

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.7b

Criteri di arresto per i metodi iterativi

Analisi sul Residuo e Incremento (ricerca delle radici)

 \succ Quando i criteri di arresto introdotti sono efficaci $\implies e_n < \epsilon$

$$f(\alpha) = 0 \quad \text{Metodo} \quad \{x_n\} \quad \Longrightarrow \quad \lim_{n \to \infty} x_n = \alpha$$

- ightharpoonup Domanda: $\exists n \text{ t.c. } x_n \simeq \alpha \implies e_n = |\alpha x_n| < \epsilon$
 - x_n soluzione approssimata al passo n
 - α soluzione esatta della radice
- > Due criteri di arresto introdotti:

$$r_n = |f(x_n)|$$
 Residuo $\delta x = |x_{n+1} - x_n|$ Incremento

 \succ Quando il criterio di arresto sul residuo è efficace $\implies e_n = |\alpha - x_n| < \epsilon$

$$f(x) = 0$$
 \longrightarrow $r_n = |f(x_n)| < \epsilon$

In questo caso riesco a garantire che ad un residuo piccolo corrisponde un errore piccolo

In questo caso riesco a garantire che a un residuo piccolo NON ho un errore piccolo

- Arrivare a una formula che ci permetta di trattare tutti i casi
- Partiamo dall'identità

$$f(x_n) = f(x_n) - f(\alpha) \leftarrow f(\alpha) = 0$$

Applico il <u>Teorema del valor medio</u>

$$f(x_n) - f(\alpha) \stackrel{\downarrow}{=} f'(\xi_n)(x_n - \alpha) \longrightarrow \alpha - x_n = -\frac{f(x_n)}{f'(\xi_n)}$$

$$|e_n| = |\alpha - x_n| = \left| \frac{f(x_n)}{f'(\xi_n)} \right| \simeq \frac{1}{|f'(\alpha)|} |f(x_n)|$$

$$e_n \simeq \frac{1}{|f'(\alpha)|} r_n$$

Relazione tra residuo ed errore

> Abbiamo trovato una relazione tra residuo ed errore

$$e_n \simeq \frac{1}{|f'(\alpha)|} r_n$$

- $ightarrow rac{1}{|f'(lpha)|}$ parametro di possibile amplificazione dell'errore
- Casi limite
- 1. $f'(\alpha) \sim 1$ criterio sul residuo è un **buono**
- 2. $f'(\alpha) << 1$ criterio sul residuo è un **pessimo**
- 3. $f'(\alpha) >> 1$ criterio sul residuo è **troppo restrittivo**

Casi limite

- 1. $f'(\alpha) \sim 1$ criterio sul residuo è un **buono**
- 2. $f'(\alpha) << 1$ criterio sul residuo è un **pessimo**
- 3. $f'(\alpha) >> 1$ criterio sul residuo è **troppo restrittivo**

$$e_n \simeq \frac{1}{|f'(\alpha)|} r_n$$

Analisi incrementale (ricerca delle radici)

ightharpoonup Quando il test di arresto sull'incremento è efficace ightharpoonup $e_n=|lpha-x_n|<\epsilon$

$$\delta x = |x_{n+1} - x_n|$$

A un incremento piccolo corrisponde un errore piccolo

A un incremento piccolo corrisponde un errore grande