Private Set Intersection (PSI) Malicious security, and amplifying the success probability

Benny Pinkas, Bar-Ilan University

In this lecture

- Malicious security for PSI
- Amplifying the success probability
- PSI conclusions

(many slides by my coauthors)

Template for PSI based on OPRF (previous hour)

Compares the two lists

Implementing the OPRF

The most efficient OPRF implementations are based on OT extension

- Caveat: Secure only as long as client evaluates the OPRF at most once
- E.g., when $F_{a,b}(x) = ax+b$

Solution: Hashing

- Suppose both parties use the same public random hash function h() to hash their n items to n bins.
 - Then obviously if Alice and Bob have the same item, both of them map it to the same bin. PSI can then be independently run for each bin.
 - If Bob has a single item in each bin, he only needs to evaluate the OPRF once

Problem: many bins will have >1 item mapped to them

Using 2 Hash Functions (cuckoo hashing [PR,KMW])

- h_1, h_2 : item \rightarrow bin
- Map n items to $(2 + \epsilon)n$ bins
- Each bin stores at most one item!

- Succeeds with very high probability
- If we also have a stash of size s, all items x can be mapped to either $h_1(x), h_2(x)$ or the stash, except with probability $O(n^{-(s+1)})$

The Power of Using 2 Hash Functions (Cuckoo)

- h_1, h_2 : item \rightarrow bin
- Map n items to $(2 + \epsilon)n$ bins
 - Alice simple hashing
 - $x \rightarrow h_1(x)$ and $h_2(x)$
 - Bob Cuckoo hashing
 - $y \rightarrow h_1(y)$, or $h_2(y)$
- Caveat: stash size is $\omega(1)$ (let's ignore it)

Combining cuckoo hashing with PSI

• In each bin, Bob (who uses CH) has one item y. Alice has $O(\log n)$ items $x_1, x_2, ...$

• In each bin, they run an OT-based OPRF of a function F, so that Bob learns F(y), and Alice can compute F(y) on any input

- Alice sends to Bob the F() values she learned in all bins
- Bob compares them to the values that he learned

Why isn't this secure against malicious parties?

It turned out that only the following attack is problematic:

- Suppose that both Alice and Bob have a value z
 - Alice should put z in bins h₁(z) and h₂(z)
 - Bob uses CH and puts z in only one of these two bins
- Suppose Alice chooses to put z only in bin h₁(z)
- Then z will be in the PSI output iff Bob chose to put z in $h_1(z)$
- This decision of Bob depends on the other inputs that he has
- → The output of the PSI leaks information about **other** inputs of Bob

The function F() that is used

- F() can be implemented using oblivious transfer extension
- Specifically, a protocol of Orru, Orsini and Scholl, uses OT-extension to implement F(), with the following properties
 - The construction is secure against malicious behavior
 - For each table entry i, the receiver learns F_i(x), and the sender can compute F_i()
 - Important for this lecture: A homomorphic property: $F_i(x) + F_j(y) = F_{i+j}(x \oplus y)$.

PSI from PaXoS, OKVS, and amplification Relevant papers:

- Malicious security for OT extension: "PSI from OT". Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection. Michele Orrù and Emmanuela Orsini and Peter Scholl. (CT-RSA 2017)
- Efficient malicious PSI: PSI from PaXoS: Fast, Malicious Private Set Intersection. Benny Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai (Eurocrypt 2020)
- Even more efficient malicious PSI; amplification of success probability: Oblivious Key-Value Stores and Amplification for Private Set Intersection. Gayathri Garimella and Benny Pinkas and Mike Rosulek and Ni Trieu and Avishay Yanai. (Crypto 2021)

A different flavor of cuckoo hashing

- Bob is using CH
- Suppose that x is mapped to locations $h_1(x)=i$ and $h_2(x)=j$.
- Unlike CH, Bob puts there values V_i and V_j such that V_i

 \bigcup V_j = x
- Suppose that this mapping is possible, and this property holds for all items that Bob inserts (this is similar to a garbled Bloom filters)

A different flavor of cuckoo hashing

- In the PSI protocol, Bob runs the OPRF in the bins so that he learns F_i(V_i) and F_i(V_i)
- Recall the homomorphic property of the function: $F_i(x) + F_i(y) = F_{i+i}(x \oplus y)$
- Therefore Bob can compute $F_i(V_i) + F_j(V_j) = F_{i+j}(V_i \oplus V_j) = F_{i+j}(x)$
- Alice sends to Bob, for each input y of her,
 F_{h1(y)+h2(y)}(y)
- Security: Alice cannot cheat by sending just one of $F_{h1(y)}(y)$, $F_{h2(y)}(y)$ (this needs a proof)

OKVS Example – Encoding in PaXoS (simplified*)

key-value
$$<$$
a, val(a)>
Decode(a) = S[1] \oplus S[5] = val(a)

How do we encode many such keys such that they decode correctly?

OKVS Example – Encoding in PaXoS (simplified*)

Peeling:

c : slot S[2]

d : slot S[4]

b : slot S[3]

a: slot S[1], S[5]

Solving for 'S' :
$$S[1] \oplus S[5] = val(a)$$

$$S[3] = S[5] + val(b)$$

$$S[4] = S[1] + val(d)$$

$$S[2] = S[4] + val(c)$$

recursively find slots constrained by just one key

What happens when peeling fails?

- The 2-core of a graph is the maximum subgraph where each node has degree at least 2
 - Namely, the subgraph containing all cycles, as well as all paths connecting cycles.
- All values (edges) which are not in 2-core can be handled via peeling
 - But, peeling does not work on the 2-core

What happens when peeling fails?

• THM*: For a CH graph of size O(n), WHP the 2-core of size O(logn) ©

- In other words, the encoding the we suggested can handle all but O(logn) of the items mapped to the CH
 - Handling only O(logn) items should be efficient
 - But we must hide which items these are

What do we actually need?

- An "Oblivious Key-Value Store" (OKVS)
- Key-Value Store:
 - Encode a set of (key, value) pairs. Querying an encoded key returns the corresponding value.
- Oblivious Key-Value Store (OKVS):
 - Hide the keys!
 - A query for an encoded key k will return the corresponding value
 - A query for a key which is not encoded will return a random value
 - Suppose all encoded values in (key,value) pairs are random
 - These two options will be indistinguishable for those making the queries
- This is a recurring requirement in PSI protocols [CDJ16,KMP+17,PSTY19, PRTY19, KRTW19]...

Oblivious Key-Value Store (OKVS)

if values are random; then S hides encoded keys; hence oblivious

Properties of OKVS

$$S = \begin{bmatrix} (K, V) = (k_1, v_1), (k_2, v_2), \dots, (k_n, v_n) \\ S[1] & S[2] & \cdots \end{bmatrix} S[m]$$

Linear OKVS: if values are in \mathcal{F} , use decoding function $d: K \to \mathcal{F}^m$ constructions

Binary OKVS: special case where $d(k) = \{0, 1\}^m$

$$\vdots \qquad \vdots \qquad \times \qquad \stackrel{S_2}{:} \qquad = \qquad \stackrel{v_2}{:}$$

 $\begin{bmatrix} \cdot \\ - \\ d(kn) \end{bmatrix} \begin{bmatrix} \cdot \\ - \\ \end{bmatrix} \begin{bmatrix} \times \\ v_n \end{bmatrix}$

 S_m

OKVS efficiency measures

Size: $\frac{n}{m}$ (optimal = 1)

Encoding time: solve for 'S'

Decoding time: matrix mult

OKVS Examples - PaXoS

OKVS efficiency measures for PaXoS

- The memory is linear in n
- Encoding time and decoding time are linear
- But cannot encode all items failure for those which happen to be in the 2-core

OKVS Examples - Polynomial

$$(K, V) = (k_1, v_1), (k_2, v_2), \dots, (k_n, v_n) \xrightarrow{\text{encode}} S(x) = s_1 + s_2 x^1 + s_3 x^2 + \dots s_n x^{n-1}$$

$$S(x) = s_1 + s_2 x^1 + s_3 x^2 + \dots s_n x^{n-1}$$

OKVS efficiency measures Linear (optimal) size Encoding time and Decoding time $= O(n log^2 n)$ field operations (FFT)

OKVS Examples – Random Matrix

Pick a random matrix of size $(n \times m)$ of field elements (row corresponding to key is defined as H(key))

$$\begin{bmatrix} r_1 & r_2 & r_3 & r_4 & & r_m \\ & \ddots & & & \ddots \\ \vdots & & & & \ddots \end{bmatrix} \times \begin{bmatrix} s_1 & & v_1 \\ s_2 & & & v_2 \\ s_3 & & & v_3 \\ s_5 & & & v_4 \\ s_5 & & & v_n \\ & & & & v_n \end{bmatrix}$$

OKVS efficiency measures

Size is linear Encoding time = $O(n^3)$ Decoding time = $O(n^2)$

Pr[Bad event: random matrix has linearly dependent rows] $< |\mathcal{F}|^{n-m-1}$

Binary OKVS: $d(k) = \{0, 1\}^m \text{ need } m \ge n + \lambda - 1 \text{ for error probability } 2^{-\lambda}$

Handling the 2-core in PaXoS

- Suppose I know in advance that whp |2-core| = O(logn)
- We can encode these logn items using a less efficient OKVS, e.g. a random matrix
- Advantage: This requires only $\log n + \lambda$ variables to encode $\log n$ values. Total OKCS size is $O(n) + O(\log n) + \lambda$
- Encoding takes $(logn + \lambda)^3$ time, but this is fine.

The full solution (read on your own)

- The parties agree on adding $O(\log n) + \lambda$ variables, and a random mapping H() to subsets of these variables.
- The value of each input x is defined as the **sum** of the values of the two locations to which it is mapped in the CH, and the random subset H(x) of the additional variables to which it is mapped.
- Bob maps his n inputs to a CH of size $(2 + \epsilon)n$
- Bob does peeling and remains with a 2-core of size $O(\log n)$ Expensive: $O(\log n + \lambda)^3$
- Bob sets random values to the nodes in the 2-core, but solves equations with the remaining $O(\log n) + \lambda$ variables, to ensure that the values of items in the 2-core is correct.
- Bob reverses the peeling to set values to nodes, ensuring the right values to all remaining variables.

 Cheap: O(n)
- Bob uses the OPRF to learn a value from each bin, sums them up, and learns F(x) for all inputs.

What are concrete parameters for OKVS?

```
Theorem: If \Pr[|2\text{-CORE}| \ge O(\log n)] \le \epsilon; |S| = O(n) + O(\log n) + \lambda we can encode successfully with negligible error \epsilon + 2^{-\lambda}
```

PaXoS[PRTY20]: Table size |S| = 2.4n (heuristic), $Pr[Encoding Fails] = 2^{-40}$

The elephant in the room (for many PSI results): <u>Rigorous</u> analysis to translate the asymptotic theorem to concrete parameters ??

What are concrete parameters for OKVS?

```
Theorem: If \Pr[|2\text{-CORE}| \ge O(\log n)] \le \epsilon; |S| = O(n) + O(\log n) + \lambda we can encode successfully with negligible error \epsilon + 2^{-\lambda}
```

```
[Wal21a] 3-cuckoo hash \rightarrow |S| = 1.23n (empirically extrapolated)
```

Empirical confidence? How can we claim, with 0.9999 confidence, that

Except with probability 2^{-40} can we encode using 3-cuckoo hashing

"1 M keys into 1.3 M bins with less than 10 keys in 2-CORE"?

Simulation is very resource intensive!!

What if the application needs failure probability 2^{-80} ?

Using probabilistic constructions for PSI

- Hashing is a probabilistic process
 - Sometimes it fails. In systems this results in higher overhead (not a big deal).
- For PSI, a hashing failure results in either
 - Inaccurate output (based on a subset of the original input set), or
 - Information leakage
- For some applications this does not matter much
 - ML?
 - CSAM detection (false negatives are fine)

Using probabilistic constructions for PSI

- For a theoretical analysis, we want a negligible failure probability (smaller than any polynomial function)
- For a concrete analysis we want the failure probability to be, e.g., < 2⁻⁴⁰
- Typically, cuckoo hashing constructions have a very sharp threshold ©
 - E.g., cuckoo hashing with 3 hash functions succeeds when |Table| > 1.23n
- But there is no tight analysis of the failure probability 😊
 - E.g., if the table is of size 1.3n, what's the probability of failure?
- Solutions?

Heuristics; experiments (costly); amplification of success probability.

Using probabilistic constructions for PSI

Things to note:

- Typically, cuckoo hashing constructions have a very sharp threshold
 - So, in practice, by using a slightly larger hash table, hashing should work well
- The failure probability is a function of the input size
 - For small inputs, failure probability might be too large 🕾
 - E.g., a failure probability of $O(n^{-3})$ (what constants?) might not be sufficiently small when n=1,000

New approach: amplification

We can very efficiently verify statements about <u>large</u> failure probabilities: E.g., that with 0.9999 confidence, it holds that 3-cuckoo hashing can encode

"1k keys into 1.3k bins/slots with less than 10 keys in 2-CORE" with failure probability $< 2^{-15}$

Main idea

Compose empirically verified "smaller" OKVS instances into "larger" OKVS provably amplifying the correctness guarantee from 2^{-15} to say, 2^{-40}

Star architecture

- 4 OKVS instances, each large enough to encode n/3 items, with failure probability p
- A hash function H() which maps items to one of T_1, T_2, T_3 .

Star architecture - decoding

• Given a key k, read its values from tables T_0 and $T_{H(k)}$ and return the XOR of these results: Decode(k) = Decode(T_0 ,k) XOR Decode($T_{H(k)}$,k)

Star architecture - encoding

(The success of encoding into a table is a function of the keys, not the values)

- If encoding succeeds for all of T₁,T₂,T₃, then
 - Fill random values in T₀.
 - Insert values to T_1, T_2, T_3 , such that decoding succeeds: for all k, insert to $T_{H(k)}$ the value $Decode(T_0, k)$ XOR value(k)

Star architecture - encoding

Same if encoding

- If encoding succeeds for T_1, T_2 but not for T_3 , then
 - Fill random values in T₃.
 - Insert values to T_0 , such that decoding succeeds for items mapped to T_3 : for k mapped to T_3 , insert to T_0 the value $Decode(T_3,k)$ XOR value(k)
 - Insert values to T_1, T_2 , such that decoding succeeds: for all k mapped to T_1, T_2 , insert to $T_{H(k)}$ the value $Decode(T_0, k)$ XOR value(k)

Star architecture – bad event

- If encoding fails for two tables, then the process fails
- This only happens with probability $\approx \binom{4}{2} \cdot p^2$
- Performance:
 - Size: 1.33 × optimal OKVS
 - To set the parameters, need to verify a failure probability of p (easier)
 - Obtain smaller failure probability p²

Concrete parameters for OKVS

Encode $n=10^6$ key-value pairs:

Cryptography and Cyber Security

 $Pr[encode fails] = 2^{-45.05}$ Encoding time = 2.915 s Decoding time = 1.625 seconds

OKVS size(n) = 161x8622 = 1.388n

Further Improvements?

- Can design recursive constructions
- For practical deployments, a single-level construction seems sufficient

 Open question: build a polynomial-size OKVS with a <u>negligible</u> failure probability (polynomial-size amplification of a small OKVS which has a polynomial failure probability?)

Applications of OKVS

Amplified 3H-GCT can replace any random encoding task

Polynomials

- ✓ Sparse OT extension → PSI [PRTY19]
- ✓ Oblivious Programmable PRF
 - ✓ Circuit-PSI [PSTY19, GMRSS21]
 - ✓ Private Set Union [KRTW19]
 - ✓ Multi-party PSI [KMPRT17]

new efficient malicious-secure n-PSI

PaXoS

- ✓ OT-PaXoS PSI [PRTY20]
 - √ fastest semi-honest 2PSI
 - √ fastest malicious 2-PSI
 - ✓ empirically verified
 - ✓ generalize to admit linear OKVS new vOLE-OKVS PSI
- √ vOLE-PaXoS PSI [RS21]

Experimental Results

Takeaways while using this to compute PSI on million items:

3H-GCT, 3H-GCT (star-amp): 1.61x, 1.43x less communication than PaXoS-PSI

malicious : fastest run-time, ~2x faster than PaXoS-PSI

: faster than [PSTY19] semi-honest PSI

What should we consider when choosing a PSI solution?

Simplicity

- Most cryptographic papers optimize performance, but if you want to use PSI, you would also desire a solution that it is
 - simple to understand and to explain (to your managers)
 - simple to implement
- DH based constructions are much simpler than the constructions

based on OT extension + hashing

Using probabilistic constructions for PSI

- What is the concrete failure probability?
- Sometimes a heuristic analysis is fine
- For some applications hashing failures do not matter much
 - ML?
 - CSAM detection (false negatives are fine)
- The failure probability is a function of the input size
 - For small inputs, failure probability might be too large 🕾

What input size should we plan for?

The cost-per-item of PSI for small sets is higher than for larger sets:

- OT extension / VOLE run a preprocessing step using public key operations
 - This is costly if we do only a few hundred OTs
- The hashing failure probability is smaller for larger input sets
 - For smaller sets, obtaining a failure probability of 2⁻⁴⁰ is costly
 - → For smaller input sizes, DH might be better than OT-based PSI

What input size should we plan for?

 For smaller input sets, a recent DH-based protocol of Rosulek-Triue (CCS 2021) is best (also has malicious security)

How to measure performance?

- What is more important, computation or communication costs?
- Google [IKN+19]: "For the offline "batch computing" scenarios we consider, communication costs are far more important than computation. ... It is much less expensive to add CPUs to a shared network than to expand network capacity."

How to measure performance?

Apple's recent CSAM detection system:

- Each photo uploaded from a device is accompanied by a PSI message
- The additional message size is negligible. Computation (=battery usage) is far more important.

SpOT PSI (Crypto 2019 [PRTY])

Security: Semi-honest vs. Malicious

 For PSI, the performance gap between semi-honest and malicious security is very small ©

 OT-based protocols: [PRTY20,GPRTY21] have the best performance, and almost the same overhead for malicious and semi-honest security

• DH-based protocols: for small sets, the malicious protocol of [RT21] is only 10%-20% slower than the best semi-honest PSI protocol

What should we use?

DH-based protocols

- Best performance for small inputs
- Easy to implement and explain
- Can be modified to compute intersection size

PSI + generic MPC protocols

- Can compute arbitrary functions
- Slower than OT-based
- More complicated

OT-based protocols

- Much more efficient for larger inputs
- More complicated
- Harder to modify

A different model: Outsourced PSI

- "MPC as a service"
- Many users share their data between servers, which a run the MPC.
- A different <u>trust</u> assumption (!) but can be <u>very efficient</u>!