Zadanie 13

Sprawdź, że liczby harmoniczne $H_n=\frac{1}{1}+\frac{1}{2}+\ldots+\frac{1}{n}$ spełniają zależność rekurencyjną

$$H_n = 1 + \frac{1}{n} \cdot \sum_{i=1}^{n-1} H_i$$

dla n > 1.

Dowód. Przeprowadźmy dowód indukcyjny względem n. Zdanie $H_n=1+\frac{1}{n}\cdot\sum_{i=1}^{n-1}H_i$ jest równoważne zdaniu $nH_n-n=\sum_{i=1}^{n-1}H_i.$ Zdefiniujmy Xjako :

$$X = \{ n \in \mathbb{N} \mid n > 1 \land nH_n - n = \sum_{i=1}^{n-1} H_i \}$$

Zauważmy, że $2 \in X$, ponieważ zachodzi równość :

$$2H_2 - 2 = 2 \cdot \left(\frac{1}{1} + \frac{1}{2}\right) - 2 = 1 = H_1 = \sum_{i=1}^{1} H_i$$

Weźmy dowolne $n \in \mathbb{N}, \ n > 1$. Załóżmy, że $n \in X$ i pokażmy, że $n + 1 \in X$.

$$\sum_{i=1}^{n} H_i = H_n + \sum_{i=1}^{n-1} H_i \stackrel{zal}{=} H_n + nH_n - n = (n+1)H_n - n = (n+1)\left(H_n + \frac{1}{n+1} - \frac{1}{n+1}\right) - n = (n+1)H_{n+1} - (n+1)H_n - n = (n+1)H_n - n$$

Stąd wniosek, że $(n+1) \in X$. Zatem na mocy indukcji matematycznej $X = \{\mathbb{N} \ni n > 1\}$, co dowodzi twiedzenia z treści zadania.