Ex 1 - Soit f la fonction définie par $x \mapsto \frac{1}{1-x^2}$

- 1) Déterminer Df, l'ensemble de définition de f.
- 2) Déterminer les images de 2, -1, $\frac{1}{4}$.
- 3) Représenter graphiquement f dans un repère orthonormé d'unité 2cm.
- 4) Déterminer algébriquement le signe de *f* et interpréter graphiquement.
- 5) Résoudre graphiquement $f(x) \ge 1$.

Ex 2 - On définit la fonction f sur \mathbb{R} par : $x \mapsto \sqrt{2} x - \sqrt{3}$

- 1) Calculer l'image de $-\sqrt{2}$.
- 2) Déterminer le ou les antécédents de 0 et $\sqrt{2}$.
- 3) Étudier le signe de f.
- 4) Tracer la courbe Cf.

Ex 3 - Soit la fonction
$$f$$
 définie par $f(x) = \frac{\sqrt{x^2 + x}}{1 - x}$

- 1) Déterminer le signe de $x^2 + x$ en fonction de x. En déduire Df, l'ensemble de définition de f.
- 2) Déterminer le signe de f.
- 3) Tracer *Cf* la courbe représentative de *f* dans un repère orthonormé d'unité 2cm.
- 4) Résoudre graphiquement (E) : f(x) = x.
- 5) Résoudre graphiquement (I): f(x) > 1.

Ex 4 - Soit f la fonction définie sur \mathbb{R} par : f(x) = x(x+2)-8-4x

- 1) Déterminer le signe de f.
- 2) f admet-elle un extremum? Si oui, le déterminer.
- 3) Représenter graphiquement f.

Ex 5 - f est la fonction définie sur \mathbb{R} par : $f(x) = -3x^2 + 6x + 9$

- 1) Déterminer le ou les antécédents de 9
- 2) Montrer que pour tout x de \mathbb{R} , f(x) = -3(x-3)(x+1)
- 3) Déterminer le signe de f.
- 4) Représenter graphiquement f.
- 5) Montrer que f admet un extremum que l'on caractérisera. Interpréter graphiquement.

Ex 6 - Soit f définie sur]-3; +
$$\infty$$
[par : $x \mapsto \frac{1}{x+3}$

- 1) Étudier les variations de *f* et faire un tableau de variations.
- 2) En déduire un encadrement de f(x) lorsque : $0 \le x \le 2$.
- 3) Tracer la courbe *Cf*.
- 4) Résoudre graphiquement f(x) > x + 1/2.

Ex 7 - Soit f la fonction définie par $x \mapsto \frac{x+4}{x+2}$

- 1) Déterminer Df.
- 2) Calculer les images de 0 et $\sqrt{2}$.
- 3) Déterminer le signe de *f* puis interpréter graphiquement.
- 4) Étudier les variations de f et faire un tableau de variations.
- 5) Représenter graphiquement f.
- 6) Résoudre graphiquement : f(x) = 3.

Ex 8 - Soit f la fonction définie par
$$x \mapsto \frac{12}{x^2 + 3}$$

- 1) Déterminer Df, l'ensemble de définition de f.
- 2) Déterminer les images par f de $-\frac{1}{2}$, $1+\sqrt{2}$.
- 3) Déterminer les antécédents de 3.
- 4) Montrer que f admet 4 pour extremum sur \mathbb{R} .
- 5) Déterminer le sens de variations de f sur \mathbb{R}^+ .
- 6) Soit $a \in \mathbb{R}^+$. En vous appuyant sur les variations ci-dessus, comparer les nombres f(a) et f(a + 1).

Ex 9 - Soit f la fonction définie par
$$x \mapsto \frac{4}{1+x^2}$$

- 1) Montrer que *f* admet un maximum. Interpréter graphiquement.
- 2) Déterminer le sens de variations de *f* et dresser un tableau de variations.
- 3) Représenter graphiquement f dans un repère orthogonal d'unités 2cm en abscisses et 4cm en ordonnées.
- 4) Résoudre graphiquement l'inéquation : f(x) > x + 2.

Ex 10 - Soit f la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 - x - 4$

- 1) Montrer que f admet un minimum en x = 1/4.
- 2) Déterminer les variations de f et dresser un tableau de variations.
- 3) En justifiant à l'aide des variations, donner le meilleur encadrement possible de f(x) dans chacun des cas suivants :

a)
$$x \in [1; 2]$$
 b) $x \in [-2; -1]$ c) $x \in [-2; 2]$

Ex 11 - Soit f la fonction définie par
$$f(x) = \frac{10}{x^2 - 4}$$

- 1) Déterminer Df, l'ensemble de définition de f.
- 2) Montrer que, sur l'intervalle]-2; 2[,f] admet un maximum en x=0.
- 3) Suivant les valeurs du réel k, déterminer sans justifier le nombre de solutions de l'équation f(x) = k.