

CLAIMS

What is claimed is:

1. A compound of Formula (I):

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Q is -(CR^{7a})_m-R⁴,
-(CR^{7a})_n-S-R⁴,
-(CR^{7a})_n-O-R⁴,
-(CR^{7a})_m-N(R^{7b})-R⁴,
-(CR^{7a})_n-S(=O)-R⁴,
-(CR^{7a})_n-S(=O)₂-R⁴, or
-(CR^{7a})_n-C(=O)-R⁴;
provided when n is 0, then R⁴ is not H;

m is 1, 2, or 3;

n is 0, 1, or 2;

R⁴ is H,
C₁-C₈ alkyl substituted with 0-3 R^{4a},
C₂-C₈ alkenyl substituted with 0-3 R^{4a},
C₂-C₈ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, OR^{14a}, OR²², SR²², C(=O)OR²², NR²¹R²², S(=O)R²², S(=O)₂R²²,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},

C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂,

NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b};

C₂-C₆ alkenyl substituted with 0-3 R^{5b};

C₂-C₆ alkynyl substituted with 0-3 R^{5b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C₆-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶,

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁶ is H;

C₁-C₆ alkyl substituted with 0-3 R^{6a};
C₃-C₁₀ carbocycle substituted with 0-3 R^{6b}; or
C₆-C₁₀ aryl substituted with 0-3 R^{6b};

R^{6a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, aryl or CF₃;

R^{6b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

R⁷, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7a}, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7b} is H or C₁-C₄ alkyl;

Ring B is a 7 membered lactam,

wherein the lactam is saturated, partially saturated or unsaturated; wherein each additional lactam carbon is substituted with 0-2 R¹¹; and, optionally, the lactam contains a heteroatom selected from -O-, -S-, -S(=O)-, -S(=O)₂-, -N=, -NH-, and -N(R¹⁰)-;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a benzo fused radical; wherein said benzo fused radical is substituted with 0-4 R¹³;

additionally, two R¹¹ substituents on adjacent atoms may be combined to form a 5 to 6 membered heteroaryl fused radical, wherein said 5 to 6 membered heteroaryl fused radical comprises 1 or 2 heteroatoms selected from N, O, and S; wherein said 5 to 6 membered heteroaryl fused radical is substituted with 0-3 R¹³;

additionally, two R¹¹ substituents on the same or adjacent carbon atoms may be combined to form a C₃-C₆ carbocycle substituted with 0-3 R¹³;

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹,
S(=O)₂NR¹⁸R¹⁹, S(=O)₂R¹⁷;
C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};
C₆-C₁₀ aryl substituted with 0-4 R^{10b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};

R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or aryl substituted with 0-4 R^{10b};

R^{10b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹¹, at each occurrence, is independently selected from
H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, NR¹⁸R¹⁹, C(=O)R¹⁷,
C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, CF₃;
C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};
C₆-C₁₀ aryl substituted with 0-3 R^{11b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃;

phenyl substituted with 0-3 R^{11b};

C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

W is a bond or -(CR⁸R^{8a})_p-;

p is 0, 1, 2, 3, or 4;

R⁸ and R^{8a}, at each occurrence, are independently selected from H, F, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl and C₃-C₈ cycloalkyl;

X is a bond;

C₆-C₁₀ aryl substituted with 0-3 RX^b;

C₃-C₁₀ carbocycle substituted with 0-3 RX^b; or

5 to 10 membered heterocycle substituted with 0-2 RX^b;

RX^b, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ halothioalkoxy;

Y is a bond or -(CR⁹R^{9a})_t-V-(CR⁹R^{9a})_u-;

t is 0, 1, or 2;

u is 0, 1, or 2;

R⁹ and R^{9a}, at each occurrence, are independently selected from H, F, C₁-C₆ alkyl or C₃-C₈ cycloalkyl;

V is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)2-, -N(R¹⁹)-, -C(=O)NR^{19b}-, -NR^{19b}C(=O)-, -NR^{19b}S(=O)2-, -S(=O)2NR^{19b}-, -NR^{19b}S(=O)-, -S(=O)NR^{19b}-, -C(=O)O-, or -OC(=O)-;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C₂-C₆ alkenyl substituted with 0-3 R^{12a};

C₂-C₆ alkynyl substituted with 0-3 R^{12a};

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃,

S(=O)CH₃, S(=O)2CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, aryl, C₃-C₆ cycloalkyl, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁶, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;

R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, aryl substituted by 0-4 R^{17a}, or -CH₂-aryl substituted by 0-4 R^{17a};

R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

R¹⁸, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R^{19b}, at each occurrence, is independently is H or C₁-C₄ alkyl;

R²¹ is H, phenyl, benzyl, or C₁-C₄ alkyl; and

R²² is C₁-C₄ alkyl, C₂-C₄ alkenyl, or C₃-C₄ alkynyl.

2. A compound, according to Claim 1, of Formula (I) or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Q is -(CR^{7a})_m-R⁴,
-(CR^{7a})_n-S-R⁴,
-(CR^{7a})_n-O-R⁴, or
-(CR^{7a})_m-N(R^{7b})-R⁴;

m is 1 or 2;

n is 0 or 1;

R⁴ is H,
C₁-C₈ alkyl substituted with 0-3 R^{4a},
C₂-C₈ alkenyl substituted with 0-3 R^{4a},
C₂-C₈ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a} , at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, OR^{14a}, C(=O)OR²², SR²², OR²², NR²¹R²², S(=O)R²², S(=O)₂R²², C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-, C₃-C₁₀ carbocycle substituted with 0-3 R^{4b}, C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R^5 is H;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b};
C₂-C₆ alkynyl substituted with 0-3 R^{5b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; and
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b} , at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, C₃-C₁₀ carbocycle substituted with 0-3 R^{5c}; C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁶ is H, methyl, or ethyl;

R⁷, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7a}, at each occurrence, is independently H or C₁-C₄ alkyl;

R^{7b} is H or C₁-C₄ alkyl;

Ring B is selected from:

R¹⁰ is H, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, S(=O)R¹⁷;

C₁-C₆ alkyl optionally substituted with 0-3 R^{10a};

C₆-C₁₀ aryl substituted with 0-4 R^{10b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{10b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{10b};

R^{10a}, at each occurrence, is independently selected from H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or aryl substituted with 0-4 R^{10b};

R^{10b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹¹, at each occurrence, is independently selected from

H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, NR¹⁸R¹⁹, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, CF₃;

C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};

C₆-C₁₀ aryl substituted with 0-3 R^{11b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃;

phenyl substituted with 0-3 R^{11b};

C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

W is a bond or -(CH₂)_p-;

p is 1 or 2;

X is a bond;

phenyl substituted with 0-2 R^{Xb};

C₃-C₆ carbocycle substituted with 0-2 R^{Xb}; or

5 to 6 membered heterocycle substituted with 0-2 R^{Xb};

R^{Xb}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkyl, C₁-C₃ haloalkoxy, and C₁-C₃ halothioalkoxy;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)₂-, -N(R¹⁹)-, -C(=O)NR^{19b}-, -NR^{19b}C(=O)-, -NR^{19b}S(=O)₂-, -S(=O)₂NR^{19b}-, -NR^{19b}S(=O)-, -S(=O)NR^{19b}-, -C(=O)O-, or -OC(=O)-;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C₂-C₆ alkenyl substituted with 0-3 R^{12a};

C₂-C₆ alkynyl substituted with 0-3 R^{12a};

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,
C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃,
S(=O)₂CH₃,
C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,
C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁶, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;

R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, aryl substituted by 0-4 R^{17a}, or -CH₂-aryl substituted by 0-4 R^{17a};

R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;

R^{19b}, at each occurrence, is independently is H or C₁-C₄ alkyl;

R²¹ is H, phenyl, benzyl, or C₁-C₄ alkyl; and

R²² is C₁-C₄ alkyl, C₂-C₄ alkenyl, or C₃-C₄ alkynyl.

3. A compound, according to Claim 2, of Formula (Ib):

(Ib)

or a pharmaceutically acceptable salt or prodrug thereof,
wherein:

Q is -(CHR⁷)_m-R⁴,
-(CHR⁷)_n-S-R⁴,
-(CHR⁷)_n-O-R⁴, or
-(CHR⁷)_m-N(R^{7b})-R⁴;

m is 1 or 2;

n is 0 or 1;

R⁴ is H,

C₁-C₈ alkyl substituted with 0-3 R^{4a},
C₂-C₈ alkenyl substituted with 0-3 R^{4a},
C₂-C₈ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, OR^{14a}, C(=O)OR²², SR²², OR²², NR²¹R²², S(=O)R²², S(=O)₂R²², C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-, C₃-C₁₀ carbocycle substituted with 0-3 R^{4b}, C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b};
C₂-C₆ alkynyl substituted with 0-3 R^{5b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; and
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:
H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, R¹⁵R¹⁶;
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁷, at each occurrence, is independently H, methyl, or ethyl;

R^{7b} is H, methyl, or ethyl;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from

H, C₁-C₄ alkoxy, Cl, F, Br, I, =O, CN, NO₂, NR¹⁸R¹⁹, C(=O)R¹⁷, C(=O)OR¹⁷, C(=O)NR¹⁸R¹⁹, S(=O)₂NR¹⁸R¹⁹, CF₃;

C₁-C₆ alkyl optionally substituted with 0-3 R^{11a};

C₆-C₁₀ aryl substituted with 0-3 R^{11b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{11b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{11b};

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₆ alkyl, OR¹⁴, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃;

phenyl substituted with 0-3 R^{11b};

C₃-C₆ cycloalkyl substituted with 0-3 R^{11b}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};

C₂-C₆ alkenyl substituted with 0-3 R^{12a};

C₂-C₆ alkynyl substituted with 0-3 R^{12a};

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)2-;

R¹⁶, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)2-;

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-7 membered ring wherein said 4-7 membered ring optionally contains an additional heteroatom selected from O or NH;

R¹⁷ is H, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl,
aryl substituted by 0-4 R^{17a}, or
-CH₂-aryl substituted by 0-4 R^{17a};

R^{17a} is H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, butoxy, -OH, F, Cl, Br, I, CF₃, OCF₃, SCH₃, S(O)CH₃, SO₂CH₃, -NH₂, -N(CH₃)₂, or C₁-C₄ haloalkyl;

R¹⁸, at each occurrence, is independently selected from
H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)2-;

R¹⁹, at each occurrence, is independently selected from
H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

4. A compound according to Claim 3 of Formula (I) or a pharmaceutically acceptable salt or prodrug thereof, wherein:

Q is -(CH₂)_m-R⁴,
-(CH₂)_n-S-R⁴,
-(CH₂)_n-O-R⁴, or
-(CH₂)_m-N(H)-R⁴;

m is 1 or 2;

n is 0 or 1;

R⁴ is C₁-C₈ alkyl substituted with 0-3 R^{4a},
C₂-C₈ alkenyl substituted with 0-3 R^{4a},
C₂-C₈ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR²², OR^{14a}, NR²¹R²², S(=O)R²², S(=O)₂R²², C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-, C₃-C₁₀ carbocycle substituted with 0-3 R^{4b}, C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;

C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b};
C₂-C₆ alkynyl substituted with 0-3 R^{5b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, R¹⁵R¹⁶;
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from H, =O, NR¹⁸R¹⁹, CF₃; C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b}; C₃-C₆ carbocycle substituted with 0-3 R^{11b}; and 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from H, C₁-C₄ alkyl, OR¹⁴, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₈ alkyl substituted with 0-3 R^{12a};
C₂-C₆ alkenyl substituted with 0-3 R^{12a}; or
C₂-C₆ alkynyl substituted with 0-3 R^{12a};

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, -C(=O)NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}; and wherein said 5 to 10 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl, benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl;

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-;

R¹⁶, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, benzyl, phenethyl,
(C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-; and

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to
which they are attached, may combine to form a 4-6
membered ring wherein said 4-6 membered ring
optionally contains an additional heteroatom selected
from O or NH, wherein said 4-6 membered ring is
selected from imidazolidinyl, oxazolidinyl, thiazolidinyl, piperazinyl,
morpholinyl, and thiomorpholinyl;

R¹⁸, at each occurrence, is independently selected from
H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl,
(C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from
H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, phenethyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

5. A compound according to Claim 4 wherein:

Q is -CH₂R⁴, -O-R⁴, or -CH₂-NH-R⁴;

R⁴ is C₁-C₆ alkyl substituted with 0-3 R^{4a},
C₂-C₆ alkenyl substituted with 0-3 R^{4a},

C₂-C₆ alkynyl substituted with 0-3 R^{4a},
C₃-C₆ carbocycle substituted with 0-3 R^{4b},
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from
nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from H, Cl, F, Br, I, CN, NO₂,
NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR^{14a}, OR²², NR²¹R²², S(=O)R²²,
S(=O)₂R²²,
C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,
C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-,
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from
nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle
is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂,
NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,
C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,
C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b}; or
C₂-C₆ alkynyl substituted with 0-3 R^{5b};

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, Cl, F, Br, I, =O;
C₃-C₆ carbocycle substituted with 0-3 R^{5c};
phenyl substituted with 0-3 R^{5c}; or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from H, =O, NR¹⁸R¹⁹, CF₃; C₁-C₄ alkyl optionally substituted with 0-1 R^{11a}; phenyl substituted with 0-3 R^{11b}; C₃-C₆ carbocycle substituted with 0-3 R^{11b}; and 5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C₁-C₄ alkyl substituted with 0-3 R^{12a};

C₂-C₄ alkenyl substituted with 0-3 R^{12a}; or

C₂-C₄ alkynyl substituted with 0-3 R^{12a};

R^{12a}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₄ alkyl, or C₂-C₄ alkoxyalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₄ alkyl, and benzyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=O)-, ethyl-C(=O)-,

methyl-S(=O)2-, and ethyl-S(=O)2-;

R¹⁸, at each occurrence, is independently selected from
H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R¹⁹, at each occurrence, is independently selected from
H, methyl, ethyl, propyl, and butyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

6. A compound according to Claim 5 or a pharmaceutically acceptable salt or prodrug thereof wherein:

Q is -CH₂R⁴, -O-R⁴, or -CH₂-NH-R⁴;

R⁴ is C₁-C₆ alkyl substituted with 0-2 R^{4a},
C₂-C₆ alkenyl substituted with 0-2 R^{4a},
C₂-C₆ alkynyl substituted with 0-2 R^{4a}, or
C₃-C₆ cycloalkyl substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, OH, F, Cl, Br, I, CN, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, OCF₃; C₃-C₆ carbocycle substituted with 0-3 R^{4b}, phenyl substituted with 0-3 R^{4b}, or 5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thieryl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b} , at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R^5 is H;
C₁-C₄ alkyl substituted with 0-1 R^{5b};
C₂-C₄ alkenyl substituted with 0-1 R^{5b}; or
C₂-C₄ alkynyl substituted with 0-1 R^{5b};

R^{5b} , at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃;
C₃-C₆ carbocycle substituted with 0-2 R^{5c};
phenyl substituted with 0-3 R^{5c}; and
5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from

H, =O, NR¹⁸R¹⁹;

C¹-C⁴ alkyl optionally substituted with 0-1 R¹¹a;

phenyl substituted with 0-3 R¹¹b;

5 to 6 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R¹¹b; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R¹¹a, at each occurrence, is independently selected from H, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, phenoxy, F, Cl, =O, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R¹¹b;

R¹¹b, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C¹-C² haloalkyl, and C¹-C² haloalkoxy;

W is a bond;

X is a bond;

Y is a bond;

Z is H;

C¹-C⁴ alkyl substituted with 0-1 R¹²a;

C₂-C⁴ alkenyl substituted with 0-1 R¹²a; or

C₂-C⁴ alkynyl substituted with 0-1 R¹²a;

R^{12a}, at each occurrence, is independently selected from

H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

R¹³, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl; and

R¹⁶, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, benzyl, and phenethyl;

R¹⁸, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R¹⁹, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, and butyl.

7. A compound according to Claim 6 wherein:

R⁵ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂NH₂, -CH₂N(CH₃)₂, -CH₂N(CH₂CH₃)₂, -CH₂CH₂NH₂, -CH₂CH₂N(CH₃)₂, -CH₂CH₂N(CH₂CH₃)₂, -CH₂-cyclopropyl, -CH₂-cyclobutyl, -CH₂-cyclopentyl, -CH₂-cyclohexyl, -CH₂CH₂-cyclopropyl, -CH₂CH₂-cyclobutyl, -CH₂CH₂-cyclopentyl, or -CH₂CH₂-cyclohexyl;

Q is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂-cyclopropyl, -CH₂-cyclobutyl, -CH₂-cyclopentyl, -CH₂-cyclohexyl, -CH₂CH₂-cyclopropyl, -CH₂CH₂-cyclobutyl, -CH₂CH₂-cyclopentyl, -CH₂CH₂-cyclohexyl, -OCH₃, -OCH₂CH₃, -OCH₂CH₂CH₃, -OCH(CH₃)₂, -OCH₂CH₂CH₂CH₃, -OCH₂CH(CH₃)₂, -OCH₂CH₂CH₂CH₂CH₃, -OCH₂CH₂CH₂CH(CH₃)₂, -OCH₂-cyclopropyl, -OCH₂-cyclobutyl, -OCH₂-cyclopentyl, -OCH₂-cyclohexyl, -OCH₂CH₂-cyclopropyl, -OCH₂CH₂-cyclobutyl, -OCH₂CH₂-cyclopentyl, -OCH₂CH₂-cyclohexyl, -CH₂OCH₂CH₃, -CH₂OCH₂CH₂CH₃, -CH₂-OCH(CH₃)₂, -CH₂OCH₂CH₂CH₂CH₃, -CH₂OCH₂CH(CH₃)₂, -CH₂OCH₂CH₂CH₂CH(CH₃)₂, -CH₂O-cyclopropyl, -CH₂O-cyclobutyl, -CH₂O-cyclopentyl, -CH₂O-cyclohexyl, -CH₂OCH₂-cyclopropyl, -CH₂OCH₂-cyclobutyl, -CH₂OCH₂-cyclopentyl, -CH₂OCH₂-cyclohexyl; -CH₂(NH)CH₃, -CH₂(NH)CH₂CH₂CH₃, -CH₂-(NH)CH(CH₃)₂, -CH₂(NH)CH₂CH₂CH₂CH₃, -CH₂(NH)CH₂CH(CH₃)₂, -CH₂(NH)CH₂CH₂CH₂CH₂CH₃, -CH₂(NH)CH₂CH₂CH(CH₃)₂, -CH₂(NH)CH₂CH₂CH₂CH(CH₃)₂, -CH₂(NH)-cyclopropyl, -CH₂(NH)-cyclobutyl, -CH₂(NH)-cyclopentyl, -CH₂(NH)-cyclohexyl, -CH₂(NH)CH₂-cyclopropyl, -CH₂(NH)CH₂-cyclobutyl, -CH₂(NH)CH₂-cyclopentyl, or -CH₂(NH)CH₂-cyclohexyl;

W is a bond;

X is a bond;

Y is a bond;

Z is methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, s-butyl, t-butyl, or allyl;

R¹¹, at each occurrence, is independently selected from

H, =O, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂-, (4-F-phenyl)CH₂CH₂-,
3-F-phenyl, (3-F-phenyl)CH₂-, (3-F-phenyl)CH₂CH₂-,
2-F-phenyl, (2-F-phenyl)CH₂-, (2-F-phenyl)CH₂CH₂-,
4-Cl-phenyl, (4-Cl-phenyl)CH₂-, (4-Cl-phenyl)CH₂CH₂-,
3-Cl-phenyl, (3-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂CH₂-,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂-, (4-CH₃-phenyl)CH₂CH₂-,
3-CH₃-phenyl, (3-CH₃-phenyl)CH₂-, (3-CH₃-phenyl)CH₂CH₂-,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂-, (4-CF₃-phenyl)CH₂CH₂-,
pyrid-2-yl, 4-F-pyrid-2-yl, 4-Cl-pyrid-2-yl,
4-CH₃-pyrid-2-yl, 4-CF₃-pyrid-2-yl, pyrid-3-yl,
4-F-pyrid-3-yl, 4-Cl-pyrid-3-yl, 4-CH₃-pyrid-3-yl,
4-CF₃-pyrid-3-yl, or pyrid-4-yl; and

R¹³, at each occurrence, is independently selected from

H, F, Cl, OH, -CH₃, -CH₂CH₃, -OCH₃, or -CF₃.

8. A compound according to Claim 2 of Formula (I) or a pharmaceutically acceptable salt or prodrug thereof
wherein:

Q is -(CH₂)_m-R⁴,
-(CH₂)_n-S-R⁴,
-(CH₂)_n-O-R⁴, or
-(CH₂)_m-N(H)-R⁴;

m is 1 or 2;

n is 0 or 1;

R⁴ is C₁-C₈ alkyl substituted with 0-3 R^{4a},
C₂-C₈ alkenyl substituted with 0-3 R^{4a},
C₂-C₈ alkynyl substituted with 0-3 R^{4a},
C₃-C₁₀ carbocycle substituted with 0-3 R^{4b},
C₆-C₁₀ aryl substituted with 0-3 R^{4b}, or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR²², OR^{14a}, NR²¹R²², S(=O)R²², S(=O)₂R²², C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-, C₃-C₁₀ carbocycle substituted with 0-3 R^{4b}, C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b};
C₂-C₆ alkynyl substituted with 0-3 R^{5b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};
C₆-C₁₀ aryl substituted with 0-3 R^{5c}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5b}, at each occurrence, is independently selected from:

H, C₁-C₆ alkyl, CF₃, Cl, F, Br, I, =O, CN, NO₂, NR¹⁵R¹⁶;

C₃-C₁₀ carbocycle substituted with 0-3 R^{5c};

C₆-C₁₀ aryl substituted with 0-3 R^{5c}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, and C₁-C₄ haloalkoxy;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from H, =O, NR¹⁸R¹⁹, CF₃;

C₁-C₄ alkyl optionally substituted with 0-3 R^{11a};

phenyl substituted with 0-3 R^{11b};

C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b}; and wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from

H, C₁-C₄ alkyl, OR¹⁴, Cl, F, =O, CN, NO₂, NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶,

CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and

C₁-C₄ haloalkoxy;

W is a bond, -CH₂-, -CH₂CH₂-;

X is a bond;

phenyl substituted with 0-2 RX^b;

C₃-C₆ cycloalkyl substituted with 0-2 RX^b; or

5 to 6 membered heterocycle substituted with 0-2 RX^b;

RX^b, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃,

acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)₂-,

-N(R¹⁹)-, -C(=O)NR^{19b}-, -NR^{19b}C(=O)-, -NR^{19b}S(=O)₂-,

-S(=O)₂NR^{19b}-, -NR^{19b}S(=O)-, -S(=O)NR^{19b}-, -C(=O)O-,

or -OC(=O)-;

Z is C₁-C₃ alkyl substituted with 1-2 R^{12a};
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{12b}; or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; and
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from
H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃,
S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy,
and
C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₆ alkyl, C₂-C₆ alkoxyalkyl, or C₃-C₆ cycloalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₆ alkyl, benzyl, phenethyl, (C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-;

R¹⁶, at each occurrence, is independently selected from
H, OH, C₁-C₆ alkyl, benzyl, phenethyl,

(C₁-C₄ alkyl)-C(=O)-, and (C₁-C₄ alkyl)-S(=O)₂-; and

alternatively, R¹⁵ and R¹⁶, together with the nitrogen to which they are attached, may combine to form a 4-6 membered ring wherein said 4-6 membered ring optionally contains an additional heteroatom selected from O or NH, wherein said 4-6 membered ring is selected from imidazolidinyl, oxazolidinyl, thiazolidinyl, piperazinyl, morpholinyl, and thiomorpholinyl;

R¹⁸, at each occurrence, is independently selected from H, C₁-C₆ alkyl, phenyl, benzyl, phenethyl, (C₁-C₆ alkyl)-C(=O)-, and (C₁-C₆ alkyl)-S(=O)₂-;

R¹⁹, at each occurrence, is independently selected from H, OH, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

9. A compound according to Claim 8 wherein:

Q is -CH₂R⁴, -O-R⁴, or -CH₂-NH-R⁴;

R⁴ is C₁-C₆ alkyl substituted with 0-3 R^{4a};
C₂-C₆ alkenyl substituted with 0-3 R^{4a};
C₂-C₆ alkynyl substituted with 0-3 R^{4a};
C₃-C₆ carbocycle substituted with 0-3 R^{4b};
phenyl substituted with 0-3 R^{4b}, or
5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from H, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, C(=O)OR²², SR²², OR^{14a}, OR²², NR²¹R²², S(=O)R²², S(=O)₂R²², C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, C₁-C₄ haloalkyl-S-, C₃-C₁₀ carbocycle substituted with 0-3 R^{4b}, C₆-C₁₀ aryl substituted with 0-3 R^{4b}, and 5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{4b};

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;
C₁-C₆ alkyl substituted with 0-3 R^{5b};
C₂-C₆ alkenyl substituted with 0-3 R^{5b}; or
C₂-C₆ alkynyl substituted with 0-3 R^{5b};

R^{5b}, at each occurrence, is independently selected from:
H, methyl, ethyl, propyl, butyl, CF₃, Cl, F, Br, I, =O;
C₃-C₆ carbocycle substituted with 0-3 R^{5c};
phenyl substituted with 0-3 R^{5c}; or
5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c};

R^{5c}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

R¹¹, at each occurrence, is independently selected from
H, =O, NR¹⁸R¹⁹, CF₃;
C₁-C₄ alkyl optionally substituted with 0-3 R^{11a};
phenyl substituted with 0-3 R^{11b};
C₃-C₆ carbocycle substituted with 0-3 R^{11b}; or
5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from
nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is
substituted with 0-3 R^{11b}; and wherein said 5 to 6 membered heterocycle is
selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl,
pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl,
isoxazolyl, and tetrazolyl;

R^{11a}, at each occurrence, is independently selected from
H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, Cl, F, =O,
NR¹⁵R¹⁶, CF₃, or phenyl substituted with 0-3 R^{11b};

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶,
CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl,
and

C₁-C₄ haloalkoxy;

W is a bond, -CH₂-, -CH₂CH₂-;

X is a bond;

phenyl substituted with 0-1 R^{Xb};

C₃-C₆ cycloalkyl substituted with 0-1 R^{Xb}; or

5 to 6 membered heterocycle substituted with 0-1 R^{Xb};

R^{Xb} is selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, and -OCF₃;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)₂-, -NH-,
-N(CH₃)-, or -N(CH₂CH₃)-;

Z is C₁-C₂ alkyl substituted with 1-2 R^{12a};

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-3 R^{12b}; or

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from

C₆-C₁₀ aryl substituted with 0-4 R^{12b};

C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; and

5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy,

and

C₁-C₄ haloalkyl-S-;

R¹³, at each occurrence, is independently selected from

H, OH, C₁-C₆ alkyl, C₁-C₄ alkoxy, Cl, F, Br, I, CN, NO₂, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, C₁-C₄ alkyl, or C₂-C₄ alkoxyalkyl;

R^{14a} is H, phenyl, benzyl, or C₁-C₄ alkyl;

R¹⁵, at each occurrence, is independently selected from H, C₁-C₄ alkyl, and benzyl;

R¹⁶, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, benzyl, phenethyl, methyl-C(=O)-, ethyl-C(=O)-,
methyl-S(=O)2-, and ethyl-S(=O)2-;

R¹⁸, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl;

R¹⁹, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, and butyl; and

R²¹ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl; and

R²² is methyl, ethyl, propyl, butyl, propenyl, butenyl, and propargyl.

10. A compound according to Claim 9 or a pharmaceutically acceptable salt or prodrug thereof wherein:

Q is -CH₂R⁴, -O-R⁴, or -CH₂-NH-R⁴;

R⁴ is C₁-C₆ alkyl substituted with 0-2 R^{4a},
C₂-C₆ alkenyl substituted with 0-2 R^{4a},
C₂-C₆ alkynyl substituted with 0-2 R^{4a}, or
C₃-C₆ cycloalkyl substituted with 0-3 R^{4b};

R^{4a}, at each occurrence, is independently selected from is H, OH, F, Cl, Br, I, CN, NR¹⁵NR¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, OCF₃;

C₃-C₆ carbocycle substituted with 0-3 R^{4b},

phenyl substituted with 0-3 R^{4b}, or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{4b}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{4b}, at each occurrence, is independently selected from H, OH, Cl, F, Br, I, CN, NO₂, NR¹⁵NR¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃,

C₁-C₆ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkyl,

C₁-C₄ haloalkoxy, and C₁-C₄ haloalkyl-S-;

R⁵ is H;

C₁-C₄ alkyl substituted with 0-1 R^{5b};

C₂-C₄ alkenyl substituted with 0-1 R^{5b}; or

C₂-C₄ alkynyl substituted with 0-1 R^{5b};

R^{5b}, at each occurrence, is independently selected from:

H, methyl, ethyl, propyl, butyl, CF₃;

C₃-C₆ carbocycle substituted with 0-2 R^{5c};

phenyl substituted with 0-3 R^{5c}; and

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{5c}; wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{5c} , at each occurrence, is independently selected from H, OH, Cl, F, $NR^{15}R^{16}$, CF_3 , C₁-C₄ alkyl, C₁-C₃ alkoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

Ring B is selected from:

R^{11} , at each occurrence, is independently selected from

H, =O, $NR^{18}R^{19}$;

C₁-C₄ alkyl optionally substituted with 0-3 R^{11a} ;

phenyl substituted with 0-3 R^{11b} ;

C₃-C₆ carbocycle substituted with 0-3 R^{11b} ; or

5 to 6 membered heterocycle containing 1 to 3 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 6 membered heterocycle is substituted with 0-3 R^{11b} ; and wherein said 5 to 6 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, piperazinyl, piperidinyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, and tetrazolyl;

R^{11a} , at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, phenoxy, Cl, F, =O, $NR^{15}R^{16}$, CF_3 , or phenyl substituted with 0-3 R^{11b} ;

R^{11b}, at each occurrence, is independently selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, C₁-C₂ haloalkyl, and C₁-C₂ haloalkoxy;

W is a bond or -CH₂-;

X is a bond;

phenyl substituted with 0-1 R^{Xb};
C₃-C₆ cycloalkyl substituted with 0-1 R^{Xb}; or
5 to 6 membered heterocycle substituted with 0-1 R^{Xb};

R^{Xb} is selected from H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, methyl, ethyl, methoxy, ethoxy, and -OCF₃;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)₂-, -NH-, -N(CH₃)-, or -N(CH₂CH₃)-;

Z is C₁-C₂ alkyl substituted with 1-2 R^{12a};
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-3 R^{12b}; or
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b};

R^{12a}, at each occurrence, is independently selected from
C₆-C₁₀ aryl substituted with 0-4 R^{12b};
C₃-C₁₀ carbocycle substituted with 0-4 R^{12b}; and
5 to 10 membered heterocycle containing 1 to 4 heteroatoms selected from nitrogen, oxygen, and sulphur, wherein said 5 to 10 membered heterocycle is substituted with 0-3 R^{12b}; and wherein said 5 to 10 membered heterocycle is selected from pyridinyl, pyrimidinyl, triazinyl, furanyl, thienyl, thiazolyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, tetrazolyl, benzofuranyl, benzothiofuranyl, indolyl,

benzimidazolyl, 1*H*-indazolyl, oxazolidinyl, isoxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, quinolinyl, and isoquinolinyl;

R^{12b}, at each occurrence, is independently selected from

H, OH, Cl, F, NR¹⁵R¹⁶, CF₃, acetyl, SCH₃, S(=O)CH₃, S(=O)₂CH₃, methyl, ethyl, propyl, butyl, methoxy, ethoxy, propoxy, and -OCF₃;

R¹³, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, methoxy, ethoxy, Cl, F, Br, CN, NR¹⁵R¹⁶, and CF₃;

R¹⁴ is H, phenyl, benzyl, methyl, ethyl, propyl, or butyl;

R¹⁵, at each occurrence, is independently selected from H, methyl, ethyl, propyl, and butyl; and

R¹⁶, at each occurrence, is independently selected from

H, OH, methyl, ethyl, propyl, butyl, benzyl, and phenethyl;

R¹⁸, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, butyl, phenyl, benzyl, and phenethyl; and

R¹⁹, at each occurrence, is independently selected from

H, methyl, ethyl, propyl, and butyl.

11. A compound, according to Claim 10, wherein:

R⁵ is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂NH₂, -CH₂N(CH₃)₂, -CH₂N(CH₂CH₃)₂, -CH₂CH₂NH₂, -CH₂CH₂N(CH₃)₂, -CH₂CH₂N(CH₂CH₃)₂, -CH₂-cyclopropyl, -CH₂-cyclobutyl, -CH₂-cyclopentyl, -CH₂-cyclohexyl,

-CH₂CH₂-cyclopropyl, -CH₂CH₂-cyclobutyl,
-CH₂CH₂-cyclopentyl, or -CH₂CH₂-cyclohexyl;

Q is -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH(CH₃)₂, -CH₂CH₂CH₂CH₂CH₂CH₃, -CH₂CH₂CH₂CH₂CH(CH₃)₂, -CH₂-cyclopropyl,
-CH₂-cyclobutyl, -CH₂-cyclopentyl, -CH₂-cyclohexyl,
-CH₂CH₂-cyclopropyl, -CH₂CH₂-cyclobutyl,
-CH₂CH₂-cyclopentyl, -CH₂CH₂-cyclohexyl,
-OCH₃, -OCH₂CH₃, -OCH₂CH₂CH₃, -OCH(CH₃)₂,
-OCH₂CH₂CH₂CH₃, -OCH₂CH(CH₃)₂, -OCH₂CH₂CH(CH₃)₂,
-OCH₂CH₂CH₂CH₂CH₃, -OCH₂CH₂CH₂CH₂CH₃,
-OCH₂CH₂CH₂CH(CH₃)₂, -OCH₂CH₂CH₂CH₂CH(CH₃)₂,
-OCH₂-cyclopropyl, -OCH₂-cyclobutyl,
-OCH₂-cyclopentyl, -OCH₂-cyclohexyl,
-OCH₂CH₂-cyclopropyl, -OCH₂CH₂-cyclobutyl,
-OCH₂CH₂-cyclopentyl, -OCH₂CH₂-cyclohexyl,
-CH₂OCH₂CH₃, -CH₂OCH₂CH₂CH₃, -CH₂-OCH(CH₃)₂,
-CH₂OCH₂CH₂CH₂CH₃, -CH₂OCH₂CH(CH₃)₂,
-CH₂OCH₂CH₂CH₂CH(CH₃)₂, -CH₂O-cyclopropyl,
-CH₂O-cyclobutyl, -CH₂O-cyclopentyl,
-CH₂O-cyclohexyl, -CH₂OCH₂-cyclopropyl,
-CH₂OCH₂-cyclobutyl, -CH₂OCH₂-cyclopentyl,
-CH₂OCH₂-cyclohexyl; -CH₂(NH)CH₃,
-CH₂(NH)CH₂CH₃, -CH₂(NH)CH₂CH₂CH₃, -CH₂-(NH)CH(CH₃)₂,
-CH₂(NH)CH₂CH₂CH₂CH₃, -CH₂(NH)CH₂CH(CH₃)₂,
-CH₂(NH)CH₂CH₂CH₂CH₂CH₃, -CH₂(NH)CH₂CH₂CH(CH₃)₂,
-CH₂(NH)CH₂CH₂CH₂CH(CH₃)₂, -CH₂(NH)-cyclopropyl,
-CH₂(NH)-cyclobutyl, -CH₂(NH)-cyclopentyl,
-CH₂(NH)-cyclohexyl, -CH₂(NH)CH₂-cyclopropyl,
-CH₂(NH)CH₂-cyclobutyl, -CH₂(NH)CH₂-cyclopentyl,
or -CH₂(NH)CH₂-cyclohexyl;

W is a bond or -CH₂-;

X is a bond;

Y is a bond, -C(=O)-, -O-, -S-, -S(=O)-, -S(=O)2-, -NH-, or -N(CH₃)-,

Z is phenyl, 2-F-phenyl, 3-F-phenyl, 4-F-phenyl, 2-Cl-phenyl, 3-Cl-phenyl, 4-Cl-phenyl, 2,3-diF-phenyl,
2,4-diF-phenyl, 2,5-diF-phenyl, 2,6-diF-phenyl,
3,4-diF-phenyl, 3,5-diF-phenyl, 2,3-diCl-phenyl,
2,4-diCl-phenyl, 2,5-diCl-phenyl, 2,6-diCl-phenyl,
3,4-diCl-phenyl, 3,5-diCl-phenyl, 3-F-4-Cl-phenyl,
3-F-5-Cl-phenyl, 3-Cl-4-F-phenyl, 2-MeO-phenyl,
3-MeO-phenyl, 4-MeO-phenyl, 2-Me-phenyl, 3-Me-phenyl,
4-Me-phenyl, 2-MeS-phenyl, 3-MeS-phenyl, 4-MeS-phenyl, 2-CF₃O-phenyl, 3-CF₃O-phenyl, 4-CF₃O-phenyl, furanyl, thienyl, pyridyl, 2-Me-pyridyl, 3-Me-pyridyl,
4-Me-pyridyl, 1-imidazolyl, oxazolyl, isoxazolyl,
1-benzimidazolyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl,
morpholino, N-piperinyl,
phenyl-CH₂-, (2-F-phenyl)CH₂-, (3-F-phenyl)CH₂-,
(4-F-phenyl)CH₂-, (2-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂, (4-Cl-phenyl)CH₂-,
(2,3-diF-phenyl)CH₂-,
(2,4-diF-phenyl)CH₂-, (2,5-diF-phenyl)CH₂-,
(2,6-diF-phenyl)CH₂-, (3,4-diF-phenyl)CH₂-,
(3,5-diF-phenyl)CH₂-, (2,3-diCl-phenyl)CH₂-,
(2,4-diCl-phenyl)CH₂-, (2,5-diCl-phenyl)CH₂,

(2,6-diCl-phenyl)CH₂-, (3,4-diCl-phenyl)CH₂-,
(3,5-diCl-phenyl)CH₂-, (3-F-4-Cl-phenyl)CH₂-,
(3-F-5-Cl-phenyl)CH₂-, (3-Cl-4-F-phenyl)CH₂-,
(2-MeO-phenyl)CH₂-, (3-MeO-phenyl)CH₂-,
(4-MeO-phenyl)CH₂-, (2-Me-phenyl)CH₂-,
(3-Me-phenyl)CH₂-, (4-Me-phenyl)CH₂-,
(2-MeS-phenyl)CH₂-, (3-MeS-phenyl)CH₂-,
(4-MeS-phenyl)CH₂-, (2-CF₃O-phenyl)CH₂-,
(3-CF₃O-phenyl)CH₂-, (4-CF₃O-phenyl)CH₂-,
(furanyl)CH₂-, (thienyl)CH₂-, (pyridyl)CH₂-,
(2-Me-pyridyl)CH₂-, (3-Me-pyridyl)CH₂-,
(4-Me-pyridyl)CH₂-, (1-imidazolyl)CH₂-,
(oxazolyl)CH₂-, (isoxazolyl)CH₂-,
(1-benzimidazolyl)CH₂-, (cyclopropyl)CH₂-, (cyclobutyl)CH₂-,
(cyclopentyl)CH₂-,
(cyclohexyl)CH₂-, (morpholino)CH₂-,
(N-pipridinyl)CH₂-, or (phenyl)₂CH-;

R¹¹, at each occurrence, is independently selected from

H, =O, methyl, ethyl, phenyl, benzyl, phenethyl,
4-F-phenyl, (4-F-phenyl)CH₂-, (4-F-phenyl)CH₂CH₂-,
3-F-phenyl, (3-F-phenyl)CH₂-, (3-F-phenyl)CH₂CH₂-,
2-F-phenyl, (2-F-phenyl)CH₂-, (2-F-phenyl)CH₂CH₂-,
4-Cl-phenyl, (4-Cl-phenyl)CH₂-, (4-Cl-phenyl)CH₂CH₂-,
3-Cl-phenyl, (3-Cl-phenyl)CH₂-, (3-Cl-phenyl)CH₂CH₂-,
4-CH₃-phenyl, (4-CH₃-phenyl)CH₂-, (4-CH₃-phenyl)CH₂CH₂-,
3-CH₃-phenyl, (3-CH₃-phenyl)CH₂-, (3-CH₃-phenyl)CH₂CH₂-,
4-CF₃-phenyl, (4-CF₃-phenyl)CH₂-, (4-CF₃-phenyl)CH₂CH₂-,
pyrid-2-yl, 4-F-pyrid-2-yl, 4-Cl-pyrid-2-yl,
4-CH₃-pyrid-2-yl, 4-CF₃-pyrid-2-yl, pyrid-3-yl,
4-F-pyrid-3-yl, 4-Cl-pyrid-3-yl, 4-CH₃-pyrid-3-yl,
4-CF₃-pyrid-3-yl, or pyrid-4-yl; and

R¹³, at each occurrence, is independently selected from

H, F, Cl, OH, -CH₃, -CH₂CH₃, -OCH₃, or -CF₃.

12. A compound according to one of Claims 4-11 of Formula (Ic):

(Ic)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

13. A compound according to one of Claims 4-11 of Formula (Id):

(Id)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

14. A compound according to one of Claims 4-11 of Formula (Ie):

(Ie)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

15. A compound according to one of Claims 4-11 of Formula (If):

(If)

or a stereoisomer, pharmaceutically acceptable salt or prodrug thereof.

16. A compound according to Claim 1, or a pharmaceutically acceptable salt or prodrug thereof, selected from:

(3S)-3-[(1-oxo-(2S)-2-cyclopropylmethyl-heptyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propyloctyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propylnonanyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-butyloctyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-(1-oxo-2-methyloctyl)amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-pentylheptanyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-propylpentyl)]amino-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

(3S)-3-[(1-oxo-2-methylpentyl)amino]-1-methyl-5-phenyl-2,3-dihydro-1*H*-1,4-benzodiazepin-2-one;

3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-(pyridin-2-yl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one;

3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-[4-methyl(pyridin-2-yl)]-2,3-dihydro-1H-1,4-benzodiazepin-2-one;

3-[1-oxo-2-(S)-cyclopropylmethyl-heptyl]amino-1-methyl-5-[4-trifluoromethyl(pyridin-2-yl)]-2,3-dihydro-1H-1,4-benzodiazepin-2-one;

3-[1-oxo-2-(S)-aminomethyl-heptyl]amino-1-methyl-(5-trifluoromethyl-phenyl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one;

3-[1-oxo-2-(S)-(dimethylamino)methyl-heptyl]amino-1-methyl-5-(trifluoromethyl-phenyl)-2,3-dihydro-1H-1,4-benzodiazepine-2-one; and

3-(3-isopentyloxy-2-(R)-methyl-1-oxo-propyl)amino-1-methyl-5-(trifluoromethyl)phnyel-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

17. A compound according to Claim 1, or a pharmaceutically acceptable salt or prodrug thereof comprising:

(7S)-[(2S)-1-oxo-2-pentyloxy-4-methylpentyl]amino-5-methyl-5H,7H-dibenzo[b,d]azepin-6-one.

18. A pharmaceutical composition comprising a compound of Claim 1 and a pharmaceutically acceptable carrier.

19. A method for the treatment of neurological disorders associated with β -amyloid production comprising administering to a host in need of such treatment a therapeutically effective amount of a compound of Claim 1.

20. A method for inhibiting γ -secretase activity comprising administering to a host in need of such inhibition a therapeutically effective amount of a compound of Claim 1 that inhibits γ -secretase activity.

Attorney Ref.: BMS-PH-7164(C)