

WATER QUALITY MONITORING IN PUBLIC POOLS

SUBMITTED BY:

- 1)VINAYAN. B
- 2)KOVENDAN. M
- 3)MUGESWARAN. P
- 4)SAKTHIKUMAR. A
- 5)SARAVANAN. M

- [Introduction
- Water Quality
- Designing a Monitoring Program
- Waste Water Treatment & Reuse
- Monitoring and Assessment
- Budget
- KPI Metrics & Dashboards

Water Market Overview

		US Market S Nn.	IIS 5 Year Growth %	Global Market S fils.	Global Growth 5	
9	Overall/WaterMarket	\$211.0	1 - 3%	\$26.48	0 - 5%	
10	WaterTreatment Equipment	\$10.00	4-2%	\$12.40	2-5%	
T	Transport (pipes pumps & valves)	\$6.14	5-1%	\$43.11	1 - 6%	
36/	Chemicals	\$4.25	3 - 4%	\$32.10	4 - 2%	
×	Instruments & Testing	32 54	4 - 2%	\$20.26	2-7%	
4	Residential Water Treatment	38.61	6 - 2%	\$14.82	2-8%	
4,	Engineering & Construction	\$2.14	2-6%	\$28.41	6~10%	
+	Drinking 8, WW Unifies	\$3.12	5-2%	\$61.10	2-3%	

Annual Global Capital Expenditure in Water Equipment (\$ Bin)

Global Water Treatment Market by Industry

his graph/shart in living to exice, and changes automatically based on acro, wereth alick on higher select rival base

Global Water Treatment Market by Geography Europe North America Asia pacific geography, nou can egit the porc acidionaling, no vious this slice is 100% ephapie. Adopt it to your needs and approve your audience's attention.

Water Industry Key Statistics in U.S.

Key Global Water Industry Statistics

Water Industry Growth Drivers

Sources of Water Pollution

- Agricultural Activities
- √ Run off from Croplands
- Mining Operation
- √ Text Here
- √ Text Here
- ✓ Text Here.

√ Industrial Discharge

When we talk about Water Guality, first thing

that comes in to picture is the sources of polution which have been categorised in this slide. You can edit this based on your requirement.

- ✓ Channelgation
- ✓ Municipal Discharges
- √ TextHere.
- √ Text Here

this slaw is 100% eathable. Adopt it to your needs, and capture your audience's attention.

Natural Processes Effecting Water Quality

Process Type	Major Process within Water Body	Water Body		
Hydrological	Evaporation Percolation & leaching Suspension & setting	All waterbodies Surface waters Groundwaters Surface waters		
Physical	Gas exchange with atmosphere Volatilisation Adsorption/description Heating and cooling Diffusion	Mostly rivers and lakes Mostly rivers and lakes All waterbodies Mostly rivers and lakes Mostly rivers and lakes more we have proving your four affecting with such an application on the one man pulsar requirement.		
Chemical	Photodegradation Acid base reactions Redax base reactions Dissolution of particles Precipitation of minerals Lanic exchange ¹	All water bodies All water bodies All water bodies All water bodies Groundwaters		
Biological	Primary production Microbial die-off and growth Decomposition of organic matter Bloaccumulation? Blomagnification?	Surface waters All water bodies Mostly rivers and lakes Mostly rivers and lakes Mostly rivers and lakes		

Human Processes Effecting Water Quality

Sources Type

Major Sources of Water Pollution Water Body Dumping All waterbodies Industrial Runoff All water bodies Direct Agricultural Runoff Surface waters Sources Here sive have provided tivo different numan Chemical Runoffs All water bodies source types offecting water quality along with their sub-confegories. Choose the one that suits Plastics At water bodies your requirement. Batteries Groundwaters. Rivers and lakes Domestic City Sewage Septic Systems All water bodies Excess Nutrients in Supply Water Surface waters Indirect Sources Surface waters Leaks & Splis Fossil Fuels All waterloadies Surface Waters Mining

this side is 100% editorie. Adopt it to your needs and copture your oudience's attention.

Brief Overview on Optimization of Deterioration in Water Quality

A three-point strategy to resolve conflict between systemuse and quality parentians.

in order to control pollution, wastes are treated before discharging into a water resource

Determining the quality of water and aquatic environment and adopting water-use procedures that prevent deterioration

Polluted water is treated before use in order to meet the optimum water quality

Pollutants that deteriorate Water Quality on Global Scale

...

Globally Occurring or Locally Severe Deterioration ..

Important Deterioration .

Occasional or Regional Deterioration 0

Rare Deterioration 00

Not Relevant

Global Water Quality Monitoring Equipment by Application- Market Share & Growth Rate

Water Quality Monitoring Types

Monitoring Type

Objectives

Objectives for each Type of monitoring name belief issed here. You can choose the one that matches your requirement.

Surveillance Monitoring

- ✓ Identification of baseline conditions in the water-course system.
- ✓ Detection of any signs of deterioration in water quality.
- Identification of any water bodies in the water-course system that do not meet the desired water quality standards
- ✓ Identification of any contaminated areas

Operational Monitoring

- ✓ Development of water quality guidelines and/or standards for specific water uses:
- ✓ Development of regulations covering the quantity and quality of waste discharges
- ✓ Development of a water pollution control programme

Investigative Monitoring

- ✓ Determination of the extent and effects of specific waste discharges
- ✓ Estimation of the pollution load carried by a water-course system or subsystem.
- ✓ Evaluation of the effectiveness of a water quality management intervention

Preliminary Surveys for Determining Water Quality

This is a sample survey agra. You can replace the agra with your own findings.

90	or own	E.coli	рН	Ammonia	Nitrate	Phosphorus	Dissolved O2	Chloride	Nitrito
	Sile 01	156,5	8.1	<0.05	<1°	0.202	7.8	6	×0.05
	Sile 02	248.1	8,1	<0.05	<1	0.027	7.8	<5	<0.05
	Sile 03	178.2	8	<0.05	<1	0.15	7.7	8	<0.05
	Sile 04	201.4	8	<0.05	<1.	0.069	7.6	8	<0.05
Collection Sile	Sile 05	121.1	8	<0.05	<1	0.043	7.8	6	<0.05
	Sile 06	461,1	8	<0.05	* 1	0.02	7,6	6	<0.05
	Sile 07	160.7	8	<0.05	*1	0.036	7.8	6	×0.05
	Sile 08	285.1	8.1	<0.05	«1	0.02	7.6	<5	<0.05
	Sile 19	1119.9	8.1	<0.05	<1	0,038	7.8	7	<0.05
	Sile 10	816.4	8.1	<0.05	<1	0.074	7.7	6	<0.05
	Sile 11	727	8.1	<0.05	*1	0	7.7	5	×0.05
	Sile #2	579.4	8.1	<0.05	*	0.049	7.6	5	<0.05

Description of the Monitoring Area

This slide includes environmental features that assortion the suitable location for monitoring programme.

Parameters	Comments		
Environmental Conditions and Processes	✓ Your text here ✓ Your text here		
Meteorological and Hydrological Information	✓ Your text here ✓ Your text here		
Description of Water Bodies	✓ Your text here ✓ Your text here		
Summary of Actual and Potential uses of Water	 ✓ Your text here ✓ Your text here 		

Types of Monitoring Sites and Programme Objectives

Type of Site	O	Here we have move movided three types of markfolding shee.	Objectives	
	Locations	one that matches your project requirement.		
Baseline Site	Location 01	To establish natural water quality conditions to probasis for comparison impact (as represented by the global flux station) To test for the influence of long-range transport conteminants & the effects of climatic change		
Trend Site	Location 02	To test for long-term changes in water quality to provid basis for statistical identification of the possible causes measured conditions or identified trends		
Global River Flux Site	Location 03	The second second second second second	es of critical pollutants from river basin to ocean or tegional sea s on rivers also serve as global flux station	

Considerations while Selecting Sampling Site

We have provided certain factors that need to be considered sefore selecting a sampling site.

Considerations	Comments
Objective	Your text here
Proximity to Inhabited Area	Your text here
Ease of Monitoring	Your text here
Weather Conditions	Your text here
Government Regulations	Your text here
Add text here	Your text here

Variables Used in Water Quality Monitoring Programme

Measured Variable		asured Variable Streams: Baseline Headwater Lakes: & Trend Baseline & Trend		Groundwaters: Trend Only	Global River Flux Stations
Water discharge or	level.	х	x	X	Х
total suspended sol	icas	х			×
transparency		: #	x	18: 1	*1
Temperature		x	x	X	×
рн		X	x	x	×
Electrical conductiv	ity	x	×	X	х
Dissolved oxygen		×	X	x	х
Calcium	Contract of the	X	x	X	Ж
Magnesium	Here we have provided varie		X	x	×
Sodium variables used in		sin X	x	x	×
Potassium	water qualit moritoring. Cr		x	x	×
Chloride	indicates that to	tne x	x	x	х
Suipnate	monitoring of	a X	x	x	×
Alkalinity	particular type water body		x	x	х
Nitrate		х	X	x	х
Nitrate		х	×	x	×
Ammonia		×	x	×.	×
Total prospnars/unfi	ttered)	×	x		×
Phosphorus, dissorved		×	×		×
Slica reactive		x	x	*	×
Chiorophys a		х	x	*	х
Fluoride				X	
Faecal coliforms (trend stations only)		x	×	x	

Frequency and Timing of Sampling

Water Body

Groundwaters

Korst:

same as rivers

Aquifers: your text here

This slige shows the number of times samples need to be analysed for different types of water bodies. Tou can edit it according to your

		Baseline Signors Toy can easily
	Streams	Minimum: 4 per year, including high – & low—water stages according to your requirement.
-		Optimum: 24 per year (every second week): weekly for total suspended solids Minimum: 1 per year at turnover, sampling at lake outlet
4.	Headwater Łakes	Optimum: 1 per year at turnover, plus 1 vertical profile at end of stratification seasos
		Trend Stations
9	Rivers	Minimum: 12 per year for large drainage areas, approximately 100,000km²
-		Maximum: 24 per year for small drainage areas, approximately 10,000km ²
		For issues other than eutrophications
	Lakes/Reservoirs	Minimum: 1 per year at turnover
		Maximum: 2 per year at turnover, 1 at maximum thermal stratification
		For eutrophications
		12 peryear, including twice monthly during summer
		Minimum: 1 per year for large, stable aquiters
		Maximum: 4 per yea for small, alluvial aquifers

Waste Water Treatment Process-Simplified

Wastewater Source

- ✓ Text Here
- √ Text Here

Pump Station

- √ Text Here
- ✓ Text Here

Conventional Treatment

- √ Clarification
- ✓ Biological

Advanced Treatment

- ✓ Filtration
- ✓ Disinfection

Water for Reuse

- ✓ Text Here
- √ Text Here

Waste Water Treatment Process-Detailed

Wastewater Reuse Framework

Global Wastewater Reuse by Sector

The pie chart shows major sectors where wastewater is reused after treatment. You can east it according to your requirements.

Types of Wastewater Reuse

Common uses of wastewater have been provided. You can choose the use conegory that matches your requirement.

Categories of Use

Uses

AI	Urban	Sporting facilities; gardens; roadsides; dust control; vehicle washing			
ě	Agricultural	Seed crops; greenhouse; commercially processed; hydroponic; fodder			
im)	Industrial	Wash down water, soil compaction; cooling water; dust control; marking concrete			
*	Recreational	Recreational impoundments with/without public access; snowmaking; golf course irrigation; aesthetic impoundments without public access			
0	Environmental	Stream augmentation; silviculture; aquifer recharge; wetlands; stream augmentation			
ō:	Potable	Augmentation of surface drinking water supplies; aquifer recharge for drinking water use; treatment until drinking water quality.			

Treated Wastewater Quality Parameters

Type of Reuse

Helson Rouse

Certain standards need to be resintained in heated white quality, here will fill the position than according to the tige of review.

Treatment

Reclaimed Water Quality

Reclaimed Water Moniforing

Secondary Filtration Disinfection

pH = 6-9 < 10 mg/L biochemical oxygen demand (BOD) < 2 turbidity units (NTU) 5 No detectable faecal collform/100 mL4 1 mg/L chlorine (C12) residual (min.)

pH - weekly BOD - weekly Turbidity - continuous Coliform - daily C12 residual - continuous

Agricultural Reuse for Non-food Crops Pasture for milking animals: fooder

Pasture for milking animals: fodder, fiber & seed crops

Secondary Disinfection pH= 6 - 9
<30 mg/L BOD
<30 mg/L total suspended solids
(TSS)
<200 faecal colliform/100 mL5
1 mg/L C12 residual (min.)

pH – weekly BOD – weekly 155 – daily coliform daily C12 residual continuous

Indirect Polable Reuse

Groundwater recharge by spreading into portable aquifers Site specific secondary & disinfection. May also need filtrafion &/or advanced waste water treatment

Site specific meet drinking water standards after percolation through vadose zone pH – daily
Turbidity – continuous
Coliform – daily
C12 residual – continuous
Drinking water standards –
quarterly Other – depends on
constituent

Technical Details of Wastewater Treatment

This is a sample duris. Tou can reptace the data with your own findings.

Refinery Wastewater LTDS HTDS Treated Water Normal Normal Maximum Maximum Parameter Standard 6-9 12 pH 12 6-9 6-8 200 - 500 2,000 TDS (mg/II) 1.000 - 2.00010,000 50-100 500 75S (mg/l) 50-100 500 €5 330 - 750 COD (mg/l) 750 550-750 1,100 < 50 800; (mg/l) 140-300 300 200 - 300 440 < 15 NH₃ - N (mg/l) 5 - 2050 5-30 50 < 5 PO₄ (mg/l) < 5 Oil & greate (mg/l) 300-10.000 10.000 300-20.000 10,000 55 5-10 30 5-30 30 Sulphide (mg/l) < 0.5 Phenois (mg/l) 10 - 4060 10 - 4060 < 1 Cyanides as Cn 2-4 2 - 4< 0.2 (mg/l) Bio-assay (%)

Possible Usage of Treated Wastewater

				purposes, Here we have provided few such.		
1	Agricultural Irrigation	Groundwater Recha		perfequent. You pon u		
-	Crop inigation		Groundwaterreplenishment			
-	Commercial nuneries	-	Saltwater intrusion control			
		-	Subsidence Control			
4	Landscape Irrigation	2	Recreational / Environme	ental		
-	Parks	-	Lakes & Ponds			
1	Schools Yards					
1	Highway Mediars	✓ Stream-flow augmentation				
	Golf Courses	✓ Fisheries				
1	Cemeteries	✓ Texthere				
-	/ Residential / Text here					
0	Industrial Recycling & Reuse	6	Non-Potable Urban Uses			
-	Cooling water	-	Fire Protection	41		
-	Soler feed	✓ Air Conditioning				
+	Process water	✓ Tollet flushing				
	Heavy construction	4	Text here			
0	Potable Reuse	6	Your Text Here			
	Siending in watersupply reservoirs		Text here	2,000		
1	Pipe-to-pipe water supply	-	Text here			

Constituents to be Rechecked in Treated Water

What we tested for	Standard	Measured	Notes
Dissolved oxygen	Minimum of 6 parts per million (PPM)	8.1	The presence of oxygen in water is essential for fish & amphibians
Fecal collform bacteria	Maximum of 200 colony forming units per 100 milliliters of water	2	Your text here
Carbonaceous biological oxygen demand (CBOD)	Maximum Summer:4 PPM Winter: 8 PPM	< 2 (entire year)	Your text here
Phosphorus	Maximum of 10,188 pounds per year	7,816 pounds	Your text here
Nîtrogen	Maximum of 409,448 pounds per year	157,196 pounds	Your text here
Ammonia	Summer: max. 1 PPM winter: max. 2 ppm	< 0.1 0.132	Your text here
Suspended solids	Maximum of 30 PPM	<2.5	Your text here

Problems Associated with Wastewater Reuse

Problems 2	Area of Impact)	Impacts		
Heavy elements	Public health		Nervous system disorder Bioaccumulation Surface water pollution		
	Environmental impact		Acute and chronic toxicity for plants and animals life		
Nutrients (NEP)	Public health		Blue baby syndrome Infiltration into potable water supplies		
	Environmental impact		Eutrophication Surface water pollution Imagation practices	this slide shows the impact of wastewater	
Dissolved Solids (salinity)	Environmentalimpact		Accumulation in soil Clogging dip imigation system	reuse on public health as well as environment.	
Emerging Pallutants	Public health		Acute and atvania health effects		
Ground Water Contamination	Environmentalimpact		Nitrate contamination on private drinking wells		
Antibiotics	Public health		Lower effectiveness of antibiotics if irrigation of fodder is involved		
Odor	Public health		Public health of neighboring communities. Aesthetic concern		
Concerns with Industrial Processes	Environmental impact		Scaling Corrosion Biological growth & fouling		

Wastewater Reuse Constraints

Major water quality monitoring systems Monitoring and Assessment Water management monitoring cycle Water quality monitoring trend

Major Water Quality Monitoring Systems

Water Management Monitoring Cycle

Water Quality Monitoring Trend

This slide shows now many times quality monitoring needs to be done for different water resources. You can edit it according to your requirement.

	Streams and Rivers	Large Rivers	Lakes	Groundwater	
Water	< 24 per year	< 12 per year	1 per year at overturn or at each overturn	1 to 4 per yea	
Particulate Matter	1 per year	1 per year	1 per year	Not relevant	
Biological Monitoring	1 per year	I per year biotic indices	8 – 12 per year 0.2 per year	_	

Characteristics of Surface Waters

Common Water Uses

	Consuming		Contaminating	
	1			
Domestic use	Yes		Yes	
Uvestock watering	Yes		Yes	
trigation Aquaculture	Yes		Yes	
Aquaculture	Yes		Yes	
Commercial Fisheries	Yes	INE SIGN SOUNT GEOMETRIC VALISTINGS TOU GEO, MISS TOUR SIGN	Yas	
Forestry & logging	No	accessing to your requirement.	Yas	
h Pood processing	Yes		Yes	
1 textile industry	Yes		Yas	
Pulp & paper industry	Yes		Yes	
Mining	Yes		Yes	
Water transportation	No		Yes	
hydroelectric power generation	No		No	
Muclear power generation	Yes		Yes	
Recreation	No		Yes	

Purpose of Water Quality Monitoring

PAGE PROPERTY.

Characteristics of Media used in Water Quality Monitoring Programme

Characteristics	Particular matter		or espher	Uhiteg Gegorisme				
	78550	Extpended	Deposited	Dance dealyses	Elicheste	enclosioni serreys	Hoteonine	
		← maca →					50	
Type of Assipsis or Observation	Charmon -			Characteristics of forms types of principal marks Typeter principal marks Typeter principal marks Typeter principal topes Typeter principal topes				
			40		em data	gical web		
Applicability to Note Bodies	Sven token groundwishers	Mostly rivers	LONgs rivers	Even, ones	Evers takes	Sivery, NOVAL	Rysis, Ionig	
eleccomparability	← Glood →			Departs on species occurrence	Grobal	Social for registery		
pecificity is given splictors	← tpochs →					+ ologotio +		
Beardfoalon	em Complete up toor 5-10			Quantitative	semb quantitative	duc telyton mak		
Sees Builty to Live Woods of Pods down	LINA		+ High >		Versere	Medium	Verloque	
inanyan Continuntranton Bisk	teat	(/(#/05/49)	← toy →		Armalum	to to =		
temporal lipan of electricities Obtained	Instant	Boort	Long to very joint Proof record;	needlim (1 month) foliolog [2.1 stept]	ingramma and Medium to long a		tolong	
averts of Plate Open rations	unwakea to right: trained	Volked	untrained to trained	Tohen	No righty framed			
Ann helbis femple Borage Evreller	LOW	High	High	rige	Wery sow	rigo	No	
Minimum Execution of Enterophysical	instant, (instru- isanemine) is dans	Seys	Days to wants	Days	Solyana marrina	Views 10 Motors	Cays 16 (Venes	

Water Quality Monitoring Management Icons Slide

Area Chart

01 Product

This graph/chart is inked to excel. took changes automatically bared on data. Just left click on thand select "Edit Data".

02 Product

This graph/ahort is linked to excell and changes automatically loosed on data. Just left click on it and select "Edit Data".

Bar Chart

01 Product

This graph/crisort is Enked to excel, and changes automotically based on data. Just left click on it and select "Edit Data".

02 Product

This graph/chart is Inked to excell and changes automatically based andata. Just left click on it and select "Edit Data".

