Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 27.09.2013

Arbeitszeit: 120 min

Name:								
Vorname(n):								
Matrikelnummer:							No	ote:
	Aufgabe	1	2	3	4	\sum		
	erreichbare Punkte	12	7	10	11	40		
	erreichte Punkte]	
							•	
${\bf Bitte}\;$								
tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,								
tragen bie	ivame, vorname und	WIGGIIN	CIIIUIIII	ner aur	ucin i	CCKDIa	or cm,	
rechnen Si	ie die Aufgaben auf se	parater	n Blätte	ern, ni	c ht auf	dem A	angabeblatt,	
beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,								
1 0.		-						
geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an,								
begründer	n Sie Ihre Antworten a	usführ	lich und	d				
	ie hier an, an welchen ntreten können:	n der fo	olgende	n Term	nine Sie	e nicht	zur mündlich	hen

□ Mo., 7.10.2013

□ Fr., 4.10.2013

1. Gegeben ist das in Abb. 1 dargestellte Schiff (Katamaran), bestehend aus einem dreiecksförmigen Segel (Länge L, Höhe H, vgl. Abb. 2), zwei Auftriebskörpern mit der Grundfläche A sowie einem Rollkompensationssystem mit zwei Wassertanks. Wirkt auf das Segel die Windkraftdichte f_w , so erfolgt eine Drehung φ des Schiffes um die Rollachse. Um dieser Drehung entgegenzuwirken, kann Wasser vom linken in den rechten Tank umgepumpt werden.

Abbildung 1: Prinzipskizze des Schiffes.

Abbildung 2: Geometrie des Segels.

Lösen Sie die nachfolgenden Teilaufgaben:

- a) Berechnen Sie ein mathematisches Modell der Rollbewegung des Schiffes. Er- 6 P.| mitteln Sie dazu folgende Zwischengrößen:
 - (i) Berechnen Sie das Moment M_w um die Drehachse zufolge der Windkraftdichte $f_w = \alpha_0 v_w + \alpha_1 v_w^2$, mit der Windgeschwindigkeit $v_w > 0$ und den positiven Konstanten α_0, α_1 . Es wird angenommen, dass die Windkraftdichte orthogonal auf das Segel wirkt und damit gilt

$$M_w = \int_{z=0}^{H} L_s(z) f_w(v_w) z dz,$$

mit der Segellänge L_s , siehe Abb. 2.

- (ii) Ermitteln Sie das Auftriebsmoment der beiden Auftriebskörper. Nehmen Sie dazu kleine Winkel an, d.h. $\sin(\varphi) = \varphi$, $\cos \varphi = 1$ und beachten Sie, dass die Auftriebskraft proportional zur Dichte ρ_w , der Erdbeschleunigung g sowie dem verdrängten Volumen $V = Ah_w$ ist. Dabei beschreibt h_w die Eintauchtiefe des Auftriebskörpers, wobei $h_w = h_0$ für $\varphi = 0$ gilt.
- (iii) Berechnen Sie das Moment M_k zufolge der beiden Wassertanks, wobei wiederum kleine Winkel angenommen werden sollen und die Wassermassen m_l , m_r als Punktmassen modelliert werden.
- (iv) Stellen Sie die Bewegungsgleichungen der Rollbewegung mit Hilfe der Drehimpulserhaltung um die Drehachse auf. Das gesamte Trägheitsmoment (inkl. Rollkompensationssystem) ist dabei konstant und wird mit I bezeichnet.
- (v) Geben Sie Differentialgleichungen für die Wassermassen m_l und m_r in den beiden Kompensationstanks an. Der vom linken in den rechten Tank geförderte Massenstrom errechnet sich zu $q_p \rho_w$, wobei der Volumenstrom q_p als Funktion der Drehzahl n_p in der Form $q_p = \gamma_0 n_p + \gamma_1 n_p^3$, mit den Konstanten $\gamma_0, \gamma_1 > 0$, gegeben ist.
- (vi) Stellen Sie das gesamte mathematische Modell in der Form

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x} = \mathbf{f}(\mathbf{x}, u, d)$$
$$y = h(\mathbf{x}),$$

mit dem Zustand $\mathbf{x}^T = [\varphi, \omega, m_l, m_r]$, dem Eingang $u = n_p$, der Störung $d = v_w$ sowie dem Ausgang $y = \varphi$, auf.

b) Ermitteln Sie die Ruhelagen \mathbf{x}_r , u_r des Systems für eine konstante Windgeschwindigkeit $v_{w,R} > 0$ sowie einen konstanten Winkel $\varphi_R = 0$. Nehmen Sie dazu an, dass $m_l + m_r = m_0$ gilt. Linearisieren Sie anschließend das System um diese Ruhelage und geben Sie eine Darstellung der Form

$$\Delta \mathbf{x} = \mathbf{A} \Delta \mathbf{x} + \mathbf{b}_u \Delta u + \mathbf{b}_d \Delta v_w$$
$$\Delta y = \mathbf{c}^T \Delta \mathbf{x}$$

an. Geben Sie weiterhin an, wie sich die Größen $\Delta \mathbf{x}$, Δu sowie Δd berechnen.

c) Für eine gewisse Wahl der Parameter ergeben sich die Dynamikmatrix $\bf A$ und $3 \, P.$ der Ausgangsvektor $\bf c^T$ zu

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{c}^T = [1, 0, 0, 0].$$

Zeigen Sie, dass das linearisierte System mit diesen Matrizen nicht vollständig beobachtbar ist. Geben Sie anschließend eine Linearkombination der Zustände in der Form $a_1\Delta\varphi + a_2\Delta\omega + a_3\Delta m_l + a_4\Delta m_r$ an, die bei Messung von $\Delta\varphi$ nicht beobachtet werden kann.

- 2. Lösen Sie folgende Teilaufgaben:
 - a) Gegeben ist das lineare zeitinvariante System der Form

4 P.|

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x},$$

mit der Dynamikmatrix A

$$\mathbf{A} = \begin{bmatrix} -7 & -2 \\ 2 & -2 \end{bmatrix}.$$

Berechnen Sie die Transitionsmatrix Φ zu diesem System. Führen Sie dazu eine Transformation auf Jordan-Form durch!

b) Gegeben ist die folgende lineare zeitdiskrete Strecke

3 P.|

$$G(z) = \frac{5}{\left(z - \frac{1}{\sqrt{2}}\right)}.$$

Berechnen Sie die eingeschwungene Lösung dieser Strecke auf die Eingangsfolge

$$(u_k) = 3(1^k) - 7(0.5^k) + \left(2\cos\left(\frac{\pi}{4}k + \frac{\pi}{3}\right)\right).$$

3. Frequenzkennlinienverfahren

Abbildung 3: Kaskadierter Regelkreis.

Betrachtet wird der in Abb. 3 dargestellte kaskadierte Regelkreis mit den Streckenübertragungsfunktionen

$$G_1(s) = \frac{10}{s}, \qquad G_2(s) = \frac{20}{2s^2 + 3s + 2}.$$

Zur Stabilisierung des inneren Regelkreises wird ein Proportionalregler $R_1(s) = 4$ eingesetzt.

- a) Ermitteln Sie die Übertragungsfunktion des geschlossenen inneren Regelkreises 1 P. $T_{r_1,u_2}(s)$.
- b) Benutzen Sie die beiligende Vorlage und skizzieren Sie das Bode-Diagramm des 2 P. geschlossenen inneren Regelkreises $T_{r_1,u_2}(s)$, der Streckenübertragungsfunktionen $G_2(s)$, und der Übertragungsfunktion $T_{r_1,y_2}(s)$.
- c) Welche Voraussetzung muss der innere Regelkreis erfüllen, damit ein einfacher 1 P. | separierter Entwurf des Reglers $R_2(s)$ zulässig ist?
- d) Entwerfen Sie den Regler $R_2(s)$ im Sinne einer Kaskadenregelung.
 - i. Bestimmen Sie die Kenngrößen t_r , ü und e_{∞} anhand der in Abb. 4 vorgegebenen Soll-Sprungantwort des geschlossenen Regelkreises und zeichnen Sie diese ein. Die Anstiegszeit t_r soll ganzzahlig gerundet werden.
 - ii. Der Regler $R_2(s)$ soll die Struktur $R_2(s) = V(T+1/s^{\rho})$ aufweisen. Wie 1 P.| ist der Parameter $\rho \in \{0,1,2\}$ zu wählen damit die Spezifikation für $e_{\infty}|_{r_2(t)=\sigma(t)}$ aus Abb. 4 erfüllt werden kann.
 - iii. Ermitteln Sie die Reglerkoeffizienten V und T nach dem Frequenzkennli- $4\,\mathrm{P.}|$ nienverfahren.

Abbildung 4: Sprungantwort des geschlossenen Regelkreises.

4. PI-Zustandsregler

Für ein lineares, zeitinvariantes System der Form

$$\mathbf{x}_{k+1} = \underbrace{\begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}}_{\mathbf{\Phi}} \mathbf{x}_k + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{\Gamma}} u_k \qquad , \qquad \mathbf{x}(0) = \mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$y_k = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{\mathbf{c}^{\mathrm{T}}} \mathbf{x}_k$$

soll ein zeitdiskreter PI-Zustandsregler

$$x_{I,k+1} = x_{I,k} + \left(r_k - \mathbf{c}^{\mathrm{T}} \mathbf{x}_k\right)$$
$$u_k = \begin{bmatrix} \mathbf{k}_x^{\mathrm{T}} & k_I \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ x_{I,k} \end{bmatrix} + k_p \left(r_k - \mathbf{c}^{\mathrm{T}} \mathbf{x}_k\right)$$

mit dem Rückführvektor $\mathbf{k}_x^{\mathrm{T}} = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$ und den Parametern k_I und k_p entworfen werden.

- a) Zeigen Sie, dass für die gegebene Strecke die Entwurfsvoraussetzung der vollständigen Erreichbarkeit gegeben ist. Hinweis: Untersuchen Sie zu diesem Zweck das um den Integrator erweiterte System $\mathbf{x}_{e,k} = \begin{bmatrix} \mathbf{x}_k^{\mathrm{T}} & x_{I,k} \end{bmatrix}$.
- b) Geben Sie den geschlossenen Regelkreis mit dem Zustand $\mathbf{x}_{g,k} = \begin{bmatrix} \mathbf{x}_k^{\mathrm{T}} & x_{I,k} \end{bmatrix}$ 2 P.| zunächst allgemein in der Form

$$\mathbf{x}_{g,k+1} = \mathbf{\Phi}_g \mathbf{x}_{g,k} + \mathbf{\Gamma}_g r_k$$

an und berechnen Sie anschließend Φ_g und Γ_g für das gegebene System.

- c) Legen Sie den Parameter k_p so fest, dass für eine Führungsgröße $(r_k) = r_0(1^k)$ 2 P.| die Stellgröße $u_0 = k_p r_0$ zum Zeitpunkt t = 0 den gleichen Wert annimmt, der auch auch für $t \to \infty$ zur Einhaltung der Bedingung $y_\infty = r_0$ benötigt wird.
- d) Bestimmen Sie die Reglerparameter $\mathbf{k}_x^{\mathrm{T}} = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$ und k_I mit Hilfe der Formel 5 P.| von Ackermann so, dass die Pole des geschlossenen Kreises bei $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ zu liegen kommen.