4 – Lines / 2-point, point-slope, and slope-intercept

→ ch6 git:(master) X ./q4

Select the form that you would like to convert to slope-intercept form:

- 1) Two-point form
- 2) Point-slope

=>1

Enter the x-y coordinates for first point: 2.3 7.6 Enter the x-y coordinates for second point: -5.2 -3.4

Two-point form

$$(-3.40 - 7.60)$$

Slope-intercept form

y = 1.47x + 4.23

Do another conversion (Y or N) => Y

Select the form that you would like to convert to slope-intercept form:

- 1) Two-point form
- 2) Point-slope

=>2

Enter the x-y coordinates of a point: 1.5 2.5

Enter the slope: 1.5

Point-slope form

$$y - 2.50 = 1.50(x - 1.50)$$

Slope-intercept form

y = 1.50x + 0.25

Do another conversion (Y or N) => N

6 – Heat Transfer

→ ch6 git:(master) X ./q6

Respond to the prompts, enter? for unknown:

Rate of heat transfer (watts) >> 755.0

Coefficient of thermal conductivity (W/m-K) >> 0.8

Cross-sectional area of conductor: (W^2) >> 0.12

Temperature on one side (K) >> 298

Temperature on other side (K) >> ?

Thickness of conductor (m) >> 0.003

Temperature on other side is 274 K.

H = 755.0 W T2 = 298 K

```
k = 0.8000 \text{ W/m-K} T1 = 274 \text{ K} A = 0.120 \text{ m}^2 X = 0.0030 \text{ K}
```

[Not actual output] Use the values in the following input files to run the program for 6 times. Should produce the same table below

```
H = 830.5 W
                   T2 = 302 K
k = 0.7500 W/m-K
                        T1 = 117 K
A = 0.300 m^2
                    X = 0.0500 K
→ ch6 git:(master) X cat q6.input1
0.75
0.3
302
117.444
0.05
→ ch6 git:(master) X cat q6.input2
830.5
0.3
302
117.444
0.05
→ ch6 git:(master) X cat q6.input3
830.5
0.75
302
117.444
0.05
→ ch6 git:(master) X cat q6.input4
830.5
0.75
0.3
117.444
0.05
→ ch6 git:(master) X cat q6.input5
830.5
0.75
0.3
302
→ ch6 git:(master) X cat q6.input6
830.5
```

0.75 0.3 302 117.444 ?

9 – Drag Force

→ ch6 git:(master) X ./q9 Enter drag coefficient: 0.25

Enter area: 50

Velocity	Drag
0.00	0.000
5.00	192.188
10.00	768.750
15.00	1729.688
20.00	3075.000
25.00	4804.688
30.00	6918.750
35.00	9417.188
40.00	12300.000

14 – Brothers's and Knox's Approximation of e

→ ch6 git:(master) X ./q14

Converged at x = 476, 2.7182828, exp(1.0) = 2.7182818

ENGR120 Chapter 6 Test Results

Student Name:	· · · · · · · · · · · · · · · · · · ·		
Date:	Time:	Tester:	
4 – Lines / 2-point, poin	t-slope, and slope-in	ntercept	
Code compiles: Y N Code ran: Y N Corr Output was free from C Comments:	ect: 🗆 Y 🗆 N Termin	nated OK: \square Y \square N	
6 – Heat Transfer			
Code compiles: Y N Code ran: Y N Cotput was free from C Comments:	ect: 🗆 Y 🗆 N Termin	nated OK: \square Y \square N	
9 – Drag Force			
Code compiles: Y N Code ran: Y N Corr Output was free from C Comments:	ect: 🗆 Y 🗆 N Termin	nated OK: \square Y \square N	
14 – Brothers's and Kno	x's Approximation o	of e	
Code compiles: □Y □N Code ran: □Y □N Corr Output was free from	ect: 🗆 Y 🗆 N Termin	nated OK: \square Y \square N	
Comments:	,		