image blending

hard compositing:

$$I(x,y) = M(x,y)S(x,y) + (1-M(x,y))T(x,y)$$

$$= S(x,y), M(x,y) = 1$$

$$T(x,y), M(x,y) = 0$$

generally bad: seam/matte line is visibal

weighted transition region

better idea: multi-resolution blending with a laplacian pyramid

idea: wide transition regions for low-frequency components; narrow transition regions for high-frequency component (edges)

Gaussian pyramid

K = 5*5 Gaussian filter

G₀= original image (full resolution)

 $G_i = (K^*G_{i-})$ downsample by 2 in both dimension

Differences of Gaussian at each scale:

 $L_i = G_i - (K * G_i)$ blurred version of Gaussian pyramid that image image at scale i

High-pass image at scale i {L_i} form a laplacian pyramid we can recover the original image as

$$I = \underset{i=0}{\cancel{2}} (L_i) \uparrow \text{ to full size}$$

$$G_{N} = L_{N}$$

I = 2 (Li) to twll size i.e add back all the edges at difference scales; base image is smallest, blurriest image

To do image composition, compute laplacian pyramids for S,T, L⁵ and L¹ compute Gaussian pyramids for mask M, G Laplacian pyramids for composite:

$$L_i^{\mathsf{I}} = G_i L_i^{\mathsf{S}} + (1 - G_i) L_i^{\mathsf{T}} = 0, \dots, N$$

then add up to get final composite

A better idea: Poisson image editing

idea: to reduce colour mismatch between source and target, create composite in gradient domain

Source image

we want gradient of the composite inside Ω to look as close as possible to the source image gradient.

The composite must match target image on the boundary $\partial \Omega$

min
$$\iint || \Omega I(x,y) - 2S(x,y)|^2 dx dy$$

$$I(x,y) \in \Omega \quad \text{as}$$

solution to this problem:

$$I(x,y) = I(x,y)$$
 on $\partial \Omega$ poisson equation

discretizing and solving the problem:

1) for a pixel p inside Ω ,

$$\nabla^2 L(x,y) = \nabla^2 S(x,y)$$

$$I(x+1,y)+I(x-1,y)+I(x,y-1)+I(x,y+1)$$

$$-4I(x,y) = S(x+1,y)+S(x-1,y)+S(x,y-1)$$

$$+S(x,y+1) - 4S(x,y)$$

2) for a pixel p whose neighbourhood is not fully inside Ω

$$-4I(x,y)+I(x,y+1)+$$

 $I(x+1,y)+T(x,y-1)+$
 $T(x-1,y)$

target must agree with composite of boundary

$$= -4S(x,y)+S(x+1,y)+S(x-1,y)+S(x,y+1)+S(x,y-1)$$

another equation in unknown I big linear system

Mixed-gradient compositing:

$$\sqrt[3]{1(x,y)} = \sqrt[3]{5(x,y)}$$
 more general:

$$\sqrt[3]{\sum_{(x,y)}} = \frac{1}{2} \operatorname{div} \left[\frac{S_{x}(x,y)}{S_{y}(x,y)} \right] = \frac{3S_{x}}{2} + \frac{3S_{y}}{2}$$

difference: right hand side need not arise from the laplacian of a real image (non-conservative vector field)

$$\left\{ \begin{array}{l} \int_{X} \langle x, y \rangle \\ \int_{Y} \langle x, y \rangle \end{array} \right\} = \left\{ \begin{array}{l} \int \left[T(x, y), \text{if } ||\nabla T(x, y)|| > ||\nabla S(x, y)|| \\ \nabla S(x, y), \text{ otherwise} \end{array} \right]$$

can also use an algorithm to automatically find a good boundary for compositing