ICCS310: Assignment 5

Natthakan Euaumpon natthakaneuaumpon@gmail.com March 2021

1: Reject TM

Let AFSOC that REJECT_{TM} is decidable. This mean there is a Turing Machine which decides it. Let the machine $R(\langle M, x \rangle)$.

$$R(\langle M, x \rangle) = \begin{cases} \text{reject if M accept x,} \\ \text{accept if M reject x,} \\ \text{reject if M loop on x} \end{cases}$$

Using R we can create another machine D. Where D < M > where M is a machine. To prove this we run R on < M, < M >>. From this we have:

$$D(< M >) = \begin{cases} \text{reject if M accept} < M >, \\ \text{accept if M reject} < M >, \\ \text{reject if M loop on} < M > \end{cases}$$

Applying to M = D we have:

$$D(\langle D \rangle) = \begin{cases} \text{reject if D accept } \langle D \rangle, \\ \text{accept if D reject } \langle D \rangle, \\ \text{reject if D loop on } \langle D \rangle \end{cases}$$

This contradict, so D and R can't exist. Therefore, REJECT $_{TM}$ is undecidable.

2: Accept VS. Reject

(1)

Prove that $ACCEPT_{TM} \leq REJECT_{TM}$:

WLOG let assume that there are 2 machine that decides ACCEPT_{TM} and REJECT_{TM}, M_a and M_r . Where M_a decides ACCEPT_{TM} and M_r decides REJECT_{TM} respectively. The given input is < M, x > let:

- 1. Create M' from M by reversing accepting and rejecting states.
- 2. Run M_r with $\langle M', x \rangle$
- 3. If M_r accept then we reject and viceversa

From this we know that M_a will be able to decide ACCEPT_{TM} if it is given a REJECT_{TM}. Therefore, ACCEPT_{TM} \leq REJECT_{TM}.

(2)

Prove that REJECT $_{TM} \leq ACCEPT_{TM}$:

WLOG let assume that there are 2 machine that decides ACCEPT_{TM} and REJECT_{TM}, M_a and M_r . Where M_a decides ACCEPT_{TM} and M_r decides REJECT_{TM} respectively. The given input is < M, x > let:

- 1. Create M' from M by reversing accepting and rejecting states.
- 2. Run M_a with $\langle M', x \rangle$
- 3. If M_a accept then we reject and viceversa

From this we know that M_r will be able to decide REJECT_{TM} if it is given an ACCEPT_{TM}. Therefore, REJECT_{TM} \leq ACCEPT_{TM}.

3: Reverse on TM

AFSOC that T is deciable. Then let M_T be recogniser of T sp that we can construct a recogniser of A_{TM} . Let M' = on input < M, w >. First, lets construct a TM $M_w = \text{on input } x$.

$$M_w = \text{on input } x \begin{cases} \text{reject if } x = rev(w), \\ \text{run M on w and return the result if } x = w, \\ \text{reject if it's not fit on either of the above condition} \end{cases}$$

Then run M_T on $< M_w >$. From this we know that M' accept < M, w > iff M_T accept < M, w > iff M doesn't accept w iff $< M, w > \in A_{TM}^-$. Therefore T is undeciable.

4: Undecidability

(1)

Show that TOTAL is undeciable:

AFSOC that TOTAL is decidable. This means there is a Turing Machine T that decides it. Then we can use T(< M, x >) where x is an input String. Let define a new machine N. Where N run on input y. Then we run the machine.

- 1. If y is not the same as x hault
- 2. Feed y to machine M and let M compute x.
- 3. If M's computation on input x halts and rejects x, loop indefinitely. Else if M's computation on input x halts and accepts x, halt. Else continue looping.

Then feed the string < N > into T. The machine will return output if T accepts < M, x >. Which is impossible, so TOTAL is undecidable.

(2)

Show that FINITE us undecidable:

AFSOC that FINITE is decideable. Let T be a TM that decide FINITE. Then we can construct another TM called U which will be use to decide A_{TM} . Let U = on input < M, w > where w is an input string. Then we construct $< M_w >$ where:

$$M_w = \text{on input } x \begin{cases} \text{reject if M reject w,} \\ \text{accept if M accept w} \end{cases}$$

Run T on M_w . If T accept reject and viceversa. If M accept w then it accept all input which means it is indefinite language. Hence T reject M, therefore FINITE is undefineable.

(3)

Show that REGULAR is undecidable:

AFSOC that REGULAR is decidable. This mean there is a turing machine T that can decide it. Next, let construct another TM called U which will be use to decide A_{TM} . Let U = on input $\langle M, w \rangle$ where w is an input string. Then we construct $\langle M_w \rangle$ where:

$$M_w =$$
on input $x \begin{cases} \text{accept if w if in the form of } 0^1 n^1, \\ \text{reject otherwise} \end{cases}$

From this we know that REGULAR is undecidable.

5: TOTAL Is No Harder Than Finite

WLOG let assume that there are 2 macine M_t and M_f where M_t decides TOTAL and M_f decides FINITE respectively. The given input is $\langle M, x \rangle$ where x is an input string let:

- 1. Create M' from M by reversing accepting and rejecting states.
- 2. Run M_f with $\langle M', x \rangle$
- 3. If M_f accept then we reject and viceversa

From this we know that M_t will be able to decide TOTAL if it is given a FINITE. Therefore, TOTAL \leq FINITE.

6: FINITE Is No Harder Than TOTAL

WLOG let assume that there are 2 macine M_t and M_f where M_t decides TOTAL and M_f decides FINITE respectively. The given input is $\langle M, x \rangle$ where x is an input string let:

- 1. Create M' from M by reversing accepting and rejecting states.
- 2. Run M_t with $\langle M', x \rangle$
- 3. If M_t accept then we reject and viceversa

From this we know that M_f will be able to decide FINITE if it is given a TOTAL. Therefore, FINITE \leq TOTAL.