Efficient Secure Outsourcing of Genome-wide Association Studies

Wenjie Lu¹, Yoshiji Yamada², Jun Sakuma^{1,3}

1 Dept. of Computer Science, Univ. of Tsukuba

2 Life Science Research Center, Mie Univ.

Motivations

GWAS

To find genetic variations associated with a particular disease.

Outsourcing

To use the cloud resources to conduct large-scale GWAS computations.

Personal privacy

Genetic/clinical data is very sensitive.

Outsourcing GWAS

The evils in the detail

Protection from Cryptosysmtem

Protection from Cryptosysmtem

Fully Homomorphic Encryption(FHE)

 Mathematic operations can be carried out on encrypted values without disclosing these values

Gentry Craig, "A fully homomorphic encryption scheme", Doctoral dissertation, Stanford University, 2009

Ring Learning With Error(RLWE)

- Fully homomorphic encryption
- A plaintext is a polynomial

$$m \in \mathbb{Z}_t[x]/(x^N+1)$$

P.S.: An integer in \mathbb{Z}_t can be seen as a degree-0 polynomial

Brakerski Zvika et al., "Leveled fully homomorphic encryption without bootstrapping", Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ACM, 2012.

Outsourcing Statistical Test

For a *single nucleotide polymorphisms* (SNP) and a disease, e.g. diabetes.

- Genotype: [AA, aa, Aa, AA,]
- Phenotype: [case, control, case, case,]

N people

Case: with diabetes

Control: without diabetes

Outsourcing Statistical Test

• Genotype: [AA, aa, Aa, AA,]

• Phenotype: [case, control, case, case,]

Observation

Genotype	A	a	Count
Case	$ o_1 $	o_2	n_3
Control	03	O_4	n_4
Count	n_1	$\overline{n_2}$	2N

Expectation

Outsourcing Statistical Test

- Genotype: [AA, aa, Aa, AA,]
- Phenotype: [case, control, case, case,]

Observation

Expectation

Case
$$\chi^2=\sum_{\substack{i=1\\\chi^2\geq 3.84;\,95\%}} \frac{(o_i-e_i)^2}{e_2}$$
 Count n_1 n_2 $2N$

Our Encoding for SNP data

- Genotype: [AA, aa, Aa, AA,]
- Phenotype: [case, control, case, case,]

$$x_i = \begin{cases} 2, AA \\ 1, Aa \\ 0, o.w \end{cases}$$
 [2, 0, 1, 2, ...]

$$y_i = \begin{cases} 1, \text{case} \\ 0, \text{control} \end{cases} \mathcal{\boldsymbol{y}}$$
 [1, 0, 1, 1, ...]

Compute the contingency table

$$x_i = \begin{cases} 2, \text{AA} \\ 1, \text{Aa} \\ 0, \text{o.w} \end{cases} \quad y_i = \begin{cases} 1, \text{case} \\ 0, \text{control} \end{cases}$$

Genotype	A	a	Count
Case	O_1	o_2	n_3
Control	03	o_4	n_4
Count	n_1	n_2	2N

$$o_1 = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

$$n_1 = \langle \boldsymbol{x}, \boldsymbol{1} \rangle$$

$$n_3 = \langle \boldsymbol{y}, \boldsymbol{1} \rangle$$

Compute the contingency table

$$x_i = \begin{cases} 2, \text{AA} \\ 1, \text{Aa} \\ 0, \text{o.w} \end{cases} \quad y_i = \begin{cases} 1, \text{case} \\ 0, \text{control} \end{cases}$$

Genotype	A	a	Count
Case	O_1	o_2	n_3
Control	03	o_4	n_4
Count	n_1	n_2	2N

$$o_1 = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

$$n_1 = \langle \boldsymbol{x}, \boldsymbol{1} \rangle$$

$$n_3 = \langle \boldsymbol{y}, \boldsymbol{1} \rangle$$

Compute the contingency table

$$x_i = \begin{cases} 2, \text{AA} \\ 1, \text{Aa} \\ 0, \text{o.w} \end{cases} y_i = \begin{cases} 1, \text{case} \\ 0, \text{control} \end{cases}$$

Scalar product: A naïve way

$$v = [1, 2, 3]$$
 $u = [4, 5, 6]$

Scalar product: more efficient way

Plaintext space of RLWE : $\mathbb{Z}_t[x]/(x^N+1)$

$$v = [1, 2, 3] \rightarrow V(x) = 1 + 2x + 3x^2$$

$$u = [4, 5, 6] \rightarrow U(x) = 6 + 5x + 4x^2$$

$$V(x)$$
 $\otimes U(x)$

$$6 + 17x + 32x^2 + 27x^3 + 12x^4$$

Only need *ONE* multiplication ! $(\| \boldsymbol{v} \| < N)$

Yasuda Masaya, et al. "Secure pattern matching using somewhat homomorphic encryption." Proceedings of the 2013 ACM workshop on Cloud computing security workshop. ACM, 2013.

Scalability

- Plaintext space: $m \in \mathbb{Z}_t[x]/(x^N+1)$
- ||v|| >= N ? To partition into smaller parts

$$oldsymbol{v} = [oldsymbol{v}_1 || \cdots || oldsymbol{v}_k] \ oldsymbol{u} = [oldsymbol{u}_1 || \cdots || oldsymbol{u}_k]$$

$$\langle oldsymbol{u}, oldsymbol{v}
angle := \sum_{i=1}^k \langle oldsymbol{u}_i, oldsymbol{v}_i
angle & ext{Mul.}: k \ ext{Add}: k-1$$

For example: N = 8192, to conduct ||v|| = 10000; k = 2

The whole image

Comparison Method

Genotype: [AA, aa, Aa, AA,]

```
Genotype AA \rightarrow [1], [0], [0]
Encoding Aa \rightarrow [0], [1], [0]
aa \rightarrow [0], [0], [1]
```

• Phenotype: [case, control, case, case,]

```
Phenotype case \rightarrow [1], [0] Encoding control \rightarrow [0], [1]
```

Kristin Lauter and Adriana Lopez-Alt and Michael Naehrig "Private computation on encrypted genomic data" 14th Privacy Enhancing Technologies Symposium, Workshop on Genome Privacy. 2014

Experiment Settings

- Encryption Implementation: HElib
- The maximum degree of the polynomial: N = 8192
- Security parameter: > 80bits
- CPU 2.3GHz; RAM 16G

Experimental Result: Communication Size

Experimental Result: Computation Time

Conclusion

- 1. With suitable data arrangement, efficient computation is achievable.
- 2. Our method helps space/time complexity.

Thank you!