Programme n°25

MECANIQUE

M8 Mouvement dans un champ de force centrale

Cours et exercices

THERMODYNAMIQUE

TH1 Introduction à la thermodynamique

Cours et exercices

TH2 Le premier principe de la thermodynamique (Cours et exercices)

- Transformation d'un système
 - Définition
 - Transformations particulières
 - Notion qualitative de vitesse d'évolution
 - Echange d'énergie
- Le travail des forces de pression
 - Le travail des forces de pression au cours d'une transformation élémentaire
 - Le travail au cours d'une transformation finie
 - Représentation graphique du travail des forces de pression
 - Exemples
 - Cas particulier d'un fluide en mouvement
- Transfert thermique
 - Définition
 - Trois modes de transfert de chaleur
 - Transformation adiabatique
 - Notion de thermostat
 - Chois du modèle : adiabatique ou isotherme ?
- Le premier principe de la thermodynamique
 - Rappels sur l'énergie interne
 - Le premier principe
 - Exemples d'utilisation
 - \rightarrow Echauffement isochore d'un gaz
 - → Echauffement monobare d'un gaz
 - → Transformation isotherme d'un gaz
 - → Echauffement d'un gaz par compression
- La fonction enthalpie
 - Définition
 - Capacité thermique à pression constante
 - Transformation monobare avec équilibre mécanique dans l'état initial et final
 - Cas d'un gaz parfait
 - Cas d'une phase condensée incompressible et indilatable
 - Enthalpie des systèmes diphasés
 - → Expression de l'enthalpie pour un système diphasé
 - → Enthalpie de changement d'état
 - → Bilan pour un changement d'état isotherme et isobare
- Application à la calorimétrie
 - Objet de la calorimétrie
 - Méthode des mélanges
 - Méthode électrique
 - Mesure d'une enthalpie de changement d'état

Notions et contenus	Capacités exigibles
2. Énergie échangée par un système au cours d'une transformation	
Transformation thermodynamique subie par un système.	Définir le système. Exploiter les conditions imposées par le milieu extérieur pour déterminer l'état d'équilibre final.
	Utiliser le vocabulaire usuel : évolutions isochore, isotherme, isobare, monobare, monotherme.
Travail des forces de pression. Transformations isochore, monobare.	Calculer le travail par découpage en travaux élémentaires et sommation sur un chemin donné dans le cas d'une seule variable.
	Interpréter géométriquement le travail des forces de pression dans un diagramme de Clapeyron.
Transfert thermique. Transformation adiabatique. Thermostat, transformations monotherme et isotherme.	Identifier dans une situation expérimentale le ou les systèmes modélisables par un thermostat.
	Proposer de manière argumentée le modèle limite le mieux adapté à une situation réelle entre une transformation adiabatique et une transformation isotherme.

	transformation adiabatique et une transformation isotherme.	
<u>'</u>		
Notions et contenus	Capacités exigibles	
3. Premier principe. Bilans d'énergie		
Premier principe de la thermodynamique : $\Delta U + \Delta Ec = Q + W$.	Définir un système fermé et établir pour ce système un bilan énergétique faisant intervenir travail W et transfert thermique Q.	
	Exploiter l'extensivité de l'énergie interne.	
	Distinguer le statut de la variation de l'énergie interne du statut des termes d'échange.	
	Calculer le transfert thermique Q sur un chemin donné connaissant le travail W et la variation de l'énergie interne Δ U.	
	Mettre en œuvre un protocole expérimental de mesure d'une grandeur thermodynamique énergétique (capacité thermique, enthalpie de fusion).	
Enthalpie d'un système. Capacité thermique à pression constante dans le cas du gaz parfait et d'une phase condensée incompressible et	de l'énergie interne.	
indilatable.	Comprendre pourquoi l'enthalpie H _m d'une phase condensée peu compressible et peu dilatable peut être considérée comme une fonction de l'unique variable T.	
·		
	Exprimer le premier principe sous forme de bilan d'enthalpie dans le cas d'une transformation monobare avec équilibre mécanique dans l'état initial et dans l'état final.	
	Connaître l'ordre de grandeur de la capacité thermique massique de l'eau liquide.	
Enthalpie associée à une transition de phase : enthalpie de fusion, enthalpie de vaporisation, enthalpie de sublimation.	Exploiter l'extensivité de l'enthalpie et réaliser des bilans énergétiques en prenant en compte des transitions de phases.	

TH3 Le second principe de la thermodynamique (Cours uniquement)

- Introduction
 - Nécessité d'un second principe
 - Rappels
 - \rightarrow Transformations réversibles
 - → Principales causes d'irréversibilité
- Le second principe de la thermodynamique
 - Enoncé
 - Quelques cas
 - Remarque
- Entropie d'un échantillon de corps pur
 - Le gaz parfait
 - Phase condensée incompressible
- Entropie d'un système diphasé
 - Expression de l'entropie pour un système diphasé
 - Entropie de changement d'état
- Exemples de bilans d'entropie
 - Echanges thermique
 - \rightarrow Système de dimension fini
 - ightarrow Système de dimension fini avec une source
 - Détente de Joules Gay Lussac
 - Changement de phases

Notions et contenus	Capacités exigibles
4. Deuxième principe. Bilans d'entropie	
Deuxième principe : fonction d'état entropie, entropie créée, entropie échangée. $\Delta S = S_{\text{ech}} + S_{\text{créé}} \text{ avec } S_{\text{ech}} = \Sigma Q_i / T_i.$	Définir un système fermé et établir pour ce système un bilan entropique. Relier l'existence d'une entropie créée à une ou plusieurs causes physiques de l'irréversibilité.
Variation d'entropie d'un système.	Utiliser l'expression fournie de la fonction d'état entropie. Exploiter l'extensivité de l'entropie.
Loi de Laplace.	Connaître la loi de Laplace et ses conditions d'application.
Cas particulier d'une transition de phase.	Connaître et utiliser la relation entre les variations d'entropie et d'enthalpie associées à une transition de phase : $\Delta h_{12}(T) = T \Delta s_{12}(T)$

SOLUTIONS AQUEUSES

AQ3 L'oxydoréduction (Cours et exrcices)

Cours et exercices