Linear Model Simulations

Kellie Ottoboni

March 4, 2016

Set simulation parameters

```
set.seed(321)
gamma <- c(0.01, 0.1, 1, 10)
B <- 1000
N <- 100</pre>
```

- 1 Comparing Model-based Matching to Other Methods
- 1.1 Gaussian Errors in the Linear Model

Estimates of Varying Levels of Constant Additive Treatment Effects Random Treatment Assignment

	0.01	0.1	1	10
MM Pairs	0.257	0.263	0.264	0.260
MM Strata	0.203	0.200	0.210	0.204
Pscore Pairs	1.030	1.033	1.139	1.043
Pscore Strata	0.520	0.548	0.519	0.512
Ebal	0.206	0.201	0.212	0.205
Unadjusted	1.683	1.705	1.646	1.579

Estimation Method

Table 1: RMSE for various treatment effects; Random Treatment Assignment

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with Cov(T, X1) = 0.5

MM PairsMM Stralescore Peissore Strata Ebal Unadjusted MM PairsMM Stralescore Peissore Strata Ebal Unadjusted Estimation Method

	0.01	0.1	1	10
MM Pairs	0.287	0.291	0.296	0.296
MM Strata	0.239	0.234	0.234	0.237
Pscore Pairs				
Pscore Strata				
		0.243		
Unadjusted	2.132	2.220	2.238	2.229

Table 2: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = 0.5$

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with Cov(T, X1) = -0.75

0.01 0.11 10 MM Pairs 0.302 0.313 0.292 0.304MM Strata 0.2560.266 0.2450.262Pscore Pairs 2.143 2.1602.134 2.164Pscore Strata 0.9451.0570.9910.967Ebal 0.319 0.300 0.308 0.310 Unadjusted 2.5552.4762.5642.489

Estimation Method

Table 3: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = -0.75$

1.2 Misspecified Propensity Score Estimates

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with Cov(T, X1) = 0.5 Misspecified Propensity Score Model

	0.01	0.1	1	10
MM Pairs	0.293	0.288	0.292	0.288
MM Strata	0.222	0.219	0.220	0.221
Pscore Pairs	1.892	1.953	1.887	1.918
Pscore Strata	0.850	0.839	0.780	0.829
Ebal	0.221	0.217	0.222	0.223
Unadjusted	1.766	1.694	1.769	1.725

Table 4: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = 0.5$; Misspecified Propensity Score Model

1.3 Heteroskedastic Linear Model Errors

Estimates of Varying Levels of Constant Additive Treatment Effects Random Treatment Assignment Heteroskedastic Errors

	0.01	0.1	1	10
MM Pairs	0.335	0.330	0.322	0.339
MM Strata	0.267	0.262	0.251	0.256
Pscore Pairs	1.077	1.088	1.146	1.091
Pscore Strata	0.548	0.548	0.521	0.538
Ebal	0.268	0.263	0.259	0.256
Unadjusted	1.753	1.640	1.641	1.627
•				

Table 5: RMSE for various treatment effects; Random Treatment Assignment; Heteroskedastic Errors

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with Cov(T, X1) = 0.5 Heteroskedastic Errors

	0.01	0.1	1	10
MM Pairs	0.369	0.371	0.359	0.357
MM Strata	0.299	0.297	0.297	0.296
Pscore Pairs	1.789	1.679	1.692	1.735
Pscore Strata	0.782	0.706	0.692	0.735
Ebal	0.312	0.313	0.313	0.309
Unadjusted	2.246	2.099	2.257	2.205

Table 6: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = 0.5$; Heteroskedastic Errors

Heavy-tailed Linear Model Errors

Estimates of Varying Levels of Constant Additive Treatment Effects Random Treatment Assignment Laplacian Errors

MM PairsMM StraRescore Prissore Strata Ebal Unadjusted MM PairsMM StraRescore Prissore Strata Ebal Unadjusted **Estimation Method**

0.01	0.1	1	10
0.372	0.386	0.378	0.380
0.282	0.299	0.293	0.303
1.076	1.043	1.063	1.134
0.569	0.572	0.566	0.573
0.276	0.296	0.291	0.303
1.670	1.700	1.694	1.722
	0.372 0.282 1.076 0.569 0.276	0.372 0.386 0.282 0.299 1.076 1.043 0.569 0.572 0.276 0.296	0.01 0.1 1 0.372 0.386 0.378 0.282 0.299 0.293 1.076 1.043 1.063 0.569 0.572 0.566 0.276 0.296 0.291 1.670 1.700 1.694

Table 7: RMSE for various treatment effects; Random Treatment Assignment; Laplacian Errors

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with Cov(T, X1) = 0.5 Laplacian Errors

	0.01	0.1	1	10
MM Pairs	0.402	0.411	0.397	0.398
MM Strata	0.337	0.333	0.330	0.332
Pscore Pairs	1.688	1.752	1.831	1.721
Pscore Strata	0.729	0.767	0.775	0.682
Ebal	0.362	0.355	0.353	0.351
Unadjusted	2.263	2.211	2.205	2.153

Table 8: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = 0.5$; Laplacian Errors

2 Comparing Variants of Model-based Matching

One consideration is how we fit the model: should we fit it to controls only, fit it to all individuals, or something else?

First, consider estimation. From the three simulations below, it's clear that fitting to all individuals introduces bias in the estimate when treatment assignment is correlated with X. We ought to fit to controls only.

	0.01	0.1	1	10
MM Pairs	0.272	0.270	0.272	0.324
MM Strata	0.210	0.201	0.209	0.273
MM Unstratified	0.205	0.198	0.199	0.328
MM Pairs (ctrls)	0.268	0.270	0.267	0.268
MM Strata (ctrls)	0.214	0.205	0.210	0.204
MM Unstratified (ctrls)	0.211	0.204	0.204	0.203

Table 9: RMSE for various treatment effects; Random Treatment Assignment

	0.01	0.1	1	10
MM Pairs	-0.008	-0.026	-0.017	-0.109
MM Strata	-0.007	-0.018	0.001	-0.120
MM Unstratified	-0.006	-0.021	-0.008	-0.196
MM Pairs (ctrls)	-0.005	-0.016	-0.001	-0.021
MM Strata (ctrls)	-0.009	-0.016	0.011	-0.011
MM Unstratified (ctrls)	-0.007	-0.018	0.011	-0.010

Table 10: Bias for estimators; Random Treatment Assignment

Estimates of Varying Levels of Constant Additive Treatment Effects Treatment Assignment with $cov(T, X_1) = 0.5$

	0.01	0.1	1	10
MM Pairs	0.264	0.259	0.291	1.358
MM Strata	0.198	0.196	0.227	1.307
MM Unstratified	0.189	0.187	0.228	1.557
MM Pairs (ctrls)	0.299	0.283	0.267	0.278
MM Strata (ctrls)	0.245	0.234	0.218	0.220
MM Unstratified (ctrls)	0.241	0.231	0.216	0.218

Table 11: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = 0.5$

	0.01	0.1	1	10
MM Pairs	0.016	-0.015	-0.119	-1.185
MM Strata	0.011	-0.010	-0.123	-1.167
MM Unstratified	0.013	-0.010	-0.138	-1.424
MM Pairs (ctrls)	0.020	-0.005	0.012	0.012
MM Strata (ctrls)	0.013	0.000	0.010	0.000
MM Unstratified (ctrls)	0.017	0.002	0.011	0.001

Table 12: Bias for estimators; Treatment Assignment with $cov(T, X_1) = 0.5$

	0.01	0.1	1	10
MM Pairs	0.264	0.259	0.291	1.358
MM Strata	0.198	0.196	0.227	1.307
MM Unstratified	0.189	0.187	0.228	1.557
MM Pairs (ctrls)	0.299	0.283	0.267	0.278
MM Strata (ctrls)	0.245	0.234	0.218	0.220
MM Unstratified (ctrls)	0.241	0.231	0.216	0.218

Table 13: RMSE for various treatment effects; Treatment Assignment with $cov(T, X_1) = -1$

Next, consider testing. We fix the number of strata at 5 according to quintiles of \hat{Y} . We try several different methods: fitting \hat{Y} to controls only and stratifying on it, fitting a regularized model to controls only and stratifying on the predictions, fitting \hat{Y} to treated only and stratifying on it, fitting \hat{Y} to all units

-	0.01	0.1	1	10
MM Pairs	-0.014	-0.042	-0.304	-3.186
MM Strata	-0.009	-0.036	-0.315	-3.201
MM Unstratified	-0.008	-0.035	-0.325	-3.284
MM Pairs (ctrls)	-0.009	-0.014	0.016	-0.012
MM Strata (ctrls)	-0.009	-0.009	0.012	-0.009
MM Unstratified (ctrls)	-0.008	-0.008	0.016	-0.011

Table 14: Bias for estimators; Treatment Assignment with $cov(T, X_1) = -1$

and stratifying on it, fitting to treated and controls and using the average of the two predictions as our \hat{Y} and our stratifying score, using this combined residual but stratifying based on the control prediction only, and stratifying on observed Y and refitting the model to controls at each permutation.

It appears that only two methods have the correct level: fitting a regularized model to controls and fitting to all observations. We've uncovered an interesting problem: if we our model to get \hat{Y} systematically overfits to one group, we get anti-conservative tests. The actual level of our permutation tests is much higher than the nominal level.

Thus, we must be clear about whether our goal is testing or estimation.

3 Hypothesis Testing

We compare the power of stratified permutation tests using model-based matching with different numbers of strata to the t-test from OLS and the Wilcoxon rank sum test.

Power Curves for Varying Magnitude of Treatment Effects Random Treatment Assignment Laplacian Errors

