Introduction to Cryptography Lecture 1

Monika K. Polak

January 20, 2021

Course Description

- This course provides an introduction to cryptography, its mathematical foundations, and its relation to security.
- It covers classical cryptosystems, private-key cryptosystems (including DES and AES), hash functions and public-key cryptosystems (including RSA).
- ► The course also provides an introduction to data integrity and authentication.

- Instructor: Monika Polak
- Required Materials
 Christof Paar and Jan Pelzl, Understanding Cryptography,
 SpringerLink, 2010
- Slides from the book (link) Remark: Slides for the course may be different and will be posted on myCourses
- Syllabus and Schedule (link)
- Grading components

Component	Weight				
Homeworks	50%				
Activity	10%				
Midterm exam	20%				
Final Exam	20%				

Activity task 1 (1% of the final grade)

Answer the question:

What is your expectation for this course?

- ▶ and submit it to the proper dropbox on myCourses
- due Sunday, January 31, 11:59PM

Content of this lecture

- Overview on the field of cryptology
- Basics of symmetric cryptography
- Shift (or Caesar) Cipher

The Goals of Practical Cryptography

Confidentiality

Data confidentiality

Assures that private or confidential information is not made available or disclosed to unauthorized individuals

Privacy

Assures that individuals control or influence what information related to them may be collected and stored and by whom and to whom that information may be disclosed

Authentication

We can establish the identity of a remote user (or system).

Integrity

We can provide a means to ensure data is not viewed or altered during storage or transmission.

Non-Repudiation

It must not be possible for the user to refute his or her actions.

Some Basic Facts

- Ancient Crypto: Early signs of encryption in Eqypt in ca. 2000 B.C. Letter-based encryption schemes (e.g., Caesar cipher) popular ever since.
- ➤ **Symmetric ciphers**: All encryption schemes from ancient times until 1976 were symmetric ones.
- Asymmetric ciphers: In 1976 public-key (or asymmetric) cryptography was openly proposed by Diffie, Hellman and Merkle.
- ► **Hybrid Schemes**: The majority of today's protocols are hybrid schemes, i.e., the use both
 - symmteric ciphers (e.g., for encryption and message authentication) and
 - asymmetric ciphers (e.g., for key exchange and digital signature).

Alternative names: private-key, single-key or secret-key cryptography.

A malicious third party Eve (the bad one) has channel access but should not be able to understand the communication.

x is the plaintext, y is the ciphertext, Set of all possible keys is the key space

K is the key

Encryption equation

$$y = e_K(x)$$

Decryption equation

$$x = d_K(y)$$

► Encryption and decryption are inverse operations if the same key K is used on both sides:

$$d_K(y) = d_K(e_K(x)) = x$$

- ► Important: The key must be transmitted via a **secure channel** between Alice and Bob.
- The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi Protected Access (WPA) protocol or a human courier.
- ▶ However, the system is only secure if an attacker does not learn the key K!
 The problem of secure communication is reduced to secure transmission and storage of the key K.

Shift (or Caesar) Cipher

- Ancient cipher, allegedly used by Julius Caesar
- ▶ Replaces each plaintext letter by another one.
- Replacement rule is very simple: Take letter that follows after K positions in the alphabet
 Needs mapping from letters → numbers:

Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Shift (or Caesar) Cipher

Replacement rule is very simple: Take letter that follows after K positions in the alphabet

Α	В	С	D	Е	F	G	Η	_	J	K	L	М
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

 \triangleright Example for K=7

Plaintext = ATTACK = 0, 19, 19, 0, 2, 10

Ciphertext = haahr = 7, 0, 0, 7, 17

Note that the letters "wrap around" at the end of the alphabet, which can be mathematically be expressed as reduction modulo 26, e.g., $19+7=26\equiv 0\mod 26$

Shift (or Caesar) Cipher

▶ Elegant mathematical description of the cipher. Let $K, x, y \in \{0, 1, ..., 25\}$

Encryption:

$$y = e_K(x) \equiv (x + K) \mod 26$$

Decryption:

$$x = d_K(x) \equiv (y - K) \mod 26$$

- Is the shift cipher secure?
 No! several attacks are possible, including:
 - Exhaustive key search (key space is only 26)
 - Letter frequency analysis (Lecture 2)

Thanks for Your attention.

