

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Edexcel A Level Maths: Pure

2.4 Inequalities

Contents

- * 2.4.1 Linear Inequalities
- * 2.4.2 Quadratic Inequalities
- * 2.4.3 Inequalities on Graphs

2.4.1 Linear Inequalities

Your notes

Linear Inequalities

What are linear inequalities?

- Linear inequalities are similar to equations but answers take a range of values
- Linear means there will be no terms other than degree 1
 - no squared terms or higher powers, no fractional or negative powers
- Inequalities use the symbols following symbols
 - > Greater than e.g. 5 > 3
 - \sim Less than e.g. -8 < 7
 - ≥ Greater than or equal to
 - ≤ Less than or equal to
- Inequalities can be represented in many ways using number lines, set notation and interval notation

Number line diagrams

- Number line diagrams are made up from circles and lines set above a number line
 - A filled-in circle or empty circle above a number denotes whether the number is included or not
 - filled in for the greater/less than or equal to symbols $\leq \geq$
 - empty for the greater/less than symbols < >
 - Arrows show the range of values that are allowed

Set notation

- Set notation is a formal way of writing a range of values
- Use of curly brackets {}
- Intersection ∩ and union u may be used
- Not to be confused with interval notation

Interval notation

- Interval notation uses different brackets to indicate whether a number is included or not
- Use of square [] and round () brackets
- [or] mean included
- (or) mean excluded
 - (4,8] means 4 < x < 8
- Note ∞ always uses (or)
- Not to be confused with set notation

Skills for solving linear inequalities

- representing and interpreting inequalities displayed on a number line
- writing and interpreting set notation
 - eg $\{x: x > 1\} \cap \{x: x \le 7\}$ is the same as $1 < x \le 7$
- writing and interpreting interval notation
 - eg [-4, 6) is the same as -4 ≤ x < 6</p>

How do I solve linear inequalities?

- Treat the inequality as an equation and solve
 - avoid multiplying or dividing by a negative
 - if unavoidable, "flip" the inequality sign so $< \rightarrow >$, $\ge \rightarrow \le$, etc
 - try to rearrange to make the x term positive

Page 4 of 15

2.4.2 Quadratic Inequalities

Your notes

Quadratic Inequalities

Quadratic inequalities

- Similar to quadratic equations quadratic inequalities just mean there is a range of values that satisfy the solution
- Sketching a quadratic graph is essential

Can involve the discriminant or applications in mechanics and statistic

How do I solve quadratic inequalities?

- STEP 1: Rearrange the inequality into quadratic form with a positive squared term
 - $ax^2 + bx + c > 0 (>, <, \le or \ge)$
- STEP 2: Find the roots of the quadratic equation
 - Solve $ax^2 + bx + c = 0$ to get x_1 and x_2 where $x_1 < x_2$
- STEP 3: Sketch a graph of the quadratic and label the roots
 - As the squared term is positive it will be "U" shaped
- STEP 4: Identify the region that satisfies the inequality

- For $ax^2 + bx + c > 0$ you want the region above the x-axis
 - The solution is $x < x_1$ or $x > x_2$
- For $ax^2 + bx + c < 0$ you want the region below the x-axis
 - The solution is $x > x_1$ and $x < x_2$
 - This is more commonly written as $x_1 < x < x_2$
- avoid multiplying or dividing by a negative number
 if unavoidable, "flip" the inequality sign so < → >, ≥ → ≤, etc
 - avoid multiplying or dividing by a variable (x) that could be negative
 (multiplying or dividing by x² guarantees positivity (unless x could be 0) but this can create extra,
 invalid solutions)
 - **do** rearrange to make the x² term positiveBe careful:

Solving quadratic inequalities on a calculator

Be aware of unconventional ways calculators can display an answer
 eq 8 > x > 2 rather than 2 < x < 8

 $Head to \underline{www.savemyexams.com} for more awe some resources$

Copyright © Save My Exams. All Rights Reserved

Examiner Tip

- A calculator can be super-efficient but some marks are for method.
- Use your judgement:
 - is it a "show that" or "prove" question?
 - how many marks?
 - how long is the question?

Find the set of values for which $3x^2 + 2x - 6 > x^2 + 4x - 2$ giving your answer in set notation.

2.4.3 Inequalities on Graphs

Your notes

Inequalities on Graphs

Inequalities on graphs

• Inequalities can be represented on graphs by shaded regions and dotted or solid lines

- These inequalities have two variables, **x** and **y**
- Several inequalities are used at once
- The solution is an **area** on a graph (often called a **region**)
- The inequalities can be linear or quadratic

How do I draw inequalities on a graph?

- Sketch each graph
 - If the inequality is strict (< or >) then use a dotted line
 - If the inequality is **weak** (≤ or ≥) then use a **solid line**
- Decide which side of the line satisfies the inequality

Head to www.savemyexams.com for more awesome resources

- Choose a coordinate on each side and **test** it in the inequality
 - The origin is an easy point to use
- If it satisfies the inequality then that whole side of the line satisfies the inequality
 - For example: (0,0) satisfies the inequality $y < x^2 + 1$ so you want the side of the curve that contains the origin

STEP 1: FIND THE KEY POINTS FOR EACH GRAPH e.g. x+y=4 CROSSES THE AXES

AT (0,4) AND (4,0)

STEP 2: DRAW LINE FOR EACH INEQUALITY

--- DOTTED FOR < OR >
———— SOLID FOR ≤ OR ≥

STEP 3: SHADE THE UNWANTED AREA

STEP 4: LABEL THE UNSHADED AREA

save my exams

Head to www.savemyexams.com for more awesome resources

Examiner Tip

- **Recognise** this type of inequality by the use of **two** variables
- You may have to **deduce** the inequalities from a **given** graph
- Pay careful attention to which **region** you are **asked to shade**
- Sometimes the exam could ask you to shade the region that **satisfies the inequalities this means** you should **shade** the region that is **wanted**.
 - If you're unsure, you could ...
 - ... draw the (dotted and/or solid) lines in on the answer diagram and use a rough sketch to find the region required ...
 - ... and/or ...
 - ... write clearly you have "shaded the unwanted area"
- As long as your final answer is clear you should get the marks!

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Worked example	

Your notes

On the graph below show the region bounded by the following inequalities:

$$y \ge x^2 + 2x - 3 \qquad \qquad x + y < 6$$

$$x + y < 6$$

$$y \ge 2x + 1$$

$$y \ge 2x + 1 \qquad \qquad x + 2y > 3$$

Page 14 of 15

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

FIND THE KEY POINTS FOR EACH GRAPH

$$y = 2x + 1$$

 $(0,1) \left(\frac{-1}{2},0\right) \text{ "} \geqslant \text{SOLID"}$
 $x + 2y = 3$
 $(0,\frac{3}{2}) (3,0) \text{ "} > \text{DOTTED"}$
Copyright © Save My Exams. All Rights Reserved

Save my exams

