Este es el link de la clase de hoy 18-4 por si no pueden ingresar a pedco:

https://us02web.zoom.us/j/89193885302?pwd=MjdCUlhuZnpxK2VnUURDZnJveWJydz09

ID de la reunión 891 9388 5302

Ejemplos: Resolver las siguientes ecuaciones:

(1)
$$(x-2)^2 + x^2 - 4 = 0$$

($x-2$) $+ x^2 - 4 = 0$

($x-2$) $+ x^2 - 4 = 0$

($x-2$) $+ x^2 - 4 = 0$

($x-2$) $+ x-4 = 0$

($x-$

a < b => a+c < b+c **Ejemplo.** Hallar los valores reales de x que verifiquen: a < b = > a.c < b.c 1) -5 < -x + 1 y -2x < 4. -S <-x+1 ~ -2×64 (=) -S-1 (-x+1-1 $\begin{pmatrix} -\frac{1}{2} \end{pmatrix} \begin{pmatrix} -2x \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2} \end{pmatrix} \cdot 4$ ←> -6 < -× ×7 -2 (-6)(-1)>(-x)(-1) ×>-2 $n \times > -z$ (e) 6 > x Sl: |x ∈ (-2,6) (= }x ∈ R: -2 < x < 6 } 2) $-5 < \pm x < 6$. $-5 < -x < 6 \iff (-5).(-1) > (-x)(-1) > 6(-1)$ (5) X,>-6 > | Sel. x ∈ (-6, ≤) -5 < -(-2) < 6 -5 < 2 < 6 X= - Z .

$$\frac{2}{x-1} \le 4. \qquad |x+1| \qquad |x$$

Ejemplo: Hallar los
$$x \in \mathbb{R}$$
 que hacen real el resultado:

1) $\frac{1}{-x^2+9}$.

(and win: $-x^2+9 \neq 0$

Averiguemes comit $-x^2+9 \neq 0$

(Als: $x \in \mathbb{R}^2 \setminus -3, 3 \nmid 1$

2) $\sqrt{-2x+1}$

(and win: $-2x \neq 0$

(and win: $-x^2+9 \neq 0$

(b) $x \in \mathbb{R}^2 \setminus -3, 3 \nmid 1$

2) $\sqrt{-2x+1}$

(and win: $-x^2+9 \neq 0$

(b) $x \in \mathbb{R}^2 \setminus -3, 3 \nmid 1$

(c) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(c) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(c) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(c) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(d) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(e) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(f) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(g) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(g) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(g) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(g) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

(g) $x \in \mathbb{R}^2 \setminus -3, 3 \mid 1$

Demostrar:

1)
$$|x| \ge 0$$

$$|x| = \begin{cases} x & \text{si } x \ge 0, \\ -x & \text{si } x \le 0, \end{cases}$$

D/ See
$$x \in \mathbb{R}$$

 $\cdot \le \times \ge 0$ $\Rightarrow |x| = \times \wedge \times \ge 0$ $\Rightarrow |x| \ge 0$
 $\cdot \le \times < 0$ $\Rightarrow |x| = -\times \wedge -\times > (-1) \cdot 0 = 0$ $\Rightarrow |x| > 0$

Ejemplo: Resolver:

1)
$$-|-x+1|-2 < 4$$
.

2)
$$|x-1| < -2$$
.

$$\frac{(-1)}{-|-x+1|-2} < 4 \iff -|-x+1| < 4+2 \iff |-x+1| > -6$$

Ejemplo: Hallar los $x \in \mathbb{R}$ que verifican:

$$(1) |2x - 5| = 2.$$

|2x-5|=2 \Rightarrow |2x-5|=2 \Rightarrow |2x-5|=-2 \Rightarrow $|2x=7| \Rightarrow$ $|2x=3| \Rightarrow x=\frac{1}{2}$

Si a > 0 y $x, y \in \mathbb{R}$ entonces valen:

- $(1) |x| = a \Leftrightarrow x = a \lor x = -a$
- (2) $|x| < a \Leftrightarrow -a < x < a$. (También vale para \leq)
- (3) $|x| > a \Leftrightarrow x > a \lor x < -a$. (También vale para \geq)
- $(4) |x| = |y| \quad \Leftrightarrow \ x = y \lor x = -y.$
- (5) $\sqrt{x^2} = |x|$.

 $(2) |2x - 5| \le 4.$

Sd: x ∈ 7 = ,= 1

Ejozas: chegrerb.

Sd: × E[1/2, 2]

