CLAIMS A MAG expression promoter comprising a compound of the formula (I)

$$\begin{array}{c|c}
R^1 \\
\hline
R^2 \\
\hline
R^3
\end{array}$$
(I)

5 wherein

is a hydrogen atom, a halogen atom, an alkyl R^1 group or an alkoxy group;

 ${\ensuremath{R^2}}$ and ${\ensuremath{R^3}}$ are the same or different and each is a hydrogen atom or an alkyl group;

is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, 10 R4 $-CH_2NR^6R^7$, $-CH_2OH$ or $-CH_2OR^8$;

wherein R^5 and R^6 are each an alkyl group, and R^6 and R^7 are the same or different and each is a hydrogen atom or an alkyl group, or R^6 and R^7 in combination form imidazole together with the adjacent nitrogen atom;

is -CH(OH)-, -C(=O)- or $-CH_2-$; and Α

is =CH- or =N-, \mathbf{z}

an optically active form thereof or a pharmaceutically 20 acceptable salt thereof.

- 2. The MAG expression promoter of claim 1, which is applicable to a disease of mammals inclusive of human, caused by hypomyelination.
- 3. The MAG expression promoter of claim 1, which is applicable to a disease of mammals inclusive of human, which disease mainly presents dysmyelination or demyelination.

30

25

4. The MAG expression promoter of claim 1, which is applicable to a disease of mammals inclusive of human, which disease being multiple sclerosis, encephalitis, myelitis, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculitis, heavy metal toxicosis, diphtheria toxicosis, hypothyroidism, metachromatic leukodegeneration or Charcot-Marie-Tooth disease.

5. The MAG expression promoter of any of claim 1 to claim 4, wherein, in the formula (I), R¹ is a halogen atom, an alkyl group or an alkoxy group.

6. A MAG expression promoter comprising 4-[α-hydroxy-5-(1-imidazolyl)-2-methylbenzyl]-3,5-dimethylbenzoic acid,
 15 an optically active form thereof or a pharmaceutically acceptable salt thereof.

7. A method of promoting expression of MAG, which method comprises administering a compound of the formula (I)

wherein

30

R¹ is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

25 R² and R³ are the same or different and each is a hydrogen atom or an alkyl group;

 R^4 is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, -CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸;

wherein R^5 and R^6 are each an alkyl group, and R^6 and R^7 are the same or different and each is

a hydrogen atom or an alkyl group, or R^6 and R^7 in combination form imidazole together with the adjacent nitrogen atom;

is -CH(OH)-, -C(=O)- or $-CH_2-$; and Α

is =CH- or =N-, Z 5

an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.

8. The method of claim 7, wherein, in the formula (I), $_{10}$ R^1 is a halogen atom, an alkyl group or an alkoxy group.

- A method for promoting expression of MAG, which method comprises administering 4-[α -hydroxy-5-(1imidazolyl)-2-methylbenzyl]-3,5-dimethylbenzoic acid, 15 an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.
- 10. A method for prophylaxis and/or therapy of a disease caused by hypomyelination, which method 20 comprises administering a compound of the formula (I)

wherein

30

is a hydrogen atom, a halogen atom, an alkyl R^1 group or an alkoxy group;

25 R^2 and R^3 are the same or different and each is a hydrogen atom or an alkyl group;

is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, R^4 -CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸; wherein R^5 and R^6 are each an alkyl group, and R^6 and R^7 are the same or different and each is

a hydrogen atom or an alkyl group, or R^6 and R^7 in combination form imidazole together with the adjacent nitrogen atom;

A is $-CH(OH)-, -C(=O)- or -CH_2-;$ and

 $_{5}$ Z is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.

11. The method of claim 10, wherein, in the formula (I), R^1 is a halogen atom, an alkyl group or an alkoxy group.

12. A method for prophylaxis and/or therapy of a disease caused by hypomyelination, which method comprises administering 4-[α-hydroxy-5-(1-imidazoly1)-2-methylbenzyl]-3,5-dimethylbenzoic acid, an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.

13. A method for prophylaxis and/or therapy of a disease mainly presenting dysmyelination or demyelination, which method comprises administering a compound of the formula (I)

wherein

30

25 R¹ is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

 R^2 and R^3 are the same or different and each is a hydrogen atom or an alkyl group;

 R^4 is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, -CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸;

10

wherein R^5 and R^6 are each an alkyl group, and R^6 and R^7 are the same or different and each is a hydrogen atom or an alkyl group, or R^6 and R^7 in combination form imidazole together with the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and

z is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.

14. The method of claim 13, wherein, in the formula (I), \mathbb{R}^1 is a halogen atom, an alkyl group or an alkoxy group.

15. A method for prophylaxis and/or therapy of a disease mainly presenting dysmyelination or demyelination, which method comprises administering 4-[α-hydroxy-5-(1-imidazoly1)-2-methylbenzy1]-3,5-dimethylbenzoic acid, an optically active form thereof or a pharmaceutically acceptable salt thereof to mammals inclusive of human.

16. A method for prophylaxis and/or therapy of multiple sclerosis, encephalitis, myelitis, Guillain-Barré syndrome, chronic inflammatory demyelinating
25 polyradiculitis, heavy metal toxicosis, diphtheria toxicosis, hypothyroidism, metachromatic leukodegeneration or Charcot-Marie-Tooth disease, which method comprises administering a compound of the formula (I)

30

20

wherein

R¹ is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

 R^2 and R^3 are the same or different and each is a hydrogen atom or an alkyl group;

 R^4 is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, -CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸;

wherein R⁵ and R⁶ are each an alkyl group, and R⁶ and R⁷ are the same or different and each is a hydrogen atom or an alkyl group, or R⁶ and R⁷ in combination form imidazole together with the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and

z is =CH- or =N-,

acceptable salt thereof to mammals inclusive of human.

17. The method of claim 16, wherein, in the formula (I), R^1 is a halogen atom, an alkyl group or an alkoxy group.

18. A method for prophylaxis and/or therapy of multiple sclerosis, encephalitis, myelitis, Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculitis, heavy metal toxicosis, diphtheria

toxicosis, hypothyroidism, metachromatic
leukodegeneration or Charcot-Marie-Tooth disease, which
method comprises administering 4-[α-hydroxy-5-(1imidazolyl)-2-methylbenzyl]-3,5-dimethylbenzoic acid,
an optically active form thereof or a pharmaceutically
acceptable salt thereof to mammals inclusive of human.

19. Use of a compound of the formula (I)

wherein

R¹ is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

 $_{5}$ R^{2} and R^{3} are the same or different and each is a hydrogen atom or an alkyl group;

 R^4 is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷, -CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸;

wherein R^5 and R^6 are each an alkyl group, and R^6 and R^7 are the same or different and each is a hydrogen atom or an alkyl group, or R^6 and R^7 in combination form imidazole together with the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and

is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof for producing a MAG expression promoter.

- 20 20. The use of claim 19, wherein, in the formula (I), R¹ is a halogen atom, an alkyl group or an alkoxy group.
 - 21. Use of $4-[\alpha-hydroxy-5-(1-imidazoly1)-2-methylbenzy1]-3,5-dimethylbenzoic acid, an optically$
 - 25 active form thereof or a pharmaceutically acceptable salt thereof for producing a MAG expression promoter.
 - 22 Use of a compound of the formula (I)

wherein

R¹ is a hydrogen atom, a halogen atom, an alkyl
group or an alkoxy group;

5 R² and R³ are the same or different and each is a hydrogen atom or an alkyl group;

is an alkyl group, -COOH, $-COOR^5$, $-CONR^6R^7$, $-CH_2NR^6R^7$, $-CH_2OH$ or $-CH_2OR^8$; wherein R^5 and R^6 are each an alkyl group, and

R⁶ and R⁷ are the same or different and each is a hydrogen atom or an alkyl group, or R⁶ and R⁷ in combination form imidazole together with the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and

is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof for producing a MAG expression promoter applicable to a disease in mammals inclusive of human, which is caused by hypomyelination.

23. The use of claim 22, wherein, in the formula (I), R¹ is a halogen atom, an alkyl group or an alkoxy group.

24. Use of 4-[α-hydroxy-5-(1-imidazoly1)-225 methylbenzyl]-3,5-dimethylbenzoic acid, an optically active form thereof or a pharmaceutically acceptable salt thereof for producing a MAG expression promoter applicable to a disease in mammals inclusive of human, which is caused by hypomyelination.

25. Use of a compound of the formula (I)

wherein

R¹ is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

 R^2 and R^3 are the same or different and each is a hydrogen atom or an alkyl group;

 R^4 is an alkyl group, -COOH, $-COOR^5$, $-CONR^6R^7$, $-CH_2OR^6R^7$, $-CH_2OH$ or $-CH_2OR^8$;

wherein R⁵ and R⁶ are each an alkyl group, and R⁶ and R⁷ are the same or different and each is a hydrogen atom or an alkyl group, or R⁶ and R⁷ in combination form imidazole together with the adjacent nitrogen atom;

is -CH(OH)-, -C(=O)- or $-CH_2-$; and z is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof for producing a MAG expression promoter applicable to a disease in mammals inclusive of human, which mainly presents dysmyelination or demyelination.

26. The use of claim 25, wherein, in the formula (I), R¹ is a halogen atom, an alkyl group or an alkoxy group.

27. Use of 4-[α-hydroxy-5-(1-imidazolyl)-2methylbenzyl]-3,5-dimethylbenzoic acid, an optically
active form thereof or a pharmaceutically acceptable
salt thereof for producing a MAG expression promoter
30 applicable to a disease in mammals inclusive of human,

which mainly presents dysmyelination or demyelination.

28.) Use of a compound of the formula (I)

5 wherein

is a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group;

 ${\ensuremath{R^2}}$ and ${\ensuremath{R^3}}$ are the same or different and each is a hydrogen atom or an alkyl group;

is an alkyl group, -COOH, -COOR⁵, -CONR⁶R⁷,

-CH₂NR⁶R⁷, -CH₂OH or -CH₂OR⁸;

wherein R⁵ and R⁶ are each an alkyl group, and

R⁶ and R⁷ are the same or different and each is
a hydrogen atom or an alkyl group, or R⁶ and R⁷

in combination form imidazole together with
the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and z is =CH- or =N-,

an optically active form thereof or a pharmaceutically
20 acceptable salt thereof for producing a MAG expression
promoter applicable to a disease in mammals inclusive
of human, which is multiple sclerosis, encephalitis,
myelitis, Guillain-Barré syndrome, chronic inflammatory
demyelinating polyradiculitis, heavy metal toxicosis,
25 diphtheria toxicosis, hypothyroidism, metachromatic
leukodegeneration or Charcot-Marie-Tooth disease.

29. The use of claim 28, wherein, in the formula (I), R¹ is a halogen atom, an alkyl group or an alkoxy group.

30. Use of 4-[α-hydroxy-5-(1-imidazoly1)-2methylbenzyl]-3,5-dimethylbenzoic acid, an optically
active form thereof or a pharmaceutically acceptable
salt thereof for producing a MAG expression promoter
applicable to a disease in mammals inclusive of human,
which is multiple sclerosis, encephalitis, myelitis,
Guillain-Barré syndrome, chronic inflammatory
demyelinating polyradiculitis, heavy metal toxicosis,
diphtheria toxicosis, hypothyroidism, metachromatic
leukodegeneration or Charcot-Marie-Tooth disease.

31. A commercial package comprising a MAG expression promoter comprising a compound of the formula (I)

15 wherein

25

is a hydrogen atom, a halogen atom, an alkyl
group or an alkoxy group;

 R^2 and R^3 are the same or different and each is a hydrogen atom or an alkyl group;

is an alkyl group, -COOH, $-COOR^5$, $-CONR^6R^7$, $-CH_2NR^6R^7$, $-CH_2OH$ or $-CH_2OR^8$;

wherein R⁵ and R⁶ are each an alkyl group, and R⁶ and R⁷ are the same or different and each is a hydrogen atom or an alkyl group, or R⁶ and R⁷ in combination form imidazole together with the adjacent nitrogen atom;

A is -CH(OH)-, -C(=O)- or $-CH_2-$; and

z is =CH- or =N-,

an optically active form thereof or a pharmaceutically acceptable salt thereof and a written matter associated

·----

therewith, the written matter stating that the MAG expression promoter can or should be used for promoting expression of MAG.

- 32. The commercial package of claim 31, wherein, in the formula (I), R^1 is a halogen atom, an alkyl group or an alkoxy group.
- 33. A commercial package comprising a MAG expression
 10 promoter comprising 4-[α-hydroxy-5-(1-imidazoly1)-2methylbenzyl]-3,5-dimethylbenzoic acid, an optically
 active form thereof or a pharmaceutically acceptable
 salt thereof and a written matter associated therewith,
 the written matter stating that the MAG expression
 15 promoter can or should be used for promoting expression
 of MAG.