In [1]:

import matplotlib.pyplot as plt import pandas as pd import seaborn as sns

In [2]:

iris = sns.load_dataset('iris')
labels = iris.species.unique()
iris.head()

Out[2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

In [3]:

```
iris["species"] = pd.Categorical(iris["species"])
iris["species"] = iris["species"].cat.codes
iris.head()
```

Out[3]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

In [15]:

```
X = iris[['sepal_length', 'sepal_width']].values
y = iris.species
```

In [17]:

from sklearn.cluster import KMeans
model = KMeans(n_clusters = 3).fit(X)
centers = model.cluster_centers_
new_labels = model.labels_

In [18]:

print('Centroids :',centers)
print('\nLabels :',new_labels)

Centroids: [[5.77358491 2.69245283]

[6.81276596 3.07446809] [5.006 3.428]]

In [19]:

```
plt.figure(figsize=(12,8))
plt.scatter(X[:, 0], X[:, 1],c=y, s=60)
plt.xlabel('Sepal length', fontsize=18)
plt.ylabel('Sepal width', fontsize=18)
plt.title('Unclustered Data',fontsize=18)
```

Out[19]:

Text(0.5, 1.0, 'Unclustered Data')

In [20]:

```
plt.figure(figsize=(12,8))
plt.scatter(X[:, 0], X[:, 1], c=new_labels,s=60)
plt.scatter(centers[:, 0], centers[:, 1], c='r', s=400, marker = '*', zorder=10);
plt.xlabel('Sepal length', fontsize=18)
plt.ylabel('Sepal width', fontsize=18)
plt.title('Clustered Data',fontsize=18)
```

Out[20]:

Text(0.5, 1.0, 'Clustered Data')

2.0	•								
	4.5	5.0	5.5	Sepal length	7.0	7.5	8.0		
In [21]:									
y_pred = m print("Resu	nodel.predict([[2 ult :",labels[y_p	2.3,5.6]]) red[0]])							
Result : vir	ginica								
In []:									