MAT02026 - Inferência B

Gabarito Lista 2

Exercício 1

Exercício 2

Exercício 3

Exercício 4

Exercício 5

Exercício 6

Exercício 7

Exercício 8

Exercício 9

Exercício 10

Exercício 11

Exercício 12

Exercício 13 a) Parcialmente feito em aula.

b)
$$\frac{P_{\theta}(X=1)}{\frac{L_1}{L_0}} = \frac{P_{\theta}(X=2)}{5} = \frac{P_{\theta}(X=3)}{10} = \frac{P_{\theta}(X=4)}{0.43}$$

Pelo Lema NP calculamos L_1/L_0 e verificamos (não está tão claro aqui) que há indício de que para valores pequenos de X maior a evidência de H_1 em relação a H_0 (maior a razão L_1/L_0). Nesse caso, encontrar uma região crítica do tipo $A_1 = \{x : a < x < b\}$ tal que $P(a \le X \le b | \theta = \theta_1) = 0,05$ são UMP, por exemplo, qualquer valor de k entre 5 e 10 representaria a região $A_1 = \{2,3\}$.

Exercício 14 Faça os seguintes exercícios do livro Statistical Inference:

a)

b) 8.2 - Seja $X \sim Poisson(\lambda)$ and assuma X = 10 observado, então

$$P(X \le 10 | \lambda = 15) = \sum_{i=0}^{10} \frac{e^{-15}15^i}{i!} \approx 0,1185$$

O que podemos interpretar a partir dessa probabilidade?

c)

d

e)

f)

g)

h)

i)

j) 8.15 - A partir do Lema de Neyman-Pearson temos que a região do teste UMP é dada por $A_1 = \{ \boldsymbol{x} : L_1(\theta)/L_0(\theta) > k \}$ e

$$\frac{f(\boldsymbol{x}; \sigma_1)}{f(\boldsymbol{x}; \sigma_0)} = \frac{(2\pi\sigma_1)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n x_i^2}{2\sigma_1}\right\}}{(2\pi\sigma_0)^{-n/2} \exp\left\{-\frac{\sum_{i=1}^n x_i^2}{2\sigma_0}\right\}} = \dots = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left\{\frac{1}{2}\sum_{i=1}^n x_i^2 \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right\}, \text{ para algum } K \ge 0.$$

Podemos reescrever a desigualdade acima tal que

$$\sum_{i=1}^{n} x_i^2 > \frac{2\log\left(k(\sigma_1/\sigma_0)^n\right)}{\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)} = c \qquad \left(\text{ use o fato de que } \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\right).$$

Ainda, o Lema de Neyman-Pearson diz que o test UMP de tamanho α satisfaz $\alpha = P\left(\sum_{i=1}^{n} X_i^2 > c | \sigma = \sigma_0\right)$. Como obter c? (Sob H_0 supomos $\sigma = \sigma_0$ e) sabemos que $Q(\boldsymbol{X}) = \sum_{i=1}^{n} X_i^2 / \sigma_0^2 \sim \chi_n^2$ (porquê?), então

$$\alpha = P_{\sigma_0} \left(\sum_{i=1}^n X_i^2 > c \right) = P_{\sigma_0} \left(\sum_{i=1}^n \frac{X_i^2}{\sigma_0^2} > \frac{c}{\sigma_0^2} \right) = P_{\sigma_0} \left(Q > \frac{c}{\sigma_0^2} \right).$$

Por fim, denote $q_{n;\alpha}$ tal que $P(Q < q_{n;\alpha}) = \alpha$, assim $\frac{c}{\sigma_0^2} = q_{n;\alpha} \Leftrightarrow c = \sigma_0^2 \times q_{n;\alpha}$.

k)

1)

m)

n)

0)

p)

q) 8.22 (a) O Lema de Neyman-Pearson nos diz que a região de rejeição do teste UMP de tamanho α é dada por $L_1/L_0 > k$. Mostre que o lema nos leva a uma região crítica do tipo $A_1^* = \left\{\sum_{i=1}^1 0X_i < c\right\}$. Temos que $Y = \sum_{i=1}^1 0X_i \sim Binomial(10, p)$ e denote sua p.m.f. $f(\boldsymbol{x}; p)$. A tabela abaixo mostra as distribuições sob H_0 , H_1 e a razão entre as distribuições (verossimilhanças). Note que valores grandes de L_1/L_0 significam pequenos valores de Y = y.

\overline{y}	0	1	2	3	4	5	6	7	8	9	10
f(y; 1/2)	0,00	0,01	0,04	0,12	0,21	0,25	0,21	0,12	0,04	0,01	0,00
f(y; 1/4)	$0,\!06$	$0,\!19$	$0,\!28$	$0,\!25$	$0,\!15$	$0,\!06$	0,02	$0,\!00$	$0,\!00$	0,00	0,00
$\frac{f(y;1/4)}{f(y;1/2)}$	57,67	$19,\!22$	$6,\!41$	$2,\!14$	0,71	$0,\!24$	0,08	$0,\!03$	0,01	0,00	0,00

Então, para o teste de tamanho $\alpha=0,0547$ precisamos encontrar c tal que $0,0547=P(Y\leq c|p=1/2)$. Por fim, olhando a tabela acima, verifique que $P(Y\leq 2|p=1/2)=0,0547$, assim a região crítica do teste UMP com tamanho $\alpha=0,0547$ é dada por $A_1=\left\{\sum_{i=1}^1 0\leq 2\right\}$. O poder do teste é dado por $\pi(p_1)=1-\beta=P(Y\geq 2|p=1/4)0,526$

r) 8.23 (b) Utilizando-se o Lema de Neyman-Pearson temos que o teste MP nesse caso tem região de rejeição do tipo $f(x; \theta = 2)/f(x; \theta = 1) > k$ para algum $k \ge 0$. Usando a f.d.p. da distribuição Beta temos

$$\frac{f(x;\theta=2)}{f(x;\theta=1)} = \frac{\frac{\Gamma(2+1)}{\Gamma(2)\Gamma(1)}x^{2-1}(1-x)^{1-1}}{\frac{\Gamma(1+1)}{\Gamma(1)\Gamma(1)}x^{1-1}(1-x)^{1-1}} = 2x.$$

Assim o teste MP tem região de rejeição $A_1^*=\{x:x>k/2\}$. Para encontrar k, o Lema diz que o teste de tamanho α satisfaz

$$\alpha = P(X > k/2 | \theta = 1) = \int_{k/2}^{1} \frac{\Gamma(1+1)}{\Gamma(1)\Gamma(1)} x^{1-1} (1-x)^{1-1} dx = 1 - \frac{k}{2}.$$

Então, temos que $\alpha = 1 - \frac{k}{2}$ e o teste UMP tem região de rejeição $A_1^* = \{x : x > 2(1 - \alpha)/2\} = \{x : x > 1 - \alpha\}.$

s)