CS 224n Assignment #5

Yoshihiro Kumazawa

July 7, 2020

1. Character-based convolutional encoder for NMT

- (a) Convolutional architectures can operate over variable length input too since convolutional layers slide fixed-sized windows over input unlike linear layers.
- (b) The size of the padding should be 1 so that the padded vector will have size at least 5. Indeed, m_{word} could be 1 if all words in a batch happen to be some characters of length 1 like 'a', in which case we have $\mathbf{x}'_{\text{padded}} \in \mathbb{Z}^3$.
- (c) The highway layer makes it possible to combine local features and global features. In other words, it matches our intuition that we can sometimes understand the meaning of a word by just looking at a little chunk of consecutive characters at a time but it is sometimes better to consider the whole characters in it at once. In order to simplify the network semantics in the beginning of training, I would initialize $\boldsymbol{b}_{\text{gate}}$ to be negative.
- (d) Transformers are easier to parallelize and faster to train.
- (e) See vocab.py.
- (f) For the highway network implementation, see highway.py. I added a function question_1f_sanity_check() in sanity_check.py to test the following expected properties.
 - The output size is correct for a given input.
 - $x_{\text{highway}} = x_{\text{conv_out}}$ when $x_{\text{gate}} = 0$, which is checked by making $b_{\text{gate}} = -\infty$.
 - $x_{\text{highway}} = x_{\text{proj}}$ when $x_{\text{gate}} = 1$, which is checked by making $b_{\text{gate}} = \infty$.
 - $x_{\text{highway}} = x_{\text{conv-out}}$ when the projection layer is the identity function.

(g)			
(h)			

(i) (j)

2. Character-based LSTM decoder for NMT

Character-based	TO I M	decoder	101	TAIVLT	
(a)					
(b)					
(c)					

(d)

(e)

3. Analyzing NMT Systems

- (a)
- (b) i.
 - ii.
 - iii.
- (c)