# Física Contemporánea

Dr. Víctor H. Cárdenas Instituto de Física y Astronomía Universidad de Valparaíso

# 3. Difracción

# Difracción por N redijas

$$I_N(\theta) = I(0)\operatorname{sinc}^2(\alpha/2) \left[\frac{\sin(N\beta/2)}{\sin(\beta/2)}\right]^2$$

 $\alpha = kd\sin\theta; \quad \beta = ka\sin\theta,$ 







#### Difracción de Fraunhoffer

## Redes de difracción

Para N muy grande, el máximo central es tan estrecho, que se pueden distinguir dos o mas longitudes de onda cercanas!!!

La potencia de resolución cromática es

$$CRP = \lambda/\Delta\lambda$$
,

En el caso del p-ésimo maximo  $Np\lambda = Na\sin\theta,$ 

Y el adyacente  $(Np+1)\lambda = Na\sin(\theta + \Delta\theta)$ .

Si este coincide con  $Np(\lambda + \Delta\lambda) = Na\sin(\theta + \Delta\theta)$ 

entonces

$$Np \Delta \lambda - \lambda = 0,$$

$$\lambda/\Delta\lambda = Np.$$



# **Espectroscopio (espectrómetro)**





Para una red de 5 cm de ancho, con 1200 líneas/mm el CRP es de 60000!!

Ver: <a href="https://www.youtube.com/watch?v=oae5fa-f0S0">https://www.youtube.com/watch?v=oae5fa-f0S0</a>

# 4. Polarización

#### **Vectores de Jones**

Consideremos el campo  $\mathbf{E} = \mathbf{i}E_x + \mathbf{j}E_y$ 

O bien

$$\mathbf{E} = \mathbf{i} E_{0x} e^{i(kz - \omega t + \varphi_x)} + \mathbf{j} E_{0y} e^{i(kz - \omega t + \varphi_y)}$$



$$\mathbf{E} = [\mathbf{i}E_{0x}e^{i\varphi_x} + \mathbf{j}E_{0y}e^{i\varphi_y}] e^{i(kz-\omega t)} = \mathbf{\tilde{E}}_0 e^{i(kz-\omega t)}$$

donde

$$\mathbf{ ilde{E}}_0 = egin{bmatrix} ilde{E}_{0x} \ ilde{E}_{0y} \end{bmatrix} = egin{bmatrix} E_{0x}e^{iarphi_X} \ E_{0y}e^{iarphi_y} \end{bmatrix}$$

llamado <u>vector de Jones</u>





$$\mathbf{ ilde{E}}_0 = egin{bmatrix} ilde{E}_{0x} \ ilde{E}_{0y} \end{bmatrix} = egin{bmatrix} E_{0x}e^{iarphi_X} \ E_{0y}e^{iarphi_y} \end{bmatrix}$$

#### Polarización lineal

Caso (a)

$$E_0 = \begin{bmatrix} 0 \\ A \end{bmatrix} = A \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Caso (b)

$$E_0 = \begin{bmatrix} A \\ 0 \end{bmatrix} = A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$







Caso (c)

$$\tilde{E}_0 = \begin{bmatrix} E_{0x} e^{i\varphi_x} \\ E_{0y} e^{i\varphi_y} \end{bmatrix} = \begin{bmatrix} A \cos \alpha \\ A \sin \alpha \end{bmatrix} = A \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

En resumen, para un vector de Jones [a b] con a y b números reales no ceros ambos, describe polarización lineal con inclinación  $\alpha$ 

$$\alpha = \tan^{-1} \left( \frac{E_{0y}}{E_{0x}} \right) = \tan^{-1} \left( \frac{b}{a} \right)$$

Normalizando

$$E_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad E_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad E_0 = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

#### Polarización circular

Supongamos que  $E_{0x} = E_{0y} = A$  y que existe una fase relativa entre las componentes de  $\epsilon = \pi/2$ .

Cuando  $E_x$  va adelante que  $E_y$ 

$$E_x = A \cos \omega t$$
  $E_y = A \cos \left(\omega t - \frac{\pi}{2}\right) = A \sin \omega t$ 

Normalizando

$$E_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Como

$$E^2 = E_x^2 + E_y^2 = A^2 (\cos^2 \omega t + \sin^2 \omega t) = A^2$$

se dice que la onda está polarizada <u>hacia la izquierda</u>.

El vector de Jones es

$$\tilde{E}_0 = \begin{bmatrix} E_{0x}e^{i\varphi_x} \\ E_{0y}e^{i\varphi_y} \end{bmatrix} = \begin{bmatrix} A \\ Ae^{i\pi/2} \end{bmatrix} = A\begin{bmatrix} 1 \\ i \end{bmatrix}$$



#### Polarización circular

Otra vez supongamos que  $E_{0x} = E_{0y} = A$  y que existe una fase relativa entre las componentes de  $\epsilon = \pi/2$ , pero esta vez  $E_y$  va delante de  $E_x$ 

Se dice que la onda está polarizada <u>hacia la derecha</u>.

El vector de Jones es

$$\tilde{E}_0 = \begin{bmatrix} E_{0x} e^{i\varphi_x} \\ E_{0y} e^{i\varphi_y} \end{bmatrix} = A \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

Normalizando

$$E_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$$



### Polarización elíptica

Las amplitudes no son iguales. Supongamos que el desfasaje  $\epsilon=\pi/2$  .

Habrán señales elípticamente polarizadas a la izquierda y derecha.

$$\begin{bmatrix} A \\ iB \end{bmatrix}$$
 counterclockwise rotation

and

A clockwis

La normalización debe incluir:  $1/\sqrt{A^2 + B^2}$ 



 $m = 0, 1, 2, \ldots$ 



El eje también puede estar inclinado, cuando

$$\varphi_y - \varphi_x = \epsilon$$
 es distinto de:

- i)  $m\pi$  para polarización lineal
- ii)  $(m + \frac{1}{2})\pi$  para polarización circular

$$\tan 2\alpha = \frac{2E_{0x}E_{0y}\cos \epsilon}{E_{0x}^2 - E_{0y}^2}$$



### Polarización elíptica

El vector de Jones es

$$\tilde{E}_0 = \begin{bmatrix} E_{0x}e^{i\varphi_x} \\ E_{0y}e^{i\varphi_y} \end{bmatrix} = \begin{bmatrix} A \\ be^{i\epsilon} \end{bmatrix} = \begin{bmatrix} A \\ B + iC \end{bmatrix}$$

Y la normalización requiere  $\sqrt{A^2 + B^2 + C^2}$ .

$$E_{0x} = A$$
,  $E_{0y} = \sqrt{B^2 + C^2}$ , and  $\epsilon = \tan^{-1}\left(\frac{C}{B}\right)$ 



¿para qué sirven los vectores de Jones?

Supongamos que superponemos luz polarizada circularmente a la izquierda y derecha, entonces:

$$\begin{bmatrix} 1 \\ i \end{bmatrix} + \begin{bmatrix} l \\ -i \end{bmatrix} = \begin{bmatrix} 1+1 \\ i-i \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

o de 2 linealmente polarizadas

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$



#### **Polarizadores**

Lineales (TA = transmisión axis)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$M = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 linear polarizer, TA vertical

Retardador de fase (FA = fast axis, SA = slow axis)

$$\begin{bmatrix} e^{i\epsilon_x} & 0 \\ 0 & e^{i\epsilon_y} \end{bmatrix} \begin{bmatrix} E_{0x}e^{i\varphi_x} \\ E_{0y}e^{i\varphi_y} \end{bmatrix} = \begin{bmatrix} E_{0x}e^{i(\varphi_x + \epsilon_x)} \\ E_{0y}e^{i(\varphi_y + \epsilon_y)} \end{bmatrix}$$

$$M = \begin{bmatrix} e^{i\epsilon_x} & 0 \\ 0 & e^{i\epsilon_y} \end{bmatrix}$$
 phase retarder

Rotador

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} = \begin{bmatrix} \cos (\theta + \beta) \\ \sin (\theta + \beta) \end{bmatrix}$$



#### **Polarizadores**

#### **SUMMARY OF JONES MATRICES**

#### I. Linear polarizers

TA horizontal 
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 TA vertical  $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$  TA at 45° to horizontal  $\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ 

#### II. Phase retarders

General 
$$\begin{bmatrix} e^{i\epsilon_x} & 0 \\ 0 & e^{i\epsilon_y} \end{bmatrix}$$

QWP, SA vertical  $e^{-i\pi/4} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$  QWP, SA horizontal  $e^{i\pi/4} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$ 

HWP, SA vertical  $e^{-i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$  HWP, SA horizontal  $e^{i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 

#### III. Rotator

Rotator 
$$(\theta \to \theta + \beta)$$
 
$$\begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$