Monday warm-up: Forces II and Forces III

Prof. Jordan C. Hanson

September 30, 2024

1 Memory Bank

- Newton's Second Law: $\vec{F}_{net} = m\vec{a}$. (The net external force on an object is equal to the mass of the object times the acceleration of the object).
- The horizontal force of friction: $\vec{f} = -\mu N \hat{i}$. N is the magnitude of the normal force.

2 Forces, II

- 1. In Fig. 1, a man with mass m and weight w stands on a scale in an elevator. Which of the following is true, if the elevator is accelerating upwards?
 - A: w = mg
 - B: w < mg
 - C: w > mg
 - D: w = 0
- 2. Suppose the man's mass is 60 kg. He is standing on a scale in an elevator that is accelerating upwards at 0.2 m/s^2 . What is the weight on the scale?

Figure 1: A person on a scale in an elevator.

- 3. Assume there is a force of friction on m_1 in Fig. 2. Derive an expression for the acceleration of m_2 .
- 4. Let $m_1 = 200$ grams, $m_2 = 50$ grams, and the coefficient of friction be $\mu = 0.1$. What is the acceleration of m_2 ? Assume the string tension is constant.

Figure 2: Friction acts on block m_1 and gravity acts on m_2 . Note that the force of friction does not appear in the free-body diagram. We must add friction, \vec{f} , to m_1 .