Date-15-12-23

```
In [3]: # import the packages
# read the data

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [4]: file_path="C:\\Users\\kurre\\OneDrive\\Documents\\Naresh IT\\datafiles\\Vis
 visa_df=pd.read_csv(file_path)
 visa_df

	V134_4	•				
Out[4]:		case_id	continent	education_of_employee	has_job_experience	requires_job_traini
	0	EZYV01	Asia	High School	N	
	1	EZYV02	Asia	Master's	Υ	
	2	EZYV03	Asia	Bachelor's	N	
	3	EZYV04	Asia	Bachelor's	N	
	4	EZYV05	Africa	Master's	Y	
	25475	EZYV25476	Asia	Bachelor's	Υ	
	25476	EZYV25477	Asia	High School	Υ	
	25477	EZYV25478	Asia	Master's	Υ	
	25478	EZYV25479	Asia	Master's	Υ	
	25479	EZYV25480	Asia	Bachelor's	Y	
	25480 ı	rows × 12 co	lumns			
	4					>

We draw two categorical columns analysis

```
In [5]: # Continent colums value counts
        visa_df['continent'].value_counts()
Out[5]: continent
        Asia
                         16861
        Europe
                           3732
        North America
                           3292
        South America
                            852
        Africa
                            551
                            192
        Oceania
        Name: count, dtype: int64
```

```
visa_df['case_status'].value_counts()
In [6]:
Out[6]: case_status
        Certified
                      17018
        Denied
                       8462
        Name: count, dtype: int64
In [ ]: |#Q) out of all Asian applicants how many got Visa
            Out of all Europe applicants how many got Visa
In [7]: con1=visa_df['continent']=='Asia'
        con2=visa_df['case_status']=='Certified'
        con=con1&con2
        len(visa_df[con])
Out[7]: 11012
In [8]: visa_df['continent'].unique()
        visa_df['continent'].value_counts().keys()
Out[8]: Index(['Asia', 'Europe', 'North America', 'South America', 'Africa',
                'Oceania'],
               dtype='object', name='continent')
In [9]: # Generalised
        lables=visa_df['continent'].unique()
        certified_count=[]
        denied_count=[]
        for i in lables:
             con1=visa_df['continent']==i
             con2=visa_df['case_status']=='Certified'
             con3=visa_df['case_status']=='Denied'
             certified count.append(len(visa df[con1&con2]))
            denied_count.append(len(visa_df[con1&con3]))
        pd.DataFrame(zip(lables,certified_count,denied_count),
                      columns=['continent','certified','denied'])
Out[9]:
               continent certified denied
         0
                   Asia
                          11012
                                  5849
         1
                  Africa
                            397
                                   154
            North America
                           2037
                                  1255
         3
                 Europe
                           2957
                                  775
            South America
                            493
                                   359
```

122

70

5

Oceania

Out[10]:

	certified	b b	enie	d
--	-----------	-----	------	---

continent		
Asia	11012	5849
Africa	397	154
North America	2037	1255
Europe	2957	775
South America	493	359
Oceania	122	70

pd. crosstab

Out[11]:

continent		
Africa	397	154
Asia	11012	5849
Europe	2957	775
North America	2037	1255
Oceania	122	70
South America	493	359

case_status Certified Denied

In [13]: result1.plot(kind='bar')
plt.show()

We repeated multiple columns

```
In [14]: #Continent
#Education
#Case status

col1=visa_df['continent']
col2=visa_df['case_status']
col3=visa_df['education_of_employee']
col=[col2,col3] # values
result2=pd.crosstab(col1,col)
result2
```

Out[14]:	case_status				Certified			
	education_of_employee	Bachelor's	Doctorate	High School	Master's	Bachelor's	Doctorate	Hiç Scho
	continent							
	Africa	81	43	23	250	62	11	
	Asia	4407	780	676	5149	2761	143	16 ⁻
	Europe	1040	788	162	967	259	58	32
	North America	641	207	210	979	584	51	19
	Oceania	38	19	19	46	28	3	
	South America	160	75	74	184	173	14	•

```
In [15]: result2.plot(kind='bar')
```

Out[15]: <Axes: xlabel='continent'>

We draw two numerical columns analysis

Numerical vs Numerical

Out[16]: <matplotlib.collections.PathCollection at 0x22afb580c90>


```
In [17]: x=[i for i in range(-10,11)]
y=[i*i for i in x]
x
```

Out[17]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0]

```
In [18]: y
```

Out[18]: [100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

```
In [19]: plt.scatter(x,y)
plt.plot(x,y)
```

Out[19]: [<matplotlib.lines.Line2D at 0x22afb909f50>]

- · Scatter plots for only numerical analysis
- Scatter plots provides an idea , both variables are related or not related
- Postivie relation
 - Increase in the curve
- · Negative relation
 - Decrease in the curve
- · No realtion
 - Neither increase nor Decrease

```
In [20]: dtypes=dict(visa_df.dtypes)
   num=[i for i in dtypes if dtypes[i]!='0']
   num
```

```
Out[20]: ['no_of_employees', 'yr_of_estab', 'prevailing_wage']
```

Out[21]: <matplotlib.collections.PathCollection at 0x22afb901050>


```
In [22]:
         #Covariance-matrix
          #How many numerical variables are there : 3
                        no_employee
                                              wage
                                       yr
          #no_employee
                          var
                                      cov
                                              cov
          #yr
                          cov
                                      var
                                              cov
                                      cov
          #age
                          cov
                                               var
```

correlation-coef fiecinet

- · Denoted with r
- r range from -1 to 1
- postive relation range = (0,1]
- negative relation range = [-1,0)
- no relation = 0

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Corr()

```
In [23]: visa_df.corr(numeric_only=True) # applicable for you need to see numeric_o
# in the data frame we have both cat and numerical column
# correlation applicable for only numerical column
# Explicitly mention numeric= True

# If people has pandas old version
# they dont have numeric_only argument
# for them visa_df.corr() works
```

Out[23]:

	no_or_employees	yr_or_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

In [25]: pd.__version__ # double underscore

Out[25]: '2.0.3'

In []: #pip unisntall pandas

#pip install pandas==2.0.3

In [26]: plt.scatter(visa_df['yr_of_estab'], visa_df['prevailing_wage'])

Out[26]: <matplotlib.collections.PathCollection at 0x22afbcdd690>

- EDA session-1
 - Read the data
 - Create the data frame using list
 - Create the data frame using dictionary
 - How to save the dataframe
 - How to add new column
 - How to drop new column
- EDA session-2:
 - shape/size
 - columns/dtypes
 - head/tail
 - take/loc/iloc
 - isnull/len
- EDA session-3 Categorical data analysis
 - How to read a column
 - unique/nunique
 - value counts
 - we created a frequncy table by our own skill
 - bar chart
 - pie chart
- EDA session -4 Numerical data analysis
 - How to read a column
 - statistical measurements
 - mean/median/count/max/min/std/25/50/75
 - describe function
 - using numpy we draw measurements

- Histogram
- we checked the empiricle rule
- EDA session-5 Outlier analysis
 - We draw box plot
 - we implemented how to find outlier
 - we remove the outliers
 - we imputed with median
 - np.where
- EDA session-6: Bi variate and multivariate analysis
 - we draw two cat columns analysis
 - we implemented by our own skill
 - pd.crosstab
 - draw the plots
 - we repeated multiple columns
 - for two numerical columns plt.scatter
 - correlation data.corr
 - matrix
 - heatmap

```
In [ ]:

Date-18-12-2023
```

```
In [ ]: # read the packages # read the data
```

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

file_path="C:\\Users\\kurre\\OneDrive\\Documents\\Naresh IT\\datafiles\\Vis
visa df=nd.read csv(file path) In [2]:

	<pre>visa_df=pd.read_csv(file_path) visa_df</pre>								
Out[2]:		case_id	continent	education_of_employee	has_job_experience	requires_job_traini			
	0	EZYV01	Asia	High School	N				
	1	EZYV02	Asia	Master's	Υ				
	2	EZYV03	Asia	Bachelor's	N				
	3	EZYV04	Asia	Bachelor's	N				
	4	EZYV05	Africa	Master's	Υ				
	25475	EZYV25476	Asia	Bachelor's	Υ				
	25476	EZYV25477	Asia	High School	Υ				
	25477	EZYV25478	Asia	Master's	Υ				
	25478	EZYV25479	Asia	Master's	Υ				
	25479	EZYV25480	Asia	Bachelor's	Υ				

25480 rows × 12 columns

In [5]: # corr function visa_df.corr(numeric_only=True)

Out[5]:

	no_of_employees	yr_of_estab	prevailing_wage
no_of_employees	1.000000	-0.017770	-0.009523
yr_of_estab	-0.017770	1.000000	0.012342
prevailing_wage	-0.009523	0.012342	1.000000

In []: | # matrix

showing values in a matrix

showing values in a picture: Heatmap

In [8]: corr_data=visa_df.corr(numeric_only=True)
sns.heatmap(corr_data)

Out[8]: <Axes: >

In [9]: corr_data=visa_df.corr(numeric_only=True)
sns.heatmap(corr_data,annot=True) # for see the value use 'annot'

Out[9]: <Axes: >

In [10]: # wine quality dataset

file_path1="C:\\Users\\kurre\\OneDrive\\Documents\\Naresh IT\\datafiles\\wi
wine_df=pd.read_csv(file_path1)
wine_df

Out[10]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3193	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75
3194	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3195	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71
3196	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3197	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66

3198 rows × 12 columns

4

In [12]: wine_df.corr()

Out[12]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	densi
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.6680
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.0220
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.3649
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.3552
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.2006
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.0219
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.0712
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.0000
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.3416
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.1485
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.4961
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.1749
4								•

```
In [13]: plt.figure(figsize=(10,10))
sns.heatmap(wine_df.corr(),annot=True)
```

Out[13]: <Axes: >


```
In [14]: plt.scatter(wine_df['fixed acidity'],wine_df['citric acid'])
```

Out[14]: <matplotlib.collections.PathCollection at 0x1d7f39fcd90>

