III. ALGEBRĂ BOOLEANĂ. FUNCŢII BOOLEENE

Algebră booleană

- Bazele algebrei logice (booleene) matematicianul englez George Boole (1815-1864)
- Metodă simbolică pentru tratarea funcțiilor logicii formale
- Claude Shannon (1916-2001), în 1938, a utilizat-o prima dată pentru analiza circuitelor de comutație
- Circuitele de comutare transferă, prelucrează şi păstrează date numerice sau nenumerice în sistemele de calcul

Algebră booleană

- Algebra logică este o parte a logicii matematice = ştiinţa care utilizează metode matematice pentru soluţionarea problemelor de logică
- Algebra logicii operează cu propoziții care pot fi "adevărate" sau "false"
- Unei propoziții adevărate i se atribuie valoarea "1", iar unei propoziții false i se atribuie valoarea "0"
- O propoziție nu poate fi simultan adevărată sau falsă
- Două propoziții sunt echivalente dacă simultan ele sunt adevărate sau false
- Propozițiile compuse se obțin din cele simple prin legături logice de tipul conjuncției ∧, disjuncției ∨ sau negației ¬

Algebră booleană

- Circuitele de comutare au 2 stări stabile distincte, diferite calitativ
- Stările sunt puse în corespondență cu valorile logice "adevărat" sau "fals" sau cu valorile binare "1" şi "0" ⇒ denumirea de circuite logice

3.1. Definirea axiomatică a algebrei booleene

- Algebra booleană este o algebră formată din:
 - elementele $\{0,1\}$
 - 2 operații binare numite SAU și SI, notate simbolic + sau ∨ și sau ∧
 - 1 operație unară numită NU negație, notată simbolic ¬ sau ¬
- Operațiile se definesc astfel:

ŞI	SAU	NU
$0 \bullet 0 = 0$	0 + 0 = 0	$\bar{0} = 1$
$0 \cdot 1 = 0$	0 + 1 = 1	$\bar{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	
1 • 1 = 1	1 + 1 = 1	

3.1. Definirea axiomatică a algebrei booleene

Axiomele algebrei booleene

- Fie o mulțime M compusă din elementele x1, x2, ...xn, împreună cu operațiile, •' și,+'. Această mulțime formează o algebră dacă:
 - 1) Mulțimea M conține cel puțin 2 elemente distincte $x1 \neq x2$ ($x1, x2 \in M$)
 - 2) Pentru $\forall x1 \in M, x2 \in M$ avem: $x1 + x2 \in M$ şi $x1 \cdot x2 \in M$
 - 3) Operațiile ,•' și ,+' au următoarele proprietăți:

• sunt comutative:
$$x1 \cdot x2 = x2 \cdot x1$$

$$x1 + x2 = x2 + x1$$

• sunt associative:
$$x1 \cdot (x2 \cdot x3) = (x1 \cdot x2) \cdot x3$$

$$x1 + (x2 + x3) = (x1 + x2) + x3$$

• sunt distributive una față de cealaltă:
$$x1 \cdot (x2 + x3) = x1 \cdot x2 + x1 \cdot x3$$

$$x1 \bullet (x2 + x3) = x1 \bullet x2 + x1 \bullet x3$$

$$x1 + (x2 \cdot x3) = (x1 + x2) \cdot (x1 + x3)$$

3.1. Definirea axiomatică a algebrei booleene

Axiomele algebrei booleene

- Fie o mulțime M compusă din elementele x1, x2,...xn, împreună cu operațiile ,•' și ,+'. Această mulțime formează o algebră dacă:
 - 4) Ambele operații admit câte un element neutru cu următoarele proprietăți:

$$x1 + 0 = 0 + x1 = x1$$

 $x1 \cdot 1 = 1 \cdot x1 = x1$

unde 0 este elementul "nul" al mulțimii, iar 1 este elementul "unitate" al mulțimii

■ 5) Dacă mulțimea M nu conține decât două elemente, acestea trebuie să fie obligatoriu elementul nul 0 și elementul unitate 1; atunci pentru $\forall x \in M$ există un element unic notat cu \overline{x} , cu proprietățile:

$$x \cdot \overline{x} = 0$$
 principiul contradicției $x + \overline{x} = 1$ principiul terțului exclus

 \overline{x} este inversul elementului x

3.1. Definirea axiomatică a algebrei booleene

Denumiri şi notaţii specifice utilizate

Matematică	Logică	Tehnică
Prima lege de compoziție	Disjuncție	SAU
$\mathbf{x}_1 + \mathbf{x}_2$	$x_1 \vee x_2$	$x_1 + x_2$
A doua lege de compoziție	Conjuncție	SI
$\mathbf{x}_1 \cdot \mathbf{x}_2$	$X_1 \wedge X_2$	$\mathbf{x}_1 \cdot \mathbf{x}_2$
Elementul invers	Negare	NU
$\overline{\mathbf{x}}$	$\neg X$	$\overline{\mathbf{x}}$

3.2. Proprietățile algebrei booleene

- Din axiome se deduc o serie de proprietăți care formează reguli de calcul în algebra booleană
- Proprietățile algebrei booleene:
 - 1) Principiul dublei negații $\overline{\overline{x}} = x$ dubla negație duce la o afirmație
 - 2) Idempotenţa

$$x \cdot x = x$$

 $x + x = x$

■ 3) Absorbţia

$$x1 \cdot (x1 + x2) = x1$$

 $x1 + (x1 \cdot x2) = x1$

3.2. Proprietățile algebrei booleene

Proprietățile algebrei booleene:

■ 4) Proprietățile elementelor neutre

$$x \cdot 0 = 0$$
 $x \cdot 1 = x$
 $x + 0 = x$ $x + 1 = 1$

• 5) Formulele lui De Morgan

$$\overline{x1 \cdot x2} = \overline{x1} + \overline{x2}$$

$$\overline{x1 + x2} = \overline{x1} \cdot \overline{x2}$$

- Sunt deosebit de utile pentru transformarea produsului logic în sumă logică și invers
- Se pot generaliza pentru un număr arbitrar de termeni

$$\overline{x1 \cdot x2 \cdot \dots \cdot xn} = \overline{x1} + \overline{x2} + \dots + \overline{xn}$$

$$\overline{x1 + x2 + \dots + xn} = \overline{x1} \cdot \overline{x2} \cdot \dots \cdot \overline{xn}$$

3.2. Proprietățile algebrei booleene

Proprietățile algebrei booleene:

■ 6) Principiul dualității – dacă în axiomele și proprietățile algebrei booleene se interschimbă 0 cu 1 și + cu •, sistemul de axiome rămâne același, în afara unor permutări

Verificarea proprietăților:

- Se face cu ajutorul tabelelor de adevăr
- 2 funcții sunt egale dacă iau aceleași valori în toate punctele domeniului de definiție
- Observaţie: comutativitatea şi asociativitatea se pot extinde la un număr arbitrar, dar finit, de termeni

3.3. Funcții booleene

- Funcție booleană f: $B^n \rightarrow B$, unde $B = \{0,1\}$
- $y = f(x_1, x_2,...,x_n) important atât variabilele cât şi funcția nu pot lua decât două valori distincte, 0 sau 1$
- Funcția pune în corespondență fiecărui element al produsului cartezian n dimensional, valorile 0 sau 1
- Funcţii booleene utilizate pentru caracterizarea funcţionării unor dispozitive (circuite) construite cu elemente de circuit având două stări (funcţionarea unui astfel de circuit va fi descrisă de o variabilă booleană xi)

3.3.1. Funcţii booleene elementare

- Forma generală a unei funcții booleene de "n" variabile: y = f(x1, x2,...,xn)
- Domeniul de definiție: format din $\mathbf{m} = 2^{\mathbf{n}}$ puncte
- În fiecare din aceste puncte funcția poate lua doar valorile 0 și $1 \Rightarrow$ numărul total al funcțiilor booleene de "n" variabile este $N = 2^m$

3.3.1. Funcţii booleene elementare

- **Exemplu**: considerăm funcțiile elementare de 1 variabilă
 - Pentru n = 1 avem m = 2 şi N = 4
 - Funcția are forma y = f(x) și cele 4 forme ale ei se găsesc în tabel

f_i	0	1	Reprezentare	Denumire
f_0	0	0	0	Constanta 0
f_1	0	1	X	Variabila x
f_2	1	0	$\overline{\mathbf{X}}$	Negația lui x
f_3	1	1	1	Constanta 1

- Toate funcțiile booleene se pot realiza cu funcții de bază
- Funcțiilor de bază le corespund circuite logice elementare
- Cu circuite logice elementare se poate realiza ORICE tip de circuit

3.3.1. Funcţii booleene elementare

- Tabelul funcțiilor elementare
- Circuitele logice de comutație au 2 stări stabile: LOW (L) și HIGH (H)
- Se asociază lui $L \leftarrow 0$ și lui $H \leftarrow 1$

	Denumire	Funcție	Simbol	Tabel de	Tabel de
				adevăr	definiție
	Inversor – NOT	$f = \overline{x}$	x —>—	<u>x f</u>	<u>x f</u>
ntoro			$f = \overline{x}$	0 1	LH
entare				1 0	H L
	Poartă SI – AND	$f = x_1 \cdot x_2$	x ₁	$x_1 x_2 f$	$x_1 x_2 f$
			\mathbf{x}_2	0 0 0	LLL
			$f=x_1\cdot x_2$	0 1 0	LHL
				1 0 0	H L L
oile:				1 1 1	н н н
)11C.	Poartă SAU – OR	$f = x_1 + x_2$	$x_1 \longrightarrow$	x_1 x_2 f	$x_1 x_2 f$
			\mathbf{x}_2	0 0 0	
			$f=x_1+x_2$	0 1 1	L H H
				1 0 1	H L H
				1 1 1	н н н
i lui	Poartă SI-NU – NAND	$f = \overline{x_1 \cdot x_2}$	X_1 ————————————————————————————————————	x_1 x_2 f	x_1 x_2 f
llui			X_2	0 0 1	LLH
			$f=x_1\cdot x_2$	0 1 1	L H H
				1 0 1	H L H
				1 1 0	H H L
	Poartă SAU-NU – NOR	$f = \overline{x_1 + x_2}$	$X_1 \longrightarrow \infty$	x_1 x_2 f	$x_1 x_2 f$
			X_2	0 0 1	LLH
			$f=x_1+x_2$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	LHL
				$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$	H L L
		c		1 1 0	H H L
	SAU EXCLUSIV – XOR	$f = x_1 + x_2$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} x_1 & x_2 & f \\ \hline I & I & I \end{array}$
			X_2	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	-
			$f=x_1 \oplus x_2$	$egin{array}{c c c} 0 & 1 & 1 \\ 1 & 0 & 1 \\ \end{array}$	L H H H L H
				$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	HHL
	COINCIDENȚĂ –	f - v - v	V		
	XNOR	$f = x_1 \odot x_2$	/))	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	ANOR		X_2	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
O O. D			$f=x_1 \odot x_2 = x_1 \odot x_2$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	
Curs 3 Proi	ectare Logica		$-\mathbf{x}_1 \cup \mathbf{x}_2$	1 1 1	H 14 5
	•				

3.3.2. Reprezentarea funcţiilor booleene

- Moduri de reprezentare a funcțiilor booleene:
 - Reprezentare grafică
 - Reprezentare analitică
- Reprezentare grafică intuitivă greu de utilizat la funcții cu număr mare de variabile (utilizare de obicei până la 4-5 variabile)
 - Tabel de adevăr (TA)
 - Diagramă Karnaugh (DK)
 - Schemă logică
 - Diagramă de timp (cronogramă)
- Reprezentare analitică permite metode automate utilizare la funcții de mai mult de 4 variabile
 - Forme canonice
 - Forma minimizată (elementară)
 - Forma neelementară

1. Tabel de adevăr

- Se marchează într-un tabel corespondenţa dintre valorile de adevăr ale variabilelor de intrare şi valoarea de adevăr a funcţiei, în fiecare punct al domeniului de definiţie
- Pentru o funcție cu n variabile de intrare există 2ⁿ combinații ale acestora
- Dacă pentru anumite combinații ale variabilelor de intrare valoarea funcției nu este specificată ⇒ funcții incomplet definite
 - În tabel, în locul în care funcția nu este specificată, valoarea ei se notează cu "x"
 - Dacă o funcție booleană este incomplet definită pentru "m" combinații ale variabilelor de intrare, se pot defini 2^m funcții noi prin alegerea arbitrară a valorilor incomplet definite

■ 1. Tabel de adevăr

Exemplu: Să se reprezinte prin tabel de adevăr funcția booleană de 4 variabile:

$$f = \overline{a} \cdot b \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot c \cdot \overline{d}$$

a	b	c	d	f	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	1	
1	1	1	1	0	

2. Diagramă Karnaugh (DK)

- O diagramă Karnaugh pentru o funcție booleană de "n" variabile se desenează sub forma unui pătrat sau dreptunghi împărțit în 2ⁿ compartimente
- Fiecare compartiment este rezervat unui termen canonic al funcţiei, respectiv unuia dintre vârfurile cubului n dimensional din reprezentarea geometrică a funcţiei
- Două compartimente vecine pe o linie sau pe o coloană corespund la doi termeni canonici care diferă numai printr-o singură variabilă, care apare în unul adevărată, iar în celălalt negată
- Se consideră vecine şi compartimentele aflate la capetele opuse ale unei linii, respectiv coloane

2. Diagramă Karnaugh

- Notarea DK: fie indicând domeniul fiecărei variabile, fie indicând pe linie și coloană n-uple de zerouri și unități corespondente unui compartiment din diagramă și ordinea variabilelor
 - Prima notație se folosește în cazul în care se reprezintă funcția prin forma ei canonică
 - A doua notație se folosește în cazul în care funcția se reprezintă prin tabel de adevăr
 - Numerotarea liniilor și coloanelor se face în cod Gray (cod binar reflectat)
 - Pentru a putea reprezenta uşor funcţii exprimate în mod convenţional prin indicii termenilor canonici se poate nota fiecare compartiment cu indicele termenului corespondent, ţinând cont de o anumită ordine a variabilelor

2. Diagramă Karnaugh

- 1) Diagrama Karnaugh pentru funcția booleană de 2 variabile
 - Exemplu: $f(x1, x0) = \overline{x1} \cdot x0 + x1 \cdot \overline{x0}$

x_1	x_0	$\int f$
0	0	0
0	1	1
1	0	1
1	1	0

2. Diagramă Karnaugh

- 2) Diagrama Karnaugh pentru funcţia booleană de 3 variabile: y = f(x2,x1,x0)
 - Domeniul de definiție este format din 2³ = 8 puncte și reprezintă vârfurile unui cub cu latura 1

2. Diagramă Karnaugh

■ 3) Diagrama Karnaugh pentru funcția booleană de 4 variabile y =

f(x3,x2,x1,x0)

Prin săgeți sunt marcate vecinătățile

 Pentru funcții de mai mult de 4 variabile folosim DK pentru 4 variabile ca DK elementare

■ 3. Schemă logică

- Reprezentare cu ajutorul simbolurilor circuitelor logice
- **Exemplu:**

- 4. Diagrame de timp (cronogramă)
 - Reprezentare utilă pentru studiul unor forme tranzitorii de hazard în circuitele logice
 - Se reprezintă funcții logice în a căror evoluție intervine timpul
 - Exemplu:

$$f(x2, x1) = \overline{x2} \cdot x1$$

■ 1. Forme canonice

- Fie o funcție booleană f(X), unde X = (x1,x2,...,xn)
- Se definește numărul de combinație

$$i = x1 \cdot 2^{0} + x2 \cdot 2^{1} + x3 \cdot 2^{2} + ... + xn \cdot 2^{n-1}$$

Exemplu:

\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	f		
0	0	0	1	\rightarrow	$i = 0.2^2 + 0.2^1 + 0.2^0 = 0$
0	0	1	1	\rightarrow	$i = 0.2^2 + 0.2^1 + 1.2^0 = 1$
0	1	0	0	\rightarrow	$i = 0.2^2 + 1.2^1 + 0.2^0 = 2$
0	1	1	1	\rightarrow	$i = 0.2^2 + 1.2^1 + 1.2^0 = 3$

1. Forme canonice

- Definim funcția P_i : $B^n \to B$ și $B = \{0,1\}$
- $P_i(x_1,x_2,...,x_n) = \begin{cases} 1 \text{ dacă numărul de combinație este i} \\ 0 \text{ în caz contrar} \end{cases}$
- P_i se numește constituent al unității
- Orice funcție booleană dată prin tabel de adevăr se poate scrie ca o sumă de constituenți ai unității:

$$f(x_1, x_2,...,x_n) = Pi_1 + Pi_2 + ... + Pi_p = \sum_{i,j \in M_1} Pi_j$$

- M1 este mulțimea tuturor combinațiilor argumentelor pentru care funcția ia valoarea 1
- Această formă de scriere se numește forma canonică disjunctivă FCD
- Termenii constituenți se numesc termeni canonici disjunctivi sau mintermi
- FCD se mai numește și forma sumă de produse
- Termenii conțin toate variabilele de intrare independente

1. Forme canonice

- Definim funcția $S_i: B^n \to B$ și $B = \{0,1\}$
- $S_i(x_1,x_2,...,x_n) = \begin{cases} 0 \text{ dacă numărul de combinație este i} \\ 1 \text{ în caz contrar} \end{cases}$
- S_i se numeşte constituent al lui 0
- Orice funcție booleană dată prin tabel de adevăr se poate scrie ca un produs de constituenți ai lui 0:

$$f(x1, x2,...,xn) = Si_1 \cdot Si_2 \cdot ... \cdot Si_q = \prod_{i,j \in M0} Si_j$$

- M0 este mulțimea tuturor combinațiilor argumentelor pentru care funcția ia valoarea 0
- Această formă de scriere se numește forma canonică conjunctivă FCC
- Termenii constituenți se numesc termeni canonici conjunctivi sau maxtermi
- FCC se mai numește și forma produs de sume
- Termenii conțin toate variabilele de intrare independente

■ 1. Forme canonice

- Algoritmi de obţinere a formelor canonice
 - FCD
 - Se determină toate combinațiile variabilelor pentru care valoarea funcției este 1
 - Se scriu mintermii corespunzători o variabilă apare nenegată dacă are valoarea 1 şi negată dacă are valoarea 0
 - Se însumează mintermii obţinuţi

FCC

- Se determină toate combinațiile variabilelor pentru care valoarea funcției este 0
- Se scriu maxtermii corespunzători prin însumarea variabilelor o variabilă apare nenegată dacă are valoarea 0 şi negată dacă are valoarea 1
- Se înmulţesc maxtermii obţinuţi

■ 1. Forme canonice

Exemplu: Tabel de adevăr Mintermi Maxtermi

				1/11/00/11/01		
x1	x 2	x 3	f			
0	0	0	0		x1+x2+x3	
0	0	1	1	x1•x2•x3		
0	1	0	0	_	$x1+\overline{x}2+x3$	
0	1	1	1	x1•x2•x3		
1	0	0	1	$x1 \bullet \overline{x2} \bullet \overline{x3}$		
1	0	1	0		x1+x2+x3	
1	1	0	1	$x1 \bullet x2 \bullet \overline{x3}$		
1	1	1	1	x1•x2•x3		

FCD: $x1 \cdot x2 \cdot x3 + x1 \cdot x2 \cdot x3$

FCD: P1 + P3 + P4 + P6 + P7

FCD: $\Sigma(1, 3, 4, 6, 7)$

FCC: $(x1+x2+x3) \cdot (x1+\overline{x}2+x3) \cdot (\overline{x}1+x2+\overline{x}3)$

FCC: S0•S2•S5 FCC: Π(0, 2, 5)

- Trecerea dintr-o formă canonică în alta se poate face:
 - Cu ajutorul tabelului de adevăr
 - Prin aplicarea dublei negații și apoi a teoremelor lui De Morgan

Teoreme

- Teorema lui Shannon complementul unei funcții se obține prin complementarea fiecărei variabile și interschimbarea operatorilor SI cu SAU și reciproc
- $f(x_1,x_2,...,x_n)+\bullet=f(\overline{x_1},\overline{x_2},...,\overline{x_n})\bullet,+$
- Teorema de expansiune funcțiile booleene se pot expanda după variabile
 - Fie funcția booleană f(x1,x2,..., xi-1, xi, xi+1,...,xn) care se expandează după variabila xi
 - Atunci:
 - $f(x_1,x_2,...,x_{i-1},x_i,x_{i+1},...,x_n) = x_i \cdot f(x_1,x_2,...,x_{i-1},1,x_{i+1},...,x_n) + x_i \cdot f(x_1,x_2,...,x_{i-1},0,x_{i+1},...,x_n)$
 - Funcţia duală este:
 - $f = [xi + f(x1,x2,...,xi-1,0,xi+1,...,xn)] \bullet [\overline{xi} + f(x1,x2,...,xi-1,1,xi+1,...,xn)]$

2. Forma minimizată (elementară)

- Termenii formelor elementare nu conţin toate variabilele de intrare ale funcţiei
- Se obţine din formele canonice prin operaţia de minimizare

3. Forma neelementară

- Conţine variabile sau grupuri de variabile comune mai multor termeni
- Se obţine din celelalte forme de reprezentare prin aplicarea algebrei booleene
- Permite reducerea numărului de intrări în circuitele logice
- Dezavantaj: mărește numărul de nivele logice