БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

		«УТВЕРЖДАЮ»
	дек	ан факультета КСиС
		Никульшин Б.В.
‹ ‹	>>	Γ.

РАБОЧАЯ ПРОГРАММА

по курсу «Моделирование сложных систем» для студентов специальности H.08.02.00 «Информатика», факультет компьютерных систем и сетей кафедра информатики курс 4, семестр 7.

	Форма обучения		
	дневная	вечерняя	заочная
Лекции	48		
Лабораторные	64		
работы			
Экзамен	8		
(семестр)			

Минск - 2006 г.

Пр	Рабочая программа обсуждена на кафедре инфоротокол №	оматики	
	Зав. Кафедрой информатики	Минч	енко Л.И.
« <u></u>	Рабочая программа одобрена методической г. Протокол №	комиссией	факультета
	Председатель методической комиссии	Н.И.М	Лельник.

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ, ЕЕ МЕСТО В УЧЕБНОМ ПРОЦЕССЕ.

1.1. Цель преподавания.

Целью курса является изучение принципов системного анализа и методов аналитического и имитационного моделирования для решения задач анализа и синтеза сложных систем. Основное внимание уделяется моделированию вычислительных систем, их аппаратного и программного обеспечения.

1.2. Задачи дисциплины:

- изучение системного подхода в исследовании сложных систем;
- обучение методологии моделирования как эффективного инструмента системного анализа;
- изучение аналитических методов моделирования, знакомство с типовыми математическими схемами моделирования;
- изучение технологии аналитического моделирования на ЭВМ;
- изучение технологии имитационного моделирование на ЭВМ;
- изучение технологии построения статистических моделей сложных систем;
- анализ перспектив развития методов системного анализа и моделирования в задачах анализа и синтеза сложных систем, проектирования ВС и их программного обеспечения.

В результате изучения курса студенты должны изучить и уметь анализировать основные особенности вычислительных систем, выбирать адекватные типам ВС модели, уметь разрабатывать модели компоненты ВС.

1.3. Перечень дисциплин с указанием разделов (тем), усвоение которых необходимо студентам для изучения данной дисциплины.

Материал настоящего курса использует знания, полученные студентами при изучении курсов «Организация и функционирование ЭВМ», «Конструирование программ и языки программирования», "Архитектура ВС", "Теория вероятностей и математическая статистика".

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ.

2.1. Темы и объем лекционных занятий.

$N_{\underline{0}}$	Тема лекции, рассматриваемые вопросы	Объем в
		часах
1	введение.	4 часа
	Общая схема процесса принятия решений. Классификация	

	задач принятия решений. Основные понятия теории	
2	моделирования	2 11000
2	Математические модели. Формализация процессов	2 часа
	функционирования сложных систем. Математические схемы	
	моделирования	
3	ПРИНЦИПЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ	2 часа
	Понятие статистического эксперимента. Область применения и	
	классификация имитационных моделей. Описание поведения	
	системы	
4	4. МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ФАКТОРОВ	10 часов
	Построение датчиков БСВ	
	Характеристики датчиков базовых случайных величин	
	Имитация случайных событий.	
	Имитация непрерывных случайных величин	
	Алгоритмы получения значений систем случайных величин	
	(случайных векторов).	
	Модуль формирования случайных чисел, процессов и	
	сигналов	
5	УПРАВЛЕНИЕ МОДЕЛЬНЫМ ВРЕМЕНЕМ	2 часа
6	МОДЕЛИРОВАНИЕ ПАРАЛЛЕЛЬНЫХ ПРОЦЕССОВ5.	4 часа
	Виды параллельных процессов в сложных системах	
	Методы описания параллельных процессов в системах и языках	
	моделирования	
	Применение сетевых моделей для описания параллельных	
	процессов	
7	СЛУЧАЙНЫЕ ПРОЦЕССЫ.	6 часов
	Описание случайных процессов.	
	Корреляционные функции.	
	Эргодическе и неэргодическе случайные процессы.	
	Марковские случайные процессы.	
8	Планирование модельных экспериментов	4 часа
9	Обработка и анализ результатов моделирования	4 часа
10	Моделирование систем массового обслуживания	4 часа
11	Система имитационного моделирование на примере КИМУ РТС	2 часа

3. Содержание лабораторных занятия работ

No	Темы лабораторных работ			Объем	В
				часах	
3.1	Построение и исследов	вание характеристик	датчиков	8 часов	В
	базовых случайных величин				

3.2	Имитация случайных событий (независимых, зависимых,	4 часа
	полная группа событий)	
3.3	Имитация непрерывных случайных величин (метод	4 часа
	обратных функций)	
3.4.	Имитация дискретных случайных величин с заданным	4 часа
	законом распределения	
3.5.	Имитация систем случайных величин	
3.6.	Построение имитационных моделей	

ЛИТЕРАТУРА

Основная

- 1. Советов Б.Я., Яковлев С.А. Моделирование систем: учебник для вузв а́ї специальности АСУ.-М.:Высш. школа, 1985.
- 2. Бусленко Н.П. Моделирование сложных систем. Главная редакция физико-математической литературы.-М: «Наука», 1968.
- 3. Снапелов Ю.М., Старосельский В.А. Моделирование и управление в сложных системах. –М.: «Сов. радио», 1974.
- 4. Альянах И.Н. Моделирование вычислительных систем.-Л:Машиностроение. Ленинградское отд. 1968.
- 5. Майоров С.А. и др. Основы теории вычислительных систем. Уч. пособие для вузов. -М.: Высшая школа, 1978.
- 6. Максимей И.В. Математическое моделирование больших систем:[Уч. пособие для спец. «Прикладная математика»].-Мн.: Выш. шк., 1985.

Дополнительная

- 7. Вентцель Е.С., Овчаров Л.А. Теория случайных процессов и ее инженерные приложения. М: Наука, 1991.
- 8. Четвериков В.Н., Баканович Э.А. Стохастические вычислительные устройства систем моделирования. М.: Машиностроение, 1989.