Nirmal Jayaprasad Nair

Contact Information University of Illinois at Urbana-Champaign Department of Aerospace Engineering

Department of Aerospace Engineering website: nirmaljp6.com Talbot Laboratory phone: 217-305-1356 Urbana, Illinois 61801 email: njn2@illinois.edu

Education

University of Illinois at Urbana-Champaign, Urbana, Illinois 2018 – present Ph.D., Aerospace Engineering GPA: 3.96/4.0

Concentration: Computational Science and Engineering

University of Illinois at Urbana-Champaign, Urbana, Illinois 2016 – 2018 M.S., Aerospace Engineering GPA: 4.0/4.0

Indian Institute of Technology Gandhinagar, Gujarat, India 2012 – 2016 B.Tech. (*Honors*), Mechanical Engineering GPA: 9.24/10.0

Research Interests • Computational fluid dynamics

• Fluid-structure interaction

• High performance computing

• Deep learning

• Reduced-order modeling

• Machine learning

Research Experience

Graduate Research Assistant

September 2018 – present

Ph.D. thesis adviser: Prof. Andres Goza, UIUC, Champaign, IL

Integrating sensor data into reduced-order models (ROMs) using deep learning.

• Developing a state estimation methodology where real-time sensor data is mapped

to the ROM state space using deep neural networks in Pytorch.

Data-driven flow field estimation around an airfoil using passively deployed flaps.

• Passively deployed flaps will be modeled as flow-field estimating sensors by mapping the dynamics of the flaps to the flow-field using snapshot data.

Scalable solver for simulating strongly coupled fluid-interaction flows.

• Developing a parallel CFD solver for simulating fluid-structure interaction problems consisting of rigid and torsionally hinged bodies using MPI and PETSC.

CSRI Summer Intern

June 2019 – August 2019

Adviser: Dr. Kevin Carlberg, Sandia National Laboratories, Livermore, CA Guaranteeing convergence of ROMs on nonlinear manifold using transfer learning.

• Developed an adaptive manifold refinement strategy to enable convergence of ROMs on manifolds built using deep convolutional autoencoders on Tensorflow.

Graduate Research Assistant

August 2016 – August 2018

M.S. thesis adviser: Prof. Maciej Balajewicz, UIUC, Champaign, IL Data-driven reduced-order modeling of advection-dominated fluid flows.

• Developed a novel data-driven model order reduction method for parametric, steady-state fluid flows containing evolving shocks.

Summer Undergraduate Research Fellow

May - July 2015

Adviser: Prof. Austin Minnich, California Institute of Technology, Pasadena, CA

• Designed and fabricated a prototype consisting of thermoelectric generators to power wireless temperature sensors in aircraft.

Summer Research Internship Program

May 2014 – April 2015

Adviser: Prof. Vinod Narayanan, IIT Gandhinagar, India

 Studied the stability characteristics of axisymmetric thermal boundary layer of various fluids in response to heating and cooling.

Skills

Programming: Python, Matlab, Fortran, C.

Machine Learning: Pytorch, Tensorflow.

High Performance Computing: PETSC, MPI, OpenMP.

CFD and CAD: Ansys Fluent, Star CCM+, Autodesk Inventor.

Miscellaneous: Latex, Git.

Publications

- 4. N.J.Nair and A. Goza. A strongly coupled immersed boundary method for fluid-structure interaction that mimics the efficiency of stationary body methods. *Preprint arXiv:2103.06415*, 2021.
- 3. N.J. Nair and A. Goza. Leveraging reduced-order models for state estimation using deep learning. *Journal of Fluid Mechanics*, 897, 2020.
- N.J. Nair and M. Balajewicz. Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks. *International Journal for Numerical Methods in Engineering*, 2019; 117:1234–1262.
- 1. N. Jayaprasad, et al. Exploring viscous damping in undergraduate Physics laboratory using electromagnetically coupled oscillators. *Preprint arXiv:1311.7489*, 2013.

Conference Talks

Invited Talks

1. N.J. Nair and M. Balajewicz. Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter dependent shocks. SIAM Conference on Computational Science and Engineering, 2019.

Contributed Talks

- 5. N.J. Nair and A. Goza. Numerical study of a passively deployable flap for aero-dynamic flow control. *APS*, *Division of Fluid Dynamics*, 2020.
- 4. N.J. Nair and A. Goza. Integrating sensor data into reduced-order models with deep learning. APS, Division of Fluid Dynamics, 2019.
- 3. N.J. Nair and M. Balajewicz. Physics based interpolation for steady parametric partial differential equations. APS, Division of Fluid Dynamics, 2017.
- 2. N.J. Nair and U. Shah. A simple computational tool for studying acoustic waves in nonlinear medium. ASME, International Design Engineering Technical Conferences, 2017.
- 1. N. Jayaprasad and V. Narayanan. Effect of viscosity stratification on stability of axisymmetric boundary layer. APS, Division of Fluid Dynamics, 2015.

Honors & Awards

AE Outstanding Graduate Student Fellowship, UIUC	2020
Conference Travel Grant, APS DFD	2019
SIAM Student Travel Award, SIAM CSE	2019
Conference Travel Award for Graduate Students, UIUC	2017
MSNDC Student Travel Grant, ASME IDETC	2017

Award for 'Best Performance in the core subjects of Engineering Graphics, Manufacturing and Workshop Practice', IIT Gandhinagar 2016

Summer Undergraduate Research Fellowship, Caltech	2015
Dean's List, IIT Gandhinagar	$2013,\ 2014,\ 2015$
Merit cum Means Scholarship, IIT Gandhinagar	2012,2013,2014
Winner of Ricoh Printer Design Challenge, IIT Gandhinagar	2014

Projects

Aeroacoustics, UIUC

Spring 2021

 Developed a nonlinear modal decomposition framework to accurately represent transient fluid flows and extract meaningful flow structures using deep convolution autoencoders.

Nonlinear modal decomposition of transient fluid flows, UIUC Spring 2020

 Developed a nonlinear modal decomposition framework to accurately represent transient fluid flows and extract meaningful flow structures using deep convolution autoencoders.

MPI and OpenMP based parallel 2D CFD solver, UIUC

• Developed a parallel solver based on finite difference methods to solve the 2D advection-diffusion equation using MPI and OpenMP.

Passive flow control using vortex generators, UIUC

Fall 2016

Fall 2018

• Studied passive flow control using vortex generators to delay shock induced flow separation on an Onera M6 wing in transonic flow regime using Ansys Fluent.

Academi	ic
Services	and
Affiliatio	ns

Reviewer, Journal of Computational Physics	2018 -
Reviewer, International Journal for Numerical Methods in Engineering	2018-
Student Member, Society of Industrial and Applied Mathematicians (SIAM)	2018 -
Student Member, American Physical Society (APS)	2017 -

Teaching

Teaching Assistant, UIUC

Fall 2019, Fall 2020

AE 433: Aerospace Propulsion

Tutor, IIT Gandhinagar

Spring 2016

ES 212: Momentum, Heat and Mass Transfer

Teaching Assistant, IIT Gandhinagar

Fall 2013

ES 101: Engineering Graphics

Leadership

Mentor, Summer Undergraduate Research, UIUC May – July 2017 Mentored and supervised an undergraduate student on his research project and pro-

vided the necessary guidance to maintain progress.

Events Coordinator, Amalthea' 13, IIT Gandhinagar May – October 2013 Led a team of 21 students to plan and organize various technical events at Amalthea'13 which is the annual technical summit of IIT Gandhinagar.