Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.3.

по курсу общей физики на тему:

«Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра)»

Работу выполнил: Баринов Леонид (группа Б02-827)

1. Цель работы

Исследовать энергетическую зависимость вероятности рассеяния электронов атомами ксенона. Определить энергии электронов, при которых наблюдается «просветление» ксенона и оценить размер его внешней электронной оболочки.

2. Суть исследуемого явления

Эффект Рамзауэра состоит в аномальном увеличении проницаемости некоторых газов для весьма медленных электронов. Иными словами, полное эффективное сечение атома по отношению к проходящему через газ пучку электронов становится аномально малым при уменьшении их скорости.

3. Теория явления

Эффективное сечение реакции — это величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния в определенное конечное состояние. Сечение σ равно отношению числа N таких переходов в единицу времени к плотности nv потока рассеиваемых частиц, падающих на мишень, т.е. к числу частиц, проходящих в единицу времени через единичную площадку, перпендикулярно к их скорости v (n — плотность числа падающих частиц)

$$\sigma = \frac{N}{nv} \tag{1}$$

Рассмотрим схему эксперимента Рамзауэра на *puc. 1*

Рис. 1. Схема установки для измерения сечения рассеяния электронов в газах

Пучок электронов, вылетая из накаленного катода КЛ, проходит ускоряющую разность потенциалов V, приложенную между катодом и электродом Э, и приобретает тем самым энергию $E=mv^2/2=eV$. При прохождении через газ часть электронов рассеивается на атомах, уходит в сторону и собирается коллектором КЛ, а прошедшие без рассеяния электроны попадают на анод А и создают анодный ток I. Ток I пропорционален числу прошедших электронов, и поэтому непосредственно характеризует проницаемость газа для электронного пучка в зависимости от его скорости.

Внутри атома потенциальная энергия налетающего электрона U отлиына от нуля, скорость электрона изменяется, становясь равной v' в соответствии с законом сохранении энергии

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U \tag{2}$$

а значит изменяется длина его волны де Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным

показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{3}$$

Рассмотрим решение задачи о прохождении частицы с энергией E над потенциальной ямой шириной l и глубиной U_0 , что будет являться хорошим приближением для атомов тяжелых инертных газов.

Рис. 2. Схематическое изображение прямоугольной ямы, над которой пролетает частица с энергией E

Рис. 3. Схема интерференции волн де Бройля при рассеянии на атоме

Уравнение Шредингера в данном случае имеет вид

$$\psi''+k^2\psi=0, \quad \text{где } k^2=\begin{cases} k_1^2=\frac{2mE}{\hbar^2} & -\text{в областях I и III}\\ k_2^2=\frac{2m(E+U_0)}{\hbar^2} & -\text{в области II} \end{cases} \tag{4}$$

Коэффициент прохождения равен отношению квадратов амплитуд прошедшей и падающей волн и определяется выражением

$$D = \frac{16k_1^2k_2^2}{16k_1^2k_2^2 + 4(k_1^2 - k_2^2)^2\sin^2(k_2l)}$$
 (5)

или

$$D^{-1} = 1 + \frac{(k_1^2 - k_2^2)^2}{4k_1^2 k_2^2} \sin^2(k_2 l) = 1 + \frac{U_0^2}{4E(E + U_0)} \sin^2(k_2 l)$$
 (6)

Коэффициент прохождения имеет ряд чередующихся максимумов и минимумов. Коэффициент максимален при условии

$$k_2 l = \sqrt{\frac{2m(E+U_0)}{\hbar^2}} l = n\pi, \quad n = 1, 2, 3 \dots$$
 (7)

На puc. 3 показано, как волна де Бройля отражается от границ атомного потенциала, т.е. от поверхности атома, и происходит интерференция прошедшей через атомы волны 1 и волны 2, отраженной от передней и задней границы атома.

Прошедшая волна 1 усилится волной 2, если геометрическая разность хода между ними $\Delta = 2l = \lambda'$, что соответствует условию первого интерференционного максимума, т.е. при условии

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{8}$$

Здесь E_1 — энергия электрона, соответствующая этому условию, которое естественно, совпадает с условием (7), следующим из решения уравнения Шредингера.

С другой стороны, прошедшая волна ослабится, если $\Delta = 2l = (3/2)\lambda'$ (условие первого интерференционного минимума), т.е. при условии

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{9}$$

Решая совместно эти два уравнения (8, 9), можно исключить U_0 и найти эффективный размер атома l

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{10}$$

Энергии E_1 и E_2 соответствуют энергиям электронов, прошедших разность потенциалов V_1 и V_2 , т.е. $E_1=eV_1$ и $E_2=eV_2$.

Из формул (8) и (9) можно также по измеренным величинам E_1 и E_2 рассчитать эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{11}$$

4. Оборудование

4.1. Экспериментальная установка

Рис. 4. Схематическое изображение тиратрона (слева) и его конструкция (справа): $1,\ 2,\ 3$ — сетки; 4 — внешний металлический цилиндр; 5 — катод; 6 — анод; 7 — накаливаемая спираль

В работе используется тиратрон $T\Gamma 3$ -01/1.3Б, заполненный инертным газом. Схематическое изображение тиратрона и его конструкция приведены на рис. 4

Электроны, эмитируемые катодом тиратрона, ускоряются напряжением V, приложенным между катодом и ближайшей к нему сеткой. Затем электроны рассеиваются на атомах инертного газа. Все сетки 1,2,3 соединены между собой и имеют одинаковый потенциал, примерно равный потенциалу анода 6. Поэтому между первой сеткой 1 и анодом практически нет поля. Рассеянные электроны отклоняются в сторону и уходят на сетку, а оставшаяся часть электронов достигает анода и создаёт анодный ток I_a . Таким образом, поток электронов N(x) на расстоянии x от ускоряющей сетки уменьшается с ростом x от начального значения N_0 у катода (в точке x=0) до некоторого значения N_a у анода (в точке x=1).

Рассмотрим реальную вольт-амперную характеристику тиратрона. Выделим в газе на расстоянии х тонкий слой с площадью поперечного сечения S в толщиной dx. Этот слой содержит $\nu =$ $n_a S dx$ атомов газа (n_a — концентрация атомов газа в лампе). Суммарная рассеивающая поверхность этих атомов $\Delta = \nu \Delta_a$, где Δ_a — площадь поперечного сечения атома. Обозначим через dNубыль потока электронов в результате прохождения слоя dx; тогда dN/N(x) есть доля электронов, которые рассеялись, или вероятность рассеяния в слое. Для рассеяния электрона в слое необходимо выполнение двух независимых событий электрон должен «наткнуться» в слое на атом, и, кроме того, он должен на этом атоме рассеяться. Вероятность dN/N(x) рассеяния электрона в слое равна произведению двух вероятностей — вероятности для электрона в слое dx встретить атом газа и вероятности рассеяния на атоме w(V):

Рис. 5. Вероятность рассеяния электрона атомом инертного газа и ВАХ тиратрона при квантовом рассмотрении

$$-\frac{dN}{N(x)} = -\frac{dN}{N(x)} = \frac{\Delta}{S}w(V) = n_a \Delta_a w(V) dx \tag{12} \label{eq:12}$$

Рис. 6. Схема включения тиратрона

Интегрируя это соотношение от 0 до L и заменяя поток на ток I=Ne, получаем уравнение BAX:

$$I_a = I_0 e^{-Cw(V)}, \quad C = L n_a \Delta_a, \qquad (13)$$

где $I_0=eN_0$ — ток катода, $I_a=eN_a$ — анодный ток.

Согласно формуле (11), по измеренной ВАХ тиратрона можно определить зависи-

мость вероятности рассеяния электрона от его энергии из соотношения

$$w(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{14}$$

Принципиальная схема установки для изучения эффекта Рамзауэра приведена на puc.~6. На лампу Π подается синусоидальное напряжение частоты $50~\Gamma$ ц от

источника питания ИП, С — стабилизированный блок накала катода; исследуемый сигнал подается на электронный осциллограф (Θ O); цифрами обозначены номера ножек лампы.

Рис. 7. Блок-схема экспериментальной установки

Схема экспериментальной установки, изображенная на puc. 6 в нашей работе конструктивно осуществлена следующим образом. Лампа-тиратрон ТГЗ-01/1.3Б, заполненная инертным газом, расположена непосредственно на корпусе блока источников питания (БИП). Напряжение к электродам лампы подается от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП (puc. 7).

5. Результаты эксперимента

Получим BAX тиратрона в динамическом режиме при максимальном ускоряющем напряжении и различном напряжении накала $V_{\rm нак}$:

Рис. 8. Вольт-амперная характеристика тиратрона $V_{\rm {\scriptscriptstyle Hak}} = 2{,}995~{\rm B}$

Рис. 9. Вольт-амперная характеристика тиратрона $V_{\rm Hak} = 2{,}503\,{\rm B}$

Измерим напряжение ΔV , соответствующие первому максимуму и минимуму на осциллограмме.

$$\Delta V = (3.7 \pm 0.6) \text{ B}$$

Снимем вольт-амперную характеристику $I_a = f(U_c)$ в статическом режиме.

$V_{\rm hak}=2{,}503\mathrm{B}$				$V_{\scriptscriptstyle \mathrm{HaK}} = 3{,}018\mathrm{B}$			
I_a , мк ${f A}$	U_c , B	I_a , мк ${f A}$	U_c , B	I_a , мк ${ m A}$	U_c , B	I_a , мк ${ m A}$	U_c, \mathbf{B}
0,002	0,113	1,698	2,004	1,346	3,209	1,620	1,977
0,302	0,635	1,594	2,168	1,231	4,639	1,568	1,976
1,474	1,250	1,631	2,117	1,322	5,893	1,394	1,940
1,677	1,510	1,656	2,080	1,504	6,862	1,207	1,793
1,316	2,426	1,711	1,984	1,960	8,299	1,127	1,685
0,798	3,426	1,809	1,657	2,874	9,839	0,731	0,828
0,586	4,487	1,792	1,546	4,116	11,334	0,598	0,515
0,535	5,013	1,657	1,348	1,273	4,061	0,500	0,332
0,509	5,477	1,326	1,136	3,807	1,292	0,422	0,220
0,500	6,172	0,847	0,921	4,481	1,249	0,335	0,129
0,504	6,727	$V_{\text{\tiny HAK}} = 3{,}018\mathrm{B}$		5,264	1,260	0,270	0,083
0,526	7,444	0,020	0,122	4,787	1,245	0,207	0,050
0,582	8,396	1,382	0,972	2,176	1,770	0,002	0,006
0,781	9,826	1,851	1,916	1,855	1,918	0,077	0,014
1,330	11,935	1,584	2,463	1,690	1,966		

Таблица 1. Вольт-амперная характеристика тиратрона при различном напряжении накала $V_{\rm нак}$

6. Анализ результатов

В формуле (10) рассчитаем эффективный размер атома l:

$$l = (3.6 \pm 0.3) \text{ Å}$$

Оценим глубину потенциальной ямы по формуле (11):

$$U_0 = (1.6 \pm 0.2) \text{ 3B}$$

Напряжению пробоя $V \approx 13\,\mathrm{B}$, определенному из puc.~8 и puc.~9, лучше всего соответствует газ ксенон с ионизационным потенциалом $12,1\,\mathrm{B}$ (по сравнению с криптоном и ксеноном).

Построим ВАХ тиратрона для статического режима (puc.~10). По графику определим эффективный размер атома l:

$$l' = (3.6 \pm 0.2) \, \mathring{A}$$

Также оценим глубину потенциальной ямы по формуле (11):

$$U_0' = (1,3 \pm 0,3) \text{ 3B}$$

Рис. 10. Вольт-амперная характеристика тиратрона для двух напряжений накала

Оценим, используя формулу (7) при каких напряжениях должны появляться максимумы в коэффициенте прохождения электронов для n=2,3.

$$E_2 \approx 10$$
 эВ
$$E_3 \approx 25$$
 эВ

На основе формулы (14) найдем зависимость вероятности рассеяния электронов (с точностью до константы) от энергии и построим соответствующий график:

Рис. 11. Зависимость вероятности w рассеяния электронов от напряжения U_c

7. Выводы

В работе было проведено исследование эффекта Рамзауэра. Построены вольтамперные характеристики тиратрона в динамическом (рис. 8, рис. 9) и статическом (рис. 10) режимах работы. На ВАХ отчетливо видно наличие локального минимума и локального максимума, что соответствует рассмотрению взаимодействия электронов с атомами с квантовой точки зрения (рис. 5). График вероятности w рассеяния электронов от напряжения (рис. 11) также соответствует квантовому описанию эффекта (рис. 5).

По максимуму и минимуму на BAX рассчитаны эффективные размеры атома газа l и проведена оценка глубины потенциальной ямы U_0 (значения в динамическом и статическом режимах близки друг к другу).

$$l = (3.6 \pm 0.3) \mathring{A}$$
 $U_0 = (1.5 \pm 0.3) \, \mathrm{9B}$

Значения отличаются от табличных:

$$l^{\text{\tiny T}} = 2.8 \, \mathring{A}$$

 $U_0^{\text{\tiny T}} = 2.5 \, \mathrm{9B}$

Расхождения связаны с упрощенным рассмотрением эффекта и техническими неточностями установки. Формула (5) была получена на прямоугольной яме (а не на сферической), минимумы коэффициента прохождения определены из условия $\sin(k_2l)=1$, что не совсем точно, так как величина $4(k_1^2-k_2^2)^2$ зависит от энергии электрона E. Кроме этого стоит отметить, что при различных напряжениях накала $V_{\rm нак}$ значения локального минимума V_2 значительно отличаются (рис. 10), что является некорректным и привело к большим погрешностям.

По осциллограммам на puc.~8 и на puc.~9 можно определить напряжение пробоя $\approx 13~\mathrm{B},$ что достаточно близко к ионизационному потенциалу ксенона $12,1~\mathrm{B}.$

По формуле (7) была получена оценка энергий электронов, при которых теоретически могли бы наблюдаться максимумы коэффициента прохождения 2-го и 3-го порядка.

$$E_2 \approx 10$$
 эВ $E_3 \approx 25$ эВ

Из-за пробоя данные значения на ВАХ не наблюдаются.