

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik

Lineare Algebra für Informatik (MA0901)

PD Dr. S. Borgwardt, Dr. R. Brandenberg

Aufgabenblatt 10

Präsenzaufgabe 10.1 (Ganzzahlige Nullstellen von Polynomen)

a) Es sei

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$$

ein normiertes Polynom mit lauter ganzzahligen Koeffizienten a_i .

Zeigen Sie: Ist x_0 eine ganzzahlige Nullstelle von f, so ist x_0 ein Teiler des konstanten Gliedes a_0 .

Bemerkung: Beim Suchen von ganzzahligen Nullstellen eines solchen Polynoms genügt es also, die (positiven und negativen) Teiler des konstanten Terms a_0 zu testen.

b) Schreiben Sie als Produkt von Linearfaktoren:

$$f(x) = x^6 + 2x^5 + 2x^4 + 2x^3 - 19x^2 - 40x - 20 \in \mathbb{C}[x].$$

Lösung zu Aufgabe 10.1

a) Aus $f(x_0) = 0$ folgt

$$x_0^n + a_{n-1}x_0^{n-1} + \ldots + a_1x_0 + a_0 = 0,$$

also

$$a_0 = -x_0 \cdot \underbrace{(x_0^{n-1} + a_{n-1}x_0^{n-2} + \dots + a_1)}_{\in \mathbb{Z}},$$

und damit ist x_0 ein Teiler von a_0 .

b) Wir suchen zunächst ganzzahlige Nullstellen von f. In Frage kommen alle positiven und negativen Teiler von 20, also $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10, \pm 20$. Wir finden die Nullstellen -1, 2, -2. Damit können wir f durch das Polynom g mit

$$g(x) = (x+1)(x-2)(x+2) = (x+1)(x^2-4) = x^3 + x^2 - 4x - 4$$

teilen, und erhalten

$$f(x) = \underbrace{(x^3 + x^2 - 4x - 4)}_{=(x+1)(x-2)(x+2)} \cdot \underbrace{(x^3 + x^2 + 5x + 5)}_{=:h(x)}.$$

Nun suchen wir Nullstellen von h. In Frage kommen wieder alle Teiler des konstanten Glieds, also $\pm 1, \pm 5$. Da eine Nullstelle von h auch eine von f sein muss, und f nur die ganzzahligen Nullstellen -1, 2, -2 hat, kommt letztlich nur noch -1 als Kandidat in Frage, was tatsächlich auch eine Nullstelle von h ist. Wir erhalten

$$h(x) = (x+1) \cdot (x^2+5) = (x+1) \cdot (x+i\sqrt{5}) \cdot (x-i\sqrt{5}),$$

und damit

$$f(x) = (x+1)^2 \cdot (x-2) \cdot (x+2) \cdot (x+i\sqrt{5}) \cdot (x-i\sqrt{5})$$

als Zerlegung von f in Linearfaktoren.

Seite 1 von 3

Präsenzaufgabe 10.2 (Matrixpotenzen)

a) Es seien $S,D\in K^{n\times n}$ quadratische Matrizen über einem Körper K, sodass S invertierbar ist. Beweisen Sie:

$$\forall k \in \mathbb{N} : \left(SDS^{-1} \right)^k = SD^k S^{-1}$$

- b) Es sei $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.
 - (i) Bestimmen Sie eine invertierbare Matrix S und eine Diagonalmatrix D, sodass $A = SDS^{-1}$ gilt.
 - (ii) Geben Sie A^k explizit an.

In welcher Anwendung, die Ihnen am Anfang der Vorlesung vorgestellt wurde, traten Matrixpotenzen auf?

Lösung zu Aufgabe 10.2

a) Beweis durch Induktion:

I.A.
$$k = 1 (SDS^{-1})^1 = SDS^{-1} = SD^1S^{-1}$$

- I.S. $k \to k+1$ Wir nehmen also an, dass $(SDS^{-1})^k = SD^kS^{-1}$ für ein festes $k \ge 1$ gilt. Dann folgt: $(SDS^{-1})^{k+1} = (SDS^{-1})^k SDS^{-1} = SD^kS^{-1}SDS^{-1} = SD^{k+1}S^{-1}$.
 - b) Ziel ist es natürlich Teilaufgabe (a) so zu nutzen, dass D eine Diagonalmatrix ist, da dann D^k leicht explizit angegeben werden kann. Um dies zu erreichen versuchen wir A zu diagonalisieren:

$$\chi_A(x) = \det \begin{pmatrix} x-3 & 1 \\ 1 & x-3 \end{pmatrix} = (x-3)^2 - 1 = x^2 - 6x + 8 = (x-4)(x-2)$$
, d.h. die Eigenwerte sind 2 und 4. Die dazugehörigen Eigenräume lauten

$$E_2 = \operatorname{Kern} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle \text{ und}$$

$$E_4 = \operatorname{Kern} \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rangle$$

Also gilt mit $S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, dass $A = S \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} S^{-1}$ und damit nach Teilaufgabe (a), dass $A^k = S \begin{pmatrix} 2^k & 0 \\ 0 & 4^k \end{pmatrix} S^{-1}$. Um A^k explizit angeben zu können, bestimmen wir nun noch S^{-1} :

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1/2 & -1/2 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1/2 & 1/2 \\ 0 & 1 & 1/2 & -1/2 \end{pmatrix}$$

Also ist
$$S^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 und damit
$$A^k = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & 4^k \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2^k + 4^k & 2^k - 4^k \\ 2^k - 4^k & 2^k + 4^k \end{pmatrix}$$

Matrixpotenzen spielen bei Google eine Rolle (vgl. Aufgabe 2.6).

Präsenzaufgabe 10.3 (Diagonale Darstellungsmatrix)

Es seien

$$A := \begin{pmatrix} 2 & 2 & -3 \\ 0 & 1 & 0 \\ 1 & 2 & -2 \end{pmatrix} \in \mathbb{R}^{3 \times 3} \text{ und } \varphi_A : \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto Ax.$$

- a) Bestimmen Sie die Eigenwerte von A.
- b) Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie eine Basis B des \mathbb{R}^3 , sodass $D_B(\varphi_A)$ eine Diagonalmatrix ist. Wie lauten die Diagonaleinträge?

Lösung zu Aufgabe 10.3

a)

$$\chi_A(x) = \det \begin{pmatrix} x - 2 & -2 & 3 \\ 0 & x - 1 & 0 \\ -1 & -2 & x + 2 \end{pmatrix} = (x - 1) \det \begin{pmatrix} x - 2 & 3 \\ -1 & x + 2 \end{pmatrix}$$
$$= (x - 1) ((x - 2)(x + 2) + 3) = (x - 1)(x^2 - 1) = (x - 1)^2(x + 1).$$

Eigenwerte sind also -1 (mit algebraische Vielfachheit 1) und und 1 (mit algebraische Vielfachheit 2).

b)
$$E_1 = \operatorname{Kern} \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 1 & 2 & -3 \end{pmatrix} = \operatorname{Kern} \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \langle \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \rangle.$$

$$E_{-1} = \operatorname{Kern} \begin{pmatrix} 3 & 2 & -3 \\ 0 & 2 & 0 \\ 1 & 2 & -1 \end{pmatrix} = \operatorname{Kern} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle.$$

Die geometrischen und algebraischen Vielfachheiten stimmen also überein, womit A diagonalisierbar ist. Mit $S = \begin{pmatrix} 3 & -2 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ erhalten wir diag $(1,1,-1) = S^{-1}AS$.

Hausaufgabe 10.4 (Polynomfaktorisierung)

Sei $A \in \mathbb{C}^{5 \times 5}$ eine Matrix von der wir nur das charakteristische Polynom kennen:

$$\chi_A(x) = x^5 - 3x^4 - 16x + 48.$$

- a) Schreiben Sie χ_A als Produkt von Linearfaktoren.
- b) Bestimmen Sie alle Eigenwerte von A, sowie deren algebraischen und geometrischen Vielfachheiten. Ist die Matrix A diagonalisierbar?

Lösung zu Aufgabe ??

a) Aufgrund von Aufgabe 10.1 kommen nur positive und negative Teiler von 48 als ganzzahlige Nullstellen von χ_A in Frage, also $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 8, \pm 12, \pm 16, \pm 24, \pm 48$. Durch ausprobieren erhalten wir die Nullstellen -2, 2, 3. Wir wissen daher, dass x+2, x-2 und x-3 zur Darstellung von χ_A in Linearfaktoren gehören und, dass $\chi_A(x)$ daher durch $(x+2)(x-2)(x-3)=x^3-3x^2-4x+12$ geteilt werden kann: Mittels Polynomdivision erhalten wir $x^5-3x^4-16x+48=(x^3-3x^2-4x+12)(x^2+4)$ und damit die Linearfaktorzerlegung $\chi_A(x)=(x+2)(x-2)(x-3)(x+2i)(x-2i)$.

Die Eigenwerte lauten also -2, 2, 3, -2i und 2i, alle mit algebraischer (und daher auch geometrischer) Vielfachheit 1. Folglich ist A diagonalisierbar.

Hausaufgabe 10.5 (Matrixpotenzen bestimmen)

Für eine reelle Zahl a sei

$$A = \begin{pmatrix} -a & a & 0 \\ 0 & 0 & 0 \\ 0 & -a & a \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

Berechnen Sie A^{101} .

Lösung zu Aufgabe ??

Für a=0 gilt offensichtlich $A^{101}=A=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Wir nehmen nun an, dass $a\neq 0$ gilt, womit

 $\chi_A = (x+a)x(x-a)$ drei verschiedene Nullstellen hat, also A drei verschiedene Eigenwerte -a, 0, a. Die zugehörigen Eingenräume lassen sich direkt ablesen: $E_{-a} = \langle (1,0,0)^T \rangle$, $E_0 = \langle (1,1,1)^T \rangle$ und $E_a = \langle (0,0,1)^T \rangle$.

Also gilt mit $S = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ die Gleichung diag $(-a, 0, a) = S^{-1}AS$, also:

$$A^{101} = S \operatorname{diag}(-a, 0, a)^{101} S^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \operatorname{diag}(-a^{101}, 0, a^{101}) \cdot \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -a^{101} & a^{101} & 0 \\ 0 & 0 & 0 \\ 0 & -a^{101} & a^{101} \end{pmatrix}.$$

Hausaufgabe 10.6 (Eigenwerte, Eigenvektoren, Diagonalisierung - Alte Klausur) Sei

$$A = \begin{pmatrix} 0 & 1 & 3i \\ -1 & 0 & 3 \\ 0 & 0 & i \end{pmatrix} \in \mathbb{C}^{3 \times 3}.$$

- a) Bestimmen Sie das charakteristische Polynom χ_A in faktorisierter Form, und geben Sie die Eigenwerte von A an.
- b) Bestimmen Sie zu allen Eigenwerten λ von A die zugehörigen Eigenräume E_{λ} .

Seite 4 von 3

c) Begründen Sie, dass A diagonalisierbar ist und geben Sie eine invertierbare Matrix S an, so dass $S^{-1}AS$ eine Diagonalmatrix ist.

Lösung zu Aufgabe ??

a) Aufgrund der Blockdreiecksmatrixstruktur erhalten wir das charakteristische Polynom zu

$$\chi_A(X) = \det \begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} \cdot (x-i) = (x^2+1)(x-i) = (x-i)^2(x+i).$$

Die Eigenwerte sind also i und -i.

b) Mithilfe des Gauß-Algorithmus bestimmen wir die Eigenräume:

$$E_i = \text{Kern}(A - iI_3) = \dots = \langle (-i, 1, 0)^T, (3, 0, 1)^T \rangle \text{ und } E_{-i} = \text{Kern}(A + iI_3) = \dots = \langle (i, 1, 0)^T \rangle.$$

c) Die geometrische und algebraische Vielfachheit von i sind jeweils 2, die von -i jeweils 1, d.h. A ist diagonalisierbar und mit

$$S = \begin{pmatrix} -i & 3 & i \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

gilt
$$S^{-1}AS = \operatorname{diag}(i, i, -i)$$
.

Hausaufgabe 10.7 (Eigenwerte: wahr/Falsch)

Seien $A, B \in K^{n \times n}$ invertierbare Matrizen, $v \in K^n$ und $\lambda \in K$.

Welche der nachfolgenden Aussagen sind wahr, welche falsch? Geben Sie <u>kurze</u> Begründungen (Beweisskizze / Gegenbeispiel wo angebracht)

- a) Ist λ ein Eigenwert zu A, dann ist $\lambda \neq 0$.
- b) Ist λ ein Eigenwert zu A, dann ist λ auch ein Eigenwert zu A^T .
- c) Ist v ein Eigenvektor zu A, dann ist v auch ein Eigenvektor zu A^T .
- d) Ist λ ein Eigenwert zu A, dann ist $1/\lambda$ ein Eigenwert zu A^{-1}
- e) Ist v ein Eigenvektor zu A und B, dann ist v auch Eigenvektor zu AB.
- f) Ist v ein Eigenvektor zu A und AB, dann ist v auch Eigenvektor zu B.

Lösung zu Aufgabe ??

- a) Ist richtig, da wegen A invertierbar Av = 0 nur für v = 0 gilt.
- b) Ist richtig, da die Determinante einer Matrix und ihrer Transponierten übereinstimmen, also $\chi_A = \chi_{A^T}$ gilt.
- c) Ist falsch. Betrachte etwa $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, dann $(1,0)^T$ ein Eigenvektor von A, aber nicht von A^T .
- d) Ist richtig, denn ist v ein Eigenvektor zu λ von A, dann gilt $A^{-1}v = A^{-1}(1/\lambda)Av) = 1/\lambda A^{-1}Av = 1/\lambda v$.
- e) Ist richtig. Seien λ der zugehörige Eigenwert von A und μ von B, dann gilt $ABv = A(\mu v) = \mu(Av) = \mu \lambda v$.

f) Ist richtig, da v auch Eigenvektor zu	A^{-1} ist (s.o.) folgt die Behauptung mithilfe der vorherigen
Teilaufgabe aus $B = A^{-1} \cdot (AB)$.	A^{-1} ist (s.o.) folgt die Behauptung mithilfe der vorherigen
	Seite 6 von 3