Rotation/ Drehimpuls - SF Physik

Zylinder rollt schiefe Ebene hinunter ges. v

$$E_2 = \frac{1}{2} J_A \omega^2$$

Satz von Steiner

Geschoss auf ein Zylinder

$$|\vec{r} \times \vec{p}| = r \cdot p = const.$$

I reigt in gleiche Richtung, weil ILF und ILP

2 V berechnen

Drehimpulserhaltung: L= Lz

$$m_{V_{\Gamma_0}} = \left(\frac{1}{2}MR^2 + m_X^2\right)\omega$$
 |: m_{Γ_0}

$$V = \frac{1}{mr} \cdot \omega \left(\frac{1}{2} M R^2 + m x^2 \right)$$

OF Phy	ysik Mechanische Vertiefung
Zentripet	- lkmft
V = +	a= + F= ma
Zentripetalbeso	chlernigung: $\alpha_2 = \frac{V^2}{\Gamma}$
Zentripetalkro	$=ft: F_2 = \frac{mv}{r}$
Winkelgeschw. 1	Winkel pro Zeit w= q V= rw w= 7
Schiefer h	H R R L R R R R R R R R R R R R R R R R
Wirfparabel	$ x = \sqrt{\cos \alpha t}$ $ y = -\frac{1}{2}gt^2 + \sqrt{\sin \alpha t}$
Werfolgier	$\frac{1}{1} + \frac{1}{2} = \frac{2}{3} = \frac{2}{3}$
Worfweite	$= \frac{\sqrt{5} \sin 2\alpha}{9}$
Wurfhähe	1 Yn = 2.8
Impuls	
3 = mJ	Kraftstoss: p' = F.4+ (night abgesch). System)
Unelastischer	- Stoss: O O ! CO Ekin nicht eshalten
	$\vec{p}_{1} = m_{1}\vec{v}_{1} + m_{2}\vec{v}_{2}$ $\vec{p}_{2} = (m_{1} + m_{2}) u$
Elastischer S	Stoss: 00 1 00 Exin ethalten
ed anoitatos	inegra
Nintel ge schw. :	a = c nigng: d = t
	hung M= Ja (J=> Trägheitsmoment)
9 1 1	ent: J=mr2
	$E_{ret} = \frac{1}{2} m r^2 \omega^2 = \frac{1}{2} J \omega^2$
Jatz von Ste	einer: J + Js + mol?

