Clase teórica de la semana del 25-4

Mario Garelik

Sección 14.6 - Planos tangentes y diferenciales.

CORREGIR ERRORES.

- 1. **Pág. 793:** al inicio de la hoja, cuando dice: Por lo tanto, la superficie z = f(x, y) es la superficie de nivel cero de la función F(x, y, z) = -(x, y) z, debe decir: Por lo tanto, la superficie z = f(x, y) es la superficie de nivel cero de la función $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{f}(\mathbf{x}, \mathbf{y}) \mathbf{z}$
- 2. **Pág. 793:** en la solución del ejemplo 3, cuando dice ... y por lo tanto paralela a $v = \nabla f \nabla g$, debe decir:... y por lo tanto paralela a $v = \nabla f \times \nabla g$.
- 3. Pág. 794: En el cuadro Estimación del cambio de f en la dirección de u, donde dice Para calcular el cambio en el valor... debe decir Para estimar el cambio en el valor...
- 4. **Pág. 795:** previo a DEFINICIONES, donde dice: En otras palabras, cuanto mayor sea Δx y menor sea Δy , debe decir: En otras palabras, cuanto **menor** sea Δx y menor sea Δy
- Ejercitación propuesta: pág. 799: 1 48, 50 67.
- Breve intro y deducción de la fórmula de plano tangente en un punto a una superficie de nivel en el espacio.
- El gradiente ∇f es ortogonal al vector velocidad de todas las curvas suaves en la superficie que pasan pr el punto P_0 . (consecuentemente, las rectas tangentes a las curvas dentro de la superficie están en el plano que pasa por P_0 y es normal a ∇f .)
- Plano tangente y recta normal a una superficie de nivel en un punto P_0 .
 - Definición.
 - Ecuaciones.
- De lo anterior, se deduce la ecuación del plano tangente a la superficie z = f(x, y) en $(x_0, y_0, f(x_0, y_0))$.
- Ver la monstruosa superficie del ejemplo 2 en Ggb.
- Estimación del cambio del valor de una función cuando nos movemos una pequeña distancia ds de un punto P_0 a otro cercano: $df = (\nabla f|_{P_0} \cdot \mathbf{u}) ds$.
 - Analogía con la estimación del cambio utilizando diferenciales en Cálculo I.

- Linealización de una función de dos variables: extensión de las ideas de Cálculo I a dos variables, con el uso de las derivadas parciales: $f(x,y) \approx L(x,y)$. (y también aquí, cuando $\Delta x \to 0$ y $\Delta y \to 0$, la aproximación $f(x,y) \approx L(x,y)$ será mejor).
- Error en la aproximación lineal estándar.
- Diferencial o diferencial total de f.
 - Al igual que en una variable, es el cambio (por ir de (x_0, y_0) a $(x_0 + \Delta x, y_0 + \Delta y)$) medido en la aproximación lineal L, o sea ΔL , como aproximante de Δf .
 - Las funciones se muestran más sensibles a cambios pequeños en aquellas variables que generan grandes derivadas parciales (era de esperar... si se mira la expresión de la diferencial total). Está bien explicado en el texto, a partir del ejemplo 8 (pie pág. 797).
 - Para tener una idea de cuán grande es el error que se comete al aproximar, se considera el error relativo dado por la expresión porcentual de $\left|\frac{df}{f}\right|$.
- Establecer un paralelo a la secuencia seguida en Cálculo I en estos temas.
- Extensión a más de dos variables. Ver ejemplo al final de la sección