Лабораторная работа № 2

База данных GenBank. Форматы GenBank и FASTA Точечная матрица сходства.

Основным источником генетических данных на данный момент является международная база данных GenBank. База данных открыта для всех и позволяет осуществлять и загрузку и выгрузку данных всеми пользователями. Для поиска и получения данных регистрация необязательна.

Caйт US National Centre for Biotechnological Information NCBI доступен по адресу

http://www.ncbi.nlm.nih.gov/

Он поддерживает базу данных GenBank для генных и геномных последовательностей, связывает их с другими базами данных и ресурсами, включая National Library of Medicine

http://www.nlm.nih.gov/

и предоставляет пакет программ для поиска по GenBank — BLAST

http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Этот сервер сделан и поддерживается профессионально. Доступ к нему бесплатный и штат отвечает даже на технические вопросы. NCBI — это лучшее место в Интернете для начала поиска биоинформатических данных.

Поиск и получение данных из GB может осуществляться с помощью нескольких интерфейсов:

- 1. Самый простой и интуитивно понятный интерфейс для получения и поиска генетических последовательностей (нуклеотидных, аминокислотных и белковых) называется Entrez Nucleotide, и включает в себя три основных коллекции данных: CoreNucleotide (the main collection), dbEST (Expressed Sequence Tags), и dbGSS (Genome Survey Sequences). Через этот интерфейс удобно искать последовательности по ключевым словам (например, вид, название гена, год публикации, авторы и т.д.)
- 2. Более комплексный интерфейс BLAST (Basic Local Alignment Search Tool) позволяет искать совпадения на основании непосредственно нуклеотидных последовательностей, а также картировать найденные последовательности и сравнивать степень их совпадения друг с другом.
- 3. Наиболее продвинутый, но в тоже время гибкий, интерфейс доступа к базе NCBI e-utilities. Он позволяет на програмном уровне обратиться к базе данных и получить данные в батч-режиме (много записей единым блоком). Написание скриптов возможно в общем-то на любом языке программирования, но уже доступны библиотеки под Perl (BioPerl), Python (Biopython) и др.

Все данные в GB хранятся в двух основных форматах:

- 1. Нативный формат GB (который так и называется genbank)
- 2. Один из наиболее широко распространенных форматов хранения и передачи генетических данных fasta.

Принятых расширений для файлов обоих форматов пока что нет, но наиболее часто используемые следующие:

.gb, .genbank, .fas, .fasta, .fs

В любом случае, так как оба формата открытые, то парсинг (обработка) информации осуществляется через стандартные механизмы обработки текстовых документов (зарезервированные слова и симвология). Ключевое отличие нативного формата Genbank от например формата fasta (с которым работают напрямую большинство программ в области биоинформатики, молекулярной биологии и филогенетики), заключается в избыточности информации и нежестких правилах ввода описательной информации о новых последовательностях. Именно поэтому парсинг записей полученных из БД в батч-режиме очень часто является нетривиальной задачей.

Формат GenBank

Формат .genbank содержит такие поля как: LOCUS, DEFINITION, ACCESSION, VERSION, KEYWORDS, REFERENCE, FEATURES, ORIGIN.

Пример данных в формате GB (информация получена с основной описательной страницы формата базы Genbank):

LOCUS SCU49845 5028 bp DNA PLN 21-JUN-1999

DEFINITION Saccharomyces cerevisiae TCP1-beta gene, partial cds, and Axl2p

(AXL2) and Rev7p (REV7) genes, complete cds.

ACCESSION U49845

VERSION U49845.1 GI:1293613

KEYWORDS.

SOURCE Saccharomyces cerevisiae (baker's yeast)

ORGANISM Saccharomyces cerevisiae

Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;

Saccharomycetales; Saccharomycetaceae; Saccharomyces.

REFERENCE 1 (bases 1 to 5028)

AUTHORS Torpey, L.E., Gibbs, P.E., Nelson, J. and Lawrence, C.W.

TITLE Cloning and sequence of REV7, a gene whose function is required for

DNA damage-induced mutagenesis in Saccharomyces cerevisiae

JOURNAL Yeast 10 (??), 1503-1509 (1994)

PUBMED 7871890

REFERENCE 2 (bases 1 to 5028)

AUTHORS Roemer, T., Madden, K., Chang, J. and Snyder, M.

TITLE Selection of axial growth sites in yeast requires Axl2p, a novel

plasma membrane glycoprotein

JOURNAL Genes Dev. 10 (??), 777-793 (1996)

PUBMED 8846915

REFERENCE 3 (bases 1 to 5028)

AUTHORS Roemer, T.

TITLE Direct Submission

JOURNAL Submitted (22-FEB-1996) Terry Roemer, Biology, Yale University, New

Haven, CT, USA

FEATURES Location/Qualifiers

```
source 1..5028
/organism="Saccharomyces cerevisiae"
/db xref="taxon:4932"
/chromosome="IX"
/map="9"
CDS < 1...206
/codon start=3
/product="TCP1-beta"
/protein id="AAA98665.1"
/db xref="GI:1293614"
/translation="SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRAVVSSASEA
AEVLLRVDNIIRARPRTANRQHM"
gene 687..3158
/gene="AXL2"
CDS 687..3158
/gene="AXL2"
/note="plasma membrane glycoprotein"
/codon start=1
/function="required for axial budding pattern of S.
cerevisiae"
/product="Axl2p"
/protein id="AAA98666.1"
/db xref="GI:1293615"
/translation="MTQLQISLLLTATISLLHLVV..."
gene complement(3300..4037)
/gene="REV7"
CDS complement(3300..4037)
/gene="REV7"
/codon start=1
/product="Rev7p"
/protein id="AAA98667.1"
/db xref="GI:1293616"
/translation="MNRWVEKWLR..."
ORIGIN
1 gatcetecat atacaacggt atetecacet caggtttaga teteaacaac ggaaccattg
61 ccgacatgag acagttaggt atcgtcgaga gttacaagct aaaacgagca...
```

Поле LOCUS содержит множество различных элементов данных, в том числе имя локуса, длину нуклеотидной последовательности, тип молекулы, раздел GenBank разделение, и дату изменения записи.

Первая запись в поле LOCUS — **имя локуса**. В этом примере **SCU49845** является именем локуса, которое должно быть уникальным. Имя локуса обычно состоит из первой буквы названия рода и регистрационного номера.

Вторая запись в поле LOCUS — **длина последовательности** — это количество нуклеотидных пар оснований (или аминокислотных остатков) в последовательности записи. В этом примере, последовательности длиной 5028 пар нуклеотидов.

Третья запись в поле LOCUS — **тип молекулы**, которая была секвенирована. В этом примере типа молекул — ДНК. Различные типы молекул включают геномную ДНК,

геномную РНК, исходная РНК, мРНК (кДНК), рибосомальной РНК, транспортная РНК, малых ядерных РНК, и малые цитоплазматические РНК.

Четвертая запись в поле LOCUS - **раздел базы GenBank** к которому принадлежит запись обозначается трехбуквенной аббревиатурой. В этом примере, раздел базы — PLN. Базы данных GenBank включает 18 разделов:

- 1. PRI приматы
- 2. РОД грызуны
- 3. МАМ другие млекопитающие
- 4. VRT другие позвоночные
- 5. INV беспозвоночные
- 6. PLN растения, грибковые и водоросли
- 7. ВСТ бактерии
- 8. VRL вирусы
- 9. PHG бактериофаги
- 10. SYN синтетические
- 11. УНА необозначенные
- 12. EST expressed sequence tags
- 13. PAT патенты
- 14. CTC sequence tagged sites
- 15. GSS genome survey sequences
- 16. $\Gamma T\Gamma$ high-throughput genomic sequences
- 17. HTC незаконченные high-throughput genomic sequences
- 18. ENV environmental sampling sequences

Некоторые из подразделений содержат генетические последовательности конкретных групп организмов, тогда как другие (EST, GSS, ГТГ, и др.) содержат данные, полученные в результате использования определенных технологии секвенирования для разных организмов.

Пятая запись в поле LOCUS — **дата последнего изменения записи**. В последнее изменение 21-Jun-1999. В некоторых случаях, дата изменения может соответствовать дате внесения записи в базу. Однако выглядеть для пользователя дата будет одинаково в обоих случая

Поле DEFENITION содержит краткое описание последовательности; включает информацию, такую как исходный организм, название гена / имя белка или некоторое описание функции последовательности (если это некодирующая последовательность). Если

у последовательности есть кодирующая область (cds), описание может сопровождаться определителем полноты, таким как "complete cds ".

Поле ACCESSION — уникальный идентификатор для записи последовательности. Идентификатор обычно является комбинацией букв и чисел (например, U49845 или AF123456).

Поле VERSION — идентификационный номер последовательности, который определяет последовательность в базе данных GenBank единственным образом. Этот идентификационный номер использует формат accession.version. Если данных о последовательности изменятся, то номер версии будет увеличен, например, U12345.1 > U12345.2, но начальная часть не изменится.

GI ("GenInfo Identifier") в поле VERSION — еще один идентификатор последовательности. Если последовательность изменится, то GI заменяется на новое число. Идентификаторы последовательности «GI» идут параллельно новой системе идентификаторов последовательности «accession.version».

Поле KEYWORDS — слово или фраза, описывающая последовательность. Если никакие ключевые слова не отображаются, область содержит только последовательность.

Поле SOURCE — информация о свободном формате, включая сокращенную форму имени организма, иногда сопровождаемая типом молекулы. В нашем примере Saccharomyces cerevisiae (пекарские дрожжи).

Organism в поле SOURCE — формальное научное название для исходного организма (род и разновидность) и его происхождение, основанное на филогенетической системе классификации, используемой в Базе данных Таксономии NCBI. Если полное происхождение организма будет очень длинно, то сокращенное происхождение покажут в отчете GenBank, и полное происхождение будет доступно в Базе данных Таксономии.

Поле REFERENCE — публикации авторов последовательности. Это поле включает фамилии и инициалы авторов, название работы, в которой опубликованы результаты секвенирования последовательности, информация и журнале, в котором напечатана работа и название баз данных, в которых эта работа содержится.

Поле FEATURES — информация о генах и генных продуктах, а также областях биологической значимости последовательности. Эта информация может включать области последовательности, которые кодируют белки и молекулы РНК, а также многие другие особенности.

В поле FEATURES запись **source** содержит длину последовательности, научное название исходного организма и идентификационный номер таксона.

Taxon — запись в поле FEATURES — постоянный уникальный идентификационный номер для таксона исходного организма, присваеваемый в соответствии и Базой данных Таксономии NCBI.

Запись **CDS** в поле FEATURES — кодирование последовательности; область нуклеотидов, которая соответствует последовательности аминокислот в белке (местоположение включает начало и кодоны остановки).

Поле ORIGIN — сама последовательность. Последовательность начинается ниже слова ORIGIN. Чтобы получить только последовательность нужно выбрать формат FASTA.

Формат FASTA

FASTA-формат — это определенная форма записи последовательностей, с которой работает большая часть программ для анализа геномных последовательностей. В первой строке должно стоять название последовательности после знака ">" (здесь чаще всего

пишется база, из которой получена последовательность и код этой последовательности в базе). Начиная со следующей строки приводится сама последовательность. Следующие друг за другом разные последовательности должны быть разделены пустой строкой. Ниже приводится пример записи последовательности в FASTA-формате:

>gi|667061272|gb|KJ504983.1|Ctenotus zebrilla isolate ZEBRA77032 voucher SAMAR55710 12S ribosomal RNA gene, partial sequence; mitochondrial

GTTTTGGTCCTAAACTTGCCCTTGTTTTTT ACCAAAATTATACATGACAAGCCTCCGCGCA CCAGTGAGAATGCCCACACACCCCTAAACAG CAAACCGGAGCAGGCATCAGGATACAATCTAA ACATTTGCCAACGACGCCTTGCACATGCCAC ACCCACACGGGCTTTCAGCAGTAACTAATATTA AGACATGAGCGAAAACTCGACTTAGTTATGG TACACATGGTCGGTTAATTTCGTGCCAGCCA CCGCGGTTATACGAAAGACCAAAAACAACGG CCCACGCGTAAAGCGTGACTAGAGGAACCGG TCAACTTAGAGGAGAACCGCTGCCAAGTAGT AAAACACCCACGCACACCGGAATTACAACA CCGCCTCTAATACTACTTTACCTCACGAAA GCTAAGAAACAAACTGGGATTAGATACCCCA CTATGCTTAGCCCTAAACACAGACAGTAAAA ACACAATACTGTTCGCCAGAGAACTACAAA CGAAAAGCTTAAAACTCCAAGGACTTGGCG GTGCTTCAAACCAACCTAGAGGAGCCTGTCCT ATAATCGATACCCCACGTTTTACCTTACCCC TTCTGGCCAAACAGCCTATATACCGCCGTCG TAAGCCTACCTTATGAAAGAAGAAAAGTAG GCAAAATAGTTAGCAACTAGAACGTCAGGTCA AGGTGTAGCACACGAAGGGGCAGAGATGGG CTACATTTCTCTAAGAGAAAATACGAACGGCG GACTGAAATACCCACCTAAAGGCGGATTTA CAGTAAAATGTCAAAGAATAGCCATTTTAAACA TGCTCTGAAGCGCGCACACACCGCCCGTCAC CCTCATCACACGTTACAAGAAACAAC

Получение нуклеотидной последовательности

- 1. В веб браузере откройте url http://www.ncbi.nlm.nih.gov/. Несмотря на то, что мы будет использовать только один раздел на сервере (и сможем иметь доступ к нему напрямую) стоит потратить несколько минут для того, чтобы просмотреть домашнюю страницу сайта для того, чтобы оценить его масштаб.
- 2. Рассмотрим, например, фермент *isocitrate dehydrogenase*, играющий важную роль в генерировании энергии. Мы будем искать ген, кодирующий этот белок, в кишечной бактерии, **Escherichia coli**. Наберите *isocitrate dehydrogenase* в поле поиска и нажмите *Search*. Результатом будут соответствующие записи из нескольких баз данных. Нас интересуют данные из базы *Nucleotide* (*DNA u RNA*).

- 3. Кликните на *Nucleotide*: вы увидите первую из сотни страниц результатов. Нам нужно как-то сократить этот список до размеров, когда с ним будет удобно работать. Чтобы это сделать: Кликните на ссылке *Limits*. Вы переместитесь на страницу, на которой можно выбрать среди множества опций для ограничения вашего поиска.
- 4. Выберите *Title* из выпадающего меню *Search field tags* и нажмите *Search*. Вы вернетесь на страницу с результатами и увидите, что общее их количество значительно сократилось. Однако мы хотим ограничить наш поиск последовательностей только Escherichia coli (E. coli). Поэтому: Добавьте «and E coli» в поле поиска после "isocitrate dehydrogenase". Кликните *Search*. Вы вернетесь на страницу поиска с двумя результатами, второй из которых то, что нам нужно.
- 5. Нажимая, соответственно, GenBank или Fasta, вы перейдете на страницу в стандартном формате GenBank с документацией и ссылками и следующей за ней последовательностью ДНК или на страницу в формате Fasta с самой последовательностью ДНК. Чтобы убедиться, что файл может использоваться в программах, нам надо убедиться в том, что он содержит правильный текст.
- 6. Выберите опцию Fasta в выпадающем меню, начинающемся с Send To. Это генерирует страницу в формате Fasta без ссылок.
- 7. Если выбрать опцию GenBank в выпадающем меню, начинающемся с Send To, мы получим страницу в формате GenBank. Первая строка полученного файла показывает нам, что длина последовательности 1568 bp (пар оснований) и последовательность есть ДНК. Собственно последовательность начинается со строки ORIGIN. Эту строку можно использовать как индикатор при открытии любых файлов GenBank. Если вы посмотрите на строки с отступами, следующими за FEATURES, вы увидите CDS. Это расположение кодирующей последовательности и содержит часть гена, транслируемой в белок нуклеотиды 291-1541. Это имеет практическую ценность для анализа последовательности ДНК.

Построение точечной матрицы сходства двух последовательностей

Точечная матрица — простейшее изображение, которое дает представление о сходстве между двумя последовательностями. Менее очевидным является ее близкая взаимосвязь с выравниваниями.

Точечная матрица представляет собой таблицу или матрицу. Строки соответствуют элементам одной последовательности, колонки — элементам другой последовательности. В простейшем варианте позиции в точечной матрице оставляются пустыми, если остатки различны, и заполняются, если они совпадают. Совпадающие фрагменты последовательностей отобразятся в виде диагоналей, идущих из верхнего левого угла в нижний правый.

Рассмотрим две последовательности: agctagga и gactaggc. Диагональ точек выявляет общую подпоследовательность ctagg (см. рисунок 1):

Точечная матрица сходства позволяет

- 1. установить участки локального совпадения,
- 2. установить наличие повторов и палиндромных последовательностей,
- 3. сопоставить по крайней мере фрагменты последовательностей

	a	g	С	t	a	g	g	g
g		g					g	g
a	a				а			
С			С					
t				t				
a	a				а	a		
g		g				g	g	g
g		g				g	g	g
С			С					

Рис. 1: Точечная матрица сходства agctagga и gactaggc.

Палиндром проявляется как побочная диагональ, пересекающаяся с главной диагональю (из верхнего левого угла в нижний правый).

Палиндромы — это не просто игра слов - это участки ДНК, распознаваемые регуляторами транскрипции или ферментами рестрикции, имеющими похожие на палиндром последовательности, которые располагаются поочерёдно, то на одной цепи, то на другой.

На рисунке 2 приведена матрица сходства двух амонокислотных последовательностей: человеческого гена Нех A и мышиного гена Нех A, загруженных из базы данных GenBank.

Рис. 2: Точечная матрица сходства человеческого гена Нех А и мышиного гена Нех А.

Мутация гена Нех A (beta-hexosaminidase A) вызывает болезнь Тея-Сакса. Болезнь Тея-Сакса (ранняя детская идиотия амавротическая) - редкое наследственное заболевание нервной системы. Ген Нех A отвечает за синтез фермента гексозоаминидазы A - фермента, принимающего участие в метаболизме ганглиозидов. В результате, ганглиозиды накапливаются в нервных клетках, нарушая их работу.

Недостатком точечной матрицы является то, что она плохо определяет сходство дальнеродственных последовательностей. При анализе последовательностей, с одной стороны, необходимо наблюдать за построением точечной матрицы, чтобы быть уверенным в том, что не пропущено ничего важного, но с другой стороны, надо быть готовым к применению более тонких методов анализа.

Задание

- 1. В базе данных GenBank найти **нуклеотидные** последовательности в соответствии с вариантом. Привести каждую последовательность и определить число пар оснований каждой последовательности.
- 2. Описать какие последовательности вы нашли, за что они отвечают и каким организмам принадлежат.
- 3. Построить точечную матрицу сходства между двумя последовательностями в формате FASTA. Сделать вывод о сходстве или несходстве последовательностей.

Варианты:

1 вариант

Homo sapiens hemoglobin Mus musculus hemoglobin

2 вариант

Salmon insulin mRNA, complete cds Octodon degus insulin mRNA, complete cds

3 вариант

Homo sapiens steroid receptor RNA activator 1 (SRA1), mRNA Rattus norvegicus steroid receptor RNA activator 1 (Sra1), mRNA

4 вариант

Alternaria sp. strain YZU 191419 calmodulin (calmodulin) gene, partial cds Stemphylium vesicarium isolate SVA1 calmodulin (calmodulin) gene, partial cds; mitochondrial

5 вариант

Human T-lymphotropic virus 3 Simian T-lymphotropic virus 3

6 вариант

Garlic virus A Garlic virus B

7 вариант

Bacteriophage SV14 single-stranded binding protein (supyc Enterobacteria phage SV14) Bacteriophage nt-1 tail tube protein (supyc Vibrio phage nt-1)

8 вариант

Ictalurid herpesvirus 2 Salmonid herpesvirus 2

9 вариант

Datura yellow vein virus Taro vein chlorosis virus

10 вариант

Homo sapiens hepatitis A virus cellular receptor 1 (HAVCR1), mRNA Duck hepatitis A virus

11 вариант

Zea mays hemoglobin Paramecium caudatum hemoglobin

12 вариант

Octodon degus insulin Oryctolagus cuniculus New Zealand White insulin

13 вариант

Chicken nerve growth factor Anairetes alpinus bolivianus nerve growth factor (NGF) gene, exon 4

14 вариант

Oncorhynchus mykiss thrombin mRNA Cynops pyrrhogaster thrombin mRNA

15 вариант

Pinellia ternata agglutinin gene Zephyranthes candida agglutinin gene

16 вариант

 $Drosophila\ melanogaster\ cytochrome\ c\ proximal\ N.tabacum\ mRNA\ for\ cytochrome\ b5$

17 вариант

Halocynthia roretzi mRNA for claudin Canis lupus familiaris claudin 2 mRNA

18 вариант

Synthetic mouse epidermal growth factor gene Synthetic human epidermal growth factor gene

19 вариант

Pig mRNA for epidermal growth factor Artificial gene for human epidermal growth factor

20 вариант

Human liver/bone/kidney-type alkaline phosphatase (ALPL) gene, exon 3 R.norvegicus gene encoding alkaline phosphatase, exon 3 and joined CDS

21 вариант

Danio rerio thrombopoietin (thpo), mRNA Gallus gallus thrombopoietin (Tpo) mRNA

22 вариант

Human cystic fibrosis transmembrane conductance regulator (CFTR) gene, exon 5 Human cystic fibrosis transmembrane conductance regulator (CFTR) gene, exon 19

23 вариант

Human renin gene, exon 1 Mouse Ren1 gene for renin exon 1

24 вариант

Canis familiaris mRNA for frataxin Arabidopsis thaliana frataxin mRNA

25 вариант

Sowthistle yellow vein virus Cowpea mosaic virus

26 вариант

Ovis aries myostatin (MSTN) gene, exon 3 Gallus gallus isolate 4767 myostatin (MSTN) gene, MSTN-Q allele, exon 3

27 вариант

Gallus gallus isolate 4767 myostatin (MSTN) gene, MSTN-Q allele, exon 3 Lophonetta specularioides alticola voucher UAM:REW 721 lamin A (LMNA) gene, exons 3

28 вариант

Camelina sativa nucleolin 2-like (LOC109131583) Brassica napus nucleolin 1-like (LOC106426348)

29 вариант

Bos taurus tumor protein p53 inducible nuclear protein Apus apus tumor protein p53 inducible nuclear protein

30 вариант

Sus scrofa retinoblastoma protein (RB1)
Gallus qallus cyclin dependent kinase 6 (CDK6)

Задание 2.

Пользуясь базой данных Nucleotide сайта NCBI для любого выбранной последовательности ДНК организма из варианта записать

- 1. Длину последовательности ДНК.
- 2. Исходный организм, название гена / имя белка.
- 3. Записать домен, царство, тип, класс, отряд, семейство, род и вид.
- 4. Авторы последовательности.
- 5. Дата размещения.
- 6. Найти и приложить фото исходного организма.

Варианты. Роды амфибий:

	оианты. Роды амфиоии.
$N_{\overline{0}}$	7.1
1	Австралийские квакши Litoria
2	Азиатские чесночницы Xenophrys
3	Аллобатесы Allobates
4	Амбистомы Ambystoma
5	Амфиумы Amphiuma
6	Африксалюсы Afrixalus
7	Веслоноги Polypedates
8	Веслоноги шиповатые Nyctixalus
9	Гиперолиусы Hyperolius
10	Древесные жабы Pedostibes
11	Древолазы Dendrobates
12	Жабовидные квакши Phrynohyas
13	Жабы Bufo
14	Жерлянки Bombina
15	Ингерофринусы Ingerophrynus
16	Калоулы Kaloula
17	Карликовые когтеносцы Hymenochirus
18	Kaccuны Kassina
19	Квакши Hyla
20	Квакши вест-индские (карибские) Osteopilus
21	Лептопелисы Leptopelis
22	Листолазы Phyllobates
23	Лопатоноги Scaphiopus
24	Лопатоногие узкороты Scaphiophryne
25	Лягушки Баджита Lepidobatrachus
26	Лягушки летающие Rhacophorus
27	Лягушки-водоносы <i>Pyxicephalus</i>
28	Лягушки-помидоры <i>Dyscophus</i>
29	Мантеллы Mantella
30	Пипы Ріра