Tutorial 9: Number theory II

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Calculating Inverses

Idea: "Iterate backwards":

- Starting with step 0, number steps of Euclidean algorithm.
- The equation at step i, will be denoted by $m_i = n_i q_i + r_i$.
- After carrying out step i of Euclidean algorithm, transform it into $r_i = m_i n_i q_i$.
- Let r_k (step k) be last non-zero remainder. Recall that if $r_k=1, \rightarrow n_0$ has an inverse mod m_0 (If $r_k \neq 1$, then n_0 has no inverse mod m_0)
- Recall that $m_i = n_{i-1}$ and $n_i = r_{i-1}$.
- Iterate backwards starting with

$$r_{k} = 1 = m_{k} - n_{k}q_{k} = n_{k-1} - r_{k-1}q_{k}$$

$$= n_{k-1} - (m_{k-1} - n_{k-1}q_{k-1})q_{k}$$

$$= -m_{k-1}q_{k} + n_{k-1}(1 + q_{k-1}q_{k})...$$

Calculating Inverses

Example:

Find the inverse of 15 mod 26.

```
      Step 0:
      26 = 1(15) + 11
      r_0 = 11 = 26 - 1(15)

      Step 1:
      15 = 1(11) + 4
      r_1 = 4 = 15 - 1(1)

      Step 2:
      11 = 2(4) + 3
      r_2 = 3 = 11 - 2(4)

      Step 3:
      4 = 1(3) + 1
      r_3 = 1 = 4 - 1(3)
```

Iterating "backwards" gives:

```
Step "3": 1 = 4 - 1(3)

Step "2": 1 = 4 - 1(11 - 2(4)) = -1(11) + 3(4)

Step "1": 1 = -1(11) + 3(15 - 1(11)) = 3(15) - 4(11)

Step "0": 1 = 3(15) - 4(26 - 1(15)) = -4(26) + 7(15)
```

So, 1 = -4(26) + 7(15) and 7 is the inverse of 15 mod 26.

Calculating Inverses

Alternative representation:

k	=	j	(q)	+	r	X	y
26	=	15	(1)	+	11	7	-4
15	=	11	(1)	+	4	-4	3
11	=	4	(2)	+	3	3	-1
4	=	3	(1)	+	1	-1	1
3	=	1	(3)	+	0	1	0

Therefore, we have $26 \cdot -4 + 15 \cdot 7 = 1$ which implies $(15 \cdot 7) \mod 26 = 1$, and thus 7 is multiplicative inverse of 15 in Z_{26} .

RSA Problem

This problem is on the RSA algorithm for public key cryptography. To generate his keys, Bob starts by picking p=37 and q=31. So, n=pq=1147 and T=(p-1)(q-1)=1080.

- (a) Bob's public key is a pair (e, 1147). Which of the following integers can Bob use for e? Why?
 - (i) 17; (ii) 5; (iii) 49; (iv) 21.
- (b) Suppose Bob chooses e = 47. Compute his private key d by running the extended GCD algorithm. Show all the steps.

RSA problem

Solution:

- (a) (i),(iii). This is because they are the only ones that are relatively prime to T, that is, gcd(e,T) must be 1. (ii) fails because 1080 and 5 are both divisible by 5. (iv) fails because 1080 and 21 are both divisible by 3.
- (b) The private key should satisfy $(ed) \mod T = 1$. i.e. d is multiplicative inverse of e in Z_T . Run the extended GCD algorithm to calculate it:

$$1080 = 47 \cdot 22 + 46$$
$$47 = 46 \cdot 1 + 1$$

Then,

$$1 = 47 - 46
= 47 - (1080 - 47 \cdot 22)
= 23 \cdot 47 + 1080 \cdot (-1)$$

Thus, d = 23.

Inverse Problem

Let p be a prime number (and hence $p \ge 2$).

- (a) Show that there are $p^2 p$ elements with multiplicative inverses in Z_{p^2} .
- (b) If x has no multiplicative inverse in Z_{p^2} , what is x^{p^2-p} mod p^2 ? Explain your answer.

Inverse Problem

Solution:

- (a) The numbers $0, p, 2p, 3p, \ldots, (p-1)p$ have no multiplicative inverses since they are not relatively prime to p^2 . But other elements in Z_{p^2} have a multiplicative inverse because they have no factor p and thus they are relatively prime to p^2 . So, there are $p^2 p$ elements with multiplicative inverse in Z_{p^2} .
- (b) For any element x with no multiplicative inverse, we can write x=qp, where q is an integer and $0\leq q< p$. So, $x^{p^2-p}=(qp)^{p^2-p}=q^{p^2-p}\cdot p^{p^2-p}=(p^2(q^{p^2-p}\cdot p^{p^2-p-2}))$ which is multiple of p^2 , since $p^2-p\geq 2\to p^2-p-2\geq 0$ for any prime p. Thus, x^{p^2-p} mod $p^2=(p^2(q^{p^2-p}\cdot p^{p^2-p-2}))$ mod $p^2=0$.