CBCC Course on Electronics

- Module 1: Introduction to Semiconductor Physics & Device Fabrication Technology: Introduction, concept of energy bands, Fermi level, intrinsic and extrinsic semiconductors, P-type and N-type semiconductors, energy band diagram, effective mass, carrier transport, mobility, drift and diffusion, carrier recombination, introduction to device fabrication technology.
- Module 2: Junction Diodes: Formation of P-N junction, energy band diagram, depletion region, forward and reverse biased P-N junction diode, I-V characteristics, breakdown mechanisms, Zener breakdown, Avalanche breakdown, Zener diode and its characteristics, junction capacitance and Varactor diode, diode rectifier circuits and Zener voltage regulators.

Introduction to Electronics

- Electronics deals with the theory and application of a class of devices, called electron devices, in which the electrons are transported through semiconductor, gas and vacuum.
- Semiconductor: solid-state crystalline material.
- Most interesting property of semiconductor: conductivity can be varied over orders of magnitude by varying impurity doping concentration, temperature, and optical excitation.

Conductivity of Semiconductors

Portion of the Periodic Table Related to Semiconductors

Period	Column II	III	IV	V	VI
2		В	C	N	O
		Boron	Carbon	Nitrogen	Oxygen
3	Mg	Al	Si	P	S
	Magnesium	Aluminum	Silicon	Phosphorus	Sulfur
4	Zn	Ga	Ge	As	Se
	Zinc	Gallium	Germanium	Arsenic	Selemum
5	Cd	In	Sn	Sb	Te
	Cadmium	Indium	Tin	Antimony	Tellurium
6	Hg		Pb		
	Mercury		Lead		

Semiconductor Materials

General	Semiconductor		
Classification	Symbol	Name	
Element	Si	Silicon	
Erenen	Ge	Germanium -	
Binary compound			
IV-IV	SiC	Silicon carbide	
III-V	AlP	Aluminum phosphide	
•	AlAs	Aluminum arsenide	
	AlSb	Aluminum antimonide	
	GaN	Gallium nitride	
	GaP	Gallium phosphide	
	GaAs	Gallium arsenide	
	GaSb	Gallium antimonide	
	InP	Indium phosphide	
	InAs	Indium arsenide	
	InSb	Indium antimonide	
1I-VI	ZnO	Zinc oxide	
11	ZnS	Zinc sulfide	
	ZnSe	Zinc selenide	
	ZnTe	Zinc telluride	
	CdS	Cadmium sulfide	
	CdSe	Cadmium selenide	
	CdTe	Cadmium telluride	
	HgS	Mercury sulfide	
IV-VI	PbS	Lead sulfide	
	PbSe	Lead selenide	
	PbTe	Lead telluride	
Ternary compound	Al _s Ga _{ss} As	Aluminum gallium arsenide	
	Al In As	Aluminum indium arsenide	
	GaAs, P	Gallium arsenic phosphide	
	$Ga_{x}In_{1-x}N$	Gallium indium nitride	
	Ga, In, As	Gallium indium arsenide	
	Ga, In, P	Gallium indium phosphide	
Quaternary compound	$Al_xGa_{1-x}As_ySb_{1-y}$	Aluminum gallium arsenic antimonide	
	$Ga_xIn_{1-x}As_{1-y}P_y$	Gallium indium arsenic phosphide	

Bond Representation of Intrinsic Silicon

Concepts of Energy Bands

- Bohr's theory predicts that electronic states in an atom are quantized.
- Atoms are characterized by four quantum numbers:
 - (i) principle quantum number; n = 1, 2, 3 ...
 - (ii) angular momentum (orbital) quantum number;

$$I = 0, 1, 2, ...(n-1)$$

- (iii) magnetic quantum number; m = -1,-1, 0, +1, + 1
- (iv) electron spin quantum number; s = -1/2, +1/2.
- Pauli exclusion principle (a quantum mechanical principle) states that two or more identical electrons cannot occupy the same quantum state within a quantum system simultaneously.

Isolated Silicon Atom

Energy Levels in Silicon as a Function of Interatomic Spacing

Metal, Insulator and Semiconductor

Valence and Conduction Band for (a) Metal, (b) Semiconductor, and (c) Insulator

Periodic Potential and Kronig-Penney Model

Direct and Indirect Bandgap

E-k Diagram for Si and GaAs

(a) Silicon and (b) GaAs

Effective Mass

Electrons in a crystal are not completely free, but instead interact with the periodic potential of the lattice. As a result, their "wave-particle" motion cannot be expected to the same as that for electrons in free space. Thus, in applying the usual equations of electrodynamics to charge carriers in solids, we must use altered values of particle mass. In doing so, we account for most of the influences of the lattice, so that the electrons and holes can be treated as free particles "almost free" carriers in most computations.

Effective Mass

For a free electron,
$$\vec{P} = t\vec{k} = m\vec{J}$$

$$E = \frac{1}{2}m\vec{J}^2 = \frac{\vec{P}^2}{2m} = \frac{t^2\vec{k}^2}{2m}$$

$$\Rightarrow \frac{d\vec{E}}{d\vec{k}} = \frac{t^2\vec{k}}{m}$$

$$\Rightarrow \frac{d^2\vec{E}}{d\vec{k}^2} = \frac{t^2}{m} \Rightarrow m = \frac{t^2}{d^2\vec{k}}d\vec{k}^2$$

The effective mass of an electron in a band with a given (E, R) relationship is

Effective Mass

Al the bottom of the conduction band de is positive But at the lop of the valence band de is negative

.. mil is negative at the (or near the) top of the valence band.

Thus, valance band electrons with negative mass and negative charge move in an electric sield in the same direction as holes with positive mass and positive charge. ... charge transport in the valence band can be fully accounted for by considering hole motion.

mn 0.55mo 1.1mo 0.067mo

Density of States

Occupation Probability: Fermi Dirac Distribution & Fermi Level

Fermi-Dirac distribution function f(E) gives
the probability that an available energy state at Ewill be occupied by an election at temperature T. $f(E) = \frac{1}{1+e(E-E_E)}$

* Properties of fle): \Rightarrow At T=0 & $E \setminus E_F$; $f(E) = \frac{1}{1+\frac{1}{e^{\alpha}}} = \frac{1}{1+0} = 1$ \Rightarrow At T=0 & $E \setminus E_F$; $f(E) = \frac{1}{1+e^{\alpha}} = \frac{1}{\alpha} = 0$ \Rightarrow At T > 0 & $E = E_F$; $f(E) = \frac{1}{1+0^{\alpha}} = \frac{1}{2}$

Fermi Dirac Distribution & Fermi Level

Carrier Concentration: Electron

$$N_{0} = \int_{R_{c}}^{N} N_{c}(E) f(E) dE$$
For $E - E_{F}$ greater than several RT, $f(E) = e^{-(E - E_{F})/RT}$

$$= \frac{4\pi}{h^{3}} (2m_{n}^{*})^{3/2} \int_{C}^{\infty} (E - E_{c})^{1/2} e^{-(E - E_{F})/RT} dE.$$

$$= 2 \left(\frac{2\pi m_{n}^{*} RT}{h^{2}}\right)^{3/2} \left(\frac{E_{F} - E_{c}}{R}\right)^{1/2} e^{-(E_{c} - E_{F})/RT}$$

$$= N_{c} e^{-(E_{c} - E_{F})/RT} \quad \text{where } N_{c} = 2 \left(\frac{2\pi m_{n}^{*} RT}{h^{2}}\right)^{1/2}$$

& N_{c} is called effective density of states in the conduction band

Carrier Concentration: Hole

Similarly,
$$P_0 = \int_{N_V(E)}^{E_V} \left[1 - f(E)\right] dE$$

$$-\alpha = 2\left(\frac{2\pi m_p^* RT}{h^2}\right)^{3/2} - (E_F - E_V)/RT$$

$$= 2\left(\frac{2\pi m_p^* RT}{h^2}\right)^{3/2} e$$

$$= N_V e$$
where $N_V = 2\left(\frac{2\pi m_p^* RT}{h^2}\right)^{3/2}$ is the effective density of states in the valence band.

Location of Fermi Level in Intrinsic Semiconductor

Location of Ei!

$$M' = Pi$$
 $= N_{V} = \frac{-(E_{C}-E_{F})/RT}{2} = N_{V} e$
 $= N_{V} = \frac{E_{C}+E_{V}}{2} - \frac{RT}{2} \ln \frac{Nc}{N_{V}}$
 $= \frac{E_{A}}{2} - \frac{3RT}{4} \ln \frac{m_{N}^{*}}{m_{N}^{*}}$

Carrier Concentration: Intrinsic Semiconductor

Law of Mass Action

Intrinsic carrier Concentration

$$N_i P_i = N_i^2 = N_c N_V R^{-Fg/kT} = N_o P_o$$
 $N_i^* = 2 \left(\frac{2\pi RT}{k^2} \right)^{3/2} \left(\frac{m_n^* m_p^*}{m_p^*} \right)^{3/4} e^{-\frac{Fg/2RT}{k^2}}$
 $Eg = Ego - \beta T$; $Ego is Eg At T = 0^{\circ}K$

Impurity Doping

Intrinsic, n-Type, p-Type Semiconductors

■ Energy band diagrams

Note that donor and acceptor energy levels are not shown.

Extrinsic Semiconductors

p-type band structures :

Group IV semiconductors:

Si and Ge

Acceptors: B and Al

Group III-V semiconductors:

GaAs and GaN

Acceptors: Be, Zn, Cd and Ge

Group IV semiconductors:

Si and Ge

n-type band structures :

Donors: P and As

Group III-V semiconductors:

GaAs and GaN

Donors: Se, Te, Si and Ge

Carrier Concentration and Doping

Since the semiconductor is charge neutral

$$P = -9n_0 + 9p_0 - 9N_0 + 9N_d = 0$$

$$\Rightarrow 9(p_0 - n_0 + N_d - N_A) = 0$$

$$\Rightarrow n_0^2 - (N_d - N_A) n_0 - n_1^2 = 0 \text{ as } p_0 = \frac{n_1^2}{n_0} \text{ for } N_d > N_0$$

$$\Rightarrow n_0 = \frac{N_d - N_d}{2} + \frac{N_d - N_d}{2} \sqrt{1 + \frac{4n_1^2}{(N_d - N_d)^2}}$$

$$= N_d - N_d \text{ as } N_d - N_d \gg n_1$$

$$= N_d \text{ if } N_d = 0$$

$$\therefore n_0 = N_d \text{ if } N_0 = \frac{n_1^2}{N_d}$$
For p -type, $p_0 = N_0$ if $n_0 = \frac{n_1^2}{N_d}$

Carrier Concentration, Fermi Level & Quasi Fermi Level

$$M_0 = N_c e^{-(E_c - E_f)/RT} = \frac{-(E_c - E_i)/RT}{RC} = \frac{(E_f - E_i)/RT}{RC} = \frac{(E_f - E_i)/RT}{RC} = \frac{(E_i - E_f)/RT}{RC} = \frac{(E_i - E_f)/RT}{R$$

Carrier Concentration and Fermi Level in Extrinsic Semiconductor

Summary of Previous Lecture

Esfective mass,
$$m^* = \frac{\hbar^2}{d^2 k^2}$$

Intrinsic carrier concentration, $n_i = 2\left(\frac{2\pi RT}{k^2}\right) \left(\frac{m_p^2 m_n^4}{m_p^4}\right) = \frac{E_g}{2RT}$

Location of E_i ; $E_i = \frac{E_g}{2} - \frac{3RT}{4} \ln \frac{m_n^4}{m_p^4}$

Carrier concentration in defed Semiconductor:

P-type: $p_0 = N_A$, $p_0 = \frac{n_i^2}{N_A}$, $p_0 = \frac{n_i^2}{N_A}$, $p_0 = \frac{n_i^2}{N_A}$
 $p_0 = N_C = \frac{(E_C - E_P)}{RT} = n_i e^{(E_f - E_i)}/RT$
 $p_0 = N_V = \frac{(E_f - E_V)}{RT} = n_i e^{(E_f - E_f)}/RT$

Quasi-Fermi Level: $p_0 = n_i e^{(E_f - E_f)}/RT$

Degenerate Semiconductor

When ND > Ne or NA > Nv,

One cannot use affrorimation
$$f(E) = e^{-(E-EF)/RT}$$

:. $n_0 = \int_{-\infty}^{\infty} N_c(E) f(E) dE$

or $p_0 = \int_{-\infty}^{EV} N_v(E) [1-f(E)] dE$

is to be evaluated numerically.

For heavily defed nor porposition of the production of the production is referred to an degeneral semiconductor.

Such semiconductor is referred to an degeneral semiconductor.

Carrier Density vs. Temperature

At low T: thermal energy is not sufficient to ionize all the donor impurity atoms and therefore no KND. Also No increases as T increases (Freeze-out or ionization region)

As T increases: at some temperature, the condition of complete ionization is reached and No = ND.

No remains constant for a wide range of T.

(Extrinsic region)

As T increases further: a point is reached when $n_i \approx N_D$.

Beyond this point, the semicondor beams intrinsic.

Carrier Density vs. Temperature

Thermal Velocity, Mean Free Path & Mean Free Time

Elections in conduction band or lides in valence band are considered as free particles. The influence of crystal lattice is incorporated in the effective mass.

As fer theorem for equipartion of energy, average thermal evergy is 1/2 kT per degree of freedom.

The electron therefore move rapidly in all directions and suffer random scattering from collisions with lallice atoms, impurity ions and other scattering centers resulting in zero net displacement over a sufficiently long period of time.

The average distace between collisions is called for mean free path and the average time between edlisions is known as mean free time.

Conduction Process: Drift of Carriers

Drift Velocity and Carrier Mobility

when a small electric field \vec{E} is applied to the semiendanter, electrons will experience a force $-9\vec{E}$ that will accelerate them along the field during the line between collisions. Therefore, an additional velocity component V_d , called drift velocity, will be superimposed whom V_{th} resulting in a net displacement of electrons in the direction opposite to the field.

The momentum (force x time) applied to an election during free flight between collisions will be equal to the momentum gain (mass x velocits) by the election.

 $\frac{1}{3\sqrt{4}} = \frac{1}{3\sqrt{4}} = \frac{1}{2\sqrt{2}} =$

Carrier Scattering

Mean free time is determined by various scattering medianisms, such as lattice scattering, impurity scattering, etc. Latice scattering results from thermal vibrations of lattice atoms at T70°K. Such vibrations disturble the periodic potential of the lattice and allow energy transfer between carriers and lattice. As lattice vibrations increase with temperature, mobility is reduced following $\mu_{\perp} \propto \tau^{-3/2}$. Impority results from Coulombe force interaction when a charge carrier travels part an ionized depart impurity. The probability of such scattering depends on the total encentration of iour. Imprily scattering decreases with increasing temperature as a fast moving carrier is likely to be seathered hers than a carrier with less momentum. Hence, MIX T3/2.

Scattering and Mobility

The number of edisions taking place in unit line, \frac{1}{\sigma_c}, is
the sum of the numbers of collisions due to various scattering
mechanisms:

$$\frac{1}{e} = \frac{1}{e_{c, lattice}} + \frac{1}{e_{c, inspecity}}$$
or,
$$\frac{1}{\mu} = \frac{1}{\mu_L} + \frac{1}{\mu_I}$$

Mobility vs. Temperature

Mobility vs. Doping Concentration

Drift Current Density and Resistance

Resistivity vs. Impurity Concentration

High-field Effects

Diffusion of Carriers

\frac{1}{2} of the elections at 2=-l will move from left to right across the plane 2=0 in a free time oc. Hence, the average rate of election flow per unit area across the plane & = 0 is then Fr = \frac{1}{2}n(-l).1.l = \frac{1}{2}n(-l).Vth

(as \frac{1}{Vth} = \frac{7}{c} => Vth = \frac{1}{c})

Semilarly, av. rate of election flow

per unit area of elections at 2= l

everying the plane x = 0 % F2 = 12 n(e). vu

Diffusion of Carriers (Contd.)

... Net rate of electron flow from left to right is
$$F = F_1 - F_2 = \frac{1}{2} V \text{th} \left[n(-l) - n(l) \right]$$
Abbroximating the densities at $z = \pm l$ by the 1st two terms of Taylor series expansion, one obtains
$$F = \frac{1}{2} V \text{th} \left[n(o) - l \frac{dn}{dx} \right] - \left[n(o) + l \frac{dn}{dx} \right]$$

$$= -V \text{th} l \frac{dn}{dx} = -D_n \frac{dn}{dx}$$
where $D_n = V \text{th} \cdot l$ is called the diffusion coefficient or diffusivity.

$$= -9 F = 9 D_n \frac{dn}{dx}$$
Similarly, J_{P_1} diffusion $= -9 D_P \frac{dP}{dx}$

Current Equations

$$J_{n} = 9\mu_{n}n\overrightarrow{2} + 9D_{n}\frac{dn}{dx}$$

$$J_{p} = 9\mu_{p}p\overrightarrow{2} - 9D_{p}\frac{dp}{dx}$$
and
$$J = J_{p} + J_{n}$$

Einstein Relation

$$V_{th} = \sqrt{\frac{3 \, \text{RT}}{m^{*}}}, \quad \mu = \frac{2 \, \text{Te}}{m^{*}}, \quad D = \frac{1}{3} \, \text{V}_{th} \, l$$

$$Also \quad l = V_{th} \cdot \text{Te} = \Rightarrow V_{th} = \frac{l}{\text{Te}}$$

$$\therefore \quad D_{th} = \frac{\frac{1}{3} \, \text{V}_{th} \, l}{\frac{9 \, \text{Te}}{m^{*}}} = \frac{1}{3} \, \text{V}_{th} \, l \times \frac{m^{*}}{9 \, \text{Te}} = \frac{1}{3} \, \text{V}_{th} \cdot \frac{m^{*}}{9}$$

$$\Rightarrow \quad D_{th} = \frac{1}{3} \cdot \frac{3 \, \text{RT}}{m^{*}} \cdot \frac{m^{*}}{9} = \frac{RT}{9}$$

$$\frac{D_{th}}{H_{th}} = \frac{D_{th}}{H_{th}} = \frac{RT}{9}$$

Generation and Recombination of Carriers

In a semiconductor in themal equilibrium, pono = no. when excers carriers are introduced (called carrier injection), equilibrium condition in disturbed Le, ph + hi Mechanism that restones the system to equilibrium (pn = ni) is recombination of excern minority carriers with majority carriers. In a direct band gap semiconductor, direct band to band recombination dominates and the energy released from the recombination process can be emitted as a photon. The process is called radiative recombination. Indirect recombination via band gap recombination centers dominates in an indirect band gap semiconductor and the evergy released is dissipated as heat to the lattice. This proces is called non-radiative recombination.

Direct Recombination

Thermal energy enables a valence band election to make an upward transition, called generation process. Similarly, when an election makes a transition from downward, the process is called recombination. In themal equilibrium, recombination rate, In themal equilibrium, recombination rate, Rth & no po => Rth = C n?, c is proportionality cont. Rth & no po => Rth = C n?, c is proportionality cont. Also, in equilibrium, generation rate Gth = Rth i.e., Gth = C n?.

Minority Carrier Lifetime

Let us assume that at t=0, EHP's are created by a short pulse of light and initial excuss election and hole concentrations are equal, i.e., $\Delta h = \Delta h$. Consider that $\delta n(t)$ and $\delta h(t)$ are excus \bar{e} of h^{\dagger} concentrations at t=t>0.

$$\frac{dn(t)}{dt} = C_{t} - C \left[(n_{0} + \delta n(t)) (p_{0} + \delta p(t)) \right]$$

$$= cn_{t}^{2} - cn_{t}^{2} - c \left[(n_{0} + \delta n(t)) (p_{0} + \delta p(t)) \right]$$

$$= cn_{t}^{2} - cn_{t}^{2} - c \left[(n_{0} + \delta p(t)) + p_{0} \delta n(t) + \delta n(t) \delta p(t) \right]$$
For low level injection, $\delta n(t) \delta p(t) com be neglected$.

Minority Carrier Lifetime (Contd.)

i.
$$\frac{dn(t)}{dt} = \frac{d\delta n(t)}{dt} = -c n_0 \delta p(t) - c p_0 \partial n(t)$$

For p-type material $n_0 \delta p(t) \ll p_0 \delta n(t)$

i. $\frac{d\delta n(t)}{dt} = -c p_0 \delta n(t)$

$$= -c p_0 \delta n(t)$$

$$= -$$

Indirect Recombination

Indirect Recombination

to be captured.

The net recombination rate, R- h is given by $R-G = \frac{\nu_{th}\sigma_{p}\sigma_{h}N_{t}\left(pn-n_{i}^{2}\right)}{\sigma_{p}\left[p+n_{i}e^{\frac{E_{i}-E_{t}}{RT}}\right]+\sigma_{n}\left[n+n_{i}e^{\frac{E_{t}-E_{i}}{RT}}\right]}$ Ve is the thermal velocity of carriers No is the concentration of recombination center In and of denote election and hole capture cross-section. on and of describe the effectiveness of the center in capturing an election and a hole and are measure of how close the election and hole have to come to the center

Continuity Equation

Continuity Equation for Minority Carriers

The rate of increase in number of hole in volume ADX is

$$\frac{\partial p(x,t)}{\partial t} \cdot Adx = \frac{J_p(x)A}{q} - \frac{J_p(x+dx)A}{q} + (G-R)Adx$$

or,
$$\frac{\partial p(x,t)}{\partial t} = \frac{1}{q} \cdot \frac{J_p(x) - J_p(x+dx)}{dx} + G-R$$

As an approaches zero;

$$\frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \cdot \frac{\partial J_p}{\partial x} - \frac{\delta p}{2p} \cdot \text{in } n - \text{type matrial}$$

Similarly,
$$\frac{\partial n(x,t)}{\partial t} = \frac{1}{q} \cdot \frac{\partial J_n}{\partial x} - \frac{\delta n}{2p} \cdot \text{in } p - \text{type matrial}$$

Thank You