# Lecture 4

- 2<sup>nd</sup> law
  - different statements of 2<sup>nd</sup> law
  - Carnot theorem
- Entropy
  - Clausius theorem
  - definition of entropy
- Mathematical statement of 2<sup>nd</sup> law Clausius inequality
- Entropy change of a heat reservoir
- Calculating entropy change

Read Ch. 4 Sandler, Chs. 1 and 2 Callen

# **Objectives**

- Know the common statements of 2<sup>nd</sup> law
- Have appreciation for how the concept of entropy came about
- Use entropy change as criterion for whether a process is thermodynamically feasible
- Distinguish entropy change for system, reservoir, the universe
- Calculate entropy change by connecting to changes in other state variables

#### **Statements of Second Law**

**Clausius** – It's impossible for heat to transfer spontaneously from a colder to a hotter body without causing other changes



Caratheodory – In the neighborhood of any initial state, there are states which cannot be accessed arbitrarily close through adiabatic changes of state, i.e. two adiabatic lines can't cross







### **Carnot Theorem**

- (1) The efficiency of a reversible Carnot cycle operating between two constant heat reservoirs  $R_1$  and  $R_2$  depends only on the temperatures of the reservoirs and is independent of the working substance.
- (2) Furthermore, the efficiency of any irreversible cycle operating between the same heat reservoirs is less than that of the reversible cycle
- → All reversible Carnot cycles have the same efficiency (operating between the same reservoirs) which is maximum

## **Clausius Theorem**

Given any reversible process in which the temperature changes in any prescribed manner, it is always possible to find a reversible process consisting of adiabatic-isothermal-adiabatic steps, such that the heat interaction in the isothermal step is equal to the heat interaction in the original process.



- (i) Draw two adiabatic lines passing i and f
- (ii) Draw an isothermal line to make area above and below equal  $W_{if} = W_{ighf}$

$$Q_{if} = \Delta U_{if} - W_{if} = \Delta U_{ig} + \Delta U_{gh} + \Delta U_{hf} - W_{ig} - W_{gh} - W_{hf}$$

$$Q_{if} = \Delta U_{gh} - W_{gh} = Q_{gh}$$

# **Reversible Cycle**



https://physics.stackexchange.com/ questions/388385/demonstrationof-clausius-theorem-forirreversible-cycles A reversible cycle can be approximated by n small Carnot cycles

Since for each Carnot cycle we have

$$\frac{Q_H}{T_H} + \frac{Q_C}{T_C} = 0$$

$$\sum_{i=1}^{2n} \frac{\delta Q_i}{T_i} = 0$$

In the limit  $n \to \infty$ 

$$\oint \left(\frac{\delta Q}{T}\right)_R = 0$$

#### **A New State Function**

$$R1$$
 $R2$ 
 $B$ 

$$\oint \left(\frac{\delta Q}{T}\right)_R = 0$$

$$\int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{R1} + \int_{B}^{A} \left(\frac{\delta Q}{T}\right)_{R2} = 0$$

$$\int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{R1} = -\int_{B}^{A} \left(\frac{\delta Q}{T}\right)_{R2} = \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{R2}$$

Independent of path!

Suggest defining a state function S, entropy:  $S_B - S_A = \int_{-L}^{B} \left(\frac{\delta Q}{T}\right)_{D}$ 

$$S_B - S_A = \int_A^D \left(\frac{\delta Q}{T}\right)_R$$

For infinitesimal process, differentia form

$$dS = \left(\frac{\delta Q}{T}\right)_R$$

(Rudolf Clausius, 1865)

Am. J. Phys. **60**, 1151 (1992); https://doi.org/10.1119/1.16966

# **Clausius Inequality**



Carnot theorem

$$\eta' = \frac{Q_H + Q_C}{Q_H} < 1 - \frac{T_C}{T_H} \quad \Longrightarrow \quad \frac{Q_H}{T_H} + \frac{Q_C}{T_C} < 0$$

generalize 
$$\oint \left(\frac{\delta Q}{T}\right) < 0 \implies \int_A^B \left(\frac{\delta Q}{T}\right)_{IR} + \int_B^A \left(\frac{\delta Q}{T}\right)_R < 0$$

$$\longrightarrow \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{IR} < \int_{A}^{B} \left(\frac{\delta Q}{T}\right)_{R}$$

$$S_B - S_A > \int_A^B \left(\frac{\delta Q}{T}\right)_{IR}$$

# Entropy and 2<sup>nd</sup> Law

$$S_B - S_A \ge \int_A^B \left(\frac{\delta Q}{T}\right)$$

"=" only applies for reversible process

Differential form

$$dS \ge \frac{\delta Q}{T}$$

Mathematical statement of 2<sup>nd</sup> law!

For isolated system or adiabatic process

$$dS \ge 0$$
 or  $\Delta S \ge 0$ 

$$\Delta S \geq 0$$

The entropy of the universe will always increase

# Entropy and 2<sup>nd</sup> Law

$$S_B - S_A \ge \int_A^B \left(\frac{\delta Q}{T}\right)$$

"=" only applies for reversible process

Differential form

$$dS \ge \frac{\delta Q}{T}$$

Mathematical statement of 2<sup>nd</sup> law!

For isolated system or adiabatic process

$$dS \ge 0$$
 or  $\Delta S \ge 0$ 

$$\Delta S \geq 0$$

Die Entropie der Welt strebt einem Maximum zu.

### **Entropy Change of Heat Bath**

Since heat bath is infinitely large and is always maintained at internal equilibrium, any finite change is infinitesimal, i.e., quasi-static

$$dS_{res} = \frac{\delta Q_{res}}{T_{res}}$$

Entropy change of the universe:  $dS_{svs} + dS_{res} \ge 0$ 

$$dS_{sys} + dS_{res} \ge 0$$

$$dS \ge -dS_{res} = \frac{\delta Q}{T_{res}}$$
 Clausius inequality!

(notation w/o subscript by default refers to system)

# **Entropy Generation**

Any irreversible process leads to entropy generation and contributes to the entropy increase in the universe

- Friction (lost work)
- Temperature gradient
- Concentration gradient
- Pressure gradient

$$dS_{gen} = \delta W_{lost} + \left(1 - \frac{T}{T_{res}}\right) \delta Q_{irr}$$

Second law in terms of entropy generation:

$$dS = \frac{\delta Q}{T_{res}} + dS_{gen} \quad \text{with} \quad dS_{gen} \ge 0$$

# **Calculating System Entropy Change**

From definition: 
$$dS = \left(\frac{\delta Q}{T}\right)_R$$

Using 1<sup>st</sup> law: 
$$\delta Q = dU - \delta W$$

Simple system, only PV work:  $\delta Q = dU + PdV$ 

$$dS = \frac{1}{T}dU + \frac{P}{T}dV \qquad S = S(U, V)$$

fundamental eqn.

$$dU = TdS - PdV \qquad \qquad U = U(S, V)$$

$$T = \left(\frac{\partial U}{\partial S}\right)_{V} \qquad P = -\left(\frac{\partial U}{\partial V}\right)_{S}$$

# **Calculating System Entropy Change**

$$dS = \frac{dU}{T} + \frac{p}{T}dV = \frac{C_V}{T}dT + \left[\frac{1}{T}\left(\frac{\partial U}{\partial V}\right)_T + \frac{p}{T}\right]dV$$

$$dS = \frac{dH}{T} - \frac{V}{T}dp = \frac{C_p}{T}dT + \left[\frac{1}{T}\left(\frac{\partial H}{\partial p}\right)_T - \frac{V}{T}\right]dp$$

Using Maxwell relations



$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV = \frac{C_{V}}{T} dT + \left(\frac{\partial P}{\partial T}\right)_{V} dV$$

$$dS = \left(\frac{\partial S}{\partial T}\right)_P dT + \left(\frac{\partial S}{\partial P}\right)_T dP = \frac{C_P}{T} dT - \left(\frac{\partial V}{\partial T}\right)_P dP$$

# **Simplifications**

$$dS = \frac{C_V}{T} dT$$

$$dS = \frac{C_p}{T} dT$$

$$dS = \frac{C_V}{T}dT + \frac{P}{T}dV = \frac{C_P}{T}dT - \frac{V}{T}dP$$

# **Calculating Entropy Change**

#### Examples:

• Isothermal expansion of ideal gas

$$\Delta S = \frac{Q}{T} = -\frac{W}{T} = nR \ln \frac{V_2}{V_1} \quad (\Delta S)_{res} = \frac{Q_{res}}{T} = -\frac{Q}{T} = -nR \ln \frac{V_2}{V_1} \quad (\Delta S)_{univ} = 0$$

• Free expansion of ideal gas

$$\Delta S = \frac{Q}{T} = -\frac{W}{T} = nR \ln \frac{V_2}{V_1}$$
 same as above, but  $(\Delta S)_{univ} = nR \ln \frac{V_2}{V_1} > 0$ 

Metal bar cooling

$$\Delta S = \int_{T_1}^{T_2} \frac{C_p}{T} = C_p \ln \frac{T_2}{T_1} \qquad (\Delta S)_{res} = \frac{Q_{res}}{T_2} = \frac{C_p (T_1 - T_2)}{T_2}$$
$$(\Delta S)_{univ} = C_p \left( \frac{T_1 - T_2}{T_2} + \ln \frac{T_2}{T_1} \right) > 0$$

## **Entropy Change for Ideal Gas**

$$dS = \frac{C_V}{T}dT + \frac{P}{T}dV = \frac{C_P}{T}dT - \frac{V}{T}dP$$

For constant  $C_P$ ,  $C_V$ 



$$\Delta S = C_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1} = C_P \ln \frac{T_2}{T_1} - nR \ln \frac{P_2}{P_1}$$

# **Questions to Think about**

- What's the condition for isentropic process?
- Show that the adiabats can be simply obtained from  $\Delta S=0$ ?
- For the 1-step isothermal expansion we discussed in Lecture 2 (Example 3.4-7 of Sandler), what's the entropy change of the system, the surrounding, and the universe?