ST2334 (2020/2021 Semester 1) Solutions to Questions in Tutorial 11

Question 1

 $X = \text{lifetime. } X \sim \text{Normal } (\mu, 40^2)$

- Test H_0 : $\mu = 800$ against H_1 : $\mu \neq 800$ $z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} = \frac{788 - 800}{40 / \sqrt{30}} = -1.64$ Since $|z_{obs}| = 1.64 < z_{0.025}$ (= 1.96), therefore we do not reject H₀. Alternatively, p-value = $2 \min\{\Pr(Z < -1.64), \Pr(Z > -1.64)\} = 2(0.0505) =$ 0.1010. Since *p*-value $> \alpha$ (= 0.05), we do not reject H_0 .
- 95% confidence interval for μ : $\bar{X} \pm Z \frac{\sigma}{\sqrt{n}} = 788 \pm 1.96 \frac{40}{\sqrt{30}} = (773.69, 802.31)$. Yes, 800 is plausible.
- Under H₀, H₀ is not rejected if -1.96 < Z < 1.96 or $\mu 1.96 \frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}$ or $785.79 < \bar{X} < 814.31.$ When $\mu = 790$ (i.e. H_0 is false), $\bar{X} \sim N\left(790, \frac{40^2}{30}\right)$. $\begin{array}{l} \Pr(\text{Do not reject H}_0 | \mu = 790) = \Pr(785.79 \stackrel{30}{<} \frac{\bar{\chi}}{\bar{\chi}} < 814.31 \mid \mu = 790) = \\ \Pr\left(\frac{785.79 - 790}{40/\sqrt{30}} < \frac{\bar{\chi} - 790}{40/\sqrt{30}} < \frac{814.31 - 790}{40/\sqrt{30}}\right) = \Pr(-0.591 < Z < 3.329) = 1 - 0.9999 - 0.9999 - 1 - 0.9999 - 0.9999 - 1 - 0.9999 - 0.999$ 0.2774 = 0.7225
- When $\mu = 790$, Power = 1 Pr(Type II error $|\mu = 790$) = 1 0.7225 = 0.2775.

Question 2

 $X = \text{content of lubricant. } X \sim N(\mu, \sigma^2)$

- H_0 : $\mu = 10$ against H_1 : $\mu \neq 10$ From the data, $\bar{x} = 10.06$, s = 0.24585. Hence, $t_{obs} = \frac{\bar{x} - 10}{s/\sqrt{10}} = \frac{10.06 - 10}{0.246/\sqrt{10}} = 0.772$. Since $|t_{obs}| = 0.772 < t_{9;0.005} (= 3.25)$, therefore we do not reject H₀ Alternatively, p-value = $2 \min\{\Pr(T < 0.772), \Pr(T > 0.772)\} > 2(0.10)$ (From ttable). p-value = 0.4599 (from statistical software). Since p-value > α (= 0.01), therefore we do not reject H_0 .
- H_0 : $\sigma^2 = 0.03$ against H_1 : $\sigma^2 \neq 0.03$ $\chi^2_{obs} = \frac{(n-1)s^2}{\sigma^2} = \frac{(9)(0.246)^2}{0.03} = 18.13$ which falls between $\chi^2_{9;0.975}$ (= 2.70) and $\chi^2_{9:0.025}$ (= 19.023). Hence, we do not reject H₀. Alternatively, $Pr(\chi_9^2 > 18.13)$ is between 0.025 and 0.05 since $Pr(\chi_9^2 > 16.92) =$ 0.05 and $Pr(\chi_9^2 > 19.02) = 0.025$. Hence 0.05 < p-value < 0.10. Since the p-value > 0.05. We do not reject H_0 .
- (Remark: p-value $\Pr(\chi_9^2 > 18.13) = 0.0673$ from statistical software) 99% confidence interval for $\sigma^2 = \left(\frac{(n-1)s^2}{\chi^2_{9,0.005}}, \frac{(n-1)s^2}{\chi^2_{9,0.995}}\right) = \left(\frac{9(0.246)^2}{23.589}, \frac{9(0.246)^2}{1.735}\right) =$ (0.023, 0.314). Note: $\chi^2_{9.0.005}$ satisfies $\Pr(W > \chi^2_{9.0.005}) = 0.005$ with $W \sim \chi^2(9)$.

Question 3

X = amount of soft drink dispensed. $X \sim \text{Normal}(\mu, \sigma^2)$

From the data, we have n = 25, $s^2 = 2.03$. Hence $\chi^2_{obs} = \frac{(n-1)s^2}{\sigma^2} = \frac{(24)(2.03)}{1.15} = 42.37$ Since the observed test statistic $> \chi^2_{24:0.05}$ (= 36.415), we reject H₀ at 5% significance level. Alternatively, p-value is between 0.01 and 0.025 as $Pr(\chi_{24}^2 > 39.364) = 0.025$ and $Pr(\chi_{24}^2 > 42.98) = 0.01$ [Exact p-value = 0.0117]

Question 4

 X_A = tensile strength of thread A ~ Normal(μ_A , 6.28²)

 X_B = tensile strength of thread B ~ Normal(μ_B , 5.61²)

Test H₀: $\mu_A - \mu_B = 12$ against H₁: $\mu_A - \mu_B > 12$ From the data, we have $n_A = 50$, $\bar{x}_A = 86.7$, $n_B = 50$, $\bar{x}_B = 77.8$. Hence

$$z = \frac{(86.7 - 77.8) - (12)}{\sqrt{\frac{6.28^2}{50} + \frac{5.61^2}{50}}} = -2.60$$

Since $z_{obs} < z_{0.05}$ (= 1.645), we do not reject H₀.

Alternatively, *p*-value = Pr(Z > -2.60) = 1 - 0.0047 = 0.9953.

Since p-value $> \alpha$ (= 0.05). We do not reject H₀.

We committed an error if our decision of not rejecting H₀ is wrong. Hence it is Type II error. (Type I error is committed if our decision of rejecting H₀ is wrong.)

Question 5

 X_A = grades of students in the 3-semester-hour course ~ Normal (μ_A , σ^2)

 X_B = grades of students in the 4-semester-hour course ~ Normal (μ_B , σ^2)

From the data,
$$n_A = 18$$
, $\bar{x}_A = 77$, $s_A = 6$; $n_B = 12$, $\bar{x}_B = 84$, $s_B = 4$. Hence, $s_P = \sqrt{\frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{n_A + n_B - 2}} = 5.3050$

99% confidence interval for $\mu_B - \mu_A = (\bar{X}_B - \bar{X}_A) \pm t_{28,0.005} s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}} =$

$$(84-77) \pm (2.763)(5.304)\sqrt{\frac{1}{12} + \frac{1}{18}} = (1.537, 12.463).$$

Or 99% confidence interval for $\mu_A - \mu_B = (\bar{X}_A - \bar{X}_B) \pm t_{28,0.005} s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}} =$

$$(77 - 84) \pm (2.763)(5.304)\sqrt{\frac{1}{12} + \frac{1}{18}} = (-12.463, -1.537).$$

$$H_0$$
: $\mu_A - \mu_B = 0$ against H_1 : $\mu_A - \mu_B > 0$
 $t_{obs} = \frac{\bar{x}_A - \bar{x}_B}{s_p \sqrt{\frac{1}{n_B} + \frac{1}{n_A}}} = \frac{77 - 84}{(5.304)\sqrt{\frac{1}{12} + \frac{1}{18}}} = -3.541$

Since $t_{obs} = -3.541 < t_{28;0.05} (= 1.701)$, therefore, we do not reject H₀.

[Note: Exact p-value= Pr(T > -3.541) = 0.9993 (from statistical software)]

Question 6

 X_R = gasoline consumption by radial tires ~ Normal

 X_B = gasoline consumption by belted tires ~ Normal

$$d = X_R - X_B. \ d \sim N(\mu_d, \sigma_d^2)$$

From the data, $n_d = 12$, $\bar{x}_d = 0.1417$, $s_d = 0.1975$

95% confidence interval for $\mu_d = \bar{x}_d \pm t_{11,0.025} \frac{s_d}{\sqrt{n_d}} = 0.1417 \pm 2.201 \frac{0.1975}{\sqrt{12}} =$

(0.0162, 0.2672)

$$H_0$$
: $\mu_d = 0$ against H_1 : $\mu_d > 0$
 $t_{obs} = \frac{\bar{x}_d}{s_d/\sqrt{n}} = \frac{0.14167}{0.1975/\sqrt{12}} = 2.485 > t_{11; 0.05} \ (= 1.796)$. Reject H_0

Alternatively, 0.01 < p-value < 0.025 since Pr(T > 2.306) = 0.025 and

Pr(T > 2.8965) = 0.01 (Refer to the t-table). Reject H₀.

[Note: Exact p-value= Pr(T > 2.485) = 0.01515 (from statistical software)]

Question 7

 $\overline{X_M}$ = the length of time taken to assemble a product by men ~ Normal(μ_M , σ_M^2)

 X_W = the length of time taken to assemble a product by women ~ Normal(μ_W , σ_W^2)

$$H_0$$
: $\sigma_M^2 = \sigma_W^2$ against H_1 : $\sigma_M^2 > \sigma_W^2$

From the data,
$$n_M = 11$$
, $s_M = 6.1$, $n_W = 14$, $s_W = 5.3$

Hence,
$$F_{obs} = \frac{s_M^2}{s_{W^2}} = \frac{6.1^2}{5.3^2} = 1.325$$

Since $F_{obs} = 1.325 < F_{10,13;0.05} (= 2.67)$, therefore, we do not reject H₀.

[Note: Exact p-value= Pr(F > 1.325) = 0.3117 (from statistical software)]

At $\alpha = 0.05$, we do not have enough evidence to conclude that the variance of the times for women is less than that for men.

Question 8

 $\overline{X_1}$ = the running times of film produced by company I ~ Normal(μ_1 , σ_1^2)

 X_2 = the running times of film produced by company I ~ Normal(μ_2 , σ_2^2)

(a)
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ against H_1 : $\sigma_1^2 \neq \sigma_2^2$
From the data, $n_1 = 5$, $s_1^2 = 78.8$, $n_2 = 7$, $s_2^2 = 913.3333$
Hence, $F_{obs} = \frac{s_1^2}{s_2^2} = \frac{78.8}{913.3333} = 0.0863 < F_{4,6;0.975}$ (= $1/F_{6,4;0.025} = 1/9.20 = 0.1087$). Reject H_0 .

Alternatively, p-value = $2 \min\{\Pr(F < 0.086), \Pr(F > 0.086)\} = <math>2 \min\{0.01639, 0.98361\} = 2(0.01639) = 0.0328 < 0.05$. Reject H₀.

(b) 95% confidence interval for
$$\frac{\sigma_1^2}{\sigma_2^2} = \left(\frac{s_1^2}{s_2^2} \frac{1}{F_{4,6,0.025}}, \frac{s_1^2}{s_2^2} F_{6,4,0.025}\right) = \left(\frac{78.8}{913.33} \frac{1}{6.23}, \frac{78.8}{913.33} (9.20)\right) = (0.01385, 0.79375)$$

(c) 95% confidence interval for
$$\frac{\sigma_1}{\sigma_2} = (\sqrt{0.01385}, \sqrt{0.79375}) = (0.1177, 0.8909)$$

Question 9

We have $E(W)=E(a_1X_1+\cdots+a_nX_n)=a_1E(X_1)+\cdots+a_nE(X_n)=a_1\mu_1+\cdots+a_n\,\mu_n.$ Also recall variance of sum of independent random variables is the sum of their variances. Therefore, $V(W)=V(a_1X_1+\cdots+a_nX_n)=V(a_1X_1)+\cdots+V(a_nX_n)=a_1^2\sigma_1^2+\cdots+a_n^2\sigma_n^2.$