Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Типовой расчет № 1 "Функции нескольких переменных "

по дисциплине Математический анализ

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Бойцев Антон Александрович

Санкт-Петербург, 2023-2024

1 задание.

Найти частные производные данной функции f(x,y) в точке (0,0). Выяснить, является ли функция дифференцируемой в точке (0,0). Найти её дифференциал. Пункт 2.

$$f(x,y) = y + \cos\sqrt[3]{x^2 + y^2} \tag{1}$$

1.1 Частные производные

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
(2)

Производная по x в точке (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{\cos \sqrt[3]{(\Delta x)^2} - \cos 0}{\Delta x} = -2 \lim_{\Delta x \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta x)^2}}{2}}{\Delta x} =$$

$$= -2 \lim_{\Delta x \to 0} \frac{\sin^2 \frac{\sqrt[3]{(\Delta x)^2}}{2}}{4\left(\frac{\sqrt[3]{(\Delta x)^2}}{2}\right)^2} = 0 \quad (3)$$

Производная по y в точке (0,0):

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{\Delta y + \cos\sqrt[3]{(\Delta y)^2} - \cos 0}{\Delta y} = \lim_{\Delta y \to 0} \left(1 + \frac{\cos\sqrt[3]{(\Delta y)^2} - 1}{\Delta y}\right) = 1 - 2\lim_{\Delta y \to 0} \frac{\sin^2\frac{\sqrt[3]{(\Delta y)^2}}{2}}{\Delta y} = 1 - 2\lim_{\Delta y \to 0} \frac{\sin^2\frac{\sqrt[3]{(\Delta y)^2}}{2}\sqrt[3]{\Delta y}}{4\left(\frac{\sqrt[3]{(\Delta y)^2}}{2}\right)^2} = 1 \quad (4)$$

1.2 Дифференцируемость в точке (0,0)

1.3 Дифференциал

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy \tag{5}$$

Найдем частные производные:

$$\frac{\partial f}{\partial x} = \left(y + \cos\sqrt[3]{x^2 + y^2}\right)_x' = -\frac{2x}{3} \frac{\sin\sqrt[3]{x^2 + y^2}}{\sqrt[3]{\left(x^2 + y^2\right)^2}} \tag{6}$$

$$\frac{\partial f}{\partial y} = \left(y + \cos\sqrt[3]{x^2 + y^2}\right)_y' = 1 - \frac{2y}{3} \frac{\sin\sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}}$$
(7)

Терерь запишем полный дифференциал:

$$df = -\frac{2x}{3} \frac{\sin \sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}} dx + \left(1 - \frac{2y}{3} \frac{\sin \sqrt[3]{x^2 + y^2}}{\sqrt[3]{(x^2 + y^2)^2}}\right) dy$$
 (8)

2 задание

Найти производную данной функции в направлении данного вектора в заданной точке M. Пункт 8.

$$f(x,y,z) = \exp(x + 2xy + 3xyz) \tag{9}$$

по направлению внутренней нормали к поверхности $x^2+y^2+z^2+2z=1,$ $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$

Найдем уравнение касательной плоскости к поверхности $x^2+y^2+z^2+2z=1$ в точке $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$:

$$F'_{x}(M) \cdot (x - x_{0}) + F'_{y}(M) \cdot (y - y_{0}) + F'_{z}(M) \cdot (z - z_{0}) = 0$$
 (10)

$$F_x' = (x^2 + y^2 + z^2 + 2z - 1)_x' = 2x \tag{11}$$

$$F_y' = (x^2 + y^2 + z^2 + 2z - 1)_y' = 2y$$
(12)

$$F_z' = (x^2 + y^2 + z^2 + 2z - 1)_z' = 2z + 2$$
(13)

$$F_x'(M) = 2\frac{1}{2} = 1 \tag{14}$$

$$F_y'(M) = 2\frac{\sqrt{3}}{2} = \sqrt{3} \tag{15}$$

$$F_z'(M) = 2 \tag{16}$$

Искомая плоскость:

$$x - \frac{1}{2} + \sqrt{3} \cdot \left(y - \frac{\sqrt{3}}{2}\right) + 2z = 0 \tag{17}$$

$$x + \sqrt{3}y + 2z - 2 = 0 \tag{18}$$

Вектор нормали к плоскости $x+\sqrt{3}y+2z-2=0$ будет выглядеть $\vec{n}=\left(1,\sqrt{3},2\right)$. Поверхность $x^2+y^2+z^2+2z=1$ представляет собой сферу $x^2+y^2+(z+1)^2=2$ с центром O=(0,0,-1) и радиусом $R=\sqrt{2}$.

Так как точкой начала вектора \vec{n} является $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$, а его координаты $\vec{n}=\left(1,\sqrt{3},2\right)$, то точкой конца вектора будет $\left(\frac{3}{2},\frac{3\sqrt{3}}{2},2\right)$. То есть вектор $\vec{n}=\left(1,\sqrt{3},2\right)$ направлен наружу относительно поверхности.

Внутренняя нормаль $\vec{n}_{in} = (-1, -\sqrt{3}, -2).$

Получим нормированный вектор, по направлению которого будем вычислять производную:

$$|\vec{n}_{in}| = \sqrt{1+3+4} = \sqrt{8} = 2\sqrt{2} \tag{19}$$

$$l = \left(-\frac{1}{2\sqrt{2}}, -\frac{\sqrt{3}}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \tag{20}$$

Вычислим частные производные от $f(x,y,z) = \exp(x+2xy+3xyz)$ в точке $M\left(\frac{1}{2},\frac{\sqrt{3}}{2},0\right)$:

$$f_x' = (1 + 2y + 3yz) \exp(x + 2xy + 3xyz)$$
 (21)

$$f_y' = (2x + 3xz)\exp(x + 2xy + 3xyz) \tag{22}$$

$$f_z' = 3xy \exp(x + 2xy + 3xyz) \tag{23}$$

$$f'_x(M) = \left(1 + 2\frac{\sqrt{3}}{2}\right) \exp\left(\frac{1}{2} + 2\frac{1}{2}\frac{\sqrt{3}}{2}\right) = \left(1 + \sqrt{3}\right) \exp\left(\frac{\sqrt{3} + 1}{2}\right)$$
 (24)

$$f'_{y}(M) = \left(2\frac{1}{2}\right) \exp\left(\frac{1}{2} + 2\frac{1}{2}\frac{\sqrt{3}}{2}\right) = \exp\left(\frac{\sqrt{3} + 1}{2}\right)$$
 (25)

$$f_z'(M) = 3\frac{1}{2}\frac{\sqrt{3}}{2}\exp\left(\frac{1}{2} + 2\frac{1}{2}\frac{\sqrt{3}}{2}\right) = \frac{3\sqrt{3}}{4}\exp\left(\frac{\sqrt{3} + 1}{2}\right)$$
 (26)

Вычислим производную по направлению l в точке M:

$$\frac{\partial f}{\partial l} = \left(\left(1 + \sqrt{3} \right) e^{\frac{\sqrt{3}+1}{2}}, e^{\frac{\sqrt{3}+1}{2}}, \frac{3\sqrt{3}}{4} e^{\frac{\sqrt{3}+1}{2}} \right) \begin{pmatrix} -\frac{1}{2\sqrt{2}} \\ -\frac{\sqrt{3}}{2\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = (27)$$

3 задание

Произвести указанную замену в данном дифференциальном уравнении. Решить полученное дифференциальное уравнение в новых переменных. По-казать, что найденное решение (в исходных переменных) удовлетворяет исходному уравнению. Пункт 3.

u и v – новые независимые переменные, w – новая функция. u = x + y, v = x - y, w + z = xy,

$$\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$
 (28)

z = z(x, y), w = w(u, v), u = u(x, y), v = v(x, y)

Для начала найдем все производные второго порядка функции w по переменным x и y:

$$w'_{x} = w'_{u} \cdot u'_{x} + w'_{v} \cdot v'_{x} = w'_{u} + w'_{v}$$
(29)

$$w_{ux}'' = w_{uu}'' \cdot u_x' + w_{uv}'' \cdot v_x' = w_{uu}'' + w_{uv}''$$
(30)

$$w_{vx}'' = w_{vu}'' \cdot u_x' + w_{vv}'' \cdot v_x' = w_{vu}'' + w_{vv}''$$
(31)

Вторая производная по x:

$$w_{xx}'' = w_{yy}'' + 2w_{yy}'' + w_{yy}'' \tag{32}$$

$$w'_{y} = w'_{u} \cdot u'_{y} + w'_{v} \cdot v'_{y} = w'_{u} - w'_{v}$$
(33)

$$w_{uy}'' = w_{uu}'' \cdot u_y' + w_{uv}'' \cdot v_y' = w_{uu}'' - w_{uv}''$$
(34)

$$w_{vy}'' = w_{vu}'' \cdot u_y' + w_{vv}'' \cdot v_y' = w_{vu}'' - w_{vv}''$$
(35)

Вторая производная по y:

$$w_{uu}'' = w_{uu}'' - 2w_{uv}'' + w_{vv}'' \tag{36}$$

Вторая производная по x и y:

$$w_{yx}'' = w_{xy}'' = w_{yy}'' - w_{yy}'' \tag{37}$$

Теперь выразим z''_{xx} , z''_{xy} и z''_{yy} из w+z=xy: