Quil 3 due
$$S/9/25$$
 $V = 300 m/5$ $f_1 = 16H2 = 1 \times 10^9 H2$
 $f_2 \approx 2 \sqrt{1}$
 $C = 3 \times 10^6 n/5$
 $f_3 \approx 2 \sqrt{1} \times 10^9$
 $f_4 \approx 2 \sqrt{1} \times 10^9$
 $f_5 = 2 \sqrt{1} \times 10^9$
 $f_6 \approx 2 \sqrt{1} \times 10^9$
 $f_6 \approx 2 \sqrt{1} \times 10^9$
 $f_7 \approx 2 \sqrt{1} \times 10^9$
 $f_8 \approx 2 \sqrt{1} \times 10^9$

N=
$$f_s$$
 T= 2×10^q . $0.0005 = 1 \times 10^6 = 1$ million samples

Yes it is practical

2.

 $A = \frac{c}{2k} A f_k$
 $R = \frac{c}{2} \frac{T}{k}$
 $R = \frac{c}{2} \cdot \frac{A f_k}{k}$
 $R = \frac{c}{2} \cdot$

Range = C. At (3x108). (10x10-6) = 1.5 Km First aircrast is 1.5 Km Second one Ronge = (3x108)- (20x106) = 3.0 Km

