AE1MCS: Mathematics for Computer Scientists

Huan Jin, Heshan Du University of Nottingham Ningbo China

September 2021

Aim and Learning Objectives

- To gain a good understanding of the definitions of proposition, propositional variable and logical operators;
- To gain a good understanding of other definitions: tautology, contradiction, contingency, logical equivalence, converse, contrapositive and inverse.
- To be able to draw truth tables and use them as a tool to solve logical problems;
- To be able to apply important logical equivalences to solve logical problems.

Proposition

Definition

A proposition is a statement that is either true or false.

The area of logic that deals with propositions is called the *propositional logic* or *propositional calculus*.

Is it a proposition?

- Beijing is the capital of China.
- √ What time is it?

 X
 - 5 Read this sentence carefully. X
- $\begin{cases} 6 & x + 1 = 2. \\ 7 & x + y = z. \\ 8 & \text{If } x > 0, \text{ then } x > 1. \end{cases}$

Unfortunately, it is not always easy to decide if a claimed proposition is true or false.

1 For every nonnegative integer n, the value of $n^2 + n + 41$ is prime.

- 1 For every nonnegative integer n, the value of $n^2 + n + 41$ is prime.
- The equation $\underline{a^4 + b^4 + c^4} = \underline{d^4}$ has no positive integer solutions [Euler's conjecture, 1769].

- 1 For every nonnegative integer n, the value of $n^2 + n + 41$ is prime.
- The equation $a^4 + b^4 + c^4 = d^4$ has no positive integer solutions [Euler's conjecture, 1769].
- 3 313($x^3 + y^3$) = z^3 has no positive integer solutions.

- 1 For every nonnegative integer n, the value of $n^2 + n + 41$ is prime.
- The equation $a^4 + b^4 + c^4 = d^4$ has no positive integer solutions [Euler's conjecture, 1769].
- 3 313($x^3 + y^3$) = z^3 has no positive integer solutions.
- 4 Every map can be colored with 4 colors so that adjacent regions have different colors [Four Color Theorem].

- To revery nonnegative integer n, the value of $n^2 + n + 41$ is prime.
- 2 The equation $a^4 + b^4 + c^4 = d^4$ has no positive integer solutions [Euler's conjecture, 1769].
- 313($x^3 + y^3$) = z^3 has no positive integer solutions.
- 4 Every map can be colored with 4 colors so that adjacent regions have different colors [Four Color Theorem].
- 5 Every even integer greater than 2 is the sum of two primes [Goldbach's conjecture, 1742].

Propositional Variable

- a variable that represents a proposition
- \blacksquare denoted using a letter p, q, r, s, ...
- truth value: T (true); F (false)

Logical Operators

■ Compound Proposition: formed from existing propositions using logical operators

■ Logical Operators

(■ Negation
 ■ Conjunction
 ■ Disjunction
 ■ Implication

Negation

Definition (Negation)

Let p be a proposition. The *negation* of p, denoted by p is the statement

'It is not the case that p'.

The proposition $\neg p$ is read 'not p'. The truth value of $\neg p$ is the opposite of the truth value of p.

P: Beijing is the capital of China

P	¬P
I	F
F	T

Conjunction

Definition (Conjunction)

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \wedge q$, is the proposition

'p and q'.

The proposition $p \land q$ is true when both p and q are true and is false otherwise.

Disjunction

Definition (Disjunction)

Let p and q be propositions. The *disjunction* of p and q, denoted by $p \vee q$, is the proposition

The proposition $p \lor q$ is false when both p and q are false and is true otherwise.

р	q	$p \lor q$
I	<u>T</u>	⊣
ヿ	F	工
F	T	工
F	F	F

Exclusive Or

Definition (Exclusive Or)

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \oplus q$, is the proposition that is true when *exactly* one of p and q is true and is false otherwise.

Implication

Definition (Implication) andicional statement

Let p and q be propositions. The *implication* $p \rightarrow q$ is the proposition

'if p, then q'. p implies q.

16 / 40

The proposition $p \to q$ is false when p is true and q is false, and true otherwise. p is called the hypothesis or premise and q is called the conclusion or consequence.

The proposition $p \rightarrow q$ is true, if p is false or q is true.

Examples

- If Goldbach's Conjecture is true, then $x^2 \ge 0$ for every real number x.
- If pigs fly, then your account will not get hacked.

Bi-Implication

Definition (Bi-Implication)

Let p and q be propositions. The *bi-implication* $p \leftrightarrow q$ is the proposition

'p if and only if
$$q$$
'.

The bi-implication $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise.

The words 'if and only if' are sometimes abbreviated 'iff'.

 $p \leftrightarrow q$ is true when both $p \rightarrow q$ and $q \rightarrow p$ are true, and is false otherwise.

More Definitions

- Tautology, Contradiction and Contingency
- Logical Equivalence
- Converse, Contrapositive and Inverse

Tautology, Contradiction and Contingency

Definition (Tautology, Contradiction and Contingency)

A compound proposition that is *always true*, no matter what the truth values of the propositions that occur in it, is called a **tautology**.. A compound proposition that is *always false* is called a **contradiction**. A compound proposition that is neither a tautology nor a contradiction is called a **contingency**.

Exercise

How to construct a tautology, a contradiction and a contingency using just one propositional variable? p

 Huan Jin, Heshan Du
 AE1MCS
 September 2021
 21/40

How to construct a tautology, a contradiction and a contingency using just one propositional variable?

р	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$	p o eg p
Т	F	Т	F	F
F	Т	T	F	Т

[There are some other ways not shown in the table above...]

Logical Equivalence

Definition (Equivalence)

The compound propositions p and q are logically equivalent, if they always have the same truth value (i.e. $p \leftrightarrow q$ is a tautology). The notation $p \equiv q$ denotes that p and q are logically equivalent.

Exercise

Truth table.

- Are $\neg (p \lor q)$ and $\neg p \land \neg q$ logically equivalent? Why?
- Are $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent? Why?

[Hint: construct truth tables]							
р	9-	pv9.	7(PV9)	70	79	77179	
TTFF	TFTF	イ イ て て 下	FFFT	FFTT	FT F	F. F.	llil

Are $\neg(p \lor q)$ and $\neg p \land \neg q$ logically equivalent? Why?

Answer: Yes. As shown in the truth table below, $\neg(p \lor q)$ and $\neg p \land \neg q$ always have the same truth value. Thus, they are logical equivalent.

р	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
T	Т	Т	F	F	F	F
T	F	Т	F	F	Т	F
F	Τ	Т	F	T	F	F
F	F	F	T	Т	Т	Т

Are $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent? Why?

Answer: Yes. As shown in the truth table below, $p \to q$ and $\neg p \lor q$ always have the same truth value. Thus, they are logical equivalent.

р	q	$\neg p$	$\neg p \lor q$	p o q
Т	Т	F	Т	Т
T	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Converse, Contrapositive and Inverse

- The **converse** of $p \rightarrow q$ is the proposition $q \rightarrow p$.
- The **contrapositive** of $p \rightarrow q$ is the proposition $\neg q \rightarrow \neg p$.
- The **inverse** of $p \rightarrow q$ is the proposition $\neg p \rightarrow \neg q$.

Which pairs of the following propositions are equivalent? Why?

- - a conditional statement and its converse

a conditional statement and its contrapositive P-9

- a conditional statement and its inverse q $p \rightarrow q$ $7p \rightarrow 7q$ $7p \rightarrow 7q$ $7q \rightarrow 7q$

Some Important Logical Equivalences

	Equivalence	Name]
1	$p \wedge T \equiv p$	Identity laws \	
2	$ oldsymbol{ ho} ee \mathcal{F} \equiv \mathcal{p}$		
3	$p \lor T \equiv T$	Domination laws	/
4	p <u>∧(F)</u> ≡(F)		
5	$p \lor p \equiv p$	Idempotent laws	/
6	$p \wedge p \equiv p$	·	
7	$\neg(\neg p) \equiv p$	Double negation law]
8	$p \lor q \equiv q \lor p$	Commutative laws	V
9	$p \wedge q \equiv q \wedge p$		

Some Important Logical Equivalences

	Equivalence	Name
10	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
11	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
12	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
13	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
14	$ eg (p \land q) \equiv \neg p \lor \neg q $	De Morgan's laws
15	$\neg (p \lor q) \equiv \neg p \land \neg q$	
16	$p \lor (p \land q) \equiv p$	Absorption laws/
17	$\rho \wedge (\rho \vee q) \equiv \rho$	
18	$p \lor \neg p \equiv \overline{T}$	Negation laws
19	$\rho \wedge \neg \rho \equiv F$	

Logical Equivalences involving Implications

Logical Equivalences involving Bi-Implications

$$\begin{array}{c|c} 29 & p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) \\ 30 & p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ 31 & p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q) \\ 32 & \neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q \\ \end{array}$$

Using De Morgan's Laws

Use De Morgan's laws to express the negations of the following sentences. \nearrow

- Tony has a cellphone and he has a laptop computer. P^9
- Heather will go to the concert or Steve will go to the concert. YV\$

$$\frac{7(P \land 9)}{7(Y \lor S)} = \frac{7P \lor 79}{7(Y \lor S)} = \frac{1}{1} \land \frac{1}{1}$$

Constructing New Logical Equivalences

- A proposition in a compound proposition can be replaced by a compound proposition that is logically equivalent to it without changing the truth value of the original compound proposition.
- Prove two propositions are logically equivalent by developing a series of logical equivalences.

Exercise

- Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.
- Show that $(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent. Show that $(p \land q) \to (p \lor q)$ is a tautology.

Show that $\neg(p \to q)$ and $p \land \neg q$ are logically equivalent.

Answer:

$$\begin{array}{ll} = \neg(p \rightarrow q) \\ = \neg(\neg p \lor q) & \text{by law 20} \\ = \neg(\neg p) \land \neg q & \text{by De Morgan's low} \\ \equiv p \land \neg q. & \text{by clouble negation Law} \end{array}$$

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

Answer:

$$\begin{array}{l} \underline{\neg}(p\vee(\neg p\wedge q))\\ \equiv \neg p\wedge f(\neg p\wedge q) \quad \text{Pe Morgan's}\\ \equiv \neg p\wedge(\neg p)\vee \neg q) \quad \text{by 1st De Morgan's}\\ \equiv \underline{\neg p\wedge(p\vee \neg q)} \quad \text{double negation}\\ \equiv \underline{(\neg p\wedge p)\vee(\neg p\wedge \neg q)} \quad \text{distributive law'}\\ \equiv F\vee(\neg p\wedge \neg q)\text{ by } \neg p\wedge p \equiv F\\ \equiv \neg p\wedge \neg q. \text{ identity law} \end{array}$$

Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Answer:

$$(p \land q) \rightarrow (p \lor q)$$

$$\equiv \neg(p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (p \lor \neg p) \lor (q \lor \neg q)$$

$$= T \lor T = T$$

List of Symbols

SYMBOL	MEANING	PAGE
$\neg p$	negation of p	3
$p \wedge q$	conjunction of p and q	4
$p \vee q$	disjunction of p and q	4
$p \oplus q$	exclusive or of p and q	6
$p \rightarrow q$	the implication p implies q	6
$p \leftrightarrow q$	biconditional of p and q	9
$p \equiv q$	equivalence of p and q	23
ceiling talk or To	tautology	23
term of [u] w	contradiction	23
$P(x_1,\ldots,x_n)$	propositional function	36
$\forall x P(x)$	universal quantification of $P(x)$	38
$\exists x P(x)$	existential quantification of $P(x)$	40
$\exists !x P(x)$	uniqueness quantification of $P(x)$	41
$\exists : x F(x)$	therefore	64
$p\{S\}q$	partial correctness of S	364

Expected Learning Outcomes

- To gain a good understanding of the definitions of proposition, propositional variable and logical operators;
- To gain a good understanding of other definitions: tautology, contradiction, contingency, logical equivalence, converse, contrapositive and inverse.
- To be able to draw truth tables and use them as a tool to solve logical problems;
- To be able to apply important logical equivalences to solve logical problems.

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

■ Sections 1.1-1.3.

Reading

Kenneth H. Rosen, *Discrete Mathematics and Its Applications*, 7th Edition, 2013.

■ Sections 1.1-1.3.