

INGENIEUR-ARCHIV

UNTER MITWIRKUNG DER
GESELLSCHAFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK
ZUSAMMEN MIT

A. BETZ • K. KLOTTER • K. MAGNUS • E. METTLER
K. v. SANDEN • E. SCHMIDT • E. SÖRENSEN

HERAUSGEGEBEN VON

R. GRAMMEL

XXVII. BAND

FÜNFTES HEFT

1960

SPRINGER-VERLAG • BERLIN / GÖTTINGEN / HEIDELBERG

Abgeschlossen am 23. Dezember 1959

Postverlagsort Berlin

Preis DM 13.40

Das

INGENIEUR-ARCHIV

erscheint nach Maßgabe des eingehenden Materials zwanglos in einzeln berechneten Heften, die zu Bänden vereinigt werden.

Die für das Ingenieur-Archiv bestimmten Manuskripte sind unmittelbar an den Herausgeber

Herrn Professor Dr.-Ing. Dr. R. Grammel, Stuttgart N, Robert-Bosch-Straße 101

oder an die Herren

Professor Dr.-Ing. Dr. A. Beitz, Göttingen, Herzberger Landstraße 39 A

Professor Dr.-Ing. K. Klotter, Darmstadt, Technische Hochschule, Institut für angewandte Mechanik

Professor Dr. K. Magnus, Stuttgart O, Hackländerstraße 33

Professor Dr. E. Mettler, Karlsruhe-Durlach, Geigersberger Str. 12

Professor Dr.-Ing. K. v. Sanden, Karlsruhe-West, Hertzstr. 16, (T. H. West)

Professor Dr.-Ing. E. Schmidt, Technische Hochschule, München, Arcisstr. 21

Professor Dr.-Ing. E. Sörensen, Augsburg, MAN

einzusenden.

Die zum Druck angenommenen Arbeiten werden, soweit dies drucktechnisch möglich ist, nach der Reihenfolge ihres Eingangs beim Herausgeber veröffentlicht.

Die Mitarbeiter erhalten von ihrer Arbeit zusammen 75 Sonderdrucke unentgeltlich.

Für die Abfassung der Arbeiten wird auf das vom Deutschen Normenausschuß herausgegebene Heft „Gestaltung technisch-wissenschaftlicher Veröffentlichungen“ hingewiesen. Die Vorlagen für Abbildungen sind auf besonderen Blättern erwünscht und können entweder in Reinzeichnungen oder in klarverständlichen Handskizzen bestehen; die Beschriftung ist nötigenfalls die Reinzeichnung nimmt der Verlag vor.

Nachdruck: Mit der Annahme des Manuskripts eines Beitrages für das „Ingenieur-Archiv“ erwirbt der Springer-Verlag das ausschließliche Verlagsrecht für alle Sprachen und Länder, einschließlich des Rechts der photomechanischen Wiedergabe oder einer sonstigen Vervielfältigung. — Im „Ingenieur-Archiv“ erscheinende Arbeiten dürfen nicht vorher an anderer Stelle veröffentlicht worden sein und auch später nicht anderweitig, weder im Inland noch im Ausland, veröffentlicht werden. Ausnahmen von dieser Regel bedürfen einer entsprechenden Vereinbarung zwischen Autor, Herausgeber und Verlag.

Photokopien: Auf Grund des zwischen dem Börsenverein des Deutschen Buchhandels e. V. und dem Bundesverband der Deutschen Industrie abgeschlossenen Rahmenabkommens ist jedoch die Anfertigung photomechanischer Kopien eines Beitrages gewerblichen Unternehmens für den innerbetrieblichen Gebrauch gestattet, sofern der Hersteller oder Benutzer jede Seite dieser Kopie mit einer Gebühren-Wertmarke im Betrag von DM 0,30 kennlich macht. Diese Marken sind zu beziehen vom Börsenverein des Deutschen Buchhandels e. V. (Inkasso-Stelle) Frankfurt/M., Großer Hirschgraben 17/19. Der Verlag läßt diese Beträge den Autorenverbänden zufließen. Die Verpflichtung zur Verwendung von Gebühren-Wertmarken entfällt, falls der Hersteller von Kopien mit dem Springer-Verlag ein Pauschalabkommen über die Kopie-Gebühren-Entrichtung vereinbart hat.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in dieser Zeitschrift berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

SPRINGER-VERLAG

Heidelberg

Neuenheimer Landstraße 28—30 / Fernsprecher 27901

Berlin-Wilmersdorf

Heidelberger Platz 3 / Fernsprecher Sammel-Nr. 830301

Inhalt:

Seite

Seika, M., Stresses in a Semi-Infinite Plate Containing a U-type Notch Under Uniform Tension. Mit 9 Abbildungen.....	285
Isay, W.-H., Zur Theorie der nahe der Wasseroberfläche fahrenden Tragflächen Mit 15 Abbildungen	295
Fadde, J., Der homogene, innerlich statisch unbestimmte Parallelfachwerkträger Mit 8 Abbildungen	314
Roth, W., Die tordierte, einfach gekrümmte Welle mit konstanter Krümmung Mit 20 Abbildungen	326
Shen, M.-K., Eine Erweiterung des Maxwellschen Vertauschungssatzes Mit 1 Abbildung	350
Meyer zur Capellen, W., Die Extrema der Übersetzungen in ebenen und sphärischen Kurbeltrieben. Mit 20 Abbildungen	352

Stresses in a Semi-Infinite Plate Containing a U-type Notch Under Uniform Tension

By M. Seika

1. Introduction. The effect of a semi-circular notch on a semi-infinite plate under a uniform tension was first studied by *Maunsell*¹ through the use of polar coordinates. The study was later extended by *Ishibashi*², *Weinel*³, *Ling*⁴, and *Udoguchi*⁵ with the aid of bipolar coordinates to cover a single notch of the shape of a circular arc. The case of an elliptic notch or a rectangular one with rounded corners in a semi-infinite plate under a uniform tension was discussed by *Higuchi* and *Suzuki*⁶ and by *Suzuki*⁷, respectively, by means of the complex-variable method and a method of successive approximation.

In the present paper, the problem of determining the effect of a single *U*-type notch on a semi-infinite plate under a uniform tension applied parallel to the straight boundary will be treated by the complex-variable method, associated with the name of *Muskhelishvili*⁸. The parametric coefficients included in the solution will be determined by a method of perturbation. The shape of the notch was introduced by *Greenspan*⁹. By varying the parameters in the mapping function, some other shapes of practical interest may also be obtained, which include the semi-circle, the semi-ellipse, and the rectangle with rounded corners; the solutions to be obtained therefore can also be applied to all these shapes. The results when properly reduced will be seen to agree with those given by previous authors.

2. The method of analysis. Let us consider an isotropic homogeneous semi-infinite plate with a single *U*-type notch subjected to a uniform tension *T* acting parallel to its straight boundary, Fig. 1.

Now, we shall introduce the mapping relation due to *Greenspan*⁹

$$z = \omega(\zeta) = R \left(\zeta + \frac{p}{\zeta} + \frac{q}{\zeta^3} \right) \quad (R > 0, 1 > |p| \geqq 0, 1 > |q| \geqq 0), \quad (1)$$

where *R*, *p* and *q* are real constants. Denoting $z = x + iy$ and $\zeta = \rho e^{i\theta}$, we have

$$x = R \left[\left(\rho + \frac{p}{\rho} \right) \cos \theta + \frac{q}{\rho^3} \cos 3\theta \right], \quad y = R \left[\left(\rho - \frac{p}{\rho} \right) \sin \theta - \frac{q}{\rho^3} \sin 3\theta \right]. \quad (2)$$

When $\rho = 1$, by varying the values of the constants *R*, *p* and *q*, equation (1) maps various shapes of the opening in the *z*-plane onto the unit circle in the ζ -plane. The center of the opening is mapped into the center of the unit circle. Some shapes of practical interest are as follows: (a) if $p = q = 0$, a circle of radius *R* is defined; (b) if $q = 0$, an ellipse is defined; (c) if $p = 0$ and *q* is positive, a square with rounded corners of which diagonals are on the *x*- and *y*-axes can be approximated; (d) if $p = 0$ and *q* is negative, the preceding "square" is rotated 45° ; (e) if $p \neq 0$ and $q \neq 0$, equation (1), by proper choice of these constants, can be made to approximate an ovaloid opening, which is made up of a square and two semi-circles.

¹ F. G. Maunsell, Phil. Mag. 21 (1936) p. 765.

² T. Ishibashi, Mem. Faculty of Engrg., Kyushu Imp. Univ. 9 (1940) p. 131.

³ E. Weinel, Z. angew. Math. Mech. 21 (1941) S. 228.

⁴ C. B. Ling, J. Math. Phys. 26 (1947) p. 284.

⁵ H. Udoguchi, Trans. Japan Soc. Mech. Engrs. 16, No. 55 (1950) p. 44 (in Japanese).

⁶ S. Higuchi and M. Suzuki, Technol. Rep. Tōhoku Univ. 14 (1949) p. 95.

⁷ M. Suzuki, Reports of the Laboratory for Stress and Elasticity, Tōhoku Univ., No. 2 (1949) p. 61 (in Japanese).

⁸ N. I. Muskhelishvili, Z. angew. Math. Mech. 13 (1933) S. 264.

⁹ M. Greenspan, Quart. Appl. Math. 2 (1944) p. 60.

Now, we apply the mapping function (1) in the notched problem. The edge of the notch is taken as unity ($\varrho = 1$), and the middle surface of the plate treated here occupies the right half of the z -plane as shown in Fig. 1.

Let the plate be in a state of generalized plane stress. Then the stresses, when averaged across the thickness, are derivable from a single stress function F , satisfying

$$\nabla^4 F = 0. \quad (3)$$

Fig. 1.
Notched plate under tension.

The solution of this biharmonic equation can be expressed in terms of two analytic functions $\varphi_1(z)$ and $\psi_1(z)$ of the complex-variable z :

$$F = \operatorname{Re} [\bar{z} \varphi_1(z) + \chi_1(z)], \quad \chi_1(z) = \int \psi_1(z) dz. \quad (4)$$

Overbars are used to indicate conjugate complex quantities and Re signifies "the real part of".

The stresses, in terms of the two functions, are

$$\begin{aligned} \sigma_x + \sigma_y &= 2 [\Phi_1(z) + \bar{\Phi}_1(\bar{z})], \\ \sigma_y - \sigma_x + i 2 \tau_{xy} &= 2 [\bar{z} \cdot \Phi'_1(z) + \Psi'_1(z)], \\ \text{where } \Phi_1(z) &= \varphi'_1(z), \quad \Psi'_1(z) = \psi'_1(z). \end{aligned} \quad (5)$$

where

$$\begin{aligned} \varphi(\zeta) &= \varphi_1(z) = \varphi_1\{\omega(\zeta)\}, & \psi(\zeta) &= \psi_1(z) = \psi_1\{\omega(\zeta)\}, \\ \Phi(\zeta) &= \Phi_1(z) = \frac{\varphi'(\zeta)}{\omega'(\zeta)}, & \Psi(\zeta) &= \Psi_1(z) = \frac{\psi'(\zeta)}{\omega'(\zeta)}. \end{aligned}$$

The boundary conditions for the present problem are given as follows.

[1]. The plate subjected to a uniform tension T in the direction of y -axis:

$$y = \pm \infty; \quad \sigma_y = T, \quad \sigma_x = \tau_{xy} = 0. \quad (7)$$

[2]. On the straight boundary, free from loading:

$$\Theta = \pm \frac{\pi}{2}; \quad \varphi(\zeta) + \frac{\omega(\zeta)}{\bar{\omega}'(\bar{\zeta})} \bar{\varphi}'(\bar{\zeta}) + \bar{\psi}(\bar{\zeta}) = 0. \quad (8)$$

[3]. At the rim of the stress-free notch, denoting $e^{i\Theta} = \sigma$:

$$\varrho = 1; \quad \varphi(\sigma) + \frac{\omega(\sigma)}{\bar{\omega}'(1/\sigma)} \bar{\varphi}'\left(\frac{1}{\sigma}\right) + \bar{\psi}\left(\frac{1}{\sigma}\right) = 0. \quad (9)$$

Now the problem is reduced to the construction of two analytic functions $\varphi(\zeta)$ and $\psi(\zeta)$ which satisfy the boundary conditions (7), (8) and (9).

3. Determination of the parametric coefficients.

We shall consider the functions

$$\varphi(\zeta) = \varphi^{(0)}(\zeta) + \varphi^{(1)}(\zeta), \quad \psi(\zeta) = \psi^{(0)}(\zeta) + \psi^{(1)}(\zeta), \quad (10)$$

where $\varphi^{(0)}(\zeta)$ and $\psi^{(0)}(\zeta)$ satisfy the conditions (7) and (8), and can be written in terms of $z(x, y)$ coordinates as

$$\varphi_1^{(0)}(z) = \frac{1}{4} T z, \quad \psi_1^{(0)}(z) = \frac{1}{2} T z. \quad (11)$$

Through the use of the mapping function given by equation (1), we transform the functions in equations (11) into

$$\varphi^{(0)}(\zeta) = \frac{1}{4} T R \left(\zeta + \frac{p}{\zeta} + \frac{q}{\zeta^3} \right), \quad \psi^{(0)}(\zeta) = \frac{1}{2} T R \left(\zeta + \frac{p}{\zeta} + \frac{q}{\zeta^3} \right). \quad (12)$$

Equations (12) are the solutions in the case where the notch is absent, and they cannot satisfy the condition (9). In order to satisfy this condition, $\varphi^{(1)}(\zeta)$ and $\psi^{(1)}(\zeta)$ are introduced.

Now we may write $\varphi^{(1)}(\zeta)$ and $\psi^{(1)}(\zeta)$ as follows:

$$\left. \begin{aligned} \varphi^{(1)}(\zeta) &= -TR \sum_{n=0}^{\infty} \left[\frac{a_n}{2(n+1)} \zeta^{-2(n+1)} + \frac{b_n}{2n+1} \zeta^{-(2n+1)} \right], \\ \psi^{(1)}(\zeta) &= TR \left\{ \frac{\omega(\zeta)}{\omega'(\zeta)} \sum_{n=0}^{\infty} [a_n \zeta^{-(2n+3)} + b_n \zeta^{-2(n+1)}] \right. \\ &\quad \left. + \sum_{n=0}^{\infty} \left[\frac{c_n}{2(n+1)} \zeta^{-2(n+1)} - \frac{d_n}{2n+1} \zeta^{-(2n+1)} \right] \right\}. \end{aligned} \right\} \quad (13)$$

Because of the symmetry of the stress distribution in the plate, the coefficients a_n , b_n , c_n and d_n included in the foregoing functions are real. Evidently, the stresses derived from these functions tend to zero when $\zeta \rightarrow \infty$.

Substituting equations (10), (12) and (13) in the condition (8), we have the relations

$$a_n = c_n, \quad b_n = d_n. \quad (14)$$

Substituting equations (10), (12) and (13) in the condition (9), using the relations (14), and then separating into real and imaginary parts, we obtain two expressions. Since these expressions contain cosines and sines of odd and even multiples of Θ , it is necessary to expand these cosines and sines in Fourier series of cosines and sines respectively, of odd multiples of Θ valid from $\Theta = -\pi/2$ to $\Theta = \pi/2$. The required formulas are

$$\left. \begin{aligned} \cos 2n\Theta &= \frac{4}{\pi} \sum_{s=0}^{\infty} \frac{(-1)^{n+s} (2s+1)}{(2s+1)^2 - 4n^2} \cos (2s+1)\Theta, \\ \sin 2n\Theta &= \frac{4}{\pi} \sum_{s=0}^{\infty} \frac{(-1)^{n+s} 2n}{(2s+1)^2 - 4n^2} \sin (2s+1)\Theta. \end{aligned} \right\} \quad (15)$$

Taking into account these formulas, we finally have the following equations for a_n and b_n :

$$\begin{aligned} &\frac{1}{2} [(1-p-2q-3pq-2p^2-3q^2)\delta_{0,s} + (1+p-3q-5pq)\delta_{1,s} + (1-3q)q\delta_{2,s}] \\ &+ [(1+4p+3q)\delta_{0,s} - (1-5q)\delta_{1,s}] b_0 + \left[\left(\frac{2}{3} + p + 2q \right) \delta_{0,s} + \left(1 + \frac{5}{3}p \right) \delta_{1,s} \right] b_1 \\ &+ \left[q\delta_{0,s} + \left(\frac{4}{5} + p + \frac{3}{5}q \right) \delta_{1,s} \right] b_2 + q\delta_{1,s}b_3 - (1-\delta_{0,s})(1-\delta_{1,s}) \\ &\times \left[\frac{1-2(s+1)q}{2s-1} b_{s-1} - \left(1 + \frac{2s+3}{2s+1}p \right) b_s - \frac{2(s+1)+(2s+3)p+3q}{2s+3} b_{s+1} - q b_{s+2} \right] \\ &- \frac{16(2s+1)}{\pi} \sum_{n=0}^{\infty} (-1)^{n+s} a_n \{ (2n+3)[4(n+2)^2 - (2s+1)^2 - 8] \alpha_{s,0}^{(n)} \alpha_{s,1}^{(n)} \alpha_{s,2}^{(n)} \\ &+ (2n+1)p \alpha_{s,0}^{(n)} \alpha_{s,1}^{(n)} - 3(2n-1)[4(n^2+2) - (2s+1)^2]q \alpha_{s,-1}^{(n)} \alpha_{s,0}^{(n)} \alpha_{s,2}^{(n)} \} = 0 \quad (s \geqq 0), \quad (16) \\ &- \frac{1}{2} [(1+p+2q+3pq-3q^2)\delta_{0,s} + (1+p+3q+3pq)\delta_{1,s} + (1+3q)q\delta_{2,s}] \\ &+ (1+3q)(\delta_{0,s} + \delta_{1,s})b_0 + \left[\left(\frac{2}{3} + p - 2q \right) \delta_{0,s} + (1+p)\delta_{1,s} \right] b_1 \\ &+ \left[q\delta_{0,s} + \left(\frac{4}{5} + p - \frac{3}{5}q \right) \delta_{1,s} \right] b_2 + q\delta_{1,s}b_3 + (1-\delta_{0,s})(1-\delta_{1,s}) \\ &\times \left[\frac{1+2(s+1)q}{2s-1} b_{s-1} + (1+p)b_s + \frac{2(s+1)+(2s+3)p-3q}{2s+3} b_{s+1} + q b_{s+2} \right] \\ &- \frac{32}{\pi} \sum_{n=0}^{\infty} (-1)^{n+s} a_n \{ (2n+3)[4n(n+1)(n+2) - (n-1)(2s+1)^2] \alpha_{s,0}^{(n)} \alpha_{s,1}^{(n)} \alpha_{s,2}^{(n)} \\ &+ n(2n+1)p \alpha_{s,0}^{(n)} \alpha_{s,1}^{(n)} - 3(2n-1) \\ &\times [4n(n-1)(n+2) - (n+1)(2s+1)^2]q \alpha_{s,-1}^{(n)} \alpha_{s,0}^{(n)} \alpha_{s,2}^{(n)} \} = 0 \quad (s \geqq 0), \quad (17) \end{aligned}$$

where $\delta_{i,j}$ means Kronecker delta and

$$\alpha_{s,k}^{(n)} = \frac{1}{[2n + (2s + 2k + 1)][2n - (2s - 2k + 1)]} \quad (s \geq 0). \quad (18)$$

Eliminating b_n between equations (16) and (17), we obtain the infinite set of equations containing the unknowns a_n only. This set of equations may be solved for a_n by a method of successive approximation, for instance, when the values of p and q are given. Once a_n have been determined, the unknowns b_n are to be found.

4. Application of a perturbation method. It is easily seen by equations (16) and (17) that the unknown coefficients a_n and b_n are the functions of the constants p and q . Further, the constants p and q are the parameters which govern the shape of the notch. Hence, to solve the infinite set of equations (16) and (17), it will be convenient to apply a perturbation method in which p and q are the perturbation parameter.

Now we shall seek a solution to equations (16) and (17) in the form

$$a_n = \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} {}^{(r)}a_n^{(t)} q^r p^t, \quad b_n = \sum_{r=0}^{\infty} \sum_{t=0}^{\infty} {}^{(r)}b_n^{(t)} q^r p^t, \quad (19)$$

where ${}^{(r)}a_n^{(t)}$ and ${}^{(r)}b_n^{(t)}$ are independent of p and q . Substituting equations (19) in equations (16) and (17), and equating to zero the coefficients of the various powers of p and q , we obtain the following expressions:

For $r = 0$ and $t \geq 0$:

$$\left. \begin{aligned} \sum_{n=0}^{\infty} (-1)^n \alpha_{0,1}^{(n)} {}^{(0)}a_n^{(0)} &= -\frac{\pi}{16}, \\ \sum_{n=0}^{\infty} (-1)^n (2n+1) \alpha_{1,1}^{(n)} \alpha_{1,2}^{(n)} {}^{(0)}a_n^{(0)} &= \frac{\pi}{128}, \\ \sum_{n=0}^{\infty} (-1)^{n+s} (2n+3) \alpha_{s,1}^{(n)} \beta_s^{(n)} {}^{(0)}a_n^{(0)} &= 0 \quad (s \geq 2), \end{aligned} \right\} \quad (20)$$

$$\left. \begin{aligned} \sum_{n=0}^{\infty} (-1)^n \alpha_{0,1}^{(n)} {}^{(0)}a_n^{(t)} &= -\frac{\pi}{4} \left(\delta_{1,t} + \frac{5}{4} \delta_{2,t} + \frac{1}{2} \delta_{3,t} \right) \\ &+ \sum_{m=0}^{\infty} (-1)^m \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} \{ (2m-1)[(2m-3){}^{(0)}a_m^{(t-3)} - (2m+9){}^{(0)}a_m^{(t-1)}] \\ &+ (4m^2 - 16m - 1){}^{(0)}a_m^{(t-2)} \}, \\ \sum_{n=0}^{\infty} (-1)^n (2n+1) \alpha_{1,1}^{(n)} \alpha_{1,2}^{(n)} {}^{(0)}a_n^{(t)} &= \frac{\pi}{64} \left(\delta_{1,t} + \frac{1}{2} \delta_{2,t} \right) \\ &- \sum_{m=0}^{\infty} (-1)^m [(2m+1) \alpha_{1,1}^{(m)} \beta_1^{(m)} {}^{(0)}a_m^{(t-2)} + 4(m-1) \alpha_{2,1}^{(m)} \beta_0^{(m)} {}^{(0)}a_m^{(t-1)}], \\ \sum_{n=0}^{\infty} (-1)^{n+s} (2n+3) \alpha_{s,1}^{(n)} \beta_s^{(n)} {}^{(0)}a_n^{(t)} &= -\sum_{m=0}^{\infty} (-1)^{m+s} \alpha_{s,1}^{(m)} [(2m+1) \beta_s^{(m)} {}^{(0)}a_m^{(t-2)} \\ &+ \{ [m(2m-2s+5) - 2(s-1)] \gamma_{s,0}^{(m)} \\ &- [m(2m-2s+1) - 2(s+1)] \gamma_{s,-2}^{(m)} \} {}^{(0)}a_m^{(t-1)}] \quad (s \geq 2), \end{aligned} \right\} \quad [t \geq 1] \quad (21)$$

$$\left. \begin{aligned} {}^{(0)}b_0^{(0)} &= \frac{5}{4} + \frac{4}{\pi} \sum_{m=0}^{\infty} (-1)^m (2m-1)(2m+9) \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} {}^{(0)}a_m^{(0)}, \\ {}^{(0)}b_1^{(0)} &= -\frac{3}{4} + \frac{24}{\pi} \sum_{m=0}^{\infty} (-1)^m \alpha_{1,1}^{(m)} {}^{(0)}a_m^{(0)}, \\ {}^{(0)}b_s^{(0)} &= -\frac{8(2s+1)}{\pi} \sum_{m=0}^{\infty} (-1)^{m+s} (2m+3)(2m-2s+3) \alpha_{s,1}^{(m)} \gamma_{s,0}^{(m)} {}^{(0)}a_m^{(0)} \quad (s \geq 2), \end{aligned} \right\} \quad (22)$$

$$\begin{aligned}
 {}^{(0)}b_0^{(t)} &= \frac{1}{2} (3 \delta_{1,t} + \delta_{2,t}) \\
 &- \frac{4}{\pi} \sum_{m=0}^{\infty} (-1)^m \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} \{ (2m-1) [(2m-3) {}^{(0)}a_m^{(t-2)} - 4 {}^{(0)}a_m^{(t)}] \\
 &+ (4m^2 - 16m - 1) {}^{(0)}a_m^{(t-1)} \}, \\
 {}^{(0)}b_1^{(t)} &= -\frac{3}{4} \delta_{2,t} - ({}^{(0)}b_1^{(t-2)} + 2 {}^{(0)}b_1^{(t-1)}) \\
 &+ \frac{24}{\pi} \sum_{m=0}^{\infty} (-1)^m \alpha_{1,1}^{(m)} \{ \alpha_{0,1}^{(m)} [(2m+1)^2 {}^{(0)}a_m^{(t-2)} + 4m(2m+3) {}^{(0)}a_m^{(t-1)}] \\
 &+ {}^{(0)}a_m^{(t)} \}, \\
 {}^{(0)}b_s^{(t)} &= -({}^{(0)}b_s^{(t-2)} + 2 {}^{(0)}b_s^{(t-1)}) - \frac{8(2s+1)}{\pi} \sum_{m=0}^{\infty} (-1)^{m+s} \alpha_{s,1}^{(m)} \gamma_{s,0}^{(m)} \\
 &\times \{ (2m-2s+3) [(2m+1) {}^{(0)}a_m^{(t-2)} + (2m+3) {}^{(0)}a_m^{(t)}] \\
 &+ [(2m+3)(2m-2s+1) + (2m+1)(2m-2s+5)] {}^{(0)}a_m^{(t-1)} \} \\
 &\quad (s \geq 2).
 \end{aligned} \tag{23}$$

For $r \geq 1$ and $t \geq 0$:

$$\begin{aligned}
 \sum_{n=0}^{\infty} (-1)^n \alpha_{0,1}^{(n)} {}^{(r)}a_n^{(0)} &= \frac{3\pi}{16} \delta_{2,r} - \frac{\pi}{4} {}^{(r-1)}b_1^{(0)} + 3 \sum_{m=0}^{\infty} (-1)^m \alpha_{1,1}^{(m)} {}^{(r-1)}a_m^{(0)}, \\
 \sum_{n=0}^{\infty} (-1)^n (2n+1) \alpha_{1,1}^{(n)} \alpha_{1,2}^{(n)} {}^{(r)}a_n^{(0)} &= \frac{\pi}{8} \left(\frac{1}{2} {}^{(r-1)}b_0^{(0)} + \frac{1}{5} {}^{(r-1)}b_2^{(0)} + \frac{3}{28} {}^{(r-1)}b_3^{(0)} \right) \\
 &+ \frac{3}{4} \sum_{m=0}^{\infty} (-1)^m (2m+1) [(2m+5) \alpha_{2,1}^{(m)} - (2m+1) \alpha_{3,1}^{(m)}] \alpha_{0,1}^{(m)} {}^{(r-1)}a_m^{(0)}, \\
 \sum_{n=0}^{\infty} (-1)^{n+s} (2n+3) \alpha_{s,1}^{(n)} \beta_s^{(n)} {}^{(r)}a_n^{(0)} &= \frac{\pi}{128} \delta_{3,s} \delta_{2,r} - \frac{\pi}{8} \left[\frac{{}^{(r-1)}b_{s-2}^{(0)}}{4(2s-3)} + \frac{{}^{(r-1)}b_{s+1}^{(0)}}{2s+3} \right. \\
 &\quad \left. + \frac{3}{4} \frac{{}^{(r-1)}b_{s+2}^{(0)}}{2s+5} \right] - \frac{3}{4} \sum_{m=0}^{\infty} (-1)^{m+s} (2m-1) [(2m-2s+3) \gamma_{s,0}^{(m)} \gamma_{s,-3}^{(m)} \\
 &\quad - (2m-2s+7) \gamma_{s,1}^{(m)} \gamma_{s,-2}^{(m)}] {}^{(r-1)}a_m^{(0)} \quad (s \geq 2),
 \end{aligned} \tag{24}$$

$$\begin{aligned}
 \sum_{n=0}^{\infty} (-1)^n \alpha_{0,1}^{(n)} {}^{(r)}a_n^{(t)} &= \frac{3\pi}{8} \delta_{2,r} (\delta_{1,t} + \delta_{2,t}) - \frac{\pi}{4} \left({}^{(r-1)}b_1^{(t-2)} + \frac{2}{5} {}^{(r-1)}b_2^{(t-2)} \right. \\
 &\quad \left. + {}^{(r-1)}b_0^{(t-1)} + 2 {}^{(r-1)}b_1^{(t-1)} + \frac{3}{5} {}^{(r-1)}b_2^{(t-1)} + {}^{(r-1)}b_1^{(t)} \right) \\
 &- \sum_{m=0}^{\infty} (-1)^m [6(4m^2-1) \alpha_{0,1}^{(m)} \alpha_{2,1}^{(m)} {}^{(r-1)}a_m^{(t-2)} \\
 &- 6 [\alpha_{1,1}^{(m)} - (4m^2-1) \alpha_{0,1}^{(m)} \alpha_{1,2}^{(m)}] {}^{(r-1)}a_m^{(t-1)} - 3 \alpha_{1,1}^{(m)} {}^{(r-1)}a_m^{(t)} \\
 &- \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} \{ (2m-1) [(2m-3) {}^{(r)}a_m^{(t-3)} - (2m+9) {}^{(r)}a_m^{(t-1)}] \\
 &+ (4m^2 - 16m - 1) {}^{(r)}a_m^{(t-2)} \}], \\
 \sum_{n=0}^{\infty} (-1)^n (2n+1) \alpha_{1,1}^{(n)} \alpha_{1,2}^{(n)} {}^{(r)}a_n^{(t)} &= \frac{\pi}{8} \left(\frac{3}{20} {}^{(r-1)}b_2^{(t-1)} + \frac{1}{14} {}^{(r-1)}b_3^{(t-1)} \right. \\
 &\quad \left. + \frac{1}{2} {}^{(r-1)}b_0^{(t)} + \frac{1}{5} {}^{(r-1)}b_2^{(t)} + \frac{3}{28} {}^{(r-1)}b_3^{(t)} \right) \\
 &+ \sum_{m=0}^{\infty} (-1)^m \left[\frac{3}{4} \alpha_{0,1}^{(m)} (2m-1) \{ [(2m+3) \alpha_{2,1}^{(m)} - (2m-1) \alpha_{3,1}^{(m)}] {}^{(r-1)}a_m^{(t-1)} \right. \\
 &\quad \left. + [(2m+5) \alpha_{2,1}^{(m)} - (2m+1) \alpha_{3,1}^{(m)}] {}^{(r-1)}a_m^{(t)} \} \right. \\
 &\quad \left. - (2m+1) \alpha_{1,1}^{(m)} \beta_1^{(\exists)} {}^{(r)}a_m^{(t-2)} - 4(m-1) \alpha_{2,1}^{(m)} \beta_0^{(m)} {}^{(r)}a_m^{(t-1)} \right], \\
 &\quad [t \geq 1]
 \end{aligned} \tag{25}$$

$$\begin{aligned}
& \sum_{n=0}^{\infty} (-1)^n (2n+3) \alpha_{s,1}^{(n)} \beta_s^{(n)} {}^{(r)}a_n^{(t)} = -\frac{\pi}{128} \delta_{2,s} \delta_{2,r} \delta_{1,t} \\
& + \frac{\pi}{8} \left[\frac{(r-1)b_{s-1}^{(t-1)}}{4(2s-1)} - \frac{3(r-1)b_{s+1}^{(t-1)}}{4(2s+3)} - \frac{(r-1)b_{s+2}^{(t-1)}}{2(2s+5)} - \frac{(r-1)b_{s-2}^{(t)}}{4(2s-3)} \right. \\
& - \frac{(r-1)b_{s+1}^{(t)}}{2s+3} - \frac{3(r-1)b_{s+2}^{(t)}}{4(2s+5)} \Big] \\
& - \sum_{m=0}^{\infty} (-1)^{m+s} \left[\frac{3}{4} (2m-1) \{ [2(m-2s+1)] \gamma_{s,0}^{(m)} \gamma_{s,-3}^{(m)} \right. \\
& - (2m-2s+5) \gamma_{s,1}^{(m)} \gamma_{s,-2}^{(m)}] {}^{(r-1)}a_m^{(t-1)} + \{ (2m-2s+3) \gamma_{s,0}^{(m)} \gamma_{s,-3}^{(m)} \right. \\
& - (2m-2s+7) \gamma_{s,1}^{(m)} \gamma_{s,-2}^{(m)}] {}^{(r-1)}a_m^{(t)} \} + (2m+1) \alpha_{s,1}^{(m)} \beta_s^{(m)} {}^{(r)}a_m^{(t-2)} \\
& + \{ [m(2m-2s+5) - 2(s-1)] \gamma_{s,0}^{(m)} \\
& - [m(2m-2s+1) - 2(s+1)] \gamma_{s,-2}^{(m)} \} \alpha_{s,1}^{(m)} {}^{(r)}a_m^{(t-1)} \Big] \quad (s \geq 2), \\
& {}^{(r)}b_0^{(0)} = -\frac{9}{4} \delta_{2,r} + \left({}^{(r-1)}b_0^{(0)} + 3 {}^{(r-1)}b_1^{(0)} + \frac{3}{5} {}^{(r-1)}b_2^{(0)} \right) \\
& - \frac{\pi}{4} \sum_{m=0}^{\infty} (-1)^m \{ 3 [3 \alpha_{0,1}^{(m)} - 2(4m^2-1) \alpha_{0,1}^{(m)} \alpha_{1,2}^{(m)}] {}^{(r-1)}a_m^{(0)} \\
& - (2m-1)(2m+9) \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} {}^{(r)}a_m^{(0)} \}, \\
& {}^{(r)}b_1^{(0)} = \frac{3}{2} \delta_{1,r} - 6 \left({}^{(r-1)}b_0^{(0)} + \frac{2}{5} {}^{(r-1)}b_2^{(0)} \right) \\
& - \frac{24}{\pi} \sum_{m=0}^{\infty} (-1)^m [3(2m-1)(2m+5) \alpha_{0,1}^{(m)} \alpha_{2,1}^{(m)} {}^{(r-1)}a_m^{(0)} - \alpha_{1,1}^{(m)} {}^{(r)}a_m^{(0)}], \\
& {}^{(r)}b_s^{(0)} = \frac{7}{4} \delta_{3,s} \delta_{2,r} - \left[\frac{2s+1}{2s-3} {}^{(r-1)}b_{s-2}^{(0)} + \frac{4(2s+1)}{2s+3} {}^{(r-1)}b_{s+1}^{(0)} \right] \\
& + \frac{8(2s+1)}{\pi} \sum_{m=0}^{\infty} (-1)^{m+s} [3(2m-1)(2m-2s+7) \gamma_{s,1}^{(m)} \gamma_{s,-2}^{(m)} {}^{(r-1)}a_m^{(0)} \\
& - (2m+3)(2m-2s+3) \alpha_{s,1}^{(m)} \gamma_{s,0}^{(m)} {}^{(r)}a_m^{(0)}] \quad (s \geq 2), \\
& {}^{(r)}b_0^{(t)} = -\frac{3}{4} \delta_{2,r} (3 \delta_{1,t} + \delta_{2,t}) + \left({}^{(r-1)}b_1^{(t-2)} + \frac{2}{5} {}^{(r-1)}b_1^{(t-2)} + {}^{(r-1)}b_0^{(t-1)} \right. \\
& + 3 {}^{(r-1)}b_1^{(t-1)} + {}^{(r-1)}b_2^{(t-1)} + {}^{(r-1)}b_0^{(t)} + 3 {}^{(r-1)}b_1^{(t)} + \frac{3}{5} {}^{(r-1)}b_2^{(t)} \Big) \\
& + \frac{4}{\pi} \sum_{m=0}^{\infty} (-1)^m \{ 6(4m^2-1) \alpha_{0,1}^{(m)} \alpha_{2,1}^{(m)} {}^{(r-1)}a_m^{(t-2)} - 6 \\
& \times [\alpha_{1,1}^{(m)} - (4m^2-1) (\alpha_{1,2}^{(m)} + \alpha_{2,1}^{(m)}) \alpha_{1,1}^{(m)}] {}^{(r-1)}a_m^{(t-1)} \\
& - 3 [3 \alpha_{1,1}^{(m)} - 2(4m^2-1) \alpha_{0,1}^{(m)} \alpha_{1,2}^{(m)}] {}^{(r-1)}a_m^{(t)} \\
& - \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} [(2m-1)(2m-3) {}^{(r)}a_m^{(t-3)} + 2(4m^2-12m+1) {}^{(r)}a_m^{(t-2)} \\
& - 8(4m-1) {}^{(r)}a_m^{(t-1)} - (2m-1)(2m+9) {}^{(r)}a_m^{(t)}] \}, \\
& {}^{(r)}b_1^{(t)} = 3 \delta_{1,r} \left(\delta_{1,t} + \frac{1}{2} \delta_{2,t} \right) - 3 \left({}^{(r-1)}b_0^{(t-1)} + \frac{3}{5} {}^{(r-1)}b_2^{(t-1)} + 2 {}^{(r-1)}b_0^{(t)} \right. \\
& + \frac{4}{5} {}^{(r-1)}b_2^{(t)} + \frac{1}{3} {}^{(r)}b_1^{(t-2)} + \frac{2}{3} {}^{(r)}b_1^{(t-1)} - \frac{24}{\pi} \sum_{m=0}^{\infty} (-1)^m \{ 3 \alpha_{1,2}^{(m)} {}^{(r-1)}a_m^{(t-1)} \\
& + 3(2m-1)(2m+5) \alpha_{0,1}^{(m)} \alpha_{2,1}^{(m)} {}^{(r-1)}a_m^{(t)} - \alpha_{0,1}^{(m)} \alpha_{1,1}^{(m)} [(2m+1)^2 {}^{(r)}a_m^{(t-2)} \\
& + 4m(2m+3) {}^{(r)}a_m^{(t-1)}] - \alpha_{1,1}^{(m)} {}^{(r)}a_m^{(t)} \}, \\
& {}^{(r)}b_s^{(t)} = - \left[\frac{3(2s+1)}{2s+3} {}^{(r-1)}b_{s+1}^{(t-1)} + \frac{2s+1}{2s-3} {}^{(r-1)}b_{s-2}^{(t)} + \frac{4(2s+1)}{2s+3} {}^{(r-1)}b_{s+1}^{(t)} \right. \\
& + {}^{(r)}b_s^{(t-2)} + 2 {}^{(r)}b_s^{(t-1)} \Big] \\
& + \frac{8(2s+1)}{\pi} \sum_{m=0}^{\infty} [(-1)^{m+s} 3 \gamma_{s,1}^{(m)} \gamma_{s,-2}^{(m)} (2m-1) \\
& \times [(2m-2s+5) {}^{(r-1)}a_m^{(t-1)} + (2m-2s+7) {}^{(r-1)}a_m^{(t)}] \\
& - \alpha_{s,1}^{(m)} \gamma_{s,0}^{(m)} \{ (2m-2s+3) [(2m+1) {}^{(r)}a_m^{(t-2)} + (2m+3) {}^{(r)}a_m^{(t)}] \\
& + [(2m+1)(2m-2s+5) + (2m+3)(2m-2s+1)] {}^{(r)}a_m^{(t-1)} \}] \quad (s \geq 2). \quad (27)
\end{aligned}$$

The symbols used in these expressions are the following: $\delta_{i,j}$ means Kronecker delta and

$$\left. \begin{aligned} \alpha_{s,k}^{(m)} &= \frac{1}{[2m + (2s + 2k + 1)][2m - (2s - 2k + 1)]}, \\ \beta_s^{(m)} &= \frac{1}{[2m + (2s + 1)][2m + (2s + 5)]}, \\ \gamma_{s,k}^{(m)} &= \frac{1}{[2m + (2s - 2k + 1)][2m - (2s - 2k - 3)]}. \end{aligned} \right\} (s \geq 0) \quad (28)$$

These equations are to be solved for the coefficients ${}^{(r)}a_n^{(t)}$ and ${}^{(r)}b_n^{(t)}$ in the series (19) successively. To solve the infinite set of equations (20), (21), (24) and (25) for ${}^{(r)}a_n^{(t)}$, the laborious method of elimination of unknowns has to be used in which the set is first reduced to finite by taking only the first n_0 equations involving the first n_0 unknowns. This will be performed finally for fifteen equations as treated by Maunsell¹, and the values of the first eleven ${}^{(r)}a_n^{(t)}$ will be used in the subsequent calculations.

It may be noted that the foregoing method is valid in so far as the series (19) are convergent. The proof of convergence seems rather difficult to achieve. However, it may be seen later in the numerical examples that this method gives practically satisfactory results for certain values of p and q .

5. Numerical examples. The numerical calculations have been carried out for the cases of elliptic notches and U-type notches. The values of σ_θ along the periphery of the notch and those of σ_y across the symmetrical axis of the plate have been given for two cases.

a) Elliptic notches. If we choose $q = 1$ and $q = 0$ in equation (1), an elliptic notch can be obtained for a certain value of p . Fig. 2 shows the shapes of the elliptic notches treated here. The values of p , a/b and r/a corresponding to these shapes are tabulated in Table 1.

Table 1. Values of p , a/b , and r/a

p	-0.20	-0.13	0	0.13	0.20	0.27	0.30
a/b	0.66	0.77	1	1.3	1.5	1.75	1.86
r/a	2.25	1.69	1	0.69	0.45	0.33	0.29

In this case, the coefficients ${}^{(0)}a_n^{(t)}$ and ${}^{(0)}b_n^{(t)}$ are calculated by equations (20) \sim (23). Especially, for the case of $p = 0$, i. e., a semicircular notch, the coefficients ${}^{(0)}a_n^{(0)}$ and ${}^{(0)}b_n^{(0)}$ are obtained by equations (20) and (22), and the stresses derived from these coefficients coincide with those given by Maunsell² and the others³. Previously, Higuchi and Suzuki⁴ have dealt with the case of $a/b = 1.3$ ($p = 0.13$), and we can also obtain an agreement with their results.

Fig. 3 shows the distributions of σ_θ along the rim of the notch for several values of a/b . The distributions of σ_y across the symmetrical axis of the plate in relation to the ratio a/b are shown in Fig. 4.

b) U-type notches. When the breadth of the notch $2b$ is constant in the preceding case, the radius of curvature at the bottom of the notch changes with the depth of the notch. Here, to clarify the effect of the change of the depth of notch only, we shall take the radius of curvature at the bottom of the notch equal to one half of the breadth of the notch. Fig. 5 shows the shapes of the U-type notches treated here. The values of p , q , a/b and r/a corresponding to these shapes are tabulated in Table 2. The coefficients ${}^{(r)}a_n^{(t)}$ and ${}^{(r)}b_n^{(t)}$ required in this case are calculated by

Table 2. Values of p , q , a/b , and r/a

p	0	0.069	0.128	0.195	0.264	0.290
q	0	-0.008	-0.016	-0.024	-0.032	-0.035
a/b	1	1.15	1.3	1.5	1.75	1.86
r/a	1	0.87	0.77	0.67	0.57	0.54

equations (20) \sim (27). Fig. 6 shows the distributions of σ_θ along the rim of the notch for several values of a/b . The distributions of σ_y across the symmetrical axis of the plate in relation to the ratio a/b are shown in Fig. 7.

The distributions of σ_θ and σ_y for this case are almost similar as those for the preceding case. But, the maximum value of σ_θ or σ_y corresponding to each value of a/b is smaller than the value

¹ F. G. Maunsell, l. c.

² F. G. Maunsell, l. c.

³ T. Ishibashi, etc., l. c.

⁴ S. Higuchi and M. Suzuki, l. c.

Fig. 2. Elliptic notches.

Fig. 3. σ_Θ/T at the rim of the notches.Fig. 4. σ_y/T across the line of symmetry.

Fig. 5. U-type notches.

Fig. 6. σ_Θ/T at the rim of the notches.Fig. 7. σ_y/T across the line of symmetry.

for the case a). This may be chiefly due to the fact that for the same value of a/b the radius of curvature at the bottom of the *U*-type notch is larger than that at the bottom of the elliptic notch.

6. The stress concentration factor K . It is of practical interest to calculate the stress concentration factor K , or the ratio of the maximum stress at the bottom of the notch to the mean stress T .

Now, the factor K for this case is readily computed by the expression

$$K = 1 + \frac{4}{1-p-3q} \sum_r \sum_t {}^{(r)}A^{(t)} q^r p^t. \quad (29)$$

In the case of the elliptic notch, equation (29) is reduced to

$$\begin{aligned} K = 1 + \frac{4}{1-p} & (0.5165 + 0.5435 p + 0.0421 p^2 + 0.0326 p^3 - 1.333 p^4 + 4.167 p^5 \\ & - 6.448 p^6 + 8.186 p^7 - 12.46 p^8 + 14.01 p^9 - 23.55 p^{10}), \end{aligned} \quad (30)$$

where $-0.20 \leq p \leq 0.30$. Equation (30) may be approximated by a simple formulae:

$$K = 0.941 + 2.125 \frac{a}{b}, \quad (31)$$

where $0.66 \leq a/b \leq 1.86$. The factor K of the corresponding problem for the case of an infinite plate with an elliptic hole was given as¹

$$K = 1 + 2 \frac{a}{b} \quad \text{or} \quad K = 1 + 2 \sqrt{\frac{a}{r}}. \quad (32)$$

The results obtained from equations (30) and (32) are tabulated in Table 3.

Table 3. Stress concentration factor

a/b	0.66	0.77	1	1.3	1.5	1.75	1.86
Notch	2.35	2.58	3.06	3.70	4.13	4.66	4.90
Hole	2.32	2.54	3	3.6	4	4.5	4.72

In the case of the *U*-type notch, the coefficients ${}^{(r)}A^{(t)}$ in equation (29) are shown in Table 4, where $0.290 \geq p \geq 0$ and $-0.035 \leq q \leq 0$. The factor K for the case of an infinite plate having an oval hole is given as

Table 4. Values of ${}^{(r)}A^{(t)}$

$r \backslash t$	0	1	2	3	4	5	6	7	8	9	10
0	0.5165	0.5435	0.0421	0.0326	-1.333	4.167	-6.448	8.186	-12.46	14.01	-23.55
1	2.675	2.828	-1.660	-50.92	95.00	-140.9	251.9	-441.0	364.1		
2	6.614	-18.54	13.79	-117.1	127.0	-403.2	724.4				
3	15.64	-85.08	-13.02	-2551	3582						
4	65.76	348.2	2252								

$$K = 1 + \frac{p+6q}{1-p-3q} + \frac{2+p}{(1-q)(1-p-3q)}. \quad (33)$$

The results obtained from equation (29) by using Table 4 and from equation (33) are tabulated in Table 5.

Table 5. Stress concentration factor

a/b	1	1.15	1.3	1.5	1.75	1.86
Notch	3.06	3.22	3.36	3.55	3.78	3.88
Hole	3	3.16	3.32	3.51	3.73	3.82

These results obtained above are shown in Fig. 8, where I, the case for the elliptic notches; II, the case for the elliptic holes; III, the case for the *U*-type notches; and IV, the case for the oval holes.

¹ C. E. Inglis, Engineering 95 (1913) p. 415.

Fig. 9 shows the stress concentration factor K of the notch treated here in relation to the ratio r/a . The curve corresponds to the elliptic notches and \circ marks indicate the values for the *U*-type notches. It may be said that as far as the ratio r/a is taken from 0.54 to 1 the factor of stress concentration is quite similar in these two cases.

Fig. 8. Stress concentration factor. — I, Factor for the elliptic notches; II, Factor for the elliptic holes; III, Factor for the *U*-type notches; IV, Factor for the oval holes.

Fig. 9. Stress concentration factor. Curve, Factor for the elliptic notches; o marks, Factor for the *U*-type notches.

In conclusion, the author wishes to express his hearty thanks to Prof. Emeritus Dr. *Seiichi Higuchi* of Tōhoku University for his valuable advice throughout the progress of the present investigation. The author also wishes to express his gratitude to Prof. Dr. *Osamu Tamate* of Tōhoku University for his kind discussions during the course of the work.

(Eingegangen am 20. November 1958.)

Anschrift der Verfasser: Assistant *Masaichiro Seika*, Sendai (Japan), Tōhoku University, Department of Mechanical Engineering.

Zur Theorie der nahe der Wasseroberfläche fahrenden Tragflächen

Von W.-H. Isay

1. Einleitung. Unterwassertragflügel sind in den letzten Jahren mehrfach behandelt worden und zwar sowohl als räumliches Strömungsproblem^{1,2,7} als auch in zweidimensionaler Betrachtungsweise^{3, 4, 5, 6, 7}.

Betrachtet man wie in der hier vorliegenden Arbeit die Strömung um parallel zur Wasseroberfläche fahrende Tragflügel als ebenes Problem, so liegt es nahe, hierfür die in der gewöhnlichen Tragflügeltheorie bewährte, auf Birnbaum zurückgehende Methode der tragenden Wirbelfläche zu verwenden. In den bisherigen Arbeiten ist dieser Weg nur bis zu einem bestimmten Grade beschritten worden. Insbesondere wurde die Berechnung der Zirkulation des Unterwasserflügels entweder gar nicht³ oder unter Verwendung von näherungsweise gültigen technischen Auftriebsbeiwertrelationen durchgeführt⁴, und Ansätze zur Lösung der Integralgleichung beschränken sich auf bestimmte Sonderfälle^{5, 6}.

In der vorliegenden Arbeit soll nun eine vollständige Theorie angegeben werden, die auch den Fall von zwei hintereinander fahrenden Tragflächen umfaßt (Tragflügelboot). Es wird die zur Bestimmung der Auftriebsverteilung (Zirkulationsverteilung) notwendige Auflösung der Integralgleichungen durchgeführt, und zwar in einer Form, die sich vollkommen an die aus der Schaufelgittertheorie bekannten Methoden anlehnt. Außerdem wird die Form der Wasseroberfläche in der Nähe der Tragflügel berechnet. Für eine Theorie der Unterwassertragflügel mit Erfüllung der Randbedingung am Flügelprofil unter Verwendung der Methode der konformen Abbildung sei auf Nishiyama⁷ verwiesen.

2. Das Geschwindigkeitsfeld einer Tragfläche unter Berücksichtigung der freien Wasseroberfläche. Wir betrachten eine Tragfläche in der Tiefe h unter der bei $y \approx 0$ liegenden Wasseroberfläche (Abb. 1) in der homogenen Anströmung u_0 , wobei u und v die x - bzw. y -Komponenten der Geschwindigkeit bedeuten. An der Wasseroberfläche ist der Druck überall konstant. Aus der Bernouillischen Gleichung erhält man dann unter der Voraussetzung, daß das Quadrat aller durch den Flügel auftretenden Störgeschwindigkeiten u_γ, v_γ klein ist gegen u_0^2 , die Oberflächenbedingung in der Form

$$u_0 u_\gamma + g Y = \text{konst.}$$

Dabei gibt $Y(x)$ die genaue Form der Oberfläche an. Da jedenfalls weit vor dem Flügel für $x \rightarrow -\infty$ sowohl u_γ als auch $Y(x)$ genau Null sein müssen, ist auch die Konstante gleich Null, und man erhält für die Form der Wasseroberfläche

$$\frac{Y(x)}{h} = - \frac{u_0^2}{g h} \frac{u_\gamma}{u_0} \quad (1)$$

mit u_0/\sqrt{gh} als Froudesche Tiefenzahl. Aus (1) erhält man weiter mit $\partial Y/\partial x = v_\gamma/u_0$ die bekannte kinematische Bedingung der freien Oberfläche

$$\frac{u_0^2}{g} \frac{\partial u_\gamma}{\partial x} + v_\gamma = 0 \quad (\text{für } y = 0). \quad (2)$$

Die betrachtete Tragfläche wird mit einer Wirbeldichte $\gamma(\xi)$ ($-a \leq \xi \leq a$) belegt; das wohlbekannte von dieser Wirbeldichte induzierte Geschwindigkeitsfeld genügt der Gleichung (2) natürlich nicht, sondern muß durch zusätzliche Geschwindigkeitsanteile ergänzt werden. Im Hinblick auf die zu erfüllende Randbedingung (2) der freien Oberfläche hat es sich als zweckmäßig erwiesen³,

¹ K. Krienes, Die tragende Fläche in einer Strömung mit freier Flüssigkeitsoberfläche, unveröffentl. Bericht Berlin 1951.

² Y. T. Wu, J. Math. Phys. 33 (1954) S. 207.

³ K. Krienes, Die von einem tragenden Wirbel an der Flüssigkeitsoberfläche hervorgerufene Wellenbewegung, Bericht 8 (1946) des Konstruktionsbüro Roßlau (unveröffentlicht).

⁴ C. Possio, Atti Accademia Scienze Torino. 76 (1941) S. 365.

⁵ H. B. Squire, Proc. Royal Soc. A 243 (1957) S. 48.

⁶ E. Cumberbatch, J. Fluid Mechanics 4 (1958) S. 466.

⁷ T. Nishiyama, Society of Naval Architects of Japan; 60 th Anniversary Series, Vol. 2. (1957); S 96 u. S. 116.

Abb. 1.

das von der Zirkulationsverteilung $\gamma(\xi)$ induzierte Geschwindigkeitsfeld in der Form zu schreiben:

$$\left. \begin{aligned} u_{\gamma}^{(I)} &= \frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(y+h)d\xi}{(x-\xi)^2 + (y+h)^2} = \frac{1}{2\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty e^{-\lambda(y+h)} \cos \lambda(x-\xi) d\lambda d\xi, \\ v_{\gamma}^{(I)} &= -\frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(x-\xi)d\xi}{(x-\xi)^2 + (y+h)^2} = -\frac{1}{2\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty e^{-\lambda(y+h)} \sin \lambda(x-\xi) d\lambda d\xi. \end{aligned} \right\} (y > -h) \quad (3)$$

Für die zusätzlichen Geschwindigkeitsanteile $u_{\gamma}^{(II)}, v_{\gamma}^{(II)}$ liegt daher der Ansatz nahe

$$\begin{aligned} u_{\gamma}^{(II)} &= \frac{1}{2\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty F(\lambda) e^{\lambda y} \cos \lambda(x-\xi) d\lambda d\xi, \\ v_{\gamma}^{(II)} &= \frac{1}{2\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty F(\lambda) e^{\lambda y} \sin \lambda(x-\xi) d\lambda d\xi. \end{aligned}$$

Dabei ist die Funktion $F(\lambda)$ so zu bestimmen, daß $u_{\gamma} = u_{\gamma}^{(I)} + u_{\gamma}^{(II)}$ und $v_{\gamma} = v_{\gamma}^{(I)} + v_{\gamma}^{(II)}$ für $y = 0$ die Bedingung (2) erfüllen. Dies ergibt nach einer elementaren Rechnung

$$F(\lambda) = -e^{-\lambda h} - \frac{2e^{-\lambda h}}{\frac{u_0^2}{g}\lambda - 1},$$

und somit wird

$$\left. \begin{aligned} u_{\gamma}^{(II)} &= -\frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(h-y)d\xi}{(h-y)^2 + (x-\xi)^2} - \frac{g}{u_0^2} \frac{1}{\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty \frac{e^{-\mu \frac{g}{u_0^2}(h-y)}}{\mu - 1} \cos \mu \frac{g}{u_0^2}(x-\xi) d\mu d\xi, \\ v_{\gamma}^{(II)} &= -\frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(x-\xi)d\xi}{(h-y)^2 + (x-\xi)^2} - \frac{g}{u_0^2} \frac{1}{\pi} \int_{-a}^a \gamma(\xi) \int_0^\infty \frac{e^{-\mu \frac{g}{u_0^2}(h-y)}}{\mu - 1} \sin \mu \frac{g}{u_0^2}(x-\xi) d\mu d\xi. \end{aligned} \right\} (4)$$

Es ist dabei $\mu = \frac{u_0^2}{g}\lambda$ gesetzt.

Für die weitere Behandlung von (4) können die zuerst von Krienes¹ angegebenen Integralformeln

$$\left. \begin{aligned} \int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \cos \mu X d\mu &= -e^{-H} \left[C_i(X) \cos X + S_i(X) \sin X \pm \frac{\pi}{2} \sin X + \int_0^H \frac{\partial e^\theta}{\partial^2 + X^2} d\theta \right], \\ \int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \sin \mu X d\mu &= +e^{-H} \left[S_i(X) \cos X - C_i(X) \sin X \pm \frac{\pi}{2} \cos X - \int_0^H \frac{X e^\theta}{\partial^2 + X^2} d\theta \right], \end{aligned} \right\} (5)$$

(+ für $X > 0$; — für $X < 0$)

verwendet werden, deren Beweis wir in Ziff. 8 nachtragen. S_i und C_i sind Integralsinus und Integralcosinus. Für $X = 0$ ist im unteren Integral (5) der Wert Null zu nehmen.

Nun darf jedenfalls weit vor dem Flügel für $x \rightarrow -\infty$ nur die ungestörte Anströmung vorhanden sein, d. h. es muß gelten

$$\lim_{x \rightarrow -\infty} u = u_0, \quad \lim_{x \rightarrow -\infty} v = 0. \quad (6)$$

¹ Siehe Fußnote 3 von Seite 295

Diese Bedingung wird durch unsere bisherige Lösung noch nicht erfüllt, denn wegen $\lim_{x \rightarrow -\infty} C_i(x) = 0$ und $\lim_{x \rightarrow -\infty} S_i(x) = -\pi/2$ ergibt sich

$$\lim_{x \rightarrow -\infty} u = u_0 - \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \sin \frac{g}{u_0^2} (x-\xi) d\xi,$$

$$\lim_{x \rightarrow -\infty} v = + \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \cos \frac{g}{u_0^2} (x-\xi) d\xi.$$

Es muß somit noch ein weiterer Geschwindigkeitsanteil $u_\gamma^{(II)}, v_\gamma^{(III)}$ überlagert werden; dieser ist so zu bestimmen, daß er einmal für sich selbst der Bedingung (2) genügt und außerdem das ganze Geschwindigkeitsfeld

$$u = u_0 + u_\gamma^{(I)} + u_\gamma^{(II)} + u_\gamma^{(III)}, \quad v = v_\gamma^{(I)} + v_\gamma^{(II)} + v_\gamma^{(III)}$$

die Relation (6) erfüllt. Damit ist das Geschwindigkeitsfeld einer in der Tiefe h unter der Wasseroberfläche fahrenden Wirbelfläche endgültig bestimmt; es lautet

$$\left. \begin{aligned} u &= u_0 + \frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(y+h) d\xi}{(x-\xi)^2 + (y+h)^2} + \frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(y-h) d\xi}{(x-\xi)^2 + (y-h)^2} \\ &\quad + \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \sin \frac{g}{u_0^2} (x-\xi) d\xi + \frac{g}{2u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \left[\pm \sin \frac{g}{u_0^2} (x-\xi) \right] d\xi \\ &\quad + \frac{1}{\pi} \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \left[C_i \left(g \frac{x-\xi}{u_0^2} \right) \cos \frac{g}{u_0^2} (x-\xi) + S_i \left(g \frac{x-\xi}{u_0^2} \right) \sin \frac{g}{u_0^2} (x-\xi) \right. \\ &\quad \left. + \frac{g}{u_0^2(h-y)} \int_0^\theta \vartheta e^\vartheta \frac{d\vartheta}{\vartheta^2 + \frac{g^2}{u_0^4} (x-\xi)^2} \right] d\xi = u_0 + u_\gamma \\ v &= -\frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(x-\xi) d\xi}{(x-\xi)^2 + (y+h)^2} - \frac{1}{2\pi} \int_{-a}^a \frac{\gamma(\xi)(x-\xi) d\xi}{(x-\xi)^2 + (y-h)^2} \\ &\quad - \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \cos \frac{g}{u_0^2} (x-\xi) d\xi - \frac{g}{2u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \left[\pm \cos \frac{g}{u_0^2} (x-\xi) \right] d\xi \\ &\quad - \frac{1}{\pi} \frac{g}{u_0^2} e^{-\frac{g}{u_0^2}(h-y)} \int_{-a}^a \gamma(\xi) \left[S_i \left(g \frac{x-\xi}{u_0^2} \right) \cos \frac{g}{u_0^2} (x-\xi) - C_i \left(g \frac{x-\xi}{u_0^2} \right) \sin \frac{g}{u_0^2} (x-\xi) \right. \\ &\quad \left. - \frac{g}{u_0^2(h-y)} \int_0^\theta \frac{g}{u_0^2} (x-\xi) e^\vartheta \frac{d\vartheta}{\vartheta^2 + \frac{g^2}{u_0^4} (x-\xi)^2} \right] d\xi = v_\gamma \end{aligned} \right\} (7)$$

3. Berechnung der Zirkulationsverteilung der Tragfläche. Genau wie bei einem gewöhnlichen Tragflügel im unbegrenzten Medium ist die Zirkulationsverteilung $\gamma(\xi)$ aus der Randbedingung am Flügel zu bestimmen. Diese lautet mit $f(x)$ als Kontur der Profilskelettlinie

$$u(x, -h) \cdot f'(x) = v(x, -h) \quad (-a \leq x \leq a). \quad (8)$$

Dies ist eine Integralgleichung für $\gamma(\xi)$, wenn man u und v gemäß (7) einsetzt; ihr Kern soll nun genauer untersucht werden. Dazu ist zunächst zu bedenken, daß für die meisten praktisch wichtigen

Fälle 2 $h g/u_0^2 \leq 0,7$ sein wird; dann gilt aber in sehr guter Näherung

$$\int_0^H \frac{\vartheta e^\vartheta d\vartheta}{\vartheta^2 + X^2} = \int_0^H \frac{\vartheta}{\vartheta^2 + X^2} \left(1 + \vartheta + \frac{1}{2} \vartheta^2 + \frac{1}{6} \vartheta^3\right) d\vartheta = + \frac{1}{2} \left(1 - \frac{X^2}{2}\right) \ln \frac{H^2 + X^2}{X^2} - X \left(1 - \frac{X^2}{6}\right) \operatorname{arc \, tg} \frac{H}{X} + \left(1 - \frac{X^2}{6}\right) H + \frac{H^2}{4} + \frac{H^3}{18}, \quad (9)$$

$$\int_0^H \frac{X e^\vartheta d\vartheta}{\vartheta^2 + X^2} = \int_0^H \frac{X}{\vartheta^2 + X^2} \left(1 + \vartheta + \frac{1}{2} \vartheta^2 + \frac{1}{6} \vartheta^3\right) d\vartheta = \frac{X}{2} \left(1 - \frac{X^2}{6}\right) \ln \frac{H^2 + X^2}{X^2} + \left(1 - \frac{X^2}{2}\right) \operatorname{arc \, tg} \frac{H}{X} + \frac{1}{2} H X \left(1 + \frac{H}{6}\right). \quad (10)$$

Dabei ist zur Abkürzung

$$\frac{2 h g}{u_0^2} = H \quad \text{und} \quad \frac{g}{u_0^2} (x - \xi) = X$$

gesetzt. In dem Integral (10) ist für $X = 0$ auch auf der rechten Seite der Wert Null zu nehmen, und zwar ist das Integral an der Stelle $X = 0$ unstetig, und der Wert Null ist das arithmetische Mittel der beiden Grenzübergänge $X \rightarrow +0$ und $X \rightarrow -0$.

Ferner benutzen wir die bekannte¹ Darstellung für den Integralcosinus

$$C_i(X) = 0,577 + \frac{1}{2} \ln X^2 - \frac{1}{4} X^2 - \dots \quad (11)$$

Damit nimmt unsere Integralgleichung (8) die Form an

$$-2 u_0 f'(x) = \frac{1}{\pi} \int_{-a}^a \gamma(\xi) \left[\frac{1}{x - \xi} + K(x, \xi) \right] d\xi \quad (-a \leq \xi \leq a), \quad (12)$$

und $K(x, \xi)$ ist eine im ganzen Bereich in beiden Variablen stetige Funktion

$$\begin{aligned} K(x, \xi) = & \frac{(x - \xi) - 2 h f'(x)}{(x - \xi)^2 + 4 h^2} + 2 \frac{g}{u_0^2} e^{-\frac{2 h g}{u_0^2}} f'(x) \left\{ \pi \sin \frac{g}{u_0^2} (x - \xi) \pm \frac{\pi}{2} \sin \frac{g}{u_0^2} (x - \xi) + \right. \\ & + C_i \left(g \frac{x - \xi}{u_0^2} \right) \cos \frac{g}{u_0^2} (x - \xi) + S_i \left(g \frac{x - \xi}{u_0^2} \right) \sin \frac{g}{u_0^2} (x - \xi) \\ & + \frac{1}{2} \left[1 - \frac{g^2}{2 u_0^4} (x - \xi)^2 \right] \ln \frac{4 h^2 + (x - \xi)^2}{(x - \xi)^2} - \frac{g}{u_0^2} (x - \xi) \left[1 - \frac{g^2}{6 u_0^4} (x - \xi)^2 \right] \operatorname{arc \, tg} \frac{2 h}{x - \xi} \\ & + \frac{2 h g}{u_0^2} \left[1 - \frac{g^2}{6 u_0^4} (x - \xi)^2 \right] + \left(\frac{h g}{u_0^2} \right)^2 + \frac{1}{18} \left(\frac{2 h g}{u_0^2} \right)^3 \\ & + 2 \frac{g}{u_0^2} e^{-\frac{2 h g}{u_0^2}} \left\{ \pi \cos \frac{g}{u_0^2} (x - \xi) \pm \frac{\pi}{2} \cos \frac{g}{u_0^2} (x - \xi) + S_i \left(g \frac{x - \xi}{u_0^2} \right) \cos \frac{g}{u_0^2} (x - \xi) \right. \\ & - C_i \left(g \frac{x - \xi}{u_0^2} \right) \sin \frac{g}{u_0^2} (x - \xi) - \frac{g}{2 u_0^2} (x - \xi) \left[1 - \frac{g^2}{6 u_0^4} (x - \xi)^2 \right] \ln \frac{4 h^2 + (x - \xi)^2}{(x - \xi)^2} \\ & \left. - \left[1 - \frac{g^2}{2 u_0^4} (x - \xi)^2 \right] \operatorname{arc \, tg} \frac{2 h}{x - \xi} - \frac{g h}{u_0^2} \frac{g}{u_0^2} (x - \xi) \left(1 + \frac{g h}{3 u_0^2} \right) \right\} (+x > \xi, -x < \xi). \quad (13) \end{aligned}$$

Speziell für $\xi = x$ hat man

$$K(x, x) = -\frac{1}{2 h} f'(x) + 2 \frac{g}{u_0^2} e^{-\frac{2 h g}{u_0^2}} f'(x) \left[0,577 + \ln \frac{2 h g}{u_0^2} + \frac{2 h g}{u_0^2} + \left(\frac{h g}{u_0^2} \right)^2 + \frac{1}{18} \left(\frac{2 h g}{u_0^2} \right)^3 \right] + 2 \pi \frac{g}{u_0^2} e^{-\frac{2 h g}{u_0^2}}. \quad (14)$$

Die Integralgleichung (12) mit dem Kernanteil (13) ist genau vom gleichen Typ wie die in der Schaufelgitterströmung auftretenden Integralgleichungen, für die der Verfasser in früheren Arbeiten eine vollständige Auflösungstheorie vorgelegt hat^{2, 3}.

¹ Vgl. z. B. *Lösch-Schoblik*, Die Fakultät, S. 122. Leipzig 1951.

² W. H. Isay, Z. angew. Math. Mech. 33 (1953) S. 404.

³ W. H. Isay, Z. angew. Math. Mech. 37 (1957) S. 322.

Wir werden uns daher an dieser Stelle mit einer kurzen Darstellung der Lösungsmethode begnügen und verweisen für genauere Einzelheiten auf die genannten Arbeiten^{2, 3}.

Wir setzen

$$x = -a \cos t, \quad \xi = -a \cos \tau \quad \left(0 \leq \frac{t}{\tau} \leq \pi\right) \quad (15)$$

und ferner

$$-2 u_0 f'(x) = \frac{1}{\sin t} G(t), \quad \gamma(\xi) = \frac{1}{\sin \tau} \omega(\tau). \quad (16)$$

Außerdem approximieren wir den stetigen Kernanteil K im Bereich $0 \leq \frac{t}{\tau} \leq \pi$ durch ein sechsgliedriges Fourier-Polynom in der Form

$$a \sin t K(t, \tau) = \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu} \sin \mu t \cos \nu \tau. \quad (17)$$

Dabei sind die $b_{\mu\nu}$, mit Hilfe einer harmonischen Analyse aus folgender Formel zu berechnen:

$$b_{\mu\nu} = \frac{a}{9} \sum_{j=1}^5 \sin \mu t_j \left\{ \sum_{k=1}^5 \sin t_j K(t_j, \tau_k) \cos \nu \tau_k + \frac{\sin t_j}{2} [K(t_j, 0) + (-1)^{\nu} K(t_j, \pi)] \right\} \quad (18)$$

$$\left. \left(\mu = 1, \dots, 5; \nu = 1, \dots, 5, t_j = j \frac{\pi}{6}, \tau_k = k \frac{\pi}{6} \right) \right\}$$

Für $\nu = 0$ und $\nu = 6$ ist die Hälfte des sich aus Formel (18) ergebenden Wertes zu nehmen.

Nunmehr nimmt unsere Integralgleichung (12) die Form an

$$G(t) = \frac{1}{\pi} \int_0^\pi \omega(\tau) \left(\frac{\sin t}{\cos \tau - \cos t} + \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu} \sin \mu t \cos \nu \tau \right) d\tau. \quad (19)$$

Die bekannte Funktion $G(t)$ kann unschwer (eventuell mit Hilfe einer harmonischen Analyse) in die Form

$$G(t) = \sqrt{\frac{2}{\pi}} \sum_{\alpha=1}^5 G_\alpha \sin \alpha t \quad (20)$$

gebracht werden; für die gesuchte Lösung $\omega(\tau)$ machen wir den Ansatz

$$\omega(\tau) = \frac{\omega_0}{\sqrt{\pi}} + \sqrt{\frac{2}{\pi}} \sum_{\beta=1}^5 \omega_\beta \cos \beta \tau. \quad (21)$$

Hiermit geht die Integralgleichung (19) in das lineare Gleichungssystem für die Koeffizienten ω_α

$$\omega_\alpha = G_\alpha - \frac{1}{\sqrt{2}} b_{\alpha 0} \omega_0 - \frac{1}{2} \sum_{\beta=1}^5 b_{\alpha\beta} \omega_\beta \quad (\alpha = 1, \dots, 5) \quad (22)$$

über, welches durch Iteration sehr leicht auflösbar ist, denn, wie sich an Beispielen gezeigt hat, sind die $b_{\mu\nu}$ im allgemeinen klein gegen eins. Die in den ω_β ($\beta = 1, \dots, 5$) noch enthaltene freie Konstante ω_0 wird aus der Abflußbedingung an der Profilhinterkante

$$\gamma(a) \doteq 0, \quad \text{bzw.} \quad \omega(\pi) = 0$$

ermittelt. Damit ist die gesuchte Zirkulationsverteilung $\gamma(\xi)$ des Unterwassertragflügels in der Form (16), (21) endgültig bestimmt. Die Gesamtzirkulation ist

$$\Gamma = \int_{-a}^a \gamma(\xi) d\xi = \sqrt{\pi} a \omega_0. \quad (23)$$

4. Zwei hintereinander fahrende Unterwassertragflächen. Wir sind nunmehr ohne weiteres in der Lage, auch den für Tragflügelboote wichtigen Fall von zwei im Abstand L hintereinander fahrenden Unterwassertragflächen zu behandeln (Abb. 2). Dabei setzen wir voraus, daß die Eintauchtiefe

der beiden Flügel während der Fahrt konstant bleibt, so daß es sich um ein stationäres Strömungsproblem handelt. Für unsere Untersuchung können wir die beiden Tragflächen dann als ruhend in der homogenen Anströmung u_0 betrachten. Die Tragfläche 1 liege bei $-a_1 \leq \xi_1 \leq a_1$ in der Tiefe h_1 unter der Wasseroberfläche $y \approx 0$; die Tragfläche 2 liege bei $-a_2 + L \leq \xi_2 \leq a_2 + L$ in der Tiefe h_2 .

Abb. 2.

Für jede der beiden Tragflächen kann das Geschwindigkeitsfeld $u - u_0 = u_\gamma, v = v_\gamma$ in der Form (7) übernommen werden, und das Gesamtfeld beider Tragflächen wird durch Addition erhalten. Die Randbedingung an den Tragflächen

$$[u_0 + u_{\gamma_1}(x_1, -h_1) + u_{\gamma_2}(x_1, -h_1)] f'_1(x_1) = v_{\gamma_1}(x_1, -h_1) + v_{\gamma_2}(x_1, -h_1),$$

$$[u_0 + u_{\gamma_1}(x_2, -h_2) + u_{\gamma_2}(x_2, -h_2)] f'_2(x_2) = v_{\gamma_1}(x_2, -h_2) + v_{\gamma_2}(x_2, -h_2)$$

führt auf ein Integralgleichungssystem für die Zirkulationsverteilungen $\gamma_1(\xi_1)$ und $\gamma_2(\xi_2)$; dieses lautet

$$\left. \begin{aligned} -2u_0 f'_1(x_1) &= \frac{1}{\pi} \int_{-a_1}^{a_1} \gamma_1(\xi_1) \left[\frac{1}{x_1 - \xi_1} + K_{11}(x_1, \xi_1) \right] d\xi_1 + \frac{1}{\pi} \int_{-a_2+L}^{a_2+L} \gamma_2(\xi_2) K_{12}(x_1, \xi_2) d\xi_2, \\ -2u_0 f'_2(x_2) &= \frac{1}{\pi} \int_{-a_1}^{a_1} \gamma_1(\xi_1) K_{21}(x_2, \xi_1) d\xi_1 + \frac{1}{\pi} \int_{-a_2+L}^{a_2+L} \gamma_2(\xi_2) \left[\frac{1}{x_2 - \xi_2} + K_{22}(x_2, \xi_2) \right] d\xi_2, \\ \left(-a_1 \leq \frac{x_1}{\xi_1} \leq a_1, \quad -a_2 + L \leq \frac{x_2}{\xi_2} \leq a_2 + L \right). \end{aligned} \right\} \quad (24)$$

Alle vier K -Funktionen sind in beiden Variablen stetig. K_{11} und K_{22} haben genau die Form (13). K_{12} und K_{21} können aus (7) leicht entnommen werden; es ist nur $2h$ durch $h_1 + h_2$ zu ersetzen; außerdem können wegen $(gL/u_0^2)^2 \gg \vartheta^2$ an Stelle der Integralformeln (9), (10) nunmehr die einfacheren Relationen

$$\int_0^H \frac{\vartheta e^\vartheta d\vartheta}{\vartheta^2 + \frac{g^2}{u_0^4} (x_2 - \xi_1)^2} \approx \frac{1}{2} \frac{H^2}{\frac{g^2}{u_0^4} (x_2 - \xi_1)^2}, \quad \frac{g}{u_0^2} (x_2 - \xi_1) \int_0^H \frac{e^\vartheta d\vartheta}{\vartheta^2 + \frac{g^2}{u_0^4} (x_2 - \xi_1)^2} \approx \frac{e^H - 1}{\frac{g}{u_0^2} (x_2 - \xi_1)} \quad (25)$$

verwendet werden. Damit wird

$$\begin{aligned} K_{21}(x_2, \xi_1) &= \frac{x_2 - \xi_1 - (h_1 + h_2) f'_2(x_2)}{(x_2 - \xi_1)^2 + (h_1 + h_2)^2} + \frac{x_2 - \xi_1 + (h_1 - h_2) f'_2(x_2)}{(x_2 - \xi_1)^2 + (h_1 - h_2)^2} \\ &\quad + 2 \frac{g}{u_0^2} e^{-\frac{g}{u_0^2} (h_1 + h_2)} f'_2(x_2) \left[\frac{3\pi}{2} \sin \frac{g}{u_0^2} (x_2 - \xi_1) + C_i \left(g \frac{x_2 - \xi_1}{u_0^2} \right) \cos \frac{g}{u_0^2} (x_2 - \xi_1) \right. \\ &\quad \left. + S_i \left(g \frac{x_2 - \xi_1}{u_0^2} \right) \sin \frac{g}{u_0^2} (x_2 - \xi_1) + \frac{1}{2} \frac{(h_1 + h_2)^2}{(x_2 - \xi_1)^2} \right] + 2 \frac{g}{u_0^2} e^{-\frac{g}{u_0^2} (h_1 + h_2)} \left[\frac{3\pi}{2} \cos \frac{g}{u_0^2} (x_2 - \xi_1) \right. \\ &\quad \left. + S_i \left(g \frac{x_2 - \xi_1}{u_0^2} \right) \cos \frac{g}{u_0^2} (x_2 - \xi_1) - C_i \left(g \frac{x_2 - \xi_1}{u_0^2} \right) \sin \frac{g}{u_0^2} (x_2 - \xi_1) - \frac{e^{\frac{g}{u_0^2} (h_1 + h_2)} - 1}{\frac{g}{u_0^2} (x_2 - \xi_1)} \right]. \quad (26) \end{aligned}$$

Analog ergibt sich $K_{12}(x_1, \xi_2)$; dabei ist zu beachten, daß wegen $x_1 < \xi_2$ an Stelle von $3\pi/2$ nur $\pi/2$ auftritt. Vgl. (7).

Die Auflösung des Integralgleichungssystems (24) erfolgt genau in gleicher Weise wie die der Gleichung (12), wobei wieder auf eine ausführliche Darstellung des Verfassers verwiesen werden

kann¹. Durch eine zu (15), (16), (17) analoge Transformation geht (24) über in

$$\left. \begin{aligned} G_1(t_1) &= \frac{1}{\pi} \int_0^\pi \omega_1(\tau_1) \left(\frac{\sin t_1}{\cos \tau_1 - \cos t_1} + \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu}^{(1,1)} \sin \mu t_1 \cos \nu \tau_1 \right) d\tau_1 \\ &\quad + \frac{1}{\pi} \int_0^\pi \omega_2(\tau_2) \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu}^{(1,2)} \sin \mu t_1 \cos \nu \tau_2 d\tau_2 \left(0 \leqq \frac{t_1}{\tau_1} \leqq \pi \right), \\ G_2(t_2) &= \frac{1}{\pi} \int_0^\pi \omega_1(\tau_1) \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu}^{(2,1)} \sin \mu t_2 \cos \nu \tau_1 d\tau_1 \\ &\quad + \frac{1}{\pi} \int_0^\pi \omega_2(\tau_2) \left(\frac{\sin t_2}{\cos \tau_2 - \cos t_2} + \sum_{\mu=1}^5 \sum_{\nu=0}^6 b_{\mu\nu}^{(2,2)} \sin \mu t_2 \cos \nu \tau_2 \right) d\tau_2 \end{aligned} \right\} \quad (27)$$

$$\left. \left(0 \leqq \frac{t_2}{\tau_2} \leqq \pi \right) \right.$$

und an Stelle von (22) haben wir jetzt die Gleichungssysteme

$$\left. \begin{aligned} \omega_\alpha^{(1)} &= G_\alpha^{(1)} - \frac{1}{\sqrt{2}} (b_{\alpha 0}^{(1,1)} \omega_0^{(1)} + b_{\alpha 0}^{(1,2)} \omega_0^{(2)}) - \frac{1}{2} \sum_{\beta=1}^5 (b_{\alpha\beta}^{(1,1)} \omega_\beta^{(1)} + b_{\alpha\beta}^{(1,2)} \omega_\beta^{(2)}), \\ \omega_\alpha^{(2)} &= G_\alpha^{(2)} - \frac{1}{\sqrt{2}} (b_{\alpha 0}^{(2,1)} \omega_0^{(1)} + b_{\alpha 0}^{(2,2)} \omega_0^{(2)}) - \frac{1}{2} \sum_{\beta=1}^5 (b_{\alpha\beta}^{(2,1)} \omega_\beta^{(1)} + b_{\alpha\beta}^{(2,2)} \omega_\beta^{(2)}), \end{aligned} \right\} \quad (28)$$

zur Bestimmung der Koeffizienten $\omega_\alpha^{(1)}$ bzw. $\omega_\alpha^{(2)}$ ($\alpha = 1, \dots, 5$) der beiden in der Form (21) angesetzten Lösungsfunktionen $\omega_1(\tau_1)$ und $\omega_2(\tau_2)$. Die Konstanten $\omega_0^{(1)}$ und $\omega_0^{(2)}$ werden durch die beiden Abflußbedingungen $\omega_1(\pi) = 0$ und $\omega_2(\pi) = 0$ festgelegt.

5. Berechnung der Flügelkräfte. Die resultierenden Flügelkräfte K_x und K_y in x - und y -Richtung berechnen wir nach dem Kutta-Joukowskischen Satz: Die resultierende Kraft steht senkrecht auf der resultierenden Anströmung w gegen den Flügel und hat die Größe $\sqrt{K_x^2 + K_y^2} = \varrho w \Gamma$, wobei Γ die Gesamtzirkulation des Flügels, ϱ die Wasserdichte und w die Geschwindigkeit ist, die am Ort des Flügels relativ zu diesem herrscht, abzüglich der von den gebundenen Wirbeln des Flügels selbst induzierten Geschwindigkeit. Alle durch den Einfluß der freien Oberfläche bedingten Geschwindigkeits-Anteile sind natürlich in w enthalten. Für diese Kraftberechnung denken wir uns die Flügel durch in ihren Druck-Mittelpunkten (d. h. etwa in $1/4$ der Profiltiefe) angeordnete Punktwirbel gleicher Gesamtzirkulation ersetzt.

Somit sind für einen Einzelflügel die Kräfte gegeben durch

$$K_y = \varrho [u_0 + u_\gamma^{(II)}(0) + u_\gamma^{(III)}(0)] \Gamma, \quad K_x = -\varrho [v_\gamma^{(II)}(0) + v_\gamma^{(III)}(0)] \Gamma. \quad (29)$$

Dabei ist nach (7)

$$\left. \begin{aligned} u_\gamma^{(II)}(0) + u_\gamma^{(III)}(0) &= -\frac{\Gamma}{4\pi h} + \frac{g}{u_0^2} \frac{\Gamma}{\pi} e^{-\frac{2hg}{u_0^2}} \left[C_i(0) + \int_0^{\frac{2hg}{u_0^2}} e^\vartheta \frac{d\vartheta}{\vartheta} \right] \\ &= -\frac{\Gamma}{4\pi h} + \frac{g}{u_0^2} \frac{\Gamma}{\pi} e^{-\frac{2hg}{u_0^2}} \left[0,577 + \ln \frac{2hg}{u_0^2} + \frac{2hg}{u_0^2} + \left(\frac{hg}{u_0^2} \right)^2 \right], \\ v_\gamma^{(II)}(0) + v_\gamma^{(III)}(0) &= -\frac{g}{u^2} \Gamma e^{-\frac{2hg}{u_0^2}} \end{aligned} \right\} \quad (30)$$

Die Kraftkomponente K_x ist positiv, hat also den Charakter eines Widerstandes; dieser Widerstand, der ausschließlich durch den Einfluß der freien Wasseroberfläche bedingt ist, wird als Wellenwiderstand bezeichnet.

Bei zwei im Abstand $L > 0$ hintereinander fahrenden Flügeln erhält man die Kräfte am vorherigen Flügel 1 aus

$$\left. \begin{aligned} K_y^{(1)} &= \varrho [u_0 + u_{\gamma_1}^{(II)}(0) + u_{\gamma_1}^{(III)}(0) + u_{\gamma_2}(-L)] \Gamma_1, \\ K_x^{(1)} &= -\varrho [v_{\gamma_1}^{(II)}(0) + v_{\gamma_1}^{(III)}(0) + v_{\gamma_2}(-L)] \Gamma_1, \end{aligned} \right\} \quad (31)$$

¹ Siehe Fußnote 3 von Seite 298.

und am hinteren Flügel 2 aus

$$\left. \begin{aligned} K_y^{(2)} &= \varrho [u_0 + u_{\gamma_2}^{(II)}(0) + u_{\gamma_2}^{(III)}(0) + u_{\gamma_1}(L)] \Gamma_2, \\ K_x^{(2)} &= -\varrho [v_{\gamma_2}^{(II)}(0) + v_{\gamma_2}^{(III)}(0) + v_{\gamma_1}(L)] \Gamma_2. \end{aligned} \right\} \quad (32)$$

Dabei sind $u_{\gamma}^{(II)}(0) + u_{\gamma}^{(III)}(0)$ und $v_{\gamma}^{(II)}(0) + v_{\gamma}^{(III)}(0)$ durch (30) gegeben, während man aus (7) entnimmt

$$\left. \begin{aligned} u_{\gamma_1}(L) &= -\frac{1}{2\pi} \frac{(h_1 + h_2) \Gamma_1}{(h_1 + h_2)^2 + L^2} + \frac{1}{2\pi} \frac{(h_1 - h_2) \Gamma_1}{(h_1 - h_2)^2 + L^2} + \frac{1}{\pi} \frac{g}{u_0^2} \Gamma_1 e^{-\frac{g}{u_0^2} (h_1 + h_2)} \times \\ &\quad \times \left[\frac{3\pi}{2} \sin \frac{gL}{u_0^2} + C_i \left(\frac{gL}{u_0^2} \right) \cos \frac{gL}{u_0^2} + S_i \left(\frac{gL}{u_0^2} \right) \sin \frac{gL}{u_0^2} + \frac{1}{2} \left(\frac{h_1 + h_2}{L} \right)^2 \right], \\ u_{\gamma_1}(-L) &= -\frac{1}{2\pi} \frac{(h_1 + h_2) \Gamma_2}{(h_1 + h_2)^2 + L^2} - \frac{1}{2\pi} \frac{(h_1 - h_2) \Gamma_2}{(h_1 - h_2)^2 + L^2} + \frac{1}{\pi} \frac{g}{u_0^2} \Gamma_2 e^{-\frac{g}{u_0^2} (h_1 + h_2)} \times \\ &\quad \times \left[-\frac{\pi}{2} \sin \frac{gL}{u_0^2} + C_i \left(\frac{gL}{u_0^2} \right) \cos \frac{gL}{u_0^2} + S_i \left(\frac{gL}{u_0^2} \right) \sin \frac{gL}{u_0^2} + \frac{1}{2L^2} (h_1 + h_2)^2 \right], \\ v_{\gamma_1}(L) &= -\frac{1}{2\pi} \frac{L \Gamma_1}{(h_1 + h_2)^2 + L^2} - \frac{1}{2\pi} \frac{L \Gamma_1}{(h_1 - h_2)^2 + L^2} - \frac{1}{\pi} \frac{g}{u_0^2} \Gamma_1 e^{-\frac{g}{u_0^2} (h_1 + h_2)} \times \\ &\quad \times \left[\frac{3\pi}{2} \cos \frac{gL}{u_0^2} + S_i \left(\frac{gL}{u_0^2} \right) \cos \frac{gL}{u_0^2} - C_i \left(\frac{gL}{u_0^2} \right) \sin \frac{gL}{u_0^2} - \frac{u_0^2}{gL} \left(e^{\frac{g}{u_0^2} (h_1 + h_2)} - 1 \right) \right], \\ v_{\gamma_1}(-L) &= +\frac{1}{2\pi} \frac{L \Gamma_2}{(h_1 + h_2)^2 + L^2} + \frac{1}{2\pi} \frac{L \Gamma_2}{(h_1 - h_2)^2 + L^2} + \frac{1}{\pi} \frac{g}{u_0^2} \Gamma_2 e^{-\frac{g}{u_0^2} (h_1 + h_2)} \times \\ &\quad \times \left[-\frac{\pi}{2} \cos \frac{gL}{u_0^2} + S_i \left(\frac{gL}{u_0^2} \right) \cos \frac{gL}{u_0^2} - C_i \left(\frac{gL}{u_0^2} \right) \sin \frac{gL}{u_0^2} - \frac{u_0^2}{gL} \left(e^{\frac{g}{u_0^2} (h_1 + h_2)} - 1 \right) \right]. \end{aligned} \right\} \quad (33)$$

6. Die Form der Wasseroberfläche. Wir haben in Gleichung (1) eine Relation, die es uns ermöglicht, die Form $Y(x)$ der freien Wasseroberfläche zu berechnen. Der in (1) einzusetzende Wert u_γ ist durch (7) gegeben; und zwar muß $u_\gamma(x, 0)$ genommen werden, denn der ganzen bisherigen Theorie liegt die Annahme zugrunde, daß die Wasseroberfläche annähernd mit der Ebene $y = 0$ zusammenfalle, und das Geschwindigkeitsfeld (7) erfüllt gerade für $y = 0$ die kinematische Bedingung (2) der freien Oberfläche. Man hat somit

$$Y(x) = -\frac{u_0}{g} u_\gamma(x, 0). \quad (1)$$

Nun ist zu bedenken, daß die Zirkulation $\gamma(\xi)$ unter der Voraussetzung bestimmt wurde, daß die freie Oberfläche jedenfalls näherungsweise mit der Ebene $y = 0$ zusammenfalle, oder anders ausgedrückt, daß die Oberflächenbedingung (2) im Abstand h von der Tragfläche erfüllt wurde. Weicht nun die aus (1) ermittelte Form Y der Wasseroberfläche in der Umgebung des Flügels erheblich von der vorausgesetzten Form $Y \approx 0$ ab, so wird es notwendig, die Zirkulation $\gamma(\xi)$ zu verbessern oder sogar neu zu bestimmen. Hierfür wäre es natürlich sehr wünschenswert, eine Theorie zur Verfügung zu haben, bei der die Bedingung (2) der freien Oberfläche längs einer beliebigen Kurve $Y(x)$ erfüllt werden könnte. Aber leider stößt eine solche Theorie auf sehr große mathematische Schwierigkeiten, und es ist bisher nicht gelungen, hier etwas brauchbares zu entwickeln. Wir müssen das genannte Problem also mit Hilfe der in den vorangehenden Abschnitten dargestellten Theorie lösen. Dabei wollen wir die Fälle Einzelflügel und zwei hintereinander fahrende Flügel getrennt behandeln.

a) Einzelflügel: Es hat sich gezeigt (vgl. die späteren Beispiele), daß das aus (1) berechnete und über die Umgebung des Flügels gemittelte $Y(x)$ nicht wesentlich von dem vorausgesetzten Wert (\approx Null) abweicht. Somit werden in diesem Fall keine zusätzlichen Überlegungen notwendig.¹

Wir schließen hier noch einige Bemerkungen darüber an, wie die praktische Berechnung von $u_\gamma(x, 0)$ am besten durchgeführt wird. Wenn die halbe Flügellänge a nicht wesentlich größer ist als die Eintauchtiefe h , so kann man den Flügel ersetzen durch einen in seinem Druckmittelpunkt angeordneten Punktwirbel gleicher Gesamtzirkulation Γ . Bei vielen Profilen liegt der Druck-

¹ Sollte der über die Umgebung des Flügels gemittelte Wert von $Y(x)$ doch einmal wesentlich von Null abweichen, so kann die unter b) angegebene Methode auch hier verwendet werden.

mittelpunkt bekanntlich in der Nähe des sog. $\frac{1}{4}$ -Punktes, d. h. bei $\xi \approx -a/2$. Damit ergibt sich folgende bequeme Näherungsformel:

$$u_\gamma(x, 0) = \frac{1}{\pi} \frac{g}{u_0^2} e^{-\frac{g}{u_0^2} h} \left[\pi \sin X + \frac{\pi}{2} \sin |X| + C_i(X) \cos X + S_i(X) \sin X + \int_0^{\frac{h g}{u_0^2}} \frac{\partial e^\vartheta}{\partial^2 + X^2} d\vartheta \right] \Gamma. \quad (34)$$

Dabei ist $X = \frac{a g}{u_0^2} \left(\frac{x}{a} + 0,5 \right)$. Das Integral in (34) ist entweder mit Hilfe der Formel (9) oder mit (25) auszuwerten, je nachdem ob $\vartheta^2 \sim X^2$ oder $\vartheta^2 \ll X^2$ ist.

Wenn andererseits die Flügelänge groß ist gegen die Eintauchtiefe, oder wenn besondere Genauigkeitsansprüche vorliegen, so hat man zunächst nach (7)

$$u_\gamma(x, 0) = \frac{1}{\pi} \frac{g}{u_0^2} e^{-\frac{g}{u_0^2} h} \int_{-a}^a \gamma(\xi) \left[\pi \sin \frac{g}{u_0^2} (x - \xi) + \frac{\pi}{2} \sin \frac{g}{u_0^2} (x - \xi) \right] + C_i \left(g \frac{x - \xi}{u_0^2} \right) \cos \frac{g}{u_0^2} (x - \xi) \\ + S_i \left(g \frac{x - \xi}{u_0^2} \right) \sin \frac{g}{u_0^2} (x - \xi) + \int_0^{\frac{h g}{u_0^2}} \frac{\partial e^\vartheta}{\partial^2 + \frac{g^2}{u_0^4} (x - \xi)^2} d\xi = \frac{1}{\pi} \int_{-a}^a \gamma(\xi) \Theta(x, \xi) d\xi. \quad (35)$$

Soll $u_\gamma(x, 0)$ etwa im Bereich $-3a \leq x \leq 7a$ berechnet werden, so wird die stetige Funktion $\Theta(x, \xi)$ mit Hilfe der Substitution

$$x = 2a - 5a \cos t, \quad \xi = -a \cos \tau \quad (0 \leq \frac{t}{\pi} \leq \pi), \quad (36)$$

durch ein Fourier-Polynom approximiert:

$$a \Theta(t, \tau) = \sum_{\mu=0}^6 \sum_{\nu=0}^6 c_{\mu\nu} \cos \mu t \cos \nu \tau. \quad (37)$$

Die $c_{\mu\nu}$ werden mit Hilfe einer harmonischen Analyse berechnet:

$$\left. \begin{aligned} c_{\mu\nu} &= \frac{a}{9} \sum_{j=1}^5 \sum_{k=1}^5 \Theta(t_j, \tau_k) \cos \mu t_j \cos \nu \tau_k \\ &+ \frac{a}{36} [\Theta(0, 0) + (-1)^\nu \Theta(0, \pi) + (-1)^\mu \Theta(\pi, 0) + (-1)^\nu (-1)^\mu \Theta(\pi, \pi)] \\ &+ \frac{a}{18} \sum_{j=1}^5 \cos \mu t_j [\Theta(t_j, 0) + (-1)^\nu \Theta(t_j, \pi)] \\ &+ \frac{a}{18} \sum_{k=1}^5 \cos \nu \tau_k [\Theta(0, \tau_k) + (-1)^\mu \Theta(\pi, \tau_k)] \end{aligned} \right\} (\mu = 1, \dots, 5; \nu = 1, \dots, 5; t_j = j \frac{\pi}{6}; \tau_k = k \frac{\pi}{6}). \quad (38)$$

Hat entweder μ oder ν den Wert null oder sechs, so ist die Hälfte des sich aus Formel (38) ergebenden Wertes zu nehmen; haben sowohl μ als auch ν den Wert null oder sechs, so ist ein Viertel des sich aus (38) ergebenden Wertes zu nehmen.

Ferner wird die Zirkulationsverteilung in der Form $\omega(\tau)$ gemäß Gleichung (21) angesetzt. Damit ergibt sich die Geschwindigkeit $u_\gamma(x, 0)$ zu

$$u_\gamma(t) = \frac{1}{\sqrt{\pi}} \sum_{\mu=0}^6 \left(c_{\mu 0} \omega_0 + \frac{1}{\sqrt{2}} \sum_{\beta=1}^6 c_{\mu\beta} \omega_\beta \right) \cos \mu t, \quad (x = 2a - 5a \cos t). \quad (39)$$

b) Zwei hintereinander fahrende Flügel: In diesem Fall fährt der hintere Flügel in dem Wellensystem des vorderen Flügels; es hat sich gezeigt, daß die durch den vorderen Flügel in der Umgebung des hinteren Flügels hervorgerufene Deformation der freien Oberfläche bei der Rechnung der Zirkulationsverteilung berücksichtigt werden muß. Umgekehrt beeinflußt der hintere Flügel den vorderen fast gar nicht. Berechnet man nach der Theorie aus Ziff. 4 die Zirkulationen γ_1 und γ_2 der beiden Tragflügel, so wird für diese Rechnung die Randbedingung (2) der freien Oberfläche im Abstand h_1 vom Flügel 1 und im Abstand h_2 vom Flügel 2 erfüllt.

Wird nun aus Gleichung (1'), d. h. hier¹

$$Y(x) = -\frac{u_0}{g} u_{\gamma_1}(x, 0) - \frac{u_0}{g} u_{\gamma_2}(x, 0) \quad (1')$$

die Form der freien Oberfläche bestimmt, so wird sich im allgemeinen herausstellen, daß in der Umgebung des Flügels 2 sein mittlerer Abstand von der freien Oberfläche nicht h_2 sondern h_2^* ist; dabei kann h_2^* wesentlich von h_2 verschieden sein; z. B. $h_2^* = \frac{1}{2} h_2$. Die Zirkulation des Flügels 2 ist also unter einer nicht zutreffenden Voraussetzung bestimmt. Da keine Theorie vorliegt, die es ermöglicht, die Oberflächenbedingung (2) längs einer beliebigen Kurve $Y(x)$ zu erfüllen, bleiben zwei Möglichkeiten für die weitere Behandlung des Problemes.

1. Man wiederholt die Berechnung der Zirkulationsverteilungen γ_1 und γ_2 nach der Theorie von Ziff. 4; dabei wird lediglich h_2 durch h_2^* ersetzt; denn da durch den „Fremdeinfluß“ des Flü-

gels 1 die Wasseroberfläche den Abstand h_2^* (und nicht h_2) vom Flügel 2 hat, so muß für letzteren auch die kinematische Oberflächenbedingung (2) im Abstand h_2^* erfüllt werden. Mit den so neu berechneten Zirkulationsverteilungen γ_1^* und γ_2^* können die an der freien Oberfläche wirksamen Störgeschwindigkeiten $u_{\gamma_1}^*(x, 0)$ und $u_{\gamma_2}^*(x, 0)$ nach Formel (34) berechnet werden. (Fast immer wird übrigens $\gamma_1 = \gamma_1^*$ sein.)

Dann liefert

$$Y^*(x) = -\frac{u_0}{g} u_{\gamma_1}^*(x, 0) - \frac{u_0}{g} u_{\gamma_2}^*(x, 0)$$

die verbesserte Form der freien Oberfläche; diese ist wegen

$$u_{\gamma_1}^*(-\infty, 0) \equiv 0, \quad u_{\gamma_2}^*(-\infty, 0) \equiv 0$$

Abb. 3. a) 1. Möglichkeit; b) 2. Möglichkeit.

von dem alten Nullniveau (weit vor Flügel 1) aus zu rechnen. So kann dieses Verfahren iterativ fortgesetzt werden. In vielen Fällen ist bereits $Y^*(x) \approx Y(x)$, so daß nur ein Iterationsschritt erforderlich ist (vgl. Abb. 3).

2. Die andere Möglichkeit ist folgende (ohne Iterationsverfahren). Man behält die im ersten Rechengang erhaltenen Zirkulationsverteilungen γ_1 und γ_2 bei und verändert die Tiefenlage des Flügels 2 gegenüber dem Flügel 1 entsprechend der Gestalt der freien Oberfläche. Man hat damit jedoch nur ein Problem, das gegenüber dem ursprünglich vorgegebenen abgeändert ist, gelöst (Abb. 3).

7. Die $\frac{1}{4}$ -— $\frac{3}{4}$ -Punkt-Methode. In vielen Fällen leistet in der Tragflügeltheorie die sog. $\frac{1}{4}$ -— $\frac{3}{4}$ -Punkt-Methode gute Dienste, um näherungsweise die Gesamtzirkulation Γ eines Flügels zu bestimmen. Die Methode besteht bekanntlich darin, daß man den Tragflügel durch einen in seinem $\frac{1}{4}$ -Punkt $\xi = -a/2$ angeordneten Punktwirbel ersetzt und die Randbedingung am Flügel im $\frac{3}{4}$ -Punkt $x/a = 1/2$ erfüllt. Hierdurch ergibt sich eine lineare Gleichung zur Berechnung von Γ , und man umgeht die Auflösung der Integralgleichung; natürlich erhält man dabei nicht die Zirkulationsverteilung $\gamma(\xi)$. Auch für zwei hintereinander fahrende Flügel läßt sich die Methode anwenden und liefert zwei Bestimmungsgleichungen für Γ_1 und Γ_2 .

Durch Vergleich mit Beispielen, die nach der genauen Theorie von Ziff. 3 und Ziff. 4 durchgerechnet wurden, hat sich gezeigt, daß die Zirkulation Γ auch bei Unterwassertragflügeln in recht guter Näherung nach der $\frac{1}{4}$ -— $\frac{3}{4}$ -Punkt-Methode bestimmt werden kann. Dieses ist z. B. wichtig für das in Ziff. 6b) beschriebene Iterationsverfahren, da man für die erste Näherung gut diese Methode verwenden und sich somit einmal die Auflösung des Integralgleichungssystems (24) ersparen kann.

Wir bezeichnen mit $u_\Gamma(x, y)$, $v_\Gamma(x, y)$ das aus (7) sofort zu entnehmende Geschwindigkeitsfeld eines bei $\xi = -a/2$ gelegenen Punktwirbels der Zirkulation Γ . Die Randbedingung im $\frac{3}{4}$ -Punkt lautet

$$u_0 f' \left(\frac{a}{2} \right) + u_\Gamma \left(\frac{a}{2}, -h \right) f' \left(\frac{a}{2} \right) = v_\Gamma \left(\frac{a}{2}, -h \right),$$

¹ Bei der Anwendung von Formel (34) auf Flügel 2 ist natürlich $X = \frac{g}{u_0^2} \left(x + \frac{1}{2} a_2 - L \right)$. Analoges gilt für Formel (39).

und daraus ergibt sich nach einer elementaren Rechnung die Bestimmungsgleichung für Γ'

$$\begin{aligned} -u_0 f' \left(\frac{a}{2} \right) = & \frac{\Gamma}{2\pi a} + \frac{\Gamma}{2\pi a} A e^{-H} \left[\frac{A - f' H}{A^2 + H^2} e^H + [3\pi + 2 S_i(A) + 2 f' C_i(A)] \cos A \right. \\ & + [3\pi f' - 2 C_i(A) + 2 f' S_i(A)] \sin A - 2 \left(1 - \frac{A^2}{2} + A f' - \frac{1}{6} A^3 f' \right) \arctg \frac{H}{A} \\ & - \left(A - f' - \frac{1}{6} A^3 + \frac{1}{2} A^2 f' \right) \ln \frac{H^2 + A^2}{A^2} \\ & \left. - A H \left(1 + \frac{H}{6} \right) + H f' \left(2 + \frac{H}{2} - \frac{1}{3} A^2 \right) \right]. \end{aligned} \quad (40)$$

Dabei ist $H = 2 h g/u_0^2$ und $A = (a g/u_0^2)$. $\sqrt{2/H}$ und $\sqrt{1/A}$ können als Froudesche Tiefenzahl bzw. Längenzahl bezeichnet werden.

Analog hat man bei zwei Flügeln die Randbedingungen in den $\frac{3}{4}$ -Punkten

$$\begin{aligned} \left[u_0 + u_{\Gamma_1} \left(\frac{a_1}{2}, -h_1 \right) + u_{\Gamma_2} \left(\frac{a_1}{2}, -h_1 \right) \right] f'_1 \left(\frac{a_1}{2} \right) = & v_{\Gamma_1} \left(\frac{a_1}{2}, -h_1 \right) + v_{\Gamma_2} \left(\frac{a_1}{2}, -h_1 \right), \\ \left[u_0 + u_{\Gamma_1} \left(L + \frac{a_2}{2}, -h_2 \right) + u_{\Gamma_2} \left(L + \frac{a_2}{2}, -h_2 \right) \right] f'_2 \left(L + \frac{a_2}{2} \right) = & v_{\Gamma_1} \left(L + \frac{a_2}{2}, -h_2 \right) + v_{\Gamma_2} \left(L + \frac{a_2}{2}, -h_2 \right), \end{aligned}$$

und diese führen auf die folgenden Gleichungen zur Berechnung von Γ_1 und Γ_2 :

$$\begin{aligned} -u_0 f'_1 \left(\frac{a_1}{2} \right) = & \frac{\Gamma_1}{2\pi a_1} + \frac{\Gamma_1}{2\pi a_1} A_1 e^{-H_1} \left\{ \frac{A_1 - f'_1 H_1}{A_1^2 + H_1^2} e^{H_1} + [3\pi + 2 S_i(A_1) + 2 f'_1 C_i(A_1)] \cos A_1 \right. \\ & + [3\pi f'_1 - 2 C_i(A_1) + 2 f'_1 S_i(A_1)] \sin A_1 - 2 \left(1 - \frac{A_1^2}{2} + A_1 f'_1 - \frac{1}{6} A_1^3 f'_1 \right) \arctg \frac{H_1}{A_1} \\ & - \left(A_1 - f'_1 - \frac{1}{6} A_1^3 + \frac{1}{2} A_1^2 f'_1 \right) \ln \frac{H_1^2 + A_1^2}{A_1^2} - A_1 H_1 \left(1 + \frac{H_1}{6} \right) + H_1 f'_1 \left(2 + \frac{H_1}{2} - \frac{1}{3} A_1^2 \right) \Big\} \\ & + \frac{\Gamma_2}{2\pi a_2} A_2 e^{-H_{12}} \left\{ \frac{A_{12} - f'_1 H_{12}}{A_{12}^2 + H_{12}^2} e^{H_{12}} + \frac{2 - e^{H_{12}}}{A_{12}} + [\pi + 2 S_i(A_{12}) + 2 f'_1 C_i(A_{12})] \cos A_{12} \right. \\ & + [\pi f'_1 - 2 C_i(A_{12}) + 2 f'_1 S_i(A_{12})] \sin A_{12} \Big\}, \\ -u_0 f'_2 \left(L + \frac{a_2}{2} \right) = & \frac{\Gamma_1}{2\pi a_1} A_1 e^{-H_{21}} \left\{ \frac{A_{21} - f'_2 H_{21}}{A_{21}^2 + H_{21}^2} e^{H_{21}} + \frac{2 - e^{H_{21}}}{A_{21}} \right. \\ & + [3\pi + 2 S_i(A_{21}) + 2 f'_2 C_i(A_{21})] \cos A_{21} + [3\pi f'_2 - 2 C_i(A_{21}) + 2 f'_2 S_i(A_{21})] \sin A_{21} \Big\} \\ & + \frac{\Gamma_2}{2\pi a_2} + \frac{\Gamma_2}{2\pi a_2} A_2 e^{-H_2} \left\{ \frac{A_2 - f'_2 H_2}{A_2^2 + H_2^2} e^{H_2} + [3\pi + 2 S_i(A_2) + 2 f'_2 C_i(A_2)] \cos A_2 \right. \\ & + [3\pi f'_2 - 2 C_i(A_2) + 2 f'_2 S_i(A_2)] \sin A_2 - 2 \left(1 - \frac{A_2^2}{2} + A_2 f'_2 - \frac{1}{6} A_2^3 f'_2 \right) \arctg \frac{H_2}{A_2} \\ & - \left(A_2 - f'_2 - \frac{1}{6} A_2^3 + \frac{1}{2} A_2^2 f'_2 \right) \ln \frac{H_2^2 + A_2^2}{A_2^2} - A_2 H_2 \left(1 + \frac{H_2}{6} \right) + H_2 f'_2 \left(2 + \frac{H_2}{2} - \frac{1}{3} A_2^2 \right) \Big\}. \end{aligned} \quad (41)$$

Dabei ist

$$\begin{aligned} H_1 &= \frac{2 h_1 g}{u_0^2}, \quad H_2 = \frac{2 h_2 g}{u_0^2}, \quad H_{12} = H_{21} = \frac{h_1 + h_2}{u_0^2} g, \quad A_1 = \frac{a_1 g}{u_0^2}, \quad A_2 = \frac{a_2 g}{u_0^2}; \\ A_{12} &= \frac{g}{u_0^2} (a - L), \quad A_{21} = \frac{g}{u_0^2} (a + L), \quad a = \frac{a_1 + a_2}{2}. \end{aligned}$$

In Anbetracht des Näherungscharakters der $\frac{1}{4}-\frac{3}{4}$ -Punkt Methode sind in den Gleichungen (41) einige für die numerische Rechnung ganz unbedeutende Glieder weggelassen worden.

8. Beweis der Integralformeln (5). Die Integralformeln (5) wurden in etwas anderer Form zuerst von Krienes angegeben. Da die Krienessche Untersuchung jedoch nicht veröffentlicht und nur schwer erhältlich ist¹, erscheint es gerechtfertigt, den Beweis der Integralformeln (5) hier zu

¹ An dieser Stelle möchte ich Fräulein E. A. Walinski von der Versuchsanstalt für Wasserbau und Schiffbau, Berlin, dafür danken, daß sie mir liebenswürdigerweise ermöglichte, die beiden genannten Arbeiten von Krienes einzusehen.

bringen. Zudem ist der nachfolgende Beweis verschieden von dem von Krienes angegebenen; während wir ganz im Reellen bleiben werden, benutzt Krienes komplexe Integrationswege.

Zunächst ist

$$\int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \cos \mu X d\mu = e^{-H} \int_{-1}^\infty \frac{e^{-H \chi}}{\chi} \cos X (\chi + 1) d\chi,$$

$$\int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \sin \mu X d\mu = e^{-H} \int_{-1}^\infty \frac{e^{-H \chi}}{\chi} \sin X (\chi + 1) d\chi.$$

Dann wird

$$\int_{-1}^\infty \frac{e^{-H \chi}}{\chi} \sin X \chi d\chi = - \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \sin X \chi d\chi + \int_{-X}^\infty \frac{\sin \sigma}{\sigma} d\sigma = - \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \sin X \chi d\chi + S_i(X) \pm \frac{\pi}{2}.$$

Dabei gilt das + Zeichen für $X > 0$ und das — Zeichen für $X < 0$. Für $X = 0$ hat das Integral den Wert Null. Ferner ist

$$S_i(X) = \int_0^X \frac{\sin \sigma}{\sigma} d\sigma \quad (-S_i(-X) = S_i(X))$$

der Integralsinus. Analog haben wir

$$\int_{-1}^\infty \frac{e^{-H \chi}}{\chi} \cos X \chi d\chi = - \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \cos X \chi d\chi + \int_{-X}^\infty \frac{\cos \sigma}{\sigma} d\sigma = - \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \cos X \chi d\chi - C_i(X),$$

für beliebiges X , da¹

$$\int_{-X}^X \cos \sigma \frac{d\sigma}{\sigma} = 0$$

ist; dabei ist

$$C_i(X) = - \int_X^\infty \cos \sigma \frac{d\sigma}{\sigma} \quad (C_i(-X) = C_i(X))$$

der Integralcosinus. Unter Verwendung dieser Formeln erhalten wir

$$\int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \cos \mu X d\mu = -e^{-H} \left[C_i(X) \cos X + S_i(X) \sin X \pm \frac{\pi}{2} \sin X + \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \cos X (\chi + 1) d\chi \right], \quad (42)$$

$$\int_0^\infty \frac{e^{-\mu H}}{\mu - 1} \sin \mu X d\mu = +e^{-H} \left[S_i(X) \cos X - C_i(X) \sin X \pm \frac{\pi}{2} \cos X - \int_{-1}^\infty \frac{1 - e^{-H \chi}}{\chi} \sin X (\chi + 1) d\chi \right]. \quad (43)$$

Nun sind aus der Integralrechnung die Formeln

$$\int_{-1}^\infty e^{-\vartheta \chi} \cos X (\chi + 1) d\chi = \frac{\vartheta e^\vartheta}{\vartheta^2 + X^2}, \quad \int_{-1}^\infty e^{-\vartheta \chi} \sin X (\chi + 1) d\chi = \frac{X e^\vartheta}{\vartheta^2 + X^2}$$

¹ Die Integralformel gilt auch für $X = 0$; denn man erhält unter Benutzung der Relationen (9), (11), (44) leicht das Ergebnis

$$-0,577 - \ln H - H - \frac{1}{4} H^2 - \frac{1}{18} H^3 - \dots$$

Das gleiche ergibt auch ein direktes Ausrechnen des Integrals

$$\int_{-1}^\infty e^{-H \chi} \frac{d\chi}{\chi} = - \int_{-H}^H \frac{1 - e^{-\chi}}{\chi} d\chi - E i(-H)$$

unter Verwendung der entsprechenden Reihenentwicklungen.

bekannt; aus ihnen folgt durch Integration über ϑ von 0 bis H

$$\left. \begin{aligned} \int_{-1}^{\infty} \frac{1 - e^{-H\chi}}{\chi} \cos X(\chi + 1) d\chi &= \int_0^H \frac{\vartheta e^\vartheta}{\vartheta^2 + X^2} d\vartheta, \\ \int_{-1}^{\infty} \frac{1 - e^{-H\chi}}{\chi} \sin X(\chi + 1) d\chi &= \int_0^H \frac{X e^\vartheta}{\vartheta^2 + X^2} d\vartheta. \end{aligned} \right\} \quad (44)$$

Durch Einsetzen dieser Relationen in (42), (43) ergibt sich (5).

9. Zahlenbeispiele von Einzelflügeln.¹ Bei allen drei folgenden Beispielen handelt es sich um Einzelflügel mit dem Plattenprofil $f'(x) = \text{konst.} = \delta = -0,1$.

Darüber hinaus sei für Beispiel 1 $a g/u_0^2 = 0,1$, $h g/u_0^2 = 0,1$,

für Beispiel 2 $a g/u_0^2 = 0,1$, $h g/u_0^2 = 0,05$,

für Beispiel 3 $a g/u_0^2 = 0,05$, $h g/u_0^2 = 0,05$.

Das entspricht Froudeschen Tiefenzahlen von $u_0/\sqrt{hg} = 3,16$; bzw. 4,47.

In den Tabellen 1 bis 3 sind die Fourier-Koeffizienten $b_{\mu\nu}$ des stetigen Kernanteils der Integralgleichung (19) enthalten.

Tabelle 1. (Beispiel 1) $b_{\mu\nu}$

$\mu \backslash \nu$	0	1	2	3	4	5	6
1	+0,567	+0,284	-0,006	-0,009	0,000	0,000	0,000
2	-0,131	+0,013	+0,030	-0,001	-0,002	0,000	0,000
3	-0,003	-0,028	+0,001	+0,004	0,000	0,000	0,000
4	+0,003	-0,001	-0,004	0,000	+0,001	0,000	0,000
5	0,000	+0,002	0,000	-0,001	0,000	0,000	0,000

Tabelle 2. (Beispiel 2) $b_{\mu\nu}$

$\mu \backslash \nu$	0	1	2	3	4	5	6
1	+0,659	+0,633	-0,019	-0,044	+0,001	+0,002	0,000
2	-0,258	+0,037	+0,161	-0,006	-0,021	+0,001	+0,001
3	-0,005	-0,131	+0,009	+0,051	-0,002	-0,008	0,000
4	+0,001	-0,004	-0,042	+0,003	+0,016	-0,001	-0,003
5	0,000	+0,008	-0,002	-0,016	+0,001	+0,006	0,000

Tabelle 3. (Beispiel 3) $b_{\mu\nu}$

$\mu \backslash \nu$	0	1	2	3	4	5	6
1	+0,341	+0,238	-0,005	-0,008	0,000	0,000	0,000
2	-0,110	+0,009	+0,027	-0,001	-0,002	0,000	0,000
3	-0,002	-0,025	+0,001	+0,004	0,000	0,000	0,000
4	+0,003	-0,001	-0,004	0,000	+0,001	0,000	0,000
5	0,000	+0,001	0,000	-0,001	0,000	0,000	0,000

In Tabelle 4 sind die unter Berücksichtigung der Abflußbedingung berechneten Koeffizienten ω_β der Zirkulationsfunktion $\omega(\tau)$ gemäß (21) in Einheiten von u_0 enthalten. Rechts neben der Tabelle stehen die Gesamtzirkulationen nach (23); ferner haben wir diese Gesamtzirkulation in Beziehung gesetzt zu der Zirkulation $\Gamma_\infty = 0,2 \pi a u_0$ des gleichen Flügels im unendlich ausgedehnten Medium,

¹ Für die Durchführung der in dieser Arbeit enthaltenen numerischen Rechnungen danke ich Frau Märzke und Frau Mutzek.

d. h. für $h \rightarrow \infty$. Daraus erkennt man, wie stark die Zirkulation des Flügels und damit auch die Auftriebskraft herabgesetzt wird durch den Einfluß der freien Wasseroberfläche.

Tabelle 4

	Beispiel 1	Beispiel 2	Beispiel 3
ω_0	+0,194	+0,164	+0,228
ω_1	+0,151	+0,133	+0,175
ω_2	+0,017	+0,025	+0,017
ω_3	+0,003	+0,009	+0,003
ω_4	0,000	+0,001	0,000
ω_5	0,000	0,000	0,000

$$\text{Beispiel 1: } \Gamma = 0,343 a u_0, \frac{\Gamma}{\Gamma_\infty} = 0,546.$$

$$\text{Beispiel 2: } \Gamma = 0,289 a u_0, \frac{\Gamma}{\Gamma_\infty} = 0,460.$$

$$\text{Beispiel 3: } \Gamma = 0,403 a u_0, \frac{\Gamma}{\Gamma_\infty} = 0,642.$$

Aus den Werten der Tabelle 4 erhält man mit (15), (16) die Zirkulationsverteilungen $\gamma(\xi)$ nämlich

$$\text{Beispiel 1: } \gamma(\xi) = \sqrt{\frac{a-\xi}{a+\xi}} \left(0,096 - 0,018 \frac{\xi}{a} + 0,010 \frac{\xi^2}{a^2} \right),$$

$$\text{Beispiel 2: } \gamma(\xi) = \sqrt{\frac{a-\xi}{a+\xi}} \left(0,073 - 0,011 \frac{\xi}{a} + 0,022 \frac{\xi^2}{a^2} - 0,006 \frac{\xi^3}{a^3} \right),$$

$$\text{Beispiel 3: } \gamma(\xi) = \sqrt{\frac{a-\xi}{a+\xi}} \left(0,115 - 0,018 \frac{\xi}{a} + 0,010 \frac{\xi^2}{a^2} \right).$$

Für die resultierenden Kräfte erhält man aus (29):

$$\text{Beispiel 1: } \begin{cases} K_y = 0,332 \varrho a u_0^2, \\ K_x = 0,0097 \varrho a u_0^2, \end{cases}$$

$$\text{Beispiel 2: } \begin{cases} K_y = 0,272 \varrho a u_0^2, \\ K_x = 0,0076 \varrho a u_0^2, \end{cases}$$

$$\text{Beispiel 3: } \begin{cases} K_y = 0,387 \varrho a u_0^2, \\ K_x = 0,0074 \varrho a u_0^2. \end{cases}$$

In Tabelle 5 ist die Form $\frac{1}{a} Y(x)$ der Wasseroberfläche berechnet nach Gleichung (1), (34) enthalten (vgl. auch Abb. 4, 5, 6).

Tabelle 5

$\frac{x}{a}$	-4	-2	-1	0	+1	+2	+4	+6	+10
$\frac{Y}{a}$	Beisp. 1 +0,085	+0,132	+0,163	+0,132	+0,039	-0,050	-0,200	-0,325	-0,508
	Beisp. 2 +0,077	+0,129	+0,187	+0,160	+0,047	-0,039	-0,176	-0,287	-0,449
	Beisp. 3 +0,166	+0,236	+0,286	+0,267	+0,179	+0,100	-0,027	-0,132	-0,307

Abb. 4. Beispiel 1. Form der Wasseroberfläche $Y(x)$ über dem Flügel.Abb. 5. Beispiel 2. Form der Wasseroberfläche $Y(x)$ über dem Flügel.Abb. 6. Beispiel 3. Form der Wasseroberfläche $Y(x)$ über dem Flügel.

Eine Berechnung von $\frac{1}{a} Y(x)$ nach der genauen Methode mit Formel (39) wurde ebenfalls durchgeführt; dabei zeigte es sich, daß Abweichungen von den Werten aus Tabelle 5 in der dritten Stelle hinter dem Komma auftraten. Da diese Stelle in Anbetracht der Näherungstheorie der Oberflächenform sowieso keine echte Bedeutung mehr hat, kann das Ergebnis aus Tabelle 5 als befriedigend angesehen werden.

Eine Berechnung der Zirkulation Γ nach der Näherungsformel (40) ergibt für

$$\text{Beispiel 1: } \Gamma = 0,337 a u_0,$$

$$\text{Beispiel 2: } \Gamma = 0,271 a u_0,$$

$$\text{Beispiel 3: } \Gamma = 0,395 a u_0.$$

Diese Werte stimmen schon relativ gut mit den aus der genauen Theorie durch Lösung der Integralgleichung erhaltenen Werten überein. Die Abweichung ist natürlich für Beispiel 2 am größten, da dort das Verhältnis a/h am größten ist.

Zusammenfassend kann man sagen, daß durch den Einfluß der freien Wasseroberfläche auf den Flügel in erster Linie ein beträchtliches Absinken der Flügelzirkulation Γ (gegenüber dem Fall $h \rightarrow \infty$) bewirkt wird. Dagegen ist die Störgeschwindigkeit (30) am Flügel und damit auch der Wellenwiderstand K_x relativ unbedeutend.

Abschließend sei noch auf Meßergebnisse von Schuster und Schwanecke¹ hingewiesen. Diese fanden für einen Flügel endlicher Spannweite (Seitenverhältnis 5,84) mit Kreissegmentprofil und dem Wert $a g/u_0^2 = 0,0425$ bei einem geometrischen Anstellwinkel von $5,7^\circ$ ($\delta = -0,1$) für $h/a = 0,5$ den Wert $\Gamma/\Gamma_\infty = 0,58$ und für $h/a = 1$ den Wert $\Gamma/\Gamma_\infty = 0,69$. Γ und Γ_∞ ($h \rightarrow \infty$) sind dabei die über Spannweite gemittelten Werte.

Die hier vorgelegte Theorie ergibt für ein Plattenprofil unendlicher Spannweite bei gleichen übrigen Parameterwerten $\Gamma/\Gamma_\infty = 0,56$ bzw. $\Gamma/\Gamma_\infty = 0,66$.

10. Zahlenbeispiele von zwei hintereinander fahrenden Flügeln. Auch für die beiden folgenden Beispiele 4 und 5 legen wir Plattenprofile mit $f'_j(x_j) = \text{konst.} = \delta_j$ ($j = 1, 2$) zugrunde. Außerdem sollen Flügel 1 und 2 jeweils in der gleichen Tiefe unter der ungestörten Wasseroberfläche fahren und die gleiche Flügellänge haben: $a_1 = a_2 = a$ (Abb. 2). Zahlenmäßig sei für

$$\text{Beispiel 4: } \frac{a g}{u_0^2} = \frac{h_1 g}{u_0^2} = \frac{h_2 g}{u_0^2} = 0,1, \quad \delta_1 = \delta_2 = -0,1, \quad L = 20 a,$$

$$\text{Beispiel 5: } \frac{a g}{u_0^2} = \frac{h_1 g}{u_0^2} = \frac{h_2 g}{u_0^2} = 0,05, \quad \delta_1 = \delta_2 = -0,1, \quad L = 20 a.$$

Der gewählte L -Wert entspricht einem bei Tragflügelbooten üblichen Abstand.

Die Berechnung der Zirkulationen erfolgt mit Hilfe des in Ziff. 6b) erläuterten Iterationsverfahrens. Für die Ausgangsrechnung haben wir die folgenden $b_{\mu\nu}$ -Koeffizienten der stetigen Kernanteile des Integralgleichungssystems (27):

Beispiel 4: Für $b_{\mu\nu}^{(1,1)} = b_{\mu\nu}^{(2,2)}$ die Werte aus Tabelle 1;

$$b_{10}^{(1,2)} = -0,013, \quad b_{11}^{(1,2)} = -0,002, \quad b_{20}^{(1,2)} = +0,001,$$

$$b_{10}^{(2,1)} = -0,501, \quad b_{11}^{(2,1)} = -0,091, \quad b_{20}^{(2,1)} = +0,045, \quad b_{21}^{(2,1)} = -0,003, \quad b_{30}^{(2,1)} = +0,001;$$

alle übrigen $b_{\mu\nu}^{(1,2)}, b_{\mu\nu}^{(2,1)}$ sind vernachlässigbar klein.

Beispiel 5: Für $b_{\mu\nu}^{(1,1)} = b_{\mu\nu}^{(2,2)}$ die Werte aus Tabelle 3:

$$b_{10}^{(1,2)} = -0,030, \quad b_{11}^{(1,2)} = -0,003, \quad b_{20}^{(1,2)} = +0,001,$$

$$b_{10}^{(2,1)} = +0,297, \quad b_{11}^{(2,1)} = -0,029, \quad b_{20}^{(2,1)} = +0,014;$$

alle übrigen $b_{\mu\nu}^{(1,2)}, b_{\mu\nu}^{(2,1)}$ sind vernachlässigbar klein.

In Tabelle 6 sind die aus (28) berechneten Koeffizienten $\omega_\beta^{(1)}$ und $\omega_\beta^{(2)}$ der Zirkulationsfunktionen $\omega_1(\tau_1)$ und $\omega_2(\tau_2)$ in Einheiten von u_0 sowie die Gesamtzirkulationen Γ_1, Γ_2 in Einheiten von $a u_0$ enthalten.

¹ S. Schuster u. H. Schwanecke, Schiffstechnik 4 (1957) S. 117.

In Tabelle 7 ist die Form $\frac{1}{a} Y(x)$ der Wasseroberfläche berechnet nach Gleichung (1'), (34) enthalten. Um das Ergebnis übersichtlicher zu haben, ist der Zahlenwert für $\frac{1}{a} Y(x)$ dabei in zwei Summanden aufgespalten, die den Störgeschwindigkeiten von Flügel 1 bzw. Flügel 2 an der freien Oberfläche entsprechen.

Tabelle 6

	Beispiel 4	Beispiel 5
Γ_1	+0,347	+0,411
$\omega_0^{(1)}$	+0,196	+0,232
$\omega_1^{(1)}$	+0,153	+0,178
$\omega_2^{(1)}$	+0,017	+0,017
$\omega_3^{(1)}$	+0,003	+0,003
$\omega_4^{(1)}$	0,000	0,000
$\omega_5^{(1)}$	0,000	0,000
Γ_2	+0,458	+0,333
$\omega_0^{(2)}$	+0,258	+0,188
$\omega_1^{(2)}$	+0,196	+0,142
$\omega_2^{(2)}$	+0,017	+0,011
$\omega_3^{(2)}$	+0,003	+0,002
$\omega_4^{(2)}$	0,000	0,000
$\omega_5^{(2)}$	0,000	0,000

Tabelle 7

x/a	Y/a Beispiel 4	Y/a Beispiel 5
-4	+0,100 = + 0,085 + 0,015	+0,198 = + 0,169 + 0,029
-2	+0,150 = + 0,133 + 0,017	+0,273 = + 0,241 + 0,032
-1	+0,184 = + 0,165 + 0,019	+0,325 = + 0,291 + 0,034
0	+0,153 = + 0,133 + 0,020	+0,308 = + 0,272 + 0,036
1	+0,060 = + 0,039 + 0,021	+0,220 = + 0,182 + 0,038
2	-0,028 = - 0,051 + 0,023	+0,141 = + 0,101 + 0,040
4	-0,176 = - 0,203 + 0,027	+0,017 = - 0,028 + 0,045
6	-0,297 = - 0,329 + 0,032	-0,082 = - 0,134 + 0,052
10	-0,466 = - 0,513 + 0,047	-0,242 = - 0,312 + 0,070
14	-0,523 = - 0,603 + 0,080	-0,354 = - 0,459 + 0,105
18	-0,414 = - 0,589 + 0,175	-0,383 = - 0,578 + 0,195
19	-0,353 = - 0,570 + 0,217	-0,366 = - 0,603 + 0,237
20	-0,369 = - 0,544 + 0,175	-0,406 = - 0,627 + 0,221
21	-0,462 = - 0,513 + 0,051	-0,500 = - 0,648 + 0,148
22	-0,544 = - 0,477 - 0,067	-0,586 = - 0,668 + 0,082
24	-0,657 = - 0,390 - 0,267	-0,723 = - 0,701 - 0,022
28	-0,741 = - 0,172 - 0,569	-0,930 = - 0,745 - 0,185
32	-0,710 = + 0,041 - 0,751	-1,073 = - 0,757 - 0,316

Man erkennt, daß in der Umgebung des Flügels 2 der mittlere senkrechte Abstand dieses Flügels von der Wasseroberfläche erheblich kleiner ist als für die Zirkulationsberechnung vorausgesetzt wurde. Gemäß unseren Überlegungen aus Ziff. 6b) wiederholen wir also die Berechnung der Zirkulationsverteilungen mit einem neuen h_2^* -Wert, der den tatsächlichen Verhältnissen besser entspricht. Aus den Werten der Tabelle 7 entnimmt man¹, daß es angemessen sein dürfte, $h_2^* = \frac{1}{2} h_2$ zu setzen (für beide Beispiele).

Abb. 7. Beispiel 4. Form der Wasseroberfläche $Y(x)$ über den Flügeln.Abb. 8. Beispiel 5. Form der Wasseroberfläche $Y(x)$ über den Flügeln.

Für diese Iterationsrechnung haben wir folgende Koeffizienten $b_{\mu\nu}$:

Beispiel 4: Für $b_{\mu\nu}^{(1,1)}$ die Werte aus Tabelle 1, für $b_{\mu\nu}^{(2,2)}$ die Werte aus Tabelle 2:

$$\begin{aligned} b_{10}^{(1,2)} &= -0,014, \quad b_{11}^{(1,2)} = -0,002, \quad b_{20}^{(1,2)} = +0,001, \\ b_{10}^{(2,1)} &= -0,526, \quad b_{11}^{(2,1)} = -0,096, \quad b_{20}^{(2,1)} = +0,048, \quad b_{21}^{(2,1)} = -0,003, \quad b_{30}^{(2,1)} = +0,001; \end{aligned}$$

alle übrigen $b_{\mu\nu}^{(1,2)}, b_{\mu\nu}^{(2,1)}$ sind vernachlässigbar klein.

¹ Denn es ist $\frac{1}{12} \int_{-4}^{26} \frac{1}{a} Y(x) d\left(\frac{x}{a}\right) \approx -0,5$.

Beispiel 5: Für $b_{\mu\nu}^{(1,1)}$ die Werte aus Tabelle 3, für $b_{\mu\nu}^{(2,2)}$ die Werte aus Tabelle 8;

$$\begin{aligned} b_{10}^{(1,2)} &= -0,031, \quad b_{11}^{(1,2)} = -0,003, \quad b_{20}^{(1,2)} = +0,001, \\ b_{10}^{(2,1)} &= +0,304, \quad b_{11}^{(2,1)} = -0,029, \quad b_{20}^{(2,1)} = +0,015; \end{aligned}$$

alle übrigen $b_{\mu\nu}^{(1,2)}, b_{\mu\nu}^{(2,1)}$ sind vernachlässigbar klein.

Tabelle 8. $b_{\mu\nu}^{(2,2)}$

$\mu \backslash \nu$	0	1	2	3	4	5	6
1	+0,386	+0,548	-0,016	-0,041	+0,001	+0,002	0,000
2	-0,219	+0,031	+0,151	-0,006	-0,020	+0,001	+0,001
3	-0,004	-0,123	+0,009	+0,049	-0,002	-0,008	0,000
4	+0,001	-0,004	-0,040	+0,003	+0,016	-0,001	-0,003
5	0,000	+0,007	-0,002	-0,016	+0,001	+0,006	0,000

In den Tabellen 6* und 7* sind (entsprechend Tabelle 6 und 7) die Ergebnisse der Iterationsrechnung enthalten. Die Form $\frac{1}{a} Y(x)$ der Wasseroberfläche (vgl. Abb. 7 u. 8) nach Tabelle 7* unterscheidet sich nur noch wenig von derjenigen aus Tabelle 7; somit erübrigt sich ein weiterer Iterationsschritt, und die Ergebnisse aus Tabelle 6* und 7* können als endgültig angesehen werden.

Tabelle 6*

	Beispiel 4	Beispiel 5
Γ_1	+0,347	+0,410
$\omega_0^{(1)}$	+0,196	+0,232
$\omega_1^{(1)}$	+0,153	+0,178
$\omega_2^{(1)}$	+0,017	+0,017
$\omega_3^{(1)}$	+0,003	+0,003
$\omega_4^{(1)}$	0,000	0,000
$\omega_5^{(1)}$	0,000	0,000
Γ_2	+0,390	+0,285
$\omega_0^{(2)}$	+0,220	+0,161
$\omega_1^{(2)}$	+0,174	+0,126
$\omega_2^{(2)}$	+0,029	+0,019
$\omega_3^{(2)}$	+0,012	+0,008
$\omega_4^{(2)}$	+0,001	+0,001
$\omega_5^{(2)}$	0,000	0,000

Tabelle 7*

x/a	Y/a Beispiel 4	Y/a Beispiel 5
-4	+0,099 = +0,085 + 0,014	+0,194 = +0,169 + 0,025
-2	+0,148 = +0,133 + 0,015	+0,268 = +0,240 + 0,028
-1	+0,182 = +0,165 + 0,017	+0,320 = +0,291 + 0,029
0	+0,151 = +0,133 + 0,018	+0,303 = +0,272 + 0,031
1	+0,058 = +0,039 + 0,019	+0,215 = +0,182 + 0,033
2	-0,030 = -0,051 + 0,021	+0,136 = +0,101 + 0,035
4	-0,178 = -0,202 + 0,024	+0,012 = -0,028 + 0,040
6	-0,299 = -0,328 + 0,029	-0,089 = -0,134 + 0,045
10	-0,470 = -0,513 + 0,043	-0,250 = -0,312 + 0,062
14	-0,529 = -0,602 + 0,073	-0,365 = -0,458 + 0,093
18	-0,414 = -0,588 + 0,174	-0,394 = -0,577 + 0,183
19	-0,316 = -0,569 + 0,253	-0,353 = -0,602 + 0,249
20	-0,328 = -0,543 + 0,215	-0,390 = -0,625 + 0,235
21	-0,450 = -0,513 + 0,063	-0,506 = -0,647 + 0,141
22	-0,530 = -0,477 - 0,053	-0,590 = -0,667 + 0,077
24	-0,627 = -0,390 - 0,237	-0,718 = -0,700 - 0,018
28	-0,682 = -0,172 - 0,510	-0,905 = -0,744 - 0,161
32	-0,633 = +0,041 - 0,674	-1,031 = -0,755 - 0,276

Damit ergeben sich folgende Zirkulationsverteilungen:

Beispiel 4:

$$\gamma_1(\xi_1) = \sqrt{\frac{a-\xi_1}{a+\xi_1}} \left(0,097 - 0,018 \frac{\xi_1}{a} + 0,010 \frac{\xi_1^2}{a^2} \right) \quad (-a \leq \xi_1 \leq a),$$

$$\gamma_2(\xi_2) = \sqrt{\frac{21a-\xi_2}{\xi_2-19a}} \left[0,102 - 0,008 \left(\frac{\xi_2}{a} - 20 \right) + 0,032 \left(\frac{\xi_2}{a} - 20 \right)^2 - 0,006 \left(\frac{\xi_2}{a} - 20 \right)^3 \right] \quad \left(19 \leq \frac{\xi_2}{a} \leq 21 \right),$$

Beispiel 5:

$$\gamma_1(\xi_1) = \sqrt{\frac{a-\xi_1}{a+\xi_1}} \left(0,117 - 0,018 \frac{\xi_1}{a} + 0,010 \frac{\xi_1^2}{a^2} \right) \quad (-a \leq \xi_1 \leq a),$$

$$\gamma_2(\xi_2) = \sqrt{\frac{21a-\xi_2}{\xi_2-19a}} \left[0,077 - 0,005 \left(\frac{\xi_2}{a} - 20 \right) + 0,019 \left(\frac{\xi_2}{a} - 20 \right)^2 - 0,006 \left(\frac{\xi_2}{a} - 20 \right)^3 \right] \quad \left(19 \leq \frac{\xi_2}{a} \leq 21 \right).$$

Für die resultierenden Flügelkräfte erhalten wir aus (31), (32) (natürlich mit h_2^*):

Beispiel 4: $K_y^{(1)} = (0,965 - 0,002) 0,347 \rho u_0^2 a = 0,334 \rho u_0^2 a$,
 $K_x^{(1)} = + (0,028 - 0,001) 0,347 \rho u_0^2 a = 0,0095 \rho u_0^2 a$,
 $K_y^{(2)} = (0,920 + 0,053) 0,390 \rho u_0^2 a = 0,380 \rho u_0^2 a$,
 $K_x^{(2)} = + (0,035 - 0,024) 0,390 \rho u_0^2 a = 0,0045 \rho u_0^2 a$.

Beispiel 5: $K_y^{(1)} = (0,958 - 0,002) 0,410 \rho u_0^2 a = 0,392 \rho u_0^2 a$,
 $K_x^{(1)} = + (0,019 - 0,002) 0,410 \rho u_0^2 a = 0,0069 \rho u_0^2 a$,
 $K_y^{(2)} = (0,944 + 0,030) 0,285 \rho u_0^2 a = 0,277 \rho u_0^2 a$,
 $K_x^{(2)} = + (0,013 + 0,023) 0,285 \rho u_0^2 a = 0,0103 \rho u_0^2 a$.

Der zweite Zahlenwert in den Klammern stellt jeweils den Anteil der vom anderen Flügel induzierten Geschwindigkeit dar.

Eine Berechnung der Zirkulationen Γ_1 und Γ_2 nach den Näherungsgleichungen (41) der $1/4 - 3/4$ -Methode ergibt

Beispiel 4: $\Gamma_1 = 0,340 a u_0$, $\Gamma_2 = 0,363 a u_0$,

Beispiel 5: $\Gamma_1 = 0,401 a u_0$, $\Gamma_2 = 0,266 a u_0$.

Die Abweichung von den nach der genaueren Theorie ermittelten Werten aus Tabelle 6* ist für Γ_2 größer als für Γ_1 , denn Flügel 2 hat den größeren a/h -Wert.

Eine Betrachtung der Flügelzirkulationen Γ_1 , Γ_2 aus Tabelle 6* zeigt: Für Beispiel 4 und 5 stimmt Γ_1 fast genau mit dem Γ -Wert des entsprechenden Einzelflügels (Beispiel 1 und 3) überein; dagegen ist Γ_2 bei Beispiel 4 (trotz des geringeren Oberflächenabstandes h_2^* von Flügel 2) etwas größer als Γ_1 , während bei Beispiel 5 Γ_2 wesentlich hinter Γ_1 zurückbleibt.

Diese Unterschiede sind dadurch bedingt, daß die Periode des hinter Flügel 1 laufenden Wellensystems bei Beispiel 4 halb so groß ist wie bei Beispiel 5, während der Flügelabstand L in beiden Fällen gleich groß ist. Durch das Wellensystem hinter Flügel 1 wird ja der am Flügel 2 wirksame Anstellwinkel stark beeinflußt. Entsprechend ist auch der Wellenwiderstand $K_x^{(2)}$ bei Beispiel 5 wesentlich größer als bei Beispiel 4.

Sicherlich läßt sich durch geeignete Wahl der geometrischen Anstellwinkel, d. h. der Werte von δ_1 und δ_2 , erreichen, daß $\Gamma_1 = \Gamma_2$ wird, so daß auch die Auftriebskräfte beider Flügel ungefähr gleich groß werden.

Praktisch wichtig ist die Frage, inwieweit bei einem bereits durchgerechneten konkreten Fall (etwa unsere Beispiele 4 und 5) die Werte von δ_1 und δ_2 abgeändert werden müssen, um $\Gamma_1 = \Gamma_2 = \Gamma$ zu erreichen. Dieses Problem läßt sich mit Hilfe der Gleichungen (41) lösen; denn gibt man für $\Gamma = \Gamma_1 = \Gamma_2$ einen bestimmten gewünschten Wert vor, so stellt (41) zwei lineare Glei-

Abb. 9. Beispiel 6. Form der Wasseroberfläche $Y(x)$.

Abb. 10. Beispiel 7. Form der Wasseroberfläche $Y(x)$.

Abb. 11. Beispiel 8. Form der Wasseroberfläche $Y(x)$.

Abb. 12. Beispiel 9. Form der Wasseroberfläche $Y(x)$.

Abb. 13. Beispiel 10. Form der Wasseroberfläche $Y(x)$.

Abb. 14. Beispiel 11. Form der Wasseroberfläche $Y(x)$.

Abb. 15. Beispiel 12. Form der Wasseroberfläche $Y(x)$.

chungen zur Berechnung von δ_1 und δ_2 dar. Dabei ist jedoch zu beachten, daß der vorgegebene Γ -Wert auch eine neue Form der Wasseroberfläche bedingt, so daß unter Umständen auch der bisherige h_2 -bzw. h_2^* -Wert entsprechend modifiziert werden muß. Wählt man jedoch (was praktisch sinnvoll erscheint) das neue Γ gleich dem bisherigen Γ_1 oder als arithmetisches Mittel der bisherigen Γ_1 -und Γ_2 -Werte, so dürfte die Formveränderung der Wasseroberfläche nicht sehr erheblich sein, so daß man sie jedenfalls für Überschlagsrechnungen vernachlässigen kann.

Wir wenden das eben geschilderte Verfahren auf die Beispiele 4 und 5 an:

Beispiel 4: Soll $\Gamma = \Gamma_1 = 0,340 a u_0$ werden, so ergibt sich $\delta_1 = -0,100$, $\delta_2 = -0,092$; eine h_2^* -Korrektur ist dabei nicht nötig.

Soll $\Gamma = \frac{1}{2} \Gamma_1 + \frac{1}{2} \Gamma_2 = 0,352 a u_0$ werden, so ergibt sich $\delta_1 = -0,104$, $\delta_2 = -0,095$; eine h_2^* -Korrektur ist dabei nicht nötig.

Beispiel 5: Soll $\Gamma = \Gamma_1 = 0,401 a u_0$ werden, so ergibt sich ohne eine h_2^* -Korrektur: $\delta_1 = -0,099$, $\delta_2 = -0,143$; dagegen erhält man bei einer (angemessenen) Vergrößerung des h_2^* -Wertes um 6%: $\delta_1 = -0,099$, $\delta_2 = -0,141$.

Soll $\Gamma = \frac{1}{2} \Gamma_1 + \frac{1}{2} \Gamma_2 = 0,334 a u_0$ werden, so ergibt sich ohne eine h_2^* -Korrektur: $\delta_1 = -0,082$, $\delta_2 = -0,119$; dagegen erhält man bei einer (angemessenen) Vergrößerung des h_2^* -Wertes um 20%: $\delta_1 = -0,082$, $\delta_2 = -0,113$.

Zum Schluß seien in Tabelle 9 noch kurz einige Ergebnisse von Beispielen mitgeteilt, die mit Hilfe der Gleichung (41) der $\frac{1}{4}$ — $\frac{3}{4}$ -Punkt-Methode berechnet wurden. Die Form $Y(x)$ der freien Wasseroberfläche ist in den Abb. 9 bis 15 dargestellt.

Bei dieser Berechnung wurde nicht das Iterationsverfahren nach Ziff. 6b) 1), sondern die Methode aus Ziff. 6b) 2) angewendet. Entsprechend ist auch in der letzten Spalte von Tabelle 9 der Wert von Δh_2 angegeben. (vgl. Abb. 3):

$$\Delta h_2 = \frac{1}{12 a} \int_{\frac{14}{a}}^{\frac{26}{a}} Y(x) dx .$$

Tabelle 9

Beispiel	$\delta_1 = \delta_2$	$\frac{a_1 g}{u_0^2} = \frac{a_2 g}{u_0^2}$	L/a	$\frac{h_1 g}{u_0^2}$	$\frac{h_2 g}{u_0^2}$	$\frac{\Gamma_1}{a u_0}$	$\frac{\Gamma_2}{a u_0}$	$\frac{\Delta h_2}{a}$
6	-0,1	0,2	20	0,2	0,2	0,29	0,37	+ 0,17
7	-0,1	0,2	20	0,1	0,1	0,22	0,28	+ 0,15
8	-0,1	0,05	20	0,1	0,1	0,47	0,38	- 0,58
9	-0,1	0,05	20	0,1	0,05	0,47	0,32	- 0,56
10	-0,1	0,03	20	0,05	0,05	0,49	0,37	- 0,28
11	-0,1	0,03	20	0,05	0,025	0,49	0,31	- 0,28
12	-0,1	0,03	20	0,025	0,025	0,42	0,32	- 0,22

Auch aus den in Tabelle 9 enthaltenen Werten erkennt man folgendes: Für die Abminderung der Zirkulation des Flügels 1 (gegenüber dem Zirkulationswert für $h \rightarrow \infty$) ist der Wert von $a g/u_0^2$ (Froudesche Längenzahl) noch wesentlicher als der Wert von $h_1 g/u_0^2$ (Froudesche Tiefenzahl); und zwar ist die Abminderung um so größer, je größer $a g/u_0^2$ ist. Für die Zirkulation des Flügels 2 spielt neben den eben genannten Einfüssen noch der Anstellwinkel eine Rolle, der am Flügel 2 von dem hinter Flügel 1 nachlaufenden Wellensystem induziert wird. Dieser Anstellwinkel kann je nach der Periode des Wellensystems (d. h. dem Wert von $\frac{L}{a} \frac{a g}{u_0^2}$) positiv (zirkulationssteigernd, Beispiele 4, 6, 7) oder negativ (zirkulationsvermindernd, Beispiele 5, 8, 9, 10, 11, 12) sein.

Aus dem Institut für Angewandte Mathematik und Mechanik
der Deutschen Akademie der Wissenschaften zu Berlin.

(Eingegangen am 22. Januar 1959.)

Anschrift des Verfassers: Dr.-Ing. habil. W. H. Isay, Berlin-Dahlem, Schweinfurthstr. 90.

Der homogene, innerlich statisch unbestimmte Parallelfachwerkträger

Von J. Fadle

1. Einleitung. In diesem Aufsatz soll der Einfluß von Temperaturänderungen auf die Stabkräfte eines innerlich statisch unbestimmten Fachwerkträgers untersucht werden. In dem betrachteten Fall eines homogenen Parallelfachwerkträgers kann eine geschlossene Lösung für die Stabkräfte angegeben werden. Die Ergebnisse werden an einem Zahlenbeispiel in Diagrammen für die Stabkräfte in Abhängigkeit von den Temperaturänderungen Δt dargestellt.

2. Berechnung der statisch Unbestimmten. Nach den Regeln der Statik werden aus der statisch unbestimmten Grundfigur des Fachwerkträgers die $n = s + 3 - 2k$ überzähligen Stäbe entfernt (s die Stabzahl, k die Knotenzahl), wodurch das statisch bestimmte Hauptsystem mit $s - n = 2k - 3$ Stäben erhalten wird. An diesem werden die eingeprägten Knotenlasten P_1, P_2, \dots, P_{k-2} (wenn 2 Knoten als Auflagerknoten verbraucht und die übrigen $k - 2$ Knoten als belastet angenommen werden) als Lastsystem O angebracht, welche in den $s - n$ Stäben die Stabkräfte T_j erzeugen. Die Stabkräfte der n überzähligen Stäbe werden als statisch Unbestimmte X_i ($i = 1, 2, \dots, n$) eingeführt.

Hierauf werden in den beiden Endknotenpunkten und in der Richtung des i -ten überzähligen Stabes je eine Einheitszuglast $\bar{1}$ als virtuelle Belastung angebracht, die als das Lastsystem i ($i = 1, 2, \dots, n$) bezeichnet wird und die Stabkräfte t_{ji} erzeugt. Durch Überlagerung der Stabkräfte T_j des Lastsystems O mit den mit X_i multiplizierten Stabkräften t_{ji} der Lastsysteme i ($i = 1, 2, \dots, n$) kommen die wirklichen Stabkräfte S_j zu

$$S_j = T_j + \sum_{i=1}^n t_{ji} X_i \quad (j = 1, 2, \dots, s). \quad (2.1)$$

Mit diesen Stabkräften S_j kann die Formänderungsarbeit des Fachwerkträgers berechnet werden. Nimmt man den Einfluß von Temperaturänderungen einzelner Stäbe hinzu, so kommt für die gesamte Formänderungsarbeit der Ausdruck

$$A = \frac{1}{2} \sum_{j=1}^s S_j^2 r_j + \sum_e S_e \alpha_{th} l_e \Delta t_e. \quad (2.2)$$

Dabei bedeuten $r_j = l_j/E F_j$ die Stabkonstante eines Stabes j , α_{th} den linearen Wärmeausdehnungskoeffizienten und \sum_e die Summierung über die erwärmten Stäbe S_e .

Die Berechnung der statisch Unbestimmten X_i erfolgt entweder nach dem Prinzip der virtuellen Arbeiten oder nach dem Prinzip vom Minimum der Formänderungsarbeit. Nach letzterem kommt z. B. aus (2.2)

$$\frac{\partial A}{\partial X_i} = 0 = \sum_{j=1}^s S_j \frac{\partial S_j}{\partial X_i} r_j + \sum_e \frac{\partial S_e}{\partial X_i} \alpha_{th} l_e \Delta t_e \quad (i = 1, 2, \dots, n). \quad (2.3)$$

Mit

$$\frac{\partial S_j}{\partial X_i} = t_{ji}, \quad \frac{\partial S_e}{\partial X_i} = t_{ei}$$

gemäß (2.1) folgen aus (2.3) nach entsprechender Zusammenfassung die sogenannten Maxwell'schen Gleichungen

$$\sum_{j=1}^s \left(T_j + \sum_{k=1}^n t_{jk} X_k \right) t_{ji} r_j + \sum_e t_{ei} \alpha_{th} l_e \Delta t_e = 0 \quad (i = 1, 2, \dots, n).$$

Sie lauten ausführlich angeschrieben

$$\begin{aligned} X_1 \sum_{j=1}^s t_{j1} t_{ji} r_j + X_2 \sum_{j=1}^s t_{j2} t_{ji} r_j + \cdots + X_n \sum_{j=1}^s t_{jn} t_{ji} r_j \\ = - \left[\sum_{j=1}^s T_j t_{ji} r_j + \sum_e t_{ei} \alpha_{th} l_e \Delta t_e \right] \quad (i = 1, 2, \dots, n) \end{aligned} \quad (2.4)$$

und bilden n lineare Gleichungen für die n statisch Unbestimmten X_1 bis X_n , die nach bekannte Methoden, z. B. dem Gaußschen Algorithmus aufgelöst werden können.

3. Berechnung der statisch Unbestimmten sowie der Knotenpunktsverschiebungen mit Hilfe der Matrizenrechnung. In neuerer Zeit hat die Matrizenrechnung als das angepaßte Hilfsmittel auch in der Baustatik ein weites Anwendungsgebiet gefunden und ist in einer Reihe von Arbeiten¹ zur Lösung von elastomechanischen Problemen angewandt worden. Deshalb soll im folgenden die Berechnung der statisch Unbestimmten allgemein in Matrizenbeschreibung formuliert werden, wobei sich überdies eine Aussage über die Knotenpunktsverschiebungen des Fachwerks ergibt, die über das bisher in der Literatur Bekannte hinausgeht.

Zur Berechnung der statisch Unbestimmten nach dem Prinzip vom Minimum der Formänderungsarbeit muß man erst den Ausdruck für die Formänderungsarbeit nach (2.2) auf Matrizenbeschreibung umformen. Diese lautet

$$A = \frac{1}{2} \tilde{s}' \mathfrak{R} \tilde{s} + a'_{th} \tilde{s}, \quad (3.1)$$

wobei \mathfrak{R} die Diagonalmatrix

$$\mathfrak{R} = \begin{pmatrix} r_1 & 0 & \dots & 0 \\ 0 & r_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & r_s \end{pmatrix} = \text{Diag}(r_i)$$

der Stabkonstanten r_i , \tilde{s}' den (gespiegelten) Zeilenvektor der Stabkräfte und a'_{th} den Zeilenvektor der thermischen Längenänderung gemäß

$$\tilde{s}' = (S_1, S_2, \dots, S_s), \quad a'_{th} = (\alpha_{th} l_1 \Delta t_1, \alpha_{th} l_2 \Delta t_2, \dots, \alpha_{th} l_s \Delta t_s)$$

bedeuten. Spaltet man in (3.1) die Diagonalmatrix \mathfrak{R} auf in \mathfrak{R}_1 für Stäbe des statisch bestimmten Hauptsystems und \mathfrak{R}_2 für die überzähligen Stäbe, so wird aus (3.1)

$$A = \frac{1}{2} \tilde{s}' \mathfrak{R}_1 \tilde{s} + \frac{1}{2} \tilde{x}' \mathfrak{R}_2 \tilde{x} + a'_{th} \tilde{s} \quad (3.2)$$

mit²

$$\tilde{s} = \mathfrak{U} p_x + \mathfrak{V} p_y + \mathfrak{C} x, \quad \tilde{s}' = p'_x \mathfrak{U}' + p'_y \mathfrak{V}' + x' \mathfrak{C}',$$

worin $\mathfrak{U}' = (a_{ij})$, $\mathfrak{V}' = (b_{ij})$, $\mathfrak{C}' = (t_{ij})$ die gespiegelten Matrizen bedeuten. Die partiellen Differentialquotienten

$$\frac{\partial A}{\partial X_i} = 0 \quad (i = 1, 2, \dots, n)$$

lauten in Matrizenbeschreibung symbolisch $\partial A / \partial x$, und man erhält bei Beachtung der Differenzierungsregel für eine quadratische Form, weil \mathfrak{R}_1 und \mathfrak{R}_2 Diagonalmatrizen sind,

$$\frac{\partial A}{\partial x} = 0 = \frac{\partial \tilde{s}'}{\partial x} \mathfrak{R}_1 \tilde{s} + \mathfrak{R}_2 \tilde{x} + a'_{th} \frac{\partial \tilde{s}}{\partial x}.$$

Wegen $\partial \tilde{s}' / \partial x = \mathfrak{C}'$, $\partial \tilde{s} / \partial x = \mathfrak{C}$ folgt nach geeigneter Zusammenfassung

$$(\mathfrak{C}' \mathfrak{R}_1 \mathfrak{C} + \mathfrak{R}_2) \tilde{x} + (\mathfrak{C}' \mathfrak{R}_1 \mathfrak{U}) p_x + (\mathfrak{C}' \mathfrak{R}_1 \mathfrak{V}) p_y + a'_{th} \mathfrak{C} = 0. \quad (3.3)$$

Führt man in (3.3) für die als Federungsmatrizen bezeichneten eingeklammerten Produktmatrizen die Bezeichnungen

$$\mathfrak{C}' \mathfrak{R}_1 \mathfrak{C} + \mathfrak{R}_2 = \mathfrak{F}_{33}, \quad \mathfrak{C}' \mathfrak{R}_1 \mathfrak{U} = \mathfrak{F}_{31}, \quad \mathfrak{C}' \mathfrak{R}_1 \mathfrak{V} = \mathfrak{F}_{32}$$

ein, so kann (3.3) formal nach \tilde{x} aufgelöst werden und liefert mit der reziproken Matrix \mathfrak{F}_{33}^{-1} das Ergebnis

$$\tilde{x} = -\mathfrak{F}_{33}^{-1} (\mathfrak{F}_{31} p_x + \mathfrak{F}_{32} p_y + a'_{th} \mathfrak{C}). \quad (3.4)$$

¹ Th. Pöschl, Ing.-Arch. 19 (1951), S. 69; J. H. Argyris, Ing.-Arch. 25 (1957) S. 174; H. Baldauf, Ing.-Arch. 26 (1958) S. 338; R. Zurmühl, Matrizen, 2. Aufl. S. 144 ff, Berlin/Göttingen/Heidelberg 1958.

² Vgl. R. Zurmühl a. a. O., Hinzugenommen sind hier Horizontalkomponenten P_{ix} der Knotenlasten mit der Einflußmatrix $\mathfrak{U} = (a_{ji})$.

Aus (3.2) folgen schließlich auch die Vektoren u und v der horizontalen bzw. vertikalen Komponenten der Knotenpunktsverschiebungen als die partiellen Ableitungen

$$\left. \begin{aligned} u &= \frac{\partial A}{\partial p_x} = \frac{\partial \mathfrak{A}'}{\partial p_x} \mathfrak{R}_1 \mathfrak{s} + a_{th}' \frac{\partial \mathfrak{s}}{\partial p_x} = (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{U}) p_x + (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{V}) p_y + (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{C}) \mathfrak{x} + a_{th}' \mathfrak{U} \\ v &= \frac{\partial A}{\partial p_y} = \frac{\partial \mathfrak{B}'}{\partial p_y} \mathfrak{R}_1 \mathfrak{s} + a_{th}' \frac{\partial \mathfrak{s}}{\partial p_y} = (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{U}) p_x + (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{V}) p_y + (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{C}) \mathfrak{x} + a_{th}' \mathfrak{V}. \end{aligned} \right\} \quad (3.5)$$

Bezeichnet man wieder zweckmäßig die eingeklammerten Produktmatrizen als Federungsmatrizen mit den Abkürzungen

$$\begin{aligned} \mathfrak{F}_{11} &= (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{U}), & \mathfrak{F}_{12} &= (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{V}) \equiv (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{U}) = \mathfrak{F}_{21}, & \mathfrak{F}_{22} &= (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{V}), \\ \mathfrak{F}_{13} &= (\mathfrak{A}' \mathfrak{R}_1 \mathfrak{C}) \equiv (\mathfrak{C}' \mathfrak{R}_1 \mathfrak{U}) = \mathfrak{F}_{31}, & \mathfrak{F}_{23} &= (\mathfrak{B}' \mathfrak{R}_1 \mathfrak{C}) \equiv (\mathfrak{C}' \mathfrak{R}_1 \mathfrak{V}) = \mathfrak{F}_{32}, \end{aligned}$$

so erhält man nach Einführung von \mathfrak{x} aus (3.4) in (3.5) das Ergebnis

$$\left. \begin{aligned} u &= (\mathfrak{F}_{11} - \mathfrak{F}_{13} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{31}) p_x + (\mathfrak{F}_{12} - \mathfrak{F}_{13} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{32}) p_y + (\mathfrak{A}' - \mathfrak{F}_{13} \mathfrak{F}_{33}^{-1} \mathfrak{C}') a_{th} \\ v &= (\mathfrak{F}_{21} - \mathfrak{F}_{23} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{31}) p_x + (\mathfrak{F}_{22} - \mathfrak{F}_{23} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{32}) p_y + (\mathfrak{B}' - \mathfrak{F}_{23} \mathfrak{F}_{33}^{-1} \mathfrak{C}') a_{th}. \end{aligned} \right\} \quad (3.6)$$

Die Gleichungen (3.4) und (3.6) stellen eine Verallgemeinerung der von *Zurmühl*¹ angegebenen Ergebnisse dar, wenn nämlich neben vertikalen auch noch horizontale Knotenlasten und außerdem noch Temperaturänderungen berücksichtigt werden.

Trotzdem die Gleichungen (3.6) einen übersichtlichen Aufbau zeigen, sind sie für eine praktische Anwendung wenig geeignet, da (wegen $\mathfrak{F}_{13} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{32} = \mathfrak{F}_{23} \mathfrak{F}_{33}^{-1} \mathfrak{F}_{31}$) insgesamt fünf Matrizenprodukte aus je drei Matrizen gebildet werden müssen, was einen sehr großen Rechenaufwand erfordert. Man kann sie aber durch einen Kunstgriff vereinfachen, indem man aus der zweckmäßig zusammengefaßten Ausgangsgleichung

$$\frac{\partial A}{\partial \mathfrak{x}} = 0 = \mathfrak{C}' (\mathfrak{R}_1 \mathfrak{s} + a_{th}) + \mathfrak{R}_2 \mathfrak{x}$$

den Klammerausdruck

$$\mathfrak{R}_1 \mathfrak{s} + a_{th} = -\mathfrak{C}'^{-1} \mathfrak{R}_2 \mathfrak{x}$$

berechnet und diesen dann in (3.5) einführt. Damit kommen die wesentlich einfacheren Gleichungen

$$\left. \begin{aligned} u &= \frac{\partial A}{\partial p_x} = \mathfrak{A}' (\mathfrak{R}_1 \mathfrak{s} + a_{th}) = -(\mathfrak{A}' \mathfrak{C}'^{-1} \mathfrak{R}_2) \mathfrak{x}, \\ v &= \frac{\partial A}{\partial p_y} = \mathfrak{B}' (\mathfrak{R}_1 \mathfrak{s} + a_{th}) = -(\mathfrak{B}' \mathfrak{C}'^{-1} \mathfrak{R}_2) \mathfrak{x}. \end{aligned} \right\} \quad (3.7)$$

Die mit Hilfe der Matrizenrechnung gefundenen Ergebnisse (3.4) und (3.7) eignen sich besonders für eine Auswertung mit elektronischen Rechenautomaten, welche die Elemente von Produktmatrizen und reziproken Matrizen nach festliegenden Programmierschemen errechnen und das Ergebnis außerdem mit einer ausreichenden Stellenzahl ausdrucken.

4. Der homogene Parallelfachwerkträger. Die Berechnung der statisch Unbestimmten ist im allgemeinen mit sehr viel Rechenaufwand verbunden und erfordert sorgfältige Rechenkontrollen. Da in diesem Aufsatz nur die wesentlichen Ergebnisse, wie z. B. der Einfluß von Temperaturänderungen auf die Stabkräfte, herausgestellt werden sollen, beschränken wir uns auf ein vereinfachtes System, das eine geschlossene Lösung zuläßt, und zwar auf einen homogenen Parallelfachwerkträger. Dieser besteht aus gleich langen und parallelen Ober- und Untergurtstäben und je zwei Diagonalstäben in einem Feld. Es ist also in jedem Feld ein überzähliger Stab vorhanden, so daß der Grad n der (innerlichen) statischen Unbestimmtheit mit der Anzahl n der Felder übereinstimmt. Außerdem sollen alle Stäbe gleiche Zugsteifigkeiten EF haben; dadurch vereinfachen sich die Maxwellschen Gleichungen (2.4) auf

$$X_1 \sum_{j=1}^s t_{j1} t_{ji} l_j + X_2 \sum_{j=1}^s t_{j2} t_{ji} l_j + \dots + X_n \sum_{j=1}^s t_{jn} t_{ji} l_j = -B_i \quad (i = 1, 2, \dots, n), \quad (4.1)$$

¹ R. *Zurmühl*, a. a. O., S. 146.

wenn

$$B_i = + \left(\sum_{j=1}^s T_j t_{ji} l_j + EF \sum_e t_{ei} \alpha_{th} l_e \Delta t_e \right) \quad (4.2)$$

als „Belastungsglied“ eingeführt wird.

Die Indizes i bzw. k bezeichneten bisher die Nummer des Lastsystems, und da es in einem Feld nur ein Paar virtuelle Lasten \bar{l} gibt, bezeichnen i bzw. k auch gleichzeitig die Feldnummern. Die Auswertung der Summen $\sum_{j=1}^s t_{jk} t_{ji} l_j$ in (4.1) wird erleichtert, wenn eine Aufteilung in Stabkräfte des Obergurtes o_{ki} und Untergurtes u_{ki} , der Diagonalen d_{ki} und Vertikalen v_{ki} links bzw. $v_{k+1,i}$

Abb. 1. Belastung des Feldes i durch Prüflast \bar{l} .

rechts vom Feld k vorgenommen wird, die durch das Lastsystem \bar{l} des Feldes i hervorgerufen werden. Dabei laufen i und k von 1 bis n .

Zufolge Abb. 1 ergeben sich für die Stabkräfte nach obiger Aufteilung die Werte

$$\begin{aligned} o_{ki} = u_{ki} &= \begin{cases} -\cos \alpha & \text{für } k = i \\ 0 & \text{für } k \neq i \end{cases} && \text{für Obergurt- und Untergurtstäbe,} \\ d_{ki} &= \begin{cases} +1 & \text{für } k = i \\ 0 & \text{für } k \neq i \end{cases} && \text{für Diagonalstäbe,} \\ v_{ki} = v_{k+1,i} &= \begin{cases} -\sin \alpha & \text{für } k = i \\ 0 & \text{für } k \neq i \end{cases} && \text{für Vertikalstäbe.} \end{aligned}$$

Aus dieser Zusammenstellung berechnen sich jetzt die Summenfaktoren sehr einfach zu

$$\begin{aligned} \sum_{j=1}^s t_{jk} t_{ji} l_j &= \lambda \operatorname{tg} \alpha \sum_{k=1}^n v_{ki} v_{k+1,i} = \begin{cases} \frac{\lambda}{\cos \alpha} \sin^3 \alpha & \text{für } k = i - 1 \text{ und } k = i + 1 \\ 0 & \text{für } k < i - 1 \text{ und } k > i + 1 \end{cases}, \\ \sum_{j=1}^s t_{ji} t_{ji} l_j &= (o_{ii}^2 + u_{ii}^2) \lambda + (v_{ii}^2 + v_{i+1,i}^2) \lambda \operatorname{tg} \alpha + (\bar{l}^2 + d_{ii}^2) \frac{\lambda}{\cos \alpha} \\ &= 2 \frac{\lambda}{\cos \alpha} (1 + \sin^3 \alpha + \cos^3 \alpha). \end{aligned}$$

Man ersieht daraus, daß zu den Summenfaktoren nur Felder mit einem gemeinsamen Vertikalstab Beiträge liefern. Dadurch vereinfachen sich weiter die Maxwellschen Gleichungen (4.1) auf dreigliedrige Differenzengleichungen mit einer „Streifenmatrix“. Multipliziert man noch (4.1) mit $\frac{\cos \alpha}{\sin^3 \alpha} \frac{1}{\lambda}$, so kommt schließlich für (4.1)

$$X_{i-1} + 2 \varphi(\alpha) X_i + X_{i+1} = - \frac{\cos \alpha}{\sin^3 \alpha} \frac{B_i}{\lambda} = - \bar{B}_i \quad (i = 1, 2, \dots, n). \quad (4.3)$$

Die charakteristische Funktion $\varphi(\alpha)$ in (4.3) ist gegeben durch

$$\varphi(\alpha) = \frac{1 + \sin^3 \alpha + \cos^3 \alpha}{\sin^3 \alpha} = 1 + \left(\frac{\lambda}{h} \right)^3 + \left[1 + \left(\frac{\lambda}{h} \right)^2 \right]^{3/2}, \quad (4.4)$$

wenn die Winkelfunktionen $\operatorname{ctg} \alpha = \lambda/h$, $\sin \alpha = 1/\sqrt{1 + (\lambda/h)^2}$ durch die Feldabmessungen λ und h ausgedrückt werden.

Die Gleichung (4.3) lautet jetzt in Matrizenbeschreibung entsprechend (3.3)

$$\bar{\mathfrak{F}}_{33} \mathfrak{x} = -(\bar{\mathfrak{F}}_{32} \mathfrak{p}_y + \mathfrak{a}'_{th} \bar{\mathfrak{C}}) = -\bar{\mathfrak{b}}. \quad (4.5)$$

Hier ist

$$\bar{\mathfrak{F}}_{33} = \begin{pmatrix} 2\varphi(\alpha) & 1 & 0 & \cdots & 0 \\ 1 & 2\varphi(\alpha) & 1 & \cdots & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \cdots & 2\varphi(\alpha) \end{pmatrix} = (f_{ij}), \quad \bar{\mathfrak{b}} = \begin{pmatrix} \bar{B}_1 \\ \bar{B}_2 \\ \vdots \\ \bar{B}_n \end{pmatrix}, \quad (4.6)$$

und die Querstriche über den Matrizen bzw. Vektoren deuten an, daß diese wegen der Multiplikation der Ausgangsgleichung (4.1) mit $\frac{\cos \alpha}{\sin^3 \alpha} \frac{1}{\lambda}$ eine andere Dimension haben.

Aus (4.5) folgt der Vektor \mathfrak{x} der statisch Unbestimmten zu

$$\mathfrak{x} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = -\bar{\mathfrak{F}}_{33}^{-1} \bar{\mathfrak{b}}. \quad (4.7)$$

Es handelt sich also nur noch darum, die reziproke Matrix

$$\bar{\mathfrak{F}}_{33}^{-1} = (g_{jk}) \quad (k = 1, 2, \dots, n) \quad (4.8)$$

mit ihren Elementen g_{jk} zu berechnen. Dazu gehen wir aus von der Definitionsgleichung der Einheitsmatrix

$$\bar{\mathfrak{F}}_{33} \bar{\mathfrak{F}}_{33}^{-1} = (f_{ij})(g_{jk}) \equiv \mathfrak{E} = (e_{ik}) \quad \text{mit } e_{ik} = \begin{cases} 0 & \text{für } k \neq i \\ 1 & \text{für } k = i \end{cases} \quad (4.9)$$

und der Beziehung zwischen den Elementen einer Produktmatrix gemäß

$$e_{ik} = \sum_{j=1}^n f_{ij} g_{jk} = \mathfrak{f}^i \mathfrak{g}_k \quad (i, k = 1, 2, \dots, n) \quad (4.10)$$

als skalares Produkt der Zeilenvektoren \mathfrak{f}^i von $\bar{\mathfrak{F}}_{33}$ mit den Spaltenvektoren \mathfrak{g}_k von $\bar{\mathfrak{F}}_{33}^{-1}$.

Wegen

$$f_{i1} \cdots f_{i, i-2} = 0, \quad f_{i, i-1} = 1, \quad f_{ii} = 2\varphi(\alpha), \quad f_{i, i+1} = 1, \quad f_{i, i+2} \cdots f_{in} = 0$$

aus (4.6) kommen dann für die Elemente g_{jk} der reziproken Matrix gemäß (4.10) die Gleichungen

$$e_{ik} = \sum_{j=i-1}^{i+1} f_{ij} g_{jk} = g_{i-1, k} + 2\varphi(\alpha) g_{ik} + g_{i+1, k} = 0, \quad (4.11)$$

$$e_{ii} = \sum_{j=i-1}^{i+1} f_{ij} g_{ji} = g_{i-1, i} + 2\varphi(\alpha) g_{ii} + g_{i+1, i} = 1. \quad (4.12)$$

Weiter ist $\bar{\mathfrak{F}}_{33}$ eine symmetrische Matrix und daher auch $\bar{\mathfrak{F}}_{33}^{-1}$ eine symmetrische Matrix mit $g_{ik} = g_{ki}$, in der nur Elemente mit $i \geq 1$ und $k \leq n$ vorkommen. Demnach sind alle

$$g_{0k} = 0 \quad \text{und} \quad g_{i, n+1} = 0 \quad (i, k = 1, 2, \dots, n),$$

welche Beziehung als Randbedingung für die Elemente g_{ik} aufgefaßt werden kann, und die den Produktansatz

$$g_{ik} = \begin{cases} A x_i x_{n+1-k} & \text{für } i \leq k \\ A x_k x_{n+1-i} & \text{für } i \geq k \end{cases} \quad (\text{wegen } g_{ik} = g_{ki}) \quad (4.13)$$

mit neuen Unbekannten x_i vom Anfangswert $x_0 = 0$ erlaubt. Setzt man (4.13) in (4.11) ein, so kommt

$$A x_{n+1-k} [x_{i-1} + 2\varphi(\alpha) x_i + x_{i+1}] = 0,$$

und daraus folgt die Rekursionsformel zur Berechnung der x_i

$$x_{i+1} = -2\varphi(\alpha) x_i - x_{i-1}. \quad (4.14)$$

Setzt man (4.13) in (4.12) ein, wobei auf Glieder mit $i < k$ und $i > k$ zu achten ist, so folgt

$$A [x_{i-1} x_{n+1-i} + 2 \varphi(\alpha) x_i x_{n+1-i} + x_i x_{n-i}] = 1$$

oder nach zweckmäßiger Zusammenfassung

$$A \left[\underbrace{x_{n+1-i}(x_{i-1} + 2 \varphi(\alpha) x_i)}_{-x_{i+1}} + x_i x_{n-i} \right] = -A (x_{n+1-i} x_{i+1} - x_i x_{n-i}) = 1. \quad (4.15)$$

Weil A eine Konstante ist, muß (4.15) für beliebige Werte von i erfüllt sein, und es folgt in der Tat sowohl für $i = 0$ als auch für $i = n$

$$-A x_1 x_{n+1} = 1 \quad \text{oder} \quad A = -\frac{1}{x_1 x_{n+1}}. \quad (4.16)$$

Mit (4.16) und (4.13) ergeben sich jetzt die Elemente g_{ik} der reziproken Matrix zu

$$g_{ik} = -\frac{x_i}{x_1} \frac{x_{n+1-k}}{x_{n+1}}.$$

Nun sind nach der Rekursionsformel (4.14) wegen $x_0 = 0$ alle x_i proportional x_1 , so daß sich x_1 im Zähler und Nenner von g_{ik} wieder heraushebt. Daher kann $x_1 = 1$ gesetzt werden, und es folgt das Ergebnis

$$g_{ik} = \begin{cases} -\frac{x_i x_{n+1-k}}{x_{n+1}} & \text{für } i \leq k, \text{ d. h. } k \geq i, \\ -\frac{x_{n+1-i} x_k}{x_{n+1}} & \text{für } i \geq k, \text{ d. h. } k \leq i. \end{cases} \quad (4.17)$$

Mit $x_0 = 0$, $x_1 = +1$ und $\varphi(\alpha)$ können aus (4.14) durch Rekursion der Reihe nach die Werte x_2, x_3, \dots, x_{n+1} berechnet werden. Damit sind nach (4.17) auch die Elemente g_{ik} der reziproken Matrix $\bar{\mathfrak{F}}_{33}^{-1}$ bekannt, und die statisch Unbestimmten X_i folgen aus

$$\bar{x} = -\bar{\mathfrak{F}}_{33}^{-1} \bar{b} \quad \text{oder} \quad (X_i) = -(g_{ik}) (B_k)$$

gemäß (4.7) in geschlossener Form zu

$$X_i = +\frac{x_{n+1-i}}{x_{n+1}} \sum_{k=1}^i \bar{B}_k x_k + \frac{x_i}{x_{n+1}} \sum_{k=i+1}^n \bar{B}_k x_{n+1-k} \quad (i = 1, 2, \dots, n). \quad (4.18)$$

Da in (4.18) über k summiert wird, mußte darauf geachtet werden, daß die zu $k \leq i$ bzw. $k > i$ gehörigen Elemente aus (4.17) einzusetzen sind.

5. Näherungslösung für einen mehrfeldrigen Parallelfachwerkträger. Im Falle eines mehrfeldrigen Parallelfachwerkträgers, bei dem der Grad der statischen Unbestimmtheit entsprechend der Anzahl der Felder wächst, läßt sich eine ausgezeichnete Näherungslösung in geschlossener Form herleiten. Hierzu gehen wir aus von der Rekursionsformel (4.14), welche mit dem Clebschschen Lösungsansatz¹

$$x_i = C r^i \quad (5.1)$$

für die neuen Unbekannten r die reziproke charakteristische Gleichung

$$r^2 + 2 \varphi(\alpha) r + 1 = 0$$

mit den Wurzeln

$$r_1 = r = -\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1}, \quad r_2 = \frac{1}{r} = -\varphi(\alpha) + \sqrt{\varphi^2(\alpha) - 1} \quad (5.2)$$

liefert. Entsprechend den beiden Wurzeln von (5.2) lautet der Ansatz für die x_i

$$x_i = C_1 r^i + C_2 r^{-i},$$

wobei die Konstanten C_1 und C_2 aus den Anfangswerten für

$$i = 0: \quad x_0 = 0 = C_1 + C_2, \quad i = 1: \quad x_1 = 1 = C_1 r + C_2 \frac{1}{r}$$

¹ Bezuglich der Analogie zum homogenen Durchlaufträger vgl. J. Fadle, Ing.-Arch. 17 (1949) S. 317 (Habilitationsschrift).

zu

$$C_1 = -\frac{1}{2\sqrt{\varphi^2(\alpha) - 1}} = -C_2 \quad (5.3)$$

folgen, und es kommt

$$x_i = C_1 (r^i - r^{-i}). \quad (5.4)$$

Aus (5.4) folgt für $i = n$, und insbesondere für große Werte von n , für die wegen $|r| > 1$ das Glied r^{-n} vernachlässigt werden kann, die Näherung $x_n \approx C_1 r^n$. Damit ergeben sich schließlich für die Elemente g_{ik} der reziproken Matrix aus (4.17) die Näherungswerte

$$i \leq k: g_{ik} = -\frac{x_i x_{n+1-k}}{x_{n+1}} \approx -x_i r^{-k}$$

oder nach entsprechender Zusammenfassung

$$i \leq k: g_{ik} \approx (-1)^{k-i+1} \frac{1 - [\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1}]^{2i}}{2\sqrt{\varphi^2(\alpha) - 1}} [\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1}]^{k-i}. \quad (5.5)$$

In (5.5) erkennt man, daß die g_{ik} wegen des Faktors $(-1)^{k-i+1}$ ein alternierendes Vorzeichen haben. Die Elemente g_{ii} der Hauptdiagonalen kommen mit $k = i$ zu

$$g_{ii} \approx -\frac{1 - [\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1}]^{2i}}{2\sqrt{\varphi^2(\alpha) - 1}} \quad (5.6)$$

und sind alle negativ. Aus (5.6) folgt das erste Element für $i = 1$ zu

$$g_{11} \approx +r^{-1} = -[\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1}]. \quad (5.7)$$

Die nächstfolgenden Glieder konvergieren, wie man aus (5.6) leicht erkennt, für größere Werte von i rasch gegen den Grenzwert

$$g_{ii} \approx -\frac{1}{2\sqrt{\varphi^2(\alpha) - 1}}. \quad (5.8)$$

Für $i > k$ ist, wie aus (4.18) hervorgeht, k mit i zu vertauschen, und das bedeutet, daß die reziproke Matrix symmetrisch zu beiden Hauptdiagonalen ist.

6. Ein Zahlenbeispiel. Die Rechenergebnisse sollen an dem Beispiel eines 9-feldrigen Fachwerkträgers nach Abb. 2 mit 9 überzähligen Stäben veranschaulicht werden.

Abb. 2. Homogener Parallelfachwerkträger einer Straßenbrücke mit $n = 9$ Feldern und n überzähligen Stäben.

Abb. 3. Statisch bestimmtes Hauptsystem des Brückenträgers mit Lastsystem 0: $p = 13,5 \text{ to}$, $P = 31,5 \text{ to}$, und $\lambda = 4 \text{ m}$, $L = 9\lambda = 36 \text{ m}$, $h = 3 \text{ m}$.

Abb. 3 zeigt das statisch bestimmte Hauptsystem mit dem Lastsystem 0 der eingeprägten Lasten, die nur am Untergurt angreifen und aus 8 gleichen Lasten $p_2, p_4, \dots, p_{16} = p$ und aus 2 Einzellasten $P_6 = P_8 = P$ bestehen sollen.

In Abb. 2 bedeuten i ein Feld des Lastsystems i , k ein Lastfeld und r ein Stabfeld.

Die Knotenlasten werden den Knoten links vom Lastfeld k zugeordnet und in P_{2k-1} für den Obergurt und P_{2k} für den Untergurt aufgeteilt. Zur Kennzeichnung der Lage eines Stabes j im Stabfeld r bezeichnen die Indizes

- $j = 4r$ Diagonalstäbe,
- $j = 4r - 1$ Obergurtstäbe,
- $j = 4r - 2$ Untergurtstäbe und
- $j = 4r - 3$ Vertikalstäbe (links vom Feld r).

Die Elemente der Einflußmatrix \mathfrak{B} für vertikale Knotenlasten folgen
für den Obergurt zu

$$b_{4r-1, 2k-1} = b_{4r-1, 2k} = \begin{cases} -\frac{(n+1-r)(k-1)}{n \tan \alpha} & \text{für } k < r \\ -\frac{(r-1)(n+1-k)}{n \tan \alpha} & \text{für } k \geq r, \end{cases}$$

für den Untergurt zu

$$b_{4r-2, 2k-1} = b_{4r-2, 2k} = \begin{cases} +\frac{(n-r)(k-1)}{n \tan \alpha} & \text{für } k \leq r \\ +\frac{r(n+1-k)}{n \tan \alpha} & \text{für } k > r, \end{cases}$$

für die Diagonalen zu

$$b_{4r, 2k-1} = b_{4r, 2k} = \begin{cases} +\frac{k-1}{n \sin \alpha} & \text{für } k \leq r \\ -\frac{n+1-k}{n \sin \alpha} & \text{für } k > r, \end{cases}$$

für die Vertikalen zu

$$b_{4r-3, 2k-1} = \begin{cases} -\frac{k-1}{n} & \text{für } k \leq r \\ +\frac{n+1-k}{n} & \text{für } k > r, \end{cases} \quad b_{4r-3, 2k} = \begin{cases} -\frac{k-1}{n} & \text{für } k < r \\ +\frac{n+1-k}{n} & \text{für } k \geq r. \end{cases}$$

Die vom Lastsystem O hervorgerufenen Stabkräfte T_j in den Obergurt-, Untergurt-, Vertikal- und Diagonalstäben eines Stabfeldes r können jetzt mit Hilfe der Elemente $b_{j, 2k}$ der Einflußmatrix \mathfrak{B} aus (6.1) sehr leicht berechnet werden.

Faßt man den Beitrag der 8 Lasten p_2, \dots, p_{16} zu den Stabkräften mit Hilfe der Summenformeln

$$\sum_{k_1}^{k_2} (k-1) = \frac{1}{2} (k_2 - k_1 + 1) (k_2 + k_1 - 2),$$

$$\sum_{k_1}^{k_2} (n+1-k) = \frac{1}{2} (k_2 - k_1 + 1) [2(n+1) - (k_2 + k_1)]$$

zusammen, so kommen mit $\operatorname{ctg} \alpha = \lambda/h$ für die Stabkräfte die Ergebnisse

$$O_r = -\frac{\lambda}{h} \left[(r-1)(n+1-r) \frac{p}{2} + \frac{n+1-r}{n} (k-1) P_{2k < 2r} + \frac{r-1}{n} (n+1-k) P_{2k \geq 2r} \right] = -U_{r-1},$$

$$V_r = +[n+1-2(r-1)] \frac{p}{2} - \frac{k-1}{n} P_{2k < 2r} + \frac{n+1-k}{n} P_{2k \geq 2r} = -D_{r-1} \sin \alpha. \quad \boxed{\quad} \quad (6.2)$$

Um den Einfluß von Temperaturänderungen auf die Stabkräfte aufzuzeigen, wird angenommen, daß im ersten Fall nur der Obergurtstab O_5 , im zweiten Fall sämtliche Obergurtstäbe O_1 bis O_9 um Δt [$^{\circ}\text{C}$] erwärmt werden.

Mit den Abmessungen $\lambda = 4$ [m], $h = 3$ [m] von Abb. 2 folgen

$$\sin \alpha = \frac{h}{\sqrt{h^2 + \lambda^2}} = 0,6 \quad \text{und} \quad \cos \alpha = \frac{\lambda}{\sqrt{h^2 + \lambda^2}} = 0,8.$$

Damit ergeben sich die Stabkräfte T_j nach (6.2), die in Tabelle 1 zusammengestellt sind.

Tabelle 1. Die Stabkräfte T_j des Belastungszustandes O

r	O_r	U_r	V_r	D_r
1	0	+ 118,7	0	- 148,3
2	- 118,7	+ 219,3	+ 89,0	- 125,8
3	- 219,3	+ 302,0	+ 75,5	- 103,3
4	- 302,0	+ 324,7	+ 62,0	- 28,3
5	- 324,7	+ 329,3	+ 17,0	- 5,8
6	- 329,3	+ 274,0	+ 3,5	+ 69,2
7	- 274,0	+ 200,7	- 41,5	+ 91,7
8	- 200,7	+ 109,3	- 55,0	+ 114,2
9	- 109,3	0	- 68,5	+ 136,7
10	-	-	- 82,0	-

Die umständlich zu berechnenden Summen $\sum T_j t_{ji} l_j$ können für den homogenen Parallelfachwerkträger durch einen Kunstgriff auf eine sehr einfache Form gebracht werden. Hierzu berücksichtigen wir, daß die Stabkräfte t_{ji} der Belastungszustände $i = 1, 2 \dots n$ nur im jeweiligen Feld i auftreten, und daher auch die Produkte $T_j t_{ji} l_j$ nur im Feld i von Null verschieden sind. Sie ergeben die Summe

$$\sum T_j t_{ji} l_j = - (O_i + U_i) \lambda \cos \alpha - (V_i + V_{i+1}) h \sin \alpha + D_i \frac{\lambda}{\cos \alpha}. \quad (6.3)$$

Nun folgt aus (6.2)

$$V_i = - D_{i-1} \sin \alpha, \quad V_{i+1} = - D_i \sin \alpha$$

und aus einem Ritterschen Schnitt im Feld i

$$\sum K_{ix} = O_i + U_i + D_i \cos \alpha = 0.$$

Führt man diese Beziehungen in (6.3) ein und setzt $h = \lambda \operatorname{tg} \alpha$, so kommt mit (4.4)

$$\begin{aligned} \sum T_j t_{ji} l_j &= \lambda \left[D_i \cos^2 \alpha + (D_{i-1} + D_i) \frac{\sin^3 \alpha}{\cos \alpha} + \frac{D_i}{\cos \alpha} \right] \\ &= \lambda \frac{\sin^3 \alpha}{\cos \alpha} \left[D_{i-1} + D_i \frac{1 + \sin^3 \alpha + \cos^3 \alpha}{\sin^3 \alpha} \right] = \lambda \frac{\sin^3 \alpha}{\cos \alpha} [D_{i-1} + D_i \varphi(\alpha)]. \end{aligned}$$

Damit folgt für die Belastungsglieder $\bar{B}_i = \frac{\cos \alpha}{\sin^3 \alpha} \frac{1}{\lambda} B_i$ die vereinfachte Form

$$\bar{B}_i = D_{i-1} + D_i \varphi(\alpha) + \frac{\cos \alpha}{\sin^3 \alpha} \frac{1}{\lambda} \sum_e E F o_{ee} l_e \alpha_{th} \Delta t. \quad (6.4)$$

Der Beitrag eines erwärmten Obergurtstabes zu den Belastungsgliedern berechnet sich für das gewählte Beispiel mit

$$\begin{aligned} \alpha_{th} &= 1,25 \cdot 10^{-5} \quad [\text{1/}^\circ \text{C}], \quad E = 2,1 \cdot 10^3 \quad [\text{to/cm}^2], \quad F = 263 \quad [\text{cm}^2], \\ o_{ee} &= - 0,8 \quad [\text{to}] \quad (e = 1,2, \dots, n) \end{aligned}$$

zu

$$\frac{\cos \alpha}{\sin^3 \alpha} \frac{1}{\lambda} E F o_{ee} l_e \alpha_{th} \Delta t = - 20,455 \Delta t \quad [\text{to}^2].$$

Schließlich kommen mit

$$\varphi(\alpha) = \frac{1 + \sin^3 \alpha + \cos^3 \alpha}{\sin^3 \alpha} = 8 \quad (6.5)$$

aus (6.4) die Belastungsglieder für die beiden betrachteten Fälle:

1. Stab O_5 allein erwärmt, zu

$$\begin{aligned}\bar{B}_1 &= -1186,4, \\ \bar{B}_2 &= -1154,7, \\ \bar{B}_3 &= -952,2, \\ \bar{B}_4 &= -329,7, \\ \bar{B}_5 &= -74,7 - 20,455 \Delta t, \\ \bar{B}_6 &= +547,8, \\ \bar{B}_7 &= +802,8, \\ \bar{B}_8 &= +1005,3, \\ \bar{B}_9 &= +1207,8,\end{aligned}$$

2. alle Obergurtstäbe erwärmt, zu

$$\begin{aligned}\bar{B}_1 &= -1186,4 - 20,455 \Delta t, \\ \bar{B}_2 &= -1154,7 - 20,455 \Delta t, \\ \bar{B}_3 &= -952,2 - 20,455 \Delta t, \\ \bar{B}_4 &= -329,7 - 20,455 \Delta t, \\ \bar{B}_5 &= -74,7 - 20,455 \Delta t, \\ \bar{B}_6 &= +547,8 - 20,455 \Delta t, \\ \bar{B}_7 &= +802,8 - 20,455 \Delta t, \\ \bar{B}_8 &= +1005,3 - 20,455 \Delta t, \\ \bar{B}_9 &= +1207,8 - 20,455 \Delta t.\end{aligned}$$

} (6.6)

Als letzter Schritt sind die Elemente g_{ik} der reziproken Matrix entweder aus der strengen Lösung (4.18) oder aus den Näherungslösungen (5.5) bis (5.8) zu berechnen. Einige Proben zeigen, daß für den vorliegenden Fachwerkträger mit $h < \lambda$ die Näherungslösung mit der strengen Lösung bis zur achten Dezimalstelle übereinstimmt. Wir ziehen daher die Näherungslösung vor und erhalten mit

$$\varphi(\alpha) - \sqrt{\varphi^2(\alpha) - 1} = 8 - \sqrt{63} = 0,06274, \quad \frac{1}{2 \sqrt{\varphi^2(\alpha) - 1}} = \frac{\sqrt{63}}{126} = 0,06299$$

die folgende geschlossene Lösung (6.7) für die statisch Unbestimmten X_i in Abhängigkeit von den Belastungsgliedern \bar{B}_k :

$$\left. \begin{aligned}X_1 &= -0,06274 \bar{B}_1 + 0,00393 \bar{B}_2 - 0,00024 \bar{B}_3 + 0,00001 \bar{B}_4 - 0,00 \dots \bar{B}_5 + 0,00 \dots \bar{B}_6 - \\ &\quad - 0,00 \dots \bar{B}_7 + 0,00 \dots \bar{B}_8 - 0,00 \dots \bar{B}_9 \\X_2 &= +0,00393 \bar{B}_1 - 0,06299 \bar{B}_2 + 0,00395 \bar{B}_3 - 0,00024 \bar{B}_4 + 0,00001 \bar{B}_5 - 0,00 \dots \bar{B}_6 + \\ &\quad + 0,00 \dots \bar{B}_7 - 0,00 \dots \bar{B}_8 + 0,00 \dots \bar{B}_9 \\X_3 &= -0,00024 \bar{B}_1 + 0,00395 \bar{B}_2 - 0,06299 \bar{B}_3 + 0,00395 \bar{B}_4 - 0,00024 \bar{B}_5 + 0,00001 \bar{B}_6 - \\ &\quad - 0,00 \dots \bar{B}_7 + 0,00 \dots \bar{B}_8 - 0,00 \dots \bar{B}_9 \\X_4 &= +0,00001 \bar{B}_1 - 0,00024 \bar{B}_2 + 0,00395 \bar{B}_3 - 0,06299 \bar{B}_4 + 0,00395 \bar{B}_5 - 0,00024 \bar{B}_6 + \\ &\quad + 0,00001 \bar{B}_7 - 0,00 \dots \bar{B}_8 + 0,00 \dots \bar{B}_9 \\X_5 &= -0,00 \dots \bar{B}_1 + 0,00001 \bar{B}_2 - 0,00024 \bar{B}_3 + 0,00395 \bar{B}_4 - 0,06299 \bar{B}_5 + 0,00395 \bar{B}_6 - \\ &\quad - 0,00024 \bar{B}_7 + 0,00001 \bar{B}_8 - 0,00 \dots \bar{B}_9 \\X_6 &= +0,00 \dots \bar{B}_1 - 0,00 \dots \bar{B}_2 + 0,00001 \bar{B}_3 - 0,00024 \bar{B}_4 + 0,00395 \bar{B}_5 - 0,06299 \bar{B}_6 + \\ &\quad + 0,00395 \bar{B}_7 - 0,00024 \bar{B}_8 + 0,00001 \bar{B}_9 \\X_7 &= -0,00 \dots \bar{B}_1 + 0,00 \dots \bar{B}_2 - 0,00 \dots \bar{B}_3 + 0,00001 \bar{B}_4 - 0,00024 \bar{B}_5 + 0,00395 \bar{B}_6 - \\ &\quad - 0,06299 \bar{B}_7 + 0,00395 \bar{B}_8 - 0,00024 \bar{B}_9 \\X_8 &= +0,00 \dots \bar{B}_1 - 0,00 \dots \bar{B}_2 + 0,00 \dots \bar{B}_3 - 0,00 \dots \bar{B}_4 + 0,00001 \bar{B}_5 - 0,00024 \bar{B}_6 + \\ &\quad + 0,00395 \bar{B}_7 - 0,06299 \bar{B}_8 + 0,00393 \bar{B}_9 \\X_9 &= -0,00 \dots \bar{B}_1 + 0,00 \dots \bar{B}_2 - 0,00 \dots \bar{B}_3 + 0,00 \dots \bar{B}_4 - 0,00 \dots \bar{B}_5 + 0,00001 \bar{B}_6 - \\ &\quad - 0,00024 \bar{B}_7 + 0,00393 \bar{B}_8 - 0,06274 \bar{B}_9\end{aligned}\right\} \quad (6.7)$$

In (6.7) erkennt man deutlich das *de Saint-Venantsche Abklingungsgesetz*, nach welchem der Einfluß entfernter Felder immer schwächer wird.

Setzt man nun die \bar{B}_i von (6.6) in (6.7) ein, so folgen die statisch Unbestimmten für

$$\left\{ \begin{array}{l} 1. \text{ Stab } O_5 \text{ allein erwärmt zu} \\ X_1 = +70,14 + 0,00002 \Delta t, \\ X_2 = +64,38 - 0,00032 \Delta t, \\ X_3 = +54,45 + 0,00507 \Delta t, \\ X_4 = +16,87 - 0,08085 \Delta t, \\ X_5 = +5,60 + 1,28858 \Delta t, \\ X_6 = -31,78 - 0,08085 \Delta t, \\ X_7 = -44,70 + 0,00507 \Delta t, \\ X_8 = -55,54 - 0,00032 \Delta t, \\ X_9 = -72,00 + 0,00002 \Delta t, \end{array} \right| \quad \left\{ \begin{array}{l} 2. \text{ alle Obergurtstäbe erwärmt zu} \\ X_1 = +70,14 + 1,208 \Delta t, \\ X_2 = +64,38 + 1,132 \Delta t, \\ X_3 = +54,45 + 1,137 \Delta t, \\ X_4 = +16,87 + 1,136 \Delta t, \\ X_5 = +5,60 + 1,136 \Delta t, \\ X_6 = -31,78 + 1,136 \Delta t, \\ X_7 = -44,70 + 1,137 \Delta t, \\ X_8 = -55,54 + 1,132 \Delta t, \\ X_9 = -72,00 + 1,208 \Delta t. \end{array} \right| \quad (6.8)$$

Mit den statisch Unbestimmten (6.8) kommen nach (2.1) die wirklichen Stabkräfte S_j zu

$$S_j = T_j + \sum_{i=1}^n t_{ji} X_i = S_j(\Delta t).$$

Auf eine formelmäßige Zusammenstellung aller $S_j(\Delta t)$ wie in (6.6) und (6.8) wird der Kürze halber verzichtet. Dafür wird aber der Verlauf der Stabkräfte $S_j(\Delta t)$ in Abhängigkeit von der Temperatur-

— Erwärmung sämtlicher Obergurtstäbe um Δt
— Erwärmung des Stabes O_5 allein um Δt

Abb. 4. Temperaturabhängigkeit der Obergurtstäbe.

— Erwärmung sämtlicher Untergurtstäbe um Δt
— Erwärmung des Stabes O_5 allein um Δt

Abb. 5. Temperaturabhängigkeit der Untergurtstäbe.

Abb. 6. Temperaturabhängigkeit der fallenden Diagonalstäbe.

Abb. 8. Temperaturabhängigkeit der Vertikalstäbe.

Abb. 7. Temperaturabhängigkeit der steigenden Diagonalstäbe.

(Eingegangen am 27. Januar 1959.)

Anschrift des Verfassers: Dozent Dr.-Ing. Johann Fadle, Technische Hochschule Karlsruhe, Institut für Mechanik

änderung Δt in den Abb. 4 bis 8 für Obergurt- und Untergurtstäbe, fallende und steigende Diagonalstäbe, sowie für Vertikalstäbe übersichtlich graphisch dargestellt. Man erkennt deutlich aus den Diagrammen, daß sich die Temperaturänderung eines einzelnen Stabes weniger, hingegen diejenige eines ganzen Stabzuges erheblich stärker auswirkt und daß sogar bei vielen Stäben ein Umschlagen von einer Zugkraft auf eine Druckkraft und umgekehrt eintreten kann.

Die tordierte, einfach gekrümmte Welle mit konstanter Krümmung*

Von W. Roth

1. Einleitung und Aufgabenstellung. Die Torsion einer geraden Welle kann durch ein Torsionsmoment bewirkt werden, welches proportional der Verdrehung der Welle an der Angriffsstelle des Momentes ist. Bei einer ursprünglich schon gekrümmten Welle, wobei vorausgesetzt werden soll, der Krümmungshalbmesser R sei konstant, wird eine funktionelle Abhängigkeit zwischen dem Torsionsmoment und der Verdrehung bestehen, welche nicht linear ist, und die nicht mehr an Hand eines einfachen mechanischen Analogons angegeben werden kann. Es seien jetzt schon die beiden Grundaufgaben, deren Lösungen in der vorliegenden Arbeit angegeben werden, präzisiert.

Abb. 1a und 1b. Gekrümmte Torsionsfeder mit Einzellagern.

Abb. 2a und 2b. Gekrümmte Torsionsfeder mit Führungsrohr.

Abb. 1a zeigt einen gekrümmten Torsionsstab, welcher in seinen Endlagern A und B und seinen Zwischenlagern reibungsfrei drehbar so gelagert ist, daß seine Tangenten in A und B erhalten bleiben. Unter der Wirkung eines bei A angreifenden Torsionsmomentes M_a werden Verdrehungen φ_a und φ_b feststellbar sein. Während das Moment M_a bei dem gekrümmten Stab eine periodische Funktion des Winkels φ_a bzw. φ_b sein wird, ist im Gegensatz dazu bei einer geraden Welle kein äußeres Moment erforderlich, um eine Drehung herbeizuführen.

Abb. 1b zeigt denselben Torsionsstab mit einer Einspannung in B , so daß dort die Verdrehung Null bleiben muß. Die Abhängigkeit des Momentes M_a vom Drehwinkel φ_a ist nun selbstverständlich eine andere, als bei drehbarer Lagerung in B .

In beiden Fällen sei vorausgesetzt, daß die Welle hinreichend oft zwischen A und B gelagert ist, so daß sowohl ein Ausweichen aus ihrer Ebene heraus als auch eine Krümmungsänderung in ihrer Ebene unmöglich ist. Gesucht sind die Charakteristiken der Probleme.

2. Aufstellung der Gleichungen. Die oben gegebene Aufgabenstellung gestattet bezüglich der mathematischen Behandlung eine kleine Mutation. Es wurde vorausgesetzt, daß durch hinreichend viele Lager ein Ausweichen der Welle unmöglich geworden ist. Idealisiert heißt das, die Welle soll in einem genau passenden Rohr liegen, in welchem eine reibungsfreie Drehung möglich ist. Dieses äußere Rohr ist als starr zu betrachten, so daß es imstande ist, die von der Welle herrührenden Kräfte aufzunehmen, ohne daß eine Deformation des Führungsrohres eintritt. Abb. 2a und 2b zeigen schematisch diese Analogon-Probleme. Beide Probleme unterscheiden sich nur durch die Randbedingungen voneinander. Es ist also das Ziel, zunächst allgemeine Gleichungen aufzustellen, unabhängig von den verschiedenen Aufgabenstellungen.

Im unbelasteten Zustand wird die Lage eines Elementes der Welle durch die Koordinate α beschrieben. Nach Aufbringung des Torsionsmomentes M_a hat sich das Element um die Strecke u in Richtung der Wellentangente verschoben. Gleichzeitig wird eine Verdrehung φ des Elementes um die Tangente als Drehachse zu beobachten sein. Sowohl u als auch φ müssen als Funktionen von α aufgefaßt werden. Während die Drehung φ keiner einschränkenden Bedingung unterworfen wird, soll von der Verschiebung u gefordert werden, daß sie klein bleibt. Dieser Sachverhalt ist dann verständlich, wenn man bedenkt, daß die Verschiebung u verursacht wird durch die Längs-

* Dissertation Karlsruhe 1958, Hauptreferent: Prof. Dr.-Ing. R. Sonntag, Korreferent: Prof. O. Kraemer

kraft S in der Welle, zwischen S und u aber der Hookesche Zusammenhang wie bei einem geraden, auf Zug oder Druck beanspruchten Stab besteht. Für Metallstäbe ist es aber erwiesen, daß die Verschiebungen u so klein bleiben, daß sie nicht in die Gleichgewichtsbedingungen des Elementes eingehen.

In Abb. 3 sind nun sämtliche an dem zwar um den Winkel φ gedrehten, aber nicht verschobenen Element angreifenden Kräfte und Momente eingezeichnet. Die Komponentenrichtungen sind orthogonal aufeinanderstehend gewählt und zwar so, daß die erste Komponentenrichtung mit dem Tangentenvektor t , die zweite mit dem Hauptnormalenvektor n und die dritte mit dem Binormalenvektor b des die Mittellinie der Welle begleitenden Frenetschen Dreibeins zusammenfällt. Das Dreibein ist nach einem Rechtssystem orientiert, so daß die Binormale b aus der Wellenebene heraus auf den Beschauer hin zeigt (Abb. 4). Die an den Schnittflächen des Wellenelementes angreifenden inneren Kräfte und Momente sind derart angenommen, daß ihre positiven Richtungen an der Stelle $\alpha + d\alpha$ mit den Einheitsvektoren $t + dt$, $n + dn$ und $b + db$ zusammenfallen. Ihrem Charakter entsprechend zeigen sie dann an der Stelle α entgegen den Richtungen t , n und b . Die Momente drehen in einem Drehsinn, welcher sich aus der Definition des Rechtssystems ergibt. In Pfeilrichtung gesehen dreht ein positives Moment also rechts herum. Es bedeuten p_1 die Rückwirkung des Führungsrohres auf die Welle bezogen auf die Längeneinheit der Wellennmittellinie

Abb. 3. Kräfte und Momente am Wellenelement.

Abb. 4. Begleitendes Dreibein an der Wellennmittellinie.

in Richtung der Normalen n , p_2 die Rückwirkung des Führungsrohres auf die Welle bezogen auf die Längeneinheit der Wellennmittellinie in Richtung der Binormalen b , S die Längskraft in der Welle, Q_1 die Querkraft an der Welle in der Wellenebene, Q_2 die Querkraft an der Welle senkrecht auf der Wellenebene, M das innere Torsionsmoment um die Tangente t als Achse drehend, M_1 das innere Biegmoment um die Normale n als Achse drehend und M_2 das innere Biegmoment um die Binormale b als Achse drehend. Diese Kräfte und Momente sind in Abb. 3 an der Stelle α bzw. $\alpha + d\alpha$ so, wie sie am Wellenelement wirken mit ihren Differentialen eingezeichnet. Man liest aus Abb. 3 die Gleichgewichtsbedingung gegen Verschiebung

$$d(tS) + d(nQ_1) + d(bQ_2) + n p_1 ds + b p_2 ds = 0 \quad (1)$$

sowie die Gleichgewichtsbedingung gegen Drehung

$$d(tM) + d(nM_1) + d(bM_2) + (t \times n) Q_1 ds + (t \times b) Q_2 ds = 0 \quad (2)$$

des Elementes ab. Bevor die Komponenten dieser Gleichungen angegeben werden können, müssen über die Frenetschen Formeln

$$\frac{dt}{ds} = K n, \quad \frac{dn}{ds} = -K t + T b, \quad \frac{db}{ds} = -T n$$

die Ableitungen der Einheitsvektoren t , n und b ermittelt werden. Da die Welle durch das Führungsrohr gehalten wird, kann die Wellennmittellinie ihre Gestalt nicht ändern. Im unbelasteten Zustand ist die Wellennmittellinie aber ein ebener Kreisbogen mit dem Krümmungshalbmesser R . Daraus folgt sofort, daß die erste Krümmung

$$K = \frac{1}{R}$$

und die zweite Krümmung

$$T = 0$$

ist. Die Frenetschen Formeln gehen mit der Beziehung $ds = R d\alpha$ damit über in

$$\frac{dt}{d\alpha} = n, \quad \frac{dn}{d\alpha} = -t, \quad \frac{db}{d\alpha} = 0.$$

Beachtet man noch daß

$$(\mathbf{t} \times \mathbf{n}) = \mathbf{b} \quad (\mathbf{t} \times \mathbf{b}) = -\mathbf{n}$$

ist, so gehen die Gleichungen (1) und (2) nach Division mit $d\alpha$ über in die Komponentengleichungen für die Richtungen \mathbf{t} , \mathbf{n} und \mathbf{b}

$$\frac{dS}{d\alpha} - Q_1 = 0, \quad \frac{dQ_1}{d\alpha} + S + p_1 R = 0, \quad \frac{dQ_2}{d\alpha} + p_2 R = 0, \quad (1')$$

$$\frac{dM}{d\alpha} - M_1 = 0, \quad \frac{dM_1}{d\alpha} + M - Q_2 R = 0, \quad \frac{dM_2}{d\alpha} + Q_1 R = 0. \quad (2')$$

Diese sechs Gleichungen garantieren hinreichend und notwendig das Gleichgewicht des Elementes. Eine Auflösung indessen nach den einzelnen Kräften und Momenten ist noch nicht möglich, da die Zahl der Unbekannten nicht mit der Zahl der zur Verfügung stehenden Gleichungen übereinstimmt. Die Schwierigkeit ist behoben, wenn die Schnittkräfte und Schnittmomente in Beziehung zu den von ihnen verursachten Verschiebungen u und φ gebracht werden. Zwischen S und u besteht die Hookesche Gleichung

$$S = \frac{E F}{R} \frac{du}{d\alpha} \quad (3)$$

mit dem Elastizitätsmodul E und dem Wellenquerschnitt F . Ebenso kann die Abhängigkeit zwischen dem Torsionsmoment M und dem Torsionswinkel $d\varphi$, um den der Wellenquerschnitt an der Stelle $\alpha + d\alpha$ relativ zum Wellenquerschnitt an der Stelle α gedreht wird, durch die elementare Formel für einen Torsionsstab von der Länge ds

$$d\varphi = -\frac{M ds}{I_p G}$$

mit dem polaren Flächenträgheitsmoment I_p des Wellenquerschnitts und dem Schubmodul G beschrieben werden. Es gilt also

$$\frac{d\varphi}{d\alpha} = -\frac{M R}{I_p G} \quad (4)$$

Blickt man an der Stelle α in Richtung der Tangente \mathbf{t} auf den Querschnitt, so soll eine Drehung φ entgegen dem Uhrzeigersinn positiv sein. Ein positives Torsionsmoment M verursacht dann aber ein negatives Differential $d\varphi$. Daraus resultiert das Minuszeichen in Formel (4).

Nicht mehr so einfacher Art sind die Beziehungen zwischen dem Drehwinkel φ und den inneren Biegungsmomenten M_1 und M_2 . Hier muß das um den endlichen Winkel φ „in sich“ gedrehte Wellenelement betrachtet werden. Ein Flächenelement des Wellenquerschnittes habe im un-

Abb. 5. Lageänderung eines Flächenelementes des Wellenquerschnittes.

Abb. 6. Faserelement der Welle vor und nach der Deformation.

belasteten Zustand die Polarkoordinaten r und γ , im belasteten Zustand die Koordinaten r und $\gamma + \varphi$ (Abb. 5). Die Drehung des ganzen Elementes um den Winkel φ hat zur Folge, daß eine Dehnung des zum Flächenelement dF gehörigen Faserelementes eintritt. Die Länge des Faserelementes vor der Drehung (Abb. 6) ist

$$ds_1 = (R - r \sin \gamma) d\alpha$$

und nach der Drehung

$$ds_2 = [R - r \sin(\gamma + \varphi)] d\alpha .$$

Genauer ist

$$ds_2 = d\alpha \sqrt{[R - r \sin(\gamma + \varphi)]^2 + r^2 \left(\frac{d\varphi}{d\alpha} \right)^2} ;$$

doch kann von dem Einfluß der relativen Drehung $d\varphi$ der beiden Querschnitte zueinander abgesehen werden, da angenommen oder vorausgesetzt werden soll, daß

$$[R - r \sin(\gamma + \varphi)]^2 \gg r^2 \left(\frac{d\varphi}{d\alpha} \right)^2$$

gilt, eine Voraussetzung die sicher dann erfüllt ist, wenn die Ableitung $d\varphi/d\alpha$ der Bedingung

$$\left| \frac{d\varphi}{d\alpha} \right| \ll \left| \frac{R}{a} - 1 \right| \quad (5)$$

genügt. Damit ist also eine Dehnung

$$\frac{ds_2 - ds_1}{ds_1} = \frac{r [\sin \gamma - \sin(\gamma + \varphi)]}{R - r \cdot \sin \gamma}$$

feststellbar. Die zu dieser Dehnung gehörige Spannung ist aber nach dem Hookeschen Gesetz

$$\sigma = E \frac{r [\sin \gamma - \sin(\gamma + \varphi)]}{R - r \cdot \sin \gamma} . \quad (6)$$

Da nur verhältnismäßig dünne Wellen betrachtet werden sollen, gilt für die Quotienten $r/R \leq a/R \ll 1$, so daß die Entwicklung der Formel (6) nach Potenzen von r/R nach Abbruch der binomischen Reihe mit dem linearen Glied die einfache Formel

$$\sigma = E \frac{r}{R} [\sin \gamma - \sin(\gamma + \varphi)] \quad (6')$$

liefert, welche maßgebend ist für die Ermittlung der in der Welle sich einstellenden maximalen Zu- oder Druckspannung. Für in Elemente mit den Polarkoordinaten $r = a$ und $\gamma = \pi/2$ bzw. $\gamma = 3\pi/2$ ist nach einer Drehung um $\varphi = \pi$ eine Spannung

$$\sigma_{max} = \pm \frac{2a}{R} E$$

feststellbar, welche also bei einer wirklich ausgeführten Welle kleiner als die Fließspannung des Materials bleiben muß. Die Formel (6) ist im wesentlichen auch schon in der von R. Grammel¹ dargelegten Theorie über „Das Umstülpen und Umkippen von elastischen Ringen“ zu finden. Dort wird gezeigt, daß sich ein kreisförmiger Querschnitt des Ringes nicht genau um seinen Schwerpunkt oder Mittelpunkt dreht, sondern um einen „neutralen Punkt“ welcher spannungsfrei bleibt und der in der Entfernung

$$s = \frac{R}{2} \left(1 - \sqrt{1 - \frac{a^2}{R^2}} \right)$$

vom Schwerpunkt des Kreisquerschnittes zum Krümmungsmittelpunkt des Ringes hin gelegen ist. Bei Berücksichtigung nur linearer Glieder in a/R , wie es hier durchgeführt wurde, ist $s = 0$. Die Drehung erfolgt also dann doch hinreichend genau um den Kreismittelpunkt oder Schwerpunkt des Querschnittes.

Die Spannung σ wird erzeugt durch die inneren Biegungsmomente M_1 und M_2 . Wären diese Momente nämlich nicht vorhanden, so würde sich das Wellenelement wie ein starrer Körper um seine Achse drehen, d. h. nach einer Drehung um den Winkel φ stünden die Querschnitte an den Stellen α und $\alpha + d\alpha$ nicht mehr unter dem Öffnungswinkel $d\alpha$ zum Krümmungsmittelpunkt der Wellenmittellinie zueinander geneigt. Die Hypothese aber, daß die Querschnitte im belasteten Zustand ihre im unbelasteten Zustand eingenommenen Ebenen nicht verlassen, ist ebenso einfach und plausibel wie die Annahme, welche in der elementaren Festigkeitslehre getroffen wird, daß die Querschnitte eines auf Biegung beanspruchten Trägers eben bleiben. Zwischen den Biegungsmomenten M_1 und M_2 und der Spannung σ bestehen demnach die Beziehungen

$$M_1 = \iint_F \sigma r \cos(\gamma + \varphi) dF, \quad M_2 = - \iint_F \sigma r \sin(\gamma + \varphi) dF .$$

¹ R. Grammel, Z. angew. Math. Mech. 3 (1923) S. 429.

Für das Flächenelement dF ist $dF = r dr d\gamma$ zu setzen. Die Integration erstreckt sich über den gesamten Wellenquerschnitt. Mit (6') erhält man nach Auswertung der Integrale

$$M_1 = -\frac{E I_p}{2 R} \sin \varphi, \quad (7)$$

$$M_2 = \frac{E I_p}{2 R} (1 - \cos \varphi), \quad (8)$$

wobei $I_p = \pi a^4/2$ gesetzt ist. Diese Gleichungen wurden auf anderem Wege auch von R. Sonntag¹ hergeleitet

Damit sind die Zusammenhänge zwischen den Biegmommenten und der Drehung des Wellenquerschnittes gefunden. Die Momente M_1 und M_2 können als Komponenten eines resultierenden Biegmommentes M_3 aufgefaßt werden, welches dem Betrag nach

$$M_3 = \sqrt{M_1^2 + M_2^2} = \frac{E I_p}{R} \sin \frac{\varphi}{2} \quad (9)$$

ist (Abb. 7) und dessen Drehachse mit der Hauptnormalen n den Winkel δ einschließt, der aus der Gleichung

$$\tan \delta = \frac{M_2}{M_1} = \frac{(\cos \varphi - 1)}{\sin \varphi} = -\tan \frac{\varphi}{2}$$

folgt. Man erhält

$$\delta = -\frac{\varphi}{2},$$

Abb. 7. Lage des resultierenden Momentenvektors im Wellenquerschnitt.

und diese Gleichung sagt aus, daß sich die im Sinne der elementaren Biegslehre definierbare neutrale Faser, welcher die Punkte mit der Biegungsspannung $\sigma = 0$ zugeordnet sind, in gleichem Drehsinn mit der Drehung φ des Querschnittes um $\varphi/2$ dreht.

Die Gleichungen (4), (7) und (8) in Verbindung mit den Gleichungen (1') und (2') reichen zur Bestimmung der unbekannten Kräfte und Momente aus. Das Problem wird am einfachsten auf die Ermittlung der Funktion $\varphi = f(\alpha)$ zurückgeführt. Die maßgebende Gleichung ergibt sich, wenn die Ausdrücke (4) und (7) für die Momente M und M_1 in die erste der Gleichungen (2') eingesetzt werden. Man erhält für φ die Differentialgleichung zweiter Ordnung

$$\frac{d^2\varphi}{d\alpha^2} - \frac{E}{2G} \sin \varphi = 0. \quad (10)$$

Ein erstes Integral dieser Gleichung ist

$$\left(\frac{d\varphi}{d\alpha} \right)^2 = C - \frac{E}{G} \cos \varphi.$$

Für beide Grundprobleme kann $d\varphi/d\alpha < 0$ vorausgesetzt werden. Damit liegt die für die weitere Untersuchung wichtige Gleichung

$$\frac{d\varphi}{d\alpha} = -\sqrt{C - \frac{E}{G} \cos \varphi} \quad (10')$$

vor.

3. Lösung der ersten Grundaufgabe. Die drehbare Lagerung der Welle bei B fordert $M = 0$ an der Stelle $\alpha = \alpha_0$. Über (4) folgt daraus, daß auch $d\varphi/d\alpha = 0$ sein muß für $\alpha = \alpha_0$. Gleichung (10') liefert damit die Integrationskonstante

$$C = \frac{E}{G} \cos \varphi_b,$$

und (10') selbst geht über in

$$\frac{d\varphi}{d\alpha} = -\sqrt{\frac{E}{G}} \sqrt{\cos \varphi_b - \cos \varphi}, \quad (11)$$

¹ R. Sonntag, Forsch. Ing.-Wes. 23 (1957) S. 216.

An der Stelle $\alpha = 0$ ist das Torsionsmoment $M = M_a$, der Winkel $\varphi = \varphi_a$, somit folgt aus Gleichung (11) über (4)

$$\frac{M_a R}{I_p \sqrt{E G}} = \sqrt{\cos \varphi_b - \cos \varphi_a}, \quad (11')$$

und die Integration von (11) führt auf

$$\alpha = -\sqrt{\frac{G}{E}} \int_{\varphi_a}^{\varphi_b} \frac{d\varphi}{\sqrt{\cos \varphi_b - \cos \varphi}}. \quad (12)$$

Die geometrische Bedingung

$$\alpha_0 = -\sqrt{\frac{G}{E}} \int_{\varphi_a}^{\varphi_b} \frac{d\varphi}{\sqrt{\cos \varphi_b - \cos \varphi}} \quad (12')$$

in Verbindung mit Gleichung (11') reicht zur Festlegung der Charakteristiken $M_a = F_a(\varphi_a)$ und $M_b = F_b(\varphi_b)$. Es ist jedoch zweckmäßig, eine Umformung vorzunehmen. Die Substitution

$$\sin y = \frac{\cos \varphi/2}{\cos \varphi_b/2}$$

führt (12) über in

$$\alpha \sqrt{\frac{E}{2G}} = \int_{y_1}^y \frac{dy}{\sqrt{1 - k^2 \sin^2 y}} \quad (13)$$

und (12') in die Gleichung

$$\alpha_0 \sqrt{\frac{E}{2G}} = \int_{y_1}^{\pi/2} \frac{dy}{\sqrt{1 - k^2 \sin^2 y}}, \quad (13')$$

wobei

$$y_1 = \arcsin \frac{\cos \varphi_a/2}{k}, \quad y = \arcsin \frac{\cos \varphi/2}{k}$$

und

$$k = \cos \varphi_b/2$$

ist.

Nun sind die Elliptischen Integrale erster Gattung nach Legendre definiert durch

$$F(\vartheta, k) = \int_0^{\vartheta} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}} \quad (\vartheta = a \text{ m } F)$$

und speziell ist

$$K(k) = \int_0^{\pi/2} \frac{dx}{\sqrt{1 - k^2 \sin^2 x}}.$$

Damit geht (13) über in

$$\alpha \sqrt{\frac{E}{2G}} = F\left(\arcsin \frac{\cos \varphi/2}{k}, k\right) - F\left(\arcsin \frac{\cos \varphi_a/2}{k}, k\right) \quad (14)$$

und (13') in

$$\alpha_0 \sqrt{\frac{E}{2G}} = K(k) - F\left(\arcsin \frac{\cos \varphi_a/2}{k}, k\right). \quad (14')$$

Beide Gleichungen erlauben eine explizite Auflösung. Man erhält aus (14)

$$\cos \frac{\varphi}{2} = k \sin a m \left[\alpha \sqrt{\frac{E}{2G}} + F\left(\arcsin \frac{\cos \varphi_a/2}{k}, k\right) \right] \quad (15)$$

und aus (14')

$$\cos \frac{\varphi_a}{2} = k \sin a m \left[K(k) - \alpha_0 \sqrt{\frac{E}{2G}} \right].$$

Die letzte Gleichung liefert den Winkel φ_a über k als Funktion des Winkels φ_b . Die Größe

$$\beta_0 = \alpha_0 \sqrt{\frac{E}{2G}}$$

übernimmt dabei die Rolle eines Parameters. Aus Gleichung (11') erhält man dann das dimensionslose Moment

$$\Omega_a = \frac{M_a R}{I_p \sqrt{E G}}$$

k	φ_b	$\beta_0 = \frac{\pi}{2}$		$\beta_0 = \pi$	
		φ_i	Ω_a	φ_a	Ω_a
1,0000	0,00	0,00	0,000	0,00	0,000
0,9962	10,00	24,90	0,278	106,88	1,129
0,9848	20,00	46,70	0,504	178,64	1,392
0,9063	50,00	109,68	0,990	257,66	0,926
0,8192	70,00	137,96	1,042	266,30	0,638
0,6428	100,00	164,14	0,888	254,76	0,298
0,4226	130,00	176,24	0,595	229,40	0,089
0,1737	160,00	179,78	0,245	200,00	0,018
0,0000	180,00	180,00	0,000	180,00	0,000
— 0,1737	200,00	180,22	— 0,245	160,00	— 0,018
— 0,4226	230,00	183,76	— 0,595	130,60	— 0,089
— 0,6428	260,00	195,86	— 0,888	105,24	— 0,298
— 0,8192	290,00	222,04	— 1,042	93,70	— 0,638
— 0,9063	310,00	250,32	— 0,990	102,34	— 0,926
— 0,9848	340,00	313,30	— 0,504	181,36	— 1,392
— 0,9962	350,00	335,10	— 0,278	253,12	— 1,129
— 1,0000	360,00	360,00	0,000	360,00	0,000

in Abhängigkeit vom Winkel φ_a oder φ_b .

Es wurden die Tabellen für elliptische Funktionen verwendet, wie sie z. B. in der Hütte¹ zu finden sind. Die Zwischenwerte wurden durch lineare Interpolation ermittelt. Abb. 8 und 9 zeigen für einige Parameterwerte β_0 den Winkel φ_a über φ_b aufgetragen, in Abb. 10 und 11 ist Ω_a in Abhängigkeit von φ_a dargestellt. Einige charakteristische Eigenschaften dieser Kurven lassen sich durch elementare Formeln beschreiben. Zunächst sind für hinreichend kleine Momente Ω_a die Winkel φ , φ_a und φ_b ebenfalls klein, so daß

$$\cos \varphi = 1 - \frac{\varphi^2}{2} \quad \cos \varphi_b = 1 - \frac{\varphi_b^2}{2}$$

gesetzt werden darf. Gleichung (12') hat damit die Form

$$\alpha_0 \sqrt{\frac{E}{2G}} = \int_{\varphi_b}^{\varphi_a} \frac{d\varphi}{\sqrt{\varphi^2 - \varphi_b^2}},$$

und die Integration liefert

$$\varphi_a = \varphi_b \operatorname{Cof} \beta_0. \quad (16)$$

Also ist

$$\frac{d\varphi_a}{d\varphi_b} = \operatorname{Cof} \beta_0$$

an der Stelle $\varphi_a = \varphi_b = 0$. Für verschwindende Momente Ω_a sind neben den trivialen Fällen $\varphi_a = \varphi_b = 0$ und $\varphi_a = \varphi_b = 2\pi$, die Winkel $\varphi_a = \varphi_b = \pi$ einander zugeordnet. Die Welle befindet sich in dieser Lage in einem instabilen Gleichgewichtszustand. Jeder Querschnitt ist um den Winkel $\varphi = \pi$ gedreht. Man erkennt dies, wenn man mit dem Lösungsansatz

$$\varphi = \pi,$$

welcher die Randbedingungen $\varphi_a = \varphi_b = \pi$ erfüllt, in die allgemeine Differentialgleichung (10) für den Winkel φ eingeht. Diese Gleichung ist offenbar befriedigt; es ist die Außenfaser der Welle zur Innenfaser geworden und umgekehrt. Die geringste Störung in dieser Stellung jedoch wird dazu führen, daß die auf Druck beanspruchten Innenfasern und die auf Zug beanspruchten Außenfasern die Welle umschnappen lassen. In der Umgebung dieser Gleichgewichtslage kann nun

$$\varphi_a = \pi + \varepsilon, \quad \varphi_b = \pi + \eta, \quad \varphi = \pi + \lambda, \quad d\varphi = d\lambda$$

gesetzt werden, wobei λ , ε und η klein sind, also auch

$$\cos \varphi = -1 + \frac{\lambda^2}{2} \quad \cos \varphi_b = -1 + \frac{\eta^2}{2}$$

¹ Hütte I, 28. Auflage 1955, oder auch Jahnke-Emde, Funktionentafeln, S. 90, 3. Aufl. Leipzig 1938.

Abb. 8. Abhängigkeit der Verdrehungen φ_a und φ_b der Wellenquerschnitte.Abb. 9. Abhängigkeit der Verdrehungen φ_a und φ_b der Wellenendquerschnitte.

ist. Gleichung (12') geht so über in

$$\alpha_0 \sqrt{\frac{E}{2G}} = \int_{\eta}^{\varepsilon} \frac{d\lambda}{\sqrt{\eta^2 - \lambda^2}},$$

und die Integration führt auf die einfache Beziehung

$$\varepsilon = \eta \cos \beta_0,$$

welche aussagt, daß

$$\lim_{\eta \rightarrow 0} \frac{\varepsilon}{\eta} = \frac{d\varphi_a}{d\varphi_b} = \cos \beta_0 \quad (17)$$

im Punkt $\varphi_a = \varphi_b = \pi$ ist. Die Steigung der Kurve φ_a ist also ± 1 für $\beta_0 = 0$ bzw. π und verschwindet für $\beta_0 = \pi/2$. Abb. 9 läßt dieses Verhalten deutlich erkennen. Endlich ist nach einer

Abb. 10. Charakteristikenfeld Ω_a der Wellen mit drehbaren Endquerschnitten.

Abb. 11. Charakteristikenfeld Ω_a der Wellen mit drehbaren Endquerschnitten.

ganzen Umdrehung der Welle wieder derselbe Zustand wie im Nullpunkt $\varphi_a = \varphi_b = 0$ erreicht. Demnach ist

$$\frac{d\varphi_a}{d\varphi_b} = \text{Cof } \beta_0$$

für $\varphi_a = \varphi_b = 2\pi$, eine Gleichung, die natürlich auch wieder durch Grenzübergang hätte hergeleitet werden können. Äußerst merkwürdig ist der Verlauf der eigentlichen Charakteristiken Ω_a der Welle. Für kleine φ_a und φ_b erhält man über (16) aus (11')

$$\Omega_a = \frac{\varphi_a}{\sqrt{2}} \text{Tg } \beta_0.$$

Die Torsions-Federkonstante der Welle ist damit im Nullpunkt

$$c = \frac{I_p \sqrt{E G}}{R \sqrt{2}} \text{Tg } \beta_0,$$

eine Formel, welche wegen der Periodizität des Momentes M_a auch nach einer Umdrehung der Welle, also für $\varphi_a = \varphi_b = 2\pi$ Gültigkeit hat. In der instabilen Gleichgewichtslage ist nach (11')

$$\frac{d\Omega_a}{d\varphi_a} = \frac{\sin \varphi_a - \sin \varphi_b \frac{d\varphi_b}{d\varphi_a}}{2 \Omega_a} = \frac{0}{0}$$

die Ableitung der Kurve Ω_a . Nach Anwendung der Bernoullischen Regel erhält man

$$\frac{d\Omega_a}{d\varphi_a} = \frac{\cos \varphi_a - \cos \varphi_b \left(\frac{d\varphi_b}{d\varphi_a} \right)^2 - \sin \varphi_a \frac{d\varphi_b^2}{d\varphi_a^2}}{2 \frac{d\Omega_a}{d\varphi_a}}$$

und daraus unter Verwendung von (17)

$$\frac{d\Omega_a}{d\varphi_a} = -\frac{1}{\sqrt{2}} \text{tg } \beta_0.$$

Diese Gleichung sagt aus, daß die Steigung der Kurve Ω_a verschwindet für die Parameter $\beta_0 = 0$ bzw. π und daß sie unendlich ist für $\beta_0 = \pi/2$. Schaubild (11) bestätigt diese Aussage. Während der Verlauf der Kurven Ω_a für $0 \leq \beta_0 \leq \pi/2$ ohne weiteres verständlich ist, sind die Zusammenhänge bei größeren Parameterwerten β_0 komplizierter. Für $\pi/2 \leq \beta_0 \leq \pi$ wächst mit zunehmendem Winkel φ_a zunächst auch das Moment Ω_a bis zu einem Maximum; während φ_a nun weiter zunimmt, beginnt Ω_a zu fallen. Schließlich ist an der Stelle $\varphi_a = \varphi_{a \max}$ die Ableitung

$$\frac{d\Omega_a}{d\varphi_a} = -\infty.$$

Wie die Gleichung (11') nach Differentiation zeigt, ist die Stelle $\varphi_{a \max}$ gekennzeichnet durch die Aussage

$$\frac{d\varphi_a}{d\varphi_b} = 0.$$

Die Welle darf also nicht über den Winkel $\varphi_{a \max}$ hinaus gedreht werden. Mit weiter abnehmendem Moment Ω_a verringert sich nun auch wieder φ_a , bis bei verschwindendem Moment die Welle ihre instabile Gleichgewichtslage $\varphi_a = \varphi_b = \pi$ erreicht hat. Der weitere Verlauf der Charakteristik verhält sich zu dem soeben beschriebenen Kurvenast zentra尔斯ymmetrisch, so daß er bei einer Drehung um 180° um den Punkt $\varphi_a = \pi$ als Drehpunkt mit diesem zur Deckung gebracht werden kann. Zusammengefaßt ist das Wesentliche also, daß bei einem monoton zunehmendem Winkel φ_b von Null auf π eine Drehung φ_a eingeleitet werden muß, welche größer ist als π ; dann erst mit abnehmendem Ω_a eine Rückdrehung φ_a einsetzt, so daß also die Winkel φ_a und φ_b mit entgegengesetztem Drehsinn in die Gleichgewichtslage $\varphi_a = \varphi_b = \pi$ einlaufen. Anschaulich gesehen werden durch die Überdrehung φ_a in der Welle bei A große innere Torsionsmomente erzeugt, welche nötig sind, um das mit seiner Drehung φ_b zurückbleibende Wellenende bei B zu einer fortgesetzten Drehung zu veranlassen. Damit aber keine dynamischen Effekte entstehen können, muß schließlich Ω_a plötzlich sehr stark abnehmen und die Rückdrehung einsetzen. Für praktische Zwecke dürften Parameterwerte $\beta_0 > \pi$ nicht mehr interessieren; aus diesem Grunde werden die Charakteristiken für diese Parameter auch nicht weiter untersucht.

Ein ähnliches Verhalten wie die hier untersuchte gekrümmte Welle weist auch die von R. Grammel¹ behandelte Kreisbogenfeder auf. Infolge der gänzlich anderen Problemstellung, ist auch die von Grammel angegebene Lösungsmethode von der hier aufgestellten völlig verschieden. Die Kreisbogenfeder ist nur in ihren Endpunkten A und B gezwungen, ihre ursprünglichen Tangenten beizubehalten, während sie sich zwischen diesen Endpunkten zu einer räumlichen Kurve verbiegen kann. Der mathematische Aufwand zur Lösung dieses Problems ist demnach wesentlich komplizierter. Es ist indes naheliegend zu vermuten, daß bei nicht zu großen Öffnungswinkeln α_0 die verschiedenenartigen Lagerungen der Welle nur wenig Einfluß auf die Charakteristiken haben können. Dies beweisen auch eindeutig die numerischen Ergebnisse. Nicht zuletzt ist damit aber auch wieder gezeigt, daß es erlaubt ist ein Problem der Mechanik so abzuändern, daß ein mathematisch gefügigeres Problem entsteht, dessen Lösung mit weniger Aufwand erzwungen werden kann.

Theoretisch aufschlußreich ist die in den Abb. 10 und 11 eingezeichnete Grenzkurve für $\beta_0 = \infty$. Sie läßt sich durch eine einfache Überlegung herleiten. Der Öffnungswinkel α_0 geht mit dem Parameter β_0 gegen Unendlich. Es liegt also eine Schraubenfeder mit der Steigung Null und unendlich vielen Windungen vor. Bei einer Drehung der Welle um den Winkel φ_a bei A wird bei unendlich langer Wellenlänge der Drehwinkel φ_b bei B Null bleiben. Aus dieser Überlegung resultiert sofort über Gleichung (11') die Formel

$$\Omega_a = \frac{M_a R}{I_p \sqrt{E G}} = \sqrt{1 - \cos \varphi_a}. \quad (18)$$

Schon jetzt kann gesagt werden, daß die durch diese Gleichung bestimmte Charakteristik übereinstimmt mit der Momentenkurve für die bei B unverdrehbar eingespannte unendlich lange Welle, da bei einem Drehwinkel $\varphi_b = 0$ und auch einer Ableitung $d\varphi/dx = 0$ in B , wie es bei der unendlich langen Welle der Fall sein wird, kein Einspann-Torsionsmoment auftreten kann.

Explizite einfache Formeln erhält man auch für kleine Parameterwerte β_0 . Hier liefert die Anschauung sofort einen Anhaltspunkt. Im Grenzfall $\alpha_0 = 0$ liegt nämlich ein gerades Wellenstück vor mit endlicher Länge und unendlich großem Krümmungshalbmesser R . Die Aussagen $\varphi_a = \varphi_b$ und $\Omega_a = 0$ sind trivial. Für kleine α_0 kann demnach

$$\varphi_a = \varphi_b + \varepsilon_0, \quad \varphi = \varphi_b + \varepsilon, \quad d\varphi = d\varepsilon$$

gesetzt werden, wobei ε und ε_0 kleine Winkel sind. Damit ist auch

$$\cos \varphi = \cos \varphi_b - \varepsilon \sin \varphi_b,$$

und Gleichung (12) geht über in

$$\alpha \sqrt{\frac{E}{2G}} = \frac{1}{\sqrt{2} \sin \varphi_b} \int_{(\varphi - \varphi_b)}^{(\varphi_a - \varphi_b)} \frac{d\varepsilon}{\sqrt{\varepsilon}}. \quad (19)$$

Gleichung (12') bekommt die Form

$$\alpha_0 \sqrt{\frac{E}{2G}} = \frac{1}{\sqrt{2} \sin \varphi_b} \int_0^{(\varphi_a - \varphi_b)} \frac{d\varepsilon}{\sqrt{\varepsilon}}. \quad (19')$$

Die Integration von (19') liefert die Beziehung

$$\varphi_a = \varphi_b + \frac{\beta_0^2}{2} \sin \varphi_b. \quad (20)$$

Obwohl diese Gleichung in φ_b transzendent ist, kann eine Auflösung nach φ_b durchgeführt werden. Setzt man

$$\varphi_b = \varphi_a - \varepsilon_0,$$

und beachtet man, daß konsequent zu den oben angegebenen Näherungen

$$\sin \varphi_b = \varphi_a - \varepsilon_0 \cos \varphi_a$$

ist, so erhält man aus (20)

$$\varphi_b = \varphi_a - \frac{\beta_0^2}{2} \sin \varphi_a, \quad (21)$$

nachdem noch in β_0^2 linearisiert wurde. Die Charakteristiken können nun auch näherungsweise angegeben werden. Unter Verwendung von (21) folgt über (11')

$$\frac{M_a R}{I_p \sqrt{E G}} = \frac{\beta_0}{\sqrt{2}} = \sin \varphi_a \quad (22)$$

¹ R. Grammel, Ing.-Arch. 9 (1938) S. 126.

und unter Verwendung von (20)

$$\frac{M_a R}{I_p \sqrt{E G}} = \frac{\beta_0}{\sqrt{2}} = \sin \varphi_b .$$

Die Gleichung (22) für die fast gerade Welle wurde von R. Sonntag schon angegeben und auf völlig anderem Wege hergeleitet¹. Es ist nun möglich, einen Vergleich der Resultate, wie sie die strenge Theorie liefert, mit den durch obige Gleichungen (20) und (22) gegebenen Werten, anzustellen.

Abb. 12 und 13 zeigen für den Parameter $\beta_0 = 0,50$, dem mit $E = 2 \cdot 10^6 \text{ kg/cm}^2$ und $G = 8 \cdot 10^5 \text{ kg/cm}^2$ der Öffnungswinkel $\alpha_0 = 25,60^\circ$ zugeordnet ist, gestrichelt eingezeichnet die

Abb. 12. Exakter Verlauf und Näherung für den Differenzwinkel $\varphi_a - \varphi_b$ bei kleinem Parameter β_0 .

Abb. 13. Exakter Verlauf und Näherung für das Moment Ω_a bei kleinem Parameter β_0 .

¹ A. a. O. Gleichung (11).

nach (20) und (22) errechneten und ausgezogen die durch die exakte Rechnung erhaltenen Kurven. Es ist ersichtlich, daß für Parameterwerte $\beta_0 \leq 0,50$ die Näherungen den durch praktische Belange gestellten Genauigkeitsansprüchen in außerordentlich hohem Maße gerecht werden.

Sind nun die elastischen Eigenschaften der gekrümmten Welle analysiert, so sollen noch einige Überlegungen über die auftretenden Kräfte und Momente eingestellt werden. Damit die Welle die im tordierten Zustand ebene, kreisbogenförmige Gestalt beibehält, müssen die vom Führungsrohr herrührenden Kräfte p_1 und p_2 auf sie einwirken. Zur Ermittlung dieser Belastungen als auch der inneren Kräfte und Momente der Welle, müßte zunächst Gleichung (15) ausgewertet werden. Aus ihr erhält man den Drehwinkel φ in Abhängigkeit des Argumentes

$$\beta = \alpha \sqrt{\frac{E}{2G}},$$

dessen Einführung an Stelle von α sich empfiehlt. Ist so φ als Funktion von α oder β bekannt, so sind auch über die Gleichungen (4), (7) und (8) die Momente M , M_1 und M_2 gegeben. Während die erste der Gleichungen (2') bereits zur Aufstellung der Differentialgleichung (10) verwendet wurde, erhält man aus der zweiten Gleichung (2') die Querkraft Q_2 und aus der dritten die Querkraft Q_1 . Die erste Gleichung (1') ist eine Differentialgleichung erster Ordnung für die Längskraft S , deren Lösung aber sofort angegeben werden kann, wenn aus dieser Gleichung und der dritten Gleichung (2') die Querkraft Q_1 eliminiert wird. Man erhält

$$\frac{dS}{d\alpha} = -\frac{1}{R} \frac{dM_2}{d\alpha},$$

und damit ist

$$S = -\frac{M_2}{R} + c_1.$$

Über Gleichung (3) bekommt man für die Verschiebung

$$u = -\frac{1}{EF} \int M_2 d\alpha + \frac{c_1 R}{EF} \alpha + c_2. \quad (23)$$

Schließlich liefert die zweite Gleichung (1') die Streckenlast p_1 und die dritte die Streckenlast p_2 . Macht man noch Gebrauch von den Beziehungen (10) und (11), dann erhält man nach längerer Rechnung für die Kräfte und Momente in dimensionsloser Form

$$\left. \begin{aligned} \frac{MR}{I_p \sqrt{EG}} &= \sqrt{\cos \varphi_b - \cos \varphi}, \\ \frac{M_1 R}{I_p \sqrt{EG}} &= -\sqrt{\frac{E}{G}} \frac{\sin \varphi}{2}, \\ \frac{M_2 R}{I_p \sqrt{EG}} &= \sqrt{\frac{E}{G}} \frac{(1 - \cos \varphi)}{2}, \\ \frac{Q_1 R^2}{I_p \sqrt{EG}} &= \frac{E}{2G} \sin \varphi \sqrt{\cos \varphi_b - \cos \varphi}, \\ \frac{Q_2 R^2}{I_p \sqrt{EG}} &= \left(1 + \frac{E}{2G} \cos \varphi\right) \sqrt{\cos \varphi_b - \cos \varphi}, \\ \frac{SR^2}{I_p \sqrt{EG}} &= -\sqrt{\frac{E}{G}} \frac{(1 - \cos \varphi)}{2} + \frac{c_1 R^2}{I_p \sqrt{EG}}, \\ \frac{p_1 R^3}{I_p \sqrt{EG}} &= \sqrt{\frac{E}{G}} \left[\frac{1 - \cos \varphi}{2} + \frac{E}{2G} \left(\frac{1}{2} + \cos \varphi \cos \varphi_b - \frac{3}{2} \cos^2 \varphi \right) \right] - \frac{c_1 R^2}{I_p \sqrt{EG}}, \\ \frac{p_2 R^3}{I_p \sqrt{EG}} &= \sqrt{\frac{E}{G}} \sin \varphi \left[\frac{1}{2} + \frac{E}{2G} \left(\frac{3}{2} \cos \varphi - \cos \varphi_b \right) \right]. \end{aligned} \right\} \quad (24)$$

Wie diese Gleichungen zeigen, enthalten die Formeln für S und p_1 jeweils die Integrationskonstante c_1 . Für p_1 wird man keine Randbedingungen vorgeben, da der Verlauf der Pressungen zwischen Führungsrohr und Welle hingenommen wird. Die Konstante c_1 könnte also durch eine Bedingung für S bestimmt werden. Naheliegend wären die Forderungen $S = 0$ an den Stellen

$\alpha = 0$ und $\alpha = \alpha_0$, da aber nur eine Konstante zur Verfügung steht, können beide Bedingungen nicht zugleich erfüllt werden. Wie die vorliegende Rechnung nun zeigt, sind die in erster Linie interessierenden Charakteristiken unabhängig von einem speziellen Wert für c_1 ; man wird also auch keinen besonderen Wert darauf legen, daß für S irgend welche Randbedingungen erfüllt sind. Vielmehr ist eine Problemstellung, welcher auch technische Bedeutung zukommt, angeboten. Durch

Abb. 14. Verlauf der Verdrehung φ der Wellenquerschnitte bei einer Welle mit unendlicher Windungszahl.

Abb. 15. Verlauf des inneren Torsionsmomentes Ω bei einer Welle mit unendlicher Windungszahl.

entsprechende Lagerung der Welle bei den Endquerschnitten ist es erreichbar, daß die Verschiebung $u = 0$ ist an den Stellen $\alpha = 0$ und $\alpha = \alpha_0$. Diese Bedingungen für u liefern über Gleichung (23) die nun festgelegten Konstanten c_1 und c_2 . Was die Querkräfte Q_1 und Q_2 , sowie die Biegemomente M_1 und M_2 betrifft, so nehmen auch sie in den Endquerschnitten, genau wie nun die Längskraft S , nicht mehr beeinflußbare Endwerte an.

Einen Anhaltspunkt über den Charakter von φ als Funktion des Argumentes α oder β erhält man durch Heranziehung der explizite vorliegenden Lösung für die Welle mit unendlich hoher Windungszahl, also für den Fall $\beta_0 = \infty$. Gleichung (12) geht nämlich mit $\varphi_b = 0$ über in

$$\beta = \alpha \sqrt{\frac{E}{2G}} = \frac{1}{2} \int_{\varphi}^{\varphi_a} \frac{d\varphi}{\sin \frac{\varphi}{2}},$$

und nach Ausführung der Integration liegt die Funktion

$$\varphi = 4 \arctg \left(e^{-\beta} \operatorname{tg} \frac{\varphi_a}{4} \right)$$

vor. Das Torsionsmoment M ist damit über (4)

$$\frac{M R}{I_p \sqrt{E G}} = 2 \sqrt{2} \frac{e^{-\beta} \operatorname{tg} \frac{\varphi_a}{4}}{\left(1 + e^{-2\beta} \operatorname{tg}^2 \frac{\varphi_a}{4} \right)}$$

Für den speziellen Wert $\varphi_a = 180^\circ$ wurden beide Formeln ausgewertet. Abb. 14 zeigt den Verlauf von φ , Abb. 15 gibt Aufschluß über die Abhängigkeit des dimensionslosen Torsionsmomentes

$$\Omega = - \frac{M R}{I_p \sqrt{E G}}$$

Eine Betrachtung der Kurven überzeugt davon, daß die Lösungen für φ und M der Welle mit unendlicher Windungszahl auch als sehr gute Näherungslösungen für Wellen mit endlichem Öffnungswinkel α_0 z. B. $\alpha_0 = \pi$, vorausgesetzt daß dieser nur nicht zu klein ist, angesehen werden können, da φ außerordentlich schnell mit zunehmendem Argument α oder β abklingt. Es besteht die Möglichkeit, sämtliche Gleichungen (24) diesem Gedanken entsprechend auszuwerten.

Im Gegensatz zu der Welle mit unendlicher Windungszahl, steht die fast gerade Welle mit kleinem Öffnungswinkel α_0 . Mit der bereits schon verwendeten Substitution

$$\varphi = \varphi_b + \varepsilon, \quad d\varphi = d\varepsilon,$$

wobei ε ein kleiner Winkel ist, nimmt Gleichung (12) die Form

$$\alpha \sqrt{\frac{E}{2G}} = \frac{1}{\sqrt{2} \sin \varphi_b} \int_{\varphi - \varphi_b}^{\varphi_a - \varphi_b} \frac{d\varepsilon}{\sqrt{\varepsilon}}$$

an. Die Integration führt unter Verwendung der Beziehungen (20) und (21) und nach Vernachlässigung höherer Potenzen als β_0^2 auf die Gleichung für den Drehwinkel

$$\varphi = \varphi_a + \frac{1}{2} (\beta^2 - 2\beta\beta_0) \sin \varphi_a,$$

welche aussagt, daß φ parabolisch von φ_a nach φ_b abklingt. Die Kräfte und Momente (24) lassen sich entsprechend als Funktionen des Anfangswertes φ_a oder über (22) auch M_a und des Arguments β explizite angeben. Man erhält mit Verwendung der Reihenentwicklungen für die sin und cos-Funktionen und bei Berücksichtigung von Potenzen bis β_0^2

$$\begin{aligned} \frac{M R}{I_p \sqrt{E G}} &= \frac{\sin \varphi_a}{\sqrt{2}} (\beta_0 - \beta), \\ \frac{M_1 R}{I_p \sqrt{E G}} &= -\frac{\sin \varphi_a}{2} \sqrt{\frac{E}{G}} \left[1 + \frac{\cos \varphi_a}{2} (\beta^2 - 2\beta\beta_0) \right], \\ \frac{M_2 R}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} \left[1 - \cos \varphi_a + \frac{\sin^2 \varphi_a}{2} (\beta^2 - 2\beta\beta_0) \right], \\ \frac{Q_1 R^2}{I_p \sqrt{E G}} &= \frac{\sin^2 \varphi_a}{\sqrt{2}} \frac{E}{2G} (\beta_0 - \beta), \\ \frac{Q_2 R^2}{I_p \sqrt{E G}} &= \frac{\sin \varphi_a}{\sqrt{2}} \left(1 + \frac{E}{2G} \cos \varphi_a \right) (\beta_0 - \beta), \\ \frac{S R^2}{I_p \sqrt{E G}} &= -\frac{1}{2} \sqrt{\frac{E}{G}} \left[1 - \cos \varphi_a + \frac{\sin^2 \varphi_a}{2} (\beta^2 - 2\beta\beta_0) \right] + \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_1 R^3}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} \left[1 - \cos \varphi_a + \frac{\sin^2 \varphi_a}{2} (\beta^2 - 2\beta\beta_0) \right] \\ &\quad + \frac{E}{4G} \sqrt{\frac{E}{G}} \sin^2 \varphi_a [1 + \cos \varphi_a (2\beta^2 + \beta_0^2 - 4\beta\beta_0)] - \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_2 R^3}{I_p \sqrt{E G}} &= \frac{\sin \varphi_a}{2} \sqrt{\frac{E}{G}} \left(1 + \frac{E}{2G} \cos \varphi_a \right) \left[1 + \frac{\cos \varphi_a}{2} (\beta^2 - 2\beta\beta_0) \right] \\ &\quad - \frac{E}{4G} \sqrt{\frac{E}{G}} \sin^3 \varphi_a \left(\frac{3}{2}\beta^2 + \beta_0^2 - 3\beta\beta_0 \right). \end{aligned}$$

Endlich seien für die Welle mit beliebigem Öffnungswinkel α_0 , jedoch unter der Voraussetzung, daß φ_a hinreichend klein ist, die zu den obigen Gleichungen analogen Formeln zusammengestellt. Für kleine Winkel geht (12) über in

$$\alpha \sqrt{\frac{E}{2G}} = \int_{\varphi}^{\varphi_a} \frac{d\varphi}{\sqrt{\varphi^2 - \varphi_b^2}},$$

und die Integration liefert mit (16)

$$\varphi = \varphi_a - \frac{\operatorname{Coj}(\beta_0 - \beta)}{\operatorname{Coj}\beta_0}.$$

Damit haben die Gleichungen (24) die Form

$$\begin{aligned} \frac{M R}{I_p \sqrt{E G}} &= \frac{\varphi_a}{\sqrt{2}} \frac{\operatorname{Sin}(\beta_0 - \beta)}{\operatorname{Coj}\beta_0}, \\ \frac{M_1 R}{I_p \sqrt{E G}} &= -\frac{\varphi_a}{2} \sqrt{\frac{E}{G}} \frac{\operatorname{Coj}(\beta_0 - \beta)}{\operatorname{Coj}\beta_0}, \\ \frac{M_2 R}{I_p \sqrt{E G}} &= \frac{\varphi_a^2}{4} \sqrt{\frac{E}{G}} \frac{\operatorname{Coj}^2(\beta_0 - \beta)}{\operatorname{Coj}^2\beta_0}, \\ \frac{Q_1 R^2}{I_p \sqrt{E G}} &= \frac{\varphi_a^2}{\sqrt{2}} \frac{E}{4G} \frac{\operatorname{Sin} 2(\beta_0 - \beta)}{\operatorname{Coj}^2\beta_0}, \\ \frac{Q_2 R^2}{I_p \sqrt{E G}} &= \frac{\varphi_a}{\sqrt{2}} \left(1 + \frac{E}{2G}\right) \frac{\operatorname{Sin}(\beta_0 - \beta)}{\operatorname{Coj}\beta_0}, \\ \frac{S R^2}{I_p \sqrt{E G}} &= -\frac{\varphi_a^2}{4} \sqrt{\frac{E}{G}} \frac{\operatorname{Coj}^2(\beta_0 - \beta)}{\operatorname{Coj}^2\beta_0} + \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_1 R^3}{I_p \sqrt{E G}} &= \frac{\varphi_a^2}{\operatorname{Coj}^2\beta_0} \sqrt{\frac{E}{G}} \left[\left(\frac{1}{4} + \frac{E}{2G} \right) \operatorname{Coj}^2(\beta_0 - \beta) - \frac{E}{4G} \right] - \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_2 R^3}{I_p \sqrt{E G}} &= \frac{\varphi_a}{2} \sqrt{\frac{E}{G}} \left(1 + \frac{E}{2G}\right) \frac{\operatorname{Coj}(\beta_0 - \beta)}{\operatorname{Coj}\beta_0}, \end{aligned}$$

wobei wiederum die Reihenentwicklungen für die sin- und cos-Funktionen verwendet und Potenzen bis φ_a^2 berücksichtigt wurden.

Das in diesem Abschnitt behandelte Problem kann nun als gelöst betrachtet werden. Die Gültigkeit der gesamten hier aufgestellten Theorie ist natürlich an die vorausgesetzten Bedingungen oder Einschränkungen gebunden. Neben der Forderung $a/R \leq 1$, mit deren Hilfe die vereinfachte Formel (6') für die Biegungsspannung zustande kam, muß die Bedingung (5) beachtet werden. Nun folgt aus (11), daß

$$\left| \frac{d\varphi}{d\alpha} \right| \leq \sqrt{\frac{E}{2G}}$$

gilt und damit (5) sicher dann erfüllt ist, wenn das Verhältnis a/R der Ungleichung

$$\sqrt{\frac{2E}{G}} \leq \left| \frac{R}{a} - 1 \right|$$

genügt. Bei allen technisch in Betracht kommenden Fällen dürfte diese Forderung aber tatsächlich erfüllt sein.

4. Lösung der zweiten Grundaufgabe. Die Einspannung der Welle bei B hat zur Folge, daß an der Stelle $\alpha = \alpha_0$ die Verdrehung $\varphi_b = 0$ und ein Einspann-Torsionsmoment M_b vorhanden ist. Über die Gleichungen (10') und (4) erhält man so für die Integrationskonstante

$$C = \frac{E}{G} + \frac{M_b^2 R^2}{I_p^2 G^2},$$

und (10') geht über in

$$\frac{d\varphi}{d\alpha} = -\sqrt{\frac{E}{G}} \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi} \quad (25)$$

Mit $\varphi = \varphi_a$ an der Angriffsstelle des Belastungsmomentes M_a bei A ist

$$\frac{M_a R}{I_p \sqrt{E G}} = \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi_a}. \quad (26)$$

Die Integration der Gleichung (25) führt auf

$$\alpha = -\sqrt{\frac{G}{E}} \int_{\varphi_a}^{\varphi} \frac{d\varphi}{\sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi}} \quad (27)$$

Speziell muß die Forderung

$$\alpha_0 = -\sqrt{\frac{G}{E}} \int_{\varphi_a}^0 \frac{d\varphi}{\sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi}} \quad (27')$$

erfüllt sein. Diese Gleichung in Verbindung mit (26) reicht zur Festlegung der Charakteristik $M_a = F_a(\varphi_a)$ sowie zur Bestimmung des Einspann-Torsionsmomentes M_b aus. Die Substitution

$$\varphi = \pi - 2y$$

führt (27) über in

$$\alpha \sqrt{\frac{E}{2G}} = k \int_{\frac{\pi-\varphi_a}{2}}^{\frac{\pi}{2}} \frac{dy}{\sqrt{1 - k^2 \sin^2 y}}, \quad (28)$$

und (27') wird zu

$$\alpha_0 \sqrt{\frac{E}{2G}} = k \int_{\frac{\pi-\varphi_a}{2}}^{\frac{\pi}{2}} \frac{dy}{\sqrt{1 - k^2 \sin^2 y}}. \quad (28')$$

Es wurde

$$k = \frac{1}{\sqrt{1 + \frac{1}{2} \frac{M_b^2 R^2}{I_p^2 E G}}}$$

gesetzt. Beachtet man die Definition der Legendreschen elliptischen Integrale erster Gattung, dann ist in der gebräuchlichen Schreibweise (28)

$$\alpha \sqrt{\frac{E}{2G}} = k \left[F\left(\frac{\pi-\varphi}{2}, k\right) - F\left(\frac{\pi-\varphi_a}{2}, k\right) \right] \quad (29)$$

und (28')

$$\alpha_0 \sqrt{\frac{E}{2G}} = k \left[K(k) - F\left(\frac{\pi-\varphi_a}{2}, k\right) \right]. \quad (29')$$

Beide Gleichungen erlauben eine Auflösung. Man erhält aus (29)

$$\varphi = \pi - 2a m \left[F\left(\frac{\pi-\varphi_a}{2}, k\right) + \frac{1}{k} \alpha \sqrt{\frac{E}{2G}} \right] \quad (30)$$

und aus (29')

$$\varphi_a = \pi - 2a m \left[K(k) - \frac{1}{k} \alpha_0 \sqrt{\frac{E}{2G}} \right].$$

Diese Gleichung liefert den Winkel φ_a über k als Funktion des dimensionslosen Einspann-Torsionsmomentes

$$\Omega_b = \frac{M_b R}{I_p \sqrt{E G}},$$

wobei

$$\beta_0 = \alpha_0 \sqrt{\frac{E}{2G}}$$

wieder die Rolle eines Parameters übernimmt. Über Gleichung (26) erhält man schließlich das dimensionslose Belastungs-Torsionsmoment

$$\Omega_a = \frac{M_a R}{I_p \sqrt{E G}}$$

als Funktion von φ_a oder Ω_b . Unter Verwendung der Tabellen für elliptische Funktionen wurden die Zahlenwerte ermittelt. Abb. 16 und 17 zeigen für einige Parameter β_0 den Verlauf des Moments Ω_a als Funktion des Winkels φ_a . Diese Charakteristiken lassen sich für hinreichend kleine φ_a in linearisierter Form einfach darstellen. Setzt man

$$\cos \varphi = 1 - \frac{\varphi^2}{2} \quad \cos \varphi_a = 1 - \frac{\varphi_a^2}{2},$$

Abb. 16. Charakteristikenfeld Ω_a der Wellen mit einseitiger Einspannung.Abb. 17. Charakteristikenfeld Ω_a der Wellen mit einseitiger Einspannung.

dann wird Gleichung (27') zu

$$\alpha_0 \sqrt{\frac{E}{2G}} = \int_0^{\varphi_a} \frac{d\varphi}{\sqrt{2(\Omega_a^2 - \varphi_a^2 + \varphi^2)}},$$

wenn noch über (26) das Moment Ω_b durch Ω_a ausgedrückt wird. Die Integration führt auf die einfache Beziehung

$$\frac{M_a R}{I_p \sqrt{EG}} = \frac{\varphi_a}{\sqrt{2}} \operatorname{Cotg} \beta_0, \quad (31)$$

welche mit Hilfe von (26) auch die Form

$$\frac{M_b R}{I_p \sqrt{EG}} = \frac{\varphi_a}{\sqrt{2}} \frac{1}{\operatorname{Sin} \beta_0} \quad (31')$$

hat. Die Gleichung (31) sagt aus, daß die Torsions-Federkonstante der Welle im Nullpunkt oder auch praktisch für kleine Winkel φ_a

$$c = \frac{I_p \sqrt{EG}}{R \sqrt{2}} \operatorname{Cotg} \beta_0$$

ist.

Die Charakteristik für die Welle mit unendlicher Windungszahl erhält man aus (27'), wenn dort $M_b = 0$ gesetzt wird. Unter der Voraussetzung nämlich, daß das Belastungs-Torsionsmoment M_a endlich ist, wird infolge der Krümmung der Welle bei unendlicher Wellenlänge das innere Torsionsmoment M bis zum Wellenende, also bis zur Einspannstelle hin, auf Null abgeklungen sein. Die Integration von Gleichung (27') führt so direkt auf Gleichung (18). Eine Betrachtung von 10, 11, 16 und 17 überzeugt davon, daß die durch (18) beschriebene Kurve die Eigenschaft einer Grenzkurve hat. Oberhalb von ihr liegen die Charakteristiken der bei B eingespannten, unterhalb von ihr die Charakteristiken der bei B frei drehbar gelagerten Wellen. Für die Wellen, deren Charakteristiken durch die Grenzkurve beschrieben werden ist es also gleichgültig, ob eine Einspannung bei B vorliegt oder nicht.

Praktische Bedeutung haben die Wellen mit kleinem Öffnungswinkel α_0 . Als Ausgangsgleichung dient (27). Ersetzt man dort Ω_b mit Hilfe von (26) durch Ω_a , und beachtet man, daß die Wurzel nach dem binomischen Satz entwickelt werden darf, so liegt nach Abbruch der Reihenentwicklung mit dem zweiten Glied die Gleichung

$$\alpha \sqrt{\frac{E}{2G}} = \frac{1}{\sqrt{2} \Omega_a} \int_{\varphi}^{\varphi_a} \left[1 - \frac{1}{2} \frac{(\cos \varphi_a - \cos \varphi)}{\Omega_a^2} \right] d\varphi$$

vor, welche integriert die Form

$$\Omega_a^3 \beta \sqrt{2} - \Omega_a^2 (\varphi_a - \varphi) + \frac{1}{2} (\varphi_a - \varphi) \cos \varphi_a - \frac{1}{2} (\sin \varphi_a - \sin \varphi) = 0 \quad (32)$$

hat. Mit $\varphi = 0$ geht diese Gleichung über in

$$\Omega_a^3 \beta_0 \sqrt{2} - \Omega_a^2 \varphi_a + \frac{1}{2} \varphi_a \cos \varphi_a - \frac{1}{2} \sin \varphi_a = 0. \quad (32')$$

So wie (32) der Gleichung (27) für kleine α_0 entspricht, ist (32') der Gleichung (27') als Ersatz zur Seite gestellt. Prinzipiell wäre eine Auflösung von (32') nach Ω_a zwar möglich, doch ist die Cardanische Formel ein zu schwerfälliges Werkzeug. Eine einfache Überlegung verhilft zu einer Näherungslösung, welche an Genauigkeit nichts zu wünschen übrig läßt. Mit dem Ansatz

$$\Omega_a = \frac{1}{\beta_0 \sqrt{2}} (\varphi_a + \zeta)$$

ist es nämlich möglich, Gleichung (32') zu erfüllen, wobei vorausgesetzt werden kann, daß $\zeta \ll \varphi_a$ ist. Es genügt also, nur lineare Glieder in ζ zu berücksichtigen. Dies ist evident; denn mit $\zeta = 0$ würde obige Gleichung die Charakteristik einer geraden Welle beschreiben. Die Abweichungen für kleine α_0 von der Kennlinie der geraden Welle sind aber so gering, daß ζ die Eigenschaft eines Korrekturgliedes hat. Man erhält so aus (32')

$$\zeta = \beta_0^2 \frac{(\sin \varphi_a - \varphi_a \cos \varphi_a)}{\varphi_a^2},$$

und damit ist

$$\Omega_a = \frac{\varphi_a}{\beta_0 \sqrt{2}} + \frac{\beta_0}{\sqrt{2}} \frac{(\sin \varphi_a - \varphi_a \cos \varphi_a)}{\varphi_a^2}. \quad (33)$$

Entsprechend bekommt man über (26) dann auch

$$\Omega_b = \frac{\varphi_a}{\beta_0 \sqrt{2}} - \frac{\beta_0}{\sqrt{2}} \frac{(\varphi_a - \sin \varphi_a)}{\varphi_a^2}. \quad (33')$$

Abb. 18 zeigt den durch die genaue Rechnung gegebenen Verlauf von Ω_a ; die durch (33) gelieferte Näherung deckt sich vollständig mit dieser Kurve. Ebenfalls ist in Abb. 18 die über die einfache Formel

$$\Omega_a = \Omega_b = \frac{\varphi_a}{\beta_0 \sqrt{2}} \quad (34)$$

gewonnene Approximationsgerade gestrichelt eingezeichnet. Ein Vergleich der Kurven überzeugt davon, daß die durch Gleichung (34) gelieferten Charakteristiken den durch die Praxis gestellten Anforderungen auf Genauigkeit gerecht werden; nur in besonderen Fällen wird man auf die Gleichungen (33) bzw. (33') zurückgreifen.

Die Ermittlung der auftretenden Kräfte und Momente kann in derselben Weise geschehen, wie sie schon für die bei B drehbar gelagerten Welle angegeben wurde. Nach Einführung des Argumentes

$$\beta = \alpha \sqrt{\frac{E}{2G}}$$

erhält man aus (30) die Verdrehung φ als Funktion von α oder β . Schließlich liegen nach Abbau der Gleichungen (1') und (2') die Resultate

$$\left. \begin{aligned} \frac{M R}{I_p \sqrt{E G}} &= \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi}, \\ \frac{M_1 R}{I_p \sqrt{E G}} &= -\frac{1}{2} \sqrt{\frac{E}{G}} \sin \varphi, \\ \frac{M_2 R}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} (1 - \cos \varphi), \\ \frac{Q_1 R^2}{I_p \sqrt{E G}} &= \frac{E}{2G} \sin \varphi \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi}, \\ \frac{Q_2 R^2}{I_p \sqrt{E G}} &= \left(1 + \frac{E}{2G} \cos \varphi\right) \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi}, \\ \frac{S R^2}{I_p \sqrt{E G}} &= -\frac{1}{2} \sqrt{\frac{E}{G}} (1 - \cos \varphi) + \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_1 R^3}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} \left[(1 - \cos \varphi) + \frac{E}{G} \left(\frac{1}{2} + \frac{M_b^2 R^2}{I_p^2 E G} \cos \varphi + \cos \varphi - \frac{3}{2} \cos^2 \varphi \right) \right] - \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_2 R^3}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} \sin \varphi \left[\left(1 + \frac{E}{2G} \cos \varphi\right) - \frac{E}{G} \sqrt{\frac{E}{G}} \left(\frac{M_b^2 R^2}{I_p^2 E G} + 1 - \cos \varphi \right) \right] \end{aligned} \right\} \quad (35)$$

vor. Gleichung (23) beschreibt wieder die Verschiebung u und die Bestimmung der Konstanten c_1 und c_2 wird so erfolgen, daß $u = 0$ ist an den Stellen $\alpha = 0$ und $\alpha = \alpha_0$.

Für Wellen mit kleinem Öffnungswinkel α_0 dient Gleichung (32) zur Ermittlung der Verdrehung φ als Funktion von β . Obwohl diese Gleichung in φ transzendent ist, gelingt eine Auflösung. Der Ansatz

$$\varphi = \varphi_a \frac{(\beta_0 - \beta)}{\beta_0} + \xi$$

erfüllt sicher (32) unter der Voraussetzung, daß

$$\xi \ll \varphi_a \frac{(\beta_0 - \beta)}{\beta_0}$$

ist, so daß also bereits quadratische Glieder in ξ vernachlässigt werden können. Der Term ξ hat auch hier die Eigenschaft eines Korrekturgliedes. Bei gerader Welle wäre nämlich

$$\varphi = \varphi_a \frac{(\beta_0 - \beta)}{\beta_0}, \quad (36)$$

und der durch ξ gelieferte Beitrag kann nur ein geringer Prozentsatz von dem durch Formel (36) gelieferten Wert für φ ausmachen. Nach längerer Rechnung bekommt man so, nachdem noch für Ω_a der Ausdruck (33) verwendet wurde, aus (32)

$$\xi = \frac{\beta_0^2}{\varphi_a^2} \left[\frac{(\beta_0 - \beta)}{\beta_0} \sin \varphi_a - \sin \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \right],$$

und damit wird

$$\varphi = \varphi_a \frac{\beta_0 - \beta}{\beta_0} + \frac{\beta_0^2}{\varphi_a^2} \left[\frac{(\beta_0 - \beta)}{\beta_0} \sin \varphi_a - \sin \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \right]. \quad (37)$$

Setzt man nun die Ausdrücke (33') und (37) in die Gleichungen (35) ein, so erhält man schließlich explizite Formeln für die Kräfte und Momente, welche in Abhängigkeit von β und des Anfangswertes φ_a beschrieben werden. Nun haben diese Formeln allerdings eine bereits schon weniger

Abb. 18. Exakter Verlauf und Näherung für Ω_a bei kleinem Parameter β_0 .

gefälligen Aufbau, und man wird vielmehr die Ausdrücke (34) und (36) in die Gleichungen (35) einsetzen und nur in besonderen Fällen die Korrekturen ζ und ξ berücksichtigen. Diese so erhaltenen Gleichungen haben dann bei sinnvoller Vernachlässigung positiver Potenzen in β_0 die Gestalt

$$\left. \begin{aligned} \frac{M R}{I_p \sqrt{E G}} &= \frac{\varphi_a}{\beta_0 \sqrt{2}}, \\ \frac{M_1 R}{I_p \sqrt{E G}} &= -\frac{1}{2} \sqrt{\frac{E}{G}} \sin \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right), \\ \frac{M_2 R}{I_p \sqrt{E G}} &= \frac{1}{2} \sqrt{\frac{E}{G}} \left[1 - \cos \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \right], \\ \frac{Q_1 R^2}{I_p \sqrt{E G}} &= \frac{\varphi_a}{\beta_0 \sqrt{2}} \frac{E}{2G} \sin \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right), \\ \frac{Q_2 R^2}{I_p \sqrt{E G}} &= \frac{\varphi_a}{\beta_0 \sqrt{2}} \left[1 + \frac{E}{2G} \cos \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \right], \\ \frac{S R^2}{I_p \sqrt{E G}} &= -\frac{1}{2} \sqrt{\frac{E}{G}} \left[1 - \cos \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \right] + \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_1 R^3}{I_p \sqrt{E G}} &= \frac{\varphi_a^2}{\beta_0^2} \frac{E}{4G} \sqrt{\frac{E}{G}} \cos \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) - \frac{c_1 R^2}{I_p \sqrt{E G}}, \\ \frac{P_2 R^3}{I_p \sqrt{E G}} &= -\frac{\varphi_a^2}{\beta_0^2} \frac{E^2}{4G^2} \sin \varphi_a \left(\frac{\beta_0 - \beta}{\beta_0} \right) \end{aligned} \right\} \quad (35')$$

und sind zur näherungsweisen Beschreibung des Spannungszustandes in der Welle tatsächlich gut geeignet. Weiter unten wird gezeigt, daß die Gleichungen (35') auch Gültigkeit für Wellen mit beliebigem, endlichem Öffnungswinkel α_0 haben; das Belastungs-Torsionsmoment M_a muß dann aber theoretisch unendlich groß oder praktisch sehr groß sein.

Auch für Wellen mit beliebigem Öffnungswinkel α_0 lassen sich die Kräfte und Momente (35) als Funktionen von β und φ_a angeben. Es muß jedoch vorausgesetzt werden, daß die Verdrehung φ_a hinreichend klein ist und damit auch das Belastungs-Torsionsmoment M_a . Gleichung (27) hat für kleine Winkel φ die Form

$$\alpha \sqrt{\frac{E}{2G}} = \int_{\varphi}^{\varphi_a} \frac{d\varphi}{\sqrt{2 \Omega_b^2 + \varphi^2}}.$$

Substituiert man für Ω_b den durch (31') gegebenen Ausdruck, dann liegt nach der Integration die Gleichung

$$\varphi = \varphi_a \frac{\sin(\beta_0 - \beta)}{\sin \beta_0} \quad (38)$$

vor, welche beschreibt, wie die Verdrehung von φ_a auf Null abklingt. Die Formeln (35) haben nun mit (38) und (31') die Gestalt

$$\begin{aligned} \frac{MR}{I_p \sqrt{EG}} &= \frac{\varphi_a}{\sqrt{2}} \frac{\cos(\beta_0 - \beta)}{\sin \beta_0}, \\ \frac{M_1 R}{I_p \sqrt{EG}} &= -\frac{\varphi_a}{2} \sqrt{\frac{E}{G}} \frac{\sin(\beta_0 - \beta)}{\sin \beta_0}, \\ \frac{M_2 R}{I_p \sqrt{EG}} &= \frac{\varphi_a^2}{4} \sqrt{\frac{E}{G}} \frac{\sin^2(\beta_0 - \beta)}{\sin^2 \beta_0}, \\ \frac{Q_1 R^2}{I_p \sqrt{EG}} &= \frac{\varphi_a^2}{\sqrt{2}} \frac{E}{4G} \frac{\sin 2(\beta_0 - \beta)}{\sin^2 \beta_0}, \\ \frac{Q_2 R^2}{I_p \sqrt{EG}} &= \frac{\varphi_a}{\sqrt{2}} \left(1 + \frac{E}{2G}\right) \frac{\cos(\beta_0 - \beta)}{\sin \beta_0}, \\ \frac{S R^2}{I_p \sqrt{EG}} &= -\frac{\varphi_a^2}{4} \sqrt{\frac{E}{G}} \frac{\sin^2(\beta_0 - \beta)}{\sin^2 \beta_0} + \frac{c_1 R^2}{I_p \sqrt{EG}}, \\ \frac{P_1 R^3}{I_p \sqrt{EG}} &= \frac{\varphi_a^2}{4} \sqrt{\frac{E}{G}} \left[\frac{\sin^2(\beta_0 - \beta)}{\sin^2 \beta_0} + \frac{E}{G} \frac{\cos 2(\beta_0 - \beta)}{\sin^2 \beta_0} \right] - \frac{c_1 R^2}{I_p \sqrt{EG}}, \\ \frac{P_2 R^3}{I_p \sqrt{EG}} &= \frac{\varphi_a}{2} \sqrt{\frac{E}{G}} \left(1 + \frac{E}{2G}\right) \frac{\sin(\beta_0 - \beta)}{\sin \beta_0}, \end{aligned}$$

wenn wieder bei der Aufstellung dieser Gleichungen für die sin- und cos-Funktionen die bekannten Potenzreihenentwicklungen verwendet und Potenzen bis φ_a^2 berücksichtigt werden.

Während die bei B drehbar gelagerten Wellen die Eigenschaft haben, daß das innere Torsionsmoment

$$\frac{MR}{I_p \sqrt{EG}} \leq \sqrt{2}$$

ist, wie aus der ersten Gleichung (24) folgt, kann eine solche Schranke für die bei B eingespannte Welle nicht angegeben werden. Aus (26) ist nämlich zunächst ersichtlich, daß für $M_b \rightarrow \infty$, $M_a = M_b$ ist. Weiter wird bei einer Welle mit beliebigem aber endlichem Öffnungswinkel α_0 das Belastungs-Torsionsmoment M_a von einer gewissen Stelle $\varphi_a = \varphi_{a1}$ an monoton mit wachsendem φ_a zunehmen, so daß also für große Momente M_a bzw. M_b die Gleichung (27') sich vereinfacht auf

$$\alpha_0 \sqrt{\frac{E}{2G}} = \int_0^{\varphi_a} \frac{d\varphi}{\Omega_b \sqrt{2}},$$

was

$$\frac{M_a R}{I_p \sqrt{EG}} = \frac{\varphi_a}{\beta_0 \sqrt{2}} \quad (39)$$

liefert. Entsprechend ist Gleichung (27)

$$\alpha \sqrt{\frac{E}{2G}} = \int_{\varphi}^{\varphi_a} \frac{d\varphi}{\Omega_b \sqrt{2}}$$

und aus ihr erhält man mit Hilfe von (39)

$$\varphi = \varphi_a \frac{(\beta_0 - \beta)}{\beta_0}. \quad (40)$$

Ein Vergleich der Formeln (34) und (36) mit den Formeln (39) und (40) beweist völlige Übereinstimmung. Daraus folgt aber, wie schon oben behauptet wurde, daß die Gleichungen (35') zuständig sind für Wellen mit sehr kleinem Öffnungswinkel α_0 und für Wellen mit beliebigem Öffnungswinkel; jedoch muß im zweiten Fall das Belastungs-Torsionsmoment M_a auch hinreichend groß sein. Die durch Gleichung (39) beschriebenen Kurven sind die Asymptoten der Charakteristiken der bei B eingespannten Wellen. Das Verhalten der Asymptoten aber zeigt sofort, daß die wesentliche Ungleichung (5) nur bedingt erfüllt ist. Unter Verwendung von (25) besteht (5) sicher dann, wenn

$$\sqrt{\frac{E}{G}} \sqrt{\frac{M_b^2 R^2}{I_p^2 E G} + 2} \leq \left| \frac{R}{a} - 1 \right|$$

ist. Für sehr große Momente M_b kann diese Ungleichung auch in der einfacheren Form

$$\frac{M_a R}{I_p \sqrt{E G}} \leq \left| \frac{R}{a} - 1 \right| \sqrt{\frac{G}{E}},$$

oder auch mit Verwendung von (39) in der Gestalt

$$\varphi_a \leq \left| \frac{R}{a} - 1 \right| \alpha_0$$

angeschrieben werden. Theoretisch ist es also möglich, bei vorgegebenen maximalen $M_{a\max}$ und $\varphi_{a\max}$ ein Verhältnis R/a so auszulegen, daß die Ungleichung (5) erfüllt ist; bei einer aber einmal ausgeführten Welle dürfen M_a und damit auch φ_a nicht zu groß werden, da sonst die oben erwähnte Voraussetzung unbeachtet bleibt.

5. Zusammenfassung. Die tordierte, einfach gekrümmte Welle mit konstanter Krümmung wurde hinsichtlich ihrer elastischen Eigenschaften streng untersucht. Der Kompliziertheit des Problems entsprechend, konnten so die Charakteristiken zwar nicht explizit, aber doch exakt

Abb. 19. Aufteilung der Halbebene durch die Charakteristikenfelder Ω_a .

angegeben werden. Für spezielle Fälle gelang es, teils einfache Genaue-, teils einfache Näherungsformeln herzuleiten. Der wesentliche Inhalt der Arbeit gipfelt neben der Angabe der Kennlinien in der Erkenntnis, daß zwischen beiden untersuchten Grundproblemen ein Zusammenhang besteht, der am treffendsten in dem Verhalten der Charakteristiken erkannt wird. Abb. 19 mag zusammenfassend die Situation beschreiben. Für den Parameter $\beta_0 = \pi$ sind dort die Charakteristiken der bei B eingespannten und drehbar gelagerten Wellen eingezzeichnet. Beide Kennlinien liegen jeweils in Feldern, welche durch die Grenzkurve (18) voneinander getrennt werden. Oberhalb der Grenzkurve befinden sich die Charakteristiken der bei B eingespannten Wellen; diese Kurven gehen mit

$\varphi_a \rightarrow \infty$ in ihre Asymptoten (39) über. Die Ω_a -Achse ist identisch mit der Charakteristik der Wellen, denen der Parameter $\beta_0 = 0$ zugeordnet ist oder den geraden Wellen. Unterhalb der Grenzkurve liegen die Charakteristiken der bei B drehbar gelagerten Wellen; sie haben die Periode 2π , und die φ_a -Achse fällt zusammen mit der Charakteristik der geraden Wellen mit dem Parameter $\beta_0 = 0$. Die Kennlinien zeigen einen Verlauf, wie er auch nur ähnlich von den bisher bekannten Federn nicht erreicht wird.

Für die in der Welle auftretenden inneren Kräfte und Momente, ebenso für die von dem Führungsrohr herrührenden Pressungen, wurden Formeln angegeben. Die für die Pressungen zu-

Abb. 20. Vergleich der Meßwerte mit den durch die Theorie gelieferten Werten.

ständigen Gleichungen haben weniger Bedeutung, da aus konstruktiven Gründen bei einer praktischen Anwendung der gekrümmten Welle einzelne Lager an Stelle des Führungsrohres vorzuziehen sind. Die dadurch bewirkte Änderung der Charakteristiken ist aber so gering, daß sie auch zugleich vernachlässigbar klein ist. So wurde mit Hilfe eines Modells, das die Daten $R/a = 250$, $\alpha_0 = 80,50^\circ$ und $\beta_0 = \pi/2$ hatte, und bei dem die Welle bei A und B drehbar gelagert war, die in Abb. 20 eingetragenen Meßwerte ermittelt. Im ganzen war die Welle nur dreimal an den Stellen $\alpha = 0^\circ$, $\alpha = 40^\circ$ und $\alpha = 80,50^\circ$ gelagert. Selbst mit nur zwei Lagern bei A und B war die räumliche Ausbiegung der Welle überaus gering und es ergaben sich dieselben Meßergebnisse. Es wurde allerdings jeweils dafür gesorgt, daß die Endtangentialen der Welle bei A und B im unbelasteten Zustand nach Aufbringung des Belastungs-Torsionsmomentes M_a erhalten blieben.

Verschiedene Anwendungsmöglichkeiten für die gekrümmte Welle liegen auf der Hand. Der Verfasser hat sich jedoch in dieser Arbeit bewußt nur mit der Erforschung der Grundlagen beschäftigt.

(Eingegangen am 16. Februar 1959.)

Anschrift des Verfassers: Dr.-Ing. Werner Roth, Karlsruhe, Technische Hochschule,
Institut für Technische Mechanik.

Eine Erweiterung des Maxwellschen Vertauschungssatzes

Von Mok-Kong Shen

Unter Voraussetzung der Gültigkeit des Superpositionsprinzips lautet der *Maxwellsche Vertauschungssatz* folgendermaßen (Abb. 1): Die Komponente der Verschiebung des Punktes 2 eines starr gestützten Körpers, verursacht durch die Kraft P_1 in der Richtung der Kraft P_2 , ist von gleicher Größe wie die Komponente der Verschiebung des Punktes 1, verursacht durch die Kraft P_2 in der Richtung der Kraft P_1 , wenn P_1 und P_2 gleich groß sind.

Dieser Satz, der von *Maxwell* aus dem Arbeitsatz abgeleitet worden ist, zeigt nicht die Beziehung zwischen den beiden Verschiebungen selbst, sondern nur die, welche zwischen den zwei Komponenten der Verschiebungen besteht. Es ist der Zweck der vorliegenden Abhandlung, die Vertauschbarkeit der Verschiebungen weiter zu untersuchen.

Unter Voraussetzung der Gültigkeit des Superpositionsprinzips ergeben sich für zwei beliebige Kräfte mit den Vektoren P_1 und P_2 an den Punkten 1 und 2 die folgenden Vektorgleichungen:

$$\delta_{21} = P_1 \cdot \Phi, \quad (1)$$

$$\delta_{12} = P_2 \cdot \Phi', \quad (2)$$

Abb. 1.

worin δ_{21} der Vektor der Verschiebung des Punktes 2 verursacht durch P_1 ist, ebenso δ_{12} der Vektor der Verschiebung des Punktes 1 verursacht durch P_2 , und Φ, Φ' die zwei Dyaden, welche Funktionen der Lage der Punkte 1 und 2 und unabhängig von den Kräften P_1 und P_2 sind.

Aus dem *Maxwellschen Vertauschungssatz* (oder als Sonderfall des *Bettischen Satzes*) erhalten wir

$$\delta_{21} \cdot P_2 = \delta_{12} \cdot P_1, \quad (3)$$

woraus gemäß (1) und (2) folgt

$$P_1 \cdot \Phi \cdot P_2 = P_2 \cdot \Phi' \cdot P_1. \quad (4)$$

Da P_1 und P_2 ganz beliebige Kräfte sein können, muß Φ' die konjugierte Dyade von Φ sein. Schreiben wir Φ in ihrer Normalform

$$\Phi = a i i' + b j j' + c k k', \quad (5)$$

so ist

$$\Phi' = a i' i + b j' j + c k' k. \quad (6)$$

Damit ergeben sich die Verschiebungen δ_{21} und δ_{12} , wenn P_1 und P_2 die Größe eins annehmen und in Richtungen der Achsen i, j, k und i', j', k' liegen, zu

$$i \cdot \Phi = a i', \quad j \cdot \Phi = b j', \quad k \cdot \Phi = c k', \quad (7)$$

$$i' \cdot \Phi' = a i, \quad j' \cdot \Phi' = b j, \quad k' \cdot \Phi' = c k. \quad (8)$$

Die Achsen i, j, k und i', j', k' , die zwei Systeme von je drei zu einander senkrechten Richtungen bilden, werden im folgenden Hauptvertauschungsrichtungen genannt.

Ist P_2 durch den Vektor

$$\Omega = i i' + j j' + k k'$$

mit P_1 verbunden:

$$P_2 = P_1 \cdot \Omega, \quad (9)$$

so erhalten wir gemäß (1) und (2)

$$\begin{aligned} \delta_{21} &= P_1 \cdot \Phi = (P_2 \cdot \Omega^{-1}) \cdot (\Omega \cdot \Phi' \cdot \Omega) \\ &= P_2 \cdot \Phi' \cdot \Omega = \delta_{12} \cdot \Omega. \end{aligned} \quad (10)$$

Für zwei ganz beliebige Kräfte

$$P_1 = \alpha i + \beta j + \gamma k,$$

$$P_2 = \alpha' i' + \beta' j' + \gamma' k'$$

sind die Verschiebungen

$$\begin{aligned}\delta_{21} &= P_1 \cdot \Phi = \alpha a i' + \beta b j' + \gamma c k', \\ \delta_{12} &= P_2 \cdot \Phi' = \alpha' a i + \beta' b j + \gamma' c k\end{aligned}$$

und also

$$\delta_{21} \cdot P_2 = \alpha \alpha' a + \beta \beta' b + \gamma \gamma' c = \delta_{12} \cdot P_1,$$

was zu Gleichung (3) zurückführt.

Diese Ergebnisse können folgendermaßen zusammengefaßt werden: Es gibt, unter Voraussetzung der Gültigkeit des Superpositionsprinzips, für die Verschiebungen δ_{21} und δ_{12} zweier Punkte an einem starr gestützten Körper, verursacht durch die Kräfte P_1 und P_2 , zwei entsprechende, aus je drei zueinander senkrechten Achsen bestehende Hauptvertauschungsrichtungssysteme, welche die folgenden Eigenschaften haben:

1. Die durch zwei gleich große, diesen Systemen ähnlich zugeordnete Kräfte P_1 und P_2 verursachten Verschiebungen δ_{21} und δ_{12} sind immer denselben Systemen ähnlich zugeordnet und von gleicher Größe.

2. Die durch zwei gleich große, in entsprechenden Hauptvertauschungsrichtungen liegende Kräfte P_1 und P_2 verursachten Verschiebungen δ_{21} und δ_{12} liegen in denselben Richtungen und sind von gleicher Größe.

Es ist verständlich, daß unter Umständen die Dyade Φ sich in mehreren Normalformen ausdrücken lassen kann. In solchem Falle werden wir entsprechend mehr Hauptvertauschungsrichtungssysteme haben. Andererseits können die Werte a, b, c in (5) gleich Null sein, und wir werden dann Richtungen haben, in denen keine Verschiebungen δ_{21}, δ_{12} entstehen können.

Alle diese Gleichungen sind, wie der originale Maxwell'sche Satz, auch gültig, wenn wir, statt Kraft und Verschiebung, Moment und Drehwinkel an einem Punkte oder an beiden Punkten haben. Im allgemeinen entstehen daher die folgenden vier Gruppen von Hauptvertauschungsrichtungssystemen für zwei bestimmte Punkte 1 und 2:

Gruppe	am Punkte 1	am Punkte 2
I	Kraft und Verschiebung	Kraft und Verschiebung
II	Kraft und Verschiebung	Moment und Drehwinkel
III	Moment und Drehwinkel	Kraft und Verschiebung
IV	Moment und Drehwinkel	Moment und Drehwinkel

Wenn wir den Punkt 2 mit dem Punkte 1 zusammenfallen lassen, so wird die Gruppe III gleich der Gruppe II sein, und in der Gruppe I bzw. in Gruppe IV werden die zwei Hauptrichtungssysteme miteinander zusammenfallen. [Gleichung (4) wird hier $P_1 \cdot \Phi \cdot P_2 = P_2 \cdot \Phi \cdot P_1$, so daß Φ eine symmetrische Dyade sein muß.] Damit kommen wir zu der bekannten Erkenntnis zurück:

Es gibt, unter Voraussetzung der Gültigkeit des Superpositionsprinzips, für die Verschiebung δ_{11} des Punktes 1 eines starr gestützten Körpers, verursacht durch die Kraft P_1 an demselben Punkt, drei zueinander senkrechte Hauptrichtungen, in denen P_1 und δ_{11} zusammenfallen.

(Eingegangen am 16. Februar 1959.)

Anschrift des Verfassers: Mok-Kong Shen, Karlsruhe, Wiesbadenerstraße 27, bei Willhauck.

Die Extrema der Übersetzungen in ebenen und sphärischen Kurbeltrieben

Von W. Meyer zur Capellen

1. Einleitung. In einer früheren Arbeit¹ wurden die Extrema der Geschwindigkeiten in Kurbeltrieben und damit indirekt die Extrema der Übersetzungen in diesen untersucht. Es lag nahe, die Frage nach den Extrema auch auf räumliche Getriebe, vor allem auf sphärische Getriebe auszudehnen. Da die ebenen Kurbelgetriebe als Sonderfälle der sphärischen Getriebe aufgefaßt werden können, soll zunächst noch kurz auf die Übersetzung in ebenen periodischen Getrieben ein- und in Anlehnung an diese Entwicklungen auf die sphärischen Getriebe übergegangen werden.

2. Ebene Getriebe. a) Begriff des Übersetzungsverhältnisses. Bei „stetigen“ Getrieben, z. B. bei den Rädertrieben, wird das Übersetzungsverhältnis i definiert als das Verhältnis zwischen Antriebswinkelgeschwindigkeit (oder -Drehzahl) und Abtriebswinkelgeschwindigkeit (oder -Drehzahl) $i = \omega_{\text{antrieb}} : \omega_{\text{abtrieb}}$. Dieses Verhältnis ist bei stetigen Getrieben konstant, bei periodischen Getrieben aber nicht. Da zudem bei diesen, z. B. bei der Kurbelschwinge, die Winkelgeschwindigkeit im Abtrieb Null werden kann, also dann i nach unendlich gehen würde, pflegt man bei den periodischen Getrieben den reziproken Wert als Übersetzung zu definieren: $i_p = \omega_{\text{abtrieb}} : \omega_{\text{antrieb}}$, wobei der Index p auf das periodische Getriebe hinweisen soll. Im folgenden wird nur von periodischen Getrieben die Rede sein, so daß der Index p nicht mitgeschleppt werden soll.

Abb. 1. Aufbau des allgemeinen Getriebes.

Im übrigen muß man noch unterscheiden zwischen Abtrieb mit Dreh- und Abtrieb mit Schubbewegung.

1. Drehbewegung im Abtrieb. Durch einen Zwischenmechanismus werde der (gleichmäßige) Antrieb des Gliedes 1 (Abb. 1), mit der Winkelgeschwindigkeit ω_1 in eine periodische Drehbewegung des Gliedes k mit der Winkelgeschwindigkeit ω_k verwandelt. Dann gilt $i = \omega_k : \omega_1$, aber nach bekannten Sätzen über die Drehung dreier Ebenen gegeneinander, hier der Ebene 1, der Ebene k und der ruhenden Ebene 0 (Gestell), auch

$$i = \frac{\omega_k}{\omega_1} = \frac{p}{q} = \frac{p}{p-d}, \quad (1)$$

worin $d = \overline{A_0 M_0} = \overline{P_{10} P_{k0}}$ die konstante Länge des Steges, P_{k1} der Relativpol der Drehung von k gegen 1 und p die Strecke $p = \overline{P_{k1} P_{10}} = \overline{P_{k1} A_0}$ und q die Strecke $q = \overline{P_{k1} P_{k0}} = \overline{P_{k1} M_0}$ bedeuten. Die Strecken können auch negativ sein, so wie bei der Kurbelschwinge in Abb. 2, und wenn

¹ W. Meyer zur Capellen, Ing.-Arch. 25 (1957), S. 140.

man dann p durch $-p$ ersetzen würde, so ist auch

$$i = \frac{p}{p + d}, \quad (2)$$

worauf später zurückgegriffen wird.

Ist A ein Punkt des Antriebsgliedes, von dem aus die Bewegung weitergeleitet wird (wie z. B. bei der Kurbelschwinge in Abb. 2) und K der Punkt des Gliedes k , auf welchen durch den Zwischenmechanismus die Bewegung übertragen wird (z. B. Punkt B in Abb. 2), so gilt auch mit $\overline{A_0 A} = a$

Abb. 2. Relative Polbahntangente beim Kurbeltrieb.

und $\overline{M_0 K} = k$ sowie v_A und v_K als den Geschwindigkeiten dieser Punkte zunächst $v_A = a \omega_1$, $v_K = k \omega_k$ und damit auch

$$i = \frac{v_K/k}{v_A/a} = \frac{a}{k} \frac{v_K}{v_A}; \quad (3)$$

d. h. i , dem Verhältnis $v_K : v_A$ proportional, kann somit aus diesem ermittelt werden: Wenn v_A bei den üblichen Geschwindigkeitskonstruktionen gleich a cm gezeichnet wird, so zeigt sich $i = v_{Kz}/k$ als Verhältnis zweier Strecken, wobei v_{Kz} die gezeichnete Länge der Geschwindigkeit v_K bedeutet.

2. Schubbewegung im Abtrieb. Vollführt das Abtriebsglied eine Schubbewegung, wie z. B. beim Schubkurbeltrieb nach Abb. 3 oder bei dem sechsgliedrigen Getriebe nach Abb. 4, so können die Formeln (3) oder $i = \omega_k/\omega_1$ nicht mehr benutzt werden, da dann ω_k verschwindet oder auch k nach unendlich geht. Es würde sich für i der unbrauchbare Wert Null ergeben. Man kann dann davon ausgehen, daß die Geschwindigkeit v_A in die Geschwindigkeit v_k des Gliedes k verwandelt wird, und setzt i als das Verhältnis

$$i = \frac{v_k}{v_A} \quad (4)$$

an. Bei dem Schubkurbeltrieb in Abb. 3 erkennt man aus dem Dreieck der gedrehten Geschwindigkeiten (Satz von Euler), daß hier

$$i = \frac{v_B}{v_A} = \frac{p}{a} \quad (5)$$

gilt, wie im übrigen auch Abb. 4 zeigt, welches das sechsgliedrige Getriebe in der Stellung zeigt, in welcher i ein Extremum hat. Hier bildet E den Abtrieb, und es gilt $i = v_E/v_A = v_E/v_A$, sowie $p = \overline{A_0 P_{51}}$ (und gleich $v_E = v_A$, da v_A gleich der Kurbellänge $A_0 A$ gezeichnet wurde).

Wenn ein Kurventrieb eine drehende Bewegung in eine Schubbewegung verwandelt (Abb. 5), so kann — im Gegensatz zu den soeben geschilderten Gelenkgetrieben — nicht von einer konstanten Antriebsgeschwindigkeit gesprochen werden. Es wäre nach der Definition (4) und (5) mit der (veränderlichen) Führungsgeschwindigkeit $v_f = r \omega_1$ dann $i = p/r$; aber diese Definition befriedigt nicht, denn das Übersetzungsverhältnis soll nach (3) doch der Abtriebsgeschwindigkeit

proportional sein. Es empfiehlt sich daher die Geschwindigkeit v_A hier im Abstande des Grundkreishalbmessers R_0 zu definieren als $v_A = R_0 \omega_1$, so daß dann i wiederum dimensionslos als

$$i = \frac{v_2}{R_0 \omega_1} \quad (6)$$

erscheint. Wesentlich dürfte es sein, daß i auf jeden Fall eine dimensionslose Größe wird und der Abtriebwinkelgeschwindigkeit oder der Geschwindigkeit des Schubgliedes proportional ist.

Abb. 3. Relative Polbahntangente beim Schubkurbeltrieb.

b) Das Extremum des Übersetzungsverhältnisses. 1. Formale Bedingung. Die in dem Wert (1) von i auftretenden Strecken p und q sind Funktionen des Antriebwinkels α aus Abb. 1, und wenn Striche Ableitungen nach α bezeichnen, so wird gemäß (1)

$$i' = i'(\alpha) = -\frac{p' d}{(p-d)^2} \quad (7)$$

oder gemäß (5)

$$i' = \frac{p'}{a}. \quad (8)$$

Damit hat aber i in beiden Fällen ein Extremum, wenn

$$p' = p'(\alpha) = 0 \quad (9)$$

wird. Die Berechnung von p und p' führt auf längere Ausdrücke, so daß z. B. für die geschränkte Schubkurbel eine Gleichung sechsten Grades folgt¹.

2. Geometrische Deutung. Betrachtet man die Bewegung des Gliedes k gegenüber Glied 1 (Abb. 1), so kann diese auch aufgefaßt werden als das Abrollen der mit dem Glied k verbundenen Polkurve K_{pk} auf der mit dem Glied 1 verbundenen Polkurve K_{p1} , d. h. als das Abrollen der relativen Polkurven K_{pk} und K_{p1} aufeinander. Sie berühren sich im Relativpol P_{k1} längs der gemeinsamen

¹ W. Meyer zur Capellen u. Mitarbeiter, Bewegungsverhältnisse an der geschränkten Schubkurbel, Forschungsbericht des Wirtschaftsministeriums von Nordrhein-Westfalen Nr. 449, Opladen-Köln 1958.

Abb. 4. Sechsgliedriges Getriebe mit Schubbewegung im Abtrieb für $i = i_{max}$.

Abb. 5. Kurventrieb.

relativen) Polbahntangente $t_{rel} = t_{k1}$. Denkt man sich das Antriebsglied 1 festgehalten — gekennzeichnet durch die Achse ζ_1 (Abb. 1 und Abb. 6) — und dreht den Steg, das Glied Null, um den Winkel α um A_0 , so ist K_{P_1} die (relative) Rastpolkurve und stellt $A_0 P_{k1} = p(\alpha)$ die Gleichung dieser Polkurve in Polarkoordinaten dar (Abb. 7), wobei p den Fahrstrahl und α das Argument bedeutet. Nun stellt aber $p' = p'(\alpha) = dp/d\alpha$ bekanntlich die Polarsubnormale dar¹, d. h. die Strecke p' wird auf der zum Fahrstrahl $A_0 P_{k1}$ in A_0 senkrecht stehenden Geraden durch die Normale, also hier durch die (relative) Polbahnnormale n_{rel} abgeschnitten; in Abb. 6 ist $A_0 N = p'$.

Wenn aber $p' = 0$ sein soll, so muß die Polbahnnormale n_{rel} in Richtung $A_0 P_{k1}$, d. h. in Richtung des Steges fallen, oder es muß die relative Polbahntangente t_{rel} senkrecht zum Steg stehen, wenn das Übersetzungsverhältnis ein Extremum haben soll.

Abb. 6. Polkurven und Subnormale p' .Abb. 7. $p = p(\alpha)$ in Polarkoordinaten.¹ Dubbels Taschenbuch. Bd. I, S. 114. 11. Aufl. Berlin 1958.

Im übrigen kann die Bedingung $p' = 0$ auch kinematisch-geometrisch noch anders gedeutet werden: Für die auf dem Polstrahl gelegenen Punkt A_0 und M_0 (Abb. 6) gilt nach der Euler-Savaryschen Formel

$$\frac{1}{r} - \frac{1}{r_0} = \frac{1}{w}, \quad (10)$$

da A_0 der Krümmungsmittelpunkt der relativen Bahn von M_0 gegenüber Glied 1 ist, mit $r = -(p-d)$, $r_0 = -p$, $w = D \sin \varphi$ und $\sin \varphi = p/n_{rel}$ gemäß Abb. 6, sowie $n_{rel} = \sqrt{p^2 + p'^2}$ für den Wendekreisdurchmesser D die einfache Formel

$$D = \frac{p-d}{d} n_{rel}. \quad (11)$$

Da nun $D' = D'(\alpha)$ proportional p' ist, wie eine einfache Rechnung zeigt, so bedeutet die Bedingung $p' = 0$ auch $D' = 0$, d. h. aber einen stationären Wert des Wendekreisdurchmessers.

Dies konnte auch daraus geschlossen werden, daß der Punkt M_0 der (relativen) Kreispunktkurve angehört, aber auch der ja jetzt auf den Steg fallenden Polbahnnormalen, und daß damit jene in diese Normale (und noch einen Kreis) entartet. Dieser Sonderfall der Kreispunktkurve bedeutet aber¹ einen stationären Wert von D , für den dann unmittelbar mit $n_{rel} = p$ auch $D = p(p-d)/d$ folgt.

Eine rein bewegungsgeometrische Deutung liefert schließlich noch das Folgende: Der Punkt P_{k1} wandert auf dem jetzt als fest betrachteten Steg mit der Geschwindigkeit $dp/dt = (dp/d\alpha)(d\alpha/dt) = p' \omega_1$, d. h. diese (beiläufig eine Komponente der relativen Polwechselgeschwindigkeit) ist proportional p' . Läßt sich nun die Wanderung des Punktes P_{k1} als tatsächliche Bewegung deuten, so muß im betrachteten Augenblick die Geschwindigkeit dp/dt gleich Null sein (vgl. nächsten Absatz 3).

3. Anwendung auf die Viergelenkkette. Die in Abb. 2 ausgeführte bekannte Konstruktion der (relativen) Polbahntangente bei der Kurbelschwinge zeigt, daß für das Extremum der Winkel $t_{rel} P_{31} B_0 = \text{Winkel } P_{20} P_{31} B = \varphi_{31}$ gleich einem Rechten sein muß, d. h. daß die Kollinearachse senkrecht zur Koppelmittellinie AB stehen muß, wie ja bereits für die Viergelenkkette früher gefunden.²

Man kann im übrigen ohne Kenntnis des Begriffs „Kollinearachse“ diese Bedingung finden: In Abb. 8 trägt die Koppel eine Schleife, diese paart sich mit einem Gleitstein, der um einen in Richtung des Steges verschiebbaren Schieber drehbar ist. Dieser Drehpunkt S fällt mit dem Relativpol P_{31} zusammen und der oben genannte Wert p' wird jetzt proportional seiner Geschwindigkeit v . Diese kann in bekannter Weise aus $v \equiv v_{abs} = v_f + v_r$ ermittelt werden. Soll nun aber p' verschwinden, so muß $P_{20} S \equiv P_{20} P_{31}$ auf der Schleifenmittellinie, d. h. auf AB senkrecht stehen³.

Der Wert i' , wie er in (7) angegeben ist, bedeutet auch die bezogene Winkelbeschleunigung des

Abb. 8. Getriebliche Deutung der Geschwindigkeit p' .

¹ W. Meyer zur Capellen, Ing.-Arch. 17 (1949), S. 308.

² Vgl. Fußnote 1 auf S. 352 und F. Freudenstein, Trans. ASME (1956) S. 779 — ASME Paper 55 — SA-20.

³ H. Brandenberger, Kinematische Getriebemodelle, Zürich 1955, wies übrigens auf das Extremum der Strecke p als Kennzeichen für ein Extremum des Übersetzungsverhältnisses hin, ohne jedoch diese Feststellung irgendwie auszuwerten.

Gliedes k , d. h. es ist

$$i' = \frac{\varepsilon_k}{\omega_1^2}$$

bei drehendem Abtrieb oder

$$i' = \frac{b_k}{b_A} = \frac{p'}{a}$$

bei Schubbewegung im Abtrieb mit b_k, b_A als den Beschleunigungen des Gliedes k und des Punktes A .

Führt man beiläufig in (7) den Winkel φ_{k1} aus Abb. 6 durch $p' = p \operatorname{ctg} \varphi_{k1}$ ein und beachtet, daß nach (1) auch $i = 1 + d/(p-d)$, also $d/(p-d) = i - 1$ ist, so kann man auch

$$i' = i(1-i) \operatorname{ctg} \varphi_{k1} \quad (7^*)$$

schreiben, d. h. erhält die bereits bei Freudenstein für die Viergelenkkette angegebene Beziehung.

Die Gleichung (7) kann nun zur zeichnerischen oder zeichnerisch-rechnerischen Ermittlung der bezogenen Winkelbeschleunigung ε_3/ω_1^2 herangezogen werden, wenn der Relativpol noch erreichbar

Abb. 9. Konstruktion von i' .

Abb. 10. Kopplung zweier Viergelenkketten.

und damit die relative Polbahntangente einschließlich der Polarsubnormalen leicht angegeben werden können. In Abb. 9 gilt z. B. nach eingetragener Konstruktion

$$i' = \frac{p'}{p-d} \frac{d}{p-d} = \frac{d \operatorname{tg} \beta}{p-d} = \frac{M_0 G'}{p-d} = \operatorname{tg} z.$$

Besonders einfach wird nach (8) die Konstruktion von i' und damit hier des Verhältnisses $b_B/b_A = b_3/b_A$ bei der Schubburrebel in Abb. 3: Es wird i' und damit b_B proportional der Strecke p' , bei dem benutzten Maßstab aber gleich b_B .

c) Kopplung zweier Viergelenkketten. Bei Kopplung zweier Kurbelschwingen oder allgemeiner zweier Viergelenkketten (Abb. 10) kann man von der Multiplikation der Übersetzungs-

verhältnisse ausgehen: Es ist

$$i = \frac{\omega_{50}}{\omega_{10}} = \frac{\omega_{50}}{\omega_{30}} \frac{\omega_{30}}{\omega_{10}} = i_{53} i_{31} = i_1 i_2, \quad (12)$$

wenn

$$i_{31} = i_1 = \frac{p_1}{q_1}, \quad i_{53} = i_2 = \frac{p_2}{q_2} \quad (13)$$

Abb. 11a. Relative Polbahntangenten bei
Kopplung zweier Viergelenkketten.

Abb. 11b. Konstruktion der Winkel μ_1 und μ_2 .

gesetzt wird. Bildet man jetzt $i' = di/d\alpha$ unter Beachtung, daß i_2 zunächst eine Funktion von β ist, so folgt $i' = i'_1(\alpha) i_2 + i_1 i'_2(\beta) \beta'(\alpha)$, worin $\beta'(\alpha) = i_1$ ist, und man hat nach einigen Rechnungen

$$i' = i_1^2 i_2 \left(\frac{p'_1 d_1}{p_1 p_1} + \frac{p'_2 d_2}{p_2 q_2} \right). \quad (14)$$

Werden jetzt noch die Winkel φ_1 und φ_2 der beiden relativen Polbahntangenten $t_{1rel} = t_{31}$ und $t_{2rel} = t_{53}$ eingeführt (Abb. 11a), so kann man die Bedingung $i' = 0$ ein für Extremum in der Form

$$\frac{d_1 \operatorname{ctg} \varphi_1}{p_1} + \frac{d_2 \operatorname{ctg} \varphi_2}{q_2} = 0 \quad (15a)$$

oder

$$\operatorname{tg} \mu_1 + \operatorname{tg} \mu_2 = 0 \quad (15b)$$

schreiben, worin μ_1 und μ_2 die in Abb. 11a konstruierten Winkel darstellen. Greift man dann die Strecken $y_1 = l \operatorname{tg} \mu_1$ und $y_2 = l \operatorname{tg} \mu_2$ mit beliebiger Maßstabseinheit l ab, Abb. 11b, so trage man die Summe $y = y_1 + y_2 = f(\alpha)$ in der Nähe des zu erwartenden Extremums als Kurve über α auf

und bestimme ihren Schnittpunkt mit der α -Achse (vgl. auch Absatz d) oder bringe die Kurven y_1 und $-y_2$ zum Schnitt, um die Stellung des Extremums zu gewinnen.¹

Wird die Bedingung aus (15 a) in der Form

$$\frac{p_1 \operatorname{tg} \varphi_1}{d_1} + \frac{q_2 \operatorname{tg} \varphi_2}{d_2} = 0, \quad (15 \text{c})$$

geschrieben, so lautet sie auch mit den in Abb. 12 a, b konstruierten Winkeln ν_1 und ν_2 ähnlich

$$\operatorname{tg} \nu_1 + \operatorname{tg} \nu_2 = 0 \quad \text{oder} \quad z_1 + z_2 = 0. \quad (15 \text{d})$$

Abb. 12 a, b. Konstruktion der Winkel ν_1 und ν_2 bei der Kopplung zweier Viergelenkketten.

Beiläufig lässt sich schließlich noch der Bedingung $i' = 0$ auch die Form

$$\left(\frac{1}{i_1} - 1 \right) \operatorname{ctg} \varphi_1 = (i_2 - 1) \operatorname{ctg} \varphi_2 \quad (16)$$

geben.

Ist das Abtriebsglied 5 ein Schubglied, so gilt

$$i = \frac{v_5}{v_A} = \frac{v_5}{v_B} \frac{v_B}{v_A} = i_{53} \frac{b}{a} \frac{\omega_3}{\omega_1} = \frac{b}{a} i_{53} i_{31} \quad (17)$$

mit $B_0 B = b$, $i_{31} = i_1 = p_1/q_1$ und $i_{53} = i_2 = p_2/b$. Die gleichen Überlegungen wie vorher führen dann zu der Bedingung

$$\frac{p_1 \operatorname{tg} \varphi_1}{d_1} + \operatorname{tg} \varphi_2 = 0 \quad (18 \text{a})$$

oder auch

$$(1/i_1 - 1) \operatorname{ctg} \varphi_1 + \operatorname{ctg} \varphi_2 = 0. \quad (18 \text{b})$$

d) Ermittlung der Extremalstellung. Will man bei vorgegebenem Getriebe die Stellung für das Extremum der Übersetzung ermitteln, so kann man sich der direkten Methoden bedienen, d. h. man ermittelt in der Nähe des zu erwartenen Extremums die Winkel-, bzw. die Schubbeschleunigung des Abtriebs und trägt sie über dem Kurbelwinkel α auf, und der Schnitt der so erhaltenen Kurve mit der α -Achse liefert den gesuchten Wert a . Bei den indirekten Methoden kann man in ähnlicher Weise als Funktion von α gewisse Strecken ζ und η , wie früher beschrieben² oder die soeben entwickelte Summe $y = f(\alpha)$ oder die Strecke $p' = p'(\alpha)$ benutzen. Bei Ermittlung der Nullstelle könnte man naturgemäß durch Iteration Verbesserungen erreichen und zwar unter Benutzung der Regula falsi, da ja nur die Funktionswerte $f(\alpha)$ zeichnerisch ermittelt werden können, nicht ihre Ableitungen³.

¹ Bei der Konstruktion der Relativpole treten häufig flache Schnitte auf. Deshalb liefert dieser Weg nicht immer die genaue Stellung des Extremums.

² Vgl. Fußnote 1 von S. 352.

³ W. Meyer zur Capellen, Ing.-Arch. 27 (1959), S. 53 u. 73.

Auch wenn rein rechnerisch vorgegangen wird, so sind die Nullstellen einer gewissen Funktion $f(\alpha)$ zu bestimmen (z. B. der rechnerisch ermittelten Winkelbeschleunigung). Da aber hierbei, von Sonderfällen abgesehen, sich Gleichungen höheren Grades in $\sin \alpha$ oder $\cos \alpha$ ergeben, so wird man nur bei einer Gleichung zweiten Grades die Lösung auch zeichnerisch finden können, bei Gleichungen dritten Grades und vierten Grades nur rechnerisch, im allgemeinen aber durch Iterationsmethoden. In diesem Sinn wird man die Stellungen im allgemeinen nicht mathematisch genau angeben können, wenn auch die praktische Genauigkeit der genannten Verfahren durchaus ausreichen dürfte¹.

3. Sphärische Getriebe. a) Begriff des sphärischen Getriebes. Beim ebenen Gelenkgetriebe sind die vier Gelenkkachsen zueinander parallel, beim sphärischen Gegenstück gehen sie durch einen Punkt, und denkt man sich diesen als Mittelpunkt einer Kugel vom Halbmesser $R = \text{„eins“}^2$, so sind die Mittellinien der Glieder jetzt durch Großkreise und ihre „Längen“ durch Bögen auf der Einheitskugel, d. h. durch Winkel gegeben (vgl. Abb. 13³). Wir bezeichnen diese Längen der Glieder 1, 2, 3, 4, entsprechend dem ebenen Getriebe mit $\bar{a}, \bar{c}, \bar{b}, \bar{d}$, die Drehwinkel der Glieder entsprechend mit α und β .

b) Das Übersetzungsverhältnis. Während bei der ebenen Bewegung Gangpolkurve und Rastpolkurve, bzw. körperlich gesehen, die entsprechenden Zylinder aufeinander abrollen, so bekanntlich bei der Bewegung um einen Punkt, d. h. hier bei den sphärischen Getrieben, Gangpolkegel und Rastpolkegel. Z. B. dreht sich in Abb. 13 das Glied 2, die Koppel, um die Achse 20, welche den Schnitt der Ebenen 10—21 und 30—32 gegenüber dem Gestell bildet. Das Übersetzungsverhältnis i ist hier ebenfalls durch das Verhältnis der Winkelgeschwindigkeiten $\omega_{30} = d\beta/dt$ und $\omega_{10} = d\alpha/dt$ gegeben. Nun gilt doch für die drei Winkelgeschwindigkeiten bei der Bewegung zweier Körper k und i gegeneinander hier ähnlich wie in der Ebene (Abb. 14)

$$\bar{\omega}_{k_0} = \bar{\omega}_{i_0} + \bar{\omega}_{k_i} . \quad (19a)$$

aber außerdem

$$\omega_{k_0} : \omega_{i_0} = \sin \alpha_i : \sin \alpha_k . \quad (19b)$$

Wendet man diese Beziehung auf das Gelenkviereck (Abb. 13) an, so gilt mit den Indices $i = 1$ und $k = 3$, $\alpha_i = \bar{p}$ als Winkel zwischen den Achsen 10 und 31 sowie $\alpha_k = \bar{q} = \bar{p} + \bar{d}$ als Winkel

Abb. 13. Sphärischer Kurbeltrieb — Erweiterung der Koppel durch eine Schleife zur Bestimmung des Extremums des Übersetzungsverhältnisses.

Abb. 14. Addition der Winkelgeschwindigkeiten.

¹ Dies mußte hier betont werden, da bei einem Vortrag des Verfassers vor Ingenieuren über die Größt- und Kleinstwerte der Übersetzungen in Getrieben in der Diskussion bedauert wurde, daß man die Stellung nicht „genau“ finden könne und diese Ungenauigkeit im Verfahren vermutete und nicht in dem Auftreten Gleichungen höheren Grades.

² W. Meyer zur Capellen, VDI-Ber. Bd. 29 (1958) S. 91; W. Meyer zur Capellen, Werkstatt und Betrieb 91 (1958) S. 435; W. Meyer zur Capellen, Werkstatt und Betrieb 91 (1958) S. 723; R. Beyer u. E. Schörner, Raumkinetische Grundlagen. München (1953).

³ In meiner Vorlesung „Raumgetriebe“ hat sich die Verwendung einer „Kugeltafel“ als zweckmäßig erwiesen. Die Anregung hierzu gab H. Mohrmann durch sein Buch „Nicht euklidische Geometrie“, Leipzig 1930, für das ich seinerzeit als Amateurphotograph einige Aufnahmen machte, u. a. auch von einer Kugeltafel.

zwischen den Achsen 30 und 31

$$i = \frac{d\beta}{dx} = \frac{\omega_{30}}{\omega_{10}} = \frac{\sin \bar{p}}{\sin \bar{q}} = \frac{\sin \bar{p}}{\sin(\bar{p} + \bar{d})} \quad (21a)$$

oder auch

$$\frac{1}{i} = \cos \bar{d} + \sin \bar{d} \operatorname{ctg} \bar{p}. \quad (21b)$$

c) Besondere Werte des Übersetzungsverhältnisses. Bevor wir zu den Extrema übergehen, sei noch auf einige besondere Werte von i hingewiesen.

1. In der Steglage fällt das Glied \bar{a} in die Richtung des Stegs, und es ist dann $\bar{p} = \bar{a}$ für die äußere, $\bar{p} = -\bar{a}$ für die innere Steglage, d. h.

$$\frac{1}{i_1} = \cos \bar{d} + \sin \bar{d} \operatorname{ctg} \bar{a} \quad \text{bzw. } \frac{1}{i_2} = \cos \bar{d} - \sin \bar{d} \operatorname{ctg} \bar{a}. \quad (22a)$$

Diese Werte sind, ebenso wie bei dem ebenen Getriebe nur von \bar{a} und \bar{d} abhängig, nicht von der Größe der anderen Glieder, wobei das ebene Getriebe mit $a/d = \lambda$ die Werte

$$\frac{1}{i_1} = 1 + \frac{1}{\lambda} \quad \text{bzw. } \frac{1}{i_2} = 1 - \frac{1}{\lambda} \quad (22b)$$

liefert. Addiert man die beiden Gleichungen (22a), so ist beiläufig das harmonische Mittel aus i_1 und i_2 gleich $\cos \bar{d}$ bzw. gleich eins beim ebenen Getriebe, wie im übrigen auch der Übergang vom Kugelradius $R = 1$ zum Kugelradius $R \rightarrow \infty$ zeigt.

2. Bei dem Kreuzgelenk oder der sphärischen Doppelschleife¹ ist $\bar{a} = \bar{b} = \bar{c} = \pi/2$ (Abb. 15a), und es gilt beiläufig bei der im Bild angegebenen Winkelzählung

$$\cos \bar{d} \operatorname{tg} \beta = \operatorname{tg} \alpha, \quad (23)$$

und in den Steglagen (Abb. 15b) folgt sofort

$$i_1 = i_2 = \frac{1}{\cos \bar{d}}. \quad (24a)$$

Für $\alpha = 90^\circ$, der „Steglage“ für die Abtriebskurkel (Abb. 15c) wird $\bar{p} = -(\bar{d} + \bar{b}) = -(\bar{d} + \pi/2)$, $\bar{q} = \bar{p} + \bar{d} = -\pi/2$, d. h. aber nach (21a)

$$i = \cos \bar{d}, \quad (24b)$$

als dem reziproken Wert zu i_1 , im übrigen in Übereinstimmung mit den durch Differentiation von β gefundenen Werten.

3. Die sphärische Kreuzschleife oder der „Hooke'sche Schlüssel“ führt als das dem Kreuzgelenk benachbarte Getriebe¹ mit $\bar{b} = \bar{c} = \bar{d} = \pi/2$ gemäß (21a) auf den einfachen Wert

$$i = \operatorname{tg} \bar{p}, \quad (25)$$

somit auf $i_1 = \operatorname{tg} \bar{a} = -i_2$. Dies ist auch leicht aus Abb. 15c, b zu erkennen, wenn man sich das kleine Glied jetzt als Steg vorstellt.

4. Die sphärische Schubkurkel (vgl. auch Absatz d) führt mit $\bar{b} = \bar{d} = \pi/2$ auf die gleichen Werte für i in (25) und für i_1 bzw. i_2 .

d) Das Extremum des Übersetzungsverhältnisses. 1. Bedingung für das Extremum. Nach (21a) folgt

$$\frac{di}{d\alpha} = i' = \frac{\bar{p}' \sin \bar{d}}{\sin^2(\bar{p} + \bar{d})}, \quad (26)$$

und dieser Wert stellt beiläufig auch die bezogene Winkelbeschleunigung $i' = \varepsilon_3/\omega_1^2$ dar. Soll nun i ein Extremum haben, so muß — formal wie bei den ebenen Getrieben —

$$\bar{p}' = \frac{d\bar{p}}{d\alpha} = 0 \quad (27)$$

¹ Vgl. Fußnote 2 von Seite 360.

Abb. 15a.

Abb. 15b.

Abb. 15c.

Abb. 16.

Abb. 17.

Abb. 18.

Abb. 19a.

Abb. 15a. Die sphärische Doppelschleife, das Kreuzgelenk.

Abb. 15b. Steglage der Antriebskurbel beim Kreuzgelenk.

Abb. 15c. Steglage der Abtriebskurbel beim Kreuzgelenk.

Abb. 19b.

Abb. 20a.

Abb. 16. Extremum des Übersetzungsverhältnisses beim sphärischen Kurbeltrieb.

Abb. 17. Zwei benachbarte Lagen H und H_1 des Relativpoles.

Abb. 18. Sphärische Polarsubnormale.

Abb. 19a. Schwingende sphärische Kurbelschleife.

Abb. 19b. Umlaufende sphärische Kurbelschleife.

Abb. 20a. Sphärische Schubkurbel.

Abb. 20b. Extremum des Übersetzungsverhältnisses bei der sphärischen Schubkurbel.

Abb. 20b.

sein. Diese Beziehung kann man nun ohne Zuhilfenahme von sphärischen Polarkoordinaten zunächst in gleicher Weise kinematisch deuten, wie an Hand von Abb. 6 geschildert wurde. Erweitert man analog in Abb. 13 die Koppel durch eine Schleife, welche sich mit einem in H angebrachten Gleitstein paart, der absolut auf dem durch den Steg gezogenen Grundkreis geführt wird, so kann p' als die Geschwindigkeit des Punktes H bzw. des Gleitsteines angesehen werden, welche tangential an den genannten Kreis verläuft. Ermittelt man dann $\bar{p}' = v$ wie beim ebenen Getriebe aus Führungs- und Relativgeschwindigkeit, so muß auch jetzt entsprechend der Großkreis durch 20 und 31 — die „sphärische Kollineationsachse“ — senkrecht zur sphärischen Koppel, d. h. senkrecht zum Großkreis durch 32 und 21 bzw. 31 stehen, wie in Abb. 16 angegedeutet.

Mit Hilfe sphärischer Polarkoordinaten ergibt sich das Folgende. Seien in Abb. 17 H und H_1 die benachbarten Lagen des Relativpoles und bilde der durch HH_1 gezogene Großkreis mit dem „Polstrahl“ A_0H_1 den Winkel ψ , so folgt mit den Winkeln $\widehat{Z_1H_1} = d\bar{p}$, $\widehat{Z_1H} = \bar{x}$ zunächst aus dem sphärischen Teildreieck A_0Z_1H nach dem Sinus-Satz

$$\sin \bar{x} : \sin \bar{p} = \sin(d\alpha) : \sin \frac{\pi}{2}$$

oder

$$\sin \bar{x} = \sin \bar{p} d\alpha, \quad (28)$$

sowie beim ebenen Getriebe $x = p d\alpha$ ist. Aus dem rechtwinkligen Teildreieck HZ_1H_1 ergibt sich ferner nach den Neperschen Regeln

$$\cos\left(\frac{\pi}{2} - d\bar{p}\right) = \operatorname{ctg}\left(\frac{\pi}{2} - \bar{x}\right) \operatorname{ctg} \psi$$

oder

$$\operatorname{tg} \psi = \frac{\operatorname{tg} \bar{x}}{\sin d\bar{p}} = \frac{\sin \bar{x}}{\cos \bar{x} \cdot d\bar{p}}.$$

Da \bar{x} klein ist, so hat man unter Einsetzen von (28) ähnlich wie in der Ebene

$$\operatorname{tg} \psi = \frac{\sin \bar{p} d\bar{a}}{d\bar{p}} = \frac{\sin \bar{p}}{p'}. \quad (29)$$

Zeichnet man nun in Abb. 18 durch H den Tangentenkreis an die relative Polkurve und senkrecht dazu den Normalenkreis, so treffen diese den zum „Polstrahl“ \bar{p} senkrecht gezogenen Großkreis in T bzw. N , und der Bogen bzw. Winkel $\widehat{A_0N}$ stellt die sphärische „Polarsubnormale“ s_n (und beiläufig $\widehat{A_0T}$ die sphärische „Polarsubtangente“) dar. Wendet man auf das sphärische rechtwinklige Dreieck HA_0N die Nepersche Regel an, so folgt

$$\cos\left(\frac{\pi}{2} - \bar{p}\right) = \operatorname{ctg}\left(\frac{\pi}{2} - \psi\right) \operatorname{ctg}\left(\frac{\pi}{2} - \bar{s}_n\right)$$

oder unter Beachtung von (29) schließlich

$$\operatorname{tg} \bar{s}_n = \bar{p}' \quad (30)$$

gegenüber $s_n = p'$ in der Ebene.

Im Falle eines Extremums von i , d. h. für $\bar{p}' = 0$ ist somit $\bar{s}_n = 0$ oder: das Übersetzungsverhältnis i hat ein Extremum, wenn die durch die Polachse $0-k_1$ zum (relativen) Polkegel gezogene Normalebene mit der Stegebene $(0-10-k_0)$ zusammenfällt bzw. die Tangentialebene zur Stegebene senkrecht steht — in Übereinstimmung mit dem oben gefundenen Ergebnis.

Im übrigen läßt sich für i' ein ähnlicher Ausdruck wie beim ebenen Getriebe in (7)* angeben. Es ist

$$i' = \frac{i}{\cos \bar{p}} (1 - i \cos \bar{d}) \operatorname{tg} \varphi,$$

wenn $\varphi = \pi/2 - \psi$ in Abb. 18 gesetzt wird. Denn nach den Neperschen Regeln gilt für Dreieck NA_0H doch $\operatorname{ctg} \varphi \operatorname{tg} \bar{s}_n = \sin \bar{p}$, und setzt man mit $\operatorname{tg} \bar{s}_n = \bar{p}'$ den hieraus folgenden Werten für $\operatorname{tg} \varphi$ sowie i aus (21a) ein, so erkennt man die Form i' aus (26).

Läßt man den Kugelhalbmesser $R \rightarrow \infty$ gehen, so gehen $\cos \bar{p}$ und $\cos \bar{d}$ nach eins, und man erhält Gleichung (7*), wenn man beachtet, daß dort $\varphi_{k1} = \pi/2 - \varphi$ ist.

2. Beispiele. *Beispiel 1:* Beim Kreuzgelenk sind die in Abs. c 2) erwähnten Stellungen für $\alpha = 0$ bzw. $\alpha = \pi$ und $\alpha = \pi/2$ bzw. $\alpha = 3\pi/2$ diejenigen für die Extrema, da die vorstehende Bedingung, wie leicht aus Abb. 15 a und b zu erkennen, erfüllt ist.

Beispiel 2: Bei der sphärischen Kreuzschleife sind, wie aus Abs. c 3) zu erkennen, die Werte i in den Steglagen bereits die extremalen.

Beispiel 3: Bei der sphärischen Kurbelschleife¹ werden $\bar{b} = \bar{c} = \pi/2$ (Abb. 19 a für die schwingende und Abb. 19 b für die umlaufende Schleife, d. h. $\bar{a} < \bar{d}$ bzw. $\bar{a} > \bar{d}$). Da auch hier in den Steglagen die Bedingung für das Extremum von i erfüllt ist, sind die Werte für i in (22 a) bereits die extremalen — wie bei der ebenen zentrischen Kurbelschleife.

Beispiel 4: Bei der sphärischen Schubkurbel nach Abb. 20 a (vgl. Abs. c 4) — liegt die Stellung extremer Übersetzung zwischen $\alpha = \pi/2$ und $-\pi/2$, wie in Abb. 20 b angedeutet. Die rechnerische Behandlung führt auf eine Gleichung achten Grades in $\sin^2 \alpha$, worauf an anderer Stelle ausführlich eingegangen wird², während sich für das ebene Getriebe ($R \rightarrow \infty$) nur eine Gleichung dritten Grades in $\sin^2 \alpha$ ergibt (weswegen auch der Winkel α im sphärischen Getriebe in gleicher Art gezählt wurde wie beim ebenen Getriebe).

4. Zusammenfassung. Nach Definition des Übersetzungsverhältnisses für ebene Getriebe, der Ermittlung der Bedingungen für ein Extremum und Anwendungen auf Gelenkgetriebe, insbesondere auch auf die Viergelenkkette wurden die Ergebnisse auf die sphärische „Viergelenkkette“ übertragen und durch Beispiele erläutert. Im Übrigen können die Bedingungen für ein Übersetzungsmaximum in einem mehrgliedrigen ebenen Getriebe sinngemäß in gleicher Weise auf sphärische mehrgliedrige Getriebe übertragen werden.

(Eingegangen am 24. Februar 1959.)

Anschrift des Verfassers: Professor Dr.-Ing. W. Meyer zur Capellen, Aachen, Techn. Hochschule,
Lehrstuhl für Getriebelehre.

¹ Vgl. Fußnote 2 von Seite 360.

² W. Meyer zur Capellen u. W. Rath, Kinematik der sphärischen Schubkurbel, Forschungsbericht des Landes Nordrhein-Westfalen (Opladen 1960).

³ Vgl. Fußnote 1 von Seite 354.

Technische Strömungslehre

Von Dr.-Ing. BRUNO ECK

Neudruck der fünften Auflage

Mit 407 Abbildungen. X, 422 Seiten Gr.-8°. 1958.

Ganzleinen DM 29,40

AUS DEN BESPRECHUNGEN

„Die vorliegende fünfte Auflage des bekannten Fachbuches ist ein nahezu unveränderter Nachdruck der erst 1954 erschienenen vierten Auflage. Die ‚Technische Strömungslehre‘ von ECK wird seit ihrem ersten Erscheinen im Jahre 1940 vor allem von den in der Praxis stehenden Ingenieuren wegen ihrer verständlichen Darstellungsweise geschätzt. Der umfangreiche Stoff der Strömungslehre ist zweckmäßig gegliedert und besonders auf die Gebiete beschränkt, die für den Maschinenbau von Bedeutung sind . . .“

Der Verfasser verzichtet bei der Behandlung dieses umfangreichen Stoffes auf verwickelte Ableitungen und stellt die wichtigsten Erscheinungsformen und Gesetze der Strömungslehre knapp und unter Verwendung einprägsamen Bildmaterials dar. Dem an speziellen Problemen interessierten Leser steht ein umfangreiches Literaturverzeichnis zur Verfügung.“

Die Technik

Technische Hydro- und Aeromechanik

Von Dr.-Ing. habil. WALTHER KAUFMANN, em. o. Professor der Mechanik an der Technischen Hochschule München

Zweite, verbesserte und ergänzte Auflage

Mit 266 Abbildungen. VIII, 386 Seiten Gr.-8°. 1958.

Ganzleinen DM 37,50

AUS DEN BESPRECHUNGEN

„Dieses nach wenigen Jahren bereits in 2. Auflage herausgegebene Buch kann als zusammenfassendes Lehrbuch alles dessen bezeichnet werden, was man heute unter Strömungslehre versteht, zunächst ohne Rücksicht auf den Unterschied von Gasen und Flüssigkeiten. Nachdem in zwei kleineren Abschnitten kurz die besonderen Eigenschaften der strömenden Medien und die Hydro- bzw. Aerostatik behandelt werden, ist der weitaus größte Teil der Bewegungslehre gewidmet. Nach der Stromfadentheorie und der Darstellung der besonderen Energieverluste werden die Theorien für zwei- und dreidimensionale Strömungen, ideelle und mit Zähigkeit behaftete Medien behandelt. Schließlich sind kurze Abschnitte der Grundwasserbewegung, der Schmiermittelreibung, dem Tragflügel und seiner Anwendung im Gitter gewidmet. Den Abschluß bildet ein Abschnitt über Gasdynamik.“

Neben dem Studierenden wird es auch dem Konstrukteur von Strömungsmaschinen, dem Wasserbau-Ingenieur usw. viel Interessantes und Grundsätzliches bieten, auch wenn Erfahrungswerte eher spärlich angegeben sind.“

Schweizer Archiv f. angew. Wissenschaft u. Technik

Soeben erschien:

Ingenieur-Mathematik

Von Dr. R. SAUER, Professor an der Technischen Hochschule München

Erster Band: Differential- und Integralrechnung

Mit 178 Abbildungen. VIII, 304 Seiten Gr.-8°. 1959. Ganzleinen DM 24,—

INHALTSVERZEICHNIS

Differential- und Integralrechnung für Funktionen von einer Veränderlichen: Reelle Zahlen. Funktionen von einer Veränderlichen; Stetigkeit. Spezielle Funktionen; Kurvendiskussion. Lineare analytische Geometrie der Ebene. Analytische Geometrie der Kegelschnitte. Grenzwert. Grundzüge der Differentialrechnung. Mittelwertsätze der Differentialrechnung. Numerische und graphische Differentiation; Interpolation. Grundzüge der Integralrechnung. Graphische und numerische Integration. Logarithmus und Exponentialfunktion; Hyperbelfunktionen. Rechenschieber und logarithmische Papiere. Unendliche Reihen. TAYLOR-Entwicklung von Funktionen in Potenzreihen. Anwendungen der TAYLOR-Entwicklung für das numerische Rechnen. Komplexe Zahlen. Elementar integrierbare Funktionenklassen. Differentialgeometrie der ebenen Kurven. Anwendung der Differentialgeometrie auf die Getriebelehre.

Differential- und Integralrechnung für Funktionen von mehreren Veränderlichen: Funktionen von mehreren Veränderlichen. Graphische Darstellung von Funktionen mehrerer Veränderlicher (Nomographie). Vektorrechnung. Determinanten und Systeme linearer Gleichungen. Lineare analytische Geometrie des Raumes. Analytische Geometrie der Flächen 2. Ordnung. Grundzüge der Differentialrechnung bei Funktionen von mehreren Veränderlichen. TAYLOR-Entwicklung für Funktionen von mehreren Veränderlichen. Anwendung der TAYLOR-Entwicklung bei mehreren Veränderlichen für das numerische Rechnen. Allgemeine Abbildungen und allgemeine Koordinatensysteme. Integraldarstellung von Funktionen. Mehrfache Integrale. Differentialgeometrie der Kurven und Flächen im Raum. Anwendungen der Integralrechnung in der Mechanik · Anhang · Sachverzeichnis.

ZUR INFORMATION

Das Buch richtet sich an Studierende der Ingenieurwissenschaften und der Physik und gibt eine Einführung in die Mathematik in einem Umfang, der etwa den beiden ersten Semestern der mathematischen Kursvorlesungen an den Technischen Hochschulen entspricht (Differential- und Integralrechnung samt Grundzügen der Vektorrechnung und der analytischen und Differentialgeometrie). Es wird durchwegs versucht, die Begriffe und Methoden in einer Weise zu entwickeln, die der aufs Anschauliche gerichteten Denkweise des Ingenieurs angemessen ist. Numerische und graphische Methoden nehmen einen verhältnismäßig breiten Raum ein. Auch eine Einführung in die Nomographie ist eingefügt sowie ein Exkurs in die Getriebelehre.

Ein später folgender zweiter Band wird sich mit den Differentialgleichungen und der Funktionentheorie befassen.

SPRINGER-VERLAG · BERLIN · GÖTTINGEN · HEIDELBERG