CCPS 844 Data Mining (Lab 7) Submit your solution as a pdf file

- Q-1 Select a dataset/datasets of your choice. Apply SVM Classification Evaluate the results
- Q-2 Select a dataset/datasets of your choice. Apply SVM Regression Evaluate the results

```
In [119]: import numpy as np
  import matplotlib.pyplot as plt
  import pandas as pd
  pd.set_option('display.max_columns', 100)
```

```
In [120]: from sklearn import svm

df = pd.read_csv('winequality-red.csv')
    df['overfive'] = (df.quality > 5).astype(int)
```

```
In [121]: df.sample(5)
```

Out[121]:

	fixed acidity	volatile acidity	citric acid		chlorides	free sulfur dioxide		density	pН
1318	7.5	0.63	0.27	2.0	0.083	17.0	91.0	0.99616	3.26
1147	10.0	0.41	0.45	6.2	0.071	6.0	14.0	0.99702	3.21
200	9.6	0.32	0.47	1.4	0.056	9.0	24.0	0.99695	3.22
1372	8.7	0.78	0.51	1.7	0.415	12.0	66.0	0.99623	3.00
907	6.1	0.56	0.00	2.2	0.079	6.0	9.0	0.99480	3.59

```
In [122]: X=df.iloc[:,0:3]
y=df.overfive
```

```
In [123]: clf = svm.SVC()
clf.fit(X, y)
```

```
In [124]: from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_s
          ize = 0.25, random_state = 0)
In [125]: from sklearn.preprocessing import StandardScaler
          sc = StandardScaler()
In [126]: X_train = sc.fit_transform(X_train)
          X_test = sc.transform(X_test)
In [127]: clf2 = svm.SVC(kernel = 'linear', random_state = 0)
          clf2.fit(X_train, y_train)
Out[127]: SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
            decision_function_shape='ovr', degree=3, gamma='auto', kerne
          l='linear',
            max_iter=-1, probability=False, random_state=0, shrinking=Tr
          ue,
            tol=0.001, verbose=False)
In [128]: y pred = clf2.predict(X_test)
In [129]: from sklearn.metrics import confusion_matrix
          confusion_matrix(y_test, y pred)
```

Out[129]: array([[106, 79],

[62, 153]])