

CALIBRATION REPORT

F.1 E-Field Probe

COMOSAR E-Field Probe Calibration Report

Ref: ACR.78.5.19.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD, NANSHAN DISTRICT, SHENZHEN, GUANGDONG

PROVINCE, P.R. CHINA 518055

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 34/15 EPGO265

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 03/19/2019

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Report No.: BL-SZ1930410-701

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.78.5.19.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	3/19/2019	JE
Checked by :	Jérôme LUC	Product Manager	3/19/2019	25
Approved by:	Kim RUTKOWSKI	Quality Manager	3/19/2019	Num Pasthauski

	Customer Name	
	SHENZHEN	
Distillation	BALUN TECHNOLOGY	
Distribution:		
	Co.,Ltd.	

Issue	Date	Modifications
A	3/19/2019	Initial release
_		-

Page: 2/10

This document shall not be reproduced, except in Juli or in part, without the written approval of IdVC.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without vertien approval of MVC.

Ref: ACR.78.5.19.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment10	

Ref: ACR.78.5.19.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 34/15 EPGO265		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.193 MΩ		
	Dipole 2: R2=0.231 MΩ		
	Dipole 3: R3=0,205 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	I mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained homin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Bef: ACR.78.5.19.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0° - 180°) in 15° increments. At each step the probe is rotated about its axis (0° - 360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3 1	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3 1	- 1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	ī	2.887%

Page: 5/10

Ref: ACR.78.5.19.SATU.A

Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Combined standard uncertainty			151		5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

	Calibration Parameters	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

		Normz dipole 3 (μV/(V/m) ²)
0.70	0.78	0.82

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
90	91	97	

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^{\ 2} + E_2^{\ 2} + E_3^{\ 2}}$$

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained hencin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.78.5.19.SATU.A

5.2 LINEARITY

Linearity: I+/-1.98% (+/-0.09dB)

5.3 SENSITIVITY IN LIQUID

Laquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL750	750	40.03	0.93	1.89
BL750	750	56.83	1.00	1.96
HL850	835	42.19	0.90	1.93
BL850	835	54.67	1.01	1.98
HL900	900	42.08	1.01	1.95
BL900	900	55.25	1.08	2.02
HL1800	1800	41.68	1.46	2.18
BL1800	1800	53.86	1.46	2.25
HL1900	1900	38.45	1.45	2.46
BL1900	1900	53.32	1,56	2.57
HL2000	2000	38.26	1.38	2.24
BL2000	2000	52.70	1.51	2.31
HL2300	2300	39.44	1.62	2.58
BL2300	2300	54.52	1.27	2.65
HL2450	2450	37.50	1.80	2.55
BL2450	2450	53.22	1.89	2.63
HL2600	2600	39.80	1.99	2.38
BL2600	2600	52.52	2.23	2.46
HL5200	5200	35.64	4.67	2.09
BL5200	5200	48.64	5.51	2.14
HL5400	5400	36.44	4.87	2.04
BL5400	5400	46.52	5.77	2.12
HL5600	5600	36.66	5.17	2.20
BL5600	5600	46.79	5,77	2.27
HL5800	5800	35.31	5.31	2.17
BL5800	5800	47.04	6.10	2.22

LOWER DETECTION LIMIT: 8mW/kg

Page: 7/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained hencin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.78.5.19.SATU.A

5.4 ISOTROPY

HL900 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB

Page: 8/10

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained himsin is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Report No.: BL-SZ1930410-701

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.78.5.19.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.11 dB

Ref: ACR.78.5.19.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary 5	Sheet		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	MVG	SN-20/09-SAM71 Validated. No cal required.		Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated No cal required.	Validated No ca required	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2019	02/2022	
Reference Probe	MVG	EP 94 SN 37/08	10/2018	10/2019	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated No.cal Validated No.c		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated No cal required	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

SAR Reference Waveguide Calibration Report

Ref: ACR.93.10.17.SATU.A

SHENZHEN BALUN TECHNOLOGY CO.,LTD. BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY PARK, SHAHE XI ROAD,NANSHAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R. CHINA 518055MVG COMOSAR REFERENCE WAVEGUIDE

FREQUENCY: 5000-6000 MHZ SERIAL NO.: SN 49/16 WGA 42

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 03/22/2017

Summary:

This document presents the method and results from an accredited SAR reference waveguide calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Report No.: BL-SZ1930410-701

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.93.10.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	4/3/2017	75
Checked by:	Jérôme LUC	Product Manager	4/3/2017	75
Approved by:	Kim RUTKOWSKI	Quality Manager	4/3/2017	-Nam Austhonosh

	Customer Name
Distribution:	SHENZHEN
	BALUN
	TECHNOLOGY
	Co.,Ltd.

Issue	Date	Modifications
A	4/3/2017	Initial release
-		

Ref: ACR.93.10.17.SATU.A

TABLE OF CONTENTS

1	Inti	oduction 4	
2	De	vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method4	
	4.1	Return Loss Requirements	4
	4.2	Mechanical Requirements	4
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss	
	6.2	Mechanical Dimensions	- 6
7	Va	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	Measurement Result	7
	7.3	Body Measurement Result	10
8	Lis	t of Equipment	

Ref: ACR 93 10 17 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 49/16 WGA 42
Product Condition (new / used)	New

A yearly calibration interval is recommended,

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

4 MEASUREMENT METHOD

The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide.

Page: 4/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MFG.

Ref: ACR.93.10.17.SATU.A

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los			
400-6000MHz	0.1 dB			

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Page: 5/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and it not to
be released in whole or part without written approval of MFG.

Ref: ACR:93.10.17.SATU.A

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.43	-8	$21.12 \Omega + 10.51 j\Omega$
5400	-11.06	-8	75.87 Ω + 2.02 jΩ
5600	-13.60	-8	33.60 Ω - 11.85 jΩ
5800	-13.16	-8	$54.47 \Omega + 20.92 j\Omega$

6.2 RETURN LOSS IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-8.78	-8	19.41 $Ω + 11.57 jΩ$
5400	-10.37	-8	77.76 $Ω + 0.60$ j $Ω$
5600	-12.68	-8	30.83 Ω - 11.35 jΩ
5800	-12.11	-8	$55.27 \Omega + 23.37 jΩ$

6.3 MECHANICAL DIMENSIONS

Frequenc y (MHz)	L-0	nama)	W (mm) L _f (mm)		W _t (mm)		W _f (mm)		T (mm)	
	Require d	Measure d	Require d	Measure d	Require	Measure d	Require d	Measure d	Require	Measure d
5200	40.39 ± 0.13	PASS	20.19 ± 0.13	PASS	81.03 ± 0.13	PASS	61.98 ± 0.13	PASS	5.3*	PASS
5800	40.39 ± 0.13	PASS	20.19 ± 0.13	PASS	81.03 ± 0.13	PASS	61.98± 0.13	PASS	4.3*	PASS

^{*} The tolerance for the matching layer is included in the return loss measurement.

Page: 6/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MFG.

Ref: ACR.93.10.17.SATU.A

Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s.')		Conductivity (o) S/m	
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	PASS	4.66 ±10 %	PASS
5300	35.9 ±10 %	PASS	4.76 ±10 %	PASS
5400	35.8 ±10%	PASS	4.86 ±10 %	PASS
5500	35.6 ±10%	PASS	4.97 ±10 %	PASS
5600	35.5 ±10 %	PASS	5.07 ±10 %	PASS
5700	35.4 ±10 %		5.17±10 %	
5800	35.3 ±10 %	PASS	5.27 ±10 %	PASS
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 7/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and it not to
be released in whole or part without written approval of MFG.

Ref: ACR.93.10.17.SATU.A

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Head Liquid Values \$200 MHz: eps': 35.64 sigma: 4.67 Head Liquid Values \$400 MHz: eps': 36.44 sigma: 4.87 Head Liquid Values \$600 MHz: eps': 36.66 sigma: 5.17 Head Liquid Values \$800 MHz: eps': 35.31 sigma: 5.31	
Distance between dipole waveguide and liquid	0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45%	

Frequency (MHz)	1 g SAR (W/kg)		10 g SAR (W/kg)	
	required	measured	required	measured
5200	159.00	161.03 (16.10)	56.90	56.23 (5.62)
5400	166.40	168.17 (16.82)	58.43	57.98 (5.80)
5600	173.80	175.43 (17.54)	59.97	59.94 (5.99)
5800	181.20	182.30 (18.23)	61.50	61.84 (6.18)

SAR MEASUREMENT PLOTS @ 5200 MHz

Page: 8/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained horsein is to be used only for the purpose for which it is submitted and it not to
be released in whole or part without written approval of MFG.

Ref: ACR:93.10.17.SATU.A

SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MFG.

Ref: ACR.93.10.17.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductivity (a) \$/m	
	required	measured	required	measured
5200	49.0 ±10 %	PASS	5.30 ±10 %	PASS
5400	48.7 ±10 %	PASS	5.53 ±10 %	PASS
5600	48.5 ±10 %	PASS	5.77 ±10 %	PASS
5800	48.2 ±10 %	PASS	6.00±10%	PASS

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values 5200 MHz; eps' 48.64 sigma: 5.51 Body Liquid Values 5400 MHz; eps' 46.52 sigma: 5.77 Body Liquid Values 5600 MHz; eps' 46.79 sigma: 5.77 Body Liquid Values 5800 MHz; eps' 47.04 sigma: 6.10	
Distance between dipole waveguide and liquid	0 mm	
Area scan resolution	dx-8mm/dy-8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)	
	measured	measured	
5200	158.91 (15.89)	56.35 (5.63)	
5400	164.39 (16.44)	57.72 (5.77)	
5600	170.90 (17.09)	59.37 (5.94)	
5800	177.09 (17.71)	61.19 (6.12)	

Ref: ACR:93.10.17.SATU.A

BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13

This document shall not be reproduced, except in full or in part, without the written approval of MFG.
The information contained herein is to be used only for the purpose for which it is submitted and is not to
be released in whole or part without written approval of MFG.

Report No.: BL-SZ1930410-701

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.93.10.17.SATU.A

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.93.9.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated No ca required	
COMOSAR Test Bench	Version 3	NA	Validated No cal required	Validated No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	01/2017	01/2020	
Reference Probe	MVG	EPG122 SN 18/11	10/2016	10/2017	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to est. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Hurnicity Sensor	Control Company	150798832	10/2015	10/2017	