Stated Choice Experiments: survey design and performance

Empirical Transport Economics

Vincent van den Berg v.a.c.vanden.berg@vu.nl +31 20 598 2442

Objectives for today

- Learn about the basics of Stated Choice Experiments (SCE)
 - Assigned reading is needed background info on discrete choice
- Later lectures will continue with analysing the data and using the results in policy evaluation

Choice behaviour

- Continuous vs discrete choices
 - Continuous: how much is consumed of each good?
 - Discrete: which good is consumed?
- Q (in-class):
 - Examples of Discrete choices?
- Q: Experience with discrete choice?
 - Which master are you doing?

What is Stated Preference or Stated Choice?

- Techniques that use individuals' statements about their preferences for a set of hypothetical (transport) options to estimate utility functions
- The options are pre-specified in terms of their attribute levels
- Discrete choice vs contingent valuation
- Q(in-class): SP vs RP?
 - Hypothetical bias and misunderstanding
 - Lack of (uncorrelated) data

Specification of an experiment

- Attributes = variables
 - Levels = values of attributes
- Alternatives = choice options
- Choice context
- Reference levels
- Variation and correlation
- Interactions
 - Dutch VOT & VOR study

Radom utility theory

- Choose the option with the highest utility
 - $-U_i=V_i+\varepsilon_i$
 - ϵ_i : Unobeserved utility (by the analysisist)
 - V_i: observed utility
 - E.g. $V_i = B1 \cdot TT_i + B2 \cdot Cost_i + ASC_i$
 - Marginal utilities & Alternative specific constants
 - Value of time: B1 / B2
 - WTP for (an hour of) time savings
 - Monetary value of (an hour of) time savings
- For example: bus vs bike

SP/SC Alternatives, attributes, levels

Statistical Design:

Defines alternatives (and choices) for each respondent by combining attribute levels

Labelled vs unlabelled alternatives

- Generic vs alternative specific variables and coefficients
 - Generic: travel time, cost
 - Alternative specific: parking cost, access time to rail
- Within mode vs between mode experiment
 - Within mode: no label or Alternative Specific Constant?
 - Alternative specific: with label and ASC

Example within mode (unlabelled)

TRAIN A

Travel time: 2h50

• Ticket: 30 euro

• On time: 80%

• 30 min delay: 12%

• 60 min delay: 8%

TRAIN B

Travel time: 2h20

• Ticket: 40 euro

• On time: 90%

• 30 min delay: 8%

• 60 min delay: 2%

Example between mode (labelled)

CAR

Travel time: 1h30

• Petrol: 20 euro

• Toll: 3.5 euro

Parking: 10 euro

 Other car specific benefits => (ASC)

TRAIN

• Travel time: 2h10

• Ticket: 40 euro

• Access: 15 min

• Egress: 25 min

Do you have any questions?

Experimental Design

Why do a SC experiment?

- Aim is to estimate a discrete choice model and the coefficients of utility function
- These used for:
 - Estimating value of attributes (e.g. VOT)
 - Estimating demand elasticities
 - Estimating population market shares / volumes after policy changes

Experimental design - overview

- Design specified in terms of differences in attribute levels
 - Discrete choice -> only the difference in utility between alternatives matters
- Orthogonal versus correlated design
 - You want lot's of variation in attributes and little correlation between them
 - But this may entail unrealistic levels and many many choice situations
- Need to have trading
- Referencing and prospect theory

Orthogonal versus correlated design

- Orthogonal versus correlated design
 - More correlation in attributes means larger s.e.'s
 - But full orthogonal = respondents see all possible combination of the levels of the attributes
 - Respondents tire from such a long questionnaire
 - Quit or give random answers
 - E.g. 3 attributes with 4 levels: 4*4*4=64 choices
- Some correlation (say <0.50) is a small problem
- High correlation (say >0.90) leads to estimation failure (wrong sign, insignificant coefficients)

Full factorial design (differences)

		Attributes		
		Fare _{B-A}	Time _{B-A}	Frequency _{B-A}
Choices	1	0	0	0
	2	0	0	1
	3	0	1	0
	4	0	1	1
	5	1	0	0
	6	1	0	1
	7	1	1	0
	8	1	1	1

Fractional factorial design (diff.)

		Attributes			
		Fare _{B-A}	Time _{B-A}	Frequency _{B-A}	
Choices	1	0	0	0	
	2	0	0	1	
	3	0	1	0	
	4	0	1	1	
	5	1	0	0	
	6	1	0	1	
	7	1	1	0	
	8	1	1	1	

You need to have trading

- If one alternative is better in all attributes we learn nothing about preferences
 - There is no trade-off / no trading
- Yet such dominant choice situations are often included in practice
 - See if people understand the problem

Dominant option B

TRAIN A

- Travel time: 2h50
- Ticket price: 40 euro
- Delayed: 20%
- 30 min delay: 12%
- 60 min delay: 8%

TRAIN B

- Travel time: 2h00
- Ticket price: 30 euro
- Delayed: 10%
- 30 min delay: 8%
 - 60 min delay: 2%

With trading

TRAIN A

• Travel time: 2h50

• Ticket: 30 euro

• Delayed: 20%

• 30 min delay: 20%

• 60 min delay: 0%

TRAIN B

Travel time: 2h20

Ticket: 40 euro

Delayed: 10%

• 30 min delay: 8%

✓ • 60 min delay: 2%

Prospect theory and referencing

- Kahneman and Tverski (1979) developed theory about how people choose between probabilistic alternatives and evaluate gains and losses
- Evaluation relative to reference point
- Asymmetrical value function: losses hurt more than gains feel good

Referencing

- Ask questions in context of actual choice situation known to respondent
- Create attribute levels of SP experiment as variations of existing choice situation:
 - Existing travel time = 30 min
 - SP travel times are: 30 min, 33 min, 36 min
 - or: "Same as now", "3 min longer", "6 min longer"
 - Same for all other attributes

Referencing

- Basing the question on an actual choice setting (e.g. trip) gives better answers
 - Less hypothetical
 - People can understand what is going on
 - Asking someone who has never flown about their WTP for reliable luggage handling may give less accurate results
 - Just giving people the difference in attribute levels will result in confused respondents
- Different design for different references?
- Can allow for asymmetric marginal utilities

Prospect theory

- Referencing allows for asymmetric marginal utilities
 - E.g. a travel time that is 1 min. longer than the reference gives more disutility than the utility you gain from a 1 min. quicker trip
 - U= $\alpha 1 * (TT_i TT_{reff}) + \alpha_{loss} * IF[TT_i > TT_{reff}, TT_i TT_{reff}, 0]$
 - Or U= IF[TT_i>TT_{reff}, α_{loss} , α_{gain}] * (TT_i TT_{reff})

Do you have any questions?

- Would you add a constant to the utility function of an unlabelled alternative (e.g. road A vs Road B)?
- In a stated choice survey, would you include a question with a dominated alternative?
 - e.g. road A vs road B, where road A is cheaper and quicker
 - What would you learn from the answer to such a question?
- Generic variables
 - Should we use a different travel time and/or cost coefficient for bus, train and car? Or should they be generic?
 - Should we use a different travel time and/or cost coefficient for flying first-class or economy class?

Examples of SP questions

Example 1: Crowding experiment

- Study for Syndicat des Transports Ile de France
- Passengers' value of Crowding in vehicles
 - Unpleasant if the metro is really busy
 - Seated vs standing
- Results are used in Cost Benefit Analysis and a demand model

Example 1: Crowding experiment

Pensez à votre déplacement de Tolbiac à Châtelet. Imaginez que vous ayez le choix entre les deux conditions de déplacement décrites ci-dessous.

Dans laquelle de ces deux conditions de durée, d'affluence et de position préférez-vous effectuer votre déplacement ?

On suppose que la durée totale du trajet, le niveau d'affluence et votre position ne changeront pas pendant tout le trajet.

	Métro voie 1	Métro voie 2	
Durée du trajet.	14 minutes	15 minutes	
Affluence dans le véhicule:	100 % des sièges occupés, des voyageurs debout autour des portes et partout dans le véhicule	25 % des sièges occupés, et personne debout	

No cost variable was used, as may be difficult for people to imagine that this would differ on the same metro line in Paris

Wardman & Whelan = overview article of crowding studies

Travel time multipliers (multiplying existing VOT's)

Example 2: Mode Choice

Think about your journey from Tolbiac to Chatelet. Which mode would you choose?

Pensez à votre déplacement de Tolbiac à Châtelet. Quel mode choisiriez-vous ?

17 minutes

Toutes les 5 minutes

Durée du trajet.
Fréquence:
Temps pour rejoindre le mode:
Design de l'interieur.

0

Toutes les 10 minutes

0

Example 3: Dutch VOT and VOR

- Kouwhoven et al. (2014):
 - we will study the paper in debt later in the course
- New values of time (VOT) & of travel time reliability (VOR) for The Netherlands
 - VOT: Value in euros of lowering travel time by 1 hour
 - VOR: Value in euros of lowering the standard deviation of travel time by one unit
 - Previous VOT was old (1997)
 - Updated for income growth & inflation
 - But this can only do so much
 - No VOR

Example 3: Modes

- Passenger travel: train, car, bus/metro/tram & airplane
- Freight: water, road & rail
- Recreational navigation
 - (Water users complained before that cost-benefits studies ignored the effect on them)

Example 3: Experiments

• 1 Only cost & time (same set-up as in 1997)

Welke rit heeft uw voorkeur?

Rit A

Gebruikelijke reistijd: 60 min. Kosten:

€ 2.80

Rit B

Gebruikelijke reistijd: 45 min. Kosten: € 3.60

O Voorkeur voor Rit B

O Voorkeur voor Rit A

Fig. 1. Example of SP question in experiment 1 for car respondents.

2 cost, time & unreliability

O Voorkeur voor Rit A

Vertrektijd: U heeft een even grote kans op elk van deze 5 reistijden en dus om op deze tijdstippen aan te komen: Reistiid: Aankomsttiid: 35 min. 08:35 45 min. 08:45 45 min. 08:45 55 min. 08:55 65 min. 09:05 Gebruikelijke reistijd: 45 min. Kosten: € 2.80

Rit B

O Voorkeur voor Rit B

Fig. 3. Example of SP question in experiment 2b for car respondents.

2/7

Example 3: Importance design

- Nobody would understand a survey where you just give the standard deviation
 - Questions with 5 equally possible outcomes
 - Statistical design, so as to have the lowest correlation between cost, mean travel time and its standard deviation
 - => It was impossible to estimate a scheduling model, as used in the bottleneck model

Example 3: Importance design

- Statistical design is optimized to estimate your aimed utility function
 - So we could not estimate different models such as
 - Reliability based on the different possible outcomes
 - Only as standard deviation
 - Schedule delay model
 - Highly correlated early and late values

Example 3: other modes

- We also studied the VOT and VOR for recreational navigation
 - But in the trial respondents found questions about shorter trips odd
 - It is a hobby activity
 - So changed to waiting at bridges and locks, which is annoying

Example 3: Referencing

- The final model allowed for referencing
 - By making the value of the attributes cost and travel time relative to their reference levels
 - So $\Delta TT_i=0$ would mean same travel time as the respondent said was their last/normal trip
 - And by allowing the marginal utility of positive values to be different from negative ones

Conclusion

- Design matters
 - Statistical and looks
 - Design specified in terms of differences
 - Orthogonal versus correlated design
 - Dominant options versus trade-offs
 - Referencing and prospect theory
- Labled vs unlabled alternatives
- Q: Should we use a different travel time and/or cost coefficient for bus, train and car?
- Q: Should we use a different travel time and/or cost coefficient for flying first-class or economy class?