Low-Carbon Forecasting of National Electricity Demand: A Benchmark Across 41 Models, 4 Countries, and 2 Seasons

First Last Affiliation email@example.com First Last
Affiliation
email@example.com

First Last
Affiliation
email@example.com

Abstract—We benchmark 41 forecasting models across Denmark, Germany, Hungary, and Spain in summer and winter, tracking carbon emissions with CodeCarbon. We find weak coupling between accuracy and emissions, with many low-emission models achieving state-of-the-art MAE. We provide practical, low-carbon defaults and discuss trade-offs.

Index Terms—Time series forecasting, energy demand, carbon accounting, CodeCarbon, benchmarking, sustainability

I. INTRODUCTION

Electricity demand forecasting supports grid stability and planning. Training modern models can be carbon-intensive. We quantify both accuracy and emissions across diverse model families and seasons.

- Contribution 1: Joint evaluation of accuracy and emissions across 41 models.
- Contribution 2: Public aggregation pipeline and artifacts for reproducibility.
- Contribution 3: Low-carbon defaults with minimal accuracy sacrifice.

II. RELATED WORK

[1], [2]

III. DATA

We use 5-year hourly demand data for four European countries with summer and winter subsets. See repository Data/ for CSVs.

IV. MODELS

We include classical and neural architectures (DLinear, CNN-LSTM, Cycle-LSTM, Transformers including Informer and PatchTST, N-BEATS, Autoformer, TFT, Mamba, and hybrids). Hyperparameters follow repository defaults.

V. EXPERIMENTAL SETUP

We run each model across country-season combinations using a Python orchestrator. CodeCarbon tracks per-run emissions (kg CO₂e), energy (kWh), and duration (s).

A. Metrics

We report MAE, RMSE, MSE, R^2 , and MAPE. Aggregations are saved to metrics_aggregated.csv and emissions_aggregated.csv.

TABLE I
MAE SUMMARY BY COUNTRY AND SEASON (BEST/WORST/SIZE).

Slice	Best (model)	Best MAE	Worst (model
Denmark Summer	Robust_Improved_Hybrid_Model_v2	5.053	N_Beats_Mod
Denmark Winter	Transformer_Model	9.515	Transformer_
Germany Summer	Cycle_LSTM_Model_v2	9.433	Transformer_
Germany Winter	Cycle_LSTM_Model	11.640	Autoformer_I
Hungary Summer	DLinear_Model	3.979	Mamba_Mod
Hungary Winter	Robust_Improved_Hybrid_Model	4.514	Mamba_Mod
Spain Summer	DLinear_Model_v2	4.162	Transformer_
Spain Winter	DLinear_Model	6.422	Mamba_Mod

B. Reproducibility

VI. RESULTS

A. Accuracy

B. Emissions

Most runs emit $\leq 0.100\,\mathrm{kg}$ CO₂e; a few outliers (e.g., Transformer v3 variants) reach $0.600\,\mathrm{kg}$ to $1.000\,\mathrm{kg}$. See Figure 1.

C. Accuracy–Emissions Trade-off

Pearson $\rho(\text{MAE}, \text{ emissions}) \approx 0.112$. Many low-emission runs lie on or near the Pareto frontier. See Figure 2.

VII. DISCUSSION

Low-emission families (DLinear, CNN-LSTM, Robust Hybrid, Cycle-LSTM) often match or beat higher-emission models. A soft emission cap of $0.100\,\mathrm{kg}$ per training filters dominated configurations without hurting accuracy.

VIII. RECOMMENDATIONS

Default picks by slice: Denmark (Robust Hybrid v2), Germany (Cycle-LSTM v2), Hungary (DLinear/Robust Hybrid), Spain (DLinear v2). Avoid high-emission Transformer v3 for routine runs.

IX. LIMITATIONS AND FUTURE WORK

We observed a Germany-winter count anomaly (N=42). Future work: Pareto front tables per slice, uncertainty intervals, family-level emission summaries.

Fig. 1. Emissions distribution across models.

Fig. 2. MAE vs Emissions trade-off.

X. CONCLUSION

Accuracy and carbon efficiency need not be in tension. Our benchmark and pipeline surface low-carbon choices with competitive MAE.

ACKNOWLEDGMENTS

APPENDIX A

REPRODUCIBILITY COMMANDS (WINDOWS POWERSHELL)

Run orchestrations and regenerate benchmark artifacts.

- # Full run (both seasons, 4 countries, repe
 python .\main.py --season both --countries
- # Quick smoke test for DLinear family (sum
 python .\main.py --season summer --filter
- # Aggregate and plot
 python -m scripts.benchmark
- # Regenerate LaTeX tables for the paper
 python .\Paper\generate_tables.py

REFERENCES

- A. Lacoste, A. S. Luccioni, V. Schmidt, and T. Dandres, "Quantifying the carbon emissions of machine learning," arXiv preprint arXiv:1910.09700, 2019
- [2] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau, "Towards the systematic reporting of the energy and carbon footprints of machine learning," in *International Conference on Machine Learning* (ICML) Workshop on Challenges in Deploying and Monitoring Machine Learning Systems, 2020.

TABLE II Low-carbon leaders (best MAE with emissions ≤ 0.10 kg CO2E) by slice.

Slice	Model	MAE	Emissions (kg)
Denmark Summer	Robust_Improved_Hybrid_Model_v2	5.053	0.050
Denmark Winter	Transformer_Model	9.515	0.091
Germany Summer	Cycle_LSTM_Model_v2	9.433	0.030
Germany Winter	Cycle_LSTM_Model	11.640	0.025
Hungary Summer	DLinear_Model	3.979	0.002
Hungary Winter	DLinear_Model_v2	4.528	0.002
Spain Summer	DLinear_Model_v2	4.162	0.002
Spain Winter	DLinear_Model	6.422	0.003

 $TABLE \; III \\ PARETO \; LEADERS \; BY \; SLICE \; (MINIMIZING \; MAE \; AND \; EMISSIONS). \\$

_				
	Slice	Model	MAE	Emissions (kg)
	Denmark Summer	Robust_Improved_Hybrid_Model_v2	5.053	0.050
	Denmark Summer	N_Beats_Model	5.072	0.007
	Denmark Summer	N_Beats_Model_v2	5.134	0.004
	Denmark Winter	Transformer_Model	9.515	0.091
	Denmark Winter	Cycle_LSTM_Model	9.518	0.023
	Denmark Winter .	DLinear_Model_v2	9.519	0.001
ре	Germany Summer	Eycle_LSTM_Model_v2	9.433	0.030
S	Germank stromet U	Patch PST € Mt5de Lv2	9.533	0.007
	Germany Summer	N_Beats_Model_v2	9.545	0.003
	Germany Winter Germany Winter	Cycle_LSTM_Model	11.649	0.028
Ш	Germany Winter	DLinear_Model	11.710	0.002
Ι	German Winterqu	ipakchTSTCMWaetwies DE,DK,	E\$1,:740	0.007
	Hungary Summer	DLinear_Model	3.979	0.002
	Hungary Summer	DLinear_Model_v2	4.134	0.002
	Hungary Summer	CNN_LSTM_Model_v2	6.398	0.000
	Hungary Winter	Robust_Improved_Hybrid_Model	4.514	0.190
	Hungary Winter	DLinear_Model_v2	4.528	0.002
	Hungary Winter	DLinear_Model_v3	7.535	0.001
	Spain Summer	DLinear_Model_v2	4.162	0.002
	Spain Summer	Robust_Improved_Hybrid_Model	4.232	0.001
	Spain Summer	Robust_Improved_Hybrid_Model_v2	4.286	0.000
	Spain Winter	DLinear_Model	6.422	0.003
	Spain Winter	DLinear_Model_v2	6.447	0.001
	Spain Winter	Transformer_Model_v2	6.869	0.000

Fig. 3. Per-country emissions distributions across models.

Fig. 4. Heatmaps of mean MAE by model and country.

Fig. 5. Heatmaps of mean emissions (kg CO₂e) by model and country.

 $\label{top-10} TABLE~IV \\ Top-10~MAE~models~per~slice~(averaged~over~runs).$

Slice	Rank	Model	MAE
Denmark Summer	1	Robust_Improved_Hybrid_Model_v2	5.053
Denmark Summer	2	N_Beats_Model	5.072
Denmark Summer	3	Robust_Improved_Hybrid_Model	5.104
Denmark Summer	4	N_Beats_Model_v2	5.134
Denmark Summer	5	DLinear_Model_v2	5.15
Denmark Summer	6	Cycle_LSTM_Model	5.189
Denmark Summer	7	PatchTST_Model_v2	5.312
Denmark Summer Denmark Summer	8 9	Temporal_Fusion_Transformer_Model_v2 Transformer_Model_v2	5.319
Denmark Summer Denmark Summer	10	CarbonCast_Model_v2	5.343
Denmark Winter	10	Transformer_Model	9.51:
Denmark Winter	2	Cycle_LSTM_Model	9.51
Denmark Winter	3	DLinear_Model_v2	9.519
Denmark Winter	4	EnsembleCI_Model	9.528
Denmark Winter	5	Robust_Improved_Hybrid_Model_v2	9.553
Denmark Winter	6	Cycle_LSTM_Model_v2	9.563
Denmark Winter	7	PatchTST_Model_v2	9.60
Denmark Winter	8	DLinear_Model	9.640
Denmark Winter	9	N_Beats_Model	9.654
Denmark Winter	10	Hybrid_CNN_CycleLSTM_Attention_Model	9.714
Germany Summer	1	Cycle_LSTM_Model_v2	9.433
Germany Summer	2	PatchTST_Model_v2	9.533
Germany Summer	3 4	EnsembleCI_Model	9.543
Germany Summer Germany Summer	4 5	N_Beats_Model_v2 Cycle_LSTM_Model	9.545 9.590
Germany Summer	6	N_Beats_Model	9.590
Germany Summer	7	DLinear_Model	9.653
Germany Summer	8	Informer_Model_v2	9.67
Germany Summer	9	DLinear_Model_v2	9.710
Germany Summer	10	Transformer_Model	9.743
Germany Winter	1	Cycle_LSTM_Model	11.649
Germany Winter	2	PatchTST_Model_v2	11.710
Germany Winter	3	DLinear_Model	11.710
Germany Winter	4	Cycle_LSTM_Model_v2	11.749
Germany Winter	5	N_Beats_Model_v2	11.763
Germany Winter	6	Transformer_Model	11.77
Germany Winter	7	Robust_Improved_Hybrid_Model	11.869
Germany Winter	8 9	Robust_Improved_Hybrid_Model_v2	11.920
Germany Winter Germany Winter	10	N_Beats_Model DLinear_Model_v2	11.948 11.960
Hungary Summer	10	DLinear_Model_v2 DLinear_Model	3.979
Hungary Summer	2	DLinear_Model_v2	4.13
Hungary Summer	3	Robust_Improved_Hybrid_Model	4.70
Hungary Summer	4	Cycle_LSTM_Model	4.91
Hungary Summer	5	Transformer_Model	4.918
Hungary Summer	6	PatchTST_Model_v2	4.99
Hungary Summer	7	N_Beats_Model_v2	4.993
Hungary Summer	8	Robust_Improved_Hybrid_Model_v2	5.078
Hungary Summer	9	N_Beats_Model	5.272
Hungary Summer	10	EnsembleCI_Model_v2	5.463
Hungary Winter	1	Robust_Improved_Hybrid_Model	4.514
Hungary Winter	2	DLinear_Model_v2	4.528
Hungary Winter	3	N_Beats_Model_v2	4.533
Hungary Winter Hungary Winter	4 5	Cycle_LSTM_Model N_Reats_Model	4.55
Hungary Winter Hungary Winter	6	N_Beats_Model DLinear_Model	4.553 4.560
Hungary Winter	7	Transformer_Model	4.56
Hungary Winter	8	CarbonCast_Model	4.680
Hungary Winter	9	Robust_Improved_Hybrid_Model_v2	4.718
Hungary Winter	10	EnsembleCI_Model	4.742
Spain Summer	1	DLinear_Model_v2	4.162
Spain Summer	2	Robust_Improved_Hybrid_Model	4.232
Spain Summer	3	Robust_Improved_Hybrid_Model_v2	4.280
Spain Summer	4	DLinear_Model	4.369
Spain Summer	5	Transformer_Model	4.382
Spain Summer	6	Informer_Model_v2	4.425
Spain Summer	7	N_Beats_Model_v2	4.430
Spain Summer	8	PatchTST_Model_v2	4.46
Spain Summer	9	Cycle_LSTM_Model	4.493

Fig. 6. Global Top-10 MAE leaderboard across slices.

Fig. 7. Per-slice Top-10 MAE leaderboards.