

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

льный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии» Отчет по лабораторной работе №1 «Исследование псевдослучайных последовательностей» По курсу «Моделирование»

 Студент:
 Жарова Е. А.

 Группа:
 ИУ7-73Б

Преподаватель: Рудаков И.В.

Задание

Реализовать критерий оценки случайности последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях псевдослучайных целых чисел. Последовательности получать алгоритмическим способом, табличным способом и путем ручного ввода.

Теоретическая часть

Линейный конгруэнтный метод

Генераторы псевдослучайных чисел могут работать по разным алгоритмам. Одним из простейших генераторов является так называемый линейный конгруэнтный генератор, который для вычисления очередного числа k_i использует формулу:

$$k_i = (a \cdot k_{i-1} + b) \mod c$$
,

где a, b, c — некоторые константы, k_{i-1} — предыдущее псевдослучайное число. Для получения k_1 задается начальное значение k_0 .

Возьмем в качестве примера a = 5, b = 3, c = 11 и пусть $k_0 = 1$. В этом случае мы сможем по приведенной выше формуле получать значения от 0 до 10 (так как c=11). Вычислим несколько элементов последовательности:

$$k_1 = (5 \cdot 1+3) \mod 11=8;$$

 $k_2 = (5 \cdot 8+3) \mod 11=10;$
 $k_3 = (5 \cdot 10+3) \mod 11=9;$
 $k_4 = (5 \cdot 9+3) \mod 11=4;$
 $k_5 = (5 \cdot 4+3) \mod 11=1.$

Критерий сериальной корреляции

Можно подсчитать следующую статистику:

$$C = \frac{n(U_0U_1 + U_1U_2 + \dots + U_{n-2}U_{n-1} + U_{n-1}U_0) - (U_0 + U_1 + \dots + U_{n-1})^2}{n(U_0^2 + U_1^2 + \dots + U_{n-1}^2) - (U_0 + U_1 + \dots + U_{n-1})^2}.$$

Это коэффициент сериальной корреляции, мера зависимости Uj+1 от Uj.

Коэффициент корреляции всегда лежит между -1 и +1. Когда он равен 0 или очень мал, значит, величины Uj+1, и Uj независимы одна от другой (говоря более точно, между ними нет линейной зависимости.); если же значение коэффициента корреляции равно +1 или -1, это означает полную линейную зависимость.

Пример работы программы

Исследование псевдослучайных последовательностей							
id	1 разряд	2 разряд	3 разряд	id	1 разряд	2 разряд	3 разряд
1	3	90	204	1	2	44	949
2	5	91	805	2	8	90	639
3	4	17	648	3	2	74	641
4	8	39	947	4	8	18	859
5	7	29	429	5	2	58	169
6	6	27	624	6	8	18	611
7	8	49	805	7	2	58	661
8	0	45	240	8	8	18	991
9	9	37	372	9	2	58	221
10	5	54	636	10	8	18	135
Коэффициент случайности последовательности	55.64%	73.03%	76.09%	Коэффициент случайности последовательности	0.00%	74.50%	77.40%
Заполнить табличные значения				Заполнить алгоритмические зн	ачения		
Введите случайную последовательность, через пробел							
111							Проверить

Листинг линейного конгруэнтного генератора

```
module.exports = function (a, b, k=0, count=10) {
    let points = [];
    for (let i = 0; i < count; ++i) {
        k = a+randomLKG(k) % (b - a + 1);
        points.push(k);
    }
    return points;
};

function randomLKG(k) {
    const c = 2**10;
    const a = 25214903917;
    const b = 11;</pre>
```

```
return (a*k - 1+b) % c;
```

Листинг критерия сериальной корреляции

```
function serial_criterion(lst) {
  let n = lst.length;
  let sumUU = 0;
  let sumU = 0;
  let sumU2 = 0;
  for (let i = 0; i < n; i++) {
    let numj = Number(lst[(i+1) % n]);
    let numi = Number(lst[i]);
    sumU += numi;
    sumU2 += numi * numi;
    sumUU += numi * numj;
  }
  let top = n * sumUU - sumU ** 2;
  let bottom = n * sumU2 - sumU ** 2;
  let a = top / bottom;
  let coef = Math.abs(a);
  return isNaN(coef) ? 0 : 1 - coef;
```