$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_3
 R_4

wherein X is O, S, SO, SO₂ or NR₇;

Z is
$$^{\text{HO}}$$
 $^{\text{CO}_2R_3}$ or $^{\text{OH}}$ also referred to as the δ -lactone;

n is 0 or 1;

R₁ and R₂ are the same or different and are independently selected from alkyl, arylalkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, heteroaryl or cycloheteroalkyl;

R₃ is H or lower alkyl or a metal ion;

 R_4 is H, halogen, CF₃, hydroxy, alkyl, alkoxy, carboxyl, carboxyalkyl-, aminoalkyl, amino, alkanoylamino, aroylamino, cyano, alkoxyCON(R_{7d})-, $R_{7f}R_{7g}NCO_2$ -, $R_{7f}R_{7g}NCO$ -, $R_{7e}SO_2N(R_{7d})$ -, $R_{7f}R_{7g}NSO_2N(R_{7d})$ -, $R_{7e}OCO_2$ - or $R_{7e}OCO_3$ -

 R_7 is H, alkyl, aryl, alkanoyl, aroyl or alkoxycarbonyl, $R_{7a}SO_2$ -, $R_{7b}R_{7c}NSO_2$ - or $R_{7b}R_{7c}NCO$ -;

R_{7a} and R_{7e} are the same or different and are independently selected from alkyl, arylalkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, heteroaryl or cycloheteroaryl;

 R_{7b} and R_{7c} , and R_{7f} and R_{7g} , and R_{7d} are the same or different and are independently selected from H, alkyl, arylalkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, heteroaryl or cycloheteroalkyl;

R₈ is H or lower alkyl;

 R_9 and R_{10} are the same or different and are independently selected from H or alkyl; or where at least one of R_9 and R_{10} is alkyl, R_9 and R_{10} may be taken together with the carbon or carbons to which they are attached to form a 3 to 7 membered carbocyclic ring, which may include a spirocyclic ring;

and represents a single bond or a double bond (which may be cis or trans); or a pharmaceutically acceptable salt thereof (where R₃ is H), or an ester thereof, or a stereoisomer thereof;

and another therapeutic agent which is one or more hypolipidemic agents or lipid-lowering agents, or lipid agents, or lipid modulating agents, and/or one or more other types of therapeutic agents including antidiabetic agents, anti-obesity agents, antihypertensive agents, platelet aggregation inhibitors, anti-dementia agents, anti-Alzheimer's agents, anti-osteoporosis agents, and/or hormone replacement therapeutic agents, and/or other cardiovascular agents (including anti-anginal agents, anti-arrhythmic agents, anti-atherosclerosis agents, anti-inflammatory agents, anti-arthritis agents, anti-platelet agents, anti-heart failure agents), anti-cancer agents, anti-infective agents, hormone replacement agents, growth hormone secretagogues, selective androgen receptor modulators, and/or immunomodulatory agents.

46. (Amended) A method for treating cholesterol related diseases, diabetes and related diseases, cardiovascular diseases, cerebrovascular diseases, which comprises administering to a mammalian species in need of treatment a therapeutically effective amount of a combination of a compound having the structure

$$R_{10}$$
 R_{2}
 R_{10}
 R_{10}
 R_{2}
 R_{2}
 R_{2}
 R_{2}

wherein X is O, S, SO, SO₂ or NR₇;

Z is
$$R_8$$
 (also referred to as the δ -lactone);

n is 0 or 1;

R₁ and R₂ are the same or different and are independently selected from alkyl, arylalkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl, heteroaryl or cycloheteroalkyl;

R₃ is H or lower alkyl or a metal ion;

 R_4 is H, halogen, CF₃, hydroxy, alkyl, alkoxy, carboxyl, carboxyalkyl-, aminoalkyl, amino, alkanoylamino, aroylamino, cyano, alkoxyCON(R_{7d})-, $R_{7f}R_{7g}NCO_2$ -, $R_{7f}R_{7g}NCO_2$ -, $R_{7e}SO_2N(R_{7d})$ -, $R_{7e}OCO_2$ - or $R_{7e}OCO_3$ - or R_{7e}