Anmol More – 11915043

Mach I –

a. Net cash flow of Mach I project – Assuming, question is asking cash flows at year 0, also calculating discounted cash flows at year 0

Year	0	1	2	3	4	5
After tax operating Cash flows	-200	110	159	295	185	0
Discounted cash flows	-200.00	91.67	110.42	170.72	89.22	0.00
Net Cash Flow	549					
Net Discounted Cash Flows	-262.02					

b. NPV of Mach I project – **70.48**

NET PRESENT VALUE						
Year	0	1	2	3	4	5
After tax operating Cash flows	-200	110	159	295	185	0
Discounted cash flows	-200.00	91.67	110.42	170.72	89.22	0.00
PV(cash flows)	262.02					
PV(capital expenditure)	-250					
Increase in Working Capital	0	50	100	100.00	-125	-125
Working Capital at Year 0	0.00	41.67	69.44	57.87	-60.28	-50.23
PV (Working Capital)	58.47					
NPV	70.48					
Cost of Capital	20%					

- **c.** 1. PV of cash flows is negative, so if working capital is not assured as assumed Blitz should not invest.
 - 2. However, Blitz should invest if expected working capital is most likely to be achieved and future risk remains same, then NPV becomes positive at 70.48, hence it should invest

- a. Of what kind is the option to invest in Mach II It's a call option, because its option to invest further
- **b.** Assuming Double of mach I ie. R&D cost and capital expenditure both would double by year 3 200x2 250x2

```
Underlying asset price, S_0= 900/(1.1^3) = 676.2 Exercise Price, K = 800/(1.1^3) = 601
```

c. Calculating by Black Scholes Model -Value of option = S₀ N(d1) – Ke -rT N(d2)

```
S<sub>0</sub>, underlying asset price
K, exercise price
Sigma (standard deviation) = 35%
r, risk free rate of Interest = 10%
T, is the time to expiration of the option in years = ?
```

Where, N(d1) = .3739 N(d2) = .1767

Therefore, d1 = -0.3215416 d2 = -0.9280146

d2 = d1 - sigma x sqrt(T) -0.9280146 = -0.3215416 - .35 sqrt(T) -.35 sqrt(T) = -0.606473 **T = 3 Years**

Therefore, substituting in black Scholes model –

Value of option to invest =
$$S_0 \times .3739 - K \times e^{(-.1\times3)}$$
.1767
= $S_0 \times .3739 - K \times 0.74081822 \times .1767$
= $S_0 \times .3739 - K \times 0.1309$
= 174.1

d. As per calculations, we can afford to invest 174 or less, if it clears the uncertainty over future cash flows of Mach II

But, capital expenditure required in Mach I is 250, so I won't invest in Mach I as it is much more than value we are getting, ie. 174 out of that investment