

Projet d'économétrie appliquée

Comparaison de l'algorithme de Box et Jenkins aux méthodes de prévision traditionnelles pour la prévision de deux matières premières : le blé et le nickel

> Mosse Joseph - Rubira Pierre M1 - MBFA - ARB

> > Sous la direction de : Seyte Françoise

Résumé

Sommaire

1	Ana	lyse technique et macroéconomique du blé et du nickel	2
	1.1	Présentation des deux matières premières	2
	1.2	Analyse macroéconomique	2
	1.3	Analyse technique	2
2	Ana	lyse de la saisonnalité et de la tendance	3
	2.1	Détection de saisonnalité et de tendance	3
		2.1.1 Analyse graphique	3
		2.1.2 Analyse de la variance et test de Fisher	4
	2.2	Désaisonnalisation de l'échantillon 2016-2021 du nickel	6
		2.2.1 Type de saisonnalité et sélection du schéma de décomposition	6
		2.2.2 Désaisonnalisation de l'échantillon par méthode Census	6
3	Pré	vision par le méthodes traditionnelles	8
	3.1	Échantillon 2016-2019	8
		3.1.1 Prévision pour 2020	8
		3.1.2 Choix de la meilleure méthode	11
		3.1.3 Prévision pour 2022	11
	3.2	Échantillon 2016-2021	11
		3.2.1 Prévision pour 2022	11
	3.3	Prévision pour 2023	11
4	Pré	vision selon la méthodologie de Box & Jenkins	12
	4.1	Présentation de la méthode	12
	4.2	Test de racine unitaire	12
	4.3	Identification des processus	12
	4.4	Prévision pour 2023	12
\mathbf{A}	Ana	lyse des séries chronologiques	12
	A.1	Stabilité de la variance	12
	A.2	Analyse graphique	13
	A.3	Analyse de la variance	14
		v	14
			14
	A.4	Désaisonnalisation de l'échantillon (2016-2021) du Nickel	15
В	Pré	vision traditionnelle	17
	B.1		17
		B.1.1 Extrapolation d'une droite de tendance	17
		0 1	19
		B 1.3 Lissage exponential de Holt-Winter	20

Introduction

- 1 Analyse technique et macroéconomique du blé et du nickel
- 1.1 Présentation des deux matières premières
- 1.2 Analyse macroéconomique
- 1.3 Analyse technique

2 Analyse de la saisonnalité et de la tendance

Les méthodes traditionnelles de prévision, reposent sur la décomposition des différentes composantes d'une série temporelle. Ici il s'agira donc ici d'analyser ces différentes composantes (c'est à dire la tendance et la saisonnalité).

Afin de pouvoir travailler sur la série, il est nécessaire de réduire les fluctuations importantes de la série. Pour cela des test ARCH sont fait sur les séries initiales afin de déterminer si il y a homoscédasticité dans la distribution. L'hypothèse nulle et alternative sont:

> H_0 : Homoscédasticité H_1 : Hétéroscédasticité

Statistique de test:

$$LM = n \times R^2 \sim \chi^2_{0,95}(p)$$

La statistique du multiplicateur de Lagrange est comparée au quantile à 95% de la distribution du khi-deux ayant pour degrés de liberté 41. Dans le cas suivant :

2016 - 2019 2016 - 2021 Blé Nickel Nickel Blé LM27,3072 21,4090 54,1014 49.9604 $\chi^2_{0,95}(7)$

14,067

14,067

Table 1: Résultats du test ARCH

Ici, pour toutes les séries, la statistique LM est supérieur au seuil, l'hypothèse H_0 est rejetée au risque de 5%. Les cours du blé et du nickel présentent donc de l'hétéroscédasticité. Afin d'amoindrir ces fluctuations importantes, une transformation logarithmique est faite sur chacune des séries. Les séries transformées serviront donc pour le reste du travail.

2.1Détection de saisonnalité et de tendance

14,067

Analyse graphique 2.1.1

Dans un premier temps, une étude intuitive peut être faite. Il s'agira donc ici d'analyser graphiquement chacune des chroniques afin de déterminer de façon préliminaire, si les cours du blé et du nickel sont sujet à de la saisonnalité, et/ou de la tendance.

Pour le cours du blé, il est possible de déceler légère une tendance a la hausse de 2016 à 2019. Cette tendance s'accentue si 2020 et 2021 sont inclus. Pour ce qui est de la saisonnalité, il semble impossible de déterminer que la série possède une quelconque saisonnalité (figure ?? p. 13).

Dans le cas du nickel, une tendance haussière se démarque (tout échantillon confondu). Quant à la saisonnalité, sur l'échantillon 2016-2019, la série ne semble pas saisonnière. Cependant sur l'échantillon 2016-2021, la série peut sembler saisonnière par périodes de un an. (figure ?? p. 13).

Les deux séries semblent donc se comporter de manière similaire : faible tendance haussière, ainsi que non saisonnières.

2.1.2 Analyse de la variance et test de Fisher

Afin de confirmer les intuitons développées en 2.1 une analyse de la variance et le test de Fisher sur la tendance et de saisonnalité doivent être menés. La détection de la saisonnalité est essentielle, car les méthodes de prévision traditionnelles ne peuvent être que menées sur des séries non saisonnières ou bien désaisonnalisées.

L'analyse de la variance est basée sur les moyennes calculées dans le tableau de Buys Ballot. En effet afin d'analyser la saisonnalité, il reviendra a étudier l'influence du facteur colonne (variance des mois) et pour la tendance, l'influence du facteur ligne (variance des années). Après calculs (Cf-A.3.2 p.14), les différentes variances sont affichées dans le tableau ci-dessous.

2016-2019 2016-2021 Blé Nickel Blé Nickel Désignation Variance période 0,0086 0,0129 0,0023 0.0243 Variance année 0,2746 0,3723 0,0661 0,6502 Variance résidus 0,0048 0,0286 0,0033 0,0098

Table 2: Analyse de la variance

Enfin grace aux variances, le test de fisher peut être effectué.

Test de Fisher de détection de saisonnalité

Il s'agira ici de tester l'influence du facteur colonne en comparant la variance période à la variance résiduelle, afin de déterminer si les séries sont saisonnières.

 H_0 : Pas d'influence du facteur colonne (pas de saisonnalité)

 H_1 : Influence du facteur colonne (saisonnalité)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_P}{V_R} \sim F_{0,95}((n-1), (n-1)(p-1))$$

Règle de décision : La statistique calculée (F_c) est ensuite comparée au quantile à 95% de la distribution F de Fisher avec comme degrés de liberté (p-1) et (n-1)(p-1), où n représente le nombre d'année et p le nombre de périodes. Si la statistique empirique est supérieure au quantile, alors H_0 est rejetée, la série est saisonnière. Après calculs :

Table 3: Test de Fisher (saisonnalité)

	2016	-2019	2016 -2021				
	Blé	Nickel	Blé	Nickel			
$\overline{F_c}$	0,6986	0,4505	1,7906	2,4772			
$F_{0,95}$	2,0933	2,0933	1,9675	1,9675			
ddl	(11;33)	(11;33)	(11;55)	(11;55)			

Ici, les statistique calculée sont toutes inférieures au seuil, sauf pour l'échantillon (2016-2021) du nickel. Ainsi, l'hypothèse H_0 est acceptée au risque de 5% pour les deux échantillons du blé et pour l'échantillon (2016-2019) du nickel. En revanche elle est rejetée pour l'échantillon (2016-2021) du nickel.

Pour ses deux échantillons, la série du blé n'est donc pas saisonnière, il en est de même pour le premier échantillon de la série du nickel. Par contre, l'échantillon (2016-2021) du nickel est lui saisonnier, il faudra donc à la suite déterminer son type de saisonnalité (déterministe ou aléatoire), puis son type de schéma de décomposition (additif ou multiplicatif) et finalement désaisonnaliser la série afin de pouvoir utiliser les méthodes de prévision.

Test de Fisher de détection de tendance

De manière analogue, il revient à comparer la variance année à la variance résiduelle afin de déterminer si les séries possèdent une tendance.

 H_0 : Pas d'influence du facteur ligne (pas de tendance)

 H_1 : Influence du facteur ligne (tendance)

Statistique de test pour un niveau $\alpha = 5\%$:

$$F_c = \frac{V_A}{V_R} \sim F_{0,95}((p-1), (n-1)(p-1))$$

Règle de décision : Comme pour le test précédent, si la statistique calculée est supérieure au quantile à 95% de la distribution de Fisher ayant pour dll : (n-1) et (n-1)(p-1) , alors H_0 est rejetée, la série possède une tendance.

Table 4: Test de Fisher (tendance)

	2016	-2019	2016 -2021			
	Blé	Nickel	Blé	Nickel		
$\overline{F_c}$	20,1576	12,9965	56,8388	66,2263		
$F_{0,95}$	2,8916	2,8916	2,3828	2,3828		
ddl	(3;33)	(3;33)	(5;55)	(3;55)		

Ici dans tous les cas, le Fisher empirique est supérieur au Fisher théorique, H_0 est rejetée au risque de 5% pour toutes les séries.

Les deux séries et leurs échantillons possèdent donc une tendance. Il à remarquer que la probabilité de rejeter H_0 est bien plus supérieure sur les échantillons (2016-2021) que sur les échantillons (2016-2019), cela confirme l'intuition dégagée de l'analyse graphique.

2.2 Désaisonnalisation de l'échantillon 2016-2021 du nickel

Comme vu précédemment l'échantillon (2016-2021) du Nickel possède de la saisonnalité, il est donc indispensable d'étudier, puis de corriger la saisonnalité.

2.2.1 Type de saisonnalité et sélection du schéma de décomposition

Dans un premier temps le type de saisonnalité doit être défini, en effet la saisonnalité peut être déterministe ou bien aléatoire. Pour cela chaque ligne du tableau de Buys-Ballot de l'échantillon concerné est classée par ordre croissant. De plus pour faciliter la lecture, chaque mois s'est vu attribué une couleur appartenant à un gradient rouge (tableau A.11 p.15). Il est donc rapidement possible de remarquer que la saisonnalité n'est pas répétitive, elle est donc aléatoire. Il faudra donc désaisonnaliser la série par méthode Census.

Il est par la suite nécessaire de selection le schéma de décomposition de la chronique, un test de Buys-Ballot est donc fait. Le test se base sur les résultats du tableau de Buys-ballot (tableau ??), le test consiste à tester la significativité de la pente du modèle suivant : $\sigma_{i.} = \beta x_{i.} + \alpha + \varepsilon_{i}$

Les hypothèses du test sont :

 $H_0: H_0: \beta = 0$ Le schéma de décomposition est additif.

 $H_1:H_1:\beta\neq 0$ Le schéma de décomposition est multiplicatif.

Statistique de test pour un niveau $\alpha = 5\%$:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(n-2)$$

Règle de décision : Si la statistique calculée en valeur absolue est inférieure au quantile à 97,5% de la distribution bilatérale de Student avec comme degrés de liberté n-2=4. Après calculs (tableau A.12 p. 16) :

$$|t_c| = 0,7701$$
 $t_{0,975}(4) = 2,7764$

Ici la statistique calculée est inférieure au Student lu dans la table de la distribution théorique, H_0 est donc rejetée au risque de 5%. Le schéma de décomposition de la série est un schéma additif. L'échantillon (2016-2021) du nickel peut être modélisé de la sorte : $x_t = E_t + S_t + R_t$.

2.2.2 Désaisonnalisation de l'échantillon par méthode Census

Maintenant que le type de saisonnalité, ainsi que le schéma de décomposition de la série sont connus, la série doit être corrigée des variations saisonnières. La désaisonnalisation

vise à supprimer la composante saisonnière sans impacter les autres composantes de la série. Ici, la saisonnalité étant aléatoire, la méthode Census est utilisée.

La première itération de la méthode Census, à été développée par l'économiste J.Shiskin alors qu'il était chercheur au Bureau of Census. La méthode à par la suite été largement améliorée au cours du temps, pour arriver aujourd'hui à la version X-13-ARIMA. Cette méthode consiste en une itération de moyennes mobiles permettant d'estimer les différentes composantes d'une série.

Ici la méthode X-13 est utilisée et les coefficients saisonniers sont calculés et soustraits à la série de base par le logiciel EViews (tableau ??). La série désaisonnalisée (SLNICKEL 21) sera donc utilisée pour le reste du travail.

3 Prévision par le méthodes traditionnelles

Une fois que toutes les séries ont été amplement analysées, transformées, et si besoin, corrigées des variations saisonnières, il alors est possible d'appliquer des méthodes de prévision traditionnelles. Le choix d'une méthode de prévision depend du caractère déterministe (ou aléatoire) de l'extra-saisonnalité et de la saisonnalité de la série a prévoir.

Dans le cadre de l'étude du cours du blé et du nickel, il a précédemment été montré que les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel ne présentaient pas de saisonnalité, pour ces séries là donc, seule la nature de la composante extra-saisonnière est à prendre en compte. Concernant cette dernière, elle est déterministe pour les trois séries citées étant donné qu'elles possèdent toutes une tendance. Dans ce cas là, en théorie la méthode de prévision a utiliser serait l'extrapolation par une droite de tendance.

Concernant l'échantillon 2019-2021 du nickel, malgré une composante saisonnière aléatoire, ce dernière possède comme les autres échantillons, une tendance. La méthode de prévision adéquate serait donc aussi l'extrapolation d'une droite de tendance.

Cependant, afin de ne mettre aucun élément d'analyse de côté, en plus de l'extrapolation, des méthodes de prévision par lissage exponentiel de composantes seront utilisées. Parmi ces méthodes, le lissage exponentiel double (LED) et le lissage exponentiel de Holt-Winter sont choisis.

Afin de prévoir le cours en 2023, il est nécessaire de sélectionner la méthode ayant le meilleurs score de prévision sur des données passées. Pour les deux matières premières le choix de la meilleure méthode se fera en deux grandes étapes :

- 1. Prévision des cours en 2020 grace aux échantillons 2016-2019, la prévision minimisant le critère MSE sur 2020 sera retenue et prolongée jusqu'à fin 2022.
- 2. Prévision des cours en 2022 grace aux échantillons 2016-2021, comparaison des MSE avec les MSE de la méthode retenue pour 2020, la prévision minimisant le critère sera retenue et utilisée pour prévoir les cours de 2023

3.1 Echantillon 2016-2019

3.1.1 Prévision pour 2020

Extrapolation d'une droite de tendance

La prévision par extrapolation d'une droite est la méthode la plus adéquate pour estimer les tendances déterministes, elle consiste à modéliser la série par une droite. Cette droite s'écrit telle que :

$$x_t = \beta t + \alpha + \varepsilon_t$$

Où x_t est une série temporelle non saisonnière et t le temps. Par la suite, les paramètres $\hat{\alpha}$ et $\hat{\beta}$ sont estimés grace à la méthode des MCO (Moindres Carrés Ordinaires). Avant de prévoir, il est nécessaire de procéder aux tests sur les paramètres de la regression afin de valider le modèle.

Le test est le même pour les deux séries :

 $H_0: \beta = 0$ Non significativité du paramètre

 $H_1: \beta \neq 0$ Significativité du paramètre

Statistique de test pour un niveau $\alpha = 5\%$:

$$t_c = \frac{\hat{\beta}}{\hat{\sigma}_{\hat{\beta}}} \sim t_{0,975}(46)$$

Règle de décision : la statistique de student calculée en valeur absolue est comparée au quantile à 97,5%, de la distribution bilatérale de Student avec comme degrés de liberté 46. Si elle est inférieure alors la pente du modèle n'est pas significative, elle est en revanche significative si la statistique est supérieure au seuil.

Ici, les deux statistiques calculées (B.1 B.2) H_0 sont supérieures au seuil (1,96). H_0 est donc acceptée au risque de 5%, les pentes des deux modèles sont significatives. Il en est de même pour les constantes du modèle, la probabilité critique d'accepter l'hypothèse nulle étant 0. Les paramètres du modèles sont donc significatifs. Les valeurs pour 2020 du blé et du nickel peuvent être calculées en extrapolant les droites.

Table 5: Prévision du cours du blé et du nickel en 2020 par extrapolation linéaire

	Blé ((€)	Nicke	l (\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	192,49	191,00	15312,42	12850,00
02-2020	193,34	187,50	15483,91	12255,00
03-2020	194,20	196,25	15657,33	11484,00
04-2020	195,06	195,75	15832,68	12192,00
05-2020	195,92	188,25	16010,00	12324,00
06-2020	196,79	180,50	16189,31	12805,00
07-2020	197,66	182,75	16370,62	13786,00
08-2020	198,54	187,75	16553,96	15367,00
09-2020	199,41	197,75	16739,36	14517,00
10-2020	200,30	205,25	16926,83	15156,00
11-2020	201,18	210,25	17116,41	16033,00
12-2020	202,07	213,25	17308,10	16613,00

Lissage exponential double (LED)

Les techniques de lissage exponentiel ont été introduites par Holt et Brown. Un lissage exponentiel double consiste à effectuer deux lissage sur une série temporelle non saisonnière. Dans un premier temps donc il est nécessaire d'effectuer un lissage exponentiel simple (LES) sur la série. Le LES considère qu'une chronique peut être décrite comme une combinaison linéaire des valeurs passées pondérées par un poids qui décroît plus les

observations sont anciennes.

Afin de matérialiser ce poids, une constante de lissage λ comprise entre 0 et 1 est utilisée. En fonction de sa valeur, λ donnera un poids plus ou moins important au passé. Si λ est proche de 0, alors la mémoire du phénomène est dite forte, la prévision dépend beaucoup des observations passées. En revanche, si la constante est proche de 1, alors la mémoire du phénomène est faible, le lissage est plus réactif aux observations récentes.

Dans le cas du blé et du nickel, le programme d'optimisation calcule $\lambda=0,43$ pour le blé et $\lambda=0,47$ pour le nickel. Les deux constantes sont proches de 0,45, cela veut dire que pour les deux séries, la prévision par lissage apportera très légèrement plus d'importance au passé que au présent.

Table 6: Prévision du cours du blé et du nickel en 2020 par lissage exponentiel double

	Blé	(€)	Nicke	l (\$)	
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles	
01-2020	189,45	191,00	13817,13	12850,00	
02-2020	192,02	187,50	13484,34	12255,00	
03-2020	194,64	196,25	13159,58	11484,00	
04-2020	197,28	195,75	12842,63	12192,00	
05-2020	199,97	188,25	12533,32	12324,00	
06-2020	202,69	180,50	12231,45	12805,00	
07-2020	205,45	182,75	11936,86	13786,00	
08-2020	208,24	187,75	11649,36	15367,00	
09-2020	211,07	197,75	11368,79	14517,00	
10-2020	213,95	205,25	11094,98	15156,00	
11-2020	216,86	210,25	10827,75	16033,00	
12-2020	219,81	213,25	10566,97	16613,00	

Lissage exponentiel de Holt-Winter

La prévision par lissage exponentiel de Holt-Winter est une méthode de prévision de séries chronologiques saisonnières. La méthode consiste à effectuer un LED de Holt sur la partie non saisonnière, c'est à dire la moyenne et la tendance, et un lissage exponentiel saisonnier sur la composante saisonnalité. Ici, les deux échantillons du blé, ainsi que l'échantillon 2016-2019 du nickel étant non saisonniers, la méthode revient à un LED sur deux paramètres pour ces échantillons.

Comme pour le LED, les différentes constantes de lissage (α, β) sont calculées via une minimisation de la somme des carrés des résidus et sont trouvés dans le tableau ci dessous.

Table 7: Constantes de lissage de la méthode HW

	Blé	Nickel
$\alpha \beta$	0,78 0,00	0,89 0,00

Ainsi la prévision pour 2020 peut être faite :

Table 8: Prévision du cours du blé et du nickel en 2020 par lissage de Holt-Winter

	Blé ((€)	Nicke	(\$)
Mois	Valeurs prévues	Valeurs réelles	Valeurs prévues	Valeurs réelles
01-2020	187,26	191,00	14272,31	12850,00
02-2020	186,99	187,50	13306,19	12255,00
03-2020	186,72	196,25	11664,18	11484,00
04-2020	186,46	195,75	11825,33	12192,00
05-2020	186,19	188,25	12081,62	12324,00
06-2020	185,93	180,50	12792,85	12805,00
07-2020	185,66	182,75	13731,23	13786,00
08-2020	185,40	187,75	14456,35	15367,00
09-2020	185,14	197,75	14663,90	14517,00
10-2020	184,87	205,25	14916,73	15156,00
11-2020	184,61	210,25	14698,81	16033,00
12-2020	184,35	213,25	16106,49	16613,00

3.1.2 Choix de la meilleure méthode

L'objectif du travail étant de prévoir la valeur de 2023, il est désormais nécessaire de sélectionner la meilleure méthode de prévision. Pour ce faire, le critère de comparaison utilisé est le MSE (*Mean Squared Errors*), ce dernier est calculé comme la moyenne des erreurs quadratiques.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{X}_i)$$

3.1.3 Prévision pour 2022

3.2 Échantillon 2016-2021

3.2.1 Prévision pour 2022

Extrapolation d'une droite de tendance

Lissage exponentiel double (LED)

Lissage exponentiel triple (Holt Winter)

3.3 Prévision pour 2023

4 Prévision selon la méthodologie de Box & Jenkins

4.1 Présentation de la méthode

- 4.2 Test de racine unitaire
- 4.3 Identification des processus
- 4.4 Prévision pour 2023

Conclusion

faire par sous périodes

A Analyse des séries chronologiques

A.1 Stabilité de la variance

Table A.1: Test ARCH pour la série Blé

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic	9.401617	Prob. F(7,33)		0.0000
Obs*R-squared	27.30724	Prob. Chi-Square(7)		0.0003
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic	40.42172	Prob. F(7,57)		0.0000
$Obs^*R ext{-}squared$	54.10140	Prob. Chi-Square(7)		0.0000

Table A.2: Test ARCH pour la série Nickel

Heteroskedasticity Test: ARCH		Echantillon	2016-2019	
F-statistic	5.151741	Prob. F(7,33)		0.0005
Obs*R-squared	21.40896	Prob. Chi-Square(7)		0.0032
Heteroskedasticity Test: ARCH		Echantillon	2016-2021	
F-statistic	27.04986	Prob. F(7,57)		0.0000
Obs*R-squared	49.96036	Prob. Chi-Square(7)		0.0000

A.2 Analyse graphique

Figure A.1: Cours du blé (en logarithme)

Figure A.2: Cours du nickel (en logarithme)

A.3 Analyse de la variance

A.3.1 Tableau de Buys-Ballot

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_i .	σ_i .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
$x_{\cdot j}$	5.1477	5.1304	5.1136	5.1206	5.1627	5.1501	5.1776	5.1283	5.1649	5.1677	5.1718	5.1869	<i>x</i>	σ
$\sigma_{\cdot j}$	0.1160	0.1118	0.0813	0.0779	0.0608	0.0685	0.0906	0.1317	0.1003	0.0914	0.1115	0.1111	5.1519	0.0881

Table A.3: Tableau de Buys-Ballot du blé (échantillon 2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_i .	σ_{i} .
2016	5.0983	4.9921	5.0288	5.0206	5.1044	5.0483	5.1120	5.0418	5.0783	5.1105	5.0876	5.1240	5.0706	0.0428
2017	5.1090	5.1489	5.1029	5.1255	5.1165	5.1733	5.1255	5.0483	5.1120	5.0876	5.0720	5.0689	5.1075	0.0350
2018	5.0642	5.1165	5.0983	5.1255	5.2081	5.1846	5.3095	5.3218	5.3058	5.2908	5.3045	5.3144	5.2203	0.0986
2019	5.3193	5.2640	5.2244	5.2109	5.2217	5.1943	5.1634	5.1014	5.1634	5.1818	5.2231	5.2404	5.2090	0.0552
2020	5.4250	5.5013	5.3730	5.5520	5.3648	5.3435	5.4083	5.5164	5.5530	5.6463	5.6330	5.6294	5.4955	0.1105
2021	5.2338	5.2794	5.2768	5.2378	5.1957	5.2081	5.2351	5.2870	5.3242	5.3483	5.3625	5.4250	5.2845	0.0691
$x_{\cdot j}$	5.2083	5.2170	5.1840	5.2120	5.2019	5.1920	5.2256	5.2194	5.2561	5.2775	5.2805	5.3003	<i>x</i>	σ
$\sigma_{\cdot j}$	0.1433	0.1745	0.1296	0.1832	0.0936	0.0941	0.1160	0.1887	0.1768	0.2070	0.2076	0.2060	5.2312	0.1552

Table A.4: Tableau de Buys-Ballot du blé (échantillon 2016-2021)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct	Nov.	Déc.	x_i .	σ_{i} .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
$x_{\cdot j}$	9.3043	9.3406	9.3066	9.3094	9.2916	9.3396	9.4083	9.4530	9.4277	9.4359	9.3726	9.3730	<i>x</i>	σ
$\sigma_{\cdot j}$	0.2084	0.2166	0.2154	0.1858	0.2736	0.2282	0.1822	0.2532	0.2271	0.2004	0.1004	0.1554	9.3636	0.1885

Table A.5: Tableau de Buys-Ballot du nickel (échantillon 2016-2019)

	Jan.	Fév.	Mars	Avr.	Mai	Juin	Jui.	Août	Sep.	Oct.	Nov.	Déc.	x_{i} .	σ_i .
2016	9.0618	9.0502	9.0466	9.1532	9.0401	9.1532	9.2714	9.1866	9.2662	9.2567	9.3281	9.2123	9.1689	0.1013
2017	9.2058	9.3038	9.2128	9.1538	9.1016	9.1474	9.2316	9.3759	9.2591	9.4169	9.3156	9.4541	9.2649	0.1110
2018	9.5178	9.5317	9.4955	9.5215	9.6304	9.6091	9.5490	9.4572	9.4415	9.3501	9.3237	9.2771	9.4754	0.1105
2019	9.4319	9.4765	9.4715	9.4093	9.3941	9.4486	9.5812	9.7926	9.7439	9.7199	9.5230	9.5486	9.5451	0.1371
2020	9.4611	9.4137	9.3487	9.4085	9.4193	9.4576	9.5314	9.6400	9.5831	9.6262	9.6824	9.7179	9.5242	0.1227
2021	9.7808	9.8297	9.6846	9.7798	9.8044	9.8099	9.8808	9.8806	9.7946	9.8755	9.8983	9.9406	9.8300	0.0691
$x_{\cdot j}$	9.4099	9.4343	9.3766	9.4044	9.3983	9.4376	9.5076	9.5555	9.5147	9.5409	9.5118	9.5251	$x_{\cdot \cdot}$	σ
$\sigma_{\cdot j}$	0.2510	0.2579	0.2256	0.2369	0.2951	0.2583	0.2362	0.2635	0.2315	0.2382	0.2393	0.2738	9.4681	0.2371

Table A.6: Tableau de Buys-Ballot du nickel (échantillon 2016-2021)

A.3.2 ANOVA

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0252	11	Variance période	0.0023
0.1984	3	Variance année	0.0661
0.1082	33	Variance résidu	0.0033

Table A.7: Tableau d'analyse de la variance du blé (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.0951	11	Variance période	0.0086
1.3728	5	Variance année	0.2746
0.2657	55	Variance résidu	0.0048

Table A.8: Tableau d'analyse de la variance du blé (2016-2021)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.1420	11	Variance période	0.0129
1.1170	3	Variance année	0.3723
0.9454	33	Variance résidu	0.0286

Table A.9: Tableau d'analyse de la variance du nickel (2016-2019)

Somme des carrés	Degrés de liberté	Désignation	Variance
0.2675	11	Variance période	0.0243
3.2508	5	Variance année	0.6502
0.5399	55	Variance Résidus	0.0098

Table A.10: Tableau d'analyse de la variance du nickel (2016-2021)

A.4 Désaisonnalisation de l'échantillon (2016-2021) du Nickel

Table A.11: Tableau de Buys-Ballot classé du Nickel (2019-2021)

2016	Mai	Mars	Fev.	Jan.	Avr.	Juin	Aout	Dec.	Oct.	Sep.	Jui.	Nov.
2017	Mai	Juin	Avr.	Jan.	Mars	Jui.	Sep.	Fev.	Nov.	Aout	Oct.	Dec.
2018	Dec.	Nov.	Oct.	Sep.	Aout	Mars	Jan.	Avr.	Fev.	Jui.	Juin	Mai
2019	Mai	Avr.	Jan.	Juin	Mars	Fev.	Nov.	Dec.	Jui.	Oct.	Sep.	Aout
2020	Mars	Avr.	Fev.	Mai	Juin	Jan.	Jui.	Sep.	Oct.	Aout	Nov.	Dec.
2021	Mars	Avr.	Jan.	Sep.	Mai	Juin	Fev.	Oct.	Aout	Jui.	Nov.	Dec.

Table A.12: Estimation par les MCO du test de Buys-Ballot sur le Nickel (2019-2021)

Dependent Variable: σ_i . Method: Least Squares Included observations: 6

Variable	Coefficient	Std. Error	t-Statistic	Prob.
x_i .	-0.035433 0.444098	0.046008 0.435722	-0.770138 1.019224	0.4842 0.3657
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.129131 -0.088586 0.023947 0.002294 15.09423 0.593113 0.484180	Mean depen S.D. depend Akaike info Schwarz crit Hannan-Qui Durbin-Wat	lent var criterion terion inn criter.	0.108617 0.022952 -4.364743 -4.434157 -4.642611 1.361545

Table A.13: Coefficients saisonniers prévisionnels pour 2022 du nickel

D 10.A Final seasonal component forecasts From 2022.Jan to 2022.Dec							
Observations 12							
Jan Jul		Feb Aug	Mar Sep	Apr Oct	May Nov	Jun Dec	AVGE
	100.1 100.4	100.2 101	99.3 100.2	99.5 100.4	99.4 99.9	99.8 100.1	100

B Prévision traditionnelle

B.1 Échantillon 2016-2019

B.1.1 Extrapolation d'une droite de tendance

Table B.1: Estimation par les MCO de l'échantillon 2016-2019 du blé

Dependent Variable: LBLE_19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.004416	0.000674	6.548293	0.0000
С	5.048073	0.018398	274.3878	0.0000
R-squared	0.482449	Mean depen	dent var	5.151855
Adjusted R-squared	0.471198	S.D. depend	lent var	0.089014
S.E. of regression	0.064730	Akaike info	criterion	-2.596423
Sum squared resid	0.192736	Schwarz crit	erion	-2.518457
Log likelihood	64.31416	Hannan-Qui	nn criter	-2.566960
F-statistic	42.88014	Durbin-Wat	son stat	0.524474
$Prob(F ext{-statistic})$	0.000000			

Table B.2: Estimation par les MCO de l'échantillon 2016-2019 du nickel

Dependent Variable: LNICKEL 19

Method: Least Squares Sample: 2016M01 2019M12 Included observations: 48

Variable	Coefficient	Std. Error	t-Statistic	Prob.
@TREND	0.011137	0.001153	9.657298	0.0000
С	9.101828	0.031460	289.3131	0.0000
R-squared	0.669691	Mean depen	dent var	9.363555
Adjusted R-squared	0.662510	S.D. depend	lent var	0.190534
S.E. of regression	0.110688	Akaike info	criterion	-1.523421
Sum squared resid	0.563589	Schwarz crit	erion	-1.445454
Log likelihood	38.56209	Hannan-Qui	nn criter	-1.493957
F-statistic	93.26340	Durbin-Wat	son stat	0.674312
$Prob(F ext{-statistic})$	0.000000			

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.731	0.731	27.257	0.00
		2	0.647	0.242	49.069	0.00
	1	3	0.444	-0.207	59.582	0.00
		4	0.315	-0.078	64.989	0.00
		5	0.117	-0.187	65.757	0.00
		6	-0.114	-0.342	66.499	0.00
		7	-0.312	-0.236	72.208	0.00
		8	-0.460	-0.120	84.894	0.00
		9	-0.531	-0.019	102.27	0.00
		10	-0.585	-0.040	123.85	0.00
		11	-0.554	0.068	143.80	0.00
		12	-0.535	-0.066	162.88	0.00
		13	-0.411	0.019	174.45	0.00
		14	-0.280	0.037	179.97	0.00
1		15	-0.174	-0.164	182.16	0.00
		16	-0.035	-0.052	182.26	0.00
		17	0.104	0.068	183.10	0.00
		18	0.178	-0.160	185.65	0.00
		19	0.240	-0.105	190.40	0.00
		20	0.240	-0.086	195.33	0.00

Figure B.1: Corrélograme des résidus des MCO de l'échantillon 2016-2019 du blé

Figure B.2: Histogramme des résidus des MCO de l'échantillon 2016-2019 du blé

Table B.3: Test ARCH sur les résidus des MCO de l'échantillon 2016-2019 du blé

Heteroskedasticity	Test: ARCH		
F-statistic	3.103962	Prob. F(7,33)	0.0125
Obs*R-squared	16.27762	Prob. Chi-Square(7)	0.0227

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares

Sample (adjusted): 2016M08 2019M12 Included observations: 41 after adjustments

B.1.2 Lissage exponential double

Table B.4: Constante de lissage LED blé (2016-2019)

C 001CN401 0010N410	
Sample: 2016M01 2019M12	
Included observations: 48	
Method: Double Exponential	
Original Series: LBLE_19	
Forecast Series: LBLE_19_LED	
Parameters: Alpha	0.4280
Sum of Squared Residuals	0.104149
Root Mean Squared Error	0.046581

Table B.5: Constante de lissage LED nickel (2016-2019)

Sample: 2016M01 2019M12	
Included observations: 48	
Method: Double Exponential	
Original Series: LNICKEL_19	
Forecast Series: LNICKEL_19_LED	
Parameters: Alpha	0.4700
Sum of Squared Residuals	0.467077
Root Mean Squared Error	0.098645

B.1.3 Lissage exponentiel de Holt-Winter

Table B.6: Constantes de lissage HW blé (2016-2019)

Sample: 2016M01 2019M12	
Included observations: 48	
Method: Holt-Winters No Seasonal	
Original Series: LBLE_19	
Forecast Series: LBLE_19_HW	
Parameters: Alpha	0.7800
Beta	0.0000
Sum of Squared Residuals	0.095621
Root Mean Squared Error	0.044633

Table B.7: Constantes de lissage HW nickel (2016-2019)

Sample: 2016M01 2019M12 Included observations: 48 Method: Holt-Winters No Seasonal Original Series: LNICKEL_19 Forecast Series: LNICKEL_19_HW	
Parameters: Alpha	0.8900
Beta	0.0000
Sum of Squared Residuals	0.378752
Root Mean Squared Error	0.088829