Lec 19: Overdetermined Linear Systems

- QR Algorithm

Revisiting Least Squares

Moore-Penrose Pseudoinverse

Let $A \in \mathbb{R}^{m \times n}$ with $m \geqslant n$ and suppose that columns of A are linearly independent.

- The least square problem $A\mathbf{x}$ "=" \mathbf{b} is equivalent to the normal equation $A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}$, which is a square matrix equation.
- The solution can be written as

$$\mathbf{x} = \left(A^{\mathrm{T}}A\right)^{-1}A^{\mathrm{T}}\mathbf{b}.$$

The matrix

$$A^{+} = \left(A^{\mathrm{T}}A\right)^{-1}A^{\mathrm{T}} \in \mathbb{R}^{n \times m},$$

is called the (Moore-Penrose) pseudoinverse.

- MATLAB's backslash is mathematically equivalent to left-multiplication by the inverse or pseudoinverse of a matrix.
- MATLAB's pinv calculates the pseudoinverse, but it is rarely used in practice, just as inv.

Moore-Penrose Pseudoinverse (cont')

• A^+ can be calculated by using the thin QR factorization $A = \hat{Q}\hat{R}$.

$$A^+ = \hat{R}^{-1} \hat{Q}^{\mathrm{T}}.$$

¹It can be done using the thick QR factorization as seen on p.1624 of the text.

Least Squares and QR Factorization

Substitute the thin factorization $A=\hat{Q}\hat{R}$ into the normal equation $A^{\rm T}A{\bf x}=A^{\rm T}{\bf b}$ and simplify.

Least Squares and QR Factorization (cont')

Summary: Algorithm for LLS Approximation

If A has rank n, the normal equation $A^{\mathrm{T}}A\mathbf{x}=A^{\mathrm{T}}\mathbf{b}$ is consistent and is equivalent to $\hat{R}\mathbf{x}=\hat{Q}^{\mathrm{T}}\mathbf{b}$.

- $\textbf{1} \ \, \mathsf{Factor} \ \, A = \widehat{Q} \widehat{R}.$
- 2 Let $\mathbf{z} = \hat{Q}^{\mathrm{T}} \mathbf{b}$.
- **3** Solve $\hat{R}\mathbf{x} = \mathbf{z}$ for \mathbf{x} using backward substitution.

Least Squares and QR Factorization (cont')

```
function x = lsgrfact(A,b)
% LSQRFACT x = lsqrfact(A,b)
% Sove linear least squares by OR factorization
 Input:
   A coefficient matrix (m-by-n, m>n)
   b right-hand side (m-by-1)
 Output:
   x minimizer of | | b - Ax | | (2-norm)
                   % thin QR fact.
   [Q,R] = qr(A,0);
   z = Q' *b;
   x = backsub(R,c);
end
```

Householder Transformation and QR Algorithm

Motivation

Problem

Given $\mathbf{z} \in \mathbb{R}^m$, find an orthogonal matrix $H \in \mathbb{R}^{m \times m}$ such that $H\mathbf{z}$ is nonzero only in the first element.

Since orthogonal matrices preserve the 2-norm, H must satisfy

$$H\mathbf{z} = egin{bmatrix} \pm \|\mathbf{z}\|_2 \ 0 \ \vdots \ 0 \end{bmatrix} = \pm \|\mathbf{z}\|_2 \, \mathbf{e}_1.$$

The Householder transformation matrix H defined by

$$H = I - 2 rac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}, \quad ext{where } \mathbf{v} = \pm \left\| \mathbf{z} \right\|_2 \mathbf{e}_1 - \mathbf{z},$$

solves the problem. See Theorem 1.

9/23

Properties of Householder Transformation

Theorem 1

Let $\mathbf{v} = \|\mathbf{z}\|_2 \, \mathbf{e}_1 - \mathbf{z}$ and let H be the Householder transformation defined by

$$H = I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}.$$

Then

- **1** *H* is symmetric;
- Q H is orthogonal;
- **3** $H\mathbf{z} = \|\mathbf{z}\|_2 \mathbf{e}_1.$
- H is invariant under scaling of \mathbf{v} .
- If $\|\mathbf{v}\|_2 = 1$, then $H = I \mathbf{v}\mathbf{v}^T$.

Geometry Behind Householder Transformation (cont')

The Householder transformation matrix H can be thought of as a reflector².

²See Supplementary 1 on for review on projection and reflection operators

Factorization Algorithm

- The Gram-Schmidt orthogonalization (thin QR factorization) is unstable in floating-point calculations.
- Stable alternative: Find orthogonal matrices H_1, H_2, \dots, H_n so that

$$\underbrace{H_n H_{n-1} \cdots H_2 H_1}_{=:Q^{\mathrm{T}}} A = R.$$

introducing zeros one column at a time below diagonal terms.

• As a product of orthogonal matrices, $Q^{\rm T}$ is also orthogonal and so $(Q^{\rm T})^{-1}=Q.$ Therefore,

$$A = QR$$
.

MATLAB Demonstration Code MYQR

```
function [O, R] = mvgr(A)
  [m, n] = size(A);
 A0 = A;
 Q = eve(m);
 for j = 1:min(m,n)
      Aj = A(j:m, j:n);
      z = Aj(:, 1);
      v = z + sign0(z(1)) * norm(z) * eye(length(z), 1);
      Hi = eve(length(v)) - 2/(v'*v) * v*v';
      Aj = Hj*Aj;
      H = eye(m);
      H(j:m, j:m) = Hj;
      Q = Q \star H;
      A(j:m, j:n) = Aj;
 end
 R = A:
end
```

MATLAB Demonstration Code MYQR (cont')

(continued from the previous page)

```
% local function
function sign0(x)
  y = ones(size(x));
  y(x < 0) = -1;
end</pre>
```

- The MATLAB command ${\tt qr}$ works similar to, but more efficiently than, this.
- The function finds the factorization in $\sim (2mn^2-n^3/3)$ flops asymptotically.

Supplementary 1: Projection and Reflection

Projection and Reflection Operators

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ be nonzero vectors.

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle = \text{span}(\mathbf{v})$:

$$\frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \underbrace{\left(\frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)}_{=:P}\mathbf{u} =: P\mathbf{u}.$$

• Projection of \mathbf{u} onto $\langle \mathbf{v} \rangle^{\perp}$, the orthogonal complement of $\langle \mathbf{v} \rangle$:

$$\mathbf{u} - \frac{\mathbf{v}^{\mathrm{T}}\mathbf{u}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\mathbf{v} = \left(I - \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}}\right)\mathbf{u} =: (I - P)\mathbf{u}.$$

• Reflection of \mathbf{u} across $\langle \mathbf{v} \rangle^{\perp}$:

$$\mathbf{u} - 2 \frac{\mathbf{v}^{\mathrm{T}} \mathbf{u}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \mathbf{v} = \left(I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}} \right) \mathbf{u} =: (I - 2P) \mathbf{u}.$$

Projection and Reflection Operators (cont')

Summary: for given $\mathbf{v} \in \mathbb{R}^m$, a nonzero vector, let

$$P = \frac{\mathbf{v}\mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}}\mathbf{v}} \in \mathbb{R}^{m \times m}.$$

Then the following matrices carry out geometric transformations

- Projection onto $\langle \mathbf{v} \rangle$: P
- Projection onto $\langle \mathbf{v} \rangle$: I P
- Reflection across $\langle \mathbf{v} \rangle^{\perp}$: I 2P

Note. If \mathbf{v} were a unit vector, the definition of P simplifies to $P = \mathbf{v}\mathbf{v}^{\mathrm{T}}$.

Supplementary 2: Conditioning and Stability

Analytical Properties of Pseudoinverse

The matrix $A^{\rm T}A$ appearing in the definition of A^+ satisfies the following properties.

Theorem 2

For any $A \in \mathbb{R}^{m \times n}$ with $m \geqslant n$, the following are true:

- **1** $A^{\mathrm{T}}A$ is symmetric.
- **2** $A^{\mathrm{T}}A$ is singular if and only if rank(A) < n.
- **3** If $A^{T}A$ is nonsingular, then it is positive definite.

A symmetric positive definite (SPD) matrix S such as $A^{\rm T}A$ permits so-called the **Cholesky factorization**

$$S = R^{\mathrm{T}}R$$

where R is an upper triangular matrix.

Least Squares Using Normal Equation

One can solve the LLS problem $A\mathbf{x}$ "=" \mathbf{b} by solving the normal equation $A^{\mathrm{T}}A\mathbf{x} = A^{\mathrm{T}}\mathbf{b}$ directly as below.

- **1** Compute $N = A^{T}A$.
- **2** Compute $\mathbf{z} = A^{\mathrm{T}}\mathbf{b}$.
- 3 Solve the square linear system $N\mathbf{x} = \mathbf{z}$ for \mathbf{x} .

Step 3 is done using chol which implements the Cholesky factorization.

MATLAB Implementarion.

Conditioning of Normal Equations

- Recall that the condition number of solving a square linear system $A\mathbf{x} = \mathbf{b}$ is $\kappa(A) = \|A\| \|A^{-1}\|$.
- Provided that the residual norm at the least square solution is relatively small, the conditioning of LLS problem is similar:

$$\kappa(A) = ||A|| ||A^+||.$$

- If A is rank-deficient (columns are linearly dependent), then $\kappa(A) = \infty$.
- If an LLS problem is solved solving the normal equation, it can be shown that the condition number is

$$\kappa(A^{\mathrm{T}}A) = \kappa(A)^2.$$

Which Reflector Is Better?

Recall:

$$H = I - 2 \frac{\mathbf{v} \mathbf{v}^{\mathrm{T}}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}, \quad \text{where } \mathbf{v} = \pm \|\mathbf{z}\|_2 \, \mathbf{e}_1 - \mathbf{z},$$

• In mygr.m, the statement

$$v = z + sign0(z(1))*norm(z)*eye(length(z), 1);$$

defines v slightly differently³, namely,

$$\mathbf{v} = \mathbf{z} \pm \|\mathbf{z}\|_2 \, \mathbf{e}_1.$$

³This does not cause any difference since H is invariant under scaling of \mathbf{v} ; see p.10

Which Reflector Is Better? (cont')

The sign of $\pm \|\mathbf{z}\|_2$ is chosen so as to avoid possible catastrophic cancellation in forming \mathbf{v} :

$$\mathbf{v} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{bmatrix} + \begin{bmatrix} \pm \|\mathbf{z}\|_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} z_1 \pm \|\mathbf{z}\|_2 \\ z_2 \\ \vdots \\ z_m \end{bmatrix}$$

Subtractive cancellation may arise when $z_1 \approx \pm \|\mathbf{z}\|_2$.

- if $z_1 > 0$, use $z_1 + \|\mathbf{z}\|_2$;
- if $z_1 < 0$, use $z_1 \|\mathbf{z}\|_2$;
- if $z_1 = 0$, either works.

For numerical stability, it is desirable to reflect \mathbf{z} to the vector $s \|\mathbf{z}\|_2 \mathbf{e}_1$ that is not too close to \mathbf{z} itself. (Trefethen & Bau)