直流电法勘探中测量磁场及磁场梯度的可行性

秦子凡 龚静 杨璞

School of Geosciences and Info-physics, Central South University

2024-06-14

秦子凡 龚静 杨璞 2024-06-14 1/ 18

目录

均匀半空间的求解

电导率对磁场的影响

论证磁场以及其旋度进行勘探的可能性

目录

电导率对磁场的影响

论证磁场以及其旋度进行勘探的可能性

麦克斯韦方程组

我们首先观察麦克斯韦方程组

$$\nabla \times E = -\frac{\partial B}{\partial t}$$

$$\nabla \times H = J + J_s + \frac{\partial D}{\partial t}$$

$$\nabla \cdot D = q$$

$$\nabla \cdot B = 0$$

秦子凡 龚静 杨璞 2024-06-14 4 / 18

电势方程

直流电法勘探一般认为是稳定的电流场,这意味着可以简化麦克斯韦方程组,我们提取电场有关的方程并加上一定的本构关系

$$\begin{aligned} \nabla \times E &= 0 \\ \nabla \times H - \sigma E &= J_s \end{aligned}$$

秦子凡 龚静 杨璞 2024-06-14 5 / 18

电势方程

直流电法勘探一般认为是稳定的电流场,这意味着可以简化麦克斯韦方程组,我们提取电场有关的方程并加上一定的本构关系

$$\begin{aligned} \nabla \times E &= 0 \\ \nabla \times H - \sigma E &= J_s \end{aligned}$$

可以把电场写成一个场的散度 $E=-\nabla \varphi$ 利用这个结果并对上面的式子取散度即可得到

$$\nabla \cdot (\sigma \nabla \varphi) = \nabla \cdot J_s$$

这个结果就是著名的 DC 方程,

电势方程

直流电法勘探一般认为是稳定的电流场,这意味着可以简化麦克斯韦方程组,我们提取电场有关的方程并加上一定的本构关系

$$\begin{aligned} \nabla \times E &= 0 \\ \nabla \times H - \sigma E &= J_s \end{aligned}$$

可以把电场写成一个场的散度 $E=-\nabla \varphi$ 利用这个结果并对上面的式子取散度即可得到

$$\nabla \cdot (\sigma \nabla \varphi) = \nabla \cdot J_s$$

这个结果就是著名的 DC 方程,配合混合边界条件

$$\frac{\partial U}{\partial n} + \frac{\cos \theta}{r} \varphi = 0$$

我们就完成了 DC 的理论建模

迷思

- 我们只利用了麦克斯韦方程组中的两个方程
- 直流电法勘探中的场源真的是纯直流吗?

秦子凡 龚静 杨璞 2024-06-14 6 / 18

迷思

- 事实上,我们不必假设所有的磁效应都不存在, $\frac{\partial B}{\partial t} = 0$ 与 $\nabla \times H = J$ 是独立的
- 我们实际不能肯定直流电法勘探供入地下之后一定是纯直流,事实上 是一个低频的电流场

求解磁场方程

重新考虑麦克斯韦方程组

$$\nabla \times E = 0$$

$$\nabla \times H - \sigma E = J_s$$

$$\nabla \cdot (\mu H) = 0$$

我们通过 DC 方程可以计算 φ , 得到 φ 后,可以通过求解得到 H

$$\nabla \times H = J_s - \sigma \nabla \varphi = f$$

秦子凡 龚静 杨璞 2024-06-14 8 / 18

求解磁场方程

待求解方程

$$\nabla \times H = J_s - \sigma \nabla \varphi = f$$

考虑

$$\nabla \cdot H = 0$$

可以定义

$$\nabla \times A = \mu H$$

这样可以把方程化为

$$\nabla \times \nabla \times A = \mu f$$

选用一定的规范条件避免旋度算子的零空间,即可求解。

求解磁场方程

待求解方程

$$\nabla \times H = J_s - \sigma \nabla \varphi = f$$

考虑

$$\nabla \cdot H = 0$$

可以定义

$$\nabla \times A = \mu H$$

这样可以把方程化为

$$\nabla \times \nabla \times A = \mu f$$

选用一定的规范条件避免旋度算子的零空间,即可求解。

$$\nabla \cdot A = 0$$

均匀半空间

在直流电法勘探的语境下, 供电大致如下图

图 1 直流电法勘探点电流源

秦子凡 龚静 杨璞 2024-06-14 2024-06-14 MMR MMR 10 / 18

均匀半空间

在直流电法勘探的语境下, 供电大致如下图

图 2 直流电法勘探点电流源

$$B_{\varphi}^{n} = B_{\varphi} + B_{\varphi}^{\text{OB}} = \frac{\mu I}{4\pi r}$$

秦子凡 龚静 杨璞 2024-06-14 10 / 18

目录

均匀半空间的求解

电导率对磁场的影响

论证磁场以及其旋度进行勘探的可能性

秦子凡 龚静 杨璞 2024-06-14 11 / 18

Biot-Savart 定律

待求解问题

$$\nabla \times \nabla \times A = \mu f$$
$$\nabla \cdot A = 0$$

利用双旋度的展开

$$\nabla^2 A = -\mu f$$

这是一个标量泊松方程, 其解析解

$$A(r) = \frac{\mu}{4\pi} \iiint \frac{j(r)}{r - r'} \mathbf{d}v$$

秦子凡 龚静 杨璞 2024-06-14 12 / 18

Biot-Savart 定律

$$A(r) = \frac{\mu}{4\pi} \iiint \frac{j(r)}{r - r'} \mathbf{d}v$$

对上式取旋度并作一定的推导

$$B(r) = \frac{\mu}{4\pi} \iiint_V \frac{(r-r') \times j(r)}{\mid r-r' \mid^3} \qquad \qquad$$

利用U(r)与J(r)的关系, 以及矢量恒等式

$$B(r) = \frac{\mu}{4\pi} \iiint_V \frac{\nabla U(r) \times \nabla \sigma(r)}{\mid r - r' \mid^3}$$

秦子凡 龚静 杨璞 2024-06-14 MMR MMR 13 / 18

电导率对磁场的影响

$$B(r) = \frac{\mu}{4\pi} \iiint_V \frac{\nabla U(r) \times \nabla \sigma(r)}{\mid r - r' \mid^3}$$

- 均匀半空间的电导率对磁场没有影响(可以推广到层状介质)
- 磁场对电导率的梯度敏感
- 可以利用异常磁场来获取地下电导率的信息
- 只能获得相对电导率信息

目录

均匀半空间的求解

电导率对磁场的影响

论证磁场以及其旋度进行勘探的可能性

可能性

$$B(r) = \frac{\mu}{4\pi} \iiint_V \frac{\nabla U(r) \times \nabla \sigma(r)}{\mid r - r' \mid^3}$$

- 异常磁场的源是地下不均匀分布的电流,如果存在高电导率介质,就会 出现电流的集中,进而出现异常磁场,理论上可以用于金属矿探测。
- 对于浸染状矿体,常规电磁法响应较弱,这种方法可以较好的识别 (Dentith and Mudge, 2014)。

对比

Table 1Comparison between MMR, DC resistivity and electromagnetic methods.

	MMR	DC resistivity	EM
Physical property	Relative conductivity	Conductivity	Conductivity
Anomaly	Currents channelling	Discontinuity of E _n	Secondary magnetic field
	(Current density)	(Current flows)	(Induction)
Difficulties	-Receiver orientation.	- Bad electrode contacts.	- Receiver orientation.
	-EM noises.	- Weak potential in highly conductive medium.	- EM noises.
	- Not sensitive to structures \perp to	- Small size heterogeneities near the receiver	- Conductor shielding
	currents flow direction.	greatly affect the measurements.	
Small size structure near the receiver	Sensitive but the structure can be masked (volume effect).	Depends on electrodes separation.	Not sensitive
Weak conductivity contrast	Sensitive	Sensitive	Not sensitive
Conductive overburden	Depth of investigation	Depth of investigation	Depth of investigation
(surface measurements)	Better	Good	Poor

图 3 几种方法的对比(Bouchedda Abderrezak, 2017)

秦子凡 龚静 杨璞 2024-06-14 18 / 18