What is claimed is:

1

- 2 1. A method of digitally canceling interference on a received signal
- 3 within a satellite payload comprising adaptively canceling interference on the
- 4 received signal using an interference reference feedforward signal.
- 2. A method as in claim 1 further comprising subtracting an counter-
- 2 interference signal from the received signal to form a desired signal.
- 3. A method as in claim 2 further comprising digitally processing said
- 2 desired signal to generate said feedforward interference reference signal.
- 4. A method as in claim 3 further comprising correlating said
- 2 interference reference feedforward signal to said desired signal to generate an error
- 3 signal.
- 5. A method as in claim 4 wherein adaptively canceling interference on
- 2 the received signal further comprising generating said counter-interference signal
- 3 based on said error signal to cancel said interference.
- 6. A method as in claim 5 wherein adaptively canceling interference
- 2 further comprises iteratively canceling interference on the received signal until said
- 3 error signal equals zero.
- 7. A method as in claim 1 wherein said adaptively canceling
- 2 interference further comprises digitally and accurately replicating the interference.

1	8.	A method as in claim 1 further comprising simultaneously digital	1у
2	canceling inte	rference on a plurality of received signals.	

- 9. A method as in claim 1 further comprising sequentially digitally canceling interference on a plurality of received signals.
- 1 10. A method of digitally canceling interference on a received signal within a satellite payload comprising:
- receiving a communication signal having interference;
- 4 converting said communication signal into the received signal;
- subtracting a counter-interference signal from the received signal to form a
 desired signal;
- digitally processing said desired signal to form an interference reference feedforward signal;
- ocorrelating said interference reference feedforward signal to said desired signal to generate an error signal; and
- adaptively canceling interference on the received signal based on said error signal by generating said counter-interference signal to cancel said interference.
- 1 11. A satellite communication system comprising:
- a first antenna for receiving a communication signal;
- an analog-to-digital converter (ADC) electrically coupled to said first
- 4 antenna, said ADC converting said communication signal to a received signal;

- a satellite payload circuit comprising a first input, a second input, and an output, said first input is electrically coupled to said ADC;
- said satellite payload circuit digitally processing said received signal to
 form an interference reference feedforward signal; and
- a feedforward signal path electrically coupling said output to said second input, said feedforward signal path transferring said interference reference feedforward signal from said output to said second input.
- 1 12. A system as in claim 11 wherein said satellite payload circuit further comprises:
- a subtractor electrically coupled to said ADC, said subtractor subtracting a counter-interference signal from said received signal to form a desired signal;
- a digital processor electrically coupled to said subtractor, said digital processor generating said interference reference feedforward signal from said desired signal;
- a correlator electrically coupled to said subtractor, said correlator comparing
 said interference reference feedforward signal to said desired signal to generate an
 error signal; and
- a controller electrically coupled to said correlator and said subtractor, said controller adaptively canceling interference on said received signal based on said error signal.

1	13. A communication system comprising:		
2	a first antenna for receiving a communication signal;		
3	an analog-to-digital converter (ADC) electrically coupled to said first		
4	antenna, said ADC converting said communication signal to a received signal;		
5	a subtractor electrically coupled to said ADC, said subtractor subtracting a		
6	counter-interference signal from said received signal to form a desired signal;		
7	a digital processor electrically coupled to said subtractor, said digital		
8	processor generating said interference reference feedforward signal from sai		
9	desired signal;		
10	a correlator electrically coupled to said subtractor, said correlator comparin		
11	said interference reference feedforward signal to said desired signal to generate a		
12	error signal; and		
13	a controller electrically coupled to said correlator and said subtractor, said		
14	controller adaptively canceling interference on said received signal based on said		
15	error signal.		