WORKSHOP 5: Questions

- Q1. If a random variable X has a beta distribution¹ with parameters α and β , derive the probability density function of U = X/(1-X).
- **Q2.** Suppose that X and Y are independent random variables with $X \sim \operatorname{gamma}(n,\lambda)$ and $Y \sim \operatorname{exponential}(\lambda)$. Use the transformation U = X + Y and V = Y to obtain the probability density function of U. What distribution does U have?
- **Q3.** Suppose that X and Y are independent exponential $(\lambda = 1)$ random variables. Use the transformation U = X Y and V = Y to obtain the probability density function of U.
- **Q4** Will be Marked. Suppose a random variable X has a uniform distribution on the interval (a,b) so that the probability density function is $f_X(x) = 1/(b-a)$ for a < x < b and is zero elsewhere. Obtain the moment generating function of X.
- **Q5 Will be Marked.** Suppose that a random variable X has a double exponential distribution² with parameter θ , $\theta > 0$, with probability density function

$$f_X(x) = \frac{1}{2}\theta e^{-\theta|x|}, \quad -\infty < x < +\infty.$$

Show that the moment generating function of X is

$$m_X(t) = \frac{\theta^2}{\theta^2 - t^2}.$$

For what values of t is this moment generating function defined?

<u>Hint:</u> Split the range of integration $x \in (-\infty, +\infty)$ into the two regions $x \in (-\infty, 0)$ and $x \in (0, +\infty)$. The value of t must be such that both integrals converge.

$$f(x) \propto \exp\left(\int \frac{x-c}{a_2 x^2 + a_1 x + a_0} dx\right).$$

Depending on the values of the constants a_0 , a_1 , a_2 and c, different families of distributions arise. The beta distribution is essentially a re-scaled form of the Pearson Type I distribution. The Pearson type III distribution became known as the gamma distribution in the first half of the 20th century. The Pearson types can be characterised by their skewness β_1 and their kurtosis β_2 .

¹The English mathematician Karl Pearson (1857-1936) introduced the Pearson system of distributions as satisfying

²Often called a Laplace distribution after the French mathematician Pierre-Simon Laplace (1749-1825). Laplace worked extensively in celestial mechanics and probability theory. The distribution was often used to model measurement error before being replaced with the normal distribution.