Characterization of the Finite Complement Topology on the Real Line

Colton Kinstley

September 9, 2017

Abstract

A proof that all open sets in the finite complement copology on the real lie can be written as the finite union $(-\infty, a_1) \cup (a_1, a_2) \cup \cdots \cup (a_{n-1}, a_n) \cup (a_n, \infty)$.

Definitions

Given a set X let \mathfrak{I}_f be the collection of all subsets U of X such that $X \setminus U$ is either all of X or is finite. That is,

$$\mathfrak{I}_f = \{ U \subset X | U \setminus X = X \text{ or } U \setminus X \text{ is finite} \}.$$

A Charictarization of \mathfrak{I}_f

Given any open set U in $(\mathbb{R}, \mathcal{T}_f)$, U is either all of \mathbb{R} or can be written in the form

$$U = (-\infty, a_1) \cup (a_1, a_2) \cup \cdots \cup (a_{n-1}, a_n) \cup (a_n, \infty)$$

with $a_i \in \mathbb{R}$ and $i \in \mathbb{N}$.

Proof

By definition given any U open in \mathbb{R} there must exist some $n \in \mathbb{N}$ such that $X \setminus U = \emptyset$ or

$$\mathbb{R} \setminus U = \{x_i\}_{i=1}^n \text{ with } x_i \in \mathbb{R}.$$

If $X \setminus U = \emptyset$ the hypotheses holds with $U = \mathbb{R} = (-\infty, \infty)$. In the second case the proof is by induction on n. The hypothesis holds for n = 1 with $U = (-\infty, x_1) \cup (x_1, \infty)$. Suppose the statement is true for all natural numbers less than n. Then we have