skfda.misc.metrics.distance_from_norm

skfda.misc.metrics.distance_from_norm(norm, **kwargs) [source]

Returns the distance induced by a norm.

Given a norm $\|\cdot\|: X \to \mathbb{R}$, returns the distance $d: X \times X \to \mathbb{R}$ induced by the norm:

$$d(f,g) = \|f - g\|$$

Parameters:

- **norm** (**Function**) Norm function *norm*(*fdata*, **kwargs).
- **kwargs (dict, optional) Named parameters to be passed to the norm function.

Returns: Distance function *norm_distance*(*fdata1*, *fdata2*).

Return type: Function

Examples

Computes the \mathbb{L}^2 distance between an object containing functional data corresponding to the function y(x) = x defined over the interval [0, 1] and another one containing data of the function y(x) = x/2.

Firstly we create the functional data.

```
>>> x = np.linspace(0, 1, 1001)
>>> fd = FDataGrid([x], x)
>>> fd2 = FDataGrid([x/2], x)
```

To construct the \mathbb{L}^2 distance it is used the \mathbb{L}^2 norm wich it is used to compute the distance.

```
>>> l2_distance = distance_from_norm(norm_lp, p=2)
>>> d = l2_distance(fd, fd2)
>>> float('%.3f'% d)
0.289
```