Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>р3114</u>	К работе допущен
Студент Нуруллаев Даниил	Работа выполнена
Преподаватель	Отчет принят

Отчет по лабораторной 1.04v

Исследование равноускоренного вращательного движения (маятник Обербека)

Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения.

Рабочие формулы и исходные данные.

$$M = M_{\rm rp} + I\varepsilon$$

 $R = l_1 + (n-1)l_0 + \frac{1}{2}b$.
 $I = I_0 + 4m_{\rm vr}R^2$

Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Хронометр	-	0,005 c

Описание установки

Рис. 2. Стенд лаборатории механики (общий вид):

1 — основание; 2 — рукоятка сцепления крестовин; 3 — устройство принудительного трения; 4 — поперечина; 5 — груз крестовины; 6 — трубчатая направляющая; 7 — передняя крестовина; 8 — задняя крестовина; 9 — шайбы каретки; 10 — каретка; 11 — система передних стоек.

Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

Macca		Пс	ложение	утяжелителей	í, M	
груза, кг	0,03	0,07	0,11	0,15	0,19	0,23
	3,73	4,72	6,12	7,70	9,36	11,08
0.25	3,72	4,72	6,12	7,69	9,37	11,09
0,25	3,72	4,71	6,11	7,69	9,37	11,08
	3,723	4,717	6,117	7,693	9,367	11,083
	2,52	3,18	4,12	5,17	6,29	7,46
0,5	2,52	3,18	4,12	5,17	6,30	7,47
0,5	2,52	3,17	4,11	5,18	6,31	7,45
	2,520	3,177	4,117	5,173	6,300	7,460
	2,03	2,57	3,32	4,17	5,07	6,00
0.75	2,04	2,57	3,31	4,16	5,07	5,99
0,75	2,03	2,57	3,32	4,16	5,06	6,00
	2,033	2,570	3,317	4,163	5,067	5,997
	1,76	2,21	2,86	3,59	4,36	5,16
1	1,76	2,22	2,86	3,60	4,34	5,17
1	1,76	2,21	2,86	3,59	4,36	5,16
	1,760	2,213	2,860	3,593	4,353	5,163
Погрешность измерения для первого t(cp), c						
o(t) 0,0					0,00333	
t(a, N)						4,3
∆t						0,0143
Погрешность 0,004					0,00471	

Расчет результатов косвенных измерений

Для каждых значений вычислим ускорение а груза, угловое ускорение ϵ крестовины и момент M силы натяжения нити.

Ускорение а груза, м/с^2						$a = \frac{2 * h}{t^2}$
0,101	0,063	0,037	0,024	0,016	0,011	
0,220	0,139	0,083	0,052	0,035	0,025	
0,339	0,212	0,127	0,081	0,055	0,039	
0,452	0,286	0,171	0,108	0,074	0,053	
	Угловое у	$\varepsilon = \frac{2 * a}{d}$				
4,391	2,736	1,627	1,028	0,694	0,496	
9,585	6,032	3,592	2,274	1,534	1,094	
14,723	9,216	5,533	3,512	2,371	1,693	
19,651	12,425	7,442	4,714	3,212	2,283	
	Момен	т силы нат	яжения ни	ти, Нм		M = 0.5 * dm(g - a)
0,056	0,056 0,056 0,056 0,056 0,056					
0,110	0,111	0,112	0,112	0,112	0,113	
0,163	0,166	0,167	0,168	0,168	0,169	
0,215	0,219	0,222	0,223	0,224	0,224	

Графики:

1)

Y1=0.0104x+0.0101 Y2=0.0169x+0.0099 Y3=0.0285x+0.0098 Y4=0.0452x+0.0095 Y5=0.0666+0.0102 Y6=0.094x+0.0097

Положение	I, кг*м^2	М(тр), Нм
1	0,0104	0,0101
2	0,0169	0,0099
3	0,0285	0,0098
4	0,0452	0,0095
5	0,0666	0,0102
6	0,094	0,0097

Положение	э, рад/с^2	M(∍), <u>HM</u>
	4,391	0,056
1	9,585	0,110
1	14,723	0,163
	19,651	0,215
	2,736	0,056
2	6,032	0,111
2	9,216	0,166
	12,425	0,219
	1,627	0,056
3	3,592	0,112
3	5,533	0,167
	7,442	0,222
	1,028	0,056
4	2,274	0,112
4	3,512	0,168
	4,714	0,223
	0,694	0,056
5	1,534	0,112
3	2,371	0,168
	3,212	0,224
	0,496	0,056
6	1,094	0,113
	1,693	0,169
	2,283	0,224

y=0.400975x+0.009

R (м), R^2 (м^2), I (кг*м^2)							
R	R 0,03 0,07 0,11 0,15 0,19 0,23						
R^2	0,0009	0,0049	0,0121	0,0225	0,0361	0,0529	
I	0,0104	0,0169	0,0285	0,0452	0,0666	0,094	

I(O)	m(yt)
0,009	0,400975

1. Вычислим СКО для m_1 1 риски, чтобы найти погрешность среднего значения времени Δt :

$$S_{\bar{t}} = \sqrt{\frac{\sum_{i=1}^{3} (t_i - \bar{t})^2}{n(n-1)}} = 0,00333 \text{ c}$$

Рассчитаем доверительный интервал случайной погрешности

$$\Delta_{\bar{t}} = t_{0.95} S_{\bar{t}} = 4.3 * 0.00333 = 0.0143 \text{ c}$$

Определим абсолютную погрешность при
$$\Delta_{\text{и}t}$$
 = 0,005 c $\Delta_t = \sqrt{\Delta_{\bar{t}}^2 + (\frac{2}{3}\Delta_{\text{и}t})^2} = \sqrt{0,000196 + (\frac{2}{3}0,005)^2} = 0,0144 \text{ c}$

$$\varepsilon_t = \frac{\Delta_t}{\langle t \rangle} \cdot 100\% = \frac{0.0144}{3.723} \cdot 100\% = 0.38\%$$

2. Вычислим погрешности для первых значений а, ε, Μ

$$\Delta_a = \sqrt{\left(\frac{\partial f}{\partial t}\Delta_t\right)^2} = \sqrt{\left(-\frac{4h}{t^3}\cdot 0,0144\right)^2} = 3\cdot 10^{-7} = 0,000000299 \frac{\text{M}}{\text{c}^2}$$

$$\varepsilon_a = \frac{\Delta_a}{\langle a \rangle} \cdot 100\% = \frac{0,00000029}{0.10100479} \cdot 100\% = 0,00028\%$$

$$\Delta_{\epsilon} = \sqrt{\left(rac{\partial f}{\partial a}\Delta_{a}
ight)^{2} + \left(rac{\partial f}{\partial d}rac{2}{3}\Delta_{{}^{artheta}d}
ight)^{2}} = 0,015 \; rac{{
m pag}}{{
m c}^{2}}$$

$$\varepsilon_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\langle \varepsilon \rangle} \cdot 100\% = \frac{0.015}{2.736} \cdot 100\% = 0.64\%$$

$$\Delta_{M} = \sqrt{\left(rac{\partial f}{\partial a}\Delta_{a}
ight)^{2} + \left(rac{\partial f}{\partial d}rac{2}{3}\Delta_{{\scriptscriptstyle H}d}
ight)^{2}} = 0,00024~{
m H}\cdot{
m M}$$

$$\varepsilon_{\text{M}} = \frac{\Delta_{\text{M}}}{\langle \text{M} \rangle} \cdot 100\% = \frac{0.00024}{0.03369} \cdot 100\% = 0.7\%$$

3. Вычислим погрешности для $\Delta m_{ ext{yt}}$ и ΔI_0

$$S_{4m_{\rm yr}}^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}$$
 $S_{I_0}^2 = (\frac{1}{n} + \frac{\overline{R^2}^2}{D}) \frac{\sum d_i^2}{n-2}$

$$D = \sum (R^2_i - \overline{R^2})^2 = 0.00048, d_i = I_i - (I_0 + 4m_{yT}R^2_i)$$

$$S_{4m_{
m yr}} = 0{,}0016~{
m K}$$
Г $S_{I_0} = 0{,}000023~{
m M}^2{
m K}$ Г $\Delta_{I_0} = 2S_{I_0} \approx 0{,}00005~{
m M}^2{
m K}$ Г

$$\Delta_{4m_{yT}} = 2S_{4m_{yT}} = 0.0032 \text{ KF}$$

$$\varepsilon_{I_0} = \frac{\Delta_{I_0}}{I_0} \cdot 100\% = \frac{0.00005}{0.0903} \cdot 100\% = 0.06\%$$

$$\epsilon_{m_{yr}} = \epsilon_{4m_{yr}} = \frac{\Delta_{4m_{yr}}}{4m_{vr}} \cdot 100\% = \frac{0,0032}{1,6} \cdot 100\% = 0,2\%$$

$$\Delta_{\mathrm{m_{yT}}} = \epsilon_{\mathrm{m_{yT}}} \mathrm{m_{yT}} \cdot /100\%$$
=0,0008 кг

Окончательные результаты.

Для 1 груза на 1 риске:

$$\langle t \rangle = 3,723 \pm 0,0144c$$
 $\varepsilon_{\langle t \rangle} = 0,38\%$ $\alpha = 0,95$

$$a = 0.101 \pm 0.00000029 \text{ m/c}^2$$
 $\varepsilon_a = 0.00028\%$ $\alpha = 0.95$

$$\epsilon = 2,736 \pm 0,015 \ \text{pag/c}^2$$
 $\epsilon_{\epsilon} = 0,64\%$ $\alpha = 0,95$

$$M = 0.03369 \pm 0.00024 \, \mathrm{kr} \cdot \mathrm{m}$$
 $\varepsilon_{\mathrm{M}} = 0.7\%$ $\alpha = 0.95$

Для рабочей установки:

$$I_0 = 0.00903 \pm 0.00005$$
 кг·м² $\varepsilon_{I_0} = 0.06\%$ $\alpha = 0.95$

$$_{
m m_{yt}} = 0.4000 \pm 0.0008 \; {
m kg}$$
 $\qquad \qquad \varepsilon_{
m m_{yt}} = 0.2\% \qquad \qquad \alpha = 0.95$

Выводы и анализ результатов работы.

С помощью маятника Обербека я убедился в том, что между моментом вращения и угловым ускорением линейная зависимость. С помощью второго графика, я также подтвердил линейную зависимость момента инерции тела от расстояния утяжелителей до оси вращения, где угловой коэффициент данного графика — масса данного тела. Погрешности во время измерений обусловлены в первую очередь человеческим фактором, а также погрешностью секундомера. (В данном случае погрешности заданы программно)