1) Project Title

A Lightweight CUDA Inference Engine for Transformer Models

2) Team Members

-Lyuyongkang Yuan ly2188@nyu.edu

-Junwei Yan jy4831

3) Goal / Objective

Develop a C++/CUDA based inference engine that accelerates the attention mechanism and related computation blocks within Transformer based large language models (e.g., GPT 2, LLaMA).

The project aims to build a drop in replacement for PyTorch attention layers, achieving end to end inference acceleration while maintaining output parity with native implementations.

4) Challenges

Fragmented operator pipeline in PyTorch causes excessive GPU memory traffic and kernel launch overhead during inference.

High Python overhead in `generate` or sequential decoding loops limits real time token throughput.

Memory and latency bottlenecks become prominent as sequence lengths grow, especially for autoregressive models.

*Balancing precision and performance across different GPU architectures (Ampere / Turing / Volta) without sacrificing numerical stability.

5) Approach

Our approach combines low level kernel optimization with framework level integration:

- Baseline: benchmark PyTorch's native scaled dot product attention under FP32/FP16.
- Custom CUDA kernels: implement fused attention kernels (QK, scaling, masking, softmax, SV) using warp level primitives and shared memory.
- FlashAttention inspired online softmax: eliminate intermediate score matrices to reduce memory I/O.
- Mixed precision and kernel fusion: leverage FP16/TF32 and epilogue fusion for performance while ensuring stable accumulation in FP32.
- Integration: expose kernels as a PyTorch C++ extension for seamless use in Transformer based models (GPT 2, LLaMA like).

6) Implementation Details

Hardware: GPU environments from local systems and NYU HPC clusters

Software: C++ / CUDA, cuBLAS/cublasLt, PyTorch extension (PyBind11), Nsight Compute/Systems for profiling.

Model Scope: tested within a full Transformer inference pipeline — not only operator level microbenchmarks but also token by token decoding.

7) Planned Demo

We will demonstrate:

- Inference level acceleration: compare native PyTorch and our engine on total inference latency and token generation throughput.
- -Profiling visualization: Nsight timeline and memory bandwidth charts showing kernel reduction and improved utilization.
- -Scalability: results across varying sequence lengths and GPU architectures.

8) References

- Dao et al., 2022 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
- Provided IO-aware tiling and online softmax; our work extends this to a modular
 C++ engine compatible with Transformer pipelines.

https://arxiv.org/abs/2205.14135

- Dao et al., 2023 FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning.
- Improved intra-SM scheduling; our engine adopts similar partitioning principles
 with a focus on PyTorch integration and inference scalability.

https://arxiv.org/abs/2307.08691