HOW I WONDER WHAT YOU ARE

CLASSIFYING STELLAR OBJECTS USING LOGISTIC REGRESSION

Jenica Andersen April 20, 2022 Metis DSML, Classification Module

PANORAMIC VIEW OF THE SKY

Galactic map of the 2MASS Point Source Catalog

PANORAMIC VIEW OF THE SKY

Unfeasible to classify all of these objects manually

Galactic map of the 2MASS Point Source Catalog

WHY MAP THE SKY?

MAKE DISCOVERIES

Think cartography when Earth was uncharted

ORIGINS OF THE UNIVERSE

Understand cosmic evolution and the history of where we all came from

DARK MATTER

Map what's seen, to better understand what's unseen

LIGHT POINT-SOURCES

STARS

GALAXIES

QUASARS

INTRODUCTION - METHOD - RESULTS - CONCLUSION - APPENDIX

THE DATA

KAGGLE STELLAR CLASSIFICATION DATASET:

- 100,000 "sources"
- 17 features
 - (8-10 "of interest", all continuous)
- Target: "class"
 - o 18% Quasar
 - o 60% Galaxy

22% Stars

(No class imbalance handling)

FEATURES

Features Used:

- Location: Coordinates on celestial sphere, Field #
- Photometric data ("brightness"): u, g, r, i, z
- Redshift data: increase in wavelength

Features NOT Used:

- Object, Equipment and Run ID's
- Date

EDA: BASELINE BINARY LOGISTIC REGRESSION

Positive Class: "Star"

ROC AUC Score = 0.77

EDA: BASELINE BINARY LOGISTIC REGRESSION

Positive Class: "Star"

ROC AUC Score = 0.77

4,830 sources misclassified!

MODELS & ALGORITHMS

KNN

PIPELINE

Organized models, preprocessing & parameters

LOGISTIC REGRESSION

RANDOMIZED-& GRIDSEARCH CV

Random- was faster, honed by Grid-. 30% test data

RANDOM FOREST

SCALED DATA

MinMaxScaler and Standard Scaler

METRICS

ROC AUC

tells how much the model is capable of distinguishing between classes

ROC

R

RECALL

indicates how good the classifier is at minimizing false negatives

PRECISION

indicating how good the classifier is at identifying true positives

F1 SCORE

an overall performance metric

METRICS

Used for GridSearchCV

ROC AUC

tells how much the model is capable of distinguishing between classes

R

RECALL

indicates how good the classifier is at minimising false negatives.

indicating how good the classifier is at identifying true positives

F1 SCORE

an overall performance metric

METRICS

Used for GridSearchCV

ROC AUC

tells how much the model is capable of distinguishing between classes

ROC

PRECISION

indicating how good the classifier is at identifying true positives

Also key

R

RECALL

indicates how good the classifier is at minimising false negatives.

F1 SCORE

an overall performance metric

RECALL: COST OF FALSE NEGATIVES > FALSE POSITIVES (IN BINARY MODEL)

- Nearby stars are brighter → prone to misclassification
- Strong interest in nearby extra solar planets (exploring for life, richer scientific results)
- Fewer stars than galaxies
 (single misclassification represents a larger fraction)
- Potential for compounded mistakes, far-reaching and unknown

VALIDATION RESULTS

K-NEAREST NEIGHBOR

0.9900

LOGISTIC REGRESSION

0.9969

RANDOM FOREST

>0.999

RESULTS: VALIDATION MODEL SCORES

K-NEAREST NEIGHBOR

0.9900

LOGISTIC REGRESSION

0.9969

RANDOM FOREST

>0.999

INTRODUCTION - METHOD - RESULTS - CONCLUSION - APPENDIX

RESULTS: FINAL ROC AUC SCORES (BINARY CLASS ONLY)

VALIDATION SCORE

>0.999

TEST DATA SCORE

0.9983

FINAL RANDOM FOREST MODEL (BINARY CLASS ONLY)

Introduction - Method - Results - Conclusion - Appendix

Baseline model

ROC curve for Random Forest, Star vs Galaxy Point Source Prediction

FINAL RANDOM FOREST MODEL (BINARY CLASS ONLY)

INTRODUCTION - METHOD - RESULTS - CONCLUSION - APPENDIX

BINARY

MULTICLASS

BINARY

57 sources misclassified! Recall = >0.9997

MULTICLASS

665 sources misclassified! Recall = 0.9708

TRAIN AND TUNE MULTICLASS MODELS

INSPECT MISCLASSIFICATIONS

TRY STACKING OR ITERATIVE CLASSIFIERS

MAPPING THE COSMOS IS IMPORTANT

Don't know the Full Impact or All Applications Yet

RANDOM FOREST WAS BEST PERFORMER

ROC Score of 0.9983 vs EDA Logistic Regression Score 0.77

MODEL CAN BE IMPROVED

Tune for Multiclass and try stacking or voting classifiers

REFERENCES

- Sloan Digit Sky Survey https://www.sdss.org/dr17/
- Identifying galaxies, quasars, and stars with machine learning: A new catalogue of classifications for 111 million SDSS sources without

Spectra A. O. Clarke, A. M. M. Scaife, R. Greenhalgh and V. Griguta A&A, 639 (2020) A84 DOI: https://doi.org/10.1051/0004-6361/201936770

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

FINAL RANDOM FOREST PARAMETERS (BINARY CLASS ONLY)

- max features': 'sqrt'
- min_samples_leaf': 4
- n_estimators': 944,
- 'scaler': MinMaxScaler()

BASELINE PAIR PLOT

INTRODUCTION - METHOD - RESULTS - CONCLUSION - APPENDIX