Grupos modulares de superficies no orientables Ejercicios

Luis Paris

Ejercicio 1.

- (1) Calcular la caraterística de Euler de una superficie orientable de género g y de una superficie no orientable de genero g.
- (2) ¿Cuál es la característica de Euler de una suma conexa de superficies?
- (3) Sea $p: M \to M$ un recubrimento entre dos superficies. Determinar la característica de Euler de M en función del número de hojas de p y de la característica de Euler de M.

Ejercicio 2. Sea N una superficie no orientabe y conexa. Mostrar que existe un unico cubriente con dos hojas $p: M \to N$ tal que M es orientable.

Ejercicio 3. Mostrar que la suma conexa de una superficie orientable de genero g_1 y de una superficie no orientable de genero g_2 es una superficie no orientable de genero $2g_1 + g_2$.

Ejercicio 4. Sean a_1, \ldots, a_p y $b_1, \ldots b_p$ dos colecciones de círuclos esenciales en una superficie M tales que:

- (a) a_i y a_j no son homótopos, y b_i y b_j no son homótopas, para todo $i \neq j$.
- (b) a_i es homotopa a b_i para toda i.

Mostrar que existe una isotopía $H: M \times [0,1] \to M$ tal que $h_0 = \text{id}$ et $h_1(a_i) = b_i$ para todo i, donde $h_0(x) = H(x,0)$ y $h_1(x) = H(x,1)$ para todo $x \in M$.

Ejercicio 5. Sean α, β dos clases de isotopía de círculos. *El índice de intersección* de α y β es $i(\alpha, \beta) = \min\{|a \cap b| \mid a \in \alpha, b \in \beta\}$. Suponemos que $\alpha \neq \beta$ y tomamos $a \in \alpha, b \in \beta$. Mostrar que $i(\alpha, \beta) = |a \cap b|$ si y solamente si a y b no bordean un bígono.

Ejercicio 6. Sean a y b dos círculos, con dos lados, en una superficie $M y n \in \mathbb{Z}$.

- (1) Supongamos que M es orientable. Mostrar que $i(t_a^n(b), b) = |n|i(a, b)^2$.
- (2) Supongamos que M es no orientable de género $g \ge 3$. Mostrar que podemos escoger a, b y n de tal manera que $i(t_a^n(b), b) \ne |n| i(a, b)^2$.
- (3) Supongamos que M es no orientable de genero $g \geq 3$ et $n \neq 0$. Mostrar que $i(t_a^n(b), b) \geq i(a, b)$.

Ejercicio 7. Sea M una superficie. Supongamos que M es de género $g \ge 1$ si M es es orientable y de género $g \ge 3$ y sea a un círculo esencial. Mostrar que t_a est de orden infinito.

Ejercicio 8a. Supongamos que M es una superficie orientable. $Diff^+$ el grupo de todos los difeomorfismos de la superficie y $Diff_0^+$ el subconjunto de difeomorfismos isótopos a la identidad. Mostrar que $Diff_0^+$ es un subgrupo normal de $Diff^+$.

Ejercicio 8b. Supongamos que M es una superficie no orientable. Mostrar que $\mathcal{M}(M)$ no está generada por los giros de Dehn. (Observación: Si M es orientable, entonces $\mathcal{M}(M)$ está generada por los giros de Dehn).

Exercice 9. Sea M sua superficie, b una componente de borde de M y a un arco tal que $a(0), a(1) \in b$. Suponemos que una vecindad regular Σ de $b \cup a$ es una superficie orientable de género 0 con 3 componententes de borde. Denotamos c_1, c_2 las dos componentes de borde de Σ diferentes de b. Mostrar que $s_{a,b} = t_{c_1}^{-1} t_{c_2}$.

Ejercicio 10. Sea M una superficie no orientable y b un círculo de M que bordea una cinta de Möbius. Mostrar que que $t_a = 1$.

Ejercicio 11. Sea $C = \mathbb{S}^1 \times [0,1]$ el cilindro y $t \in \mathcal{M}(C,\partial C)$ el giro de Dehn estándar. Mostrar que $\mathcal{M}(C,\partial C)$ es un grupo ciclico infinito generado por t.

Ejercicio 12. Supongamos que $N=N_{1,2}$ es la cinta de Möbius con un hoyo. Nos fijamos en su componente de borde c de $N_{1,2}$ y denotamos por b a la otra componente de borde. Sean $s_{a,b} \in \mathcal{M}(N_{1,2},c)$ la "boundary slide" de b a lo largo del arco a está representado en la siguiente figura. Mostrar que $s_{a,b}^2 = t_c$, donde t_c representa el giro de Dehn a lo largo de una curva al interior de $N_{1,2}$ isotopo a c.

Ejercicio 13. Sea M una superficie no orientable de genero g con n componentes de borde. Soit \mathcal{A} un simplejo de $\mathcal{C}(M)$ y A un sistema de representantes dmisibles de \mathcal{A} . Denotamos M^0 la compactifiación natural de $M \setminus (\cup_{a \in A} a)$. Mostrar que \mathcal{A} es máximo si y solamente si todas las componentes de M^0 son pantalones (supeficies de género 0 con tres componentes de borde). Cuál es la dimensión máxima de un simplejo de $\mathcal{C}(M)$? Mostrar que existen simplejos máximos que no son de dimensión máxima.

Ejercicio 14. Sean $\mathcal{A} \subset \mathcal{C}(M)$ un simplejo y $\Lambda_{\mathcal{A}} : \mathcal{M}_{\mathcal{A}}(M) \to \mathcal{M}(M_{\mathcal{A}})$ el homomorfismo de reducción a lo largo de \mathcal{A} . Mostrar que $t_{\alpha} \in \text{Ker}(\Lambda_{\mathcal{A}})$ para toda $\alpha \in \mathcal{A}$.

Ejercicio 15. Sean N una surperficie conexa compacta no orientable con o sin borde y sea $p:M\to N$ el único recubriemento doble con M orientable. Sea $J:M\to M$ la única traslación no trivial del recubrimiento $p:M\to N$ et $F\in \operatorname{Homeo}(N)$. Mostrar que F tiene dos levantamientos en M, uno que preserva la orientación y otro que invierte la orientación.