Problema 11

Elías López Rivera ¹

¹ Universidad Nacional Autónoma de México Facultad de ciencias

26 de enero de 2025

1. Enunciado

Sea 0 < b < 1 en \mathbb{N} . **Demuestre** que:

$$\lim_{n \to \infty} nb^n = 0$$

2. Solución

Sea $0 < b < 1 \implies \frac{1}{b} > 1$, definimos $\frac{1}{b} := 1 + k_n$ para algún $k_n > 0$, se sigue $b = \frac{1}{1+k_n}$. Aplicando teorema del binomio:

$$(1+k_n)^n = 1 + \frac{n}{1!}k_n + \frac{n(n-1)}{2!}k_n^2 + \dots + k_n^n$$

se sigue:

$$(1+k_n)^n > \frac{n(n-1)}{2!} k_n^2 \implies \frac{1}{(1+k_n)^n} < \frac{2}{n(n-1)k_n^2}$$

Por tanto:

$$|nb^n| = nb^n = \frac{n}{(1+k_n)^n} < \frac{2}{(n-1)k_n^2} < \frac{2}{n-1}$$

Ahora demostremos por inducción que $n-1 \ge \frac{n}{2} \ \forall \ n > 1$ en $\mathbb N$

i)Base de inducción

$$2-1=\frac{2}{2}$$

Problema 11 2 SOLUCIÓN

ii) Hipótesis de inducción

$$n-1 \geq \frac{n}{2} \,$$
para algún $n \in \mathbb{N}$

iii)
$$P(n) \implies P(n+1)$$

$$n-1 \geq \frac{n}{2} \implies 2n-2 \geq n \implies 2n \geq n+2 > n+1 \implies n > \frac{n+1}{2}$$

Se concluye la tesís.

$$n > 1: |nb^n| < \frac{4}{n}$$

Sea $\delta := \frac{\epsilon}{4}$, para $\epsilon > 0$:

$$\exists\, K\in\mathbb{N}: n>\max\{1,K\} \implies |nb^n|<4\delta=\epsilon$$

Como épsilon es arbitrario concluimos:

$$\lim_{n \to \infty} nb^n = 0$$