MAC: Entrega 3-4

David Cabezas Berrido 20079906D

1. Diseñar un programa con variables que dadas dos cadenas u y w compuestas por ceros y unos, calcule u^{|w|}.

Supongo que u empieza en X_1 y w en X_2 . La salida será Y.

Macro: Operador de concatenación. $Y \leftarrow X_1.X_2$

$$\mathsf{U} \leftarrow \mathsf{X}_1$$

 $V \leftarrow X_2$

No quiero modificar X₁ ni X₂

(para i ∈ {0,1})

[L] IF V ENDS i GOTO A, IF U ENDS i GOTO B_i Luego copio X₁ en Y **GOTO M**

Hasta que X₂ esté copiado en Y

 $[A_i]$ $Y \leftarrow iY$ $V \leftarrow V$ -**GOTO L**

Y ← iY $[B_i]$ $\mathsf{U} \leftarrow \mathsf{U}\text{-}$ **GOTO L**

[M] Fin de la operación, no hago HALT porque no es un programa completo

Programa principal:

IF $X_2 \neq \epsilon$ GOTO B: [A] **HALT**

Saltará |w| veces. (u⁰=ε)

 $X_2 \leftarrow X_2$ [B]

Reduzco en 1 la longitud de w Concateno u consigo misma

 $Y \leftarrow Y.X_1$ **GOTO A**

Diseña un programa Post-Turing que calcule la misma función, suponed que la entrada es ucw donde c es un símbolo diferente de 0 y 1.

Es recomendable leer primero el programa principal.

En todo lo que sigue, $i \in \{0,1\}$

Macro: RIGHT TO NEXT BLANK Se desplaza al final de la cinta.

[R] RIGHT

IF i GOTO R IF c GOTO R

Macro: LEFT TO NEXT BLANK Se desplaza al principio de la cinta

[L] LEFT

IF i GOTO L
IF k GOTO L

Macro: LEFT TO C Se desplaza a la izquierda hasta el símbolo c

[L_c] LEFT

IF i GOTO L_C

Macro: RIGHT TO NEXT X Se desplaza hasta la derecha hasta el siguiente

símbolo tachado

[R_x] RIGHT

IF i GOTO R_x
IF k GOTO R_x

Idea: 3 bloques.

P elimina un símbolo de v y vuelve a u.

A va tachando u a la vez que la va copiando desde el final en el siguiente hueco de la izquierda.

B restaura u (elimina las marcas que puso A).

Programa principal:

IF c GOTO F_2 u= ϵ , sólo hay que limpiar cw (lo que hay a la derecha)

LEFT

PRINT k Para delimitar u completamente

[P] RIGHT TO NEXT BLANK

LEFT Último símbolo de w

IF c GOTO F_1 |w|=0, toca borrar kuc de la izquierda y dejar las copias de u

PRINT # Reduzco en 1 la longitud de w

LEFT TO C Voy al final de u

[A] LEFT Siguiente símbolo de u a copiar

IF i GOTO A_i Copiar u (de atrás hacia delante)

[B] RIGHT Estamos en k, hemos terminado de copiar u y toca

IF X_i GOTO B_i recuperarla

IF c GOTO P u restaurada, continuamos

[A_i] PRINT X_i Para tachar, pero poder recuperar el símbolo después

LEFT TO NEXT BLANK Va al siguiente hueco libre

PRINT i Copia el símbolo

RIGHT TO NEXT X

Busca el último símbolo tachado (el que

IF X_i GOTO A acabamos de copiar) y va a copiar el siguiente

[B_i] PRINT i Restauro el último símbolo tachado

IF i GOTO B Sigo restaurando u

[F₁] PRINT # Borro c y u

LEFT

IF i GOTO F₁

PRINT # He llegado a k, la borro

HALT

[F₂] PRINT # Borro c y w

RIGHT

IF i GOTO F₂

HALT

2. Diseñar un programa con variables numéricas que calcule el máximo común divisor de dos enteros. Enteros en X_1 y X_2 . $mcd(X_1, X_2)$ en salida Y.

Usaré el algoritmo de Euclides:

https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations

Macro	o: IF X ₁ < X ₂ GOTO E	Salto si menor que.		
$U \leftarrow X_1 \\ V \leftarrow X_2$				
[L]	U ← U-1 V ← V-1 IF U ≠ 0 GOTO L IF V ≠ 0 GOTO E	Resto X ₂ - X ₁		
		V vale 0 si X ₂ era igual o menor que X ₁		
Macro	$0: \qquad W \leftarrow X_1 \% X_2$	Resto de la división entera X ₁ /X ₂	(Supongo X ₂ >0)	
$U \leftarrow X_2 \\ V \leftarrow X_1$				
IF V < X ₂ GOTO H		Si $X_1 < X_2$, el resto es X_1		
[A]	U ← U-1 V ← V-1 IF U ≠ 0 GOTO A	Resto V - X ₂	o V - X ₂	
	IF V < X ₂ GOTO H	Si V < X ₂ , el resto es V	() N	
	$U \leftarrow X_2$ GOTO A	Si V es mayor o igual que X ₂ , vuelvo a r	restarle X ₂	
[H]	$W \leftarrow V$			

Programa principal:

$$\begin{aligned} \text{[A]} & \quad \text{IF } \textbf{X}_2 \neq \textbf{0} \text{ GOTO B} \\ & \quad \textbf{Y} \leftarrow \textbf{X}_1 \\ & \quad \text{HALT} \end{aligned}$$

$$[B] \qquad Z \leftarrow X_2 \\ W \leftarrow X_1 \% X_2 \\ X_2 \leftarrow W \\ X_1 \leftarrow Z \\ \text{GOTO A}$$