# 3. Schaltungsanalyse (4 LE)

#### Aufgabe 3.1

Eine Lampe wird über einen Vorwiderstand an U = 120 V angeschlossen. Die Lampe hat folgende Daten im Nennbetrieb:  $U_{LA}$  = 45 V, I = 0,5 A. Durch die Lampe soll der Nennstrom I fließen. Gesucht wird der Wert des Vorwiderstandes R.

[Ergebnis:  $R_V = 150 \Omega$ ]

#### Aufgabe 3.2

Ein Stromkreis besteht aus dem Leitungswiderstand  $R_L$  (Hinleitung und Rückleitung) und dem Verbraucherwiderstand R. Als Leitung dient ein Kupferdraht ( $\varrho_{Cu} = 0,018~\Omega\cdot mm^2/m$ ) mit dem Durchmesser d = 1,5 mm und einer Länge von jeweils 200 m. Der Verbraucherwiderstand hat den Wert R = 50  $\Omega$ . Die Quellenspannung U beträgt 100 V.

- a) Zeichnen Sie die Schaltung
- b) Berechnen Sie:
  - Den gesamten Leitungswiderstand R<sub>L</sub>,
  - die Spannung U<sub>R</sub> die am Verbraucher R anliegt,
  - die Teilspannung ΔU auf der gesamten Leitung in % von der Quellenspannung U.

[Ergebnis: b)  $R_L = 4,075 \Omega$ ;  $U_R = 92,5 V$ ;  $u_L = 7,5 \%$ ]

#### Aufgabe 3.3

Eine Spannungsteilerschaltung soll bei einer Eingangsspannung von U = 60 V so ausgelegt werden, dass im unbelasteten Zustand (Bild a) die Ausgangsspannung  $U_2$  = 10 V ist und im Kurzschlussfall (Bild b) der Strom  $I_K$  = 1,0 A fließt.

Welche Werte sind für die Teilwiderstände R<sub>1</sub> und R<sub>2</sub> erforderlich?



[Ergebnis: a)  $R_1 = 60 \Omega$ , b)  $R_2 = 12 \Omega$ ]

# Aufgabe 3.4

Eine Spannungsteilerschaltung (siehe Bild) liegt an der Eingangsspannung U = 100 V. Der Gesamtwiderstand des Teilers beträgt R =  $R_1$  +  $R_2$  = 400  $\Omega$ . Ausgangsseitig ist ein Belastungswiderstand  $R_B$  = 800  $\Omega$  angeschlossen, an dem die Spannung  $U_2$  = 40 V liegen soll.

Wie groß müssen die Teilwiderstände R<sub>1</sub> und R<sub>2</sub> sein?



[Ergebnis: a)  $R_1 = 220 \Omega$ , b)  $R_2 = 180 \Omega$ ]

# Aufgabe 3.5

Die Schaltung (siehe Bild) mit den Widerständen  $R_1$  = 20  $\Omega$ ,  $R_2$  = 30  $\Omega$ ,  $R_3$  = 10  $\Omega$  und  $R_4$  = 50  $\Omega$  liegt an der Spannung U = 12 V.

Bestimmen Sie die Ströme  $I_1$ ,  $I_2$  und  $I_3$ .



[Ergebnis: a)  $I_1 = 300 \text{ mA}$ , b)  $I_2 = 200 \text{ mA}$ , c)  $I_3 = 100 \text{ mA}$ ]

# Aufgabe 3.6

Die dargestellte Schaltung (siehe Bild) enthält die Widerstände  $R_1$  = 50  $\Omega$ ,  $R_2$  = 45  $\Omega$ ,  $R_3$  = 40  $\Omega$ ,  $R_4$  = 55  $\Omega$  und  $R_5$  = 60  $\Omega$ . Die vorhandene Spannungsquelle liefert die Spannung U = 48 V.

Wie groß ist der Strom Ix?



[Ergebnis:  $I_X = 1,03 A$ ]

#### Aufgabe 3.7

Die dargestellte Schaltung (siehe Bild) enthält eine Spannungsquelle mit der Quellenspannung U = 36 V und eine Stromquelle, die den Strom I = 2,4 A liefert. Die vorhandenen Widerstände haben die Werte  $R_1$  = 30  $\Omega$ ,  $R_2$  = 50  $\Omega$ ,  $R_3$  = 40  $\Omega$  und  $R_4$  = 60  $\Omega$ .

Wie groß ist der Strom Ix?



[Ergebnis:  $I_X = 1,98 A$ ]

# Aufgabe 3.8

Die folgende Schaltung (siehe Bild) enthält die Widerstände  $R_1$  = 55  $\Omega$ ,  $R_2$  = 40  $\Omega$ ,  $R_3$  = 45  $\Omega$ ,  $R_4$  = 50  $\Omega$  und  $R_5$  = 60  $\Omega$ .

Bestimmen Sie den Gesamtwiderstand (Ersatzwiderstand) der Anordnung.



[Ergebnis:  $R = 50.8 \Omega$ ]

# Aufgabe 3.9

Die folgende Schaltung (siehe Bild) enthält die Widerstände  $R_1$  = 1,0 k $\Omega$ ,  $R_2$  = 1,5 k $\Omega$ ,  $R_3$  = 2,0 k $\Omega$ ,  $R_4$  = 3,0 k $\Omega$ ,  $R_5$  = 2,0 k $\Omega$  und  $R_6$  = 2,5 k $\Omega$ .

Bestimmen Sie den Gesamtwiderstand (Ersatzwiderstand) der Anordnung.



[Ergebnis:  $R = 691 \Omega$ ]