進捗報告

1 今週やったこと

● NAS の実装

2 NAS

2.1 設定

図1には実験で用いた探索中のセルの構造を、表1には実験設定を示した。入力・出力ノードの数は、ともに1に設定した。また出力ノードへの接続はチャンネルの concat であり、今回は3つのノードを使ってチャンネル数を3倍にした。ノードは7にしたため、探索する辺は15となった。表2のように、畳み込み層、プーリング層、恒等写像、零写像の6つの演算子を用意した。またセルの入力は、チャンネル数の前処理としてReLU-Conv-BNを用いた。

このセルを 4 つ重ねたものを用いて, Cifar10 の 10 クラス分類器を構築した. モデルの Optimizer は SDG で、アーキテクチャを表す.

2.2 実験

実験ではまず (a)30 epoch 学習し, その後 (b)60 epoch 訓練した. 得られた, 重みを (c)90 epoch で再学習した. (Accuracy のグラフを載せたかったのですが, 時間が足りませんでした...) (a) で 50%, (b) で 66.8%, (c) で最大 66.8%となった. 訓練時間は全体でおよそ $2\sim3$ 時間? 程度であった.

図2に得られたセルを示した.このセルの場合モデル全体では,前処理も含めて10層に相当する.使用された演算子はConv5x5とMaxPoolとなった.画像識別にしばしばみられる妥当な構成と思われる.

3 考察

アーキテクチャを決定するアルゴリズム

1. 辺ごとに最尤の演算子1つを決定 零写像を対等に扱ったため, グラフが切断される 場合があり識別できなくなった.

表 1: 実験の設定

Cell	4		
Node	7(input=1, output=1)		
Optim(model)	SDG(lr=5e-3, momentum=0.9)		
$\operatorname{Optim}(\theta)$	Adam(lr=5e-4, β =(0.5, 0.999))		
Loss	Cross Entropy Loss		
batch size	64		
train data	8000		
epoch	30+60+90		

表 2: 演算子候補

conv_3x3				
conv_5x5				
avg_pool_3x3				
max_pool_3x3				
skip_connect				
none				

2. ノードごとに (零写像を除く) 最尤の演算子を持つ 辺に決定

ノードが必ず親を持つため連結が保証された. 今回は1入力であるため,全ての中間ノードは1つの親ノードを持つように設定した.

初期段階で 1. のアルゴリズムを実装したが, うまくいかなかったため論文 [1] のコードを参考に 2. に変更した. しかしノードの親の数が固定されることになった. 元論文のように入力ノードを 2 つにすることで, より複雑なアーキテクチャを表現することを試したい.

今回は実装できなかった、Reduction Cell と呼ぶ stride=2のセルを導入して精度の改善を目指したい.

4 今後の予定

- 複数入力のセルの実装
- Reduction セルの実装

図 1: セルの全体構造

図 2: 探索したセル

5 ソースコード

Github の同階層の NAS_test.ipynb を参照してください.

6 付録

表 3 に θ の結果を示した. 初期値 0 から学習し, 辺ごとに SoftMax で確率分布にする. この結果からアーキテクチャを構築した.

参考文献

[1] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. CoRR, abs/1806.09055, 2018.

表 3: $(付録)\theta$ の結果 縦軸が $(0,1),(0,2),\dots$ などの辺, 横軸が演算子.

conv_3x3	conv_5x5	avg_pool_3x3	max_pool_3x3	skip_connect	none
0.0183	0.0447	-0.0951	-0.0092	0.016	-0.0878
-0.0608	0.0019	-0.0622	0.0613	0.0152	0.0838
-0.0071	0.0016	-0.0772	0.0199	0.0493	0.0382
0.0321	0.0254	-0.0595	-0.0185	-0.0134	0.0269
0.0043	0.0371	-0.0482	-0.0454	-0.0018	0.0304
-0.0868	0.0845	-0.4144	0.4559	-0.3905	-0.1644
0.0053	0.0941	-0.3314	0.2671	-0.2094	-0.0193
-0.0009	0.053	-0.3054	0.2834	-0.2829	-0.016
0.0286	0.1113	-0.2692	0.1651	-0.2161	0.0021
-0.0434	0.008	-0.2832	0.3248	-0.1618	-0.0383
0.0012	0.0817	-0.2243	0.1887	-0.214	-0.0307
0.0144	0.0216	-0.2078	0.1623	-0.1393	0.0263
0.0239	0.0498	-0.1619	0.1491	-0.1734	-0.0266
0.0325	0.0618	-0.1066	-0.0367	-0.0554	0.0913
0.0211	0.1379	-0.1649	-0.0872	-0.129	0.0195