Résumé de cours : Semaine 14, du 3 janvier au 7.

Les espaces vectoriels (suite)

Notation. K désigne un corps quelconque.

1 La structure algébrique d'espace vectoriel (suite)

1.1 Sous-espace vectoriel engendré par une partie (suite)

Propriété. Soit E un \mathbb{K} -espace vectoriel et $A \subset E$. Si $x \in \operatorname{Vect}(A)$, $\operatorname{Vect}(A \cup \{x\}) = \operatorname{Vect}(A)$. Si $x = \lambda y + a$ avec $\lambda \in \mathbb{K}$ et $a \in \operatorname{Vect}(A)$, alors $\operatorname{Vect}(A \cup \{x\}) = \operatorname{Vect}(A \cup \{y\})$. Il faut savoir le démontrer.

Propriété. Soit $(x_i)_{i \in I}$ une famille de vecteurs d'un \mathbb{K} -espace vectoriel E. Alors $\operatorname{Vect}(x_i)_{i \in I}$ n'est pas modifié si l'on effectue l'une des *opérations élémentaires* suivantes :

- échanger x_{i_0} et x_{i_1} , où $i_0, i_1 \in I$ avec $i_0 \neq i_1$;
- multiplier x_{i_0} par $\alpha \in \mathbb{K}$ avec $\alpha \neq 0$;
- ajouter à l'un des x_i une combinaison linéaire des autres x_i .

Il faut savoir le démontrer.

Définition. Soit $p \in \mathbb{N}^*$ et E_1, \ldots, E_p p sous-espaces vectoriels de E.

$$E_1 + \dots + E_p \stackrel{\triangle}{=} \operatorname{Vect}\left(\bigcup_{i=1}^p E_i\right)$$
. Cette somme est également notée $\sum_{i=1}^p E_i$.

On vérifie que
$$E_1 + \cdots + E_p = \left\{ \sum_{i=1}^p x_i / \forall i \in \{1, \dots, p\}, \ x_i \in E_i \right\}.$$

Définition. Ainsi, avec les notations précédentes, lorsque $x \in E$,

$$x \in \sum_{i=1}^{p} E_i \iff \exists (x_1, \dots, x_p) \in E_1 \times \dots \times E_p, \ x = \sum_{i=1}^{p} x_i.$$

On dit que la somme $\sum_{i=1}^{p} E_i$ est directe si et seulement si

$$x \in \sum_{i=1}^{p} E_i \iff \exists ! (x_1, \dots, x_p) \in E_1 \times \dots \times E_p, \ x = \sum_{i=1}^{p} x_i.$$

Dans ce cas, la somme est notée $E_1 \oplus \cdots \oplus E_p$ ou bien $\bigoplus_{i=1}^n E_i$.

La somme est directe si et seulement si pour tout $(x_1, \dots, x_p) \in E_1 \times \dots \times E_p$,

$$\sum_{i=1}^{P} x_i = 0 \Longleftrightarrow \forall i \in \mathbb{N}_p, \ x_i = 0.$$

Propriété. Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Alors F + G est une somme directe si et seulement si $F \cap G = \{0\}$.

1.2 Les applications linéaires

Définition. Soient E et F deux \mathbb{K} -espaces vectoriels. Une application f de E dans F est une application linéaire (on dit aussi un morphisme ou un homomorphisme de \mathbb{K} -espaces vectoriels) si et seulement si $\forall (\alpha, x, y) \in \mathbb{K} \times E \times E$ $f(\alpha x + y) = \alpha f(x) + f(y)$.

Un *isomorphisme* est un morphisme bijectif.

Un endomorphisme est un morphisme de E dans lui-même.

Un *automorphisme* est un endomorphisme bijectif.

Une *forme linéaire* est une application linéaire à valeurs dans K.

Exemples.

Définition. Les homothéties (vectorielles) de E sont les applications de la forme $\lambda.Id_E$, où $\lambda \in \mathbb{K}$.

- Notation.
 - On note L(E,F) l'ensemble des applications linéaires de E dans F.
 - On pose $L(E) \stackrel{\Delta}{=} L(E, E)$.
 - On pose $L(E,\mathbb{K})=E^*$; c'est l'ensemble des formes linéaires, appelé le dual de E.

Propriété. Les formes linéaires sur \mathbb{K}^n sont exactement les $(x_i)_{1 \leq i \leq n} \longmapsto \sum_{i=1}^n \alpha_i x_i$

où $(\alpha_1,\ldots,\alpha_n)\in\mathbb{K}^n$.

Il faut savoir le démontrer.

Propriété. Si
$$u \in L(E, F)$$
 et $(x_i)_{i \in I} \in E^I$, $\forall (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}$ $u\left(\sum_{i \in I} \alpha_i x_i\right) = \sum_{i \in I} \alpha_i u(x_i)$.

Propriété. Soit $u \in L(E, F)$ et $(x_i)_{i \in I} \in E^I$. Alors $u\left(\operatorname{Vect}(x_i)_{i \in I}\right) = \operatorname{Vect}(u(x_i))_{i \in I}$. Il faut savoir le démontrer.

Propriété. La composée de deux applications linéaires est une application linéaire.

Propriété. Si $f: E \longrightarrow F$ est un isomorphisme, f^{-1} est encore un isomorphisme.

Propriété. Si E et F sont deux \mathbb{K} -espaces vectoriels, alors L(E,F) est un \mathbb{K} -espace vectoriel . Il faut savoir le démontrer.

Définition. Soient E un \mathbb{K} -espace vectoriel, $u \in L(E)$ et F un sous-espace vectoriel de E. On dit que F est **stable** par u, ou que u **stabilise** F si et seulement si $u(F) \subset F$.

Dans ce cas, l'*endomorphisme induit* par u sur F est $v: F \xrightarrow{\longrightarrow} F$ u(x). C'est un élément de L(F), que par abus, on note souvent $u|_F$ et que l'on appelle la restriction de u à F.

Propriété. Soient E et F deux \mathbb{K} -espaces vectoriels, E' un sous-espace vectoriel de E et F' un sous-espace vectoriel de F. Soit f un morphisme de E dans F.

Alors f(E') est un sous-espace vectoriel de F et $f^{-1}(F')$ est un sous-espace vectoriel de E. Il faut savoir le démontrer.

Propriété. Soit f une application linéaire entre deux \mathbb{K} -espaces vectoriels E et F.

Alors f est injective si et seulement si $Ker(f) = \{0\}$ et

f est surjective si et seulement si Im(f) = F.

Propriété. Soit E un \mathbb{K} -espace vectoriel et $(u, v) \in L(E)^2$.

Si u et v commutent, alors Im(u) et Ker(u) sont stables par v.

Il faut savoir le démontrer.

Propriété. Soit $u, v \in L(E)$. Alors $uv = 0 \iff Im(v) \subset Ker(u)$.

Il faut savoir le démontrer.

Définition. Soit E et F deux \mathbb{K} -espaces vectoriels et $f \in L(E, F)$. Soit $y \in F$.

L'équation (E): f(x) = y en l'inconnue $x \in E$ est appelée une équation linéaire.

Propriété. Avec les notations précédentes, l'équation sans second membre associée à (E) est l'équation (H): f(x) = 0, dont l'ensemble des solutions est $\mathcal{S}_H = \text{Ker}(f)$: notamment l'ensemble des solutions de l'équation homogène est un \mathbb{K} -espace vectoriel.

L'équation (E) est compatible, c'est-à-dire qu'elle possède au moins une solution $x_0 \in E$, si et seulement si $y \in \text{Im}(f)$. Dans ce cas, $S_E = x_0 + S_H$: la solution générale de (E) s'obtient en ajoutant à une solution particulière de (E) la solution générale de (H).

1.3 Espaces affines

Définition. On appelle \mathbb{K} -espace affine tout triplet $(\mathcal{E}, E, +_{\varepsilon})$, où \mathcal{E} est un ensemble non vide, E est un \mathbb{K} -espace vectoriel (dont la loi additive sera notée $+_{\varepsilon}$) et où $+_{\varepsilon}$ est une application $\mathcal{E} \times E \longrightarrow \mathcal{E}$ telle que $(M, x) \longmapsto M +_{\varepsilon} x$

i) Pour tout $M \in \mathcal{E}$, l'application $\begin{matrix} E & \longrightarrow & \mathcal{E} \\ x & \longmapsto & M +_{\mathcal{E}} x \end{matrix}$ est une bijection.

ii) $\forall (M, x, y) \in \mathcal{E} \times E \times E \ (M +_{\varepsilon} x) +_{\varepsilon} y = M +_{\varepsilon} (x +_{E} y).$

Les éléments de $\mathcal E$ sont appelés des **points** et E est appelé la **direction** de $\mathcal E$.

Notation. Soient \mathcal{E} un espace affine de direction E et $(A, B) \in \mathcal{E}^2$.

D'après i), il existe un unique vecteur x tel que $A +_{\varepsilon} x = B$. On note $x = \overrightarrow{AB}$ ou encore $x = B -_{\varepsilon} A$.

Remarque. On peut établir que les règles de calcul relatives aux opérations " $+_{\varepsilon}$ " (point $+_{\varepsilon}$ vecteur) et " $-_{\varepsilon}$ " (point $-_{\varepsilon}$ point) sont formellement les mêmes que celles que vérifient l'addition et la soustraction sur \mathbb{R} . Par exemple, la relation de **Chasles** s'écrit : $\overrightarrow{AB} + \overrightarrow{BC} = (B - A) + (C - B) = C - A = \overrightarrow{AC}$.

Définition. Si A, B, C, D sont quatre points de \mathcal{E} , ABCD est un parallélogramme ssi $\overrightarrow{AB} = \overrightarrow{DC}$.

Remarque. Dans les propriétés i) et ii) définissant un espace affine, lorsqu'un point M de $\mathcal E$ intervient, c'est toujours quantifié de la manière suivante : " $\forall M \in \mathcal E$...". Ainsi, dans un espace affine, tous les points ont la même importance. C'est un espace homogène, contrairement aux espaces vectoriels. Les propriétés qui suivent montrent que cette différence entre la notion de $\mathbb K$ -espace vectoriel et celle de $\mathbb K$ -espace affine est la seule qui soit vraiment pertinente.

Propriété. Soient $(\mathcal{E}, E, +)$ un \mathbb{K} -espace affine et A un point de \mathcal{E} . \mathcal{E} est un espace vectoriel en convenant que, pour tout $(M, N, \alpha) \in \mathcal{E} \times \mathcal{E} \times \mathbb{K}$, $M + N = A + (\overrightarrow{AM} + \overrightarrow{AN})$ et $\alpha . M = A + (\alpha . \overrightarrow{AM})$.

Remarque. Cette propriété montre que tout \mathbb{K} -espace affine est assimilable à un \mathbb{K} -espace vectoriel dès lors que l'on a choisi un point A, qui jouera le rôle de vecteur nul.

Propriété réciproque. Soit E un \mathbb{K} -espace vectoriel. Le triplet (E, E, +) est un \mathbb{K} -espace affine, que l'on dit canoniquement associé à l'espace vectoriel E.

Convention. En accord avec le programme, les seuls espaces affines que nous utiliserons sont les espaces affines canoniquement associés à un espace vectoriel.

1.4 La structure d'algèbre

Définition. $(A, +, ., \star)$ est une \mathbb{K} -algèbre si et seulement si (A, +, .) est un \mathbb{K} -espace vectoriel, $(A, +, \star)$ est un anneau et si $\forall (\lambda, a, b) \in \mathbb{K} \times A \times A \ \lambda.(a \star b) = (\lambda.a) \star b = a \star (\lambda.b)$.

On dit que A est commutative (ou abélienne) si et seulement si la loi \star est commutative.

On dit que A est intègre si et seulement si l'anneau $(A, +, \star)$ est un anneau intègre.

Exemples. $(\mathbb{K}[X], +, ., \times)$ est une \mathbb{K} -algèbre commutative et intègre. $\mathcal{F}(I, \mathbb{K})$ et \mathbb{K}^I sont des algèbres.

Propriété. Si E est un \mathbb{K} -espace vectoriel, alors $(L(E), +, ., \circ)$ est une \mathbb{K} -algèbre. Le groupe des inversibles de L(E) est noté $(GL(E), \circ)$.

Il faut savoir le démontrer.

Remarque. Plus généralement, si E, F et G sont 3 \mathbb{K} -espaces vectoriels, pour tout $\alpha \in \mathbb{K}$, pour tout $f, g \in L(F, G)$ et $h \in L(E, F)$, $(\alpha f + g) \circ h = \alpha f \circ h + g \circ h$ et pour tout $f, g \in L(E, F)$ et $h \in L(F, G)$, $h \circ (\alpha f + g) = \alpha h \circ f + h \circ g$.

Propriété. Soit $(A, +, ., \star)$ une \mathbb{K} -algèbre. B est une **sous-algèbre** de $(A, +, ., \star)$ si et seulement si $1_A \in B$ et pour tout $x, y \in B$ et $\lambda \in \mathbb{K}$, $x + y, x \star y, \lambda x \in B$.

Définition. Soient $(A+,.,\times)$ et $(B,+,.,\times)$ deux \mathbb{K} -algèbres. Une application $f:A\longrightarrow B$ est un **morphisme d'algèbres** si et seulement si $f(1_A)=1_B$ et pour tout $x,y\in A$ et $\alpha\in\mathbb{K}$, $f(x+y)=f(x)+f(y), f(x\times y)=f(x)\times f(y), f(\alpha.x)=\alpha.f(x).$

Exemple. Soit E un \mathbb{K} -espace vectoriel et $u \in GL(E)$. Alors l'application $w \longmapsto uwu^{-1}$ est un automorphisme de l'algèbre L(E). Ce type d'automorphisme est appelé un automorphisme intérieur. Il faut savoir le démontrer.

Propriété. Une composée de morphismes d'algèbres est un morphisme d'algèbres.

L'application réciproque d'un isomorphisme d'algèbres est un isomorphisme d'algèbres.

L'image directe ou réciproque d'une sous-algèbre par un morphisme d'algèbres est une sous-algèbre.

2 Familles de vecteurs

Notation. On fixe un \mathbb{K} -espace vectoriel E et un ensemble quelconque I (éventuellement infini).

2.1 Familles libres et génératrices

Définition. Soit
$$x = (x_i)_{i \in I}$$
 une famille de vecteurs de E . x est libre ssi $\forall (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}, \ \left(\sum_{i \in I} \alpha_i x_i = 0 \Longrightarrow (\forall i \in I \quad \alpha_i = 0)\right)$. x est liée ssi $\exists (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)} \setminus \{0\}, \ \sum_{i \in I} \alpha_i x_i = 0$. x est génératrice dans E ssi $\forall x \in E, \ \exists (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}, \ \sum_{i \in I} \alpha_i x_i = x$.

x est une base de E si et seulement si elle est libre et génératrice dans E.

Définition. $x, y \in E$ sont *colinéaires* si et seulement si la famille (x, y) est liée.

Propriété. Soit $e = (e_i)_{i \in I}$ une famille de vecteurs de E. e est une base de E si et seulement si $\forall x \in E, \ \exists \ ! (\alpha_i)_{i \in I} \in \mathbb{K}^{(I)}, \ \sum_{i \in I} \alpha_i e_i = x$. Dans ce cas, pour $x \in E$, on appelle coordonnées de x dans

la base $(e_i)_{i\in I}$ l'unique famille presque nulle de scalaire $(\alpha_i)_{i\in I}$ telle que $x=\sum_{i\in I}\alpha_i e_i$.

2.2 Dimension d'un espace vectoriel

Définition. E est de dimension finie si et seulement si il possède une famille génératrice finie.

Lemme : Soit $n \in \mathbb{N}$ et $e_1, \ldots, e_n \in E$.

Toute famille (x_1, \ldots, x_{n+1}) de n+1 vecteurs de $\text{Vect}(e_1, \ldots, e_n)$ est liée.

Il faut savoir le démontrer.

Corollaire. Si (e_1, \ldots, e_n) est une famille génératrice de E, alors toute famille libre de E est de cardinal inférieur ou égal à n.

Théorème de la base incomplète : Soient E un \mathbb{K} -espace vectoriel de dimension finie et $(e_i)_{i\in I}$ une famille génératrice de E. Soit $J\subset I$ tel que $(e_i)_{i\in J}$ est une famille libre.

Alors il existe un ensemble L avec $J \subset L \subset I$ tel que $(e_i)_{i \in L}$ est une base de E.

Il faut savoir le démontrer.

Propriété. Soit $(e_i)_{i \in I}$ une famille libre de vecteurs de E. Soit $e_j \in E$, où $j \notin I$. La famille $(e_i)_{i \in I \cup \{j\}}$ est libre si et seulement si $e_j \notin \text{Vect}(e_i)_{i \in I}$.

Propriété.

Soient E un \mathbb{K} -espace vectoriel et $g = (e_i)_{i \in I}$ une famille génératrice de E.

On dit qu'une sous-famille libre $(e_i)_{i \in J}$ de g est maximale dans g si et seulement si pour tout $i_0 \in I \setminus J$, la famille $(e_i)_{i \in J \cup \{i_0\}}$ est liée.

Si $(e_i)_{i\in J}$ est libre maximale dans g, alors c'est une base de E.

Corollaire. Une famille libre de vecteurs de E est maximale si et seulement si en lui ajoutant un vecteur elle devient liée.

Toute famille libre maximale de vecteurs de E est une base de E.

Corollaire. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

Toute famille libre de E peut être complétée en une base de E.

Définition. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

E admet au moins une base. Toutes les bases de E sont finies et ont même cardinal. Ce cardinal est appelé la **dimension** de E et est noté $\dim(E)$ ou $\dim_{\mathbb{K}}(E)$.

Propriété. Soit E un \mathbb{K} -espace vectoriel de dimension finie égale à n et soit e une famille de E. e est une base de E si et seulement si e est libre et de cardinal n, ou encore si et seulement si e est génératrice et de cardinal n.

Il faut savoir le démontrer.

Propriété. Soit E un \mathbb{K} -espace vectoriel de dimension finie égale à n. Toute famille libre de E a au plus n éléments et toute famille génératrice de E a au moins n éléments.

Théorème. Soit E un \mathbb{K} -espace vectoriel de dimension quelconque.

Soit F et G deux sous-espaces vectoriels de E avec G de dimension finie et $F \subset G$.

Alors F est de dimension finie avec $\dim(F) \leq \dim(G)$.

De plus $[F = G \iff \dim(F) = \dim(G)]$.

Il faut savoir le démontrer.