

Climate sensitivity

The change in global-mean surface temperature due to some radiative forcing. It is often quantified as ΔT_{2x} , the increase in global-mean temperature when the CO₂ is doubled.

Climate Sensitivity

Logarithmic Effect of CO₂

Doubling CO₂ always produces the same warming: ΔT_{2x}

e.g.

CO2: 100 ppm -> 200ppm -> 400ppm -> 800ppm 250K -> 255K -> 260K -> 265K **ΔT** : +5K +5K +5K

> Global-mean surface temperature increase when CO₂ is doubled

Climate Sensitivity

$$2^{\frac{\Delta T}{\Delta T_{2x}}} = \frac{(CO_2)_f}{(CO_2)_0}$$

• ΔT , $(CO_2)_f$, $(CO_2)_0$: three "variables". Knowing 2 of them we could get the third one; knowing three of them we could estimate the "constant" ΔT_{2x} (like what we did in the blackbody lab)

Example: What's the temperature change if we increase CO_2 from 200ppm to 600ppm (assuming ΔT_{2x} =5K)?

$$2^{\frac{\Delta T}{5K}} = \frac{600ppm}{200ppm}, \Delta T = 8K$$

$$2^{\frac{\Delta T}{\Delta T_{2x}}} = \frac{(CO_2)_f}{(CO_2)_0}$$

- ΔT , $(CO_2)_f$, $(CO_2)_0$: three "variables". Knowing 2 of them we could get the third one; knowing three of them we could estimate the "constant" ΔT_{2x} (like what we did in the blackbody lab)
- ΔT_{2x} : "constant" for certain climate, but it changes as climate changes due to feedbacks
- e.g., when temperature increases, water vapor feedback gets stronger, so ΔT_{2x} will get larger with increasing temperature

We can rewrite this equation as follows:

You can use In as log here

$$\log 2^{\frac{\Delta T}{\Delta T 2x}} = \log \frac{(\text{CO}_2)_f}{(\text{CO}_2)_0}$$

$$\log(a^b) = b \log(a) \longrightarrow \frac{\Delta T}{\Delta T_{2x}} \log 2 = \log \frac{(\text{CO}_2)_f}{(\text{CO}_2)_0}$$

$$\frac{\Delta T}{\Delta T_{2x}} = \frac{\log \frac{(\text{CO}_2)_f}{(\text{CO}_2)_0}}{\log 2}$$

$$\Delta T_{2x} = \Delta T \left(\frac{\log 2}{\log \left(\frac{(\text{CO}_2)_f}{(\text{CO}_2)_0}\right)}\right)$$

Review: Zachos curve

PETM: Paleocene-Eocene Thermal Maximum

