FOUNDATION OF COMPUTING ASSIGNMENT -02

NUTHAN REDDY VADDI REDDY

UTA ID:1002175133

DATASET: This dataset contains information on taxi trips in New York City over a specific period, with features such as pickup time, drop-off time, trip duration, passenger count, and geographical coordinates

TASK 1 Data Pre-processing:

1.1 Provide summary statistics for the dataset:

By using the df.describe() function we get the complete summary statistics of the data like including the count, mean, standard deviation, minimum, 25th percentile (first quartile), median (50th percentile or second quartile), 75th percentile (third quartile), and maximum for each column.

	vendor_id	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	trip_duration
count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
mean	1.537760	1.668260	-73.973466	40.750920	-73.973436	40.751833	944.415930
std	0.498575	1.320623	0.042385	0.031886	0.046791	0.036578	3020.231686
min	1.000000	0.000000	-78.547401	36.029301	-79.817978	36.029301	1.000000
25%	1.000000	1.000000	-73.991783	40.737460	-73.991257	40.736018	398.000000
50%	2.000000	1.000000	-73.981659	40.754230	-73.979721	40.754757	663.000000
75%	2.000000	2.000000	-73.967237	40.768375	-73.963150	40.769993	1074.000000
max	2.000000	6.000000	-73.553223	41.256882	-73.363937	41.256889	86360.000000

1.2 Check the data types of the features:

By using df.dtypes function we get datatype of each feature (or) column of the dataset, we can see that there are 4 object data types,4 float data types and 2 int datatypes in the data.

```
id
                       object
vendor_id
                        int64
pickup_datetime
                       object
dropoff_datetime
                       object
                        int64
passenger_count
pickup_longitude
                      float64
pickup_latitude
                      float64
dropoff_longitude
                      float64
dropoff_latitude
                      float64
store_and_fwd_flag
                       object
trip_duration
                        int64
dtype: object
```

1.3 Handle missing or erroneous data:

By using df.isnull().sum() we get the number of null values in each column. In this dataset there are no null values in all the columns.

1.4 Convert categorical data to numerical values where necessary:

I am converting the categorical data column store_and_fwd_flag into numerical values by replacing the N and Y into 0 and 1 by using df['store and fwd flag'].replace({'N': 0, 'Y': 1}) method.

time	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration
)5-13 50:11	6	-73.992958	40.768280	-73.981155	40.779301	0	297
)4-21 24:58	1	-73.987854	40.747585	-73.996162	40.750702	0	208
)1-07 28:19	6	-73.985512	40.735691	-74.008110	40.739491	0	652
)5-03 12:26	1	-73.997704	40.741165	-73.985764	40.747059	0	879
)6-04 15:23	1	-73.978264	40.752213	-73.991272	40.750263	0	896

1.5 Normalize or standardize numerical features if required:

I am performing normalization on the features pickup_longitude, pickup_latitude, dropoff_longitude, dropoff_latitude and trip_duration.

Normalization is a technique used to scale and transform the values of different features on a similar scale, typically between 0 and 1. Min-Max scaling is a specific form of normalization.

etime	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration
05-13 :50:11	6	0.911950	0.906534	0.904367	0.908641	0	0.003428
·04-21 :24:58	1	0.912972	0.902575	0.902042	0.903170	0	0.002397
·01-07 :28:19	6	0.913441	0.900300	0.900191	0.901025	0	0.007538
·05-03 :42:26	1	0.911000	0.901347	0.903653	0.902473	0	0.010167
·06-04 :15:23	1	0.914893	0.903460	0.902800	0.903086	0	0.010364

1.6 Look for errors or outliers in the data:

The outliers in the data seen by plotting the data in the box plot for each key feature.

TASK-2 Discovering Relationships:

2.1 correlation analysis:

	vendor_id	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	store_a
vendor_id	1.000000	0.286771	0.015250	-0.000773	0.007514	0.004936	
passenger_count	0.286771	1.000000	0.001933	-0.010586	-0.002347	-0.006653	
pickup_longitude	0.015250	0.001933	1.000000	0.002637	0.388205	0.134963	
pickup_latitude	-0.000773	-0.010586	0.002637	1.000000	0.140145	0.527573	
dropoff_longitude	0.007514	-0.002347	0.388205	0.140145	1.000000	0.273444	
dropoff_latitude	0.004936	-0.006653	0.134963	0.527573	0.273444	1.000000	
store_and_fwd_flag	-0.079918	-0.021463	0.018368	-0.004397	0.021848	-0.015754	
trip_duration	0.034668	0.009061	0.070830	-0.043717	0.039345	-0.035358	

Correlation heatmap:

The trip_duration had a stronger positive correlation with pickup_longitude than other features with 0.071 positive correlation, The trip_duration increases when the pickup_longitude will increase.

The trip_duration has positive correlation with passenger_count,vendor_id,drop_longitude and store_and_fwd_flag, The trip_duration increases when the positive correlated features will increase.

The trip_duration had a stronger negative correlation with pickup_latitude than dropoff_latitude with -0.044 negative correlation, The trip_duration decreases when the pickup_longitude will increase.

The pickup_latitude has a high positive correlation with dropoff_latitude with positive correlation among all features, the pickup_latitude will increase when dropoff_latitude is increased.

The trip_duration had a stronger negative correlation with dropoff_longitude than any other feature with -0.044 negative correlation.

2.2 :Regression analysis:

R-squared of 0.008, the model is able to explain for small of the variance in trip duration.

The Omnibus test is 245653.578 it is used to evaluate the overall statistical significance of a regression model.

The F-statistic is 167.9, and the associated p-value is very close to zero . This suggests that at least one of the predictors is significantly related to trip duration .

The increase of pickup_latitude and dropoff_latitude will lead to decrease of the trip duration.

The increase of pickup_longitude and dropoff_longitude will lead to increase of the trip duration

OLS Regression Results

Dep. Variable:	trip_d	uration	R-s	quared:	0.	800
Model:	Model: OLS Adj. R-squared:			0.	800	
Method:	Method: Least Squares F-statistics		tatistic:	16	67.9	
Date:	Fri, 17 Nov 2023 Prob (F-statisti			tatistic):	1.99e-	178
Time:	19	9:12:56	Log-Like	elihood:	1.9384e	+05
No. Observations:	1	00000		AIC:	-3.877e	+05
Df Residuals:		99994		BIC:	-3.876e	+05
Df Model:		5				
Covariance Type:	nor	robust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.0447	0.022	-2.049	0.040	-0.087	-0.002
passenger_count	0.0002	8.34e-05	2.685	0.007	6.05e-05	0.000
pickup_longitude	0.2675	0.014	18.915	0.000	0.240	0.295
pickup_latitude	-0.1624	0.021	-7.611	0.000	-0.204	-0.121
dropoff_longitude	0.1361	0.017	8.006	0.000	0.103	0.169
dropoff_latitude	-0.1841	0.019	-9.628	0.000	-0.222	-0.147
Omnibus: 2	45653.578	Durb	in-Watsor	n:	2.00	01
Prob(Omnibus):	0.000	Jarque	-Bera (JB): 2308	109440.86	57
Skew:	26.668	0.0				
Kurtosis:	745.362	70:	2.			

2.3 limitations of the analysis:

Regression analysis assumes that the relationship between the output and feature variables is linear.

Multicollinearity occurs when independent variables are highly correlated with each other

Linear regression assumes that the residuals are normally distributed.

Linear regression is sensitive to outliers.

Linear regression models are not suitable for extrapolation beyond the range of observed data.

Outliers can have a significant impact on the results of a regression analysis. It is important to identify and remove outliers before fitting a regression model.

Homoscedasticity assumes constant variance of residuals across all levels of the independent variables

The analysis assumes that the taxi trips are confirmed to New York City. If trips extend beyond the boundaries of the dataset, the model may not perform well in those areas.

The model considers only geographical coordinates as predictors, neglecting other potential factors such as traffic conditions, time of day, road condition and speed limit.

The residuals that should follow distributions that do not follow a normal distribution are violated based on the Jarque-Bera test result.

2.4 creating new features:

Creating new features distance, speed, day_of_week, hour_of_day and time_of_day for understanding the data in a better way.

The distance and speed represents the distance traveled in the trip and speed of the trip.

The distance is calculated by pickup features and dropoff features.

The time_of_day represents the time in which the trip occurred.

ff_longitude	dropoff_latitude	store_and_fwd_flag	trip_duration	distance	speed	day_of_week	hour_of_day	time_of_day
0.904367	0.908641	0	0.003428	0.875614	9.196681e+05	4	8	Morning
0.902042	0.903170	0	0.002397	1.218397	1.829905e+06	3	9	Morning
0.900191	0.901025	0	0.007538	1.477050	7.053818e+05	3	22	Evening
0.903653	0.902473	0	0.010167	0.827190	2.929010e+05	1	19	Evening
0.902800	0.903086	0	0.010364	1.346652	4.677809e+05	5	15	Afternoon

TASK-3 DATA VISUALIZATION:

visualizations can help to understand the shape and spread of the data, such as whether the data is normally distributed or skewed.

In the total number of trips with the passenger_count 1 has a maximum number of trips and the trips with passenger_count 4 is less.

In most of the trips the trip_duration lies between 0 to 0.2.

In all the trips the distance lies between 0 to 20.

In all the trips the pickup_latitude lies above 0.8.

Most of the trips are in the afternoon and less trips are at night.

3.2Visualize the relationship between different features and the trip duration:

The passenger_count with 1 will have many high trip_duration and with 4 passenger count will have many trip_duration is.

The maximum and less trip_duration lies between the distance 0 to 20 kms, There some of the trip_duration is less with high distance.

The maximum pickup_latitude lies between the trip_duration 0.0 to 0.2

The trip_duration is high in the afternoon and low in the night.

TASK -4 Algorithm and Data Structure Efficiency:

The dataset should be sorted and viewed in ascending order of trip duration. New data is added to the dataset frequently, where these new trips should show up at the end of the sorted list.

Linked List data structure is the best data structure for insertions of new elements at the end of sorted list without the need to shift existing elements and more efficient in sorting data.

When new trips are added frequently, appending to the end of a linked list has a constant time complexity O(1).

The nodes in a linked list contain references to the elements that come after it, it is easy to maintain in the sorted order.

linkedlist are dynamic in size where there is no limit on the number elements are inserted in the list.

Linked lists can be easily sorted by adjusting the links between nodes without the need for data movement.

where the size of the dataset is not known before the time, linked lists may be more memory-efficient than arrays.

Each new node in a linked list is placed separately, and the entire data does not need to be shifted.

A new field is added to the data representing the passenger's phone number. It will be used to quickly filter out the trips made by a specific passenger.

When new data (a phone number) is added and a goal is to fast filter trips by specific passenger, hash tables perform well.

Hash tables are good for obtaining data based on a given key because they offer constant-time average-case complexity for search operations without looking at the entire data.

Hash table provides uniqueness in keys as there are no same phone numbers in the data and provides the data of the specific passenger faster than other data structures.

The Hash Table allows for direct access to the data associated with a specific phone number without scanning the data.

When data is updated frequently or new trips are added for various passengers, hash tables work well.

TASK -5 Final Analysis:

The distance between pickup and dropoff will have more impact on the trip duration.

The passenger count has a significant impact on trip duration. Decreasing passenger count can reduce the trip duration.

The time_of_day will have an impact on the trip_duration, The night of the day will have less trip_duration than afternoon due less traffic.

Recommendations:

Choosing the route with short distance between pickup and dropoff locations will decrease the trip_duration.

Choosing the way with less traffic can influence the decrease in trip_duration.

By giving pricing incentives for passengers who choose to travel during off-peak hours.

Encourage shared rides for passengers with similar routes to reduce the number of vehicles on the road and optimize travel time.