

GENETIC ALGORITHMS

Prof. Ganapati Panda, fnae, fnasc.

School of Electrical Sciences

Indian Institute of Technology Bhubaneswar

The Genetic Algorithms (GA)

- ❖ Based on the mechanics of biological evolution.
- ❖Initially developed by John Holland, University of Michigan (1970's)
 - ■To understand processes in natural systems.
 - ■To design artificial systems retaining the robustness and adaptation properties of natural systems.
- ❖ Provide efficient techniques for optimization and machine learning applications.
- ❖It is a stochastic algorithm.
- ❖It does not use gradient information.
- ❖ Widely used in business, science and engineering.

Genetic Algorithms: Basic idea

Start with a population of candidate solutions.

❖ Variation: Introduce variation by applying two operators: crossover and mutation.

Survival of the fittest: Use a fitness criterion to bias the evolution towards desired features.

Genetic Algorithms Techniques

- ❖GAs are a particular class of evolutionary algorithms. The techniques common to all GAs are:
 - •Inheritance offspring acquire characteristics
 - •Mutation change, to avoid similarity
 - •Natural Selection -variations improve survival
 - •Crossover recombination
- ❖GAs are best used when the objective function is:
 - Discontinuous
 - •Highly nonlinear
 - •High dimension
 - •Stochastic
 - •Has unreliable or undefined derivatives

4

Biological Terminology

- ❖Gene a single encoding of part of the solution space,
 i.e. either single bits or short blocks of adjacent bits that
 encode an element of the candidate solution
- Chromosome a string of genes that represents a solution1 0 1 1 0
- ❖Population the number of chromosomes available to test

0	1	1	0	1
1	1	0	0	1
1	0	1	0	1
1	0	1	0	1
1	0	0	0	1
0	0	1	1	1

Mapping: Nature vs. computer

NATURE	COMPUTER
POPULATION	SET OF SOLUTIONS
INDIVIDUAL	SOLUTION TO A PROBLEM
FITNESS	QUALITY OF SOLUTION
CHROMOSOME	ENCODING FOR A SOLUTION
GENE	PART OF ENCODING OF A SOLUTION
REPRODUCTION	CROSSOVER

7/29/2013

Features of Genetic Algorithms

- Not too fast but cover large search space
 - Capable of quickly finding promising regions of the search space but may take a relatively long time to reach the optimal solution.
- Good heuristics for combinatorial problems
- Usually emphasize combining information from good parents (crossover)
- ❖ Different GAs use different
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

7/29/2013

Representation

- **GAs on primarily two types of representations:**
 - Binary Coded

$$[0110, 0011, 1101, \ldots]$$

Real Coded

$$[13.2, -18.11, 5.72, \ldots]$$

- ❖ Binary-Coded (genotype) GAs must decode a chromosome into a real value (phenotype), for evaluating the fitness value.
- Real-Coded GAs can be regarded as GAs that operate on the actual real value (phenotype).
 - For Real-Coded GAs, no genotype-to-phenotype mapping is needed.

Selection

- *A proportion of the existing population is selected to bread a new bread of generation.
- *Parents with better fitness have better chances to produce offspring.

Rank selection

- * Rank selection first ranks the population and then every chromosome receives fitness from this ranking.
 - Selection is based on this ranking rather than absolute differences in fitness.
 - The best will have fitness 1, second best 2 etc. and the worst will have fitness *N* (number of chromosomes in population).

7/29/2013

Tournament selection

Runs a "tournament" among a few individuals chosen at random from the population and selects the winner (the one with the best fitness) for crossover

- Two entities are picked out of the pool, their fitness is compared, and the better is permitted to reproduce.
- Selection pressure can be easily adjusted by changing the tournament size.
- Deterministic tournament selection selects the best individual in each tournament.

Roulette-wheel selection

- •Assign each individual part of the wheel according to proportion of fitness value.
- ✓ The probability that a individual will be selected is given by the ratio of its fitness to the sum of fitness of all individuals of the current population.

$$P(h_i) = \frac{f(h_i)}{\sum_{j=1}^{N} f(h_j)}$$

where h_i is the i^{th} individual of current population and size of population is N.

•Spin wheel (*N*) times to select (*N*) individuals

Crossover

Crossover is a genetic operator that combines (mates) two individuals (parents) to produce two new individuals (Childs).

• The idea behind crossover is that the new chromosome may be better than both of the parents if it takes the best characteristics from each of the parents.

Single-Point Crossover

- •Choose a random point
- •Split parents at this crossover point
- •Create children by exchanging tails
- •Probability of crossover is typically in range (0.6, 0.9)

Two-Point Crossover

- •Choose two random points
- •Split parents at these crossover points
- •Create children by exchanging middle portion

Uniform Crossover

•Randomly generated mask

•Create children by exchanging genes according to mask

- •Choose two parents randomly from the selected candidates.
- •Generate a random number (r) for each dimension of parents.
- •Create children by combining the weighted portion of both parents.

$$b = \begin{cases} (2*r)^{\left(\frac{1}{\mu+1}\right)} & if \quad r \le 0.5\\ \left(\frac{1}{2*(1-r)}\right)^{\left(\frac{1}{\mu+1}\right)} & if \quad r > 0.5 \end{cases}$$

$$child_1(j) = \frac{1}{2} ((1+b)*parent_1(j) + (1-b)*parent_2(j))$$

$$child_2(j) = \frac{1}{2} ((1-b)^* parent_1(j) + (1+b)^* parent_2(j))$$

where

- r is a random number $\{0,1\}$
- μ is a crossover operator
- child(j) represent j^{th} dimension of child.

Mutation

- * Mutation is a genetic operator used to maintain genetic diversity from one generation of a population of chromosomes to the next. It is analogous to biological mutation.
- * Mutation Probability determines how often the parts of a chromosome will be mutated.

Bit-reversal Mutation

- •Alter each gene independently
- •Choose a random point
- •Create children by altering the gene of choosen point
- •Mutation probability is typically in range {(1/population_size), (1/chromosome_length)}

Polynomial Mutation

- •Select one parent randomly from the selected parents.
- •Generate a random number (r) for each dimension of parent.

$$d = \begin{cases} (2*r)^{\left(\frac{1}{\eta+1}\right)} - 1 & if \quad r \le 0.5\\ 1 - (2*(1-r))^{\left(\frac{1}{\eta+1}\right)} & if \quad r > 0.5 \end{cases}$$

$$child(j) = parent(j) + d$$

where

- r is a random number $\{0,1\}$
- η is a mutation operator
- child(j) represent j^{th} dimension of child.

Fitness Function

- A fitness function quantifies the optimality of a solution (chromosome) so that that particular solution may be ranked against all the other solutions.
- ❖ It depicts the closeness of a given 'solution' to the desired result.
- **❖** Watch out for its speed.
- * Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. This helps keep the diversity of the population large, preventing premature convergence on poor solutions.

7/29/2013

Termination

- ❖ A solution is found that satisfies minimum criteria
- ❖ Fixed number of generations found
- Allocated budget (computation, time/money) reached
- ❖ The highest ranking solution's fitness is reaching or has reached

7/29/2013

Issues with Genetic Algorithms

Choosing parameters:

- •Population size
- •Crossover and mutation probabilities
- •Selection, deletion policies
- •Crossover, mutation operators, etc.
- •Termination criteria

Performance:

- •Can be too slow but covers a large search space
- •Is only as good as the fitness function

The Basic Genetic Algorithm


```
% Generate random population of chromosomes
Initialize population;
% Evaluate the fitness of each chromosome in the population
Evaluate population;
                                                          [Fitness]
% Create, accept and test a new population:
while Termination_Criteria_Not_Satisfied
   % Select according to fitness
    Select parents for reproduction;
                                                          [Selection]
    % With a crossover probability perform crossover or copy parents
    Perform crossover;
                                                          [Crossover]
    % With a mutation probability mutate offspring at each position in chromosome
    Perform mutation;
                                                          [Mutation]
   Accept new generation;
    Evaluate population;
                                                          [Fitness]
```

20

$Minimize - f(x) = \sin(x),$

where $0 < x < (2*\pi)$

<u>Initialize population:</u>

- Search space is of single dimension (given).
- Let population size (N) = 10
- Initialize population with 10 chromosomes having single dimensioned real value.
- These values are randomly distributed in between $[0,2*\pi]$.

 $\boldsymbol{\mathcal{X}}$

2.620

4.526

0.001

1.900

0.922

0.580

1.170

2.171

2.493

3.385

chromosomes

Evaluate function:

• Find out objective function values (fitness values) for all chromosomes.

Tournament Selection:

fitness

Crossover:

Select Probability of Crossover $P_c = 0.8$ Distribution index for Crossover (μ)= 20

1.170

4.526

2.620

0.580

4.526

3.385

0.001

2.620

4.526

2.620

parents

$$b = \begin{cases} (2*r)^{\left(\frac{1}{\mu+1}\right)} & if \quad r \le 0.5\\ \left(\frac{1}{2*(1-r)}\right)^{\left(\frac{1}{\mu+1}\right)} & if \quad r > 0.5 \end{cases}$$

$$c_{c1} = \frac{1}{2} ((1+b)*p_1 + (1-b)*p_2)$$

$$c_{c2} = \frac{1}{2} ((1-b)*p_1 + (1+b)*p_2)$$

C

2.611

3.394

0.330

4.196

2.625

4.521

1.146

• •

4.469

children

Mutation:

Select Probability of Mutation\ $P_m = 0.2$

Distribution index for Mutation $(\eta) = 20$

 \boldsymbol{C}_{c}

2.611

3.394

0.330

4.196

2.625

4.521

1.146

• •

4,469

children

1 random position

5

2.625

 C_{m}

2.594

 \boldsymbol{c}_{m}

2.594

2.751

2.200

0.010

Mutated children

Generate random number
$$-(r)$$

$$d = \begin{cases} (2*r)(\frac{1}{\eta+1}) - 1 & \text{if } r \le 0.5\\ 1 - (2*(1-r))(\frac{1}{\eta+1}) & \text{if } r > 0.5 \end{cases}$$

$$c_m = c_c + d$$

Selection of *N* chromosomes for next generation:

Select first N (=10)

Combine chromosomes and children: Intermediate population is

$$R = \begin{bmatrix} x \\ c_c \\ c_m \end{bmatrix}$$

Evaluate function

$$f(R) = \begin{bmatrix} f(x) \\ f(c_c) \\ f(c_m) \end{bmatrix}$$

Sort in ascending order according to fitness value

1.899

0.946

Applications of Genetic Algorithms &

- •Optimization—numerical and combinatorial optimization problems, e.g. travelling salesman, routing, graph colouring and partitioning
- •Robotics-trajectory planning
- •Machine learning—designing neural networks, classification and prediction, e.g. prediction of weather or protein structure
- •Signal processing—filter design
- •Design—semiconductor layout, aircraft design, communication networks
- •Automatic programming—evolve computer programs for specific tasks, design cellular automata and sorting networks
- •Economics—development of bidding strategies, emergence of economics markets
- •Immune systems—model somatic mutations
- •Ecology–model symbiosis, resource flow

Schematic Block diagram of an adaptive identification system

- x represents the random input sequence lie in between [-0.5,0.5]
- y represents the desired output sequence.
- y' represents estimated output sequence.
- *n* is additive white Gaussian noise.
- a represent coefficients of system.

Genetic Algorithm For System Identification

& Coefficients of the model (\hat{a}) are initially chosen from a population of M - chromosomes.

 \clubsuit Each chromosome constitutes (Q*L) number of random binary bits where each sequential group of L - bits represent one coefficient of the adaptive model, where Q is the number of parameters of the model.

$$\vec{Y} = [y_1, y_2, y_3, \dots, y_K]$$

Mean Square

Error (MSE)

$$\vec{N} = [n_1, n_2, n_3, \dots, n_K]$$

$$E_m = mse(e_1^m, e_2^m, \dots, e_K^m)$$

Simulation & Results

- ❖ Input Signal (x):- zero mean uniformly distributed random sample lying between [-0.5, 0.5]
- \bullet Noise (N):- White & Gaussian distributed random samples
- \bullet Coefficients of the FIR filter (Q):- 3
- Number of input signal samples (K):- 500
- ❖Binary coded GA is used
 - •Number of chromosomes taken (*M*) :- 60
 - •Number of bits in each chromosome (Q*L):- 60
 - •Using one point cross over
 - •Using Tournament selection
 - •Probability of Crossover (Pc) :- 0.8
 - •Probability of Mutation (Pm) :- 0.1

Systems

Linear System

$$A(z) = 0.3040 + 0.9029z^{-1} + 0.3040z^{-2}$$

$$NSR = -30dB \& NSR = -20dB$$

Nonlinear System

For simulation purpose the Nonlinear system can be obtained by passing the output of the linear system through various nonlinearity functions.

•EXP: - 1

$$Y = \tanh(Y)$$
,

•EXP: - 2

$$Y = Y + 0.2Y^2 - 0.1Y^3$$

Comparison of output response of (Exp-1) at -20dB NSR & -30dB NSR

NSR = -20dB

NSR = -30dB

Comparison of output response of (Exp-2) at -20dB NSR & -30dB NSR

NSR = -20dB

NSR = -30dB

Overview of a Digital Communication System

Digital Channel Equalizers

- *Located in the front end of the receivers (in series with the channel)
- ❖Inverse system of the channel model (Transfer function of the equalizer is inverse to the transfer function of the channel)

Use to reduce: -

- •Inter-Symbol Interference (ISI)
- •Inter User Interference in the form of Co-channel Interference (CCI)
- •Adjacent Channel Interference (ACI) in the presence of Additive White Gaussian Noise (AWGN).

7/29/2013

Block Diagram For Channel Equalization

Simulation & Results

- **❖**Binary coding is used
- ightharpoonup Number of chromosomes taken (M):- 60
- Number of bits used for each parameter (L):- 20
- One point cross over is used
- **❖** Tournament selection is used
- ArrProbability of Crossover (Pc) :- 0.8
- **❖**Probability of Mutation (*Pm*) :- 0.1
- Experiments on Nonlinear Channel

Nonlinear Channels

Linear System

$$A(z) = 0.3040 + 0.9029z^{-1} + 0.3040z^{-2}$$
$$NSR = -10dB$$

Nonlinear System

For simulation purpose the Nonlinear system can be obtained by passing the output of the linear system through various nonlinearity functions.

$$r(k) = r(k) + 0.2 * r^{2}(k) - 0.1 * r^{3}(k),$$

$$r(k) = r(k) + 0.2 * r^{2}(k) - 0.1 * r^{3}(k) + 0.5 * \cos(\pi * r),$$

Comparison of BER of Nonlinear Channel NCH1 between LMS & GA based Equalizer at -10dB noise

Comparison of BER of nonlinear Channel NCH2 between LMS & GA based equaliser at -10dB noise

References

Mishra, S.K.; Panda, G.; Meher, S.; Majhi, R.; Singh, M., "Portfolio management assessment by four multiobjective optimization algorithm," *Recent Advances in Intelligent Computational Systems (RAICS), 2011 IEEE*, vol., no., pp.326,331, 22-24 Sept. 2011

Baghel, V.; Panda, G.; Srihari, P.; Rajarajeswari, K.; Majhi, B., "An efficient multi-objective pulse radar compression technique using RBF and NSGA-II," *Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on*, vol., no., pp.1291,1296, 9-11 Dec. 2009

Sahoo, A.K.; Panda, G.; Pradhan, P.M., "Generation of Pulse Compression Codes Using NSGA-II," *India Conference (INDICON), 2009 Annual IEEE*, vol., no., pp.1,4, 18-20 Dec. 2009

Sahoo, A.K.; Panda, G.; Pradhan, P.M., "Efficient design of pulse compression codes using multiobjective genetic algorithm," *Nature & Biologically Inspired Computing*, 2009. NaBIC 2009. World Congress on , vol., no., pp.324,329, 9-11 Dec. 2009

References

Acharya, D.P.; Panda, G.; Lakshmi, Y. V S, "Constrained genetic algorithm based independent component analysis," *Evolutionary Computation*, 2007. CEC 2007. *IEEE Congress on*, vol., no., pp.2443,2449, 25-28 Sept. 2007

Books:

"The design of innovation: lessons from and for competent genetic algorithms" by David E. Goldberg

"Optimization for Engineering Design: Algorithms and Examples" by Kalyanmoy Deb

Thank You

Civil Engineering

- Parameters Identification of Coupled Seepage and Stress Field Based on Genetic Algorithms
- An Adaptive Chromosome Technique of Genetic Algorithms to Identify Structural Damage
 - Vehicle Velocity Recognition by Bridge Responses with a Pattern Search Algorithm
 - Improved Seismic Control of Structure with Variable Friction Dampers by GA

7/29/2013

Mechanical Engineering

- A hybrid genetic algorithm for constrained optimization problems in mechanical engineering
- Genetic algorithm and gradient-based algorithm optimization of vehicle turning mechanism
 - Robot path planning using genetic algorithms
 Intelligent Learning Algorithms for Active
 Vibration Control

7/29/2013