

References

- **Adamek, T.A.** (1981). Bestimmung der Kondensationgroß auf Feinewellten Oberflachen zur ausle-gun Aptimaler Wandprofile, *Wärme-und Stoffubertragung*, Vol. 15, pp. 255-270.
- **Adamek, T.A. and Webb, R.L. (1990)**. Prediction of Film Condensation on Horizontal Integral Fin Tubes, *Int. J. Heat Mass Transfer*, Vol. 33, pp. 1721-1735.
- **Agarwal, A. and Garimella, S. (2006)**. Modeling of Pressure Drop during Condensation in Circular and Non-Circular Microchannels, *Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE)*, Chicago, IL.
- **Agarwal, A. and Garimella, S. (2007).** Representative Results for Condensation Measurements at Hydraulic Diameters ~ 100 Microns, *Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE)*, Seattle, USA.
- **Agarwal, A., Bandhauer, T.M. and Garimella, S. (2007)**. Heat Transfer Model for Condensation in Non-circular Microchannels, *Proceedings of the Fifth International Conference on Nanochannels, Microchannels and Minichannels (ICNMM)*, Puebla, Mexico.
- **Agostini, B. (2002)**. Etude Expérimentale de l'Ebullition de Fluide Réfrigérant en Convection Forcée dans des Mini-Canaux, Ph.D. Thesis, Université Joseph Fourier, Grenoble, France.
- **Agostini, B., Revellin, B. and Thome, J.R. (2008)**. Elongated Bubbles in Microchannels. Part I: Experimental Study and Modeling of Elongated Bubble Velocity, *Int. J. Multiphase Flow*, Vol. 34, pp. 590-601.
- **Agostini, B. and Thome, J.R. (2005)**. Comparison of an Extented Database for Flow Boiling Heat Transfer Coefficients in Multi-Microchannels Elements with the Three-Zone Model, *ECI Heat Transfer and Fluid Flow in Microscale*, Castelvecchio Pascoli, Italy, Sept. 25-30.
- **Agostini, B., Thome, J.R., Fabbri, M., Calmi, D., Kloter, U. and Michel, B. (2008a)**. High Heat Flux Flow Boiling in Silicon Multi-Microchannels: Part I Heat Transfer Characteristics of R-236fa, *Int. J. Heat Mass Transfer*, Vol. 41, pp. 5400-5414.
- **Agostini, B., Thome, J.R., Fabbri, M., Calmi, D., Kloter, U. and Michel, B. (2008b)**. High Heat Flux Flow Boiling in Silicon Multi-Microchannels: Part II Heat Transfer Characteristics of R-245fa, *Int. J. Heat Mass Transfer*, Vol. 41, pp. 5415-5425.
- Agostini, B., Revellin, R., Thome, J.R., Fabbri, M., Michel, B., Kloter, U. and Calmi, D. (2008c). High Heat Flux Flow Boiling in Silicon Multi-Microchannels: Part III Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drop, *Int. J. Heat Mass Transfer*, Vol. 41, pp. 5426-5442
- **Agostini, B., Thome, J.R., Fabbri, M. and Michel, B. (2008d)**. High Heat Flux Two-Phase Cooling in Silicon Multi-Microchannels, *IEEE Trans. on Components and Packaging Technologies*, Vol. 31, pp. 691-701.
- **Agrawal, K.N., Varma, H.K. and Lal, S. (1986)**. Heat Transfer during Forced Convection Boiling of R12 under Swirl Flow, *J. Heat Transfer*, Vol. 108, pp. 567-573.
- **Akbar, M.K., Plummer, D.A. and Ghiaasiaan, S.M. (2003)**. On Gas-Liquid Two-Phase Flow Regimes in Microchannels, *Int. J. Multiphase Flow*, Vol. 29, pp. 855-865.
- Akers, W.W., Deans, H.A. and Crosser, O.K. (1959). Condensation Heat Transfer within Horizontal Tubes, *Chem. Eng. Prog. Symp. Ser.*, Vol. 55, pp. 171-176.
- Ali, M.I., Sadatomi, M. And Kawaji, M. (1993). Two-Phase Flow in Narrow Channels between Two Flat Plates, *Canadian J. Chemical Engineering*, Vol. 71, pp. 657-666.
- Andreani, M. and Yadigaroglu, G. (1997). A 3-D Eulerian-Lagrangian Model of Dispersed Flow Boiling Including a Mechanistic Description of the Droplet Spectrum Evolution, Parts 1 and 2, *Int. J. Heat Mass Transfer*, Vol. 40, pp. 1753-1793.

- **Antonelli, R. and O'Neill, P.S. (1981)**. Design and Application Consideration for Heat Exchanger with Enhanced Boiling Surfaces, Paper read at International Conference on Advances in Heat Exchangers, Dubrovnic, September.
- **Arman, B. and Rabas, T.J. (1992).** Disruption Shape Effects on the Performance of Enhanced Tubes with the Separation and Reattachment Mechanism, *Enhanced Heat Transfer*, HTD Vol. 202, ASME, pp. 67-76.
- Armand, A.A. and Treschev, G.G. (1946). Izv. Vses. Teplotek. Inst., Vol. 1, pp. 16-23.
- **Arnold, C.R. and Hewitt, G.F. (1967).** Further Developments in the Photography of Two Phase Gas-Liquid Flow, *The Journal of Photographic Science*, Vol. 15, pp. 97-114.
- **Arshad, J. and Thome, J.R. (1983)**. Enhanced Boiling Surfaces: Heat Transfer Mechanism and Mixture Boiling, *Proc. ASME-JSME Thermal Engineering Joint Conference*, Vol. 1, pp. 191-197.
- **Badie, S., Lawrence, C.J. and Hewitt, G.F. (2001)**. Axial Viewing Studies of Horizontal Gas-Liquid Flows with Low Liquid Loading, *Int. J. Multiphase Flow*, Vol. 27, pp. 1259-1269.
- **Baker, O.** (1954). Design of Pipelines for Simultaneous Flow of Oil and Gas, *Oil and Gas J.*, July, pp. 26.
- **Bandarra Filho, E.P. and Sáiz-Jabardo, J.M. (2006)**. Convective Boiling Performance of Refrigerant R-134a in Herringbone and Microfin Copper Tubes, *Int. J. Refrigeration*, Vol. 29, pp. 81-91.
- Bandyopadhyay, P.S., Gaitonde, U.N. and Sukhatme, S.P. (1991). Influence of Free Convection on Heat Transfer during Laminar Flow in Tubes with Twisted Tapes, *Experimental Thermal and Fluid Science*, Vol. 4, pp. 577-586.
- **Bankoff, S.G.** (1960). A Variable Density Single-Fluid Model for Two-Phase Flow with Particular Reference to Steam-Water, *J.Heat Transfer*, Vol. II, Series B, pp. 265-272.
- **Bao, Z.Y., Fletcher, D.F. and Haynes, B.S. (2000).** Flow Boiling Heat Transfer of Freon R11 and HFCFC123 in Narrow Passages, *Int. J. Heat Mass Transfer*, Vol. 43, pp. 3347–3358.
- **Baird, J.R., Bao, Z.Y., Fletcher, D.F. and Haynes, B.S. (2000)**. Local Flow Boiling Heat Transfer Coefficients in Narrow Conduits, *Boiling 2000: Phenomena and Engineering Applications*, ed. A. Bar-Cohen, Anchorage Alaska, April 30 May 5, Vol. 2, pp. 447-466.
- **Barbieri, P.E.L. and Sáiz-Jabardo, J.M. (2006)**. The Effect of the Diameter in Convective Boiling of Refrigerant R-134a, *Proc. 13th International Heat Transfer Conference*, Sydney, August 14-18.
- Barbieri, P.E.L., Sáiz-Jabardo, J.M., Bandarra Filho, E.P. (2005). Nucleate and Convective Boiling of Refrigerants, Invited Lecture by Sáiz-Jabardo at LTCM-EPFL, Lausanne, Switzerland.
- **Barnea, D. and Taitel, Y. (1986)**. Flow pattern transition in two-phase gas-liquid flows, *Encyclopedia of Fluid Mechanics*, Vol. 3, Gulf Publishing, pp. 403-474.
- **Baustian, J.J., Pate, M.B. and Bergles, A.E.** (1988a). Measuring the Concentration of a Flowing Oil-Refrigerant Mixture with a Vibrating U-Tube Densitymeter, *ASHRAE Trans.*, Vol. 94, Part 2, pp. 571-587.
- **Baustian, J.J., Pate, M.B. and Bergles, A.E. (1988b)**. Measuring the Concentration of a Flowing Oil-Refrigerant Mixture with an Acoustic Velocity Sensor, *ASHRAE Trans.*, Vol. 94, Part 2, pp. 602-615
- **Baustian, J.J., Pate, M.B. and Bergles, A.E. (1988c)**. Measuring the Concentration of a Flowing Oil-Refrigerant Mixture with a Bypass Viscometer, *ASHRAE Trans.*, Vol. 94, Part 2, pp. 588-601.
- **Bayini, A., Thome, J.R. and Favrat, D. (1995)**. Online Measurement of Oil Concentrations of R-134a/Oil Mixtures with a Density Flowmeter, *HVAC&R Research*, ASHRAE, **1(3)**, pp. 232-241.
- Bays, G.S. and McAdams, W.H. (1937). Ind. Eng. Chem., Vol. 29, pp. 1240-1246.
- **Beatty, K.O. and Katz, D.L. (1948)**. Condensation of Vapors on Outside of Finned Tubes, *Chem. Eng. Prog.*, Vol. 44, No. 1, pp. 55-70.
- **Bell, K.J. (1960)**. Exchangers Design Based on the Delaware Research Program, *Petroleum Engineering*, Vol. 32, No. 11, pp. C26-36 and C40a-C40c.
- **Bell, K.J.** (1963). Final Report of the Cooperative Research Program on Shell-and-Tube Heat Exchangers, *Univ. of Delaware Eng. Exp. Sta. Bull.*, No. 5.

- **Bell, K.J.** (1986). Delaware Method for Shell Side Design, *Heat Exchanger Sourcebook*, Edited by J.W. Palen, Hemisphere, New York, Chapter 6, pp. 129-166.
- **Bell, K.J. and Ghaly, M.A. (1973)**. An Approximate Generalized Design Method for Multi-Component Partial Condensers, *AIChE Symp. Ser.*, Vol. 69, pp. 72-79.
- **Bergles, A.E.** (1981). Survey of Heat Transfer Characteristics of Deep Spirally Fluted Tubing, *Advances in Enhanced Heat Transfer-1981*, Eds. R.L. Webb, T.C. Carnavos, E.F. Park, Jr. and K.M. Hostetler, ASME HTD Vol. 18, pp. 21-33.
- **Bergles, A.E. and Joshi, S.D. (1983)**. Augmentation Techniques for Low Reynolds Number In-Tube Flow, *Low Reynolds Number Flow Heat Exchangers*, Eds. S. Kakac, R.K. Shah and A.E. Bergles, Hemisphere, Washington D.C., pp. 695-720.
- **Bergles, A.E. and Kandlikar, S.G. (2005)**. On the Nature of Critical Heat Flux in Microchannels, *J. Heat Transfer*, Vol. 127, pp. 101–107.
- Bergles, A.E., Lienhard V, J.H., Kendall, G.E, Griffith, P. (2003). Boiling and Evaporation in Small Diameter Channels, *Heat Transfer Engineering*, Vol. 24, No. 1, pp. 18-40.
- Bergles, A.E., Webb, R.L. and Junkhan, G.H. (1979). Energy Conservation via Heat Transfer Enhancement, *Energy*, Vol. 4, pp. 193-200.
- **Biberg**, **D.** (1999). An explicit approximation for the wetted angle in two-phase stratified pipe flow, *Canadian J. Chemical Engineering*, Vol. 77, pp. 1221-1224.
- **Blasius**, H. (1913). Das Ahnlichkeitsgesetz bei Reibungsvorgangen in Flussigkeiten, *Forschg. Arb. Ing.-Wes.*, No. 131, Berlin.
- **Bowers, M.B. and Mudawar, I. (1994)**. High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks, *Int. J. Heat Mass Transfer*, Vol. 37, pp. 321-332.
- Brauer, H. (1956). Stromung und Wärmeubergang bei Reiselfilmen, VDI Forschung, Vol. 22, pp. 1-40.
- **Brauner, N. and Moalem-Maron, D. (1992)**. Identification of the Range of "Small Diameter" Conduits, Regarding Two-Phase Flow Pattern Transition, *Int. Comm. Heat Mass Transfer*, Vol. 19, pp. 29-39.
- Bredesen, A., Hafner, A., Pettersen, J., Neksa, P. And Aflekt, K. (1997). Heat Transfer and Pressure Drop for In-Tube Evaporation of CO₂, *Proceedings of the International Conference on Heat Transfer Issues in Natural Refrigerants*, University of Maryland, pp. 1-15.
- Bretherton, E.P. (1961). The Motion of Long Bubbles in Tubes, J. Fluid Mechanics, Vol. 10, pp. 166-188.
- **Briggs, A. and Rose, J.W. (1994).** Effect of Fin Efficiency on a Model for Condensation Heat Transfer on a Horizontal, Integral-Fin Tube, Int. J. Heat Mass Transfer, Vol. 37 (Supplement 1), pp. 457-463
- Briggs, A., Yang, X.X. and Rose, J.W. (1995). An Evaluation of Various Enhanced Tubes for Shell-Side Condensation of Refrigerant, *Heat Transfer in Condensation*, Eurotherm Seminar 47, Paris, Oct. 4-5, pp. 62-70.
- Bromley, L.A. (1952). Effect of Heat Capacity of Condensate, Ind. Eng. Chem., Vol. 44, pg. 2966.
- **Browne, M.W. and Bansal, P.K. (1999).** Heat Transfer Characteristics of Boiling Phenomenon in Flooded Refrigerant Evaporators, *Applied Thermal Engineering*, Vol. 19, pp. 595-624.
- Brunschwiler, T., Michel, B., Rothuizen, H., Kloter, U., Wunderle, B., Oppermann, H. and Reichl, H. (2008). Interlayer Cooling Potential in Vertically Integrated Packages, *Miscrosyst Tecnol*, DOI 10.1007/s00542-008-0690-4, Springer-Verlag.
- **Buchholz, M. (2005)**. Lokale Mechanismen des Wärmeübergangs beim Behältersieden in allen Bereichen der Siedekennlinie, *Dissertation*, TU Berlin, Germany.
- **Buchholz, M., Lüttich, T., Auracher, H. and Marquardt, W. (2004).** Experimental Investigation of Local Processes in Pool Boiling along the Entire Boiling Curve, *Int. J. Heat and Fluid Flow*, Vol. 25, pp. 243-261.
- Bukasa, J.P., Liebenberg, L. and Meyer, J.P. (2004). Heat Transfer Performance during Condensation inside Spiraled Micro-Fin Tubes, *J. Heat Transfer*, Vol. 126, pp. 321-328.

- Burnside, B.M., Bruce, T., Martin,, A.J., McNeil, D.A., Miller, K.M. and Wilkinson, D.A. (1999). Velocity and Heat Transfer Measurements in a Kettle Reboiler, *Two-Phase Flow Modelling and Experimentation 1999*, Eds. G.P. Celata, P. di Marco and R.K. Shah, Edizioni ETS, Pisa, Vol. 3, pp. 1719-1726.
- **Butterworth, D. (1975)**. A Comparison of Some Void Fraction Relationships for Co-Current Gas-Liquid Flow, *Int. J. Multiphase Flow*, Vol. 1, pp. 845-850.
- **Butterworth, D. (1981)**. Simplified Methods for Condensation on a Vertical Surface with Vapour Shear, UKAEA Rept. AERE-R9683.
- **Butterworth, D. (1983).** Film Condensation of Pure Vapor, *Heat Exchanger Design Handbook*, Chapter 2.6.2, Hemisphere, Washington.
- Carnavos, T.C. (1979). Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow, *Advances in Enhanced Heat Transfer*, ASME, pp. 61-67.
- Casciaro, S. and Thome, J.R. (2001a). Thermal Performance of Flooded Evaporators, Part 1: Review of Boiling Heat Transfer Studies, *ASHRAE Trans.*, Vol. 107, Pt. 1, paper AT-01-16-1.
- Casciaro, S. and Thome, J.R. (2001b). Thermal Performance of Flooded Evaporators, Part 1: Review of Void Fraction, Two-Phase Pressure Drop, and Flow Pattern Studies, *ASHRAE Trans.*, Vol. 107, Pt. 1, paper AT-01-16-2.
- Cavallini, A., Bella, B., Longo, G.A. and Rossetto, L. (1995). Experimental Heat Transfer Coefficients during Condensation of Halogenated Refrigerants on Enhanced Tubes, *J. Enhanced Heat Transfer*, Vol. 2, No. 1-2, pp. 115-125.
- Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rossetto L. and Zilio C. (2000). Analysis and Prediction of Condensation Heat Transfer of the Zeotropic Mixture R-125/236ea, *Proc. of the ASME Heat Transfer Division*, HTD-Vol. 366-4, pp.103-110.
- Cavallini, A., Censi, G., Del Gol, D., Doretti, L., Longo, G.A. and Rossetto, L. (2001). Experimental Investigation on Condensation Heat Transfer and Pressure Drop of New HFC Refrigerants (R134a, R125, R32, R410A, R236ea), *Int. J. Refrig.*, Vol. 24, pp. 73-87.
- Cavallini, A., Censi, G., Del Col, D., Doretti, L., Longo, G.A. and Rossetto, L. (2002). In-tube Condensation of Halogenated Refrigerants, *ASHRAE Trans.*, Vol. 108, Pt. 1, paper 4507.
- Cavallini, A., Del Gol, D., Doretti, L., Longo, G.A. and Rossetto, L. (1999). Condensation Heat Transfer with Refrigerants, *Two-Phase Modelling and Experimentation 1999*, Edizioni ETS, pp. 71-88.
- Cavallini, A., Del Col, D., Doretti, L., Longo, G.A. and Rossetto, L. (1999). Condensation of R-22 and R-407C inside a Horizontal Tube, *Proc. of 20th International Congress of Refrigeration*, IIR/IIF, Sydney.
- Cavallini, A., Del Col, D., Doretti, L., Matkovic, M., Rossetto, L. and Zilio, C. (2005). Condensation Heat Transfer and Pressure Gradient inside Multiport Minichannels, *Heat Transfer Engineering*, Vol. 26, No. 3, pp. 45-55.
- Cavallini, A., Doretti, L., Klammsteiner, N., Longo, G.A. and Rossetto, L. (1995). Condensation of New Refrigerants inside Smooth and Enhanced Tubes, *Proc.* 19th International Congress of Refrigeration, The Hague, Vol. Iva, pp. 105-114.
- Cavallini, A., Doretti, L., Longo, G.A. and Rossetto, L. (1994). Flow Patterns during Condensation of Pure Refrigerants on Enhanced Tubes under High Vapour Velocity, *Proc. 1994 International Refrigeration Conference at Purdue*, July 19-22, pp. 311-316.
- Cavallini, A., Doretti, L., Longo, G.A. and Rossetto, L. (1996). A New Model for Forced-Convection Condensation on Integral-Fin Tubes, *J. Heat Transfer*, Vol. 118, pp. 689-693.
- Cavallini, A., Doretti, L., Matkovic, M. and Rossetto, L. (2006). Update on Condensation Heat Transfer and Pressure Drop inside Microchannels, *Heat Transfer Engineering*, Vol. 27, No. 4, pp. 74-87.
- Cavallini, A. and Zecchin, R. (1974). A Dimensionless Correlation for Heat Transfer in Forced Convective Condensation, *Proc.* 5th International Heat Transfer Conference, Tokyo, Vol. 3, pp. 309-313.

- Celata, G.P. (2004). Heat Transfer and Fluid Flow in Microchannels, Begel Press, New York.
- Celata, G.P., Cumo, M., Katto, Y. and Mariani, A. (1999). Prediction of the Critical Heat Flux in Water Subcooled Flow Boiling Using a New Mechanistic Approach, *Int. J. Heat Mass Transfer*, Vol. 42, pp. 1457-146.
- Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J. and Zummo, G. (2006). Microtube Liquid Single-Phase Heat Transfer in Laminar Flow, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 3538-3546.
- Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J. and Zummo, G. (2006b). Microtube Liquid Single-Phase Heat Transfer in Laminar Flow, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 3538-3546.
- Celata, G.P., Cumo, M. and Mariani, A. (1999). Visual Investigation of High Heat Flux Burnout in Subcooled Flow Boiling of Water, *International Symposium on Applied Optical Measurements*, Munich, 23-24 September, pp. 79-93.
- Celata, G.P., Cumo, M., Mariani, A. and Zummo, G. (2000), Burnout in Subcooled Flow Boiling of Water. A Visual Experimental Study, *International Journal of Thermal Sciences*, Vol. 39, nos. 9-10-11, pp. 896-908.
- Celata, G.P., Cumo, M., McPhail, S.J. and Zummo, G. (2006a). Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtubes, *Int. J. Heat and Fluid Flow*, Vol. 27, pp. 135-143.
- Celata, G.P., Lorenzini, M., McPhail, S.J., Morini, G.L. and Zummo, G. (2008). Experimental Analysis of Liquid Forced Convection in Rough Microtubes, *Proc. of 5th Eurotherm European Thermal Sciences Conference*, Eindhoven, May 19-22.
- Censi G., Doretti L., Rossetto L., Zilio C. (2003). Flow Pattern Visualisation during Condensation of R134a inside Horizontal Microfin and Smooth Tubes, 21st IIR Int. Congress of Refrigeration, Washington DC, USA August 17-22.
- Cerza, M. (1992). Nucleate Boiling in Thin Falling Liquid Films, Pool and External Flow Boiling Conference, Santa Barbara, pp. 459-466.
- **Chaddock**, **J.B.** (1957). Film Condensation of Vapors in Horizontal Tubes, *Refrig. Engng.*, Vol. 65, pp. 36-41 and 90-95.
- **Chamra, L.M. and Webb, R.L. (1995)**. Condensation and Evaporation in Micro-Fin Tubes at Equal Saturation Temperatures, *J. Enhanced Heat Transfer*, Vol. 2, No. 3, pp. 219-229.
- Chamra, L.M., Webb, R.L. and Randlett, M.R. (1996). Advanced Micro-Fin Tubes for Evaporation, *Int. J. Heat Mass Transfer*, Vol. 39, No. 9, pp. 1827-1838.
- Chang, Y., Tsai, R. and Hwang, J. (1997). Condensing Heat Transfer Characteristics of Aluminum Flat Tube, *Applied Thermal Engineering*, Vol. 17, pp. 1055-1065.
- **Chato, J.C. (1962)**. Laminar Condensation inside Horizontal and Inclined Tubes, *ASHRAE J.*, Vol. 4, pp. 52-60.
- **Chawla, J. M (1967)**. Wärmeubergang and Druckakabfall in Waagerechten Rohren beider Strömung von verdampfenden Kältemitteln, *Kältetechnik-Limatisirung*, Vol. 8, pp. 246-252.
- **Chen, J.C.** (1963). A Correlation for Boiling Heat Transfer of Saturated Fluids in Convective Flow, ASME Paper 63-HT-34, 6th National Heat Transfer Conference, Boston, Aug. 11-14.
- Chen, J.C. (1966). A Correlation for Boiling Heat Transfer of Saturated Fluids in Convective Flow, *Ind. Eng. Chem. Process Des. Dev.*, Vol. 5, No. 3, pp. 322-329.
- Chen, J.C. and Tuzla, K. (1996). Heat Transfer Characteristics of Alternate Refrigerants, Vol. 3: Condenser and Evaporator Outside Tube, EPRI TR-106016-V3, Lehigh University, January.
- Chen, J.C., Tuzla, K., Wang, Q. and Starner, K. (1994). Falling Film Evaporation of Refrigerants, *Proc.* 10th International Heat Transfer Conference, Brighton, Vol. 6, pp. 169-173.
- Chen, L., Tian, Y.S. and Karayiannis, T.G. (2006). The Effect of Tube Diameter on Vertical Two-Phase Flow Regimes in Small Tubes, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 4220-4230.
- Chen, Y. and Cheng, P. (2005). Condensation of Steam in Silicon Microchannels, *International Communications in Heat and Mass Transfer*, Vol. 32, pp. 175-183.
- Chen, Y., Shi, M., Cheng, P. and Peterson, G.P. (2008). Condensation in Microchannels, *Nanoscale and Microscale Thermophysical Engineering*, Vol. 12, pp. 117-143.

- Chen, Y., Yang, K.-S., Chang, Y.-J. and Wang, C.-C. (2001). Two-Phase Pressure Drop of Air–Water and R-410A in Small Horizontal Tubes, *Int. J. Multiphase Flow*, Vol. 27, pp. 1293–1299.
- **Cheng, L. and Mewes, D. (2006)**. Review of Two-Phase Flow and Flow Boiling of Mixtures in Small and Mini Channels, *Int. J. Multiphase Flow*, Vol. 32, pp. 183-207.
- Cheng, L., Ribatski, G., Moreno Quiben, J. and Thome, J.R. (2008a). New Prediction Methods for CO₂ Evaporation inside Tubes: Part I A Two-Phase Flow Pattern Map and a Flow Pattern Based Phenomenological Model for Two-Phase Flow Frictional Pressure Drops, *Int. J. Heat Mass Transfer*, Vol. 51, pp. 111-124.
- Cheng, L., Ribatski, G. and Thome, J.R. (2008b). New Prediction Methods for CO₂ Evaporation inside Tubes: Part II An Updated General Flow Boiling Heat Transfer Model Based on Flow Patterns, *Int. J. Heat Mass Transfer*, Vol. 51, pp. 125-135.
- Cheng, L., Ribatski, G. and Thome, J.R. (2008). Two-Phase Flow Patterns and Flow Pattern Maps: Fundamentals and Applications, *ASME Appl. Mech. Reviews*, Vol. 31, pp. 050802.
- Cheng, L., Ribatski, G., Wojtan, L. and Thome, J.R. (2006). New Flow Boiling Heat Transfer Model and Flow Pattern Map for Carbon Dioxide Evaporating inside Tubes, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 4082-4094.
- Cheng, L., Ribatski, G., Wojtan, L. and Thome, J.R. (2007). Erratum to: "New Flow Boiling Heat Transfer Model and Flow Pattern Map for Carbon Dioxide Evaporating inside Tubes" [Int. J. Heat Mass Transfer, Vol. 49, pp 4082-4094], Int. J. Heat Mass Transfer, Vol. 50, pp. 391.
- **Cheng, P. and Wu, H. (2005)**. Visualization and measurements of Convective Boiling and Condensation in Microchannels, *Proceedings of 5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion*, Xian, China.
- Cheng, P. and Wu, H.Y. (2006). Mesoscale and Microscale Phase-Change Heat Transfer, *Advances in Heat Transfer*, Elsevier, Vol. 39, pp. 461-563.
- **Chiang, R.** (1993). Heat Transfer and Pressure Drop during Evaporation and Condensation of Refrigerant-22 in a 7.5 mm and 10 mm Axial and Helical Grooved Tubes, *AIChE Symp. Ser.*, Vol. 89, No. 295, pp. 205-210.
- Chisholm, D. (1967). A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow, Int. J. Heat Mass Transfer, Vol. 10, pp. 1767-1778.
- Chisholm, D. (1972). An Equation for Velocity Ratio in Two-Phase Flow, NEL Report 535.
- **Chisholm, D. (1973)**. Pressure Gradients Due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels, *Int. J. Heat Mass Transfer*, Vol. 16, pp. 347-358.
- Chisholm, D. (1983). Two-Phase Flow in Pipelines and Heat Exchangers, Longman, New York.
- Chisholm, D. (1985). Two-phase flow in heat exchangers and pipelines, *Heat Trans. Engineering*, Vol. 6, pp. 48-57.
- **Cho, K. and Kim, B.G. (1998)**. Heat Transfer Characteristics in the U-bend of a Microfin Tube Evaporator using R-407C, *ASHRAE Trans.*, Vol. 104, Part 2, Paper TO-98-19-3.
- Choudhury, D. and Patankar, S.V. (1985). Analysis of Developing Laminar Flow and Heat Transfer in Tubes with Radial Internal Fins, *Advances in Enhanced Heat Transfer* 1985, ASME HTD Vol. 43, eds. S.M. Shenkman, J.E. O'Brian, I.S. Habib and J.A. Kohler, pp. 57-71.
- Christoffersen, B.R., Chato, J.C., Wattelet, J.P. and de Souza, A.L. (1993). Heat Transfer and Flow Characteristics of R-22, R-32/R-125 and R-134a in Smooth and Micro-Fin Tubes, ACRC Report TR-47, University of Illinois at Urbana-Champaign.
- **Chun, K.R. and Seban, R.A. (1971)**. Heat Transfer to Evaporating Liquid Films, *J. Heat Transfer*, Vol. 93, November, pp. 391-396.
- Chung-Chiang, L. (1994). Investigation of Condensation Heat Transfer of R124/22 Nonazeotropic Refrigerant Mixtures in Horizontal Tubes, Ph.D. Thesis, National Chiao Tung University, Taiwan.
- Chung, P.M.Y. and Kawaji, M. (2004). The Effect of Channel Diameter on Diabatic Two-Phase Flow Characteristics in Microchannels, *Int. J. Multiphase Flow*, Vol. 30, pp. 735-761.

- **Churchill, S.W.** (1983). The Development of Theoretically Based Correlations for Heat and Mass Transfer, *Latin American Journal of Heat and Mass Transfer*, Vol. 7, pp. 207-229.
- **Chyu, M.-C. and Bergles, A.E. (1985a)**. Falling Film Evaporation on a Horizontal Tube, *Multiphase Flow and Heat Transfer*, ASME HTD Vol. 47, pp. 39-48.
- Chyu, M.-C. and Bergles, A.E. (1985b). Enhancement of Horizontal Tube Spray Film Evaporators by Structured Surfaces, *Advances in Enhanced Heat Transfer-1985*, ASME HTD Vol. 43, pp. 39-47.
- **Chyu, M.-C. and Bergles, A.E. (1987)**. An Analytical and Experimental Study of Falling-Film Evaporation on a Horizontal Tube, *J. Heat Transfer*, Vol. 109, No. 4, pp. 983-990.
- Chyu, M.-C. and Bergles, A.E. (1989). Horizontal Tube Falling-Film Evaporation with Structured Surfaces, *J. Heat Transfer*, Vol. 111, pp. 518-524.
- Chyu, M.-C., Bergles, A.E., and Mayinger, F. (1982). Enhancement of Horizontal Tube Spray Film Evaporators, *Proc.* 7th International Heat Transfer Conf., Munich, Vol. 6, pp. 275-280.
- Chyu, M.-C., Zeng, X., Ayub, Z.H. (1995). Nozzle-Sprayed Flow Rate Distribution on a Horizontal Tube Bundle, *ASHRAE Trans.*, Vol. 101, Part 2, Paper 3919.
- Cicchitti, A., Lombardi, C., Silvestri, M., Soldaini, G. and Zavattarelli, R. (1960). Two-Phase Cooling Experiments Pressure Drop, Heat Transfer and Burnout Measurements, *Energia Nucleare*, Vol. 7, pp. 407-425.
- Cognata, T., Hollingsworth, K. and Witte, L. (2006). High-Speed Visualization of Two-Phase Flow in a Micro-Scale Pin-Fin Heat Exchanger, *Heat Transfer Engineering*, Vol. 28, No. 9.
- **Colburn, A.P.** (1934). Notes on the Calculation of Condensation where a Portion of the Condensate Layer is in Turbulent Motion, *Trans. AIChE*, Vol. 30, pp. 187-193.
- **Coleman, J.W. and Garimella, S. (1999).** Characterization of Two-Phase Flow Patterns in Small Diameter Round and Rectangular Tubes, *Int. J. Heat Mass Transfer*, Vol. 42, pp. 2869-2881.
- **Coleman, J.W. and Garimella, S. (2000)**. Two-Phase Flow Regime Transitions in Microchannel Tubes: the Effect of Hydraulic Diameter, *Proceedings of the ASME Heat Transfer Division*, Vol. 4, pp. 71-83.
- **Coleman, J.W. and Garimella, S. (2003)**. Two-Phase Flow Regimes in Round, Square and Rectangular Tubes during Condensation of Refrigerant R134a, *Int. J. Refrig.*, Vol. 26, pp. 117-128.
- Colgan, E.G., Furman, B., Gaynes, M., Graham, W.S., LaBianca, N.C., Magerlein, J.H., Polastre, R.J., Rothwell, M.B., Bezama, R.J., Choudhary, R., Marston, K.C., Toy, H., Zitz, J.A. and Schmidt, R.R. (2007). A Practical Implementation of Silicon Microchannel Coolers for High Power Chips, *IEEE Trans. of Components and Packaging Technologies*, Vol. 30, No. 2, pp. 218-225.
- **Collier, J.G. (1982)**. Heat Transfer in the Postburnout Region and during Quenching and Reflooding, in *Handbook of Multiphase Flows*, G. Hetsroni, ed., Hemisphere, New York, Section 6.5, pp. 6-142 to 6-188
- **Collier, J.G. and Thome, J.R. (1994)**. *Convective Boiling and Condensation*, 3rd Edition, Oxford University Press, Oxford.
- Collier, J. G. and Thome, J. R. (1996). Convective Boiling and Condensation, 3rd Edition, Oxford University Press, Oxford (paperback edition).
- **Consolini, L. (2008)**. Convective Boiling Heat Transfer in a Single Micro-Channel, Ph.D. thesis, Ecole Polytechique Fédérale de Lausanne, Lausanne, Switzerland, available for free downloading at http://library.epfl.ch/en/theses/?nr=4024.
- **Consolini, L., Robinson, D. and Thome, J.R. (2006)**. Void Fraction and Two-Phase Pressure Drops for Evaporating Flow over Horizontal Tube Bundles, *Heat Transfer Engineering*, Vol. 27, No. 3, pp. 5-21.
- **Cooper, M.G.** (1984). Heat Flow Rates in Saturated Nucleate Pool Boiling A Wide Ranging Examination using Reduced Properties, *Advances in Heat Transfer*, Eds. Hartnett and Irvine, Academic Press, Princeton, Vol. 16, pp. 157-239.
- **Cooper, M.K. (1984a)**. Saturated Nucleate Pool Boiling: A Simple Correlation, 1st U.K. National Heat Transfer Conference, Vol. 2, pp. 785-793.

- Cooper, M.K. (1984b). Advances in Heat Transfer, Academic Press, Orlando, Vol. 16, pp. 157-139.
- **Cornwell, K. (1989)**. The Influence of Bubbly Flow on Boiling from a Tube in a Bundle, *Advances in Pool Boiling Heat Transfer*, Eurotherm No. 8, Paderborn, Germany, May 11-12, pp. 177-184.
- Cornwell, K., Duffin, N.W. and Schuller, R.B. (1980). An Experimental Study of the Effects of Fluid Flow on Boiling within a Kettle Reboiler Tube Bundle, ASME Paper No. 80-HT-45.
- **Cornwell, K. and Kew, P.A. (1992)**. Boiling in Small Channels. *Proceedings of CEC Conference on Energy Efficiency in Process Technology*, P. Pilavachi (editor), Athens, Elsevier, pp. 624–638.
- Cubaud, T. and Ho, C.M. (2004). Transport of Bubbles in Square Microchannels, *Phys. Fluids*, Vol. 16, No. 12, pp. 4575-4585.
- Czikk, A.M., O'Neill, P.S. and Gottzmann, C.F. (1981). Nucleate Boiling from Porous Metal Films: Effect of Primary Variables, *Advances in Enhanced Heat Transfer*, ASME, New York, HTD Vol. 18, pp. 109-122.
- **Damianides, C.A. and Westwater, J.M. (1988)**. Two-Phase Flow Patterns in a Compact Heat Exchanger and in Small Tubes, *Proceedings 2nd U.K. National Conference on Heat Transfer*, Glasgow, Scotland, Vol. 2, pp. 1257–1268.
- **Danilova, G.N., Burkin, V.G. and Dyundin, V.A. (1976)**. Heat Transfer in Spray-Type Refrigerator Evaporators, *Heat Transfer-Soviet Research*, Vol. 8, No. 6, pp. 105-113.
- **Date**, **A.W.** (1973). Flow in Tubes Containing Twisted Tapes, *Heating and Ventilating Engineering*, Vol. 47, pp. 240-249.
- **Date, A.W. (1974).** Prediction of Fully-Developed Flow in a Tube Containing a Twisted-Tape, *Int. J. Heat Mass Transfer*, Vol. 17, pp. 845-859.
- **Date, A.W. and Singham, J.R. (1972).** Numerical Prediction of Friction and Heat-Transfer Characteristics of Fully Developed Laminar Flow in Tubes Containing Twisted Tapes, ASME Paper No. 72-HT-17.
- **Del Col, D., Cavallini, A. and Thome, J.R. (2005)**. Condensation of Zeotropic Mixtures in Horizontal Tubes: New Simplified Heat Transfer Model Based on Flow Regimes, *J. Heat Transfer*, Vol. 127, pp. 221-230.
- **Diehl, J.E. (1957)**. Calculate Condenser Pressure Drop, *Hydrocarbon Processing*, Vol. 36, No. 10, pp. 147-153.
- **Diehl, J.E. and Unruh, C.H. (1958)**. Two-phase Pressure Drop in Horizontal Crossflow through Tube Banks, ASME Paper No. 58-HT-20.
- **Dittus, E.J. and Boelter, L.M.K. (1930)**. *Publications on Engineering*, Univ. California, Berkeley, Vol. 2, pp. 443.
- **Dobson, M.K. and Chato, J.C. (1998).** Condensation in Smooth Horizontal Tubes, *J. Heat Transfer*, Vol. 120, No. 1, pp. 193-213.
- **Donevski, B., Plocek, M., Kulesz, J. and Sasic, M. (1990)**. Analysis of Tubeside Laminar and Turbulent Flow Heat Transfer with Twisted Tape Inserts, *Heat Transfer Enhancement and Energy Conservation*, Hemisphere Publishing Corp., New York, pp. 175-185.
- **Dong, T. and Yang, Z. (2008)**. Measurement and Modeling of R141b Condensation Heat Transfer in Silicon Rectangular Microchannels, *Journal of Micromechanics and Microengineering*, Vol. 18, no. 085012.
- **Dougall, R.S. and Rohsenow, W.M. (1963).** Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Vapor Qualities, Mech. Engng. Dept., Engineering Project Laboratory, MIT Report No. 9079-26, September.
- Drew, T.B. (1954). See McAdams, W.H., Heat Transmission, 3rd Edition, McGraw-Hill, New York.
- **Drizius, M.R.M., Shkema, R.K. and Shlanciauskas, A.A. (1980)**. Heat Transfer in a Twisted Stream of Water in a Tube, *International Chemical Engineering*, Vol. 20, pp. 486-489.
- **Du, D., Xin, M.D. and Huang, S.M. (1995)**. Experiment for Condensing Heat Transfer Performance in Horizontal Three Dimensional Inner Microfin Tubes, *Two-Phase Flow Modelling and Experimentation 1995*, Rome, Vol. 1, pp. 235-241.

- **Dukler, A.E. (1960)**. Fluid Mechanics and Heat Transfer in Vertical Falling Film Systems, *Chem. Eng. Prog. Symp. Ser.*, Vol. 56, No. 30, pp. 1-10.
- **Dukler, A.E., Wicks, M. and Cleveland, R.G. (1964)**. Pressure Drop and Hold-Up in Two-Phase Flow Part A- A Comparison of Existing Correlation, Part B An Approach Through Similarity Aanalysis, *AICHE Journal*, Vol. 10, pp. 38-51.
- **Dunn, B. (1996)**. Heat Transfer Characteristics of Alternate Refrigerants Volume 2: Condensation inside Tube, EPRI TR-106016-V2 Report, University of Illinois at Urbana-Champaign, January.
- **DuPlessis, J.P.** (1982). Laminar Flow and Heat Transfer in a Smooth Tube with a Twisted-Tape Insert, Ph.D. thesis, University of Stellenbosch, Stellenbosch, South Africa.
- **DuPlessis, J.P. and Kröger, D.G. (1983)**. Heat Transfer Correlation for Laminar Flow in a Smooth Tube with a Twisted-Tape Insert, Report TW83-9, University of Stellenbosch, Stellenbosch, South Africa.
- **Dupont, V., Thome, J.R. and Jacobi, A. (2004)**. Heat Transfer Model for Evaporation in Microchannels, Part II: Comparison with the Database, *Int. J. Heat Mass Transfer*, Vol. 47, pp. 3387-3401.
- **Ebisu, T. and Torikoshi, K. (1998)**. Experimental Study on Evaporation and Condensation Heat Transfer Enhancement for R-407C Using Herringbone Heat Transfer Tube, *ASHRAE Trans.*, Vol. 104, Part 2, Paper TO-98-16-2.
- **Eckels, S.J., Doerr, T.M. and Pate, M.B. (1994)**. In-Tube Heat Transfer and Pressure Drop of R-134a and Ester Lubricant Mixtures in a Smooth Tube and a Micro-Fin Tube: Part I-Evaporation, *ASHRAE Trans.*, Vol. 100, Part 2, pp. 265-282.
- **Eckels, S.J. and Pate, M.B. (1991a)**. Evaporation and Condensation of HFC-134a and CFC-12 in a Smooth Tube and a Micro-Fin tube, *ASHRAE Trans.*, Vol. 97, Part 2, pp. 71-81.
- Eckels, S.J. and Pate, M.B. (1991b). An Experimental Comparison of Evaporation and Condensation Heat Transfer Coefficients for HFC-134a and CFC-12, *Int. J. Refrig.*, Vol. 14, No. 3, pp. 70-77.
- Eckels, S.J., Pate, M.B. and Bemisderfer, C.H. (1992). Evaporation Heat Transfer Coefficients for R-22 in Micro-Fin Tubes of Different Configurations, *Enhanced Heat Transfer*, ASME HTD Vol. 202, pp. 117-125.
- El Hajal, J., Thome, J.R. and Cavallini, A. (2003). Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 3349-3363.
- **Fair, J.R.** (1960). What You Need to Know to Design Thermosyphon Reboilers, *Petroleum Refiner*, Vol. 39, No. 2, pp. 105.
- Fair, J.R. and Klip, A. (1983). Thermal Design of Reboilers, *Chem. Engng. Prog.*, Vol. 79, No. 8, pp. 86-96
- **Feenstra, P.A., Weaver, D.S. and Judd, R.L. (2000)**. An Improved Void Fraction Model for Two-Phase Cross-Flow in Horizontal Tube Bundles, *Int. J. of Multiphase Flow*, Vol. 26, pp. 1851-1883.
- Fernando, P., Palm, B., Ammel, T., Lundquist, P. and Granryd, E. (2008). A Minichannel Aluminum Tube Heat Exchanger Part III: Condenser Performance with Propane, *International Journal of Refrigeration*, Vol. 31, pp. 696-708.
- Fletcher, L.S., Sernas, V. and Galowin, L.S. (1974). Evaporation from Thin Water Films on Horizontal Tubes, *Industrial Engineering Chemistry-Process Design and Development*, Vol. 13, No. 3, pp. 265-269.
- **Forster, H.K. and Zuber, N. (1955)**. Dynamics of Vapor Bubble Growth and Boiling Heat Transfer, *AIChE J.*, Vol. 1, pp. 531-535.
- **Friedel, L. (1979).** Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow, European Two-Phase Flow Group Meeting, Ispra, Italy, June, Paper E2.
- Fritz, W. (1935). Berechnung des Maximal Volume von Dampfblasen, Phy. Z., Vol. 36, pp. 379-388.
- **Fujii, T., Koyama, S., Inoue, N., Kuwahara, K. and Hirakuni, M. (1993)**. An Experimental Study of Evaporation Heat Transfer of Refrigerant HCFC22 inside an Internally Grooved Horizontal Tube, *Trans. of JSME*, Vol. 59, No. 562, pp. 2035-2042.

- **Fujii, T., Vehara, H., and Kurata, C. (1972)**. Laminar Filmwise Condensation of Flowing Vapor on a Horizontal Cylinder, *Int. J. Heat Mass Transfer*, Vol. 15, pp. 235-246.
- **Fujita, Y. and Tsutsui, M. (1996)**. Experimental and Analytical Study of Evaporation Heat Transfer in Falling Films on Horizontal Tubes, *Proc. 10th International Heat Transfer Conference*, Brighton, Vol. 6, pp. 175-180.
- **Gambill, W.R. and Lienhard, J.H. (1989)**. An Upper Bound for the Critical Boiling Heat Flux, *J. Heat Transfer*, Vol. 111, pp. 815-818.
- Ganic, E.N. and Rohsenow, W.M. (1977). Dispersed Flow Heat Transfer, *Int. J. Heat Mass Transfer*, Vol. 20, pp. 855-866.
- **Gao, L. and Honda, T. (2005)**. Effects of Lubricant Oil on Boiling Heat Transfer of CO₂ inside a Horizontal Smooth Tube, 42nd National Heat Transfer Symposium of Japan, pp. 269-270.
- Gao, L. and Honda, T. (2005). An Experimental Study on Flow Boiling Heat Transfer of Carbon Dioxide and Oil Mixtures inside a Horizontal Smooth Tube, *IIR 2005 Vicenza Conference-Thermophysical Properties and Transfer Processes of Refrigerants*, Vicenza, Italy, pp. 237-243.
- Garimella, S. (2005). Condensation in Minichannels and Microchannels, in *Heat Transfer and Fluid Flow in Minichannels and Microchannels*, eds. Kandlikar, S.G., Garimella, S., Li, D., Colin, S. and King, M., Elsevier Publications, Oxford, England.
- Garimella, S. and Christensen, R.N. (1992). Experimental Investigation of Pressure Drop Characteristics of Annuli with Spirally Fluted Inner Tubes, *Enhanced Heat Transfer*, Eds. M.B. Pate and M.K. Jensen, ASME HTD Vol. 202, pp. 107-116.
- Garimella, S., Killion, J.D. and Coleman, J.W. (2002). An Experimental Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Channel, *J. of Fluid Engineering*, Vol. 124, pp. 205-214.
- Gasche, J.L. (2006). Carbon Dioxide Evaporation in a Single Micro-Channel, *J. Brazilian Soc. Mech. Sci. Eng.*, Vol. 28, No. 1, pp. 69-83.
- **Ginoux, J.J. (1978)**. Two-Phase Flows and Heat Transfer with Applications to Nuclear Reactor Design Problems, Hemisphere, Washington.
- **Gambill, W.R. and Bundy, R.D. (1962)**. An Evaluation of the Present Status of Swirl Flow Heat Transfer, ASME Paper 62-HT-42, ASME, New York.
- **Ghajar, A. J. and Tang, C.C. (2007).** Heat Transfer Measurements, Flow Pattern Maps and Flow Visualization for Non-Boiling Two-Phase Flow in Horizontal and Slightly Inclined Pipe, *Heat Transfer Engineering*, Vol. 28, No. 6 (in press).
- **Ghajar, A.J. and Madon, K.F. (1992)**. Pressure Drop Measurements in the Transition Region for a Circular Tube with Three Different Inlet Configurations, *Experimental Thermal and Fluid Science*, Vol. 5, pp. 129-135.
- **Ghajar, A.J. and Tam, L.M. (1994)**. Heat Transfer Measurements and Correlations in the Transition Region for a Circular Tube with Three Different Inlet Configurations, *Experimental Thermal and Fluid Science*, Vol. 8, pp. 79-90.
- **Ghajar, A.J. and Tam, L.M. (1995)**. Flow Regime Map for a Horizontal Pipe with Uniform Wall Heat Flux and Three Inlet Configurations, *Experimental Thermal and Fluid Science*, Vol. 10, pp. 287-297.
- **Ghajar, A.J., Tam, L.M. and Tam, S.C. (2004)**. Improved Heat Transfer Correlation in the Transition Region for a Circular Tube with Three Inlet Configurations Using Artificial Neural Networks, *Heat Transfer Engineering*, Vol. 25, No. 2, pp. 30-40.
- Gnielinski, V. (1976). Int. Chem. Eng., Vol. 6, pp. 359-368.
- Gnielinski, V. (1995). Ein Neues Berechnungsverfahren fur die Warmeubertragung im Ubergangsbereich zwischen Laminaren und Turbulenter Rohstromung, *Forschung im Ingenieurwesen-Engineering Research*, Vol. 61, pp. 240-248.
- Gorenflo, D. (1993). Pool Boiling, VDI-Heat Atlas, VDI-Verlag, Düsseldorf (English version).
- **Gorenflo, D. and Koster, R. (1997)**. Pool Boiling Heat Transfer from Horizontal Tubes to Mixtures, Convective Flow Boiling and Pool Boiling Conference, Irsee, Germany, May 18-23.

- **Gorenflo, D. and Kotthoff, S. (2006).** Review on Pool Boiling Heat Transfer of Carbon Dioxide, *Int. J. Refrigeration*, Vol. 28, pp. 1169-1185.
- **Grant, I.D.R.** (1973). Two-Phase Flow and Pressure Drop on the Shell-Side of Shell-and-Tube Heat Exchangers, *Heat and Fluid Flow in Steam and Gas Turbine Plants*, Pub. No. 3, Inst. Mech. Engr., London, pp. 244-251.
- **Grant, I.D.R. and Chisholm, D. (1979)**. Two-Phase Flow on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger, *J. Heat Transfer*, Vol. 101, pp. 38-42.
- **Grant, I.D.R. and Murray (1972)**. Pressure Drop on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger with Vertical Two-Phase Flow, NEL Report, No. 500.
- **Grant, I.D.R. and Murray (1974)**. Pressure Drop on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger with Horizontal Two-Phase Flow, NEL Report, No. 560.
- **Gregorig, R.** (1954). Film Condensation on Finely Rippled Surface with Consideration of Surface Tension, *Z. Agnew. Math. Phys.*, Vol. 5, pp. 36-49.
- **Griffith, P. (1983)**. Dropwise Condensation, *Heat Exchanger Design Handbook*, Vol. 2, Chapter 2.6.5, Hemisphere, Washington.
- **Groeneveld, D.C. (1973).** Post-Dryout Heat Transfer at Reactor Operating Conditions, Report AECL-4513 (ANS topical meeting on Water Reactor Safety, Salt Lake City).
- **Groeneveld, D.C. and Delorme, G.G.J. (1976)**. Prediction of the Thermal Non-Equilibrium in the Post-Dryout Regime, *Nuclear Engineering and Design*, Vol. 36, pp. 17-26.
- **Grönnerud, R. (1972).** Investigation in Liquid Holdup, Flow Resistance and Heat Transfer in Circular Type Evaporators, Part IV: Two-Phase Resistance in Boiling Refrigerants, *Bulletin de l'Inst. du Froid*, Annexe 1972-1.
- **Gross**, U. (1994). Falling Film Evaporation Inside a Closed Thermosyphon, *Proc.* 10th International Heat *Transfer Conference*, Brighton, Vol. 7, pp. 443-448.
- **Gstöhl, D. and Thome, J.R. (2006a)**. Film Condensation of R-134a on Tube Arrays with Plain and Enhanced Surfaces: Part I Experimental Heat Transfer Coefficients, *J. Heat Transfer*, Vol. 128, pp. 21-32.
- **Gstöhl, D. and Thome, J.R. (2006b).** Film Condensation of R-134a on Tube Arrays with Plain and Enhanced Surfaces: Part II Prediction Methods, *J. Heat Transfer*, Vol. 128, pp. 33-43.
- **Gstöhl, D. and Thome, J.R. (2006c)**. Visualization of R-134a Flowing on Tube Arrays with Plain and Enhanced Surfaces under Adiabatic and Condensing Conditions, *Heat Transfer Engineering*, Vol. 27(10), pp. 44-62.
- **Gungor, K.E. and Winterton, R.H.S. (1986).** A General Correlation for Flow Boiling in Tubes and Annuli, *Int. J. Heat Mass Transfer*, Vol. 29, pp. 351-358.
- **Gungor, K.E. and Winterton, R.H.S.** (1987). Simplified General Correlation for Saturated Flow Boiling and Comparisons of Correlations with Data, *Chem. Eng. Res. Des.*, Vol.65, pp. 148-156.
- **Gupte, N. and Webb, R.L. (1995a).** Shell-Side Boiling in Flooded Refrigerant Evaporators Part I: Integral Finned Tubes, *HVAC&R Research*, ASHRAE, Vol. 1, Part 1, pp. 35-47.
- **Gupte, N. and Webb, R.L. (1995b)**. Shell-Side Boiling in Flooded Refrigerant Evaporators Part II: Enhanced Tubes, *HVAC&R Research*, ASHRAE, Vol. 1, Part 1, pp. 48-60.
- **Habert, M. (2009).** Falling Film Evaporation on a Tube Bundle with Plain and Enhanced Tubes, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Department of Mechanical Engineering, available for free at http://library.epfl.ch/theses/?display=detail&nr=4341.
- **Habert, M. and Thome, J.R. (2010a)**. Falling Film Evaporation on Tube Bundle with Plain and Enhanced Tubes, Part I: Experimental Results, *Experimental Heat Transfer*, Vol. 23.
- **Habert, M. and Thome, J.R. (2010b)**. Falling Film Evaporation on Tube Bundle with Plain and Enhanced Tubes, Part II: New Prediction Methods, *Experimental Heat Transfer*, Vol. 23.
- Haraguchi, H., Koyama, S. and Fujii, T. (1994). Condensation of Refrigerants HCFC22, HFC134a and HCFC123 in a Horizontal Smooth Tube (2nd Report, Proposal of Empirical Expressions for the Local Heat Transfer Coefficient), *Transaction of JSME (B)*, Vol. 60, pp. 245-252.
- Hausen, H.Z. (1943). VDI Beith. Verfahrenstech., Vol. 4, pp. 91.

- **Herwig, H. and Hausner, O. (2003)**. Critical View on "New Results in Micro-Fluid Mechanics": an Example, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 935-937.
- **Hetsroni, G. (2005)**. Flow and Heat Transfer in Micro-Channels, 5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Xi'an, China, July 3-6, pp. 26-38.
- Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L.P. (2005). Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results, *Int. J. Heat Mass Transfer*, Vol. 48, pp. 5580-5601.
- **Hetsroni, G., Mosyak, A., Segal, Z. and Pogrebnyak, E. (2003)**. Two-Phase Flow Patterns in Parallel Microchannels, *Int. J. Multiphase Flow*, Vol. 29, pp. 341-360.
- **Hetsroni, G., Mosyak, A., Segal, Z. and Ziskind, G. (2002)**. A Uniform Temperature Heat Sink for Cooling of Electronic Devices, *Int. J. Heat Mass Transfer*, Vol. 45, pp. 3275-3286.
- **Hewitt, G.F. and Jayanti, S. (1992)**. Prediction of Film Inversion in 2-Phase Flow in Coiled Tubes, *J. Fluid Mechanics*, Vol. 236, pp. 497-511.
- **Hewitt, G.F., Martin, C.J. and Wilkes, N.S. (1985)**. Experimental and Modeling Studies of Annular Flow in the Region between Flow Reversal and the Pressure Drop Minimum, *Physico Chemical Hydrodynamics*, Vol. 6, pp. 69-86.
- **Hewitt, G.F. and Roberts, D.N. (1969)**. Studies of Two-Phase Flow Patterns by Simultaneous X-ray and Flash Photography, AERE-M 2159, HMSO.
- **Hewitt, G. F. and Whalley, P. B. (1980)**. Advanced Optical Instrumentation Methods, *Int. J. Multiphase Flow*, Vol. 6, No. 12, pp. 136-156.
- **Hewitt, G.F, Whalley, P.B. and Terry, J.W. (1979)**. Photographic Studies of Two Phase using a Parallel Light Technique, UKAEA Harwell Report No. AERE-R9389, Harwell, United Kingdom.
- **Hewitt, N.J. and McMullan, J.T. (1995)**. Refrigerant-Oil Solubility and Its Effect on System Performance, *Proc.* 19th International Congress of Refrigeration, The Hague, Vol. IVa, pp. 290-296.
- **Hihara, E. (2000)**. Heat Transfer Characteristics of CO₂, *Workshop Proceedings Selected Issues on CO*₂ as working Fluid in Compression Systems, Trondheim, Norway, pp. 77-84.
- **Hinton, D.L., Conklin, J.C. and Vineyard, E.A. (1992)**. Evaporation Characteristics of R22 Flowing inside a Corrugated Tube, *Enhanced Heat Transfer*, ASME HTD Vol. 202, pp. 127-132.
- Honda, H., Uchima, B., Nozu, S., Nakata, H. and Fujii, T. (1989). Condensation of Downward Flowing R-113 Vapor on Bundles of Horizontal Smooth Tubes, *Heat Transfer-Japanese Research*, Vol. 18, No. 6, pp. 31-52.
- **Honda, H. and Nozu, S. (1986)**. A Prediction Method for Heat Transfer during Film Condensation on Horizontal Low Integral-Fin Tubes, *J. Heat Transfer*, Vol. 108, pp. 218-225.
- **Honda, H., Nozu, S. and Takeda, Y. (1987)**. Flow Characteristics of Condensation on a Vertical Column of Horizontal Tubes, *Proc. 1987 ASME-JSME Thermal Engineering Joint Conference*, Honolulu, Vol. 1, pp. 517-524.
- Honda, Nozu, S. and Mitsumori, K. (1983). Augmentation of Condensation on Horizontal Finned Tubes by Attaching a Porous Drainage Plate, *Proc. ASME-JSME Thermal Engng. Joint Conference*, Vol. 3, pp. 289-296.
- **Hong, S.W. and Bergles, A.E. (1976)**. Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Twisted-Tape Inserts, *J. Heat Transfer*, Vol. 98, pp. 251-256.
- Hou, H., Holste, J.C., Gammon, B.E. and Marsh, K.N. (1992). Experimental Densities for Compressed R134a, *Int. J. Refrig.*, Vol. 15, No. 6, pp. 365-371.
- **Hu, J.S. and Chao, C.Y.H. (2007)**. An Experimental Study of the Fluid Flow and Heat Transfer Characteristics in Micro-Condenser with Slug-Bubbly flow, *International Journal of Refrigeration*, Vol. 30, pp. 1309-1318.
- **Huo, Y., Tian, Y.S., Wadekar, V.V., Karayiannis, T.G. (2001)**. Review of Aspects of Two-Phase Flow and Boiling Heat Transfer in Small Diameter Tubes, *Proc. 3rd Int. Conf. on Compact Heat Exchangers and Enhancement Technology for the Process Industries*, Davos, Switzerland, 335-346.

- **Hu, X. and Jacobi, A.M. (1996a)**. The Intertube Falling Film: Part 1-Flow Characteristics, Mode Transitions, and Hysteresis, *J. Heat Transfer*, Vol. 118, August, pp. 616-625.
- **Hu, X. and Jacobi, A.M. (1996b)**. The Intertube Falling Film: Part 2-Mode Effects on Sensible Heat Transfer to a Falling Liquid Film, *J. Heat Transfer*, Vol. 118, August, pp. 626-633.
- **Hu, X. and Jacobi, A.M. (1998)**. Departure-Site Spacing for Liquid Droplets and Jets Falling between Horizontal Circular Tubes, *Experimental Thermal and Fluid Science*, Vol. 16, pp. 322-331.
- **Hughmark, G.A.** (1962). Hold-up in Gas Liquid Flow, *Chemical Engineering Progress*, Vol. 58, No. 4, pp. 62-65.
- **Ibragimov, M.H., Nomofelov, E.V. and Subbotin, V.I. (1961)**. Heat Transfer and Hydraulic Resistance with Swirl-Type Motion of Liquid in Pipes, *Teploenergetika*, Vol. 8, No. 7, pp. 57-60 (in Russian).
- **Incropera, F.P. and DeWitt, D.P. (1981)**. Fundamentals of Heat Transfer, Wiley, New York, 780.
- **Ishii, M. (1975)**. *Thermo-Fluid Dynamic Theory of Two-Phase Flow*, Chapters 9 and 10, Eyrolles, Paris, Scientific and Medical Publication of France, New York.
- **Ishii, M., Chawla, T.C. and Zuber, N. (1976).** Constitutive Equation for Vapor Drift Velocity in Two-Phase Annular Flow, *AIChE J.*, Vol. 22, No. 2, pp. 283-289.
- **Ishii, M.** (1977). One Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-Phase Flow Regimes, Argonne National Laboratory, Report ANL-77-47, October, Argonne, IL.
- **Ishihara, K. Palen, J. W. and Taborek, J. (1980)**. Critical Review of Correlations for Predicting Two-Phase Pressure Drop across Tube Banks, *Heat Transfer Engineering*, Vol. 1, pp. 23-32.
- **Jacobi, A. and Thome, J.R. (2002)**. Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels, *J. Heat Transfer*, Vol. 124, pp. 1131-1136.
- **Jassim**, E.W., Newell, T.A. and Chato, J.C. (2006). Two-Phase Flow Visualization in Chevron and Bumpy Style Flat Plate Heat Exchangers, *Heat Transfer Engineering*, Vol. 27, pp. 20-27.
- Jassim, E.W., Newell, T.A., Chato, J.C. (2007). Probabilistic Determination of Two-Phase Flow Regimes in Horizontal Tubes Utilizing an Automated Image Recognition Technique, *Experiments in Fluids*, in review.
- **Jassim, E.W.** (2000). Investigation of Adiabatic Refrigerant Pressure Drop and Flow Visualization in Flat Plate Evaporators, M.S. Thesis, Department of Mechanical and Industrial Engineering at the University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- **Jassim**, E.W. (2006). Probabilistic Flow Regime Map Modeling of Two-Phase Flow, Ph.D. thesis, Department of Mechanical Science Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- **Jaster, H. and Kosky, P.G. (1976)**. Condensation Heat Transfer in a Mixed Flow Regime, *Int. J. Heat Mass Transfer*, Vol. 19, pp. 95-99.
- **Jensen, M.K.** (1988). Boiling on the Shellside of Horizontal Tube Bundles, *Two-Phase Flow Heat Exchangers*, Kluwer, Dordrecht, The Netherlands, pp. 707-746.
- **Jensen, M.K.** (1985). Physical Properties, Data Tables and Experimental Boiling Data, Personal Communication, cf. Ribatski and Saiz Jabardo (2003).
- **Jensen, M.K. and Bensler, H.P. (1986)**. Saturated Forced-Convective Boiling Heat Transfer with Twisted-Tape Inserts, *J. Heat Transfer*, Vol. 108, pp. 93-99.
- **Jensen, M.K. and Memmel, G.J. (1986)**. Evaluation of Bubble Departure Diameter Correlations, *Proceedings 8th Int. Heat Transfer Conf.*, San Francisco, Vol. 4, pp. 1907-1912.
- Jeong, S., Cho, E., and Kim, H. (2005). Evaporative Heat Transfer and Pressure Drop in a Microchannel Tube, *Proceedings of the 3rd International Conference on Microchannels and Minichannels*, Toronto, Canada, Part B, pp. 103-108.
- Jiang, L., Koo, J.M., Zhang, L., Wang, E., Im, S., Yao, S., Zeng, S., Bari, A., Santiago, J.G., Kenny, T.W. and Goodson, K.E. (2002). Progress on Two-Phase Convection in Microchannel Heat Sinks, *Proceedings of Fourth Pacific Rim Thermal Science and Energy Workshop (PARTSEE-4)*, May 31-June 2, Kyoto, pp. 124-129.

- **Jung, D. S., McLinden M., Radermacher R., Didion D. (1989)**. A Study of Flow Boiling Heat Transfer with Refrigerant Mixtures, *Int. J. Heat Mass Transfer*, Vol. 32, No. 9, pp. 1751-1764.
- **Kabelac, S. and de Buhr, H.J. (2001)**. Flow Boiling of Ammonia in a Plain and a Low Finned Horizontal Tube, *Int. J. Refrig.*, Vol. 24, pp. 41-50.
- **Kabov, O., Marchuk, I. and Radionova, D. (2007).** Condensation on Curvilinear Fins (Effect of Groove Flooding): EMERALD Experiment of ESA, *Microgravity Science and Technology*, Vol. 19, Issue 3-4, pp. 121-124.
- **Kalinin, E.K. and Yarkho, C.A. (1971)**. Study of Intensification of Heat Transfer to Liquids and Gases in Channels, *Journal of Engineering Physics*, Vol. 20, pp. 592-599.
- **Kandlikar**, S.G. (1990). A General Correlation of Saturated Two-Phase Flow Boiling Heat Transfer inside Horizontal and Vertical Tubes, *J. Heat Transfer*, Vol. 112, pp. 219-228.
- **Kandlikar, S.G. (1991)**. A Model for Predicting the Two-Phase Flow Boiling Heat Transfer Boiling Heat Transfer Coefficient in Augmented Tubes and Compact Evaporator Geometries, *J. Heat Transfer*, Vol. 113, pp. 966-972.
- **Kandlikar, S.G. (2001)**. Two-Phase Flow Patterns, Pressure Drop and Heat Transfer during Boiling in Minichannel and Microchannel Flow Passages of Compact Heat Exchangers, *Compact Heat Exchangers and Enhancement Technology for the Process Industries 2001*, Begell House, New York, 319-334.
- **Kandlikar**, **S.G.** (2007). A Roadmap for Implementing Minichannels in Refrigeration and Air-Conditioning Systems Current Status and Future Directions, *Heat Transfer Engineering*, Vol. 28, No. 12, pp. 973-985.
- **Kandlikar, S.G. and Balasubramanian, P. (2004)**. An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Minichannels and Microchannels, *Heat Transfer Engineering*, Vol. 25, pp. 86-93.
- Kandlikar, S.G. and Garimella, S. (2005). Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier Science, USA.
- **Kandlikar, S.G., and Grande, W.J. (2003)**. Evolution of Microchannel Flow Passages Thermohydraulic Performance and Fabrication Technology, *Heat Transfer Engineering*, 24(1), pp. 3-17.
- Kandlikar, S.G., Joshi, S. and Tian, S. (2001). Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes, *Proc. of 35th National Heat Transfer Conference*, Anaheim, Paper 12134.
- **Kandlikar, S.G. and Raykoff, T. (1997)**. Predicting Flow Boiling Heat Transfer of Refrigerants in Microfin Tubes, *J. Enhanced Heat Transfer*, Vol. 4, No. 4, pp. 257-268.
- Kasza, K.E., Didascalou, T. and Wambsganss, M.W. (1997). Microscale Flow Visualization of Nucleate Boiling in Small Channels: Mechanisms Influencing Heat Transfer, *Proceedings of International Conference on Compact Heat Exchangers for Process Industries*, R.K. Shah (editor), Begell House, New York, pp. 343–352.
- **Kattan, N., Thome, J.R. and Favrat, D. (1995a)**. R-502 and Two Near Azeotropic Alternatives Part II: Two-Phase Flow Patterns, *ASHRAE Trans.*, Vol. 101, Part 1, paper CH-95-14-3.
- Kattan, N., Thome, J.R. and Favrat, D. (1995b). Int. Congress of Refrigeration, The Hague, Vol. 4.
- **Kattan, N., Thome, J.R. and Favrat, D. (1998a)**. Flow Boiling in Horizontal Tubes. Part 1: Development of a Diabatic Two-Phase Flow Pattern Map, *J. Heat Transfer*, Vol. 120, No. 1, pp. 140-147.
- **Kattan, N., Thome, J.R. and Favrat, D. (1998b)**. Flow Boiling in Horizontal Tubes. Part 2: New Heat Transfer Data for Five Refrigerants, *J. Heat Transfer*, Vol. 120, No. 1, pp. 148-155.
- **Kattan, N., Thome, J.R. and Favrat, D. (1998c)**. Flow Boiling in Horizontal Tubes. Part 3: Development of a New Heat Transfer Model Based on Flow Patterns, *J. Heat Transfer*, Vol. 120, No. 1, pp. 156-165.

- **Katto, Y. and Ohno, H. (1984)**. An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Channels, *Int. J. Heat Mass Transfer*, Vol. 27, pp. 1641-1648.
- **Katto, Y. and Shimizu, M. (1979)**. Upper Limit of the CHF in the Forced Convective Boiling on a Heated Disc with a Small Impinging Jet, *J. Heat Transfer*, Vol. 101, pp. 265-269.
- **Kaul, M.P., Kedzierski, M.A. and Didion, D. (1996)**. Horizontal Flow Boiling of Alternative Refrigerants within a Fluid Heated Micro-Fin Tube, in *Process, Enhanced, and Multiphase Heat Transfer, Afestschirft for A.E. Bergles*, Begell House, New York, pp. 167-173.
- Kawaji, M. (2007). Personal communication.
- **Kawaji, M. and Chung, M.Y. (2003)**. Unique Characteristics of Adiabatic Gas-Liquid Flows in Microchannels: Diameter and Shape Effects on Flow Patterns, Void Fraction and Pressure Drop, *Proceedings of the 1st International Conference on Microchannels and Minichannels*, April 24-25, Rochester, NY, pp. 115-128.
- Kawahara, A., Sadatomi, M., Okayama, K., Kawaji, M., and Chung, P.M.Y. (2005). Effects of Channel Diameter and Liquid Properties on Void Fraction in Adiabatic Two-Phase Flow through Microchannels, *Heat Transfer Engineering*, Vol. 26, No. 3, pp. 13-19.
- **Kedzierski, M.A.** (1995). Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces, National Institute of Standards and Technology, Gaithersburg, MD, Report NISTIR 5732.
- **Kedzierski, M.A. and Goncalves, J.M. (1997)**. Horizontal Convective Condensation of Alternative Refrigerants within a Micro-Fin Tube, National Institute of Standards and Technology, Gaithersburg, MD, Report NISTIR 6095.
- **Kedzierski, M.A. and Kim, M.S. (1997)**. Convective Boiling and Condensation Heat Transfer with a Twisted-Tape Insert for R12, R22, R152a, R134a, R290, R32/R134a, R32/R152a, R290/R134a, R134a/R600a, *Thermal Science & Engineering*, Vol. 6, No. 1, pp. 113-122.
- **Kedzierski, M.A. and Kim, M.S. (1998)**. Convective Boiling and Condensation Heat Transfer with a Twisted-Tape Insert for R12, R22, R152a, R134a, R290, R32/R134a, R32/R152a, R290/R134a, R134a/R600a, National Institute of Standards and Technology, Gaithersburg, MD, Report NISTIR 5905.
- Kern, D.Q. (1950). Process Heat Transfer, McGraw-Hill, New York.
- **Kern, D.Q. (1958)**. Mathematical Development of Loading in Horizontal Condensers, *AIChE J.*, Vol. 4, No. 2, pp. 157-160.
- **Kew, P. and Cornwell, K. (1997)**. Correlations for Prediction of Boiling Heat Transfer in Small Diameter Channels, *Applied Thermal Engineering*, Vol. 17, No. 8-10, pp. 705-715.
- **Khodabandeh, R. (2003)**. Influence of Channel Diameter on Boiling Heat Transfer in a Closed Advanced Two-Phase Thermosiphon Loop, *Proc. 5th International Boiling Conference*, Montego Bay, Jamaica, May 4-8.
- **Kidd, G.J. (1969)**. Heat Transfer and Pressure Drop for Nitrogen Flowing in Tubes Containing Twisted Tapes, *AIChE Journal*, Vol. 15, pp. 581-585.
- Kido, O., Taniguchi, M., Taira, T. and Uehara, H. (1995). Evaporation Heat Transfer of HCFC22 inside an Internally Grooved Horizontal Tube, *ASME/JSME Thermal Engineering Joint Conference*, Maui, March 19-24, Vol. 2, pp. 323-330.
- **Kim M. S., Chang Y. S. and Ro S. T. (1996)**. Performance and Heat Transfer of Hydrocarbon Refrigerants and Their Mixtures in a Heat Pump System, *Proc. of IIR Meeting of Comm. B1, B2, E1, E2*, Aarhus, pp. 477-486.
- Kim, N., Cho, J., Kim, J. and Youn, B. (2003). Condensation Heat Transfer of R-22 and R-410a in Flat Aluminum Multi-Channel Tubes with or without Micro-fins, *International Journal of Refrigeration*, Vol. 26, pp. 830-839.
- Kliebe, D. (1978). Waermedurchgangsuntersuchungen am Ringspalt zwischen einem Turbotec Rohr und einem Glattrohr, Diplom-Arbeit, Fachhochschule Giessen, Germany.

- **Klimenko, V.V. (1988).** A Generalized Correlation for Two-Phase Forced Flow Heat Transfer, *Int. J. Heat Mass Transfer*, Vol. 31, No. 3, pp. 541-552.
- **Knudsen, H.K. and Jensen, R.H. (1997).** Heat Transfer Coefficient for Boiling Carbon Dioxide, Workshop Proceedings CO₂ Technologies in Refrigeration, Heat Pumps and Air Conditioning Systems, Trondheim, Norway, pp. 319-328.
- **Kondo, M. and Nakajima, K.I. (1980)**. Experimental Investigation of Air-Water Two-Phase Upflow Across Horizontal Tube Bundles (Part I: Flow Pattern and Void Fraction), *Bulletin of the JSME*, Vol. 23, No. 177, pp. 385-393.
- Koyama, S., Kuwahara, K., Nakashita, K. and Yamamoto, K. (2003a). An Experimental Study on Condensation of Refrigerant R134a in a Multi-port Extruded Tube, *International Journal of Refrigeration*, Vol. 24, pp. 425-432.
- Koyama, S., Kuwahara, K. and Nakashita, K. (2003b). Condensation of Refrigerant in a Multi-port Channel, *Proceedings of International Conference on Microchannels and Minichannels* (ICMM), New York, USA, pp. 193-205.
- **Koyama, S., Kuwahara, K., Shinmura, E. and Ikeda, S. (2001)**. Experimental Study on Flow Boiling of Carbon Dioxide in a Horizontal Small Diameter Tube, IIR Commission B1 Meeting, Paderborn, Germany, pp. 526-533.
- **Koyama, S., Miyara, A., Takamatsu, H. and Fujii, T. (1990)**. Condensation Heat Transfer of Binary Refrigerant Mixtures of R22 and R114 inside a Horizontal Tube with Internal Spiral Grooves, *Int. J. Refrig.*, Vol. 13, No. 7, pp. 256-263.
- Koyama, S., Yu, J., Momoki, S., Fujii, T. and Honda, H. (1996). Forced Convective Flow Boiling Heat Transfer of Pure Refrigerants inside a Horizontal Microfin Tube, *Convective Flow Boiling*, Eds. J.C. Chen et al., Taylor & Francis, pp. 137-142.
- **Kuo, C.S. and Wang, C.C. (1996a)**. Horizontal Flow Boiling of R22 and R407C in a 9.52 mm Micro-Fin Tube, *Applied Thermal Engineering*, Vol. 16, Nos. 8/9, pp. 719-731.
- **Kuo, C.S. and Wang, C.C. (1996b).** In-tube Evaporation HFC-22 in a 9.52 mm Micro-Fin/Smooth Tube, *Int. J. Heat Mass Transfer*, Vol. 39, No. 12, pp. 2559-2569.
- Kuo, C.S., Wang, C.C., Cheng, W.Y. and D.C. Lu, D.C. (1995). Evaporation of R-22 in a 7-mm Microfin Tube, ASHRAE Trans., Vol. 101, Part 2, pp. 1055-1061.
- **Kutateladze, S.S.** (1948). On the Transition to Film Boiling under Natural Convection, *Kotloturbostroenie*, No. 3, pp. 10 and 152-158.
- Kutateladze, S.S. (1961). Boiling Heat Transfer, Int. J. Heat Mass Transfer, Vol. 4, pp. 3-45.
- Kutateladze, S.S. (1963). Fundamentals of Heat Transfer, Academic Press, New York.
- **Kutateladze**, **S.S.** (1982). Semi-Empirical Theory of Film Condensation of Pure Vapors, *Int. J. Heat Mass Transfer*, Vol. 25, pp. 653-660.
- **Kutateladze, S.S. and Gogonin, I.I. (1979)**. Heat Transfer in Film Condensation of Slowly Moving Vapor, *Int. J. Heat Mass Transfer*, Vol. 22, pp. 1593-1599.
- **Kutateladze, S.S. and Gogonin, I.I. (1979a)**. Growth Rate and Detachment Diameter of a Vapor Bubble in Free Convection Boiling of a Saturated Liquid, *High Temperature*, Vol. 17, pp. 667-671.
- **Labuntsov**, **D.A.** (1957). Heat Transfer in Film Condensation of Steam on a Vertical Surface and Horizontal Tubes, *Teploenergetika*, Vol. 4, No. 7, pp. 72-80.
- Lahey, R.T., Jr. (1974). Two-Phase Flow in Boiling Water Nuclear Reactors, NEDO 13388.
- **Lallemand, M., Branescu, C. and P. Haberschill, P. (2001)**. Local Heat Transfer Coefficients during Boiling of R22 and R407C in Horizontal Smooth and Microfin Tubes, *Int. J. Refrig.*, Vol. 24, pp. 57-72 [in French].
- Lan, J., Disimile, P.J. and Weisman, J. (1997a). Two-Phase Flow Patterns and Boiling Heat Transfer in Tubes Containing Helical Wire Inserts Part I Flow Patterns and Boiling Heat Transfer Coefficients, J. Enhanced Heat Transfer, Vol. 4, No. 4, pp. 269-282.
- Lan, J., Disimile, P.J. and Weisman, J. (1997b). Two-Phase Flow Patterns and Boiling Heat Transfer in Tubes Containing Helical Wire Inserts Part II Critical Heat Flux Studies, *J. Enhanced Heat Transfer*, Vol. 4, No. 4, pp. 283-296.

- Lavin, J.G. and Young, E.H. (1965). Heat Transfer to Evaporating Refrigerants in Two-Phase Flow, *AIChE J.*, Vol. 11, no. 6, pp. 1124-1132.
- **Lazarek, G.M. and Black, S.H. (1982)**. Evaporating Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube with R-113, *Int. J. Heat Mass Transfer*, Vol. 25, pp. 945-960.
- Lee, H.J. and Lee, S.Y. (2001). Pressure Drop Correlations for Two-Phase Flow within Horizontal Rectangular Channels with Small Heights, *Int. J. Multiphase Flow*, Vol. 27, pp. 783-796.
- Lee, J. (1964). Turbulent Film Condensation, AIChE J., Vol. 10, pp. 540-544.
- Lee, J. and Mudawar, I. (2005). Two-Phase Flow in High Heat Flux Microchannel Heat Sink for Refrigeration Cooling Applications, *Int. J. Heat Mass Transfer*, Vol. 48, pp. 928-940.
- **Leong, L.S. and Cornwell, K. (1979).** Heat Transfer Coefficients in a Reboiler Tube Bundle, *The Chemical Engineer*, No. 343, pp. 219-221.
- Levi, S. (1967). Forced Convection Subcooled Boiling Prediction of Vapor Volumetric Fraction, *Int. J. Heat Mass Transfer*, Vol. 10, pp. 951-965.
- **Liebenberg**, L., Thome, J.R. and Meyer, J.P. (2005). Flow Visualization and Flow Pattern Identification with Power Spectral Density Distributions of Pressure Traces during Refrigerant Condensation in Smooth and Micro-Fin Tubes, *J. Heat Transfer*, Vol. 27, pp. 209-220.
- **Li, H.M., Ye, K.S., Tan, Y.K. and Den, S.J. (1982)**. Investigation of Tube-Side Flow Visualization, Friction Factors and Heat Transfer Characteristics of Helical-Ridging Tubes, *Proc.* 7th *International Heat Transfer Conference*, Munich, Vol. 3, pp. 75-80.
- Li, J.M. and Wang, B.X. (2003). Size Effect on Two-Phase Regime for Condensation in Micro/Mini Tubes, *Heat Transfer-Asian Research*, Vol. 32, pp. 65-71.
- Li, J., Peterson, G.P. and Cheng, P. (2004). Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink with Single Phase Flow, *Int. J. Heat Mass Transfer*, Vol. 47, pp. 4215-4231.
- **Lienhard, J.H. and Dhir, V.K. (1973)**. Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes, NASA CR-2270, July.
- **Lienhard IV, J.H. and Lienhard V, J.H. (2006)**. *A Heat Transfer Textbook*, 3rd Edition, available at http://web.mit.edu/lienhard/www/ahttproject.pdf.
- **Lienhard, J.H. and Wong, P.T.Y. (1964)**. The Dominant Useable Wavelength and Minimum Heat Flux during Film Boiling on a Horizontal Cylinder, *J. Heat Transfer*, Vol. 86, pp. 220-226.
- **Liley, P.E. and Gambill, W.R. (1973)**. Physical and Chemical Data, in *Chemical Engineering Handbook*, 5th ed. (Perry and Chilton), McGraw-Hill, New York, Chapter 3, pg. 3-226 to 3-250.
- **Lin, S., Kew, P.A. and Cornwell, K. (1998)**. Two-Phase Flow Regimes and Heat Transfer in Small Tubes and Channels, *Proceedings of 11th International Heat Transfer Conference*, Kyongju, Korea, Vol. 2, pp. 45–50.
- Lin, S. Kew, P.A. and Cornwell, K. (2001). Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube, *Int. J. Refrig.*, Vol. 24, pp. 51-56.
- Lockhart, R. W. and Martinelli, R. C. (1949). Proposed Correlation Data for Isothermal Two-Phase Two-Component Flow in Pipes, *Chem. Eng. Progr.*, Vol. 45, pp. 39-45.
- **Lopina, R.F. and Bergles, A.E. (1969).** Heat Transfer and Pressure Drop in a Tape Generated Swirl Flow of Single-Phase Water, *J. Heat Transfer*, Vol. 91, pp. 434-442.
- **Lorenz, J.J. and Yung, D. (1978)**. Combined Boiling and Evaporation of Liquid Films on Horizontal Tubes, Proc. of 5th OTEC Conference, Vol. 3, pp. 46-70.
- **Lorenz, J.J. and Yung, D. (1979)**. A Note on Boiling and Evaporation of Liquid Films on Horizontal Tubes, *J. Heat Transfer*, Vol. 101, pp. 178-180.
- MacArthur, J.W. and Patankar, S.V. (1985). Effects of Swirling Laminar Flow on Heat Transfer Augmentation in Annular Passages with Twisted Radial Fins, *Advances in Enhanced Heat Transfer* 1985, ASME HTD Vol. 43, eds. S.M. Shenkman, J.E. O'Brian, I.S. Habib and J.A. Kohler, pp. 73-80.
- MacBain, S.M. and Bergles, A.E. (1996). Heat Transfer and Pressure Drop Characteristics of Forced Convective Evaporation in Deep Spirally Fluted Tubing, *Convective Flow Boiling*, Eds. J.C. Chen et al., Taylor & Francis, pp. 143-148.

- **MacBain, S.M., Bergles, A.E. and Raina, S. (1997)**. Heat Transfer and Pressure Drop Characteristics of Flow Boiling in a Horizontal Deep Spirally Fluted Tube, *HVAC&R Research*, Vol. 3, No. 1, pp. 65-80.
- **Mahulikar, S.P. and Herwig, H. (2006)**. Physical Effects in Laminar Microconvection due to Variations in Incompressible Fluid Properties, *Physics of Fluids*, Vol. 18, no. 073601.
- **Malnes, D.** (1966). Slip Ratios and Friction Factors in the Bubble Flow Regime in Vertical Tubes, *KR*, pp. 110.
- Manglik, R.M. and Bergles, A.E. (1986). An Analysis of Laminar Flow Heat Transfer in Uniform Temperature Circular Tubes with Tape Inserts, Heat Transfer Laboratory Report HTL-39, ISU-ERI-Ames-86290, Iowa State University, Ames, Iowa.
- Manglik, R.M. and Bergles, A.E. (1987). A Correlation for Laminar Flow Enhanced Heat Transfer in Uniform Wall Temperature Circular Tubes with Twisted-Tape Inserts, *Advances in Enhanced Heat Transfer*, Eds. M.K. Jensen and V.P. Carey, AMSE HTD Vol. 68, pp. 19-25.
- Manglik, R.M. and Bergles, A.E. (1992a). Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part 1 Laminar Flows, *Enhanced Heat Transfer*, Eds. M.B. Pate and M.K. Jensen, AMSE HTD Vol. 202, pp. 89-98.
- Manglik, R.M. and Bergles, A.E. (1992). Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes: Part II Transition and Turbulent Flows, *Enhanced Heat Transfer*, HTD Vol. 202, ASME, pp. 99-106.
- **Manwell, S.P. and Bergles, A.E. (1990)**. Gas-Liquid Flow Patterns in Refrigerant-Oil Mixtures, *ASHRAE Trans.*, Vol. 96, Part 2, Paper SL-90-1-4.
- Maranzana, G., Perry, I. and Maillet, D. (2004). Mini- and Micro-Channels: Influence of Axial Conduction in the Walls, *Int. J. Heat Mass Transfer*, Vol. 47, pp. 3993-4004.
- Marner, W.J. and Bergles, A.E. (1978). Augmentation of Tubeside Laminar Flow Heat Transfer by Means of Twisted-Tape Inserts, Static-Mixer Inserts, and Internally Finned Tubes, *Heat Transfer 1978, Proc. 6th International Heat Transfer Conference*, San Francisco, Hemisphere, Washington, D.C. Vol. 2, pp. 583-588.
- **Marner, W.J. and Bergles, A.E. (1985)**. Augementation of Highly Viscous Laminar Tubeside Heat Transfer by Means of a Twisted Tape Insert and Internally Finned Tube, *Advances in Enhanced Heat Transfer* 1985, ASME HTD Vol. 43, pp. 19-28.
- Martin-Callizo, C., Ali, R. and Palm, B. (2007). New Experimental Results on Flow Boiling of R-134a in a Vertical Microchannel, *UK Heat Transfer 2007 Proceedings*, Edinburgh, Sept. 10-11, Session 2, Paper 1.
- **Marto, P.J.** (1986). Recent Progress in Enhancing Film Condensation Heat Transfer on Horizontal Tubes, *Heat Transfer Engineering*, Vol. 7, pp. 53-63.
- **Masuda, H. and Rose, J.W. (1987)**. Static Configuration of Liquid Films on Horizontal Tubes with Low Radial Fins, *Proc. Royal Society of London*, Vol. A420, pp. 125-139.
- Matkovic, M., Cavallini, A., Del Col, D. and Rossetto, L. (2009). Experimental Study on Condensation Heat Transfer inside a Single Circular Microchannel, *Int. J. Heat Mass Transfer*, Vol. 52, pp. 2311-2323.
- **Mayinger, F. and Langer, H. (1978)**. Post-Dryout Heat Transfer, *Proc.* 6th International Heat Transfer Conference, Toronto, Vol. 6, pp. 181-198.
- McAdams, W.M. (1954). Heat Transmission, 3rd Edition, McGraw-Hill, New York.
- McAdams, W.H., Woods, W.K. and Bryan, R.L. (1942). Vaporization inside Horizontal Tubes II Benzene-Oil Mixtures, *Trans. ASME*, Vol. 64, pp. 193.
- **McNaught, J.M.** (1982). Two-Phase Forced Convection Heat-Transfer during Condensation on Horizontal Tube Bundles, *Proc.* 7th *International Heat Transfer Conference*, Munich, Vol. 5, pp. 125-131.
- **Médéric, B., Lavieille, P. and Miscevic, M. (2005)**. Void Fraction Invariance Property of Complete Condensation Flow inside a Capillary Glass Tube, *Int. J. Multiphase Flow*, Vol. 31, pp. 1049-1058.

- **Mehendale, S.S, Jacobi, A.M. (2000)**. Evaporative Heat Transfer in Mesoscale Heat Exchangers, *ASHRAE Trans.*, Vol. 106, Part 1, pp. 446-452.
- **Mehta, M.H. and Rao, R. (1988)**. Analysis and Correlation of Turbulent Flow Heat Transfer and Friction Coefficients in Spirally Corrugated Tubes for Steam Condenser Application, *Proc. of the 1988 National Heat Transfer Conference*, HTD-Vol. 96, ASME, Vol. 3, pp. 307-312.
- Memory, S.B., Akacasayer, N., Eraydin, H. and Marto, P.J. (1995). Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures from Smooth and Enhanced Surface II. Tube Bundles, *Int. J. Heat Mass Transfer*, Vol. 38, pp. 1363-1376.
- Memory, S.B., Bertsch, G. and Marto, P.J. (1993). Pool Boiling of HCFC-124-Oil Mixtures from Smooth and Enhanced Surfaces, *Heat Transfer with Alternative Refrigerants*, ASME HTD-Vol. 243, pp. 9-18.
- Memory, S.B., Sugiyama, D.C. and Marto, P.J. (1995). Nucleate Pool Boiling of R-114 and R-114-Oil Mixtures from Smooth and Enhanced Surface I. Single Tubes, *Int. J. Heat Mass Transfer*, Vol. 38, pp. 1347-1361.
- Mertz, R., Wein, A. and Groll, M. (1996). Experimental Investigation of Flow Boiling Heat Transfer in Narrow Channels, *Calore e Tecnologia*, Vol. 14, pp. 47–54.
- Meyer, J.J. and Saiz Jabardo, J.M. (1994). An Ultrasonic Device for Measuring the Oil Concentration in Flowing Liquid Refrigerant, *Int. J. Refrig.*, Vol. 17, No. 7, pp. 481-486.
- Meyer, J.P. and Liebenberg, L. (2006). In Search of Objective Heat Transfer and Pressure Drop Models, *Proc. 13th International Heat Transfer Conference*, Sydney, August 14-18.
- Mills, A.F. and Chung, D.K. (1973). Heat Transfer across Turbulent Falling Films, *Int. J. Heat Mass Transfer*, Vol. 16, pp. 694-696.
- Minkowycz, W.J. and Sparrow, E.M. (1966). Condensation Heat Transfer in the Presence of Non-Condensables, Interfacial Resistance, Superheating, Variable Properties and Diffusion, *Int. J. Heat Mass Transfer*, Vol. 9, pp. 1125-1144.
- Miscevic, M., Lavieille, P. and Piaud, B. (2009). Numerical Study of Convective Flow with Condensation of a Pure Fluid in Capillary Regime, *International Journal of Heat and Mass Transfer*, Vol. 52, pp. 5130-5140.
- Miscevic, M., Médéric, B., Lavieille, P., Soupremanien, U. and Serin, V. (2007). Condensation in Capillary-Driven Two-Phase Loops, *Microgravity Science and Technology*, Vol. 19, Issue 3-4, pp. 116-120.
- **Mishima, K. and Hibiki, T. (1995)**. Effect of Inner Diameter on Some Characteristics of Air-Water Two-Phase Flows in Capillary Tubes, *Transaction of JSME (B)*, Vol. 61, pp. 99-106.
- **Mishima, K. and Hibiki, T. (1996).** Some Characteristics of Air–Water Two-Phase Flow in Small Diameter Vertical Tubes, *Int. J. Multiphase Flow*, Vol. 22, pp. 703–712.
- **Mitrovic, J. (1986)**. Influence of Tube Spacing and Flow Rate on Heat Transfer from a Horizontal Tube to a Falling Liquid Film, *Proc. 8th International Heat Transfer Conference*, San Francisco, Vol. 4, pp. 1949-1956.
- Moeykens, S.A., Huebsch, W.W. and Pate, M.B. (1995a). Heat Transfer of R-134a in Single-Tube Spray Evaporation including Lubrificant Effects and Enhanced Surface Results, *ASHRAE Trans.*, Vol. 101, Part 1, pp. 111-123.
- **Moeykens, S.A., Newton, B.J. and Pate, M.B. (1995b)**. Effects of Surface Enhancement, Film-Feed Supply Rate, and Bundle Geometry on Spray Evaporation Heat Transfer Performance, *ASHRAE Trans.*, Vol. 101, Part 2, pp. 408-419.
- **Moeykens, S.A. and Pate, M.B. (1994)**. Spray Evaporation Heat Transfer of R-134a on Plain Tubes, *ASHRAE Trans.*, Vol. 100, Part 2, pp. 173-184.
- **Moeykens, S.A. and Pate, M.B. (1995)**. The Effects of Nozzle Height and Orifice Size on Spray Evaporation Heat Transfer Performance for a Low-Finned, Triangular-Pitch Tube Bundle with R-134a, *ASHRAE Trans.*, Vol. 101, Part 2, pp. 420-433.

- **Moeykens, S.A. and Pate, M.B. (1996).** Effect of Lubricant on Spray Evaporation Heat Transfer Performance of R-134a and R-22 in Tube Bundles, *ASHRAE Trans.*, Vol. 102, Part 1, pp. 410-426
- **Moeykens, S.A., Kelly, J.E. and Pate, M.B. (1996)**. Spray Evaporation Heat Transfer Performance of R-123 in Tube Bundles, *ASHRAE Trans.*, Vol. 102, Part 2, pp. 259-272.
- **Moller, C., Spindler, K. and Hahne, E. (1993)**. Wärmeubergangsmesungen beim Sieden von R134a/Ol Gemischen am Rohr und Draht, *DKV-Tagungsbericht*, Vol. 20, paper 21.
- **Monheit, M. (1987)**. Experimental Evaluation of the Convective Characteristics of Tubes with Twisted Tape Inserts, *Advances in Enhanced Heat Transfer*, Eds. M.K. Jensen and V.P. Carey, AMSE HTD Vol. 68, pp. 11-18.
- **Moreno Quibén, J. (2005).** Experimental and Analytical Study of Two-Phase Pressure Drops during Evaporation in Horizontal Tubes, Ph.D. Thesis no. 3337, Swiss Federal Institute of Technology Lausanne, available for free at http://library.epfl.ch/theses/?display=detail&nr=3337.
- **Moreno Quibén, J. and Thome, J.R. (2003)**. Two-Phase Pressure Drops in Horizontal Tubes: New Results for R-410A and R-134a Compared to R-22, 21st IIR International Congress of Refrigeration, Washington, D.C., Aug. 17-22, Paper ICR045.
- Moreno Quibén, J. and Thome, J.R. (2007a). Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes, Part I: Diabatic and Adiabatic Experimental Study, *Int. J. Heat and Fluid Flow*, Vol. 28, pp. 1049-1059.
- Moreno Quibén, J. and Thome, J.R. (2007b). Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes, Part II: New Phenomenological Model, *Int. J. Heat and Fluid Flow*, Vol. 28, pp. 1060-1072.
- Mori, S., Sakakibara, M. and Tanimoto, A. (1974). Steady Heat Transfer to Laminar Flow in a Circular Tube with Conduction in the Tube Wall, *Heat Transfer-Japanese Research*, Vol. 3(2), pp. 37-46.
- **Mori, H., Yoshida, S., Ohishi, K., Kokimoto, Y. (2000)**. Dryout Quality and Post-dryout Heat Transfer Coefficient in Horizontal Evaporator Tubes, *Proc of 3rd European Thermal Sciences Conference*, pp. 839-844.
- **Morini, G.L. (2004).** Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results, *Int. J. of Thermal Sciences*, Vol. 43, pp. 631-651.
- **Morini, G.L. (2005)**. The Viscous Heating in Liquid Flows in Microchannels, *Int. J. Heat and Mass Transfer*, Vol.48, pp. 3637-3647.
- Morini, G.L. (2006). Scaling Effects for Liquid Flows in Microchannels, *Heat Transfer Engineering*, Vol. 27(4), pp. 64-73.
- **Morini, G.L. and Spiga, M. (2007).** The Role of the Viscous Dissipation in Heated Microchannels, *J. Heat Transfer*, Vol.129, pp. 308-318.
- **Morini, G.L. (2008).** Single-Phase Convective Heat Transfer in Laminar and Transitional Regime in Microchannels, ECI International Conference on Heat Transfer and Fluid Flow in Microscale, Whistler, September 21-26.
- **Moriyama, K. and Inoue, A. (1996)**. Thickness of the Liquid Film Formed by a Growing Bubble in a Narrow Gap between Two Horizontal Plates, *J. Heat Transfer*, Vol. 118, pp. 132-139.
- Moser, W.W., Webb, R.L., and Na, B. (1998). A New Equivalent Reynolds Number Model for Condensation in Smooth Tubes, *Journal of Heat Transfer*, Vol. 120, pp. 410-417.
- **Mostinski, I.L.** (1963). Application of the Rule of Corresponding States for Calculation of Heat Transfer and Critical Heat Flux, *Teploenergetika*, Vol. 4, pp. 66.
- **Müller-Steinhagen, H. and Heck, K. (1986)**. A simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes, *Chem. Eng, Processing*, Vol. 20, pp 297-308.
- Muwanga, R. and Hassan, I. (2007). A Flow Boiling Heat Transfer Investigation of FC-72 in a Microtube Using Liquid Crystal Thermography, *J. Heat Transfer*, Vol. 129, pp. 977-987.
- Muzychka, Y.S. and Yovanovich, M.M. (2004). Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts, *J. Heat Transfer*, Vol. 126, pp. 54-61.

- Muzzio, A., Niro, A. and Arosio, S. (1998). Heat Transfer and Pressure Drop during Evaporation and Condensation of R22 inside 9.52-mm O.D. Microfin Tubes of Different Geometries, *J. Enhanced Heat Transfer*, Vol. 5, No. 1, pp. 39-52.
- **Nakajima, K. (1978)**. Boiling heat transfer outside horizontal multitube bundles, *Heat Transfer-Jap. Res.*, Vol. 7(1), pp. 1-24.
- Nakayama, W., Daikoku, T., Kuwara, H. and Nakajima, T. (1979). Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, *Advances in Enhanced Heat Transfer*, ASME, New York, pp. 31-43.
- Nakayama, W., Daikoku, T. and Nakajima, T. (1982). Enhancement of Boiling and Evaporation on Structured Surfaces with Gravity Driven Film Flow of R-11, *Proc.* 7th International Heat Transfer Conference, Vol. 4, pp. 409-414.
- Nakayama, A. and Kano, M. (1983). Effect of Bubble Frequency on Bubble Departure Diameter in Nucleate Pool Boiling, *Heat Transfer-Japanese Research*, Vol. 12, No. 3, pp. 32-47.
- **Nebuloni, S. and Thome, J.R. (2007).** Film Condensation under Normal and Micro-Gravity: Effect of Channel Shape, *Microgravity Science and Technology*, Vol. 19, Issue 3-4, pp. 125-127.
- **Nebuloni, S. and Thome, J.R. (2010a)**. Numerical Modeling of Laminar Annular Film Condensation for Different Channel Shapes, *International Journal of Heat and Mass Transfer*, Vol. 53.
- **Nebuloni, S. and Thome, J.R. (2010b)**. Numerical Modeling of the Conjugate Heat Transfer Problem for Annular Laminar Film Condensation in Microchannels, ASME-ATI-UIT 2010 Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy, May 16-19.
- **Nebuloni, S., Del Col, D. and Thome, J.R. (2010)**. Conjugate Heat Transfer in Annular Laminar Film Condensation in Microchannels: Comparison of Numerical Model to Experimental Results, 14th International Heat Transfer Conference, Washington, D.C., August 8-13.
- **Nidegger, E., Thome, J.R. and Favrat, D. (1997)**. Flow Boiling and Pressure Drop Measurements for R-134a/Oil Mixtures Part 1: Evaporation in a Microfin Tube, *HVAC&R Research*, Vol. 3, No. 1, pp. 38-53.
- Nishikawa, K. et al. (1976). Jap. Soc. Mech. Engrs., 42-361, 2879.
- **Nukiyama, S. (1934).** The Maximum and Minimum Values of Heat Q Transmitted from Metal to Boiling Water under Atmospheric Pressure, *J. Jap. Soc. Mech. Eng.*, Vol. 37, pp. 367-374 (in Japanese) (trans. in *Int. J. Heat Mass Transfer*, Vol. 9, pp. 1419-1433 (1966)).
- **Nunner, W. (1956)**. Heat Transfer and Pressure Drop in Rough Tubes, *VDI-Forschungsheft 455*, Series B, Vol. 22, A.E.R.E. Library Translation 786.
- **Nusselt, W. (1916)**. Die Oberflächenkondensation des Wasserdampfes, *Zeitschr. Ver. Deutch. Ing.*, Vol. 60, pp. 541-546 and pp. 569-575.
- **Oh, S.Y. and Bergles, A.E. (1998)**. Experimental Study on the Effects of the Spiral Angle on Evaporative Heat Transfer Enhancement in Microfin Tubes, *ASHRAE Trans.*, Vol. 104, Part 2, Paper TO-98-19-1.
- Olivier, J.A., Liebenberg, L., Kedzierski, M.A. and Meyer, J.P. (2004). Pressure Drop during Refrigerant Condensation inside Horizontal Smooth, Helical Micro-Fin and Herringbone Micro-Fin Tubes, *J. Heat Transfer*, Vol. 126, pp. 687-696.
- Olivier, J.A., Liebenberg, L., Thome, J.R. and Meyer, J.P. (2007). Heat Transfer, Pressure Drop, and Flow Pattern Recognition during Condensation inside Smooth, Helical Micro-Fin and Herringbone Tubes, *Int. J. Refrigeration*, Vol. 30, pp. 609-623.
- **Onbasioglu, S.U. (2004).** Modelling of Two-Phase Fluid Flow in Small Circular and Rectangular Channels, *Proc. of 2nd Int. Conference on Microchannels and Minichannels*, Rochester, June 17-19, pp. 367-372.
- **Ornatski, A.P. and Vinyarsk, L.S. (1965)**. Heat Transfer Crisis in a Forced Flow of Underheated [Subcooled] Water in Small-Bore Tubes, *High Temperature*, Vol. 3, No. 3, pp. 400-406.
- **Ould Didi, M. B., Kattan, N. and Thome, J. R. (2002)**. Prediction of Two-Phase Pressure Gradients of Refrigerants in Horizontal Tubes, *Int. J. Refrigeration*, Vol. 25, No. 7, pp. 935-947.

- **Owens, W.L.** (1978). Correlation of Thin Film Evaporation Heat Transfer Coefficients for Horizontal Tubes, ASME Paper 78-WA/HI-67.
- **Owhaib, W., Martin-Callizo, C. and Palm, B. (2004)**. Evaporative Heat Transfer in Vertical Circular Microchannels, *Applied Thermal Engineering*, Vol. 24, pp. 1241-1253.
- **Owhaib, W. and Palm, B. (2003)**. Flow Boiling Heat Transfer in a Vertical Circular Microchannel Tube, *Eurotherm Seminar No.*72, Valencia, Spain, 31 March-2 April.
- Palen, J.W., Breber, G. and Taborek, K. (1979). Prediction of Flow Regimes in Horizontal Tube-Side Condensation, *Heat Transfer Engineering*, Vol. 1, No. 2, pp. 47-57.
- **Palm, B.E.** (1995). Pool Boiling of R22 and R134a on Enhanced Surfaces, *Proc.* 19th International Congress of Refrigeration, The Hague, Vol. 4a, pp. 465-471.
- **Palm, B. (2003)**. Mini-and Microchannel Research in Sweden, *Proc. of First ASME Int. Conf. on Microchannels and Minichannels*, Rochester, New-York, pp. 25-31.
- **Parken, W.H., Fletcher, L.S., Sernas, V. and Han, J.C. (1990)**. Heat Transfer Through Falling Film Evaporation and Boiling on Horizontal Tubes, *J. Heat Transfer*, Vol. 112, pp. 744-750.
- **Park, J.E. (2008)**. Ph.D. thesis, Ecole Polytechique Fédérale de Lausanne, Lausanne, Switzerland, downloadable for free at: http://library.epfl.ch/theses/?nr=4223.
- Park, J.E., Consolini, L. and Thome, J.R. (2009). State-of-the-Art Review of Condensation Heat Transfer in Mini to Microchannels, Internal Report, EPFL-STI-IGM-LTCM (not available to public).
- **Peterson, R.B.** (1999). Numerical Modeling of Conduction Effects in Microscale Counterflow Heat Exchangers, *Nanoscale and Microscale Thermophysical Engineering*, Vol. 3(1), pp. 17-30.
- **Pettersen J. (2004a)**. Two-Phase Flow Patterns in Microchannel Vaporization of CO₂ at Near-Critical Pressure, *Heat Transfer Engineering*, Vol. 25, pp. 52-60.
- **Pettersen, J. (2004b)**. Flow Vaporization of CO₂ in Microchannel Tubes, *Experimental Thermal and Fluid Science*, Vol. 28, pp. 111-121.
- **Petukhov, B.S.** (1970). Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, *Advances in Heat Transfer*, Academic Press, New York, Vol. 6, pp. 503-564.
- Plesset, M. S. and Zwick, S. A. (1954). The Growth of Vapour Bubble in Superheated Liquid, *J. Appl. Phys*, Vol. 25, pp. 493-500.
- **Poiseuille, J.M.** (1840). Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres, *Comptes Rendus Hebdomadaires de l'Académie des Sciences*, Vol. 11, pp. 961-967, 1041-1048.
- **Prausnitz, J.M.** (1969). *Molecular Thermodynamics of Fluid-Phase Equilibria*, Prentice-Hall, Englewood Cliffs, NJ.
- **Pribyl, D.J., Bar-Cohen, A. and Bergles, A.E. (2003)**. An Investigation of Critical Heat Flux and Two-Phase Flow Regimes for Upward Steam and Water Flow, *Proc. of the 5th International Conference in Boiling Heat Transfer*, Jamaica, May 4-8.
- **Qi, S.L., Zhang, P., Wang, R.Z. and Xu, L.X. (2007a)**. Flow Boiling of Liquid Nitrogen in Micro-Tubes: Part I The Onset of Nucleate Boiling, Two-Phase Flow Instability and Two-Phase Pressure Drop, *Int. J. Heat Mass Transfer*, Vol. 50, pp. 4999-5016.
- Qi, S.L., Zhang, P., Wang, R.Z. and Xu, L.X. (2007b). Flow Boiling of Liquid Nitrogen in Micro-Tubes: Part II Heat Transfer Characteristics and Critical Heat Flux, *Int. J. Heat Mass Transfer*, Vol. 50, pp. 5017-5030.
- **Qu, I. and Mudawar, W. (2004)**. Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks, *Int. J. of Heat and Mass Transfer*, Vol. 47, pp.2045-2059.
- **Quan, X., Cheng, P. and Wu, H. (2008)**. An Experimental Investigation on Pressure Drop of Steam Condensing in Silicon Microchannels, *International Journal of Heat and Mass Transfer*, Vol. 51, pp. 5454-5458.
- **Rabas, T.J. and Arman, B. (1992)**. The Influence of the Prandtl Number on the Thermal Performance of Tubes with the Separation and Reattachment Mechanism, *Enhanced Heat Transfer*, HTD Vol. 202, ASME, pp. 77-87.

- **Ravigururajan, T.S. and Bergles, A.E. (1985).** General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes, *Augmentation of Heat Transfer in Energy Systems*, ASME HTD Vol. 52, pp. 9-20.
- **Revellin, R. (2005)**. Experimental Two-Phase Fluid Flow in Microchannels, Ecole Polytechnique Fédérale de Lausanne (Lausanne, Switzerland), Ph.D. thesis no. 3437, available free online at http://library.epfl.ch/theses/?nr=3437.
- **Revellin, R., Agostini, B. and J.R. ThomeThome, J.R. (2008)**. Elongated Bubbles in Microchannels Part II: Experimental Study and Modeling of Bubble Collisions, *Int. J. Multiphase Flow*, Vol. 34, pp. 602-613.
- **Revellin, R., Agostini, B., Ursenbacher, T. and Thome, J.R. (2008b)**. Experimental Investigation of Elongated Bubble Velocity and Length for Flow of R-134a in a 0.5 mm Microchannel, *Experimental Thermal and Fluid Science*, Vol. 32, pp. 870-881.
- Revellin, R., Dupont, V., Ursenbacher, T., Thome, J.R. and Zun, I. (2006). Characterization of Two-Phase Flows in Microchannels: Optical Measurement Technique and Flow Parameter Results for R-134a in a 0.5 mm Channel, *Int. J. Multiphase Flow*, Vol. 32, pp. 755-774.
- **Revellin, R., Moreno Quiben, J., Bonjour, J. and Thome, J.R. (2008a).** Effect of Local Hot Spots on the Maximum Heat Transfer during Flow Boiling in a Microchannel, *IEEE Trans. on Components and Packaging Technologies*, Vol. 31, pp. 407-416.
- **Revellin, R. and Thome, J.R. (2007)**. Experimental Investigation of R-134a and R-245fa Two-Phase Flows in Microchannels for Different Flow Conditions, *Int. J. Heat and Fluid Flow*, Vol. 28, No. 1, pp. 63-71.
- **Revellin, R. and Thome, J.R. (2007a)**. A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels, *J. of Micromechanics and Microengineering*, Vol. 17, pp. 788-796.
- **Revellin, R. and Thome, J.R. (2007b)**. Adiabatic Two-Phase Frictional Pressure Drops in Microchannels, *Experimental Thermal and Fluid Science*, Vol. 31, Issue 7, pp. 673-685.
- **Revellin, R. and Thome, J.R. (2008).** A Theoretical Model for the Prediction of the Critical Heat Flux in Heated Microchannels, *Int. J. Heat Mass Transfer*, Vol. 51, pp. 1216-1225.
- **Rewert, L.E., Huber, J.B. and Pate, M.B. (1996a)**. The Effect of R-123 Condensate Inundation and Vapor Shear on Enhanced Tube Geometries, *ASHRAE Trans.*, Vol. 102, Part 2, pp. 273-284.
- **Rewert, L.E., Huber, J.B. and Pate, M.B. (1996b)**. The Effect of R-134a Condensate Inundation on Enhanced Tube Geometries, *ASHRAE Trans.*, Vol. 102, Part 2, pp. 285-296.
- **Ribatski, G. and Saiz Jabardo, J.M. (2003)**. Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 4439-4451.
- **Ribatski, G. and Thome, J.R. (2006)**. Nucleate Boiling Heat Transfer of R134A on Enhanced Tubes, *Applied Thermal Engineering*, Vol. 26(10), pp. 1018-1031.
- **Ribatski, G. and Thome, J.R. (2007)**. Experimental Study on the Onset of Local Dryout in an Evaporating Falling Film on Horizontal Plain Tubes, *Experimental Thermal and Fluid Science*, Vol. 31, pp. 483–493.
- **Ribatski, G., Wojtan, L. and Thome, J.R. (2006)**. An Analysis of Experimental Data and Prediction Methods for Flow Boiling Heat Transfer and Two-Phase Frictional Pressure Drop in Micro-Scale Channels, *Experimental Thermal and Fluid Science*, Vol. 31, pp. 1-19.
- **Rifert, V.G., Putilin, Ju.V. and Podberezny, V.L. (1992).** Evaporation Heat Transfer in Liquid Films Flowing Down the Horizontal Smooth and Longitudinally-Profiled Tubes, *Heat Transfer: 3rd UK National Conference incorporating 1st European Conference of Thermal Sciences*, Taylor&Francis, Vol. 2, pp. 1283-1289.
- **Robinson, D. and Thome, J.R. (2004a)**. Local Bundle Boiling Heat Transfer Coefficients on a Plain Tube Bundle, *HVAC&R Research*, ASHRAE, Vol. 10, No. 1, pp. 33-51.
- **Robinson, D. and Thome, J.R. (2004b)**. Boiling of R-134a, R-410A and R-507A on an Enhanced Tube Bundle, *HVAC&R Research*, ASHRAE, Vol. 10, No. 4, pp. 441-457.
- **Robinson, D. and Thome, J.R. (2004c)**. Local Bundle Boiling Heat Transfer Coefficients on a Low Finned Tube Bundle, *HVAC&R Research*, Vol. 10, pp. 331-344.

- **Rohsenow**, **W.M.** (1956). Heat Transfer and Temperature Distribution in Laminar Film Condensation, *Trans. ASME*, Vol. 79, pp. 1645-1648.
- **Rohsenow, W.M.** (1962). A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids, *Trans. ASME (later J. Heat Transfer)*, Vol. 74, pp. 969-975.
- **Rohsenow**, W.M., Webber, J.H. and Ling, A.T. (1956). Effect of Vapor Velocity on Laminar and Turbulent Film Condensation, *Trans. ASME*, Vol. 78, pp. 1637-1643.
- **Roques, J.F. (2004)**. Falling Film Evaporation on a Single Tube and on a Tube Bundle, Ph.D. thesis 2987, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland, available free at http://library.epfl.ch/theses/?nr=2987.
- **Roques, J.F., Dupont, V. and Thome, J.R. (2002)**. Falling Film Transitions on Plain and Enhanced Tubes, *J. Heat Transfer*, Vol. 124, June, pp. 491-499.
- **Roques, J.F. and Thome, J.R. (2001)**. Flow Patterns and Phenomena for Falling Films on Plain and Enhanced Tube Arrays, *Proc. of Int. Conference on Compact Heat Exchangers for the Process Industries*, Davos, Switzerland, July 1-6.
- **Roques, J.F. and Thome, J.R. (2002)**. Falling Film Transitions between Droplets, Column and Sheet Flow Modes on a Vertical Array of Horizontal 19 fpi and 40 fpi Low Finned Tubes, *Proc. 1st Int. Conf. On Heat Transfer, Fluid Mechanics and Thermodynamics*, HEFAT 2002, Skukuza, South Africa, Vol. 1, pp. 523-528.
- **Roques, J.F. and Thome, J.R. (2007a)**. Falling Films on Horizontal Tubes with R-134a, Part I: Boiling Heat Transfer Results for Four Types of Tubes, *Heat Transfer Engineering*, Vol. 28, No. 5, pp. 398-414.
- **Roques, J.F. and Thome, J.R. (2007b)**. Falling Films on Horizontal Tubes with R-134a, Part II: Flow Visualization, Onset of Dryout and Heat Transfer Predictions, *Heat Transfer Engineering*, Vol. 28, No. 5, pp. 415-434.
- **Rose**, **J.W.** (1994). An Approximate Equation for the Vapour-Side Heat-Transfer Coefficient for Condensation on Low-Finned Tubes, *Int. J. Heat Mass Transfer*, Vol. 37, pp. 865-875.
- **Rose**, **J.W.** (2004). Heat-Transfer Coefficients, Wilson Plots and Accuracy of Thermal Measurements, Exp. Thermal Fluid Science, Vol. 28, pp. 77-86.
- Rouhani, Z. (1969). AB Atomenergi, Sweden, Internal Report, AE-RTV 841.
- Rouhani, Z. and Axelsson, E. (1970). Calculation of Volume Void Fraction in the Subcooled and Quality Region, *Int. J. Heat Mass Transfer*, Vol. 13, pp. 383-393.
- **Rozalowski, G.R. and Gater, R.A. (1975)**. Pressure Loss and Heat Transfer Characteristics for High Viscous Fluid Flow in Convoluted Tubing, ASME Paper No. 75-HT-40.
- **Rudy, T.M. and Webb, R.L. (1985)**. An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes, *J. Heat Transfer*, Vol. 107, pp. 361-368.
- Saha, S.K., Gaitonde, U.N. and Date, A.W. (1989). Heat Transfer and Pressure Drop Characteristics of Laminar Flow in a Circular Tube Fitted with Regularly Spaced Twisted-Tape Elements, *Experimental Thermal and Fluid Science*, Vol. 2, pp. 310-322.
- **Salehi, M., Ohadi, M.M. and Dessiatoun, S. (1998)**. The Applicability of the EHD Technique for Convective Boiling of Refrigerant Blends Experiments with R-404A, *ASHRAE Trans.*, Vol. 102, Part 1, pp. 839-844.
- Schlager, L.M., Bergles, A.E. and Pate, M.B. (1987). A Survey of Refrigerant Heat Transfer and Pressure Drop Emphasizing Oil Effects and In-Tube Augmentation, *ASHRAE Trans.*, Vol. 93, Part 1, pp. 392-416.
- Schlager, L.M., Pate, M.B., and Bergles, A.E. (1990). Evaporation and Condensation Heat Transfer and Pressure Drop in Horizontal, 12.7-mm Microfin Tubes with Refrigerant 22, *J. Heat Transfer*, Vol. 112, pp. 1041-1047.
- Schrage, D.S., Hsu, J.-T. and Jensen, M.K. (1988). Two-Phase Pressure Drop in Vertical Crossflow across a Horizontal Tube Bundle, *AIChE J.*, Vol. 34, No. 1, pp. 107-115.
- Schrage, R.W. (1953). A Theoretical Study of Interphase Mass Transfer, *Columbia University Press*, New York, Chap. II.

- **Seban, R. (1954)**. Remarks on Film Condensation with Turbulent Flow, *Trans. ASME*, Vol. 76, pp. 299-303.
- Seider, E.N. and Tate, C.E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes, *Industrial and Engineering Chemistry*, Vol. 28, pp. 1429-1435.
- **Serizawa, A. (2004)**. Multiphase Flow in Microchannels, *Second International Symposium on Multiphase, Non-Newtonian and Reacting Flows'04*, Hangzhou, China, September 10-12.
- **Serizawa, A. and Feng, Z.P. (2001)**. Two-Phase Flow in Microchannels, International Conference of Multiphase Flows, New Orleans, Keynote Lecture.
- Serizawa, A., Feng, Z. and Kawara, Z. (2002). Two-Phase Flow in Microchannels, *Exp. Thermal Fluid Sci.*, Vol. 26, pp. 703–714.
- Serizawa, A., Kunugi, T., Kawara, Z. and Takahashi, O. (2002). Two-Phase Flow in Micro-Channels, Proceedings of Fourth Pacific Rim Thermal Science and Energy Workshop (PARTSEE-4), May 31-June 2, Kyoto, pp. 136-141.
- **Sethumadhavan, R. and Rao, R. (1986)**. Turbulent Flow Friction and Heat Transfer Characteristics of Single- and Multi-Start Spirally Enhanced Tubes, *J. Heat Transfer*, Vol. 108, pp. 55-61.
- **Seymour**, E.V. (1966). Fluid Flow Through Tubes Containing Twisted Tapes, *The Engineer*, Vol. 222, pp. 634-642.
- **Shah, M.M.** (1979). A General Correlation for Heat Transfer during Film Condensation inside of Pipes, *Int. J. Heat Mass Transfer*, Vol. 22, pp. 547-556.
- **Shah, M. M. (1982)**. Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study, *ASHRAE Trans.*, Vol. 88, Part 1, pp. 185-196.
- **Shah, M.M.** (1987). Improved General Correlation of Critical Heat Flux during Upflow in Uniformly Heated Vertical Tubes, *Int. J. Heat Fluid Flow*, Vol. 8, pp. 326-335.
- **Shah, R.K. and London, A.L. (1978)**. *Laminar Flow Forced Convection in Ducts*, Academic Press, New York. Supplement 1 to the series *Advances in Heat Transfer*.
- Shah, R.K. and Sekulić, D.P. (2003). Fundamentals of Heat Exchanger Design, John Wiley, New York.
- **Shah, R.K., Zhou, S.Q. and Tagavi, K.A. (1999)**. The Role of Surface Tension in Film Condensation in Extended Surface Passages, *Enhanced Heat Transfer*, Vol. 6, pp. 179-216.
- **Shatto, D.P. and Peterson, G.P. (1996)**. A Review of Flow Boiling Heat Transfer with Twisted Tape Inserts, *J. Enhanced Heat Transfer*, Vol. 3, No. 4, pp. 233-257.
- Shemer, L., Gulitski, A. and Barnea, D. (2007). Movement of Two Consecutive Taylor Bubbles in Vertical Pipes, *Multiphase Science and Technology*, Vol. 19, pp. 99-120.
- **Sheng, C.H. and Palm, B. (2001)**. The Visualization of Boiling in Small-Diameter Tubes, *Heat Transport and Transport Phenomena in Microsystems*, Banff, Canada.
- **Shiferaw, D., Karayiannis, T.G. and Kenning, D.B.R.** (2006). A Comparison with the Three-Zone Model for Flow Boiling Heat Transfer in Small Diameter Tubes, 13th International Heat Transfer Conference, Sydney, Aug. 14-18.
- **Shiferaw, D., Huo, X., Karayiannis, T.G. and Kenning, D.R.B. (2007)**. Examination of Heat Transfer Correlations and a Model for Flow Boiling of R134a in Small Diameter Tubes, *Int. J. Heat Mass Transfer*, Vol. 50, pp. 5177-5193.
- **Shin, J. S. and Kim, M. H. (2004)**. An Experimental Study of Condensation Heat Transfer inside a Mini-Channel with a New Measurement Technique, *International Journal of Multiphase Flow*, Vol. 30, pp. 311-325.
- Shin, J.S. and Kim, M.H. (2005). An Experimental Study of Flow Condensation Heat Transfer inside Circular and Rectangular Mini-Channels, *Heat Transfer Engineering*, Vol. 26, No. 3, pp. 36-44.
- **Shinmura**, E., Take, K. and Koyama, S. (2006). Development of High-Performance CO₂ Evaporator, *JSAE Automotive Air-Conditioning Symposium*, pp. 217-227.
- Shizuya, M., Itoh, M. and Hijakata, K. (1995). Condensation of Nonazeotropic Binary Refrigerant Mixtures including R22 as a More Volatile Component inside a Horizontal Tube, *J. Heat Transfer*, Vol. 117, No. 5, pp. 538-543.
- Sieder, E.N. and Tate, G.E. (1936). Ind. Eng. Chem., Vol. 28, pp. 1429.

- **Silva, C.L. (1989)**. Experimental Investigation of the Nucleate Boiling of Refrigerant-Oil Mixtures, Ph.D. thesis, Escola Politécnica, University of Sao Paolo, Brazil.
- Silver, L. (1947). Gas Cooling with Aqueous Condensation, Trans. Inst. Chem. Eng., Vol. 25, pp. 30-42.
- Simões-Moreira, J.R. (1994). Adiabatic Evaporation Waves, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.
- **Simões-Moreira, J.R., and Shepherd, J.E. (1999)**. Evaporation Waves in Superheated Dodecane, *J. Fluid Mechanics*, Vol. 382, pp. 63-68.
- **Singh, A., Ohadi, M.M. and Dessiatoun, S. (1996)**. Flow Boiling Heat Transfer Coefficients of R-134a in a Microfin Tube, *J. Heat Transfer*, Vol. 118, pp. 497-499.
- Smit, F.J., Thome, J.R. and Meyer, J. (2001). Heat Transfer Coefficients during Condensation of the Zeotropic Refrigerant Mixture R-22/R-142b, *J. Heat Transfer*, Vol. 124, pp.1137-1146.
- Smith, B.D., Block, B., and Hickman, C.D. (1963). Distillation, *Chemical Engineers' Handbook*, McGraw-Hill, New York, pg. 13-4 to 13-14.
- Smith, S.L. (1969). Void Fractions in Two-Phase Flow. A Correlation Based on an Equal Velocity Head Model, *Proc. Inst. Mech. Engng.*, Vol. 184, No. 36, pp. 647-664.
- **Smithberg, E. and Landis, F. (1964)**. Friction and Forced Convection Heat Transfer Characteristics in Tubes with Twisted Tape Swirl Generators, *J. Heat Transfer*, Vol. 86, pp. 39-49.
- **Soliman, H.M.** (1982). On the Annular-to-Wavy Flow Pattern Transition during Condensation inside Horizontal Tubes, *The Canadian Journal of Chemical Engineering*, Vol. 60, pp. 475-481.
- **Soliman, H.M. and Feingold, A. (1977)**. Heat Transfer, Pressure Drop, and Performance Evaluation of a Quintuplix Internally Finned Tube, ASME Paper No. 77-HT-46.
- **Sparrow, E.M. and Gregg, J.L. (1959)**. A Boundary-Layer Treatment of Laminar Film Condensation, *J. Heat Transfer*, Series C, Vol. 81, pp. 13.
- **Sparrow, E.M., Minkowycz, W.J. and Saddy, M. (1967).** Forced Convection Condensation in the Presence of Non-Condensables and Interfacial Resistance, *Int. J. Heat Mass Transfer*, Vol. 10, pp. 1829-1845.
- Steiner, D. (1993). VDI-Wärmeatlas (VDI Heat Atlas), Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GCV), Düsseldorf, Chapter Hbb.
- **Steiner, D. and Taborek, J. (1992)**. Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model, *Heat Transfer Engng.*, Vol. 13, No. 2, pp. 43-69.
- **Stephan, K. and Abdelsalam, M. (1980)**. Heat Transfer Correlations for Natural Convection Boiling, *Int. J. Heat Mass Transfer*, Vol. 23, pp. 73-87.
- **Stephan, K. and Körner, M. (1969)**. Calculation of Heat Transfer in Evaporating Binary Liquid Mixtures, *Chemie-Ingenieur Technik*, Vol. 41, No. 7, pp. 409-417.
- Sundaresan, S.G., Pate, M.B., Doerr, T.M. and Ray, D.T. (1996). A Comparison of the Effects of POE and Mineral Oil Lubricants on the In-Tube Evaporation of R-22, R-407C and R-410A, *Proc.* 1996 International Refrigeration Conference at Purdue, West Lafayette, IN, July 23-26, pp. 187-192.
- Suo, M. and Griffith, P. (1964). Two-Phase Flow in Capillary Tubes. J. Basic Engineering, Vol. 9, pp. 576–582.
- Suzuki, S., Fujisawa, Y., Nakarazawa, S. and Matsuoka, M. (1993). Measuring Method of Oil Circulating Ratio using Light Absorption, *ASHRAE Trans.*, Vol. 99, Part 1, pp. 413-421.
- **Taborek, J. (1983).** Shell-and-Tube Heat Exchangers: Single-Phase Flow, *Heat Exchanger Design Handbook*, Chapter 3.3, Hemisphere, New York.
- **Taitel, Y. (1990)**. Flow pattern transition in two-phase flow, *Proc. 9th International Heat Transfer Conference*, Jerusalem, Vol. 1, pp. 237-254.
- **Taitel, Y. and Dukler, A.E. (1976).** A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, *AIChE J.*, Vol. 22, pp. 47-55.
- **Takaishi, Y. and Oguchi, K. (1987).** Measurements of Vapor Pressures of R22/Oil Solutions, 18th International Congress of Refrigeration, Vienna, **B**, pp. 217-222.

- **Talvy, C.A., Shemer, L. and Barnea, D. (2000)**. On the Interaction between Two Consecutive Elongated Bubbles in a Vertical Pipe, *Int. J. Multiphase Flow*, Vol. 26, pp. 1905-1923
- **Tam, L.M. and Ghajar, A.J. (1997)**. Effect of Inlet Geometry and Heating on the Fully Developed Friction Factor in the Transition Region of a Horizontal Tube, *Experimental Thermal and Fluid Science*, Vol. 15, pp. 52-64.
- **Tam, L.M. and Ghajar, A.J. (1998)**. The Unusual Behavior of Local Heat Transfer Coefficient in a Circular Tube with a Bell-Mouth Inlet, *Experimental Thermal and Fluid Science*, Vol. 16, pp. 187-194.
- **Tanaka, S., Daiguji, H., Takemura, F. and Hihara, E. (2001)**. Boiling Heat Transfer of Carbon Dioxide in Horizontal Tubes, *38th National Heat Transfer Symposium of Japan*, pp. 899-900.
- **Tandon, T.N., Varma, H.K. and Gupta, C.P. (1985)**. A Void Fraction Model for Annular Two-Phase Flow, *Int. J. Heat Mass Transfer*, Vol. 28, pp. 191-198.
- **Tang (1997).** Empirical Study of New Refrigerant Flow Condensation inside Horizontal Smooth and Micro-Fin Tubes, Ph.D. Thesis, University of Maryland.
- **Thom, J.R.S. (1964).** Prediction of Pressure Drop during Forced Circulation Boiling of Water, *Int. J. Heat Mass Transfer*, Vol. 7, pp. 709-724.
- **Thome, J.R. (1983)**. Prediction of Binary Mixture Boiling Heat Transfer Coefficients Using Only Phase Equilibrium Data, *Int. J. Heat Mass Transfer*, Vol. 26, pp. 965-974.
- Thome, J.R. (1987). Enhanced Boiling of Mixtures, Chem. Eng. Science, Vol. 42, pp. 1909-1917.
- **Thome, J.R. (1989)**. Prediction of the Mixture Effect on Boiling in Vertical Thermosyphon Reboilers, *Heat Transfer Engineering*, Vol. 12, No. 2, pp. 29-38; originally presented at the HTFS Meeting at Heriot-Watt University in 1985.
- Thome, J.R. (1990). Enhanced Boiling Heat Transfer, Hemisphere (Taylor & Francis), Washington.
- **Thome, J.R. (1991)**. Enhanced Heat Transfer Software Program, John Thome Inc., Ionia, MI, USA. [licensed and available through HTRI].
- **Thome, J.R.** (1992). Thermodynamic and Transport Properties of Lubricating Oils, Swiss Federal Institute of Technology, Lausanne, LENI Report (December 21).
- **Thome, J.R. (1993).** Thermodynamic and Transport Properties of Refrigerant and Lubricating Oil Mixtures, Swiss Federal Institute of Technology, Lausanne, LENI Report (Jan. 28).
- **Thome, J.R. (1994a)**. High Performance Augmentations for Refrigeration System Evaporators and Condensers, *J. Enhanced Heat Transfer*, Vol. 1, No. 3, pp. 275-286.
- **Thome, J.R. (1994b)**. Two-Phase Heat Transfer to New Refrigerants, Special Keynote Lecture, *Proc. of* 10th International Heat Transfer Conference, Brighton, Vol. 1, pp. 19-41.
- **Thome, J.R. (1995)**. Comprehensive Thermodynamic Approach to Modelling Refrigerant-Oil Mixtures, *HVAC&R Research*, ASHRAE, **1(2)**, pp. 110-126.
- **Thome, J.R. (1996)**. Boiling of New Refrigerants: A State-of-the-Art Review, *Int. J. Refrig.*, Vol. 19, No. 7, pp. 435-457.
- **Thome, J.R. (1997a)**. Boiling of New Refrigerants: A State-of-the-Art Review, *Int. J. Refrig.*, Vol. 19, No. 7, pp. 435-457.
- **Thome, J.R. (1997b)**. Heat Transfer and Pressure Drop in the Dryout Region of Intube Evaporation with Refrigerant/Lubricant Mixtures, ASHRAE Final Report of Project 800-RP, February.
- **Thome, J.R. (1998)**. Condensation, Boiling and Evaporation of Fluorocarbon and Other Refrigerants: A State-of-the-Art Review, ARI Technical Report, Air-Conditioning and Refrigeration Institute, Arlington, VA 22203-1627.
- **Thome, J.R. (1999).** Falling Film Evaporation: State-of-the-Art Review of Recent Work, *Journal of Enhanced Heat Transfer*, Vol. 6, No. 2, pp. 263-277.
- **Thome, J.R. (2003)**. Evaporation in Microchannels: Experiments and Theory, 5th Int. Boiling Conference, Jamaica, May, Invited Keynote Lecture.
- **Thome, J.R. (2006).** Fundamentals of Boiling and Two-Phase Flows in Microchannels, 13th International Heat Transfer Conference, Sydney, Australia, Aug. 13-18.

- **Thome, J.R., Dupont, V. and Jacobi, A. (2004)**. Heat Transfer Model for Evaporation in Microchannels, Part I: Presentation of the Model, *Int. J. Heat Mass Transfer*, Vol. 47, pp.3375-3385.
- **Thome, J.R. and El Hajal, J. (2003)**. Two-Phase Flow Pattern Map for Evaporation in Horizontal Tubes: Latest Version, *Heat Transfer Engineering*, Vol. 24, No. 6, pp. 3-10.
- **Thome**, **J.R.**, **El Hajal**, **J.** (2004). Flow Boiling Heat Transfer to Carbon Dioxide: General Prediction Method. *Int. J. Refrig.*, Vol. 27(3), pp. 294-301.
- **Thome, J.R., El Hajal, J., Cavallini, A. (2003)**. Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes. *Int. J. Heat Mass Transfer*, Vol. 46, pp. 3365-3387.
- **Thome, J.R., Groll, M., Mertz, R. (2003)**. Section 2.13.4 Microscale Heat Transfer: Boiling and Evaporation in Chapter 2.13 Heat Transfer and Fluid Flow in Microchannels, *Heat Exchanger Design Update*, Begell House, New York, 2.13.4.1-27.
- **Thome, J.R., Kattan, N. and Favrat, D. (1997)**. Evaporation in Microfin Tubes: a Generalized Prediction Model, Convective Flow and Pool Boiling Conference, Irsee, Germany, May 18-23, Paper VII-4.
- **Thome, J.R. and Moreno Quibén, J. (2004)**. Refrigeration Evaporation Characteristics inside Flat Passages, ARTI Final Report ARTI-21CR/605-20040-01, Arlington, VA, USA, December.
- **Thome, J.R., Revellin, R., Agostini, B. and Park, J.E. (2007).** Recent Advances in Thermal Modeling of Micro-Evaporators for Cooling of Microprocessors, 2007 ASME International Mechanical Engineering Congress and Exhibition, Seattle, Nov. 11-15, Invited paper IMECE2007-42900.
- **Thome, J.R. and Ribatski, G. (2005)**. State-of-the Art of Flow Boiling and Two-Phase Flow of CO₂ in Macro- and Micro-Channels, *Int. J. Refrigeration*, Vol. 28, pp. 1149-1168.
- **Thome, J.R. and Robinson, D.M. (2006).** Prediction of Local Bundle Boiling Heat Transfer Coefficients: Pure Refrigerant Boiling on Plain, Low Fin and Turbo-BII HP Tube Bundles, *Heat Transfer Engineering*, Vol. 27(10), pp. 20-29.
- **Thome, J.R. and Shock, R.A.W. (1984)**. Boiling of Multicomponent Liquid Mixtures, *Advances in Heat Transfer*, Eds. Hartnett and Irvine, Academic Press, Princeton, Vol. 16, pp. 59-156.
- **Thonon, B., Roser, R. and Mercier, P. (1997)**. Pool Boiling of Propane and Pentane on a Bundle of Low-Finned Tubes, Convective Boiling Conference, Kloster Irsee, Germany, May 18-23.
- **Thors, P. and Bogart, J.E. (1994)**. In-Tube Evaporation of HCFC-22 with Enhanced Tubes, *J. Enhanced Heat Transfer*, Vol. 1, No. 4, pp. 365-377.
- **Thorsen, R.S. and Landis, F. (1968)**. Friction and Heat Transfer Characteristics in Turbulent Swirl Flow Subjected to Large Transverse Temperature Gradients, *J. Heat Transfer*, Vol. 90, pp. 87-98.
- **Tien, C.L. and Lienhard, J.H. (1976).** *Solutions Manual to Accompany Statistical Thermodynamics*, revised printing, Hemisphere, Washington, pp. 13.
- **Tien, C.L. and Lienhard, J.H. (1979)**. *Statistical Thermodynamics*, revised printing, Hemisphere, Washington, pp. 55.
- **Tinker, T. (1951)**. Shell Side Characteristics of Shell and Tube Heat Exchangers, *General Discussion on Heat Transfer*, Institution of Mechanical Engineers, London, pp. 97-116.
- **Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E. and Segal, Z. (2004)**. Effect of Axial Heat Conduction on Heat Transfer in Micro-Channels, *Int. J. Heat Mass Transfer*, Vol. 47, pp. 2551-2565.
- **Torikoshi, K. and Ebisu, T. (1994)**. In-Tube Heat Transfer Characteristics of Refrigerant Mixtures of HFC-32/134a and HFC-32/125/134a, *Proc. 1994 International Refrigeration Conference at Purdue*, July 19-22, West Lafayette, IN, pp. 293-298.
- **Torikoshi, K., Kawabata, K. and Ebisu, T. (1992)**. Heat Transfer and Pressure Drop Characteristics of HFC-134a in a Horizontal Heat Transfer Tube, *Proc. 1992 International Refrigeration Conf. at Purdue*, West Lafayette, Vol. 1, pp. 167-176.
- **Tran, T.N., Wambsganss, M.W. and France, D.M. (1996).** Small Circular and Rectangular Channel Boiling with Two Refrigerants, *Int. J. Multiphase Flow*, Vol. 22, pp. 485-498.

- **Tran, T.N., Chyu, M.-C., Wambsganss, M.W. and France, D.M. (2000)**. Two-Phase Pressure Drop of Refrigerants during Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development, *Int. J. Multiphase Flow*, Vol. 26, pp. 1739–1754.
- **Tribbe, C. and Müller-Steinhagen, H. M. (2000).** An Evaluation of the Performance of Phenomenological Models for Predicting Pressure Gradient during Gas-Liquid Flow in Horizontal Pipelines, *Int. J. of Multiphase Flow*, Vol. 26, pp. 1019-1036.
- **Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I. and Sadowski, D.L. (1999a)**. Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns, *Int. J. Multiphase Flow*, Vol. 25, pp. 377–394.
- Triplett, K.A., Ghiaasiaan, S.M., Abdel-Khalik, S.I., LeMouel, A. and McCord, B.N. (1999b). Gas-Liquid Two-Phase Flow in Microchannels Part II: Void Fraction and Pressure Drop, *Int. J. Multiphase Flow*, Vol. 25, pp. 395–410.
- Uchida, M., Itoh, M., Shikazono, N. and Kudoh, M. (1996). Experimental Study on the Heat Transfer Performance of a Zeotropic Refrigerant Mixture in Horizontal Tubes, *Proc. 1996 International Refrigeration Conference at Purdue*, July 23-26, West Lafayette, IN, pp. 133-138.
- **Ullmann, A. and Brauner, N. (2007)**. The Prediction of Flow Patterns in Minichannels, *Multiphase Science and Technology*, Vol. 19, Issue 1, pp. 49-73.
- Ursenbacher, T., Wojtan, L., Thome, J.R. (2004). Dynamic Void Fractions in Stratified Types of Flow, Part I: New Optical Measurement Technique and Dry Angle Measurements, *Int. J. Multiphase Flow*, Vol. 30, pp. 107-124.
- Vachon, R.I., Nix, G.H. and Tangor, G.E. (1967). Evaluation of Constants for the Rohsenow Pool Boiling Correlation, U.S. National Heat Transfer Conference, Paper 67-HT-33.
- VDI-Wärmeatlas (1997). Springer-Verlag Berlin Heidelberg.
- Walklate, P.J. and Martin, C.J. (1983). The Measurement of Liquid Phase Velocity Profiles in Vertical Two-Phase Flows, IUTAM Symposium on Measuring Techniques in Gas-Liquid Two-Phase Flows, Nancy, France, July 5-8.
- Wallis, G.B. (1969). One Dimensional Two-Phase Flow, McGraw-Hill, New York.
- Wang, C.C., Kuo, S.S., Chang, Y.J. and Lu, D.C. (1996). Two-Phase Flow Heat Transfer and Friction Characteristics of R-22 and R-407C, *ASHRAE Trans.*, Vol. 102, Part 1, pp. 830-838.
- **Wang, H.S. and Rose, J.W. (2005)**. A Theory of Film Condensation in Horizontal Noncircular Section Microchannels, *J. of Heat Transfer*, Vol. 127, pp. 1096-1105.
- Wang, H.S. and Rose, J.W. (2006). Film Condensation in Horizontal Microchannels: Effect of Channel Shape, *International Journal of Thermal Science*, Vol. 45, pp. 1205-1212.
- Wang, W.W., Radcliff, T.D. and Christensen, R.N. (2002). A Condensation Heat Transfer Correlation for Millimeter-scale Tubing with Flow Regime Transition, *Experimental Thermal and Fluid Science*, Vol. 26, pp. 473-485.
- Van Stralen, S. and Cole, R. (1979). Boiling Phenomena, Hemisphere, Washington.
- Warriarachchi, A.S., Marto, P.J. and Reilly, J.T. (1986). The Effect of Oil Contamination on Nucleate Pool-Boiling of R-114 from a Porous Coated Surface, ASHRAE Trans., Vol. 92, Part 2, pp. 525-538.
- Warrier, G.R., Dhir, V.K. and Momoda, L.A. (2002). Heat Transfer and Pressure Drop in Narrow Rectangular Channels, *Exp. Thermal Fluid Sci.*, Vol. 26, pp. 53-64.
- Watanabe, K., Taira, T. and Mori, Y. (1983). Heat Transfer Augmentation in Tubular Flow by Twisted Tapes at High Temperatures and Optimum Performance, *Heat Transfer-Japanese Research*, Vol. 12, No. 3, pp. 1-31.
- Watkinson, A.P., Milleti, D.L. and Kubanek (1975). Heat Transfer and Pressure Drop of Internally Finned Tubes in Laminar Oil Flow, ASME Paper No. 75-HT-41.
- Wattelet, J.P., Chato, J.C., Souza, A.L. and Christoffersen, B.R. (1994). Evaporation Characteristics of R-12, R-134a and MP-39 at Low Fluxes, *ASHRAE Trans.*, Vol. 100, Part 1, paper NO-94-2-1.
- Webb, R.L. (1994). Principles of Enhanced Heat Transfer, Wiley, New York.

- Webb, R.L., Chien, L.H., McQuade, W.F. and Imadojema, H.E. (1995). Pool Boiling of Oil-Refrigerant Mixtures on Enhanced Tubes, *Proc. ASME/JSME Thermal Engineering Joint Conference*, Maui, Vol. 2, pp. 247-255.
- Webb, R.L., Eckert, E.R.G. and Goldstein, R.J. (1971). Heat Transfer and Friction in Tubes with Repeated-Rib Roughness, *Int. J. Heat Mass Transfer*, Vol. 14, pp. 601-617.
- **Webb, R.L. and Ermis, K. (2001)**. Effect of Hydraulic Diameter on Condensation of R-134a in Flat, Extruded Aluminum Tubes, *Journal of Enhanced Heat Transfer*, Vol. 8, pp. 77-90.
- **Webb, R.L. and McQuade, W.F. (1993)**. Pool Boiling of R-11 and R-123 Oil-Refrigerant Mixtures on Plain and Enhanced Tube Geometries, *ASHRAE Trans.*, Vol. 99, Part 1, pp. 1225-1236.
- Webb, R.L. and Paek, J.W. (2003). Letter to editors: comments by R. L. Webb and J.W. Paek, *Int. J. Heat Mass Transfer*, vol. 46, pp. 1111-1113.
- Webb, R.L. and Pais, C (1992). Nucleate Boiling Data for Five Refrigerants on Plain, Integral Fin, and Enhanced Tube Geometries, *Int. J. Heat Mass Transfer*, Vol. 35, No. 8 pp. 1893-1904.
- Webb, R.L., Rudy, T.M. and Kedzierski, M.A. (1985). Prediction of Condensation on Horizontal Integral-Fin Tubes, *J. Heat Transfer*, Vol. 107, pp. 369-376.
- Webb, R.L. and Zhang, M. (1998). Heat Transfer and Friction in Small Diameter Channels, *Microscale Thermophysical Engineering*, Vol. 2, pp. 189-202.
- Wei, Y.H. and Jacobi, A.M. (2002). Vapor-Shear, Geometric and Bundle-Depth Effects on the Intertube Falling-Film Modes, *Proc. 1st International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics*, HEFAT 2002, Skukuza, South Africa, Vol. 1, pp. 40-46.
- Wei, X. and Joshi, Y. (2004). Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components, *Journal of Electronic Packaging*, Vol. 126, pp. 60-66.
- **Whalley, P. (1980)**. See Hewitt, G. F. (1983). Multiphase Flow and Pressure Drop, *Heat Exchanger Design Handbook*, Hemisphere, Washington, D. C., Vol. 2, pp. 2.3.2-11.
- Whalley, P.B., Azzopardi, B.J., Hewitt, G.F. and Owen, R.G. (1982). A Physical Model of Two-Phase Flow with Thermodynamic and Hydrodynamic Non-Equilibrium, *Proc. of 7th International Heat Transfer Conf.*, Munich, Vol. 5, pp. 181-188.
- White, F.M. (1991). Viscous Fluid Flow, 2nd Edition, McGraw-Hill, Singapore.
- Wibulswas, P. (1966). Laminar-Flow Heat-Transfer in Non-Circular Ducts, Ph.D. Thesis, University of London, London.
- Wilson, M.J., Newell, T.A., Chato, J.C. and Infante Ferreira, C.A. (2003). Refrigerant Charge, Pressure Drop, and Condensation Heat Transfer in Flattened Tubes, *International Journal of Refrigeration*, Vol. 26, pp. 442-451.
- Withers, J.G. (1980a). Tube-Side Heat Transfer and Pressure Drop for Tubes Having Helical Internal Ridging with Turbulent/Transitional Flow of Single-Phase Fluid, Part 1, Single-Helix Ridging, *Heat Transfer Engineering*, Vol. 2, No. 1, pp. 48-58.
- Withers, J.G. (1980b). Tube-Side Heat Transfer and Pressure Drop for Tubes Having Helical Internal Ridging with Turbulent/Transitional Flow of Single-Phase Fluid, Part 2, Multiple-Helix Ridging, *Heat Transfer Engineering*, Vol. 2, No. 2, pp. 43-50.
- Withers, J. G. and Habdas, E. P. (1974). Heat Transfer Characteristics of Helical-Corrugated Tubes for In-Tube Boiling of Refrigerant R-12, *AIChE Symp. Ser.*, Vol. 70, No. 138, pp. 98-106.
- **Wojtan, L., Revellin, R. and Thome, J.R. (2007)**. Investigation of Critical Heat Flux in Single, Uniformly Heated Microchannels, *Experimental Thermal and Fluid Science*, Vol. 30, pp. 765-774.
- Wojtan, L., Ursenbacher, T., Thome, J.R. (2004). Dynamic Void Fractions in Stratified Types of Flow, Part II: Measurements for R-22 and R-410a. *Int. J. Multiphase Flow*, Vol. 30, pp. 125-137.
- Wojtan, L., Ursenbacher, T. and Thome, J.R. (2005a). Investigation of Flow Boiling in Horizontal Tubes: Part I A New Diabatic Two-Phase Flow Pattern Map, *Int. J. Heat Mass Transfer*, Vol. 48, pp.2955-2969.

- Wojtan, L., Ursenbacker, T. and Thome, J.R. (2005b). Investigation of Flow Boiling in Horizontal Tubes: Part II Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes, *Int. J. Heat Mass Transfer*, Vol. 48, pp. 2970-2985.
- Wu, H. Y. and Cheng, P. (2005). Condensation Flow Patterns in silicon Microchannels, *International Journal of Heat and Mass Transfer*, Vol. 48, pp. 2186-2197.
- Wu, J., Chen, Y., Shi, M., Fu, P. and Peterson, G.P. (2009). Three-Dimensional Numerical Simulation for Annular Condensation in Rectangular Microchannels, *Nanoscale and Microscale Thermophysical Engineering*, Vol. 13, pp. 13-29.
- Wu, H., Wu., X., Qu, J. and Yu, M. (2008). Condensation Heat Transfer and Flow Friction in Silicon Microchannels, *Journal of Micromechanics and Microengineering*, Vol. 18, pp. 1-10.
- Xin, M. and Chao, Y. (1985). Analysis and Experiment of Boiling Heat Transfer on T-shaped finned surfaces, Paper read at 23rd National Heat Transfer Conference, Denver, August 4-7; refer to Thome (1990) for description of paper on pp. 172-169.
- Xu, J., Gan, Y., Zhang, D. and Li, X. (2005). Microscale Boiling Heat Transfer in a Micro-Timescale at High Heat Fluxes, *J. of Micromechanics and Microengineering*, Vol. 15, pp. 362-376.
- Xu, G.P., Tou, K.W. and Tso, C.P. (1998). Two-Phase Void Fraction and Pressure Drop in Horizontal Crossflow Across a Tube Bundle, *J. Fluids Engineering*, Vol. 120, pp. 140-145.
- Yang, C. and Webb, R.L. (1996). Condensation of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and without Micro-fins, *International Journal of Heat and Mass Transfer*, Vol. 39, pp. 791-800.
- **Yang, C.Y. and Shieh, C.C. (2001)**. Flow Pattern of Air-Water and Two-Phase R134a in Small Circular Tubes, *Int. J. Multiphase Flow*, Vol. 27, pp. 1163–1177.
- Yan, Y.Y. and Lin, T.F. (1998). Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe, *Int. J. Heat and Mass Transfer*, Vol. 41, pp. 4183-4194.
- **Yan. Y.Y. and Lin, T.F. (2003)**. Letter to Editors, Comments by R. L. Webb and J.W. Park and Reply by Y-Y Yan and T-F Lin, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 1111-1113.
- Yashar, D.A., Wilson, M.J., Kopke, H.R., Graham, D.M., Chato, J.C. and Newell, T.A. (2001). An Investigation of Refrigerant Void Fraction in Horizontal, Microfin Tubes, *HVAC&R Research*, Vol. 7, No. 1, pp. 67-82.
- Yen, T.-H., Shoji, M., Takemura, F., Suzuki, Y., and Kasagi, N. (2005). Visualization of Convective Boiling Heat Transfer in Single Micro-Conduits with Different Shapes of Cross Sections, *Proc.* 3rd Int. Conf. Microchannels and Minichannels (ICMM2005), Toronto, June 13-15, CD-ROM Paper No. ICMM2005-75228.
- Yen, T.-H., Shoji, M., Takemura, F., Suzuki, Y. and Kasagi, N. (2006). Visualization of Convective Boiling Heat Transfer in Single Microchannels with Different Shaped Cross-sections, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 3884-3894.
- **Yoon, S.H., Cho, E.S., Kim, M.S. and Kim, Y. (2003)**. Studies on the Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide near the Critical Point, 21st IIR International Congress of Refrigeration, Washington DC, USA.
- Yoon, S.H., Cho, E.S., Hwang, Y.W., Kim, M.S., Min, K. and Kim, Y. (2004). Characteristics of Evaporative Heat Transfer and Pressure Drop of Carbon Dioxide and Correlation Development, *Int. J. Refrigeration*, Vol. 27, pp. 111-119.
- **Yung, D., Lorenz, J.J. and Ganic, E.N. (1980)**. Vapor/Liquid Interaction and Entrainment in Falling Film Evaporators, *J. Heat Transfer*, Vol. 102, No. 1, pp. 20-25.
- Yun, R., Choi, C. and Kim, Y. (2002). Convective Boiling Heat Transfer of Carbon Dioxide in Horizontal Small Diameter Tubes, IIR/IIF-Commission B1, B2, E1 and E2, Guangzhou, China, pp.293-303.
- Yun, R. and Kim, Y. (2003a). Two-Phase Pressure Drop of CO₂ in Mini Tubes and Microchannels, *Proc. First International Conference on Microchannels and Minichannels*, Rochester, NY, pp. 507-511.

- Yun, R. and Kim, Y. (2003b). Critical Quality Prediction for Saturated Flow Boiling of CO₂ in Horizontal Small Diameter Tubes, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 2527-2535.
- **Yun, R. and Kim, Y. (2004)**. Flow Regimes for Horizontal Two-Phase Flow of CO₂ in a Heated Narrow Rectangular Channel, *International Journal of Multiphase*, Vol. 30, pp. 1259-70.
- Yun, R., Kim, Y., and Kim, M.S. (2003). Two-Phase Flow Patterns of CO₂ in a Narrow Rectangular Channel, 21st IIR International Congress of Refrigeration, Washington DC, USA.
- Yun, R., Kim, Y. and Kim, M.S. (2005a). Convective Boiling Heat Transfer Characteristics of CO₂ in Microchannels, *Int. J. Heat Mass Transfer*, Vol. 48, pp. 235-242.
- Yun, R., Kim, Y., and Kim, M.S. (2005b). Flow Boiling Heat Transfer of Carbon Dioxide in Horizontal Mini Tubes, *Int. J. Heat Fluid Flow*, Vol. 26, pp. 801-809.
- Yun, R., Kim, Y., Kim, M.S. and Choi, Y. (2003). Boiling Heat Transfer and Dryout Phenomenon of CO₂ in a Horizontal Smooth Tube, *Int. J. Heat Mass Transfer*, Vol. 46, pp. 2353-2361.
- **Zeng, X., Chyu, M.-C. and Ayub, Z.H. (1994)**. Characteristic Study of Sprayed Fluid Flow in a Tube Bundle, *ASHRAE Trans.*, Vol. 100, Part 1, pp. 63-72.
- Zeng, X., Chyu, M.-C. and Ayub, Z.H. (1995). Evaporation Heat Transfer Performance of Nozzle-Sprayed Ammonia on a Horizontal Tube, *ASHRAE Trans.*, Vol. 101, Part 1, pp. 136-149.
- **Zeng, X., Chyu, M.C. and Ayub, Z.H. (1996)**. Evaporation Heat Transfer Performance of Nozzle Sprayed Ammonia on a Horizontal Tube, *ASHRAE Transactions*, Vol. 101, pp. 136–149.
- **Zeng, X., Chyu, M.-C. and Ayub, Z.H. (1997)**. Performance of Nozzle-Sprayed Ammonia Evaporator with Square-Pitch Plain-Tube Bundle, *ASHRAE Trans.*, Vol. 103, Part 2, Paper 4059.
- **Zeng, X., Chyu, M.-C. and Ayub, Z.H. (1998)**. Ammonia Spray Evaporation Heat Transfer Performance of Single Low-Fin and Corrugated Tubes, *ASHRAE Trans.*, Vol. 104, Part 1, Paper SF-98-15-2 (4109).
- **Zhang, M. and Webb, R.L. (2001)**. Correlation of Two-Phase Friction for Refrigerants in Small-Diameter Tubes, *Experimental Thermal Fluid Science*, Vol. 25, pp. 131–139.
- **Zhang, W., Hibiki, T. and Mishima, K. (2004)**. Correlation for Flow Boiling Heat Transfer in Mini-Channels, Int. J. Heat Mass Transfer, Vol. 47, pp. 5749–5763.
- **Zhang, W., Hibiki, T., Mishima, K. and Mi, Y. (2006)**. Correlation for Critical Heat Flux for Flow Boiling of Water in Mini-Channels, *Int. J. Heat Mass Transfer*, Vol. 49, pp. 1058-1072.
- **Zhang, W., Xu, J. and Liu, G. (2008)**. Multi-Channel Effect of Condensation Flow in a Micro Triple-Channel Condenser, *International Journal of Multiphase Flow*, Vol. 34, pp. 1175-1184.
- **Zhang, W., Xu, J. and Thome J. R. (2008)**. Periodic Bubble Emission and Appearance of an Ordered Bubble Sequence (Train) during Condensation in a Single Microchannel, *International Journal of Heat and Mass Transfer*, Vol. 51, pp. 3420-3433.
- **Zhao, Y., Molki, M., Ohadi, M.M. and Dessiatoun, S.V. (2000)**. Flow Boiling of CO₂ in Microchannels, *ASHRAE Transactions*, Vol. 106, Part I, pp. 437-445.
- **Zivi, S.M.** (1964). Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Generation, *J. Heat Transfer*, Vol. 86, pp. 247-252.
- **Zuber, N.** (1959). Hydrodynamic Aspects of Boiling Heat Transfer, AEC Report AECU-4439, Physics and Mathematics.
- **Zuber, N. and Findlay, J. (1965)**. Average Volumetric Concentration in Two-Phase Flow Systems, *J. Heat Transfer*, Vol. 87, pp. 453.
- Zuber, N., Staub, F.W., Bijwaard, G. and Kroeger, P.G. (1967). Steady State and Transient Void Fraction in Two-Phase Flow Systems, GEAP Report 5417.
- **Žukauskas**, A., and Ulinskas, R. (1983). Banks of Plain and Finned Tubes, in *Heat Exchanger Design Handbook*, ed. E.U. Schlünder, Hemisphere Publishing Corp., Washington, D.C.
- **Zun, I.** (2007). Numerical Modeling of Two-Phase Flows in Microchannels, 2nd Microscale Heat Transfer Shortcourse, Lausanne, June 4-8.
- **Zun, I. and Polutnik, E. (2001)**. Bubble to Slug Flow Transition: Experimental and Numerical Experience in Bubble Tracking Studies, 4th International Conference on Multiphase Flow, New Orleans, May 27 June 1.

- **Zürcher, O. (2000).** Contribution to the Heat Transfer Analysis of Substitute and Natural Refrigerants Evaporating in a Horizontal Plain Tube, Ph.D. thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland.
- **Zürcher, O., Favrat, D. and Thome, J.R. (2002)**. Development of a Diabatic Two-Phase Flow Pattern Map for Horizontal Flow Boiling, *Int. J. Heat Mass Transfer*, Vol. 45, pp. 291-303.
- **Zürcher, O. Thome, J.R. and Favrat, D. (1997a)**. Flow Boiling and Pressure Drop Measurements for R-134a/Oil Mixtures Part 2: Evaporation in a Plain Tube, *HVAC&R Research*, Vol. 3, No. 1, pp. 54-64.
- **Zürcher, O. Thome, J.R. and Favrat, D. (1997b)**. Flow Boiling of Ammonia in Smooth and Enhanced Horizontal Tubes, *Compression Systems with Natural Working Fluids*, IEA Annex 22 Workshop, Gatlinburg, TN, USA, October 2-3.
- **Zürcher, O. Thome, J.R. and Favrat, D. (1997c)**. Prediction of Two-Phase Flow Patterns for Evaporation of Refrigerant R-407C inside Horizontal Tubes, Convective Flow and Pool Boiling Conference, Irsee, Germany, May 18-23, paper IX-1.
- **Zürcher, O., Thome, J.R. and Favrat, D. (1998a)**. Intube Flow Boiling of R-407C and R-407C/Oil Mixtures Part I: Microfin Tube, *HVAC&R Research*, Vol. 4, No. 4, pp. 347-372.
- **Zürcher, O., Thome, J.R. and Favrat, D. (1998b)**. Intube Flow Boiling of R-407C and R-407C/Oil Mixtures Part II: Plain Tube Results and Predictions, *HVAC&R Research*, Vol. 4, No. 4, pp. 373-399.
- **Zürcher, O., Thome, J.R. and Favrat, D. (1999)**. Evaporation of Ammonia in a Smooth Horizontal Tube: Heat Transfer Measurements and Predictions, *J. Heat Transfer*, Vol. 121, February, pp. 89-101.