Physics-JEE-Mains-Formulas

October 20, 2025

ClassLesson		Concept	Formula / Key Point	Variable Explanation
11	Physical World & Mea- sure- ment	SI Units	[Base units: m, kg, s, A, K, mol, cd]	m: metre, kg: kilogram, s: second, A: ampere, K: kelvin, mol: mole, cd: candela
		Measureme	en[Percentage error =	Error: Difference from true
		Errors	$\frac{\text{Error}}{\text{Measured value}} \times 100$	value, Measured value: Obtained value
		Significant Figures	[Rules for significant digits]	-
11	Kinematio	esEquations of Motion	$[v = u + at], [s = ut + \frac{1}{2}at^2],$ $[v^2 = u^2 + 2as]$	v: Final velocity, u: Initial velocity, a: Acceleration, t: Time, s: Displacement
		Projectile Motion	$[R = \frac{u^2 \sin 2\theta}{g}], [T = \frac{2u \sin \theta}{g}]$	u: Initial velocity, : Angle,g: Gravity, R: Range, T:Time of flight
		Relative Velocity	$[\vec{v}_{A/B} = \vec{v}_A - \vec{v}_B]$	$v_{A/B}$: Velocity of A relative to B
11	Laws of Motion	Newton's Second Law	$[ec{F}=mec{a}]$	F: Force, m: Mass, a: Acceleration
		Friction	$[f_{\rm max} = \mu N]$	f_{max} : Max static friction, μ : Coefficient of friction, N: Normal force
		Impulse & Mo- mentum	$[\; \vec{J} = \vec{F} \Delta t \;], \; [\; \vec{p} = m \vec{v} \;]$	 J: Impulse, p: Momentum, F: Force, Δt: Time interval m: Mass, v: Velocity
11	Work, Energy & Power	Work Done	$[W = \vec{F} \cdot \vec{d} = Fd \cos \theta]$	W: Work, F: Force, d: Displacement, : Angle between force and displacement
		Kinetic Energy	$[K.E. = \frac{1}{2}mv^2]$	m: Mass, v: Velocity
		Power	$[P = \frac{W}{t}], [P = Fv]$	P: Power, W: Work, t: Time, F: Force, v: Velocity

ClassLesson		Concept	Formula / Key Point	Variable Explanation
11	Gravitatio	nNewton's Law of Gravita- tion	$[F = G\frac{m_1 m_2}{r^2}]$	F: Force, G: Gravitational constant, m_1 , m_2 : Masses, r: Distance between centers
		Acceleration due to Gravity	$\operatorname{cm}[g=Grac{M}{R^2}]$	g: Gravity, G: Gravitational constant, M: Planet mass, R: Radius of planet
		Escape Velocity	$[v_e = \sqrt{\frac{2GM}{R}}]$	v_e : Escape velocity, G: Gravitational constant, M: Mass of planet, R: Radius
11	Properties of Matter	Stress and Strain Young's	[Stress = $\frac{F}{A}$], [Strain = $\frac{\Delta L}{L}$]	F: Force, A: Area, Δ L: Change in length, L: Original length
		Modulus Modulus	$[Y = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta L/L}]$	Y: Young's modulus, F: Force, A: Area, L: Length, ΔL: Change in length
		Bulk Modulus	$[B = -V \frac{\Delta P}{\Delta V}]$	B: Bulk modulus, V: Volume, ΔP : Pressure change, ΔV : Volume change
11	Thermody	n airsit sLaw	$[\Delta U = Q - W]$	ΔU: Change in internal energy, Q: Heat, W: Work
		Work in Expan- sion	$[W = P\Delta V]$	W: Work, P: Pressure, ΔV : Volume change
		Specific Heat Capacity	$[Q = mc\Delta T]$	Q: Heat, m: Mass, c: Specific heat, ΔT : Temp change
11	Oscillation	Har- monic Motion	$[x = A\sin(\omega t + \phi)], \ [\omega = 2\pi f = \sqrt{\frac{k}{m}}],$ $[T = \frac{2\pi}{\omega}]$	x: Displacement, A: Amplitude, : Angular frequency, : Phase, t: Time, k: Spring const.
		Time Period of Pendu- lum	$[T = 2\pi\sqrt{\frac{l}{g}}]$	T: Time period, l: Length of pendulum, g: Gravity
		Energy in SHM	$[E = \frac{1}{2}kA^2]$	E: Energy, k: Spring constant, A: Amplitude
11	Waves	Wave Velocity Intensity	$[v = f\lambda]$ [Intensity \propto Amplitude ²]	v: Velocity, f: Frequency, : Wavelength Intensity Square of
		v	io[Constructive and destructive interference]	Amplitude Depends on phase difference of overlapping waves

ClassLesson		Concept	Formula / Key Point	Variable Explanation
12	Electrosta	t i© soulomb's Law	$\left[F = k \frac{q_1 q_2}{r^2}\right]$	F: Force, k: Coulomb constant, q_1 , q_2 : Charges, r: Distance between charges
		Electric Field	$[E = \frac{F}{q} = k\frac{Q}{r^2}]$	E: Electric field, F: Force, q: Test charge, Q: Source charge, r: Distance
		Electric Potential	$[V = k \frac{Q}{r}]$	V: Electric potential, Q: Charge, r: Distance, k: Coulomb constant
12	Current Electric- ity	Ohm's Law	[V = IR]	V: Voltage, I: Current, R: Resistance
	109	Power in Electric Circuit	$[P = VI], [P = I^2R], [P = \frac{V^2}{R}]$	P: Power, V: Voltage, I: Current, R: Resistance
			[Series: $R = R_1 + R_2 +$], [Parallel: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} +$]	R: Net resistance, R_1 , R_2 : Individual resistances
12	Magnetic Effects	Biot– Savart Law	$[dec{B}=rac{\mu_0}{4\pi}rac{Idec{l} imes\hat{r}}{r^2}]$	μ_0 : Permeability, I: Current, $d\vec{l}$: Element length, \hat{r} : Unit vector
		Magnetic Field on Coil Axis	$[B = \frac{\mu_0 N I R^2}{2(R^2 + x^2)^{3/2}}]$	B: Magnetic field, N: Turns, I: Current, R: Radius, x: Axis dist.
		Force on Current- Carrying Wire	$[\vec{F} = I\vec{L} \times \vec{B}]$	F: Force, I: Current, L: Length vector, B: Magnetic field
12	Electroma Induc- tion		$\left[\mathcal{E} = -\frac{d\Phi_B}{dt}\right]$	$\mathcal{E} {:} \ \mathrm{EMF}, \Phi_B {:} \ \mathrm{Magnetic}$ flux, t : Time
	tion	Lenz's Law	[Induced emf opposes the change causing it]	Direction opposes cause
		Self- Inductance	$[L = \frac{\tilde{N}\Phi_B}{I}]$	L: Inductance, N: Turns, Φ_B : Magnetic flux, I: Current
12	Alternatin Currents	ngRMS Values	$[I_{ m rms} = rac{I_0}{\sqrt{2}}], [V_{ m rms} = rac{V_0}{\sqrt{2}}]$	I_0 : Peak current, V_0 : Peak voltage
	Carronos	Reactance	[Inductive: $X_L = \omega L$], [Capacitive: $X_C = \frac{1}{2\pi}$]	ω: Angular freq, L: Inductance, C: Capacitance
		Impedance	$X_{C} = \frac{1}{\omega C}]$ [Z = $\sqrt{R^{2} + (X_{L} - X_{C})^{2}}$]	Z: Impedance, R: Resistance, X_L , X_C : Reactances
12	Optics	Lens Formula	$\left[\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\right]$	f: Focal length, v: Image distance, u: Object distance

ClassLesson		Concept Formula / Key Point	Variable Explanation
		Magnificatio $[m = \frac{v}{u} = \frac{h_i}{h_o}]$	h_i : Image height, h_o : Object height
		Snell's $[n_1\sin\theta_1=n_2\sin\theta_2]$	n : Refractive index, θ :
		Law	Angle
12	Dual	Photoelectri $\phi f = \phi + \frac{1}{2}mv^2$	h: Planck's const, f:
	Nature	Equation	Frequency, : Work
	& Radi-		function, m: Mass, v:
	ation		Velocity
		de $\left[\lambda = \frac{h}{n} = \frac{h}{mv}\right]$: Wavelength, h: Planck's
		Broglie	constant, p: Momentum, m:
		Wave-	Mass, v. Velocity
		length	
		Radioactive $[N = N_0 e^{-\lambda t}]$	N_0 : Initial nuclei, : Decay
		Decay	const, t: Time
12	Atoms	Bohr $[r_n = n^2 \frac{h^2}{4\pi^2 me^2}]$	r_n : Orbit radius, n: Level,
	and	Radius	h: Planck's const, m:
	Nuclei		Electron mass, e: Charge
		Energy $\left[E_n = -\frac{13.6 \text{eV}}{n^2}\right]$	E_n : Energy of nth level, n:
		Levels	Orbit number