

Probler spectrum.	n R-08J (C ₁₇ H ₁₆ O). This problem requires you to solve the structure of a compound from the ¹ H NMF
(a) DBI compound	E (b) The IR spectrum has a strong peak at 1695 cm ⁻ 1. What does this tell you about the d?
	lyze each of the signals in the NMR spectrum. If appropriate, report δ , J, multiplicity, and number of (e.g., δ 1.3. dq, J = 7, 3 Hz, 1H). You may use first order analysis. Give any part structure the signal
A	
В .	
С	
D	
E	
(d) Draw	the structure of R-08J . Label the protons with the letters above (A , B , C , etc).

Problem R-08J (C₁₇H₁₆O). This problem requires you to solve the structure of a compound from the ¹H NMR spectrum.

(a) DBE 10. (b) The IR spectrum has a strong peak at 1695 cm⁻¹. What does this tell you about the 2 compound?

Since there is only one oxygen, this frequency corresponds well to a conjugated ketone

3

(c) Analyze each of the signals in the NMR spectrum. If appropriate, report δ , J, multiplicity, and number of hydrogens (e.g., δ 1.3. dq, J = 7, 3 Hz, 1H). You may use first order analysis. Give any part structure the signal identifies.

 δ 7.92, dm, J = 8 Hz, 2H 2 aromatic H ortho to carbonyl δ 7.2-7.7, 8H Rest of aromatic H's Together, likely two Ph groups, one with an electron withdrawing substituent

Α

Vinyl proton, with ³J_{cis}, ³J_{trans}, and ³J to a CH2

В

C

D

Ε

 δ 6.06, ddd, J = 16.5, 9.5, 6 Hz, 1H

$$\delta$$
 5.04, dt, J = 16.5. 2 Hz, 1H δ 5.06, dt, J = 10, 2 Hz, 1H

Common wrong answer is selecting 4/10 Hz couplings. Can rule out based on leaning.

14

 δ 4.17, qm (app qt), J = 6 Hz, 1H This is actually ddddd (five different couplings) but 3 are almost the same $(^{3}J = 6 Hz)$ as are two others $(^{4}J$, too small to resolve)

Since there are no methyl groups, must be a CH-CH-CH₂ type of apparent quartet

AB of ABX (δ 3.44, dd, J = 16.5, 6 Hz, 1H)

AB of ABX (δ 3.37, dd, J = 16.5, 6 Hz, 1H)

Must be an asymmetric center

$$H$$
 H_2C
 H

(d) Draw the structure of **R-08J**. Label the protons with the letters above (**A**, **B**, **C**, etc).

NMR gives

10

Also fits pretty well Actual Structure Н В O

D E

 $D_{calc} = 3.45$ Obs:4.2

H_B 2

 $D_{calc} = 3.75$

1 is the actual structure, but 2 fits well also, and even calculates better for the δ of HD. 2J for HE fits better for 1, as does the δ of H^A.

All other structures <3

