Simple Kriging Cross-validation Report

$$\hat{z}(x_0) = \sum_{i=1}^n \lambda_i z(x_i)$$

 $\hat{z}(x_0)$: estimated value at location x_0 $z(x_i)$: known value at location x_i λ_i : Kriging weight for $z(x_i)$, based on spatial correlation $\sum \lambda_i = 1$: weights sum to 1 (unbiasedness condition) Weights depend on variogram model (e.g., exponential, spherical...)

Model	Trar	nsform RMSE MAE	R
linear	none	0.00319 0.00257 0.426	
linear	log	0.00319 0.00258 0.423	
linear	sqrt	0.00319 0.00257 0.425	
gaussia	n none	0.00341 0.00273 0.343	
gaussia	n log	0.00343 0.00276 0.336	
gaussia	n sqrt	0.00342 0.00274 0.340	
exponential none 0.00354 0.00271 0.290)
exponential log 0.00355 0.00274 0.287			
exponential sqrt 0.00355 0.00272 0.289			
spherica	al none	0.00350 0.00273 0.307	
spherica	al log	0.00352 0.00275 0.302	
spherica	al sqrt	0.00351 0.00274 0.305	

