

The New Design of the RF System for the SPS-II Light Source

Nawin Juntong, Accelerator Physicist, SLRI, THAILAND

The SPS-II Project

Table 1: SPS-II Storage Ring and Booster Ring Parameters

Parameters	Storage ring	Booster ring
Energy	3 GeV	3 GeV
Current	300 mA	$30\mathrm{mA}$
Lattice	DTBA	FODO
Circumference	327.502 m	304.829 m
RF frequency	119 MHz	119 MHz
Harmonic number	130	121
RF voltage	1.5 MV	1.2 MV
Emittance ϵ_{x0}	0.96 nm rad	5.87 nm rad
Nat. energy spread σ_E	0.077 %	0.091 %
Nat. chromaticity ξ_x/ξ_y	-65.6/ -76.7	-23.63/ -10.31
Tune Q_x/Q_y	34.24/ 12.31	14.71/5.61
Momentum compaction α_c	3.33×10^{-4}	1.674×10^{-3}
Nat. bunch length	7.48 mm	23.04 mm
Energy loss per turn U_0	577 keV	750 keV
Full IDs energy loss per turn	693 keV	

Figure 1: The DTBA cell of SPS-II.

6 Cavities Capacity

1.95 MV/6 = 325 kV/cavity

Table 2: SPS-II RF Requirements

Parameters	Storagr ring			Booster
	0-IDs	7-IDs	21-IDs	ring
Beam current (mA)		300		30
Energy loss (keV/turn)	580	810	1270	750
Total beam power (kW)	174.0	243.0	381.0	22.5
Number of RF cavity	5	5	6	4
Voltage/cavity (kV)			300	
Total RF voltage (MV)	1.5	1.5	1.8	1.2
Over voltage ratio	2.59	1.85	1.42	1.7
RF acceptance (%)	5.8	4.7	3.7	1.60
Cavity R_{sh} (M Ω)	3.4			
Cu losses/cavity (kW)	26.5			
Total Cu losses (kW)	132.4	132.4	158.8	105.9
Total RF power (kW)	306.4	375.4	539.8	128.4
Power per cavity (kW)	61.3	75.1	90.0	32.1
RF coupling (β)	2.3	2.8	3.4	1.2
No. of RF station	5	5	6	4
No. of RF transmitter	5	5	6	4
Transmitter power (kW)		120		50

1st construction 5 cavities Added the 6th cavity when needed

Full IDs the 7th cavity may be added, need to be decided at the time

RF Acceptance (%)

Comparison of MAX-Lab Type RF Cavity (5 cm accelerating gap)

	MAX-IV	SPS	SPS-II
f (MHz)	100	118	119
Q	20000 (19000)	22000 (19000)	22000 (20000)
$R/Q(\Omega)$	168	136	173
$R_{\rm sh}\left({ m M}\Omega ight)$	3.4 (3.2)	3.1 (2.94)	3.8 (3.4)
Cavity diameter (cm)	82.0	82.0	82.0
Beam port diameter (cm)	5.0	11.0	5.0
Insertion length (cm)	50.0	49.0	50.0
Cavity voltage (kV)	300	300	300
RF power @300kV (kW)	28.2	30.6	26.5

R/Q = 173 Ω Q = 22,000 – design \rightarrow 20,000 – scaled R_{sh} = 3.8 MΩ - design \rightarrow 3.4 MΩ - scaled

From, MAX-IV Lab experience, surface roughness and ports on the cavity body will lower these values by roughly 7 %.

Longitudinal Mode Properties

RF Station

