

Probability Theory:
Foundation for Data Science
with Anne Dougherty

Central Limit Theorem

At the end of this module, students should be able to

- ▶ Understand the definition of a random sample.
- Understand the Law of Large Numbers.
- Understand and use the Central Limit Theorem (CLT).
- Explain the implications of the CLT to the calculation and estimation of the mean.

For a random variable X, we need either the probability mass function p(k) = P(X = k) or density function f(x) to compute a probability or to find

$$\blacktriangleright \mu_X = E(X) = \sum_k kP(X=k) \text{ or } \mu_X = \int_{-\infty}^{\infty} xf(x) \ dx$$

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2] = \sum_k (k - \mu_X)^2 P(X = k)$$
or $\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f(x) dx$

Question: What if we don't know how a random variable is distributed? What if we don't know the mean or the variance?

Statistical Inference: In future courses, we will be focusing on making "statistical inferences" about the true mean and true variance of a population by using sample datasets. Before we do, we need to finish laying the groundwork.

Definition: X_1, X_2, \dots, X_n are a **random sample** of size n if

- $\triangleright X_1, X_2, \dots, X_n$ are independent
- each random variable has the same distribution

We say that these X_i 's are iid, independent and identically distributed.

We use **estimators** to summarize our iid sample. For example, suppose we want to understand the distribution of adult female heights in a certain area. We plan to select n women at random and measure their height. Suppose the height of the i^{th} woman is denoted by X_i . X_1, X_2, \ldots, X_n are iid with mean μ .

An **estimator** of μ is denoted \bar{X} and $\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$

$$E(\bar{X}) =$$

The Law of Large Numbers is fairly technical. However, it says that under most conditions, if X_1, X_2, \ldots, X_n is a random sample with $E(X_k) = \mu$, then $\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$, converges to μ in

Example: Let X_1, X_2, \dots, X_n each have a uniform distribution on [0, 1].

the limit as n goes to infinity.

What about the variance? Given a random sample X_1, X_2, \dots, X_n with $V(X_i) = \sigma^2$,

$$V(\bar{X}) =$$

We use estimators to summarize our iid sample. Any estimator, including the sample mean, \bar{X} , is a random variable (since it is based on a random sample).

This means that \bar{X} has a distribution of it's own, which is referred to as the **sampling distribution of the sample mean**. This sampling distribution depends on:

- ▶ the sample size *n*
- ightharpoonup the population distribution of the X_i
- the method of sampling

Great,	but what	is the dist i	ribution	of the sam	ple mean?	

Proposition: If $X_1, X_2, ..., X_n$ is iid with $X_i \sim N(\mu, \sigma^2)$ then $\bar{X} \sim N(\mu, \sigma^2/n)$.

We know everything there is to know about the distribution of the sample mean when the population distribution is normal.

What if the population distribution is not normal?

- When the population distribution is non-normal, averaging produces a distribution that is more bell-shaped than the one being sampled.
- ▶ A reasonable conjecture is that if *n* is large, a suitable normal curve will approximate the actual distribution of the sample mean.
- ► The formal statement of this result is one of the most important theorems in probability and statistics: Central Limit Theorem

Central Limit Theorem Let $X_1, X_2, ..., X_n$ be a random sample with $E(X_i) = \mu$ and $V(X_i) = \sigma^2$. If n is sufficiently large, \bar{X} has approximately a normal distribution with mean

large,
$$\bar{X}$$
 has approximately a normal distribution with mean $\mu_{\bar{X}}=\mu$ and variance $\sigma_{\bar{X}}^2=\sigma^2/n$.

The larger the value of n, the better the approximation. Typical rule of thumb: n > 30.

We write $\bar{X} \approx N(\mu, \frac{\sigma^2}{2})$