

1. Matrius inverses

• <u>Definició 2</u>. Una matriu quadrada A es diu que és **regular** o **invertible** (o no singular) si existeix una altra matriu quadrada B de la mateixa grandària tal que

$$A \cdot B = B \cdot A = I$$
.

A la matriu B (que és única si existeix) se li anomena **inversa** de A es denota per A^{-1} . Si la matriu A no posseeix inversa direm que A és **singular**.

Nota Realment és prou comprovar que $A \cdot B = I$ (o $B \cdot A = I$) doncs si es compleix una igualtat, es compleix també l'altra.

*Exemple 1. La matriu $A=\begin{pmatrix}1&0\\3&1\end{pmatrix}$ és invertible i la seua inversa és $\begin{pmatrix}1&0\\-3&1\end{pmatrix}$ així que

$$\left(\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ -3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ -3 & 1 \end{array}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

*EXEMPLE 2. La matriu $\begin{pmatrix} 2 & 3 \\ 0 & 0 \end{pmatrix}$ és singular donat que

$$\left(\begin{array}{cc} 2 & 3 \\ 0 & 0 \end{array}\right) \cdot \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} 2a + 3c & 2b + 3d \\ 0 & 0 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

- <u>Teorema 1</u> (Propietats de les matrius invertibles). Si A i B són matrius quadrades de la mateixa grandària, llavors:
 - 1. Si A és invertible, llavors A^{-1} també és invertible i $(A^{-1})^{-1} = A$
 - 2. Si A és invertible i λ és un nombre real no nul, llavors la matriu $\lambda \cdot A$ és invertible i $(\lambda \cdot A)^{-1} = \frac{1}{\lambda} \cdot A^{-1}$
 - 3. Si A i B són invertibles, llavors $A \cdot B$ és invertible i $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$ I en general, $(A_1 \cdot A_2 \cdots A_n)^{-1} = A_n^{-1} \cdots A_2^{-1} \cdot A_1^{-1}$
 - 4. Si A és invertible llavors A^n també ho és i $(A^n)^{-1} = (A^{-1})^n$ (a voltes es denota per A^{-n} aquesta matriu)
 - 5. Si A és invertible i $A \cdot B = A \cdot C$ llavors B = C (anàlogament si $B \cdot A = C \cdot A$ llavors B = C)

• <u>Teorema 2</u> (<u>Inverses de las matrius elementals</u>). Totes les matrius elementals són invertibles i a més les seues inverses són del mateix tipus. Concretament:

1.
$$(E_{ij})^{-1} = E_{ij}$$

2.
$$(E_i(\lambda))^{-1} = E_i(\frac{1}{\lambda})$$
 (recorded que $\lambda \neq 0$)

3.
$$(E_{ij}(\lambda))^{-1} = E_{ij}(-\lambda)$$

El resultat anterior és fàcil de deduir si pensem en termes d'operacions elementals: la inversa d'una matriu elemental serà una altra matriu que multiplicada per ella a esquerra de la matriu identitat. Per tant, estem cercant realitzar una operació elemental que "desfaça" l'operació associada a aquesta matriu.

*EXEMPLE 3. Calcula les inverses de les següents matrius elementals:

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- <u>Teorema 3</u> (Caracterització de matrius invertibles). Siga A una matriu quadrada d'ordre n. Són equivalents:
 - 1. A és invertible.
 - 2. Per a qualsevol B, el sistema AX = B és compatible determinat.
 - 3. rg(A) = n.
 - 4. Qualsevol forma escalonada de A és del tipus

$$\begin{pmatrix} a_{11} & * & \dots & * \\ 0 & a_{22} & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} \quad amb \quad a_{ii} \neq 0 \quad per \ a \ tot \quad i.$$

5. Qualsevol forma escalonada principal de A és del tipus

$$\begin{pmatrix} 1 & * & \dots & * \\ 0 & 1 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

- 6. La forma escalonada reduïda de A és I_n .
- 7. A es pot transformar en I mitjançant operacions elementals.
- 8. A és producte de matrius elementals.

Algorisme per a calcular la inversa d'una matriu

- 1. Troba la forma escalonada reduïda de la matriu A però escalonant alhora A i la matriu identitat, és a dir, escalonant $(A \mid I)$.
- 2. Si la forma escalonada reduïda és $(I \mid B)$ llavors $B = A^{-1}$. En cas contrari, A no és invertible.

*EXEMPLE 4.

*EXEMPLE 5. Calcula, si és possible, la inversa de la matriu

$$A = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{array}\right).$$

2. Matrius diagonals.

• <u>Definició 3</u>. Un matriu quadrada es diu que és **diagonal** si tots els nombres que no estiguen en la diagonal principal són nuls, és a dir, si $a_{ij} = 0$ sempre que $i \neq j$.

*EXEMPLE 6.
$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 Matriu diagonal

*EXEMPLE 7. La matriu diagonal d'ordre n amb uns en la diagonal es diu **matriu identitat** d'ordre n. La denotarem per I_n (o I quan tinguem clar el seu ordre).

$$I = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

3. Matrius triangulars

- <u>Definició 4</u>. Siga A una matriu quadrada.
 - A és **triangular superior** si $a_{ij} = 0$, per a tot i > j (és a dir, per sota de la diagonal principal hi ha zeros).
 - A és **triangular inferior** si $a_{ij} = 0$, per a tot i < j (és a dir, per sobre de la diagonal principal hi ha zeros).

*EXEMPLE 8.

$$\begin{pmatrix}
1 & 2 & 0 \\
0 & -1 & 3 \\
0 & 0 & 2
\end{pmatrix}$$
Triangular superior
$$\begin{pmatrix}
1 & 0 & 0 \\
2 & -1 & 0 \\
3 & 1 & 5
\end{pmatrix}$$
Triangular inferior

Nota

Les matrius diagonals són, en particular, matrius triangulars superiors i triangulars inferiors.

- Teorema 4 (Propietats de les matrius triangulars). Siguen A i B dues matrius quadrades d'ordre n i λ un nombre real. Si A i B són matrius triangulars superiors (triangulars inferiors (diagonals)) llavors:
 - (i) A + B, $\lambda \cdot A$, $i A \cdot B$ són triangulars superiors (triangulars inferiors (diagonals)).
 - (ii) A és invertible si i només si $a_{ii} \neq 0$, per a tot $1 \leq i \leq n$. A més, A^{-1} és també triangular superior (triangular inferior (diagonal)).

Nota

- Les matrius elementals de tipus 2, $E_i(\alpha)$, són diagonals,
- Les matrius elementals de tipus 3, $E_{i,j}(\alpha)$, són triangulars superiors quan i < j i triangulars inferiors quan i > j.
- Les matrius elementals de tipus 1, $E_{i,j}$, no són triangulars.

*EXEMPLE 9.

$$E_2(3) = \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}}_{\text{diagonal}} \quad E_{12}(3) = \underbrace{\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}}_{\text{triangular superior}} \quad E_{21}(3) = \underbrace{\begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}}_{\text{triangular inferior}} \quad E_{12} = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\text{no \'es triangular}}$$

4. Transposada d'una matriu

• <u>Definició 5</u>. Si A és una matriu de grandària $m \times n$ es diu **matriu transposada de** A a la matriu A^t de grandària $n \times m$ l'element (i,j) de la qual és a_{ji} , per a tot $1 \le i \le m$, $1 \le j \le n$ (és a dir, és la matriu que s'obté canviant files per columnes en A).

*Exemple 10.

$$A = \begin{pmatrix} 3 & -2 \\ 1 & 0 \\ -1 & 6 \end{pmatrix} \quad \Rightarrow \quad A^t = \begin{pmatrix} 3 & 1 & -1 \\ -2 & 0 & 6 \end{pmatrix}$$

• Teorema 5 (Propietats de la transposada). Sean A i B dues matrius de grandària $m \times n$, C una matriu de grandària $n \times k$ i λ un nombre real. Llavors

- 1. $(A^t)^t = A$.
- 2. $(A+B)^t = A^t + B^t$.
- 3. $(\lambda A)^t = \lambda A^t$.
- 4. $(A \cdot C)^t = C^t \cdot A^t$ (i en general $(A_1 \cdot A_2 \cdots A_n)^t = A_n^t \cdots A_2^t \cdot A_1^t$).
- 5. Si A és invertible, també ho és A^t i $(A^t)^{-1} = (A^{-1})^t$

- 6. La transposada d'una matriu diagonal és ella mateixa, $A^t = A$, la transposada d'una triangular superior (inferior) és triangular inferior (superior).
- 7. Les transposades de matrius elementals són també matrius elementals i del mateix tipus.

5. Matrius simètriques i antisimètriques

• Definició 6.

Una matriu A es diu que és **simètrica** si $A = A^t$ (és a dir $a_{ij} = a_{ji}$).

Necessàriament, les matrius simètriques són quadrades.

*Exemple 11.

Per exemple, les matrius

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 2 & i^3 \\ 2 & 0 & -1 \\ i^3 & -1 & \pi \end{bmatrix}$$

són simètriques.

• Definició 7.

Una matriu es diu que és **antisimètrica** si $A=-A^t$ (és a dir, $a_{ij}=-a_{ji}$, i per tant $a_{ii}=0$).

Necessàriament, les matrius antisimètriques són quadrades.

*EXEMPLE 12. Les següents matrius són antisimètriques:

$$A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 2 & -i^3 \\ -2 & 0 & 1 \\ i^3 & -1 & 0 \end{bmatrix}$$

6. Matrius ortogonals

• <u>Definició 8</u>. Una matriu real Q és ortogonal si $Q^tQ=I$, és a dir, si és invertible i la inversa de Q és la seua transposada Q^t .

*EXEMPLE 13.

1. La matriu identitat és ortogonal, perquè $I^tI=II=I$ i la matriu

2.

$$Q = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \sqrt{3}/2 & -1/2 \\ 0 & 1/2 & \sqrt{3}/2 \end{bmatrix}$$

també és ortogonal

Nota Aquestes matrius es diuen ortogonals perquè les seues columnes (i les seues files) són un sistema de vectors ortonormals (és a dir són vectors ortogonals dos a dos i de norma un). Observar que en multiplicar Q^t per Q realment estem realitzant els productes escalars entre les columnes de Q, aleshores que el resultat siga la identitat, indica que el producte de dos vectors diferents és nul i que els vectors tenen norma un.