Design and Analysis of Algorithms

Practice-sheet 3: Dynamic Programming

Date: 20 September, 2015

1. (Monotonically increasing subsequence)

Given a sequence $A = a_1, \ldots, a_n$, a subsequence $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ is said to be monotonically increasing if $a_{i_j} < a_{i_{j+1}}$ for all $1 \le j < k$. Design an $O(n^2)$ time algorithm to compute the longest monotonically increasing subsequence of sequence A.

2. (Bellman Ford algorithm)

Let G = (V, E) be a directed graph on n vertices and m edges where each edge has a weight which is a real number. Show that there exists an order among the vertices such that if we process the vertices according to that order in the inner For loop of the Bellman-ford algorithm, then just after one iteration, D[v] will store the distance from s to v.

3. (Bellman Ford algorithm)

Given a directed graph G = (V, E) on n vertices and m edges, our aim is to detect if there is any negative weight cycle in G. Design an O(mn) time algorithm to compute one such cycle, if exists.

4. (Box stacking)

Box Stacking. You are given a set of n types of rectangular 3-D boxes, where the ith box has height h(i), width w(i) and depth d(i) (all real numbers). You want to create a stack of boxes which is as tall as possible, but you can only stack a box on top of another box if the dimensions of the 2-D base of the lower box are each strictly larger than those of the 2-D base of the higher box. Of course, you can rotate a box so that any side functions as its base. It is also allowable to use multiple instances of the same type of box.

5. (Edit Distance)

Given two text strings A of length n and B of length m, you want to transform A into B with a minimum number of operations of the following types: delete a character from A, insert a character into A, or change some character in A into a new character. The minimal number of such operations required to transform A into B is called the edit distance between A and B. Design a polynomial time algorithm to compute edit distance between A and B.

6. (Floyd Warshal algorithm)

Recall the Floyd Warshal algorithm discussed in the class. Your aim is augment this algorithm with an $O(n^2)$ size data structure which can store the all-pairs shortest paths information implicitly. The time complexity of the algorithm should still be $O(n^3)$. In addition, you have to design an algorithm Report-shortest-path(i,j) which outputs the shortest path from i to j using this data structure. The time taken by Report-shortest-path(i,j) has to be of the order of the number of edges on the shortest path from i to j.