

Algorithmen und Datenstrukturen

Wintersemester 2018/19
5. Vorlesung

Rekursionsgleichungen

Lösen von Rekursions(un)gleichungen

Frage: Gilt für
$$T(n) = 2 \cdot T(n/2) + 4n$$
 (mit $T(1) = 0$) auch $T(n) \in O(n \log n)$?

Behauptung: Es gibt ein c > 0, so dass $T(n) \le c n \log_2 n$.

Beweis. Durch Induktion über n. Ind.-Anfang: $T(1) \le 0$ Induktionsannahme: $T(k) \le ck \log_2 k$ gilt für alle k < n.

Wir wissen: T(n) = 2T(n/2) + 4n

Substitutionsmethode:

- Lösung von Rekursion raten
- 2. Mit Induktion beweisen

$$2c\frac{n}{2}\log_2\frac{n}{2}+4n$$
 (wegen IA)

$$= cn \cdot (\log_2 n - \log_2 2) + 4n$$

$$= cn \log_2 n - cn + 4n$$

$$= cn\log_2 n + (4-c)n$$

$$\leq c n \log_2 n$$
 falls $c \geq 4$.

 \Rightarrow Behauptung wahr (es gibt ein c > 0...) $\Rightarrow T(n) \in O(n \log n)$

I) Substitutionsmethode

Noch'n Beispiel: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

Behauptung: $T(n) \in O(n)$ (mit T(1) = 0)

Also zeigen wir: $T(n) \le cn$ für eine Konstante c > 0.

Beweis Induktion über n.

IA: $T(k) \le ck$ für alle k < n

Wissen: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

 $\leq c \cdot \lfloor n/2 \rfloor + c \cdot \lceil n/2 \rceil + 1$ wg. IA

 $\leq c \cdot (\lfloor n/2 \rfloor + \lceil n/2 \rceil) + 1$

 $\leq c \cdot n + 1$

Noch'n Versuch

Noch'n Beispiel: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

Behauptung: $T(n) \in O(n)$ (mit T(1) = 0)

Also zeigen wir: $T(n) \le cn + 1$ für eine Konstante c > 0.

Beweis Induktion über n.

IA: $T(k) \le ck + 1$ für alle k < n.

Wissen: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

 $\leq (c \cdot \lfloor n/2 \rfloor + 1) + (c \cdot \lceil n/2 \rceil + 1) + 1$

 $\leq c \cdot n + 3$

Nicht verzagen!

Selbes Beispiel: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$

Behauptung: $T(n) \in O(n)$ (mit T(1) = 0)

Nun probieren wir: $T(n) \le cn - d$ für Konstanten c, d > 0. D.h. wir machen unsere Aussage schärfer!!

Beweis. Induktion über n.

IA: $T(k) \le ck - d$ für alle k < n.

Wissen: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ $\leq (c \lfloor n/2 \rfloor - d) + (c \lceil n/2 \rceil - d) + 1$ $\leq c \cdot (\lfloor n/2 \rfloor + \lceil n/2 \rceil) - d - d + 1$ $\leq cn - d + (1 - d)$ $\leq cn - d$ falls $d \geq 1$.

II) Rekursionsbaummethode

Beispiel: $T(n) = 3T(n/4) + n^2$ (*) (mit T(1) = 1)

Beitrag

II) Rekursionsbaummethode

 $| (1) (1) | \log_4 n |$ 0. Summand schon $1n^2$! unterste Ebene andere Ebenen geometr. Reihe!!!

$$\Rightarrow T(n) = n^{\log_4 3}$$

 $(\log_4 n)-1$

$$\sum_{i=1}^{n} \left(\frac{3}{16}\right)^{i} n^{2} \leq n^{0.793} + n^{$$

(Ebene) Ebene Knoten $3^0 = 1$ $\frac{3}{16}n^2$ 3^1 $\frac{3^2}{16^2}n^2$ 3^2 3^i $3^{\log_4 n}$ $n^{\log_4 3}$

Anz.

$$\Rightarrow T(n) = n^{\log_4 3} + \sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i n^2 \leq n^{0.793} + n^2 \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i = n^{0.793} + \frac{16}{13}n^2$$

Ifd.Nr.

$$\Rightarrow T \in \Theta(n^2)!$$

II) Rekursionsbaummethode

Berechnen Sie mit der

Rekursionsbaummethode

$$T(n) = 2T(n/2) + n\log_2 n,$$

wobei T(1) = 0.

0. Summand schon $1n^2$!

unterste Ebene andere Ebenen

 $(\log_4 n)-1$

geometr. Reihe!!!

$$n^2 \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i =$$

lfd.Nr. Anz. Beitrag (Ebene) Ebene Knoten $3^0 = 1$ $\frac{3}{16}n^2$ 3^1 $\frac{3^2}{16^2}n^2$ 3^2 3^i

 $3^{\log_4 n}$ $\log_4 n$

 $n^{\log_4 3}$

$$\Rightarrow T \in \Theta(n^2)!$$

$$\Rightarrow T(n) = n^{\log_4 3} + \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i n^2 \leq n^{0.793} + n^2 \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i = n^{0.793} + \left(\frac{16}{13}\right)^n = n^{0.793} + \left(\frac{16}{13}\right)$$

III) Meistermethode

Nichts ist praktischer als eine gute Theorie...

Achtung!

Die Methode kann man nur anwenden bei Rekursionen der Art

$$T(n) = aT(n/b) + f(n)$$

wobei $a \geq 1$, b > 1 Konst. und $f: \mathbb{N} \to \mathbb{R}$ asymptotisch positiv...

...und auch da nicht in allen Fällen!

III) Meistermethode

Satz: Seien $a \ge 1$, b > 1 Konstanten und $f, T : \mathbb{N} \to \mathbb{R}$ mit T(n) = aT(n/b) + f(n),

wobei n/b sowohl für $\lfloor n/b \rfloor$ als auch $\lceil n/b \rceil$ stehen kann.

Dann gilt

$$T \in \begin{cases} \Theta(n^{\log_b a}) & \text{falls } f \in O(n^{(\log_b a) - \varepsilon}) \text{ für ein } \varepsilon > 0. \\ \Theta(n^{\log_b a} \log n) & \text{falls } f \in \Theta(n^{\log_b a}). \\ \Theta(f) & \text{falls } f \in \Omega(n^{(\log_b a) + \varepsilon}) \text{ für ein } \varepsilon > 0 \\ & und \text{ die Regularitätsbedingung gilt.} \end{cases}$$

Definition: Die Regularitätsbedingung ist erfüllt, falls $af(n/b) \le cf(n)$

für ein c < 1 und für alle großen n.

III) Meistermethode

$$T(n) = aT(n/b) + f(n)$$

$$T \in \begin{cases} \Theta(n^{\log_b a}) & \text{falls } f \in O(n^{(\log_b a) - \varepsilon}) \text{ für ein } \varepsilon > 0. \\ \Theta(n^{\log_b a} \log n) & \text{falls } f \in \Theta(n^{\log_b a}). \\ \Theta(f) & \text{falls } f \in \Omega(n^{(\log_b a) + \varepsilon}) \text{ für ein } \varepsilon > 0 \\ & und \text{ die Regularitätsbedingung gilt.} \end{cases}$$

Beispiel:
$$T(n) = 3T(n/4) + n^2$$

$$\Rightarrow$$
 $a = 3 (\geq 1)$, $b = 4 (> 1)$ und $f: n \mapsto n^2$.

$$\Rightarrow f \in \frac{\Omega}{(n^{(\log_4 3) \pm \varepsilon})}$$
, z.B. für $\varepsilon = 1$, da $\log_4 3 < 1$.

Das ist Fall 3!
$$\Rightarrow$$
 $T \in \Theta(f) = \Theta(n^2)$ \square

Also müssen wir die Regularitätsbedingung testen:

$$3f(n/4) = \frac{3}{16}n^2 \le c \cdot f(n) = cn^2$$
, z.B. für $c = \frac{3}{16}$.

Unser c muss echt < 1 sein! Üben! Hausaufgaben! Wichtig:

Übersicht

Substitutionsmethode

Für "Genies": Lösung raten, dann per Induktion beweisen!

Rekursionsbaummethode

Etwas umständlich, funktioniert aber immer!

Meistermethode

Funktioniert nur bei Rekursionsgleichungen der Art T(n) = aT(n/b) + f(n) (und auch da nicht immer).

Achtung: Viele verstehen die Bedeutung von ε in den Bedingungen der Fälle 1 & 3 nicht richtig!

Beispiel:
$$T(n) = 2T(n/2) + n \log_2 n$$

Also können wir die Meistermethode hier nicht verwenden! $\Rightarrow n^{\log_b a} = n^{\log_2 2} = n^1$

aber $f(n) = n \log_2 n \notin \Omega(n^{1+\varepsilon})$!!

Grund: $\log n$ wächst langsamer als n^{ε} , für jedes $\varepsilon > 0$. **PS:** Wie könnte man

das beweisen?