C19 - Transmission numérique sur fréquence porteuse

I - Introduction

Qu'est qu'une modulation?

De manière générale, une **modulation** (analogique ou numérique) permet de **décaler le spectre d'un signal informatif vers les hautes fréquences** dans la bande passante de la ligne de transmission.

Principe général d'une transmission numérique

Types de modulation numérique

- Modulation par Déplacement de Fréquence (MDF ou **FSK**);
- Modulation par Déplacement d'Amplitude (MDA ou **ASK**);
- Modulation par Déplacement de Phase (MDP ou **PSK**);
- Modulation d'Amplitude de deux porteuses en Quadrature (MAQ ou **QAM**).

II - Modulation numérique FSK (Frequency Shift Keying)

La modulation FSK est faite par saut de fréquence telle que chaque symbole est représenté par une sinusoïde de fréquence différentes.

Cas de la modulation 2-FSK

Il s'agit d'une modulation à 2 états telle que :

d_k	0	1
f	f_1	f_2

Signaux:

Densité Spectrale de Puissance :

Fréquence de la porteuse :

$$f_p = \frac{f_1 + f_2}{2}$$
 (Hz)

Excursion en fréquence :

$$\Delta f = \frac{|f_2 - f_1|}{2} \tag{Hz}$$

Indice de modulation :

$$m = \frac{|f_2 - f_1|}{R} = \frac{2\Delta f}{R}$$

La règle de Carson impose $m \ge 2$

Encombrement spectral:

$$B = 2(R + \Delta f) \tag{Hz}$$

III - Modulation numérique ASK (Amplitude Shift Keying)

Principe

La modulation ASK repose sur la multiplication du signal modulant i(t) par la porteuse p(t) telle que :

$$s(t) = i(t) \times p(t) \implies s(t) = i(t) \times A_P \cdot \cos(\omega_P \cdot t)$$

Cas d'une modulation 4-ASK

Il s'agit d'une modulation ASK à quatre symboles (M=4) placés dans le diagramme de constellation uniquement sur l'axe I (In phase) en phase avec la fonction cosinus.

Diagramme de constellation :

Signaux:

Densité Spectrale de Puissance :

La DSP est composée d'un lobe principal de largeur 2R et d'une raie de fréquence F_P pour la porteuse!

IV - Principe de la modulation IQ

La modulation IQ est composée de deux modulations d'amplituque en quadrature c.a.d. déphasé de 90°.

La composante i(t), pour « **In phase** », module l'amplitude d'une porteuse suivant la fonction cosinus.

La composante q(t), pour « **Quadrature** », module l'amplitude d'une porteuse suivant la fonction sinus (déphasage de 90°).

Il est ainsi possible d'ajuster l'amplitude et la phase du signal modulé s(t) tel que :

$$s(t) = A_s \cdot \cos(\omega t + \phi)s$$

V - Modulation numérique PSK (Phase Shift Keying)

Schéma

Applications: Bluetooth, Télévision numérique par satellite (DBD-S2), ...

Cas d'une modulation 4-PSK

Diagramme de constellation :

Signaux:

Densité Spectrale de Puissance :

La DSP est composé d'un lobe principal de largeur 2R contenant l'essentiel de la puissance transmise.