

## **Week 8 - Differential Equations**

| :≡ Tags |  |
|---------|--|
|---------|--|

| Differential Equation             | Equation involving an unknown function $y=f(x)$ and one or more of its derivatives.                                             |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Solution to Differential Equation | A function $y=f(x)$ that satisfies the differential equation when $f(x)$ and its derivatives are substituted into the equation. |
| Order of Differential Equation    | Highest order of any derivative                                                                                                 |
| General Solution                  | Solution with a constant $C$                                                                                                    |
| Particular Solution               | Solution without constant $C$                                                                                                   |
| Direction/Slope Fields            | Mathematical object used to graphically represent solutions to first-order differential equations                               |
| Equilibrium Solution              | A solution to the differential equation of the form $y=c$                                                                       |

## **Direction/Slope Fields**

#### **Solutions**

| Solution                          | Definition                                                                                                                                                                                                                                                 | Actual Meaning                                                      |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Asymptotically Stable<br>Solution | $y=k$ is an asymptotically stable solution to the differential equation if there exists $\epsilon>0$ such that for any value $c\in(k-\epsilon,k+\epsilon)$ the solution to the initial-value problem $y'=f(x,y),$ $y(x0)=c$ approaches $k$ as $x\to\infty$ | The differential equation stabilises to $k$ as $x \to \infty$       |
| Asymptotically Unstable Solution  | $y=k$ is an asymptotically unstable solution to the differential equation if there exists $\epsilon>0$ such that for any value $c\in(k-\epsilon,k+\epsilon)$ the solution to the initial-value problem $y'=$                                               | The differential equation never stabilises to $k$ as $x \to \infty$ |

|                                         | $f(x,y)$ , $y(x0)=c$ never approaches $k$ as $x	o\infty$                                                                                     |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Asymptotically Semi-<br>Stable Solution | y=k is an asymptotically semistable solution to the differential equation if it is neither asymptotically stable nor asymptotically unstable |  |

#### **Theorem 4.1 Euler's Method**

To approximate a solution to  $y^\prime = f(x,y)$ ,  $y(x_0) = y_0$ 

$$x_n = x_0 + nh$$

$$y_n = y_{n-1} + h f(x_{n-1}, y_{n-1})$$

Where h is the step size and n is an integer representing the number of steps

## **Separation of Variables**

| Separable Differentiable | Any equation that can be written in the form $y^\prime =$ |
|--------------------------|-----------------------------------------------------------|
| Equation                 | f(x)g(y)                                                  |

#### **Strategy**

- 1. Check for any values of y that make g(y)=0. These are the constant solutions.
- 2. Rewrite the differential equation  $\dfrac{dy}{g(y)}=f(x)dx$
- 3. Integrate both sides
- 4. Solve for y if possible
- 5. If an initial condition exists, substitute to find the particular solution

#### **Applications of Separation of Variables**

#### **Solution Concentration**

$$\frac{du}{dt} = Inflow \ Rate - Outflow \ Rate$$

#### **Newton's Law of Cooling**

$$rac{dT}{dt} = k(T - T_s)$$

## **Logistic Equation**

$$\frac{dP}{dt} = rP(1 - \frac{P}{K})$$

| Carrying<br>Capacity | Maximum population of an organism that the environment can sustain indefinitely | K |
|----------------------|---------------------------------------------------------------------------------|---|
| Growth Rate          | Rate at which the population grows                                              | r |

# Theorem 4.2 Solution of the Logistic Differential Equation

The solution to the initial value of a logistic differential equation is:

$$P(t)=rac{P_0Ke^{rt}}{(K-P_0)+P_0e^{rt}}$$

## **First Order Differential Equations**

#### Linear

$$a(x)y' + b(x)y = c(x)$$

#### **Standard Form**

 $y^{\prime}+a(x)y=c(x)$  - Make the coefficient of  $y^{\prime}$  1 and have all y terms on one side

### **Solving a First Order Differential Equation**

- 1. Put the equation into standard form
- 2. Calculate the integrating factor  $\mu(x) = e^{\int p(x) dx}$
- 3. Multiply both sides by the integrating factor  $\mu(x)$
- 4. Integrate both sides
- 5. Divide by integrating factor  $\mu(x)$
- 6. If there is an initial condition, determine the constant  ${\cal C}$