Electromagnetic Waves in Vacuum

Mike Reppert

August 21, 2019

Last time on CHEM676:

The Lorentz Force Law:

$$m{F}_{\mathrm{EM}} pprox qm{e}(m{r},t) + rac{q}{c}m{v} imes m{b}(m{r},t)$$

Maxwell's Equations:

$$\nabla \cdot \boldsymbol{e} = 4\pi \varrho(\boldsymbol{x}, t)$$
$$\nabla \cdot \boldsymbol{b} = 0$$
$$\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0$$
$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)$$

Last time on CHEM676:

The Lorentz Force Law:

$$m{F}_{\mathrm{EM}} pprox qm{e}(m{r},t) + rac{q}{c}m{v} imes m{b}(m{r},t)$$

Maxwell's Equations:

$$\nabla \cdot \boldsymbol{e} = 4\pi \varrho(\boldsymbol{x}, t)$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$\nabla \times \boldsymbol{e} + \frac{1}{c} \frac{\partial \boldsymbol{b}}{\partial t} = 0$$

$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = \frac{4\pi}{c} \boldsymbol{j}(\boldsymbol{x}, t)$$

Today: How does the EM field propagate in vacuum?

Outline for Today:

- Decoupling the Electric and Magnetic Fields
- 2 Propagating Waves
- Oscillating Signals: The Fourier Basis
- Plane Waves

Decoupling the Electric and Magnetic Fields

$$\nabla \cdot \mathbf{e} = 0$$

$$\nabla \cdot \mathbf{b} = 0$$

$$\nabla \times \mathbf{e} + \frac{1}{c} \frac{\partial \mathbf{b}}{\partial t} = 0$$

$$\nabla \times \mathbf{b} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial t} = 0$$

$$\nabla \cdot \mathbf{e} = 0$$

$$\nabla \cdot \mathbf{b} = 0$$

$$\nabla \times \left(\nabla \times \mathbf{e} + \frac{1}{c} \frac{\partial \mathbf{b}}{\partial t} = 0 \right)$$

$$\nabla \times \mathbf{b} - \frac{1}{c} \frac{\partial \mathbf{e}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{e} = 0$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$$

$$\nabla \times \boldsymbol{b} - \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t} = 0$$

$$\nabla \cdot \boldsymbol{e} = 0$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$$

$$\nabla \times \boldsymbol{b} = \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t}$$

$$\nabla \cdot \boldsymbol{e} = 0$$

$$\nabla \cdot \boldsymbol{b} = 0$$

$$\nabla \times (\nabla \times \boldsymbol{e}) + \frac{1}{c} \frac{\partial (\nabla \times \boldsymbol{b})}{\partial t} = 0$$

$$\nabla \times \boldsymbol{b} = \frac{1}{c} \frac{\partial \boldsymbol{e}}{\partial t}$$

$$\downarrow \downarrow$$

$$\nabla \times (\nabla \times \boldsymbol{e}(\boldsymbol{x},t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x},t)}{\partial t^2} = 0.$$

A Dirty Trick

Use the vector identity:

$$\nabla \times (\nabla \times \mathbf{v}) = -\nabla^2 \mathbf{v} + \nabla (\nabla \cdot \mathbf{v})$$

A Dirty Trick

Use the vector identity:

$$\nabla \times (\nabla \times \mathbf{v}) = -\nabla^2 \mathbf{v} + \nabla(\nabla \cdot \mathbf{v})$$

to get

$$0 = \nabla \times (\nabla \times \boldsymbol{e}(\boldsymbol{x}, t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^2}$$
$$= -\nabla^2 \boldsymbol{e}(\boldsymbol{x}, t) + \nabla(\nabla \cdot \boldsymbol{e}(\boldsymbol{x}, t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^2}$$

A Dirty Trick

Use the vector identity:

$$\nabla \times (\nabla \times \mathbf{v}) = -\nabla^2 \mathbf{v} + \nabla (\nabla \cdot \mathbf{v})$$

to get

$$0 = \nabla \times (\nabla \times \boldsymbol{e}(\boldsymbol{x}, t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^2}$$
$$= -\nabla^2 \boldsymbol{e}(\boldsymbol{x}, t) + \nabla(\nabla \cdot \boldsymbol{e}(\boldsymbol{x}, t)) + \frac{1}{c^2} \frac{\partial^2 \boldsymbol{e}(\boldsymbol{x}, t)}{\partial t^2}$$

or

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) \boldsymbol{e}(\boldsymbol{x}, t) = 0.$$

This is the **homogeneous wave equation**.

In vacuum, Maxwell's equations imply that *each* component of the electric field obeys the **homogeneous wave equation** (HWE).

In vacuum, Maxwell's equations imply that *each* component of the electric field obeys the **homogeneous wave equation** (HWE).

NB: The same result holds for the magnetic field!

In vacuum, Maxwell's equations imply that *each* component of the electric field obeys the **homogeneous wave equation** (HWE).

NB: The same result holds for the magnetic field!

So what?

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\boldsymbol{x}, t) = 0$$

is solved by any function f of the form $f(\hat{\mathbf{s}} \cdot \mathbf{x} \pm ct)$.

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\boldsymbol{x}, t) = 0$$

is solved by any function f of the form $f(\hat{s} \cdot x \pm ct)$.

Check it!

The (one-component) wave equation

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\boldsymbol{x}, t) = 0$$

is solved by any function f of the form $f(\hat{s} \cdot x \pm ct)$.

Check it!

Displacement along the unit vector \hat{s} is equivalent to a shift in time, i.e. the solution *propagates* at speed c.

Solutions to the HWE can take *any form* that propagates at the speed of light.

Oscillating Signals: The Fourier Basis

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

Many physical sources have well-defined frequencies

The HWE is solved by *any* propagating function. So why do we usually think of "light waves" as oscillatory?

- Many physical sources have well-defined frequencies
- ② All waves can be represented as a sum of oscillatory signals

Fourier decomposition

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

http://mriquestions.com/fourier-transform-ft.html

The Fourier transform tells you the *amplitude and phase* of a given *frequency component* in a signal.

1D Fourier transform:

$$\tilde{g}(\omega) = \int_{-\infty}^{\infty} dt \, \mathrm{e}^{\mathrm{i}\omega t} g(t).$$

Inverted by:

$$g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \mathrm{e}^{-\mathrm{i}\omega t} \tilde{g}(\omega).$$

http://mriquestions.com/fourier-transform-ft.html

Note: Widths are inversely related!

4D Fourier Transform

In electrodynamics, we use a 4D transform:

$$\tilde{\boldsymbol{e}}(\boldsymbol{k},\omega) = \int_{-\infty}^{\infty} d\boldsymbol{x} \int_{-\infty}^{\infty} dt \, e^{i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \boldsymbol{e}(\boldsymbol{x},t)$$
$$\boldsymbol{e}(\boldsymbol{x},t) = \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} d\boldsymbol{k} \int_{-\infty}^{\infty} d\omega \, e^{-i(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} \tilde{\boldsymbol{e}}(\boldsymbol{k},\omega).$$

The individual frequency/wavevector components in $\tilde{e}(\boldsymbol{k},\omega)$ can be physically separated using a prism!

NB: The FT is completely general! Any field can be decomposed as an integral of Fourier components.

NB: The FT is completely general! Any field can be decomposed as an integral of Fourier components.

What are the characteristic features of HWE solutions in Fourier space?

The FT Derivative Property

The FT converts **differential equations** to **algebraic equations**:

The FT Derivative Property

The FT converts **differential equations** to **algebraic equations**:

$$\frac{\widetilde{dg}}{dt} = e^{i\omega t} g(t) \Big|_{-\infty}^{\infty} - i\omega \int_{-\infty}^{\infty} dt \, e^{i\omega t} g(t) = -i\omega \widetilde{g}(\omega),$$

The FT Derivative Property

The FT converts **differential equations** to **algebraic equations**:

$$\frac{\widetilde{dg}}{dt} = e^{i\omega t} g(t) \Big|_{-\infty}^{\infty} - i\omega \int_{-\infty}^{\infty} dt \, e^{i\omega t} g(t) = -i\omega \widetilde{g}(\omega),$$

For the HWE, this implies

$$\left(-\frac{\omega^2}{c^2} + k^2\right)\tilde{\boldsymbol{e}}(\boldsymbol{k}, \omega) = 0$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow$$

$$\omega = ck$$

This is the **vacuum dispersion relation** connecting frequency and wavelength (1/k).

The Fourier Transform splits signals into *frequency components*.

Using a 4D FT, we can split the field into frequency components in *both time and space*.

The FT converts differential equations into algebraic equations. In vacuum, the HWE implies the dispersion relation $\Rightarrow \omega = ck$.

Plane Waves

Plane Waves

In general, electromagnetic fields can be very complex!

https://phet.colorado.edu/sims/radiating-charge/radiating-charge_en.html

Usually, we'll consider simplified forms ⇒ plane waves.

Ideal Beams

A plane wave is an electromagnetic field propagating with a fixed \hat{s} -vector.

http://labman.phys.utk.edu/phys222core/modules/m6/polarization.html

Plane Waves

Plane Waves

Polarized plane waves have both a propagation axis \hat{s} and a polarization vector $\hat{\epsilon}$

https://en.wikipedia.org/wiki/Polarizer

In general: Electromagnetic fields are complicated!

A plane wave is an EM field with a well-defined propagation axis $\hat{\boldsymbol{s}}$

A polarized plane wave has both a propagation axis \hat{s} and a polarization vector $\hat{\epsilon}$

Polarization comes in several flavors: Circular, eliptical, linear.