Linear Algebra class on 9th March

Name: Seanie Lee

email address: lsnfamily02@gmail.com

1 Dual Space

 $\mathfrak{B} \coloneqq \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis for $\mathbf{V}, f: \mathbf{V} \longrightarrow \mathbb{R}$ linear

f is called "linear functionals on \mathbf{V} "

 $V^* \coloneqq \{\text{all linear functionals}\}$

$$\mathbf{V}^* \coloneqq \mathfrak{L}(\mathbf{V}, \mathbb{R}) \ \mathfrak{B}^* \coloneqq \{\mathbf{v}_1^*, \dots, \mathbf{v}_n^*\}, \text{ where } \mathbf{v}_j^*(\mathbf{v}_i) \coloneqq \delta_{ij}$$

Theorem 1.1. \mathfrak{B}^* is a basis for \mathbf{V}^* and called dual basis for \mathbf{V}^*

Proof. linear independent

Suppose $a_1\mathbf{v}_1^* + \dots + a_n\mathbf{v}_n^* = \mathbf{0}$

For all
$$i = 1, \dots, n$$
 $(a_1 \mathbf{v}^*_1 + \dots + a_n \mathbf{v}^*_n) \mathbf{v}_i = a_1 \mathbf{v}^*_1(\mathbf{v}_i) + \dots + a_n \mathbf{v}^*_n(\mathbf{v}_i) = 0$

Since $\mathbf{v}_{i}^{*}(\mathbf{v}_{i}) = \delta_{ij}$, $a_{j} = 0$ for all $j = 1, \dots, n$

 \mathcal{B}^* is linearly independent

Proof. \mathfrak{B}^* span \mathbf{V}^*

Let $f \in \mathbf{V}^*$ and $\mathbf{v} \in \mathbf{V}$ be given. Put $\mathbf{v} \coloneqq \sum_{i=1}^n a_i \mathbf{v}_i$

$$f(\mathbf{v}) = f(\sum_{i=1}^{n} a_i \mathbf{v}_i) = \sum_{i=1}^{n} a_i f(\mathbf{v}_i)$$

Since
$$a_i = \mathbf{v}_i^* \left(\sum_{i=1}^n a_i \mathbf{v}_i \right)$$

$$\sum_{i=1}^n a_i f(\mathbf{v}_i) = \sum_{i=1}^n f(\mathbf{v}_i) \mathbf{v}_i^* (\mathbf{v})$$

$$f(\mathbf{v}) = \sum_{i=1}^n f(\mathbf{v}_i) \mathbf{v}_i^* (\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}$$

$$\therefore f = \sum_{i=1}^n f(\mathbf{v}_i) \mathbf{v}_i^* \in \operatorname{span} \mathfrak{B}^*$$

Corollary 1.1.1. $V \cong V^*$ but not naturally isomorphic

Theorem 1.2. $L: \mathbf{V} \longrightarrow \mathbf{W}$ linear, $\mathfrak{B}, \mathfrak{C}$ are bases for \mathbf{V}, \mathbf{W} and $\mathfrak{B}^*, \mathfrak{C}^*$ are dual bases for $\mathbf{V}^*, \mathbf{W}^*$ respectively. Let $L^*: \mathbf{W}^* \longrightarrow \mathbf{V}^*$ defined by $f \mapsto f \circ L$. Then L^* is linear and $[L^*]_{\mathfrak{B}^*}^{\mathfrak{C}^*} = ([L]_{\mathfrak{G}}^{\mathfrak{B}})^t$

Proof. L^* is linear

Suppose $f, g \in \mathbf{W}^*$, and $a \in \mathbb{R}$ be given.

$$L^*(af + g) = (af + g) \circ L$$
$$= af \circ L + g \circ L$$
$$= a(f \circ L) + g \circ L$$
$$= aL^*f + L^*g$$
$$\therefore L^* \text{ is linear}$$

Note. $(f+g) \circ L = f \circ L + g \circ L$ $\therefore ((f+g) \circ L)\mathbf{v} = (f+g)(L\mathbf{v}) = f(L\mathbf{v}) + g(L\mathbf{v})$

Proof. $[L^*]_{\mathfrak{B}^*}^{\mathfrak{C}^*} = ([L]_{\mathfrak{C}}^{\mathfrak{B}})^t$ WTS (i,j) entry of $[L^*]_{\mathfrak{B}^*}^{\mathfrak{C}^*} = (j, i)$ entry of $[L]_{\mathfrak{C}}^{\mathfrak{B}}$

 $\mathfrak{B} \coloneqq \{\mathbf{v}_1, \dots, \mathbf{v}_n\}, \mathfrak{C} \coloneqq \{w_1, \dots, w_m\} \text{ are bases for } \mathbf{V}, \mathbf{W} \text{ respectively.}$ $\mathfrak{B}^* \coloneqq \{\mathbf{v}_1^*, \dots, \mathbf{v}_n^*\}, \mathfrak{C}^* \coloneqq \{\mathbf{w}_1^*, \dots, \mathbf{w}_m^*\} \text{ are dual bases for } \mathbf{V}^*, \mathbf{W}^* \text{ respectively.}$ $\mathbf{j}^{th} \text{ column of } [L^*]_{\mathfrak{B}^*}^{\mathfrak{C}^*} = [L^*\mathbf{w}_j^*]_{\mathfrak{B}^*} = [\mathbf{w}_j^* \circ L]_{\mathfrak{B}^*}$

Since $\mathbf{w}_j^* \circ L \in \mathbf{V}^*$, span $\mathfrak{B}^* = \mathbf{V}^*$, and $\mathbf{w}_j^* \circ L = \sum_{i=1}^n (\mathbf{w}_j^* \circ L)(\mathbf{v}_i)\mathbf{v}_i^*$, $[\mathbf{w}_i^* \circ L]_{\mathfrak{B}^*} = [\mathbf{w}_j^*(L\mathbf{v}_1), \dots, \mathbf{w}_j^*(L\mathbf{v}_n)] \in \mathbb{R}^n$

Put $L\mathbf{v}_i \coloneqq \sum_{k=1}^m a_{ik}\mathbf{w}_k$, then $\mathbf{w}_j^*(L\mathbf{v}_i) = a_{ij}$ for i = 1, ..., n. So i^{th} element is a_{ij} .

 \mathbf{i}^{th} column of $[L]_{\mathfrak{C}}^{\mathfrak{B}} = [L\mathbf{v}_i]_{\mathfrak{C}} = [\sum_{k=1}^m a_{ik}\mathbf{w}_k]_{\mathfrak{C}} = (a_{i1}, \dots, a_{im})$ and \mathbf{j}^{th} element is a_{ij} $\therefore (i,j) \text{ of } [L^*]_{\mathfrak{B}^*}^{\mathfrak{C}^*} = (j,i) \text{ of } [L]_{\mathfrak{C}}^{\mathfrak{B}^*}$

2 Double Dual of V, V**

Theorem 2.1. $\phi: \mathbf{V} \longrightarrow \mathbf{V}^{**}$ defined by $\phi(\mathbf{v})f = f\mathbf{v}$ ϕ is natural isomorphism. It is not dependent on any choice of basis.

Proof. ϕ is linear

Suppose $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}, f \in \mathbf{V}^*, a, b \in \mathbb{R}$ be given.

$$\phi(a\mathbf{v}_1 + b\mathbf{v}_2)f = f(a\mathbf{v}_1 + b\mathbf{v}_2)$$

$$= af\mathbf{v}_1 + bf\mathbf{v}_2$$

$$= a\phi(\mathbf{v}_1)f + b\phi(\mathbf{v}_2)f$$

$$\therefore \phi \text{ is linear}$$

Proof. ϕ is 1-1 (\iff ker $\phi = \mathbf{O}$) Let $\mathbf{v} \in \text{ker}\phi$ be given. Then $\phi(\mathbf{v}) = \mathbf{0}$. Thus, $f\mathbf{v} = 0 \quad \forall f \in \mathbf{V}^*$ Put $\mathbf{v} \coloneqq \sum_{i=1}^n a_i \mathbf{v}_i, \mathfrak{B} \coloneqq \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ a basis for \mathbf{V} , and $\mathfrak{B}^* \coloneqq \{\mathbf{v}_1^*, \dots, \mathbf{v}_n^*\}$ dual basis for \mathbf{V}^* . For $j = 1, \dots, n$ $\mathbf{v}_j^*(\sum i = 1^n a_i \mathbf{v}_i) = 0$ then $a_j = 0$. Thus, $\mathbf{v} = \mathbf{0}$ $\therefore \text{ker } \phi = \mathbf{O}$

Proof. ϕ is onto

Since $\dim \mathbf{V} = \dim \mathbf{V}^* = \dim \mathbf{V}^{**}$ by the Pigeon hole's principle, ϕ is onto. $\therefore \phi$ is natural isomorphism