Estructura

Código Fuente

```
package tp03;
                                                          package tp03;
public class ArbolBinario<T> {
                                                           public class NodoBinario<T> {
                                                           private T dato;
private NodoBinario<T> raiz;
                                                           private NodoBinario<T> hijoIzquierdo;
                                                           private NodoBinario<T> hijoDerecho;
public ArbolBinario(T dato) {
   this.raiz = new NodoBinario<T>(dato);
                                                           NodoBinario(T dato){
                                                             this.dato = dato;
 private ArbolBinario(NodoBinario<T> nodo) {
                                                           public T getDato() {
    this.raiz = nodo;
                                                             return this.dato;
private NodoBinario<T> getRaiz() {
                                                           NodoBinario<T> getHijoIzquierdo() {
    return this.raiz;
                                                             return this.hijoIzquierdo;
                                                           NodoBinario<T> getHijoDerecho() {
public T getDatoRaiz() {
                                                             return this.hijoDerecho;
  return (this.raiz==null) ? null:this.raiz.getDato();
                                                           public void setDato(T dato){
                                                             this.dato = dato;
public ArbolBinario<T> getHijoIzquierdo() {
  return
                                                          public void setHijoIzquierdo(NodoBinario<T> hijoIzq) {
   new ArbolBinario<T>(this.raiz.getHijoIzquierdo());
                                                             this.hijoIzquierdo = hijoIzq;
public void agregarHijoIzquierdo(ArbolBinario<T> hijo) {
                                                          public void setHijoDerecho(NodoBinario<T> hijoDer) {
    this.raiz.setHijoIzquierdo(hijo.getRaiz());
                                                            this.hijoDerecho = hijoDer;
```

Arboles Binarios Creación

```
ArbolBinario<Integer> ab = new ArbolBinario<Integer>(new Integer(40));
ArbolBinario<Integer> hijoIzquierdo = new ArbolBinario<Integer>(25);
hijoIzquierdo.agregarHijoIzquierdo(new ArbolBinario<Integer>(10));
hijoIzquierdo.agregarHijoDerecho(new ArbolBinario<Integer>(32));
ArbolBinario<Integer> hijoDerecho = new ArbolBinario<Integer>(78);
ab.agregarHijoIzquierdo(hijoIzquierdo);
ab.agregarHijoDerecho(hijoDerecho);
```


Arboles Binarios Recorridos

Preorden

Se procesa primero la raíz y luego sus hijos, izquierdo y derecho.

Inorden

Se procesa el hijo izquierdo, luego la raíz y último el hijo derecho

Postorden

Se procesan primero los hijos, izquierdo y derecho, y luego la raíz

Por niveles

Se procesan los nodos teniendo en cuenta sus niveles, primero la raíz, luego los hijos, los hijos de éstos, etc.

Arboles Binarios Recorrido PreOrden

Se procesa primero la raíz y luego sus hijos, izquierdo y derecho.

```
public class ArbolBinario<T> {
 private NodoBinario<T> raiz;
 public void printPreorden() {
   System.out.println(this.getDatoRaiz());
   if (!this.getHijoIzquierdo().esVacio())
    this.getHijoIzquierdo().printPreorden();
   if (!this.getHijoDerecho().esVacio()){
    this.getHijoDerecho().printPreorden();
                                                    🥷 Problems 🔞 Javadoc 🗟 Declaration 📮 Console 💢
 public boolean esVacio() {
                                                    <terminated> ImprimirPreOrdenAB [Java Applica
    return (this.getDatoRaiz() == null);
```

Arboles BinariosRecorrido por Niveles

Recorrido implementado en la clase ArbolBinario

```
public class ArbolBinario<T> {
private NodoBinario<T> raiz;
 public void recorridoPorNiveles() {
  ArbolBinario<T> arbol = null;
  ColaGenerica<ArbolBinario<T>> cola = new ColaGenerica<ArbolBinario<T>>();
  cola.encolar(this);
  cola.encolar(null);
  while (!cola.esVacia()) {
    arbol = cola.desencolar();
    if (arbol != null) {
                                                           Problems @ Javadoc 📵 Declaration 📮 Console 💢
       System.out.print(arbol.getDatoRaiz());
       if (!arbol.getHijoIzquierdo().esVacio()){)
           cola.encolar(arbol.getHijoIzquierdo());
                                                           <terminated> ImprimirPreOrdenAB [Java Applica
       if (!arbol.getHijoDerecho().esVacio()){
           cola.encolar(arbol.getHijoDerecho());
    } else
       if (!cola.esVacia()) {
            System.out.println();
           cola.encolar(null);
```

Es árbol lleno?

Dado un árbol binario de altura h, diremos que es lleno si cada nodo interno tiene grado 2 y todas las hojas están en el mismo nivel (h). Este método determine si un árbol binario es lleno.

```
public boolean lleno() {
ArbolBinario<T> arbol = null:
ColaGenerica<ArbolBinario<T>> cola = new ColaGenerica<ArbolBinario<T>>();
boolean lleno = true;
                                                                                            nivel
cola.encolar(this);
int cant nodos=0;
                                                                                              0
cola.encolar(null);
int nivel= 0;
                                                                                              1
while (!cola.esVacia() && lleno) {
  arbol = cola.desencolar();
  if (arbol != null) {
      System.out.print(arbol.getDatoRaiz());
      if (!arbol.getHijoIzquierdo().esvacio()) {
        cola.encolar(arbol.getHijoIzquierdo());
        cant nodos++;
      if (!(arbol.getHijoDerecho().esvacio()) {
        cola.encolar(arbol.getHijoDerecho());
                                                                                                    cola
        cant nodos++;
                                                                    nu11
                                                                             2
                                                                                    5
  } else if (!cola.esVacia()) {
      if (cant nodos == Math.pow(2, ++nivel)) {
         cola.encolar(null);
                                                                          arbol = cola.desencolar();
         cant nodos=0;
         System.out.println();
                                                                      arbol = null
                                                                      cant nodos = 2
      else lleno=false;}
                                                                      nivel= 0 -> 1
  return lleno;
```

Arboles Binarios Cuál es la frontera del árbol?

Se define frontera de un árbol a las hojas de un Árbol Binario recorridas de izquierda a derecha.

```
public class ArbolBianrio<T>{
 public ListaGenerica<T> frontera() {
    ListaGenerica<T> l = new ListaEnlazadaGenerica<T>();
    this.preordenFrontera(1, this);
    return 1;
 private void preordenFrontera(ListaGenerica<T> 1, ArbolBinario<T> ab) {
   if (ab.esHoja()) {
     l.agregarFinal(ab.getDatoRaiz());
   if (!ab.getHijoIzquierdo().esVacio()) {
     ab.getHijoIzquierdo().preordenFrontera(1, ab.getHijoIzquierdo());
   if (!ab.getHijoDerecho().esVacio()) {
     ab.getHijoDerecho().preordenFrontera(1, ab.getHijoDerecho());
```

Arboles BinariosArbol de Expresión

Un árbol de expresión es un árbol binario asociado a una expresión aritmética donde:

- Nodos internos representan operadores
- Nodos externos (hojas) representan operandos

Arboles Binarios Convertir expresión posfija en Árbol de Expresión

Este método convierte una expresión *postfija* en un ArbolBinario. Puede estar implementado en cuaquier clase.

```
public ArbolBinario<Character> convertirPostfija(String exp) {
 ArbolBinario<Character> result;
PilaGenerica<ArbolBinario<Character>> p = new PilaGenerica<ArbolBinario<Character>>();
 for (int i = 0; i < \exp.length(); i++) {
    Character c = exp.charAt(i);
    result = new ArbolBinario < Character > (c);
    if ((c == '+') || (c == '-') || (c == '/') || (c == '*')) {
       // Es operador
       result.agregarHijoDerecho(p.desapilar());
       result.agregarHijoIzquierdo(p.desapilar
    p.apilar(result);
 return (p.desapilar());
```

Convertir expresión prefija en Arbol de Expresión

Este método convierte una expresión *prefija* en un ArbolBinario. Puede estar implementado en cuaquier clase.

```
public ArbolBinario<Character> convertirPrefija(StringBuffer exp) {
  Character c = exp.charAt(0);
  ArbolBinario < Character > result = new ArbolBinario < Character > (c);
  if ((c == '+') || (c == '-') || (c == '/') || c == '*') {
    // es operador
    result.agregarHijoIzquierdo(this.convertirPrefija(exp.delete(0,1)));
    result.agregarHijoDerecho(this.convertirPrefija(exp.delete(0,1)));
  // es operando
  return result;
          /*+abc+de
```