Study on Limit Strength of Hybrid Joint with Friction and Bearing Type Hybrid

Aim and scopes

Goal

To investigate and develop bearing and friction type hybrid connections (BFHC) in steel bridge structures.

Research Issues:

- Load transfer mechanisms in BFHC
- Optimal fastener arrangement methods
- Deformation characteristics
- Definition of limit strength

Research Issues:

Part-I: For aging riveted joint

Proposed a replacement methods by use HSB, and strength calculate equation.

Ch. 3: FE Analysis of Rivet-HSB hybrid Connection

- Clarify load transfer mechanism in hybrid connections
- Investigate load redistribution during rivet replacement
- Determine optimal fastener arrangement
- Establish bearing capacity calculation method

Ch. 4: Experiment of Rivet-HSB hybrid Connection

- Validate FE analysis results
- Verify load transfer predictions
- Evaluate slip coefficient of aged joints
- Confirm hybrid connection performance

Part-II: For newly bridge construction

Investigate the limit state, proposed the properly bolt arrangement methods and strength calculate equation

Ch. 5: FE Analysis of IFB-HSB hybrid Connection

• Investigate load transfer mechanism of IFB-HSB

- hybrid connections
- Optimize bolt arrangements and joint length
- Establish design criteria for hybrid connectionsPropose strength evaluation method

Ch. 6: Experiment of IFB-HSB hybrid Connection

- Validate IFB-HSB hybrid connection performance
- Investigate slip resistance and deformation
- Study load transfer mechanisms
- Evaluate serviceability limit states

Ch. 7: Serviceability Limit states of Hybrid Connection

- Identified three-stage load transfer process
- Quantified deformation characteristics
- Established reduction factors for strength calculation

Ch. 8: Conclusions and Future research

Key Findings:

- This study developed and validated a novel hybrid connection system (Rivet-HSB and IFB-HSB), establishing its <u>three-stage load transfer mechanism</u> and limit state through comprehensive experimental and numerical analyses.
- A practical strength calculation method was proposed with specific reduction factors, demonstrating the hybrid system's capability to enhance joint performance while enabling shorter joint lengths.