Akwizycja obrazu na przykładzie aparatu fotograficznego; operacje na obrazach (I)

WYKŁAD 2 Dla studiów niestacjonarnych 2021/2022

Dr hab. Anna Korzyńska, prof. IBIB PAN

Obraz w naukach technicznych i przyrodniczych to:

Zwarty, jednorodny i przestrzennie uporządkowany zbiór sygnałów:

- związanych z cechą/cechami pomiarowymi, na bazie których tworzymy obraz (natężenie fali elektromagnetycznej, akustycznej, wielkości nie falowe np. czas relaksacji)
- dostosowanych do materialnego nośnika obrazu (papieru, kliszy, dyskietki, pamięci dyskowej itp.)
- niosących informację o odwzorowywanej rzeczywistości

Rozdzielczość obrazu

- Rozdzielczość przestrzenna określa stopień rozróżnialności detali; tym lepsza, im większa wartość N/na jednostkę długości. Jest wyrażana w jednostkach zwanych punktami na cal (ang. Dot per inch)
- Rozdzielczość poziomów szarości określa ilość rozróżnianych poziomów szarości lub kolorów; tym lepsza, im większa wartość M. Jest dobierana tak, aby wartość M była potęgą liczby 2 – co ułatwia kodowanie.
- Inne rozdzielczości: całkowita, interpolowana, urządzeń prezentacji obrazu jak monitor, drukarka, ploter, urządzeń akwizycji.

Histogram to wykres słupkowy przedstawiający ilość pikseli o każdej potencjalnej wartości poziomu szarości lub intensywności koloru występującej w obrazie.

- Statystyka odzwierciedlająca rozkład jasności punktów w obrazie.

- Pewna estymata rozkładu jasności oryginalnego obrazu analogowego i rzeczywistości .

Histogram 7/9

Kanal: Wartość

Wartość

Wartość

Wartość

Kafelak przewnki 18790

Kafelak przewnku 107.0.0

Akwizycja obrazu cyfrowego

Akwizycja (pozyskiwanie, zbieranie) obrazu - przetworzenie informacji o fizycznym obiekcie lub scenie do postaci zbioru danych dyskretnych (f(x,y) obraz cyfrowy) nadających się do zapisania w pamięci komputera, a następnie do wyświetlenia, drukowania i dalszego przetwarzania za pomocą odpowiedniego oprogramowania.

Elementy procesu akwizycji:

- 1. Oświetlenie obrazu.
- 2. Formowanie obrazu (optyczne).
- 3. Detekcja obrazu.
- Formowanie wyjściowego sygnału z urządzenia (kamera, skaner)

Najważniejsze elementy formowanie sygnału w procesie akwizycji **Dyskretyzacja obrazu** to dyskretyzacja funkcji f (x,y) na dwóch poziomach: -przestrzenna (próbkowanie dziedziny funkcji -amplitudowa (kwantyzacja wartości funkcji)

Inherentne cechy procesu akwizycji

- Nakładanie szumu i delikatnego rozmycia krawędzi (dla aparatu cyfrowego - szumu kwantyzacji, czyli odpowiednika ziarna dla tradycyjnej fotografii oraz s-owaty kształt linii profilu przechodzącej przez krawędzie)
- Nakładanie zniekształceń (dla aparatu cyfrowego - zniekształcenia obiektywów szerokokątnych, dystorsje soczewek, gorące i zimne pisksle w matrycy, halo na około obiektów fotografowanych na tle

Urządzenia akwizycji charakteryzuje się przez podanie informacji o poziomie szumu i rozmycia krawędzi oraz zakłóceń radiomatrycznych, geometrycznych i chromatycznych

Zniekształcenia obrazu

w procesie akwizycji:

- Zniekształcenia radiometryczne to zniekształcenia odczytu wartości cechy. na podstawie której tworzymy obraz;

 nierównomiernością oświetlenia,

 błędami konwersji oświetlenie – sygnał elektryczny (tzn. błędami detekcji, uszkodzeniami przetworników)
- Zniekształcenia geometryczne to zniekształcenia odczytu położenia odczytanych wartości względem siebie dla obrazów kolorowych i wielospektralnych

Zniekształcenia (aberracje) **chromatyczne** to zniekształcenia wynikające z charakterystyki współczynnika odbicia lub przejścia przez ośrodek fali elektromagnetyczne o różnej długości

Celem wstępnego przetwarzania obrazu jest redukcja zniekształceń obrazu powstałych w procesie akwizyci

Szum powstaje na skutek

- Nałożenia termicznych ruchów elektronów w materii na mierzony sygnał, który jest zamieniany na prąd (np.: w przetwornikach zamieniających światło na prąd zgodnie ze zjawiskiem fotoelektrycznym)
- Niestabilności źródła formowania sygnału, np.: promieniowania X, fali akustycznej czy radiowej;

Zrozumienie zjawiska i jego przyczyn zwykle prowadzi do unikania zaszumienia, a nie do jego likwidacji czy choćby redukcji

Miara szumu

Stosunek sygnału do szumu (ang. signal to noise ratio – SNR), jednostka decybele dB.

Brak "odczuwania" szumu oznacza, że jego stosunek do sygnału jest taki, że nasze sensory (wzrokowe, słuchowe) odbierają sygnał a pomijają szum.

13

Szum nakładany na obraz powstały w cyfrowym aparacie

wynika z:

- Parametrów technicznych matrycy fotoczułej (wielkość sensora)
- Niestabilności światła lub z jego niewielkiej ilości (nocą)
- Zjawisk towarzyszących zamianie światła na prąd (ang. banding noise, trunced, ..)
- Nałożenia termicznych ruchów elektronów na mierzony sygnał

1/1

Szum w obrazach cyfrowych zależny od:

- typu (egzemplarza) aparatu cyfrowego
- od ustawień przy wykonywaniu zdjęcia (czułość ISO, czas naświetlenia)
- jasności fotografowanych obiektów i obszarów (w cieniach szumu jest więcej niż w tonach jasnych)
- temperatury otoczenia im wyższa tym silniej widać

(ang. Fixed pattern noise)

15

Redukcja szumu

- Na poziomie akwizycji:
 - Wybór maksymalnie długiego czasu naświetlania
 - Wybór niskich czułości ISO
 - Chłodzenie matrycy
 - Wykonywanie zdjęć wielokrotnych (braketing)
 - Wykonywanie zdjęć lekko prześwietlonych (HighKey)
- Na poziomie przetwarzania (obróbki) obrazów:
 - Uśrednianie zdjęć wielokrotnych
 - Filtrowanie
- Uwaga: Nie redukujemy szumu przez
 - Rozjaśnianie obrazu w miejscach niedoświetlenia
 - Rozjaśnianie cieni w obrazie

Zniekształcenia radiometryczne

Zniekształcenia radiometryczne

(ang. fixed pattern noise)

- mają charakter **stacjonarny**,
- są nieprawidłowym odwzorowaniem jasności światła, padającego na element światłoczuły, na odpowiadającą mu wartość zapisaną w tablicy obrazu (powstaje podczas zamiany kwantu światła na prąd albo podczas kodowania),
- nasilają są przy bardzo długim czasie ekspozycji
- nasilają się w miarę podnoszenia temperatury otoczenia.

22

Korekcja radiometryczna Korekcja zapewnia jednakowe odwzorowanie jasności bez względu na to w jakim miejscu pola widzenia jasność jest rejestrowana. Globalne max Jasny obraz referencyjny pozycja (i,j) max lokalne pozycja (i,j) max k = rozp - global pozycja (i,j) max k = rozp - global pozycja (i,j) max k = rozp - global pozycja (i,j) min lokalne min Sumacyjna Iloczynowa (addytywna) Iloczynowa (addytywna)

Korekcja iloczynowa

 $P_{KORM}(x,y) = [P(x,y) - KORA(x,y)] \cdot KORM(x,y)$

P(x,y) - wartość piksela obrazu wejściowego

KORM(x,y) – wartość współczynnika korekcji dla piksela o współrzędnych (x,y) obliczona według wzoru:

 $KORM(x,y) = P_{KORA\ max}/P_{KORA}(x,y)$

 $P_{KORAmax}$ - maksymalna wartość piksela w obrazie $[P_{KORA}(x,y)]$

P_{KORM}(x,y) - wartość piksela obrazu wynikowego (po korekcji radiometrycznej)

25

Zniekształcenia geometryczne

Zniekształcenia geometryczne

Zniekształcenia geometryczne (dystorsje) są spowodowane:

nieliniowością układów optycznych wchodzących w skład toru optycznego np.: mikroskopu

- nierównoległością płaszczyzn obrazu i matrycy światłoczyje j np.: krzywizna Ziemi w zdjęciach satelitarnych, zmienna wysokości powierzchni ziemi w zdjęciach do sporządzania map, skaningowy mikroskop elektronowy,
- obrotem płaszczyzn obrazu i matrycy światłoczułej np.: skróty perspektywy
- zmianami skali

lub połączeniem powyżej wymienionych.

Konieczność usuwania zniekształceń geometrycznych:

- Pomiary odległości i pól powierzchni,
- Dopasowywanie obiektów na obrazach,
- Dopasowywanie obrazów na potrzeby rekonstrukcji obrazu z fragmentów,
- Tworzenie map, planów na podstawie zdjęć,
- Nakładania obrysów mapy na zdjęcia satelitarne, pogodowe.
- Nakładanie map rozkładu potencjału elektrycznego na powierzchnie 3D.

Realizacja korekcji zniekształceń geometrycznych

- Aproksymacja transformacji wielomianem
- Przekształcenia rozciągające
- Przekształcenia afiniczne

Aproksymacja transformacji wielomianem pierwszego stopnia

u=ax + by + c

v=dx + ey + f

x, y - obraz niezniekształcony,

u, v - obraz zniekształcony,

punkty kontrolne (niewspółliniowe) (x_1,y_1) , (x_2,y_2) , (x_3,y_3) ,

 $(u_1,v_1), (u_2,v_2), (u_3,v_3),$

30

Przykład:	Obraz zniekształcony																
Dane:	5	5	2	3	2	3	3	2	2	3	3	2	1	1	0	0	\overline{y}
$(x_1,y_1) = (8,10)$	6	6	3	2	3	4	5	3	2	4	0	1	1	1	1	0	y
$(x_2,y_2) = (6,4)$	5	4	3	2	1	0	0	0	1	4	2	3	2	2	2	8	
$(x_3,y_3) = (10,2)$	4	3	2	2	2	2	1	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	7	7	7	1	1	1	1	1	1	
u ₁ ,v ₁) = (14,6)	1	1	1	1	4	1	9	12	9	8	1	1	1	1	1	1	
(u ₂ ,v ₂) = (11,7)	1	1	1	1	4	9	9	12	_	9	1	1	1	1	1	1	
$(u_3, v_3) = (10,5)$	1	1	1	1	1	9	-		11	-	1	1	1	1	1	1	
	1	1	1	1	1	9			11		1	1	1	1	1	1	
Znaleźć:	1	1	'n	1	1	9	11	-	12	9	1	1	1	1	1	1	
braz skorygowany.	1	1	1	1	9	11	12	11	11	9	1	1	1	1	1	1	
znalezienie a,b,c,d,e,f,	2	1	1	1	9	12	12	12	10	9	1	1	1	1	1	1	
rozwiązując	3	1	1	1	8	9	12	10	12	8	1	1	1	1	1	1	
5 równań liniowych	6	5	2	3	7	8	8	10	12	12	9	1	1	1	1	1	
1-go stopnia).	5	6	4	3	2	1	8	8	9	7	1	1	1	1	1	1	

Siatka afiniczna

Transformacja lokalna

Przekształcenia afiniczne Przekształcenia afiniczne plaszczyzny i przestrzeni w siebie obejmują m.in. izometrie (np. przesunięcie równoległe, obrót, symetrie osiową, symetrię płaszczyznową, symetrię z obrotem, symetrię z poślizgiem), jednokładności i powinowactwa osiowe.

Niezmiennikami afinicznymi są: równoległość prostych i skośne położenie prostych

Zniekształcenia chromatyczne

Zniekształcenia chromatyczne

- Powstają wtedy, gdy tworzymy obraz wykorzystując więcej niż jeden zakres fali elektromagnetycznej (obrazy wielokanałowe np.: trójkanałowe, multispektrakne)
- oraz wtedy, gdy wykorzystujemy różne cechy pomiarowe do tworzenia pojedynczego obrazu (obrazy multimodalne)

Fale elekromagnetyczne o różnej długości inaczej załamują się na soczewkach

Wczesne (1909) przykłady fotografii kolorowej składanej na szkle obfitują w efekty rozdzielenia barwy na kanały

Zdjęcia w kolorze z 1909 Siergiej Prokudin-Gorski,

pionier barwnej fotografii

Narzędzia do przetwarzania obrazów

Operacje na obrazach

Metody w przetwarzaniu obrazów ze względu na sposób liczenia:

- •Globalne (operacje na wszystkich pikselach obrazu)
- •Lokalne (operacje na ROI; ang. region of interest)
 - Punktowe;
 - Małym otoczeniu

Ze względu na typy matematycznych (w tym arytmetycznych, logicznych , statystycznych) operacji, które są wykonywane na wartościach intensywności.

Funkcje operacji na obrazach będą omawiane przy każdej operacji oddzielnie.

Operacje na obrazach

➤ Operacje punktowe (jednopunktowe):

Jednoargumentowe [q(i,j)] = f [p(i,j)] Wieloargumentowe $[q(i,j)] = f [p_1(i,j), p_2(i,j), ..., p_k(i,j)]$

- ➤Operacje sąsiedztwa (kontekstowe) [q(i,j)] = f[p(i,j), p(i-1,j-1), p(i+1,j+1),.]
- ➤Operacje globalne transformaty [q(i, j)] = f[P]

Operacje punktowe (lokalne, jednopunktowe)

Podział: Jednoargumentowe Wieloargumentowe

Operacje punktowe

Proste:

- operacje jednoargumentowe transformacje jasności
- operacje arytmetyczne: jedno-, dwu- i wieloargumentowe
- manipulowanie histogramem

Zaawansowane:

- metody progowania
- wyrównywanie histogramu
- klasyfikacja punktów obrazu

42

Operacje jednopunktowe jednoargumentowe

Są to operacje, w których na wartość zadanego piksela obrazu wynikowego o współrzędnych (*i, j*) ma wpływ wartość **tylko jednego piksela** obrazu pierwotnego o współrzędnych (*i, j*):

[q(i, j)] = f[p(i, j)] f - operator (liniowy lub nieliniowy)

[p(i, j)] - obraz pierwotny

[q(i,j)]- obraz wynikowy

p(i,j), q(i,j)- wartości piksela o współrzędnych (i, j)

obrazu pierwotnego i wynikowego

Rozjaśnienie obrazu Wykroczenie poza zakres dopuszczalnych wartości Do prezentacji informacji zawartej w ciemnych i średnich tonach (cieniach), jeśli jasne tony są nieistotne

Manipulowanie histogramem

Zapewnianie odpowiedniego zakresu poziomów szarości przez:

- Rozciąganie (na pełny zakres poziomów jasności normalizacja)
- Zawężanie
- Modulowanie

Zapewnia dostosowanie do formy prezentacji, do przekazu informacji lub emocji, do planowanych kolejnych operacji na obrazie,

55

Nieliniowe rozciąganie histogramów

Służy do uwypuklenia pewnych zakresów poziomów szarości kosztem innych, według typowych funkcji matematycznych:

gamma, wykładniczej, pierwiastkowej, kwadratowej, logarytmicznej czy odwrotności funkcji logarytmicznej

lub

według dowolnie zdefiniowanej funkcji UOP (za pomocą: krzywej tonalnej lub tablicy LUT)

61

Nieliniowe rozciąganie histogramów

Nieliniowe rozciąganie histogramów

Zwężenie zakresu poziomów szarości

Przez zmniejszenie ilości poziomów faktycznie występujących w obrazie w stosunku do potencjalnie występujących

Manipulacja przez zawężanie zakresu histogramu

Wyrównywanie histogramu: takie przekształcenia jasności, aby wszystkie jasności była równomiernie reprezentowane w obrazie (narzędzie matematyczne to dystrybuanta czyli całka z histogramu) Wyrównanie typu equalizacja (ang. Equlisation): Rozszerzenia odległości między słupkami odpowiadającymi odcieniom szarości silniej reprezentowanymi (czyli o wysokich słupkach) a zawężenie pomiędzy słupkami o małej wysokości.

Progowanie

Jest to taka wersja operacji zmniejszenia ilości poziomów szarości do dwóch, dla której istnieje możliwość arbitralnego wyboru wartości progu (p_1) czyli szarości granicznej, od której przyporządkowujemy wyższy poziom szarości (najczęściej biel) i poniżej której przyporządkowujemy niższy próg szarości (najczęściej czerń).

$$q = \begin{cases} L_{\min} & \text{dla } p \leq p_1 \\ L_{\max} & \text{dla } p > p_1 \end{cases}$$

Różne typy progowania

Progowanie z pojedynczym progiem segmentacji

$$q = \begin{cases} L_{\min} & \text{dla } p \le p_1 \\ L_{\max} & \text{dla } p > p_1 \end{cases}$$

Progowanie przedziałami

$$q = \begin{cases} L_{\text{max}} & \text{dla } p_1 \le p \le p_2 \\ L_{\text{min}} & \text{dla } p < p_1 \text{ lub } p > p_2 \end{cases}$$

- q p, 15 p
- Progowanie z warunkiem spójności
- lub warunkiem nałożonym na wielkość obiektu
- Progowanie adaptacyjne
- Progowanie rekurencyjne
- Progowanie hierarchiczne (piramidowe, skalowalne)

Operacja progowania (binaryzacji) $q = \begin{cases} 0 & dla & p \leq p_1 \\ 1 & dla & p > p_1 \end{cases}$ $p_1 = 5$

