SYNOPSIS SENTAURUS TCAD FOR SEMICONDUCTOR DEVICE SIMULATION

Md. Rayid Hasan Mojumder

PhD Student, Dept. of Electrical Engineering,

The Pennsylvania State University (Penn State) – University Park, USA

Lecturer (2021 – 2023), Dept. of EEE, Daffodil International University, Dhaka

Mail: rayidhasan.eee@diu.edu.bd

WELCOME & SCOPE

- Includes...
- ✓ Semiconductor device modeling basics
- ✓ Hands-on insight into Synopsys TCAD
- ✓ Career/research applications of TCAD

It is not...

- × a replacement for formal device physics coursework
- × a full TCAD training course
- × a certification program
- × an advanced/complex device simulation resource
- Become familiar of Synopsys TCAD and get an overview of the tool and the resources for making a TCAD skillset
- Leveraging TCAD modeling skill for career development securing higher study positions, Industry roles, etc.

SEMICONDUCTOR SUPPLY CHAIN

SEMICONDUCTOR ECOSYSTEM

All these semiconductors are packaged!

ELECTRONIC DESIGN AUTOMATION (EDA) VS. TCAD (TECHNOLOGY COMPUTER-AIDED DESIGN)

- Manf. **VLSI** Architectural Functional and Logic Synthesis Physical Design Fabrication Logic Design (RTL) Design Packaging module example(A, B, System Cin, Sum, Cout): Specification input [3:0] A, B; Chip endmodule Physical Design Clock Tree Floorplan Placement Routing Synthesis
 - Modern chip design process.
 - VLSITCADCircuit & system designDevice physics & process simulation $RTL \rightarrow Layout \rightarrow Tape-out$ Doping, lithography, etching, I-VTools: Cadence, Synopsys (EDA)Tools: Sentaurus, Silvaco (Device)Used by IC designersUsed by device/process engineersOutput: Chip layout (GDSII)Output: Device physics & profiles
- When you see EDA (Electronic Design Automation) mentioned, it almost always refers to VLSI / chip design, not TCAD
- **VLSI users** design companies (NVIDIA, Qualcomm, Broadcom, Intel, AMD, Marvell, etc.)
- **TCAD users** *foundries (Intel, TSMC, Samsung, GlobalFoundries, etc.)

*Foundries = companies that own and operate the wafer fabrication plants (fabs)

TCAD

WHY USE TCAD MODELING?

- TCAD Modeling Benefits
 - 6 Cost saving vs. actual fabrication
 - Check device feasibility before tape-out
 - Substitution
 Understand physics beyond experimental probing
 - Optimize doping, geometry, and process conditions
- Industry Applications
 - Transistor scaling: FinFET, GAAFET, TFET
 - Power devices: IGBT, MOSFET, SiC/GaN HEMTs
 - Optoelectronics: LED, photodiode, solar cells
- Popular TCAD Solutions
 - Synopsys Sentaurus / TCAD (industry gold standard)
 - Silvaco ATLAS
 - COMSOL Multiphysics (general-purpose)
 - In-house proprietary simulators

TCAD

WHY SYNOPSYS SENTAURUS TCAD?

- Strengths
 - Widely used in academia & industry
 - S Integrates process + device simulation
 - Language in the state of the st
 - Links with circuit simulation
- Career Benefits
 - PhD → device modeling & semiconductor physics
 - Jobs → foundries & fabless (Intel, TSMC, Samsung, GlobalFoundries, Applied Materials, Lam Research)
 - Roles → TCAD Engineer, Device Modeling Engineer, Process Integration Engineer, R&D Engineer

as of August 16, 2025

SENTAURUS TCAD WORKFLOW

- Doping
- Meshing

- Choose physical models (mobility, recombination, quantum
- corrections). Run simulation.

Part 5 - Results

- Plot $I_D V_G$, $I_D V_D$.
- Check band diagrams, carrier density, field distribution.
- Debugging tips (convergence errors, unrealistic results).

Part 1 – Structure (SEditor):

- Define geometry (2D MOSFET, FET, diode).
- Specify regions (source, drain, channel, oxide).
- Boundary conditions.

Part 2 – Doping:

- Uniform vs Gaussian profiles.
- Realistic implant/diffusion vs quick uniform doping.

Part 3 – Meshing:

- Importance of mesh density near junctions/interfaces.
 - Coarse mesh \rightarrow faster, less accurate.
 - Fine mesh \rightarrow accurate, slower.

From SWorkbench (connecting all together), used to automate repetitive process

SEMICONDUCTOR MATERIALS

Intrinsic Semiconductor (no-doping)
No doping

Extrinsic Semiconductor (doping)

P-type doping (group III)

Symbol	Туре	Typical Doping (cm ⁻³)	Use Case
i	Intrinsic	~1010	Pure Si/Ge
n	Light n	1014-1016	Channel, lightly doped drain
n ⁺	Heavy n	1017-1018	Source/drain regions
n++	Degenerate n	≥10 ¹⁹	Ohmic contacts

р	Light p	1014-1016	Channel, substrate
p⁺	Heavy p	1017-1018	Wells, junction regions
p**	Degenerate p	≥10 ¹⁹	Ohmic contacts, tunnel junctions

SIMPLE 2D N-TYPE MOSFET DEVICE EQUATIONS

nFET

$$I_{\rm ds} = \frac{W}{L} C_{\rm oxe} \mu_{\rm ns} \left(V_{\rm gs} - V_t - \frac{1}{2} V_{\rm ds} \right) V_{\rm ds}$$

$$V_{\rm dsat} = V_{\rm gs} - V_t$$

$$I_{\text{dsat}} = \frac{W}{2L} C_{\text{oxe}} \mu_{\text{ns}} (V_{\text{gs}} - V_t)^2$$

$$g_{\mathrm{m}} \equiv \mathrm{d}I_{\mathrm{ds}}/\mathrm{d}V_{\mathrm{gs}}|_{V_{\mathrm{ds}}}$$

$$g_{
m msat} = rac{W}{L} C_{
m oxe} \mu_{
m ns} (V_{
m gs} - V_t)$$

 I_{ds} = drain to source current (A)

 V_{ds} = drain to source voltage (V)

 I_{dsat} = drain to source saturated current (A)

 $V_{dsat} = \text{drain to sources saturated voltage (V)}$

 V_{qs} = gate to sources voltage (V)

 C_{oxe} = effective oxide capacitance (C)

 μ_{ns} = electron surface mobility (m²/(V·s))

 $V_t = \text{gate threshold voltage (V)}$

W =width of the channel (m)

L = length of the channel (m)

 $g_m = \text{transconductance (S = A/V)}$

 g_{msat} = saturation transconductance (S = A/V)

Credits: FETs (Field-Effect Transistors) by Alec_Schmidt (top-left), CircuitBread/Josh Bishop (top-right), S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed (Wiley, NY, 200 (device equations); Wu et al. 3D TCAD Simulation for CMOS Nanoeletronic Devices (Springer, 2018)

SENTAURUS TCAD MODELING — PART 1 - STRUCTURE

SENTAURUS TCAD MODELING - ADD CONTACT

2D MOSFET structure (figure/added parameters/co-ordinates)

2D MOSFET structure (figure/parameters/co-ordinates/ -> added contact)

SENTAURUS TCAD MODELING - PART 2 - DOPING

2D MOSFET structure (figure/parameters/co-ordinates/contact-> added

SENTAURUS TCAD MODELING - PART 3 - MESHING

2D MOSFET structure (structure + parameters/co-ordinates/contact/doping)

SENTAURUS TCAD MODELING - PART 4 - DEVICE

Commands: sdevice ###.cmd

File generated after meshing

Provide device physics and sweep parameters (XXX.cmd) file

(create from scratch/edit from existing file – update electrodes name and sweep parameters)

Result could be viewed in SVisual tool

```
Solve {
   Coupled (Iterations=100000 LinesearchDamping=0.01) {Poisson}
   Coupled (Iterations=100) {Poisson Electron Hole }
   * Zero bias plot
   ******************
   Plot(FilePrefix="Zero Bias")
   ******************
   * Put -0.400 V on gate and 0.700 V on drain
   ********************
   NewCurrent="InitialCurrent"
   Quasistationary (
      InitialStep=0.05 Minstep=1e-3 MaxStep=0.05 Increment=1.7
      Goal {Name="gate" Voltage=-0.400}
      Goal {Name="drain" Voltage=0.700}
      Coupled { Poisson Electron Hole }
```

Sdevice generates a few .tdr files during each iteration

- Plotting these files helps to understand how the device is behaving
- xxx.cmd file will be provided for editing and running!

SENTAURUS TCAD MODELING — PART 5 - RESULTS

SENTAURUS TCAD MODELING — DEMONSTRATION

For full video – follow attached Youtube Channel link

MATERIALS & RESOURCES

Follow <u>GitHub Repository</u> for accessing the Slides and Simulation files shown here:

 https://github.com/rayidmojumder/Sentaurus-TCAD-Modeling-and-Simulation

• Follow YouTube Playlist for full TCAD tutorial list (beginner to intermediate level) (in-progress):

Sentaurus TCAD Modeling and ...

https://youtube.com/play list?list=PLSm7ZQMDqBc dGek5XmNanFV-JLpHOxE o&feature=shar ed

NEXT STEPS

Go from absolute beginner to advanced level (Chapterwise) [easy to follow book chapters]:

- Introduction of Synopsys Sentaurus TCAD Simulation
- 2D MOSFET Simulation (related to what we learnt here!)
- 3D FinFET with Lg = 15 nm and Lg = 10 nm Simulation
- Inverter and SRAM of FinFET with Lg = 15 nm Simulation
- Gate-All-Around (GAA) NWFET with Lg = 10 nm Simulation
- Junctionless FET with Lg = 10 nm Simulation
- Steep Slope Tunnel FET Simulation
- Extremely Scaled Si and Ge to Lg = 3-nm FinFETs and Lg
 1-nm Ultra-Thin Body Junctionless FET Simulation

MORE LEARNING RESOURCES

Semiconductor materials and device (foundation courses) – free (BEST COURSES out there!)

https://nanohub.org/courses/SFUN/

• Learn Semiconductor Design (\$20), and/or Get free Virtual Fabrication (cleanroom) experience (Free)

https://shorturl.at/40fIt

ACKNOWLEDGEMENT

Sincere thanks to -

- Md. Sazzadul Islam, PhD Student, Penn State (Prof. Saptarshi Das's group) for helping with the TCAD learning and simulation tasks
- Prof. Ning Li, Penn State for providing access to Sentaurus TCAD modeling tool
- Prof. Muhammad Hussain, Purdue University for developing courses like Semiconductor Design 101 and Semiconductor Fabrication 101
- NanoHub, Purude University for providing free access to excellent semiconductor device courses

QUESTION/ANSWER(S)