Licenciatura em Engenharia Aeroespacial 2023/2024

Engenharia de Estruturas Aeroespaciais – Teste 1 – 19/10/2023

Duração: 2h30

1. Os ficheiros rocket_iso_3mm.STL, rocket_iso_5mm.STL e rocket_iso_10mm.STL apresentam a geometria exterior de um rocket.

- a) Selecione a malha mais adequada a realizar trabalho de engenharia inversa, importe no ambiente de trabalho do software de CAD e prepare a malha para modelar a geometria exterior do rocket através de ferramentas de engenharia inversa. O rocket deve ser alinhado com o eixo y do ambiente de trabalho.
- b) Extraia curvas e/ou superfícies adequadas à modelação da geometria exterior do rocket. Guarde a informação exportada num ficheiro com o nome ex1_ab.
- c) Faça uma cópia do ficheiro da alínea anterior. Modele a geometria exterior do rocket a partir das curvas e superfícies extraídas, utilizando as ferramentas mais adequadas para obter um modelo totalmente paramétrico. Guarde o modelo com o nome ex1_c.
- 2. O rocket utiliza 3 aletas cortadas a partir de placas planas de compósito, de acordo com a imagem. A partir do ponto de contacto com o corpo do rocket, a aresta exterior da aleta é definida por $y(x) = -\frac{1}{12500}.(x-500)^2 + 20, 0 \le x \le 500 \text{ (com } x \text{ paralelo ao eixo do rocket)}.$ A aresta da aleta mais afastada do eixo do rocket, junto à base, é paralela ao mesmo, definida pela equação $y(x) = 150,600 \le x \le 650$. A aleta tem uma base com 20 mm para fixação no corpo do rocket.

a) Modele a aleta do rocket, com base nas equações definidas. Poderá fazer a montagem caso ajude a completar o modelo da aleta. Guarde o modelo com o nome ex2.

	1.a)	1.b)	1.c)	2.
Ī	20%	20%	30%	30%