Some properties of *q*-perfect matroid designs

KAWABUCHI, Shinya

Kumamoto University

Joint work with SHIROMOTO, Keisuke

Matroid is a generalization of linear independence.

Matroid

 Combinatorial structure based on the concept of the linear independence.

q-Matroid

- q-analogue of a matroid
- R. Jurrius, R. Pellikaan established. (2018)

q-analogue: the way of generalization

	normal	q-analogue
finite set	$[0,1,\cdots,n]$	\mathbb{F}_q^n
size of X	X	$\dim X$
subset	subset	subspace
union	$X \cup Y$	X + Y
intersection	$X \cap Y$	$X \cap Y$

Preliminaries

- \bullet q: a prime power
- $E(=\mathbb{F}_q^n)$: an *n*-dimensional vector space over \mathbb{F}_q
- \bullet $\mathcal{L}(X)$: the collection of all subspaces of a vector space X
- $\begin{bmatrix} X \\ k \end{bmatrix}_q$: the collection of all k-dimensional subspaces of a vector space X

Definition [q-matroid]

A q-matroid is a pair (E, r) satisfying (qR1), (qR2) and (qR3):

	q-matroid	matroid
ground space E	\mathbb{F}_q^n	$[n] = \{1, 2, \cdots n\}$
rank function $\ r$	$\mathcal{L}(E) \to \mathbb{Z}_{\geq 0}$	$2^E \to \mathbb{Z}_{\geq 0}$
1 st axiom	$(qR1) 0 \le r(A) \le \dim A$	$(R1) 0 \le r(A) \le A $
2 nd axiom	$(qR2) A \subseteq B \Rightarrow r(A) \le r(B)$	(R2) $A \subseteq B \Rightarrow r(A) \le r(B)$
3 rd axiom	$(qR3) \ r(A+B) + r(A \cap B) \le r(A) + r(B)$	(R3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$

• integer $k:0 \le k \le n$

Example [The uniform q-matroid]

 $r(X) := \min\{\dim X, k\}.$

Then, the pair (E, r) is a q-matroid.

Remark. This q-matroid is called a *uniform* q-matroid $U_{k,n}[\mathbb{F}_q]$

• M = (E, r): q-matroid

Definition [Flat of a q-matroid]

 $F \leq E$ is a *flat* of M if and only if

$$x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q \Rightarrow r(F+x) = r(F) + 1$$

holds.

Remark

We denote \mathcal{F} as a collection of all flats in M.

- If a flat F satisfies r(F) = i, F is called i -flat.
- ullet The collection of all i-flats is denoted by ${\cal F}_i$.

• M = (E, r): matroid

Definition [Flat of a matroid]

 $F \subseteq E$ is a *flat* of M if and only if

$$x \in E - F \Rightarrow r(F \cup x) = r(F) + 1$$

holds.

Proposition [axiom of flats of q-matroid] (E. Byrn et al. 2022 +)

 \mathcal{F} is a collection of all flats of q-matroid $\Rightarrow \mathcal{F}$ satisfies (qF1), (qF2) and (qF3)

F_1, F_2, F	$f \in \mathcal{F}$	
(E,r)	q-matroid	matroid
1 st axiom	$(qF1) E \in \mathcal{F}$	(F1) $E \in \mathcal{F}$
2 nd axiom	$(qF2)$ $F_1 \cap F_2 \in \mathcal{F}$	(F2) $F_1 \cap F_2 \in \mathcal{F}$
3 rd axiom	$(qF3) \exists !F' \in \mathcal{F}_{r(F)+1} \ s.t. \ F + x \leq F'$ $\left(\forall x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q\right)$	(F3) $\exists ! F' \in \mathcal{F}_{r(F)+1} \ s.t. \ F \cup x \subseteq F'$ $(\forall x \in E - F)$

Hasse diagram of flats

t-dimensional subspace included in λ blocks

$$\bullet \quad \mathcal{B} \subseteq \begin{bmatrix} E \\ k \end{bmatrix}_q$$

Definition [subspace design]

A t- $(n, k, \lambda; q)$ subspace design is a pair (E, \mathcal{B}) with the property that every t-dimensional subspace of E is contained in exactly λ elements of \mathcal{B} .

Remark

- A member of \mathcal{B} is called a **block**.
- ullet A subspace design t-(n,k,1;q) is called a q-**Steiner system** denoted by $\mathcal{S}(t,k,n;q)$.
- Subspace designs have been actively studied because of their application to random network coding.

Perfect matroid designs have a lot of *t*-designs.

- Perfect matroid design (PMD)
 - A matroid whose flats of the same rank all are the same cardinality.
 - U.S.R. Murty, P. Young and J. Edmonds established (1970).
 - M. Deza and N.M Singhi studied some properties of PMD and the PMD of rank 4.
 - There are many kinds of blocks of t-design in PMD.
 - flats. bases, circuit
 - Steiner systems induce PMDs
- *q*-perfect matroid design (*q*-PMD)
 - q-analogue of PMDs
 - E. Byrne, M. Ceria, S. Ionica and R. Jurius (2022)
 - q-Seiner systems induce q-PMDs

	PMD	$q extsf{-}PMD$
How to construct non trivial (q -)PMD	Projective geometriesAffine geometriesAffine triple systemsSteiner system	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	???
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	??? (main result)

	PMD	$q extsf{-}PMD$
How to construct non trivial (q-)PMD	 Projective geometries Affine geometries Affine triple systems Steiner system 	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	???
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	??? (main result)

Definition [q-PMD]

A q-perfect matroid design (q-PMD) is a q-matroid with the property that any two flats of the same rank have the same dimension.

Definition [α -sequence]

- ullet $lpha_i$: the dimension of the i-flats of a q-PMD
- $\{\alpha_i\}_{i=0}^{r(E)}$: is called an α -**sequence** of the q-PMD

Example 1

 $U_{k,n}[\mathbb{F}_q]$ is a q-PMD with an α -sequence $(0,1,\cdots,k-1,n)$.

: All of i-dimensional subspaces are i-flats of $U_{k,n}[\mathbb{F}_q]$ $(i \leq k-1)$. The ground space is the k-flat.

Example 2

If the ground set \mathbb{F}_q^{lm} is partitioned into \mathbb{F}_q^m , the partition induces a q-PMD with an α -sequence (0, m, lm).

	PMD	$q extsf{-}PMD$
How to construct non trivial (q -)PMD	 Projective geometries Affine geometries Affine triple systems Steiner system 	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	???
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	??? (main result)

	PMD	q-PMD
How to construct non trivial (q -)PMD	 Projective geometries Affine geometries Affine triple systems Steiner system 	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	???
flats and design	If flats have all of the subsets whose cardinalities are less than $t\text{-}1,m\text{-}\text{flats}$ are $t\text{-}\text{design}$ ($m \geq t$)	??? (main result)

• $F_i \in \mathcal{F}_i, F_k \in \mathcal{F}_k$ with $F_i \leq F_k$

Proposition

The number $|\mathcal{F}_j(F_i, F_k)|$ of j-flat F_j with $F_i \leq F_j \leq F_k$ is independent of the choice of F_i and F_k .

Definition [t-function of q-PMD]

We define t-function of M as follows:

$$t_M(i,j,k) := |\mathcal{F}_j(F_i,F_k)|.$$

Proposition

The number $|\mathcal{F}_j(F_i, F_k)|$ of j-flat F_j with $F_i \leq F_j \leq F_k$ is independent of the choice of F_i and F_k .

Proposition

The number $|\mathcal{F}_j(F_i, F_k)|$ of j-flat F_j with $F_i \leq F_j \leq F_k$ is independent of the choice of F_i and F_k .

t-function is calculated by α -sequence

Proposition

Let M = (E, r) be a q-PMD with α -sequence $\{\alpha_i\}_{i=0}^{i=r(E)}$ and t-function t_M . Then,

$$t_M(i,j,k) = \prod_{l=0}^{j-i-1} \frac{q^{\alpha_k} - q^{\alpha_{i+l}}}{q^{\alpha_j} - q^{\alpha_{i+l}}}$$

holds.

	PMD	$q extsf{-}PMD$
How to construct non trivial (q -)PMD	 Projective geometries Affine geometries Affine triple systems Steiner system 	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	the function returns the number of j -flats between an i -flat and a k -flat
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	??? (main result)

	PMD	$q extsf{-}PMD$
How to construct non trivial $(q-)$ PMD	 Projective geometries Affine geometries Affine triple systems Steiner system 	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	the function returns the number of j -flats between an i -flat and a k -flat
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	??? (main result)

i-Flats of the q-PMD are the blocks of a t-design.

• integer $t: 0 \le t \le n$

Theorem

If $\begin{bmatrix} E \\ i \end{bmatrix}_q \subset \mathcal{F}$ for all integers i satisfying $0 \leq i \leq t-1$, then (E, \mathcal{F}_k) is a subspace design t- $(n, \alpha_k, t_M(t, k, r(E)))$ for all integers k satisfying $t \leq k \leq r(E)$

$$(qF3) \ \forall F \in \mathcal{F}, \ \forall x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q, \ \exists !F' \in \mathcal{F} \text{ with } r(F') = r(F) + 1$$
$$s.t. \ F + x \subseteq F'.$$

inclusion relation

$$(qF3) \ \forall F \in \mathcal{F}, \ \forall x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q, \ \exists !F' \in \mathcal{F} \text{ with } r(F') = r(F) + 1$$
$$s.t. \ F + x \subseteq F'.$$

inclusion relation

Theorem

If
$$\begin{bmatrix} E \\ i \end{bmatrix}_q \subset \mathcal{F}$$
 for all integers i satisfying $0 \leq i \leq t-1$, then (E, \mathcal{F}_k) is a subspace design t - $(n, \alpha_k, \underbrace{t_M(t, k, r(E))}_{\text{if } k = 1, t_M(t, t, r(E)) = 1})$ for all integers k satisfying $t \leq k \leq r(E)$

Corollary

If $\begin{bmatrix} E \\ i \end{bmatrix}_q \subset \mathcal{F}$ for all integers i satisfying $0 \leq i \leq t-1$, then (E, \mathcal{F}_t) is a q-Steiner system $\mathcal{S}(t, \alpha_t, n; q)$

Theorem

M is induced by q-Stienr system $\mathcal{S}(t,k,n)$

E. Byrn and others 2022+

$$\Longrightarrow$$
 an α -sequence of M is $(0,1,\cdots,t-1,k,n)$

Theorem

M is induced by q-Stienr system S(t, k, n)

E. Byrn and others 2022+

an α -sequence of M is $(0, 1, \dots, t-1, k, n)$

sketch of proof

$$|\mathcal{F}_{j}| = t_{M}(0, j, r(E)) = \prod_{l=0}^{j-1} \frac{q^{n} - q^{l}}{q^{j} - q^{l}} = \begin{bmatrix} n \\ j \end{bmatrix}_{q} \qquad \left(\because t_{M}(i, j, k) = \prod_{l=0}^{j-i-1} \frac{q^{\alpha_{k}} - q^{\alpha_{i+l}}}{q^{\alpha_{j}} - q^{\alpha_{i+l}}} \right)$$

$$\therefore \quad \mathcal{F}_{j} = \begin{bmatrix} E \\ j \end{bmatrix}_{q} \quad (0 \le j \le t - 1)$$

$$\Rightarrow \quad (E, \mathcal{F}_{t}) \text{ is a } q\text{-Steiner system } \mathcal{S}(t, k, n; q) \qquad (\because \text{ Corollary})$$

	PMD	$q extsf{-}PMD$
How to construct non trivial $(q-)$ PMD	Projective geometriesAffine geometriesAffine triple systemsSteiner system	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	the function returns the number of j -flats between an i -flat and a k -flat
flats and design	If flats have all of the subsets whose cardinalities are less than t -1, m -flats are t -design ($m \geq t$)	If flats have all of the subsets whose dimensions are less than t -1, m -flats are t -subspace design ($m \geq t$)

Problems for *q*-PMD

- Are there any other non-trivial q-Steiner systems?
 - A q-Steiner system induce a q-PMD[1]
 - ullet The only known q-Steiner system is $\mathcal{S}(2,3,13;2)$ [3]
- Are there q-PMDs not induced by q-Steiner systems?
 - There are some PMDs not induced by Steiner system
 - Projective geometries
 - Affine geometries
 - Affine triple systems
- [1] E. Byrne et al. : Constructions of new Mtroids and Designs over \mathbb{F}_q , (2022)
- [2] M. Deza
- [3] M. Braun et al.: EXISTENCE OF q-ANALOGS OF STEINER SYSTEMS (2013)

	PMD	q-PMD
How to construct non trivial $(q-)$ PMD	Projective geometriesAffine geometriesAffine triple systemsSteiner system	Steiner system?????????
lpha-sequence	the cardinalities of <i>i</i> -flats	the dimensions of <i>i</i> -flats
t-funtion	the number of j -flats between an i -flat and a k -flat	the function returns the number of j -flats between an i -flat and a k -flat
flats and design	If flats have all of the subsets whose cardinalities are less than $t\text{-}1,m\text{-}\text{flats}$ are $t\text{-}\text{design}$ ($m \geq t$)	If flats have all of the subsets whose dimensions are less than t -1, m -flats are t -subspace design ($m \geq t$)

Matroid is a pair (E, r) satisfies (R1), (R2) and (R3).

Definition 1.1. [matroid]

A q-matroid M is a pair (E, r) where r is an inter-valued function defined on $\mathcal{L}(E)$ with the following properties:

(R1)
$$\forall A \subseteq E, 0 \le r(A) \le |A|$$
.

(R2)
$$\forall A, B \subseteq E \text{ with } A \subseteq B, \ 0 \le r(A) \le |A|.$$

(R3)
$$\forall A, B \subseteq E, r(A \cup B) + r(A \cap B) \le r(A) + r(B)$$

Remark 1.2. the function r is called **rank function**.

• $M: q ext{-}PMD$

M is induced by q-Stienr system S(t, k, n)

 α -sequence of M is $(0, 1, \dots, t-1, k, n)$

sketch of proof

$$|\mathcal{F}_{j}| = t_{M}(0, j, r(E)) = \prod_{l=0}^{j-1} \frac{q^{n} - q^{l}}{q^{j} - q^{l}} = \begin{bmatrix} n \\ j \end{bmatrix}_{q} \quad \left(\because t_{M}(i, j, k) = \prod_{l=0}^{j-i-1} \frac{q^{\alpha_{k}} - q^{\alpha_{i+l}}}{q^{\alpha_{j}} - q^{\alpha_{i+l}}} \right)$$

$$\therefore \quad \mathcal{F}_{j} = \begin{bmatrix} E \\ j \end{bmatrix}_{q} \quad (0 \le j \le t - 1)$$

Thank you for your kind attention.

PMD

- \bullet α -sequences
 - represents the numbers of elements in one i-flat
- t-functions
 - determine the number of i-flats of q-PMD
- flats and design
 - in some conditions, flats are the block of t-design

q-PMD

- α -sequences
- represents the dimension of one i-flatt-functions
- determine the number of i-flats of q-PMD
 flats and t-subspace design
- - in some conditions, flats are the blocks of a t-subspace design

q-Matroid is a pair (E, r) satisfies (qR1), (qR2) and (qR3).

Definition 1.1. [*q*-matroid]

$$(qR1) \ \forall A \in \mathcal{L}(E), \ 0 \le r(A) \le \dim A.$$

$$(qR2) \ \forall A, B \in \mathcal{L}(E) \text{ with } A \subseteq B, \ r(A) \le r(B).$$

$$(qR3) \ \forall A, B \in \mathcal{L}(E), r(A+B) + r(A \cap B) \le r(A) + r(B)$$

Remark 1.5. The function r is called **rank function** of M.

Remark 1.5.

We denote \mathcal{F} as the set of flats.

- If a flat F satisfies r(F)=i , F is called $\emph{\emph{i-flat.}}$
- ullet The collection of i-flat is denoted by ${\cal F}_i$.

Theorem (E. Byrn et al. 2022+)

• (E, \mathcal{B}) : q-Steiner system $\mathcal{S}(t, k, n)$

Let \mathcal{F} be defined as follows:

$$\mathcal{F} := \left\{ \bigcap_{B \in S} B \mid S \subseteq \mathcal{B} \right\}.$$

Then, there exists a q-PMD whose ground set is E and the flats are \mathcal{F} .

Remark

ullet The lpha -sequence is $(0,1,\cdots t-1,k,n)$.

	q-matroid	matroid
1 st axiom	$(qF1) E \in \mathcal{F}$	$(qF1) E \in \mathcal{F}$
2 nd axior	$(qF2) F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$	$(qF2)$ $F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F}$
3 rd axiom	$(qF3) F \in F, x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q$ $\Rightarrow \exists !F' \in \mathcal{F}_{r(F)+1} s.t. F + x \subseteq F'$	$(qF3)$ $F \in F, x \in E - X$ $\Rightarrow \exists ! F' \in \mathcal{F}_{r(F)+1}$ s.t. $F \cup x \subseteq F'$

Example3

By (qF3), for all 1 dimensional subspace x of F_k , there are unique i+1 flat that include x and F_i . Now, we count the number of the pair of i+1-flat and 1 dimensional subspace of them by 2 ways.

We can prove these identities by following the way P. Young and J. Edmond did for normal PMD.

Lemma [Properties of *t*-function]

Let M = (E, r) be a q-PMD with the t-function t_M . The followings hold:

(T0)
$$t_M(i, i, k) = 1$$
, for $0 \le i \le k \le r(E)$.

(T1)
$$t_M(0,1,i+1) > t_M(0,1,i)$$
, for $0 \le i \le r(E) - 1$.

(T2)
$$t_M(i, i+1, k) = \frac{t_M(0, 1, k) - t_M(0, 1, i)}{t_M(0, 1, i+1) - t_M(0, 1, i)}$$
, for $0 \le i < k \le r(E)$.

(T3)
$$t_M(i,j,k) = \frac{t_M(i,l,k)t_M(l,j,k)}{t_M(i,l,j)}$$
, for $0 \le i \le l \le j \le k \le r(E)$.

By (qF3), for all 1 dimensional subspace x of F_k , there are unique i + 1 flat that include x and F_i . Now, we count the number of the pair of i + 1-flat and 1 dimensional subspace of them. We define

$$C := \{ (F_{i+1}, a) \mid F_{i+1} \in \mathcal{F}_{i+1}(F_i, F_k) \land a \in \begin{bmatrix} F_{i+1} \\ 1 \end{bmatrix}_q \}.$$

Let
$$t = |\mathcal{F}_{i+1}(F_i, F_k)|$$
. then $|C| = t \begin{bmatrix} \alpha_k \\ 1 \end{bmatrix}_q$

$r(X) = \min(|X|, k)$ is an example of rank function.

Example1.3. [The uniform matroid]

Let E be a finite set with n elements and k be a integer satisfying $0 \le k \le n$. We define the rank function r as follow:

$$r(X) = \min(|X|, k).$$

Then, the pair (E, r) is a matroid.

(qF2)

(qF2)

$$1 \cdots x \subseteq F_{i+1}$$
$$0 \cdots x \nsubseteq F_{i+1}$$

$$0 \cdots x \not\subseteq F_{i+1}$$

Corollary [*t*-function]

Let M be a q-PMD with flats $\mathcal F$ and F_i, F_j are an i-flat and a k-flat respectively with $F_i\subseteq F_j$.

We define t-function of M as follows:

$$t_M(i,j,k) := |\mathcal{F}_j(F_i,F_k)|$$

Flat axiom

Definition 1.7.

Let E be a finite dimension vectorspace over \mathbb{F}_q and $\mathcal{F} \subseteq \mathcal{L}(E)$. We define flat axioms as follows:

- $(qF1) E \in \mathcal{F}.$
- $(qF2) \ \forall F_1, F_2 \in \mathcal{F}, \ F_1 \cap F_2 \in \mathcal{F}.$

$$(qF3) \ \forall F \in \mathcal{F}, \ \forall x \in \begin{bmatrix} E \\ 1 \end{bmatrix}_q \setminus \begin{bmatrix} F \\ 1 \end{bmatrix}_q, \ \exists !F' \in \mathcal{F} \ \text{with} \ r(F') = r(F) + 1$$
$$s.t. \ F + x \subseteq F'.$$

•

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$|\mathcal{F}_{i+1}(F_i, F_k)| \times \begin{bmatrix} \alpha_{i+1} \\ 1 \end{bmatrix}_q = |\mathcal{F}_{i+1}(F_i, F_k)| \times \begin{bmatrix} \alpha_i \\ 1 \end{bmatrix}_q + \begin{bmatrix} \alpha_k \\ 1 \end{bmatrix}_q - \begin{bmatrix} \alpha_i \\ 1 \end{bmatrix}_q$$
$$\therefore |\mathcal{F}_{i+1}(F_i, F_k)| = \frac{q^{\alpha_k} - q^{\alpha_i}}{q^{\alpha_{i+1}} - q^{\alpha_i}}$$

We can prove these identities by following the way P. Young and J. Edmond did for normal PMD.

Lemma [Properties of t-function]

Let M = (E, r) be a q-PMD with the t-function t_M . The followings hold:

(T0)
$$t_M(i, i, k) = 1$$
, for $0 \le i \le k \le r(E)$.

(T1)
$$t_M(0,1,i+1) > t_M(0,1,i)$$
, for $0 \le i \le r(E) - 1$.

(T2)
$$t_M(i, i+1, k) = \frac{t_M(0, 1, k) - t_M(0, 1, i)}{t_M(0, 1, i+1) - t_M(0, 1, i)}$$
, for $0 \le i < k \le r(E)$.

(T3)
$$t_M(i,j,k) = \frac{t_M(i,l,k)t_M(l,j,k)}{t_M(i,l,j)}$$
, for $0 \le i \le l \le j \le k \le r(E)$.

(T3)
$$t_M(i,j,k) = \frac{t_M(i,l,k)t_M(l,j,k)}{t_M(i,l,j)}$$
, for $0 \le i \le l \le j \le k \le r(E)$.

$$t_M(i,j,k) = \frac{t_M(i,i+1,k)}{t_M(i,i+1,j)} t_M(i+1,j,k)$$

(T3)
$$t_{M}(i, j, k) = \frac{t_{M}(i, l, k)t_{M}(l, j, k)}{t_{M}(i, l, j)}$$
, for $0 \le i \le l \le j \le k \le r(E)$.

$$t_{M}(i, j, k) = \frac{t_{M}(i, i + 1, k)}{t_{M}(i, i + 1, j)}t_{M}(i + 1, j, k)$$

$$= \frac{t_{M}(i, i + 1, k)}{t_{M}(i, i + 1, j)} \cdot \frac{t_{M}(i + 1, i + 2, k)}{t_{M}(i + 1, i + 2, j)} \cdot t_{M}(i + 2, j, k)$$

$$\vdots$$

$$= \prod_{i=1}^{j-i-1} \frac{t_{M}(i + l, i + l + 1, k)}{t_{M}(i + l, i + l + 1, j)}$$

by Lemma
$$t_M(i,i+1,k) := |\mathcal{F}_{i+1}(F_i,F_k)| = \frac{q^{\alpha_k} - q^{\alpha_i}}{q^{\alpha_{i+1}} - q^{\alpha_i}}$$

$$t_M(i,j,k) = \frac{t_M(i,i+1,k)}{t_M(i,i+1,j)} t_M(i+1,j,k)$$

$$= \frac{t_M(i,i+1,k)}{t_M(i,i+1,j)} \cdot \frac{t_M(i+1,i+2,k)}{t_M(i+1,i+2,j)} \cdot t_M(i+2,j,k)$$

$$\vdots$$

$$= \prod_{l=0}^{j-i-1} \frac{t_M(i+l,i+l+1,k)}{t_M(i+l,i+l+1,j)}$$

$$= \prod_{l=0}^{j-i-1} \frac{q^{\alpha_k} - q^{\alpha_{i+l}}}{q^{\alpha_{i+j+1}} - q^{\alpha_{i+l}}} \cdot \frac{q^{\alpha_{i+j+1}} - q^{\alpha_{i+l}}}{q^{\alpha_j} - q^{\alpha_{i+l}}} = \prod_{l=0}^{j-i-1} \frac{q^{\alpha_k} - q^{\alpha_{i+l}}}{q^{\alpha_j} - q^{\alpha_{i+l}}}$$

Known *q*-PMDs.

lpha -sequence	$\mathcal{F}_{r(E)-1}$	description
$(0,1,\cdots,k-1,n)$	$\mathcal{S}(k-1,k-1,n;q)$	uniform q-matroid $U_{k,n}[\mathbb{F}_q]$
(0,m,lm)	$\mathcal{S}(1,m,lm;q)$	split of vector space
(0, 1, 3, 13)	$\mathcal{S}(2,3,13;2)$	only known non-trivial q -PMD $_{ m [1]}$
		\mathbb{F}_a

寸法や色は場合に応じて調整しましょう

3つあることが一目でわかる

カードの見出し

カードの見出し

_{カード}③ **カードの見出し**

順序関係がある場合は並列よりこちらが良い

カードの間隔やアスペクト比は適宜調整

_{カード}① カードの見出し _{カード}③ カードの見出し

_{カード}② カードの見出し

_{カード}④ カードの見出し

循環がある場合はこんな感じが良い

カードの見出し

_{カード}③ **カードの見出し**

_{カード}② カードの見出し

カードの見出し