

1
13

Fig. 1

2
13

Fig. 2

3
13

Fig. 3

4
13

(a)

(b)

(c)

Fig. 4

5
13

5' -UTR₃₄₁ GCCAGCCCC TGATGGGGC GACACTCCAC CATAGATCAC TCCCCGTGA 50
 5' -UTR₃₄₂ GCCAGCCCC TGATGGGGC GACACTCCAC CATAGATCAC TCCCCGTGA 50

5' -UTR₃₄₁ GGAACCTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG 100
 5' -UTR₃₄₂ GGAACCTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG 100

5' -UTR₃₄₁ TGTCGTGCAG CCTCCAGG_AC CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG 150
 5' -UTR₃₄₂ TGTCGTGCAG CCTCCAGG_CC CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG 150

5' -UTR₃₄₁ CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG 200
 5' -UTR₃₄₂ CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG 200

5' -UTR₃₄₁ GATCAA_TCCC GCTCAATGCC TGGAGATTG GGCGTGC_{CC} CGCGAGACTG 249
 5' -UTR₃₄₂ GATCAA_TCCC GCTCAATGCC TGGAGATTG GGCGTGC_{CC} CGCGAGACTG 250

5' -UTR₃₄₁ CTAGCCGAGT AGTGTGGGT CGCGAAAGGC CTTGTGGTAC TGCCTGATAG 299
 5' -UTR₃₄₂ CTAGCCGAGT AGTGTGGGT CGCGAAAGGC CTTGTGGTAC TGCCTGATAG 300

5' -UTR₃₄₁ GGTGCTTGCG AGTCCCCGG GAGGTCTCGT AGACCGTGCA CC 341
 5' -UTR₃₄₂ GGTGCTTGCG AGTCCCCGG GAGGTCTCGT AGACCGTGCA CC 342

F i g. 5

6
13

Fig. 6

7
13**Fig. 7**

13
8

Fig. 8

9
13

Fig. 9

10
13

Fig. 10

11
13

Fig. 11

12
13

Fig. 12

13
13

Fig. 13