Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_st-nat* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

(30 de puncte) **SUBIECTUL I**

1.	q=3, unde q este rația progresiei geometrice	3 p
	$b_3 = 2 \cdot 3^2 = 18$	2p
2.	g(7) = 0	2p
	$(f \circ g)(7) = f(g(7)) = f(0) = 7$	3 p
3.	$2x-1=(x-2)^2 \Leftrightarrow x^2-6x+5=0$	3 p
	x = 1, care nu convine, $x = 5$, care convine	2 p
4.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	Mulțimea numerelor naturale de o cifră care verifică $n(n-1)(n-2)(n-3)(n-4) > 0$ are 5 elemente, deci sunt 5 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{5}{10} = \frac{1}{2}$	1p
5.	Mijlocul segmentului AC este punctul $M(2,3)$ și $m_{BM} = 1$	3p
	$m_{BD}=1$, deci $m_{BD}=m_{BM}$, de unde obținem că punctele B , D și M sunt coliniare	2p
6.	$\sin^2 x - 2\sin x \cos x + \cos^2 x = 2 \Leftrightarrow 1 - \sin 2x = 2 \Leftrightarrow \sin 2x = -1$	3p
	Cum $x \in (0, \pi)$, obținem $2x = \frac{3\pi}{2}$, deci $x = \frac{3\pi}{4}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix} = 2 \cdot 0 - 1 \cdot (-1) =$	3p
	=0+1=1	2 p
b)	$A(1) = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix}, \ A(2) = \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix}, \ A(1) \cdot A(2) = \begin{pmatrix} 7 & 6 \\ -6 & -5 \end{pmatrix}$	3 p
	$A(1) + A(2) - A(1) \cdot A(2) = \begin{pmatrix} 3 & 2 \\ -2 & -1 \end{pmatrix} + \begin{pmatrix} 5 & 4 \\ -4 & -3 \end{pmatrix} - \begin{pmatrix} 7 & 6 \\ -6 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2 p
c)	$A(m) \cdot A(n) = \begin{pmatrix} 1 + 2^m + 2^n & 2^m + 2^n \\ -2^m - 2^n & 1 - 2^m - 2^n \end{pmatrix}, \ A(m+n) = \begin{pmatrix} 1 + 2^{m+n} & 2^{m+n} \\ -2^{m+n} & 1 - 2^{m+n} \end{pmatrix}, \text{ unde } m \text{ si } n$	2 p
	sunt numere naturale	
	$A(m) \cdot A(n) = A(m+n) \Leftrightarrow 2^{m+n} = 2^m + 2^n \Leftrightarrow (2^m - 1)(2^n - 1) = 1$ şi, cum m şi n sunt	3р
	numere naturale, obţinem $m = n = 1$	- F
2.a)	$(-1)*(-1)=(-1)^2+(-1)^2+(-1)+(-1)=$	3 p
	=1+1-1-1=0	2 p

Probă scrisă la matematică M_şt-nat

Barem de evaluare și de notare

b)	$x * y = x^2 + x + \frac{1}{4} + y^2 + y + \frac{1}{4} - \frac{1}{2} =$	3р
	$ = \left(x^2 + 2x \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2\right) + \left(y^2 + 2y \cdot \frac{1}{2} + \left(\frac{1}{2}\right)^2\right) - \frac{1}{2} = \left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 - \frac{1}{2}, \text{ pentru orice numere reale } x \text{ și } y $	2p
c)	$x^2 * x^2 \le 4 \Leftrightarrow 2\left(x^2 + \frac{1}{2}\right)^2 - \frac{1}{2} \le 4 \Leftrightarrow \left(x^2 + \frac{1}{2}\right)^2 \le \frac{9}{4}$, de unde obţinem $x^2 + \frac{1}{2} \le \frac{3}{2}$	3p
	$x \in [-1,1]$	2p

SUBIECTUL al III-lea

(30 de puncte)

4 \		-
1.a)	$f'(x) = 2x + 4 - \frac{1}{2} \cdot \frac{1}{x+2} = 2(x+2) - \frac{1}{2(x+2)} = \frac{4(x+2)^2 - 1}{2(x+2)} = \frac{4(x+2)^2 - 1}{2(x+2)^2} = \frac$	3 p
	$= \frac{(2(x+2)-1)(2(x+2)+1)}{2(x+2)} = \frac{(2x+3)(2x+5)}{2(x+2)}, \ x \in (-2,+\infty)$	2 p
b)	$\lim_{x \to +\infty} \frac{x^2 + 4x - f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{1}{2}\ln(x+2)}{x} = \lim_{x \to +\infty} \frac{\ln(x+2)}{2x} =$	2p
	$= \lim_{x \to +\infty} \frac{\frac{1}{x+2}}{2} = 0$	3 p
c)	$f'(x) \le 0$, pentru orice $x \in \left(-2, -\frac{3}{2}\right] \Rightarrow f$ este descrescătoare pe $\left(-2, -\frac{3}{2}\right]$ și $f'(x) \ge 0$, pentru orice $x \in \left[-\frac{3}{2}, +\infty\right) \Rightarrow f$ este crescătoare pe $\left[-\frac{3}{2}, +\infty\right)$, $f\left(-\frac{3}{2}\right) = -\frac{15}{4} + \frac{1}{2}\ln 2$	3 p
	Pentru orice $x \in (-2, +\infty)$, $f(x) \ge f\left(-\frac{3}{2}\right)$, deci $x^2 + 4x - \frac{1}{2}\ln(x+2) \ge -\frac{15}{4} + \frac{1}{2}\ln 2$, de unde obţinem $x^2 + 4x + \frac{15}{4} \ge \frac{1}{2}\ln(2x+4)$, pentru orice $x \in (-2, +\infty)$	2 p
2.a)	$\int_{0}^{3} (x^{2} + 1) f(x) dx = \int_{0}^{3} (x^{2} + 1 + 2) dx = \left(\frac{x^{3}}{3} + 3x\right) \Big _{0}^{3} =$	3p
	$=\frac{27}{3}+9=18$	2p
b)	$\int_{1}^{3} x f(x) dx = \int_{1}^{3} \left(x + \frac{2x}{x^2 + 1} \right) dx = \frac{x^2}{2} \Big _{1}^{3} + \ln\left(x^2 + 1\right) \Big _{1}^{3} =$	3 p
	$= \frac{9-1}{2} + \ln 10 - \ln 2 = 4 + \ln 5$	2p
c)	F este o primitivă a funcției f și f este continuă, deci, pentru orice număr real x , $F(x+1)-F(x)=\int_{x}^{x+1}f(t)dt$	2p
	$f(t) = 1 + \frac{2}{t^2 + 1} > 1$, pentru orice număr real t , deci $\int_{x}^{x+1} f(t) dt \ge \int_{x}^{x+1} 1 dt = x + 1 - x = 1$, de unde obținem că $F(x+1) \ge F(x) + 1$, pentru orice număr real x	3 p