INSTITUTO FEDERAL ENGENHARIA DE TELECOMUNICAÇÕES SANTA CATARINA

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

Aluno: Arthur Cadore Matuella Barcella Data: 18/07/2021

1ª Fase – Engenharia de Telecomunicações

Disciplina: LOG

LÓGICA - TAREFA SEMANAL 8

1)

Premissas:	A ν B, \sim C, $B \rightarrow C$
Conclusão:	A
Forma simbólica:	$((A \lor B) \land (\sim C) \land (B \to C)) \to A$
Modus tollens:	((B → C),(~C)) = ~B
Silogismo disjuntivo:	$((A \lor B), (\sim B)) \to A$

2)

Premissas:	\sim A \rightarrow (B v C), (D v E) \rightarrow \sim A, D v E
Conclusão:	BvC
Forma simbólica:	$((\sim\!\!A\to(B\;v\;C))\;v\;((D\;v\;E)\to\sim\!\!A)\;v\;(D\;v\;E))\toB\;v\;C$
Modus ponens:	((D v E) → ~A), (D v E)) = ~A
Modus ponens:	((~A), (~A)) = B v C

INSTITUTO FEDERAL ENGENHARIA DE TELECOMUNICAÇÕES SANTA CATARINA

MINISTÉRIO DA EDUCAÇÃO

SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS SÃO JOSÉ

3)

Premissas:	f A ightarrow B, $f B ightarrow C$, $f C ightarrow D$, $f A v E$
Conclusão:	E
Forma simbólica:	$((A \to B) \land (B \to C) \land (C \to D) \land (\simD) \land (A \lor E)$
Modus tollens:	((C → D), (~D)) = ~C
Modus tollens:	((B → C), (~C)) = ~B
Silogismo disjuntivo:	((A → B) (~B) = E

4)

Premissas:	$A \rightarrow C$, $B \rightarrow D$, ~C, $(A \lor B) \land (C \lor D)$
Conclusão:	D
Forma simbólica:	$((A \to C) \ ^{\blacktriangle} (B \to D) \ \land \ (\text{~C}) \ ^{\blacktriangle} ((A \ v \ B) \ ^{\blacktriangle} (C \ v \ D))) \to D$
Simplificação:	(A v B) ^ (C v D) = A ^ C
Dilema construtivo:	$((A \rightarrow C), (B \rightarrow D), (A \land C)) = C \lor D$
Silogismo disjuntivo:	((C v D), (~C) = D

5)

Premissas:	C o A, $C o B$, C
Conclusão:	A ^ B
Forma simbólica:	$((C \to A) \land (C \to B) \land (C)) \to A \land B$
Modus ponens:	((C → A), (C) = A
Modus ponens:	((C → B), (C) = B
Conjunção:	((A), (B)) = A ^ B