

Fondamentaux Mathématiques

Feuille $n^{\circ}1$: Logique des propositions

1 NON, ET, OU

Solution de l'exercice 1

- 1. « A et B » : La carte tirée est l'As de cœur.
- 2. « A ou B » : La carte tirée est un As ou un cœur, à savoir : l'As de trèfle, l'As de pique, l'As de carreau, l'As de cœur, le deux de cœur, le trois de cœur, ..., le dix de cœur, le valet de cœur, la dame de cœur, le roi de cœur.

Solution de l'exercice 2

- 1. « $non(A ext{ et } B)$ » : La carte tirée n'est pas l'As de cœur. Les 51 cartes restantes conviennent.
- 2. « non(A ou B) » : La carte tirée est ni un As ni un cœur. Cela donne 36 cartes qui conviennent : les deux, le trois, les quatre, les cinq, . . ., les dix, les valets, les dames et les rois de trèfle, de carreau et de pique.

Solution de l'exercice 3

- 1. « A et B » : La seule possibilité est le 6, autrement dit l'ensemble des solutions est $\{6\}$.
- 2. « A ou B » : Les possibilités sont 2, 3, 4, 6, autrement dit l'ensemble des solutions est $\{2,3,4,6\}$.

Solution de l'exercice 4

- 1. « non(A et B) » : Les possibilités sont 1, 2, 3, 4, 5, autrement dit l'ensemble des solutions est $\{1, 2, 3, 4, 5\}$.
- 2. « non(A ou B) » : Les possibilités sont 1,5, autrement dit l'ensemble des solutions est $\{1,5\}$.

Solution de l'exercice 5

```
 \ll \operatorname{non}(A) \gg : x < 0 \quad - \quad \ll \operatorname{non}(B) \gg : y < 0 \quad - \quad \ll \operatorname{non}(A \text{ et } B) \gg : x < 0 \text{ ou } y < 0 - m < m < 0 \text{ ou } B) \gg : x < 0 \text{ et } y < 0
```

Solution de l'exercice 6

On dresse les tables de vérité de chaque formule.

p	q	r	$q ext{ et } r$	p ou (q et r)
\overline{V}	V	V	V	V
\overline{V}	V	F	F	\overline{V}
\overline{V}	F	V	F	\overline{V}
\overline{V}	F	F	F	\overline{V}
\overline{F}	V	V	V	\overline{V}
\overline{F}	V	F	F	\overline{F}
\overline{F}	F	V	F	F
\overline{F}	F	F	F	F

p	q	r	p ou q	p ou r	(p ou q) et (p ou r)
\overline{V}	V	V	V	V	V
\overline{V}	V	F	V	V	V
\overline{V}	F	V	V	V	V
\overline{V}	F	F	V	V	V
\overline{F}	V	V	V	V	V
F	V	F	V	F	F
F	F	V	F	V	F
\overline{F}	F	F	F	F	F

On constate alors que les formules ont même table de vérité : elles sont donc équivalentes.

Solution de l'exercice 7

a)

x = 0	x = y	$(x=0) et (x \neq y)$	$(x \neq 0)$ et $(x = y)$	f_1
V	V	F	F	\overline{F}
V	F	V	F	\overline{V}
F	V	F	V	V
\overline{F}	F	\overline{F}	\overline{F}	\overline{F}

D'une manière analogue, on trouve pour f_2 la même table de vérité.

b) Notons $p: \langle x=0 \rangle$; $q: \langle x=y \rangle$. La deuxième proposition f_2 s'écrit :

Elle est donc équivalente à

qui est équivalente à

$$(non(p) \text{ et } non(non(q))) \text{ ou } (non(non(p)) \text{ et } non(q))$$

ce qui donne la forme équivalente

$$(non(p) \text{ et } q) \text{ ou } (p \text{ et } non(q))$$

soit encore

$$(p \text{ et } \text{non}(q)) \text{ ou } (\text{non}(p) \text{ et } q)$$

ce qui correspond bien à la première proposition f_1 de l'exercice.

Solution de l'exercice 8

(1) On a les équivalences suivantes

$$non((p \text{ ou } q) \text{ et } r) \iff (non(p \text{ ou } q) \text{ ou } non(r))$$

$$(\operatorname{non}(p \text{ ou } q) \text{ ou } \operatorname{non}(r)) \iff ((\operatorname{non}(p) \text{ et } \operatorname{non}(q)) \text{ ou } \operatorname{non}(r))$$

On obtient donc, par transitivité, la formule équivalente

(2) De la même manière, on montre que

est équivalente à

Solution de l'exercice 9

D'après les lois de De Morgan, on a l'équivalence

$$((\text{non}(p) \text{ et } q) \text{ ou } (\text{non}(p) \text{ et } \text{non}(q))) \iff (\text{non}(p) \text{ et } (q \text{ ou } \text{non}(q)))$$

Par ailleurs « q ou non(q) Ȏtant toujours vraie, on obtient l'équivalence

$$((\text{non}(p) \text{ et } q) \text{ ou } (\text{non}(p) \text{ et } \text{non}(q))) \iff \text{non}(p).$$

Ainsi, la proposition de l'exercice est équivalente à « non(p) ou (p et q) », que l'on peut encore simplifier en la proposition équivalente « non(p) ou q ».

Solution de l'exercice 10

On peut examiner tous les cas où f est vraie, à savoir : quand p est vraie et q fausse, ainsi que lorsque p est fausse et q vraie. On peut dire alors que f est vraie exactement lorsque p et non(q) sont vraies ainsi que lorsque non(p) et q sont vraies. Ce qui signifie que f est équivalente à

$$(p \text{ et non}(q)) \text{ ou } (\text{non}(p) \text{ et } q).$$

Remarque : il s'agit du « ou exclusif ». Avec quelques manipulations de distributivité entre le « ou » et le « et », on voit que f est aussi équivalente à

$$(p \text{ ou } q) \text{ et } (\text{non}(p) \text{ ou } \text{non}(q)).$$

2 Implication, contraposée, équivalence

Solution de l'exercice 11

- 1. L'implication « $P \Longrightarrow Q$ » se traduit en langage naturel par « Si ABC est un triangle équilatéral, alors il est isocèle. ».
- 2. La contraposée de cette implication « $non(Q) \Longrightarrow non(P)$ » se traduit en langage naturel par « Si ABC n'est pas un triangle isocèle, alors il n'est pas équilatéral. ».
- 3. La négation de cette implication « P et non(Q) » se traduit en langage naturel par « ABC est un triangle équilatéral qui n'est pas isocèle. ».

Solution de l'exercice 12

On trouve $E = \{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19\}$. En particulier, tous les nombres impairs inférieurs à 20 vérifient l'énoncé.

Solution de l'exercice 13

La règle peut se formaliser par l'implication « $A \Longrightarrow 4$ », que l'on peut traduire par « non(A) ou 4 ». Donc, dès que l'on a une autre lettre que A ou que l'on a un 4, la règle est respectée. Reste à regarder les autres cas.

1. Carte 1 : Il est nécessaire de retourner la première carte pour vérifier s'il y a bien un 4 sur l'autre face.

- 2. Carte 2 satisfait la règle.
- 3. Carte 3 satisfait la règle.
- 4. Carte 4 : Il est nécessaire de retourner la quatrième carte pour vérifier que sa valeur alphabétique n'est pas A.

Solution de l'exercice 14

- 1. Non, on ne peut pas en déduire qu'il a plu.
- 2. Non, on ne peut pas en déduire qu'il a plu et pour cause : on peut en fait en déduire qu'il n'a pas plu. La contraposée nous dit que « si je suis venu, alors il n'a pas plu. ».
- 3. Non, de même que pour la première affirmation, on ne peut rien en déduire de particulier.
- 4. Non, on ne peut pas savoir s'il y a eu grève. En utilisant la contraposée, on sait que « si je suis venu » c'est que la condition « il y a grève et mon réveil ne fonctionne pas » n'est pas satisfaite. Ainsi, soit il n'y a pas eu grève, soit mon réveil a fonctionné. Mais on ne peut pas savoir lequel de ces deux événements s'est produit.
- 5. On peut en déduire qu'il n'a pas plu et que mon réveil n'est pas tombé en panne. En effet, la contraposée nous dit que « si je suis venue », c'est que la condition de départ « il pleut ou mon réveil tombe en panne » n'est pas satisfaite. Donc, il n'a pas plu et mon réveil n'est pas tombé en panne.

Solution de l'exercice 15

- 1. (a) faux, puisque π ne vaut pas 4.
 - (b) vrai, puisque π ne vaut pas 4.
 - (c) vrai, puisque 49 n'est pas un multiple de 5.
- 2. (a) π ne vaut pas 4 ou la somme des angles d'un triangle ne vaut pas 180° .
 - (b) π vaut 4 et la somme des angles d'un triangle ne vaut pas 200°.
 - (c) 5 divise 49 et 43 ne divise pas 567.
- 3. Ce quadrilatère est un rectangle ou un losange.
 - 4 divise 35 ou 5 ne divise pas 35.
 - Il pleut, ma voiture marche et je ne vais pas au cinéma.

Solution de l'exercice 16

(1) $G \wedge \neg M$ (6) $(G \wedge (G \Rightarrow M))$, ou encore $M \wedge G$

 $(2) G \Rightarrow M \tag{7} \neg G \land M$

(3) $G \wedge \neg M$, ou encore $(\neg(\neg G \vee M))$ (8) $G \Rightarrow M$

 $(4) G \Rightarrow M \qquad (9) M \Rightarrow G$

 $(5) \neg G \land \neg M \tag{10} G \Rightarrow M$

Solution de l'exercice 17

- 1. Paul n'a pas de pantalon bleu ou pas de chemise rouge.
- 2. Nasser ne va ni à la plage ni au tennis.

- 3. Il neige et je ne fais pas de ski.
- 4. Évariste est heureux et ne fait pas de logique ou il n'est pas heureux et fait de la logique.

Solution de l'exercice 18

Toutes les formules proposées sont des tautologies. Détaillons juste la table de vérité de la dernière

$$f:((p\Longrightarrow q)\ {
m et}\ (q\Longrightarrow r))\Longrightarrow (p\Longrightarrow r)$$

p	q	r	$p \Longrightarrow q$	$q \Longrightarrow r$	$(p \Longrightarrow q) \text{ et } (q \Longrightarrow r)$	$p \Longrightarrow r$	f
\overline{V}	V	V	V	V	V	V	\overline{V}
\overline{V}	V	F	V	F	F	F	\overline{V}
\overline{V}	F	V	F	V	F	V	\overline{V}
\overline{V}	F	F	F	V	F	F	\overline{V}
\overline{F}	V	V	V	V	V	V	\overline{V}
\overline{F}	V	F	V	F	F	V	\overline{V}
\overline{F}	F	V	V	V	V	V	\overline{V}
\overline{F}	F	F	V	V	V	V	\overline{V}

Solution de l'exercice 19

On va utiliser ici la méthode syntaxique, mais on peut également faire cet exercice à l'aide de tables de vérité.

- 1. $(p \Rightarrow p) \iff (\neg p \lor p)$. On sait que $(\neg p \lor p)$ est une tautologie (principe du tiers exclu).
- 2. $(p \Rightarrow (p \lor q)) \iff (\neg p \lor (p \lor q)) \iff ((\neg p \lor p) \lor q)$, qui est toujours vraie, puisque $(\neg p \lor p)$ est une tautologie.
- 3. $(\neg p \lor q) \lor p \iff ((\neg p \lor p) \lor q)$, qui est une tautologie.
- 4. $(p \Rightarrow (q \Rightarrow p)) \iff (\neg p \lor (\neg q \lor p)) \iff ((\neg p \lor p) \lor \neg q)$, qui est une tautologie.
- 5. On a : $((p \Rightarrow q) \land p) \iff ((\neg p \lor q) \land p) \iff ((\neg p \land p) \lor (q \land p)) \iff (q \land p)$, puisque $(\neg p \land p)$ est toujours faux. Donc, on obtient : $[((p \Rightarrow q) \land p) \Rightarrow q] \iff ((q \land p) \Rightarrow q) \iff ((\neg q \lor \neg p) \lor q)$, qui est toujours vrai.
- 6. On a : $((p \Rightarrow q) \Rightarrow p) \Longleftrightarrow ((p \land \neg q) \lor p) \Longleftrightarrow p$, et donc : $[((p \Rightarrow q) \Rightarrow p) \Rightarrow p] \Longleftrightarrow (p \Rightarrow p) \Longleftrightarrow (\neg p \lor p)$, qui est une tautologie.

Solution de l'exercice 20

- 1. oui, car $(p \lor \neg (p \land q)) \iff (p \lor \neg p \lor \neg q)$ qui est une tautologie, puisque $(p \lor \neg p)$ est une tautologie (principe du tiers exclu), voir exercice 18.
- 2. oui, car $((p \land q) \Rightarrow p) \iff ((\neg (p \land q) \lor p) \iff ((\neg p \lor \neg q) \lor p)$ qui est une tautologie, puisque $(p \lor \neg p)$ est une tautologie.
- 3. non, d'après la table de vérité :

p	q	$p \lor q$	$p \wedge q$	$(p \lor q) \Rightarrow (p \land q)$
\overline{V}	V	V	V	V
\overline{V}	F	V	F	F
\overline{F}	V	V	F	F
\overline{F}	F	F	F	V

4. oui, d'après la table de vérité :

p	q	$p \lor q$	$p \wedge q$	$(p \land q) \Rightarrow (p \lor q)$
\overline{V}	V	V	V	V
\overline{V}	F	V	F	V
\overline{F}	V	V	F	V
\overline{F}	F	F	F	V

Solution de l'exercice 21

- (1) La proposition « $0 < x \le 1$ » se traduit par « 0 < x et $x \le 1$ ». Sa négation est donc « $x \le 0$ ou x > 1 ».
- (2) La proposition « xy = 0 » est équivalente à « x = 0 ou y = 0 ». Sa négation est donc « $x \neq 0$ et $y \neq 0$ ».
- (3) La proposition « $x^2 = 1 \Longrightarrow x = 1$ » est équivalent à « $(\text{non}(x^2 = 1))$ ou (x = 1) ». Sa négation est donc « $x^2 = 1$ et (non(x = 1)) », c'est-à-dire « $x^2 = 1$ et $x \neq 1$ », autrement dit « x = -1 ».

3 Vers le raisonnement

Solution de l'exercice 22

On peut commencer par supposer que x=0. Comme la première implication est vraie, on en déduit que y>0. En particulier $y\neq 0$ et, par la dernière implication, on déduit que z>0. Ce qui contredit l'hypothèse de départ : « Parmi x,y,z, il y a zéro et deux réels de signes contraires. ». Ainsi, $x\neq 0$.

Maintenant si x > 0, en exploitant les deux dernières implications, on arrive aussi à une contradiction. Ainsi, on a nécessairement x < 0.

On ne peut pas avoir y > 0 en raison de la dernière implication. On en déduit donc que y = 0, puis que z > 0. On vérifie alors que la solution x < 0, y = 0, z > 0 est compatible avec les trois implications données.

Solution de l'exercice 23

- 1. Puisque p_3 nous dit que B et D sont équivalentes, on peut remplacer D par B dans les formules. D'où : $p_2 : (\text{non } B) \Longrightarrow (\text{non } C)$ $p_4 : \text{non}[A \text{ et } (\text{non } B) \text{ et } (\text{non } C)].$
- 2. On sait que A est vraie, donc [(non A) et (non B)] est fausse. Comme $p_1:C\Longrightarrow[(\text{non }A)$ et (non B)] est vraie, on en déduit que C est fausse.
- 3. La proposition p_4 est équivalente à [(non A) ou B ou C]. Or p_4 est vraie, (non A) et C sont fausses. Donc B est vraie.
- 4. Et, puisque B et D sont équivalentes D est également vraie.

Conclusion : A est vraie, B est vraie, C est fausse et D est vraie.

Solution de l'exercice 24

On note m l'âge de Marie, p celui de Paule et r celui de René. On traduit ensuite en langage mathématique les trois propositions de Marie, puis celles de Paule et enfin celles de René :

$$M: m = 22, m = p - 2, m = r + 1.$$

P: r

R: r < m, m = 23, m = p - 3.

- 1. Supposons que Marie ait 22 ans. Alors m=23 est fausse et m=p-3 est vraie. Donc p=25. Ainsi m=p-2 est fausse et m=r+1 est vraie. Donc r=21. Ainsi r=25 est fausse et |r-p|=3 est vraie, ce qui est contradictoire. Donc m=22 est fausse.
- 2. Puisque m=22 est fausse, on sait que m=p-2 et m=r+1 sont vraies. Donc, en particulier, m=p-3 est fausse. Donc m=23 est vraie. On en déduit alors que p=m+2=25 et que r=m-1=22. On vérifie ensuite que cela fonctionne.

Conclusion : René a 22 ans, Marie 23 ans et Paule 25 ans.

Solution de l'exercice 25

Notons e_1 le premier élève, e_2 le deuxième élève et e_3 le dernier. Les différentes possibilités pour les couleurs des chapeaux de e_1 , e_2 et e_3 sont : (J, J, R), (J, R, J), (R, J, J), (J, R, R), (R, J, R), (R, R, R).

- 1. On peut exclure (J, J, R), sinon e_3 , voyant les chapeaux des deux premiers, aurait su que son chapeau est rouge, puisqu'il n'y a que deux chapeaux jaunes. Pour e_1 et e_2 , il reste donc trois possibilités : (J, R), (R,J) et (R, R).
- 2. On peut exclure (J,R), sinon e_2 aurait su que son chapeau est rouge, puisque (J, J) est exclu. Pour le premier élève, il reste donc une possibilité : R

Conclusion : le premier élève a un chapeau rouge.

Solution de l'exercice 26

 $(1) P_2 : (\text{non } B) \Longrightarrow V$

(2) $P_1: V \Longrightarrow ((\text{non } A) \text{ ou } L)$

1. (3) $(\text{non } P_2) : (\text{non } B) \text{ et } (\text{non } V)$

(4) $P_3: (C \text{ et } L) \Longrightarrow B$

 $(5) P_4 : (\text{non } B) \Longrightarrow C$

(6) $P_5: (\text{non } A) \Longrightarrow L$

- 2. On sait que (non P_2) est vraie, donc (non B) et (non V) sont vraies, i.e Fernand n'a pas de bicyclette et n'a pas de voiture. La proposition V est donc fausse. On en déduit directement que la proposition P_1 est vraie.
- 3. On vient de voir que (non B) est vraie donc, puisque P_4 est vraie, on sait que C est vraie. Si L est vraie, alors (C et L) est vraie donc, d'après P_3 , B est vraie, or B est fausse, on a une contradiction, donc L est fausse, i.e Fernand n'habite pas loin d'une ligne de bus.

La contraposée de P_5 étant vraie, puisque L est fausse, on sait que A est vraie, i.e Fernand aime prendre l'autobus.

4. On a donc trouvé que B, L et V sont fausses, C et A sont vraies.

 $(\text{non } P_2)$ est vraie car (non B) est vraie et (non V) est vraie donc ((non B) et (non V)) est vraie.

 P_3 est vraie car L est fausse donc (C et L) est fausse.

 P_4 est vraie car (non B) est vraie et C est vraie donc l'implication est vraie.

 P_5 est vraie car (non A) est fausse.