

Grammaires de descriptions d'objets

Florent Hivert

Mél:Florent.Hivert@lri.fr
Adresse universelle:http://www.lri.fr/~hivert

Objectifs : algorithmes génériques

■ Identifier les composants de base :

⇒ Singleton, union, produit cartésien, ensemble et multiensemble. . .

- Comprendre comment composer les briques de base

 ⇒ grammaire de description, classe combinatoire
- ⇒ Algorithmes génériques

Objectifs : algorithmes génériques

■ Identifier les composants de base :

 \Longrightarrow Singleton, union, produit cartésien, ensemble et multiensemble. . .

- Comprendre comment composer les briques de base
 - ⇒ grammaire de description, classe combinatoire
- ⇒ Algorithmes génériques

Union disjointe 3 de 17

Union disjointe

Definition

On écrit $C = A \sqcup B$ et on dit que C est l'union disjointe de A et B si $C = A \sqcup B$ et $A \cap B = \emptyset$.

Alors

- \blacksquare count(C) = count(A) + count(B)
- On peut prendre : list(C) = concat(list(A), list(B))

Union disjointe 3 de 17

Union disjointe

Definition

On écrit $C = A \sqcup B$ et on dit que C est l'union disjointe de A et B si $C = A \sqcup B$ et $A \cap B = \emptyset$.

Alors:

- \blacksquare count(C) = count(A) + count(B)
- On peut prendre : list(C) = concat(list(A), list(B))

Itération sur une union disjointe

On fixe l'ordre d'énumération tel que

$$list(A \sqcup B) := concat(list(A), list(B))$$

Itération en Python :

```
1 def iterunion(A, B):
2 for a in A:
3 yield a
4 for b in B:
5 yield b
```

Union disjointe 5 de 17

first, next sur une union disjointe

```
list(A \sqcup B) := concat(list(A), list(B))
1
          def first_union(A, B):
              return A.first()
3
          def next_union(A, B, x):
4
5
              if x in A:
6
                   try:
                       return A.next(x)
8
                   except StopIteration:
                       return B.first()
9
10
              else:
11
                   return B.next(x)
```

Union disjointe 6 de 17

rank sur une union disjointe

```
list(A \sqcup B) := concat(list(A), list(B))
1
         def rank_union(A, B, x):
              if x in A:
3
                  return A.rank(x)
              else:
4
5
                  return A.count() + B.rank(x)
6
         def unrank_union(A, B, i):
              if i < A.count():
                  return A.unrank(i)
9
10
              else:
                  return B.unrank(i - A.count())
11
```

ARIS Union disjointe 7 de 17

Le principe de l'idée récursive

Quand on a un'bonne idée, on l'appliqu'récursivement : on obtient le plus souvent une bien meilleure idée!

Unions disjointes récursives

Union disjointe 7 de 17

Le principe de l'idée récursive

Quand on a un'bonne idée, on l'appliqu'récursivement : on obtient le plus souvent une bien meilleure idée!

■ Unions disjointes récursives

Les chaînes de *n*-bits ayant *k*-bits à 1

Une chaîne de bit non vide commence soit par un 0, soit par un 1 :

$$BitString(n, k) = 0 \cdot BitString(n-1, k) \sqcup 1 \cdot BitString(n-1, k-1)$$

Idem triangle de pascal:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

■ BitString(n, k). count $() = \binom{n}{k}$

rank, unrank pour les chaînes de *n*-bits ayant *k*-bits à 1

```
1
     def rank BSnk(x):
         if not x:
                          # liste vide
 3
             return 0
         if x[0] == 0:
4
 5
             return rank_BSnk(x[1:])
6
         else:
 7
             return binom(len(x)-1, sum(x)-1) + rank_BSnk(x[1:])
8
9
     def unrank_BSnk(n, k, i):
10
         if n == 0:
11
             return []
12
         bn1k = binom(n-1, k)
13
         if i < bn1k:
14
             return [0]+unrank_BSnk(n-1, k, i)
15
         else:
16
             return [1]+unrank_BSnk(n-1, k-1, i-bn1k)
```

Union disjointe 10 de 17

Le problème du calcul de la cardinalité

Problème

Le calcul récursif des coefficients binomiaux $\binom{n}{k}$ n'est pas efficace car on recalcule plusieurs fois la même chose.

Plus généralement, le calcul récursif des cardinalités sera très inefficace pour la même raison.

Union disjointe 11 de 17

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 11 de 17

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 11 de 17

Parenthèse : mémoization et programmation dynamique

Retenir

- **Mémoisation** : on mémorise tous les calculs pendant la récursion au momment où on les fait
- **Programmation Dynamique**: résoud les sous-problèmes, des plus petits aux plus grands en stockant les résultats intermédiaires.

En général, la programmation dynamique est plus efficace mais plus longue à mettre en oeuvre : il faut avoir planifié l'utilisation de la mémoire.

Union disjointe 12 de 17

Autre exemple : les permutations

Les permutés d'un ensemble $X := \{x_1, x_2, \dots, x_n\}$:

$$\mathsf{Perm}\{1,2,3\} = 1 \cdot \mathsf{Perm}\{2,3\} \ \sqcup \ 2 \cdot \mathsf{Perm}\{1,3\} \ \sqcup \ 3 \cdot \mathsf{Perm}\{1,2\}$$

Plus généralement :

Retenir

Énumération lexicographique des permutations :

$$\operatorname{\mathsf{Perm}}(X) = \bigsqcup_{i=1}^n x_i \cdot \operatorname{\mathsf{Perm}}(X/\{x_i\})$$

■ Perm(X). count() = |X|!

Généralisation : permuté d'un multiensemble

 $\mathsf{Perm}\{1,1,2,3\} = 1 \cdot \mathsf{Perm}\{1,2\} \sqcup 2 \cdot \mathsf{Perm}\{1,1,3\} \sqcup 3 \cdot \mathsf{Perm}\{1,1,2\}$

Notation : $\{1, 1, 2, 3\} = 1^2 2^1 3^1$

$$\mathsf{Perm}(1^2 2^3 3^1) = 1 \cdot \mathsf{Perm}(1^1 2^3 3^1) \sqcup 2 \cdot \mathsf{Perm}(1^1 2^2 3^1) \sqcup 3 \cdot \mathsf{Perm}(1^1 2^3)$$

Retenir

Énumération lexicographique des multi-permutations :

$$\operatorname{Perm}(X) = \bigsqcup_{i=1}^{n} x_i \cdot \operatorname{Perm}(X/\{x_i\})$$

Coefficient multinomiaux :

$$\binom{|I|}{i_1, i_2, \dots, i_k} = \binom{|I| - 1}{i_1 - 1, i_2, \dots, i_k} + \binom{|I| - 1}{i_1, i_2 - 1, \dots, i_k} + \cdots + \binom{|I| - 1}{i_1, i_2, \dots, i_k - 1}$$

$$\mathsf{Perm}(x_1^{i_1} \dots x_k^{i_k}). \, \mathsf{count}() = \frac{(i_1 + i_2 + \dots + i_k)!}{i_1! i_2! \dots i_k!} = \binom{|I|}{i_1, i_2, \dots, i_k}$$

Coefficient multinomiaux :

$$\binom{|I|}{i_1, i_2, \dots, i_k} = \binom{|I| - 1}{i_1 - 1, i_2, \dots, i_k} + \binom{|I| - 1}{i_1, i_2 - 1, \dots, i_k} + \cdots + \binom{|I| - 1}{i_1, i_2, \dots, i_k - 1}$$

$$\mathsf{Perm}(x_1^{i_1} \dots x_k^{i_k}). \, \mathsf{count}() = \frac{(i_1 + i_2 + \dots + i_k)!}{i_1! i_2! \dots i_k!} = \binom{|I|}{i_1, i_2, \dots, i_k}$$

Le produit cartesien 15 de 17

Le produit cartesien

Definition

On appelle **produit cartesien** de A et B l'ensemble C noté $C := A \times B$ défini par

$$C := \{(a, b) \mid a \in A, b \in B\}\}.$$

Alors

- $lue{}$ count(C) = count(A) \cdot count(B)
- On peut prendre la liste dans l'ordre lexicographique : list(C) = [(a_1 , b_1), (a_1 , b_2), (a_1 , b_3), . . . (a_2 , b_1), (a_2 , b_2) . . .]

Le produit cartesien

Definition

On appelle **produit cartesien** de A et B l'ensemble C noté $C := A \times B$ défini par

$$C := \{(a, b) \mid a \in A, b \in B\}$$
.

Alors:

- \blacksquare count(C) = count(A) · count(B)
- On peut prendre la liste dans l'ordre lexicographique : list(C) = [(a_1, b_1), (a_1, b_2), (a_1, b_3), . . . (a_2, b_1), (a_2, b_2) . . .].

Notion de classe combinatoire

Définition (Classe combinatoire)

On appelle classe combinatoire un ensemble C dont les éléments e ont une taille (nommée aussi degrée) noté |e| et tels que l'ensemble C_n des éléments de taille n est fini :

$$\operatorname{count}(\{e \in C \mid |e| = n\}) < \infty$$

Le produit cartesien gradué