DEVOIR À LA MAISON N°14

- ► Le devoir devra être rédigé sur des copies *doubles*.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 –

Soient $n \in \mathbb{N}$ et $\sum_{n \ge n} a_n$ une série à termes réels. Dans le cas où cette série converge, on note R_n le reste de

rang n de cette série, c'est-à-dire $\mathbf{R}_n = \sum_{k=n+1}^{+\infty} a_k$ pour tout entier $n \ge n_0$. On souhaite étudier la convergence de la série $\sum_{n \in \mathbb{N}} \mathbf{R}_n$ dans plusieurs cas.

Partie I - Cas d'une série géométrique

On se donne $q \in \mathbb{R}$ et on pose $a_n = q^n$ pour $n \in \mathbb{N}$ (on a donc $n_0 = 0$).

- 1. Pour quelles valeurs de q la série $\sum_{n\in\mathbb{N}^1}a_n$ convergent-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- **2.** Exprimer R_n en fonction de q et n.
- 3. En déduire que la série $\sum_{n\in\mathbb{N}}\mathbf{R}_n$ converge et calculer sa somme.

Partie II - Cas d'une série de Riemann

On se donne dans cette partie $\alpha \in \mathbb{R}$ et on pose $a_n = \frac{1}{n^{\alpha}}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$).

- 4. Pour quelles valeurs de α la série $\sum_{n \in \mathbb{N}^*} a_n$ converge-t-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- 5. A l'aide d'une comparaison série/intégrale, montrer que $R_n \sim \frac{1}{(\alpha-1)n^{\alpha-1}}$
- 6. En déduire une condition nécessaire et suffisante sur α pour que la série $\sum_{n \in \mathbb{N}^*} \mathbf{R}_n$ converge.

Partie III - Cas de la série harmonique alternée

Dans cette partie, on pose $a_n = \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$). On note également S_n la somme partielle de rang n de la série $\sum_{n \in \mathbb{N}^*} a_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

7. Calculer $\int_0^1 x^n dx$ pour $n \in \mathbb{N}$.

- 8. En déduire que $S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
- 9. En déduire la convergence et la somme de la série $\sum_{n\in\mathbb{N}^*}a_n.$
- **10.** Exprimer R_n à l'aide d'une intégrale puis, à l'aide d'une intégration par parties, déterminer deux constantes réelles α et β telles que $\alpha > 1$ et $R_n = \frac{(-1)^{n+1}\beta}{n+1} + \mathcal{O}\left(\frac{1}{n^\alpha}\right)$.
- 11. En déduire la nature de la série $\sum_{n \in \mathbb{N}^*} \mathbf{R}_n$.