ECOM-G315 Econometrics 2	N		
Final Examination 21 December 2017	Name:		
	Student Number:		070
	University:	□ Aalto □ Hanken	□ University of Helsinki
Answer all the question.			
The material on page 7 may be usef	ful in answering some of	of the questions.	
Unless otherwise stated, ε_t denotes	throughout a white no	ise process.	
 In the following multiple choice: (X). In each question, only marked, the question yield choice yields -1 point. 	<u>one</u> alternative is	correct. If multiple	alternatives have been
(a) Consider the following pr	ocess:		
	$y_t = 1.4 + 0.6y_{t-1} +$	$\varepsilon_t - 1.1\varepsilon_{t-1} + 0.3\varepsilon_{t-2}.$	
☐ The process is nonsta	ationary.		
☐ Using the lag operator	or L , the process can be	e written as $(1+0.6L)$	$y_t = (1 - 0.6L)(1 - 0.5L)\varepsilon_t.$
\Box The process can equi-	valently be written as	an $AR(\infty)$ process.	
☐ The process can equi		–	
(b) Consider conditional ordinates the parameters c , θ_1 and			elihood (ML) estimation of
	$y_t = c + \theta_1 y_{t-}$	$a_1 + \theta_2 y_{t-2} + \varepsilon_t$	
from observations $y_1, y_2,$	y_T , when the error t	term ε_t is normally dis	tributed.
	estimator is obtained		$(y_t - c - \theta_1 y_{t-1} - \theta_2 y_{t-2})^2$
\Box The conditional OLS	estimator is obtained $$	by maximising $\sum_{t=3}^{T}$ ($y_t - c - \theta_1 y_{t-1} - \theta_2 y_{t-2})^2$.
\Box The conditional ML ϵ	estimator is obtained b	by minimising $\sum_{t=3}^{T} (y_t)$	$(c_t - c - \theta_1 y_{t-1} - \theta_2 y_{t-2})^2$.
			$y_t - c - \theta_1 y_{t-1} - \theta_2 y_{t-2})^2$.
(c) Suppose ε_{1t} , ε_{2t} , and ε_{3t} order and second-order po $\phi(L)y_t = \varepsilon_{2t}$ with $\phi(2) =$	lynomials in the lag op	erator L , respectively,	s, $\theta(L)$ and $\phi(L)$ are first- $\theta(L)x_t = \varepsilon_{1t}$ with $\theta(1) = 0$,

(d) Consider the following model:

 \square x_t is weakly stationary. \square z_t is weakly stationary.

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \varepsilon_t.$$

$y_{T+1 T}, 1$	the	optimal	one-period	forecast	of y_{T+1}	equals	$\phi_1 y_{T-1} +$	$\phi_2 y_{T-2}$
$y_{T+2 T}$, 1	$_{ m the}$	optimal	two-period	forecast	of y_{T+2}	equals	$\phi_1 y_{T+1} +$	$\phi_2 y_T$.
$y_{T+2 T}$, 1	the	optimal	two-period	forecast	of y_{T+2}	equals	$\phi_1 y_{T+1 T}$	$+ \phi_2 y_T$
AT C	. 1	1	1					

 \Box $(x_t, z_t)'$ is cointegrated with cointegrating vector (1, -0.5)'. \Box $(y_t, z_t)'$ is cointegrated with cointegrating vector (1, 2)'.

(e) Consider the following model:

$$y_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}.$$

- \square $y_{T+1|T}$, the optimal one-period forecast of y_{T+1} equals $\varepsilon_{T+1} + \theta_1 \varepsilon_T + \theta_2 \varepsilon_{T-1}$.
- $\Box y_{T+2|T}$, the optimal two-period forecast of y_{T+2} equals $\varepsilon_{T+2} + \theta_1 \varepsilon_{T+1} + \theta_2 \varepsilon_T$.
- $\bigcup y_{T+2|T}$, the optimal two-period forecast of y_{T+2} equals zero.
- ☐ None of the above alternatives is correct.
- (f) A researcher uses the Bayesian information criterion (BIC) to select the best time series model for the Finnish unemployment rate among the five models (each containing an intercept) that she has estimated by exact maximum likelihood with monthly data from 1996:1–2017:8 (248 observations): AR(1), AR(2), MA(1), MA(2), and ARMA(1,1). The residual variance of each of the models are given in the following table:

Model	AR(1)	AR(2)	MA(1)	MA(2)	$\overline{ARMA(1,1)}$
Residual variance	0.46	0.46	0.47	0.46	0.46

Based on this information,

- \Box the BIC selects the AR(1) model.
- \square the BIC selects the MA(1) model.
- \square the BIC selects the ARMA(1,1) model.
- \square none of the above alternatives is correct.
- (g) A researcher is specifying an adequate AR(p) model for the quarterly Finnish inflation rate series (π_t) by sequential testing based on significance tests at the 5% level of significance. He starts out by estimating an AR(6) model,

$$\pi_t = \theta_0 + \theta_1 \pi_{t-1} + \theta_2 \pi_{t-2} + \theta_3 \pi_{t-3} + \theta_4 \pi_{t-4} + \theta_5 \pi_{t-5} + \theta_6 \pi_{t-6} + \varepsilon_t$$

and finds that the p-values of the significance tests of θ_0 , θ_1 , θ_2 , θ_3 , θ_4 , θ_5 , and θ_6 equal 0.201, 0.035, 0.022, 0.063, 0.012, 0.042 and 0.084, respectively. Based on this information,

- \square sequential testing selects the AR(4) model.
- □ sequential testing selects the AR(5) model.
- \square sequential testing selects the AR(6) model.
- □ none of the above alternatives is correct.
- (h) Consider the following VAR(2) process:

$$\mathbf{y}_t = \Theta_1 \mathbf{y}_{t-1} + \Theta_2 \mathbf{y}_{t-2} + \varepsilon_t.$$

- \square The process can equivalently be written as $\Delta \mathbf{y}_t = \Pi \mathbf{y}_{t-1} + \Gamma_1 \Delta \mathbf{y}_{t-1} + \Gamma_2 \Delta \mathbf{y}_{t-2} + \varepsilon_t$.
- \square If $I \Theta_1 \Theta_2 = 0$, \mathbf{y}_t is a cointegrated I(1) process.
- \square If $\mathbf{y}_t = (x_t, z_t)'$, $\Theta_1 = \begin{pmatrix} 0.5 & 2.1 \\ 0.0 & 0.4 \end{pmatrix}$, and $\Theta_2 = \begin{pmatrix} 0.0 & -1.1 \\ 0.0 & 0.0 \end{pmatrix}$, \mathbf{y}_t is weakly stationary.
- \square Suppose $\mathbf{y}_t = (x_t, z_t)'$. Then x_t is Granger causal for z_t if the (2,1) elements of Θ_1 and Θ_2 equal zero.
- (i) A researcher wants to find out whether two interest rates, the one-month rate (r_{1t}) and the one-year rate (r_{12t}) , are cointegrated in accordance with the expectations hypothesis of the term structure of interest rates (i.e., are cointegrated with cointegrating vector (1, -1)'). Her data set comprises 812 weekly observations. When she regresses r_{12t} on a constant and r_{1t} , she obtains the following OLS estimates (t-statistics in parentheses):

$$r_{12t} = 0.95 + 1.00 r_{1t}.$$

She then computes the residuals of this regression model (e_t) and runs the following regression:

$$\Delta e_t = \delta + \rho e_{t-1} + \gamma_1 \Delta e_{t-1} + \gamma_2 \Delta e_{t-2} + \varepsilon_t.$$

Because the value of the ADF test statistic of the residuals based on the latter regression is -3.22,

	 □ the ADF test rejects the null hypothesis of cointegration at the 5% level of significance. □ the ADF test rejects the null hypothesis of no cointegration at the 5% level of significance. □ the results indicate that (r_{1t}, r_{12t})' is cointegrated with cointegrating vector (1, -1)' (at the 5% significance level). □ none of the above alternatives is correct.
(j)	
	the value of the ADF test statistic is -3.14 . Hence,
	\Box r_{12t} and r_{1t} are not cointegrated at the 5% level of significance.
	\Box r_{12t} and r_{1t} are cointegrated but not with cointegrating vector $(1, -1)'$ at the 5% level of significance.
	\Box r_{12t} and r_{1t} are cointegrated with cointegrating vector $(1,-1)'$ at the 5% level of significance. \Box none of the above alternatives is correct.
(k)	Yet another researcher tests the implication of the expectations hypothesis in the same data by means of a vector autoregression fitted to the data consisting of 812 weekly observations of r_{1t} and r_{12t} . He obtains the output in Box 1 on page 6. According to the results,
	\Box r_{1t} and r_{12t} are not cointegrated at the 10% level of significance.
	\Box r_{1t} and r_{12t} are cointegrated at the 10% level of significance, and assuming they are cointegrated, the cointegrating vector is $(1,-1)'$ at the 10% level of significance.
	\Box r_{1t} and r_{12t} are not cointegrated at the 10% level of significance, but assuming they are cointegrated, the cointegrating vector is $(-1,1)'$ at the 10% level of significance.
(1)	none of the above alternatives is correct.
(1)	A researcher is forecasting the Finnish inflation rate (π_t) with an AR(3) model. She estimates the model from monthly data from 1995:1 to 2017:6, and in order to assess the forecast performance, she computes the one-period ahead forecasts $(\pi_{t+1 t})$ over the estimation period. The estimation result of the Mincer-Zarnowitz regression is the following (standard errors in parentheses):
	$\pi_{t+1} = {0.48 \atop (0.24)} + {1.10 \atop (0.50)} \pi_{t+1 t}$
	The p value of the Wald test of the null hypothesis that the intercept term equals zero and the slope coefficient equals unity is 0.08, while the p value of the Wald test of the null hypothesis that the intercept term equals unity and the slope coefficient equals zero is 0.01. She correctly concludes that
	\Box the AR(3) model yields unbiased forecasts (at the 5% significance level).
	☐ the forecast errors of the AR(3) model are significantly forecastable (at the 5% level).
	\Box the forecast errors of the AR(3) model are autocorreted (at the 5% significance level). \Box None of the above alternatives is correct.
(m)	A researcher is surprised because the ADF test does not reject the null hypothesis of a unit root in the Finnish real interest rate $R_t = r_t - \pi_t$ at the 5% level of significance. She was expecting r_t and π_t to be cointegrated in accordance with the Fisher effect hypothesis, and she wonders whether there could be something wrong with her testing setup. Which of the following is not a potential reason for not rejecting the unit root hypothesis?
	☐ Because she had only 112 observations, the power of her test might be low.
	\square Because she had only 112 observations, the size of her test might be too high.
	\square Although R_t really is stationary, it is so close to being $I(1)$ that the test may have low power. \square Although r_t and π_t really are cointegrated, they are not cointegrated with cointegrating vector $(1,-1)'$.

(n)	A researcher has observations of three time series, x_t , y_t , and z_t . She is unable to reject the	null
	hypothesis of x_t and y_t being unit root processes at the 5% level of significance, but she conclusion	ides
	that z_t is an $I(0)$ process. Moreover, she finds that x_t and y_t are cointegrated with cointegrated	ing
	vector $(1,-1)'$. She regresses y_t on a constant, x_{t-1} , y_{t-1} , Δx_{t-1} , and z_{t-1} i.e., estimates	the
	following regression model:	

$$y_t = \beta_0 + \beta_1 x_{t-1} + \beta_2 y_{t-1} + \beta_3 \Delta x_{t-1} + \beta_4 z_{t-1} + \varepsilon_t. \tag{1}$$

She obtains the following OLS estimates (t-statistics based on a consistent covariance matrix estimator in parentheses):

$$y_t = \underset{(1.14)}{0.12} + \underset{(1.72)}{0.32} x_{t-1} - \underset{(-2.46)}{0.98} y_{t-1} + \underset{(1.81)}{0.14} \Delta x_{t-1} + \underset{(1.38)}{0.22} z_{t-1}.$$

The p value (based on the χ^2_2 distribution) of the Wald test of the null hypothesis $\beta_1 = \beta_4 = 0$ equals 0.068, and the p value (based on the χ^2 distribution) of the Wald test of the null hypothesis $\beta_3 = \beta_4$ equals 0.048. According to the Breusch-Godfrey test, the residuals are not autocorrelated up to 6 lags (at the 5% significance level). In regression (1)

	7 6 6 7
	\square the null hypothesis $\beta_3 = \beta_4$ is rejected at the 5% significance level.
	\Box the null hypothesis $\beta_3 = \beta_4$ is rejected at the 1% significance level.
	\Box the critical values of the Wald test of the null hypothesis $\beta_1 = \beta_4$ cannot be taken from the χ_2^2 distribution, so the p value based on it is incorrect.
	\square none of the above alternatives is correct.
(o)	In regression (1),
	\square according to the t test, β_2 is significant at the 5% significance level.
	\square according to the t test, β_2 is significantly different from zero at he 1% significance level.
	\square β_2 is consistently estimated by OLS, but the significance of β_2 cannot be evaluated by critical values from the standard normal distribution.
	\square none of the above alternatives is correct.
(p)	In regression (1),
	\square according to the t test, β_3 is significant at he 5% significance level.
	\square according to the t test, β_3 is significantly different from zero at he 10% significance level.
	\square β_3 is consistently estimated by OLS, but the significance of β_3 cannot be evaluated by critical values from the standard normal distribution, so the p value based on it is incorrect.
	\square none of the above alternatives is correct.
(q)	In regression (1),
	\Box the null hypothesis $\beta_1 = \beta_4 = 0$ is rejected at the 5% significance level.
	\Box the null hypothesis $\beta_1 = \beta_4 = 0$ is rejected at the 10% significance level.
	\Box the critical values of the Wald test of the null hypothesis $\beta_1 = \beta_4 = 0$ cannot be taken from the χ^2_2 distribution.
	\square none of the above alternatives is correct.
Γ his	question yields a maximum of 4 points. Write your answer in the box below each question.

- 2. 7
 - (a) Why is it important to select a consistent estimator of the covariance matrix of the ordinary least squares (OLS) estimator when doing econometric analysis by means of linear regression?

ł		
1		
}		
1		
1		
1		
1		

	regression model: $y_t = \beta_0 + \beta_1 x_t + \beta_2 z_t + \varepsilon_t,$
	where x_t , y_t and z_t are stationary time series. Describe the steps you need to take to ensure that you select a consistent estimator of the covariance matrix of the OLS estimator.
	page 6.
(b)	Interpret the estimated restricted vector error correction model in Box 1 on page 6.

```
> y=cbind(r12,r1)
> vecm = ca.jo(y, K=3, ecdet="const", type="trace", spec="transitory")
> summary(vecm)
##############################
# Johansen-Procedure #
############################
Test type: trace statistic , without linear trend and constant in cointegration
Values of test statistic and critical values of test:
test 10pct 5pct 1pct r <= 1 | 2.92 7.52 9.24 12.97
r = 0 | 17.88 17.85 19.96 24.60
Eigenvectors, normalised to first column:
(These are the cointegration relations)
                                r1.l1
                 r12.l1
r12.l1 1.00000000 1.00000000 1.00000000 r1.l1 -0.964265319 -1.78407362 -0.73397230
Weights W:
(This is the loading matrix)
          r12.l1
r12.d -1.295431 0.06015652 -4.105492e-16
r1.d -1.033525 0.07539816 -3.265174e-16
> H1 <- matrix(c(1,-1,0,
+ 0,0,1), c(3,2))
> summary(blrtest(vecm, H = H1, r = 1))
###########################
# Johansen-Procedure #
#########################
Estimation and testing under linear restrictions on beta
The VECM has been estimated subject to:
beta=H*phi and/or alpha=A*psi
[,1] [,2]
[1,] 1 0
[2,] -1 0
[3,] 0 1
The value of the likelihood ratio test statistic: 1.95 distributed as chi square with 1 df.
 The p-value of the test statistic is: 0.16
Eigenvectors, normalised to first column of the restricted VAR:
[,1] [,2]
[1,] 1.0000 1.0000
[2,] -1.0000 -1.0000
 [3,] -0.0025 -0.0618
 Weights W of the restricted VAR:
[,1] [,2]
r12.d -0.9275 0.0029
 r1.d 0.6423 -0.0035
```

Box 1

(Note: r1 and r12 denote r_{1t} and r_{12t} , respectively.)

OLS Regression with I(1) Variables Cheat Sheet

^{• *} Not autocorrelated after H-1 lags.

For further details, see Stock, J.H., & Watson M.W. (1988), Variable Trends in Economic Time Series. Journal of Economic Perspectives 2, 147 - 174.

Table 8.1 1% and 5% critical values for Dickey-Fuller tests (Fuller, 1976, p. 373)

	Withou	it trend	With trend	
Sample size	1%	5%	1%	5%
T = 25	-3,75	-3.00	-4.38	-3.60
T = 50	-3.58	-2.93	-4.15	-3.50
T = 100	-3.51	-2.89	-4.04	-3.45
T = 250	-3.46	-2.88	-3.99	-3.43
T = 500	-3.44	-2.87	-3.98	-3.42
$T = \infty$	-3.43	-2.86	-3.96	-3.41

Table 9.2 Asymptotic critical values residual unit root tests for cointegration (with constant term) (Davidson and MacKinnon, 1993)

Number of variables	Significance level			
(incl. Y_i)	1%	5%	10%	
2	-3.90	-3.34	-3.04	
3	-4.29	-3.74	-3.45	
4	-4.64	-4.10	-3.81	
5	-4.96	-4.42	-4.13	

Asymptotic critical values of the two-sided t-test from the standard normal distribution

1%	5%	10%
2.58	1.96	1.64