Numerične metode 2022/23: 1.domača naloga

Rešitve stisnite v ZIP datoteko z imenom ime-priimek-vpisna-dn1.zip in jih oddajte preko učilnice najkasneje dan pred kvizom.

1. Iteracijske metode.

(a) V Matlabu implementirajte Halleyevo in <u>sekantno</u> metodo. Slednja metoda je podobna tangentni, le da namesto tangente uporabi sekanto. Metoda tako ne uporablja odvoda funkcije, zato je lahko dober nadomestek za tangentno metodo v primerih, ko odvoda funkcije ne poznamo. Moramo pa v primeru sekantne metode poznati dva začetna približka.

S pomočjo implementiranih metod poiščite ničlo funkcije

$$f(x) = x \cdot e^x + \frac{1}{2e}$$

na intervalu [-3,-1]. Vzemite toleranco 10^{-10} in število korakov N=10. Pri Halleyevi metodi vzemite začetni približek $x_0=-1.1$, pri sekantni pa $x_0=-\frac{1}{4}$ in $x_1=-3$. Katera metoda izvede več korakov?

S pomočjo ukaza fzero poiščite točno ničlo funkcije f v okolici -2. Pri obeh metodah izpišite vse izračunane približke (vključno z x_0 oz. x_0 in x_1) in si oglejte, za koliko se vsak izračunani približek razlikuje od točne vrednosti ničle.

(b) Poskrbite, da imate implementirane metode, ki smo jih delali na vajah: bisekcija, regula falsi, navadna iteracija in tangentna metoda.

2. Norme in LU razcep.

(a) LU razcep.

Naj bo matrika $A_n = [a_{ij}]_{i,j=1}^n$ podana z naslednjimi predpisi:

$$a_{nn} = 1,$$

$$a_{nj} = 3\sin(a_{n,j+1}), \quad j = n - 1, \dots, 1,$$

$$a_{in} = (-1)^{i+1}a_{i+1,n}, \quad i = n - 1, \dots, 1,$$

$$a_{ij} = (-1)^{i+j} \cdot \frac{a_{i+1,j+1} + a_{i+1,j} + a_{i,j+1}}{4}, \quad i, j = n - 1, \dots, 1.$$

Naj bo n = 7.

- Poiščite največji in najmanjši element matrike A_7 .
- Izračunajte $||A_7||_1$, $||A_7||_{\infty}$ in $||A_7||_F$.
- Implementirajte LU razcep brez pivotiranja in ga preizkusite na matriki A_7 . Koliko je $\det(U-L)$?
- LU razcep matrike M z delnim pivotiranjem lahko v Matlabu dobite z ukazom [L,U,P] = lu(M), kjer je P ustrezna permutacijska matrika, tako da velja PM = LU. Izračunajte še LU razcep matrike A_7 z delnim pivotiranjem. Koliko je v tem primeru $\det(U-L)$?
- (b) LU razcep za tridiagonalno matriko.

Implementirajte Thomasov algoritem za LU razcep tridiagonalne matrike. Naj bo

$$A_i = \begin{bmatrix} 2 & 5 & 0 & 0 & 0 \\ 3 & 1 & 1 & 0 & 0 \\ 0 & 2 & a_i & 5 & 0 \\ 0 & 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 2 & -5 \end{bmatrix}.$$

S pomočjo Thomasovega algoritma izračunajte razcep za matrike A_i , i=1,2,3, kjer je $a_1=-2$, $a_2=-3$ in $a_3=-4$. Naj bodo l_i in u_i , i=1,2,3, vektorji, ki jih vrne Thomasov algoritem. Poiščite

$$\max_{i=1,2,3} ||u_i||_1 \quad \text{in} \quad \min_{i=1,2,3} ||l_i||_2.$$