implementSA

自动根据输入的码元信号,码字长度,码字数量进行编码,输出码集,码集最小码字响应距离,所有码字响应距离。

码元由码元信号在输入信号矩阵中的下标决定,由 0 起始(下标 1 的码元信号对应码元 0)。

1. 输入参数:

- % symbolSignals 码元信号(多维矩阵:通道数*信号点数*码元数量)。
- % codelength 码字长度,即目标需以几位码元编码。
- % reqCodewordNum 所需码字数量,即需编码多少目标。
- % reheat 算法重载次数 (缺省时默认为 0)。重载可能得到更好结果,但会消耗更多时间。
 - % fig 是否绘制码字响应距离图(缺省时默认为'y', 取消'n')

输出参数:

- % regCodeword 目标编码码集
- % minCodewordEnergyDiff 最小码字响应距离
- % reqCodewordEnergyDiffMatrix 码字响应距离

Example

示例数据 Example symbolSignals.mat 中有 9*500*4 矩阵数据,模拟 4 个 9 通道信号点数为 500 的 SSVEP 信号,以 symbolSignals 参数输入。

码字长度 codeLength 设置为 4。

编码 40 目标故设置 regCodeword = 40。

运行

[reqCodeword, minCodewordEnergyDiff, reqCodewordEnergyDiffMatrix] = implementSA (symbolSignals, codeLength, reqCodewordNum)

输出结果:

reqCodeword

reqCodeword ×				
40x4 double				
	1	2	3	4
1	0	0	2	2
2	0	0	3	0
3	0	1	0	2
4	0	2	1	0
5	0	2	3	3
6	0	3	1	3
7	0	3	2	0
8	1	0	1	3
9	1	0	2	1
10	1	0	3	2

minCodewordEnergyDiff

reqCodewordEnergyDiffMatrix: 码字编号与 reqCodeword 中对应。

以 reqCodewordEnergyDiffMatrix 绘图:

