Relatório Competição 1

Enzo Cunha e Alexandre Costa

Novembro 2022

1 Análise exploratória dos dados

Abrindo o dataset, verifica-se:

- há 32 colunas, sendo 1 delas o target
- 20 colunas não são numéricas
- $\bullet\,$ 5 colunas estão mais de 95% não preenchidas

	Column	Non-Null Count	
		007400 11	
0	Unnamed: 0	227122 non-null	
1		227122 non-null	
2		227122 non-null	
3	DT_REQUISICAO	227122 non-null	
4	DS_TIPO_GUIA	227122 non-null	object
5	DT_NASCIMENTO	227112 non-null	float64
6	NR_PRODUTO	227122 non-null	int64
7	DS_TIPO_PREST_SOLICITANTE		
8	DS_CB0	227122 non-null	
9	DS_TIPO_CONSULTA	10511 non-null	
10		266 non-null	
11	DS_UNIDADE_TEMPO_DOENCA	266 non-null	object
12	DS_TIPO_DOENCA	531 non-null	object
13	DS_INDICACAO_ACIDENTE	209539 non-null	object
14	DS_TIPO_SAIDA	0 non-null	float64
15	DS_TIPO_INTERNACAO	59863 non-null	object
16	DS REGIME INTERNACAO	59863 non-null	object
17	DS CARATER ATENDIMENTO	227122 non-null	object
18	DS_TIPO_ACOMODACAO	59781 non-null	object
19	QT_DIA_SOLICITADO	58995 non-null	float64
20	CD_GUIA_REFERENCIA	58995 non-null 37463 non-null	float64
21	DS TIPO ATENDIMENTO	168045 non-null	
22	CD CID	131250 non-null	object
23	DS INDICACAO CLINICA	179944 non-null	object
24	DS_TIPO_ITEM	227122 non-null	object
25	CD_ITEM	227122 non-null	int64
26	DS_ITEM	227122 non-null	object
27	DS CLASSE	227122 non-null	object
28	DS SUBGRUPO	227122 non-null	object
29	DS GRUPO	227122 non-null	object
30		227122 non-null	float64
31		227122 non-null	
10.00	C3 + (4/4) + + (4/4)	1 1 (22)	

2 Pré-processamentos realizados

Separadas as colunas numéricas das categóricas, os dados numéricos foram normalizados utilizando o sklearn.preprocessing.StandardScaler enquanto as colunas categóricas foram codificadas utilizando o sklearn.preprocessing.OneHotEncoder.

3 Configuração experimental

A línguagem utilizada é Python na sua versão 3.7.12 e as bibliotecas utilizadas são:

- pandas
- sklearn
- numpy

No classificador RandomForestClassifier foram utilizados os parâmetros max_depth=20, max_features=10, min_samples_leaf=3 obtidos por GridSearch.

4 Algoritmos utilizados

Inicialmente, o classificador escolhido foi o Naive Bayes, pos ele teoricamente não necessita de dados numéricos, mas não foi possível implementar a versão CategoricalNB e então foi utilizado então GaussianNB, que supõe parâmetros numéricos com uma distribuição constante.

Posteriormente foi decidido utilizar o classificador RandomForest, pois é um modelo robusto e mais resistente a valores ausentes.

5 Resultados

6 Referências bibliográficas

- [1] 6.9.2. Label encoding. Scikit learn. Disponível em: https://scikit-learn.org/stable/modules/preprocessing_targets
- [2] 1.9. Naive Bayes. Scikit learn. Disponível em: https://scikit-learn.org/stable/modules/naive_bayes.html
- [3] curious-attempt-bunny. How to handle categorical data in scikit with pan-
- das. Github. Disponível em: https://github.com/curious-attempt-bunny/ml-
- info/blob/master/How%20to%20handle%20categorical%20data%20in%20scikit%20with%20pandas.ipynb
- [4] Pandas Tutorial. W3 Schools. Disponível em: https://www.w3schools.com/python/pandas/default.asp
- [5] 1.13.2. Univariate feature selection. Scikit learn. Disponível em: https://scikit-
- learn.org/stable/modules/feature_selection.html#univariate-feature-selection