

Algebra 2 Workbook Solutions

Rational functions

LONG DIVISION OF POLYNOMIALS

■ 1. Find the quotient.

$$\frac{x^2 + 2x - 1}{x + 3}$$

Solution:

Use long division to find the quotient.

■ 2. Find the quotient.

$$\frac{2x^3 - x^2 - 4x + 5}{x - 2}$$

Use long division to find the quotient.

$$\begin{array}{r}
2x^{2}+3x+2+\frac{9}{x-2} \\
x-2 \overline{\smash)2x^{3}-x^{2}-4x+6} \\
-(2x^{3}-4x^{2}) \\
\hline
3x^{2}-4x \\
-(3x^{2}-6x)
\end{array}$$

$$\begin{array}{r}
2x+5 \\
-(2x-4)
\end{array}$$

■ 3. Find the quotient.

$$\frac{2x^4 + 4x^3 - x^2 + 5x - 150}{x + 4}$$

Solution:

Use long division to find the quotient.

$$2x^{3}-4x^{2}+16x-55+\frac{70}{x+4}$$

$$x+4 \quad 2x^{4}+4x^{3}-x^{2}+5x-150$$

$$-(2x^{4}+8x^{3})$$

$$-4x^{3}-x^{2}$$

$$-(-4x^{3}-16x^{2})$$

$$15x^{2}+5x$$

$$-(15x^{2}+60x)$$

$$-55x-150$$

$$-(-55x-220)$$

$$70$$

■ 4. Find the quotient.

$$\frac{3x^3 - x^2 - 7x + 5}{x - 1}$$

Solution:

Use long division to find the quotient.

$$3x^{2}+2x-5$$

$$x-1 \overline{\smash)3x^{3}-x^{2}-7x+5}$$

$$-(3x^{3}-3x^{2})$$

$$2x^{2}-7x$$

$$-(2x^{2}-2x)$$

$$-5x+5$$

$$-(-5x+5)$$

■ 5. Find the quotient.

$$\frac{-x^2 + 3x + 15}{x + 5}$$

Solution:

Use long division to find the quotient.

■ 6. Find the quotient.

$$\frac{x^4 + x - 3}{x - 2}$$

Solution:

Use long division to find the quotient. Remember to represent the missing x^3 and x^2 terms.

■ 7. Find the quotient.

$$\frac{x^3+6}{x+6}$$

Solution:

Use long division to find the quotient. Remember to represent the missing x^2 and x terms.

■ 8. Find the quotient.

$$\frac{x^2 + x}{x - 3}$$

Solution:

Use long division to find the quotient. Remember to represent the missing constant term.

$$\begin{array}{c|c}
x + 4 + \frac{12}{x-3} \\
x - 3 \overline{)} \\
x^2 + x + 0 \\
-(x^2 - 3x) \\
\hline
4 + x + 0 \\
-(4x - 12) \\
\hline
12
\end{array}$$

■ 9. Find the quotient.

$$\frac{x^4 - 2x^2}{x - 4}$$

Solution:

Use long division to find the quotient. Remember to represent the missing terms.

$$\begin{array}{r}
x^{3} + 4x^{2} + 14x + 5b + \frac{224}{x-4} \\
x - 4 \overline{)} \\
x^{4} + 0x^{3} - 2x^{2} + 0x + 0 \\
-(x^{4} - 4x^{3}) \\
4x^{3} - 2x^{2} \\
-(4x^{3} - 1bx^{2}) \\
\hline
14x^{2} + 0x \\
-(14x^{2} - 5bx) \\
\hline
5bx + 0 \\
-(-5bx - 224)
\end{array}$$

■ 10. Find the quotient.

$$\frac{-2x^3 + 8x}{x + 2}$$

Solution:

Use long division to find the quotient. Remember to represent the missing terms.

 $\begin{array}{r}
-2x^{2}+4x \\
x+2 \overline{\smash)-2x^{3}+6x^{2}+8x+0} \\
-(-2x^{3}-4x^{2}) \\
4x^{2}+8x \\
-(4x^{2}+8x)
\end{array}$

SIMPLIFYING RATIONAL FUNCTIONS

■ 1. Reduce the fraction to its lowest terms.

$$\frac{4x^3 + 12x^2 + 8x}{12x^2}$$

Solution:

Look for a common factor in each term. In this case the common factor is 4x.

$$\frac{4x^3 + 12x^2 + 8x}{12x^2}$$

$$\frac{4x(x^2 + 3x + 2)}{4x(3x)}$$

$$\frac{x^2 + 3x + 2}{3x}$$

■ 2. Reduce the fraction to its lowest terms.

$$\frac{10x^2 - 5x + 20}{15x^2}$$

Look for a common factor in each term. In this case the common factor is 5.

$$\frac{10x^2 - 5x + 20}{15x^2}$$

$$\frac{5(2x^2 - x + 4)}{5(3x^2)}$$

$$\frac{2x^2 - x + 4}{3x^2}$$

■ 3. Reduce the fraction to its lowest terms.

$$\frac{3x^4 + 6x^3 - 18x^2}{12x^3}$$

Solution:

Look for a common factor in each term. In this case the common factor is $3x^2$.

$$\frac{3x^4 + 6x^3 - 18x^2}{12x^3}$$

$$\frac{3x^2(x^2 + 2x - 6)}{3x^2(4x)}$$

$$\frac{x^2 + 2x - 6}{4x}$$

■ 4. Reduce the fraction to its lowest terms.

$$\frac{18y^2 + 6y}{8y}$$

Solution:

Look for a common factor in each term. In this case the common factor is 2y.

$$\frac{18y^2 + 6y}{8y}$$

$$\frac{2y(9y+3)}{2y(4)}$$

$$\frac{9y+3}{4}$$

■ 5. Simplify each expression in the difference.

$$\frac{3ab + 2a^2b^2}{5ab} - \frac{12a^3b^3 + 3a^2b^2}{6a^2b^2}$$

Look for a common factor in each term. In this case the common factor of the first fraction is ab and the common factor of the second fraction is $3a^2b^2$.

$$\frac{3ab + 2a^{2}b^{2}}{5ab} = \frac{12a^{3}b^{3} + 3a^{2}b^{2}}{6a^{2}b^{2}}$$

$$\frac{ab(3 + 2ab)}{ab(5)} = \frac{3a^{2}b^{2}(4ab + 1)}{3a^{2}b^{2}(2)}$$

$$\frac{3 + 2ab}{5} = \frac{4ab + 1}{2}$$

■ 6. Simplify each expression in the sum.

$$\frac{2ab^2 + 3a^2b^3}{a^3b^3} + \frac{2ab^3 + b^4}{ab^3}$$

Solution:

Look for a common factor in each term. In this case the common factor of the first fraction is $2ab^2$ and the common factor of the second fraction is b^3 .

$$\frac{2ab^2 + 3a^2b^3}{a^3b^3} + \frac{2ab^3 + b^4}{ab^3}$$

$$\frac{ab^2(2+3ab)}{ab^2(a^2b)} + \frac{b^3(2a+b)}{b^3(a)}$$

$$\frac{2+3ab}{a^2b} + \frac{2a+b}{a}$$

■ 7. Simplify each expression in the sum.

$$\frac{8mn + 20m}{4mn} + \frac{m^3n - 3m^2n}{6m^2n}$$

Solution:

Look for a common factor in each term. In this case the common factor of the first fraction is 4m and the common factor of the second fraction is m^2n .

$$\frac{8mn + 20m}{4mn} + \frac{m^3n - 3m^2n}{6m^2n}$$

$$\frac{4m(2n+5)}{4m(n)} + \frac{m^2n(m-3)}{m^2n(6)}$$

$$\frac{2n+5}{n} + \frac{m-3}{6}$$

■ 8. Simplify each expression in the difference.

$$\frac{21x^2y^2}{14x^3y} - \frac{24xy + 12y}{96y}$$

Look for a common factor in each term. In this case the common factor of the first fraction is $7x^2y$ and the common factor of the second fraction is 12y.

$$\frac{21x^2y^2}{14x^3y} - \frac{24xy + 12y}{96y}$$

$$\frac{7x^2y(3y)}{7x^2y(2x)} - \frac{12y(2x+1)}{12y(8)}$$

$$\frac{3y}{2x} - \frac{2x+1}{8}$$

ADDING AND SUBTRACTING RATIONAL FUNCTIONS

■ 1. Simplify the expression.

$$\frac{2}{3ab} + \frac{b}{4a} + \frac{ab}{6}$$

Solution:

In order to combine the three fractions in the expression we need to find a common denominator. Make a chart of with each denominator to find the least common multiple.

	Coefficients	a-terms	b-terms
3ab	3	а	b
4a	2*2	а	
6	2*3		

To find the least common multiple, find the largest multiple from each column. For the coefficients multiply each unique factor together to get $2 \cdot 2 \cdot 3 = 12$. The largest common multiple in the a column is a and the largest common multiple in the b column is b. The least common multiple is therefore 12ab.

Now we need to multiply each fraction by a well-chosen 1 that will make the denominator 12ab.

$$\frac{2}{3ab} \cdot \frac{4}{4} + \frac{b}{4a} \cdot \frac{3b}{3b} + \frac{ab}{6} \cdot \frac{2ab}{2ab}$$

$$\frac{8}{12ab} + \frac{3b^2}{12ab} + \frac{2a^2b^2}{12ab}$$

$$\frac{8 + 3b^2 + 2a^2b^2}{12ab}$$

■ 2. Simplify the expression.

$$\frac{1}{2xy} + \frac{2}{3x^2} + \frac{3}{4xy^2}$$

Solution:

In order to combine the three fractions in the expression we need to find a common denominator. Make a chart of with each denominator to find the least common multiple.

	Coefficients	x-terms	y-terms
2xy	2	Х	у
3x ²	3	X ²	
4xy ²	2*2	Х	y ²

To find the least common multiple, find the largest multiple from each column. For the coefficients multiply each unique factor together to get $2 \cdot 2 \cdot 3 = 12$. The largest common multiple in the x column is x^2 and the

largest common multiple in the y column is y^2 . The least common multiple is therefore $12x^2y^2$.

Now we need to multiply each fraction by a well-chosen 1 that will make the denominator $12x^2y^2$.

$$\frac{1}{2xy} \cdot \frac{6xy}{6xy} + \frac{2}{3x^2} \cdot \frac{4y^2}{4y^2} + \frac{3}{4xy^2} \cdot \frac{3x}{3x}$$

$$\frac{6xy}{12x^2y^2} + \frac{8y^2}{12x^2y^2} + \frac{9x}{12x^2y^2}$$

$$\frac{6xy + 8y^2 + 9x}{12x^2y^2}$$

■ 3. Simplify the expression.

$$\frac{a}{3xy} + \frac{b}{15y^2} + \frac{c}{5x^3y^2}$$

Solution:

In order to combine the three fractions in the expression we need to find a common denominator. Make a chart of with each denominator to find the least common multiple.

	Coefficients	x-terms	y-terms
Зху	3	Х	У
15x ²	3*5		y ²
5x ³ y ²	5	x ³	y ²

To find the least common multiple, find the largest multiple from each column. For the coefficients multiply each unique factor together to get $3 \cdot 5 = 15$. The largest common multiple in the x column is x^3 and the largest common multiple in the y column is y^2 . The least common multiple is therefore $15x^3y^2$.

Now we need to multiply each fraction by a well-chosen 1 that will make the denominator $15x^3y^2$.

$$\frac{a}{3xy} \cdot \frac{5x^2y}{5x^2y} + \frac{b}{15y^2} \cdot \frac{x^3}{x^3} + \frac{c}{5x^3y^2} \cdot \frac{3}{3}$$

$$\frac{5ax^2y}{15x^3y^2} + \frac{bx^3}{15x^3y^2} + \frac{3c}{15x^3y^2}$$

$$\frac{5ax^2y + bx^3 + 3c}{15x^3y^2}$$

■ 4. Simplify the expression.

$$\frac{x}{2x^2y} + \frac{y}{3z} + \frac{z}{5yz^2}$$

In order to combine the three fractions in the expression we need to find a common denominator. Make a chart of with each denominator to find the least common multiple.

	Coefficient s	x-terms	y-terms	z-terms
2x²y	2	X ²	у	
3z	3			Z
5yz ²	5		у	Z ²

To find the least common multiple, find the largest multiple from each column. For the coefficients multiply each unique factor together to get $2 \cdot 3 \cdot 5 = 30$. The largest common multiple in the x column is x^2 and the largest common multiple in the y column is y. The largest common multiple in the z column is z^2 . The least common multiple is therefore $30x^2yz^2$.

Now we need to multiply each fraction by a well-chosen 1 that will make the denominator $30x^2yz^2$.

$$\frac{x}{2x^2y} \cdot \frac{15z^2}{15z^2} + \frac{y}{3z} \cdot \frac{10x^2yz}{10x^2yz} + \frac{z}{5yz^2} \cdot \frac{6x^2}{6x^2}$$

$$\frac{15xz^2}{30x^2yz^2} + \frac{10x^2y^2z}{30x^2yz^2} + \frac{6x^2z}{30x^2yz^2}$$

$$\frac{15xz^2 + 10x^2y^2z + 6x^2z}{30x^2yz^2}$$

■ 5. Simplify the expression.

$$\frac{3ab}{4c} + \frac{2bc}{6a^3} + \frac{5}{8ab^2c^3}$$

Solution:

In order to combine the three fractions in the expression we need to find a common denominator. Make a chart of with each denominator to find the least common multiple.

	Coefficient s	a-terms	b-terms	c-terms
4c	2*2			С
6a ³	2*3	a^3		
8ab ² c ³	2*2*2	а	b ²	c ₃

To find the least common multiple, find the largest multiple from each column. For the coefficients multiply each unique factor together to get $2 \cdot 2 \cdot 2 \cdot 3 = 24$. The largest common multiple in the a column is a^3 and the largest common multiple in the b column is b^2 . The largest common multiple in the c column is c^3 . The least common multiple is therefore $24a^3b^2c^3$.

Now we need to multiply each fraction by a well-chosen 1 that will make the denominator $24a^3b^2c^3$.

$$\frac{3ab}{4c} \cdot \frac{6a^3b^2c^2}{6a^3b^2c^2} + \frac{2bc}{6a^3} \cdot \frac{4b^2c^3}{4b^2c^3} + \frac{5}{8ab^2c^3} \cdot \frac{3a^2}{3a^2}$$

$18a^4b^3c^2$	$8b^{3}c^{4}$	$15a^2$
$24a^3b^2c^2$	$24a^3b^2c^3$	$24a^3b^2c^3$
$18a^4b^3c^2 +$	$8b^3c^4 + 15a$	u^2
240	$a^3b^2c^3$	

MULTIPLYING RATIONAL FUNCTIONS

■ 1. Simplify the expression.

$$\frac{25x^2 - 4}{x^2 - 36} \cdot \frac{x + 6}{5x - 2}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(5x-2)(5x+2)}{(x-6)(x+6)} \cdot \frac{x+6}{5x-2}$$

$$\frac{5x+2}{x-6}$$

We cancelled factors of 5x - 2 and x + 6 which means

$$5x - 2 \neq 0$$
, or $x \neq 2/5$

$$x + 6 \neq 0$$
, or $x \neq -6$

So the simplified expression is

$$\frac{5x+2}{x-6}$$
 with $x \neq -6, \frac{2}{5}$

■ 2. Simplify the expression.

$$\frac{4x^2 - 49}{9x^2 - 16} \cdot \frac{3x + 4}{2x + 7}$$

Factor and cancel whatever you can, then simplify.

$$\frac{(2x-7)(2x+7)}{(3x-4)(3x+4)} \cdot \frac{3x+4}{2x+7}$$

$$\frac{2x-7}{3x-4}$$

We cancelled factors of 2x + 7 and 3x + 4 which means

$$2x + 7 \neq 0$$
, or $x \neq -7/2$

$$3x + 4 \neq 0$$
, or $x \neq -4/3$

So the simplified expression is

$$\frac{2x-7}{3x-4}$$
 with $x \neq -\frac{7}{2}$, $-\frac{4}{3}$

■ 3. Simplify the expression.

$$\frac{x^2 - 25}{81x^2 - 64} \cdot \frac{9x - 8}{x - 5}$$

Factor and cancel whatever you can, then simplify.

$$\frac{(x-5)(x+5)}{(9x-8)(9x+8)} \cdot \frac{9x-8}{x-5}$$

$$\frac{x+5}{9x+8}$$

We cancelled factors of x - 5 and 9x - 8 which means

$$x - 5 \neq 0$$
, or $x \neq 5$

$$9x - 8 \neq 0$$
, or $x \neq 8/9$

So the simplified expression is

$$\frac{x+5}{9x+8}$$
 with $x \neq \frac{8}{9}$, 5

■ 4. Simplify the expression.

$$\frac{x^2 + 8x + 16}{9x^2 + 36x + 36} \cdot \frac{3x + 6}{x + 4}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(x+4)(x+4)}{(3x+6)(3x+6)} \cdot \frac{3x+6}{x+4}$$

$$\frac{x+4}{3x+6}$$

We cancelled factors of x + 4 and 3x + 6 which means

$$x + 4 \neq 0$$
, or $x \neq -4$

$$3x + 6 \neq 0$$
, or $x \neq -2$

So the simplified expression is

$$\frac{x+4}{3x+6}$$
 with $x \neq -4, -2$

However, the remaining factor of 3x + 6 in the denominator still shows us that $x \neq -2$, so we don't need to exclude that value in our answer.

$$\frac{x+4}{3x+6} \text{ with } x \neq -4$$

■ 5. Simplify the expression.

$$\frac{16x^2 + 16x + 4}{x^2 + 18x + 81} \cdot \frac{x^2 - 81}{16x^2 - 4}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(4x+2)(4x+2)}{(x+9)(x+9)} \cdot \frac{(x-9)(x+9)}{(4x-2)(4x+2)}$$

$$\frac{(4x+2)(x-9)}{(x+9)(4x-2)}$$

We cancelled factors of 4x + 2 and x + 9 which means

$$4x + 2 \neq 0$$
, or $x \neq -1/2$

$$x + 9 \neq 0$$
, or $x \neq -9$

So the simplified expression is

$$\frac{(4x+2)(x-9)}{(x+9)(4x-2)} \text{ with } x \neq -9, -\frac{1}{2}$$

However, the remaining factor of x + 9 in the denominator still shows us that $x \neq -9$, so we don't need to exclude that value in our answer.

$$\frac{(4x+2)(x-9)}{(x+9)(4x-2)} \text{ with } x \neq -\frac{1}{2}$$

■ 6. Simplify the expression.

$$\frac{x^2 + 5x - 14}{x^2 + 2x - 3} \cdot \frac{x^2 + 4x - 5}{x^2 + 9x + 14}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(x-2)(x+7)}{(x+3)(x-1)} \cdot \frac{(x-1)(x+5)}{(x+7)(x+2)}$$

$$\frac{(x-2)(x+5)}{(x+3)(x+2)}$$

We cancelled factors of x + 7 and x - 1 which means

$$x + 7 \neq 0$$
, or $x \neq -7$

$$x - 1 \neq 0$$
, or $x \neq 1$

So the simplified expression is

$$\frac{(x-2)(x+5)}{(x+3)(x+2)}$$
 with $x \neq -7$, 1

■ 7. Simplify the expression.

$$\frac{x^2 + 3x + 2}{x^2 - 7x + 12} \cdot \frac{x^2 + 2x - 15}{x^2 - 4x - 12}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(x+1)(x+2)}{(x-3)(x-4)} \cdot \frac{(x-3)(x+5)}{(x+2)(x-6)}$$

$$\frac{(x+1)(x+5)}{(x-4)(x-6)}$$

We cancelled factors of x + 2 and x - 3 which means

$$x + 2 \neq 0$$
, or $x \neq -2$

$$x - 3 \neq 0$$
, or $x \neq 3$

So the simplified expression is

$$\frac{(x+1)(x+5)}{(x-4)(x-6)} \text{ with } x \neq -2, 3$$

■ 8. Simplify the expression.

$$\frac{x^2 + x - 56}{x^2 - x - 90} \cdot \frac{x^2 + 8x - 9}{x^2 - 5x - 14}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(x-7)(x+8)}{(x+9)(x-10)} \cdot \frac{(x+9)(x-1)}{(x-7)(x+2)}$$

$$(x+9)(x-10)$$
 $(x-7)(x+2)$

$$\frac{(x+8)(x-1)}{(x-10)(x+2)}$$

We cancelled factors of x - 7 and x + 9 which means

$$x-7\neq 0$$
, or $x\neq 7$

$$x + 9 \neq 0$$
, or $x \neq -9$

So the simplified expression is

$$\frac{(x+8)(x-1)}{(x-10)(x+2)}$$
 with $x \neq -9$, 7

■ 9. Simplify the expression.

$$\frac{2x^2 - 13x - 24}{3x^2 - x - 4} \cdot \frac{3x^2 - 7x + 4}{x^2 - 6x - 16}$$

Solution:

Factor and cancel whatever you can, then simplify.

$$\frac{(2x+3)(x-8)}{(3x-4)(x+1)} \cdot \frac{(3x-4)(x-1)}{(x+2)(x-8)}$$

$$(3x-4)(x+1) \cdot (x+2)(x-8)$$

$$\frac{(2x+3)(x-1)}{(x+1)(x+2)}$$

$$(x+1)(x+2)$$

We cancelled x - 8 and 3x - 4 which means

$$x - 8 \neq 0$$
, or $x \neq 8$

$$3x - 4 \neq 0$$
, or $x \neq 4/3$

So the simplified expression is

$$\frac{(2x+3)(x-1)}{(x+1)(x+2)} \text{ with } x \neq \frac{4}{3}, 8$$

DIVIDING RATIONAL FUNCTIONS

■ 1. Simplify the expression.

$$\frac{2x+16}{9x^2+27x} \div \frac{3x+24}{x+3}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{2(x+8)}{9x(x+3)} \div \frac{3(x+8)}{x+3}$$

Consider restrictions. The denominator of the dividend gives $x \neq -3.0$, the denominator of the divisor gives $x \neq -3$, and the numerator of the divisor gives $x \neq -8$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -8, -3.0$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{2(x+8)}{9x(x+3)} \cdot \frac{x+3}{3(x+8)}$$

$$\frac{2}{9x} \cdot \frac{1}{3}$$

$$\frac{2}{27x}$$

This resulting quotient shows that $x \neq 0$, so we can eliminate that from our list of restrictions. Then the final answer is

$$\frac{2}{27x} \text{ with } x \neq -8, -3$$

■ 2. Simplify the expression.

$$\frac{6x+15}{12x^2+24x} \div \frac{2x+5}{5x+10}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{3(2x+5)}{12x(x+2)} \div \frac{2x+5}{5(x+2)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -2.0$, the denominator of the divisor gives $x \neq -2$, and the numerator of the divisor gives $x \neq -5/2$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -5/2, -2.0$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{3(2x+5)}{12x(x+2)} \cdot \frac{5(x+2)}{2x+5}$$

$$\frac{3}{12x} \cdot \frac{5}{1}$$

$$\frac{15}{12x}$$

$$\frac{5}{4x}$$

This resulting quotient shows that $x \neq 0$, so we can eliminate that from our list of restrictions. Then the final answer is

$$\frac{5}{4x}$$
 with $x \neq -5/2, -2$

■ 3. Simplify the expression.

$$\frac{3x^3 - 3x^2 - 6x}{2x^2 - 14x + 24} \div \frac{3x^2 + 21x}{x^2 - 8x + 15}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{3x(x^2 - x - 2)}{2(x^2 - 7x + 12)} \div \frac{3x(x+7)}{(x-3)(x-5)}$$

$$\frac{3x(x+1)(x-2)}{2(x-3)(x-4)} \div \frac{3x(x+7)}{(x-3)(x-5)}$$

Consider restrictions. The denominator of the dividend gives $x \neq 3,4$, the denominator of the divisor gives $x \neq 3,5$, and the numerator of the divisor gives $x \neq -7,0$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -7,0,3,4,5$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{3x(x+1)(x-2)}{2(x-3)(x-4)} \cdot \frac{(x-3)(x-5)}{3x(x+7)}$$

$$\frac{(x+1)(x-2)(x-5)}{2(x-4)(x+7)}$$

This resulting quotient shows that $x \neq -7.4$, so we can eliminate those from our list of restrictions. Then the final answer is

$$\frac{(x+1)(x-2)(x-5)}{2(x-4)(x+7)}$$
 with $x \neq 0,3,5$

■ 4. Simplify the expression.

$$\frac{2x^2 - 13x - 7}{12x + 6} \div \frac{3x - 2}{3x^2 - 17x + 10}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{(2x+1)(x-7)}{6(2x+1)} \div \frac{3x-2}{(3x-2)(x-5)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -1/2$, the denominator of the divisor gives $x \neq 2/3,5$, and the numerator of the divisor gives $x \neq 2/3$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -1/2,2/3,5$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{(2x+1)(x-7)}{6(2x+1)} \cdot \frac{(3x-2)(x-5)}{3x-2}$$

$$\frac{(x-7)(x-5)}{6}$$

This resulting quotient doesn't show any restrictions, so we need to keep our entire list of them. Then the final answer is

$$\frac{(x-7)(x-5)}{6}$$
 with $x \neq -1/2,2/3,5$

■ 5. Simplify the expression.

$$\frac{4x^2 + 13x + 10}{3x + 6} \div \frac{3x - 1}{3x^2 - 13x + 4}$$

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{(4x+5)(x+2)}{3(x+2)} \div \frac{3x-1}{(3x-1)(x-4)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -2$, the denominator of the divisor gives $x \neq 1/3,4$, and the numerator of the divisor gives $x \neq 1/3$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -2,1/3,4$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{(4x+5)(x+2)}{3(x+2)} \cdot \frac{(3x-1)(x-4)}{3x-1}$$

$$\frac{(4x+5)(x-4)}{3}$$

This resulting quotient doesn't show any restrictions, so we need to keep our entire list of them. Then the final answer is

$$\frac{(4x+5)(x-4)}{3}$$
 with $x \neq -2,1/3,4$

■ 6. Simplify the expression.

$$\frac{x^2 - 9}{x^2 + x - 2} \div \frac{x^2 + 4x + 3}{x^2 - 16}$$

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{(x-3)(x+3)}{(x+2)(x-1)} \div \frac{(x+3)(x+1)}{(x-4)(x+4)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -2.1$, the denominator of the divisor gives $x \neq -4.4$, and the numerator of the divisor gives $x \neq -3$, -1. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -4$, -3, -2, -1.14.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{(x-3)(x+3)}{(x+2)(x-1)} \cdot \frac{(x-4)(x+4)}{(x+3)(x+1)}$$

$$\frac{(x-3)(x-4)(x+4)}{(x+2)(x-1)(x+1)}$$

This resulting quotient shows that $x \neq -2, -1,1$, so we can eliminate those from our list of restrictions. Then the final answer is

$$\frac{(x-3)(x-4)(x+4)}{(x+2)(x-1)(x+1)}$$
 with $x \neq -4, -3,4$

■ 7. Simplify the expression.

$$\frac{4x^2 - 9}{x^2 + 12x + 36} \div \frac{4x^2 - 12x + 9}{x^2 + 7x + 6}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{(2x-3)(2x+3)}{(x+6)(x+6)} \div \frac{(2x-3)(2x-3)}{(x+6)(x+1)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -6$, the denominator of the divisor gives $x \neq -6$, -1, and the numerator of the divisor gives $x \neq 3/2$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -6$, -1,3/2.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{(2x-3)(2x+3)}{(x+6)(x+6)} \cdot \frac{(x+6)(x+1)}{(2x-3)(2x-3)}$$

$$\frac{(2x+3)(x+1)}{(x+6)(2x-3)}$$

This resulting quotient shows that $x \neq -6.3/2$, so we can eliminate those from our list of restrictions. Then the final answer is

$$\frac{(2x+3)(x+1)}{(x+6)(2x-3)} \text{ with } x \neq -1$$

■ 8. Simplify the expression.

$$\frac{15x^2 + 75x + 90}{5x^2 + 50x + 125} \div \frac{x^2 - 3x + 2}{x^2 - 25}$$

Solution:

Factor the numerator and denominator of both fractions as completely as possible.

$$\frac{15(x^2 + 5x + 6)}{5(x^2 + 10x + 25)} \div \frac{(x - 1)(x - 2)}{(x - 5)(x + 5)}$$

$$\frac{15(x+3)(x+2)}{5(x+5)(x+5)} \div \frac{(x-1)(x-2)}{(x-5)(x+5)}$$

Consider restrictions. The denominator of the dividend gives $x \neq -5$, the denominator of the divisor gives $x \neq -5,5$, and the numerator of the divisor gives $x \neq 1,2$. So the set of restrictions we should keep in mind until the end of the problem is $x \neq -5,1,2,5$.

Now turn the division problem into a multiplication problem and cancel common factors.

$$\frac{15(x+3)(x+2)}{5(x+5)(x+5)} \cdot \frac{(x-5)(x+5)}{(x-1)(x-2)}$$

$$\frac{3(x+3)(x+2)(x-5)}{(x+5)(x-1)(x-2)}$$

This resulting quotient shows that $x \neq -5,1,2$, so we can eliminate those from our list of restrictions. Then the final answer is

$$\frac{3(x+3)(x+2)(x-5)}{(x+5)(x-1)(x-2)} \text{ with } x \neq 5$$

