CHAPTER 2

FUNCTIONS OF MORE THAN ONE VARIABLE

Example 2.1.1

1. The set of all ordered pairs of real numbers is the 2-dimensional number space denoted by \mathbb{R}^2 .

Each ordered pair is called a point in \mathbb{R}^2 .

2. The set of all *ordered triples* of real numbers is the 3-dimensional number space denoted by \mathbb{R}^3 .

Each ordered triple is called a point in \mathbb{R}^3 .

If $P(x_1, x_2,...., x_n)$ and $A(a_1, a_2,...., a_n)$

are two points in \mathbb{R}^n , the distance between P and A, denoted by

$$||P-A||$$

is given by

$$||P-A|| = \sqrt{(x_1-a_1)^2 + (x_2-a_2)^2 + ... + (x_n-a_n)^2}.$$

2.1 Functions of more than one variable

The set of all ordered n- tuples of real numbers is called the n-dimensional number space and is denoted by \mathbb{R}^n .

Each ordered n-tuple

$$(x_1, x_2, ..., x_n)$$

is called a *point* in \mathbb{R}^n .

Fill in the blanks.

- 1. (3,2,-4) is a point in R^3 .
- 2. (3,2,5,4) is a point in R^4 .
- 3. (0,0,0,1,2) is a point in R^5 .
- 4. A point in \mathbb{R}^7 has $\underline{7}$ coordinates.
- 5. A point in R^{101} has $\underline{101}$ coordinates.

Example 2.1.2

1. The distance between P(1,3) and A(-2,7) is

$$||P - A|| = \sqrt{(1 - (-2))^2 + (3 - 7)^2}$$

= $\sqrt{9 + 16} = \sqrt{25} = 5$.

2. The distance between P(1,2,3) and A(7-2,5) is

$$\|P - A\| = \sqrt{(1-7)^2 + (2-(-2))^2 + (3-5)^2}$$

= $\sqrt{36+16+4} = \sqrt{56} = 2\sqrt{14}$.

Recall

A *function* is a set of ordered pairs, such that no two distinct ordered pairs have the same first element.

The following are examples of functions:

1.
$$f = \{(1,2), (2,3), (3,4)\}$$

2.
$$g = \{(1,1), (2,4), (3,9), (4,16), \dots\}$$

3.
$$h = \{(1,2), (2,2), (3,2), (4,2), \dots\}$$

1.
$$f = \{(1,2), (2,3), (3,4)\}$$

 $D_f = \{1,2,3\}$
 $R_f = \{2,3,4\}$

$$f(1) = 2$$

$$f(2) = 3$$

$$f(3) = 4$$

$$f(x) = x + 1, \qquad x = 1,2,3$$

2.
$$g = \{(1,1), (2,4), (3,9), (4,16),...\}$$

 $D_g = \mathbf{N} = \{1,2,3,...\}$
 $R_g = \{1,4,9,16,...\} = \{y : y = x^2, x \in \mathbf{N}\}$

$$g(1) = 1$$

$$g(2) = 4$$

$$g(3) = 9$$

$$\vdots$$

$$g(x) = x^{2}, x \in \mathbb{N}$$

3. $h = \{(1,2), (2,2), (3,2), (4,2), \dots\}$

$$D_h = N$$

$$R_h = \{2\}$$

$$h(x) = 2, x \in \mathbf{N}$$

A function of n variables is a set of ordered pairs, such that no two distinct ordered pairs have the same first element.

If f is a function of n variables and

$$(P,w) \in f$$

we write

$$f(P)=w$$
.

In (P, w) P is a point in \mathbb{R}^n and w is a real number.

Let M be the amount of money you spend per day.

Then we can view M as a function of different variables:

f: food expenses

p: transpo. fare

l: communication expenses

g: gimmick (social life) expenses

s: school supplies

M(f, p, l, g, s) = f + p + l + g + s

If f(P) = w, the set of all admissible points P is called the *domain* of the function, and the set of all resulting values of w is called the *range* of the function.

Example 2.1.3 Determine the domain of the indicated function and sketch/describe the domain.

a.
$$f(x,y) = \sqrt{4-x^2-y^2}$$
 b. $g(x,y) = \frac{1}{xy}$ c. $h(x,y) = \ln(xy)$

solution:

a.
$$D_f = \{(x, y) \in R^2 : 4 - x^2 - y^2 \ge 0 \}$$

= $\{(x, y) \in R^2 : x^2 + y^2 \le 4 \}$

b.
$$D_g = \{(x, y) \in R^2 : xy \neq 0\}$$

c.
$$D_h = \{(x, y) \in \mathbb{R}^2 : xy > 0 \}$$

a. $D_f = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}$

The domain of f consists of all points inside or on the circle given by $x^2 + y^2 = 4$.

b. $D_a = \{(x, y) \in \mathbb{R}^2 : xy \neq 0\}$

The domain of g consists of all points in the plane except those on the y-axis or x-axis.

c. $D_h = \{(x, y) \in \mathbb{R}^2 : xy > 0\}$

The domain of h consists of all points in the first or third quadrant.

Example 2.1.4 Determine the domain of the indicated function and sketch the domain.

a.
$$f(x, y, z) = \sqrt{9 - x^2 - y^2 - z^2}$$

b.
$$g(x, y, z) = \ln x + \ln y + \ln z$$

solution:

a.
$$D_f = \{(x, y, z) \in \mathbb{R}^3 : 9 - x^2 - y^2 - z^2 \ge 0\}$$

= $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 9\}$

b.
$$D_g = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$$

$$D_f = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 9\}$$

The domain of f consists of all points inside or on the sphere given by $x^2 + y^2 + z^2 = 9$.

$$D_g = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$$

The domain of \boldsymbol{g} consists of all points in the first octant.