# CMOS VLSI Circuits Lab Open-Ended Experiment

### **Topic:**

Design and Implementation of 1-bit Comparator using fully CMOS and Pseudo NMOS logic

# Team:15 Team Members:

| SI.NO | Name         | USN          | Roll.no |
|-------|--------------|--------------|---------|
| 1     | Vishwanath.H | 01FE22BEC254 | 512     |
| 2     | Karthik.V.M  | 01FE22BEC270 | 526     |
| 3     | Nirupadi     | 01FE22BEC277 | 533     |
| 4     | Akash. B     | 01FE22BEC287 | 543     |

### **1-Bit Comparator**

A 1-bit comparator compares two binary inputs (A and B) and produces three outputs:

A > B: Output is high if input A is greater than B .((A>B)=A•B')

A = B: Output is high if inputs A and B are equal.

 $((A=B)=A\oplus B=(A'.B')+(A-B))$ 

A < B: Output is high if input A is less than B.

The design of a 1-bit comparator is based on logic gates, and two common logic styles used are **fully CMOS logic** and **Pseudo NMOS logic**.

# **1-Bit Comparator:-**

#### **Truth Table:-**

| Inputs |   | Outputs  |          |          |  |
|--------|---|----------|----------|----------|--|
| В      | Α | G(A > B) | E(A = B) | L(A < B) |  |
| 0      | 0 | 0        | 1        | 0        |  |
| 0      | 1 | 1        | 0        | 0        |  |
| 1      | 0 | 0        | 0        | 1        |  |
| 1      | 1 | 0        | 1        | 0        |  |

# 1-Bit Comparator Circuit diagram:-



# 1-Bit Comparator Using Fully CMOS Logic

- In fully CMOS logic, the implementation requires a complementary PMOS pull-up network and an NMOS pull-down network for each equation.
- Implementation for A>B:
  - PMOS network is active when A=1and B=0 (pull-up).
  - NMOS network is active when A=1 and B=0(pull-down).
- Implementation for A=B:
  - Requires the XOR logic to compute A⊕B, then invert it.
  - CMOS XOR gate consists of multiple PMOS and NMOS transistors. The inverted output uses a complementary inverter circuit.
- Implementation for A<BA < BA<B:</li>
  - PMOS network is active when A=0 and B=1 (pull-up).
  - NMOS network is active when A=0 and B=1 (pull-down).

# 1-Bit Comparator Using Pseudo NMOS Logic

In **Pseudo NMOS logic**, the pull-up network is replaced by a single PMOS transistor that is always ON, while the NMOS network handles the logic operations.

#### Implementation for A>B:

- The NMOS network implements A·B'
- The PMOS transistor acts as the pull-up resistor.

#### Implementation for A=B:

- The NMOS network implements  $(A' \cdot B') + (A \cdot B)$
- The PMOS transistor pulls the output high when no path to ground exists.

#### Implementation for A<B:</li>

- The NMOS network implements A'·B
- The PMOS transistor pulls the output high when the NMOS path is OFF.

# **CMOS Logic:Schematic**



# **CMOS Logic:Test circuit**



# **CMOS Logic:Output Waveform**



# **Pseudo NMOS:Schematic**



# **Pseudo NMOS:Test circuit**



# **Pseudo NMOS:Output Waveform**



# Comparison of Output Values Obtained

### **CMOS logic**

#### A=B

- •Avg. Rise Time, tr =3.6 ns
- •Avg. Fall Time, tf = 1.18 ns
- •Avg. Power = 1.255W

### Pseudo NMOS logic

#### A=B

- •Avg. Rise Time, tr =3.59 ns
- •Avg. Fall Time, tf = 2.132ns
- •Avg. Power =1.341W

# Comparison of Output Values Obtained

### **CMOS** logic

### Pseudo NMOS logic

#### A>B

- •Avg. Rise Time, tr =3.614 ns
- •Avg. Fall Time, tf = 1.105 ns
- •Avg. Power = 0.347W

#### A>B

- •Avg. Rise Time, tr =3.593 ns
- •Avg. Fall Time, tf = 2.128 ns
- •Avg. Power = 0.338W

# Comparison of Output Values Obtained

### **CMOS** logic

#### A<B

- •Avg. Rise Time, tr =3.581 ns
- •Avg. Fall Time, tf = 1.105 ns
- •Avg. Power = 0.1056W

#### Pseudo NMOS logic

#### A<B

- •Avg. Rise Time, tr =3.591 ns
- •Avg. Fall Time, tf = 2.116 ns
- •Avg. Power = 0.340W

# Comparison Between Fully CMOS and Pseudo NMOS Logic

| Fully CMOS Logic:                                       | Pseudo NMOS Logic:                           |
|---------------------------------------------------------|----------------------------------------------|
| Accurate and power-efficient.                           | Simpler and faster due to fewer transistors. |
| More transistors required (higher area and complexity). | Consumes more static power.                  |
| Area will be more due to more transistors.              | Area will be less due to less transistors.   |

# THANK YOU