EDAN₂₀

Language Technology

http://cs.lth.se/edan20/

Chapter 4: Topics in Information Theory and Machine Learning

Pierre Nugues

Lund University Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/

September 7, 2016

Why Machine Learning: Early Artificial Intelligence

Early artificial intelligence techniques used introspection to codify knowledge, often in the form of rules.

Expert systems, one of the most notable applications of traditional AI, were entirely based on the competence of experts.

This has two major drawbacks:

- Need of an expertise to understand and explain the rules
- Bias introduced by the expert

Why Machine Learning: What has Changed

Now terabytes of data available.

Makes it impossible to understand such volumes of data, organize them using manually-crafted rules.

Triggered a major move to empirical and statistical techniques. In fact, most machine–learning techniques come from traditional statistics. Applications in natural language processing, medicine, banking, online

Applications in natural language processing, medicine, banking, online shopping, image recognition, etc.

The success of companies like Google, Facebook, Amazon, and Netflix, not to mention Wall Street firms and industries from manufacturing and retail to healthcare, is increasingly driven by better tools for extracting meaning from very large quantities of data. 'Data Scientist' is now the hottest job title in Silicon Valley.

- Tim O'Reilly

Some Definitions

- Machine learning always starts with data sets: a collection of objects or observations.
- Machine-learning algorithms can be classified along two main lines: supervised and unsupervised classification.
- Supervised algorithms need a training set, where the objects are described in terms of attributes and belong to a known class or have a known output.
- The performance of the resulting classifier is measured against a test set.
- We can also use *N*-fold cross validation, where the test set is selected randomly from the training set *N* times, usually 10.
- Unsupervised algorithms consider objects, where no class is p
- Unsupervised algorithms learn regularities in data sets.

A Data Set: Salammbô

A corpus is a collection – a body – of texts.

Supervised Learning

Letter counts from Salammbô

Chapter	French		English	
	# characters	# A	# characters	# A
Chapter 1	36,961	2,503	35,680	2,217
Chapter 2	43,621	2,992	42,514	2,761
Chapter 3	15,694	1,042	15,162	990
Chapter 4	36,231	2,487	35,298	2,274
Chapter 5	29,945	2,014	29,800	1,865
Chapter 6	40,588	2,805	40,255	2,606
Chapter 7	75,255	5,062	74,532	4,805
Chapter 8	37,709	2,643	37,464	2,396
Chapter 9	30,899	2,126	31,030	1,993
Chapter 10	25,486	1,784	24,843	1,627
Chapter 11	37,497	2,641	36,172	2,375
Chapter 12	40,398	2,766	39,552	2,560
Chapter 13	74,105	5,047	72,545	4,597
Chapter 14	76,725	5,312	75,352	4,871
Chapter 15	18,317	1,215	18,031,	1,119,

Classification Data Set

A binary classification.

	# char.	# A	class (y)	# char.	# A	class (y)
Chapter 1	36,961	2,503	1	35,680	2,217	0
Chapter 2	43,621	2,992	1	42,514	2,761	0
Chapter 3	15,694	1,042	1	15,162	990	0
Chapter 4	36,231	2,487	1	35,298	2,274	0
Chapter 5	29,945	2,014	1	29,800	1,865	0
Chapter 6	40,588	2,805	1	40,255	2,606	0
Chapter 7	75,255	5,062	1	74,532	4,805	0
Chapter 8	37,709	2,643	1	37,464	2,396	0
Chapter 9	30,899	2,126	1	31,030	1,993	0
Chapter 10	25,486	1,784	1	24,843	1,627	0
Chapter 11	37,497	2,641	1	36,172	2,375	0
Chapter 12	40,398	2,766	1	39,552	2,560	0
Chapter 13	74,105	5,047	1	72,545	4,597	5.041
Chapter 14	76,725	5,312	1	75,352	4,871	类。类
Chapter 15	18,317	1,215	1	18,031	1,119	Control of the second

Separating Classes

Supervised Learning: Fisher's Iris data set (1936)

180 MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS

Table I

Sepal	Sepal	D . 1			Iris versicolor				Iris virginica				
length	width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width	Sepal length	Sepal width	Petal length	Petal width		
5.1	3.5	1.4	0.2	7.0	3.2	4.7	1.4	6.3	3.3	6.0	2.5		
4.9	3.0	1.4	0.2	6.4	3.2	4.5	1.5	5.8	2.7	5.1	1.9		
4.7	3.2	1.3	0.2	6.9	3.1	4.9	1.5	7.1	3.0	5.9	2.1		
4.6	3.1	1.5	0.2	5.5	2.3	4.0	1.3	6.3	2.9	5.6	1.8		
5.0	3.6	1.4	0.2	6.5	2.8	4.6	1.5	6.5	3.0	5.8	$2 \cdot 2$		
5.4	3.9	1.7	0.4	5.7	2.8	4.5	1.3	7.6	3.0	6.6	2.1		
4.6	3.4	1.4	0.3	6.3	3.3	4.7	1.6	4.9	2.5	4.5	1.7		
5.0	3.4	1.5	0.2	4.9	2.4	3.3	1.0	7.3	2.9	6.3	1.8		
4.4	2.9	1.4	0.2	6.6	2.9	4.6	1.3	6.7	2.5	5.8	1.8		
4.9	3.1	1.5	0.1	5.2	2.7	3.9	1.4	7.2	3.6	6.1	2.5		
5.4	3.7	1.5	0.2	5.0	2.0	3.5	1.0	6.5	3.2	5.1	2.0		
4.8	3.4	1.6	0.2	5.9	3.0	4.2	1.5	6.4	2.7	5.3	1.9		
4.8	3.0	1.4	0.1	6.0	$2 \cdot 2$	4.0	1.0	6.8	3.0	5.5	2.1		
4.3	3.0	1-1	0.1	6.1	2.9	4.7	1.4	5.7	2.5	5.0	2.0		
5.8	4.0	1.2	0.2	5.6	2.9	3.6	1.3	5.8	2.8	5.1	$2 \cdot 4$		
5.7	4.4	1.5	0.4	6.7	3.1	4.4	1.4	6.4	$3 \cdot 2$	5.3	$2 \cdot 3$		
5.4	3.9	1.3	0.4	5.6	3 ⋅0	4.5	1.5	6.5	3.0	5.5	1.8		
5-1	3.5	1.4	0.3	5.8	2.7	4.1	1.0	7.7	3⋅8	6.7	$2 \cdot 2$		
5.7	3.8	1.7	0.3	6.2	2.2	4.5	1.5	7.7	2.6	6.9	2.3		
5.1	3.8	1.5	0.3	5.6	2.5	3.9	1.1	6.0	$2 \cdot 2$	5.0	1.5		
5.4	3.4	1.7	0.2	5.9	$3 \cdot 2$	4.8	1.8	6.9	3.2	5.7	2.3		
5.1	3.7	1.5	0.4	6.1	2.8	4.0	1.3	5.6	2.8	4.9	2.0		

Berkson's Data Set (1944)

Drug	Number	Survive	Die	Mortality	Expected
concentration	exposed	Class 0	Class 1	rate	mortality
40	462	352	110	.2359	.2206
60	500	301	199	.3980	.4339
80	467	169	298	.6380	.6085
100	515	145	370	.7184	.7291
120	561	102	459	.8182	.8081
140	469	69	400	.8529	.8601
160	550	55	495	.9000	.8952
180	542	43	499	.9207	.9195
200	479	29	450	.9395	.9366
250	497	21	476	.9577	.9624
300	453	11	442	.9757	.9756

Table: A data set. Adapted and simplified from the original article that described how to apply logistic regression to classification by Joseph Berkson, Application of the Logistic Function to Bio-Assay. *Journal of the American Statistical Association* (1944).

$$Logistic(x) = \frac{1}{1 + e^{-x}}$$

$$\hat{y}(x) = Logistic(w \cdot x)$$

= $\frac{1}{1 + e^{-w \cdot x}}$

Mémoire sur la population par M. P. Verhulst.

Objects, Attributes, and Classes. After Quinlan (1986)

Object		Attributes (
	Outlook	Temperature	Humidity	Windy				
1	Sunny	Hot	High	False	N			
2	Sunny	Hot	High	True	N			
3	Overcast	Hot	High	False	P			
4	Rain	Mild	High	False	P			
5	Rain	Cool	Normal	False	P			
6	Rain	Cool	Normal	True	N			
7	Overcast	Cool	Normal	True	P			
8	Sunny	Mild	High	False	N			
9	Sunny	Cool	Normal	False	P			
10	Rain	Mild	Normal	False	P			
11	Sunny	Mild	Normal	True	P			
12	Overcast	Mild	High	True	Pitt			
13	Overcast	Hot	Normal	False	Post)			
14	Rain	Mild	High	True	N			

Classifying Objects with Decision Trees. After Quinlan (1986)

Supervised Machine-Learning Algorithms

Linear classifiers:

- Perceptron
- ② Support vector machines
- 3 Logistic regression

We represent classification using a threshold function (a variant of the signum function):

$$H(\mathbf{w} \cdot \mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

The classification function associates P with 1 and N with 0.

We want to find the separating hyperplane:

$$\hat{y}(\mathbf{x}) = H(\mathbf{w} \cdot \mathbf{x})$$

= $H(w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n),$

given a data set of *q* examples: $DS = \{(1, x_1^j, x_2^j, ..., x_n^j, y^j) | j : 1...q\}.$

We use $x_0 = 1$ to simplify the equations.

For a binary classifier, y has then two possible values $\{0, 1\}$ correspond to $\{French, English\}$.

Notation

- A feature vector (predictors): x, and feature matrix: X;
- The class: y and the class vector: y;
- The predicted class (response): \hat{y} , and predicted class vector: \hat{y}

$$\mathbf{X} = \begin{bmatrix} Sunny & Hot & High & False \\ Sunny & Hot & High & True \\ Overcast & Hot & High & False \\ Rain & Mild & High & False \\ Rain & Cool & Normal & False \\ Rain & Cool & Normal & True \\ Overcast & Cool & Normal & True \\ Sunny & Mild & High & False \\ Sunny & Cool & Normal & False \\ Rain & Mild & Normal & False \\ Sunny & Mild & Normal & True \\ Overcast & Mild & High & True \\ Overcast & Hot & Normal & False \\ Rain & Mild & High & True \\ Overcast & Hot & Normal & False \\ Rain & Mild & High & True \\ \end{bmatrix} \mathbf{P}$$

Converting Symbolic Attributes into Numerical Vectors

Linear classifiers are numerical systems.

Symbolic – nominal – attributes are mapped onto vectors of binary values. A conversion of the weather data set.

Attributor

Object		Outlook Temperature Humidity Windy									
				T	Temperature			Humidity		Windy	
	Sunny	Overcast	Rain	Hot	Mild	Cool	High	Normal	True	False	
1	1	0	0	1	0	0	1	0	0	1	N
2	1	0	0	1	0	0	1	0	1	0	N
3	0	1	0	1	0	0	1	0	0	1	P
4	0	0	1	0	1	0	1	0	0	1	P
5	0	0	1	0	0	1	0	1	0	1	P
6	0	0	1	0	0	1	0	1	1	0	N
7	0	1	0	0	0	1	0	1	1	0	P
8	1	0	0	0	1	0	1	0	0	1	N
9	1	0	0	0	0	1	0	1	0	1	P
10	0	0	1	0	1	0	0	1	0	1	P
11	1	0	0	0	1	0	0	1	1	0	P
12	0	1	0	0	1	0	1	0	1	0	P
13	0	1	0	1	0	0	0	1	0	1	Pers
14	0	0	1	0	1	0	1	0	1	SEOT I	N

Object

Evaluation

- The standard evaluation procedure is to train the classifier on a training set and evaluate the performance on a test set.
- When we have only one set, we divide it in two subsets: the training set and the test set (or holdout data).
- The split can be 90-10 or 80-20
- This often optimizes the classifier for a specific test set and creates an overfit

Cross Validation

- A N-fold cross validation mitigates the overfit
- The set is partitioned into N subsets, N = 5 for example, one of them being the test set (red) and the rest the training set (gray).
- The process is repeated N times with a different test set: N folds

At the extreme, leave-one-out cross-validation

Model Selection

- Validation can apply to one classification method
- We can use it to select a classification method and its parametrization.
- Needs three sets: training set, development set, and test set.

Evaluation

There are different kinds of measures to evaluate the performance of machine learning techniques, for instance:

- Precision and recall in information retrieval and natural language processing;
- The receiver operating characteristic (ROC) in medicine.

	Positive examples: P	Negative examples: N
Classified as P	True positives: A	False positives: B
Classified as N	False negatives: C	True negatives: D

More on the receiver operating characteristic here: http:

//en.wikipedia.org/wiki/Receiver_operating_characteri

The accuracy is $\frac{|A \cup D|}{|P \cup N|}$.

Recall measures how much relevant examples the system has classified correctly, for P:

$$Recall = \frac{|A|}{|A \cup C|}.$$

Precision is the accuracy of what has been returned, for *P*:

$$Precision = \frac{|A|}{|A \cup B|}.$$

Recall and precision are combined into the **F-measure**, which is defined as the harmonic mean of both numbers:

$$F = \frac{2 \cdot \mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}.$$

Measuring Quality: The Confusion Matrix

A task in natural language processing: Identify the parts of speech (POS) of words.

Example: The can rusted

• The human: *The*/art (DT) *can*/noun (NN) *rusted*/verb (VBD)

• The POS tagger: *The*/art (DT) *can*/modal (MD) *rusted*/verb (VBD)

↓Correct	Tagge	$Tagger \to$									
	DT	IN	JJ	NN	RB	RP	VB	VBD	VBG	VBN	
DT	99.4	0.3	_	_	0.3	_	_	_	_	_	
IN	0.4	97.5	_	_	1.5	0.5	_	_	_	_	
JJ	_	0.1	93.9	1.8	0.9	_	0.1	0.1	0.4	1.5	
NN	_	_	2.2	95.5	_	_	0.2	_	0.4	_	
RB	0.2	2.4	2.2	0.6	93.2	1.2	_	_	_	_	
RP	_	24.7	_	1.1	12.6	61.5	_	_	_	_	
VB	_	_	0.3	1.4	_	_	96.0	_	_	0.2	
VBD	_	_	0.3	_	_	_	_	94.6	_	4.8	
VBG	_	_	2.5	4.4	_	_	_	_	93.0	71	
VBN	-	_	4.6	_	_	_	_	4.3	-	90.5	

After Franz (1996, p. 124)