

Overview of the CVA6 opensource RISC-V application core

2022-11-17

Thales Overview

68
Countries
Global presence

* Does not include externally financed R&D

Sales in 2021 € 16,2bn €

WHEREVER SAFETY AND SECURITY ARE CRITICAL, THALES DELIVERS.
TOGETHER, WE INNOVATE WITH OUR CUSTOMERS
TO BUILD SMARTER SOLUTIONS. EVERYWHERE.

What is RISC-V?

Context

- ➤ ARM is the dominant player in the embedded processor market
- Licensing and royalty fees of proprietary ARM-based solutions

Open HW: a credible FREE alternative for CPU cores

- RISC-V ISA initiative supported by a growing community
 - Membership more than doubled in 2021 to reach 2400 members
- Credible alternative to the ARM ecosystem
- Already many existing proprietary implementations
 - Andes Technology (V3/V5 cores), Google (Titan M2), GreenWaves (GAP8/9)
 - MIPS (eVocore), Intel (Nios-V), SiFive (E/S/U cores)
 - Gaisler (NOEL-V), Microchip (Mi-V), Nvidia (NV-RISCV)
 - And many more...
- And open-source RISC-V CPU designs
 - Western Digital (SweRV), Alibaba (XuanTie 910), ETHZ (PULPino)
 - OpenHW Group (e.g. CVAx), CHIPS Alliance, lowRISC (e.g. ibex, Rocket)

OPEN

And many more...

■ Computer ■ Consumer ■ Communications ■ Transportation ■ Industrial ■ Other RISC-V

94 RISC-V chips (SoC, IP, FPGA) in 2021

Why Thales pays attention to RISC-V and open HW?

Software

Large ecosystem compatible across implementations

Performance

State-of-the-art processor

Security

A fully auditable processor

No vendor-locking

Business opportunities for support, customization...

Sovereignty

Possible commercial exploitation without export constraints

SWaP & customization

Exact fit between features and application needs

Safety

No black-box

Our RISC-V communities

RISC-V International ("the Foundation")

- Specifies the open RISC-V instruction set
 - √ Simple & modular
 - ✓ 32- or 64-bit
 - ✓ Custom extensions
 - ✓ Covers a wide range of needs, from MCU to HPC
- Currently specifying upcoming optional extensions
- Hosts several special interest groups (SIG)
- Does not deliver implementations

OpenHW Group

- Not-for-profit corporation steered by its members
- Goal: deliver open-source IP for production SoCs
 - ✓ RISC-V compatible cores
 - √ SoC IP blocks
 - ✓ Verification environment
 - ✓ Supporting SW and tools
- Permissive, open-source, export-friendly license

CVA6 core

OPEN

- | (| > | (
 - Open-source RISC-V application core
 - Supports rich OSes like Linux
- Common source code, two flavors:
 - > CV64A6
 - 64-bit
 - ARIANE donated by ETH Zürich to OpenHW
 - > CV32A6
 - 32-bit
 - Compact version designed by Thales

An academic project turning into an industrial-grade CPU core

CVA6 architecture

OPEN

Fully compatible with the RISC-V open ISA

6-stage pipeline, single issue, branch prediction

L1 data and instruction caches

AXI4 interfaces

M/S/U privileges

Safe and secure features

MMU and memory protection

Ready for multi/many-core CPUs

e.g. open-source OpenPiton framework

A 6-stage application CPU

Different cores, one solution

OPEN

- 32/64 bit
- MMU / baremetal
- Floating-point: none, SP or DP
- **Optional PMP (physical memory protection)**
- **Optional H (hypervisor) privilege mode**
- Configurable L1 caches
 - Write-through/write-back
 - Size and number of ways
- **Optional coprocessor interface (CV-X-IF)**
- **Design optimizations**
 - ASIC/FPGA
 - Reset style (sync/async)

Other options

- > C and A extensions
- Generic performance counters
- Bit extension on AXI (failure protection...)

Configure CVA6 for your application and constraints, either on ASIC and FPGA

All configurations are RISC-V compatible and supported by GCC compiler

An extendable core

OPEN

CV-X-IF interface to extend the CVA6 instruction set

- Current or future RISC-V extensions (B, P...)
- Custom extensions (crypto, DSP, Al...)

CV-X-IF specified by OpenHW Group

- Open specification, can be used off OpenHW
- Reuse coprocessors between CORE-V cores (CVA6, CV32E40X, CVE2)

Compiler support

- Seamless for RISC-V standard extensions (e.g. B)
- LLVM should ease the support of custom extensions
- Inline ASM possible for specific processing

Speed up your application with a custom accelerator

Add extensions without fully re-validating the core

CVA6 pipeline architecture & ISA

CV32A6: RV32IMA[F][C]_Zicsr_Zifencei M/S/U [Sv32]

CV64A6 - RV64IMA[F[D]][C]_Zicsr_Zifencei M/S/U[/H] [Sv39]

OPEN

CPU sub-system

OPEN

Multi-sourcing

OPEN

- For ASIC targets (32/64 bit)
- For any FPGAs (32 bit)

Leverage your investment:
reuse your HW/SW
architectures throughout
your product range
(multi-sourcing: any ASIC
and FPGA vendors)

HW implementations

OPEN

CV32A6	FPGA			Upcoming	
Frequency	189 MHz			commit of FPG optimizations t	
Performance	2.8 CoreMark/MHz 530 CoreMark			OpenHW GitHub	
Resources	8,108 LUT	4,534 FF	12 BRAM	4 DSP	
Technology	Zynq UltraScale+ -3				
Configuration	RV32IMA, 8K D\$ + 8K I\$, noFPU, MMU				

CV32A6	ASIC	
Frequency	900 MHz	
Performance	2.93 CoreMark/MHz 2637 CoreMark	
Resources	80 kgates	
Technology	28 nm (worst case corner)	
Configuration	RV32IMA, 8K I\$ + no D\$, noFPU, MMU	

Coremark conditions: gcc10.2.0, -O3 -funroll-all-loops -fno-tree-loop-distribute-patterns -DPREALLOCATE=1 -fvisibility=hidden -mcmodel=medany -lgcc -ffunction-sections -fdata-sections -WI,-gc-sections -falign-jumps=4 -falign-functions=16

Ongoing work.

More optimizations are coming!

SW ecosystem

Boot and FW

- OpenSBI

support

- Linux: 32 & 64 bit

- Yocto honister, Buildroot 2021.08

- FreeRTOS: 32 & 64 bit

- CVA6 compatible with many others

- Standard GCC (11.2)
- Libraries: **glibc** (2.70) & others
- LLVM on the roadmap

- HW and baremetal: JTAG probe, OpenOCD, GDB
- Linux-based: GDB server, **GDB/Eclipse IDE**

Full open-source software ecosystem

Protect your HW investments

CVA6 verification

OPEN

- Continuous integration (CI)
- Leverages Google open-source components and OpenHW methodology
- Next steps:
 - Complete UVM testbench
 - New test sequences
 - 100% functional coverage (UVM-based)

Verification artifacts will be available as opensource.

Target is 100% verification coverage.

OPEN

Complete open-source package

- > CVA6 core
- Verification: testbench, sequences, ISS...
- Linux, FreeRTOS support
- SolderPad HW license (no contamination)

https://github.com/openhwgroup/cva6 https://github.com/openhwgroup/cva6-sdk https://github.com/openhwgroup/core-v-verif

Evaluate CVA6 now for your next products generation

Open-source eases collaboration.

Open-source is suited for industrial use

OpenHW governance

- Not-profit organization steered by its members
- Based on Eclipse Foundation's processes
- Target industrial-grade quality

Participation is encouraged:

- > Share IP development costs
- Influence technical content
- Get recognized as a contributor

Apache / Solderpad permissive licences

- > Freely use, modify, integrate in proprietary solutions
- No need to publish modifications, no viral effect

Value generation

- Share cost instead of purchasing proprietary IIP
- Customize for own application
- Increase control on your solutions
- Easier white box certification

Business models

OPEN

- Commercial SW/HW/tooling add-ons
- > Maintenance and support offers

Reduced supplier / export risks

- ➤ Ability to fork; no end-of-life
- Significantly lower exposition to export control

First industrial adoptions of the CVA6

OPEN

Thales is developing a CVA6
secure processor
(other applications under study)

Other companies are considering CVA6:

- Edge computing
- Automotive domain
 - Industry 4.0
- Space/aerospace

welcomes a new member to the fold

Demonstrator

OPEN

Demonstrates the maturity of the CV32A6 soft-core processor

- Implementation on the Genesys 2 FPGA board
 - Kintex7 (XC7K325T-2FFG900C)
 - DDR3
 - Programmable over JTAG and Quad-SPI Flash
 - Ethernet Link with the host
- State-of-the-art boot flow
 - U-Boot
 - OpenSBI
 - Buildroot 2021.08
- Linux OS running

Ready for SW development

- GNU/Linux standard developer tools
- Eclipse IDE debug environment

Also works on Microsemi Polarfire

RISC-V and open-source HW European opportunities

OPEN

Already two RISC-V KDT calls:

- ➤ HORIZON-KDT-JU-2021-1-IA "Development of open sources RISC-V building blocks"
- ➤ HORIZON-KDT-JU-2022-1-IA "Design of Customisable and Domain Specific Opensource RISC-V Processors"
- > 40 M€ EU + 40 M€ national funding

RISC-V adopted in several European projects:

- > H2020 De-RISC
- > ECSEL FRACTAL
- HE NeuroSoC
- EuroHPC eProcessor
- > ESA...

Acknowledgement

https://fractal-project.eu/

- https://www.linkedin.com/company/fractal-european-research-project/
- 💟 @project_fractal

Some Thales Research & Technology's CVA6 activities are supported by the FRACTAL project which has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 877056. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Italy, Austria, Germany, Finland and Switzerland.

- Join the development of an industrial-grade open-source processor
 - > Get European support
 - Influence next developments for your future products
- Participate in the next open-source revolution
 - ➤ The next "Linux" for hardware CPUs
- Use the CVA6 in your future products
 - > For ASIC and FPGAs
 - With a strong open SW ecosystem

"Technology is best when it brings people together" Matt Mullenweg

Thank you.

