汽车航迹推算研究进展

钱隆

武汉大学测绘遥感信息工程国家重点实验室

2022年12月15日

- 1 研究内容
- 2 研究计划

- 研究内容 文献 试验
- 2 研究计划

◆ロ > ◆団 > ◆ 豆 > ◆ 豆 > り < ○</p>

- 研究内容 文献 试验
- 2 研究计划

汽车航迹推算研究进展

国内外研究现状

根据深度神经网络在航迹推算中

- 基于滤波的方法,深度神经网络
- 端到端

国内外研究现状

作者	文章题目	期刊/会议	发表日期
Changhao Chen, et al Ze Chen, et al Changhao Chen, et al	Learning Selective Sensor Fusion[1] Contrastive Learning[2] DynaNet[1] Deep Neural Network[3] Deep Learning[4] Motion Transformer[5] IONet[6]	IEEE Trans Neural Netw Learn Syst IEEE Sens. J. IEEE Trans Neural Netw Learn Syst IEEE Trans Mob Comput IEEE Internet Things J. AAAI AAAI	2022 2022 2021 2021 2020 2019 2018

- 研究内容 文献 试验
- 2 研究计划

- Awesome GINS Dataset[7].
- RoNIN Dataset[8].
- KITTI Dataset[9].

深度神经网络模型

• 数据集和模型间的交叉验证

- 1 研究内容
- 2 研究计划

10 / 16

• 数据集和模型间的交叉验证

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (^)

- [1] Changhao Chen et al. "DynaNet: Neural Kalman Dynamical Model for Motion Estimation and Prediction". In: IEEE Transactions on Neural Networks and Learning Systems 32 (12 Dec. 2021), pp. 5479–5491. ISSN: 2162-237X. DOI: 10.1109/TNNLS.2021.3112460. URL: https://ieeexplore.ieee.org/document/9547669/.
- [2] Ze Chen et al. "Contrastive Learning of Zero-Velocity Detection for Pedestrian Inertial Navigation". In: IEEE Sensors Journal 22 (6 Mar. 2022), pp. 4962–4969. ISSN: 1530-437X. DOI: 10.1109/JSEN.2021.3072160. URL: https://ieeexplore.ieee.org/document/9399505/.

参考文献 ||

- [3] Changhao Chen et al. "Deep Neural Network Based Inertial Odometry Using Low-Cost Inertial Measurement Units". In: IEEE Transactions on Mobile Computing 20 (4 Apr. 2021), pp. 1351–1364. ISSN: 1536-1233. DOI: 10.1109/TMC.2019.2960780. URL: https://ieeexplore.ieee.org/document/8937008/.
- [4] Changhao Chen et al. "Deep-Learning-Based Pedestrian Inertial Navigation: Methods, Data Set, and On-Device Inference". In: IEEE Internet of Things Journal 7 (5 May 2020), pp. 4431—4441. ISSN: 2327-4662. DOI: 10.1109/JIOT.2020.2966773. URL: https://ieeexplore.ieee.org/document/8960327/.

参考文献 Ⅲ

- [5] Changhao Chen et al. "Transferring Physical Motion Between Domains for Neural Inertial Tracking". In: (Oct. 2018). URL: http://arxiv.org/abs/1810.02076.
- [6] Changhao Chen et al. "IONet: Learning to Cure the Curse of Drift in Inertial Odometry". In: Proceedings of the AAAI Conference on Artificial Intelligence 32 (1 Apr. 2018), pp. 6468-6476. ISSN: 2374-3468. DOI: 10.1609/aaai.v32i1.12102. URL: https://ojs.aaai.org/index.php/AAAI/article/view/12102.
- [7] Hailiang Tang et al. "Impact of the Earth Rotation Compensation on MEMS-IMU Preintegration of Factor Graph Optimization". In: IEEE Sensors Journal 22 (17 Sept. 2022), pp. 17194–17204. ISSN: 15581748. DOI: 10.1109/JSEN.2022.3192552.

参考文献 IV

- [8] Sachini Herath, Hang Yan, and Yasutaka Furukawa. "RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods". In: 2020, pp. 3146–3152. ISBN: 9781728173955. DOI: 10.1109/ICRA40945.2020.9196860.
- [9] Andreas Geiger et al. "Vision meets robotics: The KITTI dataset". In: The International Journal of Robotics Research 32 (11 Sept. 2013), pp. 1231-1237. ISSN: 0278-3649. DOI: 10.1177/0278364913491297. URL: http://journals.sagepub.com/doi/10.1177/0278364913491297.

谢谢