Tutorial 2:

Rectas y planos en el espacio, superficies cilíndricas y cuadráticas y funciones vectoriales.

- 1. Hallar las ecuaciones simétricas y paramétricas de la recta que pasa por el punto (-2,2,4) y es perpendicular al plano 2x y + 5z = 12
- 2. Encuentre la ecuación del plano que pasa por la recta de intersección de los planos x z = 1, y + 2z = 3 y es perpendicular al plano x + y 2z = 1.
- 3. Identifique y bosqueje la gráfica de cada superficie. Determine las trazas con los planos coordenados:
 - a. x = 3
 - b. $y = z^2$
 - c. $x^2 = y^2 + 4z^2$
 - d. $-4x^2 + y^2 4z^2 = 0$
- 4. Considere la función vectorial $\vec{r}(t) = \frac{t^2 t}{t 1} i + \sqrt{t + 8} j + \frac{sen(\pi t)}{\ln(t)} k$. Hallar
 - a. Dominio de la función vectorial.
 - b. $\lim_{t\to 1} \vec{r}(t)$
 - c. Donde es continua la función vectorial
- 5. Demuestre que la curva con ecuaciones paramétricas $x = \operatorname{sen} t$, $y = \cos t$, $z = \operatorname{sen}^2 t$ es la intersección de las superficies $z = x^2$, $x^2 + y^2 = 1$. A partir de este hecho grafique la curva.
- 6. Determine los puntos en que la gráfica de $\vec{r}(t) = t\mathbf{i} + (2t t^2)\mathbf{k}$ corta al paraboloide $z = x^2 + y^2$.
- 7. Considere las superficies de las ecuaciones $z = \sqrt{x^2 + y^2}$ y z = x + 1
 - a. Identifique las superficies y haga un bosquejo de cada una
 - b. Encuentre la función vectorial que describa la curva C de la intersección de las superficies dadas para $y \ge 0$
 - c. Dibuje la curva C y verifique que el punto $(1, \sqrt{3}, 2)$ está en la curva.
- 8. Considere $\vec{r}(t) = \langle 2t, t^2, \frac{1}{3}t^3 \rangle$ y los puntos P(0,0,0) y $Q\left(2,1,\frac{1}{3}\right)$. Determine:
 - a. Longitud de arco de la función vectorial desde el punto P al punto Q
 - b. Las ecuaciones paramétricas de la recta tangente a la curva en el punto P.
 - c. La curvatura en el punto Q
 - d. El plano normal a la gráfica de la función vectorial en el punto Q.
- Se dispara un proyectil con una rapidez inicial de 200 m/seg y ángulo de elevación de 60 grados. Encuentre:
 - a. La función vectorial de posición y las ecuaciones paramétricas de la trayectoria del proyectil
 - b. El alcance del proyectil
 - c. La altura máxima alcanzada
 - d. La rapidez del impacto.