Hinweis: Manche (sehr wenige) der folgenden Beispiele sind falsch, manche enthalten offene Fragen, manche sind besonders schwierig. Die Lösung eines falschen Beispiels besteht in einer Erklärung, was bzw. warum etwas falsch ist. (Ein falscher Allsatz kann zB durch ein Gegenbeispiel widerlegt werden.)

Naive Mengenlehre

- 1. Welche der folgenden Aussagen gelten allgemein (d.h., für beliebige $x, x_1, y, ...$)? Begründen Sie Ihre Antwort (Beweis oder Gegenbeispiel).
 - a. Wenn $\{x\} = \{y\}$, dann ist auch x = y.
 - b. Wenn $\{x, z\} = \{y, z\}$, dann ist auch x = y.
 - c. Wenn $\{x_1, x_2\} = \{y_1, y_2\}$, dann gilt zumindest eine der folgenden beiden Aussagen: (12) $x_1 = y_1$ und $x_2 = y_2$; (21) $x_1 = y_2$ und $x_2 = y_1$.
 - d. Wenn $\{x_1, x_2, x_3\} = \{y_1, y_2, y_3\}$, dann ist zumindest eine der folgenden 6 Aussagen wahr:

```
(123)  x_1 = y_1, x_2 = y_2, x_3 = y_3.
```

$$(132) x_1 = y_1, x_2 = y_3, x_3 = y_2.$$

$$(213) x_1 = y_2, x_2 = y_1, x_3 = y_3.$$

$$(231) x_1 = y_2, x_2 = y_3, x_3 = y_1.$$

$$(312) x_1 = y_3, x_2 = y_1, x_3 = y_2.$$

$$(321) x_1 = y_3, x_2 = y_2, x_3 = y_1.$$

- 2. Von der Eigenschaft E wissen wir bereits, dass sie auf alle Singletons (=einelementige Mengen) zutrifft. Nehmen wir an, dass E immer dann auf eine Menge $A \cup \{b\}$ zutrifft, wenn E auf A zutrifft (und b beliebig ist). Können wir daraus schließen,
 - \bullet ... dass E für alle endlichen nichtleeren Mengen gilt?
 - \bullet ... dass E für alle nichtleeren Mengen gilt?
 - \bullet ... dass E für alle höchstens abzählbaren nichtleeren Mengen gilt?
- 3. Zeigen oder widerlegen Sie: Wenn $\{\{x\}, \{x,y\}\} = \{\{x'\}, \{x',y'\}\},$ dann gilt x = x' und y = y'.
- 4. Zeigen oder widerlegen Sie: Wenn $\{x, \{x, y\}\} = \{x', \{x', y'\}\}$, dann gilt x = x' und y = y'.
- 5. Zeigen oder widerlegen Sie: Sei $* := \{\emptyset\}$. Wenn $\{\{\emptyset, x\}, \{*, y\}\} = \{\{\emptyset, x'\}, \{*, y'\}\}$, dann gilt x = x' und y = y'.

Sei \mathscr{A} eine Menge von Mengen. Eine Auswahlfunktion für A ist eine Funktion f, die jedem Element $B \in \mathscr{A} \setminus \{\emptyset\}$ eines seiner Elemente zuweist, d.h. es muss also für alle nichtleeren $B \in \mathscr{A}$ die Beziehung $f(B) \in B$ gelten. Geben Sie in den folgenden Aufgaben explizite Auswahlfunktionen für die jeweiligen Mengenfamilien an.

- 6. \mathscr{A}_6 sei die Familie aller Teilmengen von \mathbb{N} .
- 7. \mathscr{A}_7 sei die Familie aller Teilmengen von \mathbb{Z} .
- 8. \mathcal{A}_8 sei die Familie aller endlichen Teilmengen von \mathbb{R} .
- 9. \mathcal{A}_9 sei die Familie aller Teilmengen von \mathbb{R} .
- 10. \mathscr{A}_{10} sei die Familie aller Äquivalenzklassen von Cauchyfolgen rationaler Zahlen. (Zwei Cauchyfolgen $(x_n)_{n=1}^{\infty}$, $(y_n)_{n=1}^{\infty}$ heißen äquivalent, wenn die Folge $(x_n y_n)_{n=1}^{\infty}$ ihrer Differenzen eine Nullfolge bildet.)

 $^{^1\}mathrm{Oft}$ wird vorausgesetzt, dass die leere Menge \emptyset kein Element von $\mathscr A$ ist.

- 11. $A \times B := \{(x,y) : x \in A, y \in B\}$, wobei $(x,y) := \{\{x\}, \{x,y\}\}$. Zeigen Sie $A \times B \subseteq \mathfrak{P}(\mathfrak{P}(A \cup B))$ (wobei $\mathfrak{P}(X) := \{Y : Y \subseteq X\}$).
- 12. Wir schreiben B^A für die Menge aller Funktionen von A nach B. Welche der folgenden Aussagen ist richtig?

$$B^A \subset A \times B$$
, $B^A \subset \mathfrak{P}(A \times B)$, $B^A \subset \mathfrak{P}(\mathfrak{P}(A \cup B))$, $B^A \subset \mathfrak{P}(\mathfrak{P}((A \times B)))$

13. Berechnen Sie $\bigcup A$, $\bigcup \bigcup A$, $\bigcap A$, $\bigcap \bigcap A$ für jede der folgenden Mengen A:

$$A_1 = \{0, 1, 2, 3, 4\}, A_2 = \{0, 2, 4, 6, \ldots\}, A_3 = \{1, 3, 5, \ldots\}, A_4 = \{3, 4, 5, 6\}$$

(Verwenden Sie die Definitionen
$$0 := \emptyset, 1 := \{0\}, \dots, 5 = \{0, 1, 2, 3, 4\}, \dots$$
)

In der ("offiziellen") Sprache der Mengenlehre verwenden wir neben dem zweistelligen Relationssymbol ε das Gleichheitszeichen, beliebig viele prädikatenlogische Variable $x, x_1, A, B, \mathcal{C}$, etc, die logischen Konstanten \top und \bot , die Junktoren $\land, \lor, \neg, \rightarrow, \leftrightarrow$ sowie die Quantoren \forall und \exists , nicht aber die Symbole \emptyset , $\{\cdots\}$, \cup , \cap , etc.

- 14. Übersetzen Sie die folgenden Formeln in die offizielle Sprache der Mengenlehre:
 - a. $A = \{x\}$
 - b. $B = \{x, y\}$
 - c. $C = P \cap Q$
 - d. $D = \bigcup \mathcal{E}$, wobei die rechte Seite als $\{x : \exists E \in \mathcal{E}(x \in E)\}$ definiert ist.
 - e. $F = \bigcup \{U, V\}.$

Aussagenlogik

15. Geben Sie für jede der folgenden Formeln eine Baumdarstellung an, sowie Präfix- und Post-fixform. (Präfix=polnische Notation, Postfix=umgekehrte polnische Notation.)

$$p_1 \to \neg p_2 \qquad (\neg p_1) \to p_2 \qquad \neg (p_1 \to p_2) \qquad \neg (\neg (p_1 \to p_2)) \qquad p_1$$

- 16. Geben Sie alle zweistelligen Operationen auf der 2-elementigen Menge $M := \{ wahr, falsch \}$ an (das heißt: alle Funktionen $f : M \times M \to M$, und finden Sie treffende Namen für jede dieser Abbildungen. (Die Abbildung, die dem Paar (wahr, wahr) den Wert wahr zuordnet, den drei anderen Paaren der Wert falsch, könnte man zum Beispiel "Konjunktion", oder "und-Verknüpfung", oder "beide", oder "Serienschaltung" nennen.)
- 17. Wie viele dreistellige Operationen gibt es auf einer zweielementigen Menge? Wie viele n-stellige?
- 18. Zeigen Sie:
 - a. $\neg (p_1 \land p_2) \Leftrightarrow \neg p_1 \lor \neg p_2$.
 - b. Für alle Formeln A und B gilt $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$.
- 19. Zeigen Sie: $(p \land q) \lor (\neg p \land \neg q) \Leftrightarrow (p \to q) \land (q \to p)$.
- 20. Seien A und B aussagenlogische Formeln.
 - a. Die Aussage " $A \Rightarrow B$ " ist genau dann wahr, wenn " $\top \Rightarrow A \rightarrow B$ " gilt, d.h., wenn die Formel $A \rightarrow B$ eine Tautologie ist.
 - b. Die Aussage " $A \Rightarrow B$ " ist genau dann wahr, wenn " $A \land (\neg B) \Rightarrow \bot$ " gilt.

- 21. Welche der folgenden Formeln sind Tautologien?
 - a. $(p_1 \to p_2) \to (p_3 \to p_4) \to ((p_1 \lor p_3) \to (p_2 \lor p_4))$. (Implikationen werden von rechts nach links geklammert; $A \to B \to C$ ist als als Abkürzung für $(A \to (B \to C))$ zu lesen, NICHT als $((A \to B) \to C)$, und auch NICHT als $(A \to B) \land (B \to C)$.
 - b. $(p_1 \to p_3) \to (p_2 \to p_3) \to ((p_1 \lor p_2) \to p_3)$.
 - c. $(p_1 \to p_3) \to (p_2 \to p_3) \to ((p_1 \land p_2) \to p_3)$.
 - d. $(p_1 \to p_2 \to p_3) \to ((p_1 \land p_2) \to p_3)$
 - e. $(p_1 \to p_2) \lor (p_2 \to p_1)$.

Belegungen

Sei b eine Belegung, A eine Formel. Statt $\hat{b}(A) = 1$ sagen wir auch "b erfüllt die Formel A". In den nächsten 3 Aufgaben verstehen wir unter einer "Belegung" eine Funktion von der Menge $\{p_1, \ldots, p_n\}$ nach $\{0, 1\}$.

22. Sei $n \geq 2$. Wieviele Belegungen (der Variablen p_1, \ldots, p_n) erfüllen die Formel

$$(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land \cdots \land (p_{n-1} \rightarrow p_n) ?$$

- 23. Sei $n \ge 2$. Geben Sie eine Formel (in den Variablen p_1, \ldots, p_n) an, die von genau n Belegungen erfüllt wird.
- 24. Sei n groß, $k \leq 2^n$. Geben Sie eine Formel (in den Variablen p_1, \ldots, p_n) an, die von genau k Belegungen erfüllt wird. Versuchen Sie, eine möglichst kleine Formel zu finden (mit etwa O(n) Symbolen).

Erfüllbarkeit

Eine Menge Σ von aussagenlogischen Formeln heißt "erfüllbar", wenn es eine Belegung b der in Σ vorkommenden Variablen gibt, die für alle $A \in \Sigma$ die Bedingung $\hat{b}(A) = 1$ erfüllt. Wir nennen eine Menge Σ *erfüllbar, wenn jede endliche Teilmenge von Σ erfüllbar ist.

- 25. Sei $\Sigma \cup \{A\}$ eine Menge von aussagenlogischen Formeln. Zeigen Sie:
 - (a) Σ ist genau dann erfüllbar, wenn zumindest eine der Mengen $\Sigma \cup \{A\}$, $\Sigma \cup \{\neg A\}$ erfüllbar ist.
 - (b) Σ ist genau dann *erfüllbar, wenn zumindest eine der Mengen $\Sigma \cup \{A\}$, $\Sigma \cup \{\neg A\}$ *erfüllbar ist.
- 26. Geben Sie eine *-erfüllbare Menge an, die nicht erfüllbar ist.
- 27. Zeigen Sie:
 - (a) Wenn Σ *erfüllbar ist, und für jede aussagenlogische Variable p entweder $p \in \Sigma$ oder $(\neg p) \in \Sigma$ gilt, dann ist Σ auch erfüllbar (und zwar durch genau eine Belegung).
 - (b) Wenn Σ *erfüllbar ist, dann gibt es eine *erfüllbare Menge $\Sigma' \supseteq \Sigma$, die die Bedingung in (a) erfüllt.