# Funkcja wykładnicza

## Definicja

Funkcja **wykładnicza** f **o podstawie** a dana jest wzorem

$$f(x) = a^x$$

gdzie  $a \in \mathbb{R}_+, a \neq 1$  i  $x \in \mathbb{R}$ .

## Definicja

Funkcja **wykładnicza** f **o podstawie** a dana jest wzorem

$$f(x) = a^x$$

gdzie  $a \in \mathbb{R}_+, a \neq 1$  i  $x \in \mathbb{R}$ .

## Uwagi:

• a = 1 dawałoby  $f(x) = 1^x = 1$ , czyli funkcję stałą, a nie wykładniczą.

## Definicia

Funkcja wykładnicza f o podstawie adana jest wzorem

$$f(x) = a^x$$

gdzie  $a \in \mathbb{R}_+, a \neq 1$  i  $x \in \mathbb{R}$ .

## Uwagi:

- a=1 dawałoby  $f(x)=1^x=1$ , czyli funkcje stała, a nie wykładnicza.
- a > 0 gdyż np. dla a = -1 funkcja  $f(x) = a^x$  nie istniałaby dla wszystkich x

$$f\left(\frac{1}{3}\right) = \sqrt[3]{-1} = -1, \quad f\left(\frac{1}{2}\right) = \sqrt{-1} \notin \mathbb{R}$$

## Definicia

Funkcja wykładnicza f o podstawie adana jest wzorem

$$f(x) = a^x$$

gdzie  $a \in \mathbb{R}_+, a \neq 1$  i  $x \in \mathbb{R}$ .

### Uwagi:

- a=1 dawałoby  $f(x)=1^x=1$ , czyli funkcje stała, a nie wykładnicza.
- a > 0 gdyż np. dla a = -1 funkcja  $f(x) = a^x$  nie istniałaby dla wszystkich x

$$f\left(\frac{1}{3}\right) = \sqrt[3]{-1} = -1, \quad f\left(\frac{1}{2}\right) = \sqrt{-1} \notin \mathbb{R}$$

• Szczególny przypadek:  $f(x) = e^x$ , gdzie e = 2.718281828...





rosnąca



rosnąca





0 < a < 1  $G(x) = 4^{-x}$   $F(x) = 2^{-x}$ 

malejąca





rosnąca malejąca

## Równania i nierówności wykładnicze

#### Konsekwencja różnowartościowości

$$a^x = a^y \Leftrightarrow x = y$$

## Równania i nierówności wykładnicze

#### Konsekwencja różnowartościowości

$$a^x = a^y \Leftrightarrow x = y$$

#### Konsekwencja monotoniczności

$$a^x \le a^y \quad \Leftrightarrow \quad x \le y, \quad \text{gdy } a > 1$$

## Równania i nierówności wykładnicze

#### Konsekwencja różnowartościowości

$$a^x = a^y \Leftrightarrow x = y$$

#### Konsekwencja monotoniczności

$$a^x \le a^y \quad \Leftrightarrow \quad x \le y, \quad \text{gdy } a > 1$$

$$a^x \le a^y \quad \Leftrightarrow \quad x \ge y, \quad \text{gdy } 0 < a < 1$$

•  $f(x) = \sinh x$  (sinus hiperboliczny)

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad x \in \mathbb{R}$$

•  $f(x) = \cosh x$  (cosinus hiperboliczny)

$$\cosh x = \frac{e^x + e^{-x}}{2}, \quad x \in \mathbb{R}$$

•  $f(x) = \operatorname{tgh} x$  (tangens hiperboliczny)

$$tgh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad x \in \mathbb{R}$$

•  $f(x) = \operatorname{ctgh} x$  (cotangens hiperboliczny)

$$\operatorname{ctgh} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \quad x \in \mathbb{R} - \{0\}$$







$$y = \frac{T}{\rho \cdot q} \cdot \cosh\left(\frac{\rho \cdot g \cdot x}{T}\right) = a \cosh\left(\frac{x}{a}\right)$$





Newcastle



# Funkcja logarytmiczna

### Definicja

Dla x > 0, a > 0 i  $a \neq 1$  logarytmem x przy podstawie anazywamy wykładnik potęgi y, do której należy podnieść liczbę a, żeby otrzymać x, tj.

$$y = \log_a x \iff x = a^y$$

### Definicja

Dla x > 0, a > 0 i  $a \neq 1$  logarytmem x przy podstawie a nazywamy wykładnik potegi y, do której należy podnieść liczbę a, żeby otrzymać x, tj.

$$y = \log_a x \iff x = a^y$$

•  $\log_{10} x = \log x$  -logartym dziesiętny

## Definicja

Dla x > 0, a > 0 i  $a \neq 1$  logarytmem x przy podstawie a nazywamy wykładnik potegi y, do której należy podnieść liczbę a, żeby otrzymać x, tj.

$$y = \log_a x \iff x = a^y$$

- $\log_{10} x = \log x$  -logartym dziesiętny
- $\log_e x = \ln x \text{logarytm naturalny}$

$$y = \log_a x \iff x = a^y$$

Własności z definicji

$$y = \log_a x \iff x = a^y$$

## Własności z definicji

• 
$$\log_a 1 = 0$$

$$y = \log_a x \iff x = a^y$$

## Własności z definicji

- $\log_a 1 = 0$
- $\log_a a = 1$

$$y = \log_a x \iff x = a^y$$

## Własności z definicji

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\bullet \log_a a^y = y$

$$y = \log_a x \iff x = a^y$$

## Własności z definicji

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\bullet \log_a a^y = y$
- $a^{\log_a x} = x$

$$a,b>0, a,b\neq 1, x>0, y>0, r\in \mathbb{R}.$$

$$a, b > 0, a, b \neq 1, x > 0, y > 0, r \in \mathbb{R}.$$

$$\log_a (x \cdot y) = \log_a x + \log_a y$$

$$\operatorname{dla} x, y < 0, \quad \log_a (x \cdot y) = \log_a (-x) + \log_a (-y)$$



$$a, b > 0, a, b \neq 1, x > 0, y > 0, r \in \mathbb{R}.$$

$$\log_a(x \cdot y) = \log_a x + \log_a y$$

$$\log_a(x \cdot y) = \log_a(-x) + \log_a(-y)$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\operatorname{dla} x, y < 0, \quad \log_a \frac{x}{y} = \log_a (-x) - \log_a (-y)$$

$$a,b>0, a,b\neq 1, x>0, y>0, r\in \mathbb{R}.$$

$$\log_a(x \cdot y) = \log_a x + \log_a y$$

$$\log_a(x \cdot y) = \log_a(-x) + \log_a(-y)$$

$$a,b>0, a,b\neq 1, x>0, y>0, r\in \mathbb{R}.$$

- $\log_a(x \cdot y) = \log_a x + \log_a y$   $\operatorname{dla} x, y < 0, \quad \log_a(x \cdot y) = \log_a(-x) + \log_a(-y)$

$$a,b>0, a,b\neq 1, x>0, y>0, r\in \mathbb{R}.$$

$$\log_a(x \cdot y) = \log_a x + \log_a y$$

$$\operatorname{dla} x, y < 0, \quad \log_a(x \cdot y) = \log_a(-x) + \log_a(-y)$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

# **EVERY TIME YOU DO THIS:**



$$log(x+y)=logx+logy$$

# **A KITTEN DIES**

## Funkcja logarytmiczna

#### Definicja

Niech x > 0, a > 0 i  $a \neq 1$ . Funkcję daną wzorem

$$f(x) = \log_a x$$

nazywamy funkcją logarytmiczną przy podstawie a.

# Funkcja logarytmiczna

#### Definicja

Niech x > 0, a > 0 i  $a \neq 1$ . Funkcję daną wzorem

$$f(x) = \log_a x$$

nazywamy funkcją logarytmiczną przy podstawie a.

- $y = \log_{10} x = \log x$  -logartym dziesiętny
- $y = \log_e x = \ln x \text{logarytm naturalny}$

$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$\boxed{a>1}$$
 
$$D_f=\mathbb{R}_+$$
 
$$W_f=\mathbb{R}$$
 miejsce zerowe:  $x=1$  rosnąca różnowartościowa

$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 

$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 





$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$f(x) = \log_a x$$
 jest funkcją odwrotną do  $g(x) = a^x$ 



$$\begin{aligned}
D_f &= \mathbb{R}_+ \\
W_f &= \mathbb{R} \\
\text{miejsce zerowe: } x &= 1 \\
\text{malejąca} \\
\text{różnowartościowa}
\end{aligned}$$

# Równania logarytmiczne

#### Własności do wykorzystania

- $\bullet \ a^{\log_a x} = x$

# Równania logarytmiczne

#### Własności do wykorzystania

- $\bullet \ a^{\log_a x} = x$
- Funkcja logarytmiczna jest różnowartościowa, więc

$$\log_a x = \log_a y \iff x = y$$

## Nierówności logarytmiczne

#### Własności do wykorzystania

• Jeżeli a > 1 funkcja jest rosnąca, więc

$$\log_a f(x) \le \log_a g(x) \iff 0 < f(x) \le g(x)$$

# Nierówności logarytmiczne

#### Własności do wykorzystania

• Jeżeli a > 1 funkcja jest rosnąca, więc

$$\log_a f(x) \le \log_a g(x) \iff 0 < f(x) \le g(x)$$

• Jeżeli 0 < a < 1 funkcja jest malejąca, więc

$$\log_a f(x) \le \log_a g(x) \iff f(x) \ge g(x) > 0$$