Chương 1

Giải gần đúng phương trình

1.1 Mở đầu

Sự tăng trưởng của dân số thường có thể được mô hình hóa trong khoảng thời gian ngắn bằng cách giả định rằng dân số tăng liên tục theo thời gian tỷ lệ thuận với con số hiện tại vào thời điểm đó. Giả sử N(t) biểu thị số dân tại thời điểm t và λ biểu thị tỷ lệ sinh không đổi của cộng đồng. Khi đó dân số thỏa mãn phương trình vi phân:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t)$$

Nghiệm của phương trình là $N(t)=N_0e^{\lambda t}$, ở đây N_0 là dân số ban đầu. Mô hình hàm mũ này chỉ có giá trị khi dân số bị cô lập, không có người nhập cư. Nếu nhập cư được phép ở tốc độ không đổi v thì phương trình vi phân trở thành:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t) + v$$

Nghiệm của nó là:

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

Giả sử ban đầu có $N(0)=1\,000\,000$ người, và có tới 435 000 người nhập cư vào cộng đồng trong năm đầu tiên, vậy $N(1)=1\,564\,000$ người có mặt vào cuối năm đầu tiên. Để xác định tỷ lệ sinh của cộng đồng dân số này, chúng ta cần tìm λ trong phương trình:

$$1\,564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

Không thể giải một cách chính xác giá trị λ trong phương trình này, nhưng các phương pháp tính được thảo luận trong chương này có thể được sử dụng để tính gần đúng nghiệm của các phương trình loại này với độ chính xác cao tùy ý.

1.2 Phương pháp chia đôi

Giả sử f là hàm số xác định và liên tục trên khoảng [a,b], với f(a) và f(b) trái dấu. Định lý giá trị trung gian nói rằng tồn tại một số $p \in (a,b)$ với f(p) = 0.

Định lí 1.1. Định lý giá trị trung gian (Intermediate Value Theorem).

Nếu f liên tục trên [a,b] và K nằm giữa f(a) và f(b), tồn tại $c \in (a,b)$ sao cho f(c) = K.

Cụ thể hơn, do f(a) và f(b) trái dấu, do đó 0 nằm giữa f(a) và f(b), do đó tồn tai nghiệm $p \in (a, b)$.

Kết quả trên là một trường hợp đặc biệt (f(a), f(b)) trái dấu, K = 0) của định lý giá trị trung gian, còn được gọi là *định lý Bolzano*.

Mặc dù có thể tồn tại nhiều hơn một nghiệm trong khoảng (a,b), nhưng để thuận lợi, chúng ta giả thiết chỉ có duy nhất một nghiệm trong khoảng này. Khi đó, ta có thể dùng phương pháp sau:

Phương pháp. Phương pháp chia đôi (Bisection method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 trong khoảng [a, b], với f(a) và f(b) trái dấu.

 $D\vec{e}$ bắt đầu, ta đặt $a_1=a$ và $b_1=b$, và đặt p_1 là điểm giữa của [a,b]; nghĩa là:

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

- $N\hat{e}u \ f(p_1) = 0 \ thi \ p = p_1$.
- $N\hat{e}u \ f(p_1) \neq 0 \ thì \ f(p_1) \ cùng dấu với \ f(a_1) \ hoặc \ f(b_1)$.
 - Nếu $f(p_1)$ cùng dấu với $f(a_1)$ thì $p \in [p_1, b_1]$. Đặt $a_2 = p_1$, $b_2 = b_1$.
 - $-N\acute{e}u\ f(p_1)\ c\grave{u}ng\ d\acute{a}u\ v\acute{o}i\ f(b_1)\ th\grave{i}\ p\in [a_1,p_1].\ D\check{a}t\ a_2=a_1,\ b_2=p_1.$

sau đó làm tiếp phương pháp trên với khoảng $[a_2, b_2]$.

Các cách dừng khác (còn gọi là $ti\hat{e}u$ chí dừng) có thể được áp dụng trong phương pháp trên hoặc trong bất kỳ các kỹ thuật lặp lại trong chương này. Ví dụ, chúng ta có thể chọn một dung sai $\varepsilon > 0$ và tạo dãy $p_1, ..., p_N$ cho đến khi đáp ứng một trong các điều kiện sau:

$$|p_N - p_{N-1}| < \varepsilon, \tag{1.1}$$

$$\frac{|p_N-p_{N-1}|}{|p_N|}<\varepsilon,\,p_N\neq 0 \text{ hoặc} \eqno(1.2)$$

$$|f(p_N)| < \varepsilon \tag{1.3}$$

Không may, khó khăn có thể phát sinh với bất kỳ tiêu chí dừng nào. Ví dụ, có các chuỗi $\{p_n\}_{n=1}^{\infty}$ mà hiệu p_n-p_{n-1} hội tụ về 0 trong khi dãy đó lại phân kỳ. Cũng có thể có $f(p_n)$ gần bằng 0 trong khi p_n khác đáng kể so với p. Nếu

không có kiến thức bổ sung về f hoặc p, bất đẳng thức 1.2 là tiêu chuẩn dừng tốt nhất để áp dụng vì nó sát nhất với sai số tương đối.

Khi dùng máy tính để tính xấp xỉ, nên thiết lập một giới hạn trên về số lần lặp lại. Điều này giúp tránh vòng lặp vô hạn, một tình huống có thể phát sinh khi chuỗi $\{p_N\}_{n=0}^{\infty}$ phân kỳ (và cả khi chương trình sai).

Ví dụ 1.1. Chứng minh rằng $f(x) = x^3 + 4x^2 - 10 = 0$ có nghiệm trong khoảng [1,2], và dùng phương pháp chia đôi để xác định nghiệm đúng đến 10^{-4} .

 $Vi\ f(1) = -5\ va\ f(2) = 14,\ f(x) = 0\ chắc\ chắn có nghiệm trong khoảng [1,2].$

Ta có bảng sau:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1,0	2,0	1,5	2,375
2	1,0	1,5	1,25	-1,79687
3	1,25	1,5	1,375	$0,\!16211$
4	1,25	1,375	1,3125	-0,84839
5	1,3125	1,375	1,34375	$-0,\!35098$
6	$1,\!34375$	1,375	$1,\!359375$	-0,09641
γ	$1,\!359375$	1,375	$1,\!3671875$	$0,\!03236$
8	$1,\!359375$	$1,\!3671875$	1,36328125	-0,03215
9	$1,\!36328125$	$1,\!3671875$	1,365234375	0,000072
10	$1,\!36328125$	$1,\!365234375$	1,364257813	-0,01605
11	$1,\!364257813$	$1,\!365234375$	1,364746094	-0,00799
12	$1,\!364746094$	$1,\!365234375$	1,364990234	-0,00396
13	$1{,}364990234$	$1,\!365234375$	$1,\!365112305$	-0,00194

Sau 13 lần lặp, $p_{13} = 1{,}365\,112\,305$ xấp xỉ nghiệm p với sai số:

$$|p - p_{13}| < |b_{14} - a_{14}| = |1,365 234 375 - 1,365 112 305| = 0,000 122 070$$

 $Do |a_{14}| < |p|$ (khoảng đang xét dương), ta có:

$$\frac{|p - p_{13}|}{|p|} < \frac{|b_{14} - a_{14}|}{|a_{14}|} \le 9 \times 10^{-5}$$

Cần chú ý rằng, p_9 thực sự gần với p hơn kết quả cuối cùng p_{13} , tuy nhiên khi thực hiện thuật toán ta không thể biết đều này. Hơn nữa, $|f(p_9)| < |f(p_{13})|$ cũng không liên quan đến việc p_9 sát với p hơn.

Phương pháp chia đôi có hai điểm yếu lớn:

- Cần số vòng lặp N lớn
- Vô tình bỏ qua các xấp xỉ tốt

Dù vậy, phương pháp này lại có một ưu điểm lớn là đảm bảo dãy $\{p_N\}_{n=0}^{\infty}$ hội tụ đến một nghiệm. Do ưu điểm này, phương pháp chia đôi thường được dùng để tìm điểm bắt đầu cho các phương pháp khác hiệu quả hơn mà sẽ được giới thiệu sau.

Định lí 1.2. Cho hàm $f \in [a,b]$ và $f(a)\dot{f}(b) < 0$. Phương pháp chia đôi tạo ra một chuỗi $\{p_n\}_{n=1}^{\infty}$ xấp xỉ nghiệm p của f với sai số như sau:

$$|p_n - p| \le \frac{b - a}{2^n}, \ n \ge 1$$

Chứng minh. Với mọi $n \ge 1$, ta có:

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a) \text{ và } p \in (a_n, b_n)$$

Do

$$p_n = \frac{1}{2}(a_n + b_n)$$

ta suy ra được

$$\frac{1}{2}(a_n + b_n) - b_n \le p_n - p \le \frac{1}{2}(a_n + b_n) - a_n$$

$$\iff \frac{1}{2}(a_n - b_n) \le p_n - p \le \frac{1}{2}(b_n - a_n)$$

$$\iff |p_n - p| \le \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}$$

đpcm.

1.3 Phương pháp điểm bất đông

1.3.1 Điểm bất động và bài toán tìm nghiệm

 $\emph{Diểm bắt động (fixed point)}$ của một hàm là số mà tại đó giá trị của hàm số bằng đúng giá tri của đối số.

Định nghĩa 1. Số p được gọi là điểm bất động của hàm số g nếu g(p) = p.

Trong phần này, chúng ta xét việc đưa bài toán tìm nghiệm về bài toán tìm điểm bất động và tìm sư liên hệ giữa chúng.

Các bài toán tìm nghiệm và các bài toán tìm điểm cố định là các lớp tương đương theo nghĩa sau đây:

• Từ bài toán tìm nghiệm của phương trình f(p) = 0, ta có thể xác định hàm g với điểm bất động tại p theo một số cách, ví dụ,

$$g(x) = x - 3f(x)$$

vì khi thay p vào, g(p) = p - 3f(p) = p.

- Ngược lại, nếu hàm g có một điểm bất động tại p, thì hàm f xác định bởi

$$f(x) = x - g(x)$$

có nghiệm tại p.

Mặc dù các bài toán ta muốn giải quyết là dạng tìm nghiệm, nhưng dạng điểm bất động dễ thực hiện hơn và có một số lựa chọn điểm bất động dẫn tới kỹ thuật tìm nghiệm rất hiệu quả. Trước hết ta cần đi đến dạng bài toán mới này một cách thoải mái, và đưa ra quyết định khi nào hàm số có điểm bất động và điểm bất động được xấp xỉ với độ chính xác bao nhiêu.

Các điểm bất động xuất hiện trong nhiều lĩnh vực toán học khác nhau, và là công cụ chính của các nhà kinh tế dùng để chứng minh các kết quả liên quan đến tính cân bằng. Mặc dù ý tưởng đằng sau kỹ thuật là cũ, nhưng thuật ngữ được sử dụng lần đầu bởi nhà toán học Hà Lan L. E. J. Brouwer (1882 - 1962) trong đầu những năm 1900.

1.3.2 Điều kiện tồn tại của điểm bất động

Ví dụ 1.2. Hãy xác định điểm bất động của hàm $g(x) = x^2 - 2$. Điểm bất động p của g có tính chất:

$$p = g(p) \iff p = p^2 - 2$$

Suy ra

$$p^2 - p - 2 = (p+1)(p-2) = 0$$

Điểm bất động xảy ra đúng khi khi đồ thị của hàm số y=g(x) cắt đồ thị hàm số y=x, vì vậy g có 2 điểm bất động là -1 và 2. Điều này được minh họa bởi hình 1.1:

Hình 1.1: Điểm bất động của $y = x^2 - 2$.

Định lý sau cho điều kiện đủ để hàm số có ít nhất một và có duy nhất một điểm bất động.

Định lí 1.3.

- 1. Nếu $g \in C[a,b]$, và $g(x) \in [a,b] \forall x \in [a,b]$, khi đó g có ít nhất một điểm bất động trên [a,b].
- 2. Hơn nữa, nếu g'(x) tồn tại trên (a,b) và $|g'(x)| < 1 \forall x \in [a,b]$, khi đó, tồn tại duy nhất một điểm bất động trên [a,b].

Trước khi chúng minh định lí trên, ta cần biết định lí giá trị trung bình.

Định lí 1.4. Định lí giá trị trung bình (Mean Value Theorem).

Nếu f liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm $c \in (a,b)$ sao cho tiếp tuyến tại c song song với cát tuyến qua hai điểm mút (a,f(a)) và (b,f(b)), hay nói cách khác:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Chứng minh Định lí 1.3.

1. Nếu g(a)=a hoặc $g(b)=b,\,g$ có điểm bất động a hoặc b. Nếu không, g(a)>a và đồng thời g(b)< b; ta sẽ xét trường hợp này.

Hàm h(x) = g(x) - x liên tục trên [a, b] với:

$$h(a) - a > 0$$
 và $h(b) - b > 0$

Định lý giá trị trung gian khẳng định rằng tồn tại $p \in (a,b)$ sao cho h(p)=0. Điểm p này là điểm bất động của g vì:

$$0 = h(p) = g(p) - p \iff g(p) = p$$

2. Giả sử g có hai điểm bất động p, q trên [a, b]. Không mất tính tổng quát, giả sử p < q. Theo định lí giá trị trung bình, tồn tại $\xi \in (p, q)$ sao cho:

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}$$

Ta có:

$$|p-q| = |g(p) - g(q)| = |g'(\xi)||p-q| < |p-q|$$
 (vô lí)

Giả thuyết g có hai điểm bất động trên [a,b] sai. Vậy với điều kiện ban đầu, chỉ có duy nhất một điểm bất động trên [a,b].

đpcm.

1.3.3 Phương pháp điểm bất động

Xét chuỗi sau:

$$\{p_n\}_{n=0}^{\infty} \mid p_n = g(p_{n-1}) \, \forall n \ge 1$$

Giả sử chuỗi này hội tụ tới p, và g liên tục, thì:

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p)$$

Khi này p chính là điểm bất động của g. Đây chính là tiền đề cho phương pháp điểm bất động.

Cần chú ý rằng phương pháp này chỉ đúng khi chuỗi $\{p_n\}_{n=0}^{\infty}$ hội tụ về p.

Phương pháp. Phương pháp điểm bất động (fixed-point method)

Phương pháp này cho phép tìm điểm bất động p của g, khi biết một điểm bắt đầu p_0 .

 $D \ddot{q} t p = g(p_0).$

- $N\acute{e}u |p-p_0|$ đủ nhỏ, thì ta có p cần tìm.
- $N\acute{e}u |p-p_0|$ chưa đủ nhỏ, ta đặt $p_0=p$ rồi làm tiếp phương pháp trên.

Cũng như với phương pháp chia đôi, có thể dùng nhiều điều kiện dừng khác nhau. Ví dụ trên sử dụng điểu kiện $|p-p_0|$ nhỏ hơn một mốc ϵ nào đó thì dừng lai.

Ta cần nhắc lại rằng điểm quan trọng nhất của phương pháp trên là giả sử $\{p_n\}_{n=0}^{\infty}$ hội tụ về p, tức ta phải chọn hàm g một cách phù hợp, chứ không áp dụng được cho mọi hàm g. Ví dụ sau cho ta thấy sự quan trọng của hàm này.

Ví dụ 1.3. Thử tìm và biện luận cho cách tìm nghiệm của phương trình $x^3 + 4x^2 - 10 = 0$ trong [1, 2] bằng phương pháp điểm bất động.

Ta có một số lựa chọn về hàm g, được chọn ngẫu nhiên:

a)
$$x = g_1(x) = x - x^3 - 4x^2 + 10$$
 b) $x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{0.5}$

c)
$$x = \frac{1}{2}(10 - x^3)^{0.5}$$
 d) $x = g_4(x) = \left(\frac{10}{x+4}\right)^{0.5}$

e)
$$x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Với $p_0 = 1,5$, ta có bảng sau:

n	a)	b)	c)	d)	e)
0	1,5	1,5	1,5	1,5	1,5
1	-0,875	0,8165	$1,\!286953768$	1,348399725	$1,\!373333333$
2	6,732	2,9969	1,402540804	1,367376372	$1,\!365262015$
3	-469,7	$\sqrt{-8,\!65}$	1,345458374	$1,\!364957015$	$1,\!365230014$
4	1.03×10^{8}		1,375170253	1,365264748	1,365230013

n	a)	b)	c)	d)	e)
5			$1,\!360094193$	1,365225594	
6			1,367846968	1,365230576	
γ			1,363887004	1,365229942	
8			1,365916734	1,365230022	
g			$1,\!364878217$	$1{,}365230012$	
10			1,365410062	1,365230014	
15			1,365223680	1,365230013	
20			1,365230236		
25			1,365230006		
30			$1{,}365230013$		

Với nghiệm thực 1,365 230 013, ta thấy lựa chọn c), d), e) có tiềm năng nhất. Phương pháp chia đôi cần 27 lần lặp để đạt được kết quả này, tuy nhiên d) chỉ cần 15 lần, còn e) thậm chí chỉ cần 4. Ngược lại, a) thì phân kì còn b) thậm chí không xác đinh (căn của số âm).

1.3.4 Tìm g phù hợp

Tiếp tục nhắc lại điểm quan trọng nhất để làm được phương pháp điểm bất động là chọn được g phù hợp. Định lí sau và hệ quả của nó cho ta một số gợi ý về việc chọn những hàm phù hợp, hay quan trọng hơn, loại bỏ những hàm không phù hợp.

Định lí 1.5. Định lí điểm bất động

Cho hàm g liên tục trên [a,b] sao cho $g(x) \in [a,b] \, \forall x \in [a,b]$. Giả sử thêm rằng g khả vi trên (a,b) và

$$|g'(x)| < 1 \,\forall x \in (a, b)$$

Thì với mọi $p_0 \in [a, b]$, chuỗi

$$p_n = g(p_{n-1}) \,\forall n \ge 1$$

hôi tu về p là điểm bất động duy nhất của <math>g trên [a,b].

Chứng minh. Dựa vào 1.3, có một điểm bất động duy nhất p trong khoảng [a,b]. Do $g(x) \in [a,b] \, \forall x \in [a,b]$, ta chắc chắn dãy $\{p_n\}_{n=0}^{\infty}$ tồn tại. Theo điều kiện $|g'(x)| < 1 \, \forall x \in (a,b)$, tồn tại 0 < k < 1 thỏa mãn:

$$|g'(x)| \le k \, \forall x \in (a, b)$$

Kết hợp điều trên với định lí giá trị trung bình, ta có:

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi_n)||p_{n-1} - p| \le k|p_{n-1} - p|$$

với $\xi_n \in (a, b)$. Quy nạp kết quả này ta có:

$$|p_n - p| \le k^n |p_0 - p|$$

$$\iff \lim_{n \to \infty} |p_n - p| \le \lim_{n \to \infty} k^n |p_0 - p| = 0$$

Vậy ta thấy $\{p_n\}_{n=0}^{\infty}$ hội tụ về p.

đpcm.

Ta tiếp tục xem xét một số hệ quả hữu dụng của định lí trên.

Hệ quả 1.1. Hệ quả của định lí điểm bất động

Nếu g thỏa mãn các điều kiện trong định lí điểm bất động, ta có cận trên của sai số tuyệt đối khi ước lượng p bằng p_n :

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$
(1.4)

 $v\grave{a}$

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| \ \forall n \ge 1$$
 (1.5)

với k như đã định nghĩa trong chứng minh của định lí điểm bất động. Chứng minh. Ta có:

$$|p_n - p| \le k^n |p_0 - p|$$

Vì $p \in [a, b]$ nên ta suy ra được bất đẳng thức 1.4:

$$|p_n - p| \le k^n |p_0 - p| \le k^n \max\{p_0 - a, b - p_0\}$$

Xét khi $n \ge 1$, bằng quy nap và định lí giá trị trung bình, ta có:

$$|p_{n+1} - p_n| = |g(p_n) - g(p_{n-1})| \le k^n |p_1 - p_0|$$

Do đó với $m>n\geq 1$:

$$|p_{m} - p_{n}| = |p_{m} - p_{m-1} + p_{m-1} - \dots - p_{n+1} + p_{n+1} - p_{n}|$$

$$\leq |p_{m} - p_{m-1}| + \dots + |p_{n+1} - p_{n}|$$

$$\leq k^{m-1}|p_{1} - p_{0}| + \dots + k^{n}|p_{1} - p_{0}|$$

$$= |p_{1} - p_{0}| \sum_{i=n}^{m-1} k^{i}$$

$$= |p_{1} - p_{0}| \frac{k^{m} - k^{n}}{k - 1}$$

Lấy giới hạn hai vế với $m \to \infty$, ta có được bất đẳng thức 1.5:

$$\lim_{m \to \infty} |p_m - p_n| = |p_1 - p_0| \lim_{m \to \infty} \frac{k^m - k^n}{k - 1}$$

$$\iff |p_n - p| = \frac{k^n}{1 - k} |p_1 - p_0|$$

đpcm.

Qua các kết quả trên, ta rút ra hai quy tắc chọn hàm g:

- $|g'(x)| < 1 \forall x \in (a,b)$
- đạo hàm của g càng nhỏ càng tốt

1.4 Phương pháp Newton & các phương pháp liên quan

Phương pháp Newton, hay Newton-Raphson, là một trong những phương pháp mạnh nhất và phổ biến để tìm nghiệm phương trình. Trong phần này, ta sẽ sử dụng khai triển Taylor để biện luận về phương pháp Newton, và hơn nữa là về cận cho sai số của phương pháp này.

1.4.1 Phương pháp Newton

Giả sử $f \in C^2[a, b]$ (f khả vi liên tục đến cấp 2). Xét $p_0 \in [a, b]$ là một xấp xỉ của nghiệm p sao cho $f'(p_0) \neq 0$ và $|p - p_0|$ "nhỏ".

Khai triển Taylor quanh p_0 và tại x = p, ta có:

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

Với $\xi(p)$ nằm giữa p và p_0 .

Do giả thiết $|p-p_0|$ nhỏ, $(p-p_0)^2$ thậm chí còn nhỏ hơn. Phương trình trên trở thành:

$$0 \approx f(p_0) + (p - p_0)f'(p_0)$$
$$\Rightarrow p \approx p_0 - \frac{f(p_0)}{f'(p_0)} \equiv p_1$$

Phương trình trên là tiền đề cho phương pháp Newton. Phương pháp Newton bắt đầu từ một p_0 cho trước, và tạo dãy $\{p_n\}_{n=0}^{\infty}$ theo quy tắc:

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)} \tag{1.6}$$

Phương pháp. Phương pháp Newton (Newton's Method)

Phương pháp này cho phép tìm nghiệm p của f, khi biết một điểm bắt đầu p_0 .

$$D \ddot{a} t \ p = p_0 - \frac{f(p_0)}{f'(p_0)}.$$

- $N\acute{e}u |p-p_0| \ d\mathring{u} \ nh\mathring{o}$, thì ta có p cần tìm.
- $N\acute{e}u | p p_0 |$ chưa đủ nhỏ, ta đặt $p_0 = p$ rồi làm tiếp phương pháp trên.

Tương tự phương pháp chia đôi, ta có thể tùy chọn nhiều điều kiện dừng khác nhau.

Ví dụ 1.4. Xấp xỉ nghiệm của $f(x) = \cos x - x = 0$ bằng phương pháp Newton. Xét đồ thị của hàm $y = \cos x$ và y = x:

1.4. PHƯƠNG PHÁP NEWTON & CÁC PHƯƠNG PHÁP LIÊN QUAN 11

Hình 1.2: Đồ thị của $y = \cos x$ và y = x.

Dựa theo đồ thị, ta biết phương trình có nghiệm trong khoảng $[0, \frac{\pi}{2}]$, nên ta xét điểm khởi đầu $p_0 = \frac{\pi}{4}$.

Ta có $f'(x) = -\sin(x) - 1$. Áp dụng phương pháp Newton, ta có công thức cho chuỗi xấp xỉ sau:

$$\begin{cases} p_0 = \frac{\pi}{4} \\ p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)} \, \forall n \ge 0 \end{cases}$$

Ta có bảng lặp, đạt kết quả tốt ngay khi n = 3:

n	p_n
0	$\frac{\pi}{4}$
1	0,739536134
2	0,739085178
3	0,739085133
4	0,739085133

1.4.2 Khả năng hội tụ của phương pháp Newton

Với phương pháp điểm bất động, việc chọn hàm g là mấu chốt để đạt được kết quả tốt. Với phương pháp Newton, điểm khởi đầu p_0 lại đóng vai trò tối quan trọng. Biện luận trong 1.4.1 chỉ đúng khi $|p-p_0|$ nhỏ, tức ta có xấp xỉ khởi đầu tốt (tuy nhiên vẫn có những ngoại lệ, không cần xấp xỉ tốt vẫn có thể hội tụ tới nghiệm).

Sau đây ta sẽ xem xét kĩ hơn khả năng hội tụ của phương pháp Newton để thấy được sự nhạy cảm của phương pháp này với điểm khởi đầu.

Định lí 1.6. Cho $f \in C^2[a,b]$. Nếu f = 0 có nghiệm $p \in (a,b)$ sao cho $f'(p) \neq 0$, thì tồn tại $\delta > 0$ sao cho phương pháp Newton hội tụ với bất kì xấp xỉ ban đầu $p_0 \in [p - \delta, p + \delta]$.

Chứng minh. Xét công thức chuỗi của phương pháp Newton.

$$\begin{cases} p_{n+1} = g(p_n) \\ g(x) = x - \frac{f(x)}{f'(x)} \end{cases}$$

Dễ thấy công thức của phương pháp Newton có dạng giống như phương pháp điểm bất định (kết quả của g ở vòng lặp này là đầu vào cho g ở vòng lặp kế tiếp; p là điểm bất động của g). Vậy hướng chứng minh tiềm năng là sử dụng định lí điểm bất động, chứng minh hàm g với các điều kiện đã cho là một hàm thỏa mãn các điều kiện trong định lí điểm bất động, từ đó đảm bảo được sự hội tụ của $\{p_n\}$.

Ta chia chứng minh thành hai phần: tồn tại $\delta > 0$ mà:

- 1. g khả vi liên tục trên $I = [p \delta, p + \delta]$ và $|g'(x)| < 1 \,\forall x \in I$, và
- $2. g(x) \in I \forall x \in I,$

Ta chứng minh điều 1 thông qua bổ đề sau:

Bổ đề 1.1. Cho $f \in C[a,b]$. Xét $p \in (a,b)$ sao cho $f(p) \neq 0$.

(a) Nếu $f(p) \neq 0$ thì tồn tại $\delta > 0$ sao cho:

$$f(x) \neq 0 \, \forall x \in [p - \delta, p + \delta] \subseteq [a, b]$$

(b) Nếu f(p) = 0 và cho K > 0 thì tồn tại $\delta > 0$ sao cho:

$$|f(x)| \le K \, \forall x \in [p - \delta, p + \delta] \subseteq [a, b]$$

Chứng minh Bổ đề 1.1.

Do $f \in C[a, b]$, mà $p \in (a, b)$, theo định nghĩa tính liên tục, ta có:

$$\lim_{x \to p} f(x) = f(p)$$

Phân tích phương trình trên, theo định nghĩa giới hạn, ta biết rằng với mọi E>0, tồn tại Δ sao cho:

$$|f(x) - f(p)| < E \,\forall x \in (p - \Delta, p + \Delta) \cap (a, b)$$

Với mỗi E, ta lại chọn được $\delta < \Delta$ sao cho:

$$|f(x) - f(p)| < E \,\forall x \in [p - \delta, p + \delta] \subseteq [a, b]$$

(a) Xét khi $E = \varepsilon < |f(p)|$, ta có:

$$f(p) - \varepsilon < f(x) < f(p) + \varepsilon$$

Nếu f(p) < 0, $f(p) + \varepsilon < 0$, dẫn đến $f(x) < 0 \,\forall x \in [p - \delta, p + \delta]$.

Nếu f(p) > 0, $f(p) - \varepsilon > 0$, dẫn đến $f(x) > 0 \,\forall x \in [p - \delta, p + \delta]$.

Vây luôn chon được δ thỏa mãn yêu cầu.

1.4. PHƯƠNG PHÁP NEWTON & CÁC PHƯƠNG PHÁP LIÊN QUAN 13

(b) Xét khi E=K. Do f(p)=0, ta có ngay kết quả:

$$|f(x)| < K \, \forall x \in [p - \delta, p + \delta] \subseteq [a, b]$$

đpcm.

Ta chứng minh điều 1 như sau:

Vì $f \in C^2[a,b]$, nên $f' \in C^1[a,b]$. Áp dụng phần a của bổ đề 1.1 với f', ta thấy rằng tồn tại $\delta_1 > 0$ sao cho:

$$f'(x) \neq 0 \, \forall x \in [p - \delta_1, p + \delta_1] \subseteq [a, b]$$

Vì $f'(x) \neq 0$, nên g xác định trên $[p - \delta_1, p + \delta_1]$. Nói cách khác, $g \in C[a, b]$. Lấy đao hàm g, ta có:

$$g'(x) = 1 - \frac{f'(x)f'(x) - f''(x)f(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

Vì $f \in C^2[a,b]$, nên $f'' \in C[a,b]$, nên g'(x) xác định trên $[p-\delta_1,p+\delta_1]$. Nói cách khác, $g \in C^1[a,b]$.

Xét g'(p). Theo giả thuyết, f(p) = 0, nên g'(p) = 0. Áp dụng phần b của bổ đề 1.1 cho g' và cho 0 < k < 1 bất kì, ta thấy rằng tồn tai $\delta_2 > 0$ sao cho:

$$|g'(x)| \le k \, \forall x \in [p - \delta_2, p + \delta_2] \subseteq [a, b]$$

Chọn $0 < \delta < \min\{\delta_1, \delta_2\}$. Vậy ta chứng minh được điều 1, rằng tồn tại $\delta > 0$ sao cho:

$$g \in C^1I$$
 và $\left|g'(x)\right| \leq k < 1 \, \forall x \in I$ với $I = [p-\delta, p+\delta]$

Ta chứng minh điều 2 như sau:

Theo định lí giá trị trung bình, với mọi $x \in I$, tồn tại ξ nằm giữa x và p sao cho:

$$|g(x) - g(p)| = |g'(\xi)||x - p|$$

Theo công thức chuỗi của phương pháp Newton, p là điểm bất động của g, tức p=g(p). Thế vào phương trình trên, ta có:

$$|g(x) - p| = |g(x) - g(p)| = |g'(\xi)||x - p| \le k|x - p| < |x - p|$$

Do $x \in I$ nên $|x - p| < \delta$, do đó:

$$|g(x) - p| < |x - p| < \delta \iff g(x) \in I$$

Vậy ta chứng minh được điều 2.

Tổng hợp lại, đến đây, ta chứng minh được tồn tại $\delta > 0$ sao cho:

$$\begin{cases} g \in C^1 I = [p - \delta, p + \delta] \text{ và } |g(x)| < 1 \,\forall x \in I \\ g(x) \in I \,\forall x \in I \end{cases}$$

Áp dụng định lí điểm bất động, ta thấy chuỗi $\{p_n\}_{n=0}^{\infty}$ cho bởi công thức của phương pháp Newton hội tụ về điểm bất động p của g, cũng là nghiệm của f, với p_0 khởi đầu bất kì thuộc $[p-\delta,p+\delta]$.

Kết quả trên có ý nghĩa quan trọng về lí thuyết do đảm bảo sự hội tụ của phương pháp Newton khi biết δ "phù hợp", tuy nhiên trong bài tập lại ít dùng do không nói đến cách tìm δ .

Theo kinh nghiệm, phương pháp Newton có một đặc điểm hữu dụng là nó hội tụ nhanh với p_0 tốt, đồng thời phân kì nhanh với p_0 xấu, cho phép loại bỏ các điểm khởi đầu kém.

1.4.3 Phương pháp dây cung

Một điểm yếu quan trọng của phương pháp Newton là cần phải tính đạo hàm của f, và có nhiều trường hợp đạo hàm rất khó tính hay ước lượng.

Để tránh điểm yếu này, phương pháp dây cung (secant method) có một chút thay đổi trong công thức chuỗi.

Theo định nghĩa:

$$f'(p_n) = \lim_{x \to p_n} \frac{f(x) - f(p_n)}{x - p_n}$$

Nếu p_{n-1} gần với p_n , ta có:

$$f'(p_n) \approx \frac{f(p_{n-1}) - f(p_n)}{p_{n-1} - p_n} = \frac{f(p_n) - f(p_{n-1})}{p_n - p_{n-1}}$$

(Công thức trên là một xấp xỉ sai~phân~hữu~hạn~(finite~difference)). Thay vào công thức 1.6, ta có:

$$p_{n+1} = p_n - \frac{f(p_n)}{\frac{f(p_n) - f(p_{n-1})}{n-n}} = p_n - \frac{f(p_n)(p_n - p_{n-1})}{f(p_n) - f(p_{n-1})}$$
(1.7)

Đây chính là công thức được dùng trong phương pháp dây cung.

Phương pháp. Phương pháp dây cung (secant method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 khi biết hai điểm khởi đầu p_1 và p_2 .

Đặt p_3 là hoành độ của giao điểm của đường thẳng nối $(p_1, f(p_1))$ và $(p_2, f(p_2))$ với Ox. Tiếp tục thực hiện phương pháp trên với p_2 và p_3 và các số sau đó, chuỗi sẽ hội tụ đến p.

Chú ý rằng, công thức 1.7 có thể được rút ngắn thành:

$$p_{n+1} = \frac{f(p_n)p_{n-1} - f(p_{n-1})p_n}{f(p_n) - f(p_{n-1})}$$
(1.8)

Công thức trên cũng chính là công thức nhận được khi sử dụng cách tính thông thường (tìm phương trình đường thẳng nối hai điểm $(p_1, f(p_1))$ và $(p_2, f(p_2))$ rồi tìm giao điểm với Ox). So sánh với công thức (1.7), ta thấy:

 Công thức (1.8) có tỉ số và mẫu số đều là những số rất nhỏ (do số trừ và số bị trừ ở hai hiệu đều xấp xỉ nhau), dẫn đến sai lệch khi tính toán.

1.4. PHƯƠNG PHÁP NEWTON & CÁC PHƯƠNG PHÁP LIÊN QUAN 15

• Công thức (1.7) nhân hiệu ở tử số với $f(p_n)$ trước khi chia, do đó giảm được sai lệch khi tính toán.

Do vậy, trong sử dụng thực tế, công thức 1.7 được sử dụng nhiều hơn.

1.4.4 Phương pháp điểm sai

Phương pháp điểm sai (false position method, hay Regula Falsi) sinh ra các xấp xỉ theo cách gần giống với phương pháp dây cung, tuy nhiên phương pháp này có một khác biệt quan trọng: nó đảm bảo nghiệm luôn nằm trong khoảng đang tìm, giống phương pháp chia đôi, và thu hẹp khoảng này sau mỗi lần lặp. Tính chất này gọi là bracketing, và phương pháp Newton và dây cung không có tính chất này.

Phương pháp. Phương pháp điểm sai (false position method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 khi biết hai điểm khởi đầu p_0 và p_1 sao cho $f(p_0)$ và $f(p_1)$ trái dấu.

Đặt p_2 là hoành độ của giao điểm của đường thẳng nối $(p_0, f(p_0))$ và $(p_1, f(p_1))$ với Ox.

Cách tính p_3 như sau:

- Nếu f(p₁ và f(p₂) trái dấu, thì p₃ là hoành độ của giao điểm của đường thẳng nối (p₂, f(p₂)) và (p₁, f(p₁)) với Ox.
- Nếu không, thì p₃ là hoành độ của giao điểm của đường thẳng nối (p₂, f(p₂))
 và (p₀, f(p₀)) với Ox; đồng thời, tráo đổi giá trị của p₀ và p₁.

Tương tự với p_3 , tính được p_4 , p_5 ,...

Ta thấy yêu cầu $f(p_0)$ và $f(p_1)$ trái dấu là hiển nhiên do phương pháp này có tính bracketing, nếu không có nghiệm trong khoảng giữa p_0 và p_1 thì phương pháp sẽ không hội tụ.

Ta cũng thấy yêu cầu tráo giá trị của p_0 và p_1 để đảm bảo nghiệm nằm giữa p_2 và p_3 . Ngoài ra, do việc tráo giá trị, khi thuật toán kết thúc, p chỉ đảm bảo kep giữa 2 giá trị cuối p_N và p_{N-1} .