

# Линейные методы



## Линейная регрессия

## Гипотеза о линейной зависимости целевой переменной

## Ищем решение в виде

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

## Практика:

- часто неплохо работает и при монотонных зависимостях
- хорошо работает, когда есть много «однородных» зависимостей: цель число продаж

признак 1 – число заходов на страницу продукта

признак 2 – число добавлений в корзину

признак 3 – число появлений продукта в поисковой выдачи

---



обучение: 
$$\{(x_1,y_1),\dots,(x_m,y_m)\}$$
,  $x_i \in \mathbb{R}$ , 
$$\begin{cases} w_0 + w_1 x_1 = y_1 \\ \dots \\ w_0 + w_1 x_m = y_m \end{cases}$$

# невязки/отклонения (residuals):

$$\begin{cases} e_1 = y_1 - w_0 + w_1 x_1 \\ \cdots \\ e_m = y_m - w_0 + w_1 x_m \end{cases}$$

# Задача минимизации суммы квадратов отклонений (residual sum of squares)

$$RSS = e_1^2 + \ldots + e_m^2 \longrightarrow \min$$



~ задача описания данных гиперплоскостью (но ф-л качества!) Есть вероятностное обоснование, но пока... логично



Francis Galton, 1877

# **Линейная регрессия от одной переменной Геометрический смысл ошибки**





Отличается от суммы расстояний до поверхности!

## Нетрудно показать (Д3):

$$w_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2}} = \frac{\text{cov}(\{x_{i}\}, \{y_{i}\})}{\text{var}(\{x_{i}\})},$$

$$w_{0} = \overline{y} - w_{1}\overline{x}.$$

где 
$$\overline{x} = \sum_{i=1}^m x_i$$
 ,  $\overline{y} = \sum_{i=1}^m y_i$  .

# Общий случай (многих переменных)

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + \dots + w_n X_n = x^{\mathrm{T}} w$$

$$w = (w_0, w_1,...,w_n)^{\mathrm{T}}$$

$$x = (X_0, X_1,...,X_n)^{\mathrm{T}}$$

для удобства записи вводим фиктивный признак  $x_0 \equiv 1$ 

обучение: 
$$\{(x_1, y_1), \dots, (x_m, y_m)\}$$
,  $x_i \in \mathbf{R}^{n+1}$ ,

$$\begin{cases} x_1^{\mathrm{T}} w = y_1 \\ \dots \\ x_m^{\mathrm{T}} w = y_m \end{cases}$$

$$Xw = y$$
 – как решать?

# Общий случай (многих переменных)

## или в матричной форме

$$Xw = y$$

в матрице X по строкам записаны описания объектов, в векторе y значения их целевого признака

(здесь есть коллизия в обозначении у)

будем решать так:

$$\|Xw - y\|_2^2 \to \min_w$$

почему?

# Общий случай (многих переменных)

## геометрический смысл





## Решение задачи минимизации

$$||Xw - y||_{2}^{2} \to \min_{w}$$

$$||Xw - y||_{2}^{2} = (Xw - y)^{T}(Xw - y) = w^{T}X^{T}Xw - w^{T}X^{T}y - y^{T}Xw + y^{T}y$$

$$\nabla ||Xw - y||_{2}^{2} = 2X^{T}Xw - 2X^{T}y = 0$$

$$X^{T}Xw = X^{T}y$$

$$w = (X^{T}X)^{-1}X^{T}y$$

решение существует, если столбцы линейно независимые

 $(X^{\mathrm{\scriptscriptstyle T}}X)^{-1}X^{\mathrm{\scriptscriptstyle T}}$  – псевдообратная матрица Мура-Пенроуза обобщение обратной на неквадратные матрицы

# Обобщённая линейная регрессия вместо X – что угодно

$$a(X_{1},...,X_{n}) = w_{0} + w_{1}\varphi_{1}(X_{1},...,X_{n}) + \cdots + w_{k}\varphi_{k}(X_{1},...,X_{n}) = x^{\mathsf{T}}w$$

$$w = (w_{0}, w_{1},...,w_{k})^{\mathsf{T}}$$

$$x = (X_{0}, X_{1},...,X_{n})^{\mathsf{T}}$$

$$\varphi(x) = (\varphi_{0}(x), \varphi_{1}(x),...,\varphi_{k}(x))^{\mathsf{T}}$$

$$\stackrel{\equiv 1}{=} 1$$

$$a(x) = \sum_{i=1}^{k} w_{i}\varphi_{i}(x) = \varphi(x)^{\mathsf{T}}w$$

базисные функции (basis functions) они фиксированы

Подробности в нелинейных методах...

## Проблема вырожденности матрицы

$$W = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

#### Решения:

- 1. Регуляризация здесь и в «сложности»
- 2. Селекция (отбор) признаков «селекция» / «PZAD»
- 3. Уменьшение размерности (в том числе, PCA) USL
- 4. Увеличение выборки

если объектов много – то работать с гигантской матрицей невозможно... но выдели как это делается в оптимизации онлайн-методами

## Регуляризация

Упрощённое объяснение смысла регуляризации

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

если есть два похожих объекта, то должны быть похожи метки пусть отличаются в j-м признаке, тогда ответы модели отличаются на

$$\mathcal{E}_j W_j$$

Поэтому не должно быть больших весов (у признаков, по которым могут отличаться похожие объекты)!

П.С. Плохо, когда модель заточена на один признак!

Поэтому вместе с 
$$||Xw - y||_2^2 \rightarrow \min$$
  
Хотим  $||w||_2^2 \rightarrow \min$ 

## Регуляризация

Иванова

Тихонова

$$\begin{cases} ||Xw - y||_2^2 \to \min \\ ||w||_2^2 \le \lambda \end{cases}$$

$$||Xw - y||_2^2 + \lambda ||w||_2^2 \rightarrow \min$$

Удобнее: безусловная оптимизация

Всё это справедливо и для общих задач минимизации!

$$\begin{cases} L(a) \to \min \\ \text{complexity}(a) \le \lambda \end{cases}$$

$$L(a) + \lambda \operatorname{complexity}(a) \rightarrow \min$$

Часто эти две формы эквивалентны: решение одного можно получить как решение другого.

Есть ещё регуляризация Морозова...

## Регуляризация

$$\arg\min ||Xw - y||_2^2 + \lambda ||w||_2^2 = (X^TX + \lambda I)^{-1}X^Ty$$

## ДЗ Доказать!

- гребневая регрессия (Ridge Regression)

Другой смысл – боремся с вырожденностью матрицы!

$$\lambda = 0$$

$$\lambda \to +\infty$$

- получаем классическое решение
- меньше «затачиваемся на данные» и больше регуляризуем

Матрица очевидно становится обратимой!

## Регуляризация – минутка кода



```
from sklearn.linear_model import Ridge

model = Ridge(alpha=0.0) # ридж-регрессия
# обучение
model.fit(x_train[:, np.newaxis], y_train)
# обратите внимание: np.newaxis
# контроль
a_train = model.predict(x_train[:, np.newaxis])
a_test = model.predict(x_test[:, np.newaxis])
```

Интересно, что рисунок неудачный – получилась антиреклама регуляризации... почему?

## Ridge-регрессия

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} w_j^2 \to \min$$
$$\lambda \ge 0$$

## добавление shrinkage penalty (регуляризатора)



# параметр регуляризации может подбираться с помощью скользящего контроля

## Ridge-регрессия

Для ridge-регрессии нужна правильная нормировка признаков!

Нет инвариантности (в отличие от линейной) от умножения
признаков на скаляры

Перед регуляризацией – стандартизация!!!

#### **LASSO**

$$\sum_{i=1}^{m} (y_i - a(x_i))^2 + \lambda \sum_{j=1}^{n} |w_j| \to \min$$

$$\lambda \ge 0$$



Здесь коэффициенты интенсивнее зануляются при увеличении  $\lambda \geq 0$ .

## Эксперименты с одинаковыми и зависимыми признаками

## здесь была задача

зависит от масштаба признаков, но из-за предварительной нормировки этот эффект не наблюдается

**Не на все коэффициенты нужна регуляризация! Почему?** 

Масштаб очень важен! см. дальше

## Семейство регуляризированных линейных методов

#### Ridge

$$||y - Xw||_2^2 + \lambda ||w||_2^2 \rightarrow \min_{w}$$

# **LASSO (Least Absolute Selection and Shrinkage Operator)**

$$||y - Xw||_{2}^{2} + \lambda ||w||_{1}^{2} \rightarrow \min_{w}$$

## **Elastic Net = LASSO + Ridge**

$$||y - Xw||_2^2 + \lambda_1 ||w||_1^2 + \lambda_2 ||w||_2^2 \rightarrow \min_w$$

## Геометрический смысл Ridge, LASSO и Elastic Net

$$\sum_{i=1}^{m} \left( y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} w_j^2 \le s$$

$$\sum_{i=1}^{m} \left( y_i - w_0 - \sum_{j=1}^{n} w_j x_{ij} \right)^2 \to \min_{w}, \quad \sum_{j=1}^{n} |w_j| \le s$$





# Геометрический смысл Ridge, LASSO и Elastic Net

Эти методы несравнимы... на практике часто модель и не может зависеть от небольшого числа переменных.



## Эффект разреженности

если линии уровня оптимизируемой функции – концентрические окружности...



David S. Rosenberg «Foundations of Machine Learning» https://bloomberg.github.io/foml/



## Почему L1-норма ⇒ разреженность

1. См. рис. больше вероятность, что линии уровней функции ошибки касаются области ограничений в точках с нулевыми координатами





При увеличении коэффициента регуляризации веса стремятся к нулю

Обеспечивается автоматическая селекция признаков!

## **Регуляризация** ⇒ **упрощение**

## Соблюдение принципа Оккама

регуляризация  $\Rightarrow$  зануление коэффициентов  $\Rightarrow$  упрощение модели

В целом, неверно, что чем меньше коэффициентов, тем проще модель, но у нас линейная модель..

## Проблема вырожденности матрицы

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

#### Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

## Селекция признаков в линейной регрессии

#### ~ отдельная тема

## Какие признаки включить в модель:

$$a(X_1,...,X_n) = w_0 + w_1 X_1 + ... + w_n X_n$$

## пока маленький обзор стратегий:

- 1 стратегия умный перебор подмножества признаков
  - 2 стратегий оценка качества признаков (фильтры)
    - 3 стратегия встроенные методы (ex: LASSO)

## Обоснование необходимости селекции

- 1. Проблема вырожденности в линейной регрессии
  - 2. Проблема «почти дубликатов»
  - 3. Уменьшение модели и интерпретация
    - 4. Уменьшение стоимости данных

## Проблема вырожденности матрицы

$$w = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

#### Решения:

- 1. Регуляризация
- 2. Селекция (отбор) признаков
- 3. Уменьшение размерности (в том числе, РСА)
- 4. Увеличение выборки

|   | <b>x1</b> | x2   | х3   | у     |               |   | x1-x2 | у     |
|---|-----------|------|------|-------|---------------|---|-------|-------|
| 0 | 0.44      | 0.62 | 0.51 | -0.25 | $\Rightarrow$ | 0 | -0.18 | -0.25 |
| 1 | 0.03      | 0.53 | 0.07 | -0.51 |               | 1 | -0.50 | -0.51 |
| 2 | 0.55      | 0.13 | 0.43 | 0.41  |               | 2 | 0.42  | 0.41  |
| 3 | 0.44      | 0.51 | 0.10 | 0.04  |               | 3 | -0.07 | 0.04  |
| 4 | 0.42      | 0.18 | 0.13 | 0.12  |               | 4 | 0.24  | 0.12  |
| 5 | 0.33      | 0.79 | 0.60 | -0.45 |               | 5 | -0.46 | -0.45 |

обоснование необходимости аналогично селекции

# Линейная регрессия – неустойчивость к выбросам



#### Ошибка с весами

Если у каждого объекта есть цена ошибки...

$$\sum_{i=1}^{m} v_i \left( y_i - w^{\mathsf{T}} x_i \right)^2 + \ldots = \sum_{i=1}^{m} \left( \sqrt{v_i} y_i - w^{\mathsf{T}} \left( \sqrt{v_i} x_i \right) \right)^2 + \ldots \to \min$$

небольшая переформулировка задачи:

$$\{(x_1, y_1), \dots, (x_m, y_m)\} \rightarrow \{(\sqrt{v_1}x_1, \sqrt{v_1}y_1), \dots, (\sqrt{v_m}x_m, \sqrt{v_m}y_m)\}$$

если веса целые числа - можно продублировать объекты

если веса из отрезка [0, 1] – при численном градиентном решении можно выбирать следующий объект с соответствующей вероятностью

# Устойчивая регрессия (Robust Regression)

0. Инициализация весов объектов

$$v = (v_1, ..., v_m) = (1/m, ..., 1/m)$$

можно использовать любую регрессионную

модель

- 1. Цикл
- 1.1. Настроить алгоритм, учитывая веса объектов

$$a = fit(\{x_i, y_i, v_i\})$$

1.2. Вычислить ошибки на обучении

$$\varepsilon_i = a(x_i) - y_i$$

1.3. Пересчитать веса объектов

$$v_i = \exp(\varepsilon_i)$$

можно использовать другую невозрастающую функцию; можно (иногда нужно) нормировать



# Линейные скоринговые модели в задаче бинарной классификации

Пусть 
$$X = \mathbb{R}^n$$
,  $Y = \{0, 1\}$ 

Как решать задачи классификации с помощью линейной модели: будем получать вероятность принадлежности к классу 1

$$a(x) \in [0,1]$$

Любая линейная функция на  $\mathbb{R}^n$  будет получать значения в  $\mathbb{R}$ , поэтому нужна деформация (transfer function):

$$\sigma: \mathbb{R} \to [0,1]$$

В логистической регрессии

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

**Логистическая функция** (сигмоида)

**B** Probit-регрессии

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp(-t^2/2) \partial t$$

Normal Cumulative distribution function

## Функции деформации



#### Логистическая регрессия

$$p(x) \equiv P(Y = 1 \mid x) = \sigma(z) = \frac{1}{1 + e^{-z}} \in (0, 1),$$

$$z = w_0 + w_1 X_1 + \dots + w_n X_n,$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = z$$

- монотонное преобразование, которое называют logit-transformation

### Геометрический смысл логистической регрессии

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
a = model.predict proba(X test)[:,1]
```



#### Можно и одномерную картинку

## Чем логистическая регрессия лучше регрессии



## Обучение логистической регрессии

#### Метод максимального правдоподобия

$$L(w_0, ..., w_n) = \prod_{i: y_i=1} p(x_i) \prod_{i: y_i=0} (1 - p(x_i)) \to \max$$

$$\log L = -\sum_{i: y_i=1} \log(1 + e^{-z_i}) - \sum_{i: y_i=0} \log(1 + e^{+z_i}) = -\sum_{i} \log(1 + e^{-y_i'z_i})$$

$$\nabla_{w} \log L = \sum_{i: y_{i}=1} \frac{1}{1+e^{-w^{T}x_{i}}} e^{-w^{T}x_{i}} x_{i} - \sum_{i: y_{i}=0} \frac{1}{1+e^{+w^{T}x_{i}}} e^{+w^{T}x_{i}} x_{i} =$$

$$= \sum_{i} \frac{y'_{i}x_{i}}{1+e^{+y'_{i}w^{T}x_{i}}} = \sum_{i} y'_{i}x_{i} \sigma(-y'_{i}w^{T}x_{i})$$

где (для удобства записи)

$$y_i' = 2y_i - 1$$

### Ошибка логистической регрессии



метод SGD

$$w \leftarrow w + \eta \sigma(-y_i' w^{\mathrm{T}} x_i) y_i' x_i$$

Запомним!

# Многоклассовая логистическая регрессия Multiclass logistic regression (multinomial regression)

### в glmnet такой «симметричный вариант»

$$P(Y = k \mid x) = \frac{e^{w_{0k} + w_{1k}X_1 + \dots + w_{nk}X_n}}{\sum_{j=1}^{l} e^{w_{0j} + w_{1j}X_1 + \dots + w_{nj}X_n}}$$

#### Если

$$\mathrm{softmax}(a_1,...,a_l) = \frac{1}{Z}[e^{a_1},...,e^{a_l}],$$
 где  $Z = e^{a_1} + ... + e^{a_l}$ 

#### тогда

$$P(Y = k \mid x) = \text{softmax}(w(1)^{T} x, ..., w(l)^{T} x)$$

## Линейные решающие модели в задаче бинарной классификации

Пусть 
$$X = \mathbb{R}^n, Y = \{\pm 1\}$$
 обучающая выборка:  $\{(x_i, y_i')\}_{i=1}^m$ 

### хотим линейную модель:

$$a(x) = \operatorname{sgn}(w^{\mathsf{T}} x + b) = \begin{cases} +1, & w^{\mathsf{T}} x + b > 0 \\ -1, & w^{\mathsf{T}} x + b < 0 \end{cases}$$

случай  $w^{\mathrm{T}}x+b=0$  нам тут не особо важен Пополняя признаковое пространство фиктивным признаком,

$$a(x) = \operatorname{sgn}(w^{\mathrm{T}}x)$$

- линейный классификатор

## Геометрический смысл линейного классификатора



# **Делим пространство** гиперплоскостью на две части

## Линейный классификатор

#### Общая идея:

$$L(y_{t}, a(x_{t})) = \theta(-y_{t}'w^{T}x_{t}) = \begin{cases} 1, & \text{sgn } w^{T}x_{t} = y_{t}' \\ 0, & \text{sgn } w^{T}x_{t} \neq y_{t}', \end{cases}$$
$$L(X_{train}, a) = \sum_{t=1}^{m} L(y_{t}, a(x_{t})) \to \min$$

## естественно минимизировать число ошибок, но

- ф-ия не дифференцируема
- выдаёт мало информации
- оптимизация здесь NP-полная задача

только число ошибок, а не их «фатальность»

 $y_t' w^{\mathrm{T}} x_t \sim$  чем меньше, тем хуже (зазор)

### Оценка функции ошибок через гладкую функцию

$$\sum_{t=1}^{m} L(y_t, a(x_t)) \le \sum_{t=1}^{m} L'(y_t, a(x_t)) \to \min$$

$$\sum_{t=1}^{m} \theta(-\xi_t) \le \sum_{t=1}^{m} f(-\xi_t) \to \min$$



### Оценка функции ошибок через гладкую функцию

#### Примеры замен:

$$f(-\xi) = \exp(-\xi)$$

$$f(-\xi) = \max(0, 1 - \xi)$$

$$f(-\xi) = \log(1 + \exp(-\xi))$$

# Обучение – минимизация оценки на обучающей выборке (+ регуляризация)

Персептрон, SVM, логистическая регрессия минимизируют выпуклые аппроксимации 0-1-loss, сводя NP-трудную задачу к задаче выпуклой оптимизации

#### Пример персептронного алгоритма

$$f(-\xi) = \max(0, -\xi)$$

#### Персептрон:

$$\sum_{i=1}^{m} \max[0, -y_i'(w^{\mathrm{T}}x_i)] \to \min$$

#### SGD

$$\frac{\partial \max[0, -y_i'(w^{\mathsf{T}}x_i)]}{\partial w} = \begin{cases} 0, & -y_i'(w^{\mathsf{T}}x_i) < 0, \\ -y_i'x_i & -y_i'(w^{\mathsf{T}}x_i) > 0, \end{cases} = \begin{cases} 0, & \operatorname{sgn}(w^{\mathsf{T}}x_i) = y_i', \\ -y_i'x_i & \operatorname{sgn}(w^{\mathsf{T}}x_i) \neq y_i', \end{cases}$$

$$w \leftarrow w + \eta \begin{cases} 0, & \text{sgn}(w^{\mathsf{T}} x_i) = y_i', \\ +x_i & w^{\mathsf{T}} x_i \leq 0, y_i' = +1, \\ -x_i, & w^{\mathsf{T}} x_i \geq 0, y_i' = -1, \end{cases}$$

### Пример персептронного алгоритма

#### Есть теорема Новикова

Если две выборки линейно разделимы, то разделяющая поверхность находится персептронным алгоритмом за конечное число шагов

#### Пример персептронного алгоритма

```
\begin{cases}
2w_1 + w_2 > 0 \\
-w_1 > 0
\end{cases}

w_1 - w_2 < 0

-2w_1 - 2w_2 < 0
```

```
\begin{bmatrix} 2 & 1 \\ -1 & 0 \\ -1 & 1 \\ 2 & 2 \end{bmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} > 0
```

```
w=[ 0 0]
w=[ 0 0] x= [ 2 1] -
w=[ 2 1] x= [-1 0] -
w=[ 1 1] x= [-1 1] -
w=[ 0 2] x= [-1 0] -
w=[-1 2] x= [ 2 1] -
w=[ 1 3] x= [-1 0] -
w=[ 0 3] x= [-1 0] -
w=[-1 3]
```

#### SVM: идея максимального зазора







до сих пор хотели разделить точки гиперплоскостью... а как лучше?

## SVM: идея максимального зазора

# Построение SVM эквивалентно нахождению кратчайшего отрезка, соединяющего выпуклые оболочки двух классов



## SVM: постановка задачи

## Хотим разделить точки двух разных классов гиперплоскостью

$$a(x) = \operatorname{sgn}(w^{\mathsf{T}} x + b)$$

#### Обучающая выборка:

$$\{(x_i, y_i)\}_{i=1}^m$$

### должно быть (здесь пускай нет штрихов)

$$w^{\mathrm{\scriptscriptstyle T}} x_i + b \ge 1$$
 если  $y_i = +1$ 

$$w^{\mathrm{\scriptscriptstyle T}} x_i + b \leq 1$$
 если  $y_i = -1$ 

#### Другая форма записи:

$$y_i(w^{\mathsf{T}}x_i + b) \ge 1$$

## можно считать (из-за нормировки), что

$$\min_{i} | w^{\mathsf{T}} x_i + b | = 1$$

#### SVM: постановка задачи

#### Расстояние от точки до гиперплоскости:

$$\rho(x_i, w^{\mathrm{T}}x + b) = \frac{|w^{\mathrm{T}}x_i + b|}{||w||}$$

#### хотим, чтобы минимум из этих расстояний был максимален

$$\min_{i} \frac{|w^{\mathsf{T}} x_{i} + b|}{\|w\|} = \frac{1}{\|w\|} \to \max$$

#### - зазор (margin)



Зазор (margin)

В общем случае, когда

Пусть 
$$X=\mathbb{R}^n, Y=\{\pm 1\}$$

обучающая выборка:  $\{(x_i, y_i)\}_{i=1}^m$ 

Алгоритм со скоринговой функцией (score function)

$$a(x) = \operatorname{sgn}(b(x)), b(x) \in \mathbb{R}$$

Зазор – 
$$y_i b(x_i)$$

~ уверенность в ответе

### **SVM:** постановка задачи

$$\frac{\|w\|^{2}}{2} \to \min$$

$$y_{i}(w^{T}x_{i} + b) \ge 1, i \in \{1, 2, ..., m\}$$

 задача квадратичного программирования (QP = Quadratic Program)
 с m ограничениями (constraints)

Заметим, что здесь тоже, как и в регуляризации линейной регрессии, хотим квадрат нормы весов сделать меньше

«квадрат» – для удобства оптимизации

### SVM: приближённое решение «в лоб»

$$\frac{\|w\|^{2}}{2} \to \min$$

$$1 - y_{i}(w^{T}x_{i} + b) \le 0, i \in \{1, 2, ..., m\}$$

#### не решаем задачу точно, но стремимся выполнить условия:

$$\frac{1}{m} \sum_{i=1}^{m} \max[0, 1 - y_i(w^{\mathsf{T}} x_i + b)] + \lambda \| w \|^2 \to \min$$

#### Удивительно:

ошибка 
$$L(y,a) = \max[0, 1-ya]$$
 + регуляризатор

но тут нет дифференцируемости из-за тах

## **Hinge loss**



А в логистической регрессии: логистическая функция ошибки + регуляризатор

### SVM: решение строгое

$$\frac{\|w\|^{2}}{2} \to \min$$

$$1 - y_{i}(w^{T}x_{i} + b) \le 0, i \in \{1, 2, ..., m\}$$

#### Вспоминаем оптимизацию с ограничениями:

$$\min_{w,b} \max_{\alpha \ge 0} L(w,b,\alpha) = \frac{w^{\mathrm{T}}w}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(w^{\mathrm{T}}x_i + b))$$

тут будет дифференцируемость, но ограничения

### SVM: решение строгое

$$\min_{w,b} \max_{\alpha \ge 0} L(w,b,\alpha) = \frac{w^{\mathrm{T}}w}{2} + \sum_{i=1}^{m} \alpha_i (1 - y_i(w^{\mathrm{T}}x_i + b))$$

возьмём производные, приравняем к нулю

$$\frac{\partial L}{\partial w} = 0 \Longrightarrow w = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\frac{\partial L}{\partial b} = 0 \Longrightarrow \sum_{i=1}^{m} \alpha_i y_i = 0$$

Таким образом, оптимальный вектор весов – взвешенная сумма признаковых описаний объектов из обучения

если подумать – аналогично происходит и при настройке персептрона и логистической регресии...

### Переход к двойственной задаче

Задача квадратичного программирования

$$\max_{\alpha \ge 0} \min_{w,b} L(w,b,\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^{\mathrm{T}} x_j$$

при условиях 
$$\sum_{i=1}^m \alpha_i y_i = 0$$

Информацию об описаниях объектов мы используем лишь в виде их попарных скалярных произведений!

когда решим задачу...

$$w = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$$

$$b = -\frac{1}{2} (\min_{i: y_{i}=+1} w^{T} x_{i} + \max_{i: y_{i}=-1} w^{T} x_{i})$$

большинство  $lpha_i$  обратиться в ноль (из-за условий Кунна-Таккера)

#### Условия Кунна-Таккера

#### для решения:

$$\alpha_i(1-y_i(w^{T}x_i+b))=0$$

если  $lpha_i > 0$ , то  $x_i$  – опорный вектор (support vector)

- лежит на границе 
$$y_i(w^{T}x_i + b) = 1$$



## Зачем переходить к двойственной задаче

• размерности

м.б. удобно решать

выгодно, если признаковое пространство большое

• известная задача

можно использовать солверы из готовых библиотек

• возникли попарные произведения потом используем для kernel tricks

## Если нет линейной разделимости

#### Два подхода (часто используются вместе)



1) разделять так, чтобы ошибок было мало



2) использование нелинейных разделяющих поверхностей

переход в другое признаковое пространство потом подробно разберём!

#### Soft-Margin SVM: разделение допуская ошибки



## позволить объектам «залезать» на половину другого класса

$$y_i(w^{\mathsf{T}}x_i + b) \ge 1 - \xi_i$$
  
$$\xi_i \ge 0$$

но не хотим, чтобы было много больших залезаний

# Soft-Margin SVM: разделение допуская ошибки Прямая задача:

$$\frac{\|w\|^{2}}{2} + C \sum_{i=1}^{m} \xi_{i} \to \min$$

$$y_{i}(w^{T}x_{i} + b) \ge 1 - \xi_{i}, \ \xi_{i} \ge 0, \ i \in \{1, 2, ..., m\}$$

тоже задача квадратичного программирования, но в два раза больше ограничений

С – баланс между оптимизацией зазора и ошибки на обучении Soft-Margin SVM решается аналогично... ДЗ вывести!

Двойственная задача:

$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j \to \max_{0 \le \alpha \le C}$$

появляется лишь ограничение  $lpha \leq C$ 

одно нетривиальное ограничение 
$$\sum_{i=1}^m \alpha_i y_i = 0$$

### **SVM Regression**

#### хотим решить с $\mathcal E$ -точностью

$$\frac{\parallel w \parallel^2}{2} \to \min$$

$$\mid w^{\mathsf{T}} x_i + b - y_i \mid \leq \varepsilon, i \in \{1, 2, \dots, m\}$$

Equivalent unconstrained formulation:

$$\frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \mathcal{L}(\langle w, x_n \rangle + w_0 - y_n) \to \min_{w}$$

with  $\varepsilon$  insensitive loss  $\mathcal{L}(u) = \begin{cases} 0, & \text{if } |u| \leq \varepsilon \\ |u| - \varepsilon & \text{otherwise} \end{cases}$ 



Solution will depend only on objects with  $|error| \ge \varepsilon$ , called *support* vectors.

#### **SVM**

• должно быть хорошее пространство

(однородные признаки в одной шкале)

• тогда работают линейные SVM

(нелинейные – с ядрами – успешно заменяются другими алгоритмами)

- не подходят для больших данных (особенно нелинейные)
- требуют хранения опорных векторов

## Проблемы с линейными алгоритмами

- + простой, надёжный, быстрый, популярный метод
- **+** интерпретируемость (⇒ нахождение закономерностей)
  - + интерполяция и экстраполяция
- + может быть добавлена нелинейность, с помощью генерации новых признаков (дальше это можно автоматизировать)

- линейная гипотеза вряд ли верна
- в теоретическом обосновании ещё предполагается нормальность ошибок
  - «страдает» из-за выбросов
  - признаки в одной шкале и однородные
  - статистический вывод регрессии много предположений
    - проблема коррелированных признаков
    - ⇒ необходимость регуляризации, селекции, РСА, data↑

### Проблемы мультиколлинеарности

- большие коэффициенты
- большие изменения коэффициентов при добавлении/удалении признаков
- нелогичности (чем больше доход, меньше вероятность дать кредит)
- большое число статистически незначимых оценок коэффициентов

линейная

#### зависимость от масштабирования

пайплайн: нормировка + с регуляризацией

нет есть нет

## Зачем нужен дискриминантный анализ?

Когда классы хорошо разделимы оцениваемые параметры, скажем, для логистической регрессии могу быть нестабильны.

Линейный дискриминантный анализ меньше подвержен этой проблеме.

Если размерность малая, распределения нормальные – линейная дискриминантная модель опять лучше.

Также LDA можно приспособить для представления данных в маломерных пространствах.

LDA – для малых размерностей и нормально распределенных данных

Наивный Байес – для больших размерностей

## Линейный дискриминант Фишера

### рассмотрим случай двух классов:

$$X = \mathbb{R}^{n}, Y = \{\pm 1\}$$

$$X_{\alpha} = \{x_{i} \mid y_{i} = \alpha\}$$

$$m_{\alpha} = |X_{\alpha}|$$

$$m_{+1} + m_{-1} = m$$

$$\mu_{\alpha} = \frac{1}{m_{\alpha}} \sum_{x_{i} \in X_{\alpha}} x_{i}$$

$$\sigma_{\alpha}^{2} = \sum_{x_{i} \in X_{\alpha}} (x_{i} - m_{\alpha})^{2}$$

## хотим, чтобы проекции на некоторую прямую

$$\frac{(\mu_{+1} - \mu_{-1})|_{w}^{2}}{\sigma_{+1}^{2}|_{w} + \sigma_{-1}^{2}|_{w}} \to \max$$

## Линейный дискриминант Фишера

$$(\mu_{+1} - \mu_{-1})|_{w}^{2} = (w^{\mathsf{T}} \mu_{+1} - w^{\mathsf{T}} \mu_{-1})^{2} = (w^{\mathsf{T}} (\mu_{+1} - \mu_{-1}))^{2} =$$

$$= w^{\mathsf{T}} (\mu_{+1} - \mu_{-1}) (\mu_{+1} - \mu_{-1})^{\mathsf{T}} w = w^{\mathsf{T}} S w$$

$$\sigma_{\alpha}^{2} \mid_{w} = \sum_{x_{i} \in X_{\alpha}} (w^{\mathsf{T}} x_{i} - w^{\mathsf{T}} \mu_{\alpha})^{2} = w^{\mathsf{T}} \sum_{x_{i} \in X_{\alpha}} (x_{i} - \mu_{\alpha}) (x_{i} - \mu_{\alpha})^{\mathsf{T}} w =$$

$$= w^{\mathsf{T}} S_{\alpha} w$$

$$\frac{w^{\mathsf{T}} S w}{w^{\mathsf{T}} (S_{+1} + S_{-1}) w} \to \max$$

междуклассовый разброс внутриклассовый разбор

## Линейный дискриминант Фишера

решение 
$$w \propto (S_{+1} + S_{-1})^{-1} (\mu_2 - \mu_1)$$

#### обосновать!

# интересный факт: можно получить из МНК, выбрав целевые значения

$$\alpha \to \frac{m_{+1} + m_{-1}}{m_{\alpha}}$$

обосновать!