UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 310 DIGITAL SIGNAL PROCESSING - FALL 2023

Homework 13

Profs. Do, Snyder, Moustakides

Due: Wednesday, December 6, 11:59PM on Gradescope

1. Suppose we have the digital rate conversion system given below with input signal x[n] and output signal y[n]. The following two parts are unrelated.

- (a) Let $x[n] = 5\sin\left(\frac{\pi}{6}n\right)$. Determine and sketch y[n] for $0 \le n < 12$.
- (b) Let $X_d(\omega)$ be the DTFT of x[n] where

$$X_d(\omega) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}.$$

Show that the output DTFT $Y_d(\omega)$ is given by

$$Y_d(\omega) = \frac{1}{1 - \frac{1}{8}e^{-j\omega}}.$$

2. Consider the following digital rate conversion system.

Let $X_d(\omega)$ be the DTFT of input x[n] given below.

- (a) Sketch the DTFT of $y[n], Y_d(\omega),$ for $-\pi \le \omega \le \pi$. Please carefully label your axes!
- (b) Sketch the DTFT of $z[n], Z_d(\omega)$, for $-\pi \leq \omega \leq \pi$.

3. We would like to implement a digital rate conversion system that **increases** the implicit sampling rate of a digital signal x[n] by a factor of $\frac{5}{3}$. You are given the below building blocks for your system.

- (a) Sketch the implementation of your rate conversion system, i.e. the full block diagram of your system. Specify your choices of M and N, and sketch the necessary digital filter $H_d(\omega)$.
- (b) Verify that your system works properly by sketching the output of each stage with the following input signal. *Hint:* you should have three plots in total.

- 4. Let $x[n] = \delta[n-1] + 3\delta[n-4]$ be a discrete-time signal. For each of the following parts, we perform digital-to-analog conversion with a sampling period of T = 1/10 seconds to recover $x_a(t)$.
 - (a) Sketch the resulting analog $x_a(t)$ from an ideal D/A converter.
 - (b) Sketch the resulting $x_a(t)$ from a ZOH, i.e. with no compensation filter.
- 5. Consider the following practical D/A system.

Suppose $x_c(t)$ is a bandlimited continuous-time signal with maximum radial frequency $\Omega_0 = 4\pi \times 10^3$ and we sample $x_c(t)$ with sampling period $T_1 = \frac{1}{5,000}$ seconds. Above, $H_r(\Omega)$ is the analog compensation filter for a practical D/A.

- (a) Let L=1 and thus $H_d(\omega)$ is simply an all-pass system that does not modify the input signal.
 - i. What is the proper choice of T_2 in this scheme?
 - ii. What is the resulting transition bandwidth for the compensation filter $H_c(\Omega)$?
- (b) Let L=6 where we now have an oversampled practical D/A system.
 - i. Sketch the corresponding $H_d(\omega)$.
 - ii. What is the proper choice of T_2 in this scheme?
 - iii. What is the new transition bandwidth for the compensation filter $H_c(\Omega)$?