PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-004139

(43) Date of publication of application: 07.01.2000

(51)Int.CI.

H03H 3/08

(21)Application number : 10-168041

(71)Applicant : OKI ELECTRIC IND CO LTD

(22) Date of filing:

16.06.1998

(72)Inventor: SAWANO MASAYUKI

(54) STRUCTURE AND METHOD FOR SEALING SURFACE ACOUSTIC WAVE DEVICE (57) Abstract:

PROBLEM TO BE SOLVED: To provide the structure and method for sealing a surface acoustic wave device which can easily and surely form an air gap and reduce the pack age cost.

SOLUTION: The sealing structure for a surface acoustic wave device which forms an air gap 14 by forming a join member 16 surrounding a function surface 11a of a piezoelectric substrate 11 and mounting it facedown on a base substrate 13 with the function surface 11a under is equipped with a sheet 20 which is adhered and fixed to the base substrate 13 and a sealing material 19 which seals the piezoelectric substrate 11 covered with the sheet 20.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2000-4139 (P2000-4139A)

(P2000-4139A) (43)公開日 平成12年1月7日(2000.1.7)

(51) Int. C1.7

識別記号

FΙ

テーマコード(参考)

HO3H 3/08

H O 3 H 3/08

5J097

審査請求 未請求 請求項の数10 OL

(全8頁)

(21)出願番号

特願平10-168041

(22)出願日

平成10年6月16日(1998.6.16)

(71)出願人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72) 発明者 沢野 正之

東京都港区虎ノ門1丁目7番12号 沖電気工

業株式会社内

(74)代理人 100089635

弁理士 清水 守 (外1名)

Fターム(参考) 5,J097 AA24 AA29 AA33 FF.05 HA04

JJ03 JJ06 JJ09 KK10

(54) 【発明の名称】 弾性表面波デバイスの封止構造及びその封止方法

(57)【要約】

【課題】 エアギャップを容易に、かつ確実に形成する とともに、パッケージコストを安価にすることができる 弾性表面波デバイスの封止構造及びその封止方法を提供 する。

【解決手段】 圧電体基板11の機能面11aを囲むように接合部材16を形成し、前記圧電体基板11の機能面11aを下方にしてベース基板13にフェースダウン実装してエアギャップ14を形成する弾性表面波デバイスの封止構造において、前記圧電体基板11を包み込むとともに、前記ベース基板13へ密着固定されるシート20と、このシート20でカバーされた圧電体基板11を封止する封止材19を具備する。

11: 圧電体基板

11 a:機能面

13:ベース基板

14:エアギャップ

16:接合部材

19:封止材

20:シート

【請求項1】 圧電体基板の機能面を囲むように接合部 材を形成し、前記圧電体基板の機能面を下方にしてベー ス基板にフェースダウン実装してエアギャップを形成す る弾性表面波デバイスの封止構造において、(a)前記 圧電体基板を包み込むとともに、前記ベース基板へ密着 固定されるシートと、(b) 該シートによりカバーされ た圧電体基板を封止する封止材を具備することを特徴と する弾性表面波デバイスの封止構造。

【請求項2】(a) 圧電体基板の機能面を上方にして該 10 機能面側の周囲に形成される接続パッドとベース基板の 接続部間を接続するボンディングワイヤと、(b)前記 機能面との間にエアギャップを形成するように、前記ボ ンディングワイヤを覆うとともに、前記ベース基板へ密 着固定されるシートと、(c)該シートによりカバーさ れた圧電体基板を封止する封止材を具備することを特徴 とする弾性表面波デバイスの封止構造。

【請求項3】(a)圧電体基板の機能面を上方にして該 機能面側の周囲に形成される接続パッドとベース基板の 接続部間を接続するボンディングワイヤと、(b)該ボ 20 ンディングワイヤを囲むように形成される枠と、(c) 前記機能面との間にエアギャップを形成するように、前 記枠を包み込むとともに、前記ベース基板へ密着固定さ れるシートと、(d) 該シートによりカバーされた圧電 体基板を封止する封止材を具備することを特徴とする弾 性表面波デバイスの封止構造。

【請求項4】(a)圧電体基板の機能面を上方にして該 機能面側の周囲に形成される接続パッドとベース基板の 接続部間を接続するボンディングワイヤと、(b)該ボ ンディングワイヤによる接続領域の少なくとも4隅に形 30 成される柱と、(c)前記機能面との間にエアギャップ を形成するように、前記柱を包み込むとともに、前記べ ース基板へ密着固定されるシートと、(d)該シートに よりカバーされた圧電体基板を封止する封止材を具備す ることを特徴とする弾性表面波デバイスの封止構造。

【請求項5】 請求項1、2、3又は4記載の弾性表面 波デバイスの封止構造において、前記シートの外側面に 形成される導電部と、該導電部が接続されるグランドパ ターンとを具備することを特徴とする弾性表面波デバイ スの封止構造。

【請求項6】 圧電体基板の機能面を囲むように接合部 材を形成し、前記圧電体基板の機能面を下方にしてベー ス基板にフェースダウン実装してエアギャップを形成す る弾性表面波デバイスの封止方法において、(a)シー トを前記圧電体基板に被せるとともに、前記ベース基板 へ仮固定する工程と、(b) 前記シートを加熱して前記 圧電体基板を包み込むとともに、前記ベース基板へ密着 固定する工程と、(c)前記シートによりカバーされた 圧電体基板を封止材により封止する工程とを施すことを 特徴とする弾性表面波デバイスの封止方法。

【請求項7】(a)圧電体基板の機能面を上方にして該 機能面側の周囲に形成される接続パッドとベース基板の 接続部間をボンディングワイヤにより接続するワイヤボ ンディング工程と、(b)前記機能面との間にエアギャ ップを形成するようにシートを前記ボンディングワイヤ に被せるとともに、前記ベース基板へ仮固定する工程 と、(c)前記シートを加熱して前記ボンディングワイ ヤを覆うとともに、前記ベース基板へ密着固定する工程 と、(d)前記シートによりカバーされた圧電体基板を 封止材により封止する工程とを施すことを特徴とする弾 性表面波デバイスの封止方法。

【請求項8】(a) 圧電体基板の機能面を上方にして該 機能面側の周囲に形成される接続パッドとベース基板の 接続部間をボンディングワイヤにより接続するワイヤボ ンディング工程と、(b)前記ボンディングワイヤ領域 を囲む枠を形成する工程と、(c)前記機能面との間に エアギャップを形成するようにシートを前記枠に被せる とともに、前記ベース基板へ仮固定する工程と、(d) 前記シートを加熱して前記枠を包み込むとともに、前記 ベース基板へ密着固定する工程と、(e)前記シートに よりカバーされた圧電体基板を封止材により封止する工 程とを施すことを特徴とする弾性表面波デバイスの封止 方法。

【請求項9】(a)圧電体基板の機能面を上方にして該 機能面側の周囲に形成される接続パッドとベース基板の 接続部間をボンディングワイヤにより接続するワイヤボ ンディング工程と、(b)該ボンディングワイヤによる 接続領域の少なくとも4隅に柱を形成する工程と、

(c) 前記機能面との間にエアギャップを形成するよう にシートを前記柱に被せるとともに、前記ベース基板へ 仮固定する工程と、(d)前記シートを加熱して前記機 能面との間にエアギャップを形成するように、前記柱を 包み込むとともに、前記ベース基板へ密着固定する工程 と、(e)前記シートによりカバーされた圧電体基板を 封止材で封止する工程とを施すことを特徴とする弾性表 面波デバイスの封止方法。

【請求項10】 請求項6、7、8又は9記載の弾性表 面波デバイスの封止方法において、前記シートの外側面 に導電処理を施すとともに、ベース基板のグランドパタ 40 ーンへ接続することを特徴とする弾性表面波デバイスの 封止方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、弾性表面波デバイ スの封止構造及びその封止方法に関するものである。 [0002]

【従来の技術】近年、携帯電話やPHS(Person al Handyphone System) の普及が 著しく、さらに電子機器のパーソナル通信化が進んでお 50 り、それに伴い無線通信に必要な高周波アナログ部品が

非常に重要となっている。その中でも弾性表面波(またはレイリー波、以下SAW: Surface Acoustic Wave)を利用したデバイスは、小型化、低コスト化などの面から非常に有効であり、共振子やフィルタなどに使用されている。

【0003】一般的なSAWデバイスにおいては、電気信号から弾性波への変換、あるいはその逆の変換を行う変換器(トランスデューサ)が必要であり、そのための材料としては圧電体が使われる。圧電体に電界を印加すると、歪み、すなわち変形が生じ、逆に応力を加えると 10電気変位が変化する、いわゆる圧電効果が発生するため、上記した電気信号及び弾性波のトランスデューサは、この圧電効果を利用して電気及び弾性波の変換を行っている。圧電単結晶材料としては、水晶やニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)などが多く使われている。

【0004】例えば、図15は従来のSAWトランスパーサル型のフィルタの構成図であり、図15(a)はそのフィルタの平面図、図15(b)はそのフィルタの側面図である。図16はその弾性表面波デバイスの封止構 20造を示す断面図である。これらの図に示すように、SAWトランスパーサル型のフィルタは、圧電効果を有する圧電体基板1とIDT(Interdigidal Transducer:すだれ状電極トランスデューサ) 2から構成されている。

【0005】そこで、入力信号6がIDT2に印加されると、IDT2部に印加電界分布に対応して、圧電効果により圧電体基板1表面近傍に周期的な歪みが生じ、SAWを励振する。さらにSAWは圧電体基板1表面を伝搬した後、IDT2より再度電気信号に変換されて出力30信号7となる。また、SAWの波長λはIDT2の電極周期2dに一致する周波数fO(=v/2d、v:表面波速度)で、各電極脂から励起されたSAWが同相に加わるので、送受間の感度が最も高くなる。

【0006】このようなSAWデバイスの実装方法は、図16に示すように、ワイヤボンディングによる接続を用いて電気的に接続するなど一般的なLSIと同様な実装方法が適用可能である。しかし、SAWデバイスは、圧電体基板1表面をSAWが伝搬するため、圧電体基板1表面にエアギャップ4が必要不可欠であり、従って、キャビティを有するベース基板3へ封止リッド5を搭載して封止し、圧電体基板1表面のSAW伝搬部分にエアギャップ4を形成するようにしたものが、現在最も一般的なSAWデバイスのパッケージ構造である(例えば、通信用フィルタ回路の設計とその応用、総合電子出版社参照)。

[0007]

【発明が解決しようとする課題】しかしながら、以上述べた従来のSAWデバイスの実装方法では、一般的なLSIパッケージ(例えば、トランスファモールドなど)

に比較して、エアギャップを確保するための構造上の問 願から、パッケージサイズの小型化が難しく。 さらにパ

題から、パッケージサイズの小型化が難しく、さらにパッケージコストが非常に高価になるなどの問題点があった

【0008】本発明は、上記問題点を除去し、エアギャップを容易に、かつ確実に形成するとともに、パッケージコストを安価にすることができる弾性表面波デバイスの封止構造及びその封止方法を提供することを目的とする。

[0009]

【課題を解決するための手段】本発明は、上記目的を達成するために、

[1] 弾性表面波デバイスの封止構造において、圧電体 基板の機能面を囲むように接合部材を形成し、前記圧電 体基板の機能面を下方にしてベース基板にフェースダウン実装してエアギャップを形成する弾性表面波デバイス の封止構造において、前記圧電体基板を包み込むとともに、前記ベース基板へ密着固定されるシートと、このシートによりカバーされた圧電体基板を封止する封止材を 具備するようにしたものである。

【0010】 [2] 弾性表面波デバイスの封止構造において、圧電体基板の機能面を上方にして、該機能面側の周囲に形成される接続パッドとベース基板の接続部間を接続するボンディングワイヤと、前記機能面との間にエアギャップを形成するように、前記ボンディングワイヤを覆うとともに、前記ベース基板へ密着固定されるシートと、このシートによりカバーされた圧電体基板を封止する封止材を具備するようにしたものである。

【0011】 [3] 弾性表面波デバイスの封止構造において、圧電体基板の機能面を上方にして、この機能面側の周囲に形成される接続パッドとベース基板の接続部間を接続するボンディングワイヤと、このボンディングワイヤを囲むように形成される枠と、前記機能面との間にエアギャップを形成するように、前記枠を包み込むとともに、前記ベース基板へ密着固定されるシートと、このシートによりカバーされた圧電体基板を封止する封止材を具備するようにしたものである。

【0012】[4] 弾性表面波デバイスの封止構造において、圧電体基板の機能面を上方にして、この機能面側の周囲に形成される接続パッドとベース基板の接続部間を接続するボンディングワイヤと、このボンディングワイヤによる接続領域の少なくとも4隅に形成される柱と、前記機能面との間にエアギャップを形成するように、前記柱を包み込むとともに、前記ベース基板へ密着固定されるシートと、このシートによりカバーされた圧電体基板を封止する封止材を具備するようにしたものである。

【0013】 [5] 上記 [1]、 [2]、 [3] 又は [4] 記載の弾性表面波デバイスの封止構造において、 前記シートの外側面に形成される導電部と、この導電部

が接続されるグランドパターンとを具備するようにした ものである。

[6] 弾性表面波デバイスの封止方法において、圧電体 基板の機能面を囲むように接合部材を形成し、前記圧電 体基板の機能面を下方にしてベース基板にフェースダウ ン実装してエアギャップを形成する弾性表面波デバイス の封止方法において、シートを前記圧電体基板に被せる とともに、前記ベース基板へ仮固定する工程と、前記シ ートを加熱して前記圧電体基板を包み込むとともに、前 記べース基板へ密着固定する工程と、前記シートにより カバーされた圧電体基板を封止材により封止する工程と を施すようにしたものである。

【0014】 [7] 弾性表面波デバイスの封止方法にお いて、圧電体基板の機能面を上方にして、この機能面側 の周囲に形成される接続パッドとベース基板の接続部間 をボンディングワイヤにより接続するワイヤボンディン グ工程と、前記機能面との間にエアギャップを形成する ようにシートを前記ボンディングワイヤに被せるととも に、前記ベース基板へ仮固定する工程と、前記シートを 加熱して前記ボンディングワイヤを覆うとともに、前記 20 ベース基板へ密着固定する工程と、前記シートによりカ バーされた圧電体基板を封止材により封止する工程とを 施すようにしたものである。

【0015】 [8] 弾性表面波デバイスの封止方法にお いて、圧電体基板の機能面を上方にして、この機能面側 の周囲に形成される接続パッドとベース基板の接続部間 をボンディングワイヤにより接続するワイヤボンディン グ工程と、前記ボンディングワイヤ領域を囲む枠を形成 する工程と、前記機能面との間にエアギャップを形成す るようにシートを前記枠に被せるとともに、前記ベース 30 基板へ仮固定する工程と、前記シートを加熱して前記枠 を包み込むとともに、前記ベース基板へ密着固定する工 程と、前記シートによりカバーされた圧電体基板を封止 材により封止する工程とを施すようにしたものである。

【0016】 [9] 弾性表面波デバイスの封止方法にお いて、圧電体基板の機能面を上方にして、この機能面側 の周囲に形成される接続パッドとベース基板の接続部間 をボンディングワイヤにより接続するワイヤボンディン グ工程と、このボンディングワイヤによる接続領域の少 なくとも4隅に柱を形成する工程と、前記機能面との間 40 にエアギャップを形成するようにシートを前記柱に被せ るとともに、前記ベース基板へ仮固定する工程と、前記 シートを加熱して前記機能面との間にエアギャップを形 成するように、前記柱を包み込むとともに、前記ベース 基板へ密着固定する工程と、前記シートによりカバーさ れた圧電体基板を封止材で封止する工程とを施すように したものである。

【0017】〔10〕上記〔6〕、〔7〕、〔8〕又は [9] 記載の弾性表面波デバイスの封止方法において、

基板のグランドパターンへ接続するようにしたものであ る。

[0018]

く。

【発明の実施の形態】以下、本発明の実施の形態につい て詳細に説明する。図1は本発明の第1実施例を示す弾 性表面波デバイスの封止構造を示す断面図、図2は図1 のA部拡大図、図3はその弾性表面波デバイスの封止構 造を示す平面図である。

【0019】これらの図に示すように、圧電体基板11 の機能面11aをベース基板13へ対向させるように接 合部材16で圧電体基板11とベース基板13を接続す る。これは一般的に行われるバンプ接続技術を用いて行 い、接合部材16にはハンダやAuの材料が多く使用さ れている。次に、接続された圧電体基板11を封止材1 9で覆うように封止し、エアギャップ14を形成する。 【0020】この時に重要なのは、封止材19が機能面 1 1 a まで流れ込まないようにすることである。そのた めに、封止材19で封止する前に、圧電体基板11をシ ート20で完全に包み込み、加熱してベース基板13へ 密着固定する。これにより、圧電体基板11とベース基 板13の間に封止材19が浸入することがなくなり、エ アギャップ14は確実に確保される。また、生産性を考 慮すると、加熱前にシート20がベース基板13へ仮固 定されている方が、加熱工程までの間にシート20が動 く心配がなくなるので、初期的に粘着性のあるシートを 使用するか、もしくはシート20の外周とベース基板1

【0021】ここで、シート20に使用する材料は、熱 を加えると軟化、収縮する樹脂材料が良く、加熱温度は シート20が液化しない程度の温度が良い。例えば、ビ ニル樹脂などは、その熱変形温度が50℃程度であり、 少なくとも60~70℃の加熱温度で十分にベース基板 13へ密着固定することができる。また、初期的にある 程度の粘着性を有するものでは、一般的に市販されてい る接着剤シートなどが良い。例えば、ポリエステル製の 不織布にアクリル系樹脂を浸透させたシート状の接着剤 では、硬化温度が100℃前後であり十分にベース基板 13へ密着固定することができる。

3面を熱圧着しておく方が良い。つまり、仮固定してお

【0022】さらに、不織布を有する構造であるため、 シート20の接着剤自体が圧電体基板11とベース基板 13の間へ浸入することはない。なお、図2において、 17は入出力端子、18は接続パッドである。このよう に、第1実施例によれば、容易に、かつ確実にエアギャ ップを形成することが可能なことから、パッケージコス トを非常に安価にすることができ、さらに、バンプ接続 技術を用いたフェイスダウンした実装を併用しているた め、パッケージサイズの小型化が容易になる。

【0023】次に、本発明の第2実施例について説明す 前記シートの外側面に導電処理を施すとともに、ベース 50 る。図4は本発明の第2実施例を示す弾性表面波デバイ 10

スの封止構造を示す断面図、図5は図4のB部拡大図で ある。なお、第1実施例と同様の部分には同じ符合を付 してそれらの説明は省略する。この実施例においても、 第1実施例のように、シート31を配置するようにして いるが、このシート31の外側面、つまり、圧電体基板 11と逆側に位置するシート31の片側表面に導電処理 を施し導電部32を形成し、加熱後、ベース基板33の グランドパターン34と接地するか、もしくは封止材3 5で封止した後、封止材35表面に導電処理を施し導電 部36を形成し、ベース基板33のグランドパターン3 4へ接地するようにする。

【0024】ここで施す導電処理は、導電塗料を吹き付 けたり、無電界メッキ処理を行ったりすることにより、 シート引の導電部32を容易に形成することができる。 また、封止材35への導電処理36は、蒸着方法やスパ ッタ法などでも行うことが可能であり、熱的に問題なく 行える。このように、第2実施例によれば、シート31 によるシールとともに、シート31の外側面には導電部 32を形成し、ベース基板33のグランドパターン34 へ接地することができる。

【0025】次に、本発明の第3実施例について説明す る。図6は本発明の第3実施例を示す弾性表面波デバイ スの封止構造を示す断面図、図7は図6のC部拡大図、 図8は本発明の第3実施例を示す弾性表面波デバイスの シート部の封止工程断面図である。これらの図に示すよ うに、圧電体基板41との電気的接続にボンディングワ イヤ42によるW/B (Wire-Bonding) を 施す構造に、シート46を用いてエアギャップ40を形 成することができる。なお、図6、図7において、44 は圧電体基板41の機能面側の周囲に形成される接続パ 30 ッド(1stボンディング部)、45はベース基板43 の接続部 (2 n d ボンディング部)、47,50 は導電 部、48はグランドパターン、49は封止材である。

【0026】以下、弾性表面波デバイスのシート部の形 成方法について図8を参照しながら説明する。

(1) まず、図8 (a) に示すように、圧電体基板41 の機能面41 a 上方に凸状のシート46′を位置決めす る。

(2) 次に、図8 (b) に示すように、圧電体基板41 体基板41の外周部に設けられたボンディングワイヤ4 2とともに、凸状のシート46′で圧電体基板41を覆 い囲み、仮固定する。

【0027】(3)次に、図8(c)に示すように、凸 状のシート46′を加熱してベース基板43へ密着さ せ、シート46を形成する。図示しないが、その後、封 止材で圧電体基板を封止する。ここで、シート46によ り圧電体基板41を包む時に、ボンディングワイヤ42 が潰れないようにボンディングワイヤ42に接触しない ような凸状のシート46′を用い、凸状のシート46′

の外周とベース基板43面を熱圧着した後で加熱するよ うにした。そうすれば、加熱により軟化する凸状のシー ト46'は全体的に収縮していくので、ボンディングワ イヤ42が潰れることはない。しかし、そのような恐れ がない場合には、凸状のシートでなくてもよい。

【0028】また、圧電体基板41のシールド性に関し ては、第2実施例と同様な構成とすることが当然可能で ある。このように、第3実施例によれば、容易に、かつ 確実にエアギャップを形成することが可能であることか ら、パッケージコストを非常に安価にすることができ

【0029】さらに、従来の封止構造では、ワイヤボン ディング部と封止リッドを接触させないよう、間隙を設 けて封止していたが、本発明の構造ではその必要がない ので、高さを抑えたパッケージサイズの小型化が容易に なる。次に、本発明の第4実施例について説明する。図 9は本発明の第4実施例を示す弾性表面波デバイスの封 止構造を示す断面図、図10は図9のD部拡大図、図1 1はその弾性表面波デバイスの封止構造を示す平面図で 20 ある。

【0030】これらの図に示すように、50はエアギャ ップ、51は圧電体基板、51aは機能面、51bは圧 電体基板の外形部、52はホンディングワイヤ、53は ベース基板、54は圧電体基板51の機能面側の周囲に 形成される接続パッド(1 s t ボンディング部)、55 はベース基板53の接続部(2ndボンディング部)、 56は2ndボンディング部55を囲むように配置され る枠、57はシート、58はシート57の外側面、つま り、圧電体基板51と逆側に位置するシート57の片側 表面に形成される導電部、この導電部58により、加熱 後、ベース基板53のグランドパターン59と接地する か、もしくは封止材60で封止した後、封止材60表面 に導電処理を施した導電部61により、グランドパター ン59へ接地するようにする。

【0031】このように、圧電体基板51の機能面51 aへエアギャップ50を形成するために、2ndボンデ ィング部55を囲むように枠56を設けておき、封止材 60で封止する前に圧電体基板51を含めた枠56部を シート57で覆い囲み、加熱してシート57を枠56へ の機能面41 a ヘエアギャップを形成するために、圧電 40 密着させ、最後に、封止材60で圧電体基板51を封止

> 【0032】したがって、この枠56の高さは、ベース 基板53からホンディングワイヤ52のループの最高位 置までの高さ程度とするのが良い。このように、第4実 施例によれば、シートの荷重を枠で受けることができる ので、ワイヤホンディングが潰れることがなくなる。ま た、圧電体基板のシールド性に関しては、第2実施例と 同様に構成することが当然可能であり、さらに、圧電体 基板とベース基板の電位的接続に、接合材料などのバン 50 プ接続技術を用いた構造に適用可能なことは言うまでも

ない。

【0033】次に、本発明の第5実施例について説明す る。図12は本発明の第5実施例を示す弾性表面波デバ イスの封止構造を示す断面図、図13は図12のE部拡 大図、図14はその弾性表面波デバイスの封止構造を示 す平面図である。これらの図に示すように、70はエア ギャップ、71は圧電体基板、71aは機能面、71b は圧電体基板の外形部、72はホンディングワイヤ、7 3はベース基板、74は圧電体基板71の機能面側の周 囲に形成される接続パッド(1 s t ボンディング部)、 75はベース基板73の接続部(2ndボンディング 部) である。

【0034】更に、76は第4実施例に示した枠に代え て、少なくとも圧電体基板71のボンディング領域の4 隅に形成される柱、77はシート、78はシート77の 外側面、つまり、圧電体基板71と逆側に位置するシー ト77の片側表面に形成される導電部である。この導電 部78により、加熱後、ベース基板73のグランドパタ ーン79と接地するか、もしくは封止材80で封止した 後、封止材80表面に導電処理を施した導電部81によ 20 り、グランドパターン79へ接地するようにする。

【0035】このように、第5実施例は、第4実施例に 示した枠56に代えて、少なくとも圧電体基板71のボ ンディング領域の4隅に形成される柱76を配置するよ うにする。圧電体基板71の機能面71aへ、エアギャ ップ70を形成するために、2ndボンディング部75 を囲むように柱76を設けておき、封止材80で封止す る前に圧電体基板71を含めた柱76部をシート77で 覆い囲み、加熱してシート77を柱76へ密着させ、最 後に封止材80で圧電体基板71を封止する。この柱7 30 6の高さは、ベース基板73からホンディングワイヤ7 2のループの最高位置までの高さ程度とするのが良い。

【0036】更に、柱76はワイヤボンディング部を囲 む4隅に配置しているが、これは任意の位置に配置する ことができる。つまり、ボンディングワイヤの接続位置 や圧電体基板の外形サイズに対応して、最適な配置を行 うことができる。また、圧電体基板71のシールド性に 関しては、第2実施例と同様な構成とすることができ る。さらに、圧電体基板71とベース基板73の電気的 接続に、接合材料などのバンプ接続技術を用いた構造に 40 適用可能なことは言うまでもない。

【0037】なお、本発明は上記実施例に限定されるも のではなく、本発明の趣旨に基づいて種々の変形が可能 であり、これらを本発明の範囲から排除するものではな い。

[0038]

【発明の効果】以上、詳細に説明したように、本発明に よれば、次のような効果を奏することができる。

(1)請求項1又は6記載の発明によれば、容易に、か つ確実にエアギャップを形成するとともに、パッケージ 50

コストを大幅に低減にすることができる。

【0039】さらに、バンプ接続技術を用いたフェイス ダウンした実装を併用しているため、パッケージサイズ の小型化が容易になる。

10

(2) 請求項2又は7記載の発明によれば、容易に、か つ確実にエアギャップを形成することができるので、パ ッケージコストを非常に安価にすることができる。

【0040】さらに、従来の封止構造では、ワイヤボン ディング部と封止リッドを接触させないよう、間隙を設 10 けて封止していたが、本発明の構造ではその必要がない ので、高さを抑えたパッケージサイズの小型化が容易に なる。

(3) 請求項3又は8記載の発明によれば、シートの荷 重を枠で受けることができるので、ワイヤホンディング が潰れることがなくなる。

【0041】(4)請求項4又は9記載の発明によれ ば、上記(3)における枠を柱に置き替えるようにした ので、枠に要する材料を低減することができる。

(5) 請求項5又は10記載の発明によれば、シートに よるシールとともに、シールの外側面には導電部を形成 し、ベース基板のグランドパターンへ接地することがで きる。

【図面の簡単な説明】

【図1】本発明の第1実施例を示す弾性表面波デバイス の封止構造を示す断面図である。

【図2】図1のA部拡大図である。

【図3】本発明の第1実施例を示す弾性表面波デバイス の封止構造を示す平面図である。

【図4】本発明の第2実施例を示す弾性表面波デバイス の封止構造を示す断面図である。

【図5】図4のB部拡大図である。

【図6】本発明の第3実施例を示す弾性表面波デバイス の封止構造を示す断面図である。

【図7】図6のC部拡大図である。

【図8】本発明の第3実施例を示す弾性表面波デバイス のシート部の封止工程断面図である。

【図9】本発明の第4実施例を示す弾性表面波デバイス の封止構造を示す断面図である。

【図1·0】図9のD部拡大図である。

【図11】本発明の第4実施例を示す弾性表面波デバイ スの封止構造を示す平面図である。

【図12】本発明の第5実施例を示す弾性表面波デバイ スの封止構造を示す断面図である。

【図13】図12のE部拡大図である。

【図14】本発明の第5実施例を示す弾性表面波デバイ スの封止構造を示す平面図である。

【図15】従来のSAWトランスバーサル型のフィルタ の構成図である。

【図16】従来の弾性表面波デバイスの封止構造を示す 断面図である。

11

【符号の説明】

11, 41, 51, 71 圧電体基板

11a, 41a, 51a, 71a 機能面

13, 33, 53, 73 ベース基板

14, 40, 50, 70 エアギャップ

16 接合部材

19, 35, 49, 60, 80 封止材

20, 31, 46, 57, 77 シート

32, 36, 47, 50, 58, 61, 78, 81

導電部

34, 48, 59, 79 グランドパターン

42, 52, 72 ボンディングワイヤ

44, 54, 74 接続パッド (1 s t ボンディング

12

部)

45, 55, 75 ベース基板の接続部(2 n d ボン ディング部)

46' 凸状のシート

51b, 71b 圧電体基板の外形部

5 6 枠

10 76 柱

【図1】 【図2】 【図3】

11:圧電体基极 13:ペース基位

19: 封止材

16:接合部材 20:シート

【図6】

【図4】

【図5】

【図7】

【図8】

【図9】

【図16】

(a)

(b)

【図10】

[図11] [図12] [図13]

[図14] [図15]

