This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WHAT IS CLAIMED IS:

5

- 1. A recording medium comprising a base material and an ink-receiving layer containing a particulate material provided on the base material, wherein the particulate material comprises aluminum oxide particles of the γ -crystal structure, the average particle diameter of the aluminum oxide particles is at least 0.21 μ m, but at most 1.0 μ m, at least 90 % of all the aluminum oxide particles have a particle diameter of at most 1.0 μ m, and the specular glossiness of the surface of the ink-receiving layer is at least 50 % as measured at 75°.
- The recording medium according to Claim 1,
 wherein at least 70 % by weight of the particulate material is aluminum oxide particles of the γ-crystal structure.
- The recording medium according to Claim 1,
 wherein at least 90 % by weight of the particulate material is aluminum oxide particles of the γ-crystal structure.
- The recording medium according to Claim 1,
 wherein the ink-receiving layer comprises a binder, and
 a mixing ratio of the aluminum oxide particles of the γ-

crystal structure to the binder is within a range of from 1:1 to 30:1 in terms of a weight ratio.

5. The recording medium according to Claim 1, wherein the aluminum oxide particles of the γ -crystal structure are particles obtained by heating and calcining boehmite or pseudoboehmite.

5

- 6. The recording medium according to Claim 1,
 wherein the aluminum oxide particles of the γ-crystal structure are particles which are produced by heating and calcining boehmite or pseudoboehmite, followed by a step of removing a coarse particle component by a grinding and separating treatment, and from which the
 to coarse particle component has been removed.
 - 7. The recording medium according to any one of Claims 1 to 6, wherein the base material is formed of a fibrous base having a surface layer containing barium sulfate, and the ink-receiving layer is provided on the surface layer.
- 8. The recording medium according to Claim 7,
 wherein the Bekk smoothness of the surface layer is at
 least 400 seconds, and the whiteness degree thereof is
 at least 87 %.

9. An image forming process, comprising the step of applying a recording liquid to the ink-receiving layer of the recording medium according to Claim 1 in response to recording information to form an image.

5

10

15

20

- 10. A process for producing a recording medium, which comprises the steps of forming coarse particles of aluminum oxide of the γ-crystal structure by heating and calcining boehmite or pseudoboehmite, removing a coarse particle component by a separating treatment after grinding the formed coarse particles of the aluminum oxide of the γ-crystal structure, and applying a coating formulation comprising the aluminum oxide particles of the γ-crystal structure, from which the coarse particle component has been removed, onto a base material.
- 11. The process according to Claim 10, wherein the average particle diameter of the aluminum oxide particles of the γ -crystal structure is at least 0.21 μ m, but at most 1.0 μ m, at least 90 % of all the aluminum oxide particles of the γ -crystal structure have a particle diameter of at most 1.0 μ m, and the specular glossiness of the surface of the ink-receiving layer is at least 50 % as measured at 75°.

12. The process according to Claim 10 or 11, wherein the coating formulation comprises a binder, and a mixing ratio of the aluminum oxide particles of the γ -crystal structure to the binder is within a range of from 1:1 to 30:1 in terms of a weight ratio.