Conversational Chatbot Using Deep Learning Neural Networks

Raksha Rawat^[1], Rashi Dang^[2]

Department of Computer Science, The NorthCap University, Gurgaon, Haryana, India raksha18csu166@ncuindia.edu^[1], rashi18csu167@ncuindia.edu^[2]

Abstract:

A chatbot is a computer software that is used for interaction between a computer and a human being. Humans use different languages like English, Hindi, Spanish, etc. to communicate with one another, similar to that chatbots use natural language to communicate with humans. They are most widely used by organizations for their websites to assist users/customers/visitors with inquiries, information acquisition, and customer services. Other popular applications of chatbots include conversational agents such as Siri from Apple, Cortana from Microsoft, Google Assistant from Google, and Alexa from Amazon which are able to communicate with users as perform operations, functions and assist them with their daily tasks. Example, if we speak 'what are neural networks?' on Google Assistant, it will open up a google page for me with a search tab as 'what are neural networks?' and repeat the which it is getting. In this research paper, we perform research on the implementation and design of chatbots. We build a conversational chatbot that resembles a human being capable of interacting with humans in such a way that the user think they are actually talking to a human. This project uses deep learning neural networks as its foundation and creates a generative-based chatbot on Cornell Movie--Dialogs Corpus using Seq2Seq neural networks. During modeling, with the increasing number of epochs, the loss function decreases and the accuracy of the model increases. The loss function is 1.29 and the accuracy is 70% at the 40th epoch (last epoch).

Introduction

A chatbot is a computer program that conducts a conversation via auditory or textual methods. These programs are created to simulate how a human would behave as a conversational partner. Chatbots are mainly used in dialog systems for various practical purposes including customer services and information acquisition. They are also used a lot in customer interaction, marketing on social network sites, and instant messaging to the clients. Chatbots can be used in many fields like medical fields for providing quick treatment or medications to people in emergency or people

who are living in rural areas with no proper facilities of nearby clinics or hospitals. It can be used in websites for making it interactive to the users and answering their queries, in banking systems for providing better facilities, in customer care services to solve their issues, and many more areas. Providing people with 24/7 hrs of service. As technology is advancing, people demand more advanced facilities. A chatbot not only saves time for the customer/ user who has some queries but also makes it easier for the organization to work in a more efficient way.

There are two types of chatbot models:

1. Retrieval based Chatbots:

Retrieval-based chatbots use a set of predefined input patterns and responses. It then applies some algorithms in order to select the appropriate response to the input question. They are used in making goal-oriented chatbots where there are a limited number of inputs and responses that can be generated, for example, to answer FAQ section questions. We can also customize the flow and tone of the chatbot in order to provide our customers with the best possible experience.

Example,

Figure 1: Dataset for Retrieval Based Chatbot

This is the input dataset of a retrieval-based chatbot. Here, let's suppose the user provides the input "Hi" or "Hello", or something with the same semantic meaning, then our algorithm will identify the pattern, classify the input in the tag of "greeting" and then select the appropriate responses from the set of responses and provide the response as output. Similarly, it predicts the response for other inputs.

2. Generative based Chatbots:

Generative models are different from retrieval-based models in a way that they do not depend on predefined responses. They generate new responses from scratch using the sequence-to-sequence model.

Figure 2: Chatbot

Literature Review:

Survey:

S.N	Author	Data	Method/Approa	Challenges	Result	
0.			ch			
1.	Menal	Dataset: None	1) Used simple	1) Inability to	Chatbot is:	
	Dahiya		pattern	perform	1) Very simple	
	(Maharaja	Preprocessing:	matching	compound	2) User friendly	
	Surajmal	1) 2D string	Algorithm	activities	3) Not very	
	Institute)	arrays applied to build database. 2) Rows in array used for request & response. 3) Columns in array applied to save different	2) Modules used: a) Chatbot() b) Random() c) AddText() d) InArray()	2) Inability to answer to complex questions	complicated	
		different types of questions				

2.	Sonal	Dataset: Self	1) Recurrent	RNNG performs
2.	Gupta,	Acquired	Neural	better than
	Rushin	ricquired	Network	Seq2Seq models
	Shah,	Preprocessing:	Grammars	with an accuracy
	Mrinal	1) Lowercasin	(RNNG)	of 75%
	Mohit,	ĺ	2) Seq2seq	01 7370
	Anuj	g 2) Removed	CNN CNN	
	Kumar,	'		
	Michael	punctuation marks and	3) Seq2seq transformer	
	Lewis	extra spaces	4) Seq2seq	
	(Facebook	3) Tokenizatio	LSTM	
	AI	n		
	Research)	D		1) 6
3.	Sasha	Dataset: FAQ	A.L.I.C.E	1) Some
	Fathima	dataset	(Artificial	misunderstand
	Suhel,		Linguistic	ings occur
	Vinod	Pre-processing:	Internet	related to
	Kumar	1) Lowercasin	Computer	voice or text-
	Shukla,	g	Enterprise)	based
	Ved	2) Removed	a) Atomic	conversation.
	Prakash	punctuation	categories	2) Needs more
	Mishra	marks and	b) Default	information
	(Dubai,	extra spaces	categories	and further
	UAE)	3) Tokenizatio	c) Recursive	improvement
	And Sonali	n	categories	to reduce the
	Vyas			faults.
	(Dehradun,			
	India)			
4.	Raj Nath	Dataset:	Reordering	Addition of more
	Patel,	Examples were	approach	reordering rules
	Rohit	used	a. Noun Phrase	improves the
	Gupta,		Rules	translation quality.
	Prakash B.	Preprocessing:	b. Verb Phrase	
	Pimpale	1) Tags	Rules	
	and	created	c. Adjective	
	Sasikumar	2) Parsing	and Adverb	
	M CDAC		Phrase Rules	
	Mumbai		d. Preposition	
			Phrase Rules	

5.	Vibhor Sharma, Monika Goyal, Drishti Malik	Dataset: None	1) ELIZA (Rule Based) 2) ALICE (Artificial Linguistic Internet Computer Entity)	Why Alice is better? 1) Simple pattern matching algorithm 2) Recursive technique 3) Combines two answers if splitting happened within normalisati on. 4) Easy and depend on depth first search.	1) ALICE could not pass Turing test. 2) It is easier to make bots using ALICE than ELIZA as it is based on pattern matching approach.
6.	Chaitrali S. Kulkarni,	Dataset: Referred	Used NLTK library		1) Accuracy: a) DT: 98.4%
	Amruta U.	different banks'	Classification		b) BNB:
	Bhavsar,	websites and	techniques:		92.5%
	Savita R.	collected FAQs	1) Decision Tree		c) GNB:
	Pingale,		classifier		82.6%
	Prof.	Preprocessing:	2) Bernoulli		d) KNN:
	Satish S.	1) Removed	Naive Bayes		98.4%
	Kumbhar	punctuation	Classifier		e) MNB:
		marks and	3) Gaussian		91.8%
		extra	Naive Bayes		f) RFC:
		spaces	Classifier		98.45%SV
		2) Tokenizatio	4) K-nearest		M: 98.45%
		n 2) I ammaticat	neighbor		2) Bestalgorithm
		3) Lemmatizat	classifier Nultinomial		s are Random
		ion 4) Vectorizati	5) Multinomial		Forest classifier and
		,	Naive Bayes classifier		
		on	Classifiei		Support Vector
					v ector

			6) Random	Machine
			Forest	classifier.
			classifier	Classifier.
			7) Support	
			vector	
	34: 1:	D / /	machine	T 1 1 A 1'3 A
7.		Dataset:	1) A Seq2Seq	Launched AliMe
	Qiu, Feng-	Chatlog of	based Rank	Chat as online
	Lin Li,	Alibaba's	Approac	service and
	Siyu	online customer	2) QA	combined it with
	Wang,	service center	Knowledge	AliMe Assist
	Xing Gao,		Base	
	Yan Chen,	Preprocessing:	3) IR Model	
	Weipeng	1) Flattened	4) Generation	
	Zhao,	consecutive	based Model	
	Haiqing	questions.		
	Chen, Jun			
	Huang,			
	Wei Chu			
8.	Dinesh	Preprocessing:	A mixed-method	App provides user
	Kalla	1) Lowercasi	approach was	logins where their
	(Colorado	ng	used	details will be
	Technical	2) Tokenizati	1) Case I	stored in the
	University,	on	(partial	chatbot database.
	USA),	3) POS	answer	Also, these details
	Fnu	tagging	exist):	are saved for
	Samaah		a) Text	future reference.
	(Northeast		extractio	
	ern Illinois		n	
	University,		b) Extracted	
	USA)		Partial	
			answer	
			c) Cosine	
			Similarit	
			y	
			2) Case II	
			′	
			(partial	
			answer	

9.	Amir Vakili, Azadeh Shakery	Dataset: Ubuntu corpus Preprocessing: Used pre- processed dataset	doesn't exist): a) Stemmin g Used BERT Bi- Encoder and BERT Bi- Encoder+CE model		1)	Context Enrichment (CE) adds a relatively small amount of overhead and is faster than simple cross encoder
						architectures.
10	Wei-Nan Zhang, Ting Liu, Yifa Wang, Qingfu Zhu	Dataset: Collected from several Chinese online forums. Preprocessing: 1) Converted to Lowercase 2) Removed punctuation marks and extra spaces 3) Tokenizatio	Personalized Response Generation: 1) Initialization and adaptation approach 2) RNN 3) B Encoder- decoder framework Generation Quality Optimization:			Used imitation rate to analyze responses. Evaluated PRM (Personalized Responding Model) with 5 volunteers
11	Anjana Tiha (The University of Memphis)	Dataset: Cornell Movie Subtitle Corpus Preprocessing: 1) Remove Metadata 2) Remove Unsupporte	1) Learning to Start (LTS) 1) Google's Neural Machine Translation (NMT) Model. 2) Seq2seq model.	1) Limited performan ce during a long conversati on. 2) Long training process	1) 2) 3)	Produced moderate results. Some of the replies were repetitive and lacked proper relevancy. Not suitable for imitating

		d encoding		3)	High		human
		format data		3)	_		interaction
					power and		micraction
		3) Separate data into 2			processing		
					demand.		
		files, for					
		dialogues					
		and					
		responses					
		4) Remove					
		puctuation					
		5) Convert to					
		lowercase					
		6) Remove					
		consequent					
		utterances					
		7) Tokenizatio					
		n					
12	Yogi	Dataset: Self	Seq2Seq model	1)	Provide	1)	BLEU score of
	Wisesa	Acquired from	using two-		quick		41.04 was
	Chandra,	Telkom	layered LSTM as		response to		produced by
	Suyanto	University	encoder and		customers		the model.
	Suyantoa	Admissions	decoder with and	2)	Questions	2)	When attention
	(School of		without attention		go		mechanism
	Computing	Preprocessing:	mechanism		unrequited		technique was
	, Telkom	1) Lowercasin					applied by
	University,	g					reversing the
	Jl)	2) Removing					sentences the
		punctuation					BLEU score
		3) Tokenizatio					came up to
		n					44.68.
13	Rui Xia,	Dataset: Self	Individual	1)	In	1)	Measures:
	Zixiang	Acquired	Emotion and		traditional		a) F1 Score:
	Ding	(benchmark	Cause Extraction		ECE		61.28%
		ECE corpus)	1) Independent		model,		Precision:
			multi-task		emotion must be		67.21%
		Preprocessing:	learning:		annotated		Recall:
		1) Documents	a) Hierarchi		before		57.05%
		having two	cal Bi-		cause	2)	Pair filtering
		or more	LSTM		extraction,		improves the
		emotions	network		which		•
					greatly		

	g		<u>, , , , , , , , , , , , , , , , , , , </u>		4		1 1
	are split into		b) Attention		limits its		model
	several		Mechanis		applicatio ns and		performance.
	samples		m		ignores	3)	Model
	such that		Interactive		the fact		performs better
	each		multi-task		that they		than traditional
	contains		learning:		are		methods for
	only one		a) Enhanced		mutually		ECE tasks
	emotion.		version		indicative		without the
2)	Merge		of the	2)	In current		need for
	documents		independ		ECPE		emotion
	with same		ent multi-		model,		annotations
	content into		task		two-step strategy		
	one		learning		may not		
	document,		model		be a		
	and label		b) Inter-EC		perfect		
	each		c) Inter-CE		solution as		
	emotion,				mistakes		
	cause pair in	Em	otion-Cause		made in		
	the	Pair	ring and		first step will affect		
	document.		ering:		the results		
			Cartesian		of the		
			product to		second		
			obtain the		step.		
			set of all				
			emotions				
			and causes.				
		2)	A Logistic				
		2)	regression				
			model to				
			detect for				
			each				
			candidate				
			pair whether				
			they have a				
			causal				
		2)	relationship.				
		3)	Remove				
			pairs with no				
			causal				
			relationship				

14	Shashi Pal	Dataset: None	Language	1)	Lack of	1) RNN, RAE
	Singh,		Model:		vocabulary	gives better
	Ajai	Preprocessing:	1) RAE		, data	result in text
	Kumar,	1) Sentence	2) RNN		sparseness,	processing as
	Hemant	Segmentati	(LSTM,		maintain	compared to
	Darbari,	on	GRU)		history of	other neural
	Lenali	2) Tokenizatio	3) Recursive		vector	networks.
	Singh,	n, etc.	NN		values etc.	2) Word
	Anshika	·		2)	Problem of	alignment,
	Rastogi,		Joint Translation		gradient	reordering, and
	Shikha		Prediction:		descent	language
	Jain		1) FNN		when RNN	modelling can
	(AAI,		2) RNN		is used	be performed
	Center for		3) CNN	3)	Need of	with the help
	developme		,		high	of a well-
	nt of				computatio	trained deep
	Advanced				nal power	neural
	Computing				may	network.
	, Pune,				require	
	India)				multiple	
	,				GPUs.	
15	David	Dataset:	1) GPT-2	1)	Used	Medical experts
	Oniani,	COVID-19	Language		smaller	evaluated the
	Yanshan	Open Research	Model:		dataset due	results in which
	Wang	Dataset	generates the		to	BERT achieved
		(CORD-19)	answer to the		hardware	best performance.
			question		constraints	
		Preprocessing:	2) Filtering		and	
		1) Extracted	using regex		difficulty	
		abstract and	and string		in fine	
		main body	manipulation		tuning.	
		of articles	to prune	2)	The	
		from every	Prunes the		question	
		JSON file,	responses		pool only	
		combined	3) Filtering		consisted	
		them	using		of 12	
		together,	semantic		questions.	
		and used	similarity to			
		them as a	preserve			
		corpus.	sentences			

	2)	Word		that are most				
		embedding		semantical to				
		cinocading		the question.				
				a) Cosine				
				Similarit				
				y				
				b) Inner				
			4.	product				
			4)	Embeddings:				
				a) Tf-idf				
				b) BERT				
				c) BioBER				
				T				
				d) USE				
16 Jiwe	Li1, Da	taset: Subset	1)	Seq2Seq	1)	Evaluation	1)	Model has
Will	of	10 million		model		is difficult.		tendency to
Mon	roe, me	essages from	2)	Mutual	2)	Can		end a sentence
Dan	Op	enSubtitles		information		explore a		with another
Jurat	sky, dat	taset		score as		very small		question to
Alan				reward.		number of		take the
Ritte	r,		3)	Backpropaga		candidates		further.
Mich	el			ting mutual		and	2)	Length of
Galle	ey3,			information		simulated		dialogue:
Jianf	eng			score helped		turns as		Proposed RL
Gao3				to generate		number of		model
(Mic	rosoft			sequences		cases		achieves best
Rese				with higher		increases		evaluation
Redr	nond,			rewards.		exponentia		score of 4.48
WA,	USA)		4)	Regularly		lly.		number of
			,	updated	3)	Manually		simulations
				parameters	,	defined	3)	Diversity:
				using		reward	,	RL model
				stochastic		function		generates more
				gradient		cannot		varied
				descent.		cover the		responses as
			5)	Optimization		important		compared to
			٠,	·		aspects		mutual
				a) Initialize		that		information
				d policy		defines an		and Seq2Seq
				model		ideal		model.
				mouci		ideal		mouci.

				with	conversati	4)	Hu	man
				paramete	on.		Eva	aluation:
				rs from			a)	RL model
				mutual				is not
				informati				optimized
				on				to predict
				model.				next
			b)	Maximiz				utterance,
			ĺ	ed				but rather
				expected				to increase
				future				long-term
				reward				reward.
				using			h)	RL model
				likelihoo			٠,	produces
				d ratio				responses
				trick.				that are
			6) Cu	rriculum				significantl
				arning:				y easier to
			a)	Begin by				answer
			(a)	simulatin				than does
								the mutual
				g dialogue				informatio
				dialogue for 2				
								n system.
				turns,				
				then				
				gradually				
				increase				
				the				
				number				
	*** ·	D	** *	of turns.		4.	ъ.	C
17	Xiujun	Dataset:	Used			1)		inforcement
	Liy,	Conversational		rcement				rning
	Lihong	data was	learnin	•			•	tem
	Liy,	collected from		ngle layer				performs
	Jianfeng	Amazon		STM				e-based
	Gaoy, Asli	Mechanical	2) Po	-			_	ents.
	Celikyilma	Turk		rning		2)		ferent slot
	z, Yun-		3) Na	ıtural				or types
	Nung Chen	Preprocessing:	La	nguage			hav	e different
		Labeled 280						
		dialogues						

			4)	Generation (NLG) Error Model Controlling			impacts on the RL agents. 3) RL agents are more robust to certain types of slot-level errors.
18	Qiming Bao, Jiamou Liu, Lin Ni	Dataset: 1) Knowledge graph:Healt h Navigator New Zealand 2) QA pair dataset: eHealth Forum, Question Doctors, and WebMD 3) HBAM: trained on Quora duplicate questions dataset Preprocessing: 1) Embedding	2)	extraction with Aho- Corasick algorithm. One BiLSTM and one attention layer in	2)	Developing mechanisms so that system can understand natural language like humans. Extracting relevant information from domain-specific database	HBAM performs better than MaLSTM and BERT models in all the datasets with an accuracy of 81.2%, 81.3%, 80.9% and 81.2%
19	Bang Liu, Di Niu, Haojie Wei, Haolan Chen, Yancheng He	Dataset: Reading comprehension datasets from SQuAD Preprocessing: 1) Parsing 2) Chunking	2)	Seq2Sequenc e Model with attention mechanism and copy mechanism GPT2 language model	2)	Extraction of good quality question answer pairs from unstructure d data. Problem of input	 CS2S-VR- ACS model performs the best. GPT2-ACS achieves better METEOR score, while CS2S-VR- ACS performs

3)	Tokenizatio		volume		better over
	n		explosion		BLEU and
4)	Stemming		due to		ROUGE-L.
5)	POS		random	3)	Model
	Tagging		sampling		generates
6)	Named		as most of		diverse and
	Entity		such		high quality
	Recognition		combinatio		questions.
			ns would		
			lead to		
			meaningles		
			s questions.		
		3)	No prior		
			training		
			dataset		
			available		
			for this		
			particular		
			task.		

Summary

1. A Tool of Conversation: Chatbot

This paper discussed a simple Chatbot that is capable of communicating with the user. The user can easily ask their query in human language and receive the information regarding that. This paper talked about how to design and the steps to create a Chatbot. There are a variety of methods used to design a chatbot due to which the development of the chatbot design grows at an unpredictable rate. The author mentions the selection of OS, selection of software, creating a chat, creation of the chatbot, and Pattern matching Algorithm. For the fundamental design, they first created a dialog box and the database. The module consisted of a lot of functions like Chatbot(), Random(), Text(), Trim(), AddText() and array() using which a simple chatbot was created.

2. Semantic Parsing for Task Oriented Dialog using Hierarchical Representations

This paper discussed Task-Oriented Parsing (TOP). In this, the hierarchical representation helps to analyze the semantics of complex nested queries. This technique helps in answering more questions. In this they first converted the sentences to Lowercase, removed the punctuation marks and extra spaces, and then Tokenized the sentence into small tokens. The models used were Recurrent Neural Network Grammars (RNNG), Seq2seq CNN,

Seq2seq transformer, Seq2seq LSTM. After applying the models and training them the results showed that RNNG performs better than Seq2Seq models with an accuracy of 75%.

3. Conversation to Automation in Banking Through Chatbot Using Artificial Machine Intelligence Language

Here the user enters the input in the messaging platform then the Natural language processing is done and the results are sent to the Bot Logic where the information source is stored and the machine learning algorithm and actions are applied to receive the desired output. This paper talked in depth about the advantages and growth of the chatbot. It also mentioned the growth of the banking industries and global online banking and how the use of chatbots would help in such industries. They also mentioned the Artificial Intelligence Markup Language (AIML), its basic elements, categories, and ways to create it. And lastly, they concluded their paper with the Turing test and the problems faced by it.

4. Reordering rules for English-Hindi SMT

This paper mainly discussed the steps or logic applied while translating a sentence from English to the Hindi language. They used Statistical Machine Translation (SMT) approach for reordering the sentences. The reordering approach was used to understand the syntax in the sentence and reorder it into the Hindi language. Penn tags were created and a rich set of rules were made for better machine translation like Noun Phrase Rule, Verb Phrase Rule, Preposition Phrase Rule, Adjective and Adverb Phrase Rules. The results were shown using the BLEU, NIST, mWER, and mPER scores.

5. An Intelligent Behavior Shown by Chatbot System

A chatbot is computer software that is capable of communicating with the user. This paper talked about the already existing system ELIZA and ALICE (Artificial Linguistic Internet Computer Entity). ELIZA uses a rule-based algorithm whereas ALICE is based on a pattern-matching approach. They have explained these two systems and their architecture in detail. They talked about the results of the Turing test on both of them. ELIZA could easily pass the test whereas ALICA failed to pass the test. Lastly, they also mentioned that how ALICE is a better system than ELIZA to work with. One of the reasons was the pattern matching approach.

6. BANK CHATBOT – An Intelligent Assistant System Using NLP and Machine Learning

This paper discussed the chatbot systems for Banks. It helps in solving customer queries in no time giving them a great experience. Earlier they used to call and have to talk to the customer service people to register the queries or either go to the bank and stand in line to get their work done. Chatbot makes it easier and comfortable for the users to work on. The authors mentioned the Architecture of the chatbot and the feedback system. For the

implementation, they first prepared the dataset. For pre-processing, the used NLTK libraries performed vectorization and applied different classification models. Then they developed the learning model, tested the models, and according to the results they choose the 2 best classification approaches with gave the maximum accuracy.

7. AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine

This paper discussed Seq2Seq rank approach and its implementation. They used the QA Knowledge base, IR model, and Generation model. They also talked about the attentive Seq2 Seq Rerank model. After applying and comparing these models with public chatbots they found that their chatbots gave better results. Later they released their chatbot which is called the AliMe Chat for the online services.

8. Chatbot for Medical Treatment using NLTK Lib

Chatbots can be used in many fields. In this paper, they talked about chatbots used in medical fields for providing quick treatment or medications to people in emergency or people who are living in rural areas with no proper facilities of nearby clinics or hospitals. As the chatbots give 24/7 hours of service it helps people to receive prescriptions at any time of the day. They used the mixed method approach to generate the output. There were 2 cases. Case 1 when the partial answer existed and Case 2 when the partial answer does not exist. Based on this the models were created and later the results were evaluated.

9. Enriching Conversation Context in Retrieval-based Chatbots

This paper discussed Retrieval-based Chatbots. They mentioned BERT Bi- Encoder and BERT Bi- Encoder + CE models. They talked about the architecture, implementation, and representation of the models. They also compared the two models in detail. Finally, they concluded that Context Enrichment was better and faster than the simple Cross encoder architecture.

10. Neural Personalized Response Generation as Domain Adaptation

This mainly discusses General Quality Optimization and Personalized Response Generation. For General Quality Optimization they used the data from a Chinese online forum and for Personalized Response Generation they used the personal chats of 5 volunteers. Applied RNN and Encoder-decoder approach for personalized response and for creating general responses they applied Learning to start (LST) approach. As they combined these two different ways to respond to the queries. The chatbot was well trained to answer the queries in a general way as well as was capable of responding in a more personal way so that the conversation could be made more natural.

11. Intelligent Chatbot using Deep Learning

In this research paper, the author developed an intelligent conversational agent using GNMT (Google's Neural Machine Translation) model. The author also talked in detail about the Seq2Seq model and encoder-decoder approach. Bidirectional LSTM, Beam Search and Neural Attention Mechanism was further used for the implementation of the chatbot. For user interaction, GUI is implemented using the PyQT module. This paper even discussed about the RNN Architecture & Deep Reinforcement learning algorithm and how it can be used for making long conversation chatbots. Also, training of the model takes a lot of time which makes it difficult to test for the right set of parameters for performance optimization.

12. Indonesian Chatbot of University Admission Using a Question Answering System Based on Sequence-to-Sequence Model

In this the author developed a Seq2Seq model for a university chatbot which can be used by the students or parents for asking admission related queries. They mention about the ALICE bot which uses the AIML approach and the pattern recognition technique. This QA system is built using the Seq2Seq model with an attention mechanism approach. A conversation dataset is used from the Telkom University Admissions. They used BLEU score to evaluate the results

13. Emotion-Cause Pair Extraction: A New Task to Emotion Analysis in Texts

This paper mainly discusses about the Emotion cause extraction (ECE) which aims at extracting potential causes that lead to emotional expressions in the text. They also mention the ECPE (emotion cause pair extraction) and its implementation. For the main approach Individual emotion and cause extraction was performed followed by Emotion-cause pairing and filtering. The model got an F1 score of 61.28%, precision of 67.21%, and recall rate of 57.05%. The model performs better than traditional methods for ECE tasks without the need for emotion annotations by an F1 score of 27.1%.

14. Machine translation using deep learning: An overview

Machine translation is a method to convert the source sentence from one language to another language with the help of computerized systems without the need for human assistance. This research paper talks about Machine translation, Deep Learning approach and Deep Neural Networks (DNN). Deep Learning approach was used in Machine translation followed by DNN in translation process in which Word alignment, Rule selection and reordering, Language modelling and Joint Translation were performed. The main models used in Deep neural networks were FNN, RNN, CNN, RAE, Recurrent NN, and Recursive NN. For error computation, Reconstruction error and reordering error were considered and different methods were used for calculating them.

15. A qualitative Evaluation of Language Models on Automatic Question-Answering for COVID-19

In this research paper they developed a chatbot which is used to answer the queries related to COVID-19. This chatbot can be used by people for getting information related to covid like what is covid, how it attacks our body, its precautions, safety measure taken to avoid it, vaccines for coronavirus and many medical and healthcare information. For the implementation of the chatbot they used a GPT-2 language model followed by filtering based using regex and string manipulation and filtering using semantic similarity to the question to obtain the final response. Further, the approaches used were TF-IDF, BERT, BioBERT, and USE.

16. Deep Reinforcement Learning for Dialogue Generation

This paper uses a Seq2Seq model approach to build the chatbot. Reinforcement learning for open domain dialogue is used in which Action, state, policy and reward are applied. Supervised learning and mutual information techniques were also used in this model. The authors also discuss about how the dialogue simulation will happen between the two agents. For automatic evaluation BLEU score was calculated. They also considered length of dialogues, diversity and human evaluation. They calculated BLEU score for RL model, Seq2Seq model & mutual information model and did a Qualitative analysis regarding them.

17. End-to-End Task-Completion Neural Dialogue Systems

This paper talks about the chatbot which helps the user to book movie tickets. They used Neural dialogue system which included language understanding (LU) and Dialogue management (DM) in which dialogue state tracking and policy learning were implemented. For User Stimulation they used Natural Language Generation (NLG) approach. Error model controller included Intent-Level Error which had the functions Random error(), Within-group error() & Between-group error() followed by Slot-Level Error which contained Random error(), Slot deletion(), Incorrect slot value() & Incorrect slot() functions. They also mentioned about the end-to-end reinforcement learning technique. This paper contains a detailed analysis regarding the different errors mentioned above and their outcomes. They also discussed about human evaluation and DQN agent.

18. HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention

This paper discusses about an online medical chatbot that helps the users to prescription based on their medical condition at any time of the day. In this they mentioned NLU and NLP. They also talked about different chatbots, Knowledge base storage & retrieval and Siamese based semantic sentence similarity. They made the HHH system architecture for the medical chatbot. This paper also contains information about knowledge graph architecture and Hierarchical BiLSTM Attention Model (HBAM). Lastly, they concluded

that HBAM performs better than MaLSTM and BERT models in all the 4 datasets with an accuracy of 81.2%, 81.3%, 80.9% and 81.2%.

19. Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus

In the beginning, this paper mentioned the CCS concepts in which NLP, NLG and machine translation algorithms are listed. They talked in detail about the Answer-Clue-Style-aware Question Generation (ACS-QG) and its implementation. First, they obtained the training data for question generation then they applied ACS – aware question generation which included Seq2Seq model, encoder which used bidirectional GRU, NER tag & POS tag and decoder approach. Further they talked about sampling inputs for question generation and data filtering for quality control. For evaluating the ACS- aware question generation they used BLEU score, ROUGE-L score and METEOR score.

Related Works:

1. Recurrent Neural Networks:

RNNs are special Deep Learning Neural Networks that have loops in them. It takes in a sequence of inputs rather than single input (as in sequential networks) and predicts based on the context, sequential data, history, or patterns in the data. One more difference between sequential and RNNs is that RNN takes a fixed length of the input vector and we have to define input size before feeding it into the model. Due to its ability to store sequential data, we can use RNN for many recognition and prediction tasks like stock market prediction, speech recognition, music generation, etc.

Deep Neural Network Architectures:

a) Sequential Networks:

RNN architecture varies greatly from Sequential/ANN architecture. Sequential model consists of input layer, hidden layers, and an output layer that are fully connected to each other. Here, we feed data to the input layer, then some computations happen in the hidden layer (based on parameters we provide, such as activation function, number of neurons, epochs, etc.) which gives the output in the output layer. The model uses weights and biases in order to optimize model.

Forward Pass: The model chooses and applies some weights and biases, then calculates the output based on some activation function.

Backward Pass: The model calculates the errors, backpropagates, and updates its weights and biases so that it can get a minimized error in the next forward pass.

The model will first use forward pass then backward pass, then again forward pass, and so on until it gets an optimized output.

Figure 3: Sequential Network Architecture

b) Recurrent Neural Network Architecture:

RNNs have loops in them that allow for information to persist over time. We call these networks recurrent because the information passes from one time step to the next internally within the network.

Figure 4: 1 to 1 RNN

At some time step (t), RNN takes an input x_t and it computes the value \hat{y}_t in the RNN layer which is then passed as the output of the network. Along with the computation of output, it also computes an internal state update h_t and then passes this information about its internal state from the current time step of the network.

This cell state of the network is calculated from the following recurrence relation: $h_{\iota} = f_{w}(x_{\iota}, h_{\iota \cdot \iota})$

where h_t represents current cell state, f_w represents functions with weight W, x_t represents input, and h_{t-1} represents the previous state.

RNNs maintain this internal state h_i and at each time step, it applies a function f along with some parameters and a weight matrix to update this state h_i . The key concept here is that this update is based on bot its previous state from the previous time step as well as the current input the network is receiving. The computation uses the same function f_w and the same set of parameters at every time step. This state h_i is updated with every time step as the sequence is processed further.

Computational Graph of RNN Unrolled over time:

RNNs have an input layer (x), hidden layers (h), and an output layer (y). The input layer takes an input in the form of a vector along with some weight (W) and bias. Then this input is passed into the hidden layer which consists of several RNN cells that calculate the output with the help of some activation function like a sigmoid, tangent, etc. along with its cell state. Then this output and current cell state is passed to the next hidden layer as the input, it then again calculates the output with the help of weight, bias, activation function, etc, along with its cell state and passes it to the next hidden layer. This process continues through all the hidden layers. The output layer receives the output calculated by the last hidden layer and applies some functions like softmax in order to generate the final output. The output vector from the final output layer is then again fed into the input layer as an input vector. Hence, the sequence information is stored in the memory and utilized.

Figure 5: Computational Graph of Unrolled RNN

Disadvantages:

However standard RNNs have various disadvantages. RNNs are well suited for capturing short-term dependencies but they do not capture the long-term dependencies. For example, "I was born and brought up in Spain but last year I moved to Japan. I speak _____ ." Here in order to predict the next word, we need more context of the previous sentence. As this context gap increases, it becomes more difficult for standard RNNs to connect the dots and link relevant pieces of information together. Another problem faced by RNNs is the problem of vanishing gradients. As we repetitively use compute the gradients and use the activation function which takes the derivative of the gradient value, the gradient value becomes increasingly smaller and smaller moving towards zero until we can no longer train the neural networks. The problem of vanishing gradient can be solved by using the activation function Relu instead of tanh or sigmoid as it does not take any derivative but instead returns the input as output if the input is greater than 1 and returns 0 if the input is less than 0. The problem of vanishing gradient can also be solved by initializing the parameters, weight as an identity matrix, and bias as 0. This prevents the weights from shrinking to 0 during backpropagation or using special RNN cell LSTM. Also, standard RNNs stores the complete sequence information. This creates an information bottleneck in large datasets which can cause the network to perform poorly. All the above drawbacks of RNNs can be handled by using LSTM architecture.

2. Long-Short-Term-Memory (LSTM) Networks:

Long-Short-Term-Memory networks are a special kind of RNNs that are capable of handling long-term dependencies. They are specifically designed to avoid the long-term dependency problem. For example, "I was born and brought up in Spain but last year I moved to Japan. I speak ______." In order to accurately predict the next word, more information is needed from the distant past which cannot be obtained from RNN. LSTMs are also preferred over RNN as they solve the problem of vanishing gradient. As we repetitively use compute the gradients and use activation functions that take the derivative of the gradient value, the gradient value keeps on decreasing and starts to move towards zero and we can no longer train the neural networks. LSTMs selectively control the flow of gradients and information within its cell with the help of several gates thus solving the problem of vanishing gradients.

LSTM Architecture:

Figure 7: LSTM Architecture

LSTMs use gates to selectively control the flow of information. It contains forget gate, store gate, update gate, and output gate. Forget gate decides what information should be discarded and which should be kept from the cell state. It is the function of previous hidden state and current input. Its function is to forget the irrelevant history. The next gate is the store gate which decides what part of the new information is relevant and stores this information into its cell state. Next is the update gate which takes the relevant parts of the prior information and the current input and uses this to selectively update its state. At last there is output gate which gives the output and controls what information encoded in the cell state is sent as the next input in the next time step.

3. Seq2Seq Model:

Sequence to Sequence models are based on RNNs and have an encoder-decoder architecture. Encoder RNN takes sentences as input and processes one word at a time at

each timestep. It then converts this sequence of words into a fixed-size vector that contains only important information in the sequence. It helps in recognizing the context of the input given. The final hidden state called the context or thought vector shows the intention and summary of the input. This context then goes into the decoder as an input which then generates another sequence that represents the output.

Figure 6: Encoder-Decoder Architecture

For example, when we pass the input sequence "Are you free tomorrow?" to the encoder-decoder network, the decoder generates words one by one at each time step of its iteration. After one iteration, the output sequence generated is "Yes, what's up?".

Disadvantages:

Though this model has a wide range of applications like machine translation, question answering, text summarization, and dialogue systems like chatbots, still there are a few disadvantages of using this model. The model cannot handle variable-length sequences while all sequence-to-sequence applications involve variable-length sequences. Also, the training process takes a long time as the decoder has to apply the activation function over a large vocabulary (given that we take a large dataset in order to get good results) for each word in the output. This will tremendously slow down the training process. Representation of words in the sequence is another problem. Using one-hot encoding creates sparse vectors due to large vocabulary and also no context or semantic meaning of the words is captured.

Dataset

Corpus: Cornell Movie-Dialogs Corpus

Link: https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html

Description:

The corpus contains a collection of fictional conversations from raw movie scripts along with their metadata. It has 220,579 conversational exchanges between 10,292 pairs of movie characters. There are a total of 9,035 characters from 617 different movies. Total utterances are 304,713. It

also includes metadata of movies and characters. All the files are in txt format and each field is separated by a '+++\$+++':

Corpus files:

Metadata:

1) movie titles metadata.txt

It has the metadata information of every movie title. It attributes are movieID, movie title, movie year, IMDB rating, and genres in format ['genre1', 'genre2',, 'genreN'] Datafile:

Figure 8: movie_titles_metadata.txt

2) movie_characters_metadata.txt

It has the metadata information of every movie character. Its attributes are characterID, character name, movieID, movie title, gender, and position in credits.

Data file:

Figure 9: movie_characters_metadata.txt

Datasets:

3) movie_lines.txt

It contains the actual text of each utterance. Its attributes are, lineID, characterID, movieID, character name, text of the utterance.

Datafile:

Figure 10: movie_lines.txt

4) movie conversations.txt

It contains the structure of the conversations. Its attributes are characterID of the first character in the conversation, characterID of the second character in the conversation, movieID, list of the utterances that make the conversation in chronological order: ['lineID1', 'lineID2',, 'lineIDN']. The order has to be matched with movie_lines.txt to reconstruct the actual content.

Datafile:

Figure 10: movie_conversations.txt

Background information:

5) README.txt

It contains the information and details of all the files in the corpus.

File

```
README - Notepad
File Edit Format View Help
Cornell Movie-Dialogs Corpus
"Chameleons in imagined conversations: A new approach to understanding coordination of linguistic style in dialogs"
Cristian Danescu-Niculescu-Mizil and Lillian Lee
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, ACL 2011.
(this paper is included in this zip file)
NOTE: If you have results to report on these corpora, please send email to cristian@cs.cornell.edu or llee@cs.cornell.edu so we can add
Contents of this README:
        A) Brief description
        B) Files description
        C) Details on the collection procedure
A) Brief description:
This corpus contains a metadata-rich collection of fictional conversations extracted from raw movie scripts:
- 220.579 conversational exchanges between 10.292 pairs of movie characters
- involves 9,035 characters from 617 movies
- in total 304,713 utterances
- movie metadata included:
        - genres
          release year
        - IMDB rating
        - number of IMDB votes
        - IMDB rating
```

Figure 11: README.txt

6) raw script urls.txt

It has the urls from which the sources were retrieved.

File:

```
File Edit Format View Help
MP +++$+++ 10 things i hate about you +++$+++ http://www.dailyscript.com/scripts/10Things.html
m1 ++$++++ 1492: conquest of paradise +++$+++ http://www.hundland.org/scripts/1492-ConquestOfParadise.txt
m2 +++$+++ 15 minutes +++$+++ http://www.dailyscript.com/scripts/15minutes http://www.scripts/low.minutes http://www.dailyscript.com/scripts/15minutes http://www.scripts/low.minutes http://www.scripts/scripts.com/scripts/2001.txt
m4 +++$+++ 48 hrs. +++$+++ http://www.asesomefilm.com/scripts/scripts.com/scripts/2001.txt
m6 ++$+++ 48 hrs. +++$+++ http://www.dailyscript.com/scripts/sdipt-millimeter.html
m6 ++$+++ a nightmare on elm street 4: the dream master +++$+++ http://www.hundland.org/scripts/A-Nightmare-on-Elm-Street-4.txt
m8 ++$+++ a nightmare on elm street: the dream child +++$+++ http://www.hundland.org/scripts/A-Nightmare-on-Elm-Street-5.txt
m9 ++$+++ atomic submarine +++$+++ http://www.dailyscript.com/scripts/Afriction.txt
m11 ++5$+++ air force one +++$+++ http://www.dailyscript.com/scripts/Afriction.txt
m12 +++5$+++ airplane ii: the sequel +++5$+++ http://www.dailyscript.com/scripts/AirForecone_TXI-html
m13 +++5$+++ alien antion +++5$+++ http://www.dailyscript.com/scripts/Airplane_script.htm
m13 +++5$+++ alien antion +++5$++ http://www.dailyscript.com/scripts/Airplane_script.htm
m15 +++5+++ alien antion +++5$+++ http://www.dailyscript.com/scripts/Airplane_script.htm
m16 +++5$+++ alien antion +++5$+++ http://www.dailyscript.com/scripts/American_Madness.html
m17 +++5$+++ american madness +++5$++ http://www.dailyscript.com/scripts/American_Madness.html
m18 ++5$+++ american madness +++5$++ http://www.dailyscript.com/scripts/American_Madness.html
m19 +++5$+++ american madness +++5$++ http://www.dailyscript.com/scripts/American_Madness.html
m20 +++5$+++ american madness +++5$++ http://www.dailyscript.com/scripts/American_Madness.html
m20 +++5$+++ american madness +++5$++ http://www.dailyscript.com/scripts/American_Madness.html
m20 +++5$+++ american madness +++5$++ http://www.dailyscri
```

Figure 12: raw_script_urls.txt

Data Preprocessing

Cornell_Movie-Dialogs_Corpus dataset cannot be used as it is and needs to be cleaned and prepared to order to use for further computations.

Preprocessing Steps:

- 1) Creating a **nested list** of all conversations line ids.
- 2) Creating a **dictionary** to map each line id with its utterance.

3) Create lists of questions and answers:

Seq2seq model requires inputs in form of questions and it generates outputs in the form of answers. Thus, we created a list of questions and answers. Our model will work better if we ask smaller length questions, as they'll be easy to process. So, we train the model on a fixed length of questions (maximum 13) and answers (maximum 11). To make the training faster, we take a subset of the corpus including 30000 questions and 30000 answers.

4) Text Cleaning:

For this model, we have converted all the words to lower case and removed the punctuation marks using regex in order to clean the data. **Regex Rules:**

```
def clean text(txt):
   txt = txt.lower()
   txt = re.sub(r"i'm", "i am", txt)
   txt = re.sub(r"he's", "he is", txt)
   txt = re.sub(r"she's", "she is", txt)
   txt = re.sub(r"that's", "that is", txt)
   txt = re.sub(r"what's", "what is", txt)
   txt = re.sub(r"where's", "where is", txt)
   txt = re.sub(r"\'ll", " will", txt)
   txt = re.sub(r"\'ve", " have", txt)
   txt = re.sub(r"\'re", " are", txt)
   txt = re.sub(r"\'d", " would", txt)
   txt = re.sub(r"won't", "will not", txt)
   txt = re.sub(r"can't", "can not", txt)
   txt = re.sub(r"[^\w\s]", "", txt)
    return txt
```

Figure 13: Regex Rules

5) Vocabulary Building:

Deep learning algorithms work on integer data rather than string format so we need to convert them to integer values. So, for this purpose, we create a vocabulary. A vocabulary is a dictionary that has each and every word which is available in clean answer and clean questions with a unique value assigned to that particular word, count occurrence in this case. Format, {word(key): frequency count(value)}

6) Remove less frequent words:

There were many common English words like I, am, the, a, etc. which occur a lot in the data but not provide any valuable insight, thus it is important to remove them for effective preprocessing. In this, if the word count is less than 5 we remove that and if it is greater than 5 it will keep that.

7) Tagging:

Suppose our answer is hi, we will not just directly feed in high to our decoder model. We need to feed in a unique token that signifies the Start Of String (SOS) and a unique token that signifies the End Of String (EOS). <SOS > hi <EOS>. **Different Tags:**

a) <SOS>: Start of String

b) <EOS>: End of String

c) <PAD>: Padding

d) <OUT>: Output.

8) Encoder and decoder inputs:

Converting the list of questions and answers into integer values to create Encoder Inputs and decoder inputs.

Approach:

1. Model Summary:

Model: "model" Layer (type) Output Shape Connected to input 2 (InputLayer) [(None, 13)] [(None, 13)] input_1 (InputLayer) embedding (Embedding) (None, 13, 50) 151400 input 1[0][0] input_2[0][0] 1stm (LSTM) [(None, 13, 400), (N 721600 embedding[0][0] lstm_1 (LSTM) [(None, 13, 400), (N 721600 embedding[1][0] lstm[0][1] lstm[0][2] dense (Dense) (None, 13, 3027) 1213827 lstm_1[0][0]

Total params: 2,808,427 Trainable params: 2,808,427 Non-trainable params: 0

Figure 14: Model Summary

2. Methodology:

We'll have created a Seq2Seq model to implement our conversational chatbot.

- 1) **Input Layers:** We used two input layers one for encoder inputs and decoder inputs.
- 2) **Embedding Layer:** The embedding layer is used for dimensionality reduction. In our case, it compressed the vocabulary size 30000 to 50 values so it reduced the dimensionality. It takes three parameters, input dimension, output dimension, and input length. This embedding layer gives output in dimension [20, 13, 50] (50 being the output dimension which we have set). Next, we passed encoder and decoder placeholders to the embedding layer.
- 3) **Encoder LSTM Layer**: This is the encoder LSTM layer, it the encoder inputs as inputs. The number of cells used is 400 and it takes return state equals to true and returns sequence equals to true. We connected this LSTM layer with the encoder embedding in order to access the return states.
- 4) **Decoder LSTM Layer:** This is the decoder LSTM layer. It is similar to encoder LSTM cell but the difference here we will use encoder state as its initial state of decoder LSTM and in the vocabulary size we have to add one instead of reducing one because we are adding pad token extra in our vocabulary so we have to tell it by specifying plus one in the vocabulary size.
- 5) **Dense Layer:** It will output the probabilities. The number of probabilities will be equal to the vocabulary size. Since we need probability so we used the softmax activation function. Next, we connected this dense layer with the decoder output in order to get the final dense output.
- 6) **Model creation:** We used model class in order to create the model. It will take two arguments input data and output data. Input data includes encoder input and the decoder input while output data is the final dense output.
- 7) **Compile Model:** We compiled the model, setting the adam optimizer at categorical cross-entropy as a loss, and then fitted the model on our pre-processed data.

Figure 15: Model Layout

Results:

1. Experimental Results:

The experimental results show that the accuracy keeps on increasing and the loss function keeps on decreasing with an increase with the number of epochs. We used a total of 40 epochs and it took 3 hours to execute the model. Epoch 1 had an accuracy of 46 % with a loss of 3.48, epoch 5 had an accuracy of 46 % with a loss of 3.48, epoch 10 had an accuracy of 56 % with a loss of 2.23, epoch 20 had an accuracy of 60% with a loss of 1.83, epoch 25 had an accuracy of 62 % with a loss of 1.67, and lastly in epoch 40 the accuracy increased to 70.05% and the loss function decreased to 1.29. Therefore, increasing the number of epochs resulted in higher accuracy and better communication.

The loss function used was categorical cross-entropy with the adam optimizer. The adam optimizer provides the best properties of the AdaGrad and RMSProp algorithms which helps to handle the sparse gradients on noisy problems. Finally, the accuracy of the model came out to be 70.05%. The higher the accuracy the better the results are which implies a more real conversation with the Chatbot.

Figure 16: Loss and Accuracy Curve with respect to the number of epochs

2. Simulation Results:

The conversational chatbot was able to communicate with the user. The model training gave average results that need further improvement and more attention on the training parameters. Adding more quality data will further increase the performance of the model. This was an attempt to experiment with deep learning neural networks for the purpose of dialogue generation and management in order to develop an intelligent chatbot.

```
start chatting ver. 1.0
you : hi
WARNING:tensorflow:Model was constructed with shape (None, 13) for
chatbot attention : hi
_____
you : hello
chatbot attention : hello
_____
you : how are you
chatbot attention : no
_____
you : what is your name
chatbot attention : i dont know
_____
chatbot attention : i dont know i dont know where to begin you
you : where are you going
chatbot attention : i dont know he is a <OUT>
_____
vou :
```

Figure 17: Chatbot Demonstration Part 1

```
_____
you : what is your name
chatbot attention : i dont know
_____
you : would you like to go watch a movie
chatbot attention : i am sorry
_____
you : am i disturbing you
chatbot attention : i am sorry
_____
you : byr
chatbot attention : <OUT>
you : bye
chatbot attention : what
______
you : see you later
chatbot attention : i am sorry
_____
you : bye bye
chatbot attention : what
_____
you : hello
chatbot attention : hello
_____
chatbot attention : <OUT>
```

Figure 18: Chatbot Demonstration Part 2

```
you : how are you chatbot attention : i am not a <OUT> and panties
...
  you : i want some food
   chatbot attention : i am sorry
   -----
  you : why
   chatbot attention : i dont know
   you : how can you help me
   chatbot attention : i dont know
   _____
   you : star wars
   chatbot attention : i am sorry
   _____
   you : what are you doing
   chatbot attention : i am not sure
   _____
   you : what is your hobby
   chatbot attention : i dont know
   _____
   you : who am i
   chatbot attention : <OUT> <OUT> <OUT>
   _____
   vou : what is vour name
   chatbot attention : i dont know
```

Figure 19: Chatbot Demonstration Part 3

Challenges and Limitations:

The main challenge in developing chatbot or dialogue generator lies in developing coherent dialogue generation system.

- 1. **Limited performance during a long conversation:** The model cannot sustain long conversations as a model is primarily designed for machine translation which does not consider the history of earlier conversations so it is not as effective for dialogue generation.
- 2. **Large Data Requirement:** To produce good results, we'll have to train the model on a very large dataset with good quality real-world conversations and data. Here we used a smaller dataset due to computation limitations and we can see that the chatbot did not give accurate responses in some cases.
- 3. **High Computational Time:** Training takes a long time, several hours to execute. This makes it difficult to experiment a lot with the hyperparameters.
- 4. **High Power and Processing Demand:** It demands multiple GPUs for its execution.
- 5. **Inaccurate Responses:** The model generated many general and repetitive responses because of a smaller and lack of good quality dataset.

Conclusion

In this research paper, we experimented with Deep Learning Neural Networks in order to develop a conversational chatbot that can mimic human interactions. We created a conversational AI model which would answer the questions asked by the user. It is a simple bot with not many analytical skills but it is a good way to get started with NLP, neural networks and learn about chatbot architectures. Because of the smaller number of conversations in the dataset the model applied gives a finite number of answers which results in limited performance. Also, questions often go unrequited due to insufficient data.

Future Work

The conversational chatbot can be further improved by providing high-quality real-life conversational datasets, which could mimic better human interaction. The training model should be trained with other hyper-parameters and different datasets for further experimentation. For example, the number of epochs can be increased and early stopping and dropout layers can be used in order to avoid overfitting and get the best possible results. In this way, we can hyperparameters can be further fine-tuned and get an optimized model. Different attention mechanisms can also be applied. Also, data preprocessing can be tried out using NLTK library. Multiple GPUs can be used for a faster training process. By implementing all these concepts, we will move towards an efficient chatbot system. The model can also be deployed on a voice-based chatbot to make it more interactive for the users.

Acknowledgment:

We would like to express our sincerest regards to our faculty, Prof. Poonam Chaudhary for her valuable inputs, guidance, and constant support throughout the research.

References:

- [1] Menal Dahiya (Maharaja Surajmal Institute), "A Tool of Conversation: Chatbot", International Journal of Computer Sciences and Engineering, Review Paper Volume-5, Issue-5 E-ISSN: 2347-2693
- [2] Sonal Gupta and Rushin Shah and Mrinal Mohit and Anuj Kumar (Facebook Conversational AI) Michael Lewis (Facebook AI Research), "Semantic Parsing for Task Oriented Dialog using Hierarchical Representations", arXiv:1810.07942v1 [cs.CL] 18 Oct 2018
- [3] Sasha Fathima Suhel, Vinod Kumar Shukla, Ved Prakash Mishra (Dubai, UAE) And Sonali Vyas (Dehradun, India, "Conversation to Automation in Banking Through Chatbot Using Artificial Machine Intelligence Language", 978-1-7281-7016-9/20/\$31.00 ©2020 IEEE
- [4] Raj Nath Patel, Rohit Gupta, Prakash B. Pimpale and Sasikumar M CDAC Mumbai, "Reordering rules for English-Hindi SMT", arXiv:1610.07420v1 [cs.CL] 24 Oct 2016
- [5] Vibhor Sharma, Monika Goyal , Drishti Malik, "An Intelligent Behaviour Shown by Chatbot System", International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-3, Issue-4, April 2017 Pages 52-54
- [6] Chaitrali S. Kulkarni, Amruta U. Bhavsar, Savita R. Pingale, Prof. Satish S. Kumbhar. (Department of Information Technology, College of Engineering Pune, India.), "BANK CHAT BOT – An Intelligent Assistant System Using NLP and Machine Learning", International Research Journal of Engineering and Technology (IRJET)
- [7] Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan Chen, Weipeng Zhao, Haiqing Chen, Jun Huang, Wei Chu Alibaba Group, Hangzhou, China, "AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine"
- [8] Dinesh Kalla, Vatsalya Samiuddin, "Chatbot for Medical Treatment using NLTK Lib", IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 22, Issue 1, Ser. III (Jan Feb 2020), PP 50-56
- [9] Amir Vakili and Azadeh Shakery University of Tehran, "Enriching Conversation Context in Retrieval-based Chatbots", arXiv:1911.02290v1 [cs.CL] 6 Nov 2019
- [10] Wei-Nan Zhang, Ting Liu, Yifa Wang, Qingfu Zhu, "Neural Personalized Response Generation as Domain Adaptation", arXiv:1701.02073v2 [cs.CL] 2 Dec 2019
- [11] Anjana Tiha (The University of Memphis), "Intelligent Chatbot using Deep Learning", UID : U00619942 University of Memphis Spring, 2018
- [12] Yogi Wisesa Chandra, Suyanto Suyantoa (School of Computing, Telkom University, Jl), "Indonesian Chatbot of University Admission Using a Question Answering System Based on

- Sequence-to-Sequence Mode", 4th International Conference on Computer Science and Computational Intelligence 2019 (ICCSCI), 12-13 September 2019
- [13] Rui Xia, Zixiang Ding (School of Computer Science and Engineering, Nanjing University of Science and Technology, China), "Emotion-Cause Pair Extraction: A New Task to Emotion Analysis in Texts", Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1003–1012 Florence, Italy, July 28 August 2, 2019.
- [14] Shashi Pal Singh, Ajai Kumar, Hemant Darbari, Lenali Singh, Anshika Rastogi, Shikha Jain (AAI, Center for development of Advanced Computing, Pune, India), "MACHINE TRANSLATION USING DEEP LEARNING: AN OVERVIEW"
- [15] David Oniani, Yanshan Wang (Mayo Clinic Division of Digital Health Sciences Rochester, MN, USA), "A qualitative Evaluation of Language Models on Automatic Question-Answering for COVID-19", arXiv:2006.10964v2 [cs.IR] 23 Jun 2020
- [16] Jiwei Li1, Will Monroe, Dan Jurafsky (Stanford University, Stanford, CA, USA), Alan Ritter (Ohio State University, OH, USA), "Deep Reinforcement Learning for Dialogue Generation", arXiv:1606.01541v4 [cs.CL] 29 Sep 2016 Michel Galley3, Jianfeng Gao3 (Microsoft Research, Redmond, WA, USA), ""
- [17] Xiujun Liy, Lihong Liy, Jianfeng Gaoy, Asli Celikyilmaz (Microsoft Research, Redmond, WA, USA) and Yun-Nung Chen (National Taiwan University, Taipei, Taiwan), "End-to-End Task-Completion Neural Dialogue Systems", arXiv:1703.01008v4 [cs.CL] 11 Feb 2018
- [18] Qiming Bao, Jiamou Liu (The University of Auckland, Auckland), Lin Ni (The National Institute for Health Innovation (NIHI), Auckland), "HHH: An Online Medical Chatbot System based on Knowledge Graph and Hierarchical Bi-Directional Attention", arXiv:2002.03140v1 [cs.CL] 8 Feb 2020
- [19] Bang Liu, Di Niu (University of Alberta, Edmonton, AB, Canada), Haojie Wei, Haolan Chen, Yancheng He (Platform and Content Group, Tencent, Shenzhen, China), "Asking Questions the Human Way: Scalable Question-Answer Generation from Text Corpus", arXiv:2002.00748v2 [cs.CL] 5 Mar 2020.