Matemáticas Discretas 2021-1 Proyecto final Criterios y rúbrica de evaluación

1. Objetivo

Llevar la teoría de análisis de algoritmos y matemáticas discretas a una aplicación de explotación concreta de datos mexicanos.

2. Forma de trabajo

El trabajo es individual o en parejas. Las entregas en parejas serán evaluadas bajo un estándar mucho más estricto.

3. Condiciones

- Se deben usar datos mexicanos provenientes de una fuente real. Deben tener permiso de usarlos en un proyecto académico. Algunas ideas de fuentes son:
 - Datos Abiertos de México https://datos.gob.mx/
 - Datos CDMX https://datos.cdmx.gob.mx/pages/home/
 - Biblioteca Virtual de México https://bibliotecavirtualdemexico.cultura.gob.mx/
 - Datos de instituciones para las cuales ustedes gestionen los permisos.

Se pueden usar datos no mexicanos, pero sólo de manera complementaria.

- 2. La aplicación propuesta debe usar de manera **no trivial** la teoría discutida en el curso. Es decir, no es válido tomar algún resultado del curso y simplemente aplicarlo en un caso particular. Algunos ejemplos de usos triviales que **no** funcionarían para el proyecto son:
 - Aplicar algoritmos de ordenamiento para ordenar de mayor a menor los estados de México por población.
 - Aplicar el algoritmo de Prim a la red del metro de la CDMX.

- Aplicar búsqueda binaria en una lista ordenada de libros de la Biblioteca Virtual de México para encontrar algún título.
- 3. La aplicación propuesta se debe poder generalizar no sólo para los datos propuestos, sino también para entradas de cualquier tamaño n.

4. Entregables

- Documentación ejecutiva del proyecto:
 - Planteamiento del problema a resolver.
 - Justificación de elección de datos base y complementarios.
 - Metodología descrita en términos no técnicos.
 - Discusión no técnica de uso de recursos computacionales.
 - Conclusiones.
- Documentación técnica del proyecto:
 - Planteamiento del problema a resolver.
 - Forma de modelarlo matemáticamente y justificación de suposiciones.
 - Enunciado del problema algorítmicos formal general a resolver.
 - Propuesta de solución mediante algoritmos combinatorios.
 - Análisis de correctitud y análisis asintótico de tiempo y espacio.
 - Estrategias de diseño de algoritmos o estructuras de datos utilizadas.
 - Aplicación a los datos concretos.
 - Conclusiones y posible trabajo a futuro.
 - Bibliografía.
- Base de datos limpia (completa o una muestra) en formato CSV.
- Código en Python.

5. Otros comentarios

- Los resultados obtenidos deben poder ser reproducibles a partir de la base de datos y el código de Python entregados.
- Los proyectos que excedan lo esperado podrán evolucionar en colaboraciones con las instituciones o actores involucrados. También podrán convertirse en proyectos de titulación.

6. Rúbrica de evaluación

A continuación se muestran los siete rubros que se usarán para evaluar los proyectos. Cada rubro tiene posibles calificaciones 0,1,3,4. Los incisos de 4 puntos son para una ejecución sobresaliente del rubro. Para obtener la calificación total del proyecto no es necesario tener los 28 puntos totales. Basta con tener 21 de ellos.

A. Elección de la base de datos

- (0 pts) No se está eligiendo ninguna base de datos.
- (1 pt) Se eligió una base de datos.
- (3 pts) Se eligió una base de datos mexicana.
- (4 pts) Se eligió una base de dtaos mexicana y está complementada con otras bases de datos.

B. Elección del problema algorítmico y del modelo

- (0 pts) No hay ningún modelo ni problema algorítmico general a resolver.
- (1 pt) Hay un problema algorítmico a resolver sobre un modelo relacionado con el contexto elegido.
- (3 pts) Hay un problema algorítmico de matemáticas discretas general a resolver sobre un modelo relacionado con el contexto elegido.
- (4 pts) Hay un problema algorítmico de matemáticas discretas general a resolver sobre un modelo relacionado con el contexto elegido. Es muy novedoso.

C. Propuesta de algoritmo

- (0 pts) No se propone ningún algoritmo.
- (1 pt) Se propone un algoritmo correcto para resolver el problema.
- (3 pts) Se propone un algoritmo correcto y lo más eficiente posible para resolver el problema, quizás usando fuentes externas.
- (4 pts) Se propone un algoritmo original correcto y lo más eficiente posible para resolver el problema.

D. Análisis del algoritmo

- (0 pts) El algoritmo no se analiza
- (1 pt) Hay o bien el análisis de correctitud, o bien el análisis asintótico de tiempo, o bien mención del uso de estrategias de diseño o estructuras de datos propuestas.

- (3 pts) Hay dos o más de los elementos anteriores.
- (4 pts) Hay un análisis muy completo del algoritmo, incluyendo correctitud, tiempo, espacio, estrategias usadas, estructuras de datos y algunas comparaciones con otros algoritmos.

E. Documentación técnica

- (0 pts) No hay documentación técnica.
- (1 pt) Hay una documentación técnica muy básica.
- (3 pts) Hay una documentación técnica en donde se ponen todos los elementos anteriores de manera clara y ordenada.
- (4 pts) Hay una muy buena documentación técnica, presentable a la institución o segmento interesado.

F. Documentación ejecutiva

- (0 pts) No hay documentación ejecutiva
- (1 pt) Hay una documentación ejecutiva básica o muy técnica
- (3 pts) Hay una documentación ejecutiva con buen balance entre términos técnicos y no técnicos.
- (4 pts) Hay una muy buena documentación ejecutiva, presentable a la institución o segmento interesado.

G. Implementación en Python

- (0 pts) No se entrega implementación
- (1 pt) Se entrega una implementación incorrecta o que resuelve el problema de manera limitada.
- (3 pts) Se entrega una implementación que resuelve el problema de manera general.
- (4 pts) Se entrega una implementación que resuelve el problema de manera general, se aplica de manera correcta al problema concreto, y la implementación es clara y bien comentada.