

Achmad Basuki Nana Ramadijanti

Materi

- · Struktur titik dan vektor
- · Perubahan struktur titik ke vektor
- · Perubahan struktur vektor ke titik
- Translasi
- Scalling
- · Rotasi
- Perkalian Matrik
- · Komposisi Transformasi

Struktur Titik dan Vektor

```
typedef struct
Struktur data
                     float x,y;
dari titik 2D
                  point2D t;
                typedef struct {
Struktur data
                     float v[3];
dari vektor 2D
                  vector2D t;
```

Perubahan Titik dan Vektor

Point2Vector

Fungsi ini digunakan untuk memindahkan tipe data titik menjadi tipe data vektor. Hal ini sangat berguna untuk operasional matrik yang digunakan dalam melakukan transformasi dan pengolahan matrik pada grafika komputer.

```
vector2D_t point2vector(point2D_t pnt)
{
    vector2D_t vec;
    vec.v[1]=pnt.x;
    vec.v[2]=pnt.y;
    vec.v[3]=1.;
}
```

Vector2Point

Fungsi ini digunakan untuk memindahkan tipe data vektor menjadi tipe data titik. Hal ini sangat berguna untuk penyajian grafis setelah proses pengolahan matrik yang dikenakan pada obyek 2D.

```
point2D_t vector2point(vector2D_t vec)
{
    point2D_t pnt;
    pnt.x=vec.v[1];
    pnt.y=vec.v[2];
}
```

Transformasi 2D

- · Translasi
- Scaling
- · Rotasi

Matrik Transformasi 2D

- Matrik transformasi adalah matrik yang membuat sebuah obyek mengalami perubahan baik berupa perubahan posisi, maupun perubahan ukuran.
- Matrik transformasi 2D dinyatakan dalam ukuran 3x3, dimana kolom ke-3 digunakan untuk menyediakan tempat untuk proses translasi.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Translasi

Translasi adalah perpindahan obyek dari titik P ke titik P' secara linier.

$$x' = x + dx$$

 $y' = y + dy$

Model Matrik:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} dx \\ dy \end{bmatrix}$$

Matrik Transformasi dari Translasi 2D

Proses translasi
dengan
menggunakan
definisi vektor2D
dapat dituliskan
dengan

$$\begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & d_x \\ 0 & 1 & d_y \\ 0 & 0 & 1 \end{bmatrix}$$

Matrik
Transformasi
dari
Translasi

Implementasi Matrik Tranformasi Untuk Translasi

```
matrix2D_t translationMTX(float dx,float dy)
{
    matrix2D_t trans=createIdentity();
    trans.m[0][2]=dx;
    trans.m[1][2]=dy;
    return trans;
}
```

Fungsi untuk membuat matrik identitas

Matrik Identitas

Matrik identitas adalah matrik yang nilai diagonal utamanya sama dengan satu dan lainnya nol.

```
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

```
matrix2D_t createIdentity(void) {
    matrix2D_t u;
    int i,j;
    for (i=0;i<3;i++) {
        for(j=0;j<3;j++) u.m[i][j]=0.;
        u.m[i][i]=1.;
    }
    return u;
}</pre>
```

Scaling

Scaling m adalah perpindahan obyek dari titik P ke titik P', dimana jarak titik P' adalah m kali titik P

$$x' = m_x x$$

 $y' = m_y y$

Matrik Transformasi dari Scaling 2D

Proses scaling

dengan

menggunakan

definisi vektor2D

dapat dituliskan

dengan

$$\begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \end{bmatrix} = \begin{bmatrix} m_x & 0 & 0 \\ 0 & m_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\begin{bmatrix} m_x & 0 & 0 \\ 0 & m_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrik
Transformasi
dari Scaling

Implementasi Matrik Tranformasi Untuk Scaling

```
matrix2D_t scalingMTX(float mx,float my)
{
    matrix2D_t scale=createIdentity();
    scale.m[0][0]=mx;
    scale.m[1][1]=my;
    return scale;
}
```

Rotasi

Rotasi adalah perpindahan obyek dari titik P ke titik P', yang berupa pemindahan berputar sebesar sudut θ

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

Matrik Transformasi dari Rotasi

Proses Rotasi
dengan
menggunakan
definisi vektor2D
dapat dituliskan
dengan

$$\begin{bmatrix} \hat{v}_1 \\ \hat{v}_2 \\ \hat{v}_3 \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matrik
Transformasi
dari Rotasi

Implementasi Matrik Tranformasi Untuk Rotasi

```
matrix2D t rotationMTX(float theta)
     matrix2D t rotate=createIdentity();
     float cs=cos(theta);
     float sn=sin(theta);
     rotate.m[0][0]=cs; rotate.m[0][1]=-sn;
     rotate.m[1][0]=sn; rotate.m[1][1]=cs;
     return rotate;
```

Perkalian Matrik

- Perkalian matrik dengan matrik menghasilkan matrik
- Perkalian matrik dengan vektor menghasilkan vektor

Perkalian matrik ini digunakan untuk operasional transformasi dari obyek 2D dan untuk komposisi (menggabungkan) tranformasi

Perkalian Matrik dengan Matrik

Perkalian matrik a dan matrik b menghasilkan matrik c yang dirumuskan dengan

$$c_{ij} = \sum_{k=0}^{2} a_{ik} b_{kj}$$

dimana i dan j bernilai 0 s/d 2

Implementasi Perkalian Matrik dengan Matrik

```
matrix2D_t operator * (matrix2D_t a, matrix2D_t b)
      matrix2D t c;//c=a*b
      int i,j,k;
      for (i=0; i<3; i++) for (j=0; j<3; j++) {
            c.m[i][j]=0;
            for (k=0; k<3; k++)
                  c.m[i][j] + = a.m[i][k]*b.m[k][j];
      return c;
```

Perkalian Matrik dengan Vektor

Perkalian matrik a dan vektor b menghasilkan vektor c yang dirumuskan dengan

$$c_i = \sum_{k=0}^{2} a_{ik} b_k$$

dimana i bernilai 0 s/d 2

Implementasi Perkalian Matrik dengan Vektor

```
vector2D_t operator * (matrix2D_t a, vector2D_t b)
      vector2D tc://c=a*b
      int i,j;
      for (i=0; i<3; i++) {
            c.v[i]=0;
            for (j=0; j<3; j++)
                  c.v[i] + = a.m[i][j]*b.v[j];
      return c;
```

Komposisi Transformasi

- Komposisi transformasi adalah menggabungkan beberapa tranformasi, sehingga dapat menghasilkan bentuk transformasi yang lebih kompleks
- Komposisi tranformasi dapat dilakukan dengan mengalikan matrik-matrik transformasi

Contoh Komposisi Tranformasi

Komposisi transformasi dinyatakan dengan:

Rotasi(θ).Translasi(d,0)

Contoh Komposisi Tranformasi

Komposisi transformasi dinyatakan dengan:

Translasi(d,0). Rotasi(θ)

Tugas 1 Grafika Komputer Menggambarkan Orbit Bumi dan Bulan

Tugas 2 Grafika Komputer Menggambar Gerakan Tutup Gelas Terbuka

Gelas tertutup

Gerakan terbuka dan tertutup

Gelas terbuka

Tugas 3 Grafika Komputer Menggambar Osiloskop

Fungsi gelombang AM adalah: $y = \sin(2\pi f_c t) \cdot [1 + m \cdot \sin(2\pi f_i t)]$

 f_c = frekwensi pembawa

 $\vec{f_i}$ = frekwensi informasi

m= = konstanta modulasi