubuntu 14.04 +ROS Indigo, 还是 Ubuntu 16.04 +ROS Kinetic,并从资料包内选择适合的 dashgo_ws 包版本,然后把 dashgo_ws 文件夹放在当前用户主文件夹中, (即 ~/ 目录中)。

```
eaibot@eaibot:~$ cd ~
eaibot@eaibot:~$ cd dashgo_ws
eaibot@eaibot:~$ sudo chmod 777 ./* -R
eaibot@eaibot:~/dashgo_ws$ ls
build devel src
eaibot@eaibot:~/dashgo_ws$ rm -rf build/
eaibot@eaibot:~/dashgo_ws$ rm -rf devel/
```


eaibot@eaibot:~/dashgo_ws\$ catkin_make

dashgo_ws 文件夹复制完成后,放在当前用户主文件夹中,切换到 dashgo_ws 下将 build 与 devel 文件夹使用 rm 命令删掉,重新使用 catkin_make 编译。

catkin_make 编译完成后,添加 Dashgo 环境变量 ~/.bashrc 文件中。

 $\ echo\ "source \sim /dashgo_ws/devel/setup.bash" >> \sim /.bashrc$

\$ source ~/.bashrc

source ~/.bashrc 使环境变量的配置生效。

1.1.3 电脑启动并控制 D1 平台移动建图

电脑已安装好 ros 平台,并搭建好 EAI-Dashgo 环境,D1 硬件已正常连接

分别配置电脑和导航模块的/etc/hosts 文件

电脑先连接底盘路由器, 在电脑终端中

xiaobot@xiaobot:~\$ hostname //查看电脑 ubuntu 平台的主机名,我的为 xiaobot xiaobot@xiaobot:~\$ifconfig //查看电脑无线网卡的 ip 地址,我的为 192.168.31.143 xiaobot@xiaobot:~\$ sudo vim /etc/hosts //打开电脑的/etc/hosts 文件

在电脑连上 D1 机器的 WIFI,在电脑终端输入 ssh <u>eaibot@192.168.31.200</u>,然后输入密码: eaibot, 远程进入导航模块平台。

在导航模块平台中的/etc/hosts 文件末尾添加前面查看到的电脑 ubuntu 平台的 ip 地址和主机名

xiaobot@xiaobot:~\$ ssh <u>eaibot@192.168.31.200</u> //远程进入导航模块平台 eaibot@DashgoD1:~\$ sudo vim /etc/hosts //在导航模块中, 打开/etc/hosts 文件

在打开的电脑/etc/hosts 文件末尾添加导航模块的 IP 地址和主机名,我前面查看的为192.168.31.143xiaobot

注意:如果没有改对电脑和导航模块平台的/etc/hosts 文件,在建图时,电脑 ubuntu 上的 rviz

是无法显示出地图的, 在导航时, 点击 rviz 设置起点和目标点都会无反应。

通过电脑远程启动 D1 建图,并显示地图

在电脑中远程进入导航模块,并在导航模块中启动建图 launch

xiaobot@xiaobot:~\$ ssh <u>eaibot@192.168.31.200</u> //远程进入导航模块平台 eaibot@DashgoD1:~\$roslaunch dashgo_nav gmapping_imu.launch //启动建图 launch

在电脑中直接打开 rviz,观察地图

export ROS_MASTER_URI=http://192.168.31.200:11311 roslaunch dashgo_rviz view_navigation.launch

移动底盘和雷达扫描构建地图

(1) 方式一: 手机 DashgoApp 控制底盘移动

手机连接底盘路由器,然后打开 DashgAPP,选择"WIFI"便进入到 WiFi 连接界面,如下图所示:

Master端连接		
Master IP: 192.168	.10.1	
取消	连 接	

需要输入的 Master IP 是导航模块的 IP 地址, 即 192.168.31.200。

然后点击"连接",连接成功后,界面如下:

方向的操控,如下图所示:

注意: DashgoApp 只能在启动了底盘 launch(如建图 gmapping_imu.launch)时,才可以正常连接使用,仅能控制底盘移动

(2) 方式二: 电脑键盘控制底盘移动建图

保持建图 gmapping_imu.launch 在正常运行,在导航模块另一个终端中启动键盘控制 launch 并移动 D1 扫描地图

xiaobot@xiaobot:~\$ ssh <u>eaibot@192.168.31.200</u> //远程进入导航模块平台

eaibot@DashgoD1:~\$rosrun dashgo_tools teleop_twist_keyboard.py //启动键盘控制移动

启动成功后,键盘"i"建表示前进,","表示后退,"j"表示左转,"l"表示右转,"k"表示停止。

保存地图

在保证建图 gmapping_imu.launch 程序正常运行,并已扫描好地图,此时进入到导航模块的地图目录 dashgo_ws/src/dashgo/dashgo_nav/maps ,并把新地图保存在此目录。

xiaobot@xiaobot:~\$ ssh eaibot@192.168.31.200 //远程进入导航模块平台 eaibot@DashgoD1:~\$roscd dashgo_nav/maps //进入导航模块地图目录 eaibot@DashgoD1:~\$rosrun map_server map_saver -f eai_map_imu //保存地图

地图保存好后,ctrl+c停止建图程序和键盘控制程序。

通过电脑远程启动 D1 导航

确保已经把建图程序停止了,确保终端是在导航模块中,(如果不是,需要远程登录到导航模块中,ssh eaibot@192.168.31.200)。

\$ roslaunch dashgo_nav navigation_imu.launch

在电脑中,启动 rviz,观察地图。

export ROS_MASTER_URI=http://192.168.31.200:11311 roslaunch dashgo_rviz view_navigation.launch

rviz 打开后显示 D1 默认所在的位置是栅格的中心点,不一定是 D1 实际所在的位置,因此每次打开 rviz 都需要检查并设置起点位置

设置机器人起点位置:在 rviz 上,点击 2D Pose Estimate,然后根据 D1 实际位置,在 地图相应位置上点击,并设置好正确方向,然后设置好机器人起点位置。

设置机器人目标点位置:在 rviz 上,点击 2D Nav Goal,然后再地图上点击目标点位置,此时正常情况,机器人会规划好到目标点的路径,并移动到目标点。

用安卓手机 APP 控制 D1 移动平台建图和导航

1.1.4 手机 APP—EAIGO 建图和导航

步骤 1: 手机安装好 EAIGO5X.apk, 然后 wifi 连接好底盘路由器,打开 EAIGO ,输入导航模块 IP 为 192.168.31.200,点击建图按钮开始建图

步骤 2: 等待 10s 左右,在手机上显示出地图,此时,通过右下角方向盘控制小车移动,扫描地图,结果如下图所示:

步骤 3: 移动扫描好地图后,把左侧的选择栏目滑动出来,点击功能栏第一个 钮,输入要保存的地图名,并确定。

步骤 4: 地图保存好后,点击平台状态栏第四个 据钮,弹出对话框,选择是,从建图模式切换到导航模式,在左上角显示当前是导航模式,且是在设置目标点状态

步骤 5:(如果显示的地图大小合适,该步骤可以省略)如果地图大小显示不合适,可以缩放地图,从 App 左边把功能选择栏滑出来,然后点击 按钮切换到缩放地图状态

(红色表示缩放状态,灰色表示是设置目标点状态,默认是灰色状态)

步骤 6: (如果显示的地图大小合适,该步骤可以省略),地图缩放完成后,必须再点击

步骤 7: 切换回设置目标点状态后,点击地图,设置目标点,并设置目标点名称

步骤 8: 设置好目标点后,点击左侧功能栏的 按钮,开始导航,点击 取消导航,正常情况,若你设置了多个目标点,则会在多个目标点间循环导航,若只设置了一个目标点,则只会导航一次。

1.1.5 APP 直接选择已有的地图开始导航

在打开 EAIGO 界面时,输入导航模块 IP 为 192.168.31.200 ,直接点击导航按钮,此时会弹出已有的地图选择框,点击选择合适地图,直接进入导航模式。

开始导航

1.1.6 APP 其他功能操作

删除已经设置的目标点

单个目标点删除: 在导航点列表中,点住目标点1 并往右滑动删除

所有目标点删除:点击 / 按钮,删除所有设置好的目标点

其他按钮的作用

建图模式下:

- **当**按钮,保存当前所建地图。
- **C**按钮,刷新当前地图,请求数据。
- 🥰 按钮,清除当前地图,重新扫图。
- 按钮,显示/隐藏虚拟摇杆。

导航模式下,平台状态:

- 按钮,显示 ROS 服务的启动情况
- 按钮,查看导航模块 cpu 使用率,串口占用的基础信息
- 按钮,查看 ros 的运行错误日志
- **国**按钮,建图模式和导航模式的切换按钮

导航模式下, 充电按钮

- 按钮,设置充点电位置
- ◆ 按钮,底盘会先导航到充电点,然后红外自动寻找充电桩,找到后开始充电对接。
- 🔩 按钮,取消回充,继续导航
- 按钮,删除已经设置的充电点位置。

导航模式下, 功能按钮

位按钮,删除所有设置好的目标点

- 按钮,缩放地图模式和设置目标点模式切换按钮
- 按钮,显示方向盘按钮

修订历史

日期	内容
2018-08-13	V1. 1
2018-09-19	V1. 2