DPLab

SELECT STATEMENT USING SQL & R

TANTUT WAHYU SETYOKO e-Commerce Data Analyst

OUTLINE

DATA PRACTITIONER in ROLE

DATA SCIENCE LIFE CYCLE & PRACTITIONER TASK

SOL FUNDAMENTAL

SQL DEMO

SQL IN REAL CASE BUSINESS

DATA IS THE NEW OIL (Clive Humby, 2006)

DATA ENGINEER

DATA ANALYST

MACHINE LEARNING ENGINEER

DATA SCIENTIST

Data Science Life Cycle

Deployment Collecting Cleaning EDA Model **Data Engineers Data Analysts ML Engineers Data Scientists**

Chanin Nantasenamat with Ken Jee

WHAT IS THE DATA PRACTITIONER'S TASK?

WHAT IS QUERYING?

40M 12 70M

wildcards

FROM table;

SELECT * |{[DISTINCT] column|expression
[alias],...}

40%

80%

90%

SELECT identifies the columns to be displayed

FROM identifies the table containing those columns

COLUMN NAME

SQL IS A LANGUAGE TO CREATE OUR QUERY

"STRUCTURE SELECT STATEMENT"

"EXAMPLE of DATASET"

TABLE NAME : DEPARTMENTS

COLUMN NAME : DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, LOCATION_ID

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	IT	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

"SELECT STATEMENT"

SELECT *
FROM departments;

*

DEPARTMENT_ID	DEPARTMENT_NAME	MANAGER_ID	LOCATION_ID
10	Administration	200	1700
20	Marketing	201	1800
50	Shipping	124	1500
60	П	103	1400
80	Sales	149	2500
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting		1700

"SELECT STATEMENT"

SELECT department_id, location_id
FROM departments;

department id, location id DEPARTMENT ID LOCATION ID

JOIN CONDITIONS

Pemisalan : TABLE 1 = sales_invoice

TABLE 2 = sales_order

JOIN CONDITIONS (cont)

sales_order_id adalah PK di kolom sales_order tetapi FK di kolom sales_invoice. Jika tidak terbentuk sales_order maka kolom sales_invoice tidak terbentuk

sales_invoice_id adalah PK di kolom sales_invoice

JOIN STATEMENT

"Arithmetic SQL"

Create expressions with number and date data by using arithmetic operators.

Operator	Description
+	Add
-	Subtract
*	Multiply
/	Divide

"SELECT Statement using Arithmetic SQL"

SELECT last_name, salary, salary + 300
FROM employees;

LAST_NAME	SALARY	
King	24000	
Kochhar	17000	
De Haan	17000	
Hunold	9000	
Ernst	6000	

LAST_NAME	SALARY	SALARY+300
King	24000	24300
Kochhar	17000	17300
De Haan	17000	17300
Hunold	9000	9300
Ernst	6000	6300

"Operator Precedence"

```
SELECT

last_name,
salary,

12*salary+100

FROM employees;
```

SALARY	12*SALARY+100
24000	288100
17000	204100
17000	204100

12*(SALARY+100)
289200
205200
205200

"ALIASES"

SELECT

last_name AS name,

salary*12 AS Annual Salary

FROM employees;

SELECT

last_name "Name",

salary*12 "Annual Salary"

FROM employees;

Name	Annual Salary
King	288000
Kochhar	204000
De Haan	204000

"WHAT IS
THE BENEFIT OF USING SQL ?"

ENTITY RELATIONSHIP

PRIMARY KEY

FOREIGN KEY

"How to Write SQL STATEMENT"

- SQL statements are not case-sensitive;
- SQL statements can be on one or more lines;
- 3. Keywords cannot be abbreviated or split across lines;
- 4. Clauses are usually placed on separate lines;
- 5. Indents are used to enhance readability;
- 6. SQL statements can optionally be terminated by a semicolon (;). Semicolons are required if you execute multiple SQL statements;
- 7. You are required to end each SQL statement with a semicolon (;).

THANKYOU