

@ 17年大学

- A motivation from the CpG island example:
 - How can we detect possible CpG islands from a long sequence?
 - Method 1: Cut the sequence into overlapping windows and discriminate the sequence in each window

$$S(x) = \log \frac{P(x|+)}{P(x|-)} = \sum_{i=1}^{L} \log \frac{a_{x_{i-1}x_i}^+}{a_{x_{i-1}x_i}^-} = \sum_{i=1}^{L} \beta_{x_{i-1}x_i}$$

 Method 2: Build a single model for the entire sequence that incorporates both Markov chains (of CpG and non-CpG)

- Markov Chain: $x_1 \rightarrow x_2 \rightarrow ... \rightarrow x_n$
- HMM: y_1 y_2 ... y_n

 Z_2

- Only the y's are observed
- The z's are governed by a Markov transition rule
- The y can be viewed as a "noisy copy" of the z
- Examples:
 - Gene Recognition: z: intron or exon, y: observed sequence

 Z_n

• CpG island detection: z: A+,C+,T+,G+,A-,C-,T-,G-, y: observed seq: A C T G

圖消華大学

- Model: the "islands" in a "sea" of non-island genomic sequence
 - Both chains in the same model
 - With a small probability of switching
- · We now have two states corresponding to each nucleotide symbol
 - Solution: re-labelling the states
 - z: A+,C+,T+,G+,A-,C-,T-,G-; y: observed: A C T G

Note: all transitions within the same set are omitted in the plot.

Exon 1 Cp0 Island: 12634..12767

11941 thatasquko cococcocco tostotototy cottotatoa cittadoct dictotoct dictotoct 12001 transpring captificate acquisitator dicinsama saccaccot gittotatigual to the company of the comp

Hidden Markov Models (HMMs)

- A sequence of hidden states (of a Markov chain)
- → A sequence of visible symbols emitted by underlying hidden states (of a Markov chain)

HMM: definitions

- Two sequences:
 - Sequence of symbols (x) --- observations
 - Sequence of states (the path, π) --- hidden
- The path itself follows a simple Markov chain
 - Transition probability: $a_{kl} = P(\pi_i = l | \pi_{i-1} = k)$
- A state produces a symbol from a distribution over all possible symbols
 - Emission probability: $e_k(b) = P(x_i = b | \pi_i = k)$
- Probability of the sequence and the path

But the path is hidden.

Three Central Problems in HMM

- Given an HMM, complete with transition and emission probabilities, how to determine the probability of a particular sequence of symbols being generated by that model?
- The Decoding Problem
 - Given an HMM as well as a set of observations, how to determine the most likely sequence of hidden states that led to those observations?
- · The Learning Problem
 - Given the coarse structure of the model but **not** the probabilities, and given a set of training observations of symbols, how to determine the probabilities?

Three Central Problems in HMM

- The Evaluation Problem
 - Given an HMM, complete with transition and emission probabilities, how to determine the probability of a particular sequence of symbols being generated by that model?
- The Decoding Problem
 - Given an HMM as well as a set of observations, how to determine the most likely sequence of hidden states that led to those observations?
- The Learning Problem
 - Given the coarse structure of the model but **not** the probabilities, and given a set of training observations of symbols, how to determine the probabilities?

The most probable state path

圆指军大学

(the *decoding* problem)

--- the Viterbi algorithm

$$x:$$
 CGCG $\pi:$ C+ G+ C+ G+ ? C- G- C- G- ? C+ G- C+ G- ?

Given the x and the model, what is the state path π^* ?

Andrew J. Viterbi

 $\pi^* = \arg \max_{x} P(x, \pi)$ --- can be found recursively by DP (dynamic programming)

- $v_k(i)$: the probability of the most probable path ending in state k with observation x_i
- If $v_k(i)$ is known, then

ang

$$v_{l}(i+1) = e_{l}(x_{i+1}) \max_{k} (v_{k}(i)a_{kl})$$

Viterbi Algorithm:

圆指军大学

Initialization
$$(i = 0)$$
: $v_0(0) = 1$, $v_k(0) = 0$ for $k > 0$

Recursion $(i=1,\cdots,L)$: $v_l(i)=e_l(x_i)\max_k(v_k(i-1)a_{kl})$ for any l

$$ptr_i(l) = \operatorname{argmax}_k(v_k(i-1)a_{kl})$$

 $ptr_i(l)$: pointer backwards to remember the most probable state at time i - 1 if the state at i is l.

$$P(x, \pi^*) = \max_k(v_k(L)a_{k0})$$

$$\pi_L^* = \operatorname{argmax}_k(v_k(L)a_{k0})$$

• Traceback
$$(i = L, \dots, 1)$$
: $\pi_{i-1}^* = ptr_i(\pi_i^*)$

--- the most probable hidden state sequence

A computational note:

- too small numbers: numerical problem
- solution: taking log()

Examples

?		
•		
?		

v		C	G	C	G
\mathcal{B}	1	0	0	0	0
A_{+}	0	0	0	0	0
C+	0	0.13	0	0.012	0
G_{+}	0	0	0.034	0	0.0032
T ₊	0	0	0	0	0
A_	0	0	0	0	0
C_	0	0.13	0	0.0026	0
G_	0	0	0.010	0	0.00021
	-				

The occasionally dishonest casino:

Zhang

Three Central Problems in HMM

- The Evaluation Problem
 - Given an HMM, complete with transition and emission probabilities, how to determine the probability of a particular sequence of symbols being generated by that model?
- The Decoding Problem
 - Given an HMM as well as a set of observations, how to determine the most likely sequence of hidden states that led to those observations?
- The Learning Problem
 - Given the coarse structure of the model but *not* the probabilities, and given a set of training observations of symbols, how to determine the probabilities?

The probability of a sequence

(the evaluation problem)

- The Viterbi algorithm: the most probable state path
- The evaluation problem: the probability P(x) of a sequence x under the model
 - Many different state paths can give rise to the same sequence

$$P(x) = \sum_{\pi} P(x, \pi)$$

$$P(x,\pi) = a_{0\pi_1} \prod_{i=1}^{L} e_{\pi_i}(x_i) a_{\pi_i \pi_{i+1}}$$

- Enumerating all paths is not practical in many cases
- One simplified approximation:

To use the joint probability at the most probable path π^* as an approximation to P(x):

$$P(x,\pi^*) = a_{0\pi_1^*} \prod_{i=1}^L e_{\pi_i^*}(x_i) a_{\pi_i^*\pi_{i+1}^*}$$

- Implicit assumption: π^* is the only path with significant probability

--- "startling but surprisingly good."

Can we calculate the full probability?

The Forward Algorithm

· The full probability can be calculated through dynamic programming

$$P(x) = \sum_{\pi} P(x, \pi)$$

 $f_k(i)$: the probability of the observed sequence up to and including x_i , requiring $\pi_i = k$

$$f_k(i) = P(x_1 \cdots x_i, \pi_i = k)$$

$$f_l(i+1) = e_l(x_{i+1}) \sum_{k=1}^{n} f_k(i) a_{kl}$$

Forward Algorithm:

ang the terminal transfer of the terminal tran

Initialization (i = 0): $f_0(0) = 1$, $f_k(0) = 0$ for k > 0

Recursion $(i = 1, \dots, L)$: $f_l(i) = e_l(x_i) \sum_k (f_k(i-1)a_{kl})$ for any l

Termination: $P(x) = \sum_{k} f_k(L) a_{k0}$

Questions answered

- What is the most likely state sequence (given the HMM)?
 - Viterbi Algorithm: the decoding problem
- What is the probability of the observed sequence (under the HMM)?
 - Forward Algorithm: the evaluation problem

One more decoding question

• What is the probability that the *i*th state is k given the observed sequence (the posterior probability), i.e. $P(\pi_i = k|x)$?

(a special version of the decoding problem)

→ Backward Algorithm

The Backward Algorithm

$$P(x, \pi_{i} = k) = P(x_{1} \cdots x_{i}, \pi_{i} = k)P(x_{i+1} \cdots x_{L} | x_{1} \cdots x_{i}, \pi_{i} = k)$$

$$= P(x_{1} \cdots x_{i}, \pi_{i} = k)P(x_{i+1} \cdots x_{L} | \pi_{i} = k)$$

$$= f_{k}(i) \ b_{k}(i)$$

$$f_{k}(i) = P(x_{1} \cdots x_{i}, \pi_{i} = k)$$

$$b_{k}(i) = P(x_{i+1} \cdots x_{L} | \pi_{i} = k)$$

Backward Algorithm:

- Initialization (i = L): $b_k(L) = a_{k0}$ for all k
- Recursion $(i=L-1,\cdots,1)$: $b_k(i)=\sum_l a_{kl}e_l(x_{i+1})b_l(i+1)$ for any k
- Termination: $P(x) = \sum_{l} a_{0l} e_l(x_1) b_l(1)$

$$P(\pi_i = k|x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i)b_k(i)}{P(x)}$$

Posterior Decoding

- If it is not the state sequence itself which is of interest, but some other property derived from it, new decoding approach can arise.
- Assume we have a function g(k) defined on the states, then we can look at

$$G(i|x) = \sum_{k} P(\pi_i = k|x)g(k)$$
 : posterior probability of $g(i)$

• An important special case:

ang the state of t

- $-g(k) \in \{0,1\}$ represents two subsets of the states
- -G(i|x) is the posterior probability of the symbol i coming from a state of one of the two classes
 - e.g. for the CpG island problem, we can define g(k) = 1 for $\{A+,C+,G+,T+\}$ and g(x) = 0 for $\{A-,C-,G-,T-\}$. Then G(i|x) is the posterior probability according to the model that base i is in a CpG island.

Three Central Problems in HMM

- The Evaluation Problem
 - Given an HMM, complete with transition and emission probabilities, how to determine the probability of a particular sequence of symbols being generated by that model?
- The Decoding Problem
 - Given an HMM as well as a set of observations, how to determine the most likely sequence of hidden states that led to those observations?
- The Learning Problem

ang the table

— Given the coarse structure of the model but **not** the probabilities, and given a set of training observations of symbols, how to determine the probabilities?

圆浦羊大学

Modeling HMM

(the *learning* problem)

- The most difficult problem faced when using HMMs is that of specifying the model in the first place.
 - The assignment of parameter values: the transition and emission probabilities $a_{kl},\,e_k(b)$
 - The design of the structure, i.e. what states there are and how they are connected

Parameter estimation for HMMs

(the *learning* problem)

- · The framework:
 - A set of example sequences (training sequences)

$$x^1, \ldots, x^n$$

which are independent.

- Maximum Likelihood Method:
 - The joint probability of all the sequences given a set of parameters
- Log-likelihood of the sequences given the model:

$$l(x^1, \dots, x^n | \theta) = \log P(x^1, \dots, x^n | \theta) = \sum_{j=1}^n \log P(x^j | \theta)$$

When paths are unknown

- · Basic idea:
 - Iterative procedure:
 - First estimate the A_{kl} and $E_k(b)$ by considering probable paths for the training sequences using the current model
 - Then derive new values of the parameters
 - · Iterating until some stopping criterion is reached
 - Two approaches:
 - Baum-Welch Algorithm
 - Viterbi Learning

Baum-Welch Algorithm

---- an EM algorithm

- Initialization: pick arbitrary model parameters
- Recurrence:
 - Set all A and E variables to their pseudocount values r (or 0)
 - For each sequence j=1,...,n:

The probability that a_{kl} is used (all positions, all sequences)

- Calculate $f_k(i)$ for sequence j using the Forward Algorithm
- Calculate $b_k(i)$ for sequence j using the Backward Algorithm
- Add the contribution of sequence j to A and E

of times the letter b appears in state k

32

 $b_k(i) = P(x_{i+1} \cdots x_L | \pi_i = k)$

$$A_{kl} = \sum_{i} \frac{1}{P(x^{j})} \sum_{i} f_{k}^{j}(i) a_{kl} e_{l}(x_{i+1}^{j}) b_{l}^{j}(i+1)$$

$$E_k(b) = \sum_{j} \frac{1}{P(x^j)} \sum_{\{i | x_i^j = b\}} f_k^j(i) b_k^j(i)$$

- Calculate the new model parameters
- $a_{kl} = \frac{A_{kl}}{\sum_{l'} A_{kl'}}, \quad e_k(b) = \frac{E_k(b)}{\sum_{b'} E_k(b')}$
- Calculate the new log likelihood of the model
- Termination:
 - Stop if the change in log-likelihood is less than some predefined threshold, or the maximum number of iterations is exceeded.

Viterbi Training

- The most probable paths for the training sequences (obtained with Viteribi algorithm) are used in the re-estimation process
- · The process is iterated when the new parameter values are obtained
 - It does not maximize the true likelihood,
 - but maximizes the contribution to the likelihood from the most probable paths for all the sequences.
 - performs less well in general than Baum-Welch
 - but is frequently used in practice, esp. the primary use of HMM is decoding

圆浦羊大学

Three Central Issues in HMM?

- · The Evaluation Problem
 - Given an HMM, complete with transition and emission probabilities, how to determine the probability that a particular sequence of symbols was generated by that model?
- The Decoding Problem
 - Given an HMM as well as a set of observations, how to determine the most likely sequence of hidden states that led to those observations?
- The Learning Problem
 - Given the coarse structure of the model but not the probabilities, and given a set of training observations of symbols, how to determine the probabilities?
- A more challenging issue
 - The Structure-Learning Problem

11年大学

Learning the HMM Structure

- The idea "start with a fully connected model and let the model find out for itself" does not work in most cases.
 - "It almost never works in practice."
 - For problems of any realistic size, it will usually lead to very bad models, even with plenty of training data.
 - The problem is not overfitting, but local maxima.
 - The less constrained the model is, the more severe the local maximum problem becomes.

◎诸莱大学

Learning the HMM Structure

- There are methods that attempt to adapt the model topology based on the data by adding and removing transitions and states.
- However, in practice successful HMMs are constructed by carefully deciding which transitions are to be allowed in the model, based on knowledge about the problem under investigation.
 - $-\,$ To disable the transition from state k to state l, set $a_{kl}=0$
 - All the mathematics in the learning algorithm is unchanged.

Bayesian Networks

 Present conditional independencies via a DAG (directed acyclic graph)

$$p(x_1, x_2, x_3, x_4, x_5)$$

- $= p(x_1)p(x_2|x_1)p(x_3|x_1,x_2)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_2,x_3,x_4)$
- $= p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_1,x_2)p(x_5|x_1,x_3)$
- · General form:

$$p(\mathbf{x}) = \prod_{i=1}^{m} p(x_i | pa_i)$$

 x_1

47

Learning tasks

- · Parameter learning
 - Discrete: Cond
 - Conditional distribution table
 - Continuous:
- Conditional Gaussian
- Maximum likelihood (MLE) or Maximum a posterior Probability (MAP)
- EM algorithm
- Structure learning
 - Specify the structure by an expert
 - Optimization and heuristic search
 Use posterior probability as a score and then do Markov Chain Monte
 Carlo (MCMC) or simulated annealing

Inference tasks

- · Inferring unobserved variables
 - "What is the probability that it is raining, given the grass is wet?"

$$p(x_1|x_5) = \frac{p(x_1, x_5)}{p(x_5)} = \frac{\sum_{x_2, x_3, x_4} p(x_1, x_2, x_3, x_4, x_5)}{\sum_{x_1, x_2, x_3, x_4} p(x_1, x_2, x_3, x_4, x_5)}$$

- Exact inference
 - Variable elimination: Joint → marginal → conditional
 - Clique tree propagation
 - Recursive conditioning and AND/OR search
- Approximate inference
 - Importance sampling
 - MCMC simulation
 - Belief propagation

Markov Random Field (MRF)

- Present conditional independencies via an undirected graph

· Clique factorization

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c \in \{\text{cliques}\}} \psi_c(\mathbf{x}_c)$$

Probabilistic Graphical Models

- Present the joint distribution of a set of random variables using a graph
 - Node: random variable
 - Edge: conditional dependence
 - Non-edge: conditional independence
- · Applications:
 - computer vision, speech recognition
 - gene regulatory network inference

Xuegong Zhang & Rui Jiang, Tsinghua University @APBC2016

Homework

- Problem Set (Pr.6b)
 - Formulate the Covid-19 case tracing issue into a Bayesian framework.
- · Deadline:
 - Nov. 17 (Wednesday), 23:00

Xuegong Zhang

52

