

• **Theorem** (Baire) Let X be a complete metric space and let $(X_n)_{n\geq 1}$ be a sequence of closed subsets in X. Assume that

Int
$$X_n = \emptyset$$
 for every $n \ge 1$.

Then

$$\operatorname{Int}\left(\bigcup_{n=1}^{\infty}X_{n}\right)=\emptyset.$$

Remark The Baire category theorem is often used in the following form. Let X be a nonempty complete metric space. Let $(X_n)_{n\geq 1}$ be a sequence of closed subsets such that

$$\bigcup_{n=1}^{\infty} X_n = X.$$

Then there exists some n_0 such that Int $X_{n_0} \neq \emptyset$.

• Theorem (Banach–Steinhaus, uniform boundedness principle). Let E and F be two Banach spaces and let $(T_i)_{i \in I}$ be a family (not necessarily countable) of continuous linear operators from E into F. Assume that

$$\sup_{i\in I} \|T_i x\| < \infty \quad \forall x\in E.$$

Then

$$\sup_{i\in I} \|T_i\|_{\mathscr{L}(E,F)} < \infty.$$

In other words, there exists a constant c such that

$$||T_i x|| \le c||x|| \quad \forall x \in E, \quad \forall i \in I.$$

Proof. For every $n \ge 1$, let

$$X_n = \{x \in E; \quad \forall i \in I, \ \|T_i x\| \le n\},$$

so that X_n is closed, and by (1) we have

$$\bigcup_{n=1}^{\infty} X_n = E.$$

It follows from the Baire category theorem that $\operatorname{Int}(X_{n_0}) \neq \emptyset$ for some $n_0 \geq 1$. Pick $x_0 \in E$ and r > 0 such that $B(x_0, r) \subset X_{n_0}$. We have

$$||T_i(x_0 + rz)|| \le n_0 \quad \forall i \in I, \quad \forall z \in B(0, 1).$$

This leads to

$$r \|T_i\|_{\mathcal{L}(E,F)} \leq n_0 + \|T_i x_0\|,$$

which implies (2).

Remark. From the proof, we need only to assume that E is a Banach space.

Corollary Suppose that X is a Banach space, Y a normed space, and that $T_n \in B(X, Y)$. Suppose that

$$Tx := \lim_{n \to \infty} T_n x$$

exists for every $x \in X$. Then $T \in B(X, Y)$.

Proof The operator T is linear, since if $x, y \in X$ and $\alpha, \beta \in \mathbb{K}$, then

$$T(\alpha x + \beta y) = \lim_{n \to \infty} T_n(\alpha x + \beta y) = \lim_{n \to \infty} \alpha T_n x + \beta T_n y$$
$$= \alpha \lim_{n \to \infty} T_n x + \beta \lim_{n \to \infty} T_n y$$
$$= \alpha T x + \beta T y.$$

To show that T is bounded, observe that since

$$\lim_{n\to\infty}\|T_nx\|_Y$$

exists it follows that for every $x \in X$ the sequence $(T_n x)_{n=1}^{\infty}$ is bounded. The Principle of Uniform Boundedness now shows that $||T_n||_{B(X,Y)} \leq M$ for every $n \in \mathbb{N}$. It follows that

$$||Tx||_Y = \lim_{n \to \infty} ||T_n x||_Y \le M ||x||_X$$

and so T is bounded.

• **Theorem 2.6 (open mapping theorem).** Let E and F be two Banach spaces and let T be a continuous linear operator from E into F that is **surjective** (= onto). Then there exists a constant c > 0 such that

(7)
$$T(B_E(0,1)) \supset B_F(0,c).$$

Remark 5. Property (7) implies that the image under T of any open set in E is an open set in F (which justifies the name given to this theorem!). Indeed, let us suppose U is open in E and let us prove that T(U) is open. Fix any point $y_0 \in T(U)$, so that $y_0 = Tx_0$ for some $x_0 \in U$. Let r > 0 be such that $B(x_0, r) \subset U$, i.e., $x_0 + B(0, r) \subset U$. It follows that

$$y_0 + T(B(0, r)) \subset T(U)$$
.

Using (7) we obtain

$$T(B(0,r)) \supset B(0,rc)$$

and therefore

$$B(y_0, rc) \subset T(U)$$
.

• **Corollary 2.7.** Let E and F be two Banach spaces and let T be a continuous linear operator from E into F that is **bijective**, i.e., injective (= one-to-one) and surjective. Then T^{-1} is also continuous (from F into E).

Proof of Corollary 2.7. Property (7) and the assumption that T is injective imply that if $x \in E$ is chosen so that ||Tx|| < c, then ||x|| < 1. By homogeneity, we find that

$$||x|| \le \frac{1}{c} ||Tx|| \quad \forall x \in E$$

and therefore T^{-1} is continuous.

Corollary 2.8. Let E be a vector space provided with two norms, $\| \|_1$ and $\| \|_2$. Assume that E is a Banach space for **both** norms and that there exists a constant $C \ge 0$ such that

$$||x||_2 \leq C||x||_1 \quad \forall x \in E.$$

Then the two norms are **equivalent**, i.e., there is a constant c > 0 such that

$$||x||_1 \le c||x||_2 \quad \forall x \in E.$$

Proof of Corollary 2.8. Apply Corollary 2.7 with

$$E = (E, \| \ _1), F = (E, \| \ _2), \text{ and } T = I.$$

Proof of Theorem 2.6. We split the argument into two steps:

Step 1. Assume that T is a linear surjective operator from E onto F. Then there exists a constant c > 0 such that

(8)
$$\overline{T(B(0,1))} \supset B(0,2c).$$

Proof. Set $X_n = n\overline{T(B(0, 1))}$. Since T is surjective, we have $\bigcup_{n=1}^{\infty} X_n = F$, and by the Baire category theorem there exists some n_0 such that $\operatorname{Int}(X_{n_0}) \neq \emptyset$. It follows that

Int
$$\overline{[T(B(0,1))]} \neq \emptyset$$
.

Pick c > 0 and $y_0 \in F$ such that

$$(9) B(y_0, 4c) \subset \overline{T(B(0, 1))}.$$

In particular, $y_0 \in \overline{T(B(0, 1))}$, and by symmetry,

$$(10) -y_0 \in \overline{T(B(0,1))}.$$

Adding (9) and (10) leads to

$$B(0, 4c) \subset \overline{T(B(0, 1))} + \overline{T(B(0, 1))}.$$

On the other hand, since $\overline{T(B(0, 1))}$ is convex, we have

$$\overline{T(B(0,1))} + \overline{T(B(0,1))} = 2\overline{T(B(0,1))},$$

and (8) follows.

Step 2. Assume T is a continuous linear operator from E into F that satisfies (8). Then we have

(11)
$$T(B(0,1)) \supset B(0,c)$$
.

Proof. Choose any $y \in F$ with ||y|| < c. The aim is to find some $x \in E$ such that

$$||x|| < 1$$
 and $Tx = y$.

By (8) we know that

(12)
$$\forall \varepsilon > 0 \quad \exists z \in E \text{ with } ||z|| < \frac{1}{2} \text{ and } ||y - Tz|| < \varepsilon.$$

Choosing $\varepsilon = c/2$, we find some $z_1 \in E$ such that

$$||z_1|| < \frac{1}{2}$$
 and $||y - Tz_1|| < \frac{c}{2}$.

By the same construction applied to $y - Tz_1$ (instead of y) with $\varepsilon = c/4$ we find some $z_2 \in E$ such that

$$||z_2|| < \frac{1}{4}$$
 and $||(y - Tz_1) - Tz_2|| < \frac{c}{4}$.

Proceeding similarly, by induction we obtain a sequence (z_n) such that

$$||z_n|| < \frac{1}{2^n}$$
 and $||y - T(z_1 + z_2 + \dots + z_n)|| < \frac{c}{2^n}$ $\forall n$.

It follows that the sequence $x_n = z_1 + z_2 + \cdots + z_n$ is a Cauchy sequence. Let $x_n \to x$ with, clearly, ||x|| < 1 and y = Tx (since T is continuous).

• **Theorem 2.9** (closed graph theorem). Let E and F be two Banach spaces. Let T be a linear operator from E into F. Assume that the graph of T, G(T), is closed in $E \times F$. Then T is continuous.

Remark 6. The converse is obviously true, since the graph of any continuous map (linear or not) is closed.

Proof of Theorem 2.9. Consider, on E, the two norms

$$||x||_1 = ||x||_E + ||Tx||_F$$
 and $||x||_2 = ||x||_E$

(the norm $\| \|_1$ is called the *graph norm*).

It is easy to check, using the assumption that G(T) is closed, that E is a Banach space for the norm $\| \|_2$ and $\| \|_2 \le \| \|_1$. It follows from Corollary 2.8 that the two norms are equivalent and thus there exists a constant c > 0 such that $\|x\|_1 \le c\|x\|_2$. We conclude that $\|Tx\|_F \le c\|x\|_E$.

Let X be a normed space and X^{**} be the set of bounded linear functionals from

$$X^*$$
 to \mathbb{K} , i.e. $X^{**} := B(X^*; \mathbb{K})$.

Lemma For any normed space X we can isometrically map X onto a subspace of X^{**} via the canonical linear mapping $x \mapsto x^{**}$, where x^{**} is the element of X^{**} defined by setting

$$x^{**}(f) = f(x)$$
 for each $f \in X^*$.

We denote this mapping by $J: X \to X^{**}$.

Proof We have to show that for any $x \in X$, x^{**} defines a linear functional on X^* (i.e. an element of X^{**}) with the same norm as x. Given $x \in X$ we set

$$x^{**}(f) := f(x)$$
 for every $f \in X^*$.

Then, since

$$|x^{**}(f)| = |f(x)| \le ||f||_{X^*} ||x||_X,$$

it certainly follows that $x^{**} \in X^{**}$ and that $||x^{**}||_{X^{**}} \le ||x||_X$.

Let $f \in X^*$ be such that

||f|| = 1 and f(x) = ||x||, then we have

$$|x^{**}(f)| = |f(x)| = ||x||_X = ||x||_X ||f||_{X^*}$$

(since $||f||_{X^*} = 1$) and it follows that $||x^{**}||_{X^{**}} \ge ||x||_X$, which yields the required equality of norms.

Proof If $(F_n) \in J(X)$ with $F_n \to F$ in X^{**} , then (F_n) must be Cauchy in X^{**} . Since there exist $x_n \in X$ such that $F_n = x_n^{**}$ and the map J is a linear isometry, we have

$$||x_n - x_m||_X = ||F_n - F_m||_{X^{**}},$$

so (x_n) is Cauchy in X. It follows that there exists $x \in X$ such that $x_n \to x$ in X, and so

$$||F_n - x^{**}||_{X^{**}} = ||x_n - x||_X \to 0$$
 as $n \to \infty$.

By uniqueness of limits it follows that $F = x^{**}$, so J(X) is closed.

Definition A Banach space X is *reflexive* if $J: X \to X^{**}$ is onto, i.e. if every $F \in X^{**}$ can be written as x^{**} for some $x \in X$.

Proposition All Hilbert spaces are reflexive.

Theorem Let X be a Banach space. Then X is reflexive if and only if X^* is reflexive.

Proof Suppose first that X is reflexive; we want to show that X^* is reflexive, i.e. that for any $\Phi \in (X^*)^{**}$ we can find an $f \in X^*$ such that $f^{**} = \Phi$, i.e. such that

$$\Phi(F) = F(f)$$
 for every $F \in X^{**}$.

This actually tells us what f should be. Since any $F \in X^{**}$ can be written as x^{**} for some $x \in X$, we require

$$\Phi(x^{**}) = x^{**}(f)$$
 for every $x \in X$.

But since, by definition, $x^{**}(f) = f(x)$, this says that we must have

$$f(x) = \Phi(x^{**})$$
 for every $x \in X$,

and we now use this as the definition of f. We just have to check that f really is an element of X^* , i.e. is a bounded linear map from X into \mathbb{K} . But this follows immediately, as it is the composition of J, a bounded linear map from X into X^{**} , with Φ , which is a bounded linear map from X^{**} into \mathbb{K} .

For the converse, suppose that X^* is reflexive but X is not, i.e. there is an element $F \in X^{**}$ such that $F \neq x^{**}$ for any $x \in X$. Then the set

$$J(X) = \{x^{**} : x \in X\}$$

is a proper closed linear subspace of X^{**} and so there is some non-zero $\Phi \in (X^{**})^*$ such that $\Phi = 0$ on J(X), i.e.

$$\Phi(x^{**}) = 0$$
 for all $x \in X$.

Since $(X^{**})^* = (X^*)^{**}$ and X^* is reflexive, we know that $\Phi = f^{**}$ for some $f \in X^*$, and so if $x \in X$, we have

$$f(x) = x^{**}(f) = f^{**}(x^{**}) = \Phi(x^{**}) = 0.$$

But this means that f = 0, which in turn implies that $\Phi = 0$, a contradiction.

Lemma Any closed subspace Y of a reflexive Banach space X is reflexive.

Proof Take $f \in X^*$ and let f_Y denote the restriction of f to Y, so that $f_Y \in Y^*$. Because of the Hahn–Banach Theorem, any element of Y^* can be obtained as such a restriction.

To show that Y is reflexive we need to show that for any $\Psi \in Y^{**}$ there exists a $y \in Y$ such that

$$\Psi(f_Y) = y^{**}(f_Y)$$
 for every $f \in X^*$.

First define an element $\hat{\Psi} \colon X^* \to \mathbb{R}$ by setting

$$\hat{\Psi}(f) = \Psi(f_Y),$$

and then

$$|\hat{\Psi}(f)| \le \|\Psi\| \|f_Y\| \le \|\Psi\| \|f\|$$
 for any $f \in X^*$,

so $\hat{\Psi} \in X^{**}$. Now we can use the fact that X is reflexive to find an $x \in X$ such that

$$\hat{\Psi} = x^{**}.$$

We only need now show that $x \in Y$.

Suppose that $x \notin Y$. Then the distance functional provides an $f \in X^*$ such that $f(x) \neq 0$ and f(y) = 0 for every $y \in Y$, i.e. such that $f_Y = 0$. Then

$$f(x) = x^{**}(f) = \hat{\Psi}(f) = \Psi(f_Y) = 0,$$

a contradiction.

Definition 27.1 We say that a sequence $(x_n) \in X$ converges weakly to $x \in X$, and write $x_n \rightharpoonup x$, if

$$f(x_n) \to f(x)$$
 for all $f \in X^*$.

Note that in a Hilbert space, where every linear functional is of the form $x \mapsto (x, y)$ for some $y \in H, x_n \rightarrow x$ if

$$(x_n, y) \to (x, y)$$
 for all $y \in H$.

This observation allows us to provide an example of a sequence that converges weakly but does not converge strongly. Pick any countable orthonormal sequence $(e_j)_{j=1}^{\infty}$ in H; then for any $y \in H$ Bessel's inequality

$$\sum_{j=1}^{\infty} |(y, e_j)|^2 \le ||y||^2$$

shows that the sum converges; it follows that $(y, e_j) \to 0$ as $j \to \infty$ for any $y \in H$, and hence that $e_j \to 0$.

Lemma 27.2 Weak convergence has the following properties.

- (i) Strong convergence implies weak convergence;
- (ii) in a finite-dimensional normed space weak convergence and strong convergence are equivalent;
- (iii) weak limits are unique;
- (iv) weakly convergent sequences are bounded; and
- (v) if $x_n \rightarrow x$, then

$$||x|| \le \liminf_{n \to \infty} ||x_n||. \tag{27.1}$$

Proof (i) If $x_n \to x$, then for any $f \in X^*$

$$|f(x_n) - f(x)| \le ||f||_{X^*} ||x_n - x||_X \to 0$$
 as $n \to \infty$,

so $f(x_n) \to f(x)$, and hence $x_n \rightharpoonup x$.

(ii) Due to part (i) we need only show that if V is a finite-dimensional normed space, then weak convergence in V implies strong convergence in V. If $\{e_1, \ldots, e_n\}$ is a basis for V, then for each $i = 1, \ldots, n$ the map

$$x = \sum_{j=1}^{n} x_j e_j \mapsto x_i$$

is an element of V^* , so if $\mathbf{x}^{(k)} \to \mathbf{x}$ it follows that $x_j^{(k)} \to x_j$ for each $j = 1, \ldots, n$, and so

$$x^{(k)} = \sum_{j=1}^{n} x_j^{(k)} e_j \to \sum_{j=1}^{n} x_j e_j = x.$$

(iii) Suppose that $x_n \rightharpoonup x$ and $x_n \rightharpoonup y$. Then for any $f \in X^*$,

$$f(x) = \lim_{n \to \infty} f(x_n) = f(y),$$

(iv) Since $f(x_n)$ converges, it follows that $f(x_n)$ is a bounded sequence (in \mathbb{K}) for every $f \in X^*$. If we consider the sequence $(x_n^{**}) \in X^{**}$, then, since

$$x_n^{**}(f) = f(x_n),$$

it follows that $(x_n^{**}(f))_n$ is bounded in \mathbb{K} for every $f \in X^*$. We can now use the Principle of Uniform Boundedness to deduce that (x_n^{**}) is

bounded in X^{**} . Since $||x^{**}||_{X^{**}} = ||x||_X$, it follows that (x_n) is bounded in X.

(v) Choose $f \in X^*$ with $||f||_{X^*} = 1$ such that f(x) = ||x||, then

$$||x|| = f(x) = \lim_{n \to \infty} f(x_n),$$

SO

$$||x|| \le \liminf_{n \to \infty} |f(x_n)| \le \liminf_{n \to \infty} ||f||_{X^*} ||x_n||_X;$$

the result follows since $||f||_{X^*} = 1$.

Lemma 27.3 Let H be a Hilbert space. If $(x_n) \in H$ with $x_n \rightarrow x$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.

Proof Observe that

$$||x - x_n||^2 = (x - x_n, x - x_n) = ||x||^2 - (x, x_n) - (x_n, x) + ||x_n||^2.$$

Since $x_n \to x$, we have $(x_n, x) \to (x, x) = ||x||^2$ and $||x_n||^2 \to ||x||^2$ by assumption; so $||x - x_n||^2 \to 0$ as $n \to \infty$.

Lemma 27.4 Suppose that $T: X \to Y$ is a compact linear operator. If $(x_n) \in X$ with $x_n \rightharpoonup x$ in X, then $Tx_n \to Tx$ in Y.

Proof We first show that $Tx_n \rightarrow Tx$ in Y; indeed, if $f \in Y^*$, then $f \circ T$ is an element of X^* , so that $x_n \rightarrow x$ implies that

$$f(Tx_n) \to f(Tx)$$
.

Now, suppose that $Tx_n \not\to Tx$; then there is an $\varepsilon > 0$ and a subsequence $(x_{n_i})_j$ such that

$$||Tx_{n_j} - Tx|| > \varepsilon$$
 for every j . (27.2)

Since x_{n_j} converges weakly, it is a bounded sequence in X (by part (iv) of Lemma 27.2); since T is compact it follows that (Tx_{n_j}) has a subsequence $(Tx_{n_j'})_j$ that converges to some $z \in Y$. Since strong convergence implies weak convergence (Lemma 27.2 (i)), we also have $Tx_{n_j'} \to z$; but weak limits are unique (part (iii) of Lemma 27.2) and we already know that $Tx_{n_j'} \to Tx$ (since $x_{n_j'}$ is a subsequence of x_n and we know that $Tx_n \to Tx$), so we must have z = Tx and

$$\lim_{j\to\infty} \|Tx_{n'_j} - Tx\| \to 0 \quad \text{as } j\to\infty.$$

Since $x_{n'_j}$ is a subsequence of x_{n_j} the preceding equation contradicts (27.2), and therefore $Tx_n \to Tx$ as claimed.

Definition 27.8 If $(f_n)_{n=1}^{\infty} \in X^*$, then f_n converges weakly-* ('weakly star') to f if

$$f_n(x) \to f(x)$$
 for all $x \in X$;

we write $f_n \stackrel{*}{\rightharpoonup} f$.

Note that weak-* convergence is a very natural way to define convergence of sequences in X^* : it is the equivalent of pointwise convergence for continuous functions.

Lemma 27.9 Weak-* convergence has the following properties.

- (i) Strong convergence in X^* implies weak-* convergence in X^* ;
- (ii) weak-* limits are unique;
- (iii) weakly-* convergent sequences are bounded; (Assume X is Banach)
- (iv) if $f_n \stackrel{*}{\rightharpoonup} f$, then

$$||f||_{X^*} \leq \liminf_{n \to \infty} ||f_n||_{X^*};$$

- (v) weak convergence in X^* implies weak-* convergence in X^* ;
- (vi) if X is reflexive, then weak-* convergence in X^* implies weak convergence in X^* .

Proof (i) If $f_n \to f$ in X^* , i.e. $||f_n - f||_{X^*} \to 0$, then for any $x \in X$ we have

$$|f_n(x) - f(x)| = |(f_n - f)(x)| \le ||f_n - f||_{X^*} ||x||_X \to 0$$

and so $f_n \stackrel{*}{\rightharpoonup} f$.

(ii) If $f_n \stackrel{*}{\rightharpoonup} f$ and $f_n \stackrel{*}{\rightharpoonup} g$, then

$$f(x) = \lim_{n \to \infty} f_n(x) = g(x)$$
 for every $x \in X$,

so f = g.

(iii) We have $f_n \in B(X; \mathbb{K})$ for each n, and if $f_n(x) \to f(x)$ for every $x \in X$, then

$$\sup_{n} |f_n(x)| < \infty \qquad \text{for every } x \in X,$$

so it follows from the Principle of Uniform Boundedness that $\sup_n \|f_n\|_{X^*} < \infty$.

(iv) Given any $\varepsilon > 0$ we can find an $x \in X$ with ||x|| = 1 such that $f(x) > ||f||_{X^*} - \varepsilon$; then

$$||f||_{X^*} - \varepsilon < f(x) = \lim_{n \to \infty} f_n(x) \le \liminf_{n \to \infty} ||f_n||_{X^*} ||x|| = \liminf_{n \to \infty} ||f_n||_{X^*},$$

which yields the result since $\varepsilon > 0$ is arbitrary.

(v) $f_n \rightharpoonup f$ in X^* means that for every $F \in X^{**}$ we have

$$F(f_n) \to F(f)$$
.

Given any element $x \in X$ we can consider the corresponding $x^{**} \in X^{**}$. Since $f_n \rightharpoonup f$ in X^* , we have

$$f_n(x) = x^{**}(f_n) \to x^{**}f = f(x),$$

and so $f_n \stackrel{*}{\rightharpoonup} f$.

(vi) When X is reflexive any $F \in X^{**}$ is of the form x^{**} for some $x \in X$. So if $f_n \stackrel{*}{\rightharpoonup} f$ in X^* we have

$$F(f_n) = x^{**}(f_n) = f_n(x) \to f(x) = x^{**}(f) = F(f),$$

using the weak-* convergence of f_n to f to take the limit. So $f_n \rightharpoonup f$ in X^* .

Lemma 27.10 Suppose that (f_n) is a bounded sequence in X^* , so that $||f_n||_{X^*} \leq M$ for some M > 0, and suppose that $f_n(a)$ converges as $n \to \infty$ for every $a \in A$, where A is a dense subset of X. Then $\lim_{n\to\infty} f_n(x)$ exists for every $x \in X$, and the map $f: X \to \mathbb{R}$ defined by setting

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, for each $x \in X$

is an element of X^* with $||f||_{X^*} \leq M$.

Proof We first prove that if $f_n(a)$ converges for every $a \in A$, then $f_n(x)$ converges for every $x \in X$. Given $\varepsilon > 0$ and $x \in X$, first choose a such that

$$||x - a||_X \le \varepsilon/3M$$
.

Now, using the fact that $f_n(a)$ converges as $n \to \infty$, choose n_0 sufficiently large that $|f_n(a) - f_m(a)| < \varepsilon/3$ for all $n, m \ge n_0$. Then for all $n, m \ge n_0$ we have

$$|f_{n}(x) - f_{m}(x)|$$

$$\leq |f_{n}(x) - f_{n}(a)| + |f_{n}(a) - f_{m}(a)| + |f_{m}(a) - f_{m}(x)|$$

$$\leq ||f_{n}||_{X^{*}} ||x - a|| + \frac{\varepsilon}{3} + ||f_{m}||_{X^{*}} ||a - x||$$

$$\leq \varepsilon.$$

It follows that $(f_n(x))$ is Cauchy and hence converges.

We now define $f: X \to \mathbb{R}$ by setting

$$f(x) := \lim_{n \to \infty} f_n(x).$$

Then f is linear since

$$f(x + \lambda y) = \lim_{n \to \infty} f_n(x + \lambda y) = \lim_{n \to \infty} f_n(x) + \lambda f_n(y) = f(x) + \lambda f(y)$$

and f is bounded since

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le M||x||.$$

Theorem 27.11 Suppose that X is separable. Then any bounded sequence in X^* has a weakly-* convergent subsequence.

Proof Let $\{x_k\}$ be a countable dense subset of X, and (f_j) a sequence in X^* such that $||f_j||_{X^*} \le M$. As in the proof of Theorem 15.3 we will use a diagonal argument to find a subsequence of the (f_j) (which we relabel) such that $f_j(x_k)$ converges for every k.

Since $|f_n(x_1)| \leq M ||x_1||$, we can use the Bolzano-Weierstrass Theorem to find a subsequence $f_{n_{1,i}}$ such that $f_{n_{1,i}}(x_1)$ converges. Now, since $|f_{n_{1,i}}(x_2)| \leq M ||x_2||$ we can find a subsequence $f_{n_{2,i}}$ of $f_{n_{1,i}}$ such that $f_{n_{2,i}}(x_2)$ converges; $f_{n_{2,i}}(x_1)$ will still converge since it is a subsequence of $f_{n_{1,i}}(x_1)$ which we have already made converge. We continue in this way to find successive subsequences $f_{n_{m,i}}$ such that

$$f_{n_{m,i}}(x_k)$$
 converges as $i \to \infty$ for every $k = 1, \ldots, m$.

By taking the diagonal subsequence $f_m^* := f_{n_{m,m}}$ (as in the proof of the Arzelà–Ascoli Theorem) we can ensure that $f_m^*(x_k)$ converges for every $k \in \mathbb{N}$.

The proof concludes using Lemma 27.10.

Theorem 27.12 Let X be a reflexive Banach space. Then any bounded sequence in X has a weakly convergent subsequence.

Proof Take a bounded sequence $(x_n) \in X$ and let

$$Y := \operatorname{clin}\{x_1, x_2, \ldots\}.$$

Then, Y is separable. Since $Y \subseteq X$ and X is reflexive, so is Y (Lemma 26.10). Therefore $Y^{**} \equiv Y$, which implies that Y^{**} is separable. Lemma 20.5 implies that Y^{*} is separable.

Now, x_n^{**} is a bounded sequence in Y^{**} , so using Theorem 27.11 there is a subsequence x_{n_k} such that $x_{n_k}^{**}$ is weakly-* convergent in Y^{**} to some limit $\Phi \in Y^{**}$. Since Y is reflexive, $\Phi = x^{**}$ for some $x \in Y \subseteq X$.

Now for any $f \in X^*$ we have $f_Y := f|_Y \in Y^*$, so

$$\lim_{k \to \infty} f(x_{n_k}) = \lim_{k \to \infty} f_Y(x_{n_k}) = \lim_{k \to \infty} x_{n_k}^{**}(f_Y)$$
$$= x^{**}(f_Y) = f_Y(x) = f(x),$$

i.e.
$$x_{n_k} \rightharpoonup x$$
.

Lemma 27.13 Let X be a reflexive Banach space, and $T: X \to X$ a compact linear operator. Suppose that (x_n) is a sequence in X such that there exist c_1, c_2 with $0 < c_1 \le c_2$ so that $c_1 \le ||x_n|| \le c_2$ and

$$||Tx_n - x_n|| \to 0$$
 (27.9)

as $n \to \infty$. Then there exists a non-zero $x \in X$ such that Tx = x.

Proof Since (x_n) is a bounded sequence in a reflexive Banach space, by Theorem 27.12 it has a weakly convergent subsequence, $x_{n_j} \rightarrow x$. Since T is compact, it follows from Lemma 27.4 that $Tx_{n_j} \rightarrow Tx$ strongly in X. Since

$$\lim_{j\to\infty}Tx_{n_j}-x_{n_j}=0,$$

it follows that $x_{n_j} \to Tx$. Since strong convergence implies weak convergence, we have $x_{n_j} \to Tx$, and since weak limits are unique and we already have $x_{n_j} \to x$ it follows that x = Tx.

To ensure that $x \neq 0$, note that since Tx_{n_j} converges strongly to Tx = x, it follows from (27.9) that x_{n_j} also converges strongly to x, and so $||x|| \geq c_1$. \square

Lemma 27.14 Suppose that X is reflexive and that K is closed convex subset of X. Then for any $x \in X \setminus K$ there exists at least one $k \in K$ such that

$$||x - k|| = \text{dist}(x, K) = \inf_{y \in K} ||x - y||.$$

Proof Let (y_n) be a sequence in K such that $||x - y_n|| \to \operatorname{dist}(x, K)$. Then (y_n) is a bounded sequence in X, so has a subsequence y_{n_k} that converges weakly to some $k \in X$. Since K is closed and convex, it is also weakly closed (Theorem 27.7), and so $k \in K$. Since $y_{n_k} \to k$, $x - y_{n_k} \to x - k$, and so we have

$$||x - k|| \le \liminf_{k \to \infty} ||x - y_{n_k}|| = \operatorname{dist}(x, K)$$

using (27.1). Since $||x - k|| \ge \operatorname{dist}(x, K)$, we have $||x - k|| = \operatorname{dist}(x, K)$ as required.

Banach space X possesses the Banach–Saks property if every norm bounded sequence $\{x_n\}$ in X contains a subsequence $\{x_{n_k}\}$ such that the sequence of arithmetic means

$$\frac{x_{n_1} + \dots + x_{n_k}}{k}$$

converges in norm.

Example. Hilbert spaces possess the Banach–Saks property.

PROOF. Passing to a subsequence we can assume that $\{x_n\}$ converges weakly to some vector x. In addition, we can assume that x=0. Set $n_1=1$. Since $(x_{n_1},x_n)\to 0$, there exists a number $n_2>n_1$ with $|(x_{n_1},x_{n_2})|\leqslant 1$. If numbers $n_1< n_2< \cdots < n_k$ are already chosen, we find a number $n_{k+1}>n_k$ such that

$$|(x_{n_j}, x_{n_{k+1}})| \le k^{-1}, \quad j = 1, \dots, k.$$

This is obviously possible by weak convergence of $\{x_n\}$ to zero. We observe that $\sup_n ||x_n|| = M < \infty$. Hence

$$\frac{\|x_{n_1} + \dots + x_{n_k}\|^2}{k^2} \leqslant \frac{kM^2 + 2 \cdot 1 + \dots + 2(k-1)(k-1)^{-1}}{k^2} \leqslant \frac{M^2 + 2}{k},$$

which shows norm convergence of the arithmetic means.

Theorem. All uniformly convex Banach spaces possess the Banach–Saks property. Any space with the Banach–Saks property is reflexive.

Theorem. (The Fredholm Alternative) Let K be a compact operator on a complex or real Banach space X. Then

$$Ker(K-I) = 0 \iff (K-I)(X) = X,$$

i.e., either the equation

$$Kx - x = y$$

is uniquely solvable for all $y \in X$ or for some vector $y \in X$ it has no solutions and then the homogeneous equation

$$Kx - x = 0$$

has nonzero solutions.

PROOF. If $\operatorname{Ker}(K-I)=0$, then we have $1\not\in\sigma(K)$. Hence (K-I)(X)=X. Conversely, suppose that

$$(K-I)(X) = X$$
, but $Ker(K-I) \neq 0$.

As we know, the operator K^* on X^* is also compact We observe that ${\rm Ker}\,(K^*-I)=0.$ Indeed, if $f\in X^*$ and $(K^*-I)f=0$, then

$$f((K-I)x) = (K^* - I)f(x) = 0 \quad \text{for all } x \in X.$$

Since (K-I)(X)=X, we have f=0. It follows that the operator K^*-I is invertible. We now take a nonzero element $a\in \mathrm{Ker}(K-I)$. By the Hahn–Banach theorem there is a functional $f\in X^*$ with f(a)=1. Let $g=(K^*-I)^{-1}f$. Then $(K^*-I)g(a)=f(a)=1$. On the other hand, $(K^*-I)g(a)=g((K-I)a)=0$, which is a contradiction.