Further Pure Mathematics FP1 Mark scheme

Question	Scheme		
1	$\sum_{r=1}^{n} r(r^2 - 3) = \sum_{r=1}^{n} r^3 - 3\sum_{r=1}^{n} r$		
	$= \frac{1}{4}n^2(n+1)^2 - 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2-3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
		Correct expression (or equivalent)	A1
	$= \frac{1}{4}n(n+1)[n(n+1)-6]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both	dM1
		the standard formulae	
	$=\frac{1}{4}n(n+1)\left[n^2+n-6\right]$	{this step does not have to be written]	
	$= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso
			(4)

(4 marks)

Notes:

Applying eg. n=1, n=2, n=3 to the printed equation without applying the standard formulae to give a=1, b=3, c=-2 or another combination of these numbers is M0A0M0A0.

Alternative Method:

Obtains
$$\sum_{r=1}^{n} r(r^2 - 3) = \frac{1}{4}n(n+1)[n(n+1) - 6] = \frac{1}{4}n(n+a)(n+b)(n+c)$$

So
$$a=1$$
. $n=1 \Rightarrow -2 = \frac{1}{4}(1)(2)(1+b)(1+c)$ and $n=2 \Rightarrow 0 = \frac{1}{4}(2)(3)(2+b)(2+c)$

leading to either b=-2, c=3 or b=3, c=-2

dM1: dependent on the previous M mark.

Substitutes in values of n and solves to find b = ... and c = ...

A1: Finds a=1, b=3, c=-2 or another combination of these numbers.

Using **only** a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.

Allow final dM1A1 for
$$\frac{1}{4}n^4 + \frac{1}{2}n^3 - \frac{5}{4}n^2 - \frac{3}{2}n$$
 or $\frac{1}{4}n(n^3 + 2n^2 - 5n - 6)$

or
$$\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \to \frac{1}{4}n(n+1)(n+3)(n-2)$$
, from no incorrect working.

Give final A0 for eg.
$$\frac{1}{4}n(n+1)\left[n^2+n-6\right] \rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$$
 unless recovered.

Question	Scheme		Marks
2(a)	$P: y^2 = 28x$ or $P(7t^2, 14t)$		
		Accept (7,0) or $x = 7$, $y = 0$ or	
	$(y^2 = 4ax \Rightarrow a = 7) \Rightarrow S(7,0)$	7 marked on the <i>x</i> -axis in a sketch	B1
			(1)
(b)	{A and B have x coordinate} $\frac{7}{2}$	Divides their x coordinate from (a) by 2	
		and substitutes this into the	
	(7)	parabola equation and takes the	
	So $y^2 = 28\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y =$	square root to find $y =$	
	or	or applies	M1
	$y = \sqrt{(2(7) - 3.5)^2 - (3.5)^2} \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$	$y = \sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$	
	or		
	$7t^2 = 3.5 \Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	or solves	
		$7t^2 = 3.5$ and finds $y = 2(7)$ "their t "	
		At least one correct exact	
	$y = (\pm)7\sqrt{2}$	value of y. Can be unsimplified or simplified.	A1
	A, B have coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and		
	$\left(\frac{7}{2}, -7\sqrt{2}\right)$		
	Area triangle <i>ABS</i> =		
	$\bullet \frac{1}{2} \left(2(7\sqrt{2}) \right) \left(\frac{7}{2} \right)$	dependent on the previous M mark	
	• 1/2	A full method for finding	dM1
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	the area of triangle ABS.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Correct exact answer.	A1
			(4)
		(1	5 marks)

Question 2 continued

Notes:

(a)

You can give B1 for part (a) for correct relevant work seen in either part (a) or part (b).

(b)

1st M1: Allow a slip when candidates find the x coordinate of their midpoint as long as 0 < their midpoint < their a

Give 1st M0 if a candidate finds and uses y = 98

1st A1: Allow any exact value of either $7\sqrt{2}$, $-7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or awrt -9.9

2nd dM1: Either $\frac{1}{2} \left(2 \times \text{their } "7\sqrt{2} " \right) \left(\text{their } x_{\text{midpoint}} \right)$ or $\frac{1}{2} \left(2 \times \text{their } "7\sqrt{2} " \right) \left(\text{their } "7" - x_{\text{midpoint}} \right)$

Condone area triangle $ABS = (7\sqrt{2})(\frac{7}{2})$, i.e. (their " $7\sqrt{2}$ ") $(\frac{\text{their "}7"}{2})$

2nd A1: Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$, $24.5\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, $3.5\sqrt{2}$, $49\sqrt{\frac{1}{2}}$

or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{98})$ seen by itself.

Give final A0 for finding 34.64823228... without reference to a correct exact value.

Question	Scheme			Marks
3(a)	$f(x) = x^2 + \frac{3}{x} - 1$, $x < 0$			
	$f'(x) = 2x - 3x^{-2} \qquad \qquad \frac{3}{x} \to \pm B$		of either $x^2 \to \pm Ax$ or Bx^{-2} and B are non-zero constants.	M1
			differentiation	A1
	Either $f(-1.5) = -0.75$ or $f'(-1.5) = -\frac{13}{3}$ Either $f(-1.5) = -0.75$ or $f'(-1.5) = -\frac{13}{3}$ or awrt -4.33 or a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$		$= -\frac{13}{3} \text{ or awrt } -4.33 \text{ or a}$ numerical expression for	B1
	$\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.3333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$ $\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{-4.333333}$		dM1	
	$\left\{ \alpha = -1.67307692 \text{ or } -\frac{87}{52} \right\} \Rightarrow \alpha = -1.67307692$	57	dependent on all 4 previous marks -1.67 on their first iteration (Ignore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by a correct answer scores full marks in (a) Correct answer with <u>no</u> working scores no marks in (a)			
				(5)
(b)	f(-1.675) = 0.01458022 which $f(-1.665) = -0.0295768$ answ		poses a suitable interval for x , ch is within ± 0.005 of their wer to (a) and at least one mpt to evaluate $f(x)$.	M1
	Sign change (positive, negative) (and $f(x)$ Both values correct awrt (or is continuous) therefore (a root) $\alpha = -1.67$ (2 dp) 1 sf, sign change and conclusion.		A1 cso	
				(2)

Question	Scheme		Marks
3(b)	Way 2		
continued	Alt 1: Applying Newton-Raphson again Eg. Using		
	$\alpha = -1.67, -1.673 \text{ or } -\frac{87}{52}$		
	• $\alpha \simeq -1.67 - \frac{-0.007507185629}{-4.415692926} \left\{ = -1.671700115 \right\}$	Evidence of applying	
	• $\alpha \simeq -1.673 - \frac{0.005743106396}{-4.41783855} $ {= -1.671700019}	Newton- Raphson for a second time on	M1
	• $\alpha \simeq -\frac{87}{52} - \frac{0.006082942257}{-4.417893838} \{ = -1.67170036 \}$	their answer to part (a)	
	So $\alpha = -1.67 (2 \text{ dp})$	$\alpha = -1.67$	A1
			(2)

(7 marks)

Notes:

(a)

Incorrect differentiation followed by their estimate of α with no evidence of applying the NR formula is final dM0A0.

B1: B1 can be given for a correct numerical expression for either f(-1.5) or f'(-1.5)

Eg. either $(-1.5)^2 + \frac{3}{(-1.5)} - 1$ or $2(-1.5) - \frac{3}{(-1.5)^2}$ are fine for B1.

Final -This mark can be implied by applying at least one correct value of either f(-1.5) or f'(-1.5)

dM1: in $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$. So just $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$ with an incorrect answer and no other evidence scores final dM0A0.

Give final dM0 for applying $1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without first quoting the correct N-R formula.

(b)

A1: Way 1: correct solution only

Candidate needs to state both of their values for f(x) to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.665) < 0$

or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. $\alpha = -1.67$, root (or α or part (a)) is correct, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity.

A minimal acceptable reason and conclusion is "change of sign, hence root".

No explicit reference to 2 decimal places is required.

Stating "root is in between -1.675 and -1.665" without some reference to is not sufficient for A1

Accept 0.015 as a correct evaluation of f(-1.675)

Question 3 notes continued

(b)

A1: Way 2: correct solution only

Their conclusion in Way 2 needs to convey that they understand that $\alpha = -1.67$ to 2 decimal places. Eg. "therefore my answer to part (a) [which must be $^{-1.67}$] is correct" is fine for A1. $-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2 \text{ dp})$ is sufficient for M1A1 in part (b).

The root of f(x) = 0 is -1.67169988..., so candidates can also choose x_1 which is less than -1.67169988... and choose x_2 which is greater than -1.67169988... with both x_1 and x_2 lying in the interval [-1.675, -1.665] and evaluate $f(x_1)$ and $f(x_2)$.

Helpful Table

x	f(x)
-1.675	0.014580224
-1.674	0.010161305
-1.673	0.005743106
-1.672	0.001325627
-1.671	-0.003091136
-1.670	-0.007507186
-1.669	-0.011922523
-1.668	-0.016337151
-1.667	-0.020751072
-1.666	-0.025164288
-1.665	-0.029576802

Question	Scheme		Marks
4(a)	$\mathbf{A} = \begin{pmatrix} k & 3 \\ -1 & k+2 \end{pmatrix}$ where k is a constant and let	$g(k) = k^2 + 2k + 3$	
	$\left\{ \det(\mathbf{A}) = \right\} k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	B1
	Way 1		
	$= (k+1)^2 - 1 + 3$	Attempts to complete the square [usual rules apply]	M1
	$=(k+1)^2 + 2 > 0$	$(k+1)^2 + 2$ and > 0	A1 cso
			(3)
	Way 2		
	$\left\{ \det(\mathbf{A}) = \right\} k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	B1
	$\left\{b^2 - 4ac = \right\} 2^2 - 4(1)(3)$	Applies " $b^2 - 4ac$ " to their $det(\mathbf{A})$	M1
	All of		
	• $b^2 - 4ac = -8 < 0$		
	• some reference to $k^2 + 2k + 3$ being above the <i>x</i> -axis	Complete solution	
	• so $det(\mathbf{A}) > 0$		A1 cso
		,	(3)
	Way 3		
	$g(k) = \det(\mathbf{A}) = k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	B1
	$g'(k) = 2k + 2 = 0 \Rightarrow k = -1$	Finds the value of k for which $g'(k) = 0$ and substitutes this	M1
	$g_{\min} = (-1)^2 + 2(-1) + 3$	value of k into $g(k)$	
	$g_{\min} = 2$, so $\det(\mathbf{A}) > 0$	$g_{min} = 2$ and states $det(A) > 0$	A1 cso
			(3)
(b)	$\mathbf{A}^{-1} = \frac{1}{k^2 + 2k + 3} \begin{pmatrix} k + 2 & -3 \\ 1 & k \end{pmatrix}$	$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$	M1
		Correct answer in terms of k	A1
			(2)
			(5 marks)

Question 4 continued

Notes:

(a)

B1: Also allow k(k+2) = -3

Way 2: Proving $b^2 - 4ac = -8 < 0$ by itself could mean that $\det(\mathbf{A}) > 0$ or $\det(\mathbf{A}) < 0$.

To gain the final A1 mark for Way 2, candidates need to show $b^2 - 4ac = -8 < 0$ and make some reference to $k^2 + 2k + 3$ being above the x-axis (eg. states that coefficient of k^2 is positive or evaluates $\det(\mathbf{A})$ for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that $\det(\mathbf{A}) > 0$.

Attempting to solve $\det(\mathbf{A}) = 0$ by applying the quadratic formula or finding $-1 \pm \sqrt{2}i$ is enough to score the M1 mark for Way 2. To gain A1 these candidates need to make some reference to $k^2 + 2k + 3$ being above the x-axis (eg. states that coefficient of k^2 is positive or evaluates $\det(\mathbf{A})$ for any value of k to give a positive result or sketches a quadratic curve that is above the x-axis) before then stating that $\det(\mathbf{A}) > 0$.

(b)

A1: Allow either $\frac{1}{(k+1)^2 + 2} \binom{k+2}{1} \binom{-3}{k}$ or $\begin{pmatrix} \frac{k+2}{k^2 + 2k + 3} & \frac{-3}{k^2 + 2k + 3} \\ \frac{1}{k^2 + 2k + 3} & \frac{k}{k^2 + 2k + 3} \end{pmatrix}$ or equivalent.

Question		Scheme	Marks
5	$2z + z^* = \frac{3 + 4i}{7 + i}$		
	Way 1		
	${2z+z^* =} 2(a+ib) + (a-ib)$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Note: This can be seen anywhere in their solution	B1
	$ = \frac{(3+4i)(7-i)}{(7+i)(7-i)} $	Multiplies numerator and denominator of the right hand side by $7 - i$ or $-7 + i$	M1
	$ = \frac{25 + 25i}{50}$	Applies $i^2 = -1$ to and collects like terms to give right hand side = $\frac{25 + 25i}{50}$ or equivalent	A1
	So, $3a + ib = \frac{1}{2} + \frac{1}{2}i$ $\Rightarrow a = \frac{1}{6}, b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a =$ or $b =$	ddM1
	6 2 6 2	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
			(5)
	Way 2		
	${2z+z^* =} 2(a+ib) + (a-ib)$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$	B1
	$(3a + ib)(7 + i) = \dots$	Multiplies their $(3a + ib)$ by $(7 + i)$	M1
	$21a + 3ai + 7bi - b = \dots$	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	A1
	So, $(21a - b) + (3a + 7b) = 3 + 4i$ gives $21a - b = 3$, $3a + 7b = 4$	dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a =$ or $b =$	ddM1
	$\Rightarrow a = \frac{1}{6}, b = \frac{1}{2} \text{ or } z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
			(5)
		(5 marks)

Question 5 continued

Notes:

Some candidates may let z = x + iy and $z^* = x - iy$.

So apply the mark scheme with $x \equiv a$ and $y \equiv b$.

For the final A1 mark, you can accept exact equivalents for a, b.

Question	Sche	me		Marks
6(a)	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point	on H		
	Either $5t\left(\frac{5}{t}\right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{5}{t}$ or $x = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t$ or states $c = 5$			В1
				(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$ $xy = 25 \Rightarrow x\frac{dy}{dx} + y = 0$	where <i>k</i> is a numerical value Correct use of product rule. The		M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right) \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}} \frac{\mathrm{d}x}{\mathrm{d}t}$			
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -4$	which i	numerical gradient at A, s found using calculus.	A1
	So, $m_N = \frac{1}{4}$	numerio	$m_N = \frac{-1}{m_T}$, to find a cal m_N , where m_T is found sing calculus.	M1
		$x + \frac{75}{8}$	Correct line method for a normal where a numerical $m_N (\neq m_T)$ is found from using calculus. Can be implied by later working	M1
	leading to $8y - 2x - 75 = 0$ (*)		Correct solution only	A1
				(5)

Question		Scheme	Marks
6(c)	$y = \frac{25}{x} \implies 8\left(\frac{25}{x}\right) - 2x - 75 = 0$	0 or $x = \frac{25}{y} \implies 8y - 2\left(\frac{25}{y}\right) - 75 = 0$	
	or $x = 5t, y = \frac{5}{t}$	$\Rightarrow 8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0$	M1
	Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or .	$x = 5t$ and $y = \frac{5}{t}$ into the printed equation	
	or their normal equation to obtain a	n equation in either x only, y only or t only	
	$2x^2 + 75x - 200 = 0$ or $8y^2 - 75y -$	$-50 = 0$ or $2t^2 + 15t - 8 = 0$ or	
	$10t^2 + 75t - 40 = 0$		
	$(2x-5)(x+40) = 0 \Rightarrow x =$ or $(y-10)(8y+5) = 0 \Rightarrow y =$ or $(2t-1)(t+8) = 0 \Rightarrow t =$		
	dependent on the previous M mark		
	Correct attempt of solving a 3TQ to find either $x =, y =$ or $t =$		
	Finds at least one of either $x = -40$ or $y = -\frac{5}{8}$		
	$B\left(-40,-\frac{5}{8}\right)$	Both correct coordinates (If coordinates are not stated they can be paired together as $x =, y =$)	A1
			(4)

Notes:

(a) A conclusion is not required on this occasion in part (a).

B1: Condone reference to c = 5 (as $xy = c^2$ and $\left(ct, \frac{c}{t}\right)$ are referred in the Formula book.)

(10 marks)

(b)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}t} = -\frac{5}{t^2} \left(\frac{1}{5}\right) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 \left(x - \frac{5}{2}\right)$$
 scores only the first M1.

When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$ the response then automatically gets A1(implied) M1(implied) M1

Question 6 notes continued

(c)

You can imply the final three marks (dM1A1A1) for either

•
$$8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

•
$$8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

•
$$8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$$

with no intermediate working.

You can also imply the middle dM1A1 marks for either

•
$$8\left(\frac{25}{x}\right) - 2x - 75 = 0 \rightarrow x = -40$$

•
$$8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow y = -\frac{5}{8}$$

•
$$8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$$

with no intermediate working.

Writing
$$x = -40$$
, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.

Ignore stating
$$B\left(\frac{5}{2}, 10\right)$$
 in addition to $B\left(-40, -\frac{5}{8}\right)$

Question		Scheme		Marks
7(a)	Rotation	Rotation		B1
	67 degrees (anticlockwise)	Either $\arctan(\frac{12}{5})$, $\tan^{-1}(\frac{12}{5})$, $\sin^{-1}(\frac{12}{13})$, $\cos^{-1}(\frac{5}{13})$, awrt 67 degrees, awrt 1.2, truncated 1.1 (anticlockwise), awrt 293 degrees clockwise or awrt 5.1 clockwise		B1 o.e.
	about (0, 0)	The mark is dependent previous B marks being About (0, 0) or about (0, 0)	ng awarded.	dB1
	Note: Give 2 nd B0 for o.e.	67 degrees clockwise		(3)
(b)	$\left\{ \mathbf{Q} = \right\} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Correct matrix	B1
				(1)
(c)	$\{\mathbf{R} = \mathbf{PQ}\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$ Multiplies P by their Q in the correct order and finds at least one element Correct matrix		correct order and finds at least	M1
			A1	
				(2)
(d)	Way 1			
	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$	Forming the equation "their matrix \mathbf{R} " $\begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$ Allow x being replaced by any non-zero number eg. 1. Can be implied by at least one correct ft equations below.		M1
	$-\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}$	$x + \frac{12kx}{13} = kx \implies k = \dots$	Uses their matrix equation to form an equation in k and progresses to give $k = \text{numerical value}$	M1
	So $k = 5$	dependent of $k = 5$	n only the previous M mark	A1 cao
	Dependent on all previous marks being scored in this part. Either			
	• Solves both $-\frac{12}{13}x + \frac{5kx}{13} = x$ and $\frac{5}{13}x + \frac{12kx}{13} = kx$ to give $k = 5$			
	• Finds $k = 5$ and checks that it is true for the other component • Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ 5x \end{pmatrix} = \begin{pmatrix} x \\ 5x \end{pmatrix}$		A1 cso	
				(4)

Question	Scheme		
7(d)	Way 2		1
continued	Either $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$ or $\tan 2\theta = -\frac{5}{12}$	Correct follow through equation in 2θ based on their matrix R	M1
		Full method of finding 2θ , then θ and applying $\tan \theta$	M1
	$\{k = \} \tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$	$\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^{\circ}\right)$ or $\tan\left(\operatorname{awrt} 1.37\right)$. Can be implied.	A1
	So $k = 5$	k = 5 by a correct solution only	A1
			(4)

(10 marks)

Notes:

(a)

Condone "Turn" for the 1st B1 mark.

Penalise the first B1 mark for candidates giving a combination of transformations.

(c)

Allow 1st M1 for eg. "their matrix
$$\mathbf{R}$$
" $\begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix \mathbf{R} " $\begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$

or "their matrix
$$\mathbf{R}$$
" $\begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent

$$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$$

Question		Scheme	Marks
8(a)	$f(z) = z^4 + 6z^3 + 76z^2 + az + b$, a, b are real constants. $z_1 = -3 + 8i$ is given.	
	-3-8i	-3-8i	B1
			(1)
(b)	$z^2 + 6z + 73$	Attempt to expand $(z-(-3+8i))(z-(-3-8i))$ or any valid method <i>to establish a quadratic factor</i> eg $z=-3\pm 8i \Rightarrow z+3=\pm 8i \Rightarrow z^2+6z+9=-64$ or sum of roots -6 , product of roots 73 to give $z^2\pm (\text{sum})z+\text{product}$	M1
		$z^2 + 6z + 73$	A1
	$f(z) = (z^2 + 6z + 73)(z^2 + 3)$	Attempts to find the other quadratic factor. eg. using long division to get as far as $z^2 +$ or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$	M1
		z^2+3	A1
	$\left\{z^2 + 3 = 0 \Rightarrow z = \right\} \pm \sqrt{3} i$	dependent on only the previous M mark Correct method of solving the 2 nd quadratic factor	dM1
		$\sqrt{3}i$ and $-\sqrt{3}i$	A1
			(6)
(c)	$\frac{\text{Im}}{8}$	 Criteria -3±8i plotted correctly in quadrants 2 and 3 with some evidence of symmetry Their other two <i>complex roots</i> (which are found from solving their 2nd quadratic in (b)) are plotted correctly with some evidence of symmetry about the <i>x</i>-axis 	
	-3 $\sqrt{-\sqrt{3}}$	Re Satisfies at least one of the two criteria	B1 ft
	-8	Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 ft
			(2)
			9 marks)

Question 8 continued

Notes:

(b)

Give 3rd M1 for
$$z^2 + k = 0$$
, $k > 0 \implies$ at least one of either $z = \sqrt{k}i$ or $z = -\sqrt{k}i$

Give 3rd M0 for
$$z^2 + k = 0$$
, $k > 0 \implies z = \pm ki$

Give 3rd M0 for
$$z^2 + k = 0$$
, $k > 0 \implies z = \pm k$ or $z = \pm \sqrt{k}$

Candidates do not need to find a = 18, b = 219

Question	Scheme				
9(a)	$2x^2 + 4x - 3 = 0$ has roots α , β				
	$\alpha + \beta = -\frac{4}{2} \text{ or } -2, \ \alpha\beta = -\frac{3}{2}$	Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1		
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1		
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$	7 from correct working	A1 cso		
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1		
	$= (-2)^3 - 3\left(-\frac{3}{2}\right)(-2) = -17$ or $= (-2)\left(7\frac{3}{2}\right) = -17$	-17 from correct working	A1 cso		
			(5)		
(b)	Sum = $\alpha^2 + \beta + \beta^2 + \alpha$ = $\alpha^2 + \beta^2 + \alpha + \beta$ = $7 + (-2) = 5$	Uses at least one of their $\alpha^2 + \beta^2$ or $\alpha + \beta$ in an attempt to find a numerical value for the sum of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1		
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$ = $(\alpha\beta)^2 + \alpha^3 + \beta^3 + \alpha\beta$ = $(-\frac{3}{2})^2 - 17 - \frac{3}{2} = -\frac{65}{4}$	Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at least one of their $\alpha\beta$ or $\alpha^3 + \beta^3$ in an attempt to find a numerical value for the product of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1		
	$x^2 - 5x - \frac{65}{4} = 0$	Applies $x^2 - (\text{sum})x + \text{product (Can}$ be implied) (" = 0" not required)	M1		
	$4x^2 - 20x - 65 = 0$	Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1		
			(4)		

Question	Scheme			Marks	
9(b)	Alternative: Finding $\alpha^2 + \beta$ and $\beta^2 + \alpha$ explicitly				
continued	Eg. Let $\alpha = \frac{-4 + \sqrt{40}}{4}$, $\beta = \frac{-4 + \sqrt{40}}{4}$ and so				
	$\alpha^2 + \beta = \frac{5 - 3\sqrt{10}}{2}, \beta^2 + \alpha = \frac{5 + 3\sqrt{10}}{2}$				
		Uses $(x-(\alpha^2+\beta))(x-(\beta^2+\alpha))$		M1	
		with exact numerical values. (May expand first)			
	$= x^{2} - \left(\frac{5 + 3\sqrt{10}}{2}\right)x - \left(\frac{5 - 3\sqrt{10}}{2}\right)x + \left(\frac{5 - 3\sqrt{10}}{2}\right)\left(\frac{5 + 3\sqrt{10}}{2}\right)$ Attempts to expand using exact numerical values for				
)(-)	$\alpha^2 + \beta$ and $\beta^2 + \alpha$		
	$\Rightarrow x^2 - 5x - \frac{65}{4} = 0$	Collect terms to give a (" = 0" not required)	3TQ.	M1	
		Any integer multiple of	•		
	$4x^2 - 20x - 65 = 0$ $4x^2 - 20x - 65 = 0,$				
		including the "= 0"		(4)	
				(4)	

Notes:

(a)

1st A1:
$$\alpha + \beta = 2$$
, $\alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2(-\frac{3}{2}) = 7$ is M1A0 cso

Finding $\alpha + \beta = -2$, $\alpha\beta = -\frac{3}{2}$ by writing down or applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ but then writing $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$ scores B0M1A0M1A0 in part (a).

Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0

Eg: Give no credit for
$$\left(\frac{-4 + \sqrt{40}}{4}\right)^2 + \left(\frac{-4 + \sqrt{40}}{4}\right)^2 = 7$$

or for
$$\left(\frac{-4 + \sqrt{40}}{4}\right)^3 + \left(\frac{-4 + \sqrt{40}}{4}\right)^3 = -17$$

(b)

Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).

A correct method leading to a candidate stating a = 4, b = -20, c = -65 without writing a final answer of $4x^2 - 20x - 65 = 0$ is **final** M1A0

(9 marks)

Question	Scheme			Marks		
10	$u_1 = 5$, $u_{n+1} = 3u_n + 2$, $n \ge 1$. Required to prove the result,					
	$u_n = 2 \times (3)^n - 1 , n \in \mathbb{Z}^+$					
(i)	$n=1$: $u_1 = 2(3) - 1 = 5$ $u_1 = 2(3) - 1 = 5$ or $u_1 = 6 - 1 = 5$					
	(Assume the result is true for $n = k$)					
	$u_{k+1} = 3(2(3)^k - 1) + 2$	Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$		M1		
	dependent on the previous M mark $= 2(3)^{k+1} - 1$ Expresses u_{k+1} in term of 3^{k+1}		JM1			
			ses u_{k+1} in term of 3^{k+1}	dM1		
	$u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only		A1			
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be true for $n = 1$, then the result <u>is true for all n</u>			A1 cso		
			(5)			
	Required to prove the result $\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$, $n \in \mathbb{Z}^+$					
(ii)			Shows or states both LHS = $\frac{4}{3}$ and			
	$n = 1$: LHS = $\frac{4}{3}$, RHS = $3 - \frac{5}{3} = \frac{4}{3}$ RHS = $\frac{4}{3}$ or states LHS		$RHS = \frac{4}{3}$	B1		
			or states LHS = RHS = $\frac{4}{3}$			
	(Assume the result is true for $n = k$)					
	$\sum_{r=1}^{k+1} \frac{4r}{3^r} = 3 - \frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$		Adds the $(k+1)^{th}$ term to the sum of k terms	M1		
	$= 3 - \frac{3(3+2k)}{3^{k+1}} + \frac{4(k+1)}{3^{k+1}}$		dependent on the previous M mark Makes 3^{k+1} or $(3)3^k$ a common denominator for their fractions.	dM1		
			Correct expression with common denominator 3^{k+1} or $(3)3^k$ for their fractions.	A1		
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right)$					
	$=3-\left(\frac{5+2k}{3^{k+1}}\right)$					
	$=3-\frac{(3+2(k+1))}{3^{k+1}}$		$3 - \frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only	A1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result <u>is true for all n</u>			A1 cso		
	(11 mark					

Question 10 continued

Notes:

(i) & (ii)

Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of **all** four underlined points **either** at the end of their solution **or** as a narrative in their solution.

(i)

 $u_1 = 5$ by itself is not sufficient for the 1st B1 mark in part (i).

 $u_1 = 3 + 2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6 - 1 = 5$ is B0

(ii)

LHS = RHS by itself is not sufficient for the 1st B1 mark in part (ii).