Ensembles et applications Corrigé

DARVOUX Théo

Octobre 2023

Exercices.		
Exercice 5.1	 	2
Exercice 5.2	 	2
Exercice 5.3	 	3
Exercice 5.4	 	3
Exercice 5.5	 	4
Exercice 5.6	 	4

Exercice 5.1 $[\Diamond \Diamond \Diamond]$

Soient A, B deux parties d'un ensemble E. Établir que

$$A \setminus (A \setminus B) = A \cap B$$
 et $A \setminus (A \cap B) = A \setminus B = (A \cup B) \setminus B$.

On a:

$$A \setminus (A \setminus B) = A \cap \overline{(A \cap \overline{B})}$$

$$= A \cap (\overline{A} \cup B)$$

$$= (A \cap \overline{A}) \cup (A \cap B)$$

$$= A \cap B$$

D'autre part :

$$A \setminus (A \cap B) = A \cap \overline{(A \cap B)}$$

$$= A \cap (\overline{A} \cup \overline{B})$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B})$$

$$= A \cap \overline{B}$$

$$= A \setminus B$$

Et :

$$(A \cup B) \setminus B = (A \cup B) \cap \overline{B}$$
$$= (A \cap \overline{B}) \cup (B \cap \overline{B})$$
$$= A \cap \overline{B}$$
$$= A \setminus B$$

Exercice 5.2 $[\Diamond \Diamond \Diamond]$

Soient A, B, C, D quatre parties d'un ensemble E, telles que

$$E = A \cup B \cup C, \qquad A \cap D \subset B, \qquad B \cap D \subset C, \qquad C \cap D \subset A.$$

Montrer que $D \subset A \cap B \cap C$.

Soit $x \in D$, on sait que $x \in E$. Alors $x \in A$ ou $x \in B$ ou $x \in C$.

- \odot Si $x \in A$, alors $x \in A \cap D$, donc $x \in B$.
- \odot Si $x \in B$, alors $x \in B \cap D$, donc $x \in C$.
- \odot Si $x \in C$, alors $x \in C \cap D$, donc $x \in A$.

On en déduit que $x \in A \cap B \cap C$.

Ainsi, $D \subset A \cap B \cap C$.

Exercice 5.3 $[\Diamond \Diamond \Diamond]$

Démontrer que

$$\mathbb{R} = \left\{ x \in \mathbb{R} \mid \exists a \in \mathbb{R}_{+}^{*} \exists b \in \mathbb{R}_{-}^{*} : x = a + b \right\}.$$

On note $A = \{x \in \mathbb{R} \mid \exists a \in \mathbb{R}_+^* \ \exists b \in \mathbb{R}_-^* : x = a + b\}$

 \odot Montrons que $\mathbb{R} \subset A$.

Soit $x \in \mathbb{R}$.

 \circ Si x < 0, On pose a = 1 et b = x - 1, ainsi x = a + b donc $x \in A$.

o Si x > 0, On pose a = x + 1 et b = -1, ainsi x = a + b donc $x \in A$.

Dans tous les cas $x \in A$, on en conclut que $\mathbb{R} \subset A$.

 \odot Montrons que $A \subset \mathbb{R}$.

Soit $x \in A$, alors il existe $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}_-^*$ tels que x = a + b.

Or $a + b \in \mathbb{R}$, donc $x \in \mathbb{R}$. On en conclut que $A \subset \mathbb{R}$.

Soit $n \in \mathbb{N}^*$ et A_1, A_2, \dots, A_n n parties de E telles que

$$A_n = E$$
 et $A_1 \subset A_2 \subset \cdots \subset A_n$.

On pose $B_1 = A_1$ et pour $k \in [2, n]$, on pose $B_k = A_k \setminus A_{k-1}$.

Prouver que $(B_k)_{1 \le k \le n}$ est un recouvrement disjoint de E.

Soit $x \in E$. Alors $x \in A_n$. Il existe alors k le plus petit entier tel que $x \in A_k$. Ainsi, $x \in B_k$ puisque $x \in A_k \land x \notin A_{k-1}$ par définition de k.

On en déduit que tout élément de E appartient à au moins un (B_k) .

Montrons maintenant que tout élément de E appartient aussi au plus à un B_k .

Soit $x \in E$. Supposons qu'il existe $i, j \in [1, n]$ tels que i < j et $x \in B_i$ et $x \in B_j$.

Or, puisque $x \in B_j$ et i < j, $x \notin A_i$. De plus, puisque $x \in B_i$, $x \in A_i$ ce qui est absurde.

Ainsi, tout élément de E appartient au plus à un (B_k) .

 $(B_k)_{1 \le k \le n}$ est donc un recouvrement disjoint de E.

Soit E un ensemble et A, B deux parties de E. Démontrer que

$$B \subset A \iff (\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$$

Supposons $B \subset A$.

Soit $X \in \mathcal{P}(E)$.

On a:

$$(A \cap X) \cup B = (A \cup B) \cap (X \cup B) = A \cap (X \cup B)$$

Supposons $(\forall X \in \mathcal{P}(E) \quad (A \cap X) \cup B = A \cap (X \cup B)).$

On a $B \in \mathcal{P}(E)$, donc:

$$(A \cap B) \cup B = A \cap (B \cup B) \iff (A \cup B) \cap B = A \cap B$$

 $\iff (A \cup B) = A$
 $\iff B \subset A$

Exercice 5.6 $[\blacklozenge \blacklozenge \blacklozenge]$

Expliciter les ensembles

$$A = \bigcap_{n \in \mathbb{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right] \quad \text{et} \quad B = \bigcup_{n \in \mathbb{N}^*} \left[\frac{1}{n+1}, \frac{1}{n} \right].$$

A est l'ensemble vide, puisque l'intersection est commutative, on peut prendre n = 1 et n = 10, par exemple, et remarquer que leur intersection est nulle, ce qui se propage à toutes les intersections.

Montrons que B est l'ensemble [0,1] par double inclusion.

 \odot Montrons que $B \subset]0,1].$

Soit $x \in B$. Il existe $n \in \mathbb{N}^*$ tel que $\frac{1}{n+1} \le x \le \frac{1}{n}$. Ainsi, $0 < x \le 1$. Donc $x \in]0,1]$.

 \circledcirc Montrons que $]0,1]\subset B.$

Soit $x \in]0,1]$. Il existe $n \in \mathbb{N}^*$ tel que $n+1 \ge \frac{1}{x} \ge n$. Donc que $\frac{1}{n+1} \le x \le \frac{1}{n}$.

Ainsi $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ et donc $x \in B$.

On en conclut que B =]0, 1].

Exercice 5.7 [♦♦♦] Différence symétrique

Soient E un ensemble et A, B deux parties de E, on définit

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

- 1. Montrer que la réunion définissant $A\Delta B$ est disjointe.
- 2. Montrer que $A\Delta B = (A \cup B) \setminus (A \cap B)$.
- 3. Montrer que $\overline{A}\Delta \overline{B} = A\Delta B$.
- 4. Simplifier $A\Delta E$, $A\Delta \varnothing$, $A\Delta A$, $A\Delta \overline{A}$.
- 5. (*) Résoudre l'équation $A\Delta X = \emptyset$, d'inconnue $X \in \mathcal{P}(E)$.
- 1. Considérons l'intersection :

$$(A \setminus B) \cap (B \setminus A) = (A \cap \overline{B}) \cap (B \cap \overline{A})$$
$$= A \cap (B \cap \overline{B}) \cap \overline{A}$$
$$= \varnothing$$

2. On a:

$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap (\overline{A} \cup \overline{B})$$

$$= \overline{A} \cap (A \cup B) \cup (A \cup B) \cap \overline{B}$$

$$= (\overline{A} \cap B) \cup (A \cap \overline{B})$$

$$= (A \setminus B) \cup (B \setminus A)$$

$$= A \Delta B$$

3. On a:

$$(\overline{A} \setminus \overline{B}) \cup (\overline{B} \setminus \overline{A}) = (\overline{A} \cap B) \cup (\overline{B} \cap A)$$

$$= (B \cap \overline{A}) \cup (A \cap \overline{B})$$

$$= (B \setminus A) \cup (A \setminus B)$$

$$= A\Delta B$$

- 4. On a:
 - $A\Delta E = (A \cup E) \setminus (A \cap E) = E \setminus A = E \cap \overline{A}$.
 - $A\Delta\varnothing = (A\cup\varnothing)\setminus (A\cap\varnothing) = A\setminus\varnothing = A$.
 - $A\Delta A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$.
 - $A\Delta \overline{A} = (A \cup \overline{A}) \setminus (A \cap \overline{A}) = E \setminus \emptyset = E$
- 5. Soit $X \in \mathcal{P}(E)$. On a :

$$A\Delta X = \varnothing$$

$$\iff (A \setminus X) \cup (X \setminus A) = \varnothing$$

$$\iff A \setminus X = \varnothing \text{ et } X \setminus A = \varnothing$$

$$\iff X \subseteq A \text{ et } A \subseteq X$$

$$\iff X = A$$