Задания для самостоятельной работы по дисциплине «Компьютерная обработка результатов измерений»

Емельянов Эдуард Владимирович 2021-04-06

Внимание! Во всех заданиях вместо $\mathfrak N$ необходимо вставить число, соответствующее номеру вашего варианта.

Для решения заданий может использоваться любая привычная вам среда обработки данных. В качестве отчета требуется предоставить архив с исходным файлом в формате РТЕХи сопутствующими файлами (графика, собственный стилевой файл и т.п.). В отчете привести полученные графики, изображения и численные результаты, при необходимости сделать краткий вывод.

1 Статистика и вероятность. Случайные величины и распределения

1. Найдите сумму, разность, произведение и частное матриц

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 6 & \mathfrak{N} & 4 \\ 9 & 8 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 9 & 8 & 7 \\ 5 & \mathfrak{N} & 1 \\ 0 & 2 & 6 \end{pmatrix}.$$

Найдите определители исходных и получившихся матриц (команда det(A)).

2. Получите сигнал с амплитудной модуляцией (из примера). Добавьте к нему гауссов белый шум с SNR $15+5\cdot\mathfrak{N}$ дБ. Постройте отдельно графики всех полученных сигналов.

Для полученного сигнала найдите следующие характеристики: математическое ожидание (mean), среднее квадратичное отклонение (std), медиану (median) и моду (mode). Найдите аналогичные величины для разности между зашумленным и оригинальным сигналом. Сравните полученные величины с теоретическими.

2 Теория физических измерений. Систематические и случайные погрешности

1. Известно, что некоторая зависимость (см. таблицу ниже) имеет вид $y = ax \sin(x) - b \ln(x)$. Определите коэффициенты a и b и постройте данную кривую с более детальным отображением (на векторе [1:0.05:10]). Подсказка: сразу же задайте вектора x и y как столбцы; матрица X задается командой X=[x.*sin(x) -log(x)].

X	1	2	3	4	5	6	7	8	9	10
\mathbf{y}	-0.68	8.41	-23.0	-37.2	-73.2	-39.7	9.14	21.0	7.97	-72.5

(a = 7.72, b = 14.8).

- 2. Промоделируйте эксперимент измерения ста значений функции $y = \Re x^3 + 3.4x^2 1.1\Re x + 9.2$ и восстановления коэффициентов зависимости. Для этого создайте вектор аргумента $\mathbf{x} = [1:100]$, получите по формуле соответствующий вектор функции \mathbf{y}_{i} deal, а из него зашумленный результат \mathbf{y} с $\mathrm{SNR} = 25\,\mathrm{gB}$.
 - Metodom polyfit polyval получите значения коэффициентов. Отобразите на графике точками исходные данные и непрерывной линией полученный аппроксимацией результат.
- 3. Аналогично предыдущему заданию составьте модель эксперимента по измерению амплитуды напряжения в контуре, испытывающем колебания с основной частотой $\Omega=1000\,\Gamma$ ц и двумя гармониками $\Omega\pm\omega$, где $\omega=74\,\Gamma$ ц. Известно, что суммарное колебание описывается приближенной формулой $U=100\Re\sin(\Omega t)+50\Re\sin(\omega t)-33\Re\cos(\omega t)$. Создайте интервал времен t=[0: 0.06: 120]. Для получения идеальных значений U положите $a=361,\,b=117,\,c=92$. Отношение сигнал/шум при получении зашумленного сигнала выберите равным $20\,\mathrm{д}$ Б.

Восстановите значения коэффициентов a, b и c.

3 Теория оценок

1. Определите давление в цилиндре с газом, исходя из закона Менделеева—Клапейрона: $pV=mRT/\mu$, если известно, что масса газа $m=2\mathfrak{N}$ грамм, $\mu=29\,\mathrm{г/моль},\,R=8.31,\,$ а объем и температуру газа измеряли в течение минуты, получив следующие значения:

Величина	Значение										
V, л	2.27	2.27	2.26	2.25	2.26	2.27	2.29	2.28	2.25	2.28	
T, K	399.4	399.1	399.3	396.8	399.5	400.2	400.6	403.0	399.2	401.3	

Считайте, что за это время давление газа не успело сколь-нибудь значительно измениться. Определите погрешности измерения величин V и T. Считая, что остальные величины являются постоянными, определите косвенную погрешность измерения p.

Для удобства вычислений создайте скрипт, позволяющий для заданного ряда данных получить математическое ожидание, среднеквадратичное отклонение и относительную ошибку.

Запишите результат в виде $p = \overline{p} \pm \sigma_p$.

2. Для определения емкости C неизвестного конденсатора при помощи осциллографа исследовали затухающий импульс, возникающий при разрядке конденсатора через резистор $R=\mathfrak{N}$ кОм. По показаниям осциллографа были записаны следующие значения тока:

Известно, что погрешность считывания значений тока с экрана осциллографа составляет $\sigma_I = (0.01/\mathfrak{N})$ А. Кроме того, известно что сопротивление резистора известно с точностью 5%. Из формулы $I = I_0 \exp(-t/[RC])$ определите погрешность измерения емкости конденсатора.

Методом наименьших квадратов определите значение емкости конденсатора, исходя из уравнения $t = -RC \ln I$ (составьте матрицу X=-R*log(I') и найдите решение: C=X\t. Запишите ответ в виде $C = \overline{C} \pm \sigma_C$.

Для увеличения точности эксперимента было проведено еще одно измерение, результаты которого несколько отличались от предыдущих:

t, c	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
<i>I</i> , A	1.00	0.75	0.56	0.41	0.30	0.23	0.17	0.12	0.10	0.07	0.05

Проверьте нулевую гипотезу о равенстве средних в обоих опытах. Определите величину емкости во втором случае.

Столь большое различие емкостей, полученных в результате двух независимых экспериментов, заставило предположить, что в результате длительной эксплуатации резистор R нагрелся, что вызвало увеличение его сопротивления. Считая емкость конденсатора прежней, определите сопротивление резистора во втором случае.

4 Системы линейных уравнений. Степенные уравнения. Дифференциальные уравнения

1. Решите систему уравнений

$$\begin{cases} x_1 + 2x_2 + 3x_3 = \mathfrak{N}; \\ 2x_1 - x_2 + 4x_3 = 2; \\ x_1 - 3x_2 + \mathfrak{N}x_3 = 3. \end{cases}$$

- 2. Решите (аналитически) уравнение $x^3 + ax^2 + bx + c = 0$. Найдите решение этого уравнения при $a = \mathfrak{N}, b = 2, c = 3$ двумя способами: при помощи функции subs и функции roots.
- 3. Найдите решение уравнения

$$(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 12y = 0$$

с начальными условиями $y(0) = 0, y'(0) = \mathfrak{N}$. Попробуйте решить, используя преобразования Лапласа.

5 Анализ временных рядов. Фурье и вейвлетанализ

- 1. Затабулируйте функцию $y=10^x$ на отрезке [2,4] с шагом 0.05. Вычислите теперь при помощи этой таблицы значение произведения $X=1097\cdot(2500+100\mathfrak{N})$ (воспользуйтесь свойством логарифмов). Для нахождения значений $\ln 1097$ и $\ln 1013$ воспользуйтесь аппроксимацией сплайнами. Аналогично, при помощи аппроксимации сплайнами вычислите X.
- 2. Создайте вектор—сигнал, представляющий собой сумму двух синусоид с $\nu_1=(50+\mathfrak{N})$ Γ ц и $\nu_2=(170-2\mathfrak{N})$ Γ ц на промежутке $t\in[0,0.25]$ с с периодом дискретизации 0.001 с. Добавьте к нему аддитивного нормального шума:

$$y = y + 2*randn(size(t));$$

Постройте спектр итогового сигнала, определите по спектру частоты исходных сигналов.

3. Создайте зашумленную копию лабораторного сигнала с $S/N = -10\,\mathrm{д}$ Б. Выделите полезный сигнал при помощи вейвлет-фильтрации (подходящий базис подберите самостоятельно).

6 Обработка изображений

- 1. Для пробного изображения постройте преобразования методом эквализации гистограммы с функциональными зависимостями для функции f(x) (x = [1:256]).
 - Значения f(x) по вариантам: $\sin(x)$ (1, 6), $\cos(x)$ (2, 7), $\exp(x)$ (3, 8), $\ln(x)$ (4, 9), $\exp(-x^2)$ (5, 10).
- 2. Создайте изображение шахматной доски с размером ячейки 20×20 пикселей. Смажьте изображение на $2\mathfrak{N}$ точек под углом 45° . Добавьте гауссова шума с математическим ожиданием 0 и среднеквадратичным отклонением 0.01. Отфильтруйте изображение при помощи простого винеровского фильтра и винеровского фильтра с учетом автокорреляционных функций. Сравните результаты.
- 3. Для пробного изображения постройте маску, выделяющую протяженные объекты (туманности, ядра галактик и скоплений) при помощи морфологических преобразований. Определите количество найденных объектов методом поиска 8-связных областей. Умножьте исходное изображение на маску и сохраните результат.
- 4. Постройте фильтр лапласиана гауссианы 50×50 пикселей с полушириной \mathfrak{N} пикселей. Сравните производительность свертки пробного изображения с этим фильтром непосредственной реализацей свертки и реализацией свертки через преобразование Фурье.
 - Примените к пробному изображению наиболее подходящий с вашей точки зрения фильтр в частотной области для улучшения его визуализации.