Lecture Notes: Linear Second-Order Differential Equations — Non-Homogeneous (Course by: Professor Dave on YouTube)

Thobias K. Høivik

April 23, 2025

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$$

Is non-homogeneous because instead of being equal to 0, it is equal to a function of x. We start by finding the general solution to the equivalent homogeneous case.

$$a\lambda^2 + b\lambda + c = 0$$

This is known as the complementary solution. Now we must find the **particular integral** (solution compatible with the right side f(x)).

Suppose we want to solve

$$y'' - 5y' + 6y = e^x$$

If we pretend that the left hand side equals 0 instead, we get a homogeneous differential equation with general solution

$$y_{CF} = Ae^{2x} + Be^{3x}$$

Trial Functions

We find a corresponding trial function from the table below and proceed.

Form of $f(x)$	Trial Solution $y_p(x)$
$P_n(x)$ (polynomial of degree n)	$A_0 + A_1 x + \dots + A_n x^n$
$e^{\alpha x}$	$Ae^{\alpha x}$
$\sin(\beta x), \cos(\beta x)$	$A\cos(\beta x) + B\sin(\beta x)$
$e^{\alpha x} \cdot P_n(x)$	$(A_0 + A_1 x + \dots + A_n x^n) e^{\alpha x}$
$e^{\alpha x} \cdot \cos(\beta x)$ or $e^{\alpha x} \cdot \sin(\beta x)$	$e^{\alpha x}(A\cos(\beta x) + B\sin(\beta x))$
$x^n e^{\alpha x} \sin(px)$ or $x^n e^{\alpha x} \cos(px)$	$(C_n x^n + C_{n-1} x^{n-1} + \dots + C_0)(C_s \sin px + C_c \cos px)e^{\alpha x}$

Table 1: Choosing Trial Functions for y'' + ay' + by = f(x)

We must choose a trial function from this table based on the form of f(x). We have $f(x) = e^x$ so we get the trial function

$$y_{PI}(x) = Ce^x$$

The function must be linearly independent of our complementary function, which this function is. We then substitute in our trial function for y in the original differential equation to get:

$$Ce^x - 5Ce^x + 6Ce^x = e^x \Rightarrow 2Ce^x = e^x \Rightarrow C = \frac{1}{2}$$

$$y_{PI} = \frac{1}{2}e^x$$

Our general solution then becomes

$$y = y_{CF} + y_{PI}Ae^{2x} + Be^{3x} + \frac{1}{2}e^{x}$$

If we find that our trial function is not linearly independent of the complementary solution we multiply the constant term by x.

Variation of Parameters

Trial functions is not the only way to find the solution to the differential equation. We begin by calculating the **Wronskian**:

$$W(x) = \det \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

In the case of our earlier example we have

$$W(x) = \det \begin{vmatrix} e^{2x} & e^{3x} \\ 2e^{2x} & 3e^{3x} \end{vmatrix} = 3e^{5x} - 2e^{5x} = e^{5x}$$

To find the particular integral we use the formula

$$y_{PI} = y_2 \int \frac{y_1 \cdot f(x)}{W(x)} dx - y_1 \int \frac{y_2 \cdot f(x)}{W(x)} dx$$
$$y_{PI} = e^{3x} \int \frac{e^{3x} \cdot e^x}{e^{5x}} dx - e^{2x} \int \frac{e^{3x} \cdot e^x}{e^{5x}} dx$$
$$= e^{3x} \left(-\frac{1}{2} e^{-2x} \right) - e^{2x} \left(-e^{-x} \right) = \frac{1}{2} e^x$$

So we see that we get the same solution as before.