A rendre à la séance d'exercices du 23-24 novembre 2017

version 1

Corrigé du mini-test 4 : Physique de l'entonnoir

(2+6+3+2+5+4=22 points au total)

a) (2 points au total)

Le repère associé aux coordonnées sphériques $(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi)$ est placé sur le point matériel. C'est un repère orthonormé droit. Le vecteur de base \hat{e}_r (respectivement $\hat{e}_\theta, \hat{e}_\phi$) indique la direction dans laquelle le point matériel se déplacerait si seule la coordonnée r (respectivement θ, ϕ) augmentait, les deux autres coordonnées restant inchangées. Les vecteurs \hat{e}_r et \hat{e}_θ se trouvent dans le plan vertical contenant le point matériel et l'axe Oz, comme indiqué dans la figure cicontre. Le vecteur \hat{e}_ϕ est horizontal et pointe dans la page.

2 points pour le dessin A,B

Donner deux points si les trois vecteurs \hat{e}_r , \hat{e}_θ , \hat{e}_ϕ sont dessinés dans les bonnes directions, et avec les mêmes normes pour \hat{e}_r et \hat{e}_θ (au cas où \hat{e}_ϕ n'est pas dessiné, accepter une explication écrite sur la direction de \hat{e}_ϕ). Soustraire un point pour chaque vecteur manquant ou incorrect. Ne donner aucun point si le compte des points est négatif. Un dessin 3D correct et complet donne aussi deux points.

b) (6 points au total)

En coordonnées sphériques (r, θ, ϕ) , la condition que le point matériel doit rester sur le cône s'écrit

$$\theta(t) = \alpha = \text{constante} \quad \Rightarrow \dot{\theta} = 0.$$
 (1)

La vitesse et l'accélération du point matériel

$$\vec{v} = \dot{r}\hat{e}_r + r\dot{\theta}\hat{e}_\theta + r\dot{\phi}\sin\theta\hat{e}_\phi \tag{2}$$

$$\vec{a} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta)\hat{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \sin \theta \cos \theta)\hat{e}_\theta + (r\ddot{\phi}\sin \theta + 2\dot{r}\dot{\phi}\sin \theta + 2r\dot{\phi}\dot{\theta}\cos \theta)\hat{e}_\phi,$$
(3)

se réduisent donc à

$$\vec{v} = \dot{r}\hat{e}_r + r\dot{\phi}\sin\alpha\hat{e}_{\phi}, \quad \boxed{1 \text{ point }}_{\mathbf{C}}$$
 (4)

$$\vec{a} = (\ddot{r} - r\dot{\phi}^2\sin^2\alpha)\hat{e}_r + (-r\dot{\phi}^2\sin\alpha\cos\alpha)\hat{e}_\theta + (r\ddot{\phi}\sin\alpha + 2\dot{r}\dot{\phi}\sin\alpha)\hat{e}_\phi \,. \, \boxed{1 \; \mathsf{point} \; } \, \boxed{0}$$

Les forces s'appliquant sur le point matériel sont le poids $m\vec{g}$, dirigé vers le bas,

$$m\vec{g} = -mg\cos\alpha\,\hat{e}_r + mg\sin\alpha\,\hat{e}_\theta\,, \ \boxed{1 \text{ point}}_{\rm E}$$
 (6)

et la force de liaison \vec{N} exercée par le cône, perpendiculaire au cône,

$$\vec{N} = N_{\theta} \hat{e}_{\theta} .$$
 1 point $_{\rm F}$ (7)

En projetant la deuxième loi de Newton $\fbox{1 point}$ $_{\rm G}$

$$m\vec{g} + \vec{N} = m\vec{a} \tag{8}$$

sur les vecteurs du repère $(\hat{e}_r, \hat{e}_\theta, \hat{e}_\phi)$, on obtient :

$$-mg\cos\alpha = m(\ddot{r} - r\dot{\phi}^2\sin^2\alpha), \qquad (9)$$

$$mg\sin\alpha + N_{\theta} = m(-r\dot{\phi}^2\sin\alpha\cos\alpha),$$
 (10)

$$0 = m(r\ddot{\phi}\sin\alpha + 2\dot{r}\dot{\phi}\sin\alpha). \tag{11}$$

1 point si les trois équations (9), (10) et (11) sont écrites correctement $_{
m H}$

c) (3 points au total)

Le moment cinétique du point matériel par rapport au point O vaut 2 points I,J

$$\vec{L} = \vec{r} \wedge m\vec{v} = r\hat{e}_r \wedge m(\dot{r}\hat{e}_r + r\dot{\phi}\sin\alpha\,\hat{e}_\phi) = mr^2\dot{\phi}\sin\alpha\,\hat{e}_r \wedge \hat{e}_\phi = -mr^2\dot{\phi}\sin\alpha\,\hat{e}_\theta \tag{12}$$

Les 2 points incluent 1 point pour les composantes selon \hat{e}_r et \hat{e}_{ϕ} (qui sont nulles) et 1 point pour la composante selon \hat{e}_{θ} . Si ce dernier point est donné, s'assurer que le point de l'équation (4) a aussi été donné.

et sa composante verticale selon \hat{e}_z vaut

$$L_z = \vec{L} \cdot \hat{e}_z = -mr^2 \dot{\phi} \sin \alpha \, \hat{e}_\theta \cdot \hat{e}_z = mr^2 \dot{\phi} \sin^2 \alpha \,. \, \boxed{1 \text{ point }}_{\mathbb{K}}$$
 (13)

d) (2 points au total)

La dérivée de L_z par rapport au temps,

$$\frac{dL_z}{dt} = mr^2 \ddot{\phi} \sin^2 \alpha + 2mr\dot{r}\dot{\phi} \sin^2 \alpha = mr \sin \alpha \left(r\ddot{\phi} \sin \alpha + 2\dot{r}\dot{\phi} \sin \alpha \right), \quad \boxed{1 \text{ point}}_{\text{L}} \quad (14)$$

est nulle en vertu de l'équation (11). Donc L_z est une constante. $\boxed{1 \text{ point}}_{\mathrm{M}}$ Une autre manière d'arriver à cette conclusion est d'appliquer le théorème du moment cinétique par rapport à O,

$$\frac{d\vec{L}}{dt} = \sum_{i} \vec{r} \wedge \vec{F}_{i} = \vec{r} \wedge m\vec{g} + \vec{r} \wedge \vec{N}; \quad \boxed{1 \text{ point }}_{L}$$
 (15)

les vecteurs \vec{r} , $m\vec{g}$ et \vec{N} étant contenus dans le plan vertical défini par \hat{e}_r et \hat{e}_θ , la somme des moments des forces est horizontale (selon \hat{e}_ϕ) et a donc une composante nulle selon z. 1 point M

e) (5 points au total)

Le système est conservatif (le poids dérive de l'énergie potentielle mgz et la force de liaison \vec{N} ne travaille pas), ce qui implique que l'énergie mécanique

$$E = \frac{1}{2}mv^2 + mgz = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2\sin^2\alpha) + mgr\cos\alpha \boxed{1 \text{ point }}_{N}$$
 (16)

est conservée. I point : énergie mécanique conservée avec justification $_{\rm O}$ Cette expression dépend de $\dot{\phi}$, que l'on peut éliminer en faveur du moment cinétique L_z :

$$L_z = mr^2 \dot{\phi} \sin^2 \alpha \implies \dot{\phi} = \frac{L_z}{mr^2 \sin^2 \alpha}.$$
 (17)

Ainsi l'énergie peut s'écrire :

$$E = \frac{1}{2}m(\dot{r}^2 + r^2\left(\frac{L_z}{mr^2\sin^2\alpha}\right)^2\sin^2\alpha) + mgr\cos\alpha \tag{18}$$

$$= \frac{1}{2}m\dot{r}^2 + \frac{L_z^2}{2mr^2\sin^2\alpha} + mgr\cos\alpha \tag{19}$$

et donc on a bien l'expression recherchée avec

$$V_{\text{eff}}(r) = \frac{L_z^2}{2mr^2 \sin^2 \alpha} + mgr \cos \alpha. \boxed{1 \text{ point}}_{\text{P}}$$
 (20)

Le tracé schématique du potentiel effectif $V_{\text{eff}}(r)$ est présenté ci dessous :

Position r

1 point pour le tracé $_{ m Q}$

Si l'énergie est supérieure à $V_{\rm eff,min}$, le point matériel est contraint à évoluer entre deux valeur minimales et maximales du rayon. Si l'énergie est exactement égale à la valeur minimale de $V_{\rm eff,min}$, alors le rayon et constant donné par r_0 et donc la trajectoire est circulaire 1 point pour la discussion $_{\rm R}$.

f) (4 points au total)

En posant $r(t) = r_0 = \text{constante}$ (et donc aussi $\dot{r} = 0$ et $\ddot{r} = 0$) dans les équations (9) et (11), on obtient $\boxed{1 \text{ point pour les deux équations ci-dessous}}_{\mathbb{S}}$

$$-mg\cos\alpha = m(-r_0\dot{\phi}^2\sin^2\alpha), \qquad (21)$$

$$0 = m(r_0 \ddot{\phi} \sin \alpha). \tag{22}$$

La solution de cette dernière équation est soit $r_0 = 0$ (ce qui est exclu pas l'équation (21)), soit $\ddot{\phi} = 0$, c'est-à-dire $\dot{\phi} = \text{constante}$. L'équation (13) implique alors

$$\dot{\phi} = L_z / (mr_0^2 \sin^2 \alpha) \cdot \boxed{1 \text{ point}}_{\text{T}}$$
 (23)

En introduisant ceci dans l'équation (21), on obtient

$$g\cos\alpha = r_0 \left(\frac{L_z}{mr_0^2\sin^2\alpha}\right)^2\sin^2\alpha \implies r_0 = \left(\frac{L_z^2}{m^2g\sin^2\alpha\cos\alpha}\right)^{1/3} \cdot \boxed{1 \text{ point }}_{\mathbb{U}}$$
 (24)

Cette solution n'existe que si $\cos \alpha > 0$, c'est-à-dire si le point matériel est sur la nappe supérieure du cône. Elle correspond à un mouvement circulaire uniforme appoint 0 de rayon $\rho = r_0 \sin \alpha$ dans un plan horizontal à la hauteur $z_0 = r_0 \cos \alpha > 0$.