ELM Suppression and Pedestal Structure in I-Mode Plasmas on Alcator C-Mod

John Walk

MIT Plasma Science and Fusion Center

Thesis Defense - 22 July 2014

Thank you to...

- The thesis committee: JW Hughes, DG Whyte, AE White, JP Freidberg
- The I-mode crew: AE Hubbard, JL Terry, I Cziegler, A Dominguez, SG Baek, C Theiler, RM Churchill, ML Reinke, JE Rice...
- Physops: R Granetz, S Shiraiwa, S Wolfe, S Wukitch...
- C-Mod operations, engineering, researchers and techs
- PSFC grad students, past and present
- Family and friends
- the audience!

Outline

Context & Motivation

- High-performance regimes
- Pedestal physics
- Introduction to I-mode

■ Pedestal Modeling & Theory:

- ▶ Peeling-ballooning MHD stability
- Kinetic-ballooning mode turbulence

■ ELMy H-mode physics¹

EPED Modeling on C-Mod

¹JR Walk et al., Nuclear Fusion 52 (2012)

Outline

■ I-Mode Pedestals & Global Performance¹

- Pedestal response to fueling, heating power
- Pedestal widths and gradients
- Global performance and confinement scalings

■ I-Mode Pedestal Stability

- ▶ P-B MHD, KBM modeling
- ELM characterization
- Summary, Future Work, & Questions

¹JR Walk et al., Physics of Plasmas 21 (2014)

The problem...

By default ("L-mode"), rapid transport of energy and particles from plasma driven by turbulence

- and energy transport gets worse with more heating power!
- need very strong magnetic field and/or large machine size to overcome poor plasma performance

L-mode likely not suitable for (economical) power plant development.

The solution?

Under right conditions, plasma forms "transport barrier" in edge, with steep gradients in density and temperature – the *pedestal*

- \rightarrow plasma transitions to "high-confinement" or H-mode
 - lacktriangle immediate factor of \sim 2 increase in energy confinement
 - pedestal supports higher core pressures = fusion power density
 - pedestal height sets strong constraint on global performance

...But this has problems of its own

- increased particle confinement
 plasma retains impurities as
 well as fuel ions
- radiated power ($\sim Z^2$ for a given impurity species) increases, overcomes heating power \rightarrow plasma drops back into L-mode
- inherently transient state

so, we need:

- high energy confinement
- low particle confinement (low enough, at least)
- ... and that's it, right?

The solution? (part II)

Edge-Localized Modes (ELMs)

 instabilities that relax the pedestal, drive bursts of energy, particle transport, enough to prevent impurity accumulation

The solution? (part II)

- Edge-Localized Modes (ELMs)

 instabilities that relax the pedestal, drive bursts of energy, particle transport, enough to prevent impurity accumulation
- large ELMs drive pulsed heat loads in excess of plasma-facing material tolerances

so, we need:

- high energy confinement
- low particle confinement (low enough, at least)
- avoid, mitigate, or suppress large ELMs

so, we need:

- high energy confinement
- low particle confinement (low enough, at least)
- avoid, mitigate, or suppress large ELMs

Both engineering and physics solutions exist, including...