tidying

Saneesh

1/24/2022

packages

```
# install.packages ('gapminder')
library(gapminder)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr
## v tibble 3.1.8
                        v dplyr 1.0.10
## v tidyr 1.2.1
                        v stringr 1.4.1
## v readr
           2.1.2
                        v forcats 0.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
shortcuts
alt+-will\ add<-
shift+ctrl+c to add # infront of a line
'—-' for a header, so it is easy to navigate through the script
command + shift + m
ctrl+alt+i for new code chunk \# syntax Plain text
End a line with two spaces to start a new paragraph.
italics and italics
\mathbf{bold} \ \mathrm{and} \ \mathbf{bold}
superscript<sup>2</sup>
~strikethrough
link to rstudio
```

logical operations

```
1==1 \# equality
1!=3 \#unequal
13<14 \#13 smaller than 14
14>13 \#14 bigger than 13
12>=0 \#12 greater or equal to zero
12<=3 \#12 smaller or equal to zero
```

creating data.frame

family

```
name <- c('saneesh', 'sanusha', 'appu', 'kishan')</pre>
weight <- c(63,48, 20, NA)
height \leftarrow c(164, 150, NA, 75)
family <- data.frame(name, weight, height)</pre>
family %>% as_tibble()
## # A tibble: 4 x 3
    name
           weight height
     <chr>
              <dbl> <dbl>
                 63
## 1 saneesh
                        164
                        150
## 2 sanusha
                 48
                 20
## 3 appu
                        NA
## 4 kishan
               NA
                         75
library(tidyverse)
data <- data.frame(sex=c(rep('female', 10), rep('male', 8)),</pre>
                    score=c(rnorm(n= 10, mean = 7.56, sd = 1.978), rnorm(n= 8, mean=7.75, sd= 1.631)))
data
data frame with unequal values 10 and 8
```

```
##
        sex
                score
## 1 female 4.864086
## 2 female 8.535747
## 3 female 8.029077
## 4 female 7.258620
## 5 female 9.315173
## 6 female 5.233860
## 7 female 9.459136
## 8 female 12.282502
## 9 female 7.463015
## 10 female 5.839924
## 11 male 6.379641
## 12
       male 7.715882
## 13
       male 8.117082
## 14
       male 7.206449
## 15
       male 8.282078
## 16
       male 9.186558
## 17
       male 9.292400
       male 9.139804
data %>% group_by(sex) %>%
 summarise(score= n()) %>%
 mutate(freq=score/sum(score)*100)
```

```
## # A tibble: 2 x 3
## sex score freq
## <chr> <int> <dbl>
## 1 female 10 55.6
## 2 male 8 44.4
```

is.na

```
# identify location of NAs in vector
which(is.na(family))

## [1] 8 11

colSums(is.na(family))

## name weight height
## 0 1 1
```

replace na

```
mat <- matrix(sample(c(NA, 1:5), 50, replace = TRUE), 5)
df <- as.data.frame(mat)
df %>% replace(is.na(.), 0)%>% view()
```

clean names

```
# install.packages('janitor')
library(janitor)

##
## Attaching package: 'janitor'

## The following objects are masked from 'package:stats':

##
## chisq.test, fisher.test

id <- (c(1,1,2,2,3,3))
Country <- c('Angola', 'Angola','Botswana', 'Botswana', 'Zimbabwe', 'Zimbabwe')
year <- c('2006', '2007', '2008', '2009', '2010', '2006')
bank.ratio <- c(24,25,38,34,42,49)
Reserve.ratio <- c(77,59,64,65,57,86)
broad.money <- c(163,188,317,361,150,288)</pre>
```

```
bank <- data.frame(id, Country, year, bank.ratio, Reserve.ratio,broad.money)</pre>
bank %>% view()
 as_tibble()
## Warning: The `x` argument of `as_tibble()` can't be missing as of tibble 3.0.0.
## # A tibble: 0 x 0
bank <- bank %>% clean_names() # replaced . with _
glimpse(bank)
## Rows: 6
## Columns: 6
## $ id
                   <dbl> 1, 1, 2, 2, 3, 3
                   <chr> "Angola", "Angola", "Botswana", "Botswana", "Zimbabwe", ~
## $ country
                   <chr> "2006", "2007", "2008", "2009", "2010", "2006"
## $ year
                   <dbl> 24, 25, 38, 34, 42, 49
## $ bank_ratio
## $ reserve_ratio <dbl> 77, 59, 64, 65, 57, 86
                  <dbl> 163, 188, 317, 361, 150, 288
## $ broad_money
bank <- bank %>% clean_names() # replaced . with _
```

filter bank data frame below such that it retains a country if a given id is satisfied e.g. filtering a data frame that has countries with id 1 and 2 only

```
bank %>%
filter(id%in% c(1,2)) %>%
as_tibble()
```

```
## # A tibble: 4 x 6
##
        id country year bank_ratio reserve_ratio broad_money
                                              <dbl>
     <dbl> <chr>
                    <chr>>
                               <dbl>
## 1
         1 Angola
                    2006
                                   24
                                                 77
                                                             163
## 2
         1 Angola
                    2007
                                   25
                                                 59
                                                             188
## 3
                                   38
                                                 64
         2 Botswana 2008
                                                             317
## 4
         2 Botswana 2009
                                   34
                                                 65
                                                             361
```

summarise fund available with each countries

```
bank %>%
  group_by(country) %>%
  summarise(fund=sum(broad_money)) %>%
  as_tibble()
```

```
## # A tibble: 3 x 2
## country fund
## <chr> <dbl>
## 1 Angola 351
## 2 Botswana 678
## 3 Zimbabwe 438
```

count/ frequency

```
mtcars %>%
  count(am) %>%
  as_tibble()
## # A tibble: 2 x 2
        am
               n
##
     <dbl> <int>
## 1
         0
              19
## 2
         1
               13
mtcars %>%
  count(gear)
##
     gear n
## 1
        3 15
## 2
        4 12
## 3
        5 5
```

rename column

column: new name= old name

```
iris %>%
  rename(sep.len=Sepal.Length)
```

```
sep.len Sepal.Width Petal.Length Petal.Width
##
                                                          Species
## 1
           5.1
                        3.5
                                                           setosa
## 2
           4.9
                        3.0
                                                   0.2
                                      1.4
                                                           setosa
## 3
           4.7
                        3.2
                                      1.3
                                                   0.2
                                                           setosa
## 4
           4.6
                        3.1
                                      1.5
                                                   0.2
                                                           setosa
## 5
           5.0
                        3.6
                                      1.4
                                                   0.2
                                                           setosa
## 6
           5.4
                        3.9
                                      1.7
                                                   0.4
                                                           setosa
## 7
                        3.4
                                                   0.3
           4.6
                                      1.4
                                                           setosa
## 8
           5.0
                        3.4
                                      1.5
                                                   0.2
                                                           setosa
## 9
           4.4
                        2.9
                                      1.4
                                                   0.2
                                                           setosa
## 10
           4.9
                        3.1
                                      1.5
                                                   0.1
                                                           setosa
## 11
           5.4
                        3.7
                                      1.5
                                                   0.2
                                                           setosa
## 12
           4.8
                        3.4
                                      1.6
                                                   0.2
                                                           setosa
## 13
           4.8
                        3.0
                                      1.4
                                                   0.1
                                                           setosa
## 14
           4.3
                        3.0
                                      1.1
                                                   0.1
                                                           setosa
## 15
           5.8
                        4.0
                                                   0.2
                                      1.2
                                                           setosa
## 16
           5.7
                        4.4
                                      1.5
                                                   0.4
                                                           setosa
## 17
           5.4
                        3.9
                                      1.3
                                                   0.4
                                                           setosa
## 18
           5.1
                        3.5
                                      1.4
                                                   0.3
                                                           setosa
## 19
           5.7
                        3.8
                                      1.7
                                                   0.3
                                                           setosa
## 20
           5.1
                        3.8
                                      1.5
                                                   0.3
                                                           setosa
                                                   0.2
## 21
           5.4
                        3.4
                                      1.7
                                                           setosa
```

##	22	5.1	3.7	1.5	0.4	setosa
##	23	4.6	3.6	1.0	0.2	setosa
##	24	5.1	3.3	1.7	0.5	setosa
##	25	4.8	3.4	1.9	0.2	setosa
##	26	5.0	3.0	1.6	0.2	setosa
##	27	5.0	3.4	1.6	0.4	setosa
##	28	5.2	3.5	1.5	0.2	setosa
##	29	5.2	3.4	1.4	0.2	setosa
##	30	4.7	3.2	1.6	0.2	setosa
##	31	4.8	3.1	1.6	0.2	setosa
##	32	5.4	3.4	1.5	0.4	setosa
##	33	5.2	4.1	1.5	0.1	setosa
##	34	5.5	4.2	1.4	0.2	setosa
##	35	4.9	3.1	1.5	0.2	setosa
##	36	5.0	3.2	1.2	0.2	setosa
##	37	5.5	3.5	1.3	0.2	setosa
##	38	4.9	3.6	1.4	0.1	setosa
##	39	4.4	3.0	1.3	0.2	setosa
##	40	5.1	3.4	1.5	0.2	setosa
##	41	5.0	3.5	1.3	0.3	setosa
##	42	4.5	2.3	1.3	0.3	setosa
##	43	4.4	3.2	1.3	0.2	setosa
##	44	5.0	3.5	1.6	0.6	setosa
##	45	5.1	3.8	1.9	0.4	setosa
##	46	4.8	3.0	1.4	0.3	setosa
##	47	5.1	3.8	1.6	0.2	setosa
##	48	4.6	3.2	1.4	0.2	setosa
##	49	5.3	3.7	1.5	0.2	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	51	7.0	3.2	4.7		ersicolor
##	52	6.4	3.2	4.5		ersicolor
##	53	6.9	3.1	4.9		ersicolor
##	54	5.5	2.3	4.0		ersicolor
##	55	6.5	2.8	4.6		ersicolor
##	56	5.7	2.8	4.5		ersicolor
##	57	6.3	3.3	4.7		ersicolor
	58	4.9				
			7.4	3.3	1.0 v	
			2.4	3.3		ersicolor
	59	6.6	2.9	4.6	1.3 v	ersicolor ersicolor
##	59 60	6.6 5.2	2.9 2.7	4.6 3.9	1.3 v 1.4 v	ersicolor ersicolor ersicolor
## ##	59 60 61	6.6 5.2 5.0	2.9 2.7 2.0	4.6 3.9 3.5	1.3 v 1.4 v 1.0 v	ersicolor ersicolor ersicolor ersicolor
## ## ##	59 60 61 62	6.6 5.2 5.0 5.9	2.9 2.7 2.0 3.0	4.6 3.9 3.5 4.2	1.3 v 1.4 v 1.0 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ##	59 60 61 62 63	6.6 5.2 5.0 5.9 6.0	2.9 2.7 2.0 3.0 2.2	4.6 3.9 3.5 4.2 4.0	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v	ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ##	59 60 61 62 63 64	6.6 5.2 5.0 5.9 6.0 6.1	2.9 2.7 2.0 3.0 2.2 2.9	4.6 3.9 3.5 4.2 4.0 4.7	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ##	59 60 61 62 63 64 65	6.6 5.2 5.0 5.9 6.0 6.1 5.6	2.9 2.7 2.0 3.0 2.2 2.9	4.6 3.9 3.5 4.2 4.0 4.7 3.6	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ##	59 60 61 62 63 64 65 66	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.4 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ##	59 60 61 62 63 64 65 66	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5	1.3 v 1.4 v 1.0 v 1.5 v 1.4 v 1.3 v 1.4 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ##	59 60 61 62 63 64 65 66 67	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.5 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.4 v 1.5 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68 69 70	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1 4.5 3.9	1.3 v 1.4 v 1.0 v 1.5 v 1.4 v 1.3 v 1.4 v 1.5 v 1.5 v 1.1 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68 69 70 71	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8	1.3 v 1.4 v 1.0 v 1.5 v 1.4 v 1.3 v 1.4 v 1.5 v 1.5 v 1.5 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68 69 70 71 72	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4.0	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.5 v 1.5 v 1.5 v 1.1 v 1.8 v 1.3 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4.0 4.9	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.4 v 1.5 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor
## ## ## ## ## ## ## ##	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1	2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7 2.2 2.5 3.2	4.6 3.9 3.5 4.2 4.0 4.7 3.6 4.4 4.5 4.1 4.5 3.9 4.8 4.0	1.3 v 1.4 v 1.0 v 1.5 v 1.0 v 1.4 v 1.3 v 1.4 v 1.5 v 1.5 v 1.5 v 1.5 v 1.5 v 1.2 v	ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor ersicolor

##	76	6.6	3.0	4.4	1.4 versicolor
##	77	6.8	2.8	4.8	1.4 versicolor
##	78	6.7	3.0	5.0	1.7 versicolor
##	79	6.0	2.9	4.5	1.5 versicolor
##	80	5.7	2.6	3.5	1.0 versicolor
##	81	5.5	2.4	3.8	1.1 versicolor
##	82	5.5	2.4	3.7	1.0 versicolor
##	83	5.8	2.7	3.9	1.2 versicolor
##	84	6.0	2.7	5.1	1.6 versicolor
##	85	5.4	3.0	4.5	1.5 versicolor
##	86	6.0	3.4	4.5	1.6 versicolor
##	87	6.7	3.1	4.7	1.5 versicolor
##	88	6.3	2.3	4.4	1.3 versicolor
##	89	5.6	3.0	4.1	1.3 versicolor
##	90	5.5	2.5	4.0	1.3 versicolor
##	91	5.5	2.6	4.4	1.2 versicolor
	92	6.1	3.0	4.6	1.4 versicolor
	93	5.8	2.6	4.0	1.2 versicolor
	94	5.0	2.3	3.3	1.0 versicolor
	95	5.6	2.7	4.2	1.3 versicolor
##		5.7	3.0	4.2	1.2 versicolor
	97	5.7	2.9	4.2	1.3 versicolor
	98	6.2	2.9	4.3	1.3 versicolor
	99	5.1	2.5	3.0	1.1 versicolor
	100	5.7	2.8	4.1	1.3 versicolor
	101	6.3	3.3	6.0	2.5 virginica
	102	5.8	2.7	5.1	1.9 virginica
	103	7.1	3.0	5.9	2.1 virginica
##	104	6.3	2.9	5.6	1.8 virginica
##	105	6.5	3.0	5.8	2.2 virginica
##	106	7.6	3.0	6.6	2.1 virginica
##	107	4.9	2.5	4.5	1.7 virginica
##	107	7.3	2.9	6.3	_
##	108	6.7	2.5	5.8	O
					1.8 virginica
	110	7.2	3.6 3.2	6.1	2.5 virginica
	111	6.5		5.1	2.0 virginica
	112	6.4	2.7	5.3	1.9 virginica
	113	6.8	3.0	5.5	2.1 virginica
	114	5.7	2.5	5.0	2.0 virginica
	115	5.8	2.8	5.1	2.4 virginica
	116	6.4	3.2	5.3	2.3 virginica
	117	6.5	3.0	5.5	1.8 virginica
	118	7.7	3.8	6.7	2.2 virginica
	119	7.7	2.6	6.9	2.3 virginica
	120	6.0	2.2	5.0	1.5 virginica
	121	6.9	3.2	5.7	2.3 virginica
	122	5.6	2.8	4.9	2.0 virginica
	123	7.7	2.8	6.7	2.0 virginica
	124	6.3	2.7	4.9	1.8 virginica
	125	6.7	3.3	5.7	2.1 virginica
	126	7.2	3.2	6.0	1.8 virginica
	127	6.2	2.8	4.8	1.8 virginica
	128	6.1	3.0	4.9	1.8 virginica
##	129	6.4	2.8	5.6	2.1 virginica

##	130	7.2	3.0	5.8	1.6	wirginica
						virginica
##	131	7.4	2.8	6.1	1.9	virginica
##	132	7.9	3.8	6.4	2.0	virginica
##	133	6.4	2.8	5.6	2.2	virginica
##	134	6.3	2.8	5.1	1.5	virginica
##	135	6.1	2.6	5.6	1.4	virginica
##	136	7.7	3.0	6.1	2.3	virginica
##	137	6.3	3.4	5.6	2.4	virginica
##	138	6.4	3.1	5.5	1.8	virginica
##	139	6.0	3.0	4.8	1.8	virginica
##	140	6.9	3.1	5.4	2.1	virginica
##	141	6.7	3.1	5.6	2.4	virginica
##	142	6.9	3.1	5.1	2.3	virginica
##	143	5.8	2.7	5.1	1.9	virginica
##	144	6.8	3.2	5.9	2.3	virginica
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
##	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

gapminder

```
iris %>% as_tibble()
```

```
## # A tibble: 150 x 5
      Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
             <dbl>
                         <dbl>
                                                  <dbl> <fct>
                                      <dbl>
##
   1
              5.1
                           3.5
                                        1.4
                                                    0.2 setosa
##
  2
               4.9
                                        1.4
                                                    0.2 setosa
                           3
## 3
               4.7
                           3.2
                                        1.3
                                                    0.2 setosa
               4.6
                           3.1
                                                    0.2 setosa
## 4
                                        1.5
## 5
              5
                           3.6
                                        1.4
                                                    0.2 setosa
##
   6
              5.4
                           3.9
                                        1.7
                                                    0.4 setosa
   7
              4.6
                           3.4
                                        1.4
                                                    0.3 setosa
##
##
   8
               5
                           3.4
                                        1.5
                                                    0.2 setosa
##
   9
               4.4
                           2.9
                                        1.4
                                                    0.2 setosa
               4.9
## 10
                                        1.5
                                                    0.1 setosa
## # ... with 140 more rows
```

summary(gapminder)

##	country			continent		у	year		lifeExp	
##	Afghanista	n:	12	Africa	:624	Min.	:1952	Min.	:23.60	
##	Albania	:	12	America	s:300	1st Qu	.:1966	1st Qu	.:48.20	
##	Algeria	:	12	Asia	:396	Median	:1980	Median	:60.71	
##	Angola	:	12	Europe	:360	Mean	:1980	Mean	:59.47	
##	Argentina	:	12	Oceania	: 24	3rd Qu	.:1993	3rd Qu	.:70.85	
##	Australia	:	12			Max.	:2007	Max.	:82.60	

```
(Other)
              :1632
##
                         gdpPercap
        pop
          :6.001e+04
                       Min. :
                                  241.2
  1st Qu.:2.794e+06
                       1st Qu.: 1202.1
## Median :7.024e+06
                       Median :
                                 3531.8
##
  Mean
          :2.960e+07
                              : 7215.3
                       Mean
                       3rd Qu.: 9325.5
  3rd Qu.:1.959e+07
## Max.
          :1.319e+09
                       Max.
                              :113523.1
##
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
   \ country \ : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
   \ continent: Factor \ / \ levels "Africa", "Americas",...: 3 3 3 3 3 3 3 3 3 ...
   $ year
              : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
              : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 163
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
```

recode observation

change name of observation—mutate (variable=recode (variable, 'old name'='new name')))

```
gapminder %>%
mutate(country=recode(country, 'India'='IND')) %>%
filter(country=='IND')
```

```
## # A tibble: 12 x 6
##
     country continent year lifeExp
                                            pop gdpPercap
##
     <fct>
             <fct>
                       <int>
                               <dbl>
                                                    <dbl>
                                          <int>
   1 IND
                        1952
                                37.4 372000000
                                                     547.
             Asia
   2 IND
                                                     590.
##
                        1957
                                40.2
                                      409000000
             Asia
## 3 IND
             Asia
                        1962
                                43.6
                                      454000000
                                                     658.
## 4 IND
                        1967
                                47.2 506000000
                                                     701.
             Asia
## 5 IND
             Asia
                        1972
                                50.7
                                      567000000
                                                     724.
## 6 IND
             Asia
                        1977
                                54.2 634000000
                                                     813.
## 7 IND
                        1982
                                56.6 708000000
                                                     856.
             Asia
## 8 IND
                       1987
                                58.6 788000000
             Asia
                                                     977.
## 9 IND
             Asia
                       1992
                                60.2 872000000
                                                    1164.
## 10 IND
                                61.8 959000000
             Asia
                        1997
                                                    1459.
## 11 IND
                        2002
                                62.9 1034172547
                                                    1747.
             Asia
## 12 IND
             Asia
                        2007
                                64.7 1110396331
                                                    2452.
```

select

```
gapminder %>%
select(year, country, gdpPercap)
```

```
## # A tibble: 1,704 x 3
##
       year country
                        gdpPercap
      <int> <fct>
                            <dbl>
##
##
   1 1952 Afghanistan
                            779.
##
    2 1957 Afghanistan
                            821.
##
   3 1962 Afghanistan
                            853.
   4 1967 Afghanistan
                            836.
## 5 1972 Afghanistan
                            740.
##
   6 1977 Afghanistan
                            786.
##
  7 1982 Afghanistan
                            978.
  8 1987 Afghanistan
                            852.
## 9 1992 Afghanistan
                             649.
## 10 1997 Afghanistan
                             635.
## # ... with 1,694 more rows
msleep %>% select(starts_with("sleep"))
## # A tibble: 83 x 3
```

```
##
      sleep_total sleep_rem sleep_cycle
##
            <dbl>
                      <dbl>
                                   <dbl>
##
             12.1
  1
                       NA
                                  NA
##
  2
             17
                        1.8
                                  NA
             14.4
                        2.4
## 3
                                  NA
## 4
             14.9
                        2.3
                                   0.133
## 5
                                   0.667
             4
                        0.7
                        2.2
                                   0.767
##
  6
             14.4
##
   7
              8.7
                        1.4
                                  0.383
##
  8
              7
                       NA
                                  NA
## 9
             10.1
                                  0.333
                        2.9
## 10
              3
                                  NA
                       NA
## # ... with 73 more rows
```

filter

```
gapminder %>%
select(year, country, lifeExp) %>%
filter(country=="Eritrea", year>1950)
```

```
## # A tibble: 12 x 3
      year country lifeExp
##
##
      <int> <fct>
                      <dbl>
##
   1 1952 Eritrea
                       35.9
##
   2 1957 Eritrea
                       38.0
##
   3 1962 Eritrea
                       40.2
   4 1967 Eritrea
##
                       42.2
##
   5 1972 Eritrea
                       44.1
   6 1977 Eritrea
                       44.5
##
##
   7 1982 Eritrea
                      43.9
##
   8 1987 Eritrea
                       46.5
   9 1992 Eritrea
                       50.0
```

```
## 10 1997 Eritrea
                      53.4
## 11 2002 Eritrea
                      55.2
## 12 2007 Eritrea
                      58.0
gapminder %>% filter(country=="Canada") %>% head(3) # from gapminder data filter country Canada and sho
## # A tibble: 3 x 6
##
    country continent year lifeExp
                                         pop gdpPercap
##
     <fct>
            <fct>
                       <int>
                              <dbl>
                                       <int>
                                                 <dbl>
## 1 Canada Americas
                       1952
                               68.8 14785584
                                                11367.
## 2 Canada Americas
                       1957
                               70.0 17010154
                                                12490.
## 3 Canada Americas
                       1962
                               71.3 18985849
                                                13462.
gapminder %>% filter(country!="Oman") %>% head(3) # from gapminder data filter all the other countries
## # A tibble: 3 x 6
##
     country
                continent year lifeExp
                                             pop gdpPercap
##
     <fct>
                 <fct>
                        <int>
                                  <dbl>
                                           <int>
                                                     <dbl>
## 1 Afghanistan Asia
                          1952
                                   28.8 8425333
                                                      779.
## 2 Afghanistan Asia
                          1957
                                   30.3 9240934
                                                      821.
## 3 Afghanistan Asia
                           1962
                                   32.0 10267083
                                                      853.
multiple conditions
gapminder %>%
  filter(country=="Oman" &
          year>1980 &
          year<=2000) %>% head(4)
## # A tibble: 4 x 6
     country continent year lifeExp
                                        pop gdpPercap
           <fct>
##
     <fct>
                       <int>
                              <dbl> <int>
                                                <dbl>
## 1 Oman
            Asia
                       1982
                               62.7 1301048
                                               12955.
## 2 Oman
            Asia
                       1987
                               67.7 1593882
                                               18115.
## 3 Oman
            Asia
                       1992
                               71.2 1915208
                                               18617.
## 4 Oman
            Asia
                       1997
                               72.5 2283635
                                               19702.
gapminder %>%
  select(country, year) %>%
  filter(year>=1980, country=="India"|
           country=="Oman"|
           country=="Canada")
## # A tibble: 18 x 2
##
      country year
##
      <fct>
              <int>
## 1 Canada
             1982
## 2 Canada
              1987
## 3 Canada
             1992
## 4 Canada 1997
## 5 Canada 2002
```

```
## 6 Canada
               2007
## 7 India
               1982
## 8 India
               1987
## 9 India
               1992
## 10 India
               1997
## 11 India
               2002
## 12 India
               2007
## 13 Oman
               1982
## 14 Oman
               1987
## 15 Oman
               1992
## 16 Oman
               1997
## 17 Oman
               2002
               2007
## 18 Oman
gapminder %>% filter(country!="Oman") %>% head(3) # from gapminder data filter all the other countires
## # A tibble: 3 x 6
                                              pop gdpPercap
     country
                 continent year lifeExp
##
     <fct>
                 <fct>
                                   <dbl>
                                            <int>
                                                       <dbl>
                           <int>
## 1 Afghanistan Asia
                            1952
                                    28.8 8425333
                                                        779.
## 2 Afghanistan Asia
                            1957
                                    30.3 9240934
                                                       821.
## 3 Afghanistan Asia
                            1962
                                    32.0 10267083
                                                       853.
filter multipe using %in%
gapminder %>% filter(country %in% c('Hungary','Iceland', 'Mongolia')) %>% view()
target <- c('Hungary','Iceland', 'Mongolia')</pre>
gapminder %>% filter(country %in% target) %>% view()
friends <- data.frame(Names=c('Saneesh', 'Appu', 'Shruti', 'Aradhana', 'Arathi', 'James Bond'),
                      age=c(40,9, 25, 25, 25, 50))
# data frame is friends
# columns in friends are Names, Age, Height, etc.
# Colum Name have 'Saneesh', 'Appu', 'Shruti', 'Aradhana', 'Arathi', 'James Bond'
# We want to filter information related to Sanees and James Bond only, so we created a vector with
# these names in it.
target <- c('Appu', 'James Bond') #and then
```

```
## 2 James Bond 50

# or
friends %>% filter(Names== 'Appu'| Names== 'James Bond')
```

friends %>% filter(Names %in% target)

Names age

Appu

##

1

```
## Names age
## 1    Appu 9
## 2 James Bond 50

# or
friends %>% filter(Names %in% c('Appu', 'James Bond'))

##    Names age
## 1    Appu 9
## 2 James Bond 50
```

drop

```
gapminder %>%
 select(-year,-pop) %>%
 head(5)
## # A tibble: 5 x 4
    country continent lifeExp gdpPercap
    <fct>
               <fct> <dbl>
                                <dbl>
                          28.8
                                    779.
## 1 Afghanistan Asia
                         30.3
## 2 Afghanistan Asia
                                    821.
## 3 Afghanistan Asia
                         32.0
                                    853.
## 4 Afghanistan Asia
                         34.0
                                    836.
## 5 Afghanistan Asia
                           36.1
                                    740.
```

group by & summarise

```
gapminder %>%
  filter(year==2007) %>%
  group_by(country) %>%
  summarise(meanLE=mean(lifeExp)) %>%
  arrange(meanLE,decreasing = TRUE)
```

```
## # A tibble: 142 x 2
##
      country
                              meanLE
##
      <fct>
                                <dbl>
                                 39.6
## 1 Swaziland
## 2 Mozambique
                                42.1
## 3 Zambia
                                 42.4
## 4 Sierra Leone
                                 42.6
## 5 Lesotho
                                 42.6
## 6 Angola
                                 42.7
## 7 Zimbabwe
                                 43.5
## 8 Afghanistan
                                 43.8
                                 44.7
## 9 Central African Republic
## 10 Liberia
                                 45.7
## # ... with 132 more rows
```

```
gapminder %>%
  group_by(country) %>%
  summarise(minLE=min(lifeExp)) %>%
  arrange(minLE, decreasing=FALSE)
## # A tibble: 142 x 2
##
      country
                     minLE
##
      <fct>
                     <dbl>
   1 Rwanda
                      23.6
##
  2 Afghanistan
                      28.8
## 3 Gambia
                      30
## 4 Angola
                      30.0
## 5 Sierra Leone
                      30.3
## 6 Cambodia
                      31.2
## 7 Mozambique
                      31.3
## 8 Burkina Faso
                      32.0
## 9 Guinea-Bissau 32.5
## 10 Yemen, Rep.
                      32.5
## # ... with 132 more rows
grouped by continent, then summarise two things, first n=n() number of rows in which each continent are
or the size of each group, then the mean of the mean of the lifeExp variable.
gapminder %>%
  group_by(continent) %>%
  summarise(n=n(),
            meanLife=mean(lifeExp))
## # A tibble: 5 x 3
     continent
                   n meanLife
##
     <fct>
               <int>
                         <dbl>
## 1 Africa
                  624
                          48.9
## 2 Americas
                  300
                          64.7
## 3 Asia
                  396
                          60.1
## 4 Europe
                  360
                          71.9
## 5 Oceania
                   24
                          74.3
gapminder %>%
  group_by(continent) %>%
  summarise(PopConti=sum(pop))
## # A tibble: 5 x 2
##
     continent
                   PopConti
##
     <fct>
                      <dbl>
## 1 Africa
                 6187585961
## 2 Americas
                7351438499
## 3 Asia
               30507333901
## 4 Europe
                 6181115304
## 5 Oceania
                 212992136
```

```
pets <- data.frame(names=c(rep('saneesh', 3), rep('appu', 2), 'sanusha'),</pre>
                  pet=c(rep('dog', 3), rep('cat', 2), 'tiger'), number=c(2,2,5,7,8,1),
                  size=c(rep('medium', 2), rep('small', 3), 'big'))
pets
##
             pet number
                          size
      names
## 1 saneesh
             dog
                      2 medium
## 2 saneesh
              dog
                      2 medium
## 3 saneesh
              dog
                      5 small
                      7 small
## 4
       appu
              cat
## 5
       appu cat
                    8 small
## 6 sanusha tiger
                    1
                           big
library(tidyverse)
pets %>% group_by(pet, size) %>%
 summarise(totalpet= sum(number))
## `summarise()` has grouped output by 'pet'. You can override using the `.groups`
## argument.
## # A tibble: 4 x 3
## # Groups: pet [3]
    pet size totalpet
##
    <chr> <chr>
                   <dbl>
## 1 cat small
                     15
## 2 dog medium
                       4
                       5
## 3 dog small
## 4 tiger big
```

summarise

```
library(tidyverse)
plot <- c(rep(1,2), rep(2,4), rep(3,3))
bird <- c('a','b', 'a','b', 'c', 'd', 'a', 'b', 'c')
area <- c(rep(10,2), rep(5,4), rep(15,3))
birdlist <- data.frame(plot,bird,area)
birdlist</pre>
```

```
##
    plot bird area
## 1
               10
      1
## 2
      1
               10
## 3
      2
               5
          a
## 4
      2
               5
## 5
      2
               5
         С
## 6
      2
               5
## 7
      3 a 15
## 8
      3 b 15
## 9
      3 c 15
```

```
# summarize the following data frame to a summary table.
# option 1
birdlist %>%
 group_by(plot) %>%
 summarise(bird = n(), area = unique(area))
## # A tibble: 3 x 3
    plot bird area
  <dbl> <int> <dbl>
## 1
       1
           2
## 2
        2
                   5
             4
## 3
        3
             3
                   15
# option 2
birdlist %>%
count(plot, area, name = "bird")
    plot area bird
## 1
           10
       1
## 2
       2
           5
                 4
## 3
       3
           15
                 3
gapminder %>%
 summarise(mean(lifeExp))
## # A tibble: 1 x 1
## `mean(lifeExp)`
              <dbl>
##
               59.5
## 1
gapminder %>%
summarise(range(lifeExp))
## # A tibble: 2 x 1
##
   `range(lifeExp)`
              <dbl>
##
## 1
                23.6
## 2
                82.6
gapminder %>%
 filter(country=="India") %>%
 group_by(country) %>%
  summarise(GDPmax=max(gdpPercap),
           GDPmin=min(gdpPercap),
           GDPmean=mean(gdpPercap))
## # A tibble: 1 x 4
##
    country GDPmax GDPmin GDPmean
     <fct> <dbl> <dbl>
## 1 India 2452. 547.
                            1057.
```

count/summarize

```
library(tidyverse)
plot \leftarrow c(rep(1,2), rep(2,4), rep(3,3))
bird <- as.factor(c('a','b', 'a','b', 'c', 'd', 'a', 'b', 'c'))
area \leftarrow c(rep(10,2), rep(5,4), rep(15,3))
birdlist <- data.frame(plot,bird,area)</pre>
birdlist
    plot bird area
## 1
       1
            a
## 2
       1
            b
                10
## 3
       2
                 5
## 4
       2
           b
                 5
## 5
       2
                 5
          d 5
## 6
       2
## 7
       3
          a 15
## 8
       3
          b 15
## 9
       3
            c 15
#birdlist %>% group_by(plot, area) %>% mutate(count(bird))
birdlist %>%
 group_by(plot, area) %>%
 dplyr::summarize(bird = n(), # when summarize doesn't work directly use it (dplyr::)like this
           .groups = "drop") # to summarize of a column with reference to two other variables.
## # A tibble: 3 x 3
   plot area bird
     <dbl> <dbl> <int>
##
## 1
       1
           10
## 2
             5
        2
## 3
        3 15
                    3
```

count sites

case when new column

```
library(dplyr)
library(stringr)
feedback <- c('good_book', 'good_read', 'good_story', 'good for knowledge')
book <- c('ramayana', 'bible', 'encyclopedia', 'Mbharatha')

df <- data.frame(feedback, book)

df %>%
   mutate(response = case_when(str_starts(feedback, 'good') ~ 'good')) %>%
   select(book, response) %>% as_tibble()
```

separate

text to columns

```
df <- data.frame(films = c("Spider_man", "James_bond", "Iron_man", "Bat_man"))
df

## films
## 1 Spider_man
## 2 James_bond
## 3 Iron_man
## 4 Bat_man

df1 <- df %>%
    separate(films, c("a", "b"), sep='([_])')
df1
```

```
## a b
## 1 Spider man
## 2 James bond
## 3 Iron man
## 4 Bat man
```

unite

join

```
df2 <- data.frame(id=c(1:4) ,films = c("Spider_man", "James_bond", "Iron_man", "Bat_man"))</pre>
df3 <- data.frame(id=c(1:4) ,country= rep("us", 4))</pre>
df4 <- left_join(df2, df3, by="id")</pre>
df4
##
     id
             films country
## 1 1 Spider_man
                        us
## 2 2 James_bond
                         us
## 3 3 Iron_man
                         us
## 4 4
         Bat_man
                        us
```

across

for multiple variables

\$ srno : int 1 2

```
library(tidyverse)
srno <- c(1:2)
film <- c("arabica", "robust")
rate <- c("good", "better")
lang_Eng <- c("yes", "yes")

films <- data.frame(srno, film, rate, lang_Eng)
str(films)

## 'data.frame': 2 obs. of 4 variables:</pre>
```

```
## $ film : chr "arabica" "robust"
## $ rate : chr "good" "better"
## $ lang_Eng: chr "yes" "yes"

films <- films %>%
  mutate(across(c(rate, lang_Eng), as.factor))

str(films)

## 'data.frame': 2 obs. of 4 variables:
## $ srno : int 1 2
## $ film : chr "arabica" "robust"
## $ rate : Factor w/ 2 levels "better", "good": 2 1
## $ lang_Eng: Factor w/ 1 level "yes": 1 1
```

everthing

select a key variable and everything

```
library(gapminder)
gapminder %>% select(pop, everything())
```

```
## # A tibble: 1,704 x 6
                            continent year lifeExp gdpPercap
##
           pop country
##
         <int> <fct>
                            <fct> <int> <dbl>
                                                         <dbl>
## 1 8425333 Afghanistan Asia 1952
## 2 9240934 Afghanistan Asia 1957
## 3 10267083 Afghanistan Asia 1962
                                                28.8
                                                         779.
                                               30.3
                                                          821.
                                               32.0
                                                          853.
## 4 11537966 Afghanistan Asia
                                     1967
                                                34.0
                                                          836.
## 5 13079460 Afghanistan Asia
                                               36.1
                                                          740.
                                     1972
## 6 14880372 Afghanistan Asia
                                       1977
                                                38.4
                                                          786.
## 7 12881816 Afghanistan Asia
                                     1982 39.9
                                                          978.
## 8 13867957 Afghanistan Asia
                                     1987 40.8
                                                          852.
                                     1992
                                                41.7
## 9 16317921 Afghanistan Asia
                                                          649.
## 10 22227415 Afghanistan Asia
                                       1997
                                                41.8
                                                          635.
## # ... with 1,694 more rows
```

toupper

tolower

```
## Rows: 3
## Columns: 2
## $ Dose.Cm <chr> "d1", "D2", "D3"
## $ Len.km <chr> "High", "low", "Low"
data %>% mutate(Dose.Cm= tolower(Dose.Cm), Len.km=toupper(Len.km))
    Dose.Cm Len.km
##
## 1
         d1
               HIGH
## 2
          d2
               LOW
## 3
          d3
               LOW
```

factor

change order of factor

```
data %>% mutate(len= fct_relevel(len, c('low', 'medium', 'high')))

## Dose.Cm Len.km len
## 1 d1 high high
## 2 D2 low low
## 3 D3 medium medium
```

parse_number

This drops any non-numeric characters before or after the first number. The grouping mark specified by the locale is ignored inside the number.

```
library(tidyverse)
class <- c('8th', '9th', '10th')
students <- c('25-30', '35-41', '21-28')
school <- data.frame(class, students)
school</pre>
```

```
##
    class students
## 1
     8th
              25-30
              35-41
## 2
       9th
## 3 10th
              21-28
glimpse(school) # notice students is a binned variable it is a not a numeric.
## Rows: 3
## Columns: 2
              <chr> "8th", "9th", "10th"
## $ class
## $ students <chr> "25-30", "35-41", "21-28"
school %>% mutate(students= parse_number(students)) %>% glimpse()
## Rows: 3
## Columns: 2
## $ class
             <chr> "8th", "9th", "10th"
## $ students <dbl> 25, 35, 21
school %>% mutate(students= parse_number(students))
##
     class students
## 1
       8th
                 35
## 2
       9th
## 3 10th
                 21
# now students because number with first value of the column
```

pivot longer

```
library(tidyverse)
rawdata <- data.frame(species_1=rnorm(n = 40, mean = 300, sd = 18.5), species_2=rnorm(40, 305, 16.7))
data <- pivot_longer(data = rawdata, cols = species_1:species_2, names_to = 'species', values_to = 'weignes'</pre>
```

ggplot

```
library(ggplot2)
# Basic barplot
p<-ggplot(data=df, aes(x=dose, y=len)) +
   geom_bar(stat="identity")
p</pre>
```



```
# Horizontal bar plot
# p + coord_flip()
```

```
# Change the width of bars
ggplot(data=df, aes(x=dose, y=len)) +
geom_bar(stat="identity", width=0.5)
```



```
# Change colors
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", color="blue", fill="white")
```



```
# Minimal theme + blue fill color
p<-ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  theme_minimal()
p</pre>
```


months

```
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
months <- seq(month(1:12)) # make moths</pre>
months <- month.abb[months] # make abbriviations</pre>
temperature <- c(10,12,22,32,35,30,33,28,29,25,19,14)
myframe <- data.frame(months,temperature) # creating a new data frame</pre>
library(tidyverse)
glimpse(myframe)
## Rows: 12
## Columns: 2
                 <chr> "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "S~
## $ months
## $ temperature <dbl> 10, 12, 22, 32, 35, 30, 33, 28, 29, 25, 19, 14
```

```
library(ggplot2)
ggplot(myframe, aes(x=months, y=temperature, group=1))+
  geom_line(col='blue')+
  geom_point(col='red')+
  ggtitle('Temperature of months')+
  scale_x_discrete(limits = month.abb) # this will order months on the x axis
```

Temperature of months


```
p + scale_x_discrete(limits=c("D0.5", "D2"))
```

Warning: Removed 1 rows containing missing values (position_stack).


```
# Outside bars
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=len), vjust=-0.3, size=3.5)+
  theme_minimal()
```



```
# Inside bars
ggplot(data=df, aes(x=dose, y=len)) +
  geom_bar(stat="identity", fill="steelblue")+
  geom_text(aes(label=len), vjust=1.6, color="white", size=3.5)+
  theme_minimal()
```



```
# Stacked barplot with multiple groups
ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
  geom_bar(stat="identity")
```



```
# Use position=position_dodge()
ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
geom_bar(stat="identity", position=position_dodge())
```



```
# Change the colors manually
p <- ggplot(data=df2, aes(x=dose, y=len, fill=supp)) +
geom_bar(stat="identity", color="black", position=position_dodge())+
    theme_minimal()
# Use custom colors
p + scale_fill_manual(values=c('#999999','#E69F00'))</pre>
```


Use brewer color palettes
p + scale_fill_brewer(palette="Blues")

hex plot

```
library(tidyverse)
# install.packages("hexbin")
class <- c(rep('10th', 8))
students <- c('10 to 15')
              "15-20",
              "17 to 24",
              "20 to 25",
              "25 to 30",
              "30 to 40",
              "45 to 47",
              '50 to 55')
latitude <- c(11.50897246,
              11.48323136,
              11.48719031,
              11.46366611,
              11.41097322,
              11.52111154,
              11.44491386,
              11.46569568)
longitude <- c(76.06032062,
               76.06192685,
```

```
76.04266851,
76.04156575,
76.05075092,
76.02846331,
76.03084141,
76.01766216)

school <- data.frame(class, students, latitude, longitude)

school %>% mutate(students= parse_number(students)) %>%
ggplot(aes(latitude, longitude, z= students))+
stat_summary_hex()+
scale_fill_viridis_c(alpha= 0.8)+
labs(fill='students', title = 'school students')
```

school students

Color Palettes

Resources

- https://colorhunt.co/
- https://coolors.co/
- https://colorpalettes.net/
- https://www.canva.com/colors/color-palettes/
- https://color.adobe.com/de/create/color-wheel
- https://mycolor.space/

• http://colormind.io/

```
#install.packages(c("tidyverse", "gapminder", "MetBrewer"))
```

libraries

```
library(tidyverse)
library(gapminder)
# install.packages('MetBrewer')
library(MetBrewer)
```

Plot the point plot using GDP per Capita as the x- axis and LE as the y axis. Numerical variable Population to control the size of each point.

To use color in the plot, assign the Population variable to the color aesthetic. Since nothing is specied, ggplot2 chooses a color spectrum for this numerical variable (shades of blue).

To control the color spectrum, we need to introduce a color scale. In the following plot, we have to provide a vector of hex color values. You would choose this if you got your colors from one of the mentioned above websites.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= pop/1000000))+
    scale_color_gradientn(colors = c("#003049", "#D62828", "#F77F00", "#FCBF49", "#EAE2B7"))
```


To apply one of the MetBrewer palettes, replace the hex-vector with a MetBrewer function. Within the function call, you provide the palette's name, then several colors, and tell it that we need a continuous palette since it is a numerical variable.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= pop/1000000))+
    scale_color_gradientn(colors = met.brewer('Cross', n=500, type = 'continuous'))
```


You might also want to use color palettes with non-numerical variables. Let us assume we want to apply color to the Continent variable. This implies using a manual color scale and providing a MetBrewer palette.

```
plot + geom_point(aes(gdpPercap, lifeExp, size= pop/1000000, color= continent))+
    scale_color_manual(values = met.brewer('Navajo', 5))
```


Please note if you want to apply color to the fill aesthetic rather than the color aesthetic, consider using the scale_fill_manuel function instead of the scale_color_manuel. This is useful for boxplots or bar charts.

scale fill manual

themes

```
df <- data.frame(
    Names=as.factor(c('Bacteria', 'Yeast', 'None')),
    Quantity=c(2.5, 5.5, 7.5))

library(ggplot2)
library(tidyverse)
df <- df %>% mutate(Names= fct_relevel(Names, c('Bacteria', 'Yeast', 'None')))

ggplot(df, aes(Names, Quantity, fill= Names))+
```

```
geom_bar(stat = 'identity')+
    scale_fill_manual(values = c('#110a62', '#fcd749','#b5b4b5'))+
labs(y='Necter pH', x= 'Microbe added to nectar')+
theme_classic()+
    theme(legend.position = 'none', axis.ticks.x = element_blank())+
theme(axis.text = element_text(size = 22, color= 'black'))+
theme(axis.line.x = element_blank())+
theme(axis.ticks = element_line(size = 1, color="black"),
    axis.ticks.length = unit(.5, "cm"))+
theme(text = element_text(size = 22))
```


graphics

```
x11() # opne a new window for graphics
graphics.off() # close the new window
```

Normal distribution

Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean.

Functions

dice

```
dice <- c(1:6)
myluck<- function(x){
  myluck <- sample(dice, size = 1, replace = T)</pre>
```

```
return(myluck)
}
myluck()
## [1] 2
```

pick a name

```
names <- c('saneesh','appu','sanusha')
who <- function(x){
  who <- sample(names, 1, T)
  return(who)
}</pre>
```

[1] "saneesh"

function to split

```
df <- data.frame(name=as.factor(c('James Bond', 'Spider Man', 'Iron Man')))
# df <- df %>% separate(name, c('Genus', 'Species'), sep = '([])')
shorten <- function(df){
   name_split <- df %>% separate(name, c('Genus', 'Species'), sep = '([])')
   print(name_split)
}
shorten(df)
```