

Faculdade de Engenharia Elétrica e de Computação

UNICAMP
40140140

EA 044 Prova 2 RA:

Prof. Vinícius Obs.: É obrigatório devolver as questões da Prova.

19/10/10

Questão 1. (2,5 pontos)

Considere o seguinte PL e seu quadro ótimo:

max
$$z = -5x_1 + 5x_2 + 13x_3$$

s.a $x_1 + x_2 + 3x_3 \square 20$
 $12x_1 + 4x_2 + 10x_3 \square 90$
 $x_1, x_2, x_3 \square 0$.

X ₁	\mathbf{X}_2	X ₃	S ₁	\mathbf{S}_2	LD	VB
10	0	2	5	0	100	Z
1	1	3	1	0	20	<i>X</i> ₂
8	0	-2	-4	1	10	S 2

- a) (0,5 ponto) Qual o lucro mínimo de x_3 para que seja competitivo com x_2 ?
- **b)** (**0,5 ponto**) Considere a modificação nos parâmetros associados à variável x_1 :

 $(c_1, a_{11}, a_{21}) = (24, 2, 5)$. Qual é a nova solução ótima?

- **c) (0,5 ponto)** Considere a introdução de uma nova variável x_4 com parâmetros $(c_4, a_{14}, a_{24}) = (20, 5, 5)$
- **d)** (0,5 ponto) Encontre o intervalo de valores do valor do lucro da variável x_2 para que a base permaneça ótima.
- **e)** (**0,5 ponto**) Inclua uma nova restrição $2x_1 + 2x_2 + 5x_3 \square 30$ e calcule a nova solução ótima.

Questão 2. (2,5 pontos)

Considere o seguinte problema primal de programação linear:

max
$$z = 4x_1 + 15x_2 + 2x_3$$

s.a $x_1 + 3x_2 + 2x_3 \square 15$
 $x_1 + 5x_2 + x_3 \square 20$
 $x_1, x_2, x_3 \square 0$

- a) **(0,5 ponto)** Formule o problema dual.
- b) (0,5 ponto) Calcule a solução ótima do problema dual graficamente.
- c) (1,5 ponto) Use folgas complementares para resolver o problema primal.

Questão 3. (2,5 pontos) Na rede abaixo, sobre os arcos, entre colchetes, tem-se: [Custo, Limite Superior]. O limite inferior é zero para todos os arcos.

Aplique o método simplex para fluxo em redes para encontrar a solução de custo mínimo. Parta da seguinte base inicial: (3,1), (3,4) e (4,2), com todas as variáveis não-básicas no limite inferior. Justifique as passagens.

Questão 4. (2,5 pontos) A empresa Shirtmaker tem a seguinte demanda de camisas para os próximos três meses: mês 1, 1000; mês 2, 1500; mês 3, 1800. É necessário duas horas de trabalho para produzir uma camisa. A disponibilidade de horas de trabalho nos próximos três meses é: mês 1, 3000 horas; mês 2, 3200 horas; mês 3, 3400 horas. O custo unitário de produção de uma camisa é \$4. A demanda em cada mês pode ser atendida por estoque ou por déficit, isto é, pode-se produzir em um mês *t* para atender a demanda de meses posteriores ou anteriores a *t*. A demanda total dos três meses tem que ser atendida no fim do mês 3. O custo unitário de estoque de camisa por mês é \$2 e o custo unitário de déficit de camisa por mês é \$15.

- a) **(1,5 ponto)** Desenhe a rede do problema de fluxo em redes.
- b) (1 ponto) Formule o modelo matemático de minimização do custo total na rede.

Dados

Relações entre os Problemas Primal e Dual						
	minimizar	maximizar				
	$\geq b_i$	≥ 0				
restrições	$\leq b_i$	≤ 0	variáveis			
	$=b_i$	livre				
	≥ 0	$\leq c_j$				
variáveis	≤ 0	$\geq c_j$	restrições			
	livre	$= c_j$				

Custo reduzido: $\overline{c} = c - c_B B^{-1} A$

Variável que entra na base no dual simplex

problema de minimização
$$\frac{y_{0k}}{y_{rk}} = \min_{j \in NB} \underbrace{v_{rj}}^{0j}, y_{rj} < 0$$
problema de maximização $\frac{y_{0k}}{y_{rk}} = \max_{j \in NB} \underbrace{v_{rj}}^{0j}, y_{rj} < 0$

problema de maximização
$$\frac{y_{0k}}{y_{rk}} = \max_{j \in \mathbb{N}} (y_{ri}, y_{rj}) < 0$$