Chapter 12 Autocorrelation

남준우·허인 (2018), 제 10장

Gujarati/Porter (2018), Chapter 11

- 1. Sources, Nature of Autocorrelation
- 2. Problems of Least Squares Estimator under Autocorrelation
- 3. Typical Type of Autocorrelation
- 4. Detecting Autocorrelation
- 5. Remedy for Autocorrelation
- 6. Prediction with AR(1) Model
- 7. Other forms of Autocorrelation

(Example)

- 1. Sources, Nature of Autocorrelation
- $C(\varepsilon_t, \varepsilon_s) = C(y_t, y_s) \neq 0$ for $t \neq s$: serial correlation, autocorrelation.
- Frequently encountered in time series data.

(1) Inertia

- Time series(ex: GDP, Export, Unemployment etc.) data exhibit cycle.
- ► When recovering from recession, the series continue increasing for some period:

$$Y_{t+1} \uparrow, Y_{t+2} \uparrow, \dots$$

► Time series are sluggish to change.

Any shock at t
$$\rightarrow \Delta Y_t, \Delta Y_{t+1}, \Delta Y_{t+2}, \cdots$$

(Example)

- ► Effect of labor strike at t to output at t, t+1, ...
- ► Effect of temperature at t to consumption of electricity at t, t+1, ...
- Spatial Correlation

(2) Specification bias: excluded variables

• True model: $Y_t = \beta_1 + \beta_2 X_t + \beta_3 Z_t + \varepsilon_t$, $\varepsilon_t \sim \text{uncorrelated}$.

Estimated model: $Y_t = \beta_1 + \beta_2 X_t + v_t$, $v_t = \beta_3 Z_t + \varepsilon_t$,

- ► If Z_t is correlated with Z_{t-1} , then v_t is correlated with v_{t-1} .
- ► If we add some variables, sometimes autocorrelation is removed.

(3) Specification bias: incorrect functional form

• True model: $Y_t = \beta_1 + \beta_2 X_t + \beta_3 X_t^2 + \varepsilon_t$, $\varepsilon_t \sim \text{uncorrelated}$.

Estimated model: $Y_t = \beta_1 + \beta_2 X_t + v_t$,

 $ightharpoonup v_t$ would have a pattern of autocorrelation.

(4) <u>Lagged variable model</u>

- $Y_t = \beta_1 + \beta_2 X_t + \beta_3 Y_{t-1} + \varepsilon_t$: autoregressive model,
- $ightharpoonup Y_{t-1} \to Y_t$: habit persistence, due to psychological, technological or institutional factor.
- ► If we neglect Y_{t-1} , then $v_t = \beta_3 Y_{t-1} + \varepsilon_t$ will show systematic pattern.

(5) Data transformation

- $Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t,$
 - $Y_{t-1} = \beta_1 + \beta_2 X_{t-1} + \varepsilon_{t-1}$: level form.
- $\Rightarrow \Delta Y_t = \beta_2 \Delta X_t + v_t, \quad v_t = \varepsilon_t \varepsilon_{t-1}, \quad v_t \sim \text{correlated}.$

(6) Nonstationarity

- If $Y_t, X_t \sim$ nonstationary, then $\varepsilon_t = Y_t \beta_1 \beta_2 X_t$ would be correlated.
- ► Unit root problem, Cointegration.

2. Problems of Least Squares Estimator under Autocorrelation

•
$$b_2 = \sum_{t=1}^{T} w_t y_t$$
, where $w_t = \frac{(X_t - \overline{X})}{\sum_{t=1}^{T} (X_t - \overline{X})^2}$.

 $ightharpoonup E(b_2) = \beta_2$.

$$V(b_{2})\Big|_{\text{autocorrelation}} = V\left(\sum_{t=1}^{T} w_{t} y_{t}\right)$$

$$= \sigma^{2} \sum_{t} w_{t}^{2} + 2 \sum_{t>s} \sum_{s=1}^{T} w_{t} w_{s} \sigma_{ts} \qquad \text{where } \sigma_{ts} = C(y_{t}, y_{s})$$

$$\neq \sigma^{2} \sum_{t} w_{t}^{2} = \frac{\sigma^{2}}{\sum_{t=1}^{T} (X_{t} - \overline{X})^{2}} = V(b_{2})\Big|_{\text{no autocorrelation}}$$

► OLS estimator $s_{b_2}^2 = \frac{s^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$, $E(s_{b_2}^2) \neq V(b_2)|_{\text{autocorrelation}}$.

So, inferences based on OLS is invalid.

- ► OLS estimators still unbiased.
- ► However, standard errors are wrong.
- ► OLS is inefficient: There are other estimators that have lower variances.

 \Rightarrow

- (a) t-test, F-test are invalid.
- (b) Classical assumptions do not satisfy.
 - ► Gauss-Markov theorem does not hold.
 - ► There is more efficient estimator than OLS.

- 3. Typical Type of Autocorrelation: AR(1)
- Model: $Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t$, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, $|\rho| < 1$, with $E(u_t) = 0$, $V(u_t) = \sigma_u^2$, $C(u_t, u_s) = 0$ for $t \neq s$. $\Rightarrow u_t \sim$ white noise.
- ► AR(1)

$$\varepsilon_{t} = \rho \varepsilon_{t-1} + u_{t}
= \rho (\rho \varepsilon_{t-2} + u_{t-1}) + u_{t} = \cdots$$
(if let $\varepsilon_{0} = 0$).
$$= \sum_{s=0}^{t} \rho^{s} u_{t-s}$$

- ① $E(\varepsilon_t) = 0$.
- ② $V(\varepsilon_t) = \sigma_{\varepsilon}^2 = \sigma_{u}^2 (1 + \rho^2 + \rho^4 + \dots + \rho^{2t}) = \frac{\sigma_{u}^2}{1 \rho^2}.$

$$Cov(\varepsilon_t, \varepsilon_{t-2}) = \rho^2 \sigma_{\varepsilon}^2$$
.

...

 $Cov(\varepsilon_t, \varepsilon_{t-s}) = \rho^s \sigma_{\varepsilon}^2$; autocovariance function.

$$Cov(\varepsilon_t, \varepsilon_{t-2}) = \rho^2$$
.

...

 $Cov(\varepsilon_t, \varepsilon_{t-s}) = \rho^s$; autocorrelation function.

► As $s \to \infty$, $\rho^s \to 0$ (fading memory), but $\rho^s \neq 0$ (memory size= ∞).

- The case of $|\rho|=1$; unit root \Rightarrow Non-stationary.
- ► Random walk

• AR(2):
$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + u_t$$
.

• AR(p):
$$\varepsilon_t = \rho_1 \varepsilon_{t-1} + \rho_2 \varepsilon_{t-2} + \dots + \rho_p \varepsilon_{t-p} + u_t$$
.

► Gaussian

4. <u>Detecting Autocorrelation</u>

(1) Graphical Method

Run OLS and get e_t . Plot e_t on e_{t-1} or plot e_t on t.

(2) <u>Durbin-Watson Test</u>

Model: $Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t$, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$.

 $H_0: \rho = 0, \qquad H_1: \rho \neq 0.$

Mechanics of Durbin-Watson test:

- ① Run OLS and calculate $d = \frac{\sum_{t=2}^{T} (e_t e_{t-1})^2}{\sum_{t=1}^{t} e_t^2}.$
- ② Find critical value d_L, d_U .

③ <u>Decision rule</u>:

If $d < d_L$, reject $H_0: \rho = 0$

 \Rightarrow positive autocorrelation.

If $d_L < d < d_U$, no decision.

If $d_U < d < 4 - d_U$, do not reject $H_0: \rho = 0$

 \Rightarrow no autocorrelation.

If $4 - d_U < d < 4 - d_L$, no decision.

If $4 - d_L < d$, reject $H_0: \rho = 0$

 \Rightarrow negative autocorrelation.

Rationale:

$$d = \frac{\sum_{t=2}^{T} (e_t - e_{t-1})^2}{\sum_{t=1}^{t} e_t^2} = \frac{\sum_{t=2}^{T} e_t^2 + \sum_{t=2}^{T} e_{t-1}^2 - 2\sum_{t=2}^{T} e_t e_{t-1}}{\sum_{t=1}^{t} e_t^2}$$

$$\approx 2 \left(\frac{\sum_{t=2}^{T} e_t e_{t-1}}{\sum_{t=1}^{t} e_t^2} \right) = 2(1 - \hat{\rho})$$

Since $-1 \le \rho \le 1$, $0 \le d \le 4$.

► If
$$\hat{\rho} \to 0, d \to 2$$
. If $\hat{\rho} \to 1, d \to 0$. If $\hat{\rho} \to -1, d \to 4$.

If
$$\hat{\rho} \rightarrow 1, d \rightarrow 0$$

If
$$\hat{\rho} \rightarrow -1, d \rightarrow 4$$

- ② <u>Inconclusive region</u>:
- ⓐ There exists an exact critical value d^* which satisfies $P(d < d^* | \rho = 0) = 0.05$.

However, d^* depends on the particular entries of the matrix X.

b Durbin and Watson shows, for any X with constant, $d_L \le d^* \le d_U$.

Therefore,

```
(if d < d^*, reject H_0: \rho = 0) \Rightarrow (if d < d_L, reject H_0: \rho = 0).

(if d > d^*, do not reject H_0: \rho = 0) \Rightarrow (if d > d_U, do not reject H_0: \rho = 0).

(if d_L < d < d_U) \Rightarrow (don't know whether d < d^* or d > d^*) \Rightarrow (inconclusive region).
```

- Practical Decision Rule($H_1: \rho > 0$):
- ► In most economic data, $\rho < 0$ is not common.

If $d < d_L$, reject $H_0: \rho = 0$ \Rightarrow positive autocorrelation.

If $d_L < d < d_U$, no decision. \Rightarrow positive autocorrelation.

If $d_U < d$, do not reject $H_0: \rho = 0$ \Rightarrow no autocorrelation.

- Underlying assumptions for Durbin-Watson test.
- ① The regression model includes the intercept term.
- ② Effective for AR(1).
- ③ For quarterly data, if assume $\varepsilon_t = \rho \varepsilon_{t-4} + u_t$, use other method.
- ④ No lagged dependent variable. ⇒ Lagged dependent variable: Other test.

(4) <u>Lagrange Multiplier Test</u>(Breusch-Godfrey Test)

• Cover the weakness of Durbin-Watson test (No lagged dependent variable, Inconclusive region).

•
$$Y_t = \beta_1 + \beta_2 X_t + \alpha Y_{t-1} + \varepsilon_t$$
, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$
 $H_0: \rho = 0$.

- ① Estimate by O.L.S. and get e_t .
- ② Regress e_t on $(1, X_t, e_{t-1})$ and get R^2 .
- ③ Since $LM = n \cdot R^2 \sim \chi^2(1)$, reject H_0 if $LM \ge \chi^2(1;\alpha) \Rightarrow$ autocorrelation.

5. Remedy for Autocorrelation

(1) When ρ is known (GLS)

•
$$Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t$$
, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$; autocorrelation.

$$\Rightarrow \begin{array}{ll} Y_{t} - \rho Y_{t-1} = \beta_{1}(1-\rho) + \beta_{2}(X_{t} - \rho X_{t-1}) + u_{t}, & u_{t} \sim \text{ white noise} \\ Y_{t} * = \beta_{1} * + \beta_{2}X_{t} * + u_{t} \end{array}.$$

- ⇒ Classical assumptions are satisfied.
- ► O.L.S. of Y_t * on (1, X_t *), $t = 2, \dots, T$.

• If want to include (Y_1, X_1) ,

$$Y_1^* = \sqrt{1-\rho^2}Y_1$$
, $X_1^* = \sqrt{1-\rho^2}X_1$: Prais-Winsten tranformation.

(Note)

- Original model: $Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t$, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$.
- Transformed model: $Y_{t} = \beta_{1} * + \beta_{2} X_{t} + \beta_{2} \rho X_{t-1} + \rho Y_{t-1} + u_{t} = f(X_{t}, X_{t-1}, Y_{t-1}) + u_{t}$.

So, adding (Y_{t-1}, X_{t-1}) into original model, sometimes can remove autocorrelation.

But, $Cov(Y_{t-1}, \varepsilon_t) \neq 0$.

(2) <u>FGLS</u>: When ρ is unknown.

$$Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t, \quad \varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- ① Do O.L.S. of Y_t on (1, X_t) and get e_t .
- ② Regress e_t on e_{t-1} and get $\hat{\rho}$.

Construct
$$Y_t^* = Y_t - \hat{\rho}Y_{t-1}$$
, $X_t^* = X_t - \hat{\rho}X_{t-1}$.

(3) Cochrane-Orcutt Method

- Rewrite autocorrelated model,
- ① If ρ is known,

$$Y_{t} - \rho Y_{t-1} = \beta_{1}(1-\rho) + \beta_{2}(X_{t} - \rho X_{t-1}) + u_{t} \Rightarrow (\beta_{1}, \beta_{2})$$
 can be estimated.

② If (β_1, β_2) is known,

$$(Y_t - \beta_1 - \beta_2 X_t) = \rho (Y_{t-1} - \beta_1 - \beta_2 X_{t-1}) + u_t \Rightarrow \rho \text{ can be estimated.}$$

► Start with any value of ρ (starting value), from ①,

get
$$(\beta_1, \beta_2)$$
. \Rightarrow From ②, get ρ .

$$\Rightarrow$$
 From ①, get (β_1, β_2) . \Rightarrow From ②, get ρ . \Rightarrow ······

Do this process until ρ differ only by small change(ex: 0.001).

; iterative Zellner estimator.

6. Prediction with AR(1) Model

Data: $\{(X_t, y_t)\}_{t=1, 2, \dots, T}$

- Suppose the value of X at time t+1 is given, X_{t+1} , what is best predictor of y_{t+1} ?
- ① With no autocorrelated model, $\hat{y}_{T+1} = b_1 + b_2 X_{T+1}$
- ► Therefore, \hat{y}_{T+1} is nothing to do with y_T .
- ② With autocorrelated model,

$$y_{T+1} = \beta_1 + \beta_2 X_{T+1} + \varepsilon_{T+1}$$

= \beta_1 + \beta_2 X_{T+1} + \rho \varepsilon_T + u_{T+1}

Therefore,

$$\hat{y}_{T+1} = \hat{\beta}_1 + \hat{\beta}_2 X_{T+1} + \hat{\rho} e_T, \text{ where } e_T = y_T - (\hat{\beta}_1 + \hat{\beta}_2 X_T).$$

$$(\hat{\beta}_1, \hat{\beta}_2) \colon \text{FGLS estimator.}$$

Similarly,

$$\hat{y}_{T+s} = \hat{\beta}_1 + \hat{\beta}_2 X_{T+s} + \hat{\rho}^s e_T$$

- 7. Other forms of Autocorrelation
- Moving Average series
- ARMA

(Example) Data file: SNA2012(annual)

표본기간을 1980-2012로 설정

(1) log(cgv) c log(gdp)에 대해 회귀분석

Model 4: OLS, using observations 1980-2012 (T = 33)

Dependent variable: logcgv

	Coefficient	Std. E	rror	t-ratio	p-value	
const	-%S	0.174°	784	-%#.4g	< 0.0001	***
loggdp	1.05166	0.0116	5037	90.63	< 0.0001	***
Mean dependent var	10.6	3029	S.D. o	lependent var	1.	151465
Sum squared resid	0.15	9522	S.E. o	of regression	0.	071735
R-squared	0.99	6240	Adjus	ted R-squared	0.	996119
F(1, 31)	8214	1.037	P-valu	ue(F)	3	.70e-39
Log-likelihood	41.1	5438	Akaik	e criterion	-78	3.30876
Schwarz criterion	-75.3	1575	Hanna	an-Quinn	-77	7.30170
rho	0.80	8596	<mark>Durbi</mark>	<mark>n-Watson</mark>	0.	<mark>300159</mark>

(2) Graphical Analysis Save / Residuals Graphs / Residual plot / Against time

Add / Lags of selected variables View / Graph specified variables / XY scatter / mark show lagged variables

(3) Durbin-Watson Test

D-W=0.300159,

n=33, k'=1 이므로 dL=1.383, dU=1.508

0 < D-W=0.300159 < dl=1.383이므로 $H_0: \rho=0$ 을 기각함.

(4) LM 검정방법

Tests / Autocorrelation

Breusch-Godfrey test for first-order autocorrelation OLS, using observations 1980-2012 (T = 33)

Dependent variable: uhat

	coefficient	std. error	t-ratio	p-value	
const	-0.0447925	0.110208	-0.4064	0.6873	
loggdp	0.00314515	0.00731810	0.4298	0.6704	
uhat_1	0.813347	0.117105	6.945	1.03e-07 *	**

Unadjusted R-squared = 0.616562

```
Test statistic: LMF = 48.239439, with p-value = P(F(1,30) > 48.2394) = 1.03e-007
```

```
Alternative statistic: TR^2 = 20.346535,
with p-value = P(Chi-square(1) > 20.3465) = 6.46e-006

Ljung-Box Q' = 20.7412,
with p-value = P(Chi-square(1) > 20.7412) = 5.26e-006
```

(4) Cochrane-Orcutt Estimation Model / Time series / AR(1) / Cochrane-Orcutt

Model 4: Cochrane-Orcutt, using observations 1981-2012 (T = 32)

Dependent variable: logcgv

rho = 0.77576

	Coefficient	Std. Error	t-ratio	p-value	
const	−%s	0.495245	−%#.4g	< 0.0001	***
loggdp	1.10120	0.0319476	34.47	< 0.0001	***

Statistics based on the rho-differenced data:

Mean dependent var	10.69652	S.D. dependent var	1.104177
Sum squared resid	0.039297	S.E. of regression	0.036192
R-squared	0.998968	Adjusted R-squared	0.998934
F(1, 30)	1188.097	P-value(F)	1.09e-25
rho	-0.140348	Durbin-Watson	2.199813

<표 B-5> Durbin-Watson (5% 유의수준)

,	k'=1		k'=2		k'	k'=3		k' = 4		k'=5	
п	$d_{_L}$	$d_{_{V}}$									
15	1.077	1.361	0.946	1.543	0.814	1.75	0.685	1.977	0.562	2.22	
16	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	
17	1.133	1.381	1.015	1.536	0.897	1.71	0.779	1.9	0.664	2.104	
18	1.158	1.391	1.046	1.535	0.933	1.696	0.82	1.872	0.71	2.06	
19	1.18	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	
20	1.201	1.411	1.1	1.537	0.998	1.676	0.894	1.828	0.792	1.991	
21	1.221	1.42	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.94	
23	1.257	1.437	1.168	1.543	1.078	1.66	0.986	1.785	0.895	1.92	
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	
25	1.288	1.454	1.206	1.55	1.123	1.654	1.038	1.767	0.953	1.886	
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	
27	1.316	1.469	1.24	1.556	1.162	1.651	1.084	1.753	1.004	1.861	
28	1.328	1.476	1.255	1.56	1.181	1.65	1.104	1.747	1.028	1.85	
29	1.341	1.483	1.27	1.563	1.198	1.65	1.124	1.743	1.05	1.841	
30	1.352	1.489	1.284	1.567	1.214	1.65	1.143	1.739	1.071	1.833	
31	1.363	1.496	1.297	1.57	1.229	1.65	1.16	1.735	1.09	1.825	
32	1.373	1.502	1.309	1.574	1.244	1.65	1.177	1.732	1.109	1.819	
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193	1.73	1.127	1.813	
34	1.393	1.514	1.333	1.58	1.271	1.652	1.208	1.728	1.144	1.808	
35	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.16	1.803	
36	1.411	1.525	1.354	1.587	1.295	1.654	1.236	1.724	1.175	1.799	
37	1.419	1.53	1.364	1.59	1.307	1.655	1.249	1.723	1.19	1.795	
38	1.427	1.535	1.373	1.594	1.318	1.656	1.261	1.722	1.204	1.792	
39	1.435	1.54	1.382	1.597	1.328	1.658	1.273	1.722	1.218	1.789	
40	1.442	1.544	1.391	1.6	1.338	1.659	1.285	1.721	1.23	1.786	

45	1.475	1.566	1.43	1.615	1.383	1.666	1.336	1.72	1.287	1.776
50	1.503	1.585	1.462	1.628	1.421	1.674	1.378	1.721	1.335	1.771
55	1.528	1.601	1.49	1.641	1.452	1.681	1.414	1.724	1.374	1.768
60	1.549	1.616	1.514	1.652	1.48	1.689	1.444	1.727	1.408	1.767
65	1.567	1.629	1.536	1.662	1.503	1.696	1.471	1.731	1.438	1.767
70	1.583	1.641	1.554	1.672	1.525	1.703	1.494	1.735	1.464	1.768
75	1.598	1.652	1.571	1.68	1.543	1.709	1.515	1.739	1.487	1.77
80	1.611	1.662	1.586	1.688	1.56	1.715	1.534	1.743	1.507	1.772
85	1.624	1.671	1.6	1.696	1.575	1.721	1.55	1.747	1.525	1.774
90	1.636	1.679	1.612	1.703	1.589	1.726	1.566	1.751	1.542	1.776
95	1.645	1.687	1.623	1.709	1.602	1.732	1.579	1.755	1.557	1.778
100	1.654	1.694	1.634	1.715	1.613	1.736	1.592	1.758	1.571	1.78
150	1.72	1.746	1.706	1.76	1.693	1.774	1.679	1.788	1.665	1.802
200	1.758	1.778	1.748	1.789	1.738	1.799	1.728	1.81	1.718	1.82

k'=상수항을 제외한 설명변수의 수

n	k'	=6	k' =	= 7	k' =	=8	k':	= 9	k' =	= 10
	d_{I}	$d_{_{V}}$	$d_{_I}$	$d_{_{V}}$	$d_{_{I}}$	$d_{_{V}}$	$d_{_I}$	$d_{_{V}}$	d_{I}	$d_{_{V}}$
15	0.447	2.472	0.343	2.727	0.251	2.979	0.175	3.216	0.111	3.438
16	0.502	2.388	0.398	2.624	0.304	2.86	0.222	3.09	0.155	3.304
17	0.554	2.318	0.451	2.537	0.356	2.757	0.272	2.975	0.198	3.184
18	0.603	2.257	0.502	2.461	0.407	2.667	0.321	2.873	0.244	3.073
19	0.649	2.206	0.459	2.396	0.456	2.589	0.369	2.783	0.29	2.974
20	0.692	2.162	0.595	2.339	0.502	2.521	0.416	2.704	0.336	2.885
21	0.732	2.124	0.637	2.29	0.547	2.46	0.461	2.633	0.38	2.806
22	0.769	2.09	0.677	2.246	0.588	2.407	0.504	2.571	0.424	2.734
23	0.804	2.061	0.715	2.208	0.628	2.36	0.545	2.514	0.465	2.67
24	0.837	2.035	0.751	2.174	0.666	2.318	0.584	2.464	0.506	2.613
25	0.868	2.012	0.784	2.144	0.702	2.28	0.621	2.419	0.544	2.56
26	0.897	1.992	0.816	2.117	0.735	2.246	0.657	2.379	0.581	2.513
27	0.925	1.974	0.845	2.093	0.767	2.216	0.691	2.342	0.616	2.47
28	0.951	1.958	0.874	2.071	0.798	2.188	0.723	2.309	0.65	2.431
29	0.975	1.944	0.9	2.052	0.826	2.164	0.753	2.278	0.682	2.396
30	0.998	1.931	0.926	2.034	0.854	2.141	0.782	2.251	0.712	2.363
31	1.02	1.92	0.95	2.018	0.879	2.12	0.81	2.226	0.741	2.333
32	1.041	1.909	0.972	2.004	0.904	2.102	0.836	2.203	0.769	2.306
33	1.061	1.9	0.994	1.991	0.927	2.085	0.861	2.181	0.795	2.281
34	1.08	1.891	1.015	1.979	0.95	2.069	0.885	2.162	0.821	2.257
35	1.097	1.884	1.034	1.967	0.971	2.054	0.908	2.144	0.845	2.236
36	1.114	1.877	1.053	1.957	0.991	2.041	0.93	2.127	0.868	2.216
37	1.131	1.87	1.071	1.948	1.011	2.029	0.951	2.112	0.891	2.198
38	1.146	1.864	1.088	1.939	1.029	2.017	0.97	2.098	0.912	2.18
39	1.161	1.859	1.104	1.932	1.047	2.007	0.99	2.085	0.932	2.164
40	1.175	1.854	1.12	1.924	1.064	1.997	1.008	2.072	0.945	2.149
45	1.238	1.835	1.189	1.895	1.139	1.958	1.089	2.002	1.038	2.088
50	1.291	1.822	1.246	1.875	1.201	1.93	1.156	1.986	1.11	2.044
55	1.334	1.814	1.294	1.861	1.253	1.909	1.212	1.959	1.17	2.01
60	1.372	1.808	1.335	1.85	1.298	1.894	1.26	1.939	1.222	1.984
65	1.404	1.805	1.37	1.843	1.336	1.882	1.301	1.923	1.266	1.964

70	1.433	1.802	1.401	1.837	1.369	1.873	1.337	1.91	1.305	1.948
75	1.458	1.801	1.428	1.834	1.399	1.867	1.369	1.901	1.339	1.935
80	1.48	1.801	1.453	1.831	1.425	1.861	1.397	1.893	1.369	1.925
85	1.5	1.801	1.474	1.829	1.448	1.857	1.422	1.886	1.396	1.916
90	1.518	1.801	1.494	1.827	1.469	1.854	1.445	1.881	1.42	1.909
95	1.535	1.802	1.512	1.827	1.489	1.852	1.465	1.877	1.442	1.903
100	1.55	1.803	1.528	1.826	1.506	1.85	1.484	1.874	1.462	1.898
150	1.651	1.817	1.637	1.832	1.622	1.847	1.608	1.862	1.594	1.877
200	1.707	1.831	1.697	1.841	1.686	1.852	1.675	1.863	1.665	1.874

<표 B-5(계속)> Durbin-Watson (1% 유의수준)

		k'=1	k	·′ = 2	k	·'=3	k	-'=4	k'=5	
n	$d_{_L}$	$d_{_{V}}$								
15	0.811	1.07	0.7	1.252	0.591	1.464	0.488	1.704	0.391	1.967
16	0.844	1.086	0.737	1.252	0.633	1.446	0.532	1.663	0.437	1.9
17	0.874	1.102	0.772	1.255	0.672	1.432	0.574	1.63	0.48	1.847
18	0.902	1.118	0.805	1.259	0.708	1.422	0.613	1.604	0.522	1.803
19	0.928	1.132	0.835	1.265	0.742	1.415	0.65	1.584	0.561	1.767
20	0.952	1.147	0.863	1.271	0.773	1.411	0.685	1.567	0.598	1.737
21	0.975	1.161	0.89	1.277	0.803	1.408	0.718	1.554	0.633	1.712
22	0.997	1.174	0.914	1.284	0.831	1.407	0.748	1.543	0.667	1.691
23	1.018	1.187	0.938	1.291	0.858	1.407	0.777	1.534	0.698	1.673
24	1.037	1.199	0.96	1.298	0.882	1.407	0.805	1.528	0.728	1.658
25	1.055	1.211	0.981	1.305	0.906	1.409	0.831	1.523	0.756	1.645
26	1.072	1.222	1.001	1.312	0.928	1.411	0.855	1.518	0.783	1.635
27	1.089	1.233	1.019	1.319	0.949	1.413	0.878	1.515	0.808	1.626
28	1.104	1.244	1.037	1.325	0.969	1.415	0.9	1.513	0.832	1.618
29	1.119	1.254	1.054	1.332	0.988	1.418	0.921	1.512	0.855	1.611
30	1.133	1.263	1.07	1.339	1.006	1.421	0.941	1.511	0.877	1.606
31	1.147	1.273	1.085	1.345	1.023	1.425	0.96	1.51	0.897	1.601
32	1.16	1.282	1.1	1.352	1.04	1.428	0.979	1.51	0.917	1.597
33	1.172	1.291	1.114	1.358	1.055	1.432	0.996	1.51	0.936	1.594
34	1.184	1.299	1.128	1.364	1.07	1.435	1.012	1.511	0.954	1.591
35	1.195	1.307	1.14	1.37	1.085	1.439	1.028	1.512	0.971	1.589
36	1.206	1.315	1.153	1.376	1.098	1.442	1.043	1.513	0.988	1.588
37	1.217	1.323	1.165	1.382	1.112	1.446	1.058	1.514	1.004	1.586
38	1.227	1.33	1.176	1.388	1.124	1.449	1.072	1.515	1.019	1.585
39	1.237	1.337	1.187	1.393	1.137	1.453	1.085	1.517	1.034	1.584
40	1.246	1.344	1.198	1.398	1.148	1.457	1.098	1.518	1.048	1.584
45	1.288	1.276	1.245	1.423	1.201	1.474	1.156	1.528	1.111	1.584
50	1.324	1.403	1.285	1.446	1.245	1.491	1.205	1.538	1.164	1.587
55	1.356	1.427	1.32	1.466	1.284	1.506	1.247	1.548	1.209	1.592

60	1.383	1.449	1.35	1.484	1.317	1.52	1.283	1.558	1.249	1.598
65	1.407	1.468	1.377	1.5	1.346	1.534	1.315	1.568	1.283	1.604
70	1.429	1.485	1.4	1.515	1.372	1.546	1.343	1.578	1.313	1.611
75	1.448	1.501	1.422	1.529	1.395	1.557	1.368	1.587	1.34	1.617
80	1.466	1.515	1.441	1.541	1.416	1.568	1.39	1.595	1.364	1.624
85	1.482	1.528	1.458	1.553	1.435	1.578	1.411	1.603	1.386	1.63
90	1.496	1.54	1.474	1.563	1.452	1.587	1.429	1.611	1.406	1.636
95	1.51	1.552	1.489	1.573	1.468	1.596	1.446	1.618	1.425	1.642
100	1.522	1.562	1.503	1.583	1.482	1.604	1.462	1.625	1.441	1.647
150	1.611	1.637	1.598	1.651	1.584	1.665	1.571	1.679	1.557	1.693
200	1.664	1.684	1.653	1.693	1.643	1.704	1.633	1.715	1.623	1.725

k'=상수항을 제외한 설명변수의 수

n	k'	=6	k' =	= 7	k' =	= 8	k':	= 9	k' =	= 10
n	$d_{\scriptscriptstyle L}$	$d_{_{V}}$	$d_{_L}$	$d_{_{V}}$	$d_{_L}$	$d_{_{V}}$	$d_{_L}$	$d_{_{V}}$	$d_{_L}$	$d_{_{V}}$
15	0.303	2.244	0.226	2.53	0.161	2.817	0.107	3.101	0.068	3.374
16	0.349	2.153	0.269	2.416	0.2	2.681	0.142	2.944	0.094	3.201
17	0.393	2.078	0.313	2.319	0.241	2.566	0.179	2.811	0.127	3.053
18	0.435	2.015	0.355	2.238	0.282	2.467	0.216	2.679	0.16	2.925
19	0.476	1.963	0.396	2.169	0.322	2.381	0.255	2.597	0.196	2.813
20	0.515	1.918	0.436	2.11	0.362	2.308	0.294	2.51	0.232	2.714
21	0.552	1.881	0.474	2.059	0.4	2.244	0.331	2.434	0.268	2.625
22	0.587	1.849	0.51	2.015	0.437	2.188	0.368	2.367	0.304	2.548
23	0.62	1.821	0.545	1.977	0.473	2.14	0.404	2.308	0.34	2.479
24	0.652	1.797	0.578	1.944	0.507	2.097	0.439	2.255	0.375	2.417
25	0.682	1.766	0.61	1.915	0.54	2.059	0.473	2.209	0.409	2.362
26	0.711	1.759	0.64	1.889	0.572	2.026	0.505	2.168	0.441	2.313
27	0.738	1.743	0.669	1.867	0.602	1.997	0.536	2.131	0.473	2.269
28	0.764	1.729	0.696	1.847	0.63	1.97	0.566	2.098	0.504	2.229
29	0.788	1.718	0.723	1.83	0.658	1.947	0.595	2.068	0.533	2.193
30	0.812	1.707	0.748	1.814	0.684	1.925	0.622	2.041	0.562	2.16
31	0.834	1.698	0.772	1.8	0.71	1.906	0.649	2.017	0.589	2.131
32	0.856	1.69	0.794	1.788	0.734	1.889	0.674	1.995	0.615	2.104
33	0.876	1.683	0.816	1.776	0.757	1.874	0.698	1.975	0.641	2.08
34	0.896	1.677	0.837	1.766	0.779	1.86	0.722	1.957	0.665	2.057
35	0.914	1.671	0.857	1.757	0.8	1.847	0.744	1.94	0.689	2.037
36	0.932	1.666	0.877	1.749	0.821	1.836	0.766	1.925	0.711	2.018
37	0.95	1.662	0.895	1.742	0.841	1.825	0.787	1.911	0.733	2.001
38	0.966	1.658	0.913	1.735	0.86	1.816	0.807	1.899	0.754	1.985
39	0.982	1.655	0.93	1.729	0.878	1.807	0.826	1.887	0.774	1.97
40	0.997	1.652	0.946	1.724	0.895	1.799	0.844	1.876	0.789	1.956
45	1.065	1.643	1.019	1.704	0.974	1.768	0.927	1.834	0.881	1.902
50	1.123	1.639	1.081	1.692	1.039	1.748	0.997	1.805	0.955	1.864
55	1.172	1.638	1.134	1.685	1.095	1.734	1.057	1.785	1.018	1.837
60	1.214	1.639	1.179	1.682	1.144	1.726	1.108	1.771	1.072	1.817

65	1.251	1.642	1.218	1.68	1.186	1.72	1.153	1.761	1.12	1.802	
70	1.283	1.645	1.253	1.68	1.223	1.716	1.192	1.754	1.162	1.792	
75	1.313	1.646	1.284	1.682	1.256	1.716	1.227	1.746	1.199	1.785	
80	1.338	1.653	1.312	1.683	1.285	1.714	1.259	1.745	1.232	1.777	
85	1.362	1.657	1.337	1.685	1.312	1.714	1.287	1.743	1.262	1.773	
90	1.383	1.661	1.36	1.687	1.336	1.714	1.312	1.741	1.228	1.769	
95	1.403	1.666	1.381	1.69	1.358	1.715	1.336	1.741	1.313	1.767	
100	1.421	1.67	1.4	1.693	1.378	1.717	1.357	1.741	1.335	1.765	
150	1.543	1.708	1.53	1.722	1.515	1.737	1.501	1.752	1.486	1.767	
200	1.613	1.735	1.603	1.746	1.592	1.757	1.582	1.768	1.571	1.779	