- 05) Оценка на собственные числа ограничения. Оценка на след.
- 1. С.ч. операторов A и B. По К Φ , мин/макс для μ_i берется по подпр. внутри соотв. подпр. для λ . 2. Это след: взять матрицу A в ортонорм. базисе u_i . $v_i = (0, \dots, 1, \dots, 0)^T$ $A_{i,i} = v_i^T A v_i = q(u_i)$. Оценка: почленные нер-ва из 1.
 - 06) Метод главных компонент.

$$a_0 = \frac{1}{s} \sum x_i$$
: $\langle u_1, \dots, u_k \rangle = L_0$, ортонорм, доп. до базиса, $\sum_j ||pr_{L_0^\perp}(x_j - a)||^2 = \sum_j (\sum_{i=k+1}^n (x_{j,i} - a_i)^2)$, произв. L_0 : $S = \sum_{i=1}^s ||pr_{L_0}(x_i)||^2 \to max$; $X = (x_1, \dots, x_s)^T$. $S = \sum_{i=1}^k q(u_i) = Tr \, q(x)|_{L_0}$, $q(u) = u^T X^T X u$. Макс. по КФ на $\langle v_1, \dots, v_k \rangle$ 07) Сингулярные значения и SVD-разложение.

$$X^* = X^\top, \langle X^*e_i, e_j \rangle = \langle e_i, Xe_j \rangle, \sigma_i = \sqrt{d_i} > 0$$
 с.ч. A^*A . SVD $A \colon U \to V \exists$ о/н $u_i, v_j \colon$ матр $A = \Sigma(\sigma_{1..r}$ на диаг) $(X = L\Sigma R)$. e_i – о/н с.в. $\langle Ae_i, Ae_j \rangle = \langle A^*Ae_i, e_j \rangle = \langle d_ie_i, e_j \rangle, f_i = \frac{Ae_i}{\sqrt{d_i}}$ доп до базиса. $R = C^{-1} = C^\top, C$ столбцы e_i . 08) Приближение матрицей указанного ранга и SVD-разложение. Возможность применения к сжатию изображения.

рг из Б6
$$\Leftrightarrow$$
 ближ по $||X||_F = \sqrt{\text{Tr}\,X^\top X}$. $X = L\Sigma R$. рг на $\left\langle v_1^\top..v_k^\top\right\rangle$. v_i базис $X^\top X$ и строки R . рг a на $V^{(k)} = \sum a v_i v_i^\top$. $X^{(k)} = L\Sigma (\sum R v_i v_i^\top) = L\Sigma R^{(k)} = L\Sigma^{(k)} R$. Сж $L^{(k)} \Sigma^{(k)} R^{(k)}$. $2kn + k \to 2kn$ при $k < \frac{n}{2}$. Минор $k^2 + 2k(n-k) + 2k$. 09) Положительные матрицы. Теорема Перрона.

Док-во Перрона: положительность $(A|x| \ge |x| \Rightarrow A|x| < \frac{A^n}{(1+\varepsilon)^n}A|x| \to 0$ противореч.), единственность (сонапр. коорд. $v \Leftarrow \sum_j A_{kj}|v_j| = |\sum_j A_{kj}v_j|$) и некратность (Жорд. клетки; либо $\exists c,i: |x_1-cx_2|_i = 0$, либо $Ax_2 = x_2 + x_1$)

10) Единственность положительного собственного вектора. Применение к случайному блужданию.

Знаем предел $\lim_{k\to\infty}A^kv$, если у A макс по модулю с. ч. $\lambda=1$ кратности 1. A=P(G) нам не походит, замена P(G): $P_{\alpha}(G) = (1-\alpha)P(G) + \alpha \frac{1}{n}J, \ \alpha \in (0,1), \ \forall i,j \ J_{ij} = 1$ – а это норм, Перрон гарантирует.

13) Две оценки на размер максимального независимого множества.

Натянуть подпространство на множество, следствие из Куранта-Фишера, нулевая квадратичная форма Характеристический вектор множества, разложить по ортонорм. базису регулярного(!) графа с $u_1 = (1, \dots, 1) \frac{1}{\sqrt{n}}$

14) K_{10} не покрывается тремя Петерсонами.

 $\sum_{i=1}^{3}A_{i}=B$. Все рег \Rightarrow общий с.в. $(1,\ldots,1)$ для P с.ч. 3, для полного с.ч. 9. Сузим. Для A_{1} и A_{2} подпр. порожд. с.в. с с.ч. 1 \cap . Распишем для u из \cap . Bu = -u (натянуто на с.в. с с.ч. -1). \Rightarrow с.в. для A_3 с с.ч. -3. Такого с.ч. нет. 17) Тензорное произведение линейных отображений. Кронекерово произведение. Тензорное произведение операто-

ров и его собственные числа. Категорное произведение графов.

Единств: определено на тензорятах; \exists : отобразить $U_1 \times \dots \times U_k$ в $V_1 \otimes \dots \otimes V_K$ полилин. (композ полилин.) \Rightarrow (опр. тенз.) \exists !. Наше правило подходит. Матрица: расписать $(\sum\limits_{l} A_{k,i} f_k) \otimes (\sum\limits_{l} B_{l,j} f_l')$. С.ч. $A \otimes B$: жорданов базис.

- 18) Канонические изоморфизмы для тензорного произведения.
- 3. $\operatorname{Hom}(U, V) \cong V \otimes U^*: v \times f \to (u \to f(u)v)$. 4. $\operatorname{Hom}(U \otimes V, W) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, W)): L_1: L \to (u \to (v \to L(u \otimes v)))$, $L_2: L \to (u \otimes v \to (L(u))(v))$, они обратны. 5. $U^* \otimes V^* \to (U \otimes V)^*: f \otimes g \to (u \otimes v \to f(u)g(v))$ базис в базис 27) Лемма Гаусса. Содержание многочлена. Делимость в Q(R)[x] и в R[x].

Лемма: Пусть нет, возьмём $\min a_i, b_j \not/ p$, тогда $c_{i+j} \not/ p$. Следствие: поделим на $\cot g, h$, убедимся что $\cot f = 1$. Лемма про Q(R)[x]: d_1, d_2 — НОК знаменателей, $c = \frac{d_1}{d_2}$.

28) Факториальность кольца многочленов над факториальным кольцом.

R[x] факториально и простые в нём: $f=p\in R, f:\operatorname{cont}(f)=1$ — непр. в Q(R)[x]. Док-во: 1) они и правда простые 2) в них раскладывается (посмотрим в Q(R)) 3) единственность \Rightarrow других нет

29) Редукционный признак неприводимости. Примеры. Признак Эйзенштейна.

 $a_n \not / p$, f - неприводим в $R/p[x] \Rightarrow$ неприводим над Q(R). cont = 1 и неприводимость над $Q(R) \Rightarrow$ неприводимость над R. $a_n \not / p$, все $a_i \vdots p \ i < n$, но $a_0 \not / p^2$, то многочлен f(x) неприводим. Пусть $b_0 \not / p$.

- 30) Алгоритм Кронекера. Сведение для многочленов от нескольких переменных.
- 1) Перебираем наборы делителей $f(i),\ 0 \le i \le \frac{degf}{2},$ интерполируем, проверяем. 2) Различным разложениям $f(x_1,\ldots,x_n)$ соответствуют различные разложения $f(x,\ldots,x^{d^{n-1}})$ для d больших $\max_{i=1}^n \{\deg_{x_i} f\}$. Рассмотреть образ x^{α} .
 - 31) Лемма Гензеля. Разложение на множители при помощи леммы Гензеля.

Доказательство леммы: Индукция по k. Строим для k + 1. Помним, что $\forall f: p^k f \equiv p^k \overline{f} \pmod{p^{k+1}}$. $\overline{h} \equiv \hat{h} + p^k a(x) \Rightarrow \overline{h} \overline{g} \equiv \hat{g} \hat{h} + p^k (a(x)g + b(x)h)$. С другой стороны $f - \hat{g} \hat{h} = p^k c(x) \Rightarrow a$, b берем из ли НОДа g и h

32) Степенные суммы. Тождество Ньютона.

 $0 = (-1)^n n \sigma_n + \sum_{k=0}^{n-1} (-1)^k \sigma_k s_{n-k}$, в многочлен подставим корни, просуммируем по всем корням, отдельно случаи k < n - добавим нулевые переменные, k > n - занулим не входящие в моном переменные

33) Целые алгебраические элементы. Замкнутость относительно операций.

а алгебраический $==\exists f\in\mathbb{Z}[x]:f(a)=0.$ Замкнуто: $\prod(x-(a_i+b_j))$ симметрично по i, тогда коэффициенты выражаются через симметрические, симметрический по b_i - все коэффициенты целые.

39) Конечные поля. Число элементов. Основное уравнение. Эндоморфизм Фробениуса. Корни $x^{p^n}-x$ образуют подполе.

Хорошо смотреть на мультипл. группу. Теорема Φ ерма для групп. Биномиальный коэф. делится на p почти всегда.

49) Циклические коды. Эквивалентное описание. Коды БЧХ. Пример.

$$q=p^s,\,m,n$$
 такие, что $q^m-\dot{1:}n,\,2\leq d\leq n,\,l_0\leq n.$ α – образующая $\mathbb{F}_{q^m}{}^*,\,\beta=lpha^{(q^m-1)/n}$

50) Основная теорема про коды БЧХ.

Делится \Leftrightarrow обнуляется на корнях. Пусть плохо \mathbb{F}_q , тогда плохо в \mathbb{F}_{q^m} , определитель.