

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Maestría en Ciencia de Datos

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Tópicos Avanzados de Aprendizaje Máquina		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercer semestre	371035	35 Mediación docente
		65 Estudio independiente

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que los alumnos obtengan conocimiento, habilidades y las herramientas necesarias para diseñar e implementar modelos de aprendizaje profundo, procesamiento digital de imágenes, para procesamiento del lenguaje natural y para sistemas recomendadores.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1. Concepto básicos de Redes Neuronales Artificiales
- 1.2. Perceptrón
- 1.3. Adaline

2. Perceptrón multicapa

- 2.1. Arquitectura de una Red Neuronal
- 2.2. Backpropagation
- 2.3. Funciones de activación
- 2.4. Funciones de pérdida
- 2.5. Regularización
- 2.6. Problemas de clasificación, regresión con perceptrón multicapa

3. Redes Neuronales Convolucionales

- 3.1. Procesamiento digital de imágenes
- 3.2. Conceptos básico del aprendizaje profundo: kernel, padding y pooling
- 3.3. Arquitectura de una Redes Neuronales Convolucionales
- 3.4. Transferencia de aprendizaje
- 3.5. Problemas de clasificación de imágenes

4. Redes Neuronales Recurrentes

- 4.1. Introducción
- 4.2. Tipos de Redes Neuronales Recurrentes
- 4.3. Neuronas LSTM y GRU
- 4.4. Problemas de predicción con Redes Neuronales Recurrentes

5. Casos de estudio y aplicaciones

- 5.1. Visión artificial
- 5.2. Procesamiento del lenguaje natural
- 5.3. Sistemas recomendadores

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, pizarrón y proyector. Asimismo, se desarrollarán prácticas sobre los temas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Exámenes parciales y final. Tareas Simulaciones en computadora. Proyectos. Esto tendrá una equivalencia del 100% en la calificación final del semestre

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
- Bishop, C. M., & Bishop, H. (2024). Deep learning: foundations and concepts
- C. C. Aggarwal, Recommender systems: The textbook, Springer, 2016.

Consulta:

- Venkatesan, R., & Li, B. (2017). Convolutional neural networks in visual computing: a concise guide. CRC Press.
- Tyagi, A. K., & Abraham, A. (Eds.). (2022). Recurrent neural networks: Concepts and applications.

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Ciencias de la Computación, o áreas afines, con especialidad en Inteligencia artificial y/o Ciencia de datos.

AUTORIZÓ

Vo.Bo M.T.C.A. ERIK GERMÁN RAMOS PÉREZ COORDINADOR DE LA UNIVERSIDAD VIRTUAL L.I. MARIO ALBERTO MORENO ROCHA VICE-RECTOR ACADÉMICO