Topology I – Homework 4

Junwoo Yang

May 8, 2020

Problem 4.1 Let $(X_1, d_1), \dots, (X_n, d_n)$ be metric spaces and $X = X_1 \times \dots \times X_n$. Show that the three product metrics

(i)
$$d(x,y) = \sqrt{\sum_{i=1}^{n} d_i(x_i, y_i)^2}$$

(ii)
$$d(x,y) = \max\{d_1(x_1,y_1), \cdots, d_n(x_n,y_n)\}\$$

(iii)
$$d(x,y) = \sum_{i=1}^{n} d_i(x_i, y_i)$$

where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$, satisfy the conditions

- (*) a sequence $\{x^j = (x_1^j, \dots, x_n^j)\}_{j=1}^{\infty}$ converges to $x = (x_1, \dots, x_n)$ in X if and only if for each k, $\{x_k^j\}$ converges to x_k in X_k ,
- $(\star\star)$ $d_k(x_k, y_k) \leq d(x, y)$ for all k.

Proof. (*) Suppose a sequence $\{x^j\}$ converges to x. Then, $\lim_{j\to\infty} d(x,x^j)=0$. Thus, all three product metrics

$$\sqrt{\sum_{i=1}^{n} d_i(x_i, x_i^j)^2}, \quad \max\{d_1(x_1, x_1^j), \cdots, d_n(x_n, x_n^j)\}, \quad \sum_{i=1}^{n} d_i(x_i, x_i^j)$$

tend to 0 as j goes to infinity. Therefore, for each k, $\{x_k^j\}$ converges to x_k in X_k . Conversely, since all $\{x_k^j\}$ converges to x_k in X_k , $d(x, x^j)$ tends to 0 as j goes to infinity. Thus, $\{x^j\}$ converges to x.

 $(\star\star)$ For all $k\in[1,n]$, inequalities hold obviously

(i)
$$d_k(x_k, y_k) = \sqrt{d_k(x_k, y_k)^2} \le d(x, y) = \sqrt{\sum_{i=1}^n d_i(x_i, y_i)^2}$$

(ii)
$$d_k(x_k, y_k) \le d(x, y) = \max\{d_1(x_1, y_1), \dots, d_n(x_n, y_n)\}\$$

(iii)
$$d_k(x_k, y_k) \le d(x, y) = \sum_{i=1}^n d_i(x_i, y_i).$$