Existencia del ínfimo

Teorema. Suponga que S es un conjunto ordenado con la propiedad de la menor cota superior, $\emptyset \neq B \subset S$, y B es una cota inferior. Sea L el conjunto de todas las cotas inferiores de B. Entonces

$$\alpha = \sup L$$

existe en S, $\alpha = \inf B \in S$.

Demostración. Dado que B está acotado inferiormente, L es no vacio. Por otro lado, L consiste en en exactamente aquellas $y \in S$ que satisfacen la desigualdad

$$\forall x \in B : y \le x.$$

Por lo anterior, observamos que todo elemento en B es una cota superior de L. Entonces, L está acotado superiormente. Como $L \subset S$, por hipótesis $\alpha = \sup_{x \in S} L \in S$.

- 1. Si $\gamma \leq \alpha$, entonces γ no es una cota superior de L y por lo tanto, $\gamma \notin B$. De ahi que $\forall x \in B : \alpha \leq x$. Y por definición $\alpha \in B$.
- 2. Si $\alpha < \beta$, entonces $\beta \notin L$ ya que α es una cota superior de L.

En conclusión, α es una cota inferior de B pero todo elemento $\beta >$ no es cota inferior de B. Por lo tanto $\alpha = \inf B$.

Referencia

Rudin, W., 1964, Principles of Mathematical Analysis, Ed. 3 Cap. 1, Pag. 5

Notas Zettelkasten

- Enlaces Entrada: def:conjuntosaaa010, def:conjuntosaaa011, def:conjuntosaaa012, -
- Enlaces Salida: -, -, -, -
- Inspirado En: -, -, -
- Creado A Partir De: -, -, -, -