ARJUNA (NEET)

STATES OF MATTER

DPP-08

- **1.** At critical temperature, pressure and volume. The compressibility factor (Z) is
 - (A) 8/3
- (B) 5/3
- (C) 3/5
- (D) 3/8
- 2. The liquefaction behavior of temporary gases like CO_2 approaches that of N_2 , O_2 (permanent gases) as we go,
 - (A) Below absolute zero
 - (B) Above absolute zero
 - (C) Above critical temperature
 - (D) Below critical temperature
- 3. The value of van der Waal's constant 'a' for gases O_2 , N_2 , NH_3 and CH_4 are x, y, z and c respectively, where z > c > y > x. The gas which can most easily be liquefied, is
 - $(A) O_2$
- (B) N_2
- (C) NH₃
- (D) CH₄
- **4.** Which of the following is correct?
 - (A) For H_2 and He, z < 1 and molar volume at STP is less than 22.4 L
 - (B) For H_2 and He, z < 1 and molar volume at STP is greater than 22.4 L
 - (C) For H_2 and He, z>1 and molar volume at STP is less than 22.4 L
 - (D) For H_2 and He, z>1 and molar volume at STP is greater than 22.4 L
- **5.** Which of the following is correct?
 - (A) A real gas approaches ideal gas behavior at low pressure and high temperature
 - (B) Liquification of a real gas is possible at low temperature and high pressure
 - (C) Both of them
 - (D) None of them

- **6.** A real gas has critical temperature and critical pressure as 40°C and 10 atm respectively, then liquification of gas is possible at
 - (A) 50°C and 8 atm
 - (B) 45°C and 8 atm
 - (C) 25° C and 12 atm
 - (D) 45°C and 12 atm
- **7.** The ratio of Boyle's temperature and critical temperature for a gas is
 - (A) $\frac{8}{27}$
- (B) $\frac{27}{8}$
- (C) $\frac{1}{2}$
- (D) $\frac{2}{1}$
- **8.** van der Waal's equation at high pressure for 1 mole is
 - (A) $PV + \frac{a}{V} = RT$
 - (B) PV = RT
 - (C) P(V+b) = RT
 - (D) P(V-b) = RT
- **9.** The excluded volume of molecule in motion is ____times, the actual volume of a molecule in rest
 - (A) 2
- (B) 4
- (C) 3
- (D) 0.5
- 10. The inversion temperature for gas is given by
 - (A) $\frac{a}{Rb}$
- (B) $\frac{2a}{Rb}$
- (C) $\frac{Rb}{a}$
- (D) $\frac{2Rb}{a}$

ANSWERS

- **1.** (D)
- **2.** (C)
- **3.** (C)
- **4.** (D)
- **5.** (C)
- **6.** (C)
- **7.** (B)
- **8.** (D)
- **9.** (B)
- **10.** (B)

Note - If you have any query/issue

Mail us at support@physicswallah.org

