תרגיל 7 – מצב סינוסי עמיד

Es C R2 B

מצא שקול נורטון לנקודות AB, למצב סינוסי עמיד.

.2

.1

 $e_1(t) = \cos(\omega t)$ נתון המקור:

- ${
 m .e}_1({
 m t})$ אחרי העירור 63.45° מפגר ב- 63.45° אחרי העירור עבו המתח
 - ב. חשב את $v_2(t)$ בתדר זה.
 - ${
 m v_s} = \cos(\omega t)$:נתון המעגל הבא עם המקור. 3

- א. מצא את v(t) במצב היציב.
- $H(\mathrm{jw}) = rac{\mathrm{V(jw)}}{\mathrm{V_S(jw)}}$ ב. נגדיר את פונקצית התמסורת:

מצא את רוחב הסרט (בין נקודות ה - 3dB) של המסנן המתקבל.

. ג. מצא את התדר, שבו הערך המוחלט של $\mathrm{H}(\mathrm{jw})$ הוא מקסימלי.

.4

מבוא להנדסת חשמל - הפקולטה להנדסה, תרגיל בית מס 7

- . $Z_{in}(jw)$ א. מצא את המשרעת והפאזה של עכבת המבוא
- מצא את . $\mathbf{v}_{\mathrm{s}}(t) = 10\cos(2t)$. מפעילים את מקור המתח הבא במבוא: ו $\mathbf{i}(t)$ במצב יציב.
- ג. מפעילים את מקור הזרם הבא במבוא: $i_s(t) = 1 + \cos t + \cos(2t)$. מצא את גוים את מקור הזרם הבא במבוא v(t) במצב יציב.

5. נתון המעגל הבא:

המעגל פועל במצב סינוסי עמיד. נתונים המתחים:

$$v_a = 10\cos(1000t + 60^\circ)$$

$$v_b = 5\cos(1000t - 30^\circ)$$

. $Z_{C} = -10\,\mathrm{j}$ גודלה של עכבת הקבל בתדר זה הוא

- א. קבע את העכבה של הרשת n בתדר ω=1000.
 - .. חשב את ההספק הממוצע הנמסר לרשת n.