Machine Theory of Mind (Deep Mind)

Helmut Wahanik

Waterloo Hydrogeologic Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro - Brazil

IMPA – Rio de Janeiro

- -Research Dynamical Systems, Differential Geometry, Applied Mathematics.
- -2014 Fields Medal, Artur Avila, work in Dynamical Systems (Ten Martini Problem).

My work:

- -Mathematical Physics Fluid dynamics.
- -Riemann problems Numerical Shock Waves and Rarefactions waves in Gas Dynamics.
- -Markov Chain Monte-Carlo methods (Seismic Tomography) – SLB- U. of Cambridge.
- -Computational Geometry, U. of Calgary.

IMPA – Rio de Janeiro

- -Research Dynamical Systems, Differential Geometry, Applied Mathematics.
- -2014 Fields Medal, Artur Avila, work in Dynamical Systems (Ten Martini Problem).

My work:

- -Mathematical Physics Fluid dynamics.
- -Riemann problems Numerical Shock Waves and Rarefactions waves in Gas Dynamics.
- -Markov Chain Monte-Carlo methods (Seismic Tomography) SLB- U. of Cambridge.
- -Computational Geometry, U. of Calgary.

Collaboration RJ-MCMC -University of Cambridge - UK (Schlumberger).

- -Travel-times built through Greens function approach and Seismic Ambient Noise.
- -Voronoi grids updated across the random walk.
- -Minimize difference of theoretical and experimental traveltimes.
- -Dimension is also variable, and adjust to complexity of the data.
- -Samples are accepted or rejected with a modified Metropolis-Hastings algorithm, guiding the samples towards regions of higher probability (e.g. Langevin MCMC MALA).

- -The 3D point-wise probability distribution across all chains is the final posterior => solution to inverse problem.
- -The uncertainty of the solution can be measured by the spread of the samples.
- -Fortran + OpenMPI + Qsub + SLB cluster.
- -Parallelization on calculation of seismic travel-times => many seismometers.
- -Mapping in GMT Generic Mapping Tools.

- -The 3D point-wise probability distribution across all chains is the final posterior => solution to inverse problem.
- -The uncertainty of the solution can be measured by the spread of the samples.
- -Fortran + OpenMPI + Qsub + SLB cluster.
- -Parallelization on calculation of seismic travel-times => many seismometers.
- -Mapping in GMT Generic Mapping Tools.

Could this be implemented in TensorFlow Probability?

ToM-Net – Theory of Mind Neural Network

Observer: Uses Meta-learning to predict behaviors of agents living in a Grid-World (models other agents).

Objective: To rapidly form predictions about new agents from limited data and behavioral traces.

Players: Agents are themselves Deep Reinforcement Learning agents.

Important Feature:

To imitate cognitive predictive patterns of human mind.

-Passes "cognition" tests such as the Sally-Anne test.

Grid-world

partial past traj.

current state

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

3 year old child fails it.

4 year old passes it.

Sound-proof light-proof scent-proof barrier

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

What's inside?

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Bones!

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

4 year old passes it.

Repeat first 3 steps with 4 year old

What does Snoopy think is inside?

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

-Measure of higher intelligence in primates:

3 year old child fails it.

-Developmental psychology test, for measuring a person's social cognitive intelligence: ability to recognize that others have false beliefs about the world.

3 year old child fails it.

MDP: Augmented Markov Chain.

(UC) AhaT, R, γ) such that:

- Statemes
- set of actions available at s.
- $prob_t$ transition if using action a_t at s_t

MDP: Augmented Markov Chain.

(\mathfrak{S}^{h} Aha T, R, γ) such that:

- Statenes
- Set of actions et validable at s.
- prob transition if using action a_t at s_t
- $\label{eq:continuous} \begin{tabular}{ll} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$
- is a discount factor.

(Objective: Find optimal choice (policy)) pt actions all states testing the chain at any state. s.

Objective: We look for a policy m as imizing n that in the observable of the policy m as imizing n and n and n are n are n and n are n are n and n are n and n are n are n and n are n are n are n are n and n are n are n and n are n and n are n are n and n are n are n are n are n are n and n are n are n are n are n are n are n and n are n ar

Objective: We look for a policy maximizing that in sensitive of the content of t

Under policy, the expected average reward is recursively defined through: Under policy π , the expected average reward is recursively defined through:

$$V^{\pi}(s) := R(s, \pi(s)) + \gamma \sum_{s'} T_{\pi(s)}(s, s') V^{\pi}(s')$$

Objective: We look for a policy maximizing has inizing has inizengular disconnect was taken as S: V(s).

Under policy, the expected average reward is recursively defined through: Under policy π , the expected average reward is recursively defined through:

The optimal policy is derived from the Bellman Optimality Equation: $(s, s') V^{\pi}(s')$ The optimal policy π^* is derived from the Bellman Optimality Equation:

$$V^*(s) := max_a \{ R(s,a) + \gamma \sum_{s'} T_a(s,s') V^*(s') \}$$

Objective: We look for a policy maximizing or the objective was agree was a state S: V(s).

Under policy, the expected average reward is recursively defined through: Under policy π , the expected average reward is recursively defined through:

The optimal policy is derived from the Bellman Optimality Equation: $(s, s') V^{\pi}(s')$ The optimal policy π^* is derived from the Bellman Optimality Equation:

$$V^*(s) := max_a \{ R(s,a) + \gamma \sum_{s'} T_a(s,s') V^*(s') \}$$

Argument contraction + fixed point theorem => there exists a unique solution to BOE.

Argument contraction + fixed point theorem => there exists a unique solution V^* to BOE.

Partially Observable Markov Decision Process

(\mathfrak{S} chAh \mathfrak{A} \mathfrak{T} , R, \mathfrak{O} , ω , γ) such that:

- Obsesemblens, o
- conditional padriaty ility of serventianisns, w.

Partially Observable Markov Decision Process

(UC) $AhAR, R, O, \omega, \gamma$) such that:

- Obstations, o
- conditionational padriaty littly observation is ns, w.

Time, tif +afterif, sweerescenterobserveration is evidous perolation into Ageont, with uprobates it's beliefs b about current state.

Partially Observable Markov Decision Process

(\mathfrak{SC}) \mathfrak{A}) such that:

- Obsestations, o
- conditional parability lift observations, w.

Time, tif +afteif, swere ceitte rob, some reticeiv, evoiths produtability Agen, twith uprobates it is beliefs b about current state.

- the agent tries to infer the new state from observations & beliefs.

- Tom dest tries to infer the inew state from observations & liberiefs.

-POMDPS in MDPs observations equal true states, probability 1 -For POMDPS the Meta-learning process is evident: agent must learn how to update audients must learn provente tearning to be adverse in the probability to be stributions.

The Machine Theory of Mind Architecture

Family of BOMS $M = \bigcup_k M_k$, Mazes (11x11), walls, 4 consumable objects.

• (S_k, A_k, T_k)

The Machine Theory of Mind Architecture

Family of $BAMSM = \bigcup_j M_j$, Mazes (11x11), walls, 4 consumable objects.

•
$$(S_k, A_k, T_k)$$

Agents:

Recovered specifications, and policies are associated with $Agent\ i$

- $(O_i, w_i, R_i, \gamma_i, \pi_i)$
- Policies might be stochastic, and non-optimal.

The Machine Theory of Mind Architecture

Family of BOMS $M = \bigcup_j M_j$, Mazes (11x11), walls, 4 consumable objects.

• (S_k, A_k, T_k)

Agents:

Recovarious formations, and policies are associated with $Agent\ i$

- $(O_i, w_i, R_i, \gamma_i, \pi_i)$
- Policies might be stochastic, and non-optimal.

CObserver ToMNet:

- •• State observation function: $w^{(obs)}: S \rightarrow O^{obs}$
- Action observation function $\alpha^{(obs)}\colon A \to A^{obs}$
- $w^{(obs)}(s) = s^{obs}$
- $\alpha^{(obs)}(a) = \alpha^{obs}$

Observer's Architecture

Training:

Observes a set after state of spart trajectories:

$$\left\{\tau_{ij}\right\}_{j=1}^{\text{Where}} \to \left\{\tau_{ij}^{(obs)}\right\}_{j=1}^{N_{past}}, \qquad \text{where} \qquad \tau_{ij}^{(obs)} = \left\{(s_t^{(obs)}, a_t^{(obs)})\right\}_{t=0}^{T}$$

Observer's Architecture

Training:

Observes a set after state of spart trajectories:

$$\left\{\tau_{ij}\right\}_{j=1}^{\text{Where}} \to \left\{\tau_{ij}^{(obs)}\right\}_{j=1}^{N_{past}}, \qquad \text{where} \qquad \tau_{ij}^{(obs)} = \left\{(s_t^{(obs)}, a_t^{(obs)})\right\}_{t=0}^{T}$$

- Here is a tensor of size 11 x 11 x K.
- KHEVERLUTE Plantes, tenspersonalise of jets, 1 agent.
- K feature planes, such as walls, objects, agent.

Observer's Architecture

Training:

Observes a set after state of spart trajectories:

$$\left\{\tau_{ij}\right\}_{j=1}^{\text{Where}} \to \left\{\tau_{ij}^{(obs)}\right\}_{j=1}^{N_{past}}, \qquad \text{where} \qquad \tau_{ij}^{(obs)} = \left\{(s_t^{(obs)}, a_t^{(obs)})\right\}_{t=0}^{T}$$

- Here is a **tensor of size** 11 x 11 x K.
- KHERETURE Plantes, tenspasowalke objects, lay but.
- K feature planes, such as walls, objects, agent.
- Also dimension 5 logit, fully characterizing the action: Also $a_i^{(b)}$ is a dimension 5 logit, fully characterizing the action: $[\cdot, \downarrow, \rightarrow, \uparrow, \leftarrow]$ The trajectory is a tensor is of size 11x11x (K + 5). The trajectory $\tau_{ij}^{(obs)}$ is a tensor is of size 11x11x (K + 5).

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$ (2D Tensor) $_{\theta}$

For all agents iwe add: $e_{char,ij}$ (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$ (2D Tensor)

For all agents iwe add: $e_{char,ij}$ (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Mental Net: Mentalizes about the CURRENT EPISODE

Mental Net: Mentalizes about the CURRENT EPISODE

$$[\tau_{ij}]_{0:t-1}, e_{char,i} \xrightarrow{g_{\theta}} e_{mental,i}$$

Observer's Neural Net

Character Net: Characterizes the past $\{\tau_{ij}^{(obs)}\}_{j=1}^{N_{past}}$ (2D Tensor)

For all agents iwe add: $e_{char,ij}$ (2D Tensor)

For all agents we add:

$$e_{char,i} = \sum_{j=1}^{N_{past}} e_{char,ij}$$

Mental Net: Mentalizes about the CURRENT EPISODE

Mental Net: Mentalizes about the CURRENT EPISODE

Prediction Net: $e_{\text{turrent}} e_{\text{ther}} + i \xrightarrow{g_{\theta}} e_{\text{ther}} e_{\text{the$

Predicted policy:

Prediction Webility of representations and the stimate:

- Predicted policy: $\hat{\pi}(\;\cdot\;\mid\;s_t^{(obs)}$, e_{char} , e_{mental})
- Probability of consuming an object ĉ

Experiments

Frully Francism aggents

- Species of a bents.

- 5B stochhaiticher lieution: π_i π_i Dirichlet distribution: Species can be written as $S(\alpha)$.
 For α one-sided deterministic policies. α uniform distribution.

Training

- Observe sample from species sturning in Grid Worlds.
- A set of recent trajectories, with $\sim U\{0, 10\}$. Length of trajectory = 1.
- Adam optimizer AOK, Minimatcheres frize 16.

Architecture

Frully Franchom augents:

- Character Net: tensor for the training tensor for th

Architecture

Fruity Francisches:

Character Nett: tensor for the training the training tensor for the tr

- Mental State: None. Mental State: None. Prediction Not.

Logits in
$$au_{ij}$$
, $e_{char,i} o T o 2$ Layer 32 Convnet $\xrightarrow{Av.Pooling+Fully\ Connected}$ Logits in $R^5 \xrightarrow{Softmax} \widehat{\pi}$

Random agent Training

Random agent Training

- -Townhet test imates increase with the number of past observations of that action!
- in the reliving of the distriction of the distric

Inferring goal-directed behaviour

TPMMettleernstwinfergodsoffewardseekingagents.

- **-**44consumable objects.
- Assent has a sew as what the tripotion: when consuming an object.
- **-**-0,011fe/revery/maye.
- Frendaty of 10055 for walking into walks.
- Agentifinds opatimal popilicy reprotugated and mean agreement on.

Training: ToMNet observes a single full trajectory of an agent acting on the Grid-World. **Training:** ToMNet observes a single full trajectory of an agent acting on the Grid-World.

Inferring goal-directed behaviour

Observe single past MDP

Current state

ToMNet prediction of next action

Prediction of successive states

ToMNet vs Sally-Anne Test

ToMNet must pass the Sally-Anne test!

- Create POMDPs, agents 5 x 5 visibility window, where agents have false beliefs.
- We run random changes in the environment that are invisible to the agent.
 - Agent has a goal and a sub-goal.
- When obtaining the sub-goal => swap the remaining objects, with low probability.

Acting on false beliefs: Preliminaries

- Sub-goal: star. Goal: blue object.
- Dark grey => not observed.
- Light grey => observed before but NOT during goal consumption.
- Consumption => p=0.01 of swap event
- Observe Effect of swap in agent's policies and expected future moves.

Acting on false beliefs: Preliminaries

- Sub-goal: star. Goal: blue object.
- Dark grey => not observed.
- Light grey => observed before but NOT during goal consumption.
- Consumption => p=0.01 of swap event
- Observe effect of swap in agent's policies and expected future moves.
- Left: Swap event within field of view.
- Right: Swap event outside of field of view.

Running the Sally-Anne Test

- Agenthas 5 x 5 window, consume star (sub-goal), prefers blue object.
- -Ifweinceesedistencetoswap, it may be invisible.
- Agentispolicy unchanged for invisible swap.

$$\Delta \pi_L = \frac{\pi(a_L \mid no \ swap) - \pi(a_l \mid swap)}{\pi(a_L \mid no \ swap)} * 100\%$$

Running the Sally-Anne Test

Runningthe Sally-Anne Test +passes! Told Vetyeat gratique lo

Architecture

- ConvNet + LSTM Charaster West. ConvNet + LSTM
- Mental State: Nobre.
- Prediction Net:
 - Three-predictions swith share to repeat
 - Polify/Predigition: <u>ConvNet</u> ConvNet
 - Probability Consumption Replication: Convolet
 - Successor Representation: ConvNetonvNet
- DeeppRLAgents: UNIREAA brachiteitectere 10000 Missoises les justes tes COCPU
- Belief-Prediction-Head:
 - ConvNet 11x11x11x5 Dim Logit predicted belief objects present on map.
 ConvNet ⇒ 11x11x5 Dim Logit predicted belief objects absent from map.

THANK YOU