Poznámky k metodě konjugovaných směrů a gradientním metodám

- Máme najít minimum funkce více proměnných. Postupujeme tak, že v daném bodu vždy zvolíme vhodný směr, jednodimenzionální minimalizací nalezneme minimum funkce v tomto směru, v minimu zvolíme nový směr, atd., dokud nedosáhneme minima s požadovanou přesností.
- Odvození definice konjugovaných směrů:
 - Předpokládejme že minimum funkce f je v bodu \vec{x} a my jej začínáme hledat z bodu \vec{P} v jeho okolí. Zavedeme-li vektor $\vec{\delta x} = \vec{x} \vec{P}$ se složkami $\delta x_i = x_i P_i$, je Taylorův rozvoj funkce

$$f(\vec{x}) = f(\vec{P} + \delta \vec{x}) = f(\vec{P}) + \sum_{i} \delta x_{i} \frac{\partial f(\vec{P})}{\partial x_{i}} + \frac{1}{2} \sum_{i,j} \delta x_{i} \delta x_{j} \frac{\partial^{2} f(\vec{P})}{\partial x_{i} \partial x_{j}} + \dots$$

Pro přehlednost zavedeme vektor \vec{b} a matici ${\bf A}$ tak, že

$$b_i = -\frac{\partial f(\vec{P})}{\partial x_i},$$
 $A_{ij} = \frac{\partial^2 f(\vec{P})}{\partial x_i \partial x_j}$

a tedy při zanedbání členů od 3. řádu dále

$$f(\vec{x}) \approx f(\vec{P}) - \vec{b}^T \, \vec{\delta x} + \frac{1}{2} \, \vec{\delta x}^T \mathbf{A} \, \vec{\delta x}.$$
 (1)

V případě rovnosti říkáme funkci $f(\vec{x})$ kvadratická forma.

* Příklad: Pro jednoduchou funkci

$$f(\vec{x}) = f(x_1, x_2) = x_1^2 + x_2^2 - x_1 x_2$$

máme

$$\frac{\partial f}{\partial x_1} = 2 x_1 - x_2, \qquad \frac{\partial f}{\partial x_2} = 2 x_2 - x_1,$$

$$\frac{\partial^2 f}{\partial x_1^2} = 2, \qquad \frac{\partial^2 f}{\partial x_2^2} = 2,$$

$$\frac{\partial^2 f}{\partial x_1 \partial x_2} = -1, \qquad \frac{\partial^2 f}{\partial x_2 \partial x_1} = -1$$

a tedy

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} p_2 - 2p_1 \\ p_1 - 2p_2 \end{pmatrix}, \qquad \text{kde } \vec{P} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}.$$

Protože třetí a vyšší derivace jsou nulové, jedná se o kvadratickou formu.

- Gradient funkce $f(x_1,\ldots,x_n)$ je definován jako

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}.$$

- Lze snadno ověřit, že gradient kvadratické formy

$$f(\vec{x}) = f(\vec{P}) - \vec{b}^T \vec{x} + \frac{1}{2} \vec{x}^T \mathbf{A} \vec{x}$$

v bodu \vec{x} je

$$\nabla f(\vec{x}) = \mathbf{A}\,\vec{x} - \vec{b}$$

a při posunu o vektor \vec{v} se gradient změní o

$$\delta \left(\nabla f \right)_{\vec{v}} = \nabla f(\vec{x} + \vec{v}) - \nabla f(\vec{x}) = \left(\mathbf{A} \left(\vec{x} + \vec{v} \right) - \vec{b} \right) - \left(\mathbf{A} \, \vec{x} - \vec{b} \right) = \mathbf{A} \, \vec{v}.$$

– Předpokládejme že jsme do bodu \vec{x} dorazili při hledání minima ve směru \vec{u} . Pak v tomto bodě je gradient funkce f na směr \vec{u} kolmý, tedy

$$\nabla f \perp \vec{u}$$
 neboli $\vec{u}^T \nabla f = 0.$

(Kdyby tomu tak nebylo, měl by gradient nenulovou složku ve směru \vec{u} a bod \vec{x} by tedy nebyl v tomto směru minimem.)

– Dále budeme pokračovat ve směru \vec{v} . Ten je výhodné volit tak, aby minimum ve směru \vec{u} zůstalo zachováno, neboli aby

$$0 \stackrel{!}{=} \vec{u}^T \delta(\nabla f)_{\vec{v}} = \vec{u}^T \mathbf{A} \vec{v}.$$

- Pokud toto platí, t.j. pokud $\vec{u}^T \mathbf{A} \vec{v} = 0$, řekneme že směry \vec{u} a \vec{v} jsou konjugované.
- Přehled názvosloví metod probíraných v přednášce:

Metoda konjugovaných (sdružených) směrů

postupuje ve směrech vzájemně konjugovaných, nemusí to být gradienty. V praxi při ní není třeba explicitně počítat vektor \vec{b} ani matici $\bf A$, tedy žádné parciální derivace funkce, protože konjugovanost vektorů (směrů) je zajištěna způsobem jejich konstrukce.

Metoda nejprudšího spádu

postupuje vždy ve směru opačném ke gradientu v daném bodu.

Metoda konjugovaných (sdružených) gradientů

postupuje po směrech vzájemně konjugovaných, jednotlivé směry jsou zkombinovány z gradientů v současném bodu a v bodech předchozích.

- Kromě hledání minima funkce ve více dimenzích lze metodu konjugovaných gradientů použít i pro řešení soustavy lineárních rovnic s pozitivně definitní maticí, a to následovně:
 - Hlavní myšlenkou tohoto postupu je místo vlastního řešení soustavy minimalizovat rozdíl aktuálního řešení oproti přesnému. Díky tomu, že řešená soustava je lineární, se vzorce velmi zjednoduší a tím se tento způsob jejího řešení stává efektivním.
 - Výše jsme ukázali, že je-li $f(\vec{x})$ kvadratická forma se symetrickou pozitivně definitní maticí

$$f\left(\vec{x}\right) = \frac{1}{2} \, \vec{x}^T \mathbf{A} \, \vec{x} - \vec{b}^T \, \vec{x}, \qquad \qquad \forall \vec{x} \neq \vec{0}, \quad (\mathbf{A} \vec{x}, \vec{x}) > 0,$$

pak v jejím minimu $\tilde{\vec{x}}$ platí

$$\vec{0} = \nabla f(\tilde{\vec{x}}) = \mathbf{A}\,\tilde{\vec{x}} - \vec{b}$$
 neboli $\mathbf{A}\,\tilde{\vec{x}} = \vec{b}$

Pro řešení lineární soustavy $\mathbf{A} \vec{x} = \vec{b}$ tedy stačí nalézt minimum příslušné funkce $f(\vec{x})$.

– Začneme jej hledat z bodu (počátečního odhadu) \vec{x}_0 a budeme postupovat ve směru záporného gradientu

$$\vec{s}_0 = -\nabla f(\vec{x}_0) = -\mathbf{A}\,\vec{x}_0 + \vec{b}$$

do bodu \vec{x}_1

$$\vec{x}_1 = \vec{x}_0 + \lambda \, \vec{s}_0, \tag{2}$$

který je minimem v tomto směru. Jak jsme ukázali výše, v bodu \vec{x}_1 bude nový (záporný) gradient funkce kolmý ke směru \vec{s}_0 (jinak by to nebylo minimum). Tedy

$$0 = \vec{s}_0^T \left(-\nabla f(\vec{x}_1) \right) = \vec{s}_0^T \left(-\mathbf{A} \vec{x}_1 + \vec{b} \right) = \vec{s}_0^T \left(-\mathbf{A} \left(\vec{x}_0 + \lambda \vec{s}_0 \right) + \vec{b} \right) =$$

$$= -\vec{s}_0^T \mathbf{A} \vec{x}_0 - \lambda \vec{s}_0^T \mathbf{A} \vec{s}_0 + \vec{s}_0^T \vec{b} = \vec{s}_0^T \left(-\mathbf{A} \vec{x}_0 + \vec{b} \right) - \lambda \vec{s}_0^T \mathbf{A} \vec{s}_0 =$$

$$= \vec{s}_0^T \vec{s}_0 - \lambda \vec{s}_0^T \mathbf{A} \vec{s}_0,$$

a tedy parametr λ určíme ze vztahu

$$\lambda = \frac{\vec{s}_0^T \, \vec{s}_0}{\vec{s}_0^T \, \mathbf{A} \, \vec{s}_0}.$$

Jeho dosazením do (2) získáme nový bod \vec{x}_1 a z něj budeme postupovat dále ve směru nového záporného gradientu

$$\vec{s}_1 = -\nabla f(\vec{x}_1) = -\mathbf{A}\,\vec{x}_1 + \vec{b}.$$

– Vidíme že nalezení minima ve směru se zde redukuje na násobení vektoru maticí a skalární součiny, přičemž pro řídké matice je násobení vektoru maticí velmi rychlé (řádu N místo N^2). Proto se tento postup zvláště hodí pro řešení lineárních soustav s velkou řídkou maticí. Je to v podstatě také iterační metoda.