Chapter 12

Coping with the Limitations of Algorithm Power

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems):

- Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time
- Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

Exact Solution Strategies

- exhaustive search (brute force)
 - useful only for small instances
- dynamic programming
 - applicable to some problems (e.g., the knapsack problem)
- backtracking
 - eliminates some unnecessary cases from consideration
 - yields solutions in reasonable time for many instances but worst case is still exponential
- branch-and-bound
 - further refines the backtracking idea for optimization problems

Backtracking

- Construct the state-space tree
 - nodes: partial solutions
 - edges: choices in extending partial solutions
- Explore the state space tree using depth-first search
- "Prune" *nonpromising nodes*
 - dfs stops exploring subtrees rooted at nodes that cannot lead to a solution and backtracks to such a node's parent to continue the search

Example: *n*-Queens Problem

Place *n* queens on an *n*-by-*n* chess board so that no two of them are in the same row, column, or diagonal

State-Space Tree of the 4-Queens Problem

Examples: Hamiltonian Circuit and Subset-Sum Problems

Examples: Hamiltonian Circuit and Subset-Sum Problems

 $A = \{3, 5, 6, 7\}$ and d = 15.


```
ALGORITHM Backtrack(X[1..i])
//Gives a template of a generic backtracking algorithm
//Input: X[1..i] specifies first i promising components of a solution
//Output: All the tuples representing the problem's solutions
if X[1..i] is a solution write X[1..i]
else
    for each element x \in S_{i+1} consistent with X[1..i] and the constraints do
        X[i+1] \leftarrow x
        Backtrack(X[1..i+1])
```

Branch-and-Bound

- An enhancement of backtracking
- Applicable to optimization problems
- For each node (partial solution) of a state-space tree, computes a bound on the value of the objective function for all descendants of the node (extensions of the partial solution)
- Uses the bound for:
 - ruling out certain nodes as "nonpromising" to prune the tree – if a node's bound is not better than the best solution seen so far
 - guiding the search through state-space

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column
- the sum is minimized

Example

_	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person <i>c</i>	5	8	1	8
Person d	7	6	9	4

<u>Lower bound</u>: Any solution to this problem will have total cost at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Example: First two levels of the state-space tree

Figure 11.5 Levels 0 and 1 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm. The number above a node shows the order in which the node was generated. A node's fields indicate the job number assigned to person a and the lower bound value, lb, for this node.

Example (cont.)

Figure 11.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm

Example: Complete state-space tree

Figure 11.7 Complete state-space tree for the instance of the assignment problem solved with the best-first branch-and-bound algorithm

Example: Traveling Salesman Problem

Knapsack Problem

