A Short Proof of the Pi Theorem of Dimensional Analysis

By J. B. Boyling, School of Mathematics, University of Leeds, Leeds, England

The Pi Theorem of Vaschy and Buckingham [8, 4] has been proved in many different ways, varying considerably in complexity and generality [1–8]. We present here a short proof somewhat akin to that of Birkhoff [1], but expressed more concisely by the simple device of taking logarithms from the start to convert it into a (virtually trivial) linear problem.

By a relation between physical quantities x_0, x_1, \ldots, x_n we mean a statement expressible in the form

$$(x_0, x_1, \ldots, x_n) \in E$$

where E is some subset of \mathbb{R}^{n+1} . We do *not* assume that E is a smooth hypersurface in \mathbb{R}^{n+1} , nor in general do we assume that E is the graph of a (single-valued) function of n variables (but see Theorem 2 below).

Theorem 1 (The Pi Theorem). A relation between positive dimensional quantities x_i with dimensions $M^{\alpha_i}L^{\beta_i}T^{\gamma_i}$ (where $i=0,1,\ldots,n,\alpha_i,\beta_i$ and γ_i are real but not necessarily rational, and M, L and T denote mass, length and time respectively) that is, independent of the choice of units of mass, length and time, may be expressed as a relation between dimensionless products of powers of the x_i (monomials).

Proof: In terms of new variables $\xi_i = \ln x_i$, the relation takes the form

$$\xi = (\xi_0, \xi_1, \ldots, \xi_n) \in E,$$

where E is a subset of \mathbb{R}^{n+1} . Now, if the units of mass, length and time are divided by μ , λ and τ respectively, then x_i gets multiplied by $\mu^{\alpha_i}\lambda^{\beta_i}\tau^{\gamma_i}$, so ξ_i increases by an amount $a\alpha_i + b\beta_i + c\gamma_i$, where $a = \ln \mu$, $b = \ln \lambda$, $c = \ln \tau$. Since the relation is independent of units, the set E must be invariant under all translations by vectors of the form $a\alpha + b\beta + c\gamma$, where $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_n)$, etc., i.e. by vectors in the subspace V of \mathbb{R}^{n+1} spanned by α , β and γ (this group of translations being isomorphic with the dimensional group [1]). Thus E must be of the form A + V, where A is a subset of the orthogonal complement W of V with respect to the usual scalar product on \mathbb{R}^{n+1} . Hence $\xi \in E$ if and only if $P\xi \in A$, where P is the orthogonal projection of \mathbb{R}^{n+1} onto W. In terms of an orthonormal basis e_0, e_1, \dots, e_m of W, $\xi \in E$ if and only if $(e_0 \cdot \xi, e_1 \cdot \xi, \dots, e_m \cdot \xi)$ belongs to a certain subset B of \mathbb{R}^{m+1} (N.B. $n-3 \le m \le n$). Thus the original relation is equivalent to a relation between the m+1 quantities $e_j \cdot \xi$, or equivalently between their exponentials

$$\Pi_j = \exp \mathbf{e}_j \cdot \mathbf{\xi} \quad (j = 0, 1, \dots, n),$$

each of which is a dimensionless product of powers of the x_t .

In practical applications of dimensional analysis, the following theorem is often more useful than the Pi Theorem itself.

Theorem 2. If the relation of Theorem 1 takes the form

$$x_0 = f(x_1, \ldots, x_n)$$

for some function f, then f must be of the form

$$f(x_1,\ldots,x_n)=\left(\prod_{i=1}^n x_i^{\delta_i}\right)g(\Pi_1,\Pi_2,\ldots,\Pi_m),$$

where the δ_i are real numbers and the Π_i dimensionless products of powers of x_1, \ldots, x_n .

Proof: We write vectors in \mathbb{R}^{n+1} in the form $\xi = (\xi_0, \tilde{\xi})$, where $\tilde{\xi} \in \mathbb{R}^n$ consists of the last n components of ξ . Let \tilde{V} be the subspace of \mathbb{R}^n spanned by $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$, \tilde{W} its orthogonal complement, \tilde{P} and \tilde{Q} the orthogonal projections of \mathbb{R}^n onto \tilde{W} and \tilde{V} respectively. We have $\xi \in E$ if and only if $\xi_0 = \phi(\tilde{\xi})$, where

$$\phi(\xi_1,\ldots,\xi_n) \doteq \ln f(e^{\xi_1},\ldots,e^{\xi_n}).$$

Since E is invariant under translations by vectors in V, ϕ satisfies

$$\phi(\tilde{\xi} + a\tilde{\alpha} + b\tilde{\beta} + c\tilde{\gamma}) = \phi(\tilde{\xi}) + a\alpha_0 + b\beta_0 + c\gamma_0$$

for any real a, b and c. Thus

$$\phi(\tilde{\xi} + a\tilde{\alpha} + b\tilde{\beta} + c\tilde{\gamma}) - \phi(\tilde{\xi}) = l(a\tilde{\alpha} + b\tilde{\beta} + c\tilde{\gamma}),$$

where l is a linear form on \tilde{V} , which is independent of $\tilde{\xi}$. Hence, for any $\tilde{\xi}$ in \mathbb{R}^n , we have

$$\phi(\tilde{\xi}) = \phi(\tilde{P}\tilde{\xi} + \tilde{Q}\tilde{\xi}) = \phi(\tilde{P}\tilde{\xi}) + l(\tilde{Q}\tilde{\xi}),$$

in which the last term on the right-hand side is a linear form in $\tilde{\xi}$ on \mathbb{R}^n vanishing on the subspace \tilde{W} , and is therefore of the form $\tilde{\delta} \cdot \tilde{\xi}$, where $\tilde{\delta}$ is a vector in \tilde{V} . Thus, if $\tilde{\mathbf{e}}_1, \ldots, \tilde{\mathbf{e}}_m$ is an orthonormal basis of \tilde{W} , we have

$$\phi(\tilde{\xi}) = \phi \left[\sum_{j=1}^{m} (\tilde{e}_{j} \cdot \tilde{\xi}) \tilde{e}_{j} \right] + \tilde{\delta} \cdot \tilde{\xi}$$
$$= \psi(\Pi_{1}, \dots, \Pi_{m}) + \tilde{\delta} \cdot \tilde{\xi},$$

say, where

$$\Pi_j = \exp\left(\tilde{\mathbf{e}}_j \cdot \tilde{\mathbf{\xi}}\right)$$

is a dimensionless product of powers of x_1, \ldots, x_n . Hence

$$f(x_1,\ldots,x_n) = \left(\prod_{i=1}^n x_i^{\delta_i}\right) \exp \psi(\Pi_1,\ldots,\Pi_m)$$
$$= \left(\prod_{i=1}^n x_i^{\delta_i}\right) g(\Pi_1,\ldots,\Pi_m),$$

say, where the δ_i are the components of the vector $\tilde{\delta}$.

Corollary. A relation of the kind considered in Theorem 2 can only be independent of units if the dimensions of the quantities x_0, x_1, \ldots, x_n are such that the $(n + 1) \times 3$ matrix whose columns are α , β and γ has the same rank as the $n \times 3$ matrix whose columns are $\tilde{\alpha}$, $\tilde{\beta}$ and $\tilde{\gamma}$.