2003-2004 学年度第二学期数据结构期末试题(A)

专业:	:
-----	---

- 一、 单项选择题(22分)
- 1. 下列排序算法中, ____、____属于稳定排序, ____、____属于不稳定排序(4分)
 - A. 选择排序

B. 快速排序

C. 插入排序

- D. 堆排序
- 如下图所示的铁轨结构,左边为入轨,右边为出轨,中间有一缓冲轨。初始时入轨上有5节车厢,由左至右依次编号为1,2,3,4,5。车厢只有三种移动方式:入轨→出轨,入轨→缓冲轨,缓冲轨→出轨。最终,车厢都移动到出轨。如下序列中,____不可能是车厢在出轨的排列(由左至右)。(4分)

A. 12345

B. 12534

C. 15243

- D. 25341
- 3. 将 52 张扑克牌排序(首先考虑花色,由小到大的顺序为方片、梅花、红心、黑桃,花色相同的考虑点数由小到大的顺序),下列方法哪种时间复杂性最优?(4 分)
 - A. 每种花色首先进行排序, 然后 4 种花色按顺序排列
 - B. 先按点数分成 13 堆, 再按花色分发到 4 堆
 - C. 简单插入排序(两张牌的比较: 先比较花色再比较点数)

4.	高度为 4 的 AVL 树的节点数最少为(3 分)				
	A. 5			B. 6	
	C. 7			D. 8	
5.	一棵二叉树的名	 上序遍历和中	序遍	历的结果相同,	则该二叉树
	一定满足((3分)			
	A. 任何节点均无	左孩子节点	B.	任何节点均无右?	孩子节点
	C. 只有一个节点		D.	以上均不对	
6.	一棵 m 叉树,	节点数为 n,	以链扣	妾方式进行存储,	则空指针的
	数量为(2	分)			
	A. n-1			B. mn-n+1	
	C. n+1			D. mn-n	
7.	对稀疏的 AOE	图求解关键路	各的	算法,则 AOE 图	图使用下列哪
	种描述方法使得	算法性能最优	比	(2分)	
	A. 邻接矩阵			B. 邻接压缩表	
	C. 邻接链表			D. 十字链表	

二、 对下面的整数列表,利用 Shell 排序算法整理为递增序列,间隔序列为 7、3、1,写出每趟间隔插入排序的结果(8分)44,97,76,29,13,7,50,9,20,61,33,85

三、 一棵二叉树的中序遍历结果为 a、c、d、e、h、k、n、p、s,后序遍历结果为 a、d、h、e、c、p、s、n、k,利用这些信息构造出这棵二叉树(10 分)

四、 给出下图的十字链表的描述方式,并给出所有可能的拓扑序列 (12分)

五、 在下面 AVL 树中,依次将节点 m 和 i 删除,画出旋转调整的过程和最终结果(12 分)

六、 对下图,利用 Prim 算法求其最小生成树,画出算法运行的步骤(12分)

七、 设计二叉树节点类和二叉树类,并设计一个公有成员函数,实现功能:对二叉树中每个节点,若其左子树高度小于右子树,则交换左、右子树,否则不做任何事情。(类定义只需给出完成此题所必须的成员变量和成员函数即可)(12分)

八、 自然归并排序算法:首先对列表进行一趟扫描,找出所有升序的子段,然后再使用与简单归并排序相同的子列表合并方法进行合并,将列表整理为递增序列。

例: 列表为[4, 8, 3, 7, 1, 5, 6, 2]

扫描升序字段结果: [4,8],[3,7],[1,5,6],[2]

第一趟合并: [3, 4, 7, 8], [1, 2, 5, 6]

最后一趟合并: [1, 2, 3, 4, 5, 6, 7, 8]

设计 C++函数实现此算法。假定已经有函数 Merge:

template<class T>

void Merge(T c[], T d[], int I, int m, int r)

可将数组 c 中两个相邻子列表(分别占据数组 c 中 $l\sim m$ 和 $m+1\sim r$ 两个区域)合并,结果保存到数组 d 的相同位置。若要用到此功能,可直接调用此函数。(12 分)