Metric Spaces and Topological Concepts

Expanding \mathbb{R} 1.1

Most of the focus so far has been on \mathbb{R} . Importantly, on \mathbb{R} it was possible to define an ordering relation from which the absolute value and distance functions could arise. A natural question to ask is if this conceptual construction of distance can be constructed over different sets.

Definition 1.1 (Metric Space). Let S be a set. If there exists some mapping $d: S \times S \rightarrow$ \mathbb{R} (called a metric or distance) such that it satisfies

1.
$$d(x,x) = 0, \forall x \in S \text{ and } d(x,y) > 0, \forall x,y \in S, x \neq y$$

2.
$$d(x,y) = d(y,x), \forall x,y \in S$$

3.
$$d(x,z) \le d(x,y) + d(y,z), \forall x,y,z \in S$$

then (S, d) is a metric space.

Clearly (\mathbb{R} , dist) is a metric space. However, there are alternative metrics that still admit a metric space over \mathbb{R} .

Example 1.1. The following are some examples of metric spaces

a)
$$S = \mathbb{R}, d(x, y) = |x - y|$$

a)
$$S = \mathbb{R}, d(x, y) = |x - y|$$

b) $S = \mathbb{R}^k = \{(x_1, \dots, x_k) : x_i \in \mathbb{R}, \forall i = 1, \dots, k\}, d(x, y) = \sqrt{\sum_{i=1}^k (y_i - x_i)^2}$

Consider specifically the case of \mathbb{R}^k .

Proof. Consider the metric $d(x,y) = \sqrt{\sum_{i=1}^k (y_i - x_i)^2}$ over \mathbb{R}^k . Check that it satisfies the properties of being a metric.

- 1. The metric is zero when $y_i = x_i$ and therefore x = y, hence d(x, x) = 0 for all $x \in \mathbb{R}^k$
- **2**. Since the summation terms are squared, the order of x_i and y_i does not matter, hence d(x, y) = d(y, x) for all $x, y \in \mathbb{R}^k$
- 3. Firstly, an equivalence is

$$d(x,z) \leq d(x,y) + d(y,z) \Leftrightarrow d(x,z)^2 \leq d(x,y)^2 + 2d(x,y)d(y,z) + d(y,z)^2$$

By using the scalar product and its properties from vector spaces,

$$d(x,z)^{2} = (x-z) \cdot (x-z) = (x-y+y-z) \cdot (x-y+y-z)$$

$$= (x-y) \cdot (x-y) + 2(x-y) \cdot (y-z) + (y-z) \cdot (y-z)$$

$$= d(x,y)^{2} + 2(x-y) \cdot (y-z) + d(y,z)^{2} \qquad (*)$$

Note that $\forall t > 0$

$$0 \le ((x - y) - t(y - z)) \cdot ((x - y) - t(y - z))$$

= $d(x, y)^2 + d(y, z)^2 t^2 - 2t(x - y)(y - z)$

Therefore by rearranging

$$(x-y)\cdot (y-z) \le \frac{1}{2t}d(x,y)^2 + \frac{t}{2}d(y,z)^2$$

Since t was arbitrary, choosing $t = \frac{d(x,y)}{d(y,z)}$ gives

$$(x - y) \cdot (y - z) \le d(x, y)d(y, z)$$
 (Cauchy Schwarz Inequality)

Going back to (*),

$$d(x,z)^{2} = d(x,y)^{2} + 2(x-y) \cdot (y-z) + d(y,z)^{2}$$

$$\leq d(x,y)^{2} + 2d(x,y)d(y,z) + d(y,z)^{2}$$

$$= (d(x,y) + d(y,z))^{2}$$

and therefore by taking the root of each side,

$$d(x,z) \le d(x,y) + d(y,z), \forall x,y,z \in \mathbb{R}^k$$

Since d satisfies all the properties of a metric, (\mathbb{R}^k, d) is a metric space

Having a metric space provides enough machinery to define concepts like convergence.

Definition 1.2 (Metric Space Equivalents). Let $(s_n)_{n\in\mathbb{N}}$ be a sequence in (S,d) and $s\in S$. Then

1. Convergence is defined as

$$\lim_{n\to\infty} s_n = s \stackrel{\text{def}}{\Longleftrightarrow} \lim_{n\to\infty} d(s_n, s) = 0$$

2. Cauchy is defined as

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } d(s_n, s_m) < \epsilon, \forall m, n > N$$

3. (S, d) is **complete** iff all Cauchy sequences converge.

The last idea of completeness is different in form than the $\ref{eq:completeness}$, however (\mathbb{R} , dist) satisfies this alternative definition of completeness (and is in fact equivalent to the $\ref{eq:completeness}$).

Theorem 1.1 (\mathbb{R}^k is a Metric Space). (\mathbb{R}^k , d) is a complete metric space.

It will be useful to show that convergence of a sequence in \mathbb{R}^k can be determined by element wise sequences converging (and equivalently for determining if a sequence is Cauchy). For notation sake, the superscript refers to the index into a sequence and the subscript is the position index of the original sequence. That is a sequence $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^k$ is

$$(x_n)_{n\in\mathbb{N}} = \begin{pmatrix} x_1^n \\ \vdots \\ x_k^n \end{pmatrix}$$

Lemma 1.1 (Element Wise Implies Sequence Wise). A sequence $(x^n)_{n\in\mathbb{N}}$ in \mathbb{R}^k converges iff (x_j^n) converges in \mathbb{R} for $1 \leq j \leq k$. Additionally, $(x^n)_{n\in\mathbb{N}}$ is Cauchy iff (x_j^n) is Cauchy in \mathbb{R} for $1 \leq j \leq k$.

Proof.

Proof of 1.1. Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in \mathbb{R}^k . Then by 1.1, $\left(x_n^j\right)$ is a Cauchy sequence in \mathbb{R} . Since \mathbb{R} is complete, $\left(x_n^j\right)$ converges. Therefore all component sequences of (x_n) converge which by 1.1 implies the convergence of (x_n) .

An interesting fact is that the Bolzano-Weistrass Theorem generalizes to \mathbb{R}^k as long as boundedness is properly defined.

Definition 1.3 (Boundedness in \mathbb{R}^k). Let $S \subset \mathbb{R}^k$. S is bounded if there exists $M \in \mathbb{R}$ such that $d(0,s) \leq M$ for all $s \in S$.

Theorem 1.2. Each bounded sequence in \mathbb{R}^k has a convergent subsequence.

Proof. Let $(x_n)_{n\in\mathbb{N}}$ be a bounded sequence in \mathbb{R}^k . Note that $\left|\left(x_j^n\right)\right|\leq d(0,x_n)$ for all $j=1,\ldots,k$ and $n\in\mathbb{N}$. Therefore each element wise sequence is bounded. Then

$$(x_1^n) \text{ is bounded } \implies \exists \left(n_l^1\right)_{l \in \mathbb{N}} \text{ s.t. } x_1^{n_l^1} \to x_1^{\infty}$$

$$\left(x_2^{n_l^1}\right) \text{ is bounded } \implies \exists \left(n_l^2\right)_{l \in \mathbb{N}} \subset \left(n_l^1\right)_{l \in \mathbb{N}} \text{ s.t. } x_2^{n_l^2} \to x_2^{\infty}$$

$$\vdots$$

 $\left(x_{k}^{n_{l}^{k-1}}\right) \text{ is bounded } \implies \exists \left(n_{l}^{k}\right)_{l \in \mathbb{N}} \subset \left(n_{l}^{k-1}\right)_{l \in \mathbb{N}} \text{ s.t. } x_{k}^{n_{l}^{k}} \rightarrow x_{k}^{\infty}$

Therefore a convergent subsequence of (x_n) can be constructed.

Definition 1.4 (Openness). Let (S, d) be a metric space and $E \subset S$. Then

- 1. $s_0 \in E$ is an interior of E iff $\{s \in S : d(s, s_0) < r\} \subset E$ for some r > 0.
- 2. $\mathring{E} = \{ s \in E : s \text{ is an interior point } \}$
- 3. If $E = \mathring{E}$, then E is open

Remark. The following are important properties of openness

- 1. S is open in S
- 2. \emptyset is open in S
- 3. E_{α} is open $\forall \alpha \in A$, then $\bigcup_{\alpha \in A} E_{\alpha}$ is open
- 4. E_j is open $\forall j = 1, ..., n$ then $\bigcap_{j=1}^n E_j$ is open

Definition 1.5. Let (S, d) be a metric space. Then

- 1. $E \subset S$ is closed if $E^c = S \setminus E$ is open
- 2. $\bar{E} = \bigcap_{\substack{E \subset F \subset S \\ F \text{ closed}}} F$ is the closure of E
- 3. $\partial E = E \setminus \mathring{E}$ is the boundary of E

Remark. \bar{E} is a closed set and is the smallest closed set that contains E.

Example 1.2. The following are examples of openness and boundaries

- 1. (a,b) is open and [a,b] is closed in $\mathbb R$
- **2**. (a, b] and [a, b) are neither open nor closed
- 3. With $I = \{(a, b), [a, b], [a, b), (a, b]\}$
 - (a) $\bar{I} = [a, b]$
 - (b) $\mathring{I} = (a, b)$
 - (c) $\partial I = \{a, b\}$
- 4. Let $x \in \mathbb{R}^k$ and r > 0. Let $\mathbb{B}(x,r) = \{y \in \mathbb{R}^k : d(x,y) < r\}$
 - (a) $\mathbb{B}(x,r)$ is open
 - (b) $\bar{\mathbb{B}}(x,r)$ is closed
 - (c) $\partial \mathbb{B}(x,r) = \{ y \in \mathbb{R}^k : d(x,y) = r \}$

Theorem 1.3. Let (S, d) be a metric space and $E \subset S$. Then

- 1. If E is closed, $E = \overline{E}$
- 2. $\it E$ is closed iff $\it E$ contains the limit of every convergent sequence in $\it E$
- 3. $x \in \overline{E}$ iff there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in E that converges to x
- 4. $x \in \partial E \text{ iff } x \in \overline{E} \cap \overline{S \setminus E}$