Supervised Learning

Modelling

UnSupervised Learning

Attribute

Tuple {

Relation

- Unsupervised Learning
 - Given X
 - ... the task of inferring a function to describe hidden structure from unlabeled data.
 - Distribution / Density, Summary statistics, Clustering, Association Rules, Dimensionality Reduction
- Supervised Learning
 - Given X & y (a particular random variable)
 - Find what is the relation between the particular random variable and other random variables
 - What if we are only interested in identifying customers who bought Milk?
 - Find how the value of the dependent variable depends on the value of others
 - Find how the outcome is related to the features.
 - Key Variations: Type of outcome / dependent r.v.
 - Numeric (Discrete, Continuous, [0,1])
 - Categorical: Nominal, Ordinal

The idea of a Model

- Physical
 - a physical copy of an object such as a globe
- Computer
 - a simulation to reproduce behavior of a system
- Scientific
 - a simplified & idealized understanding of physical systems
 - Newton's Law model the physical universe

- Conceptual
 - a representation of a system using general rules & concepts

$$y = 3x + 4$$

Mathematical

$$y = x^2$$

• a representation of a system using mathematical concepts $y = e^x$

$$y = \log(x)$$

Statistical

$$y = \sin(x)$$

• a parameterized set of probability distributions

All models are false. Some models are useful.

The idea of a Statistical / ML Model

Model

- A function relates two (or more) variables
- Captures the relation between x and y
- For every value of x, there must be a unique value of y
- Data looks like $\{(x_1, y_1), (x_2, y_2), ..., (x_i, y_i), ..., (x_n, y_n)\}$

$$y = 3x + 4$$

$$y = x^{2}$$

$$y = e^{x}$$

$$y = \log(x)$$

$$y = \sin(x)$$

 $y = f(x) + \varepsilon$ $\varepsilon \sim N(0, \sigma)$

Statistical Model

- Real world data looks like $\{(x_1, y_1), (x_1, y_2), ..., (x_n, y_n)\}$
- Multiple values of y for a single value of x
- In expectation (on average), "model" captures the relationship between variables
- Effects due to unobserved variables / Errors in measurements : capture by ε
- Randomness / Stochasticity / Noise : Zero-mean; Normal distribution
- Violations of Assumption is an indication of systemic errors

 $\widehat{y} = \widehat{f}(x) + 0$ $P(y \mid x)$

Un/Supervised Learning

Given X

- ... the task of inferring a function to describe hidden structure from unlabeled data.
- Distribution / Density, Summary statistics, Clustering, Association Rules, Dimensionality Reduction

- Given X & y (a <u>particular</u> random variable)
 - Find what is the relation between the particular random variable and other random variables
 - Find how the value of the dependent (particular) variable depends on the value of others
 - Find how the outcome is related to the features
 - Generalize : Make predictions about new data

Un/Supervised Learning Models

Supervised

- Dependent vs. Independent Variables
- Is there a variable of interest? Labelled data?
- Do you know what you are looking for?
- View the data as $\{(x_1, y_1), (x_1, y_2), ..., (x_n, y_n)\}$
- Regression vs. Classification

Unsupervised

- No clearly defined Dependent Variable
- Find patterns in data
- View the data as $\{(x_1), (x_2), ..., (x_n)\}$
- Often, a pre-processing step to Supervised

Parameteric

- Specify the "form" of f (Specify model class)
- Learn exact f (Learn model parameters)
- Restrictive but Interpretive
- Less data required for learning

Non-Parameteric

- Learn model directly (No restrictions on model class)
- Flexible but less Interpretive

Model-Based vs. Model-Free

- Models are not the only game in town
- Model-Based: Linear Regression (What is the model?)
- Model-Free: Nearest Neighbor, Collaborative Filtering

Supervised Learning: Linear Regression

Supervised Learning: Binary classification

Supervised Learning: From Binary to Multi Class

SL: Variant Summary

- Numeric y
 - Given input data x, f(x) is a numeric value
 - Regression: Linear, polynomial, lasso
 - Time Series : y = xt+1
- Numeric y in [0,1]
 - Given input data x, f(x) is a numeric value in between 0,1 (e.g. probability)
 - Regression: Logistic
- Categorical y
 - Given input data x, f(x) is a label / class / category (e.g. churn or not)
 - Classification: knn, logistic, decision tree, svm
- Ordinal y
 - Learn f(x) such that given input data x, f(x) is a rank (e.g. 1st, 2nd, ...)
 - Ranking

Let's play

Thought Experiments

Data	Past credit card transactions of customers	
Business Objective	Identify fraudulent transactions	
Analytics	?	

Data	Past purchases of customers	
Business Objective	What is a customer likely to buy next?	
Analytics	?	

Data	Pricing and Sales data of a product portfolio	
Business Objective	Determine price elasticity	
Analytics	?	

Thought Experiments (cont'd)

Data	?
Business Objective	How much should company spend on TV/radio/paper ads?
Analytics	?

Data	Past purchases of customers	
Business Objective	Segment customers with similar purchase behavior	
Analytics	?	

Data	A set of emails marked junk or not by a human	
Business Objective	Build a rules engine to determine emails as Junk or not?	
Analytics	?	

Statistical Decision Theory

Praphul Chandra

Statistical Decision Theory

- Framework
 - Function Approximation
 - Joint Probability Distribution
 - Loss Function
- Loss Variants
 - L2 (Squared Error Loss)
 - L1 Loss
- Expected Prediction Error
 - Choosing the "best" function
 - Depends on choice of loss function
 - L2: The best prediction of Y at an point X=x is the conditional <u>mean</u>.
 - L1: The best prediction of Y at an point X=x is the conditional median

Function Approximation: Y = f(X)

Joint Distribution: $\mathbb{P}(X, Y)$ Loss Function: L(Y, f(X))

$$L(Y, f(X)) = (Y - f(X))^{2}$$

$$EPE(f) = \mathbb{E}[(Y - f(X))^{2}] = \int [y - f(x)]^{2} \mathbb{P}(dx, dy)$$

$$= \mathbb{E}_{X} \mathbb{E}_{Y|X} [(Y - f(X))^{2}|X]$$

$$f(x) = \arg\min_{c} \mathbb{E}_{Y|X}[(Y - c^{2}|X = x]$$
$$= \mathbb{E}[Y|X = x]$$

K-Nearest Neighbor

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
 - knn: At each point x, approximate y by averaging all y_i with input x_i near x
- Two approximations
 - Expectation is approximated by averaging over sample data.
 - Conditioning at a point x is relaxed to conditioning on some region "close" to x
- Note
 - Regression (Mean); Classification (Majority Vote)
 - Model Free; Lazy (Separating boundary not really created)
 - Locally constant
 - Computational Complexity (Time, Space)
- Behavior
 - Large k : Smoother boundaries (class separating)
 - Large N: Large storage req. (space complexity)
 - Large p : lower accuracy (curse of dimensionality)

Linear Regression

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
 - LR: Find a linear function which minimizes the total loss (sum of least squares) across x
- Two approximations
 - Global function
 - Linearity
- Note
 - Model Based (f() is Globally Linear)
 - Computational Complexity (Time, Space)
- Behavior
 - Large N : Larger training time (computational complexity)
 - Large p: potentially lower accuracy (linearity in higher dimensions)
 - Larger k?? (Feature Expansion Later)

Statistical Decision Theory: Summary Y = f(X)

f

(X)

L(Y, f(X))

Constant

- Linear
- Non-Linear
 - Polynomial
- Piecewise
 - Splines & Kinks
- Additive

Global

Local

Kernel

- Basis Transformation
 - Expansion
 - Reduction
 - Learn (Dictionary)
- Manifold

- Distance Measure
 - L2, L1, etc.
 - Hinge Loss
- Overfitting
 - Regularization
 - Penalize roughness

Knn vs. Linear Regression: Two ends of the spectrum

- Lazy
 - Nothing is done at training time
 - Training data used to predict (Memory intensive)
- Model free
 - No parameters!
 - No boundary (classification) / No coefficients (regression)
 - No optimization!
- Low Bias (Very flexible)
 - But High Variance
- Hyperparameter Optimization
 - Optimal k

- Eager
 - Training data is "processed" before new data arrives
 - Model (not train data) used to predict
- Model Based
 - Parameters : Coefficients
 - Coefficients → linear combination → Hyperplane (model)
 - Optimization solution via normal equations
- High Bias
 - Low Variance
- Hyperparameter Optimization
 - Optimal degree of the coefficients

Supervised Learning

Model Evaluation

What is a good model?

- Regression
 - Low "Error": Define.
 - How well does the model "explain" the data?
 - Quality of fit
 - Residuals
 - Error between actual and predicted
 - Residual Sum of Squares (RSS)
 - Measure of total error
 - Mean Square Error (MSE)
 - Measure of total error normalized by number of observations

- Errors = $\sum_{i=1}^{n} I(y_i \neq \hat{y}_i)$
- Classification Error Rate = $\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y})$ • Binary classes : A/B, 1/2, +/-
 - + predicted as (Type-1 error)
 - - predicted as + (Type-2 error)
 - Confusion Matrix
 - Precision, Recall, Accuracy, Sensitivity

Measure	Formula
Predictive	TP+TN
accuracy	TP + TN + FP + FN
Error rate	FP + FN
(1- predictive accuracy)	TP + TN + FP + FN
Sensitivity, true positive rate, recall	TP
	TP + FN
Specificity, true negative rate	TN
	FP+ TN
Precision, PPV	TP
	TP + FP
NPV	TN
	TN + FN

Reducing error... at what cost? | Regression

Reducing error... at what cost? | Classification

Model Evaluation: Error vs. Complexity

- Intuition
 - Some models are "un-necessarily complex"
 - Some models tend to "over fit" the given data
 - Does a model "overfit"?
 - Visual inspection not always feasible
 - High dimensional data (too many variables, features)
- Approch-1: Constrain the complexity of the model
 - Define statistic on the data (statistical approach)
 - Adjusted R2: Explained Variance normalized with DoF
 - AIC / BIC / Cp : penalizes number of parameters in model
- Approach-2: Measure model performance on "new" data
 - Split available data
 - Learn model using "Training data; Evaluate on "Test data"
 - Train vs. Test Data: Train vs. Test Error
 - Try it out on test data (computational approach)

- BIG Idea: Generalization Error
 - How does model perform on data it did not learn from?
 - Model Complexity / Flexibility vs. Model Performance
 - Lower Training error does not always imply Lower Test Error!
- Equivalence
 - Model Overfits
 - 2. Model reduces training error with an over-complex model
 - 3. Model reduces training error but test error increases

Complexity-aware Model Evaluation

Validation Set

- Key Idea: Assume you have less data available than you actually have
- Split your data into training & test (validation)
- Learn the model on training set. Evaluate (Test) it on validation

LOOCV

- Validation Set = 1 instance
- Learn the model on training set. Evaluate (Test) it on validation
- Repeat (Go to step-1)

K-Fold CV

- Validation Set = 1 sub-set
- Learn the model on training set. Evaluate (Test) it on validation
- Repeat (Go to step-1)
- Gold Standard :
 - More stable than validation set;
 - Less computationally intensive than LOOCV

What is a good model: Summary

- Model Complexity & Overfitting
 - Trying to reduce training error with a more complex model
 - More degrees of freedom (More variables, features)
 - Error can be reduced with more complex models: When is it overfiitting?
 - Lower Training error does not always imply Lower Test Error!

Prediction Error

Model Complexity

- Bias Variance Tradeoff
 - Bias: Error introduced due to simplifying the real world with a "simple" model.
 - Variance: How much does the model vary if we train it on a different training set?
 - Tradeoff: Increasing Complexity

 Lower Bias but may lead to overfitting (higher variance)
- Approaches for model evaluation
 - Validation Set, LOOCV, K-fold
 - Given Data = Training + Test
 - Given Data = Training + Calibration + Test (Later)

Statistical Decision Theory: Summary Y = f(X)

f

(X)

L(Y, f(X))

Constant

- Linear
- Non-Linear
 - Polynomial
- Piecewise
 - Splines & Kinks
- Additive

Global

Local

Kernel

- Basis Transformation
 - Expansion
 - Reduction
 - Learn (Dictionary)
- Manifold

- Distance Measure
 - L2, L1, etc.
 - Hinge Loss
- Overfitting
 - Regularization
 - Penalize roughness

Machine Learning Framework

Praphul Chandra

Machine Learning Framework

- Many models let user choose model complexity
 - knn: Lower k → Higher model complexity
 - DT: Lower $\alpha \rightarrow$ Higher model complexity
 - LR:?
- Hyperparameter Optimization
 - Optimal model complexity
 - Iterate over Hyperparameters + CV (grid search)

- Parameter Optimization
 - Minimize the Loss Function : L(Y, f(X))
 - Given the model (hyperparameter)
 - Not for every model family (knn)

Machine Learning Framework

Machine Learning Framework (cont'd)

