Math143Hw7

Trustin Nguyen

October 21, 2023

Exercise 1: Given a variety X, recall that we defined the field of rational functions on X to be $k(X) = \operatorname{Frac} \Gamma(X)$. Let $X = V(xw - yz) \subseteq \mathbb{A}^4$ and let $f = \overline{x}/\overline{y} \in k(X)$.

(a) Prove that the poles of f are exactly $V(y, w) \subseteq X$, equivalently the open set where f is defined is the compliment of $V(y, w) \subseteq X$.

Proof. We have that in k(X), $\frac{x}{u} = \frac{z}{w}$ because of the fact that:

$$xw - zy = 0 \implies xw = zy \implies \frac{x}{y} = \frac{z}{w}$$

Therefore, we look for when the denominators for both of these vanish. This is just $V(y) \cap V(w) = V(y, w)$.

(b) Show it is impossible to write f = a/b for $a, b \in \Gamma(X)$ where $b(P) \neq 0$ for every P where f is defined.

Proof. Suppose that f = a/b. Then by the relation:

$$\frac{a}{b} = \frac{x}{y}$$

we get:

$$au = bx$$

Now for a point in V(y) - V(x) - V(w), which is non-empty, we have

$$ay(p) = 0 = bx(p)$$

But p does not vanish on x, so it must vanish on b.

Exercise 2: Practice with the local ring

(a) Let X be a variety. In class we defined $O_P(X) \subseteq k(X)$ as the subset of rational functions that are defined at $P \in X$. Prove that $O_P(X)$ is in fact a subring.

Proof. Let $f, g \in O_P(X)$. We have commutativity, associativity. We need to prove that the identity exists, for both multiplication, addition, and that it is closed under these operations.

- Because Γ(X) ⊆ $O_P(X)$, we have that 1, 0 as polynomials are in $O_P(X)$. We see that 1 ∈ $O_P(X)$ because 1(p) = 1 ≠ 0. So therefore, a denominator of 1 is always possible, and we just choose our numerator to be elements of Γ(X).
- If $\frac{f(x)}{g(x)}$, $\frac{f'(x)}{g'(x)} \in O_P(X)$, we have:

$$\frac{f(x)}{g(x)} + \frac{f'(x)}{g'(x)} = \frac{f(x)g'(x) + f'(x)g(x)}{g(x)g'(x)}$$

and because both $g(p) \neq 0$, $g'(p) \neq 0$, we are over a field, which is an integral domain, so $g(p)g'(p) \neq 0$. So this sum is in $O_P(X)$.

1

- If $\frac{f(x)}{g(x)}$, $\frac{f'(x)}{g'(x)} \in O_P(X)$, we have:

$$\frac{f(x)}{g(x)} \cdot \frac{f'(x)}{g'(x)} = \frac{f(x)f'(x)}{g(x)g'(x)}$$

where again, $g(p)g'(p) \neq 0$, so the product is in $O_P(X)$.

- We also have that additive inverses exist, because −1 is in $\Gamma(X)$, which means that $-f(x)/g(x) \in O_P(X)$.

So
$$O_P(X)$$
 is a ring.

(b) Let

$$R = \left\{ \frac{a}{b} \in k(x) : a, b \in k[x] \text{ and } b(0) \neq 0 \right\}$$

Prove that R is a local ring (i.e. that R has a unique maximal ideal, or equivalently that the non-units form an ideal).

Proof. The non-units are elements a/b where $x \mid a$. If $x \nmid a$, the a has a constant term, non-zero, so b/a exists in R. Also if $x \mid a$, then it is a non-unit because b/a has a(0) = 0 so $b/a \notin R$. So we have found the non-units. Now we just need to show that they form an ideal. So if

$$N = \{\text{non-units of } R\}$$

Then suppose that f/g, $f'/g' \in N$. Then:

$$\frac{f}{g} + \frac{f'}{g'} = \frac{fg' + f'g}{gg'}$$

But $x \mid f, x \mid f', \text{ so } x \mid fg' + f'g$. Additionally, $gg'(0) \neq 0$ because we are over a field. So therefore, the sum is a non-unit also and therefore, is in N. Now if $a/b \in R$, $f/g \in N$, then:

$$\frac{a}{b} \cdot \frac{f}{g} = \frac{af}{bg}$$

and by the same idea, $x \mid af$, $bg(0) \neq 0$ so it is closed under multiplication from the ring R.

Exercise 3: Let k be algebraically closed. Let $O_P(X)$ be the local ring of a variety X at a point P. Show that there is a one-to-one correspondence between the prime ideals in $O_P(X)$ and the subvarieties of X that pass through P.

Proof. Let I be a prime ideal in $O_P(X)$. We have that:

$$\Gamma(X)\cap {\rm I}=\{f\in O_{\rm p}(X):\frac{f}{g}\in {\rm I}\}$$

or the intersection is the set of numerators of I. Then if $f_1f_2 \in \Gamma(X) \cap I$, then we have:

$$\frac{f_1}{1} \cdot \frac{f_2}{1} \in I$$

and since I is prime, wlog, $f_1/1 \in I$. Then $f_1 \in \Gamma(X) \cap I$, so $\Gamma(X) \cap I$ is prime also. Prime ideals of $\Gamma(X)$ are radical ideals. We know that there is a bijection between radical ideals of $K[x_1, \ldots, x_n]$ and radical ideals of $K[x_1, \ldots, x_n]/I(X)$. Furthermore, there is a bijection between radical ideals and algebraic sets by taking the vanishing. So if I is prime of $O_P(X)$, then we map it to

$$I \cap \Gamma(X) \to I \cap \Gamma(X) + I(X) \to V(I \cap \Gamma(X) + I(X))$$

And since

$$I \cap \Gamma(X) + I(X) \supseteq I(X)$$

then

$$V(I \cap \Gamma(X) + I(X)) \subseteq V(I(X)) = X$$

To go backwards, we can try:

$$Y \subseteq X \mapsto J \subseteq O_P(Y) \subseteq O_P(X)$$

if $Y \subseteq X$, then we have $I(Y) \supseteq I(X)$ which means $\Gamma(Y) \subseteq \Gamma(X)$ so indeed $O_P(Y) \subseteq O_P(X)$. As a local ring, we can only map it to the ideal of non-units, which is prime, because if $f_1f_2 \in J$, then f_1, f_2 cannot both be units, otherwise, we have a unit in J. So there is an inverse map, and notice that the composition is the identity:

$$J \cap \Gamma(X) = J \cap \Gamma(Y) = I(Y)$$

since I(Y) is the pole we then have:

$$I(Y) \longrightarrow I(Y) + I(X) \longrightarrow V(I(Y) + I(X)) = V(I(X)) \cap V(I(Y)) = Y$$

$$\Gamma(X)$$
 $k[x_1, \dots, x_n]$ \mathbb{A}^n

which concludes the proof.

Exercise 4: Let $k = \mathbb{C}$. For each polynomial f below, find all singular points of V(f). For each singular point of V(f), find the multiplicity and the tangent cone. Write the tangent cone as a union of lines.

(a)
$$y^3 - y^2 + x^3 - x^2 + 3xy^2 + 3x^2y + 2xy$$

Answer. We have:

$$f_x = 3x^2 - 2x + 3y^2 + 6xy + 2y$$

$$f_y = 3y^2 - 2y + 6xy + 3x^2 + 2x$$

so when $f_x = 0$, we have:

$$3x^2 + 3y^2 + 6xy = 2x - 2y$$

So that also means:

$$f_y = 3y^2 + 6xy + 3x^2 - 2y + 2x = 2x - 2y - 2y + 2x$$

So if $f_y = 0$ also,

$$-4y + 4x = 0 \implies 4x = 4y \implies x = y$$

Plugging this back into f, we get:

$$y^3 - y^2 + y^3 - y^2 + 3y^3 + 3y^3 + 2y^2 = 8y^3$$

Now if f = 0, we have:

$$8u^3 = 0$$

which means that y = 0, x = 0. Then (0,0) is the only singular point. The multiplicity is the minimal degree of the terms which is 2. The tangent cone is $V(f_2) = V(x^2 - 2xy + y^2) = V(x - y)$. So the tangent cone is y = x.

(b)
$$x^4 + y^4 - x^2y^2$$

Proof. Same process as above:

$$f_x = 4x^3 - 2y^2$$
$$f_y = 4y^3 - 2x^2$$

and

$$f_x = 0 \implies 2y^2 = 4x^3$$

so we get:

$$f_{y} = 2x^3y - 2x^2$$

Now if $f_y = 0$ also:

$$2x^3y - 2x^2 = 2x^2(xy - 1) = 0$$

So x = 0 or xy = 1. The singular points are the points in $V(x^4 + y^4 - 1)$ and (0,0). The multiplicity of the point (0,0) is 2 while it is 1 for $V(x^4 + y^4 - 1)$ after performing some shift of coordinates I think. And the tangent cone is $V(x^2y^2) = V(x) \cup V(y)$. So the lines y = 0 and x = 0 make up the tangent cone.

(c)
$$x^3 + y^3 - 3x^2 - 3y^2 + 3xy + 1$$
.

Proof. We have:

$$f_x = 3x^2 - 6x + 3y$$

 $f_y = 3y^2 - 6y + 3x$

And if $f_x = 0$:

$$3y = 6x - 3x^2 \implies y = 2x - x^2 \implies y = 1 - (x - 1)^2$$

so

$$f_{\rm u} = 6xy - 3x^2y - 9x + 6x^2$$

and if $f_y = 0$:

$$3x(y - xy - 3 + 2x) = 0$$

Didn't Finish

Exercise 5: Let $\varphi : \mathbb{A}^2 \to \mathbb{A}^2$ be a polynomial map and let $0 \neq f \in k[x,y]$ be a nonzero polynomial with no repeated factors. Let $P \in \mathbb{A}^2$ and let $Q = \varphi(P)$.

(a) Suppose $Q \in V(f)$. Show that $P \in V(\phi^*f)$.

Proof. Since
$$Q \in V(f)$$
, $f(Q) = 0$. Then $f(\phi(P)) = 0$. So $(f\phi)(P) = 0$ and $\phi^*f(P) = 0$. So $P \in V(\phi^*f)$.

(b) Prove that if ϕ is a translation, then the multiplicity of $V(\phi^*f)$ at P equals the multiplicity of V(f) at Q

Proof. Suppose that the multiplicity of V(f) at Q is \mathfrak{m} . Let $Q=(q_1,q_2)$. Then consider the pullback of f:

$$\psi: \mathbb{A}^2 \to \mathbb{A}^2$$

$$\psi(x, y) = (x - q_1, y - q_2)$$

and

$$\psi^* : k[x,y] \to k[x,y]$$

$$\psi^* f(x,y) = f(x - q_1, y - q_2)$$

Then if f' is such that $\phi^*f = f'$, Then the multiplicity of Q at f is the multiplicity of (0,0) at f'. So denote:

$$f' = f_m + f_{m+1} + \dots + f_n$$

Then now we take the translation of f' which preserves multiplicity, but this time, we send $(0,0) \rightarrow P = (p_1, p_2)$.

$$\pi: \mathbb{A}^2 \to \mathbb{A}^2$$

$$\pi(x, y) = (x + p_1, y + p_2)$$

Then

$$\pi^* : k[x,y] \to k[x,y]$$

$$\pi^* f(x,y) = f(x + p_1, y + p_2)$$

So π^*f' gives us that the multiplicity of (0,0) in V(f') is the multiplicity of P in $V(\pi^*f')$. But this is just:

$$V(\pi^*\psi^*f) = V(\varphi^*f)$$

where φ translates $Q \to P$. So multiplicity is preserved under translation. \Box

(c) Prove that if ϕ is any polynomial map, then the multiplicity of $V(\phi^*f)$ at P is greater than or equal to the multiplicity of V(f) at Q.

Proof. If φ is a polynomial map, we have:

$$\varphi(p) = (\varphi_1(p), \varphi_2(p), \dots, \varphi_m(p))$$

Then ϕ_i are all polynomials. Since translation preserves multiplicity, we can take

$$\varphi'(p) = (\varphi'_1(p), \dots, \varphi'_m(p))$$

where ϕ_i^\prime have no constant terms. So

$$\varphi'^*(f(x_1, x_2, ..., x_m)) = f(\varphi'_1(p), ..., \varphi'_m(p))$$

Now if we consider the pullback of map of the translation map $\psi:Q\to 0$, and consider the pullback of f, let that have multiplicity $\mathfrak{m}=$ multiplicity of V(f) at Q. Then if we take $\phi'^*\psi^*f$, and another pullback, this time sending $\pi:P\to 0$, we have $\pi^*\phi'^*\psi^*f$ with the same multiplicity as $V(\phi^*f)$ at P. We know that the lowest non-zero homogeneous term of the polynomial $\pi^*\phi'^*\psi^*f$ is at least greater than or equal to that of ψ^*f because $\phi'^*\psi^*f$ preserves the degree of the polynomial f. \square