Complete listing of claims:

1-3. (Withdrawn)

4. (Currently amended) A pharmaceutical composition comprising a corticotropin releasing factor antagonist and a growth hormone secretagogue or growth hormone, wherein said corticotropin releasing factor antagonist is a compound of formula

wherein

A is CR₇ or N;

B is NR_1R_2 , $CR_1R_2R_{11}$, $C(=CR_2R_{12})R_1$, $NHCHR_1R_2$, $OCHR_1R_2$, $SCHR_1R_2$, CHR_2OR_{12} , CHR_2SR_{12} , $C(S)R_2$ or $C(O)R_2$;

Z is NH, O, S, N (C_1 - C_2 alkyl), or $CR_{13}R_{14}$, wherein R_{13} and R_{14} are each independently hydrogen, trifluoromethyl, or C_1 - C_4 alkyl, or one of R_{13} and R_{14} may be cyano, chloro, bromo, iodo, fluoro, hydroxy, $O(C_1$ - C_2 alkyl), amino, NH(C_1 - C_2 alkyl), or $CR_{13}R_{14}$ may be C=O or cyclopropyl;

 R^1 is C_1 - C_6 alkyl which may be substituted by one or two substituents R_8 independently selected from the group consisting of hydroxy, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, O-CO- $(C_1$ - C_4 alkyl), O-CO- $(C_1$ - C_4 alkyl), O-CO- $(C_1$ - $(C_4$ alkyl), NH($(C_1$ - $(C_4$ alkyl)), NH($(C_1$ - $(C_4$ alkyl)), N($(C_1$ - $(C_4$ alkyl)), N($(C_1$ - $(C_4$ alkyl)), NH($(C_1$ - $(C_4$ alkyl)), NHCO($(C_1$ - $(C_4$ alkyl)), COO($(C_1$ - $(C_4$ alkyl)), CONH($(C_1$ - $(C_4$ alkyl)), CON($(C_1$ - $(C_4$ alkyl)), CON($(C_1$ - $(C_4$ alkyl)), S($(C_1$ - $(C_4$ alkyl)), CN, NO₂, SO($(C_1$ - $(C_4$ alkyl)), SO₂($(C_1$ - $(C_4$ alkyl)), and said $(C_1$ - $(C_4$ alkyl) or C₁- $(C_4$ alkyl) may contain one double or triple bond;

 R_2 is C_1 - C_{12} alkyl, aryl or (C_1 - C_4 alkylene)aryl wherein said aryl is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, imidazolyl, furanyl, benzofuranyl, benzothiazolyl, isothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, indolyl, or benzoxazolyl; 3- to 8-membered cycloalkyl or (C_1 - C_6 alkylene)cycloalkyl, wherein said cycloalkyl may contain one or two of O, S or N- R_9 wherein R_9 is hydrogen, or C_1 - C_4 alkyl,

wherein the above defined R_2 may be substituted independently by from one to three of chloro, fluoro, or C_1 - C_4 alkyl, or one of bromo, iodo, C_1 - C_6 alkoxy, O-CO- $(C_1$ - C_6 alkyl), O-CO- $N(C_1$ - C_4 alkyl)(C_1 - C_2 alkyl), $S(C_1$ - C_6 alkyl), CN, NO_2 , $SO(C_1$ - C_4 alkyl), or $SO_2(C_1$ - C_4 alkyl), and wherein said C_1 - C_{12} alkyl or C_1 - C_4 alkylene may contain one double or triple bond; or

NR₁R₂ or CR₁R₂R₁₁ may form a saturated 5- to 8-membered carbocyclic ring which may contain one or two double bonds or one or two of O or S:

R₃ is methyl, ethyl, fluoro, chloro, bromo, iodo, cyano, methoxy, OCF₃, methylthio, methylsulfonyl, CH₂OH or CH₂OCH₃;

 R_4 is hydrogen, C_1 - C_4 alkyl, fluoro, chloro, bromo, iodo, C_1 - C_4 alkoxy, amino, nitro, NH(C_1 - C_4 alkyl), N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), SO_n(C_1 - C_4 alkyl), wherein n is O, 1 or 2, cyano, hydroxy, CO(C_1 - C_4 alkyl), CHO, or COO(C_1 - C_4 alkyl), wherein said C_1 - C_4 alkyl may contain one or two double or triple bonds and may be substituted by one or two of hydroxy, amino, carboxy, NHCOCH₃, NH(C_1 - C_2 alkyl), N(C_1 - C_2 alkyl)₂, COO(C_1 - C_4 alkyl), CO(C_1 - C_4 alkyl), C1- C_3 alkoxy, C1- C_3 thioalkyl, fluoro, chloro, cyano or nitro;

 R_5 is phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, pyrimidyl, furanyl, benzofuranyl, benzothiazolyl, or indolyl, wherein each one of the above groups R_5 is substituted independently by from one to three of fluoro, chloro, C_1 - C_6 alkyl, or C_1 - C_6 alkoxy, or one of hydroxy, iodo, bromo, formyl, cyano, nitro, trifluoromethyl, amino, NH(C_1 - C_4 alkyl), N(C_1 - C_6)(C_1 - C_2 alkyl), COOH, COO(C_1 - C_4 alkyl), CO(C_1 - C_4 alkyl), SO₂NH(C_1 - C_4 alkyl), SO₂N(C_1 - C_4 alkyl)(C_1 - C_2 alkyl), SO₂NH₂, NHSO₂(C_1 - C_4 alkyl), S(C_1 - C_6 alkyl), or SO₂(C_1 - C_6 alkyl), wherein said C_1 - C_4 alkyl and C_1 - C_6 alkyl may be substituted by one or two of fluoro, hydroxy, amino, methylamino, dimethylamino or acetyl;

 R_7 is hydrogen, C_1 - C_4 alkyl, fluoro, chloro, bromo, iodo, cyano, hydroxy, $O(C_1$ - C_4 alkyl), $C(O)(C_1$ - C_4 alkyl), or $C(O)O(C_1$ - C_4 alkyl), wherein the C_1 - C_4 alkyl groups may be substituted with one hydroxy, chloro or bromo, or one to three fluoro;

R¹¹ is hydrogen, hydroxy, fluoro, or methoxy;

R¹² is hydrogen or C₁-C₄ alkyl; and

wherein said growth hormone secretagogue is a compound of formula IV:

or a stereoisomeric mixture thereof, a diastereomerically enriched, diastereomerically pure, enantiomerically enriched, or enantiomerically pure isomer thereof, or a prodrug of such compound, mixture, or isomer thereof, or a pharmaceutically acceptable salt of the compound, mixture, isomer, or prodrug, wherein in formula IV:

HET is a heterocyclic moiety selected from the group consisting of

$$\begin{array}{c} Z \\ X \\ Q \\ R^1 \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ R^2 \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \\ Q \end{array}$$

$$\begin{array}{c} X \\ Q \\ Q \end{array}$$

$$\begin{array}{c}$$

d is 0, 1, or 2;

e is 1 or 2;

f is 0 or 1;

n and w are 0, 1, or 2, provided that n and w cannot both be Θ $\underline{0}$ at the same time; USERS\DOC\S\LAZ\1952

Y² is oxygen or sulfur;

A is a divalent radical, wherein the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected C', selected from the group consisting of -NR²-CO-NR²-, -NR ²-SO₂-NR²-, -O-CO-NR²-, -NR²-CO₂-, -CO-NR²-CO-, -CO-NR²·C(R⁹R¹⁰O)-, -C(R⁹R¹⁰)-NR²-CO-, -C(R⁹R¹⁰)-C(R⁹R¹⁰)-C(R⁹R¹⁰)-, -SO₂- $C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-O-CO-$, $-C(R^9R^{10})-O-C(R^9R^{10})-$, $-NR^2-CO-C(R^9R^{10})-$, $-O-CO-CO-C(R^9R^{10}) C(R^9R^{10})$ -, $-C(R^9R^{10})$ -CO- NR^2 -, -CO- NR^2 -CO-, $-C(R^9R^{10})$ -CO-, -CO- NR^2 - $C(R^9R^{10})$ - $C(R^9R^{10})-CO_2-C(R^9R^{10})-$, $-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-$, $-SO_2-NR^2-C(R^9R^{10}) C(R^9R^{10})$ -, $-C(R^9R^{10})$ - $C(R^9R^{10})$ - NR^2 -CO-, $-C(R^9R^{10})$ - $C(R^9R^{10})$ -O-CO-, $-NR^2$ -CO- $C(R^9R^{10})$ - $C(R^9R^{10})$ - $-NR^2$ - SO_2 - $C(R^9R^{10})$ - $C(R^9R^{10})$ - -O-CO- $C(R^9R^{10})$ - $C(R^9R^$ $CO-NR^2$ -, $-C(R^9R^{10})-C(R^9R^{10})-CO-C(R^9R^{10})-NR^2-CO_2-C(R^9R^{10})-O-CO-NR^2$. $-C(R^9R^{10})-CO-NR^2$. NR^2 -CO- NR^2 -, $-NR^2$ -CO₂-C(R^9R^{10})-, $-NR^2$ -CO- NR^2 -C(R^9R^{10})-, $-NR^2$ -SO₂- NR^2 -C(R^9R^{10})-, $-O-CO-NR^2-C(R^9R^{10})$ -, $-CO-N=C(R^{11})-NR^2$ -, $-CO-NR^2-C(R^{11})=N$ -, $-C(R^9R^{10})-NR^{12}$ - $C(R^9R^{10})$ -, $-NR^{12}$ - $C(R^9R^{10})$ - $-NR^{12}$ - $C(R^9R^{10})$ - $C(R^9R^{10})$ - $-CO_2$ - $C(R^9R^{10})$ - $-C(R^1R^{10})$ - $-CO_2$ - $-C(R^9R^{10})$ - $-C(R^1R^{10})$ - $-C(R^1R^{10$ $NR^2-C(R^{11})=N-CO-$, $-C(R^9R^{10})-C(R^9R^{10})-N(R^{12})-$, $-C(R^9R^{10})-NR^{12}-$, $-N=C(R^{11})-NR^2-$ CO-, $-C(R^9R^{10})-C(R^9R^{10})-NR^2-SO_2$, $-C(R^9R^{10})-C(R^9R^{10})-SO_2-NR^2$ -, $-C(R^9R^{10})-SO_2-NR^2$ -, $C(R^9R^{10})-CO_2-C(R^9R^{10})-SO_2-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-SO_2-C(R^9R^{10})-C$ $C(R^9R^{10})$ - $-C(R^9R^{10})$ - $C(R^9R^{10})$ -C(and $-C(R^9R^{10})-NR^2-SO_2-NR^2-$:

Q is a covalent bond or CH₂;

W is CH or N;

X is CR^9R^{10} , $C=CH_2$, or C=O;

Y is CR⁹R¹⁰, O, or NR²;

Z is C=O, C=S, or SO_2 ;

G¹ is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH₂, -C₁-C₄ alkyl optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₁-C₄ alkoxy optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₁-C₄ alkylthio, phenoxy, -CO₂-(C₁-C₄ alkyl), N,N-di-(C₁-C₄ alkylamino), -C₂-C₆ alkenyl optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₂-C₆ alkynyl optionally independently substituted with one or more halogen, or one or

more hydroxy groups, $-C_3$ - C_6 cycloalkyl optionally independently substituted with one or more C_1 - C_4 alkyl groups, one or more halogen, or one or more hydroxy groups, $-C_1$ - C_4 alkylamino carbonyl, or di- C_1 - C_4 alkylamino) carbonyl;

G2 and G^3 are each independently selected from the group consisting of hydrogen, halo, hydroxy, $-C_1-C_4$ alkyl optionally independently substituted with one to three halo groups, and $-C_1-C_4$ alkoxy optionally independently substituted with one to three halo groups;

 $R^{1} \text{ is hydrogen, -CN, -(CH_{2})_{q}NX^{6}COX^{6}, -(CH_{2})_{q}NX^{6}CO(CH_{2})-A^{1}, -(CH_{2})_{q}NX^{6}SO_{2}(CH_{2})-A^{1}, -(CH_{2})_{q}NX^{6}SO_{2}X^{6}, -(CH_{2})_{q}NX^{6}CONX^{6}(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}COX^{6}X^{6}, -(CH_{2})_{q}COX^{6}(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}CO_{2}X^{6}, -(CH_{2})_{q}COX^{6}(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}CO_{2}X^{6}, -(CH_{2})_{q}OCO(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}OX^{6}, -(CH_{2})_{q}OCO(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}OCOX^{6}(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}OCOX^{6}, -(CH_{2})_{q}CO(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}NX^{6}CO_{2}X^{6}, -(CH_{2})_{q}NX^{6}SO_{2}NX^{6}X^{6}, -(CH_{2})_{q}SO_{m}X^{6}, -(CH_{2})_{q}SO_{m}(CH_{2})_{t}-A^{1}, -C_{1}-C_{10} \text{ alkyl, -(CH_{2})_{t}-A^{1}, -(CH_{2})_{q}-(C_{3}-C_{1} \text{ cycloalkyl), -(CH_{2})_{q}-Y^{1}-(C_{1}-C_{6} \text{ alkyl), -(CH_{2})_{q}-Y^{1}-(CH_{2})_{t}-A^{1}, \text{ or -(CH_{2})_{q}-Y^{1}-(CH_{2})_{t}-(C_{3}-C_{1} \text{ cycloalkyl);}}$

wherein the alkyl and cycloalkyl groups in the definition of R^1 are optionally substituted with C_1 - C_4 alkyl, hydroxy, C_1 - C_4 alkoxy, carboxyl, - CONH₂, -SO_m-(C_1 - C_6 alkyl), -CO₂-(C_1 - C_4 alkyl) ester, 1H-tetrazol-5-yl, or 1, 2, or 3 fluoro groups;

Y' is O, SO_m , $-CONX^6$ -, -CH=CH-, -C=C-, $-NX^6CO$ -, $-CONX^6$ -, $-CO_2$ -, $-OCONX^6$ - or -OCO-;

q is Θ 0, 1, 2, 3, or 4;

t is Θ 0, 1, 2, or 3;

said $(CH_2)_q$ group and (CHA group in the definition of R' are optionally independently substituted with hydroxy, C_1 - C_4 alkoxy, carboxyl, $-CONH_2$, $-SO_m$, $-(C_1$ - C_6 alkyl), $-CO_2$ - $(C_1$ - C_4 alkyl) ester, 1 H-tetrazol-5-yl, 1, 2, or 3 fluoro groups, or 1 or 2 C_1 - C_4 alkyl groups; R^{1A} is selected from the group consisting of hydrogen, F, CI, Br, I, C_1 - C_6 alkyl, phenyl- $(C_1$ - C_3 alkyl), pyridyl- $(C_1$ - C_3 alkyl), thiazolyl- $(C_1$ - C_3 alkyl), and thienyl- $(C_1$ - C_3 alkyl), provided that R^{1A} is not F, CI, Br, or I when a heteroatom is vicinal to C'';

 R^2 is hydrogen, C_1 - C_8 alkyl, -(C_0 - C_3 alkyl)-(C_3 - C_8 cycloalkyl), -(C_1 - C_4 alkyl)-A', or A', wherein the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxy, -CO2 X^6 , -CON X^6X^6 , -N X^6X^6 , -SO_m(C_1 - C_6 alkyl), - COA', - COX⁶, CF₃, CN, or 1, 2, or 3 independently selected halo groups;

 R^3 is selected from the group consisting of A', C_1 - C_{10} alkyl, -(C_1 - C_6 alkyl)-A', - (C_1 - C_6 alkyl)-(C_3 - C_1 cycloalkyl), -(C_1 - C_5 alkyl)-X'-(C_1 - C_5 alkyl)-X'-(C_0 - C_5 alkyl)-A', and - (C_1 - C_5 alkyl)-X'-(C_1 - C_5 alkyl)-(C_3 - C_1 cycloalkyl);

wherein the alkyl groups in the definition of R^3 are optionally substituted with -SO_m(C₁-C₆ alkyl), -CO2 X^3 , 1, 2, 3, 4, or 5 independently selected halo groups, or 1, 2, or 3 independently selected -OX³ groups;

X' is O, SO_m , $-NX^2CO_-$, $-CONX^2_-$, $-OCO_-$, $-CO_2_-$, $-CX^2_-$ CX², $-NX^2CO_2_-$, $-OCONX^2_-$, or $-CC_-$;

R⁴ is hydrogen, C₁-C₆ alkyl, or C₃-C₇ cycloalkyl, or R⁴ taken together with R³ and the carbon atom to which they are attached form C₅-C₁ cycloalkyl, C₅-C₁ cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen, or a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated, or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen;

 X^4 is hydrogen or C_1 - C_6 alkyl, or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

R⁶ is a bond or is

wherein a and b are each independently O, 1, 2, or 3;

 X^5 and X5a are each independently selected from the group consisting of hydrogen, CF_3 , A', and C_1 - C_6 alkyl optionally substituted with A', OX^2 , - SO,- $(C_1$ - C_6 alkyl), - CO_2 X2, C_3 - C_7 cycloalkyl, - NX^2X^2 , or - $CONX^2X^2$;

or the carbon bearing X^5 or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R^7 and R^8 wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then only one of X^5 or X^5 a is on the carbon atom and only one of R^7 or R^8 is on the nitrogen atom, and further provided that when two alkylene bridges are formed then X^5 and X^{5a} cannot be on the carbon atom and R^7 and R^8 cannot be on

the nitrogen atom;

or X⁵ taken together with X ^{5a} and the carbon atom to which they are attached form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen;

or X^5 taken together with X^{5a} and the carbon atom to which they are attached form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and $\frac{3O}{4}$ oxygen, fused to a partially saturated, fully saturated, or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen;

 Z^1 is a bond, O, or N- X^2 , provided that when a and b are both O then Z' is not N- X^2 or O; R^7 and R^8 are each independently hydrogen or C_1 - C_6 alkyl optionally independently substituted with A', - CO_2 -(C_1 - C_6 alkyl), - $SO_m(C_1$ - C_6 alkyl), 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 -O- $CO(C_1$ - C_{10} alkyl) groups, or 1 to 3 C_1 - C_6 alkoxy groups; or R^7 and R^8 can be taken together to form -(CH_2), L-(CH_2)_r-, wherein L is CX^2X^2 , $SO_{,n}$ or NX^2 ; R^9 and $R^{,0}$ are each independently selected from the group consisting of hydrogen, fluoro, hydroxy, and C_1 - C_5 alkyl optionally independently substituted with 1-5 halo groups; R^{11} is selected from the group consisting of C_1 - C_5 alkyl and phenyl optionally substituted with 1-3 substituents each independently selected from the group consisting of C_1 - C_5 alkyl, halo, and C_1 - C_5 alkoxy;

R¹² is selected from the group consisting of C₁-C₅ alkylsulfonyl, C₁-C₅ alkanoyl, and C₁-C₅ alkyl wherein the alkyl portion is optionally independently substituted by 1-5 halo groups; A¹ for each occurrence is independently selected from the group consisting of C₅-C7 cycloalkenyl, phenyl, a partially saturated, fully saturated, or fully unsaturated 4to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen, and a bicyclic ring system consisting of a partially saturated, fully unsaturated, or fully saturated 5- or 6 membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen, fused to a partially saturated, fully saturated, or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen;

A¹ for each occurrence is independently optionally substituted, on one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, $-OX^6$, $-CONX^6X^6$, $-CO_2X^6$, oxo, C_1C_6 alkyl, nitro, cyano, benzyl, $-SO_m(C_1-C_6$ alkyl), 1 H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, $-NX^6X^6$, $-NX^6COX^6$, $-SO_2NX^6X^1$, $-NX^6SO_2$ -phenyl, $NX^6SO_2X^6$, $-CONX^{11}X^{12}$, $-SO_2NX^{11}X^{12}$, $-NX^6SO_2X^{12}$, $-NX^6COX^{12}$, imidazolyl, thiazolyl, and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

wherein X^{11} is hydrogen or C_1 - C_6 alkyl optionally independently substituted with phenyl, phenoxy, C_1 - C_6 alkoxycarbonyl, -SO_M(C_1 - C_6 alkyl), 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 C_1 - C_1 0 alkanoyloxy groups, or 1 to 3 C_1 - C_6 alkoxy groups; X^{12} is hydrogen, X^{12} 0 alkyl, phenyl, thiazolyl, imidazolyl, fury[, or thienyl, provided that when X^{12} 1 is not hydrogen, the X^{12} 2 group is optionally substituted with one to three substituents independently selected from the group consisting of CI, F, CH₃, OCH₃, OCF₃, and CF₃;

or X" and X'^2 are taken together to form -(CH2)r-L¹-(CH₂)_r, wherein L¹ is CX^2X^2 , O, SO_m or NX^2 ;

r for each occurrence is independently 1, 2, or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted C_1 - C_6 alkyl, or optionally substituted C_3 - C_7 cycloalkyl, wherein the optionally substituted C_1 - C_6 alkyl and optionally substituted C_3 - C_1 cycloalkyl in the definition of X^2 are optionally independently substituted with -SO_m(C_1 - C_6 alkyl), -CO2 X^3 , 1 to 5 halo groups, or 1-3 OX 3 groups; X^3 for each occurrence is independently hydrogen or C_1 - C_6 alkyl;

 X^6 for each occurrence is independently hydrogen, optionally substituted C_1 - C_6 alkyl, halogenated C_2 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl, halogenated C_3 - C_7 cycloalkyl, wherein the optionally substituted C_1 - C_6 alkyl and optionally substituted C_3 - C_7 cycloalkyl in the definition of X^6 are optionally independently mono-or di-substituted with C_1 - C_4 alkyl, hydroxy, C_1 - C_4 alkoxy, carboxyl, CONH₂, -SO_m(C_1 C₆ alkyl), carboxylate (C_1 - C_4 alkyl) ester, or 1 H-tetrazol-5-yl; or

when there are two X^6 groups on one atom and both X^6 are independently C_1C_6 alkyl, the two C_1 - C_6 alkyl groups may be optionally joined, and together with the atom to which the two X^6

groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur, or NX^7 as a ring member, wherein X^7 is hydrogen or C_1 - C_6 alkyl optionally substituted with hydroxy;

m for each occurrence is independently O, 1, or 2; with the provisos that:

 X^6 and X'2 cannot be hydrogen when attached to CO or SO_2 in the form COX^6 , $COX^{\prime 2}$, SO2 X^6 or $SO_2X^{\prime 2}$; and

when R^6 is a bond then L is NX^2 and each r in the definition -(CH₂), L-(CH₂), is independently 2 or 3..

5-12. (Withdrawn)

13. (Currently amended) A pharmaceutical composition according to claim 4 wherein said corticotropin releasing factor antagonist is a compound selected from the group consisting of:

4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-pyridine;

4-(1-ethylpropoxy)-2,5-dimethyl-6-(2,4,6-trimethylphenoxy)-pyrimidine;

N-butyl-N-ethyl-2,5-dimethyl-NN-(2,4,6-trimethylphenyl)-pyrimidine-4,6diamine;

[4-(1-ethyl-propoxy)-3,6-dimethyl-pyridin-2-yl]-(2,4,6-trimethylphenyl)-amine;

[3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-(1-ethyl-propyl)-amine;

[2-(4-chloro-2,6-dimethyl-phenoxy)-3,6-dimethyl-pyridin-4-yl]-(1-ethyl-propyl)-amine;

4-(1-ethyl-propylamino)-6-methyl-2-(2,4,6-trimethyl-phenoxy)-nicotinic acid methyl ester; wherein said growth hormone secretagogue is a compound of formula IV:

HET
$$R^4$$
 R^6 R^7 R^8

I٧

or a stereoisomeric mixture thereof, a diastereomerically enriched, diastereomerically pure, enantiomerically enriched, or enantiomerically pure isomer thereof, or a prodrug of such compound, mixture, or isomer thereof, or a pharmaceutically acceptable salt of the compound, mixture, isomer, or prodrug, wherein:

HET is a heterocyclic moiety selected from the group consisting of

d is Θ 0, 1, or 2;

e is 1 or 2;

f is $\Theta \underline{0}$ or 1;

n and w are Θ $\underline{0}$, 1, or 2, provided that n and w cannot both be Θ $\underline{0}$ at the same time; Y^2 is oxygen or sulfur;

A is a divalent radical, wherein the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected to C', selected from the group consisting of $-NR^2$ -CO- NR^2 -, $-NR^2$ -SO₂- NR^2 -, -O-CO- NR^2 -, $-NR^2$ -CO₂-, -CO- NR^2 -CO-, -CO- NR^2 -CO-, $-C(R^9R^{10})$ -, $-C(R^9R^{$

 $C(R^{1}R^{10})--NR^{2}-SO_{2}-C(R^{9}R^{10})-C(R^{1}R^{10})--O-CO-C(R^{9}R^{10})-C(R^{9}R^{10}$ $CO-NR^2$ -, $-C(R^9R^{10})-C(R^9R^{10})-CO$ -, $-C(R^9R^{10})-NR^2-CO_2$ -, $-C(R^9R^{10})-O-CO-NR^2$, $-C(R^9R^{10})-O$ NR^2 -CO- NR^2 -, $-NR^2$ -CO₂-C(R^9R^{10})-, $-NR^2$ -CO- NR^2 -C(R^9R^{10})- $-NR^2$ -SO₂- NR^2 -SO₂- NR^2 -C(R^9R^{10})- $-NR^2$ -SO₂- NR^2 -S O-CO-NR²-C(R⁹R¹⁰)-, -CO-N = C(R¹¹)-NR²-, -CO-NR²-CR¹¹ = N-, CR⁹R¹⁰ - NR¹²CR⁹R¹⁰- $C(R^9R^{10})$ - $-CO_2$ - $C(R^9R^{10})$ - $C(R^9R^{10})$ -, $-NR^2$ - $C(R^{11})$ =N-CO- $-C(R^9R^{10})$ - $C(R^9R^{10})$ - $N(R^{12})$ - $C(R^9R^{10})-NR^{12}-, -N=C(R^1)-NR^2-CO-, -C(R^9R^{10})-C(R^9R^{10})-NR^2-SO_{2-}, -C(R^9R^{10})-C(R^9R^{10})-NR^2-SO_{2-}, -C(R^9R^{10})-C(R^9R^{10})-NR^2-SO_{2-}, -C(R^9R^{10})-NR^2-SO_{2-}, -C$ SO_2-NR^2 -, $-C(R^9R^{10})-C(R^9R^{10})-CO_2$ -, $-C(R^9R^{10})-SO_2-C(R^9R^{10})$ -, $-C(R^9R^{10})-C(R^9R^{10})-SO_2$ - $O-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-C(R^9R^{10})-O-C(R^9R^{10})-CO-C(R^{10})-CO-C(R^{10})-CO-C(R^{10})-CO-C(R^{10})-CO-C(R^{10})-CO-C(R^{10})-CO-C(R^{1$ $C(R^9R^{10})$ -, and $-C(R^9R^{10})$ - NR^2 - SO_2 - NR^2 -; Q is a covalent bond or CH₂; W is CH or N: X is CR^9R^{10} , C=CH₂, or C=O; Y is CR^9R^{10} , O, or NR^2 ; Z is C=O, C=S, or SO_2 ; G1 is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH2, -C1-C4 alkyl optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₁-C₄ alkoxy optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₁-C₄ alkylthio, phenoxy, -CO₂-(C₁-C₄ alkyl), N,N-di-(C₁-C₄ alkylamino), -C₂-C₆ alkenyl optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₂-C₆ alkynyl optionally independently substituted with one or more phenyl, one or more halogen, or one or more hydroxy groups, -C₃-C₆ cycloalkyl optionally independently substituted with one or more C1-C4 alkyl groups, one or more halogen, or one or more hydroxy groups, -C₁-C₄ alkylamino carbonyl, or di-C₁-C₄ alkylamino) carbonyl; G² and G³ are each independently selected from the group consisting of hydrogen, halo, hydroxy, -C₁-C₄ alkyl optionally independently substituted with one to three halo groups, and -C₁-C₄ alkoxy optionally independently substituted with one to three halo groups; R^{1} is hydrogen, -CN, -(CH₂)₀NX⁶COX⁶, -(CH₂)₀NX⁶CO(CH₂)_t-A¹ -(CH₂)₀NX⁶SO₂(CH₂)_t- A^{1} , $(CH_{2})_{0}NX^{6}SO_{2}X^{6}$, $(CH_{2})_{0}NX^{6}CONX^{6}(CH_{2})_{r}A^{1}$, $-(CH_{2})_{0}NX^{6}CONX^{6}X^{6}$. $(CH_2)_q CONX^IX^6$, $-(CH_2)_g CONX^6 (CH_2)_t - A^1$, $-(CH_2)_q CO_2X^6$, $-(CH_2)_g CO_2 (CH_2)_t - A^1$, $-(CH_2)_q CO_2 (CH_$ $(CH_2)_qOX^6$, $-(CH_2)_gOCOX^6$, $-(CH_2)_gOOO(CH_2)_t-A^1$, $-(CH_2)_qOOONX^s(CHA-A^1, -(CH_2)_qOOONX^s)$ $(CH_2)_qOOONX^6X^6$, $-(CH_2)_qCOX^6$, $-(CH_2)_tCO(CH_2)_t-A^1$, $-(CH_2)_qNX^6CO2X^6$. $(CH_2)_0NX^6SO_2NX^6X^6$, $(CH_2)_9SO_mX^6-(CH_2)_sSO_m(CH_2)_tA^1$, $-C_1-C_{10}$ alkyl, $-(CH_2)_tA^1$. $(CH_2)_0$ - $(C_3$ - C_1 cycloalkyl), - $(CH_2)_0$ - Y^1 - $(C_1$ - C_6 alkyl), - $(CH_2)_0$ Y 1 - $(CH_2)_0$ - Y^1 - $(CH_2)_0$ - Y^1 - $(CH_2)_0$ - Y^1 - $(CH_2)_0$ - Y^1 - $(CH_2)_0$ -(C

 $(CH_2)_t$ - $(C_3$ - C_1 cycloalkyl);

wherein the alkyl and cycloalkyl groups in the definition of R' are optionally substituted with C₁-C₄ alkyl, hydroxy, C₁-C₄ alkoxy, carboxyl, - CONH₂, -SO_m (C₁-C₆ alkyl), -CO₂-(C₁-C₄ alkyl) ester, 1 H-tetrazol-5-yl, or 1, 2, or 3 fluoro groups;

Y' is O, SO_m , $-CONX^6$ -, -CH=CH-, -C=C-, $-NX^6CO$ -, $-CONX^6$ -, $-CO_2$ -, $-OCONX^6$ - or -OCO-;

q is Θ_{0} , 1, 2, 3, or 4; t is Θ_{0} , 1, 2, or 3;

said (CH2)g group and (CHA group in the definition of R' are optionally independently substituted with hydroxy, C₁-C₄ alkoxy, carboxyl, -CONH₂, - SO, (C₁-C₆ alkyl), -CO₂-(C₁-C₄ alkyl) ester, 1 H-tetrazol-5-yl, 1, 2, or 3 fluoro groups, or 1 or 2 C₁-C₄ alkyl groups; R^{1A} is selected from the group consisting of hydrogen, F, CI, Br, I, C₁-C₆ alkyl, phenyl-(C₁-C₃ alkyl), pyridyl-(C₁-C₃ alkyl), thiazolyl-(C₁-C₃ alkyl), and thienyl-(C₁-C₃ alkyl), provided that R^{1A} is not F, CI, Br, or I when a heteroatom is vicinal to C";

 R^2 is hydrogen, C_1 - C_8 alkyl, -(C_0 - C_3 alkyl)-(C_3 - C_8 cycloalkyl), -(C_1 - C_4 alkyl)-A', or A', wherein the alkyl groups and the cycloalkyl groups in the definition of R^2 are optionally substituted with hydroxy, -CO2 X^6 , -CONX 6 X 6 , -NX 6 X 6 , -SO_m(C_1 - C_6 alkyl), - COA', -COX 6 , CF₃, CN, or 1, 2, or 3 independently selected halo groups;

 R^3 is selected from the group consisting of A', C_1 - C_{10} alkyl, -(C_1 - C_6 alkyl)-A', - (C_1 - C_6 alkyl)-(C_3 - C_7 cycloalkyl), -(C_1 - C_5 alkyl)-X'-(C_1 - C_5 alkyl)-X'-(C_0 - C_5 alkyl)-A', and - (C_1 - C_5 alkyl)-X'-(C_1 - C_5 alkyl)-(C_3 - C_1 cycloalkyl);

wherein the alkyl groups in the definition of R^3 are optionally substituted with $-SO_m(C_1-C_6$ alkyl), $-CO_2$ X3, 1, 2, 3, 4, or 5 independently selected halo groups, or 1, 2, or 3 independently selected $-OX^3$ groups;

X' is O, SO, -NX 2 CO-, -CONX 2 -, -OCO-, -CO $_2$ -, -CX 2 =CX 2 -, -NX 2 CO $_2$ -, -OCONX 2 _, or -CCC-;

R⁴ is hydrogen, C₁-C₆ alkyl, or C₃-C₇ cycloalkyl, or R⁴ taken together with R³ and the carbon atom to which they are attached form C₅-C₁ cycloalkyl, C₅-C₁ cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen, or a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated, or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen,

sulfur, and oxygen;

 X^4 is hydrogen or C_1 - C_6 alkyl, or X^4 is taken together with R^4 and the nitrogen atom to which X^4 is attached and the carbon atom to which R^4 is attached and form a five to seven membered ring;

R⁶ is a bond or is

wherein a and b are each independently Θ 0, 1, 2, or 3;

 X^5 and X5a are each independently selected from the group consisting of hydrogen, CF_3 , A^1 , and C_1 - C_6 alkyl optionally substituted with A', OX^2 , - SO_7 (C_1 - C_6 alkyl), - CO_2 X^2 , C_3 - C_1 cycloalkyl, - NX^2X^2 , or - $CONX^2X^2$;

or the carbon bearing X^5 or X^{5a} forms one or two alkylene bridges with the nitrogen atom bearing R^7 and R^8 wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then only one of X^5 or X^{5a} is on the carbon atom and only one of R^7 or R^8 is on the nitrogen atom, and further provided that when two alkylene bridges are formed then X^5 and X^5 a cannot be on the carbon atom and R^7 and R^8 cannot be on the nitrogen atom;

or X^5 taken together with X^{5a} and the carbon atom to which they are attached form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen;

or X^5 taken together with X^{5a} and the carbon atom to which they are attached form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and

oxygen, fused to a partially saturated, fully saturated, or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen;

 Z^1 is a bond, O, or N-X², provided that when a and b are both O then Z^1 is not N-X2 or O; R^7 and R^8 are each independently hydrogen or C_1 - C_6 alkyl optionally independently substituted with A', -CO₂-(C_1 - C_6 alkyl), -SO_m(C_1 - C_6 alkyl); 1 to 5 halo groups, 1 to 3

hydroxy groups, 1 to 3 -O-CO(C_1 - C_{10} alkyl) groups, or 1 to 3 C_1 - C_6 alkoxy groups; or R' and R⁸ can be taken together to form -(CH₂), L-(CH₂)_r, wherein L is CX^2X^2 , SO_m , or NX^2 ; R^9 and R'° are each independently selected from the group consisting of hydrogen, fluoro, hydroxy, and C_1 - C_5 alkyl optionally independently substituted with 1-5 halo groups; R^{11} is selected from the group consisting of C_1 - C_5 alkyl and phenyl optionally substituted with 1-3 substituents each independently selected from the group consisting of C_1 - C_5 alkyl, halo, and C_1 - C_5 alkoxy;

R¹² is selected from the group consisting of C₁-C₅ alkylsulfonyl, C₁-C₅ alkanoyl, and C₁-C₅ alkyl wherein the alkyl portion is optionally independently substituted by 1-5 halo groups; A' for each occurrence is independently selected from the group consisting of C₅-C₇ cycloalkenyl, phenyl, a partially saturated, fully saturated, or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur, and nitrogen, and a bicyclic ring system consisting of a partially saturated, fully unsaturated, or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and oxygen, fused to a partially saturated, fully saturated, or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur, and 3O oxygen;

A¹ for each occurrence is independently optionally substituted, on one or optionally both rings if A¹ is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, CI, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX⁶, -CONX⁶X⁶, -CO2 X6, oxo, C₁-C₆ alkyl, nitro, cyano, benzyl, -SO₁(C₁-C₆ alkyl), 1 H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, -NX⁶X⁶, -NX⁶COX⁶, -SO₂NX⁶X⁶, -NX⁶SO₂-phenyl, NX⁶SOX, -CONX¹¹X¹², -SO₂NX¹¹X¹², -NX⁶SO₂XX¹², -NX⁶COXX¹³, imidazolyl, thiazolyl, and tetrazolyl, provided that if A¹ is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy; wherein X¹¹ is hydrogen or C₁-C₆ alkyl optionally independently substituted with phenyl, phenoxy, C₁ Cs alkoxycarbonyl, -SO_m(C₁-C₆ alkyl), 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 C₁-C₆ alkoxy groups;

 X^{12} is hydrogen, C_1 - C_6 alkyl, phenyl, thiazolyl, imidazolyl, furyl, or thienyl, provided that when X^{12} is not hydrogen, the X^{12} group is optionally substituted with one to three

substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃, and CF₃;

or X^{11} and X^{12} are taken together to form -(CH₂)_rL¹-(CH₂), , wherein L¹ is CX^2X^2 , O, SO, or NX^2 ;

r for each occurrence is independently 1, 2, or 3;

 X^2 for each occurrence is independently hydrogen, optionally substituted C_1 - C_6 alkyl, or optionally substituted C_3 - C_7 cycloalkyl, wherein the optionally substituted C_1 - C_6 alkyl and optionally substituted C_3 - C_1 cycloalkyl in the definition of X^2 are optionally independently substituted with -SO_m(C_1 - C_6 alkyl), -CO2 X3, 1 to 5 halo groups, or 1-3 OX³ groups; X^3 for each occurrence is independently hydrogen or C1- C_6 alkyl;

 X^6 for each occurrence is independently hydrogen, optionally substituted C_1 - C_6 alkyl, halogenated C_2 - C_6 alkyl, optionally substituted C_3 - C_7 cycloalkyl, halogenated C_3 - C_7 cycloalkyl, wherein the optionally substituted C_1 - C_6 alkyl and optionally substituted C_3 - C_1 cycloalkyl in the definition of X^6 are optionally independently mono or di-substituted with C_1 - C_4 alkyl, hydroxy, C_1 - C_4 alkoxy, carboxyl, CONH₂, -SO_m(C_1 - C_6 alkyl), carboxylate (C_1 - C_4 alkyl) ester, or 1 H-tetrazol-5-yl; or

when there are two X^6 groups on one atom and both X^6 are independently C_1 - C_6 alkyl, the two C_1 - C_6 alkyl groups may be optionally joined, and together with the atom to which the two X^6 groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur, or NX^7 as a ring member, wherein X^7 is hydrogen or C_1 - C_6 alkyl optionally substituted with hydroxy;

m for each occurrence is independently O, 1, or 2; with the provisos that:

 X^6 and X^{12} cannot be hydrogen when attached to CO or SO_2 in the form COX^6 , COX^{12} , SO_2X^6 or SO_2X^{12} ; and

when R^6 is a bond then L is NX^2 and each r in the definition -(CH₂)_rL-(CH₂)_r is independently 2 or 3.

14. (Previously amended) A pharmaceutical composition according to claim 13 wherein said corticotropin releasing factor antagonist is a compound selected from the group consisting of:

4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-pyridine;

4-(1-ethyl propoxy)-2,5-dimethyl-6-(2,4,6-trimethyl phenoxy)-pyrimidine;

[4-(1-ethyl-propoxy)-3,6-dimethyl-pyridin-2-yl]-(2,4,6-trimethylphenyl)-amine;

[3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl]-(1-ethyl-propyl)-amine;

- 15. (Cancelled)
- 16. (Previously amended) A pharmaceutical composition according to claim 4 wherein said growth hormone secretagogue is

2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydropyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)isobutyramide;

2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a(R)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide;

2-amino-N-{1(R)-benzyloxymethyl-2-[1,3-dioxo-8a(S)-pyridin-2ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxoethyl}-2-methyl-propionamide; N-(1(R)-((1,2-dihydro-1-methanesulfonyl-spiro(3H-indole-3,4'-piperidin)-1'-yl)carbonyl)-2-(phenylmethyloxy)ethyl)-2-amino-2-methylpropanamide; or a prodrug of any of these compounds or a pharmaceutically acceptable salt of any of said compounds or said prodrugs.

- 17. (Cancelled)
- 18. (Previously amended) A pharmaceutical composition according to claim 13 wherein said growth hormone secretagogue is

2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)-isobutyramide;

2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide;

2-amino-N-{1(R)-benzyloxymethyl-2-[1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxo-ethyl}-2-methyl-propionamide;

N-(1(R)-((1,2-dihydro-1-methanesulfonyl-spiro(3H-indole-3,4'-piperidin)-1'-yl)carbonyl)-2-(phenylmethyl oxy)ethyl)-2-amino-2-methyl-propanamide; or a prodrug of any of these compounds, or a pharmaceutically acceptable salt of any of these compounds or prodrugs.

19. (Original) A pharmaceutical composition according to claim 18 wherein said corticotropin releasing factor antagonist is 4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-dimethyl

trimethylphenoxy)-pyridine and said growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide.

- 2O. (Original) A pharmaceutical composition according to claim 18 wherein said corticotropin releasing factor antagonist is 4-(1-ethyl- propoxy)-3,6-dimethyl -2-(2,4,6-trimethylphenoxy)-pyridine and said growth hormone secretagogue is 2-amino-N-(1(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.
- 21. (Original) A pharmaceutical composition according to claim 18 wherein said corticotropin releasing factor antagonist is (3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl)-(1-ethyl- propyl)-a mine and said growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide.
- 22. (Original) A pharmaceutical composition according to claim 18 wherein said corticotropin releasing factor antagonist is (3,6-dimethyl-2-(2,4,6-trimethyl-phenoxy)-pyridin-4-yl)-(1-ethyl-propyl)-amine and said growth hormone secretagogue is 2-15 amino-N-(1(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

23-29. (Withdrawn)

- 30. (Previously amended) A kit comprising:
- a. an amount of a corticotropin releasing factor antagonist as defined in claim 13, in a first unit dosage form;
- b. an amount of a growth hormone secretagogue or growth hormone as defined in Claim 4, in a second unit dosage form; and
 - c. a container.
- 31. (Previously amended) A kit comprising:
- a. an amount of a corticotropin releasing factor antagonist as defined in claim 14, in a first unit dosage form;
- b. an amount of a growth hormone secretagogue or growth hormone as defined in Claim 4, in a second unit dosage form; and
 - c. a container.

32. (Withdrawn)

34-35. (Withdrawn)

33. (Previously amended) A kit according to claim 30 wherein said corticotropin releasing factor antagonist is 4-(1-ethyl-propoxy)-3,6-dimethyl-2-(2,4,6-trimethylphenoxy)-pyridine or [3,6-dimethyl-2-(2,4,6-dimethyl-phenoxy)-pyridin-4-yl]-(1-ethyl-propyl)-amine, and said growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1 (R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.