H. Sensor Network and Two Farthest Stations

Constraint: Time Limit: 3 seconds, Memory: 128MB

Problem Statement

The National Climate Research Institute is deploying a **sensor network** to measure temperature and humidity in a remote mountainous region. The network consists of **n** sensor stations ($2 \le n \le 2 \times 10^5$), where each station is placed at a position with coordinates (x_i, y_i) on a plane ($-10^9 \le x_i, y_i \le 10^9$, all coordinates are integers).

To design an efficient communication system, researchers need to identify **the two farthest sensor stations** in the network. This information helps:

- Estimate the **network diameter** (maximum coverage)
- Determine the **minimum transmission power** required to ensure full network connectivity

Requirement: Write a program to calculate the square of the maximum Euclidean distance between any two sensor stations in the network.

Input/Output Format

Input		Output
-	First line: A positive integer n - the	A single integer: The square of the maximum
	number of sensor stations	Euclidean distance between any two sensor
-	Next n lines: Each line contains two	stations in the network.
	integers x_i and y_i - the coordinates of the	The result is guaranteed to fit within a 64-bit
	i-th sensor station	integer type

Example

Input	Output
5	65
00	
31	
-2 4	
50	
-2 -3	

The network has 5 sensor stations at positions:

- Station 1: (0, 0)
- Station 2: (3, 1)
- Station 3: (-2, 4)
- Station 4: (5, 0)
- Station 5: (-2, -3)

The farthest pair is station 4 (5, 0) and station 3 (-2, 4).

Squared distance =
$$(5 - (-2))^2 + (0 - 4)^2 = 7^2 + 4^2 = 49 + 16 = 65$$