Aula 19: Sumário

- EDOS exatas.
- Tragectórias ortogonais.

Aula 19: EDOs de primeira ordem

- EDOS de variáveis separáveis.
- EDOS exatas.
- EDOs lineares (de primeira ordem).
- Equações diferenciais de Bernoulli.
- EDOs homogéneas.

Aula 19: EDOs exatas

EDOS do tipo:
$$M(x,y) + N(x,y)y' = 0$$
 (1)
$$\Leftrightarrow M(x,y)dx + N(x,y)dy = 0$$

A edo (1) diz-se exata se existe uma função F(x,y) com derivadas parciais contínuas tal que

$$\frac{d}{dx}F(x,y(x)) = M(x,y) + N(x,y)y'. \quad (2)$$

Aplicando a regra da cadeia, (1) é exata se e só se
$$M = \frac{\partial F}{\partial x}$$
 e $N = \frac{\partial F}{\partial y}$.

Teorema 1 (Critério): Se M, N, $\frac{\partial M}{\partial u}$ e $\frac{\partial N}{\partial x}$ são contínuas num aberto simplesmente conexo

$$D\subset\mathbb{R}^2$$
, então $M(x,y)dx\,+\,N(x,y)dy=0$ é exata se e só se $\left|\,rac{\partial M}{\partial y}=rac{\partial N}{\partial x}\,.\,
ight|$

Isto porque $\frac{\partial M}{\partial y} = \frac{\partial^2 F}{\partial y \partial x} = \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial N}{\partial x}$. Se (1) é exata, então a edo (1) torna-se numa edo

simples:
$$\frac{d}{dx}F(x,y(x))=0$$
 (2) cuja solução é $F(x,y)=C$. Isto é, qualquer

função $y=\phi(x)$ que satisfaça esta equação é solução da edo (1).

Aula 19: EDOs exatas M(x,y)dx + N(x,y)dy = 0 (1)

Critério: M, N, $\frac{\partial M}{\partial y}$, $\frac{\partial N}{\partial x}$ contínuas em \mathbb{R}^2 , então (1) é exata se e só se $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Sendo (1) exata então existe uma função $F(\boldsymbol{x}, \boldsymbol{y})$ com derivadas parciais contínuas tal que

$$\frac{d}{dx}F(x,y(x)) = M(x,y) + N(x,y)y'. \quad (2)$$

Cálculo de F(x,y): Resolver o sistema

$$\begin{cases} \frac{\partial F}{\partial x} = M(x, y) \\ \frac{\partial F}{\partial y} = N(x, y) \end{cases}$$

Solução da EDO: De (1) e (2) sai que a edo (1) $\Leftrightarrow \frac{d}{dx}F(x,y(x))=0$ cuja solução é

$$F(x,y) = C.$$

Aula 19: Exercícios 1

Verifique se a EDO é exata e no caso afirmativo determine as soluções na forma implícita.

(1)
$$(2y^2+2x)dx+4xydy=0$$
. Sol: $F(x,y)=2xy^2+x^2$ sol da EDO: $F(x,y)=C\Leftrightarrow 2xy^2+x^2=C$

(2)
$$\sin y + (y^2 - x \sin y)y' = 0$$
. Sol: Não é exata

(3)
$$(2xy-3x^2)dx+(x^2-2y)dy=0$$
. Sol: $F(x,y)=x^2y-y-x^3$ sol. da EDO: $F(x,y)=C\Leftrightarrow x^2y-y-x^3=C$.

(4)
$$y + 2xe^y + (x^2e^y + x - 2y)y' = 0$$
. Sol: $F(x,y) = yx + x^2e^y - y^2$ sol da EDO: $F(x,y) = C \Leftrightarrow yx + x^2e^y - y^2 = C$

Aula 19: Exercícios 2

A Verifique se a EDO é exata e no caso afirmativo determine as soluções na forma implícita.

(1)
$$(2y^2 + 2x)dx + 4xydy = 0$$
.

$$Sol: 2xy^2 + x^2 = C$$

(2)
$$\cos y + (y^2 - x \sin y)y' = 0$$
.

Sol:
$$x \cos y + \frac{y^3}{3} = C$$

(3)
$$(2xy - 3x^2)dx + (x^2 - 2y)dy = 0.$$

Sol:
$$x^2y - x^3 - y^2 = C$$

(4)
$$y + 2xe^y + (x^2e^y + x - 2y)y' = 0$$
.

$$Sol: yx + x^2e^y - y^2 = C$$

B Resolva os seguintes problemas de Cauchy:

1.
$$\begin{cases} y'(x\cos(xy) + e^y) = 1 - y\cos(xy) \\ y(1) = \frac{\pi}{2}. \end{cases}$$

Sol:
$$\sin(xy) - x + e^y = C$$
 S.P.C.: $\sin(xy) - x + e^y = e^{\frac{\pi}{2}}$

2.
$$\begin{cases} y'(y-x^2) = 2xy - 1 \\ y(0) = 1 \end{cases}$$

Sol:
$$(y-x^2)^2 + 2x - x^4 = C$$
 S.P.C.: $C=1$: $(y-x^2)^2 + 2x - x^4 = 1$
$$y(0) = 1 \quad \Rightarrow \quad \text{sol.} \quad y = x^2 + \sqrt{1 + x^4 - 2x}$$

Nota: (2) com a restrição y(0.8)=1 não teria solução. Com a restrição y(1)=1 também não teria solução pois y não seria diferenciável em 1.

Aula 19: Trajectórias Ortogonais

Uma trajectória ortogonal a uma família de curvas é uma curva que intersecta ortogonalmente cada um dos membros dessa família.

Para obter a família das trajectórias ortogonais a uma família de curvas procedemos:

- (1) Deduzir a EDO associada à família de curvas dada: y' = f(x,y) (2) Escrever a EDO das trajectórias ortogonais: $y' = -\frac{1}{f(x,y)}$
- (3) Integrar a EDO anterior.

Exercício 4: Determine as trajectórias ortogonais às famílias de curvas:

- (a) família das rectas na origem.
- (b) família de parábolas $y = kx^2$
- (c) família $y = kxe^x$.

Sol:
$$x^2 + y^2 = C$$
 (circunferências centradas na origem)

Sol:
$$y^2 + \frac{x^2}{2} = C$$
 (elipses centradas na origem)

Sol:
$$\frac{y^2}{2} + x = \ln|x+1| + C$$

Aula 19: Exercícios 5

Determine as trajectórias ortogonais às famílias de curvas:

(a)
$$y = \frac{c}{x}, x > 0.$$

Sol:
$$y^2 - x^2 = C$$

(b)
$$y = \ln(x^2 + c)$$
.

Sol:
$$y = \frac{C}{\sqrt{|x|}}$$

(c)
$$y = x\sqrt{c + \ln x}$$
.

Sol:
$$y^3 + \frac{3}{2}yx^2 = Cx^2$$