

$$A = P_{\text{Enri}}^{(1)} \star P_{\text{Enri}}^{(1)}, \quad B_{i}^{(2)} = -\frac{1}{2} \left(P_{\text{Lond}}^{(2)} \star P_{\text{Enri}}^{(1)} - P_{\star}^{(2)} P_{\text{Enri}}^{(2)} \star P_{\star} P_{\text{Enri}}^{(2)} \right)$$

$$C = -\frac{1}{2} \left(P^{(4)} \cdot P^{(4)} \cdot P_{\star}^{(4)} \cdot P_{\star}^{(4)} + P_{\star}^{(4)} \cdot P_{\star}^{(4)} \cdot P_{\star}^{(4)} + P_{\star}^{(4)} \cdot P_{\star}^{(4)} \right)$$

$$Q_{\text{en}} \quad f_{\text{involutioned}} \quad \text{in} \quad \text{then};$$

$$L(4|0; \theta_{0}) = \exp \left[-\frac{1}{2} \theta_{1} \cdot A_{13} \cdot \theta_{3} + \theta_{1} \cdot B_{1} \right] + C$$

$$L(4|0; \theta_{0}) = \int d\vec{\theta} \cdot e^{-\frac{1}{2} \theta_{1} \cdot A_{13} \cdot \theta_{3}} + \theta_{1} \cdot B_{1} \cdot d^{2} + C$$

$$= e \int d\vec{\theta} \cdot e^{-\frac{1}{2} \theta_{1} \cdot A_{13} \cdot \theta_{3}} + \frac{1}{2} \cdot B_{1} \cdot A_{1} \cdot B_{2} \cdot d^{2} + C$$

$$= e \int d\vec{\theta} \cdot e^{-\frac{1}{2} \theta_{1} \cdot A_{13} \cdot \theta_{3}} + \frac{1}{2} \cdot B_{1} \cdot A_{13} \cdot B_{2} \cdot d^{2} \cdot B_{1} \cdot A_{13} \cdot B_{2} \cdot B_{2} \cdot B_{1} \cdot A_{13} \cdot B_{2} \cdot B_{2} \cdot B_{1} \cdot A_{13} \cdot B_{2} \cdot B_{2$$

	The	~~n	Dimi	l Ded	Lix	nelihos	d i.	ኔ ፡										
	1	(4	10	;) =	(2∏	7/2	$P\left[\frac{1}{2}\right]$	= 1B · 1/4	-1 -B	C -	1 log) det	A					