(1) Countability & Un-conentability: One-to-one mapping.

Set of Objects - F II.= { set of integers? -3 -2 -1 0 1 2 3 4 -3 -2 -1 0 2 4 6 8 7 5 3 1 2 4 6 8 Countable 9 0-0 0+ uncountable Analog/continuous. Courtable. -> Disoulé. Comitable. & Uncoun-- table. (1) Probabilý:

Sample space:

= { All possible o/c's of an experiment?

 $SL = \{1, 2, 3, 4, 5, 6\}$.

A = {2,394,63.

No. of { A }. P(A) = No. of { 52 }.

Event: set of the sample-space = $\frac{3}{6} = \frac{1}{2}$.

P{1,33}.

P{ 2,5}.

AC 52.

P {A} = P{ even values}

ACC D.

= 1- P{ odd values}

= 1- P(Ac).

Scanned by CamScanner

(1) Field:

It is set of subsets of a universal set. following rules stalid:

(a) \(\mathcal{I} \) \(\varphi \) \(\varphi \)

(b) If ACE J.

(hèn, ACE J.

An E F. (c) H A, A2, ... AIUAZUA3··· UAn EJ. + finite value of n.

θ= {A1, A2, A3, A4, A5-..., 5, φ}

A1 , A2 ,

A1, A2 E F. AIUAZ E J.

B={A1 UA2 UA3 ... WAn} $A_1 A_2 \cdots A_n \in \mathcal{F}.$ $A_1 A_2 \cdots A_n \in \mathcal{F}. \Rightarrow \{A_1 \cap A_2 \cap A_3 \cdots \cap A_n \} \in \mathcal{F}.$ $A_1 A_2 \cdots A_n \in \mathcal{F}. \Rightarrow \{A_1 \cap A_2 \cap A_3 \cdots \cap A_n \} \in \mathcal{F}.$.. n An 3 E F.

A, A2 A3 . . . An E F. (b) A_1^c , A_2^c , \cdots $A_n^c \in \mathcal{F}$. BC E F. ⇒) A₁ ∩ A₂ ∩ A₃ - ∩ A_n ∈ J. A_1 , A_2 ... $A_n \in \mathcal{J}$. {AUA2UA3...UA3} = 7 {A, ∩ A2 ∩ A3 - ... ∩ An} ∈ F. (a) 12 EF. (b) I is closed under compliment. ACT= ACEF. (c) Jis closed under union. A, Az EJ => A, VAZEJ $(b) \land (b) \Rightarrow A_1 \cap A_2 \in \mathcal{F}.$ J=> Borel field (B). Ut A1, A2... An ∈ B. Ut U Ai € \$3.

Axiomatic Depn:

Measurement on a set which follows certain rules:

(b)
$$P(-\Omega) = 1$$
. Where, $AC = X$

(b)
$$P(\Delta z) = z$$
. Where, $ACSZ$
(c) $A \cap B = \emptyset$ where, $BCSZ$

A₁, A₂........ P(A1UA2UA3 - ... UAn)

= ht \(\frac{m}{2} \) P(Ai)

are mudually exclusive. A1, A2

52={1,2,3,4,5,6} P (-72)

Tr² = $\sum_{i=1}^{\infty}$ area i'm region

i's Event of hitting The region.

Sull's eye region. Ai = 2 event of hilling the Ai area? P $\{i=1\}$ ∞ area i=1 $\frac{\pi r^2}{\pi R^2}$. $=\frac{\pi r^2}{\pi R^2}$. $=\frac{\pi r^2}{\pi R^2}$. $=\frac{\pi r^2}{\pi R^2}$. = PEBNIS eyeg = Ut = P { U Ai } (a) she 13. (Pa.)= (b) - the A & B. Ai i 70 E B. PUAI E B.

Bayes theorem:

P(A) -> Probability of A. P(A| B) -> Probability of A. given that B. B. has already occured.

Per
$$S_{A} = \{1, 2, 3, 4, 5, 6\}$$
.

 $A = \{2\}\}$.

 $B = \{2, 4\}$
 $P(A) = 1/6$.

 $P(A|B)$
 $P(A) = 1/2$.

PP(AOB)

$$P(A|B) =$$

No. of favourable outcomes No. of o/c's in of (AnB)

