Fast Smile Calibration in Discrete and Continuous Time Using Sinkhorn Algorithms

Florian Bourgey

Bloomberg L.P.

Joint work with J. Guyon

SIAM Conference on Financial Mathematics and Engineering (FM25)

July 2025

Why Build an Arbitrage-Free, Fast Implied Vol Surface?

- Arbitrage-free requirement: Prevents mispricing and inconsistent hedging strategies.
- Regulatory constraint: implied vol surfaces must align with market prices.
- Crucial for market makers in equity, (exotic) options traders, structurers, and risk-managers (e.g., for stress-testing).
- Prerequisite for local and stochastic local vol models.
- Market models often struggle to fit the entire implied vol surface while remaining arbitrage-free.
- Inherent difficulty of interpolation/extrapolation (fixed number of strikes and maturities).
- Speed essential for most market players (real-time trading, risk assessment).

Existing Methods for Surface Construction

- Parametric models: SABR, SVI, SSVI, etc.
- Spline interpolation or mixture models: enforce no-arbitrage constraints on interpolated surfaces.
- Discrete local volatility from market quotes.
- Optimal transport approach:
 - Cast calibration as a divergence-minimization problem w.r.t. a prior model under market constraints.
 - Match market quotes ⇔ Schrödinger problem.
 - Solved using an extension of the Sinkhorn algorithm.

Objectives

- (1) Discrete-Time Model: We build it by solving the Schrödinger system (SS) using the Sinkhorn algorithm. Mixed Newton-Sinkhorn and implied Newton methods are numerically shown to converge significantly faster than Sinkhorn.
- (2) Continuous-time extension: This enables pricing path-dependent options within a market-calibrated framework.

Objectives

- (1) is inspired by [DMHL19].
- (2) resembles the Bass local volatility of [BVBHK20] and [CHL22] (see also [AMP23]), but is fundamentally different:
 - Our purely forward Markov functional construction avoids solving a fixed-point problem ⇒ much faster.
 - This is because we first build an arbitrage-free multimarginal discrete-time model consistent with market data.

Problem

- n maturities $0 < T_1 < \cdots < T_n$ and denote $S_i = S_{T_i}$.
- Risk-neutral distribution $\mu_i = \mu_{S_i}$ known (inferred from market prices).
- Let $\mathcal{M}(\{\mu_i\}_{i=1}^n)$ be the set of martingale probability measures with marginals μ_i :

$$\left\{ \mu \in \mathcal{P}(\mathbb{R}^n) : \ \forall i \in \{1, \dots, n\}, \ S_i \sim \mu_i, \right.$$
$$\forall i \in \{2, \dots, n\}, \ \mathbb{E}^{\mu}[S_i | S_{i-1}, S_{i-2}, \dots, S_1] = S_{i-1} \right\}$$

■ Let $\mathcal{M}_{\text{Markov}}(\{\mu_i\}_{i=1}^n)$ be the subset of $\mathcal{M}(\{\mu_i\}_{i=1}^n)$ made of Markov measures.

Theorem (Strassen). Let $\{\mu_i\}_{i=1}^n$ be probability measures on \mathbb{R} . Then, the following assertions are equivalent

- $\mathcal{M}(\{\mu_i\}_{i=1}^n) \neq \emptyset$,
- $\mathcal{M}_{\text{Markov}}(\{\mu_i\}_{i=1}^n) \neq \emptyset$,
- The sequence $\{\mu_i\}_{i=1}^n$ is increasing in convex order.

- No arbitrage implies $\mathcal{M}_{\mathrm{Markov}}(\{\mu_i\}_{i=1}^n) \neq \emptyset$. Sufficient to solve for n=2, as concatenating solutions $\mu_{i,i+1} \in \mathcal{M}_{\mathrm{Markov}}(\mu_i,\mu_{i+1})$ produces a calibrated martingale measure which is also a Markov process.
- Consider $0 < T_1 < T_2$. Let $\mathcal{M}(\mu_1, \mu_2)$ be the set of martingale probability measures with marginals μ_1 and μ_2 :

$$\left\{\mu \in \mathcal{P}(\mathbb{R}^2) : S_1 \sim \mu_1, \quad S_2 \sim \mu_2, \quad \mathbb{E}^{\mu}[S_2|S_1] = S_1 \right\}$$

■ Goal: efficiently construct $\mu \in \mathcal{M}(\mu_1, \mu_2)$ minimizing KL divergence w.r.t. reference measure $\bar{\mu}$. Solve "measure problem":

$$D_{\bar{\mu}} = \inf_{\mu \in \mathcal{M}(\mu_1, \mu_2)} H(\mu \parallel \bar{\mu}) \tag{M}$$

(cf., [AFHS97, DMHL19])

If the minimum entropy problem is finite, there exists [Guy24] a unique minimizer $\mu^* \in \mathcal{M}(\mu_1, \mu_2)$ of the exponential-tilt form:

$$\mathrm{d}\mu^* = e_u(S_1, S_2)\,\mathrm{d}\bar{\mu}, \quad e_u(s_1, s_2) = \exp\Big\{u_1(s_1) + u_2(s_2) + \Delta_1(s_1)(s_2 - s_1)\Big\}$$

Here $u = (u_1, u_2, \Delta_1)$ maximizers (Schrödinger potentials), if they exist of

Here, $u = (u_1, u_2, \Delta_1)$ maximizers (Schrödinger potentials), if they exist, of the dual problem ("portfolio problem")

$$P_{\bar{\mu}} = \sup_{u \in \mathcal{U}} J_{\bar{\mu}}(u), \quad J_{\bar{\mu}}(u) = \mathbb{E}^{\mu_1}[u_1(S_1)] + \mathbb{E}^{\mu_2}[u_2(S_2)] - \mathbb{E}^{\bar{\mu}}[e_u(S_1, S_2)] + 1,$$
(P)

and \mathcal{U} is the set of all measurable functions $u_1, u_2 : \mathbb{R}_{>0} \to \mathbb{R}$,

- $\Delta_1: \mathbb{R}_{>0} \to \mathbb{R}$ satisfying $u_i \in L^1(\mu_i)$ for $i \in \{1, 2\}$, and Δ_1 bounded.
 - (P) is an unconstrained concave maximization problem.

• $D_{\bar{u}} = P_{\bar{u}}$. Both problems are dual to each other.

- In practice, only finitely many vanilla options traded; we restrict u_1 and u_2 to linear combinations of these, plus positions in the bond and S_1 .
- For $i \in \{1,2\}$, options with maturity T_i denoted as $\{P_j^{(i)}\}_{j=1}^{n_i}$ with strikes $\{K_i^{(1)} < \dots < K_{n_i}^{(i)}\}$ and payoffs h_i .
- We then build a model of the form

$$\mathrm{d}\mu = e_{\theta}(S_1, S_2)\,\mathrm{d}\bar{\mu}$$

where $\theta = (c, \Delta_0, \boldsymbol{a}^{(1)}, \boldsymbol{a}^{(2)}, \Delta_1)$ and

$$e_{\theta}(s_1, s_2) = \exp\left\{c + \Delta_0 s_1 + \sum_{i=1}^{n_1} a_i^{(1)} h_1(s_1, K_i^{(1)}) + \sum_{i=1}^{n_2} a_j^{(2)} h_2(s_2, K_j^{(2)}) + \Delta_1(s_1)(s_2 - s_1)\right\}$$

Schrödinger System

The measure μ is then a consistent, arbitrage-free model that calibrates to the market prices of SPX futures and options iff θ solves the SS

$$\begin{cases} \mathbb{E}^{\bar{\mu}} \left[e_{\theta}(S_1, S_2) \right] = 1, \\ \mathbb{E}^{\bar{\mu}} \left[S_1 e_{\theta}(S_1, S_2) \right] = S_0, \\ \mathbb{E}^{\bar{\mu}} \left[h_1(S_1, K_i^{(1)}) e_{\theta}(S_1, S_2) \right] = P_i^{(1)}, & \forall i \in \{1, \dots, n_1\}, \\ \mathbb{E}^{\bar{\mu}} \left[h_2(S_2, K_j^{(2)}) e_{\theta}(S_1, S_2) \right] = P_j^{(2)}, & \forall j \in \{1, \dots, n_2\}, \\ \mathbb{E}^{\bar{\mu}} \left[(S_2 - S_1) e_{\theta}(S_1, S_2) | S_1 = s_1 \right] = 0, & \forall s_1 > 0. \end{cases}$$

Choice of the Reference Measure $\bar{\mu}$

Assume the prior $\bar{\mu}$ is absolutely continuous w.r.t. Lebesgue measure and define:

$$\frac{\mathrm{d}\bar{\mu}(s_1, s_2)}{\mathrm{d}s_1 \,\mathrm{d}s_2} = f_{\bar{\mu}}(s_1, s_2) = f_{\bar{\mu}_{2|1}}(s_2|s_1) \, f_{\bar{\mu}_1}(s_1)$$

Marginal $f_{\bar{\mu}_1}$: market risk-neutral density at T_1 .

Conditional $f_{\bar{\mu}_{2|1}}(s_2|s_1)$: following [DMHL19], we set

$$f_{\bar{\mu}_{2|1}}(y|s_1) = \frac{\exp\left\{-\frac{1}{2}\left(\frac{y-s_1}{\sigma_1(s_1)\sqrt{T_2-T_1}}\right)^2\right\}}{\sigma_1(s_1)\sqrt{T_2-T_1}\sqrt{2\pi}}, \quad \forall y \in \mathbb{R}$$

That is, conditionally on $S_1 = s_1$, $S_2 \sim \mathcal{N}(s_1, \sigma_1(s_1)^2(T_2 - T_1))$.

We take $\sigma_1(s)=\alpha s^{\beta}$ (CEV-like), calibrated to minimize L_2 pricing error for T_2 options.

- \rightarrow This prior choice speeds up computations significantly. Closed-form formulas for integrals $\int \cdots f_{\bar{\mu}_{2|1}}(y|s_1) \, \mathrm{d}y \Rightarrow$ one integral instead of two.
- \to Contrast: independent prior $\bar{\mu}=\mu_1\otimes\mu_2$ is standard in entropic OT, but not financially natural.

Solving the Schrödinger System

Approaches:

- 1. Sinkhorn algorithm (classical) [Sin67]
- 2. Newton-Sinkhorn faster
- 3. Implied Newton even faster
- Method (1) iteratively solves each equation in the SS to converge to the optimizer θ^* .
- Popularized in ML [Cut13] for efficient computation of Wasserstein distances and entropic OT.
- Applied in quantitative finance to solve martingale optimal transport (MOT) and construct arbitrage-free implied vol surfaces [DM18, DMHL19].
- Extended in [Guy20, BG24] to handle martingale and VIX constraints, yielding fast joint calibration methods.

Newton-Sinkhorn

• Solving the SS is equivalent to setting the gradient of the concave function $J_{\bar{\mu}}$ to zero:

$$J_{\bar{\mu}}(\theta) = c + \Delta_0 S_0 + \sum_{i=1}^{n_1} a_i^{(1)} P_i^{(1)} + \sum_{j=1}^{n_2} a_j^{(2)} P_j^{(2)} - \mathbb{E}^{\bar{\mu}} [e_{\theta}(S_1, S_2)] + 1$$

• We solve the finite-payoff analogue of (P):

$$P_{\bar{\mu}} = \sup_{\theta \in \Theta} J_{\bar{\mu}}(\theta).$$

- We propose the Newton-Sinkhorn algorithm: each iteration performs a Newton step followed by a Sinkhorn step.
- To integrate with respect to S_1 , we use Gauss-Legendre quadrature over an increasing grid $\mathcal{G}_1 = \{s_1^{(1)} \leq \cdots \leq s_1^{(N_1)}\}$ with N_1 nodes.

Newton-Sinkhorn algorithm

• Newton step. Start from an initial guess $\theta^{(0)}$. Then, solve for each iteration $n \in \mathbb{N}$, the portfolio problem

$$\theta^{-\Delta_1,(n+1)} = \underset{\theta^{-\Delta_1} \in \Theta^{-\Delta_1}}{\arg \max} J_{\bar{\mu}}(\theta^{-\Delta_1}, \Delta_1^{(n)}(s_1)), \quad \forall s_1 \in \mathcal{G}_1,$$

where $\theta^{-\Delta_1}=(c,\Delta_0,\boldsymbol{a}^{(1)},\boldsymbol{a}^{(2)}).$ The gradient and the Hessian are known in closed-form.

• Sinkhorn step for the martingale constraint. We find the solution $\Delta_1^{(n+1)}(s_1)$ of

$$\psi_{s_1}(\Delta_1^{(n+1)}(s_1), \boldsymbol{a}^{(2)}) = 0, \quad \forall s_1 \in \mathcal{G}_1,$$

where, for all $x \in \mathbb{R}$,

$$\psi_{s_1}(x, \boldsymbol{a}^{(2)}) = \int (s_2 - s_1) \exp\Big\{ \sum_{i=1}^{n_2} a_j^{(2)} h_2(s_2, K_j^{(2)}) + x(s_2 - s_1) \Big\} f_{\bar{\mu}_{2|1}}(s_2|s_1) \, \mathrm{d}s_2$$

Implied Newton

■ Inspired by [DM18], we observe

$$\theta^* = \operatorname*{arg\,max}_{\theta \in \Theta} J_{\bar{\mu}}(\theta) = \operatorname*{arg\,max}_{\theta^{-\Delta_1} \in \Theta^{-\Delta_1}} J_{\bar{\mu}}(\theta^{-\Delta_1}, \Delta_1^*(\cdot, \boldsymbol{a}^{(2)}))$$

where $\Delta_1^*(\cdot, \boldsymbol{a}^{(2)})$ solves

$$\psi_{s_1}(\Delta_1^*(\cdot, \boldsymbol{a}^{(2)}), \boldsymbol{a}^{(2)}) = 0.$$

• The modified objective $\tilde{J}_{\bar{\mu}}$ shares the same gradient and Hessian as $J_{\bar{\mu}}$, except for the terms involving differentiation with respect to $a^{(2)}$. They remain explicit.

Updated Conditional Density

Let μ be the optimal joint measure associated to some parameter θ . Then:

$$\frac{\mathrm{d}\mu(s_1, s_2)}{\mathrm{d}s_1\,\mathrm{d}s_2} = f_{\mu}(s_1, s_2) = e_{\theta}(s_1, s_2)\,f_{\bar{\mu}_{2|1}}(s_2|s_1)\,f_{\bar{\mu}_1}(s_1).$$

The updated conditional density is:

$$\begin{split} f_{\mu_{2|1}}(s_2|s_1) &= \frac{f_{\mu}(s_1,s_2)}{f_{\mu_1}(s_1)} \\ &= \frac{e_{\theta}(s_1,s_2) \, f_{\bar{\mu}}(s_1,s_2)}{\int e_{\theta}(s_1,y) \, f_{\bar{\mu}}(s_1,y) \, dy} \\ &= \frac{\exp\left\{\sum_{j=1}^{n_2} a_j^{(2)} h_2(s_2,K_j^{(2)}) + \Delta_1(s_1)(s_2-s_1)\right\} f_{\bar{\mu}_{2|1}}(s_2|s_1)}{\int \exp\left\{\sum_{j=1}^{n_2} a_j^{(2)} h_2(y,K_j^{(2)}) + \Delta_1(s_1)(y-s_1)\right\} f_{\bar{\mu}_{2|1}}(y|s_1) \, \mathrm{d}y} \end{split}$$

SPX Index as of 2023-02-15

SPX Index as of 2023-02-15

Continuous-Time Extension: Step 1

- Assume we have solved the discrete-time problem and denote the resulting measure by μ .
- We seek a continuous-time model $(S_t)_{t\in[0,T_2]}$ with law $\mathbb P$ on $C([0,T_2],\mathbb R).$

Goal: Construct \mathbb{P} such that $(S_t)_{t\in[0,T_1]}$ is a \mathbb{P} -martingale and $S_1\stackrel{\mathbb{P}}{\sim}\mu_1$.

Construction: Use a Markov functional model:

$$S_t = u(t, W_t), \quad ext{where } W ext{ is a \mathbb{P}-Brownian motion,}$$

and u solves the backward heat equation:

$$\partial_t u + \frac{1}{2} \partial_x^2 u = 0, \quad u(T_1, x) = g(x) = F_{\mu_1}^{-1} \left(\Phi\left(\frac{x}{\sqrt{T_1}}\right) \right)$$

Then,

$$u(t,x) = \mathbb{E}[g(W_{T_1}) \mid W_t = x] = (g * \phi_0 \sqrt{T_1 - t})(x)$$

with the heat kernel

$$\phi_{0,\sqrt{T}}(x) = \frac{1}{\sqrt{2\pi T}}e^{-x^2/(2T)}$$

Continuous-Time Extension: Step 2

Goal: Extend the dynamics to $t \in [T_1, T_2]$, conditionally on \mathcal{F}_{T_1} .

Conditional dynamics: Given $S_{T_1} = s$, define for $t \in [T_1, T_2]$,

$$S_t = u_s(t, W_t - W_{T_1})$$

where

$$u_s(t,x) = \mathbb{E}[g_s(W_{T_2} - W_{T_1}) \mid W_t - W_{T_1} = x] = (g_s * \phi_{0,\sqrt{T_2-t}})(x)$$

and

$$g_s(x) = \left(F_{\mu_{2|1}}(\cdot|s)\right)^{-1} \left(\Phi\left(\frac{x}{\sqrt{T_2 - T_1}}\right)\right)$$

The conditional CDF is given by

$$F_{\mu_{2|1}}(x|s) = \mathbb{P}^{\mu}(S_2 \le x|S_1 = s)$$

with conditional density

$$f_{\mu_{2|1}}(y|s) = \frac{e^{\sum_{j} a_{j}^{(2)} h_{2}(y, K_{j}^{(2)}) + \Delta_{1}(s)(y-s)} f_{\bar{\mu}_{2|1}}(y|s)}{\int e^{\sum_{j} a_{j}^{(2)} h_{2}(z, K_{j}^{(2)}) + \Delta_{1}(s)(z-s)} f_{\bar{\mu}_{2|1}}(z|s) dz}$$

Closed-form expressions for $F_{\mu_{2|1}}$ and its inverse exist.

SPX Index as of 2023-02-15

SPX Index as of 2023-02-15

Thank you for your attention!

References I

Marco Avellaneda, Craig Friedman, Richard Holmes, and Dominick Samperi.

Calibrating volatility surfaces via relative-entropy minimization.

Applied Mathematical Finance, 4(1):37–64, 1997.

Beatrice Acciaio, Antonio Marini, and Gudmund Pammer.

Calibration of the bass local volatility model.

arXiv preprint arXiv:2311.14567, 2023.

Florian Bourgey and Julien Guyon.

Fast Exact Joint S&P 500/VIX Smile Calibration in Discrete and Continuous Time.

Risk, February 2024.

Julio Backhoff-Veraguas, Mathias Beiglböck, Martin Huesmann, and Sigrid Källblad. Martingale Benamou–Brenier.

The Annals of Probability, 48(5):2258–2289, 2020.

Antoine Conze and Pierre Henry-Labordère.

A new fast local volatility model.

Risk, April 2022.

References II

Sinkhorn distances: Lightspeed computation of optimal transport.

Advances in neural information processing systems, 26, 2013.

Hadrien De March.

Entropic approximation for multi-dimensional martingale optimal transport.

Building Arbitrage-Free Implied Volatility: Sinkhorn's Algorithm and Variants. *arXiv preprint*, arXiv:1902.04456, 2019.

Julien Guyon.

The joint S&P 500/VIX smile calibration puzzle solved.

Risk, April 2020.

Julien Guyon.

Dispersion-Constrained Martingale Schrödinger Problems and the Exact Joint S&P 500/VIX Smile Calibration Puzzle.

Finance and Stochastics, 28(1):27–79, 2024.

References III

Richard Sinkhorn.

Diagonal equivalence to matrices with prescribed row and column sums.

The American Mathematical Monthly, 74(4):402–405, 1967.

SPX Index as of 2023-02-15

Calibrated $s_1 \mapsto \Delta_1(s_1)$

Useful formulas

Denote $z_x = \frac{x-m}{\sigma} - C\sigma$ and $\widetilde{m} = m + C\sigma^2$. For any $m, A, B, C, D, E \in \mathbb{R}$ and $\sigma > 0$, we have

$$\mathcal{I}_{m,\sigma}(A, B, C) := \int_{A}^{B} e^{Cx} \phi_{m,\sigma}(x) \, \mathrm{d}x = e^{Cm + \frac{1}{2}C^{2}\sigma^{2}} \Big(\Phi(z_{B}) - \Phi(z_{A}) \Big),$$

and

$$\mathcal{J}_{m,\sigma}(A,B,C,D) := \int_{A}^{B} (x-D)e^{Cx}\phi_{m,\sigma}(x) dx$$
$$= (\widetilde{m} - D)\mathcal{I}_{m,\sigma}(A,B,C) + \sigma e^{Cm + \frac{1}{2}C^{2}\sigma^{2}} \Big(\phi(z_{A}) - \phi(z_{B})\Big),$$

$$\mathcal{K}_{m,\sigma}(A,B,C,D,E) := \int_{A}^{B} (x-D)(x-E)e^{Cx}\phi_{m,\sigma}(x) dx$$

equals

$$\left(\sigma^{2} + \widetilde{m}^{2} + DE - (D+E)\widetilde{m}\right) \mathcal{I}_{m,\sigma}(A,B,C)$$

$$+ \sigma e^{Cm + \frac{1}{2}C^{2}\sigma^{2}} \left((A + \widetilde{m} - (D+E))\phi(z_{A}) - (B + \widetilde{m} - (D+E))\phi(z_{B}) \right),$$

and

$$\mathcal{L}_{m,\sigma}(A,B,C,D,E,F) := \int_{A}^{B} (x-D)(x-E)(x-F)e^{Cx}\phi_{m,\sigma}(x) dx$$

equals

$$\left[(\widetilde{m} - D)(\widetilde{m} - E)(\widetilde{m} - F) + \sigma^{2} \left(3\widetilde{m} - (D + E + F) \right) \right] \mathcal{I}_{m,\sigma}(A, B, C)$$
$$+ \sigma e^{Cm + \frac{1}{2}C^{2}\sigma^{2}} \left(\Lambda(A) \phi(z_{A}) - \Lambda(B) \phi(z_{B}) \right),$$

where

$$\Lambda(x) = (x - \widetilde{m})^2 + (3\widetilde{m} - D - E - F)(x - \widetilde{m}) + (\widetilde{m} - D)(\widetilde{m} - E) + (\widetilde{m} - D)(\widetilde{m} - F) + (\widetilde{m} - E)(\widetilde{m} - F) + 2\sigma^2.$$

Closed-form integrals

Let $n \in \mathbb{N}^*$, $m, m' \in \{1, \dots, n\}$, $K_0 = -\infty < K_1 < \dots < K_n < K_{n+1} = +\infty$, $(a_i)_{1 \leq i \leq n} \in \mathbb{R}$, and $\Delta : \mathbb{R} \to \mathbb{R}$. Assume that $f_{\bar{\mu}_{2|1}}(s_2|s_1) = \phi_{s_1,\sigma(s_1)}(s_2)$. Empty sums are understood to be zero. Define

$$I_0(s_1) := \int \exp\left\{\sum_{i=1}^n a_i h(s_2, K_i) + \Delta(s_1) s_2\right\} f_{\bar{\mu}_{2|1}}(s_2|s_1) \, \mathrm{d}s_2,$$

$$I_1(s_1) := \int (s_2 - s_1) \, \exp\left\{\sum_{i=1}^n a_i h(s_2, K_i) + \Delta(s_1) s_2\right\} f_{\bar{\mu}_{2|1}}(s_2|s_1) \, \mathrm{d}s_2,$$

$$I_2(s_1, m) = \int h(s_2, K_m) \, \exp\left\{\sum_{i=1}^n a_i h(s_2, K_i) + \Delta(s_1) s_2\right\} f_{\bar{\mu}_{2|1}}(s_2|s_1) \, \mathrm{d}s_2,$$

 $I_3(s_1, m, m') = \int h(s_2, K_m) h(s_2, K_{m'}) \exp\left\{\sum_{i=1}^n a_i h(s_2, K_i) + \Delta(s_1) s_2\right\} f_{\bar{\mu}_2|_1}(s_2|s_1) \, \mathrm{d}s_2$