杭州电子科技大学学生考试卷(A)卷

考试课程	高等数学甲(1)		考试日期	考试日期 08年1月日			成绩	
课程号		教师号		任课教师	姓名			
考生姓名		学号(8位)		年级			€业	

得分										
题	 _	Ξ							_	
号	_	1	2	3	4	5	6	四	五	六
得										
分										

- 一、 填空题(本题共6小题,每小题3分,共18分)
- 1. 极限 $\lim_{x\to 0^+} [\ln x \ln \sin(3x)]$ 的值等于_____.

b = _____.

- 2. 当 $x \to 0$ 时, $\arctan 3x$ 与 $\frac{ax}{\cos x}$ 是等价无穷小,则a为()
 - (A) 4; (B)3; (C)2; (D)1.
- 3. 已知 $y = \sin x$, 则 $y^{(10)} = ($)

为()

- (A) $-\sin x$; (B) $-\cos x$; (C) $\sin x$; (D) $\cos x$.
- 4. 若函数 f(x) 在区间 (a,b) 内可导, x_1 和 x_2 是区间 (a,b) 内任意两点,且 $x_1 < x_2$,则至少存在一点 ξ ,使()
 - (A) $f(b) f(a) = f'(\xi)(b-a)$, 其中 $a < \xi < b$;
 - (B) $f(b) f(x_1) = f'(\xi)(b x_1)$, 其中 $x_1 < \xi < b$;
 - (C) $f(x_2) f(x_1) = f'(\xi)(x_2 x_1)$, 其中 $x_1 < \xi < x_2$;
 - (D) $f(x_2) f(a) = f'(\xi)(x_2 a)$, 其中 $a < \xi < x_2$.
- 5. 若 f(x) 在某区间内(),则它的原函数一定存在 .

(A)极限存在; (B)连续; (C)有界; (D)有有限个间断点.

6. 设函数 $F(x) = \int_0^x f(t)dt$, 对自变量 x 给增量 Δx 时, 函数的增量 $\Delta F(x)$

(A)
$$\int_{0}^{x} [f(t+\Delta t)-f(t)]dt$$
; (B) $\int_{0}^{x+\Delta x} f(t)dt$;

(C)
$$f(x) \cdot \Delta x$$
; (D) $\int_{0}^{x+\Delta x} f(t)dt - \int_{0}^{x} f(t)dt$.

7. $y = \frac{1}{x}$, y = x 及 x = 2 所围的平面图形面积为()

(A)
$$\int_{1}^{2} (x - \frac{1}{x}) dx$$
; (B) $\int_{1}^{2} (\frac{1}{x} - x) dx$; (C) $\int_{\frac{1}{2}}^{1} (y - \frac{1}{y}) dy$; (D) $\int_{0}^{1} x dx + \int_{1}^{2} \frac{1}{x} dx$.

8. 函数 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 x = 0处可导的充分必要条件是()

3 .	设 $y = \sin(x^2)\cos^{\frac{1}{2}}$,则] dy =
	v	

- (A) n > -1; (B) n > 0; (C) n > 1; (D) n > 2.

- 4.设f(x)的一个原函数为 $\sin x$,则 $f'(x) = _______.$
- 5. 微分方程 $e^x dx (1 + e^x) dy = 0$ 的通解为 .

选择题 (本题共8小题,每小题3分,共24分)

1.函数 f(x) 在 x_0 处有定义是 f(x) 在 x_0 处极限存在的 ()

(A)充分但非必要条件; (B)必要但非充分条件;

(C)充分必要条件; (D) 既非充分也非必要条件.

三、计算题(共6小题,每小题6分,共36分)

得分

3. 计算: $\int_0^{+\infty} x e^{-x^2} dx$.

得分

1.

求极限 $\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$.

得分

2. 已知 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$, 求 $\frac{d^2y}{dx^2}$.

得分

4. 求不定积分: $\int x \arctan(x^2) dx$.

得分

得分

四、应用题[本题8分]

设抛物线 $y = ax^2 + bx + c$ 通过 (0, 0) 点,当 $0 \le x \le 1$ 时, $y \ge 0$.又知它和直线 x = 1, y = 0 所围成图形的面积是 $\frac{4}{9}$.试确定 a, b, c 的值,使这个图形绕 Ox 轴旋转一周的旋转体的体积最小.

得分

6.计算:
$$\int_0^a \frac{1}{x+\sqrt{a^2-x^2}} dx$$
, $(a>0)$.

得分

五、综合题[本题8分]

一条曲线连接两点 A(0,1) 和 B(1,0) ,且位于弦 AB 的上方 , P(x,y) 为 曲线上任一点 ,已知曲线与弦 AP 之间的面积为 x^3 ,求曲线的方程.

得分

六、证明题[本题6分]

设 f(x) 在区间 [a,b] 上有定义,且对 [a,b] 上任意两点 x,y,有 $\left|f(x)-f(y)\right| \leq \left|x-y\right| \text{ , 证明 : } \left|\int_a^b f(x)dx-(b-a)f(a)\right| \leq \frac{1}{2}(b-a)^2.$