

```
Lema. In equivalentes, en un reticulado:
      1) x < y
      2) X = X 17 3
      3) 为 = 又山分
Dem.
 (1 \Rightarrow z) & \times \leqslant y, entonces \times es el (ntimo de \{x, y\},
         pues

XXX, XXY (es sta inferior)
       y adena, s: 25x, 25%
                 entonus ZSX.
 (2=)1) l' x=xny entonus x=xny 5y.
 (16)3) Parecido.
Lena. a la = a (idenpotencia)
       · a Lib = blia (connutatividad)
        · a [ (b [ c ] = b [ b ) [ c (asocietivided)
        · (all b) ha = a
  . а 4 6 = 6 иа
      Sabenos: a & all b
                   Ь «а Ш Ь
       entonces all er uta sup. de 24,67.
       Entoncey bua & aub.
       Simétricamento aub & bua. Por agrisimetría, aub = bua.
Det. Si un retiulado tiene bottom y top, dado un elemento x EX,
    MEX es un complemento de x si
                  X U y = 1
                  \times \Pi y = 0
```

El complemento de x, si existe, se nota x.

```
en un reticulado distributNo
Lena. Si x tiene un complemento, es únito.
Dem. Sip. que hubiera dos complementos y, y' EX;
                          х ц у ′ = 1
            χμη = 1
χηη = 0
                          χ Π "ŋ' = o
    Por lo tanto:
         y' = (χωη) Πη' = (χηη') μ (ηηη') = ηηη'
                         y'= yny Por lo tanto y' & y.
     Simetricaneute y xy'.
Lena --x=x
Den. Notar que -- x es complemento de -x
                    × es conflemento de -x.
     Rr lo tayto -- x = x.
Det. Un algebra de Boole B= B, 8, U, M, 0, 1, ->
       es un reticulado que tiene botrom, top y complementos.
 A := X | L | A A A | A V A | A -> A
                                               JA = A JL
                                                 T = T -> T
                                          (Valuación)
 Dada una función V: Var -> B
                       (d, B, 8, ... 3
 définimes el Valor de une formula bojo V así:
                                 len lógica clásica
       [a]_{v} = v(a)
       [T] = 0
       [ANB] = [A] T [B].
       [AVBD = [A] LI [B]
       [A→B]~= - [A]~ LI [B]~
```

Correctitud y Completitud
Teorema, En lógica clásica HA
Si y Solo si en toda algebra de Boole
y pare toda valuación V, [A] = 1.
Algebra de Lindenbaum
•
Idea. La implicación en lógica intigonista
Le comporta "cosi" como una relación de orden.
Lena, 1) T + A -> A Reflexiva
\
2) & THA-By THB-C transitiva
entonal THA-3C:
Den. Ax
1) $\frac{\Gamma, A + A}{\Gamma, A + A} \rightarrow \bar{I}$
$\Gamma \vdash A \rightarrow A$
√
$z)$ $\sqrt{\Gamma + A \rightarrow B} W = Ax$
T-B-C TALA-B TALA
\longrightarrow E
$T_1A \vdash C \longrightarrow I$
THA-C
La implicación no es antismétrica.

ANB BA

Además < es una relación de orden;	
1) Reflexiva. [A] ([A) [L	A → A
	- [1
2) transition. (A) 5 (B) y (B) 5 (C)	
entronces [A] ([c) pue	U FLA-10 THB-C
	TORCY THATC.
3) Antilinetria.	
N [A] 5[B] 4 [B] 5 [A)	
entaces	
THA-B THB-A	
gr hyal	
THA COB D Sec	que ANB
y [A] = [B].	
Tenemos una estructura para coda T fijo:	no tiene complementa
	perotien e comple -
Themos one ejonicaria para casa) F_{jo} :	0 1 =>) relativos
	, , , , , , , , , , , , , , , , , , ,
{[A] A fórmla}	es un algebra de Boule.
Tiene infimos:	
[A] [B] = [AAB]	T - A A B -> A
Notar que està bien definida, er decir que	r + Ang -> B
[A] = [A'] 4 [B] = [B']	
entonces [A)n[B)=[A']n[B'].	THOMA => THOM (AND)
THA WA' Y THB WB'	T+C→B
$\sum \Gamma \vdash (A \land B) \iff (A' \land B').$	THAMAVB
4 spremosi	T - B -> AVB
·	
[A] L[B] = [AVB]	
	TH(AVO) -> C

```
Tiene bottom:
               = [ ]
                               \Gamma \vdash \bot \longrightarrow A
                 [1] > [A]
                                       THA
        Observación: A E []
                A THAWL
               CO THA -> L
                CA FL7A
Tiene top:
            1 = [T] = [1 -) 1]
                                     THA-T
                  [A] < [T]
            Observación:
                    AE[T] & THAGT
                                ⇔ T L T →A

⇒ Γ + A

               L'TFT -> I
               レトエーナ
i Que seria un complemento de [A]?
 Seria una [B] +q. [A] m[B] = [L]
                          [A] L[B] = [T]
```

ANB () I (ANTA) () I

AVB () T

(ANTA) () T

E) decir;

```
En lógica intuicionista, "7A" no es el complemento de A.
Def. En un reticulado (X, K, LI, M), un elemento Z
     es el complemento relativo de x con respecto a y
        Z es el elemento mál grande tal que
                                             | se nota
                                                 7=(x=)3)
             XUFKA
       Es dein:
                   XNZKM
            \Lambda(\forall z' \in X) (\chi n z' \leq y \rightarrow z' \leq z).
Lena. El Complemento relativo de X con respecto a my
        es Inila (si existe).
Don. Sup. que Z y 2' son C.R.
      Entences XNZ 59 XNZ'59
                    5, €5
                      En el élgotra de Lindenbourn L.T.
         [A] \Rightarrow [B] = [A \rightarrow B]
               [A] m[A -B] 5 [B]
Veamos que
               \Gamma \vdash (A \land (A \rightarrow G)) \rightarrow B
```

Por otro lado, Sipongamos que [A]n[c] < [B] y veams que [C] { [A -18]. E) deur, sabemos que T + (Anc) -> B Y reams gre $T + C \rightarrow (A \rightarrow B)$. Algebras de Heyting Det. Un algobra de Heyting es H=(H, 5, U, П, 0, 1, ⇒) Conjunto ar bidra flo un reticulado distributivo con botrom, top y complementos relativos. Lema.
1) El algebra de Lindenbaum Lr es malgebra de Heyting. 2) Toda algebra de Boole er un algebra de Heyting, tomando $(x \Rightarrow y) := (-x \sqcup y).$ 3) Todo reticulado finito no vaclo es un álgebra de Heyting. <u>Den</u> . 1) $\sqrt{2}$ $\times \Pi (x \Rightarrow y) < y$ хп (-х ц უ) (Xn-x) L (Xny)
xny

. Sea ZEX otro elemento tq.

Entonces
$$(x \cap t) \sqcup -x \leqslant y \sqcup -x : -x \sqcup y : x \Rightarrow y$$

$$(x \sqcup -x) \sqcap (t \sqcup -x)$$

$$t \sqcup t \sqcup t$$

$$t \sqcup -x$$

3) Todo reticulado distributivo finito no vaclo es un álgebra de Heyting.

$$0 := \chi_1 \Pi \chi_2 \Pi \dots \Pi \chi_n \qquad \text{donde } \{\chi_1, \dots, \chi_n\}$$
 Son los elementos.

1:= x1 11 x2 U ... L1 x,

そ .

Cumple un la propieded que querenos:

1)
$$\chi \Pi \left[\left[\frac{1}{2} \times \Pi^{2} \times M^{3} \right] \right]$$

$$= \left[\left[\left[\times \Pi^{2} \times M^{3} \times M^{3} \times M^{3} \right] \right] \times M^{3} \right]$$

$$= \left[\left[\left[\left[\left[\times \Pi^{2} \times M^{3} \times M^{3} \times M^{3} \times M^{3} \right] \right] \right] \times M^{3} \right] \right]$$

$$= \left[\left[\left[\left[\left[\left[\times \Pi^{2} \times M^{3} \times M^{3} \times M^{3} \times M^{3} \right] \right] \right] \right] \times M^{3} \times M^{3}$$

2) Si Z' es tal que XTZ' sy. En partiular

$$\frac{2' \in \{2 \mid x \cap 2 \leq y\}}{7 \mid P_{1} \mid b \mid b \mid p_{1} \mid p_{2}}$$

```
Lena. En un algebre de fleyting valen:
1. a < b ⇒ c
                                  anbre
              es cquivalente a
 2. a 56
                 es equivalente a a \Rightarrow b = 1
Dem. (pensar).
Def. Si H: (H, (, U, n, o, 1, ))
     y una valuación
           v: Var -> H
     el vabr de una firmula [A] r se define así:
      [ x] 1 = v(x)
        [] T] 1 = 0
        [ANB]N=[A][D]D
        [AVB]~= [A]~ L [B]~
        Notación. Ho, v = A 6. [A] = 1
      · H = A s: Yv. H,v = A.
       · HOUTET & HAET. DO,VEA.
       · H = F & +v. H,v= T.
       . [ = A & + 26 + v. h 26, v = [
                              entonces 86, v = A.
 Teorema Vale THA en lógica intuigonista
        8i y & b si
                  Γ⊨A.
```

Teorema Vale [HA en lógica intuigonista	
Siysibsi FFA.	
Dem. (=>) Sea Ho, Sea N.	
· Si $\Gamma = \{ \beta_1,, \beta_n \}$ [Γ] $\Gamma := [[\beta_1]_{\nabla} \cap \cap [[\beta_n]_{\nabla}]$	
. Por inducción en la derivación de THA,	
<u>'</u>	
Veamos que [[T] ~ < [A]v.	
· Pienolo	
· Ejemplo.	
7)	
[[, A]v = [[]v [] [A]v < [A]v	
· · · · · · · · · · · · · · · · · · ·	
-2) <u>FFA FFB</u> AI	
THA13	
T-D < IAD < IBD	
[[] ~ ([A] ~ D [] ~ ([B] ~	
entres [T]~ < [A]v T [B]v.	
L 3) ···	
(E) Completitud	
Supongamos que FFA.	
Enportiwlar podemu elegir Lr.	
V Anderna (Alacia Comp. volucción)	
v: Var -> { [A] A formula?	
$V(\alpha) - \Gamma \alpha \gamma$	

Se puede ver que
$$[A]_{N} = [A]$$
.

Sabemos que

 $A_{\Gamma}, V \models A$
 $A_{\Gamma} = [A]$

Ej. de d'gebre de Meythog

$$[A] = [T]$$

$$[A] = [A]$$

$$[$$

V(a) = A $\gamma d = A \rightarrow 1$ $\neq |R|$

= R1{0}