Two other probability fundamentals are:

Addition: P[A or B]=P[A]+P[B]-P[A AND B]

$$P[A \cup B] = P[A] = P[B] - P[A \cap B]$$

$$= + - -$$

$$Pr[A \text{ or } B] = Pr[A] + Pr[B] - Pr[A \text{ and } B]$$

Multiplication:

$$P[A AND B] = P[A|B]*P[B] = P[B|A]*P[A] \rightarrow P[A]P[B]$$

$$P[A \cap B] = P[A \mid B]P[B] = P[B \mid A]P[A] \xrightarrow{IFF independent} P[A]P[B]$$

Manipulating Probabilities

Table 5.5-1: Additional rule (mutually exclusive)

Blood Type	Probability
O +	0.374
0-	0.066
A+	0.357
A-	0.063
B+	0.085
B-	0.015
AB+	0.034
AB-	0.006

Manipulating Probabilities

Sometimes easier to visualize using Venn:

Blood Type	Probability
0+	0.374
0-	0.066
A+	0.357
A-	0.063
B+	0.085
B-	0.015
AB+	0.034
AB-	0.006

$$Pr[O-orO+] =$$

Manipulating Probabilities

2. Multiplication

- Independence

Two events are independent if the occurrence of one gives no information about whether or not the second will occur

- Dependence

The probability or outcome of one event changes because of the outcome of a second event