AMENDMENTS TO THE CLAIMS

Docket No.: 105769-0007-104

1. (Currently Amended) A compound of Formula I, or a salt, solvate, or hydrate thereof:

wherein

 R^1 and R^2 are each independently selected from H, OH, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkyl CO_2 , NH_2 , $NH-C_{1\text{-}6}$ alkyl, $N(C_{1\text{-}6}$ alkyl)($C_{1\text{-}6}$ alkyl), $C_{1\text{-}6}$ alkyl(C=O)NH, $C_{1\text{-}6}$ alkyl(C=O)N($C_{1\text{-}6}$ alkyl), SH, $S-C_{1\text{-}6}$ alkyl, $O-Si(C_{1\text{-}6}$ alkyl)($C_{1\text{-}6}$ alkyl)($C_{1\text{-}6}$ alkyl), NO_2 , CF_3 , OCF_3 and halo, or R^1 and R^2 together represent $O-C_{1\text{-}6}$ alkyl-O, thereby forming a ring;

I

 R^3 is selected from H, OH, C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkyl CO_2 , NH₂, NH- C_{1-6} alkyl, N(C_{1-6} alkyl)(C_{1-6} alkyl), C_{1-6} alkyl(C=O)NH, C_{1-6} alkyl(C=O)N(C_{1-6} alkyl), SH, S- C_{1-6} alkyl, O-Si(C_{1-6} alkyl)(C_{1-6} alkyl), NO₂, halo and CH₂-S-(CH₂)_n Ar;

 R^4 is selected from $C(X)R^5$, SO_3Ar , NH_2 , $NH-C_{1-6}$ alkyl, $N(C_{1-6}$ alkyl)(C_{1-6} alkyl), $P(O)(OH)_2$, $P(O)(OC_{1-6}$ alkyl)₂, and $C(NH_2)=C(CN)_2$;

X is selected from O, S, NH and N-C₁₋₆alkyl;

 R^5 is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH, (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and

Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4 substituents, independently selected from OH, C₁₋₆alkyl, C₁₋₆alkyl, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo;

n is 0 to 4; and

p is 1-4;

provided that at least one of R^1 , R^2 , and R^3 is selected from C_{1-6} alkyl CO_2 , C_{1-6} alkylC=ONH, or C_{1-6} alkylC=ON C_{1-

R¹ and R² together represent O-C₁₋₆alkyl-O, thereby forming a ring.

Amendment dated July 10, 2008 Reply to Office Action of April 23, 2008

2. (Withdrawn) The compound according to claim 1, wherein R^1 and R^2 are each independently selected from H, OH, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} alkyl CO_2 , NH₂, NH- C_{1-4} alkyl, C_{1-4} alkyl(C=O)NH, C_{1-4} alkyl(C=O)N(C_{1-4} alkyl), SH, S- C_{1-4} alkyl, O-Si(C_{1-4} alkyl)(C_{1-4} alkyl)(C_{1-4} alkyl), NO₂, CF₃, OCF₃ and halo, or R^1 and R^2 together represent O- C_{1-6} alkyl-O, thereby forming a ring.

- 3. (Withdrawn) The compound according to claim 2, wherein R¹ and R² are each independently selected from the group consisting H, OH, OCH₃, CH₃CO₂, O-Si(CH₃)₂(¹Bu), S-Me, SH, CH₃CONH, CH₃CONCH₃, and NO₂.
- 4. (Withdrawn) The compound according to claim 3, wherein R^1 and R^2 are both OH or R^1 and R^2 are both OCH₃.
- 5. (Withdrawn) The compound according to claim 4, wherein R^1 is OCH₃ and R^2 is OH.
- 6. (Original) The compound according to claim 1, wherein R³ is selected from H, OH, C₁₋₄alkyl, C₁₋₄alkyl, C₁₋₄alkylCO₂, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl)(C₁₋₄alkyl), C₁₋₄alkyl(C=O)NH, C₁₋₄alkyl(C=O)N(C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂ and halo.
- 7. (Currently Amended) The compound according to claim 6, wherein R³ is selected from H, OH, OCH₃, CH₃CO₂, SH, SMe, NO₂, CH₃CONH, CH₃CONCH₃, and halo.
- 8. (Withdrawn) The compound according to claim 1, wherein R^1 , R^2 , and R^3 are each independently selected from H, C_{1-4} alkyl CO_2 , C_{1-6} alkyl(C=O)NH, and C_{1-6} alkyl $(C=O)N(C_{1-6}$ alkyl), provided that at least one of R^1 , R^2 , and R^3 is not hydrogen.
- 9. (Currently Amended) The compound according to claim 1, wherein R^4 is selected from $C(X)R^5$ and $C(NH_2)=C(CN)_2$.
 - 10. (Original) The compound according to claim 9, wherein R^4 is $C(X)R^5$.

Application No. 10/593,851 Amendment dated July 10, 2008

Reply to Office Action of April 23, 2008

11. (Currently Amended) The compound according to claim 10, wherein X is selected fromselected-from O and S.

- (Currently Amended) The compound according to claim 10, wherein R⁵ is selected 12. from selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and C₁₋₄alkoxy.
 - 13. (Original) The compound according to claim 12, wherein p is 1-3.
- (Currently Amended) The compound according to claim 13, wherein R⁵ is selected 14. from selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and OCH₃.
 - 15. (Original) The compound according to clam 14, wherein p is 1-2.
- 16. (Currently Amended) The compound according to claim 1, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally selected from Selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, N(C₁₋₆alkyl), N(C₁₋₆alkyl), N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, N(C₁₋₆alkyl), N(C₁₋₆alkyl), N(C₁₋₆alkyl), N(C₁₋₆alkyl), N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, N(C₁₋₆alkyl), 6alkyl, NO₂, CF₃, OCF₃ and halo.
- 17. (Currently Amended) The compound according to claim 14, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally selected from Selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, N(C₁₋₆alkyl), N(C₁₋ 6alkyl, NO₂, CF₃, OCF₃ and halo.
- 18. (Currently Amended) The compound according to any of claims 16 and 17, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents optionally selected from OH, C₁₋₄alkyl, C₁₋₄alkoxy, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl), (C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂, CF₃, OCF₃ and halo.

Docket No.: 105769-0007-104

- 19. (Original) The compound according to claim 18, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents optionally selected from OH, OCH₃, NH₂, NHCH₃, N(CH₃)₂, SH, SCH₃, CF₃, OCF₃ and halo.
 - 20. (Currently Amended) A compound selected from:

÷

Application No. 10/593,851 Amendment dated July 10, 2008

Reply to Office Action of April 23, 2008

15

÷

÷

Docket No.: 105769-0007-104

ÒМе

Amendment dated July 10, 2008 Reply to Office Action of April 23, 2008

÷

ÓМе

Application No. 10/593,851 Docket No.: 105769-0007-104

Amendment dated July 10, 2008 Reply to Office Action of April 23, 2008

÷

ÓМе

19

Amendment dated July 10, 2008 Reply to Office Action of April 23, 2008

Docket No.: 105769-0007-104

10/593,851 Docket No.: 105769-0007-104

ĊN

ОМе

÷

HO.

Application No. 10/593,851

Amendment dated July 10, 2008

Reply to Office Action of April 23, 2008

Docket No.: 105769-0007-104

MeO ÒН ÷ HO ĊΝ ÓН HQ. Н ÷ ĆΝ ÷ Ме HO. ĊN ÷ OMe ĊΝ ОМе ÷

Application No. 10/593,851 Docket No.: 105769-0007-104

Amendment dated July 10, 2008 Reply to Office Action of April 23, 2008

21. (Currently Amended) A composition comprising a compound according to any one of claims 1 to 20 in admixture with a pharmaceutically acceptable diluent or carrier.

22-29. (Cancelled).

- 30. (Withdrawn, Currently Amended) A method of modulating cell proliferation comprising administering an effective amount of a compound capable of modulating cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.
- 31. (Withdrawn, Currently Amended) A method of inhibiting cell proliferation comprising administering an effective amount of a compound capable of inhibiting cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.

Application No. 10/593,851 Amendment dated July 10, 2008

Reply to Office Action of April 23, 2008

32. (Withdrawn, Currently Amended) A method of inhibiting cancer cell proliferation comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.

- 33. (Withdrawn, Currently Amended) A method of treating cancer comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to any one of claims 1 to 20 or a composition according to claim 21 to a cell or animal in need thereof.
- 34. (Withdrawn) A method according to claim 32 or 33 wherein said cancer is a hematopoietic cell cancer.
- 35. (Withdrawn) A method according to claim 32 or 33 wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma.
- 36. (Withdrawn) A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia, aggressive Philadelphia+ leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia,
- 37. (Withdrawn) A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia.