AE 41 Ecoulements Compressibles

Emmanuel Benard ISAE/SupAéro

Elements extraits des cours de: ENSICA/SupAéro/ENSMA

Cours C5

- 1. Rappel sur les équations du mouvement simplifiées
- 2. Choc droit
- 3. Apport de chaleur
- 4. Prise en compte du frottement
- 5. Synthèse des variations

- Où est l'onde de choc droite?
- Identification des chocs et des détentes
- Intensités
- Décollement couche limite
- Sillage
- Lignes de courant
- Comparaison des deux photos
- Onde de choc en N

Écoulements Monodimensionnels - Applications

Rappel sur les équations du mouvement simplifiées

$$\rho_1 V_1 = \rho_2 V_2$$

$$P_1 + \rho_1 V_1^2 = P_2 + \rho_2 V_2^2$$

$$C_p T_1 + \frac{V_1^2}{2} = C_p T_2 + \frac{V_2^2}{2}$$

Loitsyanskii

lpm=68 *nm* (1013 *hPa*)

$$M0=2$$
 $E/lpm = 4$ $E = 272$ nm

M0=5
$$E/lpm = 2$$
 $E = 136 \text{ nm}$

Épaisseur de choc = 10^{-7} m Décélération = 10^9 m/s²

Choc = Surface de discontinuité

Viscosité + Conductivité thermique = Entropie

Mise en défaut du traitement macroscopique

M = 3.6 - Air

M = 2.77 - CO2

Bilan de quantité de mouvement + équation de continuité

$$\frac{P_1}{\rho_1 V_1} - \frac{P_2}{\rho_2 V_2} = V_2 - V_1$$

$$\frac{a_1^2}{\gamma V_1} - \frac{a_2^2}{\gamma V_2} = V_2 - V_1 \quad (*)$$

Équation de Prandtl

 $a_c^2 = V_1 V_2$

Mach caractéristique $M_{c1}M_{c2}=1$

$$M_{c1}M_{c2} = 1$$

Équation de l'énergie

$$\frac{a^2}{\gamma - 1} + \frac{V^2}{2} = \frac{\gamma + 1}{2(\gamma - 1)}a_c^2$$

$$M_c^2 = \frac{(\gamma + 1)M^2}{2 + (\gamma - 1)M^2}$$

$$a_1^2 = \frac{\gamma + 1}{2} a_{c1}^2 - \frac{\gamma - 1}{2} V_1^2$$

$$a_2^2 = \frac{\gamma + 1}{2} a_{c2}^2 - \frac{\gamma - 1}{2} V_2^2$$
(**)
$$M_2^2 = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{\gamma M_1^2 - \frac{\gamma - 1}{2}}$$

$$M_2^2 = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{\gamma M_1^2 - \frac{\gamma - 1}{2}}$$

$$a_{c1} = a_{c2} = a_c$$
(*) + (**)
$$\frac{\gamma + 1}{2\gamma V_1 V_2} a_c^2 + \frac{\gamma - 1}{2\gamma} = 1$$

Choc droit

$$M_1 \longrightarrow \infty$$
 alors $M_2 \longrightarrow \sqrt{\frac{\gamma - 1}{2\gamma}} \xrightarrow{Air} M_2 = 0.378$

$$\frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{V_1^2}{a_c^2} = M_{c1}^2$$

$$\frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{V_1^2}{a_c^2} = M_{c1}^2 \qquad \frac{\rho_2}{\rho_1} = \frac{V_1}{V_2} = \frac{(\gamma + 1)M_1^2}{2 + (\gamma - 1)M_1^2}$$

$$P_2 - P_1 = \rho_1 V_1^2 (1 - \frac{V_2}{V_1})$$

$$\frac{P_2 - P_1}{P_1} = \gamma M_1^2 (1 - \frac{V_2}{V_1})$$

$$\frac{P_2 - P_1}{P_1} = \gamma M_1^2 (1 - \frac{V_2}{V_1})$$

 $M_2^2 = \frac{1 + \frac{\gamma - 1}{2} M_1^2}{\gamma M_1^2 - \frac{\gamma - 1}{2}}$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1)$$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1)$$

$$\frac{T_2}{T_1} = \left(1 + \frac{2\gamma}{\gamma + 1}(M_1^2 - 1)\right) \left(\frac{2 + (\gamma - 1)M_1^2}{(\gamma + 1)M_1^2}\right)$$

Onde de choc = $M_1 > 1$

Existence de solution mathématiques pour M₁ < 1

Choc droit

$$s_2 - s_1 = C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$$

$$s_2 - s_1 = C_p \ln \left[\left(1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1) \right) \left(\frac{2 + (\gamma - 1) M_1^2}{(\gamma + 1) M_1^2} \right) \right] - R \ln \left[1 + \frac{2\gamma}{\gamma + 1} (M_1^2 - 1) \right]$$

$$s_2 - s_1 < 0$$
 $M_1 < 1$

$$C_p T_{i1} = C_p T_{i2}$$

$$T_{i1} = T_{i2}$$

$$s_{i2} - s_{i1} = s_2 - s_1 = C_p \ln \frac{T_{i2}}{T_{i1}} - R \ln \frac{P_{i2}}{P_{i1}}$$

$$\frac{P_{i2}}{P_{i1}} = \exp^{-\frac{s_2 - s_1}{R}}$$

Hypothèses:

- 1D Fluide parfait Gaz parfait Stationnaire

- Sans choc

$$C_p T_{i1} + q = C_p T_{i2}$$

Puissance: 200 kW (kJ/s)

Rendement: 90%

Débit d'air: 0.6 kg/s

$$q = \frac{\mathcal{P} * \eta}{Q}$$

$$q = 300 \, kJ/kg$$

$$\iint_{s} \left(\rho \vec{V} \cdot \vec{ds} \right) \vec{V} = -\iint_{s} P \cdot \vec{ds} - \iint_{s} \tau_{p} \cdot \vec{ds}$$

Écoulements Monodimensionnels - Applications

Tableaux récapitulatifs

1D - Stationnaire - Fluide Parfait - Gaz Parfait		
Adiabatique		Non - Adiabatique
Choc Droit	Frottement	Apport de chaleur
M1 > 1	M1 > 1	M1 > 1
M2 < M1	M2 < M1	M2 < M1
P2 > P1	P2 > P1	P2 > P1
T2 > T1	T2 > T1	T2 > T1
Pi2 < Pi1	Pi2 < Pi1	Pi2 < Pi1
Ti2 = Ti1	Ti2 = Ti1	Ti2 > Ti1
M1 < 1	M1 < 1	M1 < 1
	M2 > M1	M2 > M1
	P2 < P1	P2 < P1
	T2 < T1	T2 > T1 <i>si M1 < 0.845</i> T2 < T1 <i>si M1 > 0.845</i>
	Pi2 < Pi1	Pi2 < Pi1
	Ti2 = Ti1	Ti2 > Ti1