Fault Detection of Industrial Gas Turbine Engines

Garey Salinas
University of Colorado-Boulder

Introduction

- This notebook analyzes sensor data from industrial gas turbine engines to detect faults and support predictive maintenance.
- The main goal is to develop machine learning models that can accurately classify gas compressor failures. This is critical for midstream pipeline operations, where turbines drive compression systems.

Expected Impact and Applications

- Reduced downtime, optimized maintenance, cost savings.
- Enhanced safety in gas turbine operations.
- Applications: Pipelines, power plants, manufacturing.

Literature Review

- SVM and Random Forests are effective for machinery fault detection.
- Pressure ratios, temperature, and vibration are key features.
- Isolation Forest and DBSCAN help detect operational anomalies.
- PCA improves interpretability and reduces model complexity.

Dataset Overview and Sources

- Source: Kaggle Gas Turbine Engine Fault Detection Dataset
- 1,386 samples: sensor readings (temperature, pressure, RPM).
- Supervised: Includes labeled operational/faulty states.
- Dataset: https://www.kaggle.com/datasets/ziya07/gas-turbine-e ngine-fault-detection-dataset

Data Preprocessing Techniques

- The dataset had no missing values.
- Converted fault labels to boolean.
- Scaled features using StandardScaler.
- Created features like pressure ratios, flow/RPM.
- Applied PCA to reduce noise.
- Removed outliers with Isolation Forest & DBSCAN.

Feature Scaling

- StandardScaler was employed to normalize the sensor readings.
- This ensures that all features contribute equally to the model training.
- It prevents features with larger units (e.g., RPM) from dominating the results.
- Scaling is applied before conducting PCA and fitting the model.

Dimensionality Reduction with PCA

- PCA was applied to reduce feature space dimensionality.
- Retained principal components that explain most variance.
- Helps visualize data clusters and class separability.
- Improves model training efficiency and generalization.
- PCA applied after scaling to ensure correct component weighting

PCA Explained Variance

Steep Climb (PC1 to PC6)

- First ~6 components explain most of the variance.
- Each contributes significant new information.

•Elbow Point (~Component 6 or 7)

- After PC6, additional components add little value.
- "Elbow" indicates diminishing returns.

•95% Threshold Reached at PC8

- The cumulative curve crosses 95% at PC8.
- First 8 components retain \ge 95% of total variance.

Outlier Detection

 Goal: Identify sensor readings that deviate significantly from normal operating behavior.

Methods Used:

- Isolation Forest: Detects anomalies by randomly isolating observations in tree structures.
- DBSCAN: Density-based clustering that flags low-density points as outliers.

Why It Matters:

- Removes noisy or anomalous data before modeling.
- Enhances model accuracy and reduces false positives.

Outlier Detection DBSCAN

Elbow Point Analysis

- The sharpest increase in distance (the "elbow") occurs at ε ≈ 4.7.
- This marks the transition from dense regions to isolated points.
- DBSCAN will:
 - Capture dense clusters with inter-point distances < 4.7.
 - Flag isolated points beyond this threshold as outliers.

Outlier Detection Comparison

- **Isolation Forest** (left): Identifies scattered anomalies across the feature space. Suitable for high-dimensional datasets and less sensitive to clustering structure.
- **DBSCAN** (right): Flags outliers that lie outside dense clusters. Effective for detecting edge cases and low-density zones.
- **Conclusion**: Both methods offer unique perspectives. Combining results enhances the robustness of anomaly detection. Outliers were used to create outlier features and added to dataset.

Next Steps

Modeling

Train and compare multiple classification models: Logistic Regression, Random Forest, XGBoost, and SVM.

Evaluation

Assess performance using Accuracy, Precision, Recall, F1-Score, and Cross-Validation.

• Feature Importance

Use model-based and SHAP analyses to interpret which features drive predictions.

Project Timeline and Milestones

Conclusion

- The dataset was scaled, engineered with domain-specific ratios, reduced using PC, and outliers were detected to improve model performance.
- Classification models (Logistic Regression, Random Forest, XGBoost, SVM) will be used to help predict faults.
- This approach enhances model interpretability and preserves rare but important data behavior.
- The framework lays the groundwork for predictive maintenance in gas turbine operations.