Heterogeneous Effects of Informational Energy Audits and the Split Incentive for Renters and Owners

Heartland Workshop - October 28-29, 2022

Soren Anderson (Michigan State)

Justin Kirkpatrick (Michigan State)

Context

Energy efficiency has become a major part of energy policy

- Often claimed to be "low-hanging fruit"
 - IEA (2018): 12% CO_2 reduction from *cost-effective* energy efficiency alone

Energy efficiency has become a major part of energy policy

- Often claimed to be "low-hanging fruit"
 - IEA (2018): 12% CO_2 reduction from cost-effective energy efficiency alone

Weatherization

- IRA 2022: credits for home upgrades (30%)
 - Weatherization Assistance Program (WAP), Low-Income Energy Efficiency Program (LEEP)
 - Subsidize windows, doors, insulation, heat pumps, etc.
 - o see Christensen, Francisco, Myers and Souza (2021), Fowlie, Greenstone and Wolfram (2018)

Image courtesy of Cooler Berkshires

Renters are not eligible for WAP-style subsidies

- But renters tend to be lower-wealth, minority
 - Reames (2016) finds tracts with higher EUI (a proxy for efficiency) are more likely to be renters
 - Higher EUI suggests renters would be *more* ripe for gains from efficiency

Renters are not eligible for WAP-style subsidies

- But renters tend to be lower-wealth, minority
 - Reames (2016) finds tracts with higher EUI (a proxy for efficiency) are more likely to be renters
 - Higher EUI suggests renters would be *more* ripe for gains from efficiency

The Principal-Agent Problem

- The decision-maker (landlord) may not fully capture gains from investing in efficiency
 - Information is asymmetric (Myers (2020))
 - Decision is uncertain and irreversible see Stavins et al (2013), Gillingham et al (2009)
 - o Price cannot fully reflect reduced energy costs see Maruejols and Young (2011), Ramos et al. (2015)
- Most upgrades require ownership of the home
 - May need to move, cannot ensure that rent will not be increased (!)
 - Allcott, Knittel, and Taubinsky (2015) found reduced takeup of appliance credits by renters. also see Gillingham (2012), Davis (2012)
 - IRA has provisions for new rental housing EE credits and upgrades

Other energy-efficiency options:

Opower-style social comparison Nola et al

(20018), Allcott (2011, 2016), Allcott and Rodgers (2014)

Social comparison effective at lowering consumption

suelynu.com/design

Not WAP, not Opower, but a secret third thing: Energy Audits

- Voluntary program advertised in bills, community groups
- Auditor comes to your house, inspects envelope, HVAC, usage, etc.
- Writes out recommendations
 - "Clean condenser coils. Move insulation back over attic door. Tape ducts. Set AC to 74."
- Doesn't touch anything. Leaves

Not WAP, not Opower, but a secret third thing: Energy Audits

- Voluntary program advertised in bills, community groups
- Auditor comes to your house, inspects envelope, HVAC, usage, etc.
- Writes out recommendations
 - "Clean condenser coils. Move insulation back over attic door. Tape ducts. Set AC to 74."
- Doesn't touch anything. Leaves
- Precursor to WAP/LEEP, but often standalone

Not WAP, not Opower, but a secret third thing: Energy Audits

- Voluntary program advertised in bills, community groups
- Auditor comes to your house, inspects envelope, HVAC, usage, etc.
- Writes out recommendations
 - "Clean condenser coils. Move insulation back over attic door. Tape ducts. Set AC to 74."
- Doesn't touch anything. Leaves
- Precursor to WAP/LEEP, but often standalone

Energy Audits under-studied in the literature

- Related: Certification see Brounen and Kok (2011), Cassidy (2017), Walls et al (2017), Breshears (2022)
- Real-time Feedback Houde et al (2013), Jessoe and Rapson (2014), Prest (2020)
- Anderson and Newell (2004) on industrial upgrades
- Frondel and Vance (2012) find heterogeneity in response, Considine and Sapci (2016) find 4.7 to 10.8% decrease in WY
 - Neither examines renters
- Palmer, Walls and O'Keeffe (2015) examine follow-up actions by homeowners

Research Question

We examine pure-information Energy Audits made available to both renters and owners and ask:

- 1. Are the audits effective at lowering electricity consumption?
- 2. Is there heterogeneity in response between owners and renters?

Research Question

We examine pure-information Energy Audits made available to both renters and owners and ask:

- 1. Are the audits effective at lowering electricity consumption?
- 2. Is there heterogeneity in response between owners and renters?

Implications

- Important for policy (IRA subsidizes audits)
- Welfare standpoint: purely informational audit → decreases in consumption are welfare-improving.

Utility billing data for ~105,000 customers 2011-2020 in Gainesville, Florida.

• Used in Doremus and Maher (working paper), Hancevic and Sandoval (2022)

Gainesville Regional Utility / City

- Monthly kWh consumption (plus gas, water)
- Primary fuel = Electricity (58,667 Hh)
- 2,753 Energy Audits (EAU) (2010-2020)
 - Extracted text of audit recommendations
 - Audits state homeowner/renter status
- Building Permits (City and County)
- Meter read date
- Exact address location
- Service start/stop

InfoUSA

- Renter vs. Owner status
- Wealth, income

PRISM (OSU)

- Daily HDD, CDD
- Daily max and min temp
- Combined with meter read date, monthly CDD,
 HDD for each household

Consumption in levels

- Dropping 4 periods prior to calling for an EAU
- Treatment effect heterogeneity will be largely driven by the month in which the EAU occurs
 - Measure treatment effects not at monthly, but rather **yearly** lags
- Examine (1) effect on consumption -4 to 4 years from EAU, and (2) interaction with renter status
- FE at the household x month-of-sample level and time FE
- Dropping any home for which a building permit was filed after the EAU

Effect on consumption

Effect on consumption x renter

CDD and HDD effects

- CDD consumption represents~31% of all consumption
- HDD ~8%
- We examine the change in the relationship between consumption and CDD/HDD before/after an EAU
 - "slope shifts"

Plausibly exogenous variation

- We have ~55 EAUs that were for water audits
- Same audit was given including electricity conservation

	Main Sample		Water EAU Calls	
	Ever-EAU	InfoUSA	Ever-EAU	InfoUSA
EAU x HDD	-0.376***	-0.434***	-0.600**	-0.551*
	(0.073)	(0.078)	(0.195)	(0.223)
EAU x HDD x renter (ever-EAU)	0.374**		-0.176	
	(0.133)		(0.802)	
EAU x HDD x renter (infoUSA)		0.282 +		-0.677
		(0.168)		(0.619)
$EAU \times CDD$	-0.482***	-0.484***	-0.568***	-0.559***
	(0.055)	(0.058)	(0.136)	(0.158)
EAU x CDD x renter (ever-EAU)	0.412***		0.351	
	(0.087)		(0.418)	
$EAU \times CDD \times renter (infoUSA)$		0.236*		0.050
		(0.106)		(0.307)
Num.Obs.	89144	4111505	6925	2869633
RMSE	208.32	190.28	186.83	190.96
Std.Errors	by: uID	by: uID	by: uID	by: uID
FE: $uID^m o$	X	X	X	X
FE: uID	\mathbf{X}	\mathbf{X}	\mathbf{X}	X
FE: uID^hadEAU	X	X	X	X
FE: uID^yr	X	X	X	X
FE: Month	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}
Avg uIDxCDD	1.472	1.523	1.971	1.625
Avg uIDxHDD	2.694	2.268	3.244	2.547

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Thanks

jkirk@msu.edu