Приклад № 1. Записати рівняння площини, що проходить через точку $M_0(2; -1; -3)$ перпендикулярно до вектора $\vec{n} = 2\vec{i} - \vec{j} + 2\vec{k}$.

Розв'язання. Заданий вектор \vec{n} буде нормальним вектором шуканої площини $\vec{n} = \{2; -1; 2\}$. Використовуємо формулу (3.15). Маємо 2(x-2)-(y+1)+2(z+3)=0, 2x-y+2z+1=0 - шукане рівняння площини.

3 Пряма у просторі Деякі відомості про пряму у просторі

$x - x_1 = y - y_1 = z - z_1$	$M_2(x_2; y_2; z_2)$	Рівняння прямої, що
$\frac{1}{x_2 - x_1} = \frac{1}{y_2 - y_1} = \frac{1}{z_2 - z_1}$		проходить через дві
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M (m. m. z.)	задані точки $M_1(x_1,y_1,z_1)$
(3.20)	$M_I(x_I; y_I, \mathbf{z}_1)$	$i M_2(x_2; y_2, z_2)$
$\frac{x - x_0}{z} = \frac{y - y_0}{z} = \frac{z - z_0}{z}$	_	Канонічне рівняння
$l = \frac{l}{m} = \frac{m}{p}$	\vec{s}	прямої, $\vec{S} = \{l, m, p\}$ -
$\vec{S} = \{l; m; p\}$		напрямний вектор,
	$M_0(x_0, y_0; \mathbf{z}_0)$	$M_0(x_0, y_0, z_0)$ – точка
(3.21)		прямої
$x = lt + x_0,$		Параметричне рівняння
$y = mt + y_0,$	\bar{s}	прямої, t - параметр,
$z = pt + z_0 (3.22)$		$M_0(x_0, y_0, z_0)$ – точка
	$M_0(x_0, y_0, z_0)$	прямої
$\vec{S} = \{l; m; p\}$		
$A_1 x + B_1 y + C_1 z + D_1 = 0,$		Загальне рівняння
	\vec{n}_1	прямої – лінія перетину
$A_2 x + B_2 y + C_2 z + D_2 = 0$		двох непаралельних
		площин, $\vec{S} = \vec{n}_1 \times \vec{n}_2$ -
l	\vec{S} \vec{n}_2	напрямний вектор
$\begin{vmatrix} i & j & k \end{vmatrix}$		прямої
$\vec{S} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix} (3.23)$		
$\begin{vmatrix} A_2 & B_2 & C_2 \end{vmatrix}$	7	

$$egin{align*} egin{align*} egin{align*} & egin{align*} &$$

$$\begin{array}{c} I_1 I_2 + m_1 m_2 + p_1 p_2 = 0 \\ (3.25) \\ \hline \\ \vec{S}_1 \\ \hline \\ \vec{S}_2 \\ \hline \\ \vec{S}_1 \\ \hline \\ \vec{S}_2 \\ \hline \\ \vec{S}_2 \\ \hline \\ \vec{S}_1 \\ \hline \\ \vec{S}_2 \\ \vec{S}_2 \\ \hline \\ \vec{S}_2 \\ \vec{S}_2$$

Приклад № 2. Написати рівняння прямої, що проходить через точку $M_0(3; -1; -2)$ паралельно вектору $\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k}$.

Розв'язання. За напрямний вектор \vec{S} вибираємо вектор \vec{a} : $\vec{S} = \{2; -3; 1\}$. Використовуємо канонічні рівняння прямої (3.21). Маємо $\frac{x-3}{2} = \frac{y+1}{-3} = \frac{z+2}{1}$.