INTRODUCTION TO COMPUTER SCIENCE

Week 6-3: Asymptotic Notation 2

Giulia Alberini, Fall 2020

WHAT ARE WE GOING TO DO IN THIS VIDEO?

- Properties of Astropgotinentallouject Exam Help
- Big-Omega, $\Omega(\cdot)$ https://powcoder.com
- Big-Theta, $\Theta(\cdot)$ Add WeChat powcoder

RULES OF BIG-OH

Scaling

Assignment Project Exam Help

Sum rule

https://powcoder.com

Product Rule

Add WeChat powcoder

Transitivity

SCALING

For all constant factors a > 0,

if f(n) is O(g(ng)nthen Project is also <math>P(g(n)).

https://powcoder.com

Add WeChat powcoder

(This rule is obvious if you understand the definition of big 0)

SCALING

For all constant factors a > 0,

if
$$f(n)$$
 is $O(g(n))$, then $g(n)$ is also $O(g(n))$

https://powcoder.com

Proof: By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, We Chat p_0 wooder

$$f(n) \leq c g(n)$$
.

Thus, ...?

SCALING

For all constant factors a > 0,

if
$$f(n)$$
 is $O(g(n))$, then $g(n)$ is also $O(g(n))$

https://powcoder.com

Proof: By definition, if f(n) is O(g(n)) then there exist two positive constants n_0 and c such that, We that p_0 wooder

$$f(n) \leq c g(n)$$
.

Thus,

$$\frac{a}{a} \cdot f(n) \leq \frac{a}{a} c g(n)$$

This constant satisfies the definition that $a \cdot f(n)$ is O(g(n))

SUM RULE

If $f_1(n)$ is O(g(n)) and $f_2(n)$ is O(g(n)), then $f_1(n) + f_2(n)$ is O(g(n)).

Assignment Project Exam Help

Proof: ...

https://powcoder.com

Add WeChat powcoder

SUM RULE

If $f_1(n)$ is O(g(n)) and $f_2(n)$ is O(g(n)), then $f_1(n) + f_2(n)$ is O(g(n)).

Assignment Project Exam Help

Proof: Let n_1 , c_1 and n_2 , c_2 be constants such that https://powcoder.com

 $|f_1|(n)| \le c_1 g(n)$ for all $n \ge n_2$

SUM RULE

If $f_1(n)$ is O(g(n)) and $f_2(n)$ is O(g(n)), then $f_1(n) + f_2(n)$ is O(g(n)).

Assignment Project Exam Help

Proof: Let n_1 , c_1 and n_2 , c_2 be constants such that https://powcoder.com

$$|f_1|(n)| \le c_1 g(n)$$
 for all $n \ge n_2$

Then,

$$f_1(n) + f_2(n) \le (c_1 + c_2) g(n)$$
 for all $n \ge \max(n_1, n_2)$

These constants satisfy the big 0 definition

SUM RULE (MORE GENERAL)

If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$,

Assignment Project Exam Help

Then $f_1(n) + f_2(n)$ is $O(g_1(n) + g_2(n))$.

https://powcoder.com

Proof: Try it! Add WeChat powcoder

PRODUCT RULE

If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) * f_2(n)$ is $O(g_1(n) * g_2(n))$.

Assignment Project Exam Help

Proof: ...

https://powcoder.com

Add WeChat powcoder

PRODUCT RULE

If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) * f_2(n)$ is $O(g_1(n) * g_2(n))$.

Assignment Project Exam Help

Proof: Let n_1, c_1 and n_2, c_1 be constants such that https://powcoder.com

$$f_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$ and $f_2(n) \le c_2 g_2(n)$ for all $n \ge n_2$

PRODUCT RULE

If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) * f_2(n)$ is $O(g_1(n) * g_2(n))$.

Assignment Project Exam Help

Proof: Let n_1 , c_1 and n_2 , c_1 be constants such that https://powcoder.com

$$f_1(n) \le c_1 g_1(n)$$
 for all $n \ge n_1$ and $f_2(n) \le c_2 g_2(n)$ for all $n \ge n_2$

Then,

$$f_1(n) * f_2(n) \le c_1 c_2 g_1(n) * g_2(n) \text{ for all } n \ge \max(n_1, n_2)$$

These constants satisfy the big 0 definition

If f(n) is O(g(n)) and g(n) is O(h(n)), then...?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

Assignment Project Exam Help

Proof: Let n_1, c_1 and n_2, c_1 be constants such that

 $|f(n)| \le c_1 g(n)$ for all $n \ge n_1$ and $g(n) \le c_2 h(n)$ for all $n \ge n_2$

If f(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)).

Assignment Project Exam Help

Proof: Let n_1, c_1 and n_2, c_1 be constants such that

$$|f(n)| \le c_1 g(n)$$
 for all $n \ge n_1$ and $g(n) \le c_2 h(n)$ for all $n \ge n_2$

Then,

$$f(n) \le c_1 c_2 h(n)$$
 for all $n \ge \max(n_1, n_2)$

These constants satisfy the big O definition

COMMON FUNCTIONS

Claim: each of the following holds for n sufficiently large

Assignment Project Exam Help
$$1 < \log_2 n < n \log_2 n < n^2 < n^3 < \dots < 2^n < n!$$

$$https://powcoder.com$$

$$n \ge 3$$
Add WeChat powcoder
$$n \ge 4$$

$$n^3 < 2^n \text{ for } n \ge 10$$

COMMON FUNCTIONS

Each of the following holds for n sufficiently large:

$$1 < \log_2 n < n < n \log_2 n < n^2 < n^3 < ... < 2^n < n!$$
Assignment Project Exam Help

Thus we have the following strict subset relationships:

BACK TO TIGHT BOUNDS

If we consider the function f(n) = 5n + 7, then the **tight upper bound** for f is O(n) and not $O(n \log_2 n)$ for ginstense Project Exam Help

EXAMPLE

Using these claims/rules allow us to say, for example, that Assignment Project Exam Help

$$f(n) = 3 + \frac{\text{https://powcoder.com}_{0}}{17 \log_2 n + 4 n + \frac{2}{6}} \text{ is } 0(n^2).$$
Add WeChat powcoder

GENERAL OBSERVATION

Never write O(3n), $O(5 \log_2 n)$, etc.

Assignment Project Exam Help

Instead, write O(n), $O(\log n)$ ttpsts//powcoder.com

Add WeChat powcoder

Why? The set O(3n) is exactly the same set defined by O(n), and so are the others.

It is still *technically* correct to write the above. We just don't do it to avoid dealing with constant factors.

ASYMPTOTIC LOWER BOUNDS

Sometimes we want to say that algorithms take at least a certain time Assignment Project Exam Help to run as a function of the input size n.

https://powcoder.com

Add WeChat powcoder

PRELIMINARY DEFINITION (LOWER BOUND)

f(n) is asymptotically bounded below by g(n) if there exists an n_0 such that, for all $n \ge n$ Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Note: As with big 0, the constant n_0 is not unique. If the definition works for some n_0 then it will work for larger n_0 too.

GRAPHICALLY f(n)Assignment Project Exam Help https://powcoder.com Add WeChat powcoder g(n) n_0

EXAMPLE

Claim:
$$f(n) = \frac{n(n-1)}{2}$$
 is asymptotically bounded below by $g(n) = \frac{n^2}{4}$.

Assignment Project Exam Help

To prove: show that there exists at n_0 spential, derivative n_0 ,

EXAMPLE

Claim:
$$f(n) = \frac{n(n-1)}{2}$$
 is asymptotically bounded below by $g(n) = \frac{n^2}{4}$.

Assignment Project Exam Help

$$\left|\frac{n(n-1)}{2}\right| \geq \frac{n^2}{4}$$

Proof: $\left| \frac{n(n-1)}{2} \right| \ge \frac{n^2}{4}$ https://powcoder.com

$$\Leftrightarrow |2n(n-1)| \ge n^2$$

 $\Rightarrow 2n(n-1) \ge n^2$ $\Rightarrow 2n^2 - 2n \ge n^2$ Add WeChat powcoder

$$\Leftrightarrow 2n^2 - 2n \ge n^2$$

$$\Leftrightarrow n^2 \ge 2n$$

$$\Leftrightarrow$$
 $n \geq 2$

So, we can use $n_0 = 2$.

FORMAL DEFINITION OF BIG OMEGA (Ω)

Given a function g(n), we denote by $\Omega(g(n))$ ("big-omega of g of n") the following set of set of the project Exam Help

https://powcoder.com

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } Add \text{ WeChat powcoder} f(n) \ge cg(n) \text{ for all } n \ge n_0 \}$

We use the Ω -notation to describe an **asymptotic lower bound**.

EXAMPLE

Claim:
$$f(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Assignment Project Exam Help

Proof(1): Use $c = \frac{1}{4}$ and the derivation we just saw.. https://powcoder.com

$$\frac{n(n-1)}{2} \ge \frac{n^2}{4}$$
 Add WeChat powcoder

⇔:

$$\Leftrightarrow$$
 $n \ge 2$

So, we can take
$$n_0 = 2$$
 and $c = \frac{1}{4}$

EXAMPLE

Claim:
$$f(n) = \frac{n(n-1)}{2}$$
 is $\Omega(n^2)$.

Assignment Project Exam Help

Proof (2): Let's try $c = \frac{1}{3}$

$$\frac{n(n-1)}{2} \ge \frac{n^2}{3}$$
 https://powcoder.com
Add WeChat powcoder

$$\Leftrightarrow$$
 $3n(n-1) \ge 2n^2$

$$\Leftrightarrow n^2 \ge 3n$$

$$\Leftrightarrow$$
 $n \ge 3$

So, we can take
$$n_0 = 3$$
 and $c = \frac{1}{3}$

BACK TO INSERTION SORT

At the beginning of last lecture we found the function describing the best-case running time for insertion sort.

Assignment Project Exam Help

https://poweodaricom

where a, and b are some density and b of b

Claim: $T_{best}(n)$ is $\Omega(n)$

$T_{best}(n)$ IS $\Omega(n)$ - PROOF

Claim: $T_{best}(n)$ is $\Omega(n)$

Proof:
$$T_{best}(n) = an + b$$

Assignment Project Exam Help

 $\geq an + b$
 $\Rightarrow an + bn$, for all $n \geq 1$ since $b < 0$
 $\Rightarrow an + bn$ and WeChat powcoder.

So we can take c=a+b (which is positive since it is equal to $T_{best}(1)$) and $n_0=1$.

OBSERVATION ON BEST-CASE LOWER BOUNDS

• Since Ω-notation Alesigning at the best-case running time of an algorithm, then we have a lower bound on the running time of the algorithm on every input.

That is, Add WeChat powcoder

Since $T(n) \ge T_{best}(n)$, if $T_{best}(n) = \Omega(g(n))$, then $T(n) = \Omega(g(n))$

INSERTION SORT

What do we know about the running time of insertion sort up to know?

- We computed TASSignment Ragiest Exam Help
- We have proved that https://powcoder.com $T_{worst}(n)$ is $O(n^2)$, and $T_{best}(n)$ is $\Omega(n)$ Add WeChat powcoder
- Therefore, T(n) is both $O(n^2)$ and $\Omega(n)$.

TRY IT!

Prove that the scalings sum product in the scalings sum product in the scaling of the scaling of

https://powcoder.com

Add WeChat powcoder

BACK TO THE COMMON FUNCTIONS

Each of the following holds for n sufficiently large:

$$1 < \log_2 n < n < n \log_2 n < n^2 < n^3 < ... < 2^n < n!$$
Assignment Project Exam Help

Thus we have the following strict subset relationships:

FORMAL DEFINITION OF BIG THETA (Ω)

Given a function g(n), we denote by $\Theta(g(n))$ ("big-theta of g of n") the following set of set of the project Exam Help

https://powcoder.com

We use the Θ -notation to describe an asymptotic tight bound.

GRAPHICALLY

Claim:
$$f(n) = \frac{1}{2}n^2 - 3n$$
 is $\Theta(n^2)$.

Assignment Project Exam Help

Proof: We need to find 3 positive constants c_1, c_2 , and n_0 such that https://powcoder.com

https://powcoder.com

1
Add Wechat Powcoder

Add Wechat Powcoder

for all $n \geq n_0$.

Claim: $f(n) = \frac{1}{2} n^2 - 3n$ is $\Theta(n^2)$.

Assignment Project Exam Help Proof: We need to find 3 positive constants c_1 , c_2 , and n_0 such that

https://powcoder.com
$$c_1 n^2 \le -n^2 - 3n \le c_2 n^2$$
Add WeChat powcoder

for all $n \geq n_0$. Dividing by n^2 we get

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

The right hand inequality holds for all $n \ge 1$ if we chose any $c_2 \ge \frac{1}{2}$. The left hand inequality holds for all $n \geq 7$ if we chose any $c_1 \leq \frac{1}{14}$.

Claim:
$$f(n) = \frac{1}{2}n^2 - 3n$$
 is $\Theta(n^2)$.

Assignment Project Exam Help

Proof: We need to find 3 positive constants c_1, c_2 , and n_0 such that https://powcoder.com

for all $n \geq n_0$.

The right hand inequality holds for all $n \ge 1$ if we chose any $c_2 \ge \frac{1}{2}$. The left hand inequality holds for all $n \ge 7$ if we chose any $c_1 \le \frac{1}{14}$.

Pick
$$n_0 = 7$$
, $c_1 = 1/14$, $c_2 = 1/2$.

DEFINITION OF BIG THETA (Θ)

```
Let f(n) and g(n) be two functions of n \ge 0.
Assignment Project Exam Help
```

```
We say f(n) is \Theta(d^{\text{thp}}); if preverse three positive constants n_0, c_1, c_2 such that for where the production c_1 g(n) \leq f(n) \leq c_2 g(n)
```

$$f(n)$$
 is $O(g(n))$

DEFINITION OF BIG THETA (Θ)

```
Let f(n) and g(n) be two functions of n \ge 0.
Assignment Project Exam Help
```

```
We say f(n) is \Theta(g(n)); if preverent three positive constants n_0, c_1, c_2 such that for We Chatopowcoder c_1, g(n) \leq f(n) \leq c_2, g(n)
```

$$f(n)$$
 is $\Omega(g(n))$

THEOREM

For any two functions in the marting of the search of the

$$f(n) = \Theta(g(n)) \qquad \Leftrightarrow \qquad f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$$

$$\underset{\text{if and only if}}{\text{Add WeChat powcoder}}$$

Claim:
$$f(n) = 4 + 17 \log_2 n + 3n + 9 n \log_2 n + \frac{n(n-1)}{2}$$
 is $\Theta(n^2)$.

Assignment Project Exam Help

Proof:

$$\frac{n^2}{4} \le \frac{https://powcoder.com}{4 + 17 + 3 + 9 + \frac{1}{2}} n^2$$
Add WeChat powcoder

In general, you want to set c_1 to be a value that is slightly smaller than the coefficient of the highest-order term and c_2 to be a value that is slightly larger.

DOES A TIGHT BOUND ALWAYS EXIST?

For every f(n), does there exist a "simple" g(n) such that f(n) is $\Theta(g(n))$?

No, as this contrived example shows:
Assignment Project Exam Help

Let
$$f(n) = \begin{cases} n, & n \text{ is odd} \\ n^2, & n \text{ is even} \end{cases}$$
 https://powcoder.com

f(n) is $O(n^2)$, but f(n) is not O(n). f(n) is $\Omega(n)$, but f(n) is not $\Omega(n^2)$.

DOES A TIGHT BOUND ALWAYS EXIST?

We can also think about the function representing the running time of insertion sort.

Assignment Project Exam Help

$$T_{best}(n) \in \Theta(n)$$
 and $t_{worst}(n) \in \Theta(n^2)$ and $T_{worst}(n) \in \Theta(n^2)$. Note that it is improper to say that $T(n)$ is $O(n^2)$ (for instance), since for

$$\Rightarrow$$
 $T(n) \in O(n^2), T(n) \in \Omega(n)$

AND

$$T(n) \notin \Theta(n), T(n) \notin \Theta(n^2)$$

Add WeChat powcodergiven n, the actual running time varies, depending on the particular input. When we say that, what we mean is that there exists a function f(n) which is $O(n^2)$ and T is bounded above by f, no matter the particular input of size n.

SETS OF Θ () FUNCTIONS

Each of the following holds for n sufficiently large:

$$1 < \log_2 n < Assignment Project_2 Exam_3 Help... < 2^n < n!$$
https://powcoder.com

Add WeChat powcoder

Assignment Project Exam Help In the next videos:

https://powcoder.com

Stacks and Queues

Add WeChat powcoder