Leminour 4

April 2023

Ex1. (Lecture 6-2021. pmg. aici e resolvat) a) Prove that $A = \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$ is diagonalizable over R.

b) Using the eigenvalues and the eigenvectors of A, find two linearly endep. rolutions of X' = AX. Then write the general solution $X = \begin{pmatrix} x \\ y \end{pmatrix}$ norte by conjonents the c) Using the motation $X = \begin{pmatrix} x \\ y \end{pmatrix}$ solution found at $k \geq 1$.

System X = AX and its general solution found at $k \geq 1$. d) Find the general Al. of X' = AX vering the reduction method. e) Find e wring the general preletion of x = AX and that $E(k) = e^{tA}$ notisfies E'(t) = AE(t) for all $t \in iR$ and E(x) = T $E(o) = I_2$. f) Find e^{tA} wing the eigenvolves and eigenvectors of A. in Eeneral Pl. 24, pl 2, 66... din Problems-Dynseylens, plf core sent persolvate in Som 4-notes-2021. Polf Ministrarelo:

én Profii