Лабораторная работа №1.

"Знакомство с Си++. Выполнение программы простой структуры"

Цель: Знакомство со средой программирования, создание, отладка и выполнение простой программы, содержащей ввод/вывод информации и простейшие вычисления.

1. Краткие теоретические сведения

Язык Си создан в 1972 г. Деннисом Ритчи при разработке ОС Unix. Он проектировался как инструмент системного программирования с ориентацией на разработку хорошо структурированных программ. Таким образом он сочетает в себе, с одной стороны, средства языка программирования высокого уровня: описание типов данных, операторы for, while, if и т. д., а, с другой стороны, содержит средства языка типа Ассемблер : регистровые переменные, адресную арифметику, возможность работы с полями бит и т. д.

1.1. Структура программы

```
Программа на языке Си имеет следующую структуру:
#директивы препроцессора
. . . . . . . . .
#директивы препроцессора
функция а ()
    операторы
функция в ()
    операторы
void main ( )
                    //функция, с которой начинается выполнение
программы
     операторы
         описания
         присваивания
         функция
         пустой оператор
              составной
              выбора
              циклов
              перехода
```

Директивы препроцессора - управляют преобразованием текста программы до ее компиляции. Исходная программа, подготовленная на языке Си в виде текстового файла проходит 3 этапа обработки:

- 1) препроцессорное преобразование текста;
- 2) компиляция;
- 3) компоновка (редактирование связей или сборка).

После этих 3 этапов формируется исполняемый машинный код программы.

Задача препроцессора – преобразование текста программы до ее компиляции. Правила препроцессорной обработки определяет программист с помощью директив препроцессора. Директива начинается с #. Например,

1) #define - указывает правила замены в тексте.

#define ZERO 0.0

Означает , что каждое использование в программе имени ZERO будет заменяться на 0.0.

2) #include< имя заголовочного файла> - предназначена для включения в текст программы текста из каталога «Заголовочных файлов», поставляемых вместе со стандартными библиотеками. Каждая библиотечная функция Си имеет соответствующее описание в одном из заголовочных файлов. Список заголовочных файлов определен стандартом языка. Употребление директивы include не подключает соответствующую стандартную библиотеку, а только позволяют вставить в текст программы описания из указанного заголовочного файла. Подключение кодов библиотеки осуществляется на этапе компоновки, т. е. после компиляции. Хотя в заголовочных файлах содержатся все описания стандартных функций, в код программы включаются только те функции, которые используются в программе.

После выполнения препроцессорной обработки в тексте программы не остается ни одной препроцессорной директивы. Программа представляет собой набор описаний и определений, и состоит из набора функций. Среди этих функций всегда должна быть функция с именем main. Без нее программа не может быть выполнена. Перед именем функции помещаются сведения о типе возвращаемого функцией значения (тип результата). Если функция ничего не возвращает, то указывается тип void: void main (). Каждая функция, в том числе и main должна иметь набор параметров, он может быть пустым, тогда в скобках указывается (void).

За заголовком функции размещается тело функции. Тело функции - это последовательность определений, описаний и исполняемых операторов, заключенных в фигурные скобки. Каждое определение, описание или оператор заканчивается точкой с запятой.

Определения - вводят объекты (объект - это именованная область памяти, частный случай объекта - переменная), необходимые для представления в программе обрабатываемых данных. Примером являются

int y = 10; //именованная константа float x; //переменная

Описания - уведомляют компилятор о свойствах и именах объектов и функций, описанных в других частях программы.

Операторы - определяют действия программы на каждом шаге ее исполнения.

1.2. Константы и переменные

Константа - это значение, которое не может быть изменено. Синтаксис языка определяет 5 типов констант:

- символы;
- константы перечисляемого типа;
- вещественные числа;
- целые числа;
- нулевой указатель (NULL).

Переменные можно изменять. При задании значения переменной в соответствующую ей область памяти помещается код этого значения. Доступ к значению возможен через имя переменной, а доступ к участку памяти - по его адресу. Каждая переменная перед использованием в программе должна быть определена, т. е. ей должна быть выделена память. Размер участка памяти, выделяемой для переменной и интерпретация содержимого зависят от типа, указанного в определении переменной. Простейшая форма определения переменных:

тип список_имен_переменных;

Основные типы данных

тип данных	название	разме р,	диапазон значений
		бит	
unsigned char	беззнаковый	8	0 255
	целый длиной не		
	менее 8 бит		
char	целый длиной не	8	-128 127
	менее 8 бит		
enum	перечисляемый	16	-32768 32767
unsigned int	беззнаковый	16	0 65535
	целый		
short int	короткий целый	16	-32768 32767
(short)			
unsigned	беззнаковый	16	0 65535
short	короткий целый		
int	целый	16	-32768 32767
unsigned long	беззнаковый	32	0 4294967295
	длинный целый		
long	длинный целый	32	-214748348
			2147483647
float	вещественный	32	3.4E-38 3.4E+38
	одинарной		
	точности		
double	вещественный	64	1.7E-308
	двойной		1.7E+308
	точности		
long double	вещественный	80	3.4E-4932
	максимальной		1.1E+4932
	точности		

В соответствии с синтаксисом языка переменные автоматической памяти после определения по умолчанию имеют неопределенные значения. Переменным можно присваивать начальные значения, явно указывая их в определениях:

тип имя_переменной = начальное_значение;

Этот прием называется инициализацией.

Примеры:

float pi = 3.14 , cc=1.3456;
unsigned int year = 1999;

1.3. Операции

Унарные:

<u> </u>	
&	получение адреса операнда
*	обращение по адресу (разыменование)
_	унарный минус, меняет знак арифметического операнда
~	поразрядное инвертирование внутреннего двоичного кода (побитовое отрицание)
!	логическое отрицание (НЕ). В качестве логических значений используется 0 – ложь и не 0 – истина, отрицанием 0 будет 1 , отрицанием любого ненулевого числа будет 0 .
++	увеличение на единицу: префиксная операция - увеличивает операнд до его использования, постфиксная операция увеличивает операнд после его использования.
	уменьшение на единицу: префиксная операция - уменьшает операнд до его использования, постфиксная операция уменьшает операнд после его использования.
size of	вычисление размера (в байтах) для объекта того типа, который имеет операнд

Бинарные операции.

Аддитивные:

+	бинарный плюс (сложение арифметических операндов)
_	бинарный минус (вычитание арифметических операндов)

Мультипликативные:

*	умножение операндов арифметического типа
/	деление операндов арифметического типа (если операнды
	целочисленные, то выполняется целочисленное деление)
%	получение остатка от деления целочисленных операндов

Операции сдвига (определены только для целочисленных операндов). Формат выражения с операцией сдвига:

операнд левый операция сдвига операнд правый

<<	СДВИГ	влево	битового	пре	дставления	значения	левого
	целочи	сленного	о операнда	на	количество	разрядов,	равное
	значені	ию право	ого операн	да			
>>	СДВИГ	вправо	битового	пре	дставления	значения	правого
	целочи	сленного	о операнда	на	количество	разрядов,	равное
	значен	ию право	ого операн	да			

Поразрядные операции:

&	поразрядная	конъюнкция	(N)	битовых	представлений
	значений цело	очисленных оп	ерандо)B	
1	поразрядная	дизъюнкция	(ИЛИ)	битовых	представлений
	значений цело	очисленных оп	ерандо)B	
^	поразрядное	исключающее	ИЛИ	битовых	представлений
	значений цело	очисленных оп	ерандо)B	

Операции сравнения:

<	меньше, чем
>	больше, чем
<=	меньше или равно
>=	больше или равно

==	равно
! =	не равно

Логические бинарные операции:

& &	конъюнкция	(И) целоч	исленных	операндо	В ИЛИ ОТНОЦ	ений,
	целочисленны	ий результ	гат ложь	(0) или и	стина (1)	
	дизъюнкция	(ИЛИ)	целочи	сленных	операндов	ИЛИ
	отношений,	целочисл	тенный	результа	т ложь (0)	или
	истина(1)					

Условная операция.

В отличие от унарных и бинарных операций в ней используется три операнда.

Выражение1 ? Выражение2 : Выражение3;

Первым вычисляется значение выражения1. Если оно истинно, то вычисляется значение выражения2, которое становится результатом. Если при вычислении выражения1 получится 0, то в качестве результата берется значение выражения3.

Например:

x<0 ? -x : x ; //вычисляется абсолютное значение x.

Операция явного (преобразования) приведения типа.

Существует две формы: каноническая и функциональная:

- 1) (имя типа) операнд
- 2) имя типа (операнд)

Приоритеты операций.

Ранг	Операции
1	() [] -> .
2	! ~ - ++ & * (тип) sizeof тип()
3	* / % (мультипликативные бинарные)
	+ - (аддитивные бинарные)
5	<< >> (поразрядного сдвига)
6	< > <= >= (отношения)
7	== != (отношения)
8	& (поразрядная конъюнкция «И»)
9	^ (поразрядное исключающее «ИЛИ»)
10	(поразрядная дизъюнкция «ИЛИ»)
11	&& (конъюнкция «И»)
12	(дизъюнкция «ИЛИ»)
13	?: (условная операция)
14	= *= /= %= -= &= ^= = <<= >>=
	(операция присваивания)
15	, (операция запятая)

1.4. Выражения

Из констант, переменных, разделителей и знаков операций можно конструировать выражения. Каждое выражение состоит из одного или нескольких операндов, символов операций и ограничителей, в качестве которых чаще всего выступают квадратные скобки. Если выражение формирует целое или вещественное число, то это арифметическое выражение. В арифметических выражениях допустимы операции: + - * / %.

Отношение - это пара арифметических выражений, объединенных знаком операции отношения. Логический тип в Си отсутствует,

поэтому принято, что отношение имеет ненулевое значение, если оно истинно и 0, если оно ложно.

1.5. Ввод и вывод

1.5.1. Ввод и вывод в стандартном Си

Обмен данными с внешним миром программа на стандартном Си реализует с помощью библиотеки функций ввода-вывода #include < stdoi.h>

1) printf (<форматная строка>, <список аргументов>);

<форматная строка> - строка символов, заключенных в кавычки, которая показывает, как должны быть напечатаны аргументы. Например:

printf ("Значение числа Пи равно %f\n", pi);

Форматная строка может содержать

- 1) символы печатаемые текстуально;
- 2) спецификации преобразования
- 3) управляющие символы.

Каждому аргументу соответствует своя спецификация преобразования:

%d - десятичное целое число;

%f - число с плавающей точкой;

%С - СИМВОЛ;

%s - строка.

\n - управляющий символ новая строка.

2) scanf (<форматная строка>, <список аргументов>);

В качестве аргументов используются указатели. Например: scanf(`` %d%f '', &x,&y);

1.5.2. Ввод и вывод в Си++

Используется библиотечный файл iostream.h, в котором определены стандартные потоки ввода данных от клавиатуры cin и вывода данных на экран дисплея cout, а также соответствующие операции

- 1) << операция записи данных в поток;
- 2) >> операция чтения данных из потока.

Например:

#include <iostream.h>;

.

cout << "\nВведите количество элементов: ";
cin >> n;

2. Постановка задачи

- 1. Вычислить значение выражения при различных вещественных типах данных (float и double). Вычисления следует выполнять с использованием промежуточных переменных. Сравнить и объяснить полученные результаты.
- 2. Вычислить значения выражений. Объяснить полученные результаты.

3. Варианты

Nº	Задание 1	Задание 2
1	$\frac{(a+b)^2-(a^2+2ab)}{a^2}$,	1) n+++m 2) m >n
	b^2	2) 111 >11

	при a=1000, b=0.0001	3) n >m
2	$\frac{(a-b)^2-(a^2-2ab)}{b^2}$,	1) ++n*++m
	$\frac{}{}$,	2) m++ <n< th=""></n<>
	при a=1000, b=0.0001	3) n++>m
3	$\frac{(a+b)^3 - (a^3 + 3a^2b)}{3ab^2 + b^3},$	1) nm
	${}$ 3ab ² + b ³	2) m <n< th=""></n<>
	при a=1000, b=0.0001	3) n++>m
4	$(a+b)^3-(a^3)$	1) n++*m
	$\frac{(a+b)^3 - (a^3)}{3ab^2 + b^3 + 3a^2b},$	2) n++ <m< th=""></m<>
	при a=1000, b=0.0001	3) m >m
5	$\frac{(a-b)^3-(a^3-3a^2b)}{b^3-3ab^2}$	1)m-++n
	$\frac{b^3 - 3ab^2}{}$,	2) m*n <n++< th=""></n++<>
	при a=1000, b=0.0001	3) n > m++
6	$(a-b)^3 - (a^3 - 3ab^2)$	1) m-++n
	$\frac{(a-b)^3-(a^3-3ab^2)}{b^3-3a^2b}$,	2) ++m>n
	при а=1000, b=0.0001	3)n<++m
7	$(a-b)^3-(a^3)$	1) m+n
	$\frac{(a-b)^3-(a^3)}{b^3-3ab^2-3a^2b}$	2) m++<++n
	при a=1000, b=0.0001	3) n <m< th=""></m<>
8	$(a+b)^4 - (a^4 + 4a^3b + 6a^2b^2)$	1) n++-m
	$\frac{(a+b)^4 - (a^4 + 4a^3b + 6a^2b^2)}{4ab^3 + b^4},$	2) m >n
	при a=100, b=0.001	3) n >m
9	$(a+b)^4 - (a^4 + 4a^3b)$	1) ++n*++m
	$\frac{(a+b)^4 - (a^4 + 4a^3b)}{6a^2b^2 + 4ab^3 + b^4},$	2) m++ <n< th=""></n<>
	при a=100, b=0.001	3) n++>m
10	$(a-b)^4 - (a^4 - 4a^3b + 6a^2b^2)$	1) nm
	$\frac{(a-b)^4 - (a^4 - 4a^3b + 6a^2b^2)}{b^4 - 4ab^3},$	2) m <n< th=""></n<>
	при a=100, b=0.001	3) n++>m
11	$(a-b)^4 - (a^4 - 4a^3b)$	1) n++*m
	$\frac{(a-b)^4 - (a^4 - 4a^3b)}{6a^2b^2 - 4ab^3 + b^4},$	2) n++ <m< th=""></m<>
	при a=100, b=0.001	3) m >m
12	$(a+b)^2 - (a^2 + 2ab)$	1)m-++n
	$\frac{(a+b)^2-(a^2+2ab)}{b^2}$,	2) m*n <n++< th=""></n++<>
	при a=1000, b=0.0001	3) n > m++
13	$(a-b)^2 - (a^2 - 2ab)$	1) m-++n
	$\frac{(a-b)^2-(a^2-2ab)}{b^2}$,	2) ++m>n
	при a=1000, b=0.0001	3)n<++m
L		I

14	(1)3 (3 2 21)	1)
14	$\frac{(a+b)^3 - (a^3 + 3a^2b)}{3ab^2 + b^3},$	1) m+n
	$3ab^{2} + b^{3}$	2) m++<++n
	при a=1000, b=0.0001	3) n <m< th=""></m<>
15	$(a+b)^3-(a^3)$	1) n++-m
	$\frac{(a+b)^3-(a^3)}{3ab^2+b^3+3a^2b}$	2) m >n
		3) n >m
	при a=1000, b=0.0001	3) 11
16	(-, 1)3 (-3 2-21)	1) ++n*++m
10	$\frac{(a-b)^3 - (a^3 - 3a^2b)}{b^3 - 3ab^2},$	/
	b^3-3ab^2	2) m++ <n< th=""></n<>
	при а=1000, b=0.0001	3) n++>m
1 🗆	2 2 2	
17	$\frac{(a-b)^3-(a^3-3ab^2)}{b^3-3a^2b}$,	1) nm
	$b^3 - 3a^2b$	2) m <n< th=""></n<>
	при a=1000, b=0.0001	3) n++>m
	<u> </u>	
18	$(a-b)^3-(a^3)$	1) n++*m
	$\frac{(a-b)^3-(a^3)}{b^3-3ab^2-3a^2b}$	2) n++ <m< th=""></m<>
	<i>b - 3ab - 3a b</i> при a=1000, b=0.0001	3) m >m
	11pvi a-1000, D-0.0001	-,
19	$(a+b)^4 + (a^4 + 4a^3b + 6a^2b^2)$	1)m-++n
	$\frac{(a+b)^4 - (a^4 + 4a^3b + 6a^2b^2)}{4ab^3 + b^4},$	2) m*n <n++< th=""></n++<>
		,
	при a=100, b=0.001	3) n > m++
20	(, 1)4 (4 , 4 31)	1)
20	$\frac{(a+b)^4 - (a^4 + 4a^3b)}{6a^2b^2 + 4ab^3 + b^4},$	1) m-++n
		2) ++m>n
	при a=100, b=0.001	3)n<++m
0.1	2 2 2	4)
21	$(a-b)^4 - (a^4 - 4a^3b + 6a^2b^2)$	1) n++-m
	$\frac{b^4 - 4ab^3}{}$	2) m >n
	при a=100, b=0.001	3) n >m
22		1) ++n*++m
	$\frac{(a-b)^4 - (a^4 - 4a^3b)}{6a^2b^2 - 4ab^3 + b^4},$	2) m++ <n< th=""></n<>
		3) n++>m
	при a=100, b=0.001	<i>5)</i> 11 · · / III
23	$(x+1)^3$ (x^3+2x^21)	1) nm
	$\frac{(a+b)^3-(a^3+3a^2b)}{3ab^2+b^3}$,	, ·
	340 10	2) m <n< th=""></n<>
	при а=1000, b=0.0001	3) n++>m
0.4		4)
24	$\frac{(a+b)^3 - (a^3)}{3ab^2 + b^3 + 3a^2b},$	1) n++*m
	$3ab^{2} + b^{3} + 3a^{2}b'$	2) n++ <m< th=""></m<>
	при a=1000, b=0.0001	3) m >m
	· .	
25	$(a-b)^3 - (a^3 - 3a^2b)$	1)m-++n
	$\frac{(a-b)^3 - (a^3 - 3a^2b)}{b^3 - 3ab^2},$	2) m*n <n++< th=""></n++<>
	<i>b - 3ab</i> при a=1000, b=0.0001	3) n > m++
	115,1 a 1000, D=0.0001	
	1	

4. Методические указания

- 1. Для ввода и вывода данных использовать операции >> и << и стандартные потоки cin и cout.
- 2. Для вычисления степени можно использовать функцию pow(x,y) из библиотечного файла math.h.
- 3. При выполнении задания 1 надо использовать вспомогательные переменные для хранения промежуточных результатов. Например: c=pow(a,3); d=3*a*a*b; e=3*a*b*b; f=pow(b,3);

5. Содержание отчета

- 1. Постановка задачи.
- 2. Программа решения задания1.
- 3. Результаты работы программы для данных типа float.
- 4. Результаты работы программы для данных типа double.
- 5. Объяснение результатов.
- 6. Программа решения задания2.
- 7. Результаты работы программы.
- 8. Объяснение результатов.