(Answer in Japanese or English, and submit after the lecture class)

What is AI as a research area?

What are the three MAPs for knowledge acquisition?

What is Search?

 Write one learning model you have heard from the TV or other publications.

Quizzes

- What is the main problem of "random search"?
- What is the main problem of "search with closed list"?
- How to implement the open list if we want to do breadth-first search?

What is the relation of uniform-cost search and breadth-first search?

Quizzes

•	What is result of uniform cost search?
•	What are the advantage and dis-advantage of the best-first search algorithm, compared with the uniform cost search algorithm?
•	What condition is needed to guarantee the best solution when we use the A* algorithm?
•	Write the definitions of a location optimal solution and the global optimal solution. - Local optimal solution:
	 Global optimal solution:

- What are the main components of a production system?
- Try to explain the physical meaning of the LEX strategy for conflicting resolution.

• How to define a "rule" in a production system?

- What is "forward reasoning" or "forward inference"?
- Draw an AND/OR tree for the sentence "The man made a desk"

• What are the meanings of "node" and "edge" in a semantic network?

How to define a concept?

• Prove "Fox has sharp teeth" using the semantic network of Fig. 4.4 (p. 79) in the textbook.

• What is the main difference between a semantic network and a frame system?

What is a demon in a frame system?

- The most fundamental proposition is called "P_____ proposition".
- A primitive proposition, when denoted by a symbol, is an "A_____ formula".
- Write the double negation (Involution) law:

Write the distributive law:

- Atomic formula and its negation is called a "L_____".
- The disjunction of several literals is called a "C______".
- Any logic formula can be converted to a Clausal _____.
- To conduct formal proof, it is necessary to have a set of "A_____" and the reasoning rules.
- A provable formula B is denoted by

•	In 1 st order predicate logic, [] can be a variable.		We can use [] constant to remove existential quantifiers in a formula.
•	In predicate logic, the return value of a function is [].		Unification is used to make two literals the same form. After unification, we
•	To specify the scope of a variable, we use quantifiers. The universal quantifier is denoted by [].		can derive a resolvent clause from two [] clauses. A Horn clause is a clause with
•	In predicate logic, we have "terms" and "atomic formulas". The smallest unit of a logic formula is [].		positive literal.
		•	Prolog is a short of

Quizzes for lecture 9

(1) Find the compliment set of A given in Example 5.1.

(2) Using the extension principle, find the membership function of "fuzzy 5", when "fuzzy 2" and "fuzzy 3" are defined below.

(3) Below is a fuzzy rule for controlling a robot based on light sensors.

$$R_s$$
: $if(x_1 = VeryBright \land x_2 = VeryBright \land x_3 = VeryDark \land x_4 = VeryDark)$
 $then(y = GoForwardQuickly)$

Suppose that the minimum and maximum values of each sensor are 0 and 1024. Try to define the membership functions for the linguistic values VeryBright and VeryDark.

1. What is the purpose of pattern classification?

- 2. What is the purpose of pattern recognition?
- 3. For a two-class problem, we usually call the two classes positive and

- 4. In an NNC, recognition is conducted by finding the ______of the given pattern x.
- 5. To reduce the computational cost of an NNC, we can use _____ of each class.
- 6. If the desired class label is available for each training datum, learning is called _____ learning.
- 7. If the learner or learning model is determined by a set of parameters, learning is called_____learning.

•	KNN is the short for
•	WTA is the short for
•	LVQ is the short for
•	R4-rule has the following 4 operations: - R
	– R,
	- R, and
	– R

 Try to explain the physical meaning of the WTA algorithm.

 Why KNN is smarter compared with the NNC using all training data?

Quizzes for lecture 12 (1)

- Find the weights w_1 , w_2 , and w_3 of a neuron for classifying the four vertices of a square into two groups.
- The data and the teacher signals are given below:

 There are infinitely many solutions. Please just provide one solution.

$$w_1 x_1 + w_2 x_2 - w_3 = 0$$

Quizzes for lecture 12 (2)

- Suppose that the data and their teacher signals are given by:
 - (-1,-1), (1,-1), (-1,1), (1,1)
 - -(-1,1), (1,-1), (1,1), (1,1)
- Find two neurons to solve the problem. Just provide one solution.

*Neuron*1: $w_{11}x_1 + w_{12}x_2 - w_{13} = 0$

*Neuron*2: $w_{21}x_1 + w_{22}x_2 - w_{23} = 0$

Quizzes for lecture 13

•	A decision tree contains two types of nodes, namely, the non-terminal nodes andor leaves.
•	A non-terminal node in a conventional decision tree contains a test function $f(x)=$ The left node will be visited when $f(x)<0$.
•	Among the three tasks in decision tree induction, the most important and time consuming one is to split
•	Conventional decision trees are also called decision trees (APDTs).
•	For complex problems, APDTs may become very large because the test function is too simple. To solve this problem, we can usedecision trees.
•	An NNTree is a decision tree in which each non-terminal node is a

Quizzes for lecture 14

•	To use genetic algorithm we usually encode a solution or individual into a binary string. This string is called genotype of the solution. To evaluate the goodness of the solution, we should decode the genotype to Only genotype evolves during evolution.
•	The goodness of a solution is called the We need a method to evaluate the of a given solution. This method may not be given in a closed form formula.
•	There are mainly three genetic operations in GA, namely, selection, crossover, and Together they produce new candidate solutions for further evolution is important for preserving the diversity of the population.
•	In PSO, each candidate solution is called a We need to keep the current position and velocity of a in the search process.
•	In PSO, each particle learns by itself. There are main two factors for learning. One is the personal factor, and another is factor. The latter is important for "information sharing".