2) Using Newton's backward difference formula, construct an interpolating polynomial of degree 3 for the data: f(-0.75) = -0.0718125, f(-0.5) = -0.02475, f(-0.25) = 0.3349375, f(0) = 1.10100. Hence find f(-1/3).

A 15	- 14 / T> A /	BACKU	NAROS (105 DIFFERENCE TABLE:		
X	f(x)	Afi	$\Delta^2 f_i$	Δ_{i}^{3}	(SAME OF	WAY CALLULATA
-0,75 -0,5	-0,0718125 -0,02475	0,0471	0,3126			AS Form
0	7,10100					

$$P = (X - 0) \times h = X_1 - X_0 = -0.5 - (-0.75)^2 0.25$$

$$h = 0.25$$

$$f_3(x) = 1,10100 + 9,7661.p + 0,4064. \frac{p(p+1)}{2!} + 9.938. \frac{p(p+1)(p+2)}{3!}$$

$$\int_{3}^{2} \left(-\frac{1}{3}\right) = 0,1745$$
 SEE MOTHES PLOT: