

CANDIDATE NAME

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Moride Co.

1 hour 15 minutes

*	
∞	
_	
4	
_	
И	
6	
2	
6	
5	
6	

CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/33
Paper 3 (Exter	nded)	Octob	er/November 2012

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
Total			

This document consists of 14 printed pages and 2 blank pages.

BLANK PAGE

www.PapaCambridge.com

	The state of the s	
	3	0
1	For each of the following, select an element from Period 4, potassium to krypton matches the description.	TaCan,
	(a) A metal that reacts rapidly with cold water to form a compound of the type M(Ol hydrogen.	AdhaCan,
		[1]
	(b) Its only oxidation state is 0.	[1]
	(c) It has a macromolecular oxide, XO ₂ , which has similar physical properties to the diamond.	nose of
		[1]
	(d) This is one of the metals alloyed with iron in stainless steel.	[1]
	(e) It can be reduced to an ion of the type X ⁻ .	[1]
	(f) It can form a covalent hydride having the formula H ₂ X.	[1]
	(g) Its soluble salts are blue and its oxide is black.	[1]
	(h) It is a liquid at room temperature.	[1]
	רו	Total: 8]
2	(a) State a use for each of the following gases.	
	(i) chlorine	[1]
	(ii) argon	[1]
	(iii) ethene	[1]
	(iv) oxygen	[1]
	(b) Describe how oxygen is obtained from air.	
		[2]
	רו	Total: 6]

(a) A small amount of liquid bromine is added to a container which is then sealed. 3

$$Br_2(I) \rightarrow Br_2(g)$$

www.papaCambridge.com Use the ideas of the Kinetic Theory to explain why, after about an hour, the bromine molecules have spread uniformly to occupy the whole container.

(b) The diagrams below show simple experiments on the speed of diffusion of gases.

Complete the following explanations. Diagram 1 has been done for you.

Diagram 1

www.PapaCambridge.com There is air inside and outside the porous pot so the rate of diffusion of air into the pot is the same as the rate of diffusion of air out of the pot. The pressure inside and outside the pot is the same so the coloured liquid is at the same level on each side of the tube.

Diagram 2	
	[3]
Diagram 3	
	[3]
	[Total: 9]

	6
nc al	oys have been used for over 2500 years.
(i)	oys have been used for over 2500 years. Explain the phrase zinc alloy.
	[1]
(ii)	Making alloys is still a major use of zinc. State one other large scale use of zinc.
	[1]
(iii)	Describe the bonding in a typical metal, such as zinc, and then explain why it is malleable. You may use a diagram to illustrate your answer.
	[3]
(iv)	Suggest why the introduction of a different atom into the structure makes the alloy less malleable than the pure metal.
	[2]
Zn	c metal is made by the reduction of zinc oxide. The major ore of zinc is zinc blende, S. Zinc blende contains silver and lead compounds as well as zinc sulfide. c blende is converted into impure zinc oxide by heating it in air.
	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$
	2 2
 (i)	Describe how zinc oxide is reduced to zinc.

www.PapaCambridge.com (iii) This impure solution of zinc sulfate contains zinc ions, silver(I) ions and lea Explain why the addition of zinc powder produces pure zinc sulfate solution. Include at least one ionic equation in your explanation.

(iv) Describe how zinc metal can be obtained from zinc sulfate solution by electrolysis. A labelled diagram is acceptable. Include all the products of this electrolysis. The electrolysis is similar to that of copper(II) sulfate solution with inert electrodes.

[4]

[Total: 18]

www.PapaCambridge.com Propenoic acid is an unsaturated carboxylic acid. The structural formula of propenoic 5 given below.

СООН

(a)	(i)	Describe how you could show that propenoic acid is an unsaturated compound.
		test
		result
		• •
	(ii)	Without using an indicator, describe how you could show that a compound is an acid.
		test
		result
		[2]
(b)		penoic acid reacts with ethanol to form an ester. Deduce the name of this ester. Draw structural formula.
	nan	ne of ester
	stru	ctural formula showing all bonds
		[3]
(c)		organic compound has a molecular formula $\rm C_6H_8O_4$. It is an unsaturated carboxylic d. One mole of the compound reacts with two moles of sodium hydroxide.
	(i)	Explain the phrase molecular formula.
		[2]

www.PapaCambridge.com (ii) One mole of this carboxylic acid reacts with two moles of sodium hydroxide. How many moles of -COOH groups are there in one mole of this compound? (iii) What is the formula of another functional group in this compound? (iv) Deduce a structural formula of this compound.

[1]

[Total: 12]

- www.papaCambridge.com Until recently, arsenic poisoning, either deliberate or accidental, has been a frequent of death. The symptoms of arsenic poisoning are identical with those of a common illn cholera. A reliable test was needed to prove the presence of arsenic in a body.
 - (a) In 1840, Marsh devised a reliable test for arsenic.

Hydrogen is formed in this reaction. Any arsenic compound reacts with this hydrogen to form arsine which is arsenic hydride, AsH₃.

The mixture of hydrogen and arsine is burnt at the jet and arsenic forms as a black stain on the glass.

(i) Write an equation for the reaction which forms hydrogen.

(ii) Draw a diagram which shows the arrangement of the outer (valency) electrons in one molecule of the covalent compound arsine.

The electron distribution of arsenic is 2 + 8 + 18 + 5.

Use x to represent an electron from an arsenic atom.

Use o to represent an electron from a hydrogen atom.

					11					2
(b)	And	ther hydride c	of arsenic h	as the cor	mposition b	pelov	V.			A Car
		arsenic	97.4%		hydrogen	2.6	5%			13
	(i)	Calculate the Show your w	•	ormula of	this hydrid	de fro	om the abo	ove data.		
	(ii)	The mass of	one mole o	f this hyd	ride is 154	g. W	/hat is its m	olecular f	ormula?	
										[1]
	(iii)	Deduce the s	tructural fo	rmula of t	his hydride) .				
										[1]
										[,,
(c)	a m	r is a natural preasurement of lysis, the prote	of a person's	s exposu	re to arsen		•	•	•	
	(i)	What is the n	ame of the	linkage ir	n proteins?					
										[1]
	(ii)	Name a reag	ent which c	an be use	ed to hydro	lyse	proteins.			

(iii) What type of compound is formed by the hydrolysis of proteins?

(d)	(d) In the 19th Century, a bright green pigment, copper(II) arsenate(V) was used to and insects. In damp conditions, micro-organisms can act on this compound to pre the very poisonous gas, arsine.				
	(i)	Suggest a reason why it is necessary to include the oxidation states in the name the compound.	of		
		[1]		
	(ii)	The formula for the arsenate(V) ion is ${\sf AsO_4^{3-}}$. Complete the ionic equation for the formation of ${\sf copper}(II)$ arsenate(V).	ne		
		Cu ²⁺ +AsO ₄ ³⁻ \rightarrow	21		

For miner's

[Total: 14]

Ammonia is made by the Haber process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

	42
	monia is made by the Haber process. $N_2(g) \ + \ 3H_2(g) \ \rightleftharpoons \ 2NH_3(g)$ State one major use of ammonia.
Am	monia is made by the Haber process.
	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
(a)	State one major use of ammonia.
	[1]
(b)	Describe how hydrogen is obtained for the Haber process.
	[3]
(c)	This reaction is carried out at a high pressure, 200 atmospheres.
(-)	State, with an explanation for each, two advantages of using a high pressure.
	[5]
<i>,</i>	
(d)	(i) What is the difference between an endothermic and an exothermic reaction?
	[1]

www.PapaCambridge.com (ii) Bond breaking is an endothermic process. Bond energy is the amount of needed to break or form one mole of the bond. Complete the table and explain. the forward reaction is exothermic.

$$N \equiv N + 3H - H \Leftrightarrow 2H - N - H$$
 H

bond	bond energy kJ/mol	energy change kJ	exothermic or endothermic
N≡N	944	+944	endothermic
н—н	436	3 × 436 = +1308	
N—H	388		

		[3]
 	 	[0]

[Total: 13]

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

	0	4 He lium	20 Neon 10	40 Ar Argon	84 Krypton 36	131 X e Xenon 54	Radon 86		175 Lu
	=>		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 	At Astatine 85		173 Yb
	5		16 Oxygen	32 S Suffur	Selenium Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 T B
	>		14 N itrogen 7	31 Phosphorus	AS Arsenic		209 Bis Bismuth 83		167 Fr
	≥		12 Carbon 6	28 Si licon	73 Ge Germanium 32	SD Tn 50	207 Pb Lead 82		165 H
	≡		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 n Indium 49	204 T t Thallium		162 Dy
					65 Zn Znc 30	Cadmium 48	201 Hg Mercury 80		159 T.
					64 Copper	108 Ag Silver 47	197 Au Gold		157 Gd
Group					59 Nicke l Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu
Gre					59 Co Cobalt	103 Rh Rhodium 45	192 r		150 Sm
		1 Hydrogen			56 Fe Iron	Ruthenium	190 Os Osmium 76		Pm
					Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Nd
					Cr Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce
					48 T Titanium	91 Zr	178 Hf Hafnium 72		
					Scandium	89 ×	139 La Lanthanum *	227 Ac Actinium 89	series eries
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Catcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	anthanoid Actinoid se
	_		7 Li Lithium	23 Na Sodium	39 K Potassium 19	Rb Rubidium	133 Cs Caesium 55	Fr Francium 87	*58-71 Lanthanoid series 190-103 Actinoid series

opripo bio	140	141	144		150	152	157	159	162	165	167	169	173	175	
ad selies	Se	፵	PR	Pm	Sm	En	gq	ď	ò	운	ш	Ę	Υb	Ľ	
Selico	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												-
X = atomic symbol	Т	Ра	D	ď	Pu	Am	CB	쑮	ర	Es	Fm	Md	٥	ئ	24
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrendum 103	W.
	F	30	000	300	7000	500		0		1 2 2				\	Dax
	lue <	The volume of one more of any gas is 24 dm $^{\circ}$ at room temperature and pressure (i.i.p.).	one mole	or arry ga	4S IS 24 OF	n° at roor	n termper	ature and	pressure	(r.t.p.).				7	2
													1	16.	1
														76	
												•	8	1	
												1	0.0	1	
												3	2		
													1		

Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.