Lecture 5 Notes for STT861

Kenyon Cavender

2019-09-09

1 Review

 $\mathbf{S}(\neq \emptyset)$ Sample Space $\mathscr{A} = \sigma$ - field A probability $P : \mathscr{A} \mapsto \mathbb{R}$ satisfies $P(A) \geq 0 \, \forall A \in \mathscr{A}$ $P(\mathbf{S}) = 1$

If $A_n \in \mathcal{A}$, n = 1, 2, ... and $A'_n s$ are parwise disjoint then $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$

2 Class Notes

Ex 1 Let $S = \{s_1, s_2, ...\}$ be a countable sample space Let $\mathscr{A} = \mathscr{P}(\mathbf{S})$ Suppose $\{P_n : n \geq 1\}$ in a sequence satisfying:

a.
$$p_n \geq 0$$

b.
$$\sum_{n=1}^{\infty} p_n = 1$$

For any $A \in \mathscr{A}$ define: $P(A) = \sum_{\{j: s_i \in A\}} p_j$

Remark Suppose:

$$A = \{s_3, s_{10}, s_{19}\}$$

$$P(A) = p_3 + p_{10} + p_{19}$$

Suppose:

$$A_1 = \{s_{11}, s_{12}, s_{13}...\}$$

$$A_2 = \{s_{21}, s_{22}, s_{23}...\}$$

$$A_3 = \{s_{31}, s_{32}, s_{33}...\}$$
 etc.

All A_n are pairwise disjoint and therefore, s_{ij} are distinct for all i, j

$$P(\bigcup_{n=1}^{\infty} A_n) = P(\bigcup_{n=1}^{\infty} \{s_{n1}, s_{n2} ...\})$$

$$= P(\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{\infty} \{s_{nj}\}) = \sum_{n=1}^{\infty} (\sum_{j=1}^{\infty} p_{nj})$$
As $A_n = \{s_{n1}, s_{n2} ...\}$ therefore $P(A_n) = \sum_{j=1}^{\infty} p_{nj}$

As
$$A_n = \{s_{n1}, s_{n2}...\}$$
 therefore $P(A_n) = \sum_{i=1}^{n} p_{ni}$

Suppose:

$$S = \{1, 2, 3, 4...\}$$
 and $p_n = (frac12)^n n = 1, 2, 3...$

$$\mathbf{S} = \{1, 2, 3, 4...\}$$
 and $p_n = (frac12)^n n = 1, 2, 3...$
Then, $\sum_{n=1}^{\infty} = 1$ by geometric sum: $\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$ if $|a| < 1$ Therefore,

$$\sum_{n=1}^{\infty} (\frac{1}{2})^n = \sum_{n=0}^{\infty} (\frac{1}{2})^n - 1 = \frac{1}{1 - 1/2} - 1 = 1$$

Suppose for some set A, P(A) = 1 Does this imply A = S?

Does P(B) = 0 imply $B \neq \emptyset$?

Does $P(A \cap B) = 0$ imply A, B are disjoint?

Not necessarily for all above!

Suppose
$$S = \{1, 2, 3, 4, ...\}$$

 $p_n = 0$ for all odd n

$$\begin{array}{l} p_n = \frac{1}{2}^{\frac{n}{2}} \text{ for all even n} \\ P(\text{odd}) = 0 \text{ and } P(\text{even}) = 1 \\ \text{Let } A = \{1,3,5\}, \ B = \{3,5\}. \ P(A \cap B) = 0 \text{ and } A \cap B = \{3,5\} \end{array}$$

2.1 Counting

	WOR	$\mathbf{W}\mathbf{R}$
Ordered	$\frac{n!}{(n-r)!}$	n^r
${\bf Unordered}$	$\frac{n!}{r!(n-r)!} = \binom{n}{r}$	$\binom{n+r-1}{r}$

 $\underline{\mathbf{Def}}$ Multiplication Rule