

LG Advanced Data Scientists Program Deep Learning

[9: Reinforcement Learning (Part 2)]

Prof. Sungroh Yoon

Electrical & Computer Engineering | Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 15:36:00 on 2020/02/27)

Outline

Value-Based Methods

References

- books/papers:
 - ► Reinforcement Learning (2nd edition)¹ ► Link
 - Artificial Intelligence: A Modern Approach²
 - ► A brief survey of deep reinforcement learning³
- online resources:
 - Silver UCL class ► Link & ICML tutorial ► Link
 - Schulman MLSS tutorial Link
 - Abbeel & Schulman NIPS tutorial Link
 - ► UC Berkeley CS188 (AI) Link & CS294 (DRL) Link
 - ► Stanford CS234 (RL) ► Link

¹Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

²Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson Education Limited

³Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866

Outline

Value-Based Methods

Value-based methods

- ullet estimate optimal value function \Rightarrow derive optimal policy π^* therefrom
- learning = changing values of states we visit
 - ▶ for more accurate value estimation (e.g. winning probabilities)
- to do this: we " " the value of
 - \triangleright s': state after each move to
 - ightharpoonup s: state before the move

- i.e. current value of earlier state s:
 - \triangleright adjusted to be closer to value of later state s'
- learning involves a lot of backup operations

Example: a sequence of moves in a two-player game

- solid lines:
 - moves taken during a game
- dashed lines:
 - moves considered but not taken
 - discarded by "exploitation"
- exploratory moves
 - e.g. our second move
 - ▶ taken even if another sibling move (leading to e^*) was better
 - "exploration"
- curved arrows
 - ▶ backups ⇒

(source: [Sutton and Barto, 2018]⁴)

⁴Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Backup operations

- transfer value information back
 - to a state from its successor states or
 - ▶ to a state-action pair from its successor state-action pairs
- that is, "backup" refers to " " of values
- backups are at the heart of RL methods

Three ways to do backup

1. full backup by dynamic programming (DP)

$$V(s) \leftarrow \mathbb{E}\left[r + \gamma V(s')\right]$$

2. sample backup by Monte Carlo (MC) learning

$$V(s) \leftarrow V(s) + \alpha \left[R - V(s) \right]$$

3. sample backup by temporal-difference (TD) learning

$$V(s) \leftarrow V(s) + \alpha \left[r + \gamma V(s') - V(s) \right]$$

- ightharpoonup R: sample return (actual return from a trajectory)
- ightharpoonup lpha : step-size parameter
 - a small positive fraction that influences ______

more on way #3:

• use a simple rule to update V(s)

$$V(s) \leftarrow V(s) + \alpha \left[r + \gamma V(s') - V(s) \right]$$

$$\iff V(s) \leftarrow \underbrace{(1 - \alpha)}_{\text{weight on old value}} V(s) + \underbrace{\alpha}_{\text{new value}} \left[r + \gamma V(s') \right]$$
weight on new value

- update rule (1): an example of temporal-difference (TD) learning
 - ▶ changes are based on $\underbrace{r + \gamma V(s') V(s)}_{\uparrow}$

difference between estimates at two different times

Backup diagram

• depict relationships that form the basis of _____ operations e.g. for dynamic programming to compute V(s) and Q(s,a):

- notations
 - ▶ open circle: a state
 - solid circle: a state-action pair

Taxonomy of value-based methods

two kinds of defining characteristics:

- if we bootstrap
 - we update estimates based on other _____ (not true target)
- if we sample
 - we do not compute but just sample an expectation

	sample backup	full backup
bootstrap (shallow backup)	temporal-difference (TD) learning	dynamic programming (DP)
no bootstrap (deep backup)	Monte Carlo (MC) learning	exhaustive search

example: sample-backup methods

- Monte-Carlo (MC) learning
 - go all the way to ___ of a trajectory and
 - estimate the value just by looking at sample return
 - ⇒ no bootstrapping
- temporal-difference (TD) learning⁵
 - just look one step ahead and
 - estimate the value after one step using one-step lookahead value estimate
 - ⇒ bootstrapping
- TD(λ): generalize/unify⁶
 - use arbitrary # of lookaheads

⁵more precisely, one-step TD or TD(0)

⁶Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Unified view of RL

(source: $[Sutton and Barto, 2018]^7$)

⁷Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

Outline

Value-Based Methods

- value-based reinforcement learning methods
 - lacktriangle estimate optimal value function $V^*(s)$ or $Q^*(s,a)$
 - \Rightarrow then find optimal policy π^* therefrom
 - ▶ key operation: backup (= update of V(s) using V(s'))
 - ▶ defining characteristic #1: sample vs full backup
 - defining characteristic #2: shallow (=bootstrap) vs deep backup
- tabular methods: represent value function by lookup table
 - dynamic programming: full + shallow backup
 - value iteration and policy iteration
 - temporal-difference (TD) learning: sample + shallow backup
 - Monte Carlo (MC) learning: sample + deep backup
- · value function approximation by deep neural net
 - deep Q-network (DQN): experience replay with fixed Q-learning target