STRUKTURY DYSKRETNE - 3

planarność, liczba chromatyczna

Zadania domowe na 24.03.

ZOT jest nieobowiązkowy; zainteresowani oddają na ćwiczeniach jego pisemne rozwiązanie.

A1. Chcemy wysłać dużą partię towarów, pakując je w paczki. Wprawdzie do jednej paczki zmieściłyby się wszystkie towary, ale ze względów bezpieczeństwa nie każdy może podróżować z każdym w jednej paczce. Wiemy, jakie towary możemy zapakować razem, a jakie nie. Naszym celem jest wyznaczyć ile najmniej paczek potrzeba do transportu. Zinterpertuj problem w języku grafów. Jaki parametr grafowy nas interesuje?

A2. Zbadaj planarność poniższych grafów. Jeśli graf jest planarny, to narysuj go płasko, czyli tak, by żadne dwie krawędzie nie miały punktów wspólnych (z wyjątkiemkońców). Jeżeli graf nie jest planarny, to:

- \bullet znajdź w nim topologiczną kopię jednego z grafów $K_{3,3}$ lub $K_5,$
- wskaż w nim odpowiedni podział wierzchołków, świadczący o tym, że graf zawiera $K_{3,3}$ lub K_5 jako minor.
- (a) 3-kostka

A3. Czy pełny graf dwudzielny $K_{8,4}$ zawiera jako minor graf K_5 ?

A4. Czy istnieje graf planarny G, dla którego

- (a) v(G) = 7 i e(G) = 15?
- (b) v(G) = 7 i e(G) = 17?
- (c) $\delta(G) = 6$?

Jeżeli istnieje, to narysuj przykład.

A5. Wyznacz liczbę chromatyczną obu grafów nr (7) narysowanych na końcu listy "Rozgrzewka grafowa".

A6. Graf G otrzymany jest z grafu pełnego K_{20} na 20 wierzchołkach przez usunięcie z niego krawędzi czterech wierzchołkowo rozłącznych trójkątów (tzn. K_3). Znajdź liczbę chromatyczną grafu G.

A7. Załóżmy, że graf G jest niespójny i znamy liczbę chromatyczną każdej jego składowej. Ile wynosi $\chi(G)$? Rozwiąż to zadanie, nie korzystając z żadnych twierdzeń.

A8. Oceń poprawność każdego z poniższych zdań. W każdym przypadku poprzyj odpowiedź, w zależności od potrzeby, uzasadnieniem ogólnym, przykładem lub kontrprzykładem. Uwaga: Tu i w innych zadaniach graf o liczbie chromatycznej co najwyżej k nazywamy grafem k-kolorowalnym.

- (a) Jeśli e(G) < 3v(G) 6, to G jest planarny.
- (b) Jeżeli graf nie zawiera ani K_5 , ani $K_{3,3}$, to jest planarny.
- (c) Jeśli e(G) > 3v(G) 6, to graf G nie jest planarny.
- (d) Dla ustalonego spójnego grafu planarnego każdy jego płaski rysunek ma tyle samo ścian.
- (e) Jeżeli graf jest 4-kolorowalny, to jest planarny.
- (f) Jeżeli graf jest planarny, to jest 4-kolorowalny.
- (g) Z wzoru Eulera wynika, że nie istnieje graf płaski (czyli płasko narysowany grafu planarny), który ma dokładnie 6 wierzchołków, 6 krawędzi i 3 ściany.
- (h) Każdy graf dwudzielny jest 2-kolorowalny.
- (i) Każdy graf dwudzielny ma liczbę chromatyczną 2.
- (j) Žaden graf 2-kolorowalny nie zawiera K_3 .
- (k) Jeżeli graf nie zawiera K_3 , to jest 2-kolorowalny.
- (l) Liczba chromatyczna cyklu nieparzystego wynosi 3.

ZOT 2. Na użytek tego zadania graf nazywamy dwuplanarnym, jeżeli powstał przez "sklejenie" dwóch grafów planarnych. Mówiąc precyzyjnie, G jest dwuplanarny, gdy E(G) można tak podzielić na rozłączne zbiory E_1 i E_2 , że $E(G) = E_1 \cup E_2$, a grafy $(V(G), E_1)$ i $(V(G), E_2)$ są planarne. Niech kol_{min} oznacza największą spośród liczb chromatycznych grafów dwuplanarnych. Oszacuj najlepiej jak potrafisz z góry i z dołu kol_{min}. Uwaga: Punkty za to zadanie otrzymają autorzy najlepszych oszacowań.

STRUKTURY DYSKRETNE – 3

planarność, minory, liczba chromatyczna

Zadania, które omówimy na ćwiczeniach 24.03

- **Zad.1.** Uzasadnij, nie korzystając ani z twierdzenia Kuratowskiego, ani z twierdzenia Wagnera, że wszystkie grafy na 5 wierzchołkach, oprócz K_5 , są planarne.
- Zad.2. Wyprowadź odpowiednik wzoru Eulera dla grafu płaskiego o t składowych.
- **Zad.3.** Czy istnieje graf planarny G, dla którego v(G) = 100 i e(G) = 294?
- **Zad.4.** Ile krawędzi ma triangulacja o $n \ge 3$ wierzchołkach?
- **Zad.5.** Graf G o 212 wierzchołkach jest dopełnieniem grafu składającego się z 154 składowych, z których 4 to cykle o długości trzy, 50 to izolowane krawędzie, a pozostałe 100 to wierzchołki izolowane. Znajdź liczbę chromatyczną grafu G.
- **Zad.6.** Podaj interpretację grafową następującego problemu. Jakiego parametru grafowego tu szukamy? Układamy plan sesji egzaminacyjnej tak, by każdy student miał co najwyżej jeden egzamin w ciągu dnia. Chcemy znaleźć najmniejszą możliwą liczbę dni potrzebną na zaplanowanie wszystkich egzaminów.
- Zad.7. W jaki sposób pokolorować w sposób właściwy
 - (a) wierzchołki grafu, którego maksymalny stopień wynosi Δ , mając $\Delta+1$ kolorów?
 - (b) wierzchołki grafu planarnego, mając 6 kolorów?

Zadania do samodzielnego rozwiązania później (najlepiej przed kolokwium)

- **B1.** Wyznacz wszystkie k, dla których k-kostka jest grafem planarnym.
- **B2.** Uzasadnij, nie korzystając ani z twierdzenia Kuratowskiego, ani z twierdzenia Wagnera, że wszystkie grafy dwudzielne na 6 wierzchołkach, prócz $K_{3,3}$, są planarne.
- **B3.** Czy istnieje graf planarny G, dla którego
 - (a) v(G) = 100 i e(G) = 296?
 - (b) v(G) = 100 i e(G) = 190 ?
- **B4.** Załóżmy, że pewna kolekcja $n \ge 3$ identycznych monet jest rozrzucona na stole tak, że żadne dwie monety nie nachodzą na siebie (ale mogą się stykać).
 - (a) Chcemy pokolorować te monety, używając jak najmniej kolorów, w taki sposób, aby żadne dwie stykające się nie miały tego samego koloru. Zinterpretuj problem w języku grafów.
 - (b) Dlaczego do powyższego polorowania zawsze wystarczą cztery kolory? (Znalezienie układu monet, dla którego trzy kolory nie wystarczą, jest zadaniem do poduszki.)

B5.

- (a) Ile ścian ma triangulacja na n wierzchołkach?
- (b) Ile wierzchołków ma triangulacja o 100 ścianach?
- (c) Czy dla każdego $s \ge 100$ istnieje triangulacja o s ścianach?
- (d) Załóżmy, że pewna triangulacja ma 496 ścian. Ile ma wierzchołków?
- (e) Czy dopełnienie triangulacji może być grafem, którego płaski rysunek jest triangulacja?
- **B6.** Firma komputerowa Myrdyrda postanowiła nagrodzić 12 swoich najwierniejszych klientów zapraszając ich na szkolenie dotyczące ich ulubionych aplikacji. Każdy ze szczęśliwej dwunastki mógł wybrać 3 spośród dostępnych 59 aplikacji firmy Myrdyrda, a firma gwarantuje jednodniowe kursy poświęcone każdej aplikacji z wybranej trójki. Kierownik firmy chce zaplanować kursy tak, by szkolenie trwało jak najkrócej.
 - (a) Jaki problem grafowy musi on rozwiązać?
 - (b) Czy prawdą jest, że bez względu na wybór aplikacji przez uczestników, kursy można zaplanować w ten sposób, by szkolenie trwało nie dłużej niż 5 dni?

Przypomnijmy raz jeszcze zasady:

- Każdy z dwanaściorga uczestników powinien wziąc udział w trzech kursach poświęconych wybranym przez siebie aplikacjom.
- Każdy z uczestników może wziąć udział w co najwyżej jednym kursie dziennie.
- Każdy z kursów odbywa się w czasie szkolenia dokładnie raz.
- B7. W jaki sposób pokolorować w sposób właściwy wierzchołki

- (a) dowolnej ścieżki, mając dwa kolory?
- (b) dowolnego drzewa, majac dwa kolory?
- (c) dowolnego grafu, którego maksymalny stopień wynosi 3, mając cztery kolory?

Opisz ideę algorytmu.

B8. Wyznacz liczbę chromatyczną:

- (a) każdego niepustego drzewa,
- (b) kraty 5×5 ,
- (c) kraty 5×5 , w której połączono krawędzią lewy dolny wierzchołek z prawym górnym wierzchołkiem, a prawy dolny z wierzchołkiem lewym górnym.
- (d) grafu G o 20 wierzchołkach, otrzymanego z grafu pełnego K_{20} na 20 wierzchołkach przez usunięcie z niego krawędzi czterech wierzchołkowo rozłącznych trójkątów.

B9. Uzasadnij (nie korzystając z żadnych twierdzeń), że

- (a) Jeżeli graf jest 2-kolorowalny, to nie zawiera nieparzystych cykli.
- (b) Jeżeli graf nie zawiera nieparzystych cykli, to jest 2-kolorowalny.
- **B10.** Jaka jest najmniejsza możliwa, a jaka największa możliwa liczba chromatyczna grafu 5-regularnego?
- **B11.** Załóżmy, że liczba chromatyczna pewnego grafu o 17 wierzchołkach jest mniejsza niż 4. Uzasadnij, że w grafie tym zawsze znajdziemy sześć wierzchołków, między którymi nie ma żadnych krawędzi.
- **B12.** Oceń poprawność każdego z poniższych zdań. W każdym przypadku poprzyj odpowiedź, w zależności od potrzeb, uzasadnieniem ogólnym, przykładem lub kontrprzykładem.
 - (a) Jeśli graf zawiera topologiczną kopię grafu K_5 , to zawiera jako minor graf K_5 .
 - (b) Jeśli graf zawiera jako minor grafu K_5 , to zawiera topologiczną kopię grafu K_5 .
 - (c) Jesli graf zawiera $K_{3,3}$ jako minor lub K_5 jako minor, to zawiera topologiczną kopię grafu $K_{3,3}$ lub topologiczną kopię grafu K_5 .
 - (d) Jeśli graf G zawiera K_5 jako minor, to $\chi(G) \geq 5$.
 - (e) Istnieje graf G, dla którego $\chi(G) \geqslant 4$, a który nie zawiera K_4 .
 - (f) Nie istnieje spójny graf płaski (czyli płasko narysowany grafu planarny), który ma dokładnie 100 wierzchołków, 150 krawędzi i 50 ścian.
 - (g) Dopełnienie spójnego grafu płaskiego o 20 wierzchołkach i 30 ścianach ma 142 krawędzie.
 - (h) Twierdzenie odwrotne do twierdzenia o czterech kolorach jest prawdziwe.
 - (i) Istnieje graf planarny o przynajmniej 11 wierzchołkach, którego dopełnienie jest grafem planarnym.
 - (j) Istnieje graf G, innych niż cykl nieparzysty lub graf pełny, dla którego $\chi(G) = \Delta(G) + 1$.
 - (k) Istnieje graf 4-regularny G na 10 wierzchołkach, dla którego $\chi(G) = 5$.