Package 'R2ROC'

November 24, 2023

Title AUC Statistics

Version 1.0.1	
Description Area under the receiver operating characteristic curves (AUC) statistic for significance test. Variance and covariance of AUC values used to assess the 95% Confidence interval (CI) and p-value of the AUC difference for both nested and non-nested model.	
License GPL (>=3)	
<pre>URL https://github.com/mommy003/R2ROC</pre>	
Encoding UTF-8	
Roxygen list(markdown = TRUE)	
RoxygenNote 7.1.2	
Depends R (>= 2.10)	
LazyData true	
R topics documented: auc_diff auc_trf auc_var dat1 dat2 olkin_auc12 olkin_auc12 olkin_auc12_1 olkin_auc12_13 olkin_auc12_3 olkin_auc12_34 olkin_auc1_2	
Index	1

2 auc_diff

auc_diff auc_diff function

Description

This function estimates $var(AUC(y\sim x[,v1]) - AUC(y\sim x[,v2]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 or v2 indicates the ith column in the x matrix (v1 or v2 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_diff(dat, v1, v2, nv, kv)
```

Arguments

dat	N by (M+1) matrix having variables in the order of cbind(y,x)
v1	This can be set as $v1=c(1)$ or $v1=c(1,2)$
v2	This can be set as $v2=c(2)$, $v2=c(3)$, $v2=c(1,3)$ or $v2=c(3,4)$
nv	Sample size
kv	Population prevalence

Value

This function will estimate significant difference between two PRS (either dependent or independent and joint or single). To get the test statistics for the difference between $AUC(y\sim x[,v1])$ and $AUC(y\sim x[,v2])$ (here we define $AUC1=AUC(y\sim x[,v1])$) and $AUC2=AUC(y\sim x[,v2])$)). The outputs are listed as follows.

```
AUC differences between AUC1 and AUC2
mean_diff
                 Variances of AUC differences
                 Upper value of the differences
upper_diff
lower_diff
                 Upper value of the differences
                 Two tailed P-value for significant difference between AUC1 and AUC2
р
                 One tailed P-value for significant difference
p_one_tail
                 P-value based on Heller's test for significant difference
heller_p
heller_upper_diff
                 Upper limit of 95% CI for the difference basedon Heller's test
heller_lower_diff
                 Lower limit of 95% CI for the difference basedon Heller's test
```

Examples

```
#To get the test statistics for the difference between AUC(y=x[,1]) #and AUC(y=x[,2]) dat=dat1 #(this example embedded within the package) nv=length(dat$V1) kv=sum(dat$V1)/length(dat$V1)# pop. prevalence estimated from data #R2ROC also allows users to estimate AUC using pre-adjusted phenotype
```

#In that case, users need to specify kv #eq. kv=0.10 for dat2 (dat2 embedded within the package) v1=c(1)v2=c(2)output=auc_diff(dat,v1,v2,nv,kv) #R2ROC output #output\$mean_diff (mean difference of AUC1 and AUC2) #0.1756046 #output\$var (variance of AUC difference) #9.274356e-05 #output\$upper_diff (upper limit of 95% CI for difference) #0.1944801 #output\$lower_diff (lower limit of 95% CI for difference) #0.1567292 #output\$p (two-tailed P-value for the differences is #significantly different from zero) #2.747031e-74 #output\$p_one_tail (one-tailed P-value for the differences #is significantly different from zero) #1.373515e-74 #To get the test statistics for the difference between #AUC(y=x[,1]+x[,2]) and AUC(y=x[,2])dat=dat1 #(this example embedded within the package) nv=length(dat\$V1) kv=sum(dat\$V1)/length(dat\$V1)# pop. prevalence estimated from data #R2ROC also allows users to estimate AUC using pre-adjusted phenotype #In that case, users need to specify kv #eg. kv=0.10 for dat2 (dat2 embedded within the package) v1=c(1,2)v2=c(2)output=auc_diff(dat,v1,v2,nv,kv) #R2ROC output #output\$mean_diff (mean difference of AUC1 and AUC2) #0.1793682 #output\$var (variance of AUC difference) #0.0001190366 #output\$upper_diff (upper limit of 95% CI for difference) #0.2007526 #output\$lower_diff (lower limit of 95% CI for difference) #0.1579839 #output\$p (two-tailed P-value for the differences is #significantly different from zero) #9.87014e-61

4 auc_trf

```
#output$p_one_tail (one-tailed P-value for the differences
#is significantly different from zero)
#4.93507e-61

#output$heller_p (two-tailed P-value based on Hellers test
#for the differences is significantly different from zero)
#4.2085e-237

#output$heller_upper_diff (upper limit of 95% CI for
#difference based on Hellers test)
#0.2013899

#output$heller_lower_diff (lower limit of 95% CI for
#difference based on Hellers test)
#0.1586212
```

auc_trf

auc_trf function

Description

This function transforms the observed scale predictive ability (R2) and its standard error (SE) to AUC with its SE

Usage

```
auc_trf(R2, se, kv)
```

Arguments

R2	R2 or coefficient of determination on the observed scale
se	Standard error of R2
kv	Population prevalence

Value

This function will transform the observed R2 and its s.e between to AUC. Output from the command is the lists of outcomes.

auc	Transformed AUC
50	SE of transformed AUC

References

Wray, Naomi R., et al. "The genetic interpretation of area under the ROC curve in genomic profiling." PLoS genetics 6.2 (2010): e1000864.

Lee, Sang Hong, et al. "A better coefficient of determination for genetic profile analysis." Genetic epidemiology 36.3 (2012): 214-224.

auc_var 5

Examples

```
#To get the transformed AUC
output=auc_trf(0.04, 0.002, 0.05)
output
#output$auc (transformed AUC)
#0.7522887
#output$se (se of transformed AUC)
#0.005948364
```

auc_var

auc_var function

Description

This function estimates $var(AUC(y\sim x[,v1]))$ where AUC is the Area Under ROC curve of the model, y is N by 1 matrix having the dependent variable, and x is N by M matrix having M explanatory variables. v1 indicates the ith column in the x matrix (v1 can be multiple values between 1 - M, see Arguments below)

Usage

```
auc_var(dat, v1, nv, kv)
```

Arguments

dat	N by $(M+1)$ matrix having variables in the order of cbind (y,x)
v1	This can be set as $v1=c(1)$, $v1=c(1,2)$ or possibly with more values
nv	Sample size
kv	Population prevalence

Value

This function will test the null hypothesis for AUC. To get the test statistics for AUC($y\sim x[,v1]$). The outputs are listed as follows.

auc AUC

var Variance of AUC

upper_auc Upper limit of 95% CI for AUC lower_auc Lower limit of 95% CI for AUC

6 dat1

Examples

```
#To get the AUC for AUC(y=x[,1])
dat=dat1 #(this example embedded within the package)
nv=length(dat$V1)
kv=sum(dat\$V1)/length(dat\$V1)\# pop. prevalence estimated from data
#R2ROC also allows users to estimate AUC using pre-adjusted phenotype
#In that case, users need to specify kv
#eg. kv=0.10 for dat2 (dat2 embedded within the package)
v1=c(1)
output=auc_var(dat,v1,nv,kv)
#R2ROC output
#output$auc (AUC)
#0.7390354
#output$var (variance of AUC)
#7.193337e-05
#output$upper_auc (upper limit of 95% CI for AUC)
#0.7556589
#output$lower_auc (lower limit of 95% CI for AUC)
#0.7224119
#output$p
9.28062e-175
#output$$p_one_tail
4.64031e-175
```

dat1

Raw phenotypes and 2 sets of discovery PGSs

Description

A dataset containing raw phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat1

Format

A data frame with 10000 rows and 3 variables:

V1 Phenotype, raw case-caontrol data

V2 PGS1, for discovery population 1

V3 PGS2, for discovery population 2

dat2 7

dat2	Pre-adjusted phenotypes and 2 sets of discovery PGSs
------	--

Description

A dataset containing preadjusted phenotypes and multiple PGSs estimated two independent discovery population

Usage

dat2

Format

A data frame with 10000 rows and 3 variables:

V1 Phenotype, preadjustde case-caontrol data

V2 PGS1, for discovery population 1

V3 PGS2, for discovery population 2

olkin_auc1 olkin_auc1 function

OIKIII_auCI

Description

olkin_auc1 function

Usage

```
olkin_auc1(omat, nv, kv)
```

Arguments

omat	3 by 3 matrix	having the co	orrelation coefficients	between v, x	1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

8 olkin_auc12_1

olkin auc12	olkin	auc12
-------------	-------	-------

olkin_auc12 function

Description

olkin_auc12 function

Usage

```
olkin_auc12(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12_1 olkin_auc12_1 function

Description

```
olkin_auc12_1 function
```

Usage

```
olkin_auc12_1(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

olkin_auc12_13

7 7 1	1 0	1 0
olkin	alleli	1 3

olkin_auc12_13 function

Description

```
olkin_auc12_13 function
```

Usage

```
olkin_auc12_13(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc12_3 olkin_auc12_3 function

Description

```
olkin_auc12_3 function
```

Usage

```
olkin_auc12_3(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

olkin_auc1_2

olkin_auc12_34

olkin_auc12_34 function

Description

```
olkin_auc12_34 function
```

Usage

```
olkin_auc12_34(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

This function will be used as source code

olkin_auc1_2 *olkin_auc1_2 function*

Description

```
olkin_auc1_2 function
```

Usage

```
olkin_auc1_2(omat, nv, kv)
```

Arguments

omat 3 by 3 matrix having the correlation coefficients between y, x1 and x2, i.e.

omat=cor(dat) where dat is N by 3 matrix having variables in the order of cbind

(y,x1,x2)

nv Sample size

kv Population prevalance

Value

Index

*Topic AUC
auc_trf,4
*Topic R2
$auc_diff, 2$
auc_trf,4
auc_var,5
*Topic Transformation
auc_trf,4
*Topic datasets
dat1, 6
dat2, 7
*Topic information
$auc_diff, 2$
auc_var,5
*Topic matrix
$auc_diff, 2$
auc_var,5
*Topic observed
auc_trf,4
*Topic of
auc_trf,4
*Topic source
olkin_auc1,7
olkin_auc12, 8
olkin_auc12_1, 8
olkin_auc12_13,9
olkin_auc12_3,9
olkin_auc12_34, <mark>10</mark>
olkin_auc1_2,
*Topic to
auc_trf,4
*Topic variance
auc_diff,2
auc_var,5
auc_diff, 2
auc_trf,4
auc_var,5
/
dat1,6
dat2, 7
olkin_auc1,7
olkin_auc12,8

olkin_auc12_1,8 olkin_auc12_13,9 olkin_auc12_3,9 olkin_auc12_34,10 olkin_auc1_2,10