E. Ping-Pong

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input

output: standard output

In this problem at each moment you have a set of intervals. You can move from interval (a,b) from our set to interval (c,d) from our set if and only if $c \le a \le d$ or $c \le b \le d$. Also there is a path from interval I_2 from our set if there is a sequence of successive moves starting from I_1 so that we can reach I_2 .

Your program should handle the queries of the following two types:

- 1. "1 $\times Y$ " (x < y) add the new interval (x, y) to the set of intervals. The length of the new interval is guaranteed to be strictly greater than all the previous intervals.
- 2. "2 a b" $(a \neq b)$ answer the question: is there a path from a-th (one-based) added interval to b-th (one-based) added interval?

Answer all the gueries. Note, that initially you have an empty set of intervals.

Input

The first line of the input contains integer n denoting the number of queries, $(1 \le n \le 10^5)$. Each of the following lines contains a query as described above. All numbers in the input are integers and don't exceed 10^9 by their absolute value.

It's guaranteed that all gueries are correct.

Output

For each query of the second type print "YES" or "NO" on a separate line depending on the answer.

Examples

Litamples			
input			
5			
1 1 5			
1 5 11			
2 1 2			
1 2 9			
2 1 2			
output			
NO YES			
YES			