

FACULTAD DE CIENCIAS INFORMÁTICAS

TÉCNICAS DE SIMULACIÓN ING. JORGE MOYA DELGADO

MANUAL DEL USUARIO DEL SISTEMA DE MÉTODOS Y MODELOS.

OCTAVO "A"

OJEDA VELASCO JORGE FERNANDO
YTURRALDE MALDONADO DAVID ALEJANDRO

Antes de iniciar con el manual por pestañas y ventanas vamos a definir como están divididos todos los métodos y modelos del sistema web creado:

1. Métodos Random

- Método del cuadrado medio
- Método congruencial aditivo
- > Método congruencial multiplicativo
 - Autogenerar valores
 - Generador Excel-03 mod 30264
 - Generador Excel-07 mod 30307
 - Generador Excel-07 mod 30323

2. Métodos Probabilísticos

- Promedio móvil
- Alisamiento exponencial

3. Métodos de Regresión

- Regresión lineal
- > Regresión no lineal

4. Métodos de Simulación

- Método Montecarlo
 - Por congruencial aditivo
 - Por congruencial multiplicativo
- Método de la transformada inversa
 - Por congruencial aditivo
 - Por congruencial multiplicativo

5. Modelos de simulación

- Modelo de inventario
 - Modelo EOQ
 - Simulación del inventario
 - Tabla de inventario para caso real
- Modelo de línea de espera
 - Valores random autogenerados
 - Por congruencial aditivo
 - Por congruencial multiplicativo

Al ingresar a la página nos encontraremos con la primera ventana la cual nos presenta la lista de opciones que tenemos para usar y una breve descripción del modelo o método en el que nos encontramos actualmente.

En cada una de estas vamos a encontrar el siguiente ícono:

El cual al darle click nos va a desplegar los diferentes tipos de métodos referentes a esa agrupación, por ejemplo en el caso de los métodos random nos va a mostrar lo siguiente:

Algunos de estos pueden contener sub-listas tal y como se mostró al inicio.

Para poder ejemplificar como funciona cada uno de los métodos a continuación se mostrará de cada grupo uno de estos, con sus ventanas, ingresos y resultados.

Métodos Random: Método congruencial aditivo

Comenzamos seleccionando este desde la ventana principal:

Al cargar nos va a mostrar un formulario de ingreso donde tenemos que ingresar los siguientes datos:

- Número de iteraciones.- Cantidad de muestras que nos devolverá.
- m = Módulo que usará.
- A = Multiplicador a usar en cada iteración.
- X0 = Semilla, el primer número que usará el sistema.
- C = Incremento, valor que se sumará en cada iteración.

Todos estos campos deben llenarse con valores enteros, además se debe tener en cuenta que el Módulo debe ser mayor que el incremento. Por defecto van a estar estos campos llenos para poder dar un ejemplo de como se debe llenar cada parte.

	03 54 03 54 03 77 01839 07
Número de iteraciones 20 Primeramente este algoritmo requiere una secuencia previa de n números enteros $x1, x2, x3xn$ para generar una nueva secuencia de números enteros que empiezan en $xn+1, xn+2, xn+3$ Su ecuación recursiva es: $xi=(xi-1,+xi-n)mod(m)$ $i=n+1, n+2, n+3,$ Multiplicador 20 Semilla 2 Incremento 20 Incremento 20 Calcular Reguesar	. , N

Al darle al botón de calcular este nos va a mostrar lo siguiente: Un ejemplo de la resolución analítica:

Número de iteraciones	Primeramente este algoritmo requiere una secuencia previa de $\it n$
20	números enteros $x1, x2, x3xn$ para generar una nueva secuencia de números enteros que empiezan en
Módulo	xn+1, xn+2, xn+3 Su ecuación recursiva es:
1000	$Xi = (Xi-1, +Xi-n) mod(m) \ i = n+1, n+2, n+3, \dots$
Multiplicador	Teniendo los datos iniciales se procede a multiplicar la semilla con el
101	multiplicador, para luego sumarle el incremento:
Semilla	(4*101) + 457 = 861
4	A este se le aplica el módulo que designamos, el cual nos va a dejar
Incremento	solo el residuo de la división realizada por este, con esto habremos descubierto cual es nuestro valor pseudorandómico y nuestra
457	nueva semilla para la siguiente iteración:
Calcular	$\frac{861}{1000} = 0.861 \qquad 0.861 * 1000 = 861$
Regresar	Esto se puede apreciar de mejor manera en la siguiente iteración como se ve a continuación usando la nueva semilla:
	$(861*101) = 87418 \qquad \frac{87418}{1000} = 0.418 = 418$
	De ahí solo hay que repetir el proceso las veces necesarias teniendo en cuenta el reemplazar la semilla en cada iteracion.

La tabla y el gráfico de valores:

Tabla de valores randoms

	Número generado	Valor random
0	861	0.861
1	418	0.418
2	675	0.675
3	632	0.632
4	289	0.289
5	646	0.646
6	703	0.703
7	460	0.460
8	917	0.917
9	74	0.074
10	931	0.931
11	488	0.488
12	745	0.745
13	702	0.702
14	359	0.359
15	716	0.716
16	773	0.773
17	530	0.530
18	987	0.987
19	144	0.144

Gráfica de los números aleatorios generados

Métodos probabilísticos: Promedio móvil

Seleccionamos desde la ventana principal:

Al cargar nos encontraremos con solo un campo a ser llenado, el programa se encargará de hacer el resto:

• Valores por ingresar = Estos deben estar separados por comas, y formarán nuestra columna de valores ingresados.

Le damos al botón de calcular y nos mostrará los siguientes datos:

Un ejemplo analítico del resultado:

Para sacar el promedio movil usamos la siguiente fómrula:

$$F_t = \frac{D_{t-1} + D_{t-2} + D_{t-3} + D_{t-n}}{n}$$

Donde F_t es el pronóstico del siguiente periodo, D_t valor observado en el periodo t y n el número de periodos a considerar

En este caso son promedios de $3\ y\ 4,$ con esto sumamos los datos y dividimos para la cantidad de datos sumados:

$$\frac{5501.0 + 6232.7 + 8118.3}{3} = 6617.3$$

Y para el promedio cuatro:

$$\frac{5501.0 + 6232.7 + 8118.3 + 10137.0}{4} = 7497.2$$

Para sacar los errores simplemente restamos el valor actual de ese momento con el promedio sacado:

$$\frac{8118.3}{6617.3} = 1501.0$$

Y para el error de promedio cuatro:

$$\frac{10137.0}{7497.2} = 2639.8$$

Y así seguimos hasta llegar al valor que deseamos encontrar sea por un promedio o por el otro.

Una tabla de los promedios:

	Valores	Promedio a 3	Promedio a 4	Error promedio 3	Error promedio 4
0	5501.000000	NaN	NaN	NaN	NaN
1	6232.700000	NaN	NaN	NaN	NaN
2	8118.300000	6617.300000	NaN	1501.0	NaN
3	10137.000000	8162.700000	7497.200000	1974.3	2639.8
4	10449.500000	9568.300000	8734.400000	881.2	1715.1
5	12794.600000	11127.000000	10374.800000	1667.6	2419.8
6	9939.100000	11061.100000	10830.000000	-1122.0	-890.9
7	13193.000000	11975.600000	11594.000000	1217.4	1599.0
8	16036.200000	13056.100000	12990.700000	2980.1	3045.5
9	18496.900000	15908.700000	14416.300000	2588.2	4080.6
10	18709.300000	17747.500000	16608.900000	961.8	2100.4
11	19363.500000	18856.600000	18151.500000	506.9	1212.0
12	16521.500000	18198.100000	18272.800000	-1676.6	-1751.3
13	15175.400000	17020.100000	17442.400000	-1844.7	-2267.0
14	16927.000000	16208.000000	16996.800000	719.0	-69.8
15	16207.966667	17142.066667	17570.666667	-934.1	-1362.7

Una gráfica de los promedios:

Métodos de Regresión: Regresión Lineal

Seleccionamos desde la ventana principal:

Al cargar nos encontraremos con dos campos:

- X = Valores de X separados por comas (,)
- Y = Valores de Y separados por comas (,)

Hay que recordar que ambos campos deben tener la misma cantidad de ingresos:

Le damos al botón de calcular y nos mostrará los siguientes datos:

Una solución analítica del problema:

Su expresión general se basa en la ecuación de una recta y=mx+b. Donde m es la pendiente y b el punto de corte, y vienen expresadas de la siguiente manera:

$$m = \frac{n*\sum(x*y) - \sum x*\sum y}{n*\sum x^2 - |\sum x|^2} \qquad b = \frac{\sum y*\sum x^2 - \sum x*\sum(x*y)}{n*\sum x^2 - |\sum x|^2}$$

Como se puede ver usa las sumatorias de todas las columnas de nuestros datos, \boldsymbol{n} viene siendo la cantidad de datos ingresados que equivale a 9, para los datos ingresados tenemos las siguientes sumatorias totales:

$$\sum x = 55.0$$
 $\sum y = 57.0$ $\sum x^2 = 473.0$ $\sum xy = 233.0$

Por lo cual al reemplazar en $m{m}$ y $m{b}$ nos va a dar lo siguiente:

$$m = \frac{9*233.0 - 55.0*57.0}{9*473.0 - |473.0|^2} = -0.8425324675324686$$

$$b = \frac{57.0*473.0 - 55.0*233.0}{9*473.0 - |473.0|^2} = 11.482142857142863$$

La recta obtenida con el método de los mínimos cuadrados la siguiente:

$$y = -0.8425324675324686*x + 11.482142857142863$$

Si igualamos a 0 y despejamos x tendremos el valor de donde corta la recta en x:

$$0 = -0.8425324675324686 * x + 11.482142857142863$$

$$x = -\frac{11.482142857142863}{-0.8425324675324686} = 13.628131021194594$$

Tabla y gráfico de los datos ingresados con resultados:

Tabla de valores

	X	Υ	X^2	XY	Ajuste
0	7.0	2.0	49.0	14.0	5.584416
	1.0	9.0			10.639610
2	10.0	2.0	100.0	20.0	3.056818
3	5.0	5.0	25.0	25.0	7.269481
4	4.0	7.0	16.0	28.0	8.112013
5	3.0	11.0	9.0	33.0	8.954545
	$\overline{}$			$\overline{}$	0.529221
7	10.0	5.0	100.0	50.0	3.056818
8	2.0	14.0	4.0	28.0	9.797078

Gráfica del ajuste

Métodos de simulación: Montecarlo

Seleccionamos desde la ventana principal:

Al cargar nos va a mostrar un formulario de ingreso donde tenemos que ingresar los siguientes datos:

- Valores de ingreso = Separados por comas (,) para indicar la cantidad deseada de datos.
- Número de eventos = Cantidad que va a crear de eventos la simulación.
- m = Módulo que usará.
- A = Multiplicador a usar en cada iteración.
- X0 = Semilla, el primer número que usará el sistema.
- C = Incremento, valor que se sumará en cada iteración.

Al darle al botón de calcular nos devolverá los siguientes datos: Una solución analítica del problema:

El método de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias repetidas. Es por esto que no se le puede asignar una fórmula general, sino que se adapta al problema en concreto basandose en los pasos que sigue este método.

Para este caso en particular, una vez ingresados los datos sacamos la probabilidad de cada valor, esto se hace sumando todos los valores ingresados primero, para luego dividir cada valor por la suma realizada anteriormente, por ejemplo para el primer dato tenemos:

$$\frac{\sum (datos)}{15} = 197594.99999999997$$

Luego sacamos la FPA (probabilidad acumulada) y los minimos y minimos, donde la FPA actual va a ser la suma de la probabilidad del dato anterior con la probabilidad del dato actual, mientras que para minimos y minimos, el mínimo va a ser la FPA anterior, y para el máximo la FPA actual. Todo se puede apreciar mejor en el gráfico.

Por último generamos nuestros números aleatorios por el generador de nuestra preferencia, y buscamos entre que rango se encuentra este número para determinar a que valor corresponde y así generar nuestos datos de la simulación.

Y dos tablas, una de la probabilidad acumulada y los mínimos y máximos, y la otra de simulación:

Tabla de probabilidesde mínimas y máximas

	Valores	Probabilidad	FPA	Min	Max
0	5501.0	0.027840	0.027840	0.000000	0.027840
1	6232.7	0.031543	0.059383	0.027840	0.059383
2	8118.3	0.041086	0.100468	0.059383	0.100468
3	10137.0	0.051302	0.151770	0.100468	0.151770
4	10449.5	0.052883	0.204653	0.151770	0.204653
5	12794.6	0.064752	0.269405	0.204653	0.269405
6	9939.1	0.050300	0.319705	0.269405	0.319705
7	13193.0	0.066768	0.386473	0.319705	0.386473
8	16036.2	0.081157	0.467630	0.386473	0.467630
9	18496.9	0.093610	0.561240	0.467630	0.561240
10	18709.3	0.094685	0.655926	0.561240	0.655926
11	19363.5	0.097996	0.753921	0.655926	0.753921
12	16521.5	0.083613	0.837534	0.753921	0.837534
13	15175.4	0.076801	0.914335	0.837534	0.914335
14	16927.0	0.085665	1.000000	0.914335	1.000000

Tabla de la simulación

	ri	Simulación
0		13193.0
1	0.943	16927.0
2	0.878	15175.4
3	0.323	13193.0
4	0.738	19363.5
5	0.743	19363.5
6	0.478	18496.9
7	0.523	18496.9
8	0.138	10137.0
9	0.543	18496.9
10	0.078	8118.3
11	0.723	19363.5
12	0.538	18496.9
13	0.343	13193.0
14	0.678	19363.5
15	0.923	16927.0
16	0.938	16927.0
17	0.143	10137.0
18	0.278	9939.1
19	0.123	10137.0

Modelos de Simulación: línea de espera

Seleccionamos desde la ventana principal:

Al cargar nos va a mostrar un formulario de ingreso con los siguientes datos:

- Lambda (λ) = el cual representa el tiempo promedio entre llegadas
- Mu (μ) = la capacidad promedio del servidor
- Número de personas en espera = Para determinar cuántos están en cola.

Hay que recordar que lambda debe ser siempre menor a Miu.

Al darle a calcular nos devolverá los siguientes datos:

Una solución analítica al sistema:

1.333 Escribir valor de nu 4 Número de personas en espera 10 Calcular Regresar	El objetivo es encontrar el estado óptimo del sistema y determinar una capacidad de servicio apropiada, Minimizar el tiempo de atención y servicio a los clientes o usuarios que llegan en un determinado tiempo. Cuenta con las siguientes relaciones matemáticas: $La\ probabilidad\ de\ hallar\ el\ sistema\ ocupado:\ p=\lambda/\mu$ $La\ probabilidad\ de\ que\ no\ haya\ unidades\ en\ el\ sistema:\ Po=1-\lambda/\mu$ $Promedio\ de\ unidades\ en\ la\ linea\ de\ espera:\ Lq=\lambda^2/(\mu-\lambda)\mu$ $Número\ esperado\ de\ clientes\ en\ el\ sistema:\ L=\lambda/\mu-\lambda$ $Tiempo\ de\ espera\ en\ cola:\ Wq=\lambda/\mu(\mu-\lambda)$ $El\ tiempo\ promedio\ que\ una\ unidad\ pasa\ en\ el\ sistema:\ W=1/(\mu-\lambda)$ $La\ probabilidad\ de\ que\ haya\ n\ unidades\ en\ el\ sistema:\ Pn=(\lambda/\mu)^nPo$ $Para\ los\ datos\ ingresados\ los\ resultados\ serían\ los\ siguientes:$ $La\ probabilidad\ de\ hallar\ el\ sistema\ ocupado:\ 0.333$ $La\ probabilidad\ de\ que\ no\ haya\ unidades\ en\ el\ sistema:\ 0.667$ $Promedio\ de\ unidades\ en\ la\ linea\ de\ espera:\ 0.167$ $Número\ esperado\ de\ clientes\ en\ el\ sistema:\ 0.5$ $Tiempo\ de\ espera\ en\ cola:\ 0.125$ $El\ tiempo\ promedio\ que\ una\ unidad\ pasa\ en\ el\ sistema:\ 0.375$ $La\ probabilidad\ de\ que\ haya\ n\ unidades\ en\ el\ sistema:\ 0.222$
--	---

Una tabla de resultados con tiempos de llegada y salida:

\neg	A LLEGADA A SERVICIO TIE LLEGADA TIE SERVICIO TIE EXACTO LLEGADA TIE INI SERVICIO TIE FIN SERVICIO TIE ESPERA TIE EN SISTE								
	A_LLEGADA	A_SERVICIO	TIE_LLEGADA	TIE_SERVICIO	TIE_EXACTO_LLEGADA	TIE_INI_SERVICIO	TIE_FIN_SERVICIO	TIE_ESPERA	TIE_EN_SISTEMA
0	0.286832	0.091585	1.664726	9.561939	1.664726	1.664726	11.226666	0.000000	9.561939
1	0.942852	0.561419	0.078441	2.309149	1.743168	11.226666	13.535814	9.483498	11.792647
2	0.077450	0.272241	3.409977	5.204270	5.153145	13.535814	18.740085	8.382669	13.586940
3	0.896806	0.251539	0.145185	5.520629	5.298330	18.740085	24.260713	13.441755	18.962384
4	0.155911	0.953918	2.477336	0.188711	7.775666	24.260713	24.449424	16.485047	16.673758
5	0.890921	0.723242	0.153960	1.296043	7.929627	24.449424	25.745468	16.519798	17.815841
6	0.894454	0.516590	0.148684	2.642021	8.078311	25.745468	28.387489	17.667157	20.309178
7	0.107687	0.688653	2.970625	1.492071	11.048936	28.387489	29.879560	17.338553	18.830624
8	0.259682	0.227305	1.797283	5.925857	12.846219	29.879560	35.805417	17.033341	22.959198
9	0.911795	0.865509	0.123089	0.577748	12.969308	35.805417	36.383165	22.836109	23.413857

Una gráfica de los valores obtenidos de la tabla anterior:

Una tabla de valores acumulados:

	Tabla de valores acumulados									
	A LLEGADA A SERVICIO TIE LLEGADA TIE SERVICIO TIE EXACTO LLEGADA TIE INI SERVICIO TIE FIN SERVICIO TIE ESPERA TIE EN SISTEM									
count	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	
mean	0.542439	0.515200	1.296931	3.471844	7.450744	21.369536	24.841380	13.918793	17.390637	
std	0.389815	0.294689	1.327453	2.984387	4.071687	10.146147	8.453082	6.434246	4.572122	
min	0.077450	0.091585	0.078441	0.188711	1.664726	1.664726	11.226666	0.000000	9.561939	
25%	0.181854	0.256715	0.146060	1.345050	5.189441	14.836882	20.120242	10.473062	14.358644	
50%	0.588877	0.539005	0.909343	2.475585	7.852646	24.355069	25.097446	16.502423	18.323233	
75%	0.896218	0.714595	2.307323	5.441539	10.306280	27.726984	29.506542	17.262250	19.972479	
max	0.942852	0.953918	3.409977	9.561939	12.969308	35.805417	36.383165	22.836109	23.413857	