MATH 511 HOMEWORK (ON GRADESCOPE)

SIAMAK YASSEMI

Homework # 1

Due on Jun 16, 2024, 11:59 PM

Section 1.3: Page17 #17, P19 #31,

Section 1.4: P28 #24,

Section 1.5: P43 #29, P44 #38,

Section 1.6: P55 #40, #41, P57 #56

1.3.p17.#17

[chapter].[section].[page].[problem]

Problems 10-19 study elimination on 3 by 3 systems (and possible failure).

17. Which number q makes this system singular and which right-hand side t gives it infinitely many solutions? Find the solution that has z = 1.

$$x + 4y - 2z = 1$$
$$x + 7y - 6z = 6$$
$$3y + qz = t.$$

1.3.p19.#31

[chapter].[section].[page].[problem]

31. For which three numbers a will elimination fail to give three pivots?

$$ax + 2y + 3z = b_1$$

 $ax + ay + 4z = b_2$
 $ax + ay + az = b_3$.

1.4.p28.#24

[chapter].[section].[page].[problem]

Problems 22–31 are about elimination matrices.

24. Which three matrices E_{21} , E_{31} , E_{32} put A into triangular form U?

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 6 & 1 \\ -2 & 2 & 0 \end{bmatrix} \quad \text{and} \quad E_{32}E_{31}E_{21}A = U.$$

Multiply those E's to get one matrix M that does elimination: MA = U.

1.5.p43.#29

[chapter].[section].[page].[problem]

Problems 20–31 compute the factorization A = LU (and also A = LDU).

29. (Recommended) Compute L and U for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}.$$

Find four conditions on a, b, c, d to get A = LU with four pivots.

1.5.p44.#38

[chapter].[section].[page].[problem]

38. (Review) For which numbers c is A = LU impossible—with three pivots?

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & c & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

1.6.p55.#40

[chapter].[section].[page].[problem]

- 40. True or false (with a counterexample if false and a reason if true):
 - (a) A 4 by 4 matrix with a row of zeros is not invertible.
 - (b) A matrix with 1s down the main diagonal is invertible.
 - (c) If A is invertible then A^{-1} is invertible.
 - (d) If A^{T} is invertible then A is invertible.

1.6.p55.#41

[chapter].[section].[page].[problem]

41. For which three numbers c is this matrix not invertible, and why not?

$$A = \begin{bmatrix} 2 & c & c \\ c & c & c \\ 8 & 7 & c \end{bmatrix}.$$

1.6.p57.#56

[chapter].[section].[page].[problem]

Problems 56-60 are about symmetric matrices and their factorizations.

56. If
$$A = A^{T}$$
 and $B = B^{T}$, which of these matrices are certainly symmetric? (a) $A^{2} - B^{2}$ (b) $(A + B)(A - B)$ (c) ABA (d) $ABAB$.