Ciencias de la Computación I

Autómatas Finitos y Lenguajes Regulares

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Autómatas Finitos y Lenguajes Regulares

Problema:

Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si $x \in L$ o $x \notin L$.

Autómatas Finitos

- Un **Autómata Finito** es un modelo matemático de una máquina abstracta con entradas y salidas discretas.
- Dos puntos de vista:
 - ➤ Como dispositivo **reconocedor** de la pertenencia de una cadena a un lenguaje regular.
 - > Como traductor de una cadena en otra.
- Un AF puede leer símbolos de una cinta, y puede estar en un número finito de estados.

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Autómatas Finitos

Aplicaciones:

- ✓ Análisis de cadenas de caracteres (búsqueda de una cadena en un archivo de texto, reconocimiento de cadenas que satisfacen ciertos criterios, etc.)
- ✓ Reproductor de video, máquina expendedora de boletos, etc.

cinta de entrada (contiene cadena a ser leída)

cabeza lectora (se mueve a derecha)

mecanismo de control

Estados del AF:

- ✓ Cantidad finita.
- ✓ Representan la "memoria" del autómata.
- ✓ Un estado inicial.
- ✓ Al menos un estado final o de aceptación.

Dada una cadena x en la cinta de entrada, si el AF:

- > termina en un estado final
- ightarrow cadena aceptada
- > termina en un estado no final
- \rightarrow cadena rechazada

 \mathbf{e}_{0}

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Autómatas Finitos Reconocedores

 $L = \{ x / x \in \{a, b, c\}^* \ y \ x \ termina en b \}$

Cadenas que pertenecen a L Cadenas que no pertenecen a L

> b ab bb С cb aa aab ba bab

Dos situaciones para distinguir: Dos estados:

- el último símbolo leído es distinto de b

- el último símbolo leído es b

e₁

Autómatas Finitos Reconocedores

Para definir un AF reconocedor es necesario indicar:

- ✓ el alfabeto de entrada: A
- ✓el conjunto finito de estados: E={e₀, e₁, ...,e_n}
- √ de estos estados, un único estado inicial: e

 0
- √ de estos estados, uno o varios estados finales: F
- ✓ una función de transición de estados: δ (indica a qué estado

pasar luego de leer un símbolo en la cinta

de entrada)

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Autómatas Finitos Reconocedores

Formalmente, un AF reconocedor determinístico (AFD) se define como una quintupla

$$M = \langle E, A, \delta, e_i, F \rangle$$

- ✓ E es un conjunto finito de estados; $E \neq \emptyset$
- √ A es el alfabeto de entrada
- ✓ δ es la función de transición de estados; δ : E x A \rightarrow E $\delta(e_j, a) = e_k$ la máquina puede pasar del estado e_j al e_k después de leer el símbolo a en la cinta $(e_j, e_k \in E; a \in A)$
- \checkmark e_i es el estado inicial; e_i \in E
- √ F es el conjunto de estados finales o de aceptación; F ⊆ E

Autómatas Finitos Reconocedores

Un AF reconocedor determinístico se puede representar gráficamente usando un diagrama de transición de estados.

- cada estado $e_i \in E$
- e_{j}

- estado inicial e

- cada estado final $e_f \in F$

-cada transición entre estados $\delta(e_i,\,a)=e_k \quad \text{para } e_i,\,e_k\in\,E,\,a\in\,A$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Finitos Reconocedores

 $L = \{ x / x \in \{a, b, c\}^* \ y \ x \ termina \ en \ b \}$

Diagrama de transición de estados

- $\mathbf{e_0}$: estado inicial (último símbolo leído \neq b)
- e₁: estado final (último símbolo leído es b)

Descripción instantánea

 $\alpha ~\textbf{e}_i ~\beta ~~ \text{donde } \textbf{e}_i ~\text{estado actual, } \alpha ~\text{cadena ya} ~\text{leida, } \beta ~\text{cadena que falta leer } (\alpha,\beta \in \texttt{A}^*)$

Ejemplos

 e_0 abcb - ae_0 bcb - abe_1 cb - $abce_0$ b - $abcbe_1$ - - lee abcb y termina en estado final. Luego, $abcb \in L$

 e_0 ba $-be_1$ a $-bae_0$ lee ba y termina en estado no final.

Autómatas Finitos Reconocedores

 $L = \{ x / x \in \{a, b, c\}^* \ y \ x \text{ termina en b } \}$

Diagrama de transición de estados

Tabla de transición de estados:

δ	а	b	С
\mathbf{e}_0	e ₀	e ₁	\mathbf{e}_{0}
e ₁	e ₀	e ₁	\mathbf{e}_{0}

Función δ

$$\delta(e_0, a)=e_0 \delta(e_0, a)$$

$$\delta(e_0, b) = e_1$$
 $\delta(e_0, c) = e_0$

$$\delta(e_1, a) = e_0 \quad \delta(e_1, b) = e_1 \quad \delta(e_1, c) = e_0$$

$$\delta(e_1, c)=e_0$$

AFD =
$$\{e_0, e_1\}, \{a, b, c\}, \delta, e_0, \{e_1\} >$$

EI AFD = $\{e_0, e_1\}$, $\{a, b, c\}$, δ , e_0 , $\{e_1\}$ > acepta una cadena x si la secuencia de transiciones correspondientes a los símbolos de x conduce desde e₀ (el estado inicial) a e₁ (el único estado final).

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Definición parcial de la función δ

Ejemplo

 $L = \{b^n \ a^{2m} / \ n > 0 \ y \ m \ge 0\}$

 $\delta(e_0, a)$ no está definida

 $\delta(e_2, b)$ no está definida

 $\delta(e_3, b)$ no está definida

Dada una cadena x, si el autómata no puede leer un símbolo de x entonces la cadena x ∉ L

e₀aa - indefinido

no termina de leer toda la cadena entonces aa ∉ L

e₀baab | be₁aab | bae₂ab | baae₃b | indefinido no termina de leer la cadena entonces baab ∉ L

Definición total de la función δ

- Todas las transiciones indefinidas se pueden hacer llegar a un estado absorbente (e₄) que nunca alcanza un estado final
- Los estados como e₄ no se usan en la práctica (se define δ parcial)

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Lenguaje aceptado por un AFD

Sea $M = \langle E, A, \delta, e_0, F \rangle$ un AF donde

 δ : E x A \rightarrow E

Se define la función δ^* : E x A* \rightarrow E (función de transición para cadenas)

- $\delta^*(e_j, \varepsilon) = e_j$
- $\delta^*(e_i, a) = \delta(e_i, a)$ $e_i \in E, a \in A$
- $\delta^*(e_j, ax) = \delta^*(\delta(e_j, a), x)$ $e_j \in E, x \in A^*, a \in A$

Una cadena x es aceptada por un AFD M = $\langle E, A, \delta, e_i, F \rangle$ si:

$$\delta^*(e_i, x) = e_f$$
 para algún $e_f \in F$

Luego, el lenguaje aceptado por un AFD $M = \langle E, A, \delta, e_i, F \rangle$ es:

$$L(M) = \{ x / x \in A^* \ y \ \delta^*(e_i, x) = e_i \ y \ e_i \in F \}$$

Los lenguajes aceptados por los **Autómatas Finitos** se denominan **Lenguajes Regulares** o de **Tipo 3**.

Diseño de Autómatas Finitos

- √ No es conveniente proceder por "prueba y error", pueden cometerse dos tipos de errores:
- 1) "sobren" cadenas (el AF acepta cadenas que no debería aceptar)
- 2) "falten" cadenas" (el AF no acepta todas las cadenas del lenguaje)

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Diseño de Autómatas Finitos

- ↑ Importante para un diseño sistemático:
- 1) Proponer un conjunto de estados que "recuerdan" condiciones importantes en el problema considerado
- 2) De estos estados, determinar cuál representa la condición inicial y cuál/cuáles la condición de aceptación
- 3) Proponer las transiciones que permiten pasar de un estado a otro

Ejemplo

 $L = \{ x / x \in \{a, b, c\}^* \ y \ x \text{ termina en b } \}$

a, c e₀: "recuerda" que último símbolo leído es ≠ b b e4: "recuerda" que último símbolo leído es b "correcto" no sobran ni faltan cadenas a, c Reconoce todas y sólo las que pertenecen a L

Autómatas Finitos Traductores

- Producen una salida diferente de SI o NO
- Permiten realizar "cálculos" a partir de una cadena de entrada \Rightarrow "traducen" una cadena de entrada en una cadena de salida

Ejemplos:

- AF que calcule la función f(x) = 2x + 3
- Analizador léxico de un compilador

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Finitos Traductores

Formalmente, un AF traductor determinístico (AFT) se define como una 7-tupla

$$M_T = \langle E, A, \delta, e_i, F, S, \gamma \rangle$$

- ✓ E es un conjunto finito de estados; E ≠ Ø
- ✓ A es el alfabeto de entrada
- ✓ δ es la función de transición de estados; δ : E x A \rightarrow E
- √ e_i es el estado inicial; e_i ∈ E
- √ F es el conjunto de estados finales o de aceptación; F ⊆ E
- √ S es el alfabeto de salida
- ✓ γ es la función de traducción; γ : E x A \rightarrow S*

Autómatas Finitos Traductores

Si existen
$$\delta(e_i, a) = e_k$$
 $y \gamma(e_i, a) = x$

donde
$$e_i$$
, $e_k \in E$; $a \in A$; $x \in S^*$

se representa en el diagrama de transición de estados

Ejemplo:

Autómata finito traductor que calcula f(x) = 2x + 3 para $x \in N$, x > 0, x representado en unario

AFT = $\{e_0, e_1\}, \{1\}, \delta, e_0, \{e_1\}, \{1\}, \gamma >$

Ejemplos

si x =1 traduce 11111 si x =11 traduce 1111111 si x =111 salida 19

 $si x = 111 salida 1^9$

si x = 111111 salida 1¹³

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA - 2012

Autómatas Finitos Traductores

Definición de γ^* (función de traducción para cadenas)

Sea $M_T = \langle E, A, \delta, e_0, F, S, \gamma \rangle$ un AFT. Se define la función

 γ^* : E x $A^* \to S^*$ tal que $\gamma^*(e_i, w)$ es la cadena que traducirá el autómata luego de leer w comenzando en e_i ($w \in A^*$)

• $\gamma^*(e_i, \varepsilon) = \varepsilon$

• $\gamma^*(e_i, ax) = \gamma(e_i, a) \cdot \gamma^*(\delta(e_i, a), x)$ $e_i \in E, x \in A^*, a \in A$

Nota:

El autómata solo define la traducción, si el autómata finito reconocedor subyacente "acepta" la cadena.

Es decir, la traducción T(w): $A^* \to S^*$ asociada a M_T está definida como:

 $T(w) = \gamma^*(e_0, w) \iff \delta^*(e_0, w) \in F$ donde $w \in A^*$

Ejemplo Autómata Finito Traductor

$$L = \{a^nc^kb^{2m}/\ n,\ m \geq 0\ y\ k > 0\ \}$$

$$M = <\{e_0,\ e_1,\ e_2,\ e_3\},\ \{a,\ b,c\},\ \delta,\ e_0,\ \{e_1,\ e_2\}>$$

$$\frac{a/\epsilon}{a/\epsilon}$$

$$\frac{b}{\epsilon}$$
 Traducir las cadenas
$$\frac{\delta}{a^n}c^kb^{2m} \quad como \quad 0^k1^m$$

$$\frac{\delta}{a^n}c^kb^{2m} \quad como \quad 0^k1^m$$

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Autómatas Finitos Modelos

Formalmente, un AF modelo se define como una 3-upla

$$M_M = \langle E, A, \delta \rangle$$

- ✓ E es un conjunto finito de estados; E ≠ Ø
- √ A es el alfabeto de entrada

ca ∉ L no traduce

- \checkmark δ es la función de transición de estados; δ: E x A → E
- Ejemplo modelo de Videograbadora

 $M_M = \langle \{esperando, mostrando, pausa \}, \{ \}, \{II\}, \}, \delta \rangle$