

"Explanabe AI" para detecção de "cheating" e "churn" em jogos online

Arthur de Sá Braz de Matos Gabriel Araújo Campos Silva

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Sumário

- 1 Dados do artigo
- 2 Problema abordado
- 3 Motivação e justificativa
- 4 Objetivo
- Conclusões e trabalhos futuros

Dados do artigo

Explainable AI for Cheating Detection and Churn Prediction in Online Games

Yu Xiong Shiwei Zhao Sha Zhao Jianrong Tao Xudong Shen Tangjie Lyu Changjie Fan Zhipeng Hu Runze Wu

IEEE Transactions On Games - 2023

Problema abordado

- A indústria de jogos tem enfrentado sérias ameaças de trapaças nos jogos, e a detecção das mesmas continua sendo um dos problemas mais urgentes que a indústria de jogos precisa resolver.
- Com a saturação da indústria de jogos online, o custo de aquisição de jogadores está aumentando cada vez mais. A rotatividade de jogadores tornou-se um dos maiores problemas no mercado de jogos online.

Problema abordado

 A baixa precisão de previsibilidade dos modelos de inteligência artificial para trapaças (cheating) e rotatividade de jogadores (churn) interfere de forma negativa na experiência em jogos online.

Motivação e justificativa

- Entender as formas de identificação utilizadas atualmente pelos jogos online para determinar "cheating" e "churn" em jogos online.
- Aplicar a tecnologia XAI (Explainable AI) na identificação de trapaças em jogos online.

Motivação e justificativa

- Comparar e provar através de gráficos se existem e quais são as diferenças em termos de performance e acurácia quando utiliza-se modelos de IA e XAI para realizar a mesma tarefa.
- Os trapaceiros regularmente formam equipes e participam de mais missões secundárias. Como os jogadores trapaceiros não têm habilidades operacionais fortes como os jogadores normais, a porcentagem de falhas de missões e missões abandonadas é relativamente alta.

Objetivo

- Entender o uso da XAI na previsão e identificação de trapaças em jogos online.
- Compreender os comportamentos de jogadores trapaceiros com o objetivo de aumentar a acurácia dessas previsões e diminuir o impacto do "cheating" e "churns" no universo dos jogos online.

Conclusões e trabalhos futuros

 Comparação de desempenho da detecção de trapaça nos jogos e previsão de rotatividade de jogadores entre diferentes métodos concorrentes.

TABLE II	
GAME CHEATING DETECTION AND PLAYER CHURN PREDICTION PERFORMANCE COMPARISO	ON AMONG DIFFERENT METHODS

Algorithm	AUC	ACC	Training Time	Inference Time	Explanation	Explaining Time
			Portrait View			
RF	0.9764, 0.9192	0.9516, 0.8989	31s, 5s	0.2408s, 0.2486s	Portrait Explainer	0.0591s, 0.0131s
XGBoost	0.9876, 0.9254	0.9724, 0.9006	9m38s, 3m40s	0.0004s, 0.0005s	Portrait Explainer	0.1745s, 0.0999s
LightGBM	0.9859, 0.9243	0.9659, 0.8998	53m10s, 42m39s	1.0286s, 1.3269s	Portrait Explainer	0.0226s, 0.0133s
CatBoost	0.9834, 0.9234	0.9674, 0.8967	23m21s, 9m28s	0.1652s, 0.4948s	Portrait Explainer	0.0034s, 0.0022s
			Behavior View			
CNN	0.9667, 0.9131	0.9561, 0.8874	1h32m40s, 2h4m13s	1m20s, 2m5s	Behavior Explainer	23s, 16s
LSTM	0.9389, 0.9120	0.9376, 0.8935	4h10m56s, 5h3m49s	2m42s, 3m29s	Behavior Explainer	33s, 28s
BLSTM	0.9506, 0.9048	0.9418, 0.8884	7h30m27s, 10h6m49s	3m24s, 4m55s	Behavior Explainer	1m5s, 54s
ABLSTM	0.9661, 0.9105	0.9507, 0.8881	8h11m52s, 12h46m49s	4m24s, 5m44s	Behavior Explainer	1m54s, 1m36s
Transformer	0.9836, 0.9227	0.9694, 0.8998	10h53m17s, 14h19m33s	6m9s, 7m26s	Behavior Explainer	2m35s, 2m18s
			Image View			
AlexNet	0.5259, 0.6534	0.6727, 0.4812	1h36m53s, 1h16m46s	3m27s, 1m50s	Image Explainer	15s, 4s
VGG	0.5030, 0.7430	0.7605, 0.7399	55m43s, 41m55s	1m33s, 1m12s	Image Explainer	2m39s, 2m2s
GoogleNet	0.9644, 0.7000	0.9147, 0.5329	1h12m17s, 53m25s	5m10s, 1m50s	Image Explainer	1m2s, 24s
ResNet	0.9351, 0.6918	0.8940, 0.4992	42m25s, 33m43s	1m26s, 58s	Image Explainer	3m6s, 2m51s
DenseNet	0.9268, 0.7843	0.9065, 0.8531	1h25m40s, 29m38s	10m19s, 1m48s	Image Explainer	5m54s, 1m39s
			Graph View			
Trade_GCN	0.9832, -	0.9795, -	2h50m3s, -	48s, -	Graph Explainer	2m53s, -
Team_GCN	0.9759, 0.8096	0.9715, 0.7960	2h44m22s, 1h59m57s	53s, 54s	Graph Explainer	3m12s, 7m34s
Chat_GCN	0.9742, 0.7816	0.9584, 0.7868	2h58m39s, 1h37m17s	49s, 55s	Graph Explainer	2m44s, 3m53s
Friend_GCN	0.9808, 0.8139	0.9713, 0.8085	2h48m11s, 1h23m5s	48s, 58s	Graph Explainer	3m37s, 4m24s
Trade_GAT	0.9669, -	0.9537, -	6h3m36s, -	45s, -	Graph Explainer	3m37s, -
Team_GAT	0.9576, 0.8045	0.9516, 0.7956	6h57m47s, 3h32m24s	42s, 37s	Graph Explainer	4m2s, 8m48s
Chat_GAT	0.9581, 0.7386	0.9495, 0.7891	6h5m47s, 2h33m59s	46s, 34s	Graph Explainer	3m47s, 5m8s
Friend GAT	0.9598. 0.8554	0.9525, 0.8171	5h59m6s, 2h38m44s	46s. 34s	Graph Explainer	3m55s, 5m59s

Conclusões e trabalhos futuros

- Introdução inicial da XAI em jogos online e proposta de um fluxo de trabalho GXAI.
- Apresentação de muitas descobertas interessantes e valiosas a partir das explicações do modelo.
- Motivações para usuários trapaceiros e como a GXAI trabalha com esses dados.

Conclusões e trabalhos futuros