Statistical Inference I - Measure Theory and Probability Theory

September 17, 2020

Definition

Sample Set

 $\Omega = \text{Sample Space} = \text{Set of all possible outcomes}$

Example

Sample Set

$$\Omega = \mathcal{R}^1$$
 or $\Omega = \mathcal{R}^2$ or $\Omega = \mathcal{R}^n$

It could be used to representing number of variables

Definition

σ -field

Let $\mathscr{F} = a$ collection of subsets of Ω

 \mathcal{F} is a σ -field **iff**

- 1. $\varnothing \in \mathscr{F}$
- 2. If $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$
- 3. If $A_1, A_2, A_1, \cdots, \in \mathscr{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$

Definition

Measure Space

Measure Space (Ω, \mathscr{F})

Elements of \mathscr{F} are called 'measurable' sets

Example

σ -field

Trivial σ -field $\mathscr{F} = \{\Omega, \varnothing\}$

Power set collection of all possible subsets of Ω . Cardinality of power set $= |P(A)| = 2^n$

Example

σ -field

If $\mathcal{A} \in \Omega \Rightarrow \mathscr{F} = \{\varnothing, \Omega, \mathcal{A}, \mathcal{A}^c\}$ is a σ -field

Example

σ -field

If $\Omega = \{1, 2, 3, , n\} = \text{Natural numbers}$

$$\mathcal{F} = \text{Power set} = \{\emptyset, \Omega, \{1\}, \{2\}, \cdots, \{n\}, \{1, 2\}, \cdots, \{n-1, n\}\}\$$

$$|\mathscr{F}| = 2^n$$

Example

σ -field

Let
$$C = \{A_1, A_2\}, A_1, A_2 \in \Omega$$

The smallest
$$\sigma$$
-field = $\sigma(\mathcal{C}) = \{ \varnothing, \Omega, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_1 \bigcup \mathcal{A}_2, (\mathcal{A}_1 \bigcup \mathcal{A}_2)^c, \mathcal{A}_1 \bigcup \mathcal{A}_2^c, \mathcal{A}_1^c \bigcup \mathcal{A}_2, \cdots \}$

Definition

Borel σ -field

Used for most of the statistical applications

Generated by the open sets

Example

Borel σ -field

Borel σ -field on \mathbb{R}^1 contains all open and closed intervals

Definition

"Measure"

A notion of interval length or volume in a higher dimension

Let $(\Omega, \mathscr{F}$ denote a measurable space, $\nu = a$ set function on \mathscr{F} is called a measure **iff**

- 1. $0 \le \nu(\mathcal{A}) \le \infty$
- 2. $\nu(\emptyset) = 0$
- 3. If $A_1, A_2, \dots, \in \mathscr{F}$ is disjointed $\Rightarrow \nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$

Example

Lebesgue Measure

Length:

A unique measure on \mathbb{R}^1 that associates an intervals length to its measure

volume:

Lebesgue measure \sim volume in higher dimension

If $\Omega = [0, 1] \Rightarrow$ Lebesgue measure \sim probability measure

Example

Counting Measure

Let Ω be countable, and $\mathscr{F}=$ power set = collection of all subsets of Ω

 $A \in \mathscr{F} \Rightarrow \nu(A) = |A| = \text{cardinality of } A = \text{number of elements in } A$

Proporties

Measure

• Monotoncity:

If
$$A \in \mathcal{B} \Rightarrow \nu(A) \leq \nu(\mathcal{B})$$

Subadditivity

$$\nu(\bigcup_{n=0}^{\infty} \mathcal{A}_n) \le \sum_{n=0}^{\infty} \nu((A)_n)$$

Proof

Monotoncity:

 $\mathcal{B} = \mathcal{A} \bigcup (\mathcal{B} \bigcap \mathcal{A}^c)$ are disjoint union

$$\Rightarrow \nu(\mathcal{B} = \nu(\mathcal{A}) + \nu(\mathcal{B} \bigcap \mathcal{A}^c))$$

$$\geq \nu(\mathcal{A})$$

since
$$\nu(\mathcal{B} \cap \mathcal{A}^c) \ge 0$$

Subadditivity:

Notes: for 2 events, $\nu(A_1 \bigcup A_2) = \nu(A_1) + \nu(A_2) - \nu(A_1 \bigcap A_2)$

We can find sets disjoint \mathcal{B}_i such that

$$\mathcal{B}_1 = \mathcal{A}_1, \mathcal{B}_2 = \mathcal{A}_2 \cap \mathcal{A}_1^c, \cdots, \mathcal{B}_n = \mathcal{A}_n \cap \mathcal{A}_1^c \cap \cdots \cap \mathcal{A}_{n-1}$$

thus we have

$$\nu(\bigcup_{i=1}^n \mathcal{A}_i) = \nu(\bigcup_{i=1}^n \mathcal{B}_i) = \sum_{i=1}^n \nu(\mathcal{B}_i).$$

Since
$$\mathcal{B}_i \in \mathcal{A}_i \Rightarrow \nu(\bigcup_{i=1}^n \mathcal{A}_i) = \sum_{i=1}^\infty \nu(\mathcal{B}_i) \leq \sum_{i=1}^\infty \nu(\mathcal{A}_i)$$

If collections is infinite

$$\nu(\bigcup_{i=1}^{\infty} \mathcal{A}_i) = \nu(\bigcup_{i=1}^{\infty} \mathcal{B}_i) = \sum_{i=1}^{n} \nu(\mathcal{B}_i)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \nu(\mathcal{B}_i) = \lim_{n \to \infty} \nu(\bigcup_{i=1}^{n} \mathcal{A}_i) \leq \lim_{n \to \infty} \sum_{i=1}^{n} \nu(\mathcal{A}_i) = \sum_{i=1}^{\infty} \nu(\mathcal{A}_i)$$

Similarly, since $\mathcal{B}_i \in \mathcal{A}_i \Rightarrow \nu(\bigcup_{i=1}^n \mathcal{A}_i) = \sum_{i=1}^\infty \nu(\mathcal{B}_i) \leq \sum_{i=1}^\infty \nu(\mathcal{A}_i)$

Proporties

Probability Measure

•
$$Pr(\Omega) = 1, Pr(\emptyset) = 0$$

•
$$Pr(\Omega) = 1 = Pr(A) + Pr(A^c) \Rightarrow Pr(A^c) = 1 - Pr(A)$$

Definition

Cumulative Distribution Function (CDF)

P probability measure on $\Omega = \mathbb{R}^1$

CDF = cumulative distribution function denoted $F(x) = \Pr((-\infty, x])$

Facts:

- $F(x=\infty)=0, F(\infty)=1$
- F is right continuous, i.e. $\lim_{y\to x} F(y) = F(x)$

Any functions that satisfies these properties are a CDF of some probability measure

Definition

Cumulative Distribution Function (CDF)

We can extend P probability measure on $\Omega = \mathbb{R}^p$

$$X = (x_1, x_2, \cdots, x_p)'$$

$$CDF = F(X) = F(x_1, x_2, \dots, x_p) = P((-\infty, x_1] \times (-\infty, x_2] \times \dots \times (-\infty, x_p]) = \text{joint } CDF$$

Definition

Inverse of Function

Let Λ denote some space (other than Ω possibly) (ex $\Lambda=\mathbb{R}^1)$

Let $\mathcal{G} \in \Lambda$

Consider function $f:\Omega\to\Lambda$

Define $f^{-1}(\mathcal{G}) = \{\omega \in \Omega : f(\omega) \in \mathcal{G}\}$

It follows that

- $f^{-1}(\mathcal{G}^c) = (f^{-1}(\mathcal{G}))^c$ for any $\mathcal{G} \subseteq \Lambda$
- $f^{-1}(\bigcup_{i=1}^n \mathcal{G}_i) = \bigcup_{i=1}^n f^{-1}(\mathcal{G}_i)$ for $\mathcal{G}_1, \mathcal{G}_2, \dots, \in \Lambda$

Note: if $\mathcal{C}=$ collection of sets of $\Lambda\Rightarrow$ define $f^{-1}(\mathcal{C})=\{f^{-1}(c),c\in\mathcal{C}\}$

Definition

Measurable Functions

Let (Ω, \mathscr{F}) and (Λ, \mathscr{G}) be measurable space and $f: \Omega \to \Lambda$ is measurable from (Ω, \mathscr{F}) to (Λ, \mathscr{G}) iff $f^{-1}(\mathscr{G}) \subset \mathscr{F}$

Often in $\Lambda = \mathbb{R}^p \Rightarrow \mathscr{G} = \text{borel } \sigma\text{-field}$

Definition

Random Variable

In probability, a measurable mapping $X:\Omega\to\mathbb{R}^p$ is called a Random Variable (RV) if p=1 or Random Vector if p>1

We can write $X(\omega), \omega \in \Omega$.

Random Variable are measurable functions

Note: if $f: \Omega \to \Lambda$ is measurable, (Ω, \mathscr{F}) to $(\Lambda, \mathscr{G}) \Rightarrow f^{-1}(\mathscr{G})$ is a sub σ -field of \mathscr{F}

Notation

Random Variable

 $\sigma(X) = \sigma$ -field generated by X

Let $\mathcal{A} \subseteq \Omega$ and define

 $I_A(\omega) = \text{indicator function such that}$

$$I_A(\omega) = \begin{cases} 0, & \text{if } \omega \notin \mathcal{A} \\ 1, & \text{if } \omega \in \mathcal{A} \end{cases}$$

Notation

Inverse Function and sub σ -field

$$(\Omega, \mathscr{F}), \mathcal{A} \in \mathscr{F}$$

$$I_A(\omega) = \begin{cases} 0, & \text{if } \omega \notin \mathcal{A} \\ 1, & \text{if } \omega \in \mathcal{A} \end{cases}$$

$$\mathcal{B}\subseteq\mathbb{R}^1$$

$$I_A^{-1}(\mathcal{B}) = \begin{cases} \varnothing, \text{ if } 0, 1 \notin \mathcal{B} \\ \mathcal{A}, \text{ if } 1 \in \mathcal{B}, 0 \notin \mathcal{B} \\ \mathcal{A}^c, \text{ if } 1 \notin \mathcal{B}, 0 \in \mathcal{B} \\ \Omega, \text{ if } 0, 1 \in \mathcal{B} \end{cases}$$

The sub σ -field generated by function I_A is $\sigma(I_A) = \{\varnothing, \Omega, \mathcal{A}, \mathcal{A}^c\}$

Definition

Simple Function

Let A_1, A_2, \dots, A_n be measurable sets in \mathscr{F} , and $a_1, a_2, \dots, a_n, a_i \in \mathbb{R}^1$

 $\varphi(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega)$ is a simple function (building blocks to generate functions)

To prove results, often interest to show result for simple functions and take limits

If A_1, A_2, \dots, A_n form a partition of $\omega \Rightarrow \text{sub } \sigma$ -field generated by φ is $\sigma(A_1, A_2, \dots, A_n)$

Proposition

Borel Measurable Function

- 1. f is borel measurable function **iff** $f^{-1}((a,\infty)) \in \mathscr{F}$ for all $a \in \mathbb{R}^1$
- 2. f, g are borel measurable functions $\Rightarrow f + g, f \cdot g$ are also borel measurable functions
- 3. $\{f_i\}$ are borel measurable functions $\Rightarrow \sup f_n$, $\inf f_n$, $\lim \inf f_n$, $\lim \sup f_n$ are borel measurable functions
- 4. continuous functions are borel measurable functions

Theorem

Let $f \geq 0$ be borel measurable function $f: \Omega \to \mathbb{R}^1$

Then \exists a sequence of simple functions $\varphi_1 \leq \varphi_2 \leq \varphi_3 \leq \cdots \leq \varphi_j \leq f$ and $\lim \varphi_n = f$

Proof

for any $n = 1, 2, \dots, 0 \le k \le 2^{2n-1}$

Let
$$\mathcal{A}_n = f^{-1}(k2^{-n}, (k+1)2^{-n}), \mathcal{B}_n = f^{-1}(2^n, \infty)$$

$$\Rightarrow \varphi_n(\omega) = \sum_{k=0}^{2^{(2n-1)}} k 2^{-n} I_{A_n}(\omega) + 2^n I_{B_n}(\omega)$$
 satisfies theorem.

Note: $0 < f - \varphi_n \le 2^{-n}$

Definition

 $X \sim R.V.$ on (Ω, \mathcal{F}, P)

Then $\sigma(X) = \sigma$ -field generated by X is the smallest σ -field with respect to which X is measurable

Typically $\sigma(X)$ smallest than \mathscr{F}

Extension 1

 $X_1, X_2 \sim R.V.$ on $(\Omega, \mathscr{F}, P) \Rightarrow \sigma(X_1, X_2) = \sigma$ -field generated by X_1, X_2 =smallest σ -field with respect to which each X_1, X_2 measurable

Extension 2

$$\sigma(X_1, X_2, \cdots X_n)$$
 or $\sigma(X_1, X_2, \cdots)$

 $\mathcal{A} \in sigma(X_1, X_2, \cdots X_n)$ if $A = \{\omega \in \Omega : (X_1(\omega), \cdots, X_n(\omega)) \in \mathcal{B}^n\}$ where \mathcal{B}^n is borel σ -field on \mathbb{R}^n

Theorem

Theorem 20.1 in Billingslely Book

Y = R.V. is measurable with respect to $\sigma(X_1, X_2, \cdots X_n)$ iff

 $Y = f(X_1, X_2, \cdots X_n), f \sim \text{measurbale } f : \mathbb{R}^n \to \mathbb{R}^1$

Very useful result for conditional expectation

Definition

Integration

If
$$\varphi(\omega) = \sum_{i=1}^{k} a_i I_{A_i}(\omega) \sim \text{simple function } a_i \geq 0$$

$$\int_{\Omega} \varphi(\omega) d\nu(\omega) = \int \varphi = \sum_{i=1}^{k} a_i \nu(\mathcal{A}_i)$$

Note: convention
$$a_i \nu(\mathcal{A}_i) = 0$$
 if $a_i = 0, \mu(\mathcal{A}_i) = \infty$

Let
$$f \geq 0$$
 and $0 \leq \varphi_1 \leq \varphi_2 \leq \varphi_3 \leq \cdots$ so that $\lim_{n \to \infty} \varphi_n(X) = f(X)$

Then
$$\int f d\nu = \lim_{n \to \infty} \int \varphi_n d\nu$$

Alternatively
$$\int f d\nu = \sup\{\int \varphi d\nu, 0 \le \varphi \le f\}$$
 where φ is simple function

Definition

Integrable

A non-negative measurable function f, is called 'integrable' with respect to ν

$$\int f d\nu < \infty$$

For arbitrary measurable f write $f(x) = f^{+}(x) - f^{-}(x)$ where

$$f^+(x) = \max(0, f(x))$$

$$f^-(x) = -\min(0, f(x))$$

Define
$$\int f d\nu = \int f^+ d\nu - \int f^- d\nu$$

f is integrable if f^+ and f^- are both integrable

Note: $\nu = \text{counting measure}$

$$\int_{\Omega} f d\nu = \sum_{\Omega} f(x_i)$$

Note: In most continuous setting, our integral here coincides with Reimann integral

Example

Not Integrable

Expectation of Cauchy Distribution (special case of t-distribution with degree of freedom 1) does not exist

$$PDF = f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, -\infty < x < \infty$$

To compute expectation \rightarrow integrate f9x) from $-\infty$ to ∞

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{0} xf(x)dx + \int_{0}^{\infty} xf(x)dx = -\infty + \infty$$

Example

Integration

 $\varphi \sim \text{simple function}, \ \varphi \geq 0$

$$(\Omega, \mathscr{F}, \nu), \mathcal{A} \in \mathscr{F}$$

Define $\nu^*(\mathcal{A}) = \int_{\mathcal{A}} \varphi d\nu \Rightarrow \nu^*$ is also a measure

Notation

Intergrable

$$f \in L^p(\mu) \Rightarrow \int |f|^p d\nu < \infty$$

Norm of
$$f$$
 in $L^p = (\int |f|^p d\nu)^{\frac{1}{p}} = ||f||_p$

Often use p = 2 which is ofer refered as Hilbert spaces

Example

Intergrable
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$
 where \mathbb{Q} =rationals

 $\int f d\mu = 0$ but f not Reimann-integrable

 $\mu = \text{Lebesgue measure}$

 $\mu(\mathbb{Q}) = 0$ where \mathbb{Q} is countable

Example

Cantor Set

Let $\mathcal{C} = \text{Cantor set}$, $\mu(\mathcal{C}) = 0$ where \mathcal{C} is uncountable

 $x \in \mathcal{C}$

$$\sum_{i=1}^{\infty} a_i(\frac{1}{3})^i, a_i = 0, 1, 2, \cdots$$

Let $a_i \in \{0, 2\}$. we can map \mathcal{C} 1-1 to [0, 1]

Change base from $\frac{1}{3}$ to $\frac{1}{2}$, and map a_i to [0,1]

Facts

Integration is Linear Functions

Functions f_1, f_2, \cdots, f_n

constants a_1, a_2, \cdots, a_n

 $\int \sum_{i=1}^{n} a_i f_i \sum_{i=1}^{n} a_i \int f_i$

Notation

Almost Everywhere (a.e.)

Condition holds except possibly on set of measure zero

Example

Almost Everywhere

 $\{x_i\}$ are R.V.s

 $\lim_{n\to\infty} X_n(\omega) = X(\omega), \omega \in \Omega$

Theorem

Continuity from Below

$$(\Omega, \mathscr{F}, \nu), \mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \mathcal{A}_3 \subseteq \cdots$$
 all in \mathscr{F}

Then
$$\nu(\bigcup_{j=1}^{\infty} A_j) = \lim_{n \to \infty} \nu(A_n)$$

Proof

Set
$$\mathcal{A}_0 = \varnothing \Rightarrow \nu(\bigcup_{j=1}^{\infty} \mathcal{A}_j) = \sum_{j=1}^{\infty} \nu(\mathcal{A}_j \setminus \mathcal{A}_{j-1}) = \lim_{n \to \infty} \sum_{j=1}^{n} \nu(\mathcal{A}_j \setminus \mathcal{A}_{j-1})$$

Theorem

Let φ and ψ simple functions, $\varphi, \psi \geq 0$

If
$$\varphi \leq \psi \Rightarrow \int \varphi \leq \int]\psi$$

Proof

Let $\varphi = \sum_{j=1}^n a_j I_{\mathcal{A}_j}, \psi = \sum_{k=1}^m b_k I_{\mathcal{B}_k}$ where $\mathcal{A}_j, \mathcal{B}_k$ are disjoint sets where

$$\int \varphi = \sum_{j=1}^{n} a_j \nu(\mathcal{A}_j) = \sum_{j=1}^{n} a_j \sum_{k=1}^{m} \nu(\mathcal{A}_J \cap \mathcal{B}_j)$$

$$\leq \sum_{j=1}^{n} b_j \sum_{k=1}^{m} \nu(\mathcal{A}_J \cap \mathcal{B}_j) = \sum_{k=1}^{m} b_j \nu(\mathcal{B}_k) = \int \psi$$

Theorem

Monotone Convergence Theorem

 Ω, \mathcal{F}, ν

 $\{f_n\}$ are sequence of functions, $f_n \geq 0$ s.t. $f_1 \leq f_2 \leq f_3 \leq \cdots$ and $\lim_{n \to \infty} f_n(\omega) = f(\omega)$

Then $\lim_{n\to\infty} \int f_n = \int \lim f_n = \int f$

Proof

Since $f_n \leq f \Rightarrow \int f_n \leq \int f \Rightarrow \lim_{n \to \infty} \int f_n \leq \int f$

Fix $\varepsilon \in (0,1)$

Let φ simple functions $0 < \varphi < f$

Let $\mathcal{A}_n = \{ \omega \in \Omega : f_n(\omega) \geq \varepsilon \varphi(\omega) \} \Rightarrow \mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \mathcal{A}_3 \subseteq \cdots$ and $\bigcup_{n=1}^{\infty} \mathcal{A}_n = \Omega$ since f_n approach f from below

Now $\int_{\Omega} f_n \ge \int_{\mathcal{A}_n} f_n \ge \varepsilon \int_{\mathcal{A}_n} \varphi \Rightarrow \lim_{n \to \infty} \int_{\Omega} f_n \ge \varepsilon \int_{\Omega} \varphi$

And we need to make sure that the above inequality stand for all $\varepsilon \in (0,1)$

Recall definition that $\int f = \lim_{j \to \infty} \int \varphi_j, \varphi_1 \leq \varphi_2 \leq \cdots \leq f$

OR $\int f = \sup\{\int \varphi : 0 \le \varphi \le f\} \Rightarrow \lim_{n \to \infty} f_n \ge \varepsilon \sup\{\int \varphi : 0 \le \varphi \le f\} \Rightarrow \lim_{n \to \infty} \int_{\Omega} f_n \ge \varepsilon \int_{\Omega} \varphi$ for all $\varepsilon \in (0,1)$

Theorem

Fatou's Lemma

integrable $f_n \geq 0 \Rightarrow \int \liminf f_n \leq \liminf \int f_n$

Proof

For each k, $\inf_{n \ge k} f_n \le f_j$ for $j \ge k$

$$\Rightarrow \int \inf_{n \ge k} f_n \le \int f_j, j \ge k$$

$$\Rightarrow \int \inf_{n \ge k} f_n \le \inf_{j \ge k} \int f_j$$

Now, lets $k \to \infty$

by monotone convergence theorem

 $\lim_{k\to\infty} \int \inf_{n\geq k} f_n = \int \liminf_{n\geq k} f_n \leq \lim_{k\to\infty} \inf_{n\geq k} \int f_n$

Fatou's Lemma equivalent to monotone convergence theorem

Theorem

Dominated Convergence Theorem

 $f_n, n = 1, 2, \dots$, integrable, s.t. $f_n \to f$ a.e.

 $\exists g \sim \text{integrable s.t. } |f_n| \leq g \forall n$

Then: f integrable and $\lim_{n\to\infty} \int f_n = \int f$

Proof

 $f_n \to f, f_n \sim \text{measurable} \Rightarrow f \sim \text{measurable}$

$$(A) \Rightarrow f + f_n \ge 0$$
 a.e.

$$\int (g+f) = \int g + \int f = \underbrace{\int (g + \liminf f_n)}_{\text{Fatou's Lemma}} \underbrace{\int g + \liminf \int f_n}_{\text{Fatou's Lemma}}$$

$$\Rightarrow \int f \le \liminf \int f_n$$

$$(B) \Rightarrow g - f_n \ge 0$$
 a.e.

$$\int (g - f) = \int g - \int f = \int (g - \liminf f_n) = \int \liminf (g - f_n) \le \liminf \int (g - f_n)$$
$$= \int g - \limsup \int f_n$$

$$\Rightarrow \int f \leq \liminf \int f_n$$

However, we have $\limsup \ge \liminf$

Thus, we have $\liminf \int f_n = \limsup \int f_n \Rightarrow \lim_{n \to \infty} \int_{\Omega} f(\omega) d\nu(\omega)$ QED

Example

Maximum Likelihood Estimation

 (Ω, \mathscr{F}, P) probability space

$$f(\omega, \theta) \sim \text{Borel function. Typical setup } \theta \in \Theta \quad e.g.\Theta = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix}$$

Suppose $\frac{\partial f}{\partial \theta} \sim \text{exists}$ and $\exists g \text{ s.t. } |\frac{\partial f}{\partial \theta}| \leq g$

To solve the MLE, we need to evaluate

 $\frac{\partial}{\partial \theta} \int f(\omega,\theta) dP(\omega) = \int \frac{\partial}{\partial \theta} f(\omega,\theta) dP(\omega)$ by Dominated Convergence Theorem

Definition

Absolutely Continuous

 $(\Omega, \mathcal{F}, \mu)$ measure space

Let $\mathcal{A} \in \mathscr{F}$ define $\nu(\mathcal{A}) = \int_{\mathcal{A}} f d\mu$ for some measurable $f \geq 0$

 $\Rightarrow \nu$ is a measure on (Ω, \mathscr{F}) , we write: $d\nu = fd\mu$

In general, we say ν is absolutely continuous w.r.t. μ if whenever $\mu(A) = 0 \Rightarrow \nu(A) = 0$

We write $\nu \ll \mu$

Theorem

Radon-Nikodym Theorem

 ν, μ two measures on (Ω, \mathcal{F}) with $\nu \ll \mu$

 $\Rightarrow \exists$ measurable $f \ge 0$ s.t.

 $\nu(\mathcal{A}) = \int f(\omega) d\mu(\omega)$ and f is unique a.e.

f = Radon-Nikodym derivative

Typically write $f = \frac{d\nu}{d\mu}$

Proof

Proof uses monotone convergence theorem, see Billingsley book

Example

Radon-Nikodym Theorem

Suppose $X \sim \text{random variable (R.V.)}$

$$CDF \quad F(x) = P(\omega \in \Omega : X(\omega) \le x) \text{ or } P(X < x)$$

so
$$P(X \in \mathcal{A}) = \int_{\mathcal{A}} dF(x)$$
 $e.g.\mathcal{A} = (a, b)$

If X has a R-N derivative with respect to Lebesgue measure, say f(x)

f = Probability Density Function (pdf) = R-N derivative

So,
$$P(X \in \mathcal{A}) = \int_{\mathcal{A}} dF(x) = \int_{\mathcal{A}} f(x) dx$$

Theorem

${\bf Fubini's\ Theorem\ Inter-change\ order\ of\ integration}$

 $f \sim \text{Borel measure on } \Omega_1 \times \Omega_2$

$$\int_{\Omega_1 \times \Omega_2} f(\omega_1, \omega_2) d\nu_1 \times d\nu_2$$

from Fubini's, for a.e. $\omega_1 \in \Omega_1$, $f_2(\omega_2) = \int_{\Omega_1} f(\omega_1, \omega_2) d\nu_1 \sim$ measruable function on Ω_2 and integrable It's also called marginal density function