ASIGNATURA: SISTEMAS MULTIAGENTES

PRÁCTICA SOBRE DISEÑO DE UN SISTEMA MULTIAGENTE

Tema: Diseño de un sistema multiagente para un sistema de entrega de paquetes a domicilio

Metodología de diseño: Ingeniería de Software orientado a agentes (AOSE)

Objetivo general

Diseñar un sistema multiagente orientado a agentes para gestionar de forma eficiente la entrega de paquetes a domicilio, modelando adecuadamente los agentes, sus roles, tareas, ambiente y formas de comunicación.

Objetivos específicos

- Identificar los agentes que participarán en el sistema.
- Definir para cada agente el modelo PEAS (Performance, Environment, Actuators, Sensors).
- Diseñar los esquemas de comunicación e interacción entre agentes.
- Aplicar principios de coordinación para la asignación de tareas y manejo de conflictos.
- Elaborar los diagramas que representen la arquitectura del sistema multiagente

Actividades a realizar

- 1. Contextualización del problema
 - Analizar el contexto de un sistema de entrega de paquetes.
 - Identificar los procesos clave: recepción de pedido, asignación, entrega, confirmación.
- 2. Identificación de Agentes
 - Enumerar los agentes del sistema.
 - Elaborar una tabla con descripción funcional de cada agente
- 3. Definición del modelo PEAS para cada agente
 - Completar el modelo PEAS para cada uno de los agentes identificados

Componente	Descripción
Performance (P)	
Entorno (E)	
Actuadores (A)	
Sensores (S)	

- 4. Diseño de Interacciones y Comunicación entre Agentes
 - Usar FIPA ACL como modelo de comunicación.
 - Diseñar interacciones clave (pedir, aceptar, reportar, delegar, confirmar).
 - Emplear diagramas de secuencia AUML o tablas de comunicación
 - Dibujar un diagrama de interacción para un ciclo de entrega desde que el cliente hace el pedido hasta la confirmación de entrega.
- 5. Diseño de mecanismos de Coordinación
 - Asignación de tareas mediante:
 - o Coordinación basada en contrato.
 - Subastas (opcional).
 - Resolución de conflictos (por ejemplo, si dos agentes quieren usar la misma ruta)
 - Describir un mecanismo de coordinación entre Agente Coordinador y Agentes Repartidores. Usar un diagrama para representar el protocolo
- 6. Diseño de la arquitectura general del sistema
 - Representar la estructura del sistema con:
 - o Diagrama organizacional de roles.
 - Arquitectura basada en capas o servicios.
 - Relaciones jerárquicas o de colaboración
 - Elaborar un diagrama organizacional de agentes con flechas de dependencia e intercambio de mensajes

- 7. Discusión y conclusiones
 - ¿Qué dificultades tuvieron en la identificación de agentes y definición de PEAS?
 - ¿Qué formas de coordinación fueron más efectivas?
 - ¿Qué problemas podrían surgir si el sistema fuera implementado a gran escala?

Cuestionario

- ¿Cómo influye la autonomía de los agentes en el rendimiento del sistema?
- ¿Qué ventajas ofrece la comunicación indirecta entre agentes (por ejemplo, mediante ambiente compartido)?
- ¿Cómo se puede escalar este sistema a múltiples ciudades o países?
- ¿Qué tipo de fallos podrían comprometer la coordinación entre agentes?
- ¿Cómo puede integrarse el aprendizaje automático en el comportamiento de los agentes?

Entregables

- 1. Informe en PDF con:
 - Agentes identificados
 - Modelos PEAS
 - Diagramas de interacción
 - Esquema de coordinación
 - Arquitectura general del sistema
- 2. Mock-up o boceto de interfaz o sistema de simulación.