Gröbner-Fächer für lineare Codes

Daniel Rembold

Technische Universität Hamburg Harburg daniel.rembold@tuhh.de

August 29, 2014

Inhaltsverzeichnis

- Einleitung
- Mathematische Grundlagen
- Aufzählen von Gröbner-Fächern
- © Ergebnisse
- Mögliche Verbesserungen & Fazit
- Vorführung

Motivation

- Viele Anwendungen der Gröbnerbasen basieren auf Gröbner-Fächer
- Nützlich für Idealzugehörigkeitsproblem und polynomiale Gleichungssysteme
- Kompletter Gröbner-Fächer nicht immer nötig

Monome

Monom

- ullet Produkt von Variablen über einen endlichen Körper $\mathbb{K}\left[X_1,X_2,\ldots,X_n
 ight]$
- Schreibweise $m = X_1^{u_1} X_2^{u_2} \cdots X_n^{u_n}$ und $u_i \in \mathbb{N}_0$

Grad eines Monoms: $deg(m) = \sum_{i=1}^{n} u_i$.

Termordnung (1)

Termordnung >

ullet Relation > auf der Menge von allen Monomen in $\mathbb{K}\left[X_1,X_2,\ldots,X_n
ight]$

Termordnung Beispiele

- Lexikographische Ordnung >_{lex}
- grad $>_{grlex}$
- Ordnung mit Gewichtsvektor $c=(c_1,\ldots,c_n)\in\mathbb{R}^n_+$

Leitterm

Leitterm LT(f)

• Polynom $p \in \mathbb{K}\left[X_1, X_2, \dots, X_n\right]$ besitzt Term höchster Ordnung in Bezug auf >

Beispiel

Sei
$$f = x^2 + 3xyz + y^3$$

- lex-Order : $f = \underline{x^2} + 3xyz + y^3$
- grlex-Order : $f = 3xyz + y^3 + x^2$
- (1,2,1): $f = y^3 + 3xyz + x^2$

Ideale

Ideal

• Kollektion von Polynomen f_1, \ldots, f_s :

$$\langle f_1,\ldots,f_s\rangle = \left\{\sum_{i=1}^s h_i f_i \mid h_1,\ldots,h_s \in \mathbb{K}\left[X_1,\ldots,X_n\right]\right\}.$$

Beispiel

Sei $I = \langle f_1, f_2 \rangle = \langle x^2 + y, x + y + 1 \rangle$ und $f = x^2y + x^2 + y^2 + xy + x$ Es gilt $f = y \cdot f_1 + x \cdot f_2, \ f \in I$.

Divisionsalgorithmus (1)

Notwendig zum Lösen des Idealzugehörigkeitsproblems

Ziel des Algorithmus

Polynom g durch Ideal $I = \langle f_1, \dots, f_s \rangle$ teilen, so dass

$$g = a_1 f_1 + \ldots + a_s f_s + r$$
, $a_i, g, I, r \in \mathbb{K}[X_1, \ldots, X_n]$

Sei Polynom p und Ideal I

• Wenn p % I = 0, dann gilt $p \in I$

Divisionsalgorithmus (2)

Algorithm 1 Divisionsalgorithmus

```
Require: Basis I = \langle f_1, \dots, f_m \rangle von Polynomen \neq 0 und eine feste Termordnung LT
```

Ensure: r = 0 or none of the terms in r are divisible by $LT \leq (f_1), \ldots, LT \leq (f_m)$

- Reihenfolge der Polynome in / beeinflusst Ergebnis
- $r \neq 0$ möglich, obwohl $p \in I$

Gröbnerbasis (1)

Gröbnerbasis

Sei Termordnung > und Ideal I, dann hat Gröbnerbasis $G = \{f_1, \ldots, f_m\}$ (in Bezug auf >) von I die Eigenschaft:

• Von jedem Polynom $p \in I$ ist $LT_{>}(p)$ teilbar durch $LT_{>}(f_i)$

- Divisionsrest eindeutig bestimmt und unabhängig von Reihenfolge
- Gröbnerbasis aus jedem Ideal mit Hilfe des Buchberger-Algorithmus und einer festen Termordnung

Gröbnerbasis (2)

- Gröbnerbasen sind nicht eindeutig
- Reduzierte Gröbnerbasen jedoch eindeutig für Ideale

Reduzierte Gröbnerbasis

Alle Leitterme von Gröbnerbasis G in Bezug auf Termordnung > monisch und relativ prim zueinander

Gröbner-Fächer

Unendlich viele Termordnungen, endlich viele reduzierte Gröbnerbasen

Gröbner-Fächer

- ullet Vielflächiges Komplex welches Kegel im \mathbb{R}^n_+ enthält
- Kegel werden durch lineare Ungleichungen der Polynome bestimmt

Beispiel Gröbner-Fächer (1)

Sei

- $G_{>_{lex}} = \{y^2 z, \ \underline{x} y\}$
- **3** $\mathbf{w} = (a, b, c) \in \mathbb{R}^3_+$
 - $w \in G_{>_{lex}}$ genau dann, wenn
 - $(0,2,0)\cdot(a,b,c)\geq(0,0,1)\cdot(a,b,c) \lor 2b\geq c$
 - $(1,0,0)\cdot(a,b,c)\geq(0,1,0)\cdot(a,b,c) \ \lor \ a\geq b$

Beispiel Gröbner-Fächer (2)

Figure: Gröbner-Kegel für $G_{>_{lex}}$

Beispiel Gröbner-Fächer (3)

Figure: Kompletter Gröbner-Fächer

Torische Ideale

Binomiales Ideal

Torisches Ideal

Gegeben seien $A = [a_1, \dots, a_n] \in \mathbb{Z}^{d \times n}$ und $u \in \mathbb{Z}^n$ zerlegbar in u^+ und u^- , dann ist das torische Ideal I_A definiert durch

$$\mathbf{I}_A = \langle \mathbf{x}^{u^+} - \mathbf{x}^{u^-} \mid u \in ker(A) \rangle.$$

Facet Binomials

- Gröbner-Fächer als Graph
 - Gröbnerbasen als Knoten
 - Gröbnerbasen adjazent wenn im Gröbner-Fächer benachbart

Facet Binomials

Sei $x^{\alpha_k} - x^{\beta_k} \in \mathcal{G}_c$, \mathcal{G}_c Gröbnerbasis mit Gewichtsvektor c $x^{\alpha_k} - x^{\beta_k}$ ist Facet binomial wenn ein Vektor $u \in \mathbb{R}^n$ folgendes erfüllt :

$$\alpha_i \cdot u \ge \beta_i \cdot u : i = 1, \dots, t, i \ne k$$

 $\beta_k \cdot u \ge \alpha_k \cdot u$

Beispiel Facet Binomials

- Sei $\mathcal{G} = \{x_1 x_5, x_2^2 1, x_2x_4 x_5x_6, x_2x_6 x_4x_5, x_3 x_5, x_4^2 1, x_4x_5x_6 x_2, x_5^2 1, x_6^2 1\}$
- Prüfe ob $x_2x_4 x_5x_6$ ein facet binomial ist mit LP

$$\begin{array}{rcl} & Ax & = & b \\ \text{so dass} & x & \geq & 0 \end{array}$$

$$b = (0,1,0,1,-1,-1)^T$$

2

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 \end{pmatrix}$$

Traversieren von Gröbnerbasen

- Gröberbasis erhalten durch andere Gröbnerbasis
- Facet Binomial "umdrehen" (flip)

Algorithm 2 Local change of reduced Gröbner bases in I_A

Input: Reduced Gröbner basis \mathcal{G} of I_A and

A prescribed facet binomial $\underline{x}_i^a - x_i^b \in \mathcal{G}$

Output: The reduced Gröbner basis adjacent to \mathcal{G} in which $\underline{x}_i^b - x_i^a$ is a facet binomial.

Keine expliziten Termordnung nötig

Breitensuche

Algorithm 3 Enumerating the edge graph of the Gröbner fan via breath-first search

Input: Any reduced Gröbner basis \mathcal{G}_0 of I_A

Output: All reduced Gröbner bases of I_A , (all vertices of the edge graph)

- Einfacher und intuitiver Algorithmus
- Alle Gröbnerbasen müssen für den Vergleich gespeichert werden

Tiefensuche(1)

- Gröbner-Fächer mit umgekehrter Tiefensuche nummerieren
- ullet Ergebnis ist ein gerichter Subgraph \longrightarrow Umgekehrter Suchbaum
- Nachteil von Breitensuche kompensiert

Umgekehrter Suchbaum $T_{>}(I_A)$

- Azyklischer Graph mit einer eindeutigen Senke (bzgl. einer festen Termordnung)
- Eindeutige Pfade von Gröbnerbasis zur Senke

Tiefensuche(2)

Algorithm 4 Enumerating the edge graph of the Gröbner fan via reverse search

Input: Any reduced Gröbner basis $\mathcal{R}_{>}$ of I_A and its term order >

Output: All reduced Gröbner bases of I_A (all vertices of the edge graph)

- Termordnung notwendig für Tiefensuche
- Binome die Termordung einhalten werden "umgedreht"

Vergleich: Breitensuche & umgekehrte Tiefensuche

Sei $\mathcal{G} = \{x_1 - x_2, x_3 - x_4, x_5 - x_6, x_2^2 - 1, x_4^2 - 1, x_6^2 - 1\}$ mit lexikographischer Ordnung $>: x_1 > \ldots > x_6$

(a) Ergebnis der Breitensuche

(b) Umgekehrter Suchbaum

Gradkompatible Gröbnerbasis (1)

Gradkompatible Gröbnerbasis

Eine reduzierte Gröbnerbasis (bzgl. zur Termordnung >) für ein Ideal ist gradkompatibel wenn der Vektor 1 im Gröbner-Kegel liegt.

- Leitterm muss höchsten Grad haben
- Jedes Ideal hat mindestens eine gradkompatible Gröbnerbasis

Gradkompatible Gröbnerbasis (2)

Einzige gradkompatible Gröbnerbasis

Eine reduzierte Gröbnerbasis (bzgl. einer Termordnung >) ist die einzige gradkompatible Gröbnerbasis wenn

$$deg(x^a) > deg(x^b) \ \forall \ x^a - x^b \in \mathcal{G}$$

Breitensuche und umgekehrte Tiefensuche adaptierbar auf gradkompatible Gröbnerbasen

Lineare Codes

Linearer Code

Ein linearer Code $\mathcal C$ der Länge n und Dimension k über $\mathbb F$ ist eine injektive lineare Abbildung $\phi: \mathbb F^k \to \mathbb F^n, \ n \geq k.$

- Als [n, k] Code bezeichnet
- Alternativ als Generatormatrix $G \in \mathbb{F}^{k \times n}$ beschrieben
- Standardform : $G = (I_k|M)$
- Codewort c vom Wort x erhält man durch

$$xG = c$$

Beispiel lineare Codes

• Sei
$$x = (1, 0, 1, 0)$$
 und $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$

$$(1,0,1,0) \cdot egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 1 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = (1,0,1,0,0,0,1)$$

Code Ideal

Code Ideal

Sei $\mathcal C$ ein [n,k] Code. Das Code Ideal $I(\mathcal C)$ die Vereinigung zwischen

$$\begin{split} I_{\mathcal{C}} &= \langle \mathbf{x}^c - \mathbf{x}^{c'} | c - c' \in \mathcal{C} \rangle + I_p, \\ \text{wobei } I_p &= \langle x_i^p - 1 | 1 \leq i \leq n \rangle. \end{split}$$

Beispiel Code Ideal

ullet Sei ${\mathcal C}$ ein binärer [6, 3] code mit der Generatormatrix

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

• Code Ideal I(C) ergibt sich zu:

$$I(\mathcal{C}) = \{x_1 - x_5, \ x_2 - x_4 x_5 x_6, \ x_3 - x_5\} \cup \{x_1^2 - 1, \ x_2^2 - 1, \ x_3^2 - 1, \ x_4^2 - 1, \ x_5^2 - 1, \ x_6^2 - 1\}$$

Reduzierte Gröbnerbasis mit lexikographischer Ordnung > :

$$\mathcal{G}_{>} = \{x_1 - x_5, \ x_2 - x_4 x_5 x_6, \ x_3 - x_5\} \cup \{x_4^2 - 1, \ x_5^2 - 1, \ x_6^2 - 1\}$$

Vergleich zw. gradkompatible & kompletter Gröbner-Fächer

Zeitvergleich zwischen Gfan & Software

Table: Berechnungszeit in Sekunden

[n, k] Code	CIDGEL d.c.	CIDGEL	Gfan
[8, 2]	0.206	10.198	38.127
[8, 4]	7.743	25.86	47.748
[9, 4]	9.27	727.91	982.56
[9, 5]	4.72	18.89	59.65
[10, 6]	87.92	277.81	380.04

Vorführung der Software

Mögliche Verbesserungen

- Verwenden von externen LP-Solver
- Parallelität

Fazit

- Keine (bekannte) Software berechnet gradkompatiblen Gröbnerfächer
- Schnellere Berechnung als andere Software

Vielen Dank für eure Aufmerksamkeit!