Diszkrét matematika 2 összefoglaló

Vig Levente 2017

Rn	1
Skaláris szorzat Rn-ben (belső szorzat)	1
Vektorok	1
Műveletek vektorokkal	1
Összeadás	1
Skalárral való szorzás	2
Norma	2
Távolság Rn-ben	2
Szög	2
Merőleges vetület	3
Pitagorasz-tétel	3
Cauchy-Schwarz egyenlőtlenség	3
Minkowski egyenlőtlenség	4
Egyenes egyenlete	4
A sík normálvektoros egyenlete	5
Mátrixok	5
Műveletek mátrixokkal	5
Mátrixok összeadása	5
Skalárral való szorzás	5
Mátrixok szorzása	5
Mátrix transzponáltja	6
Mátrix inverze	6
Inverz kiszámítása Gauss eliminációval	6
Mátrixok rangja	7
Determinánsok	8
2x2-es mátrixok determinánsa	8
3x3-as mátrixok determinánsa	9
Kifejtési tétel	9
Lineáris egyenletrendszerek	9

Homogén és inhomogén lineáris egyenletrendszerek	9
Elemi sorműveletek	10
A megoldáshalmaz jellemzése	10
Feltételek a megoldhatóságra	11
Sorekvivalens mátrixok	11
Trapéz alakú mátrixok	11
Gauss elimináció	12
Inhomogén lineáris egyenletrendszer	12
Vektorterek	12
Vektortér	12
Példák vektorterekre	13
Altér	13
Példák alterekre	13
Altérkritérium	13
Lineáris függőség, függetlenség	14
Generátorrendszer	14
Bázis	14
Dimenzió	14
Bázisra vonatkozó koordináták	14
Báziscsere	15
Lineáris leképezések	15
Képtér és magtér	15
Példák	15
Koordináta függvények	15
Lineáris leképezések vektorteret alkotnak	16
Képtér és magtér alteret alkot	16
Nullitás + Rang tétel	16
Lineáris leképezések mátrix reprezentációja	17
Belsőszorzat-terek, ortogonalitás	17
Belsőszorzat (skaláris szorzat)	17
Ortogonalitás	18
Ortogonális komplementer	18
Pitagorasz tétel	18
Cauchy-Schwarz egyenlőtlenség	18
Minkowski egyenlőtlenség	18
Legjobban approximáló elem	19

Ortogonális rendszer	19
Ortonormált rendszer	19
Fourier együtthatók	19
Fourier sor	19
Bessel egyenlőtlenség	20
Gram-Schmidt ortogonalizáció	20
Sajátérték, sajátvektor	20
Lineáris leképzések és mátrixok sajátértékei, sajátvektorai	20
Sajátvektorok alteret alkotnak	21
Különböző sajátértékekhez tartozó sajátvektorok lineárisan függetlenek	21
Karakterisztikus polinom	21
Szimmetrikus mátrixok sajátértéke, sajátvektora	22
Szimmetrikus mátrixok diagonalizálhatósága	23

\mathbb{R}^{n}

Skaláris szorzat Rⁿ-ben (belső szorzat)

Legyen $x, y \in \mathbb{R}^n$, ekkor az

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^{n} x_i y_i$$

számot x és y skaláris szorzatának nevezzük.

$$<,>: \mathbb{R}^n x \mathbb{R}^n \mapsto \mathbb{R}$$
 (skaláris szorzat)

Skaláris szorzat tulajdonságai:

- Mindkét változóban homogén, azaz $<\lambda x, y>=\lambda < x, y>$ és $< x, \lambda y>=\lambda < x, y>$
- Szimmetrikus, azaz $\langle x, y \rangle = \langle y, x \rangle$
- · Mindkét változóban additív, azaz
 - $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ és
 - $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
 - Biz(4)

Vektorok

$$\mathbb{R}^{n} = \{(x_{1}, \dots, x_{n}) | x_{i} \in \mathbb{R}, i = 1, \dots, n\}$$

$$x = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} y = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

Műveletek vektorokkal

Művelet: olyan függvény mely nem vezet ki a halmazból.

Összeadás

Legyen $x, y \in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \text{ ekkor}$$
$$x + y = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

Az összeg is $\in \mathbb{R}^n$, azaz nem vezet ki a halmazból.

$$+: \mathbb{R}^n x \mathbb{R}^n \mapsto \mathbb{R}^n$$

A vektorok összeadásának tulajdonságai:

- Ha $x, y \in \mathbb{R}^n$, akkor $x + y \in \mathbb{R}^n$
- Kétváltozós művelet \mathbb{R}^n -en
- **Asszociatív** (csoportosítható), azaz minden $x, y \in \mathbb{R}^n$ esetén teljesül, hogy

- (x + y) + z = x + (y + z)
- Létezik $0 \in \mathbb{R}^n$ úgy, hogy tetszőleges $x \in \mathbb{R}^n$ esetén x + 0 = 0 + x = x

$$0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$
 additív egységelem

- Tetszőleges $x \in \mathbb{R}^n$ -hez létezik olyan $y \in \mathbb{R}^n$,hogy x + y = y + x = 0
 - Ekkor y-t (-x)-el jelöljük és x additív inverzének nevezzük.
- Tetszőleges $x, y \in \mathbb{R}^n$ esetén x + y = y + x, azaz a vektorok összeadása **kommutatív**.

Skalárral való szorzás

Legyen $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, ekkor

$$\lambda \cdot x = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

A skalárral való szorzás komponensenkét történik.

$$\cdot: \mathbb{R} x \mathbb{R}^n \mapsto \mathbb{R}^n$$

A skalárral való szorzás tulajdonságai:

- Ha $\lambda, \mu \in \mathbb{R}$ és $x \in \mathbb{R}^n$, akkor $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$
- Ha $\lambda \in \mathbb{R}$ és $x, y \in \mathbb{R}^n$, akkor $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$
- Ha $x \in \mathbb{R}^n$, akkor $1 \cdot x = x \cdot 1 = x$
- $\lambda, \mu \in \mathbb{R}$ és $x \in \mathbb{R}^n$, akkor $(\lambda \cdot \mu) \cdot x = \lambda \cdot (\mu \cdot x)$

Norma

Legyen $x \in \mathbb{R}^n$, ekkor

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}$$

A norma tulajdonságai:

- Minden $x \in \mathbb{R}^n$ esetén $||x|| \ge 0$ és ha ||x|| = 0 akkor x = 0
 - A norma nemnegatív függvény, csak a nullvektor vehet fel nullát.
 - Biz (1)
- Ha $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, akkor $||\lambda x|| = |\lambda| ||x||$
 - A norma pozitív homogén
 - Biz (2)
- Háromszög egyenlőtlenség
 - Ha $x, y \in \mathbb{R}^n$, akkor $||x + y|| \le ||x|| + ||y||$

Távolság Rⁿ-ben

Legyen $x, y \in \mathbb{R}^n$, ekkor x és y távolsága d(x, y) = ||x - y||

A távolság tulajdonságai:

- $d(x, y) \ge 0$ valamint d(x, y) = 0 ha x = y
- Szimmetrikus, azaz d(x, y) = d(y, x)
- Háromszög egyenlőtlenség: $d(x, z) \le d(x, y) + d(y, z)$

Szög

Vektorok szöge:

$$\cos \theta_{xy} = \frac{\langle x, y \rangle}{\|x\| \cdot \|y\|}$$

Merőleges vetület

Az x vektor merőleges vetülete y-ra:

$$y_x = \lambda \cdot y$$

$$\langle x - y_x, y_x \rangle = 0$$

$$\langle x, y_x \rangle - \langle y_x, y_x \rangle = 0$$

$$\langle x, \lambda y \rangle = \langle \lambda y, \lambda y \rangle$$

$$\lambda \langle x, y \rangle = \lambda^2 \langle y, y \rangle = \lambda^2 ||y||^2$$

$$\lambda = \frac{\langle x, y \rangle}{||y||^2}$$

Ezt visszahelyettesítve ez első egyenletbe:

$$y_x = \frac{\langle x, y \rangle}{\|y\|^2} y$$

Pitagorasz-tétel

Ha x és y merőlegesek egymásra (< x, y > = 0), akkor

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Ennek bizonyításához a definíciókat használjuk fel, konkrétan

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2$$

mivel $\langle x, y \rangle = 0$, és $\langle x, x \rangle = ||x||^2$, $\langle y, y \rangle = ||y||^2$ definíció szerint.

Cauchy-Schwarz egyenlőtlenség

Ha $x, y \in \mathbb{R}^n$, akkor

$$\langle x, y \rangle^2 \le ||x||^2 \cdot ||y||^2$$

 $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

és egyenlőség pontosan akkor áll fenn, ha létezik $\lambda \in \mathbb{R}$ úgy, hogy $x = \lambda y$

Bizonyítás:

Legyen $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$

$$0 \le \|x + \lambda y\|^2 = \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle = \|y\|^2 \lambda^2 + 2 \langle x, y \rangle \lambda + \|x\|^2$$

Az átalakításokat követően egy λ -ban másodfokú kifejezést kapunk, melynek diszkrimánsa nem pozitív , azaz

$$4 < x, y >^{2} - 4||y||^{2}||x||^{2} \le 0$$

$$4 < x, y >^{2} \le 4||y||^{2}||x||^{2}$$

$$< x, y >^{2} \le ||y||^{2}||x||^{2}$$

QED1

Minkowski egyenlőtlenség

Legyen $x, y \in \mathbb{R}^n$, akkor

$$||x + y|| \le ||x|| + ||y||$$

Bizonyítás:

Mivel az egyenlőtlenség mindkét oldala nemnegatív, ezért ekvivalens a következővel:

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$
$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

ahol

$$2 < x, y > \le 2 | < x, y > | \le 2 | x | | y |$$

és a Cauchy-Schwarz egyenlőtlenség miatt ez

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2$$

ami pedig az eredeti állításunk jobb oldala. QED²

Egyenes egyenlete

A $P \in \mathbb{R}^3$ ponton átmenő \overrightarrow{v} irányvektorú egyenes paraméteres egyenlete:

$$x = P + t\overrightarrow{v}$$

ahol $t \in \mathbb{R}$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} P_1 \\ P_2 \\ P_3 \end{pmatrix} + t \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} P_1 + t v_1 \\ P_2 + t v_2 \\ P_3 + t v_3 \end{pmatrix}$$

vagyis $x_1 = P_1 + t v_1$ és $x_2 = P_2 + t v_2$ és $x_3 = P_3 + t v_3$ Tegyük fel, hogy $v_1 \neq 0$ és $v_2 \neq 0$ és $v_2 \neq 0$, azaz \overrightarrow{v} egyik tengellyes sem párhuzamos. Ilyenkor

$$t = \frac{x_1 - P_1}{v_1}, t = \frac{x_2 - P_2}{v_2}, t = \frac{x_3 - P_3}{v_3}$$

azaz

$$\frac{x_1 - P_1}{v_1} = \frac{x_2 - P_2}{v_2} = \frac{x_3 - P_3}{v_3}.$$

¹ Latin, quod erat demonstrandum, meaning "what was to be demonstrated"

² Latin, quod erat demonstrandum, meaning "what was to be demonstrated"

$$x - p \perp n$$

$$< x - p, n > = 0$$

$$< \begin{pmatrix} x_1 - p_1 \\ x_2 - p_2 \\ x_3 - p_3 \end{pmatrix}, \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} > = 0$$

$$(x_1 - p_1)n_1 + (x_2 - p_2)n_2 + (x_3 - p_3)n_3 = 0$$

$$x_1n_1 + x_2n_2 + x_3n_3 = p_1n_1 + p_2n_2 + p_3n_3$$

$$< x, n > = < p, n >$$

Mátrixok

Műveletek mátrixokkal

Mátrixok összeadása

Legyen $A,B\in\mathcal{M}_{n\times m}$ és $A=(a_{ij})_{i=1,j=1}^{n,m}$ és $B=(b_{ij})_{i=1,j=1}^{n,m}$, ekkor

$$A + B = (a_{ij} + b_{ij})_{i=1, j=1}^{n,m} \in \mathcal{M}_{nxm}$$

Tulajdonságok:

- Művelet, azaz nem vezet ki a halmazból, azaz $A + B \in \mathcal{M}_{n \times m}$.
- Asszociatív, azaz $(A+B)+C=A+(B+C) \quad \forall A,B,C \in \mathcal{M}_{n\times m}$.
- Létezik olyan $0 \in \mathcal{M}_{nxm}$ mátrix, hogy A + 0 = 0 + A, minden $A \in \mathcal{M}_{nxm}$ esetén.
- Minden A ∈ M_{nxm} mátrixhoz létezik −A ∈ M_{nxm}, hogy A + (−A) = (−A) + A = 0, ez az ún. additív inverz.
- Kommutatív, azaz $A + B = B + A \quad \forall A, B \in \mathcal{M}_{n \times m}$.

Skalárral való szorzás

Legyen $A \in \mathcal{M}_{nxm}$ és $\lambda \in \mathbb{R}$, akkor

$$\lambda A = (\lambda \cdot a_{ij})_{i=1,j=1}^{n,m}$$

Tulajdonságok:

- $1 \cdot A = A \cdot 1 = A$
- $(\lambda \mu)A = \lambda(\mu A)$
- $(\lambda + \mu)A = \lambda A + \mu A$
- $\lambda(A+B) = \lambda A + \lambda B$

Mátrixok szorzása

Ha $A \in \mathcal{M}_{n \times m}$, akkor A_i jelöli A i. sorát és A^j jelöli A j. oszlopát.

Legyen $A \in \mathcal{M}_{nxm}$ és $B \in \mathcal{M}_{mxk}$, ekkor

$$A \cdot B = C \in \mathcal{M}_{n \times k}$$

és

$$C = \begin{pmatrix} A_1 B^1 & \dots & A_1 B^k \\ \vdots & & \vdots \\ A_n B^1 & \dots & A_n B^k \end{pmatrix}$$

Ha $C = (c_{st})_{s=1}^{n,k}$, akkor

$$c_{st} = \sum_{r=1}^{m} a_{sr} - b_{rt}$$

Tulajdonságok:

- Asszociatív, azaz $A \cdot (B \cdot C) = (A \cdot B) \cdot C$, amennyiben a megfelelő szorzatok léteznek.
- Az összeadásra nézve disztibutív, azaz $A \cdot (B + C) = AB + AC$, amennyiben a megfelelő szorzatok léteznek és B azonos típusú C-vel.
- $(AB)^T = B^T A^T$, amennyiben az AB szorzat létezik.
 - Biz (5)
- Nem kommutatív

Mátrix transzponáltja

Egy mátrix transzponálása sorainak és oszlopainak a felcserélését jelenti.

Ha $A \in \mathcal{M}_{nxm}$, akkor az $A^T \in \mathcal{M}_{mxn}$ mátrixot A transzponáltjának nevezzük. Továbbá ha $A = (a_{ij})_{i=1,j=1}^{n,m}$, akkor $A^T = (a'_{ji})_{j=1,i=1}^{m,n}$ és $a_{ij} = a'_{ji}$.

Továbbá ha
$$A = (a_{ij})_{i=1,j=1}^{n,m}$$
, akkor $A^T = (a'_{ji})_{j=1,i=1}^{m,n}$ és $a_{ij} = a'_{ji}$

Tulajdonságok:

- $(A^T)^T = A$
- $(AB)^T = B^T A^T$

Egy mátrix szimmetrikus ha transzponáltja önmaga, azaz $A^T = A$.

Mátrix inverze

Legyen $A \in M_{nxn}$, ha létezik $B \in M_{nxn}$ úgy, hogy AB = BA = I, akkor azt mondjuk, hogy Ainvertálható és B-t A^{-1} -el jelöljük és A inverzének nevezzük.

Legyen $I \in M_{nxn}$, és $I = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & 1 & \vdots \\ 0 & \dots & 1 \end{pmatrix}$ alakú mátrixokat nxn-es egységmátrixnak nevezzük.

Állítás: Ha $A \in M_{n \times n}$, akkor IA = AI = A.

Állítás: Ha A invertálható, akkor az inverze egyértelmű.

Bizonyítás: Tegyük fel, hogy A-nak B és B' is inverze, ekkor B' = B'(AB) = (B'A)B = B, de AB = B'A = I, azaz B' = B.

Inverz kiszámítása Gauss eliminációval

Legyen A adott, keressük A^{-1} -et, melyet X-el fogunk jelölni.

Az alábbi lineáris egyenletrendszer megoldásai adják a keresett mátrixot.

$$AX = I$$

A Gauss elimináció:

$$(A\,|\,I)\sim\cdots\sim(I\,|\,A^{-1})$$

Elemi sorműveletek:

- · Sor szorzása nem 0 skalárral.
- Egy sorhoz hozzáadni egy másikat.
- 2 sor felcsrélése

Definíció: 2 azonos típusú mátrix sorekvivalens, ha egyik a másikba elemi sorműveletekkel átvihető.

Definíció: Egy mátrix trapéz alakú, ha minden csupa 0 sor a mátrix alján szerepel, továbbá két egymást követő sorban az alul lévő első nem nulla eleme fölötti elemtől balra van nem nulla elem. Állítás: Minden mátrix sorekvivalens egy trapéz alakú mátrixszal.

Tétel: Ha A és A' sorekvivalensek, akkor az Ax = 0 és az A'x = 0 egyenletrendszerek megoldáshalmaza megegyezik.

Mátrixok rangja

Egy $n \times m$ -es mátrix rangján a mátrix oszlopai által generált \mathbb{R}^n -beli altér dimenzióját értjük. A mátrix rangja tehát k, ha oszlopai közül kiválasztható k db lineárisan független, de k+1 db már nem.

Legyen $A \in M_{nxn}$, ekkor A sorekvivalens egy olyan $B \in M_{nxn}$ mátrixszal, amely bal felső sarkában egy rxr-es egységmátrixot tartalmaz, a többi eleme pedig 0, ahol $r \leq min\{n,m\}$. Ekkor r-et az A mátrix rangjának nevezzük.

Példák mátrixokra:

Markov mártix

$$LA\frac{1}{4}$$
-a Bo-ba $LA\frac{1}{7}$ -a Ch-ba $Ch\frac{1}{5}$ -a LA-be $Ch\frac{1}{3}$ -a Bo-ba $Bo\frac{1}{6}$ -a LA-be $Bo\frac{1}{8}$ -a Ch-ba

$$x_{n+1} = ?$$

$$y_{n+1} = ?$$

$$z_{n+1} = ?$$

$$x_{n+1} = \frac{17}{28}x_n + \frac{1}{5}y_n + \frac{1}{6}z_n$$

$$y_{n+1} = \frac{1}{7}x_n + \frac{7}{15}y_n + \frac{1}{8}z_n$$

$$z_{n+1} = \frac{1}{4}x_n + \frac{1}{3}y_n + \frac{17}{24}z_n$$

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{17}{28} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{7} & \frac{7}{15} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{3} & \frac{17}{24} \end{pmatrix}$$

Forgatás mátrix

$$R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$R(\theta) \cdot e_1 = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$$

$$\sqrt{\cos^2\theta + \sin^2\theta} = \sqrt{1} = 1$$

Determinánsok

2x2-es mátrixok determinánsa

Legyen
$$A \in \mathcal{M}_{2x2}$$
, és $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, ilyenkor

$$det(A) = ad - bc$$

Tulajdonságok:

Az oszlopainak és a sorainak is bilineáris függvénye, azaz

$$det \begin{pmatrix} a+a' & b \\ c+c' & d \end{pmatrix} = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} + det \begin{pmatrix} a' & b \\ c' & d \end{pmatrix} \text{ és}$$

$$det \begin{pmatrix} \lambda a & b \\ \lambda c & d \end{pmatrix} = \lambda det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

$$det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = -det \begin{pmatrix} b & a \\ d & c \end{pmatrix}$$

Tétel: Ha $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \mathbb{R}$ olyan függvény ami rendelkezik a fenti tulajdonságokkal, akkor az csak a determináns függvény lehet.

További tulajdonságok:

- Egy mátrix determinánsa megegyezik a transzponáltjának determinánsával.

$$det(A) = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

$$det(A^{T}) = det \begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - cb$$

- Ha két oszlopa vagy sora megegyezik akkor a determináns nulla.
 - · Biz:

$$det(A) = det\begin{pmatrix} a & a \\ b & b \end{pmatrix} = ab - ab = 0$$

$$det(B) = det\begin{pmatrix} a & b \\ a & b \end{pmatrix} = ab - ba = 0$$

Pontosan akkor invertálható egy mátrix, ha a determinánsa nem nulla, ekkor

$$det(A^{-1}) = \frac{1}{det(A)}$$

• Legyen
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

• Tegyük fel, hogy
$$det(A) = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0$$

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$AA^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \frac{1}{\det(A)} = \begin{pmatrix} ad - bc & -ab + ab \\ cd - cd & -cb + ad \end{pmatrix} \frac{1}{\det(A)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
Legyen $A^1, \dots, A^i, A^{i-1}, C, C', A^{i+1}, \dots, A^n \in \mathbb{R}^n$, ilyenkor

- - $det(A^1, ..., A^i, A^{i-1}, C + C', A^{i+1}, ..., A^n) = det(A^1, ..., A^i, A^{i-1}, C, A^{i+1}, ..., A^n) + det(A^1, ..., A^i, A^{i-1}, C', A^{i+1}, ..., A^n)$
 - azaz a determináns a mátrix oszlopainak additív függvénye.
- Ha a mátrix két oszlopát vagy sorát felcseréljük, akkor a determináns előjelet vált.
- A determinánsok szorzástétele:
 - $det(AB) = det(A) \cdot det(B)$

- Ha egy mátrix oszlopának konstans szorosát hozzáadoom egy másik oszlophoz, akkor a determináns értéke nem változik.
- Diagonális, illetve felső háromszög mátrix determinánsa egyenlő a főátlóbeli elemek sorzatával.

3x3-as mátrixok determinánsa

Sarrus-szabály: csak 2x2-es és 3x3-as mátrixora használható.

Legyen
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, ilyenkor

$$det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Tulajdonságok:

Lásd 2x2-es

Kifejtési tétel

$$det(A) = \sum_{i=1}^{n} (-1)^{i+j} det A_{ij}$$

Ahol $det A_{ii}$ az a_{ii} -hez tartozó aldetermináns.

Egy adott elemhez tartozó aldeterminánst úgy kaphatjuk meg, hogy az eredeti mátrixból töröljük az elem sorát és oszlopát így az eredeti $n \times n$ -es mátrixból egy $(n-1) \times (n-1)$ -es mátrixot kapunk. A kifejtési tétel segítségével $n \times n$ -es mátrixok determinánsának kiszámítását visszavezethetjük 2×2 -es vagy 3×3 -as mátrixok determinánsára amikre pedig már alkalmazható a Sarrus-szabály.

Lineáris egyenletrendszerek

Homogén és inhomogén lineáris egyenletrendszerek

Legyen $m < n, m, n \in \mathbb{N}, A \in \mathcal{M}_{n \times m}$ és $b \in \mathbb{R}^n$ adottak, $x \in \mathbb{R}^m$ ismeretlen ekkor az

$$Ax = b$$

egyenletrendszert lineáris egyenletrenszernek nevezzük.

Ha $b \neq 0$ akkor **inhomogén** lineáris egyenletrendszerről beszélünk.

Ha b = 0, akkor **homogén** lineáris egyenletrendszerről beszélünk.

Példa:

$$2x + y = 2$$

4x - y = 3

ekkor

$$A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$$
$$x = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$b = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Megjegyzés: A homogén rendszernek az x=0 mindig megoldása, ezt **triviális megoldás**nak nevezzük.

<u>Tétel</u>: Ha m < n, akkor a homogén lineáris egyenletrendszernek van nem triviális megoldása. <u>Bizonyítás</u>: Indukcióval

Legyen n > 1, m = 1, ekkor az egyenletrenszer az alábbi alakú

$$a_1x_1 + \ldots + a_nx_n = 0$$

Ha $a_1 = \ldots = a_n = 0$, akkor $\forall x \in \mathbb{R}^n$ megoldás lesz. Ha legalább egy $a_i \neq 0$ akkor feltehető, hogy ez a_1 .

Ekkor

$$x_1 = \frac{-1}{a_1}(a_2x_2 + \ldots + a_nx_n)$$

Ha m < n, m-1-re feltesszük, hogy igaz, akkor az előzőekhez hasonlóan kapjuk, hogy

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + \dots a_{mn}x_n = 0$$

A feltételek miatt létezik $a_{1i} \neq 0$, i = 1,...,n, feltehető,hogy ez a_{11} , ekkor

$$x_1 = \frac{-1}{a_{11}}(a_{12}x_2 + \ldots + a_{1n}x_n)$$

és a

$$(A_2 - \frac{a_{21}}{a_{11}}A_1) = 0$$

 $(A_m - \frac{a_{m1}}{a_{11}} A_1) = 0$

rendszerben már egyel kevesebb (m-1) változó szerepel.

Elemi sorműveletek

- 1. A mátrix egy sorát meg lehet szorozni egy nem nulla számmal.
- 2. Két sort össze lehet adni.
- 3. Két sort fel lehet cserélni.

A megoldáshalmaz jellemzése

Tétel: A homogén egyenlet megoldása altere \mathbb{R}^n -nek. Jelölje ezt L_A

Tétel: Az inhomogén egyenlet megoldáshalmaza $x_p + L_A$ alakú(lineáris sokaság), ahol L_A az inhomogén egyenlet megoldásatere, x_p pedig az inhomogén egyenlet egy partikuláris megoldása.

$$A_1 x = 1$$

$$\vdots$$

$$A_n x = 0$$

x pontosan akkor megoldás, ha $x \in lin[A_1, ..., A_n]$.

Feltételek a megoldhatóságra

Homogén lineáris egyenletrendszerek esetén

$$Ax = 0$$
,

ahol $A \in \mathcal{M}_{n \times m}, x \in \mathbb{R}^m$, azaz

$$x_1A^1 + \dots + x_mA^m = 0.$$

Egy homogén lineáris egyenletrenszernek akkor van triviálistól különböző megoldása, ha az A mátrix oszlopvektorai lineárisan függők.

Tétel:

- 1. Ha m > n, akkor van triviálistól különböző megoldás.
- 2. Ha m=n, akkor pontosan akkor létezik nem triviális megoldás ha $A^1, ..., A^m$ lineárisan függő.
- 3. Ha m < n, akkor pontosan akkor létezik nem triviális megoldás ha $A^1, ..., A^m$ lineárisan függő.

Inhomogén lineáris egyenletrendszerek esetén

$$Ax = b$$

ahol $A \in \mathcal{M}_{nxm}, x \in \mathbb{R}^m$, azaz

$$x_1A^1 + \dots + x_mA^m = b.$$

Tétel:

- 1. Ha m > n, teteszőleges b vektor esetén biztosan van megoldás, ha rangA maximális, azaz rangA = n. Ekkor végtelen sok megoldás van.
- 2. Ha m = n, tetszőleges b vektor esetén biztosan van megoldás, ha $A^1, ..., A^m$ bázisa a térnek. Ekkor pontosan egy megoldás van.
- 3. Ha m < n, tetszőleges b vektor esetén nem feltétlenül lesz megoldás.
- 4. Tetszőleges m, n esetén pontosan akkor lesz megoldás, ha b benne fekszik az A oszlopai által generált altérben.

Sorekvivalens mátrixok

Két azonos típusú mátrix sorekvivalens, ha az egyik a másikba elemi sorműveletekkel átvihető.

Állítás: Minden mátrix sorekvivalens egy trapéz alakú mátrixszal. Tétel: Ha A és A' sorekvivalensek, akkor az A x = 0 illetve az A' x = 0 egyenletrendszerek megoldáshalmaza egegyezik.

Trapéz alakú mátrixok

Egy mátrix trapéz alakú, ha minden csupa 0 sor a mátrix alján szerepel, továbbá két egymás követő sorban az alul lévő első nem nulla eleme fölötti elemtől balra van nem nulla elem.

Gauss elimináció

Általánosan: Ax = 0 — Gauss elimináció — > A'x = 0, ahol az A' mátrix trapéz alakú.

Inhomogén lineáris egyenletrendszer

Legyen $m < n, A \in M_{mxn}, b \in \mathbb{R}^n \setminus \{0\}$ adottak, ekkor az

$$Ax = b$$

egyenletrendszert inhomogén lineáris egyenletrendszernek nevezzük.

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$

$$\vdots \qquad \vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_n$$

ahol legalább egy $b_i \neq 0$, i = 1,...,m. Jelölje A^j az A mátrix j. oszlopát, ekkor

$$x_1 A^1 + \dots + x_n A^n = b$$

<u>Definíció</u>: Legyenek $a_1, ..., a_n \in \mathbb{R}^n, x_1, ..., x_n \in \mathbb{R}$, ekkor az

$$x_1a_1 + \dots x_na_n$$

kifejezést az $a_1, ..., a_n$ vektorok $x_1, ..., x_n$ skalárokkal vett **lineáris kombináció**jának nevezzük.

<u>Definíció</u>: Az $Ax = b, b \neq 0$ inhomogén egyenletrendszer $x_p \in \mathbb{R}^n$, $Ax_p = b$ megoldását partikuláris megoldásnak nevezzük.

Ha x olyan, hogy Ax = 0, akkor azt a homogén rész megoldásának nevezzük.

<u>Tétel</u>: Az Ax = b inhomogén egyenletrenszer összes megoldása $x_p + x$ alakban áll elő, ahol x_p egy partikuláris megoldás, x pedig a homogén rész megoldása.

Az Ax = b egyenletrendszer esetén az

$$[A,B] = \begin{pmatrix} a_{11} & \dots & a_{1n} | & b_1 \\ \vdots & & \vdots | & \vdots \\ a_{m1} & \dots & a_{mn} | & b_m \end{pmatrix}$$

mátrixot a rendszer kibővített mátrixának nevezzük.

Vektorterek

Vektortér

Legyen $V \neq 0$ halmaz, és tegyük fel, hogy adott két leképezés

$$+: VxV \mapsto V$$
,

illetve

$$\cdot: \mathbb{R} xV \mapsto V$$

a következő tulajdonságokkal:

- Tetszőleges $v, w, u \in V$ esetén (v + w) + u = v + (w + u)
- Létezik olyan 0-val jelölt eleme V-nek, hogy v + 0 = 0 + v = v, minden $v \in V$ esetén.
- Minden $v \in V$ -hez létezik $(-v) \in V$, hogy v + (-v) = (-v) + v = 0
- Tetszőleges $v, w \in V$ esetén v + w = w + v.

valamint:

- Minden $\lambda, \mu \in \mathbb{R}$ és $v \in V$ esetén $(\lambda + \mu)v = \lambda v + \mu v$.
- Minden $\lambda \in \mathbb{R}$ és $v, w, u \in V$ esetén $\lambda(v + w) = \lambda v + \lambda w$.
- Minden $v \in V$ esetén $1 \cdot v = v \cdot 1 = v$.
- Minden $\lambda, \mu \in \mathbb{R}$ és $\nu \in V$ esetén $(\lambda \mu) \cdot \nu = \mu \cdot (\lambda \nu)$.

Ekkor V-t vektortérnek nevezzük \mathbb{R} felett.

Megjegyzés: \mathbb{R} helyett tekinthetünk más számhalmazokat is amely rendelkezik \mathbb{R} -hez hasonló tulajdonságokkal, azaz algebrai értelemben testet alkot.

Ilyen például a racionális számok teste Q, vagy a véges testek (pl.: mod 2 maradékosztályok).

Példák vektorterekre

- \mathbb{R}^n vektortér \mathbb{R} felett.
- \mathbb{C}^n vektortér \mathbb{C} illetve \mathbb{R} felett.
- $M_{nxm}(\mathbb{R})$ vektortér \mathbb{R} felett.
- $P = \{p : \mathbb{R} \mapsto \mathbb{R} \mid p(x)\}, P$ -t a valós polinomok halmazának nevezzük.
- $F = \{f : \mathbb{R} \mapsto \mathbb{R} \mid f \text{ függvény}\}.$

Altér

Legyen V egy vektortér, és legyen S egy részhalmaza V-nek.

Tegyük fel, hogy S eleget tesz az alábbi feltételeknek:

- 1. Ha $v, w \in S$, akkor az összegük v + w is eleme S-nek.
- 2. Ha $v \in S$ és $c \in \mathbb{R}$, akkor cv is eleme S-nek.

Ekkor *S* maga is egy vektortér. Valóban, a fent említett <u>tulajdonságok</u> teljesülnek *V* minden elemére, valamit teljesülnek *S* elemeire is. Ilyenkor *S*-et *V* alterének nevezzük.

Példák alterekre

- *V*-n {0} és *V* mindig alterek, ezeket triviális altereknek nevezzük.
- Az $M_{n\times m}(\mathbb{R})$ -es mátrixok vektorterében a szimmetrikus mátrixok alteret alkotnak.
- P-ben P_n, a legfeljebb n-edfokú polinomok halmaza alteret alkot.
- *F*-ben a folytonos, illetve a differenciálható függvények is alteret alkotnak.

Altérkritérium

 $S \subset V$ pontosan akkor altér, ha minden $v, w \in S$ esetén

$$(1) \quad u - w \in S,$$

valamint

bármely $\lambda \in \mathbb{R}$ és $v \in S$ esetén

(2)
$$\lambda v \in S$$
.

Bizonyítás:

Ha S altér, akkor nyilván zárt a műveletekre. Ha S zárt a műveletekre, akkor a vektorterekre vonatkozó tulajdonságok többsége automatikusan teljesülnek S-beli vektorokra, mivel azok speciális V-beli vektorok. Csak azt kell megvizsgálni, hogy a V-beli 0 beleesik-e S-be, illetve egy S-beli vektor V-beli ellentettje beleesik-e S-be:

Legyen $v \in S$ tetszőleges vektor. Ekkor (2) szerint

$$0 = 0v \in S$$
.

Legyen $v \in S$ tetszőleges vektor. Ekkor (2) szerint

$$-v = (-1)v = \in S.$$

+füzet (Abel-csoport axiómák) oda-vissza

Lineáris függőség, függetlenség

Legyen $a_1,...,a_n\in V$ vektorok és $\lambda_1,...,\lambda_n\in\mathbb{R}$ skalárok, ekkor a

$$\lambda_1 a_1 + \ldots + \lambda_n a_n$$

kifejezést az $a_1, ..., a_n$ vektorok $\lambda_1, ..., \lambda_n$ skalárokkal vett lineáris kombinációjának nevezzük.

Azt mondjuk, hogy az $a_1,...,a_n$ vektorok **lineárisan függők**, ha léteznek olyan $\lambda_1,...,\lambda_n$ nem mind 0 skalárok,hogy

$$\lambda_1 a_1 + \ldots + \lambda_n a_n = 0$$

Megjegyzés: A 0 vektort tartalmazó rendszer mindig lineárisan függő.

Az $a_1,...,a_n$ vektorok lineárisan függetlenek, ha nem függők. $\[\] \[\] \[\] \[\] \[\] \[\] \[\]$

Generátorrendszer

Az $a_1, ..., a_n$ vektorrendszer generátorrendszere V-nek, ha bármely $v \in V$ lineárisan kikombinálható $a_1, ..., a_n$ -ből.

Megjegyzés: Ekkor V-t végesen generálhatónak nevezzük.

Bázis

Ha V végesen generált és a_1, \ldots, a_n lineárisan független generátorrendszere, akkor a_1, \ldots, a_n -et bázisnak nevezzük.

Dimenzió

Tétel: Tetszőleges végesen generált vektortérben, ha adott két bázis $a_1, ..., a_n$ és $v_1, ..., v_m$, akkor n = m, azaz bármely két bázis azonos számosságú.

Ezt a közös számosságot a vektortér dimenziójának nevezzük.

Példa: \mathbb{R}^2 két dimenziós.

Bázisra vonatkozó koordináták

Legyen V egy vektortér és $b_1, ..., b_m$ bázis V-ben. Ekkor tetszőleges $v \in V$ egyértelműen felírható

$$v = \beta_1 b_1 + \dots + \beta_n b_n$$

alakban, ahol a $\beta = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$ skalár n-est v $\{b_1, ..., b_n\}$ bázisra vonatkozó koordinátáinak nevezzük.

Tehát tetszőleges $v \in V$ beazonosítható β -val, ha adott egy bázis.

$$v \in V < -\{b_1, ..., b_n\} - > \beta \in \mathbb{R}$$

bijekció

Tétel: Tetszőleges n-dimenziós valós vektortér beazonosítható \mathbb{R}^n -el.

Lineáris leképezések

Legyenek *U*, *V* vektorterek azonos test fölött, ekkor az

$$L: U \mapsto V$$

leképezés lineáris, ha

- additív, azaz L(x + y) = Lx + Ly, minden $x, y \in U$ esetén, valamint
- homogén $L(\lambda x) = \lambda L x$, minden $x \in U$ és λ skalár esetén.

Példa:

- Ha U vektortér $\mathbb R$ fölött és $L:U\mapsto \mathbb R$ lineáris, akkor L-et lineáris funkcionálnak nevezzük.
 - PI: $U = \mathbb{R}$, akkor Lx = cx, ahol $c \in \mathbb{R}$ rögzített.
- Ha $U=\mathbb{R}^n$ m akkor $L:\mathbb{R}^n\mapsto\mathbb{R}$, pontosan akkor lináris ,ha létezik olyan $c\in\mathbb{R}^n$ vektor, hogy $Lx = \langle c, x \rangle$
- Lx = 0, nulla lineáris leképezés
- Ha U=V, akkor az $L:U\mapsto U$, Lx=x identukus leképezés $\frac{\sigma}{\sigma x}:P_n\mapsto P_{n-1}, \, (\frac{\sigma}{\sigma x})(x)=P'(x)$
- Első koordináta tengelyre való projekció: $L: \mathbb{R}^n \to \mathbb{R}^n, L(x_1, ..., x_n) = (x_1, 0, ..., 0)$
- Speciális eset: $L: \mathbb{R}^2 \mapsto \mathbb{R}^2$, $L(x_1, x_2) = (x_1, 0)$ Az $L: \mathbb{R}^2 \mapsto \mathbb{R}$, $L(x_1, x_2) = x_1^2 + x_2^2$ leképezés **nem** lineáris.

Képtér és magtér

Legyen az $L: U \mapsto V$ leképezés lineáris, ekkor a $rangeL = \{v \in V \mid \exists u \in U, Lu = V\} \subset V$ halmazt L képterének nevezzük.

Legyen az $L: U \mapsto V$ leképezés lineáris, ekkor a $nullL = \{u \in U \mid Lu = 0\} \subset U$ halmazt L magterének nevezzük.

Tétel:

- - Biz: $L0 = L(0+0) = L0 + L0 = 2L0 \Rightarrow 0 = L0$
- L(-x) = -Lx

Példák

Koordináta függvények

Ha $L: \mathbb{R}^n \to \mathbb{R}^n$ lineáris, akkor $L = (l_1, ..., l_m)$, ahol $l_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ lineáris funkcionál és $Lx = (l_1(x), ..., l_m(x)) \forall x \in \mathbb{R}^n$ esetén.

Az előbbi l_i , i = 1, ..., m lineáris funkcionálokat L koordinátafüggvényeinek nevezzük.

Példa: $L : \mathbb{R}^2 \to \mathbb{R}^2$, $L(x_1, x_2) = (x_1, -x_2)$, ekkor

$$l_1(x_1, x_2) = x_1,$$

valamint

$$l_2(x_1, x_2) = -x_2$$

Lineáris leképezések vektorteret alkotnak

Jelölje $\mathcal{L}(U,V) = \{L: U \mapsto V \mid L \text{ line\'aris}\}.$ Ha $L,T \in \mathcal{L}(U,V)$, akkor

$$L + Tx = Lx + Tx$$
,

továbbá

tetszőleges λ skalár esetén

$$(\lambda L)x = \lambda Lx.$$

Az fenti műveletekkel $\mathcal{L}(U,V)$ vektortér.

Képtér és magtér alteret alkot

 $Ha L: U \mapsto V lineáris, akkor$

(1) $rangeL \subset V$,

illetve

(2) $null L \subset U$

alterek.

Bizonyítás:

(1) Legyen $x, y \in rangeL$, ekkor létezik $u_x, u_y \in U$ úgy, hogy $Lu_x = x$ és $Lu_y = y$, ekkor

$$x - y = Lu_x - Lu_y = L(u_x - u_y) \Rightarrow x, y \in rangeL$$

és

$$\lambda \in \mathbb{R}, x \in rangeL$$

esetén

$$\lambda x = \lambda L u_{\scriptscriptstyle X} = L(\lambda u_{\scriptscriptstyle X}) \Rightarrow \lambda x \in rangeL \Rightarrow rangeL \text{ alt\'er}.$$

(2) Legyen $u, v \in nullL$, ekkor

$$L(u - v) = Lu - Lv = 0 \Rightarrow u - v \in nullL$$
,

valamint

$$L\lambda u = \lambda Lu = \lambda 0 = 0 \Rightarrow \lambda u \in nullL \Rightarrow nullL \text{ alt\'er}.$$

Nullitás + Rang tétel

Legyen $L: V \mapsto W$, ekkor

$$dim(nullL) + dim(rangeL) = dimV$$

Lemma: Ha $v_1, ..., v_k$ lineárisan függetlenek V-ben, V n-dimenziós, k < n, akkor léteznek $v_{k+1}, ..., v_n$ vektorok úgy, hogy $\{v_1, ..., v_n\}$ bázis V-ben.

Bizonyítás:

Legyen $\{v_1, ..., v_k\}$ bázis nullL-ben.

A lemma miatt kiegészíthető V-beli bázissá $\{v_1, ..., v_n\}$.

Ekkor
$$Lv_i = w_i, i = 1,...,n$$
 és $Lv_i = 0, i = 1,...,k$.

Bebizonyítjuk, hogy $w_{k+1}, ..., w_n$ bázis rangeL-ben.

Legyen $w \in rangeL$, ekkor létezik olyan $v \in V$, hogy Lv = w.

Másrészt
$$v = \sum_{i=1}^{n} \alpha_i v_i$$
, így

$$w = Lv = L(\sum_{i=1}^{n-1} \alpha_i v_i) = \sum_{i=1}^n \alpha_i Lv_i = \sum_{i=k+1}^n \alpha_i Lv_i = \sum_{i=k+1}^n \alpha_i w_i \Rightarrow w_{k+1}, ..., w_n \text{ generátorrendszere } rangeL-nek.$$

Indirekt: tegyük fel, hogy $w_{k+1}, ..., w_n$ lineárisan függő.

$$0 = \sum_{i=1}^{n} \beta_{i} w_{i}, \beta_{i} \text{ nem mind } 0.$$

$$\Rightarrow 0 = \sum_{i=k+1}^{n} \beta_i L v_i = L(\sum_{i=k+1}^{n} \beta_i v_i) \text{ ellentmond\'as} \Rightarrow \text{f\"uggetlenek}.$$

Képtér n - k dimenziós, magtér k dimenziós, (n - k) + k = n = dimV.

Lineáris leképezések mátrix reprezentációja

Legyen $L: U \mapsto V$ lineáris és $\{a_1, ..., a_m\}$ bázis U-ban, $\{b_1, ..., b_n\}$ bázis V-ben. Legyen $u \in U$ és Lu = v, ekkor

$$u = \sum_{i=1}^m u_1 a_1,$$

és

$$v = \sum_{j=1}^{n} v_{j} b_{j}$$

$$A \in \mathcal{M}_{nxm}, A \begin{pmatrix} u_{1} \\ \vdots \\ u_{m} \end{pmatrix} = \begin{pmatrix} v_{1} \\ \vdots \\ v_{n} \end{pmatrix}.$$

Adott bázisok esetén a fenti egyenletrendszerseregnek pontosan egy megoldása létezik, ezt az L lineáris leképezés $\{a_1, ..., a_m\}$, $\{b_1, ..., b_n\}$ bázispárra vonatkozó mátrixának nevezzük.

Belsőszorzat-terek, ortogonalitás

Belsőszorzat (skaláris szorzat)

Legyen V valós vektortér, a

$$<,>: VxV \mapsto \mathbb{R}$$

kétváltozós függvényt belső szorzatnak nevezzük, ha

- szimmetrikus, azaz $\langle x, y \rangle = \langle y, x \rangle \forall x, y \in V$
- Bilineáris, azaz mindkét változóban additív és homogén
 - $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$
- · Pozitív definit, azaz
 - $< x, x > \ge 0$, és
 - $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Példák

(1) \mathbb{R}^n szokásos belső szorzata, azaz $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$

(2) Legyen
$$V = \{f : [a, b] \mapsto \mathbb{R} \mid f \text{ folytonos}\}, \text{ ekkor } \langle f, g \rangle = \int_a^b f(x)g(x) \, dx$$

Ortogonalitás

Legyen V egy belső szorzat tér.

Azt mondjuk, hogy x merőleges y-ra, ha $\langle x, y \rangle = 0$

Ortogonális komplementer

Ha $S \subset V$, akkor az $S^{\perp} = \{x \in V \mid x \perp s \quad \forall s \in S\}$ halmazt S ortogonális komplementerének nevezzük.

Pitagorasz tétel

Ha x és y merőlegesek egymásra (< x, y > = 0), akkor

$$||x + y||^2 = ||x||^2 + ||y||^2$$

Bizonyítás:

Ennek bizonyításához a definíciókat használjuk fel, konkrétan

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle = ||x||^2 + ||y||^2$$

mivel $\langle x, y \rangle = 0$, és $\langle x, x \rangle = ||x||^2$, $\langle y, y \rangle = ||y||^2$ definíció szerint.

Cauchy-Schwarz egyenlőtlenség

Ha $x, y \in \mathbb{R}^n$, akkor

$$\langle x, y \rangle^2 \le ||x||^2 \cdot ||y||^2$$

 $|\langle x, y \rangle| \le ||x|| \cdot ||y||$

és egyenlőség pontosan akkor áll fenn, ha létezik $\lambda \in \mathbb{R}$ úgy, hogy $x = \lambda y$.

Bizonyítás:

Legyen $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$

$$0 \le \|x + \lambda y\|^2 = \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle = \|y\|^2 \lambda^2 + 2 \langle x, y \rangle \lambda + \|x\|^2$$

Az átalakításokat követően egy λ -ban másodfokú kifejezést kapunk, melynek diszkrimánsa nem pozitív , azaz

$$4 < x, y >^{2} - 4||y||^{2}||x||^{2} \le 0$$

$$4 < x, y >^{2} \le 4||y||^{2}||x||^{2}$$

$$< x, y >^{2} \le ||y||^{2}||x||^{2}$$

Ezzel az állításunk bizonyítást nyert.

Minkowski egyenlőtlenség

Legyen $x, y \in \mathbb{R}^n$, akkor

$$||x + y|| \le ||x|| + ||y||$$

Bizonyítás:

Mivel az egyenlőtlenség mindkét oldala nemnegatív, ezért ekvivalens a következővel:

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$
$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$$

ahol

$$2 < x, y > \le 2 | < x, y > | \le 2 | x | | | y | |$$

és a Cauchy-Schwarz egyenlőtlenség miatt ez

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2$$

ami pedig az eredeti állításunk jobb oldala. Ezzel az állításunk bizonyítást nyert. (Q.E.D)

Legjobban approximáló elem

Tétel: Legyen $\{v_1, ..., v_n\}$ ortonormált rendszer, ekkor

$$||x - \sum_{i=1}^{n} \lambda_i v_i|| \le ||x - \sum_{i=1}^{n} a_i v_i||,$$

minden $x \in V$ és $a_1, ..., a_n \in \mathbb{R}$ esetén, ahol

$$\lambda_i = \langle x_i, v_i \rangle, i = 1, ..., n.$$

Azaz $\sum_{i=1}^n \lambda_i v_i$ az x-et legjobban közelítő elem $lin\{v_1,...,v_n\}$ -ben.

<u>Bizonyítás</u>

Nem kell, mert nem tudta egyből felírni ⇒ Szabad reklamálni!

Ortogonális rendszer

Legyen $v_1, ..., v_n \in V$.

Ha $v_1 \perp v_i$, $i \neq j$ esetén, akkor $\{v_1, ..., v_n\}$ -t ortogonális rendszernek nevezzük.

Ortonormált rendszer

Legyen $v_1, ..., v_n \in V$.

Ha $v_1 \perp v_j$, $i \neq j$, valamint $||v_i|| = 1$, i = 1,...,n, akkor $\{v_1,...,v_n\}$ -t ortonormált (ONR) rendszernek nevezzük.

Fourier együtthatók

Legyen $\{v_1, ..., v_n\}$ ortonormált rendszer, ekkor tetszőleges $x \in V$ esetén a $\lambda = \langle x, v_i \rangle$ számokat $x \in V$, ..., $v_n\}$ -ra vonatkozó Fourier együtthatóinak nevezzük.

Fourier sor

A $\sum_{i=1}^{n} \lambda_i v_i$ sort az $x \{v_1, ..., v_n\}$ rendszerre vontakozó Fourier-sorának nevezzük.

Bessel egyenlőtlenség

Legyen $v_1, ..., v_n \in V$, valamint legyen $\{v_1, ..., v_n\}$ ortonormált rendszer, $x \in V$ tetszőleges, λ_i pedig az x-et legjobban approximáló elem, ekkor

$$\sum \lambda_i \le \|x\|^2$$

$$0 \le \|x - \sum_{i=1}^{n} \lambda_i v_i\|^2 = \langle x - \sum_{i=1}^{n} \lambda_i v_i, x - \sum_{i=1}^{n} \lambda_i v_i \rangle = \|x\|^2 - 2(\sum_{i=1}^{n} \lambda_i \langle v_i, x_i \rangle) + \sum_{i=1}^{n} \lambda_i \|v_i\|^2 = \|x\|^2 - \sum_{i=1}^{n} \lambda_i^2 \|v_i\|^2 = 1 \text{ (ortonortmált miatt)}.$$

Gram-Schmidt ortogonalizáció

$$\begin{array}{l} \text{Legyen } v_i, \, \dots, \, v_n \text{ bázis } \textit{V-ben, ekkor} \\ w_1 = \frac{v_1}{\|v_1\|} \\ \tilde{w_2} = v_2 - < v_2, w_1 > w_1 \\ w_2 = \frac{\tilde{w_2}}{\|\tilde{w_2}\|} \end{array}$$

$$\begin{split} \tilde{w_k} &= v_k - \langle v_k, w_1 \rangle w_1 - \dots - \langle v_k, w_{k-1} \rangle w_{k-1} \\ w_k &= \frac{\tilde{w_k}}{\|\tilde{w_k}\|} \end{split}$$

Tétel: A fenti eljárás által generált $\{w_1, ..., w_k\}$ vektorrendszer ortonormált bázisa V-nek, valamint $lin\{v_i, ..., v_k\} = lin\{w_i, ..., w_k\}, k = 1, ..., n.$

Bizonyítás:

Legyen $i \neq k$, ekkor feltehető, hogy k > i.

Sajátérték, sajátvektor

Lineáris leképzések és mátrixok sajátértékei, sajátvektorai

Legyen V egy vektortér, $L:V\mapsto V$ lineáris leképezés, ekkor a λ szám L sajátértéke, ha létezik olyan $v \in V \setminus \{0\}$, hogy

$$Lv = \lambda v$$
.

Ekkor v-t λ -hoz tartozó **sajátvektor**nak nevezzük.

(1) Legyen $v = \mathbb{R}^2$, L az indentikus leképezés, azaz

$$Lx = x, \ \forall x \in \mathbb{R}^2$$

Ekkor $\lambda = 1$ sajátérték és bármely $x \in \mathbb{R}^2 \setminus \{0\}$ az 1-hez tartozó sajátvektor.

(2) Legyen
$$A = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}, L_A x = A x.$$

Ekkor
$$e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$
 $i,\ i=1,\ldots,n,$ az a_i -hez tartozó sajátvektor, hiszen

$$L_{A}e_{i} = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ a_{i} \\ \vdots \\ 0 \end{pmatrix} = a_{i} \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = a_{i}e_{i}$$

(3) Legyen V a végtelen sokszor differenciálható valós függvények vektortere, L pedig jelölje a deriválást.

$$\frac{dt}{d}: e^{\infty} \mapsto e^{\infty},$$

ekkor

$$x(t) = e^{\lambda t},$$

tetszőleges λ esetén sajátvektor, amely λ -hoz tartozik, hiszen

$$\frac{d}{dt}x(t) = \lambda e^{\lambda t} = \lambda x(t)$$

Mátrixok esetén:

Ha $A \in \mathcal{M}_{nxn}$, akkor $L_A x = A x$ lineáris, tehát értelmezhetjük n x n-es mátrixok sajátértékét és sajátvektorát is.

Sajátvektorok alteret alkotnak

A $V_{\lambda} = \{v \in V \mid Lv = \lambda v\}$ halmaz altér V-ben, melyet a λ -hoz tartozó sajátaltérnek nevezünk.

Bizonyítás:

Az altérkritérium szerint.

Legyen $v \in V_{\lambda}$, c konstans, ekkor

$$L(cv) = cLv = c\lambda v = \lambda(cv) \Rightarrow cv \in V_{\lambda}$$

Legyen $v, w \in V_1$, ekkor

$$L(v - w) = Lv - Lw = \lambda v - \lambda w = \lambda (v - w) \Rightarrow v - w \in V_{\lambda}$$

Különböző sajátértékekhez tartozó sajátvektorok lineárisan függetlenek

Bizonyítás:

Legyenek $\lambda_1, ..., \lambda_m$ sajátértékek, $v_1, ..., v_m$ hozzájuk tartozó sajátvektorok. $\lambda_i \neq \lambda_k, i \neq k$.

Karakterisztikus polinom

Ha $A\in\mathcal{M}_{n\times n}$, akkor a $P_A(\lambda)=d\,e\,t\,(A-\lambda\,I\,)$ polinomot A karakterisztikus polinomjának nevezzük. Tétel:

Legyen $L:V\mapsto V$ lineáris, ekkor λ L sajátértéke akkor és csakakkor, ha az $(L-\lambda I)$ leképzeés nem invertálható.

Mátrixokra:

Az $A \in \mathcal{M}_{n \times n}$ -es mátrixnak λ pontosan akkor sajátértéke, ha $A - \lambda I$ nem invertálható.

Tétel:

Az A mátrixnak λ pontosan akkor sajátértéke, ha gyöke A karakterisztikus polinomjának.

Tétel:

Hasonló mátrixok karakterisztikus polinomja megegyezik, azaz, ha $A,B\in\mathcal{M}_{nxn}$ és B invertálható, akkor

$$P_A = P_{BAB^{-1}}$$

Bizonytás:

$$P_A(\lambda) = det(A - \lambda I) = det(B(A - \lambda I)B^{-1}) = det(BAB^{-1} - \lambda I)$$

Szimmetrikus mátrixok sajátértéke, sajátvektora

Legyen $A \in \mathcal{M}_{n \times n}$ úgy, hogy $A^T = A$ (szimmetrikus). Az A-hoz tartozó kvadratikus forma $f : \mathbb{R}^n \mapsto \mathbb{R}$

$$f(x) = x^T A x = \sum_{i,j=1}^n a_{ij} x_i x_j$$

Tétel: f maximuma az egységgömbhélyon A-nak sajátvektora és a hozzá tartozó sajátérték A-nak a legnagyobb sajátértéke ami, f-nek az ebben a pontban felvett értéke.

Bizonyítás:

$$S = \{x \in \mathbb{R}^n | ||x|| = 1\}$$

Mivel s korlátos és zárt, a Hein-Borel tétel szerint kompakt.

Weierstrass tétele szerint folytonos függvénynek kompakt halmazon van szélsőértéke.

Létezik $p \in S$ úgy, hogy maxf = f(p) jelölje $W = (lin\{p\})^{\perp^{S}}$ Tetszőleges $w \in W$, ||w|| = 1 esetén

$$C_w(t) = (\cos(t))p + (\sin(t))w$$
$$g(t) = f(C_w(t))$$

mivel

$$\begin{split} C_w(0) &= p \\ 0 &= g'(0) = \langle 2Ap, C_w'(p) \rangle = 2 \langle Ap, w \rangle \\ \Rightarrow \langle Ap, w \rangle &= 0 \Rightarrow Ap \in lin\{p\} \end{split}$$

Tehát $Ap = \lambda p$ valamely λ számra, azaz p sajátvektora A-nak.

Szimmetrikus mátrixok diagonalizálhatósága

Szimmetrikus mátrix esetén létezik a térnek sajátvektoraiból álló ortonormált bázisa, ebben a mátrix

$$L_A e_i = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

diagonális alakba írható, ahol a főátlóban a sajátértékek találhatók.