

Discrete Mathematics MH1812

Topic 9.1 - Functions I Dr. Wang Huaxiong

What's in store...

By the end of this lesson, you should be able to...

- Explain the concepts of functions.
- Explain the concepts of injective functions.
- Explain the concepts of surjective functions.

Introduction to Functions: Definition

Let X and Y be sets. A function f from X to Y is a rule that assigns every element x of X to a unique y in Y. We write $f: X \to Y$ and f(x) = y.

$$(\forall x \in X \ \exists y \in Y, y = f(x)) \land (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

X =	Domain
Y =	Codomain
y =	Image of x under f
x =	Preimage of y under f
Range =	Subset of Y with preimages

Introduction to Functions: Example 1

$$(\forall x \in X \ \exists y \in Y, y = f(x)) \land (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

Domain $X = \{a, b, c\}$

Codomain $Y = \{1, 2, 3, 4\}$

 $f = \{(a,2), (b,4), (c,2)\}$

Preimage of 2 is $\{a,c\}$

Range = $\{2,4\}$

Introduction to Functions: Example 2

Let f be the function from Z to Z that assigns the square of an integer to this integer.

Then

$$f: Z \rightarrow Z, f(x) = x^2$$

Domain and codomain of f: Z

Range $(f) = \{0, 1, 4, 9, 16, 25,\}$

Introduction to Functions: Functions vs. Non-functions

$$(\forall x \in X \ \exists y \in Y, y = f(x)) \land (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

$$X = \{a,b,c\}$$
 to $Y = \{1,2,3,4\}$

(Each element of X has exactly one image)

Introduction to Functions: Image of a Set

Let f be a function from X to Y and $S \subseteq X$. The image of S is the subset of Y that consists of the images of the elements of $S: f(S) = \{f(s) \mid s \in S\}$.

Injectivity: One-to-one Function

A function f is one-to-one (or injective), if and only if f(x) = f(y) implies x = y for all x and y in the domain of f.

In words...

"All elements in the domain of f have different images".

Mathematical Description

$$f: A \rightarrow B$$
 is one-to-one $\Leftrightarrow \forall x_1, x_2 \in A \ (f(x_1) = f(x_2) \Longrightarrow x_1 = x_2)$

or

$$f: A \rightarrow B$$
 is one-to-one $\Leftrightarrow \forall x_1, x_2 \in A \ (x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2))$

Injectivity: One-to-one Example

One-to-one

(All elements in *A* have a different image)

Not one-to-one
(a and b have the same image)

Injectivity: One-to-one Example

To show $\forall x_1, x_2 \in R \ (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$, take some $x_1, x_2 \in R \ \text{with} \ f(x_1) = f(x_2)$.

Then
$$4x_1 - 1 = 4x_2 - 1 \Rightarrow 4x_1 = 4x_2 \Rightarrow x_1 = x_2$$
.

Take $x_1 = 2$ and $x_2 = -2$.

Then $g(x_1) = 2^2 = 4 = g(x_2)$ and $x_1 \neq x_2$.

Surjectivity: Onto Function

A function f from X to Y is onto (or surjective), if and only if for every element $y \in Y$ there is an element $x \in X$ with f(x) = y.

In words...

"Each element in the codomain of f has a preimage".

Mathematical Description

$$f: X \to Y \text{ is onto } \Leftrightarrow \forall y \in Y \exists x \in X, \ f(x) = y$$

Surjectivity: Onto Example

Onto

(All elements in *Y* have a preimage)

Not onto

(1 has no preimage)

Surjectivity: Onto Example

$$g: R \to R, g(x) = x^2$$

Does each element in R have a preimage?

No!

- To show $\exists y \in R$ such that $\forall x \in R \ g(x) \neq y$
- Take y = -1
- Then any $x \in R$ holds $g(x) = x^2 \neq -1 = y$

But $g:R \to R_{\geq 0}$, $g(x) = x^2$ (where $R_{\geq 0}$ denotes the set of non-negative real numbers) is onto!

Let's recap...

- Functions:
 - Domain
 - Codomain
 - Image
 - Preimage
 - Range
- Injective functions (one-to-one)
- Surjective functions (onto)

Discrete Mathematics MH1812

Topic 9.2 - Functions II Dr. Wang Huaxiong

What's in store...

By the end of this lesson, you should be able to...

- Explain the concepts of bijective functions.
- Explain the concepts of identity and inverse functions.
- Explain the composition of functions.

Bijectivity: One-to-one Correspondence

A function f is a one-to-one correspondence (or bijection), if and only if it is both one-to-one and onto.

In words...

"No element in the codomain of f has two (or more) preimages" (one-to-one)

and

"Each element in the codomain of f has a preimage" (onto)

Bijectivity: Example (Bijection)

No! (Not onto as 2 has no preimage)

No! (Not one-to-one as 1 has two preimages)

Yes! (Each element has exactly one preimage)

d

No! (Neither one-to-one nor onto)

X

а

b •

C •

d

No! (Not a function as a has two images)

Identity and Inverse: Identity Function

The identity function on a set *A* is defined as:

$$i_A: A \rightarrow A, i_A(x) = x.$$

Example

All identity functions are bijections (e.g., for $A = \{a, c, e\}$).

Identity and Inverse: Inverse Function

Let $f: A \to B$ be a one-to-one correspondence (bijection). Then the inverse function of $f, f^{-1}: B \to A$, is defined by: $f^{-1}(b) =$ that unique element $a \in A$ such that f(a) = b. We say that f is invertible.

Identity and Inverse: Example 1

Find the inverse function of the following function:

Let $f: A \to B$ be a one-to-one correspondence and $f^{-1}: B \to A$ its inverse. Then $\forall b \in B \ \forall a \in A \ (f^{-1}(b) = a \Leftrightarrow b = f(a))$.

Identity and Inverse: Example 2

What is the inverse of

$$f:R \rightarrow R$$
, $f(x) = 4x-1$?

Let $y \in R$.

Calculate x with
$$f(x) = y$$
: $y = 4x-1 \Leftrightarrow (y+1)/4 = x$.

Hence
$$f^{-1}(y) = (y+1)/4$$
.

What is the inverse of $g:R \to R$, $g(x) = x^2$?

Identity and Inverse: One-to-one Correspondence

Theorem 1: If $f: X \to Y$ is a one-to-one correspondence, then $f^{-1}: Y \to X$ is a one-to-one correspondence.

Proof: f^{-1} is one-to-one

Take $y_1, y_2 \in Y$ such that $f^{-1}(y_1) = f^{-1}(y_2) = x$.

Then $f(x) = y_1$ and $f(x) = y_2$, thus $y_1 = y_2$.

Identity and Inverse: One-to-one Correspondence

Theorem 1: If $f: X \to Y$ is a one-to-one correspondence, then $f^{-1}: Y \to X$ is a one-to-one correspondence.

Proof: f^{-1} is onto

Take some $x \in X$, and let y = f(x).

Then $f^{-1}(y) = x$.

Composition and Properties: Composition of Functions

Let $f: A \to B$ and $g: B \to C$ be functions. The composition of the functions f and g, denoted as $g \circ f$, is defined by: $g \circ f: A \to C$, $(g \circ f)(a) = g(f(a))$.

Composition and Properties: Example

Given functions $s: X \to Y$ and $t: Y \to Z$. Find $t \circ s$ and $s \circ t$.

Composition and Properties: Example

$$f: Z \to Z, \ f(n) = 2n + 3, \ g: Z \to Z, \ g(n) = 3n + 2$$

What is $g \circ f$ and $f \circ g$?

$$(f \circ g)(n) = f(g(n)) = f(3n+2) = 2(3n+2) + 3 = 6n + 7$$

$$(g \circ f)(n) = g(f(n)) = g(2n+3) = 3(2n+3) + 2 = 6n+11$$

 $f \circ g \neq g \circ f$ (No commutativity for the composition of functions!)

Composition and Properties: One-to-one Propagation

Theorem 2: Let $f: X \to Y$ and $g: Y \to Z$ be both one-to-one functions. Then $g \circ f$ is also one-to-one.

Proof: $\forall x_1, x_2 \in X ((g \circ f)(x_1) = (g \circ f)(x_2) \Rightarrow x_1 = x_2)$

Suppose $x_1, x_2 \in X$ with $(g \circ f)(x_1) = (g \circ f)(x_2)$.

Then $g(f(x_1)) = g(f(x_2))$.

Since g is one-to-one, it follows $f(x_1) = f(x_2)$.

Since f is one-to-one, it follows $x_1 = x_2$.

Composition and Properties: Onto Propagation

Theorem 3: Let $f: X \to Y$ and $g: Y \to Z$ be both onto functions. Then $g \circ f$ is also onto.

Proof: $\forall z \in Z \exists x \in X \text{ such that } (g \circ f)(x) = z$

Let $z \in Z$.

Since g is onto, $\exists y \in Y$ with g(y) = z.

Since f is onto, $\exists x \in X \text{ with } f(x) = y$.

Hence, with $(g \circ f)(x) = g(f(x)) = g(y) = z$.

Let's recap...

- Bijective functions
- Identify and inverse functions
- Composition of functions and their properties

Discrete Mathematics MH1812

Topic 9.3 - Functions III Dr. Wang Huaxiong

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain what is a ceiling function and floor function.
- Use the pigeonhole principle.
- Explain the difference between a countable set and an uncountable set.

Ceiling and Floor: Definition

The floor function assigns to the real number x, the largest integer x that is less than or equal to x. The ceiling function assigns to the real number x, the smallest integer x that is greater than or equal to x.

Example

$$\frac{1}{2} = 0$$
 $\frac{1}{2} = 1$

$$-\frac{1}{2} = -1$$
 $-\frac{1}{2} = 0$

Ceiling and Floor: Example

How many bytes are required to encode 100 bits of data?

Pigeonhole Principle: Definition

- k pigeonholes, n pigeons, n > k
- At least one pigeonhole contains at least two pigeons

Peter Gustav Lejeune Dirichlet (1805 - 1859)

Pigeonhole Principle

A function from one finite set to a smaller finite set cannot be one-to-one: there must be at least two elements in the domain that have the same image in the codomain.

Pigeonhole Principle: Scenario 1

Consider Bob and his 8 children. At least two of his children were born on the same day of the week.

Bob

Pigeonhole Principle: Scenario 2

They go camping at the lake. Bob gets a tent of his own, but the others get to share 3 tents. Then, there are at least 3 children sleeping in at least one of them.

Pigeonhole Principle: Scenario 3

They go camping at the lake. Bob gets a tent of his own, but the others get to share 3 tents. Then, there are at least 3 children sleeping in at least one of them.

Countable Sets: Definition

A set that is either finite, or has the same cardinality as the set of positive integers is called countable.

A set that is not countable is called uncountable.

Countable Sets: Example

The set of odd positive integers is a countable set.

- To show that the set of positive odd integers is countable, find a one-to-one correspondence between this set and the set of positive integers.
- Consider the function f(n) = 2n 1.
- f(n) goes from the set of positive integers to the set of odd positive integers.

Countable Sets: Example

- f(n) is one-to-one: suppose f(n) = f(m), then 2n 1 = 2m 1. Hence, n = m.
- f(n) is onto: take m as an odd positive integer. Then m is less than an even integer 2k (k a natural number). Thus m = 2k 1 = f(k).

Countable Sets: An Uncountable Set?

What would be an example of an uncountable set?

- Real numbers
- Proven in 1879 by Cantor
- Proof is called "Cantor diagonalisation argument"
- Proof method is widely used in the theory of computation

Georg Ferdinand Ludwig Philipp Cantor 1845 - 1918

Countable Sets: Cantor Diagonalisation

- Suppose that the set of real numbers is countable.
- Then, we will get a contradiction.
- If the set of real numbers is countable, then the set of real numbers that falls between 0 and 1 is also countable.
- Since there is a one-to-one correspondence with positive integers, we can label all of them:

 r_1, r_2, r_3, \dots

Countable Sets: Cantor Diagonalisation

Write these numbers in decimal representation:

$$r_1$$
= 0. d_{11} d_{12} d_{13} ...
 r_2 = 0. d_{21} d_{22} d_{23} ...
 r_3 = 0. d_{31} d_{32} d_{33} ...

- Note that all d_{ij} belong to $\{0,1,2,...9\}$
- Form a new real number r with decimal expansion

$$r = 0. d_1 d_2 d_3...$$

where d_i is 5 if $d_{ii} = 4$ and 4 otherwise

Countable Sets: Cantor Diagonalisation

- The number r is different from all other real numbers listed in the interval [0,1].
- This is because r differs from the decimal expansion of r_i in the ith place by construction.
- We thus found a contradiction to the fact that we are able to list all the real numbers in [0,1], since r does not belong!

Let's recap...

- Ceiling and floor functions
- Pigeonhole principle
- Countable and uncountable sets

