

Mutiple-try Metropolis (MTM)

Liu, Liang, and Wong (2000)

generate m equispaced candidate proposals on both sides

pick one with probability proportional to density

accept with probability min $(1, \frac{2}{5})_{\pi}$

Mutiple-try Metropolis (MTM)

generate m equispaced candidate proposals on both sides

pick one with probability proportional to density

accept with probability min
$$\left(1, \frac{\sum \pi(\cdot)}{\sum \pi(\cdot)}\right)$$

- 1. Introduction
 - Variable selection and model-X knockoffs
 - Knockoff sampling is difficult
- 2. Characterizing knockoff distributions
 - The characterization theorem
 - Connection to Markov chain Monte Carlo (MCMC)
- 3. Metropolized knockoff sampling (Metro)
 - How it works
 - Time complexity and graphical structure
- 4. Good proposals inspired by the MCMC literature
 - Covariance-guided proposal
 - Multiple-try Metropolis (MTM)
- 5. Simulation results
- 6. Discussion