Определения к кр по линалу 3 модуля.

1. Что такое ядро гомоморфизма групп? Приведите пример.

 \mathcal{A} дро гомоморфизма $f: G \to F$ $Ker f = \{g \in G | f(g) = e_F\}$ $(e_F - \text{нейтральный элелемент в } F).$

Пример: В гомоморфизме $\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ с $h(u) = u \mod 3$ ядро состоит из целых чисел, делящихся на 3.

2. Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

 \forall подгруппа в (\mathbb{Z} , +) имеет вид $k\mathbb{Z}$ для некоторых $k \in \mathbb{N} \cup \{0\}$.

3. Дайте определение левого смежного класса по некоторой подгруппе.

Пусть G – группа, $H \subseteq G$ – подгруппа и $g \in G$. Тогда левым смеженым классом элемента g по подгруппе H называется множество $gH = \{gh|h \in H\}$.

4. Дайте определение нормальной подгруппы.

Подгруппа H называется *нормальной*, если gH = Hg, $\forall g \in G$ (равенство правых и левых смежных классов).

5. Что такое индекс подгруппы?

 $\mathit{Индексом}$ подгруппы H в группе G называется число левых смежных классов G по H.

6. Сформулируйте теорему Лагранжа.

Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда $|G| = |H| \cdot [G:H]$.

7. Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда 3 условия эквивалентны:

- 1) H нормальна
- 2) $\forall g \in G \ gHg^{-1} \subseteq H \ (gHg^{-1} = \{ghg^{-1} | h \in H\})$
- 3) $\forall g \in G \ gHg^{-1} = H$
- 8. Дайте определение факторгруппы.

Пусть H – нормальная подгруппа. Тогда G/H – множество левых смежных классов по H с операцией умножения: $(g_1H) \cdot (g_2H) = g_1 \cdot g_2H$ называется факторгруппой G по H.

9. Что такое естественный гомоморфизм?

Отображение $\varepsilon: G \to G/H$, сопоставляющее каждому элементу $a \in G$ его класс смежности aH, называется естественным гомоморфизмом.

10. Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

H – нормальная подгруппа $\Leftrightarrow H = Kerf$, где f – некоторый гомоморфизм.

11. Сформулируйте теорему о гомоморфизме групп. Приведите пример.

Пусть $f:G\to F$ – гомоморфизм групп. Тогда группа $Imf=\{a\in F|\exists g\in G, f(g)=a\}$ изоморфна факторгруппе G/Kerf, $Kerf=\{g\in G|f(g)=e_F\}$ (Kerf – ядро гомоморфизма).

$$G/Kerf \simeq Imf$$

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$ $f: \mathbb{Z} \to \mathbb{Z}_n$, \forall целому числу сопоставляем его остаток от деления на $n-Kerf=n\mathbb{Z}$.

12. Что такое прямое произведение групп?

Прямое произведение групп $(G,+) \times (D,\star)$ – это группа из всех пар элементов с операцией поэлементного умножения:

$$(g_1,d_1)\times(g_2,d_2)=(g_1+g_2,d_1\star d_2)$$

13. Сформулируйте определение автоморфизма и внутреннего автоморфизма.

Aетоморфизм – это изоморфизм из G в G.

Внутренний автоморфизм – это отображение $I_a: g \mapsto aga^{-1}$.

14. Что такое центр группы? Приведите пример.

Lентр группы G – это множество Z(G) = $\{a \in G | ab = ba \ \forall b \in G\}$. G – абелева $\Leftrightarrow Z(G)$ = G. Z(G) является нормальной подгруппой G.

- Центром абелевой группы G является G.
- Центром группы матриц по умножению является единичная матрица.

15. Что можно сказать про факторгруппу группы по её центру?

21. Чему изоморфна факторгруппа группы по ее центру?

 $G/Z(G) \simeq Inn(G)$ (Inn – подгруппа, которую образуют все внутренние автоморфизмы группы Aut(G)).

16. Сформулируйте теорему Кэли.

 \forall конечная группа порядка n изоморфна некоторой подгруппе группы S_n .

17. Дайте определение кольца.

Пусть $K \neq \emptyset$ – множество, на котором заданы две бинарные операции " + " и " · ", такие, что:

- 1) (K, +) абелева группа (это аддитивная группа кольца)
- 2) (K,\cdot) полугруппа (это мультипликативная полугруппа кольца)
- 3) Умножение дистрибутивно относительно сложения: $\forall a,b,c \in K: c(a+b)=ca+cb,\ (a+b)c=ac+bc$ Тогда $(K,+,\cdot)$ кольцо.
- 18. Что такое коммутативное кольцо? Приведите примеры коммутативного и некоммутативного колец.

Если $\forall x, y \in K \ xy = yx$, то кольцо называется коммутативным.

Пример 1: $(\mathbb{Z}, +, \cdot)$ – является коммутативным кольцом.

Пример 2: $(M_n(\mathbb{R}), +, \cdot)$ – полное матричное кольцо над \mathbb{R} – некоммутативное.

19. Дайте определение делителей нуля.

Если $a \cdot b = 0$, при $a \neq 0$, $b \neq 0$ в кольце K, то a называется левым делителем нуля, а b – правым делителем нуля.

20. Дайте определение целостного кольца. Приведите пример.

Коммутативное кольцо с единицей (\neq 0) и без делителей нуля называется *целостным кольцом*. **Пример:** ($\mathbb{Z},+,\cdot$).

21. Какие элементы кольца называются обратимыми?

Элемент коммутативного кольца a называется objanumыm, если $\exists a^{-1}: a\cdot a^{-1}=1=a^{-1}\cdot a$.

22. Дайте определение поля. Приведите три примера.

 Π оле P – это коммутативное кольцо с единицей (\neq 0), в котором каждый элемент $a\neq 0$ обратим. **Пример:** $\mathbb{R}, \mathbb{C}, \mathbb{Q}$.

23. Дайте определение подполя. Привести пример пары: поле и его подполе.

Подполе – это подмножество поля, которое само является полем относительно тех же операций. **Пример:** \mathbb{Q} ⊂ \mathbb{R} .

24. Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

Пусть P – поле. Xарактеристикой поля P (char P) называется наименьшее $q \in \mathbb{N} : \underbrace{1 + \ldots + 1}_{q} = 0$. Если такого q не существует, то char P = 0.

Пример: $char\mathbb{R} = 0$, $char\mathbb{Z}_p = p$, p – простое.

25. Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть F – поле. F_0 – его простое подполе. Тогда:

- 1) если char F = p > 0, то $F_0 \simeq \mathbb{Z}_p$
- 2) если char F = 0, то $F_0 \simeq \mathbb{Q}$
- 26. Дайте определение идеала. Что такое главный идеал?

Подмножество I кольца называется udeanom, если:

- 1. оно является подгруппой по сложению
- 2. $\forall a \in I, \forall r \in K \ r \cdot a$ и $a \cdot r \in I$
- 27. Сформулируйте определение гомоморфизма колец.

$$arphi:K_1 o K_2$$
 — гомоморфизм колец, если $\forall a,b\in K_1:egin{cases} arphi(a+b)=arphi(a)\oplusarphi(b)\ arphi(a\cdot b)=arphi(a)pprox arphi(b) \end{cases}$

28. Сформулируйте теорему о гомоморфизме колец. Приведите пример.

Пусть $\varphi: K_1 \to K_2$ – гомоморфизм колец. Тогда $K_1/Ker\varphi \simeq Im\varphi$.

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n \ \varphi : \mathbb{Z} \to \mathbb{Z}_n, \ \forall$ целому числу сопоставляем его остаток от деления на $n, \ Ker \varphi = n\mathbb{Z}.$

29. Сформулируйте критерий того, что кольцо вычетов по модулю п является полем.

$$\mathbb{Z}_p$$
 – поле $\Leftrightarrow p$ – простое.

р заменяем на п

30. Сформулируйте теорему о том, когда факторколько кольца многочленов над полем само является полем.

Факторкольцо $F[x]/\langle f(x)\rangle$ является полем $\Leftrightarrow f(x)$ неприводим над F.

31. Дайте определение алгебраического элемента над полем.

Элемент $\alpha \in F_2$ называется алгебраическим над полем F_1 , если $\exists f(x) \neq 0$ (0 как функция), что $f(x) \in F_1[x]$, для которого $f(\alpha) = 0$.

32. Что такое поле рациональных дробей?

Пусть F — поле. Рассмотрим поле рациональных функций (частных) с коэфициентами из F. То есть элементы этого множества — дроби $\frac{f(x)}{g(x)}$, где $f,g\in F[x],\ g\neq 0$.

33. Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

 \forall конечное поле F_q , где $q=p^n$, p – простое, можно реализовать в виде $\mathbb{Z}_p[x]/< h(x)>$, где h(x) – неприводимый многочлен степени n над \mathbb{Z}_n .

34. Сформулируйте китайскую теорему об остатках (через изоморфизм колец).

Пусть $n \in \mathbb{Z}, n = n_1 \cdot \ldots \cdot n_m$, где n_i — взаимно просты. Тогда кольцо $\mathbb{Z}_n \simeq \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_m}$.

35. Сформулируйте утверждение о том, сколько элементов может быть в конечном поле.

Число элементов конечного поля всегда p^n , где p – простое, $n \in \mathbb{N}$.

36. Дайте определение линейного (векторного) пространства.

Пусть F – поле. Пусть V – произвольное множество, на котором заданы две операции: сложение и умножение на число. Множество V называется линейным (векторным) пространством, если $\forall x,y,z \in V, \forall \lambda \mu \in F$ выполнены следующие 8 свойств:

- 1) (x + y) + z = x + (y + z) ассоциативность сложения
- 2) \exists нейтральный элемент по сложению: $\exists 0 \in V : \forall x \in V \ x + 0 = 0 + x = x$
- 3) \exists противоположный элемент по сложению: $\forall x \in V \ \exists (-x) \in V : x + (-x) = 0$
- 4) x + y = y + x коммутативность сложения
- 5) $\forall x \in V$ $1 \cdot x = x$ нейтральность $1 \in F$
- 6) ассоциативность умножения на число: $\mu(\lambda x) = (\mu \lambda)x$
- 7) $(\lambda + \mu)x = \lambda x + \mu x$ дистрибутивность относительно умножения на вектор
- 8) $\lambda(x+y)=\lambda x+\lambda y$ дистрибутивность относительно умножения на число
- 37. Дайте определение базиса линейного (векторного) пространства.

Базисом линейного пространства V называется система векторов b_1, \ldots, b_n , такая, что:

- а) b_1, \ldots, b_n л.н.з.
- б) любой вектор из V представляется в виде линейной комбинации $b_1, \ldots, b_n \ \forall x \in V \ x = x_1b_1 + \ldots + x_nb_n, \ x_i \in F$
- 38. Что такое размерность пространства?

Максимальное количество л.н.з. векторов в данном линейном пространстве V называется pазмерностью npocmpancma p0.

39. Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

Mampuyeŭ nepexoda от базиса A к базису B называется матрица

$$T_{A \to B} = \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \dots & t_{nn} \end{pmatrix}$$

где t_{1i}, \ldots, t_{ni} – координаты b_i в базисе A.

40. Выпишите формулу для описания изменения координат вектора при изменении базиса.

Пусть
$$x \in V, A$$
 и B — базисы в $V.$ $x^a = \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix}$ — столбец координат вектора x в базисе $A,$

$$x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$$
 — столбец координат вектора x в базисе B . Тогда:

$$x^b = T_{A \rightarrow B}^{-1} \cdot x^a$$

41. Дайте определение подпространства в линейном пространстве.

Подмножество W векторного пространства V называется nodnpocmpancmsom, если оно само является пространством относительно операций в V.

42. Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

Множество $L(a_1,\ldots,a_k)=\{\lambda_1a_1+\ldots+\lambda_ka_k|\lambda_i\in F\}$ — множество всех линейных комбинаций векторов a_1,\ldots,a_k называется линейной оболочкой системы $a_1,\ldots a_k$

Pангом системы векторов a_1, \dots, a_k в линейном пространстве называется размерность линейной оболочки этой системы $Rg(a_1, \dots, a_k) = \dim L(a_1, \dots a_k)$.

43. Дайте определения суммы и прямой суммы подпространств.

 $H_1 + H_2 = \{x_1 + x_2 | x_1 \in H_1, x_2 \in H_2\}$ называется суммой подпространств H_1 и H_2 .

 $H_1 + H_2$ называется npямой суммой (и обзначается $H_1 \oplus H_2$), если $H_1 \cap H_2 = \{0\}$, то есть тривиально.

44. Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

Пусть H_1 и H_2 – подпространства. Тогда $\dim(H_1 + H_2) = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$.

45. Дайте определение билинейной формы.

Функцию $b: V \times V \to \mathbb{R}$ (V -линейное пространство над \mathbb{R}) называют билинейной формой, если $\forall x, y, z \in V, \ \forall \alpha, \beta \in \mathbb{R}$: 1) $b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$ 2) $b(x, \alpha y + \beta z) = \alpha b(x, y) + \beta b(x, z)$

46. Дайте определение квадратичной формы.

Однородный многочлен второй степени от n переменных, то есть:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}$$

называют квадратичной формой.

47. Дайте определения положительной и отрицательной определенности квадратичной формы.

Квадратичную форму Q(x) называют:

- положительно определенной, если $\forall x \neq 0 \ Q(x) > 0$
- ullet отрицательно определенной, если $\forall x \neq 0 \ Q(x) < 0$
- 48. Какую квадратичную форму называют знакопеременной?

Квадратичную форму Q(x) называют знакопеременной, если $\exists x,y \in V \ Q(y) < 0 < Q(x)$.

49. Дайте определения канонического и нормального вида квадратичной формы.

Квадратичную форму $Q(x) = \alpha_1 x_1^2 + \ldots + \alpha_n x_n^2$, $\alpha_i \in \mathbb{R}$ $i = \overline{1,n}$ (то есть не имеющую попарных произведений переменных) называют квадратичной формой *канонического вида*.

Если $\alpha_i \in \{1, -1, 0\}$, то канонический вид называется *нормальным*.

50. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

Пусть U — матрица перехода от базиса e к базису f. Пусть B_e — матрица билинейной формы в базисе e, B_f — матрица билинейной формы в базисе f. Тогда:

$$B_f = U^T B_e U$$

При переходе от базиса e к базису e' линейного пространства V матрица квадратичной формы меняется следующим образом:

$$A' = S^T A S$$

где S – матрица перехода от e к e'.

51. Сформулируйте критерий Сильвестра и его следствие.

Квадратичная форма Q(x) от n переменных $x = (x_1, \dots, x_n)^T$ положительно определена $\Leftrightarrow \begin{cases} \triangle_1 > 0 \\ \vdots \\ \triangle_n > 0 \end{cases}$. Здесь $Q(x) = x^T A x$,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix}, \ \triangle_1 = a_{11}, \ \triangle_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \ \triangle_n = \det A$$

то есть последовательность главных угловых миноров положительна.

52. Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Для любых двух канонических видов одной и той квадратичной формы

$$Q_1(y_1,\ldots,y_m)$$
 = $\lambda_1 y_1^2 + \ldots + \lambda_m y_m^2, \lambda_i \neq 0, i = \overline{1,m}$

$$Q_2(z_1,...,z_k) = \mu_1 z_1^2 + ... + \mu_k z_k^2, \mu_j \neq 0, j = \overline{1,k}$$

- 1) m = k = RgA рангу квадратичной формы
- 2) количество положительных λ_i = количеству положительных μ_j = i_+ положительный индекс инерции. Количество отрицательных λ_i = количеству отрицательных μ_j = i_- отрицательный индекс инерции.
- 53. Дайте определение линейного отображения. Приведите пример.

Отображение $\varphi: V_1 \to V_2$ называется линейным, если:

- 1) $\forall u, v \in V_1, \ \varphi(u+v) = \varphi(u) + \varphi(v)$
- 2) $\forall u \in V_1, \forall \lambda \in F \varphi(\lambda u) = \lambda \varphi(u)$

Пример: В линейном пространстве $m \times n$ матриц существует линейное отображение умножения слева на фиксированную матрицу $A_{l \times m} : \varphi : X \to A \cdot X$.

54. Дайте определение матрицы линейного отображения.

Mampuųa линейного отображения — это матрица $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$, где по столбцам стоят координаты образов векторов базиса V_1 в базисе V_2 .

55. Выпишите формулу для преобразования матрицы линейного отображения при замене базисов. Как выглядит формула в случае линейного оператора?

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{e_1e_2}$ – матрица линейного отображения в паре базисов: e_1 в пространстве V_1 и e_2 в пространстве V_2 и пусть T_1 – матрица перехода от e_1 к e_1' , T_2 – матрица перехода от e_2 к e_2' . Тогда:

$$A_{e_1'e_2'} = T_2^{-1} A_{e_1e_2} T_1$$

Формула для линейных операторов:

$$A_{E'} = T^{-1}A_ET$$