

Diseases of the Heart: Heart Failure

Isabella Tan, PhD

Research Fellow | The George Institute for Global Health Conjoint Lecturer | University of New South Wales Honorary Research Fellow | Macquarie University

Learning outcomes

- **LO11.1 Define heart failure**
- LO11.2 Describe types of heart failure
- LO11.3 Understand common causes and symptoms of heart failure
- LO11.4 Describe the pathophysiology of heart failure
- LO11.5 Understand the impact of heart failure on exercise capacity
- LO11.6 Identify and describe the diagnostic tests and treatments for heart failure

What ISNT'T heart failure?

Heart failure is not:

- Heart has stopped working altogether
- Heart attack
- Cardiac arrest

Heart attack

Triggered by blocked coronary artery preventing adequate oxygen supply to part of the heart, leading to heart muscle damage

Cardiac arrest

Triggered by arrhythmia (e.g. ventricular fibrillation) leading to heart being unable to pump blood

What IS heart failure? (LO11.1)

Heart failure (HF)

Heart fails to pump blood effectively around the body to meet its metabolic demands

- Can affect either side or both sides of the heart
- Can be that the heart isn't able to pump out enough blood (systolic dysfunction), or fill with enough blood (diastolic dysfunction), or both

Types of heart failure (LO11.2)

- Acute and chronic
- Right-sided, left-sided, or both
- Left-sided heart failure can be further categorised based on left ventricular ejection fraction (LVEF):

Ejection Fraction (EF)

Ratio of stroke volume (SV) to left ventricular end diastolic blood volume (LVEDV), expressed as a percentage

$$EF = \frac{SV}{LVEDV} \times 100\%$$

Types of heart failure (LO11.2)

Classification of HF based on LVEF:

HFrEF	HF with reduced EF (LVEF ≤ 40%)
HFimpEF	HF with improved EF (previous LVEF ≤ 40%, follow-up measurement of LVEF > 40%)
HFmrEF	HF with mildly reduced EF (LVEF = 41% - 49%)
HRpEF	HF with preserved EF (LVEF ≥ 50%)

Severity of heart failure

New York Heart Association (NYHA) Functional Classification

Class I	No limitation of ordinary physical activity	
Class II	Slight limitation of ordinary physical activity; No symptoms at rest	
Class III	Marked limitation of ordinary physical activity; No symptoms at rest	
Class IV	Symptoms at rest; worsens with physical activity	

National Heart Foundation (2018), National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand: Guidelines for the Prevention, Detection, and Management of Heart Failure in Australia 2018

Common causes of heart failure (LO11.3)

Ischaemic heart disease (coronary artery disease)	Leads to damaged heart muscle
Myocardial infarction	Leads to damaged heart muscle
Hypertension	Leads to left ventricular hypertrophy (enlargement of the left ventricle)
Cardiomyopathy	Leads to stiffening, thickening or enlargement of left ventricle
Valvular disease	Leads to regurgitation of blood

All of these conditions would lead to a decrease in cardiac output. Why?

Symptoms of heart failure (LO11.3)

Fatigue

Swollen feet or ankles (oedema)

Breathlessness / Shortness of breath (dyspnoea)

Breathlessness whilst laying flat (orthopnoea)

Pathophysiology of heart failure (LO11.4)

Initial compensatory response to onset of heart failure

The body's compensatory response to a drop in cardiac output:

Initial compensatory response to onset of heart failure

The body's compensatory response to a drop in cardiac output (cont'd)

Progressive changes of CO due to compensatory response to onset of heart failure

Effects of prolonged compensatory response to heart failure: sympathetic activation

Effects of prolonged compensatory response to heart failure: sympathetic activation

Effects of prolonged compensatory response to heart failure: RAS activation

Jackson G et al. (2000) BMJ 320;167-170.

Effects of prolonged compensatory response to heart failure: RAS activation

Effects of prolonged compensatory response to heart failure: RAS activation

Non-cardiac abnormalities in heart failure: pulmonary and peripheral oedema

Non-cardiac abnormalities in heart failure: vasculature

Non-cardiac abnormalities in heart failure: skeletal muscle

Effects of heart failure on skeletal muscle

- Skeletal muscle changes have been observed in heart failure patients, including reduction of muscle mass, as well as structural and functional abnormalities (muscle wastage)
- Metabolic function of skeletal muscle can also be affected

Non-cardiac abnormalities in heart failure: skeletal muscle

Electron micrographs of mitochondria in a patient with severe heart failure (left) and in a normal subject (right). Black represents oxidative activity in the mitochondria. Drexler *et al* (1992) *Circulation* 85(5);1751-1759

Symptoms of heart failure

What leads to these symptoms?

Fatigue

Swollen feet or ankles (oedema)

Breathlessness / Shortness of breath (dyspnoea)

Breathlessness whilst laying flat (orthopnoea)

Images from heartfailure.com.au

Effect of heart failure on exercise capacity (LO 11.5)

In heart failure patients, cardiac reserve is greatly reduced

Cardiac reserve

The maximum percentage cardiac output can increase above normal resting state

- In a normal, healthy individual, cardiac reserve can be up to 400%, and it is even higher in trained athletes
- This means during exercise, cardiac output can increase adequately to meet the increased metabolic demands
- In heart failure patients, low cardiac reserve means their exercise tolerance is reduced

Effect of heart failure on exercise capacity

Guyton and Hall Textbook of Medical Physiology p. 278

- When cardiac reserve is low, cardiac output cannot increase adequately, resulting in:
 - Immediate breathlessness
 - Extreme muscle fatigue
 - Excessive increase in heart rate and blood pressure

Diagnosing heart failure (LO11.6)

There is no single definitive test that can diagnose heart failure, but a combination of the below tests can help a clinician diagnose heart failure:

Test	Purpose
ECG	Arrhythmia, thickened ventricular wall, signs of previous or current heart attack
Chest X-ray	Enlargement of heart, fluid in lungs
Blood test	Presence of brain natriuretic peptide (also known as B-type natriuretic peptide)
Echocardiography	Structure of the heart, blood flow in the heart, ejection fraction
Stress test	Exercise test, often in combination with ECG and/or echocardiography

Treatment of heart failure (LO11.6)

Non-pharmacological treatment

Quit smoking

Reduce alcohol intake

Exercise

Cardiac rehab program

Treatment of heart failure

Pharmacological treatment

Drug class	Mechanism
Angiotensin converting enzyme (ACE) inhibitors; angiotensin II receptor blockers (ARB); angiotensin receptorneprilysin Inhibitor (ARNi)	First line therapy for renin-angiotensin system inhibition; prevents formation of angiotensin II, thus reduce effects of vasoconstriction, salt and water retention, release of aldosterone
Beta blockers	Reduces sympathetic activity
Mineralocorticoid receptor antagonists (MRAs) / aldosterone antagonist	Weak diuretic, reduces salt and water retention
Sodium-glucose cotransporter-2 inhibitors (SGLT2i)	Type 2 diabetes drug, reduces blood glucose levels; ???

Treatment of heart failure

Other treatment

Other treatments for heart failure patients may require:

- Implantable cardioverter defibrillator
 - reduces risk of sudden death and all-cause mortality in patients
 with NYHA class II-III HF
- Cardiac resynchronization therapy
 - Recommended for patients with prolonged QRS duration
- Left ventricular assist device
 - For advanced HF patients that require mechanical support

A little summary...

