**Problem 1.** We say that a point  $x \in X$  is an  $\omega$ -accumulation point of a set  $A \subseteq X$  if every neighborhood of x contains infinitely many points of A. Show that a space X is countably compact if and only if every infinite subset of X has an  $\omega$ -accumulation point. Show further that if X is a  $T_1$ -space, then X is countably compact if and only if every infinite subset of X has an accumulation point.

Proof. Let X be countably compact and any infinite subset K of X. We can choose an infinite sequence  $k_1, \ldots$  of distinct points of K. Since X is countably compact, sequence  $(k_n)_{n=1}^{\infty}$  has clusterpoint, says k by Theorem 15.3. Thus K has an  $\omega$ - accumulation. Suppose that X is not countably compact. Then X has a countable open cover  $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$  which has no finite subcover, that is for each  $n \in \mathbb{N}$ , we can choose  $x_n \notin \bigcup_{i=1}^n U_i$ . Let  $A = \{x_n : n \in \mathbb{N}\}$ . If A is finite, then  $A \subseteq \bigcup_{i=1}^m U_i$  for some  $m \in \mathbb{N}$ , but this is impossible because  $x_m \in A$  but  $x_m \notin \bigcup_{i=1}^m U_i$ . Thus A is an infinite set. Next, let  $x \in X$ . Since  $\mathcal{U}$  covers X, then  $x \in U_n$  for some  $n \in \mathbb{N}$ . Let  $F = U_n \cap A \setminus \{x\}$ . Then we have  $A \cap U_n \subseteq F \cup \{x\}$ . Since  $x_k \notin U_n$  for all  $k \ge n$ , we have F is a finite set. Thus there is an infinite subset A of X has no an  $\omega$ - accumulation point. Moreover, we assume X is a  $T_1$  space. Then we have F is closed set. It is easy to see that  $x \notin F$ . Let  $V = U_n \cap (X \setminus F)$ . Then V is a open nbhd of x in X. Furthermore,

$$V \cap (A \setminus \{x\}) = (U_n \cap (X \setminus F)) \cap A \setminus \{x\} = (U_n \cap A \setminus \{x\}) \cap X \setminus F = F \cap X \setminus F = \emptyset.$$

This implies that x is not a limit point of A. Thus X is not limit point compact. Conversely, Suppose that X is not limit point compact. Then there is an infinite subset A of X that has no limit points. Let  $B \subseteq A$  and  $x \in X \setminus B$ . Since A has no limit points, then there is a nbhd U of x such that  $U \cap A \setminus \{x\} = \emptyset$ , and thus  $U \cap B = \emptyset$  (because  $B \subseteq A \setminus \{x\}$ ). Thus, every point of  $X \setminus B$  has a nbhd which is disjoint from B. Thus  $X \setminus B$  is open, so B is closed. Next, we choose an infinite sequence  $x_1, x_2, \ldots$  of distinct points of A. For any  $n \in \mathbb{N}$ , we define  $U_n = X \setminus \{a_i : i \ge n\}$ . Since  $\{a_i : i \ge n\} \subseteq A$  for all  $n \in \mathbb{N}$ , it is closed. Thus  $U_n$  is open for all  $n \in \mathbb{N}$ . Let  $z \in X$ . Then  $z \in U_1$  or  $z \in \{a_i : i \ge 1\}$ . If  $z \in a_i : i \ge 1$ , then  $z = a_m$  for some  $z \in \mathbb{N}$ , and so  $z \in U_{m+1}$ . We can conclude that  $z \in \mathbb{N}$  covers  $z \in X$ . Since  $z \in \mathbb{N}$  for all  $z \in \mathbb{N}$  then no finite subcover of  $z \in \mathbb{N}$  covers  $z \in \mathbb{N}$  covers  $z \in \mathbb{N}$ . Since  $z \in \mathbb{N}$  for all  $z \in \mathbb{N}$  then no finite subcover of  $z \in \mathbb{N}$  covers  $z \in \mathbb{N}$ .

**Problem 2.** Let  $(X, \mathcal{T})$  be a Hausdorff space. Prove that the following statements are equivalent:

- a) X is locally compact.
- b) For each  $x \in X$  and each neighborhood W of x, there is an open set V such that  $\overline{V}$  is compact and  $x \in V \subseteq \overline{V} \subseteq W$ .
- c) For each compact set K in X and an open set W containing K, there is an open set V such that  $\overline{V}$  is compact and  $K \subseteq V \subseteq \overline{V} \subseteq W$ .
- d)  $\mathcal{T}$  has a base consisting of open sets whose closures are compact.

Proof. Clearly,  $(d) \Rightarrow (a)$  and  $(b) \Rightarrow (a)$ . Next, we show that  $(a) \Rightarrow (d)$  Let  $x \in X$ . Then there is a compact nbhd K of x, so there is  $U \in \mathcal{T}$  such that  $x \in U \subseteq K$ . Let  $\mathcal{V}$  be the set of all open set  $G \ni x$  contained in U, moreover  $\mathcal{V}$  is a nbhd base at x. Since X is Hausdorff, K is closed in X. If  $V \in \mathcal{V}$ , then  $\overline{V} \subseteq \overline{K} = K$ , and so  $\overline{V}$  is compact, because a closed subset of a compact set is compact. Thus  $\mathcal{V}$  is nbhd base. Therefore  $\mathcal{T}$  has a base consisting of open sets whose closures are compact as desired. Next, we show that  $(c) \Rightarrow (b)$ . Suppose (c). Let  $x \in X$ . and W be a nbhd of x. Note that  $\{x\}$  is compact. Then there is an open set V such that  $\overline{V}$  is compact and  $X \in \{x\} \subseteq V \subseteq \overline{V} \subset W$  as desired. Finally, we show that  $(a) \Rightarrow (c)$ . Suppose (a), K is a compact subspace of X and an open set  $W \supseteq K$ . Since X is locally compact Hausdorff, the one-point compactification of X exist, says  $\hat{X}$ . Note that  $\hat{X}$  is compact Hausdorff, so it is normal. Clearly, K is also compact in  $\hat{X}$ , and hence closed. Since X is open in  $\hat{X}$  and W is open in X, W is also open in  $\hat{X}$ . We are done.

**Problem 3.** Let X be a locally compact Hausdorff space. We say that a continuous function  $f: X \to \mathbb{R}$  vanishes at infinity if for any  $\varepsilon > 0$ , there is a compact subset K of X such that  $|f(x)| < \varepsilon$  for any  $x \in X \setminus K$ . We denote the set of all continuous functions from X into  $\mathbb{R}$  that vanish at infinity by  $C_o(X)$ .

- i) Prove that if  $f, g \in C_o(X)$  and  $\alpha \in \mathbb{R}$ , then  $f + g \in C_o(X)$  and  $\alpha f \in C_o(X)$ . (Hence,  $C_o(X)$  is a vector space over  $\mathbb{R}$ .)
- ii) Let  $\hat{X}$  denote the one-point compactification of X. Let  $f: X \to \mathbb{R}$  be a continuous function. Prove that f can be extended to a continuous function  $\hat{f}: \hat{X} \to \mathbb{R}$  if and only if f = g + c for some  $g \in C_o(X)$  and some  $c \in \mathbb{R}$ .
- Proof. i) Let  $f,g \in C_0(X)$ ,  $\alpha \in \mathbb{R}$  and  $\varepsilon > 0$ . Then there are compact subset  $K_1$ ,  $K_2$  and  $K_3$  of X such that  $|f(x)| < \varepsilon/2$  for any  $x \in X \setminus K_1$ ,  $|g(x)| < \varepsilon/2$  for any  $x \in X \setminus K_2$  and  $|f(x)| < \frac{\varepsilon}{|\alpha|+1}$  for any  $x \in X \setminus K_3$ . Note that union of two compact sets is compact. Thus  $|f(x) + g(x)| \le |f(x)| + |g(x)| < \varepsilon$  for any  $x \in X \setminus K_1 \cap X \setminus K_2 = X \setminus (K_1 \cup K_2)$ , so  $f + g \in C_0(X)$ . It is easy to see that  $|\alpha f(x)| = |\alpha||f(x)| < (|\alpha|+1)|f| < \varepsilon$  for all  $x \in X \setminus K_3$ , so  $\alpha f \in C_o(X)$ .
  - ii) Since X is locally compact Hausdorff space, one-point compactification of X exist, says  $\hat{X}$ .  $(\Rightarrow)$  Clearly,  $\hat{f}(\infty) \in \mathbb{R}$ . We will show that  $f \hat{f}(\infty) \in C_o(X)$ . Let  $\varepsilon > 0$ . Since  $\hat{f}$  is continuous at  $\infty$ , then there is an open subset  $V \ni \infty$  of  $\hat{X}$  such that  $\hat{f}[V] \subseteq B_d(\hat{f}(\infty), \varepsilon)$ . Since V is open containing  $\infty$ ,  $V = \hat{X} \setminus C$  where C is a compact subset of X. Thus for any  $x \in X \setminus C \subseteq V$ , we have  $|f(x) \hat{f}(\infty)| = |\hat{f}(x) \hat{f}(\infty)| < \varepsilon$ . Choose  $c = \hat{f}(\infty) \in \mathbb{R}$  and  $g = f \hat{f}(\infty) \in C_o(X)$ . We are done.  $(\Leftarrow)$  We define  $\hat{f}: \hat{X} \to \mathbb{R}$  by  $\hat{f}|_X = f$  and  $\hat{f}(\infty) = c$ . Note that  $\hat{f}$  is continuous for all  $x \in X$ . It remains to show that  $\hat{f}$  is continuous at  $\infty$ . Let  $\varepsilon > 0$ . Then there is compact subset K of X such that  $|f(x) \hat{f}(\infty)| = |g(x)| < \varepsilon$  for all  $x \in X \setminus K$ . Since K is compact in X, K is compact in  $\hat{X}$ , so K is closed in  $\hat{X}$  (because  $\hat{X}$  is Hausdorff). It follows that  $\hat{X} \setminus K$  is an open set containing  $\infty$ . Let  $y \in \hat{X} \setminus K$ . If  $y = \infty$ , then  $|\hat{f}(y) \hat{f}(\infty)| = 0 < \varepsilon$ . If  $y \in X \setminus K$ , then  $|\hat{f}(y) \hat{f}(\infty)| = |f(y) \hat{f}(\infty)| < \varepsilon$ . We conclude that  $\hat{f}[\hat{X} \setminus K] \subseteq B_d(\hat{f}(\infty), \varepsilon)$ , and thus  $\hat{f}$  is continuous at  $\infty$ .

**Problem 4.** Let E be a closed subset of a compact Hausdorff space X. Prove that the quotient space obtained from X by identifying E to a point is homeomorphic to the one-point compactification of  $X \setminus E$ .

*Proof.* Let E be a closed subset of a compact Hausdorff X. Fix  $e \in E$ . We consider the set  $S := (X \setminus E) \cup \{e\}$  and let  $\pi : X \to S$  defined by

$$\pi(x) = \begin{cases} x, & \text{if } x \in X \setminus E; \\ e, & \text{if } x \in E. \end{cases}$$

Clearly,  $\pi$  is surjective. Now, we can gives quotient topology on S induced by  $\pi$ , say  $\mathcal{T}_{\pi}$ . First, we show that S is compact Hausdorff under quotient topology. Note that quotient map is continuous. Since X is compact,  $\pi(X) = S$  is compact. Next, we show that the set  $\mathcal{R} := \{(x_1, x_2) : \pi(x_1) = \pi(x_2)\}$  is closed in  $X \times X$ . Observe that  $\mathcal{R} = E \times E \cup \Delta$ . Since X is Hausdorff, we have  $\Delta$  is closed in  $X \times X$ . By Homework 9.3 i), we have  $\overline{E \times E} = \overline{E} \times \overline{E} = E \times E$ . Thus  $\mathcal{R}$  is closed in  $X \times X$ . Next, we show that  $(S, \mathcal{T}_{\pi})$  is Hausdorff. Let  $y \in S$ . If y = e, then  $\pi^{-1}(\{y\}) = E$  is closed in X. If  $y \in X \setminus E$ , then  $\pi^{-1}(\{y\}) = \{y\}$  is closed in X (because X is  $T_1$ ). Now, let  $y_1$  and  $y_2$  be distinct points in S. Since X is normal, there are disjoint open subsets  $U_1 \supseteq \pi^{-1}(\{y_1\})$  and  $U_2 \supseteq \pi^{-1}(\{y_2\})$ , and we define subsets  $W_1, W_2 \subseteq Y$  by

$$W_i = \{ y \in S : \pi^{-1}(\{y\}) \subseteq U_i \}.$$

Clearly, these are disjoint sets containing  $y_1$  and  $y_2$  respectively. Because  $\pi$  is a quotient map,  $W_i$  is open if and only if  $X \setminus \pi^{-1}(W_i)$  is closed. From the definition of  $W_i$ , we have

$$X \setminus \pi^{-1}(W_i) = \{x \in X : \text{ there exists } x' \in X \setminus U_i \text{ such that } \pi(x) = \pi(x')\}$$
  
=  $p_1(\mathcal{R} \cap (X \times (X \setminus U_i))),$ 

where  $p_1: X \times X \to X$  is the projection on the first factor. Note that  $p_1$  is continuous. Since  $X \times X$  is compact and X is Hausdorff,  $p_1$  is closed map. Since  $\mathcal{R} \cap X \times X \setminus U_i$  is closed in  $X \times X$ , we have  $X \setminus \pi^{-1}(W_i)$  is also closed in X, and therefore X is Hausdorff. Since  $X \setminus E$  is open, it is locally compact, so the one-point compactification of  $X \setminus E$  exist, says  $\sigma(X \setminus E)$ . Finally, we show that  $S \cong \sigma(X \setminus E)$ . We define  $h: S \to \sigma(X \setminus E)$  by

$$h(x) = \begin{cases} x, & \text{if } x \in X \setminus E \\ \infty, & \text{if } x = e \end{cases}.$$

Clearly, h is bijective. Let U be open in S. Case 1) if U does not containing e. Then h(U) = U. Since U is open in S,  $\pi^{-1}(U) = U$  is open in X. Since h(U) is open in  $X \setminus E$  and  $X \setminus E$  is open in  $\sigma(X \setminus E)$ , h(U) is also open in  $\sigma(X \setminus E)$ . Case 2): Suppose that U contains e. Since  $C = S \setminus U$  is closed in S, it is compact as a subspace of S. Since h(C) = C contained in  $X \setminus E$ , it is a compact subspace of  $X \setminus E$ . Because  $X \setminus E$  is a subspace of  $\sigma(X \setminus E)$ , the space h(C) is also a compact subspace of  $\sigma(X \setminus E)$ . Since  $\sigma(X \setminus E)$  is Hausdorff, h(C) is closed in  $\sigma(X \setminus E)$ , so  $h(U) = \sigma(X \setminus E) \setminus h(C)$  is open in  $\sigma(X \setminus E)$ . Thus h is an open map. By symmetry, we have  $h^{-1}$  is also an open map. Thus  $S \cong \sigma(X \setminus E)$  as desired.  $\square$ 

*Proof.* An another method (By Champ). Let  $e \in E$ . For completeness of the proof, assume that  $X \setminus E$  is not compact. Let  $\widehat{X \setminus E} = X \setminus E \cup \{e\}$  be an Alexandroff compactification of  $X \setminus E$ . Let  $p: X \to \widehat{X \setminus E}$  be a function defined by

$$p(x) = \begin{cases} x & \text{if } x \notin E; \\ e & \text{if } x \in E. \end{cases}$$

This is clearly a surjection. We claim that p is continuous. Suppose that U is open in  $\widehat{X \setminus E}$ . If  $e \neq U$ , then U is open in  $X \setminus E \in \mathcal{T}_X$ . So  $p^{-1}[U] = U$  is open in X. If  $e \in U$ , then  $U = G \cup \{e\}$  where  $G \in \mathcal{T}_{X \setminus E}$  and  $(X \setminus E) \setminus G$  is compact. Since  $(X \setminus E) \setminus G$  is in the Hausdorff space X, it is closed. Note that

$$X \setminus p^{-1}[U] = X \setminus (p^{-1}[G] \cap p^{-1}(e)) = X \setminus G \cap X \setminus E = (X \setminus E) \setminus G.$$

So  $p^{-1}(U)$  is open. And so p is continuous. Next we show that p is in fact a quotient map. Since X is compact Hausdorff, it is locally compact Hausdorff. Since  $X \setminus E$  is open, it is locally compact Hausdorff. This implies that  $\widehat{X \setminus E}$  is Hausdorff. Hence p is a quotient map. Finally, let  $\sim_p$  be a relation on X defined by  $x \sim_p y \Leftrightarrow p(x) = p(y)$ . It's clear that  $\sim_p$  is an equivalence relation. So  $X/\sim_p$  together with the quotient topology induced by the canonical projection  $\pi: X \to X/\sim_p$  is the desire quotient space. Therefore  $X/\sim_p$  and  $\widehat{X \setminus E}$  must be homeomorphism.

**Problem 5.** Prove that the Stone-Čech compactification is unique up to homeomorphism. Proof. Let X be a complete regular space,  $(\beta(X), e)$  and  $(\beta'(X), e')$  are two Stone-Čech compactifications of X.



Consider the embedding mapping  $e': X \to \beta'(X)$ . It is a continuous map of X into the compact Hausdorff space  $\beta'(X)$ . By universal property of Stone-Čech compactifications  $\beta(X)$ , there exists a unique continuous function  $f: \beta(X) \to \beta'(X)$  such that  $e' = f \circ e$ . Similarly, there exsists a unique continuous function,  $g: \beta'(X) \to \beta(X)$  such that  $e = g \circ e'$ . Next, we consider the composition  $f \circ g: \beta'(X) \to \beta'(X)$ , observe that  $f \circ g \circ e' = e'$  for all  $x \in X$ . But  $\mathrm{Id}_{\beta'(X)} \circ e' = e'$  for all  $x \in X$ , so  $f \circ g = \mathrm{Id}_{\beta'(X)}$  by uniqueness of extension. Similarly,  $g \circ f = \mathrm{Id}_{\beta(X)}$ . By Homework 13.3 a), f is bijective. Because  $f^{-1} = g$  is continuous, f is homeomorphism.



**Problem 6.** The space  $X \times Y$  is sequentially compact if and only if X and Y are sequentially compact.

*Proof.* Note that sequential compactness is preserved under continuous surjection.

- $(\Rightarrow)$  Since projection map  $\pi_1: X \times Y \to X$  and  $\pi_2: X \times Y \to Y$  are continuous, X and Y are sequentially compact.
- ( $\Leftarrow$ ) Let  $((x_n, y_n))_{n=1}^{\infty}$  be a sequence in  $X \times Y$ . Since  $(x_n)_{n=1}^{\infty}$  is a sequence in X, there exists a subsequence  $(x_{n_k})_{k=1}^{\infty}$  of  $(x_n)_{n=1}^{\infty}$  such that  $x_{n_k} \to x \in X$  as  $k \to \infty$ . We consider  $(y_{n_k})_{k=1}^{\infty}$ , there exists a subsequence  $(y_{n_{k_l}})_{l=1}^{\infty}$  of  $(y_{n_k})_{k=1}^{\infty}$  which  $y_{n_{k_l}} \to y \in Y$  as  $l \to \infty$  (because Y is sequentially compact). Clearly,  $x_{n_{k_l}} \to x$  as  $l \to \infty$ . By Homework 9.4, we have  $(x_{n_{k_l}}, y_{n_{k_l}}) \to (x, y)$  as  $l \to \infty$ . Therefore  $X \times Y$  is sequentially compact.

**Problem 7.** Show that the rationals  $\mathbb{Q}$  are not locally compact.

*Proof.* Suppose to the contrary that  $\mathbb{Q}$  is locally compact. Choose  $0 \in \mathbb{Q}$ . Then there is a compact set K in  $\mathbb{Q}$  and open set  $(a,b) \cap \mathbb{Q}$  such that  $0 \in (a,b) \cap \mathbb{Q} \subseteq K$ . Since  $\mathbb{Q}$  is Hausdorff, K is closed in  $\mathbb{Q}$ . It follows that  $\overline{(a,b) \cap \mathbb{Q}}^{\mathbb{Q}}$  is compact in  $\mathbb{Q}$  (because it is closed in K). Note that  $\mathbb{Q}$  is dense in  $\mathbb{R}$  and (a,b) is open in  $\mathbb{R}$ , so  $\overline{(a,b) \cap \mathbb{Q}} = \overline{(a,b)} = [a,b]$ . Observe that

 $\overline{(a,b) \cap \mathbb{Q}}^{\mathbb{Q}} = \overline{(a,b) \cap \mathbb{Q}} \cap \mathbb{Q} = [a,b] \cap \mathbb{Q}.$ 

Now, we have  $[a,b] \cap \mathbb{Q}$  is compact in  $\mathbb{Q}$ , so it is compact in  $\mathbb{R}$  because inclusion map  $\iota: \mathbb{Q} \hookrightarrow \mathbb{R}$  is continuous. By Heine-Borel Theorem, we have  $[a,b] \cap \mathbb{Q}$  is closed and bounded. Choose  $q \in [a,b] \cap \mathbb{R} \setminus \mathbb{Q}$ . Then we can find sequence  $(a_n)_{n=1}^{\infty}$  in  $[a,b] \cap \mathbb{Q}$  which  $a_n \to q$  as  $n \to \infty$ , so  $q \in [a,b] \cap \mathbb{Q}$ . This implies that  $[a,b] \cap \mathbb{Q} \neq [a,b] \cap \mathbb{Q}$ , so  $[a,b] \cap \mathbb{Q}$  is not closed, which is a contradiction.