"Prøveunderveiseksamen" i MAT 1100, H-03

Denne prøveeksamenen har samme format som den "virkelige" underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene teller 2 poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" for å svare feil. HUSK AT KALKULATOR IKKE ER TILLATT!!

1.	Den deriverte til $f(x) = \arcsin(x^2)$ er:
	$\frac{1}{\sqrt{1-x^4}}$
Ш	$\sqrt{1-x^4}$
	$2x \arccos(x^2)$
	$\frac{\sqrt{2x}}{\sqrt{1-x^4}}$ $2x \arccos(x^2)$ $\frac{1}{\sqrt{1-x^2}}$
	$\arccos(x^2)$
2.	Den deriverte til $f(x) = x^2 \cot x$ er:
	$2x \cot x$
	$2x \tan x$
	$\frac{x^2 \cos x}{\sin x}$
	$ \frac{x^2 \cos x}{\sin x} - \frac{1}{\sin^2 x} $
3.	Det komplekse tallet $\frac{1-i}{1+2i}$ er lik: $\frac{-1-3i}{5}$
	2 + 17i
\Box	$ \frac{1+3i}{5} $ $ \frac{3-3i}{5} $ $ 1-\frac{1}{2}i $
\Box	$3\frac{5}{-3i}$
	$1 - \frac{1}{2}i$
4.	Polarkoordinatene til det komplekse tallet $-4 + 4i$ er:
	$r = 4\sqrt{2}, \theta = \frac{\pi}{4}$
	$r = 4\sqrt{2}, \theta = \frac{-\pi}{4}$
	$r=4, heta=rac{3\pi}{4}$
	$r = 4, \theta = \frac{2\pi}{3}$
	$r = 4\sqrt{2}, \theta = \frac{\pi}{4}$ $r = 4\sqrt{2}, \theta = \frac{-\pi}{4}$ $r = 4, \theta = \frac{3\pi}{4}$ $r = 4, \theta = \frac{2\pi}{3}$ $r = 4\sqrt{2}, \theta = \frac{3\pi}{4}$
5.	Polarkoordinatene til et komplekst tall er $r=4, \theta=\frac{5\pi}{6}.$ Tallet er:
	$-2\sqrt{2}+i2\sqrt{2}$
	$2\sqrt{3} + 2i$ $-2 + i2\sqrt{3}$
	$-2+i2\sqrt{3}$
	$-4\sqrt{3}+4i$

- 6. Det komplekse tallet $e^{i\pi/3} \cdot \overline{(1+i)}$ er lik:

- $\Box \frac{i}{2}(\sqrt{3}+1) + \frac{i}{2}(\sqrt{3}-1)$ $\Box -i$ $\Box \frac{1}{2}(-\sqrt{3}+1) \frac{i}{2}(\sqrt{3}-1)$ $\Box i+1$
- 7. Det reelle polynomet $P(z) = z^4 + az^3 + bz^2 + cz + d$ har i og 3i som røtter. Den reelle faktoriseringen til P(z) er:
- \Box $(z-i)^2(z-3i)^2$
- $\hfill \square$ Har ikke nok opplysninger til å finne faktoriseringen

- 8. Grenseverdien $\lim_{x\to\infty} \frac{x^3+2x}{7x-3x^3}$ er lik:
- \Box $\dot{0}$
- \square ∞

- 9. Grenseverdien $\lim_{x\to 0} x \cot(2x)$ er lik:
- \Box 1
- \square ∞
- $\begin{array}{cc} \square & \frac{1}{2} \\ \square & 2 \end{array}$
- 10. Grenseverdien $\lim_{x\to\infty} (1+\frac{2}{x})^{3x}$ er lik:
- \Box e^6
- \square ∞
- \Box 1
- 11. Grenseverdien $\lim_{x\to\infty} (\sqrt{x+\sqrt{x}}-\sqrt{x})$ er lik:
- \square 2
- \square ∞
- \Box 1
- \Box $\frac{1}{2}$

12. For hvilket tall a er funksjonen $f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{hvis } x \neq 0 \\ a & \text{hvis } x = 0 \end{cases}$ nuerlig? \Box a=2 \square Ingen verdi av a \Box $a=\infty$ \Box a=1 \Box a=013. Funksjonen $f(x) = x^3 + 2x + 1$ har en omvendt funksjon f^{-1} . Den deriverte $(f^{-1})'(1)$ er lik: \Box 5 $\begin{array}{ccc}
 & \frac{1}{5} \\
 & \frac{1}{2} \\
 & 2
\end{array}$ 14. Når $x \to \infty$, har funksjonen $f(x) = x(\sin(\frac{1}{x}) + 1)$ asymptoten: ☐ Den har ingen asymptote \square y = x + 1 \square y=2 \Box y = 2x - 115. Integralet $\int \frac{x}{1+x^4} dx$ er lik: $\frac{1}{2} \arctan x^2$ \Box $x \ln(1+x^4)$ \Box $x \arctan x^2$ 16. Det komplekse tallet $(1+i)^{17}$ er lik: $\Box 2^8(1+i)$ $\Box 2^8(1-i)$ $\square \quad 2^{17/2}i$ $\Box 2^{17/2}(\frac{1}{2}+i\frac{\sqrt{3}}{2})$ 17. Funksjonen $f(x) = 2x^3 - 3x^2 - 12x + 2$ er injektiv når vi begrenser definisjonsområdet til dette intervallet: \Box $(-\infty,0]$ \square [-2,1] \square $[0,\infty)$

 $\Box \quad \left[\frac{1}{2}, 3\right] \\
\Box \quad \left[-1, 2\right]$

18. Du skal bruke definisjonen av konvergens til å vise at følgen $\{a_n\}$ gitt
ved $a_n = \frac{n+\sqrt{n}}{n}$ konvergerer mot 1. Gitt $\epsilon > 0$, hvor stor må du velge N for
at $ a_n - 1 < \epsilon$ for alle $n \ge N$?
\square Større enn $\max\{\frac{\epsilon}{2},1\}$
\square Større enn $\frac{1}{\epsilon}$
\square Større enn $\frac{1}{\epsilon^2}$
\square Større enn $\frac{\epsilon_1}{\sqrt{\epsilon}}$
\square Større enn $\frac{\mathbf{v}}{\epsilon}$
19. Hvilken ulikhet gjelder for alle $x \in (0,1)$?
\Box $\arcsin x < \frac{x}{\sqrt{1-x^2}}$
\Box $\arcsin x < x^2$
\Box $\arcsin x < x$
\Box $\arcsin x > x + \frac{x^2}{2}$
\square $\arcsin x < x + \frac{\bar{x^2}}{2}$
20. Et fly flyr i konstant høyde 8km over bakken. Avstanden til en radar
på bakken er 10km og øker med 480km/t. Hvor fort flyr flyet?
□ 480km/t
\square 384km/t
\Box 600km/t
\square 800km/t
\Box 640km/t