# **Estimation and Prediction Codes of the IPEV model**

#### Koichi Kuriyama

Graduate School of Agriculture, Kyoto University, Japan
Division of Natural Resource Economics,
Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, JAPAN

Phone: +81 75 753 6192, Fax: +81 75 753 6191 E-mail: kuriyama.koichi.8w@kyoto-u.ac.jp

#### 02/28/2023

## Sample files

| File name  | Description                                             |
|------------|---------------------------------------------------------|
| IPEV.gss   | GAUSS code for estimation (require maxlik)              |
| IPEVmt.gss | GAUSS code for estimation (require maxlikmt)            |
| IPEV_c.out | Output file of estimation using closed-form probability |
| IPEV_s.out | Output file of estimation using simulation              |
| DEMAND.gss | GAUSS code for demand and welfare prediction            |
| DEMAND.out | Output file of prediction                               |
| data.txt   | sample data (text file)                                 |
| data.xls   | sample data (Excel file)                                |
| manual.pdf | This file                                               |

## Sample data set

| Column | Variable | Description                                                              |
|--------|----------|--------------------------------------------------------------------------|
| 1      | ID       | ID Number                                                                |
| 2-6    | X        | Consumption of inside goods $(x_k)$                                      |
| 7-11   | Psi1     | Individual or good specific attributes (Psi1: constant, $\mathbf{z_k}$ ) |
| 12-16  | Psi2     | Individual or good specific attributes $(\mathbf{z_k})$                  |
| 17-21  | Psi3     | Individual or good specific attributes $(\mathbf{z_k})$                  |
| 22     | Income   | Respondents' income (E)                                                  |
| 23-27  | Price    | Price of inside goods $(p_k)$                                            |

## Preference Specification

| Model Code     | Utility Function                                                                                                                                                  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U_FUNCTION = 1 | $\alpha$ -profile: Set all $\gamma_k = 1$ .                                                                                                                       |
|                | $U(x) = \frac{\psi_1}{\alpha_1} x_1^{\alpha_1} + \sum_{k=2}^K \frac{\psi_k}{\alpha_k} \{ (x_k + 1)^{\alpha_k} - 1 \}$                                             |
| U_FUNCTION = 2 | $\gamma$ -profile: Set all $\alpha_k = 0$ for $k \ge 2$ .                                                                                                         |
|                | $U(x) = \frac{\psi_1}{\alpha_1} x_1^{\alpha_1} + \sum_{k=2}^K \gamma_k \psi_k \ln \left( \frac{x_k}{\gamma_k} + 1 \right)$                                        |
| U_FUNCTION = 3 | Hybrid profile: Set all $\alpha_1 = \alpha_k = \alpha$ .                                                                                                          |
|                | $U(x) = \frac{\psi_1}{\alpha} x_1^{\alpha} + \sum_{k=2}^{K} \frac{\gamma_k \psi_k}{\alpha} \left\{ \left( \frac{x_k}{\gamma_k} + 1 \right)^{\alpha} - 1 \right\}$ |
| U_FUNCTION = 4 | $\alpha$ -profile without fixed effect: Set $\gamma_k = 1$ for all $k$ and $\alpha_k = \alpha$ for $k \ge 2$ .                                                    |
|                | $U(x) = \frac{\psi_1}{\alpha_1} x_1^{\alpha_1} + \sum_{k=2}^{K} \frac{\psi_k}{\alpha} \{ (x_k + 1)^{\alpha} - 1 \}$                                               |
| U_FUNCTION = 5 | $\gamma$ -profile without fixed effect: Set $\alpha_k = 0$ for $k \ge 2$ and $\gamma_k = \gamma$ for all $k$ .                                                    |
|                | $U(x) = \frac{\psi_1}{\alpha_1} x_1^{\alpha_1} + \sum_{k=2}^K \gamma \psi_k \ln\left(\frac{x_k}{\gamma} + 1\right)$                                               |
| U_FUNCTION = 6 | Hybrid profile without fixed effect: Set $\alpha_1 = \alpha_k = \alpha$ and $\gamma_k = \gamma$ for all $k$ .                                                     |
|                | $U(x) = \frac{\psi_1}{\alpha} x_1^{\alpha} + \sum_{k=2}^{K} \frac{\gamma \psi_k}{\alpha} \left\{ \left( \frac{x_k}{\gamma} + 1 \right)^{\alpha} - 1 \right\}$     |

## Setting parameters of the estimation code (IPEV.gss)

```
@ Number of goods (including an outside good) @ N_GOODS = 6;

@ Nubmer of Psi variables @ N_PSI = 3;

@ Function form @ @ U_FUNCTION = 1; alpha profile @ @ U_FUNCTION = 2; gamma profile @ @ U_FUNCTION = 3; hybrid profile @ @ U_FUNCTION = 4; alpha profile without fixed effect @ U_FUNCTION = 5; gamma profile without fixed effect @ U_FUNCTION = 6; hybrid profile without fixed effect @ U_FUNCTION = 6; hybrid profile without fixed effect @ U_FUNCTION = 1;
```

```
@ Estimation using closed-form or simulation @
SIMULATE = 0; @ 0: closed-form, 1: simulation @
@ Number of iterations of simulated likelihood @
N_SIM = 100;
@ HALT = 1 if Halton sequences, 0 otherwise @
HALT = 1;
```

Theoretical constraints require  $\alpha \le 1$ ,  $\gamma > 0$ , and  $\sigma > 0$ . In the estimation code, we use the transformation  $\alpha = 1 - \exp(\hat{\alpha})$ ,  $\gamma = \exp(\hat{\gamma})$ , and  $\sigma = \exp(\hat{\sigma})$ , where  $\hat{\alpha}$ ,  $\hat{\gamma}$ , and  $\hat{\gamma}$  are the estimated parameters. After the convergence, the code calculates the reparameterized parameters  $(\alpha, \gamma, \text{ and } \sigma)$ . Table 1 reports the estimation results of the reparameterized parameters with U FUNCTION = 1.

Table 1. Estimation Results (U\_FUNCTION = 1)

|           | Closed-form (SIMULATE = 0) |           |       |           |           |       |
|-----------|----------------------------|-----------|-------|-----------|-----------|-------|
| Variables | Estimates                  | Est./s.e. | Prob. | Estimates | Est./s.e. | Prob. |
| PSI01     | -0.2351                    | -1.744    | 0.081 | -0.2306   | -0.650    | 0.516 |
| PSI02     | 0.1081                     | 7.238     | 0.000 | 0.1084    | 7.179     | 0.000 |
| PSI03     | -0.1119                    | -7.806    | 0.000 | -0.1116   | -7.522    | 0.000 |
| Alpha01   | 0.7080                     | 46.204    | 0.000 | 0.7088    | 18.889    | 0.000 |
| Alpha02   | 0.2818                     | 7.473     | 0.000 | 0.2819    | 8.501     | 0.000 |
| Alpha03   | 0.2153                     | 5.312     | 0.000 | 0.2153    | 5.945     | 0.000 |
| Alpha04   | 0.2186                     | 5.272     | 0.000 | 0.2186    | 6.024     | 0.000 |
| Alpha05   | 0.2103                     | 4.296     | 0.000 | 0.2104    | 5.796     | 0.000 |
| Alpha06   | 0.2012                     | 3.802     | 0.000 | 0.2009    | 5.286     | 0.000 |
| Sigma     | 0.5837                     | 35.723    | 0.000 | 0.5839    | 42.515    | 0.000 |
| LogL      | -7368.5                    |           |       | -7369.22  |           |       |

Setting parameters of the prediction code (DEMAND.gss)



@ Reparameterized values @

B = {...}; @ Vector of estimated coefficients @
VCOV = {...}; @ Variance-covariance matrix @

```
@----@
@ Scenarios
@----@
{ X_INSIDE, PSIDATA, INCOME, PRICE, XOUT1, CSET_INSIDE } = mydata(DATA);
Data matrices and vectors.
All matrices and vectors have N_OBS rows.
X_INSIDE : Consumption of inside goods, (N_GOODS - 1) columns
         : Psi data, (N_GOODS - 1) * N_PSI columns
PSIDATA
        : Income, 1 column
INCOME
          : Price of inside goods, (N_GOODS - 1) columns
PRICE
XOUT1
          : Consumption of outside good, 1 column
CSET INSIDE: Dummy matrix of choice set (=1 if included in choice set,
           =0 otherwise), (N_GOODS - 1) columns
*/
@ Scenario #1: Adding $10 to price of alternative 1 @
PRICE1 = PRICE ;
PRICE1[.,1] = PRICE1[.,1] + 10;
PSIDATA1 = PSIDATA;
CSET_INSIDE1 = CSET_INSIDE ;
@ Scenario #2: Removing alternrative 2 @
PRICE2 = PRICE;
PRICE2[.,2] = ones(rows(PRICE),1).*100000000;
PSIDATA2 = PSIDATA;
CSET_INSIDE2 = CSET_INSIDE ;
@ Scenario #3: Adding $10 to the prices of all alternatives @
PRICE3 = PRICE + 10;
PSIDATA3 = PSIDATA ;
CSET_INSIDE3 = CSET_INSIDE ;
@-----@
      OTHER SETTING
@----@
@ Number of iterations of simulated likelihood @
N SIM = 10;
@ Random seed @
SEED1 = 12345;
```

## @ Number of Krinsky-Robb iterations @

N\_KR = 1; @ N\_KR = 1: point estimates, N\_KR > 1: Krinsky-Robb iterations @

#### Output of point estimates (N\_KR = 1)

Time (in minutes): 0.089959350
Total Generated Draws: 10.000000

Mean for Demand

| BASELINE  | SCENARIO #1 | SCENARIO #2 | SCENARIO #3 |
|-----------|-------------|-------------|-------------|
| 2.7090000 | 2.3163000   | 2.1734000   | 0.95490000  |

| GOODS     | BASELINE   | SCENARIO #1 | SCENARIO #2 | SCENARIO #3 |
|-----------|------------|-------------|-------------|-------------|
| 1.0000000 | 0.60500000 | 0.21170000  | 0.60525000  | 0.21180000  |
| 2.0000000 | 0.53650000 | 0.53665000  | 0.0000000   | 0.18430000  |
| 3.0000000 | 0.53500000 | 0.53515000  | 0.53515000  | 0.19170000  |
| 4.0000000 | 0.53550000 | 0.53560000  | 0.53560000  | 0.18855000  |
| 5.0000000 | 0.49700000 | 0.49720000  | 0.49740000  | 0.17855000  |

Mean for WTP

SCENARIO #1 SCENARIO #2 SCENARIO #3 -3.5419271 -6.1512202 -15.912885

#### Output of a Monte Carlo Simulation (N\_KR = 100)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Krinsky-Robb Monte Carlo Simulation, U\_FUNCTION: 1

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Time (in minutes): 9.0460649

Number of Krinsky-Robb Iterations: 100.00000

Total Generated Draws: 10.000000

Demand (Scenario #0 means the baseline)

| SCENARIO  | MEAN       | SD            | 95%lower   | 95%upper  |
|-----------|------------|---------------|------------|-----------|
| 0.0000000 | 2.7090000  | 2.6779587e-15 | 2.7090000  | 2.7090000 |
| 1.0000000 | 2.3154975  | 0.0095123534  | 2.2992000  | 2.3336500 |
| 2.0000000 | 2.1735015  | 0.00023809588 | 2.1730500  | 2.1739500 |
| 3.0000000 | 0.95343300 | 0.040000457   | 0.87685000 | 1.0293000 |

Demand for Each Good (Scenario #0 means the baseline)

| SCENARIO  | GOOD      | MEAN       | SD            | 95%lower   | 95%upper   |
|-----------|-----------|------------|---------------|------------|------------|
| 0.0000000 | 1.0000000 | 0.60499850 | 1.1135075e-05 | 0.60495000 | 0.60500000 |
| 0.0000000 | 2.0000000 | 0.53650100 | 1.0000000e-05 | 0.53650000 | 0.53655000 |
| 0.0000000 | 3.0000000 | 0.53500050 | 5.0000000e-06 | 0.53500000 | 0.53500000 |
| 0.0000000 | 4.0000000 | 0.53550000 | 1.0050378e-05 | 0.53550000 | 0.53550000 |

|     | 0.0000000 | 5.0000000  | 0.49700000  | 5.5790806e-17 | 0.49700000 | 0.49700000 |
|-----|-----------|------------|-------------|---------------|------------|------------|
|     | 1.0000000 | 1.0000000  | 0.21102100  | 0.0095503270  | 0.19475000 | 0.22925000 |
|     | 1.0000000 | 2.0000000  | 0.53661200  | 7.5918617e-05 | 0.53650000 | 0.53680000 |
|     | 1.0000000 | 3.0000000  | 0.53512550  | 7.9612382e-05 | 0.53500000 | 0.53530000 |
|     | 1.0000000 | 4.0000000  | 0.53562050  | 8.8218908e-05 | 0.53550000 | 0.53585000 |
|     | 1.0000000 | 5.0000000  | 0.49711850  | 8.5768952e-05 | 0.49700000 | 0.49730000 |
|     | 2.0000000 | 1.0000000  | 0.60526200  | 0.00011351145 | 0.60505000 | 0.60550000 |
|     | 2.0000000 | 2.0000000  | 0.0000000   | 0.0000000     | 0.0000000  | 0.0000000  |
|     | 2.0000000 | 3.0000000  | 0.53523950  | 0.00010547990 | 0.53510000 | 0.53540000 |
|     | 2.0000000 | 4.0000000  | 0.53575750  | 0.00010645220 | 0.53555000 | 0.53595000 |
|     | 2.0000000 | 5.0000000  | 0.49724250  | 0.00012479782 | 0.49705000 | 0.49755000 |
|     | 3.0000000 | 1.0000000  | 0.21111850  | 0.0095538100  | 0.19490000 | 0.22930000 |
|     | 3.0000000 | 2.0000000  | 0.18341100  | 0.0098784803  | 0.16280000 | 0.20145000 |
|     | 3.0000000 | 3.0000000  | 0.19186050  | 0.010572972   | 0.17530000 | 0.21255000 |
|     | 3.0000000 | 4.0000000  | 0.18824150  | 0.012931324   | 0.15850000 | 0.20960000 |
|     | 3.0000000 | 5.0000000  | 0.17880150  | 0.013501839   | 0.15120000 | 0.20225000 |
|     |           |            |             |               |            |            |
| WTP |           |            |             |               |            |            |
|     | SCENARIO  | MEAN       | SD          | 95%lower      | 95%upper   |            |
|     | 1.0000000 | -3.5423039 | 0.069632509 | -3.6655675    | -3.4198478 |            |
|     | 2.0000000 | -6.1473089 | 0.42888335  | -6.9674729    | -5.3195009 |            |
|     | 3.0000000 | -15.921517 | 0.29089441  | -16.496975    | -15.368635 |            |