

unecon.ru 02-17

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

Решение оптимизационных задач на мезонине склада

БАКАЛАВРИАТ

Направление подготовки: 01.03.02

Группа: ПМ - 1801

Студент: Анфиса Лепёхина

Мезонин склада

Бизнес процесс и потенциальные этапы оптимизации

1. Поступление заказов от магазинов

2. Формирование волн

Поиск оптимального распределения рабочих

3. Формирование коробок

Переформирование коробок

4. Формирование пик-рейсов

Переформирование пик-рейсов

5. Распределение рабочих по этажам

Поиск оптимального распределения рабочих

6. Выдача и сбор пик-рейсов

Имитация процесса выдачи пик-рейсов

Цель – минимизировать время сбора заказов

Исходные данные

Время отгрузки	Волна	№ поставки	Код товара	Кол-во	Объем	Коробка	Тележка	Номер пик-рейса	Ячейка
2019-06-08 08:39:33	х	12345	3087011	4	3595,52	1	41	1187705	201-030-3
2019-06-08 08:39:33	х	67891	3045050	10	6006	1	41	1187705	204-007-3
2019-06-08 08:38:08	х	11121	3082583	4	1850	1	41	1187705	204-027-1
2019-06-08 08:12:12	у	31415	3040167	4	2843,5	7	40	1187709	218-028-1
2019-06-08 08:39:13	у	17189	3048617	3	2788,5	7	40	1187709	218-027-1
2019-06-08 08:12:12	у	20212	3048617	3	2788,5	5	40	1187709	218-027-1
2019-06-08 08:39:33	Z	23245	3113939	20	27300	10	40	7898765	217-027-3
2019-06-08 08:39:13	Z	26278	3113953	1	320,04	10	40	7898765	218-020-3
2019-06-08 08:12:12	Z	26278	3113953	1	320,04	8	40	7898765	218-020-3
2019-06-08 08:39:13	Z	26278	3072278	6	3113,28	8	40	7898765	217-018-1
2019-06-08 08:12:12	Z	29301	3072278	6	3113,28	12	40	7898765	217-018-1
2019-06-08 08:39:13	Z	29301	3072278	6	4176,504	12	40	7898765	218-005-3
2019-06-08 08:39:33	Z	29301	3072278	6	1029	15	41	7898765	207-038-2
2019-06-08 08:38:08	Z	29301	3072278	27	5400	15	41	1234567	208-031-3
2019-06-08 08:39:31	Z	32334	3011157	6	6912	75	40	1234567	218-028-2
2019-06-08 08:14:19	Z	32334	3086146	3	270	75	40	1234567	218-026-2
2019-06-08 08:12:12	Z	32334	3087686	1	4608	75	40	1234567	217-020-1
2019-06-08 08:14:22	z	32334	7000574	2	2695	75	93	1234567	401-013-2

- о 405-015-1 этаж | стеллаж ячейка ярус
- о $V_{\text{ходьбы}}$ средняя скорость ходьбы сборщика
- о $V_{e\Delta}$ средняя скорость взятия одной единицы товара

Расчёт времени рабочей смены

Входные данные:

 \circ Пик-рейсы выполненные сборщиками, $V_{\text{ходьбы}}, V_{\text{ед.}}$

Полученное время: 9 ч 17 м

I Имитация процесса выдачи пик-рейсов

- ід сборщиков, работающих в каждую волну на каждом этаже
- время выполнения пик-рейсов в каждую волну на каждом этаже

Применение жадного алгоритма выдачи пик-рейсов

 Моделирование процесса выдачи и сбора пик-рейсов реализовано с предположением о равной производительности сборщиков

Время расчёта: 9 ч 17 м

Полученное время: 6 ч 18 м

II Нахождение оптимального распределения рабочих по этажам

Входные данные:

- время выполнения пик-рейсов в каждую волну на каждом этаже, полученное в результате применения жадного алгоритма
- ід сборщиков, работающих в каждую волну на каждом этаже
- распределение бригадира сборщиков по этажам в каждую волну

Нахождение оптимального распределения рабочих

unecon.ru 10-17

Распределение по этажам пропорционально времени выполнения пик-рейсов

Полученное время: 5 ч 49 м

Распределение по этажам поровну, переводы рабочих между этажами

Полученное время: 5 ч 41 м

Полный перебор вариантов распределения сборщиков по этажам

Полученное время: 5 ч 41 м

	1 этаж	2 этаж	3 этаж	4 этаж
Распределение бригадира	13	15	13	6
Автоматическое распределение	10	22	10	5

III Переформирование пик-рейсов

Входные данные:

- распределение сборщиков по этажам, полученное полным перебором
- телеги в составе каждого пик-рейса
- проходы, которые нужно посетить для сбора каждой телеги
- время сбора каждой коробки

Переформирование пик-рейсов

unecon.ru 12-17

- о Пик-рейсы состоят из телег, телега = 6 коробок
- Каждая телега характеризуется множеством проходов, которые необходимо посетить для сбора товаров в коробки

Использованные алгоритмы:

- Seed Algorithms: Smallest | Largest Number of Picking Aisles, Random, Mixed
- Изменение количества коробок в телеге до 5 4

Полученное время: 5 ч 38 м

IV Переформирование коробок

Входные данные:

- коробки и их объемы
- проходы, которые нужно посетить для сбора каждой коробки
- коды товаров, расположенных в каждой из коробок
- объем каждого товара
- заказы, поступившие от магазинов

Переформирование коробок

Только товары из заказа одного магазина могут быть объединены в коробку

Коробки:

$$V_1 = 13200 \text{ cm}^3$$

Средняя (40*30*22)

$$V_2 = 26400 \text{ cm}^3$$

Большая (40*30*35) $V_3 = 42000 \text{ см}^3$

Каждый товар имеет характеристики:

Использованные алгоритмы:

- Seed Algorithm: Smallest Number of Picking Aisles
- Ограничение на объединение товаров в коробке могут быть товары, количество проходов между которыми не превышает 1 - 3

V Перераспределение рабочих по волнам

Входные данные:

- количество сборщиков, работающих в определенную волну
- время выполнения каждой волны

Полученное время: 5 ч 10 м

Заключение

unecon.ru 16-17

- Улучшение времени по сравнению с исходными данными: 4 ч 7 м
- Улучшение времени с учетом равной производительности: 1 ч 8 м

Санкт-Петербургский государственный экономический университет

Факультет информатики и прикладной математики
Кафедра прикладной математики и экономико-математических методов

Спасибо за внимание!