С.А.Лифиц

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА

СБОРНИК ЗАДАЧ ПО ТЕМЕ: "НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ"

ТАБЛИЦА НЕОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C (\alpha \neq -1)$	$\int \sin x dx = -\cos x + C$
$\int \frac{dx}{x} = \ln x + C$	$\int \cos x dx = \sin x + C$
$\int e^x dx = e^x + C; \int a^x dx = \frac{a^x}{\ln a} + C$	$\int \frac{dx}{\sin^2 x} = -\cot x + C$
$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C = -\frac{1}{a} \arctan \frac{x}{a} + C'$	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$
$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$	$\int \sin x dx = \cot x + C$
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{ a } + C = -\arccos \frac{x}{ a } + C'$	$\int \operatorname{ch} x dx = \operatorname{sh} x + C$
$\int \frac{dx}{\sqrt{x^2 + \alpha}} = \ln\left x + \sqrt{x^2 + \alpha}\right + C (\alpha \neq 0)$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C$
$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{ a } + C$	$\int \frac{dx}{\cosh^2 x} = \tan x + C$
$\int \sqrt{x^2 + \alpha} dx = \frac{x}{2} \sqrt{x^2 + \alpha} + \frac{\alpha}{2} \ln \left x + \sqrt{x^2 + \alpha} \right + C$	

Первообразная

1. Докажите, что функция $F(x) = \ln(-x) + \sqrt{-x}$ является первообразной для функции

$$f(x) = \frac{1}{x} - \frac{1}{2\sqrt{-x}}, \ x \in (-\infty; 0).$$

Будет ли функция F первообразной для f на заданном промежутке, если:

2.
$$F(x) = \sqrt{4x^7 - 1} + 5$$
, $f(x) = \frac{14x^6}{\sqrt{4x^7 - 1}}$, $x \in (3, 4)$;

3.
$$F(x) = \frac{1}{x} + 6x + \frac{1}{2}\cos 2x$$
, $f(x) = 6 - \frac{1}{x^2} - \sin 2x$, a) $x \in \mathbb{R}$; б) $x \in (-\infty; 0)$; в) $x \in [0; 5)$; г) $x \in [1; 3]$; д) $x \in (-1; 1)$;

4.
$$F(x) = x |x^2 - 3x - 4|$$
, $f(x) = 3x^2 - 6x - 4$, $x \in (4, 5)$;

5.
$$F(x) = \begin{cases} -\frac{1}{3}x^3 + x^2, & x < 2, \\ \frac{1}{3}x^3 - x^2, & x \ge 2, \end{cases}$$

a)
$$x \in \mathbb{R}$$
; 6) $x \in (-\infty; 2)$; B) $x \in (-\infty; 2]$; c) $x \in [2; \infty)$; A) $x \in (5; 7)$; e) $x \in (-5; 7)$?

$$\Gamma(x) \in [2, \infty);$$
 д) $x \in (5, 7);$ $(x) \in (-5, 7)$?

Основные свойства неопределенного интеграла

Применяя таблицу простейших интегралов, найдите интегралы:

6.
$$\int \left(\frac{1}{3}x^8 - 6x^5 - x^2 - 4\right) dx;$$
 7. $\int (a_0 + a_1x + \ldots + a_nx^n) dx;$

8.
$$\int (3-x^2)^3 dx;$$
 9. $\int \left(\frac{4}{\sin^2 x} + 3\sin x\right) dx;$

10.
$$\int \left(3e^x - 5 \cdot 8^x + \frac{32}{x}\right) dx;$$
 11. $\int \left(x + \frac{1}{\sqrt{x}}\right)^2 dx;$

12.
$$\int \frac{x+1}{\sqrt{x}} dx$$
; 13. $\int \frac{2^{x+1}-5^{x-1}}{10^x} dx$;

14.
$$\int \frac{x^2 dx}{1+x^2}$$
; **15.** $\int tg^2 x dx$;

16.
$$\int \cos^2 \frac{x}{2} dx$$
; **17.** $\int (2^x + 3^x)^2 dx$.

Домашнее задание

Применяя таблицу простейших интегралов, найдите интегралы:

18.
$$\int x^2 (5-x)^4 dx$$
;

19.
$$\int \frac{\sqrt{x} - 2\sqrt[3]{x^2} + 1}{\sqrt[4]{x}} \, dx;$$

20.
$$\int \left(\frac{1-x}{x}\right)^2 dx;$$

21.
$$\int \frac{x^2 + 3}{x^2 - 1} \, dx;$$

22.
$$\int \frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1-x^4}} dx;$$

23.
$$\int (e^{-x} + e^{-2x}) dx;$$

24.
$$\int (1 + \sin x + \cos x) dx$$
;

$$25. \int \operatorname{ctg}^2 x \, dx.$$

Формула замены переменных

Найдите интегралы:

26.
$$\int \sqrt[3]{1-3x} \, dx;$$

27.
$$\int \frac{dx}{2-3x^2}$$
;

$$28. \int \frac{dx}{1 - \cos x};$$

29.
$$\int \frac{x \, dx}{4 + x^4}$$
;

$$30. \int \sin \frac{1}{x} \cdot \frac{dx}{x^2};$$

$$31. \int \frac{x^2 dx}{(8x^3 + 27)^{2/3}};$$

$$32. \int \frac{dx}{\sqrt{x(x+1)}};$$

$$33. \int \frac{\ln^2 x}{x} \, dx;$$

$$34. \int \frac{dx}{x \ln x \ln (\ln x)};$$

35.
$$\int \frac{dx}{\cos x}$$
.

Упражнения на метод замены переменной

Найдите интегралы:

36.
$$\int x (1-x)^{100} dx;$$

$$37. \int \frac{x^2}{1+x} dx;$$

$$38. \int \frac{dx}{(x-1)(x+3)};$$

$$39. \int \frac{dx}{1+e^x};$$

$$40. \int \frac{dx}{\sqrt{x+1} + \sqrt{x-1}};$$

41.
$$\int x\sqrt{2-5x}\,dx;$$

42.
$$\int \frac{x \, dx}{x^4 + 3x^2 + 2};$$

43.
$$\int \sin^2 x \, dx;$$

44.
$$\int \sin^3 x \, dx;$$

$$45. \int \frac{dx}{\sin^2 x \cdot \cos^2 x};$$

$$46. \int \frac{dx}{\sin^2 x \cdot \cos x}.$$

Домашнее задание

Найдите интегралы:

$$47. \int \frac{x^3}{3+x} \, dx;$$

49.
$$\int \frac{x \, dx}{(x+2)(x+3)}$$
;

$$51. \int \frac{\cos^3 x}{\sin x} \, dx;$$

53.
$$\int \frac{2^x \cdot 3^x}{9^x - 4^x} \, dx.$$

48.
$$\int \frac{x^2}{(1-x)^{100}} dx;$$

$$50. \int \cos^4 x \, dx;$$

52.
$$\int \frac{(1+e^x)^2}{1+e^{2x}} dx.$$

54.
$$\int \frac{1}{1-x^2} \ln \frac{1+x}{1-x} dx;$$

Формула замены переменных – 2

Найдите интегралы

55.
$$\int \frac{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}{\sqrt{x^4 - 1}} dx;$$
 56.
$$\int \frac{dx}{1 + \sin x};$$

$$57. \int \sin^5 x \cos x \, dx;$$

$$\mathbf{59.} \quad \int \frac{\arctan x}{1+x^2} \, dx;$$

61.
$$\int x^2 (2-3x^2)^2 dx$$
;

63.
$$\int \frac{dx}{x^2 + x - 2}$$
;

56.
$$\int \frac{dx}{1+\sin x};$$

$$58. \int \frac{\sin x + \cos x}{\sqrt[3]{\sin x - \cos x}} \, dx;$$

60.
$$\int \frac{x^2 + 1}{x^4 + 1} dx;$$

62.
$$\int \frac{x^5}{x+1} dx$$
;

$$64. \int \frac{dx}{\sin x \cos^3 x}.$$

Формула замены переменных – 3

Найдите интегралы:

65.
$$\int \frac{x^2}{\sqrt{2-x}} \ dx;$$

$$67. \int \cos^5 x \sqrt{\sin x} \ dx;$$

$$69. \int \frac{\ln x \, dx}{x\sqrt{1 + \ln x}};$$

66.
$$\int x^5 \left(2 - 5x^3\right)^{2/3} dx;$$

68.
$$\int \frac{\sin^2 x}{\cos^6 x} dx;$$

70.
$$\int x^3 (1 - 5x^2)^{10} dx.$$

71.
$$\int \frac{dx}{(x+1)\sqrt{x^2+1}}$$
;

72.
$$\int \frac{1 - x + x^2}{x\sqrt{1 + x - x^2}} \, dx.$$

Тригонометрические подстановки

Применяя тригонометрические подстановки $x = a \sin t, x = a \tan t$ и т. п., найдите интегралы (параметры положительны):

73.
$$\int \frac{dx}{(1-x^2)^{3/2}};$$

74.
$$\int \frac{dx}{(x^2 + a^2)^{3/2}};$$

73.
$$\int \frac{dx}{(1-x^2)^{3/2}};$$
 74. $\int \frac{dx}{(x^2+a^2)^{3/2}};$ 75. $\int \sqrt{(x-a)(b-x)}dx;$

$$76. \int \sqrt{\frac{a+x}{a-x}} \, dx;$$

76.
$$\int \sqrt{\frac{a+x}{a-x}} \, dx;$$
 77.
$$\int x \sqrt{\frac{x}{2a-x}} \, dx.$$

Гиперболические подстановки

Найдите интегралы:

$$78. \int \sinh^2 x \, dx;$$

78.
$$\int \sinh^2 x \, dx;$$
 79. $\int \cosh x \cdot \cosh 3x \, dx;$ **80.** $\int \frac{dx}{\sinh^2 x \cdot \cosh^2 x}.$

$$80. \int \frac{dx}{\sinh^2 x \cdot \cosh^2 x}$$

Применяя гиперболические подстановки $x = a \sinh t$, $x = a \cosh t$ и т. п., найдите интегралы (параметры положительны):

81.
$$\int \frac{x^2}{\sqrt{a^2 + x^2}} dx$$
;

81.
$$\int \frac{x^2}{\sqrt{a^2 + x^2}} dx;$$
 82. $\int \sqrt{\frac{x - a}{x + a}} dx \ (x \ge a);$

83.
$$\int \sqrt{(x+a)(x+b)} \, dx \quad (x+a>0, x+b>0).$$

$$(x+a>0, x+b>0).$$

Интегрирование по частям

Применяя метод интегрирования по частям, найдите интегралы:

84.
$$\int \ln x \, dx;$$

85.
$$\int \sqrt{x} \ln^2 x \, dx;$$

86.
$$\int x^2 e^{-2x} dx;$$

87.
$$\int \arcsin x \, dx;$$

88.
$$\int x^2 \arccos x \, dx$$
;

89.
$$\int \ln \left(x + \sqrt{1 + x^2} \right) dx;$$

90.
$$\int \arctan \sqrt{x} \, dx.$$

Формулы понижения

91. Выведите формулу понижения для интеграла $K_n = \int \cos^n x \, dx \ (n>2)$ и с ее помощью вычислите $\int \cos^8 x \, dx$.

92. Выведите формулу понижения для интеграла $I_n = \int \frac{dx}{\sin^n x}$ (n > 2) и с ее помощью вычислите $\int \frac{dx}{\sin^5 x}$.

Найдите интегралы:

93.
$$\int x^5 e^{x^3} dx$$
;

94.
$$\int \frac{x^2}{(1+x^2)^2} \, dx;$$

95.
$$\int \frac{x \ln (x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}} dx;$$
 96. $\int x \sin^2 x dx;$

$$96. \int x \sin^2 x \, dx;$$

97.
$$\int (e^x - \cos x)^2 dx$$
.

Интегралы, содержащие квадратные трехчлены

Найдите интегралы:

98.
$$\int \frac{dx}{3x^2 - 2x - 1};$$

$$99. \int \frac{x \, dx}{x^2 - 2x \cos \alpha + 1};$$

100.
$$\int \frac{x^3 dx}{x^4 - x^2 + 2};$$

101.
$$\int \frac{x+1}{\sqrt{x^2+x+1}} \, dx;$$

102.
$$\int \frac{x+x^3}{\sqrt{1+x^2-x^4}} \, dx;$$

103.
$$\int \sqrt{2+x-x^2} \, dx;$$

104.
$$\int \frac{dx}{x^2 \sqrt{x^2 + x - 1}};$$

105.
$$\int \frac{dx}{(x-1)\sqrt{x^2-2}}.$$