INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C07D 241/04, 265/30, 279/12, A61K
31/495, 31/535, 31/54

A1

(11) International Publication Number:

WO 98/08825

(43) International Publication Date:

· 5 March 1998 (05.03.98)

(21) International Application Number:

PCT/US97/14552

(22) International Filing Date:

22 August 1997 (22.08.97)

(30) Priority Data:

60/024,764

28 August 1996 (28.08.96)

US

- (71) Applicant: THE PROCTER & GAMBLE COMPANY [US/US]; One Procter & Gamble Plaza, Cincinnati, OH 45202 (US).
- (72) Inventors: DE, Biswanath; 11269 Cornell Woods Drive, Cincinnati, OH 45241 (US). NATCHUS, Michael, George; 1096 Laurel Avenue, Glendale, OH 45246 (US). PIKUL, Stanislaw; 4640 Placepointe Drive, Mason, OH 45040 (US). ALMSTEAD, Neil, Gregory; 6348 Trail Ridge Court, Loveland, OH 45140 (US). MATTHEWS, Randall, Stryker; 1427 Forester Drive, Cincinnati, OH 45240 (US). TAIWO, Yetunde, Olabist; 7398 Coachford Drive, West Chester, OH 45069 (US). CHENG, Menyan; 5860 Hazeltine Court, West Chester, OH 45069 (US).
- (74) Agents: REED, T., David et al.; The Procter & Gamble Company, 5299 Spring Grove Avenue, Cincinnati, OH 45217 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 1,4-HETEROCYCLIC METALLOPROTEASE INHIBITORS

(57) Abstract

The invention provides compounds of formula (I) as described in the claims, or an optical isomer, diastereomer or enantiomer thereof, or a pharmaceutically-acceptable salt, or biohydrolyzable amide, ester, or imide thereof are useful as inhibitors of metalloproteases. Also disclosed are pharmaceutical compositions and methods of treating diseases, disorders and conditions characterized by metalloprotease activity using these compounds or the pharmaceutical compositions containing them.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ.	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1.4-HETEROCYCLIC METALLOPROTEASE INHIBITORS

TECHNICAL FIELD

This invention is directed to compounds which are useful in treating diseases, disorders and conditions associated with unwanted metalloprotease activity.

BACKGROUND

A number of structurally related metalloproteases [MPs] effect the breakdown of structural proteins. These metalloproteases often act on the intercellular matrix, and thus are involved in tissue breakdown and remodeling. Such proteins are referred to as metalloproteases or MPs. There are several different families of MPs, classified by sequence homology. Several families of known MPs, as well as examples thereof, are disclosed in the art.

These MPs include Matrix-Metallo Proteases [MMPs], zinc metalloproteases, many of the membrane bound metalloproteases, TNF converting enzymes, angiotensin-converting enzymes (ACEs), disintegrins, including ADAMs (See Wolfsberg et al. 131 <u>J. Cell Bio.</u> 275-78 October, 1995), and the enkephalinases. Examples of MPs include human skin fibroblast collagenase, human skin fibroblast gelatinase, human sputum collagenase, aggrecanse and gelatinase, and human stromelysin. Collagenase, stromelysin, aggrecanase and related enzymes are thought to be important in mediating the symptomatology of a number of diseases.

Potential therapeutic indications of MP inhibitors have been discussed in the literature. See for example, U.S. Patent 5,506,242 (Ciba Geigy Corp.); U.S. Patent 5.403,952 (Merck & Co.); PCT published application WO 96/06074 (British Bio Tech Ltd); PCT Publication WO 96/00214 (Ciba Geigy); WO 95/35275 (British Bio Tech Ltd); WO 95/35276 (British Bio Tech Ltd); WO 95/33731 (Hoffman-LaRoche); WO 95/33709 (Hoffman-LaRoche); WO 95/32944 (British Bio Tech Ltd); WO 95/26989 (Merck); WO 9529892 (DuPont Merck); WO 95/24921 (Inst. Opthamology); WO 95/23790 (SmithKline Beecham); WO 95/22966 (Sanofi Winthrop); WO 95/19965 (Glycomed); WO 95 19956 (British Bio Tech Ltd); WO 95/19957 (British Bio Tech Ltd); WO 95/19961 (British Bio Tech Ltd) WO 95/13289 (Chiroscience Ltd.); WO 95/12603 (Syntex); WO 95/09633 (Florida State Univ.); WO 95/09620 (Florida State Univ.); WO 95/04033 (Celltech); WO 94/25434 (Celltech); WO 94/25435 (Celltech); WO 93/14112 (Merck); WO 94/0019 (Glaxo); WO 93/21942 (British Bio Tech Ltd); WO 92/22523 (Res. Corp. Tech. Inc.); WO 94/10990 (British Bio Tech Ltd); WO 93/09090 (Yamanouchi); and British patents GB 2282598 (Merck) and GB 2268934 (British Bio Tech Ltd);

2

Published European Patent Applications EP 95/684240 (Hoffman LaRoche); EP 574758 (Hoffman LaRoche); EP 575844 (Hoffman LaRoche); Published Japanese applications; JP 08053403 (Fujusowa Pharm. Co. Ltd.); JP 7304770 (Kanebo Ltd.); and Bird et al J. Med Chem vol. 37, pp. 158-69 (1994). Examples of potential therapeutic uses of MP inhibitors include rheumatoid arthritis (Mullins, D. E., et al., Biochim. Biophys. Acta. (1983) 695:117-214); osteoarthritis (Henderson, B., et al., Drugs of the Future (1990) 15:495-508); the metastasis of tumor cells (ibid, Broadhurst, M. J., et al., European Patent Application 276,436 (published 1987), Reich, R., et al., 48 Cancer Res. 3307-3312 (1988); and various ulcerations or ulcerative conditions of tissue. For example, ulcerative conditions can result in the comea as the result of alkali burns or as a result of infection by Pseudomonas aeruginosa, Acanthamoeba, Herpes simplex and vaccinia viruses.

Other examples of conditions characterized by undesired metalloprotease activity include periodontal disease, epidermolysis bullosa, fever, inflammation and scleritis (Cf. DeCicco et al, WO 95 29892 published November 9, 1995).

In view of the involvement of such metalloproteases in a number of disease conditions, attempts have been made to prepare inhibitors to these enzymes. A number of such inhibitors are disclosed in the literature. Examples include U.S. Patent No. 5,183,900, issued February 2, 1993 to Galardy; U.S. Patent No. 4,996,358, issued February 26, 1991 to Handa, et al.; U.S. Patent No. 4,771,038, issued September 13, 1988 to Wolanin, et al.; U.S. Patent Number 4,743,587, issued May 10, 1988 to Dickens, et al., European Patent Publication Number 575,844, published December 29, 1993 by Broadhurst, et al.; International Patent Publication No. WO 93/09090, published May 13, 1993 by Isomura, et al.; World Patent Publication 92/17460, published October 15, 1992 by Markwell et al.; and European Patent Publication Number 498,665, published August 12, 1992 by Beckett, et al.

Metalloprotease inhibitors are useful in treating diseases caused, at least in part, by breakdown of structural proteins. Though a variety of inhibitors have been prepared, there is a continuing need for potent matrix metalloprotease inhibitors useful in treating such diseases. Applicants have found that, surprisingly, the compounds of the present invention are potent metalloprotease inhibitors.

OBJECTS OF THE INVENTION

Thus it is an object of the present invention to provide compounds useful for the treatment of conditions and diseases which are characterized by unwanted MP activity.

It is also an object of the invention to provide potent inhibitors of metalloproteases.

It is a further object of the invention to provide pharmaceutical compositions comprising such inhibitors.

It is also an object of the invention to provide a method of treatment for metalloprotease related maladies.

SUMMARY OF THE INVENTION

The invention provides compounds which are useful as inhibitors of metalloproteases, and which are effective in treating conditions characterized by excess activity of these enzymes. In particular, the present invention relates to a compound having a structure according to Formula (I)

wherein

 R_1 is H;

R2 is hydrogen, alkyl or acyl;

Ar is COR3 or SO2R4; and

R₃ is alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

R4 is alkyl, heteroalkyl, aryl, or heteroaryl, substituted or unsubstituted;

X is O, S, SO, SO₂, or NR₅, wherein R₅ is independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$ or may optionally form a ring with W; and

R₆ is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

R₇ is hydrogen, alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroaikyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

Rg is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

Ro is alkyl, aryl, heteroaryl, heteroalkyl;

W is hydrogen or one or more lower alkyl moieties, or is an alkylene, arylene, or heteroarylene bridge between two adjacent or nonadjacent carbons (thus forming a fused ring);

Y is independently one or more of hydrogen, hydroxy, SR_{10} , SOR_4 , SO_2R_4 , alkoxy, amino, wherein amino is of formula NR_{11} , R_{12} , wherein R_{11} and R_{12} are independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$; and

R₁₀ is hydrogen, alkyl, aryl, heteroaryl;

Z is nil, a spiro moiety or an oxo group substituted on the heterocyclic ring.

This structure also includes an optical isomer, diastereomer or enantiomer for Formula (I), or a pharmaceutically-acceptable salt, or biohydrolyzable amide, ester, or imide thereof.

These compounds have the ability to inhibit at least one mammalian metalloprotease. Accordingly, in other aspects, the invention is directed to pharmaceutical compositions containing the compounds of Formula (1), and to methods of treating diseases characterized by unwanted metalloprotease activity using these compounds or the pharmaceutical compositions containing them.

Metalloproteases which are active at a particularly undesired location (e.g., an organ or certain types of cells) can be targeted by conjugating the compounds of the invention to a targeting ligand specific for a marker at that location such as an antibody or fragment thereof or a receptor ligand. Conjugation methods are known in the art.

The invention is also directed to various other processes which take advantage of the unique properties of these compounds. Thus, in another aspect, the invention is directed to the compounds of Formula (I) conjugated to solid supports. These conjugates can be used as affinity reagents for the purification of a desired metalloprotease.

In another aspect, the invention is directed to the compounds of Formula (I) conjugated to label. As the compounds of the invention bind to at least one metalloprotease, the label can be used to detect the presence of relatively high levels of metalloprotease, preferably a matrix metalloprotease in vivo or in vitro cell culture.

In addition, the compounds of Formula (I) can be conjugated to carriers which permit the use of these compounds in immunization protocols to prepare antibodies specifically immunoreactive with the compounds of the invention. Typical conjugation methods are known in the art. These antibodies are then useful both in therapy and in monitoring the dosage of the inhibitors.

DETAILED DESCRIPTION

The compounds of the present invention are inhibitors of mammalian metalloproteases, preferably a matrix metalloproteases. Preferably, the compounds are those of Formula (I) or a pharmaceutically-acceptable salt, or biohydrolyzable amide, ester, or imide thereof.

Throughout this disclosure, publications and patents are referred to in an effort to fully describe the state of the art. All references cited herein are hereby incorporated by reference.

Definitions and Usage of Terms:

The following is a list of definitions for terms used herein.

"Acyl" or "carbonyl" is described as a radical which could be formed by removal of the hydroxy from a carboxylic acid (i.e., R-C(=O)-). Preferred acyl groups include (for example) acetyl, formyl, and propionyl.

"Acyloxy" is an oxy radical having an acyl substituent (i.e., -O-acyl); for example,-O-C(=O)-alkyl.

"Alkoxyacy!" is an acyl radical (-C(=O)-) having an alkoxy substituent (i.e., -O-R), for example, -C(=O)-O-alkyl. This radical can be referred to as an ester.

"Acylamino" is an amino radical having an acyl substituent (i.e., -N-acyl); for example, -NH-C(=O)-alkyl.

"Alkenyl" is an unsubstituted or substituted hydrocarbon chain radical having 2 to 15 carbon atoms; preferably from 2 to 10 carbon atoms; more preferably from 2 to 8; except where indicated. Alkenyl substituents have at least one olefinic double bond (including, for example, vinyl, allyl and butenyl).

"Alkynyl" is an unsubstituted or substituted hydrocarbon chain radical having 2 to 15 carbon atoms; preferably from 2 to 10 carbon atoms; more preferably from 2 to 8; except where indicated. The chain has at least one carbon-carbon triple bond.

"Alkoxy" is an oxygen radical having a hydrocarbon chain substituent, where the hydrocarbon chain is an alkyl or alkenyl (i.e., -O-alkyl or -O-alkenyl). Preferred alkoxy groups include (for example) methoxy, ethoxy, propoxy and allyloxy.

"Alkoxyalkyl" is an unsubstituted or substituted alkyl moiety substituted with an alkoxy moiety (i.e., -alkyl-O-alkyl). Preferred is where the alkyl has 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms), and the alkyoxy has 1 to 6 carbon atoms (more preferably 1 to 3 carbon atoms).

"Alkyl" is an unsubstituted or substituted saturated hydrocarbon chain radical having 1 to 15 carbon atoms; preferably from 1 to 10 carbon atoms; more preferably 1 to 4; except where indicated. Preferred alkyl groups include (for example) substituted or unsubstituted methyl, ethyl, propyl, isopropyl, and butyl.

As referred to herein, "spiro cycle" or "spiro cyclic" refers to a cyclic moiety sharing a carbon on another ring. Such cyclic moiety may be carbocyclic or heterocyclic in nature. Preferred heteroatoms included in the backbone of the heterocyclic spirocycle include oxygen, nitrogen and sulfur. The spiro cycles may be unsubstituted or substituted. Preferred substituents include oxo, hydroxy, alkyl, cycloalkyl, arylalkyl, alkoxy, amino, heteroalkyl, aryloxy, fused rings (e.g., benzothiole, cycloalkyl, heterocycloalkyl, benzimidizoles, pyridylthiole, etc., which may also be substituted) and the like. In addition, the heteroatom of the heterocycle may be substituted if valence allows. Preferred spirocyclic ring sizes include 3-7 membered rings.

Alkylene refers to an alkyl, alkenyl or alkynyl which is diradical, rather than a radical. "Hetero alkylene" is likewise defined as a (diradical) alkylene having a heteroatom in its chain.

"Alkylamino" is an amino radical having one (secondary amine) or two (tertiary amine) alkyl substituents (i.e., -N-alkyl). For example, methylamino (-NHCH₃), dimethylamino (-N(CH₃)₂), methylamino (-N(CH₃)CH₂CH₃).

"Aminoacyl" is acyl radical having an amino substituent (i.e., -C(=O)-N); for example, -C(=O)-NH₂. The amino group of the aminoacyl moiety may be unsubstituted (i.e., primary amine) or may be substituted with one (secondary amine) or two (i.e., tertiary amine) alkyl groups.

"Aryl" is an aromatic carbocyclic ring radical. Preferred aryl groups include (for example) phenyl, tolyl, xylyl, cumenyl, naphthyl, biphenyl and fluorenyl. Such groups may be substituted or unsubstituted.

"Arylalkyl" is an alkyl radical substituted with an aryl group. Preferred arylalkyl groups include benzyl, phenylethyl, and phenylpropyl. Such groups may be substituted or unsubstituted. "Arylalkylamino" is an amine radical substituted with an arylalkyl group (e.g., -NH-benzyl). Such groups may be substituted or unsubstituted.

"Arylamino" is an amine radical substituted with an aryl group (i.e., -NH-aryl). Such groups may be substituted or unsubstituted.

"Aryloxy" is an oxygen radical having an aryl substituent (i.e., -O-aryl). Such groups may be substituted or unsubstituted.

"Carbocyclic ring" is an unsubstituted or substituted, saturated, unsaturated or aromatic, hydrocarbon ring radical. Carbocyclic rings are monocyclic or are fused, bridged or spiro polycyclic ring systems. Monocyclic carbocyclic rings generally contain 4 to 9 atoms, preferably 4 to 7 atoms. Polycyclic carbocyclic rings contain 7 to 17 atoms, preferably from 7 to 12 atoms. Preferred polycyclic systems comprise 4-, 5-, 6- or 7-membered rings fused to 5-, 6-, or 7-membered rings.

"Carbocycle-alkyl" is an unsubstituted or substituted alkyl radical substituted with a carbocyclic ring. Unless otherwise specified, the carbocyclic ring is preferably an aryl or cycloalkyl; more preferably an aryl. Preferred carbocycle-alkyl groups include benzyl, phenylethyl and phenylpropyl.

"Carbocycle-heteroalkyl" is an unsubstituted or substituted heteroalkyl radical substituted with a carbocyclic ring. Unless otherwise specified, the carbocyclic ring is preferably an aryl or cycloalkyl; more preferably an aryl. The heteroalkyl is preferably 2-oxa-propyl, 2-oxa-ethyl, 2-thia-propyl, or 2-thia-ethyl.

"Carboxyalkyl" is an unsubstituted or substituted alkyl radical substituted with a carboxy (-C(=O)OH) moiety. For example, -CH₂-C(=O)OH.

"Cycloalkyl" is a saturated carbocyclic ring radical. Preferred cycloalkyl groups include (for example) cyclopropyl, cyclobutyl and cyclohexyl.

"Cycloheteroalkyl" is a saturated heterocyclic ring. Preferred cycloheteroalkyl groups include (for example) morpholinyl, piperadinyl, piperazinyl, tetrahydrofuryl and hydantoinyl.

"Fused rings" are rings that are superimposed together such that they share two ring atoms. A given ring may be fused to more than one other ring. Fused rings are contemplated in heteroaryl, aryl and heterocycle radicals or the like.

"Heterocycle-alkyl" is an alkyl radical substituted with a heterocyclic ring. The heterocyclic ring is preferably a heteroaryl or cycloheteroalkyl; more preferably a heteroaryl.

Preferred heterocycle alkyl include C_1 - C_4 alkyl having preferred heteroaryl appended to them. More preferred is, for example, pyridyl alkyl, and the like

"Heterocycle-heteroalkyl" is an unsubstituted or substituted heteroalkyl radical substituted with a heterocyclic ring. The heterocyclic ring is preferably an aryl or cycloheteroalkyl; more preferably an aryl.

"Heteroatom" is a nitrogen, sulfur or oxygen atom. Groups containing one or more heteroatoms may contain different heteroatoms.

"Heteroalkenyl" is an unsubstituted or substituted unsaturated chain radical having 3 to 8 members comprising carbon atoms and one or two heteroatoms. The chain has at least one carbon-carbon double bond.

"Heteroalkyl" is an unsubstituted or substituted saturated chain radical having 2 to 8 members comprising carbon atoms and one or two heteroatoms.

"Heterocyclic ring" is an unsubstituted or substituted, saturated, unsaturated or aromatic ring radical comprised of carbon atoms and one or more heteroatoms in the ring. Heterocyclic rings are monocyclic or are fused, bridged or spiro polycyclic ring systems. Monocyclic heterocyclic rings contain 3 to 9 atoms, preferably 4 to 7 atoms. Polycyclic rings contain 7 to 17 atoms, preferably from 7 to 13 atoms.

"Heteroaryl" is an aromatic heterocyclic ring, either monocyclic or bicyclic radical. Preferred heteroaryl groups include (for example) thienyl, furyl, pyrrolyl, pyridinyl, pyrazinyl, thiazolyl, pyrimidinyl, quinolinyl, and tetrazolyl, benzo thiazolyl, benzofuryl, indolyl and the like. Such groups may be substituted or unsubstituted.

"Halo", "halogen", or "halide" is a chloro, bromo, fluoro or iodo atom radical. Bromo, chloro and fluoro are preferred halides.

Also, as referred to herein, a "lower" hydrocarbon moiety (e.g., "lower" alkyl) is a hydrocarbon chain comprised of 1 to 6, preferably from 1 to 4, carbon atoms.

A "pharmaceutically-acceptable salt" is a cationic salt formed at any acidic (e.g., carboxyl) group, or an anionic salt formed at any basic (e.g., amino) group. Many such salts are known in the art, as described in World Patent Publication 87/05297, Johnston et al., published September 11, 1987 (incorporated by reference herein). Preferred cationic salts include the alkali metal salts (such as sodium and potassium), and alkaline earth metal salts (such as magnesium and calcium) and organic salts. Preferred anionic salts include the halides (such as chloride salts).

"Biohydrolyzable amides" are amides of the compounds of the invention that do not interfere with the inhibitory activity of the compound, or that are readily converted in vivo by a mammal subject to yield an active inhibitor.

A "biohydrolyzable hydroxy imide" is an imide of a Formula (I) compound that does not interfere with the metalloprotease inhibitory activity of these compounds, or that is readily

converted in vivo by a mammal subject to yield an active Formula (I) compound. Such hydroxy imides include those that do not interfere with the biological activity of the Formula (I) compounds.

A "biohydrolyzable ester" refers to an ester of a Formula (I) compound that does not interfere with the metalloprotease inhibitory activity of these compounds or that is readily converted by an animal to yield an active Formula (I) compound.

A "solvate" is a complex formed by the combination of a solute (e.g., a metalloprotease inhibitor) and a solvent (e.g., water). See J. Honig et al., <u>The Van Nostrand Chemist's Dictionary</u>, p. 650 (1953). Pharmaceutically-acceptable solvents used according to this invention include those that do not interfere with the biological activity of the metalloprotease inhibitor (e.g., water, ethanol, acetic acid, N,N-dimethylformamide and others known or readily determined by the skilled artisan).

"Optical isomer", "stereoisomer", "diastereomer" as referred to herein have the standard art recognized meanings (Cf., Hawley's Condensed Chemical Dictionary, 11th Ed.).

The illustration of specific protected forms and other derivatives of the Formula (I) compounds is not intended to be limiting. The application of other useful protecting groups, salt forms, etc. is within the ability of the skilled artisan.

As defined above and as used herein, substituent groups may themselves be substituted. Such substitution may be with one or more substituents. Such substituents include those listed in C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (1979), incorporated by reference herein. Preferred substituents include (for example) alkyl, alkenyl, alkoxy, hydroxy, oxo, nitro, amino, aminoalkyl (e.g., aminomethyl, etc.), cyano, halo, carboxy, alkoxyaceyl (e.g., carboethoxy, etc.), thiol, aryl, cycloalkyl, heteroaryl, heterocycloalkyl (e.g., piperidinyl, morpholinyl, pyrrolidinyl, etc.), imino, thioxo, hydroxyalkyl, aryloxy, arylalkyl, and combinations thereof.

As used herein, "mammalian metalloprotease" means any metal-containing enzyme found in mammalian sources which is capable of catalyzing the breakdown of collagen, gelatin or proteoglycan under suitable assay conditions. Appropriate assay conditions can be found, for example, in U.S. Pat. No. 4,743,587, which references the procedure of Cawston, et al., Anal. Biochem. (1979) 99:340-345, use of a synthetic substrate is described by Weingarten, H., et al., Biochem. Biophy. Res. Comm. (1984) 139:1184-1187. Any standard method for analyzing the breakdown of these structural proteins can, of course, be used. The metalloprotease enzymes referred to herein are all zinc-containing proteases which are similar in structure to, for example, human stromelysin or skin fibroblast collagenase. The ability of candidate compounds to inhibit metalloprotease activity can, of course, be tested in the assays described above. Isolated metalloprotease enzymes can be used to confirm the inhibiting activity of the invention compounds, or crude extracts which contain the range of enzymes capable of tissue breakdown can be used.

Compounds:

Compounds of the invention are described in the Summary of the Invention. Preferred compounds of the invention are those in which Z is heterospiroalkylene, preferably having heteroatoms adjacent to the parent ring structure, more preferably such spiroheteroalkylenes have 4 to 5 members. Preferred heteroatoms are divalent.

The invention provides compounds which are useful as inhibitors of metalloproteases, preferably a matrix metalloproteases, and which are effective in treating conditions characterized by excess activity of these enzymes. In particular, the present invention relates to a compound having a structure according to Formula (I)

$$\begin{array}{c|c}
R_1O & Ar \\
N & N \\
R_2 & X \\
Y & X
\end{array}$$

wherein

R₁ is H;

R₂ is hydrogen, alkyl or acyl;

Ar is COR3 or SO2R4; and

R₃ is alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

R₄ is alkyl, heteroalkyl, aryl, or heteroaryl, substituted or unsubstituted;

X is O, S, SO, SO₂, or NR₅, wherein R₅ is independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$ or may optionally form a ring with W; and

 R_6 is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

R7 is hydrogen, alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

Rg is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

R9 is alkyl, aryl, heteroaryl, heteroalkyl;

W is hydrogen or one or more lower alkyl moieties, or is an alkylene, arylene, or heteroarylene bridge between two adjacent or nonadjacent carbons (thus forming a fused ring);

Y is independently one or more of hydrogen, hydroxy, SR_{10} , SOR_4 , SO_2R_4 , alkoxy, amino, wherein amino is of formula NR_{11} , R_{12} , wherein R_{11} and R_{12} are independently

chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$; and

R₁₀ is hydrogen, alkyl, aryl, heteroaryl;

Z is nil, a spiro moiety or an oxo group substituted on the heterocyclic ring.

This structure also includes an optical isomer, diastereomer or enantiomer for Formula (1), or a pharmaceutically-acceptable salt, or biohydrolyzable ester, amide, or imide thereof.

Compound Preparation:

The hydroxamic compounds of Formula (I) can be prepared using a variety of procedures. General schemes include the following.

PREPARATION OF THE Y MOIETY

For the manipulation of Y it is understood that the skilled artisan may choose to prepare Y before, after or concurrent with the preparation of the heterocyclic ring. For clarity, the W and Z moiety are not shown below. More than one Y and Z may be present in the compounds of formula (I). For compounds where Y is not adjacent to the ring nitrogen, a preferred method of making the compounds is;

SCHEME I

Where R is a derivatizable group or can be manipulated or substituted, such compounds are known or are prepared by known methods. (A) is converted to its analogous sultamester and R is manipulated to give (B) during this or a subsequent step. Y and Z can be added or altered, followed by appropriate reaction to provide R₁. For example, this step may include treatment with hydroxyl amine under basic conditions to give a compound of formula I (C).

For the preparation and elaboration of the heterocyclic ring it is understood that the skilled artisan may choose to prepare Y before, after or concurrent with the preparation of the heterocyclic ring. For clarity, the W, Y, and Z moiety are not shown below. More than one W, Y and Z may be present in the compounds of formula (I). For compounds where X is nitrogen, the preferred method for the manipulation of R_5 is shown. In the scheme below, L is any acceptable leaving group, and B is a blocking group as above, Boc is an example of a preferred, and art recognized blocking group. The skilled artisan will recognize that the choice of blocking group is within the skill of the artisan working in organic chemistry. Thus the choice of Boc is not required, but preferred.

SCHEME II

For compounds containing a sulfur in the heterocyclic ring the preferred methods of ring formation are shown. For the preparation and elaboration of the heterocyclic ring it is understood that the skilled artisan may choose to prepare Y before, after or concurrent with the preparation of the heterocyclic ring. For clarity, the W, Y, and Z moiety are not shown below. More than one W, Y and Z may be present in the compounds of formula (1).

SCHEME III

Another acceptable strategy for making the invention having X as sulfur includes the following scheme. The method allows for formation of the sultamester and subsequent reaction with a bifunctional moiety. Preferably the OH described in the scheme below is a primary hydroxyl. Closure of the ring uses standard methods. Functionalization and elaboration of the molecule proceeds as described above.

SCHEME IV

Where X is sulfur, further elaboration of the heterocyclic ring can be accomplished after the ring has been formed. For example, oxidation of the ring sulfur atom using known methods can provide the corresponding sulfoxides and sulfones as shown.

$$R_1O$$
 N
 R_2
 R_1O
 N
 R_2
 R_2
 R_3O
 R_2
 R_3O
 R_2
 R_3O
 R_3O

SCHEME V

For compounds containing an oxygen in the heterocyclic ring the preferred methods of ring formation are shown. A bifunctional moiety, for example a halo hydroxy species is reacted with an aziridine as shown below. The halo moiety serves as a leaving group, useful in the ring closure reactions. Upon formation of the ring, elaboration of the invention proceeds as described above.

PREPARATION OF THE Z MOIETY

Of course the skilled artisan will recognize that schemes applicable to the preparation of Y may be useful in the preparation of Z as noted above. Other preferred methods are provided for the reader.

Where Z is a ketal or thioketal the compounds of the invention may be prepared from a compound having a carbonyl in the ring. Such compounds are prepared by known methods, and many of such compounds are known or commercially available. Thus the skilled artisan will appreciate that a hydroxy, amino, imino, alkoxy, oxo or any other group that may be manipulated into a carbonyl compound. The order of elaborating the ketal, R₁ or the sultamester may be changed.

A preferred method of making the spiro compounds of the invention is via a carbonyl compound, using "protecting group" technology known in the art, such as a thicketal or ketal, and the like. Ketals, acetals and the like are prepared from carbonyl compounds by methods known in the art. Such carbonyl compounds can be made of cyclic hydroxy alkylene amines via oxidation to a ketone, or of lactams, which provide for 2-amino spiro functionality.

A variety of compounds can be generated in a similar fashion, using the guidance of the scheme above.

In the above schemes, where R' is alkoxy or alkylthio, the corresponding hydroxy or thiol compounds are derived from the final compounds by using a standard dealkylating procedure (Bhatt, et al., "Cleavage of Ethers", <u>Synthesis</u>, 1983, pp. 249-281).

These steps may be varied to increase yield of desired product. The skilled artisan will also recognize the judicious choice of reactants, solvents, and temperatures is an important component in successful synthesis. While the determination of optimal conditions, etc. is routine, it will be understood that to make a variety of compounds can be generated in a similar fashion, using the guidance of the scheme above.

The starting materials used in preparing the compounds of the invention are known, made by known methods, or are commercially available as a starting material.

It is recognized that the skilled artisan in the art of organic chemistry can readily carry out standard manipulations of organic compounds without further direction; that is, it is well within the scope and practice of the skilled artisan to carry out such manipulations. These include, but are not limited to, reduction of carbonyl compounds to their corresponding alcohols, oxidations of hydroxyls and the like, acylations, aromatic substitutions, both electrophilic and nucleophilic, etherifications, esterification and saponification and the like. Examples of these manipulations are discussed in standard texts such as March, Advanced Organic Chemistry (Wiley), Carey and Sundberg, Advanced Organic Chemistry (Vol. 2) and Keeting, Heterocyclic Chemistry (all 17 volumes).

The skilled artisan will readily appreciate that certain reactions are best carried out when other functionality is masked or protected in the molecule, thus avoiding any undesirable side reactions and/or increasing the yield of the reaction. Often the skilled artisan utilizes protecting groups to accomplish such increased yields or to avoid the undesired reactions. These reactions are found in the literature and are also well within the scope of the skilled artisan. Examples of many of these manipulations can be found for example in T. Greene, Protecting Groups in Organic Synthesis. Of course, amino acids used as starting materials with reactive side chains are preferably blocked to prevent undesired side reactions.

The compounds of the invention may have one or more chiral centers. As a result, one may selectively prepare one optical isomer, including diastereomer and enantiomer, over another, for example by chiral starting materials, catalysts or solvents, or may prepare both stereoisomers or both optical isomers, including diastereomers and enantiomers at once (a racemic mixture). Since the compounds of the invention may exist as racemic mixtures, mixtures of optical isomers, including diastereomers and enantiomers, or stereoisomers may be separated using known methods, such as chiral salts, chiral chromatography and the like.

In addition, it is recognized that one optical isomer, including diastereomer and enantiomer, or stereoisomer may have favorable properties over the other. Thus when disclosing and claiming the invention, when one racemic mixture is disclosed, it is clearly contemplated that both optical

isomers, including diastereomers and enantiomers, or stereoisomers substantially free of the other are disclosed and claimed as well.

Methods of use

Metalloproteases (MPs) found in the body operate, in part, by breaking down the extracellular matrix, which comprises extracellular proteins and glycoproteins. These proteins and glycoproteins play an important role in maintaining the size, shape, structure and stability of tissue in the body. Inhibitors of metalloproteases are useful in treating diseases caused, at least in part, by breakdown of such proteins. It is known that MPs are intimately involved in tissue remodeling. As a result of this activity they have been said to be active in many disorders involving either the:

- breakdown of tissues; including degenerative diseases, such as arthritis, multiple sclerosis and the like; metastasis or mobility of tissues in the body:
- the remodeling of tissues, including fibrotic disease, scarring, benign hyperplasia, and the like. The compounds of the present invention treat disorders, diseases and/or unwanted conditions which are characterized by unwanted or elevated activity by that class of proteases. For example the compounds can be used to inhibit proteases which
- destroy structural proteins (i.e. the proteins that maintain tissue stability and structure);
- interfere in inter/intracellular signaling, including those implicated in cytokine up-regulation, and/or cytokine processing and/or inflammation, tissue degradation and other maladies [Mohler KM, et al, Nature 370 (1994) 218-220, Gearing AJH, et al, Nature 370 (1994) 555-557 McGeehan GM, et al, Nature 370 (1994) 558-561], and/or
- facilitate processes which are undesired in the subject being treated, for example, the processes
 of sperm maturation, egg fertilization and the like.

As used herein, a "MP related disorder" or "a MP related disease" is one that involves unwanted or elevated MP activity in the biological manifestation of the disease or disorder; in the biological cascade leading to the disorder; or as a symptom of the disorder. This "involvement" of the MP includes;

- The unwanted or elevated MP activity as a "cause" of the disorder or biological manifestation, whether the activity is elevated genetically, by infection, by autoimmunity, trauma, biomechanical causes, lifestyle [e.g. obesity] or by some other cause;
- The MP as part of the observable manifestation of the disease or disorder. That is, the disease or disorder is measurable in terms of the increased MP activity, or from a clinical standpoint, unwanted or elevated MP levels indicate the disease. MPs need not be the "hallmark" of the disease or disorder;
- The unwanted or elevated MP activity is part of the biochemical or cellular cascade that results
 or relates to the disease or disorder. In this respect, inhibition of the MP activity interrupts the
 cascade, and thus controls the disease.

Advantageously, many MPs are not distributed evenly throughout the body. Thus the distribution of MPs expressed in various tissues are often specific to those tissues. For example, the distribution of metalloproteases implicated in the breakdown of tissues in the joints, is not the same as the distribution of metalloproteases found in other tissues. Thus, though not essential for activity or efficacy, certain disorders preferably are treated with compounds that act on specific MPs found in the affected tissues or regions of the body. For example, a compound which displays a higher degree of affinity and inhibition for a MP found in the joints (e.g. chondrocytes) would be preferred for treatment of disease found there than other compounds which are less specific.

In addition, certain inhibitors are more bioavailable to certain tissues than others, and this judicious choice of inhibitor, with the selectivity described above provides for specific treatment of the disorder, disease or unwanted condition. For example, compounds of this invention vary in their ability to penetrate into the central nervous system. Thus compounds may be selected to produce effects mediated through MPs found specifically outside the central nervous system.

Determination of the specificity of a MP inhibitor of a certain MP is within the skill of the artisan in that field. Appropriate assay conditions can be found in the literature. Specifically assays are known for stromelysin and collagenase. For example, U.S. Pat. No. 4,743,587 references the procedure of Cawston, et al., Anal Biochem (1979) 99:340-345. The use of a synthetic substrate in an assay is described by Weingarten, H., et al., Biochem Biophy Res Comm (1984) 139:1184-1187. Any standard method for analyzing the breakdown of structural proteins by MPs can, of course, be used. The ability of compounds of the invention to inhibit metalloprotease activity can, of course, be tested in the assays found in the literature, or variations thereof. Isolated metalloprotease enzymes can be used to confirm the inhibiting activity of the invention compounds, or crude extracts which contain the range of enzymes capable of tissue breakdown can be used.

As a result of the MP inhibitory effect of the compounds of the invention, the compounds of the invention are also useful in treating the following disorders by virtue of their metalloprotease activity.

The compounds of this invention are also useful for the prophylactic or acute treatment. They are administered in any way the skilled artisan in the fields of medicine or pharmacology would desire. It is immediately apparent to the skilled artisan that preferred routes of administration will depend upon the disease state being treated, and the dosage form chosen. Preferred routes for systemic administration include administration perorally or parenterally.

However, the skilled artisan will readily appreciate the advantage of administering the MP inhibitor directly to the affected area for many disorders. For example, it may be advantageous to administer MP inhibitors directly to the area of the disease or condition as in area affected by surgical trauma (e. g., angioplasty), area affected by scarring or burn (e.g., topical to the skin),

Because the remodeling of bone involves MPs, the compounds of the invention are useful in preventing prosthesis loosening. It is known in the art that over time prostheses loosen, become

painful, and may result in further bone injury, thus demanding replacement. The need for replacement of such prostheses includes those such as in, joint replacements (for example hip, knee and shoulder replacements), dental prosthesis, including dentures, bridges and prosthesis secured to the maxilla and/or mandible.

MPs are also active in remodeling of the cardiovascular system (for example, in congestive heart failure). It has been suggested that one of the reasons angioplasty has a higher than expected long term failure rate (reclosure over time) is that MP activity is not desired or is elevated in response to what may be recognized by the body as "injury" to the basement membrane of the vessel. Thus regulation of MP activity in indications such as dilated cardiomyopathy, congestive heart failure, atherosclerosis, plaque rupture, reperfusion injury, ischemia, chronic obstructive pulmonary disease, angioplasty restenosis and aortic aneurysm may increase long term success of any other treatment, or may be a treatment in itself.

In skin care, MPs are implicated in the remodeling or "turnover" of skin. As a result, the regulation of MPs improves treatment of skin conditions including but not limited to, wrinkle repair, regulation and prevention and repair of ultraviolet induced skin damage. Such a treatment includes prophylactic treatment or treatment before the physiological manifestations are obvious. For example, the MP may be applied as a pre-exposure treatment to prevent ultraviolet, damage and/or during or after exposure to prevent or minimize post-exposure damage. In addition, MPs are implicated in skin disorders and diseases related to abnormal tissues that result from abnormal turnover, which includes metalloprotease activity, such as epidermolysis bullosa, psoriasis, scleroderma and atopic dermatitis. The compounds of the invention are also useful for treating the consequences of "normal" injury to the skin including scarring or "contraction" of tissue, for example, following burns. MP inhibition is also useful in surgical procedures involving the skin for prevention of scarring, and promotion of normal tissue growth including in such applications as limb reattachment and refractory surgery (whether by laser or incision).

In addition, MPs are related to disorders involving irregular remodeling of other tissues, such as bone, for example, in otosclerosis and/or osteoporosis, or for specific organs, such as in liver cirrhosis and fibrotic lung disease. Similarly in diseases such as multiple sclerosis, MPs may be involved in the irregular modeling of blood brain barrier and/or myelin sheaths of nervous tissue. Thus regulating MP activity may be used as a strategy in treating, preventing, and controlling such diseases.

MPs are also thought to be involved in many infections, including cytomegalovirus; [CMV] retinitis; HIV, and the resulting syndrome, AIDS.

MPs may also be involved in extra vascularization where surrounding tissue needs to be broken down to allow new blood vessels such as in angiofibroma and hemangioma.

Since MPs break down the extracellular matrix, it is contemplated that inhibitors of these enzymes can be used as birth control agents, for example in preventing ovulation, in preventing

penetration of the sperm into and through the extracellular milieu of the ovum, implantation of the fertilized ovum and in preventing sperm maturation.

In addition they are also contemplated to be useful in preventing or stopping premature labor and delivery.

Since MPs are implicated in the inflammatory response, and in the processing of cytokines the compounds are also useful as anti-inflammatories, for use in disease where inflammation is prevalent including, inflammatory bowel disease, Crohn's disease, ulcerative colitis, pancreatitis, diverticulitis, asthma or related lung disease, rheumatoid arthritis, gout and Reiter's Syndrome.

Where autoimmunity is the cause of the disorder, the immune response often triggers MP and cytokine activity. Regulation of MPs in treating such autoimmune disorders is a useful treatment strategy. Thus MP inhibitors can be used for treating disorders including, lupus erythmatosis, ankylosing spondylitis, and autoimmune keratitis. Sometimes the side effects of autoimmune therapy result in exacerbation of other conditions mediated by MPs, here MP inhibitor therapy is effective as well, for example, in autoimmune-therapy-induced fibrosis.

In addition, other fibrotic diseases lend themselves to this type of therapy, including pulmonary disease, bronchitis, emphysema, cystic fibrosis, acute respiratory distress syndrome (especially the acute phase response).

Where MPs are implicated in the undesired breakdown of tissue by exogenous agents, these can be treated with MP inhibitors. For example, they are effective as rattle snake bite antidote, as anti-vessicants, in treating allergic inflammation, septicemia and shock. In addition, they are useful as antiparasitics (e.g., in malaria) and antiinfectives. For example, they are thought to be useful in treating or preventing viral infection, including infection which would result in herpes, "cold" (e.g., rhinoviral infection), meningitis, hepatitis, HIV infection and AIDS.

MP inhibitors are also thought to be useful in treating Alzheimer's disease, amyotrophic lateral sclerosis (ALS), muscular dystrophy, complications resulting from or arising out of diabetes, especially those involving loss of tissue viability, coagulation, Graft vs. Host disease, leukemia, cachexia, anorexia, proteinuria, and perhaps regulation of hair growth.

For some diseases, conditions or disorders MP inhibition is contemplated to be a preferred method of treatment. Such diseases, conditions or disorders include, arthritis (including osteoarthritis and rheumitoid arthritis), cancer (especially the prevention or arrest of tumor growth and metastasis), ocular disorders (especially corneal ulceration, lack of corneal healing, macular degeneration, and pterygium), and gum disease (especially periodontal disease, and gingivitis)

Compounds preferred for, but not limited to, the treatment of arthritis (including osteoarthritis and rheumatoid arthritis) are those compounds that are selective for the metalloproteases and the disintegrin metalloproteases.

Compounds preferred for, but not limited to, the treatment of cancer (especially the prevention or arrest of tumor growth and metastasis) are those compounds that preferentially inhibit gelatinases or type IV collagenases.

Compounds preferred for, but not limited to, the treatment of ocular disorders (especially corneal ulceration, lack of corneal healing, macular degeneration, and pterygium) are those compounds that broadly inhibit metalloproteases. Preferably these compounds are administered topically, more preferably as a drop or gel.

Compounds preferred for, but not limited to, the treatment of gum disease (especially periodontal disease, and gingivitis) are those compounds that preferentially inhibit collagenases.

Compositions:

The compositions of the invention comprise:

- (a) a safe and effective amount of a compound of Formula (I); and
- (b) a pharmaceutically-acceptable carrier.

As discussed above, numerous diseases are known to be mediated by excess or undesired metalloprotease activity. These include tumor metastasis, osteoarthritis, rheumatoid arthritis, skin inflammation, ulcerations, particularly of the cornea, reaction to infection, periodontitis and the like. Thus, the compounds of the invention are useful in therapy with regard to conditions involving this unwanted activity.

The invention compounds can therefore be formulated into pharmaceutical compositions for use in treatment or prophylaxis of these conditions. Standard pharmaceutical formulation techniques are used, such as those disclosed in <u>Remington's Pharmaceutical Sciences</u>, Mack Publishing Company, Easton, Pa., latest edition.

A "safe and effective amount" of a Formula (I) compound is an amount that is effective, to inhibit metalloproteases at the site(s) of activity, in a mammal subject, without undue adverse side effects (such as toxicity, irritation, or allergic response), commensurate with a reasonable benefit/risk ratio when used in the manner of this invention. The specific "safe and effective amount" will, obviously, vary with such factors as the particular condition being treated, the physical condition of the patient, the duration of treatment, the nature of concurrent therapy (if any), the specific dosage form to be used, the carrier employed, the solubility of the Formula (I) compound therein, and the dosage regimen desired for the composition.

In addition to the subject compound, the compositions of the subject invention contain a pharmaceutically-acceptable carrier. The term "pharmaceutically-acceptable carrier", as used herein, means one or more compatible solid or liquid filler diluents or encapsulating substances which are suitable for administration to a mammal. The term "compatible", as used herein, means that the components of the composition are capable of being commingled with the subject compound, and with each other, in a manner such that there is no interaction which would substantially reduce the

pharmaceutical efficacy of the composition under ordinary use situations. Pharmaceutically-acceptable carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the aminal, preferably mammal being treated.

Some examples of substances which can serve as pharmaceutically-acceptable carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers: antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.

The choice of a pharmaceutically-acceptable carrier to be used in conjunction with the subject compound is basically determined by the way the compound is to be administered.

If the subject compound is to be injected, the preferred pharmaceutically-acceptable carrier is sterile, physiological saline, with blood-compatible suspending agent, the pH of which has been adjusted to about 7.4.

In particular, pharmaceutically-acceptable carriers for systemic administration include sugars, starches, cellulose and its derivatives, malt, gelatin, talc, calcium sulfate, vegetable oils, synthetic oils, polyols, alginic acid, phosphate buffer solutions, emulsifiers, isotonic saline, and pyrogen-free water. Preferred carriers for parenteral administration include propylene glycol, ethyl oleate, pyrrolidone, ethanol, and sesame oil. Preferably, the pharmaceutically-acceptable carrier, in compositions for parenteral administration, comprises at least about 90% by weight of the total composition.

The compositions of this invention are preferably provided in unit dosage form. As used herein, a "unit dosage form" is a composition of this invention containing an amount of a Formula (I) compound that is suitable for administration to a aminal, preferably mammal subject, in a single dose, according to good medical practice. These compositions preferably contain from about 5 mg (milligrams) to about 1000 mg, more preferably from about 10 mg to about 500 mg, more preferably from about 10 mg to about 500 mg, more preferably from about 10 mg to about 300 mg, of a Formula (I) compound.

The compositions of this invention may be in any of a variety of forms, suitable (for example) for oral, rectal, topical, nasal, ocular or parenteral administration. Depending upon the particular route of administration desired, a variety of pharmaceutically-acceptable carriers well-known in the art may be used. These include solid or liquid fillers, diluents, hydrotropes, surface-active agents, and encapsulating substances. Optional pharmaceutically-active materials may be included, which do not substantially interfere with the inhibitory activity of the Formula (I) compound. The amount of carrier employed in conjunction with the Formula

(I) compound is sufficient to provide a practical quantity of material for administration per unit dose of the Formula (I) compound. Techniques and compositions for making dosage forms useful in the methods of this invention are described in the following references, all incorporated by reference herein: Modern Pharmaceutics, Chapters 9 and 10 (Banker & Rhodes, editors, 1979); Lieberman et al., Pharmaceutical Dosage Forms: Tablets (1981); and Ansel, Introduction to Pharmaceutical Dosage Forms 2d Edition (1976).

In addition to the subject compound, the compositions of the subject invention contain a pharmaceutically-acceptable carrier. The term "pharmaceutically-acceptable carrier", as used herein, means one or more compatible solid or liquid filler diluents or encapsulating substances which are suitable for administration to a aminal, preferably mammal. The term "compatible", as used herein, means that the components of the composition are capable of being commingled with the subject compound, and with each other, in a manner such that there is no interaction which would substantially reduce the pharmaceutical efficacy of the composition under ordinary use situations. Pharmaceutically-acceptable carriers must, of course, be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the aminal, preferably mammal being treated.

Some examples of substances which can serve as pharmaceutically-acceptable carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, corn oil and oil of theobroma; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents, stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.

The choice of a pharmaceutically-acceptable carrier to be used in conjunction with the subject compound is basically determined by the way the compound is to be administered.

If the subject compound is to be injected, the preferred pharmaceutically-acceptable carrier is sterile, physiological saline, with blood-compatible suspending agent, the pH of which has been adjusted to about 7.4.

Various oral dosage forms can be used, including such solid forms as tablets, capsules, granules and bulk powders. These oral forms comprise a safe and effective amount, usually at least about 5%, and preferably from about 25% to about 50%, of the Formula (I) compound. Tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, or multiple-compressed, containing suitable binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents. Liquid oral dosage forms include aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules, and effervescent preparations reconstituted from effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, melting agents, coloring agents and flavoring agents.

The pharmaceutically-acceptable carrier suitable for the preparation of unit dosage forms for peroral administration are well-known in the art. Tablets typically comprise conventional pharmaceutically-compatible adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture. Coloring agents, such as the FD&C dyes, can be added for appearance. Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, are useful adjuvants for chewable tablets. Capsules typically comprise one or more solid diluents disclosed above. The selection of carrier components depends on secondary considerations like taste, cost, and shelf stability, which are not critical for the purposes of the subject invention, and can be readily made by a person skilled in the art.

Peroral compositions also include liquid solutions, emulsions, suspensions, and the like. The pharmaceutically-acceptable carriers suitable for preparation of such compositions are well known in the art. Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water. For a suspension, typical suspending agents include methyl cellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate. Peroral liquid compositions may also contain one or more components such as sweeteners, flavoring agents and colorants disclosed above.

Such compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the subject compound is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action. Such dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methyl cellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.

Compositions of the subject invention may optionally include other drug actives.

Other compositions useful for attaining systemic delivery of the subject compounds include sublingual, buccal and nasal dosage forms. Such compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol; and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose and hydroxypropyl methyl cellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.

The compositions of this invention can also be administered topically to a subject, e.g., by the direct laying on or spreading of the composition on the epidermal or epithelial tissue of the subject, or transdermally via a "patch". Such compositions include, for example, lotions, creams, solutions, gels and solids. These topical compositions preferably comprise a safe and effective amount, usually at least about 0.1%, and preferably from about 1% to about 5%, of the Formula (I) compound. Suitable carriers for topical administration preferably remain in place on the skin as a continuous film, and resist being removed by perspiration or immersion in water. Generally, the carrier is organic in nature and capable of having dispersed or dissolved therein the Formula (I) compound. The carrier may include pharmaceutically-acceptable emolients, emulsifiers, thickening agents, solvents and the like.

22

Methods of Administration:

This invention also provides methods of treating or preventing disorders associated with excess or undesired metalloprotease activity in an animal, preferably mammal subject, by administering a safe and effective amount of a Formula (I) compound to said subject. As used herein, a "disorder associated with excess or undesired metalloprotease activity" is any disorder characterized by degradation of proteins. The methods of the invention are useful in treating disorders such as (for example) osteoarthritis, periodontitis, corneal ulceration, tumor invasion, and rheumatoid arthritis.

The Formula (I) compounds and compositions of this invention can be administered topically or systemically. Systemic application includes any method of introducing Formula (I) compound into the tissues of the body, e.g., intra-articular (especially in treatment of rheumatoid arthritis), intrathecal, epidural, intramuscular, transdermal, intravenous, intraperitoneal, subcutaneous, sublingual, rectal, and oral administration. The Formula (I) compounds of the present invention are preferably administered orally.

The specific dosage of inhibitor to be administered, as well as the duration of treatment, and whether the treatment is topical or systemic are interdependent. The dosage and treatment regimen will also depend upon such factors as the specific Formula (I) compound used, the treatment indication, the ability of the Formula (I) compound to reach minimum inhibitory concentrations at the site of the metalloprotease to be inhibited, the personal attributes of the subject (such as weight), compliance with the treatment regimen, and the presence and severity of any side effects of the treatment.

Typically, for a human adult (weighing approximately 70 kilograms), from about 5 mg to about 3000 mg, more preferably from about 5 mg to about 1000 mg, more preferably from about 10 mg to about 100 mg, of Formula (I) compound are administered per day for systemic administration. It is understood that these dosage ranges are by way of example only, and that daily administration can be adjusted depending on the factors listed above.

A preferred method of administration for treatment of rheumatoid arthritis is oral or parenterally via intra-articular injection. As is known and practiced in the art, all formulations for parenteral administration must be sterile. For mammals, especially humans, (assuming an approximate body weight of 70 kilograms) individual doses of from about 10 mg to about 1000 mg are preferred.

A preferred method of systemic administration is oral. Individual doses of from about 10 mg to about 1000 mg, preferably from about 10 mg to about 300 mg are preferred.

Topical administration can be used to deliver the Formula (I) compound systemically, or to treat a subject locally. The amounts of Formula (I) compound to be topically administered depends upon such factors as skin sensitivity, type and location of the tissue to be treated, the composition and carrier (if any) to be administered, the particular Formula (I) compound to be administered, as well as the particular disorder to be treated and the extent to which systemic (as distinguished from local) effects are desired.

The inhibitors of the invention can be targeted to specific locations where the metalloprotease is accumulated by using targeting ligands. For example, to focus the inhibitors to metalloprotease contained in a tumor, the inhibitor is conjugated to an antibody or fragment thereof which is immunoreactive with a tumor marker as is generally understood in the preparation of immunotoxins in general. The targeting ligand can also be a ligand suitable for a receptor which is present on the tumor. Any targeting ligand which specifically reacts with a marker for the intended target tissue can be used. Methods for coupling the invention compound to the targeting ligand are well known and are similar to those described below for coupling to carrier. The conjugates are formulated and administered as described above.

For localized conditions, topical administration is preferred. For example, to treat ulcerated cornea, direct application to the affected eye may employ a formulation as eyedrops or aerosol. For corneal treatment, the compounds of the invention can also be formulated as gels, drops or ointments, or can be incorporated into collagen or a hydrophilic polymer shield. The materials can also be inserted as a contact lens or reservoir or as a subconjunctival formulation. For treatment of skin inflammation, the compound is applied locally and topically, in a gel, paste, salve or ointment. The mode of treatment thus reflects the nature of the condition and suitable formulations for any selected route are available in the art.

In all of the foregoing, of course, the compounds of the invention can be administered alone or as mixtures, and the compositions may further include additional drugs or excipients as appropriate for the indication.

Some of the compounds of the invention also inhibit bacterial metalloproteases although generally at a lower level than that exhibited with respect to mammalian metalloproteases. Some bacterial metalloproteases seem to be less dependent on the stereochemistry of the inhibitor, whereas substantial differences are found between diastereomers in their ability to inactivate the mammalian

24

proteases. Thus, this pattern of activity can be used to distinguish between the mammalian and bacterial enzymes.

Preparation and Use of Antibodies:

The invention compounds can also be utilized in immunization protocols to obtain antisera immunospecific for the invention compounds. As the invention compounds are relatively small, they are advantageously coupled to antigenically neutral carriers such as the conventionally used keyhole limpet hemocyanin (KLH) or serum albumin carriers. For those invention compounds having a carboxyl functionality, coupling to carrier can be done by methods generally known in the art. For example, the carboxyl residue can be reduced to an aldehyde and coupled to carrier through reaction with sidechain amino groups in protein-based carriers, optionally followed by reduction of imino linkage formed. The carboxyl residue can also be reacted with sidechain amino groups using condensing agents such as dicyclohexyl carbodiimide or other carbodiimide dehydrating agents.

Linker compounds can also be used to effect the coupling; both homobifunctional and heterobifunctional linkers are available from Pierce Chemical Company, Rockford, Ill. The resulting immunogenic complex can then be injected into suitable mammalian subjects such as mice, rabbits, and the like. Suitable protocols involve repeated injection of the immunogen in the presence of adjuvants according to a schedule which boosts production of antibodies in the serum. The titers of the immune serum can readily be measured using immunoassay procedures, now standard in the art, employing the invention compounds as antigens.

The antisera obtained can be used directly or monoclonal antibodies may be obtained by harvesting the peripheral blood lymphocytes or the spleen of the immunized animal and immortalizing the antibody-producing cells, followed by identifying the suitable antibody producers using standard immunoassay techniques.

The polyclonal or monoclonal preparations are then useful in monitoring therapy or prophylaxis regimens involving the compounds of the invention. Suitable samples such as those derived from blood, serum, urine, or saliva can be tested for the presence of the administered inhibitor at various times during the treatment protocol using standard immunoassay techniques which employ the antibody preparations of the invention.

The invention compounds can also be coupled to labels such as scintigraphic labels, e.g., technetium 99 or I-131, using standard coupling methods. The labeled compounds are administered to subjects to determine the locations of excess amounts of one or more metalloproteases in vivo. The ability of the inhibitors to selectively bind metalloprotease is thus taken advantage of to map the distribution of these enzymes in situ. The techniques can also be employed in histological procedures and the labeled invention compounds can be used in competitive immunoassays.

The following non-limiting examples illustrate the compounds, compositions, and uses of the present invention.

Examples

Compounds are analyzed using $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR, Elemental analysis, mass spectra and/or IR spectra, as appropriate.

Typically inert solvents are used, preferably in dried form. For example, tetrahydrofuran (THF) is distilled from sodium and benzophenone, diisopropylamine is distilled from calcium hydride and all other solvents are purchased as the appropriate grade. Chromatography is performed on silica gel (70 - 230 mesh; Aldrich) or (230 - 400 mesh; Merck) as appropriate. Thin layer chromatography analysis (TLC) is performed on glass mounted silica gel plates (200 - 300 mesh; Baker) and visualized with UV or 5% phosphomolybdic acid in EtOH.

EXAMPLE 1

Synthesis of N-hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-benzyloxycarbonyl-piperazine 2-carboxamide

1a. 1-[(4-Methoxyphenyl)sulfonyl]-4-(tert-butoxycarbonyl)-piperazine-2-carboxylic acid: To a solution of piperazine-2-carboxylic acid dihydrochloride (3 g, 14.8 mmol) in 30 mL of p-dioxane and 15 mL of water, is added slowly aqueous sodium hydroxide (1.6 mL 50% w/w, 29.6 mmol), followed by di-tert-butyl dicarbonate (3.6 g, 16.3 mmol). After 5 h, triethyl amine (4.1 mL. 29.6 mmol), 4-dimethylaminopyridine (0.18 g, 1.48 mmol) and 4-methoxyphenyl sulfonyl chloride (3.0 g, 14.8 mmol) are added, and the reaction is stirred overnight. The reaction mixture is concentrated under reduced pressure, and partitioned between EtOAc and 1N HCl. The EtOAc layer (2 x 100 mL) is washed with brine, dried over MgSO4, filtered and concentrated in vacuo to give the title compound as a solid. Cl⁺ MS: m/z 418 (M⁺ + NH₄), 401 (M⁺ + H).

1b. Methyl ester of 1-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxylic acid hydrochloride: To a solution of 1N-(4-Methoxyphenyl)sulfonyl-4N-(tert-butoxycarbonyl)-piperazine-2-carboxylic acid (19.6 g, 48.9 mmol) in 100 mL of methanol, is added thionyl chloride (36 mL, 493 mmol) dropwise at room temperature. The reaction mixture is stirred overnight and then is concentrated

under reduced pressure to a solid residue, which is triturated with 5% methanol/hexane to give the title compound as a solid. CI^+MS : m/z 315 (M⁺ + H).

26

1c. Methyl ester of 1-[(4-methoxyphenyl)sulfonyl]-4-benzyloxy carbonyl-piperazine-2-carboxylic acid: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride (1.2 g, 3.42 mmol), triethyl amine (1.42 mL, 10.26 mmol) and DMAP (41 mg, 0.34 mmol) in 5 mL of water and 5 mL of p-dioxane, is added benzyl chloroformate (0.67 mL, 4.45 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1N HCl. The EtOAc layer is washed with 1N HCl, 1N NaOH, water and brine, dried over MgSO4, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc (2:1)) to give the title compound as an oil. CI⁺ MS: m/z 466 (M⁺ + NH₄), 449 (M⁺ + H).

1d. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-benzyloxycarbonyl-piperazine 2-carboxamide: The methyl ester (0.58 g, 1.29 mmol) is mixed with NH₂OK (6 ml, 10 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica gel (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 100 % EtOAc followed by 5% CH₃OH / EtOAc to give the title compound as a foamy solid. Ion spray MS: m/z 472 (M⁺ + Na), 450 (M⁺ + H).

EXAMPLE 2

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-methyl piperazine-2-

carboxamide

a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-methyl piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.2 g, 3.4 mmol), sodium acetate (0.84 g, 10.26 mmol) in 10 mL of ethanol, is added paraformaldehyde (0.21 g, 6.84 mmol), followed by sodium cyanoborohydride (0.45 g, 6.84 mmol) slowly at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and stirred in 1 N HCl for 30 min. The mixture is made basic by 1 N NaOH, and extracted with EtOAc (3 x 80 mL) in the presence of some solid NaCl. The EtOAc layer is washed with brine, dried over MgSO₄, and concentrated under

reduced pressure. The crude product is purified by column chromatography on silica gel using EtOAc as elute to give the title compound. CI+ MS: m/z 329 (M+ + H).

2b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-methyl piperazine-2-carboxamide: The methyl ester (0.45 g, 1.37 mmol) is mixed with NH₂OK (6 mL, 10.2 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature.. Silica (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with CH₃OH / EtOAc (1:5) to the desired product as a thick oil. Ion spray MS: m/z $= 352 \text{ (M}^+ + \text{Na)}$, 330 (M⁺ + H).

EXAMPLE 3

Preparation of N-Hydroxy-1N-(4-Methoxyphenyl)sulfonyl-4N-morpholinecarbonyl piperazine-2-carboxamide

1N-(4-methoxyphenyl)sulfonyl-4N-morpholinecarbonyl-piperazine-2-3a. Methyl To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2carboxylic acid hydrochloride 1b (1.2 g, 3.42 mmol), triethyl amine (1.42 mL, 10.26 mmol) and DMAP (41 mg, 0.34 mmol) in 7 mL of CH₂Cl₂, 4 mL of water and 3 mL of p-dioxane, is added 4morpholinecarbonyl chloride (0.52 mL, 4.45 mmol) dropwise at room temperature. The reaction is stured overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (EtOAc) to give the title compound as an oil. CI+ MS: m/z 428 (M+ + H). N-Hydroxy-1N-(4-Methoxyphenyl)sulfonyl-4N-morpholinecarbonyl piperazine-2carboxamide: The methyl ester (0.75 g, 1.75 mmol) is mixed with NH₂OK (8.2 mL, 14 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica gel (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 15% CH₃OH / EtOAc to give the title compound. Ion spray MS: m/z 451 (M⁺ + Na), 429 (M⁺ + H).

EXAMPLE 4

Preparation of N-Hydroxy-1N-(4-Methoxyphenyl)sulfonyl-4N-benzyl-piperazine-2-carboxamide

- 4a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-benzyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.2 g, 3.42 mmol) and triethyl amine (1.42 mL, 10.26 mmol) in 8 mL of water and 8 mL of p-dioxane, is added benzyl bromide (0.5 mL, 4.1 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc 1:1) to give the title compound as a solid. Cl⁺ MS: m/z 405 (M⁺ + H).
- 4b. N-Hydroxy-1N-(4-Methoxyphenyl)sulfonyl-4N-benzyl-piperazine-2-carboxamide: The methyl ester (0.42 g, 1.04 mmol) is mixed with NH₂OK (4.9 mL, 8.3 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica gel (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with hexane / EtOAc (1:1) to give the desired product. Ion spray MS: m/z 428 (M $^+$ + Na), 406 (M $^+$ + H).

EXAMPLE 5

Preparation of N-Hydroxy-1N-(4-Methoxyphenyl)sulfonyl-4N-nicotinoyl-piperazine-2-

carboxamide hydrochloride

5a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-nicotinoyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride (1.2 g, 3.4 mmol), triethyl amine (1.9 mL, 13.6 mmol) in 4 mL of water and 3 mL of p-dioxane, is added nicotinoyl chloride hydrochloride (0.73 g, 4.1 mmol) dropwise at room

temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and H_2O . The EtOAc layer is washed with H_2O and brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound, which is purified by eluting with EtOAc on silica gel to give the title compound. CI⁺ MS: m/z 419 (M⁺ + H).

5b. N-Hydroxy-IN-(4-Methoxyphenyl)sulfonyl-4N-nicotinoyl-piperazine-2-carboxamide hydrochloride: The methyl ester (0.4 g, 0.95 mmol) is mixed with NH₂OK (4.5 mL, 7.6 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with CH₃OH / EtOAc (1:3). The product is diluted with EtOAc, followed by addition of 1N HCl (anhydrous, in Et₂O) slowly. The solid formed is filtered to give the desired product. Ion spray MS: m/z 443 (M⁺ + Na), 421 (M⁺ + H).

EXAMPLE 6

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-n-hexanoyl-piperazine-2-carboxamide

- 6a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-n-hexanoyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride (1.2 g, 3.42 mmol) and triethyl amine (1.42 mL, 10.26 mmol) in 5 mL of water and 5 mL of p-dioxane, is added hexanoyl chloride (0.62 mL, 4.42 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1N HCl. The EtOAc layer is washed with aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated to give the title compound as an oil. Cl⁺ MS: m/z 413 (M⁺ + H).
- 6b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-n-hexanoyl-piperazine-2-carboxamide: The methyl ester (0.88 g, 2.1 mmol) is mixed with NH₂OK (10 mL, 17.1 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature.. Silica gel (2 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to give the desired product as a solid. Ion spray MS: m/z 436 (M* + Na), 414 (M* + H).

WO 98/08825

7a.

 $(M^* + H).$

EXAMPLE 7

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(3-phenylpropyl)-piperazine-2carboxamide

Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(3-phenylpropyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-Methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid

hydrochloride 1b (1.2 g, 3.42 mmol) and triethyl amine (1.42 mL, 10.26 mmol) in 8 mL of water and 8 mL of p-dioxane, is added 1-bromo-3-phenylpropane (0.62 mL, 4.1 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and extracted with EtOAc. The EtOAc layer is washed with aqueous NaHCO3, water, brine, dried over MgSO4, and concentrated to an oil. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound. CI* MS: m/z 433

N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(3-phenylpropyl)-piperazine-2-7b. carboxamide: The methyl ester 7a (0.42 g, 0.97 mmol) is mixed with NH2OK (4.6 mL, 7.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature.. Silica (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc / hexane (1:1) to give the desired product. Ion spray MS: $m/z = 456 (M^+ + Na)$, 434 $(M^+ + H)$.

EXAMPLE 8

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(n-hexylaminocarbonyl)-

Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(n-hexyl amino carbonyl)-piperazine-2-8a. To a solution of methyl ester of 1N-(4-Methoxyphenyl)sulfonyl-piperazine-2carboxylic acid hydrochloride 1b (2 g, 5.7 mmol) and triethyl amine (2.4 mL, 17.1 mmol) in 12 mL of dichloroethane, is added n-hexyl isocyanate (0.92 mL, 6.27 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is partitioned between EtOAc and 1N HCl. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as an oil. Cl* MS: m/z 442 (M* + H).

8b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(n-hexylaminocarbonyl)-piperazine-2-carboxamide: The methyl ester 8a (0.7 g, 1.58 mmol) is mixed with NH₂OK (10 mL, 15.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature.. Silica (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to give the desired product as a white solid. Ion spray MS: m/z 465 (M⁺ + Na), 443 (M⁺ + H).

EXAMPLE 9

Preparation of N-Hydroxy 1N-(4-Methoxyphenyi)sulfonyl-4N-(adamantyl amino carbonyl)-piperazine-2-carboxamide

- 9a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(adamantyl amino carbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-Methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol) in 10 mL of water and 10 mL of p-dioxane, is added 1-adamantyl isocyanate (1.1 g, 6.4 mmol) at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is partitioned between EtOAc and 1N HCl. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to an oil. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as a thick oil. CI+ MS: m/z 412 (M+ + H).
- 9b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(adamantyl amino carbonyl)piperazine-2-carboxamide: The methyl ester 9a (1.1 g, 2.2 mmol) is mixed with NH₂OK (11 mL,
 18 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and
 stirred overnight at room temperature. Silica gel (3 g) is added to the mixture and the solvent is
 evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted
 with EtOAc to give the desired product as a white foamy solid. Ion spray MS: m/z 515 (M⁺ +
 NH₄), 493 (M⁺ + H).

EXAMPLE 10

Preparation of N-Hydroxy IN-(4-Methoxyphenyl)sulfonyl-4N-(2-phenylethyl)aminocarbonyl-piperazine-2-carboxamide

10a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(2-phenylethyl)aminocarbonyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.05 g, 3 mmol), triethyl amine (1.25 mL, 9 mmol) in 5 mL of water and 5 mL of p-dioxane, is added phenylethyl isocyanate (0.51 mL, 3.59 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound as an oil. Cl⁺ MS: m/z 462 (M⁺ + H).

10b. N-Hydroxy

1N-(4-Methoxyphenyl)sulfonyl-4N-(2-phenylethyl)aminocarbonyl-piperazine-2-carboxamide: The methyl ester 10a (0.42 g, 0.97 mmol) is mixed with NH₂OK (4.6 mL, 7.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica (1.5 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc / hexane (1:1) to give the desired product. Ion spray MS: m/z 485 (M⁺ + Na), 463 (M⁺ + H).

EXAMPLE 11

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(2,6-dichloropyridyl-4-

11a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(2,6-dichloropyridyl-4-amino carbonyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol) in 3 mL of water and 10 mL of p-dioxane, is added 2,6-dichloropyridyl-4-isocyanate (1.0 g, 6.4 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The

reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 0.1N HCl. The EtOAc layer is washed with aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to an oil. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as an oil. CI⁺ MS: m/z 503 (M⁺ + H).

11b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(2,6-dichloropyridyl-4-aminocarbonyl)-piperazine-2-carboxamide: The methyl ester 11a (0.43 g, 0.85 mmol) is mixed with NH₂OK (4 mL, 6.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica gel (\sim 1 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to give the desired product as a white foamy solid. Ion spray MS: m/z 503.8 (M⁺ + H).

EXAMPLE 12

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-phenoxy acetyl-piperazine-2-carboxamide

12a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-phenoxy acetyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol) in 3 mL of water and 8 mL of p-dioxane, is added phenoxyacetyl chloride (1.0 mL, 7.4 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and IN HCl. The EtOAc layer is washed with aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to an oil. The crude product is chromatographed on silica gel (EtOAc/hexane, 3:2) to give the title compound as an oil. Cl⁺ MS: m/z 449 (M⁺ + H).

12b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-phenoxy acetyl-piperazine-2-carboxamide: The methyl ester 12a (1 g, 2.23 mmol) is mixed with NH₂OK (13 mL, 22.3 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Acidified with glacial acetic acid to pH = 5, then silica gel (-2 g) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z $\frac{467 \text{ (M}^+ + \text{NH}_4)}{450 \text{ (M}^+ + \text{H})}$.

WO 98/08825

EXAMPLE 13

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(3-methoxyphenylamino-carbonyl)-piperazine-2-carboxamide

13a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(3-methoxyphenylaminocarbonyl)piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonylpiperazine-2-carboxylic acid hydrochloride 1b (2.0 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1
mmol) in 3 mL of water and 8 mL of p-dioxane, is added 3-methoxyphenyl isocyanate (0.98 mL,
7.41 mmol) dropwise. The reaction is stirred overnight at room temperature. The reaction mixture is
concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer
is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under
reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:4) to give
the title compound as an oil. Cl⁺ MS: m/z 464 (M⁺ + H).

13b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(3-methoxyphenylaminocarbonyl)-piperazine-2-carboxamide: The methyl ester 13a (0.91 g, 1.96 mmol) is mixed with NH₂OK (5.8 mL, 9.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The mixture is acidified to pH = 5 with 1N HCl (anhydrous in Et₂O), then silica (1.5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to give the desired product as a white solid. Ion spray MS: m/z 482 (M⁺ + Na), 465 (M⁺ + H).

14a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(4-biphenylcarbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2.0 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol) in 3 mL of

water and 8 mL of p-dioxane, is added 4-biphenyl carbonyl chloride (1.65 g, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as an oil. Cl⁺ MS: m/z 495 (M⁺ + H).

14b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(4-biphenylcarbonyl)-piperazine-2-carboxamide: The methyl ester 14a (0.85 g, 1.72 mmol) is mixed with NH₂OK (8 mL, 13.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The mixture is acidified to pH = 5 with 1N HCl (anhydrous in Et₂O), then silica (1.5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z = 518 (M⁺ + Na), = 513 (M⁺ + NH₄), = 496 (M⁺ + H).

EXAMPLE 15

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(thiophenecarbonyl)-piperazine-2-carboxamide

15a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(thiophenecarbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2.0 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol) in 2 mL of water and 8 mL of p-dioxane, is added 2-thiophenecarbonyl chloride (0.82 mL, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 3:2) to give the title compound as an oil. Cl* MS: m/z 425 (M* + H).

15b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(thiophenecarbonyl)-piperazine-2-carboxamide: The methyl ester 15a (0.95 g, 2.24 mmol) is mixed with NH₂OK (6.6 mL, 11.2 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica (1.5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH /-

36

EtOAc to give the desired product as a white solid. Ion spray MS: $m/z = 448 (M^+ + Na)$, 443 $(M^+ + NH_4)$, 426 $(M^+ + H)$.

EXAMPLE 16

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-furoyl-piperazine-2-carboxamide

16a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-furoyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (4 g, 11.4 mmol), triethyl amine (4.8 mL, 34.2 mmol), and 4-dimethylaminopyridine (0.134 g, 1.1 mmol) in 5 mL of water and 15 mL of p-dioxane, is added 2-furoyl chloride (1.54 mL, 14.8 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 4:1) to give the title compound as an oil. Cl⁺ MS: m/z 409 (M⁺ + H).

16b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-furoyl-piperazine-2-carboxamide: The methyl ester 16a (2.3 g, 5.63 mmol) is mixed with NH₂OK (26.5 mL, 45 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The mixture is acidified to pH = 5 with 1N HCl (anhydrous in Et₂O), then silica (~5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z 432 (M* + Na), 427 (M* + NH₄), 410 (M* + H).

EXAMPLE 17

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(2-amino-4-methyl-5-thiazolesulfonyl)-piperazine-2-carboxamide

- 17a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(2-acetamido-4-methyl-5-thiazolesulfonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.6 mmol), and 4-dimethylaminopyridine (70 mg, 0.57 mmol) in 3 mL of water and 8 mL of p-dioxane, is added 2-acetamido-4-methyl-5-thiazolesulfonyl chloride (1.9 g, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the desired product. Cl⁺ MS: m/z 533 (M⁺ + H).
- 17b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(2-amino-4-methyl-5-thiazolesulfonyl)-piperazine-2-carboxamide: The methyl ester 17a (1.2 g, 2.2 mmol) is mixed with NH₂OK (12 mL, 18 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure, then dissolved in 5 mL of methanol, and acidified with 37% HCl. Silica (~2 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CHI₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z 514 (M⁺ + Na), 492 (M⁺ + H).

EXAMPLE 18

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-cyclohexanecarbonyl-piperazine-2-carboxamide

18a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-cyclohexanecarbonyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.6 mmol), and 4-dimethylaminopyridine (70 mg, 0.57 mmol) in 4 mL of water and 8 mL of p-dioxane, is added

cyclohexane carbonyl chloride (1.0 mL, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the desired product. CI* MS: m/z 425 (M* + H).

18b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-cyclohexanecarbonyl-piperazine-2-carboxamide: The methyl ester 18a (1.3 g, 3.0 mmol) is mixed with NH₂OK (16.3 mL, 24.5 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica (2 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give 0.58 g the desired product as a white solid. lon spray MS: m/z 448 (M⁺ + Na), 443 (M⁺ + NH₄), 426 (M⁺ + H).

EXAMPLE 19

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(4-methyl-1,2,3,-thiadiazole-5-carbonyl)-piperazine-2-carboxamide

19a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(4-methyl-1,2,3,-thiadiazole-5-carbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol), and 4-dimethylaminopyridine (0.070 g, 0.0057 mmol) in 2 mL of water and 8 mL of p-dioxane, is added 4-methyl-1,2,3,-thiadiazole-5-carbonyl chloride (1.2 g, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 3:2) to give the title compound as an oil. CI* MS: m/z 458 (M* + NH₄), 441 (M* + H).

19b. N-Hydroxy

1N-(4-Methoxyphenyl)sulfonyl-4N-(4-methyl-1,2,3,-thiadiazole-5-carbonyl)-piperazine-2-carboxamide: The methyl ester 19a (1.1 g, 2.49 mmol) is mixed with NH₂OK (13 mL, 20 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica (~2 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted

with 5% CH₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z 459 (M⁺ + NH₄), 442 (M⁺ + H).

EXAMPLE 20

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(5-methyl-3-phenylisoxazole-4-carbonyl)-piperazine-2-carboxamide

20a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(5-methyl-3-phenylisoxazole-4-carbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol), and 4-dimethylaminopyridine (0.070 g, 0.6 mmol) in 2 mL of water and 8 mL of p-dioxane, is added 5-methyl-3-phenylisoxazole-4-carbonyl chloride (1.64 g, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and 1 N HCl. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as an oil. CI* MS: m/z 500 (M* + H).

20b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(5-methyl-3-phenylisoxazole-4-carbonyl)-piperazine-2-carboxamide: The methyl ester 20a (1.6 g, 3.2 mmol) is mixed with NH₂OK (15 mL, 25.6 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The mixture is acidified to pH = 5 with Concentrated HCl, then silica (-5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 2% formic acid / EtOAc to give the desired product as a solid. Ion spray MS: m/z 518 (M* + NH₄), 501 (M* + H).

EXAMPLE 21

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(isoxazole-5-carbonyl)-piperazine-2-carboxamide

21a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(isoxazole-5-carbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol), and 4-dimethylaminopyridine (0.070 g, 0.6 mmol) in 2 mL of water and 8 mL of p-dioxane, is added isoxazole-5-carbonyl chloride (0.97 g, 7.4 mmol) at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is chromatographed on silica gel (EtOAc/hexane, 1:1) to give the title compound as an oil. Cl⁺ MS: m/z 427 (M⁺ + NH₄), 410 (M⁺ + H).

21b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(isoxazole-5-carbonyl)-piperazine-2-carboxamide: The methyl ester 21a (0.15 g, 0.31 mmol) is mixed with NH₂OK (1.8 mL, 2.5 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. Silica (~1 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give the desired product as a white solid. Ion spray MS: m/z 428 (M⁺ + NH₄), 411 (M⁺ + H).

EXAMPLE 22

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-amido piperazine-2-carboxamide

22a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-amido-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.5 g, 4.3 mmol), triethyl amine (1.8 mL, 12.7 mmol) and DMAP (52 mg, 0.43 mmol) in 4 mL of water and 8 mL of p-dioxane, is added trimethylsilyl isocyanate (0.89 mL, 4.45 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water.

The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (EtOAc) to give the title compound. CI⁺ MS: m/z 358 (M⁺ + H).

22b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-amido piperazine-2-carboxamide: The methyl ester 22a (0.2 g, 0.56 mmol) is mixed with NH₂OK (3.2 mL, 4.5 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The solvent is removed under reduced pressure. The mixture is then dissolved in 1 mL of methanol, acidified with HCl (4N in dioxane) to pH -6. The crude product is subsequently eluted with 20% CH₃OH / EtOAc to give the title compound. Ion spray MS: m/z 397 (M⁺ + NH₄), 359 (M⁺ + H).

EXAMPLE 23

Preparation of N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(9-fluorenone-2-carbonyl)-piperazine-2-carboxamide

23a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(9-fluorenone-2-carbonyl)-piperazine-2-carboxylate: Oxalyl chloride (1 mL, 11.4 mmol) is added to a solution of 9-fluorenone-2-carbony chloride 1b (1.66 g, 7.4 mmol) in 2 mL of DMF and 20 mL of CH₂Cl₂ at 0 °C dropwise. The reaction mixture is stirred for 45 min. at room temperature, before is transferred slowly to a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride (2 g, 5.7 mmol), triethyl amine (5 mL, 34.2 mmol), and 4-dimethylaminopyridine (70 mg, 0.57 mmol) in 10 mL of p-dioxane at 0 °C. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, aqueous NaHCO₃, water, brine, dried over MgSO₄, and concentrated under reduced pressure to gave the desired product. Cl⁺ MS: m/z 521 (M⁺ + H).

23b. N-Hydroxy 1N-(4-Methoxyphenyl)sulfonyl-4N-(9-fluorenone-2-carbonyl)-piperazine-2-carboxamide: The methyl ester 23a (0.42 g, 0.807 mmol) is mixed with NH₂OK (4.6 mL, 6.45 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The mixture is acidified to pH = 5 with HCl (4N in dioxane), then silica (~5 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 2% formic acid-/ EtOAc to give the desired product as a solid. Ion spray MS: m/z $522 \, (M^+ + H)$.

WO 98/08825

EXAMPLE 24

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-carboxamide

24a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.5 g, 4.3 mmol), triethyl amine (1.8 mL, 12.7 mmol) and DMAP (52 mg, 0.43 mmol) in 2 mL of water and 8 mL of p-dioxane, is added methanesulfonyl chloride (0.43 mL, 5.56 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound. ESI+ MS: m/z $= 410 \, (M + NH_4^+)$, 393 (M+ + H).

24b. N-Hydroxy

1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-carboxamide: The methyl ester 24a (0.7 g, 1.78 mmol) is mixed with NH₂OK (10 mL, 14.2 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica (2 g) is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with 5% CH₃OH / EtOAc to give the desired product as a white solid. ESI+ MS: m/z

411 (M+ NH₄), 394 (M+ H).

EXAMPLE 25

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-

25a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (3.2 mL, 22.8 mmol) and DMAP (70 mg, 0.57

mmol) in 10 mL of p-dioxane, is added acetic anhydride (0.81 mL, 8.5 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound as a mixture of two conformers (2:1). ESI+ MS: $m/z = 374 (M + NH_4^-)$, 357 $(M^+ + H)$.

25b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-methanesulfonyl-piperazine-2-carboxamide: The methyl ester 25a (1.3 g, 3.65 mmol) is mixed with NH₂OK (21 mL, 28.8 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to 20% CH₃OH / EtOAc to give the desired product as a mixture of two conformers (2.1). ESI+MS: m/z 375 (M+ NH₄), 358 (M+ + H).

EXAMPLE 26

Preparation of N-Hydroxy 1N-(4-methoxyphenyi)sulfonyl-4N-(3,5-dimethylisoxazole-4-sulphonyl)-piperazine-2-carboxamide

26a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(3,5-dimethylisoxazole-4-sulphonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (1.5 g, 4.3 mmol), triethyl amine (1.89 mL, 13 mmol) and DMAP (53 mg, 0.43 mmol) in 12 mL of p-dioxane and 2 mL of water, is added 3,5-dimethylisoxazole-4-sulphonyl chloride (1.1 g, 5.6 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc, 1:1 to EtOAc) to give the title compound. ESI* MS: m/z 491 (M + NH₄*), 474 (M* + H).

26b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(3,5-dimethylisoxazole-4-sulphonyl)-piperazine-2-carboxamide: The methyl ester 26a (0.32 g, 0.68 mmol) is mixed with NH₂OK (4 mL, 5.4 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is

added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to 5% CH3OH / EtOAc to give of the desired product. ESI* MS: m/z 492 (M* + NH₄), 475 (M* + H).

44

EXAMPLE 27

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(N-methylhexyl aminocarbonyl)-

Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(N-methylhexyl aminocarbonyl)-piperazine-27a. 2-carboxylate: To a solution of phosgene (20% in toluene, 17 mL, 34 mmol) in dichloroethane (15 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (3 g, 8.5 mmol) slowly. The reaction is stirred 2 hr at 45 °C and overnight at room temperature. The reaction mixture is concentrated under reduced pressure, dissolved in 15 mL of dichloroethane and added to a solution of N-methylhexylamine (2.6 mL, 17.1 mmol), triethylamine (3.6 mL, 12.6 mmol) in dichloroethane (15 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by IN HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO4, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc, 1:2) to give the title compound. ESI $^+$ MS: m/z 473 (M $^+$ + NH₄), 456 (M $^+$ + H).

1N-(4-methoxyphenyl)sulfonyl-4N-(N-methylhexyl 27b. N-Hydroxy aminocarbonyl)piperazine-2-carboxamide: The methyl ester 27a (0.82 g, 1.8 mmol) is mixed with NH₂OK (10 mL, 14.4 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to 5% CH3OH / EtOAc to give the desired product. ESI⁺ MS: m/z 479 (M⁺ + Na), 457 (M⁺ + H).

EXAMPLE 28

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-[(4N-methyl)-piperazine-1Ncarbonyl)-piperazine-2-carboxamide

28a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-[(4N-methyl)-piperazine-1N-carbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 14 mL, 28.5 mmol) in dichloroethane (20 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2.5 g, 7.1 mmol) slowly. The reaction is stirred 2 hr at 45 °C and overnight at room temperature. The reaction mixture is concentrated under reduced pressure, dissolved in 20 mL of dichloroethane and added to a solution of 1-methylpiperazine (0.95 mL, 8.5 mmol), triethylamine (3-mL, 21-mmol) in-dichloroethane (10 mL) at 0-°C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by IN HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound. ESI+ MS: m/z 441 (M+ + H).

28b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-[(4N-methyl)-piperazine-1N-carbonyl)-piperazine-2-carboxamide: The methyl ester 28a (2 g, 4.5 mmol) is mixed with NH₂OK (24 mL, 36 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl (4N in dioxane) and solvent is removed under reduced pressure. The product is recrystallized from EtOAc / Methanol, to give the desired product. ESI+ MS: m/z 480 (M+ K), 442 (M+ H).

EXAMPLE 29

Preparation of N-Hydroxy IN-(4-methoxyphenyl)sulfonyl-4N-n-hexyl-piperazine-2-carboxamide

29a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-n-hexyl-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol), triethyl amine (2.4 mL, 17.1 mmol) in 15 mL of p-dioxane and 2 mL of water, is added 1-iodohexane (1.95 mL, 13.1 mmol) dropwise at room temperature. The reaction is stirred overnight at room temperature. The reaction mixture is concentrated under reduced pressure and partitioned between EtOAc and water. The EtOAc layer is washed with 1N

HCl, water, brine, dried over $MgSO_4$, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane to hexane / EtOAc, 1:1) to give the title compound. $ESI^+MS: m/z = 399 (M^+ + H)$.

29b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-n-hexyl-piperazine-2-carboxamide: The methyl ester 29a (1283 g, 3.21 mmol) is mixed with NH₂OK (18 mL, 25.7 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc to give the desired product. ESI+ MS: m/z 400 (M+ + H).

EXAMPLE 30

Preparation of \$N\$-Hydroxy 1N-(4-methoxyphenyl) sulfonyl-4N-(N-propylcyclopropanemethyl) and the substitution of the sub

1N-(4-methoxyphenyl)sulfonyl-4N-(N-propylevelopropanemethyl aminocarbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 56 mL, 114 mmol) in dichloroethane (80 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (10 g, 28.5 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is divided into 5 equivalents and concentrated under reduced pressure. One portion (1.7 g, 4.5 mmol in theory) is dissolved in 10 mL of CH₂Cl₂ and added to a solution of N-propylcyclopropane (0.88 mL, 5.85 mmol), triethylamine (2.5 mL, 18 mmol) in dichloroethane (8 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane to hexane / EtOAc, 2:1) to give the title compound. ESI* MS: m/z 454 (M* + H).

30b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(N-propylcyclopropanemethyl aminocarbonyl)-piperazine-2-carboxamide: The methyl ester 30a (1.1 g, 2.4 mmol) is mixed with NH₂OK (14 mL, 19.4 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica-gel

column which is subsequently eluted with EtOAc to give the desired product. ESI $^+$ MS: m/z 455 (M $^+$ + H).

EXAMPLE 31

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(N-propylcyclopropanemethyl aminocarbonyl)-piperazine-2-carboxamide

aminocarbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 56 mL, 114 mmol) in dichloroethane (80 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (10 g, 28.5 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is divided into 5 equivalents and concentrated under reduced pressure. One portion (2 g, 5.3 mmol) is dissolved in 10 mL of CH₂Cl₂ and added to a solution of 3-pyridinemethanol (0.63 mL, 6.3 mmol), triethylamine (2.9 mL, 21 mmol) in CH₂Cl₂ (10 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by IN HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc, 1:1 to 1:4) to give the title compound. ESI+ MS: m/z 450 (M+ + H).

31b. N-Hydroxy IN-(4-methoxyphenyl)sulfonyl-4N-(N-propylcyclopropanemethyl aminocarbonyl)-piperazine-2-carboxamide: The methyl ester 31a (0.55 g, 1.22 mmol) is mixed with NH₂OK (7 mL, 9.76 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and the solvent is evaporated. The crude product is purified by reverse phase prep HPLC (85A15B, A, 95% H₂O, 5% acetonitrile, 0.1% formic acid; B, 80% acetonitrile, 20% H₂O; 19x300 mm waters SymmetryPrep C₁₈ column) to give the title compound as a white foaming solid. ESI+MS: m/z 451 (M++H).

EXAMPLE 32

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(homopiperidinyl-N-carbonyl)-piperazine-2-carboxamide

32a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(homopiperidinyl-N-carbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 56 mL, 114 mmol) in dichloroethane (80 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (10 g, 28.5 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is divided into 5 equivalents and concentrated under reduced pressure. One portion (1.7 g, 4.5 mmol) is dissolved in 10 mL of CH₂Cl₂ and added to a solution of hexamethyleneimine (0.66 mL, 5.87 mmol), triethylamine (2.5 mL, 18 mmol) in CH₂Cl₂ (5 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound. ESI+ MS: m/z 440 (M+ + H).

32b. N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(homopiperidinyl-N-carbonyl)-piperazine-2-carboxamide: The methyl ester 32a (1.45 g, 3.3 mmol) is mixed with NH₂OK (18.9 mL, 26.4 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc / hexane (1:1) to 100% EtOAc to 5% CH₃OH / EtOAc to give the desired product. ESI* MS: m/z 441 (M* + H).

EXAMPLE 33

Preparation of N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(3-ethoxy-1-propoxy carbonyl)-piperazine-2-carboxamide

33a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-(3-ethoxy-1-propoxy carbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 85 mL, 171 mmol) in dichloroethane (150 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (30 g, 85.5 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight

at room temperature. The reaction mixture is concentrated under reduced pressure to give 24 g of the acid chloride. One portion of the acid chloride (1.67 g, 4.4 mmol) is dissolved in 8 mL of CH₂Cl₂ and added to a solution of 3-ethoxy-1-propanol (0.66 mL, 5.76 mmol), triethylamine (2.1 mL, 15.5 mmol) in CH₂Cl₂ (5 mL) at 0 °C dropwise. The mixture is stirred for 3 days at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc, 1:1) to give the title compound. ESI* MS: m/z 462 (M* + NH₄), 445 (M* + H).

N-Hydroxy 1N-(4-methoxyphenyl)sulfonyl-4N-(3-ethoxy-1-propoxy carbonyl)-piperazine-2-carboxamide: The methyl ester 33a (0.39 g, 0.88 mmol) is mixed with NH₂OK (5 mL, 7 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc / hexane (3:2) to give the desired product. ESI* MS: m/z 463 (M* + NH₄), 446 (M* + H).

EXAMPLE 34

Preparation of N-Hydroxy 1N-(4-methoxyphenyi)sulfonyl-4N-(N-benzylmethylaminocarbonyi)-piperazine-2-carboxamide

1N-(4-methoxyphenyl)sulfonyl-4N-(N-benzylmethylaminocarbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 85 mL, 171 mmol) in dichloroethane (150 mL) at O °C, is added methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (30 g, 85.5 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is concentrated under reduced pressure to give 24 g of the acid chloride. One portion of the acid chloride (1.8 g, 4.78 mmol) is dissolved in 8 mL of CH₂Cl₂ and added to a solution of N-benzylmethylamine (1.3 mL, 9.56 mmol), triethylamine (2.7 mL, 19.1 mmol) in CH₂Cl₂ (5 mL) at 0 °C dropwise. The mixture is stirred for 4 h at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound. ESI+ MS: m/z 463 (M+ + H).

WO 98/08825

1N-(4-methoxyphenyl)sulfonyl-4N-(N-benzylmethylaminocarbonyl)-piperazine-2-carboxamide: The methyl ester 34a (1.8 g, 3.9 mmol) is mixed with NH₂OK (10 mL, 14 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with HCl, and silica is added and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with EtOAc / hexane (1:1) to 100% EtOAc to give the desired product. ESI+ MS: m/z 463 (M+ + H).

EXAMPLE 35

Preparation of N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-(N-methylhexylaminocarbonyl)-piperazine-2-carboxamide

35a. 1N-(4-bromophenyl)sulfonyl-4N-(tert-butoxycarbonyl)-piperazine-2-carboxylic acid: To a solution of piperazine-2-carboxylic acid dihydrochloride (10 g, 49.2 mmol) in 70 mL of p-dioxane and 90 mL of water at 0 °C, is added slowly aqueous sodium hydroxide (5 mL 50% w/w, 98.4 mmol), followed by di-tert-butyl dicarboxylate (11.0 g, 49.2 mmol). After 17 h, triethyl amine (23 mL, 170 mmol) and 4-bromophenyl sulfonyl chloride (12.6 g, 49.2 mmol) are added, and the reaction is stirred overnight. The reaction mixture is concentrated under reduced pressure, and partitioned between EtOAc and 1N HCl. The EtOAc layer (2 x 100 mL) is washed with brine, dried over MgSO₄, filtered and concentrated in vacuo to give the title compound. ESI+ MS: m/z 468, 466 (M+ NH₄), 451,449 (M+ H).

35b. 1N-(4-bromophenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride: Thionyl chloride (6.6 mL, 90.8 mmol) is added slowly to a solution of the acid 35a in 80 mL of CH₃OH at 0 °C. The reaction mixture is stirred overnight. After degassing to remove the excess SOCl2, the solvent is removed under reduced pressure to give the desired product. ESI+ MS: m/z 365, 363 (M++ H).

35c. Methyl 1N-(4-bromophenyl)sulfonyl-4N-(N-methylhexylaminocarbonyl)-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 15 mL, 30 mmol) in dichloroethane (25

mL) at O °C, is added methyl ester of 1*N*-(4-bromophenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 35b (4 g, 10 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is concentrated under reduced pressure to give 3.6 g of the acid chloride. One portion of the acid chloride (1.25 g, 2.94 mmol) is dissolved in 8 mL of CH₂Cl₂ and added to a solution of N-methylhexylamine (0.9 mL, 5.87 mmol), triethylamine (1.65 mL, 11.7 mmol) in CH₂Cl₂ (5 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure to give the title compound. ESI+ MS: m/z 506, 504 (M+ + H).

1N-(4-bromophenyl)sulfonyl-4N-(N-methylhexylaminocarbonyl)piperazine-2-carboxamide: The methyl ester 35c (1.3 g, 2.58 mmol) is mixed with NH₂OK (9.2 mL, 12.8 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p

478) and stirred overnight at room temperature. The reaction mixture is acidified with 10% HCl, and extracted with EtOAc. The EtOAc layer is dried (MgSO₄) and the solvent is evaporated. The crude product is purified by reverse phase prep HPLC (40A60B, A, 95% H₂O, 5% acetonitrile, 0.1% formic acid; B, 80% acetonitrile, 20% H₂O; 19x300 mm waters SymmetryPrep C₁₈ column) to give the title compound as a white foaming solid. ESI+ MS: m/z 507, 505 (M+ + H).

EXAMPLE 36

Preparation of N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-[N-bis(2-methoxyethyl)aminocarbonyl]-piperazine-2-carboxamide

36a. Methyl 1N-(4-bromophenyl)sulfonyl-4N-[N-bis(2-methoxyethyl)aminocarbonyl]-piperazine-2-carboxylate: To a solution of phosgene (20% in toluene, 15 mL, 30 mmol) in dichloroethane (25 mL) at O °C, is added methyl ester of 1N-(4-bromophenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 35b (4 g, 10 mmol) slowly. The reaction is stirred 2 hr at 55 °C and overnight at room temperature. The reaction mixture is concentrated under reduced pressure to give 3.6 g of the acid chloride. One portion of the acid chloride (1.2 g, 2.8 mmol) is dissolved in 5 mL of CH₂Cl₂ and added to a solution of bis(2-methoxyethyl)amine (0.83 mL, 5.64 mmol), triethylamine (1.6 mL, 11.2 mmol) in CH₂Cl₂ (5 mL) at 0 °C dropwise. The mixture is stirred overnight at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc. The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure.

The crude product is purified by column chromatography (hexane / EtOAc, 2:3) to give the title compound. ESI+ MS: m/z 524, 522 (M+ + H).

36b. N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-[N-bis(2-methoxyethyl)aminocarbonyl]-piperazine-2-carboxamide: The methyl ester 36a (1.0 g, 1.91 mmol) is mixed with NH₂OK (5.5 mL, 7.6 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with 10% HCl, and extracted with EtOAc. The EtOAc layer is dried (MgSO₄) and the solvent is evaporated. The crude product is purified by column chromatography (EtOAc) to give the title compound as a white foaming solid. ESI+ MS: m/z 525, 523 (M+ + H).

EXAMPLE 37

Preparation of N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-(benzoxycarbonyl)-piperazine-2-carboxamide

37a. Methyl 1N-(4-bromophenyl)sulfonyl-4N-(benzoxycarbonyl)-piperazine-2-carboxylate: To a solution of methyl ester of 1N-(4-bromophenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 35b (1.5 g, 3.75 mmol), triethylamine (2.6 mL, 18.7 mmol) and DMAP (45 mg, 0.37 mmol) in CH_2Cl_2 (10 mL), is added benzyl chloroformate (0.85 mL, 5.62 mmol) dropwise at 0 °C. The mixture is stirred overnight at room temperature. The reaction is diluted by 1N HCl, and extracted with EtOAc (3 x 50 mL). The EtOAc layer is washed with 1N HCl, water, brine, dried over MgSO₄, and concentrated under reduced pressure. The crude product is purified by column chromatography (hexane / EtOAc, 7:3 to 6:4) to give the title compound. ESI+ MS: m/z 516, 514 (M+ NH₄), 499, 497 (M+ H).

1N-(4-bromophenyl)sulfonyl-4N-(benzoxycarbonyl)-piperazine-2-carboxamide: The methyl ester 37a (1.25 g, 2.35 mmol) is mixed with NH₂OK (6.6 mL, 9.2 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with 10% HCl, and extracted with EtOAc. The EtOAc layer is dried (MgSO₄) and the solvent is evaporated. The crude product is purified by column chromatography (EtOAc / hexane 1:1) to give the title compound as a white foaming solid. ESI+ MS: m/z 517, 515 (M++ NH₄), 500, 498 (M++ H).

EXAMPLE 38.

Preparation of N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-((S)-(+)-2-hydroxy-3-methyl-butyryl]-piperazine-2-carboxamide

38a. Methyl 1N-(4-methoxyphenyl)sulfonyl-4N-((S)-(+)-2-hydroxy-3-methyl-butyryl]-piperazine-2-carboxylate: Methyl ester of 1N-(4-methoxyphenyl)sulfonyl-piperazine-2-carboxylic acid hydrochloride 1b (2 g, 5.7 mmol) is mixed with (S)-(+)-2-hydroxy-3-methyl-butyric acid (1.0 g, 8.5 mmol), 1-hydroxybenzotriazole hydrate (2.3 g, 17.1 mmol), 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (1.4 g, 7.4 mmol) in 15 mL of DMF and 2.2 mL (20 mmol) of N-methyl morpholine at 0 °C, and stirred for 17 hr at room temperature. The reaction is then partitioned between water and EtOAc. The organic layer is washed with 1N HCl, H₂O, 1N NaOH, and brine, dried over MgSO₄, filtered and evaporated to give an oil which is chromatographed over flash silica with EtOAc to give the desired product. ESI+MS: m/z 415 (M+ + H).

38b. N-Hydroxy 1N-(4-bromophenyl)sulfonyl-4N-((S)-(+)-2-hydroxy-3-methyl-butyryl]-piperazine-2-carboxamide: The methyl ester 38a (1.6 g, 3.8 mmol) is mixed with NH₂OK (10.8 mL, 15.2 mmol, 1.5 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred overnight at room temperature. The reaction mixture is acidified with 10% HCl, and extracted with EtOAc (3 x 50 mL). The EtOAc layer is dried (MgSO₄) and the solvent is evaporated. The crude product is purified by column chromatography (EtOAc / 5% CH₃OH) to give the title compound as a white foaming solid. ESI+ MS: m/z 433 (M+ NH₄), 416 (M+ H).

EXAMPLE 39

The following compounds are prepared similarily to Example 1

39a. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(3-trifluoromethylbenzenesulfonyl)-piperazine-2-carboxamide, MS (ESI) 524 (M + H⁺).

39b. N-Hydroxy 1-[(4-methoxyphenyi)sulfonyl]-4-(3,4-dimethoxybenzoyl)-piperazine-2-carboxamide, MS (ESI) 480 (M + H $^+$), 502 (M + Na $^+$).

39c. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(1-methyl-1H-imidazole-4-sulfonyl)-piperazine-2-carboxamide, MS (ESI) 460 (M + H⁺).

39d. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(2-methoxyacetyl)-1-piperazine-2-carboxamide, MS (ESI) 388 (M + H^+), 410 (M + Na^+).

39f. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(benzo[2,1,3]thiadiazole-4-sulfonyl)-piperazine-2-carboxamide, MS (ESI) 514 (M + H $^+$), 531 (M + NH $_4$ $^+$).

39g. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-[(4-i-propylphenyl)aminocarbonyl)-piperazine-2-carboxamide, MS (ESI) 477 (M + H⁺).

39h. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(4'-octyloxy-4-biphenyl-carbonyl)-piperazine-2-carboxamide, MS (ESI) 625 (M + H^+), 642 (M + NH_4^+).

EXAMPLE 40

Preparation of N-hydroxy 1,4-di-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxamide:

40a. 1,4-Di-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxylic acid: To a solution of piperazine-2-carboxylic acid dihydrochloride (2 g, 9.85 mmol) in 10 mL of p-dioxane and 10 mL of water, is added triethyl amine (9.6 mL, 69 mmol) and DMAP (0.12 g, 1 mmol), followed by 4-methoxyphenylsulfonyl chloride (5.09 g, 24.6 mmol). The resulting mixture is stirred overnight at room temperature, and then concentrated under reduced pressure. The residue is partitioned between EtOAc and 1N HCl. The EtOAc layer (2 x 100 mL) is washed with 1N HCl, brine, dried over MgSO4, filtered and concentrated in vacuo to give the title compound as a solid. CI⁺ MS: m/z 488 (M⁺ + NH4), 471 (M⁺ + H).

40b. N-Hydroxy 1,4-di-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxamide: To a solution of oxalyl chloride (0.8 mL, 8.5 mmol) in 10 mL of CH₂Cl₂ and 0.7 mL of DMF, is added a solution of 1N, 4N-di-(4-methoxyphenylsulfonyl)-piperazine-2-carboxylic acid 40a (2 g, 4.25 mmol) in 4 mL of DMF at 0 °C. After 45 min. at room temperature, the solution is added dropwise at 0 °C to a mixture of hydroxylamine hydrochloride (2.96 g, 42.5 mmol) and triethylamine (5.9 mL, 42.5 mmol) in 3 mL of water and 16 mL of THF. The reaction is warmed to room temperature and stirred overnight. The reaction mixture is filtered, the organic layer is concentrated under reduced pressure.

The residue is dissolved in CH₂Cl₂, washed with 1N HCl, H₂O, brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude product is purified by column chromatography on silica gel (EtOAc to 5 % CH3OH / EtOAc) to give the title compound as a solid. Ion spray MS: m/z 508 (M⁺ + Na), 503 (M⁺ + NH₄), 486 (M⁺ + H).

EXAMPLE 41

Preparation of N-hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(t-butyloxycarbonyl)-piperazine-2-carboxamide:

41a. Methyl ester of 1-[(4-methoxyphenyl)sulfonyl]-4-(tert-butoxycarbonyl)-piperazine-2-carboxylic acid: To a solution of 1N-(4-Methoxyphenyl)sulfonyl-4N-(tert-butoxycarbonyl)-piperazine-2-carboxylic acid 1a (2 g, 5.61 mmol) in 8 mL of DMF is added potassium tert-butoxide (1 g, 8.4 mmol) at room temperature. After 30 min., iodomethane (0.42 mL, 6.73 mmol) is added at 0 °C, the reaction is stirred at room temperature overnight. The reaction mixture is quenched with water, and partitioned between EtOAc and H₂O. The EtOAc layer is washed with 1N HCl, 1N NaOH, H₂O and brine, dried over MgSO₄, filtered and concentrated in vacuo. Column chromatography of the residue on silica gel using hexane/EtOAc (4:1) provided the title compound as an oil. CI⁺ MS: m/z 432 (M⁺ + NH₄), 415 (M⁺ + H).

41b. N-Hydroxy 1-[(4-methoxyphenyl)sulfonyl]-4-(t-butyloxycarbonyl)-piperazine-2-carboxamide: The methyl ester 41a (0.33 g, 0.8 mmol) is taken in 1 mL of methanol, treated with NH₂OK (4 mL, 6.8 mmol, 1.7 M in methanol, solution prepared as described in Fieser and Fieser, Vol 1, p 478) and stirred for 4 h. Silica (1.5 mL) is added to the mixture and the solvent is evaporated. The dry silica is poured on top of a flash silica gel column which is subsequently eluted with hexane: EtOAc (4:1 to 7:3) to the desired product as a white foamy solid. Ion spray MS: m/z 438 (M⁺ + Na), 433 (M⁺ + NH₄), 416 (M⁺ + H).

EXAMPLE 42

Preparation of N-hydroxy 1-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxamide trifluoroacetic acid salt:

42a. N-Hydroxy 1-(4-Methoxyphenyl)-sulfonyl-piperazine-2-carboxamide trifluoroacetic acid:

To a solution of 1N-(4-methoxyphenyl)sulfonyl-4N-(tert-butoxycarbonyl)-piperazine-2-hydroxamic acid 41b (95 mg, 0.23 mmol) in 5 mL of CH₂Cl₂, is added trifluoroacetic acid (5 mL) at 0 °C. The reaction is stirred for 4 h at room temperature, followed by removal of solvent under reduced pressure. The crude product is purified by flash silica gel column eluting with CH₃OH / EtOAc (1:9) to give the desired product as a foamy solid. MS (ES): 338 (M^+ + Na), 316 (M^+ + H).

EXAMPLE 43

Preparation of N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-3-carboxamide

43a. Ethyl thiomorpholine-3-carboxylate: The ethyl dibromopropionate (10.1 g, 38.8 mmol) in THF (100 mL) is stirred at room temperature and then triethylamine (16.3 mL, 116.7 mmol, 3 equiv) is slowly added. The resulting heterogeneous solution is stirred at room temperature and then the cysteamine (3.0 g, 38.8 mmol) is added. Ethanol (50 mL) is added and the resulting mixture is heated to reflux for 12 h. The reaction mixture is cooled to room temperature and then the solvent is removed to leave a yellow solid. The solid is dissolved in water and extracted with methylene chloride. The combined organic extracts are dried (Na₂SO₄) and concentrated to an oil under reduced pressure. No further purification is attempted.

43b. Ethyl [(4-methoxyphenyl)sulfonyl]-thiomorpholine-3-carboxylate: The ethyl ester 43a (6.1 g, 34.8 mmol) and triethylamine (12.1 mL, 87.0 mmol, 2.5 equiv) in 1,4-dioxane (75 mL) is stirred at room temperature and then 4-methoxybenzenesulfonyl chloride (7.91 g, 38.3 mmol, 1.1 equiv) is added. The resulting solution is stirred at room temperature for 4 h. and then the solution is acidified to pH ~1 with 1 N HCl. The solution is poured into water and then extracted with CH₂Cl₂. The organic extracts are dried (Na₂SO₄) and concentrated to an oil. The oil is purified by

chromatography using 8/2 hexane/EtOAc as the eluent to afford the desired product as a colorless oil.

N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-3-carboxamide: The sulfonamide 43b (0.5 g, 1.45 mmol) in methanol (10 mL) is stirred at room temperature and then a solution of KONH₂ (0.868 M in MeOH, 3.3 mL, 2.90 mmol, 2 equiv) is added. The resulting solution is stirred at room temperature for 24 h and then acidified to pH \sim 2 with 1 N HCl. The solution is poured into water and then extracted with CH₂Cl₂. The organic extracts are dried (Na₂SO₄) and concentrated to a white solid under reduced pressure to afford the desired hydroxamic acid. Purification of the solid is accomplished by recrystalization from EtOAc/hexane (1/1) to provide the title compound. MS (ESI): 355 (M⁺ + NH₄), 333 (M⁺ + H).

EXAMPLE 44

N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-S-oxide-3-carboxamide.

44a. N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-S-oxide-3-carboxamide: The hydroxamic acid 43c (0.5 g, 1.5 mmol) in chloroform (50 mL) is stirred at room temperature and then the m-chloroperbenzoic acid (0.4 g, 1.50 mmol, 1 equiv) is slowly added. The resulting homogeneous solution is stirred at room temperature for 1 h and then concentrated to a white solid. Purification of the solid is accomplished by chromatography (Prep reverse phase HPLC using a Waters Nova-Pak C_{18} column 40 x 100 mm) and 85/15 water/acctonitrile as eluent). MS (ESI): 386 (M + Na⁺), 365 (M + H⁺).

EXAMPLE 45

N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-S,S-dioxide-3-carboxamide

45a. N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-S,S-dioxide-3-carboxamide: The hydroxamic acid 43c (0.5 g, 1.5 mmol) in chloroform (50 mL) is stirred at room temperature and

then the *m*-chloroperbenzoic acid (0.86 g, 3.01 mmol, 2 equiv) is slowly added. The resulting homogeneous solution is stirred at room temperature for 1 h and then concentrated to a white solid. Purification of the solid is accomplished by chromatography (Prep reverse phase HPLC using a Waters Nova-Pak C_{18} column 40 x 100 mm) and 85/15 water/acetonitrile as eluent). MS (ESI): 386 (M + Na⁺), 365 (M + H⁺).

EXAMPLE 46

The following compound are prepared similarly to example 45.

N-Hydroxy-4-[(4-methoxyphenyl)sulfonyl]-2,2-dimethyl-thiomorpholine-S,S-dioxide-3-carboxamide

EXAMPLE 47

3(S)-N-Hydroxy-2,2-dimethyl-4-[(4-methoxyphenyl)sulfonyl]-thiomorpholine-3-carboxamide.

47a. Methyl N-[(4-methoxyphenyl)sulfonyl]-S-(2-hydroxyethyl)-D-penicillamine: D-Penicillamine (14.9 g, 0.1 mol) in 2N NaOH (65 mL, 0.13 mol, 1.3 equiv) is stirred at 0 °C under an Argon atmosphere. A solution of 2-bromopropanol (15 g, 0.12 mol, 1.2 equiv) in ethanol (100 mL) is slowly added dropwise at 0 °C. The resulting solution is stirred overnight at room temperature and then the mixture is acidified to pH ~ 6 with 1 N HCl. The solvent is removed under reduced pressure to leave a thick oil. The penicillamine adduct is then dissolved in dioxane (200 mL) and water (200 mL) and stirred at room temperature. Triethylamine (29.8 g, 0.295 mol, 3 equiv) is then added to the reaction mixture followed by 4-methoxybenzenesulfonyl chloride (22.3 g, 0.108 mol, 1.1 equiv). The resulting homogeneous solution is stirred at room temperature for 18 hours and then acidified to pH - 2 with 1N HCl. The solution is poured into water and extracted with methylene chloride. The organic extracts are dried (MgSO₄) and concentrated to an oil under reduced pressure. The resulting oil is diluted in methanol (30 mL) and enough diazomethane in diethyl ether is added to form a yellow solution. The mixture is concentrated under reduced pressure to leave a colorless oil. Purification of the resulting methyl ester is accomplished by chromatography on silica gel using 1/1 hexane/EtOAc as the eluent. The desired product is obtained as a clear, colorless oil.

47b. Methyl 4N- $\{(4-methoxyphenyl)$ sulfonyl $\}$ -2,2-dimethyl-thiomorpholine-3-carboxylate: The methyl ester 47a (10.8 g, 28.6 mmol) in THF (200 mL) is stirred at room temperature and then triphenylphosphine (9.0 g, 34.3 mmol, 1.2 equiv) followed by diethyl azodicarboxylate (5.48 g, 31.5 mmol, 1.1 equiv) is added. The resulting solution is stirred at room temperature for 2 hours. The solvent is removed and then the thick yellow oil is diluted with methylene chloride and silica gel (30 g) is added. The solvent is removed to leave a white powder. This powder is placed upon a chromatography column and eluted with 8/2 hexane/EtOAc. The desired product is obtained as a colorless oil. MS (ESI): 360 (M⁺ + H), 377 (M⁺ + NH₄).

47c. 4-[(4-Methoxyphenyl)sulfonyl]-2,2-dimethyl-thiomorpholine-3-carboxylic acid: The methyl ester 47b (9.5 g, 26.4 mmol) in pyridine (150 mL) is stirred at room temperature under an argon atmosphere. Lithium iodide (42.4 g, 317 mmol, 12 equiv) is added and the resulting solution is heated to reflux for 3 h. The reaction mixture is cooled to room temperature and then the solution is acidified with 1N HCl. The mixture is extracted with methylene chloride and then the organic extracts are dried (Na₂SO₄) and concentrated to an oil under reduced pressure. The oil is purified by column chromatography using 1/1 hexane/EtOAc as the eluent to provide the desired product as a light yellow oil. MS (ESI): 346 (M⁺ + H), 363 (M⁺ + NH₄).

The carboxylic acid 47c (4.1 g, 11.8 mmol) in dichloromethane (50 mL) is stirred at room temperature and then oxalyl chloride (3.09 g, 24.3 mmol, 2.05 equiv) and DMF (0.87 g, 11.8 mmol) are added. The resulting solution is stirred at room temperature for 30 minutes. In a separate flask, hydroxylamine hydrochloride (3.3 g, 47.5 mmol, 4 equiv) in THF (50 mL) and water (10 mL) is stirred at 0 °C. Triethylamine (7.16 g, 70.8 mmol, 6 equiv) is added and the resulting solution is stirred at 0 °C for 15 minutes. The acid chloride solution is next added to the hydroxylamine solution at 0 °C and the resulting mixture is allowed to stir overnight at room temperature. The reaction mixture is next acidified with 1 N HCl and then extracted with dichloromethane. The organic extracts are dried (Na₂SO₄) and concentrated to a solid under reduced pressure. The solid is recrystallized from CH₃CN / H₂O to provide a white powder. MS (ESI): 378 (M⁺ + NH₄), 361 (M⁺ + H).

EXAMPLE 48

N-Hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4-[-4-(4-bromophenyl)-2-thizaolyl]-piperazine-2-carboxamide:

48a. Methyl 1-[(4-methoxyphenyl)sulfonyl]-4-[-4-(4-bromophenyl)-2-thizaolyl]-piperazine-2-carboxylate: To methyl 1-[(4-methoxyphenyl)sulfonyl]-piperazine-2-carboxylate 1b (300 mg, 0.86 mmol) in ethyl alcohol (50 mL) is added 4-bromophenacyl thiocyanate (220 mg, 0.86 mmol) and acetic acid (0.05 mL, 0.87 mmol). The reaction is stirred for 6 hours at room temperature and then triethylamine is added to neutralize the mixture. The ethyl alcohol is removed under reduced pressure. The resulting residue is taken up in diethyl ether (250 mL) and this mixture is washed with water (3x). The organic extract is dried (Na₂SO₄) and concentrated to give the desired product as a light yellow solid: mp 68-70 °C.

48b. N-Hydroxy-1-[(4-methoxyphenyl)sulfonyl]-4-[-4-(4-bromophenyl)-2-thizaolyl]-piperazine-2-carboxamide: The methyl ester 48a (121 mg, 0.22 mmol) in a solution of KONH₂ (1.76 M in methyl alcohol, 1.0 mL, 1.76 mmol) is stirred 16 hours at room temperature. The resulting solution is neutralized with 1 M HCl. The volatiles are removed under reduced pressure and the product is purified by chromatography using 7/3 ethyl acetate/hexane as the effluent to give the desired hydroxamic acid as a tan solid. MS (ESI): 553, 555 (M⁺ + H), 575, 577 (M⁺ + Na).

EXAMPLE 49

Preparation of N-Hydroxy-4N-[(4-methoxyphenyl)sulfonyl]-morpholine-3-carboxamide

9a. Methyl N-[(Phenylmethoxy)carbonyl]-aziridine-2-carboxylate: The methyl-aziridine-2-carboxylate (5.0 g, 49.4 mmol) and triethylamine (6.87 mL, 49.4 mmol) in chloroform (100 mL) are stirred at 0 °C in an ice bath and then the carbomethoxybenzyl chloride (6.30 mL, 44.5 mmol) is

added. The resulting solution is stirred at room temperature overnight. The resulting solution is washed with 10% citric acid, saturated sodium bicarbonate and water. The organic layer is dried over sodium sufate and concentrated to an oil. The oil is purified by silica gel column chromotography using 5/1 hexane/ethyl acetate as the eluent to afford the desired product. MS (ESI): $236 \, (M + H^+)$, $253 \, (M + NH_3^+)$.

49b. N-[(Phenylmethoxy)carbonyl]-O-(2-chloroethyl)-serine methyl ester: The methyl ester 49a (5.0 g, 21.3 mmol) is dissolved in chloroform (50 mL), followed by the addition of 2-chloroethanol (13.7 g, 205.6 mmol) and BF₃·OEt₂ (15 drops) at room temperature. The resulting solution is stirred overnight. The reaction mixture is washed with water several times and the combined organic extracts are dried over sodium sulfate and concentrated to an oil under reduced pressure. The oil is purified by silica gel column chromotography using 4/1 hexane/ethyl acetate as the eluent to afford the desired product. MS (ESI): 316, 318 (M⁺ + H), 333, 335 (M⁺ + NH₄).

49c. O-(2-Chloroethyl)-serine methyl ester: The protected methyl ester 49b (3.8 g, 12.1 mmol) is dissolved in methanol (40 mL) and hydrogenated over palladium black (5% wt) with a hydrogen balloon overnight. The mixture is filtered through celite and concentrated to an oil under reduced pressure. The residue is carried forward without further purification. MS (ESI): 182, 184 (M⁺ + H). 49d. Methyl morpholine-3-carboxylate: The methyl ester-free amine 49c (2.1 g, 11.6 mmol) and triethylamine (3.2 mL, 23.2 mmol) in methanol (120 mL) are stirred at room temperature. The reaction is then heated to reflux at 65 °C and stirred overnight. The reaction mixture is cooled to room temperature and concentrated under reduced pressure to form a solid which contained some triethylamine salts. This mixture is carried forward with no further purification. MS (ESI): 146 (M⁺ + H).

49e. Methyl 4N-[(4-methoxyphenyl)sulfonyl]-morpholine-3-carboxylate: The methyl ester 49d (1.68 g, 11.6 mmol) and triethylamine (3.22 mL, 23.2 mmol) in 1,4-dioxane (15 mL) and water (15 mL) are stirred at room temperature and then 4-methoxyphenylsulfonyl chloride (2.87 g, 13.9 mmol) is added. The resulting solution is stirred at room temperature overnight and then the solution is acidified to pH \sim 1 with 1 N HCl. The solution is poured into water and then extracted with CH₂Cl₂. The organic extracts are dried (Na₂SO₄) and concentrated to an oil. The oil is purified by chromatography using 5/1 hexane/EtOAc as the eluent to afford the desired product as a colorless oil. MS (ESI): 316 (M⁺ + H), 333 (M⁺ + NH₄).

49f. N-Hydroxy-4N-[(4-methoxyphenyl)sulfonyl]-morpholine-3-carboxamide: The methyl ester 49e (1.0 g, 3.17 mmol) is dissolved in methanol (3 mL) followed by the addition of 1.76 M solution of potassium hydroxyl amine solution (8 equiv.). The mixture is stirred at room temperature overnight and then acidified to pH ~2 with 1N HCl. The solution is poured into water and extracted with ethyl acetate. The organic extracts are dried over magnesium sulfate and concentrated under reduced pressure to an oil. The oil is purified by reverse phase HPLC using 65% of (95% water 5%

acetonitrile .1% formic acid) and 35% of (80% acetonitrile 20% water) to afford a crystalline white solid. MS (ESI): $317 \, (M^+ + H)$, $334 \, (M^+ + NH_4)$.

EXAMPLE 50

Preparation of 3(S)-N-Hydroxy-2,2-dimethyl-4N-[(4-phenoxyphenyl)sulfonyl]-thiomorpholine-3-carboxamide

50a. Methyl N-(4-methoxybenzenesulfonyl)-S-(2-hydroxyethyl)-D-penicillamine: D-Penicillamine (3.0 g, 20.1 mmol) in 2N NaOH (14.1 mL, 28.1 mmol, 1.4 equiv) was stirred at 0 °C under an Argon atmosphere. A solution of 2-bromopropanol (3.30 g, 26.1 mmol, 1.3 equiv) in ethanol (20 mL) was slowly added dropwise at 0 °C. The resulting solution was stirred overnight at room temperature and then the mixture was acidified to pH ~ 6 with 1 N HCl. The solvent was removed under reduced pressure to leave a thick oil. The penicillamine adduct was then dissolved in dioxane (25 mL) and water (25 mL) and stirred at room temperature. Triethylamine (6.1 g, 60.3 mmol, 3 equiv) was then added to the reaction mixture followed by 4-phenoxyphenylsulfonyl chloride (5.4 g, 20.1 mol, 1.0 equiv, Ref: Cremlyn et al, Aust. J. Chem. 1979, 32, 445-52.). The resulting homogeneous solution was stirred at room temperature for 18 hours and then acidified to pH ~ 2 with 1N HCl. The solution was poured into water and extracted with methylene chloride. The organic extracts were dried (MgSO₄) and concentrated to an oil under reduced pressure. The resulting oil was diluted in methanol (15 mL) and enough diazomethane in diethyl ether was added to form a yellow solution. The mixture was concentrated under reduced pressure to leave a colorless oil. Purification of the resulting methyl ester was accomplished by chromatography on silica gel using 7/3 hexane/EtOAc as the eluent. The desired product was obtained as a clear, colorless oil. 50b. 2,2-dimethyl-4N-[(4-phenoxyphenyl)sulfonyl]-thiomorpholine-3-carboxylate:

50b. Methyl 2,2-dimethyl-4N-[(4-phenoxyphenyl)sulfonyl]-thiomorpholine-3-carboxylate: The methyl ester (4.5 g, 10.2 mmol) in THF (50 mL) was stirred at room temperature and then triphenylphosphine (3.22 g, 12.3 mmol, 1.2 equiv) followed by diethyl azodicarboxylate (1.96 g, 11.3 mmol, 1.1 equiv) was added. The resulting solution was stirred at room temperature for 2 hours. The solvent was removed and then the thick yellow oil was diluted with methylene chloride and silica gel (20 g) was added. The solvent was removed to leave a white powder. This powder

was placed upon a chromatography column and eluted with 8/2 hexane/EtOAc. The desired product was obtained as a colorless oil.

50c. 2,2-Dimethyl-4N-[(4-phenoxyphenyl)sulfonyl]-thiomorpholine-3-carboxylic acid: The methyl ester (3.4 g, 8.06 mmol) in pyridine (50 mL) was stirred at room temperature under an argon atmosphere. Lithium iodide (12.9 g, 96.7 mmol, 12 equiv) was added and the resulting solution was heated to reflux for 4 h. The reaction mixture was cooled to room temperature and then the solution was acidified with IN HCl. The mixture was extracted with methylene chloride and then the organic extracts were dried (Na₂SO₄) and concentrated to an oil under reduced pressure. The oil was purified by column chromatography using 1/1 hexane/EtOAc as the eluent to provide the desired product as a light yellow oil. MS (ESI): $408 \text{ (M}^+ + \text{H)}$, $425 \text{ (M}^+ + \text{NH}_4$), $430 \text{ (M}^+ + \text{Na})$.

solution at 0 °C and the resulting mixture was allowed to stir overnight at room temperature at 0 °C and the resulting mixture was allowed to stir overnight at room temperature was next acidified with 1 N HCl and then extracted with dichloromethane. The organic extracts were dried (Na₂SO₄) and concentrated to a solid under reduced pressure. MS (ESI): 423 (M⁺ + H), 440 (M⁺ + NH₄), 445 (M⁺ + Na).

These examples provide the skilled artisan with sufficient guidance as to making the present invention and do not limit it in any way.

Composition and Method of Use Examples

The compounds of the invention are useful to prepare compositions for the treatment of ailments and the like. The following composition and method examples do not limit the invention, but provide guidance to the skilled artisan to prepare and use the compounds, compositions and methods of the invention. In each case the compounds formula I may be substituted for the example compound shown below with similar results.

The methods of use exemplified do not limit the invention, but provide guidance to the skilled artisan to use the compounds, compositions and methods of the invention. The skilled practitioner will appreciate that the examples provide guidance and may be varied based on condition and the patient.

Example A

WO 98/08825

A tablet composition for oral administration, according to the present invention, is made comprising:

Component	Amount
Example 9	15. mg
Lactose	120. mg
Maize Starch	70. mg
Taic	4. mg
Magnesium Stearate	1. mg

Other compounds having a structure according to Formula (I) are used with substantially similar results.

A human female subject weighing 60 kg (132 lbs), suffering from rheumatoid arthritis, is treated by a method of this invention. Specifically, for 2 years, a regimen of three tablets per day is administered orally to said subject.

At the end of the treatment period, the patient is examined and is found to have reduced inflammation, and improved mobility without concomitant pain.

Example B

A capsule for oral administration, according to the present invention, is made comprising:

Component	Amount (%w/w)
Example 3	15%
Polyethylene giycol	85%

Other compounds having a structure according to Formula (I) are used with substantially similar results.

A human male subject weighing 90 kg (198 lbs), suffering from osteoarthritis, is treated by a method of this invention. Specifically, for 5 years, a capsule containing 70 mg of Example 3 is administered daily to said subject.

At the end of the treatment period, the patient is examined via orthoscopy, and found to have no further advancement of erosion/fibrillation of the articular cartilage.

Example C

A saline-based composition for local administration, according to the present invention, is made comprising:

Component	Amount (%w/w)
Example 12	5 %
Polyvinyl alcohol	15%
Saline	80%

Other compounds having a structure according to Formula (I) are used with substantially similar results.

A patient having deep corneal abrasion applies the drop to each eye twice a day. Healing is speeded, with no visual sequelae.

Example D

An topical composition for local administration, according to the present invention, is made comprising:

Component	Composition (% w/v)
Compound of Example 3	0.20
Benzalkonium chloride	0.02
Thimerosal	0.002
d-Sorbitol	5.00
Glycine	0.35
Aromatics	0.075
Purified water	q.s.
Total =	100.00
Total =	100.00

Any of the other compounds having a structure according to Formula (I) are used with substantially similar results.

A patient suffering from chemical burns applies the composition at each dressing change (b.i.d.). Scarring is substantially diminished.

Example E

A inhalation aerosol composition, according to the present invention, is made comprising:

Component	Composition (% w/v)
Compound of Example 2	5.0
Alcohol	33.0
Ascorbic acid	0.1
Menthol	0.1
Sodium Saccharin	0.2
Propellant (F12, F114)	<u>q.s.</u>
Total =	100.0

Any of the other compounds having a structure according to Formula (I) are used with substantially similar results.

An asthma sufferer sprays 0.01 mL via a pump actuator into the mouth while inhaling. Asthma symptoms are diminished.

Example F

A topical opthalmic composition, according to the present invention, is made comprising:

Component		Compo	sition (% w/v)	
Compound of Example 5	•	-	0.10	

Benzalkonium chloride	0.01
EDTA	0.05
Hydroxyethylcellulose (NATROSOL M [™])	0.50
Sodium metabisulfite	0.10
Sodium chloride (0.9%)	q.s.
Total =	100.0

Any of the other compounds having a structure according to Formula (I) are used with substantially similar results.

A human male subject weighing 90 kg (198 lbs), suffering from corneal ulcerations, is treated by a method of this invention. Specifically, for 2 months, a saline solution containing 10 mg of Example 5 is administered to said subject's affected eye twice-daily.

Example G

A composition for parenteral administration is made comprising:

Component	Amount
Example 4	100 mg/ml carrier
<u>Carrier</u> :	
sodium citrate buffer with (percent	
by weight of carrier):	
lecithin	0.48%
carboxymethylcellulose	0.53
povidone	0.50
methyl paraben	0.11
propyl paraben	0.011

The above ingredients are mixed, forming a suspension. Approximately 2.0 ml of the suspension is administered, via injection, to a human subject with a premetastatic tumor. The injection site juxtaposes the tumor. This dosage is repeated twice daily, for approximately 30 days. After 30 days, symptoms of the disease subside, and dosage is gradually decreased to maintain the patient.

Other compounds having a structure according to Formula I are used with substantially similar results.

Example H

A mouthwash composition is prepared;

Component	%w/v
Example 1	3.00
SDA 40 Alcohol	8.00
Flavor	0.08
Emulsifier	0.08
Sodium Fluoride	0.05
Glycerin 10.00	
Sweetener	0.02
Benzoic acid	0.05
Sodium hydroxide	0.20
Dye	0.04
Water	balance to 100%

A patient with gum disease uses 1 ml of the mouthwash thrice daily to prevent further oral degeneration.

Other compounds having a structure according to Formula I are used with substantially similar results.

Example I

A lozenge composition is prepared;

Component	%w/v
Example 3	0.01
Sorbitol	17.50
Mannitol	17.50
Starch	13.60
Sweetener	1.20
Flavor	11.70
Color	0.10
Corn Syrup	balance to 100%

A patient uses the losenge to prevent loosening of an implant in the maxilla. Other compounds having a structure according to Formula I are used with substantially similar results.

Example J
Chewing Gum Composition

Component	w/v%
Example 1	0.03
Sorbitol crystals	. 38.44
Paloja-T gum base*	20.00
Sorbitol (70% aqueous solution)	22.00
Mannitol	10.00
Glycerine	7.56
Flavor	1.00

A patient chews the gum to prevent loosening to prevent loosening of dentures.

Other compounds having a structure according to Formula I are used with substantially similar results.

Example K

Components	<u>w/v%</u>
Example !	2.00
USP Water	54.656
Methylparaben	0.05
Propylparaben	0.01
Xanthan Gum	0.12
Guar Gum	0.09
Calcium carbonate	12.38
Antifoam	1.27
Sucrose	15.0
Sorbitol	11.0
Glycerin	5.0
Benzyl Alcohol	0.2
Citric Acid	0.15
Coolant	0.00888
Flavor	0.0645
Colorant	0.0014

Example K is prepared by first mixing 80 kg of gylcerin and all of the benzyl alcohol and heating to 65 C, then slowly adding and mixing together methylparaben, propylparaben, water, xanthan gum, and guar gum. Mix these ingredients for about 12 minutes with a Silverson in-line mixer. Then slowly add in the following ingredients in the following order: remaining glycerin, sorbitol, antifoam C, calcium carbonate, citric acid, and sucrose. Separately combine flavors and coolants and then slowly add to the other ingredients. Mix for about 40 minutes.

The patient takes the formulation to prevent flare up of colitis.

All references described herein are hereby incorporated by reference.

While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. It is intended to cover, in the appended claims, all such modifications that are within the scope of this invention.

WHAT IS CLAIMED IS:

1. A compound having a structure according to Formula (1):

wherein

R1 is H;

Ro is hydrogen, alkyl or acyl;

Ar is COR3 or SO2R4; and

R₃ is alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

R4 is alkyl, heteroalkyl, aryl, or heteroaryl, substituted or unsubstituted;

X is O, S, SO, SO₂, or NR₅, wherein R₅ is independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$ or may optionally form a ring with W; and

R₆ is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

R₇ is hydrogen, alkoxy, aryloxy, heteroaryloxy, alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino and alkylarylamino;

R₈ is alkyl, aryl, heteroaryl, heteroalkyl, amino, alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino;

Ro is alkyl, aryl, heteroaryl, heteroalkyl;

W is hydrogen or one or more lower alkyl moieties, or is an alkylene, arylene, or heteroarylene bridge between two adjacent or nonadjacent carbons (thus forming a fused ring);

Y is independently one or more of hydrogen, hydroxy, SR_{10} , SOR_4 , SO_2R_4 , alkoxy, amino, wherein amino is of formula NR_{11} , R_{12} , wherein R_{11} and R_{12} are independently chosen from hydrogen, alkyl, heteroaryl, aryl, SO_2R_6 , COR_7 , CSR_8 , $PO(R_9)_2$; and

R₁₀ is hydrogen, alkyl, aryl, heteroaryl;

Z is nil, a spiro moiety or an oxo group substituted on the heterocyclic ring.

This structure also includes an optical isomer, diastereomer or enantiomer for Formula (I), or a pharmaceutically-acceptable salt, or biohydrolyzable amide, ester, or imide thereof.

- The compound of any preceding claim, wherein X is O, S, SO, SO₂, or NR₅, wherein R_5 is independently chosen from hydrogen, alkyl, heteroalkyl, heteroaryl, aryl, SO_2R_7 , COR_8 , CSR_9 .
- 3. The compound of any preceding claim, wherein Ar is SO_2R_4 and R_4 is alkyl, heteroalkyl, aryl, or heteroaryl, substituted or unsubstituted.
 - 4. The compound of any preceding claim, wherein Ar is phenyl or substituted phenyl.
- 5. The compound of any preceding claim, wherein Ar is substituted phenyl and the substitution is with hydroxy, alkoxy, nitro or halo.
- 6— The compound of any preceding claim, wherein W is one or more of hydrogen or C_1 to C_4 alkyl.
- 7. The compound of any preceding claim, wherein Z is an oxo moiety substituted on the heterocyclic ring.
 - 8. The use of compounds of any preceding claim to prepare a pharmaceutical composition
- 9. A method for preventing or treating a disease associated with unwanted metalloprotease activity in a mammalian subject, the method comprising administering to said subject a safe and effective amount of a compound of any preceding claim.
- 10. A method for treating musculoskeletal disease or cachexia comprising administering to a mammal in need of such treatment, a safe and effective amount of a metalloprotease inhibitor according to Claim 1.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D241/04 C07D C07D265/30 A61K31/495 CO7D279/12 A61K31/535 A61K31/54 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α EP 0 606 046 A (CIBA-GEIGY AG) 13 July 1,8 see the whole document WO 95 35275 A (BRITISH BIOTECH A 1.8 PHARMACEUTICALS LIMITED) 28 December 1995 cited in the application see the whole document Α WO 95 12603 A (SYNTEX INC.) 11 May 1995 1.8 cited in the application see the whole document WO 96 20918 A (THE PROCTER & GAMBLE Α 1.8 COMPANY) 11 July 1996. see the whole document -/--X Further documents are listed in the continuation of box C. Patent family members are listed in annex. * Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but *A* document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **0** 7. 01. 98 17 December 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Kyriakakou, G Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

2

	tion) DOCUMENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	<u> </u>	Profession to Order 140.
A,P	WO 96 33172 A (PFIZER INC.) 24 October 1996 see the whole document		1,8
	WO 97 20824 A (AGOURON PHARMACEUTICALS,		1,8
A,P	INC.) 12 June 1997 see the whole document		
A	MADHUSUDHAN R. GOWRAVARAM ET AL.: "Inhibition of Matrix Metalloproteinases by hydroxamates containing heteroatom-based Modifications of the P1' group"	. · · · · · · · · · · · · · · · · · · ·	1,8
	JOURNAL OF MEDICINAL CHEMISTRY, vol. 38, no. 14, 1995, COLUMBUS OHIO, pages 2570-2581, XP000561962 see the whole document		
A	IASRID SINGH FT AL: "Relationship		1,8
^	between structure and bioavailability in a series of hydroxamate based metalloprotease inhibitors" BIOORGANIC AND MEDICINAL CHEMISTRY		
	LETTERS, vol. 5, no. 4, 1995, GREAT BRITAIN,		
	pages 337-342, XP000578527		
	pages 337-342, XP0005/852/ see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP000578527 see the whole document		
	pages 337-342, XP0005/852/ see the whole document		
	pages 337-342, XP000578527 see the whole document		

2

PCT/US 97/14552

Boxi	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	imational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 9,10 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carned out, specifically:
	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a),
Box il	Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This Inter	national Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3 A	as only some of the required additional search fees were timely paid by the applicant, this International Search Report overs only those claims for which fees were paid, specifically claims Nos.:
4. N	to required additional search fees were timely paid by the applicant. Consequently, this International Search Report is seatnated to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark or	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Patent document	Publication	Patent family member(s)	Publication date
cited in search report	date	member(s)	
EP 606046 A	13-07-94	US 5455258 A	03-10-95
Lr 000040 //	, 20 0.	AT 159012 T	15 - 10-97
•		AU 5265593 A	04-05-95
		CA 2112779 A	07-07-94
		DE 69314456 D	13-11-97
	•	FI 940012 A	07-07-94
		HU 70536 A	30-10-95
	·	JP 6256293 A	13-09-94
•	•	MX 9400276 A	29-07-94
•		NO 940038 A,B,	07-07-94
		NZ 250517 A	26-10-95
	•	US 5506242 A	09-04-96
	•	US 5552419 A	03-09-96
,		US 5646167 A	08-07-97
	•	US 5672615 A	30-09-97
		ZA 9400048 A	11-08-94
W0-9535275 A	28-12-95	AU 2746595 A	15-01-96
NO 3333273		AU 2746695 A	15-01-96
		CA 2193691 A	28-12-95
	•	CA 2193692 A	28-12-95
•	•	EP 0766664 A	09-04-97
·		EP 0766665 A	09-04-97
		FI 965153 A	20-12-96 28-12-95
		WO 9535276 A	05-03-97
		GB 2303850 A	26-02-97
		GB 2303629 A	20-02-97
	·	NO 965515 A	20-02-37
	11-05-95	AT 155471 T	15-08-97
WO 9512603 A	11-05-35	AU 683317 B	06-11-97
	•	AU 8089794 A	23-05-95
		BR 9407960 A	26-11-96
	•	CA 2175667 A	11-05-95
•	•	CN 1134153 A	23-10-96
		CZ 9601260 A	13-11-96
	•	DE 69404324 D	21-08-97
•		EP 0726903 A	21-08-96
	•	FI 961857 A	01-07-96
		HU 74730 A	28-02-97

INTERNATIONAL SEARCH REPORT

mation on patent family members

_ •	
ĺ.	al Application No
	Pc1/US 97/14552

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9512603 A		JP 9505038 T	20-05-97
·		NO 961780 A	03-07-96
		NZ 275315 A	27-07-97
	•	PL 314134 A	19-08-96
		ZA 9408691 A	03-05-96
WO 9620918 A	11-07-96	US 5639746 A	17-06-97
		AU 4422096 A	24-07-96
		CA 2208679 A	11-07-96
		EP 0800510 A	15-10-97
	•	NO 973035 A	29-08-97
WO 9633172 A	24-10-96	AU 5080296 A	31-10-96
,		CN 1140165 A	15-01-97
	•	CZ 9601130 A	13-11-96
		NO 961585 A	21-10-96
WO 9720824 A	12-06-97	AU 1409197 A	27-06-97

Form PCT/ISA/210 (patent family annex) (July 1992)