Family Origins of Affective Polarization

EPSA 2025 Annual Meeting

Stephan Dochow-Sondershaus, Frederik Hjorth, Kristian Karlson June 26, 2025

Roadmap

Motivation

Methods

Results

Conclusion

Affective polarization

 $\textbf{Source:} \ \texttt{https://www.voterstudygroup.org/blog/has-american-partisanship-gone-too-far}$

• elites dominate in existing literature

- elites dominate in existing literature
- e.g., partisan elites (Bäck et al., 2023; Banda and Cluverius, 2018; Gidron, Adams, and Horne, 2022),

- elites dominate in existing literature
- e.g., partisan elites (Bäck et al., 2023; Banda and Cluverius, 2018; Gidron, Adams, and Horne, 2022),

- elites dominate in existing literature
- e.g., partisan elites (Bäck et al., 2023; Banda and Cluverius, 2018; Gidron, Adams, and Horne, 2022), information environments (Lelkes, Sood, and Iyengar, 2017),

- elites dominate in existing literature
- e.g., partisan elites (Bäck et al., 2023; Banda and Cluverius, 2018; Gidron, Adams, and Horne, 2022), information environments (Lelkes, Sood, and Iyengar, 2017), or social media diets (Törnberg, 2022)

- elites dominate in existing literature
- e.g., partisan elites (Bäck et al., 2023; Banda and Cluverius, 2018; Gidron, Adams, and Horne, 2022), information environments (Lelkes, Sood, and Iyengar, 2017), or social media diets (Törnberg, 2022)
- alternatively, present-day behavior, e.g. social sorting (Mason, 2018)

We shift attention to family background

References

• traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:
 - $\,
 ightarrow\,$ family background may not have fully kicked in by adolescence

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:
 - $\,\,
 ightarrow\,$ family background may not have fully kicked in by adolescence
 - $\rightarrow \ \ \text{parent-child correlations only capture } \textit{parental influence}$

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:
 - ightarrow family background may not have fully kicked in by adolescence
 - ightarrow parent-child correlations only capture parental influence
- our approach: capture full family background influence through sibling correlations

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:
 - $\,
 ightarrow\,$ family background may not have fully kicked in by adolescence
 - ightarrow parent-child correlations only capture parental influence
- our approach: capture full family background influence through sibling correlations
- but difficult using random samples: w. N=1,000, $\mathbb{E}[\mathrm{N} \ \mathrm{sibling} \ \mathrm{pairs}] \approx 0.1$

- traditional approach: sample adults + adolescent children (e.g., Jennings, Stoker, and Bowers, 2009), estimate parent-child correlations
- but:
 - ightarrow family background may not have fully kicked in by adolescence
 - ightarrow parent-child correlations only capture parental influence
- our approach: capture full family background influence through sibling correlations
- but difficult using random samples: w. N=1,000, $\mathbb{E}[\mathrm{N} \ \mathrm{sibling} \ \mathrm{pairs}] \approx 0.1$
- we solve this problem using registry data + sample size

Roadmap

Motivation

Methods

esults

Conclusion

Sampling frame from admin registry: 100.000 Danes

• G2: 40,000 parents born 1960 to 1965 and their siblings who have children

- G2: 40,000 parents born 1960 to 1965 and their siblings who have children
- G3: 60,000 'cousins'

- G2: 40,000 parents born 1960 to 1965 and their siblings who have children
- G3: 60,000 'cousins'
- ullet survey responses from $\sim 29,000$ respondents, ~ 500 sibling groups

- G2: 40,000 parents born 1960 to 1965 and their siblings who have children
- G3: 60,000 'cousins'
- ullet survey responses from $\sim 29,000$ respondents, ~ 500 sibling groups

Sampling frame from admin registry: 100.000 Danes

- G2: 40,000 parents born 1960 to 1965 and their siblings who have children
- G3: 60,000 'cousins'

 \implies survey responses from $\sim 29,000$ respondents, ~ 500 sibling groups Grandparents G1 G1 Parents G2 G2 G2 G2 Children G3 G3 G3 G3 G3 G3

$$\mathsf{ICC} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

Formally, sibling correlations:

$$\mathsf{ICC} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

a comprehensive measure of family background (Grätz et al., 2021), including:

$$\mathsf{ICC} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

- a comprehensive measure of family background (Grätz et al., 2021), including:
- i genes, as tested wrt other outcomes in 2010s twin studies boom (Ojeda and Hatemi, 2015)

$$\mathsf{ICC} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

- a comprehensive measure of family background (Grätz et al., 2021), including:
- i genes, as tested wrt other outcomes in 2010s twin studies boom (Ojeda and Hatemi, 2015)
- ii 'shared family environment', i.e., parents, SES, etc.

$$ICC = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

- a comprehensive measure of family background (Grätz et al., 2021), including:
- i genes, as tested wrt other outcomes in 2010s twin studies boom (0jeda and Hatemi, 2015)
- ii 'shared family environment', i.e., parents, SES, etc.
- iii 'shared local environment', i.e., schools, friends, etc.

$$\mathsf{ICC} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(u_j) + \mathsf{VAR}(e_{ij})} = \frac{\mathsf{VAR}(u_j)}{\mathsf{VAR}(Y_{ij})},$$

- a comprehensive measure of family background (Grätz et al., 2021), including:
- i genes, as tested wrt other outcomes in 2010s twin studies boom (Ojeda and Hatemi, 2015)
- ii 'shared family environment', i.e., parents, SES, etc.
- iii 'shared local environment', i.e., schools, friends, etc.
- → subsumes the parent-child correlation (Solon, 1999)

To economize on length, rate subset of parties (Kasper, Schumacher, and Bakker, 2025)

To economize on length, rate subset of parties (Kasper, Schumacher, and Bakker, 2025)

- Rated parties from left bloc
- Rated parties from right bloc

- Remaining parties
- \rightarrow for each rated party, respondents rate affect toward party + voters

Roadmap

Motivation

Methods

Results

Conclusion

Single parties: Results

	Party ratings			Voter ratings		
Measure	Sibling cor.	Parent-child cor.	N	Sibling cor.	Parent-child cor.	N
Spread	0.12 [0.07;0.2]	0.01	750	0.16 [0.09;0.25]	0.01	498
Range	0.1 [0.05;0.19]	0.01	750	0.17 [0.1;0.26]	0.01	498
Socialdemokratiet (S)	0.18 [0.12;0.25]	0.06	778	0.24 [0.17;0.33]	0.07	504
Venstre (V)	0.25 [0.2;0.32]	0.06	761	0.27 [0.2;0.36]	0.05	501
Enhedslisten (Ø)	0.4 [0.34;0.46]	0.16	710	0.35 [0.28;0.42]	0.12	492
Dansk Folkeparti (O)	0.34 [0.28;0.4]	0.11	775	0.24 [0.17;0.32]	0.07	515
Liberal Alliance (I)	0.35 [0.29;0.41]	0.11	709	0.3 [0.23;0.38]	0.04	484
SF - Socialistisk Folkeparti (F)	0.37 [0.31;0.43]	0.14	702	0.34 [0.27;0.42]	0.11	476
Radikale Venstre (B)	0.27 [0.21;0.34]	0.06	661	0.26 [0.19;0.35]	0.06	449
Red bloc avg.	0.35 [0.29;0.41]	0.13	750	0.33 [0.26;0.41]	0.11	498
Blue bloc avg.	0.38 [0.32;0.44]	0.12	750	0.33 [0.26;0.4]	0.07	498
Diff. blue-red bloc	0.47 [0.41;0.52]	0.22	750	0.45 [0.38;0.52]	0.20	498
In-outbloc	0.15 [0.09;0.23]	0.07	637	0.26 [0.18;0.35]	0.07	431

Large role for family background, esp. for extreme parties

What explains sibling correlations? Adding covariates

What explains sibling correlations? Adding covariates

→ sibling attitudes contribute most to family background

Roadmap

Motivation

Methods

Results

Conclusion

 shared family background explains roughly 30-40 pct. of variation in outparty affect

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background
- sibling agreement is strongest for more niche/extreme parties

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background
- sibling agreement is strongest for more niche/extreme parties
- caveats:

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background
- sibling agreement is strongest for more niche/extreme parties
- caveats:
 - $\rightarrow \ \ \text{findings may not generalize to more polarized contexts}$

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background
- sibling agreement is strongest for more niche/extreme parties
- caveats:

 - ightarrow sibling correlations also capture shared local environments (neighborhoods, friends), i.e., not narrowly 'family'

- shared family background explains roughly 30-40 pct. of variation in outparty affect
- ullet parental transmission estimates severely underestimate role of family background
- sibling agreement is strongest for more niche/extreme parties
- · caveats:

 - ightarrow sibling correlations also capture shared local environments (neighborhoods, friends), i.e., not narrowly 'family'
- much out-party animus is 'baked in' by early social structures, limits efficacy of depolarization interventions

Thanks for your attention!

References I

- **Bäck, Hanna et al. (2023).** "Elite communication and affective polarization among voters". *Electoral Studies* 84, p. 102639.
- Banda, Kevin K and John Cluverius (2018). "Elite polarization, party extremity, and affective polarization". *Electoral Studies* 56, pp. 90–101.
- **Gidron, N., J. Adams, and W. Horne (2022).** "Who dislikes whom? Affective polarization between pairs of parties in western democracies". en. *Comparative Political Studies*.
- **Grätz, Michael et al. (June 2021).** "Sibling Similarity in Education Across and Within Societies". en. *Demography* 58.3, pp. 1011–1037. ISSN: 0070-3370, 1533-7790. DOI: 10.1215/00703370-9164021.
- **Jennings, M. Kent, Laura Stoker, and Jake Bowers (2009).** "Politics across Generations: Family Transmission Reexamined". *The Journal of Politics* 71.3, pp. 782–99.

References II

- **Kasper, Jakob, Gijs Schumacher, and Bert N. Bakker (Apr. 2025).** "Establishing the construct and predictive validity of brief measures of affective polarization". en. *European Journal of Political Research*, pp. 1475–6765.70022. ISSN: 0304-4130, 1475-6765. DOI: 10.1111/1475-6765.70022.
- **Lelkes, Yphtach, Gaurav Sood, and Shanto Iyengar (Jan. 2017).** "The Hostile Audience: The Effect of Access to Broadband Internet on Partisan Affect". en. *American Journal of Political Science* 61.1, pp. 5–20. ISSN: 0092-5853, 1540-5907. DOI: 10.1111/ajps.12237.
- Mason, Lilliana (2018). Uncivil agreement: How politics became our identity. University of Chicago Press.
- **Ojeda, Christopher and Peter K. Hatemi (2015).** "Accounting for the Child in the Transmission of Party Identification". *American Sociological Review* 80.6, pp. 1150–74.
- **Solon, Gary (1999).** "Intergenerational mobility in the labor market". *Handbook of Labor Economics*. Ed. by Orley Ashenfelter and David Card. Vol. 3. Elsevier, pp. 1761–1800.

References III

Törnberg, Petter (2022). "How digital media drive affective polarization through partisan sorting". *Proceedings of the National Academy of Sciences* 119.42, e2207159119.

Appendix 1

Target	Measure	N	Only issue positions	Only personality
Party	Diff. blue-red bloc	670	0.33 [0.27;0.4]	0.38 [0.32;0.44]
	Enhedslisten (Ø)	674	0.25 [0.19;0.32]	0.29 [0.23;0.36]
	SF - Socialistisk Folkeparti (F)	638	0.29 [0.22;0.36]	0.31 [0.25;0.38]
	Socialdemokratiet (S)	726	0.18 [0.12;0.25]	0.16 [0.1;0.23]
	Radikale Venstre (B)	610	0.23 [0.17;0.31]	0.23 [0.17;0.31]
	Venstre (V)	715	0.18 [0.12;0.26]	0.2 [0.14;0.27]
	Liberal Alliance (I)	664	0.27 [0.21;0.34]	0.29 [0.22;0.35]
	Dansk Folkeparti (0)	715	0.25 [0.19;0.32]	0.29 [0.23;0.35]
Voters	Diff. blue-red bloc	376	0.3 [0.22;0.4]	0.37 [0.29;0.46]
	Enhedslisten (Ø)	379	0.18 [0.11;0.29]	0.23 [0.16;0.33]