

REC'D 2 6 JUN 2003
WIPO PCT

Kongeriget Danmark

Patent application No.:

PA 2002 00763

Date of filing:

17. May 2002

Applicant:

Lica Pharmaceuticals A/S

(Name and address)

Fruebjergvej 3 2100 København Ø

Denmark ·

Title: Diamino-functional chalcones.

IPC: -

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent- og Varemærkestyrelsen Økonomi- og Erhvervsministeriet

18. June 2003

John Nielsen

BEST AVAILABLE COPY

PATENT- OG VAREMÆRKESTYRELSEN

Patent- og Varemærkestyrelsen

17 MAJ 2002

Modtaget

FIELD OF THE INVENTION

DIAMINO-FUNCTIONAL CHALCONES

The present invention relates to a novel class of chalcone derivatives and analogues and to their use as pharmaceutically active agents, in particular against bacterial and parasitic infections

Furthermore, the invention relates to a method of predicting whether a chemical compound has a potential inhibitory effect against an organism selected from *Helicobacter pylori* and *Plasmodium falciparum*. The prediction is based on the ability of the chemical compound to act as an inhibitior of the enzyme dihydroorotate dehydrogenase which is involved in the synthesis of pyrimidine in prokaryotic as well as eukaryotic cells such as bacteria, parasites, fungi, helminths and any type of mammalian cells such as human cells

BACKGROUND OF THE INVENTION

Chalcones, e.g., for use against parasitic infections are known from earlier patent applications assigned to the applicant, e.g. WO 93/17671 and WO 99/00114

The bioavailability for several of the known chalcones is low due to the low solubility of the compounds. The compounds do not typically dissolve in the intestine and are therefore not available for absorption.

The spread of antimicrobial resistance determinants particular among nosocomial bacterial pathogens is an increasing problem. Such resistant pathogens include *Staphylococcus aureus* resistant to methicillin and thus to all β-lactam-antibiotics and Enterococci resistant to vancomycin (VRE). Such resistant bacterial pose a significant therapeutic challenge and bacterial strains resistant to all currently available antimicrobials are emerging. Furthermore, bacterial species intrinsically resistant to commonly employed antimicrobials are being recognized as important opportunistic pathogens in the setting of long-term immunocompromized patients. An example of this is *Stenotrophomonas maltophilia* which possesses a β-lactamase rendering the bacteria intrinsically resistant to carbapenems. As cross-resistance within a given class of antibiotics often occurs the development of new classes of antibiotics is a neccisity to counter the emerging threat of bacterial resistance.

Thus, there is a need for improved chalcone derivatives for therapeutic or prophylactic use against parasites and bacteria

35 BRIEF DESCRIPTION OF THE FIGURES

Figure 1 illustrates the general synthetic scheme for the preparation of diamino-functional chalcones where the aromatic rings are phenyl rings $R^4 = H$ (yielding the B ring) or CH_3 (yielding the A ring), R^1 , R^2 , R^3 and Z are as defined herein

APPLICATION/31663DK01/JT/JT/17-05-02

2 1 Figure 2 illustrates the scheme for the preparation of diamino (aminoacylamino)-functional chalcones where the aromatic rings are phenyl R^1 , R^2 and R^3 are as defined herein, R_4 = H or CH_3 , and $Y=(C(R^H)_2)_{n,1}$

5 Figure 3 illustrates the synthesis of diamino-dihydrochalcones R¹, R², R³ and Z are as defined herein

Figure 4 illustrates a time-kill curve of I-031 against S aureus ATCC29213 Bacterial growth is inhibited at concentrations at or above the MIC (MIC=37 5 µM). As CFU counts per mi decreases at concentrations of compound above the MIC, the compound is bactericidal. The reduction in CFU/ml is faster as the concentration of test compound increases above the MIC. This indicates that the bactericidal action of the compound is primarily dependent on the concentration of the test compound.

15 Figure 5 illustrates a time-kill curve of I-070 against S aureus ATCC29213—Bacterial growth is inhibited at concentrations of test compound at or above the MIC (MIC=9 4 μM)

As CFU counts per ml decreases at concentrations of compound above the MIC, the compound is bactericidal. The rate of reduction of CFU/ml is not significantly affected by increasing concentrations of test compound. Thus, the bactericidal action of the compound is primarily dependent on incubation time.

Figure 6 illustrates a dose-respons curve of LicA and one of the novel diamino-chalcones (I-103) at *Plasmodium falciparum* As shown at the figure, I-103 is 10 times more potent than LicA

DESCRIPTION OF THE INVENTION

25

The present inventors have found that the diamino-functional chalcone defined herein exhibit interesting biological properties combined with improved metabolic and physicochemical properties which make the compound useful as drug substances, in particular as antiparasitic agents, bacteriostatic agents, and bacteriocidal agents

It is believed that the diamino group or groups of the diamino-functional chalcone will be charged according to pH of the medium and the pKa of the compound. The solubility of the solubility of the charged compounds is many times higher than the solubility of the neutral compounds. As the diamino-functional chalcones will be partially charged (i.e. soluble) at the pH in the intestine, they will dissolve in the gastric juices and be available for absorption. The bioavailability of the diamino-functional chalcones will therefore be improved many times compared to the known neutral chalcones making the compounds generally useful as drug candidates. Also, the diamino-functional chalcones have different pKa values which enable the selection of a chalcone derivative with optimal charged/non-charged ratio at a given pH value.

APPLICATION/31663DK01/JT/JT/17-05-02

Ŧ

The usefulness of the known chalcones as drug candidates have been limited by the metabolism of the compounds resulting in short half-lives *in vivo*. The inventors have now found that introduction of a diamino group in the chalcone derivative changes the metabolic properties and the compounds prepared show improved metabolic stability.

Futhermore, the inventors have found that the diamino-functional chalcones defined herein exhibit excellent bacteriocidal and bacteriostatic properties, even against multi-resistant bacteria strains

10 Thus, the present invention provides chalcone derivatives and analogues as defined in claim 1, i.e. a compound of the general formula

$$Y^{1}(X^{1})-Ar^{1}-C(=O)-V-Ar^{2}(X^{2})Y^{2}$$

wherein Ar¹ and Ar² independently are selected from aromatic rings (aryl) and heteroaromatic rings (heteroaryl),

V designates $-CH_2-CH_2-$, -CH=CH- or -C=C-, preferably -CH=CH-,

20 one or both of Y^1 and Y^2 independently represent at least one, such as 1-2, e.g. one, diamino-functional substituent(s) of the formula

$$-NR^3-Z-N(R^1)R^2$$

wherein Z is a biradical $-(C(R^H)_2)_n$, wherein n is an integer in the range of 1-6, preferably 2-4, such as 2-3, and each R^H is independently selected from hydrogen and C_{16} -alkyl, or two R^H on the same carbon atom may designate =0,

R¹ and R² independently are selected from hydrogen, optionally substituted C₁ 12-alkyl,
30 optionally substituted C₂ 12-alkenyl, optionally substituted C₄ 12-alkadienyl, optionally substituted C₄ 12-alkadienyl, optionally substituted C₁ 12-alkynyl, optionally substituted C₁ 12-alkoxycarbonyl, optionally substituted C₁ 12-alkylcarbonyl, optionally substituted aryl, optionally substituted aryloxycarbonyl, optionally substituted aryloxycarbonyl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxycarbonyl, amino-C₁ 6-alkyl-aminocarbonyl, amino-C₁ 6-alkyl-aminocarbonyl, or R¹ and R² together with the nitrogen atom to which they are attached (-N(R¹)R²) form an optionally substituted nitrogen-containing heterocyclic ring,

 R^3 is selected from hydrogen, $C_{1\,6}$ -alkyl, and $C_{1\,6}$ -alkylcarbonyl, said alkyl and alkylcarbonyl optionally carrying substituent(s) selected from halogen, hydroxy, $C_{1\,6}$ -alkoxy, carboxy, $C_{1\,6}$ -alkoxycarbonyl, $C_{1\,6}$ -alkylcarbonyl, amino, mono- and di($C_{1\,6}$ -alkyl)amino, and aryl optionally substituted 1-3 times with $C_{1\,4}$ -alkyl, $C_{1\,4}$ -alkoxy, nitro, cyano, amino or halogen, or R^1 and R^3 together form a biradical Z^1 which is as defined for Z,

 X^{1} and X^{2} independently designates 0-5, preferably 0-4, such as 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected from optionally substituted $C_{1\ 12}$ -alkyl, optionally substituted $C_{2\ 12}$ -alkenyl, optionally substituted $C_{4\ 12}$ alkadienyl, optionally substituted $C_{6\ 12}$ -alkatrienyl, optionally substituted $C_{2\ 12}$ -alkynyl, 5 hydroxy, optionally substituted C_{1-12} -alkoxy, optionally substituted $C_{2\ 12}$ -alkenyloxy, carboxy, optionally substituted C_{1-12} -alkoxycarbonyl, optionally substituted C_{1-12} alkylcarbonyl, formyl, C1 6-alkylsulphonylamino, optionally substituted aryl, optionally substituted aryloxycarbonyl, optionally substituted aryloxy, optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted 10 heteroaryl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxy, optionally substituted heteroarylcarbonyl, optionally substituted heteroarylamino, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxycarbonyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylcarbonyl, optionally substituted heterocyclylamino, 15 heterocyclylsulphonylamino, amino, mono- and di($C_{1.6}$ -alkyl)amino, carbamoyl, mono- and $d_1(C_1)_6$ -alkyl)amınocarbonyl, amıno- C_1 _6-alkyl-amınocarbonyl, mono- and $d_1(C_1)_6$ alkyl)amıno- C_{16} -alkyl-amınocarbonyl, C_{1-6} -alkylcarbonylamıno, amıno- C_{16} -alkylcarbonylamino, mono- and $d_1(C_1 _6$ -alkyl)amino- $C_1 _6$ -alkyl-carbonylamino, cyano, guanidino, carbamido, $C_{1\ 6}$ -alkanoyloxy, $C_{1\ 6}$ -alkylsulphonyl, $C_{1\ 6}$ -alkylsulphonyl-20 oxy, aminosulfonyl, mono- and $d_1(C_{16}$ -alkyl)aminosulfonyl, nitro, optionally substituted $C_{1.6}$ -alkylthio, and halogen, where any nitrogen-bound $C_{1.6}$ -alkyl may be substituted with hydroxy, C_{16} -alkoxy, C_{26} -alkenyloxy, amino, mono- and di(C_{16} -alkyl)amino, carboxy, C_{16} alkylcarbonylamino, halogen, $C_{1\ 6}$ -alkylthio, $C_{1\ 6}$ -alkyl-sulphonyl-amino, or guanidine,

25 and salts thereof

The substituents R¹ and R² carried by the one nitrogen atom of the diamino substituent, and R³ carried by the other nitrogen atom of the diamino substituent are believed to slightly alter the pKa value of the chalcone derivative. Thus, the particular selection of the groups R¹, R² and R³ can be used to "fine-tune" the pKa value in view of the particular condition or disease and the intended route of administration.

In one embodiment, R¹ and R² are independently selected from hydrogen, optionally substituted C₂ 1²-alkenyl, optionally substituted C₂ 1²-alkenyl, optionally substituted C₂ 1²-alkynyl, optionally substituted C₁-1²-alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, amino-carbonyl, mono- and di(C₁ 6-alkyl)aminocarbonyl, amino-C₁ 6-alkyl-aminocarbonyl, and mono- and di(C₁ 6-alkyl)amino-C₁ 6-alkyl-aminocarbonyl In particular R¹ and R² are independently selected from hydrogen, optionally substituted C₁-6-alkyl, optionally substituted C₁ 6-alkylcarbonyl, heteroarylcarbonyl, aminocarbonyl, mono- and di(C₁ 6-alkyl)amino-C₁ 6-alkyl-aminocarbonyl, amino-C₁ 6-alkyl-aminocarbonyl

In another embodiment, R^1 and R^2 together with the nitrogen atom to which they are attached $(-N(R^1)R^2)$ form an optionally substituted nitrogen-containing heterocyclic ring

In a further embodiment, R³ is selected from hydrogen and methyl, in particular methyl

The selection of the substituents X^1 and X^2 is not very critical. Thus, it is believed that these substituents can be chosen fairly freely

However, in still a further embodiment, X1 and X2 independently designates 0-4, such as 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected from optionally substituted $C_{1\ 12}$ -alkyl, hydroxy, optionally substituted $C_{1\-12}$ -alkoxy, optionally 10 substituted $C_{2\ 12}$ -alkenyloxy, carboxy, optionally substituted $C_{1\ 12}$ -alkylcarbonyl, formyl, $C_{1\,6}$ -alkylsulphonylamıno, optionally substituted aryl, optionally substituted aryloxycarbonyl, optionally substituted aryloxy, optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, optionally substituted heteroarylcarbonyl, optionally 15 substituted-heteroaryloxy, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino, amino, mono- and $di(C_{16}$ -alkyl)amino, carbamoyl, mono- and $di(C_{1-6}$ -alkyl)aminocarbonyl, amino- $C_{1\ 6}$ -alkyl-aminocarbonyl, mono- and di($C_{1\ 6}$ -alkyl)amino- $C_{1\ 6}$ -alkyl-aminocarbonyl, $C_{1\ 6}$ alkylcarbonylamıno, amıno- $C_{1\,6}$ -alkyl-carbonylamıno, mono- and dı($C_{1\,6}$ -alkyl)amıno- $C_{1\,6}$ -20 alkyl-carbonylamıno, guanıdıno, carbamıdo, $C_{1\,6}$ -alkylsulphonyl, $C_{1\,6}$ -alkylsulphinyl, $C_{1\,6}$ alkylsulphonyloxy, optionally substituted $C_{1\,6}$ -alkylthio, aminosulfonyl, mono- and di($C_{1\,6}$ alkyl)amınosulfonyl, and halogen, where any nitrogen-bound C_{1-6} -alkyl may be substituted with hydroxy, $C_{1\,6}$ -alkoxy, and/or halogen, in particular X^1 and X^2 independently designates 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected 25 from optionally substituted C_1 6-alkyl, hydroxy, optionally substituted C_1 6-alkoxy, carboxy, optionally substituted C_{1} 6-alkylcarbonyl, C_{λ} 6-alkylsulphonylamino, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, heteroarylsulphonylamino, amino, mono- and $di(C_{16}$ -alkyl)amino, carbamoyl, C_{16} -alkylcarbonylami-30 no, guanidino, carbamido, optionally substituted C_{16} -alkylthio, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino and halogen, where any nitrogen-bound C_{1} 6-alkyl may be substituted with hydroxy, C₁₋₆-alkoxy, and/or halogen

35 The group V is relevant with respect to the spatial orientation of the rings Ar^{2} and Ar^{2} . Thus, the group V may be -CH₂-CH₂-, -CH=CH- or -C \equiv C- Preliminary results have showns that the embodiments wherein V designates -CH=CH- yields valuable chalcone derivatives

The expression "chalcone derivative" has been assigned to the compounds of the above formula in that the overall structure namely Ar¹-C(=O)-C-C-Ar² resembles that of the chalcone structure. This being said, Ar¹ and Ar² are selected from aromatic rings and heteroaromatic rings. It is currently believed that particularly interesting compounds are those where at least one of Ar¹ and Ar², preferably both, are aromatic rings, in particular phenyl rings. This being said, the inventors envisage that the functionality of the

compounds may be substantially preserved (or even improved) when one or both of ${\rm Ar}^1$ and ${\rm Ar}^2$ are heteroaromatic rings

In one embodiment, at least one or Ar¹ and Ar² is selected from thiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, thiophenyl, quinolyl, isoquinolyl, and indolyl

In another embodiment, both of Ar^1 and Ar^2 are phenyl rings and Y^1 represent at least one diamino-functional substituent

In a further embodiment, X² represents at least one substituent selected from C₁₋₆-alkyl, C_{1 6}-alkoxy, C_{1 6}-alkylcarbonyl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, mono- and di(C_{1 6}-alkyl)amino, C_{1 6}-alkylcarbonylamino, optionally substituted substituted C_{1 6}-alkylthio, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino and halogen, in particular, X² represents at least two halogen atoms

The Z group represents the biradical between the two nitrogen atoms of the diamino functionality. This group Z is typically a biradical $-(C(R^H)_2)_n$, wherein n is an integer in the range of 1-6, preferably 2-4, such as 2-3, where each R^H is independently selected from hydrogen and C_{1-6} -alkyl, or two R^H on the same carbon atom may designate =O A particular example of Z is $-(CH_2)_n$ - wherein n is 2-4, such as 2-3

25 Thus, in a particular embodiment, one of Y¹ and Y² represent a substituent of the formula

wherein R^3 is selected from hydrogen and methyl, R^1 and R^2 is selected from hydrogen and 30 $C_{1.6}$ -alkyl Furthermore, V is preferably -CH=CH-, and Ar 1 and Ar 2 both are phenyl rings

In a further embodiment, one of Y1 and Y2 represents a substituent of the formula

$$-NR^3-C(=O)-(CH_2)_1 + N(R^1)R^2$$

wherein R^3 is selected from hydrogen and methyl, R^1 and R^2 is selected from hydrogen and $C_{1.6}$ -alkyl Furthermore, V is preferably -CH=CH-, and Ar 1 and Ar 2 both are phenyl rings

Definitions

40

In the present context, the term "bacteriostatic" is intended to describe an antimicrobial activity of a test compund, characterized by an inhibition of bacterial growth in the absence of a reduction of viable bacteria (bacterial kill) during incubation with the test

compound, as evidenced in the killing curve determination by a stationary number of colony forming units (CFU) during incubation time

In the present context, the term "bacteriocidal" is intended to describe an antimicrobial activity of a test compound, characterized by the reduction of viable bacteria (bacterial kill) during incubation with the test compound, as evidenced in the killing curve determination by a reduction of colony forming units (CFU) during incubation time

In the present contest, the term "antiparasitic" is intended to describe the ability of a test compound to upon incubation in vitro with a culture of parasites, e.g. *Leishmania major* or *Plasmodium falciparum*, to inhibit metabolic labelling of the parasites by at least 50% compared to mock treated control cultures

In the present context, the term "C_{1 12}-alkyl" is intended to mean a linear, cyclic or branched hydrocarbon group having 1 to 12 carbon atoms, such as methyl, ethyl, propyl, iso-propyl, cyclopropyl, butyl, tert-butyl, iso-butyl, cyclobutyl, pentyl, cyclopentyl, hexyl, cyclohexyl, etc Analogously, the term "C_{1 6}-alkyl" is intended to mean a linear, cyclic or branched hydrocarbon group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, iso-propyl, pentyl, cyclopentyl, hexyl, cyclohexyl, and the term "C_{1 4}-alkyl" is intended to cover linear, cyclic or branched hydrocarbon groups having 1 to 4 carbon atoms, e g methyl, ethyl, propyl, iso propyl, cyclopropyl, butyl, iso-butyl, tert-butyl, cyclobutyl

Whenever the term ${}^{\text{"C}_{1-12}\text{-alkyl"}}$ is used herein, it should be understood that a particularly interesting embodiment thereof is ${}^{\text{"C}_{1-6}\text{-alkyl"}}$

Similarly, the terms "C_{2 12}-alkenyl", "C_{4 12}-alkadienyl", and "C_{6 12}-alkatrienyl" are intended to cover linear, cyclic or branched hydrocarbon groups having 2 to 12, 4 to 12, and 6 to 12, carbon atoms, respectively, and comprising one, two, and three unsaturated bonds, respectively Examples of alkenyl groups are vinyl, allyl, butenyl, pentenyl, hexenyl, heptadecaenyl Examples of alkadienyl groups are butadienyl, pentadienyl, heptadienyl, heptadienyl, heptadecadienyl Examples of alkatrienyl groups are hexatrienyl, heptatrienyl, octatrienyl, and heptadecatrienyl Preferred examples of alkenyl are vinyl, allyl, butenyl, especially allyl

35 Similarly, the term "C_{2 12}-alkynyl" is intended to mean a linear or branched hydrocarbon group having 2 to 12 carbon atoms and comprising a triple bond Examples hereof are ethynyl, propynyl, butynyl, octynyl, and dodecaynyl

Whenever the terms " $C_{2\ 12}$ -alkenyl", " $C_{4\ 12}$ -alkadienyl", " $C_{6\ 12}$ -alkatrienyl", and " $C_{2\ 12}$ -40 alkynyl" are used herein, it should be understood that a particularly interesting embodiment thereof are the variants having up to six carbon atoms

In the present context, i.e. in connection with the terms "alkyl", "alkenyl", "alkadienyl", "alkatrienyl", and "alkynyl", the term "optionally substituted" is intended to mean that the

group in question may be substituted one or several times, preferably 1-3 times, with group(s) selected from hydroxy (which when bound to an unsaturated carbon atom may be present in the tautomeric keto form), C1 6-alkoxy (i e C1 6-alkyl-oxy), C2 6-alkenyloxy, carboxy, oxo (forming a keto or aldehyde functionality), C_{16} -alkoxycarbonyl, C_{16} -5 alkylcarbonyl, formyl, aryl, aryloxycarbonyl, aryloxy, arylamino, arylcarbonyl, heteroaryl, heteroarylamino, heteroaryloxycarbonyl, heteroaryloxy, heteroarylcarbonyl, amino, monoand di(C_{1 6}-alkyl)amino, carbamoyl, mono- and di(C_{1 6}-alkyl)aminocarbonyl, amino-C_{1 6}alkyl-aminocarbonyl, mono- and $di(C_{16}-alkyl)amino-C_{16}-alkyl-aminocarbonyl, <math>C_{16}-alkyl-aminocarbonyl$ carbonylamino, cyano, guanidino, carbamido, C1 6-alkyl-sulphonyl-amino, aryl-sulphonyl-10 amino, heteroaryl-sulphonyl-amino, C_{1 6}-alkanoyloxy, C_{1 6}-alkyl-sulphonyl, C₁₋₆-alkylsulphinyl, C1 6-alkylsulphonyloxy, nitro, C1 6-alkylthio, halogen, where any aryl and heteroaryl may be substituted as specifically describe below for "optionally substituted aryl and heteroaryl", and any alkyl, alkoxy, and the like representing substituents may be substituted with hydroxy, $C_{1.6}$ -alkoxy, $C_{2.6}$ -alkenyloxy, amino, mono- and $di(C_{1.6}$ -15 alkyl)amıno, carboxy, C_{16} -alkylcarbonylamıno, halogen, C_{1-6} -alkylthio, C_{16} -alkyl-sulphonylamino, or quanidine

Preferably, the substituents are selected from hydroxy (which when bound to an unsaturated carbon atom may be present in the tautomeric keto form), C₁ 6-alkoxy (reconstructed carbon atom may be present in the tautomeric keto form), C₁ 6-alkoxy (reconstructed carbon atom may be present in the tautomeric keto form), C₁ 6-alkoxy (reconstructed carbony), C₂ 6-alkyl-oxy), C₂ 6-alkenyloxy, carboxy, oxo (forming a keto or aldehyde functionality), C₁ 6-alkyl-oxyl, formyl, aryloxy, arylamino, arylcarbonyl, heteroaryl, heteroaryl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C₁ 6-alkyl) amino, mono- and di(C₁ 6-alkyl) amino-carbonyl, amino-C₁ 6-alkyl-aminocarbonyl, C₁ 6-alkyl-aminocarbonyl, C₁ 6-alkyl-amino, guanidino, carbamido, C₁ 6-alkyl-sulphonyl-amino, C₁ 6-alkyl-sulphonyl, C₁ 6

Especially preferred examples are hydroxy, C_{1-6} -alkoxy, C_{2-6} -alkenyloxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} -alkylcarbonylamino, halogen, C_{1-6} -alkylthio, C_{1-6} -alkyl-sulphonyl-amino, and guanidine

"Halogen" includes fluoro, chloro, bromo, and iodo

- 35 In the present context the term "aryl" is intended to mean a fully or partially aromatic carbocyclic ring or ring system, such as phenyl, naphthyl, 1,2,3,4-tetrahydronaphthyl, anthracyl, phenanthracyl, pyrenyl, benzopyrenyl, fluorenyl and xanthenyl, among which phenyl is a preferred example
- The term "heteroaryl" is intended to mean a fully or partially aromatic carbocyclic ring or ring system where one or more of the carbon atoms have been replaced with heteroatoms, e.g. nitrogen (=N- or -NH-), sulphur, and/or oxygen atoms. Examples of such heteroaryl groups are oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, coumaryl, furyl, thiophenyl, quinolyl,

benzothiazolyl, benzotriazolyl, benzodiazolyl, benzooxozolyl, phthalazinyl, phthalanyl, triazolyl, tetrazolyl, isoquinolyl, acridinyl, carbazolyl, dibenzazepinyl, indolyl, benzopyrazolyl, phenoxazonyl Particularly interesting heteroaryl groups are oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrrolyl, imidazolyl, pyrrazolyl, pyridinyl, pyrimidinyl, pyrrazinyl, pyridazinyl, furyl, thiophenyl, quinolyl, tetrazolyl, isoquinolyl, indolyl in particular pyrrolyl, imidazolyl, pyridinyl, pyrimidinyl, thiophenyl, quinolyl, tetrazolyl, and isoquinolyl

The term "heterocyclyl" is intended to mean a non-aromatic carbocyclic ring or ring system

10 where one or more of the carbon atoms have been replaced with heteroatoms, e.g., nitrogen (=N- or -NH-), sulphur, and/or oxygen atoms. Examples of such heterocyclyl groups are imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane, aziridine, azirine, azetidine, pyroline, tropane, oxazinane (morpholine), azepine, dihydroazepine,

15 tetrahydroazepine, and hexahydroazepine, oxazolane, oxazepane, oxazocane, thiazolane, thiazinane, thiazepane, thiazocane, oxazetane, diazetane, thiazetane, tetrahydrofuran, tetrahydropyran, oxepane, tetrahydrothiophene, tetrahydrothiopyrane, thiepane, dithiane, dithiepane, dioxane, dioxepane, oxathiane, oxathiepane. The most interesting examples are imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane, azetidine, tropane, oxazinane (morpholine), oxazolane, oxazepane, thiazolane, thiazinane, and thiazepane, in particular imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane, pyrrolidine, piperidine, azepane, oxazinane (morpholine), and thiazinane

25 In the present context, I e in connection with the terms "aryl", "heteroaryl", and heterocyclyl, the term "optionally substituted" is intended to mean that the group in question may be substituted one or several times, preferably 1-5 times, in particular 1-3 times) with group(s) selected from hydroxy (which when present in an enol system may be represented in the tautomeric keto form), C1 6-alkyl, C1-6-alkoxy, C2 6-alkenyloxy, oxo 30 (which may be represented in the tautomeric enol form), carboxy, C_{1 6}-alkoxycarbonyl, C_{1 6}-alkylcarbonyl, formyl, aryl, aryloxy, arylamino, aryloxycarbonyl, arylcarbonyl, heteroaryl, heteroarylamino, amino, mono- and $di(C_{16}-alkyl)$ amino, carbamoyl, mono- and $d_1(C_{16}-alkyl)$ amınocarbonyl, amıno- $C_{16}-alkyl$ -amınocarbonyl, mono- and $d_1(C_{16}-alkyl)$ amıno- C_{1} ₆-alkyl-amınocarbonyl, C_{1} ₆-alkylcarbonylamıno, cyano, guanıdıno, carbamıdo, 35 C_{16} -alkanoyloxy, C_{16} -alkyl-sulphonyl-amino, aryl-sulphonyl-amino, heteroaryl-sulphonylamıno, $C_{1\,6}$ -alkyl-suphonyl, $C_{1\,6}$ -alkyl-sulphinyl, C_{1-6} -alkylsulphonyloxy, nitro, sulphanyl, amino, amino-sulfonyl, mono- and $di(C_{16}-alkyl)$ amino-sulfonyl, dihalogen- $C_{14}-alkyl$, trihalogen-C_{1 4}-alkyl, halogen, where aryl and heteroaryl representing substituents may be substituted 1-3 times with C_{14} -alkyl, C_{14} -alkoxy, nitro, cyano, amino or halogen, and any 40 alkyl, alkoxy, and the like representing substituents may be substituted with hydroxy, $C_{1.6}$ alkoxy, $C_{2.6}$ -alkenyloxy, amino, mono- and di($C_{1.6}$ -alkyl)amino, carboxy, $C_{1.6}$ -alkylcarbonylamino, halogen, C_{1} ₆-alkylthio, C_{1} ₆-alkyl-sulphonyl-amino, or guanidine

Preferably, the substituents are selected from hydroxy, C₁₋₆-alkyl, C₁₋₆-alkoxy, oxo (which may be represented in the tautomeric enol form), carboxy, C₁₋₆-alkylcarbonyl, formyl, amino, mono- and di(C₁₋₆-alkyl)amino, carbamoyl, mono- and di(C₁₋₆-alkyl)aminocarbonyl, amino-C₁₋₆-alkyl-aminocarbonyl, C₁₋₆-alkylcarbonylamino, guanidino, carbamido, C₁₋₆-alkyl-sulphonyl-amino, aryl-sulphonyl-amino, heteroaryl-sulphonyl-amino, C₁₋₆-alkyl-suphonyl, C₁₋₆-alkyl-sulphonyl, c₁₋₆-alkyl-sulphonyl, mono- and di(C₁₋₆-alkyl)amino-sulfonyl or halogen, where any alkyl, alkoxy and the like representing substituents may be substituted with hydroxy, C₁₋₆-alkoxy, C₂₋₆-alkenyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, halogen, C₁₋₆-alkylthio, C₁₋₆-alkyl-sulphonyl-amino, or guanidine Especially preferred examples are C₁₋₆-alkyl, C₁₋₆-alkyl, C₁₋₆-alkyl, alkoxy, amino, mono- and di(C₁₋₆-alkyl)amino, sulphanyl, carboxy or halogen, where any alkyl, alkoxy and the like representing substituents may be substituted with hydroxy, C₁₋₆-alkyl, alkoxy, C₂₋₆-alkenyloxy, amino, mono- and di(C₁₋₆-alkyl)amino, carboxy, C₁₋₆-alkylcarbonylamino, halogen, C₁₋₆-alkylthio, C₁₋₆-alkyl-sulphonyl-amino, or guanidine

In the present context the term "nitrogen-containing heterocyclic ring" is intended to mean heterocyclic ring or ring system in which at least one nitrogen atom is present. Such a nitrogen is, with reference to the formula, carrying the substituents R₁ and R₂. The heterocyclic ring or ring system is a ring or ring-system-where one or more of the carbon atoms have been replaced with heteroatoms, e.g. nitrogen (=N- or -N-), sulphur, and/or oxygen atoms. Examples of such rings are aromatic rings such as pyridine, pyridazine, pyrimidine, pyrazine, thiophene, oxazole, isoxazole, thiazole, isothiazole, pyrrole, imidazole, pyrrazole, tetrazole, quinoline, benzothiazole, benzotriazole, benzodiazole, benzoxozole, triazole, isoquinoline, indole, benzopyrazole, thiadiazole, and oxadiazole. The most interesting examples of aromatic rings are pyridine, pyridazine, pyrimidine, pyrazine, thiophene, tetrazole, oxazole, isoxazole, thiazole, isothiazole, pyrrole, imidazole, pyrazole, quinoline, triazole, isoquinoline, and indole, in particular pyridine, thiophene, imidazole, quinoline, isoquinoline, indole, and tetrazole

Other examples of such rings are non-aromatic rings such as imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane, aziridine, azirine, azetidine, pyroline, tropane, oxazinane (morpholine), azepine, dihydroazepine, tetrahydroazepine, and hexahydroazepine, oxazolane, oxazepane, oxazocane, thiazolane, thiazinane, thiazepane, thiazocane, oxazetane,
diazetane, and thiazetane The most interesting examples of non-aromatic rings are imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane, diazocane, pyrrolidine, piperidine, azepane, azocane, azetidine, tropane, oxazinane (morpholine), oxazolane, oxazepane, thiazolane, thiazinane, and thiazepane, in particular imidazolidine, piperazine, hexahydropyridazine, hexahydropyrimidine, diazepane,
pyrrolidine, piperazine, azepane, oxazinane (morpholine), and thiazinane

In the present context, i.e. in connection with the term "nitrogen-containing heterocyclic ring", the term "optionally substituted" is intended to mean that the group in question may be substituted one or several times, preferably 1-5 times, in particular 1-3 times) with

group(s) selected from the same substituents as defined above for "optionally substituted aryl"

As it will be evident from the formulae defined herein and the definitions associated therewith, there may be one or several asymmetric carbon atoms present in the compounds depending on the nature of the substituents. The compounds are intended to include all stereoisomers arising from the presence of any and all isomers as well as mixtures thereof, including racemic mixtures.

10 It should furthermore be understood that the compounds defined herein include possible salts thereof, of which pharmaceutically acceptable salts are of course especially relevant for the therapeutic applications. Salts include acid addition salts and basic salts. Examples of acid addition salts are hydrochloride salts, fumarate, oxalate, etc. Examples of basic salts are salts where the (remaining) counter ion is selected from alkali metals, such as sodium and potassium, alkaline earth metals, such as calcium salts, potassium salts, and ammonium ions (*N(R')4, where the R''s independently designates optionally-substituted—C_{1.6}-alkyl, optionally substituted aryl, or optionally substituted heteroaryl). Pharmaceutically acceptable salts are, e.g., those described in Remington's - The Science and Practice of Pharmacy, 20th Ed. Alfonso R. Gennaro (Ed.), Lippincott, Williams & Wilkins, ISBN 0683306472, 2000, and in Encyclopedia of Pharmaceutical Technology

Thus, chalcones with diamino groups can be prepared in their salt-forms thereby making the compounds particularly useful for pharmaceutical formulations. The use of appropriate selected salt form can be used to control the dissolution rate in vivo. Furthermore, the different salt forms have different bulk-properties which is of importance for the manufacturing process.

Preparation of compounds

30

The diamino-functional chalcones defined herein may be produced by methods known per se for the preparation of chalcones or methods which are analogous to such methods Examples of excellent methods for preparing compounds of the 1,3-bis-aromatic-prop-2-enone or the 1,3-bis-aromatic-prop-2-ynone types are given in the following. Further examples of methods for the preparation of the compound used according to the present.

examples of methods for the preparation of the compound used according to the present invention are described in WO 95/06628 and WO 93/17671 and in the references cited therein

Compounds of the general formula I in which V is -CH=CH- can be prepared by reacting a 40 ketone (an acetophenone in the case where Ar^1 is phenyl)

 $Y^{1}(X^{1})-Ar^{1}C(=O)-CH_{3}$

with an aldehyde (a benzaldehyde in the case where Ar² is phenyl)

 $HCO-Ar^2-(X^2)Y^2$

5 wherein Ar^1 , Ar^2 , X^1 , X^2 , Y^1 , and Y^2 refers to the definitions given elsewhere herein

This reaction, which is a condensation reaction, is suitably carried out under acid or base catalysed conditions A review of such processes may be found in Nielsen, A T , Houlihahn, W J , Org React 16, 1968, p 1-444 In particular the method described by Wattanasin, S 10 and Murphy, S , Synthesis (1980) 647 has been found quite successful The reaction may suitably be carried out in protic organic solvents, such as lower alcohols (e.g. methanol, ethanol, or tert-butanol), or lower carboxylic acids (formic, glacial acetic, or propionic acid), or in aprotic organic solvents such as ethers (e.g. tetrahydrofuran, dioxane, or diethyl ether), liquid amides (e g dimethylformamide or hexamethylphosphordiamide), 15 dimethylsulfoxide, or hydrocarbons (e g toluene or benzene), or mixtures of such solvents When carrying out the reaction under base catalysed conditions, the catalyst may be selected from sodium, lithium, potassium, barium, calcium, magnesium, aluminum, ammonium, or quaternary ammonium hydroxides, lower alkoxides (e.g. methoxides, ethoxides, tert-butoxides), carbonates, borates, oxides, hydrides, or amides of lower 20 secondary amines (e.g. diisopropyl amides or methylphenyl amides) Primary aromatic amines such as aniline, free secondary amines such as dimethyl amine, diethyl amine, piperidine, or pyrrolidine as well as basic ion exchange resins may also be used

Acid catalysts may be selected from hydrogen chloride, hydrogen bromide, hydrogen 10dide, sulfuric acid, sulfonic acids (such as paratoluenesulfonic or methanesulfonic acid), lower carboxylic acids (such as formic, acetic or propionic acid), lower halogenated carboxylic acids (such as trifluoroacetic acid), Lewis acids (such as BF₃, POCl₃, PCl₅, or FeCl₃), or acid ion exchange resins

30 A drawback of the base catalysed condensation is the poor yield obtained if the aromatic ring in which the ketone or the aldehyde or both is substituted with one or more hydroxy groups. This drawback can be overcome by masking the phenolic group as described by T. Hidetsugu et al. in EP 0 370 461. Deprotection is easily performed by mineral acids such as hydrochloric acid.

The reaction is typically carried out at temperatures in the range of 0-100°C, e.g. at room temperature. Reaction times are typically from 30 min to 24 hours.

The starting materials for the synthesis (acetophenone and aldehyde), may be obtained from commercial sources or may be synthesised according to well-known methods. The diamino-benzaldehydes can be synthesized by Palladium catalysed reaction of bromobenzaldehyde diethyl acetal and diamine followed by acidic work up. Alternatively, the 2-diamino-benzaldehydes can be prepared by nucleophilic aromatic substitution using 2-fluorobenzaldehyde and diamine. The diamino-acetophenones can be synthesized by

Palladium catalysed reaction of bromoacetophenone ketal and diamine followed by acidic work up. Alternatively the 2'-diamino-acetophenones can be synthesized by nucleophilic aromatic substitution using 2'-flouroacetophenone and diamine

5 Compounds of the general formula I in which V is -CEC- may be prepared by reacting an activated derivative of a carboxylic acid of the general formula

$$Y^1(X^1)$$
-Ar 1 -COOH

10 with an ethyne derivative

$$H-C=C-Ar^2-(X^2)Y^2$$

wherein Ar^1 , Ar^2 , X^1 , X^2 , Y^1 , and Y^2 refers to the definitions given elsewhere herein

Reactions of this type are described by Tohda, Y, Sonogashihara, K, Haghara, N, Synthesis 1977, p 777-778. It is contemplated that the activated derivative of the carboxylic acid may be an activated ester, an anhydride or, preferably, an acid halogenide, in particular the acid chloride. The reaction is normally carried out using the catalysts described by Tohda, Y et al. cited above, namely copper(1)iodide/triphenylphosphine-palladium dichloride. The reaction is suitably carried out in triethylamine, a mixture of triethylamine and pyridine or triethylamine and toluene under a dry inert atmosphere such as nitrogen or argon. The reaction is generally carried out at reduced temperature such as in the range from -80°C to room temperature, the reaction time typically being from 30 minutes to 6 hours.

In the above reactions, it may be preferred or necessary to protect various sensitive or reactive groups present in the starting materials to prevent said groups from interfering with the reactions. Such protection may be carried out in a well-known manner, e.g. as described in "Protective Groups in Organic Chemistry" by Wuts and Greene, Wiley-Interscience, ISBN 0471160199, 3nd edition (May 15, 1999). For example, in the reaction between the activated acid derivative and the acetylene derivative, a hydroxy group on Ar¹ and/or Ar² may be protected in the form of the methoxymethyl ether, N,N-dimethylcarbamoyl ester, or allyl ether. The protecting group may be removed after the reaction in a manner known per se

The ethyne derivative may be prepared by standard methods, e.g. as described by Nielsen, S. F. Et al., Bioorg. Med. Chem. 6, pp. 937-945 (1998). The carboxylic acids may likewise be prepared by standard procedures, e.g. as described by Nakayama, T. Chem. Pharm. 40. Bull. 41, pp. 117-125 (1993).

Compounds of the general formula I in which V is $-CH_2-CH_2$ - can be prepared by ionic hydrogenation of the corresponding α,β -unsaturated compound where V is -CH=CH- as it has been described by the inventors in Nielsen, S F et al. Tetrahedron, 53, pp 5573-5580

(1997) Alternatively, it is possible to prepare such compounds from the corresponding flouro (or bromo) chalcones using H_2/Pt followed by nucleophilic aromatic amination (see Figure 3)

5 Further possible synthetic routes for the preparation of the saturated variants are described in "Advanced Organic Chemistry" by Jerry March, 3rd ed (especially chapter 15, pages 691-700) and references cited therein. Thus, it is possible to obtain a large variety of compounds of the 1,3-bis-aromatic-propan-1-one type from the corresponding prop-2-en-1-ones.

10

Medical uses

It has been demonstrated herein (see the Examples section) that the novel compound have interesting properties as bacteriostatic, bacteriocidal and antiparasitic agents. It is of course possible that the compounds also have other interesting properties to be utilised in

15 the medical field

Thus, the present invention provides a compound (chalcone derivative) as defined herein for use as a drug substance

20 In particular, the chalcone derivative may be used for the treatment of bacterial infections in a mammal in need thereof. Such bacterial infection may be caused by common Grampositive and Grampositive pathogens as well as microaerophilic and anaerobic bacteria. As a particularly relevant example of a bacteria against which chalcone derivatives have effect can be mentioned antibiotic-sensitive and presistant strains of *S aureus* and

25 E faecium Other examples common causes of community acquired and nosocomial respiratory infections including S pneumoniae, S pyogenes and members of Enterobacteriaceae (e.g. E coli), microaerophilic bacteria associated with gastric disease (e.g. Helicobacter pylori) and pathogenic anaerobic bacteria (e.g. Bacteroides fragilis and Clostridium species)

30

Also, the chalcone derivatives can be used for the treatment of infections caused by protozoa in a mammal Examples of infections are those caused by a protozoa selected from *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium ovale* and *Plasmodium malariae*

35

Furthermore, the chalcone derivatives can be used for the preparation of a pharmaceutical composition for the treatment of infections in a mammal caused by *Leishmania spp* Such infections may be cutaneous and/or visceral

40 The chalcone derivatives are typically formulated in a pharmaceutical composition prior to use as a drug substance

Formulation of pharmaceutical compositions

The administration route of the compounds (diamino-functional chalcones) as defined herein may be any suitable route which leads to a concentration in the blood or tissue corresponding to a therapeutic concentration. Thus, e.g., the following administration routes may be applicable although the invention is not limited thereto, the oral route, the parenteral route, the cutaneous route, the nasal route, the rectal route, the vaginal route and the ocular route. It should be clear to a person skilled in the art that the administration route is dependant on the particular compound in question, particularly, the choice of administration route depends on the physico-chemical properties of the compound together with the age and weight of the patient and on the particular disease or condition and the severity of the same.

The compounds as defined herein may be contained in any appropriate amount in a pharmaceutical composition, and are generally contained in an amount of about 1-95% by weight of the total weight-of-the-composition. The composition may be presented in a dosage form which is suitable for the oral, parenteral, rectal, cutaneous, nasal, vaginal and/or ocular administration route. Thus, the composition may be in form of, e.g., tablets, capsules, pills, powders, granulates, suspensions, emulsions, solutions, gels including hydrogels, pastes, ointments, creams, plasters, drenches, delivery devices, suppositories, enemas, injectables, implants, sprays, aerosols and in other suitable form.

The pharmaceutical compositions may be formulated according to conventional pharmaceutical practice, see, e.g., "Remington's Pharmaceutical Sciences" and "Encyclopedia of Pharmaceutical Technology", edited by Swarbrick, J. & J. C. Boylan, Marcel Dekker, Inc., New York, 1988. Typically, the compounds defined herein are formulated with (at least) a pharmaceutically acceptable carrier or exipient. Pharmaceutically acceptable carriers or exipients are those known by the person skilled in the art.

30 Thus, the present invention provides a pharmaceutical composition comprising a compound as defined herein in combination with a pharmaceutically acceptable carrier

Pharmaceutical compositions according to the present invention may be formulated to release the active compound substantially immediately upon administration or at any substantially predetermined time or time period after administration. The latter type of compositions are generally known as controlled release formulations.

In the present context, the term "controlled release formulation" embraces i) formulations which create a substantially constant concentration of the drug within the body over an extended period of time, ii) formulations which after a predetermined lag time create a substantially constant concentration of the drug within the body over an extended period of time, iii) formulations which sustain drug action during a predetermined time period by maintaining a relatively, constant, effective drug level in the body with concomitant minimization of undesirable side effects associated with fluctuations in the plasma level of

the active drug substance (sawtooth kinetic pattern), iv) formulations which attempt to localize drug action by, e.g., spatial placement of a controlled release composition adjacent to or in the diseased tissue or organ, v) formulations which attempt to target drug action by using carriers or chemical derivatives to deliver the drug to a particular target cell type

Controlled release formulations may also be denoted "sustained release", "prolonged release", "programmed release", "time release", "rate-controlled" and/or "targeted release" formulations

10 Controlled release pharmaceutical compositions may be presented in any suitable dosage forms, especially in dosage forms intended for oral, parenteral, cutaneous nasal, rectal, vaginal and/or ocular administration. Examples include single or multiple unit tablet or capsule compositions, oil solutions, suspensions, emulsions, microcapsules, microspheres, nanoparticles, liposomes, delivery devices such as those intended for oral, parenteral,
15 cutaneous, nasal, vaginal or ocular use

Preparation of solid dosage forms for oral use, controlled release oral dosage forms, fluid liquid compositions, parenteral compositions, controlled release parenteral compositions, rectal compositions, nasal compositions, percutaneous and topical compositions, controlled release percutaneous and topical compositions, and compositions for administration to the eye can be performed essentially as described in the applicant's earlier International application No WO 99/00114, page 29, line 9, to page 40, line 3 Also, and more generally, the formulation and preparation of the above-mentioned compositions are well-known to those skilled in the art of pharmaceutical formulation Specific formulations can be found in "Remington's Pharmaceutical Sciences"

Dosages

30

The compound are preferably administered in an amount of about 0 1-50 mg per kg body weight per day, such as about 0 5-25 mg per kg body weight per day

For compositions adapted for oral administration for systemic use, the dosage is normally 2 mg to 1 g per dose administered 1-4 times daily for 1 week to 12 months depending on the disease to be treated

35 The dosage for oral administration for the treatment of parasitic diseases is normally 1 mg to 1 g per dose administered 1-2 times daily for 1-4 weeks, in particular the treatment of malaria is to be continued for 1-2 weeks whereas the treatment of leishmaniasis will normally be carried out for 3-4 weeks

40 The dosage for oral administration for the treatment of bacterial diseases is normally 1 mg to 1 g per dose administered 1-4 times daily for 1 week to 12 months, in particular, the treatment of tuberculosis will normally be carried out for 6-12 months

The dosage for oral administration of the composition in order to prevent diseases is normally 1 mg to 75 mg per kg body weight per day. The dosage may be administered once or twice daily for a period starting 1 week before the exposure to the disease until 4 weeks after the exposure

For compositions adapted for rectal use for preventing diseases, a somewhat higher amount of the compound is usually preferred, i.e. from approximately 1 mg to 100 mg per kg body weight per day

10 For parenteral administration, a dose of about 0.1 mg to about 50 mg per kg body weight per day is convenient. For intravenous administration a dose of about 0.1 mg to about 20 mg per kg body weight per day administered for 1 day to 3 months is convenient. For intraarticular administration a dose of about 0.1 mg to about 20 mg per kg body weight per day is usually preferable. For parenteral administration in general, a solution in an 15 aqueous medium of 0 5-2% or more of the active ingredients may be employed

For topical administration on the skin, a dose of about 1 mg to about 5 g administered 1-10 times daily for 1 week to 12 months is usually preferable

20 In many cases, it will be preferred to administer the compound defined herein together with another antiparasitic, antimycotic or antibiotic drug, thereby reducing the risk of development of resistance against the conventional drugs, and reducing the amount of each of the drugs to be administered, thus reducing the risk of side effects caused by the conventional drugs Important aspects of this is the use of the compound against 25 Leishmania, where the compound I is combined with another antileishmanial drug, or the antimalarial use of the compound I where the compound I is used together with another antimalarial drug

Method of prediction

30

In a separate aspect, the present invention also provides a method of predicting whether a chemical compound has a potential inhibitory effect against a microorganism selected from Helicobacter pylori and Plasmodium falciparum, said method comprising preparing a mixture of a dihydroorotate dehydrogenase, a substrate for dihydroorotate dehydrogenase 35 and the chemcial compound, measuring the enzymatic activity of dihydroorotate dehydrogenase (A), comparing the enzymatic activity of dihydrogenase (A) with the standard activity of dihydroorotate dehydrogenase (B) corresponding to the activity of a dihydroorotate dehydrogenase in a similar sample, but without the chemical compound, predicting that the chemical compound has a potential inhibitory effect against 40 Helicobacter pylori and Plasmodium falciparum if A is significantly lower than B

The method can be performed as described under DHODH Assay in the Examples section It should be noted that the method is not only applicable for the chalcone derivatives defined herein, but can be generally applied to predict the potential inhibitory effect of any compound Preferably, however, the chemical compound is a chalcone derivative, e.g. a chalcone derivative as defined herein

EXAMPLES

Preparation of compounds

5 The general method for the preparation of the A ring or B ring having the diaminofunctional group is illustrated in Figure 1

General procedure A

10 Amination of bromobenzaldehydes

Bromobenzaldehyde diethyl acetal (40 mmol), amine (48 mmol), Pd₂(dba)₃ (0 2 mmol, 1 mol% Pd), rac-BINAP (0 6 mmol) and Na-t-OBu (68 mmol) was stirred in degassed toluene (60 mL) at 80°C for 18 h. The darkbrown mixture was poured into icecold hydrochloric acid (1 M, 200 mL) and stirred vigorously for 2 hours at 25°C. The solution was cooled to 0°C and pH was adjusted to 13 using 6M NaOH(aq) and extracted with Et₂O (4 x 100 mL). The organic phase was dried (K₂CO₃) and the solvent was removed under reduced pressure. The resulting crude oil purified by flash chromatography using 5% Et₃N in EtOAc.

20

General procedure B

Nucleophilic aromatic substitution on Fluorobenzaldehyde

A stirred solution of fluoro-benzaldehyde (49 3 mmol) in dry DMF (50 mL) was added 25 K₂CO₃ (10 2 g, 74 0 mmol) and amine (74 mmol) and left overnight at 100°C. The reaction mixture was cooled to room temperature, added water (100 mL) and extracted with ether (3 x 50 mL). The combined organic phases was washed with water and dried (Na₂SO₄). Evaporation *in vacuo* and recrystallization (heptane) gave the product

30

General Procedure C

Amination of bromoacetophenones

3'- or 4'-bromoacetophenone was converted into the corresponding cyclic ketal. A solution of 3- or 4-bromoacetophenone (0 10 mol), 1,3-propandiol (0 12 mol) and p-TsOH (0 1 g) in toluene (200 mL) was heated and water was azeotropically removed using a Dean-Stark water-separator. After 18 hours, the solution was washed with 5% Na₂CO₃ (100 ml), dried (K₂CO₃) and the solvent was removed under reduced pressure. According to ¹HNMR the ketals was pure enough for further reaction.

40

3'- or 4'-bromoacetophenone ketal (40 mmol), amine (48 mmol), Pd₂(dba)₃ (0 2 mmol, 1 mol% Pd), rac-BINAP (0 6 mmol) and Na-t-OBu (68 mmol) was stirred in degassed toluene (60 mL) at 80°C for 18 h The darkbrown mixture was poured into icecold hydrochloric acid (1 M, 200 mL) and stirred vigorously for 2 hours at 25°C The solution was cooled to 0°C and pH was adjusted to 13 using 6M NaOH(aq) and extracted with Et₂O (4 x 100 mL) The organic phase was dried (K₂CO₃) and the solvent was removed under reduced pressure. The resulting crude oil purified by flash chromatography using 5% Et₃N in EtOAc

10 General procedure D

Nucleophilic aromatic substitution on Fluoroacetophenone

A mixture of Fluoroacetophenone (40 mmol), amine (50 mmol), K_2CO_3 (50 mmol) was 15 refluxed in dry DMF (20 mL) under an argon atmosphere for 18 h. The DMF was removed using an oilpump and water (50 mL) was added to the residue. The water phase was extracted with Et_2O (2 x 100 mL) and the organic phase was dried (K_2CO_3) and evaporated to yellow oil, which was pure enough for further reaction

20 General procedure E

Preparation of alkyl aminomethyl acetophenones

To a solution of (2-methyl-[1,3]dioxan-2-yl) benzaldehyde (165 mmol) and amine (247 mmol) in dry THF (1 5 L) was added sodium triacetoxyborohydride (257mmol) under argon. The resulting suspension was stirred at room temperature for 18 hr. A solution of sodium hydroxide (2M) was added and stirring was continued for approximately 30 min, before the mixture was acidified using HCl (6M). The mixture was stirred for 1 hr. and extracted with diethyl ether, which was discarded. The pH of the aqueous phase was adjusted to 11 – 14 using sodium hydroxide and extracted again with diethyl ether. The latter organic phase, was dried over sodium sulphate, filtered and evaporated to give the title products, which were used without further purification.

General procedure F

Preparation of alkyl aminomethyl benzaldehydes

To a solution of diethoxymethyl benzaldehyde (16 5 mmol) and amine (24 7 mmol) in dry THF (150 mL) was added sodium triacetoxyborohydride (25 7mmol) under argon. The resulting suspension was stirred at room temperature for 6-18 hr. A solution of sodium hydroxide (2M) was added and stirring was continued for approximately 30 min, before the mixture was acidified using HCl (6M). The mixture was stirred for 1 hr. and extracted with diethyl ether, which was discarded. The pH of the aqueous phase was adjusted to 11 – 14.

using sodium hydroxide and extracted again with diethyl ether. The latter organic phase, was dried over sodium sulphate, filtered and evaporated to give the title products, which were used without further purification.

5 General procedure G

Preparation of (2-dimethylaminoethoxy)-benzaldehydes

A stirred solution of hydroxybenzaldehyde (59 7 mmol) in dry toluene (200 mL) and DMSO (1 mL) was added 60% NaH (60 mmol) under ice cooling. The reaction was slowly heated to room temperature. 2-Dimethylaminoethylchloride, HCl (15 9 g, 110 mmol) dissolved in water (50 mL) was added NaOH (4 4 g, 110 mmol) and the aqueous phase was extracted with toluene (3 x 30 mL). The combined organic phases were dried (Na₂SO₄) and slowly added to the reaction. The solution was heated to 90°C for 16 h. The reaction mixture was cooled to room temperature and washed with water (3 x 100 mL), 2N NaOH (100 mL) and dried (Na₂SO₄). Evaporation in vacuo gave-the-title-products.

General procedure H

Preparation of biaryl carbaldehydes

20 A solution of Na₂CO₃ (44 mmol) in water (20 mL) was added to a solution of bromobenzaldehyde (14 7 mmol) and (hetero)arylboronic acid (17 6 mmol) in DME (40 mL) The mixture was flushed with argon for 2 minutes followed by addition of Pd(PPh₃)₂Cl₂ (310 mg, 3 mol %) The reaction was heated at reflux and left overnight under an atmosphere of argon The reaction was cooled, 2M Na₂CO₃ was added, and the mixture was extracted with EtOAc (3 x 20 mL) The title products were purified by flash chromatography

General procedure I

30 Amino-acylation of amino-acetophenones and amino-benzaldehydes

A solution of amino-acetophenone/benzaldehyde (25 mmol) in THF (100 mL) was added chloroacyl chloride (30 mmol). The mixture was stirred for 30 min, poured into icecold 2M NaOH (aq) and extracted with Et₂O. The organic phase was dried and the solvent was removed under reduced pressure giving the pure product. A solution of the product (10 mmol) and triethyl amine (30 mmol) in ethanol was added amine (20 mmol) and the mixture was refluxed for 4 hours. Ethanol was removed under reduced pressure and the product was dissolved in EtOAc and washed with 2M NaOH (aq). EtOAc was removed under reduced pressure giving the product as a pure oil.

40

General procedure J

Synthesis of (amino-)chalcones

To a solution of an acetophenone (2 mmol) and a benzaldehyde (2 mmol) in 96% EtOH 5 (10 mL) was added 8M NaOH (0 3 mL), and the mixture was stirred for 3-18 hours at 25°C The mixture was evaporated on Celite® and the product was isolated by flash chromatography The aminochalcone was dissolved in MeOH Et₂O (1 9 v/v, 10 mL) and a solution of fumaric acid or oxalic acid in MeOH Et₂O (1 9 v/v) was added. The salt was filtered off and recrystallised from MeOH or MeCN Some aminochalcones did not undergo 10 saltformation, and was isolated as the free base. The purity was >95% determined by HPLC and the molecular weight was determined by LC-MS

General procedure K

15

Synthesis of (hetero)aryl chalcones from bromo-chalcones

A solution of bromo-chalcone (0 92 mmol) and (hetero)aryl boronic acid (1 11 mmol) in DME (10 mL) was added a solution of Na₂CO₃ (290 mg, 2 8 mmol) in water (5 mL) The 20 mixture was bubbled through with argon for 2 minutes followed by addition of Pd(PPh₃)₂Cl₂ (19 mg, 3 mol %) The reaction was heated to reflux and left overnight under an atmosphere of argon The solution was cooled, added 2M Na₂CO₃, extracted with ether (3 x 20 mL) and purified by column chromatography

25

General procedure L

Synthesis of fluoro-(or bromo-)dihydrochalcones

30 Fluoro- (or bromo-)chalcone was dissolved in EtOAc (100 mL), and 5% Pt/C (100 mg) was added and the mixture was hydrogenated at 1 bar H₂. The addition of hydrogen was stopped when the theoretical amount was absorbed (1 eqv H_2) The mixture was filtered and evaporated leaving the product as an oil The product was purified by column chromatography or crystallisation

35

General procedure M

Synthesis of fluoro- (or bromo)-diamino-dihydrochalcones

40

A mixture of fluoro-dihydrochalcone (4.5 mmol), amine (6.0 mmol), K_2CO_3 (0.83 g, 6.0 mmol) was refluxed in dry degassed DMF (6 mL) for 24 h. The red mixture was poured into water (100 mL) and extracted with EtOAc (3 x 30 mL), dried (K2CO3) and the solvent was removed under reduced pressure. The resulting dark oil was purified by column 45 chromatography (SiO₂) using EtOAc as eluent

5-Dibutylamino-2-methoxy-benzaldehyde

5 I-001 2-(5-Bromo-2-methoxy-phenyl)-[1,3]dioxane

A solution of 5-bromo-o-anisaldehyde (25 g, 116 mmol), 1,3-propandiol (9 mL, 125 mmol), p-toluenesulphonic acid (0 1 g) in toluene (150 mL) was heated and water was azeotropically removed using a Dean-Stark water-separator. After 18 hours, the solution was washed with 5% Na₂CO₃ (100 ml), dried (K₂CO₃) and the solvent was removed under reduced pressure. The acetal was purified by vacuum distillation and isolated as an clear oil bp 126-130°C/0 05 mbar.

1H-NMR(300 MHz, CDCl₂) 8 7 74 (d. 1H), 7 38 (dd. 1H), 6 75 (d, 1H), 5 82 (s, 1H), 4 28-

¹H-NMR(300 MHz, CDCl₃) δ 7 74 (d, 1H), 7 38 (dd, 1H), 6 75 (d, 1H), 5 82 (s, 1H), 4 28-4 20 (m, 2H), 4 04-3 92 (m, 2H), 3 80 (s, 3H), 2 33-2 13 (m, 1H), 1 48-1 38 (m, 1H)

15 I-002 5-Dibutylamino-2-methoxy-benzaldehyde

2-(5-Bromo-2-methoxy-phenyl)-[1,3]dioxane (40 mmol), di-n-būtylamine—(48—mmol), Pd₂(dba)₃ (0 2 mmol, 1 mol% Pd), P(o-tol)₃ (0 6 mmol) and Na-t-OBu (68 mmol) was stirred in degassed toluene (60 mL) at 80°C for 18 h. The darkbrown mixture was poured into icecold hydrochloric acid (1 M, 200 mL) and stirred vigorously for 2 hours at 25°C. The solution was cooled to 0°C and pH was adjusted to 9 using 6M NaOH(aq) and extracted with Et₂O (4 x 100 mL). The organic phase was dried (Na₂SO₄) and the solvent was removed under reduced pressure. The resulting crude oil purified by flash chromatography using EtOAc/n-heptane (1 4, v/v) as eluent. The product was isolated as a yellow oil in 46% yield.

25

¹H-NMR(300 MHz, CDCl₃) δ 9 98 (s, 1H), 7 15 (d, 1H), 6 92 (d, 1H), 6 79 (dd, 1H), 3 80 (s, 3H), 3 25 (t, 4H), 1 55-1 40 (m, 4H), 1 40-1 25 (m, 4H), 0 91 (t, 6H)

30

I-003 2-[(2-Dimethylamino-ethyl)-methyl-amino]benzaldehyde

35

General procedure B gave the title compound as a yellow oil in 56% yield $\,$ ref 1 1 H-NMR(300 MHz, CDCl₃) δ 10 29 (s, 1H), 7 82-7 75 (dd, 1H), 7 53-7 43 (td, 1H), 7 13 (d, 1H), 7 05 (t, 1H), 3 25 (t, 2H), 2 92 (s, 3H), 2 52 (t, 2H), 2 22 (s, 6H)

5

I-004 3-(2-Dimethylamino-ethylamino)benzaldehyde

General procedure A gave the title compound as a yellow oil in 52% yield 10 1 H-NMR(300 MHz, CDCl₃) δ 9 81 (s, 1H), 7 65 (d, 2H), 6 60 (d, 2H), 5 11 (s, br, 1H), 3 20-3 14 (m, 2H), 2 56 (t, 2H), 2 26 (s, 6H)

15

I-005 3-[(2-Dimethylamino-ethyl)-methyl-amino]benzaldehyde

General procedure A gave the title compound as a yellow oil in 90% yield

 1 H-NMR(300 MHz, CDCl₃) δ 9 91 (s, 1H), 7 35 (t, 1H), 7 12-7 05 (m, 2H), 7 00-6 93 (dd, 20 1H), 3 56 (t, 2H), 3 05 (s, 3H), 2 55 (t, 2H), 2 38 (s, 6H)

I-006 4-[(2-Dimethylamino-ethyl)-methyl-amino]benzaldehyde

25

General procedure A gave the title compound as a yellow oil in 66% yield ref 2

 1 H-NMR(300 MHz, CDCl₃) δ 9 73 (s, 1H), 7 73 (d, 2H), 6 71 (d, 2H), 3 54 (t, 2H), 3 08 (s, 3H), 2 50 (t, 2H), 2 30 (s, 6H)

30

I-007 3-(Pyridin-3-ylamino)-benzaldehyde

General procedure A gave the title compound as white crystal in 69& yield 1 H-NMR(300 MHz, DMSO-d₆) δ 9 94 (s, 1H), 8 67 (s, 1H), 8 40 (d, 1H), 8 11 (dd, 1H), 7 58-7 50 (m, 2H), 7 47 (d, 1H), 7 43-7 35 (m, 2H), 7 29 (dd, 1H)

5

I-008 4-(2-Dimethylamino-ethylamino) benzaldehyde

10

General procedure A gave the title compound as a yellow oil in 74% yield ref 2

 1 H-NMR(300 MHz, CDCl₃) δ 9 71 (s, 1H), 7 68 (d, 2H), 6 61 (d, 2H), 5 08 (s, br, 1H), 3 24-3 18 (m, 2H), 2 57 (t, 2H), 2 26 (s, 6H)

15

I-009 5-Bromo-2-(4-methyl-piperazin-1-yl)-benzaldehyde

20 General procedure B gave the title compound as yellow crystals in 62% yield $^{1}\text{H NMR (CDCl}_{3})~\delta~10~24~(s,~1\text{H}),~7~91~(d,~1\text{H}),~7~61~(dd,~1\text{H}),~7~02~(d,~1\text{H}),~3~11~(t,~4\text{H}),$ 2 63 (t, 4H), 2 39 (s, 3H)

25

I-010 1-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}ethanone

General procedure C gave the title compound as an yellow oil in 62% yield ref 3

 1 H-NMR(300 MHz, CDCl₃) δ 7 72 (d, 2H), 6 73 (d, 2H), 3 53 (t, 2H), 3 08 (s, 3H), 2 50 (t, 2H), 2 48 (s, 3H), 2 30 (s, 6H)

5 I-011 1-[4-(2-Dimethylamino-ethylamino)-phenyl]ethanone

General procedure C gave the title compound as a yellow oil in 92% yield ref 1 H-NMR(300 MHz, CDCl₃) 5 7 80 (d, 2H), 6 54 (d, 2H), 5 29 (s, br, 1H), 3 33-3 24 (m, 2H), 2 57 (t, 2H), 2 56 (s, 3H), 2 31 (s, 6H)

I-012 1-[4-(3-Dimethylamino-propylamino)-phenyl]ethanone

15

20

25

General procedure C gave the title compound as a yellow oil in 56% yield $^1\text{H-NMR}(300~\text{MHz}, \text{CDCl}_3)$ δ 7 81 (d, 2H), 6 54 (d, 2H), 5 31 (s, br, 1H), 3 25 (t, 2H), 2 48 (s, 3H), 2 41 (t, 2H), 2 25 (s, 6H), 1 79 (m, 2H)

I-013 1-[3-(2-Dimethylamino-ethylamino)-phenyl]ethanone

General procedure C gave the title compound as a yellow oil in 73% yield

 1 H-NMR(300 MHz, CDCl₃) δ 7 28-7 18 (m, 3H), 6 85-6 78 (m, 1H), 4 45 (s, br, 1H), 4 10-3 23 (m, 2H), 2 59-2 52 (m, 5H), 2 25 (s, 6H)

30 I-014 1-{3-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}ethanone

General procedure C gave the title compound as a yellow oil in 62% yield $^1\text{H-NMR}(300~\text{MHz}, \text{CDCl}_3)$ δ 7 30-7 18 (m, 3H), 6 82-6 78 (m, 1H), 3 56 (t, 2H), 3 05 (s, 3H), 2 55 (t, 2H), 2 48 (s, 3H), 2 38 (s, 6H)

I-015 1-[2-(2-Dimethylamino-ethylamino)-phenyl]ethanone

General procedure D gave the title compound as a yellow oil in 58% yield 1 H-NMR(300 MHz, CDCl₃) δ 8 95 (s, br, 1H), 7 76-7 71 (dd, 1H), 7 38-7 31 (d, 1H), 6 73-6-66-(d, 1H), 6 61-6 55 (td, 1H), 3 33-3 24 (m, 2H), 2 58 (t, 2H), 2 56 (s, 3H), 2 30 (s, 6H)

15 I-016 1-{2-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}ethanone

General procedure D gave the title compound as a yellow oil in 93 % yield $^1\text{H-NMR}(300~\text{MHz}, \text{CDCl}_3)$ δ 7 42-7 32 (m, 2H), 7 07 (d, 1H), 7 70-6 93 (td, 1H), 3 17 (t, 20 2H), 2 80 (s, 3H), 2 61 (s, 3H), 2 49-2 42 (m, 2H), 2 20 (s, 6H)

I-017 1-[2-(3-Dimethylamino-propylamino)-phenyl]ethanone

25

30

General procedure D gave the title compound as a yellow oil in 45% yield $^{1}\text{H-NMR}(300 \text{ MHz}, \text{CDCl}_{3})$ δ 8 91 (s, br, 1H), 7 74-7 70 (dd, 1H), 7 38-7 31 (d, 1H), 6 73-6 65 (d, 1H), 6 61-6 55 (td, 1H), 3 25 (t, 2H), 2 48 (s, 3H), 2 41 (t, 2H), 2 25 (s, 6H), 1 79 (m, 2H)

I-018 5-Bromo-2-(2-dimethylamino-ethoxy)-benzaldehyde

General procedure G gave the title compound as a yellow oil in 65 % yield

¹H NMR (CDCl₃) δ 10 43 (s, 1H), 7 94 (d, 1H), 7 63 (dd, 1H), 6 92 (d, 1H), 4 19 (t, 2H),

5 2 81 (t, 2H), 2 37 (s, 6H)

10 I-019 4-(2-Dimethylamino-ethoxy)-biphenyl-3-carbaldehyde

General procedure H gave the title compound as yellow crystals in 57% yield

15 ¹H NMR (CDCl₃) δ 10 48 (s, 1H), 8 01 (d, 1H), 7 71 (dd, 1H), 7 49 (d, 1H), 7 36 (t, 2H), 7 26 (t, 1H), 7 00 (d, 1H), 4 18 (t, 2H), 2 77 (t, 2H), 2 31 (s, 6H)

20 I-020 1-[2-(4-Methyl-piperazin-1-ylmethyl)-phenyl]-ethanone

General procedure E gave the title compound as a brown oil in 78% yield

 $^{1}\text{H-NMR}$ (CDCl₃) δ 7 42-7 29 (m, 4H), 3 65 (s, 2H), 2 54 (s, 3H), 2 43 (b, 8H), 2 27 (s, 25 3H)

I-021 2-(4-Methyl-piperazin-1-ylmethyl)-benzaldehyde

General procedure F gave the title compound as a brown oil in 80 % yield $^1\text{H-NMR}(300~\text{MHz}, \text{CDCl3})$ δ 10 41 (s, 1H), 7 87 (d, 1H), 7 51 (dt, 1H)7 41 (t, 1H), 7 38 (d, 1H), 3 81 (s, 2H), 2 6-2 3 (m, 8H), 2 27 (s, 3H)

10

5

I-022 4-Diethylaminomethyl-benzaldehyde

15 General procedure F gave the title compound as a brown oil in 74% yield

 1 H-NMR (CDCl₃) δ 10 02 (s, 1H), 7 85 (d, 2H), 7 55 (d, 2H), 3 66 (s, 2H), 2 56 (k, 4H), 1 07 (t, 6H)

20

I-023 N-(3-Acetyl-phenyl)-2-dimethylamino-acetamide

25

General procedure I gave the title compound as a brown oil in 85% yield $^1\text{H-NMR}(300~\text{MHz}, \text{CDCl3})$ δ 9 31 (s, 1H), 8 05 (m, 2H), 7 72 (dt, 1H), 7 46 (t, 1H), 3 11 (s, 2H), 2 62 (s, 3H), 2 41 (s, 6H)

30

5-(1,1-Dimethyl-allyl)-2-methoxy-benzaldehyde

5 I-024 2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionitrile

A solution of 2-(4-methoxy-phenyl)-2-methyl-propionitrile (17 5 g, 0 10 mol) in TFA (80 mL) was cooled to 0°C N-bromosuccinimide (17 8 g, 0 10 mol) was added in small portions keeping the temperature below 5°C The orange solution was stirred for 2h/25°C and evaporated to dryness Water (200 mL) was added and the mixture was stirred vigorously for 1 h The crude product was filtered off and recrystallized from boiling MeOH The pure product was isolated as white needles Yield 19 3 g (76%) GCMS > 99% 15 ¹H-NMR(300 MHz, DMSO-d₆) δ 7 68 (d, 1H), 7 50 (dd, 1H), 7 16 (d, 1H), 3 86 (s, 3H), 1 70 (s, 6H)

I-025 2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionaldehyde

A solution of 2-(3-bromo-4-methoxy-phenyl)-2-methyl-propionitrile (12 71 g, 0 050 mol) in dry THF (100 mL) was cooled to -10°C under argon DIBALH (1M in THF, 100 mL, 0 10 mol) was added keeping the temperature below 0°C. The mixture was stirred for 30 min/0°C and then 2 h/25°C. The clear solution was carefully poured into icecold hydrochloric acid (2M, 100 mL). The THF was removed under reduced pressure to give clear oil. The oil was destilled (b p. 114-130 °C/ 4 3 x 10⁻³ mbar). Yield 7 40 g (58%). GCMS > 99%

 1 H-NMR(300 MHz, CDCl₃) δ 9 44 (s, 1H), 7 45 (d, 1H), 7 15 (dd, 1H), 6 90 (d, 1H), 3 89 (s, 3H), 1 43 (s, 6H)

I-026 2-Bromo-4-(1,1-dimethyl-allyl)-1-methoxy-benzene

Br

5

A suspension of methyltriphenylphosphonium bromide (7 71 g, 0 0215 mol) in dry THF (100 mL) was cooled to 0°C under argon *n*-BuLi (2 5M, 8 mL, 0 020 mol) was added 10 slowly—The-resulting-clear-orange_solution_of the ylide was stirred for another 15 min at 0°C 2-(3-Bromo-4-methoxy-phenyl)-2-methyl-propionaldehyde (3 7 g, 0 014 mol) was dissolved in dry THF (50 mL) and added to ylide-solution. The mixture was stirred for 3h/25°C and the resulting suspension was quenched with MeOH (10 mL). The solvent was removed under reduced pressure and the crude product was purified by flash chromatography using *n*-heptane as eluent. Yield 3 1 g (84%). GCMS > 99%

14-NMR(300 MHz, CDCl₃) δ 7 50 (d, 1H), 7 23 (dd, 1H), 6 83 (d, 1H), 5 97 (dd, 1H), 5 06 (dd, 1H), 5 02 (dd, 1H), 3 87 (s, 3H), 1 44 (s, 6H)

I-027 5-(1,1-Dimethyl-allyl)-2-methoxy-benzaldehyde

20

To a solution of 2-Bromo-4-(1,1-dimethyl-allyl)-1-methoxy-benzene (3 1 g, 0 012 mol) in dry THF (50 mL) was cooled to -78°C under argon n-BuLi (2 5M, 5 1 mL, 0 0128 mol) was added keeping the temperature below -70°C. The yellow mixture was stirred for another 15 min and quenched with dry DMF (1 4 mL, 0 018 mol). The cooling bath was removed and the mixture was allowed to warm to 25°C. A saturated solution of NaHCO₃ (30 mL) was added and then extracted with EtOAc (3 x 50 mL). The organic phase was dried (Na₂SO₄) and evaporated to yellow oil. Yield 2 31 g (94%)

30 ¹H-NMR(300 MHz, CDCl₃) δ 10 48 (s, 1H), 7 84 (d, 1H), 7 55 (dd, 1H), 6 94 (d, 1H), 6 00 (dd, 1H), 5 05 (dd, 1H), 5 01 (dd, 1H), 3 93 (s, 3H), 1 41 (s, 6H)

I-028 3-[5-Bromo-2-(4-methyl-piperazin-1-yl)-phenyl]-1-(2-fluoro-4-methoxy-phenyl)propenone

5 General procedure J gave the title compound as yellow crystals in 65 % yield 1 H NMR (CDCl₃) δ 8 05 (dd, 1H), 7 91 (t, 1H), 7 76 (d, 1H), 7 46 (dd, 1H), 7 41 (dd, 1H), 6 96 (dd, 1H), 6 82 (dd, 1H), 6 69 (dd, 1H), 3 90 (s, 3H), 3 01 (t, 4H), 2 64 (bs, 4H), 2 39 (s, 3H)

10

I-029 3-(2,4-Dichlorophenyl)-1-(4-fluorophenyl)propan-1-one

General procedure L gave the title compound as colourless crystals in 53 % yield 1 H-NMR(300 MHz, DMSO-d₆) δ 8 12-8 04 (m, 2H), 7 58 (d, 1H), 7 46 (d, 1H), 7 40-7 30 15 (m, 3H), 3 37 (t, 2H), 3 02 (t, 2H)

References

20

- 1) Synthesis of 2-phenylthiazolidine derivatives as cardiotonic agents I 2-Phenyithiazolidine-3-thiocarboxamides Nate, Hiroyuki, Sekine, Yasuo, Honma, Yasushi, Nakai, Hideo, Wada, Hiroshi, Takeda, Mikio, Yabana, Hideo, Nagao, Taku Org Chem Res Lab , Tanabe Seiyaku Co , Ltd , Toda, Japan Chem Pharm Bull (1987), 25 *35(5)*, 1953-68
 - 2) Preparation of stilbenes as neoplasm inhibitors and agents for treating dermatoses, EP 331983 A2
- 30 3) Preparation of 5,7-disubstituted-4-aminopyrido[2,3-d]pyrimidines as adenosine kinase inhibitors, WO 00/23444 A1

I-030

(E)-3-[3-(2-Dimethylamino-ethylamino)-phenyl]-1-(4-methoxy-phenyl)-propenone

35

General procedure 3 gave the fumanc acid salt of title compound as yellow crystals in 64 % yield

- 5 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 14 (d, 2H), 7 81 (d, 1H), 7 59 (d, 1H), 7 16 (t, 1H), 7 12-7 00 (m, 4H), 6 73-6 68 (dd, 1H), 6 56 (s, 2H), 3 88 (s, 3H), 3 30 (t, 2H), 2 79 (t, 2H), 2 44 (s, 6H)
- 10 I-031

(E)-3-(2,4-Dichloro-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

15 General procedure J gave the oxalate salt of title compound as yellow crystals in 15 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 26 (d, 1H), 8 08 (d, 2H), 8 00 (d, 1H), 7 89 (d, 1H), 7 74 (s, 1H), 7 54 (d, 1H), 6 86 (d, 2H), 3 78 (t, br, 2H), 3 12 (t, br, 2H), 3 07 (s, 3H), 20 2 75 (s, 6H)

I-032

(E)-1- $\{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl<math>\}$ -3- $\{4-fluoro-phenyl\}$ -

25 propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 12 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 06 (d, 2H), 7 98-7 82 (m, 3H), 7 65 (d, 1H), 7 28 (t, 2H), 6 86 (d, 2H), 3 80 (t, 3H), 3 15 (t, 2H), 3 06 (s, 3H), 2 75 (s, 6H)

I-033

(E)-3-(2,5-Difluoro-phenyl)-1- $\{4$ -[(2-dimethylamino-ethyl)-methyl-amino]-phenyl $\}$ -propenone

General procedure 3 gave the oxalate salt of title compound as yellow crystals in 12 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 8 11 (m, 4H), 7 69 (d, 1H), 7 41-7 28 (m, 2H), 6 86 (d, 10 2H), 3 80 (t, 3H), 3 15 (t, 2H), 3 06 (s, 3H), 2 75 (s, 6H)

I-034

(E)-3-(2-Bromo-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

15

5

General procedure I gave the oxalate salt of title compound as yellow crystals in 18 % yield

20 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 16 (dd, 1H), 8 07 (d, 2H), 7 92 (s, 2H), 7 73 (dd, 1H), 7 48 (t, 1H), 7 40-7 36 (td, 1H), 6 86 (d, 2H), 3 79 (t, 3H), 3 11 (t, 2H), 3 04 (s, 3H), 2 74 (s, 6H)

25 **I-035**

(E)-3-(4-Bromo-2-fluoro-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

30 General procedure J gave the oxalate salt of title compound as yellow crystals in 18 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 12-7 96 (m, 4H), 7 72-7 64 (m, 2H), 7 56-7 50 (dd, 1H), 6 86 (d, 2H), 3 78 (t, 3H), 3 08 (t, 2H), 3 04 (s, 3H), 2 74 (s, 6H)

1-036

(E)-3-[4-(2-Dimethylamino-ethylamino)-phenyl]-1-(4-methoxy-phenyl)-propenone

5

General procedure I gave the fumarate sait of title compound as yellow crystals in 44 % yield

10 $^{1}\text{H-NMR}(300~\text{MHz},~\text{DMSO-d}_{6})$ δ 8 10 (d, 2H), 7 64-7 58 (m, 4H), 7 05 (d, 2H), 6 65 (d, 2H), 6 58 (d, 2H), 6 38 (s, br, 1H), 3 85 (s, 3H), 2 70 (t, 2H), 2 39(s, 6H)

I-037

15 (E)-3-(4-Chloro-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 36 % 20 yield

 $^{1}\text{H-NMR}(300~\text{MHz},~\text{DMSO-d}_{6})~\delta~8~07~\text{(d, 2H)},~7~97-7~87~\text{(m, 3H)},~7~63~\text{(d, 1H)},~7~51~\text{(d, 2H)},~7~97-7~87~\text{(m, 3H)},~7~63~\text{(d, 2H)},~7~51~\text{(d, 2H)},~7~97-7~87~\text{(m, 3H)},~7~63~\text{(d, 2H)},~7~97-7~87~\text{(d, 2H)},~7~97-7~87~\text{(d, 2H)},~7~97-7~87~\text{(m, 3H)},~7~63~\text{(d, 2H)},~7~97-7~87~\text{(d, 2H)},~7~97-7~\text{(d, 2$ 2H), 6 84 (d, 2H), 3 74 (t, 2H), 3 48 (t, 2H), 3 05 (s, 3H), 2 70 (s, 6H)

25

I-038

(E)-3-(3-Bromo-phenyl)-1- $\{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl\}$ propenone

30

General procedure J gave the oxalate salt of title compound as yellow crystals in 23 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 17 (s, 1H), 8 09 (d, 2H), 7 95 (d, 1H), 7 83 (d, 1H), 7 65-7 55 (m, 2H), 7 40 (t, 1H), 6 85 (d, 2H), 3 80 (t, 2H), 3 15 (t, 2H), 3 06 (s, 3H), 2 75 (s, 6H)

5

I-039

(E)-4-(3-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-oxo-propenyl)-benzonitrile

10

General procedure I gave the oxalate salt of title compound as yellow crystals in 25 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 12-8 03 (m, 4H), 8 02-7 96 (m, 1H), 7 95-7 88 (m, 2H), 15 7 67 (d, 1H), 6 85 (d, 2H), 3 75 (t, 2H), 3 10-3 02 (m, 5H), 2 70 (s, 6H)

I-040

(E)-3-(2,5-Dimethoxy-phenyl)-1-[4-(3-dimethylamino-propylamino)-phenyl]-propenone

20

General procedure J gave the oxalate salt of title compound as yellow crystals in 26 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 98 (d, 2H), 7 92 (d, 1H), 7 83 (d, 1H), 7 49 (d, 1H), 7 06-6 97 (m, 2H), 6 75 (s, br, 1H), 6 66 (d, 2H), 3 84 (s, 3H), 3 79 (s, 3H), 3 20 (t, 2H), 3 09 (t, 2H), 2 74 (s, 6H), 1 92 (m, 2H)

30 I-041

(E)-3-(2,4-Dichloro-phenyl)-1-[4-(3-dimethylamino-propylamino)-phenyl]-propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 26 % yield

- 5 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 22 (d, 1H), 8 06-7 92 (m, 3H), 7 86 (d, 1H), 7 72 (d, 1H), 7 52 (dd, 1H), 6 88 (s, br, 1H), 6 67 (d, 2H), 3 22 (t, 2H), 3 10 (t, 2H), 2 74 (s, 6H), 1 93 (m, 2H)
- 10 I-042

(E)-3-[4-(2-Dimethylamino-ethylamino)-phenyl]-1-(2,3,4-trimethoxy-phenyl)-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 50 % 15 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 48 (d, 2H), 7 42 (d, 1H), 7 29 (d, 1H), 7 12 (d, 1H), 6 90 (d, 1H), 6 64 (d, 2H), 6 58 (s, 2H), 6 52 (s, br, 1H), 3 85 (s, 3H), 3 80 (s, 3H), 3 77 (s, 3H), 3 34 (t, 2H), 2 90-2 80 (m, 2H), 2 51 (s, 6H)

I-043

(E)-3-[4-(2-Dimethylamino-ethylamino)-phenyl]-1-(2-fluoro-4-methoxy-phenyl)-propenone

25

20

General procedure J gave the fumarate salt of title compound as yellow crystals in 51 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 78 (t, 1H), 7 58-7 48 (m, 3H), 7 16 (dd, 1H), 6 97-6 87 (m, 2H), 6 64 (d, 2H), 6 58 (s, 2H), 6 41 (s, br, 1H), 3 85 (s, 3H), 3 25 (m, 2H), 2 64 (t, 2H), 2 35 (s, 6H)

I-044

5

(E)-3-(2,4-Dichloro-phenyl)-1- $\{3$ - $\{(2$ -dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

General procedure 3 gave the oxalate salt of title compound as yellow crystals in 39 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 24 (d, 1H), 7 95 (s, 2H), 7 77 (d, 1H), 7 58-7 50 (m, 2H), 7 44-7 34 (m, 2H), 7 12 (dd, 1H), 3 75 (t, 2H), 3 16 (t, 2H), 3 00 (s, 3H), 2 79 (s, 6H)

I-045

15 (E)-3-(4-Chloro-phenyl)-1-{3-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 41 % 20 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 94-7 87 (m, 3H), 7 70 (d, 1H), 7 54-7 48 (m, 3H), 7 42-7 34 (m, 2H), 7 11 (dd, 1H), 3 76 (t, 2H), 3 18 (t, 2H), 3 00 (s, 3H), 2 80 (s, 6H)

T_0/

25

30

I-046 (E)-3-(2,5-Difluoro-phenyl)-1-{3-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

General procedure 3 gave the oxalate salt of title compound as yellow crystals in 15 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 10-8 04 (m, 1H), 8 00 (d, 1H), 7 75 (d, 1H), 7 53 (d, 35 1H), 7 44-7 33 (m, 4H), 7 13 (dd, 1H), 3 75 (t, 2H), 3 17 (t, 2H), 3 00 (s, 3H), 2 78 (s, 6H)

I-047

(E)-3-(4-Bromo-2-fluoro-phenyl)-1-{3-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-5 propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 35 % 10 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 09 (t, 1H), 7 96 (d, 1H), 7 73 (d, 1H), 7 69 (dd, 1H), 7 54 (dd, 1H), 7 49 (d, 1H), 7 40 (t, 1H), 7 34 (s, br, 1H), 7 12 (dd, 1H), 3 75 (t, 2H), 3 16 (t, 2H), 3 00 (s, 3H), 2 78 (s, 6H)

15

1-048

(E)-3-(2-Chloro-phenyl)-1-{3-[(2-dimethylamino-ethyl)-methyl-amino}-phenyl}propenone

20

General procedure J gave the oxalate salt of title compound as yellow crystals in 27 % yıeld

25 1 H-NMR(300 MHz, DMSO-d₆) δ 8 19 (dd, 1H), 8 02 (d, 1H), 7 92 (d, 1H), 7 57 (dd, 1H), 7 53-7 34 (m, 5H), 7 12 (dd, 1H), 3 75 (t, 2H), 3 15 (t, 2H), 3 00 (s, 3H), 2 78 (s, 6H)

I-049

30 (E)-1- $\{3-[(2-D)] - (4-methyl) - (4-methoxy-phenyl) - (4-methoxy-phe$ propenone

39

General procedure J gave the oxalate salt of title compound as yellow crystals in 14 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 84 (d, 2H), 7 73 (d, 1H), 7 68 (d, 1H), 7 47 (d, 1H), 5 7 38 (t, 1H), 7 33 (s, br, 1H), 7 08 (dd, 1H), 7 01 (d, 2H), 3 82 (s, 3H), 3 74 (t, 2H), 3 14 (t, 2H), 2 99 (s, 3H), 2 76 (s, 6H)

I-050

10 (E)-3-(2,4-Dimethoxy-phenyl)-1-{3-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 55 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 95 (d, 1H), 7 88 (d, 1H), 7 67 (d, 1H), 7 44-7 32 (m, 2H), 7 30 (s, br, 1H), 7 06 (dd, 1H), 6 66-6 58 (m, 2H), 3 58 (s, 3H), 3 65 (s, 3H), 3 54 (t, 2H), 3 12 (t, 2H), 2 97 (s, 3H), 2 75 (s, 6H)

20

I-051

(E)-3-(2,4-Dichloro-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

25

General procedure J gave the fumarate salt of title compound as yellow crystals in 34 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 8 20 (d, 1H), 8 05-7 91 (m, 3H), 7 86 (d, 1H), 7 71 (d, 30 1H), 7 50 (dd, 1H), 6 88 (s, br, 1H), 6 67 (d, 2H), 3 80 (t, 2H), 3 15 (t, 2H), 3 06 (s, 3H), 2 75 (s, 6H)

35 I-052

(E)-1- $\{2-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl\}-3-<math>\{4-methoxy-phenyl\}$ -propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 27 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 72 (d, 2H), 7 54-7 38 (m, 3H), 7 25 (d, 1H), 7 19 (d, 1H), 7 08 (t, 1H), 7 00 (d, 2H), 3 82 (s, 3H), 3 38 (t, 2H), 3 18 (t, 2H), 2 73 (s, 6H), 2 70 (s, 3H)

I-053

5

10

(E)-1-(2,3-Dichloro-phenyl)-3-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone-

15 General procedure J gave the fumarate salt of title compound as yellow crystals in 27 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 76 (dd, 1H), 7 52-7 40 (m, 4H), 7 21 (d, 1H), 6 85 (d, 1H), 6 62 (d, 2H), 6 70 (s, 2H), 3 30-3 22 (m, 2H), 2 65 (t, 2H), 2 35 (s, 6H)

I-054

20

25

(E)-3-(4-Chloro-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 28 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 90 (d, 2H), 7 86 (d, 1H), 7 80 (d, 2H), 7 68 (d, 1H), 30 7 51 (d, 2H), 6 70 (d, 2H), 6 56 (s, 2H), 3 28 (t, 2H), 2 74 (t, 2H), 2 41 (s, 6H)

I-055

(E)-3-(2,4-Dimethoxy-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 48 % 5 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 98 (d, 2H), 7 86 (d, 1H), 7 80 (d, 1H), 7 73 (d, 1H), 7 71 (d, 1H), 7 50 (s, 1H), 6 88 (s, br, 1H), 6 68 (d, 2H), 3 90 (s, 3H), 3 85 (s, 3H), 3 50 (t, 2H), 3 20 (t, 2H), 2 80 (s, 6H)

I-056

10

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-methoxy-phenyl)-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 45 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 98 (d, 2H), 7 86 (d, 1H), 7 82 (d, 2H), 7 73 (d, 1H), 20 7 00 (d, 2H), 6 88 (s, br, 1H), 6 68 (d, 2H), 6 55 (s, 2H), 3 82 (s, 3H), 3 26 (t, 2H), 2 70 (t, 2H), 2 40 (s, 6H)

I-057

25 (E)-3-(2,5-Dimethoxy-phenyl)-1-[2-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the oxalate salt of title compound as orange crystals in 61 % yield

42

 1 H-NMR(300 MHz, DMSO-d₆) δ 9 11 (t, 1H), 8 20 (d, 1H), 7 95 (s, 2H), 7 52 (d, 1H), 7 47 (t, 1H), 7 08-6 95 (m, 2H), 6 90 (d, 1H), 6 71 (t, 1H), 3 83 (s, 3H), 3 80 (s, 3H), 3 70-3 55 (m, 2H), 3 20 (t, 2H), 2 76 (s, 6H)

I-058

5

(E)-3-(2,4-Dichloro-phenyl)-1-[2-(2-dimethylamino-ethylamino)-phenyl]-propenone

10 General procedure J gave the oxalate salt of title compound as yellow crystals in 69 % yield______

 1 H-NMR(300 MHz, DMSO-d₆) δ 9 13 (t, 1H), 8 24 (t, 2H), 8 08 (d, 1H), 7 90 (d, 1H), 7 72 (d, 1H), 7 56-7 40 (m, 2H), 6 93 (d, 1H), 6 70 (t, 1H), 3 70-3 58 (m, 2H), 3 20 (t, 2H), 15 2 75 (s, 6H)

I-059

(E)-1-[4-(3-Dimethylamino-propylamino)-phenyl]-3-(4-fluoro-phenyl)-propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 64 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 99 (d, 2H), 7 93 (dd, 2H), 7 84 (d, 1H), 7 62 (d, 1H), 25 7 28 (t, 2H), 6 79 (s, br, 1H), 6 66 (d, 2H), 3 20 (t, 2H), 3 13-3 05 (m, 2H), 2 74 (s, 6H), 2 00-1 85 (m, 2H)

I-060

30 (E)-3-(2,5-Dimethoxy-phenyl)-1-[2-(3-dimethylamino-propylamino)-phenyl]-propenone

General procedure I gave the oxalate salt of title compound as orange crystals in 71 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 9 15 (t, br, 1H), 8 20 (d, 1H), 7 96 (s, 2H), 7 52 (d, 1H), 7 43 (t, 1H), 7 09-6 95 (m, 2H), 6 85 (d, 1H), 6 68 (t, 1H), 3 84 (s, 3H), 3 80 (s, 3H), 3 31 (t, 2H), 3 18-3 01 (m, 2H), 2 74 (s, 6H), 2 05-1 90 (m, 2H)

10 I-061

(E)-3-(2,5-Dimethoxy-phenyl)-1-(3-(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

15 General procedure J gave the oxalate salt of title compound as yellow crystals in 44 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 98 (d, 1H), 7 82 (d, 1H), 7 50 (d, 1H), 7 43-7 30 (m, 2H), 7 27 (t, 1H), 7 08-7 02 (m, 2H), 6 97 (dd, 1H), 3 83 (s, 3H), 3 78 (s, 3H), 3 48 (t, 2H), 2 96 (s, 3H), 2 38 (t, 2H), 2 18 (s, 6H)

I-062

(E)-3-(3-Dibutylamino-phenyl)-1-[2-(3-dimethylamino-propylamino)-phenyl]-propenone

25

General procedure J gave the title compound as a orange oil in 40 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 9 14 (t, 1H), 8 11 (dd, 1H), 7 84 (d, 1H), 7 59 (d, 1H), 30 7 40 (t, 1H), 7 20 (t, 1H), 7 07 (d, 1H), 6 95 (s, 1H), 6 80 (d, 1H), 6 68 (dd, 1H), 6 62 (t, 1H), 3 35-3 20 (m, 6H), 2 32 (t, 2H), 2 15 (s, 6H), 1 80-1 68 (m, 2H), 1 57-1 43 (m, 4H), 1 41-1 25 (m, 4H), 0 92 (t, 6H)

I-063

(E)-1-[2-(3-Dimethylamino-propylamino)-phenyi]-3-(3-dipropylamino-phenyi)-propenone

General procedure J gave the title compound as a red oil in 55 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 9 14 (t, 1H), 8 13 (dd, 1H), 7 85 (d, 1H), 7 60 (d, 1H), 7 40 (t, 1H), 7 20 (t, 1H), 7 08 (d, 1H), 6 97 (s, 1H), 6 80 (d, 1H), 6 68 (dd, 1H), 6 62 (t, 1H), 3 35-3 20 (m, 6H), 2 32 (t, 2H), 2 14 (s, 6H), 1 80-1 68 (m, 2H), 1 61-1 45 (m, 4H), 0 90 (t, 6H)

1-064

15 (E)-1-[2-(2-Dimethylamino-ethylamino)-phenyl]-3-(3-dipropylamino-phenyl)-propenone

General procedure J gave the title compound as red oil in 54 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 9 20 (t, 1H), 8 13 (dd, 1H), 7 85 (d, 1H), 7 62 (d, 1H), 7 42 (t, 1H), 7 20 (t, 1H), 7 10 (d, 1H), 6 97 (s, 1H), 6 79 (d, 1H), 6 68 (dd, 1H), 6 63 (t, 1H), 3 35-3 20 (m, 6H), 2 52 (t, 2H), 2 20 (s, 6H), 1 62-1 45 (m, 4H), 0 90 (t, 6H)

25 **I-065**

(E)-3-(2,4-Dimethoxy-phenyl)-1-[2-(3-dimethylamino-propylamino)-phenyl]-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 43 % yield

5 ¹H-NMR(300 MHz, DMSO-d₆) δ 9 12 (s, br, 1H), 8 11 (dd, 1H), 7 98-7 75 (m, 3H), 7 40 (td, 1H), 6 81 (d, 1H), 6 70-6 57 (m, 3H), 6 53 (s, 2H), 3 90 (s, 3H), 3 84 (s, 3H), 3 28 (t, 2H), 2 77 (t, 2H), 2 48 (s, 6H), 1 95-1 80 (m, 2H)

10 I-066

(E)-3-(2,4-Dimethoxy-phenyl)-1-[2-(2-dimethylamino-ethylamino)-phenyl]-propenone

15 General procedure J gave the fumarate salt of title compound as yellow crystals in 58 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 9 13 (t, 1H), 8 10 (dd, 1H), 7 96-7 86 (m, 2H), 7 79 (d, 1H), 7 41 (td, 1H), 6 82 (d, 1H), 6 69-6 60 (m, 3H), 6 58 (s, 2H), 3 90 (s, 3H), 3 85 (s, 2H), 3 40-3 30 (m, 2H), 2 82 (t, 2H), 2 38 (s, 6H)

1-067

(E)-3-(5-Dibutylamino-2-methoxy-phenyl)-1-[2-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the title compound as a red oil in 63 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 9 15 (t, 1H), 8 04 (dd, 1H), 7 92 (d, 1H), 7 82 (d, 1H), 7 41 (t, 1H), 7 10 (d, 1H), 6 96 (d, 1H), 6 82-6 72 (m, 2H), 6 63 (t, 1H), 3 80 (s, 3H), 5 3 30-3 18 (m, 6H), 2 53 (t, 2H), 2 21 (s, 6H), 1 55-1 40 (m, 4H), 1 49-1 23 (m, 4H), 0 91 (t, 6H)

I-068

10 (E)-3-(2,4-Dichloro-phenyl)-1-[3-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure I gave the fumarate salt of title compound as yellow crystals in 56 % 15 yield

 $^{1}\text{H-NMR}(300~\text{MHz},~\text{DMSO-d}_{6})~\delta~8~21~\text{(d, 1H)},~7~91~\text{(s, 2H)},~7~75~\text{(d, 1H)},~7~54~\text{(dd, 1H)},$ 7 38 (d, 1H), 7 31-7 20 (m, 2H), 6 90 (d, 1H), 6 58 (s, 2H), 5 70 (t, 1H), 3 20-3 10 (m, 2H), 2 45 (t, 2H), 2 18 (s, 6H)

20

I-069

(E)-3-[5-(1,1-Dimethyl-allyl)-2-methoxy-phenyl]-1-[4-(3-dimethylamino-propylamino)phenyl]-propenone

25

General procedure J gave the fumarate salt of title compound as yellow crystals in 45 % yıeld

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 00-7 82 (m, 3H), 7 79 (d, 2H), 7 33 (d, 1H), 7 01 (d, 30 1H), 6 75 (s, br, 1H), 6 65 (d, 2H), 6 57 (s, 2H), 6 08 (dd, 1H), 5 10-4 94 (m, 2H), 3 85 (s, 3H), 3 18 (t, 2H), 2 65 (t, 2H), 2 39 (s, 6H), 1 88-1 66 (m, 2H), 1 39 (s, 6H)

35 (E)-3-(3-Dibutylamino-phenyl)-1-[2-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the title compound as an orange oil in 54 % yield

5 1 H-NMR(300 MHz, DMSO-d₆) 8 9 20 (t, 1H), 8 10 (dd, 1H), 7 83 (d, 1H), 7 61 (d, 1H), 7 40 (t, 1H), 7 19 (t, 1H), 7 08 (d, 1H), 6 95 (s, 1H), 6 78 (d, 1H), 6 70-6 56 (m, 2H), 3 35-3 18 (m, 6H), 2 50 (t, 2H), 2 20 (s, 6H), 1 58-1 41 (m, 4H), 1 40-1 25 (m, 4H), 0 92 (t, 6H)

10

I-071.

(E)-3-(2,4-Dimethoxy-phenyl)-1-[3-(2-dimethylamino-ethylamino)-phenyl]-propenone

15

General procedure J gave the oxalate salt of title compound as yellow crystals in 43 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 95 (d, 1H), 7 87 (d, 1H), 7 66 (d, 1H), 7 40-7 20 (m, 20 3H), 6 90 (d, 1H), 6 68-6 59 (m, 2H), 3 90 (s, 3H), 3 85 (s, 3H), 3 47 (t, 2H), 3 21 (t, 2H), 2 79 (s, 6H)

I-072

25 (E)-3-(2,5-Dimethoxy-phenyl)-1-[3-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure I gave the oxalate salt of title compound as yellow crystals in 27 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 73 (d, 1H), 7 55 (d, 1H), 7 26 (s, 1H), 7 18 (d, 1H), 7 07 (t, 1H), 7 01 (s, 1H), 6 80 (s, 2H), 6 68 (d, 1H), 3 58 (s, 3H), 3 52 (s, 3H), 3 20 (t, 2H), 2 95 (t, 2H), 2 79 (s, 6H)

5 **I-073**

10

(E)-3-(2,4-Dimethoxy-phenyl)-1- $\{2$ - $\{(2$ -dimethylamino-ethyl)-methyl-amino $\}$ -phenyl $\}$ -propenone

General procedure J gave the title compound as yellow oil in 36 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 80 (d, 1H), 7 68 (d, 1H), 7 45-7 27 (m, 3H), 7 13 (d, 1H), 6 95 (t, 1H), 6 65-6 57 (m, 2H), 3 86 (s, 3H), 3 82 (s, 3H), 3 12 (t, 2H), 2 74 (s, 3H), 2 35 (t, 2H), 2 06 (s, 6H)

I-074

(E)-3-(2,5-Dimethoxy-phenyl)-1-{2-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-20 propenone

General procedure J gave the title compound as a red oil in 83 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 83 (d, 1H), 7 48-7 36 (m, 3H), 7 27 (d, 1H), 7 15 (1H), 7 06-6 92 (m, 3H), 3 80 (s, 3H), 3 73 (s, 3H), 3 11 (t, 2H), 2 74 (s, 3H), 2 36 (t, 2H), 2 06 (s, 6H)

30 I-075

(E)-3-(3,5-Bis-trifluoromethyl-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure J gave the title compound as yellow solid in 36 % yield

- 5 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 10 (s, 2H), 7 95 (d, 2H), 7 88 (s, 1H), 7 77 (d, 1H), 7 67 (d, 1H), 6 66 (d, 2H), 5 08 (t, br, 1H), 3 30-3 18 (m, 2H), 2 59 (t, 2H), 2 27 (s, 6H)
 - I-076

General procedure J gave the fumarate salt of title compound as yellow crystals in 32 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 88 (d, 1H), 7 65 (d, 1H), 7 49 (d, 1H), 7 40-7 26 (m, 2H), 7 10-6 92 (m, 3H), 6 58 (d, 2H), 3 80 (s, 6H), 3 61 (t, 2H), 2 62 (t, 2H), 2 39 (s, 6H)

20

25

I-077

(E)-1-{3-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-phenyl-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 28 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 7 92-7 83 (m, 3H), 7 72 (d, 1H), 7 50-7 43 (m, 4H), 7 40-30 7 30 (m, 2H), 7 08-7 02 (dd, 1H), 6 58 (s, 2H), 3 62 (t, 2H), 2 95 (s, 3H), 2 73 (t, 2H), 2 45 (s, 6H)

I-078

(E)-3-(4-Diethylaminomethyl-phenyl)-1- $\{3$ -[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

General procedure J gave the title compound as yellow oil in 25 % yield

¹H-NMR(300 MHz, CDCl₃) δ 7 93 (d, 1H), 7 72 (d, 2H), 7 63 (d, 1H), 7 58-7 41 (m, 5H), 7 40 (s, 2H), 7 10-7 04 (m, 1H), 3 72 (s, 2H), 3 65 (t, 2H), 3 16 (s, 3H), 2 73-2 60 (m, 10 6H), 2 45 (s, 6H), 1 19 (t, 6H)

I-079

(E)-3-(3,5-Dimethoxy-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

15

5

General procedure J gave the fumarate salt of title compound as yellow crystals in 50 % yield

20 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 00 (d, 2H), 7 88 (d, 1H), 7 54 (d, 1H), 7 00 (s, 2H), 6 68 (d, 3H), 6 55 (s, 2H), 3 80 (s, 6H), 3 35-3 20 (m, 2H), 2 65 (t, 2H), 2 35 (s, 3H)

I-080

25 (E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-phenyl-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 45 % yield

30

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 98 (d, 2H), 7 94-7 80 (m, 3H), 7 62 (d, 1H), 7 50-7 38 (m, 3H), 6 75-6 65 (m, 3H), 6 57 (s, 2H), 3 31 (q, 2H), 2 67 (t, 2H), 2 36 (s, 6H)

1-081

5

15

20

25

30

(E)-3-(4-Diethylaminomethyl-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

General procedure I gave the title compound as yellow oil in 36 % yield

¹H-NMR(300 MHz, CDCl₃) δ 7 98 (d, 2H), 7 90 (d, 1H), 7 63-7 52 (m, 3H), 7 39 (d, 2H), 6 64 (d, 2H), 4 95 (t, 1H), 3 60 (s, 2H), 3 23 (q, 2H), 2 60-2 48 (m, 6H), 2 29 (s, 6H), 10 1 06 (t, 6H)

1-082

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(2-fluoro-phenyl)-propenone

General procedure ${\bf J}$ gave the fumarate salt of title compound as yellow crystals in 50 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 08 (t, 1H), 8 02-7 88 (m, 3H), 7 74 (d, 1H), 7 54-7 43 (m, 1H), 7 37-7 25 (m, 2H), 6 76 (t, 1H), 6 68 (d, 2H), 6 57 (s, 2H), 3 32 (q, 2H), 2 66 (t, 2H), 2 35 (s, 6H)

I-083

(E)-1-{3-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-(2-fluoro-phenyl)-propenone

General procedure J gave the oxalate salt of title compound as yellow crystals in 26 % yield

35 1 H-NMR(300 MHz, DMSO-d₆) δ 8 12 (t, 1H), 7 94 (d, 1H), 7 82 (d, 1H), 7 58-7 47 (m, 2H), 7 45-7 28 (m, 4H), 7 13 (dd, 1H), 3 78 (t, 2H), 3 22 (t, 2H), 3 00 (s, 3H), 2 82 (s,

6H)

5 (E)-3- $\{2-[(2-D)methylamino-ethyl)-methyl-amino\}-phenyl\}-1-(2,3,4-trimethoxy-phenyl)$ propenone

General procedure I gave the title compound as yellow oil in 41 % yield

10

 1 H-NMR(300 MHz, CDCl₃) δ 8 06 (d, 1H), 7 65 (dd, 1H), 7 48 (d, 1H), 7 43 (d, 1H), 7 34 (td, 1H), 7 11 (d, 1H), 7 04 (t, 1H), 6 77 (d, 1H), 3 97 (s, 3H), 3 95 (s, 3H), 3 94 (s, 3H), 3 10 (m, 2H), 2 80 (s, 3H), 2 52 (m, 2H), 2 22 (s, 6H)

15

I-085.

(E)-3- $\{2-[(2-D)methylamino-ethyl)-methyl-amino]-phenyl\}-1-(2-methoxy-phenyl)$ propenone

20

General procedure J gave the title compound as yellow oil in 37 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 73 (d, 1H), 7 69 (dd, 1H), 7 53 (td, 1H), 7 46 (dd, 1H), 25 7 37 (td, 1H), 7 25 (d, 1H), 7 18 (d, 1H), 7 14 (d, 1H), 7 10-7 01 (m, 2H), 3 84 (s, 3H), 2 95 (t, 2H), 2 70 (s, 3H), 2 33 (t, 2H), 2 05 (s, 6H)

I-086

30 (E)-3- $\{2-[(2-D)] - (2-D) - (2-D)$ phenyl)propenone

General procedure J gave the title compound as yellow oil in 58 % yield

5 ¹H-NMR(300 MHz, CDCl₃) δ 7 67 (d, 1H), 7 62 (dd, 1H), 7 46-7 30 (m, 5H), 7 13-7 03 (m, 3H), 3 56 (s, 2H), 3 03 (t, 2H), 2 71 (s, 3H), 2 35 (t, 2H), 2 17 (s, 12H)

I-087

10 (E)-3-{2-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-1-(2-fluoro-4-methoxy-phenyl)-propenone_____

General procedure J gave the fumarate salt of title compound as yellow crystals in 41 % 15 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 92 (d, 1H), 7 83 (t, 1H), 7 76 (dd, 1H), 7 47-7 37 (m, 2H), 7 21 (d, 1H), 7 10 (t, 1H), 7 02-6 90 (m, 2H), 6 57 (s, 2H), 3 86 (s, 3H), 3 10 (t, 2H), 2 77-2 61 (m, 5H), 2 29 (s, 6H)

1-088:

 $(E)-1-\{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl\}-3-(4-pyridin-2-yl-phenyl)-propenone$

25

20

General procedure 3 gave the title compound as a yellow solid in 35 % yield

¹H-NMR(300 MHz, CDCl₃) δ 8 73 (d, 1H), 8 09-8 02 (m, 4H), 7 87-7 75 (m, 5H), 7 66 (d, 30 1H), 7 31-7 24 (m, 1H), 6 74 (d, 2H), 3 57 (t, 2H), 3 10, (s, 3H), 2 54 (t, 2H), 2 30 (s, 6H)

5

(E)-3-(4-Butyl-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 30 %yıeld

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 04 (d, 2H), 7 85 (d, 1H), 7 75 (d, 2H), 7 62 (d, 1H), 10 7 27 (d, 2H), 6 79 (d, 2H), 6 59 (s, 2H), 3 64 (t, 2H), 3 04, (s, 3H), 2 70-2 59 (m, 4H), 2 39 (s, 6H), 1 60-1 55 (m, 2H), 1 35-1 27 (m, 2H), 0 90 (t, 3H)

15 (E)-1-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-quinolin-3-yl-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 46 % yıeld

¹H-NMR(300 MHz, DMSO-d₆) δ 9 43 (d, 1H), 8 80 (d, 1H), 8 22 (d, 1H), 8 13-8 00 (m, 20 4H), 7,86-7 78 (m, 2H), 7 67 (dd, 1H), 6 83 (d, 2H), 6 60 (s, 3H), 3 67 (t, 2H), 3 06, (s, 3H), 2 71 (t, 2H), 2 42 (s, 6H)

25

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-pyridin-2-yl-phenyl)-propenone

30 General procedure J gave the fumarate salt of title compound as yellow crystals in 36 % yıeld

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 70 (d, 1H), 8 18 (d, 2H), 8 08-7 88 (m, 7H), 7,68 (d, 1H), 7 39 (ddd, 1H), 6 69 (d, 1H), 6 65 (t, 1H), 6 57 (s, 1H), 3 28, (q, 2H), 2 58 (t, 2H), 2 29 (s, 6H)

5

I-092. (E)-3-(4-Butyl-phenyl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]-propenone

10 General procedure J gave the fumarate salt of title compound as yellow crystals in 35 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 83 (d, 2H), 7 69 (d, 1H), 7 61 (d, 2H), 7,46 (d, 1H), 7 13 (d, 2H), 6 54 (d, 2H), 6 48 (d, 1H), 6 43 (s, 1H), 3 12, (q, 2H), 2 51-2 42 (m, 4H), 15 2 16 (s, 6H), 1 46-1 41 (m, 2H), 1 22-1 14 (m, 2H), 0 77 (t, 3H)

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-methoxy-biphenyl-3-yl)-propenone

20

General procedure J gave the fumarate salt of title compound as yellow crystals in 28 % yield

25 ¹H-NMR(300 MHz, DMSO-d₆) δ 8 22 (d, 1H), 8 02-7 99 (m, 4H), 7 78-7 74 (m, 2H), 7,71 (d, 1H), 7 48 (dd, 2H), 7 36 (dd, 1H), 7 20 (d, 1H), 6 68 (d, 2H), 6 63 (t, 1H), 6 59 (s, 2H), 3 94 (s, 3H), 3 27, (q, 2H), 2 60 (t, 2H), 2 31 (s, 6H)

30 I-094

(E)-3- $\{3-[(2-D)]$ methylamino-ethyl)-methyl-amino]-phenyl $\}-1-[2-(4-m)]$ piperazin-1ylmethyi)-phenyi]-propenone

General procedure J gave the title compound as an orange oil in 33 % yield

 5^{-1} H-NMR(300 MHz, CDCl₃) δ 7 44-7 32 (m, 4H), 7 24 (t, 1H), 7 18 (d, 1H), 7 00 (d, 1H), 6 88 (d, 1H), 6 82-6 73 (m, 2H), 3 60 (s, 2H), 3 48 (t, 2H), 2 98 (s, 3H), 2 49 (t, 2H), 2 48-2 34 (br, 8H), 2 30 (s, 6H), 2 20 (s, 3H)

10 I-095

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-quinolin-3-yl-propenone

General procedure J gave the title compound as yellow solid in 37 % yield

15 1 H-NMR(300 MHz, CDCl₃) δ 9 23 (d, 1H), 8 34 (d, 1H), 8 14 (d, 1H), 8 03 (d, 2H), 7 95 (d, 1H), 7 89 (d, 1H), 7,81 (d, 1H), 7 79-7 74 (m, 1H), 7 61 (dd, 1H) 6 67 (d, 2H), 5 04 (t, 1H), 3 26, (dt, 2H), 2 61 (d, 2H), 2 29 (s, 6H)

I-096

20

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-quinolin-2-yl-propenone

25 General procedure I gave the title compound as yellow solid in 17 % yield

¹H-NMR(300 MHz, CDCl₃) 8 17-8 06 (m, 3H), 8 00 (d, 2H), 7 86 (d, 1H), 7 76 (d, 1H), 7 68 (dd, 1H), 7,59 (d, 1H), 7 49 (dd, 1H), 6 58 (d, 2H), 4 94 (t, 1H), 3 17, (dt, 2H), 2 52 30 (d, 2H), 2 20 (s, 6H)

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-dimethylamino-phenyl)-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 20 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 8 06 (d, 2H), 7 78 (d, 2H), 7,70 (d, 2H), 6 86 (d, 2H), 6 78 (d, 2H), 6 70 (s, 2H), 6 65 (t, 1H), 3 39 (dt, 2H), 3 12 (s, 6H), 2 75 (t, 2H), 2 45 (s, 6H)

5

10

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-imidazol-1-yl-phenyl)-propenone

15 General procedure J gave the title compound as orange solid in 34 % yield

¹H-NMR(300 MHz, CDCl₃) δ 7 99 (d, 2H), 7,93 (t, 1H), 7 83-7 75 (m, 3H), 7 60 (d, 1H), 7 47 (d, 2H), 7 34 (t, 1H), 7 25 (t, 1H), 6 66 (d, 2H), 5 01 (t, 1H), 3 25, (dt, 2H), 2 60 (d, 2H), 2 29 (s, 6H)

20

1-099

(E)-3-(2,3-Dihydro-benzo[1,4]dioxin-6-yl)-1-[4-(2-dimethylamino-ethylamino)-phenyl]propenone

25

General procedure J gave the fumarate salt of title compound as yellow crystals in 13 % yıeld

30 $^{1}\text{H-NMR}(300~\text{MHz},~\text{DMSO-d}_{6})$ 8 7 97 (d, 2H), 7 74 (d, 1H), 7,52 (d, 1H), 7 43 (d, 1H), 7 31 (dd, 1H), 6 90 (d, 1H), 6 70-6 65 (m, 3H), 6 58 (s, 2H), 4 29 (bs, 4H), 3 34 (dt, 2H), 2 75 (t, 2H), 2 42 (s, 6H)

I-100

5

(E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-{3-[(2-dimethylamino-ethyl)-methylamino]-phenyl}-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 15 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 97 (d, 2H), 7 80 (d, 1H), 7,57 (d, 1H), 7 23 (dd, 1H), 10 7 12-7 09 (m, 2H), 6 77 (dd, 1H), 6 68 (d, 2H), 6 62 (t, 1H), 6 57 (s, 2H), 3 54 (t, 1H), 3 28 (dt, 2H), 2 96 (s, 3H), 2 62-2-57 (m, 4H), 2 30 (s, 6H), 2 09 (s, 6H)

I-101

15 (E)-1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(2-dimethylaminomethyl-phenyl)propenone

General procedure J gave the title compound as yellow solid in 10 % yield

20 ¹H-NMR(300 MHz, CDCl₃) δ 8 24 (d, 1H), 8 00 (d, 2H), 7 76-7 73 (m, 1H), 7 70 (d, 1H), 7 37-7 32 (m, 3H), 6 65 (d, 1H), 4 95 (t, 1H), 3 57 (s, 2H), 3 25 (dt, 2H), 2 60 (t, 2H), 2 29 (s, 6H), 2 28 (s, 6H)

25

 $(E)-1-\{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl\}-3-(4-methoxy-biphenyl-3-yl)$ propenone

30 General procedure J gave the fumarate salt of title compound as yellow crystals in 36 % yield

 $^{1}\text{H-NMR}(300~\text{MHz}, \text{DMSO-d}_{6})$ δ 8 23 (d, 1H), 8 07 (d, 2H), 8 02 (s, 2H), 7 78-7 71 (m, 3H), 7 48 (dd, 2H), 7,35 (d, 1H), 7 20 (d, 1H), 6 80 (d, 1H), 6 59 (s, 2H), 3 94 (s, 3H), 3 65 (t, 1H), 3 04, (s, 3H), 2 69 (t, 2H), 2 40 (s, 6H)

5

(E)-3-{3-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-1-(2-dimethylaminomethyl-methyl-amino) phenyl)-propenone

10

General procedure J gave the fumarate salt of title compound as yellow crystals in 42 % yıeld

15 1 H-NMR(300 MHz, DMSO-d₆) δ 7 54-7 38 (m, 4H), 7 27 (s, 2H), 7 22 (t, 1H), 7 05-6 98 (m, 2H), 6 81 (dd, 1H), 6 58 (s, 4H), 3 61 (s, 2H), 3 59 (t, 2H), 2 93 (s, 3H), 2 78 (t, 2H), 2 48 (s, 6H), 2 13 (s, 6H)

20 I-104

(E)-3-[4-(2-Dimethylamino-ethoxy)-biphenyl-3-yl]-1-[4-(2-dimethylamino-ethylamino)phenyl]-propenone

25

General procedure J gave the fumarate salt of title compound as yellow crystals in 14 % yield

¹H-NMR(300 MHz, DMSO-d₆) δ 8 16 (d, 1H), 8 08 (d, 1H), 8 01 (d, 2H), 7 96 (d, 1H), 7 75 (d, 2H), 7,70 (dd, 1H), 7 47 (dd, 2H), 7 35 (dd, 1H), 7 23 (d, 1H), 6 69 (d, 2H), 6 58 (s, 2H), 4 28 (t, 1H), 3 32 (dt, 2H), 2 89 (t, 2H), 2 70 (t, 2H), 2 38 (s, 6H)

5

I-105

1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(2-dimethylaminomethyl-phenyl)-propenone

10

General procedure 3 gave the fumarate salt of title compound as orange crystals in 38 % yield

¹H-NMR(300 MHz, DMSO-d₆) & 7 6-7 4 (m, 6H), 7 26 (d, 1H), 7 17 (d, 1H), 6 74 (d, 2H), 15 6 58 (s, 4H), 3 65 (s, 2H), 3 59 (t, 2H), 2 98 (s, 3H), 2 67 (t, 2H), 2 40 (s, 6H), 2 19 (s, 6H)

I-106

20 (*E*)-3-{2-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-1-[2-(4-methyl-piperazin-1-ylmethyl)-phenyl]-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 59 % yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 78 (dd, 1H), 7 54 (d, 1H), 7 50-7 33 (m, 5H), 7 18 (d, 1H), 7 14-7 05 (m, 2H), 6 57 (s, 4H), 3 55 (s, 2H), 3 04 (t, 2H), 2 63 (s, 3H), 2 54 (t, 2H), 2 42-2 25 (br, 8H), 2 24 (s, 6H), 2 18 (s, 3H)

30

I-107

(\mathcal{E})-1-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-(2-dimethylaminomethyl-phenyl)-propenone

General procedure J gave the title compound as yellow oil in 33% yield

- 5 ¹H-NMR(300 MHz, CDCl₃) δ 8 23 (d, 1H), 8 01 (d, 2H), 7 74-7 71 (m, 1H), 7 50 (d, 1H), 7 35-7 29 (m, 3H), 6 70 (d, 1H), 3 57-3 52 (m, 4H), 3 07 (s, 3H), 2 51 (t, 2H), 2 30 (s, 6H), 2 26 (s, 6H)
- 10 I-108
 (E)-1-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-(4-imidazol=1-yl-phenyl)propenone

15 General procedure J gave the title compound as pale brown solid in 23 % yield

¹H-NMR(300 MHz, CDCl₃) δ 8 00 (d, 2H), 7 90 (t, 1H), 7 77 (d, 1H), 7 73 (d, 2H), 7 59 (d, 1H), 7 42 (d, 2H), 7 31 (t, 1H), 7 22 (t, 1H), 6 71 (d, 2H), 3 54 (t, 2H), 3 07, (s, 3H), 2 47 (t, 2H), 2 29 (s, 6H)

I-109

20

1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(4-phenoxy-phenyl)-propenone

General procedure J gave the title compound as yellow crystals in 39 % yield

 1 H NMR (CDCl₃) δ 7 98 (d, 2H), 7 78 (d, 1H), 7 63 (d, 2H), 7 51 (d, 1H), 7 42 (dd, 2), 7 18 (dd, 1H), 7 10-7 01 (m, 4H), 4 96 (t, 1H), 3 24 (dt, 2H) 2 60 (t, 2H), 2 29 (s, 6H)

I-110

3-{2-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-1-(2-dimethylaminomethylphenyl)-propenone

5

General procedure J gave the title compound as a green oil in 58 % yield

 $^{1}\text{H NMR (CDCI3)}$ 8 7 66 (d, 1H), 7 60 (dd, 1H), 7 43 (m, 3H), 7 35 (m, 2H), 7 11 (d, 1H), 7 06 (d, 1H), 7 03 (d, 1H), 3 56 (s, 2H), 3 05 (t, 2H), 2 71 (s, 3H), 2 36 (t, 2H), 2 17 (s, 10_12H)___

I-111

1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(3-phenoxy-phenyl)-propenone

15

General procedure J gave the fumarate salt of title compound as yellow crystals in 29 % yield

20

¹H NMR (DMSO) δ 7 78 (d, 2H), 7 70 (d, 1H), 7 43-7 37 (m, 3H), 7 27-7 17 (m, H), 6 95 (dt, 1H), 6 86-6 80 (m, 3H), 6 49-6 42 (m, 3H), 6 37 (s, 1H), 3 07 (q, 2H), 2 38 (t, 2H), 2 09 (s, 6H)

25

I-112

1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-(3-morpholin-4-ylmethyl-phenyl)propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 37 % yield

¹H NMR (DMSO) δ 7 99 (d, 2H), 7 88 (d, 1H), 7 75-7 72 (m, 2H), 7 61 (d, 1H), 7 43-7 36 5 (m, 2H), 6 74-6 71 (m, 3H), 6 57 (s, 1H), 3 58 (t, 2H), 3 51 (s, 2H), 3 31 (q, 2H), 2 67 (t, 2H), 2 39-2 36 (m, 10H)

I-11310 1-(2-Fluoro-4-methoxy-phenyl)-3-[2'-methoxy-4-(4-methyl-piperazin-1-yl)-biphenyl-3-yl]-propenone

General procedure K gave the fumarate salt of title compound as yellow crystals in 33 % yield

 1 H-NMR(300 MHz, DMSO- d_{6}) δ 7 76 (dd, 1H), 7 65 (t, 1H), 7 67 (d, 1H), 7 37 (dd, 1H), 20 7 29(dd, 1H), 7 20-7 15 (m, 2H), 7 02-6 75 (m, 5H), 6 44 (s, 3H), 3 70 (s, 3H), 3 61 (s, 3H), 2 81 (t, 4H), 2 45 (bs, 4H), 2 17 (s, 3H)

25 I-114

1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-[2-(4-methyl-piperazin-1-ylmethyl)-phenyl]-propenone

General procedure J gave the fumarate salt of title compound as yellow crystals in 11 % yield

 1 H-NMR(300 MHz, DMSO- d_{6}) δ 7 93 (d, 1H), 7 85-7 81 (m, 3H), 7 58 (d, 1H), 7 25-7 21 5 (m, 3H, 6 63 (bs, 1H), 6 55 (d, 2H), 6 45 (s, 5H), 3 47 (s, 2H), 3 22 (q, 2H), 2 66 (t, 2H), 2 45 (bs, 2H), 2 32 (s, 6H), 2 20 (s, 3H)

I-115.

10 1-[4-(2-Dimethylamino-ethylamino)-phenyl]-3-[3-(pyridin-3-ylamino)-phenyl]-propenone

General procedure J gave the fumarate salt of title compound as brown-orange crystals in 6 % yield

 1 H NMR (DMSO) δ 8 61 (bs, 1H), 8 53 (d, 1H), 8 21 (dd, 1H), 8 10 (dd, 2), 7 95 (d, 1H), 7 72 (d, 1H), 7 66 (dd, 1H), 7 61 (t, 1H), 7 56 (dt, 1H), 7 49 (t, 1H), 7 41 (dd, 1H), 7 30 (dd, 1H), 6 82 (d, 2H), 6 76-6 73 (m, 2H), 3 41, (q, 2H), 2 70 (t, 2H), 2 42 (s, 6H)

I-116

20

25

3-(4-Diethylamino-phenyl)-1-{4-[(2-dimethylamino-ethyl)-methyl-amino]-phenyl}-propenone

General procedure J gave the oxalate sait of title compound as yellow crystals in 4 % yield

¹H NMR (DMSO) δ 8 02 (d, 1H), 7 65-7 57 (m, 4H), 6 84 (d, 2H), 6 69 (d, 2H), 3 79 (t, 30 2H), 4 41 (q, 4H), 3 13 (t, 2H), 3 04 (s, 3H), 2 76 (s, 6H), 1 12 (t, 6H)

I-117

35 1-{4-[(2-Dimethylamino-ethyl)-methyl-amino]-phenyl}-3-quinolin-2-yl-propenone

General procedure J gave the title compound as a brown oil in 18% yield

5 ¹H NMR (CDCl₃) δ 8 24-8 08 (m, 5H), 7 93 (d, 1H), 7 82 (d, 1H), 7 75 (t, 1H), 7 66 (d, 1H), 7 55 (t, 1H), 7 73 (d, 1H), 3 58 (t, 2H), 3 09 (s, 3H), 2 56 (t, 2H), 2 33 (s, 6H)

I-118.

10 N-{3-[3,-(2,5-Dimethoxy-phenyl)-acryloyl]-phenyl}-2-dimethylamino-acetamide

General procedure J gave the fumarate sait of title compound as yellow crystals in 81 % 15 yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 10 2 (s, 1H), 8 5 (t, 1H), 8 1 (m, 2H), 8 0 (m, 2H), 7 7 (t/s, 2H), 7 2 (bs, 2H), 6 8 (s, 2H), 4 0 (s, 3H), 3 9 (s, 3H), 3 3 (s, 2H), 2 7 (s, 6H)

20

General procedure J gave the title compound as yellow oil in 32 % yield

25 ¹H-NMR(300 MHz, CDCl3) δ 9 33 (bs, 1H), 8 04 (dd, 1H), 8 00 (t, 1H), 7 81 (d, 1H), 7 74 (dt, 1H), 7 53 (d, 2H), 7 46 (t, 1H), 7 31 (d, 1H), 6 63 (d, 2H), 3 34 (t, 4H), 3 13 (s, 2H), 2 42 (s, 6 H), 1 63 (m, 4H), 1 38 (six , 4H), 0 98 (t, 6H)

30 I-120

3-(2,4-Dichlorophenyl)-1-{4-[(2-dimethylamino-ethyl)methylamino]phenyl}-propan-1-one

General procedure M gave the fumaric salt of the title compound as yellow crystals in 7% yield

 1 H-NMR(300 MHz, DMSO-d₆) δ 7 82 (d, 2H), 7 57 (d, 1H), 7 43 (d, 1H), 7 35 (dd, 1H), 10 6 73 (d, 2H), 6 58 (s, 2H), 3 58 (t, 2H), 3 19 (t, 2H), 3 00 (s, 3H), 2 98 (t, 2H), 2 59 (t, 2H), 2 33 (s, 6H)

Determination of metabolic stability

15 Incubations were performed with Wistar rat liver microsomes (0 5 mg/ml) in 2% sodium bicarbonate solution NADP (0 15 mg/ml), glucose-6-phosphate (0 5 mg/ml) and glucose-6-phosophate dehydrogenase (0 38 units/ml) were used as NADPH generation system and UDPGA (0 48 mg/ml) was added to include the phase II reaction, glucuronic acid conjugation, in the assay After 5 minutes of pre-incubation the reaction was started by addition of the test article to give a final concentration of 10µM Samples were incubated for 30 min at 37°C and the reactions were terminated by addition of equal volumes of acetonitrile Blank incubations were performed at the same concentration but without addition of microsomes

The fraction of compound metabolised during the 30 min incubation was determined quantitatively by HPLC with UV detection using a Waters Alliance 2690 separation module and the Waters 996 PDA-detector, Waters corp Milford, USA Samples were analysed on a XTerra RP₈ column (5µm) 4 6 x 150 mm (Waters corp , Milford, USA) with a linear gradient elution system. Initial conditions were 40% mobile phase A (acetonitrile) and 60% mobile phase B (10mM ammonium acetate pH 9 5). During the first 20 minutes runtime, the mobile phase was changed to 90% A and 10% B followed by a fast 5 minutes gradient to return to initial conditions and a 5 minutes equilibration time. The flow rate was 1 ml/min and injection volume 50µl

35 Determination of solubility

Solubility of the compounds was determined in 1M phosphate buffer pH 7 4 by preparation of suspensions in brown glass tubes. The suspensions were rotated slowly for 24 hours. Aliquots were centrifuged for 10 minutes at 10 000 rpm, supernatants were diluted in 50% acetonitrile prior to HPLC analysis and the concentrations in the samples were quantified against a standard curve. The concentration of the compound in the supernatant is used as

term of solubility. The HPLC method used for the assessment of solubility is the same as used in the in vitro metabolism assay.

Biological testing

5 General methods

In vitro microbiological testing

MIC determination in broth microdilution assay

10 Compounds were screened for activity against a panel of 10 different non-fastidious bacteria growing aerobically (Staphylococcus aureus ATCC29213, Staphylococcus aureus ATCC33591, Staphylococcus intermedius #2357(clinical isolate from the Copenhagen area), Enterococcus faecalis ATCC29212, Enterococcus faecium #17501 (vancomycinresistant clinical isolate), Streptococcus pneumoniae #998 (clinical isolate), Streptococcus-15 pyogenes #14813 (clinical isolate), Streptococcus agalactiae #19855 (clinical isolate), Eschericia coli ATCC25922 and Eschericia coli ESS) The screening assay was done in 200 μl MH-broth cultures in microtitre plates. For compounds exhibiting activity in the initial screen MIC was determined in a microdilution assay using MH-broth as described by NCLLS (National Committee for Clinical Laboratory Standards Methods for Dilution Antimicrobial 20 Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard - Fifth Edition M7-A5 NCCLS 2000) modified to include uninoculated dilution series of test compounds to facilitate MIC determination if the test compound should precipitate MIC was determined as the lowest concentration of test compound able to inhibit visible growth of bacteria MICs for ATCC type strains fell within the limits posted by the NCCLS (National Committee 25 for Clinical Laboratory Standards Performance Stadards for Antimicrobial Susceptibility Testing, Eleventh Informational Supplement M100-S11 NCCLS 2001) when tested against vancomycin, tetracycline, gentamycin

MIC and MBC determination in broth macrodilution assay

MIC and MBC of test compounds were determined in a broth macrodilution assay using 2 ml MH-broth cultures and an inoculum of approximately 5x10E5 CFU/ml as described by Amsterdam (Amsterdam, D. Susceptibility testing of antimicrobials in liquid media. In V. Lorian (ed.). Antibiotics in Laboratory Medicin 4. edition. Williams & Wilkins 1996.). MIC was determined as the minimal concentration of test compound able to inhibit visible growth of bacteria. Samples from cultures inhibited by test compound were plated onto unselective blood agar plates. MBC was determined as the minimal concentration of test compound able to decrease colony count on these plates below 0.1% compared to the original inoculum.

Killing Curve determination

For the determination of the killing curve of a test compound a dilution series of test compound was made and inoculated with approximately 5x10E5 CFU/ml as described for the MIC macrodilution assay above. At the timepoints indicated 100 µl samples was withdrawn from the test tubes, serially diluted and spotted in duplicate on unselective agar plates to determine CFU. Test compounds with bactericidal activity is capable of decreasing surviving colony counts (CFU/ml) when incubated with bacteria. Bactericidal activity may be either primarily dependent on concentration of test compound or on incubation time with test compound. An example of a bactericidal compound (I-031), which is primarily dependent on the concentration of the test compound is shown in Figure 4. An example of a bactericidal compound (I-070) which is primarily dependent on the incubation time with the compound is shown in Figure 5.

MIC determination against Helicobacter pylori

Six strains of Helicobacter pylori were used in an agar dilution assay according to the standards of NCCLS (National Committee for Clinical Laboratory-Standards Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard – Fifth Edition M7-A5 NCCLS 2000) MH-agar plates supplemented with 5% horse blood and containing a dilution series of the test compound were inoculated in duplicate with 10 µl spots of a 2 McF suspension of the different strains of H pylori. This inoculum corresponds to approximately 10E6 CFU/spot. Plates were then incubated in a microaerophilic atmosphere at 35°C for 72 hours. The MIC endpoint was determined as the lowest concentration of test compound able to completely inhibit or most significantly reduce growth compared to growth control plates not containing test compounds.

25 Activity determination against anaerobic bacteria

Screening for activity against anaerobic bacteria was done against two isolates of *Bacteroides fragilis*, an isolate of *Clostridium difficile* and an isolate of *Clostridium perfringens* in an agar dilution assay as described by NCCLS (National Committee for Clinical Laboratory Standards Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, Approved Standard – Fifth Edition M11-A5 NCCLS 2000) with the exception that Mueller-Hinton agar was used in place of supplemented Brucella broth Plates containing test compound at a single concentration (either 100 or 150 µM) were prepared in duplicate along with appropriate control plates. Activity was present if growth in the presence of test substance was absent or most significantly reduced compared to growth control plates not containing test compound

Leishmania promastigote assay

A WHO reference vaccine strain of *L major* originally isolated from a patient in Iran were cultured in Medium 199 with Hanks—Salts containing 0 02 mg/ml gentamycin, 25 mM HEPES, 4 mM L-glutamine, and 10% heat inactivated fetal calf serum (FCS)—Incubation was carried out at 27°C Promastigotes were harvested at day 3 of culture and used for the assay of inhibition of parasite growth

The effect of test compounds on promastigotes was assessed by a method modified from Pearson et al. Briefly, promastigotes (0 8x10⁶/well) were incubated in 200 µl duplicate cultures either with a dilution series of test compound or medium alone in 96 wells flat buttom microtiter plates. After 2h of incubation, 1.5 µCi of 3H-thymidine was added to each well and further incubated for 18 hours. The cultures were then harvested on Unifilter-GF/C microtiter filter plates (Packard Instruments), washed extensively and counted in a TopCount-NXT microplate scintillation counter (Packard Instruments)

10 Plasmodium falciparum assay

Plasmodium falciparum 3D7 was maintained in culture by a modification of the method originally described by Trager and Jensen In brief, the parasites were grown in suspensions of human blood group 0 erythrocytes (RBC) maintained in RPMI1640 medium supplemented with 4 5 g/l Albumax II (Invitrogen), 10 mM hypoxantine, 1 4 mM L-15 glutamine and 0 05 mg/ml gentamicin—Cultures-were-incubated-at 37°C in atmosphere of 92 5% nitrogen, 5 5% carbon dioxide, and 2% oxygen. To obtain synchronized cultures og parasites erythrocytes infected with late trophozoite and schizont stages were separated from ring stages and uninfected RBC by magnet-activated cell sorting (MACS, Miltenyi BioTec) (Staalsoe, T , H A Giha, D Dodoo, T G Theander, and L Hviid 1999 Detection of 20 antibodies to variant antigens on Plasmodium falciparum-infected erythrocytes by flow cytometry Cytometry 35 329-336) Because of their high content of paramagnetic haemozoin, erythrocytes infected with late developmental stages of malaria parasites are specifically retained within the column. The column was washed with PBS supplemented with 2% foetal calf serum and then the column was removed from the magnet and the 25 retained late developmental stages of parasites were eluted and cultured for an additional 18 hours At this time the culture is highly synchronous containing more than 90% ring stages

These synchronized cultures of ring stage parasites were used to assay for antimalarial parasites. Briefly, cultures of ring stage parasites were adjusted to 1% parasitemia by addition of uninfected RBC. Then, these were incubated in 125 µl duplicate cultures containing 2 5x10⁷ RBC/well with either a dilution series of test compound or with medium alone. Plates were then incubated at 37°C for 24 hours when cultures were labelled by the addition 1 1 µCi 3H-phenyalanine and incubated overnight. Then, the cultures were harvested on Unifilter-GF/C microfilter plates (Packard Instruments) and washed extensively with water followed by a wash with 10% H₂O₂ to bleach hemoglobin. Filter plates were counted in a TopCount-NXT microplate scintillation counter (Packard Instruments)

40 DHODH Assay

100 μ l chalcone or 0 1 M Tris-HCl pH 8 0 is added to a well in a 96-wells microtiter plate Then 50 μ l enzyme dilution is added. The microtiter plate is placed in the Powerwave_x340 and the enzymatic reactions starts when adding 100 μ l assay mixture. The reaction are

measured every 20 sec for 10 min. The samples with chalcones are compared with the samples with 0.1 M Tris-HCl pH 8.0 and the percent inhibition is calculated.

Enzyme dilution The solution of recombinant purified enzyme is dissolved in 0 1 M Tris-5 HCl pH 8 to give an initial velocity of 0 04 - 0 05 $\Delta A/min$

2,6-dichlorophenolindophenol (DCIP)-stock solution 40 mg DCIP and 10 ml 99 % Ethanol are mixed for 10 min at RT. Then 100 μ l 1 0 M Tris-HCl pH 8 and miliQ H₂0 are added to a final volume of 100 ml. The A₆₀₀ of the DCIP-stock solution are measured in a microtiter plate on the Powerwave_x340 (Bio-Tek instruments,Inc.)

Dihydroorotate dehydrogenase (DHODH)-stock solution 25 mM dihydroorotate stock-solution is prepared by first dissolving in the same amount of mol NaOH and then miliQ H₂O is added to the final volume

15

Assay mix (10 ml solution) 600 μ l of DHODH-stock solution and X-ml-(depending-on-the-A₆₀₀ value of stock-solution) DCIP to a final A₆₀₀ = 2 5 are mixed. Then 0.1 M Tris-HCl pH 8.0 are added to a final volume of 10 ml

20 Preparation of compound soluton A 10 mM stock-solution of compound (e.g. a chalcone derivative) is made in dimethylsulfoxid (DMSO). The compound is then diluted in 0.1 M Tris-HCl pH 8 to the test concentrations. The final DMSO concentration in the sample is 10%.

25 Biological Results

Licochalcone A (LicA) and 4'methoxy chalcone (4'MC) described in WO 93/17671 are used as reference compounds in the following discussion

30 Activity against non-fastidious bacteria

Licochalcone A exhibit moderate bactericidal activity against common pathogenic Grampositive non-fastidious bacteria including Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecaum, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae Licochalcone A maintains its activity also against antibiotic resistant bacteria, e.g. Staphylococcus aureus ATCC33591 (resistant to methicillin) and Enterococcus faecium #17051 (resistant to vancomycin). In contrast, Licochalcone A have only modest or no activity against the prototype pathogenic Gram-negative bacterium, Eschericia coli. 4'MC as a representative of non-hydroxyl chalcones exhibit no antibacterial effect at all.

40

In comparison with Licochalcone A, diaminochalcones retain the activity of Licochalcone A against pathogenic Gram-positive bacteria including antibiotic-resistant strains (cf. Table SS). The diaminochalcones exhibit increased potency against Gram-positive pathogens (e.g. I-062, I-064, I-067, I-070, I-089, I-102). In contrast to Licochalcone A,

diaminochalcones exhibit activity against *Eschericia coli* Thus, several diaminochalcones (e.g. I-041, I-044, I-046, I-051, I-068, I-089, I-104, I-109, I-111, I-113) obtain MICs on 75 μ M against *E coli ATCC25922* and on 9 4-18 8 μ M against the general more susceptible ESS strain of *E coli* This indicates the potential use of diaminochalcones in the treatment of infections with Gram-negative bacteria

In the treatment of severe infections in immunocompromised patients bactericidal action of a antibiotic is a necessity. As exemplified in Figures 4 and 5, diaminochalcones retain the bactericidal action of Licochalcone A. For some diaminochalcones, the bactericidal action is predominantly dependent on the concentration of the compound (e.g. I-031, cf. Figure 4), for others the bactericidal action is predominantly dependent on the time of incubation with the compound (e.g. I-070, cf. Figure 5). This knowledge is helpful when designing dosing regimens for *in vivo* efficacy trials.

15 **Tabel SS** Comparasion of the effect of diamino-chalcones and Licochalcone/4'MC on bacteria, MIC values in μM

bacteria, MIC values in pin									
		Α	В	С	D	E	F	G	Н
	LICA	37 5	37 5	37 5	37 5	37 5	75 0		300 0
	4'-MC	NA	NA	NA	NA	NA	NA	NA	NA
	I-031	18 8	37 5	188	18 8	18 8	37 5	150 0	18 8
	I-041	18 8	37 5	18 8	18 8	18 8	37 5	75 0	18 8
	1-044	18 8	18 8	18 8	18 8	18 8	37 5	75 0	18 8
	I-047	18 8	18 8	37 5	37 5	37 5	37 5	300 0	18 8
	I-051	18 8	18 8	37 5	18 8	18 8	37 5	75 O	18 8
	1-062	9 4	9 4	9 4	9 4	9 4	18 8		18 8
	1-063	18 8	18 8	188	37 5	18 8	37 5		18 8
	1-064	9 4	18 8	188	18 8	18 8	18 8		18 8
	I-067	94	9 4	9 4	18 8	9 4	18 8		75 0
	I-068	18 8	37 5	37 5	37 5	18 8	37 5	75 0	18 8
	I-069	18 8	18 8	18 8	18 8	18 8	37 5	150 0	9 4
	I-070	47	47	.94	9 4	9 4	18 8		300 0
	I-075	37 5	37 5	37 5	37 5	37 5	37 5		9 4
	I-073	9 4	18 8	9 4	9 4	9 4	18 8	300 0	9 4
	I-092	188	18 8	94	47	9 4	18 8	75 0	9 4
		9 4	9 4	94	9 4	9 4	37 5		9 4
	I-102	37 5	37 5	37 <i>5</i>	<i>75 0</i>	75 O	<i>37 5</i>	75 O	188
	I-104		18 8	18 8	18 8	18 8	37 5	150 0	188
	I-109	18 8	18 8	37 5	18 8	9 4	37 5	150 0	9 4
	I-111	18 8		94	18 8	94	37 5		9 4
	I-113	47	9 4	74	10 0	J 4	<i>3.</i> 3	470	C22501 1

A Staphylococcus aureus ATCC29213, B Staphylococcus aureus ATCC33591, C
Staphylococcus intermedius #2357(clinical isolate from the Copenhagen area), D
Enterococcus faecalis ATCC29212, E Enterococcus faecium #17501 (vancomycin-resistant clinical isolate), F Streptococcus pneumoniae #998 (clinical isolate), G Eschericia coli ATCC25922 and H Eschericia coli ESS NA no activity

Activity against Helicobacter pylori

Colonization of the gastric mucosa with *Helicobacter pylori* is an important pathogenic determinant for the development of gastritis and peptic ulcer. Diaminochalcones exhibit activity against *Helicobacter pylori*. Several diaminochalcones (e.g. I-048, I-058, I-068, I-077, I-089, I-090, I-096, I-102) exhibit MICs in the range between 25 µM and 100 µM when tested against a panel of six strains *Helicobacter pylori*, that includes strains resistant to metronidazole. Metronidazol is an antibiotic commonly included in treatment regimens designed to eradicate *Helicobacter* colonization for the treatment of peptic ulcer. The activity of diaminochalcones against both metronidazole-resistant and sensitive. *Helicobacter pylori* clearly indicates the potential use of these compounds in the treatment of *Helicobacter* infections.

15_Activity_against_anaerobic_bacteria.

Diaminochalcones have been assayed in a single concentration of compound (100 µM) for activity against a panel of anaerobic bacteria containing common human pathogenic bacteria (*Bacteroides fragilis, Clostndium perfringens, Clostndium difficele*) Several diaminochalcones (e.g. I-051, I-062, I-064, I-067, I-068, I-070, I-075, I-089 and I-102) exhibit activity against all microorganisms within the test panel. This clearly indicates the potential use of diaminochalcones in treatment of infection caused by anaerobic bacteria

Activity against protozoa

25

Activity against Leishamania major

Leishamania major is a protozoan parasite transmitted by the sandfly, Phlebotomus, and causing cutaneous leishmaniasis or kala-azar in humans. Licochalcone A exhibit activity against Leishmania parasites and has shown efficacy in experimental animal models of cutaneous and visceral Leishmania infection (Chen et al., 1994). Diaminochalcones exhibit activity in vitro against Leishamania major with significantly improved potency compared to Licochalcone A and 4'MC (cf. Table WW). The results clearly indicate the potential use of diaminochalcones in the treatment of Leishamania infection.

35

Table WW. Effect of diamino-chalcones on L major

Comp IC₅₀ in μM

LICA 50

4'MC 5 6

I-044 1 1

I-045 17

I-046 17

Activity against Plasmodium falciparum

- 5 Plasmodium falciparum is a protozoan parasite transmitted by the mosquito, Anopheles, and causing malignant or severe malaria in humans. Licochalcone A exhibit activity against Plasmodium falciparum in vitro and protects mice from infection with P yoelii and P berghei (Chen et al., 1994). Diaminochalcones exhibit activity in vitro against Plasmodium falciparum and several diaminochalcones exhibit improved potency compared to
- 10 Licochalcone A (cf Table TT and Figure 6) The results clearly indicate the potential use of diaminochalcones in the treatment of malaria

```
Table TT Activity against Plasmodium falciparum 3D7
```

Comp IC₅₀ in µM LICA 59 40 0 4'MC I-040 33 I-074 45 I-075 3 6 I-084 2 1 I-087 29 I-093 24 I-094 23 I-103 06 I-104 1 2 I-107 35 I-108 48

15

Metabolism

The usefulness of chalcones as drug candidates have been limited by the metabolism of the compounds resulting in short half-lives *in vivo* (Lica 100% turn-over *in vitro* and t_{N} = 10 min *in vivo*)

The introduction of a diamino group in the chalcone changes the metabolic properties, this is clear from Table QQ where the metabolic turn-over of a number of diamino-chalcones are compared to LicA. The diamino-chalcones prepared are expected to show low or no metabolism *in vivo* as the metabolic turn-over are between 0-20% (compared to 100% turn-over for Lica). Consequently the half-life of a diamino-chalcone will be longer, reducing the dose needed for treatment.

Table QQ Metabolic turn-over in vitro (%)

LICA	100 O
I-030	9 5
I-036	0 0
I-037	13 4
I-040	0 0
I-042	00
I-049	10 0
I-052	17 3
I-054	00
I-057	00
I-061	00
I-063	16
I-064	0 0

15

Inhibition of DHODH

Several of the diamino-chalcones prepared are potent inhibitors of DHODH. The compounds are as potent as LicA and by far more potent than ordinary chalcones exemplified by 4'MC.

Table DD Inhibition of DHODH

	Inhibition
Comp	(%)
LICA	24 5
4'MC	70
I-031	17 5
I-041	18 5
I-044	25 0
T-046	22.5

I-047	21 5
I-051	20 5
I-058	21 0
I-063	16 5
I-087	16 5

Solubility

The solubility of the neutral chalcones descibed in WO 93/17671 was very low A

5 representative chalcone 4'-methoxy-chalcone has a solubility <0 05 mg/ml. A few
chalcones have a higher solubility due to (metabolically unstable) hydroxyl groups in the
molecule. LicA has a solubility of 0.2 mg/ml.

The diamino-chalcones described in this application are by far superior having solubility numbers in mg/ml. Representative examples are

```
I-036 2 mg/ml
I-052 9 0 mg/ml
I-074 1 2 mg/ml
15 I-085 3 2 mg/ml
```

The high solubility means that dissolution and hence absorption will be no problem. This will inevitably cause a dramatic reduction of the dose needed making the diaminochalcones very usefull as drug candidates.

20

Conclusion

The use of chalcones as drug candidates for the treatment of parasitic or bacterial infections have been limited by the low in vivo potency (50mg/kg for LicA) of the compounds and a narrow spectrum of activity

25

Several factors contribute to the low in vivo potency. Fast metabolism resulting in short half-lives in vivo, Low/no solubility in the intestine and consequently low/no absorption, Medium potency of the compounds against parasites and no activity against bacteria (except for LicA).

30

The diamino-chalcones in this application are expected to fulfill the criteria for a drug candidate. The metabolism is low, the solubility is high and the compounds are potent against parasites as well as (resistant) Gram positive and Gram negative bacteria.

CLAIMS

A compound of the general formula

5
$$Y^1(X^1)-Ar^1-C(=O)-V-Ar^2(X^2)Y^2$$

wherein Ar1 and Ar2 independently are selected from aromatic rings (aryl) and heteroaromatic rings (heteroaryl),

10 V designates -CH₂-CH₂-, -CH=CH- or -C=C-, preferably -CH=CH-,

one or both of Y1 and Y2 independently represent at least one, such as 1-2, e.g. one, diamino-functional substituent(s) of the formula

 $-NR^3-Z-N(R^1)R^2$ 15

20

wherein Z is a biradical $-(C(R^H)_2)_n$ -, wherein n is an integer in the range of 1-6, preferably 2-4, such as 2-3, and each R^H is independently selected from hydrogen and $C_{1.6}$ -alkyl, or two R^H on the same carbon atom may designate =O,

 R^1 and R^2 independently are selected from hydrogen, optionally substituted $C_{1 12}$ -alkyl, optionally substituted $C_{2 \ 12}$ -alkenyl, optionally substituted $C_{4 \ 12}$ -alkadienyl, optionally substituted $C_{6\ 12}$ -alkatrienyl, optionally substituted $C_{2\ 12}$ -alkynyl, optionally substituted C_{1} $_{12}$ -alkoxycarbonyl, optionally substituted C $_{1}$ $_{12}$ -alkylcarbonyl, optionally substituted aryl, 25 optionally substituted aryloxycarbonyl, optionally substituted arylcarbonyl, optionally substituted heteroaryl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroarylcarbonyl, aminocarbonyl, mono- and $di(C_{16}-alkyl)$ aminocarbonyl, amino- $C_{16}-alkyl$ alkyl-aminocarbonyl, mono- and di(C_{1} 6-alkyl)amino- C_{1} 6-alkyl-aminocarbonyl, or R^{1} and R^{2} together with the nitrogen atom to which they are attached $(-N(R^1)R^2)$ form an optionally 30 substituted nitrogen-containing heterocyclic ring,

 R^3 is selected from hydrogen, C_{i} 6-alkyl, and C_{i} 6-alkylcarbonyl, said alkyl and alkylcarbonyl optionally carrying substituent(s) selected from halogen, hydroxy, C_{1 6}-alkoxy, carboxy, $C_{1\ 6}$ -alkoxycarbonyl, $C_{1\ 6}$ -alkylcarbonyl, amino, mono- and di($C_{1\ 6}$ -alkyl)amino, and aryl optionally substituted 1-3 times with C_{1} 4-alkyl, C_{1} 4-alkoxy, nitro, cyano, amino or 35 halogen, or R1 and R3 together form a biradical Z2 which is as defined for Z,

 X^1 and X^2 independently designates 0-5, preferably 0-4, such as 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected from optionally substituted $C_{1\ 12}$ -alkyl, optionally substituted $C_{2\ 12}$ -alkenyl, optionally substituted $C_{4\ 12}$ -40 alkadienyl, optionally substituted $C_{6\ 12}$ -alkatrienyl, optionally substituted $C_{2\ 12}$ -alkynyl, hydroxy, optionally substituted C_{1} 12-alkoxy, optionally substituted C_{2-12} -alkenyloxy, carboxy, optionally substituted $C_{1\ 12}$ -alkoxycarbonyl, optionally substituted $C_{1\ 12}$ alkylcarbonyl, formyl, C_{1-6} -alkylsulphonylamino, optionally substituted aryl, optionally

substituted aryloxycarbonyl, optionally substituted aryloxy, optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroaryloxycarbonyl, optionally substituted heteroaryloxy, optionally substituted heteroarylcarbonyl, optionally substituted 5 heteroarylamino, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxycarbonyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylcarbonyl, optionally substituted heterocyclylamino, heterocyclylsulphonylamıno, amıno, mono- and $d_1(C_1 _6$ -alkyl)amıno, carbamoyl, mono- and $d_1(C_1 _6$ -alkyl)amınocarbonyl, amıno- $C_1 _6$ -alkyl-amınocarbonyl, mono- and $d_1(C_1 _6$ -10 alkyl)amıno-C_{1 6}-alkyl-amınocarbonyl, C₁₋₆-alkylcarbonylamıno, amıno-C_{1 6}-alkylcarbonylamino, mono- and $di(C_{1-6}$ -alkyl)amino- $C_{1\ 6}$ -alkyl-carbonylamino, cyano, guanidino, carbamido, C_{16} -alkanoyloxy, C_{16} -alkylsulphonyl, C_{16} -alkylsulphinyl, C_{16} -alkylsulphonyloxy, aminosulfonyl, mono- and $d_1(C_{16}$ -alkyl)aminosulfonyl, nitro, optionally substituted $C_{1\ 6}$ -alkylthio, and halogen, where any nitrogen-bound $C_{1\ 6}$ -alkyl may be substituted with 15 hydroxy, C_{1-6} -alkoxy, C_{2-6} -alkenyloxy, amino, mono- and di(C_{1-6} -alkyl)amino, carboxy, C_{1-6} alkylcarbonylamıno, halogen, $C_{1\,6}$ -alkylthio, $C_{1\,6}$ -alkyl-sulphonyl-amino, or guanıdıne,

and salts thereof

25

- 20 2 The compound according to claim 1, wherein R¹ and R² independently are selected from hydrogen, optionally substituted C₁ 12-alkyl, optionally substituted C₂ 12-alkenyl, optionally substituted C₂ 12-alkynyl, optionally substituted C₁ 12-alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, aminocarbonyl, mono- and di(C₁ 6-alkyl)aminocarbonyl, amino-C₁ 6-alkyl-aminocarbonyl
 - 3 The compound according to any of the preceding claims, wherein R^3 is selected from hydrogen and methyl, in particular methyl
- 4 The compound according to any of the preceding claims, wherein X^1 and X^2 30 independently designates 0-4, such as 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected from optionally substituted C_{1} 12-alkyl, hydroxy, optionally substituted $C_{1\ 12}$ -alkoxy, optionally substituted $C_{2\ 12}$ -alkenyloxy, carboxy, optionally substituted $C_{1\ 12}$ -alkylcarbonyl, formyl, $C_{1\ 6}$ -alkylsulphonylamino, optionally substituted aryl, optionally substituted aryloxycarbonyl, optionally substituted aryloxy, 35 optionally substituted arylcarbonyl, optionally substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, optionally substituted heteroarylcarbonyl, optionally substituted heteroaryloxy, heteroarylsulphonylamino, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino, amino, mono- and di($C_{1\,6}$ -40 alkyl)amıno, carbamoyl, mono- and $di(C_{1.6}$ -alkyl)amınocarbonyl, amıno- $C_{1.6}$ -alkylaminocarbonyl, mono- and di(C_{1} 6-alkyl)amino- C_{1} 6-alkyl-aminocarbonyl, C_{1} 6-alkylcarbonylamino, amino- C_1 6-alkyl-carbonylamino, mono- and di(C_{1-6} -alkyl)amino- C_1 6-alkylcarbonylamıno, guanıdıno, carbamıdo, $C_{1\,6}$ -alkylsulphonyl, $C_{1\,6}$ -alkylsulphinyl, $C_{1\,6}$ alkylsulphonyloxy, optionally substituted C_{1} 6-alkylthio, aminosulfonyl, mono- and di(C_{1} 6-

alkyl)amınosulfonyl, and halogen, where any nitrogen-bound C1 6-alkyl may be substituted with hydroxy, C_{1 6}-alkoxy, and/or halogen

- 5 The compound according to any of the preceding claims, wherein R1 and R2 5 independently are selected from hydrogen, optionally substituted C_{1 6}-alkyl, optionally substituted C_{1} 6-alkylcarbonyl, heteroarylcarbonyl, aminocarbonyl, mono- and di(C_{1} 6alkyl)amınocarbonyl, amıno- C_1 6-alkyl-amınocarbonyl, mono- and dı(C_1 6-alkyl)amıno- C_1 6alkyl-aminocarbonyl
- 10 6 The compound according to any of the preceding claims, wherein X¹ and X² independently designates 0-3, e.g. 0-2, substituents, where such optional substituents independently are selected from optionally substituted $C_{1,6}$ -alkyl, hydroxy, optionally substituted C_{1-6} -alkoxy, carboxy, optionally substituted C_{1-6} -alkylcarbonyl, C_{1-6} alkylsulphonylamino, optionally substituted aryl, optionally substituted aryloxy, optionally 15 substituted arylamino, arylsulphonylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, heteroarylsulphonylamino, amino, mono- and di(C_{1-6} alkyl)amıno, carbamoyl, C_{1} 6-alkylcarbonylamıno, guanıdıno, carbamıdo, optionally substituted C_{1} ₆-alkylthio, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino and halogen, where any 20 nitrogen-bound C_{16} -alkyl may be substituted with hydroxy, C_{1-6} -alkoxy, and/or halogen
 - 7 The compound according to any of the preceding claims, wherein V designates -CH=CH-
- 25 8 The compound according to any of the preceding claims, wherein at least one of Ar¹ and Ar2, preferably both, are aromatic rings, in particular phenyl rings
 - 9 The compound according to claim 8, wherein both of Ar1 and Ar2 are phenyl rings and Y1 represent at least one diamino-functional substituent
- 10 The compound according to any of the preceding claims, wherein X² represents at least one substituent selected from C_{1-6} -alkyl, $C_{1.6}$ -alkoxy, $C_{1.6}$ -alkylcarbonyl, optionally substituted aryl, optionally substituted aryloxy, optionally substituted arylamino, optionally substituted heteroaryl, optionally substituted heteroarylamino, mono- and di(C1 6-35 alkyl)amıno, C_{16} -alkylcarbonylamıno, optionally substituted C_{16} -alkylthio, optionally substituted heterocyclyl, optionally substituted heterocyclyloxy, optionally substituted heterocyclylamino and halogen
- 11 The compound according to any of the preceding claims, wherein X^2 represents at least 40 two halogen atoms
 - 12 The compound according to any of the preceding claims, wherein at least one or Ar1 and Ar² is selected from thiazolyl, pyrrolyl, imidazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, thiophenyl, quinolyl, isoquinolyl, and indolyl

40

- 13 The compound according to any of the preceding claims, wherein Z is $-(CH_2)_n$ wherein n is 2-4, such as 2-3
- 5 14 The compound according to any of the preceding claims, wherein one of Y¹ and Y² represent a substituent of the formula

 $-NR^3-(CH_2)_2$ 3-N(R1)R2

- 10 wherein R^3 is selected from hydrogen and methyl, R^1 and R^2 is selected from hydrogen and $C_{1\ 6}$ -alkyl
 - 15 A compound according to claim 14, wherein V is -CH=CH-, and ${\rm Ar}^{1}$ and ${\rm Ar}^{2}$ both are phenyl rings
 - 16 A pharmaceutical composition comprising a compound as defined in any of the claims 1-15 in combination with a pharmaceutically acceptable carrier
 - 17 A compound as defined in any of claims 1-15 for use as a drug substance
- 20 18 The use of a compound as defined in any of the claims 1-15 for the preparation of a pharmaceutical composition for the treatment of bacterial infections in a mammal in need thereof
- 25 19 The use according to claim 18, wherein the bacterial infection is caused by a bacteria selected from Gram-positive bacteria, Gram-negative bacteria, microaerophilic bacteria, and anerobic bacteria
- 20 The use according to claim 19, wherein the bacteria is a microaerophilic bacteria, e.g. 30 a bacteria associated with gastric disease, such as *Helicobacter pylori*
 - 21 The use according to claim 19, wherein the bacteria is selected from antibiotic-sensitive and -resistant strains of S aureus
- 35 22 The use according to claim 19, wherein the bacteria is selected from antibioticsensitive and -resistant strains of *E faecium*
 - 23 The use according to claim 19, wherein the bacteria is selected from a *S pneumoniae* and *S pyogenes*
 - 24 The use according to claim 19, wherein the bacteria is a member of Enterobacteriaceae, e.g. E. coli

- 25 The use according to claim 19, wherein the bacteria is a pathogenic anaerobic bacteria, e g Bacteroides fragilis or Clostridium species
- 26 The use of a compound as defined in any of claims 1-15, for the preparation of a pharmaceutical composition for the treatment of infections caused by protozoa in a mammal
- 27 The use according to claim 26, wherein the infection is caused by a protozoa selected from *Plasmodium falciparum*, *Plasmodium vivax*, *Plasmodium ovale* and *Plasmodium*10 *malariae*
 - 28 The use of a compound as defined in any of the claims 1-15, for the preparation of a pharmaceutical composition for the treatment of infections in a mammal caused by Leishmania spp
 - 29 The use according to claim 28, wherein the infection is cutaneous and/or visceral
- 30 A method of predicting whether a chemical compound has a potential inhibitory effect against a microorganism selected from *Helicobacter pylori* and *Plasmodium falciparum*, said method comprising preparing a mixture of a dihydroorotate dehydrogenase, a substrate for dihydroorotate dehydrogenase and the chemical compound, measuring the enzymatic activity of dihydroorotate dehydrogenase (A), comparing the enzymatic activity of dihydroorotate dehydrogenase (A) with the standard activity of dihydroorotate dehydrogenase in a similar sample, but without the chemical compound, predicting that the chemical compound has a potential inhibitory effect against *Helicobacter pylori* and *Plasmodium falciparum* if A is significantly lower than B
- 31 The method according to claim 30, wherein the chemical compound is a chalcone derivative
 - 32 The method according to claim 30, wherein the chemical compound is a chalcone derivative as defined in any of the claims 1-15

Patent- og Varemærkestyrelsen

17 MAJ 2002

Modtaget

Figure 1

Figure 2

Modtaget

Patent- og Varemærkestyrelsen

17 MAJ 2002

Modtaget

APPLICATION/31663DK01/JT/JT/17-05-02

igure 4

Patent- og Varemærkestyrelsen

17 MAJ 2002 Modtaget

I-031 (SA33591 MRSA)

igure 5

Patent- og Varemærkestyrelsen 17 MAJ 2002 Modtaget

I-070 (SA29213)

Patent- og Varemærkestyrelsen

7 MAJ 2002

Modtaget

Figure 6

Inhibition of P.falciparum 3D7

LICA (IC50= 5.6

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.