$11a_{220} (K11a_{220})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{42} + u^{41} + \dots - 3u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{42} + u^{41} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} (u^{5} + 2u^{3} - u) \\ (u^{7} - 3u^{5} + 2u^{3} + u) \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} (u^{8} - 3u^{6} + u^{4} + 2u^{2} + 1) \\ (u^{4} - 2u^{2}) \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} (u^{8} - 3u^{6} + u^{4} + 2u^{2} + 1) \\ (u^{8} - 4u^{6} - 4u^{4}) \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} (u^{19} + 8u^{17} - 24u^{15} + 30u^{13} - 7u^{11} - 10u^{9} - 4u^{7} + 6u^{5} + 3u^{3} + 2u) \\ (u^{19} - 9u^{17} + 32u^{15} - 55u^{13} + 43u^{11} - 9u^{9} - 4u^{5} - u^{3} + u) \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} (-u^{16} + 7u^{14} - 19u^{12} + 24u^{10} - 13u^{8} + 2u^{6} - 2u^{4} + 2u^{2} + 1) \\ (u^{18} - 8u^{16} + 25u^{14} - 36u^{12} + 19u^{10} + 4u^{8} - 2u^{6} - 2u^{4} - 3u^{2}) \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} (-u^{27} + 12u^{25} + \dots - u^{3} - 2u) \\ (u^{29} - 13u^{27} + \dots + 5u^{3} + u) \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} (-u^{27} + 12u^{25} + \dots - u^{3} - 2u) \\ (u^{29} - 13u^{27} + \dots + 5u^{3} + u) \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

 $\begin{array}{l} -4u^{39} + 72u^{37} - 4u^{36} - 584u^{35} + 68u^{34} + 2804u^{33} - 516u^{32} - 8800u^{31} + 2288u^{30} + \\ 18804u^{29} - 6508u^{28} - 27664u^{27} + 12240u^{26} + 27920u^{25} - 15080u^{24} - 19668u^{23} + 11628u^{22} + \\ 11364u^{21} - 5344u^{20} - 7448u^{19} + 2056u^{18} + 4732u^{17} - 1372u^{16} - 1840u^{15} + 300u^{14} + 420u^{13} + \\ 420u^{12} - 76u^{11} - 200u^{10} - 84u^9 + 160u^8 + 76u^7 - 112u^6 - 52u^5 - 20u^4 + 24u^3 - 24u^2 - 12u - 14 \\ \end{array}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{42} - u^{41} + \dots - u - 1$
c_2, c_5, c_7	$u^{42} + 11u^{41} + \dots + 3u + 1$
c_3, c_9, c_{10}	$u^{42} + u^{41} + \dots - 3u - 1$
c_4	$u^{42} - 3u^{41} + \dots + 61u + 39$
c_{8}, c_{11}	$u^{42} + 7u^{41} + \dots + 279u + 23$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{42} - 11y^{41} + \dots - 3y + 1$
c_2, c_5, c_7	$y^{42} + 41y^{41} + \dots - 11y + 1$
c_3, c_9, c_{10}	$y^{42} - 39y^{41} + \dots - 3y + 1$
c_4	$y^{42} - 11y^{41} + \dots - 25951y + 1521$
c_8, c_{11}	$y^{42} + 29y^{41} + \dots - 14039y + 529$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.196810 + 0.224203I	4.01809 + 0.23438I	-4.86393 - 0.79093I
u = -1.196810 - 0.224203I	4.01809 - 0.23438I	-4.86393 + 0.79093I
u = 0.356883 + 0.692055I	3.38201 - 9.13654I	-5.22617 + 8.05199I
u = 0.356883 - 0.692055I	3.38201 + 9.13654I	-5.22617 - 8.05199I
u = -0.341594 + 0.685182I	3.89441 + 3.00577I	-4.12276 - 3.17486I
u = -0.341594 - 0.685182I	3.89441 - 3.00577I	-4.12276 + 3.17486I
u = -1.233130 + 0.069457I	-2.15848 + 0.53603I	-5.34890 + 0.I
u = -1.233130 - 0.069457I	-2.15848 - 0.53603I	-5.34890 + 0.I
u = 1.217450 + 0.233216I	3.86157 - 6.43991I	-5.27816 + 6.02462I
u = 1.217450 - 0.233216I	3.86157 + 6.43991I	-5.27816 - 6.02462I
u = 0.396277 + 0.634373I	-3.48205 - 4.78463I	-11.04017 + 7.62920I
u = 0.396277 - 0.634373I	-3.48205 + 4.78463I	-11.04017 - 7.62920I
u = 0.556137 + 0.493828I	2.57048 + 5.10842I	-7.05988 - 2.20532I
u = 0.556137 - 0.493828I	2.57048 - 5.10842I	-7.05988 + 2.20532I
u = 0.454805 + 0.560740I	-3.76676 + 0.88407I	-12.38985 - 0.56473I
u = 0.454805 - 0.560740I	-3.76676 - 0.88407I	-12.38985 + 0.56473I
u = -0.553895 + 0.455920I	3.00179 + 0.90271I	-6.25769 - 2.96370I
u = -0.553895 - 0.455920I	3.00179 - 0.90271I	-6.25769 + 2.96370I
u = 1.305380 + 0.145441I	-3.32923 - 3.99615I	-9.76353 + 7.26560I
u = 1.305380 - 0.145441I	-3.32923 + 3.99615I	-9.76353 - 7.26560I
u = -0.011445 + 0.679358I	7.60462 + 3.09519I	-0.01509 - 2.78190I
u = -0.011445 - 0.679358I	7.60462 - 3.09519I	-0.01509 + 2.78190I
u = -0.361045 + 0.570627I	-0.76961 + 1.72495I	-4.78052 - 3.91512I
u = -0.361045 - 0.570627I	-0.76961 - 1.72495I	-4.78052 + 3.91512I
u = 1.34637	-5.74682	-16.7140
u = 1.44469 + 0.15665I	-3.29340 - 3.04757I	0
u = 1.44469 - 0.15665I	-3.29340 + 3.04757I	0
u = 1.43643 + 0.22136I	-6.53816 - 4.66456I	0
u = 1.43643 - 0.22136I	-6.53816 + 4.66456I	0
u = 1.43871 + 0.26142I	-1.81787 - 6.45853I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.43871 - 0.26142I	-1.81787 + 6.45853I	0
u = -0.098085 + 0.527806I	1.00543 + 1.56832I	-1.50314 - 6.19843I
u = -0.098085 - 0.527806I	1.00543 - 1.56832I	-1.50314 + 6.19843I
u = -1.44577 + 0.26317I	-2.40746 + 12.62150I	0
u = -1.44577 - 0.26317I	-2.40746 - 12.62150I	0
u = -1.46178 + 0.16297I	-3.85638 - 2.79254I	0
u = -1.46178 - 0.16297I	-3.85638 + 2.79254I	0
u = -1.45781 + 0.20477I	-9.89796 + 1.92247I	0
u = -1.45781 - 0.20477I	-9.89796 - 1.92247I	0
u = -1.45327 + 0.23647I	-9.43094 + 7.97441I	0
u = -1.45327 - 0.23647I	-9.43094 - 7.97441I	0
u = -0.330600	-0.781422	-13.7110

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{42} - u^{41} + \dots - u - 1$
c_2, c_5, c_7	$u^{42} + 11u^{41} + \dots + 3u + 1$
c_3, c_9, c_{10}	$u^{42} + u^{41} + \dots - 3u - 1$
c_4	$u^{42} - 3u^{41} + \dots + 61u + 39$
c_{8}, c_{11}	$u^{42} + 7u^{41} + \dots + 279u + 23$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{42} - 11y^{41} + \dots - 3y + 1$
c_2, c_5, c_7	$y^{42} + 41y^{41} + \dots - 11y + 1$
c_3, c_9, c_{10}	$y^{42} - 39y^{41} + \dots - 3y + 1$
c_4	$y^{42} - 11y^{41} + \dots - 25951y + 1521$
c_8, c_{11}	$y^{42} + 29y^{41} + \dots - 14039y + 529$