Рубежный контроль №1

Технологии разведочного анализа и обработки данных. Вариант 12

Выполнил Плешаков Владислав, РТ5-61Б

Задача: Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Датасет: https://www.kaggle.com/noriuk/us-education-datasets-unification-project

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.impute import SimpleImputer
```

Общая информация о данных

```
In [2]:
         data = pd.read csv('data/states all.csv', sep=',')
In [3]:
         data.head()
                                 STATE YEAR ENROLL TOTAL_REVENUE FEDERAL_REVENUE STATE_REVENUE LOCAL_F
Out[3]:
              PRIMARY_KEY
              1992 ALABAMA
                              ALABAMA
                                        1992
                                                 NaN
                                                             2678885.0
                                                                                304177.0
                                                                                               1659028.0
               1992 ALASKA
                                ALASKA
                                        1992
                                                 NaN
                                                             1049591.0
                                                                                106780.0
                                                                                                720711.0
         2
              1992 ARIZONA
                                        1992
                                                             3258079.0
                                                                                297888.0
                                                                                               1369815.0
                              ARIZONA
                                                 NaN
             1992 ARKANSAS
                             ARKANSAS
                                        1992
                                                             1711959.0
                                                                                178571.0
                                                                                                958785.0
                                                 NaN
                                        1992
           1992_CALIFORNIA CALIFORNIA
                                                 NaN
                                                            26260025.0
                                                                               2072470.0
                                                                                              16546514.0
```

5 rows × 25 columns

In [4]:	data.	describe()						
Out[4]:		YEAR	ENROLL	TOTAL_REVENUE	FEDERAL_REVENUE	STATE_REVENUE	LOCAL_REVENUE	TOTAL
	count	1715.000000	1.224000e+03	1.275000e+03	1.275000e+03	1.275000e+03	1.275000e+03	
	mean	2002.075219	9.175416e+05	9.102045e+06	7.677799e+05	4.223743e+06	4.110522e+06	
	std	9.568621	1.066514e+06	1.175962e+07	1.146992e+06	5.549735e+06	5.489562e+06	
	min	1986.000000	4.386600e+04	4.656500e+05	3.102000e+04	0.000000e+00	2.209300e+04	
	25%	1994.000000	2.645145e+05	2.189504e+06	1.899575e+05	1.165776e+06	7.151210e+05	
	50%	2002.000000	6.499335e+05	5.085826e+06	4.035480e+05	2.537754e+06	2.058996e+06	

75%	2010.000000	1.010532e+06	1.084516e+07	8.279320e+05	5.055548e+06	4.755293e+06	
max	2019.000000	6.307022e+06	8.921726e+07	9.990221e+06	5.090457e+07	3.610526e+07	

8 rows × 23 columns

In [5]:	data.dtypes	
Out[5]:	PRIMARY_KEY	object
ouc[J].	STATE	object
	YEAR	int64
	ENROLL	float64
	TOTAL_REVENUE	float64
	FEDERAL_REVENUE	float64
	STATE_REVENUE	float64
	LOCAL_REVENUE	float64
	TOTAL_EXPENDITURE	float64
	INSTRUCTION_EXPENDITURE	
	SUPPORT_SERVICES_EXPENDITURE	
	OTHER_EXPENDITURE	float64
	CAPITAL_OUTLAY_EXPENDITURE	float64
	GRADES_PK_G	float64
	GRADES_KG_G	float64
	GRADES_4_G	float64
	GRADES_8_G	float64
	GRADES_12_G	float64
	GRADES_1_8_G	float64
	GRADES_9_12_G	float64
	GRADES_ALL_G	float64
	AVG_MATH_4_SCORE	float64
	AVG_MATH_8_SCORE	float64 float64
	AVG_READING_4_SCORE AVG READING 8 SCORE	float64
	dtype: object	1100004
	acype. object	
In [6]:	<pre>data.isnull().sum()</pre>	
Out[6]:	PRIMARY_KEY	0
oucloj.	STATE	0
	YEAR	0
	ENROLL	491
	TOTAL_REVENUE	440
	FEDERAL_REVENUE	440
	STATE_REVENUE	440
	LOCAL_REVENUE	440
	TOTAL_EXPENDITURE	440
	INSTRUCTION_EXPENDITURE	440
	SUPPORT_SERVICES_EXPENDITURE	440
	OTHER_EXPENDITURE	491
	CAPITAL_OUTLAY_EXPENDITURE	440
	GRADES_PK_G	173
	GRADES_KG_G	83
	GRADES_4_G	83 83
	GRADES 12 C	83
	GRADES_12_G GRADES_1_8_G	695
		644
	GRADES_9_12_G GRADES_ALL_G	83
	AVG_MATH_4_SCORE	1150
	AVG_MATH_4_SCORE AVG_MATH_8_SCORE	1113
	AVG_READING_4_SCORE	1065
	AVG_READING_8_SCORE	1153
	dtype: int64	

Заполнение пропусков

Посмотрим процент пропусков для каждой из колонок

```
In [7]: total_rows = data.shape[0]
        for col in data.columns:
           null count = data[data[col].isnull()].shape[0]
           col type = str(data[col].dtype)
           print(f'Колонка {col}, тип {col type}, процент пропусков {null count / total rows *
       Колонка PRIMARY KEY, тип object, процент пропусков 0.00%
       Колонка STATE, тип object, процент пропусков 0.00%
       Колонка YEAR, тип int64, процент пропусков 0.00\%
       Колонка ENROLL, тип float64, процент пропусков 28.63%
       Колонка TOTAL REVENUE, тип float64, процент пропусков 25.66%
       Колонка FEDERAL REVENUE, тип float64, процент пропусков 25.66%
       Колонка STATE REVENUE, тип float64, процент пропусков 25.66%
       Колонка LOCAL REVENUE, тип float64, процент пропусков 25.66%
       Колонка TOTAL EXPENDITURE, тип float64, процент пропусков 25.66%
       Колонка INSTRUCTION EXPENDITURE, тип float64, процент пропусков 25.66%
       Колонка SUPPORT SERVICES EXPENDITURE, тип float64, процент пропусков 25.66%
       Колонка OTHER EXPENDITURE, тип float64, процент пропусков 28.63%
       Колонка CAPITAL OUTLAY EXPENDITURE, тип float64, процент пропусков 25.66%
       Колонка GRADES PK G, тип float64, процент пропусков 10.09%
       Колонка GRADES KG G, тип float64, процент пропусков 4.84%
       Колонка GRADES 4 G, тип float64, процент пропусков 4.84%
       Колонка GRADES 8 G, тип float64, процент пропусков 4.84%
       Колонка GRADES 12 G, тип float64, процент пропусков 4.84%
       Колонка GRADES 1 8 G, тип float64, процент пропусков 40.52%
       Колонка GRADES 9 12 G, тип float64, процент пропусков 37.55%
       Колонка GRADES ALL G, тип float64, процент пропусков 4.84%
       Колонка AVG MATH 4 SCORE, тип float64, процент пропусков 67.06%
       Колонка AVG MATH 8 SCORE, тип float64, процент пропусков 64.90%
       Колонка AVG READING 4 SCORE, тип float64, процент пропусков 62.10%
       Колонка AVG READING 8 SCORE, тип float64, процент пропусков 67.23%
```

Пропусков в категориальных колонках нет. Для заполнения пропусков возьмем колонку GRADES_ALL_G. Сначала построим гистограмму данной колонки

```
In [8]: sns.set(rc={"figure.figsize":(12, 6)})
sns.histplot(data=data['GRADES_ALL_G'])
Out[8]: <AxesSubplot:xlabel='GRADES_ALL_G', ylabel='Count'>
```


Заполним ее с применением различных стратегий

```
In [9]: # Заполнение средним
mean_imp = SimpleImputer(strategy='mean')
tot_exp_mean = mean_imp.fit_transform(data[['GRADES_ALL_G']])
sns.histplot(data=tot_exp_mean)
```

Out[9]: <AxesSubplot:ylabel='Count'>


```
In [10]: # Заполнение медианой
   median_imp = SimpleImputer(strategy='median')
   tot_exp_mean = median_imp.fit_transform(data[['GRADES_ALL_G']])
   sns.histplot(data=tot_exp_mean)
```

Out[10]: <AxesSubplot:ylabel='Count'>


```
In [11]: # Заполнение модой
most_freq_imp = SimpleImputer(strategy='most_frequent')
tot_exp_mean = most_freq_imp.fit_transform(data[['GRADES_ALL_G']])
sns.histplot(data=tot_exp_mean)
```

Out[11]: <AxesSubplot:ylabel='Count'>

Для обработки пропусков был использован класс SimpleImputer и рассмотрены три стратегии, которые он реализует: заполнение средним, медианой и модой. Для колонки GRADES_ALL_G, исходя из гистограмм, лучшего всего подходит заполнение средним, т.к. не так сильно влияет на плотность вероятности распределения.

Для заполнения пропусков в категориальных признаках также используется класс SimpleImputer, только в этом случае он реализует стратегии most frequent (заполнение самым часто встречаемым значением) и constant (заполнение некторой константой).

Для дальнейшего построения модели точно следует исключить признаки AVG_MATH_4_SCORE, AVG_MATH_8_SCORE, AVG_READING_4_SCORE и AVG_READING_8_SCORE, т.к. они имеют слишком много пропусков. Следует оставить колонки GRADES_PK_G, GRADES_KG_G, GRADES_4_G, GRADES_8_G, GRADES_12_G и GRADES_ALL_G т.к. в каждой из них меньше 5 процентов пропусков