

Assignment 2

$$cost (3,6) = min \{(4,9) + cost(6,9), ((4,10) + cost(6,10)\}$$

$$= min \{(4+6), 2+5\}$$

$$= min \{(10), 7\}$$

$$= 7$$

a

```
cost (3,7) = \min \{(4,9) + \cos + (7,9), ((4,10) + \cos + (7,10)\}
= \min \{4+4, 2+3\}
```

 $cost(3,8) = min\{(4,10) + (ost(8,10), ((4,11) + cost(8,11))\}$ = $min\{2+5, 5+6\}$ = 7

 $cost(2,2) = min\{(3,6) + cost(2,6), ((3,7) + cost(2,7), ((3,8)) + cost(2,8)\}$ $= min\{7+4, 5+2, 7+1\}$ = 7

 $cost(2.3) = min\{c(3.6) + cost(3.6), c(3.7) + cost(3.7)\}$ = $min\{7+2,5+1\}$ = 9

 $cost(2,4) = min \{c(3,8) + cost (4,8)\}$ $= min \{7+11\}$ = 18

 $cost(2,5) = min \{ c(3,1) + cost(5,1), c(3,8) + cost(5,8) \}$ $= min \{ 5+11, 1+8 \}$ = 15

 $cost(1,1) = min \{ c(2,2) + cost(1,2), c(2,3) + cost(1,3), ((2,4) + cost(1,4) + cost(1,4) + cost(1,4) + cost(1,5) \}$ $= min \{ 7+9, 9+7, 18+3, 15+2 \}$ = 16Shortest Path: $1 \rightarrow 2 \rightarrow 7 \rightarrow 10 \rightarrow 12$ & $1 \rightarrow 3 \rightarrow 6 \rightarrow 10 \rightarrow 12$

Q.2) Ans. M=35 W=(5,7,10,12,15,18,20)X 0

At each node end, 'x' means it cannot accommodate any of next value, so we cut-sort then for further expansion, and 'v' means it is the solution states.

We get four solutions

1-> {5,10,20} 2 -> {5,12,18} 3 7 { 7, 10, 18} 4 -1 {15, 20}

Q.4)

Ans. Initially:

Item (x;)	I,	I_5	I4	I_3	I6	I_2
Profit (Vi)	18	12	10	-9	47/2	5
Weight (Wi)	7	3	5	3	2	2
Pi = Vi/Wi	2.57	4	2	3	3.5	2.5

.. decreasing order of profit / Weight value table.

$$\chi$$
: Is I6 I6 I1 I2 I4
V: 12 7 9 18 5 10
W: 3 2 3 7 2 5
 ρ : 4 3.5 3 2.67 2.5 2

$$SW=10$$

 $SP=0$
 $M=13$

Iteration 1: SW = (SW+W/s) = 0+3=3 SWEM, So select Is : S={I;3; SW=3; SP=0+12=19;

Iteration 2: SW=(SW+W6) = 3+2=5 SW < M; So select Is S= { Is, I6 }; SW=5; SP= 12+7=19 Iteration 3: $SW = (SW + W_3) = S + 3 = 8$ $SW \in M$, so selet J_3 $S = \{ J_5, J_6, J_3 \}, SW = 8; SP = 19 + 9 = 28$

Iteration 4: SW+Wi>M, so break down item I.

The remaining capacity of knopsack is 5, so

select only 5 item, of I.

fruc = ((M-SW)/WEiJ) = 13-8 = 5

S = { Is, I6, I3, I, * 5/1}

SP = SP + V; * 5/7 = 28 + (18 * 5/7) = 28 + 12.857SP = 40.85

SW= SW+W,* 5/7 = 8+ (7 *5/7) = 8+5=13

· . Kep knopsack is full.

in Fractional knapsack select items { Is, I6, I3, I, *5/73 and it gives total profit of 40.85 units.

the accordance

Q.5) Ans. Algorithm:

Algorith N-Queen (k,n)

11 Input: n = no. of queen, k = No. of queen being processed currently

11 Output: n x 1 Solution tuple.

for $i \leftarrow 1$ to n do

if PLACE(k,i) then $x[k] \leftarrow i$ if k = n then $print \times [1...N]$ else N-Queen(k+1, n)

N-Queen (K+1, n)

end

end

function Place (k, i)for $j \leftarrow 1$ to k-1 do if x[j] == i OR ((abs(x[j] - i) == abs(j-k)) then yeturn false

end

end

rebum true

putting Q3: placing at the non-attacked places.

O Q1 × × ×

1 × × × Q2

2 × Q3 × ×

There is no place for Q4.

By	0	nakin	y ,	Some	adjustment we get,
			-		
0	X	Q.	X	X	
1	×	X	X	Qz	
2	Q3	X	×	X	
3	X	X	Q4	X	

Therefore, through backtracking we reached a solution where 4 queens are put in each row & column so that no queen is attacking any other on a 4x4 chessboard.

The two solution for n=4 queens: (1,3,0,2) & (2,0,3,1)

Q.6) Ans.

If
$$x[i] == y[j]$$

$$c[i][j] = 1 + [i-1, j-1]$$
else

1621	Y —	>		310	0	religion of	act to	0
X	2	1	b	a	C	a	d	b
Mil	1	0	0	0	0	0	0	0
	a	0	0	-	-	1	1	-
O. N	b	0	1	4	+	1	-	~2
	a	0	1	2	2	2	2	2
	b	0	5	12	2	2	2	3
	C	0	1	12	3	3	13	±3
	d	0	1	12	13	3	4	4
	e	0	11	12	13	3	14	4

ns. Prim's algo	Kruskal's algo
1. Vertex based algorithm	1. Edge - based algorithm.
2. Time complexity is O(v2)	2. Time complexity is O(E+Vlog
3. It tends to perform better on dense graphs	3. It tends to perform better on sparse graphs.
4. It commonly uses a priority queue data structure to effec- 'tively select the next edge to add.	4. It typically uses disjoint se data structures to efficiently check for cycles and maintain connected components.