Динамическое программирование: расстояние редактирования

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Расстояние редактирования

Вход: строки $A[1 \dots n]$ и $B[1 \dots m]$.

Выход: минимальное количество вставок, удалений и

замен символов, необходимое для

преобразования A в B. Данное число

называется расстоянием редактирования и

расстоянием Левенштейна.

Выравнивание

Пример

стоимость: 5

Выравнивание

Рассмотрим последний столбец оптимального выравнивания строк $A[1\dots n]$ и $B[1\dots m]$:

$$A[1 \dots n]$$

$$B[1 \dots m]$$

Рассмотрим последний столбец оптимального выравнивания строк $A[1 \dots n]$ и $B[1 \dots m]$:

Рассмотрим последний столбец оптимального выравнивания строк $A[1 \dots n]$ и $B[1 \dots m]$:

Рассмотрим последний столбец оптимального выравнивания строк $A[1 \dots n]$ и $B[1 \dots m]$:

Подзадачи и рекуррентное соотношение

- Пусть D[i,j] расстояние редактирование строк A[1...i] и B[1...j].
- Последний столбец их оптимального выравнивания это вставка, удаление или (не)соответствие.
- Выравнивание без последнего столбца является оптимальным выравниванием соответствующих префиксов («вырезать и вставить»).
- Поэтому

$$D[i,j] = \min\{D[i,j-1]+1,$$
 (вставка) $D[i-1,j]+1,$ (удаление) $D[i-1,j-1]+\operatorname{diff}(A[i],B[j])\}$ ((не)соотв.)

Дин. прог. сверху вниз

Инициализация

создать двумерный массив $D[0\dots n,0\dots m]$ инициализировать все ячейки значением ∞

Дин. прог. сверху вниз

Инициализация

создать двумерный массив $D[0\dots n,0\dots m]$ инициализировать все ячейки значением ∞

Функция EDITDISTTD(i,j)

```
если D[i,j] = \infty:

если i=0: D[i,j] \leftarrow j

иначе если j=0: D[i,j] \leftarrow i
```

Дин. прог. сверху вниз

Инициализация

```
создать двумерный массив D[0\dots n,0\dots m] инициализировать все ячейки значением \infty
```

Функция EDITDISTTD(i,j)

```
если D[i,j] = \infty: если i = 0: D[i,j] \leftarrow j иначе если j = 0: D[i,j] \leftarrow i иначе:  \begin{aligned} &ins \leftarrow \texttt{EDITDISTTD}(i,j-1) + 1 \\ &del \leftarrow \texttt{EDITDISTTD}(i-1,j) + 1 \\ &sub \leftarrow \texttt{EDITDISTTD}(i-1,j-1) + \mathsf{diff}(A[i],B[j]) \\ &D[i,j] \leftarrow \min(ins,del,sub) \end{aligned}  вернуть D[i,j]
```

Время работы

Лемма

Время работы алгоритма ${\tt EDITDISTTD}(n,m)$ есть O(nm).

Время работы

Лемма

Время работы алгоритма EDITDISTTD(n, m) есть O(nm).

Доказательство

- Только *mn* рекурсивных вызовов могут быть "серьёзными" (не просто доступ к ячейке таблицы).
- Несерьёзные вызовы требуют времени O(1). Это время можно учесть в вызывающей функции.
- Каждый серьёзный вызов также требует времени O(1) (без учёта времени на другие рекурсивные вызовы).

Заполнение таблицы

 $lackbox{ } D[i,j]$ зависит от $D[i-1,j-1],\ D[i-1,j]$ и D[i,j-1]:

Заполнение таблицы

 $lackbox{ } D[i,j]$ зависит от $D[i-1,j-1],\ D[i-1,j]$ и D[i,j-1]:

■ Можно заполнять таблицу строка за строкой или столбец за столбцом:

Дин. прог. снизу вверх

```
Функция EDITDISTBU(A[1...n], B[1...m])
создать массив D[0...n,0...m]
для i от 0 до n:
  D[i,0] \leftarrow i
для j от 0 до m:
  D[0,i] \leftarrow i
для i от 1 до n:
  для j от 1 до m:
     c \leftarrow \text{diff}(A[i], B[i])
     D[i,j] \leftarrow \min(D[i-1,j]+1,D[i,j-1]+1,D[i-1,j-1]+c)
вернуть D[n, m]
```

Дин. прог. снизу вверх

```
Функция EDITDISTBU(A[1...n], B[1...m])
```

```
создать массив D[0...n,0...m]
для i от 0 до n:
  D[i,0] \leftarrow i
для j от 0 до m:
  D[0,i] \leftarrow i
для i от 1 до n:
  для j от 1 до m:
     c \leftarrow \text{diff}(A[i], B[i])
     D[i,j] \leftarrow \min(D[i-1,j]+1,D[i,j-1]+1,D[i-1,j-1]+c)
вернуть D[n, m]
```

Время работы: O(nm).

			Ε	D	1	Т	1	N	G
		0	1	2	3	4	5	6	7
	0	0	1	2	3	4	5	6	7
D	1	1	1	1	2	3	4	5	6
1	2	2	2	2	1	2	3	4	5
S	3	3	3	3	2	2	3	4	5
Т	4	4	4	4	3	2	3	4	5
Α	5	5	5	5	4	3	3	4	5
N	6	6	6	6	5	4	4	3	4
C	7	7	7	7	6	5	5	4	4
Е	8	8	7	8	7	6	6	5	5

Восстановление решения

- Чтобы восстановить решение, пойдём обратно от ячейки [n, m] к ячейке [0, 0].
- Если D[i,j] = D[i-1,j] + 1, то найдётся оптимальное выравнивание, последним столбцом которого является удаление.
- Если D[i,j] = D[i,j-1] + 1, то найдётся оптимальное выравнивание, последним столбцом которого является вставка.
- Если D[i,j] = D[i-1,j-1] + diff(A[i],B[j]), то найдётся оптимальное выравнивание, последним столбцом которого является замена/несоответствие (если $A[i] \neq B[j]$) или соответствие (если A[i] = B[j]).

Восстановление решения

- Чтобы восстановить решение, пойдём обратно от ячейки [n, m] к ячейке [0, 0].
- Если D[i,j] = D[i-1,j] + 1, то найдётся оптимальное выравнивание, последним столбцом которого является удаление.
- Если D[i,j] = D[i,j-1] + 1, то найдётся оптимальное выравнивание, последним столбцом которого является вставка.
- Если D[i,j] = D[i-1,j-1] + diff(A[i],B[j]), то найдётся оптимальное выравнивание, последним столбцом которого является замена/несоответствие (если $A[i] \neq B[j]$) или соответствие (если A[i] = B[j]).

		Е	D	-	Т	-1	N	G
	0	1	2	3	4	5	6	7
D	1	1	1	2	3	4	5	6
1	2	2	2	1	2	3	4	5
S	3	3	3	2	2	3	4	5
Т	4	4	4	3	2	3	4	5
Α	5	5	5	4	3	3	4	5
Ν	6	6	6	5	4	4	3	4
C	7	7	7	6	5	5	4	4
Е	8	7	8	7	6	6	5	5

E G

T A N C E T I N - G

S T A N C E - T I N - G

S	T	Α	N	С	E
-	Т	1	N	-	G

D	1	S	T	Α	N	C	E
D		-	T		N	-	G

■ При заполнении матрицы достаточно хранить только текущую и предыдущую строки (или столбцы).

- При заполнении матрицы достаточно хранить только текущую и предыдущую строки (или столбцы).
- Поэтому расстояние редактирование строк A[1...n] и B[1...m] можно вычислить за время O(nm) с памятью $O(\min\{n,m\})$.

- При заполнении матрицы достаточно хранить только текущую и предыдущую строки (или столбцы).
- Поэтому расстояние редактирование строк A[1...n] и B[1...m] можно вычислить за время O(nm) с памятью $O(\min\{n,m\})$.
- Однако для восстановления оптимального выравнивания нужна вся таблица D.

- При заполнении матрицы достаточно хранить только текущую и предыдущую строки (или столбцы).
- Поэтому расстояние редактирование строк A[1...n] и B[1...m] можно вычислить за время O(nm) с памятью $O(\min\{n,m\})$.
- Однако для восстановления оптимального выравнивания нужна вся таблица D.
- Алгоритм Хиршберга находит оптимальное выравнивание за время O(nm) с памятью $O(\min\{n, m\})$.

Взвешенное расстояние редактирования

- Стоимости вставок, удалений и замен могут и различаться.
- Проверка правописания: некоторые замены символов более вероятны, чем другие.
- Биология: некоторые мутации более вероятны, чем другие.

Обобщённое рекуррентное соотношение

$$\begin{split} D[i,j] &= \min\{D[i,j-1] + \mathsf{inscost}(B[j]), \\ D[i-1,j] &+ \mathsf{delcost}(A[i]), \\ D[i-1,j-1] &+ \mathsf{substcost}(A[i],B[j])\} \end{split}$$

Заключение

- Проанализировали структуру оптимального решения, чтобы определить подзадачи и рекуррентное соотношение на них.
- Записали рекурсивный алгоритм (сверху вниз) по данному соотношению.
- Доказали верхнюю оценку на время работы, проанализировав суммарное число рекурсивных вызовов.
- Переделали рекурсивный алгоритм в итеративный (снизу вверх), заполняющий таблицу непосредственно.
- Проанализировали структуру таблицы, чтобы сэкономить память.