

Exercice 1:

Les assertions suivantes sont-elles vraies ou fausses (sans justification):

1 Si $u_n > 0$ et la série $\sum u_n$ diverge alors (u_n) ne tend pas vers 0.

2 Si $u_n \sim v_n$ alors $\sum u_n$ et $\sum v_n$ sont de même nature .

3 Si la série de fonctions $\sum f_n$ converge absolument alors elle converge uniformément.

4 Si (f_n) sont continues sur I et $\sum f_n$ converge normalement sur I alors $f = \sum f_n$ est continue sur I.

5 La série $\sum \frac{n}{n! + n \sin^2(n)}$ converge.

6 La série $\sum_{n=0}^{+\infty} \frac{n^{n^2}}{2^{n!}}$ est convergente.

7 La série $\sum \frac{(-1)^n}{\ln(\sqrt{n}+1)}$ est semi-convergente .

8 La série $\sum (-1)^n \frac{n^3}{n!}$ est divergente.

Solution:

1 Fausse

5 Vraie

2 Fausse

6 Vraie

3 Fausse

7 Vraie

4 Vraie

8 Fausse

Exercie 2:

Soient $\sum u_n$ une série à termes positifs telle que : $\lim_{n\to+\infty} \sqrt[n]{u_n} = l$.

Montrer que si l < 1 alors $\sum u_n$ converge et si l > 1 alors $\sum u_n$ diverge.

Solution:

Supposons que $\lim_{n \to +\infty} \sqrt[n]{u_n} = l \iff \forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall n \geq N$; $l - \varepsilon < \sqrt[n]{u_n} < l + \varepsilon$

ightharpoonup Si l < 1, on pose $\varepsilon = \frac{1-l}{2} > 0$.

On a $\sqrt[n]{u_n} < l + \frac{1-l}{2} = \frac{l+1}{2} < 1$, donc la série $\sum u_n$ converge .

 $\label{eq:continuous} \ \, \mathop{\bf \dot{T}} \ \, {\rm Si} \,\, l>1 \,\, , \quad {\rm on \,\, pose} \,\, \varepsilon=\frac{l-1}{2}>0.$

On a $\sqrt[n]{u_n} > l - \frac{l-1}{2} = \frac{l+1}{2} > 1$, donc la série $\sum u_n$ diverge .

Exercice 3:

Étudier la convergence simple et la convergence uniforme de la suite de fonctions (f_n) définie par :

 $f_n(x) = \frac{nx}{1+nx}$, $x \in [0, +\infty[$

Solution:

Étude de la convergence simple :

On a:

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{1 + nx} = 1$$

Or la fonction $f \equiv 1$ continue sur $I = [0, +\infty[$

Donc:

$$f_n \xrightarrow{CVS} f$$

Étude de la convergence uniforme :

Soit $x \in I$, déterminons $\lim_{n \to +\infty} \sup_{x \in I} |f_n - f|$:

On a:

$$\lim_{n \to +\infty} \sup_{x \in I} |f_n - f| = \lim_{n \to +\infty} \sup_{x \in I} \left| \frac{-1}{nx + 1} \right|$$
$$= \lim_{n \to +\infty} \sup_{x \in I} \frac{1}{nx + 1}$$

On pose la fonction $g: x \longmapsto \frac{1}{nx+1}$, $\forall x \in I$

On a $g'(x) = \frac{-n}{(nx+1)^2} \le 0$, alors g est décroissante sur I.

Donc le tableau de variation de la fonction g est le suivant :

x	0 +∞
$g'_n(x)$	-
g_n	g(0)

D'où:

$$\sup_{x \in I} \frac{1}{nx+1} = g(0) = 1$$

Par suite:

$$\lim_{n\to +\infty} \sup_{x\in I} \frac{1}{nx+1} = 1 \neq 0$$

Donc f ne converge pas uniformément sur \mathbb{R} .

M

Exercice 4:

Considérons la suite de fonctions $f_n(x) = \frac{x}{n(1+n^2x^2)}$, $x \in \mathbb{R}$.

- 1 Montrer que la série $\sum f_n$ converge simplement sur \mathbb{R} .
- 2 Montrer que la série $\sum f_n$ converge normalement sur \mathbb{R} .
- 3 Étudier la continuité de $f = \sum f_n$ sur $[0, +\infty[$.

Solution:

1 Soit $x \in \mathbb{R}$, on a:

$$\left| \frac{x}{n(1+n^2x^2)} \right| = \frac{|x|}{n(1+n^2x^2)}$$

$$\leq \frac{|x|}{x^2n^3} = \frac{1}{|x|n^3}$$

Et on a $\sum \frac{1}{|x|n^3}$ est une série convergente (*Critère de Riemann pour* : $\alpha = 3 > 1$), donc on peut conclure que la série $\sum \frac{x}{n(1+n^2x^2)}$ est absolument convergente, par suite elle converge simplement sur \mathbb{R} .

2 On a :

$$\left| \frac{x}{n(1+n^2x^2)} \right| \leqslant \frac{1}{|x|n^3}$$

Puisque la série $\sum \frac{1}{|x|n^3}$ converge donc la série $\sum f_n$ converge normalement sur $\mathbb R$.

3 On a la série $\sum f_n$ converge normalement, donc elle est convergente uniformément sur \mathbb{R} . De plus, les fonctions f_n sont continues sur \mathbb{R}

Par suite , d'après le théorème de continuité , la fonction $f=\sum f_n$ est continue sur $\mathbb R$.