PERCOBAAN 8. RANGKAIAN ARITMETIKA DIGITAL DASAR

TUJUAN:

Setelah menyelesaikan percobaan ini mahasiswa diharapkan mampu

- Memahami rangkaian aritmetika digital : adder dan subtractor
- Mendisain rangkaian *adder* dan *subtractor* (Half dan Full) berdasarkan Tabel Kebenaran yang diketahui

PERALATAN:

- 1. Logic Circuit Trainer ITF-02 / DL-02
- 2. Oscilloscope

TEORI:

Rangkaian aritmetika digital dasar terdiri dari dua macam : Adder, atau rangkaian penjumlah, berfungsi menjumlahkan dua buah bilangan yang telah dikonversikan menjadi bilangan-bilangan biner, dan Subtraktor, atau rangkaian pengurang, yang berfungsi mengurangkan dua buah bilangan.

1. HALF ADDER

Sebuah rangkaian *Adder* terdiri dari *Half Adder* dan *Full Adder*. Half Adder menjumlahkan dua buah bit input, dan menghasilkan nilai jumlahan (*sum*) dan nilai lebihnya (*carry-out*). *Half Adder* diletakkan sebagai penjumlah dari bit-bit terendah (*Least Significant Bit*). Blok Diagram dari sebuah rangkaian *Half Adder* ditunjukkan pada gambar 8-1.

PERCOBAAN 8. RANGKAIAN ARITMETIKA DIGITAL DASAR

Gambar 8-1. Blok Diagram Half Adder

Prinsip kerja *Half Adder* ditunjukkan pada gambar 8-2.

Gambar 8-2. Prinsip Kerja Half Adder

Sebuah *Half Adder* mempunyai Tabel Kebenaran seperti pada Tabel 8-1.

Tabel 8-1. Tabel Kebenaran Half Adder

A ₀	B ₀	Σ_0	Cout
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Berdasarkan output-output yang didapatkan dari Tabel Kebenaran, dibuat rangkaian seperti gambar 8-3.

Gambar 8-3. Rangkaian Half Adder

2. FULL ADDER

Sebuah *Full Adder* menjumlahkan dua bilangan yang telah dikonversikan menjadi bilangan-bilangan biner. Masing-masing bit pada posisi yang sama saling dijumlahkan. *Full Adder* sebagai penjumlah pada bit-bit selain yang terendah. *Full Adder* menjumlahkan dua bit input ditambah dengan nilai *Carry-Out* dari penjumlahan bit sebelumnya. Output dari Full Adder adalah hasil penjumlahan (*Sum*) dan bit kelebihannya (*carry-out*). Blok diagram dari sebuah *full adder* diberikan pada gambar 8-4.

Gambar 8-4. Blok Diagram Full Adder

Tabel Kebenaran untuk sebuah *Full Adder* diberikan pada Tabel 8-.2.

Tabel 8-2. Tabel Kebenaran Full Adder

A ₁	B ₁	CIN	Σ_1	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Berdasarkan output-output yang didapatkan dari Tabel Kebenaran, dibuat rangkaian seperti gambar 8-5.

Gambar 8-5. Rangkaian Full Adder

1. HALF SUBTRACTOR

Sebuah rangkaian *Subtractor* terdiri dari *Half Subtractor* dan *Full Subtractor*. *Half Subtractor* mengurangkan dua buah bit input, dan menghasilkan nilai hasil pengurangan (*Remain*) dan nilai yang dipinjam (*Borrow-out*). *Half Subtractor* diletakkan sebagai pengurang dari bit-bit terendah (*Least Significant Bit*). Blok Diagram dari sebuah rangkaian *Half Subtractor* ditunjukkan pada gambar 8-6.

Gambar 8-6. Blok Diagram *Half Subtractor*

Prinsip kerja *Half Subtractor* ditunjukkan pada gambar 8-7.

Gambar 8-7. Prinsip Kerja *Half Subtractor*

Sebuah *Half Subtractor* mempunyai Tabel Kebenaran seperti pada Tabel 8-3.

PERCOBAAN 8. RANGKAIAN ARITMETIKA DIGITAL DASAR

Tabel 8-3. Tabel Kebenaran Half Subtractor

A_0	B ₀		R_0	Bout
0	0		0	0
0	1		1	1
1	0		1	0
1	1		0	0

Berdasarkan output-output yang didapatkan dari Tabel Kebenaran, dibuat rangkaian seperti gambar 8-8.

Gambar 8-8. Rangkaian Half Subtractor

4. FULL SUBTRACTOR

Sebuah *Full Subtractor* mengurangkan dua bilangan yang telah dikonversikan menjadi bilangan-bilangan biner. Masing-masing bit pada posisi yang sama saling dikurangkan. *Full Subtractor* mengurangkan dua bit input dan nilai *Borrow-Out* dari pengurangan bit sebelumnya Output dari *Full Subtractor* adalah hasil pengurangan (*Remain*) dan bit pinjamannya (*borrow-out*). Blok diagram dari sebuah *full subtractor* diberikan pada gambar 8-9.

Gambar 8-.9. Blok Diagram Full Subtractor

Tabel Kebenaran untuk sebuah Full Subtractor diberikan pada Tabel 8-4.

Tabel 8-4. Tabel Kebenaran Full Subtractor

A ₁	B ₁	B _{IN}	R ₁	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Berdasarkan output-output yang didapatkan dari Tabel Kebenaran, dibuat rangkaian seperti gambar 8-10.

Gambar 8-10. Rangkaian Full Subtractor

PROSEDUR:

- 1. Menggunakan Trainer ITF-02 atau DL-02, implementasikan rangkaian *Half Adder*, seperti pada gambar 8-3. Buat Tabel Kebenarannya.
- 2. Seperti pada prosedur 1, implementasikan rangkaian *Full Adder*, seperti gambar 8-5. Buat Tabel Kebenarannya.
- 3. Seperti prosedur 1, implementasikan rangkaian *Half Subtractor*, seperti gambar 8-8. Buat Tabel Kebenarannya.
- 4. Seperti prosedur 1, implementasikan rangkaian *Full Subtractor*, seperti gambar 8-10. Buat Tabel Kebenarannya.

TUGAS:

- 1. Dengan menggunakan Tabel Kebenaran yang telah didapatkan dari percobaan, buat K-map untuk masing-masing Rangkaian Aritmetika (*Half Adder, Full adder, Half Subtractor* dan *Full Subtractor*). Dari K-map, dapatkan persamaan sederhananya. Kemudian gambarkan rangkaiannya, sesuai dengan persamaan yang didapat. Bandingkan hasilnya dengan rangkaian awal (yang anda rangkai pada Trainer).
- 2. Ubahlah rangkaian Half dan Full Adder hanya dengan gerbang NAND saja.
- 3. Ubahlah rangkaian *Half* dan *Full Subtractor* hanya dengan gerbang NOR saja.