Synchronizing groups: a survey

João Araújo, Michael Brough, Peter Cameron, Ian Gent, Cristy Kazanidis, Tom Kelsey, Peter Neumann, Colva Roney-Dougal, Nik Ruskuc, Jan Saxl, Csaba Schneider, Pablo Spiga and **Benjamin Steinberg**

AMS Special Session on Algorithmic Problems of Group Theory and Their Complexity

January 10, 2013

Outline

- Background
- 2 Synchronizing groups
- Combinatorics
- Representation theory
- Beyond synchronization

Synchronizing automata

An automaton is synchronizing if there is an input word which "resets" the automaton to a single state.

Synchronizing automata

An automaton is synchronizing if there is an input word which "resets" the automaton to a single state.

Example (Černý)

Figure : Unique minimum length reset word is $b(a^3b)^2$.

• The obvious generalization to n states has unique minimum length reset word $b(a^{n-1}b)^{n-2}$, which has length $(n-1)^2$.

- The obvious generalization to n states has unique minimum length reset word $b(a^{n-1}b)^{n-2}$, which has length $(n-1)^2$.
- ullet The following conjecture has been open for 45 years and has been the subject of over 100 papers.

- The obvious generalization to n states has unique minimum length reset word $b(a^{n-1}b)^{n-2}$, which has length $(n-1)^2$.
- \bullet The following conjecture has been open for 45 years and has been the subject of over 100 papers.

Conjecture (Černý)

An n-state synchronizing automaton has a reset word of length at most $(n-1)^2$.

- The obvious generalization to n states has unique minimum length reset word $b(a^{n-1}b)^{n-2}$, which has length $(n-1)^2$.
- \bullet The following conjecture has been open for 45 years and has been the subject of over 100 papers.

Conjecture (Černý)

An n-state synchronizing automaton has a reset word of length at most $(n-1)^2$.

• The best upper bound to date is $\frac{n^3-n}{6}$ (Pin/Frankl '81).

• The first nontrivial result in this area is due to Pin.

• The first nontrivial result in this area is due to Pin.

Theorem (Pin '78)

• The first nontrivial result in this area is due to Pin.

Theorem (Pin '78)

Let \mathscr{A} have a prime number of states and assume some letter a cyclically permutes the states.

is synchronizing iff some input does not permute the states.

• The first nontrivial result in this area is due to Pin.

Theorem (Pin '78)

- Is synchronizing iff some input does not permute the states.
- 2 The Černý conjecture is true for such automata.

• The first nontrivial result in this area is due to Pin.

Theorem (Pin '78)

- Is synchronizing iff some input does not permute the states.
- 2 The Černý conjecture is true for such automata.
 - Dubuc removed the condition on prime number of states for
 (2) in 1998; (1) does not generalize.

• The first nontrivial result in this area is due to Pin.

Theorem (Pin '78)

- is synchronizing iff some input does not permute the states.
- 2 The Černý conjecture is true for such automata.
 - Dubuc removed the condition on prime number of states for
 (2) in 1998; (1) does not generalize.
 - Inspired by (1), I introduced (2005) (and indep. Araújo [unpublished]) the notion of a synchronizing group.

Synchronization and monoids

• An automaton with state set Ω can be viewed as a collection A of self-maps of Ω .

Synchronization and monoids

- An automaton with state set Ω can be viewed as a collection A of self-maps of Ω .
- The mapping associated to a sends a state q to the endpoint of the edge from a labeled by q.

Synchronization and monoids

- An automaton with state set Ω can be viewed as a collection A of self-maps of Ω .
- The mapping associated to a sends a state q to the endpoint of the edge from a labeled by q.
- The automaton is synchronizing iff $\langle A \rangle$ contains a constant map.

Černý's example

$$a = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 0 \end{pmatrix} \qquad b = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 1 & 2 & 3 \end{pmatrix}$$

 \bullet Ω is a finite set.

- ullet Ω is a finite set.
- $G \leq S_{\Omega}$ is a permutation group acting on the right.

- \bullet Ω is a finite set.
- $G \leq S_{\Omega}$ is a permutation group acting on the right.
- T_{Ω} is the monoid of all self-maps of Ω .

- Ω is a finite set.
- $G \leq S_{\Omega}$ is a permutation group acting on the right.
- T_{Ω} is the monoid of all self-maps of Ω .
- The rank of $f \in T_{\Omega}$ is $|\Omega f|$.

- Ω is a finite set.
- $G \leq S_{\Omega}$ is a permutation group acting on the right.
- T_{Ω} is the monoid of all self-maps of Ω .
- The rank of $f \in T_{\Omega}$ is $|\Omega f|$.
- So f has rank 1 iff f is a constant map.

- Ω is a finite set.
- $G \leq S_{\Omega}$ is a permutation group acting on the right.
- T_{Ω} is the monoid of all self-maps of Ω .
- The rank of $f \in T_{\Omega}$ is $|\Omega f|$.
- So f has rank 1 iff f is a constant map.
- f is singular if $f \in T_{\Omega} \setminus S_{\Omega}$.

Definition (BS (2005), Araújo (unpublished))

Definition (BS (2005), Araújo (unpublished))

G is synchronizing if $\langle G,f\rangle$ contains a constant map for each singular map $f\in T_\Omega.$

• Note if $G \leq H \leq S_{\Omega}$ and G is synchronizing, then so is H.

Definition (BS (2005), Araújo (unpublished))

- Note if $G \leq H \leq S_{\Omega}$ and G is synchronizing, then so is H.
- Pin's theorem says the regular action of $\mathbb{Z}/p\mathbb{Z}$ is synchronizing.

Definition (BS (2005), Araújo (unpublished))

- Note if $G \leq H \leq S_{\Omega}$ and G is synchronizing, then so is H.
- Pin's theorem says the regular action of $\mathbb{Z}/p\mathbb{Z}$ is synchronizing.
- It is easy to see that 2-transitive and 2-homogeneous groups are synchronizing.

Definition (BS (2005), Araújo (unpublished))

- Note if $G \leq H \leq S_{\Omega}$ and G is synchronizing, then so is H.
- Pin's theorem says the regular action of $\mathbb{Z}/p\mathbb{Z}$ is synchronizing.
- It is easy to see that 2-transitive and 2-homogeneous groups are synchronizing.
- Synchronizing groups are primitive.

Definition (BS (2005), Araújo (unpublished))

- Note if $G \leq H \leq S_{\Omega}$ and G is synchronizing, then so is H.
- Pin's theorem says the regular action of $\mathbb{Z}/p\mathbb{Z}$ is synchronizing.
- It is easy to see that 2-transitive and 2-homogeneous groups are synchronizing.
- Synchronizing groups are primitive.
- ullet G is primitive if Ω admits no nontrivial G-invariant partition.

 Araújo came up with a semigroup-free reformulation that attracted the interest of first P. Neumann and then others.

- Araújo came up with a semigroup-free reformulation that attracted the interest of first P. Neumann and then others.
- A partition π on Ω is section-regular if there is a section S of π such that Sg is a section for all $g \in G$.

- Araújo came up with a semigroup-free reformulation that attracted the interest of first P. Neumann and then others.
- A partition π on Ω is section-regular if there is a section S of π such that Sg is a section for all $g \in G$.
- If π is G-invariant, then it is section-regular where S can be any section.

- Araújo came up with a semigroup-free reformulation that attracted the interest of first P. Neumann and then others.
- A partition π on Ω is section-regular if there is a section S of π such that Sg is a section for all $g \in G$.
- If π is G-invariant, then it is section-regular where S can be any section.

Proposition (Araújo '06)

G is synchronizing iff Ω admits no nontrivial section-regular partition.

- Araújo came up with a semigroup-free reformulation that attracted the interest of first P. Neumann and then others.
- A partition π on Ω is section-regular if there is a section S of π such that Sg is a section for all $g \in G$.
- If π is G-invariant, then it is section-regular where S can be any section.

Proposition (Araújo '06)

G is synchronizing iff Ω admits no nontrivial section-regular partition.

Proof.

Section-regular partitions essentially correspond to minimal rank idempotents that can't be synchronized.

Synchronizing groups are basic

• Let $\Omega = \Delta^n$.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on $\Omega.$

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- S_n permutes the coordinates and S_{Λ}^n acts coordinate-wise.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- ullet S_n permutes the coordinates and S_Δ^n acts coordinate-wise.
- The partition $(\delta_1, \dots, \delta_n) \sim (\delta'_1, \dots, \delta'_n)$ iff $\delta_1 = \delta'_1$ is section-regular.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- ullet S_n permutes the coordinates and S_Δ^n acts coordinate-wise.
- The partition $(\delta_1, \dots, \delta_n) \sim (\delta'_1, \dots, \delta'_n)$ iff $\delta_1 = \delta'_1$ is section-regular.
- The section is the set of constant vectors.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- S_n permutes the coordinates and S_{Δ}^n acts coordinate-wise.
- The partition $(\delta_1, \ldots, \delta_n) \sim (\delta'_1, \ldots, \delta'_n)$ iff $\delta_1 = \delta'_1$ is section-regular.
- The section is the set of constant vectors.
- Thus synchronizing groups are basic in the O'Nan-Scott classification scheme.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- ullet S_n permutes the coordinates and S_Δ^n acts coordinate-wise.
- The partition $(\delta_1, \dots, \delta_n) \sim (\delta'_1, \dots, \delta'_n)$ iff $\delta_1 = \delta'_1$ is section-regular.
- The section is the set of constant vectors.
- Thus synchronizing groups are basic in the O'Nan-Scott classification scheme.
- So they are of affine, diagonal or almost simple type.

- Let $\Omega = \Delta^n$.
- $S_{\Delta} \wr S_n = S_{\Delta}^n \rtimes S_n$ acts primitively on Ω .
- ullet S_n permutes the coordinates and S_Δ^n acts coordinate-wise.
- The partition $(\delta_1, \dots, \delta_n) \sim (\delta'_1, \dots, \delta'_n)$ iff $\delta_1 = \delta'_1$ is section-regular.
- The section is the set of constant vectors.
- Thus synchronizing groups are basic in the O'Nan-Scott classification scheme.
- So they are of affine, diagonal or almost simple type.

Theorem

2-transitive \implies 2-homogeneous \implies synchronizing \implies basic \implies primitive \implies transitive.

The following results are due to Peter Neumann.

• If π is a section-regular partition, then each block of π has the same size.

- If π is a section-regular partition, then each block of π has the same size.
- This gives Pin's theorem that any primitive group of prime degree is synchronizing.

- If π is a section-regular partition, then each block of π has the same size.
- This gives Pin's theorem that any primitive group of prime degree is synchronizing.
- If r is the size of each part and s is the number of blocks, then r, s > 2.

- If π is a section-regular partition, then each block of π has the same size.
- This gives Pin's theorem that any primitive group of prime degree is synchronizing.
- If r is the size of each part and s is the number of blocks, then r, s > 2.
- Thus every primitive group of size 2p with p an odd prime is synchronizing.

- If π is a section-regular partition, then each block of π has the same size.
- This gives Pin's theorem that any primitive group of prime degree is synchronizing.
- If r is the size of each part and s is the number of blocks, then r, s > 2.
- Thus every primitive group of size 2p with p an odd prime is synchronizing.
- Synchronizing groups have a fairly large density among primitive permutation groups using CFSG.

 \bullet A graph X on Ω is a simple graph with vertex set $\Omega.$

- ullet A graph X on Ω is a simple graph with vertex set Ω .
- *X* is trivial if it is complete or edgeless.

- $\bullet \ \ {\rm A \ graph} \ \ X \ \ {\rm on} \ \ \Omega \ \ {\rm is \ a \ simple \ graph \ with \ vertex \ set} \ \ \Omega.$
- ullet X is trivial if it is complete or edgeless.
- X is G-invariant if $G \leq \operatorname{Aut}(X)$.

- A graph X on Ω is a simple graph with vertex set Ω .
- X is trivial if it is complete or edgeless.
- X is G-invariant if $G \leq \operatorname{Aut}(X)$.
- The clique number $\omega(X)$ is the size of the largest complete subgraph of X.

- A graph X on Ω is a simple graph with vertex set Ω .
- X is trivial if it is complete or edgeless.
- X is G-invariant if $G \leq \operatorname{Aut}(X)$.
- The clique number $\omega(X)$ is the size of the largest complete subgraph of X.
- The chromatic number $\chi(X)$ is the minimum size of a coloring of X.

- A graph X on Ω is a simple graph with vertex set Ω .
- *X* is trivial if it is complete or edgeless.
- X is G-invariant if $G \leq \operatorname{Aut}(X)$.
- The clique number $\omega(X)$ is the size of the largest complete subgraph of X.
- The chromatic number $\chi(X)$ is the minimum size of a coloring of X.
- $\omega(X) \leq \chi(X)$.

- A graph X on Ω is a simple graph with vertex set Ω .
- X is trivial if it is complete or edgeless.
- X is G-invariant if $G \leq \operatorname{Aut}(X)$.
- The clique number $\omega(X)$ is the size of the largest complete subgraph of X.
- The chromatic number $\chi(X)$ is the minimum size of a coloring of X.
- $\omega(X) \leq \chi(X)$.

Theorem (Cameron)

G is synchronizing iff there are no nontrivial G-invariant graphs on Ω with $\omega(X)=\chi(X)$.

• The action of S_n on k-sets is primitive if $n \ge 2k + 1$.

- ullet The action of S_n on k-sets is primitive if $n \geq 2k+1$.
- For the case k=2, there are exactly two S_n -invariant graphs.

- The action of S_n on k-sets is primitive if $n \ge 2k + 1$.
- For the case k=2, there are exactly two S_n -invariant graphs.
- Using Cameron's theorem, one has the following result.

- The action of S_n on k-sets is primitive if $n \ge 2k + 1$.
- For the case k=2, there are exactly two S_n -invariant graphs.
- Using Cameron's theorem, one has the following result.

Theorem (Neumann)

For $n \geq 5$, S_n acting on 2-sets is synchronizing iff n is odd.

- The action of S_n on k-sets is primitive if $n \ge 2k + 1$.
- For the case k=2, there are exactly two S_n -invariant graphs.
- Using Cameron's theorem, one has the following result.

Theorem (Neumann)

For $n \geq 5$, S_n acting on 2-sets is synchronizing iff n is odd.

Using combinatorics like Steiner systems and the Erdös-Ko-Rado theorem leads to the following result.

- The action of S_n on k-sets is primitive if $n \ge 2k + 1$.
- For the case k=2, there are exactly two S_n -invariant graphs.
- Using Cameron's theorem, one has the following result.

Theorem (Neumann)

For $n \geq 5$, S_n acting on 2-sets is synchronizing iff n is odd.

Using combinatorics like Steiner systems and the Erdös-Ko-Rado theorem leads to the following result.

Theorem

1 If $k \mid n$, then S_n acting on k-sets is not synchronizing.

- The action of S_n on k-sets is primitive if $n \ge 2k + 1$.
- For the case k=2, there are exactly two S_n -invariant graphs.
- Using Cameron's theorem, one has the following result.

Theorem (Neumann)

For $n \geq 5$, S_n acting on 2-sets is synchronizing iff n is odd.

Using combinatorics like Steiner systems and the Erdös-Ko-Rado theorem leads to the following result.

Theorem

- **1** If $k \mid n$, then S_n acting on k-sets is not synchronizing.
- ② If $n \ge 7$, then S_n acting on 3-sets is synchronizing iff $n \equiv 2, 4, 5 \pmod{6}$ and $n \ne 8$.

• By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.
- ullet A classical group acts on a vector space V preserving a form.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.
- ullet A classical group acts on a vector space V preserving a form.
- A subspace is totally isotropic if the form vanishes on it.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.
- ullet A classical group acts on a vector space V preserving a form.
- A subspace is totally isotropic if the form vanishes on it.
- The points of the polar space Ω associated to the classical group are the 1-dimensional totally isotropic subspaces.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.
- \bullet A classical group acts on a vector space V preserving a form.
- A subspace is totally isotropic if the form vanishes on it.
- The points of the polar space Ω associated to the classical group are the 1-dimensional totally isotropic subspaces.
- Two points are collinear if they span a 2-dimensional totally isotropic subspace.

- By classical groups, I mean symplectic, unitary and orthogonal groups over finite fields.
- I will be slightly sloppy here on technical details to avoid trivial cases.
- \bullet A classical group acts on a vector space V preserving a form.
- A subspace is totally isotropic if the form vanishes on it.
- The points of the polar space Ω associated to the classical group are the 1-dimensional totally isotropic subspaces.
- Two points are collinear if they span a 2-dimensional totally isotropic subspace.
- The graph X of the polar space is the graph on Ω with edges the collinear points.

Synchronization and finite geometries

• The projective quotient G of the classical group acts primitively on the polar space Ω .

Synchronization and finite geometries

- The projective quotient G of the classical group acts primitively on the polar space Ω .
- A consequence of Witt's lemma is that X and \overline{X} are the only G-invariant graphs.

Synchronization and finite geometries

- The projective quotient G of the classical group acts primitively on the polar space Ω .
- A consequence of Witt's lemma is that X and \overline{X} are the only G-invariant graphs.

Theorem

A classical group acting on its polar space is synchronizing iff its polar space possesses neither:

- 1 both an ovoid and a spread; nor
- 2 a partition into ovoids.

Synchronization and finite geometries

- The projective quotient G of the classical group acts primitively on the polar space Ω .
- A consequence of Witt's lemma is that X and \overline{X} are the only G-invariant graphs.

Theorem

A classical group acting on its polar space is synchronizing iff its polar space possesses neither:

- both an ovoid and a spread; nor
- 2 a partition into ovoids.
 - Ovoids and spreads are notions from finite geometry that I cannot/will not define.

Synchronization and finite geometries

- The projective quotient G of the classical group acts primitively on the polar space Ω .
- A consequence of Witt's lemma is that X and \overline{X} are the only G-invariant graphs.

Theorem

A classical group acting on its polar space is synchronizing iff its polar space possesses neither:

- 1 both an ovoid and a spread; nor
- 2 a partition into ovoids.
 - Ovoids and spreads are notions from finite geometry that I cannot/will not define.
 - Not everything is known about the existence of these creatures.

Some examples

Example

- PSp(2r, q), PSU(2r + 1, q) and $P\Omega^{-}(2r + 2, q)$ are synchronizing for all $r \geq 2$, except PSp(4, q) with q even.
- $P\Omega(5,q)$ for q=3,5,7 is synchronizing.

Some examples

Example

- PSp(2r,q), PSU(2r+1,q) and $P\Omega^{-}(2r+2,q)$ are synchronizing for all $r \geq 2$, except PSp(4,q) with q even.
- $P\Omega(5,q)$ for q=3,5,7 is synchronizing.

The general situation for classical groups is still very much open.

kI-groups

• Let k be a field of characteristic 0.

$\Bbbk I$ -groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:

kI-groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:
 - the trivial submodule spanned by $\sum_{\omega \in \Omega} \omega$; and

$\Bbbk I$ -groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:
 - the trivial submodule spanned by $\sum_{\omega \in \Omega} \omega$; and
 - $\bullet \ \ \text{its orthogonal complement} \ V.$

kI-groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:
 - the trivial submodule spanned by $\sum_{\omega \in \Omega} \omega$; and
 - ullet its orthogonal complement V.
- Call G a $\mathbb{k}I$ -group if V is irreducible.

$\Bbbk I$ -groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:
 - the trivial submodule spanned by $\sum_{\omega \in \Omega} \omega$; and
 - ullet its orthogonal complement V.
- Call G a kI-group if V is irreducible.
- If $\mathbb{F} < \mathbb{k}$, then $\mathbb{k}I \implies \mathbb{F}I$.

kI-groups

- Let k be a field of characteristic 0.
- $\mathbb{k}\Omega$ has 2 obvious $\mathbb{k}G$ -submodules:
 - the trivial submodule spanned by $\sum_{\omega \in \Omega} \omega$; and
 - ullet its orthogonal complement V.
- Call G a kI-group if V is irreducible.
- If $\mathbb{F} \leq \mathbb{k}$, then $\mathbb{k}I \implies \mathbb{F}I$.

Theorem (Classical)

- **1** G is $\mathbb{C}I \iff G$ is 2-transitive.
- **2** G is $\mathbb{R}I \iff G$ is 2-homogeneous.

Theorem (Arnold, BS '06)

A $\mathbb{Q}I$ -group is synchronizing.

• Any primitive group of prime degree is $\mathbb{Q}I$, but most are not 2-homogeneous (= $\mathbb{R}I$).

Theorem (Arnold, BS '06)

- Any primitive group of prime degree is $\mathbb{Q}I$, but most are not 2-homogeneous (= $\mathbb{R}I$).
- I asked John Dixon what is known about such groups.

Theorem (Arnold, BS '06)

- Any primitive group of prime degree is $\mathbb{Q}I$, but most are not 2-homogeneous (= $\mathbb{R}I$).
- I asked John Dixon what is known about such groups.
- He observed they are 3/2-transitive.

$\mathbb{Q}I ext{-group}$

Theorem (Arnold, BS '06)

- Any primitive group of prime degree is $\mathbb{Q}I$, but most are not 2-homogeneous (= $\mathbb{R}I$).
- I asked John Dixon what is known about such groups.
- He observed they are 3/2-transitive.
- He proved that an affine group G acting on \mathbb{F}_q^n is synchronizing iff the group generated by G and \mathbb{F}_q^* is 2-transitive on \mathbb{F}_q^n .

Theorem (Arnold, BS '06)

- Any primitive group of prime degree is $\mathbb{Q}I$, but most are not 2-homogeneous (= $\mathbb{R}I$).
- I asked John Dixon what is known about such groups.
- He observed they are 3/2-transitive.
- He proved that an affine group G acting on \mathbb{F}_q^n is synchronizing iff the group generated by G and \mathbb{F}_q^* is 2-transitive on \mathbb{F}_q^n .
- Using CFSG, it has been shown that the only remaining examples are PSL(2,q) and $P\Gamma L(2,q)$ acting in degree $\frac{1}{2}q(q-1)$ with $q=2^n\geq 8$ and q-1 a Mersenne prime.

So far we have the following strict hierarchy of permutation groups:

2-transitive groups

- **1** 2-transitive groups
- **2**-homogeneous groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups

- **1** 2-transitive groups
- 2-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- synchronizing groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- synchronizing groups
- basic groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- synchronizing groups
- basic groups
- o primitive groups

- 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- synchronizing groups
- basic groups
- primitive groups
- transitive groups

So far we have the following strict hierarchy of permutation groups:

- **1** 2-transitive groups
- 2-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- synchronizing groups
- basic groups
- primitive groups
- transitive groups

Another class we have considered are separating groups (introduced by P. Neumann).

Lemma (P. Neumann)

Let $G \leq S_{\Omega}$ be transitive and let $A, B \subseteq \Omega$ such that $|A| \cdot |B| < |\Omega|$. Then there exists $g \in G$ with $A \cap Bg = \emptyset$.

Lemma (P. Neumann)

Let $G \leq S_{\Omega}$ be transitive and let $A, B \subseteq \Omega$ such that $|A| \cdot |B| < |\Omega|$. Then there exists $g \in G$ with $A \cap Bg = \emptyset$.

ullet In other words, the subsets A,B can be separated by G if they are not large enough.

Lemma (P. Neumann)

Let $G \leq S_{\Omega}$ be transitive and let $A, B \subseteq \Omega$ such that $|A| \cdot |B| < |\Omega|$. Then there exists $g \in G$ with $A \cap Bg = \emptyset$.

- ullet In other words, the subsets A,B can be separated by G if they are not large enough.
- A transitive group G is called separating if whenever $|A| \cdot |B| = |\Omega|$, there exists $g \in G$ with $A \cap Bg = \emptyset$.

Lemma (P. Neumann)

Let $G \leq S_{\Omega}$ be transitive and let $A, B \subseteq \Omega$ such that $|A| \cdot |B| < |\Omega|$. Then there exists $g \in G$ with $A \cap Bg = \emptyset$.

- ullet In other words, the subsets A,B can be separated by G if they are not large enough.
- A transitive group G is called separating if whenever $|A|\cdot |B|=|\Omega|$, there exists $g\in G$ with $A\cap Bg=\emptyset$.

Theorem (Neumann)

Separating groups are synchronizing.

Lemma (P. Neumann)

Let $G \leq S_{\Omega}$ be transitive and let $A, B \subseteq \Omega$ such that $|A| \cdot |B| < |\Omega|$. Then there exists $g \in G$ with $A \cap Bg = \emptyset$.

- ullet In other words, the subsets A,B can be separated by G if they are not large enough.
- A transitive group G is called separating if whenever $|A|\cdot |B|=|\Omega|$, there exists $g\in G$ with $A\cap Bg=\emptyset$.

Theorem (Neumann)

Separating groups are synchronizing.

Proof.

If π is a section-regular partition with section S and A is a block of π , then $|A|\cdot |S|=|\Omega|$ and $|A\cap Sg|=1$ for all $g\in G$. \square

• The independence number $\alpha(X)$ of a graph X is the largest size of a coclique of X.

ullet The independence number lpha(X) of a graph X is the largest size of a coclique of X.

Theorem (Cameron)

G is separating iff there are no nontrivial G-invariant graphs X on Ω with $\alpha(X) \cdot \omega(X) = |\Omega|$.

• The independence number $\alpha(X)$ of a graph X is the largest size of a coclique of X.

Theorem (Cameron)

G is separating iff there are no nontrivial G-invariant graphs X on Ω with $\alpha(X)\cdot\omega(X)=|\Omega|$.

• The results for S_n acting on k-sets holds verbatim for separating groups.

• The independence number $\alpha(X)$ of a graph X is the largest size of a coclique of X.

Theorem (Cameron)

G is separating iff there are no nontrivial G-invariant graphs X on Ω with $\alpha(X)\cdot\omega(X)=|\Omega|$.

• The results for S_n acting on k-sets holds verbatim for separating groups.

Theorem

A classical group acting on its polar space is separating iff its polar space does not possess an ovoid.

• The independence number $\alpha(X)$ of a graph X is the largest size of a coclique of X.

Theorem (Cameron)

G is separating iff there are no nontrivial G-invariant graphs X on Ω with $\alpha(X)\cdot\omega(X)=|\Omega|$.

• The results for S_n acting on k-sets holds verbatim for separating groups.

Theorem

A classical group acting on its polar space is separating iff its polar space does not possess an ovoid.

• $P\Omega(5,q)$ for q=3,5,7 is synchronizing but not separating.

We have the following strict hierarchy of permutation groups:

1 2-transitive groups

- **1** 2-transitive groups
- 2-homogeneous groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups

- 2-transitive groups
- 2 -homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- separating groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- separating groups
- synchronizing groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- separating groups
- synchronizing groups
- basic groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- separating groups
- synchronizing groups
- basic groups
- primitive groups

- **1** 2-transitive groups
- **2**-homogeneous groups
- \bigcirc $\mathbb{Q}I$ -groups
- separating groups
- synchronizing groups
- basic groups
- primitive groups
- transitive groups

The End

THANKS FOR YOUR ATTENTION!