

M = 1

Moda = 1

e)
$$\sigma^2 = \frac{(Q - 1'14)^2 \cdot 26 + (1 - 1'14)^2 \cdot 40 + (2 - 1'14)^2 \cdot 14 + (3 - 1'14)^2 \cdot 6 + (1 - 1'14)^2 \cdot 40 + (1 - 1'14)^2 \cdot 6 + (1 - 1'14)^2 \cdot$$

+ (4-2/24)2.3+ (5-3/34)2.1 =

NOMOTE												Grupo												
Ejercicio de EVALUACION de EVALUACION EVALUACION																								
Fecha	aciones	dal Pro	faso	r.		LVI	1LC) i i	101				119	17 1		1				V ICES				1
Joserva																								
	'e)	0 '	-	Σ	7		X)2												134		4		
		02	4	250	2+:	120	+ 1	520	7	1750	24	22	-	4 2	350	2	325) 1	375	023	42	50		191
			= 6	150	0 + 2	672	500	- 13	562	500		300	25	00	+ 5	061	250	0 +	75.	625	00	+		
	2		4	10	562	500		4 06	520	ao +	18	66	250	0		3	655	300	66	S A C	١٧	=		
					s 3A	20	0 .	- 36	2	30.0	6	6=	100	(=		_30	12	286	(67)	04				
*		V 2	- (7	50 -	- 1910	152	20:	3+	(75	10-	19	95		7 0	32	+	(13	70	-191	0'5	2)2	- \	8 +	
			+	(175	io-1	1910	125)	201	2 +		50		1910	150	2)2	311 -	+ (2350	0 -1	910	25)	2	6+	
			+	(3)	2503	- 10	olo "	21/2	. 5	1(34		-19	(0"	(25	2.6	4	(42:	50 -	(110)2.	2	11
			= 2	27	1980	00	112	+ 4	30	97	813		578	+	21	553	160	50	64	2 +	- 30	972	00 10	1448
										-				6	0.01					120	21.		1000	
100			+	12	617	131	374	1+	42	283	9	-	241	- 8	4+1	0 35	3	26	1- 20	3 30	200	20	020	7+
			1	. to	944	95		408			1	10=	8	00	16	,) C	, T							
		T =	1	V 1			j	110	78	€ C	67	reig	4	4	10	5	2 (1	22					1	
															1	1 2		11-7						
											18													

En la serie de datos, de amplitud de intervale 2, la mode es el interdo [401, 403) y & mediana se encretre es el interdo [425, 427).

Nombre				C	Curso	Grı	иро	on gridening	
	ALUACION de		Calificación						
Fecha		EVALUAC	ION						
Observaciones	del Profesor:				16124				
F: C									
F;.6									
a)	Pora ancer						2		
y b)	vonion re y Q					ne de			
	les un'ester, Pare ver por			0		. gome	0		
	hacenes in			SES I					
						0			
	Peso (x)	1'50	1'68	('7	1'75	18			
	60	1	0	0	0	0 1	1		
	63	0	0	1	0	0	1		
	65	0	1	1	0	0	2		
	68	0	0	0	1	1 1	2		
		1	1	2	1	1			
	X = 80	+63+0	35-246	8-2	- 60+	3+ (30	+ 136 ~	64	
		9	6			6			
	× = 1's	+ 1,08+	6 2+	175+	1/8 = 1	15+11684	3'4+170	5418-	
	62 (0)	cutoli		C. (2)	2 10-	0-623			
	S2 = (G				0		2+ (68-0	64.8)	
	= 23	04 + 312	9 + 0 0	8 + 50	148 -	18 F			
	5x = 570	81 ~ 2'							
	93 (11	5-116972	1 (1,08	-1/69	3+ (11)	1/69) }	2		
	7 -		1	3		-161/			
	4 +	1175-10	69)24 ((18 -	189)2=				
	= 3	0 (0361 +	0'0001+	0'000	2+00	036 + 0	0121		
		0'0087		6					
		- 4800	0'0	93				6	

Ahora hallenes et aefficiente de vendaton de Regison. CVx = 2179 = 0'043 CVy = 0'093 = 0'055 la unable altres (y) presente una mayor dispensión que la unable peros (x). 1 1 1 3 1 1 1