Partie 8

Mobilité

Mobilité - Plan

- 1. Introduction
- 2. Réseaux cellulaires
- 3. Réseaux Wi-Fi

Cellule

■ Cellule est une zone géographique arrosée par une antenne située au centre

Mobilité

Mobilité - Plan

- 1. Introduction
- 2. Réseaux cellulaires
- 3. Réseaux Wi-Fi

Architecture cellulaire

VLR (Visitor Location Register) : registre local

Localisation

Paging

Générations

- □ 1G
 - Fin des années 1970
 - Transport de la voix analogique
 - Ex: AMPS aux Etats-Unis, Radiocom 2000 en France
- □ 2G
 - Début des années 1990
 - Transport de la voix numérique en mode circuit
 - Ex: GSM en Europe, IS-95 aux Etats-Unis
- □ 3G
 - Début des années 2000
 - Transport de la voix en GSM + accès à l'Internet (mode paquet)
 - Ex: UMTS ou LTE (Long Term Evolution): 3.9 G
- **4**G
 - Depuis 2014
 - Services réseaux multimédia tout IP
 - Ex: LTE Advanced
- □ 5G
 - A partir de 2020
 - Nombreuses améliorations et Internet des choses

Méthode d'accès (1G – 4G)

Méthode d'accès (LTE 3.9G – LTE-A 4G)

TDMA (Time Division Multiple Access)

- Chaque canal fréquentiel est divisé en intervalles de temps appelés slots regroupés par paquets de 8 pour former une trame TDMA
- Chaque utilisateur utilise un slot par trame TDMA

Interface radio

- Bandes de fréquences
 - Sens montant: 890 915 MHz
 - Sens descendant: 935 960 MHz
- Les bandes de fréquences sont subdivisées en canaux fréquentiels de largeur 200 KHz fréquence f_d 5 6 3 Écart duplex Voie descendante De 45 MHz Voie montante 3 2

temps

Mobilité - Plan

- 1. Généralités
- 2. Réseaux cellulaires
- 3. Réseaux Wi-Fi

Catégories des réseaux

- WPAN
- WLAN
- WMAN
- WRAN

Wireless Personal Area Network

Wireless Local Area Network

Wireless Metropolitan Area Network

Wireless Regional Area Network

Réseaux Wi-Fi

- □ IEEE 802.11, 1990 Wi-Fi (Wireless Fidelity)
- Réseau local sans fil
- Largement utilisé
 - 4 000 000 hot-spots dans 140 pays
 - Salles de réunion, campus universitaires, entreprises
 - Intégré dans les ordinateurs et téléphones portables
- Normes (débit crête)
 - 802.11b (11 Mbit/s)
 - 802.11a et 802.11g (54 Mbit/s)
 - 802.11n (600 Mbit/s)
 - 802.11ac (1 200 Mbit/s)
 - 802.11 ad, af, ah, ax (à partir de 2016)

Une vue pratique

Carte WLAN 802.11 (aujourd' hui intégrées dan les terminaux)

Terminal 802.11

Point d'accès

Modes de fonctionnement

- Mode Infrastructure
 - Les communications passent par un point d'accès

- Mode Ad-hoc
 - Les stations mobiles se communiquent directement

Spectre radio

802.11b Bluetooth Four à micro-ondes

802.11a

802.11b

- 14 canaux se recouvrant partiellement
- Seulement trois canaux sont sans chevauchement: 1, 6 et 11

Administrateur configure chaque point d'accès avec un nom de réseau SSID (Service Set Identifier) et un numéro de canal

Se connecter à un point d'accès

Détection de réseau

- APs envoient périodiquement les trames de beacon pour diffuser le nom de réseau (SSID) et l'adresse MAC du point d'accès
- Station mobile scanne les canaux pour écouter les trames de beacon et détecter les points d'accès disponibles

Authentication

Après avoir sélectionné un point d'accès, la station mobile doit s'authentifier auprès du point d'accès

Association

Une fois authentifiée, chaque station doit demander d'être associée au point d'accès afin de pouvoir émettre ou recevoir des trames de données

CSMA/CA

- Carrier Sense Multiple Access / Collision Avoidance
 - Similaire à CSMA/CD (CSMA with Collision Detection) avec deux différences
 - Utiliser une technique pour éviter les collisions au lieu de détecter les collisions
 - Les trames envoyées doivent être acquittées
- □ Pourquoi pas de CSMA/CD dans 802.11?
 - Station mobile ne peut pas écouter pendant la transmission d'une trame
 - Problème de terminal caché

Terminal caché

Comment éviter les collisions ?

■ Leçon du CSMA/CD

CSMA/CA

Acquittement

- Le récepteur envoie un acquittement pour confirmer que la trame de données est reçue de manière intacte
- □ Sans acquittement reçu avant l'expiration d'un temporisateur, l'émetteur retransmet la trame avec un temps de back-off choisi avec un intervalle plus grand
- Après un nombre maximal de retransmission sans succès, l'émetteur abandonne la transmission de la trame
- Pour donner la priorité d'accès à la trame ACK (afin de compléter la séquence d'échange de données en cours) le temps d'écoute obligatoire du canal avant d'envoyer la trame ACK est bien inférieur à celui pour une trame de données

Exemple de transmission

RTS/CTS

- Pour résoudre le problème de terminal caché
- Assurer une transmission sans collision
- Utiliser deux trames de contrôle
 - RTS (Request To Send)
 - L'émetteur envoie une trame RTS qui indique le temps total nécessaire pour l'envoie de la trame et de son acquittement
 - CTS (Clear To Send)
 - Le récepteur y répond par une trame CTS qui permet à l'émetteur d'émettre la trame
 - Les autres stations ne peuvent pas utiliser le canal pendant cette période de temps réservée

Exemple de RTS/CTS

