Introduction to data science

Patrick Shafto

Department of Math and Computer Science

Plan for today

- Updates for next week!
 - Class canceled Monday
 - Guest lecture on Thurs by a data scientist (former actual scientist) at a local startup (that is likely hiring!)
- HW: Bechel test
- More viz!
- HW for Sunday

HW10

- Propose a question for your project
- Explain why it is an interesting question
- What data will you use to answer it?
- How will you operationalize the question?
- How will you confirm your results?
- What are assumptions / limitations?
- What is the statement that you will be able to make after the analysis?
- Who is in your group?

Homework

Read the Bethel test and think about it!

Example of complete analysis

 http://nbviewer.jupyter.org/github/brianckeegan/ Bechdel/blob/master/Bechdel_test.ipynb

Think about the <u>rubric!</u>
Also think about cleaning / exploratory data analysis

	Capstone 4
Interpretation Ability to explain information presented in mathematical forms (e.g., equations, graphs, diagrams, tables, words)	Provides accurate explanations of information presented in mathematical forms. Makes appropriate inferences based on that information. For example, accurately explains the trend data shown in a graph and makes reasonable predictions regarding what the data suggest about future events.
Representation Ability to convert relevant information into various mathematical forms (e.g., equations, graphs, diagrams, tables, words)	Skillfully converts relevant information into an insightful mathematical portrayal in a way that contributes to a further or deeper understanding.
Calculation	Calculations attempted are essentially all successful and sufficiently comprehensive to solve the problem. Calculations are also presented elegantly (clearly, concisely, etc.)
Application / Analysis Ability to make judgments and draw appropriate conclusions based on the quantitative analysis of data, while recognizing the limits of this analysis	Uses the quantitative analysis of data as the basis for deep and thoughtful judgments, drawing insightful, carefully qualified conclusions from this work.
Assumptions Ability to make and evaluate important assumptions in estimation, modeling, and data analysis	Explicitly describes assumptions and provides compelling rationale for why each assumption is appropriate. Shows awareness that confidence in final conclusions is limited by the accuracy of the assumptions.
Communication Expressing quantitative evidence in support of the argument or purpose of the work (in terms of what evidence is used and how it is formatted, presented, and contextualized)	Uses quantitative information in connection with the argument or purpose of the work, presents it in an effective format, and explicates it with consistently high quality.

• The Bechdel test (/bɛkdəl/ BEK-dəl) asks whether a work of fiction features at least two women who talk to each other about something other than a man. The requirement that the two women must be named is sometimes added.

ggplot

- yhat ggpy
- for more examples, look up ggplot2 for R

```
In [1]:
         %matplotlib inline
          from ggplot import *
          import pandas as pd
          import numpy as np
In [8]:
          ggplot(diamonds, aes(x='price', color='clarity')) + \
               geom_density() + \
               scale color brewer(type='div', palette=7) + \
               facet wrap('cut')
                                   Fair
                                                                               Good
           0.00045 -
           0.00040 -
           0.00035 -
           0.00030 =
           0.00025 -
           0.00020 -
           0.00015 -
           0.00010 -
           0.00005 = 
           0.00000
                                  Ideal
                                                                              Premium
           0.00045 =
                                                                                                           darity
           0.00040 -
           0.00035 =
           0.00030 -
                                                                                                          SII
           0.00025 -
                                                                                                          SI2
           0.00020 -
                                                                                                       VS1
           0.00015-
                                                                                                          V52
           0.00010-
                                                                                                          WS1
           0.00005 -
           0.000000_{-3}
                                                                                                           WS2
```


In [5]: ggplot(mtcars, aes(x='mpg', y='cyl')) + geom_point(color='green') 9-8-7-6-5 5-4-10 15 20 30

mpg

Bokeh

- http://bokeh.pydata.org/en/latest/docs/user_guide/ quickstart.html
 - Getting Started
 - Up to datetime axes
- More examples (check out the server apps!):
 - http://bokeh.pydata.org/en/latest/docs/ gallery.html#gallery-server-examples

In class work

- Take the bokeh texas example and modify to be another state (try NJ!)
 - http://bokeh.pydata.org/en/latest/docs/gallery/ texas.html
 - Comment each line of code!

HW10

- Propose a question for your project
- Explain why it is an interesting question
- What data will you use to answer it?
- How will you operationalize the question?
- How will you confirm your results?
- What are assumptions / limitations?
- What is the statement that you will be able to make after the analysis?
- Who is in your group?