Міністерство освіти і науки України КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ УНІВЕРССИТЕТ

Кафедра автоматизації та систем неруйнівного контролю Група ПМ-11

ПРОЕКТУВАННЯ СИСТЕМ АВТОМАТИЗАЦІЇ

ЗВІТ З ЛАБОРАТОРНОЇ РОБОТИ №2

Розробка та складання схем електричних принципових керування промисловими двигунами

Керівник	(підпис)	д.т.н., проф. Черепанська І. Ю. (дата)
Виконавець	(підпис)	Юша Володимир Ігорович (дата)

Лабораторна робота №2

Тема роботи

Розробка та складання схем електричних принципових керування промисловими двигунами

Мета роботи

Вивчити будову та принцип дії промислових двигунів різних типів, як складових систем автоматичного керування / регулювання / контролю. Навчитися складати схеми електричні принципові для керування промисловими двигунами різних типів.

Завдання

Трифазний асинхронний двигун з короткозамкненим ротором має такі параметри:

- 1. напруга живлення: 380/220 В;
- 2. номінальна потужність на валу: $P_{\text{ном.мех}}$;
- 3. номінальна швидкість: $n_{\text{ном}}$;
- 4. коефіцієнт корисної дії: η ;
- 5. коефіцієнт потужності: $\cos \varphi_{\text{ном}}$;
- 6. коефіцієнт кратності пускового струму: α ;
- 7. коефіцієнт кратності пускового моменту: $\beta = \frac{M_{\text{пуск}}}{M_{\text{н}}};$
- 8. коефіцієнт перенавантажної здатності: $\gamma = \frac{M_{\max}}{M_{\scriptscriptstyle H}}$.

					$\Pi M1115.04.00.02\ ЛР$			
Зм.	Лист	№ докум.	Підпис	Дата				
Роз	роб.	Юша В. I.				Літ.	Аркуш	Аркушів
Пер	рев.	Черепанська І.Ю.			Розробка та складання схем		2	6
					електричних принципових керування			
Н. Контр.					промисловими двигунами	КПІ ім. І. Сікорського, ПБФ		
Зат	В.	Черепанська І.Ю.						

Вихідні дані

ullet Потужність на валу: $P_{ ext{mex}}=2.8~{ ext{kBt}}$

• ККД: $\eta = 0.86$

• Косинус фі: $\cos \varphi = 0.88$

 \bullet Напруга: U = 380 В

 \bullet Частота: f=50 Гц

ullet Частота обертання: n=1440 об/хв

 \bullet Пусковий струм: $\alpha=5.6$

• Пусковий момент: $\beta = 2,2$

ullet Критичний момент: $\gamma=2,3$

Результати розрахунків

1. Активна потужність

$$P_{ ext{e.i.}} = rac{P_{ ext{mex}}}{\eta} = rac{2.8}{0.86} pprox 3,256 \; ext{кВт}$$

2. Повна потужність

$$S = \frac{P_{\text{ел}}}{\cos \varphi} = \frac{3,256}{0,88} \approx 3,7 \text{ кВА}$$

3. Реактивна потужність

$$Q = \sqrt{S^2 - P_{\mathrm{en}}^2} = \sqrt{3,7^2 - 3,256^2} \approx 1,708 \ \mathrm{кBAp}$$

4. Лінійний струм

$$I = \frac{S \cdot 10^3}{\sqrt{3} \cdot U} = \frac{3700}{\sqrt{3} \cdot 380} \approx 5,63 \text{ A}$$

5. Пусковий струм

$$I_{\text{пуск}} = \alpha \cdot I = 5.6 \cdot 5.63 \approx 31.53 \text{ A}$$

I					
ľ	Змн.	Арк.	№ докум.	Підпис	Дата

6. Ємність компенсуючих конденсаторів

$$Q_{\text{конд}} = P_{\text{ел}}(\tan \varphi_1 - \tan \varphi_2)$$

 $\tan \varphi_1 = \tan(\arccos(0.88)) \approx 0.538$, $\tan \varphi_2 = \tan(\arccos(0.95)) \approx 0.328$

$$Q_{\text{конд}} = 3{,}256 \cdot (0{,}538 - 0{,}328) \approx 0{,}684 \text{ кВАр}$$

Для з'єднання «зірка»:

$$C_Y = \frac{Q_{\text{конд}} \cdot 10^3}{2\pi f \cdot 3U_{\Phi}^2} = \frac{684}{2\pi \cdot 50 \cdot 3 \cdot 220^2} \approx 7,55 \,\mu\Phi$$

Для з'єднання «трикутник»:

$$C_{\Delta} = \frac{684}{2\pi \cdot 50 \cdot 3 \cdot 380^2} \approx 3{,}17\,\mu\Phi$$

7. Момент на валу

$$\omega = rac{2\pi n}{60} = rac{2\pi \cdot 1440}{60} pprox 150,8\,\mathrm{pag/c}$$
 $M_{\mathrm{Hom}} = rac{P_{\mathrm{Mex}} \cdot 10^3}{\omega} = rac{2800}{150,8} pprox 18,57\,\mathrm{Hm}$ $M_{\mathrm{Hyck}} = eta \cdot M_{\mathrm{Hom}} = 2,2 \cdot 18,57 pprox 40,85\,\mathrm{Hm}$ $M_{\mathrm{kp}} = \gamma \cdot M_{\mathrm{Hom}} = 2,3 \cdot 18,57 pprox 42,71\,\mathrm{Hm}$

8. Ковзання

$$s_{\text{hom}} = \frac{1500 - 1440}{1500} = 0.04$$

$$s_{\text{kp}} = s_{\text{hom}} \cdot (\gamma + \sqrt{\gamma^2 - 1}) = 0.04 \cdot (2.3 + \sqrt{2.3^2 - 1}) \approx 0.179$$

9. Залежність моменту від ковзання

$$M(s) = rac{M_{
m Kp}}{rac{s_{
m Kp}}{s} + rac{s}{s_{
m Kp}}}$$

Змн.	Арк.	№ докум.	Підпис	Дата

Ковзання, в	Момент, Нм
0	0
0.04	18.57
0.143	39.61
0.179	42.71
0.215	39.23
0.2	31.3
0.4	35.2
0.6	37.6
0.8	39.0
1.0	39.7

Рис. 2.6: Залежність обертаючого моменту M від ковзання s

Висновки

Отримані результати дозволяють оцінити параметри роботи трифазного асинхронного двигуна, його енергетичні характеристики та вибір необхідних ємностей для підвищення коефіцієнта потужності.

Контрольні питання

1. Чому асинхронний двигун так називаеться? Асинхронний двигун називаеться так тому, що частота обертання його

						Арк.
					$\Pi M1115.04.00.02~\Pi P$	
Змн.	Арк.	№ докум.	Підпис	Дата		5

ротора не співпадає з частотою обертання магнітного поля статора (яка визначається частотою змінного струму). Різниця між цими частотами називається ковзанням.

- 2. Чому є небажаною велика сила пускового струму? Велика сила пускового струму небажана, оскільки вона може призвести до значних механічних та електричних навантажень на двигун і мережу, викликати пошкодження ізоляції проводів, зменшити термін служби обладнання, а також викликати перевантаження трансформаторів і підстанцій.
- 3. Що використовують для зниження сили пускового струму? Для зниження сили пускового струму використовують спеціальні пристрої, такі як стартери з обмеженням струму, трансформатори з регульованим напругою або пристрої плавного пуску, що забезпечують поступове збільшення напруги на двигуні.

Змн.	Арк.	№ докум.	Підпис	Дата