# EXAMEN PARTIEL UN BREF SOLUTIONNAIRE

IFT-2002 : Informatique théorique A 2013 Vendredi 25 octobre 2013, **18h30-21h20** Enseignant : Hans Bherer

### Question 1 (10 points)

Décrivez, en mots ou bien par une expression ensembliste, le langage L(M) sur  $\Sigma = \{a, b\}$  où M est l'automate représenté par le diagramme de transitions suivant.



Solution.

 $L(M) = \{ w \in \Sigma^* : w \text{ ne contient pas la sous-chaîne } aba \}$ 

Barème : 5 pts si caractérisation partielle, 10 pts si bonne caractérisation.

### Question 2 (10 points)

Montrez, en utilisant le lemme de pompage, que le langage  $L=\{a^nb^m:n>m\}$  sur  $\Sigma=\{a,b\}$  n'est pas régulier.

**Solution.** Supposons que L est régulier. Ainsi, L satisfait le lemme de pompage pour un certain  $p \geq 1$ . Soit  $w = a^{p+1}b^p$ . Ainsi  $w \in L$  et  $|w| \geq p$ . Nous avons alors que w = xyz pour certains x,y et z où  $|xy| \leq p$ , |y| > 0 et pour tout  $i \geq 0$ ,  $xy^iz \in L$ . Or, comme  $|xy| \leq p$ , y est forcément de la forme  $a^j$  pour un certain j tel que  $1 \leq j \leq p$ . Donc, pour i = 0, le mot  $xy^0z = xz = a^{p+1-j}b^p \in L$  mais comme  $p+1-j \leq p$  ce mot n'est pas dans L, d'où la contradiction.

**Barème**: 3 pts pour un bon mot w, 3 pts pour une bonne utilisation du lemme, 4 pts pour cohérence de la preuve.

### Question 3 (20 points)

Soit  $L = \{w_1w_2 : w_1, w_2 \in \{a, b\}^* \text{ et } |w_1| = |w_2|\}$  un langage sur  $\Sigma = \{a, b\}$ . Si L est régulier, construisez un automate fini déterministe M tel que L(M) = L. Sinon, montrez, à l'aide du lemme de pompage, que L n'est pas régulier.

**Solution.** Remarquons que L est simplement le langage des mots de longueur paire de  $\Sigma^*$ . Ce langage est régulier. Voici un automate qui le reconnaît.



Barème: 10 pts pour langage régulier, 10 pts pour l'AFD

### Question 4 (20 points)

Soit G la grammaire suivante :

$$\begin{array}{ccc} S \rightarrow 0A & S \rightarrow 1S \\ S \rightarrow \lambda & A \rightarrow 0A \\ A \rightarrow 1B & A \rightarrow \lambda \\ B \rightarrow 0A & B \rightarrow 1S \end{array}$$

Exhibez un automate M tel que L(M) = L(G) et dites, en mots ou bien par une expression ensembliste, quel est le langage accepté par M.

#### Solution.

$$L(M) = \{w \in \{0,1\}^* : w \text{ ne se termine pas par } 01\}$$

Barème: 10 pts l'automate, 10 pts la description du langage

## Question 5 (2 x 10 = 20 points)

1. Donnez une expression régulière r telle que  $L(r) = L_1 \cup L_2$  où  $L_1 = \{w : w \in \{a, b\}^* \text{ et } w \text{ débute par } aa\} \text{ et } L_2 = \{w : w \in \{a, b\}^* \text{ et } w \text{ se termine par } bb\}$  sont deux langages réguliers sur  $\Sigma = \{a, b\}$ .

2. Soit  $r = (1 \circ (1 \cup 0)^* \circ 0) \cup 0$  une expression régulière. Construisez un automate M de trois états tel que L(M) = L(r).

#### Solution.

- 1.  $(aa(a \cup b)^*) \cup ((a \cup b)^*bb)$  (2 x 5 pts)
- 2. **0,3,6,10** pts



# Question 6 (5 x 4 = 20 points)

Dites pour chacune des affirmations suivantes si elle est vraie ou fausse. Justifier **brièvement** (preuve, contre-exemple, explication etc.). Les  $L_i$  sont des langages sur  $\Sigma = \{0, 1\}$ .

- 1. Si  $L_1 \cup L_2$  est un langage régulier et que  $L_1$  n'est pas régulier, alors  $L_2$  est régulier.
- 2. Si  $L_1 \cup L_2$  est un langage régulier et que  $L_1$  est régulier, alors  $L_2$  est régulier.
- 3. Si  $L_1 \neq L_2$ , alors  $L_1^* \neq L_2^*$ .
- 4. Si L est un langage régulier, alors  $L\subseteq L^*\circ L$ .
- 5. Si  $L_1^*$  est régulier, alors  $L_1$  est régulier.

#### Solution.

- 1. Fausse.  $\{0^n1^m: n=m\} \cup \{0^n1^m: n\neq m\} = L(0^*1^*)$
- 2. Fausse.  $L_1 = \Sigma^*$  et  $L_2$  un langage non régulier.
- 3. Fausse. Contre-exemple :  $L_1 = \{1\}$  et  $L_2 = \{1, 11\}$ .
- 4. Vraie car  $\lambda \in L^*$
- 5. Fausse. Prenons  $L_1 = \{0, 1\} \cup \{0^n 1^n : n \ge 0\}.$

Barème : 1 pt pour réponse correcte et 3 pts pour justification