${\rm CS}652$ Smalltalk VM Operational Semantics

Terence Parr

April 6, 2015

$T \bowtie x$	Resolve x in scope T	
$o \in X$	o is instance of X	
$\mathbf{v} \in \mathtt{STObject}$	a single object	
$oldsymbol{l}_i \in exttt{STObject}$	the i^{th} argument or local variable object	
$o_{class} \in \mathtt{STMetaClassObject}$	Metaclass (type) of object o	
$o_{class_{class}} = o_{class}$	A metaclass object is its own type	
$o_{superclass} \in \texttt{STMetaClassObject}$	Superclass (type) of object o	
o_{field_i}	The i^{th} field of object o	
$f_{literal_i}$	The i^{th} literal of method f	
$f_s^{block_i} \in exttt{BlockDescriptor}$	The i^{th} block of method f associated with instance self= s	
$f_s^{block_i}[extsf{-}, extsf{-}, extsf{-}] \in extsf{BlockContext}$	The i^{th} block of method f invoked with self= s	
$f_s^{block_i}[_,_,_]^d \in exttt{BlockContext}$	The i^{th} block of method f invoked with self= s and having depth d counting from zero at the method block; e.g., $f [x [y]]$ has a method block at depth 0 with x and a nested block at depth 1 with y	
$\gamma \in \texttt{MethodContext}^*$	Stack of method invocations growing to the right	
$\delta \in \mathtt{STObject}^*$	Operand stack of objects growing to the right	
S	The state of the VM system dictionary	
(\mathbb{S},γ)	VM state is the system dictionary and a method invocation stack with zero or more elements	
$(\mathbb{S}, \gamma) \Rightarrow (\mathbb{S}', \gamma')$	VM state transition	
$(\mathbb{S}, \gamma) \Rightarrow^* (\mathbb{S}', \gamma')$	Zero-or-more state transitions	
$f_s[ip, l_0,l_{n-1}, \delta]$	Method invocation context that derived from sending message f to receiver s (self); $f \in \texttt{MethodContext}; l_i$ is local variable or argument, indexed from 0 and arguments first; δ is the operand stack; f can also represent a nested code block not just a method	
$f[ip, l_0, l_{n-1}, \delta]$	Same as previous but the receiver is unknown or irrelevant	
$f[ip,_,_]$	A method invitation context with "don't care" for locals and operand stack	

Figure 1: Smalltalk VM Bytecode Specification Notation

Bytecode Instruction	Transition	
initial state	$state_0 = (\mathbb{S}[\mathtt{nil},\mathtt{true},\mathtt{false},\mathtt{Transcript}],\mathtt{main}_m[0,\epsilon,\epsilon])$	
	for $m \in \text{MainClass}$; program terminates if $\exists state_0 \Rightarrow^* (S', \epsilon)$	
nil	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{nil}])$	
self	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip+1, \neg, \delta s])$	
true	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{true}])$	
false	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta \mathtt{false}])$	
${\tt push_char}\ c$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta c])]$	
$\mathtt{push_int}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta i])$	
${\tt push_float}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \underline{\ }, \delta \ intBitsToFloat(i)])$	
$\mathtt{push_field}\ i$	$(\mathbb{S}, \gamma f_s[ip, -, \delta]) \Rightarrow (\mathbb{S}, \gamma f_s[ip + 3, -, \delta s_{field_i}])$	
${\tt push_local}\ 0, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_i \cdots, \delta l_i])$	
${\tt push_local}\ n>0, i$	$(\mathbb{S}, \gamma g^{block}[\underline{\ }, \cdots \underline{\ }i_i \cdots, \underline{\ }]^{d-n} \cdots g^{block'}[ip, \underline{\ }, \underline{\ }]^{d-1} \cdots g^{block''}[ip, \underline{\ }, \delta]^d) \ \Rightarrow$	
	$(\mathbb{S}, \gamma \cdots g^{block''}[ip+5, _, \delta l_i]^d)$	
${\tt push_literal}\ i$	$(\mathbb{S}, \gamma f[ip, J, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, J, \delta f_{literal_i}])$	
${\tt push_global}\ i$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \underline{\ }, \delta \mathbb{S}[f_{literal_i}]])$	
${\tt push_array}\ n$	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta a_1a_n]) \Rightarrow (\mathbb{S}, \gamma f[ip+3, \underline{\ }, \delta A]) \text{ where } A = Array(a_1a_n)$	
$\mathtt{store_field}\;i$	$(\mathbb{S}, \gamma f_s[ip, \neg, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}[s_{field_i} = \mathbf{v}], \gamma f_s[ip + 3, \neg, \delta \mathbf{v}])$	
$\mathtt{store_local}\ n, i$	$(\mathbb{S}, \gamma f[ip, \cdots l_i \cdots, \delta \mathbf{v}]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \cdots l_{i-1}\mathbf{v} l_{i+1} \cdots, \delta \mathbf{v}])$	
pop	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip+1, \underline{\ }, \delta])$	
$\mathtt{send}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] \left(r_{class} \bowtie f_{literal_i}\right)_r [0, p_1p_n, \epsilon])$	
$\mathtt{send_super}\ n, i$	$(\mathbb{S}, \gamma f[ip, \neg, \delta r p_1p_n]) \Rightarrow (\mathbb{S}, \gamma f[ip + 5, \neg, \delta] (r_{superclass} \bowtie f_{literal_i})_r[0, p_1p_n, \epsilon])$	
$\mathtt{block}\; i$	$(\mathbb{S}, \gamma f[ip, \cdot, \delta]) \Rightarrow (\mathbb{S}, \gamma f[ip + 3, \cdot, \delta f_s^{block_i}])$	
block_return	$(\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta] \ g^{block}[\mathbf{x}, \mathbf{y}, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \mathbf{x}, \delta \mathbf{v}])$	
$(method\ local)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$	
$(method\ nonlocal)$ return	$(\mathbb{S}, \gamma f[ip, \underline{\ }, \delta] \ g_s[\underline{\ }, \underline{\ }, \underline{\ }] \ \cdots \ h[\underline{\ }, \underline{\ }, \underline{\ }] \ g_s^{block}[\underline{\ }, \underline{\ }, \delta' \mathbf{v}]) \ \Rightarrow \ (\mathbb{S}, \gamma f[ip, \underline{\ }, \delta \mathbf{v}])$	
$dbg\; i, loc$	$(\mathbb{S}, \gamma f[ip, _, _]) \Rightarrow (\mathbb{S}[file=f_{literal_i}, line=loc[31:8], col=loc[7:0]], \gamma f[ip+7, _, _])$ Set VM current filename to $f_{literal_i}$ and split loc into char position (indexed from 0) from lower 8 bits and line number from the upper 24 bits.	

Figure 2: Smalltalk VM State Transition Rules

Smalltalk fragment	Visitor method result	Side-effects
ϵ	$\epsilon \; (ext{object Code.None})$	
class T : S []	ϵ	
main	main	
	self	
	return	
<pre>f <pre>frimitive:#primitive-name></pre></pre>	ϵ	
f []	ϵ	$f_{code} =$
		self
		return
f [body]	ϵ	$f_{code} =$
		body
		pop
		self
, , , , ,		return
operator [body]	ϵ	$operator_{code} =$
		body
		pop
		self
$\mathtt{a:x\ b:y\ c:z\ [}\ \mathit{body\]}$	ϵ	$\mathtt{return} \ \mathtt{a:b:c:}_{code} =$
a. x b. y c. z [<i>boay</i>]	6	body
		pop self
[args locals]	\mid block i	${ t f}_{block_i} =$
\mathbf{f}^{block_i}		nil
i diock _i		block_return
[body]	\mid block i	$f_{block_i} =$
$fblock_i$		body
•		block_return
$expr_1. expr_2. \cdots expr_n$	$expr_1$	
	pop	
	$expr_2$	
	pop	
	• • •	
	$expr_n$	

Figure 3: Smalltalk Class/Method/Block Compilation Rules

Smalltalk fragment	Visitor method result	Side-effects
class T $[x_0x_1x_n \cdots[\cdots x_i]=expr]$	expr	
	${ t store_field} \; i$	
$\mathtt{a}\!:\!x_0\;\mathtt{b}\!:\!x_1\;[x_2x_n \cdots\;x_i\!:=\!expr$	expr	
	${ t store_local} \ 0, i$	
$f[x_0x_n \cdots x=expr]$	expr	
	${ t store_local} \ 0, i$	
$f[x_0x_n \cdots x := expr$	expr	
	${ t store_local} \ 0, i$	
$f [\cdots [x \cdots [\cdots x] = expr]$	expr	
$\text{f } [\cdots \underbrace{[\mathbf{x} \cdots[}_{\Delta}\cdots\ x{:=}expr$ $\text{class T } [x_0x_1x_n \cdots[\cdots\ x_i$	$ exttt{store_local } \Delta, 0$	
class T $[x_0x_1x_n \cdots[\cdots x_i]$	${ t push_field}\; i$	
$\mathtt{a} \colon x_0 \ \mathtt{b} \colon x_1 \ [x_2 x_n \cdots \ x_i]$	${ t push_local} \ 0, i$	
$f:x [\cdots]\cdots x$	$ exttt{push_local }\Delta,0$	
$\Lambda = \#scores$		
$f \left[\cdots \left[x \cdots \right] \cdots x \right]$	$ exttt{push_local } \Delta, 0$	
Δ		
99	$push_int 99$	
\$a	$ ext{push_char} \ ASCII('a')$	
1.2	$push_float \ asIntBits(1.2)$	111.
'a string'	${\sf push_literal}\ i$	$igg extsf{f}_{literal_i}^{block_j} = ext{"a string"}$
nil	nil	
self	self	
true	true	
false	false	
$\{ expr_1. expr_2. \cdots expr_n \}$	$expr_1$	
	$expr_2$	
	•••	
	$expr_n$	
	\mid push_array n	

Figure 4: Smalltalk Expression Compilation Rules

	Smalltalk fragment	Visitor results	Side-effects
	^expr	expr	
		return	
(unary msg)	$\mathtt{f} \; \llbracket \cdots \; expr w$	expr	$\mathtt{f}^{block_j}_{literal_i} = "w"$
		$\verb"send"0,i$	
	$\mathtt{f} \; [\cdots \; \mathtt{super} w$	expr	$\mathbf{f}_{literal_{i}}^{block_{j}} = "w"$
		$\mathtt{send_super}\ 0, i$	
(binary msg)	f [··· $expr_1 op \ expr_2$	$expr_1$	$\mathtt{f}^{block_j}_{literal_i} = "op"$
		$expr_2$	
		$\mathtt{send}\ 1, i$	
f[⋯ expr	$x w_1:x_1 w_2:x_2 \cdots w_n:x_n$	expr	$\mathbf{f}_{literal_i}^{block_j} = "w_1: w_2: \cdots w_n:"$
		$\verb"send" n,i$	
f [··· super	$x_1:x_1 w_2:x_2 \cdots w_n:x_n$	expr	$\mathbf{f}_{literal_i}^{block_j} = "w_1: w_2: \cdots w_n:"$
		$\mathtt{send_super}\ n,i$	

Figure 5: Smalltalk Message Expression Compilation Rules