

FH_'W-S

Structure of Embedded Systems

3

Hierarchies

Define the System Layers for:

- An Aircrafts
- A Car
- A Smart Factory
- Autonomous Driving

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

(

Modelling Structure with SysML Block Definition Diagrams

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

10

Scope of Development

From the point of an original equipment manufacturer a car might be the system under development. However, it is uncommon to refer to a car as the system. Typically, the system under development is a system embedded in the car.

An aircraft, a car, a smart factory are thus super systems. For autonomous driving a platoon is a system of systems.

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

17

Create SysML Block Definition Diagrams for:

- Aircraft Environmental Control System - An embedded system of an Aircraft
- An embedded system of a Car
- A cyber-physical production system within a Smart Factory
- The transport system of a smart factory as a System of Systems

What do we notice when comparing the model of the super system with the model of the embedded system?

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

Context

Context is Important

Separation of Context and System allows to differentiate between the scope of development (i.e. what can be changed) and the constraining environment

- Context is main source of requirements and rationales
- Context is source of safety and security risks/threats

Context changes can severely affect the system

- Functionality
- Correctness
- Safety
- Security

21

Context of Knowledge

The context of knowledge defines the major requirements sources and important knowledge bearers for the development of a system.

Define the Context of

- A Cobot
- A Transport Robot

Modelling Structure with SysML Internal Block Diagrams

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

33

17

What is an IBD?

Internal Block Diagram (ibd): An Internal Block Diagram is a static structural diagram owned by a particular Block that shows its encapsulated structural contents: Parts, Properties, Connectors, Ports, and Interfaces. Stated otherwise, an IBD is a "white-box" perspective of an encapsuated ("black-box") Block.

- Blocks can be recursively decomposed ("nested") into Parts by alternating between Block Definition Diagram (BDD) definitions and Internal Block Diagram (IBD) usages (See Usage *Notes* below.)
- Behaviors can either be encapsulated by Blocks (e.g., Operations, Signals, and State Machines) or Allocated (via «allocate» Dependency) to Blocks (e.g., Activities/Actions) directly or indirectly (via Interfaces).
- [...]

From: https://sysml.org/sysml-fag/what-is-internal-block-diagram.html

35

Purpose of IBDs

The purpose of Internal Block Diagrams (IBDs) is to show the encapsulated structural contents (Parts, Properties, Connectors, Ports, Interfaces) of Blocks so that they can be recursively decomposed and "wired" using Interface Based Design techniques. [...]

From: https://sysml.org/sysml-faq/what-is-internal-block-diagram.html

BDD vs IBD

BDD Block *Definition* vs. IBD Block *Usage* Dichotomy

BDDs and IBDs complement each other (cf. black-box vs. white-box) and support recursive structural decomposition techniques during System Analysis & Design.

- A BDD defines a Block's Properties, including its Part Properties (strongly owned Parts) and Reference Properties (shared Parts)
- IBD specifies Part Properties and Reference Properties usages or roles in the structural context of the Block that encapsulates them. Stated otherwise, Part Properties and Reference Properties in an IBD can have a different usages or roles depending upon how they are *realized* ("wired") in the IBD.
- [...]

From: https://sysml.org/sysml-fag/what-is-internal-block-diagram.html

FH-W-S University of Applied Sciences Würzburg-Schweinfurt

37

Model BDDs and IBDs for describing

- A Cobot
- A Transport Robot

Questions for Self-Assessment

What is a Block Definition Diagram? What is an Internal Block Diagram?

How do BDDs and IBDs complement each other?

What are important system layers in the development of embedded systems?

What influences the definition of components?

Why is context important?

How can context be used to identify safety hazards?

39

Literature

[Daun et al. 2016] M. Daun, B. Tenbergen, J. Brings, T. Weyer: SPES XT

Context Modeling Framework. In: K. Pohl, M. Broy, H. Daembkes, H. Hönninger (eds.) Advanced Model-Based Engineering of Embedded Systems, Springer, 2016, pp. 43-

[Daun & Tenbergen 2022] M. Daun, B. Tenbergen: Context modelling for cyber-physical

systems. In: J. Softw. Evol. Proc., Wiley, 2022.

[Friedenthal et al. 2014] Sanford Friedenthal, Alan Moore & Rick Steiner: A Practical

Guide to SysML - The Systems Modeling Language.

Morgan Kaufmann OMG Press, 2014.

[OMG SysML] OMG System Modeling Language. Version 1.6, Object

Management Group, 2019.

[OMG UML] OMG Unified Modeling Language. Version 2.5.1, Object

Management Group, 2017.

FHIW-S University of Applied Sciences Würzburg-Schweinfurt

40