CS 440 Intro to Artificial Intelligence

Lecture 20:

Sequential Decision Making -

Partially Observable Markov Decision Processes

Sequential Decision Making

Decision Theoretic Agents

RUTGERS

POMDP example: The tiger problem

**Tiger-left*

Pr(o=TL | S0, listen)=0.85

Pr(o=TR | S1, listen)=0.15

Observations

- to hear the tiger on the left (TL)
- to hear the tiger on the right(TR)

S1
"tiger-right"
Pr(o=TL | S0, listen)=0.15
Pr(o=TR | S1, listen)=0.85

Actions={ 0: listen,

1: open-left,

2: open-right}

Prob. (LISTEN)	Tiger: left	Tiger: right
Tiger: left	1. 0	0.0
Tiger: right	0.0	1. 0

Listening does not change the position of the tiger

Reward Function

- Penalty for wrong opening: -100

- Reward for correct opening: +10

- Cost for listening action: -1

Prob. (LEFT)	Tiger: left	Tiger: right
Tiger: left	0.5	0.5
Tiger: right	0.5	0.5

Prob. (RIGHT)	Tiger: left	Tiger: right
Tiger: left	0. 5	0. 5
Tiger: right	0. 5	0. 5

The position of the tiger resets after we open one of the two doors