CS100算法\l\j

位运算(选学)

位运算:布尔运算的推广

→ 0和1就是true和false,并且有一些基本逻辑运算

A,B	A=0,B=0	A=0,B=1	A=1,B=0	A=1,B=1
A && B (and)	0	0	0	1
All B (or)	0	1	1	1
A^B (xor)	0	1	1	0

- → 把整数写成二进制形式,对每一位做如上的运算。
- → 得到一个新的二进制数,再转回十进制
- → 这种操作就称为<mark>(按)位运算</mark>

A,B	A=5,B=6 101 110	A=7,B=1 111 001		
A & B (and)	5 <mark>&6=4</mark> 101&11 <mark>0=</mark> 100	7&1=1 111&001=001		
AIB (or)	5 6= 7 101 110=111	7l1=7 111l001=111		
A^B (xor)	5^6=3 101^110=011	7^1=6 111^001=110		

George Boole (1815-1864)

位运算规律

交换律:

A&B=B&A (A和B都是1) A|B=B|A (A和B中有一个是1) A^B=B^A (A和B不相等)

结合律:

(A&B)&C=A&(B&C) (ABC都是1) (A|B)|C=A|(B|C) (ABC中有一个是1) (A^B)^C=A^(B^C) (ABC中有**一个或三**个是1)

自反律:

A = A $A \mid A = A$ $A \land A = 0$

怎么证明?

只要对某一位成立, 就对所有整数成立

A,B	A=0,B=0	A=0,B=1	A=1,B=0	A=1,B=1
A && B (and)	0	0	0	1
AIIB (or)	0	1	1	1
A^B (xor)	0	1	1	0

快速判重技术

唯一数问题:

输入n个整数(n<=100000000),其中只有一个数只出现一次,其他数都出现两次。输出只出现一次的那个数

样例输入:

11

53242746537

样例输出:

6

唯一数问题:思路

```
输入n
result=0
for (i=1;i<=n-1;i++) {
 输入a
  result=result^a
}
输出result
```

- → 根据n的规模,肯定需要线<mark>性</mark>算法,每个数回头找一下是不行的
- → 如果是排过序的,那就很简单了
- → 如何不排序也能达到排序后的效果?

没看懂? 这就是利用了位运算的运算规律

5^3^2^4^2^7^4^6^5^3^7 =(2^2)^(3^3)^(4^4)^(5^5)^6^(7^7) (交换律+结合律) =0^0^0^0^6^0 (自反律) =6

唯一数问题:解答

```
int findOneNumberInTwos(int n){
         int result=0,a;
 13
 14
         for (int i=0;i<n;i++){
             cin>>a; // 输入第i个数
 15
 16
             result ^= a;
                            // 累积异或
 17
         return result;
 18
 19 }
 20
                                                            findOneNumberInThrees这是红包题,我不会轻易给你
 21 > int findOneNumberInThrees(int n){....}
 33
                                                         们看到的😘
    int main(int argc, const char * argv[]) {
 35
         int n;
         cin>>n;
 36
         /*11
 37
          5 3 2 4 2 7 4 6 5 3 7*/
 38
         cout<<findOneNumberInTwos(n)<<endl;</pre>
 39
         /*10
 40
         5 4 4 7 7 4 6 5 5 7*/
 41
           cout<<findOneNumberInThrees(n)<<endl;</pre>
 42
 43
         return 0;
 44
 45
\triangle
11
5 3 2 4 2 7 4 6 5 3 7
```

作业

- 4.计算机的存储是以字节(Byte, 简写B)为单位的, 1个B表示8位(bit) 二进制数。所以位运算其实应该叫"按位运算"
 - 一定数量的字节数有特殊的称谓。例如: 1KB=2¹⁰B,大约能存一篇 500字纯文本作文。写出你所知道的其他类似称谓,并举一个例子 (参照前面下划线的这句话)

5. (选做) 唯一数问题2 (onefromthree.cpp) 输入n个整数 (n<=100000000), 其中只有一个数只出现一次, 其他数都出现三次。输出只出现一次的那个数

(提示:

- 1.这题挺难的, 你们肯定做不出写
- 2.我把答案发给你们。如果做不出的可以看答案
- 3.看懂答案的,交算法的解释,解释对的也有红包
- 4.如果你想不清楚,先考虑二进制的一位

端午节附加作业(下周停课)

扩展阅读: 其他位运算符

Α	A=0	A=1	A=101	A=111					
A<<1	00000000	00000010	00001010	.00001110	左移(2的幂次)	1< <x=2<sup>x</x=2<sup>			
A>>1	00000000	00000000	0.00000010	00000011	右移(除2的幂次)	A>>x=A/2 ^x			
~A	11111111	11111110	11111010	11110001	取反				

扩展阅读: 压缩存储

	上午班(32)	下午班(16)	男生(8)	女生(4)	长得好(2)	读小学(1)	特征值	上午班的帅哥(42)	下午班的小学生(17)
王宇骥	0	1	1	0	1	1	27	27 & 42= 10	27 & 17= 17
瞿意	1	0	1	0	1	0	42	42 & 42=42	42 & 17=0
吴瑞麟	1	0	1	0	1	1	43	43 & 42=42	43 & 17=1
李宜澍	1	0	0	1	1	0	38	38 & 42=2	38 & 17=0
袁欣怡	0	1	0	1	1	0	22	22 & 42=2	22 & 17=16
章小洲	0	1	1	0	1	1	27	27 & 42=10	27 & 17=17
吴瑞麟和瞿意的共 同特征	42 & 38=34	97 185							
吴瑞麟和章小洲的 共同特征	43 & 27=11	帅哥 读小学			0				

立体式压缩袋 加了一个宽度为40cm 的底部。 棉被收纳能力更加出众 更适合衣橱收纳

- → 当处理多个布尔值的时候,使用位运算是非常方便的。 例如判断一个对象的多种<mark>正负属性</mark>
- → 一次位运算与一次布尔运算的时间是一样的(但位运算 一次就能做多个逻辑判断),因此位运算既省时又省空间
- → 位运算之所以快,因为计算机底层都是用二进制计算 的,所以本质上所有运算都是位运算