课堂小测

考虑以下随机变量分布:

$$p_X = \left[\frac{1}{21}, \frac{1}{21}, \frac{2}{21}, \frac{4}{21}, \frac{6}{21}, \frac{7}{21}\right].$$

- (a) 进行二元 Huffman 编码;
- (b) 进行三元 Huffman 编码;
- (c) 分别计算 (a) 和 (b) 码率。

向量信源编码定理

- 1 向量信源编码
- ② 大数定律
- ③ 样本熵和典型集
- ④ 渐近均分性 (AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

主要内容:

- 描述一个随机向量的最小无损率: H(X)
- 简单、渐近最优"典型集"编码
- 渐近均分性 (AEP) 证明

向量信源编码定理

- ① 向量信源编码
- ② 大数定律
- ③ 样本熵和典型集
- ④ 渐近均分性(AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

向量信源编码

单信源编码

- 输入: 单随机变量
- 最优方案: Huffman 编码
- 最优编码 C^* : $H(X) \le L(C^*) < H(X) + 1$

向量信源编码

● 单信源编码

- 输入: 单随机变量
- 最优方案: Huffman 编码
- 最优编码 C^* : $H(X) \le L(C^*) < H(X) + 1$

● 向量信源编码

- 输入: n 个随机变量组成的序列
- 最优方案: "典型集"编码("渐近均分性")
- 最优编码 C^* : $H(X) \leq L(C^*) < H(X) + \epsilon, \forall \epsilon > 0$

向量信源编码的符号表示

令 C 为信源编码码本, 对一个信源符号 $x \in \mathcal{X}^n$:

- 码字: C(x)
- 码长: ℓ(x)
- 码率:

$$R(C) = \frac{1}{n} \sum_{x \in \mathcal{X}^n} p_X(x) \ell(x)$$

单变量情况:
$$L(C) = \sum_{x \in \mathcal{X}} p_X(x) \ell(x)$$

- 单信源编码是向量信源编码 n=1 时的特例
- 码率 R 越低,描述随机变量序列 x 所需比特数越少

向量信源编码定理

定理(向量信源编码): 令 $X=(X_1,\cdots,X_n)$ 为 n 个独立同分布的随机变量, $X_i\sim p_x$ 的嫡为 H(X)。则,对任意 $\epsilon>0$,当 n 足够大时,存在码率为 R 的向量信源编码满足:

$$H(X) \le R < H(X) + \epsilon$$
.

即, 当 $n \to \infty$ 时, $R \to H(X)$.

回顾:

定理 (单信源编码定理): 令 L^* 为一个最优d 元码本 C^* 的期望码长,则

$$H_d(X) \le L^* < H_d(X) + 1.$$

等号成立条件为其概率分布是 d 进制。

回顾:

定理 (单信源编码定理): $\Diamond L^*$ 为一个最优d 元码本 C^* 的期望码长,则

$$H_d(X) \le L^* < H_d(X) + 1.$$

等号成立条件为其概率分布是 d 进制。

将 $X = [X_1, X_2, \cdots, X_n]$ 视为一个单随机变量:

例: $X_i \in \{0,1\}$, 概率为 $\{p_0 = 0.3, p_1 = 0.7\}$, 则,

$$X = [X_1, X_2] \in \{00, 01, 10, 11\} \sim \{a, b, c, d\}$$

各元素概率为

$$\{p_a = 0.09, p_b = 0.21, p_c = 0.21, p_d = 0.49\}$$

因此, $H_d(\mathbf{X}) \leq nL_n^* < H_d(\mathbf{X}) + 1,$

因此,
$$H_d(\pmb{X}) \leq nL_n^* < H_d(\pmb{X}) + 1,$$
 $rac{1}{n}H_d(\pmb{X}) \leq L_n^* < rac{1}{n}H_d(\pmb{X}) + rac{1}{n},$

因此,

$$H_d(\mathbf{X}) \le nL_n^* < H_d(\mathbf{X}) + 1,$$

$$\frac{1}{n}H_d(\mathbf{X}) \le L_n^* < \frac{1}{n}H_d(\mathbf{X}) + \frac{1}{n},$$

$$H(X) \le R < H(X) + \epsilon$$

其中
$$R = L_n^*$$
, $H(X) = \frac{1}{n}H_d(\mathbf{X})$ (X 独立同分布), $\epsilon = 1/n$.

注:可用 Huffman 编码,但复杂度为指数级。

● 单信源编码定理 ≕ 向量信源编码定理

- 单信源编码定理 ➡️ 向量信源编码定理
- 但单信源编码定理的证明比较复杂

- 单信源编码定理 ➡️ 向量信源编码定理
- 但单信源编码定理的证明比较复杂
- 利用典型集和渐近均分性给出简易证明

向量信源编码定理

- 向量信源编码
- ② 大数定律
- 3 样本熵和典型集
- 渐近均分性(AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

假设 X_1, X_2, \dots, X_n 是 n 维独立同分布 (IID) 随机变量:

● 数学期望 & 方差,由于 Xi 独立同分布,期望和方差:

$$E[X] = \sum_{x \in X} x p(x), \quad Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

假设 X_1, X_2, \dots, X_n 是 n 维独立同分布 (IID) 随机变量:

● 数学期望 & 方差,由于 Xi 独立同分布,期望和方差:

$$E[X] = \sum_{x \in X} x p(x), \quad Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

样本均值X̄_n 为

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

假设 X_1, X_2, \cdots, X_n 是 n 维独立同分布 (IID) 随机变量:

● 数学期望 & 方差,由于 Xi 独立同分布,期望和方差:

$$E[X] = \sum_{x \in X} x p(x), \quad Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

样本均值X̄_n 为

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• 由于 X_i 是随机变量, \bar{X}_n 同样也是随机变量,且

$$\mathrm{E}[\bar{X}_n] = \mathrm{E}[X], \qquad \mathrm{Var}[\bar{X}_n] = \frac{1}{n} \mathrm{Var}[X] \xrightarrow{n \to \infty} 0$$

假设 X_1, X_2, \dots, X_n 是 n 维独立同分布 (IID) 随机变量:

● 数学期望 & 方差,由于 X_i 独立同分布,期望和方差:

$$E[X] = \sum_{x \in X} x p(x), \quad Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

样本均值X̄_n 为

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• 由于 X_i 是随机变量, \bar{X}_n 同样也是随机变量,且

$$\mathrm{E}[\bar{X}_n] = \mathrm{E}[X], \qquad \mathrm{Var}[\bar{X}_n] = \frac{1}{n} \mathrm{Var}[X] \xrightarrow{n \to \infty} 0$$

• 若 X_i 服从伯努利 (两点) 分布, 即 $X_i \sim B(1,p)$, 则

$$\Pr(\bar{X}_n = z/n) = \binom{n}{z} p^z (1-p)^{n-z}, \quad z = 0, 1, \dots, n$$

样本均值实例

• 考虑 n = 15, p = 1/3 的两点分布随机向量 (二元向量):

$$\boldsymbol{X}=X_1,X_2,\cdots,X_{15}.$$

其数学期望是多少? \Rightarrow 1/3。

样本均值实例

• 考虑 n = 15, p = 1/3 的两点分布随机向量 (二元向量):

$$\boldsymbol{X}=X_1,X_2,\cdots,X_{15}.$$

其数学期望是多少? $\Rightarrow 1/3$ 。

● 样本均值是什么? 执行多次随机测试, 结果如下:

两点分布样本均值的概率分布

$$\Pr(\bar{X}_n = \frac{z}{n}) = \binom{n}{z} p^z (1-p)^{n-z}$$

p=1/3 时,期望 $\mathrm{E}[\bar{X}_n]=\mathrm{E}[X]=1/3$,样本均值的概率分布函数:

 $n \uparrow \Rightarrow \operatorname{Var}[\bar{X}_n] \downarrow \mathbb{H} \lim_{n \to \infty} \operatorname{Var}[\bar{X}_n] \to 0$

样本均值离数学期望有多近?

ullet 定义:考虑随机序列 X,若其样本均值 \bar{X}_n 满足

$$|\bar{X}_n - \mathrm{E}[X]| \le \epsilon,$$

其中 ϵ 为常数,则称其样本均值 \bar{X}_n 与数学期望 $\mathrm{E}[X]$ " ϵ 接近"。

样本均值离数学期望有多近?

• 定义: 考虑随机序列 X, 若其样本均值 \bar{X}_n 满足

$$|\bar{X}_n - \mathrm{E}[X]| \le \epsilon,$$

其中 ϵ 为常数,则称其样本均值 \bar{X}_n 与数学期望 $\mathrm{E}[X]$ " ϵ 接近"。

• 由于 \bar{X}_n 是随机变量, 我们关心:

$$\Pr\left(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon\right)$$

样本均值离数学期望有多近?

$$|\bar{X}_n - \mathrm{E}[X]| \le \epsilon,$$

其中 ϵ 为常数,则称其样本均值 \bar{X}_n 与数学期望 $\mathrm{E}[X]$ " ϵ 接近"。

• 由于 \bar{X}_n 是随机变量, 我们关心:

$$\Pr\left(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon\right)$$

● 直接计算这个概率非常困难,我们考虑其下界 q:

$$\Pr\left(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon\right) \ge q$$

n 需要多大呢?

令 $p=\frac{1}{3}, \epsilon=0.03$,为使 $\Pr(|\bar{X}_n-\mu|\leq\epsilon)>0.95$,n 需要多大呢?

"信息论是大数定律的巧妙应用"

马尔可夫不等式: X 是一个非负随机变量且 a > 0,则

$$\Pr(X \ge a) \le \frac{\mu}{a}, \quad \mu = \mathrm{E}[X]$$

马尔可夫不等式: X 是一个非负随机变量且 a > 0, 则

$$\Pr(X \ge a) \le \frac{\mu}{a}, \quad \mu = \mathrm{E}[X]$$

简易证明: $\mu = E[X] = \sum_{x} p(x)x$

马尔可夫不等式: X 是一个非负随机变量且 a > 0,则

$$\Pr(X \ge a) \le \frac{\mu}{a}, \quad \mu = \mathrm{E}[X]$$

简易证明: $\mu = E[X] = \sum_{x} p(x)x \ge \sum_{x>a} p(x)x$

马尔可夫不等式: X 是一个非负随机变量且 a > 0, 则

$$\Pr(X \ge a) \le \frac{\mu}{a}, \quad \mu = \mathrm{E}[X]$$

简易证明:
$$\mu = E[X] = \sum_{x} p(x)x \ge \sum_{x>a} p(x)x \ge \sum_{x>a} p(x)a$$

马尔可夫不等式: X 是一个非负随机变量且 a > 0, 则

$$\Pr(X \ge a) \le \frac{\mu}{a}, \quad \mu = \mathrm{E}[X]$$

简易证明:
$$\mu = E[X] = \sum_{x} p(x)x \ge \sum_{x>a} p(x)x \ge \sum_{x>a} p(x)a = a \Pr(X \ge a)$$

"信息论是大数定律的巧妙应用"

切比雪夫不等式 (Chebyshev Inequality)

切比雪夫不等式: 考虑一个期望为 μ , 方差为 σ^2 的随机变量 X, 对任意

$$\epsilon > 0$$
, 则

$$\Pr\left(|X - \mu| \ge \epsilon\right) \le \frac{\sigma^2}{\epsilon^2}.$$

切比雪夫不等式 (Chebyshev Inequality)

切比雪夫不等式: 考虑一个期望为 μ , 方差为 σ^2 的随机变量 X, 对任意 $\epsilon > 0$, 则

$$\Pr\left(|X - \mu| \ge \epsilon\right) \le \frac{\sigma^2}{\epsilon^2}.$$

证明: $将(X-\mu)^2$ 视为期望为 σ^2 的非负随机变量,由马尔可夫不等式可得

$$\Pr\left((X - \mu)^2 \ge \epsilon^2\right) \le \frac{\sigma^2}{\epsilon^2}.$$

切比雪夫不等式 (Chebyshev Inequality)

切比雪夫不等式: 考虑一个期望为 μ , 方差为 σ^2 的随机变量 X, 对任意 $\epsilon>0$, 则

$$\Pr\left(|X - \mu| \ge \epsilon\right) \le \frac{\sigma^2}{\epsilon^2}.$$

证明: $\mu(X-\mu)^2$ 视为期望为 σ^2 的非负随机变量,由马尔可夫不等式可得

$$\Pr\left(\left(X - \mu\right)^2 \ge \epsilon^2\right) \le \frac{\sigma^2}{\epsilon^2}.$$

● 也可以写成如下形式:

$$\Pr\left(|X - \mu| \le \epsilon\right) \ge 1 - \frac{\sigma^2}{\epsilon^2},$$

切比雪夫不等式 (Chebyshev Inequality)

切比雪夫不等式: 考虑一个期望为 μ , 方差为 σ^2 的随机变量 X, 对任意 $\epsilon > 0$, 则

$$\Pr\left(|X - \mu| \ge \epsilon\right) \le \frac{\sigma^2}{\epsilon^2}.$$

证明: $\Re(X-\mu)^2$ 视为期望为 σ^2 的非负 随机变量,由马尔可夫不等式可得

$$\Pr\left(\left(X - \mu\right)^2 \ge \epsilon^2\right) \le \frac{\sigma^2}{\epsilon^2}.$$

• 也可以写成如下形式:

$$\Pr\left(|X - \mu| \le \epsilon\right) \ge 1 - \frac{\sigma^2}{\epsilon^2},$$

当
$$\frac{\sigma^2}{\epsilon^2} \to 0$$
 时, $\Pr(|X - \mu| \le \epsilon) \to 1$.

"信息论是大数定律的巧妙应用"

 X_1, X_2, \dots, X_n 为 n 个独立同分布随机变量,且 $Var[X_i] = \sigma^2$.

弱大数定律: 样本均值依概率收敛于数学期望,即对 $\forall \epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) = 1.$$

 X_1, X_2, \dots, X_n 为 n 个独立同分布随机变量,且 $Var[X_i] = \sigma^2$.

弱大数定律:样本均值依概率收敛于数学期望,即对 $\forall \epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) = 1.$$

证明:
$$\mathrm{E}[\bar{X}_n] = \mathrm{E}[X], \ \mathrm{Var}(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$
,由切比雪夫不等式,

 X_1, X_2, \dots, X_n 为 n 个独立同分布随机变量,且 $Var[X_i] = \sigma^2$.

弱大数定律: 样本均值依概率收敛于数学期望, 即对 $∀\epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) = 1.$$

证明:
$$E[\bar{X}_n] = E[X]$$
, $Var(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$, 由切比雪夫不等式,

$$\Pr(|\bar{X}_n - E[X]| \le \epsilon) \ge 1 - \frac{\operatorname{Var}(\bar{X}_n)}{\epsilon^2}$$

 X_1, X_2, \dots, X_n 为 n 个独立同分布随机变量,且 $Var[X_i] = \sigma^2$.

弱大数定律:样本均值依概率收敛于数学期望,即对 $∀\epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) = 1.$$

证明:
$$\mathrm{E}[\bar{X}_n] = \mathrm{E}[X], \ \mathrm{Var}(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$
,由切比雪夫不等式,

$$\Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) \ge 1 - \frac{\mathrm{Var}(\bar{X}_n)}{\epsilon^2} = 1 - \frac{\sigma^2}{n\epsilon^2}$$

 X_1, X_2, \dots, X_n 为 n 个独立同分布随机变量,且 $Var[X_i] = \sigma^2$.

弱大数定律: 样本均值依概率收敛于数学期望, 即对 $∀\epsilon > 0$,

$$\lim_{n\to\infty} \Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) = 1.$$

证明:
$$\mathrm{E}[\bar{X}_n] = \mathrm{E}[X], \ \mathrm{Var}(\bar{X}_n) = \frac{\sigma^2}{n} \xrightarrow{n \to \infty} 0$$
,由切比雪夫不等式,

$$\Pr(|\bar{X}_n - \mathrm{E}[X]| \le \epsilon) \ge 1 - \frac{\mathrm{Var}(\bar{X}_n)}{\epsilon^2} = 1 - \frac{\sigma^2}{n\epsilon^2} \xrightarrow{n \to \infty} 1.$$

向量信源编码定理

- 向量信源编码
- ② 大数定律
- ③ 样本熵和典型集
- ④ 渐近均分性(AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

样本熵 (Sample Entropy)

定义:联合概率分布函数为 P_X 的随机序列 X,其样本熵为

$$\bar{H}(\boldsymbol{X}) = -\frac{1}{n}\log p_{\boldsymbol{X}}$$

样本熵 (Sample Entropy)

定义: 联合概率分布函数为 P_X 的随机序列 X, 其样本熵为

$$\bar{H}(\boldsymbol{X}) = -\frac{1}{n}\log p_{\boldsymbol{X}}$$

当 X_1, X_2, \cdots, X_n 独立同分布,

$$\bar{H}(\boldsymbol{X}) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{X_i}$$

样本熵 (Sample Entropy)

定义: 联合概率分布函数为 P_X 的随机序列 X, 其样本熵为

$$\bar{H}(\boldsymbol{X}) = -\frac{1}{n}\log p_{\boldsymbol{X}}$$

当 X_1, X_2, \cdots, X_n 独立同分布,

$$\bar{H}(\boldsymbol{X}) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{X_i}$$

注意: 与样本均值和数学期望类似:

- 样本熵是一个随机变量
- 真实熵是一个常数

样本熵实例

- 考虑独立同分布的二元随机序列 $X = X_1, X_2, X_3, X_4,$ 且 $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$ 。
- 样本熵的分布(样本总数为 2⁴ = 16)

x_1, x_2, x_3, x_4		ample entropy $-\frac{1}{n}\log p_{\mathbf{X}}(\mathbf{x})$
21,22,23,24	$p_{\mathbf{X}}(\mathbf{X})$	$-\frac{1}{n}\log p\mathbf{\chi}(\mathbf{X})$
0000	0.31641	0.41504
1000	0.10547	0.81128
0100	0.10547	0.81128
0010	0.10547	0.81128
0001	0.10547	0.81128
1100	0.03516	1.20752
1010	0.03516	1.20752
0110	0.03516	1.20752
1001	0.03516	1.20752
0101	0.03516	1.20752
0011	0.03516	1.20752

典型集 (Typical Set)

定义: 令 ϵ 为任意正数,则典型集 $T_{\epsilon}^{(n)}$ 是所有**样本熵与真实熵** " ϵ 接近" 的离散无记忆随机序列 $X \in \mathcal{X}^n$ 的集合,即

$$\mathcal{T}_{\epsilon}^{(n)} = \{ \boldsymbol{X} \in \mathcal{X}^n : |\bar{H}(\boldsymbol{X}) - H(X)| < \epsilon \}$$

典型集 (Typical Set)

定义: 令 ϵ 为任意正数,则典型集 $T_{\epsilon}^{(n)}$ 是所有**样本熵与真实熵** " ϵ 接近" 的离散无记忆随机序列 $X \in \mathcal{X}^n$ 的集合,即

$$\mathcal{T}_{\epsilon}^{(n)} = \{ \boldsymbol{X} \in \mathcal{X}^n : |\overline{H}(\boldsymbol{X}) - H(\boldsymbol{X})| < \epsilon \}$$

- 典型集的元素个数表示为 $|T_{\epsilon}^{(n)}|$;
- 信源集合 \mathcal{X}^n 可以分为典型集 $\mathcal{T}_{\epsilon}^{(n)}$ 及其补集 $\bar{\mathcal{T}}_{\epsilon}^{(n)}$, 即

$$\mathcal{X}^n = \mathcal{T}_{\epsilon}^{(n)} \bigcup \bar{\mathcal{T}}_{\epsilon}^{(n)}$$

典型集实例

• 考虑独立同分布的二元随机序列 $X=X_1,X_2,X_3,X_4$, 且 $p_0=\frac{3}{4},p_1=\frac{1}{4}$ 。 当 $\epsilon=0.01$ 或 $\epsilon=0.45$ 时,找出典型集及其元素个数。

典型集实例

- 考虑独立同分布的二元随机序列 $X = X_1, X_2, X_3, X_4$, 且 $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$ 。 当 $\epsilon = 0.01$ 或 $\epsilon = 0.45$ 时,找出典型集及其元素个数。
- 样本熵的分布(可能存在的样本总数为 2⁴ = 16)

	sample entropy	
x_1, x_2, x_3, x_4	$p_{\mathbf{X}}(\mathbf{x})$	$-\frac{1}{n}\log p_{\mathbf{X}}(\mathbf{x})$
[0000	0.31641	0.41504]
1000	0.10547	0.81128
0100	0.10547	0.81128
0010	0.10547	0.81128
L0001	0.10547	0.81128
T1100	0.03516	1.20752
1010	0.03516	1.20752
0110	0.03516	1.20752
1001	0.03516	1.20752
0101	0.03516	1.20752
L0011	0.03516	1.20752

向量信源编码定理

- 向量信源编码
- ② 大数定律
- ③ 样本熵和典型集
- ④ 渐近均分性(AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

"信息论是大数定律的巧妙应用"

主要性质:

当 $n \to \infty$ 且 $\epsilon \to 0$ 时:

① 近似等概: 若 $x \in T_{\epsilon}^{(n)}$,则 $p_x \to 2^{-nH(X)}$,典型序列近似等概

主要性质:

当 $n \to \infty$ 且 $\epsilon \to 0$ 时:

① 近似等概: $\dot{x} \in \mathcal{T}_{\epsilon}^{(n)}$, 则 $p_x \to 2^{-nH(X)}$, 典型序列近似等概

② 高概率: $\Pr(X \in \mathcal{T}_{\epsilon}^{(n)}) \to 1$, 典型集的概率很高

主要性质:

当 $n \to \infty$ 且 $\epsilon \to 0$ 时:

① 近似等概: 若 $x \in \mathcal{T}_{\epsilon}^{(n)}$, 则 $p_x \to 2^{-nH(X)}$, 典型序列近似等概

② 高概率: $\Pr(X \in \mathcal{T}_{\epsilon}^{(n)}) \to 1$, 典型集的概率很高

③ 个数少: $|\mathcal{T}^{(n)}_{\epsilon}| \to 2^{nH(X)}$, 典型集元素个数很少, $|\mathcal{T}^{(n)}_{\epsilon}| \ll |\mathcal{X}^n|$

主要性质:

当 $n \to \infty$ 且 $\epsilon \to 0$ 时:

① 近似等概: 若 $x \in \mathcal{T}_{\epsilon}^{(n)}$, 则 $p_x \to 2^{-nH(X)}$, 典型序列近似等概

② 高概率: $\Pr(X \in \mathcal{T}_{\epsilon}^{(n)}) \to 1$, 典型集的概率很高

③ 个数少: $|\mathcal{T}^{(n)}_{\epsilon}| \to 2^{nH(X)}$,典型集元素个数很少, $|\mathcal{T}^{(n)}_{\epsilon}| \ll |\mathcal{X}^n|$

注: 性质 1 (近似等概性) 直接由样本熵和典型集定义可得

$$\bar{H}(X) = -\frac{1}{n} \log p_X \xrightarrow[\epsilon \to 0]{n \to \infty} H(X).$$

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n,$ 其概率分布为 p(x), 则 $\forall \epsilon>0,$ 有

$$\lim_{n\to\infty}\Pr(\boldsymbol{X}\in\mathcal{T}_{\epsilon}^{(n)})=1$$

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n,$ 其概率分布为 p(x), 则 $\forall \epsilon>0,$ 有

$$\lim_{n\to\infty} \Pr(\mathbf{X} \in \mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明: 对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量: $Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n$, 其概率分布为 p(x), 则 $\forall \epsilon>0$, 有

$$\lim_{n\to\infty} \Pr(\boldsymbol{X} \in \mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明:对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量:
$$Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$$

$$\Rightarrow \bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i = \bar{H}(\boldsymbol{X})$$

命题: 独立同分布的二元随机序列 $X=X_1,X_2,\cdots,X_n$, 其概率分布为 p(x), 则 $\forall \epsilon>0$, 有

$$\lim_{n\to\infty} \Pr(\boldsymbol{X}\in\mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明:对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量:
$$Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$$

$$\Rightarrow \bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i = \bar{H}(\boldsymbol{X})$$

$$\Rightarrow \mathrm{E}[Y_i] = \mathrm{E}[Y] = H(X)$$

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n$, 其概率分布为 p(x), 则 $\forall \epsilon>0$, 有

$$\lim_{n\to\infty} \Pr(\mathbf{X} \in \mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明:对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量:
$$Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$$

$$\Rightarrow \bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i = \bar{H}(\boldsymbol{X})$$

$$\Rightarrow \mathrm{E}[Y_i] = \mathrm{E}[Y] = H(X)$$

由大数定律: $\lim_{n\to\infty} \Pr(|\bar{Y}_n - \mathbf{E}[Y]| \le \epsilon) = 1$, 即:

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n$, 其概率分布为 p(x), 则 $\forall \epsilon>0$, 有

$$\lim_{n\to\infty} \Pr(\boldsymbol{X} \in \mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明:对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量:
$$Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$$

$$\Rightarrow \bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i = \bar{H}(\boldsymbol{X})$$

$$\Rightarrow \mathrm{E}[Y_i] = \mathrm{E}[Y] = H(X)$$

由大数定律: $\lim_{n\to\infty} \Pr(|\bar{Y}_n - \mathbf{E}[Y]| \le \epsilon) = 1$, 即:

$$\lim_{n\to\infty} \Pr(|\bar{H}(\boldsymbol{X}) - \underline{H}(\boldsymbol{X})| < \epsilon) = 1$$

命题: 独立同分布的二元随机序列 $\pmb{X}=X_1,X_2,\cdots,X_n$, 其概率分布为 p(x), 则 $\forall \epsilon>0$, 有

$$\lim_{n\to\infty} \Pr(\boldsymbol{X}\in\mathcal{T}_{\epsilon}^{(n)}) = 1$$

证明:对独立同分布 (IID) 的序列 $\{X_i\}$,

IID 随机变量:
$$Y_i \equiv \bar{H}(X_i) = -\log P_{X_i}, \forall i$$

$$\Rightarrow \bar{Y}_n \equiv \frac{1}{n} \sum_{i=1}^n Y_i = \bar{H}(\boldsymbol{X})$$

$$\Rightarrow \mathrm{E}[Y_i] = \mathrm{E}[Y] = H(X)$$

由大数定律: $\lim_{n\to\infty} \Pr(|\bar{Y}_n - \mathbf{E}[Y]| \le \epsilon) = 1$, 即:

$$\lim_{n \to \infty} \Pr(|\bar{H}(\boldsymbol{X}) - \underline{H}(\boldsymbol{X})| < \epsilon) = 1 \quad \Rightarrow \quad \lim_{n \to \infty} \Pr(\boldsymbol{X} \in \mathcal{T}_{\epsilon}^{(n)}) = 1$$

命题: 当 n 足够大时, 典型集 $\mathcal{T}_{\epsilon}^{(n)}$ 的元素个数接近 $2^{nH(X)}$, 即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

命题: 当 n 足够大时,典型集 $\mathcal{T}^{(n)}_{\epsilon}$ 的元素个数接近 $2^{nH(X)}$,即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x})$$

命题: 当 n 足够大时,典型集 $\mathcal{T}^{(n)}_{\epsilon}$ 的元素个数接近 $2^{nH(X)}$,即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x})$$

命题: 当 n 足够大时,典型集 $\mathcal{T}^{(n)}_{\epsilon}$ 的元素个数接近 $2^{nH(X)}$,即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x}) \to |\mathcal{T}_{\epsilon}^{(n)}| 2^{-nH(X)}$$

命题: 当 n 足够大时,典型集 $\mathcal{T}^{(n)}_{\epsilon}$ 的元素个数接近 $2^{nH(X)}$,即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x}) \to |\mathcal{T}_{\epsilon}^{(n)}| 2^{-nH(X)}$$

$$\mathbb{P}$$
, $|\mathcal{T}_{\epsilon}^{(n)}| o 2^{nH(X)}$

性质 3 (个数少): 典型集元素个数很少

命题: 当 n 足够大时, 典型集 $\mathcal{T}_{\epsilon}^{(n)}$ 的元素个数接近 $2^{nH(X)}$, 即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x}) \to |\mathcal{T}_{\epsilon}^{(n)}| 2^{-nH(X)}$$

$$\mathbb{P}$$
, $|\mathcal{T}_{\epsilon}^{(n)}| o 2^{nH(X)}$

● 当 X 不是均匀分布时, 典型集占比趋于 0:

性质 3 (个数少): 典型集元素个数很少

命题: 当 n 足够大时, 典型集 $\mathcal{T}_{\epsilon}^{(n)}$ 的元素个数接近 $2^{nH(X)}$, 即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x}) \to |\mathcal{T}_{\epsilon}^{(n)}| 2^{-nH(X)}$$

$$\mathbb{P}$$
, $|\mathcal{T}_{\epsilon}^{(n)}| o 2^{nH(X)}$

● 当 X 不是均匀分布时, 典型集占比趋于 0:

$$\frac{2^{nH(X)}}{2^{n\log|\mathcal{X}|}} = 2^{n(H(X) - \log|\mathcal{X}|)}$$

性质 3 (个数少): 典型集元素个数很少

命题: 当 n 足够大时, 典型集 $\mathcal{T}_{\epsilon}^{(n)}$ 的元素个数接近 $2^{nH(X)}$, 即:

$$|\mathcal{T}_{\epsilon}^{(n)}| \to 2^{nH(X)}$$

$$1 = \sum_{\boldsymbol{x}} p(\boldsymbol{x}) \to \sum_{\boldsymbol{x} \in \mathcal{T}_{\epsilon}^{(n)}} p(\boldsymbol{x}) \to |\mathcal{T}_{\epsilon}^{(n)}| 2^{-nH(X)}$$

 \mathbb{F}_{r} , $|\mathcal{T}_{\epsilon}^{(n)}| o 2^{nH(X)}$

● 当 X 不是均匀分布时, 典型集占比趋于 0:

$$\frac{2^{nH(X)}}{2^{n\log|\mathcal{X}|}} = 2^{n(H(X) - \log|\mathcal{X}|)} \xrightarrow[n \to \infty]{H(X) < \log|\mathcal{X}|} 0$$

AEP 实例

• 考虑独立同分布二元随机变量 $X = X_1, X_2, \dots, X_n$, 且 $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$ 。 当 $\epsilon = 0.1$ 且 n = 8, 16, 32, 256 时,找出典型集及其概率。

AEP 实例

• 考虑独立同分布二元随机变量 $X = X_1, X_2, \dots, X_n$, 且 $p_0 = \frac{3}{4}, p_1 = \frac{1}{4}$ 。 当 $\epsilon = 0.1$ 且 n = 8, 16, 32, 256 时,找出典型集及其概率。

渐近均分性

渐近均分性: 一小部分近似等概的序列占了绝大部分可能性。

向量信源编码定理

- 向量信源编码
- ② 大数定律
- ③ 样本熵和典型集
- ④ 渐近均分性(AEP)
- ⑤ 向量信源编码定理的证明

注: 典型集和渐近均分性是信息论的基础

信源编码定理及其证明

定理 (向量信源编码定理): 令 $X=(X_1,X_2,\cdots,X_n)$ 为 n 维独立同分布 随机序列,其中 $X_i\sim p(x)$,其信息熵为 H(X)。则,对任意 $\epsilon>0$,当 n 足够大时,存在一种码率为 n 的向量编码满足:

$$R \le H(X) + \epsilon$$
.

"存在一种向量编码":接下来给出一个编码策略

$$\diamondsuit x = x_1, x_2, \cdots, x_n$$
:

• 如果 $x \in T_{\epsilon}^{(n)}$, 将 $T_{\epsilon}^{(n)}$ 中各个元素与如下集合对应:

$$\{1,2,3,\cdots,|\mathcal{T}_{\epsilon}^{(n)}|\}$$

码字为
$$C(x) = "0" + "对应索引"$$

 $\diamondsuit x = x_1, x_2, \cdots, x_n$:

• 如果 $x \in T_{\epsilon}^{(n)}$, 将 $T_{\epsilon}^{(n)}$ 中各个元素与如下集合对应:

$$\{1,2,3,\cdots,|\mathcal{T}_{\epsilon}^{(n)}|\}$$

码字为
$$C(x) = "0" + "对应索引"$$

• 如果 $x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}$,则不压缩。码字为 C(x) = "1" + "x 本身"

 $\diamondsuit x = x_1, x_2, \cdots, x_n$:

• 如果 $x \in T_{\epsilon}^{(n)}$, 将 $T_{\epsilon}^{(n)}$ 中各个元素与如下集合对应:

$$\{1,2,3,\cdots,|\mathcal{T}_{\epsilon}^{(n)}|\}$$

码字为
$$C(x) = "0" + "对应索引"$$

ullet 如果 $oldsymbol{x} \in ar{\mathcal{T}}_{\epsilon}^{(n)}$,则不压缩。码字为 $C(oldsymbol{x}) = "1" + "oldsymbol{x}$ 本身"

码率计算:

$$\Pr(\mathbf{X} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}) \to 0 \Rightarrow R_{\mathbf{x} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \to 0$$

因此,

$$R = R_{\mathbf{x} \in \mathcal{T}_{\epsilon}^{(n)}} + R_{\mathbf{x} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}}$$

码率计算:

$$\Pr(\boldsymbol{X} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}) \to 0 \Rightarrow R_{\boldsymbol{x} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \to 0$$

因此,

$$\begin{split} R &= R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + R_{x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \\ &\to R_{x \in \mathcal{T}_{\epsilon}^{(n)}} \qquad \text{``} = R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + \epsilon'\text{''} \end{split}$$

码率计算:

$$\begin{split} \Pr(\pmb{X} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}) &\to 0 \Rightarrow R_{x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \to 0 \\ \mathbb{E} 此 \,, \\ R &= R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + R_{x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \\ &\to R_{x \in \mathcal{T}_{\epsilon}^{(n)}} \qquad \text{``} = R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + \epsilon' \text{'`} \\ &= \frac{\log |\mathcal{T}_{\epsilon}^{(n)}| + 1}{n} \end{split}$$

码率计算:

$$\begin{split} \Pr(\textbf{\textit{X}} \in \bar{\mathcal{T}}_{\epsilon}^{(n)}) &\to 0 \Rightarrow R_{x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \to 0 \\ \text{因此}\,, \\ R &= R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + R_{x \in \bar{\mathcal{T}}_{\epsilon}^{(n)}} \\ &\to R_{x \in \mathcal{T}_{\epsilon}^{(n)}} \qquad \text{``} = R_{x \in \mathcal{T}_{\epsilon}^{(n)}} + \epsilon'\text{'`} \\ &= \frac{\log |\mathcal{T}_{\epsilon}^{(n)}| + 1}{n} \\ &\leq \textit{H}(X) + \epsilon. \qquad \text{``} \epsilon = \epsilon' + \frac{1}{n}\text{''} \end{split}$$

总结

- 向量信源编码优于单信源编码
- 单信源编码最差可达码率为H(X)+1
- 向量信源编码最差可达码率为 $H(X) + \epsilon$ (当 $n \to \infty$ 时 $\epsilon \to 0$)
- 信息论的核心思路: **大系统** $(n \to \infty)$ **下进行证明**
- 典型集和渐近均分性给出了信源编码定理的简易证明

作业

- 复习授课内容
- 预习马尔可夫链和熵率
- 独立完成习题

令 $X = X_1, \dots, X_n$ 为 IID 随机变量, 其分布为 $p_X(x_1, \dots, x_n)$, 计算:

$$\lim_{n\to\infty} \left(p_{\mathbf{X}}(x_1,\ldots,x_n)\right)^{1/n}$$