Deadline: Friday October 21st, 11:59pm.

Policy to turn in assignment:

- Assignment should be submitted via BlackBoard.
- Student needs to turn in their assignment as a single PDF file.
- No email or late submission will be accepted.

5 points

1. Let
$$A = \begin{bmatrix} -3 & 2 & 4 \\ 1 & -1 & 2 \\ -1 & 4 & 0 \end{bmatrix}$$
.

- a) Compute $\det A$ by using any of the algorithms we saw in class.
- b) Let B be a 3×3 matrix such that $\det B = 2$. Compute $\det (4BA^{-1})$.

4 points

2. Let $A = \begin{bmatrix} -1 & c-1 & 1-c \\ -c-2 & 2c-3 & 4-c \\ -c-2 & c-1 & 2 \end{bmatrix}$. Use a determinant to find all the values of c for which A is not invertible. Use any algorithm from class.

3 points

3. Let A be an $n \times n$ matrix such that $A^T A = I_n$. Show that $\det(A) = \pm 1$.

4 points

- 4. For each of the following, determine if the statement is true or false. Provide a short reasoning (one or two sentences).
 - a) If the determinant of a square matrix is zero, then the matrix has either one row or column of zeros.
 - b) Let A be an $n \times n$ matrix, and let \vec{b} be a given vector in \mathbb{R}^n . If the system $A\vec{x} = \vec{b}$ is consistent, then $\det A \neq 0$.
 - c) If the columns of a square matrix A are linearly dependent, then $\det A = 0$.
 - d) If A is a square matrix whose diagonal entries are all zero, then $\det A = 0$.