CSCI 340 Data Structures & Algorithm Analysis

Hashing

Thanks to Dr. Rada Mihalcea of the University of North Texas for sharing her slides – Modified by Minmei Hou.

Dictionary ADT

- ♣ Dictionary: abstract data type, a set with operations with searching, insertion, and deletion.
 - Key: used to identify the entity
 - e.g. records (book records, student records)
 - e.g. symbol table in a compiler

How to Implement a Dictionary?

- Sequences
 - ordered
 - unordered unordered
- Binary Search Trees
 - Height balanced b.s.t.
 - STL map

Hashing

- Hashing Another important and widely useful technique for implementing dictionaries
 - Distributing n keys among a one-dimensional array $H[0, 1, ..., m-1] \sim$ hash table (with size m)
 - Constant time per operation (on the average)
 - Worst case time proportional to the size of the set for each operation (just like array and list implementation)

Basic Idea

- Use hash function to map keys into positions in a hash table
 - The function assigns each key an integer between [0, *m*-1] (hash address)

Ideally

- If element e has key k and h is hash function, then e is stored in position h(k) of table
- To search for e, compute h(k) to locate position. If no element, dictionary does not contain e.

Example

- Dictionary Student Records
 - Keys are ID numbers (951000 952000), no more than 100 students
 - Hash function: h(k) = k-951000 maps ID into distinct table positions 0-1000 hash table

Analysis (Ideal Case)

- \odot O(m) time to initialize hash table
 - *m* is the number of positions or buckets in hash table
- O(1) time to perform *insert*, *remove*, *search*

Ideal Case is Unrealistic

♣ Many applications have key ranges that are too large to have 1-1 mapping between buckets and keys!

Example:

- ♦ Suppose key can take on values from 0 .. 65,535 (2 byte unsigned int) and expect ≈ 1,000 records at any given time
 - Might become impractical to use hash table with 65,536 slots!

Hash Functions

❖ If key range too large, use hash table with fewer buckets and a hash function which maps multiple keys to same bucket:

$$h(k_1) = \beta = h(k_2)$$
: k_1 and k_2 have collision at slot β

- ❖ Popular hash functions: hashing by division h(k) = k % m, where m is number of buckets in hash table
- Example: hash table with 11 buckets h(k) = k%11
 - $80 \rightarrow 3 (80\%11=3), 40 \rightarrow 7, 65 \rightarrow 10$
 - $58 \rightarrow 3$: a collision happens!

Hashing

Examples:

Keys (K)	Hash function
Nonnegative integers	$h(K) = K \mod m$
Letters of some alphabet	h(K) = h(ord(K)) = ord(K) mod m
Strings (c ₀ c ₁ c _{s-1})	$h(K) = sum(ord(C_i)) mod m$

Examples of hashing

Keys are integers:

Key K	Hash functions		
	K mod 7	K mod 11	K mod 5
7	0	7	2
11	4	0	1
5	5	5	0
14	0	3	4

Examples of hashing

Keys are chars:

Key K	Ord(K)	Hash function	
		Ord(K) mod 5	Ord(K) mod 7
а	1	1	1
b	2	2	2
С	3	3	3
d	4	4	4
е	5	0	5
f	6	1	6
g	7	2	0
h	8	3	1
İ	9	4	2
j	10	0	3
k	11	1	4
1	12	2	5
m	13	3	6

Examples of hashing

Keys are strings

Key	Sum $(Ord(C_i))$	Hash function	
		Sum mod 7	Sum mod 13
а	1	1	1
and	1+14+4 = 19	5	6
are	1+18+5 = 24	3	11
soon	19+15+15+14 = 63	0	11
money	13+15+14+5+25 = 72	2	7

Collision Resolution Policies

- ♣ Collision: two keys being hashed into the same hash address.
 - If m < n, there must be collision(s)
 - Regardless m and n, in the worst case, all keys could be mapped to the same address (When table size and hash function are appropriately chose, it's rare)
- Two methods to solve collision:
 - Open hashing, a.k.a. separate chaining
 - Closed hashing, a.k.a. open addressing
- Difference has to do with whether collisions are stored *outside the table* (open hashing) or whether collisions result in storing one of the records at *another slot in the table* (closed hashing)

Open Hashing

- ♣ Each bucket in the hash table is the head of a linked list
- ❖ All elements that hash to a particular bucket are placed on that bucket's linked list
- Records within a bucket can be ordered in several ways
 - by order of insertion
 - by key value order,
 - by frequency of access order

Open Hashing Data Organization

Keys are stored in linked list attached to buckets of a hash table. Each list contains all the keys hashed to this bucket.

Open Hashing

Example: using a hash table m=13, store the following string:

a fool and his money are soon parted

1 9 6 10 7 11 11 12

Open Hashing operations

Search

- Compute h(k), locate bucket in hash table
- Search in the linked list of the bucket

Insertion

- Compute h(k), locate bucket in hash table
- Insert in a linked list
 - Insert at head
 - Insert in a sorted list

Deletion

- Compute h(k), locate bucket in hash table
- Remove the item from the linked list at the bucket

Analysis

- The efficiency of all operations depends on the size of the linked list at a bucket, which depends on table size, dictionary property, and quality of hash function
 - We hope that number of elements per bucket roughly equal in size, so that the lists will be short
 - If there are n elements in set, then each bucket will have roughly n/m items (α : load factor)
 - Average number of comparisons in successful search: $\alpha/2$
 - Average number of comparisons in unsuccessful search: α
 - If we can estimate n and choose m to be roughly the same, then by average a bucket will have only one or two members
 - α is too large: inefficient in search
 - α is too small: waste lots of empty list, inefficient in space

Analysis Cont'd

Average time per dictionary operation:

- m buckets, n elements in dictionary \Rightarrow average n/m elements per bucket
- \Leftrightarrow insert, search, remove operation take O(1+n/m) time each
- \bullet If we can choose m to be about n, constant time
- ❖ Assuming each element is likely to be hashed to any bucket, running time constant

Closed Hashing

- No chain. All keys are stored in hash table.
 - Table size $m \ge n$ number of keys n
- Associated with closed hashing is a *rehash strategy*: "If we try to place x in bucket h(x) and find it occupied, find alternative location $h_1(x)$, $h_2(x)$, etc. Try each in order, if none is empty, table is full,"
- h(x) is called home bucket
- Simplest rehash strategy is called *linear probing* $h_i(x) = (h(x) + i) \% m$
- In general, our collision resolution strategy is to generate a sequence of hash table slots (probe sequence) that can hold the record; test each slot until find empty one (probing)

Example Linear (Closed) Hashing

- Suppose m=8. Suppose keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4, h(d)=3
- \bullet Where do we insert d? 3 already filled
- Probe sequence using linear hashing:

$$h_i(x) = (h(x) + i) \% m$$

$$h_1(d) = (h(d)+1)\%8 = 4\%8 = 4$$

$$h_2(d) = (h(d)+2)\%8 = 5\%8 = 5*$$

$$h_3(d) = (h(d)+3)\%8 = 6\%8 = 6$$

etc.

 Wraps around the beginning of the table! – table is a circular array

Operations Using Linear Hashing

- ❖ Search based on key k
 - Examine h(k), $h_1(k)$, $h_2(k)$, ..., until we find k or an empty bucket (assuming there's no deletion)
 - If no deletions possible, strategy works!
 - **Example:**

Suppose m=8, keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4, h(d)=3 a, b, c, d are inserted

Search a:

Search b:

Search c:

Search d:

■ What if *c* is deleted?

Operations Using Linear Hashing

- ❖ Search based on key k (cont.)
 - What if there are deletions?
 - If we reach empty bucket, cannot be sure that *k* is not somewhere else and empty bucket was occupied when *k* was inserted
 - Need special placeholder *deleted*, to distinguish bucket that was never used from one that once held a value
 - May need to reorganize table after many deletions

Operations Using Linear Hashing

Search

- Compute h(k), find the bucket
- Follow linear probing until an item is found or until a bucket that is empty which is not caused by deletion
- If an bucket is empty from a deletion, the search shall not stop here

Insertion

- Compute h(k), find the bucket
- Follow linear probing until an empty bucket regardless it's caused by deletion or not
- Place the item in the bucket

Deletion

- Search for the item
- Remove the item and label the bucket by "deleted"

Performance Analysis - Worst Case

- \bullet Initialization: O(m), m is # of buckets
- \bullet Insert and search: O(n), n is number of elements in table
 - all *n* key values have same home bucket
- ❖ No better than linear list for maintaining dictionary!

Performance Analysis - Avg Case

- Distinguish between successful and unsuccessful searches
 - □ Delete = successful search for record to be deleted
 - Insert = unsuccessful search along its probe sequence
- \clubsuit Expected cost of hashing is a function of how full the table is: load factor $\alpha = n/m$
- ❖ It has been shown that average costs under linear hashing (probing) are:
 - Insertion: $1/2*(1+1/(1-\alpha)^2)$
 - Deletion: 1/2*(1 + 1/(1 α))

An Example of potential problem

insert 1052 (h.b. 7)

I

h(k)	= k%11
\ /	

- 1. What if next element has home bucket 0?
 - \rightarrow go to bucket 3
- * Same for elements with home bucket 1 or 2!
- * A record with home position 3 will stay.
- \Rightarrow p = 4/11 that next record will go to bucket 3
- 2. Similarly, records hashing to 7,8,9,10 $\stackrel{6}{=}$ will end up in 10 ==> p = 4/11
- 3. Only records hashing to 4 will end up in 4 (p=1/11); same for 5 and 6

next element in bucket 3 with p = 8/11

Improved Collision Resolution

- \bullet Linear probing: $h_i(x) = (h(x) + i) \% m$
 - All buckets in table will be candidates for inserting a new record before the probe sequence returns to home position
 - **□ Clustering of records**, leads to long probing sequences
- **\$\text{tinear probing with skipping:** $h_i(x) = (h(x) + ic) \% m$
 - \blacksquare c constant other than 1
 - Records with adjacent home buckets will not follow same probe sequence

Improved Collision Resolution

- (Pseudo)Random probing: $h_i(x) = (h(x) + r_i) \% m$
 - r_i is the i^{th} value in a random permutation of numbers from 1 to m-1
 - insertions and searches use the *same* sequence of "random" numbers

Hash Functions - Numerical Values

Consider:
$$h(x) = x\%16$$

- depends solely on least significant four bits of key
- poor distribution, not very random
- **⇔**Better, *mid-square* method
 - if keys are integers in range 0,1,...,K, pick integer C such that mC^2 about equal to K^2 , then

$$h(x) = \lfloor x^2/C \rfloor \% m$$

extracts middle r bits of x^2 , where $2^r = m$ (a base-m digit)

better, because most or all of bits of key contribute to result

Hash Function – Strings of Characters

Folding Method:

```
int h(String x, int m) {
   int i, sum;
   for (sum=0, i=0; i<x.length(); i++)
      sum+= (int)x.charAt(i);
   return (sum%m);
}</pre>
```

- sums the ASCII values of the letters in the string
 - ASCII value for "A" =65; sum will be in range 650-900 for 10 upper-case letters; good when m around 100, for example
- order of chars in string has no effect

Hash Function – Strings of Characters

Much better: Cyclic Shift – mix the components of a string

```
int hashCode(String key, int m) {
  int h=0;
  for (int i=0, i<key.length(); i++) {
    h = (h << 4) | (h >> 27);
    h += (int) key.charAt(i);
  }
  return h%m;
}
```

Comparison open and closed Hashing

 \bullet Worst case performance is O(n) for both

Number of operations for hashing

$$m=9$$

$$h(x) = x \% m$$