Apuntes de un curso de

MÉTODOS DE LA FÍSICA MATEMÁTICA II

Departamento de Física Facultad de Ciencias Universidad de Chile

> Víctor Muñoz G. José Rogan C.

Índice

1.	Espacio de funciones	1
	1.1. Definiciones	1
	1.2. Sucesiones de funciones	3
	1.3. Proceso de ortonormalización de Gram-Schmidt	9
	1.4. Coeficientes de Fourier	10
	1.5. Integrales impropias (valor principal)	14
	1.6. Convergencia según Cesàro	15
2.	Series de Fourier	19
3.	Transformada de Fourier	35
	3.1. Definiciones	35
	3.2. Ejemplos	36
	3.3. Propiedades	41
	3.4. Aplicaciones	43
4.	Convolución	45
	4.1. Espacio S	45
	4.2. Producto de convolución	46
	4.3. El espacio S como anillo	49
5 .	Distribuciones temperadas	53
	5.1. Definiciones	53
	5.2. Sucesión de distribuciones	61
	5.3. Producto de distribuciones	71
	5.4. Distribuciones y ecuaciones diferenciales	72
	5.5. Convergencia débil	73
6.	Distribuciones y transformada de Fourier	79
7.	Convolución de distribuciones	87
	7.1. Definiciones	87
	7.2. Propiedades de la convolución de distribuciones	89
	7.3. Uso de convolución en Física	91

IV ÍNDICE

8.	La función Gamma	13
	8.1. La función factorial):
	8.2. La función Gamma) 4
	8.3. Función Beta)(
	8.4. Notación doble factorial	96
	8.5. Fórmula de Stirling	
	8.6. Otras funciones relacionadas	
Ω	Transformada de Laplace 10	12
Э.	9.1. Definición	
	9.2. Inversión de la transformada de Laplace	
	9.3. Propiedades de la transformada de Laplace	
	9.4. Lista de transformadas de Lapiace	L٦
10	O.Aplicaciones de la transformada de Laplace 11	
	10.1. Ecuaciones diferenciales lineales con coeficientes constantes	
	10.2. Ecuaciones integrales	
	10.3. Ecuaciones en derivadas parciales	18
	10.4. Sistema de ecuaciones lineales	2(
11	1.Polinomios ortogonales 12	23
	11.1. Definiciones	
	11.2. Teoremas	
	11.3. Relación de recurrencia	
16	2.Polinomios de Hermite	. –
14	12.1. Definición	
	12.2. Función generatriz	
	12.3. Ortogonalidad	
	12.4. Algunos resultados interesantes	
	12.5. Solución por serie de la ecuación de Hermite)]
13	3.Polinomios de Laguerre 13	
	13.1. Definición	
	13.2. Función generatriz	33
	13.3. Relaciones de recurrencia	} 5
	13.4. Ecuación de Laguerre	} [
	13.5. Ortogonalidad	36
	13.6. Polinomios asociados de Laguerre	38
1⊿	4.El problema de Sturm-Liouville 13	}C
	14.1. Operadores diferenciales autoadjuntos	
	14.2. Operadores autohermíticos	
	14.3. Problema de autovalores	
	14.4. Ejemplos de funciones ortogonales	

ÍNDICE v

15. Ecuaciones diferenciales con singularidades	145
15.1. Puntos singulares	145
15.2. Solución por serie: método de Frobenius	146
15.3. Limitaciones del método. Teorema de Fuchs	149
15.4. Una segunda solución	151
16. Ecuaciones diferenciales del tipo	155
16.1. Soluciones en puntos regulares	155
16.2. Soluciones en la vecindad de puntos singulares	159
16.3. Singularidades en infinito	167
16.4. Ejemplos	168
16.5. Ecuaciones con $n \leq 3$ singularidades Fuchsianas	171
17. Funciones hipergeométricas	177
17.1. La ecuación hipergeométrica general	177
17.2. Ecuación indicial	178
17.3. Ecuación diferencial de Gauss	179
17.4. La serie hipergeométrica	181
17.5. Ecuación hipergeométrica confluente	183
18.Polinomios de Legendre	187
18.1. Función generatriz	187
18.2. Relaciones de recurrencia	189
18.3. Coeficientes del polinomio $P_n(x)$	190
18.4. Fórmula de Rodrigues	
18.5. Ecuación diferencial de Legendre	192
18.6. Lugares nulos de $P_n(x)$	193
18.7. Relación de ortogonalidad	193
18.8. Expressiones integrales para $P_n(x)$	194
18.9. Serie de Legendre	
18.10Funciones asociadas de Legendre	
18.11Problema de Sturm-Liouville asociado	201
18.12Armónicos esféricos	
18.13Segunda solución de la ecuación de Legendre	205
19.La ecuación diferencial de Bessel	209
19.1. La ecuación diferencial de Bessel	209
19.2. Funciones de Bessel de índice no entero	210
20.Diversos tipos de funciones cilíndricas	221
20.1. Segunda solución de la ecuación de Bessel	221
20.2. Funciones de Hankel	223

176 ÍNDICE

Capítulo 17

Funciones hipergeométricas

versión preliminar 3.2-2 diciembre 2002

17.1. La ecuación hipergeométrica general

Consideremos la ecuación diferencial

$$\Psi'' + p(z)\Psi' + q(z)\Psi = 0 , \qquad (17.1)$$

con tres singularidades fuchsianas localizadas en:

$$z_1 = A , \qquad z_2 = B , \qquad z_3 = C ,$$

y con $z = \infty$ punto de holomorfía.

Para que la ecuación (17.1) tenga singularidades fuchsianas, p(z) debe tener a lo más un polo simple en cada una de ellas, tomando la forma:

$$p(z) = \frac{h}{z - A} + \frac{k}{z - B} + \frac{l}{z - C} . \tag{17.2}$$

Para que $z = \infty$ sea punto de holomorfía

$$2s - p\left(\frac{1}{s}\right) = 2s - \frac{hs}{1 - As} - \frac{ks}{1 - Bs} - \frac{ls}{1 - Cs} , \qquad (17.3)$$

debe tener a lo menos un lugar nulo doble en s=0. Lo anterior implica que

$$0 = 2s - p\left(\frac{1}{s}\right) \simeq 2s - hs(1 + As) - ks(1 - Bs) - ls(1 - Cs) + \cdots$$

= $(2 - h - k - l)s + \cdots$, $s \sim 0$,

es decir, las constantes debe satisfacer la condición h + k + l = 2. La característica de singularidades fuchsianas impone sobre la función q(z) a lo más polos dobles en las singularidades, es decir,

$$q(z) = \frac{Q(z)}{(z-A)^2(z-B)^2(z-C)^2} , \qquad (17.4)$$

y para que infinito sea punto de holomorfía q(1/s) debe tener a lo menos un lugar nulo cuádruple en s=0. Luego a lo sumo Q(z) debe ser un polinomio de grado 2. En efecto, si es así,

$$q(z) = \frac{a + bz + cz^{2}}{(z - A)^{2}(z - B)^{2}(z - C)^{2}} = \frac{a + b/s + c/s^{2}}{(1/s - A)^{2}(1/s - B)^{2}(1/s - C)^{2}},$$

$$= \frac{as^{2} + bs + c}{(1 - As)^{2}(1 - Bs)^{2}(1 - Cs)^{2}} \frac{1/s^{2}}{1/s^{6}} = s^{4} \frac{as^{2} + bs + c}{(1 - As)^{2}(1 - Bs)^{2}(1 - Cs)^{2}}.$$
(17.5)

Esto claramente no impone nuevas restricciones sobre q(z), la cual podemos escribir de forma general como:

$$q(z) = \frac{Q(z)}{(z-A)(z-B)(z-C)} \left[\frac{1}{(z-A)(z-B)(z-C)} \right]$$

$$= \left(\frac{H}{z-A} + \frac{K}{z-B} + \frac{L}{z-C} \right) \left[\frac{1}{(z-A)(z-B)(z-C)} \right] .$$
(17.6)

Reemplazando la forma general de p(z) y q(z) dadas en (17.2) y (17.6) en (17.1) obtenemos la ecuación hipergeométrica general:

$$\Psi'' + \left[\frac{h}{z - A} + \frac{k}{z - B} + \frac{l}{z - C} \right] \Psi' + \left(\frac{H}{z - A} + \frac{K}{z - B} + \frac{L}{z - C} \right) \left[\frac{1}{(z - A)(z - B)(z - C)} \right] \Psi = 0 ,$$
(17.7)

con h + k + l = 2, *i.e.* 5 constantes libres.

17.2. Ecuación indicial

Consideremos la singularidad fuchsiana en z = A, su ecuación indicial corresponde a:

$$\sigma(\sigma - 1) + h\sigma + \frac{H}{(A - B)(A - C)} = 0$$
 (17.8)

Sean α y α' las dos soluciones de esta ecuación, entonces

$$\alpha + \alpha' = 1 - h$$
 y $\alpha \alpha' = \frac{H}{(A - B)(A - C)}$.

Análogamente sean β y β' y γ y γ' las soluciones respectivas de la ecuación indicial en las singularidades fuchsianas z=B y z=C, con

$$\beta + \beta' = 1 - k$$
, $\beta \beta' = \frac{K}{(B - A)(B - C)}$,

$$\gamma + \gamma' = 1 - l$$
, $\gamma \gamma' = \frac{L}{(C - A)(C - B)}$.

Tenemos $\alpha + \alpha' + \beta + \beta' + \gamma + \gamma' = 3 - k - l - h = 3 - (k + l + h) = 3 - 2 = 1.$

De lo anterior podemos eliminar de la ecuación hipergeométrica los coeficientes h, k, l, H, K, L y escribirla en función de $\alpha, \alpha', \beta, \beta', \gamma$ y γ'

$$\Psi'' + \left[\frac{1-\alpha-\alpha'}{z-A} + \frac{1-\beta-\beta'}{z-B} + \frac{1-\gamma-\gamma'}{z-C}\right]\Psi' + \left[\frac{(C-A)(A-B)(B-C)}{(z-A)(z-B)(z-C)}\right] \times \left(\frac{\alpha\alpha'}{(z-A)(B-C)} + \frac{\beta\beta'}{(z-B)(C-A)} + \frac{\gamma\gamma'}{(z-C)(A-B)}\right)\Psi = 0,$$
(17.9)

con singularidades fuchsianas en $z_1=A,\,z_2=B$ y $z_3=C$ y 5 constantes independientes, ya que tenemos la restricción de que

$$\alpha + \alpha' + \beta + \beta' + \gamma + \gamma' = 1.$$

La solución más general de esta ecuación es la llamada $función\ P\ de\ Riemann$ la cual denotamos por

$$\Psi(z) = P \left\{ \begin{array}{ccc}
A & B & C \\
\alpha & \beta & \gamma & z \\
\alpha' & \beta' & \gamma'
\end{array} \right\} .$$
(17.10)

17.3. Ecuación diferencial de Gauss

Consideremos el caso particular $z_1=A=0,\ z_2=B=1$ y $z_3=C\to\infty$. Elegimos además $\alpha'=\beta'=0$, obteniendo

$$\Psi'' + \left[\frac{1-\alpha}{z} + \frac{1-\beta}{z-1}\right]\Psi' + \frac{\gamma\gamma'}{z(z-1)}\Psi = 0.$$
 (17.11)

Las constantes deben satisfacer $\alpha + \beta + \gamma + \gamma' = 1$, lo cual deja sólo tres constantes independientes. La ecuación (17.11) es conocida como ecuación diferencial de Gauss y su solución, escrita como función P de Riemann, es:

$$\Psi(z) = P \left\{ \begin{array}{ccc}
0 & 1 & \infty \\
\alpha & \beta & \gamma & z \\
0 & 0 & \gamma'
\end{array} \right\} .$$
(17.12)

Haciendo un cambio de notación

$$1 - \alpha = c$$
, $\gamma = a$, $\gamma' = b$.

Podemos despejar β a partir de la condición que satisfacen las raíces de la ecuación indicial,

$$\beta = 1 - \alpha - \gamma - \gamma' = c - a - b ,$$

luego, la ecuación diferencial de Gauss (17.11) queda de la forma

$$\Psi'' + \frac{(1+a+b)(z-c)}{z(z-1)}\Psi' + \frac{ab}{z(z-1)}\Psi = 0.$$
 (17.13)

Su solución, escrita como función P de Riemann

$$\Psi(z) = P \left\{ \begin{array}{cccc} 0 & 1 & \infty \\ 1 - c & c - a - b & a & z \\ 0 & 0 & b \end{array} \right\} . \tag{17.14}$$

Busquemos soluciones de (17.13) de la forma

$$\Psi(z) = \sum_{\nu=0}^{\infty} d_{\nu} z^{\nu} , \qquad \text{con } d_0 = 1.$$
 (17.15)

Recordemos que z=0 es singularidad fuchsiana de (17.13) y las raíces de la ecuación indicial corresponden a $\sigma_1=0$ y $\sigma_2=1-c$. Podemos reescribir (17.13) de la forma

$$z(z-1)\Psi'' + (1+a+b)(z-c)\Psi' + ab\Psi = 0, \qquad (17.16)$$

Reemplazando la serie (17.15) en (17.16) e igualando potencias del mismo orden, obtenemos una relación de recurrencia para los coeficientes d_{ν} ,

$$d_{\nu+1} = \frac{(\nu+a)(\nu+b)}{(\nu+c)(\nu+1)} d_{\nu} , \quad \text{para } \nu = 0, 1, 2, \dots$$
 (17.17)

La exclusión de c = 0, -1, -2, ..., no es siempre necesaria, ya que es posible que se anule el numerador.

Definición 17.1 Definimos la función hipergeométrica ${}_2F_1(a,b,c;z)$, por la siguiente serie:

$$_{2}F_{1}(a,b,c;z) = 1 + \frac{ab}{c}z + \frac{a(a+1)b(b+1)}{c(c+1)2!}z^{2} + \cdots$$
 (17.18)

La serie geométrica es un caso particular de la anterior

$$_{2}F_{1}(1,b,b;z) = \sum_{\nu=0}^{\infty} z^{\nu}.$$

El radio de convergencia de la serie hipergeométrica es igual a uno, exceptuando el caso cuando a o b son iguales a cero o a un entero negativo, en tal caso el radio de convergencia es infinito.

Afirmamos que ${}_{2}F_{1}\left(a,b,c\,;z\right)$ es solución de (17.13). Busquemos la otra solución linealmente independiente correspondiente a la solución de la ecuación indicial $\sigma_{2}=1-c$. Planteamos

$$\begin{split} &\Psi(z) = z^{1-c}\phi(z) \;, \quad c \neq 1 \;, \\ &\Psi'(z) = (1-c)z^{-c}\phi(z) + z^{1-c}\phi'(z) \;, \\ &\Psi''(z) = -(1-c)cz^{-c-1}\phi(z) + 2(1-c)z^{-c}\phi'(z) + z^{1-c}\phi''(z) \;. \end{split}$$

Reemplazando en (17.16)

$$z(z-1)\phi'' + [(a+b-2c+3)z - (2-c)]\phi' + (a-c+1)(b-c+1)\phi = 0.$$
 (17.19)

Sustituyendo

$$c \to 2 - c$$
, $a \to a - c + 1$, $b \to b - c + 1$,

se obtiene la ecuación hipergeométrica de Gauss, por lo tanto la solución para $\phi(z)$ en (17.19) es:

$$\phi(z) = {}_{2}F_{1}(a-c+1,b-c+1,2-c;z)$$
, con $c \neq 2$,

luego la otra solución de (17.13) es

$$\Psi(z) = z^{1-c} {}_{2}F_{1}(a-c+1,b-c+1,2-c;z) . \tag{17.20}$$

Hagamos un resumen de los resultados anteriores. La ecuación diferencial de Gauss

$$z(z-1)\Psi'' + (1+a+b)(z-c)\Psi' + ab\Psi = 0, \qquad (17.19)$$

bajo la condición de que $c \notin \mathbb{Z}$ tiene como base de soluciones con centro en cero:

$$\Psi_1 = {}_2F_1(a, b, c; z) , \qquad (17.21a)$$

$$\Psi_2 = z^{1-c} {}_2F_1 \left(a - c + 1, b - c + 1, 2 - c; z \right) . \tag{17.21b}$$

Si c=1 las soluciones Ψ_1 y Ψ_2 coinciden, en ese caso se debe plantear

$$\Psi_2(z) = \Psi_1(z) \ln(z) + \sum_{\nu=0}^{\infty} c_{\nu} z^{\nu} .$$

Derivando y reemplazando en la ecuación diferencial obtenemos una relación de recurrencia para los c_{ν} .

17.4. La serie hipergeométrica

Analicemos en más detalle la serie hipergeométrica

$$_{2}F_{1}(a,b,c;z) = 1 + \frac{ab}{c}z + \frac{a(a+1)b(b+1)}{c(c+1)2!}z^{2} + \dots = \sum_{\nu=0}^{\infty} f_{\nu} \frac{z^{\nu}}{\nu!},$$
 (17.18)

tenemos para el coeficiente n+1

$$f_{n+1} = \frac{a(a+1)(a+2)\cdots(a+n)b(b+1)(b+2)\cdots(b+n)}{c(c+1)(c+2)\cdots(c+n)} ,$$

$$f_{n+1} = \frac{\Gamma(a+n+1)\Gamma(b+n+1)}{\Gamma(c+n+1)} \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)} \left(\frac{\Gamma(c-b)}{\Gamma(c-b)}\right) .$$

Reescribamos la serie hipergeométrica usando el anterior resultado:

$${}_{2}F_{1}\left(a,b,c;z\right) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)\Gamma(c-b)} \sum_{\nu=0}^{\infty} \frac{\Gamma(c-b)\Gamma(b+\nu)}{\Gamma(c+\nu)} \Gamma(a+\nu) \frac{z^{\nu}}{\nu!} ,$$

pero

$$\frac{\Gamma(c-b)\Gamma(b+\nu)}{\Gamma(c+\nu)} = B(c-b,b+\nu) ,$$

con

$$B(m,n) = \int_0^1 t^{m-1} (1-t)^{n-1} dt = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} , \quad \text{para } m > 0 \text{ y } n > 0 .$$

Reescribimos la serie, usando la expresión integral de la función beta,

$${}_{2}F_{1}(a,b,c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} \sum_{\nu=0}^{\infty} \frac{\Gamma(a+\nu)}{\Gamma(a)} \frac{t^{\nu}z^{\nu}}{\nu!} dt ,$$

 $\operatorname{con} \, \operatorname{Re}[c] > \operatorname{Re}[b] > 0.$

Ahora como

$$(1 - tz)^{-a} = \sum_{\nu=0}^{\infty} \frac{\Gamma(a+\nu)}{\Gamma(a)\nu!} t^{\nu} z^{\nu} .$$

La forma integral de la función hipergeométrica es:

$$2F_1(a,b,c;z) = \frac{1}{B(b,c-b)} \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt, \qquad (17.22)$$

con Re[c] > Re[b] > 0, |z| < 1 y donde t es una variable compleja.

Proposiciones

a)
$$_{2}F_{1}(a,b,c;z) = \frac{1}{(1-z)^{a}} _{2}F_{1}\left(a,c-b,c;\frac{z}{z-1}\right).$$

b)
$$_{2}F_{1}(a,b,c;z) = \frac{1}{(1-z)^{b}} _{2}F_{1}\left(c-a,b,c;\frac{z}{z-1}\right).$$

c)
$$_2F_1(a,b,c;1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}$$
.

d)
$$_{2}F_{1}(a,b,c;z) = (1-z)^{c-a-b} {}_{2}F_{1}(c-a,c-b,c;z).$$

Demostraciones

a)

$$\frac{1}{(1-z)^a} \,_2F_1\left(a,c-b,c;\frac{z}{z-1}\right) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_0^1 t^{c-b-1} (1-t)^{b-1} \left(1-\frac{tz}{z-1}\right)^{-a} \frac{1}{(1-z)^a} \, dt \,,$$

haciendo el cambio de variable 1 - t = t'

$$\frac{1}{(1-z)^a} {}_{2}F_{1}\left(a,c-b,c;\frac{z}{z-1}\right) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t'^{b-1} (1-t')^{c-b-1} \times \left[(1-z)\left(1-\frac{(1-t')z}{z-1}\right) \right]^{-a} dt',$$

$$\frac{1}{(1-z)^a} {}_{2}F_{1}\left(a,c-b,c;\frac{z}{z-1}\right) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} t^{b-1} (1-t)^{c-b-1} (1-tz)^{-a} dt ,$$

$$= {}_{2}F_{1}\left(a,b,c;z\right) .$$

b) Directo usando a) y la relación de simetría

$$_{2}F_{1}(a,b,c;z) = _{2}F_{1}(b,a,c;z)$$
.

c) y d) Tarea.

Consideremos la expansión en serie de la función ln(1+z) con centro en z=0:

$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \cdots, \quad \text{para} |z| < 1,$$

$$\ln(1+z) = z \left(1 + \frac{1 \times 1}{2 \times 1!} (-z) + \frac{1 \times 2 \times 1 \times 2}{2 \times 3 \times 2!} (-z)^2 + \frac{1 \times 2 \times 3 \times 1 \times 2 \times 3}{2 \times 3 \times 4 \times 3!} (-z)^3 + \cdots \right),$$

$$\ln(1+z) = z {}_2F_1(1,1,2;-z) = \frac{z}{1+z} {}_2F_1\left(1,1,2;\frac{z}{1+z}\right).$$

La última igualdad corresponde a la propiedad a) probada anteriormente. Tenemos que para |z| < 1 sirve la primera expresión $z_2F_1(1,1,2;-z)$ y no la segunda, para |z| > 1 la primera expresión no nos sirve y sí la segunda. Probemos, en forma explícita, la última relación,

$$\frac{z}{1+z} {}_{2}F_{1}\left(1,1,2;\frac{z}{1+z}\right) = \frac{z}{1+z} \left(1 + \frac{1}{2}\frac{z}{1+z} + \frac{1}{3}\left(\frac{z}{1+z}\right)^{2} + \cdots\right) ,$$

$$= \frac{z}{1+z} + \frac{1}{2}\left(\frac{z}{1+z}\right)^{2} + \frac{1}{3}\left(\frac{z}{1+z}\right)^{3} + \cdots ,$$

$$= -\ln\left(1 - \frac{z}{1+z}\right) = -\ln\left(\frac{1}{1+z}\right) = \ln(1+z) .$$

17.5. Ecuación hipergeométrica confluente

Consideremos la ecuación diferencial de Gauss con singularidades fuchsianas en z=0, z=1 y $z\rightarrow\infty$

$$z(z-1)\Psi'' + (1+a+b)(z-c)\Psi' + ab\Psi = 0.$$

Al reemplazar $z = \frac{u}{h}$ nos queda

$$\frac{u}{b}\left(\frac{u}{b}-1\right)\frac{d^2}{dz^2}\Psi\left(\frac{u}{b}\right) + \left[(a+b+1)\frac{u}{b}-c\right]\frac{d}{dz}\Psi\left(\frac{u}{b}\right) + ab\Psi\left(\frac{u}{b}\right) = 0. \tag{17.23}$$

Definimos $\bar{\Psi}(u) = \Psi\left(\frac{u}{b}\right)$ y evaluamos las derivadas

$$\frac{d\Psi}{du} = \frac{d}{dz}\Psi\left(\frac{u}{b}\right)\frac{1}{b} = \frac{1}{b}\frac{d}{dz}\Psi\left(\frac{u}{b}\right)\;, \qquad \frac{d^2\Psi}{du^2} = \frac{1}{b^2}\frac{d^2}{dz^2}\Psi\left(\frac{u}{b}\right)\;.$$

Dividiendo (17.23) por -b,

$$u\left(1-\frac{u}{b}\right)\frac{1}{b^2}\frac{d^2}{dz^2}\Psi\left(\frac{u}{b}\right) - \left[\frac{a+1}{b} + u - c\right]\frac{1}{b}\frac{d}{dz}\Psi\left(\frac{u}{b}\right) - a\Psi\left(\frac{u}{b}\right) = 0,$$

$$u\left(1-\frac{u}{b}\right)\frac{d^2\bar{\Psi}}{du^2} - \left[\frac{a+1}{b} + u - c\right]\frac{d\bar{\Psi}}{du} - a\bar{\Psi} = 0.$$

Simplificando la notación, cambiamos la variable de u a z y la función de $\bar{\Psi}$ a Ψ . Además, haciendo tender $b \to \infty$ obtenemos:

$$z \Psi''(z) + (c - z) \Psi'(z) - a\Psi(z) = 0.$$
(17.24)

La anterior es conocida como la ecuación hipergeométrica confluente y su solución se denota por ${}_1F_1(a,c;z)$. Esta ecuación tiene una singularidad fuchsiana en z=0 y una singularidad esencial en $z=\infty$. Una de las soluciones en torno a z=0 es:

$$\lim_{b \to \infty} {}_{2}F_{1}\left(a, b, c; \frac{z}{b}\right) = \lim_{b \to \infty} \left[1 + \frac{ab}{1c} \frac{z}{b} + \frac{a(a+1)b(b+1)}{1 \times 2 \times c(c+1)} \frac{z^{2}}{b^{2}} + \cdots\right] ,$$

$${}_{1}F_{1}\left(a, c; z\right) = 1 + \frac{a}{c} \frac{z}{1!} + \frac{a(a+1)}{c(c+1)} \frac{z^{2}}{2!} + \cdots .$$

$$(17.25)$$

Esta serie es conocida como la serie hipergeométrica confluente. Tiene radio de convergencia infinito siempre que $c \neq 0, -1, -2, -3, \dots$ La otra solución de la ecuación diferencial es:

$$\lim_{b \to \infty} \left(\frac{z}{b}\right)^{1-c} {}_{2}F_{1}\left(a-c+1, b-c+1, 2-c; \frac{z}{b}\right) = z^{1-c} {}_{1}F_{1}\left(a-c+1, 2-c; z\right) , \quad (17.26)$$

$$\operatorname{con} c \neq 1, 2, 3 \dots$$

Proposiciones

- a) $e^z = {}_1F_1(a, a; z).$
- b) $\frac{\sqrt{\pi}}{2} \operatorname{erf}(z) = z {}_{1}F_{1}\left(\frac{1}{2}, \frac{3}{2}; -z^{2}\right).$
- c) $_{1}F_{1}(a,c;z) = \frac{1}{B(a,c-a)} \int_{0}^{1} (1-t)^{c-a-1} t^{a-1} e^{zt} dt.$
- d) $_{1}F_{1}(a,c;z) = e^{z} _{1}F_{1}(c-a,c;-z).$

Demostraciones

a) Directa a partir de la definición dada en (17.26).

b)

$$\frac{\sqrt{\pi}}{2}\operatorname{erf}(z) = \int_0^z e^{-t^2} dt = \int_0^z \left(1 - \frac{t^2}{1!} + \frac{t^4}{2!} - \cdots\right) dt ,$$

$$= z - \frac{z^3}{3 \times 1!} + \frac{z^5}{5 \times 2!} - \frac{z^7}{7 \times 3!} + \cdots ,$$

$$= z \left(1 - \frac{1/2}{3/2} \frac{z^2}{1!} + -\frac{1/2 \times 3/2}{3/2 \times 5/2} \frac{z^4}{2!} + \cdots\right) ,$$

$$= z {}_1F_1\left(\frac{1}{2}, \frac{3}{2}; -z^2\right) .$$

c) y d) Tarea.