

Problem of the Week Problem E and Solution

So Many Triangles

Problem

 $\triangle PQR$ has side QP extended to X so that QP = PX, PR extended to Z so that PR = RZ, and RQ extended to Y so that RQ = QY. If the area of $\triangle XYZ = 1176$ cm², determine the area of $\triangle PQR$.

Solution

On the above diagram the lengths of the equal sides, QP = PX, PR = RZ, and RQ = QY, have been marked. Join P to Y, Q to Z, and R to X.

 $\triangle PQR$ and $\triangle PQY$ have a common altitude drawn from vertex P to the line segment RY, meeting it at A. The triangles have equal base lengths, RQ = QY.

 \therefore area $\triangle PQR = \text{area } \triangle PQY = x$.

At this point we can proceed to look at various other triangles with equal areas.

 $\triangle PQY$ and $\triangle PXY$ have the same height and equal base lengths.

 \therefore area $\triangle PXY = \text{area } \triangle PQY = x$.

 $\triangle PXR$ and $\triangle PQR$ have the same height and equal base lengths.

 \therefore area $\triangle PXR = \text{area } \triangle PQR = x$.

 $\triangle PXR$ and $\triangle RXZ$ have the same height and equal base lengths.

 \therefore area $\triangle RXZ = \text{area } \triangle PXR = x$.

 $\triangle PQR$ and $\triangle QRZ$ have the same height and equal base lengths.

 \therefore area $\triangle QRZ = \text{area } \triangle PQR = x$.

 $\triangle QRZ$ and $\triangle QYZ$ have the same height and equal base lengths.

 \therefore area $\triangle QYZ = \text{area } \triangle QRZ = x$.

Then the area of $\triangle XYZ$

= area $\triangle PXY$ +area $\triangle PQY$ +area $\triangle PQR$ +area $\triangle PXR$ +area $\triangle RXZ$ +area $\triangle QRZ$ +area $\triangle QYZ$ = x+x+x+x+x+x

 $\therefore 7x = 1176 \text{ and } x = 168 \text{ cm}^2.$

 \therefore the area of $\triangle PQR$ is 168 cm².

