Finite volume method for a scalar transport

In this exercise we want to get practical experience with the finite volume method. We are going to study the transport of a scalar quantity, T, in a known velocity field. In the absence of source terms for the scalar the steady-state equation reduces to

$$\int_{S} \boldsymbol{F} \cdot d\boldsymbol{S} = 0,$$

where the flux of the scalar quantity is a combination of convection and diffusion

$$\mathbf{F} = T\mathbf{u} - \kappa \nabla T.$$

In the previous expression κ is the diffusivity coefficient and \boldsymbol{u} is the velocity, which is given by $\boldsymbol{u}=(u_x,u_y)=(x,-y)$. The 2D computational domain is $x\in[0,1]$ and $y\in[0,1]$. The boundary conditions are

$$T = 1 - y$$
 at $x = 0$ (west),
 $\frac{\partial T}{\partial x} = 0$ at $x = 1$ (east),
 $\frac{\partial T}{\partial y} = 0$ at $y = 0$ (south),
 $T = 0$ at $y = 1$ (north).

- 1. Evaluate both the convective fluxes and the diffusive fluxes with a central method. Compute the solution with $\kappa = 0.01$ and with $\kappa = 0.001$.
- 2. Evaluate now the convective fluxes with an upwind method and the diffusive fluxes with a central method, compare your results to the previous case.