KAIST

2021 MAS575 Combinatorics

Homework 6

Fanchen Bu

University: KAIST

Department: Electrical Engineering

Student ID: 20194185

June 8, 2021

Contents

1	HW 6.1	2
2	HW 6.2	3
3	HW 6.3	4
4	HW 6.4	5
5	HW 6.5	6

HW 6.1

Prove that for every positive integer r and every r-coloring of \mathbb{N}^1 , there exist three positive integers x, y, and z such that x, x + y, z, and x + yz have the same color.

Proof. We do induction on r. When r = 1, it is trivial. Now we suppose that for every (r - 1)-coloring of \mathbb{N} , there exist three positive integers x_0 , y_0 , and z_0 such that x_0 , $x_0 + y_0$, z_0 , and $x_0 + y_0 z_0$ have the same color. In particular, we may let M = M(r - 1) be a positive integer such that we can always find such $x_0, y_0, z_0 \in [M]$. Recall van der Waerden's Theorem.

Theorem 1.1 (van der Waerden's Theorem). For any $k, l \in \mathbb{N}$, there exists $N_v = N_v(k, l) \in \mathbb{N}$ such that any k-coloring of [N] with $N \geq N_v$ creates a monochromatic l-AP.

Fix any r-coloring $c: \mathbb{N} \to [r]$. Apply the above van der Waerden's Theorem with k = r and a sufficiently large l. Then we have a monochromatic l-AP in \mathbb{N} : $a, a + d, \ldots, a + (l-1)d$. WLOG, we may assume that they all have color r. If we let x = a and let y = d, then it suffices to find $z \in [l-1]$ such that z has color r. So we may assume that for all $t \in [l-1]$, t has a different color with the above AP, i.e., t is colored by some color in [r-1]. By the fact that t is sufficiently large $(t \geq M+1)$ suffices and the induction hypothesis, there exists t = t such that t = t such th

 $^{^{1}\}mathbb{N}=\mathbb{Z}^{+}$

- KAIST — MAS575 Combinatorics 2021 Spring

HW 6.2

Prove that for every positive integer r and every r-coloring of \mathbb{N} , there exist three distinct positive integers x, y, and z of the same color such that $xy^2 = z^3$.

Remark 2.1. It suffices to show that for every positive integer r and every r-coloring of \mathbb{N} , there exist $x, k \in \mathbb{N}$ with k > 1 such that x, xk^2 , and xk^3 have the same color (then we let $y = xk^3$ and let $z = xk^2$).

Proof. Fix an r-coloring of \mathbb{N} and consider the set $T=\{2^t:t\in\mathbb{N}\}$. By van der Waerden's Theorem with k=r and l=4, as well as the isomorphism between \mathbb{N} and T, there exists a monochromatic sequence $2^a, 2^{a+d}, 2^{a+2d}, 2^{a+3d}$ with $a, d \in \mathbb{N}$. Then we let $x=2^a$, let $y=2^{a+3d}$, and let $z=2^{a+2d}$, clearly $xy^2=z^3$, completing the proof.

KAIST — MAS575 Combinatorics 2021 Spring

HW 6.3

Prove that for every positive integer k, there exists a prime p such that there are k consecutive quadratic residues modulo p.

Proof. Recall HW 5.4, a generalization of van der Waerden's Theorem.

Lemma 3.1. Let t, r be positive integers. There exists a number $N_l = N_l(t, r)$ such that any r-coloring of numbers in [N] contains an arithmetic progression $a, a + d, \ldots, a + (t - 1)d \in [N]$ of length t $(d \neq 0)$ such that $a, a + d, \ldots, a + (t - 1)d$ and d have the same color.

Also recall Euler's criterion.

Lemma 3.2. Let p be an odd prime and a be an integer coprime to p. Then

$$a^{\frac{p-1}{2}} \equiv \begin{cases} 1 & \pmod{p}, if \ a \ is \ a \ quadratic \ residue \ modulo \ p, \\ -1 & \pmod{p}, otherwise. \end{cases}$$

Remark 3.1. Lemma 3.2 implies that gh is a quadratic residue module p if both g and h are quadratic residues or both are quadratic non-residues.

Let p be a sufficiently large prime to be specified later. Define a 2-coloring $c:[p-1] \to \{1,-1\}$ such that $c(x) \equiv a^{\frac{p-1}{2}} \pmod{p}$. By the definition of N_l in Lemma 3.1, if we require $p > N_l(k,2)$, then there exists a monochromatic k-AP $a, a+d, \ldots, a+(k-1)d$ with $d \neq 0$ also having the same color. Let $e \in [p-1]$ be the integer such that $de \equiv 1 \pmod{p}$. Note that e is a quadratic residue modulo p if and only if d is a quadratic residue module p. Therefore, by Remark 3.1, we obtain k consecutive quadratic residues modulo p, which are $ae, ae+1, \ldots, ae+k-1$, by multiplying each term in the monochromatic k-AP with e, completing the proof.

HW 6.4

Let n be a positive integer. Prove that there is a (2n)-coloring χ of all rational numbers such that

$$\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i = 1$$

has no rational solutions such that $\chi(x_i) = \chi(y_i)$ for all $i \in [n]$.

Remark 4.1. When n=1, let $\chi_1: \mathbb{Q} \to [2]$ be a 2-coloring on all rational numbers. We first fix any 2-coloring for the rational numbers in the interval [0,1) and for any rational number t outside the interval, we let $m \in [0,1)$ be the unique number such that $t-m \in \mathbb{Z}$ and set $\chi_1(t) = \chi_1(m)$ if $t-m \equiv 0 \pmod{2}$ and set $\chi_1(t) = 3 - \chi_1(m)$ otherwise. It is easy to see that such a coloring satisfies the desired condition. In particular, the "initial" coloring for numbers in [0,1) could be monochromatic.

Proof. We define $\chi_n:\mathbb{Q}\to[2n]$ by $\chi_n(t)=i$, where $i\in[2n]$ is the unique number such that

$$2m + \frac{i-1}{n} \le t < 2m + \frac{i}{n}$$

for some $m \in \mathbb{Z}$. Now suppose that there exist $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{Q}$ such that

$$\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i = 1$$

and $\chi_n(x_i) = \chi_n(y_i)$ for all $i \in [n]$, then we have

$$2m_j - \frac{1}{n} < x_j - y_j < 2m_j + \frac{1}{n}$$

for some $m_j \in \mathbb{Z}$, for all $j \in [n]$. Let $M = \sum_{i \in [n]} m_i \in \mathbb{Z}$ and we have

$$2M - 1 < \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i = 1 < 2M + 1,$$

which is impossible for all $M \in \mathbb{Z}$, completing the proof.

HW 6.5

Prove that the following two statements are equivalent, where c_i is a nonzero integer for all $i \in [n]$.

- 1. For every positive integer r and every r-coloring of \mathbb{N} , there exist distinct positive integers x_1, x_2, \ldots, x_n of the same color such that $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0$.
- 2. For every positive integer r and every r-coloring of \mathbb{N} , there exist positive integers x_1, x_2, \ldots, x_n of the same color such that $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0$ and there are distinct integers $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $c_1\lambda_1 + c_2\lambda_2 + \cdots + c_n\lambda_n = 0$.

Remark 5.1. The first part of statement (2) exactly says that $c_1x_1 + c_2x_2 + \cdots + c_nx_n = 0$ is **regular**.

Remark 5.2. From (2) we have a monochromatic solution $x_1, x_2, ..., x_n$, we may hope that there exists some d such that $x_1 + \lambda_1 d, x_2 + \lambda_2 d, ..., x_n + \lambda_n d$ is also a monochromatic and distinct solution.

Proof. References:

- https://www.cs.umd.edu/users/gasarch/COURSES/858/S20/notes/distradotalk.pdf;
- https://www.cs.umd.edu/users/gasarch/COURSES/858/S20/notes/distrado.pdf.

 $(1) \Rightarrow (2)$ is trivial by letting $\lambda_i = x_i$ for each $i \in [n]$ in (2). Now suppose that (2) holds, we need to show that (1) holds. Recall van der Waerden's Theorem again.

Theorem 5.1 (van der Waerden's Theorem). For any $k, l \in \mathbb{N}$, there exists $N_v = N_v(k, l) \in \mathbb{N}$ such that any k-coloring of [N] with $N \geq N_v$ creates a monochromatic l-AP.

Also recall Rado's theorem.

Theorem 5.2 (Rado's Theorem). Let c_1, \ldots, c_n be nonzero integers. Then the equation

$$c_1x_1 + \dots + c_nx_n = 0$$

on variables x_1, \ldots, x_n is regular if and only if some nonempty subset of the c_i sums to zero.

Lemma 5.1. Let s, t, r be positive integers. For any r-coloring $\chi : \mathbb{N} \to [r]$, there exist $a, d \in \mathbb{N}$ such that for each $i \in [s]$,

$$\chi(i(a-td)) = \chi(i(a-(t-1)d)) = \dots = \chi(ia) = \dots = \chi(i(a+(t-1)d)) = \chi(i(a+td)).$$

Proof of Lemma 5.1. Fix an r-coloring $\chi: \mathbb{N} \to [r]$ and we define a new coloring $\chi^*: \mathbb{N} \to [r]^s$ by

$$\chi^*(n) = (\chi(n), \chi(2n), \dots, \chi(sn)).$$

By van der Waerden's theorem, there exist $a, d \in \mathbb{N}$ such that²

$$\chi^*(a-td) = \chi^*(a-(t-1)d) = \dots = \chi^*(a) = \dots = \chi^*(a+(t-1)d) = \chi^*(a+td),$$

which immediately completes the proof.

²Although we write \mathbb{N} here, it is notable that [N] for some large yet finite N = N(t, r) suffices.

Lemma 5.2. Let b_1, \ldots, b_n be nonzero integers such that the equation

$$b_1x_1 + \dots + b_nx_n = 0$$

on variables x_1, \ldots, x_n is regular. Let t, r be positive integers. For any r-coloring $\chi : \mathbb{N} \to [r]$, there exist $e_1, e_2, \ldots, e_n, d \in \mathbb{N}$ such that

- 1. $b_1e_1 + \cdots + b_ne_n = 0$;
- 2. $(e_i jd)$ all have the same color for all $i \in [n]$ and $-t \le j \le t$.

Proof of Lemma 5.2. Let s be a large positive integer to be specified later. Then by Lemma 5.1, there exist $a, D \in \mathbb{N}$ such that for each $i \in [s]$,

$$\chi(i(a-TD)) = \chi(i(a-(T-1)D)) = \dots = \chi(ia) = \dots = \chi(i(a+(T-1)D)) = \chi(i(a+TD)),$$

where D and T are large positive integers to be specified later. Consider the coloring $\chi^{**}:[s] \to [r]$ define by $\chi^{**}(i) = \chi(ia)$. By the regularity of b_1, \ldots, b_n , we may let s be sufficiently large and then there exist $f_1, \ldots, f_n \in [s]$ such that

- 1. $b_1 f_1 + \cdots + b_n f_n = 0$, which implies that $b_1(a f_1) + \cdots + b_1(a f_n) = 0$;
- 2. $\chi^{**}(f_1) = \chi^{**}(f_2) = \cdots = \chi^{**}(f_n)$, which implies that $\chi(af_1) = \chi(af_2) = \cdots = \chi(af_n)$.

Now, we conclude that $f_i(a-jd)$ all have the same color for all $i \in [n]$ and $-T \le j \le T$. Let $e_i = af_i$ for all $i \in [n]$, we have that $(e_i - f_i j d)$ all have the same color for all $i \in [n]$ and $-T \le j \le T$. Now it suffices to find $d \in \mathbb{N}$ such that

$$\{d, 2d, \dots, td\} \subset \{f_i D, 2f_i D, \dots, Tf_i D\}, \forall i \in [n].$$

Note that we have not chosen d and T yet. We let $d = \prod_{j=1}^n f_j D$ and let T be sufficiently large, say, $T = ts^n$, then the desired condition is satisfied, completing the proof.

Now we are ready to proof the desired result. Let M be a large positive integer to be determined later. Fix a r-coloring $\chi : \mathbb{N} \to [r]$. By Lemma 5.2, there exist $e_1, \ldots, e_n, d \in \mathbb{N}$ such that

- 1. $b_1e_1 + \cdots + b_ne_n = 0$;
- 2. $(e_i jd)$ all have the same color for all $i \in [n]$ and $-M \le j \le M$.

Let A be a integer to be determined later. Note that regardless of the value of A, we have

$$\sum_{i=1}^{n} b_i(e_i + Ad\lambda_i) = 0,$$

which gives us a solution $(e_1 + Ad\lambda_1, \dots, e_n + Ad\lambda_n)$. It now suffices to find M such that there exists $A \in \mathbb{Z}$ with

- 1. $e_i + Ad\lambda_i$ are all distinct for $i \in [n]$;
- 2. $|A\lambda_i| \leq M$ for all $i \in [n]$.

We let $M = 2\binom{n}{2} \max\{|\lambda_i|\}_{i \in [n]}$. The first condition forbidden at most $\binom{n}{2}$ values of A while the second condition allows strictly more than $\binom{n}{2}$ values of A with our choice of M, thus we can find such an A, completing the proof.

A previous attempt. We do induction on n. When n=1, clearly $(2)\Rightarrow (1)$. Now suppose that $(2)\Rightarrow (1)$ for all n< k, we want to show that $(2)\Rightarrow (1)$ for n=k. We have that for every positive integer r and every r-coloring of $\mathbb N$, there exist positive integers x_1,x_2,\ldots,x_k of the same color such that $c_1x_1+c_2x_2+\cdots+c_kx_k=0$, which exactly says that $c_1x_1+c_2x_2+\cdots+c_kx_k=0$ is regular. By Rado's theorem, there exists a nonempty subset of the c_i summing to zero. We let $\emptyset \neq I \subset [n]$ be such a subset with maximal cardinality t=|I|, i.e., $\sum_{i\in I}c_i=0$, and $\sum_{i\in I'}c_i\neq 0$ for all $I'\subset [n]$ with |I'|>t. WLOG, we may further assume that I=[t]. Now we have distinct integers $\lambda_1,\lambda_2,\ldots,\lambda_n$ such that

$$c_1\lambda_1 + c_2\lambda_2 + \dots + c_n\lambda_n = 0$$

and

$$c_1\lambda_1 + c_2\lambda_1 + \dots + c_t\lambda_1 = 0.$$

We subtract the second equation from the first one, and we have

$$c_2(\lambda_2 - \lambda_1) + c_3(\lambda_3 - \lambda_1) + \dots + c_t(\lambda_t - \lambda_1) + c_{t+1}\lambda_{t+1} + \dots + c_n\lambda_n = 0.$$

We claim that $(\lambda_2 - \lambda_1), (\lambda_3 - \lambda_1), \dots, (\lambda_t - \lambda_1), \lambda_{t+1}, \dots, \lambda_n$ are all distinct. The first t ones are clearly distinct and so are the last n - t ones. For the inter-distinctness, suppose there are $i \in [t]$ and $j \in [n] \setminus [t]$ such that $\lambda_i - \lambda_1 = \lambda_j, \dots$