Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum I

Úloha č. 24

Název úlohy: Teplotní roztažnost pevných látek

Jméno: Vojtěch Votruba

Datum měření: 2023-04-27

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Teoretická část	0-2	
Výsledky a zpracování měření	0–9	
Diskuse výsledků	0-4	
Závěr	0-1	
Použitá literatura	0-1	
Celkem	max. 17	

Posuzoval: dne:

Pracovní úkoly

- 1. Změřte závislost prodloužení tyče na teplotě. Měření proveďte pro čtyři různé materiály.
- 2. Výsledky měření zpracujte metodou lineární regrese a graficky znázorněte.
- 3. Určete koeficient teplotní roztažnosti měřených materiálů.

1 Teoretická část

V rámci pracovních úkolů proměřujeme změnu rozměru tělesa v závislosti na změně jeho teploty. Běžná tělesa se při zvyšování teploty mají tendenci rozpínat do všech směru a roste tak jejich objem.

Má-li těleso dominantní jeden rozměr, tak při konstantním tlaku zavádíme (podobně jako například často zavádíme délkovou hustotu, jsou-li vůči jednomu rozměru ostatní zanedbatelné) tzv. koeficient teplotní délkové roztažnosti α [1]

$$\alpha = \frac{1}{l_0} \left(\frac{\partial l}{\partial t} \right)_p, \tag{1}$$

kde l je délka tělesa v onom dominantním rozměru, l_0 jeho původní délka a t jeho teplota. Integrací tohoto vztahu dostáváme[1]

$$l = l_0(1 + \alpha \Delta t), \tag{2}$$

kde všechny veličiny mají význam popsaný výše. Δt je zde rozdíl teplot. Obecně tento vztah neplatí, neboť α je samotné závislé na teplotě, v této úloze jsou ale rozsahy teplot dostatečně malé na to, aby změna α byla zanedbatelná[1]. Dosazením za $l = \Delta l + l_0$, můžeme vztah ještě zprůhlednit do podoby

$$\Delta l = l_0 \alpha \Delta t,\tag{3}$$

kde Δl je prodloužení odpovídající danému rozdílu teplot.

Postup

Celé měření proběhlo s pomocí měřicí soustavy na obrázku 1. Do držáku byla vložena tyč příslušného materiálu a byla do ni z oběhového termostatu vpuštěna voda o příslušné teplotě. V důsledku teplotní roztažnosti se pak tyč prodlouží a zatlačí na indikátorové hodinky (úchylkoměr), které nám ukážou, o kolik se tyč prodloužila. Na obrázku 1 pak ještě chybí izolační obal, který byl na příslušnou tyč po dobu měření vždycky přiložen, aby neunikalo zbytečně teplo sáláním.

Obrázek 1: Fotografie měřicí soustavy[1]

2 Výsledky a zpracování měření

2.1 Podmínky pokusu

Měření bylo provedeno v místnosti PI v budově MFF UK na Karlově. Změřené podmínky termo-hygro-barometrem při pokusu byly následující: Teplota t=22,7(4) °C, relativní vlhkost $\Phi=25(3)\%$, tlak p=992(2) hPa. Počáteční délka všech tyčí byla změřena pásmovým měřidlem na hodnotu $l_0=600(1)$ mm (kde nejistota byla odhadnuta jako velikost nejmenšího dílku měřidla), což je hodnota shodující se s instrukcemi na pracovním stole.

2.2 Provedení a výsledky

Pro každou tyč z materiálů: hliník, měď, ocel a mosaz bylo provedeno měření podle postupu v sekci 1. Mezi každým měřením a vyměněním tyče byl rezervoár termostatu několikrát propláchnut, aby byl dostatečně zchlazen. K měření byly použity podle zadání teploty pouze v rozsahu $20\,^{\circ}\mathrm{C}$ až $60\,^{\circ}\mathrm{C}$. Naměřená data jsou zanesena do tabulky 1.

Tabulka 1: Nameřené hodnoty prodloužení Δl a teploty t

	Měď		Ocel	N	Mosaz
$t/^{\circ}C$	$\Delta l/10^{-2}\mathrm{mm}$	t/°C	$\Delta l/10^{-2}\mathrm{mm}$	t/°C	$\Delta l/10^{-2}\mathrm{mm}$
25,5(5)	0,0(5)	25,5(5)	0,0(5)	26,0(5)	0,0(5)
30,0(5)	4,5(5)	30,5(5)	4,0(5)	30,0(5)	5,0(5)
35,5(5)	10,0(5)	35,0(5)	7,0(5)	34,5(5)	10,0(5)
40,0(5)	14,5(5)	40,0(5)	10,5(5)	41,0(5)	16,5(5)
45,5(5)	19,5(5)	45,0(5)	14,0(5)	45,0(5)	21,0(5)
50,5(5)	24,0(5)	50,0(5)	17,5(5)	50,5(5)	27,5(5)
55,5(5)	29,0(5)	55,5(5)	21,0(5)	55,0(5)	32,5(5)
60,0(5)	33,0(5)	60,0(5)	23,5(5)	60,0(5)	38,0(5)

Hliník				
t/°C	$\Delta l/10^{-2}\mathrm{mm}$			
20,0(5)	0,0(5)			
25,0(5)	6,5(5)			
30,0(5)	13,0(5)			
35,0(5)	19,5(5)			
40,0(5)	26,0(5)			
45,0(5)	32,0(5)			
50,0(5)	38,5(5)			
55,0(5)	44,5(5)			
60,0(5)	51,0(5)			

Ačkoliv byla teplota nastavována na termostatu, její reálná hodnota byla odečtena z přiloženého rtuťového teploměru podle obrázku 1. Tento teploměr měl nejmenší dílek o velikosti 1 °C, proto byla nejistota určení teploty odhadnuta jako jeho polovina na $\sigma_t = 0.5$ °C. Nejistota určení rozdílu teplot pak byla spočtena podle metody přenosu chyb[2] jako $\sigma_{\Delta t} = 2\sigma_t$.

Nejmenší dílek indikátorových hodinek byl 0,01 mm, proto byla nejistota určení prodloužení odhadnuta jako jeho polovina na $\sigma_{\Delta l}=0,005$ mm.

Z naměřených hodnoty v tabulce 1 byly dále vypočteny příslušné rozdíly teplot $\Delta t_i = t_{i+1} - t_i$, které byly společně s naměřenými prodlouženími Δl vyneseny a proloženy přímkami, jak je vidět na obrázku 2. K vytvoření grafu a fitování byl použit program Orgin konkrétně jeho funkce Analysis::Fitting::Fit linear with X error.

Obrázek 2: Závislost prodloužení Δl na rozdílu teploty Δt pro různé materiály: hliník, mosaz, měď, ocel

Směrnice fitu λ , které nám vrátil program *Origin*, byly dále přepočteny a jsou uvedeny v tabulce 2. K přepočtu na koeficienty α byl použit vztah (3) a nejistota α byla stanovena podle metody přenosu chyb jako[2]

$$\sigma_{\alpha} = \alpha \sqrt{\left(\frac{\sigma_{l_0}}{l_0}\right)^2 + \left(\frac{\sigma_{\lambda}}{\lambda}\right)^2}.$$
 (4)

Tabulka 2: Směrnice fitu λ a příslušné hodnoty α

tyč	$\lambda/10^{-5}\mathrm{m}^{\circ}\mathrm{C}^{-1}$	$\alpha/10^{-5} {}^{\circ}\mathrm{C}^{-1}$
——— Hliník	1,27(4)	2,12(6)
Mosaz	1,11(4)	1,85(6)
Měď	0,95(3)	1,59(6)
Ocel	0,68(3)	1,14(4)

3 Diskuse výsledků

V rámci diskuse je nejprve důležité říci, že zpracované závislosti dobře potvrzují teoretický vztah. Nafitovaná přímka velmi přesně prokládá body měření, vztah je tedy lineární a při měření nedošlo k žádné výrazné systematické chybě, která by ho celé v grafu posunula.

Dále je nutno porovnat hodnoty naměřené se známými přesněji naměřenými hodnotami. Jako zdroj k porovnání byla nakonec zvolena místo matematicko-fyzikálních tabulek webová stránka [3], neboť uvádí pro různé materiály rozsahy hodnot α , což má z faktu, že materiály jsou často slitiny, smysl. Hodnoty z [3] tedy jsou

$$\alpha_{\text{Hliník}} = 2.1 \times 10^{-5} \,^{\circ}\text{C}^{-1} \,^{\circ}\text{až} \,^{2.4} \times 10^{-5} \,^{\circ}\text{C}^{-1},$$
 (5)

$$\alpha_{\text{Mosaz}} = 1.8 \times 10^{-5} \,^{\circ}\text{C}^{-1} \text{ až } 1.9 \times 10^{-5} \,^{\circ}\text{C}^{-1},$$
(6)

$$\alpha_{\text{Měd}} = 1.6 \times 10^{-5} \, {}^{\circ}\text{C}^{-1} \text{ až } 1.67 \times 10^{-5} \, {}^{\circ}\text{C}^{-1},$$
 (7)

$$\alpha_{\text{Ocel}} = 1.08 \times 10^{-5} \,^{\circ}\text{C}^{-1} \text{ až } 1.25 \times 10^{-5} \,^{\circ}\text{C}^{-1}.$$
 (8)

(9)

Nahlédneme-li do tabulky 2, zjišťujeme, že se všechny naměřené hodnoty s těmito srovnávacími hodnotami shodují. Není tedy nutné pátrat po nezapočtených nejistotách při měření, byt k některými nezapočteným jevům (teplotní gradient v termostatu, rozdíl v tlaku na začátku a na konci měření, nedokonalá izolace...) jistě docházelo.

4 Závěr

Podařilo se nám proměřit závislost prodloužení Δl na rozdílu v teplotě Δt pro 4 materiály podle pracovních úkolů. Tyto závislosti jsme znázornili v referátu graficky a z nafitovaných směrnic jsme stanovili hodnoty koeficientu teplotní délkové roztažnosti α na hodnoty

$$\alpha_{\text{Hliník}} = 2.12(6) \times 10^{-5} \,^{\circ}\text{C}^{-1},$$
(10)

$$\alpha_{\text{Mosaz}} = 1.85(6) \times 10^{-5} \,^{\circ}\text{C}^{-1},$$
(11)

$$\alpha_{\text{M\'ed}} = 1,59(6) \times 10^{-5} \,^{\circ}\text{C}^{-1},$$
(12)

$$\alpha_{\text{Ocel}} = 1{,}14(4) \times 10^{-5} \,{}^{\circ}\text{C}^{-1}.$$
 (13)

Reference

- [1] Teplotní roztažnost pevných látek [online]. [cit. 2023-04-29]. Dostupné z: https://physics.mff.cuni.cz/vyuka/zfp/zadani/124
- [2] ENGLICH, Jiří. Úvod do praktické fyziky. Praha: Matfyzpress, 2006. ISBN 80-86732-93-2.
- [3] Thermal expansion linear expansion coefficients Engineering ToolBox [online]. [cit. 2023-05-03]. Dostupné z: https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html