Exploring the phylogenetic evolution and geographic transmission patterns of the rice blast *Magnaporthe oryzae* in Africa

Introduction

- Rice blast is caused by a fungal pathogen, M. oryzae
- Reproduces both sexually and asexually
- Sexual reproduction was evident at the point of origin and the lineage here was largely genetically diverse
- As the pathogen spreads to other continents, it loses the sexual reproduction capability and becomes asexual
- The subsequent lineages are said to be clonal and tend to be less genetically diverse

Image of rice field affected by rice blast from https://ucanr.edu

Hypothesis

Null hypothesis

There is no genetic diversity of the pathogen within the African strains

Alternate hypothesis

There is a genetic diversity of the pathogen within the African strains

Objectives

Main objective

1. To determine the possible point of entry of the *M. oryzae* pathogen to Africa and find any possible transmission patterns within Africa

Specific objectives

- 1. To investigate insights into the evolution of genes that are known to be important for virulence and pathogenicity
- 2. To examine the signatures of adaptation within the African strains

Methodology

M. oryzae isolates

Sequence reads

Image from www.illumina.com

Phylogenetic analysis

SNP calling

Population structure analysis

Conclusion

- Having a better understanding of the pathogen's phylogeograhy will help in informing future measures taken towards combating the spread and management of rice blast such as;
- 1. The development of more effective fungicides to control the disease
- 2. Controlling the spread of the disease by preventing its movement through the wind by windborne spores, by water and on infected plant material
- 3. Development of resistant varieties of rice
- 4. Ensuring that the seeds planted by farmers are disease free

Work plan

Activity	Timeline											
	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	July	Aug
Developing project concept												
Proposal writing												
Proposal presentation												
Data analysis & project work												
Dissertation writing												
Dissertation presentation												
Dissertation corrections, writing of manuscript												

Acknowledgements

Jean-Baka Domelevo Entfellner Wilton Mbinda Geoffrey Onaga

Thank you!