Herramientas y estadísticas básicas para el análisis de la imagen digital

Apellidos, nombre	Porres de la Haza, María Joaquina (mporres@cgf.upv.es)
Departamento	Ingeniería Cartográfica, Geodesia y Fotogrametría
Centro	Universidad Politécnica de Valencia

Contenido

1	Objetivo	2
	Introducción	
	Parámetros estadísticos básicos de una imagen	
4	El histograma	3
5	Diagramas de dispersión	6
6	Paletas de asignación o Tablas LUT	7
7	Cierre	8
8	Bibliografía	9

1 Objetivo

Una vez leído el artículo el alumno será capaz de:

- Analizar la información estadística de una imagen o de varias.
- Extraer conclusiones acerca de la distribución de los niveles digitales.
- Conocer como se relaciona un nivel digital con el nivel visual con el que se representará en el monitor.

2 Introducción

Para extraer información de una imagen o para mejorar su visualización es necesario explicar algunos de las herramientas y tratamientos básicos que se pueden realizar a una imagen digital. Estas herramientas nos informan sobre el contenido de la imagen y nos permiten ciertas manipulaciones cuyo fin puede ser muy diverso: mejorar el contraste, comparar imágenes, facilitar la comprensión de la imagen, resaltar características, corregir errores...etc.

3 Parámetros estadísticos básicos de una imagen.

Antes de analizar o manipular cualquier imagen, resulta interesante extraer algún tipo de información a partir de algunos parámetros estadísticos básicos que ayuden a describir y a conocer mejor los datos con los que se cuenta. La obtención de las estadísticas elementales permite sintetizar y describir las imágenes y deberá ser la primera operación a realizar antes de cualquier tratamiento.

El rango de valores de una imagen, la media y la desviación típica, explican de forma básica el comportamiento de la imagen, su tendencia central y la dispersión de sus niveles digitales. Gracias a estos valores se pueden deducir algunas conclusiones como, el efecto de la dispersión atmosférica en una imagen de satélite y el contraste con el que se visualiza una imagen.

Bandas	Min	Max	Media	Stdev
Banda 1	50	186	65.47	8.43
Banda 2	15	101	27.98	6.60
Banda 3	12	125	29.65	11.77
Banda 4	5	130	46.44	18.77
Banda 5	0	255	56.17	28.52

Tabla 1. Estadísticas básicas de una imagen

En la Tabla 1 se muestra las estadísticas básicas de una imagen de satélite, en la que para almacenar el valor de un pixel se emplean 8 bits, es decir, cada pixel puede adoptar un valor que variará entre 0 y 255. De estas estadísticas se pueden extraer las siguientes conclusiones:

- La banda 2 posee todos píxeles con niveles digitales concentrados entre los valores 15 y 101, es decir no se encontrará en esa banda ningún pixel con un valor inferior a 15 y superior a 101. Es la banda que posee los valores concentrados en un rango menor.(15-101)
- Por el contrario, la banda 5 tiene todos los píxeles ocupando todo los el rango posible de niveles digitales (0-255).

Para ayudar en la comprensión de la relación que existe entre la distribución de los niveles digitales de los píxeles con el contraste con el que se visualiza una imagen, se presenta el siguiente símil:

Imaginemos que disponemos de una caja de 256 lápices de colores. Todos los lápices están ordenados por tonalidades, tal y como se venden en las papelerías. Si observamos la caja nos damos cuenta que el color de un lápiz es muy similar (a veces idéntico) al situado a su lado. Supongamos que a cada lápiz se le asocia un valor, un nivel digital. Si pintamos cada pixel de la banda 2 y de la banda 5 con su lápiz correspondiente: ¿qué sucederá con la visualización de ambas bandas? La banda 2 posee todos su píxeles con valores muy concentrados en un rango pequeño(15-101), su visualización presentará poca variación en cuanto a tonalidad se refiere. Sin embargo, la banda 5 empleará toda la caja para visualizar la imagen. Como conclusión distinguiremos más detalles en la banda 5 que en la banda 2. No olvidemos que las dos están representando la misma porción de terreno.

¿Y si en lugar de una caja de colores empleamos una gama de 255 grises que van desde el negro al blanco? Con más razón, se podrá concluir que a mayor rango mejor contraste en la imagen.

Pero ¿Y si en la banda 5 la mayoría de los píxeles de la imagen tiene sus valores concentrados entre 0 y 90 y existe un único pixel con valor 255?. Las estadísticas básicas de la imagen seguirían siendo las mismas que las expuestas en la Tabla 1, pero su visualización sería poco contrastada. No sólo hay que valorar el rango en el que se encuentran los ND de los píxeles de una imagen, sino también, en otros parámetros como la desviación estándar y su histograma.

4 El histograma.

Otra manera de conocer mejor los datos que forman la imagen es acudiendo a su **histograma**. El histograma relaciona los valores de la imagen con su frecuencia de

aparición, es decir, representa el número de veces que aparece un valor en una imagen concreta. En un histograma se pueden identificar zonas con respuesta espectral diferente, e incluso estimar la superficie ocupada por el mar en una imagen.

En el gráfico 1 se adjunta de forma conjunta los histogramas de cada una de las 5 bandas de la imagen cuyas estadísticas se expusieron en la Tabla 1. Cada banda tiene un histograma distinto ya que almacena valores distintos.

Gráfico 1. Histograma de una imagen con 5 bandas.

Los histogramas corroboran y amplían la información extraída de las estadísticas básicas de la Tabla 1. Por ejemplo, el histograma de la banda 5 (aparece en naranja), indica que existen píxeles (uno o alguno) con ND 255, tal como indicaba el máximo y el mínimo de las estadísticas. Pero además, el histograma nos indica que la mayoría de los píxeles de la imagen posee valores entre 0 y 125, lo que reduciría el contraste que se le presuponía a priori tras la lectura de los estadísticos básicos.

Otro aspecto relacionado con la forma de los histogramas 4 y 5, es que se distinguen claramente dos zonas. Es decir, son histogramas bimodales. Por ejemplo, el histograma 5 presenta una población centrada en el ND 5, y otra más dispersa centrada en el ND 55. Cada una de las poblaciones puede asociarse a un tipo de cubierta u objeto diferente. Por ejemplo, si es el histograma de una imagen de satélite, una población puede representar zonas con agua y la otra un área terrestre.

Los píxeles de la banda 2 (en verde) aparecen muy agrupados en torno al ND 30, lo que indica que la visualización de esta banda será muy poco contrastada.

Otra forma de estudiar el histograma de una imagen es exponiendo de forma numérica y a modo de tabla, la relación existente entre cada uno de los ND posibles y su frecuencia de aparición.

En la tabla 2 se muestra el histograma numérico de la banda 2. A continuación se interpretará, a modo de ejemplo, los valores que aparecen sombreados en verde:

				Frecuencia					Frecuencia
ND	N° de	Total	Frecuencia	acumulada	ND	N° de	Total	Frecuencia	acumulada
	pixeles		(%)	(%)		pixeles		(%)	(%)
15	1	1	0.0004	0.0004	59	155	261449	0.0591	99.7349
16	1	2	0.0004	0.0008	60	105	261554	0.0401	99.7749
17	88	90	0.0336	0.0343	61	70	261624	0.0267	99.8016
18	2657	2747	1.0136	1.0479	62	79	261703	0.0301	99.8318
19	6884	9631	2.6260	3.6739	63	30	261733	0.0114	99.8432
20	11661	21292	4.4483	8.1223	64	37	261770	0.0141	99.8573
21	13489	34781	5.1456	13.2679	65	32	261802	0.0122	99.8695
22	13874	48655	5.2925	18.5604	66	39	261841	0.0149	99.8844
23	14425	63080	5.5027	24.0631	67	45	261886	0.0172	99.9016
24	14040	77120	5.3558	29.4189	68	34	261920	0.0130	99.9146
25	26507	103627	10.1116	39.5306	69	37	261957	0.0141	99.9287
26	24706	128333	9.4246	48.9552	70	23	261980	0.0088	99.9374
27	23953	152286	9.1373	58.0925	71	19	261999	0.0072	99.9447
28	11388	163674	4.3442	62.4367	72	25	262024	0.0095	99.9542
29	18853	182527	7.1918	69.6285	73	22	262046	0.0084	99.9626
30	12047	194574	4.5956	74.2241	74	19	262065	0.0072	99.9699
31	5921	200495	2.2587	76.4828	75	8	262073	0.0031	99.9729
32	9378	209873	3.5774	80.0602	76	11	262084	0.0042	99.9771
33	7728	217601	2.9480	83.0082	77	11	262095	0.0042	99.9813
34	8599	226200	3.2803	86.2885	78	8	262103	0.0031	99.9844
35	4710	230910	1.7967	88.0852	79	7	262110	0.0027	99.9870
36	5439	236349	2.0748	90.1600	80	6	262116	0.0023	99.9893
37	4463	240812	1.7025	91.8625	81	4	262120	0.0015	99.9908
38	3866	244678	1.4748	93.3372	82	5	262125	0.0019	99.9928
39	2103	246781	0.8022	94.1395	83	1	262126	0.0004	99.9931
40	2069	248850	0.7893	94.9287	84	4	262130	0.0015	99.9947
41	2413	251263	0.9205	95.8492	85	3	262133	0.0011	99.9958
42	1906	253169	0.7271	96.5763	86	2	262135	0.0008	99.9966
43	1576	254745	0.6012	97.1775	87	2	262137	0.0008	99.9973
44	1081	255826	0.4124	97.5899	88	0	262137	0.0000	99.9973
45	1220	257046	0.4654	98.0553	89	0	262137	0.0000	99.9973
46	875	257921	0.3338	98.3891	90	1	262138	0.0004	99.9977
47	588	258509	0.2243	98.6134	91	1	262139	0.0004	99.9981
48	315	258824	0.1202	98.7335	92	0	262139	0.0000	99.9981
49	392	259216	0.1495	98.8831	93	2	262141	8000.0	99.9989
50	424	259640	0.1617	99.0448	94	0	262141	0.0000	99.9989
51	326	259966	0.1244	99.1692	95	0	262141	0.0000	99.9989
52	299	260265	0.1141	99.2832	96	1	262142	0.0004	99.9992
53	241	260506	0.0919	99.3752	97	1	262143	0.0004	99.9996
54	208	260714	0.0793	99.4545	98	0	262143	0.0000	99.9996
55	191	260905	0.0729	99.5274	99	0	262143	0.0000	99.9996
56	82	260987	0.0313	99.5586	100	0	262143	0.0000	99.9996
57	120	261107	0.0458	99.6044	101	1	262144	0.0004	100.0000
58	187	261294	0.0713	99.6758					

Tabla 2. Histograma numérico

Para los píxeles cuyo ND es 28 el histograma informa que:

- Columna N° de píxeles: la imagen posee 11.388 píxeles con ND 28.
- Columna Total: 163.674 píxeles de la imagen almacenan un ND 28 o menor.
- Columna Frecuencia %: Dicho de otra forma el 4,3442% de los píxeles de la imagen tienen ND 28 y
- Columna Frecuencia acumulada %: el 62,4367% tiene ND 28 o menor.

Debe observarse que el 99% de los píxeles de la imagen tienen valores entre 15 y 50, es decir, la mayoría de los píxeles de la imagen tienen un ND en un rango de 35 ND (50-15), cuando la disponibilidad es entre 0 y 255. Los píxeles almacenan niveles muy concentrados, existe muy poca dispersión. Esto implica también, que la imagen adolece de poco contraste.

5 Diagramas de dispersión

Con un **diagrama de dispersión** relacionamos los valores de dos imágenes diferentes o de dos bandas de una imagen. Debe tratarse de dos imágenes/bandas referidas a la misma zona. La forma del diagrama indicará el grado de correlación entre los niveles digitales de las imágenes o bandas.

Se trata de un gráfico bidimensional en el que en el eje de la x figura el rango de ND de la banda/imagen 1. En el eje de la y se sitúan los ND de la banda/imagen 2. A un pixel le corresponde un valor en la banda/imagen 1, b1 y otro valor en la banda/imagen 2, b2. Si representamos cada par de valores como las coordenadas de un punto, el conjunto de todos ellos se llama nube de puntos o diagrama de dispersión.

En el Gráfico 2 se muestran los diagramas de dispersión de las bandas 1 y 2 y del de la 4 y 1, cuyas estadísticas básicas aparecen en la Tabla 1.

Gráfico 2: Diagramas de dispersión. a) Bandas con correlación fuerte y directa. b) Bandas con correlación débil y directa

En el gráfico 2, el punto P tiene el valor b1=118 en la Banda 1, y el valor b2=59 en la banda 2. Su posición es la que se marca en el diagrama.

Sobre los puntos del diagrama puede trazarse una recta que se ajuste a ellos lo mejor posible, llamada **recta de regresión**.

Atendiendo a la forma que adopta el diagrama de dispersión se cumple que:

- Si los puntos del diagrama se encuentran muy próximos a la recta, la correlación es fuerte, es decir, el comportamiento de los píxeles de la banda/imagen 1 es similar al de la banda/imagen 2. La forma del la nube de puntos el alargada.
- Si por el contrario, los puntos están muy separados de la recta de regresión, la **correlación es débil**.
- Si la forma del diagrama es redondeada, la correlación es nula.

En función de la pendiente de la recta de regresión:

- Si la pendiente de la recta de regresión es positiva, la correlación entre las bandas es **directa**
- Si es negativa, la correlación es inversa.

6 Paletas de asignación o Tablas LUT

Las paletas de asignación (LUT's o Look up Table o tablas de referencia), aunque no son herramientas estadísticas, son instrumentos que deben tenerse en cuenta a la hora de visualizar las imágenes. Las paletas de asignación relacionan cada valor de la imagen (ND) con un tono de gris o un color prefijado para su visualización (NV). El rango de niveles digitales (ND) de una imagen viene determinado por la resolución radiométrica de la cámara o sensor empleado al captar la imagen. El número de niveles visuales (NV) depende de las características del sistema de visualización (es decir, de la tarjeta gráfica). La relación entre los niveles digitales y los niveles visuales se realiza a través de las paletas de asignación o paletas de color. Es decir, consiste en una tabla o matriz en la que cada nivel digital aparece asociado al nivel con el que se visualiza. Por extensión, una tabla de referencia del color (CLUT), es una matriz en la que a cada nivel de gris de entrada se le asocia una tripleta de colores RGB de salida. Generalmente, las CLUT están formadas por tantas filas como niveles digitales defina la resolución radiométrica del sistema y por tres columnas correspondientes a los tres colores primarios.

ND	VALOR VISUALIZADO
0	Negro 0
1	Gris1
2	Gris2
3	Gris3
	•••
255	Blanco 255

Tabla 3. Paleta de asignación para la visualización en escala de grises

Aplicando la LUT's o paletas de color es posible visualizar los valores de una sola banda en color facilitando el análisis visual. Si los tres valores correspondientes a los tres valores primarios son iguales en todos los casos, la imagen se visualizaría en tonos de gris, ya que el color resultante de la combinación de los colores primarios en igual proporción es un gris. Normalmente las imágenes monobanda se visualizan asignando a cada ND un NV gris proporcional al valor que almacena cada pixel. En este caso la visualización de la imagen emplea una escala de grises similar a la que muestra la Tabla 3.

Pero es posible asignar un color a cada ND, tal y como muestra la paleta de color reflejada en la Tabla 4. La visualización en color de imágenes monobanda se le denomina pseudocolor.

ND	COLOR VISUALIZADO (R,G,B)
0	Negro(0,0,0)
1	Rojo(255,0,0)
2	Verde(0,255,0)
3	Azul(0,0,255)
4	Amarillo (255,255,0)
5	Magenta(255,0,255)
6	Cian(0,255,255)
255	Blanco(255,255,255)

Tabla 4. Paleta de color (CLUT) para la visualización en pseudocolor

7 Cierre

Este artículo resume las herramientas básicas para extraer información acerca del comportamiento de los objetos en una imagen, que nos permitirá tomar decisiones de cómo mejorar su visualización o enfatizar determinadas características de la misma. Además también se describe las asociaciones entre los niveles digitales de una imagen y su visualización.

El artículo muestra que una imagen digital puede analizarse, no sólo visualmente, sino que mediante las estadísticas básicas y los histogramas, puede extraerse información referente a la distribución de los niveles digitales que la forman y en consecuencia tomar decisiones que permitan destacar o mejorar su interpretación.

Además se ha mostrado cómo a partir de los diagramas de dispersión puede obtenerse información acerca de la relación existente entre dos imágenes o dos bandas.

Por último, mediante el uso de las paletas de color, puede controlarse la visualización de la imagen, permitiendo definir cómo deben representarse cada uno de los niveles digitales de una imagen y por tanto facilitando al usuario destacar aquellos aspectos de la imagen que resulten relevantes para la interpretación de las características de la misma.

8 Bibliografía

[1] Rafael C. González Richard E Woods Argentina et al. : Addison-Wesley Iberoamericana: Díaz de Santos cop. 1996. "Tratamiento digital de imágenes"

[2] William K. Pratt New York, etc.: John Wiley & Sons cop. 1991. Digital image processing