Chapitre 17 - Espaces Vectoriels de Dimension Finie

On note \mathbb{K} pour \mathbb{R} ou \mathbb{C} .

1 Bases en dimension finie

1.1 Dimension finie

Définition 1.1. On dit qu'un \mathbb{K} -espace vectoriel E est de dimension finie si il admet une famille génératrice finie.

Dans le cas contraire, on dit que *E* est de dimension infinie.

* R3 /X3 est de dimension finie cau
(1, X, X², X3) est gene notrice de 123 (X)

* RN cus des sentes vielles est de dimension
infinie.

1.2 Existence de bases en dimension finie

Théorème 1.1 (Théorème de la base incomplète). Soit E un \mathbb{K} -espace vectoriel de dimension finie. Toute famille libre de E peut être complétée en une base de E.

Les vecteurs ajoutés peuvent être choisis parmi les vecteurs d'une famille génératrice donnée.

Corollaire 1.2. Tout \mathbb{K} -espace vectoriel E non nul de dimension finie admet une base.

Penace mul

Corollaire 1.3 (Théorème de la base extraite). *De toute famille génératrice finie d'un espace vectoriel E, on peut extraire une base de E.*

Remarques:
on prend E engendré (g1, g2,, gp) famille générative (n1, x2,xx) enve famille libre. on étadie (x1, 262,, 22,, 21) -> liée (jas libre)
(n1, n2, nx) en Camille libre.
on épadie
(K, 262, -, 202, g1) -> liee (Jas like)
$g_1 = \underbrace{\xi}_{i=1} g_{i,i} \cdot \chi_i$
et as recommence avec ge
exemple: Dans 1/24, et on/se
G= Ved ((0,0,0), (-1,-1,0,0), (1,0,0,1), (2,-2,0,0)
(2,0,-1,0),(0,2,-1,0)
Gerst um ser danc Gest un en qui a elle avrille générature à 6 vecteur danc 6 us de climens un finie. Chercheus euro base :
serville générature à 6 vecteur donc out de
Olimension Pinie. Cherchens une Case :
on lose $21 = (1, -1, 0, 0)$ (x1) est une amille l'ibre caves +0
X2 = (1,0,0,1) (X1,12) est une sam elle l'ése (fas colinéaires)
$\chi_3 = (2, -2, 0, 0)$ est combinaison lineaine de (11,12) $\chi_3 = 2\pi 1$ $\chi_4 = (2, 0, -1, 0)$. On étudie (χ_1, χ_2, χ_4): on suppose que
14 = (2,0,-1,0). Omemore (11,12,12). Om my or que
×1+ βn2+8x4=0 avec 2/β/8 niels
$ \begin{array}{lll} $
$\mathcal{L}_{\beta} = 0$

de n_1, n_2, n_4): $n_5 = x_4 - 2 n_1$ $x_0, n_1, n_2, n_3, n_4, n_5$ sont combinaisons linéaires

ole (x_1, x_2, x_4) donc (x_1, x_2, x_4) est une famille générative de Get (x_1, x_2, x_4) est libre alas c'est une lase de G

1.3 Cardinal des familles libres

Lemme 1.4. Si $(x_1, x_2, ..., x_n)$ est une famille libre et la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée, alors x_{n+1} est combinaison linéaire de $(x_1, x_2, ..., x_n)$ i.e. $x_{n+1} \in \text{Vect}(x_1, x_2, ..., x_n)$.

Démonstration.

Il existe des scalaires $(\alpha_i)_{i=1,...,n+1}$ non tous nuls tels que $\sum_{i=1}^{n+1} \alpha_i x_i = \overrightarrow{0}$ car la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée.

Si $\alpha_{n+1} = 0$, alors on a la relation $\sum_{i=1}^{n} \alpha_i x_i = \overrightarrow{0}$. Comme la famille $(x_1, x_2, ..., x_n)$ est libre, on obtient $\forall i \in [[1, n]], \quad \alpha_i = 0$. C'est une contradiction avec l'hypothèse que les scalaires $(\alpha_i)_{i=1,...,n+1}$ sont non tous nuls.

Donc,
$$\alpha_{n+1} \neq 0$$
, alors on peut écrire $x_{n+1} = \sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} x_i$.

Proposition 1.5. Si E est un espace vectoriel admettant une famille génératrice à n vecteurs avec n entier non nul, alors toute famille de n+1 vecteurs est liée.

Corollaire 1.6. Dans un espace de dimension finie, toute famille libre a moins d'éléments qu'une famille génératrice.

Bredlike et Be est générative | B1 | < | B2 |
Bredlike de E et Be est ûne | B2 | < | B3 |

Bredlike de E et Be est ûne | B2 | < | B3 |

=> | B1 | = | B2 |

1.4 Dimension

Théorème 1.7. Si E est un espace vectoriel de dimension finie, alors toutes les bases de E ont le même nombre d'éléments $n \in \mathbb{N}^*$.

Définition 1.2. Ce nombre n s'appelle la dimension de E sur \mathbb{K} noté $n = \dim_{\mathbb{K}} E = \dim E$. Par convention, $\dim\{\vec{0}\} = 0$.

Exemple 1.1. On a $\dim_{\mathbb{K}} \mathbb{K}^n = n$, $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n + 1$ et $\dim_{\mathbb{K}} \mathcal{M}_{n,p}(\mathbb{K}) = n \times p$.

Exemple Domer la Stimeus ion de F= { (n,y,3, A \in 1/2 4 | x + 2y - 3 = 6 } men I Fest l'ensemble des solutions d'un système l'inéquire l homogène donc Fest un ser de 1R4 On résout: le système est chelmé il ya 2 protect Linconnues don deux, inconnues secondaires (jarametes) On paramétre les solution 3 = 2 y = B (n, y, z, f) EF =>] (x, B) EIR2:] n= x-2B => 3(x, B) = 1R2: (n, y, 3, t) = x(1, 0, 1, 1) + 3(-2, 1, 0, 1) F = Vect ((1,0,1,1), (-2,1,0,1)) Ces deux vecteurs sont un famille génération de F et ils son libres cai. Ils me sont jas coline qu'nes $\Delta(1,0,1,1)+B(-2,1,0,1)=0$ $\begin{cases} x-2\beta=0 \\ \beta=0 \end{cases} \Rightarrow x=\beta=0$ sonc les 2 récleurs sont une base de F 01 m 12 - 2 Exemple Donner la Timeusion de $F = \left\{ \left(n_1 y_{13}, A \in \mathbb{R}^4 \mid \chi + 2y - 3 = 0 \right) \right\}$ y + y - k = 0 $\text{Multiple of the problem of th$ en fait, F = Ker () avec (): 1R4 -> 1R2 (214131+) -> (x+25-3, y+3-t)

1.5 Familles en dimension finie

Théorème 1.8. SE est un espace vectoriel de dimension FINIE n et F une famille de n vecteurs de E, alors F est une base de E si et seulement si F est libre si et seulement si F est génératrice de E.

le rystème est eche lamé et il n'ya jas d'equation de compatibilité vanc d'a au moins une solution. Alus tout vecteur P de 12 (x Jost Combinaisan l'iniain des 3 vecteurs (x-1, x2+7x-2, x2+3) donc la famille (x-1, x2+7x-2, x2+3) est giene natrice de 12 5x7

Comme elle a3 réclaisset di m/Re (x) = 3, celle famille est une base de 123 [x Exemple: Daws $E = 1R_2[x]$, montrour que $(x-1, x^2+7x-2, x^2+3)$ est une base de E. Nontrour que la famille est libre: on considère 3 sculaires $(u,v,w) \in 1R^3$ $M(X-1)+V(X^2+7X-2)+W(X^2+3)=0$ $= > (v + w) x^2 + (u + 7v) x + 3w - u - 2v = 0$ => \(\mathbb{V} + \mathbb{W} = \mathbb{D} \)
\(\begin{array}{c} \mathbb{V} + \mathbb{V} & = \mathbb{D} \\ \mathred{A} & \mathred{A} \\ \mathred{A} & \mathred{A} & \mathred{A} \\ \mathred{A} & \mathred{A} & \mathred{A} & \mathred{A} \\ \mathred{A} & \mathred{A} & \mathred{A} & \mathread{A} & \mathread{A} \\ \mathred{A} & \mathread{A} & \mathread{A} & \mathread{A} & \mathread{A} & \mathread{A} & \mathread{A} \\
\mathread{A} & \mathread{A

Relations entre les dimensions

Théorème 2.1. Soit $u: E \longrightarrow F$ une application linéaire et $(e_i)_{i=1,\dots,n}$ une base de E.

• La famille $(u(e_i))_{i=1,\dots,n}$ est une famille génératrice de Im ...

• u est surjection.

- u est surjective $\iff (u(e_i))_{i=1,\dots,n}$ est génératrice de F.
- u est injective $\iff (u(e_i))_{i=1,\dots,n}$ est libre dans F.
- u est bijective $\iff (u(e_i))_{i=1,\dots,n}$ est une base de F.

Corollaire 2.2. *Soit* $u : E \longrightarrow F$ *une application linéaire.*

u est un isomorphisme de E dans F si et seulement si l'image d'une base de E par u est une base de F.

Dimension et isomorphisme **Proposition 2.3.** Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Un espace vectoriel F est isomorphe à E si et seulement si F est de dimension finie et dim F = dim E. il exite une application li mércie bijective de **Corollaire 2.4.** Tout \mathbb{K} -espace vectoriel de dimension n est isomorphe à \mathbb{K}^n . Preuve Si V E L (F, F) et V byettive elsi dim E = M avec MEN, alus sort (ci); une have de 12 Aluas ((l (e)) ; = 1,..., est une base de F car Ved im isomorphisme Fa une base qui a n vecteur alors Fest de dimension finic et dim F= m= dim E-Exemple: Suites recurrentes lineaires d'adre2

Soit E = { (un) E C m/a un+2+5 un+1+Cun=0 hourtoul nEm }

avec (a,b,c) E C 3 et a +0. (a,b,c fixes). Montais que d'im E = 2 Soit P. E -> Le Wo, U1) O Perliméaire (à prouver (Um) m Em Wo, U1) Perliméaire (à prouver (X(Um) + (Vm) - X (P(Um) + (PVm)) 2) elve suite (un ofor de E a fait intou morque de 4) ∠ \(\((\mu_m\) = 0∠ > \(\mu_0 = \mu_1 = 0\) alors for récurrence double mintrais que (un) est mille. On sujor que un= eln=1=0 alors aun+2 =0 et a +0 dow Un+2=0 et un+1=0. La propriete est initialisée et héréditaine donc FriEN Un=0 donc Keil={0} Soit (Z1,Z2) GO2. On construit me suite (m) jai Mo = Zz, un = Zz et VmEM, Un+z = -6 un+1 - Cun + on a trouvé une soute (un) E = et ((un) = (Z1, Z2) par construction

Donc (Z1, Z2) aux antecédent dans E: Vest surjeitire.

4) Al'as (Per i Bornorphisme de E das [2. / dim = = 2 |

2.3 Dimension d'un produit d'espaces vectoriels

2.4 Dimension des sous-espaces vectoriels

Théorème 2.5. Si E est un espace vectoriel de dimension finie n, alors tout sous-espace vectoriel F de E est de dimension finie et dim $F \leq \dim E$.

De plus, F est égal à E si et seulement si $\dim F = \dim E$.

Exemple: Déterminer la dimanion de H= { P = R3 [x] /] P = 0 } Sort PEIR3 [X] avec P= XX3+BX2+XX+b L,B,X,5 réelo eque+1; PEH => (2) => (2/2 +3+ B+2+8++6) dt=0 => (4x+83+28+26=0) equation de H 5 = 1 - 2 x - 4 B - 8 $P= 2(x^3-2)+B(x^2-4/3)+8(x-1)$ Donc H= Vect (C x3-2), (x2-4/3), (x-1)) ces 3 jolymames sont une famille génératrice de H Les 3 volumers sont de degré e chelonnées (tour déférents) celors ils forment une famille libre flanc (X3-2, X2-4/2, X-1) est une base de H et dim H=3 dan 123 [x] de dimain 4 donc Hest em hyjerplan

Dimension de sous-espaces vectoriels supplémentaires

Théorème 2.6. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de

$$F \text{ et } G \text{ sont supplémentaires dans } E \Longleftrightarrow \begin{cases} \dim F + \dim G = \dim E \\ F \cap G = \{\vec{0}\} \end{cases} \Longleftrightarrow \begin{cases} \dim F + \dim G = \dim E \\ E = F + G \end{cases}$$

Théorème 2.7. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de

Si
$$(f_1, f_2, ..., f_p)$$
 est une base de F et $(g_{p+1}, ..., g_n)$ est une base de G , alors $E = F \oplus G \iff (f_1, f_2, ..., f_p, g_{p+1}, g_{p+2}, ..., g_n)$ est une base de E .

On dit que cette base est adaptée à la décomposition en sous-espaces supplémentaires.

Théorème 2.8.

Tout sous-espace vectoriel d'un espace vectoriel de dimension finie admet au moins un supplémentaire.

done (FOH = { 5} et dim F + dim H= dim E alan E = FAH

Exemple Dans 1R3, montrer que Fdéquation 2x+3y-3=0 ct 6 = Vect ((1,1,1)) sont ry l'ementaires 6 Gestim ser de 1R3 par définition de du meurion s car (1,1,1) + 5 Onrésout l'équation de F: (n,y,3) @ F==> 3 = 2x+3 y $= \frac{3}{3} \left(\frac{1}{3} \right) \frac{E}{12^2} = \frac{2}{3} \left(\frac{3}{3} \right) + \frac{3}{4} \left(\frac{3}$ Les deux vecteurs sont échelamies donc de sont Cibres donc ils sont une lare de Fet slim F_2 Alors dim F+dim G=dim 1R3 Sout in EF 16 avec ii = (114113) alas 2n+3y-2=0 dr (n, y, z) = x (1,1,1) avec x ∈ 1R, On a dane 22+32-d=0 Soch d=0 danc $\bar{u}=\bar{0}$. Et, réciproquement $\bar{0}$ EF $\bar{0}$ G

Alors $\bar{0}$ A Remarque : au a évité d'avair à montrer que tout vecteur de 123 est somme d'en vecteur de Fet d'en vecteur de G

2.6 Dimension d'une somme

Proposition 2.9 (Formule de Grassmann).

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie.

Alors $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$


```
Exemple: Dous 1/24, F= Vect ((1,1,0,0) (1,0,-1,0))
          ( = Vech ((1,1,0,1), (2,1,-1,-1))
      on reut appliquer la formule de Granmann.
      Fct 6 sunt des plans ou de sont engendrés par
      deux veteurs non colinéaires. Dinn F= dinn 6 = 2
    Cherchair des éguations de F: Soit (214,3,t) EIR4
   2, 4,3, t) EF = = (d,B) E/R2. | n = x + B
                                      censtime et échelonné
                                     elila une solution s'el revent
                                        si lu ég de conjatibilé sant
                      sont des équations de F
                                         G=Ved (A11011), (2,11-1,-
   On résour FNG
                                          +32-1=0
       y + 23-t=0
   le système a une inconnue se condaine (3 jancremple)
   alus ma un pramètre: dim (FDG) = 1
 et = 16 = Vect (-3,-2/1,0))
Parlajamelle de grammam: dinn(F+6) = 2 + 2-1 = 3
Nois F+G= Veet (11,0,0) (1,0,-1,0) (1,1,0,1) (2,1,-1,-1)
celle famille générative de F+G a 4 vecteurs: l'un ent
 Combinaisar du autrer en =2ex+ez-ez
    donc ((1/1/0/0/1/10/-1/0)/(1/1/0/1)) est une base de F + G
```

3 Rang

3.1 Rang d'une famille de vecteurs

Définition 3.1. On appelle rang d'une famille finie de vecteurs $(x_1, x_2, ..., x_p)$ d'un espace vectoriel E, la dimension du sous espace vectoriel engendré par ces vecteurs et on le note $rg(x_1, x_2, ..., x_p)$:

$$\operatorname{rg}(x_1, x_2, \dots, x_p) = \operatorname{dim}(\operatorname{Vect}(x_1, x_2, \dots, x_p)).$$

Lemme 3.1. Pour une famille finie de vecteurs $(x_1, x_2, ..., x_p)$ d'un espace vectoriel E de dimension finie $n = \dim E$, on a

$$\operatorname{rg}(x_1, x_2, \dots, x_p) \leq p$$
 et $\operatorname{rg}(x_1, x_2, \dots, x_p) \leq n$

Théorème 3.2. Une famille est libre si et seulement si elle de rang maximal, c'est à dire si son rang est égal à son nombre de vecteurs.

Lemme 3.3. Soit $(x_1, x_2, ..., x_p)$ une famille finie de vecteurs d'un espace vectoriel E et $\lambda \in \mathbb{K}$, on a pour tous indices i, j:

$$rg(x_1, x_2, ..., x_i, ..., x_j, ..., x_p) = rg(x_1, x_2, ..., x_i + \lambda x_j, ..., x_j, ..., x_p)$$

9
Exemple ng ((1,1,0,1),(1,-1,1,0),(1,1,1,0)).
Ce sont 3 vecteur de 124 : (ei, e 21 e 3)
Exemple $ng((1,1,0,1,1,1,0),(1,1,1,0))$. Ce sont 3 vecteur de 124 : (ei,e2,c3) dim (Ved (e1,e2,e3))? on veut le nombre de vecteurs
Donc, on extrait me base de la famille génération (encezos). Ventran que (enez ez) ost libre:
Versfan que (e1, ez, ez) Est libre:
on supre que de 1 + Bez + 8e3 = 0 evec (d,B,8) EIR3
Verifian que (e1, ez ez) OST libre: On suffre que d est β ez δ δ e
1 + 3 + 8 = 0 (8 + 8 = 0) CA (1 + 8 = 0)
et (e1, e2, e3) et génératura de vert (e1, ez, es) alars
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
collucture wollan Ver lenes, es) = 3
c'A we lare et dim Vect (e1, e2, e3) = 3 => 1g(e1, e2, e3) = 3

					4		^		٨		Λ)	٨		-11				
	Ĩ	- -Xp	سر	1 ł	<u>e</u> :		al	al	a	0		L	(ıω	uj) (le	U	U	a	N	بالله	2			
		/	· /	و ا	7	X + -		_	V		2		V	,3		<u></u>	Y.	2	2	V .	3	\	1		D	
			_		7	Pi	1	<u> </u>	X	F	ک ای)		P_{2}				P	6	Χţ	,	/ ()	(W	ر) حر	\3	-4 X.
	(M,	sa	u		SPA	le	. Vh	¢ M	we	<i>!</i>								4							
) /	. /	D	<i>(</i>)	6		ρ) ,	\setminus		1 (1		10 d	tu	7/0		1.		Lad	0.	1. a		
			•	(f (Di	ح 🎖	- 1	3	1 5	4) = 7	- ()	d	γv	VICA C	W	-W	0	W.	- 4	100	y/	no i	wo	עפ
	į	ci									1	6	2	P3		74		113								
			•	1 (1.4	ıq	01		1		1		6	<u> </u>	7	- (יני י	\rightarrow	x - v 2								
		~		iw		03/				- 7	}	5	-	100		1,		X								
								J	1	1	_	2		_/		3	١,	1								
		_	1	CI		0	0	1	- C				1		1	1	0	- (1	\			2		
			2	4		1	0) () -	1_	1		- \	7		0	_	(0	1					3	
1	, _ 	- - /	+ /	4	- {		2		0	5 2				J		0)	1	_ (2					
_4			4	L 2		1			7			_				C		\mathcal{C}	1) ($\mathcal{O} \setminus \mathcal{C}$	フ <i>i</i>					
					α	lus	d	in	(1	<i>lec</i>	V	(1),		2	, P.	3,	P4	 }-	_ 3	>					
																			1)							

3.2 Rang d'une application linéaire

u est me officientiaire

Définition 3.2. Soient E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire. On appelle rang de l'application linéaire u, la dimension de l'image de u dans F.

On note rg(u) = dim(Im u) lorsque cette dimension est finie et on dit que u est de rang fini.

Remarque 3.1. Si $(e_i)_{i=1,...n}$ est une base d'un espace vectoriel E de dimension finie, alors $\text{Im } u = \text{Vect}(u(e_1), u(e_2), \dots, u(e_n))$.

Il s'ensuit que $rg(u) = rg(u(e_1), u(e_2), \dots, u(e_n))$.

Lemme 3.4. Soient E et F deux espaces vectoriels de dimension finie $n = \dim E$ et $p = \dim F$, et

 $u: E \longrightarrow F$ une application linéaire. Alors $rg(u) \le n$ et $rg(u) \le p$.

Théorème 3.5. Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ sont deux applications linéaires de rang fini, $V \cap V$ alors $v \circ u$ est de rang fini et $rg(v \circ u) \leq min(rg(u), rg(v))$.

Démonstration. On a toujours $\text{Im}(v \circ u) \subset \text{Im} v$: pour toute image $y \in \text{Im}(v \circ u)$, il existe $x \in E$ tel que y = v(u(x)) donc $y \in \text{Im } v$ ce qui prouve l'inclusion.

On en déduit dim $(\text{Im}(v \circ u)) \leq \text{dim}(\text{Im} v)$ soit $\text{rg}(v \circ u) \leq \text{rg}(v)$.

Par ailleurs, soit $(f_1, f_2, ..., f_p)$ une base de $\operatorname{Im} u$ avec $p = \operatorname{rg}(u)$. Soit $z \in \operatorname{Im}(v \circ u)$ alors il existe $x \in E$ tel que z = v(u(x)). On a $u(x) \in \text{Im } u$ donc u(x) s'écrit $u(x) = \sum_{k=1}^{p} \lambda_k f_k$ avec $(\lambda_k)_{k \in [[1,p]]}$ des

scalaires. On peut donc écrire $z = \sum_{k=1}^{p} \lambda_k v(f_k)$.

On en déduit que $(v(f_k))_{k \in [\![1,p]\!]}$ est une famille génératrice de $\mathrm{Im}(v \circ u)$. Il s'ensuit que $\mathrm{dim}(\mathrm{Im}(v \circ u))$ $(u) \leq p$ ce qui donne $\operatorname{rg}(v \circ u) \leq \operatorname{rg}(u)$.

3.3 Théorème du rang

Proposition 3.6. Soit E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire de E dans F.

Si E_0 est un supplémentaire de Keru dans E, alors l'application u induit un isomorphisme de E_0 sur ${\rm Im}\,u$.

 $v: \underbrace{E_0}_{\longleftarrow} \longrightarrow \underbrace{\operatorname{Im} u}_{u(x)}$ est un isomorphisme.

donc ng (a) = dim £m(a)

Théorème 3.7 (Théorème du rang). Si E est un espace vectoriel de dimension finie et u une application linéaire de E dans un espace vectoriel F, alors u est de rang fini et

 $\dim E \neq \operatorname{rg} u + \dim(\operatorname{Ker} u) \neq \dim(\operatorname{Im} u) + \dim(\operatorname{Ker} u)$ Im(u)ct dim (Imu Foet un rujlémentaire de Kern dans E: E = Ker (u) + Eo Exemple: $g: \mathbb{R}^3 \longrightarrow \mathbb{D}^4$ (24-3, 24-3, 21+3) Déterminer Verg, Img, rg(g) x Ell til que (nig, z) Keig = Ved ((-1,1,2)) d'anc dim (Keig)= Loque de dé joit est de dimension 3 alors dopuste l'hévènne du roug polim (IR3) = dim (kerg) + dim Imq)

			Λ		/	e 110/	
On sa	tque.	Im (g)	est	un	Han a	elRT	
alas	tm	$\alpha = 0$	our l	204	terus	i mage	non colimi
		3 0		/		0	
	/ Im	g = V	ccbl	(2,	1,1,3)	10,-	1,1,4)
Canal	1 1 1 - (9 4 4 .2		10,00	1 = 1	0, -1,	
		2111111	1	(70)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-)	

3.4 Caractérisation des isomorphismes

Théorème 3.8. Si E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> $n = \dim E = \dim F$ et $u \in \mathcal{L}(E, F)$, alors

u est injective \iff Ker $u=\{\overrightarrow{0}\}$ \iff u est surjective \iff dim Ker u=0 \iff u est bijective \iff rg(u)=n.

Corollaire 3.9. Si $u \in \mathcal{L}(E)$ avec E de dimension finie, alors u est injective $\iff u$ est bijective.

Lemme 3.10. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $g: F \to E$ telle que $g \circ f = id_E$, alors f est injective.

Démonstration. Soit g telle que $g \circ f = id_E$. Soit $a, b \in E$. Si f(a) = f(b) alors g(f(a)) = g(f(b)) donc id(a) = id(b) soit a = b. Deux éléments de l'ensemble de départ ne peuvent avoir la même image donc f est injective. □

Lemme 3.11. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $h: F \to E$ telle que $f \circ h = id_F$, alors f est surjective.

Démonstration. Soit h telle que $f \circ h = id_F$. Soit $a \in F$. On a f(h(a)) = a donc a a un antécédent. Tout élément de F a un antécédent donc f est surjective.

Théorème 3.12. Soit E et F deux \mathbb{K} -espaces vectoriels de même dimension finie et $f \in \mathcal{L}(E, F)$.

Si il existe $g: F \longrightarrow E$ telle que $g \circ f = id_E$ alors f est bijective et $f \circ g = id_F$.

Si il existe $h: F \longrightarrow E$ telle que $f \circ h = id_F$ alors f est bijective et $h \circ f = id_F$.

Théorème 3.13. Si u est une application linéaire de rang fini et si φ est un isomorphisme d'espaces vectoriels, alors, dans les cas où cela a un sens,

$$rg(u \circ \varphi) = rg u \text{ ou } rg(\varphi \circ u) = rg(u).$$

On ne change pas le rang d'une application linéaire en la composant par un isomorphisme.

Démonstration. Soit E, F, G trois espaces vectoriels sur le corps \mathbb{K} .

- Soit φ un isomorphisme de F dans G et $u \in \mathcal{L}(E,F)$ de rang fini. Soit B une base de $\operatorname{Im} u$ (qui est de dimension finie). Alors $\varphi(B)$ est une base de $\varphi(\operatorname{Im} u)$ car φ induit un isomorphisme de $\operatorname{Im} u$ dans $\varphi(\operatorname{Im}(u))$. De plus, on a l'égalité triviale : $\varphi(\operatorname{Im} u) = \operatorname{Im}(\varphi \circ u)$. Alors, $\dim(\operatorname{Im}(\varphi \circ u)) = \dim(\operatorname{Im} u)$ soit $\operatorname{rg}(\varphi \circ u) = \operatorname{rg}(u)$.
- Soit φ un isomorphisme de E dans F et $u \in \mathcal{L}(F,G)$ de rang fini. On a toujours $\underline{\operatorname{Im}(u \circ \varphi) \subset \operatorname{Im} u}$ car toute image par $u \circ \varphi$ est une image par u. Réciproquement, soit $z \in \operatorname{Im} u$, alors il existe $y \in F$ tel que z = u(y). Comme φ est une bijection de E dans F, il existe un unique $x \in E$ tel que $y = \varphi(x)$. Alors, $z = u \circ \varphi(x)$ et $z \in \operatorname{Im}(u \circ \varphi)$ ce qui prouve $\operatorname{Im} u \subset \operatorname{Im}(u \circ \varphi)$.

On a montré $\operatorname{Im}(u \circ \varphi) = \operatorname{Im}(u)$ donc $\operatorname{dim}(\operatorname{Im}(u \circ \varphi)) = \operatorname{dim}(\operatorname{Im} u)$ soit $\operatorname{rg}(u \circ \varphi) = \operatorname{rg}(u)$

3.5 Équations linéaires

Définition 3.3. Une équation linéaire est une équation du type u(x) = b où

- u est une application linéaire d'un espace vectoriel E dans un espace vectoriel F,
- x est un vecteur inconnu dans E,
- *b* est un vecteur de *F* appelé second membre de l'équation.

Théorème 3.14 (Structure de l'ensemble des solutions).

Soit $u: E \longrightarrow F$ une application linéaire d'un espace vectoriel E dans un espace vectoriel F, soit $b \in F$. On note S_0 l'ensemble des solutions de l'équation linéaire $u(x) = \overrightarrow{0_F}$ et $\mathscr S$ l'ensemble des solutions de l'équation u(x) = b.

- S_0 est un sous-espace vectoriel de E. En particulier, il est donc non vide : il contient $\overrightarrow{O_E}$.
- Soit \mathscr{S} est vide, soit $\mathscr{S} = x_0 + S_0 = \{x_0 + h | h \in S_0\}$ où x_0 est une solution de l'équation avec second membre.

Remarque 3.2. Si *E* est de dimension finie n (n inconnues) et si u est de rang fini r (r pivots), alors l'ensemble des solutions \mathcal{S}_0 est de dimension n-r= nombre d'inconnues - nombre de pivots.

