(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 16 August 2001 (16.08.2001)

PCT

(10) International Publication Number WO 01/58951 A2

(51) International Patent Classification7:

C07K 14/705

(21) International Application Number: P

PCT/EP01/01457

(22) International Filing Date: 9 February 2001 (09.02.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

00200443.0 00203810.7 10 February 2000 (10.02.2000) EP 31 October 2000 (31.10.2000) EP

51 October 2000 (51:10:2000)

(71) Applicant (for all designated States except US): STICHT-ING VOOR DE TECHNISCHE WETENSCHAPPEN [NL/NL]; Van Vollenhovenlaan 661, NL-3527 JP Utrecht (NL).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SMIT, August, Benjamin [NL/NL]; Achillesstraat 28 II, NL-1076 RC Amsterdam (NL). SIXMA, Titia, Karen [NL/NL]; Ingen Houszstraat 61, NL-3514 HV Utrecht (NL).

(74) Agent: VOSSIUS & PARTNER; Siebertstr. 4, D-81675 München (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (4

(54) Title: WATER-SOLUBLE LIGAND-BINDING PROTEINS AND ANALOGS OF LIGAND-GATED ION CHANNELS, CRYSTALS THEREOF AND THEIR USE FOR SCREENING LIGANDS OF LIGAND-GATED ION CHANNELS

(57) Abstract: Provided are water-soluble ligand-binding proteins derived from molluses and analogs of ligand-gated ion channels, crystals thereof and their use for screening ligands of ligand-gated ion channels. In particular, water-soluble ligand-binding proteins are provided that are capable of forming multimers and are amenable to crystallization. The crystal structure of one of these proteins, an acetylcholine binding protein (AChBP) is provided, which can be used to generate 3D models of the extracellular ligand-binding domain of ligand-gated ion channels and thus for screening of drugs that act on these ion channels. Furthermore, chimeric proteins are provided that are capable of binding a ligand of a ligand-gated receptor, and comprising at least the amino acids of the AChBP determining solubility of the ΛChBP, in the same positions as in the ΛChBP, and furthermore comprising amino acids determining binding to said ligand.

WATER-SOLUBLE LIGAND-BINDING PROTEINS AND ANALOGS OF LIGAND-GATED ION CHANNELS, CRYSTALS THEREOF AND THEIR USE FOR SCREENING LIGANDS OF LIGAND-GATED ION CHANNELS

10

15

20

25

5

SUMMARY OF THE INVENTION

Novel water-soluble ligand-binding proteins have been identified and isolated, which have a ligand-binding profile substantially similar to that of ligand-gated ion channels. DNA molecules encoding such proteins have been cloned and characterized. The biological and structural properties of these proteins are disclosed, as is the amino acid and nucleotide sequence. The recombinant DNA molecules, and portions thereof, are useful for isolating homologues of the DNA molecules, identifying and isolating genomic equivalents of the DNA molecules, and identifying, detecting or isolating mutant forms of the DNA molecules. Using a recombinant expression system functional DNA molecules encoding the water-soluble ligand-binding proteins as well as chimeras have been functionally produced. Furthermore, the water-soluble ligand-binding proteins could be crystallized revealing the three dimensional (3D) structure and enabling the modeling of the 3D structure of the ligand-binding domain of ligand-gated ion channels. The invention is further in the field of the development of new drugs that are capable of selectively intervening in neuronal signaling pathways. The invention is more in particular concerned with providing new analogues of the channel-coupled receptors, crystal structures thereof and to their use in screening ligands for these receptors.

30 Several documents are cited throughout the text of this specification either by name or are referred to by numerals within parenthesis. Full bibliographic citations may be found at the end of the specification immediately preceding the claims. Each of the documents cited herein (including any manufacturer's specifications, instructions, etc.) are hereby incorporated herein by reference; however, there is no admission that any document cited is indeed prior art as to the present invention.

PCT/EP01/01457

-2

BACKGROUND OF THE INVENTION

WO 01/58951

5

10

15

20

25

30

35

The communication in the central nervous system (CNS) occurs through a complex interaction of electrical and chemical signals. Molecules bearing chemical information are called neurotransmitters. The chemical information is converted in electric currents on the post-synaptic membrane, which is specialised in recognising and binding neurotransmitters by means of protein receptors. The specific binding of a ligand to one type of such receptors, the ionotropic receptors, induces a fast opening of the ion channel coupled to the receptor. An important group of ionotropic receptors is the superfamily of the channel-coupled receptors, also referred to as ligand-gated receptors, including the 7-amino-butyric acid (GABA_A) receptor, the glycine receptor, the serotonin-3 (5-HT3) receptor and both neuronal and muscle-type nicotinic acetylcholine receptors (nAChR). These receptors share certain structural features such as (1) a 15-residue cysteine loop between amino acids 128 and 142 corresponding to the Torpedo AChR α unit, (2) four trans-membrane domains, (3) similar subunit arrangements, and (4) homologies in amino acid seguence. Activation of these receptors causes a change in electrical current and hyperpolarisation of the cell membrane and consequently an inhibition of the electrical activity of the cell. The GABA_A receptor and the glycine receptor are coupled to a chloride-selective channel, and thus the inhibition of the electrical activity leads to inhibition of the cell response. On the other hand, activation of the 5-HT3 receptor and the nAChRs provokes an excitatory response on the cell because they are connected to a cation-selective channel (Na+, K+, Ca2+). The AChRs are the best studied of the ligand-gated receptors; for a review, see Arias, Brain Research Reviews, 25 (1997)133-191 and Arias, Neurochem. Int. 36 (2000), 595-645). Mutations in these ligand-gated ionchannels (LGICs) lead to diseases such as congenital myasthenia gravis, epilepsy, startle syndrome and alcohol sensitivity (Vafa and Schofield, Int. Rev. Neurobiol. 42, 285-332; 1998). NAChRs mediate nicotine addiction in chronic tobacco users. Since nicotine binding to these receptors also has a positive effect on Alzheimer's disease, Parkinson's disease and schizophrenia these receptors present an important drug target (Paterson and Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75-111; 2000).

The development of new active compounds that can selectively or - as the case may be - a-selectively bind to the channel-coupled receptors, is of utmost importance for the understanding of the processes occurring in the nervous system and for the treatment of disturbances of neural conditions. The development of such active compounds requires the availability of a reliable model system for the corresponding receptors. The primary structural features (amino acid sequences) of the various

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

receptors have been largely elucidated by now. Certain subunits of the AChRs have been found to be determinant in the pharmacological specificity or affinity of the receptor for its ligand (Corringer et al., J. Neuroscience 18 (1998), 648-657). However, the study of the ligand binding properties of the receptor proteins is hampered by the fact that the spatial structure of the proteins - which is decisive in the binding of ligands - is still unknown. This is partly because crystallisation of the receptor proteins has been unsuccessful up to now.

-3

The above-defined technical problem is solved by the present invention by providing the embodiments characterized in the claims.

Accordingly, in one aspect the present invention relates to a water-soluble protein derived from a mollusc being capable of binding a ligand of a ligand-gated receptor.

It has been found according to the invention that acetylcholine-binding proteins (AChBP) of certain molluscs show a surprising structural similarity with the channel-coupled receptors on the one hand and have interesting physical properties, such as water-solubility, on the other hand. The molluscan AChBPs are capable of forming multimers, especially pentamers, and of binding specific toxins such as α -bungarotoxin. These multimers may be homogeneous (identical units) or heterogeneous (different units). These properties make them eminently suitable as model systems for studying the binding of candidate ligands to the channel-coupled receptors. It has been possible to produce these molluscan AChBPs in recombinant systems, thus allowing convenient and large-scale production thereof. Moreover, it is feasible to construct hybrid proteins sharing the physical properties of the mollusc AChBP with the pharmacological properties of the (human) channel-coupled receptors, thus providing new dedicated tools for screening ligands for these receptors.

The AChBP is a naturally occurring analogue of the extracellular domains of the α -subunits of the neuronal nicotinic acetylcholine receptors (nAChRs). In contrast to the nAChRs, it lacks domains to form a transmembrane ion channel, but alike the nAChRs it assembles into a homo-pentamer (Figure 6). Moreover, AChBP has ligand-binding characteristics that are typical for a nicotinic receptor. The 3-dimensional structure of AChBP was solved by X-ray crystallography at 2.7Å resolution (current R_{tactor} = 27.9 %, R_{tree} = 30.0 %). In crystals, as in solution, AChBP forms a stable homo-pentamer with dimensions comparable to those of the ligand-binding domain of the nAChR, as determined in EM studies by Unwin, Struct. Struct. Biol 121 (1998), 181-190. The high-resolution crystal structure of AChBP, along with

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

biochemical and pharmacological data, supports the extrapolation of AChBP as a good mimic of ligand-binding domains of ligand-gated ion channels including nAChR, 5-HT3R, GABA_{A,C}R and GlyR.

Four AChBPs according to the present invention are exemplified herein, isolated and cloned from the CNS of Lymnaea stagnalis (L-AChBP_T1 and L-AChBP_T2) and Bulinus truncatus (B-AChBP_T1 and B-AChBP_T2). L-AChBP_T1 and 2 are 229 amino acid proteins with a signal sequence of 19 amino acids (224 and 21 amino acids, respectively, for B-AChBP_T1 and 2; see also Figure 1) and have sequence homology with the extracellular domains of the subunits of ligand-gated ion channels (Figure 3), in particular with those of the nAChRs (Figure 4 and 5). The mass of the purified AChBP from Lymnaea has been determined by mass-spectrometry. The glycosylated form has a mass of about 24720 Da and the de-glycosylated form of about 23832 Da. In SDS-PAGE the glycosylated AChBP migrates between the 14 and 26 kDA marker proteins. Hydrophopicity plots of the AChBPs are shown in Figure 2, which reveal those regions of the ligand-binding proteins that are particularly hydrophilic and thus may be replaced at least in part or essential amino acids thereof in the ligand-binding domain of the ligand-gated ion channel. Sequence conservation is particularly high in the so-called loop areas (reviewed by Arias, Neurochem. Int. 36 (2000), 595-645), which contain the residues involved in ligandbinding. The cysteine residues characteristic for the Cys-loop family of ligand gated receptors are conserved in AChBP. Also the double cysteine typically found in the alpha subunits of the nAChR is present. AChBP protein sequence ends at the position where in the nAChRs the first predicted transmembrane domain would start. The ligand-binding characteristics of AChPBs are described in Example 4 and summerized in Table 2.

The terms "channel coupled receptors", "ligand-gated receptor", "ligand-gated ion channel" are used interchangeable herein. However, in context with the natural occurring, in particular human molecules the term "ligand-gated ion channel" is preferably used. The water-soluble ligand-binding protein of the invention can also be characterized as a ligand-binding protein having at least 10%, more preferably at least 12%, still more preferably at least 15% and most preferably at least 20% amino acid sequence identity to a vertebrate ligand-gated ion channel but missing any trans-membrane domain. A ligand-gated receptor of the present invention is characterized by having substantially the same ligand-binding characteristics of a vertebrate, preferably mammalian, most preferably human ligand-gated ion channel but comprising at least one alteration in the original amino acid sequence, said

20

25 -

30

35

WO 01/58951 PCT/EP01/01457

-5

alteration resulting in the presence of an amino acid determining or contributing to the water-solubility of the water-soluble ligand-protein found in molluscs, in particular snails such as those described in more detail below.

The terms "ligand-binding protein", "ligand-binding domain" and "ligand-binding receptor" are meant to at least include the portion of a water-soluble ligand-binding protein or corresponding modified ligand-gated ion channel required for binding a ligand. Minimally the ligand-binding domain consists of a peptide containing that domain. However the use of this term is meant to include a ligand-binding domain or protein that is comprised by a larger portion of, for example, ligand-gated ion channel, such as a fully reconstituted nicotinic acetylcholine receptor.

As shown in Figure 3 the nicotinic acetylcholine receptor (nAChR) belongs to a well-understood member of the ligand-gated ion channels superfamily. The members of this signaling protein group, including 5-HT3, glycine, GABA_A, and GABA_C receptors, are thought to share common secondary, tertiary, and quaternary structures on the basis of a high degree of sequence similarity. Therefore, it is expected that the novel findings in respect to the exemplified AChBP equally apply to the other members of the mentioned ligand-gated ion channels superfamily. Thus, either water-soluble protein being capable of binding a ligand of any of those ligand-gated ion channels may be found in molluscs or the present 5-HT3, GABA_A, and glycine receptors can be modified such as to substantially retain their binding affinity.

Accordingly, the ligand of the water-soluble ligand-binding protein is preferably acetylcholine, gamma-amino-butyric acid (GABA), glycine, nicotine or serotonin. Isolation of such water-soluble ligand-binding proteins can be done as described in Example 1 for the AChBP of the present invention. Instead of α -bungarotoxin other known ligands or can be used for affinity purification. Most preferably, water-soluble ligand-binding protein of the invention is a acetylcholine-binding protein (AChBP). Preferably, the ligand-binding protein displays substantially the binding characteristics shown in Table 2.

The acetylcholine-binding proteins to be used according to the invention are originally derived from aquatic molluscan species, especially species from the class of the snails (Gastropoda), in particular from the order of the lunged snails (Pulmonata). The order of the Pulmonata is divided into the suborders of the Basommatophora (mostly aquatic snails), Systellommatophora and Stylommatophora (mostly land snails). The Basommatophora include the families of the Acroloxidae (e.g. genus Acroloxus), Lymnaeidae (e.g. genera Galba, Stagnicola, Radix and Lymnaea),

10

15

25

30

35

WO 01/58951 PCT/EP01/01457

-6

Physidae (e.g. genera Physa and Aplexa) and Planorbidae (e.g. genera Planorbis, Anisus, Ancylus, Gyraulus, Biomphalaria and Bulinus). Examples of suitable species are *Lymnaea stagnalis* (pond snail) and *Bulinus truncatus*. The isolation of the AChBPs from these snails, cloning of the cDNA encoding these AChBPs and their characterization including the full amino acid sequences is described in the examples. The cDNA and amino acid sequences of the AChBPs of *Lymnaea stagnalis* are depicted in SEQ ID Nos. 1 and 2 (L-AChBP_T1) and SEQ ID Nos. 3 and 4 (L-AChBP_T2). Those of *Bulinus truncatus* are depicted in SEQ ID Nos. 5 and 6 (B-AChBP_T1) and SEQ ID Nos. 7 and 8 (B-AChBP_T2). Features of these proteins are further described in the examples and the accompanying figures.

While a water-soluble ligand-binding protein derived form a Pulmonata species, preferably from a Basommatophora species is preferred, it will be appreciated that the present invention generally relates to any water-soluble protein being capable of binding a ligand of a ligand-gated receptor comprising an amino acid sequence selected from the group consisting of:

- (a) an amino acid sequence as depicted in any one of SEQ ID Nos. 2, 4,
 6 or 8 or a functional equivalent thereof, or a fragment of at least 5
 continuous amino acids thereof;
- 20 (b) an amino acid sequence having at least 30% amino acid identity to the amino acid sequence of any one of SEQ ID Nos. 2, 4, 6 or 8; and
 - (c) an amino acid sequence resulting in a protein which is detectable by a monoclonal or polyclonal antibody which recognises, preferably with a binding affinity of at least 10⁻⁷M, a protein comprising an amino acid sequence of (a) or (b).

Identity or similarity, as known in the art, are relationships between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. Both identity and similarity can be readily calculated (Computational Molecular Biology, Lesk, ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin and Griffin, eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, Academic Press, 1987; and Sequence Analysis Primer, Gribskov and Devereux, eds., M Stockton Press, New

York, 1991). While there exist a number of methods to measure identity and similarity between two polynucleotide or two polypeptide sequences, both terms are well known to skilled artisans (von Heinje, supra; Gribskov and Devereux, supra; and Carillo and Lipman SIAM J. Applied Math. 48 (1988), 1073). Methods commonly employed to determine identity or similarity between sequences include, but are not limited to those disclosed in Carillo and Lipman; see supra. Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, GCG program package (Devereux et al., Nucleic Acids Research 12 (1984), 387), BLASTP, BLASTN, psi BLAST and FASTA (Atschul et al., J. Molec. Biol. 215 (1990), 403).

In another embodiment, the present invention relates to a water-soluble protein being capable of binding a ligand of a ligand-gated receptor comprising

- at least the amino acids of the water-soluble protein described above determining solubility of said protein, in the same or corresponding positions as in said protein; and
- (b) at least 4 amino acids determining binding to said ligand.

20

25

30

35

5

Protein expression studies have shown that wild-type AChBP of the mollusc Lymnaea stagnalis can be produced in Pichia pastoris yeast. The yeast cells express AChBP in a homopentameric form and secrete the protein complex into the medium. The large amounts of AChBP per volume of medium produced (up to 2 mg per liter medium) and the large volumes of yeast that can be cultured allow a large-scale production of AChBP. Besides the wild-type AChBP, various AChBP mutants have been produced in Pichia pastoris. These include mutants containing the following single point mutations (the numbers refer to the amino acid position in the AChBP sequence of Lymnaea stagnalis depicted in SEQ ID No. 2 counted from the first amino acid of the signal peptide; the letter before the number indicates the original amino acid and the letter after the number indicates the mutant amino acid) N85D, H164Y, D194N, Y204P, Y211P and D213N.

Thus the invention pertains to water-soluble proteins derived from molluscan, preferably acetylcholine binding proteins (AChBP's), which are capable of forming multimers, and are capable of binding a ligand of a ligand-gated receptor. These proteins comprise, on the one hand, at least of the amino acids of the AChBP determining solubility of the AChBP in the same positions as in the AChBP, and, on

WO 01/58951 PCT/EP01/01457

-8

the other hand, amino acids determining binding to the ligand of the ligand-gated receptor. The degree of identity with the molluscan AChBP sequence can be defined by amino acid identity, of at least 15%, preferably 20%, more preferably 30%, still more preferably 40%, preferably at least 50 or even at least 60%, preferably more than 70%, more preferably more than 80% and most preferably at least 90% identity, or more, as determined, e.g., using the art-known BLAST algorithm. The amino acids determining binding to the ligand should comprise at least 4 amino acids, preferably at least 6 or even at least 8 amino acids, including a series of at least 3 or 4 amino acids, corresponding to the receptor sequence and preferably differing from the corresponding AChBP amino acids. Preferred embodiments of these proteins are further defined below. Usually, the water-soluble ligand-binding protein or domain as part of a for example chimeric ligand-gated ion channel will comprise 200-240 amino acids. The ligand is preferably acetylcholine, nicotine, lophotoxin, d-tubocurarine, carbamylcholine, galanthamine or epibatidine.

Said ligand-gated receptor can be derived from an arthropod (preferably insect), a plant (preferably a higher plant, most preferably a seed plant) or a chordate (preferably a mammalian, most preferably human), preferably said ligand-gated receptor is a nicotinic acetylcholine receptor.

Usually, the said amino acids in the water-soluble ligand-binding proteins of the invention, which determine solubility are in the same positions as in the AChBP having the amino acid sequence as depicted in any one of SEQ ID Nos. 2, 4, 6 or 8. The solubility determining regions are based on solvent accessibility in structure. The respective amino acid residues can be chosen for example according to Figure 10 or 11 in which the solvent accessible regions are indicated. Preferably, the water-soluble ligand-binding protein of the invention comprises an amino acid sequence having at least 40% amino acid identity to the amino acid sequence of the mature AChBP comprising the amino acid sequence of any one of SEQ ID Nos. 2, 4, 6 or 8, in which the ligand binding amino acids have been replaced with the corresponding amino acids of a ligand-gated receptor.

In one embodiment of the protein of the invention said solubility-determining amino acids (a) comprise hydrophilic amino acids (Asp, Glu, Arg, Lys) from the sequences 20-44, 73-81, 86-92, 112-120, 135-152, 166-189, 196-20, 209-213, and/or 219-227 of SEQ ID No. 2.

The amino acid sequences of L-AChBP_T1 (SEQ ID No. 2) and T2 (SEQ ID No. 4) are almost similar. For the sake of clarity, reference is always made to L-AChBP_T1 (SEQ ID No. 2). However, all references to amino acid residues within are valid for

-9

both T1 and T2, with the noticeable exceptions of Arg(167) becoming Gly(167) and and Thr(203) becoming IIe(203). Furthermore, regarding the amino acid residues (domains) from L-AChBP_T1 and the corresponding residues from B-AChBP the following list provide those amino acid positions in which L-AChBP and B-AChBP differ. All amino acid residue numbers below correspond to their position within the amino acid sequence of the immature protein (numbering starting at methionine (1). One could also start numbering at the start of the amino acid sequence of the mature sequence (L(1)DRAD for L-AChBP and Q(1)IRW for B-AChBP). When using this second method (1st amino acid of the mature seq. = position 1) simply subtract 19 from the L-AChBP position numbers and 21 from the B-AChBP position numbers, for example Asp(36) becomes Asp(17) for L-AChBP) and Asp(15) for B-AChBP. For the further embodiments the positions are given for L-AChBP T1 (SEQ ID No. 2) followed by an indication of the corresponding amino acid positions in the amino acid sequence of L-AChBP_T2 (SEQ ID No. 4) and B-AChBP_T1 (SEQ ID No. 6) & B-AChBP_T2 (SEQ ID No. 8) in the form of (L-AChBP_T1&T2: B-AChBP_T1&T2).

In a preferred embodiment said solubility determining amino acids (a) comprise amino acids Asp(36), Asp(68), Glu(115), Arg(137), Asp(143), Asp(148), Glu(150), Arg(167), Arg(189), Glu(215) of SEQ ID No.2, wherein Asp may be exchanged for Glu and vice versa and Lys may be exchanged for Arg and vice versa (L-AChBP_T1&T2: B-AChBP_T1&T2; Asp(36): Asp(36); Asp(68): Asp(68); Glu(115): Glu(116); Arg(137): Arg(138); Asp(143): Asp(144); Asp(148): Asp(149); Glu(150): Glu(151); Arg(167): Gly(167), in L-AChBP_T2: Lys(168); Arg(189): Lys(190); Glu(215): Glu(216).

25

30

35

5

10

15

20

In a still more preferred embodiment the water-soluble ligand-binding protein comprises the amino acids Cys(142), Thr(149), Ala(153), Thr(154), Cys(155), Arg(156), Ile(157) and/or Lys(158) of SEQ ID No. 2. (L-AChBP_T1&T2: B-AChBP_T1&T2; Cys(142): Cys(143); Thr(149): Thr(150); Ala(153): Ala(154); Thr(154): Thr(155); Cys(155): Cys(156); Arg(156): Arg(157); Ile(157): Ile(158); Lys(158): Lys(159). In a further embodiment the water-soluble ligand-binding protein comprises either in addition or alternatively the amino acids (b) Pro(39), Trp(77), Trp(101), Pro(103), Asp(194), and/or Ser(161) of SEQ ID No. 2 (L-AChBP_T1&T2: B-AChBP_T1&T2; Pro(39): Pro(39); Trp(77): Trp(77); Trp(101): Trp(102); Pro(103): Pro(104); Ser(161): Ser(162); Asp(194): Ser(195).

In a still further embodiment the water-soluble ligand-binding protein comprises either

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-10

in addition or alternatively to the above described embodiments amino acid sequences 165-169 and/or 200-203 of SEQ ID No. 2 have been exchanged with the corresponding sequence of the ligand-gated receptor (L-AChBP_T1&T2: B-AChBP_T1&T2; His(165)-Iso(169):. Asp(166)-Phe(170) (B-AChBP_T1): Asp(166)-Leu(170) (B-AChBP_T2); Asn(200)-Thr(203); Iso(203) for L-AChBP_T2: Asn(201)-Lys(204).

The amino acids determining binding to the ligand of the nicotinic acetylcholine receptor include three stretches on the nAChR alpha subunits. These stretches contain amino acids that are conserved throughout the various nAChR alpha subunits and that are essential for ligand binding. These stretches (corresponding to the Torpedo alpha subunit) are (numbering of nAChR α7 as depicted in SEQ ID No. 9): Trp (108) - Tyr (115), Trp (108) and Tyr (115) being essential; Trp (171) - Tyr (173), the amino acids Trp (171) and Tyr (173) being essential; Tyr (210) - Tyr (217), the amino acids Tyr (210), Cys (212), Cys (213) and Tyr (217) being essential. In the chimeric proteins according to the invention, at least the essential amino acids of at least one of these stretches haven been substituted for the corresponding amino acids. Preferably, the entire stretches have been substituted.

In a particularly preferred embodiment of the invention, the water-soluble ligand-binding protein is capable of binding a ligand of an acetylcholine receptor, wherein in said protein at least one of the amino acid sequences Trp(101) - Tyr(T108), Trp(162) - His(164) and Tyr(204) - Tyr(211) of SEQ ID No. 2 has been exchanged with the corresponding sequence of the acetylcholine receptor (L-AChBP_T1&T2: B-AChBP_T1&T2; Trp(101)-Tyr(108): Trp(102)-Tyr(109); Trp(162)-His(164): Trp(163)-His(165), (B-AChBP_T1): Trp(163)-Phe(165) (B-AChBP_T2); Tyr(204)-Tyr(211): Tyr(205)-Tyr(212).

On the basis of homology to the AChBPs, it is possible to change amino acid residues in the original amino acid sequence of the ligand-gated ion channel, which are not critical to ligand-binding or essential for the tertiary and quaternary structure of the receptor but could be substituted to amino acid residues which according to the AChBP in particular the crystal structure contributes to their water-solubility. As a result the ligand-gated ion channel or its ligand-binding domain or the respective monomers and pentamers are for example expected to be more easily expressible in recombinant expression system and more importantly amenable to crystallization, allowing the construction of three-dimensional models of their ligand binding domains.

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-11

Thus, in another embodiment the present invention relates to a method for the production of a water-soluble ligand-gated receptor or a corresponding ligand-binding domain or for improving the water solubility and accessibility to crystallization of such a receptor or domain, said method comprising altering the amino acid sequence of the extracellular domain of a ligand-gated receptor by way of substituting, adding, deleting or modifying at least one amino acid at a position corresponding to an amino acid determining or contributing to the water-solubility of the above-described watersoluble ligand-binding protein of the present invention The method of the invention can be performed using conventional techniques known in the art, for example, by using amino acid deletion(s), insertion(s), substitution(s), addition(s), and/or recombination(s) and/or any other modification(s) known in the art either alone or in combination. Methods for introducing such modifications in the DNA sequence underlying the amino acid sequence of the ligand-binding domain a ligand-gated ion channel are well known to the person skilled in the art; see, e.g., Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. The resulting ligand-gated receptor or ligand-binding domain retains comparable in vitro and preferably also in vivo ligand-binding activity to that of the ligand-gated ion channel, and more importantly, allow complete crystallization of the protein such that they may be characterized by X-ray crystallography. The X-ray crystallographic data can be used for example for identification and construction of possible therapeutic compounds in the treatment of various disease conditions.

As has been discussed herein before, the ligand-gated ion channel superfamily including nACh, 5-HT3, glycine, GABA_A, and GABA_C receptors as well as invertebrate glutamate ion-channels and MOD-1 serotonin channel contain extracellular ligand binding domains that are homologous to the AChBP. Many of these receptors are promising drug targets. Therefore, the ligand-gated receptor to be modified is preferably one of those of the mentioned superfamily, most preferably it is nAChR.

Information on the nucleotide and amino acid sequences, structural elements, functional assays of the nAch, 5-HT3, glycine, GABA_A, and GABA_C receptors can be found in the prior art. For example, the nicotinic receptors at the amino acid level are described in Corringer et al., Annu. Rev. Pharmacol. Toxicol. 40 (2000), 431-458. Means for retrieving nucleotide and amino acid sequences, performing sequence alignments in order to identify the most likely critical amino acid residues are described below and in the examples; for further general information see the review on periplasmic binding protein (PBP), an ancient protein module present in multiple drug receptors by Felder et al., PharmSci. 1(2) (1999).

In a preferred embodiment of the method of the present invention, said at least one amino acid is altered to the corresponding amino acid of the amino acid sequence depicted in any one of SEQ ID Nos. 2, 4, 6 or 8, or to a an equivalent amino acid, preferably in which said solubility-determining amino acids comprise solvent accessible regions in the crystal structure according to Figure 10 or 11. Preferred amino acid sequence positions and amino acid substitutions are described above for the AChBP and can be applied generally in the method of the present invention.

It is expected that the insertion of the loop Cys123-Cys136 of the mature AChBP SEQ ID No. 2 into the equivalent region (Cys127-Cys141) in the mature nicotinic $\alpha 7$ homopentamer ligand binding domain creates an easily expressed form of this protein. Likewise, this loop or an equivalent loop from other water-soluble ligand proteins of the present invention can be inserted into the equivalent region of other homopentameric ligand binding domains of ligand gated ion channels such as the glycine receptor and the 5-HT3 receptor to create an easily expressed form of those proteins.

Thus, in one embodiment, the present invention relates to any one of the above described methods, wherein loop Cys123-Cys136 of SEQ ID No. 2 is inserted into the corresponding region of the ligand binding domain of the ligand-gated receptor.

20

25

35

15

5

10

The above described water-soluble ligand-gated receptor or a corresponding ligand-binding domain are usually prepared by site-directed mutagenesis of the underlying encoding polynucleotide. Once the corresponding polynucleotide has been generated it can be used to express the altered ligand-gated receptor or a corresponding ligand-binding domain. Thus, the method of the present invention commonly comprises

- (a) culturing a host cell transfected with and capable of expressing a polynucleotide comprising a nucleotide sequence encoding the altered amino acid sequence; and optionally
- 30 (b) recovering said water-soluble ligand-gated receptor or corresponding ligand-binding domain from the culture.

Methods for the expression and purification of the water-soluble ligand-gated receptor or corresponding ligand-binding domain of the present invention are described further below. Preferably, the expression system described in Examples 4 and 5, or corresponding expression systems are used.

PCT/EP01/01457

WO 01/58951

10

15

20

25

30

35

The present invention also relates to the a water-soluble ligand-gated receptor and ligand-binding domain obtainable by the above described methods of the invention. Preferably, said water-soluble ligand-gated receptor exhibits a 10-fold, more preferably 100-fold, still more preferably 1000-fold and most preferably 10000-fold higher solubility in water than the corresponding wild type, preferably human ligand-gated receptor. However, improvements in water solubility of about 2 to 5 fold is also already advantageous. The average hydrophobicity may be in the range of –100 to – 400. Accordingly, the present invention provides methods for the prediction and creation of mutants and chimeras of ligand binding domains of homopentameric acetylcholine receptor subtypes and of other homopentameric ion channels with increased solubility.

In one embodiment the water-soluble ligand-binding protein of the invention further comprises a spacer sequence allowing coupling with a carrier body. The spacer sequence may be an amino acid sequence encodable by a polynucleotide or other molecule such as polymethylene anchor groups commonly used in chip technology. The chimeric protein of the invention may further comprise a spacer sequence, which allows coupling of the protein to a carrier body. Such spacer sequence may be e.g. an oligo-histidine stretch attached to the C-terminus of the protein. Such an oligohistidine stretch is capable of binding to Talon@ metal affinity beads or similar carriers. Such binding stretches have no detectable influence on the pharmacological properties of the proteins. The chimeric proteins according to the invention can be used for screening of specific binding of potential drugs, in particular screening for modulators of ion-channel opening. Conventional in vitro screening techniques, such as phage display technology, can be used for this purpose. High-throughput assays, possibly in combination with combinatorial chemistry can also be used. Specific binding of test compounds to the (immobilised) chimeric proteins of the invention can be performed e.g. by competition binding assays using alpha bungarotoxin as a competitor. The invention also concerns test kits containing the proteins described above, together with further means for carrying out a screening test, such as carriers, labels, diluents, other chemicals etc.

In addition, the present invention relates to fusion proteins comprising the watersoluble ligand-binding protein of the invention or a binding fragment thereof and a fragment of a ligand-gated receptor. The term "fusion protein" as used herein refers to protein constructs that are the result of combining multiple protein domains or linker regions for the purpose of gaining the combined functions of the domains or

PCT/EP01/01457

WO 01/58951

5

10

15

20

25

30

linker regions. This is may be accomplished by molecular cloning of the nucleotide sequences encoding such domains to produce a new polynucleotide sequence that encodes the desired fusion protein. Alternatively, creation of a fusion protein may be accomplished by chemically joining two proteins. A fusion protein of the present invention preferably comprises at least the ligand-binding domain of the AChBP or of a ligand-gated ion channel, which has been modified in accordance with the above described methods.

-14

Nicotinic acetylcholine receptors are comprised of five subunits, selected from a related family of subunit proteins. The neuronal subunits fall into two main types depending on the presence or absence of a pair of vicinal cysteines close to the binding site for acetylcholine. Thus all α-subunits contain paired cysteine residues thought to play a role in binding of nicotinic agonists (Aplin and Wonnacott, 48 (1994), 473-477), whereas the β -subunits do not. There are ten known alpha subunits, $\alpha 1$ to α 10, and at least four beta subunits, β 1 to β 4. Receptors comprise at least one alpha subunit which in some cell types combine with a beta subunit and in some cases a gamma, delta and epsilon subunit. For example, the AChR at the neuromuscular junction is believed to have an $(\alpha 1)2\beta 1\gamma\delta$ stoichiometry. Within the group of α subunits there is marked diversity in the manner in which a complete functional nAChR is formed. The majority of the α subunits only form functional receptors when combined as a heteropentamer with β-subunits in the CNS (McGehee and Role, Annual Review of Physiology 57 (1995), 521-546). However, α7, α8 and α9 nAChR subunits and the related 5-HT3A subunit are capable of forming functional homopentameric receptors. In this respect it is interesting that the phylogenetic relationship between nAChR subunits suggest that α7, α8, α9 and the related 5-HT3A subunit are more related to each other than to the subunits which only form heteropentameric receptors. Sequence homologies indicate that the α 7, α 8 and α 9 subunits form a distinct subgroup of the alpha subunits.

As is evident form the foregoing, the above described water-soluble ligand-binding protein or receptor or ligand-binding domain thereof can be used for forming complexes of homo- or heteromultimers, such as a dimer, pentamer or decamer consisting of at least one monomer of the mentioned proteins of the present invention. Preferably, these multimers constitute a function ligand-gated receptor. Preferably, said ligand-gated receptor is related to the nAchR.

35

The present invention also relates to the production of synthetic heteropentamers resembling heteropentameric gated ion-channels by mutation of AChBP, using

-15

knowledge of the crystal structure about the primary and secondary contact regions; see infra. Preferably, said synthetic heteropentamers resembles a heteropentameric nicotinic acetylcholine receptor. Accordingly, the present invention more generally relates to a ligand-gated ion channel comprising any one of the above described water-soluble ligand-binding proteins or receptors of the invention as a monomer, homo- or heterodimer or -pentamer. This method therefore allows the prediction and creation of mutants and chimeras of nicotinic acetylcholine receptors and other ligand-gated ion channels that are insensitive or more sensitive to toxin binding, e.g. bungarotoxin, lophotoxin, conotoxin, and other toxins that inhibit ligand-gated ion channels. Preferably, said ligand-gated ion channel is less or more sensitive to binding of toxins such as bungarotoxin, lophotoxin or conotoxin compared to the wild type ligand-gated ion channel.

Further information and examples how to create chimeric ligand-binding proteins in accordance with the present invention is given in Example 10.

15

20

25

30

35

10

5

The nucleotide and amino acid sequences of the acetylcholine, 5-HT3, glycine, GABA_A, and GABA_C receptors can be easily retrieved from public database, for example from the internet using http://www.ncbi.nlm.nih.gov/Entrez. The citations also include a reference to the corresponding publication also reporting on the functional expression of the respective receptor.

The use of recombinant acetylcholine-gated ion channels and functionally assays in the discovery of putative novel ligands has been described in Cosford, Pharm. Acta Helv. (2000), 74(2-3), 125-130. Furthermore, the cell-free expression and functional reconstitution of homo-oligomeric α7 nicotinic acetylcholine receptors into planar lipid bilayers has been reported by Lyford and Rosenberg, J. Biol. Chem. (1999), 274(36), 25675-25681. The use of functional assays of cloned and native muscarinic acetylcholine receptors for determining the selectivity profile of toxins has been described by Olianas et al. (J. Pharmacol. Exp. Ther. 288 (1999), 164-170). A system for the evaluation of pharmacological differences and similarities between 5-HT3 receptors stably transfected cells is provided by for example Bruss et al., Naunyn-Schmiedebergs Archives of Pharmacology 360 (1999), 225-33. The primary structure and functional expression of the 5-HT3 receptor is described in Maricq et al., Science 254 (1991), 432-437. Likewise, the stable expression of human glycine $\alpha 1$ and $\alpha 2$ receptor monomers in mouse L(tk-) cells and their use for the study of the physiology and pharmacology of functional glycine receptors is described in Wick et al.. J. Neurosci. Methods 87 (1999), 97-103. An example for the measurement of the

-16

pharmacology of recombinant GABA_A receptor subtypes is described in Simpson et al., J. Neurosci. Methods 99 (2000), 91-100. Further examples for assay systems are given below.

The described methods as well as others known to the person skilled in the art can be used for example to

- (1) express and characterise the water-soluble ligand-binding proteins and ligandgated ion channels of the present invention; and
- (2) use stably transfected cells expressing the above described ligand-gated ion channels for the identification of novel ligands.

10

15

20

25

30

35

5

The present invention also relates to polynucleotides encoding the water-soluble ligand-binding proteins and ligand-gated ion channels of the present invention, and multimers thereof, preferably dimers or pentamers. Such polynucleotide may be a DNA such as a cDNA, or an RNA such as mRNA or any other form of nucleic acid including synthetic or modified derivatives and may encode the polypeptide in a continuous sequence or in a number of sequences interrupted by intervening sequences. In which ever form it is present, the polynucleotide is an isolated polynucleotide in that it is removed from its naturally-occurring state. This aspect of the invention is based on the cloning of the cDNA for ligand-binding proteins. In a preferred embodiment, the polynucleotide comprises the nucleotide sequence of any one of SEQ ID Nos. 1, 3, 5 or 7, optionally including one or more mutations or deletions which do not substantially affect the activity of the polypeptide encoded thereby. Such mutations include those arising from the degeneracy of the genetic code, as well as those giving rise to any of the amino acid mutations or deletions discussed above. The polynucleotides of the invention preferably comprise

- (a) a nucleotide sequence having at least 15 continuous nucleotides of the nucleotide sequence depicted in any one of SEQ ID Nos. 1, 3, 5 or 7 or a degenerated nucleotide sequence thereof; or
- (b) a nucleotide sequence capable of hybridizing to a nucleotide sequence of (a) under stringent hybridisation conditions.

Typically, selective hybridization will occur when there is at least about 55% sequence identity -- preferably at least about 65%, more preferably at least about 75%, and most preferably at least about 90% -- over a stretch of at least about 14 nucleotides; see, e.g., Kanehisa, Nucleic Acids Res. 12 (1984), 203-213, herein incorporated by reference. Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, solvents, the base composition of the

10

15

25

30

35

PCT/EP01/01457

-17

hybridizing species, length of the complementary regions, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art.

"Stringent hybridization conditions" and "stringent wash conditions" in the context of nucleic acid hybridization experiments depend upon a number of different physical parameters. The most important parameters include temperature of hybridization, base composition of the nucleic acids, salt concentration and length of the nucleic acid. One having ordinary skill in the art knows how to vary these parameters to achieve a particular stringency of hybridization. In general, "stringent hybridization" is performed at about 25°C below the thermal melting point (T m) for the specific DNA hybrid under a particular set of conditions.

"Stringent washing" is performed at temperatures about 5°C lower than the Tm for the specific DNA hybrid under a particular set of conditions. The Tm is the temperature at which 50% of the target sequence hybridizes to a perfectly matched probe; see Sambrook et al., page 9.51, hereby incorporated by reference. The Tm for a particular DNA-DNA hybrid can be estimated by the formula:

 $Tm = 81.5^{\circ}C + 16.6 (log10[Na+]) + 0.41 (fraction G + C) - 0.63 (% formamide) - (600/l) where I is the length of the hybrid in base pairs.$

The Tm for a particular RNA-RNA hybrid can be estimated by the formula:

20 Tm = 79.8° C + 18.5 (log10[Na+]) + 0.58 (fraction G + C) + 11.8 (fraction G + C)2 - 0.35 (% formamide) - (820/1).

The Tm for a particular RNA-DNA hybrid can be estimated by the formula: $Tm = 79.8^{\circ}C + 18.5(log10[Na+]) + 0.58$ (fraction G + C) + 11.8 (fraction G + C)2 - 0.50 (% formamide) - (820/I).

In general, the Tm decreases by 1-1.5°C for each 1% of mismatch between two nucleic acid sequences. Thus, one having ordinary skill in the art can alter hybridization and/or washing conditions to obtain sequences that have higher or lower degrees of sequence identity to the target nucleic acid. For instance, to obtain hybridizing nucleic acids that contain up to 10% mismatch from the target nucleic acid sequence, 10-15°C would be subtracted from the calculated Tm of a perfectly matched hybrid, and then the hybridization and washing temperatures adjusted accordingly. Probe sequences may also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well known in the art. An example of stringent hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or Northern blot or for screening a library is 50%

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-18

formamide/6X SSC at 42°C for at least ten hours. Another example of stringent hybridization conditions is 6X SSC at 68°C for at least ten hours. An example of low stringency hybridization conditions for hybridization of complementary nucleic acid sequences having more than 100 complementary residues on a filter in a Southern or northern blot or for screening a library is 6X SSC at 42°C for at least ten hours. Hybridization conditions to identify nucleic acid sequences that are similar but not identical can be identified by experimentally changing the hybridization temperature from 68°C to 42°C while keeping the salt concentration constant (6X SSC), or keeping the hybridization temperature and salt concentration constant (e.g. 42°C and 6X SSC) and varying the formamide concentration from 50% to 0%. Hybridization buffers may also include blocking agents to lower background. These agents are well-known in the art; see Sambrook et al., pages 8.46 and 9.46-9.58, herein incorporated by reference. Wash conditions also can be altered to change stringency conditions. An example of stringent wash conditions is a 0.2x SSC wash at 65°C for 15 minutes (see Sambrook et al., for SSC buffer). Often the high stringency wash is preceded by a low stringency wash to remove excess probe. An exemplary medium stringency wash for duplex DNA of more than 100 base pairs is 1x SSC at 45°C for 15 minutes. An exemplary low stringency wash for such a duplex is 4x SSC at 40°C for 15 minutes. In general, signal-to-noise ratio of 2x or higher than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization.

By the provision of the nucleotide sequences of SEQ ID Nos. 1, 3, 5 and 7 as well as those encoding the amino acid sequences depicted in SEQ ID Nos. 2, 4, 6 and 8 it is possible to isolate identical or similar nucleic acid molecules which encode water-soluble ligand-binding proteins from other species or organisms, in particular orthologous water-soluble ligand-binding protein encoding genes from mammals. The term "orthologous" as used herein means homologous sequences in different species that arose from a common ancestor gene during speciation. Orthologous genes may or may not be responsible for a similar function; see, e.g., the glossary of the "Trends Guide to Bioinformatics", Trends Supplement 1998, Elsevier Science.

In a further aspect, the present invention provides a recombinant polynucleotide comprising a vector incorporating the polynucleotide of the present invention. Many suitable vectors are known to those skilled in molecular biology, the choice of which would depend on the function desired and include plasmids, cosmids, viruses, bacteriophages and other vectors used conventionally in genetic engineering. Methods which are well known to those skilled in the art can be used to construct

10

15

20

25

30

35

-19

various plasmids and vectors; see, for example, the techniques described in Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. and Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. (1989), (1994). Alternatively, the polynucleotides and vectors of the invention can be reconstituted into liposomes for delivery to target cells. As discussed in further details below, a cloning vector was used to isolate individual sequences of DNA. Relevant sequences can be transferred into expression vectors where expression of a particular polypeptide is required. Typical cloning vectors include pBscpt sk, pGEM, pUC9, pBR322 and pGBT9. Typical expression vectors include pTRE, pCAL-n-EK, pESP-1, pOP13CAT, pET, pGEX, pMALC, pPIC9, pBac.

Hence, in a preferred embodiment of the present invention the above-described polyncucleotides either alone or present in a vector are linked to control sequences which allow the expression of the polynucleotide in prokaryotic and/or eukaryotic cells.

The term "control sequence" refers to regulatory DNA sequences which are necessary to effect the expression of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism. In prokaryotes, control sequences generally include promotor, ribosomal binding site, and terminators. In eukaryotes generally control sequences include promotors, terminators and, in some instances, enhancers, transactivators or transcription factors. The term "control sequence" is intended to include, at a minimum, all components the presence of which are necessary for expression, and may also include additional advantageous components.

The term "operably linked" refers to a juxtaposition wherein the components so described are in a relationship permitting them to function in their intended manner. A control sequence "operably linked" to a coding sequence is ligated in such a way that expression of the coding sequence is achieved under conditions compatible with the control sequences. In case the control sequence is a promotor, it is obvious for a skilled person that double-stranded nucleic acid is preferably used.

Thus, the vector of the invention is preferably an expression vector. An "expression vector" is a construct that can be used to transform a selected host cell and provides for expression of a coding sequence in the selected host. Expression vectors can for instance be cloning vectors, binary vectors or integrating vectors. Expression comprises transcription of the nucleic acid molecule preferably into a translatable mRNA. Regulatory elements ensuring expression in prokaryotic and/or eukaryotic

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-20

cells are well known to those skilled in the art. In the case of eukaryotic cells they comprise normally promotors ensuring initiation of transcription and optionally poly-A signals ensuring termination of transcription and stabilization of the transcript. Possible regulatory elements permitting expression in prokaryotic host cells comprise, e.g., the PL, lac, trp, T7 or tac promotor in E. coli, and examples of regulatory elements permitting expression in eukaryotic host cells are the AOX1 or GAL1 promotor in yeast or the CMV-, SV40-, RSV-promotor (Rous sarcoma virus), CMV-enhancer, SV40-enhancer or a globin intron in mammalian and other animal cells. In this context, suitable expression vectors are known in the art such as Okayama-Berg cDNA expression vector pcDV1 (Pharmacia), pCDM8, pRc/CMV, pcDNA1, pcDNA3 (In-vitrogene), pSPORT1 (GIBCO BRL). An alternative expression system which could be used to express the protein is an insect system. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The coding sequence of a nucleic acid molecule of the invention may be cloned into a nonessential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promotor. Successful insertion of said coding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein coat. The recombinant viruses are then used to infect S. frugiperda cells or Trichoplusia larvae in which the protein of the invention is expressed (Smith, J. Virol. 46 (1983), 584; Engelhard, Proc. Nat. Acad. Sci. USA 91 (1994), 3224-3227).

In plants, promotors commonly used are the polyubiquitin promotor, and the actin promotor for ubiquitous expression. The termination signals usually employed are from the Nopaline Synthase promotor or from the CAMV 35S promotor. A plant translational enhancer often used is the TMV omega sequences, the inclusion of an intron (Intron-1 from the Shrunken gene of maize, for example) has been shown to increase expression levels by up to 100-fold. (Mait, Transgenic Research 6 (1997), 143-156; Ni, Plant Journal 7 (1995), 661-676). Additional regulatory elements may include transcriptional as well as translational enhancers. Advantageously, the above-described vectors of the invention comprises a selectable and/or scorable marker. Selectable marker genes useful for the selection of transformed cells and, e.g., plant tissue and plants are well known to those skilled in the art and comprise, for example, antimetabolite resistance as the basis of selection for dhfr, which confers resistance to methotrexate (Reiss, Plant Physiol. (Life Sci. Adv.) 13 (1994), 143-149); npt, which confers resistance to the aminoglycosides neomycin,

20

25

30

35

WO 01/58951 PCT/EP01/01457

-21

kanamycin and paromycin (Herrera-Estrella, EMBO J. 2 (1983), 987-995) and hygro, which confers resistance to hygromycin (Marsh, Gene 32 (1984), 481-485).

Useful scorable markers are also known to those skilled in the art and are commercially available. Advantageously, said marker is a gene encoding luciferase (Giacomin, Pl. Sci. 116 (1996), 59-72; Scikantha, J. Bact. 178 (1996), 121), green fluorescent protein (Gerdes, FEBS Lett. 389 (1996), 44-47) or ß-glucuronidase (Jefferson, EMBO J. 6 (1987), 3901-3907). This embodiment is particularly useful for simple and rapid screening of cells, tissues and organisms containing a vector of the invention.

The proteins can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, size exclusion chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") or FPLC is employed for purification.

The present invention furthermore relates to host cells produced by introducing a nucleic acid molecule into the host cell which upon its presence in the cell mediates the expression of a gene encoding water-soluble ligand-binding proteins or comprising a polynucleotide or a vector as described above or a polynucleotide according to the invention wherein the polynucleotides and/or nucleic acid molecule is foreign to the host cell. By "foreign" it is meant that the polynucleotide or nucleic acid molecule is either heterologous with respect to the host cell, this means derived from a cell or organism with a different genomic background, or is homologous with respect to the host cell but located in a different genomic environment than the naturally occurring counterpart of said nucleic acid molecule. This means that, if the nucleic acid molecule is homologous with respect to the host cell, it is not located in its natural location in the genome of said host cell, in particular it is surrounded by different genes. In this case the polynucleotide may be either under the control of its own promotor or under the control of a heterologous promotor. The vector or nucleic acid molecule according to the invention which is present in the host cell may either be integrated into the genome of the host cell or it may be maintained in some form extrachromosomally. In this respect, it is also to be understood that the nucleic acid molecule of the invention can be used to restore or create a mutant gene via homologous recombination.

15

20

25

30

WO 01/58951 PCT/EP01/01457

-22

The host cell can be any prokaryotic or eukaryotic cell, such as bacterial, insect, fungal, plant or animal cells.

The term "prokaryotic" is meant to include all bacteria which can be transformed or transfected with a DNA or RNA molecules for the expression of a protein of the invention. Prokaryotic hosts may include gram negative as well as gram positive bacteria such as, for example, E. coli, S. typhimurium, Serratia marcescens and Bacillus subtilis. The term "eukaryotic" is meant to include yeast, higher plant, insect and preferably mammalian cells. Depending upon the host employed in a recombinant production procedure, the protein encoded by the polynucleotide of the present invention may be glycosylated or may be non-glycosylated. The water-soluble ligand-binding protein of the invention may or may not also include an initial methionine amino acid residue. A polynucleotide of the invention can be used to transform or transfect the host using any of the techniques commonly known to those of ordinary skill in the art. Furthermore, methods for preparing fused, operably linked genes and expressing them in, e.g., mammalian cells and bacteria are well-known in the art (Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

Thus the present invention provides a cell capable of expressing a polypeptide as discussed herein. The cell comprises a recombinant host cell usually incorporating the polynucleotide. Preferably, the host cell incorporates the polynucleotide as the recombinant polynucleotide. Any suitable host cell may be chosen, again depending on the intended purpose. Suitable host cells include XLI-BLUE, B21(DE3)pLysS, HB101, SOLR and SP-Q01 (Saccharomyces pombe).

Using an appropriate combination of host cell, vector and polynucleotide, an expression system can be provided so as to obtain a polypeptide useful in the present invention. This may comprise a fusion polypeptide encoded by the recombinant polynucleotide, a part of which is encoded by the vector. Typically, the vector will have a promotor region, which is usually inducible, leading to 5' coding region associated with the promotor. By appropriate manipulation, the polynucleotide encoding the polypeptide can be attached to the 5' coding region in frame. In this way, expression of the nucleotide sequence downstream of the promotor region gives rise to the fusion polypeptide which includes the polypeptide of the present invention.

The present invention also relates to an antigen comprising an epitope of at least 5 continuous amino acids of the amino acid sequence depicted in any one of SEQ ID Nos. 2, 4, 6 or 8 and/or said epitope is detectable by a monoclonal or polyclonal

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-23

antibody which recognises, preferably with a binding affinity of at least 10.7M, a protein of the invention as described above. In the present invention, "epitopes" refers to fragments of the AChBP of the invention having antigenic or immunogenic activity in an animal. A preferred embodiment of the present invention relates to antigens comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response; see, for instance, Geysen, Proc. Natl. Acad. Sci. USA 81 (1983); 3998-4002. Fragments which function as epitopes may be produced by any conventional means; see, e.g., Houghten, Proc. Natl. Acad. Sci. USA 82 (1985), 5131-5135 further described in U.S. Patent No. 4,631,211. In the present invention, antigenic epitopes preferably contain a sequence of at least five, six, seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope; see, for instance, Wilson, Cell 37 (1984), 767-778; Sutcliffe, Science 219 (1983), 660-666). Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art; see, for instance, Sutcliffe, supra; Wilson, supra; Chow, Proc. Natl. Acad. Sci. USA 82 (1985), 910-914; and Bittle, J. Gen. Virol. 66 (1985); 2347-2354. A preferred immunogenic epitope includes the soluble protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

The present invention also relates to antibodies specifically recognizing the water-soluble ligand-binding protein and ligand-gated ion channels of the present invention, in particular recognizing the above described antigen or epitope. As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')₂ fragments) which are capable of specifically binding to protein. Fab and F(ab')₂ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody; see, e.g., Wahl, J. Nucl. Med. 24 (1983), 316-325. Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-24

library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies; see also infra. Said antibody can be a monoclonal antibody, a polyclonal antibody, a single chain antibody, human or humanized antibody, primatized, chimerized or fragment thereof that specifically binds said peptide or polypeptide also including bispecific antibody, synthetic antibody, antibody fragment, such as Fab, Fv or scFv fragments etc., or a chemically modified derivative of any of these. The general methodology for producing antibodies is well-known and has been described in, for example, Köhler and Milstein, Nature 256 (1975), 494 and reviewed in J.G.R. Hurrel, ed., "Monoclonal Hybridoma Antibodies: Techniques and Applications", CRC Press Inc., Boco Raron, FL (1982), as well as that taught by L. T. Mimms et al., Virology 176 (1990), 604-619. Furthermore, antibodies or fragments thereof to the aforementioned peptides can be obtained by using methods which are described, e.g., in Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988. For the production of antibodies in experimental animals, various hosts including goats, rabbits, rats, mice, and others, may be immunized by injection with polypeptides of the present invention or any fragment or oligopeptide or derivative thereof which has immunogenic properties. Techniques for producing and processing polyclonal antibodies are known in the art and are described in, among others, Mayer and Walker, eds., "Immunochemical Methods in Cell and Molecular Biology", Academic Press, London (1987). Polyclonal antibodies also may be obtained from an animal, preferably a mammal, previously infected with the virus of the invention. Methods for purifying antibodies are known in the art and comprise, for example, immunoaffinity chromatography. Depending on the host species, various adjuvants or immunological carriers may be used to increase immunological responses. Such adjuvants include, but are not limited to, Freund's, complete or incomplete adjuvants, mineral gels such as aluminium hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions and dinitrophenol. An example of a carrier, to which, for instance, a peptide of the invention may be coupled, is keyhole limpet hemocyanin (KLH). When derivatives of said antibodies are obtained by the phage display technique, surface plasmon resonance as employed in the BIAcore system can be used to increase the efficiency of phage antibodies which bind to an epitope of the peptide or polypeptide of the invention (Schier, Human Antibodies Hybridomas 7 (1996), 97-105; Malmborg, J. Immunol. Methods 183 (1995), 7-13). In many cases, the binding phenomena of antibodies to antigens is equivalent to other ligand/anti-ligand binding.

10

15

20

25

30

35

-25

In another embodiment the present invention relates to an oligonucleotide probe comprising a nucleotide sequence having at least 15 continuous nucleotides of a polynucleotide of the invention and/or encoding the above described antigen. Such oligonucleotides will usually specifically hybridize to a polynucleotide encoding a water-soluble ligand-binding protein of the invention. Specific hybridization occurs preferably under stringent conditions and implies no or very little cross-hybridization with nucleotide sequences encoding no or substantially different proteins. Such nucleic acid molecules may be used as probes and/or for the control of gene expression. Nucleic acid probe technology is well known to those skilled in the art who will readily appreciate that such probes may vary in length. Preferred are nucleic acid probes of 17 to 35 nucleotides in length. Of course, it may also be appropriate to use nucleic acids of up to 100 and more nucleotides in length. The nucleic acid probes of the invention are useful for various applications. On the one hand, they may be used as PCR primers for amplification of polynucleotides according to the invention. Another application is the use as a hybridization probe to identify polynucleotides hybridizing to the polynucleotides of the invention by homology screening of genomic DNA libraries. Nucleic acid molecules according to this preferred embodiment of the invention which are complementary to a polynucleotide as described above may also be used for repression of expression of a gene comprising such a polynucleotide, for example due to an antisense or triple helix effect or for the construction of appropriate ribozymes (see, e.g., EP-B1 0 291 533, EP-A1 0 321 201, EP-A2 0 360 257) which specifically cleave the (pre)-mRNA of a gene comprising a polynucleotide of the invention. Selection of appropriate target sites and corresponding ribozymes can be done as described for example in Steinecke, Ribozymes, Methods in Cell Biology 50, Galbraith et al. eds Academic Press, Inc. (1995), 449-460. Standard methods relating to antisense technology have also been described (Melani, Cancer Res. 51 (1991), 2897-2901). Said nucleic acid molecules may be chemically synthesized or transcribed by an appropriate vector containing a chimeric gene which allows for the transcription of said nucleic acid molecule in the cell. Such nucleic acid molecules may further contain ribozyme sequences as described above.

In this respect, it is also to be understood that the polynucleotide of the invention can be used for "gene targeting" and/or "gene replacement", for restoring a mutant gene or for creating a mutant gene via homologous recombination; see for example Mouellic, Proc. Natl. Acad. Sci. USA, 87 (1990), 4712-4716; Joyner, Gene Targeting, A Practical Approach, Oxford University Press.

-26

Furthermore, the person skilled in the art is well aware that it is also possible to label such a nucleic acid probe with an appropriate marker for specific applications, such as for the detection of the presence of a polynucleotide of the invention in a sample derived from an organism, in particular mammals, preferably human. A number of companies such as Pharmacia Biotech (Piscataway NJ), Promega (Madison WI), and US Biochemical Corp (Cleveland OH) supply commercial kits and protocols for these procedures. Suitable reporter molecules or labels include those radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles and the like. Patents teaching the use of such labels include US Patents US-A-3,817,837; US-A-3,850,752; US-A-3,939,350; US-A-3,996,345; US-A-4,227,437; US-A-4,275,149 and US-A-4,366,241. Also, recombinant immunoglobulins may be produced as shown in US-A-4,816,567 incorporated herein by reference.

Furthermore, the so-called "peptide nucleic acid" (PNA) technique can be used for the detection or inhibition of the expression of a polynucleotide of the invention. For example, the binding of PNAs to complementary as well as various single stranded RNA and DNA nucleic acid molecules can be systematically investigated using thermal denaturation and BIAcore surface-interaction techniques (Jensen, Biochemistry 36 (1997), 5072-5077).

20

25

30

35

5

10

15

The present invention also relates to a method for the production of a transgenic non-human animal, preferably transgenic mouse, comprising introduction of a polynucleotide or vector of the invention into a germ cell, an embryonic cell, stem cell or an egg or a cell derived therefrom. The non-human animal can be used in accordance with a screening method of the invention described herein. Production of transgenic embryos and screening of those can be performed, e.g., as described by A. L. Joyner Ed., Gene Targeting, A Practical Approach (1993), Oxford University Press. The DNA of the embryonal membranes of embryos can be analyzed using, e.g., Southern blots with an appropriate probe; see supra. The invention also relates to transgenic non-human animals such as transgenic mouse, rats, hamsters, dogs, monkeys, rabbits, pigs, C. elegans and fish such as Torpedo fish comprising a polynucleotide or vector of the invention or obtained by the method described above, preferably wherein said polynucleotide or vector is stably integrated into the genome of said non-human animal, preferably such that the presence of said polynucleotide or vector leads to the expression of the water-soluble protein of the present invention.

-27

The present invention further relates to composition comprising any one of the above described water-soluble ligand-binding proteins, multimers such as dimers or pentamers thereof, ligand-gated ion channels, polynucleotides, vectors, host cells, antigens, antibodies, or oligonucleotide probes of the invention; and optionally suitable means for detection or performing a ligand-receptor binding assay. In this context, the present invention also relates to a method for identifying an agonist/activator or antagonist/inhibitor of a ligand-gated receptor comprising the steps of:

- (a) contacting the water-soluble ligand-binding protein of the present invention, multimers such as dimers or pentamers thereof, or the ligand-gated ion channel of the invention or a cell expressing said protein in the presence of components capable of providing a detectable signal in response to ligand binding with a compound to be screened under conditions that permit binding of said compound to the ligand-binding protein; and
- 15 (b) detecting the presence or absence of a signal generated from the binding activity of the ligand-binding protein, wherein the presence/increase and absence/decrease of the signal is indicative for an agonist/activator and antagonist/inhibitor, respectively, of a ligand-gated receptor.
- Since ligand-gated receptors are modulated allosterically by natural polyamines, 20 such as spermine, and by polyamine derivatives, such as polyamine amides (e.g. and polymethylene tetraamines (e.g. philanthotoxin-343) (Usherwood, Farmaco. 55 (2000), 202-205) compounds comprising or based on such entities may be used as starting material for screening. An antagonist or agonist that "modulates the activity" of a polypeptide and causes an altered signal, for 25 example response in the cell refers to a compound that alters the activity of the protein so that it behaves differently in the presence of the compound than in the absence of the compound. Typically, the effect of an antagonist is observed as a blocking of agonist-induced receptor activation. Antagonists include competitive as well as non-competitive antagonists. A competitive antagonist (or competitive 30 blocker) interacts with or near the site specific for agonist binding. A non-competitive antagonist or blocker inactivates the function of the receptor by interacting with a site other than the agonist interaction site. As understood by those of skill in the art, bloassay methods for identifying compounds that modulate the activity of receptors such as proteins of the invention generally require comparison to a control. One type 35 of "control" is a cell or culture that is treated substantially the same as the test cell or test culture exposed to the compound, with the distinction that the "control" cell or

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-28

culture is not exposed to the compound. For example, in methods that use voltage clamp electrophysiological procedures, the same cell can be tested in the presence or absence of compound, by merely changing the external solution bathing the cell. Accordingly, the response of the transfected cell to the "control" cell or culture to the same compound under the same reaction conditions. However, "control data" can also be used from the literature.

As described in Example 6 the 3-dimensional structure of AChBP could be solved by X-ray crystallography at 2.7Å resolution (current Rfactor = 27.9 %, Rfree = 30.0 %). In crystals, as in solution, AChBP forms a stable homo-pentamer with dimensions comparable to those of the ligand-binding domain of ligand-gated ion channels, in particular comparable to the nAChR, as determined in EM studies by Unwin and coworkers; see supra. The structural analysis revealed that in the AChBP homopentamer the monomers have immunoglobulin-like topology. At each of five subunit interfaces a ligand-binding site is located, with all residues consistent with biochemical data. In this site a buffer molecule (HERPES) stacks with cation- π interactions on a tryptophan, resembling acetylcholine binding. The AChBP structure is relevant for the development of drugs against, *e.g.*, Alzheimer's disease and nicotine addiction. The high-resolution crystal structure of AChBP, along with biochemical and pharmacological data, supports the teaching of the present invention that the water-soluble ligand-binding proteins of the invention such as AChBP are good mimics of ligand-binding domains of ligand-gated ion channels.

Thus, the present invention relates to a crystal of a water-soluble ligand-binding protein of the invention, preferably in a multimeric form such as dimer, pentamer or decamer. In one embodiment said crystal comprises a protein-ligand complex.

Methods how to employ and analyze such crystals are known to the person skilled in the art; see for example US-A-5,872,011 which describes the crystal structure of a

protein-ligand complex containing an N-terminal truncated eIF4E and uses thereof.

The crystal structure of the ligand-gated receptor ligand-binding region in a complex with a ligand, preferably being an antagonist or agonist will reveal the determinants of receptor-antagonist/agonist interactions and how ligand-binding specificity and affinity are altered by remote residues and the redox state of the conserved disulphide bond. The structure may also indicate mechanisms for allosteric effector action and for ligand-induced channel gating. How the information on the crystal structure of a ligand-binding region in a complex with a ligand can be used for the development of agonists and antagonists has been described for the structure of a

10

15

20

25

WO 01/58951 PCT/EP01/01457

-29

glutamate-receptor ligand-binding core in complex with kainate (Armstrong et al., Nature 395 (1998), 913-917).

The crystal of the invention, in particular when comprising nAChR related proteins can be a complex of the protein with a ligand comprising an N-alkylated hydroxyalkyl and/or a quaternary ammonium ion. However, other ligands my be used as well. Preferred ligands comprise 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), B-bippinatin, lophotoxin, d-tubocurarine, nicotine, acetylcholine, conotoxin, carbamylcholine, galanthamine, epibatidine or alpha-bungarotoxin or derivatives thereof.

Different aspects of X-ray crystallography are such as data collection, structure solution, determining the molecular structure from X-ray diffraction, refinement, etc. are described in the prior art, see, e.g., Powell, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 96 (2000), 139-175 and Methods in Enzymology, 276-277, edited by Carter and Sweet, Academic Press, 1997. Current methods and optimization algorithms for the refinement of X-ray crystal structures are described by Van Der Maelen Uria, Crystallogr. Rev. 7 (1999), 125-180.

The crystal of the invention effectively diffracts X-rays for the determination of the atomic coordinates of the protein or protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms. In a preferred embodiment the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 3.0 Angstroms. In a more preferred embodiment the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 2.0 Angstroms. In one embodiment the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of about 2.7 Angstroms.

Preferably, the crystal of the invention is formed by a protein that has an amino acid sequence of amino acids 20 to 223 of SEQ ID No. 2, or an amino acid sequence that differs from amino acid 20 to 223 of SEQ ID No. 2 by only having conservative substitutions. As is described in the examples, the crystals of the AChBP comprise decameric forms of the protein. In order to ease the use of the AChBP protein for analysis and crystallography it is envisaged to create a mutation in residue Asp2 and Asp5 of the mature AChBP SEQ ID No. 2 or 4 to remove the calcium binding site, and prevent creation of a decamer. This deletion can be done for example by

15

20

25

30

WO 01/58951 PCT/EP01/01457

-30

oligonucleotide-directed mutagenesis. Alternatively crystals could be grown in a low calcium concentration or in the absence of calcium.

The crystal of the present invention preferably has (1) a space group of $P2_12_12_1$ and a unit cell of dimensions of a=120.6Å, b=137.0Å and c=161.5Å; (2) a space group of $P4_22_12$ and a unit cell of dimensions of a=b=141.6Å and c=120.8Å or (3) a space group of $P2_1$ and a unit cell of dimensions of a=121.1Å, b=162.1Å, c=139.4Å, β =90.1°.

The crystal of the present invention is preferably from a protein that has secondary structural elements that include .alpha.-helix and antiparallel .beta.-sheets as shown in and described for Figures 7, 10, 11 and/or 12. Most preferably, the crystal of the invention has a three-dimensional structure as defined by atomic coordinates shown in Table 1. Those of skill in the art understand that a set of structure coordinates determined by X-ray crystallography is not without standard error. For the purpose of this invention, any set of structure coordinates for AChBP or AChBP mutants that have a root mean square deviation of protein backbone atoms (N, C.alpha., C and O) of less than 0.75 Angstrom when superimposed - using backbone atoms - on the structure coordinates listed in Table 1 shall be considered identical.

In a most preferred embodiment of the present invention, the crystal has a binding cavity as shown in Figures 6, 8, 9 and/or 13.

In accordance with the findings of the present invention, it is proposed to use the water-soluble ligand-binding proteins of molluscs as the blueprint for the receptor binding site of the ligand-gated ion channel superfamily including nACh, 5-HT3, glycine, GABAA, and GABAC, most preferably for the nAChR. The availability of X-ray structures, and the cloned sequences provide a unique opportunity to understand these receptors at the molecular level, possibly unravel the dynamic changes occurring upon ligand binding, and predict their tertiary and quaternary structure with a higher degree of confidence than possible for other protein modules. This should pave the way for designing ligands selective for any of the multiple subtypes in any of these receptor families. The AChBP-like structures can be used for computerized docking to homology models which leads to the *a priori* discovery of novel ligands before laboratory experiments begin to optimize the drug candidates.

Thus, the present invention also relates to a method of using the crystal of the invention in a drug screening assays, such as comprising:

35 (a) selecting a potential ligand by performing structure assisted drug design with the three-dimensional structure determined for the crystal,

15

20

25

WO 01/58951 PCT/EP01/01457

-31

- wherein said selecting is performed in conjunction with computer modeling; optionally
- (b) contacting the potential ligand with the ligand binding domain of the ligand-gated receptor in an in vitro or in vivo assay; and
- 5 (c) detecting the binding of the potential ligand for the ligand binding domain.

The use of macromolecular crystallography as a tool for investigating drug and receptor interactions, in particular structure-based drug design is reviewed in Oakley and Wilce, Clin. Exp. Pharmacol. Physiol. 27 (2000), 145-151. The desired drug could be an inhibitor or an agonist that mimics endogenous transmitters or ligands. Once the 3-D structure of the relevant target is known, computational processes can be used to search databases of compounds to identify ones that may interact strongly with the target. Lead compounds can be improved using the 3-D structure of the complex of the lead compound and its biological target. The activity of the selected compound can then be tested in a functional assay such as one of those described herein.

Preferably, the potential drug is selected on the basis of its having a greater affinity for the ligand binding domain of the ligand-gated receptor than that of a standard ligand for the ligand binding domain of the ligand-gated receptor. However, the affinity of the selected compound may also be less than that of a standard ligand. Such compounds are useful for example as a lead for the development of further analogues which in turn may have enhanced binding affinity or otherwise beneficial therapeutic properties. On the other hand, the selected compound may bind to a site of the ligand-gated receptor other than known ligands. In a preferred embodiment, the ligand-gated receptor is a nicotinic acetylcholine receptor.

In a further embodiment, the method of the present invention further comprises:

- (d) forming a supplemental crystal of a protein-ligand complex by co-30 crystallization or soaking the crystal of the water-soluble ligand-binding protein with a potential drug, wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms, more preferably greater than 3;
- 35 (e) determining the three-dimensional structure of the supplemental crystal;

-32

- (f) selecting a candidate drug by performing a structure assisted drug design with the three-dimensional structure determined for the supplemental crystal, wherein said selecting is performed in conjunction with computer modeling; optionally
- 5 (g) contacting the candidate drug with a cell that expresses the ligandgated receptor; and
 - (h) detecting a cell response; wherein a candidate drug is identified as a drug when the cell response is altered compared to a cell that has not been contacted with the candidate compound.
- The above described methods can further comprise an initial step that precedes step

 (a) wherein said initial step consists of determining the three-dimensional structure of
 a crystal comprising a protein-ligand complex formed between the water-soluble
 ligand-binding protein, and the ligand of the ligand-gated receptor, wherein the
 crystal effectively diffracts X-rays for the determination of the atomic coordinates of
 the protein-ligand complex to a resolution of greater than 5.0, preferably greater than
 4.0 Angstroms. Preferably, the resolution of crystal diffraction in the above described
 methods is at least 3.0, most preferably at least about 2.7 Angstroms.

In a still further embodiment, the present invention relates to a method of growing a crystal of a protein-ligand complex comprising:

- (a) contacting the water-soluble ligand-binding protein described above with a ligand of a ligand-gated receptor, wherein the water-soluble ligand-binding protein forms a protein-ligand complex with the ligand; and
- (b) growing the crystal of the protein-ligand complex; wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms, more preferably at least 3.0, most preferably at least about 2.7 Angstroms.
- The crystals of the present invention can also be used in X-ray crystallography-driven screening technique that combines the steps of lead identification, structural assessment, and optimization such as described for example in Nienaber et al., Nature Biotechnol. 18 (2000), 1105 1108. This crystallographic screening method (named CrystaLEAD) has been used to sample large compound libraries and detecting ligands by monitoring changes in the electron density map of the crystal relative to the unbound form. The electron density map yields a high-resolution picture of the ligand-protein complex that provides key information to a structure-

-33

directed drug discovery process. The bound ligand is directly visualized in the electron density map. Ligands that bind away from the targeted site may be eliminated.

The above described methods can be coupled with state-of-the-art laboratory data collection facilities including CCD detectors and data acquisition robotics.

Further embodiments that may be used in accordance with the ligand-binding proteins and receptor of the present invention are described in the prior art, for example ligand screening and design by X-ray crystallography is disclosed in WO99/45379 and WO99/45389; WO00/14105 describes assaying a candidate compound for its ability to interact with a modified receptor tyrosine kinase including obtaining and applying crystallography coordinates to a computer algorithm for generating a model which is applied in an iterative process to various molecular structures in order to identify agonist and antagonists of the receptor. All these methods may be equally applied to the proteins and crystals of the present invention.

15

20

10

5

In one preferred embodiment, the present invention relates to a drug screening assay comprising soaking a crystal of the invention in a solution of compounds to be screened and detecting the binding of the compound to the ligand-binding protein. A possible procedure is also described in Example 9. Besides the detection methods of ligand-binding mentioned above, in the cited documents and in the examples, the detection can also be based on measuring the release of the ligand in the preformed crystal of a protein-ligand complex. As described herein before, said ligand preferably comprises an alkylated nitrogen and/or quaternary ammonium ion or may be one of those described above.

25

30

35

The structural information on the crystals of the present invention can also be used for increasing or decreasing the affinity of a drug to a ligand-gated receptor. Such a method can comprise performing structure assisted drug design with the three-dimensional structure determined for the crystal, wherein said drug design is performed in conjunction with computer modeling; and modifying said drug to alter or eliminate a portion thereof suspected of interacting with a binding site of the binding cavity or with a non-specific binding site of the protein in the crystal. This method can, of course, be combined with one or more steps of any of the above described screening methods or other screening methods well known in the art. Methods for clinical compound discovery comprises for example ultrahigh-throughput screening (Sundberg, Curr. Opin. Biotechnol. 11 (2000), 47–53) for lead identification, and structure-based drug design (Verlinde and Hol, Structure 2 (1994), 577–587) and

-34

combinatorial chemistry (Salemme et al., Structure 15 (1997), 319–324) for lead optimization. Further information that could be taken into account for drug selection and design so far available for the localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors have recently been reviewed (Arias, Neurochem. Int. 36 (2000), 595-6450; Corringer et al., 1999). Once a drug has been selected, the method can have the additional step of repeating the method used to perform rational drug design using the modified drug and to assess whether said modified drug displays better affinity according to for example interaction/energy analysis.

10

15

20

25

5

A related method of the present invention for drug design comprises the step of using the structural coordinates of the water-soluble ligand-binding protein crystal comprising the coordinates of Table 1, to computationally evaluate a chemical entity for associating with the ligand-binding site or a non-specific binding site of a ligandbinding protein. This approach, made possible and enabled by this invention, is to screen computationally small molecule data bases for chemical entities or compounds that can bind in whole, or in part, to the AChBP. In this screening, the quality of fit of such entities or compounds to the binding site may be judged either by shape complementarity or by estimated interaction energy. Meng, et al., J. Coma. Chem. 13 (1992), 505-524. In addition, in accordance with this invention, AChBP mutants or chimerics may be crystallized in co-complex with known ligand-gated ion channel inhibitors. The crystal structures of a series of such complexes may then be solved by molecular replacement (for review see for example Brunger er al. Prog. Biophys. Mol. Biol. 72 (1999), 135-155; and references cited therein) and compared with that of wild-type AChBP. Potential sites for modification within the various binding sites of the ligand-binding domain may thus be identified. This information provides an additional tool for determining the most efficient binding interactions, for example, increased hydrophobic interactions, between AChPB and a chemical entity or compound.

The design of compounds that bind to or inhibit ligand-gated ion channels according to this invention generally involves consideration of two factors.

First, the compound must be capable of physically and structurally associating with the ligand-binding domain. Non-covalent molecular interactions important in the association of the ligand-binding domain with its ligand include hydrogen bonding,

35 van der Waals and hydrophobic interactions.

Second, the compound must be able to assume a conformation that allows it to associate with the ligand-binding domain. Although certain portions of the compound

10

15

20

25

30

35

-35

will not directly participate in this association, those portions may still influence the overall conformation of the molecule. This, in turn, may have a significant impact on potency. Such conformational requirements include the overall three-dimensional structure and orientation of the chemical entity or compound in relation to all or a portion of the binding site or the spacing between functional groups of a compound comprising several chemical entities that directly interact with the AChBP.

If the theoretical structure of the given compound suggests insufficient interaction and association between it and AChBP, synthesis and testing of the compound is obviated. However, if computer modelling indicates a strong interaction, the molecule may then be synthesized and tested for its ability to bind to AChPB or a ligand-gated ion channel and functionally tested according to the methods mentioned above. In this manner, synthesis of inoperative compounds may be avoided. Once suitable chemical entities or fragments have been selected, they can be assembled into a single compound or inhibitor. Assembly may be proceed by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a computer screen in relation to the structure coordinates of AChBP. This would be followed by manual model building using software such as Quanta or Sybyl. Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include CAVEAT (Bartlett, et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules". In Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc. 78 (1989), 182-196); 3D Database systems such as MACCS-3D (Martin, J. Med. Chem. 35 (1992), 2145-2154) and HOOK (Molecular Simulations, Burlington, Mass.). Instead of proceeding to build an AChBP ligand in a step-wise fashion one fragment or chemical entity at a time as described above, AChBP binding compounds may be designed as a whole or "de novo" using either an empty active site or optionally including some portion(s) of a known ligand(s). These methods include LUDI (Bohm, J. ComR. Aid. Molec. Design 6 (1992), 61-78); LEGEND (Nishibata and Itai, Tetrahedron 47 (1991), 8985); and LeapFrog (Tripos Associates, St. Louis, Mo.). Other molecular modelling techniques may also be employed in accordance with this invention; see, e.g., Cohen, J. Med. Chem. 33 (1990), 883-894 and Navia and Murcko, Current Opinions in Structural Biology 2 (1992), 202-210. Such computer modeling is preferably performed with a Docking program (Dunbrack

Methods for the identification of drugs or corresponding lead compounds in computational prescreen using X-ray crystal structures are described in the prior art

et al., Protein Sci. 6 (1997), 1661-1681 and Folding Des. 2 (1997), R27-R42).

-36

(Verlinde and Hol, Structure 2 (1994), 577–587; Kuntz, Science 257 (1992), 1078–1082; Shuker et al., Science 274 (1996), 1531–1534; Fejzo et al., Chem. Biol. 6 (1999), 755–769; WO 98/58961). The structural information can be consulted to efficiently optimize leads. Computational programs have been written to identify compounds ranging from very small molecules or functional groups (GRID: Goodford, J. Med. Chem. 28 (1985), 849–857; MCSS: Caflish et al., J. Med. Chem. 36 (1993), 2142–2167) to potential lead scaffolds (DOCK: Kuntz et al., Accounts Chem. Res. 27 (1994), 117–123) using solved X-ray crystal structures. Another method computationally prescreens compound libraries and experimentally tests the individual "hits" by X-ray crystallography (Verlinde et al., J. Comput. Aided Mol. Des. 6 (1992), 131–147) in order to decrease the size of the screening library. In addition, an experimental approach has been developed to find organic solvents that bind to active sites that may be recombined into a lead macromolecule (Allen et al., J. Phys. Chem. 100 (1996), 2605–2611).

15

20

25

10

5

Once a compound has been designed or selected by the above methods, the efficiency with which that compound may bind to the AChBP or a corresponding ligand-binding domain may be tested and optimized by computational evaluation. For example, a compound that has been designed or selected to function as an inhibitor must preferably demonstrate a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient inhibitors should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, preferably, not greater than 7 kcal/mole. Inhibitors may interact with the ligand-binding domain in more than one conformation that is similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free compound and the average energy of the conformations observed when the inhibitor binds to the AChBP.

A compound designed or selected as binding to AChBP may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target ligand-binding domain. Such non-complementary (e.g., electrostatic) interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions. Specifically, the sum of all electrostatic interactions between the ligand and the AChBP when the ligand is bound to AChBP, preferably make a neutral or favorable contribution to the enthalpy of binding. Specific computer software is available in the art to evaluate compound deformation

-37

energy and electrostatic interaction. Examples of programs designed for such uses include Gaussian 92, revision C (Frisch, Gaussian, Inc., Pittsburgh, Pa.); AMBER, version 4.0 (Kollman, University of California at San Francisco); QUANTA/CHARMM (Molecular Simulations, Inc., Burlington, Mass.); and Insight II/Discover (Biosysm Technologies Inc., San Diego, Calif.). These programs may be implemented, for instance, using a Silicon Graphics workstation, IRIS 4D/35, IBM RISC/6000 workstation model 550 or better a Unix workstation (SGI, Alpha, Sun, etc.) or any Linux PC. Other hardware systems and software packages will be known to those skilled in the art.

Once an AChBP-binding compound has been optimally selected or designed, as described above, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to AChBP by the same computer methods described in detail, above. As mentioned before, the above described methods of the present invention can also be used as an initial drug screening assay followed by a classical drug screening assay using the biochemical assays known in the art.

Methods for the preparation of compounds, chemical derivatives and analogues are well known to those skilled in the art and are described in, for example, Beilstein, Handbook of Organic Chemistry, Springer edition New York Inc., 175 Fifth Avenue, New York, N.Y.

25

30

35

20

5

10

15

In one embodiment of the method of the present invention the identified drug prevents or promotes correct assembly of a ligand-gated ion channel. Thus, the selected drug may for example either interfere with the contact regions of the monomers of the ligand-gated ion channel or may act as a scaffold for the assembly. In the latter case, the drug may be based for example on an antibody which binds to the contact regions of two or more monomers when assembled and thus facilitates the assembly process. Preferred contact regions with respect to the AChBP and the related nicotinic acetylcholine receptor are given below. In a still further embodiment of the above described methods, the drug can be selected such as to bind to a non-specific binding site of a ligand-gated ion channel. The non-specific binding site can for example include those contact regions that are highly conserved between the monomers of the ligand-gated ion channels.

- 10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-38

Once a drug has been selected in accordance with any one of the above described methods of the present invention, the drug or a pro-drug thereof can be synthesized in a therapeutically effective amount. As used herein, the term "therapeutically effective amount" means the total amount of the drug or pro-drug that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of a condition related to an ligand-gated ion channel, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. In addition or alternatively, in particular with respect to pre-clinical testing of the drug the term "therapeutically effective amount" includes the total amount of the drug or pro-drug that is sufficient to elicit a physiological response upon its binding to its target ligand-gated ion channel in an non-human animal test.

The present invention also relates to a drug produced by any one of the above described methods of the present invention, or a pro-drug thereof. Preferably, the drug or pro-drug thereof is present either alone or in a composition in a therapeutically effective amount.

The drug obtained by a method of the present invention may be characterized by its interaction with the binding sites in the binding cavity defined by the coordinates of crystal structure of the protein-ligand complex; for examples of such characterization see, e.g., US-A-5,798,247. Preferably, the drug, for example a potential inhibitor will form non-covalent bonds with one or more amino acids in the active site based upon the crystal structure. On the other hand, the drug may bind to a contact region of the individual monomers of the pentameric ligand-gated receptor. For example, multimer contact regions in *Lymnaea stagnalis* AChBP (SEQ ID No. 2) have been identified. Consecutive regions have at least every second residue involved in contacts with the other monomer. Contacts have been defined as 2 atoms within 4.2 angstrom distance in 2.7 Angstrom structure. The primary contact regions in mature AChBP (residues from A contacting B) are 15-21, 44-47, 85-87, 91-94, 122-124,143-146, 149, 185-187 and the complementary contact regions (from B contacting A, (identical to residues on A contacting E) are 3-4, 7-8, 11, 37-39, 53, 75-77, 96-104, 114-118, 163-170; see also Figure 14.

Thus, in one preferred embodiment the drug of the present invention interacts with a ligand-gated receptor comprising a pentamer with monomers A to E, wherein the drug binds to one or more primary contact regions of a monomer (residues from A contacting B) defined by amino acid residues 15 to 21, 44 to 47, 85 to 87, 91 to 94, 122 to 124, 143 to 146, 149, 185 to 187 of SEQ ID No. 2 and/or to one or more of the

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-39

complementary contact regions of the other monomer (from B contacting A, (identical to residues on A contacting E) defined by amino acid residues 3 to 4, 7 to 8, 11, 37 to 39, 53, 75 to 77, 96 to 104, 114 to 118 and 163-170 of SEQ ID No. 2; or to one of the contact regions identified in Figure 14; or to the corresponding contact regions of the monomers of a ligand-gated ion channel. Preferably, the ligand-gated ion channel is the nicotinic acetylcholine receptor and the order of the monomers is $\alpha y \alpha \delta \beta$.

Any available method may be used to construct such model from the crystallographic and/or amino acid sequence data disclosed herein or obtained from independent analysis of crystalline AChBP proteins or other water-soluble ligand-binding proteins of the present invention. Such a model can be constructed from available analytical data points using known software packages such as HKL, MOSFILM, XDS, CCP4, SHARP, PHASES, HEAVY, XPLOR, TNT, NMRCOMPASS, NMRPIPE, DIANA, NMRDRAW, FELIX, VNMR, MADIGRAS, QUANTA, BUSTER, SOLVE, O, FRODO, RASMOL, CNS, REFMAC, ARP/WARP, XTALVIEW and CHAIN. The model constructed from these data can then be visualized using available systems, including, for example, Silicon Graphics, Evans and Sutherland, SUN, Hewlett Packard, Apple Macintosh, DEC, IBM, and Compaq. The present invention also provides for devices such as a computer system which comprises the model of the invention and hardware used for construction, processing and/or visualization of the model of the invention. Further embodiments provide a computer system comprising computer hardware and the model of the present invention. The study of the interaction of the candidate species with the model can be performed using available software platforms, including QUANTA, RASMOL, O, CHAIN, FRODO, INSIGHT. DOCK, MCSS/HOOK, CHARMM, LEAPFROG, CAVEAT (UC Berkley), CAVEAT (MSI), MODELLER, CATALYST, XTALVIEW and ISIS. Computer readable media such as floppy discs, CD ROMs, tapes, and any other storage or processing means comprising crystallographic and/or nucleotide/amino acid sequence data disclosed herein or obtained from Independent analysis of crystalline AChBP proteins or other water-soluble ligand-binding proteins of the present invention are subject of the present invention as well. Any one of the mentioned means and devices can advantageously be used for modeling an antagonist/inhibitor or agonist/activator of a ligand-gated receptor.

Furthermore, the present invention relates to the construction of theoretical three dimensional (3D) models of ligand-binding domains of ligand-gated ion channels by computer-assisted molecular modeling using the X-ray coordinates of the water-soluble ligand-binding proteins of the invention. These 3D models can correspond

-40

either to the entire ligand-binding domain (~220 to 240 extracellular amino acids) or may be limited to the ligand-binding site.

The concept of using 3D structures of the mollusc ligand-binding proteins for molecular modeling and tool for structure prediction of for example mammalian, in particular human ligand-gated ion channels gains support from the observation that the ligand-binding domain of vertebrate glutamate receptor channels and bacterial periplasmic substrate-binding proteins (PBPs) share similar 3D structures despite the very low sequence similarity between ionotropic glutamate receptor subunits and the PBPs that were used as templates (12%); for review see Paas et al. TiPS 21 (2000),

10 87- 92 and refernces cited therein

15

20

25

30

35

Thus, on the basis of a computer-assisted molecular modeling, optionally supplemented by for example functional studies of site-specific mutants, the crystal structure of the ligand-binding domain of ligand-gated ion channels and theoretical 3D models of these domains can be predicted. In turn, these models can be used for structure assisted drug design. The predicted models may be further refined, for example by monitoring the effects of mutations of amino acid residues that are probably located in the ligand-binding site on (1) agonist-elicited channel activation and desensitization, (2) inhibition of channel activity by various competitive receptor antagonists; or (3) the binding of various ligands. Experimental setups for analyzing such effects are known to the person skilled in the art, see also the documents cited for functional assay systems of ligand-gated ion channels.

Thus, the embodiments of the present invention enable various possibilities for identification and modeling new ligands of ligand-gated ion channels as well as modifying the ion channels themselves. Accordingly, the present invention relates to the use of the above described polynucleotides, proteins, dimers and pentamers, ligand-gated ion channels, vectors, host cells, antigens, antibodies, oligonucleotide probes, crystals, their structural coordinates and methods for screening or profiling putative ligands of ligand-gated receptors.

Methods for the lead generation in drug discovery using proteins and detection methods such as mass spectrometry (Cheng et al. J. Am. Chem. Soc. 117 (1995), 8859–8860) and some nuclear magnetic resonance (NMR) methods (Fejzo et al., Chem. Biol. 6 (1999), 755–769; Lin et al., J. Org. Chem. 62 (1997), 8930–8931).

The newly identified drug obtained by a method of the present invention, i.e. an antagonist/inhibitor or agonist/activator can be used for the preparation of a pharmaceutical composition for the treatment of a ligand-gated ion channel mediated or related disorder. Such disorders are well know to the person skilled in the art. For

-41

example, possible applications of agonist and antagonists to nAChRs are based on their participation in complex functions such as attention, memory, and cognition, and their involvement in the pathogenesis of certain neuropsychiatric disorders (Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, etc). For the majority of these disorders, the use of nAChRs' agonists may represent either a prophylactic (esp. for Alzheimer's and Parkinson's diseases) or a symptomatic treatment; for review see for example Mihailescu and Drucker-Colin, Arch. Med. Res. 31 (2000), 131-144.

The medicinal chemistry and molecular biology of GABA-activated ligand-gated ion channels also in terms of agonist and antagonist structural profiles is described in Chebib et al., J. Med. Chem. 43 (2000), 1427-1447.

Glycine receptors and disorders of glycinergic neurotransmission are extensively reviewed in Rajendra et al., Pharmacol. Ther. 73 (1997), 121-146 and Barry et al., Clin. Exp. Pharmacol. Physiol. 26 (1999), 935-936.

The central role of 5-HT3 receptor in CNS disorders and 5-HT3 receptor antagonists are described in Bloom and Morales, Neurochemical Research 23 (1998), 653-659 and Higgins and Kilpatrick, Expert Opin. Invest. Drugs 8 (1999), 2183-2188.

In one embodiment, the antagonist/inhibitor is or is derived from a protein, an antigen, antibody or from a toxin of the ligand-gated ion channel. Likewise, the agonist/activator can be derived from a protein, an antigen, antibody or from a toxin of the ligand-gated ion channel. Possible starting points comprise for example peptide toxins, e.g., conotoxin (IMI) and alpha bungarotoxin, lophotoxins (Bippinatins), tubocurarine, decamethonium, alpha-cobratoxin, epibatidine, acetylcholine, choline, nicotine, carbachol, serotonin or GABA. The structure of these molecules together with that of the crystal of the target ligand-binding domain can be used to model the compound and elucidate side chains, functional groups etc. which may be added, deleted or modified in order to improve for example affinity and/or specificty of the drug or for example make a drug which acts on a different target non-reactive with a certain ligand-gated ion channel.

In a preferred embodiment for the uses according to the present invention, the ligand-gated ion channel is the nicotinic acetylcholine receptor and said mediated or related disorder is Tourette's syndrome, Alzheimer's disease, addiction to nicotine or schizophrenia.

35

20

25

30

As mentioned herein before, this is the first time it could be shown that water-soluble ligand-binding proteins exists in molluscs, which closely resemble the ligand-binding

-42

domain of ligand-gated ion channel of higher mammals. It is expected that similar ligand-binding proteins exist in other molluscan species or even in the lineage the Mollusca, Protostomia, Coelomata, Bilateria, Eumetazoa, Metazoa, Fungi/Metazoa group. Accordingly, the present invention also relates to the use of a ligand of a ligand-gated ion channel for identifying and isolating a water-soluble ligand-binding protein from such species, preferably from a mollusc. Preferably, the ligand used for the isolation of the protein is α -bungarotoxin. The water-soluble ligand binding proteins obtainable from these organisms as well as derivatives that can be made in accordance with the teaching present herein are also subject of the present invention.

Furthermore, for the first time the crystal structure of a nicotinic binding site has been revealed. This crystal structure shows that the molluscan AChBP is a homolog of the LGIC superfamily ligand binding domains. It reveals the Ig-topology, the location of the binding site at the subunit interface, the position of the MIR and the extensive data on the nicotinic ligand binding residues. Importantly, it gives important new information about the exact fold and the arrangement of the nicotinic ligand-binding site in three dimensions. It shows the presence of a second pocket that has been noticed by EM analysis. Furthermore, it clarifies the arrangement of subunits by showing the relative positioning of the principal and complementary part of the ligand-binding site. It provides an explanation of the role of the LGIC superfamily conserved residues in stabilizing the monomer structure by the formation of hydrophobic cores and packing of secondary structure elements and it makes clear how the pentamers are built up, and how weakly the pentamer interfaces are conserved between LGICs.

This structure can be used for the numerous drug-design studies that are targeting the LGIC superfamily. The general structural knowledge on its folding will be applicable to the GABA, serotonin (5HT₃) and glycine receptor fields. It will help to understand their ligand-binding characteristics and could thus have impact on development of e.g. anti-emetics almed at the 5HT₃ receptor or the mood-defining drugs that target the GABA receptors. However, the availability of a three-dimensional description of the nicotinic ligand-binding site will be especially relevant for the design of new drugs against Alzheimers' disease, epilepsy and the addiction to smoking which have the neuronal nicotinic receptors as their targets.

35

10

20

25

30

Many embodiments and the examples feature the acetylcholine-binding protein (AChBP) of the invention and the embodiments generally described herein are

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-43

preferably related to the nicotinic acetylcholine receptor (nAChR), more preferably to the alpha subunit, and most preferably to the alpha 7 subunit. However, it should be understood that all embodiments equally apply to the other water-soluble ligand-binding proteins and generally to the ligand-gated ion channels mentioned herein. For example, the crystal structure of the AChBP can be used to model new ligands for the acetylcholine receptor, preferably such with inhibiting or stimulating action on the acetylcholine receptor. Likewise, it is possible to identify and model new ligands for other ligand-gated ion channels (including glycine, GABA and serotonin receptor) with inhibiting action. Such ligands may for example prevent correct assembly of ligand gated ion channels. Preferably such ligands prevent correct assembly of specific sub types of ligand gated ion channels. On the other hand, ligands can be identified and modeled that promote correct assembly of ligand gated ion channels, preferably of specific sub types of ligand gated ion channels. As mentioned before, the methods of the present invention also allow modeling inhibitors for the non-specific binding site of ligand gated ion channels.

In addition, it is possible to predict and create mutants and chimeras of AChBP with modified assembly behaviour, modified ligand binding behavior such as with increased resemblance of the binding site to the acetylcholine receptor subtype on the primary binding site and generally with increased resemblance to particular ligand-gated ion channels in activity and conformational changes. In view of the closest relationship between AChBP and the acetylcholine receptor it is particular preferred to create mutants and chimeras with increased resemblance of the binding site to the acetylcholine receptor subtype on the secondary binding site. However, the prediction and creation of mutants and chimeras with increased resemblance of the binding site to other ligand gated ion channels subtype on the primary binding site or on the secondary binding site are envisaged as well.

These and other embodiments are disclosed and encompassed by the description and Examples of the present invention. Further literature concerning any one of the antibodies, methods, uses and compounds to be employed in accordance with the present invention may be retrieved from public libraries and databases, using for example electronic devices. For example the public database "Medline" may be under Internet. for example is available on the which http://www.ncbi.nlm.nih.gov/PubMed/medline.html. **Further** databases and http://www.ncbi.nlm.nih.gov/, http://www.infobiogen.fr/, addresses. such as http://www.fmi.ch/biology/research_tools.html, http://www.tigr.org/, are known to the person skilled in the art and can also be obtained using, e.g., http://www.lycos.com.

.11

An overview of patent information in biotechnology and a survey of relevant sources of patent information useful for retrospective searching and for current awareness is given in Berks, TIBTECH 12 (1994), 352-364.

- This disclosure may best be understood in conjunction with the accompanying drawings, incorporated herein by references. Furthermore, a better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration and which are not intended as limiting.
- Unless stated otherwise in the examples, all recombinant DNA techniques are performed according to protocols as described in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, NY or in Volumes 1 and 2 of Ausubel et al. (1994), Current Protocols in Molecular Biology, Current Protocols. Standard materials and methods for plant molecular work are described in Plant Molecular Biology Labfase (1993) by R.D.D. Croy, jointly published by BIOS Scientific Publications Ltd (UK) and Blackwell Scientific Publications (UK).

20 Brief description of the drawings

25

30

35

Figure 1: Clustal X (1.8) multiple sequence alignment of AChBP amino acid sequences. The AChBP alignment was made using "ClustalX_1.8" (Thompson et al., Nucleic Acids Research 24 (1997), 4876-4882. The subsequent alignment was further processed using "Genedoc" version 2.5.000 (Nicholas et al. (1997) Genedoc a tool for editing and annotating multiple sequence alignments). Identical amino acids are indicated with "*", equivalent amino acid with ":", and similar amino acids with ".". Glycosylation sites are Asn 66 for L-AChBP and Asn 21 and 26 for B-AChBP in the amino acid sequence of the respective mature AChBP SEQ ID No. 2 and 4, and 6 and 8, respectively.

Figure 2: Hydrophobicity plots of the mature AChBP amino acid sequences. The B&L-AChBP hydrophobicity plots were made using "Protein sequence analyses" according to the method described in Kyte and Doolite (J. Mol. Biol. 157 (1982), 105-132). 2A: L-AChBP_T1 (SEQ ID No. 2), 2B: L-AChBP_T2 (SEQ ID No. 4), 2C: B-AChBP_T1 (SEQ ID No. 6), 2D: B-AChBP_T2 (SEQ ID No. 8).

-45

Figure 3:

5

10

Clustal X (1.8) multiple sequence alignment of AChBP amino acid sequences with the amino acid sequences of the ligand-binding domains of the ligand-gated receptors nAChR-α7, GABA_AR-β1, 5-HT3R and GlyR-α1. Sequence alignment and processing was performed as described for Figure 1. The accession numbers of the amino acid sequences used for the alignment are as follows: Human alpha1: Human alpha7: Y08420; Human 5HT3: CAA06442; Human GlyR_alpha1: S12382; Human GABA_b1: NP_000797. A similar sequence alignment can be performed with the corresponding rat (ratnAChRa7_Q05941, sequences rat5HT3R_P35563, ratGABARb1 P15431, ratGlyRa1_p24524) which will give substantially similar if not identical results.

15 Figure 4:

Clustal X (1.8) multiple sequence alignment of AChBP amino acid sequences with the amino acid sequences of nAChRs. Sequence alignment and processing was performed as described for Figure 1. The accession numbers of the amino acid sequences used for the alignment are as follows: Human alpha1: ACHUA1; Human alpha2: AAG23253; Human alpha3: A53956; Human alpha4: P43681; Human alpha5: P30532; Human alpha6: Q15825; Human alpha7: Y08420; Human alpha9: CAB65091. A similar sequence alignment can be performed with the corresponding rat sequences (ratnAChRa7_Q05941, rnAChRa9_P43144, rnAChR2_P1238, rnAChRa3_P04757, rnAChRa4_P09483) which will give substantially similar if not identical results.

25

30

20

Figure 5:

Clustal X (1.8) multiple sequence alignment of AChBP amino acid sequences with the amino acid sequences of nAChRs alpha 1 and 7. Sequence alignment and processing was performed as described for Figure 1. The accession numbers of the amino acid sequences used for the alignment are as follows: Human alpha1: ACHUA1; Human alpha7: Y08420. A similar sequence alignment can be performed with

WO 01/58951

PCT/EP01/01457

-46

the corresponding rat sequence ratnAChRa7_Q05941 which will give substantially similar if not identical results.

5 **Figure 6:**

The pentameric structure of AChBP. a In this schematic representation each monomer has a different grey level. Subunits are labeled anticlockwise, with A-B, B-C, C-D, D-E and E-A forming the plus and minus interface side, with the principal and complementary ligand-binding sites respectively (ball-and-stick representation). b Viewing the AChBP pentamer perpendicular to the five-fold axis. The equatorially located ligand-binding site (ball-and-stick representation) is highlighted only in the A (light) and B (dark) interface.

Figure 7:

The AChBP monomer. Ribbon representation of the AChBP monomer. The secondary structure starting from the N-terminus (top) towards the C-terminus (bottom). The monomer is viewed towards the center of the pentamer. In the nAChR, the top would correspond to the N-terminus of the ligand binding domain, pointing towards the synaptic cleft, while the C-terminus would be entering the membrane at the bottom, continuing into the transmembrane domain. The AChBP monomer is built up mainly of ß-strands, except for an N-terminal (helix. It contains 14 ß-strands that are organized in the two antiparallel ß-sheets, with an immunoglobulin topology. However, in contrast to the classical immunoglobulin fold, the AChBP ß-sheets are rotated against each other, forming a small pocket, as visible in Figure 6.

25

20

10

15

Figure 8:

The ligand-binding site at dimer interface. Ribbon representation of two neighboring AChBP monomers. Monomer A is shown in grey and monomer B in dark grey. The ligand-binding site is located at the interface between two monomers. As predicted for the nAChRs, the acetylcholine binding site in AChBP occurs at the interface between two neighboring subunits. Similar to the model proposed for the nAChRs, the ligand-binding site is asymmetric, formed mainly by aromatic residues. Residues from mature AChBP monomer A (TyrA89, TrpA143, TyrA185, CysA187, CysA188 and TyrA192) form the principal component, while residue TrpB53 from monomer B

30

WO 01/58951

PCT/EP01/01457

-47

creates the complementary part of the ligand-binding site. There are five identical ligand-binding sites in the AChBP pentamer, similar to the homomeric $\alpha 7$ neuronal receptor.

5 Figure 9:

The ligand binding site. Stereo figure showing the ligand binding site in AChBP, at the interface of two monomers. Residues from mature AChBP monomer A (TyrA89, TrpA143, TyrA185, CysA187, CysA188 and TyrA192) form the principal component, while residue TrpB53 from monomer B creates the complementary part of the ligand-binding site with with additional residues ArgB104, LeuB112 and MetB114. There are five identical ligand-binding sites in the AChBP pentamer, similar to the homomeric α7 neuronal receptor.

Figure 10:

15

Multiple sequence alignment of AChBP amino acid sequences with indication of secondary structure and solvent accessibility derived from the crystal structure. Alignment of the four molluscan AChBP sequences, with secondary structure and solvent accessibility of the Lymnea stagnalis AChBP-1 indicated from the crystal structure. The Figure was prepared with ESPript (Gouet et al., Bioinformatics. 15 (1999), 305-308), using DSSP (Kabsch and Sander, Biopolymers. 22 (1983), 2577-2637). Under the alignment the solvent accessibility is indicated, white most buried, dark blue most exposed, according to ESPript defaults (blue A> 0.4, cyan 0.1<A<0.4, white A<0.1).

20

10

25 Figure 11:

Sequence alignment of AChBP with LGICs. The alignment shows only the N-terminal domain of the LGIC subunits and is based on a multi-sequence alignment of 92 full-length LGIC sequences. Abbreviations used, H and Tca, stand for human and *Torpedo californica*. Secondary structure elements (α : α -helix, β : β -strand, η : 3_{10} -helix) are indicated above the sequence, in accordance with Fig 12a. AChBP shares 23% sequence identity with the ligand-binding domain of human α_7 . The LGIC conserved residues (bold, grey background) are displayed. Beginning and end of the Cys-loop are indicated by a "*". Nicotinic receptor ligand-binding residues on the principal and complementary side are indicated.

30

PCT/EP01/01457

WO 01/58951

-48

Figure 12:

Overview of the AChBP monomer structure. **a** Stereo representation of the AChBP monomer as viewed from outside the pentameric ring. Disulfide bridges are indicated in ball-and-stick representation. In a complete ion-channel the N-terminus would be pointing towards the synaptic cleft, while the C-terminus would enter the membrane at the bottom, continuing into the first transmembrane domain. **b** Topology diagram of the AChBP monomer. For comparison with Ig-folds the strands have been labeled a-g, showing the additional strand (b') and hairpin (f'-f"). In this structure, strands have been labeled β 1- β 10 with loops (or turns) L1-L10 preceding each strand with the same number. The β 5 strand is broken (β 5- β 5') with internal loop L5', β 6 also has a small break, but is shown continuously; (see Fig. 11). The precise beginnings and ends of strands may change slightly with increasing resolution, but the topology seen here will be highly conserved across the entire family of LGICs.

15

20

10

5

Figure 13:

The ligand-binding site. **a** Stereo representation of the ligand-binding site in ball-and-stick representation, showing the contribution of the principal A (TyrA89/ α_1 Tyr93), B (TrpA143/ α_1 Trp149) and C (TyrA185/ α_1 Tyr190, CysA187/ α_1 Cys192, CysA188/ α_1 Cys193, TyrA192 / α_1 Tyr198) and the complementary D (TrpB53/ γ Trp55, GlnB55/ γ Glu57), E (ArgB104/ γ Leu109, ValB106/ γ Tyr111, LeuB112/ γ Tyr117, MetB114 / γ Leu119) and F (TyrB164) 'loops'. **b** Stereo view of the electron density map displaying a HEPES buffer molecule in the ligand-binding site. This experimental density (contoured at 1 σ) is derived from cross-crystal averaging. **c** Location of the principal ligand-binding residues on the monomer. **d** Location of the complementary ligand-

25

30 Figure 14:

Dimer interface a Stereo figure of the dimer interface. Representation of the interface residues (ball-and-stick) on a schematic secondary structure figure. The figure shows the plus face of subunit A and the minus minus face of subunit B b Dimer interface interactions. Note that due to the low conservation of these interfaces (Fig. 11) the actual interactions will not be conserved in any LGIC interface, but that in all receptors the topological regions are likely to form the interface.

binding residues on the monomer. (orientation as in Figure 6b)

PCT/EP01/01457

WO 01/58951

Figure 15:

Conservation in the LGIC superfamily. Conserved residues are indicated on the top, middle and bottom respectively on the monomer as viewed from the central pore. The hydrophilic conserved residues are indicated in dark. Conserved residues are indicated as viewed from the central pore. Hydrophobic Cluster I: residues 6, 10, 63, 65, 71, 81, 105, 111; Cluster II: residues 20, 27, 29, 31, 58, 82, 84, 86, 140, 150, 152, 195; Cluster III: residues 33, 35, 38, 41, 48, 52, 125, 138, 171, 173, 199, 201. The hydrophilic conserved residues: Asp60, Asp85, Asn90, Gly109, Cys123, Cys136, Lys203. Conserved residues in the ligand binding site: 106, 145, 192. These three and Lys203 are the only conserved residues without structural role in the monomer. Note how very few conserved residues are at the surface. Within the LGIC family the Cys-loop residues are also highly conserved; see bottom, left.

10

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-50 **EXAMPLES**

EXAMPLE 1: Isolation of Lymnaea AChBP from the CNS, determination of mass and N-terminal protein sequence

Isolation: 80 CNS of Lymnaea were homogenized in lysis buffer (PBS [16 mM Na₂HPO₄, 4 mM NaH₂PO₄, pH 7.4; 150 mM NaCl] 0.5% Nonidet P-40; 0.1% triton, 0.2% tween-20) containing 1 ug/ml aprotinin, 10 ug/ml benzamidine, 0.5 ug/ml leupeptin, 24 ug/ml pefabloc. The CNS lysate was cleared by triplicate centrifugation at 12,000x g for 5 min. Streptavidin-coated magnetic beads (Dynal, Oslo), 5 mg, were saturated with α-bungarotoxin conjugated to Biotin (4 ug) (Molecular Probes, Oxford, UK). These beads were washed in PBS to remove excess α-bungarotoxin, then added to the cleared CNS lysate, and incubated for 1 h. After this, beads were washed 3 times in PBS to remove unbound protein. A control reaction without α-bungarotoxin was performed. Proteins bound to α-bungarotoxin were allowed to elute off in 10 μl of PBS containing 10-4 M nicotine for 1h.

Mass determination: The eluent was separated on a microcolumn LC system was similar to that described previously (Hsieh et al.; Anal. Chem. 70; 1998; 1847-1852). A commercial syringe pump (Perkin-Elmer /ABI, model 140B) was used to deliver a flow rate of 20 μ l /min to the column. After loading of sample to the column the flow rate was dropped to 10 μ l /min. The eluent was then switched from 0.2% acetic acid to 0.2% acetic acid/ 60% acetonitril in 1 min. Electrospray mass spectra in MS mode were acquired on a Micromass Q-TOF quadropole time-of-flight mass spectrometer equipped with a Z-spray atmospheric pressure ionization source.

Protein sequence analysis: For sequence analysis α-bungarotoxin binding protein was extracted using the same procedure, now followed by SDS-PAGE and Western Blotting on PDVF membrane. Sequence analysis was performed with Edman degradation of the 24 kDa blotted protein (apparent MW) using a protein sequencer (ABI, Perkin Elmer).

EXAMPLE 2: Cloning the Lymnaea AChBP cDNA sequence: PCR and screening of a cDNA library

PCR cloning: A degenerate oligonucleotide was synthesized based on the amino acid sequence LDRADILYNI (SEQ ID No. 10), residues 1-10, of AChBP, (5'-CGGATCCGA(TC)(AC)GIGC(GATC)GA(TC)AT(ATC)(TC)T(GATC)TA(TC)AA(TC)A T-3'; SEQ ID No. 11), containing a BamHI restriction site, and used in combination with a primer on the IZAPII lambda vector. PCR was performed on a IZAP II cDNA

-51

library of the Lymnaea CNS, in a 100 µl reaction volume with 1.0 unit of Super Taq DNA polymerase (Boehringer Mannheim, Germany) in a DNA thermal cycler (Perkin-Elmer Cetus, CT) using 45 cycles of (94 °C, 20 sec; 53 °C, 30 sec; and 72 °C, 1 min. Amplified cDNA was digested with *Bam*HI and *Eco*RI, separated on agarose gel, and a product of ~900 bp was cloned and sequenced.

Library screening: Approximately 20,000 clones of the amplified lambda ZAP II CNS cDNA library were plated at a density of 10⁵ pfu/400 cm² and absorbed to charged Nylon membranes (Boehringer Mannheim, Germany). The AChBP PCR product was used as a random primed probe, labeled with [alfa³²P]dATP (specific activity >10⁹ cpm/mg). Membranes were hybridized in 6x SSC (1x SSC: 0.15 M NaCl and 0.015 M Na-citrate), 0.2% SDS, 5x Denhardts and 10 ug/ml herring sperm DNA at 65 °C for 18 h. The filters were washed in 0.2x SSC, 0.2% SDS, at 65 °C for 30 min, and autoradiographed. Four individual cDNA clones were *in vivo* excised, and sequenced using dideoxy chain termination in both orientations. Two types of sequence were obtained, named L-AChBP_T1 and L-AChBP_T2. The signal sequences were determined with "SMART", Simple Modular Architectur Research Tool (V3.1); see Schultz et al., Proc. natl. Acad. Sci. USA 95 (1998), 5857-5864 and Nucleic Acids Res. 28 (2000), 231-234. In case of L-AChBP_T1 (SEQ ID No. 2) the prediction could experimentally be confirmed.

20

25

30

35

15

5

10

EXAMPLE 3: Lymnaea AChBP-related sequences: cloning of the Bulinus truncatus cDNAs

Total RNA was isolated from Bulinus brain ganglia (CNS), and reverse transcribed into hexanucleotide primed cDNA. Two degenerate oligonucleotides, directed to the primer: forward 5'-AChBP T1 sequence, Lymnaea GCGAATTCGAYACIGARWSIGGNGCNACNTG-3' (SEQ ID No. 12), reverse primer: 5'-GCGAAGCTTCRTCYTCRTAIGCYTCNGCRCARC-3' (SEQ ID No. 13), were used to amplify AChBP-related sequences. PCR was performed on one animal equivalent of CNS cDNA using 150 pmole of each primer under standard conditions for 45 cycles (94'C, 20 sec; 54' C, 30 sec; 72 'C, 1 min). Amplified cDNA was EcoRI/HindIII digested, cloned into EcoRI/HindIII digested pBluescript, and sequenced. The ORFs of the obtained sequences showed a Bulinus AChBP, sequence-related to Lymnaea AChBP, named B-AChBP_T1. This partial cDNA was used to screen a Bulinus brain cDNA library using the same hybridization protocol as described for the cloning of the Lymnaea cDNAs, and yielded two cDNA clones, encoding B-AChBP_T1 and B-AChBP_T2. Sequencing of the cDNAs was performed in both orientations.

-52

EXAMPLE 4: The production of L-AChBP-T1 and -T2 and B-AChBP-T1 and -T2 in the yeast Pichia pastoris and functional characterization

5 Production of recombinant AChBP:

10

15

20

25

30

35

In order to produce L-AChBP_T1 and T2 and B-AChBP_T1 and T2 as recombinant proteins in the Pichia pastoris expression system (Pichia Expression Kit version 3.0, Invitrogen), the DNA sequence encoding the mature form of these proteins (see sequence files) was cloned into the pPIC9 expression vector (Invitrogen). The mature sequences of L-AChBP_T1, T2 and B-AChBP_T1 and T2 were PCR amplified (using Pfu-taq DNA polymerase (Stratagene) in order to avoid introduction of errors into the sequence due to PCR) and restriction sites were added to the primers to allow rapid pPIC9 compatible cloning. The amplified sequence of mature AChBP_T1 was EcoRI inserted into pPIC9, whereas L-AChBP_T2 and B-AChBP_T1 and T2 were Xhol/EcoRI inserted into pPIC9 (the alpha-mating factor cleavage site was fully reconstructed after Xhol digestion).

Constructs with and without an additional C-terminal His-tag (SRGHHHHHH (SEQ ID No. 14) in the case of L-AChBP_T1, EFKDDDDKHHHHHHH (SEQ ID No. 15) otherwise) were generated for each of the AChBP (sub)types. The AChBP/pPIC9 constructs were amplified in E. coli DH5 α F and isolated and purified using the plasmid Maxi Kit (Qiagen). Due to the engineered cleavage site at the N-terminus of the amino acid sequence four additional amino acids (EAEA, SEQ ID No. 16) will precede the N-terminus of the original mature protein. Prior to transfection into Pichia pastoris the constructs were linearised (for protocol see supplier's manual; Pichia Expression Kit version 3.0, Invitrogen) and subsequently purified by phenol/chloroform extraction, and ethanol precipitation. Approximately 5 µg of each of the linearised constructs was transformed into freshly prepared electro-competent Pichia pastoris cells and plated onto MD plates (for protocol see supplier's manual; Pichia Expression Kit version 3.0, Invitrogen corporation). Electrocompetent Pichia pastoris cells were aquired according to the protocol provided by Invitrogen. Plates were incubated at 30°C until the appearance of Pichia colonies, which were subsequently analysed for the presence of the correct insert by PCR amplification (for protocol see supplier's manual; Pichia Expression Kit version 3.0, Invitrogen). Colonies containing an homologous recombination with the Pichia genome, carrying the AChBP sequence, were grown in 25 ml of BMGY for 1-2 days (30°C; rotation at 250rpm), after which the cells were centrifuged (10 min., 1500g) and the cell pellet

was resuspended into 10 ml of BMMY. Growth (30°C, 250rpm) was continued for an

10

15

20

25

WO 01/58951 PCT/EP01/01457

-53

additional 4 days (day 3-6), during which the expression of AChBP was induced by the addition of 100% methanol (1% of total culture volume) once every 24 hours. At day seven the culture was centrifuged (15 min.; 2000g; 4°C) and the medium was collected. The AChBP expression level of the various cultures was determined by the analyses of a fraction of the collected medium with SDS-polyacrylamide gel electrophoresis (see suppliers manual; Pichia Expression Kit version 3.0, Invitrogen). The cultures that yielded the highest level of AChBP expression were selected and stored as glycerol stocks.

Recombinant AChBP that contained a C-terminal His-tag was isolated and purified from the Picha pastoris medium using Talon metal affinity resin (according to protocol as described within the user manual; Clontech laboratories Inc.). The protein concentration was subsequently analysed using SDS-polyacrylamide gel electrophoresis and reference marker proteins. Polyclonal antibodies have been raised successfully to the recombinant L-AChBP_T1 and B-AChBP_T1 proteins in Balb-C mice. Immune-sera were obtained without crosslinking of the proteins.

Binding characteristics of AChBP:

First the binding curve of α -Bungarotoxin to His-tagged AChBP was determined, and an affinity of 3.5 nM was calculated. Using α -Bungarotoxin in a competitive binding assay ligands of several types of ligand-gated ion channels were then tested on Histagged AChBP, i.e., ACh, serotonin, GABA, glycine, and glutamate. Both ACh and serotonin did compete with α -Bungarotoxin binding at 4.2 mM and 269 mM, IC50s respectively. GABA, Glycine and glutamate did not compete for binding with α -Bungarotoxin. Thus, as predicted by the primary sequence and by subunit structure also the ligand-binding characteristics of AChBP resembled that of a nAChR.

In a second series of competitive binding assays the ligand binding characteristics of AChBP were studied in more detail, now using various agonists and antagonists of the AChRs. Nicotine a classical agonist of the nAChRs, is a high affinity ligand of Histagged AChBP (IC50 98 nM). Epibatidine, a high affinity agonist of the nAChRs, also binds with high affinity to His-tagged AChBP (IC50 1.4 nM), which is even higher than the 58 pM affinity of epibatidine reported for the nAChR (Badio, Mol. Pharmacol. 45 (1994), 563-569). Other cholinergic agonists bind with a lower affinity e.g., decamethonium, carbachol, and choline respectively with IC50s of 4.1 μ M, 43 μ M. and 190 μ M. Summary of affinities indicated in Table 2.

WO 01/58951

15

20

25

PCT/EP01/01457

-54

Table 2

	IC50 (μM)	nHill		IC50 (μM)	nHIII
serotonin	269 ± 67	0.65 ± 0.03	α-cobratoxin	16.2 ± 0.1	4.08 ± 0.30
choline	190 ± 32	0.91 ± 0.20	atropine	5.25 ± 0.49	1.91 ± 0.23
carbachol	43 ± 2.7	0.67 ± 0.05	decamethonium	4.1 ± 0.3	1.13 ± 0.09
acetylcholine	4.2 ± 1.1	0.72 ± 0.09	physostigmine	1.25 ± 0.04	0.66 ± 0.07
nicotine	0.098 ± 0.025	0.78 ± 0.05	d-tubocurarine	0.093 ± 0.003	0.83 ± 0.04
epibatidine	0.0014 ± 0.0001	0.66 ± 0.04	gallamine	0.039 ± 0.007	0.71 ± 0.14
			α-bungarotoxin	0.0026 ± 0.0006	0.80 ± 0.18

5 Competition-binding of typical antagonists of the nAChRs, e.g., tubocurarine and α-Bungarotoxin, have a high affinity for His-tagged AChBP, respectively IC50s of 93 nM and 2.6 nM. The cholinergic antagonist succinylcholine has a very low affinity for His-tagged AChBP (IC50 7.9 mM). Interestingly, also muscarinic receptor antagonists bind to His-tagged AChBP with relatively high affinity, e.g., the muscarinic allosteric modulator gallamine (IC50 39 nM), and the muscarinic antagonist atropine (IC50 5.3 mM). Physotigmine which is a known blocker of acetylcholinesterase and is also an antagonist of the nAChR, binds to His-tagged AChBP with an IC50 of 1.3 mM.

Finally, Bipinnatin-B was tested, a synthetic form of the coral lophotoxin on AChBP (Groebe and Abramson, J. Biol. Chem. 270 (1995), 281-286). Bipinnatin-B is a general blocker of nAChRs and is known to covalently bind to Tyr-190 of the α subunits (Abramson, J. Biol. Chem. 263 (1988), 18568-18573). His-tagged AChBP was incubated with the toxin, and the mass of the protein increased with 430.1 Da, corresponding well to the calculated mass of Bipinnatin-B of 431 Da, indicating that the toxin also binds to Tyr-184 in His-tagged AChBP.

EXAMPLE 5: Expression and purification of recombinant AChBP for crystallization

The AChBP_T1 protein from Lymnea stagnalis (AChBP) was overexpressed in Pichia pastoris GS115 strain using the AOX1 gene expression system from Invitrogen. Media and methods used for AChBP expression are also described in Invitrogen manual Pichia Expression Kit. For long term storage the transformants were grown overnight in YPD medium at 30°C.

-55

YPD or Yeast Extract Peptone Dextrose medium

1% yeast extract (Difco)

2% peptone (Difco)

2% dextrose (glucose) (Merck)

The cells were harvested and suspended in YPD medium containing 15% glycerol at final OD600 of ~50. The cells were frozen in a dry ice/ethanol bath and stored in the freezer (Revco) at ~80°C. Normally, the expression of AChBP started with plating the cells from the glycerol stock on MD plate.

MD or Minimal Dextrose Medium

10 1.34% YNB (yeast nitrogen base w/o amino-acids) (Difco)

4x10-5 % d-biotin (Sigma)

1% dextrose

For plates add 15g of agar (Difco)

The plate was stored in the incubator (Heraeus) for 3-4 days at 30°C. A single colony was picked from the plate and inoculated in 150 ml baffled flask (Nalgene) containing 25 ml of BMGY medium.

BMGY or Buffered Glycerol-complex Medium

1% yeast extract

2% peptone

20 100 mM potassium phosphate (pH 6.0) (Merck)

1,34% YNB

4x10-5 % d-biotin

1% glycerol (Merck)

The culture was placed into the shaker (New Brunswick) and left to grow overnight rotating at 250 rpm at 30°C. The following day 12.5 ml of the culture was inoculated into 225 ml of BMGY medium in a 1000 ml baffled flask. In order to increase the yield of expressed AChBP a larger number of flasks were used, usually 16. The flasks were placed in the shaker and start-cultures were rotated at 250 rpm at 30°C. After two days the start-cultures were centrifuged for 15 min at 2500 rpm (Sorvall RC3B+, rotor H-6000A) at room temperature. In order to increase the cell mass for bigger protein production, cell pellets of two start-culture flasks were pooled together and resuspended in 200 ml of BMMY medium containing 1% (w/v) casamino acids.

BMMY of Buffered Methanol-complex Medium + 1% casamino acids

1% yeast extract

35 2% peptone

100 mM potassium phosphate (pH 6.0)

1.34% YNB

-56

4x10-5 % d-biotin 0.5% methanol (Merck) 1% casamino acids (Difco)

5

10

15

- 20

25

30

35

The cultures were put back into the shaker (250 rpm, 30°C) and induced for the following 4 days. The concentration of methanol in the medium was kept constant by adding 1% (v/v) methanol to the cultures every 24 hours. After 4 days 100 ml of culture was harvested and the original volume of 200 ml was readjusted by adding fresh BMMY medium with 1% casamino acids. The remaining cultures were induced for another 4 days. The harvested cultures were centrifuged for 15 min at 4000 rpm (Sorvall RC3B+, rotor H-6000A) and the cell pellet was discarded. The supernatant was first filtered through a 0.22 µm filter (Millipore) to remove any remaining cells and it was concentrated using a Minitan system (Waters/Millipore) with 30kDa cutoff filter (Waters/Millipore). Both the filtration and concentration and were performed at 4°C. Finally, centrifugation at 16000 rpm was done (Sorvall RC5C, rotor SS-34) in order to remove any debris left after the first two steps. The final volume of concentrated sample was ~80 ml and it was dialyzed overnight against 2 x 5 l (20 mM Tris [pH 8.0], 150 mM NaCl and 0.02% NaN3) using 15kDa cutoff dialysis membrane (Spectra/Por) at 4°C. The dialyzed protein solution (~100 ml) was loaded onto an anion-exchange column (POROS 50 HQ, Pharmacia, column volume 8 ml). After the initial wash step of ~15 column volumes using loading buffer, a salt gradient of 30 column volumes was run from 150 mM to 1000 mM NaCl. Both solutions contained also 20 mM Tris (pH 8.0) and 0.02% NaN $_3$. The peak of interest eluted at ~300 mM NaCl (conductivity range 16-24 mS/cm). The presence of AChBP was checked by Bio-Rad Protein Assay (Bio-Rad) and SDS-PAGE and the fractions of interested were pooled and concentrated using a Centriprep with a 30kDa cutoff membrane (Amicon). The concentrated sample (volume of 5 ml) was loaded onto a gel filtration column (Superdex 200 HR 16/60, Pharmacia, column volume 120 ml) using 20mM Tris (pH 8.0), 150 mM NaCl and 0.02% NaN3. The protein eluted starting from 60 to 71 ml with peak at ~66 ml. The final purification step of the protein was done on an anion-exchange column (MonoQ HR10/10, Pharmacia, column volume 6 ml). The protein was loaded onto the column in the same buffer as eluted from the gel filtration column. The salt gradient used for the column was the identical to the one used for the POROS 50 HQ column. The fractions in the conductivity range 25-27.5 mS/cm were pooled together and dialyzed against buffer containing 50 mM HEPES (pH 7.0) and 0.02% NaN3. The protein was concentrated up to ~20 mg/ml using a Centricon with a 30kDa cutoff membrane (Amicon). The total yield was about 2 mg purified

-57

protein per liter of expressed medium. The concentrated protein was stored at 4°C and used for crystallization experiments and biochemical characterization. N-terminal sequencing revealed the presence of EAEAYVEF residues that are part of the pIC9-encoded signal sequence, before residue 2. The experimental mass was determined to be 26544 Da (MALDI), which is ~2kDa more than calculated mass based on amino-acid sequence (24649 Da). The difference is assigned to glycosylation of AChBP at position Asn66 in the mature sequence, confirmed by deglycosylation experiments with N-glycosidase F (Boehringer).

The purification of the first harvest was done separately from the full harvest. They were pooled together prior to the last purification step (anion-exchange chromatography step on MonoQ column). All above mentioned chromatography columns were mounted on an FPLC system (Pharmacia) controlled by the UNICORN system (Pharmacia). All solutions used in the FPLC system were prepared with MilliQ UF+ water, filtered through 0.22 µm filter (Millipore) and degassed.

15

20

25

30

35

10

5

EXAMPLE 6: Crystallization of the AChBP

All the crystallization experiments were done by vapor diffusion technique in a hanging drop mode using 12 well tray (Nelipak) and siliconized cover slides (Hampton Research). Trays were placed in a sandwich box (Semadeni) and stored at 19°C temperature conditioned room. The initial crystallization attempts were performed using Hampton Crystal Screen I and II (Hampton Research). Drops contained 2 µI of protein (10 mg/ml in 50 mM HEPES [pH 7.0] and 0.02% NaN₃) and 2 µl of reservoir solution. From the first screen it became clear that AChBP makes crystalline precipitate in the presence of CaCl2 sait. A more detailed screen was made which produced crystals suitable for X-ray analysis. The AChBP crystals appeared in the following conditions: 9-11% (w/v) PEG 4000 (Hampton Research), 100 mM HEPES (pH 7.0), 50-200 mM CaCl $_2$ x 6H $_2$ O and 0.02% NaN $_3$ or or PEG MME 550 10-18% in the same conditions, with 0.3 mM ZnAcetate as additive. Depending on the batch of the protein used and the CaCl₂ concentration three different crystal forms were found: orthorhombic, tetragonal and monoclinic. Both orthorhombic and monoclinic crystal forms are frequently twinned. Orthorhombic rodlike crystals appeared immediately upon setting up the crystallization experiments (in between first few hours) under high [CaCl2]. The size of the crystals varied from 0.05x0.05x0.15 to 0.25x0.25x1.0 mm. The crystals diffract X-ray up to 3 Å resolution and show high degree of mosaicity (~05-1.2°). They have the symmetry of space group $P2_12_12_1$ with cell constants of a= 120.62Å, b=137.01Å, c=161.54Å with 2 pentamer molecules per asymmetric unit. Tetragonal crystals, squared in shape,

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-58

grew at lower CaCl₂ concentration, reaching 0.2x0.3x0.35 mm in size. The maximal resolution obtained was 2.7 Å with a lower mosaicity (0.5°). They belong to space group $P4_22_12$ space group with cell dimensions of a=b=141.66Å, c=120.83Å with one pentamer molecule per asymmetric unit. The exact crystallization condition for the tetragonal crystal which was used for refinement of the crystal structure: 11.5% (w/v) PEG 4000, 100 mM HEPES (pH 7.0), 150 mM CaCl₂ and 0.02% NaN₃. The third crystal form, monoclinic $P2_1$, is very similar in morphology to the orthorhombic crystals with cell dimensions of a=121.1Å, b=162.1Å, c=139.4Å, β =90.13°, containing 4 pentamers per asymmetric unit. This crystals were gave lower resolution data (~3.3Å resolution). All three crystal forms were used in the structure determination of AChBP.

The resolution limit of diffraction depended very much on the size of the crystals. And the largest crystals diffracted weakly to ~4Å resolution when exposed to a conventional rotating anode X-ray source. Therefore, the use of synchrotron radiation was critical for the structure determination. The crystals had to be cryo-protected in order to slow down the damage caused by high intensity synchrotron radiation. The cryo-protection of the AChBP crystal was done in multiple steps. The first steps included the stabilization of crystal by adding the 2 µl of mother liquor (equilibrated reservoir solution) to the drop with the crystal. After 5 minutes 3 µl of stabilizing solution was added to the drop. Normally, the stabilizing solution contained slightly higher concentrations (1-5%) of the components of the original crystallization buffer. As protectant glycerol (Merck) was added, increasing the concentration stepwise from 0% to 30% (v/v). For example, the starting solution contained 15% PEG 4000, 100 mM HEPES (pH 7.0), 150 mM CaCl₂ and 0.02% NaN₃ and the final solution contained 30% (v/v) glycerol in addition to the components just mentioned. The AChBP crystals do not tolerate drastic increase in the glycerol concentrations therefore a gentle but more time consuming approach has to be adopted. The solution around the crystal has to be stepwise exchanged (usually 5% increase of glycerol concentrations) allowing crystals to equilibrate for at least 5 minutes in each glycerol concentration. Once the crystals were equilibrated in stabilizing solution with 30% glycerol they were flash-cooled in liquid nitrogen or in the cryo-stream. In all three space groups AChBP forms a decamer structure with perfect 52 symmetry, where two pentamers contact each other through a calcium-binding site, at the 'top' of the a1 helix. This binding site (Asp2 and Asp5 from two monomers) is not conserved in the LGIC family. In the tetragonal space group the 2-fold of the coincides with a crystallographic two-fold, which decamer

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-59

pseudocentrosymmetric behavior of the phases at low resolution. In solution the AChBP protein acts as pentamer.

Those of skill in the art will appreciate that the aforesaid crystallization conditions can be varied. Such variations may be used alone or in combination, and include final protein (optionally in complex with a ligand) concentrations between 1 mg/ml and 30 mg/ml; all combinations of AChPB/ligand to precipitant ratios; use of citrate concentrations between 0 mM and 200 mM; DTT concentrations between 0 mM and 10 mM; and any concentration of beta-mercaptoethanol; pH ranges between 5.5 and 9.5; PEG concentrations between 5% and 25% (w/v); PEG weights between 2000 and 8000; HEPES concentrations between 5 and 500 mM; use of TRIS or other solutions instead of HEPES, and any concentration or type of detergent; any other type of precipitating agent; any other buffer; any temperature between –50 °C and 30 °C; and crystallization of AChBP or complexes thereof by batch, liquid bridge, or dialysis method using these conditions or variations thereof.

EXAMPLE 7: Structure determination

The crystal structure was determined using the multiwave anomalous dispersion (MAD) technique on a Pb derivative, but non-crystallographic symmetry (NCS) averaging was necessary to obtain interpretable electron density. Collection of native data and heavy-atom derivatives were carried out at the synchrotron beam-lines in Grenoble (ESRF/BM14 and ID14) and Hamburg (DESY/BW7A, BW7B and X11). The AChBP orthorhombic crystal was soaked in stabilizing solution containing 5 mM trimethylleadacetate (MePb) for 5 days. Data sets were collected at four different wavelengths (0.9492Å, 0.8610Å, 0.9507Å and 0.9499Å) and data were integrated and reduced using DENZO/SCALEPACK (Otwinowski and Minor (1997) Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A. C.W. Carter and R.M. Sweet, eds. (New York: Academic Press), pp. 307-326). The program SOLVE (Terwilliger (1997) SOLVE: An automated structure solution for MAD and MIR. Edition 1.16) found 5 Pb sites which were situated on the interface between two pentamers. The Pb parameters were refined and phases calculated with SHARP (La Fortelle et al. (1997) Advances in MIR and MAD phasing: Maximum-likelihood refinement in a graphical environment, with SHARP. Proceedings of the CCP4 study weekend). Mean figure of merit (FOM) value for 4 wavelengths was 0.45. Search and optimization of 5-fold NCS operators were done using programs NCS6D and IMP (Kleywegt and Jones (1999) Software for handling macromolecular envelopes. Acta

10

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-60

Crystallo., D55, 941-944). 10-fold averaging using refined NCS operators in conjunction with density modification by DM (Cowtan (1994) DM: An automated procedure for phase improvement by density modification. In Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography 31, 34-38) yielded an interpretable electron density map. However, some parts of the pentamers were still not clearly defined. Therefore, a second MAD experiment was performed on the monoclinic crystals soaked in 10 mM MePb for 5 days. Data were collected for only two wavelengths, at the Pb peak (0.9479Å) and remote (0.9498Å) wavelength. The processing of the two collected data sets was done with MOSFLM (Leslie (1992) Recent changes to the MOSFLM package for processing film and image plate data. In Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, Number 26) and data were scaled with SCALA (CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallog. D50, 760-763). 10 Pb sites were identified with Solve. The Pb parameters were refined and phases calculated with SHARP in single anomalous dispersion (SAD) mode using data collected at the Pb absorption peak The NCS operators needed for 20-fold averaging were found by NCS6D and improved with IMP. 20-fold averaging and density modification by program DM further improved electron density. The initial model tracing and sequence assignment were done based on the 20-fold averaged electron density with program O (Jones et al., 1991). However, parts of the molecules were not clearly defined. The electron density was further improved doing multi-crystal averaging with DMMULTI (Cowtan, 1994) using amplitudes of tetragonal, orthorhombic and native data sets and experimental phases of the orthorhombic and monoclinic MAD experiments. Initially missing parts became clearly defined and a complete model could be built. The initial atomic model was refined with the program CNS (Brünger et al. (1998) Acta Crystallogr. D 54, 905-921) against a maximum-likelihood target without experimental phases contribution using tetragonal native data which extend to 2.7Å resolution. Refinement included five-fold NCS restraints, an overall anisotropic B factor and bulk solvent correction. The five-fold NCS restraints were released for the parts of the pentamer that clearly do not follow the five-fold symmetry. The current model contains one pentamer of AChBP consisting of 1035 residues, 14 well-ordered solvent molecules, 5 Ca2+ ions, 5 Cl- ions and 5 Hepes molecules, well-ordered solvent molecules and 5 HEPES molecules. The following residues are not well defined in the electron density: -8-0 (part of α-mating S. cerevisiae signal sequence not native to AChBP EAEAYVEF; SEQ ID No. 21), 125-135, 155-165, 186-191 and 206-210.

15

-61

Electron density is detectable in the ligand-binding site of AChBP. It is presumed that a HEPES molecule could account for this extra electron density based on its chemical properties. HEPES or N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid contains a quaternary ammonium ion similar to ligand such as acetylcholine (ACh) and d-tubocurarine. It has been proposed that the binding of ACh would be mediated by cation- π interaction involving N⁺ and π -systems of aromatic residues present in the binding site of nicotinic acetylcholine receptor. Without intending to be bound by theory it is suggested in accordance with the observation of the present invention that the observed HEPES molecule mimics ligand binding analogous to the binding of natural ligands like ACh in the ligand-binding site.

EXAMPLE 8: More detailed description of the structure determined in Example 7 As described in the previous example, the crystal structure of AChBP was solved using weak Pb MAD data in two crystal forms. The electron density map was improved substantially by cross-crystal averaging of three crystal forms with 20, 10 and 5 copies of the monomer in the asymmetric unit respectively (Table 3).

Table 1: Data collection statistics

	Data set	$λ_1$ peak	λ ₂ remote	λ_3 infl.	<u>λ</u> 1 peak	λ_2 infl.	<u>Native</u>
20	Space group	P2 ₁ 2 ₁ 2 ₁			<i>P</i> 2 ₁		P4 ₂ 2 ₁ 2
	Resol. (Å)	3.3/3.4-3.3	3.3/3.4-3.3		3.0/3.1-3.0		2.7/2.8-2.7
	λ (Å)	0.9492	0.8610	0.9507	0.9479	0.9498	0.943
	Compl. (%)	99.7/99.7	99.6/99.6	99.7/99.7	99.9/99.9	99.5/99.5	97.8/96.5
	Mosaicity (°)	0.62			0.43		0.78
25	Redundancy	3.7/3.8	3.8/3.9	3.7/3.8	3.5/2.2	3.2/2.0	6.5
	R _{merge} (%)	7.7/46.8	7.8/45.2	8.3/55.0	5.9/26.1	6.0/32.9	5.9/67.4
	Vol	8.7/1.6	8.4/1.7	8.3/1.4	7.7/2.7	6.8/1.5	27.4/2.3

			-62		
Phasing	ISO/ANO	ISO/ANO	ISO/ANO	ISO/ANO	ISO/ANO
R _{cullis} (%)	0.74/0.89	n.a./0.92	0.54/0.94	n.a./0.74	0.66/0.77
Phasing power	0.57/1.2	n.a./1.06	2.3/0.91	n.a./1.1	0.37/1.22
FOM (overall)	0.45			0.28	

5

10

15

20

25

30

35

The structure was refined at 2.7 Å in space group P42212, with one AChBP pentamer in the asymmetric unit. Thus, native data (X11) were collected and the Pb-1 data sets (BW7A) at the EMBL/DESY synchrotron in Hamburg and the Pb-2 data sets (BM14) at the ESRF, Grenoble (Table 3). Data were processed with DENZO/SCALEPACK (Otwinowski & Minor, Methods Enzymol. 276, 307-326 1997) (native) or MOSFLM (Leslie, Acta Crystallogr. D. Biol. Crystallogr. 55, 1696-1702, 1999)/SCALA (CCP4) (Pb-1, Pb-2). The Pb sites, located at the interface of two pentamers, were found for both MAD sets by SOLVE (Terwilliger, Acta Crystallogr. 55, 849-861, 1999) and heavy atom parameters were optimized with SHARP (La Fortelle et al., Methods Enzymol, 276, 472-494, 1997). NCS operators were found and refined with NCS6D and IMP (Kleywegt and Jones, SERC Daresbury Laboratory, Warrington, pp. 59-66, 1994). DM-multi (Cowtan, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, 31, 34-38, 1994) multi-crystal averaging used amplitudes of monoclinic, orthorhombic and native (tetragonal) data sets and experimental phases of the orthorhombic and monoclinic MAD experiments. The model was built in O (Jones et al., Acta Crystallogr. A47, 110-119, 1991) and refined with the program CNS (Brünger et al., Acta Crystallogr. D54, 905-921, 1998), against the tetragonal data to 2.7 Å resolution. Refinement included partial 5-fold NCS restraints, an overall anisotropic B factor and bulk solvent correction. The unusual double cysteine Cys187-Cys188 formed a clear disulfide bridge. Because of the limited resolution it was refined with standard parameters. The final model contains 1025 residues of AChBP pentamer, 5 HEPES molecules, 10 Ca2+ ions and 15 water molecules. The entire AChBP pentamer is well ordered, except for the N-terminal 7 residues (part of the signal sequence) and the last five C-terminal residues. In addition, the HEPES, the loop region 155-160 and the sugar residues attached to residue Asn66 are not well resolved in the electron density. R.m.s deviations from ideal geometry for bond distances and angles are 0.01 Å and 1.6°, respectively. The sequence alignment was calculated by CLUSTALX (Thompson et al., Nucleic. Acids. Res. 25, 4876-4882,

-63

1997) and the corresponding figure with Espript (Gouet et al., Bioinformatics. 15, 305-308, 1999). Figures 2-5 were done using programs MOLSCRIPT (Kraulis, P.J., J. Appl. Cryst. 24, 946-950, 1991), BOBSCRIPT (Esnouf, Acta Crystallogr. D55, 938-940, 1999) and RASTER3D (Merritt and Bacon, Methods Enzymol. 277, 505-524, 1997). Refinement took place with partial five-fold NCS restraints, resulting in an R-factor of 26.4% ($R_{free} = 30\%$).

The AChBP pentamer:

5

10

15

The AChBP homopentamer, when viewed along the five-fold axis, resembles a windmill toy, with petal-like monomers (Fig. 6a). When viewed perpendicular to the five-fold axis it has a disc-like appearance (Fig. 6b). The overall proportions of the pentamer are ~80x80x62 Å, and the diameter of the central hole is ~18 Å. These dimensions are in good agreement with the *Torpedo* nAChR N-terminal domain EM data (Miyazawa et al., J. Mol. Biol. 288, 765-786, 1999). The only subunit contacts in the AChBP pentamer are dimer interfaces, of which each monomer has two, one called the plus side and one called the minus side. We refer to the A (plus)-B (minus) interface, as example for the five equivalent interfaces AB, BC, CD, DE and EA (Fig. 6).

20 The AChBP monomer:

Each AChBP monomer is a single domain protein, asymmetric in shape, with a size of ~50x21x27 Å (Fig. 12a). It consists of an N-terminal β -helix, two short 3_{10} helices and a core of 10 β -strands forming a β -sandwich. The order of β -strands conforms to a modified immunoglobulin (Ig) topology (Fig. 12b) with an extra β -hairpin (f'-f") and an extra strand (b') (Bork et al., J. Mol. Biol. 242, 309-320, 1994). These additional strands introduce two so-called "Greek key" folding motifs. The Ig-based structure prediction (Le Novère et al., 1999; Corringer et al., Biophys. J. 76, 2329-2345, 1999) agrees well with the AChBP structure, although location of the binding site was missed due to the presence of extra β -strands (Fig. 12b). Compared to the classical Ig-fold, the AChBP β -strands are considerably twisted, with the β -sheets rotated against each other, resulting in two separate hydrophobic cores. Thus the three-dimensional fold does not resemble other Ig-like proteins and comparison to the protein database (Holm and Sander, Nucleic. Acids. Res. 25, 231-234, 1997) did not result in a significant match to any known structure.

30

15

20

25

WO 01/58951 PCT/EP01/01457

-64

Positioning of functional regions:

Couple of regions that are important to receptor function can be localized in the AChBP structure. In muscle type nAChRs the main immunogenic region (MIR), comprising residues α_167 - α_176 , acts as an epitope in the autoimmune disease myasthenia gravis (Tzartos et al., Mol. Neurobiol. 5, 1-29, 1991). Although the MIRrelated region in AChBP (residues 65-72) shows no sequence homology to the α₁subunit, its location in loop L3 at the top of the pentamer in a highly accessible position agrees well with the expected accessibility for this region. It also fits with EM studies that located the MIR at the distal end of the receptor relative to the membrane (Beroukhim and Unwin, Neuron 15, 323-331, 1995). On each AChBP monomer, a large cavity that is accessible from the central pore of the pentameric ring can be seen. The cavity is framed at the entrance by β-strands (63, 64, 65 and 65') (Fig 12a) and is uncharged, mainly hydrophobic, in character. This region probably corresponds to the tunnel framed by twisted β-strands that was observed in the α_1 -subunit of Torpedo receptor at 4.6 Å resolution (Miyazawa et al., J. Mol. Biol. 288, 765-786, 1999). However, this cavity is not in contact with another large pocket observed at each interface between subunits. These latter pockets are lined by residues shown to be involved in ligand binding in nAChR (Arias, Neurochem. Int. 36, 595-645, 2000; Corringer et al., Annu. Rev. Pharmacol. Toxicol. 40, 431-458, 2000). They are buried from the solvent, and located close to the outside of the pentameric ring. When viewed perpendicular to the five-fold axis they are roughly equatorially positioned, ~30 Å away from the C-termini (Fig. 6b), conforming to the expected location of the Torpedo receptor ligand-binding site, as determined by labeling (Fernando Valenzuela et al., Biophys. J. 66, 674-682, 1994)

The ligand-binding site:

30 Each ligand-binding site is found in a cleft formed by a series of loops from the principal face of one subunit and a series of β-strands from the complementary face of an adjacent subunit. It is a large cavity buried by a series of loops from the principal side and by a β-strands from the complementary side (Fig. 13). The principal side on the plus side of the AB interface consists of residues coming from 'loop A' (TyrA89), 'loop B' (TrpA143, A145) and 'loop C' (TyrA185, the double cysteine A187-A188, and TyrA192) (Fig 13c). The complementary part of this binding

and EM studies (Unwin, J. Mol. Biol. 229, 1101-1124, 1993).

15

20

25

30

35

WO 01/58951 PCT/EP01/01457

-65

site is contributed by monomer B and made of 'loop D' (TrpB53, GlnB55), 'loop E' (ArgB104, ValB106, LeuB112 and MetB114) and 'loop F' (TyrB164) (Fig 13d). In this pocket four of the aromatic residues form the bottom half of the cavity (TyrA89, TyrA185, TyrB164 and TrpB53). The pocket walls are formed by the TyrA192, TrpA143, main chain of A145 Met B114, the side-chain of GlnB55 and the double cysteine (CysA187-CysA188). The hydrophobic parts of ArgB104, ValB106 and LeuB112 form the top of the pocket (Fig 13a).

All residues in the pocket had been successfully identified by photoaffinity labeling and mutagenesis studies (Arias, Neurochem. Int. 36, 595-645, 2000; Corringer et al., Annu. Rev. Pharmacol. Toxicol. 40, 2000). Although the side chain of HisA145 is pointing away from the cavity, its main chain is involved. One residue identified by labeling studies, TrpA82 (α₁Trp86) (Galzi et al., J. Biol. Chem. 265, 10430-10437, 1990; Dennis et al., Biochemistry 27, 2346-2357, 1988) is involved in hydrophobic core formation and located far from the pocket, thus not participating in ligand binding. Otherwise, the AChBP ligand-binding site confirms the available biochemical and mutational data on nAChR completely.

The structure, however, shows for the first time how these residues are positioned with respect to each other and therefore provide a valuable tool for drug design as described in the above description of the present invention.

All observed residues are conserved between known nicotinic ligand-binding subunits except the 'loop F' TyrB164 residue. The 'loop F' region has an unusual conformation, but since it is relatively weakly resolved, its precise analysis is difficult. The 'loop F' region is stabilized in the structure by a calcium binding site formed by AspB161, AspB175 and the main chain of B176. This Ca2+ ion is structurally important for TyrB164 orientation and could therefore be important for proper ligand binding. The present findings are supported by labeling studies on muscle/Torpedo subunits showing that residues homologous to AspB161, γAsp174/δAsp180 play a role in ligand binding (Czajkowski et al., Proc. Natl. Acad. Sci. U.S.A. 90, 6285-6289, 1993; Czajkowski and Karlin, J. Biol. Chem. 270, 3160-3164, 1995; Martin et al., J. Biol. Chem. 271, 13497-13503, 1996). Additionally, calcium binding sites that enhance the response to agonist binding have been identified in the homologous region (residue range 161-172) of neuronal α₇ receptor (Galzi et al., EMBO J. 15, 5824-5832, 1996). The 'loop F' region has low sequence conservation in the nicotinic family (Fig. 11) and in other superfamily members it may well have a different conformation, even to the extent of forming a β -strand that connects the two sheets

-66

into a β -barrel. Such changes could well lead to variations in affinity, *e.g.* by changing the size of the ligand-binding site or its access route.

The most likely access routes to the ligand binding sites are from above or below the double-cysteine-containing 'loop C' (Fig. 13a). This region buries the pocket from the solvent and therefore prevents access from the outside. Access from the central pore has been suggested in the literature (Miyazawa, J. Mol. Biol. 288, 765-786, 1999), but this would require major structural rearrangements at the interface, which makes it less likely.

10

15

20

5

Ligand binding:

Surprisingly, features of bulky electron density were found that stacked onto Trp143 in each ligand-binding site in the experimental cross-crystal averaged electron density (Fig 13b). Upon consideration we have assigned this to a HEPES (N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer molecule, that contains a positively charged quaternary ammonium group and therefore has some similarity to known nicotinic receptor ligands. Its EC50 is 100 mM, indicating that its binding under crystallization conditions (100-150 mM) is possible. Although HEPES molecule does not make any specific contacts with the protein, it stacks with its quaternary ammonium onto Trp143, making cation- π interactions as expected for nicotinic agonists (Dougherty, Science 271, 163-168, 1996) (Fig. 13b). However, due to limited resolution of the present data and probable low occupancy, the precise orientation of the HEPES molecule should be taken with some degree of reservation.

25 It has been suggested (Changeux and Edelstein, Neuron 21, 959-980, 1998) that the ligand-binding site of nAChRs could be similar to that of acetylcholinesterase (AChE). Although the size of the binding site is roughly similar in AChBP and AChE, the observed arrangement of aromatic residues is quite different. However, the stacking of the quaternary ammonium of HEPES, as far as it has been refined in the current AChBP structure, is similar to that of the quaternary ammonium of the decamezonium in AChE on the Trp84 residue (Harel et al., Proc. Natl. Acad. Sci. U.S.A. 90, 9031-9035, 1993).

Subunit arrangement:

35 From the location of the ligand-binding site conclusions can be drawn about the relative arrangement of subunits in the *Torpedo* and muscle receptors. It has been suggested that the $\alpha_1\gamma$ and $\alpha_1\delta$ interfaces occur in a clockwise $\alpha_1\gamma\alpha_1\delta\beta_1$ arrangement

-67

when looking towards the membrane (Machold et al., Eur. J. Biochem. 234, 427-430, 1995). Such a clockwise arrangement disagrees with the structure determined in accordance with the present invention, because the relative arrangement of the principal binding site and its complementary partner is anticlockwise when looking towards the 'bottom' (membrane) side of the pentamer (Fig. 6).

Pentamer interface:

5

10

15

20

25

The subunit interface consists on the plus side entirely of loop regions (L1, L2, L4, L5, L7, L8 and L10), whereas the minus side mostly presents secondary structure elements to the interface (α1, β1, β2, β3, β5, β6 and L9) (Fig. 14). Several residues are important for both ligand-binding and pentamer formation. The interface buries a considerably surface area (2700 Å²), with a mainly uncharged character including only a single bifurcated salt bridge (GluA149-ArgB3 and ArgB104). Most intriguing about the interface residues is the lack of conservation of these particular residues in the entire superfamily, not only with AChBP, but also amongst each other (Fig. 11). These changes involve major changes in character, including changes from hydrophobic to charged. Even when a residue is conserved in any particular subunit, its expected counterpart is missing (either in the same subunit, as in the α_7 homopentamers, or in contacts such as muscle $\alpha_1\delta$ or $\alpha_1\gamma$ or neuronal $\alpha_4\beta_2$) with the sole exception of the ligand-binding site. The high level of structural conservation however, determines involvement of the same topological regions in these contacts in all family members (Fig 14b). This indicates that shape complementarity must play a major role in determining the conservation of the pentamer structure. It also indicates that different combinations of subunits will have different interfaces, creating variations in the precise allosteric contacts and movements in the various subclasses of these ion channels.

Ligand-gated ion channels:

The lack of conservation of the interface residues seems a general feature in the superfamily of LGICs, as the residues that form the interface are among the least conserved regions of the domains (Fig. 11). Apparently pentamer formation does not impose very stringent evolutionary requirements in this case. However, there is clear sequence conservation within the superfamily (Fig. 11) and it is interesting to analyze this in the light of the structure.

15

20

25

30

WO 01/58951 PCT/EP01/01457

-68

In the AChBP monomer structure the conserved hydrophobic residues can be grouped into three clusters (Fig. 15). In AChBP, as in other proteins with Ig-like fold, the packing of the β-sheets is promoted mainly by hydrophobic and to a lesser extent by electrostatic interactions. The first cluster is involved in packing of the N-terminal helix α1 against the main framework of the monomer and it involves residues 6, 10, 63, 65, 71, 81, 105 and 111. The second cluster, comprising residues 20, 27, 29, 31, 58, 82, 84, 86, 140, 150, 152 and 195, is situated in the upper half of the β-core region. The third cluster, including residues 33, 35, 38, 41, 48, 52, 125, 138, 171, 173, 199 and 201, is located at the lower end of the structure (Fig 15). The only nonhydrophobic residues that are highly conserved in the superfamily are Asp60, Asp85, Asn90 and Gly109. Asp60 and Gly109 are involved stabilizing the turns of a Greek key motif connecting strands β3, β5, β6 and β2, where Asp60 stabilizes the Nterminus of a small 3₁₀ helix and Gly109 enables tight turn formation. Conserved residues Asp85 and Asn90 are involved in packing of the β-sheets. Asp85 forms hydrogen bonds to the highly conserved Ser142 and Thr144 and residue Asn90 brings together the main-chain oxygens of Ser122 and Arg137, enabling disulfide bond formation of the nearby absolutely conserved disulfide bond (123-136). This disulphide bond is topologically equivalent to so-called 'tyrosine cornerstone' (Hemmingsen et al., Protein Sci. 3, 1927-1937, 1994), which links the two β-sheets together in Iq-like proteins. This explains why in the Torpedo receptor the Cys128-Cys142 bond is important for both preservation of subunit conformational stability (Mishina et al., Nature 313, 364-369, 1985) and complete nAChR assembly (Green & Wanamaker, J. Neurosci. 18, 5555-5564, 1998). Since the observed overall structural conservation is high, it is clear that all LGIC N-terminal domains will have the same three-dimensional structure.

In contrast to the above residues, the Cys-loop is a highly conserved hydrophobic region in the LGIC family but presents a totally different character in AChBP (Fig. 11).

In AChBP, this loop is hydrophilic and is found at the bottom (membrane) side of the protein, at the dimer interface. This location and its hydrophobicity in the LGIC family implies that this loop could interact with the membrane or with the transmembrane region of the receptors, functions that are absent in AChBP.

Since all ligand gated ion channels have intrinsically the same function, opening of a membrane pore, it is likely that the conserved regions of the protein determine this function. That also indicates that it is unlikely that the interface of the pentamer has a major role in opening the channel. It is possible that the conserved Cys-loop is

10

15

20

25

30

35

-69

directly involved in transmitting this kind of information to the membrane part of the LGICs. Another option is that large structural changes in the β -sheet regions play a role in opening the channel. Indeed, the movement observed at 9 Å for *Torpedo* nAChR upon agonist binding (Unwin, Nature 373, 37-43, 1995), fits well with such a suggestion. In accordance with the present invention a twisted β -sandwich would be observed, with two distinct hydrophobic cores and it is entirely possible that these cores move with respect to each other upon ligand binding. The effect of such movements will then be modulated by the varying subunit interfaces in the different subtypes of the receptor, allowing intricate specificity in the neuronal signal transmission.

EXAMPLE 9: Ligand-binding crystallization studies

AChBP was cocrystallized in complex with α-bungarotoxin (αBTX, Sigma). Prior to the crystallization experiments the stability of the complex has been investigated. Using gel-filtration chromatography (Superdex 200 HR 10/30, Pharmacia, column volume 24 ml) it has been found that it is possible to purify stable complex between AChBP and αBTX . The gel-filtration run was performed using 20 mM Tris (pH 8.0), 150 mM NaCl and 0.02% NaN₃. The stability of the complex was also confirmed with native PAGE. The crystallization experiments were done based on the same set of conditions found to work for AChBP alone; see Example 6. A small screen was set precipitant concentrations and various AChBP:α BTX up with different concentrations. Tiny crystals appeared in the conditions containing 10-12% PEG 4000, 100 mM HEPES (pH 7.0), 20-80 mM CaCl₂ and 0.02% NaN₃. The best looking crystals grew under above mentioned conditions when AChBP: (BTX were mixed in 1:10 molar ratio. In order to check if complex indeed crystallized, crystals were thoroughly washed, dissolved in denaturing buffer and checked on SDS-PAGE that clearly showed that they contained both proteins.

In addition, a number of small ligands were bound to AChBP in soaking experiments. These include: B-bippinatin (a synthetic analog of lophotoxin), acetylcholine (ACh, Sigma), d-tubocurarine chloride (Sigma), carbamylcholine chloride (CCh, Sigma), galanthamine hydrobromide (Sigma), epibatidine (Sigma) and nicotine (Sigma). The soaking solutions were made of stabilizing solutions (see Example 6) and together with dissolved ligands (ligands were normally dissolved in 20 mM HEPES [pH 7.0]). The ligand concentrations used were dependent on its binding constants, as determined by ligand-binding studies. The soaking times were different depending on the ligand used. After the soaking step the crystals were flash-cooled in liquid nitrogen.

10

15

20

25

30

35

PCT/EP01/01457

WO 01/58951

-70

EXAMPLE 10: Generating human alpha7 nAChR / AChBP chimeras

The chimeric proteins of nAChR subunits and AChBP can be used as tools in the development of novel, nAChR subtype specific ligands. As a first step in developing these tools chimeric proteins have been designed and constructed in which part(s) of the human alpha7 nAChR were grafted into AChBP. Previous studies on the molecular determinants of ligand-binding by the alpha7 nAChR have identified three amino acid domains that compose the primary part of the ligand-binding site, further referred to as "loops A, B, and C". Within each of the three loops amino acid residues are present that are thought to directly interact with the ligand. Based on sequence conservation of the nAChR and AChBP the three possible ligand-binding loops of AChBP have been pin-pointed in accordance with the present invention as follows: loop A, Trp-101 -> Tyr-108; loop B, Trp-162 -> His-164; loop C, Tyr-204 -> Tyr-211. The chimeric proteins that were constructed replace either one (A, B or C) or multiple (A&B, A&C, B&C and A&B&C) of the ligand-binding loops of AChBP with the corresponding human alpha7 nAChR sequence.

The loop-A domain of AChBP was replaced by the corresponding domain of the human alpha7 nAChR using a two-step polymerase chain reaction (PCR). In the first step two separate PCR amplifications (35 cycles: 94 °C;30 sec., 58 °C; 30 sec and 72 °C; 60 sec.) yielded two halves of the chimera construct. AChBP cDNA (wild type) was used as template, and outer primers located either just before the start codon (gcgctcgagaaaagagaggctgaagctttggaccgggcagacatctt; SEQ ID No. 17) or just before the stop codon (cgcgaattcaagaatttcggagcgtccctt; SEQ ID No. 18) were each used in combination with two internal primers gtggaaaccagacattctcctctacaacgccatctcgaaacc (SEQ ID No. 19) and gaggagaatgtctggtttccacaaagagcttattggcac (SEQ ID No. 20), respectively. The internal primers contained a 5'-tag-sequence that encoded for the introduced alpha7 nAChR domain. As such the two generated chimeric PCR products share a common tag containing a part of the alpha7 nAChR subunit. In the second step, the two PCR products from the first round were pooled and, in the absence of primers, went through 5 rounds of PCR amplification (94 9C; 30 sec., 54 ²C; 3 mm. and 72 ²C; 90 sec.). This allowed the two halves of the chimera to anneal to each other at the common alpha7 nAChR tag. The subsequent addition of the two outer primers and another 35 cycles of 25 PCR amplification (94 °C; 30 sec., 58 °C; 30 sec. and 72 °C; 90 sec.) yielded the final chimera construct. All PCR amplifications were hot-started and performed using PFU DNA-polymerase (Invitrogen). The loop-A AChBP/alpha7 chimera was cloned, using Xhol/EcoRI restriction sites in the outer primers, into the His-tag containing yeast expression

10

15

20

25

WO 01/58951 PCT/EP01/01457

-71

vector pPIC9 (Invitrogen). Validation of the construct was achieved by DNA sequencing. Expression of the chimera construct was achieved according to the Pichia pastoris protein expression protocol of Invitrogen.

As described in the examples and the description, the present invention provides water-soluble ligand-binding proteins derived from molluscs and analogs of ligand-gated ion channels, crystals thereof and their use for screening ligands of ligand-gated ion channels. In particular, ligand-binding proteins have been identified that are capable of forming multimers and are amenable to crystallization. The crystall structure of one these proteins, an acetylcholine binding protein (AChBP) is provided, which can be used to generate 3D models of the extracellular ligand-binding domain of ligand-gated ion channels and thus for screening of drugs that act on these ion channels. Furthermore, chimeric proteins are provided that are capable of binding a ligand of a ligand-gated receptor, and comprising at least the amino acids of the AChBP determining solubility of the AChBP, in the same positions as in the AChBP, and furthermore comprising amino acids determining binding to said ligand.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Description, and Examples is hereby incorporated herein by reference. Moreover, the sequence listing is herein incorporated by reference.

-72 **Table 1**

	REMARK	Writt	en by	0 1	er	sion 7.0						
	CRYST1	141.	660	141.					90.00			
5	ORIGX1		1.000			.000000	0.00000		0.00000			•
	ORIGX2		0.000			.000000	0.00000		0.00000			
	ORIGX3		0.000			.000000			0.00000			
	SCALE1		0.007			.000000	0.00000		0.00000			
40	SCALE2		0.000			.007059	0.00000		0.00000			
10	SCALE3		0.000			.000000	0.00827		0.00000	4 00	- 2 04	_
	MOTA	1		PHE		1	65.468	25.127	1.161		73.24	6
	ATOM	2		PHE		1	64.224	24.803	0.370 -0.178		76.49	6 6
	MOTA	3	CD1			1	63.433	25.819			77.52 78.15	6
4 5	ATOM	4	CD2			1 1	63.798 62.224	23.471 25.522	0.244 -0.840		79.11	6
15	MOTA	5	CE1 CE2			1	62.590	23.148	-0.412		79.82	6
	MOTA	6 7	CEZ	PHE		1	61.797	24.179	-0.958		79.89	6
	ATOM	8	C	PHE		. 1	66.638	27.146	1.923		69.89	6
	ATOM ATOM	9	0	PHE		1	67.034	26.519	2.903		70.26	8
20	ATOM	10	N	PHE		1	67.407	25.990	-0.118		71.31	7
20	ATOM	11	CA	PHE		1	66.214	26.375	0.689		70.93	6
	ATOM	12	N	ASP		2	66.562	28.478	1.909		68.78	7
	ATOM	13	CA	ASP		2	66.958	29.233	3.105		68.57	6
	ATOM	14	CB	ASP		2	67.577	30.615	2.739		69.98	6
25	ATOM	15	CG	ASP		2	66.639	31.523	1.914	1.00	73.55	6
	ATOM	16		ASP		2	67.059	32.068	0.844	1.00	73.75	8
	ATOM	17		ASP		2	65.485	31.714	2.349	1.00	75.27	8
	ATOM	18	С	ASP	Α	2	65.794	29.374	4.102		67.66	6
	MOTA	19	0	ASP	Α	2	64.622	29.273	3.719	1.00	68.25	8
30	ATOM	20	N	ARG	Α	3	66.126	29.560	5.386	1.00	65.60	7
	ATOM	21	CA	ARG	Α	3	65.131	29.703	6.453		60.77	6
	MOTA	22	CB	ARG	Α	3	. 65.765	30.222	7.737		60.30	6
	MOTA	23	CG	ARG	Α	3	66.393	29.174	8.604		59.51	6
	MOTA	24	CD	ARG		3	66.375	29.629	10.048		61.41	6
35	ATOM	25	NE	ARĢ		3	66.440	28.471	10.927		61.03	7
	ATOM	26	CZ	ARG		3	67.550	27.787	11.159		62.03	6
	MOTA	27		ARG		3	68.692	28.169	10.586		60.01	7
	MOTA	28		ARG		3	67.509	26.694	11.918		62.76	7
40	MOTA	29	C	ARG		3	64.034	30.659	6.055		59.92	6
40	ATOM .	30	0	ARG		3	62.883 64.395	30.487	6.454 5.291		59.64 57.25	8 7
	MOTA	31	N	ALA		4 4	63.404	31.685 32.641	4.836		55.16	6
	MOTA MOTA	32	CA	ALA ALA		4	64.065	33.782	4.088		53.78	6
	ATOM	33 34	CB C	ALA		4	62.421	31.917	3.927		54.69	6
45	ATOM	35		ALA		4	61.213	32.062	4.074		55.60	8
40	ATOM	36		ASP		5		31.127	2.995			7
	ATOM	37		ASP		5	62.097	30.392	2.060		55.84	6
	ATOM	38		ASP		5	62.937	29.580	1.058		56.83	6
	ATOM	39		ASP		5	63.918	30.437	0.278		59.97	6
50	ATOM	40		ASP		5	63.519	31.519	-0.213		61.60	8
	ATOM	41		ASP		5	65.095	30.025	0.148	1.00	62.19	8
	ATOM	42		ASP		5	61.176	29.443	2.815	1.00	55.90	6
	ATOM	43		ASP		5	60.011	29.268	2.445	1.00	53.57	8
	MOTA	44	N	ILE		6	61.695	28.832	.3.877	1.00	55.26	7
55	ATOM	45	CA	ILE		6	60.890	27.889	4.650		55.12	6
	MOTA	46		ILE		6	61.743	27.107	5.657		55.82	6
	MOTA	47		ILE		6	60.878	26.056	6.354		53.18	6
	MOTA	48		ILE		6	62.924	26.455	4.933		56.24	6
	MOTA	49		ILE		6	63.802	25.568	5.816		59.65	6
60	MOTA	50	С	ILE	Α	б	59.742	28.561	5.396	1.00	54.71	б

	WO 01/5895	51								PCT/EP01/01	457
							-73				
	ATOM	51	0	ILE	Α	6	58.589	28.159	5.256	1.00 55.75	8
•	MOTA	52	N	LEU		7	60.058	29.583	6.182	1.00 52.58	7
	MOTA	53	CA	LEU	Α	7	59.041	30.299	6.929	1.00 51.88	6
	MOTA	54	CB	LEU	Α	7	59.697	31.387	7.784	1.00 51.65	б
5	MOTA	55	CG	LEU		7	60.589	30.828	8.895	1.00 51.59	6
	MOTA	56		PEA		7	61.484	31.902	9.480	1.00 51.45	6
	ATOM	57		LEU		7	59.700	30.225	9.953	1.00 51.32	6
	MOTA	58	C ·	LEU		7	58.048	30.915	5.961	1.00 51.46	6
10	MOTA	59	0	LEU		7	56.846	30.921	6.204	1.00 51.87	8
10	ATOM ATOM	60 61	N CA	TYR TYR		8 8	58.561 57.727	31.417 32.041	4.848 3.832	1.00 51.83 1.00 53.61	7 6
	ATOM	62	CB	TYR		8	58.601	32.520	2.672	1.00 55.43	6
	ATOM	63	CG	TYR		8	57.806		1.543	1.00 57.65	6
	ATOM	64		TYR		8	57.217	34.379	1.668	1.00 58.24	6
15	ATOM	65	CE1	TYR		8	56.439	34.914	0.644	1.00 58.94	6
	ATOM	66	CD2	TYR	Α	8	57.601	32.407	0.366	1.00 58.93	6
	MOTA	67	CE2	TYR	Α	8	56.825	32.930	-0.665	1.00 60.13	6
	MOTA	68	CZ	TYR		8	56.244	34.183	-0.518	1.00 60.03	6
~~	ATOM	69	OH	TYR		8	55.453	34.699	-1.527	1.00 63.97	8
20	ATOM	70	C	TYR		8	56.636	31.114	3.296	1.00 52.67	6
	MOTA	71	0	TYR		8	55.483	31.511	3.143	1.00 52.13	8
	MOTA	72	N	ASN		9	57.009	29.880	2.997	1.00 53.39 1.00 53.87	7
	ATOM ATOM	73 74	CB	ASN ASN		9 9	56.051 56.750	28.918 27.613	2.488 2.096	1.00 58.21	6 6
25	ATOM	75	CG	ASN		9	57.646	27.772	0.860	1.00 58.21	6
20	ATOM	76		ASN		9	57.647	28.824	0.209	1.00 64.72	8
	ATOM	77		ASN		9	58.405	26.724	0.530	1.00 62.99	7
	ATOM	78	C	ASN		9	54.987	28.638	3.526	1.00 53,31	6
	ATOM	79	Ō	ASN		9	53.794	28.725	3.239	1.00 52.02	8
30	ATOM	80	N	ILE	Α	10	55.420	28.300	4.736	1.00 53.77	7
	MOTA	81	CA	ILE	Α	10	54.489	28.018	5.829	1.00 55.18	6
	ATOM	82	CB	ILE	A	10	55.229	27.788	7.150	1.00 53.51	6
	MOTA	83	CG2	ILE		10	54.220	27.639	8.272	1.00 53.99	6
0.5	ATOM	84	CG1			10	56.109	26.541	7.044	1.00 50.48	6
35	ATOM	85		ILE		10	57.043	26.346	8.202	1.00 47.68	6
	MOTA	86 87	C	ILE		10 10	53.523 52.319	29.183 28.997	6.032 6.221	1.00 57.42 1.00 57.74	6 8
	ATOM ATOM	88	O N	ARG		11	54.070	30.390	5.997	1.00 57.74	7
	ATOM	89	CA	ARG		11	53.283	31.600	6.156	1.00 58.29	6
40	ATOM	90	СВ	ARG		11	54.199	32.810	6.042	1.00 64.72	6
	ATOM	91	CG	ARG		11	53.513	34.134	6.270	1.00 70.99	6
	MOTA	92	CD	ARG		11	53.241	34.337	7.757	1.00 79.75	6
	MOTA	93	NE	ARG	Α	11	53.059	35.751	8.105	1.00 86.33	7
	MOTA	94	CZ	ARG		11	53.848	36.733	7.665	1.00 89.85	6
45	MOTA	95		ARG		11	54.871	36.451	6.845	1.00 92.68	7
	ATOM	96		ARG		11	53.636	37.992	8.056	1.00 90.02	7
	ATOM	97	C	ARG		11	52.204	31.701	5.082	1.00 59.54	6
	ATOM	98.	0	ARG		11 12	51.038 52.614	31.954	5.363	1.00 59.64	8
50	ATOM ATOM	99 100	N CA	GLN GLN		12	51.718	31.489 31.595	3.841 2.705	1.00 59.22 1.00 58.15	7 6
00	ATOM	101	CB.	GLN		12	52.542	31.776	1.441	1.00 59.05	6
	ATOM	102	CG	GLN		12	52.118	32.961	0.629	1.00 60.64	6
	ATOM	103	CD	GLN		12	52.674	34.226	1.192	1.00 61.53	6
	ATOM	104		GLN		12	53.879	34.345	1.360	1.00 65.50	8
55	MOTA	105	NE2	GLN	Α	12	51.811 ·		1.489	1.00 62.18	7
	MOTA	106	C	GLN	Α	12	50.732	30.460	2.472	1.00 57.30	6
	ATOM	107	0	GLN		12	49.714	30.651	1.814	1.00 57.03	8
	ATOM	108	N	THR		13	51.029	29.280	2.987	1.00 56.84	7
60	MOTA	109	CA	THR		13	50.142	28.147	2.773	1.00 57.26	6
60	MOTA	110	CB	THR		13	50.922	26.964	2.186	1.00 57.29	6
	MOTA	111	OG1	THR	A	13	52.000	26.616	3.071	1.00 55.40	8

	WO 01/589	951								PCT/I	E P 01/01	457
							-74					
	MOTA	112	CG2	THR .	A	13	51.477	27.326	0.813	1.00 5	8.15	6
	MOTA	113	C	THR	Α	13	49.411	27.650	4.013	1.00 5		6
	MOTA	114	0	THR .	A	13	48.423	26.932	3.905	1.00 5		8
_	MOTA	115	N	SER		14	49.892	28.034	5.187	1.00 6		7
5	MOTA	116	CA	SER		14	49.290	27.584	6.424	1.00 6		6
	ATOM	117	CB	SER		14	50.198	27.930	7:601	1.00 6		· 6
	ATOM	118	OG	SER		14	49.813 47.899	27.207	8.758	1.00 6		6
	ATOM ATOM	119	C	SER SER		14 14	47.899	28.147 29.240	6.664 6.189	1.00 5		8
10	ATOM	120 121	N O	ARG		15	47.102	27.377	7.407	1.00 5		7
10	ATOM	122	CA	ARG		15	45.740	27.753	7.755	1.00 5		6
	ATOM	123	СВ	ARG		15	44.744	26.996	6.877	1.00 5		6
	ATOM	124	CG	ARG		15	44.925	27.253	_	1.00 5	9.62	6
	ATOM	125	CD	ARG		15	43.688	26.851	4.614	1.00 6	1.99	6
15	ATOM	126	NE	ARG	Α	15	42.519	27.540	5.151	1.00 6		7
	ATOM	127	CZ	ARG		15	41.261	27.216	4.870	1.00 6		6
	MOTA	128		ARG		15	41.007	26.201	4.050	1.00 6		7
	MOTA	129	NH2	ARG		15	40.256	27.908	5.408	1.00 6		7
	MOTA	130	C	ARG		15	45.516	27.420	9.219	1.00 5		6
20	MOTA	131	0	ARG		15	45.135	26.310	9.562	1.00 5		8
	MOTA	132	N	PRO		16	45.751	28.392	10.104	1.00 5		7 6
	ATOM	133	CD	PRO		16	46.198	29.750	9.773 11.551	1.00 4		6
	MOTA	134	CA	PRO		16 16	45.597 45.959	28.249 29.634	12.073	1.00 4		6
25	MOTA	135	CB	PRO PRO		16	46.870	30.165	11.041	1.00 4		6
23	ATOM ATOM	136 137	CG	PRO		16	44.215	27.816	12.016	1.00 5		6
	MOTA	138	0	PRO		16	44.060	27.322	13.131	1.00 5		8
	ATOM	139	N	ASP		17	43.208	28.013	11.176	1.00 5		7
	ATOM	140	CA	ASP		17	41.856	27.640	11.548	1.00 5		б
30	ATOM	141	CB	ASP		17	40.850	28.609	10.931	1.00 5	54.16	6
	ATOM	142	CG	ASP	Α	17	40.873	29.974	11.592	1.00 5	59.76	б
	ATOM	143	OD1	ASP	Α	17	41.245	30.060	12.791	1.00 6		8
	MOTA	144	OD2	ASP	Α	17	40.500	30.965	10.920	1.00 6		8
	MOTA	145	С	ASP		17	41.482	26.218	11.157	1.00 5		6
35	MOTA	146	0	ASP		17	40.353	25.783	11.390	1.00 4		8
	MOTA	147	N	VAL		18	42.429	25.484	10.583	1.00 5		7
	ATOM	148	CA	VAL		18	42.143	24.128	10.148	1.00 5		6 6
	MOTA	149	CB	VAL		18	42.262 41.834	24.011 22.618	8.622 8.169	1.00 5		6
40	MOTA	150		VAL		18 18	41.396	25.077	7.963	1.00		6
40	MOTA.	151 152	CGZ	VAL		18	42.993	23.077	10.779	1.00		6
	ATOM ATOM	153	0	VAL		18	44.199	23.006	10.588	1.00		8
	ATOM	154	N	ILE		19	42.327	22.172	11.519	1.00		7
	ATOM	155	CA	ILE		19	42.954	21.042	12.202	1.00		б
45	ATOM	156	CB	ILE		19	41.871	20.319	13.072	1.00	52.71	6
	MOTA	157	CG2	ILE	Α	19	40.819	19.671	12.190	1.00 !	52.40	6
	ATOM	158		ILE		19	42.504	19.290	13.992	1.00		6
	MOTA	159	CD1	ILE	Α	19	41.546	18.811	15.056	1.00		6
	MOTA	160	C	ILE	Α	19	43.596	20.097	11.164	1.00		6
50	ATOM	161	0	ILE		19	42.957	19.687	10.193	1.00		8
	ATOM	162	N	PRO		20	44.878	19.757	11.355	1.00		7
	MOTA	163	CD	PRO		20	45.711	20.210	12.472	1.00		6
	MOTA	164	CA	PRO		20	45.644	18.876	10.461 10.981	1.00		6 6
55	ATOM	165	CB	PRO		20 20	47.078 47.060	18.996 20.235	11.840	1.00		6
J	MOTA MOTA	166 167	CG C	PRO PRO		20	45.177	17.432	10.474	1.00		6
	MOTA	168	0	PRO		20	45.974	16.523	10.682	1.00		8
	MOTA	169	N	THR		21	43.886	17.231	10.246	1.00		7
	ATOM	170	CA	THR		21	43.283	15.900	10.236	1.00		6
60	ATOM	171	CB	THR		21	41.765	16.020	10.495	1.00		6
	ATOM	172	OG1	THR	A	21	41.516	15.813	11.883	1.00	67.19	8

	WO 01/589) 51								PCT/EP01/01	457
							-75				
	ATOM ATOM	173 174	CG2 C	THR THR		21 21	40.975 43.522	15.010 15.060	9.687 8.967	1.00 68.42 1.00 70.65	6 6
	ATOM	175	0	THR		21	43.365	15.538	7.832	1.00 70.53	8
_	ATOM	176	N	GLN		22	43.899	13.802	9.179	1.00 74.54	7
5	MOTA	177	CA	GLN		22	44.152	12.844	8.096	1.00 78.38	. 6
	ATOM ATOM	178 179	CB CG	GLN GLN		22 22	45.513 46.668	12.180 13.174	8.296 8.402	1.00 79.92 1.00 83.40	· 6
	ATOM	180	CD	GLN		22	47.836	12.640	9.244	1.00 84.08	6
	ATOM	181	OE1			22	47.709	12.451	10.467	1.00 82.79	8
10	ATOM	182	NE2	GLN	Α	22	48.976	12.397	8.592	1.00 83.48	7
	ATOM	183	С	GLN		22	43.055	11.779	8.158	1.00 80.25	6
	ATOM	184	0	GLN		22	43.050	10.929	9.058	1.00 80.25	8
	MOTA	185 186	N CA	ARG ARG		23 23	42.133 40.999	11.825 10.896	7.199 7.162	1.00 82.59 1.00 84.29	7 6
15	ATOM ATOM	187	CB	ARG		23	41.478	9.447	7.095	1.00 85.05	6
	ATOM	188	CG	ARG		23	41.983	9.032	5.717	1.00 87.64	6
	ATOM	189	CD	ARG		23	43.517	8.991	5.617	1.00.90.14	6
	ATOM	190	NE	ARG		23	43.958	8.775	4.231	1.00 92.92	7
00	ATOM	191	CZ	ARG		23	43.557	7.768	3.447	1.00 94.10	6
20	MOTA	192		ARG		23	42.700	6.854	3.901	1.00 94.07 1.00 93.77	7 7
	ATOM ATOM	193 194	NH2 C	ARG ARG		23 23	44.000 40.130	7.687 11.099	2.195 8.399	1.00 95.77	6
	ATOM	195	0	ARG		23	39.979	12.237	8.881	1.00 84.91	8
	ATOM	196	N	ASP		24	39.549	10.011	8.908	1.00 86.21	7
25	ATOM	197	CA	ASP	Α	24	38.705	10.105	10.105	1.00 86.07	6
	MOTA	198	CB	ASP		24	37.689	8.952	10.194	1.00 89.13	6
-	ATOM	199	CG	ASP		24	37.418	8.289	8.847	1.00 91.57	6
	ATOM ATOM	200 201		ASP ASP		24 24	36.945 37.680	8.994 7.058	7.900 8.756	1.00 92.21 1.00 91.67	8 8
30	MOTA	202	C	ASP		24	39.631	10.021	11.305	1.00 84.31	6
	ATOM	203	Õ	ASP		24	39.173	9.975	12.458	1.00 84.64	8
	ATOM	204	N	ARG	Α	25	40.935	9.981	11.029	1.00 81.75	7
	MOTA	205	CA	ARG		25	41.936	9.898	12.091	1.00 79.08	6
35	MOTA	206	CB	ARG		25	43.309	9.539	11.527	1.00 81.87 1.00 86.55	6
33	ATOM ATOM	207 208	CG CD	ARG ARG		25 25	43.471 44.960	8.100 7.785	11.087 10.851	1.00 86.55	6 6
	ATOM	209	NE	ARG		25	45.187	6.380	10.489	1.00 95.61	7
	ATOM	210	CZ	ARG		25	46.388	5.815	10.345	1.00 96.85	6
	ATOM	211	NH1	ARG	Α	25	47.495	6.537	10.530	1.00 97.46	7
40	ATOM	212				25	46.487	4.522	10.023	1.00 97.32	7
	ATOM	213	С	ARG		25	42.059	11.201	12.870	1.00 75.12	6
	MOTA MOTA	214 215	N O	ARG PRO		25 26	42.158 42.034	12.283 11.112	12.281 14.212	1.00 75.55 1.00 70.63	8 7
	ATOM	216	CD	PRO		26	41.636	9.933	14.999	1.00 70.03	6
45	ATOM	217	CA	PRO		26	42.152	12.281	15.083	1.00 67.24	6
	ATOM	218	CB	PRO		26	41.802	11.723	16.460	1.00 67.68	6
	ATOM	219	CG	PRO		26	40.930		16.158	1.00 68.06	6
	MOTA	220	C	PRO		26	43.593	12.762	15.053	1.00 64.53	6
50	ATOM	221	0	PRO VAL		26 27	44.491 43.816		14.694 15.420	1.00 63.60 1.00 61.16	8 7
50	ATOM ATOM	222 223	N CA	VAL		27	45.168		15.426	1.00 57.20	6
	ATOM	224	CB	VAL		27	45.197		15.374	1.00 56.96	6
	MOTA	225		VAL		27	.46.535		15.872	1.00 54.60	6
	ATOM	226	CG2	VAL		27	44.986		13.930	1.00 55.09	6
55	ATOM	227	С	VAL		27	45.685		16.835	1.00 55.33	6
	ATOM	228	0 N	VAL		27 28	45.026 46.852		17.849 16.858	1.00 53.70 1.00 54.55	8 7
	ATOM ATOM	229 230	N CA	ALA ALA		28	47.405		18.118	1.00 54.55	6
	MOTA	231	CB	ALA		28	48.250		17.907	1.00 52.00	6
60	ATOM	232	c	ALA	Α	28	48.230		18.761	1.00 52.77	6
	MOTA	233	0	ALA	A	28	49.324	14.451	18.294	1.00 52.53	8

	WO 01/589	51								PCT/EP01/01	457
							-76				
	ATOM	234	N	VAL A	A 29		47.683	14.672	19.837	1.00 51.33	7
	ATOM	235	CA	VAL 2			48.332	15.730	20.590	1.00 49.28	6
	ATOM	236	CB	VAL 2	A 29		47.367	16.921	20.845	1.00 47.59	6
_	ATOM	237		VAL 2			48.056	17.985	21.676	1.00 44.30	. 6
5	ATOM	238		VAL A			46.891	17.497	19.527	1.00 44.21	6
	MOTA	239 240	С 0	VAL A			48.782	15.171	21.930	1.00 49.54	6
	ATOM ATOM	241	N	SER A			48.014 50.043	14.524 15.402	22.635 22.261	1.00 49.14 1.00 49.54	8 7
	ATOM	242	CA	SER A			50.574	14.946	23.523	1.00 49.34	6
10	ATOM	243	CB	SER A			51.869	14.163	23,309	1.00 51.50	6
	MOTA	244	OG	SER A			52.846	14.945	22.645	1.00 56.10	8
	ATOM	245	С	SER A			50.819	16.187	24.362	1.00 54.25	6
	ATOM	246	0	SER A			51.360	17.174	23.880	1.00 56.41	8
15	ATOM ATOM	247 248	N CA	VAL Z			50.396	16.134	25.618	1.00 56.86	7
10	ATOM	249	CB	VAL A			50.543 49.170	17.258 17.768	26.531 27.012	1.00 58.42 1.00 58.48	6 6
	ATOM	250		VAL A			49.338	19.086	27.744	1.00 59.95	6
	ATOM	251	CG2	VAL A			48.219	17.910	25.835	1.00 56.73	6
	ATOM	252	С	VAL A	31		51.328	16.803	27.747	1.00 59.56	6
20	MOTA	253	0	VAL A			51.073	15.729	28.281	1.00 60.85	8
	ATOM	254	N	SER A			52.271	17.631	28.185	1.00 61.06	7
	MOTA	255	CA	SER A			53.105	17.312	29.338	1.00 60.16	6
٠.	ATOM ATOM	256 257	CB OG	SER A			54.388	16.619	28.868	1.00 59.88	6
25	ATOM	258	C	SER A			55.294 53.465	16.430 18.568	29.937 30.116	1.00 60.41 1.00 60.19	8 6
	MOTA	259	Ö	SER A			54.206	19.416	29.621	1.00 61.87	8
	ATOM	260	N	LEU A			52.946	18.689	31.333	1.00 58.89	7
	MOTA	261	CA	LEU A	33		53.256	19.847	32.170	1.00 57.23	6
00	ATOM	262	CB	LEU '		•	52.112	20.142	33.142	1.00 55.20	6
30	ATOM	263	CG	LEU A			50.740	20.363	32.511	1.00 54.66	6
	ATOM	264		LEU A	-		49.762	20.880	33.543	1.00 51.01	6
	ATOM ATOM	265 266	CD2	LEU A			50.880 54.518	21.342	31.373	1.00 55.39	6
	MOTA	267	0	LEU A			54.516	19.601 18.526	32.979 33.533	1.00 56.76 1.00 58.14	6 8
35	ATOM	268	N	LYS A			55.394	20.597	33.028	1.00 57.17	7
	MOTA	269	CA	LYS A			56.633	20.512	33.800	1.00 57.46	6
	MOTA	270	CB	LYS A			57.865	20.690	32.910	1.00 60.89	6
	MOTA	271	CG	LYS A			57.940	19.723	31.738	1.00 68.80	6
40	ATOM	272	CD	LYS A			58.048	18.249	32.186	1.00 73.30	6
40	ATOM ATOM	273 274	CE	LYS A			58.071	17.290	30.961	1.00 74.90	6
	MOTA	275	NZ C	LYS A		·	58.210 56.522	15.842 21.691	31.340	1.00 75.55	7
	ATOM	276	0	LYS A			56.567	22.834	34.741 34.308	1.00 54.81 1.00 55.33	6 8
	ATOM	277	N	PHE A			56.358	21.422	36.026	1.00 52.88	7
45	ATOM	278	CA	PHE A			56.215	22.507	36.976	1.00 50.00	6
	ATOM	279	CB	PHE A			55.586	21.993	38.260	1.00 45.71	б
	ATOM	280	CG	PHE A			54.186	21.542	38.072	1.00 45.07	6
	MOTA	281		PHE A			53.912	20.256	37.634	1.00 45.46	. 6
50	ATOM ATOM	282 283		PHE P			53.133	22.429	38.252	1.00 47.46	6
00	ATOM	284		PHE A			52.612 51.819	19.848 22.036	37.372 37.990	1.00 45.03 1.00 49.48	6 6
	ATOM	285	CZ	PHE A			51.560	20.735	37.547	1.00 48.14	6
	ATOM	286	С	PHE A			57.494	23.268	37.247	1.00 49.05	6
	ATOM	287	0	PHE P	35		58.549	22.687	37.480	1.00 48.49	8
55	MOTA	288	N	ILE A			57.374	24.588	37.191	1.00 46.86	7
	ATOM	289	CA	ILE A			58.492	25.482	37.393	1.00 45.55	6
	MOTA	290	CB	ILE A			58.538	26.551	36.284	1.00 43.92	6
	MOTA MOTA	291 292		ILE A			59.771 58.526	27.411 25.876	36.433	1.00 39.03 1.00 44.17	6
60	ATOM	293		ILE F			59.671	24.916	34.917 34.699	1.00 44.17	6 6
	ATOM	294	С	ILE A			58.392	26.181	38.739	1.00 46.38	6

WO 01/58951

PCT/EP01/01457

	M O 01/29	931							PCI	/F.B.01/01	.457
						-77					
	ATOM	295	0	ILE A	36	59.405	26.580	39.318	1 00	45.40	8
	ATOM	296	N	ASN A	37	57.176	26.340	39.244		46.13	7
	MOTA	297	CA	ASN A	37	57.023	27.008	40.526		46.27	6
	MOTA	298	CB	ASN A	37	57.491	28.462	40.400		46.32	6
5	ATOM	299	CG	ASN A	37	58.009	29.030	41.707	1.00	48.59	6
	MOTA	300	OD1	ASN A	37	57.408	28.844	42.759	1.00	49.38	8
	MOTA	301	ND2	ASN A	37	59.124	29.743	41.639	1.00	46.71	7
	ATOM	302	С	ASN A	37	55.595	26.975	41.046	1.00	46.17	6
10	ATOM	. 303	0	ASN A	37	54.644	26.799	40.281		44.02	8
10	ATOM	304	N	ILE A	38	55.465	27.117	42.362	_	46.64	7
	MOTA	305	CA	ILE A	38	54.173	27.158	43.033		48.46	6
	ATOM ATOM	306 307	CB	ILE A	38	53.988	25.951	43.923		47.34	6
	ATOM	308		ILE A	38	52.680	26.066	44.671		49.13	6
15	MOTA	309		ILE A	38 38	53.983 54.079	24.697	43.050		48.40	6
	ATOM	310	C	ILE A	38	54.245	23.402 28.433	43.791 43.847		47.55 50.74	6.
	ATOM	311	Ö	ILE A	38	54.979	28.505	44.817		53.13	6 8
	ATOM	312	N	LEU A	39	53.485	29.438	43.433		53.46	7
	ATOM	313	CA	LEU A	39	53.527	30.757	44.045		55.16	6
20	ATOM	314	СВ	LEU A	39	53.350	31.806	42.952		54.91	6
	ATOM	315	CG	LEU A	39	54.330	31.591	41.800		57.26	6
	MOTA	316		LEU A	39	54.108	32.647	40.728		54.71	6
	ATOM	317	CD2	LEU A	39	55.757	31.623	42.341	1.00	54.68	6
0.5	MOTA	318	С	LEU A	39	52.613	31.098	45.203		56.69	6
25	ATOM	319	0	LEU A	39	53.043	31.750	46.157	1.00	59.24	8
	ATOM	320	N	GLU A	40	51.352	30.715	45.123		56.60	7
	MOTA	321	CA	GLU A	40	50.451	31.019	46.216		58.75	6
	ATOM	322	CB	GLU A	40	49.617	32.251	45.920		59.61	6
30	ATOM ATOM	323 324	CG	GLU A	40	50.426	33.520	45.821		65.69	6
00	ATOM	325		GLU A GLU A	40 40	49.547	34.752	45.683		69.26	6
	ATOM	326		GLU A	40	48.747 49.655	34.812	44.715		72.53	8
	ATOM	327	C	GLU A	40	49.534	35.659 29.863	46.543 46.448		69.31	8
	ATOM	328	Ö	GLU A	40	49.006	29.275	45.509		60.49 62.83	6
35	ATOM	329	N	VAL A	41	49.348	29.525	47.710		60.13	8 7
	ATOM	330	CA	VAL A	41	48.474	28.431	48.049		60.14	6
	ATOM	331	CB	VAL A	41	49.292	27.230	48.576		59.98	6
	MOTA	332	CG1	VAL A	41	48.376	26.185	49.146		59.73	6
40	ATOM	333	CG2	VAL A	41	50.118	26.632	47.444	1.00	59.26	6
40	MOTA	334	С	VAL A	41	47.510	28.934	49.109	1.00	60.58	6
	ATOM	335	0	VAL A	41	47.864	29.793	49.934	1.00	61.24	8
	ATOM	336.	N	ASN A	42	46.283	28.428	49.059		59.54	7
	MOTA	337	CA	ASN A	42	45.267	28.806	50.024		60.72	6
45	ATOM ATOM	338 339	CB CG	ASN A	42	44.346	29.895	49.463		59.36	6
40	ATOM	340		ASN A ASN A	42 42	43.473	30.530	50.533		59.07	6
	ATOM	341		ASN A	42	42.811	29.835	51.303		60.43	8
	ATOM	342	C	ASN A	42	43.462 44.474	31.856 27.535	50.582 50.286		57.17 62.57	7
	ATOM	343	0	ASN A	42	43.654	27.107	49.460		62.42	6
50	ATOM	344	N	GLU A	43	44.731	26.921	51.435		63.02	8 7
	ATOM	345	CA	GLU A	43	44.045	25.695	51.792		62.62	6
	ATOM	346	CB	GLU A	43	44.772	25.004	52.942		65.20	6
	ATOM	347	CG	GLU A	43	44.206	23.642	53.253		67.62	6
	MOTA	348	CD	GLU A	43	45.088	22.827	54.174		69.40	6
55	ATOM	349		GLU A	43	44.628	21.739	54.581		71.48	8
	ATOM	350		GLU A	43	46.228	23.256	54.479		67.83	8
	ATOM	351	С	GLU A	43	42.595	25.959	52.169		61.53	6
	ATOM	352	0	GLU A	43	41.755	25.058	52.086	1.00	59.68	8
60	ATOM	353	N	ILE A	44	42.309	27.197	52.575	1.00		7
UU	ATOM	354	CA	ILE A	44	40.957	27.580	52.951	1.00		6
	MOTA	355	CB	ILE A	44	40.923	28.953	53.632	1.00	60.98	6

	WO 01/589	951								PCT	EP01/01	457
							-78					
	ATOM	356	CG2	ILE	A 4	44	39.469	29.343	53.943	1.00	61.06	6
	MOTA	357		ILE		44	41.749	28.921	54.918		61.51	6
	MOTA	358	CD1	ILE	À A	44	41.119	28.117	56.022		61.37	6
_	MOTA	359	С	ILE	A 4	44	40.069	27.660	51.718		61.06	6
5	MOTA	360	0	ILE		44	38.942	27.148	51.708		61.53	8
	ATOM	361	N	THR		45	40.581	28.302	50.674		60.25	7
	MOTA	362	CA	THR		45	39.826	28.464	49.426		58.34	6
	ATOM ATOM	363 364	CB	THR		45 45	40.086 41.492	29.844	48.805		58.12 58.85	6
10	ATOM	365		THR		45 45	39.632	29.992 30.934	48.535 49.762		56.98	8 6
	ATOM	366	C	THR		45	40.139	27.407	48.374		56.43	6
	ATOM	367	ō	THR		45	39.465	27.328	47.349		54.64	8
	ATOM	368	N	ASN		46	41.169	26.607	48.620		55.73	7
	ATOM	369	CA	ASN	A 4	46	41.534	25.563	47.677	1.00	56.27	6
15	MOTA	370	CB	ASN	A ·	46	40.390	24.557	47.560		55.82	6
	MOTA	371	CG	ASN		46	40.612	23.327	48.412		56.92	6
	MOTA	372		ASN		46	39.671	22.621	48.746		55.85	8
	ATOM	373		ASN		46	41.866	23.058	48.754		54.55	7
20	ATOM ATOM	37 <u>4</u> 375	C	ASN		46 46	41.869 41.350	26.127	46.299		56.62	6
20	MOTA	376	N O	ASN GLU		40 47	42.744	25.659 27.130	45.283 46.275		58.80 54.91	· 8 7
	ATOM	377	CA	GLU		47	43.156	27.766	45.044		52.39	6
	ATOM	378	CB	GLU		47	42.606	29.183	44.999		50.63	6
	ATOM	379	CG	GLU		47	41.107	29.247	44.938		48.77	6
25	ATOM	380	CD	GLU		47	40.601	30.675	44.951		53.28	6
	MOTA	381	OE1	GLU	A	47	41.370	31.577	44.568	1.00	51.68	8
	MOTA	382		GLU		47	39.429	30.902	45.333		58.43	8
	MOTA	383	C	GLU		47	44.671	27.776	44.979		52.87	6
30	MOTA	384	0	GLU		47	45.347	28.009	45.981		53.20	8
30	ATOM ATOM	385 386	N CA	VAL VAL		48 48	45.208 46.656	27.513	43.797		53.53	7
	MOTA	387	CB	VAL		40 48	47.147	27.481 26.043	43.619 43.318		53.36 53.31	6 6
	ATOM	388		VAL		48	48.646	26.029	43.122		55.73	6
	ATOM	389		VAL		48	46.781	25.130	44.456		52.72	6
35	ATOM	390	С	VAL		48	47.108	28.390	42.484		52.90	6
	ATOM	391	0	VAL	A	48	46.441	28.504	41.454		54:54	8
	ATOM	392	N	ASP		49	48.242	29.046	42.691	1.00	52.21	7
	ATOM	393	CA	ASP		49	48.818	29.928	41.692		51.57	6
40	ATOM	394	CB	ASP		49	49.084	31.291	42.304		52.64	6
40	MOTA	395	CG OD1	ASP		49	49.264	32.352	41.268		53.86	б
	ATOM ATOM	396 397		ASP ASP		49	49.900	32.051	40.246		54.56	8
	ATOM	398	C	ASP		49 49	48.779 50.121	33.482 29.241	41.474 41.313		57.00 50.45	8 6
	ATOM	399	Ö	ASP		49	51.074	29.254	42.075		52.15	8
45	ATOM	400	N	VAL		50	50.155	28.636	40.135		49.83	7
	ATOM	401	CA	VAL		50	51.329	27.893	39.711		49.77	6
	ATOM	402	CB	VAL		50	50.992	26.372	39.723	1.00	51.61	6
	MOTA	403	CG1	VAL	A !	50	50.095	26.015	38.531	1.00	51.90	6
	ATOM	404		VAL		50	52.265	25.539	39.721	1.00	53.03	6
50	ATOM	405	C	VAL		50	51.890	28.290	38.335		49.01	6
	MOTA	406	0	VAL		50	51.193	28.878	37.508		50.33	8
	MOTA	407 408	N CA	VAL VAL		51 51	53.163 53.863	27.974	38.117		46.39	7
	ATOM ATOM	409	CB	VAL		51	55.111	28.245 29.134	36.861 37.083		45.41 43.93	6
55	MOTA	410		VAL		51	55.943	29.134	35.807		42.09	6 6
- •	ATOM	411		VAL		51	54.696	30.536	37.497		41.05	6
	ATOM	412	С	VAL		51	54.336	26.899	36.291		46.83	6
	MOTA	413	0	VAL		51	54.879	26.063	37.016		47.95	8
	MOTA	414	N	PHE		52	54.147	26.684	34.996	1.00	45.38	7
60	ATOM	415	CA	PHE		52	54.560	25.423	34.402		44.58	6
	MOTA	416	CB	PHE	Α !	52	53.485	24 <i>.</i> 373	34.662	1.00	44.09	6

							-79				
	ATOM	417	CG	PHE	A	52	52.155	24.718	34.068	1.00 43.27	6
	ATOM	418		PHE		52	51.857	24.393	32.758	1.00 42.79	6
	ATOM	419		PHE		52	51.211	25.411	34.805	1.00 45.35	6
	MOTA	420	CE1	PHE	A	52	50.643	24.755	32.194	1.00 41.86	6
5	ATOM	421	CE2	PHE	Α	52	49.991	25.776	34.240	1.00 45.03	6
	MOTA	422	CZ	PHE	Α	52	49.712	25.445	32.933	1.00 41.04	6
	ATOM	423	С	PHE	A	52	54.789	25.547	32.906	1.00 45.52	6
	ATOM	424	0	PHE	Α	52	54.403	26.536	32.288	1.00 46.49	8
	ATOM	425	N	TRP	Α	53	55.431	24.541	32.328	1.00 45.07	7
10	MOTA	426	CA	TRP	Α	53	55.662	24.527	30.898	1.00 46.61	6
	ATOM	427	CB	TRP	Α	53	57.043	24.000	30.573	1.00 48.36	6
	MOTA	428	CG	TRP		53	58.137	24.899	30.983	1.00 50.29	6
	ATOM	429	CD2	TRP	A	53	59.531	24.604	30.942	1.00 50.34	6
	MOTA	430		TRP		53	60.213	25.755	31.386	1.00 51.89	6
15	ATOM	431		TRP		53	60.274	23.473	30.570	1.00 52.05	6
	MOTA	432		TRP		53	58.024	26.175	31.436	1.00 50.84	6
	MOTA	433		TRP		53	59.267	26.700	31.682	1.00 52.12	7
	MOTA	434	CZ2	TRP		53	61.605	25.817	31.470	1.00 53.79	6
	MOTA	435	CZ3	TRP		53	61.660	23.527	30.649	1.00 53.82	6
20	ATOM	436	CH2			53	62.314	24.697	31.099	1.00 55.14	6 6
	ATOM	437	C	TRP		53	54.644	23.599	30.285	1.00 47.55 1.00 49.29	8
	ATOM	438	0	TRP		53	54.645	22.410	30.564 29.457	1.00 49.29	7
	ATOM	439	N	GLN		54 54	53.765 52.765	24.139 23.312	28.825	1.00 47.31	. 6
25	ATOM	440	CA	GLN GLN		54	51.517	24.132	28.529	1.00 47.98	6
23	MOTA	441 442	CB CG	GLN		54	50.322	23.309	28.095	1.00 50.36	6
	ATOM	442	CD	GLN		54	49.001	24.016		1.00 54.00	6
	ATOM ATOM	444		GLN		54	48.697	24.360	29.515	1.00 53.48	8
	ATOM	445		GLN		54	48.209	24.231	27.335	1.00 57.12	7
30	ATOM	446	C	GLN		54	53.378	22.755	27.555	1.00 49.13	6
00	ATOM	447	ō	GLN		54	53.095	23.203	26.453	1.00 50.86	8
	ATOM	448	N	GLN		55	54.251	21.779	27.738	1.00 50.50	7
	ATOM	449	CA	GLN		55	54.937	21.122	26.641	1.00 52.90	6
	ATOM	450	CB	GLN	Α	55	55.995	20.200	27.234	1.00 58.12	6
35	ATOM	451	CG	GLN	Α	55	56.699	19.288	26.263	1.00 66.05	6
	ATOM	452	CD	GLN	Α	55	57.909	18.634	26.907	1.00 71.07	б
	ATOM	453	OE1	-,		55	57.890	18.307	28.107	1.00 73.93	8
	MOTA	454	NE2			55	58.969	18.442	26.123	1.00 72.99	7
	MOTA	455	C	GLN		55	53.939	20.353	25.774	1.00 51.30	6
40	ATOM	456	0	GLN		55	53.451	19.293	26.151	1.00 50.67	8
	MOTA	457	N	THR		56	53.648	20.907	24.604	1.00 49.14	7
	MOTA	458	CA	THR		56	52.690	20.325	23.684	1.00 46.69 1.00 45.67	6 6
	ATOM	459	CB	THR		56	51.597			1.00 45.84	8
45	ATOM	460		THR		56 56	51.138 50.426	21.969 20.673	24.541 22.666	1.00 45.84	6
45	ATOM	461 462	CGZ	THR THR		56	53.344	19.878	22.389	1.00 46.05	6
	ATOM ATOM	463	0	THR		56	54.286	20.503	21.917	1.00 46.13	8
	MOTA	464	N	THR		57	52.836	18.796	21.812	1.00 44.22	7
	ATOM	465	CA	THR		57	53.384	18.286	20.569	1.00 44.65	6
50	ATOM	466	СВ	THR		57	54.511	17.270	20.823	1.00 44.59	6
	ATOM	467		THR		57	55.593	17.914	21.499	1.00 42.38	8
	ATOM	468		THR		57	55.036	16.733	19.512	1.00 49.11	6
	ATOM	469	C	THR		57	52.316	17.627	19.721	1.00 43.97	6
	MOTA	470	0	THR	Α	57	51.377	17.039	20.239	1.00 44.62	8
55	ATOM	471	N	TRP	Α	58	52.452	17.753	18.410	1.00 42.72	7
	MOTA	472	CA	TRP		58	51.502	17.153	17.489	1.00 44.75	6
	MOTA	473	CB	TRP		58		17.883	17.529	1.00 42.24	. 6
	MOTA	474	CG	TRP		58	50.130		16.967	1.00 40.43	. 6
60	MOTA	475	CD2			58	50.427		17.668	1.00 39.55	6
60	ATOM	476		TRP		58	50.354		16.735	1.00 41.08 1.00 36.98	6 6
	MOTA	477	CE3	TRP	Α	58	50.755	20.770	18.995	T.00 30.38	0

	WO 01/58951									PCT/EP01/01	457
							-80				
	ATOM	478		TRP		58	49.887	19.624	15.677	1.00 39.98	6
	MOTA	479		TRP		58	50.019	20.971	15.527	1.00 41.55	7
	ATOM	480		TRP		58	50.599	22.850	17.084	1.00 40.32	6
5	ATOM	481		TRP		58	50.997	22.081	19.341	1.00 37.03	6
5	MOTA	482	CH2			58	50.919	23.109	18.389	1.00 38.53	б
	ATOM ATOM	483 484	C	TRP		58	52.112	17.184	16.098	1.00 47.09	· 6
	ATOM	485	O N	TRP		58 59	53.226	17.675	15.915	1.00 47.06	8
	ATOM	486	CA	SER		59	51.390 51.933	16.670 16.631	15.115 13.782	1.00 48.64	7
10	ATOM	487	CB	SER		59	52.245	15.187	13.782	1.00 50.92 1.00 53.25	6
	ATOM	488	OG	SER		59	53.191	15.109	12.389	1.00 53.25	6 8
	ATOM	489	C	SER		59	51.020	17.229	12.735	1.00 52.80	6
	ATOM	490	0	SER		59	49.828	16.942	12.696	1.00 53.05	8
	.ATOM	491	N	ASP	Α	60	51.602	18.065	11.881	1.00 55.45	7
15	MOTA	492	CA	ASP	Α	60	50.881	18.721	10.792	1.00 57.44	6
	ATOM	493	CB	ASP		60	50.741	20.221	11.071	1.00 57.33	6
	MOTA	494	CG	ASP		60	49.856	20.936	10.058	1.00 57.43	6
	ATOM	495		ASP		60	49.776	20.486	8.896	1.00 57.47	8
20	ATOM	496		ASP		60	49.256	21.967	10.424	1.00 56.76	8
20	MOTA	497	C	ASP		60	51.726	18.510	9.541	1.00 59.20	6
	MOTA	498	0	ASP		60	52.679	19.245	9.304	1.00 58.82	8
	ATOM ATOM	499 500	N	ARG		61	51.372	17.503	8.748	1.00 61.30	7
	ATOM	501	CA CB	ARG ARG		61 61	52.115 51.643	17.181	7.533	1.00 63.09	6
25	ATOM	502	CG	ARG		61	52.191	15.845	6.958	1.00 67.23	6
	ATOM	503	CD	ARG		61	51.883	14.594 13.355	7.653 6.786	1.00 72.92	6
	ATOM	504	NE	ARG		61	52.441	12.091	7.291	1.00 81.01 1.00 85.79	6 7
	ATOM	505	CZ	ARG		61	52.320	10.917	6.660	1.00 83.79	6
	ATOM	506		ARG		61	51.665	10.843	5.501	1.00 88.31	7
30	MOTA	507		ARG		61	52.852	9.815	7.179	1.00 87.74	7
	MOTA	508	C	ARG	Α	61	52.073	18.238	6.430	1.00 61.94	6
	MOTA	509	0	ARG	Α	61	52.927	18.225	5.550	1.00 61.39	8
	MOTA	510	N	THR		62	51.095	19.141	6.461	1.00 60.78	7
0=	MOTA	511	CA	THR		62	51.017	20.175	5.434	1.00 59.76	6
35	MOTA	512	CB	THR		62	49.666	20.952	5.483	1.00 60.01	6
	ATOM	513		THR		62	49.582	21.720	6.689	1.00 62.71	8
	ATOM ATOM	514 515		THR		62	48.500	20.000	5.442	1.00 59.86	6
	ATOM	515 516	С О	THR THR		62 62	52.172	21.171	5.616	1.00 58.73	6
40	ATOM	517	N	LEU		63	52.400 52.898	22.044 21.031	4.774	1.00 59.33	8
	ATOM	518		PEU		63	54.029	21.031	6.720 7.020	1.00 56.50	7
	ATOM	519	CB	LEU		63	54.088	22.205	8.521	1.00 55.97 1.00 53.19	6
	ATOM	520	CG	LEU		63	52.866	22.837	9.174	1.00 52.76	6 6
	ATOM	521		LEU		63	53.074	22.909	10.672	1.00 51.73	6
45	ATOM	522		LEU		63	52.629	24.217	8.589	1.00 53.34	6
	ATOM	523	C	LEU	Α	63	55.351	21.264	6.603	1.00 55.80	6
	MOTA	524	0	LEU		63	56.366	21.947	6.509	1.00 54.36	8
	MOTA	525	N	ALA		64	55.332	19.952	6.368	1.00 56.30	7
50	ATOM	526	CA	ALA		64	56.532	19.207	5.987	1.00 56.99	6
50	MOTA	527	CB	ALA		64	56.194	17.744	5.810	1.00 54.20	6
	MOTA	528	C	ALA		64	57.176	19.745	4.715	1.00 59.20	6
	ATOM ATOM	529 530	O N	ALA		64	56.487	20.224	3.816	1.00 60.08	8
	ATOM	530 531	N CA	TRP TRP		65 65	.58.502 59.295	19.646	4.651	1.00 60.65	7
55	ATOM	532	CB	TRP		65	59.623	20.104 21.588	3.506	1.00 62.47	6
	ATOM	533	CG	TRP		65	60.773	21.388	3.667 4.613	1.00 59.37 1.00 56.94	6
	ATOM	534		TRP		65	60.685	22.167	6.020	1.00 56.94	6
	ATOM	535		TRP		65	62.001	22.424	6.475	1.00 55.89	6 6
	MOTA	536		TRP		65	59.622	22.245	6.938	1.00 54.01	6
60	MOTA	537		TRP		65	62.097	21.947	4.292	1.00 55.45	6
	ATOM	538		TRP		65	62.838	22.282	5.400	1.00 53.98	7

	WO 01/58	8951				•				PCT/EP01/01	1457
							-81				
	MOTA	539	CZ2	TRP 2	A 65	5	62.286	22.757	7.808	1.00 52.03	6
	MOTA	540	CZ3	TRP 2			59.910	22.577	8.266	1.00 53.82	6
	MOTA	541		TRP .			61.232	22.829	8.684	1.00 51.71	6
_	MOTA	542		TRP			60.603	19.297	3.445	1.00 65.72 1.00 66.89	6 8
5	ATOM	543	0	TRP			61.091 61.181	18.825 19.138	4.479 2.255	1.00 68.69	7
	MOTA MOTA	544 545		ASN ASN			62.431	18.371	2.233	1.00 71.84	6
	ATOM	546	CB	ASN .			62.735	17.983	0.689	1.00 73.23	6
	ATOM	547	CG	ASN .			63.968	17.084	0.568	1.00 76.18	6
10	ATOM	548		ASN .		5	64.473	16.822	-0.541	1.00 76.68	8
	MOTA	549	ND2	ASN .	A 6	5	64.463	16.606	1.715	1.00 76.39	7
	MOTA	550	C	ASN .			63.581	19.199	2.723	1.00 71.96	6
	MOTA	551	0	ASN			63.902	20.279	2.217	1.00 72.02	8
4 5	MOTA	552	N	SER			64.197	18.690	3.784	1.00 72.09 1.00 72.65	7 6
15	ATOM	553	CA	SER			65.292 65.063	19.403 19.425	4.435 5.943	1.00 72.63	6
	ATOM ATOM	554 555	CB OG	SER SER			64.969	18.105	6.449	1.00 70.09	8
	ATOM	556	C	SER			66.655	18.794	4.177	1.00 73.27	6
	ATOM	557	Ö	SER			67.576	19.031	4.961	1.00 72.43	8
20	MOTA	558	N	SER	A 6	8	66.799	18.026	3.097	1.00 74.60	7
	MOTA	559	CA	SER			68.082	17.370	2.825	1.00 76.38	6
	MOTA	560	CB	SER			68.006	16.490	1.564	1.00 75.57	6
	MOTA	561	OG	SER			67.870	17.265	0.386	1.00 75.20	8 6
05	ATOM	562	C	SER			69.222	18.380 18.201	2.707 3.300	1.00 77.15 1.00 77.04	8
25	ATOM	563 564	O N	SER HIS			70.288 68.992	19.451	1.962	1.00 77.04	7
	MOTA ATOM	565	CA	HIS			70.015	20.479	1.804	1.00 79.62	6
	ATOM	566	CB	HIS			70.445	20.578	0.341	1.00 84.04	6
	ATOM	567	CG	HIS			71.007	19.302	-0.196	1.00 88.01	6
30	ATOM	568	CD2	HIS	А б	9	72.208	19.022	-0.759	1.00 89.20	6
	ATOM	569	ND1	HIS			70.332	18.100	-0.110	1.00 89.31	7
	MOTA	570		HIS			71.096		-0.589	1.00 90.18	6
	ATOM	571		HIS			72.240		-0.988	1.00 90.99 1.00 77.78	7 6
35	ATOM	572 573	C	HIS HIS			69.441 69.473		2.279 1.561	1.00 77.78	8
JJ	ATOM ATOM	574	N O	SER			68.896		3.496	1.00 75.27	7
	ATOM	. 575	CA	SER		0	68.300		4.141	1.00 72.21	6
	ATOM	576	СВ	SER		0	67.013		3.421	1.00 72.74	6
	ATOM	577	OG	SER	A 7	0	66.368	22.158	2.919	1.00 74.05	8
40	MOTA	578	C	SER	A 7	0	68.031		5.595	1.00 69.35	6
	MOTA	579	0	SER		0	68.138		5.962	1.00 70.38	8
	MOTA	580	N	PRO		1	67.710		6.450 6.134	1.00 66.44 1.00 64.03	7 6
	MOTA	581 582	CD CA	PRO PRO		1	67.819 67.422		7.883	1.00 64.80	6
45	ATOM ATOM	583	CB	PRO		1	67.106		8.334	1.00 63.49	6
10	ATOM	584	CG	PRO		1	68.031		7.498	1.00 61.83	6
	ATOM	585	C	PRO		1	66.295		8.223	1.00 63.99	6
	MOTA	586	0	PRO	A 7	1	65.314	22.289	7.496	1.00 63.63	8
	MOTA	587	N	ASP		2	66.434		9.333	1.00 63.39	7
50	MOTA	588	CA	ASP		2	65.424		9.734	1.00 63.43	6
	ATOM	589	CB	ASP		2	66.056 67.229		10.617 9.959	1.00 65.69 1.00 70.53	6 6
	MOTA	590	CG OD1	ASP ASP		2 2	66.985		8.988	1.00 70.33	8
	ATOM ATOM	591 592		ASP		2	68.389		10.390	1.00 71.00	8
55	MOTA	593	C	ASP		72	64.307		10.520	1.00 62.20	6
	ATOM	594	ō	ASP		2	63.164		10.520	1.00 61.88	8
	ATOM	595	N	GLN	A 7	73	64.653		11.175	1.00 59.83	7
	MOTA	596	CA	GLN		73	63.738		12.041	1.00 59.45	6
00	MOTA	597	CB	GLN		73	64.083		13.489	1.00 60.33	6
60	MOTA	598	CG	GLN		73	63.720		14.035	1.00 63.59 1.00 68.15	6
	ATOM	599	CD	GLN	n	73	64.224	21.462	15.459	1.00 00.15	6

							-82					
	ATOM	600	OE1	GLN .	A	73	65.425	21.595	15.699	1.00	70.61	8
	ATOM	601		GLN .		73	63.316	21.249	16.416	1.00	59.73	7
	ATOM	602	C	GLN .		73	63.779	24.703	11.886	1.00 5	57.04	6
	MOTA	603	0	GLN .	Α	73	64.798	25.280	11.490	1.00		8
5	ATOM	604	N	VAL .	Α	74	62.670	25.336	12.243	1.00		7
•	MOTA	605	CA	VAL	Α	74	62.557	26.782	12.211	1.00		6
	MOTA	606	CB	VAL	Α	74	62.036	27.279	10.859	1.00		6
	MOTA	607		VAL		74	63.066	27.034	9.794	1.00		6
	MOTA	608		VAL		74	60.738	26.584	10.515	1.00		6
10	ATOM	609	C	VAL		74	61.580	27.201	13.310	1.00		6
	ATOM	610	0	VAL		74	60.756	26.401	13.754	1.00		8 7
	MOTA	611	N	SER		75	61.691	28.442	13.769 14.787	1.00		6
	MOTA	612	CA	SER		75 75	60.792 61.525	28.954 29.902	15.728	1.00		6
1 =	ATOM	613	CB	SER		75 75	62.241	29.902	16.710	1.00		8
15	MOTA	614	OG C	SER SER		75 75	59.668	29.688	14.084	1.00		6
	MOTA	615 616	C C	SER		75	59.894	30.657	13.358	1.00		8
	MOTA MOTA	617	N	VAL		76	58.451	29.214	14.307	1.00		7
	ATOM	618	CA	VAL		76	57.272	29.792	13.687	1.00		6
20	ATOM	619	CB	VAL		76	56.482	28.711	12.936	1.00		6
	ATOM	620		VAL		76	55.247	29.315	12.298	1.00		6
	ATOM	621		VAL		76	57.359	28.058	11.894	1.00	43.12	6
	ATOM	622	C	VAL		76	56.335	30.436	14.704	1.00	44.16	6
	MOTA	623	0	VAL		76	56.093	29.882	15.773	1.00	45.89	8
25	ATOM	624	N	PRO	Α	77	55.798	31.624	14.388	1.00		7
	MOTA	625	CD	PRO	Α	77	56.162	32.556	13.311	1.00	41.24	6
	MOTA	626	CA	PRO	Α	77	54.884	32.266	15.334	-	41.49	б
	MOTA	627	CB	PRO	Α	77	54.619	33.615	14.691		41.13	6
	ATOM	628	CG	PRO		77	55.886	33.884	13.950		41.89	6
30	MOTA	629	С	PRO	Α	77	53.617	31.439	15.453	1.00		6
	MOTA	630	0	PRO		77	53.112	30.919	14.471		39.55	8
	MOTA	631	N	ILE		78	53.116	31.318	16.671		42.42	7
	MOTA	632	CA	ILE		78	51.908	30.556	16.959		42.14	6
0.5	MOTA	633	CB	ILE		78	51.526	30.751	18.441		42.09	6
35	ATOM	634	CG2			78	50.105	30.357	18.712		43.53	6
	ATOM	635		ILE		78	52.464	29.921	19.285		43.22 43.92	6 6
	ATOM	636		ILE		78	52.585	28.513	18.784		43.58	6
	MOTA	637	C	ILE		78 78	50.749 49.985	30.942 30.096	16.057 15.624		45.64	8
40	MOTA	638	0	ILE SER		79	50.642	32.229	15.768		43.79	7
40	ATOM ATOM	639 640	N CA	SER		79	49.588	32.767	14.918		44.38	6
	ATOM	641	CB	SER		79	49.666	34.292	14.934		44.81	6
	ATOM	642		SER		79	50.972	34.732	14.584		45.88	8
	ATOM	643	C	SER		79	49.590	32.295	13.465		43.50	6
45	ATOM	644	o	SER		79	48.607	32.498	12.758		42.80	8
	ATOM	645	N	SER		80	50.685	31.683	13.016	1.00	42.62	7
	ATOM	646	CA	SER		80	50.774	31.216	11.639	1.00	42.84	6
	ATOM	647	СВ	SER		80	52.137	31.555	11.043	1.00	44.68	6
	MOTA	648	OG	SER		80	52.308	32.956	10.932	1.00	51.59	8
50	ATOM	649	С	SER	À	80	50.534	29.726	11.502		44.69	6
	MOTA	650	0	SER	Α	80	50.596	29.184	10.402	1.00	43.97	8
	ATOM	651	N	LEU	Α	81	50.248	29.068	12.620	1.00	45.13	7
	ATOM	652	CA	LEU	Α	81	50.003	27.631	12.631		41.19	6
	MOTA	653	· CB	LEU		81	51.061	26.926	13.467		39.92	6
55	MOTA	654	CG	LEU		81	52.534	27.167	13.185		41.52	6
	ATOM	655		LEU		81	53.356	26.677	14.355		39.70	6
	ATOM	656		LEU		81	52.922	26.464	11.918		42.52	6
	ATOM	657	C	LEU		81	48.672	27.340	13.272		39.47	6
60	MOTA	658	0	LEU		81	48.089	28.197	13.921 13.081		40.21 38.46	8 7
60	ATOM	659	N	TRP		82 82	48.191	26.122 25.694	13.081		37.32	6
	MOTA	660	CA	TRP	А	02	46.965	25.054	13.720	1.00	J1.J2	0

	WO 01/58	951									PCT/EP01/01	457
								-83				
	ATOM	661	СВ	TRP	Δ.	82		46.346	24.494	13.006	1.00 36.83	~
	ATOM	662	CG	TRP		82		45.274	23.818	13.829	1.00 40.60	6 6
	MOTA	663	CD2			82		45.459	22.741	14.757	1.00 39.63	6
	ATOM	664	CE2	TRP	Α	82		44.213	22.499	15.369	1.00 38.33	6
5	MOTA	665	CE3	TRP	Α	82		46.560	21.961	15.132	1.00 40.54	6
	MOTA	666	CD1	TRP	Α	82		43.948	24.170	13.914	1.00 39.43	· 6
	MOTA	667	NE1			82		43.311	23.383	14.839	1.00 39.00	7
	ATOM	668		TRP		82		44.040	21.511	16.332	1.00 38.94	б
10	MOTA	669	CZ3			82		46.388	20.982	16.088	1.00 39.99	6
10	MOTA MOTA	670 671	CH2	TRP TRP		82 82		45.135	20.764	16.678	1.00 39.88	·6
	ATOM	672	0	TRP		82		47.485 48.559	25.241 24.661	15.064	1.00 36.99	6
	ATOM	673	N	VAL		83		46.744	25.503	15.142 16.123	1.00 38.93 1.00 37.43	8 7
	ATOM	674	CA	VAL		83		47.179	25.086	17.437	1.00 37.48	6
15	ATOM	675	СВ	VAL		83		47.729	26,300	18.209	1.00 37.40	6
	MOTA	676	CG1	VAL		83		47.901	25.984	19.655	1.00 43.51	6
	MOTA	677	CG2	VAL	Α	83		49.054	26.688	17.644	1.00 37.34	6
	MOTA	678	С	VAL		83	•	46.011	24.437	18.175	1.00 39.74	6
00	MOTA	679	0	VAL		83		44.858	24.823	17.997	1.00 42.50	8
20	ATOM	680	N	PRO		84		46.290	23.408	18.982	1.00 39.54	7
	ATOM ATOM	681 682	CD CA	PRO PRO		84		47.594	22.745	19.134	1.00 41.22	6
	ATOM	683	CB	PRO		84 84		45.263 46.079	22.701	19.752	1.00 38.54	6
	ATOM	684	CG	PRO		84		47.202	21.690 21.381	20.558 19.663	1.00 39.94 1.00 41.42	6
25	ATOM	685	C	PRO		84		44.509	23.663	20.658	1.00 41.42	6 6
	ATOM	686	ō	PRO		84		45.121	24.469	21.342	1.00 35.57	8
	ATOM	687	N	ASP	Α	85		43.186	23.576	20.668	1.00 32.88	7
	MOTA	688	CA	ASP	Α	85		42.397	24.458	21.505	1.00 34.36	6
00	ATOM	689	CB	ASP		85		41.014	24.668	20.898	1.00 35.14	6
30	MOTA	690	CG	ASP		85		40.268	23.381	20.696	1.00 37.78	6
	MOTA	691		ASP		85		40.897	22.388	20.290	1.00 40.24	8
	MOTA MOTA	692 693	C C	ASP ASP		85		39.050	23.367	20.927	1.00 37.65	8
	ATOM	694	0	ASP		85 85		42.277 41.180	23.906 23.726	22.910 23.420	1.00 35.33	6
35	ATOM	695	N	LEU		86		43.418	23.720	23.528	1.00 38.82 1.00 32.24	8 7
	ATOM	696	CA	LEU		86		43.459	23.106	24.869	1.00 32.24	6
	MOTA	697	CB	LEU	Α	86		44.878	22.670	25.208	1.00 34.63	6
	MOTA	698	CG	LEU		86		45.435	21.585	24.311	1.00 35.36	6
40	MOTA	699		LEU		86		46.842	21.241	24.749	1.00 34.84	б
40	MOTA	700		LEU		86		44.530	20.376	24.386	1.00 35.68	6
	ATOM	701	C	LEU		86		42.973	24.086	25.925	1.00 36.01	6
	ATOM ATOM	702 703	O N	LEU		·86 87		43.141	25.283	25.800	1.00 37.75	8
	ATOM	703	CA	ALA		87		42.378 41.870	23.556 24.369	26.979	1.00 38.03	7
45	MOTA	705	CB	ALA		87		40.428	24.509	28.060 27.811	1.00 38.29 1.00 36.17	6
	MOTA	706	C	ALA		87		42.022	23.605	29.371	1.00 30.17	6 6
	ATOM	707	0	ALA		87		41.798	22.399	29.407	1.00 43.90	8
	ATOM	708	N	ALA	Α	88		42.431	24.290	30.436	1.00 39.68	7
	MOTA	709	CA	ALA		88		42.558	23.639	31.726	1.00 38.37	6
50	MOTA	710	CB	ALA		88		43.586	24.337	32.571	1.00 34.88	6
	ATOM	711	C	ALA		88		41.180	23.729	32.376	1.00 40.65	6
	ATOM	712	0	ALA		88		40.778	24.780	32.847	1.00 40.29	8
	MOTA MOTA	713 714	N CA	TYR TYR		89 89		40.460 39.116	22.613 22.502	32.371	1.00 42.49	7
55	ATOM	714	CB	TYR		89		38.727	21.023	32.934 33.052	1.00 44.24	6
	ATOM	716	CG	TYR		89		38.641	20.286	31.725	1.00 46.70 1.00 51.62	6 6
	ATOM	717		TYR		89		38.462	18.902	31.684	1.00 54.35	6
	MOTA	718	CE1	TYR	A	89		38.353	18.222	30.466	1.00 56.33	6
60	MOTA	719		TYR		89		38.711	20.968	30.511	1.00 51.86	6
60	ATOM	720		TYR		89 .		38.604	20.297	29.302	1.00 53.71	6
	MOTA	721	CZ	TYR	Α	89		38.424	18.927	29.286	1.00 55.54	6

							-84				
	ATOM	722	OH	TYR .	A 8	39	38.296	18,257	28.093	1.00 59.35	8
	ATOM	723	С	TYR		39	38.888	23.185	34.280	1.00 43.81	6
	ATOM	724	Ō	TYR		39	37.808	23.735	34.518	1.00 41.70	8
	ATOM	725	N	ASN		90	39.880	23.149	35.167	1.00 43.90	7
5	ATOM	726	CA	ASN	A 9	90	39.709	23.781	36.473	1.00 43.12	6
	MOTA	727	CB	ASN	A 9	90	39.976	22.770	37.598	1.00 40.92	б
	ATOM	728	CG	ASN		90	41.340	22.156	37.517	1.00 42.04	6
	ATOM	729		ASN		90	41.770	21.721	36.456	1.00 43.62	8
	ATOM	730		ASN		90	42.033	22.102	38.646	1.00 43.25	7
10	ATOM	731	С	ASN		90	40.550	25.042	36.655	1.00 44.35	6
	MOTA	732	0	ASN		90	40.881	25.434	37.769	1.00 46.42	8
	ATOM	733	N	ALA) 1	40.902	25.673	35.543	1.00 45.44	7
	ATOM	734	CA	ALA	A 9	91	41.660	26.912	35.591	1.00 45.36	6
	ATOM	735	CB	ALA	A S	91	42.130	27.308	34.206	1.00 44.43	б
15	ATOM	736	С	ALA	A 9	91	40.680	27.940	36.136	1.00 45.00	6
	ATOM	737	0	ALA	A 9	91	39.522	28.000	35.729	1,00 43.71	8
	ATOM	738	N	ILE	A 9	92	41.164	28.750	37.064	1.00 46.47	7
	ATOM	739	CA	ILE	A 9	92	40.359	29.753	37.734	1.00 46.18	6
	ATOM	740	CB	ILE	A 9	92	40.674	29.673	39.232	1.00 47.56	6
20	MOTA	741	CG2	ILE	A 9	92	41.595	30.797	39.634	1.00 50.92	6
	MOTA	742	CG1	ILE	A 9	92	39.409	29.713	40.055	1.00 50.52	6
	MOTA	743	CD1	ILE	A S	92	39.711	29.795	41.547	1.00 51.82	6
	MOTA	744	С	ILE	A 9	92 .	40.659	31.157	37.177	1.00 45.80	6
	MOTA	745	0	ILE	A 9	92	39.996	32.134	37.518	1.00 45.79	8
25	MOTA	746	N	SER	A S	93	41.666	31.237	36.317	1.00 44.40	7
	MOTA	747	CA	SER	A 9	93	42.076	32.483	35.687	1.00 41.89	6
	ATOM	748	CB	SER	A 9	93	43.248	33.080	36.445	1.00 40.83	6
	MOTA	74.9	OG	SER		93	44.400	32.275	36.274	1.00 37.97	8
	ATOM	750	С	SER		93	42.541	32.112	34.295	1.00 42.18	6
30	ATOM	751	0	SER	A S	93	42.762	30.942	34.023	1.00 41.06	8
	ATOM	752	N	LYS		94	42.693	33.081	33.401	1.00 43.27	7
	ATOM	753	CA	LYS		94	43.178	32.712	32.077	1.00 45.47	6
	MOTA	754	CB	LYS		94	42.703	33.680	30.988	1.00 44.26	6
	MOTA	755	CG	LYS		94	42.747	35.142	31.314	1.00 44.49	6
35	ATOM	756	CD	LYS		94	41.907	35.918	30.309	1.00 46.66	6
	ATOM	757	CE	LYS		94	42.209	35.470	28.885	1.00 47.75	6
	MOTA	758	NZ	LYS		94	41.443	36.237	27.873	1.00 49.19	7
	ATOM	759	C	LYS		94	44.688	32.592	32.089	1.00 43.67	6
40	MOTA	760	0	LYS		94	45.359	33.102	32.980	1.00 44.46	8
40	MOTA	761	N	PRO		95 05	45.243	31.889	31.105	1.00 43.23	7
	MOTA	762	CD	PRO		95 0.5	44.559	31.199	30.004	1.00 41.03	6
	MOTA	763	CA	PRO		95	46.692	31.695	31.024	1.00 42.80	6
	ATOM	764		PRO		95 05	46.858 45.515	30.719	29.862	1.00 43.77	6
45	MOTA	765	CG	PRO		95 05		30.078 32.962	29.725	1.00 43.00 1.00 41.84	6
40	MOTA	766	С	PRO		95 95	47.480 47.178	33.729	30.783 29.861	1.00 41.84	6 8
	ATOM	767 768	0	PRO GLU		96	48.483	33.723	31.627	1.00 41.82	7
	ATOM	769	N	GLU		96	49.350	34.322	31.472	1.00 40.74	6
	MOTA MOTA	770	CA CB	GLU		96	49.704	34.960	32.817	1.00 33.23	6
50	ATOM	771	CG	GLU		96	50.548	36.235	32.682	1.00 46.46	6
00	ATOM	772	CD	GLU		96	50.864	36.910	34.014	1.00 51.10	6
	ATOM	773		GLU		96	50.172	36.591	35.002	1.00 55.39	8
	ATOM MOTA	774		GLU		96	51.784	37.772	34.079	1.00 51.01	8
	MOTA	775	C	GLU		96	50.583	33.713	30.851	1.00 38.30	6
55	ATOM	776	0	GLU		96	51.424	33.169	31.548	1.00 37.33	8
-	ATOM	777	N	VAL		97	50.662	33.770	29.528	1.00 36.80	7
	ATOM	778	CA	VAL		97	51.813	33.231	28.821	1.00 37.13	6
	ATOM	779	CB	VAL		97	51.514	33.092	27.313	1.00 35.99	6
	ATOM	780		VAL		97	52.704	32.480	26.600	1.00 34.96	6
60	ATOM	781		VAL		97	50.287	32.222	27.122	1.00 30.36	6
	MOTA	782	С	VAL		97	53.002	34.160	29.061	1.00 37.37	6

						-85				
	MOTA	783	0	VAL A	97	52.998	35.329	28.670	1.00 35.14	8
	ATOM	784	N	LEU A	98	54.022	33.619	29.715	1.00 37.54	7
	ATOM	785	CA	LEU A	98	55.203	34.389	30.070	1.00 39.37	6
	ATOM	786	CB	LEU A	98	55.773	33.851	31.374	1.00 38.96	6
5	ATOM	787	CG	LEU A	- 98	54.848	33.662	32.568	1.00 39.17	6
	MOTA	788	CD1	LEU A	98	55.522	32.772	33.576	1.00 37.89	. 6
	MOTA	789	CD2	LEU A	98	54.501	34.997	33.169	1.00 38.95	6
	MOTA	790	C	LEU A	98	56.317	34.387	29.033	1.00 41.78	6
	MOTA	791	0	LEU A	98	57.310	35.114	29.177	1.00 42.77	8
10	MOTA	792	N	THR A	99	56.162	33.579	27.992	1.00 39.65	7
	MOTA	793	CA	THR A	99	57.199	33.471	26.981	1.00 37.85	6 6
	MOTA	794	СВ	THR A		57.793	32.063	27.004	1.00 39.36	8
	MOTA	795		THR A		56.745	31.102	26.822 28.325	1.00 40.29 1.00 36.68	6
4 =	ATOM	796		THR A	_	58.490	31.812	28.325 25.559	1.00 30.08	6
15	ATOM	797	C	THR A		56.762 55.571	33.784 33.809	25.260	1.00 37.27	8
	ATOM	798	0	THR A		57.733	34.050	24.666	1.00 37.48	7
	ATOM	799	N	PRO A		59.169	34.217	24.938	1.00 34.88	6
	MOTA	800 801	CD CA	PRO A		57.450	34.356	23.268	1.00 34.86	6
20	MOTA MOTA	802	CB	PRO A		58.825	34.308	22.631	1.00 32.91	6
20	ATOM	803	CG	PRO A		59.660	34.899	23.674	1.00 33.33	6
	ATOM	804	C	PRO A		56.535	33.287	22.735	1.00 34.32	6
	ATOM	805	Õ	PRO A		56.748	32.110	22.990	1.00 37.05	8
	ATOM	806	N	GLN A		55.508	33.684	22.005	1.00 35.52	7
25	ATOM	807	CA	GLN A		54.591	32.698	21.483	1.00 38.08	6
	ATOM	808	CB	GLN A		53.181	33.271	21.452	1.00 39.02	6
	ATOM	809	CG	GLN A	101	52.557	33.223	22.836	1.00 42.77	6
	ATOM	810	CD	GLN A	101	51.356	34.102	22.965	1.00 46.68	6
	ATOM	811	OE1	GLN A	101	50.383	33.943	22.239	1.00 51.63	8
30	MOTA	812	NE2	GLN A	101	51.408	35.045	23.900	1.00 48.84	7
	MOTA	813	С	GLN F	101	55.006	32.145	20.144	1.00 37.60	6
	MOTA	814	0	GLN A		54.331	32.329	19.136	1.00 36.16	8
	MOTA	815	N	LEU P		56.138	31.445	20.177	1.00 38.73	7
	MOTA	816	CA	LEU A		56.742	30.812	19.016	1.00 38.35	6
35	MOTA	817		LEU A		58.180	31.289	18.833		6 6
	MOTA	818	CG	LEU A		58.411	32.792	18.709	1.00 37.99	6
	MOTA	819		LEU A		59.890	33.054	18.550	1.00 39.54 1.00 35.40	6
	MOTA	820	-	LEU A		57.650	33.343 29.311	17.538 19.200	1.00 33.40	6
40	MOTA	821	C	LEU A		56.763 56.933	28.809	20.302	1.00 40.34	8
40	MOTA	822	0	LEU A		56.574	28.595	18.104	1.00 40.83	7
	ATOM	823	N CA	ALA A		56.603	27.142	18.125	1.00 41.49	6
	MOTA	824 825	CB	ALA A		55.334		17.497		6
	ATOM ATOM	826	СВ	ALA A		57.830	26.697	17.337	1.00 42.17	6
45	ATOM. ATOM	827	0	ALA A		58.472	27.484	16.645	1.00 43.45	8
40	MOTA	828	N	ARG A		58.163	25.427	17.453	1.00 43.77	7
	MOTA	829	CA	ARG 2		59.309	24,893	16.750	1.00 44.63	6
	ATOM	830	CB		A 104	60.242	24.228	17.745	1.00 43.89	6
	ATOM	831	CG		A 104	61.621	23.992	17.214	1.00 45.78	6
50	MOTA	832	CD		A 104	62.362	25.277	16.950	1.00 43.65	6
	ATOM	833	NE	ARG 2	A 104	63.675	24.958	16.409	1.00 44.01	7
	MOTA	834	CZ	ARG 2	A 104	64.618	25.848	16.124	1.00 46.53	6
	MOTA	835		1 ARG	A 104	64.411	27.147	16.327	1.00 47.99	7
	ATOM	836	NH	2 ARG	A 104	65.775	25.432	15.632	1.00 47.13	7
55	MOTA	837	С		A 104	58.770	23.878	15.754	1.00 46.81	6
	MOTA	838	0		A 104	58.042	22.961	16.124	1.00 49.12	8
	MOTA	839	N		A 105	59.097	24.049	14.482	1.00 47.69	7
	MOTA	840	CA		A 105	58.601	23.125	13.469	1.00 47.16	6
	MOTA	841	CB		A 105	57.791	23.857	12.382	1.00 44.84	6
60	MOTA	842		1 VAL		57.198	22.861	11.421	1.00 41.16 1.00 45.42	6 6
	MOTA	843	CG	2 VAL	A 105	56.702	24.684	13.018	1.00 45.42	O

	WO 01/589	51						PCT/EP01/014	57
					-86				
	MOTA	844	С	VAL A 10		22.355	12.799	1.00 49.71	6
	ATOM	845	0	VAL A 10		22.946	12.283	1.00 48.12	8
	ATOM ATOM	846 847	N CA	VAL A 10 VAL A 10		21.030	12.821	1.00 50.55	7
5	MOTA	848	CB	VAL A 10		20.123 18.816	12.232 13.037	1.00 51.43 1.00 52.44	6 6
•	ATOM	849		VAL A 10		17.987	12.571	1.00 52.44	6
	ATOM	850		VAL A 10		19.128	14.521	1.00 52.53	6
	ATOM	851	С	VAL A 10		19.809	10.805	1.00 52.38	6
10	ATOM	852	0	VAL A 10		19.644	10.536	1.00 52.65	8
10	MOTA	853	N	SER A 10		19.718	9.895	1.00 52.34	7
	ATOM ATOM	854 855	CA CB	SER A 10' SER A 10'		19.447	8.492	1.00 54.32	6
	ATOM	856	OG	SER A 10		19.185 18.316	7.735 8.462	1.00 55.62 1.00 60.14	6 8
	ATOM	857	C	SER A 10'	_	18.328	8.186	1.00 53.69	6
15	MOTA	858	· 0	SER A 10			7.111	1.00 51.90	8
	ATOM	859	N	ASP A 10		17.412	9.122	1.00 54.61	7
	MOTA	860	CA	ASP A 10		16.318	8.890	1.00 57.15	6
	ATOM ATOM	861 862	CB CG	ASP A 10		15.046	9.580	1.00 58.72	6
20	MOTA	863	_	ASP A 100		15.134 16.221	11.097 11.642	1,00 61.68 1.00 64.28	6
	ATOM	864		ASP A 10		14.105	11.747	1.00 64.28	8 8
	MOTA	865	C	ASP A 108		16.615	9.320	1.00 58.57	6
	MOTA	866	0	ASP A 108	56.379	15.725	9.301	1.00 58.30	8
05	ATOM	867	N	GLY A 109		17.865	9.703	1.00 59.14	7
25	MOTA	868	CA	GLY A 109	• • • • • • • • • • • • • • • • • • • •	18.271	10.116	1.00 58.25	6
	MOTA MOTA	869 870	C O	GLY A 109 GLY A 109		18.166	11.602	1.00 58.69	6
	ATOM	871	N	GLU A 110		18.374 17.821	12.054 12.369	1.00 59.98 1.00 58.71	8 7
	ATOM	872	CA	GLU A 110	_	17.713	13.813	1.00 58.33	6
30	MOTA	873	CB	GLU A 110		16.871	14.425	1.00 61.59	6
	MOTA	874	CG	GLU A 110		16.242	15.797	1.00 66.10	6
	MOTA	875	CD	GLU A 110		15.218	15.728	1.00 70.89	6
	MOTA MOTA	876 877		GLU A 110 GLU A 110		14.710	14.600	1.00 70.53	. 8
35	ATOM	878	C	GLU A 110		14.916 19.136	16.800 14.369	1.00 70.77 1.00 56.59	8 6
_	ATOM	879	ō	GLU A 110	_	19.955	13.941	1.00 54.81	8
	ATOM	880	N	VAL A 111		19.425	15.307	1.00 54.27	7
	MOTA	881	CA	VAL A 111	v	20.745	15.912	1.00 52.01	6
40	ATOM	882	CB	VAL A 111		21.412	15.616	1.00 50.79	б
40	ATOM ATOM	883 884		VAL A 111		22.795	16.242	1.00 47.90	6
	ATOM	885	C	VAL A 111 VAL A 111		21.489	14.115 17.418	1.00 50.80	6
	ATOM	886	Ö	VAL A 111	_	20.666 19.830	18.057	1.00 51.33 1.00 50.54	6 8
	ATOM	887	N	LEU A 112		21.539	17.979	1.00 49.64	7
45	ATOM	888	CA	LEU A 112		21.569	19.418	1.00 50.36	6
	ATOM	889	CB	LEU A 112		21.107	19.791	1.00 54.86	6
	ATOM ATOM	890	CG CD1	LEU A 112 LEU A 112	58.651	20.020	18.989	1.00 59.01	6
	ATOM	891 892		LEU A 112	57.699 59.248	18.865	18.631	1.00 60.90	6
50	ATOM	893	C	LEU A 112	56.297	20.632 22.980	17.727 19.946	1.00 57.28 1.00 49.94	6
	ATOM	894	0	LEU A 112	57.004	23.893	19.553	1.00 49.38	6 8
	ATOM	895	N	TYR A 113	55.323	23.151	20.833	1.00 49.46	7
	ATOM	896	CA	TYR A 113	55.036	24.446	21.437	1.00 47.23	6
55	MOTA	897	CB	TYR A 113	53.643	24.939	21,021	1.00 45.72	6
ري	ATOM ATOM	898 899	CG CD1	TYR A 113	53.222 54.092	26.279	21.621	1.00 46.02	6
	ATOM	900		TYR A 113	53.691	27.364 28.588	21.654 22.179	1.00 42.86 1.00 43.03	6
	ATOM	901		TYR A 113	51.936	26.462	22.173	1.00 43.03	6 6
00	MOTA	902		TYR A 113	51.533	27.682	22.653	1.00 41.00	6
60	MOTA	903	CZ	TYR A 113	52.410	28.740	22.677	1.00 42.42	6
	MOTA	904	ОН	TYR A 113	52.008	29.952	23.211	1.00 42.79	8

WO 01/589	951					PCT/EP01/014	57
				-87		•	
ATOM	905	С	TYR A 113	55.097	24.250	 1.00 47.38	6

							-07					
	MOTA	905	С	TYR	Α	113	55.097	24,250	22.936	1.00	47.38	6
	ATOM	906	0	TYR	Α	113	54.304	23.508	23.506	1.00	47.08	8
	ATOM	907	N	MET	A	114	56.047	24.916	23.577	1.00	48.38	7
	MOTA	908	CA	MET	A	114	56.205	24.788	25.015	1.00	48.39	6
5	ATOM	909	CB	MET			57.485	24.020	25.304		52.09	. 6
	MOTA	910	CG	MET	A	114	57.675	23.679	26.739	1.00	59.10	6
	ATOM	911	SD	MET	A	114	59.383	23.282	26.925	1.00	67.20	16
	MOTA	912	CE	MET	Α	114	59.324	21.518	26.416	1.00	67.26	6
	MOTA	913	С	MET	Α	114	56.245	26.148	25.701	1.00	46.12	6
10	MOTA	914	0	MET	Α	114	57.308	26.660	26.027	1.00	46.76	8
	ATOM	915	N	PRO	Α	115	55.076	26.754	25.922	1.00	44.80	7
	ATOM	916	CD	PRO	Α	115	53.740	26.329	25,463		44.54	6
	ATOM	917	CA	PRO	Α	115	55.005	28.059	26.575		44.08	6
	ATOM	918	СВ	PRO	Α	115	53.675	28.598	26.075		45.01	6
15	ATOM	919	CG	PRO			52.831	27.366	26.077		43.44	6
	MOTA	920	C	PRO			55.030	27.935	28.102		43.24	6
	ATOM	921	ō	PRO			54.552	26.947	28.664		40.79	8
	ATOM	922	N	SER			55.599	28.929	28.771		42.36	7
	ATOM	923	CA	SER			55.627	28.911	30.227		42.64	6
20	ATOM	924	CB	SER			56.851	29.624	30.764		40.99	6
_•	ATOM	925	OG	SER			56.852	29.573	32.169		41.56	8
	ATOM	926	C	SER			54.382	29.658	30.653		42.71	6
	ATOM	927	0	SER			54.184	30.809	30.266		44.52	8
	ATOM	928	N	ILE			53.545	29.006	31.446		41.18	7
25	ATOM	929	CA	ILE			52.303	29.616	31.879		40.12	6
	ATOM	930	CB	ILE			51.104	28.814	31.325		37.67	6
	ATOM	931	CG2	ILE			49.805	29.400	31.819		38.25	6
	ATOM	932	CG1	ILE			51.134	28.825	29.798		36.76	6
	ATOM	933	CD1	ILE			50.212	27.822				
30	ATOM	934	CDI	ILE			50.212		29.169		33.48	6
50		935						29.768	33.388		41.31	6
	MOTA		0	ILE			52.444	28.876	34.168		43.78	8
	MOTA	936	N	ARG			51.607	30.925	33.795		41.35	7
	ATOM	937	CA	ARG			51.283	31.153	35.194		41.26	6
35	MOTA	938	CB	ARG			51.789	32.496	35.709		38.56	6
55	MOTA	939 940	CG	ARG			51.290	32.758	37.113		37.29	6
	ATOM		CD	ARG			52.006	33.883	37.817		38.24	6
	MOTA	941	NE CZ	ARG			51.453	34.066	39.150		41.49	7
	ATOM	942		ARG			52.006	34.794	40.107	_	43.10	6
40	ATOM	943		ARG			53.148	35.423	39.892		46.98	7
40	ATOM	944	NH2	ARG			51.417	34.890	41.282		43.21	7
	ATOM	945	C	ARG			49.765	31.156	35.179		41.21	6
	ATOM	946	0	ARG			49.144	31.842	34.374	_	41.57	8
	ATOM	947	N	GLN	_		49.152	30.394	36.063		41.94	7
1 E	MOTA	948	CA	GLN			47.702	30.329	36.056		43.44	6
45	ATOM	949	CB	GLN			47.292	29.433	34.895		41.21	6
	ATOM	950	CG	GLN			45.825	29.257	34.672		43.47	б
	ATOM	951	CD	GLN,			45.552	28.554	33.364		41.25	6
	ATOM	952		GLN			46.333	27.721	32.931		42.28	
-0	ATOM	953	NE2	GLN			44.439	28.877	32.736		42.81	7
50	MOTA	954	С	GLN			47.183	29.801	37.385		44.09	6
	MOTA	955	0	GLN			47.866	29.041	38.062		43.59	8
	MOTA	956	N	ARG			45.990	30.228	37.778		46.26	7
	ATOM	957	CA	ARG			45.433	29.762	39.036		48.60	6
	MOTA	958	CB	ARG			44.780	30.900	39.797		51.27	6
55	MOTA	959	CG	ARG			45.705	32.036	40.096		60.62	6
	ATOM	960	CD	ARG			45.261	32.728	41.362	1.00	67.20	6
	ATOM	961	NE	ARG			45.730	32.045	42.575	1.00	69.70	7
	MOTA	962	CZ	ARG			44.989	31.859	43.668		69.76	6
0.0	MOTA	963		ARG			43.728	32.279	43.709		68.36	7
60	MOTA	964		ARG			45.533	31.307	44.748		70.33	7
	MOTA	965	С	ARG	A	120	44.414	28.669	38.804	1.00	48.02	6

				-88				
	2001	966 O	ARG A 120		28.669	37.788	1.00 46.40	8
	MOTA MOTA	967 N	PHE A 121	44.341	27.739		1.00 46.74	7
	MOTA	968 CA	PHE A 121	43.406	26.628	39.648	1.00 48.15	6
	MOTA	969 CB	PHE A 121	44.129	25.330	39.301	1.00 45.72	6
5	MOTA	970 CG	PHE A 121	44.973	25.415	38.074	1.00 44.95	6
Ŭ	ATOM		1 PHE A 121	46.240	25.993	38.122	1.00 43.54	·6
	ATOM		2 PHE A 121	44.495	24.944	36.866	1.00 41.66	6
	ATOM		1 PHE A 121	47.011	26.099	36.986	1.00 42.05	6
	MOTA		2 PHE A 121	45.257	25.047	35.733	1.00 41.56	6
10	ATOM	975 CZ	PHE A 121	46.521	25.628	35.790	1.00 42.24	6
•	ATOM	976 C	PHE A 121	42.622	26.376	40.908	1.00 49.43	6 8
	MOTA	977 O	PHE A 121	42.996	26.810	42.001	1.00 49.47 1.00 51.17	7
	MOTA	978 N	SER A 122	41.524	25.653	40.727 41.823	1.00 52.06	6
	ATOM	979 CA		40.657	25.250 25.501	41.623	1.00 52.69	6
15	MOTA	980 CB		39.193 38.354	25.046	42.520	1.00 51.12	8
	MOTA	981 OG		40.896	23.754	41.978	1.00 52.70	6
	MOTA	982 C	SER A 122	40.529	22.966	41.103	1.00 51.13	8
	MOTA	983 O	SER A 122 CYS A 123	41.543	23.369	43.070	1.00 52.97	7
20	MOTA	984 N 985 CA		41.820	21.967	43.312	1.00 56.03	6
20	MOTA	985 CA 986 C	CYS A 123	42.017	21.693	44.803	1.00 59.48	6
	MOTA MOTA	987 0	CYS A 123	41.882	22.602	45.634	1.00 60.13	8
	ATOM	988 CE		43.052	21.555	42.534	1.00 53.78	6
	MOTA	989 SC		44.483	22.558	42.968	1.00 56.89	16
25	MOTA	990 N	ASP A 124	42.342	20.443	45.143	1.00 61.91	7
	MOTA	991 C		42.525	20.084	46.542	1.00 63.81	6
	MOTA	992 CI	3 ASP A 124	42.391	18.571	46.749	1.00 65.05	6
	MOTA	993 C		41.828	18.226	48.128	1.00 66.74	6 8
	MOTA		01 ASP A 124	42.113	18.973	49.103	1.00 65.03 1.00 67.39	8
30	MOTA		D2 ASP A 124	41.101	17.209	48.234 47.110	1.00 63.72	6
	MOTA	996 C	ASP A 124	43.857	20.543	46.745	1.00 64.11	8
	MOTA	997 0	ASP A 124	44.910	20.036 21.495	48.031	1.00 64.49	7
	MOTA	998 N		43.794 44.981	22.042	48.681	1.00 63.28	6
0.5	MOTA	999 C		44.861	23.578	48.804	1.00 62.29	6
35	MOTA	1000 C	B VAL A 125 G1 VAL A 125	46.058	24.135	49.539	1.00 61.76	6
	MOTA		G1 VAL A 125 G2 VAL A 125	44.735	24.194	47.429	1.00 61.51	6
	MOTA MOTA	1002 C		45.190	21.449	50.078	1.00 63.42	6
	ATOM	1003 0		46.283	21.534	50.632	1.00 63.08	8
40	MOTA	1005 N		44.141	20.848	50.641	1.00 64.34	7
10	ATOM		A SER A 126	44.218	20.252	51.981	1.00 64.43	6
	MOTA		B SER A 126	42.924	19.503	52.302	1.00 63.15	6
	ATOM		G SER A 126	42.723	18.465	51.371	1.00 58.95	8
	MOTA	1009 C		45.414			1.00 64.40	6
45	MOTA	1010 C		45.636			1.00 62.89 1.00 65.00	8 7
	MOTA	1011 N		46.188			1.00 67.55	6
	MOTA		A GLY A 127	47.343			1.00 07.33	6
	MOTA	1013 C		48.647			1.00 72.65	8
	MOTA	1014		49.725 48.572				7
50	MOTA	1015 N		49.779				6
	MOTA		A VAL A 128 B VAL A 128	49.505				6
	MOTA		CB VAL A 128 CG1 VAL A 128	48.855				6
	MOTA MOTA		GC VAL A 128	48.625			1.00 72.32	6
55			VAL A 128	50.792			1.00 75.60	6
55	MOTA		VAL A 128	51.984			1.00 76.00	8
	ATOM		N ASP A 129	50.324				7
	ATOM		CA ASP A 129	51.241				6
	ATOM		CB ASP A 129	50.507				
60		1025	CG ASP A 129	51.427				
	MOTA	1026	OD1 ASP A 129	51.000	25.097	57.338	1.00 80.12	0

						-89				
	ATOM	1027	OD2	ASP A	129	52.578	23.546	57.311	1.00.80.59	8
	MOTA	1028	С	ASP A		52.085	21.164	55.676	1.00 80.77	6
	MOTA	1029	0	ASP A		53.089	21.441	56.355	1.00 80.25	8
	ATOM	1030	N	THR A	130	51.724	19.907	55.389	1.00 80.58	7
5	MOTA	1031	CA	THR A	130	52.541	18.824	55.925	1.00 81.44	6
	MOTA	1032	CB	THR A	130	52.508	18.858	57.465	1.00 83.89	· 6
	MOTA	1033	OG1	THR A	130	51.433	19.722	57.880	1.00 85.49	8
	MOTA	1034	CG2	THR A		53.882	19.331	58.047	1.00 83.12	6
	MOTA	1035	С	THR A	130	52.309	17.374	55.529	1.00 80.12	6
10	ATOM	1036	0	THR A	130	51.199	16.974	55.148	1.00 78.43	8
	MOTA	1037	N	GLU A	131	53.404	16.611	55.654	1.00 79.90	7
	MOTA	1038	CA	GLU A	131	53.459	15.165	55.432	1.00 80.19	6
	MOTA	1039	CB	GLU A	131	52.364	14.489	56.272	1.00 82.93	6
	MOTA	1040	CG	GLU A		52.693	14.372	57.760	1.00 86.59	6
15	MOTA	1041	CD	GLU A	131	51.440	14.289	58.632	1.00 88.67	6
	MOTA	1042	OE1	GLU A	131	50.524	13.470	58.311	1.00 89.43	8
	MOTA	1043	OE2	GLU A	131	51.380	15.050	59.638	1.00 88.79	8
	MOTA	1044	С	GLU · A	_	53.378	14.637	54.012	1.00 79.05	6
	MOTA	1045	0	GLU A	131	54.337	14.716	53.231	1.00 77.86	8
20	MOTA	1046	N	SER A	132	52.227	14.033	53.727	1.00 77.68	7
	MOTA	1047	CA	SER A		51.915	13.474	52.426	1.00 76.46	6
	MOTA	1048	CB	SER A	132	50.796	12.429	52.576	1.00 76.05	6
	MOTA	1049	OG	SER A		49.642	12.990	53.176	1.00 74.46	8
	MOTA	1050	С	SER A		51.462	14.653	51.533	1.00 75.70	6
25	MOTA	1051	0	SER A		51.123	14.479	50.355	1.00 75.58	8
	MOTA	1052	N	GLY A		51.468	15.848	52.127	1.00 73.94	7
	MOTA	1053	CA	GLY A		51.094	17.056	51.421	1.00 71.52	6
	MOTA	1054	С	GLY A		49.754	16.971	50.735	1.00 70.11	6
	MOTA	1055	0	GLY A		48.927	16.115	51.060	1.00 69.95	8
30	MOTA	1056	N	ALA A		49.540	17.864	49.774	1.00 68.35	7
	MOTA	1057	CA	ALA A		48.290	17.895	49.033	1.00 65.73	6
	MOTA	1058	CB	ALA A		47.748	19.321	48.982	1.00 65.87	6
	MOTA	1059	C	ALA A		48.476	17.359	47.621	1.00 63.96	6
25	ATOM	1060	0	ALA A		49.600	17.219	47.124	1.00 61.93	8
35	MOTA	1061	N	THR A		47.353	17.048	46.985	1.00 63.38	7
	MOTA	1062	CA	THR A		47.359	16.549	45.621	1.00 62.44	6
	MOTA	1063	CB	THR A		47.003	15.066	45.562 46.345	1.00 62.52 1.00 62.25	6 8
	MOTA	1064		THR A		47.951 47.040	14.323 14.574	44.122	1.00 62.25	6
40	MOTA	1065 1066	CGZ	THR A		46.350	17.355	44.122	1.00 61.51	6
40	MOTA	1066	0	THR A		45.120	17.188	44.944	1.00 60.36	8
	MOTA MOTA	1067	N	CYS A		46.900	18.259	44.017	1.00 59.30	7
	MOTA	1069	CA	CYS A		46.115	19.129	43.178	1.00 56.11	6
	MOTA	1070	C	CYS A		46.111	18.538	41.778	1.00 55.58	6
45	MOTA	1071	Ö	CYS A		47.168	18.370	41.163	1.00 53.10	8
	MOTA	1072	СВ	CYS A		46.739	20.518	43.181	1.00 55.44	6
	ATOM	1073	SG	CYS A		46.010	21.663	41.978	1.00 54.51	16
	ATOM	1074	N	ARG A		44.917	18.191	41.298	1.00 55.48	7
	ATOM	1075	CA	ARG A		44.764	17.611	39.968	1.00 56.07	6
50	ATOM	1076	CB	ARG A		43.786	16.431	39.990	1.00 58.27	6
	ATOM	1077	CG	ARG A		44.213	15.318	40.915	1.00 62.94	6
	ATOM	1078	CD	ARG A		43.017	14.517	41.384	1.00 67.01	6
	MOTA	1079	NE	ARG A		43.308	13.821	42.641	1.00 72.70	7
	ATOM	1080	CZ	ARG A	137	44.131	12.772	42.762	1.00 74.69	6
55	MOTA	1081		ARG A		44.765	12.270	41.696	1.00 74.12	7
	ATOM	1082	NH2	ARG A	137	44.326	12.226	43.958	1.00 74.27	7
	MOTA	1083	С	ARG A	. 137	44.265	18.670	39.010	1.00 53.72	6
	MOTA	1084	0	ARG A	137	43.325	19.396	39.301	1.00 51.52	8
	MOTA	1085	N	ILE A		44.917	18.738	37.860	1.00 52.05	· 7
60	MOTA	1086	CA	ILE A		44.582	19.696	36.825	1.00 50.25	6
	MOTA	1087	CB	ILE A	138	45.778	20.624	36.557	1.00 49.78	6

						-90	•			
	ATOM	1088	CG2	ILE A	138	45.449	21.566	35.421	1.00 48.31	6
	ATOM	1089		ILE A		46.150	21.389	37.837	1.00 48.07	6
	ATOM	1090		ILE A		47.444	22.144	37.750	1.00 41.58	6
	ATOM	1091	С	ILE A		44.270	18.925	35.555	1.00 49.76	6
5	ATOM	1092	0	ILE A		45.119	18.190	35.058	1.00 50.40	8
	ATOM	1093	N	LYS A	139	43.059	19.081	35.032	1.00 49.44	7
	ATOM	1094		LYS A		42.672	18.374	33.809	1.00 51.81	6
	ATOM	1095		LYS A		41.285	17.713	33.969	1.00 52.86	6
	ATOM	1096	CG	LYS A	139	41.176	16.772	35.164	1.00 56.41	6
10	MOTA	1097	CD	LYS A	139	39.919	15.940	35.137	1.00 57.01	6
	MOTA	1098	CE	LYS A	139	39.978	14.888	34.047	1.00 60.31	6
	ATOM	1099	NZ	LYS A		38.728	14.066	33.965	1.00 59.02	7
	MOTA	1100	C	LYS A		42.628	19.317	32.615	1.00 51.20	6
	MOTA	1101	0	LYS A		41.964	20.340	32.673	1.00 51.87	8
15	ATOM	1102	N	ILE A		43.325	18.979	31.535	1.00 49.23	7
	MOTA	1103	CA	ILE A		43.295	19.826	30.354	1.00 49.38	6
	MOTA	1104	CB	ILE A		44.578	20.710	30.278	1.00 50.36	6
	MOTA	1105	CG2	ILE A		44.889	21.277	31.653	1.00 51.45	6 6
00	ATOM	1106	CG1	ILE A		45.794	19.900	29.868	1.00 50.82 1.00 51.49	6
20	MOTA	1107		ILE A		47.103	20.630	30.148 29.066	1.00 31.49	6
	MOTA	1108	C	ILE A		43.088 43.721	19.025 18.006	28.859	1.00 47.31	8
	MOTA MOTA	1109 1110	N	GLY A		42.168	19.485	28.220	1.00 48.53	7
	ATOM	1111	CA	GLY A		41.885	18.811	26.959	1.00 47.60	6
25	ATOM	1112	C	GLY A		41.255	19.765	25.958	1.00 48.49	6
	ATOM	1113	Ö	GLY A		40.938	20.900	26.317	1.00 49.03	8
	ATOM	1114	N	SER A		41.070	19.329	24.712	1.00 46.01	7
	MOTA	1115	CA	SER A	142	40.466	20.195	23.699	1.00 43.95	6
	ATOM	1116	CB	SER A	142	40.306	19.466	22.370	1.00 44.36	6
30	MOTA	1117	OG	SER A	142	39.494	20.214	21.477	1.00 39.73	8
	MOTA	1118	С	SER A		39.107	20.686	24.144	1.00 45.09	6
	MOTA	1119	0	SER A		38.319	19.934	24.714	1.00 47.13	8
	MOTA	1120	N	TRP A		38.822	21.947	23.862	1.00 43.97	7
٥٣	MOTA	1121	CA	TRP A		37.564	22.537	24.256	1.00 41.28	6 6
35	MOTA	1122	CB	TRP A		37.754	24.033	24.473 25.126	1.00 42.28 1.00 42.52	6
	MOTA	1123 1124	CG	TRP A		36.577 36.215	24.697 24.610	26.505	1.00 42.32	6
	MOTA MOTA	1124	CD2 CE2	TRP A		35.025	25.359	26.676	1.00 39.15	6
	ATOM	1126	CE3	TRP A		36.778	23.969	27.613	1.00 37.16	6
40	ATOM	1127		TRP A		35.618	25,480	24.526	1.00 41.93	6
	ATOM	1128		TRP A		34.681	25.880	25.456	1.00 40.50	7
	ATOM	1129		TRP A		34.393	25.480	27.911	1.00 39.06	6
	ATOM	1130	CZ3	TRP A	143	36.150	24.090	28.837	1.00 39.37	6
	MOTA	1131		TRP A		34.968	24.840	28.978	1.00 39.40	6
45	MOTA	1132	С	TRP A	143	36.450	22.307	23.258	1.00 41.37	6
	MOTA	1133	0	TRP A		35.287	22,239	23.632	1.00 42.45	8
	MOTA	1134	N	THR A		36.790	22.179	21.983	1.00 41.97	7
	MOTA	1135	CA	THR A		35.760	21.992	20.979	1.00 41.13	6
EΛ	MOTA	1136	CB	THR A		35.703	23.191	20.051	1.00 39.00	6
50	MOTA	1137		THR A		36.994	23.416	19.490 20.818	1.00 39.19	8
	MOTA	1138	CG2			35.288 35.879	24,420 20,738	20.318	1.00 37.78 1.00 42.54	6 6
	ATOM ATOM	1139 1140	C O	THR A		34.941	20.736	19.443	1.00 45.82	8
	ATOM	1141	Ŋ	HIS A		37.012	20.054	20.233	1.00 43.18	7
55	MOTA	1142	CA	HIS A		37.187	18.837	19.459	1.00 46.20	6
-	MOTA	1143	CB	HIS A		38.517	18.875	18.707	1.00 46.05	6
	ATOM	1144	CG	HIS A		38.588	19.933	17.646	1.00 46.56	6
	MOTA	1145		HIS A		37.994	20.022	16.432	1.00 45.44	6
_	ATOM	1146		HIS A		39.366	21.061	17.772	1.00 44.61	7
60	ATOM	1147		HIS A		39.250	21.797	16.682	1.00 43.87	6
	MOTA	1148	NE2	HIS A	145	38.423	21.189	15.853	1.00 41.35	. 7

WO 01/58951

PCT/EP01/01457

	WO 01/5	8721							PC 1/EP01/014	3/
						01				
			•		_	-91				_
	MOTA	1149	С	HIS A		37.105	17.570	20.303	1.00 47.36	6
	MOTA	1150	0	HIS A		37.811	17.422	21.298	1.00 47.71	8
	MOTA	1151	N	HIS A		36.230	16.656	19.898	1.00 48.75	7
	MOTA	1152	CA	HIS A	146	36.067	15.400	20.609	1.00 50.47	6
5	MOTA	1153	CB	HIS A	146	34.658	14.846	20.365	1.00 49.28	6
	ATOM	1154	CG	HIS A	146	34.314	14.694	18.919	1.00 50.42	6
	ATOM	1155	CD2	HIS A	146	34.954	14.057	17.910	1.00 50.68	6
	ATOM	1156	ND1	HIS A	A 146	33.183	15.248	18.362	1.00 51.90	7
	MOTA	1157	CE1	HIS A	146	33.138	14.962	17.073	1.00 49.57	6
10	MOTA	1158		HIS A		34.202	14.239	16.774	1.00 51.03	7
-	MOTA	1159	С	HIS A	A 146	37.137	14.396	20.167	1.00 49.74	6
	ATOM	1160	0	HIS A		37.927	14.673	19.268	1.00 49.87	8
	MOTA	1161	N		A 147	37.145	13.234	20.809	1.00 50.23	7
	ATOM	1162	CA		A 147	38.101	12.158	20.543	1.00 50.98	6
15	ATOM	1163	СВ		A 147	37.722	10.934	21.372	1.00 50.73	6
. •	ATOM	1164	OG		A 147	36.346	10.642	21.240	1.00 51.84	8
	MOTA	1165	C		A 147	38.314	11.730	19.096	1.00 51.53	6
	ATOM	1166	0		A 147	39.374	11.228	18.754	1.00 50.53	8
	MOTA	1167	N		A 148	37.319	11.925	18.245	1.00 53.75	7
20	ATOM	1168	CA		A 148	37.444	11.528	16.850	1.00 56.68	6
20	MOTA	1169	ĊB		A 148	36.052	11.408	16.221	1.00 60.77	6
		1170	CG		A 148	35.100	10.487	16.985	1.00 70.28	6
	MOTA	1171				33.673	10.516	16.423	1.00 76.18	6
	MOTA		CD		A 148	32.702	9.919	17.351	1.00 70.10	7
05	MOTA	1172	NE		A 148		8.632	17.719	1.00 85.65	6
25	MOTA	1173	CZ		A 148	32.685		17.719	1.00 85.83	7
	MOTA	1174		ARG .		33.595	7.781			7
	MOTA	1175		ARG		31.746	8.187	18.549	1.00 85.60	
	MOTA	1176	C		A 148	38.295	12.502	16.025	1.00 56.73	6
00	MOTA	1177	0		A 148	38.774	12.157	14.938	1.00 56.48	8
30	MOTA	1178	N		A 149	38.477	13.714	16.553	1.00 55.77	7
	MOTA	1179	CA		A 149	39.233	14.767	15.884	1.00 51.96	6
	MOTA	1180	СВ		A 149	38.384	16.037	15.821	1.00 52.02	6
	MOTA	1181	CG		A 149	36.918	15.748	15.527	1.00 51.38	6
	MOTA	1182	CD		A 149	36.065	16.989	15.423	1.00 49.98	6
35	MOTA	1183	OE1		A 149	36.220	17.879	16.273	1.00 50.58	8
	MOTA	1184	OE2		A 149	35.226	17.070	14.506	1.00 46.84	8
	MOTA	1185	С		A 149	40.531	15.030	16.627	1.00 50.15	6
	ATOM	1186	0	GLU	A 149	41.584	15.167	16.013	1.00 49.33	8
	MOTA	1187	N ·		A 150	40.454	15.100	17.950	1.00 47.25	7
40	ATOM	1188	CA	ILE	A 150	41.643	15.309	18.748	1.00 48.44	6
	ATOM	1189	CB	ILE	A 150	41.712	16.740	19.374	1.00 48.83	6
	MOTA	1190	CG2	ILE	A 150	42.759	16.793	20.481	1.00 44.42	6
	MOTA	1191	CG1	ILE	A 150	42.104	17.769	18.316	1.00 49.22	6
	ATOM	1192	CD1	ILE	A 150	42.185	19.175	18.839	1.00 45.68	6
45	MOTA	1193	С	ILE	A 150	41.707	14.310	19.881	1.00 50.37	6
	MOTA	1194	0	ILE	A 150	40.712	14.031	20.536	1.00 50.37	8
	MOTA	1195	N	SER	A 151	42.902	13.781	20.104	1.00 52.48	7
	ATOM	1196	CA	SER	A 151	43.156	12.841	21.178	1.00 54.49	6
	MOTA	1197	CB	SER	A 151	43.437	11.452	20.611	1.00 54.22	6
50	MOTA	1198	OG	SER	A 151	44.619	11.457	19.844	1.00 54.28	8
	MOTA	1199	C		A 151	44.385	13.381	21.899	1.00 55.57	6
	ATOM	1200	0		A 151	45.347	13.798	21.257	1.00 56.29	8
	ATOM	1201	N		A 152	44.337	13.400	23.227	1.00 57.03	7
	ATOM	1202	CA		A 152	45.447	13.897	24,033	1.00 59.85	6
55	ATOM	1203	CB		A 152	44.979	14.922	25.100	1.00 59.80	6
	ATOM	1204			A 152	44.170	16.021	24.447	1.00 60.14	6
•	MOTA	1205			A 152	44.163	14.225	26.175	1.00 61.09	6
	MOTA	1206	C		A 152	46.084	12.722	24.747	1.00 61.00	6
	ATOM	1207	Ö		A 152	45.393	11.785	25.132	1.00 59.83	8
60	ATOM	1208	N		A 153	47.398	12.780	24.932	1.00 63.57	7
	MOTA	1200	CA		A 153	48.114	11.690	25.582	1.00 66.72	6
	AIOM	-200			100	10.111				-

						-92				
	MOTA	1210	СВ	ASP A	153	48.620	10.724	24.505	1.00 66.16	6
	MOTA	1211	CG	ASP A	153	47.505	10.245	23.573	1.00 67.72	6
	MOTA	1212	OD1	ASP A	153	46.769	9.317	23.972	1.00 68.96	8
	MOTA	1213	OD2	ASP A	153	47.354	10.801	22.451	1.00 67.60	8
5	MOTA	1214		ASP A		49.293	12.198	26.422	1.00 68.93	6
	MOTA	1215	0	ASP A		49.951	13.175	26.058	1.00 69.39	8
	MOTA	1216	N	PRO A		49.553	11.564	27.577	1.00 70.74	7 6
	MOTA	1217	CD	PRO A		48.601	10.759	28.357	1.00 71.40 1.00 73.42	6
4.0	MOTA	1218	CA	PRO A		50.675	11.995	28.421	1.00 73.42	6
10	ATOM	1219	CB	PRO A		50.421	11.266 11.182	29.735 29.776	1.00 72.22	6
	MOTA	1220	CG	PRO A		48.930 51.999	11.182	27.773	1.00 72.37	6
	ATOM	1221	C O	PRO A		51.997	10.951	26.716	1.00 75.49	8
	ATOM ATOM	1222 1223	Ŋ	THR A		53.121	11.916	28.406	1.00 79.97	7
15	MOTA	1224	CA	THR A		54.433	11.580	27.851	1.00 84.54	6
10	MOTA	1225	CB	THR A		55.002	12.797	27.084	1.00 84.38	6
	ATOM	1226	OG1	THR A		55.314	13.844	28.015	1.00 85.24	8
	ATOM	1227	CG2	THR A		53.979	13.326	26.085	1.00 83.86	6
	ATOM	1228	C	THR A		55.504	11.101	28.868	1.00.88.31	6
20	MOTA	1229	0	THR A	155	55.179	10.480	29.905	1.00 89.23	8
	MOTA	1230	N	THR A	156	56.774	11.402	28.539	1.00 91.22	7
	MOTA	1231	CA	THR A		57.970	11.057	29.337	1.00 93.64	6
	MOTA	1232	CB	THR A		59.146	12.041	29.041	1.00 93.80	6
	MOTA	1233				59.430	12.048	27.631	1.00 93.55	8
25	MOTA	1234	CG2			60.414	11.624	29.839	1.00 93.12 1.00 95.49	6
	MOTA	1235	C	THR A		57.778	11.031	30.862	1.00 95.49	6 8
	MOTA	1236	0	THR A		57.812	12.080 9.827	31.532 31.406	1.00 93.30	7
	MOTA	1237	N	GLU A		57.614 57.411	9.649	32.841	1.00 98.24	6
20	MOTA	1238 1239	CA CB	GLU A		56.619	8.370	33.095	1.00100.23	6
30	ATOM	1239	CG	GLU A		55.476	8.150	32.109	1.00103.23	6
	MOTA MOTA	1241	CD	GLU A		54.728	6.842	32.372	1.00104.38	6
	ATOM	1242		GLU A		55.391	5.769	32.462	1.00103.49	8
	ATOM	1243	OE2			53.475	6.896	32.482	1.00105.11	8
35	ATOM	1244	C	GLU A		58.731	9.570	33.591	1.00 98.22	6
	ATOM	1245	0	GLU A		58.742	9.488	34.825	1.00 98.77	8
	ATOM	1246	N	ASN A		59.840	9.582	32.854	1.00 97.95	7
	MOTA	1247	CA	ASN A		61.154	9.505	33.494	1.00 98.34	6
	MOTA	1248	СВ	ASN A	158	62.244	9.212	32.455	1.00100.52	6
40	MOTA	1249	CG	asn a		61.953	7.969	31.634	1.00102.32	6
	MOTA	1250		ASN A		61.787	6.872	32.184	1.00104.16	8
	ATOM	1251		ASN A		61.898	8.131	30.305	1.00102.61	7 6
	MOTA	1252				61.471 61.170	10.832	34.196 35.392	1.00 97.02 1.00 96.34	8
45	ATOM	1253	0	ASN A		62.093	11.019 11.729	33.423	1.00 94.95	7
45	MOTA	1254	N	SER A		62.492	13.069	33.857	1.00 91.51	6
	MOTA	1255 1256	CA	SER A SER A		61.878	14.091	32.890	1.00 91.99	6
	ATOM ATOM	1257	OG	SER A		60.550	13.708	32.529	1.00 90.83	8
	ATOM	1258	C	SER A		62.116	13.412	35.301	1.00 88.77	6
50	ATOM	1259	Ö	SER A		60.939	13.380	35.666	1.00 88.38	8
	ATOM	1260	N	ASP A		63.120	13.728	36.120	1.00 85.60	7
	MOTA	1261	CA	ASP A		62.867	14.093	37.517	1.00 81.69	6
	ATOM	1262	CB	ASP A	160	64.107	14.716	38.164	1.00 81.79	6
	ATOM	1263	CG	ASP A		63.827	15.217	39.578	1.00 82.16	6
55	MOTA	1264		L ASP A		64.609	16.057		1.00 82.93	8
	MOTA	1265		ASP A		62.824	14.766	40.194	1.00 81.33	8
	MOTA	1266		ASP A		61.748	15.125	37.556		6
	MOTA	1267		ASP A		61.906	16.215		1.00 77.29 1.00 75.12	8 7
-00	MOTA	1268		ASP A		60.643	14.783 15.677			6
60	MOTA	1269		ASP A		59.493 58.433	15.677		1.00 71.12	6
	MOTA	1270	CB	ASP A	TOT	50.455	10.111	33.213	1.00 /1.12	J

						-93				
	ATOM	1271	CG	ASP A	161	57.719	13.895	38.698	1.00 71.43	6
	ATOM	1272		ASP A		57.509	13.854	37.463	1.00 70.50	8
	ATOM	1273		ASP A		57.353	12.983	39.480	1.00 71.76	8
	ATOM	1274	C	ASP A		59.814	17.097	38.756	1.00 69.97	6
5	ATOM	1275	ō	ASP A		59.009	18.001	38.545	1.00 69.41	8
_	MOTA	1276	N	SER A		60.974	17.321	39.358	1.00 68.43	7
	ATOM	1277	CA	SER A		61.282	18.682	39.774	1.00 68.46	6
	ATOM	1278	CB	SER A		61.190	18.809	41.308	1.00 68.76	6
	ATOM	1279	OG	SER A		62.209	18.069	41.962	1.00 68.11	8
10	ATOM	1280	С	SER A		62.636	19.163	39.289	1.00 67.78	6
	ATOM	1281	0	SER A	162	63.264	20.014	39.917	1.00 67.84	8
	ATOM	1282	N	GLU A	163	63.087	18.640	38.156	1.00 67.60	7
	MOTA	1283	CA	GLU A	163	64.382	19.052	37.649	1.00 68.35	6
	MOTA	1284	CB	GLU A	163	64.884	18.051	36.609	1.00 70.48	6
15	MOTA	1285	CG	GLU A	163	64.380	18.242	35.193	1.00 73.24	• 6
	ATOM	1286	CD	GLU A	163	65.111	17.328	34.204	1.00 75.50	6
	MOTA	1287	OE1	GLU A	163	64.835	16.097	34.211	1.00 76.99	8
	MOTA	1288	OE2	GLU A	163	65.970	17.842	33.438	1.00 73.24	8
	MOTA	1289	С	GLU A	163	64.342	20.475	37.083	1.00 68.50	6
20	MOTA	1290	0	GLU A		65.385	21.062	36.774	1.00 69.25	8
	MOTA	1291	N	TYR A	164	63.140	21.031	36.958	1.00 67.44	7
	ATOM.	1292	CA.	TYR A		62.968	22.396	36.466	1.00 65.48	6
	MOTA	1293	CB	TYR A		62.085	22.422	35.221	1.00 66.46	6
0-	MOTA	1294	CG	TYR A		62.709	21.754	34.029	1.00 67.56	6
25	MOTA	1295		TYR A		62.082	20,.664	33.415	1.00 68.14	6
	MOTA	1296	CE1	TYR A		62.664	20.011	32.328	1.00 67.68	6
	ATOM	1297	CD2	TYR A		63.942	22.185	33.527	1.00 66.99	6
	ATOM	1298	CE2	TYR A		64.539	21.538	32.435	1.00 69.28	6
20	MOTA	1299	CZ	TYR A		63.892	20.449	31.837	1.00 68.44	
30	ATOM	1300	OH	TYR A		64.456	19.823	30.737	1.00 69.00	
	MOTA	1301	C	TYR A		62.313	23.259	37.534	1.00 64.21	6
	ATOM	1302 1303	0	TYR A		62.181 61.899	24.474 22.626	37.368	1.00 62.71 1.00 62.72	8 7
	ATOM ATOM	1304	N CA	PHE A		61.899	23.343	38.627 39.705	1.00 62.72	
35	ATOM	1304	CB	PHE A		60.738	23.343	40.758	1.00 57.99	6
00	ATOM	1306	CG	PHE A		59.676	22.936	41.641	1.00 57.14	
	ATOM	1307		PHE A		58.424	23.252	41.115	1.00 55.84	
	ATOM	1308	CD2	•		59.933	23.194	42.985	1.00 55.03	6
	ATOM	1309		PHE A		57.439	23.818	41.902	1.00 54.80	
40	MOTA	1310		PHE A		58.961	23.762	43.787	1.00 57.75	
	MOTA	1311	CZ	PHE A		57.699	24.079	43.242	1.00 57.78	
	MOTA	1312	С	PHE A		62.159	24.369	40.354	1.00 60.44	
	MOTA	1313	0	PHE A	165	63.348	24.121	40.547	1.00 60.73	8
	MOTA	1314	N	SER A		61.611	25.534	40.676	1.00 60.95	7
45	MOTA	1315	CA	SER A	166	62.418	26.567	41.312	1.00 61.11	6
	ATOM	1316	CB	SER A	166	61.638	27.874	41.457	1.00 59.76	
	MOTA	1317	OG	SER A	166	62.476	28.875	42.015	1.00 59.79	8
	ATOM	1318	С	SER A		62.809	26.068	42.694	1.00 61.38	6
	MOTA	1319	0	SER A		62.009	25.442	43.393	1.00 61.62	8
50	ATOM	1320	N	GLN A		64.038	26.359	43.089	1.00 61.82	
	MOTA	1321	CA	GLN A		64.525	25.931	44.393	1.00 62.17	6
	MOTA	1322	CB	GLN A		66.052	25.797	44,351	1.00 63.58	6
	ATOM	1323	CG	GLN A		66.745	27.065	43.861	1.00 66.42	
55	MOTA MOTA	1324 1325	CD OF1	GLN A		68.204	26.851	43.514	1.00 69.06	6
JJ	ATOM ATOM	1325	OE1 NE2	GLN A		69.008 68.556	26.488 27.081	44.376 42.241	1.00 70.77 1.00 69.23	
	MOTA	1327	NE2	GLN A		64.119	26.927	42.241	1.00 69.23	
	ATOM	1327	0	GLN A		64.112	26.585	46.659	1.00 61.22	
	MOTA	1329	N	TYR A		63.762	28.147	45.075	1.00 51.10	
60	MOTA	1330	CA	TYR F		63.392	29.162	46.046	1.00 56.45	
	ATOM	1331	CB	TYR A		63.881	30.522	45.564	1.00 55.36	
		-								-

	WO 01/5	8951							PCT/EP01/0	1457
						-94				
	MOTA	1332	CG	TYR A 168		65.335	30.469	45.158	1.00 57.58	6
	ATOM	1333		TYR A 168		65.699	30.352	43.818	1.00 57.60	6
	MOTA	1334	CE1			67.031	30.233	43.439	1.00 57.86	6
_	MOTA	1335		TYR A 168		66.349	30.467	46.115	1.00 57.43 1.00 58.19	6 6
5	MOTA	1336	CE2	TYR A 168		67.683 68.017	30.347 30.228	45.749 44.410	1.00 59.25	. 6
	MOTA MOTA	1337 1338	CZ OH	TYR A 168		69.337	30.086	44.042	1.00 60.91	8
	ATOM	1339	C	TYR A 168		61.912	29.199	46.383	1.00 56.00	6
	ATOM	1340	Ö	TYR A 168		61.457	30.053	47.142	1.00 56.39	8
10	MOTA	1341	N	SER A 169		61.162	28.257	45.832	1.00 55.67	7
	MOTA	1342	CA	SER A 169		59.732	28.179	46.096	1.00 56.31	6
	MOTA	1343	CB	SER A 169		59.082	27.123 26.971	45.197 45.501	1.00 57.76 1.00 55.64	6 8
	MOTA	1344	OG C	SER A 169		57.699 59.478	27.804	47.544	1.00 53.64	6
15	MOTA MOTA	1345 1346	С 0	SER A 163		60.246	27.066	48.152	1.00 58.82	8
10	MOTA	1347	N	ARG A 170		58.385	28.302	48.096	1.00 58.68	7
	ATOM	1348	CA	ARG A 170		58.043	27.993	49.472	1.00 58.62	6
	MOTA	1349	CB	ARG A 170		56.907	28.901	49.956	1.00 60.14	6
	MOTA	1350	CG	ARG A 170		57.371	30.123	50.727	1.00 60.43	6 6
20	ATOM	1351	CD	ARG A 170		56.401 55.020	31.291 30.998	50.589 50.989	1.00 64.30 1.00 66.31	7
	MOTA	1352 1353	NE CZ	ARG A 170		53.967	31.107	50.174	1.00 66.81	6
	ATOM ATOM	1354	NH1			54.129	31.489	48.915	1.00 63.97	7
	ATOM	1355		ARG A 170		52.750	30.850	50.619	1.00 67.23	7
25	MOTA	1356	C	ARG A 17		57.604	26.544	49.554	1.00 58.75	6
	MOTA	1357	0	ARG A 17		57.516	25.975	50.642	1.00 60.59	8
	MOTA	1358	N	PHE A 17		57.339	25.933	48.405	1.00 57.02 1.00 56.54	7 6
	ATOM	1359	CA	PHE A 17		56.882 55.499	24.552 24.479	48.404 47.765	1.00 55.41	6
30	MOTA MOTA	1360 1361	CB CG	PHE A 17		54.552	25.522	48.281	1.00 55.91	6
30	ATOM	1362		PHE A 17		54.685	26.856	47.893	1.00 57.70	6
	ATOM	1363		PHE A 17		53.560	25.190	49.203	1.00 56.28	6
	MOTA	1364	CE1	PHE A 17	1	53.845	27.847	48.419	1.00 58.19	6
	MOTA	1365	CE2			52.718	26.170	49.732	1.00 55.91	6
35	ATOM	1366	CZ	PHE A 17		52.864	27.505 23.612	49.337 47.695	1.00 57.16 1.00 56.77	6 6
•	MOTA MOTA	1367 1368	C O	PHE A 17 PHE A 17		57.844 58.841	24.045	47.113	1.00 56.03	8
	ATOM	1369	Ŋ	GLU A 17		57.552	22.319	47.765	1.00 56.23	7
	ATOM	1370	CA	GLU A 17		58.389	21.325	47.120	1.00 58.00	6
40	MOTA	1371	CB	GLU A 17		59.371	20.707	48.119	1.00 60.23	6
•	MOTA	1372	CG	GLU A 17		58.734	19.970	49.303	1.00 64.00	
	MOTA	1373	CD	GLU A 17		59.769	19.445	50.313	1.00 66.01 1.00 69.59	
	MOTA	1374	OE1			60.869 59.487	19.042 19.421	49.868 51.541	1.00 65.33	
45	MOTA MOTA	1375 1376	OE2 C	GLU A 17 GLU A 17		57.497	20.259	46.518	1.00 59.67	
70	MOTA	1377	o	GLU A 17		56.356	20.064	46.955	1.00 60.12	
	ATOM	1378	N	ILE A 17		58.006	19.579	45.496	1.00 60.16	
	ATOM	1379	CA	ILE A 17	3	57.224	18.545	44.827	1.00 60.67	
	ATOM	1380	CB	ILE A 17		57.413	18.587	43.291	1.00 61.87	
50	ATOM	1381		2 ILE A 17		56.659	17.422	42.644 42.727	1.00 62.56	
	MOTA	1382		L ILE A 17 L ILE A 17		56.920 57.165	19.919 20.062	41.244	1.00 59.49	
	MOTA MOTA	1383 1384		ILE A 17		.57.579	17.150	45.296	1.00 59.83	
	MOTA	1385	ō	ILE A 17		58.751	16.770	45.360	1.00 57.21	
55	ATOM	1386		LEU A 17		56.554	16.381	45.616	1.00 61.63	7
	MOTA	1387		LEU A 17	4	56.786	15.022	46.056	1.00 64.20	
	MOTA	1388		LEU A 17		55.687	14.592	47.024	1.00 63.47	
	MOTA	1389		LEU A 17		55.461	15.601	48.149 49.024	1.00 65.34 1.00 66.19	
60	MOTA	1390 1391		1 LEU A 17 2 LEU A 17		54.285 56.747	15.144 15.770	49.024	1.00 64.00	
50	ATOM ATOM	1391		LEU A 17		56.783	14.147	44.806	1.00 65.92	

							95					
	ATOM	1393	0 :	LEU A	174	57	.757	13.440	44.522		65.29	8
	ATOM	1394		ASP A			.702	14.233	44.036		67.33	7
	ATOM	1395		ASP A		55	.583	13.436	42.827		68.45	6
	ATOM	1396		ASP A		55	.227	11.993	43.223		68.56	6
5	MOTA	1397		ASP A		55	.161	11.038			68.23	6
•	ATOM	1398		ASP A		56	5.141	10.964	41.244		67.58	8
	MOTA	1399		ASP A		54	1.121	10.347			67.56	8
	ATOM	1400		ASP A			1.542	14.023			69.02	6
	ATOM	1401	0	ASP A	175	53	3.617	14.735	42.286		69.85	8
10	MOTA	1402	N	VAL A	176	54	1.714	13.727			68.72	7
	MOTA	1403	CA	VAL A	176		3.809	14.198			67.76	6
	ATOM	1404		VAL A			1.461	15.324			67.60	6
	MOTA	1405		VAL A		53	3.533	15.721			66.09	6
	MOTA	1406	CG2	VAL A	176		4.771	16.532			65.31	6
15	MOTA	1407	-	VAL A			3.495	13.025			67.31	6
	MOTA	1408	0	VAL A			4.399	12.308			66.10	8 7
	MOTA	1409	N	THR F			2.213	12.833			68.30	6
	MOTA	1410	CA	THR F			1.781	11.763			69.37 69.49	6
	MOTA	1411	CB	THR P			1.241	10.565			69.49	8
20	MOTA	1412		THR A			0.218	11.007			69.19	6
	MOTA	1413	CG2	THR A			2.366	9.905			70.72	6
	MOTA	1414	С		A 177		0.696	12.276			72.04	8
	MOTA	1415	0	THR A			9.879	11.771			71.85	7
0.5	MOTA	1416	N	GLN A			0.692 9.706	12.191			73.03	6
25	MOTA	1417	CA	GLN A	A 178		0.392	12.916			75.20	6
	MOTA	1418	CB CG		A 178		1.681	13.640			78.41	6
	MOTA	1419 1420	CD		A 178		2.059	14.733			79.92	6
	MOTA MOTA	1421	OE1	GLN A			2.078	14.509			81.52	8
30	ATOM	1421		GLN A			2.370	15.92			78.36	7
00	ATOM	1423	C		A 178		9.014	10.96		1.00	72.67	6
	ATOM	1424	ō		A 178	4	9.679	10.043	3 33.293		73.74	8
	ATOM	1425	N	LYS	A 179	4	7.686	10.94			72.17	7
	ATOM	1426	CA	LYS .	A 179	4	6.916				71.53	6
35	MOTA	1427	CB		A 179		6.327				74.09	6
	MOTA	1428	CG		A 179		7.352				79.46	6
	ATOM	1429	CD		A 179		6.703				81.06	6 6
	MOTA	1430	CE		A 179		7.635				80.77	7
	MOTA	1431	NZ		A 179		7.968			_	70.00	6
40	MOTA	1432	C		A 179		15.795 14.878				73.37	8
	ATOM	1433	0		A 179		15.845				67.55	7
	MOTA	1434	N		A 180		14.780		-		67.72	6
	ATOM	1435	CA		A 180 A 180		15.171				66.54	6
45	MOTA	1436 1437	CB CG		A 180		15.120				63.87	6
40	ATOM ATOM	1438	CD		A 180		13.751				64.72	6
	ATOM	1439	CE		A 180		13.404				65.43	6
	ATOM	1440	NZ		A 180		14.217			1.00	65.01	7
	ATOM	1441	C		A 180		43.445			1.00	67.22	б
50	ATOM	1442			A 180		43.373	9.02			68.12	8
-	ATOM	1443	N		A 181		42.388				67.59	7
	MOTA	1444	CA	ASN	A 181		41.083				68.03	6
	MOTA	1445	CB		A 181		40.710				69.44	6
	MOTA	1446			A 181		40.940				68.81	6
55	ATOM	1447			A 181		40.552	_			71.29	8
	MOTA	1448		2 ASN	A 181		41.556				0 67.88 0 67.66	7
	MOTA	1449			A 181		39.917				0 68.16	· 6
	MOTA	1450			A 181		39.570				0 68.10 0 68.81	7
60	MOTA	1451			A 182 A 182		39.302 38.160				0.68.00	6
60	MOTA	1452			A 182		37.86				0 67.42	6
	MOTA	1453	CB	7111	102			_ •			_	

ATOM 1454 OG SER A 182 36.905 9.223 25.626 1.00 70.87 ATOM 1455 C SER A 182 36.953 9.974 28.541 1.00 67.36 ATOM 1456 O SER A 182 36.915 9.385 29.617 1.00 67.36 ATOM 1457 N VAL A 183 35.973 10.771 28.126 1.00 67.61 5 ATOM 1458 CA VAL A 183 35.973 10.771 28.126 1.00 65.61 ATOM 1459 CB VAL A 183 35.951 11.912 30.163 1.00 63.61 ATOM 1460 CG1 VAL A 183 35.151 11.912 30.163 1.00 63.61 ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 65.06 ATOM 1462 C VAL A 183 33.828 12.597 27.440 1.00 64.81 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.81 ATOM 1465 CA THR A 184 32.422 11.170 28.432 1.00 65.01 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 65.01 ATOM 1466 CB THR A 184 30.977 9.911 26.224 1.00 67.01 ATOM 1468 CG2 THR A 184 30.977 9.911 26.224 1.00 67.01 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.91 ATOM 1470 O THR A 184 30.490 12.596 28.808 1.00 69.91 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.81 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.01 ATOM 1473 CB TYR A 185 32.226 15.598 28.531 1.00 71.51 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 71.51 ATOM 1477 CD2 TYR A 185 33.601 15.535 28.775 1.00 72.51 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 73.4 ATOM 1479 CZ TYR A 185 33.226 15.598 28.531 1.00 71.51 ATOM 1480 OH TYR A 185 33.4097 15.885 30.022 1.00 73.4 ATOM 1471 CD2 TYR A 185 33.601 15.535 28.775 1.00 73.4 ATOM 1473 CB TYR A 185 33.226 15.598 28.531 1.00 71.51 ATOM 1478 CE2 TYR A 185 33.601 15.535 28.776 1.00 73.4 ATOM 1479 CZ TYR A 185 33.601 15.535 28.776 1.00 73.4 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 73.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C SER A 186 26.873 14.714 29.727 1.00 73.8 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.2	6 6 8 7 6 6 8 6
ATOM 1456 O SER A 182 36.915 9.385 29.617 1.00 67.61 ATOM 1457 N VAL A 183 35.973 10.771 28.126 1.00 65.83 5 ATOM 1458 CA VAL A 183 34.790 11.017 28.950 1.00 64.66 ATOM 1459 CB VAL A 183 35.151 11.912 30.163 1.00 63.66 ATOM 1460 CGI VAL A 183 35.151 11.912 30.163 1.00 63.66 ATOM 1461 CG2 VAL A 183 36.153 12.956 29.748 1.00 65.03 ATOM 1462 C VAL A 183 33.901 12.581 30.718 1.00 65.03 ATOM 1463 O VAL A 183 33.632 11.666 28.204 1.00 64.83 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.04 ATOM 1465 CA THR A 184 30.303 10.641 27.258 1.00 67.07 ATOM 1466 CB THR A 184 30.977 9.911 26.224 1.00 61.46 ATOM 1468 CG2 THR A 184 30.490 12.596 28.808 1.00 69.90 ATOM 1470 O THR A 184 30.490 12.596 28.808 1.00 69.90 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.87 ATOM 1472 CA TYR A 185 29.849 16.015 29.274 1.00 72.13 ATOM 1474 CG TYR A 185 32.226 15.598 28.531 1.00 72.5 ATOM 1476 CCI TYR A 185 32.226 15.598 28.531 1.00 72.5 ATOM 1478 CC2 TYR A 185 32.226 15.598 28.531 1.00 73.4 25 ATOM 1478 CC2 TYR A 185 33.236 16.300 31.031 1.00 71.4 ATOM 1479 CZ TYR A 185 32.226 15.598 28.531 1.00 73.4 ATOM 1479 CZ TYR A 185 33.836 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.3 ATOM 1480 OH TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 ATOM 1484 CA SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 26.4645 14.953 30.693 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9	8 2 7 5 6 8 6
ATOM 1457 N VAL A 183 35.973 10.771 28.126 1.00 65.82 ATOM 1458 CA VAL A 183 34.790 11.017 28.950 1.00 64.66 ATOM 1459 CB VAL A 183 35.151 11.912 30.163 1.00 65.06 ATOM 1460 CG1 VAL A 183 35.151 11.912 30.163 1.00 65.06 ATOM 1461 CG2 VAL A 183 36.153 12.956 29.748 1.00 65.06 ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 61.86 ATOM 1462 C VAL A 183 33.901 12.581 30.718 1.00 64.12 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.12 ATOM 1466 CB THR A 184 32.422 11.170 28.432 1.00 65.06 ATOM 1466 CB THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.66 ATOM 1466 CB THR A 184 30.977 9.911 26.224 1.00 61.46 ATOM 1466 CG2 THR A 184 30.977 9.911 26.224 1.00 61.46 ATOM 1466 CG2 THR A 184 30.490 12.596 28.808 1.00 69.97 ATOM 1470 O THR A 184 30.490 12.596 28.808 1.00 69.97 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.80 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.80 ATOM 1473 CB TYR A 185 29.230 14.618 29.261 1.00 72.31 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 72.32 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 71.50 ATOM 1477 CD2 TYR A 185 32.226 15.598 28.531 1.00 70.4 ATOM 1477 CD2 TYR A 185 33.236 16.300 31.031 1.00 71.50 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.50 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.50 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.50 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.50 ATOM 1479 CZ TYR A 185 33.4097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1486 OG SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.2	2 7 5 6 3 6 3 6
5 ATOM 1458 CA VAL A 183 34.790 11.017 28.950 1.00 64.66 ATOM 1459 CB VAL A 183 35.151 11.912 30.163 1.00 63.66 ATOM 1460 CG1 VAL A 183 36.153 12.956 29.748 1.00 65.06 ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 64.86 ATOM 1462 C VAL A 183 33.901 12.581 30.718 1.00 64.86 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.81 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.06 ATOM 1465 CA THR A 184 31.240 11.737 7.793 1.00 67.07 ATOM 1466 CB THR A 184 30.977 9.911 26.224 1.00 64.66 ATOM 1468 CG2 THR A 184 30.977 9.911 26.224 1.00 61.40 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.99 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.87 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.87 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 32.226 15.598 28.531 1.00 72.5 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1477 CD2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.3 ATOM 1479 CZ TYR A 185 33.4097 15.885 30.776 1.00 73.4 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 37.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 CB SER A 186 24.645 14.953 30.693 1.00 77.7	6 3 6 3 6
ATOM 1459 CB VAL A 183 35.151 11.912 30.163 1.00 63.68 ATOM 1460 CG1 VAL A 183 36.153 12.956 29.748 1.00 65.08 ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 61.88 ATOM 1462 C VAL A 183 33.901 12.581 30.718 1.00 64.12 10 ATOM 1463 O VAL A 183 33.632 11.666 28.204 1.00 64.12 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.08 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.64 ATOM 1466 CB THR A 184 30.977 9.911 26.224 1.00 61.48 ATOM 1468 CG2 THR A 184 30.977 9.911 260.224 1.00 61.40 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1470 O THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.8 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.8 ATOM 1473 CB TYR A 185 29.230 14.618 29.261 1.00 72.1 ATOM 1475 CD1 TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 72.5 ATOM 1477 CD2 TYR A 185 31.335 16.300 30.776 1.00 73.4 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1480 OH TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1486 OG SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1486 OG SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1486 OG SER A 186 25.455 14.953 30.693 1.00 77.7	3 ⁶ 6
ATOM 1460 CG1 VAL A 183 36.153 12.956 29.748 1.00 65.06 ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 61.86 ATOM 1462 C VAL A 183 33.901 12.581 30.718 1.00 64.12 10 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.12 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.06 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.66 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.46 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.33 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.96 ATOM 1470 O THR A 184 30.490 12.596 28.808 1.00 69.96 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.87 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.87 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.1 20 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.236 16.005 29.525, 1.00 72.5 ATOM 1476 CE1 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1484 CA SER A 186 26.873 14.714 29.727 1.00 73.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1486 OG SER A 186 25.455 14.794 29.403 1.00 78.9	3 6
ATOM 1461 CG2 VAL A 183 33.901 12.581 30.718 1.00 61.86 ATOM 1462 C VAL A 183 33.632 11.666 28.204 1.00 64.15 10 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.81 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.00 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.00 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.61 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.40 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.3 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1474 CG TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1477 CD2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 73.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.995 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1462 C VAL A 183 33.632 11.666 28.204 1.00 64.12 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.83 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.01 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.63 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.44 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.33 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.99 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.83 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.00 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.00 ATOM 1474 CG TYR A 185 29.849 16.015 29.274 1.00 72.35 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 72.55 ATOM 1476 CE1 TYR A 185 33.3601 15.535 28.775 1.00 72.5 ATOM 1477 CD2 TYR A 185 33.226 15.598 28.531 1.00 71.5 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.5 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1481 C TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.215 15.952 31.527 1.00 77.7) 6
10 ATOM 1463 O VAL A 183 33.828 12.597 27.440 1.00 64.83 ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.04 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.63 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.44 15 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.3 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.99 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.35 16.005 29.525 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.226 15.598 28.531 1.00 71.5 ATOM 1477 CD2 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.3 30 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	` ~
ATOM 1464 N THR A 184 32.422 11.170 28.432 1.00 65.00 ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.65 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.44 1.00 11.0	
ATOM 1465 CA THR A 184 31.240 11.737 27.793 1.00 67.07 ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.63 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.44 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.3 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 33.854 16.358 30.776 1.00 73.4 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 77.7	
ATOM 1466 CB THR A 184 30.303 10.641 27.258 1.00 64.61 ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.41 15 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.3 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 33.861 15.535 28.775 1.00 70.4 ATOM 1479 CZ TYR A 185 33.236 16.358 30.776 1.00 73.4 25 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9	
ATOM 1467 OG1 THR A 184 30.977 9.911 26.224 1.00 61.40 15 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.30 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.90 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.80 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.00 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.215 15.952 31.527 1.00 77.7	
15 ATOM 1468 CG2 THR A 184 29.030 11.260 26.685 1.00 67.3 ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.9 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1475 CD1 TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1476 CE1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1477 CD2 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1481 C TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 77.7	
ATOM 1469 C THR A 184 30.490 12.596 28.808 1.00 69.90 ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1481 C TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.9 ATOM 1485 CB SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1470 O THR A 184 30.413 12.238 29.993 1.00 71.8 ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1471 N TYR A 185 29.961 13.735 28.362 1.00 71.0 ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1478 CE2 TYR A 185 31.854 16.358 30.776 1.00 73.4 25 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1472 CA TYR A 185 29.230 14.618 29.261 1.00 72.1 20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 73.4 25 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
20 ATOM 1473 CB TYR A 185 29.849 16.015 29.274 1.00 72.3 ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 70.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1480 OH TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1481 C TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1482 O TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1474 CG TYR A 185 31.335 16.005 29.525, 1.00 72.5 ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 73.4 25 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1475 CD1 TYR A 185 32.226 15.598 28.531 1.00 71.5 ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 73.4 25 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	3 6
ATOM 1476 CE1 TYR A 185 33.601 15.535 28.775 1.00 70.4 ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 73.4 25 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1477 CD2 TYR A 185 31.854 16.358 30.776 1.00 73.4 ATOM 1478 CE2 TYR A 185 33.236 16.300 31.031 1.00 71.1 ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	36
ATOM 1479 CZ TYR A 185 34.097 15.885 30.022 1.00 70.3 ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1480 OH TYR A 185 35.448 15.811 30.254 1.00 68.6 ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1481 C TYR A 185 27.804 14.705 28.780 1.00 73.8 ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1482 O TYR A 185 27.551 14.756 27.576 1.00 73.3 30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
30 ATOM 1483 N SER A 186 26.873 14.714 29.727 1.00 76.3 ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1484 CA SER A 186 25.455 14.794 29.403 1.00 78.2 ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1485 CB SER A 186 24.645 14.953 30.693 1.00 78.9 ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
ATOM 1486 OG SER A 186 25.215 15.952 31.527 1.00 77.7	
45 45 45 45 45 45 45 45 45 45 45 45 45 4	
35 ATOM 1488 O SER A 186 24.348 15.879 27.553 1.00 79.0 ATOM 1489 N CYS A 187 25.949 17.047 28.653 1.00 77.8	
ATOM 1490 CA CYS A 187 25.830 18.254 27.839 1.00 78.7	
ATOM 1491 C CYS A 187 26.144 17.978 26.407 1.00 78.0	
ATOM 1492 O CYS A 187 25.514 18.482 25.488 1.00 78.3	2 8
40 ATOM 1493 CB CYS A 187 26.858 19.320 28.252 1.00 79.5	2 6
ATOM 1494 SG CYS A 187 28.656 18.934 27.946 1.00 82.5	
ATOM 1495 N CYS A 188 27.147 17.144 26.244 1.00 78.9	
ATOM 1496 CA CYS A 188 27.706 16.918 24.947 1.00 78.7	2 6
ATOM 1497 C CYS A 188 27.817 15.468 24.454 1.00 78.1	
45 ATOM 1498 O CYS A 188 28.454 14.618 25.096 1.00 78.2	
ATOM 1499 CB CYS A 188 29.070 17.610 25.006 1.00 79.9	
ATOM 1500 SG CYS A 188 29.118 19.206 25.950 1.00 80.8	
ATOM 1501 N PRO A 189 27.211 15.186 23.281 1.00 77.4	
ATOM 1502 CD PRO A 189 26.571 16.283 22.526 1.00 77.0	
50 ATOM 1503 CA PRO A 189 27.125 13.918 22.532 1.00 76.0	
ATOM 1504 CB PRO A 189 26.756 14.378 21.129 1.00 76.9	
55 ATOM 1508 N GLU A 190 29.447 13.423 21.874 1.00 72.8 ATOM 1509 CA GLU A 190 30.662 12.603 21.768 1.00 69.6	
ATOM 1510 CB GLU A 190 31.535 13.102 20.629 1.00 72.5	
ATOM 1511 CG GLU A 190 30.777 13.743 19.486 1.00 75.8	
ATOM 1512 CD GLU A 190 30.236 12.730 18.505 1.00 77.5	
60 ATOM 1513 OE1 GLU A 190 30.974 11.765 18.170 1.00 78.5	
ATOM 1514 OE2 GLU A 190 29.080 12.909 18.058 1.00 79.5	55 8

					-97				
	MOTA	1515	C	GLU A 190	31.492	12.631	23.039	1.00 66.30	6
	ATOM	1516		GLU A 190	31.113	13.278	24.009	1.00 65.23	8
	ATOM	1517		ALA A 191	32.633	11.941	23.020	1.00 63.17	7
	ATOM	1518		ALA A 191	33.524	11.891	24.182	1.00 61.94	6
5	MOTA	1519		ALA A 191	34.102	10.493	24.341	1.00 60.63	6
Ū	MOTA	1520		ALA A 191	34.666	12.904	24.055	1.00 61.30	6
	ATOM	1521	-	ALA A 191	35.148	13.165	22.950	1.00 62.21	8
	ATOM	1522		TYR A 192	35.105	13.468	25.179	1.00 58.30	7
	MOTA	1523		TYR A 192	36.188	14.438	25.159	1.00 56.19	6
10	ATOM	1524		TYR A 192	35.695	15.807	25,633	1.00 55.84	б
. •	ATOM	1525		TYR A 192	34.779	16.487	24.649	1.00 56.15	6
	ATOM .	1526		TYR A 192	33.409	16.226	24.642	1.00 56.04	6
	ATOM	1527		TYR A 192	32.571	16.794	23.683	1.00 57.88	6
	ATOM	1528		TYR A 192	35.291	17.341	23.675	1.00 56.39	6
15	ATOM	1529		TYR A 192	34.467	17.915	22.715	1.00 57.19	6
	ATOM	1530	CZ	TYR A 192	33.108	17.637	22.722	1.00 58.29	6
	MOTA	1531	OH	TYR A 192	32.295	18.200	21.769	1.00 58.06	8
	MOTA	1532	С	TYR A 192	37.389	14.013	25.984	1.00 56.62	6
	ATOM	1533	0	TYR A 192	37.375	14.090	27.217	1.00 57.67	8
20	MOTA	1534	N	GLU A 193	38.436	13.571	25.291	1.00 57.15	7
	ATOM	1535	CA	GLU A 193	39.676	13.124	25.935	1.00 58.07	6
	MOTA	1536	CB	GLU A 193	40.651	12.523	24.901	1.00 56.63	6
	MOTA	1537	CG	GLU A 193	40.143	11.269	24.209	1.00 55.92	6
	MOTA	1538	CD	GLU A 193	41.171	10.636	23.307	1.00 56.05	6
25	MOTA	1539	OE1	GLU A 193	42.339	10.509	23.743	1.00 56.33	8
	MOTA	1540	OE2	GLU A 193	40.808	10.250	22.171	1.00 57.19	8
	MOTA	1541	С	GLU A 193	40.363	14.278	26.655	1.00 58.09	6
	MOTA	1542	0	GLU A 193	40.221	15.440	26.261	1.00 59.15	8
	MOTA	1543	N	ASP A 194		13.948	27.712	1.00 57.73	7
30	ATOM	1544	CA	ASP A 194		14.941	28.486	1.00 56.31	6
	MOTA	1545	CB	ASP A 194		15.738	29.386	1.00 57.85	6
	MOTA	1546	CG	ASP A 194		14.930	30.578	1.00 59.72	6
	MOTA	1547		ASP A 194		14.610	30.592	1.00 55.87	8
	MOTA	1548		ASP A 194		14.628	31.494	1.00 58.60	8
35	MOTA	1549	С	ASP A 194		14.276	29.333	1.00 55.87	6
	MOTA	1550	0	ASP A 194		13.121	29.714	1.00 56.72	8
	MOTA	1551	N	VAL A 195		15.014	29.611	1.00 55.00	7
	MOTA	1552	CA	VAL A 195		14.520	30.431	1.00 55.58 1.00 54.15	6 6
	ATOM	1553	CB	VAL, A 195		14.961	29.876	1.00 54.15	6
40	ATOM	1554		VAL A 195		14.610	30.860	1.00 52.00	6
	ATOM	1555		VAL A 195		14.292	28.544	1.00 53.85	6
	ATOM	1556	C	VAL A 195		15.082	31.832	1.00 57.48	8
	MOTA	1557	0	VAL A 195		16.294	32.011 32.828	1.00 57.95	7
4 ==	MOTA	1558	N	GLU A 196		14.206 14.654	34.204	1.00 58.24	6
45	MOTA	1559	CA	GLU A 196		13.758	34.204	1.00 59.77	6
	MOTA	1560	CB	GLU A. 196		14.199	36.385	1.00 63.27	6
	MOTA	1561	CG	GLU A 196		13.256	37.114	1.00 64.52	6
	MOTA	1562	CD			13.250	36.646	1.00 63.73	8
E0	MOTA	1563		GLU A 196		12.705	38.155	1.00 68.58	8
50	ATOM	1564		GLU A 190			34.828	1.00 57.57	6
	MOTA	1565	C	GLU A 190		13.538	34.841	1.00 59.03	8
	ATOM	1566	O N	GLU A 190 VAL A 197			35.322	1.00 55.78	7
	ATOM	1567	N CA	VAL A 19			35.943	1.00 55.65	6
55	ATOM	1568		VAL A 19			35.386		6
55	ATOM	1569 1570		VAL A 19'			36.050		6
	MOTA MOTA	1571		. VAL A 19			33.877		6
	ATOM	1572		VAL A 19					6
	MOTA	1573		VAL A 19			37.850		8
60	MOTA	1574		SER A 19					7
55	ATOM	1575		SER A 19					6
				_					

						-98				
	2 201	1576	O.D.	SER A	100	47.951	13.822	40.275	1.00 56.54	6
	MOTA	1576		SER A		46.654	13.401	39.908	1.00 61.46	8
	ATOM	1577		SER A		49.501	15.765	40.257	1.00 58.27	6
	MOTA	1578		SER A		50.585	15.703	40.089	1.00 58.63	8
=	MOTA	1579		LEU A		49.366	16.901	40.929	1.00 58.53	7
5	ATOM	1580		LEU A		50.521	17.538	41.531	1.00 60.77	6
	ATOM	1581		LEU A		50.521	19.046	41.274	1.00 60.73	6
	MOTA	1582	CB	LEU A		51.591	19.833	42.032	1.00 59.19	6
	MOTA	1583	CG			52.982	19.400	41.599	1.00 57.61	6
4.0	ATOM	1584		LEU A		51.390	21.311	41.776	1.00 60.66	6
10	MOTA	1585		LEU A		50.524		43.022	1.00 61.78	6
	ATOM	1586	C	LEU A		49.739	17.895	43.765	1.00 62.31	8
	MOTA	1587	0	ASN A		51.397	16.389	43.457	1.00 61.40	7
	ATOM	.1588	N	ASN A		51.519	16.092	44.866	1.00 58.00	6
1 =	MOTA	1589	CA	ASN A		51.763	14.607	45.088	1.00 60.46	6
15	MOTA	1590	CB	ASN A		51.926	14.267	46.553	1.00 61.99	6
	MOTA	1591	CG OD1			51.158	14.735	47.391	1.00 63.14	8
	MOTA	1592		ASN A		52.928	13.447	46.871	1.00 63.54	7
	MOTA	1593		ASN A		52.708	16.906	45.345	1.00 56.52	6
20	MOTA	1594	C	ASN A		53.859	16.664	44.957	1.00 55.31	8
20	MOTA	1595 1596	0	PHE A		52.406	17.901	46,166	1.00 55.49	7
	MOTA	-	N	PHE A		53.416	18.790	46.707	1.00 54.84	6
	MOTA	1597	CA	PHE A		53.450	20.082	45.908	1.00 50.77	6
		1598	CB	PHE A		52.237	20.940	46.112	1.00 47.21	6
25	MOTA	1599 1600	CG CD1	PHE A		52.337	22.161	46.765	1.00 46.20	6
20	MOTA	1600		PHE A		50.985	20.513	45.678	1.00 46.31	6
	MOTA			PHE A		51.205	22.942	46.984	1.00 45.24	6
	MOTA	1602 1603		PHE A		49.849	21.291	45.896	1.00 43.16	6
	MOTA	1603	CZ	PHE A		49.962	22.504	46.549		6
30	MOTA	1604	C	PHE A		53.035	19.112	48.142	1.00 56.47	6
30	MOTA	1605	0	PHE A		51.956	18.748	48.610	1.00 54.75	8
	MOTA	1607	N	ARG A		53.927	19.811	48.829	1.00 58.72	7
	MOTA	1608	CA	ARG A		53.693	20.207	50.207	1.00 61.75	6
	MOTA	1608	CB	ARG A		54.052	19.063	51.136	1.00 63.76	6
35	ATOM ATOM	1610	CG	ARG A		55.544	18.822	51.130	1.00 65.86	6
33	ATOM	1611	CD	ARG A		55.938	17.640	51.962	1.00 68.52	6
	ATOM	1612	NE	ARG A		57.383	17.466	51.916	1.00 69.87	7
	ATOM	1613	CZ	ARG A		58.013	16.409	52.405	1.00 70.56	6
	ATOM	1614		ARG A		57.308	15.433	52.977	1.00 71.39	7
40	ATOM	1615		ARG A		59.340	16.332	52.315	1.00 70.56	7
70	ATOM	1616	C	ARG A		54.579	21.406	50.556	1.00 62.74	6
	ATOM	1617		ARG A		55.588	21.675	49.890	1.00 62.41	8
	MOTA	1618	N	LYS A		54.200	22.121	51.606	1.00 63.53	7
	ATOM	1619	CA	LYS A		54.983	23.256	52.044	1.00 64.89	6
45	ATOM	1620	CB	LYS A		54.271	23.993	53.169	1.00 65.59	6
10	ATOM	1621	CG	LYS A		55.067	25.149	53.740	1.00 66.14	6
	ATOM	1622	CD	LYS A		54.348	25.777	54.911	1.00 65.85	6
	ATOM	1623	CE	LYS A		55.145	26.939	55.473	1.00 67.46	6
	ATOM	1624	NZ	LYS A		55.259	28.073	54.500	1.00 68.09	7
50	ATOM	1625	C	LYS A		56.264	22.665	52.563	1.00 65.93	6
•	ATOM	1626	ō	LYS A		56.250	21.585	53.157	1.00 66.11	8
	ATOM	1627	N	LYS A		57.372	23.351	52.313	1.00 69.05	7
	ATOM	1628	CA	LYS A		58.659	22.863	52.767	1.00 71.58	6
	ATOM	1629		LYS A		59.758	23.834	52.358	1.00 69.66	6
55	ATOM	1630		LYS A		59.862	23.906	50.839	1.00 69.91	6
	MOTA	1631		LYS A		61.113	24.609	50.336		6
	ATOM	1632		LYS A		61.195	24.491	48.809		6
	ATOM	1633		LYS A		62.324		48.189		7
	ATOM	1634		LYS A		58.544		54.264		6
60	ATOM	1635		LYS A		57.769		54.873		8
	MOTA	1636		GLY A	205	59.262	21.782	54.850	1.00 75.75	. 7

	WO 01/5	8951								PCT/E	P01/01	457
							-99					
	ATOM	1637	CA	GLY			59.215	21.592	56.296	1.00 75		6
	MOTA	1638	С	GLY			60.125	22.564	57.029	1.00 76		6
	MOTA	1639		\mathbf{GLY}			60.824	23.350	56.348	1.00 77		8
_	MOTA	1640	OT2				60.151	22.545	58.278	1.00 75		8 6
5	MOTA	1641	CB	PHE		1	33.107	19.922	1.832 0.888	1.00 5		6
	MOTA	1642	CG CD1	PHE		1	32.174 32.670	20.672 21.495	-0.120	1.00 5		6
	ATOM ATOM	1643 1644		PHE		1 1	30.784	20.612	1.079	1.00 58		6
	ATOM	1645		PHE		1	31.795	22.248	-0.919	1.00 5		6
10	ATOM	1646		PHE		1	29.905	21.357	0.292	1.00 5		6
	ATOM	1647	CZ	PHE		1	30.410	22.176	-0.707	1.00 58	3.52	6
	ATOM	1648	C	PHE		1	35.200	18.747	2.262	1.00 5	5.22	6
	ATOM	1649	0	PHE	в	1	34.732	18.314	3.311	1.00 5	3.27	8
	MOTA	1650	N	PHE	В	1	33.748	17.916	0.462	1.00 5		7
15	MOTA	1651	CA	PHE		1	34.250	19.143	1.152	1.00 5		6
	MOTA	1652	И	ASP		2	36.512	18.877	2.083	1.00 5		7
	MOTA	1653	CA	ASP		2	37.383	18.526	3.204	1.00 5		6
	MOTA	1654	CB	ASP		2	38.876	18.485	2.792	1.00 5		6 6
20	MOTA	1655	CG	ASP ASP		2 2	39.364 40.076	19.782 19.729	2.139 1.091	1.00 6		8
20	ATOM ATOM	1656 1657		ASP		2	39.042	20.860	2.684	1.00 6		8
	MOTA	1658	C	ASP		2	37.096	19.582	4.280	1.00 5		6
	MOTA	1659	Ö	ASP		2	36.331	20.507	4.047	1.00 5		8
•	ATOM	1660	N	ARG		3	37.682	19,443	5.458	1.00 5	5.52	7
25	ATOM	1661	CA	ARG	В	3	37.441	20.380	6.556	1.00 5		6
	ATOM	1662	СВ	ARG	В	3	38.114	19.838	7.806	1.00 5		6
	MOTA	1663	CG	ARG		3	37.541	20.323	9.094	1.00 5		6
	ATOM	1664	CD	ARG		3	37.772	19.269	10.139	1.00 5		6 7
30	ATOM ATOM	1665 1666	NE CZ	ARG ARG		3 3	36.531 36.233	18.930 17.708	10.818 11.220	1.00 5		6
50	ATOM	1667		ARG		3	37.095	16.729	10.994	1.00 5		7
	ATOM	1668		ARG		3	35.090	17.468	11.849	1.00 5		7
	ATOM	1669	C	ARG		3	37.909	21.822	6.295	1.00 5	3.67	6
	MOTA	1670	0	ARG	В	3	37.395	22.772	6.888	1.00 5		8
35	MOTA	1671	N	ALA	В	4	38.896	21.969	5.420	1.00 5		7
	ATOM	1672	CA	ALA		4	39.443	23.255	5.025	1.00 5		6
	ATOM	1673	CB	ALA		4	40.743	23.036	4.275	1.00 4		6 6
	MOTA	1674	C	ALA		4 4	38.442 38.225	23.978 25.179	4.131 4.270	1.00 4 1.00 4		8
40	ATOM ATOM	1675 1676	O N	ALA ASP		5	37.837	23.233	3.211	1.00 4		7
70	ATOM	1677	CA	ASP		5	36.869	23.801	2,288	1.00 5		6
	ATOM	1678	CB	ASP		5	36.345	22.748	1.299	1.00 5		6
	MOTA	1679	CG	ASP			37.454	22.084	0.491	1.00 6	0.18	6
	MOTA	1680	OD1	ASP			38.347	22.794	-0.039	1.00 6		8
45	ATOM	1681		ASP			37.43 0.		0.374	1.00 6		8
	MOTA	1682	С	ASP			35.699	24.381	3.051	1.00 5		6
	ATOM	1683	0	ASP			35.179	25.428	2.670	1.00 5 1.00 4		8 7
	MOTA	1684	N	ILE			35.292 34.164	23.713 24.178	4.130 4.926	1.00 4		6
50	ATOM ATOM	1685 1686	CA CB	ILE			33.723	23.128	5.950	1.00 5		6
50	ATOM	1687	CG2				32.472	23.610	6.678	1.00 4		6
	ATOM	1688		ILE			33.434	21.809	5.232	1.00 5		6
	ATOM	1689	CD1				.32.881	20.712	6.121	1.00 5		6
	ATOM	1690	С	ILE	В	6	34.448	25.480	5.653	1.00 4		6
55	ATOM	1691	0	ILE			33.700	26.450	5.518	1.00 5		8
	ATOM	1692	N	LEU			35.524	25.504	6.426	1.00 4		7
	MOTA	1693	CA	LEU			35.908 37.157	26.705 26.424	7.160 7.995	1.00 4		6 6
	MOTA MOTA	1694 1695	CB CG	LEU LEU			36.916	25.424	9.126	1.00 4		6
60	ATOM	1695		LEU			38.221	24.935	9.696	1.00 4		. 6
	ATOM	1697		LEU			36.081	26.086	10.191	1.00 4		6

	WO 01/5	8951									PCT/EP01/01	457
								-100				
	> mo>/	1.000	~	LEU I		7		36.167	27.850	6.195	1.00 47.43	6
	MOTA	1698	_	_		7		35.797	28.986	6.447	1.00 46.94	8
	MOTA	1699		LEU I TYR I		8		36.799	27.529	5.080	1.00 49.45	7
	MOTA	1700 1701		TYR I		8		37.105	28.507	4.051	1.00 52.16	6
5	ATOM ATOM	1701		TYR I		8		37.800	27.821	2.877	1.00 54.75	6
5	ATOM	1702		TYR I		8		38.090	28.758	1.737	1.00 56.10	6
	ATOM	1704		TYR I		8		39.088	29.720	1.839	1.00 56.48	6
	ATOM	1705		TYR		8		39.344	30.605	0.794	1.00 57.35	6
	ATOM	1706	_	TYR		8		37.348	28.701	0.564	1.00 57.26	6
10	ATOM	1707		TYR :		8		37.592	29.581	-0.484	1.00 57.99	6
	ATOM	1708	CZ	TYR	В	8		38.590	30.528	-0.364	1.00 57.33	6
	ATOM	1709	OH	TYR :	В	8		38.819	31.385	-1.408	1.00 58.94	8
	MOTA	1710	C	TYR		8		35.858	29.234	3.537	1.00 52.55	6 .
	MOTA	1711	0	TYR		8		35.867	30.460	3.387	1.00 52.22	8
15	MOTA	1712	N	ASN		9		34.796	28.482	3.249	1.00 52.51	7
	MOTA	1713	CA	ASN		9		33.566	29.086	2.752	1.00 54.09 1.00 56.72	6 6
	ATOM	1714	CB	ASN		9		32.539	28.021	2.376 1.163	1.00 56.72	6
	MOTA	1715	CG	ASN		9		32.963 33.966	27.203 27.509	0.512	1.00 61.72	8
20	ATOM	1716		ASN ASN		9		32.198	26.159	0.852	1.00 61.72	7
20	MOTA	1717 1718	ND2 C	ASN		9 9		32.198	30.007	3.794	1.00 54.24	6
	MOTA MOTA	1719	0	ASN		9		32.680	31.160	3.506	1.00 54.66	8
	ATOM	1720	И	ILE		10		32.829	29.503	5.013	1.00 54.21	7
	MOTA	1721	CA	ILE		10	٠	32.282	30.310	6.104	1.00 53.77	6
25	ATOM	1722	CB	ILE		10		32.303	29.543	7.429	1.00 52.00	6
	ATOM	1723	CG2	ILE		10		31.860	30.451	8.552	1.00 50.79	6
	ATOM	1724	CG1	ILE	В	10		31.389	28.323	7.339	1.00 50.43	6
	MOTA	1725	CD1	ILE	В	10		31.531	27.371	8.498	1.00 47.56	6
	MOTA	1726	С	ILE	В	10		33.085	31.592	6.284	1.00 55.12	6
30	MOTA	1727	0	ILE		10		32.531	32.663	6.458	1.00 56.17	8
	MOTA	1728	N	ARG		11		34.400	31.464	6.243	1.00 56.91	7 6
	MOTA	1729	CA	ARG		11		35.297	32.595	6.386 6.243	1.00 58.48 1.00 63.85	6
	ATOM	1730	CB	ARG		11 11		36.739 37.799	32.110 33.170	6.434	1.00 68.86	6
35	MOTA	1731	CG	ARG ARG		11		37.733	33.493	7.917	1.00 77.74	6
33	ATOM ATOM	1732 1733	CD NE	ARG		11		39.211	34.078	8.264	1.00 85.52	7
	ATOM	1734	CZ	ARG		11		40.384	33.635	7.807	1.00 88.55	6
	ATOM	1735		ARG		11		40.424	32.589	6.970	1.00 90.95	7
	ATOM	1736		ARG		11		41.518	34.239	8.178	1.00 87.63	7
40	ATOM	1737	C	ARG	В	11		35.030	33.639	5.306	1.00 58.49	6
	ATOM	1738	0	ARG	В	11		34.905	34.825	5.584	1.00 57.34	8
	ATOM	1739	N	GLN	В	12		34.933	33.175	4.066	1.00 58.50	7
	MOTA	1740	CA	${\tt GLN}$		12		34.748	34.055	2.927	1.00 57.77	6
	MOTA	1741	СВ	GLN		12		35.147	33.329	1.653	1.00 58.35	6
45	ATOM	1742	CG	GLN		12		36.124	34.100	0.814	1.00 62.22 1.00 64.08	6 6
	MOTA	1743	CD	GLN		12		37.514	33.973	1.351 1.501	1.00 68.35	8
	MOTA	1744	OE1			12		38.011 38.156	32.862 35.098	1.653	1.00 63.78	7
	MOTA	1745	NE2	GLN GLN		12 12		33.366	34.633	2.720	1.00 57.86	6
50	MOTA MOTA	1746 1747	C O	GLN		12		33.219	35.657	2.059	1.00 59.62	8
50	ATOM	1748	N	THR		13		32.345	33.994	3.266	1.00 57.21	7
	ATOM	1749	CA	THR		13		30.987	34.479	3.054	1.00 56.88	6
	ATOM	1750	CB	THR		13		30.101	33.373	2.468	1.00 54.90	6
	MOTA	1751	OG1			13		30.100	32.247	3.350	1.00 55.07	8
55	ATOM	1752	CG2		В	13		30,612	32.946	1.104	1.00 56.83	6
-	MOTA	1753	C	THR	В	13		30.295	35.009	4.298	1.00 58.52	6
	ATOM	1754	0	THR		13		29.275	35.698	4.206	1.00 57.64	8
	MOTA	1755	N	SER		14		30.848	34.691	5.462	1.00 60.24	7
	MOTA	1756		SER		14		30.247	35.117	6.715	1.00 60.31 1.00 60.50	6
60	MOTA	1757		SER		14		30.884	34.369	7.878 9.034	1.00 63.18	6 8
	MOTA	1758	OG	SER	. 15	14		30.086	34.485	y. 034		•

	WO 01/58	8951								PCT/EP01/014	157
							-101				
	ATOM	1759	С	SER	в	14	30.343	36.619	6.949	1.00 59.80	6
	ATOM	1760	Ō	SER		14	31.247	37.293	6.443	1.00 60.23	8
	ATOM	1761	N	ARG	В	15	29.382	37.134	7.710	1.00 58.15	7
	MOTA	1762	CA	ARG	В	15	29.322	38.549	8.040	1.00 55.80	6
5	ATOM	1763	CB	ARG	В	15	28.271	39.239	7.183	1.00 56.87	6
	MOTA	1764	CG	ARG		15	28.540	39.145	5.684	1.00 60.72	6
	MOTA	1765	CD	ARG		15	27.721	40.179	4.945	1.00 63.19	6
	ATOM	1766	NE	ARG		15	28.008	41.515	5.475	1.00 67.21 1.00 67.82	7 6
10	MOTA	1767	CZ	ARG		15 15	27.307 26.259	42.616 42.549	5.196 4.384	1.00 67.82	7
10	MOTA MOTA	1768 1769		ARG ARG		15	27.660	42.549	5.722	1.00 66.84	.7
	ATOM	1770	C	ARG		15	28.962	38.655	9.511	1.00 54.09	6
	MOTA	1771	0	ARG		15	27.795	38.651	9.880	1.00 55.59	8
	ATOM	1772	N	PRO		16	29.979	38.747	10.377	1.00 51.42	7
15	ATOM	1773	CD	PRO		16	31.405	38.751	10.015	1.00 48.17	6
	MOTA	1774	CA	PRO	В	16	29.817	38.846	11.828	1.00 48.94	6
	ATOM	1775	CB	PRO	В	16	31.256	38.950	12.328	1.00 48.44	6
	ATOM	1776	CG	PRO	В	16	32.038	38.262	11.284	1.00 48.62	6
	MOTA	1777	С	PRO	В	16	28.974	40.014	12.300	1.00 48.35	6
20	MOTA	1778	0	PRO		16	28.475	40.006	13.420	1.00 49.87	8
	MOTA	1779	N	ASP		17	28.825	41.026	11.456	1.00 49.55	. 7
	MOTA	1780	CA	ASP		17	28.048	42.201	11.830	1.00 51.87	6
	ATOM	1781	CB	ASP		17	28.638	43.469	11.204	1.00 55.73 1.00 59.93	6
25	MOTA	1782	CG CD1	ASP		17	29.956	43.896 43.598	11.856 13.062	1.00 59.93	6 8
25	MOTA	1783		ASP ASP		17 17	30.158 30.781	43.598	11.163	1.00 61.01	8
	ATOM ATOM	1784 1785	C	ASP		17	26.581	42.120	11.458	1.00 51.65	6
	MOTA	1786	0	ASP		17	25.837	43.066	11.684	1.00 51.03	8
	ATOM	1787	N	VAL		18	26.156	40.990	10.906	1.00 53.24	7
30	ATOM	1788	CA	VAL		18	24.772	40.848	10.495	1.00 53.38	6
_	ATOM	1789	CB	VAL		18	24.679	40.682	8.978	1.00 52.53	6
	MOTA	1790	CG1	VAL	В	18	23.238	40.628	8.551	1.00 53.33	6
	MOTA	1791	CG2	VAL	В	18	25.385	41.833	8.299	1.00 52.08	6
	ATOM	1792	С	VAL	В	18	24.026	39.701	11.157	1.00 54.80	6
35	MOTA	1793	0	VAL		18	24.359	38.527	10.980	1.00 57.05	8
	ATOM	1794	N	ILE		19	22.999	40.062	11.913	1.00 55.38	7
	ATOM	1795	CA	ILE		19	22.150	39.105 39.899	12.615	1.00 54.84	6
	MOTA	1796 1797	CB CG2	ILE		19 19	21.128 20.177	40.699	13.493 12.612	1.00 53.97 1.00 52.99	6 6
40	MOTA MOTA	1797	CG2			19	20.354	38.963	14.414	1.00 54.58	6
70	ATOM	1799		ILE		19	19.598	39.696	15.490	1.00 51.38	6
	ATOM	1800	C	ILE		19	21.450	38.192	11.586	1.00 55.77	6
	MOTA	1801	ō	ILE		19	20.879	38.678	10.605	1.00 56.23	8
	ATOM	1802	N	PRO		20	21.508	36.857	11.787	1.00 57.54	7
45	MOTA	1803	CD	PRO		20	22.223	36.204	12.888	1.00 57.31	6
	ATOM	1804	CA	PRO	В	20	20.900	35.841	10.900	1.00 59.26	6
	MOTA	1805	CB	PRO	В	20	21.478	34.521	11.417	1.00 57.46	6
	MOTA	1806	CG	PRO		20	22.657	34.935	12.235	1.00 58.77	6
	MOTA	1807	С	PRO		20	19.366	35.836	10.940	1.00 62.02	6
50	ATOM	1808	0	PRO		20	18.732	34.806	11.185	1.00 61.74	8
	MOTA	1809	N	THR		21	18.781	36.997	10.679	1.00 65.81	7
	ATOM	1810	CA	THR		21	17.337	37.160 38.658	10.705 10.971	1.00 69.72	6
	MOTA	1811	CB OC1	THR		21 21	16.974 16.710	38.837	10.371	1.00 67.96 1.00 69.51	6 8
55	MOTA MOTA	1812 1813	CG2	THR THR		21	15.765	39.087	10.178	1.00 68.09	6
55	MOTA	1814	CGZ	THR		21	16.606	36.658	9.455	1.00 08.09	6
	MOTA	1815	Ö	THR		21	17.000	36.942	8.315	1.00 71.83	8
	MOTA	1816	N	GLN		22	15.532	35.907	9.694	1.00 77.49	7
	ATOM	1817	CA	GLN		22	14:684	35.370	8.629	1.00 80.52	6
60	ATOM	1818	CB	GLN		22	14.492	33.871	8.842	1.00 81.72	.6
	MOTA	1819	CG	GLN	В	22	15.793	33.097	8.917	1.00 83.16	6

	WO 01/5	8951								PCT/EP01/0	1457
							-102				
	MOTA	1820	CD	GLN	В	22	15.654	31,832	9.753	1.00 85.69	6
	MOTA	1821		GLN		22	15.421	31.901	10.976	1.00 86.08	8
	ATOM	1822	NE2	GLN		22	15.787	30.665	9.103	1.00 85.85	7
	MOTA	1823	С	GLN	В	22	13.326	36.091	8.717	1.00 81.72	6
5	MOTA	1824	0	GLN	В	22	12.526	35.837	9.632	1.00 80.46	8
	MOTA	1825	N	ARG		23	13.075	36.990	7.765	1.00 84.00	7
	MOTA	1826	CA	ARG		23	11.829	37.769	7.744	1.00 86.23	6
	ATOM	1827	СВ	ARG		23	10.599	36.840	7.695	1.00 87.50 1.00 89.89	6 6
10	ATOM	1828	CG	ARG		23	10.348	36.215 34.734	6.314 6.215	1.00 89.89	6
10	MOTA	1829	CD	ARG ARG		23 23	10.796 10.694	34.734	4.833	1.00 93.76	7
	ATOM ATOM	1830 1831	NE CZ	ARG		23	9.590	34.302	4.068	1.00 95.64	6
	MOTA	1832		ARG		23	8.452	34.832	4.534	1.00 96.17	7
	ATOM	1833		ARG		23	9.627	33.855	2.811	1.00 95.03	7
15	MOTA	1834	C	ARG		23	11.754	38.657	8.987	1.00 86.03	6
	MOTA	1835	ō	ARG		23	12.776	39.137	9.476	1.00 85.87	8
	ATOM	1836	N	ASP	В	24	10.548	38.879	9.497	1.00 86.08	7
	ATOM	1837	CA	ASP		24	10.393	39.703	10.693	1.00 85.72	6
	MOTA	1838	CB	ASP	В	24	8.975	40.301	10.799	1.00 89.17	6
20	ATOM	1839	CG	ASP		24	8.226	40.339	9.453	1.00 90.77	6
	ATOM	1840		ASP		24	8.743	40.965	8.486	1.00 92.05	8
	ATOM	1841		ASP		24	7.113	39.746	9.376	1.00 89.95	8
	MOTA	1842	C	ASP		24	10.622	38.798	11.891	1.00 83.93	6
0.5	MOTA	1843	0	ASP		24	10.445	39.218	13.045	1.00 83.66 1.00 81.18	8 7
25	MOTA	1844	N	ARG		25	10.994	37.549	11.613 12.677	1.00 78.99	6
	ATOM ATOM	1845 1846	CA CB	ARG		25 25	11.237 11.318	36.584 35.159	12.128	1.00 78.33	6
	ATOM	1847	CG	ARG		25	10.001	34.541	11.696	1.00 87.15	6
	ATOM	1848	CD	ARG		25	10.171	33.024	11.485	1.00 91.09	6
30	MOTA	1849	NE	ARG		25	8.908	32.371	11.140	1.00 95.87	7
•	ATOM	1850	CZ	ARG		25	8.747	31.053	11.005	1.00 98.43	6
	ATOM	1851		ARG		25	9.785	30.235	11.186	1.00 97.96	7
	ATOM	1852	NH2	ARG	В	25	7.538	30.549	10.709	1.00 99.56	7
	MOTA	1853	C	ARG	В	25	12.527	36.876	13.426	1.00 75.18	6
35	ATOM	1854	0	ARG		25	13.573	37.105	12.813	1.00 75.11	8
	ATOM	1855	N	PRO		26	12.463	36.879	14.767	1.00 71.32	7
	MOTA	1856	CD	PRO		26	11.233	36.885	15.569	1.00 69.54	6
	MOTA	1857	CA	PRO		26	13.629	37.134	15.617	1.00 68.20	6
40	MOTA	1858	CB	PRO		26 26	13.020	37.298 37.763	17.007 16.720	1.00 68.04 1.00 68.94	6 6
40	MOTA	1859 1860	CG	PRO		26	11.627 14.543	37.703	15.572	1.00 65.66	6
	ATOM ATOM	1861	С О	PRO PRO		26	14.114	34.832	15.183	1.00 65.23	8
	ATOM	1862	N	VAL		27	15.801	36.093	15.956	1.00 62.13	7
	ATOM	1863	CA	VAL		27	16.716	34.969	15.990	1.00 58.35	6
45	MOTA	1864	CB	VAL		27	18.185	35.416	15.851	1.00 57.74	6
	MOTA	1865		VAL		27	19.127	34.308	16.328	1.00 54.93	6
*	MOTA	1866	CG2	VAL	В	27	18.479	35.737	14.393	1.00 54.94	6
	MOTA	1867	C	VAL	В	27	16.491	34.348	17.349	1.00 56.29	6
	MOTA	1868	0	VAL		27	16.517	35.043	18.360	1.00 56.31	8
50	MOTA	1869	N	ALA		28	16.243	33.045	17.379	1.00 54.44	7
	MOTA	1870	CA	ALA		28	16.008	32.384	18.645	1.00 52.98	6
	MOTA	1871	CB	ALA		28	15.095	31.209	18.461	1.00 52.15	6
	MOTA	1872	C	ALA		28	17.318	31.938	19.262	1.00 52.73	6
55	ATOM	1873	O N	ALA VAL		28 29	17.959 17.696	31.004 32.632	18.782 20.334	1.00 51.86 1.00 51.10	8 7
55	ATOM	1874 1875	N CA	VAL		29	18.911	32.353	21.080	1.00 31.10	6
	MOTA MOTA	1876	CB	VAL		29	19.741	33.642	21.324	1.00 49.72	6
	ATOM	1877		VAL		29	20.986	33.323	22.140	1.00 46.43	6
	ATOM	1878		VAL		29	20.117	34.272	19.996	1.00 49.12	6
60	ATOM	1879	C	VAL		29	18.553	31.762	22.428	1.00 48.65	6
	MOTA	1880	0	VAL		29	17.731	32.301	23.161	1.00 48.71	8

							-103				
	ATOM	1881	N	SER	В	30	19.169	30.638	22.746	1.00 50.09	7
	ATOM	1882	CA	SER		30	18.925	29.997	24.018	1.00 53.68	6
	MOTA	1883	CB	SER		30	18.587	28.521	23.817	1.00 53.36	6
	MOTA	1884	OG	SER		30	19.653	27.845	23.180	1.00 57.88	8 -
5	ATOM	1885	C	SER		30	20.201	30.150	24.823	1.00 56.00	6
•	ATOM	1886	ō	SER		30	21.297	29.933	24.306	1.00 57.56	8
	ATOM	1887	N	VAL		31	20.049	30.542	26.084	1.00 57.69	7
	ATOM	1888	CA	VAL		31	21.175	30.752	26.980	1.00 57.19	6
	ATOM	1889	СВ	VAL	В	31	21.227	32.198	27.460	1.00 57.32	6
10	ATOM	1890		VAL	В	31	22.536	32.449	28.185	1.00 58.47	6
	ATOM	1891		VAL		31	21.044	33.147	26.288	1.00 56.64	6
	ATOM	1892	С	VAL		31	21.016	29.878	28.204	1.00 57.98	6
	ATOM	1893	0	VAL	В	31	19.938	29.815	28.787	1.00 59.53	8
•	MOTA	1894	. N	SER	В	32	22.101	29.232	28.611	1.00 58.26	7
15	MOTA	1895	CA	SER	В	32	22.069	28.356	29.765	1.00 58.30	6
	MOTA	1896	CB	SER	В	32	21.806	26.914	29.298	1.00 60.26	6
	MOTA	1897	OG	SER	В	32	21.881	25.975	30.361	1.00 61.39	8
	MOTA	1898	С	SER	В	32	23.374	28.414	30.530	1.00 58.22	6
	MOTA	1899	0	SER	В	32	24.402	27.983	30.024	1.00 62.28	8
20	MOTA	1900	N	\mathtt{LEU}		33	23.340	28.937	31.753	1.00 56.90	7
	MOTA	1901	CA	LEU		33	24.548	29.002	32.572	1.00 56.09	6
	MOTA	1902	CB	LEU		33	24.489	30.183	33.541	1.00 54.84	6
	ATOM	1903	CG	LEU		33	24.257	31.555	32.914	1.00 55.33	6 6
	MOTA	1904		LEU		33	24.483	32.647	33.962	1.00 53.97 1.00 56.27	6
25	ATOM	1905		LEU		33	25.201	31.731	31.737		6
	ATOM	1906	С	LEU		33	24.725	27.728	33.379	1.00 55.50 1.00 56.54	8
	MOTA	1907	0	LEU		33	23.770	27.220	33.950	1.00 55.65	7
	MOTA	1908	N	LYS		34	25.948	27.215	33.413 34.183	1.00 55.03	6
	MOTA	1909	CA	LYS		34	26.270	26.018 24.905	33.279	1.00 50.27	6
30	ATOM	1910	CB	LYS		34	26.815 25.908	24.528	32.102	1.00 66.07	6
	MOTA	1911	CG	LYS		34	24.552	23.965	32.566	1.00 72.18	6
	MOTA	1912	CD	LYS		34	23.611	23.670	31.373	1.00 74.46	6
	MOTA	1913	CE	LYS		34	22.303	23.068	31.799	1.00.74.04	7
05	MOTA	1914	NZ	LYS LYS		34 34	27.365	26.493	35.108	1.00 54.54	6
35	MOTA	1915	C O	LYS		34	28.463	26.811	34.655	1.00 55.93	8
	MOTA	1916 1917	N	PHE		35	27.079	26.564	36.401	1.00 52.21	7
	MOTA MOTA	1917	CA	PHE		35	28.086	27.045	37.336	1.00 49.54	6
	ATOM	1919	CB	PHE		35	27.422	27.491	38.633	1.00 46.23	6
40	MOTA	1920	CG	PHE		35	26.545	28.682	38.450	1.00 47.55	6
40	ATOM	1921		PHE		35	25.230	28.536	38.035	1.00 48.89	6
	ATOM	1922		2 PHE		35	27.056	29.968	38.603	1.00 48.56	6
	ATOM	1923		1 PHE		35	24.434	29.653	37.771	1.00 47.34	6
	MOTA	1924		2 PHE		35	26.269	31.087	38.343	1.00 45.87	6
45	ATOM	1925		PHE		35	24.958		37.926	1.00 47.81	6
	ATOM	1926		PHE	В	35	29.224		37.595	1.00 49.37	6
	MOTA	1927		PHE	В	35	29.020	24.880	37.833	1.00 48.82	8
	MOTA	1928	N	ILE	В	36	30.434		37.530		7
	MOTA	1929	CA	ILE	: B	36	31.634		37.706		6
50	ATOM	1930	CB			36	32.641				6
	MOTA	1931				36	33.858				6
	MOTA	1932				36	31.966				6 6
	MOTA	1933		1 ILE		36	31.393				6
	MOTA	1934		IL		36	32.284				8
55	MOTA	1935		ILI		36	32.977				7
	MOTA	1936		ASI			32.068				6
	MOTA	1937					32.678				6
	MOTA	1938					34.200				6
60	MOTA						34.900 34.518				8
60	MOTA			1 ASI 2 ASI			35.942				7
	MOTA	1941	ר אר	L HOL	N E	. 5/	33.342	. 20.072	52.002		

	WO 01/5	8951								PCT	C/EP01/0	1457
							-104					
	» mow	1942	С	ASN	ъ	37	32.222	29.077	41.322	1 00	45.58	6
	ATOM ATOM	1942		ASN		37	31.767	29.931	40.566		44.62	8
	ATOM	1944	Ŋ	ILE		38	32,335	29.248	42.635		45.83	7
	MOTA	1945	CA	ILE		38	31.973	30.489	43.301		47.98	6
5	MOTA	1946	CB	ILE		38	30.781	30.287	44.214		46.41	6
•	ATOM	1947		ILE		38	30.510	31.550	44.976	1.00	46.45	6
	MOTA	1948	CG1	ILE	В	38	29.567	29.905	43.356	1.00	47.23	6
	MOTA	1949	CD1	ILE		38	28.365	29.406	44.105		48.96	6
	ATOM	1950	С	ILE		38	33.221	30.805	44.086		50.65	6
10	MOTA	1951	0	ILE		38	33.546	30.109	45.040		52.37	8 7
	MOTA	1952	N	LEU		39	33.926	31.855	43.668 44.264		52.96 53.68	6
	MOTA	1953	CA	LEU		39 39	35.207 36.137	32.214 32.698	43.157		53.70	6
	MOTA MOTA	1954 1955	CB CG	LEU		39	36.204	31.706	42.000		53.79	6
15	ATOM	1956		LEU		39	37.099	32.257	40.904		53.07	6
	ATOM	1957		LEU		39	36.718	30.364	42.510	1.00	51.88	6
	MOTA	1958	C	LEU	В	39	35.272	33.188	45.418	1.00	54.85	6
	ATOM	1959	0	LEU	В	39	36.061	32.994	46.342		55.07	8
	MOTA	1960	N	GLU	В	40	34.489	34.255	45.359		55.18	7
20	MOTA	1961	CA	GLU		40	34.509	35.220	46.446		58.32	6
	MOTA	1962	CB	GLU		40	35.423	36.400	46.144		59.68	6
	MOTA	1963	CG	GLU		40	36.879	36.041	46.018		65.11 69.72	6 6
	MOTA	1964	CD OH1	GLU		40 40	37.749 37.534	37.271 38.034	45.846 44.867	_	72.04	8
25	ATOM ATOM	1965 1966	OE1	GLU		40	38.648	37.477	46.693		70.63	8
20	MOTA	1967	C	GLU		40	33.128	35.738	46.685		59.54	6
	MOTA	1968	0	GLU		40	32.393	36.057	45.747		59.65	8
	MOTA	1969	N	VAL		41	32.772	35.816	47.956		60.26	7
	ATOM	1970	CA	VAL		41	31.468	36.304	48.323	1.00	58.68	6
30	ATOM	1971	СВ	VAL	В	41	30.599	35.159	48.862		59.00	6
	MOTA	1972		VAL		41	29.318	35.711	49.450		61.18	6
	ATOM	1973		VAL		41	30.279	34.186	47.740		59.58	6
	MOTA	1974	C	VAL		41	31.666	37.368	49.379		58.15	6
35	MOTA	1975	0	VAL		41	32.594 30.811	37.290 38.383	50.187 49.337		56.97 58.17	8 7
. 33	ATOM ATOM	1976 1977	N CA	ASN ASN		42 42	30.863	39.466	50.302		58.74	6
	MOTA	1978	CB	ASN		42	31.609	40.673	49.730		58.84	6
	ATOM	1979	CG	ASN		42	31.962	41.702	50.795		58.68	6
	ATOM	1980		ASN		42	31.122	42.100	51.593		58.91	8
40	MOTA	1981	ND2	ASN	В	42	33.215	42.138	50.806	1.00	58.72	7
	MOTA	1982	С	ASN	В	42	29.412	39.823	50.577		60.60	6
	MOTA	1983	0	ASN		42	28.738	40.457	49.747		60.01	8
	MOTA	1984	N	GLU		43	28.926	39.401	51.742		61.86	7
4=	ATOM	1985	CA	GLU		43	27.543	39.669	52.111		62.81	6
45	MOTA	1986	CB	GLU		43	27.117 25.640	38.760 38.871	53.267 53.591		64.87 67.01	6 6
	MOTA MOTA	1987 1988	CG CD	GLU GLU		43 43	25.152	37.779	54.525		69.52	6
	ATOM	1989		GLU		43	23.973	37.842	54.945		68.10	8
	ATOM	1990		GLU		43	25.944	36.854	54.831		70.46	8
50	ATOM	1991	C	GLU		43	27.332	41.132	52.476		60.60	6
	ATOM	1992	0	GLU		43	26.223	41.649	52.387	1.00	59.23	8
	ATOM	1993	N	ILE	В	44	28.408	41.792	52.882		60.18	7
	ATOM	1994	CA	ILE		44	28.356	43.199	53.254		61.54	6
E C	ATOM	1995	CB	ILE		44	29.674	43.669	53.910		62.98	6
55	MOTA	1996	CG2			44	29.601	45.172	54.183		61.14	6
	MOTA	1997		ILE		44	29.950 29.004	42.877 43.205	55.194 56.335		63.64 65.05	6 6
	ATOM ATOM	1998 1999	CDI	ILE		44 44	28.141	43.205	52.016		62.14	6
	ATOM MOTA	2000	0	ILE		44	27.318	44.992	52.024		62.54	8
60	MOTA	2001	N	THR		45	28.894	43.773	50.959		60.63	7
	ATOM	2002	CA	THR		45	28.806	44.527	49.721		59.11	6

	WO 01/5	8951							PCT/EP	01/01457
						-105				
	ATOM	2003	СВ	THR E	45	30.190	44.696	49.090	1.00 58.	49 6
	ATOM	2004		THR E		30.749	43.403	48.815	1.00 60.	
	MOTA	2005	CG2	THR E	45	31.106	45.444	50.036	1.00 56.	
	MOTA	2006	С	THR E	45	27.879	43.894	48.688	1.00 58.	
5	MOTA	2007	0	THR E		27.555	44.521	47.675	1.00 58.	
	ATOM	2008	N	ASN E		27.450	42.660	48.933	1.00 56.	
	ATOM'	2009	CA	ASN E		26.560	42.001	47.986	1.00 55. 1.00 54.	
	MOTA	2010	CB	ASN E		25.242	42.770 42.171	47.894 48.767	1.00 54.	
10	MOTA	2011	CG	ASN E		24.161 23.195	42.171	49.103	1.00 55.	
10	MOTA MOTA	2012 2013		ASN E		24.314	40.898	49.123	1.00 56.	
	ATOM	2014	C	ASN E		27.190	41.867	46.591	1.00 54.	
	ATOM	2015	ō	ASN E		26.589	42.228	45.574	1.00 52.	67 8
	ATOM	2016	N	GLU F	3 47	28.408	41.337	46.565	1.00 53.	
15	ATOM	2017	CA	GLU I	3 47	29.141	41.131	45.330	1.00 51.	
	MOTA	2018	CB	GLU I		30.320	42.090	45.267	1.00 49.	
	MOTA	2019	CG	GLU I		29.902	43.534	45.211	1.00 51.	
	MOTA	2020	CD	GLU I		31.084	44.472	45.232	1.00 53. 1.00 51.	
00	ATOM	2021		GLU I		32.183 30.911	44.015 45.662	44.862 45.604	1.00 51.	
20	ATOM	2022	C C	GLU I		29.627	39.697	45.262	1.00 50.	
	ATOM ATOM	2023 2024	0	GLU 1		30.100	39.150	46.245	1.00 50.	
	ATOM	2024	N	VAL		29.509	39.090	44.091	1.00 50.	
	ATOM	2026	CA	VAL		29.928	37.706	43.909	1.00 50.	
25	MOTA	2027	CB	VAL		28.712	36.793	43.633	1.00 49	
	ATOM	2028	CG1	VAL :	в 48	29.162	35.370	43.440	1.00 53.	
	MOTA	2029	CG2	VAL 3	в 48	27.749	36.861	44.781	1.00 50.	
	MOTA	2030	С	VAL I		30.910	37.554	42.757	1.00 49	
	MOTA	2031	0	VAL		30.785	38.204	41.727	1.00 50	
30	ATOM	2032	N	ASP		31.891	36.688	42.950	1.00 48	
	MOTA	2033	CA	ASP		32.888	36.414 36.610	41.935 42.514	1.00 49	
	ATOM	2034	CB	ASP ASP		34.283 35.320	36.772	41.456	1.00 50	
	ATOM	2035 2036	CG OD1	ASP		35.320	36.772	40.443	1.00 52	
35	MOTA MOTA	2030		ASP		36.240	37.586	41.639	1.00 51	
00	ATOM	2038	C	ASP		32.648	34.949	41.590	1.00 49	
	ATOM	2039	ō	ASP		32.973	34.052	42.364	1.00 49	
	ATOM	2040	N	VAL	B 50	32.078	34.720	40.416	1.00 49	
	MOTA	2041	CA	VAL		31.721	33,381	39.982	1.00 48	
40	MOTA	2042	CB	VAL		30.168	33.242	40.000	1.00 50	
	MOTA	2043		VAL		29.565	33.968	38.807	1.00 47	
	MOTA	2044		VAL		29.767	31.781	40.006 38.598	1.00 52 1.00 47	
	ATOM	2045	C	VAL		32.241 32.533	32.978 33.824	37.758	1.00 47	
45	ATOM	2046 2047	O N	VAL VAL		32.349	31.669	38.383	1.00 45	
40	ATOM ATOM	2047	CA	LAV		32.802	31.091	37.116	1.00 44	
	ATOM	2049	СВ	VAL		34.037	30.178	37.313	1.00 43	
	ATOM	2050		VAL		34.324	29.416	36.031	1.00 40	
	ATOM	2051		VAL		35.245	31.005	37.728	1.00 40	
50	MOTA	2052	С	VAL			30.227	36.569	1.00 45	
	MOTA	2053	0	VAL			29.458	37.318	1.00 48	
	MOTA	2054	N	PHE			30.328	35.275	1.00 42	
	ATOM	2055	CA	PHE			29.535	34.708 34.993	1.00 41 1.00 41	
EE	ATOM	2056	CB	PHE			30.224	34.394	1.00 41	
55	MOTA	2057	CG CD1	PHE		•	31.595 31.767	33.088	1.00 42	
	ATOM ATOM	2058 2059	CD2				32.711	35.123	1.00 43	
	MOTA	2059		L PHE				32.521	1.00 43	
	ATOM	2061	CE					34.562	1.00 43	.32 6
60	ATOM	2062	CZ	PHE			34.132	33.261	1.00 43	
	ATOM	2063	С	PHE	B 52	30.463	29.345	33.217	1.00 43	.44 6

	WO 01/58	8951								PCT/EP01/01	457
							-106				
	ATOM	2064	0	PHE	В	52	31.264	30.008	32.585	1.00 46.26	8
	ATOM	2065	N	TRP		53	29.692	28.428	32.655	1.00 44.90	7
	ATOM	2066	CA	TRP	В	53	29.725	28.188	31.223	1.00 47.46	6
_	MOTA	2067	CB	TRP		53	29.655	26.698	30.907	1.00 47.31	6
5	MOTA	2068	CG	TRP		53	30.869	25.949	31.278	1.00 49.36	6
	ATOM	2069				53	31.029	24.535	31.246	1.00 50.82	6
	ATOM	2070	CE2	TRP		53	32.342	24.253 23.473	31.686 30.887	1.00 49.80 1.00 51.30	6 6
	ATOM	2071 2072	CE3	TRP		53 53	30.189 32.057	26.463	31.719	1.00 50.05	6
10	ATOM ATOM	2072	NE1	TRP		53	32.947	25.448	31.968	1.00 50.43	7
10	ATOM	2074	CZ2	TRP		53	32.835	22.955	31.779	1.00 50.23	6
	ATOM	2075	CZ3	TRP		53	30.676	22.182	30.977	1.00 49.78	6
	ATOM	2076	CH2	TRP		53	31.990	21.932	31.421	1.00 50.88	6
	MOTA	2077	С	TRP	В	53	28.516	28.860	30.619	1.00 48.93	6
15	MOTA	2078	0	TRP		53	27.388	28.490	30.912	1.00 48.69	8
	MOTA	2079	N	GLN		54	28.746	29.846	29.770	1.00 50.46	7
	MOTA	2080	CA	GLN		54	27.643	30.543 31.984	29.155 28.844	1.00 51.66 1.00 51.35	6 6
	MOTA	2081 2082	CB CG	GLN GLN		54 54	28.036 26.871	32.851	28.407	1.00 51.55	6
20	ATOM ATOM	2082	CD	GLN		54 54	27.117	34.326	28.693	1.00 57.50	6
	ATOM	2084		GLN		54	27.399	34,711	29.837	1.00 57.95	8
	ATOM	2085	NE2			54	27.016	35.161	27.659	1.00 58.04	7
	MOTA	2086	С	GLN	В	54	27.273	29.790	27.898	1.00 52.38	6
	ATOM	2087	0	GLN	В	54	27.564	30.209	26.786	1.00 54.42	8
25	MOTA	2088	N	GLN		55	26.638	28.650	28.101	1.00 52.78	7
	ATOM	2089	CA	GLN		55	26.203	27.793	27.017	1.00 53.84	6
	MOTA	2090	CB	GLN		55	25.672 24.985	26.501 25.549	27.623 26.663	1.00 58.14 1.00 66.74	6 6
	ATOM ATOM	2091 2092	CG CD	GLN GLN		55 55	24.756	24.190	27.315	1.00 70.87	6
30	ATOM	2092		GLN		55	24.456	24.108	28.528	1.00 73.46	8
00	ATOM	2094	NE2			55	24.897	23,117	26.527	1.00 69.32	7
	ATOM	2095	C	GLN	В	55	25.145	28.495	26.168	1.00 51.37	6
	ATOM	2096	0	GLN	В	55	23.993	28.631	26.563	1.00 52.24	8
	MOTA	2097	N	THR		56	25.558	28.935	24.989	1.00 48.92	7
35	MOTA	2098	CA	THR		56	24.690	29.660	24.083	1.00 47.03	6
	ATOM	2099	CB	THR THR		56 56	25.307 25.758	31.018 31.647	23.741 24.946	1.00 47.18 1.00 46.91	6 8
	MOTA MOTA	2100 2101	OG1 CG2			56	24.291	31.909	23.056	1.00 45.50	6
	ATOM	2102	C	THR		56	24.466	28.896	22.787	1.00 46.66	6
40	ATOM	2103	Õ	THR		56	25.351	28.202	22.306	1.00 46.60	8
	MOTA	2104	N	THR		57	23.273	29.034	22.220	1.00 45.86	7
	MOTA	2105	CA	THR	В	57	22.942	28.350	20.984	1.00 44.53	б
	MOTA	2106	CB	THR		57	22.320	26.958	21.247	1.00 44.84	6
4 =	ATOM	2107		THR		57	23.271	26.115	21.910	1.00 41.11	8
45	MOTA	2108	CG2			57 57	21.942 21.967	26.306 29.152	19.936 20.162	1.00 46.63 1.00 43.27	6 6
	ATOM ATOM	2109 2110	С 0	THR THR		57 57	21.106	29.132	20.102	1.00 44.01	8
	ATOM	2111	N	TRP		58	22.122	29.086	18.849	1.00 41.40	7
	ATOM	2112	CA	TRP		58	21.235	29.792	17.945	1.00 42.18	6
50	АТОМ	2113	CB	TRP		58	21.500	31.302	17.968	1.00 40.63	6
	MOTA	2114	CG	TRP	В	58	22.800	31.729	17.377	1.00 40.64	6
	ATOM	2115		TRP		58	24.048	31.827	18.054	1.00 37.47	6
	MOTA	2116	CE2			58	24.998	32.252	17.113	1.00 37.44	6
EE	MOTA	2117		TRP		58	24.456	31.594	19.371	1.00 37.69	6 6
55	ATOM	2118		TRP		58 58	23.036 24.354	32.088 32.404	16.087 15.917	1.00 39.23 1.00 36.19	7
	MOTA MOTA	2119 2120		TRP		58	26.336	32.452	17.444	1.00 40.36	6
	ATOM	2121		TRP		58	25.778	31.789	19.701	1.00 38.85	6
	ATOM	2122		TRP		58	26.708	32.215	18.742	1.00 40.16	6
60	ATOM	2123	C	TRP		58	21.430	29.217	16.561	1.00 43.00	6
	MOTA	2124	0	TRP	В	58	22.226	28.320	16.383	1.00 44.24	8

	WO 01/58	8951									PCT/EP01/01457		
							-107						
	ATOM	2125	N	SER	R	59	20.711	29.729	15.579	1 00	47.57	7	
	ATOM	2126	CA	SER		59	20.814	29.181	14.246		50.36	6	
	ATOM	2127	CB	SER		59	19.517	28.410	13.937	1.00	52.43	6	
	ATOM	2128	OG	SER		59	19.677	27.455	12.901	1.00	58.14	8	
5	ATOM	2129	С	SER	В	59	21.073	30,250	13.191	1.00	51.80	6	
	MOTA	2130	0	SER		59	20.440	31.307	13.184		48.66	8	
	MOTA	2131	N	ASP		60	22.018	29.954	12.303		53.93	7	
	MOTA	2132	CA	ASP		60	22.393	30.844	11.206		56.01	6	
40	MOTA	2133	CB	ASP		60	23.766	31.462	11.474		57.13	6	
10	ATOM	2134	CG	ASP		60	24.163 23.714	32.503 32.413	10.437		58.21 56.08	6 8	
,	ATOM ATOM	2135 2136		ASP ASP		60 60	24.952	33.407	9.275 10.786		59.82	8	
	ATOM	2137	C C	ASP		60	22.453	29.976	9.953		57.25	6	
	ATOM	2138	0	ASP		60	23.458	29.315	9.683		57.02	8	
15	ATOM	2139	N	ARG		61	21.370	29.979	9.192		59.51	7	
	АТОМ	2140	CA	ARG		61	21.281	29.171	7.981		62.14	6	
	ATOM	2141	CB	ARG		61	19.852	29.202	7.418	1.00	65.88	6	
	MOTA	2142	CG	ARG	В	61	18.842	28.288	8.125	1.00	71.80	6	
	ATOM	2143	CD	ARG	В	61	17.562	28.189	7.282		79.30	6	
20	MOTA	2144	NE	ARG		61	16.561	27.245	7.806		85.93	7	
	MOTA	2145	CZ	ARG		61	15.393	26.967	7.210		88.02	6	
	ATOM	2146		ARG		61	15.059	27.553	6.059		89.55	7	
25	MOTA	2147 2148	NH2 C	ARG ARG		61 61	14.550 22.256	26.101 29.537	7.762 6.868		88.72 61.20	7 6	
	MOTA MOTA	2140	0	ARG		61	22.488	28.725	5.972		61.95	8	
	ATOM	2150	Ŋ	THR		62	22.819	30.742	6.898		59.72	7	
	ATOM	2151	CA	THR		62	23.755	31.133	5.846	1.00		6	
30	ATOM	2152	CB	THR		62	24.072	32.653	5.878	1.00	61.53	6	
	ATOM	2153	OG1	THR	В	62	24.790	32.981	7.077	1.00	62.67	8	
	MOTA	2154	CG2	THR		62	22.783	33.461	5.826		61.46	6	
	ATOM	2155	С	THR		62	25.055	30.355	5.992		58.40	6	
	ATOM	2156	0	THR		62	25.923	30.410	5.129		58.95	8	
35	MOTA	2157 2158	N CA	LEU		63 63	25.176 26.365	29.626 28.831	7.095 7.381		57.74 55.00	7 6	
	MOTA MOTA	2159	CB	LEU		63	26.677	28.871	8.880		53.55	6	
	ATOM	2160	CG	LEU		63	26.908	30.230	9.531		52.72	6	
	ATOM	2161		LEU		63	27.061	30.070	11.038		53.77	6	
40	ATOM	2162		LEU		63	28.141	30.866	8.929	1.00	52.77	6	
	MOTA	2163	C	LEU	В	63	26.163	27.377	6.971	1.00	54.84	6	
	ATOM	2164	0	LEU		63	27.125	26.624	6.858		55.28	8	
	MOTA	2165	N	ALA		64	24.911	26.986	6.767		53.09	7	
	MOTA	2166	CA	ALA		64	24.579	25.621	6.403		54.25	6	
	MOTA	2167	CB	ALA ALA		64 64	23.078 25.235	25.474	6.274 5.116		54.84 54.35	6 6	
45	ATOM ATOM	2168 2169	С 0	ALA		64	25.441	25.173 25.973	4.208		56.81	8	
70	ATOM	2170	N	TRP		65	25.543	23.884	5.040		50.85	7	
	ATOM	2171	CA	TRP		65	26.148	23.305	3.851		50.36	6	
50	ATOM	2172	CB	TRP		65	27.674	23.449	3.895		47.85	6	
	MOTA	2173	CG	TRP	В	65	28.356	22.496	4.836	1.00	44.59	6	
	ATOM	2174	CD2	TRP	В	65	28.626	22.704	6.229	1.00	42.42	6	
	MOTA	2175	CE2	TRP		65	29.244	21.535	6.711		41.31	6	
	ATOM	2176	CE3			65	28.406	23.766	7.115		39.86	6	
	MOTA	2177		TRP		65 65	28.809	21.247	4.544		43.65 42.95	6 7	
55	ATOM ATOM	2178 2179		TRP TRP		65 65	29.344 29.645	20.664 21.393	5.662 8.041		42.95	6	
	ATOM	21/9		TRP		65	28.807	23.624	8.439		39.24	6	
	ATOM	2181	CH2			65	29.419	22.445	8.886		40.26	6	
	ATOM	2182	C	TRP		65	25.751	21.835	3.839		51.92	6	
	MOTA	2183	0	TRP		65	25.269	21.312	4.846		51.65	8	
60	ATOM	2184	N	ASN		66	25.933	21.173	2.703		54.28	7	
	MOTA	2185	CA	ASN	В	66	25.579	19.760	2.599	1.00	56.88	6	

	WO 01/5	8951						PCT/EP01/01457			
							-108				
	ATOM	2186	СВ	ASN	В	66	25.361	19.349	1.139	1.00 59.16	6
	ATOM	2187	CG	ASN	В	66	25.067	17.869	1.006	1.00 62.92	6
	MOTA	2188		ASN		66	25.084	17.308	-0.090	1.00 64.20	8
_	MOTA	2189		ASN		66	24.792	17.223	2.138	1.00 63.82	7
5	MOTA	2190	C	ASN		66	26.684	18.903	3.197	1.00 56.22	6
	ATOM ATOM	2191 2192	N O	ASN SER		66 67	27.826 26.336	18.942 18.112	2.747 4.200	1.00 54.74 1.00 57.45	8 7
	ATOM	2192	CA	SER		67	27.323	17.276	4.866	1.00 57.45	6
	MOTA	2194	CB	SER		67	27.251	17.503	6.376	1.00 60.70	6
10	ATOM	2195	OG	SER		67	25.956	17.197	6.844	1.00 59.26	8
	MOTA	2196	С	SER		67	27.139	15.796	4.554	1.00 60.90	6
	MOTA	2197	0	SER	В	67	27.705	14.926	5.221	1.00 59.74	8
	ATOM	2198	N	SER		68	26.350	15.519	3.528	1.00 62.89	7
4-	ATOM	2199	CA	SER		68	26.094	14.148	3.129	1.00 64.44	6
15	ATOM	2200	CB	SER		68	25.141	14.127	1.933	1.00 64.07	6
	MOTA	2201 2202	OG C	SER SER		68 68	25.569 27.399	15.023 13.437	0.923 2.790	1.00 65.05 1.00 65.22	8 6
	ATOM ATOM	2202	0	SER		68	27.491	12.215	2.898	1.00 65.18	8
	ATOM	2204	N	HIS		69	28.414	14.203	2.401	1.00 66.21	7
20	ATOM	2205	CA	HIS		69	29.702	13.617	2.054	1.00 66.70	6
	ATOM	2206	СВ	HIS	В	69	29.832	13,502	0.539	1.00 69.64	6
	MOTA	2207	CG	HIS		69	29.047	12.363	-0.025	1.00 74.89	6
	ATOM	2208		HIS		69	29.433	11.123	-0.417	1.00 76.05	6
05	ATOM	2209		HIS		69	27.673	12.393	-0.143	1.00 76.35	7
25	ATOM	2210 2211		HIS HIS		69 69	27.245 28.293	11.221 10.433	-0.583 -0.757	1.00 76.49 1.00 76.65	6 7
	ATOM ATOM	2211	C	HIS		69	30.895	14.352	2.633	1.00 76.65	6
	ATOM	2212	0	HIS		69	31.919	14.532	1.971	1.00 63.93	8
	ATOM	2214	N	SER		70	30.746	14.737	3.897	1.00 65.07	7
30	MOTA	2215	CA	SER	В	70	31,772	15.463	4.632	1.00 63.00	6
	ATOM	2216	CB	SER	В	70	31.954	16.854	4.004	1.00 61.97	6
	ATOM	2217	OG	SER		70	30.716	17.393	3.551	1.00 59.22	8
	MOTA	2218	C	SER		70	31.353	15.576	6.105	1.00 62.92	6
35	MOTA MOTA	2219 2220	N O	SER PRO		70 71	30.288 32.204	15.077 16.199	6.507 6.937	1.00 62.73 1.00 62.42	8 7
00	ATOM	2221	CD	PRO		71	33.624	16.490	6.672	1.00 62.42	6
	MOTA	2222	CA	PRO		71	31.901	16.371	8.361	1.00 61.29	6
	MOTA	2223	CB	PRO		71	33.124	17.103	8.879	1.00 61.30	6
	MOTA	2224	CG	PRO	В	71	34.214	16.490	8.063	1.00 60.40	6
40	ATOM	2225	C	PRO		71	30.619	17.159	8.575	1.00 61.12	6
	ATOM	2226	0	PRO		71	30.222	17.964	7.733	1.00 60.52	8
	ATOM	2227	N	ASP			29.973	16.916	9.708	1.00 62.69	7
	ATOM ATOM	2228 2229	CA CB	ASP ASP		72 72	28.714 27.839	17.587 16.649	10.046 10.883	1.00 62.55 1.00 64.34	6 6
45	ATOM	2230	CG	ASP		72	27.143	15.613	10.040	1.00 67.53	6
	ATOM	2231		ASP		72	25.937	15.794	9.767	1.00 67.60	8
	ATOM	2232		ASP		72	27.808	14.627	9.631	1.00 70.97	8
	ATOM	2233	C	ASP		72	28.962	18.858	10.827	1.00 60.43	6
- 0	ATOM	2234	0	ASP		72	28.137	19.780	10.815	1.00 58.20	8
50	ATOM	2235	N	GLN		73	30.123	18.883	11.483	1.00 58.87	7
	ATOM ATOM	2236 2237	CA CB	GLN GLN		73 73	30.549 30.400	19.981 19.583	12.339 13.788	1.00 58.03 1.00 60.56	6 6
	ATOM	2237	CG	GLN		73	29.025	19.532	14.346	1.00 62.56	6
	ATOM	2239	CD	GLN		73	29.025	19.033	15.763	1.00 64.10	6
55	ATOM	2240		GLN		73	29.599	17.945	16.003	1.00 67.42	8
	ATOM	2241		GLN	В	73	28.628	19.830	16.711	1.00 65.84	7
	MOTA	2242	С	GLN		73	31.998	20.392	12.165	1.00 55.43	6
	ATOM	2243	0	GLN		73	32.845	19.591	11.754	1.00 56.41	8
60	MOTA MOTA	2244 2245	N CA	VAL VAL		74 74	32.275 33.621	21.642 22.197	12.522 12.464	1.00 50.91 1.00 48.23	7 6
-	ATOM	2245	CB	VAL		74	33.925	22.849	11.107	1.00 46.99	6

						-109				
	ATOM	2247	CG1	VAL B	74	34.009	21.782	10.026	1.00 48.63	6
	ATOM	2248		VAL B	74	32.864	23.871	10.777	1.00 45.41	6
	ATOM	2249		VAL B	74	33.734	23.259	13.532	1.00 46.89	6
	ATOM	2250	_	VAL B	74	32.731	23.812	13.964	1.00 46.87	8
5	ATOM	2251	N	SER B	75	34.951	23.524	13.980	1.00 44.18	7
·	ATOM	2252	CA	SER B	75	35.177	24.551	14.982	1.00 41.30	6
	ATOM	2253	CB	SER B	75	36.314	24.145	15.920	1.00 39.05	6
	ATOM	2254	og	SER B	75	35.850	23.290	16.932	1.00 30.94	8
	ATOM	2255	C	SER B	75	35.513	25.856	14.264	1.00 40.02	6
10	ATOM	2256	Ö	SER B	75	36.478	25.936	13.516	1.00 39.74	8
. •	MOTA	2257	N	VAL B	76	34.701	26.875	14.497	1.00 39.53	7
	ATOM	2258	CA	VAL B	76	34.885	28.167	13.861	1.00 40.26	6
	ATOM	2259	CB	VAL B	76	33.607	28.580	13.124	1.00 42.73	6
	ATOM	2260		VAL B	76	33.788	29.928	12.483	1.00 43.36	6
15	ATOM	2261		VAL B	76	33.244	27.539	12.090	1.00 40.50	6
. •	ATOM	2262	C	VAL B	76	35.218	29.256	14.861	1.00 40.57	6
	ATOM	2263	0 -	VAL B	76	34.626	29.322	15.926	1.00 41.80	8
	MOTA	2264	N	PRO B	77	36.188	30.120	14.541	1.00 40.43	7
	ATOM	2265	CD	PRO B	77	37.176	30.053	13.460	1.00 39.25	6
20	ATOM	2266	CA	PRO B	7 7	36.527	31.189	15.479	1.00 39.73	6
	MOTA	2267	CB	PRO B	77	37.717	31.853	14.816	1.00 40.77	6
	ATOM	2268	ĊG	PRO B	77	38.342	30.728	14.078	1.00 40.80	6
	ATOM	2269	C	PRO B	77	35.346	32.141	15.622	1.00 38.02	6
	ATOM	2270	0	PRO B	77	34.663	32.438	14.658	1.00 39.36	8
25	ATOM	2271	N	ILE B	78	35.105	32.600	16.835	1.00 37.63	7
_ •	ATOM	2272	CA	ILE B	78	34.018	33.515	17.129	1.00 39.61	6
	ATOM	2273	СВ	ILE B	78	34.107	33.946	18.602	1.00 41.86	6
	ATOM	2274	CG2	ILE B	78	33.311	35.183	18.861	1.00 40.86	6
	ATOM	2275	CG1	ILE B	78	33.622	32.799	19.469	1.00 45.04	6
30	ATOM	2276	CD1	ILE B,	78	32.313	32.232	18.983	1.00 46.64	6
	MOTA	2277	С	ILE B	78	34.000	34.741	16.231	1.00 41.00	6
	MOTA	2278	0	ILE B	78	32.947	35,225	15.846	1.00 41.00	8
	ATOM	2279	N	SER B	79	35.185	35.227	15.898	1.00 43.87	7
	ATOM	2280	CA	SER B	79	35.368	36.399	15.047	1.00 44.52	6
35	MOTA	2281	CB	SER B	79	36.842	36.792	15.061	1.00 46.91	6
	ATOM	2282	OG	SER B	79	37.657	35.687	14.696	1.00 49.85	8
	MOTA	2283	С	SER B	79	34.914	36.244	13.593	1.00 43.47	6
	MOTA	2284	0	SER B	79	34.805	37.228	12.876	1.00 43.49	8
	MOTA	2285	N	SER B	80	34.656	35.016	13.160	1.00 43.24	7
40	ATOM	2286	CA	SER B	80	34.227	34.769	11.793	1.00 44.14	6
	ATOM	2287	CB	SER B	80	34.955	33.552	11.221	1.00 44.85	6
	MOTA	2288	OG	SER B	80	36.354	33.781	11.115	1.00 52.06	8
	MOTA	2289	С	SER B	80	32.731	34.545	11.690	1.00 44.49	6
	MOTA	2290	0	SER B	80	32.213	34.308	10.609	1.00 44.54	8
45	MOTA	2291	N	LEU B	81	32.039	34.625	12.820	1.00 45.89	
	MOTA	2292	CA	LEU B	81	30.589	34.418	12.858	1.00 45.78	6
	MOTA	2293	CB	TER B	81	30.250	33.187	13.700	1.00 42.48	6
	ATOM	2294		LEU B	81	30.945	31.867	13.420	1.00 42.60	6
	MOTA	2295		LEU B	81	30.769	30.949	14.584	1.00 41.27	6
50	MOTA	2296		LEU B	81	30.379	31,266	12.165	1.00 45.70	6
	MOTA	2297		LEU B	81	29.909	35.611	13.513	1.00 45.11	6
	MOTA	2298		LEU B	81	30.562	36.439	14.154	1.00 46.02	8
	MOTA	2299		TRP B	82	28.596	35.696	13.344 13.984	1.00 42.92 1.00 40.24	7 6
,-,-	MOTA	2300		TRP B	82	27.829	36.737			
55	MOTA	2301		TRP B	82	26.493	36.962	13.290	1.00 42.22 1.00 43.85	6 .6
	MOTA	2302		TRP B	82	25.535	37.766	14.126	1.00 44.14	6
	ATOM	2303			82	24.580	37.257	15.072		6
	ATOM	2304		R TRP B		23.972	38.369	15.687 15.461		6
60	MOTA	2305				24.185 25.459	35.964 39.118	14.204		6
60	ATOM	2306		L TRP B		25.459 24.527	39.118	15.138	1.00 42.92	7
	ATOM	2307	NET	L TRP B	02	24.32/	JJ.43U	17:120	マ・ヘヘ ユア・エつ	,

							-110				
	ATOM	2308	CZ2	TRP	В	82	22.991	38.238	16.671	1.00 42.94	6
	MOTA	2309	CZ3	TRP	В	82	23.211	35.832	16.442	1.00 41.79	6
	MOTA	2310	CH2	TRP	В	82	22.625	36.965	17.036	1.00 42.57	б
	MOTA	2311	С	TRP	В	82	27.579	36.100	15.323	1.00 39.43	6
5	MOTA	2312	0	TRP	В	82	27.379	34.904	15.410	1.00 41.05	. 8
	ATOM	2313	N	VAL	В	83	27.594	36.892	16.373	1.00 41.18	7
	MOTA	2314		VAL		83	27.363	36.359	17.699	1.00 40.57	6
	MOTA	2315		VAL		83	28.714	36.210	18.444	1.00 41.00	6
	MOTA	2316		VAL		83	28.494	35.956	19.903	1.00 45.57	6
10	ATOM	2317		VAL		83	29.491	35.066	17.856	1.00 40.97	6
	ATOM	2318		VAL		83	26.399	37.275	18.460	1.00 40.40	б
	MOTA	2319	0	VAL		83	26.424	38.487	18.301	1.00 42.78 1.00 40.62	8 7
	ATOM	2320	N	PRO		84	25.510	36.693	19.271	1.00 40.62	6
15	ATOM	2321	CD	PRO		84	25.296 24.540	35.250 37.460	19.465 20.052	1.00 43.00	6
15	ATOM	2322 2323	CA CB	PRO PRO		84 84	23.839	36.384	20.032	1.00 39.02	6
	ATOM ATOM	2324	CG	PRO		84	23.899	35.212	20.000	1.00 43.18	6
	ATOM	2325	C ·	PRO		84	25.246	38.474	20.937	1.00 37.37	6
	ATOM	2326	0	PRO		84	26.215	38.140	21.603	1.00 34.20	8
20	ATOM	2327	N	ASP		85	24.753	39.706	20.950	1.00 36.29	7
20	ATOM	2328	CA	ASP		85	25.341		21.777	1.00 37.57	6
	ATOM	2329	CB	ASP		85	25.112	42.107	21.152	1.00 38.52	6
	ATOM	2330	CG	ASP		85	23.661	42.418	20.952	1.00 40.81	6
	ATOM	2331		ASP		85	22.925	41.501	20.578	1.00 41.81	8
25	ATOM	2332		ASP		85	23.254	43.579	21.148	1.00 41.12	8
	ATOM	2333	С	ASP		85	24.776	40.687	23.193	1.00 39.08	6
	ATOM	2334	0	ASP		85	24.261	41.668	23.714	1.00 36.01	8
	MOTA	2335	N	LEU	В	86	24.902	39.522	23.811	1.00 38.19	7
	ATOM	2336	CA	LEU	В	86	24.421	39.306	25.161	1.00 39.63	6
30	MOTA	2337	CB	LEU	В	86	24.459	37.819	25.502	1.00 37.18	6
	ATOM	2338	CG	LEU	В	86	23.585	36.939	24.621	1.00 38.33	6
	MOTA	2339		ĻΕU		86	23.700	35.493	25.065	1.00 33.72	6
	MOTA	2340		LEU		86	22.159	37.433	24.693	1.00 35.49	6
	MOTA	2341	С	LEU		86	25.223	40.061	26.201	1.00 40.05	6
35	MOTA	2342	0	LEU		86	26.432	40.251	26.065	1.00 42.26	8
	MOTA	2343	N	ALA		87	24.541	40.467	27.260	1.00 40.28	7
	ATOM	2344	CA	ALA		87	25.180	41.193 42.698	28.339 28.091	1.00 40.51 1.00 40.62	6 6
	ATOM	2345	CB	ALA		87	25.048 24.521	42.698	29.660	1.00 40.02	6
40	MOTA	2346 2347	C	ALA ALA		87 87	23.306	40.702	29.729	1.00 40.56	8
40	ATOM	2348	O N	ALA		88	25.316	40.634	30.703	1.00 39.13	7
	ATOM ATOM	2349	CA	ALA		88	24.756	40.340	32.014	1.00 38.99	6
	ATOM	2350	CB	ALA		88	25.749	39.577	32.850	1.00 37.09	6
	ATOM	2351	C	ALA		88	24.433	41.686	32.665	1.00 40.68	6
45	ATOM	2352	ō	ALA		88	25.319	42.392	33.134	1.00 38.34	8
	MOTA	2353	N	TYR		89	23.153	42.033	32.667	1.00 42.45	7
	ATOM	2354	CA	TYR		89	22.654	43.285	33.232	1.00 44.08	6
	ATOM	2355	CB	TYR		89	21.133	43.209	33.363	1.00 46.62	6
	ATOM	2356	CG	TYR		89	20.395	43.055	32.056	1.00 51.23	6
50	MOTA	2357	CD1	TYR		89	19.022	42.816	32.036	1.00 54.25	6
	MOTA	2358	CE1	TYR	В	89	18.322	42.711	30.826	1.00 55.90	6
	ATOM	2359	CD2	TYR	В	89	21.054	43.179	30.835	1.00 52.13	6
	ATOM	2360	CE2	TYR	В	89	20.366	43.078	29.626	1.00 54.28	6
	ATOM	2361	CZ	TYR		89	19.001	42.847	29.629	1.00 55.97	6
55	MOTA	2362	OH	TYR		89	18.313	42.787	28.440	1.00 59.26	8
	MOTA	2363	C.	TYR		89	23.243	43.725	34.579	1.00 43.48	6
	MOTA	2364	0	TYR		89	23.409		34.820	1.00 42.18	8
	MOTA	2365		ASN		90	23.540		35.466	1.00 42.08	7
60	ATOM	2366	CA	ASN		90	24.102		36.755	1.00 40.43 1.00 39.29	6
60	MOTA	2367	CB	ASN		90	23.262		37.904	1.00 39.29	6 6
	MOTA	2368	CG	ASN	Þ	90	23.084	41.082	37.824	1.00 40.//	O

PCT/EP01/01457

	W U 01/5	1569								PC I/EPUI/U	145/
							-111				
					_				26 554	1.00 40.90	8
	MOTA	2369		ASN E		0	22.778	40.536	36.774		7
	MOTA	2370		ASN E		0	23.257	40.412	38.948	1.00 42.41	
	MOTA	2371	С	ASN E		0	25.554	42.768	36.921	1.00 41.50	6
	MOTA	2372	0	ASN E		90	26.031	42.618	38.042	1.00 42.85	8
5	MOTA	2373	N	ALA E	39	1	26.250	42.605	35.798	1.00 43.60	7
	ATOM	2374	CA	ALA E	3 9	1	27.669	42.266	35.811	1.00 43.31	6
	MOTA	2375	CB	ALA I	3 9	91	28.156	41.933	34.415	1.00 42.36	6
	MOTA	2376	С	ALA I	3 9	91	28.359	43.513	36.336	1.00 44.47	6
	MOTA	2377	0	ALA I	3 9	91	28.048	44.637	35.934	1.00 43.75	8
10	ATOM	2378	N	ILE E		92	29.295	43.299	37.244	1.00 44.99	7
. •	ATOM	2379	CA	ILE I		92	30.009	44.379	37.895	1.00 45.69	6
	ATOM	2380	CB	ILE I		92	30.052	44.061	39.418	1.00 46.91	6
	ATOM	2381	CG2			92	31.419	43.514	39.831	1.00 49.50	6
	ATOM	2382		ILE I		92	29.726	45.288	40.232	1.00 48.64	6
15	ATOM	2383	CD1			92	29.920	45.030	41.718	1.00 53.73	6
10	ATOM	2384	CDI	ILE !		92	31.428	44.532	37.302	1.00 45.86	6
		2385	0	ILE :		92	32.156	45.487	37.611	1.00 45.24	8
	MOTA	2386		SER		93	31.804	43.581	36.453	1.00 41.25	7
	MOTA		N	SER :		93	33.104	43.578	35.813	1.00 38.58	6
20	ATOM	2387	CA			93	34.056	42.662	36.568	1.00 35.19	6
20	MOTA	2388	CB	SER :			33.682	41.315	36.388	1.00 35.43	8
	MOTA	2389	OG	SER :		93			34.431	1.00 40.88	6
	MOTA	2390	C	SER		93	32.852	43.015		1.00 40.83	8
	ATOM	2391	0	SER		93	31.776	42.493	34.174	1.00 43.16	7
	MOTA	2392	N	LYS		94	33.815	43.131	33.524		6
25	MOTA	2393	CA	LYS		94	33.598	42.557	32.212	1.00 43.98	
	MOTA	2394	CB	LYS		94	34.355	43.325	31.127	1.00 46.29	6
	MOTA	2395	CG	LYS		94	35.769	43.727	31.434	1.00 50.31	6
	MOTA	2396	CD	LYS		94	36.225	44.764	30.401	1.00 52.39	6
	MOTA	2397	CE	LYS		94	35.853	44.341	28.978	1.00 52.02	6
30	ATOM	2398	NZ	LYS	В	94	36.333	45.308	27.965	1.00 54.82	7
	MOTA	2399	С	LYS	В	94	33.963	41.075	32.230	1.00 43.71	6
	ATOM	2400	0	LYS	В	94	34.673	40.602	33.114	1.00 44.78	8
	MOTA	2401	N	PRO	В	95	33.443	40.310	31.267	1.00 44.16	7
	MOTA	2402	$^{\rm CD}$	PRO	В	95	32.562	40.750	30.171	1.00 42.37	6
35	MOTA	2403	CA	PRO	В	95	33.704	38.873	31.184	1.00 39.82	6
	ATOM	2404	СВ	PRO	В	95	32.836	38.422	30.016	1.00 40.83	6
	ATOM	2405	CG	PRO	В	95	31.813	39.505	29.881	1.00 42.58	6
	MOTA	2406	С	PRO	В	95	35.141	38.524	30.941	1.00 39.41	6
	ATOM	2407	0	PRO		95	35.772	39.048	30.032	1.00 40.47	8
40	ATOM	2408	Ň	GLU		96	35.663	37.637	31.765	1.00 39.61	7
. •	ATOM	2409	CA	GLU		96	37.020	37.175	31.582	1.00 39.82	6
	MOTA	2410	CB	GLU			37.765	37.046	32.915	1.00 41.36	6
	ATOM	2411	CG	GLU		96	39.238	36.644	32.763	1.00 50.17	6
	ATOM	2412	CD	GLU.		96	39.989	36.540	34.094	1.00 55.05	6
45	ATOM	2413		. GLU		96	39.506	37.129	35.084	1.00 57.32	8
70	ATOM	2414		GLU		96	41.067	35.888	34.153	1.00 56.17	8
	ATOM	2415	C	GLU		96	36.802	35.804	30.966	1.00 39.55	6
	ATOM	2415	o	GLU		96	36.537	34.840	31.676	1.00 38.71	8
		2417	N	VAL		97	36.864	35.736	29.638	1.00 36.87	7
50	ATOM			VAL		97	36.690	34.475	28.938	1.00 35.52	6
50	ATOM	2418	CA			97	36.457	34.702	27.448	1.00 35.28	6
	ATOM	2419	CB	VAL			36.249	33.378	26.752	1.00 33.50	
	ATOM	2420		L VAL		97 07	35.249	35.586	27.255	1.00 31.71	6
	MOTA	2421		2 VAL		97 07	_	33.640	29.157	1.00 35.07	6
	ATOM	2422	C	VAL		97	37.935	34.005	28.741		
55	ATOM	2423	0	VAL		97	39.025			1.00 37.13	
	MOTA	2424		LEU		98	37.759	32.511	29.823		
	ATOM	2425		LEU		98	38.866		30.167		
	ATOM	2426		LEU		98	38.554		31.482		
~~	MOTA	2427		LEU		98	38.127		32.701		
60	ATOM	2428		1 LEU		98	37.534		33.739		
	MOTA	2429	CD:	2 LEU	ㅂ	98	39.306	32.469	33.259	1.00 41.28	U

PCT/EP01/01457

WO 01/58951

	WO 01/5	8931								PCI	EPU1/U1	457
							-112					
	ATOM	2430	С	LEU	R	98	39.198	30.581	29.128	1.00	36.56	6
	ATOM	2431	ō	LEU		98	40.195	29.889	29.251		37.06	8
	ATOM	2432	N	THR		99	38.371	30.467	28.103	1.00	36.66	7
	ATOM	2433	CA	THR		99	38.578	29.438	27.100		37.03	6
5	ATOM	2434	CB	THR		99	37.405	28.414	27.142		40.73	6
•	ATOM	2435		THR		99	36.152	29.097	26.972		42.70	8
	ATOM	2436	CG2			99	37.400	27.676	28.466	1.00	37.60	6
	ATOM	2437	С	THR		99	38.725	29.932	25.680	1.00	34.89	6
	ATOM	2438	0	THR		99	38.401	31.073	25.378	1.00	35.25	8
10	ATOM	2439	N	PRO			39.231	29.066	24.786	1.00	35.40	7
	ATOM	2440	CD	PRO			39.818	27.745	25.056	1.00	33.38	6
	ATOM	2441	CA	PRO	В	100	39.413	29.420	23.380	1.00	35.17	6
	ATOM	2442	СВ	PRO	В	100	39.783	28.095	22.745	1.00	33.58	6
	ATOM	2443	CG	PRO	В	100	40.603	27.476	23.789	1.00	34.20	6
15	ATOM	2444	С	PRO			38.107	29.961	22.852	1.00	37.17	6
	ATOM	2445	0	PRO	В	100	37.052	29.396	23.103	1.00	38.59	8
	ATOM	2446	N	GLN	В	101	38.168	31.066	22.130	1.00	39.08	7
	ATOM	2447	CA	GLN	В	101	36.949	31,636	21.621	1.00	40.23	6
	ATOM	2448	CB	GLN	В	101	37.071	33.155	21.576		39.84	6
20	ATOM	2449	CG	GLN	В	101	36.866	33.742	22.960	1.00	45.68	6
	MOTA	2450	CΩ	GLN	В	101	37.334	35.158	23.075	1.00	47.02	6
	ATOM	2451	OE1	GLN	В	101	36.871	36.035	22.350		50.05	8
	MOTA	2452	NE2	GLN	В	101	38.260	35.398	23.997		45.46	7
	MOTA	2453	С	GLN	В	101	36.536	31.057	20.295		39.08	6
25	MOTA	2454	0	GLN	В	101	36.496	31.747	19.282		37.88	8
	ATOM	2455	N	LEU			36.212	29.768	20.342		40.24	7
	MOTA	2456	CA	LEU			35.770	28.997	19.183		39.64	6
	MOTA	2457	CB	LEU			36.652	27.759	18.982		37.23	6
	MOTA	2458	CG	LEU			38.155	27.988	18.842		37.24	6
30	MOTA	2459		LEU			38.852	26.666	18.659		33.59	6
•	MOTA	2460		LEU			38.429	28.893	17.665		36.66	6
	MOTA	2461	C	LEU			34.349	28.528	19.394		39.73	6
	ATOM	2462	0	LEU			33.948	28.210	20.502		38.45	8
O.E.	ATOM	2463	N			103	33.586	28.492	18.317		41.12	7
35	MOTA	2464	CA	ALA			32.218	28.017	18.375		40.48	6
	ATOM	2465	CB			103	31.271	29.034	17.760		39.15	6
	ATOM	2466	C	ALA			32.163	26.711	17.599		40.28	6
	ATOM	2467	0	ALA			33.109	26.337	16.917		38.52 42.85	8 7
40	ATOM	2468	N			104	31.045 .30.876	26.014	17.715		44.21	6
40	MOTA	2469	CA			104 104	30.557	24.755 23.659	17.019 18.027		43.23	6
	MOTA	2470	CB CG			104	30.337		17.496			6
	ATOM ATOM	2471 2472	CD			104	32.214	21.957	17.217		44.48	6
	ATOM	2473	NE			104	32.306	20.612	16.652		45.67	7
45	ATOM	2474	CZ			104	33.434	19.985	16.341		42.29	6
	ATOM	2475		ARG			34.593	20.576	16.534		40.18	7
	ATOM	2476		ARG			33.397	18.755	15.847		43.70	7
	ATOM	2477	C			104	29.736	24.954	16.040		44.71	6
	ATOM	2478	ō			104	28.655	25.377	16.425		43.84	8
50	ATOM	2479	N			105	29.990	24.686	14.767		45.98	7
•	ATOM	2480	CA			105	28.955	24.862	13.761		46.86	б
	ATOM	2481	CB	VAL	В	105	29.404	25.834	12.663		43.67	6
	ATOM	2482	CG1	VAL	В	105	28.257	26.111	11.715	1.00	42.93	6
	MOTA	2483		VAL			29.885	27.116	13.281		41.79	6
55	MOTA	2484	С	VAL	В	105	28.546	23.546	13.112	1.00	50.58	6
	ATOM	2485	· 0			105	29.393	22.808	12.589	1.00	51.09	8
	MOTA	2486	N			106	27.243	23.266	13.158		51.24	7
	MOTA	2487	CA	VAL	В	106	26.677	22.056	12.577	1.00	52.00	6
	MOTA	2488	CB	VAL	В	106	25.464	21.592	13.387		.52.31	6
60	MOTA	2489		VAL			25.038	20.207	12.931		52.15	6
	ATOM	2490	CG2	VAL	В	106	25.798	21.607	14.865	1.00	50.55	6

	WO 01/5	8951							PCT/EP01/01	457
						-113				
	ATOM	2491	С	VAL E	106	26.243	22.369	11.147	1.00 52.00	6
	ATOM	2492	0	VAL E		25.782		10.870	1.00 52.80	8
	ATOM	2493	N	SER E		26.388		10.248	1.00 51.28	7
	MOTA	2494	CA	SER E	107	26.038		8.845	1.00 52.41	6
5	MOTA	2495	CB	SER E	107	26.175	20.272	8.097	1.00 54.05	6
	MOTA	2496	OG	SER E	107	25.609	19.216	8.855	1.00 58.60	8
	MOTA	2497	С	SER E	107	24.676	22.198	8.544	1.00 52.33	6
	ATOM	2498	0	SER E	107	24.469		7.460	1.00 52.31	8
	ATOM	2499	N	ASP E		23.753		9.494	1.00 54.48	7
10	MOTA	2500	CA	ASP E		22.417		9.285	1.00 57.36	6
	MOTA	2501	CB	ASP E		21.376		10.007	1.00 59.13	6
	MOTA	2502	CG	ASP E		21.474		11.512	1.00 61.77	6
•	ATOM	2503		ASP E		22.604		12.034	1.00 63 26	8
4 =	MOTA	2504		ASP E		20.419		12.180	1.00 63.13	8 6
15	MOTA	2505	C	ASP E		22.266		9.715 9.711	1.00 58.76 1.00 60.28	8
	ATOM	2506	0	ASP E		21.163 23.376		10.087	1.00 50.28	7
	ATOM ATOM	2507 2508	N CA	GLY I		23.346		10.489	1.00 58.62	6
	ATOM	2509	C	GLY I		23.213		11.983	1.00 59.08	6
20	MOTA	2510	Ö	GLY I		23.123		12.437	1.00 58.71	8
	ATOM	2511	N	GLU I		23.187		12.758	1.00 58.29	7
	ATOM	2512	CA		3 110	23.062		14.202	1.00 57.49	6
	MOTA	2513	СВ	GLU I		22.619		14.827	1.00 60.94	6
	ATOM	2514	CG	GLU I	3 110	21.947		16.208	1.00 64.96	6
25	MOTA	2515	CD	GLU I	3 110	20.623	3 25.007	16.159	1.00 69.09	6
	MOTA	2516	OE1	GLU I	3 110	20.054	25.121	15.044	1.00 70.48	8
	MOTA	2517	OE2	GLU I	3 110	20.14		17.223	1.00 67.90	8
	MOTA	2518	С	GLU 1		24.432		14.723	1.00 56.48	6
	MOTA	2519	0	GLU I		25.44		14.282	1.00 58.51	8
30	MOTA	2520	N	VAL I		24.46		15.656	1.00 52.94	7
	ATOM	2521	CA	VAL I		25.70		16.237	1.00.49.98	6
	MOTA	2522	CB	VAL		25.933 27.259		15.914 16.502	1.00 50.06 1.00 48.91	6 6
	MOTA MOTA	2523 2524	CG1	VAL I		25.89		14.406	1.00 49.75	6
35	ATOM	2525	CGZ	VAL		25.70		17.749	1.00 49.14	6
00	ATOM	2526	Ö	VAL		24.73		18.413	1.00 47.85	8
	ATOM	2527	N	LEU		26.79		18.292	1.00 49.78	7
	ATOM	2528	CA	LEU I		26.90		19.733	1.00 50.84	6
	ATOM	2529	CB	LEU I	3 112	26.90	3 24.914	20.107	1.00 54.21	6
40	MOTA	2530	CG	LEU 1	3 112	26.07	5 23.868	19.337	1.00 56.22	6
	ATOM	2531	CD1	LEU !	3 112	24.67	3 24.393	19.025	1.00 58.51	6
	MOTA	2532	CD2	LEU :		26.80		18.065	1.00 54.95	6
	ATOM	2533	, C		в 112	28.20		20.242	1.00 50.58	6
	MOTA	2534	0		3 112			19.829	1.00 51.33	8
45	MOTA	2535	N		3 113	28.07		21,134	1.00 47.63	7
	ATOM	2536	CA		B 113	29.22		21.709	1.00 46.01	6
	MOTA	2537	CB		B 113	29.26		21.279	1.00 45.50	6
	ATOM	2538	CG		B 113	30.41 31.71		21.868 21.902	1.00 45.48 1.00 43.49	6 6
50	ATOM	2539 2540		TYR TYR		32.76		22.412	1.00 42.81	6
50	MOTA MOTA	2541	CD2		B 113	30.20		22.367	1.00 44.88	6
	ATOM	2542	CE2		B 113	31.24		22.876	1.00 42.75	6
	ATOM	2543	CZ		B 113	32.52		22.897	1.00 45.11	6
	ATOM	2544	OH		B 113	33.57		23.397	1.00 46.12	8
55	ATOM	2545	C		B 113	29.08		23.208	1.00 45.62	6
	MOTA	2546	Ō		в 113	28.13		23.783	1.00 48.17	8
	ATOM	2547	N	MET	в 114	30.02		23.842	1.00 45.82	7
	MOTA	2548	CA		B 114	29.96		25.280	1.00 47.40	6
-	MOTA	2549	CB		B 114	29.65		25.578	1.00 51.46	6
60	ATOM	2550	CG		B 114	29.40		27.030	1.00 56.47	6
	MOTA	2551	SD	MET	B 114	29.46	3 24.204	27.290	1.00 61.08	16

	WO 01/58	8951		÷						PCT	/EP01/01	457
							-114					
	MOTA	2552	CE	MET			27.833	23.732	26.736		59.81	6
	MOTA	2553	С	MET			31.281	28.060	25.944		47.40	6
	MOTA	2554	0	MET			32.093	27.187	26.268		46.46	8
=	ATOM	2555	N	PRO			31.511	29.364	26.158		46.76	7
5	MOTA	2556	CD	PRO			30.680	30.502	25.712		45.52 44.75	6 6
	ATOM ATOM	2557 2558	CA CB	PRO PRO			32.744 32.834	29.832 31.259	26.786 26.285		47.19	6
	ATOM	2559	CG	PRO			31.382	31.687	26.265		45.23	6
	ATOM	2560	C	PRO			32.653	29.776	28.303		45.76	6
10	MOTA	2561	Ö	PRO			31.567	29.933	28.865		46.79	8
	ATOM	2562	N	SER			33.783	29.545	28.965		44.58	7
	MOTA	2563	CA	SER			33.797	29.527	30.416	1.00	42.97	6
	MOTA	2564	CB	SER	В	116	34.867	28.605	30.935		42.63	6
	MOTA	2565	OG	SER			34.810	28.586	32.342		46.80	8
15	MOTA	2566	C	SER			34.124	30.939	30.832		43.61	6
	ATOM	2567	0	SER			35.144	31.473	30.431		45.91	8
	ATOM	2568	N	ILE			33.270	31.547	31.643		42.76 40.88	7 6
	ATOM	2569	CA	ILE			33.483 32.340	32.923 33.816	32.052 31.515		39.30	6
20	MOTA ATOM	2570 2571	CB CG2	ILE			32.512	35.249	31.995		40.17	6
20	ATOM	2572	CG1				32.317	33.760	29.992		37.44	6
	ATOM	2573		ILE			31.069	34.332	29.394		36.96	6
	ATOM	2574	C	ILE			33.592	33.158	33.545		42.01	6
	ATOM	2575	0	ILE	В	117	32.840	32.585	34.329	1.00	44.14	8
25	MOTA	2576	N	ARG	В	118	34.554	33.986	33.939	1.00	42.44	7
	MOTA	2577	CA	ARG			34.683	34.363	35.339		42.12	6
	MOTA	2578	CB	ARG			36.120	34.283	35.835		39.55	6
	ATOM	2579	CG	ARG			36.241	34.873	37.226		40.13	6
20	ATOM	2580	CD	ARG			37.520	34.517	37.933		40.72	6 7
30	MOTA	2581	NE C2	ARG ARG			37.546 38.424	35.120 34.821	39.259 40.204		43.73 43.99	6
	ATOM ATOM	2582 2583	CZ NU1	ARG			39.356	33.915	39.973		45.99	7
	ATOM	2584	NH2				38.367	35.427	41.376		44.09	7
	MOTA	2585	C	ARG			34.215	35.819	35.332		42.68	6
35	ATOM	2586	Ö	ARG			34.657	36.604	34.503	1.00	43.76	8
	ATOM	2587	N	GLN	В	119	33.324	36.190	36.239	1.00	41.50	7
	MOTA	2588	CA	GLN	В	119	32.815	37.553	36.229		40.73	6
	MOTA	2589	CB	GLN			31.817	37.664	35.080		37.47	6
40	ATOM	2590	CG	GLN			31.199	39.002	34.850		37.63	6
40	ATOM	2591	CD	GLN			30.414	39.031	33.553		38.05	6
	MOTA	2592		GLN			29.835 30.380	38.028 40.181	33.137 32.914		40.82 38.24	8 7
	ATOM ATOM	2593 2594	C	GLN GLN			32.171	37.897	37.561		41.65	6
	ATOM	2595	0	GLN			31.660	37.028	38.245		43.20	8
45		2596	N	ARG			32.208	39.163	37.945		43.19	7
	ATOM	2597	CA	ARG			31.606	39.561	39.209	1.00	.46.59	6
	ATOM	2598	CB	ARG			32.500	40.540	39.955	1.00	48.44	6
	ATOM	2599	CG			120	33.874	40.005	40.232		57.79	6
	MOTA	2600	CD	ARG			34.423	40.632	41.493		64.95	6
50	MOTA	2601	NE			120	33.964	39.971	42.727		67.80	7
	ATOM	2602	CZ			120	33.571	40.624	43.818		68.76	6
	ATOM	2603		ARG ARG			33.565 33.219	41.958 39.944	43.827 44.913		66.34 69.34	7 7
	ATOM	2604				120	30.241	40.184	38.999		45.42	6
55	MOTA ATOM	2605 2606	C O			120	29.991	40.104	37.979		43.42	8
55	ATOM	2607	N			121	29.361	39.983	39.972		45.27	7
	ATOM	2608	CA			121	28.012	40.515	39.882		46.73	6
	ATOM	2609	CB			121	26.998	39.411	39.558	1.00	44.66	6
	MOTA	2610	CG	PHE	В	121	27.320	38.639	38.324		41.56	6
60	ATOM	2611		PHE			28.265	37.621	38.355		38.98	6
	MOTA	2612	CD2	PHE	В	121	26.698	38.942	37.123	1.00	40.65	6

	WO 01/5	8951								PCT	/EP01/0	1457
							-115					
	ATOM	2613	CE1	PHE	В	121	28.585	36.920	37.212	1.00	38.44	6
	MOTA	2614		PHE			27.013	38.245	35.977		38.36	6
	MOTA	2615	CZ	PHE	В	121	27.959	37.232	36.020	1.00	37.80	6
_	ATOM	2616	С	PHE	В	121	27.549	41.193	41.142		47.76	6
5	ATOM	2617	0	PHE			28.094	40.972	42.224		45.87	8
	ATOM	2618	N	SER			26.521	42.021	40.966		49.39	7
	ATOM	2619	CA	SER			25.881	42.735	42.054		51.30	6
	ATOM	2620	CB	SER			25.677	44.200	41.680		50.63	6 8
10	ATOM	2621	OG	SER			25.026	44.887	42.726		52.75 52.14	6
10	ATOM ATOM	2622 2623	C O	SER SER			24.530 23.659	42.041 42.135	42.235 41.377		51.12	8
	ATOM	2624	N	CYS			24.371	41.323	43.340		53.84	7
	MOTA	2625	CA	CYS			23.133	40.605	43.603		56.99	6
	ATOM	2626	C	CYS			22.973	40.343	45.111		58.94	6
15	ATOM	2627	0	CYS	В	123	23.837	40.727	45.911	1.00	58.00	8
	MOTA	2628	CB	CYS	В	123	23.135	39.282	42.830		55.83	6
	MOTA	2629	SG	CYS			24.561	38.231	43.250		57.55	16
	MOTA	2630	N	ASP			21.874	39.687	45.491		59.24	7
00	ATOM	2631	CA	ASP			21.619	39.412	46.893		59.17	6
20 .	ATOM	2632	CB	ASP			20.148	39.085	47.114		61.47	6
	ATOM	2633	CG	ASP			19.670 20.462	39.487	48.505		62.03	6 8
	ATOM	2634 2635		ASP ASP			18.493	39.403 39.886	49.470 48.628		63.80	8
	ATOM ATOM	2636	C	ASP			22.470	38.274	47.434		59.25	6
25	ATOM	2637	0	ASP			22.309	37.122	47.036		58.84	8
	MOTA	2638	N	VAL			23.365	38.612	48.356		59.36	7
	ATOM	2639	CA	VAL			24.260	37.647	48.979		59.62	6
	ATOM	2640	СВ	VAL			25.683	38.230	49.080	1.00	57.35	6
	MOTA	2641	CG1	VAL	В	125	26.599	37.280	49.798	1.00	54.50	6
30	MOTA	2642	CG2	VAL	В	125	26.212	38.519	47.702	1.00	58.35	6
	MOTA	2643	C	VAL			23.766	37.277	50.378		62.42	6
	ATOM	2644	0	VAL			24.161	36.254	50.938		64.51	8
	ATOM	2645	N	SER			22.892	38.105	50.939		63.61	7
35	ATOM	2646	CA	SER			22.375 21.260	37.857 38.857	52.283 52.613		64.32	6 6
33	ATOM ATOM	2647 2648	CB OG	SER SER			20.175	38.715	51.715		59.22	8
	ATOM	2649	C	SER			21.858	36.429	52.444		64.47	6
	ATOM	2650	Ö	SER		126	21.082	35.940	51.626		63.31	8
	ATOM'	2651	N	GLY		127	22.313	35.764	53.496		65.55	7
40	ATOM	2652	CA	GLY			21.872	34.409	53.748		68.84	6
	MOTA	2653	C	GLY	В	127	22.847	33.351	53.282	1.00	70.32	6
	MOTA	2654	0	GLY	В	127	22.634	32.161	53.500	1.00	71.17	8
	MOTA	2655	N	VAL			23.923	33.776	52.638		71.67	7
45	ATOM	2656	CA	VAL			24.910	32.826	52.148		72.95	6
45	MOTA	2657		VAL			26.107	33.522	51.467		71.97	6
	ATOM	2658		VAL			25.686	34.081	50.149		73.72	6
	ATOM	2659		VAL VAL			26.654 25.504	34.614	52.359 53.212		69.90 73.83	6 6
	ATOM ATOM	2660 2661	C O	VAL			25.628	31.942 30.743	53.212		73.27	8
50	ATOM	2662	N	ASP			25.884	32.542	54.332		75.83	7
00	ATOM	2663	CA	ASP			26.532	31.789	55.384		78.34	6
	ATOM	2664	CB	ASP			27.008	32.715	56.504		79.36	6
	ATOM	2665	CG	ASP			28.209	32.141	57.257		81.22	6
	ATOM	2666		ASP			29.166	32.909	57.523		81.78	8
55	MOTA	2667		ASP			28.202	30.922	57.576	1.00	81.70	8
	MOTA	2668	С			129	25.720	30.648	55.972		80.31	6
	ATOM	2669	0			129	26.293	29.783	56.660		81.06	8
	MOTA	2670	N			130	24.412	30.603	55.706		80.80	7
60	MOTA	2671	CA			130	23.640	29.501	56.259		81.78	6
60	MOTA	2672	CB OC1			130	23.681	29.563	57.799 58 195		85.11 84.93	6
	MOTA	2673	UGI	THR	מ	130	24.158	30.862	58.195	1.00	04.73	8

	WO 01/58	8951							PCT/EP01/01	457
						-116				
	MOTA	2674	CG2	THR B	130	24.582	28.416	58.388	1.00 85.83	6
	ATOM	2675	_	THR B		22.182	29.286	55.881	1.00 80.84	6
	MOTA	2676	_	THR B		21.460	30.224	55.506	1.00 78.93	8
	ATOM	2677		GLU E		21.784	28.014	56.028	1.00 80.92	7
5	MOTA	2678		GLU E		20.416	27.510	55.832	1.00 80.70	6
	MOTA	2679		GLU E		19.435	28.339	56.689	1.00 83.05	6
	MOTA	2680		GLU E		19.467	28.017	58.187	1.00 84.49	6
	MOTA	2681		GLU E		19.024	29.189	59.051	1.00 85.34	. 6
40	ATOM	2682		GLU E		17.948	29.773	58.762	1.00 86.44	8
10	MOTA	2683		GLU E		19.757	29.521	60.019	1.00 85.14	8
	ATOM	2684		GLU E		19.864	27.420	54.426	1.00 79.07	6 8
	ATOM	2685		GLU E		20.207	26.520	53.643	1.00 76.96 1.00 78.17	7
	ATOM	2686	N	SER E		18.941	28.338	54.156	1.00 77.92	6
15	ATOM	2687	CA	SER E		18.298 16.953	28.449 29.195	52.858 53.001	1.00 77.92	6
15	MOTA	2688 2689	CB OG	SER E		17.130	30.486	53.575	1.00 77.45	8
	ATOM ATOM	2690	C	SER E		19.277	29.220	51.945	1.00 76.88	6
	ATOM	2691	0	SER E		19.000	29.463	50.759	1.00 77.41	8
	ATOM	2692		GLY E		20.424	29.588	52.520	1.00 74.38	7
20	ATOM	2693	CA	GLY E		21.442	30.308	51.782	1.00 72.04	6
	MOTA	2694	C	GLY F		20.943	31.569	51.105	1.00 71.42	6
	ATOM	2695		GLY I		19.888	32.104	51.450	1.00 71.39	8
	ATOM	2696	N	ALA E		21.708	32.044	50.125	1.00 69.68	7
	ATOM	2697	CA	ALA E	3 134	21.345	33.251	49.390	1.00 66.69	6
25	MOTA	2698	CB	ALA I		22.534	34.194	49.315	1.00 66.34	6
	ATOM	2699	С	ALA E	3 134	20.874	32.908	47.993	1.00 64.53	6
	MOTA	2700	0	ALA I	3 134	21.095	31.802	47.504	1.00 64.56	8
	MOTA	2701	N	THR I	3 135	20.207	33.865	47.369	1.00 62.63	7
	MOTA	2702	CA	THR I	3 135	19.719	33.696	46.017	1.00 62.23	6
30	ATOM	2703	CB	THR I		18.205	33.577	45.980	1.00 62.17	6
	MOTA	2704	OG1	THR I		17.812	32.456	46.775	1.00 64.85	8
	ATOM	2705	CG2	THR I		17.721	33.370	44.543	1.00 62.33	6
	ATOM	2706	С		3 135	20.159	34.900	45.194	1.00 62.39	6
05	ATOM	2707	0		3 135	19.618	36.009	45.308	1.00 62.56	8
35	ATOM	2708	N	CYS I		21.174	34.661	44.379	1.00 61.14 1.00 58.61	7 6
	ATOM	2709	CA		3 136	21.754	35.668 35.497	43.526 42.134	1.00 56.85	6
	MOTA	2710	C	CYS I		21.159 21.308	34.452	42.134	1.00 55.78	8
	ATOM	2711	O CB		3 136	23.276	35.474	43.527	1.00 58.82	б
40	ATOM ATOM	2712 2713	SG		3 136	24.201	36.455	42.315	1.00 50.32	16
70	ATOM	2713			3 137				1.00 55.98	7
	ATOM	2715	CA		3 137	19.845	36.457	40.353	1.00 56.14	6
	ATOM	2716	CB		3 137	18.421	37.009	40.383	1.00 57.73	6
	ATOM	2717	CG	_	3 137	17.502	36.250	41.303	1.00 62.21	6
45	MOTA	2718	CD		3 137	16.367	37.136	41.792	1.00 68.77	6
	MOTA	2719	NE		в 137	15.827	36.666	43.071	1.00 74.27	7
	ATOM	2720	CZ	ARG :	3 137	15.070	35.575	43.224	1.00 76.32	6
	ATOM	2721	NH1	ARG :	B 137	14.739	34.822	42.174	1.00 77.05	7
	MOTA	2722	NH2	ARG :	в 137	14.652	35.221	44.434	1.00 75.79	7
50	MOTA	2723	C	ARG :	B 137	20.672	37.253	39.366	1.00 55.38	6
	MOTA	2724	0		в 137	21.052	38.389	39.637	1.00 57.67	8
	MOTA	2725	N		B 138	20.933	36.646	38.215	1.00 52.27	7
	MOTA	2726	CA		В 138	21.716	37.255	37.163	1.00 48.96	6
	MOTA	2727	CB		B 138	22.977	36.411	36.890	1.00 45.32	6
55	ATOM	2728		ILE		23.751	37.007	35.749	1.00 42.82	6
	ATOM	2729		ILE		23.822	36.309	38.160	1.00 42.90	6
	ATOM	2730		ILE		24.931	35.313	38.067	1.00 40.32	6
	ATOM	2731	С		B 138	20.863	37.313	35.900	1.00 48.66 1.00 49.73	6
60	MOTA	2732	И О		B 138	20.420 20.628	36.286 38.506	35.406 35.375	1.00 49.73	8 7
00	MOTA MOTA	2733 2734	CA		B 139 B 139	19.822	38.642	34.165	1.00 51.18	6
	AIOH	2174	CA			15.022	55.042	52.205	02.20	J

	WO 01/58	951								PCT	/ EP 01/01	457
							-117					
	MOTA	2735	CB	LYS			18.775	39.759	34.326	1.00	52.93	6
	ATOM	2736	CG	LYS			17.908	39.625	35.553°		56.09	6
	ATOM	2737	CD	LYS	В	139	16.721	40.567	35.523	1.00	58.54	6
	MOTA	2738	CE	LYS	В	139	15.716	40.155	34.461	1.00	59.19	6
5	ATOM	2739	NZ ·	LYS	В	139	14.539	41.062	34.435	1.00	59.74	7
	ATOM	2740	С	LYS	В	139	20.686	38,966	32.957	1.00	50.79	6
	ATOM	2741	0	LYS	В	139	21.461	39.919	32.998	1.00	53.10	8
	ATOM	2742	N	ILE	В	140	20.561	38.192	31.883	1.00	47.96	7
	ATOM	2743	CA	ILE	В	140	21.348	38.480	30.696		49.36	6
10	ATOM	2744	СВ	ILE	В	140	22.590	37.531	30.607		49.96	6
	ATOM	2745	CG2	ILE	В	140	23.254	37.411	31.973		52.22	6
	MOTA	2746	CG1	ILE	В	140	22.192	36.126	30.217	1.00	50.93	6
	MOTA	2747	CD1	ILE	В	140	23.312	35.115	30.483		54.24	6
	ATOM	2748	С	ILE	В	140	20.520	38.444	29.410		48.36	6
15	ATOM	2749	0	ILE			19.727	37.545	29.211		49.73	8
	ATOM	2750	N	GLY			20.685	39.448	28.557		46.46	7
	ATOM	2751	CA	GLY			19.941	39.500	27.313		47.33	6
	ATOM	2752	C	GLY			20.631	40.387	26.293		46.71	6
	ATOM	2753	0	GLY			21.623	41.025	26.625		47.72	8
20	ATOM	2754	N	SER			20.131	40.425	25.05.8		45.43	7
	ATOM	2755	CA	SER			20.739	41.267	24.026		44.63	6
	ATOM	2756	CB	SER			19.990	41.165	22.706		42.45	6
	ATOM	2757	OG	SER			20.431	42.168	21.814		40,68	. 8
	ATOM	2758	C	SER			20.774	42.728	24.457		46.01	6
25	ATOM	2759	Ö	SER			19.812	43.256	25.031		46.34	8
	ATOM	2760	N	TRP			21.888	43.384	24.162		46.69	7
	ATOM	2761	CA	TRP			22.069	44.761	24.549		45.07	6
	ATOM	2762	CB	TRP			23.553	45.044	24.758		44.45	6
	ATOM	2763	CG	TRP			23.816	46.368	25.388		43.71	6
30	ATOM	2764		TRP			23.642	46.697	26.762		40.44	
•	ATOM	2765	CE2	TRP			23.999	48.055	26.702		40.05	6 6
	ATOM	2766	CE3	TRP			23.221	45.975	27.880		38.96	6
	ATOM	2767	CD1				24.262	47.517	24.773		43.74	
	ATOM	2768	NE1				24.202	48.534	25.691		40.21	6 7
35	ATOM	2769	CZ2	TRP			23.947	48.694	28.149		38.81	
-	ATOM	2770	CZ3	TRP			23.171	46.612	29.097		35.11	6 6
	ATOM	2771	CH2	TRP			23.531	47.956	29.224		37.51	
	ATOM	2772	C	TRP			21.499	45.730	23.545		46.35	6
	ATOM	2772	0	TRP			21.062	46.813				6
40	ATOM	2774	N	THR			21.002	45.358	23.909		48.58	8
70	ATOM	2775.	CA	THR					22.277		45.22	7
	ATOM	2776	CB	THR			20.963	46.287	21.290		45.21	6
	ATOM	2777		THR			22.072 22.669	46.696 45.524	20.328 19.763	-	44.19	6
	ATOM	2778					23.129	47.487				8
45	ATOM	2779	C	THR THR					21.069		42.50	6
70	ATOM	2780	0	THR			19.778	45.793	20.485		48.06	6
	ATOM	2781		HIS			19.136	46.576	19.783		50.29	8
	ATOM	2782	N	HIS			19.474	44.504	20.584		47.78	7
	ATOM	2782	CA				18.364	43.970	19.820		48.99	6
50	ATOM	2784	CB	HIS HIS			18.800	42.716	19.055		47.81	6
JU.,		2785	CG	HIS			19.805	42.974	17.974		46.09	6
	ATOM						19.677	43.532	16.748		44.37	6
	MOTA	2786		HIS			21.125	42.602	18.086		45.57	7
	ATOM	2787		HIS			21.766	42.915	16.975		44.33	6
55	ATOM	2788		HIS			20.909	43.481	16.146		41.88	7
	ATOM	2789	C	HIS			17.149	43.656	20.682		50.77	6
	ATOM	2790	0	HIS			17.235	42.933	21.668		52.14	8
	ATOM	2791	N	HIS			16.010	44.213	20.302		52.05	7
	ATOM	2792	CA	HIS			14.774	43.974	21.027		54.32	6
60	ATOM	2793	CB	HIS			13.797	45.130	20.800		52.48	6
50	ATOM	2794	CG	HIS			13.526	45.413	19.360		52.25	6
	MOTA	2795	CDZ	HIS	٥	T#0	13.106	44.605	18.357	τ.00	53.49	6

							-118						
	ATOM	2796	ND1	HIS	R	146	13.7		46.653	18.795	1.00	53.68	7
	ATOM	2797		HIS			13.4		46.597	17.504		55.84	6
	ATOM	2798		HIS			13.0		45.364	17.212	1.00	55.30	7
	ATOM	2799		HIS			14.1		42.647	20.576	1.00	57.05	6
5	ATOM	2800		HIS			14.6		41.984	19.644	1.00	58.04	8
•	ATOM	2801	N	SER			13.0		42.280	21.243	1.00	58.47	7
	MOTA	2802	CA	SER			12.3		41.037	20.997		58.52	6
	MOTA	2803	СВ	SER			11.0		41.021	21.861	1.00	58.93	6
	ATOM	2804	OG	SER			10.3		42.252	21.740	1.00	63.53	8
10	MOTA	2805	C	SER			11.9	55	40.708	19.557	1.00	57.13	6
	ATOM	2806	Õ	SER			11.7		39.545	19.215	1.00	56.86	8
	ATOM	2807	N	ARG			11.8	41	41.716	18.709	1.00	56.50	7
	ATOM	2808	CA	ARG	В	148	11.4	73	41.462	17.323	1.00	58.81	6
	ATOM	2809	CB	ARG	В	148	10.9	05	42.734	16.691	1.00	62.56	6
15	MOTA	2810	CG	ARG	В	148	9.7	81	43.380	17.493	1.00	70.38	6
	MOTA	2811	CD	ARG	В	148	9.3	37	44.731	16.897	1.00	76.49	6
	ATOM	2812	NE	ARG	В	148	8.4	80	45.487	17.819	1.00	82.57	7
	MOTA	2813	CZ	ARG	В	148	7.2	63	45.104	18.222		84.74	6
	MOTA	2814	NH1	ARG	В	148	6.7	28	43.965	17.791	1.00	85.52	7
20	MOTA	2815	NH2	ARG	В	148	6.5	73	45.864	19.064	1.00	85.55	7
	MOTA	2816	С	ARG	В	148	12.6	55	40.963	16.490	1.00	57.83	, 6
	ATOM	-2817	0	ARG	В	148	12.4	74	40.423	15.395		58.23	8
	MOTA	2818	N	GLU	В	149	13.8	64	41.147	17.011		56.99	7
	MOTA	2819	CA	GLU			15.0		40.743	16.306		53.60	6
25	MOTA	2820	CB	GLU	В	149	16.0	15	41.933	16.216		52.91	6
	MOTA	2821	CG	GLU	В	149	15.2		43.243	15.955		51.82	6
	MOTA	2822	CD	GLU			16.2		44.437	15.841		54.76	6
	MOTA	2823	OE1	GLU			17.1		44.562	16.672		55.52	8
	MOTA	2824	OE2	GLU			16.0		45.261	14.929		52.75	8
30	ATOM	2825	С	GLU			15.7		39.584	17.036		52.38	6
	MOTA	2826	0	GLU			16.1		38.606	16.421		51.81	8
	MOTA	2827	N	ILE			15.8		39.693	18.355		51.32	7
	MOTA	2828	CA	ILE			16.3		38.619	19.154		51.11	6
0.5	MOTA	2829	CB	ILE			17.7		38.989	19.757		48.77	6
35	MOTA	2830	CG2				18.1		37.995	20.843		43.40	6
	ATOM	2831	CG1				18.8		38.967	18.672		47.30 45.12	6
	ATOM	2832	CD1				20.2		39.315	19.168		53.02	6 6
	ATOM	2833	С	ILE			15.4		38.254	20.297		52.00	8
40	ATOM	2834	0	ILE SER			14.8		39.116 36.955	20.932		55.16	7
40	ATOM	2835	N	SER			15.3 14.5		36.436	21.628		56.52	6
	MOTA	2836 2837	CA CB	SER			13.2		35.733	21.020		57.06	` 6
	MOTA MOTA	2838	OG	SER			13.5		34.585	20.323		54.91	8
	ATOM	2839	C	SER			15.4		35.447	22.337		56.69	6
45	ATOM	2840	0	SER			16.1		34.676			57.55	8
70	ATOM	2841	N	VAL			15.4		35.504	23.661		58.35	7
	ATOM	2842	CA	VAL			16.3		34.600	24.456		60.89	6
	ATOM	2843	CB	VAL			17.1		35.362	25.502		60.77	6
	MOTA	2844		VAL			17.8		36.489	24.844		59.09	6
50	ATOM	2845		VAL			16.2		35.903	26.586	1.00	62.75	6
	ATOM	2846	С	VAL			15.3		33.632	25.194	1.00	62.80	6
	ATOM	2847	0			152	14.2		34.012	25.597	1.00	63.08	8
	ATOM	2848	N	ASP			15.8	345	32.395	25.387	1.00	64.20	7
	ATOM	2849	CA	ASP	В	153	15.0	28	31.390	26.061	1.00	66.36	6
55	ATOM	2850	СВ	ASP			14.2	232	30.611	25.016		67.03	6
	ATOM	2851	CG			153	13.4		31.518	24.095		68.33	6
	MOTA	2852		ASP			12.3		31.949	24.504		65.39	8
	MOTA	2853		ASP			13.9		31.810	22.969		70.09	8
••	MOTA	2854		ASP			15.8		30.416	26.872		68.77	6
60	MOTA	2855	0			153	16.9		30.049	26.453		69.28	8
	ATOM	2856	N	PRO	В	154	15.4	104	30.017	28.067	T.00	70.46	7

PCT/EP01/01457

ATOM 2857 CD PRO B 154 14.409 30.740 28.874 ATOM 2858 CA PRO B 154 16.157 29.070 28.895 ATOM 2859 CB PRO B 154 15.410 29.108 30.222 ATOM 2860 CG PRO B 154 14.902 30.494 30.28 5 ATOM 2861 C PRO B 154 16.151 27.668 28.255 ATOM 2862 O PRO B 154 15.548 27.467 27.185 ATOM 2863 N THR B 155 16.807 26.700 28.885 ATOM 2864 CA THR B 155 16.887 25.350 28.333 ATOM 2865 CB THR B 155 16.887 25.350 28.333 ATOM 2866 OG1 THR B 155 19.316 25.233 28.455 ATOM 2866 OG1 THR B 155 19.316 25.233 28.455 ATOM 2868 C THR B 155 16.785 24.189 29.345 ATOM 2868 C THR B 155 16.785 24.189 29.345 ATOM 2869 O THR B 155 16.122 24.298 30.385 ATOM 2870 N THR B 156 17.452 23.078 29.01 15 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 17.504 21.839 29.81 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2877 N GLU B 157 16.257 21.809 31.899 ATOM 2878 CA GLU B 157 16.047 21.946 33.33	
ATOM 2858 CA PRO B 154 16.157 29.070 28.89 ATOM 2859 CB PRO B 154 15.410 29.108 30.22 ATOM 2860 CG PRO B 154 14.902 30.494 30.28 ATOM 2861 C PRO B 154 16.151 27.668 28.256 ATOM 2862 O PRO B 154 15.548 27.467 27.18 ATOM 2863 N THR B 155 16.807 26.700 28.888 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 ATOM 2876 O THR B 156 17.448 22.012 31.33	
ATOM 2858 CA PRO B 154 16.157 29.070 28.89 ATOM 2859 CB PRO B 154 15.410 29.108 30.22 ATOM 2860 CG PRO B 154 14.902 30.494 30.28 ATOM 2861 C PRO B 154 16.151 27.668 28.256 ATOM 2862 O PRO B 154 15.548 27.467 27.18 ATOM 2863 N THR B 155 16.807 26.700 28.888 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 ATOM 2876 O THR B 156 17.448 22.012 31.33	1.00 69.92 6
ATOM 2859 CB PRO B 154 15.410 29.108 30.225 ATOM 2860 CG PRO B 154 14.902 30.494 30.285 ATOM 2861 C PRO B 154 16.151 27.668 28.256 ATOM 2862 O PRO B 154 15.548 27.467 27.186 ATOM 2863 N THR B 155 16.807 26.700 28.886 ATOM 2864 CA THR B 155 16.887 25.350 28.333 ATOM 2865 CB THR B 155 18.208 25.187 27.546 ATOM 2866 OG1 THR B 155 19.316 25.233 28.455 ATOM 2867 CG2 THR B 155 18.378 26.311 26.546 ATOM 2868 C THR B 155 16.785 24.189 29.346 ATOM 2869 O THR B 155 16.122 24.298 30.386 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 17.504 21.839 29.81 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.333 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2860 CG PRO B 154 14.902 30.494 30.28 ATOM 2861 C PRO B 154 16.151 27.668 28.25 ATOM 2862 O PRO B 154 15.548 27.467 27.18 ATOM 2863 N THR B 155 16.807 26.700 28.88 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 15 ATOM 2872 CB THR B 156 18.799 21.025 29.49 <	
5 ATOM 2861 C PRO B 154 16.151 27.668 28.256 ATOM 2862 O PRO B 154 15.548 27.467 27.18 ATOM 2863 N THR B 155 16.807 26.700 28.88 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 15 ATOM <td></td>	
ATOM 2862 O PRO B 154 15.548 27.467 27.18 ATOM 2863 N THR B 155 16.807 26.700 28.88 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2863 N THR B 155 16.807 26.700 28.88 ATOM 2864 CA THR B 155 16.887 25.350 28.33 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2864 CA THR B 155 16.887 25.350 28.333 ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.799 21.025 29.49 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2865 CB THR B 155 18.208 25.187 27.54 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
10 ATOM 2866 OG1 THR B 155 19.316 25.233 28.45 ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2867 CG2 THR B 155 18.378 26.311 26.54 ATOM 2868 C THR B 155 16.785 24.189 29.34 ATOM 2869 O THR B 155 16.122 24.298 30.38 ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.861 20.761 28.07 ATOM 2875 C THR B 156 18.825 19.694 30.30 ATOM 2876 O THR B 156 17.448 22.012 31.33 20 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2868 C THR B 155 16.785 24.189 29.344 ATOM 2869 O THR B 155 16.122 24.298 30.384 ATOM 2870 N THR B 156 17.452 23.078 29.01 15 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2869 O THR B 155 16.122 24.298 30.388 ATOM 2870 N THR B 156 17.452 23.078 29.01 15 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2870 N THR B 156 17.452 23.078 29.01 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
15 ATOM 2871 CA THR B 156 17.504 21.839 29.81 ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2872 CB THR B 156 18.799 21.025 29.49 ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2873 OG1 THR B 156 18.861 20.761 28.07 ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2874 CG2 THR B 156 18.825 19.694 30.30 ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	1.00 93.70 6
ATOM 2875 C THR B 156 17.448 22.012 31.33 20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	1.00 92.52 8
20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
20 ATOM 2876 O THR B 156 18.471 22.286 31.99 ATOM 2877 N GLU B 157 16.257 21.809 31.89	
ATOM 2877 N GLU B 157 16.257 21.809 31.89	
111011 2070 C11 020 2 237 101047 221740 33133	
ATOM 2879 CB GLU B 157 14.583 22.308 33.60	
ATOM 2880 CG GLU B 157 14.023 23.363 32.64	
25 ATOM 2881 CD GLU B 157 12.539 23.649 32.90	
ATOM 2883 OE2 GLU B 157 12.178 24.850 33.03	
ATOM 2884 C GLU B 157 16.397 20.662 34.10	
ATOM 2885 O GLU B 157 16.352 20.631 35.34	
30 ATOM 2886 N ASN B 158 16.726 19.601 33.36	
ATOM 2887 CA ASN B 158 17.065 18.329 34.00	
ATOM 2888 CB ASN B 158 17.084 17.198 32.96	
ATOM 2889 CG ASN B 158 15.793 17.113 32.17	
ATOM 2890 OD1 ASN B 158 14.701 16.919 32.73	1.00101.77 8
35 ATOM 2891 ND2 ASN B 158 15.909 17.254 30.84	1.00102.28 7
ATOM 2892 C ASN B 158 18.439 18.424 34.67	2 1.00 97.31 6
ATOM 2893 O ASN B 158 18.546 18.748 35.87	1.00 97.45 8
ATOM 2894 N SER B 159 19.473 18.120 33.88	. 1.00 94.36 7
ATOM 2895 CA SER B 159 20.879 18.156 34.30	1.00 90.64 6
40 ATOM 2896 CB SER B 159 21.645 19.051 33.32	
ATOM 2897 OG SER B 159 20.831 20.167 32.94	
ATOM 2898 C SER B 159 21.129 18.622 35.74	
ATOM 2899 O SER B 159 20.770 19.741 36.11	
ATOM 2900 N ASP B 160 21.744 17.767 36.55	
45 ATOM 2901 CA ASP B 160 22.035 18.137 37.93	
ATOM 2902 CB ASP B 160 23.003 17.149 38.58	
ATOM 2903 CG ASP B 160 23.404 17.566 39.99	
ATOM 2904 OD1 ASP B 160 24.459 17.087 40.47	
FA	
ATOM 2907 O ASP B 160 23.782 19.687 37.39	
ATOM 2908 N ASP B 161 22.022 20.473 38.61	
ATOM 2909 CA ASP B 161 .22.506 21.851 38.70	
ATOM 2910 CB ASP B 161 21.655 22.683 39.67	
55 ATOM 2911 CG ASP B 161 20.275 22.977 39.13	
ATOM 2912 OD1 ASP B 161 20.140 23.189 37.90	
ATOM 2913 OD2 ASP B 161 19.319 23.007 39.92	
ATOM 2914 C ASP B 161 23.957 21.979 39.11	
ATOM 2915 O ASP B 161 24.569 23.008 38.84	
60 ATOM 2916 N SER B 162 24.527 20.960 39.74	
ATOM 2917 CA SER B 162 25.928 21.078 40.13	1.00 67.27 6

		•					-120					
	ATOM	2918	СВ	SER	В	162	26.051	21.210	41.661	1.00	67.18	6
	ATOM	2919	OG	SER			25.648	20.020	42.315		66.16	8
	ATOM	2920	C	SER			26.787	19.922	39.653		66.71	6
	ATOM	2921	ō	SER			27.786	19.576	40.289		64.25	8
5	ATOM	2922	N	GLU			26.410	19.330	38.523		67.10	7
•	ATOM	2923	CA	GLU			27.192	18.220	38.005		68.36	6
	ATOM	2924	СВ	GLU			26.378	17.421	36.970		70.98	6
	ATOM	2925	CG	GLU			26.411	17.926	35.545	1.00	72.60	6
	ATOM	2926	CD	GLU			25.726	16.946	34.594	1.00	74.62	6
10	ATOM	2927		GLU			24.477	16.828	34.649	1.00	76.45	8
	ATOM	2928		GLU			26.428	16.285	33.798	1.00	74.37	8
	ATOM	2929	С	GLU	В	163	28.530	18.688	37.410	1.00	67.51	6
	MOTA	2930	0	GLU			29.379	17.868	37.070	1.00	67.13	8
	ATOM	2931	N	TYR			28.709	20.008	37.294	1.00	66.57	7
15	MOTA	2932	CA	TYR	В	164	29.943	20.583	36.771	1.00	64.39	6
	ATOM	2933	СВ	TYR	В	164	29.671	21.419	35.526	1.00	64.28	6
	MOTA	2934	CG	TYR	В	164	29.192	20.602	34.354	1.00	66.44	6
	ATOM	2935	CD1	TYR	В	164	27.948	20.860	33.766	1.00	66.70	6
•	MOTA	2936	CE1	TYR	В	164	27.490	20.105	32.690	1.00	66.59	6
20	ATOM	2937	CD2	TYR	В	164	29.973	19.556	33.832	.1.00	65.02	6
	MOTA	2938	CE2	TYR	В	164	29.524	18.790	32.756	1.00	65.71	6
	ATOM	2939	CZ	TYR	В	164	28.277	19.075	32.184		66.77	6
	MOTA	2940	ОН	TYR			27.819	18.369	31.084		67.83	8
	MOTA	2941	С	TYR			30.584	21.463	37.826		63.28	6
25	MOTA	2942	0	TYR			31.717	21.936	37.662		61.67	8
	MOTA	2943	N	PHE			29.859	21.673	38.918		61.88	7
	MOTA	2944	CA	PHE			30.357	22.517	39.990		60.70	6
	MOTA	2945	CB	PHE			29.288	22.704	41.067		58.78	6
00	MOTA	2946	CG	PHE			29.523	23.905	41.941		57.08	6
30	MOTA	2947		PHE		165	29.420	25.184	41.413		56.05	6
	ATOM	2948		PHE			29.888	23.757	43.272		54.09	6
	ATOM	2949		PHE			29.680	26.296	42.200		55.95	6
	MOTA	2950		PHE			30.149	24.858	44.063		55.48	6
35	MOTA	2951	CZ	PHE			30.048	26.131	43.530		56.15	6
33	MOTA	2952	C	PHE			31.626	21.960	40.614		59.91 60.17	6 8
	MOTA	2953	0	PHE			31.757 32.572	20.760 22.839	40.919		60.28	7
•	MOTA	2954 2955	N	SER SER			33.807	22.390	41.532		60.24	6
	ATOM ATOM	2956	CA CB	SER			34.810	23.534	41.647		59.33	6
40	ATOM	2957	OG	SER			36.012	23.081	42.239		59.12	8
70	ATOM	2958	C	SER			33.468	21.877	42.916		60.82	6
	ATOM	2959	0	SER			32.614	22.434	43.611		60.12	8
	ATOM	2960	N	GLN			34.148		43.319		61.73	7
	ATOM	2961	CA	GLN			33.907	20.228	44.623		62.29	6
45	ATOM	2962	CB	GLN			34.228	18.737	44.576		63.96	6
	ATOM	2963	CG	GLN			35.620	18.442	44.068		66.77	6
	ATOM	2964	CD	GLN			35.827	16.969	43.736	1.00	68.16	6
	ATOM	2965	OE1	GLN			35.710	16.103	44.605	1.00	66.24	8
	ATOM	2966	NE2	GLN	В	167	36.136	16.682	42.465	1.00	68.10	7
50	MOTA	2967	С	GLN	В	167	34.740	20.912	45.689	1.00	60.72	6
	ATOM	2968	0	GLN	В	167	34.433	20.814	46.880	1.00	62.24	8
	ATOM	2969	N	TYR	В	168	35.778	21.626	45.269		57.81	7
	ATOM	2970	CA	TYR	В	168	36.637	22.291	46.235		56.47	6
	ATOM	2971	CB	TYR			38.078	22.236	45.741		55.55	6
55	MOTA	2972	CG			168	38.457	20.836			55.77	6
	MOTA	2973		TYR			38.420	20.447	43.988		53.38	6
	MOTA	2974		TYR			38.698	19.139	43.617		53.39	6
	ATOM	2975		TYR			38.785	19.872	46.286		55.32	6
60	MOTA	2976		TYR			39.060	18.561			54.41	6
60	ATOM	2977	CZ			168	39.013	18.207	44.591		54.89	6
	ATOM	2978	OH	TYR	.В	168	39.270	16.919	44.227	T.00	56.81	8

							-121					
	ATOM	2979	С	TYR I	в :	168	36.222	23.712	46.586	1.00	55.31	6
	MOTA	2980		TYR I			36.891	24.395	47.356	1.00	54.88	8
	MOTA	2981		SER I			35.097	24.140	46.033	1.00	55.16	7
	MOTA	2982	CA	SER 1	₿ :	169	34.570	25.469	46.299	1.00		6
5	MOTA	2983	CB	SER 1	Ŕ.	169	33.363	25.755	45.412	1.00		6
	MOTA	2984	OG	SER I	В	169	32.775	26.991	45.769	1.00		8
	MOTA	2985	С	SER 1	В :	169	34.147	25.617	47.754	1.00	60.21	6
	MOTA	2986	0	SER 3	В	169	33.664	24.671	48.380	1.00		8
	ATOM	2987	N	ARG :	В	170	34.321	26.815	48.298	1.00		7
10	MOTA	2988	CA	ARG :	В	170	33.938	27.059	49.678	1.00		6
	MOTA	2989	CB	ARG :	В	170	34.467	28.417	50.150		61.26	6
	MOTA	2990	CG	ARG	В	170	35.781	28.342	50.904		61.61	6
	MOTA	2991	CD	ARG	В	170	36.588	29.628	50.764		66.75	6
	ATOM	2992	NE	ARG	В	170	35.866	30.846	51.158		69.32	7
15	MOTA	2993	CZ	ARG			35.634	31.877	50.342		68.59	6
	MOTA	2994	NH1	ARG			36.053	31.840	49.079		65.59	7
	ATOM	2995	NH2	ARG			35.017	32.959	50.803		69.04	7
	ATOM	2996	С	ARG			32.431	27.041	49.785		58.91	6
	MOTA	2997	0	ARG			31.892	26.981	50.883		61.10	8
20	MOTA	2998	N	PHE			31.748	27.077	48.650		56.02	7
	MOTA	2999	CA	PHE			30.294	27.093	48.674		56.85	6
	MOTA	3000	CB	PHE			29.782	28.384	48.033		56.79	6
	ATOM	3001	CG	PHE			30.498	29.608	48.529	_	59.30	6 6
05	ATOM	3002		PHE			31.806	29.889	48.110		59.59 58.28	6
25	MOTA	3003		PHE			29.900	30.447 30.983	49.462 48.616		58.87	6
	MOTA	3004		PHE			32.497	30.963	49.978		57.19	6
	MOTA	3005	CE2	PHE			30.586 31.883	31.817	49.556		58.74	6
	MOTA	3006	CZ C	PHE PHE			29.694	25.892	47.987		57.50	6
30	MOTA MOTA	3007 3008	0	PHE			30.412	25.063	47.439		57.83	8
00	ATOM	3009	N			172		25.793	48.036		58.25	7
	ATOM	3010	CA	GLU			27.671	24.681	47.416		58.95	6
	ATOM	3011	CB	GLU			27.418	23.555	48.436	1.00	61.94	6
	ATOM	3012	CG	GLU			26.521	23.921	49.634	1.00	65.83	6
35	ATOM	3013	CD	GLU	В	172	26.352	22.769	50.637		67.36	6
	MOTA	3014	OE1	GLU	В	172	26.275	21.593	50.192	1.00	67.12	8
	ATOM	3015	OE2	GLU	В	172	26.280	23.043	51.868		67.97	8
	ATOM	3016	С	GLU	В	172	26.369	25.197	46.844		59.12	6
	ATOM	3017	0	GLU			25.837	26.217	47.302		58.48	8
40	ATOM	3018	N	ILE			25.865	24.502	45.831		59.47	7
	MOTA	3019	CA	ILE			24.630	24.911	45.180		60.85	6
	ATOM	3020	CB	ILE			24.715	24.729	43.653		62.04	6
	MOTA	3021		ILE			23.369		42.998		60.25	6
4-	ATOM	3022		ILE			25.832	25.603	43.087		62.02	6
45	MOTA	3023		ILE			26.018	25.413	41.600		63.88	6
	ATOM	3024	C	ILE			23.415	24.148	45.667		61.72	6
	MOTA	3025	0	ILE			23.415	22.919	45.733		61.55 62.91	8 7
	MOTA	3026	N	LEU			22.369	24.883	45.999 46.460		63.63	6
EΛ	MOTA	3027	CA	LEU			21.158 20.438	24.253 25.166	47.443		63.66	6
50	ATOM	3028	CB	LEU			21.339	25.698	48.556		64.21	6
	ATOM	3029	CG CD1	LEU		174	20.543	26.678	49.428		63.13	6
	MOTA MOTA	3030 3031		LEU			21.914	24.532	49.369		61.09	6
	ATOM	3032	CD2			174	20.307	24.010	45.232		64.20	6
55	ATOM	3033	0.			174	19.891	22.885	44.962		65.99	8
55	MOTA	3034	N			175	20.068	25.058	44.459		64.89	7
	ATOM	3035	CA			175	19.250	24.895	43.268		66.77	6
	ATOM	3036	СВ			175	17.764	24.785	43.691		68.40	6
	ATOM	3037				175	16.806	24.566	42.508		70.08	6
60	ATOM	3038		ASP	В	175	17.038	23.631	41.695		71.56	
	MOTA	3039	OD2	ASP	В	175	15.809	25.322	42.404	1.00	67.36	8

MOTA

MOTA

MOTA

MOTA

MOTA

60

3096 O

3097 N

3099 CB

CA

3100 CG1 VAL B 183

3098

SER B 182 VAL B 183

VAL B 183

VAL B 183

	WO 01/5	8951								PCT	/EP01/01	1457
							-122					
	ATOM	3040	С	ASP	R	175	19.480	26.067	42.298	1 00	67.13	6
	ATOM	3041	0	ASP			19.910	27.160	42.703		67.04	8
	ATOM	3042	N	VAL			19.214	25.818	41.018	-	66.07	7
	ATOM	3043	CA	VAL			19.364	26.819	39.981		65.28	6
5	ATOM	3044	CB	VAL			20.616	26.547	39.112		64.59	6
·	MOTA	3045	CG1				20.681	27.529	37.943		62.08	6
	ATOM	3046		VAL			21.866	26.645	39.964		64.50	6
	ATOM	3047	C	VAL			18.139	26.760	39.088		66.92	6
	ATOM	3048	0	VAL			17.723	25.682	38.657		68.14	8
10	ATOM	3049	N	THR			17.555	27.920	38.816	_	68.01	7
. •	ATOM	3050	CA	THR			16.393	27.988	37.939		70.52	6
	ATOM	3051	CB	THR			15.087	28.139	38.744		69.59	6
	ATOM	3052	0G1				15.203	29.253	39.638		70.12	8
	ATOM	3053	CG2	THR			14.821	26.885	39.544		68.35	6
15	MOTA	3054	C	THR			16.537	29.173	36.984		72.66	6
	ATOM	3055	Ō	THR			17.095	30.220	37.356		74.08	8
	ATOM	3056	N	GLN			16.049	29.002	35.757		73.01	7
	ATOM	3057	CA	GLN			16.121	30.057	34.756		74.26	6
	ATOM	3058	СВ	GLN			17.006	29.619	33.594	1.00	76.29	6
20	ATOM	3059	CG	GLN			18.090	28.628	33.984		79.92	6
	ATOM	3060	CD	GLN			19.227	28.575	32.959		83.13	6
	ATOM	3061		GLN			18.993	28.495	31.731		83.91	8
	ATOM	3062	NE2				20.469	28.616	33.458	1.00	82.82	7
	ATOM	3063	С	GLN			14.725	30.354	34.232	1.00	73.95	6
25	ATOM	3064	0	GLN			14.041	29.454	33.752	1.00	75.30	. 8
	MOTA	3065	N	LYS	В	179	14.306	31.611	34.310	1.00	73.25	7
	MOTA	3066	CA	LYS	В	179	12.978	31.995	33.837	1.00	72.86	6
	ATOM	3067	CB	LYS	В	179	12.076	32.307	35.030	1.00	75.19	6
	MOTA	3068	CG	LYS	В	179	12.196	31.282	36.160	1.00	78.55	6
30	MOTA	3069	CD	LYS	В	179	11.456	31.735	37.428	1.00	80.12	6
	MOTA	3070	CE	LYS	В	179	11.845	30.874	38.631	1.00	80.51	6
	ATOM	3071	NZ	LYS	В	179	13.320	30.987	38.927	1.00	81.19	7
	ATOM	3072	С	LYS	В	179	13.101	33.232	32.961	1.00	70.68	6
	MOTA	3073	0	LYS	В	179	13.411	34.311	33.455	1.00	70.88	8
35	ATOM	3074	N	LYS	В	180	12.852	33.090	31.665	1.00	68.28	7
	MOTA	3075	CA	LYS	В	180	12.970	34.242	30.776	1.00	68.69	6
	ATOM	3076	CB	LYS	В	180	12.873	33.792	29.305	1.00	66.36	6
	ATOM	3077	CG	LYS	В	180	11.517	33.383	28.831	1.00	61.57	б
	ATOM	3078	CD	LYS			10.763	34.578	28.296	1.00	62.84	6
40	ATOM	3079	CE	LYS			11.419	35.168	27.058		63.27	6
	MOTA	3080	NZ	LYS			11.317	34.295	25.857		64.69	7
	MOTA	3081	C	LYS			11.914	35.297	31.096	1.00	69.36	6
	ATOM	3082	0	LYS			11.131	35.112	32.019		70.64	8
	ATOM	3083	N	ASN			11.922	36.416	30.366		69.86	7
45	ATOM	3084	CA	ASN			10.927	37.473	30.560		70.42	6
	ATOM	3085	CB	ASN			10.755	37.816	32.052		71.53	6
	MOTA	3086	CG	ASN			12.058	38.021	32.760		71.03	6
	MOTA	3087		ASN			12.935	38.731	32.267		71.52	8
	MOTA	3088		ASN			12.195	37.412	33.940		71.36	7
50	ATOM	3089	С	ASN			11.125	38.768	29.779		70.25	6
	ATOM	3090	0	ASN			12.104	39.478	29.975		70.25	8
	ATOM	3091	N	SER			10.162	39.078	28.911		70.77	7
	ATOM	3092	CA	SER			10.203	40.297	28.105		70.64	6
	MOTA	3093	CB	SER			9.107	40.262	27.045		70.47	6
55	MOTA	3094	OG	SER			9.267	41.327	26.122		71.28	8
	MOTA	3095	C	SER		182	9.997	41.500	29.024		70.77	6
	אתרייט א	3006	^	CLD	D	יט ו	0 //20	71 7 E G	30 005	י חח	.1.3 0 0	0

9.429 41.359 10.442 42.680

10.334 43.887

11.337 43.826

30.095 1.00 72.80 28.600 1.00 71.20 29.425 1.00 70.43

30.630

12.636 43.178 30.202 1.00 68.72

1.00 68.47

7

6

б

6

							-123					
	ATOM	3101	CG2	VAL	В	183	11.625	45.230	31.148	1.00	67.78	6
	ATOM	3102	С	VAL	В	183	10.590	45.189	28.659	1.00	70.59	6
	ATOM	3103	Ō	VAL			11.522	45,282	27.853	1.00	71.25	8
	ATOM	3104	N	THR			9.761	46.195	28.911	1.00	70.21	7
5	ATOM	3105	CA	THR			9.949	47.480	28.250	1.00	71.59	6
	ATOM	3106	CB	THR			8.610	48.062	27.711		70.78	6
	ATOM	3107	OG1	THR			8.065	47.183	26.721		69.37	8
	ATOM	3108	CG2	THR			8.836	49.431	27.074	1.00	69.81	6
	ATOM	3109	C	THR			10.558	48.447	29.271		73.13	6
10	ATOM	3110	0	THR			10.240	48.384	30.467	1.00	73.23	8
	ATOM	3111	N	TYR			11.449	49.319	28.806	1.00	74.37	7
	MOTA	3112	CA	TYR			12.085	50.287	29.689	1.00	76.17	6
	MOTA	3113	CB	TYR	В	185	13.614	50.134	29.663	1.00	77.19	6
	ATOM	3114	CG	TYR	В	185	14.076	48.723	29.912	1.00	78.36	6
15	MOTA	3115	CD1	TYR	В	185	13.942	47.745	28.928	1.00	78.94	6
	MOTA	3116	CE1	TYR	В	185	14.298	46.417	.29.178	1.00	80.41	6
	MOTA	3117	CD2	TYR	В	185	14.584	48.344	31.154	1.00	79.09	6
	ATOM	3118	CE2	TYR	В	185	14.944	47.013	31.413	1.00	79.41	6
	ATOM	3119	CZ	TYR	В	185	14.796	46.054	30.424	1.00	79.27	6
20	ATOM	3120	OH	TYR	В	185	15.119	44.731	30.677	1.00	79.15	8
	MOTA	3121	С	TYR	В	185	11.713	51.670	29.209	1.00	76.81	6
	ATOM	3122	0	TYR	В	185	11.669	51.927	28.003	1.00	76.75	8
	MOTA	3123	N	SER	В	186	11.445	52.563	30.152	1.00	78.68	7
	MOTA	3124	CA	SER	В	186	11.078	53.941	29.810	1.00	80.00	б
25	ATOM	3125	CB	SER	В	186	11.002	54.795	31.089	1.00	80.19	6
	MOTA	3126	OG	SER	В	186	12.160	54.610	31.902	1.00	79.86	8
	ATOM	3127	С	SER	В	186	12.100	54.539	28.832	1.00	80.21	6
	ATOM	3128	0	SER	В	186	11.745	55.296	27.923		79.15	8
	ATOM	3129	N	CYS			13.364	54.171	29.025		80.45	7
30	ATOM	3130	CA	CYS			14.459	54.653	28.189		80.85	6
	MOTA	3131	С	CYS			14.259	54.260	26.772		81.01	6
	ATOM	3132	0	CYS			14.510	55.018	25.838		80.34	8
	ATOM	3133	CB	CYS			15.787	53.993	28.574		81.53	6
0.5	ATOM	3134	SG	CYS			15.913	52.165	28.268		84.25	16
35	ATOM	3135	N	CYS			13.791	53.035	26.637		82.80	7
	ATOM	3136	CA	CYS			13.712	52.411	25.339		83.26	6
	ATOM	3137	C	CYS			12.352	51.851	24.849		82.46	6
	ATOM	3138	0	CYS			11.733	50.977	25.491		82.70	8
40	ATOM	3139	CB	CYS			14.811	51.336	25.365		82.41	6
40	ATOM	3140	SG	CYS PRO			16.353	51.824	26.282		83.49	16
	ATOM	3141 3142	N	PRO			11.891	52.346	23.679		81.48 81.13	7
	ATOM		CD				12.734	53.291	22.910	_		6
	MOTA	3143 3144	CA	PRO PRO			10.652 10.977	52.037 52.510	22.938 21.517		79.97 80.12	6
45	ATOM ATOM	3145	CB CG	PRO			11.825	53.725	21.766		80.12	6
70	ATOM	3146	C	PRO			10.133	50.585	22.941		78.77	6 6
	ATOM	3147	0	PRO			9.063	50.303	23.490		78.66	
	ATOM	3148	И	GLU			10.878	49.671	22.313		77.68	8 7
	ATOM	3149	CA	GLU			10.473	48.254	22.219		73.96	6
50	ATOM	3150	CB	GLU			11.214	47.570	21.075		75.24	6.
•	ATOM	3151	CG	GLU			11.578	48.475	19.908		77.67	6
	ATOM	3152	CD	GLU			10.414	48.680	18.950		79.11	6
	MOTA	3153		GLU			9.731	47.672	18.617		77.05	8
	ATOM	3154		GLU			10.200	49.845	18.526		79.84	
55	ATOM	3155	C .	GLU			10.779	47.482	23.494		71.49	6
	ATOM	3156	ō i	GLU			11.317	48.038	24.460		71.14	8
	ATOM	3157	N	ALA			10.455	46.191	23.483		68.33	7
	ATOM	3158	CA	ALA			10.708	45.331	24.638		66.03	6
	ATOM	3159	CB	ALA			9.554	44.340	24.801		65.95	б
60	MOTA	3160	С	ALA			12.035	44.570	24.489	1.00	64.66	б
	MOTA	3161	0	ALA	В	191	12.439	44.225	23.374	1.00	63.36	8

	WO 01/58	8951							PCT/EP01/014	157
						-124		*		
	ATOM	3162	N.	TYR I	3 192	12.704	44.306	25.608	1.00 62.75	7
	ATOM	3163	CA	TYR I		13.969	43.574	25.572	1.00 61.63	6
	ATOM	3164	CB	TYR I		15.134	44.468	26.010	1.00 59.80	6
	ATOM	3165	CG	TYR I	3 192	15.465	45.538	25.010	1.00 59.56	6
5	MOTA	3166		TYR 1		14.786	46.754	25.005	1.00 59.46	6
	MOTA	3167		TYR 1		15.055	47.728	24.036	1.00 60.27	6
	ATOM	3168		TYR I		16.426	45.315	24.027	1.00 60.64	6 6
	ATOM	3169		TYR I		16.705 16.017	46.274	23.057 23.064	1.00 60.97 1.00 61.60	6
10	ATOM ATOM	3170 3171	CZ OH	TYR I		16.290	47.480 48.431	22.101	1.00 60.81	8
10	ATOM	3172	C	TYR I		13.948	42,302	26.426	1.00 62.58	6
	ATOM	3172	Ö	TYR I		14.047	42.349	27.668	1.00 62.03	8
	ATOM	3174	N	GLU I		13.834	41.166	25.738	1.00 62.66	7
	ATOM	3175	CA	GLU I		13.794	39.852	26.384	1.00 62.77	6
15	ATOM	3176	CB	GLU I	3 193	13.521	38.742	25.352	1.00 61.29	6
	ATOM	3177	CG		3 193	12.153	38.831	24.681	1.00 61.98	6
	MOTA	3178	CD	GLU 1		11.858	37.636	23.775	1.00 62.41	6
	MOTA	3179		GLU I		12.059	36.486	24.228	1.00 62.14	8
00	MOTA	3180		GLU I		11.411	37.838	22.621	1.00 62.38	8
20	ATOM	3181	C		B 193 B 193	15.105	39.552 40.019	27.091 26.666	1.00 61.37 1.00 63.09	6 8
	ATOM ATOM	3182 3183	N O		B 194	16.166 15.026	38.772	28.165	1.00 58.46	7
	ATOM	3184	CA		B 194	16.207	38.395	28.914	1.00 57.68	6
	ATOM	3185	CB		B 194	16.699	39.560	29.794	1.00 58.80	6
25	ATOM	3186	CG		в 194	15.806	39.809	31.006	1.00 61.20	6
	ATOM	3187		ASP :		15.115	40.864	31.030	1.00 63.41	8
	MOTA	3188	OD2	ASP	B 194	15.804	38.955	31.930	1.00 59.40	8
	MOTA	3189	С		B 194	15.914	37.177	29.772	1.00 56.01	6
	MOTA	3190	0		В 194	14.789	36.956	30.171	1.00 55.53	8
30	ATOM	3191	N ~-		B 195	16.943	36.385	30.036	1.00 55.28	7
	ATOM	3192	CA		B 195	16.819	35.199	30.860	1.00 54.79	6
	MOTA	3193 3194	CB CC1	VAL	B 195	17.662 17.695	34.053 32.895	30.300 31.285	1.00 53.86 1.00 51.98	6 6
	ATOM ATOM	3194	CG1		B 195	17.112	33.631	28.968	1.00 53.24	6
35	ATOM	3196	C		B 195	17.334	35.522	32.248	1.00 56.42	6
•	ATOM	3197	Ö		B 195	18.451	36.003	32.407	1.00 58.47	8
	ATOM	3198	N		в 196	16.525	35.261	33.261	1.00 58.06	7
	ATOM	3199	CA	GLU	в 196	16.942	35.526	34.624	1.00 58.06	6
	MOTA	3200	CB		в 196	15.808	36.168	35.393	1.00 59.44	б
40	ATOM	3201	CG		В 196	16.168	36.535	36.811	1.00 64.02	6
	ATOM	3202	CD		B 196	14.983	37.131	37.561	1.00 65.27	6
	ATOM	3203	OE1	GLU	B 196	14.414 14.625	38.137 36.591	37.081 38.631	1.00 65.41 1.00 68.06	8 8
	ATOM ATOM	3204 3205	C		B 196	17.310	34.199	35.252	1.00 57.73	6
45	ATOM	3205	0		B 196	16.495	33.285	35.291	1.00 60.64	8
	ATOM	3207	N		B 197	18.543	34.084	35.722	1.00 56.14	7
	ATOM	3208	CA		в 197	18.999	32.854	36.338	1.00 54.69	6
	ATOM	3209	CB		в 197	20.358	32.405	35.757	1.00 52.53	6
	ATOM	3210	CG1	VAL	в 197	20.807	31.107	36.404	1.00 50.11	6
50	MOTA	3211	CG2	VAL		20.241	32.229	34.264	1.00 51.73	6
	ATOM	3212	С		в 197	19.154	33.106	37.819	1.00 56.80	6
	MOTA	3213	0		B 197	19.817	34.057	38.226	1.00 57.91	8
	ATOM	3214	N		B 198	.18.539	32.258	38.631	1.00 58.59	7
55	ATOM	3215	CA		в 198 в 198	18.626 17.235	32.421 32.308	40.071 40.703	1.00 58.65 1.00 59.34	6 6
55	MOTA ATOM	3216 3217	CB OG		в 198 В 198	16.426	33.407	40.703	1.00 59.34	8
	ATOM	3217	C		B 198	19.556	31.385	40.651	1.00 57.58	6
	ATOM	3219	Ö		B 198	19.340	30.188	40.505		8
	ATOM	3220	N		в 199	20.599	31.857	41.310	1.00 57.49	7
60	ATOM	3221	CA	LEU	B 199	21.569	30.963	41.904	1.00 58.89	б
	MOTA	3222	CB	LEU	в 199	23.000	31.437	41.622	1.00 58.76	6

	WO 01/58	8951			-			•	PCT/EP01/01	1457
						-125				
	ATOM	3223	CG	LEU B	199	24.108	30.670	42.358	1.00 59.80	6
	ATOM	3224	CD1	LEU B	199	24.135	29.209	41.927	1.00 60.58	6
	ATOM	3225	CD2	LEU B	199	25.446	31.304	42.063	1.00 60.42	. 6
	MOTA	3226		LEU B		21.369	30.885	43.395	1.00 60.51	6
5	ATOM	3227	0	LEU B	199	21.759	31.788	44.136	1.00 61.67	8
	ATOM	3228	Ν.	ASN B	200	20.754	29.801	43.838	1.00 60.15	7
	MOTA	3229	CA		200	20.539	29.607	45.252	1.00 57.57	6
	MOTA	3230	CB	ASN B		19.188	28.919	45.499	1.00 60.95	6
	MOTA	3231	CG	ASN B		18.936	28.642	46.968	1.00 62.80 1.00 65.10	6 8
10	MOTA	3232			200	19.167	29.504	47.820	1.00 59.90	7
	MOTA	3233			200	18.465	27.443 28.736	47.275 45.712	1.00 55.80	6
	MOTA	3234	C		200	21.691 21.793	28.736	45.712	1.00 56.54	8
	ATOM	3235	0	ASN B PHE B	200	22.561	29.316	46.527	1.00 53.98	7
15	MOTA	3236 3237	N CA	PHE B		23.725	28.615	47.042	1.00 53.98	6
10	ATOM ATOM	3237	CB	PHE B		24.960	28.975	46.226	1.00 53.35	6
	ATOM	3239	CG	PHE B		25.418	30.404	46.418	1.00 51.26	6
	ATOM	3240		PHE B		26.633	30.690	47.050	1.00 50.15	6
	ATOM	3241	CD2			24.615	31.472	46,000	1.00 50.67	6
20	ATOM	3242			201	27.038	32.015	47.264	1.00 45.58	6
	ATOM	3243	CE2	PHE B		25.016	32.799	46.213	1.00 47.69	6
	ATOM	3244	cz	PHE B	201	26.227	33.062	46.845	1.00 46.26	6
	ATOM	3245	С	PHE B	201	23.943	29.080	48.456	1.00 55.95	б
	ATOM	3246	0	PHE B		23.275	30.017	48.912	1.00 56.39	8
25	ATOM	3247	N	ARG B		24.896	28.443	49.132	1.00 56.81	7
	MOTA	3248	CA	ARG B		25.223	28.793	50.506	1.00 60.77	6
	MOTA	3249	CB	ARG B		24.255	28.104	51.460	1.00 64.25	6
	ATOM	3250	CG	ARG B		24.491	26.625	51.497	1.00 66.78 1.00 70.08	6 6
00	ATOM	3251	CD	ARG B		23.494	25.893	52.344 52.333	1.00 70.08	7
30	ATOM	3252	NE	ARG B		23.768	24.454 23.528	52.825	1.00 72.03	6
	ATOM	3253	CZ	ARG B		22.945 21.781	23.326	53.375	1.00 74.01	7
	ATOM ATOM	3254 3255	NH1	ARG B		23.281	22.245	52.760	1.00 73.29	7
	ATOM	3256	C	ARG B		26.635	28.328	50.843	1.00 61.67	6
35	MOTA	3257	Ö	ARG B		27.181	27.450	50.183	1.00 62.10	8
-	ATOM	3258	N	LYS B		27.225	28.918	51.875	1.00 62.58	7
	ATOM	3259	CA	LYS B	203	28.549	28.505	52.298	1.00 62.87	6
	ATOM	3260	CB	LYS B	203	29.067	29.417	53.399	1.00 62.83	6
	ATOM	3261	CG	LYS B		30.400	28.995	53.967	1.00 62.29	6
40	ATOM	3262	CD	LYS B		30.765	29.871	55.141	1.00 65.39	6
	ATOM	3263	CE	LYS B		32.135	29.519	55.689	1.00 67.38	6
	ATOM	3264	NZ	LYS B		33.232	29.772	54.695	1.00 70.43	7
	MOTA	3265	C	LYS B		28.387	27.101 26.736	52.854 53.371	1.00 64.30 1.00 65.43	6 8
45	ATOM	3266	0	LYS B		27.318 29.446	26.730	52.745	1.00 66.12	7
45	ATOM	3267 3268	N CA	LYS B		29.417	24.955	53.246	1.00 67.10	6
	MOTA MOTA	3269	CB	LYS B		30.701	24.223	52.860	1.00 63.37	6
	ATOM	3270	CG	LYS B		30.745	23.853	51.379	1.00 60.21	6
	ATOM	3271	CD	LYS B		31.940	22.966	51.055	1.00 58.61	
50	ATOM	3272	CE	LYS B		31.955	22.553	49.582	1.00 57.79	
	ATOM	3273	NZ	LYS B		33.202	21.808	49.238	1.00 53.82	
	ATOM	3274	С	LYS B		29.293	25.081	54.745	1.00 70.90	
	ATOM	3275	0	LYS B		.29.893	25.989	55.339	1.00 72.60	
	MOTA	3276	N	GLY B		28.489	24.192	55.342	1.00 74.01	
55	MOTA	3277	CA	GLY B		28.260	24.197	56.783	1.00 74.37	
	MOTA	3278	C	GLY B		29.305	23.430	57.576	1.00 75.59	
	MOTA	3279		GLY B		30.276		56.958	1.00 75.56	
	MOTA	3280		GLY B		29.163		58.822	1.00 76.47 1.00 71.30	
60	ATOM	3281		PHE C	1	16.639	48.183 49.162	2.177 1.297	1.00 71.30	
60		3282	CG CD1	PHE C	1	17.365 18.546		0.647	1.00 74.99	
	ATOM	3283	נעי	r Euro C	7	10.340	-0.003	0.047		•

	WO 01/5	8951									PCT	/EP01/01	1457
								-126					
	ATOM	3284	CD2	PHE	С	1		6.889	50.471	1.160	1.00	75.46	6
	ATOM	3285	CE1	PHE	С	1	1	9.257	49.743	-0.138		77.68	6
	ATOM	3286	CE2	PHE	С	1	. 1	7.590	51.421	0.380		76.94	6
_	MOTA	3287	CZ	PHE		1		8.779	51.054	-0.271		77.37	6
5	ATOM	3288	С	PHE		1		6.469	45.841	2.896		69.30	6
	MOTA	3289	0		C	1		5.487	45.976	3.637		68.12	8
	ATOM	3290	N	PHE		1		5.624	46.515	0.608		67.59	7 6
	ATOM	3291	CA	PHE		1		6.651 7.421	46.733 44.940	1.669 3.123		69.36 69.61	7
10	MOTA MOTA	3292 3293	N CA	ASP ASP		2 2		7.373	44.940	4.298		68.32	6
10	ATOM	3294	CB	ASP		2		7.364	42.592	3.882		69.98	6
	ATOM	3295	CG	ASP		2		8.729	42.092	3.426		71.56	6
	ATOM	3296		ASP		2		9.586	41.867	4.316		71.73	8
	ATOM	3297	OD2	ASP	C	2	. 1	8.936	41.926	2.187	1.00	72.36	8
15	ATOM	3298	С	ASP	С	2	1	8.615	44.399	5.116		66.00	6
	ATOM	3299	0	ASP		2		9.617	44.865	4.562		67.56	8
	MOTA	3300	N	ARG		3		8.550	44.165	6.423		62.29	7
	ATOM	3301	CA	ARG		3		9.663	44.455	7.320	_	59.37	6
20	ATOM	3302	CB	ARG		3		9.515	43.661 44.017	8.604		56.89 55.35	6 6
20	MOTA	3303 3304	CG CD	ARG ARG		3 3		.8.280 .8.177	43.172	9.387 10.640		57.70	6
	ATOM ATOM	3304	NE	ARG		3		6.947	43.437	11.378		60.36	7
	ATOM	3306	CZ	ARG		3		6.714	44.540	12.084		62.92	6
	ATOM	3307		ARG		3		7.623	45.503	12.166		62.53	7
25	ATOM	3308		ARG		3	1	5.554	44.689	12.700	1.00	64.87	7
	MOTA	3309	С	ARG	С	3	2	1.060	44.236	6.749	1.00	59.30	6
	ATOM	3310	0	ARG	С	3		1.970	45.008	7.051		61.36	8
	MOTA	3311	N	ALA		4		1.257	43.215	5.920		57.54	7
00	ATOM	3312	CA	ALA		4		2.595	43.023	5.379		55.37	6
30	ATOM	3313	CB	ALA		4		2.686	41.727	4.610		53.55 54.97	6
	ATOM	3314 3315	C	ALA ALA		4 4		2.947	44.186 44.764	4.478 4.603		55.12	6 8
	ATOM ATOM	3315	O N	ASP		5		2.034	44.534	3.575		56.24	7
	ATOM	3317	CA	ASP		5		2.265	45.632	2.646		56.25	6
35	ATOM	3318	СВ	ASP		5		1.081	45.795	1.680		58.72	6
	ATOM	3319	CG	ASP		5	2	20.773	44.529	0.906	1.00	62.35	б
	ATOM	3320	OD1	ASP	С	5	2	21.715	43.900	0.364		63.21	8
	MOTA	3321	OD2	ASP	С	5		19.574	44.171	0.834		65.38	8
	ATOM	3322	С	ASP		5		22.471	46.935	3.406		55.27	6
40	MOTA	3323	0	ASP		5		23.294	47.764	3.020		54.31	8
	MOTA	3324	N	ILE		6		21.732	47.110	4.495		53.55 54.16	7 6
	MOTA	3325	CA	ILE		6 6		21.840	48.339 48.456	5.270 6.311		54.45	6
	MOTA MOTA	3326 3327	CB CG2			6		20:713	49.793	7.021		52.65	6
45	ATOM	3328	CG1			6		19.352	48.344	5.612		56.53	6
	ATOM	3329	CD1			6		18.146	48.530	6.524		56.74	6
	ATOM	3330	C	ILE		6		23.178	48.475	5.972	1.00	52.95	6
	MOTA	3331	0	ILE	С	6	2	23.872	49.487	5.818		53.74	8
	MOTA	3332	N	LEU		7		23.543	47.455	6.741		51.30	7
50	MOTA	3333	CA	LEU		7		24.814	47.462	7.460		49.62	6
	MOTA	3334	CB	LEU		7		24.931	46.194	8.293		47.45	6
	ATOM	3335	CG	LEU		7		23.912	46.136 44 [.] .743	9.429		47.62 48.73	6 6
	ATOM	3336		LEU		7 7		23.819 24.321	47.122	10.014 10.486		47.41	6
55	MOTA ATOM	3337 3338	CD2	LEU		7		25.970	47.559	6.465		49.71	6
55	ATOM	3339	0	LEU		7		26.951	48.269	6.677		47.57	8
	ATOM	3340	N	TYR		8		25.827	46.845	5.361		52.00	7
	ATOM	3341	CA	TYR		8		26.830	46.838	4.318		53.34	6
	MOTA	3342	CB	TYR		8	:	26.367	45.961	3.167	1.00	53.82	6
60	ATOM	3343	CG	TYR		8		27.335	45.969	2.020		57.66	6
	MOTA	3344	CD1	TYR	С	8	:	28.552	45.289	2.106	1.00	58.72	6

PCT/EP01/01457

WO 01/58951

-127 45.315 1.045 1.00 60.33 29.467 8 ATOM 3345 CE1 TYR C 27.051 CD2 TYR C 46.679 0.851 1.00 58.73 6 3346 8 MOTA 27.957 46.714 -0.211 1.00 60.05 6 MOTA 3347 CE2 TYR C 8 46.027 1.00 60.68 6 TYR C 29.162 -0.107 MOTA 3348 CZ8 46.045 -1.163 1.00 62.86 8 3349 TYR C 8 30.045 MOTA OH 1.00 54.25 3.790 6 MOTA 3350 С TYR C 8 27.134 48.235 1.00 55.00 48.589 3.614 8 28.298 MOTA 3351 0 TYR C 8 49.015 26.092 3.516 1.00 53.76 7 ASN C MOTA 3352 N 9 26.283 50.369 3.013 1.00 55.35 б ASN C MOTA 3353 9 CA 51.005 2.660 1.00 59.27 6 10 ATOM 3354 ASN C 9 24.941 CB 6 24.299 50.372 1.433 1.00 61.31 ATOM 3355 ASN C 9 CG 1.00 61.18 8 OD1 ASN C 9 24.907 49.531 0.758 MOTA 3356 1.136 1.00 62.69 ATOM 3357 ND2 ASN C 9 23.068 50.778 7 1.00 54.14 27.003 6 4.034 ATOM 3358 С ASN C 9 51.233 9 28.001 3.722 1.00 54.09 8 15 51.877 MOTA 3359 ASN C 0 ILE C 10 26.494 51.240 5.258 1.00 54.05 7 MOTA 3360 N ILE C 6.330 1.00 54.35 б MOTA 3361 CA 10 27.107 52.014 3362 26.399 51.757 7.668 1.00 53.88 б MOTA CB ILE C 10 1.00 52.27 27.141 52.453 8.784 б MOTA 3363 CG2 ILE C 10 1.00 53.43 20 CG1 ILE C 10 24.956 52.257 7.595 6 MOTA 3364 1.00 51.08 24.114 8.769 MOTA 3365 CD1 ILE C 10 51.860 6 28.580 6.479 1.00 55.70 51.635 6 MOTA 3366 С ILE C 10 29.452 52.497 6.609 1.00 56.88 ILE C 10 MOTA 3367 0 1.00 56.11 ARG C 11 28.844 50.337 6.456 7 MOTA 3368 Ν 25 30.194 49.827 6.579 1.00 57.74 ARG C MOTA 3369 CA 11 30.161 48.307 6.466 1.00 61.80 6 3370 ARG C 11 MOTA CB 3371 ARG C 11 31.495 47.629 6.644 1.00 67.28 б ATOM CG 8.102 1.00 75.61 6 MOTA 3372 CD ARG C 11 31.879 47.631 8.419 1.00 82.91 7 ARG C 11 32.848 46.586 ATOM 3373 NE 30 32.779 45.333 7.957 1.00 86.49 6 ARG C 11 ATOM 3374 CZ1.00 87.62 NH1 ARG C 11 31.785 44.963 7.140 7 MOTA 3375 33.689 8.331 1.00 87.96 7 NH2 ARG C 11 44.436 ATOM 3376 31.099 50.388 5.490 1.00 57.06 6 MOTA 3377 С ARG C 11 ARG C 11 32.198 50.865 5.758 1.00 57.56 8 MOTA 3378 0 1.00 57.22 7 35 MOTA 3379 N GLN C 12 30.617 50.333 4.255 1.00 56.59 3.093 31.377 50.781 6 GLN C MOTA 3380 CA 12 30.783 50.169 1.829 1.00 56.62 6 GLN C ATOM 3381 12 CB 31.795 1.00 58.01 3382 GLN C 12 49.448 0.976 MOTA CG 48.101 1.532 1.00 58.10 6 GLN C 12 32.113 MOTA 3383 CD 40 31.215 47.289 1.704 1.00 59.91 8 ATOM 3384 OE1 GLN C 12 47.846 1.824 1.00 57.19 7 MOTA 3385 NE2 GLN C 12 33.384 1.00 56.02 52.278 MOTA 3386 С GLN C 12 31.505 2.872 6 1.00 54.27 52.728 2.208 8 GLN C 32.424 MOTA 3387 0 12 53.054 1.00 58.04 7 THR C 30.589 3.423 13 MOTA 3388 N 45 THR C 30.631 54.492 3.213 1.00 59.72 б ATOM 3389 CA 13 54.985 1.00 58.83 THR C 29.302 2.653 6 MOTA 3390 CB 13 OG1 THR C 28.253 54.622 3.559 1.00 55.46 8 MOTA 3391 13 1.00 59.29 54.374 MOTA 3392 CG2 THR C 13 29.043 1.277 6 1.00 61.81 55.316 MOTA 3393 THR C 13 30.944 4.459 6 C 1.00 62.06 50 56.492 31.317 4.364 8 THR C MOTA 3394 0 13 30.794 54.705 5.627 1.00 62.55 7 SER C 3395 14 MOTA N 1.00 62.19 3396 SER C 14 31.053 55.421 6.865 б MOTA CA .30.549 54.612 8.056 1.00 62.76 6 3397 SER C 14 MOTA CB 1.00 64,16 3398 OG SER C 14 30.476 55.435 9.209 8 MOTA 55 32.521 55.779 7.074 1.00 61.03 6 MOTA 3399 С SER C 14 1.00 61.70 33.422 55.098 6.577 8 MOTA 3400 0 SER C 14 ARG C 32.735 56.863 7.816 1.00 58.93 7 15 3401 N MOTA ARG C 15 34.064 57.367 8.127 1.00 57.11 6 3402 CA ATOM 34.383 58.576 7.247 1.00 57.80 MOTA 3403 CB ARG C 15 6 60 3404 ARG C 15 34.388 58.261 5.748 1.00 59.34 6 ATOM CG 4.968 | 1.00 61.90 15 35.114 59.331 6 MOTA 3405 CD ARG C

	WO 01/5	8951							PCT/I	E P 01/01	457
						-128			•		
	ATOM	3406	NE	ARG C	15	36.475	59.479	5.475	1.00 6	4.09	7
	ATOM	3407	CZ	ARG C	15	37.287	60.488	5.180	1.00 6	3.60	6
	MOTA	3408		ARG C	15	36.873	61.450	4.375	1.00 6		7
_	ATOM	3409		ARG C	15	38.516	60.526	5.688	1.00 6		7
5	ATOM	3410	C	ARG C	15	34.081	57.753	9.598	1.00 5		6
	MOTA	3411	0	ARG C	15	33.736	58.874	9.969	1.00 5		8
	ATOM	3412	N	PRO C	16	34.483	56.811	10.460	1.00 5		7
	ATOM ATOM	3413 3414	CD CA	PRO C	16 16	34.921 34.547	55.451 57.012	10.106 11.911	1.00 4		6 6
10	ATOM	3415	CB	PRO C	16	35.072	55.668	12.429	1.00 4		6
	ATOM	3416	CG	PRO C	16	34.647	54.702	11.387	1.00 4		6
	ATOM	3417	C	PRO C	16	35.420	58.172	12.356	1.00 5		6
	MOTA	3418	0	PRO C	16	35.266	58.663	13.468	1.00 5	2.27	8
	MOTA	3419	N	ASP C	17	36.337	58.608	11.501	1.00 5	1.78	7
15	MOTA	3420	CA	ASP C	17	37.219	59.706	11.863	1.00 5		6
	MOTA	3421	CB	ASP C	17	38.597	59.526	11.209	1.00 5		6
	MOTA	3422	CG	ASP C	17	39.421	58.411	11.859	1.00 6		6
	MOTA	3423 3424		ASP C	17 17	39.200 40.299	58.134 57.824	13.067 11.170	1.00 6		8 8
20	ATOM ATOM	3424	C CD2	ASP C	17	36.680	61.080	11.170	1.00 5		6
	ATOM	3426	0	ASP C	17	37.350	62.088	11.736	1.00 5		8
	ATOM	3427	N	VAL C	18	35.473	61.129	10.944	1.00 5		7
	ATOM	3428	CA	VAL C	18	34.902	62.398	10.528	1.00 5		6
	ATOM	3429	CB	VAL C	18	34.699	62.421	9.003	1.00 5	53.89	6
25	MOTA	3430	-	VAL C	18	34.194	63.785	8.563	1.00 5		6
	ATOM	3431		VAL C	18	36.013	62.087	8.308	1.00 5		6
	ATOM	3432	C	VAL C	18	33.589	62.771	11.201	1.00 5		6
	ATOM	3433	0	VAL C	18	32.573	62.097	11.046	1.00 5		8
30	ATOM ATOM	3434 3435	N CA	ILE C	19 19	33.634 32.480	63.870 64.401	11.944 12.662	1.00 5		7 6
50	ATOM	3435	CB	ILE C	19	32.934	65.631	13.519	1.00 5		6
	ATOM	3437	CG2		19	33.362	66.777	12.618	1.00 5		6
	ATOM	3438	CG1		19	31.827	66.078	14.467	1.00 5		6
	ATOM	3439	CD1	ILE C	19	32.318	67.022	15.525	1.00 5		6
35	ATOM	3440	C	ILE C	19	31.392	64.784	11.644	1.00 5	56.25	6
	MOTA	3441	0	ILE C	19	31.675	65.474	10.653	1.00		8
	ATOM	3442	N	PRO C	20	30.142	64.318	11.861	1.00 5		7
	ATOM	3443	CD	PRO C	20	29.756	63.451	12.978	1.00 5		6
40	ATOM ATOM	3444 3445	CA CB	PRO C	20 20	28.980 27.912	64.574 63.627	10.996 11.540	1.00 5		6 6
70	MOTA	3445	CG	PRO C	20	28.673	62,639	12.349	1.00 5		6
	ATOM	3447	c	PRO C	20	28.500	66.023	11.035	1.00		6
	ATOM	3448	0	PRO C	20	27.326	66.290	11.270	1.00		8
	MOTA	3449	N	THR C	21	29.416	66.947	10.782	1.00	54.15	7
45	ATOM	3450	CA	THR C	21	29.123	68.370	10.797	1.00 6		6
	ATOM	3451	CB	THR C	21	30.421	69.169	11.046	1.00		-6
	ATOM	3452	OG1		21	30.496	69.477	12.440	1.00		8
	ATOM	3453	CG2		21	30.470	70.455	10,216	1.00 6		6
50	ATOM ATOM	3454 3455	C O	THR C	21 21	28.424 28.826	68.913 68.631	9.555 8.412	1.00		6 8
00	ATOM	3456	N	GLN C	22	27.384	69.709	9.805	1.00		7
	ATOM	3457	CA	GLN C	22	26.599	70.346	8.747	1.00 8		6
	ATOM	3458	CB	GLN C	22	25.112	70.087	8,972	1.00		6
_	MOTA	3459	CG	GLIN C	22	24.749	68.606	9.029	1.00 8	32.93	6
55	ATOM	3460	CD	GLN C	22	23.534	68.351	9.900	1.00		6
	MOTA	3461		GLN C	22	23.566	68.595	11.120	1.00		8
	MOTA	3462	NE2		22	22.452	67.867	9.285	1.00		7
	MOTA	3463	C	GLN C	22	26.865	71.846	8.814	1.00		6
60	ATOM ATOM	3464 3465	N O	GLN C ARG C	22 23	26.382 27.635	72.523 72.357	9.730 7.849	1.00 8		8 7
50	ATOM	3466	CA	ARG C	23	27.985	73.783	7.802	1.00		6
		2 - 0 0								-	•

	WO 01/5	8951								PCT	/EP01/01	457
							-129					
	MOTA	3467	CB	ARG	c :	23	26.722	74.654	7.771	1.00	87.20	б
	ATOM	3468	CG	ARG	c :	23	26.050	74.710	6.393	1.00	89.96	6
	ATOM	3469	CD	ARG		23	24.797	73.834	6.297	1.00	90.96	6
	ATOM	3470	NE	ARG	C :	23	24.282	73.771	4.920	1.00	93.30	7
5	ATOM	3471	CZ	ARG	C :	23	23.996	74.830	4.145	1.00		6
	MOTA	3472	NH1	ARG	C :	23	24.167	76.083	4.591	1.00	94.25	7
	ATOM	3473	NH2	ARG	C :	23	23.537	74.640	2.905	1.00		7
	ATOM	3474	С	ARG	C :	23	28.828	74.134	9.013	1.00		6
	MOTA	3475	0	ARG	C :	23	29.599	73.302	9.495	1.00		8
10	MOTA	3476	N	ASP		24	28.700	75.358	9.503	1.00		7
	MOTA	3477	CA	ASP		24	29.462	75.755	10.685		86.66	6
	ATOM	3478	CB	ASP		24	29.625	77.283	10.785	1.00		6
	MOTA	3479	CG	ASP		24	29.385	78.002	9.458		92.74	6
4-	ATOM	3480		ASP		24	30.108	77.704	8.471		93.41	8
15	ATOM	3481		ASP		24	28.468	78.868	9.418		93.68	8
	MOTA	3482	C	ASP		24	28.679	75.280	11.907		85.20	6
	ATOM	3483	0	ASP		24	29.053	75.591	13.052		85.29 82.29	8 7
	ATOM	3484	N	ARG		25	27.587 26.761	74.553 74.039	11.660 12.742		79.75	6
20	MOTA	3485	CA	ARG ARG		25 25	25.422	73.522	12.742		82.55	6
20	ATOM	3486 3487	CB CG	ARG		25 25	24.428	74.588	11.781		86.91	6
	ATOM ATOM	3488	CD	ARG		25	23.026	73.964	11.594		91.01	6
	ATOM	3489	NE	ARG		25	22.007	74.963	11.252		94.97	7
	ATOM	3490	CZ	ARG		25	20.702	74.705	11.146		96.54	6
25	ATOM	3491		ARG		25	20.752	73.471	11.356		97.65	7
	ATOM	3492		ARG		25	19.844	75.679	10.837		96.40	7
	ATOM	3493	C	ARG		25	27.456	72.906	13.490		76.53	6
	ATOM	3494	Ö	ARG		25	28.004	71.987	12.876		78.25	8
	ATOM	3495	N	PRO		26	27.449	72.963	14.829	1.00	72.39	7
30	ATOM	3496	CD	PRO		26	27.074	74.126	15.647	1.00	71.70	6
	ATOM	3497	CA	PRO		26	28.073	71.935	15.660	1.00	68.13	6
	ATOM	3498	CB	PRO	С	26	28.087	72.574	17.050	1.00	69.12	6
	ATOM	3499	CG	PRO	С	26	28.066	74.039	16.770	1.00	69.98	6
	MOTA	3500	С	PRO	С	26	27.183	70.706	15.639		64.71	6
35	ATOM	3501	0	PRO		26	26.010	70.795	15.275		63.13	8
	MOTA	3502	N	VAL		27	27.735	69.560	16.019		61.55	7
	MOTA	3503	CA	VAL		27	26.937	68.349	16.081		57.92	6
	ATOM	3504	CB	VAL		27	27.805	67.073	15.948		56.85	6
40	MOTA	3505		VAL		27	27.038	65.860	16.439		54.71	6
40	ATOM	3506		VAL	_	27	28.197	66.872	14.502		54.24	6 6
	ATOM	3507	C	VAL		27	26.301	68.400	17.452		56.84 57.02	8
	ATOM	3508	0	VAL ALA		27 28	26.987 24.989	68.621 68.228	18.450 17.506		56.11	7
	ATOM ATOM	3509 3510	N CA	ALA		28	24.302	68.262	18.783		54.82	6
45	ATOM	3511	CB	ALA		28	22.896	68.775	18.600		55.72	6
70	ATOM	3512	C	ALA		28	24.282	66.879	19.424		54.45	6
	ATOM	3513	Ö	ALA		28	23.579	65.972	18.964		54.53	8
	ATOM	3514	N	VAL		29	25.067	66.742	20.488		53.25	7
	ATOM	3515	CA	VAL		29	25.191	65.503	21.235		51.65	6
50	ATOM	3516	CB	VAL		29	26.676	65.113	21.450	1.00	50.25	6
	ATOM	3517		VAL		29	26.770	63.846	22.297		47.03	6
	ATOM	3518	CG2	VAL	С	29	27.358	64.921	20.108	1.00	50.21	6
	ATOM	3519	С	VAL		29	24.549	65.670	22.595	1.00	52.02	6
	ATOM	3520	0	VAL	С	29	24.833	66.615	23.320	1.00	51.40	8
55	ATOM	3521	N	SER	С	30	23.669	64.745	22.932		53.81	7
	MOTA	3522	CA	SER		30	23.012	64.785	24.214		55.39	б
	MOTA	3523	CB	SER		30	21.495	64.666	24.034		54.53	6
	ATOM	3524	OG	SER		30	21.159	63.462	23.373		56.88	8
00	ATOM	3525	C	SER		30	23.566	63.614	25.013		55.69	6
60	ATOM	3526	0	SER		30	23.688	62.504	24.503		56.19	8
	MOTA	3527	N	VAL	C	31	23.916	63.888	26.261	1.00	56.76	7

	WO 01/58	8951							PCT/EP01/01	457
						-130				
	MOTA	3528	CA	VAL C	31	24.466	62.893	27.174	1.00 57 <i>.</i> 06	6
	MOTA	3529	CB	VAL C	31	25.871	63.301	27.640	1.00 57.34	6
	ATOM	3530		VAL C	31	26.543	62.141	28.354	1.00 57.65	6
_	ATOM	3531		VAL C	31	26.674	63.784	26.467	1.00 58.89	6
5	MOTA	3532	C	VAL C	31	23.585	62.791	28.415	1.00 57.25	6
	MOTA	3533	0	VAL C	31	23.152 23.339	63.806 61.569	28.979 28.855	1.00 57.25 1.00 56.49	8 7
	ATOM ATOM	3534 3535	N CA	SER C	32 32	22.505	61.356	30.024	1.00 57.63	6
	MOTA	3536	CB	SER C	32	21.045	61.182	29.589	1.00 57.03	6
10	ATOM	3537	OG	SER C	32	20.220	60.763	30.667	1.00 63.17	8
	ATOM	3538	C	SER C	32	22.958	60.123	30.781	1.00 57.81	6
	ATOM	3539	Ō	SER C	32	22.860	58.998	30.271	1.00 60.21	8
	ATOM	3540	N	LEU C	33	23.448	60.317	31.997	1.00 56.08	7
	MOTA	3541	CA	LEU C	33	23.895	59.182	32.801	1.00 55.73	6
15	ATOM	3542	CB	LEU C	33	25.021	59.581	33.752	1.00 53.14	6
	ATOM	3543	CG	LEU C	33	26.240	60.219	33.105	1.00 52.98	6
	MOTA	3544	CD1	LEU C	33	27.353	60.346	34.127	1.00 51.17	6
	MOTA	3545	CD2	LEU C	33	26.680	59.374	31.933	1.00 53.34	6
	ATOM	3546	С	LEU C	33	22.752	58.629	33.624	1.00 56.29	6
20	ATOM	3547	0	LEU C		21.976	59.392	34.193	1.00 57.63	8
	ATOM	3548	N	LYS C		22.642	57.303	33.664	1.00 54.96	7
	ATOM	3549	CA	LYS C		21.616	56.643	34.447	1.00 55.26	6
	MOTA	3550	CB	LYS C		20.710	55.790 56.544	33.563	1.00 58.99	6
25	ATOM	3551	CG	LYS C		20.053 19.098	57.649	32.414 32.897	1.00 63.56 1.00 68.99	6 6
25	ATOM	3552 3553	CD CE	LYS C		18.499	58.434	31.705	1.00 08.33	· 6
	ATOM ATOM	3554	NZ	LYS C		17.528	59.497	32.120	1.00 71.13	7
	ATOM	3555	C	LYS C		22.410	55.756	35.369	1.00 71.30	6
	ATOM	3556	ō	LYS C		23.034	54.806	34.922	1.00 54.63	8
30	ATOM	3557	N	PHE C		22.410	56.064	36.657	1.00 53.24	7
•	ATOM	3558	CA	PHE C		23.190	55.260	37.579	1.00 51.26	6
	ATOM	3559	CB	PHE C		23.427	56.032	38.864	1.00 49.55	6
	ATOM	3560	CG	PHE C		24.291	57.226	38.662	1.00 48.89	6
	MOTA	3561	CD1	PHE C	35	23.745	58.428	38.239	1.00 48.34	6
35	ATOM	3562	CD2	PHE C	35	25.669	57.133	38.814	1.00 50.53	6
	MOTA	3563		PHE C		24.553	59.526	37.967	1.00 47.39	6
	MOTA	3564		PHE C		26.488	58.228	38.542	1.00 50.75	6
	MOTA	3565	ÇZ	PHE C		25.925	59.424	38.118	1.00 49.19	6
40	MOTA	3566	С	PHE C		22.608	53.899	37.849	1.00 50.23	6
40	MOTA	3567	0	PHE C		21.418	53.754	38.078	1.00 50.29	8
	MOTA	3568	N	ILE C		23.478	52.901	37.795	1.00 49.55 1.00 47.28	7 6
	MOTA	3569	CA	ILE C		23.095 23.658	51.519 50.632	37.997 36.883	1.00 47.28	6
	MOTA MOTA	3570 3571	CB	ILE C		23.030	49.223	37.055	1.00 44.45	6
45	MOTA	3572		ILE C		23.252	51.192	35.521	1.00 46.79	6
	ATOM	3573		ILE C		21.754	51.310	35.328	1.00 48.67	6
	ATOM	3574	C	ILE C		23.619	50.999	39.308	1.00 46.88	6
	ATOM	3575	ō	ILE C		23.052	50.074	39.866	1.00 48.98	8
	ATOM	3576	N	ASN C		24.711	51.578	39.799	1.00 45.50	7
50	MOTA	3577	CA	ASN C		25.271	51.124	41.061	1.00 44.80	6
	ATOM	3578	CB	ASN C	37	25.738	49.678	40.919	1.00 44.35	6
•	ATOM	3579	CG	ASN C		25.685	48.919	42.226	1.00 47.95	6
	ATOM	3580		ASN C		26.077	49.424	43.285	1.00 47.36	8
	ATOM	3581		ASN C		25.209	47.688	42.157	1.00 50.05	7
55	ATOM	3582	C	ASN C		26.430	51.985	41.573	1.00 44.84	6
	MOTA	3583	0	ASN C		27.089	52.678	40.810	1.00 42.36	8
	MOTA	3584	N	ILE C		26.654	51.939	42.882	1.00 45.30	7
	MOTA	3585	CA	ILE C		27.735	52.671	43.518	1.00 46.27	6
60	ATOM	3586 3587	CB	ILE C			53.759 54.433	44.434 45.178	1.00 44.46 1.00 42.73	6 6
50	ATOM ATOM	3588		ILEC			54.433	43.178	1.00 42.70	6
	AIOH	5500				20.410	52.,,0	10,004	= ==	•

	WO 01/58951									PCT	/EP01/01	457
							-131					
	ATOM	3589	CD1	ILE	c :	38	25.630	55.758	44.343	1.00	40.81	6
	ATOM	3590	C	ILE		38	28.432	51.585	44.306	1.00	49.67	6
	ATOM	3591	Ō	ILE		38	27.890	51.083	45.281	1.00	53.17	8
	ATOM	3592	N	LEU	c :	39 .	29.636	51.228	43.872	1.00	51.33	. 7
5	ATOM	3593	CA	LEU		39	30.378	50.125	44.468	1.00	53.07	6
	ATOM	3594	CB	LEU		39	31.113	49.384	43.353	1.00	53.88	6
	ATOM	3595	CG	LEU	C :	39	30.167	49.000	42.215	1.00	55.35	6
	ATOM	3596		LEU	C :	39	30.932	48.308	41.115	1.00	54.78	6
	ATOM	3597	CD2	LEU	C :	39	29.053	48.097	42.760	1.00	54.41	б
10	ATOM	3598	С	LEU	C :	39	31.334	50.367	45.619	1.00	53.89	6
	ATOM	3599	0	LEU	C :	39	31.386	49.567	46.558	1.00	53.73	8
	ATOM	3600	N	GLU	C ·	40	32.124	51.426	45.536	1.00	54.34	7
	ATOM	3601	CA	GLU	C ·	40	33.058	51.714	46.602	1.00	56.97	6
	MOTA	3602	CB	GLU	C ·	40	34.446	51.211	46.271	1.00	59.79	6
15	MOTA	3603	CG	GLU	C 3	40	34.555	49.711	46.147		67.48	6
	ATOM	3604	CD	GLU		40	35.996	49.266	45.979		70.43	б
	ATOM	3605		GLU		40	36.647	49.719	44.998		71.96	8
	ATOM	3606		GLU		40	36.471	48.476	46.832		71.19	8
	ATOM	3607	C	GLU		40	33.125	53.192	46.823		57.35	6
20	MOTA	3608	0	GLU		40	33.163	53.975	45.886		58.85	8
	MOTA	3609	N	VAL		41	33.132	53.572	48.084		57.50	7
	MOTA	3610	CA	VAL		41	33.202	54.964	48.440		56.50	6
	ATOM	3611	CB	VAL		41	31.845	55.447	49.000		57.37	6
0.5	MOTA	3612		VAL		41	31.972	56.832	49.567		56.32	6
25	MOTA	3613		VAL		41	30.797	55.437	47.894		57.94	6
	ATOM	3614	C	VAL		41	34.289	55.098	49.486		55.27	6
	ATOM	3615	0	VAL		41	34.502	54.200	50.300		54.09	8
	MOTA	3616	N	ASN		42	34.994	56.216	49.433		55.74	7
20	ATOM	3617	CA	ASN		42	36.053	56.504	50.379		56.05	6
30	ATOM	3618	CB	ASN		42	37.418	56.169	49.787		53.93 53.86	6 6
	ATOM	3619	CG OD1	ASN ASN		42 42	38.509 38.622	56.155 57.075	50.833 51.634		54.42	8
	ATOM	3620 3621		ASN		42	39.325	55.110	50.828		54.04	7
	ATOM ATOM	3622	C	ASN		42	35.947	57.994	50.635		58.42	6
35	ATOM	3623	Ö	ASN		42	36.322	58.806	49.786		58.83	8
00	ATOM	3624	Ŋ	GLU		43	35.408	58.348	51.801		60.55	7
	ATOM	3625	CA	GLU		43	35.242	59.744	52.163		61.17	6
	ATOM	3626	CB	GLU		43	34.269	59.874	53.327		63.37	6
	ATOM	3627	CG	GLU		43	33.932	61.318	53.646		67.39	6
40	ATOM	3628	CD	GLU		43	32.773	61.463	54.616		68.69	6
	ATOM	3629		GLU		43	32.494	62.613	55.019		69.27	8
	ATOM	3630		GLU		43		60.444		1.00	68.84	8
	ATOM	3631	C	GLU		43	36.571	60.391	52.524		60.37	6
	ATOM	3632	0	GLU	С	43	36.706	61.611	52.459	1.00	59.71	8
45	ATOM	3633	N	ILE	С	44	37.544	59.567	52.903	1.00	59.67	7
	MOTA	3634	CA	ILE	С	44	38.874	60.051	53.254	1.00	60.12	6
	ATOM	3635	CB	ILE	C	44	39.727	58.944	53.908	1.00	60.72	6
	MOTA	3636	CG2	ILE	С	44	41.124	59.469	54.194	1.00	61.61	6
	ATOM	3637	CG1	ILE	С	44	39.081	58.470	55.206		62.18	٠6
50	MOTA	3638	CD1	ILE		44	39.142	59.479	56.325		63.46	6
	ATOM	3639	C	ILE		44	39.617	60.514	51.998		59.74	6
	MOTA	3640	0	ILE		44 .	40.255	61.569	51.988		60.88	8
	MOTA	3641	N	THR		45	39.540	59.710	50.944		57.16	7
	MOTA	3642	CA	THR		45	40.221	60.022	49.698		54.13	6
55	MOTA	3643	CB	THR		45	40.819	58.743	49.056		52.62	6
	MOTA	3644		THR		45	39.776	57.810	48.773		52.62	8
	MOTA	3645		THR		45	41.812	58.106	49.985		52.65	6
	ATOM	3646	C	THR		45	39.325	60.706	48.675		51.85	6
60	ATOM	3647	0	THR		45 46	39.801	61.196	47.664		51.94	8
60	ATOM	3648	N	ASN		46 46	38.029	60.736	48.933		51.51	7 6
	MOTA	3649	CA	ASN	Ü	46	37.106	61.367	48.002	1.00	52.39	0

	WO 01/58	8951							PCT/EP01/01	457
						-132				
	ATOM	3650	СВ	ASN C	46	37.420	62.856	47.890	1.00 54.02	6
	ATOM	3651	CG	ASN C	46	36.525	63.703	48.766	1.00 56.29	6
	MOTA	3652		ASN C	46	36.877	64.821	49.132	1.00 59.35	8
	ATOM	3653	ND2	ASN C	46	35.357	63.182	49.093	1.00 53.30	7
5	ATOM	3654	С	ASN C	46	37.143	60.711	46.618	1.00 52.56	6
	ATOM	3655	0	ASN C	46	37.269	61.376	45.587	1.00 51.60	. 8
	MOTA	3656	N	GLU C	47	37.013	59.392	46.610	1.00 51.63	7
	MOTA	3657	CA	GLU C	47	37.023	58.633	45.376	1.00 50.56	6
	MOTA	3658	CB	GLU C	47	38.307	57.805	45.300	1.00 49.50	6
10	MOTA	3659	CG	GLU C		39.566	58.650	45.210	1.00 49.79	6
	MOTA	3660	CD	GLU C		40.823	57.810	45.227	1.00 51.38	6
	MOTA	3661		GLU C		40.741	56.621	44.860	1.00 52.93	8 8
	MOTA	3662	OE2	GLU C		41.892	58.339	45.595	1.00 51.30 1.00 48.78	6
1 =	MOTA	3663	C	GLU C		35.793 35.403	57.734 57.133	45.314 46.300	1.00 48.46	8
15	MOTA	3664 3665	M O	GLU C		35.403	57.654	44.147	1.00 47.95	7
	ATOM ATOM	3666	CA	VAL C		33.998	56.834	43.993	1.00 49.71	6
	ATOM	3667	CB	VAL C		32.768	57.701	43.736	1.00 50.43	6
	ATOM	3668		VAL C		31.549	56.834	43.578	1.00 53.94	6
20	ATOM	3669		VAL C		32.567	58.645	44.869	1.00 52.35	6
	ATOM	3670	C	VAL C		34.130	55.838	42.850	1.00 49.77	6
	ATOM	3671	0	VAL C		34.686	56.146	41.802	1.00 49.93	8
	ATOM	3672	N	ASP C	49	33.615	54.636	43.068	1.00 49.86	7
	MOTA	3673	CA	ASP C	49	33.646	53.595	42.061	1.00 49.59	6
25	ATOM	3674	CB	ASP C		34.261	52.331	42.644	1.00 51.71	6
	ATOM	3675	CG	ASP C		34.714	51.366	41.580	1.00 51.64	6
	ATOM	3676		ASP C		33.992	51.233	40.581	1.00 50.25	8
	ATOM	3677		ASP C		35.777	50.736	41.748	1.00 51.89	8
00	ATOM	3678	C	ASP C		32.181	53.382	41.728	1.00 49.00	6
30	MOTA	3679	0	ASP C		31.437	52.818	42.524	1.00 51.14 1.00 48.30	8 7
	MOTA	3680	N	VAL C		31.770 30.374	53.840 53.757	40.551 40.147	1.00 48.89	6
	ATOM ATOM	3681 3682	CA CB	VAL C		29.755	55.185	40.147	1.00 51.49	6
	ATOM	3683		VAL		30.212	55.964	38.944	1.00 50.49	6
35	ATOM	3684		VAL C		28.248	55.120	40.223	1.00 53.32	6
•	ATOM	3685	C	VAL C		30.130	53.122	38.771	1.00 47.56	6
	ATOM	3686	ō	VAL C		31.012	53.080	37.928	1.00 49.11	8
	MOTA	3687	N	VAL C		28.917	52.621	38.574	1.00 44.81	7
	MOTA	3688	CA	VAL C	51	28.484	52.003	37.324	1.00 43.09	6
40	MOTA	3689	CB	VAL C	51	28.003	50.542	37.539	1.00 41.28	· 6
	MOTA	3690	CG1	VAL C		27.355	50.017	36.267	1.00 37.45	6
	MOTA	3691		VAL C		29.157	49.659	37.953	1.00 36.77	6
	ATOM	3692	C	VAL		27.300	52.817	36.781	1.00 44.98	6
A =	ATOM	3693	0	VAL		26.385	53.163	37.522	1.00 46.72	8 7
45	ATOM	3694	N	PHE C		27.299	53.113 53.883	35.490 34.937	1.00 44.48 1.00 45.00	6
	ATOM	3695	CA	PHE (26.206 26.469	55.352	35.210	1.00 44.94	6
	ATOM ATOM	3696 3697	CB CG	PHE (27.729	55.857	34.587	1.00 44.74	6
	ATOM	3698		PHE C		27.735	56.327	33.278	1.00 44.14	6
50	ATOM	3699		PHE		28.921	55.841	35.299	1.00 44.43	6
•	ATOM	3700	_	PHE (28.908	56.771	32.690	1.00 45.23	6
	MOTA	3701		PHE (30.102	56.284	34.722	1.00 41.52	6
	MOTA	. 3702	CZ	PHE C		30.098	56.751	33.415	1.00 42.14	6
	MOTA	3703	С	PHE (52	26.048	53.663	33.443	1.00 47.73	6
55	MOTA	3704	0	PHE (26.932	53.102	32.798	1.00 49.84	8
	MOTA	3705	Ŋ	TRP (24.918	54.099	32.895	1.00 46.73	7
	MOTA	3706	CA	TRP (24.684	53.985	31.471	1.00 47.02	6
	MOTA	3707	CB	TRP (23.251	53.595	31.175	1.00 46.36	6
60	MOTA		CG	TRP		22.915	52.221	31.552	1.00 48.76 1.00 50.65	6 6
60	ATOM	3709		TRP (21.615 21.748	51.636 50.311	31.534 32.002	1.00 50.65	6
	MOTA	3710	CE2	TRP	_ 53	21./40	JU.JII	36.002	1.00 49.00	J

							-133				
	ATOM	3711	CE3	TRP C	53		20.342	52.106	31.170	1.00 51.64	6
	ATOM	3712		TRP C	53		23.765	51.259	32.008	1.00 48.94	6
	MOTA	3713	NE1		53		23.073	50.107	32.284	1.00 48.58	7
	MOTA	3714	CZ2	TRP C	53		20.659	49.448	32.120	1.00 50.24	6
5	ATOM	3715	CZ3	TRP C	53		19.258	51.250	31.286	1.00 51.60	6
	ATOM	3716	CH2	TRP C	53		19.424	49.935	31.759	1.00 52.14	б
	ATOM	3717	С	TRP C	53		24.940	55.339	30.862	1.00 48.39	6
	MOTA	3718	0	TRP C	53		24.234	56.290	31.156	1.00 50.70	8
	MOTA	3719	N	GLN C	54		25.946	55.429	30.010	1.00 49.71	7
10	ATOM	3720	CA	GLN C	54		26.265	56.691	29.378	1.00 50.29	6
	ATOM	3721	CB	GLN C	54		27.759	56.749	29.053	1.00 50.27	6
	MOTA	3722	CG	GLN C	54		28.231	58.111	28.587	1.00 54.00	6
	MOTA	3723	CD	GLN C	54		29.710	58.344	28.853	1.00 55.07	6
4.5	MOTA	3724	OE1		54		30.172	58.241	29.988	1.00 53.42	8
15	ATOM	3725	NE2		54		30.458	58.667	27.805	1.00 57.05	7
	ATOM	3726	С	GLN C	54		25.415	56.797	28.125	1.00 50.70	6
	ATOM	3727	0	GLN C	54		25.886	56.617	27.004	1.00 52.15	8
	MOTA	3728	N	GLN C	55		24.138	57.069	28.345	1.00 51.37	7
00	MOTA	3729	CA.	GLN C	55		23.169	57.205	27.272	1.00 54.41	6
20	ATOM	3730	CB	GLN C	55		21.786	57.326	27.897	1.00 57.18	6
	MOTA	3731	CG	GLN C	55		20.667	57.648	26.948	1.00 64.94	6
	ATOM	3732	CD	GLN C	55		19.313	57.472	27.617	1.00 70.65	6
	MOTA	3733		GLN C	55		19.154	57.760	28.817	1.00 73.87	8
25	ATOM	3734 3735		GLN C	55 55		18.325 23.509	56.997	26.849	1.00 72.08	7
20	ATOM ATOM	3736	O .	GLN C	55		23.296	58.419	26.396	1.00 53.13	6
	ATOM	3737	N	THR C	56		24.044	59.569 58.148	26.779 25.211	1.00 54.85 1.00 50.27	8 7
	ATOM	3738	CA	THR C	56		24.455	59.193	24.290	1.00 30.27	6
	ATOM	3739	CB	THR C	56		25.916	59.019	23.905	1.00 43.20	6
30	ATOM	3740		THR C	56		26.693	58.795	25.085	1.00 47.37	8.
	ATOM	3741	CG2		56		26.431	60.243	23.219	1.00 46.01	6
	ATOM	3742	C	THR C	56		23.633	59.162	23.023	1.00 49.71	6
	ATOM	3743	0	THR C	56		23.216	58.095	22.568	1.00 49.78	8
	ATOM	3744	N	THR C	57		23.393	60.340	22.454	1.00 49.24	7
35	ATOM	3745	CA	THR C	57	•	22.619	60.436	21.221	1.00 49.62	6
	ATOM	3746	CB	THR C	57		21.122	60.592	21.501	1.00 49.45	6
	ATOM	3747	OG1	THR C	57		20.640	59.440	22.206	1.00 49.55	8
	MOTA	3748		THR C	57		20.368	60.722	20.191	1.00 51.01	6
40	MOTA	3749	С	THR C	57		23.057	61.608	20.368	1.00 48.68	6
40	MOTA	3750	0	THR C	57		23.423	62.649	20.888	1.00 51.05	8
	MOTA	3751	N	TRP C	58		23.033	61.428	19.056	1.00 45.80	7
	MOTA	3752	CA	TRP C	58		23.415	62.487	18.145	1.00 45.33	б
	MOTA	3753	CB	TRP C	58					1.00 44.23	6
45	MOTA	3754	CG	TRP C	58		25.733	61.584	17.556	1.00 45.68	6
45	ATOM	3755		TRP C	58		26.221	60.428	18.241	1.00 43.51	6
	MOTA	3756 3757		TRP C	58		26.896	59.642	17.296	1.00 41.95	6
	MOTA MOTA	3758		TRP C	58 58		26.150	59.983	19.566	1.00 44.75	6
	ATOM	3759		TRP C	58		26.120 26.818	61.453 60.292	16.264 16.097	1.00 41.99 1.00 43.07	6
50	ATOM	3760		TRP C	58		27.498	58.436	17.625	1.00 43.07	7 6
	ATOM	3761		TRP C	58		26.748	58.778	19.894	1.00 42.44	6
	ATOM	3762		TRP C	58		27.414	58.020	18.926	1.00 44.08	6
	ATOM	3763	C	TRP C	58		22.915	62.107	16.772	1.00 46.80	6
	ATOM	3764	ō	TRP C	58		22.315	61.054	16.603	1.00 45.26	8
55	ATOM	3765	N	SER C	59		23.157	62.959	15.788	1.00 50.21	7
	MOTA	3766	CA	SER C	59		22.663	62.684	14.452	1.00 53.47	6
	ATOM	3767	CB	SER C	59		21.536	63.657	14.128	1.00 54.42	6
	ATOM	3768	OG	SER C	59		20.707	63.146	13.104	1.00 59.88	8
	MOTA	3769	С	SER C	59		23.733	62.752	13.376	1.00 54.85	6
60	ATOM	3770	0	SER C	59		24.541	63.682	13.343	1.00 54.12	8
	MOTA	3771	N	ASP C	60		23.727	61.745	12.503	1.00 57.21	7

	WO 01/58	8951								PCT/EP01/0	1457
							-134				
	ATOM	3772	CA	ASP (C	60	24.677	61.646	11.396	1.00 59.27	б
	ATOM	3773	CB	ASP (60	25.680	60.517	11.650	1.00 59.62	6
	MOTA	3774		ASP (60	26.786	60.472	10.615	1.00 61.35	6
_	MOTA	3775		ASP (60	26.553	60.894	9.462	1.00 60.03	8
5	MOTA	3776		ASP		60	27.890	59.996	10.957	1.00 62.69	. 6
	ATOM	3777	C	ASP		60	23.842	61.317	10.172	1.00 61.10 1.00 61.72	. 8
	ATOM	3778	0	ASP (60 61	23.493 23.509	60.163 62.338	9.940 9.396	1.00 63.66	7
	MOTA	3779	N CA	ARG (61	22.689	62.338	8.201	1.00 65.73	6
10	ATOM ATOM	3780 3781	CB	ARG		61	22.276	63.516	7.628	1.00 68.89	6
10	ATOM		. CG	ARG		61	21.106	64.221	8.348	1.00 74.08	6
	MOTA	3783	CD	ARG		61	20.624	65.417	7.517	1.00 79.55	6
	ATOM	3784	NE	ARG		61	19.438	66.085	8.059	1.00 84.63	7
	MOTA	3785	CZ	ARG	C	61	18.810	67.101	7.457	1.00 87.07	б
15	MOTA	3786	NH1	ARG	С	61	19.257	67.572	6.291	1.00 88.09	7
	MOTA	3787		ARG		61	17.721	67:636	8.005	1.00 87.40	7
	ATOM	3788	C	ARG		61	23.322	61.310	7.083	1.00 64.92	6
	ATOM	3789	0	ARG		61	22.604	60.783	6.225	1.00 65.71	. 8
00	ATOM	3790	N	THR		62	24.648	61.176	7.078	1.00 62.18 1.00 60.64	7 6
20	ATOM	3791	CA	THR THR		62 62	25.301	60.393 60.568	6.038 6.056	1.00 61.65	6
	ATOM	3792	CB OC1	THR			26.840 27.389	59.999	7.256	1.00 63.35	8
	MOTA MOTA	3793 3794	CG2			62	27.207	62.045	5.983	1.00 61.52	6
	ATOM	3795	C	THR		62	24.970	58.917	6.211	1.00 60.11	6
25	ATOM	3796	ō	THR		62	25.303	58.095	5.354	1.00 61.77	8
	ATOM	3797	N	LEU		63	24.313	58.592	7.321	1.00 58.17	7
	ATOM	3798	CA	LEU		63	23.919	57.219	7.621	1.00 57.53	6
	ATOM	3799	CB	LEU	С	63	24.079	56.929	9.111	1.00 54.69	6
	ATOM	3800	CG	LEU	С	63	25.442	57.142	9.750	1.00 55.50	6
30	MOTA	3801		LEU		63	25.327	56.938	11.263	1.00 54.27	6
	MOTA	3802		LEU		63	26.449	56.178	9.139	1.00 55.93	6
	MOTA	3803	C	LEU		63	22.455	56.977	7.242	1.00 58.42	6
	MOTA	3804	0	LEU		63	22.010	55.830	7.147 7.037	1.00 58.94 1.00 58.80	
25	MOTA	3805	N	ALA		64 64	21.707 20.291	58.055 57.928	6.703	1.00 58.80	
35	ATOM ATOM	3806 3807	CA CB	ALA ALA		64	19.666	59.310	6.522	1.00 61.89	
	ATOM	3808	C	ALA		64	20.081	57.087	5.450	1.00 63.09	
	ATOM	3809	Ö	ALA		64	20.840	57.179	4.481	1.00 63.27	
	ATOM	3810	N	TRP		65	19.055	56.249	5.485	1.00 65.02	
40	ATOM	3811	CA	TRP		65	18.749	55.381	4.355	1.00 66.31	6
	ATOM	3812	CB	TRP		65	19.329	53.989	4.600	1.00 64.14	6
	MOTA	3813	CG	TRP	С	65	18.597	53.208	5.687	1.00 62.22	
	MOTA	3814	CD2	TRP	С	65	18.962	53.110	7.074	1.00 57.97	
	MOTA	3815		TRP		65	18.025	52.247	7.694	1.00 56.42	
45	MOTA	3816		TRP		65	19.985	53.666	7.848	1.00 55.52	
	ATOM	3817		TRP		65	17.475	52.430	5.533	1.00 60.23	
	ATOM	3818		TRP		65	17.131	51.849	6.734 9.049	1.00 57.79 1.00 55.30	
	MOTA	3819		TRP		65 65	18.088 20.047	51.926 53.350	9.195	1.00 56.61	
50	MOTA MOTA	3820 3821		TRP		65	19.102	52.484	9.784	1.00 56.47	
50	MOTA	3822	CHZ	TRP		65	17.238	55.287	4.252	1.00 68.58	
	ATOM	3823		TRP		65	16.540	55.365	5.268	1.00 67.72	
	ATOM	3824	N	ASN		66	16.728	55.113	3.037	1.00 72.17	
	ATOM	3825	CA	ASN		66	15.283	55.011	2.882	1.00 75.21	
55	ATOM	3826	CB	ASN		66	14.863	55.013	1.408	1.00 77.34	
	ATOM	3827	CG	ASN		66	13.355	55.190	1.244	1.00 79.16	6
	ATOM	3828		. ASN		66	12.845	55.261	0.119	1.00 80.81	. 8
	ATOM	3829	ND2	ASN		66	12.633	55.267	2.374	1.00 77.07	
	MOTA	3830	С	ASN		66	14.802	53.730	3.532	1.00 74.77	
60		3831	0	ASN		66	15.431	52.675	3.383	1.00 75.31	
	MOTA	3832	N	SER	С	67	13.685	53.816	4.244	1.00 73.52	? 7

PCT/EP01/01457

WO 01/58951

	M O 01/2	0931							PC 1/EFU1/01	437
						-135				
	ATOM	3833	CA	SER C	C 67	13.166	52.647	4.920	1.00 73.52	,6
	ATOM	3834	CA CB	SER C		13.451	52.759	6.411	1.00 73.32	.6
	ATOM	3835	OG	SER C		12.985	53.994	6.914	1.00 72.03	8
		3836							1.00 75.29	6
5	ATOM		C	SER (11.684	52.469 51.788	4.702	1.00 75.29	
J	MOTA	3837	0	SER (11.010		5.493		. 8 . 7
	MOTA	3838	N	SER (11.165	53.077	3.639	1.00 77.57	
	ATOM	3839	CA	SER (9.739	52.957	3.356	1.00 78.39	6 6
	MOTA	3840 3841	CB	SER C		9.327	53.874	2.187	1.00 77.79	
10	ATOM		OG	SER (10.010	53.570	0.983	1.00 77.16	8
10	MOTA	3842	C	SER C		9.398	51.498	3.051	1.00 78.91	6
	ATOM	3843 3844	0	SER (8.242	51.165	2.802	1.00 78.88	8 7
	ATOM		N	HIS (10.415	50.634	3.090	1.00 80.17	
	MOTA	3845	CA	HIS C		10.252	49.197	2.824	1.00 81.55	6
15	MOTA	3846	CB CG	HIS C		10.307 9.327	48.935 49.755	1.319	1.00 84.67 1.00 88.75	6 6
10	MOTA	3847		HIS C				0.542	1.00 89.38	6
	MOTA	3848		HIS C		8.119	49.436	0.014	1.00 89.38	
	ATOM	3849 3850		HIS O		9.479 8.405	51.115 51.600	0.359 -0.239	1.00 89.98	7 6
	ATOM			HIS (7.564	50.602		1.00 91.29	
20	ATOM ATOM	3851		HIS (11.363		-0.458 3.514	1.00 91.72	7 6
20		3852	C	HIS (48.406 47.318		1.00 80.62	8
	ATOM	3853	0	SER (11.740		3.072 4.614	1.00 79.13	7
	ATOM ATOM	3854 3855	N			11.867	48.961			
		3856	CA	SER (12.950	48.341	5.355	1.00 77.30 1.00 77.47	6
25	ATOM ATOM		CB OG	SER (14.262 14.107	48.818 48.991	4.739		6
20	ATOM	3857						3.336	1.00 74.00	8
		3858	C	SER (12.880	48.746	6.836	1.00 76.56	6
	ATOM	3859	0	SER (12.168	49.686	7.193	1.00 77.11	8
	ATOM	3860	N	PRO (13.587	48.014	7.726	1.00 76.29	7
30	ATOM	3861	CD	PRO C		14.305	46.733	7.544	1.00 75.52	6
30	ATOM	3862	CA	PRO C		13.538	48.401	9.143	1.00 74.74	6
	MOTA	3863	CB	PRO (14.366	47.322	9.843	1.00 75.26	6
	ATOM	3864 3865	CG	PRO O		14.241	46.124	8.936	1.00 75.64	6
	MOTA		С			14.202	49.771	9.235	1.00 73.61	6
35	ATOM ATOM	3866 3867	И О	PRO (15.042 13.828	50.125 50.537	8.401 10.247	1.00 72.22 1.00 72.60	8 7
00	ATOM	3868	CA	ASP (14.377	51.869	10.247	1.00 72.00	6
	ATOM	3869	CB	ASP (13.277	52.795	10.414	1.00 70.96	6
	ATOM	3870	CG	ASP (11.919	52.353	10.833	1.00 73.23	6
	ATOM	3871		ASP (11.633	52.512	9.199	1.00 78.33	8
40	ATOM	3872		ASP (11.150	51.821	11.256	1.00 79.56	8
70	ATOM	3873	C	ASP (15.519	51.835	11.411	1.00 79.36	6
	ATOM		Ö	ASP (16.046			1.00 66.88	8
	ATOM	3875	И	GLN (15.883	50.625	11.838	1.00 63.81	7
	ATOM	3876	CA	GIN (17.001	50.485	12.756	1.00 61.20	6
45	ATOM	3877	CB	GLN (16.537	50.494	14.191	1.00 61.20	6
-10	ATOM	3878	CG	GLN (16.121	51.802	14.749	1.00 62.71	6
	ATOM	3879	מכ	GLN (15.665	51.602	16.163	1.00 64.60	6
	ATOM	3880		GLN (14.784	50.779	16.421	1.00 67.49	8
	ATOM	3881	NE2	GLN (16.267	52.329	17.099	1.00 66.00	7
50	ATOM	3882	C	GLN (17.842	49.232	12.583	1.00 59.70	6
00	ATOM	3883	0	GLN (17.350	48.167	12.213	1.00 53.70	8
	ATOM	3884	И	VAL (19.122	49.369	12.893	1.00 56.05	7
	ATOM	3885	CA	VAL (20.050	48.260	12.825	1.00 50.05	
	ATOM			VAL (48.177		1.00 52.11	6
55		3886	CB CG1	VAL (20.736	48.177	11.454		6
	ATOM ATOM	3887 3888	CG2			19.732 21.376	49.507	10.397 11.112	1.00 51.61 1.00 52.96	6
	ATOM	3889	CGZ	VAL (21.095	48.498	13.891	1.00 52.96	6 6
	ATOM	3890	0	VAL (21.095	49.626	14.332	1.00 50.29	8
	ATOM	3891	N	SER (21.754	47.431	14.323	1.00 49.79	7
60	ATOM	3892	CA	SER (22.809	47.533	15.318	1.00 45.56	6
00	MOTA	3893	CB	SER (22.784	46.337	16.257	1.00 43.40	6
	MION	2023		- 1111 C	- / 3	22./04	- 0.33/	10.23/	T.OO ZO.EO	U

						-136				
	ATOM	3894	OG	SER C	75	21.818	46.521	17.269	1.00 43.99	8
	ATOM	3895	C	SER C	75	24.146	47.611	14.595	1.00 44.84	6
	MOTA	3896	0	SER C	75	24.519	46.703	13.858	1.00 47.60	8
	MOTA	3897	N	VAL C	76	24.858	48.712	14.811	1.00 43.51	7
5	ATOM	3898	CA	VAL C	76	26.140	48.941	14.165	1.00 42.84	6
	MOTA	3899	CB	VAL C	76	26.122	50.273	13,412	1.00 41.76	6
	ATOM	3900	CG1	VAL C	76	27.441	50.504	12.741	1.00 42.71	б
	MOTA	3901	CG2	AYT C	76	25.003	50.279	12.403	1.00 40.70	6
40	MOTA	3902	С	VAL C	. 76	27.294	48.961	15.153	1.00 42.64	6
10	ATOM	3903	0	VAL C	76	27.194	49.542	16.227	1.00 45.77	8
	ATOM	3904	N	PRO C	77	28.409	48.313	14.812	1.00 41.78	7
	ATOM	3905	CD	PRO C	77	28.644	47.345	13.737	1.00 41.15	6
	ATOM	3906	CA	PRO C	77	29.532	48.326	15.748	1.00 41.64	6
15	ATOM ATOM	3907 3908	CB	PRO C	77 77	30.527	47.370	15.108	1.00 40.47	6
10	ATOM	3909	CG C	PRO C	77	29.65 <u>4</u> 30.074	46.432	14.379	1.00 42.43	6
	ATOM	3910	0	PRO C	77	30.123	49.746 50.489	15.860	1.00 41.29 1.00 38.61	6
	ATOM	3911	N	ILE C	78	30.469	50.489	14.881 17.070	1.00 38.81	8 7
	ATOM	3912	CA	ILE C	78	31.000	51.433	17.359	1.00 41.82	6
20	ATOM	3913	CB	ILE C	78	31.439	51.489	18.837	1.00 42.16	6
	ATOM	3914	CG2	ILE C	78	32.370	52.634	19.107	1.00 42.14	6
	ATOM	3915	CG1		78	30.193	51.601	19.696	1.00 44.77	6
	ATOM	3916	CD1		78	29.251	52.676	19.216	1.00 44.16	6
	ATOM	3917	С	ILE C	78	32.149	51.813	16.450	1.00 42.57	6
25	MOTA	3918	0	ILE C	78	32.287	52.963	16.063	1.00 45.18	8
	MOTA	3919	N	SER C	79	32.963	50.829	16,100	1.00 43,18	7
	MOTA	3920	CA	SER C	79	34.120	51.030	15.241	1.00 43.52	6
	MOTA	3921	CB	SER C	79	34.969	49.768	15.242	1.00 43.74	6
00	MOTA	3922	OG	SER C	79	34.189	48.637	14.910	1.00 43.50	8
30	MOTA	3923	C	SER C	79	33.810	51.415	13.804	1.00 43.41	6
	MOTA	3924	0	SER C	79	34.698	51.838	13.082	1.00 44.10	8
	ATOM	3925	N	SER C	80	32.562	51.264	13.380	1.00 43.62	7
	MOTA	3926	CA	SER C	80	32.180	51.604	12.012	1.00 44.83	6
35	MOTA MOTA	3927 3928	CB OG	SER C	80 80	31.260	50.534	11.441	1.00 44.21	6
00	ATOM	3929	C	SER C	80	31.915 31.482	49.284 52.956	11.380 11.908	1.00 52.55 1.00 46.57	8
	MOTA	3930	0	SER C	80	31.050	53.355	10.829	1.00 46.37	6 8
	ATOM	3931	N	LEU C	81	31.366	53.649	13.035	1.00 46.18	7
	ATOM	3932	CA	LEU C	81	30.720	54.952	13.080	1.00 45.86	6
40	ATOM	3933	СВ	LEU C	81	29.467	54.891	13.935	1.00 45.00	6
	MOTA	3934	CG	LEU C	81	28.421	53.827	13.653	1.00 46.58	6
	ATOM	3935	CD1	LEU C	81	27.488	53.701	14.839	1.00 45.04	6
	MOTA	3936	CD2	LEU C	81	27.667	54.198	12.405	1.00 47.69	6
	ATOM	3937	С	TEA C	81	31.645	55.973	13.718	1.00 46.18	6
45	MOTA	3938	0	TEA C	81	32.636	55.613	14.355	1.00 50.36	8
	MOTA	3939	N	TRP C	82	31.323	57.249	13.536	1.00 43.58	7
	MOTA	3940	CA	TRP C	82	32.086	58.303	14.161	1.00 39.79	6
	MOTA	3941	CB	TRP C	82	31.860	59.639	13.463	1.00 41.96	6
50	MOTA	3942	CG	TRP C	.82	32.342	60.817	14.278	1.00 44.12	б
50	MOTA	3943		TRP C	82	31.577	61.569	15.230	1.00 44.19	6
	MOTA	3944	CE2		82	32.453	62.504	15.823	1.00 43.39	6
	ATOM	3945		TRP C	82	30.234	61.540	15.645	1.00 44.58	6
	MOTA MOTA	3946 3947		TRP C	82 82	33.611 33.686	61.318	14.327	1.00 43.74	6
55	ATOM	3947		TRP C	82	32.033	62.327 63.405	15.252 16.809	1.00 44.54 1.00 42.68	7
	ATOM	3949		TRP C	82	29.818	62.430	16.809	1.00 42.68	6
	ATOM	3950		TRP C	82	30.717	63.352	17.195	1.00 43.22	6 6
	ATOM	3951	C	TRP C	82	31.426	58.348	15.514	1.00 40.00	6
	ATOM	3952	Ö	TRP C	82	30.219	58.174	15.619	1.00 39.36	8
60	MOTA	3953	N	VAL C	83	32.201	58.574	16.557	1.00 40.23	7
	MOTA	3954	CA	VAL C	83	31.626	58.649	17.887	1.00 39.34	6

	WO 01/5	8951								PCT/EP01/01	457
							-137				
	ATOM	3955	CB	VAL		83	31.891	57.325	18.657	1.00 38.82	6
	MOTA	3956		VAL		83	31.587	57.479	20.109	1.00 39.50	. 6
	ATOM	3957		VAL		83	31.021	56.219	18.087	1.00 38.81	6
5	ATOM	3958	C	VAL		83	32.205	59.860 60.222	18.624 18.428	1.00 40.30 1.00 41.45	6 8
3	MOTA	3959 3960	0	VAL PRO		83 84	33.365 31.386	60.528	19.451	1.00 38.82	7
	ATOM ATOM	3961	N CD	PRO		84	29.948	60.288	19.644	1.00 40.83	6
	MOTA	3962	CA	PRO		84	31.812	61.698	20.220	1.00 36.19	6
	ATOM	3963	CB	PRO		84	30.580	62.022	21.058	1.00 37.66	6
10	ATOM	3964	CG	PRO		84	29.479	61.609	20.201	1.00 39.39	6
	MOTA	3965	С	PRO	С	84	32.999	61.358	21.098	1.00 34.25	6
	MOTA	3966	0	PRO	С	84	32.987	60.351	21.788	1.00 35.16	8
	MOTA	3967	N	ASP	С	85	34.016	62.206	21.093	1.00 33.39	7
	MOTA	3968	CA	ASP		85	35.192	61.949	21.909	1.00 34.67	6
15	MOTA	3969	CB	ASP		85	36.423	62.588	21.270	1.00 35.95	6
	ATOM	3970	CG	ASP		85	36.260	64.056	21.046	1.00 35.70	6
	ATOM	3971		ASP		85	35.159	64.468	20.662	1.00 34.85	8
	MOTA	3972		ASP		85	37.234.		21.238 23.326	1.00 38.52 1.00 36.34	8
20	MOTA	3973	C	ASP		85 85	35.005	62.452		1.00 30.34	6 8
20	ATOM ATOM	3974 3975	0	ASP LEU		85 86	35.806 33.941	63.229 61.978	23.841 23.962	1.00 35.41	7
	ATOM	3975	N CA	LEU		86	33.609	62.385	25.315	1.00 36.00	6
	ATOM	3977	CB	LEU		86	32.208	61.904	25.678	1.00 35.07	6
	ATOM	3978	CG	LEU		86	31.089	62.464	24.806	1.00 36.71	6
25	ATOM	3979		LEU		86	29.752	61.912	25.240	1.00 31.87	6
	ATOM	3980		LEU		86	31.112	63.974	24.910	1.00 35.41	6
	ATOM	3981	С	LEU		86	34.585	61.870	26.337	1.00 36.89	6
	ATOM	3982	0	LEU		86	35.147		26.189	1.00 38.19	8
	MOTA	3983	N	ALA	С	87	34.773	62.648	27.391	1.00 38.71	7
30	MOTA	3984	CA	ALA	C	87	35.672	62.268	28.461	1.00 38.06	6
	MOTA	3985	CB	ALA	С	87	37.045	62.838	28.200	1.00 35.59	6
	ATOM	3986	С	ALA		87	35.119	62.799	29.772	1.00 38.10	6
	MOTA	3987	0	ALA		87	34.586	63.891	29.815	1.00 37.91	8
^-	MOTA	3988	N	ALA		88	35.217	62.013	30.833	1.00 39.52	7
35	MOTA	3989	CA	ALA		88	34.756	62.448	32.147	1.00 40.05	6
	MOTA	3990	CB	ALA		88	34.356 35.939	61.250 63.169	33.005 32.771	1.00 40.30 1.00 41.63	6 6
	ATOM ATOM	3991 3992	C O	ALA ALA		88 88	36.912	62.545	33.195	1.00 41.03	8
	MOTA	3993	N	TYR		89	35.852	64.492	32.799	1.00 42.71	7
40	MOTA	3994	CA	TYR		89	36.904	65.350	33.330	1.00 41.60	6
	MOTA	3995	CB	TYR		89	36.368	66.775		1.00 43.41	6
	ATOM	3996	CG	TYR		89	35.976	67.422	32.149	1.00 48,68	6
	ATOM	3997	CD1	TYR		89	35.321	68.653	32.129	1.00 51.90	6
	ATOM	3998	CE1	TYR	С	89	34.991	69.284	30.920	1.00 53.01	6
45	MOTA	3999		TYR		89	36.290	66.830	30.929	1.00 48.32	6
	MOTA	4000		TYR		89	35.966	67.449	29.726	1.00 52.45	6
	MOTA	4001	CZ	TYR		89	35.318	68.678	29.730	1.00 53.45	6
	MOTA	4002	OH	TYR			35.017	69.305	28.545	1.00 56.75	8
Ε Λ	ATOM	4003	C	TYR		89	37.527	64.914	34.657	1.00 40.68 1.00 39.21	- 6
50	MOTA	4004	0	TYR		89	38.727 36.725	65.075 64.364	34.863 35.562	1.00 39.21	8 7
	MOTA	4005 4006	N CA	ASN ASN		90 90	37.265	63.952	36.848	1.00 39.35	6
	MOTA ATOM	4005	CB	ASN		90	36.476	64.603	37.989	1.00 38.99	6
	ATOM	4007	CG	ASN		90	34.995	64.290	37.944	1.00 38.22	6
55	ATOM	4009		ASN		90	34.355	64.378	36.902	1.00 37.33	8
	ATOM	4010		ASN		90	34.443	63.939	39.090	1.00 39.59	7
	ATOM	4011	C	ASN		90	37.343	62.448	37.033	1.00 41.22	6
	MOTA	4012	Ō	ASN		90	37.354	61.946	38.153	1.00 42.78	8
	MOTA	4013	N	ALA	C	91	37.400	61.733	35.915	1.00 42.37	7
60	ATOM	4014	CA	ALA		91	37.528	60.292	35.928	1.00 40.71	6
	MOTA	4015	CB	ALA	C	91	37.346	59.733	34.521	1.00 41.88	6

PCT/EP01/01457

	WU 01/5	8951								PCI	/EPU1/U1	437
							-138					
	з пом	1016	~	א ד א	_	91	38.939	60.033	36.435	1 00	39.96	6
	MOTA	4016	С	ALA							35.60	8
	ATOM	4017	0	ALA		91	39.898	60.664	36.007		41.49	7
	ATOM	4018	N	ILE		92	39.040	59.093	37.356			
~	MOTA	4019	CA	ILE		92	40.292	58.731	37.993		43.20	6
5	MOTA	4020	CB	ILE		92	40.020	58.594	39.511		47.77	6
	MOTA	4021		ILE		92	39.923	57.130	39.921		48.36	6
	ATOM	4022	CG1	ILE	С	92	41.093	59.293	40.316		50.98	6
	MOTA	4023	CD1	ILE	С	92	40.903	59.036	41.812		55.36	6
	ATOM	4024	С	ILE	С	92	40.861	57.416	37.403		41.81	6
10	ATOM	4025	0	ILE	С	92	41.973	56.992	37.720	1.00	40.19	8
	ATOM	4026	N	SER	С	93	40.080	56.781	36.541	1.00	39.24	7
	MOTA	.4027	CA	SER	С	93	40.470	55.534	35.913	1.00	39.09	6
	ATOM	4028	CB	SER		93	39.892	54.356	36.685	1.00	39.19	б
	MOTA	4029	OG	SER		93	38.479	54.310	36.541	1.00	39.34	8
15	MOTA	4030	C	SER		93	39.839	55.579	34.546		37.69	6
	ATOM	4031	ō	SER		93	38.987	56.404	34.311		39.27	8
	ATOM	4032	N	LYS		94	40.251	54.717	33.632		37.58	. 7
	ATOM	4033	CA	LYS		94	39.612	54.737	32.330		40.65	. 6
	ATOM	4033	CB	LYS		94	40.560	54.256	31.228		41.66	6
20				LYS		94	41.383	53.024	31.520		46.32	6
20	ATOM	4035	CG									6
	MOTA	4036	CD	LYS		94	42.502	52.902	30.485		48.62	
	MOTA	4037	CE	LYS		94	41.962	53.091	29.069		47.90	6
	MOTA	4038	NZ	LYS		94	42.999	52.929	28.024		48.05	7
~ =	MOTA	4039	С	LYS		94	38.321	53.926	32.359		40.78	6
25	MOTA	4040	0	LYS		94	38.102	53.094	33.234		42.52	8
	MOTA	4041	N	PRO		95	37.434	54.178	31.404		41.55	7
	MOTA	4042	CD	PRO	С	95	37.555	55.150	30.312		42.12	б
	ATOM	4043	CA	PRO	С	95	36.153	53.479	31.335		41.34	б
	ATOM	4044	CB	PRO	С	95	35.439	54.166	30.177	1.00	41.08	6
30	ATOM	4045	CG	PRO	С	95	36.125	55.476	30.058	1.00	42.87	6
	ATOM	4046	С	PRO	С	95	36.256	52.000	31.102	1.00	40.86	6
	ATOM	4047	0	PRO		95	36.941	51.563	30.189	1.00	41.65	8
	ATOM	4048	N	GLU		96	35.581	51.228	31.940	1.00	40.55	7
	ATOM	4049	CA	GLU		96	35.560	49.791	31.766	1.00	41.10	6
35	ATOM	4050	CB	GLU		96	35.684	49.050	33.104		43.71	6
-	ATOM	4051	CG	GLU		96	35.762	47.521	32.954		49.85	6
	ATOM	4052	CD	GLU		96	35.912	46.768	34.286		54.35	6
	ATOM	4053		GLU		96	36.282	47.404	35.302		58.62	8
	ATOM	4054		GLU		96	35.682	45.534	34.316		52.48	8
40	ATOM	4055	C	GLU		96	34.190	49.553	31.168		39.91	6
40							33.200	49.478	31.894		40.62	8
	MOTA	4056	0	GLU		96						7
	ATOM	4057	N	VAL		97		49.483				
	MOTA	4058	CA	VAL		97	32.876	49.249	29.153		34.27	6
4 ~	ATOM	4059	CB	VAL		97	33.006	49.541	27.660		31.66	. 6
45	MOTA	4060		VAL		97	31.686	49.333	26.968		34.09	6
	ATOM	4061		VAL		97	33.437	50.963	27.470		30.22	6
	MOTA	4062	С	VAL		97	32.481	47.801	29.382		34.55	6
	MOTA	4063	0	VAL		97	33.167	46.891	28.949		35.63	8
	MOTA	4064	N	LEU	С	98	31.362	47.607	30.072	1.00	35.35	7
50	MOTA	4065	CA	LEU	С	98	30.868	46.286	30.433	1.00	34.12	6
	MOTA	4066	CB	LEU	С	98	30.098	46.377	31.752		33.63	6
	MOTA	4067	CG	LEU	С	98	30.741	47.049	32.961	1.00	35.44	б
	ATOM	4068	CD1	LEU	С	98	29.694	47.352	33.989	1.00	37.77	6
	MOTA	4069	CD2	LEU	С	98	31.806	46.166	33,538	1.00	34.23	6
55	MOTA	4070	С	LEU		98	29.965	45.641	29.404	1.00	36.94	6
	ATOM	4071	ō	LEU		98	29.640	44.464	29.524		39.49	8
	ATOM	4072	N	THR		99	29.567		28.389		36.94	7
	ATOM	4073	CA	THR		99	28.642	45.881	27.393		36.72	6
	ATOM	4074	CB	THR			27.317				36.81	6
60	ATOM	4075		THR			27.574				40.25	8
50	ATOM	4075		THR		99	26.648	46.474	28.792		34.14	6
	VION	-20/0	CGZ	7111/	_	,,	20.040	~U.4114	23.172	00		·

	WO 01/58	951							PCT/EP01/014	57
						-139				
	MOTA	4077	С	THR C	99	29.154	45.895	25.965	1.00 37.65	6
	MOTA	4078	0	THR C	99	30.147	46.549	25.664	1.00 37.93	8
	ATOM	4079	N	PRO C	100	28.497	45.134	25.073	1.00 37.89	7
5	MOTA	4080	CD	PRO C		27.443	44.145	25.364	1.00 40.71	6
5	ATOM ATOM	4081 4082	CA CB	PRO C	100	28.874 27.716	45.065 44.298	23.667 23.046	1.00 37.03 1.00 37.46	. 6 6
	ATOM	4083	CG	PRO C		27.402	43.316	24.094	1.00 37.40	6
	ATOM	4084	C	PRO C		28.963	46.476	23.139	1.00 38.41	6
	ATOM	4085	0	PRO C	100	28.082	47.297	23.390	1.00 39.24	8
10	ATOM	4086	N		101	30.026	46.772	22.412	1.00 38.06	7
	ATOM	4087	CA	GLN C		30.169	48.113	21.893	1.00 39.24	6
	MOTA	4088	CB	GLN C		31.639	48.479	21.827	1.00 38.35	6
	ATOM ATOM	4089 4090	CG CD	GLN C	101	32.140 33.633	48.846 48.822	23.195 23.291	1.00 43.58 1.00 47.06	6 6
15	ATOM	4091	OE1			34.315	49.497	22.533	1.00 47.00	8
. •	ATOM	4092	NE2		101	34.160	48.041	24.227	1.00 48.13	7
	ATOM	4093	C	GLN C		29.471	48.333	20.571	1.00 38.37	6
	MOTA	4094	0	GLN C		30.095	48.620	19.554	1.00 36.55	8
00	ATOM	4095	N	TEA C		28.148	48.198	20.627	1.00 40.04	7
20	ATOM	4096	CA	LEU C		27.263	48.373	19.478	1.00 40.82	6
	ATOM ATOM	4097 4098	CB. CG	TEA C		26.376	47.143	19.289	1.00 38.65 1.00 40.16	6 6
	ATOM	4099			102	27.061 26.015	45.791 44.708	19.163 18.994	1.00 40.16	6
	ATOM	4100		LEU C		27.991	45.815	17.981	1.00 37.03	6
25	ATOM	4101	C	LEU C		26.362	49.583	19.685	1.00 40.48	6
	ATOM	4102	0		102	25.940	49.880	20.800	1.00 39.50	8
	MOTA	4103	N	ATY C		26.072	50.280	18.603	1.00 40.58	7
	MOTA	4104	CA	ALA C		25.203	51.434	18.674	1.00 42.17	6
30	ATOM	4105	СВ	ALA C	103	25.879	52.646	18.054	1.00 43.90	6
30	MOTA MOTA	4106 4107	С О	ALA C	103	23.950 23.905	51.087 50.092	17.904 17.189	1.00 43.55 1.00 44.89	6 8
	ATOM	4107	N	ARG C		22.930	51.916	18.048	1.00 45.38	7
	ATOM	4109	CA	ARG C	104	21.674	51.689	17.359	1.00 46.54	6
	ATOM	4110	CB	ARG C		20.549	51.665	18.381	1.00 46.10	6
35	ATOM	4111	CG	ARG C		19.292	51.040	17.879	1.00 47.91	б
	ATOM	4112	CD	ARG C	104	19.457	49.560	17.559	1.00 45.29	6
	ATOM	4113	NE		104	18.188	49.059	17.035	1.00 46.68	7
	MOTA ATOM	4114 4115	CZ NU1	ARG C	104 104	17.927 18.850	47.792 46.866	16.761 16.954	1.00 46.66 1.00 47.05	6 7
40	ATOM	4115			104	16.733	47.452	16.308	1.00 47.03	7
. •	ATOM	4117	C	ARG C		21.491	52.830	16.367	1.00 46.82	6
	ATOM	4118	0	ARG C		21.550	53.999	16.738	1.00 49.29	8
	MOTA	4119	N	VAL C		21.296	52.501	15.098	1.00 47.65	7
4 =	ATOM	4120	CA	VAL C		21.138	53.543	14.092	1.00 47.99	6
45	ATOM	4121	CB	VAL C		22.200	53.426	12.980	1.00 46.29	6
	MOTA ATOM	4122 4123		VAL C		22.080 23.583	54.588 53.386	12.021 13.580	1.00 44.96 1.00 42.95	· 6
	ATOM	4124	CGZ	VAL C		19.769	53.519	13.444	1.00 42.33	6
	ATOM	4125	o	VAL C		19.340	52.497	12.904	1.00 50.01	8
50	ATOM	4126	N	VAL C		19.097	54.666	13.506	1.00 51.90	7
	ATOM	4127	CA	VAL C	106	17.767	54.836	12.933	1.00 53.33	6
	MOTA	4128	CB	AYT C		16.947	55.840	13.758	1.00 51.93	6
	MOTA	4129		VAL C		15.503	55.825	13.306	1.00 49.94	6
55	ATOM	4130 4131		VAL C		17.060 17.899	55.504	15.222	1.00 50.56 1.00 53.76	6
00	ATOM ATOM	4131	С О	VAL C		18.782	55.347 56.151	11.497 11.203	1.00 52.33	6 8
	MOTA	4133	Ŋ	SER C		17.016	54.889	10.615	1.00 54.08	7
	ATOM	4134	CA	SER C		17.066	55.275	9.208	1.00 56.13	6
	ATOM	4135	CB	SER C	107	15.835	54.734	8.487	1.00 56.67	6
60	ATOM	4136	OG	SER C		14.672	54.943	9.268	1.00 59.41	8
	MOTA	4137	С	SER C	107	17.228	56.762	8.895	1.00 56.30	6

						-140				
	ATOM	4138	0	SER C 107		17.678	57.129	7.797	1.00 55.13	8
	ATOM	4139		ASP C 108		16.879	57.619	9.849	1.00 56.72	7
	ATOM	4140		ASP C 108		16.999	59.064	9.632	1.00 58.46	6
	ATOM	4141	CB	ASP C 108		15.875	59.807	10.353	1.00 59.64	6
5	ATOM	4142	CG	ASP C 108		15.998	59.735	11.856	1.00 60.59	6
	ATOM	4143	OD1	ASP C 108		16.432	58.693	12.378	1.00 61.80	8
	ATOM	4144	OD2	ASP C 108		15.643	60.724	12.520	1.00 63.04	8
	ATOM	4145	С	ASP C 108		18.345	59.648	10.054	1.00 58.38	6
	ATOM	4146	0	ASP C 108		18.513	60.859	10.068	1.00 58.33	8 7
10	MOTA	4147	N	GLY C 109		19.299	58.785	10.396	1.00 59.41 1.00 58.66	6
	MOTA	4148	CA	GLY C 109		20.618	59.246	10.786	1.00 59.58	6
	MOTA	4149	C	GLY C 109		20.802	59.467 59.926	12.271 12.695	1.00 59.07	8
	ATOM	4150	0	GLY C 109		21.868 19.775	59.165	13.064	1.00 59.04	7
4.5	MOTA	4151	N	GLU C 110		19.773	59.325	14.508	1.00 59.38	6
15	MOTA	4152	CA	GLU C 110		18.481	59.327	15.141	1.00 62.39	6
	MOTA	4153	CB	GLU C 11		18.386	60.020	16.513	1.00 66.23	6
	MOTA	4154 4155	CD	GLU C 11		18.717	61.520	16.441	1.00 70.42	6
	MOTA MOTA	4155	OE1	GLU C 11		18.640	62.107	15.333	1.00 69.27	8
20	MOTA	4157	OE2	GLU C 11		19.047	62.117	17.493	1.00 72.25	8
20	MOTA	4158	C	GLU C 11		20.677	58.141	15.038	1.00 59.61	6
	ATOM	4159	o	GLU C 11		20.467	56.995	14.623	1.00 60.95	8
	ATOM	4160	N	VAL C 11		21.600	58.419	15.953	1.00 57.63	7
	ATOM	4161	CA	VAL C 11		22.444	57.379	16.535	1.00 55.43	6
25	MOTA	4162	СВ	VAL C 11		23.926	57.620	16.200	1.00 55.71	6
	MOTA	4163		VAL C 11		24.783	56.511	16.788	1.00 53.14	6
	MOTA	41.64	CG2	VAL C 11		24.105	57.706	14.686	1.00 56.04	6
	MOTA	4165	C	VAL C 11		22.308	57.337	18.048	1.00 54.63	6
	MOTA	4166	0	VAL C 11		22.328	58.373	18.706	1.00 53.67	8 7
30	MOTA	4167	N	LEU C 11		22.171	56.137	18.596	1.00 53.09	6
	MOTA	4168	CA	LEU C 11		22.050	55.992	20.034	1.00 53.62 1.00 56.64	6
	MOTA	4169	CB	LEU C 11		20.638	55.548 56.011	20.420 19.657	1.00 50.85	6
	MOTA	4170	CG	LEU C 11		19.380	57.490	19.341	1.00 62.41	6
05	MOTA	4171		LEU C 11 LEU C 11		19.439 19.244	55.207	18.374	1.00 62.32	6
35	MOTA	4172 4173	CD2	LEU C 11		23.053	54.963	20.542	1.00 53.28	6
	ATOM ATOM	4174	0	LEU C 11		23.024	53.807	20.134	1.00 54.91	8
	ATOM	4175	N	TYR C 11		23.943	55.389	21.429	1.00 50.87	7
	ATOM	4176	CA	TYR C 11		24.947	54.502	22.003	1.00 47.87	6
40	MOTA	4177	СВ	TYR C 11		26.362	54.924	21.560	1.00 44.85	6
-10	MOTA	4178	CG	TYR C 11		27.500	54.099	22.134	1.00 40.84	6
	ATOM	4179		. TYR C 11		27.428	52.716	22.181	1.00 39.92	6
	MOTA	4180	CE1	TYR C 1	.3	28.481	51.956		1.00 39.26	6
٠	MOTA	4181		2 TYR C 11		28.663	54.710	22.602	1.00 41.11	6
45	MOTA	4182	CE2			29.720	53.962	23.100	1.00 40.68	6
	MOTA	4183	CZ	TYR C 11		29.625	52.583	23.138	1.00 41.46	6
	MOTA	4184	OH	TYR C 1		30.667	51.831	23.649	1.00 40.70 1.00 48.03	8 6
	MOTA	4185	С	TYR C 1		24.805	54.611	23.508	1.00 47.83	8
	MOTA	4186	0	TYR C 1		25.002	55.673	24.089	1.00 47.83	7
50	MOTA	4187		MET C 13		24.457	53.508	24.146 25.583	1.00 49.26	6
	MOTA	4188		MET C 1		24.283	53.519 53.375	25.910	1.00 43.20	6
	ATOM	4189		MET C 1:		22.809 22.494	53.558	27.370	1.00 58.33	6
	MOTA	4190		MET C 1		20.864	52.927	27.696	1.00 67.34	16
55	MOTA MOTA	4191 4192		MET C 1		19.859	54.330	27.098	1.00 65.99	6
J	MOTA	4192		MET C 1		25.055		26.244		6
	MOTA	4193		MET C 1		24.485				8
	MOTA	4195		PRO C 1		26.364			1.00 47.40	7
	MOTA	4196				27.181		25.976		6
60	MOTA	4197				27.207	51.556			6
	ATOM	4198		PRO C 1	15	28.591	51.903	26.545	1.00 48.90	6

						-141					
	MOTA	4199	CG	PRO C	115	28.548	53.398	26.559	1.00	48.59	6
	ATOM	4200	C	PRO C		27.153	51.636	28.585	1.00	48.68	6
	ATOM	4201	0	PRO C		26.976	52.720	29.142	1.00	48.78	8
	MOTA	4202	N	SER C		27.291	50.493	29.249	1.00	47.05	7
5	MOTA	4203	CA	SER C	116	27.292	50.481	30.699	1.00		6
	MOTA	4204	СВ	SER C	116	26.746	49.178	31.248	1.00	45.70	6
	MOTA	4205	OG	SER C	116	26.731	49.228	32.667	1.00	46.59	8
	MOTA	4206	С	SER C	116	28.743	50.607	31.097	1.00	47.30	6
	MOTA	4207	0	SER C	116	29.568	49.794	30.695		48.38	8
10	MOTA	4208	N	ILE C	117	29.058	51.622	31.892		45.86	7
	MOTA	4209	CA	ILE C		30.437	51.849	32.293		41.61	6
	MOTA	4210	CB	ILE C		30.926	53.210	31.749		39.60	6
	MOTA	4211	CG2	ILE C		32.325	53.499	32.230		38.47	6
	MOTA	4212	CG1			30.876	53.208	30.225		38.60	6
15	ATOM	4213	CD1			31.025	54.563	29.619		34.54	6
	MOTA	4214	C	ILE C		30.708	51.830	33.796		42.04	6
	MOTA	4215	0	ILE C		29.948	52.390	34.587		42.87	8 7
	MOTA	4216	N	ARG C		31.787	51.158	34.182		40.79 40.35	6
20	ATOM	4217	CA	ARG C		32.210 32.607	51.162 49.782	35.568 36.060		37.23	6
20	MOTA MOTA	4218 4219	CB CG	ARG C		33.172	49.866	37.455		36.55	6
	MOTA	4219	CD	ARG C		33.277	48.538	38.156		39.03	6
	MOTA	4221	NE	ARG C		33.874	48.693	39.483		39.42	. 7
	MOTA	4222	CZ	ARG C		33.882	47.756	40.424		39.50	6
25	ATOM	4223		ARG C		33.326	46.574	40.208		40.01	7
	MOTA	4224	NH2	ARG C		34.434	48.012	41.594	1.00	40.75	7
	MOTA	4225	С	ARG C		33.440	52.065	35.545	1.00	41.99	6
	MOTA	4226	0	ARG C		34.322	51.881	34.722	1.00	43.88	8
	MOTA	4227	N	GLN C	119	33.514	53.040	36.436		42.79	7
30	MOTA	4228	CA	GLN C		34.649	53.947	36.408		43.05	6
	MOTA	4229	CB	GLN C		34.439	54.914	35.252		41.88	6
	MOTA	4230	CG	GLN C		35.502	55.939	35.034		41.06	6
	MOTA	4231	CD	GLN C		35.281	56.668	33.732		41.03	6
25	MOTA	4232		GLN C		34.148	56.899	33.331		40.46	8 7
35	MOTA	4233 4234	NE2 C	GLN C		36.363 34.786	57.039 54.685	33.066 37.728		43.66	6
	MOTA MOTA	4234	0	GLN C		33.803	54.937	38.397		45.00	8
	ATOM	4235	N	ARG C		36.008	55.018	38.113		44.71	7
	ATOM	4237	CA	ARG C		36.210	55.722	39.369		48.39	6
40	ATOM	4238	СВ	ARG C		37.414	55.169	40.107		51.11	6
	ATOM	4239	CG	ARG C		37.325	53.696	40.397	1.00	56.82	6
	MOTA	4240	CD	ARG C		38.116	53.386	41.641		64.45	6
	MOTA	4241	NE	ARG C	120	37.375	53.650	42.886		68.42	7
	MOTA	4242	CZ	ARG C	120	37.903	54.231	43.969		68.95	6
45	MOTA	4243		ARG C		39.169	54.631	43.967		66.80	7
	MOTA	4244		ARG C		37.177	54.373	45.076		69.05	7
	MOTA	4245	С	ARG C		36.388	57.215	39.168		48.49	6
	ATOM	4246	0	ARG C		36.937	57.660	38.161		48.13	8
ΕO	ATOM	4247	N	PHE C		35.916	57.992	40.133 40.035		47.70 47.31	7 6
50	MOTA	4248	CA CB	PHE C		36.013 34.649	59.437 60.045	39.719		43.68	6
	MOTA ATOM	4249 4250	CG	PHE C		34.022	59.489	38.504		43.63	6
	ATOM	4251		PHE C		33.365	58.275	38.549		42.29	6
	MOTA	4251		PHE C		34.104	60.165	37.301		44.87	6
55	ATOM	4253		PHE C		32.793	57.741	37.410		44.63	6
	MOTA	4254		PHE C		33.539	59.643	36.160		45.50	6
	MOTA	4255	CZ	PHE C		32.878	58.425	36.213	1.00	45.14	6
	MOTA	4256	С	PHE C		36.535	60.098	41.280		46.67	6
	MOTA	4257	0	PHE C		36.528	59.525	42.359		47.10	8
60	MOTA	4258	N	SER C		36.984	61.328	41.098		47.71	7
	ATOM	4259	CA	SER C	122	37.469	62.150	42.187	1.00	49.70	6

					-142			•	
	MOTA	4260	СВ	SER C 122	38.799	62.808	41.809	1.00 51.31	6
	MOTA	4261		SER C 122	39.240	63.688	42.829	1.00 51.16	8
	MOTA	4262	C	SER C 122	36.387	63.213	42.365	1.00 50.12	6
	ATOM	4263	Ō	SER C 122	36.169	64.050	41.489	1.00 49.00	8
5	MOTA	4264		CYS C 123	35.687	63.156	43.488	1.00 50.55	7
-	ATOM	4265		CYS C 123	34.636	64.112	43.754	1.00 52.50	6
	MOTA	4266	C	CYS C 123	34.356	64.198	45.246	1.00 54.52	6
	ATOM	4267	ō	CYS C 123	34.998	63.514	46.043	1.00 54.24	8
	ATOM	4268	СВ	CYS C 123	33.377	63.709	42.993	1.00 53.16	6
10	MOTA	4269	SG	CYS C 123	32.811	62.031	43.374	1.00 51.95	16
	MOTA	4270	N	ASP C 124	33.389	65.037	45.622	1.00 56.86	7
	ATOM	4271	CA	ASP C 124	33.047	65.215	47.034	1.00 58.55	6
	MOTA	4272	CB	ASP C 124	32.265	66.514	47.252	1.00 58.22	б
	MOTA	4273	CG	ASP C 124	32.506	67.105	48.634	1.00 58.91	6
15	MOTA	4274	OD1	ASP C 124		66.338	49.589	1.00 58.22	8
	MOTA	4275	OD2	ASP C 124		68.341	48.777	1.00 62.67	8
	MOTA	4276	С	ASP C 124		64.055	47.601	1.00 58.49	6
	MOTA	4277	0	ASP C 124	31.098	63.837	47.229	1.00 58.26	8
	MOTA	4278	N	VAL C 125		63.320	48.513	1.00 59.01	7
20	MOTA	4279	CA	VAL C 125		62.175	49.152	1.00 60.88	6
	MOTA	4280	CB.	VAL C 125		60.983	49.243	1.00 59.28	6
	MOTA	4281		VAL C 125		59.838	49.983	1.00 56.75	6
	MOTA	4282		VAL C 125		60.552	47.856	1.00 58.31	6
05	MOTA	4283	C	VAL C 125		62.530	50.565	1.00 63.26	6
25	ATOM	4284	0	VAL C 125		61.833	51.143 51.122	1.00 63.90 1.00 63.98	8 7
	MOTA	4285	N	SER C 126		63.616 64.026	52.464	1.00 64.49	6
	ATOM	4286	CA	SER C 126		65.400	52.404	1.00 63.93	6
	MOTA	4287 4288	CB OG	SER C 126	· · · · · · · · · · · · · · · · · · ·	66.381	51.898	1.00 61.34	8
30	MOTA MOTA	4289	C	SER C 126		64.061	52.614	1.00 64.90	6
00	MOTA	4290	0	SER C 126		64.603	51.766	1.00 64.08	8
	ATOM	4291	N	GLY C 127		63.458	53.689	1.00 66.05	7
	MOTA	4292	CA	GLY C 127		63.458	53.929	1.00 68.25	6
	ATOM	4293	C	GLY C 127		62.201	53.467	1.00 69.88	6
35	MOTA	4294	0	GLY C 127	26.546	62.040	53.679	1.00 70.57	8
	MOTA	4295	N	VAL C 128	28.480	61.297	52.839	1.00 71.23	7
	MOTA	4296	CA	VAL C 128	27.871	60.065	52.366	1.00 72.78	6
	MOTA	4297	CB	VAL C 128		59.124	51.690	1.00 72.13	6
	MOTA	4298		VAL C 128		59.670	50.361	1.00 75.47	6
40	MOTA	4299		VAL C 128		58.940	52.585	1.00 70.24	6
	ATOM	4300	C	VAL C 128		59.242	53.466	1.00 74.00	6
	MOTA	4301	0	VAL C 128		58.770	53.316	1.00 73.73 1.00 75.39	8 7
	MOTA		N	ASP C 129			54.567	1.00 75.39	6
45	MOTA	4303	CA	ASP C 129		58.222 58.040	55.628 56.721	1.00 77.53	
45	MOTA	4304	CB	ASP C 129		56.729	57.486	1.00 77.31	6
	MOTA	4305 4306	CG OD1	ASP C 129		56.051	57.770	1.00 78.50	8
	MOTA	4307		ASP C 123		56.377	57.803	1.00 77.23	
	MOTA MOTA	4308	C C	ASP C 123			56.235	1.00 78.98	6
50	MOTA	4309	0	ASP C 125		57.832	56.948	1.00 79.11	
•	MOTA	4310	N	THR C 130		59.851	55.948	1.00 79.48	
	ATOM	4311	CA	THR C 13			56.521	1.00 80.50	
	MOTA	4312	СВ	THR C 13		60.229	58.077	1.00 83.19	
	ATOM	4313		THR C 13		60.140	58.472	1.00 82.84	
55	ATOM	4314	•	THR C 13		59.035	58.670	1.00 83,96	6
	MOTA	4315	С	THR C 13			56.146	1.00 79.50	
	MOTA	4316	0	THR C 13			55.760	1.00 78.71	
	MOTA	4317	N	GLU C 13:			56.307	1.00 79.39	
00	MOTA	4318	CA	GLU C 13			56.114		
60	MOTA	4319	CB	GLU C 13			56.961	1.00 82.70	
	ATOM	4320	CG	GLU C 13:	L 21.680	63 <i>.</i> 772	58.471	1.00 85.13	6

```
-143
                                                              1.00 86.47
                                                      59.335
                                     22.642 64.580
                  CD GLU C 131
            4321
    MOTA
                                                              1.00 87.43
                                                      59.024
                                     22,862 65.788
            4322
                  OE1 GLU C 131
     MOTA
                                                              1.00 85.12
                                      23.168 63.998
                                                      60.320
                  OE2 GLU C 131
     MOTA
            4323
                                                              1.00 77.86
                                      21.207
                                             63.185
                                                      54.715
                      GLU C 131
            4324
     MOTA
                  С
                                                              1.00 76.34
                                      20.460 62.560
                                                      53.955
                      GLU C 131
5
            4325
     MOTA
                                                              1.00 76.46
                                                      54.428
                                      21.771
                                             64.355
                      SER C 132
            4326
                  N
     MOTA
                                                              1.00 75.54
                                      21.652 64.995
                                                      53.136
                      SER C 132
            4327
                  CA
     MOTA
                                      21.941 66.495
                                                      53,290
                                                              1.00 76.21
                      SER C 132
            4328 CB
     MOTA
                                                              1.00 78.77
                                                                            8
                                                      53.841
                                      23.233 66.719
                      SER C 132
            4329
                  OG
     MOTA
                                      22.673 64.318
                                                               1.00 74.37
                                                                            6
                                                      52.205
10
            4330
                  С
                       SER C 132
     MOTA
                                                               1.00 74.56
                                                                            8
                                      22.799 64.675
                                                       51.026
                       SER C 132
     MOTA
            4331
                  0
                                                              1.00 72.74
                                                                            7
                                                       52.764
                       GLY C 133
                                      23.392 63.338
            4332
     MOTA
                  N
                                                               1.00 70.01
                                                                            6
                                      24.389 62.591
                                                       52.019
                      GLY C 133
            4333
                  CA
     MOTA
                                                       51.337
                                                               1.00 68.98
                                                                            6
                       GLY C 133
                                      25.435 63.449
     MOTA
            4334
                  С
                                                               1.00 69.00
                                                                            8
                                                       51.686
                                      25.636 64.615
                       GLY C 133
15
     MOTA
            4335
                  0
                                                                            7
                                                               1.00 66.70
                                              62.859
                                                       50.355
                       ALA C 134
                                      26.107
            4336
                  N
     MOTA
                                                       49.609
                                                               1.00 64.10
                                                                            6
                                      27.131 63.563
            4337
                       ALA C 134
     MOTA
                  CA
                                                               1.00 63.57
                                                                            б
                                              62.723
                                                       49.531
                                      28.394
                       ALA C 134
                  CB
     MOTA
            4338
                                                               1.00 62.41
                                                                            6
                                                       48.212
                                      26.641
                                              63.899
                       ALA C 134
            4339
                  С
     MOTA
                                                               1.00 60.16
                                                       47.737
                                              63.360
                                      25.640
                       ALA C 134
20
            4340
     MOTA
                  0
                                                               1.00 62.33
                                                                            7
                                                       47.573
                       THR C 135
                                      27.347
                                              64.826
            4341
                  N
     MOTA
                                                               1.00 62.11
                                                       46.211
                       THR C 135
                                              65.237
                                      27.023
     MOTA
            4342
                  CA
                                                               1.00 61.79
                                                                             6
                                                      46.166
                                              66.642
                       THR C 135
                                      26.431
                   СВ
            4343
     MOTA
                                                                            8
                                                       46,980
                                                               1.00 65.07
                                              66.675
                                      25.253
                   OG1 THR C 135
             4344
     MOTA
                                                              1.00 60.95
                                                                             6
                                      26.057
                                              67.007
                                                       44.746
                   CG2 THR C 135
25
     MOTA
             4345
                                                               1.00 60.85
                                                                             6
                                                      45.375
                                              65.181
                       THR C 135
                                      28.292
             4346
                   С
     MOTA
                                                               1.00 61.27
                                                                             8
                                              66.040
                                                      45.473
                       THR C 135
                                      29.181
             4347
                   0
     MOTA
                                                                             7
                                                      44.574
                                                               1,00 58.77
                       CYS C 136
                                      28.368
                                               64.128
     MOTA
             4348
                   N
                                                               1.00 56.58
                                                                             б
                                                      43.712
                                               63.891
                                       29.499
                       CYS C 136
     ATOM
             4349
                   CA
                                                               1.00 56.26
                                                                             6
                                                       42.325
                                       29.140 64.393
                       CYS C 136
30
             4350
                   С
      MOTA
                                               63.907
                                                       41.710
                                                               1.00 56.21
                                                                             8
                       CYS C 136
                                       28,197
             4351
                   0
     MOTA
                                                                1.00 54.70
                                                                             6
                                               62.396
                                                       43,698
                                       29.794
                       CYS C 136
             4352
                   CB
      MOTA
                                                                1.00 52.66
                                                       42.454
                                                                            16
                                       31.010
                                               61.882
                       CYS C 136
             4353
                   SG
      MOTA
                                                                1.00 55.40
                                                                             7
                                                       41.843
                                       29.874
                                               65.386
                       ARG C 137
             4354
                   N
      MOTA
                                                       40.520
                                                                1.00 55.61
                       ARG C 137
                                       29.605
                                               65.938
35
             4355
                   CA
      MOTA
                                                                1.00 56.53
                                                       40.537
                                               67.466
                                       29.698
                       ARG C 137
             4356
                  CB
      MOTA
                                               68.135 41.462
                                                                1.00 61.72
                       ARG C 137
                                       28.713
             4357
                   CG
      MOTA
                                               69.491 41.947
                                                                1.00 65.19
                                       29.231
             4358
                       ARG C 137
      MOTA
                   CD
                                                                1.00 69.78
                                                                             7
                                       28.632
                                               69.871 43.236
                       ARG C 137
      MOTA
             4359
                   NE
                                                                1.00 71.88
                                                                             6
                                               70.221
                                                       43.412
                                       27.352
                       ARG C 137
 40
      MOTA
             4360
                   CZ
                                                                1.00 74.24
                                                      42.384
                   NH1 ARG C 137
                                       26.504
                                               70.256
             4361
      MOTA
                                                                1.00 70.49
                                                                             7
                                                       44.626
                                       26.908
                                               70.522
                   NH2 ARG C 137
             4362
      MOTA
                                                                1.00 55.23
                                                                             6
                                                       39.522
                                               65.392
                                       30.604
                       ARG C 137
      MOTA
             4363
                   С
                                                                1.00 57.26
                                                                             8
                                                       39.773
                                               65.381
                        ARG C 137
                                       31.807
             4364
      MOTA
                   0
                                                       38.385
                                                                1.00 52.01
                                       30.095
                                               64.948
 45
                        ILE C 138
             4365
      MOTA
                   N
                                                                1.00 50.01
                                       30.922
                                               64.398
                                                       37.333
                                                                             б
                       ILE C 138
             4366
                   CA
      MOTA
                                                                1.00 49.70
                                                                             6
                                                        37.061
                                       30.529
                                               62.928
                        ILE C 138
             4367
                   CB
      ATOM
                                                                1.00 47.04
                                                        35.933
                                       31.361
                                               62.360
                   CG2 ILE C 138
              4368
      MOTA
                                                                1.00 48.47
                                                        38.327
                                       30.703
                                               62.090
                   CG1 ILE C 138
              4369
      MOTA
                                                                1.00 46.09
                                                        38.225
                   CD1 ILE C 138
                                               60.706
                                       30.080
 50
              4370
      MOTA
                                                                1.00 48.82
                                                                              6
                                               65.222
                                                        36.070
                                       30,693
                        ILE C 138
              4371 · C
      ATOM
                                                        35.597
                                                                1.00 46.40
                                                                              8
                                               65.322
                                       29.571
                   0
                        ILE C 138
              4372
      MOTA
                                                                1.00 49.18 7
                        LYS C 139
                                       31.752
                                               65.814
                                                        35.529
      MOTA
              4373
                    N
                                                                1.00 52.75
                                                                              6
                                                        34.309
                        LYS C 139
                                       31.634
                                               66.614
              4374
      ATOM
                    CA
                                                        34.464
                                                                1.00 54.78
                                                                              6
                        LYS C 139
                                       32.364
                                               67.950
 55
              4375
                    CB
       MOTA
                                                                1.00 59.35
                                                                              6
                                                        35.697
                        LYS C 139
                                               68.737
                                       31.952
       MOTA
              4376
                    CG
                                                                1.00 60.96
                                                                              6
                                                        35.669
                                       32.477
                                                70.168
                        LYS C 139
              4377
                    CD
       ATOM
                                                        34.594
                                                                1.00 62.06
                                                                              6
                                                71.019
                                       31.780
                        LYS C 139
              4378
                    CE
       MOTA
                                                                1.00 59.27
                                                        34.559
                                                                              7
                                       32.316
                                                72.419
                        LYS C 139
              4379
                    NZ
       MOTA
                                                                1.00 52.07
                                                                              6
                                        32.218
                                                65.886
                                                        33,106
                        LYS C 139
 60
              4380
                    С
       MOTA
                                                        33.143
                                                                1.00 52.64
                        LYS C 139
                                        33.364 65.446
              4381
                    0
       MOTA
```

						-144					
	ATOM	4382	N	ILE C	140	31.441	65.761	32.036	1.00	51.29	7
	ATOM	4383	CA	ILE C		31.938	65.091	30.842	1.00	50.15	6
	MOTA	4384	CB	ILE C		31.404	63.613	30.769	1.00	51.22	6
	MOTA	4385	CG2	ILE C	140	31.536	62.955	32.134	1.00		6
5	MOTA	4386	CG1	ILE C	140	29.930	63.555	30.393		49.11	6
	ATOM	4387	CD1	ILE C	140	29.307	62.187	30.676		49.89	6
	ATOM	4388	Ċ	ILE C	140	31.624	65.861	29.560	1.00	47.99	6
	MOTA	4389	0	ILE C	140	30.515	66.323	29.365		50.04	8
	MOTA	4390	N	GLY C	141	32.620	66.025	28.701	1.00		7
10	MOTA	4391	CA	GLY C		32.414	66.732	27.447		46.87	6
	MOTA	4392	С	GLY C		33.453	66.323	26.416		46.66	6
	MOTA	4393	0	GLY C		34.359	65.565	26.739		46.42	8
	MOTA	4394	N	SER C		33.329	66.804	25.180		45.19	7
4-5	MOTA	4395	CA	SER C		34.303	66.474	24.140		41.98	6
15	ATOM	4396	CB	SER C		33.974	67.165	22.828		40.96	6
	ATOM	4397	OG	SER C		35.062	67.057	21.943		34.78	8 6
	ATOM	4398	C	SER C		35.698	66.885	24.551		43.33 45.01	8
	MOTA	4399	0	SER C		35.915 36.655	67.956 66.028	25.115 24.256		43.12	7
20	MOTA	4400	N	TRP C		38.025	66.300	24.230		42.98	6
20	MOTA MOTA	4401 4402	CA CB	TRP C		38.768	64.982	24.819		41.57	6
	MOTA	4402	CG	TRP C		40.125	65.141	25.446		39.54	6
	MOTA	4404	CD2	TRP C		40.394	65.420	26.820		36.50	6
	MOTA	4405	CE2	TRP C		41.795	65.481	26.967		35.30	6
25	MOTA	4406	CE3	TRP C		39.584	65.625	27.943	1.00	36.55	6
	ATOM	4407		TRP C		41.345	65.048	24.829	1.00	38.96	6
	MOTA	4408	NE1	TRP C		42.353	65.251	25.738		35.00	7
	MOTA	4409	CZ2	TRP C	143	42.400	65.736	28.192	1.00	34.47	6
	MOTA	4410	CZ3	TRP C		40.185	65.878	29.153		35.28	6
30	MOTA	4411		TRP C		41.580	65.931	29.271		35.16	6
	MOTA	4412	С	TRP C		38.767	67.159	23.605		43.69	6
	MOTA	4413	0	TRP C		39.657	67.915	23.962		46.65	8
	ATOM	4414	N	THR C		38.402	67.065	22.338		42.21	7 6
35	ATOM	4415	CA	THR C		39.107 39.839	67.834 66.901	21.333 20.372		40.90	6
55	ATOM ATOM	4416 4417	CB OG1	THR C		38.907	65.976	19.798		40.17	8
	ATOM	4418	CG2	THR C		40.916	66.144	21.106		38.34	6
	MOTA	4419	C	THR C		38.252	68.795	20.520		43.03	6
	ATOM	4420	Ö	THR C		38.786	69.631	19.795		43.02	8
40	ATOM	4421	N	HIS C		36.934	68.687	20.635	1.00	42.41	7
	MOTA	4422	CA	HIS C		36.065	69.571	19.885	1.00	45.42	6
	MOTA	4423	CB	HIS C	145	34.994	68,772	19.144	1.00	48.25	6
	MOTA	4424	CG	HIS C	145	35.533	67.873	18.071	1.00	49.32	6
	MOTA	4425	CD2	HIS C	145	36.052	68.154	16.853		47.20	6
45	MOTA	4426		HIS C		35.572	66.500	18.197		47.13	7
	MOTA	4427		HIS C		36.091	65.976	17.103		47.99	6
	MOTA	4428		HIS C		36.391	66.958	16.272		48.34	7
	MOTA	4429	C	HIS C		35.394	70.627	20.754		48.71	6
50	MOTA	4430	0	HIS C		34.738 35.562	70.325 71.883	21.746		47.60 52.53	8
50	MOTA	4431 4432	N	HIS C		34.972	72.993	20.363 21.094		53.12	7 6
	MOTA MOTA	4432	CA CB	HIS C		35.777	74.261	20.840		50.98	6
	ATOM	4434	CG	HIS C		35.931	74.586	19.390		48.89	6
	ATOM	4435		HIS C		35.013	74.755	18.409		47.83	6
55	ATOM	4436		HIS C		37.161	74.776	18.801		48.82	7
	MOTA	4437		HIS C		36.993	75.049	17.519		48.32	6
	MOTA	4438		HIS C		35.699	75.043	17.257		46.12	7
	MOTA	4439	С	HIS C		33.524	73.188	20.664		54.19	6
	ATOM	4440	0	HIS C		33.047	72.531	19.736		54.21	8
60	ATOM	4441	N	SER C		32.847	74.112	21.341		56.30	7
	MOTA	4442	CA	SER C	: 147	31.437	74.418	21.115	1.00	57.23	6

						1 45				
						-145	TT 610	01 070	1.00 57.36	6
	MOTA	4443		SER C 147		31.055	75.610 76.635	21.978 21.828	1.00 57.30	8
	MOTA	4444		SER C 147		32.017 30.972	74.660	19.682	1.00 57.72	6
	MOTA	4445		SER C 147 SER C 147	,	29.790	74.484	19.375	1.00 57.25	8
5	MOTA	4446		ARG C 148		31.885	75.065	18.809	1.00 58.23	7
3	MOTA	4447 4448		ARG C 148		31.517	75.336	17.424	1.00 60.12	6
	MOTA MOTA	4449		ARG C 148		32.555	76.264	16.777	1.00 63.75	6
	ATOM	4450	CG	ARG C 148		32.799	77.567	17.549	1.00 70.83	6
	ATOM	4451	CD	ARG C 148		33.950	78.393	16.946	1.00 77.31	6
10	ATOM	4452	NE	ARG C 148		34.422	79.453	17.852	1.00 84.18	7
	ATOM	4453	CZ	ARG C 148		33.696	80.506	18.245	1.00 86.23	6
	MOTA	4454		ARG C 148		32.447	80.661	17.818	1.00 87.64	7
	MOTA	4455	NH2	ARG C 148		34.213	81.408	19.072	1.00 86.26	7
	ATOM	4456	С	ARG C 148		31.390	74.051	16.601	1.00 59.83	6
15	ATOM	4457	0	ARG C 148		30.786	74.053	15.519	1.00 60.30	8
	MOTA	4458	N	GLU C 149		31.954	72.959	17.121	1.00 57.69	7
	ATOM	4459	CA	GLU C 149		31.937	71.677	16.425	1.00 54.67	6
	MOTA	4460	CB	GLU C 149		33.364	71.132	16.321	1.00 52.47	6
	MOTA	4461	CG	GLU C 149		34.395	72.228	16.050	1.00 52.11 1.00 50.20	6 6
20	MOTA	4462	CD	GLU C 149		35.824	71.718	15.896	1.00 30.20	8
	MOTA	4463		GLU C 149		36.246	70.852	16.678	1.00 49.43	8
	MOTA	4464	OE2	GLU C 149		36.537	72.203	15.004	1.00 47.62	6
	MOTA	4465	С	GLU C 149		31.043	70.698 69.985	17.162 16.552	1.00 53.04	8
0.5	MOTA	4466	0	GLU C 149		30.252		18.479	1.00 52.16	7
25	MOTA	4467	N	ILE C 150		31.172	70.667 69.795	19.289	1.00 51.98	6
	MOTA	4468	CA	ILE C 150		30.353 31.157	68.612	19.883	1.00 53.49	6
	MOTA	4469	CB	ILE C 150		30.361	67.954	21.019	1.00 52.00	6
	MOTA	4470		ILE C 150 ILE C 150		31.450	67.571	18.800	1.00 53.48	6
20	MOTA	4471	CG1			32.235	66.383	19.299	1.00 50.44	6
30	MOTA	4472	CD1 C	ILE C 150		29.750	70.565	20.446	1.00 53.26	6
	ATOM	4473 4474	0	ILE C 150		30.410	71.389	21.095	1.00 51.01	8
	ATOM	4474	N	SER C 151		28.479	70.280	20.694	1.00 54.99	7
	MOTA MOTA	4476	CA	SER C 151		27.749	70.887	21.797	1.00 56.94	6
35	ATOM	4477	CB	SER C 151		26.693	71.873	21.280	1.00 54.85	6
55	MOTA	4478	OG	SER C 151		25.665	71.221	20.557	1.00 55.92	8
	MOTA	4479	Ċ	SER C 151		27.084	69.717	22.516	1.00 59.00	6
	MOTA	4480	Ö	SER C 151		26.536	68.820	21.871	1.00 60.03	8
	MOTA	4481	N	VAL C 152		27.172	69.705	23.844	1.00 60.32	7
40	MOTA	4482	CA	VAL C 152		26.569	68.651	24.655	1.00 61.16	6
	ATOM	4483	СВ	VAL C 152		27.564	68.096	25.694	1.00 60.14	6
	MOTA	4484	CG1	. VAL C 152		28.858	67.723	25.009	1.00 61.98	6
	MOTA	4485	CG2	VAL C 152		27.817	69.110	26.775	1.00 61.23	6
	MOTA	4486	С	VAL C 152		25.373	69.237	25.391	1.00 62.82	6
45	ATOM	4487	0	VAL C 152		25.379	70.409	25.758	1.00 63.73	8
	ATOM	4488	N	ASP C 153		24.349	68.425	25.614	1.00 65.81	7
	MOTA	4489	CA	ASP C 153		23.147	68.887	26.293	1.00 67.23 1.00 69.19	6 6
	MOTA	4490		ASP C 153		22.150	69.377	25.249	1.00 72.38	6
	MOTA	4491	CG	ASP C 153		22.748	70.425	24.320 24.718	1.00 72.30	8
50	MOTA	4492		ASP C 153		22.786	71.614 70.060		1.00 72.30	8
	MOTA	4493		2 ASP C 153		23.193 22.505			1.00 69.10	6
	MOTA	4494		ASP C 153		22.503			1.00 68.47	8
	MOTA	4495		ASP C 153		21.970			1.00 70.49	7
cc	MOTA	4496		PRO C 154 PRO C 154		22.282				6
55	MOTA	4497		PRO C 154		21.325				6
	MOTA	4498		PRO C 154		21.148				6
	MOTA	4499 4500				22.300				6
	MOTA	4500		PRO C 154		19.985				6
60	MOTA MOTA	4501		PRO C 154		19.591				8
00	MOTA	4503		THR C 155		19.279			1.00 80.57	7
	AT ON	45 U C	- ••				•			

						-146				
	MOTA	4504	CA	THR C	155	18.010	65.253	28.633	1.00 83.84	6
	MOTA	4505		THR C		18.244	63.932	27.837	1.00 83.53	6
	ATOM	4506		THR C		18.609	62.882	28.744	1.00 83.26	8
	ATOM	4507		THR C		19.361	64.105	26.823	1.00 83.08	6
5	MOTA	4508	С	THR C		16.897	65.001	29.678	1.00 87.74	6
	ATOM	4509	0	THR C	155	16.826	65.677	30.715	1.00 87.94	8
	MOTA	4510	N	THR C	156	16.042	64.012	29.370	1.00 91.72	7
	MOTA	4511	CA	THR C	156	14.882	63.577	30.180	1.00 93.73	6
	MOTA	4512	CB	THR C		14.501	62.092	29.877	1.00 93.94	6
10	MOTA	4513		THR C		14.249	61.933	28.470	1.00 93.93	8
	MOTA	4514	CG2	THR C		13.253	61.681	30.696	1.00 93.29	6
	MOTA	4515	С	THR C		15.042	63.695	31.693	1.00 95.32	6 8
	ATOM	4516	0	THR C		15.626	62.817	32.347	1.00 95.61 1.00 97.07	7
4.5	ATOM	4517	N	GLU C		14.490	64.767	32.246 33.679	1.00 97.07	6
15	ATOM	4518	CA	GLU C		14.578 14.487	65.011 66.514	33.942	1.00100.27	6
	MOTA	4519	CB	GLU C		15.282	67.359	32.950	1.00100.27	6
	MOTA	4520 4521	CG CD	GLU C		15.113	68.852	33.214	1.00102.53	6
	MOTA MOTA	4521		GLU C		13.943	69.322	33.312	1.00105.88	8
20	ATOM	4523		GLU C		16.150	69.555	33.327	1.00104.90	8
2.0	ATOM	4524	C	GLU C		13.475	64.290	34.465	1.00 99.30	6
	ATOM	4525	Ö	GLU C		13.452	64.337	35.706	1.00 99.77	8
	ATOM	4526	N	ASN C		12.557	63.639	33.751	1.00 99.15	· 7
	ATOM	4527	CA	ASN C		11.457	62.919	34.404	1.00 98.32	6
25	MOTA	4528	СВ	ASN C		10.382	62.541	33.374	1.00100.43	6
_	MOTA	4529	CG	ASN C	158	9.902	63.736	32.555	1.00101.38	6
	MOTA	4530	OD1	ASN C	158	9.423	64.738	33.112	1.00101.96	8
	MOTA	4531	ND2	ASN C	158	10.026	63.636	31.224	1.00101.40	7
	ATOM	4532	С	ASN C		11.991	61.638	35.064	1.00 96.64	6
30	MOTA	4533	0	ASN C		12.380	61.643	36.239	1.00 96.33	8
	ATOM	4534	N	SER C		11.992	60.558	34.283	1.00 93.61	7
	MOTA	4535	CA	SER C		12.466	59.237	34.690	1.00 90.35	6
	MOTA	4536	CB	SER C		13.541	58.788	33.690	1.00 90.84	6
05	MOTA	4537	OG	SER C		14.367	59.898	33.320	1.00 90.44 1.00 88.15	8 6
35	ATOM	4538	C	SER C		13.005 13.942	59.167 59.894	36.123 36.481	1.00 88.13	8
	MOTA	4539	0	SER C ASP C		12.414	58.302	36.945	1.00 84.53	7
	MOTA MOTA	4540 4541	N CA	ASP C		12.863	58.152	38.330	1.00 80.47	6
	MOTA	4542	CB	ASP C		12.232	56.921	38.985	1.00 80.26	6
40	MOTA	4543	CG	ASP C		12.760	56.683	40.398	1.00 82.12	6
-10	ATOM	4544		ASP C		12.658	55.536	40.890	1.00 82.78	8
	MOTA	4545		ASP C		13.277	57.644	41.023	1.00 82.17	8
	MOTA	-	С	ASP C		14.380	57.978	38.340	1.00 77.39	6
	MOTA	4547	0	ASP C		14.892	57.009	37.768	1.00 75.75	8
45	ATOM	4548	N	ASP C	161	15.080	58.910	38.992	1.00 73.66	7
	MOTA	4549	CA	ASP C	161	16.529	58.864	39.072	1.00 71.77	6
	MOTA	. 4550	CB	ASP C	161	17.060	59.934	40.028	1.00 71.93	6
	MOTA	4551	CG	ASP C	161	16.943	61.330	39.461	1.00 72.28	6
	ATOM	4552		ASP C		17.115	61.486	38.230	1.00 71.71	8
50	MOTA	4553		ASP C		16.695	62.270	40.246	1.00 74.13	8
	MOTA	4554	С	ASP C		17.118	57.515	39.479	1.00 70.97	6
	ATOM .	4555	0	ASP C		18.296	57.251	39.222	1.00 73.00	8
	MOTA	4556	N	SER C		16.335	56.649	40.105	1.00 68.54 1.00 66.65	7
E E	MOTA	4557	CA	SER C		16.899	55.366	40.496 42.020	1.00 66.09	6 6
55	MOTA	4558	CB	SER C		17.085 15.845	55.308 55.352	42.628	1.00 66.84	8
	MOTA	4559	OG C	SER C		16.064	54.194	40.019	1.00 65.29	6
	MOTA	4560 4561	0	SER C		16.042	53.147	40.646	1.00 65.08	8
	ATOM ATOM	4562	N	GLU C		15.393	54.357	38.892	1.00 64.69	7
60	ATOM	4563	CA	GLU C		14.571	53.270	38.398	1.00 66.58	6
	MOTA	4564	СВ	Grá C		13.543	53.784	37.372	1.00 68.86	6

```
-147
                                                                             6
                                      14.029 53.942 35.951 1.00 70.35
    MOTA
            4565
                 CG GLU C 163
                                                                             6
                                      12.886 54.261
                                                      35.000
                                                              1.00 73.03
    MOTA
            4566
                  CD
                      GLU C 163
                                      12.345 55.390
                                                      35.065
                                                               1.00 75.39
                                                                             8
                  OE1 GLU C 163
     MOTA
            4567
                  OE2 GLU C 163
                                      12.517
                                              53.378
                                                      34.193
                                                               1.00 72.63
                                                                             8
     ATOM
            4568
                                      15.416
                                              52.145
                                                      37.808
                                                               1.00 65.46
                                                                             6
5
            4569
                  С
                      GLU C 163
    MOTA
                                      14.902
                      GLU C 163
                                                               1.00 64.98
                                              51.071
                                                      37.481
            4570
     MOTA
                  0
                                                               1.00 65.54
                                                                             7
                      TYR C 164
                                      16.718
                                              52.392
                                                      37.675
     MOTA
            4571
                  N
                                                               1.00 63.20
                      TYR C 164
                                      17.647
                                              51.389
                                                      37.143
     MOTA
            4572
                  CA
                                      18.353
                                                               1.00 63.41
                      TYR C 164
                                              51.894
                                                      35.884
     MOTA
            4573
                  CB
                                              52.101
                                                               1.00 65.49
                      TYR C 164
                                      17.433
                                                      34.716
10
     MOTA
            4574
                  CG
                                                                             6
            4575 CD1 TYR C 164
                                      17.299
                                              53.355
                                                      34.119
                                                               1.00 66.61
     MOTA
                                                                             6
                  CE1 TYR C 164
                                      16.429
                                              53.555
                                                      33.046
                                                              1.00 68.54
     MOTA
            4576
                                                                             6
            4577
                                      16.676
                                              51.046
                                                      34.216
                                                              1.00 68.25
                  CD2 TYR C 164
     MOTA
                                                              1.00 70.31
                                                                             6
     MOTA
                  CE2 TYR C 164
                                      15.797
                                              51.230
                                                      33.144
            4578
                                                              1.00 70.26
                                                                             6
                                      15.680
                                              52.484
                                                      32.562
15
     MOTA
            4579
                  CZ
                      TYR C 164
                                                                             8
                                      14.832
                                                      31.482
                                                               1.00 74.21
                                              52.655
            4580
                  OH
                      TYR C 164
     MOTA
                                                      38.184
                                                               1.00 61.13
                                                                             6
                                      18.690
                                              51.066
                       TYR C 164
     ATOM
            4581
                  С
                       TYR C 164
                                      19.480
                                              50.147
                                                       38.003
                                                               1.00 60.53
                                                                             8
            4582
                  0
     MOTA
                                                               1.00 59.92
                                                                             7
                                      18.687
                                               51.824
                                                       39.279
            4583
                  N
                       PHE C 165
     MOTA
                                                               1.00 58.58
20
                       PHE C 165
                                      19.657
                                               51.622
                                                       40.347
                                                                             б
            4584
                  CA
     MOTA
                                                               1.00 56.39
                                                      41.425
                                                                             6
                                      19.497
                                              52.690
     MOTA
            4585
                  CB
                       PHE C 165
                                                               1.00 55.60
                                                      42,288
                                      20.717
                                              52.856
     MOTA
            4586
                   CG
                       PHE C 165
                                      21.904
                                              53.336
                                                      41.742
                                                               1.00 53.27
     MOTA
            4587
                  CD1 PHE C 165
                                                               1.00 54.20
                                      20.692
                                               52.497
                                                      43.629
                  CD2 PHE C 165
     MOTA
            4588
                  CE1 PHE C 165
                                      23.049
                                              53.451
                                                      42.513
                                                               1.00 53.30
25
     MOTA
            4589
                                      21.835
                                               52.607
                                                      44.414 1.00 54.70
            4590
                  CE2 PHE C 165
     MOTA
                      PHE C 165
                                      23.018
                                               53.085
                                                      43.854
                                                               1.00 54.90
                                                                             6
     MOTA
            4591
                  CZ
                                                      40.974
                                                               1.00 58.64
                                                                             6
            4592
                  С
                       PHE C 165
                                      19.528
                                               50.250
     MOTA
                                                               1.00 60.35
                                                                             8
                                               49.749 41.153
            4593
                       PHE C 165
                                      18.422
     MOTA
                  0
                                                      41.298
                                                               1.00 58.50
                                                                             7
                       SER C 166
                                      20.655
                                               49.631
30
     MOTA
             4594
                  N
                                                      41.900
                                                               1.00 58.50
                                      20.614
                                               48.309
                                                                             6
                       SER C 166
     MOTA
             4595
                  CA
                       SER C 166
                                       22.013
                                               47.703
                                                       41.996
                                                               1.00 58.83
                                                                             6
             4596
                  CB
     ATOM
                       SER C 166
                                       21.957
                                               46.391
                                                      42.542
                                                               1.00 61.34
                                                                             8
     MOTA
             4597
                   OG
                                      20.050
                                                       43.286
                                                               1.00 58.49
             4598
                       SER C 166
                                               48.473
                                                                             6
     MOTA
                   С
                                               49.454 43.964
                                                               1.00 58.40
                                                                             8
35
     ATOM
             4599
                   0
                       SER C 166
                                       20.346
                                                               1.00 57.37
                                                      43.706
                                                                             7
                                      19.249
                                               47.503
             4600
                       GLN C 167
     ATOM
                  N
                                               47.545 45.020
                                                               1.00 57.17
                                                                             6
                       GLN C 167
                                      18.631
     MOTA
             4601
                   CA
                                               46.766 44.994
                                                               1.00 59.70
                                      17.317
                       GLN C 167
     MOTA
             4602
                   CB
                       GLN C 167
                                      17.467
                                               45.351
                                                      44.490
                                                               1.00 62.90
             4603
     MOTA
                   CG
40
                                      16.136
                                               44.696 44.164
                                                                1.00 67.19
                                                                             6
             4604
                   CD
                       GLN C 167
     MOTA
                   OE1 GLN C 167
                                                      45.048
                                                               1.00 68.37
                                                                             8
             4605
                                       15.284
                                               44.519
     ATOM
                                                      42.884
                                                               1.00 66.77
                                                                             7
                                      15.940
                                               44.334
                   NE2 GLN C 167
     MOTA
             4606
                                                       46.085
                                                               1.00 55.30
                                      19.548
                                               46.975
                                                                             6
             4607
                       GLN C 167
     MOTA
                   С
                                               47.235
                                                       47.271
                                                               1.00 53.36
                                      19.373
     MOTA
             4608
                   0
                       GLN C 167
                                                       45.659
                                                                1.00 55.00
                                                                             7
45
                       TYR C 168
                                      20.541
                                               46.211
             4609
     MOTA
                   N
                   CA TYR C 168
                                       21.455
                                               45.601
                                                       46.609
                                                                1.00 55.48
                                                                             6
             4610
     MOTA
                       TYR C 168
                                                       46.114
                                                                1.00 55.25
             4611
                   CB
                                       21.845
                                               44.214
                                                                             6
     MOTA
                                                                1.00 56.93
                                                       45.714
             4612
                   CG
                       TYR C 168
                                       20.630
                                               43.413
                                                                             6
     MOTA
                                               43.315
                                                       44.378
                                                                1.00 56.29
                                       20.242
                                                                             6
                   CD1 TYR C 168
     MOTA
             4613
                                               42.640
                                                       44.016
                                                                1.00 56.50
                   CE1 TYR C 168
                                       19.087
                                                                             6
50
             4614
     ATOM
                                                                1.00 57.12
                   CD2 TYR C 168
                                       19.825
                                               42.809
                                                       46.680
                                                                             6
     MOTA
             4615
                                                       46.332
                                                                1.00 56.97
                   CE2 TYR C 168
                                       18.664
                                               42.133
                                                                             б
     MOTA
             4616
                       TYR C 168
                                       18.300
                                               42.054
                                                       44.997
                                                                1.00 58.82
                                                                             б
                   CZ
             4617
     ATOM
                                                               1.00 61.29
                                               41.408 44.640
             4618
                   OH
                       TYR C 168
                                       17.133
                                                                             8
      MOTA
                                                                1.00 55.31
                                               46.431
                                                       46.919
                                                                             6
                                       22.692
55
                       TYR C 168
     ATOM
             4619
                   C
                                       23.582
                       TYR C 168
                                               45.987
                                                       47.637
                                                                1.00 53.34
                                                                             8
      MOTA
             4620
                   0
                                                                1.00 56.64
                       SER C 169
                                       22.733
                                               47.646
                                                       46.384
                                                                             7
      ATOM
             4621
                  N
                                               48.553
                                                       46.620
                                                                1.00 58.01
                       SER C 169
                                       23.851
                                                                             6
                  CA
      ATOM
             4622
                       SER C 169
SER C 169
                                       23.731
                                               49.786
                                                       45,720
                                                                1.00 58.39
                                                                             6
             4623
                   CB
      MOTA
                                                                1.00 57.32
60
             4624
                   OG
                                       24.745
                                               50.727
                                                       46.017
                                                                             8
      MOTA
                                       23.860 49.001 48.076
                                                               1.00 60.12
                       SER C 169
      MOTA
             4625
                  С
```

						-	148							
	ATOM	4626	0	SER C	169	22	.803	49	.148		699		60.78	
	ATOM	4627		ARG C		25	.052	49	.215	48.	621		59.44	
	ATOM	4628		ARG C		25	.174	49	.662	49.	998		58.39	
	ATOM	4629	СВ	ARG C	170	26	6.636	49	.602	50.	438		59.12	
5	ATOM	4630		ARG C		26	.999	48	.350		195		61.61	
_	MOTA	4631		ARG C		28	3.466	47	.972		024		64.86	
	MOTA	4632	NE	ARG C	170	29	.418	49	.012		424		66.40	
	MOTA	4633	cz	ARG C	170	3 (317	49	.556		597		68.28	
	ATOM	4634	NH1	ARG C	170	3 ().384		.165		326		66.23	
10	MOTA	4635	NH2	ARG C	170	31	L.166		.480		039		68.62	
	MOTA	4636	С	ARG C	170		1.668		102		109		59.25	
	MOTA	4637	0	ARG C	170		4.416		609		215		59.99	
	MOTA	4638	N	PHE C	171		4.498		759		.968		57.06	
	MOTA	4639	CA	PHE C	171		4.063		.146		9.82		56.45	
15	MOTA	4640	CB	PHE C			5.131		1.016		.324		55.23	
	MOTA	4641	CG	PHE C			6.521		3.719		. 814		54.51	
	MOTA	4642	CD1	PHE C			7.189		2.568		.400		55.98	
	ATOM	4643	CD2	PHE C			7.145		1.559		.724		53.29	
	MOTA	4644		PHE C			8.463		2.257		.890		55.09	
20	MOTA	4645		PHE C			8.412		1.258	_	.218		54.24	
	MOTA	4646	cz	PHE C			9.074		3.102		.799		54.89 55.7	
	MOTA	4647	С	PHE C			2.732		3.346		.311			
	MOTA	4648	0	PHE C			2.164		2.406		.761		55.5° 55.20	
	MOTA	4649	N	GLU C			2.228		4.569		.376		58.6	
25	MOTA	4650	CA	GLU C			0.947		4.877		.760		60.9	
	MOTA	4651	CB	GLU C			9.806		4.769		.789 .981		64.1	
	MOTA	4652	CG	GLU C			9.891		5.739		.992		64.8	
	MOTA	4653	CD	GLU C			8.753		5.551 5.236		.557		65.3	
00	MOTA	4654		GLU C			7.626 8.976		5.230 5.734		.216		64.8	
30	MOTA	4655		GLU C			1.014		6.279		.162		59.7	
	MOTA	4656	С	GLU C			1.815		7.116		.600		60.0	
	MOTA	4657	O N	GLU C			0.186		6.530		.154		58.9	
	MOTA	4658	N	ILE C			0.182		7.827		.494		59.7	
35	MOTA	4659 4660	CA CB	ILE C			0.016		7.687		.970		60.1	
33	MOTA MOTA	4661	CG2				9.918		9.071		.334		57.7	
	MOTA	4662	CG1				1.191		6.896		.384	1.00	59.2	3 6
	ATOM	4663	CD1				1.053		6.663		.902	1.00	58.2	6 6
	ATOM	4664	C	ILE C			9.088		8.756		.977	1.00	59.9	9 6
40	ATOM	4665	Ö	ILE C		1	7.912		8.391		.021		57.8	
40,	MOTA	4666	N	LEU C			19.480		9.972	46	.321		60.9	
	ATOM	4667	CA	LEU C		1	L8.510) 6	0.943		.782		62.6	
	MOTA	4668		LEU C		1	L9.164	. 6	1.916	47	7.756	1.00	62.5	
	MOTA	4669	CG	LEU C		1	L9.967	6	1.213	48	1.856		63.6	
45	MOTA	4670		LEU (2	20.647		2.264		723		63.2	
	MOTA	4671	CD2	LEU	174	1	19.054		0.303		684		61.6	
	MOTA	4672	С	LEU (174	-	17.985		1.680		.564		64.2	
	MOTA	4673	0		174		16.781		1.734		3.329		65.7	
	MOTA	4674	N		175		18.893		2.223		1.768		65.2	
50	MOTA	4675	CA		175		18.485		2.951		3.576		66.0	
	MOTA	4676	CB		175		17.949		4.334		3.991		67.2	
	MOTA	4677			175		17.419		55.160		2.812		68.5	
	MOTA	4678	OD:	L ASP (2 175		16.598		4.650		2.011	_	69.5	
	MOTA	4679		2 ASP			17.812		56.338		2.695		0 66.5 0 66.2	
55	MOTA	4680			175		19.651		53.084		2.593 2.980		0 66.2	
	MOTA	4681			C 175		20.829		53.031 53.231		2.960 1.318		0 66.0	
	MOTA	4682			C 176		19.312		53.23 53.391		D.267		0 65.1	
	MOTA	4683			C 176		20.308 20.42		62.10!		9.401		0 66.	
60	ATOM	4684		VAL 1 VAL	C 176		20.42 21.38		52.34		8.232		0 64.	
60	MOTA	4685		2 VAL			20.90		50.94		0.254		0 63.	
	MOTA	4686	, CG	r van	C 1/0			٠ '		•		-	- /	_

						140				
				17	_	-149 19.869	64.532	39.368	1.00 67.12	6
	MOTA			/AL C 17		18.715	64.589	38.956	1.00 67.64	8
	MOTA	4688		/AL C 17		20.786	65.447	39.075	1.00 68.63	7
	MOTA	4689	N C	THR C 17	7	20.482	66.573	38.200	1.00 69.48	6
_	MOTA	4690		THR C 17		20.215		39.004	1.00 69.26	6
5	ATOM	4691		THR C 17		21.310	68.109	39.894	1.00 68.92	8
	MOTA	4692		THR C 17		18.932	67.718	39.804	1.00 68.40	6
	MOTA	4693		THR C 17		21.640	66,813	37.245	1.00 70.44	6
	MOTA	4694		THR C 17		22.802	66.641	37.614	1.00 69.76	8
40	MOTA	4695	0	THR C 17 GLN C 17	/	21.312	67.207	36.018	1.00 71.94	7
10	MOTA	4696				22.320	67.470	34,998	1.00 73.43	6
	MOTA	4697		GLN C 17 GLN C 17		22.150	66.500	33.831	1.00 76.20	6
	MOTA	4698		GLN C 17		21.560	65.148	34.220	1.00 80.00	6
	ATOM	4699		GLN C 17		21.896	64.046	33.196	1.00 83.21	6
4 =	MOTA	4700		GLN C 17		21,745	64.237	31.973	1.00 84.40	8
15	MOTA	4701 4702		GLN C 17		22.346	62.889	33.694	1.00 82.90	7
	MOTA	4702	C	GLN C 17		22.149	68.884	34.482	1.00 72.16	6
	MOTA	4703	0	GLN C 17		21.070	69.244	34.044	1.00 72.49	8
	ATOM	4705	N	LYS C 17		23.214	69.675	34.522	1.00 71.74	7
20	MOTA	4705	CA	LYS C 1		23.166	71.054	34.048	1.00 71.38	6
20	MOTA	4707	CB	LYS C 1	79	23.205	72.022	35.233	1.00 73.17	6
	MOTA	4708	CG	LYS C 1		22.291	71.610	36.380	1.00 78.41	6
	MOTA MOTA	4709	CD	LYS C 1		22.499	72.459	37.644	1.00 79.07	6
	MOTA	4710	CE	LYS C 1		21.814	71.821	38.864	1.00 80.35	6
25	MOTA	4711	NZ	LYS C 1		22.363	70.452	39.163	1.00 81.10	7
25	MOTA	4712	C	LYS C 1	79	24.384	71.301	33.176	1.00 70.13	6
	MOTA	4713	Ö	LYS C 1		25.504	71.353		1.00 70.65	8
	MOTA	4714	N	LYS C 1		24.180	71.466	31.876	1.00 68.21	7
	ATOM	4715	CA	LYS C 1		25.306	71.719	30.978	1.00 67.25	6
30	ATOM	4716	СВ		80	24.833	71.667	29.519	1.00 67.12	6
00	ATOM	4717		LYS C 1	80	24.008	72.846	29.053	1.00 63.90	. 6
	ATOM	4718	CD	LYS C 1		24.908		28.488	1.00 63.70	6
	MOTA	4719	CE		.80	25.645		27.223	1.00 63.89	6
	MOTA	4720	NZ	LYS C 1	.80	24.768		26.013	1.00 62.80	7 6
35	ATOM	4721	С	LYS C 1	.80	25.971		31,266	1.00 67.33	8
	MOTA	4722	0	LYS C 1		25.552				7
	MOTA	4723	N	ASN C 1	.81	27.027			1.00 67.89	6
	ATOM	4724	CA	ASN C 1	.81	27.698				6
	MOTA	4725	CB	ASN C 1		27.967				6
40	ATOM	4726	CG		L81	28.580				8
	MOTA	4727		ASN C 1		29.50				7
	MOTA	4728	ND2	ASN C	181	28.07				6
	MOTA	4729	· C	ASN C		28.97				8
	MOTA	4730		ASN C		29.93				7
45	ATOM	4731		SER C		28.97				6
	MOTA	4732		SER C		30.13				6
	MOTA	4733		SER C		29.72 30.73				8
	MOTA	4734		SER C		31.23				6
	MOTA	4735		SER C	782	30.94				8
50	MOTA	4736		SER C		32.48				7
	MOTA	4737		VAL C		33.61				6.
	MOTA	4738		VAL C VAL C		33.87				6
	ATOM	4739		VAL C		33.64				6
	MOTA	4740				35.29				
55				2 VAL C VAL C	183	34.92	_		8 1,00 65.88	6
	ATOM			VAL C		35.30				8
	MOTA			THR C		35.61			7 1.00 66.99	7
	MOTA					36.89			3 1.00 68.57	
60	MOTA MOTA					36.99		8 27.73	2 1.00 67.80	
00	MOTA			1 THR C		35.98		9 26.73	7 1.00 66.40	8

					-150				
	MOTA	4748	CG2	THR C 184	38.370	80.406	27.094	1.00 66.48	6
	ATOM	4749	C :	THR C 184	38.032	78.470	29.292	1.00 70.57	6
	ATOM	4750		THR C 184	37.920	78.802	30.482	1.00 70.99	8
	ATOM	4751		TYR C 185	39.118	77.869	28.815	1.00 70.74	7
5	ATOM	4752		TYR C 185	40.236	77.572	29.683	1.00 71.98	6
•	ATOM	4753		TYR C 185	40.555	76.067	29.658	1.00 72.58	` 6
	ATOM	4754	CG '	TYR C 185	39.351	75.195	29.937	1.00 72.59	6
	ATOM	4755	CD1 '	TYR C 185	38.363	75.011	28.970	1.00 73.55	6
	ATOM	4756		TYR C 185	37.224	74.258	29.236	1.00 72.54	6
10	ATOM	4757	CD2	TYR C 185	39.164	74.597	31.185	1.00 72.27	6
	ATOM	4758	CE2	TYR C 185	38.017	73.839	31.461	1.00 71.72	6
	MOTA	4759		TYR C 185	37.057	73.678	30.480	1.00 71.73	6
	ATOM	4760	OH	TYR C 185	35.920	72.951	30.732	1.00 71.36	8
	MOTA	4761		TYR C 185	41.426	78.355	29.191	1.00 73.72	6
15	MOTA	4762		TYR C 185	41.625	78.492	27.983	1.00 74.41	8 7
	MOTA	4763		SER C 186	42.220	78.869	30.125	1.00 75.63	6
	MOTA	4764		SER C 186	43.405	79.653	29.772	1.00 77.64	6
	MOTA	4765		SER C 186	44.183	80.015	31.043	1.00 77.47	8
	MOTA	4766		SER C 186	44.398	78.870	31.858	1.00 78.93 1.00 77.75	6
20	MOTA	4767		SER C 186	44.300	78.875	28.793 27.893	1.00 77.73	8
	MOTA	4768		SER C 186	44.926 44.332	79.457 77.556	28.977	1.00 78.65	7
	MOTA	4769		CYS C 187	45.116	76.648	28.135	1.00 79.38	6
	MOTA	4770		CYS C 187 CYS C 187	44.658	76.703	26.715	1.00 79.55	6
05	MOTA	4771	C	CYS C 187	45.443	76.703	25.771	1.00 79.09	8
25	MOTA	4772	0	CYS C 187	44.899	75,178	28.529	1.00 79.04	6
	MOTA	4773 4774	CB SG	CYS C 187	43.205	74.462	28.241	1.00 80.14	16
	MOTA MOTA	4775	N	CYS C 188	43.345	76.774	26.589	1,00 80.45	7
	MOTA	4776	CA	CYS C 188	42.727	76.642	25.305	1.00 79.63	6
30	MOTA	4777	C	CYS C 188	41.779	77.755	24.835	1.00 79.24	6
00	ATOM	4778	Ö	CYS C 188	40.785	78.065	25.504	1.00 81.46	8
	MOTA	4779	CB	CYS C 188	42.037	75.269	25.365	1.00 79.66	6
	MOTA	4780	SG	CYS C 188	42.984	73.940	26.264	1.00 75.61	16
	MOTA	4781	N	PRO C 189	42.070	78.346	23.656	1.00 77.55	7
35	MOTA	4782	CD	PRO C 189	43.222	77.849	22.879	1.00 76.91	6
	MOTA	4783	CA	PRO C 189	41.378	79.431	22.922	1.00 75.67	6
	MOTA	4784	CB	PRO C 189	41.921	79.283	21.502	1.00 75.82 1.00 77.27	6 6
	MOTA	4785	CG	PRO C 189	43.328	78.858	21.747 22.927	1.00 77.27	6
	MOTA	4786	C	PRO C 189	39.835	79.468 80.403	23.459	1.00 73.97	8
40	MOTA	4787	0	PRO C 189	39.233	78.465	22.317	1.00 71.85	7
	MOTA	4788	N	GLU C 190	39.201 37.734	78.404	22.246	1.00 68.61	6
	MOTA	4789 4790	CA CB	GLU C 190	37.305			1.00 70.45	6
	MOTA	4790	CG	GLU C 190	38.277	77.434	19.945	1.00 72.05	6
45	MOTA ATOM	4792	CD	GLU C 190	38.082	78.554	18.969	1.00 73.59	6
40	MOTA	4793		GLU C 190	36.908	78.876	18.657	1.00 73.46	8
	MOTA	4794		GLU C 190	39.106	79.100	18.504	1.00 77.52	8
	ATOM	4795	C	GLU C 190	37.084	77.889	23.528	1.00 64.48	6
	ATOM	4796	Ō	GLU C 190	37.762	77.596	24.501	1.00 64.47	8
50	MOTA	4797	N	ALA C 191	35.764	77.765	23.514	1.00 60.72	7
	ATOM	4798	CA	ALA C 191	35.035	77.281	24.679	1.00 60.54	6
	ATOM	4799	CB	ALA C 191	33.755		24.854	1.00 59.52	6
	MOTA	4800	С	ALA C 191			24.554	1.00 60.66	6
	MOTA	4801	0	ALA C 191			23.458	1.00 60.77	8
55	MOTA	4802	N	TYR C 192			25.675		7
	MOTA	4803		TYR C 192			25.659		6 6
	MOTA	4804		TYR C 192					6
	MOTA	4805		TYR C 192					6
60	MOTA	4806	CD1	TYR C 192 TYR C 192	37.694 38.680				6
60	MOTA	4807 4808		TYR C 192					6
	MOTA	~000			55.560				

							•			
						-151				
			070 m	m a 105	,	37.785	71.874	23.121	1.00 57.49	6
	MOTA	4809		YR C 192		38.720	72.898	23.119	1.00 58.13	6
	MOTA	4810		YR C 192			72.838	22.148	1.00 58.55	8
	MOTA	4811		YR C 192		39.689			1.00 57.26	6
	MOTA	4812		YR C 192		33.204	73.295	26.508	1.00 57.20	8
5	ATOM	4813		YR C 192		33.292	73.241	27.736		.7
	MOTA	4814	N G	LU C 19:	3	32.084	73.042	25.836	1.00 57.28	6
	ATOM	4815	CA G	LU C 193	3	30.839	72.678	26.506	1.00 58.77	
	ATOM	4816		LU C 19:		29.681	72.597	25.495	1.00 59.02	6
	MOTA	4817		LU C 19:		29.342	73.912	24.823	1.00 61.64	6
10		4818		LU C 19		28.118	73.827	23.945	1.00 63.79	6
10	MOTA	4819		LU C 19		27.107	73.242	24.411	1.00 66.05	8
	MOTA			LU C 19		28.171	74.355	22.805	1.00 63.82	8
	ATOM	4820				30.968	71.336	27.224	1.00 58.56	6
	MOTA	4821		LU C 19		31.749	70.471	26.811	1.00 58.35	8
	ATOM	4822		LU C 19				28.296	1.00 57.04	7
15	MOTA	4823		SP C 19		30.197	71.171		1.00 57.30	6
	MOTA	4824		SP C 19		30.215	69.940	29.059	1.00 57.30	6
	ATOM	4825	CB A	SP C 19	4	31.473	69.849	29.932		6
	ATOM	4826	CG A	SP C 19	4	31.430	70.777	31.141	1.00 58.91	
	ATOM	4827	OD1 A	SP C 19	4	32.220	71.742	31.172	1.00 57.40	8
20	ATOM	4828	OD2 A			30.614	70.538	32.060	1.00 58.46	8
20	MOTA	4829	C A	SP C 19		28.982	69.848	29.933	1.00 56.78	6
				ASP C 19		28.411	70.864	30.320	1.00 56.90	8
	ATOM	4830		/AL C 19		28.567	68.619	30.223	1.00 55.47	7
	MOTA	4831				27.404	68.373	31.061	1.00 55.52	6
	MOTA	4832		/AL C 19			67.236	30.504	1.00 54.50	6
25	MOTA	4833		/AL C 19		26.538		31.511	1.00 52.44	6
	MOTA	4834	CG1 \	/AL C 19	95	25.469	66.841		1.00 55.96	6
	MOTA	4835		VAL C 19		25.914	67.671	29.199		6
	ATOM	4836		VAL C 19		27.874	67.973	32.444	1.00 56.12	
	MOTA	4837	0 7	VAL C 19	95	28.661	67.046	32.602	1.00 56.74	8
30	MOTA	4838		GLU C 19		27.388	68.675	33.451	1.00 56.91	7
00	MOTA	4839		GLU C 19		27.777	68.370	34.816	1.00 57.46	6
		4840		GLU C 1		28.051	69.654	35.581	1.00 58.09	6
	MOTA			GLU C 1		28.548	69.445	36.972	1.00 59.59	6
	MOTA	4841		GLU C 1:		28.730	70.758	37.700	1.00 62.33	6
	ATOM	4842				29.523	71.594	37.229	1.00 62.53	8
35	MOTA	4843		GLU C 1			70.958	38.746	1.00 65.85	8
	MOTA	4844		GLU C 1		28.074		35.453	1.00 57.05	6
	MOTA	4845		GLU C 1		26.636	67.627		1.00 57.05	8
	MOTA	4846		GLU C 1		25.517	68.120	35.487		7
	MOTA	4847		VAL C 1		26.914	66.427	35.938	1.00 56.46	
40	MOTA	4848	CA	VAL C 1	97	25.889	65.612	36.566	1.00 55.58	6
	MOTA	4849	CB	VAL C 1	97	25.867	64.179	35.984	1.00 53.38	6
	ATOM	4850		VAL C 1		24.777	63.360	36.649	1.00 50.20	6
	ATOM	4851	CG2	VAL C 1	97	25.629	64.239	34.486	1.00 51.56	6
		4852		VAL C 1	97	26.199		38.041	1.00 56.50	6
45	MOTA			VAL C 1		27.320		38.430	1.00 58.31	8
45	MOTA	4853		SER C 1		25.214				7
	MOTA	4854		SER C 1	00	25.407				6
	MOTA	4855		SER C 1						6
	MOTA	4856		SER C 1		24.867				8
	MOTA	4857	OG	SER C 1	.98	25.661				6
50	MOTA	4858	С	SER C 1	.98	24.717				
	MOTA	4859	0	SER C 1	.98	23.513				8
	ATOM	4860		LEU C 1	.99	25.494				7
	MOTA	4861		LEU C 1		24.938	62.594			6
	MOTA	4862		LEU C 1		25.824	61.383	41.834		6
= =		4863		LEU C 1		25.457			1.00 56.43	б
55				LEU C		24.073				6
	MOTA	4864		LEU C 1	100	26.487				6
	MOTA	4865				24.818				6
	MOTA	4866		LEU C						8
	MOTA	486		LEU C	133	25.819		_		
60	MOTA			ASN C	200	23.593				
	MOTA	4869	CA	ASN C	200	23.359	5 63.168	45.489	, 1.00 30,44	0

							-152					
	ATOM	4870	СВ	ASN (2 2	200	22.285	64.232	45.754	1.00	60.17	6
	ATOM	4871		ASN (21.985	64.387	47.239	1.00	62.50	6
	ATOM	4872		ASN (22.905	64.419	48.070	1.00	64.15	8
	MOTA	4873		ASN (20.700	64.480	47.583	1.00	61.21	7
5	MOTA	4874		ASN (22.898	61.801	45.988		55.97	_. 6
	MOTA	4875		ASN (2 2	200	21.821	61.316	45.627	1.00	54.75	8
	ATOM	4876	N	PHE (2 2	201	23.739	61.181	46.802	1.00	53.51	7
	MOTA	4877	CA	PHE (2 2	201	23.454	59.867	47.330	1.00	53.54	6
	MOTA	4878	CB	PHE (2 2	201	24.169	58.807	46.503		50.74	6
10	MOTA	4879	CG	PHE		201	25.663	58.820	46.677		48.36	6
	MOTA	4880		PHE (201	26.312	57.763	47.309		45.72	. 6
	MOTA	4881		PHE (201	26.413	59.912	46.252		46.85	6
	MOTA	4882		PHE			27.689	57.794	47.521		43.95	6
	ATOM	4883		PHE		201	27.782	59.955	46.457		45.93	6
15	MOTA	4884	CZ	PHE			28.425	58.889	47.096		44.09	6
	MOTA	4885	C	PHE			23.979	59.812	48.749		55.36 53.66	6 8
	MOTA	4886	0	PHE			24.640	60.739	49.210			7
	MOTA	4887	N	ARG			23.698	58.702 58.511	49.425 50.792		57.35 59.95	6
20	ATOM	4888	CA	ARG			24.140 23.192	59.224	51.744		62.36	6
20	MOTA	4889	CB	ARG ARG		202	21.844	58.529	51.789		64.26	6
	ATOM	4890 4891	CG CD	ARG			20.831	59.278	52.610		67.26	6
	MOTA MOTA	4891	NE	ARG			19.555	58.567	52.620		70.54	7
	MOTA	4893	CZ	ARG			18.430	59.062	53.129		69.46	6
25	ATOM	4894		ARG			18.420	60.270	53.670		69.25	7
	ATOM	4895		ARG			17.315	58.349	53.095		69.56	7
	MOTA	4896	C	ARG			24.116	57.023	51.119	1.00	60.80	6
	MOTA	4897	0	ARG	С	202	23.439	56.231	50.445		60.45	8
	MOTA	4898	N	LYS	С	203	24.860	56.651	52.158		61.42	7
30	MOTA	4899	CA	LYS	С	203	24.886	55.270	52.603		60.82	6
	MOTA	4900	CB	LYS			25.931	55.088	53.703		59.66	6
	MOTA	4901	CG	LYS			25.988	53.688	54.258		61.19	6
	MOTA	4902	CD	LYS			26.955	53.617	55.404		63.27	6
05	MOTA	4903	CE	LYS			27.036	52.209	55.947		66.98	6
35	ATOM	4904	NZ	LYS			27.621	51.250	54.945		68.80 60.81	7 6
	ATOM	4905	C	LYS			23.477 22.878	55.037 55.942	53.157 53.735		60.52	8
	MOTA ATOM	4906 4907	N O	LYS LYS		203	22.913	53.858	52.944		60.36	7
	MOTA	4907	CA	LYS			21.584	53.606	53.466		60.22	6
40	MOTA	4909	CB	LYS		204	21.017	52.329	52.837		58.64	6
	MOTA	4910	CG	LYS			20.591	52.487	51.381	1.00	55.82	6
	ATOM	4911	CD	LYS			20.445	51.140	50.692	1.00	51.95	6
	MOTA	4912	CE	LYS	С	204	19.975	51.298	49.253		52.70	6
	MOTA	4913	NZ	LYS	С	204	19.967	50.027	48.458		51.76	7
45	MOTA	4914	С	LYS			21.742	53.460	54.977		62.01	б
	MOTA	4915	0	LYS			22.711	52.854	55.440		63.36	8
	MOTA	4916	N	GLY			20.811	54.022	55.747		62.55	7
	MOTA	4917	CA	GLY			20.898	53.921	57.202		62.30	6
	MOTA	4918	C	GLY			19.797	53.078	57.844		61.75	6
50	MOTA	4919		GLY			18.911	52.614	57.093		60.18	8
	MOTA	4920		GLY			19.811	52.879	59.092 1.648		60.86 71.47	8 6
	ATOM	4921	CB	PHE		1 1	39.182 40.239	71.754 71.385	0.623		73.60	6
	MOTA MOTA	4922 4923	CG CD1	PHE		1	40.122	70.241	-0.169		75.22	6
55	MOTA	4924		PHE		1	41.397	72,176	0.493		73.83	6
	ATOM	4925		PHE		1	41.141	69.886	-1.081		75.00	6
	MOTA	4926		PHE		1	42.418	71.835	-0.410		73.07	6
	ATOM	4927	CZ	PHE		1	42.289	70.688	-1.199	1.00	74.63	6
	ATOM	4928	C	PHE		1	37.071	70.999	2.658		68.35	6
60	MOTA	4929	0	PHE	D	1	37.607	71.392	3.688		69.33	8
	MOTA	4930	N	PHE	D	1	37.010	72.284	0.515	1.00	69.08	7

•						-153				
	MOTA	4931	CA	PHE D	1	37.756	71.268	1.321	1.00 69.54	6
	ATOM	4932		ASP D	2	35.915	70.338	2.678	1.00 67.84	7
	ATOM	4933		ASP D	2	35.253	70.061	3.967	1.00 66.03	6
	ATOM	4934	CB	ASP D	2	33.949	69.266	3.772	1.00 66.47	6
5	MOTA	4935	CG	ASP D	2	34.138	68.032	2.928	1.00 68.89	6
	MOTA	4936	OD1	ASP D	2	35.029	67.218	3.287	1.00 68.16	8
	MOTA	4937	OD2	ASP D	2	33.396	67.886	1.912	1.00 70.47	8 6
	MOTA	4938	С	ASP D	2	36.181	69.310	4.933	1.00 64.63	8
	MOTA	4939	0	ASP D	2	37.378	69.165	4.672	1.00 64.43 1.00 62.26	7
10	MOTA	4940	N	ARG D	3	35.639	68.837	6.049 7.029	1.00 60.44	6
	MOTA	4941	CA	ARG D	3	36.461	68.128 68.078	8.388	1.00 60.90	6
	MOTA	4942	CB	ARG D	3	35.748 36.068	69.254	9.302	1.00 60.80	6
	MOTA	4943	CG	ARG D	3	35.185	69,243	10.532	1.00 65.18	6
4 =	MOTA	4944	CD	ARG D	3 3	35.849	69.838	11.696	1.00 66.90	7
15	ATOM	4945	NE	ARG D ARG D	3	36.028	71.141	11.888	1.00 66.63	6
	ATOM	4946	CZ	ARG D	3	35.591	72.031	11.002	1.00 68.16	7
	MOTA	4947 4948		ARG D	3	36.664	71.553	12.964	1.00 66.33	7
	ATOM ATOM	4948	C	ARG D	3	36.831	66.719	6.580	1.00 59.10	6
20	MOTA	4950	Ö	ARG D	3	37.938	66.252	6.845	1.00 57.28	8
20	ATOM	4951	Ŋ	ALA D	4	35.909	66.050	5.891	1.00 56.67	7
	MOTA	4952	CA	ALA D	4	36.153	64.699	5.414	1.00 53.48	6
	ATOM	4953	CB	ALA D	4	34.938	64.175	4.706	1.00 52.26	6
	ATOM	4954	C	ALA D	4	37.347	64.696	4.479	1.00 53.39	6
25	ATOM	4955	Ō	ALA D	4	38.225	63.851	4.600	1.00 52.40	8
	ATOM	4956	N	ASP D	5	37.381	65.650	3.550	1.00 54.53	7
	MOTA	4957	CA	ASP D	5	38.489	65.756	2.602	1.00 55.71	6
	MOTA	4958	CB	ASP D	5	38.266	66.914	1.627	1.00 58.22	6
	MOTA	4959	CG	ASP D	5	36.938	66.810	0.881	1.00 61.46	6
30	ATOM	4960	OD1	ASP D	5	36.605	65.709	0.386	1.00 64.32	8
	MOTA	4961	OD2	ASP D	5	36.227	67.832	0.773	1.00 63.22	8 6
	MOTA	4962	С	ASP D	5	39.816	65.970	3.326	1.00 54.28 1.00 52.86	8
	MOTA	4963	0	ASP D	5	40.844	65.440	2.914	1.00 52.80	7
	MOTA	4964	N	ILE D	6	39.787	66.735 67.003	4.410 5.154	1.00 52.55	6
35	MOTA	4965	CA	ILE D	6	41.007 40.813	68.128	6.191	1.00 55.79	6
	MOTA	4966	CB	ILE D	6	42.152	68.435	6.877	1.00 54.61	6
	MOTA	4967		ILE D	6 6	40.266	69.385	5.499	1.00 55.83	6
	MOTA	4968		L ILE D	6	40.121	70.597	6.400	1.00 55.01	6
40	MOTA	4969		L ILE D	6	41.545	65.775	5.870	1.00 52.43	6
40	MOTA	4970 4971		ILE D	6	42.711	65.420	5.709	1.00 52.78	8
	MOTA	4971		LEU D	7	40.701	65.134	6.666	1.00 51.01	7
	ATOM	4973		LEU D	7	41.111		7.401	1.00 50.01	б
	MOTA MOTA	4974		LEU D	7	39.962	63.459	8.276	1.00 47.85	6
45	ATOM	4975		LEU D	7	39.608	64.420	9.408	1.00 46.02	6
40	ATOM	4976		1 LEU D	7	38.267	64.084	10.010	1.00 48.59	6
	ATOM	4977		2 LEU D	7	40.687	64.356	10.440	1.00 45.91	6
	ATOM	4978		LEU. D	7	41.526	62.871	6.415	1.00 51.80	б
	ATOM	4979		LEU D	7	42.507	62.154	6.631	1.00 52.35	8
50	ATOM	4980		TYR D	8	40.788	62.781	5.315	1.00 52.55	7
	MOTA	4981		TYR D	8	41.060	61.788	4.288	1.00 53.16	6
	MOTA	4982	св	TYR D	8	40.047	61.936	3.159	1.00 54.45	6
	MOTA	4983	G CG	TYR D	8	40.294		2.006	1.00 57.19	6
	MOTA	4984				40.030		2.120	1.00 57.12	6
55	MOTA	4985		1 TYR D		40.308		1.069		6
	MOTA	4986		2 TYR D		40.841		0.810		6 6
	MOTA	4987				41.130				6
	MOTA	4988				40.863		-0.112 -1.149		8
	MOTA	4989				41.162				6
60	MOTA	4990		TYR D		42.483		3.733		8
	MOTA	4993	1 0	TYR D	8	43.190	00.507	3.371	2.00 00.72	Ŭ

						_	154				
	ATOM	4992	N .	ASN D	. 9	42	2.900	63.121	3.416	1.00 53.53	7
	MOTA	4993		ASN D	9		1.238	63.329	2.890	1.00 55.79	6
	ATOM	4994		ASN D	9	44	1.451	64.800	2.509	1.00 59.06	6
	ATOM	4995		ASN D	9	4:	3.588	65.232	1.317	1.00 63.96	6
5	ATOM	4996		ASN D	9	42	2.912	64.406	0.688	1.00 67.47	. 8
•	ATOM	4997	ND2	ASN D	9	4:	3.612	66.527	1.000	1.00 65.39	7
	ATOM	4998		ASN D	9		5.283	62.901	3.907	1.00 55.13	6
	ATOM	4999	0	ASN D	9	4	6.175	62.117	3.593	1.00 54.15	8
	MOTA	5000	N	ILE D	10	4	5.167	63.416	5.129	1.00 55.13	7
10	MOTA	5001	CA	ILE D	10		6.099	63.077	6.195	1.00 54.61	6
	MOTA	5002	CB	ILE D	10		5.660	63.693	7.534	1.00 54.44	6
	MOTA	5003	CG2	ILE D	10		6.585	63.218	8.651	1.00 53.71	6
	MOTA	5004	CG1	ILE D			5.683	65.222	7.435	1.00 52.93	6
	MOTA	5005	CD1	ILE D	10		5.083	65.916	8.605	1.00 47.92	6 6
15	MOTA	5006	С	ILE D			6.177	61.566	6.365	1.00 56.15	8
	MOTA	5007	0	ILE D			7.258	60.992	6.496	1.00 57.11 1.00 56.48	7
	MOTA	5008	N	ARG D			5.018	60.927	6.363	1.00 58.41	6
	MOTA	5009	CA	ARG D			4.938	59.494	6.512	1.00 58.41	6
	MOTA	5010	CB	ARG D			3.478	59.070	6.428 6.631	1.00 03.38	6
20	MOTA	5011	CG	ARG D			3.229	57.585		1.00 70.33	6
	MOTA	5012	CD	ARG D			3.398	57.219	8.100 8.448	1.00 75.03	7
	MOTA	5013	NE	ARG D		_	2.703	55.980 55.685	8.037	1.00 88.61	6
	MOTA	5014	CZ	ARG D			1.466		7.249	1.00 89.11	7
05	MOTA	5015		ARG D			0.795		8.434	1.00 87.93	7
25	ATOM	5016		ARG D			15.721		5.425	1.00 58.93	6
	MOTA	5017	C	ARG I			16.497		5.698	1.00 58.85	8
	MOTA	5018	0	GLN I			15.507		4.186	1.00 59.05	7
	MOTA	5019	N CA	GLN I			16.131		3.024	1.00 57.95	6
30	MOTA	5020 5021	CB	GLN I	_		15.345		1.780	1.00 57.48	6
30	ATOM ATOM	5021	CG	GLN I			14.961		0.955	1.00 61.67	6
	ATOM	5023	CD	GLN I			13.773		1.525	1.00 61.71	6
	MOTA	5024	OE1		_		12.729		1.698	1.00 64.71	8
	MOTA	5025		GLN I		4	13.912	55.784	1.831	1.00 59.81	7
35	ATOM	5026	C	GLN I	_	4	17.589	58.926	2.769	1.00 57.99	б
-	ATOM	5027	ō	GLN I			48.280	58.169	2.097	1.00 58.62	8
	ATOM	5028	N	THR I	13		48.070	60.046	3.291	1.00 57.97	7
	ATOM	5029	CA	THR I	D 13		49.452		3.042	1.00 58.22	6
	MOTA	5030	CB	THR I	D 13		49.520		2.464	1.00 56.90	6
40	MOTA	5031	OG1	THR 1	D 13		48.907		3.377	1.00 53.15	8
	ATOM	5032	CG2	THR I			48.808		1.110	1.00 56.04	6
	MOTA	5033	С	THR			50.361		4.255	1.00 60.59	6
	MOTA	5034	0 -				51.589			1.00 61.33	8
	MOTA	5035		SER :			49.762		5.440	1.00 61.87 1.00 61.93	7
45	MOTA	5036		SER			50.542		6.669 7.863	1.00 61.53	6 6
	MOTA	5037		SER			49.634		8.988	1.00 62.76	8
	MOTA	5038		SER			50.417		6.903	1.00 61.38	6
	MOTA	5039		SER			51.323		6.467	1.00 62.07	8
	MOTA	5040		SER			50.922 52.444		7.596		7
50	ATOM	5041		ARG			53.317		7.911		6
	ATOM	5042		ARG ARG			54.553		7.011		6
	MOTA	5043		ARG			54.219		5.528		6
	MOTA	5044		ARG			55.45		4.738		6
55	MOTA MOTA	5045 5046					56.01		5.254		7
55	MOTA	5047					57.20		4.929		6
	ATOM	5048		1 ARG			57.98		4.080	1.00 65.36	7
	ATOM	5049		2 ARG			57.62		5.457	1.00 67.99	7
	ATOM	5050		ARG			53.72		9.376		6
60	MOTA	5051		ARG			54.70	5 58.859	9.715		8
	MOTA			PRO	D 16		52.96	7 57.517	10.265	1.00 55.24	7

						-155				
	MOTA	5053	CD	PRO D	16	51.78		9.935	1.00 51.06	6
	MOTA	5054		PRO D	16	53.20	0 57.524	11.709	1.00 51.86	6
	ATOM	5055		PRO D	16	52.10	4 56.602	12.236	1.00 49.85	6
	ATOM	5056		PRO D	16	51.03	1 56.720	11.226	1.00 51.02	6
5	MOTA	5057		PRO D	16	54.58	0 57.066	12.130	1.00 49.97	6
Ü	MOTA	5058		PRO D	16	55.03	4 57.387	13.220	1.00 48.83	8
	MOTA	5059		ASP D	17	55.24	7 56.313	11.270	1.00 50.05	7
	ATOM	5060		ASP D	17	56.56		11.612	1.00 53.82	6
	MOTA	5061	СВ	ASP D	17	56.79	6 54.419	10.981	1.00 57.43	6
10	ATOM	5062	CG	ASP D	17	55.97	9 53.320	11.666	1.00 63.55	6
	MOTA	5063		ASP D	17	55.72	8 53.431	12.892	1.00 63.43	8
	ATOM	5064		ASP D	17	55.59	8 52.330	10.985	1.00 66.47	8
	ATOM	5065	C	ASP D	17	57.71	LO 56.733		1.00 52.72	6
	ATOM	5066	0 -	ASP D	17	58.87	75 56.406	11.440	1.00 54.00	8
15	ATOM	5067	N	VAL D	18	57.38	34 57.888	10.653	1.00 50.54	7
	ATOM	5068	CA	VAL D	18	58.41	L8 58.808	10.209	1.00 51.72	6
	ATOM	5069	CB	VAL D	18	58.35		8.680	1.00 52.70	6
	MOTA	5070	CG1	VAL D	18	59.48		8.209	1.00 52.67	6
	MOTA	5071	CG2	VAL D	18	58.42		7.998	1.00 53.16	6
20	MOTA	5072	С	VAL D	18	58.40		10.865	1.00 51.90	6
	ATOM	5073	0	VAL D	18	57.40		10.716	1.00 50.79	8
	ATOM	5074	N	ILE D	19	59.4		11.586	1.00 52.81	7
	MOTA	5075	CA	ILE D	19	59.6		12.280	1.00 54.09	6
	ATOM	5076	CB	ILE D	19	60.9		13.116	1.00 53.08	6
25	MOTA	5077	CG2	ILE D	19	62.1		12.194	1.00 53.31	6
	MOTA	5078	CG1	ILE D	19	61.0		14.027	1.00 52.13	6
	MOTA	5079	CD1	ILE D	19	62.1		15.086	1.00 49.47	6
	MOTA	5080	С	ILE D	19	59.6		11.255	1.00 56.58	6
	ATOM	5081	0	ILE D	19	60.4		10.274	1.00 57.79	8 7
30	MOTA	5082	N	PRO D	20	58.8		11.464	1.00 56.89	6
	MOTA	5083	CD	PRO D		57.9		_	1.00 56.43	
	MOTA	5084	CA	PRO D		58.7			1.00 58.17	6 6
	MOTA	5085	СВ	PRO I		57.5		_	1.00 57.33 1.00 56.81	6
	MOTA	5086	CG	PRO I		56.8		_	1.00 60.38	6
35	MOTA	5087	С	PRO I		59.9			1.00 57.93	8
	MOTA	5088	0	PRO I		59.9			1.00 64.41	7
	MOTA	5089	N	THR I		61.1			1.00 68.99	6
	MOTA	5090	CA	THR I		62.3			1.00 68.83	6
	MOTA	5091	CB	THR I		63.5			1.00 69.74	8
40	MOTA	5092	OG1			63.8		_	1.00 69.49	6
	MOTA	5093	CG2			64.7			1.00 73.81	6
	MOTA	5094	С	THR I		62.6			1.00 75.27	8
	MOTA	5095	0	THR I		62.4 63.1			1.00 77.41	7
4-	MOTA	5096		GLN I		63.4				6
45	MOTA	5097				62.				6
	ATOM	5098			_	61.2				6
	MOTA	5099				60.0				6
	MOTA	5100								8
~ 0	MOTA	5101		1 GLN		59.				7
50	MOTA	5102		2 GLN		65.				6
	MOTA	5103		GLN		65.				
	MOTA	5104		GLN		65.				7
	ATOM	5105		ARG ARG		67.				
	MOTA	5106				67.				
55	MOTA	5107								
	MOTA	5108						_		
	MOTA	5109					994 72.29			
	MOTA						904 72.86			
60	ATOM			ARG			158 73.06			7
00				12 ARG			555 73.22			. 7
	MOTA	211.	J 141.				-			

						-156				
	ATOM	5114	С.	ARG D	23	67.768	68.079	8.399	1.00 87.43	6
	MOTA	5115	_	ARG D	23	67.201	67.105	8.907	1.00 88.35	8
	MOTA	5116		ASP D	24	68.912	68.570	8.875	1.00 87.68	7
	MOTA	5117		ASP D	24	69.538	67.975	10.055	1.00 86.96	6
5	ATOM	5118	CB	ASP D	24	71.041	68.283	10.123	1.00 91.11	6
	MOTA	5119	CG	ASP D	24	71.627	68.719	8.780	1.00 94.40	6
	MOTA	5120	OD1	ASP D	24	71.599	67.908	7.806	1.00 95.87 1.00 95.25	8 8
	MOTA	5121	OD2	ASP D	24	72.121	69.881	8.712		6
	MOTA	5122		ASP D	24	68.864	68.594	11.274	1.00 85.02 1.00 83.40	8
10	MOTA	5123		ASP D	24	69.279	68.347	12.414	1.00 83.40	7
	ATOM	5124		ARG D	25	67.836	69.409	11.026 12.111	1.00 81.58	6
	MOTA	5125	-	ARG D	25	67.112 66.218	70.062 71.189	11.585	1.00 83.67	6
	MOTA	5126	CB	ARG D	25	66.951	72.455	11.150	1.00 88.52	6
4.5	ATOM	5127	CG	ARG D	25 25	65.941	73.597	10.942	1.00 92.65	6
15	MOTA	5128	CD	ARG D	25	66.579	74.866	10.584	1.00 96.29	7
	MOTA	5129	NE CZ	ARG D	25	65.928	76.024	10.463	1.00 98.03	6
	MOTA	5130 5131		ARG D	25	64.608	76.073	10.673	1.00 98.35	7
	MOTA MOTA	5132		ARG D	25	66.597	77.136	10.142	1.00 98.69	7
20	ATOM	5132	C	ARG D	25	66.241	69.091	12.901	1.00 78.66	6
20	ATOM	5134	0	ARG D	25	65.480	68.303	12.325	1.00 79.51	8
	ATOM	5135	N	PRO D	26	66.353	69.127	14.237	1.00 74.94	7
	ATOM	5136	CD	PRO D	26	67.383	69.831	15.020	1.00 73.76	6
	MOTA	5137	CA	PRO D	26	65.562	68.252	15.101	1.00 71.13	6
25	ATOM	5138	CB	PRO D	26	66.202	68.450	16.483	1.00 71.49	6
	MOTA	5139	CG	PRO D	26	67.608	68.884	16.165	1.00 72.18	6
	MOTA	5140	C ·	PRO D	26	64.115	68.738	15.095	1.00 67.33	6
	MOTA	5141	0	PRO D	26	63.834		14.713	1.00 65.48	8
	MOTA	5142	N	VAL D	27	63.198	67.870	15.510	1.00 63.87	7
30	MOTA	5143	CA	VAL D	27	61.806	68.258	15.596	1.00 58.65	6 6
	MOTA	5144	CB	VAL D	27	60.849	67.036	15.494	1.00 57.16	6
	MOTA	5145		VAL D	27	59.462	67.401	15.998	1.00 54.11 1.00 56.19	6
	MOTA	5146		VAL D		60.755	66.579	14.052	1.00 56.19	6
	MOTA	5147	С	VAL D		61.705	68.896	16.968 17.961	1.00 55.97	8
35	MOTA	5148	0	VAL D		62.164	68.337 70.088	17.019	1.00 56.42	7
	MOTA	5149	N	ALA D		61.136 . 60.999	70.767	18.287	1.00 55.56	6
	MOTA	5150	CA	ALA D		. 60.999 61.057	72.269	18.095	1.00 55.33	6
	MOTA	5151	CB	ALA D		59.688	70.371	18.923	1.00 54.28	б
40	MOTA	5152	C O	ALA D		58.617	70.741	18.440	1.00 54.43	8
40	MOTA	5153 5154	И	VAL D		59.800	69.603	20.006	1.00 52.62	7
	MOTA	5155		VAL D		58.657	69.127	20.775	1.00 50.60	- 6
	MOTA		~-	VAL D		58.715		21.016	1.00 48.93	6
	MOTA MOTA	5156 5157	CB CG1	VAL D		57.543	67.162	21.871	1.00 46.20	6
45	MOTA	5158		VAL I		58.718	66.868	19.692	1.00 47.60	6
40	MOTA	5159		VAL I		58.652	69.805	22.131	1.00 50.77	6
	ATOM	5160		VAL I		59.657	69.806	22.852	1.00 51.59	. 8
	ATOM	5161		SER I		57.517	70.395	22.471		7
	ATOM	5162		SER I		57.373				6
50	MOTA	5163	СВ	SER I	30	56.794				6
	ATOM	5164	OG	SER I	30	55.514				8
	ATOM	5165	C	SER I		56.442				6
	MOTA	5166		SER I		55.397				8 7
	MOTA	5167		VAL I		56.845				6
55		5168		VAL I	_	56.089				6
	MOTA	5169		VAL I		56.911				6
	MOTA	5170		1 VAL 1		56.015				6
	MOTA	5171		2 VAL 1		57.573				6
	MOTA	5172		VAL		55.753 56.607				8
60		5173		VAL I		54.508				7
	MOTA	5174	1 N	SER :	D 32	54.500	, ,,,,,,,	. 20.450	05.15	•

						-157				
	ATOM	5175	CA	SER D	32	54.062	70.594	29.628	1.00 59.47	6
	ATOM	5176	СВ	SER D		53.467	71.934	29.175	1.00 60.04	6
	ATOM	5177	OG	SER D		52.892	72.641	30.256	1.00 62.30	8
	ATOM	5178	C	SER D		53.023	69.799	30.433	1.00 58.78	6
5	ATOM	5179	Ö	SER D		51.906	69.572	29.966	1.00 59.54	8
•	ATOM	5180		LEU D		53.390	69.379	31.638	1.00 56.81	7
	ATOM	5181	CA	LEU D		52.468	68.629	32.472	1.00 56.85	6
	ATOM	5182	СВ	LEU D		53.217	67.702	33.426	1.00 54.23	6
	ATOM	5183	CG	LEU D		54.192	66.726	32.775	1.00 55.08	б
10	ATOM	5184		LEU D		54.665	65.709	33.818	1.00 53.15	6
	ATOM	5185		LEU I		53.513	66.034	31.614	1.00 54.80	6
	ATOM	5186	C	LEU D		51.623	69.572	33.291	1.00 56.91	6
	ATOM	5187	Ō	LEU I		52.136	70.542	33.829	1.00 59.29	8
	ATOM	5188	N	LYS I		50.327	69.294	33.366	1.00 56.10	7
15	ATOM	5189	CA	LYS I		49.422	70.089	34.171	1.00 55.13	6
. •	ATOM	5190	СВ	LYS I	34	48.311	70.694	33.320	1.00 58.38	6
	ATOM	5191	CG	LYS I		48.802	71.519	32.146	1.00 65.52	6
	ATOM	5192	CD	LYS I	34	49.581	72.764	32.581	1.00 69.06	6
	MOTA	5193	CE	LYS I	34	50.100	73.559	31.364	1.00 72.37	6
20	ATOM	5194	NZ	LYS I	34	50.855	74.801	31.747	1.00 72.05	7
	MOTA	5195	С	LYS I	34	48.838	69.065	35.118	1.00 53.80	6
	MOTA	5196	0	LYS I	34	48.123	68.167	34.685	1.00 55.04	8
	ATOM	5197	N	PHE I	35	49.144	69.173	36.405	1.00 51.60	7
	ATOM	5198	CA	PHE I	35	48.616	68.200	37.346	1.00 49.19	6
25	ATOM	5199	CB	PHE I		49.441	68.199	38.616	1.00 46.49	6
	ATOM	5200	CG	PHE I		50.838	67.733	38.393	1.00 48.31	6
	ATOM	5201		PHE I		51.823	68.617	37.964	1.00 46.94	6
	ATOM	5202		PHE I		51.159	66.387	38.530	1.00 49.16	6
	MOTA	5203	_	PHE 1		53.109	68.170	37.668	1.00 48.04	6 6
30	ATOM	5204		PHE I		52.449	65.925	38.235	1.00 50.28	6
	ATOM	5205	CZ	PHE I		53.424	66.818	37.802	1.00 48.13	6
	ATOM	5206	C	PHE		47.136	68.352	37.642	1.00 49.07 1.00 49.57	8
	ATOM	5207	0	PHE		46.626	69.449	37.869	1.00 47.68	7
0.5	ATOM	5208	N	ILE :		46.451	67.217	37.600 37.827	1.00 47.00	6
35	ATOM	5209	CA	ILE !		45.030	67.156 66.334	36.731	1.00 43.48	6
	ATOM	5210	CB	ILE		44.352 42.850	66.369	36.731	1.00 41.45	6
	ATOM	5211		ILE :		44.752	66.877	35.360	1.00 43.86	6
	ATOM	5212	CG1	ILE		44.398	68.324	35.152	1.00 46.64	6
40	ATOM	5213 5214	CDI	ILE			66.525	39.164	1.00 44.81	6
40	MOTA MOTA	5214	0	ILE			66.798	39.743	1.00 46.51	8
	ATOM	5216	N	ASN		45.612	65.678	39.661	1.00 42.08	7
	ATOM	5217		ASN			65.030	40.939	1.00 42.31	6
	ATOM	5218	СВ	ASN			64.140	40.834	1.00 41.66	6
45	ATOM	5219	CG	ASN			63.990	42.159	1.00 43.88	6
	ATOM	5220		ASN			63.785	43.200	1.00 43.62	8
	ATOM	5221		ASN			64.085	42.124	1.00 38.41	7
	ATOM	5222	C	ASN			64.186	41.426	1.00 43.81	б
	ATOM	5223	0	ASN			63.752	40.640	1.00 40.93	8
50	ATOM	5224	N	ILE			63.977	42.740	1.00 43.93	7
•	MOTA	5225		ILE			63.163	43.372	1.00 44.58	6
	ATOM	5226		ILE		48.496	64.013	44.246	1.00 42.93	6
	MOTA	5227		2 ILE	D 38	49.473	63.140	44.989	1.00 39.88	6
	MOTA	5228		LILE	D 38	49.220	65.028	43.359	1.00 43.19	6
55	MOTA	5229		LILE			66.110	44.084	1.00 44.94	6
	ATOM	5230		ILE	D 38		62.183	44.190	1.00 47.97	6
	MOTA	5231		ILE			62.565	45.162	1,00 50.60	8
	MOTA	5232		LEU			60.916	43.777	1.00 50.68	7
	ATOM	5233		LEU				44.388	1.00 51.24	6
60	MOTA	5234		LEU				43.287	1.00 51.95	6
	MOTA	5235	CG	LEU	D 39	44.834	59.723	42.141	1.00 54.64	6

-158 41.068 1.00 53.53 58.777 44.356 39 CD1 LEU D 5236 MOTA 42.696 1.00 53.70 6 43.666 60.542 39 CD2 LEU D MOTA 5237 6 59.041 45.529 1.00 53.82 46.520 5238 LEU D 39 MOTA С 1.00 54.77 8 46.479 58.750 45.793 LEU D 39 ATOM 5239 0 7 1.00 54.21 45.437 58.620 47.771 40 5 GLU D MOTA 5240 N 46.507 1.00 56.24 6 57.825 48.349 GLU D 40 5241 CA MOTA 1.00 58.19 6 48.278 56.339 46.204 40 5242 CB GLU D MOTA 1.00 65.00 б 46.873 55.801 46.103 GLU D 40 5243 CG MOTA 1.00 68.23 45.938 46.844 54.291 40 GLU D 5244 CD MOTA 1.00 70.63 44.955 47.443 53.791 10 5245 OE1 GLU D 40 ATOM 1.00 68.96 46.789 53.611 46.226 40 OE2 GLU D MOTA 5246 1.00 56.38 46.702 49.785 58.198 GLU D 40 MOTA 5247 C 1.00 59.25 58.355 45.746 50.541 GLU D 40 MOTA 5248 0 1.00 55.49 7 58.343 47.955 50.162 5249 VAL D 41 MOTA N 1.00 54.71 6 51.517 58.695 48.273 VAL D 41 5250 CA 15 ATOM 1.00 55.08 6 51.590 60.145 48.811 VAL D 41 5251 CB MOTA 1.00 55.65 6 49.361 52.954 60.431 5252 CG1 VAL D 41 MOTA 1.00 55.07 6 47.696 51.273 61.125 CG2 VAL D 41 ATOM 5253 1.00 54.17 б 49.309 57.713 52.003 41 5254 VAL D ATOM С 1.00 53.51 8 50.136 57.239 51.232 20 VAL D 41 5255 MOTA 0 1.00 54.90 7 57.381 49.233 53.280 42 5256 ASN D MOTA N 1.00 56.47 6 53.880 56.473 50.182 ASN D 42 5257 CA MOTA 1.00 55.97 6 55.056 49.612 53.944 ASN D 42 5258 CB MOTA 1.00 56.38 54.025 50.661 54.306 ASN D 42 5259 CG MOTA 1.00 55.15 8 51.408 55.272 54.191 OD1 ASN D 42 25 ATOM 5260 50.717 1.00 56.12 53.536 52.947 42 5261 ND2 ASN D MOTA 1.00 58.56 6 50.420 57.022 42 55.278 ASN D MOTA 5262 С 49.567 1.00 58.83 8 56.912 56.154 ASN D 42 5263 0 MOTA 1.00 59.69 7 55.474 57.639 51.579 5264 GLU D 43 MOTA N 1.00 60.97 6 51.905 56.771 58.208 GLU D 43 30 MOTA 5265 CA 1.00 63.50 6 53.065 59.192 56.640 GLU D 43 MOTA 5266 CB 1.00 67.19 53.341 57.921 59.959 43 MOTA 5267 CG GLU D 1.00 68.84 54.303 57.725 61.121 43 MOTA 5268 CD GLU D 1.00 70.83 8 54.682 61.734 OE1 GLU D 43 58.743 MOTA 5269 54.670 1.00 67.80 8 61.427 56.568 OE2 GLU D 35 43 5270 ATOM 1.00 59.80 6 57.792 57.134 52.246 GLU D 43 5271 С MOTA 1.00 59.85 8 52.138 58.993 57.356 GLU D 43 5272 0 ATOM 1.00 59.27 7 55.969 52.653 57.301 ILE D 44 5273 N MOTA 1.00 59.05 53.006 58.164 54.858 44 MOTA 5274 CA ILE D 1.00 59.62 53.681 57.373 53.723 44 ILE D 40 5275 CB MOTA 53.945 1.00 59.50 52.527 58.300 CG2 ILE D 44 5276 ATOM 1.00 58.87 54.217 54.982 56.752 44 CG1 ILE D 5277 MOTA 1.00 60.45 6 57.768 54.484 56.073 CD1 ILE D 44 5278 ATOM 1.00 59.04 6 54.286 51.751 58.801 ILE D 44 5279 С MOTA 1.00 60.06 8 60.001 54.029 51.723 45 5280 ILE D 44 MOTA 0 1.00 57.12 7 54.080 50.719 57.986 ATOM 5281 N THR D 45 1.00 54.05 6 49.464 58.461 53.513 45 THR D ATOM 5282 CA 48.857 1.00 52.43 6 52.576 CB 45 57.410 THR D MOTA 5283 1.00 49.39 8 53.304 48.628 56.204 OG1 THR D 45 5284 MOTA 1.00 49.70 57.128 51.426 49.788 6 CG2 THR D 45 50 5285 ATOM 1.00 53.32 6 54.551 48.417 58.833 THR D 45 5286 С MOTA 1.00 56.15 8 47.397 54.215 59.427 THR D 45 5287 0 MOTA 1.00 51.82 7 48.666 58.493 55.809 46 ATOM 5288 N ASN D 47.723 1.00 51.33 58.796 56.874 ASN D 46 MOTA 5289 CA 57.022 47.567 1.00 51.66 60.305 ASN D 46 55 CB 5290 MOTA 48.434 1.00 52.73 60.874 58.117 46 5291 CG ASN D ATOM 1.00 52.55 Я 62.057 58.105 48.765 OD1 ASN D 46 5292 ATOM 1.00 50.90 7 59.078 48.793 46 60.041 ND2 ASN D MOTA 5293 1.00 50.97 6 46.360 56.618 58.156 5294 С ASN D 46 ATOM 1.00 53.17 56.668 45.325 58.820 46 ASN D 60 MOTA 5295 0 56.348 46.371 1.00 48.99 47 56.858 GLU D 5296 MOTA N

						-159				_
	MOTA	5297	CA (GLU D	47.	56.118		45.155	1.00 48.91	6
,	ATOM	5298	CB (GLU D	47	55.717		45.105	1.00 46.66	6
	ATOM	5299	CG (GLU D	47	56.888	53.678	45.006	1.00 47.02	6
	ATOM	5300	CD (GLU D	47	56.458	52.227	45.018	1.00 49.64	6
5	ATOM	5301		GLU D	47	55,302	51.956	44.644	1.00 48.30	8
Ū	ATOM	5302		GLU D	47	57.276	51.357	45.391	1.00 51.88	8
	ATOM	5303		GLU D	47	54.888	56.992	45.111	1.00 50.12	6
	ATOM	5304		GLU D	47	54.222	57.202	46.125	1.00 50.30	8
	MOTA	5305		VAL D	48	54.591	57.531	43.936	1.00 50.20	7
10	MOTA	5306		VAL D	48	53.455	58.423	43.793	1.00 52.05	6
	ATOM	5307		VAL D	48	53.925	59.861	43.502	1.00 53.36	6
	ATOM	5308	CG1	VAL D	48	52.727	60.778	43.352	1.00 56.39	6
	ATOM	5309		VAL D	48	54.801	60.352	44.620	1.00 54.18	6
	ATOM	5310		VAL D	48	52.522	57.995	42.673	1.00 51.50	6 .
15	ATOM	5311	0	VAL D	48	52.962	57.552	41.617	1.00 53.49	8
	ATOM	5312	N	ASP D	49	51.231	58.137	42.910	1.00 49.46	7
	MOTA	5313	CA	ASP D	49	50.241	57.777	41.920	1.00 49.81	6
	MOTA	5314	CB	ASP D	49	49.241	56.813	42.535	1.00 52.06	6
	ATOM	5315	CG	ASP D	49	48.447	56.086	41.508	1.00 53.16	6 8
20	ATOM	5316	OD1	ASP D	49	48.086	56.719	40.499	1.00 53.36	8
	ATOM	5317	OD2	ASP D	49	48.176	54.887	41.717	1.00 57.15	6
	ATOM	5318	С	ASP D	49	49.583	59.105	41.580	1.00 49.01	8
	MOTA	5319	0	ASP D	49	48.818	59.646	42.373	1.00 48.57 1.00 48.09	7
	MOTA	5320	N	AMT D	50	49.882	59.624	40.394	1.00 47.49	.6
25	MOTA	5321	CA	VAL D	50	49.380	60.928	39.986	1.00 47.49	6
	ATOM	5322	CB	VAL D	50	50.561	61.946	39.980 38.761	1.00 49.68	6
	ATOM	5323		VAL D		51.428	61.732		1.00 54.48	6.
	ATOM	5324	CG2	VAL D	50	50.048	63.356	40.017 38.630	1.00 34.40	6
	MOTA	5325	С	VAL D		48.671	60.966 60.107	37.791	1.00 46.99	8
30	MOTA	5326	0	VAL D		48.885	61.971	38.443	1.00 41.91	7
	MOTA	5327	N	VAL D		47.816 47.067	62.186	37.204	1.00 40.48	6
	ATOM	5328	CA	VAL D		45.560	62.225	37.460	1.00 37.45	6
	MOTA	5329	CB	VAL D		44.837	62.697	36.213	1.00 39.17	6
0.5	MOTA	5330		VAL D		45.070	60.860	37.859	1.00 36.64	6
35	MOTA	5331		VAL D		47.479	63.538	36.628	1.00 42.16	6
	ATOM	5332	C	VAL I		47.560	64.508	37.359	1.00 46.47	8
	ATOM	5333	0	VAL I		47.726	63.617	35.328	1.00 40.72	7
	ATOM	5334 5335	N CA	PHE I		48.144	64.877	34.738	1.00 42.11	6
40	MOTA	5336	CB	PHE I		49.635	65.072	34.984	1.00 41.64	6
40	ATOM ATOM	5337	CG	PHE I		50.491	64.007	34.362	1.00 42.87	6
	ATOM	5338	CD1			50.887	64.099	33.038	1.00 44.21	6
	ATOM	5339		PHE		50.868	62.891	35.088	1.00 42.70	6
	ATOM	5340		PHE I		51.642	63,100	32.447	1.00 42.06	6
45	ATOM	5341		PHE I		51.624	61.886	34.506		6
40	ATOM	5342		PHE I		52.010	61.990	33.185		6
	ATOM	5343		PHE I		47.870	64.940	33.241		6
	ATOM	5344		PHE I		47.606		32.610		8
	ATOM	5345		TRP 1		47.934	66.133	32.673		7
50	ATOM	5346		TRP		47.726	66.294	31.253		6
•	ATOM	5347		TRP 1		46.919		30.948		6
	MOTA	5348		TRP :	D 53	45.537		31.396		6
	ATOM	5349		TRP	D 53	44.596		31.383		6
	ATOM	5350	CE2	2 TRP	D 53	43.372		31.855		6
55	ATOM	5351	CE:	3 TRP		44.666				6
-	ATOM	5352		1 TRP		44.877		31.863		6
	ATOM	5353		1 TRP		43.571				· 7
	MOTA			2 TRP		42.222				6 6
	MOTA					43.521			_	6
60	MOTA			2 TRP		42.313				6
	MOTA	535	7 C	TRP	D 53	49.085	66.452	30.640	, 1.00 40.1/	J

							-160				
	ATOM	5358	0 '	TRP D	53		49.803	67.384	30.960	1.00 46.13	8
	ATOM	5359	-	GLN D	54		49.444	65.532	29.760	1.00 49.02	7
	ATOM	5360		GLN D	54		50.741	65.592	29.112	1.00 48.49	6
	ATOM	5361		GLN D	54		51.248	64.184	28.809	1.00 48.38	6
5	ATOM	5362		GLN D	54		52.677	64.135	28.317	1.00 50.78	6
U	ATOM	5363		GLN D	54		53.339	62.792	28.583	1.00 52.08	6
	ATOM	5364		GLN D	54		53.409	62.336	29.721	1.00 52.24	8
	ATOM	5365		GLN D	54		53.832	62.158	27.532 ·	1.00 53.79	7
	ATOM	5366		GLN D	54		50.560	66.408	27.849	1.00 49.01	6
10	ATOM	5367	_	GLN D	54		50.504	65.892	26.735	1.00 48.80	8
	ATOM	5368	N	GLN D	55		50.441	67.708	28.058	1.00 51.39	7
	ATOM	5369	CA	GLN D	55		50.256	68.665	26.985	1.00 53.26	6
	ATOM	5370	СВ	GLN D	55		49.964	70.022	27.609	1.00 56.68	6
	MOTA	5371	CG	GLN D	55		49.913	71.176	26.652	1.00 66.24	6
15	ATOM	5372	CD	GLN D	55		49.355	72.406	27.326	1.00 70.72	6
. •	ATOM	5373	OE1	GLN D	55		49.611	72.637	28.525	1.00 72.96	8
	ATOM	5374	NE2	GLN D	55		48.584	73.210	26.573	1.00 70.76	7
	ATOM	5375	С	GLN D	55		51.494	68.697	26.092	1.00 51.66	6
	MOTA	5376	0	GLN D	55		52.533	69.249	26.457	1.00 52.73	8
20	ATOM	5377	N	THR D	56		51.373	68.091	24.920	1.00 48.75	7
	ATOM	5378	CA	THR D	56		52.485	68.005	23.988	1.00 48.81	6
	ATOM	5379	CB	THR I	56	,	52.769	66.534	23.617	1.00 48.35	6
	MOTA	5380	OG1	THR I	56	;	52.793	65.733	24.801	1.00 50.12	8
	MOTA	5381	CG2	THR I	56	j	54.101	66.408	22.925	1.00 47.54	6
25	ATOM	5382	С	THR I	56	5	52.198	68.771	22.709	1.00 48.92	6
	ATOM	5383	0	THR I		5	51.051	68.862	22.275	1.00 50.82	8 7
	ATOM	5384	N	THR I			53.243	69.320	22.101	1.00 48.36	
	ATOM	5385	CA	THR I			53.080	70.069	20.860	1.00 47.70	6 6
	MOTA	5386	CB	THR I			52.766	71.563	21.126	1.00 47.89 1.00 48.44	8
30	MOTA	5387	OG1	THR I			51.521	71.679	21.834	1.00 48.44	6
	MOTA	5388	CG2				52.642	72.317	19.826	1.00 47.29	6
	MOTA	5389	С	THR I			54.322	69.988	19.995	1.00 47.32	8
	ATOM	5390	0	THR 1			55.446	69.954	20.496	1.00 46.65	7
	MOTA	5391	N	TRP 1			54.113	69.928	18.686 17.749	1.00 45.92	6
35	MOTA	5392	CA	TRP			55.221	69.883	17.750	1.00 46.07	6
	MOTA	5393	CB	TRP			55.890	68.501	17.192	1.00 46.21	6
	MOTA	5394	CG	TRP			55.055	67.379	17.192	1.00 45.21	6
	MOTA	5395		TRP			54.099	66.585 65.702	16.976	1.00 45.14	6
	MOTA	5396		TRP			53.517 53.675	66.537	19.240	1.00 44.92	6
40	MOTA	5397	CE3	TRP	D 5		55.018	66.952	15.902	1.00 44.73	6
	MOTA	5398		TRP		8	54.097	65.945	15.761	1.00 46.01	7
	MOTA	5399		TRP		8	52.533	64.783	17.336	1.00 46.24	6
	MOTA	5400		TRP		8 8	52.696	65.618	19.596		6
4-	ATOM	5401				8	52.138	64.755	18.646		6
45	ATOM	5402		TRP TRP		8	54.679	70.236			6
	MOTA	5403		TRP		8	53.494				8
	ATOM	5404		SER		9	55.537				7
	ATOM	5405		SER		9	55.097				6
50	MOTA	540 <i>6</i> 5407		SER		9	55.688			1.00 56.59	б
50	MOTA	5408		SER		9	54.969				8
	MOTA	5409		SER		9	55.457			1.00 55.53	6
	ATOM ATOM	5410		SER		9	56.587			1.00 54.93	8
		5411		ASP		50	54.479				7
55	MOTA MOTA	5412				50	54.660			1.00 59.17	6
J	ATOM	5413				50	53.898			1.00 61.53	6
	ATOM	5414				50	54.141				6
	ATOM			1 ASP		50	54.465		9.120		8
•	ATOM			2 ASP		50	53.988	64.773			8
60	ATOM			ASP		50	54.067				6
	ATOM			ASP		50	52.847	69.016	9.615	1.00 59.95	8

						-161				
	ATOM	5419	N	ARG D	61	54.937	69.609	8.995	1.00 62.50	7
	ATOM	5420		ARG D	61	54.503	70.334	7.800	1.00 64.61	6
	ATOM	5421		ARG D	61	55.672	71.137	7.205	1.00 67.57	6
	ATOM	5422		ARG D	61	56.000	72.468	7.909	1.00 73.40	6
5	ATOM	5423	CD	ARG D	61	56.968	73.283	7.037	1.00 81.08	6
J	ATOM	5424	NE	ARG D	61	57.268	74.635	7.537	1.00 86.56	.7
	ATOM	5425	CZ	ARG D	61	58.057	75.522	6.910	1.00 87.41	6
	ATOM	5426		ARG D	61	58.642	75.210	5.749	1.00 87.01	7
	ATOM	5427		ARG D	61	58.246	76.731	7.433	1.00 87.16	7
10	ATOM	5428	С	ARG D	61	53.867	69.476	6.703	1.00 64.15	6
. •	ATOM	5429	0	ARG D	61	53.145	69.998	5.844	1.00 63.51	8
	ATOM	5430	N	THR D	62	54.121	68.170	6.722	1.00 62.13	7
	MOTA	5431	CA	THR D	62	53.542	67.303	5.704	1.00 61.28	6
	ATOM	5432	CB	THR D	62	54.171	65.886	5.716	1.00 62.74	6
15	MOTA	5433	OG1	THR D	62	53.809	65.201	6.924	1.00 65.20	8
. •	ATOM	5434	CG2	THR D	62	55.692	65.974	5.624	1.00 63.05	6
	MOTA	5435	С	THR D	62	52.030	67.184	5.911	1.00 60.41	6
	MOTA	5436	0	THR D	62	51.313	66.619	5.073	1.00 60.16	8 7
	ATOM	5437	N	LEU D	63	51.551	67.731	7.025	1.00 59.01	6
20	ATOM	5438	CA	LEU D	63	50.124	67.705	7.356	1.00 57.25 1.00 55.13	6
	MOTA	5439	CB	ren d	63	49.932	67.483	8.860	1.00 54.37	6
	MOTA	5440	CG	TER D	63	50.567	66.242	9.489	1.00 51.58	6
	MOTA	5441		LEU D	63	50.396	66.277	10.997	1.00 55.32	6
	ATOM	5442	CD2		63	49.917	65.002	8.903 6.973	1.00 56.83	6
25	ATOM	5443	С	LEU D	63	49.446	69.017	6.904	1.00 55.62	8
	MOTA	5444	0	LEU D		48.228	69.091 70.052	6.730	1.00 56.52	7
	ATOM	5445	N	ALA D		50.241	70.052	6.388	1.00 56.94	6
	MOTA	5446	CA	ALA D		49.702	72.351	6.196	1.00 56.75	6
	MOTA	5447	CB	ALA D		50.843 48.825	71.336	5.147	1.00 57.08	6
30	MOTA	5448	С	ALA D		49.091	70.571	4.222	1.00 59.16	8
	MOTA	5449	0	ALA D		47.785	72.174	5.138	1.00 56.39	7
	MOTA	5450	N	TRP D		46.853	72.286	4.008	1.00 57.81	6
	MOTA	5451	CA	TRP D		45.718	71.279	4.183	1.00 52.06	6
0.5	ATOM	5452	CB	TRP D		44.662	71.708	5.139	1.00 49.69	6
35	ATOM	5453 5454	CG	TRP D		44.574	71.383	6.532	1.00 48.62	6
	MOTA	5455				43.386	71.974	7.027	1.00 50.58	6
	ATOM ATOM	5455				45.379	70.649	7.409	1.00 45.78	6
	ATOM	5457		1 TRP I		43.563	72.466	4.855	1.00 51.37	6
40	ATOM	5458		1 TRP I		42.787	72.631	5.985	1.00 51.62	7
40	ATOM	5459	CZ.	2 TRP I	65	42.987	71.849	8.358	1.00 48.81	6
	ATOM	5460		3 TRP I		44.983	70.525	8.731	1.00 45.33	6
	ATOM	5461		2 TRP I		43.797		9.193	1.00 48.88	6
	MOTA	5462		TRP I		46.281		3.873	1.00 60.73	6
45	ATOM	5463		TRP I	D 65	46.309		4.839	1.00 61.78	8
	MOTA	5464		ASN 1	D 66	45.757		2.692	1.00 63.62	7
	ATOM	5465	CA	ASN I	D 66	45.198		2.474		6
	MOTA	5466	CB	ASN I		44.996		0.975		6 6
	ATOM	5467	7 CG			44.462		0.700		8
50	ATOM	5468		1 ASN		44.317		-0.465 1.780		7
	MOTA	5469) NE	2 ASN		44.167		3.221		6
	MOTA	5470		ASN		43.886			-	8
	ATOM	5473		ASN		42.823		2.820 4.289		7
	MOTA	5472		SER		43.982 42.852		5.156		6
55	ATOM					43.363		6.586		6
	MOTA					42.51		7.324		8
	ATOM					42.02		4.763		6
	ATOM			SER		41.148		5.530		8
60	MOTA			SER SER		42.27		3.589		7
60						41.53		3.15		6
	ATOM	, J-4 /	<u>ر</u>							

						-162				
	ATOM	5480	CB	SER D	68	41.991	80.243	1.761	1.00 78.86	6
	ATOM	5481		SER D	68	41.612	79.297	0.776	1.00 79.93	8
	ATOM	5482	С	SER D	68	40.012	79.707	3.157	1.00 80.32	6
	ATOM	5483	0	SER D	68	39.328	80.655	3.552	1.00 81.34	8
5	MOTA	5484	N	HIS D	69	39.471	78.578	2.711	1.00 80.85	7
	MOTA	5485	CA	HIS D	69	38.027	78.421	2.663	1.00 81.81	· 6
	MOTA	5486	CB	HIS D		37.562	78.625	1.239	1.00 84.77	6
	MOTA	5487	CG	HIS D		37.857	79.994	0.729	1.00 88.72	6 6
	ATOM	5488		HIS D		38.776	80.436	-0.166	1.00 89.11 1.00 88.96	7
10	MOTA	5489		HIS D		37.226	81.117	1.227	1.00 88.96	6
	MOTA	5490		HIS D		37.748	82.193	0.660	1.00 90.17	7
	MOTA	5491		HIS D		38.691	81.809	-0.188 3.176	1.00 81.57	6
	MOTA	5492	С	HIS D		37.607	77.066	2.713	1.00 80.65	8
4-	MOTA	5493	0	HIS D		36.624 38.362	76.459 76.606	4.162	1.00 80.66	7
15	MOTA	5494	N	SER D		38.110	75.319	4.770	1.00 79.33	6
	MOTA	5495	CA	SER D		38.813	74.240	3.941	1.00 79.59	6
	MOTA	5496	CB	SER I		40.110	74.675	3.550	1.00 79.40	8
	ATOM	5497	OG C	SER I		38.624	75.348	6.211	1.00 77.66	6
20	ATOM	5498 5499	0	SER I		39.520	76.135	6.545	1.00 76.61	8
20	MOTA	5500	N	PRO I		38.037	74.514	7.088	1.00 76.20	7
	MOTA MOTA	5501	CD	PRO I		36.862	73.660	6.801	1.00 76.18	6
	ATOM	5502	CA	PRO I		38.420	74.425	8.502	1.00 74.80	6
	ATOM	5503	CB	PRO I		37.788	73.101	8.935	1.00 75.09	6
25	ATOM	5504	CG	PRO I		36.454	73.145	8.196	1.00 75.33	6
20	ATOM	5505	C	PRO I		39.933	74.465	8.704	1.00 73.25	6
	ATOM	5506	ō	PRO I		40.685	73.855	7.939	1.00 73.92	8
	ATOM	5507	N	ASP I	D 72	40.369	75.180	9.738	1.00 71.15	7
	ATOM	5508	CA	ASP I	D 72	41.794	75.329	10.033	1.00 69.88	6
30	ATOM	5509	CB	ASP I	D 72	42.077	76.680	10.721	1.00 74.59	6
	ATOM	5510	· CG	ASP I		40.874	77.647	10.691	1.00 79.11	6
	MOTA	5511	OD1	ASP 1		41.131	78.882	10.737	1.00 79.05	8 8
	MOTA	5512	OD2	ASP :		39.692	77.190	10.635	1.00 80.55 1.00 67.26	6
	MOTA	5513	С	ASP :		42.330	74.212	10.923	1.00 67.26	8
35	MOTA	5514	0	ASP :		43.540	73.973	10.975 11.637	1.00 63.43	7
	MOTA	5515	N	GLN		41.421	73.556 72.462	12.539	1.00 60.99	6
	MOTA	5516	CA	GLN	_	41.756 41.653	72.402	13,981	1.00 63.13	6
	MOTA	5517	CB	GLN		42.774	73.723	14.533	1.00 65.58	6
40	MOTA	5518	CG	GLN		42.460	74.099	15.957	1.00 67.92	6
40	MOTA	5519	CD	GLN		41.413	74.692	16.216	1.00 70.47	8
	ATOM	5520 5521		GLN GLN		43.338	73.737	16.895	1.00 69.20	7
	MOTA	5522		-		40.810		12.397	1.00 58.94	6
	MOTA MOTA	5523	0	GLN		39.639		12,029	1.00 59.19	8
45	ATOM	5524		VAL		41.317		12,737	1.00 56.36	7
40	ATOM	5525		VAL		40.531		12.698	1.00 52.71	6
	ATOM	5526		VAL		40.635		11.329	1.00 51.38	6
	ATOM	5527		1 VAL		39.944	68.998	10.260	1.00 48.73	6
	ATOM	5528		2 VAL		42.087	67.951	10.973	1.00 48.36	6
50	ATOM	5529		VAL		41.089	67.959	13.760		6
	ATOM	5530		VAL	D 74	42.240		14.173		8
	MOTA	5531		SER	D 75			14.215		7
	ATOM	5532		SER	D 75			15.206		6
	MOTA	5533		SER	D 75			16,166		6
55	MOTA	5534	. OG	SER				17.168		8
	MOTA	5535	C	SER				14.487		6 8
	MOTA	5536		SER				13.781		7
	ATOM	5537		VAL				14.675		6
~~	ATOM	5538						14.039 13.264	_	6
60	ATOM	5539						12.604		6
	ATOM	5540) CG	1 VAL	D 76	44.09	L 02.400	12.004	2.00 45.05	•

							-163				
	ATOM	5541	CG2	VAL I)	76	43.943	64.746	12.241	1.00 42.10	6
	ATOM	5542		VAL I		76	43.419	62.193	15.034	1.00 43.50	6
	ATOM	5543		VAL I)	76	44.004	62.472	16.078	1.00 45.44	8
	ATOM	5544	N	PRO 1)	7 7	43.102	60.929	14.721	1.00 42.76	7
5	MOTA	5545	CD	PRO 1	D	77	42.235	60.402	13.656	1.00 41.52	. 6
	MOTA	5546	CA	PRO 1	D	77	43.472	59.865	15.650	1.00 41.41	6
	MOTA	5547	CB	PRO :	D	77	42.856	58.628	15.009	1.00 42.36	6
	MOTA	5548	CG	PRO :		77	41.674	59.168	14.296	1.00 40.67	6
	MOTA	5549	С	PRO !		77	44.985	59.774	15.749	1.00 40.15	6 8
10	MOTA	5550	0	PRO :		77	45.687	59.922	14.762	1.00 39.02 1.00 41.66	7
	MOTA	5551	N ·	ILE :		78	45.474	59.537 59.421	16.954 17.217	1.00 42.23	6
	MOTA	5552	CA	ILE :		78	46.899	59.421	18.687	1.00 43.04	6
	MOTA	5553	CB	ILE		78	47.113 48.495	58.518	18.924	1.00 45.01	6
4 =	ATOM	5554	CG2	ILE		78 78	46.872	60.236	19.555	1.00 47.88	6
15	MOTA	5555	CG1 CD1	ILE		78	47.618	61.461	19.057	1.00 48.43	6
	MOTA	5556 5557	CDI	ILE		78	47.591	58.432	16.299	1.00 42.53	6
	ATOM ATOM	5558	0	ILE		78	48.717	58.643	15.880	1.00 44.25	8
	ATOM	5559	N	SER		79	46.891	57.358	15.979	1.00 43.93	7
20	ATOM	5560	CA.	SER		79	47.410	56.302	15.127	1.00 43.22	6
20	MOTA	5561	CB	SER		79	46.457	55.110	15.185	1.00 42.69	6
	ATOM	5562	OG	SER		79	45.130	55.523	14.910	1.00 43.59	8
	ATOM	5563	Ċ	SER		79	47.661	56.692	13.668	1.00 42.26	6
	ATOM	5564	0	SER		79	48.319	55.953	12.937	1.00 41.56	8
25	ATOM	5565	N	SER		80	47.138	57.835	13.243	1.00 39.86	7
	ATOM	5566	CA	SER	D	80	47.326	58.282	11.871	1.00 40.25	6
	ATOM	5567	CB	SER	D	80	46.026	58.840	11.307	1.00 40.77	6
	ATOM	5568	OG	SER	D	80	45.025	57.845	11.259	1.00 48.70	8
	MOTA	5569	C	SER		80	48.413	59.342	11.742	1.00 41.01	6
30	MOTA	5570	0	SER	D	80	48.658	59.842	10.655	1.00 41.05	8
	MOTA	5571	N	LEU		81	49.067	59.671	12.847	1.00 39.67	7
	MOTA	5572	CA	LEU		81	50.112	60.678	12.844	1.00 39.96	6 6
	ATOM	5573	CB	LEU		81	49.703	61.886	13.684	1.00 40.31 1.00 42.96	6
05	MOTA	5574	CG	LEU		81	48.371	62.571	13.448 14.638	1.00 42.90	6
35	ATOM	5575		LEU		81	48.019	63.429 63.382	12.191	1.00 44.21	6
	ATOM	5576		LEU		81	48.454 51.357	60.109	13.472	1.00 38.80	6
	MOTA	5577		LEU		81 81	51.303	59.077	14.119	1.00 39.28	8
	MOTA	5578	0	LEU TRP		82	52,478	60.795	13.276	1.00 37.55	7
40	MOTA	5579 5580	N CA	TRP		82	53.726	60.398	13.891	1.00 36.02	6
40	ATOM ATOM	5581	CB	TRP		82	54.927	60.981	13.158	1.00 39.06	6
	ATOM	5582	CG	TRP		82	56.206	60.891	13.958	1.00 40.02	б
	ATOM	5583		TRP		82	56.715		14.887	1.00 39.10	6
	ATOM	5584		TRP		82	57.878	61.318	15.463	1.00 38.66	6
45	ATOM	5585		TRP		82	56.294	63.140	15.292	1.00 38.90	6
	ATOM	5586		TRP		82	57.060	59.840	14.007	1.00 40.23	6
	ATOM	5587	NE1			82	58.065	60.082	14.908	1.00 40.21	7
	MOTA	5588	CZ2	TRP	D	82	58.630	61.997	16.422	1.00 36.80	6
	ATOM	5589	CZ3	TRP	D	82	57.038	63.812	16.247	1.00 40.18	6
50	ATOM	5590	CH2	TRP	D	82	58.195	63.238	16.801	1.00 38.54	٠6
	MOTA	5591	С	TRP	D	82	53.606	61.068	15.236	1.00 35.47	6
	MOTA	5592	0	TRP		82	53.085	62.172	15.339	1.00 36.72	8
	MOTA	5593	N	VAL		83	54.078	60.408	16.272	1.00 34.62 1.00 36.17	7 6
	ATOM	5594		VAL		83	53.996	60.989	17.592	1.00 35.17	6
55	MOTA	5595		VAL		83	52.827	60.341	18.381	1.00 38.30	6
	ATOM	5596		VAL		83	52.906 51 507	60.676 60.840	19.835 17.832	1.00 35.30	6
	ATOM	5597				83	51.507 55.335	60.840	18.312	1.00 33.32	6
	MOTA	5598		VAL VAL		83 83	56.035	59.821	18.113		8
60	ATOM	5599 5600		PRO		84	55.727	61.796	19,125		7
50	ATOM ATOM	5601		PRO		84	55.073	63.095	19.324		6
	211 011	2001			_						

						-164				
	ATOM	5602	CA	PRO D	84	56.979	61.740	19.873	1.00 36.59	6
	ATOM	5603		PRO D	84	56.933	63.024	20.694	1.00 37.18	6
	ATOM	5604	CG	PRO D	84	56,196	63.930	19.835	1.00 36.05	6
	ATOM	5605	C	PRO D	84	57.034	60.502	20.759	1.00 35.92	6
5	ATOM	5606	Ö	PRO D	84	56.070	60.197	21.449	1.00 34.78	8
9	ATOM	5607	N	ASP D	85	58.161	59.798	20.749	1.00 33.98	7
	ATOM	5608	CA	ASP D	85	58.283	58.609	21.565	1.00 34.25	6
	ATOM	5609	CB	ASP D	85	59.244	57.622	20.925	1.00 35.35	6
	ATOM	5610	CG	ASP D	85	60.600	58.201	20.700	1.00 38.15	6
10		5611		ASP D	85	60.645	59.379	20.327	1.00 40.37	8
10	ATOM	5612	OD2		85	61.612	57.486	20.870	1.00 36.29	8
	ATOM	5613	C	ASP D	85	58.740	58.962	22.964	1.00 37.26	6
	ATOM	5614	Ö	ASP D	85	59.737	58.449	23.453	1.00 38.45	8
	ATOM	5615	N	LEU D	86	57.981	59.840	23.609	1.00 35.72	7
15	ATOM	5616	CA	PER D	86	58,290	60.294	24.956	1.00 37.34	6
10	ATOM	5617	CB	LEU D	86	57.397	61.471	25.325	1.00 35.58	6
	ATOM	5618	CG	LEU D	86	57.576	62.690	24.434	1.00 36.77	6
	ATOM	5619		LEU D	86	56.652	63.799	24.877	1.00 32.58	6
	MOTA	5620		PEA D	86	59.026	63.127	24.496	1.00 36.92	6
20	ATOM	5621	C	LEU D	86	58.112	59.205	25.989	1.00 38.80	6
20	ATOM	5622	Ö	LEU D	86	57.250	58.337	25.853	1.00 43.05	8
	ATOM	5623	N	ALA D	87	58.925	59.263	27.033	1.00 38.29	7
	ATOM	5624	CA	ALA D	87	58.852	58.291	28.103	1.00 38.34	6
	ATOM	5625	CB	ALA D	87	59.808	57.174	27.827	1.00 37.03	6
25	ATOM	5626	C	ALA D	87	59.202	58.966	29.414	1.00 39.60	6
20	ATOM	5627	Ö	ALA D	87	60.087	59.793	29.436	1.00 43.32	8
	MOTA	5628	N	ALA D	88	58.495	58.644	30.492	1.00 39.86	7
	ATOM	5629	CA	ALA D	88	58.804	59.234	31.786	1.00 39.70	6
	ATOM	5630	СВ	ALA D	_	57.572	59.294	32.654	1.00 38.81	6
30	ATOM	5631	C	ALA D		59.861	58.347	32.418	1.00 41.02	6
	ATOM	5632	ō	ALA D		59.575	57.259	32.894	1.00 42.74	8
	ATOM	5633	N	TYR D		61.095	58.826	32.400	1.00 42.88	7
	ATOM	5634	CA	TYR D		62.241	58.101	32.931	1.00 44.50	6
	ATOM	5635	СВ	TYR D		63.443	59.050	33.031	1.00 46.85	6
35	ATOM	5636	ĊG	TYR D		63.940	59.583	31.709	1.00 50.97	6
•	ATOM	5637	CD1			64.910	60.571	31.663	1.00 55.21	6
	ATOM	5638	CE1			65.384	61.063	30.441	1.00 57.34	6
	ATOM	5639	CD2	TYR I	89	63.452	59.090	30.502	1.00 52.68	6
	ATOM	5640	CE2		89	63.916	59.569	29.288	1.00 55.92	6
40	MOTA	5641		TYR I	89	64.881	60.557	29.260	1.00 57.40	6
. •	ATOM	5642		TYR I	89	65.341	61.041	28.048	1.00 61.62	8
	ATOM	5643		TYR I	89	62.044	57.403	34.274	1.00 43.55	6
	ATOM	5644	0	TYR I	89	62.618	56.340	34.503	1.00 43.31	8
	MOTA	5645		ASN I	90	61.261	57.992	35.171	1.00 40.99	7
45	ATOM	5646	CA	ASN I	90	61,059	57.368	36.470	1.00 40.89	6
	MOTA	5647	СВ	ASN I	90	61.459	58.323	37.605	1.00 38.07	6
	ATOM	5648	CG	ASN I	90	60.717	59.639	37.561	1.00 38.20	6
	ATOM	5649	OD:	1 ASN I	90	60.602	60.270		1.00 43.00	8
	ATOM	5650		2 ASN I	90	60.229			1.00 36.31	7
50	MOTA	5651	. С	ASN I	90	59.646			1.00 41.76	6
	MOTA	5652	. 0	ASN 1	90	59.170			1.00 42.39	8
	MOTA	5653	N	ALA I	91	58.974			1.00 42.04	7
	MOTA	5654		ALA :	D 91	57.631				6
	ATOM	5655		ALA :	D 91	56.985				6
55	ATOM	5656		ALA :		57.820				6
	MOTA	5657		ALA		58.716			_	8
	MOTA	5658		ILE		56.963				7
	MOTA	5659				57.012				6
	MOTA	5660	СВ							6
60	MOTA	5661		2 ILE	D 92					6
	ATOM	5662	2 CG	1 ILE	D 92	57.827	52.337	40.032	1.00 51.37	6

	WO 01/5	8951								PCT/I	EP01/01	457
							-165					
	ATOM	5663	CD1	ILE D	92		57,559	52.447	41.544	1.00 5		6
	MOTA	5664	С	ILE D	92		55.921	51.998	37.180	1.00 43		6
	ATOM	5665	0	ILE D	92		55.867	50.816	37.502	1.00 43		8 7
	MOTA	5666	N	SER D	93		55.051	52.546	36.343	1.00 43		6
5	MOTA	5667	CA	SER D	93		53.968	51.788	35.733 36.498	1.00 3		· 6
	MOTA	5668	СВ	SER D	93		52.673	51.994 53.324	36.320	1.00 4		8
	MOTA	5669	OG	SER D	93		52.200 53.802	52.387	34.366	1.00 3		6
	MOTA	5670	C	SER D	93 93		54.349	53.452	34.103	1.00 3		8
10	ATOM ATOM	5671 5672	O N	LYS D	94		53.063	51.727	33.484	1.00 4		7
10	ATOM	5673	CA	LYS D	94		52.883	52.322	32.173	1.00 4	2.68	6
	MOTA	5674	CB	LYS D	94		52.695	51.260	31.081	1.00 4		6
	ATOM	5675	CG	LYS D	94		51.789	50.113	31.405	1.00 4		6
	ATOM	5676	CD	LYS D	94		51.980	48.999	30.378	1.00 4		6
15	ATOM	5677	CE	LYS D			51.973	49.545	28.957	1.00 4		6 7
	MOTA	5678	NZ	LYS D			52.092	48.466	27.938	1.00 5 1.00 4		6
	MOTA	5679	С	LYS D			51.738	53.319	32.205 33.104	1.00 4		8
	MOTA	5680	0	LYS D			50.899	53.299 54.230	31.234	1.00 4		7
00	ATOM	5681	N	PRO D			51.707 52.637	54.230	30.108	1.00 3		6
20	ATOM	5682	CD CA	PRO D			50.655	55.243	31.178	1.00 4		6
	MOTA MOTA	5683 5684	CB	PRO I			51.064	56.117	29.990	1.00 4		6
	ATOM	5685	CG	PRO I			52.512	55.834	29.821	1.00 4		6
	ATOM	5686	C	PRO I			49.263	54.691	30.981	1.00 3		6
25	ATOM	5687	ō	PRO I		5	49.030	53.893	30.080	1.00 3		8
	ATOM	5688	N	GLU I	96	5	48.344	55.113	31.835	1.00 4		7
	MOTA	5689	CA	GLU I	96	5	46.961	54.718	31.689	1.00 3		6
	MOTA	5690	CB	GLU I			46.321	54.399	33.041	1.00 4		6 6
	MOTA	5691	CG	GLU I			44.880	53.856	32.923	1.00 5		6
30	MOTA	5692	CD	GLU I			44.232	53.503 53.350	34.273 35.261	1.00		8
	MOTA	5693	-	GLU I			44.983 42.979	53.360	34.345	1.00		8
	MOTA	5694 5695	OE2 C	GLU I			46.324	55.963	31.084	1.00		6
	ATOM ATOM	5696	0	GLU I			45.998	56.900	31.799	1.00		8
35	ATOM	5697	N	VAL I			46.199	55.988	29.760	1.00		7
Ų	ATOM	5698	CA	VAL I			45.599	57.120	29.079	1.00		6
•	ATOM	5699	СВ	VAL 1	o 9'	7	45.881	57.066	27.582	1.00		6
	MOTA	5700		L VAL !		7	45.289	58.260	26.896	1.00		6
	MOTA	5701		VAL 3			47.361	57.037	27.354	1.00		6 6
40	MOTA	5702	C	VAL :			44.104	57.067	29.345 28.962	1.00		8
	MOTA	5703	0	VAL :			43.431	56.124 58.091	30.019	1.00		7
	ATOM	5704	N	LEU :			42.190	58.174	30.401	1.00		6
	MOTA	5705		LEU			42.071	58.943	31.713	1.00		6
45	ATOM ATOM	5706 5707		LEU			42.941	58.547	32.894	1,00	36.85	6
40	ATOM	5708		1 LEU			42.906		33.914	1.00		6
	ATOM	5709		2 LEU		8	42.456		33.487		39.84	6
	ATOM	5710		LEU		8	41.276		29.386		38.24	6
	ATOM	5711		LEU		8	40.055		29.549	_	37.04	8
50	MOTA	5712		THR		9	41.862		28.338		37.00	7
	MOTA	5713				9	41.082				36.28 36.19	6 6
	MOTA	5714				9	41.449				38.29	8
	MOTA	5715		1 THR		9	42.863 41.075				31.31	6
	MOTA	5716		2 THR		19 19	41.075				35.89	6
55	MOTA	5717		THR THR		19	42.148				35.45	8
	ATOM	5718 5719			D 10		40.281				34.88	7
	ATOM ATOM	5720		PRO	D 10	0	39.043			1.00	35.25	6
	MOTA	5723			D 10		40.303			1.00	33.36	б
60	MOTA	5722		PRO	D 10	0	39.217	60.492	23.024		32.41	6
	MOTA	5723		PRO	D 10	00	38.223	60.527	24.093	1.00	33.73	6

	WO 01/58	8951							PCT	/EP01/01	457
				:		-166					
	7.0016	E724	<u> </u>	PRO D	100	41.666	59.955	23.077	1.00	35.04	6
	ATOM ATOM	5724 5725		PRO D		42.188	61.028	23.310	1.00		8
	ATOM	5726		GLN D		42.256	59.026	22.350	1.00		7
	ATOM	5727		GLN D		43.574	59.280	21.817	1.00	39.66	6
5	ATOM	5728		GLN D		44.356	57.980	21.749	1.00	38.98	6
•	ATOM	5729		GLN D		44.890	57.613	23.109		41.80	6
	ATOM	5730		GLN D		45.318	56.175	23.201		46.38	6
	ATOM	5731	OE1	GLN D	101	46.158	55.714	22.439		50.42	8
	MOTA	5732	NE2	GLN D	101	44.735	55.447	24.143		49.13	7
10	MOTA	5733		GLN D		43.543	59.994	20.486		39.27	6
	ATOM	5734		GLN D		43.965	59.463	19.463		38.19	8 7
	MOTA	5735		LEU D		43.037	61.224	20.540		40.46	6
	MOTA	5736	CA	LEU D		42.910	62.103	19.381 19.231		37.39	6
4-	ATOM	5737	CB	LEU D		41.467 40.382	62.590 61.515	19.231		38.97	6
15	MOTA	5738	CG	LEU D		39.030	62.182	18.988		36.48	6
	ATOM	5739		FER D		40.657	60.628	17.925		36.34	6
	MOTA	5740 5741	CDZ	PEO D		43.804	63.308	19.554		41.42	6
	ATOM ATOM	5741	0	LEU D		43.990	63.794	20.665		43.09	8
20	ATOM	5743	N	ALA D		44.375	63.777	18.455		40.44	7
	ATOM	5744	CA	ALA D		45.221	64.953	18.489		40.53	6
	ATOM	5745	СВ	ALA D		46.549	64.673	17.847		43.43	6
	MOTA	5746	С	ALA D		44.500	66.050	17.731		41.82	6
	MOTA	5747	0	ALA D		43.503	65.803	17.058		41.33	8
25	MOTA	5748	N	ARG D		44.998	67.271	17.849		42.58	7
	ATOM	5749	CA	ARG D		44.369	68.381	17.165		43.20	6
	MOTA	5750	CB	ARG D		43.995	69.450	18.183		43.57	6
	ATOM	5751	CG	ARG D		43.032	70.480	17.678		40.98 39.96	6 6
	MOTA	5752	CD	ARG D		41.674	69.900	17.425 16.909		41.32	7
30	ATOM	5753	NE	ARG D		40.803	70.951 70.802	16.635		39.52	6
	MOTA	5754	CZ	ARG D		38.927	69.633	16.824		40.96	7
	MOTA	5755 5756		ARG D		38.826	71.832	16.175		38.44	7
	ATOM ATOM	5757	C	ARG D		45.380	68.896	16.162		43.89	6
35	ATOM	5758	0	ARG D		46.508	69.192	16.526		44.97	8
00	ATOM	5759	N	VAL D		44.989	68.966	14.894	1.00	44.88	7
	ATOM	5760	CA	VAL D		45.910	69.427	13.863	1.00	46.87	, 6
	ATOM	5761	СВ	VAL D		46.094	68.380	12.751		44.91	· 6
	MOTA	5762		VAL D		47.165	68.838	11.787		42.60	. 6
40	ATOM	5763	CG2	VAL D		46.469	67.050	13.346		43.58	6
	MOTA	5764	С	VAL I		45.467	70.729	13.223		48.29	6
	ATOM	5765	0	VAL I		44.335	70.845	12.731		47.85	8
	MOTA	5766	N	VAL I		46.375	71.702	13.238		48.47	7
4-	ATOM	5767	CA	VAL I		46.129	73.018	12.663 13.472		50.75	6 6
45	ATOM	5768	CB	VAL I		46.855	74.106 75.477	13.472		51.23	6
	ATOM	5769		VAL I		46.392 46.601	73.903	14.951		48.01	6
	MOTA	5770		VAL I		46.636	73.025	11.216		51.91	6
	MOTA	5771 5772	С 0	VAL I		47.664	72.420	10.918		52.36	8
50	ATOM ATOM	5772	N	SER I		45.920	73.712	10.329		52.06	7
30	ATOM	5774		SER I		46.281	73.761	8.915	1.00	51.56	6
	ATOM	5775		SER I		45.391	74.756	8.185	1.00	52.91	6
	ATOM	5776		SER I		45.259	75.941	8.943		59.44	8
	ATOM	5777		SER I		47.726	74.058	8.591		50.83	6
55	MOTA	5778		SER I	107	48.188	73.739	7.511		50.82	8
	ATOM	5779		ASP I		48.451	74.657	9.519		53.72	7
•	ATOM	5780	CA		108	49.853	74.978	9.262		57.12	6
	MOTA	5781		ASP 1		50.239	76.289	9.965		58.24	6
	MOTA	5782			108	50.271	76.163	11.475		0 61.04 0 63.89	6 8
60		5783		l ASP		49.396	75.459			0 60.97	8
	MOTA	5784	OD2	2 ASP	ד הא	51.162	76.782	14.033	± , 0\		J

	WO 01/58	8951										PCT	C/EP01/0	1457	
		•					-	167							
	ATOM	5785	С	ASP	П	108		.827	73.	870	9.6	565	1 00	58.88	6
	ATOM	5786	0	ASP				.043	74.			535		61.62	8
	ATOM	5787	N	GLY				.293	72.		10.0			58.94	7
	ATOM	5788	CA	GLY.				.134	71.		10.4			58.18	6
5	ATOM	5789	CA	GLY				.424	71.		11.9			57.62	6
J		5790													
	MOTA		0	GLY				.186	70.		12.3			56.21	8
	MOTA	5791	N	GLU				.831	72.		12.			58.61	7
	MOTA	5792	CA	GLU				.042	72.		14.			59.21	6
40	ATOM	5793	CB	GLU				.664	73.		14.			62.41	6
10	MOTA	5794	CG	GLU				327	74.		16.			66.58	6
	ATOM	5795	CD	GLU				.852	74.		16.0			69.79	6
	MOTA	5796		GLU				.375	74.		14.9			70.58	8
	ATOM	5797		GLU				.527	73.		17.			70.10	8
46	ATOM	5798	С	GLU				.158	71.		14.			56.76	6
15	ATOM	5799	0	GLU				.001	71.		14.3			54.86	8
	MOTA	5800	N	VAL				723	70.		15.			55.23	7
	ATOM	5801	CA	VAL				0.013	69.		16.3			53.43	6
	MOTA	5802	CB			111		.704	67.		15.			53.47	6
00	MOTA	5803	-	VAL				.934	66.		16.			51.83	6
20	MOTA	5804		VAL				.798	67.		14.:			52.57	6
	ATOM	5805	C	VAL				.962	69.		17.			53.05	6
	MOTA	5806	0	VAL				.972	69.		18.		_	52.81	8
	MOTA	5807	N	LEU				783	69.		18.3			51.91	7
05	MOTA	5808	CA	LEU				.631	69.		19.			51.71	6
25	ATOM	5809	CB	LEU				.776	70.		20.			55.12	6
	ATOM	5810	CG	LEU				.832	71.		19.:			55.82	б
	MOTA	5811		LEU				.269	72.		19.0			56.65	6
	ATOM	5812		LEU				.985		777	18.			55.54	6
00	MOTA	5813	C	LEU				.959	68.		20.3			51.46	6
30	ATOM	5814	Ο.	LEU				.833		769	19.			51.33	8
	ATOM	5815	N			113		659	67.		21.			48.43	7
	ATOM	5816	CA			113		3.128		149	21.			45.71	6
	ATOM	5817	CB	TYR				3.941		928	21.3			43.52	6
05	ATOM	5818	CG			113		3.490	63.		21.			41.37	6
35	MOTA	5819		.TYR				1.142		255	21.			39.60	6
	MOTA	5820		TYR				.735	62.		22.4			38.43	6
	ATOM	5821		TYR				.423		679	22.:			40.11	6
	ATOM	5822		TYR				0.028	61.		22.			39.17	6
40	MOTA	5823	CZ			113		.682		134	22.			40.31	6
40	ATOM	5824	OH	TYR				.283	59.		23.4			40.08	8
	MOTA	5825	C	TYR				3.218	66.		23.3			45.22	6
	ATOM	5826		TYR				.302		442				44.34	8
	ATOM	5827	N			114		.073	66.		23.			47.16	7
45	MOTA	5828	CA			114		.044		541	25.			48.56	6
45	ATOM	5829	CB			114		.457	67.		25.			53.17	6
	ATOM	5830	CG			114		.536		281	27.			58.47	6
	ATOM	5831	SD			114		470		687	27.			64.86	16
	MOTA	5832	CE			114		5.527	70.		26.			63.87	6
E0	MOTA	5833	С			114		.214		472	26.			47.72	6
50	MOTA	5834	0			114		.060		705	26.			47.31	8
	ATOM	5835	N			115		5.790		279	26.			45.85	7
	ATOM	5836	CD			115		3.108		831	25.			45.44	6
	ATOM	5837	CA			115		.080		184	26.			44.65	6
EE	MOTA	5838	CB			115		.818		967	26.			46.29	6
55	MOTA	5839	CG			115		3.231		454	26.			45.12	6
	MOTA	5840	C			115		5.159		283	28.			44.40	6
	ATOM	5841	0			115		1.145			28.			43.35	8
	MOTA	5842	N			116		5.124		811	29.			42.71	
60	MOTA	5843	CA			116		5.142			30.			40.50	_
60	ATOM	5844	CB			116		3.752	62.	976	31.			37.94	
	ATOM	5845	OG	SER	ט	116	43	8.829	63.	015	32.	этρ	1.00	44.37	8

						1.00					457
	MOTA	5846	С	SER D	116	-168 45.712	61.484	30.957	1.00	42.16	6
	ATOM	5847	0	SER D		45.190	60.448	30.569	1.00		8
	MOTA	5848	N	ILE D		46.781	61.493	31.739	1.00		7
	ATOM	5849	CA	ILE D		47.409	60.252	32.135	1.00		6
5	MOTA	5850	СВ	ILE D		48.842	60.179	31.565	1.00	38.14	6
	MOTA	5851	CG2	ILE D		49.545	58.932	32.041		38.72	6
	MOTA	5852	CG1	ILE D	117	48.802	60.188	30.045	1.00		6
	MOTA	5853	CD1	ILE I		50.137	60.454	29.422		31.06	6
	MOTA	5854	С	ILE I		47.506	60.000	33.635		40.56	6
10	ATOM	5855	0	ILE I		47.838	60.894	34.407		41.12	8
	ATOM	5856	N	ARG I		47.196	58.773	34.042		40.57 39.48	7 6
	ATOM	5857	CA	ARG I		47.356	58.386	35.429 35.966		37.31	6
	ATOM	5858	CB	ARG I		46.151 46.420	57.623 57.119	37.377		36.74	6
15	ATOM ATOM	5859 5860	CG CD	ARG I		45.196	56.638	38.101		36.75	6
10	ATOM	5861	NE	ARG I		45.554	56.131	39.414		36.89	7
	ATOM	5862	CZ	ARG I		44.687	55.838	40.367		36.15	6
	ATOM	5863		ARG I		43.396	56.001	40.163	1.00	38.10	7
•	ATOM	5864		ARG I		45.118	55.381	41.523		35.81	7
20	MOTA	5865	С	ARG I	118	48.581	57.469	35.376		39.50	6
	ATOM	5866	0	ARG I	118	48.661	56.579	34.541		39.41	8
	MOTA	5867	N	GLN I		49.541	57.678	36.260		39.25	7
	MOTA	5868	CA	GLN I		50.739	56.865	36.222		40.77	6
	MOTA	5869	CB	GLN I		51.588	57.357	35.059		39.61	6
25	ATOM	5870	CG	GLN I		52.879	56.638	34.807	_	39.00	6
	ATOM	5871	CD	GLN I		53.483	57.037 58.169	33.476 33.043		37.41 42.14	6 8
	MOTA	5872	OE1 NE2	GLN I		53.349 54.154	56.112	32.831		38.80	7
	ATOM ATOM	5873 5874	C	GLN I		51.491	56.961	37.534		42.32	, 6
30	MOTA	5875	0		119	51.421	57.965	38.213		43.53	8
00	ATOM	5876	N		120	52.197	55.908	37.906		43.85	7
	ATOM	5877	CA		120	52.950	55.944	39.149	1.00	47.43	6
	ATOM	5878	CB		120	52.819	54.632	39.900	1.00	50.39	6
	ATOM	5879	CG		120	51.389	54.278	40.235	1.00	58.64	6
35	MOTA	5880	CD	ARG.	120	51.352	53.441	41.493		64.21	б
	MOTA	5881	NE		D 120	51.387	54.244	42.725		67.25	7
	ATOM	5882	CZ		D 120	52.129	53.942	43.790		65.70	6
	ATOM	5883		ARG		52.911	52.870	43.763		64.48	7 7
40	ATOM	5884		ARG	D 120	52.049 54.411	54.678 56.231	44.895 38.913		62.69 46.83	6
40	MOTA	5885	C		D 120	54.969		-		46.53	8
	MOTA MOTA	5886 5887	O N		D 121	55.032	56.912	39,869		45.77	7
	ATOM	5888	CA		D 121	56.443	57.249	39.743		45.26	6
	ATOM	5889	СВ		D 121	56.627	58.737	39.416		42.47	6
45	ATOM	5890	CG		D 121	55.893	59.186	38.199		41.19	6
	ATOM	5891		PHE		54.546	59.483	38.266	1.00	39.80	6
	ATOM	5892		PHE		56.544	59.284	36.979	1.00	39.10	6
	ATOM	5893	CE1	PHE	D 121	53.855	59.872	37.141		39.49	6
	MOTA	5894	CE2		D 121	55.862	59.670	35.858		37.48	6
50	ATOM	5895	CZ		D 121	54.512	59.965	35.937		38.89	6
	ATOM	5896	С		D 121	57.256	56.947	40.980		46.08	6
	ATOM	5897	0		D 121	56.729	56.783	42.077		43.10	8
	MOTA	5898	N		D 122	58.5.60 59.520	56.881	40.769		48.75 51.22	7 6
55	MOTA	5899	CA		D 122 D 122	59.520 60.535	56.672 55.604	41.837 41.442		51.58	6
55	ATOM ATOM	5900 5901	CB OG		D 122	61.510	55.455	42.453		51.33	8
	MOTA MOTA	5901	C		D 122	60.224	58.027	42.004		51.78	6
	ATOM	5903	0		D 122	60.968	58.460	41.123		50.44	8
	ATOM	5904	Ŋ		D 123	59.965	58.699			52.36	7
60	ATOM	5905	CA		D 123	60.564	59.999			55.03	6
	ATOM	5906	C		D 123	60.584	60.314	44.860	1.00	57.50	6

	WO 01/58	8951								PCT.	EP01/01	457
							-169					
	MOTA	5907	Ο.	CYS	D	123	60.131	59.513	45.676	1.00	58.47	8
	ATOM	5908	CB.	CYS			59.784	61.083	42.631		54.89	6
	ATOM	5909	SG	CYS			58.043	61.147	43.136		52.88	16
	ATOM	5910	N	ASP			61.104	61.487	45.218	1.00	58.85	7
5	ATOM	5911	CA	ASP			61,196	61.865	46.619		59.59	6
	ATOM	5912	СВ	ASP	D	124	62.205	62.994	46.816	1.00	60.38	6
	ATOM	5913	CG	ASP	D	124	62.876	62.937	48.182	1.00	61.57	6
	ATOM	5914	OD1	ASP			62.207	62.519	49.151	1.00	60.87	8
	ATOM	5915	OD2	ASP	D	124	64.067	63.306	48.289	1.00	61.86	8
10	MOTA	5916	С	ASP	D	124	59.864	62.294	47.198	1.00	59.72	6
	ATOM	5917	0	ASP	D	124	59.310	63.329	46.822	1.00	59.12	8
	MOTA	5918	N	VAL	D	125	59.366	61.492	48.131	1.00	60.02	7
	ATOM	5919	CA	VAL	D	125	58.096	61.758	48.795	1.00	61.00	6
	MOTA	5920	CB	VAL	D	125	57.274	60,469	48.906	1.00	57.98	6
15	MOTA	5921	CG1	VAL			56.007	60.721	49.664	1.00	56.31	6
	MOTA	5922	CG2				56.973	59.946	47.526	1.00	58.88	6
	MOTA	5923	С			125	58.305	62.346	50.199		63.48	6
	MOTA	5924	0			125	57.391	62.956	50.781		64.81	8
~~	MOTA	5925	N			126	59.511	62.177	50.738		64.05	7
20	ATOM	5926	CA			126	59.824	62.684	52.072		64.03	6
	MOTA	5927	CB			126	61.317	62.517	52.362		63.15	6
	MOTA	5928	OG			126	62.088	63.277	51.455		61.24	8
	MOTA	5929	С			126	59.426	64.146	52.233		63.55	6
0.5	MOTA	5930	0			126	59.745	64.989	51.396		62.30	8
25	MOTA	5931	N			127	58.716	64.434	53.315		64.29	7
	MOTA	5932	CA			127	58.285	65.794	53.564		67.20	6
	MOTA	5933	C			127	56.868	66.085	53.115		68.64	6
	ATOM	5934	0			127	56.368	67.190	53.321		69.55	8
30	ATOM	5935	N			128	56.207	65.103	52.510		70.10	7
30	MOTA	5936	CA			128	54.845	65.323	52.038		71.31	6
	ATOM ATOM	5937 5938	CB CC1	VAL		128	54.252 54.873	64.077 63.859	51.378		69.98 72.53	6 6
	ATOM	5939		VAL			54.476	62.877	50.035 52.271		70.16	6
	ATOM	5940	C			128	53.883	65.707	53.136		71.70	6
35	ATOM	5941	0			128	53.089	66.634	52.978		69.47	8
-	MOTA	5942	N			129	53.960	64.993	54.251		73.53	7
	ATOM	5943	CA			129	53.022	65.233	55.320		77.21	6
	ATOM	5944	CB			129	53.171	64.197	56.428		78.32	6
	ATOM	5945	CG			129	51.860	63.985	57,204		80.24	6
40	ATOM	5946		ASP		129	51.521	62.805	57.509		81.78	8
	ATOM	5947		ASP			51.172	64.996	57.504	1.00	78.07	8
	ATOM	5948	С	ASP	D	129	53.027	66.618	55.915	1.00	79.33	6
	MOTA	5949	0	ASP	D	129	52.082	66.963	56.644	1.00	80.54	8
	MOTA	5950	N	THR	D	130	54.041	67.433	55.604	1.00	80,13	7
45	MOTA	5951	CA	THR	D	130	54.048	68.779	56.171	1.00	80.39	6
	ATOM	5952	CB			130	54.064	68.702	57.716		83.74	б
	ATOM	5953	OG1			130	54.418	67.359	58.114	1.00	84.65	8
	MOTA	5954	CG2			130	52.670	69.136	58.320		81.78	6
	ATOM	5955	С			130	55.110	69.794	55.795		78.83	6
50	ATOM	5956	0			130	56.241	69.440	55.449		77.71	8
	ATOM	5957	N			131	54.701	71.065	55.921		78.93	7
	ATOM	5958	CA			131	55.520	72.272	55.705		78.30	6
	ATOM	5959	СВ			131	56.825	72.165	56.518		81.28	6
55	MOTA	5960	CG			131	56.641	72.410	58.024		83.84	6
55	ATOM	5961	CD OF1			131	57.696	71.715	58.856		84.29	6
	ATOM	5962		GLU			58.893 57 321	71.821	58.485		85.14	8
	MOTA MOTA	5963 5964	OE2			131 131	57.321 55.869	71.068 72.672	59.870 54.295		82.70 75.98	8
	ATOM	5964 5965	C O			131	55.869 55.047	73.205	53.552		75.98	6 2
60	ATOM	5966	N			132	57.136	72.452	53.973		75.06	8 7
-	ATOM	5967	CA			132	57.689	72.733	52,665		74.59	6
							353	•		• •		-

	WO 01/58	951							PCT/	EP01/01	457
						-17					
	ATOM	5968	CB		132	59.3	215 72.882	52.788		75.96	6
	ATOM	5969	OG		132	59.				76.36	8
	MOTA	5970	С	SER	132	57.3				72.89	6
_	MOTA	5971	0		D 132	57.	_			73.06	8
5	MOTA	5972	N		133	56.				70.56	7
	MOTA	5973	CA		133	56.				67.95	6
	ATOM	5974	С		D 133	57.				66.74	6
	MOTA	5975	0		0 133	58.				65.57	8
4.0	ATOM	5976	N		134	56.				65.62	7
10	ATOM	5977	CA		0 134	57.				63.00	6
	MOTA	5978	СВ		0 134	57.				62.05	6
	ATOM	5979	C		D 134	58.				60.69	6
	ATOM	5980	0		D 134	57.				57.71	8
4 -	ATOM	5981	N		D 135	59.				60.08	7
15	ATOM	5982	CA		D 135	59.				59.14	6
	ATOM	5983	CB		D 135	60.			1.00	59.67	6
	ATOM	5984	OG1		135	60.				62.19	8
	ATOM	5985	CG2		135	60.				57.77	6
20	ATOM	5986	C		135	59.					6
20	MOTA	5987	0		D 135	60.				56.51	8
	MOTA	5988	N		D 136	58.				56.67	7
	MOTA	5989	CA		D 136	58.					6
	MOTA	5990	C		D 136	59.		-		55.53	6
25	ATOM	5991	0		D 136	58.				53.64	8
20	MOTA	5992	CB		D 136	57.				55.35	6
	MOTA	5993	SG		D 136	57.				52.04	16
	MOTA	5994	N		D 137 D 137	60.				55.15	7
	MOTA MOTA	5995 5996	CA		D 137	60. 62.				56.13 59.85	6 6
30	MOTA	5997	CB CG		D 137	62.				64.22	
00	ATOM	5998	CD		D 137	64.				67.87	6 6
	MOTA	5999	NE		D 137	64.				72.81	7
	MOTA	6000	CZ		D 137	64.				76.15	6
	ATOM	6001			D 137	63.				76.59	7
35	MOTA	6002			D 137	64.				75.96	7
	ATOM	6003	C		D 137	60.				54.79	6
	MOTA	6004	ō		D 137	60.				55.64	8
	ATOM	6005	N		D 138	59.				52.46	7
	ATOM	6006	CA		D 138	59.				49.86	6
40	ATOM	6007	СВ		D 138	58.				47.60	6
. •	MOTA	6008			D 138	57.				46.55	6
	MOTA	6009			D 138	57.				44.38	6
	MOTA	6010			D 138	55.				39.29	6
	MOTA	6011	C		D 138	60.				50.53	6
45	MOTA	6012	Ō		D 138	60.				47.86	8
	MOTA	6013	N		D 139	61.				52.17	7
	MOTA	6014	CA		D 139	61.				53.46	6
	ATOM	6015	CB		D 139	63.			1.00	54.96	6
	MOTA	6016	CG		D 139	64.			1.00	59.06	6
50	ATOM	6017	CD		D 139	65.				60.55	6
	MOTA	6018	CE	LYS	D 139	66.	116 64.685	34.044		62.84	6
	MOTA	6019	NZ	LYS	D 139	67.	604 64.584	33.930		64.96	7
	ATOM	6020	С	LYS	D 139	.61.	335 62.715	32.667	1.00	52.45	6
_	MOTA	6021	0	LYS	D 139	61.				52.48	8
55	MOTA	6022	N	ILE	D 140	60.	953 63.411	31.604	1.00	51.17	7
	MOTA	6023	CA	ILE	D 140	60.	453 62.723	30.426		51.40	6
	MOTA	6024	CB		D 140	58.				52.71	6
	MOTA	6025			D 140	58.				53.74	6
-	MOTA	6026			D 140	58.				52.18	6
60	MOTA	6027			D 140					51.22	6
	MOTA	6028	C	ILE	D 140	61.	078 63.251	29.123	1.00	50.75	6

	WO 01/58	951								PCT/	EP01/01	457
							-171					
	MOTA	6029	0	ILE I	140		61.189	64.451	28.918	1.00	50.51	8
	MOTA	6030	N	GLY I			61.511	62.340	28.258		48.91	7
	MOTA	6031	CA	GLY I			62.112	62.735	26.997		48.03	6
-	ATOM	6032	C	GLY I		٠	62.036	61.611	25.983		47.81	6
5	MOTA	6033	0	GLY I			61.636	60.511	26.340		50.42	8
	MOTA	6034	N	SER I			62.405	61.865	24.729		45.08 42.21	7 6
	MOTA MOTA	6035 6036	CA CB	SER I			62.364 62.872	60.824 61.334	23.713 22.376		43.40	6
	ATOM	6037	OG	SER I			63.079	60.255	21.482		43.21	8
10	ATOM	6038	C	SER I			63.194	59.630	24.126		44.37	6
. •	ATOM	6039	Ö	SER I			64.284	59.758	24.688		45.99	8
	ATOM	6040	N	TRP I			62.673	58.452	23.825		46.12	7
	ATOM	6041	CA.	TRP I	143		63.338	57.222	24.196	1.00	45.24	6
	ATOM	б042	CB	TRP I	143		62.300	56.121	24.425		42.93	6
15	ATOM	6043	CG	TRP I	143		62.872	54.893	25.051	1.00	39.90	6
•	MOTA	6044	CD2				63.244	54.737	26.418		37.42	6
	MOTA	6045	CE2	TRP I			63.740	53.425	26.567		37.64	6
	MOTA	6046	CE3	TRP I			63.204	55.581	27.536		35.75	6
00	MOTA	6047	CD1				63.154	53.702	24.436		40.17	6
20	MOTA	6048		TRP I			63.676	52.817	25.341		38.55	7
	ATOM	6049		TRP I			64.187	52.935	27.788		38.02	.6
	ATOM ATOM	6050 6051	CZ3 CH2	TRP I			63.647 64.133	55.100 53.784	28.741 28.863		36.62 39.07	`6 6
	ATOM	6051	CHZ	TRP I			64.348	56.758	23.170		46.24	6
25	MOTA	6053	0	TRP I			65.328	56.109	23.509		48.11	8
	ATOM	6054	N	THR I	•		64.124	57.080	21.910		45.62	7
	ATOM	6055	CA	THR I			65.047	56.616	20.894		44.68	6
	ATOM	6056	СВ	THR I			64.336	55.633	19.955		44.87	6
	MOTA	6057	OG1	THR I	144		63.155	56.242	19.421	1.00	41.93	8
30	MOTA	6058	CG2	THR I	144		63.931	54.394	20.720	1.00	44.03	6
	MOTA	6059	С	THR I	144		65.703	57.710	20.075	1.00	46.21	6
	MOTA	6060	0	THR I			66.662	57.452	19.366	1.00	47.29	8
	MOTA	6061	N	HIS I			65.198	58.931	20.173		47.13	7
O.E.	ATOM	6062	CA	HIS I			65.772	60.021	19.403		50.18	6
35	ATOM	6063	CB	HIS I			64.672	60.793	18.679		50.55	6
	MOTA	6064	CG	HIS I			63.961 64.369	59.997	17.630 16.416		52.45 51.92	6
	ATOM ATOM	6065 6066		HIS I			62.652	59.558 59.589	17.765		50.59	6 7
	ATOM	6067		HIS I			62.282	58.936	16.679		51.27	6
40	ATOM	6068		HIS I			63.305	58,902	15.844		52.81	7
	MOTA	6069	C	HIS			66.611	60.990	20.241		52.96	6
	MOTA	6070	o	HIS I			66.147	61.554	21.236		51.74	8
	MOTA	6071	N	HIS I	146		67.856	61.179	19.828	1.00	53.81	7
	MOTA	6072	CA	HIS I	146		68.748	62.081	20.532	1.00	55.05	6
45	MOTA	6073	CB	HIS I			70.205	61.691	20.267		53.71	6
	MOTA	6074	CG	HIS I			70.555	61.617	18.816		52.77	6
	MOTA	6075		HIS I			70.425	62.526	17.821		53.89	6
	ATOM	6076		HIS I			71.083	60.487	18.236		49.45	7
50	ATOM ATOM	6077 6078		HIS I			71.261 70.869	60.700	16.945 16.667		49.76 51.93	6
00	ATOM	6079	C	HIS			68.489	61.929 63.521	20.094		56.51	7 6
	ATOM	6080	0	HIS			67.682	63.770	19.185		58.53	8
	ATOM	6081	N	SER I			69.190	64.455	20.738		57.97	7
	ATOM	6082	CA		147		69.054	65.902	20.497		58.69	6
55	ATOM	6083	СВ		147		70.097	66.646	21.332		58.36	6
	ATOM	6084	OG		147		71.365	66.032	21.179		58.90	8
	ATOM	6085	C	SER I	147		69.114	66.404	19.049		57.67	6
	ATOM	6086	0		147		68.570	67.470	18.727		55.79	8
00	MOTA	6087	N	ARG I			69.768	65.647	18.180		57.54	7
60	MOTA	6088	CA		148		69.878	66.061	16.790		59.37	6
	MOTA	6089	СВ	ARG 1	148		71.054	65.340	16.126	1.00	64.67	6

	WO 01/58	951							PCT/	EP01/01	457
						-172					
	MOTA	6090	CG	ARG D		72.382	65.498	16.869		73.01	6
	MOTA	6091	CD	ARG D		73.494	64.621	16.270		79.78	6
	ATOM	6092	NE	ARG D		74.652	64.495	17.172		86.45	7
=	MOTA	6093	CZ	ARG D		75.435	65.508	17.558		88.85	6
5	ATOM	6094		ARG D		75.200	66.749	17.126		90.23 89.74	7 7
	MOTA MOTA	6095 6096	NH2 C	ARG D		76.462 68.603	65.284 65.790	18.381 16.001		58.14	6
	ATOM	6097	0	ARG D		68.406	66.351	14.921		57.28	8
	ATOM	6098	И	GLU D		67.737	64.932	16.546		58.44	7
-10	ATOM	6099	CA	GLU D		66.488	64.555	15.881		54.51	6
	ATOM	6100	СВ	GLU D		66.394	63.030	15.787		54.24	6
	ATOM	6101	CG	GLU D		67.744	62.384	15.474	1.00	56.46	6
	ATOM	6102	CD	GLU D	149	67.687	60.886	15.343	1.00	57.56	6
	MOTA	6103	OE1	GLU D	149	67.015	60.226	16.171	1.00	60.61	8
15	MOTA	6104	OE2	GLU D		68.336	60.365	14.415		56.79	8
	ATOM	6105	С	GLU D		65.315	65.123	16.638		51.56	6
	MOTA	6106	0	GLU D		64.396	65.667	16.050		48.50	8
	ATOM	6107	N	ILE D		65.355	65.002	17.954		51.48	7
00	ATOM	6108	CA	ILE D		64.284	65.533	18.783		53.11	6
20	ATOM	6109	CB	ILE D		63.382	64.424	19.410		55.50	6
	MOTA	6110	CG2	ILE D		62.530	65.013	20.542		52.41	6
	ATOM	6111		ILE D		62.440	63.830	18.352		55.09 53.30	6 6
	ATOM ATOM	6112 6113	CDI	ILE D		61.549 64.841	62.728 66.339	18.884 19.925		54.06	6
25	ATOM	6114	0	ILE D		65.809	65.944	20.573		49.46	8
20	MOTA	6115	N	SER D		64.199	67.474	20.162		55.80	7
	ATOM	6116	CA	SER D		64.570	68.365	21.245		57.52	6
	MOTA	6117	СВ	SER D		65.190	69.660	20.688		59.00	6
	ATOM	6118	OG	SER D		64.256	70.404	19.906		62.67	8
30	ATOM	6119	С	SER D		63.269	68.663	21.989	1.00	57.81	6
	MOTA	6120	0	SER D	151	62.241	68.932	21.373	1.00	55.28	8
	MOTA	6121	N	VAL D	152	63.315	68.592	23.312	1.00	59.48	7
	ATOM	6122	CA	VAL D		62.142	68.851	24.132		62.33	6
0.5	MOTA	6123	СВ	VAL D		61.940	67.742	25.188		63.11	6
35	MOTA	6124		VAL D		61.945	66.373	24.511		63.08	6
	MOTA	6125		VAL D		63.038	67.821	26.259		61.64	6
	MOTA	6126	C	VAL D		62.350 63.478	70.167 70.496	24.854		63.67 63.11	6 8
	ATOM ATOM	6127 6128	O N	ASP D		61.266	70.496	25.231 25.070		65.73	7
40	ATOM	6129	CA	ASP D		61.365	72.206	25.740		68.62	6
	ATOM	6130	_	ASP D			73.296			70.73	6
	ATOM	6131	CG	ASP D		62.698	73.023	23.733		74.59	6
	MOTA	6132		ASP D		63.854	73.332	24.118		73.93	8
	ATOM	6133		ASP D		62.473	72.483	22.612	1.00	76.61	8
45	MOTA	6134	С	ASP D	153	60.144	72.513	26.601	1.00	69.92	6
	MOTA	6135	0	ASP D	153	59.022	72.176	26.227		71.07	8
	MOTA	6136	N	PRO D		60.345	73.139	27.778		71.13	7
	MOTA	6137	CD	PRO D		61.609	73.207	28.536		70.02	6
E0	ATOM	6138	CA	PRO D		59.199	73.471	28.645		72.68	6
50	ATOM	6139	CB	PRO D		59.863	73.882	29.955		71.74	6
	MOTA	6140	CG	PRO D		61.135	73.062	29.962		70.60 75.79	6
	ATOM	6141	C	PRO D		58.374	74.609	28.030		76:11	6
	ATOM ATOM	6142 6143	O N	THR D		.58.732 57.286	75.140 75.001	26.983 28.686		80.37	8 7
55		6144	CA	THR D		56.419	76.060	28.148		84.32	6
55	MOTA	6145	CB	THR D		55.208	75.436	27.393		84.09	6
	ATOM	6146		THR D		54.342	74.785	28.337		83.35	8
	ATOM	6147	CG2			55.685	74.412	26.360		83.23	6
	ATOM	6148	C	THR D		55.861	77.068	29.184		88.09	6
60	MOTA	6149	0	THR D		56.510	77.366	30.211	1.00	88.59	8
	MOTA	6150	N	THR D	156	54.654	77.578	28.886	1.00	91.07	7

	WO 01/58	951			PCT/EP01/0					
						-173				
	MOTA	6151	CA	THR D		53.911	78.559	29.705	1.00 93.25	6
	MOTA	6152	CB	THR D		52.372	78.483	29.424	1.00 94.48	6
	MOTA	6153		THR D		52.115	78.686	28.019	1.00 94.94	8
5	ATOM	6154	CG2			51.619	79.546	30.255	1.00 93.74	6
5	ATOM	6155 6156	C	THR D		54.104	78.445	31.220	1.00 94.44	6
	ATOM ATOM	6157	0	THR D		53.471	77.615 79.314	31.898	1.00 93.56	8
	ATOM	6158	N CA	GLU D		54.955 55.252	79.314	31.750 33.183	1.00 96.79 1.00 99.37	7 6
	ATOM	6159	CB	GLU D		56.670	79.865	33.416	1.00 99.37	6
10	ATOM	6160	CG	GLU D		57.701	79.333	32.426	1.00100.34	6
	ATOM	6161	CD	GLU D		59.086	79.955	32.629	1.00104.89	6
	MOTA	6162	OE1			59.179	81.213	32.700	1.00104.68	8
	MOTA	6163	OE2			60.085	79.189	32.707	1.00105.54	8
	MOTA	6164	С	GLU D	157	54.237	80.165	33.967	1.00 99.49	6
15	MOTA	6165	0	GLU D	157	54.273	80.216	35.210	1.00100.21	8
	MOTA	6166	N	ASN D		53.336	80.828	33.248	1.00 98.56	7
	ATOM	6167	CA	ASN D		52.340	81.657	33.911	1.00 98.16	6
	MOTA	6168	CB	ASN D		51.632	82.550	32.894	1.00100.26	6
20	MOTA	6169	CG	ASN D		52.610	83.378	32.064	1.00102.10	6
20	MOTA MOTA	6170		ASN D		53.425	84.153	32.607	1.00101.77	8
		6171		ASN D		52.533	83.221	30.735	1.00102.21	7
	ATOM ATOM	6172 6173	C O	ASN D		51.313 51.475	80.786 80.452	34.613	1.00 96.52	6
	ATOM	6174	N	SER D		50.257	80.452	35.797	1.00 96.76 1.00 94.02	8
25	ATOM	6175	CA	SER D		49.142	79.599	33.864 34.313	1.00 94.02	7 6
	ATOM	6176	CB	SER D		48.996	78.422	33.331	1.00 90.18	б
	ATOM	6177	OG	SER D		50.277	77.932	32.940	1.00 90.19	8
	MOTA	6178	C	SER D		49.254	79.071	35.751	1.00 87.40	6
	MOTA	6179	Ō	SER D		50.208	78.372	36.094	1.00 87.99	8
30	MOTA	6180	N	ASP D		48.282	79.408	36.594	1.00 83.57	7
	MOTA	6181	CA	ASP D	160	48.300	78.947	37.984	1.00 79.69	6
	MOTA	6182	CB	ASP D	160	46.950	79.189	38.660	1.00 79.26	6
	MOTA	6183	CG	ASP D		46.902	78.632	40.079	1.00 79.02	6
0.5	MOTA	6184		ASP D		45.785	78.385	40.596	1.00 78.94	8
35	MOTA	6185		ASP D		47.987	78.446	40.679	1.00 77.43	8
	ATOM	6186	C	ASP D		48.579	77.453	37.995	1.00 77.55	б
	ATOM ATOM	6187 6188	0	ASP D		47.797	76.670	37.429	1.00 77.70	8
	ATOM	6189	N CA	ASP D		49.676	77.062	38.646	1.00 74.02	7
40	ATOM	6190	CB	ASP D		50.070 51.277	75.657 75.466	38.719 39.642	1.00 69.51 1.00 68.24	6 6
. •	MOTA	6191	CG	ASP D		52.556			1.00 65.24	6
	ATOM	6192		ASP D	-	52.734	75.886	37.827	1.00 67.13	8
	MOTA	6193		ASP D		53.397	76.536	39.803	1.00 70.25	8
	MOTA	6194	С	ASP D		48.972	74.697	39.147	1.00 67.31	6
45	MOTA	6195	0	ASP D	161	49.071	73.497	38.890	1.00 68.61	8
	MOTA	6196	N	SER D	162	47.924	75.191	39.788	1.00 64.39	7
	MOTA	6197	CA	SER D		46.871	74.280	40.210	1.00 63.54	6
	MOTA	6198	CB	SER D		46.897	74.097	41.736	1.00 63.26	6
E0	MOTA	6199	OG	SER D		46.555	75.286	42.417	1.00 65.64	8
50	ATOM	6200	C	SER D		45.494	74.722	39.761	1.00 62.73	6
	ATOM	6201	0	SER D		44.490	74.439	40.425	1.00 60.67	8
	ATOM ATOM	6202 6203	N CA	GLU D		45.435	75.400	38.620		7
	ATOM	6203	CB	GLU D		44.149 44.325	75.861 76.984	38.139 37.105	1.00 66.60 1.00 69.72	6
55	ATOM	6205	CG	GTA D		44.576	76.546	35.681	1.00 69.72	6 6
	ATOM	6206	CD	GLU D		44.506	77.720	34.698	1.00 72.12	6
	ATOM	6207		GLU D		45.442	78.557	34.703	1.00 75.59	8
	ATOM	6208	OE2	GLU D		43.510	77.808	33.932	1.00 73.89	8
_	ATOM	6209	С	GLU D		43.310	74.712	37.572	1.00 65.25	6
60	MOTA	6210	0	GLU D	163	42.126	74.885	37.264	1.00 65.73	8
	ATOM	6211	N	TYR D	164	43.926	73.539	37.448	1.00 64.10	7

	WO 01/58	951							PCT/EP01/014	57
						-174				
	MOTA	6212	CA	TYR I	164		72.353	36.946	1.00 61.14	6
	ATOM	6213	СВ	TYR I		43.901	71.828	35.675	1.00 62.34	6
	ATOM	6214	CG	TYR I		43.794	72.756	34.501	1.00 62.07	6
	ATOM	6215		TYR I		44.937	73.264	33.887	1.00 62.07	6
5	ATOM	6216	_	TYR I	-		74.152	32.813	1.00 62.23	6
-	ATOM	6217		TYR I			73.151	34.016	1.00 63.36	6
	ATOM	6218		TYR I			74.038	32.940	1.00 65.18	6
	MOTA	6219	CZ	TYR I		43.594	74.536	32.337	1.00 65.18	6
	ATOM	6220	OH	TYR I		43.495	75.380	31.240	1.00 65.32	8
10	ATOM	6221	C	TYR I		43.257	71.263	38.000	1.00 59.77	6
	MOTA	6222	Ö	TYR I		42.602	70.231	37.853	1.00 59.16	8
	ATOM	6223	N	PHE I		44.008	71.497	39.068	1.00 57.70	7
	ATOM	6224	CA	PHE I		44.113	70.518	40.143	1.00 56.00	6
	ATOM	6225	СВ	PHE I		45.105	70.988	41.202	1.00 53.27	6
15	MOTA	6226	CG	PHE I		45.635	69.885	42.053	1.00 55.27	6
	ATOM	6227		PHE I		46.436	68.891	41.502	1.00 50.62	6
	ATOM	6228		PHE I		45.326	69.820	43.398	1.00 52.41	6
	ATOM	6229		PHE I		46.922	67.845	42.283	1.00 49.13	6
	MOTA	6230		PHE I		45.807	68.777	44.188	1.00 52.20	6
20	ATOM	6231	CZ	PHE I		46.608	67.788	43.624	1.00 52.20	6
	MOTA	6232	Ċ	PHE I		42.773	70.241	40.801	1.00 55.90	6
	ATOM	6233	ō	PHE I		41.970	71.149	41.005	1.00 56.82	8
	ATOM	6234	N	SER I		42.524	68.980	41.126	1.00 55.56	7
	ATOM	6235	CA	SER I		41.273	68.627	41.771	1.00 55.90	6
25	ATOM	6236	CB	SER I		41.115	67.117	41.887	1.00 55.69	6
	ATOM	6237	OG	SER I		39.855	66.799	42.457	1.00 55.69	8
	ATOM	6238	C	SER I		41.280	69.229	43.158	1.00 56.73	6
	MOTA	6239	ō	SER I		42.315	69.229	43.839	1.00 56.74	8
	ATOM	6240	N	GLN I		40.121	69.729	43.578	1.00 57.58	7
30	ATOM	6241	CA	GLN I		39.999	70.353	44.892	1.00 57.81	6
	ATOM	6242	CB	GLN I		38.867	71.383	44.885	1.00 57.01	6
	ATOM	6243	CG	GLN I		37.541	70.794	44.439	1.00 63.59	6
	ATOM	6244	CD	GLN I		36.485	71.854	44.107	1.00 65.57	6
	MOTA	6245	OE1			36.054	72.607	44.979	1.00 65.98	8
35	ATOM	6246	NE2			36.067	71.909	42.831	1.00 65.54	7
	ATOM	6247	С	GLN I		39.752	69.328	45.977	1.00 56.65	6
	ATOM	6248	0	GLN I		39.990	69.598	47.151	1.00 56.95	8
	ATOM	6249	N	TYR I		39.293	68.145	45.586	1.00 56.16	7
	ATOM	6250	CA	TYR I		39.014	67.091	46.556	1.00 53.65	6
40	ATOM	6251	CB	TYR I		37.798	66.297	46.096	1.00 54.14	6
•	ATOM	6252	CG	TYR D		36.675	67.217	45.707	1.00 53.82	6
	ATOM	6253		TYR I	168	36.446	67.545	44.371	1.00 53.19	6
	ATOM	6254		TYR D		35.445	68.454	44.020	1.00 54.20	6
	ATOM	6255	CD2	TYR I	168	35.880	67.816	46.681	1.00 52.39	6
45	MOTA	6256	CE2	TYR I	168	34.881	68.722	46.342	1.00 52.03	6
	ATOM	6257	CZ	TYR I		34.670	69.035	45.016	1.00 53.04	6
	ATOM	6258	ОН	TYR I	168	33.683	69.917	44.689	1.00 53.97	8
	ATOM	6259	С	TYR D		40.181	66.162	46.851	1.00 52,39	6
	ATOM	6260	0	TYR I		40.025	65.185	47.575	1.00 53.02	8
50	ATOM	6261	N	SER D		41.347	66.479	46.299	1.00 51.48	7
	MOTA	6262	CA	SER I	169	42.543	65.686	46.513	1.00 51.84	6
	MOTA	6263	CB	SER I	169	43.664	66.151	45.584	1.00 52.14	6
	ATOM	6264	OG	SER D	169	44.878	65.483	45.881	1.00 50.95	8
	ATOM	6265	С	SER D	169	43.001	65.828	47.953	1.00 53.72	6
55	ATOM	6266	0	SER I	169	42.832	66.880	48.570	1.00 51.67	8
	ATOM	6267	N	ARG I	170	43.583	64.761	48.487	1.00 54.84	7
	ATOM	6268	CA	ARG D	170	44.079	64.778	49.850	1.00 54.97	6
	ATOM	6269	CB	ARG I		44.460	63.366	50.297	1.00 54.29	6
	ATOM	6270	CG	ARG D	170	43.369	62.647	51.081	1.00 57.60	6
60	ATOM	6271	CD	ARG I	170	43.436	61.124	50.955	1.00 58.91	6
	ATOM	6272	NE	ARG D	170	44.726	60.543	51.323	1.00 61.45	7

ATOM 6273 CZ ARG D 170		WO 01/58	951								PCT	/ EP 01/01	457
ATOM 6274 NH1 ARG D 170								-175					
ATOM 6275 NH2 ARC D 170		MOTA	6273	CZ	ARG	D	170	45.504	59.853	50.483	1.00	64.08	
ATOM 6276 C ARG D 170 45.293 65.683 49.928 1.00 56.57 6 6 7 ATOM 6278 N PHE D 171 45.842 66.033 48.770 1.00 55.26 7 ATOM 6280 CB PHE D 171 48.319 66.078 48.770 1.00 55.26 7 ATOM 6280 CB PHE D 171 48.319 66.084 48.739 1.00 54.38 6 6 ATOM 6280 CB PHE D 171 47.034 66.864 48.739 1.00 55.26 7 ATOM 6281 CG PHE D 171 48.319 64.688 48.595 1.00 54.38 6 ATOM 6282 CD PHE D 171 47.347 63.698 48.191 1.00 55.36 6 ATOM 6282 CD PHE D 171 47.347 63.698 48.191 1.00 55.36 6 ATOM 6283 CD2 PHE D 171 47.347 63.698 48.191 1.00 55.41 6 ATOM 6284 CD2 PHE D 171 47.547 63.698 48.191 1.00 55.63 6 ATOM 6284 CD2 PHE D 171 47.547 63.698 48.191 1.00 55.63 6 ATOM 6286 CD2 PHE D 171 47.547 63.698 48.191 1.00 54.14 6 ATOM 6286 CD2 PHE D 171 49.414 63.078 39.605 1.00 54.92 6 ATOM 6286 CD2 PHE D 171 49.414 63.078 39.605 1.00 54.92 6 ATOM 6286 CD2 PHE D 171 46.821 68.195 40.09 1.00 53.25 6 ATOM 6288 CD PHE D 171 46.821 68.195 40.09 1.00 53.25 6 ATOM 6280 CD PHE D 171 45.759 68.457 47.500 1.00 52.23 6 ATOM 6281 CD CD PHE D 172 47.327 71.413 48.505 1.00 55.31 6 ATOM 6291 CD													
5 ATOM 6277 O ARC 0 170													
ATOM 6278 N PHE D 171	_												
ATOM 6280 CB PHE D 171	5												
ATOM 6281 CG PHE D 171													
ATOM 6281 CG PHE D 171 48.319 64.688 48.585 1.00 54.38 6													
10 ATOM 6282 CD1 PHE D 171													
ATOM 6283 CD2 PHE D 171	10												
ATOM 6285 CE2 PHE D 171		ATOM	6283	CD2	PHE	D	171	49.315			1.00	54.14	
ATOM		MOTA	6284	CE1	PHE	D	171	47.521	62.415	48.694	1.00	54.27	6
15		MOTA						and the second s					
ATOM 6288 N GLU D 172	4 ~												
ATOM 6290 CA GLU D 172 47.341 70.347 47.479 1.00 52.75 7 ATOM 6291 CB GLU D 172 47.741 70.347 47.479 1.00 55.31 6 ATOM 6292 CG GLU D 172 47.327 71.413 48.505 1.00 58.80 6 ATOM 6292 CG GLU D 172 48.293 71.616 49.686 1.00 62.32 6 ATOM 6293 OE2 GLU D 172 47.132 73.617 50.251 1.00 64.06 8 ATOM 6295 OE2 GLU D 172 47.132 73.617 50.251 1.00 64.06 8 ATOM 6295 OE2 GLU D 172 49.083 70.671 46.861 1.00 65.32 6 ATOM 6297 O GLU D 172 49.083 70.671 46.861 1.00 56.32 6 ATOM 6297 O GLU D 172 49.083 70.671 46.861 1.00 56.32 6 ATOM 6299 CA ILE D 173 49.663 71.550 45.864 1.00 57.96 6 ATOM 6300 CB ILE D 173 50.262 71.928 45.171 1.00 57.96 6 ATOM 6300 CB ILE D 173 50.062 72.033 43.644 1.00 57.96 6 ATOM 6301 CG2 ILE D 173 50.868 71.928 45.171 1.00 57.96 6 ATOM 6303 CD1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6305 C GLU D 172 49.371 70.720 41.622 1.00 53.59 6 ATOM 6305 O ILE D 173 50.888 73.250 45.864 1.00 55.34 6 ATOM 6305 O ILE D 173 50.888 73.250 45.653 1.00 56.82 7 ATOM 6305 O ILE D 173 50.888 73.250 45.653 1.00 56.84 6 ATOM 6305 O ILE D 173 50.888 73.250 45.653 1.00 59.20 6 ATOM 6305 O ILE D 173 50.888 73.250 45.653 1.00 59.20 6 ATOM 6305 O ILE D 173 50.888 73.250 45.653 1.00 59.20 6 ATOM 6306 CB LEU D 174 53.929 74.239 45.756 1.00 59.20 6 ATOM 6308 CB LEU D 174 53.929 74.239 45.756 1.00 59.20 6 ATOM 6308 CB LEU D 174 53.929 74.239 45.756 1.00 59.20 6 ATOM 6310 CD1 LEU D 174 53.529 75.323 49.284 1.00 61.88 6 ATOM 6310 CD1 LEU D 174 53.529 75.323 49.284 1.00 69.22 7 ATOM 6310 CD1 LEU D 174 53.529 75.839 45.551 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 45.151 1.00 63.17 6 ATOM 6310 CD1 LEU D 174 53.502 75.93 43.538 1.00 65.95 76 6 ATOM 6310 CD1 LEU D 174 55.536 75.943 42.844 1.00 69.28 8 ATOM 6310 CD1 LEU D 174 55.536 75.943 42.844 1.0	15												
ATOM 6290 CA GLU D 172 47.741 70.347 47.479 1.00 55.31 6 ATOM 6291 CB GLU D 172 47.327 71.413 48.505 1.00 58.80 6 ATOM 6292 CG GLU D 172 48.293 71.616 49.686 1.00 62.32 6 ATOM 6293 CD GLU D 172 47.773 72.633 50.693 1.00 64.06 8 ATOM 6295 OE2 GLU D 172 47.773 72.633 50.693 1.00 64.06 8 ATOM 6296 C GLU D 172 47.132 73.617 50.251 1.00 65.29 8 ATOM 6297 O GLU D 172 49.083 70.671 46.861 1.00 56.32 6 ATOM 6298 N ILE D 173 49.063 71.550 45.864 1.00 54.59 8 ATOM 6299 CA ILE D 173 49.063 71.550 45.864 1.00 56.82 7 ATOM 6299 CA ILE D 173 50.286 71.928 45.171 1.00 65.29 8 ATOM 6300 CB ILE D 173 50.066 72.033 43.644 1.00 57.06 6 ATOM 6301 CG2 ILE D 173 50.066 72.033 43.644 1.00 57.06 6 ATOM 6303 CD1 ILE D 173 49.663 70.675 43.080 1.00 57.06 6 ATOM 6303 CD1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6304 C ILE D 173 49.673 70.720 41.622 1.00 53.59 6 ATOM 6305 O ILE D 173 50.132 72.535 42.959 1.00 55.84 6 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 50.22 7 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 53.329 74.134 47.346 1.00 57.06 6 ATOM 6307 CA LEU D 174 53.329 74.134 49.374 1.00 61.02 6 ATOM 6307 CA LEU D 174 52.395 73.823 49.284 1.00 61.88 6 ATOM 6307 CA LEU D 174 52.395 73.823 49.284 1.00 61.02 6 ATOM 6307 CA LEU D 174 52.395 73.823 49.284 1.00 69.28 7 ATOM 6308 CB LEU D 174 53.322 72.184 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 69.48 67 ATOM 6312 C LEU D 174 52.395 73.823 49.284 1.00 69.48 87 ATOM 6313 C C LEU D 174 52.395 73.823 49.284 1.00 69.68 8 ATOM 6314 N ASP D 175 55.685 73.984 42.144 1.00 69.28 8 ATOM 6315 C C ASP D 175 55.685 73.984 42.144 1.00 69.28 8 ATOM 6316 C C ASP D 175 55.685 73.984 42.144 1.00 66.38 6 ATOM 6320 C ASP D 175 55.685 73.984 42.144 1.00 66.38 6 ATOM 6321 C VAL D 176 55.536 77.413 41.594 1.00 69.68 8 ATOM 6322 N VAL D 176 55.536 73.418 39.391 1.00 66.32 8 ATOM 6323 C C ASP D 175 55.637 74.195 38.992 1.00 66.38 6 ATOM 6326 CG2 VAL D 176 55.382 72.145 39.865 1.00 65													
20 ATOM 6291 CB GLU D 172													
ATOM 6292 CG GLU D 172 48.293 71.616 49.686 1.00 62.32 6 ATOM 6294 OE1 GLU D 172 47.773 72.633 50.693 1.00 64.33 6 ATOM 6295 OE2 GLU D 172 47.132 73.617 50.251 1.00 64.06 8 ATOM 6295 OE2 GLU D 172 48.012 72.456 51.915 1.00 65.29 8 ATOM 6297 O GLU D 172 49.083 70.671 46.861 1.00 56.32 6 ATOM 6297 O GLU D 172 50.115 70.122 47.265 1.00 54.59 8 ATOM 6298 N TLE D 173 49.063 71.550 45.864 1.00 57.06 6 ATOM 6300 CB TLE D 173 50.266 71.928 45.171 1.00 57.96 6 ATOM 6301 CG2 TLE D 173 50.062 72.033 43.644 1.00 57.06 6 ATOM 6303 CD1 TLE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6303 CD1 TLE D 173 49.673 70.675 43.080 1.00 55.34 6 ATOM 6303 CD1 TLE D 173 49.673 70.675 43.080 1.00 55.34 6 ATOM 6304 CT TLE D 173 50.848 73.250 45.653 1.00 59.20 6 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 61.02 6 ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6301 CD1 LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6311 CD2 LEU D 174 53.929 74.136 47.340 1.00 61.88 6 ATOM 6312 CLEU D 174 53.929 74.136 47.340 1.00 61.88 6 ATOM 6316 CD ASP D 175 54.627 75.067 43.145 1.00 63.68 8 ATOM 6316 CD ASP D 175 55.635 73.823 49.284 1.00 69.28 8 ATOM 6316 CD ASP D 175 55.635 73.884 42.144 1.00 69.28 8 ATOM 6316 CD ASP D 175 55.635 73.884 42.144 1.00 69.28 8 ATOM 6316 CD ASP D 175 55.635 73.884 42.144 1.00 69.68 8 ATOM 6320 CD ASP D 175 55.635 73.884 42.144 1.00 69.55 6 ATOM 6321 CD ASP D 175 55.635 73.884 42.144 1.00 66													
ATOM 6293 CD GLU D 172	20												
ATOM 6294 OE1 GLU D 172													
ATOM 6296 C GLU D 172 49.083 70.671 46.861 1.00 56.32 6	•	ATOM	6294	OE1									
25		MOTA	6295	OE2	GLU	D	172	48.012	72.456	51.915	1.00	65.29	8
ATOM 6298 N ILE D 173		MOTA		С	-					46.861			
ATOM 6300 CB ILE D 173 50.286 71.928 45.171 1.00 57.96 6 ATOM 6301 CG2 ILE D 173 50.062 72.033 43.644 1.00 57.96 6 ATOM 6301 CG2 ILE D 173 51.332 72.535 42.959 1.00 56.84 6 ATOM 6302 CG1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6303 CD1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6304 C ILE D 173 50.848 73.250 45.653 1.00 59.20 6 ATOM 6305 O ILE D 173 50.848 73.250 45.653 1.00 59.20 6 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6310 CD1 LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6311 CD2 LEU D 174 53.512 73.196 48.469 1.00 61.02 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 63.17 6 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.17 6 ATOM 6315 CA ASP D 175 54.627 75.067 44.899 1.00 65.95 76 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6318 OD1 LSP D 175 55.636 77.413 41.584 1.00 69.28 8 ATOM 6310 CD ASP D 175 55.636 77.413 41.584 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6321 C SAP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6322 N VAL D 176 55.316 73.436 39.831 1.00 65.95 7 ATOM 6323 CA VAL D 176 55.330 72.846 42.561 1.00 65.95 7 ATOM 6322 N VAL D 176 55.330 72.846 42.561 1.00 65.95 7 ATOM 6324 C VAL D 176 55.338 72.846 42.561 1.00 65.95 7 ATOM 6325 CG1 VAL D 176 55.338 72.846 42.561 1.00 65.95 6 ATOM 6328 C VAL D 176 55.338 72.846 42.561 1.00 65.95 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.36 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.36 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.36 6	25												
ATOM 6300 CB ILE D 173 50.062 72.033 43.644 1.00 57.06 6 ATOM 6301 CG2 ILE D 173 51.332 72.535 42.959 1.00 56.84 6 ATOM 6303 CD1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6303 CD1 ILE D 173 49.371 70.720 41.622 1.00 53.59 6 ATOM 6305 O ILE D 173 50.848 73.250 45.653 1.00 59.20 6 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6306 N LEU D 174 52.784 74.473 46.394 1.00 61.02 6 ATOM 6307 CA LEU D 174 52.784 74.473 46.394 1.00 61.02 6 ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6310 CD1 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.68 8 ATOM 6314 N ASP D 175 54.880 74.479 44.349 1.00 63.68 8 ATOM 6315 CB ASP D 175 54.880 74.479 44.349 1.00 65.97 6 ATOM 6316 CB ASP D 175 54.880 74.479 44.349 1.00 67.34 6 ATOM 6316 CB ASP D 175 55.636 77.413 41.584 1.00 69.28 8 ATOM 6317 CG ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6320 C ASP D 175 55.635 76.685 42.214 1.00 69.28 8 ATOM 6321 O ASP D 175 55.885 73.984 42.164 1.00 66.38 6 ATOM 6322 N VAL D 176 55.518 74.842 40.881 1.00 65.75 7 ATOM 6322 N VAL D 176 55.5380 72.846 42.561 1.00 66.38 6 ATOM 6322 N VAL D 176 55.518 74.342 40.881 1.00 65.75 7 ATOM 6323 CC VAL D 176 54.818 72.085 37.811 1.00 66.35 8 ATOM 6324 CB VAL D 176 55.518 74.342 40.881 1.00 65.95 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6328 O VAL D 176 54.818 72.085 37.811 1.00 66.32 8 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.32 8 ATOM 6328 O VAL D 176 56.478 75.314 38.591 1.00 66.32 8 ATOM 6328 O VAL D 176 56.478 75.314 38.591 1.00 66.32 8 ATOM 6328 O VAL D 176 56.478 75.314 38.591 1.00 66.32 8 ATOM 6328 O VAL D 176 56.478 75.314 38.591 1.00 66.32 8 ATOM 6332 CG THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6332 CG THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM													
ATOM													
30 ATOM 6302 CG1 ILE D 173 49.663 70.675 43.080 1.00 55.34 6 ATOM 6303 CD1 ILE D 173 49.371 70.720 41.622 1.00 53.59 6 ATOM 6305 O ILE D 173 50.848 73.250 45.556 1.00 59.20 6 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 52.784 74.473 46.394 1.00 61.88 6 ATOM 6308 CB LEU D 174 53.512 73.196 47.340 1.00 61.02 6 ATOM 6310 CD1 LEU D 174 53.512 73.196 48.469 1.00 61.02 6 40 ATOM 6311 CD2 LEU D 174 53.302 75.193 45.151 1.00 63.17 6 40													
ATOM 6303 CD1 ILE D 173	30												
ATOM 6304 C ILE D 173 50.848 73.250 45.653 1.00 59.20 6 ATOM 6305 O ILE D 173 50.132 74.249 45.756 1.00 58.03 8 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 52.784 74.473 46.394 1.00 61.82 6 ATOM 6308 CB LEU D 174 53.512 73.196 48.469 1.00 61.02 6 ATOM 6309 CG LEU D 174 53.512 73.196 48.469 1.00 61.02 6 ATOM 6310 CD1 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 69.31 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 69.31 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6319 OD2 ASP D 175 55.085 73.883 42.214 1.00 69.28 8 ATOM 6319 OD2 ASP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6322 N VAL D 176 55.536 73.496 42.561 1.00 66.597 7 ATOM 6322 C VAL D 176 55.5380 72.846 42.561 1.00 66.58 6 ATOM 6322 C VAL D 176 55.5380 72.846 42.561 1.00 66.58 6 ATOM 6322 C VAL D 176 55.5380 72.846 42.561 1.00 66.58 6 ATOM 6322 C VAL D 176 55.5380 72.846 42.561 1.00 66.58 6 ATOM 6322 C VAL D 176 55.536 73.436 39.831 1.00 65.95 6 ATOM 6322 C VAL D 176 56.477 74.13 41.584 1.00 69.28 8 ATOM 6323 C C VAL D 176 56.477 74.190 38.992 1.00 64.89 6 ATOM 6328 C VAL D 176 56.477 74.190 38.992 1.00 66.36 6 ATOM 6327 C VAL D 176 56.477 74.180 38.992 1.00 66.36 6 ATOM 6328 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6328 C VAL D 176 56.477 74.180 38.919 1.00 66.36 6 ATOM 6328 C VAL D 176 56.477 74.180 38.919 1.00 66.36 6 ATOM 6328 N THR D 177 57.614 73.576 38.602 1.00 69.05 6 ATOM 6320 C THR D 177 57.614 73.576 38.402 1.00 69.05 6 ATOM 6330 CA THR D 177 59.763 74.819 38.496 1.00 67.62 6	•												
ATOM 6305 O ILE D 173 50.132 74.249 45.756 1.00 58.03 8 ATOM 6306 N LEU D 174 52.140 73.251 45.949 1.00 60.22 7 ATOM 6307 CA LEU D 174 52.784 74.473 46.394 1.00 61.88 6 ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6310 CD1 LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6311 CD2 LEU D 174 53.512 73.196 48.469 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.17 6 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.68 8 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.68 8 ATOM 6313 O LEU D 174 52.395 73.823 49.284 1.00 63.67 6 ATOM 6315 CA ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6316 CB ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.639 75.993 43.538 1.00 67.34 6 ATOM 6318 OD1 ASP D 175 55.639 76.648 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6310 O ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 69.68 8 ATOM 6321 O ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6322 N VAL D 176 55.188 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.380 72.846 42.561 1.00 66.575 7 ATOM 6326 CG2 VAL D 176 55.380 72.846 42.561 1.00 66.59 66 ATOM 6327 C VAL D 176 55.382 72.945 38.992 1.00 64.89 6 ATOM 6328 O VAL D 176 55.382 72.945 39.851 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6330 CA THR D 177 57.614 73.576 38.43 39.370 1.00 67.62 6													
35 ATOM 6307 CA LEU D 174 52.784 74.473 46.394 1.00 61.88 6 ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6309 CG LEU D 174 53.512 73.196 48.469 1.00 61.46 6 ATOM 6310 CD1 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 40 ATOM 6312 C LEU D 174 52.395 73.823 49.284 1.00 65.17 6 40 ATOM 6312 C LEU D 174 52.395 73.823 49.284 1.00 65.17 6 40 ATOM 6314 N ASP D 175 54.080 74.479 44.899 1.00 64.58 7 ATOM 6316 CB ASP D 175 54.080 <		ATOM	6305		ILE	D	173	50.132		45.756	1.00	58.03	
ATOM 6308 CB LEU D 174 53.929 74.136 47.340 1.00 61.02 6 ATOM 6309 CG LEU D 174 53.512 73.196 48.469 1.00 61.46 6 ATOM 6310 CD1 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6312 C LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.17 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6315 CA ASP D 175 54.080 74.479 44.349 1.00 65.97 6 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6319 OD2 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6320 C ASP D 175 55.085 73.984 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.214 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 8 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6324 CB VAL D 176 55.536 73.436 39.831 1.00 65.75 7 ATOM 6324 CB VAL D 176 55.536 73.436 39.831 1.00 65.75 6 ATOM 6324 CB VAL D 176 55.538 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 66.32 8 ATOM 6326 CG2 VAL D 176 55.3382 72.145 39.865 1.00 65.95 6 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6330 CA THR D 177 57.614 73.576 38.496 1.00 69.05 6 6 ATOM 6331 CB THR D 177 57.614 73.576 38.496 1.00 69.05 6 6 ATOM 6331 CB THR D 177 57.614 73.576 38.493 39.370 1.00 66.34 8									73.251				
ATOM 6310 CD1 LEU D 174 53.512 73.196 48.469 1.00 61.46 6 ATOM 6311 CD2 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6319 OD2 ASP D 175 55.636 77.413 41.584 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6323 CA VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6324 CB VAL D 176 55.360 72.846 42.561 1.00 65.75 7 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.67 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 65.95 6 ATOM 6326 CG2 VAL D 176 54.818 72.085 37.811 1.00 66.32 8 ATOM 6327 C VAL D 176 54.818 72.085 37.811 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6320 CA THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6321 CB THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6331 CB THR D 177 57.614 73.576 38.602 1.00 67.62 6 6 6 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 6 6 6 0 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 6 6 0 ATOM 6332 OG1 THR D 177 59.763 74.819 38.496 1.00 67.62 6 6 6 0 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8	35												
ATOM 6311 CD1 LEU D 174 54.722 72.881 49.330 1.00 62.06 6 ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.080 74.479 44.349 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6319 OD2 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.38 6 ATOM 6322 N VAL D 176 55.536 73.436 39.831 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.75 7 ATOM 6324 CB VAL D 176 55.536 73.436 39.831 1.00 65.75 6 ATOM 6325 CG1 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6326 CG2 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6327 C VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6329 N THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 58.598 74.184 37.708 1.00 69.05 6													
ATOM 6311 CD2 LEU D 174 52.395 73.823 49.284 1.00 59.37 6 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.43 6 ATOM 6319 OD2 ASP D 175 55.636 77.413 41.584 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 69.28 8 ATOM 6321 O ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.75 7 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6326 CG2 VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6													
40 ATOM 6312 C LEU D 174 53.302 75.193 45.151 1.00 63.17 6 ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 45 ATOM 6318 OD1 ASP D 175 55.390 76.748 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 55.085 73.984 42.141 1.00 69.28 8 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.38 6 50 ATOM 6322 N VAL D 176 55.118													
ATOM 6313 O LEU D 174 52.979 76.357 44.899 1.00 63.68 8 ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 56.390 76.748 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6326 CG2 VAL D 176 54.818 72.085 37.811 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6	40			-	_								
ATOM 6314 N ASP D 175 54.080 74.479 44.349 1.00 64.58 7 ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 56.390 76.748 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 57.635 76.685 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.75 7 ATOM 6324 CB VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6325 CG1 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6326 CG2 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 66.32 8 ATOM 6330 CA THR D 177 57.614 73.576 38.602 1.00 66.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6	. •												
ATOM 6315 CA ASP D 175 54.627 75.067 43.145 1.00 65.97 6 ATOM 6316 CB ASP D 175 55.789 75.993 43.538 1.00 67.34 6 ATOM 6317 CG ASP D 175 56.390 76.748 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 55.635 76.685 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6326 CG2 VAL D 176 54.818 72.085 37.811 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6													
45 ATOM 6317 CG ASP D 175 56.390 76.748 42.354 1.00 69.43 6 ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 57.635 76.685 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 50 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 55.3382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 57.614 73.576 38.602 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6		ATOM	6315		ASP	D	175	54.627					
ATOM 6318 OD1 ASP D 175 55.636 77.413 41.584 1.00 69.68 8 ATOM 6319 OD2 ASP D 175 57.635 76.685 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 50 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 55.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 ATOM 6332 OG1 THR D 177 59.763 74.819 38.496 1.00 67.62 6		ATOM	6316	СВ	ASP	D	175	55.789		43.538	1.00	67.34	
ATOM 6319 OD2 ASP D 175 57.635 76.685 42.214 1.00 69.28 8 ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 50 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8	45												
ATOM 6320 C ASP D 175 55.085 73.984 42.164 1.00 66.38 6 ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 50 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8													
ATOM 6321 O ASP D 175 55.380 72.846 42.561 1.00 66.58 8 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6331 CB THR D 177 59.763 74.819 38.496											_		
50 ATOM 6322 N VAL D 176 55.118 74.342 40.881 1.00 65.75 7 ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6													
ATOM 6323 CA VAL D 176 55.536 73.436 39.831 1.00 65.19 6 ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6	50												
ATOM 6324 CB VAL D 176 54.330 72.945 38.992 1.00 64.89 6 ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6	•												
ATOM 6325 CG1 VAL D 176 54.818 72.085 37.811 1.00 64.67 6 ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6													
ATOM 6326 CG2 VAL D 176 53.382 72.145 39.865 1.00 65.95 6 ATOM 6327 C VAL D 176 56.477 74.190 38.919 1.00 66.36 6 ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 60 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8													
ATOM 6328 O VAL D 176 56.178 75.314 38.513 1.00 66.32 8 ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8										39.865			6
ATOM 6329 N THR D 177 57.614 73.576 38.602 1.00 68.04 7 ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8	55												6
ATOM 6330 CA THR D 177 58.598 74.184 37.708 1.00 69.05 6 ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 60 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8													
ATOM 6331 CB THR D 177 59.763 74.819 38.496 1.00 67.62 6 60 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8													
60 ATOM 6332 OG1 THR D 177 60.349 73.843 39.370 1.00 63.42 8													
	60												
ATOM 6333 CG2 THR D 177 59.258 76.013 39.305 1.00 66.11 6		MOTA	6333					59.258	76.013	39.305			6

	WO 01/58	951								PCT	/EP01/01	457
							-176					
	MOTA	6334	С	THR	D	177	59.165	73.144	36.739	1.00	71.66	6
	MOTA	6335	0	THR	D	177	59.373	71.973	37.111		73.56	8
	MOTA	6336	N	GLN	D	178	59.417	73,568	35.501		71.95	7
_	ATOM	6337	CA	GLN	D	178	59.941	72.667	34.488		72.06	6
5	MOTA	6338	CB	GLN			58.932	72.511	33.347		74.14	6
	ATOM	6339	CG	GLN			57.466	72.700	33.754		76.97	. 6
	MOTA	6340	CD	GLN			56.497	72.041	32.772		78.22	6
	MOTA	6341		GLN			56.603	72.230	31.551		79.44	8
40	MOTA	6342	NE2				55.544	71.266	33.302		76.76	7
10	ATOM	6343	C	GLN			61.219	73.240	33.936		71.25	6
	MOTA	6344	0	GLN			61.226	74.368	33.462		71.24	8
	MOTA	6345	N	LYS			62.291	72.461	33.979		71.70	7
	ATOM	6346	CA	LYS			63.593	72.904 73.170	33,474.		71.59	6
15	MOTA	6347 6348	CB	LYS			64.553 63.906	73.170	34.642 35.800		77.80	6 6
13	ATOM ATOM	6349	CD	LYS LYS			64.795	74.018	37.040		78.53	6
	ATOM	6350	CE	LYS			64.016	74.470	38.273		79.16	6
	ATOM	6351	NZ	LYS			62.899	73.537	38.610		77.90	7
	ATOM	6352	C	LYS			64.173	71.807	32.601		70.50	6
20	ATOM	6353	o	LYS			64.549	70.754	33.112		69.32	8
	ATOM	6354	N	LYS			64.252	72.044	31.294		69.56	7
	ATOM	6355	CA	LYS			64.803	71.039	30.382		69.55	6
	ATOM	6356	CB	LYS			64.581	71.464	28.924		69.05	6
	ATOM	6357	CG	LYS			65.462	72.584			68.35	6
25	MOTA	6358	CD	LYS	D	180	66.773	72.041	27.860	1.00	66.86	6
	ATOM	6359	CE	LYS	D	180	66.550	71.200	26.619	1.00	63.97	6
	MOTA	6360	NZ	LYS	D	180	66.096	72.020	25.476	1.00	64.54	7
	ATOM	6361	С	LYS	D	180	66.293	70.795	30.642	1.00	68.87	6
	MOTA	6362	0	LYS	D	180	66.869	71.406	31.536		69.83	8
30	ATOM	6363	N	ASN			66.905	69.879	29.897		68.37	7
	ATOM	6364	CA	ASN			68.326	69.615	30.060		70.05	6
	ATOM	6365	CB	ASN			68.711	69.461	31.540		70.86	6
	ATOM	6366	CG	ASN			67.808	68.533	32.291		71.68	6
35	ATOM	6367		ASN			67.498	67.446	31.823		74.38	8
33	ATOM ATOM	6368 6369		ASN ASN			67.395 68.905	68.945 68.449	33.487 29.281		72.61 70.12	7 6
	ATOM	6370	С 0	ASN			68.535	67.303	29.491		68.91	8
	ATOM	6371	N			182	69.844	68.760	28.385		71.81	7
	ATOM	6372	CA			182	70.519	67.744	27.577		71.83	6
40	ATOM	6373	CB	SER			71.361	68.418	26.495		70.60	6
. •	ATOM	6374	OG			182		67.463			71.86	8
٠	ATOM	6375	C	SER			71.405	66.866	28.482		71.03	6
	MOTA	6376	0			182	71.794	67.281	29.572		72.13	8
	MOTA	6377	N	VAL	D	183	71.715	65.653	28.037		70.45	7
45	ATOM	6378	CA	VAL	D	183	72.528	64.736	28.842	1.00	69.61	6
	MOTA	6379	СВ	VAL	D	183	71,728	64.221	30.066	1.00	69.93	6
	ATOM	6380	CG1	VAL	D	183	70.268	63.988	29.671	1.00	71.71	6
	MOTA	6381		VAL			72.331	62.909	30.584		68.31	6
	MOTA	6382	С			183	73.046	63.521	28.069		69.82	6
50	ATOM	6383	0	VAL			72.317	62.887	27.305		69.28	8
	MOTA	6384	N			184	74.314	63.194	28.272		71.03	7
	ATOM	6385	CA			184	74.898	62.041	27.596		72.40	6
	MOTA	6386	CB			184	76.314	62.360	27.027		71.67	6
55	ATOM	6387	CG2	THR		184	76.207 76.944	63.364 61.110	26.010 26.404		69.65 71.24	8 6
JJ	ATOM ATOM	6388				184	74.997	60.901	28.602		73.76	6
	ATOM	6389 6390	С 0			184	75.273	61.132	29.786		74.26	8
	ATOM	6391	N			185	74.749	59.679	28.139		74.82	7
	ATOM	6392	CA			185	74.818	58.515	29.024		76.20	6
60	ATOM	6393	CB			185	73.477	57.755	29.046		77.17	6
	ATOM	6394	CG			185	72.286	58.637	29.324		77.03	6
	•		_				·				-	

	WO 01/58	8951								PCT	/EP01/01	457
						_	-177				16	_
	ATOM	6395		TYR D			71.822	59.527	28.362		77.16	6 6
	MOTA	6396 6397	CE1	TYR D :			70.781 71.676	60.416 58.643	28.640 30.578		78.65 78.44	6
	ATOM ATOM	6398	CE2	TYR D :			70.629	59.532	30.378		78.76	6
5	ATOM	6399	CZ	TYR D			70.190	60.417	29.897		78.44	6
•	ATOM	6400	OH	TYR D			69.173	61.311	30.160		78.64	8
	ATOM	6401	C	TYR D			75.909	57.595	28.525		76.37	6
	MOTA	6402	ŏ	TYR D			76.062	57.403	27.320	1.00	75.86	8
	ATOM	6403	N	SER D		•	76.669	57.031	29.454	1.00	78.41	7
10	ATOM	6404	CA	SER D	186 .		77.762	56.127	29.097	1.00	80.47	6
	MOTA	6405	CB	SER D			78.353	55.494	30.361		80.37	6
	ATOM	6406	OG	SER D			77.324	55.000	31.202		80.82	8
	MOTA	6407	C	SER D			77.259	55.042	28.139		81.49	6
1 =	ATOM	6408	0	SER D			77.977	54.637	27.205		80.86	8 7
15	MOTA	6409	N	CYS D			76.018 75.366	54.601 53.573	28.370 27.553		82.11	6
	ATOM ATOM	6410 6411	CA C	CYS D			75.259	54.005	26.123		82.74	6
	ATOM	6412	0	CYS D			75.445	53.226	25.179		81.67	8
	ATOM	6413	СВ	CYS D			73.908	53.360	27.980		82.28	6
20	ATOM	6414	SG	CYS D			72.725	54.778	27.707		81.64	16
	ATOM	6415	N	CYS D			74.954	55.287	25.990		83.43	7
	MOTA	6416	CA	CYS D	188		74.614	55.827	24.701		83.03	6
	MOTA	6417	С	CYS D	188		75.379	57.070	24.204		81.94	6
	MOTA	6418	0	CYS D	188		75.401	58.127	24.860		81.77	8
25	MOTA	6419	CB	CYS D			73.091	56.059	24.777		83.56	6
	ATOM	6420	SG	CYS D			72.115	54.783	25.740		85.15	16
	ATOM	6421	N	PRO D			76.000	56.945	23.013		80.60	7
	MOTA	6422	CD	PRO D			75.862 76.809	55.676 57.921	22.263 22.254		80.05 78.99	6 6
30	ATOM ATOM	6423 6424	CA CB	PRO D PRO D			76.809	57.341	20.836		79.15	6
00	ATOM	6425	CG	PRO D			76.835	55.852	21.097		80.06	6
	ATOM	6426	C	PRO D			76.386	59.408	22.258		76.71	6
	ATOM	6427	ō	PRO D			77.106	60.265	22.777		76.06	8
	ATOM	6428	N	GLU D			75.237	59.713	21.663		73.54	7
35	ATOM	6429	CA	GLU D	190		74.762	61.101	21.583	1.00	70.67	6
	MOTA	6430	CB	GLU D	190		73.735	61.233	20.462	1.00	72.95	6
	ATOM	6431	CG	GLU D			73.941	60.272	19.292		76.22	6
	ATOM	6432	CD	GLU D			74.959	60.778	18.284		77.17	6
40	ATOM	6433	OE1				74.920	61.987	17.949		75.78 78.06	8 8
40	MOTA	6434		GLU D			75.786	59.961 61.576	17.819 22.874			6
	MOTA MOTA	6435 6436		GLU D			74.113	60.842	23.861		66.77	8
	ATOM	6437	N	ALA D			73.595	62.797	22.852		63.73	7
	ATOM	6438	CA	ALA D			72.924	63.362	24.027		63.96	6
45	ATOM	6439	CB	ALA D			73.293	64.833	24.188		60.91	6
	ATOM	6440	C	ALA D			71.398	63.226	23.935		63.09	6
	ATOM	6441	0	ALA D			70.824	63.324	22.848	1.00	63.27	8
	MOTA	6442	N	TYR D	192		70.737	63.015	25.073	1.00	61.86	7
	MOTA	6443	CA	TYR D	192		69.284	62.883	25.077		60.02	6
50	MOTA	6444	CB	TYR D			68.874	61.483	25.544		58.87	6
	MOTA	6445	CG	TYR D			69.185	60.408	24.531		59.77	. 6
	ATOM	6446		TYR D			70.447	59.804	24.491		59.82	6
	ATOM	6447	CE1				.70.762	58.849	23.514		59.91	6
55	MOTA	6448		TYR D			68.234	60.030 59.084	23.568 22.592		59.23 60.37	6 6
99	ATOM	6449 6450	CE2 CZ	TYR D			68.534 69.803	58.496	22.592		61.99	6
	ATOM ATOM	6451	OH	TYR D			70.120	57.582	21.581		61.54	8
	ATOM	6452	C	TYR D			68.590	63.938	25.922		59.37	6
	ATOM	6453	0	TYR D			68.594	63.874	27.150		61.63	8
60	ATOM	6454	N	GLU D			67.986	64.909	25.248		59.03	7
_	ATOM	6455	CA	GLU D			67.280	65.992	25.915	1.00	60.46	6

						-178				
	АТОМ	6456	СВ	GLU D	193	66.832	67.054	24.898	1.00 61.02	6
	ATOM	6457		GLU D		67.985	67.781	24.196	1.00 65.53	6
	MOTA	6458		GLU D		67.522	68.937	23.292	1.00 66.58	6
	MOTA	6459		GLU D		66.678	69.760	23.739	1.00 66.15	8
5	ATOM	6460		GLU D		68.017	69.023	22.138	1.00 66.88	. 8
	ATOM	6461	С	GLU D	193	66.066	65.455	26.658	1.00 61.32	· 6
	ATOM	6462	0	GLU D	193	65.498	64.428	26.278	1.00 61.10	8
	ATOM	6463	N	ASP D		65.682	66.157	27.724	1.00 62.11	7
	MOTA	6464	CA	ASP D		64.533	65.788	28.537	1.00 60:32	6
10	MOTA	6465	CB	ASP D		64.855	64.571	29.416	1.00 60.68	6
	MOTA	6466	CG	ASP D		65.759	64.907	30.589	1.00 61.25	6
	MOTA	6467		ASP D		66.929	64.453	30.591	1.00 62.58	8
	MOTA	6468		ASP D		65.297	65.619	31.509	1.00 61.10	8
4-	MOTA	6469	С	ASP D		64.086	66.951	29.417	1.00 59.85	6
15	MOTA	6470	0	ASP D		64.890	67.793	29.816	1.00 60.03	8 7
	ATOM	6471	N	VAL D		62.792	66.993	29.704	1.00 57.38 1.00 55.36	6
	MOTA	6472	CA	VAL D		62.225	68.024	30.538 30.001	1.00 52.24	6
	MOTA	6473	CB	VAL D		60.864	68.480 69.394	31.001	1.00 52.24	6
20	MOTA	6474		VAL D		60.179		28.693	1.00 51.09	6
20	MOTA	6475		VAL D		61.058 62.044	69.189 67.460	31.935	1.00 56.36	6
	MOTA	6476	C	VAL D		61.452	66.412	32.114	1.00 57.76	8
	MOTA	6477 6478	N O	GLU D		62.571	68.151	32.930	1.00 58.67	7
	ATOM ATOM	6479	CA	GLU D		62.425	67.712	34.303	1.00 58.26	6
25	ATOM	6480	CB	GLU D		63.754	67.833	35.035	1.00 58.61	6
20	ATOM	6481	CG	GLU D		63.725	67.326	36.460	1.00 61.95	6
	ATOM	6482	CD	GLU D		65.062	67.533	37.172	1.00 63.50	6
	ATOM	6483		GLU D		66.083	67.014	36.679	1.00 62.21	8
	ATOM	6484	-	GLU D		65.099	68.218	38.222	1.00 65.74	8
30	ATOM	6485	C	GLU D		61.370	68.598	34.959	1.00 58.08	6
••	ATOM	6486	Ö	GLU D		61.500	69.822	34.997	1.00 59.87	8
	ATOM	6487	N	VAL D		60.305	67.979	35.452	1.00 57.22	7
	ATOM	6488	CA	VAL D	197	59.242	68.721	36.104	1.00 54.36	6
	ATOM	6489	CB	VAL D	197	57.863	68.304	35.567	1.00 52.68	. 6
35	ATOM	6490	CG1	VAL D	197	56.772	69.095	36.255	1.00 49.60	6
	ATOM	6491	CG2	VAL D		57.809	68.517	34.068	1.00 50.84	6
	MOTA	6492	С	VAL D	197	59.317	68.420	37.587	1.00 55.10	6
	ATOM	6493	0	VAL D		59.367	67.264	37.995	1.00 55.27	8
	MOTA	6494	N	SER D		59.351	69.467	38.399	1.00 56.68	7
40	ATOM	6495	CA	SER D		59.413	69.284	39.839	1.00 56.39	6
	ATOM	6496	CB	SER D		60.487	70.188	40.448	1.00 55.89	6
	ATOM	6497	OG	SER D		61.789	69.767	40.066	1.00 57.83	8
•	ATOM	6498	C	SER I		58.058		40.448	1.00 56.61 1.00 56.25	6
4 =	ATOM	6499	0	SER D		57.536	70.698 68.597	40.317	1.00 56.25	8 7
45	ATOM	6500	N	LEU D		57.481 56.189	68.770	41.101 41.728	1.00 56.84	6
	ATOM	6501	CA	LEU I		55.303	67.561	41.468	1.00 57.08	6
	MOTA	6502 6503	CB CG	LEU I		53.981	67.553	42.243	1.00 57.00	.6
	ATOM ATOM	6504		LEU I		53.094	68.726	41.834	1.00 57.12	6
50	ATOM	6505		LEU I		53.272	66.246	41.971	1.00 58.22	6
50	ATOM	6506	CD2	LEU I		56.354	68.953	43.220	1.00 57.85	6
	MOTA	6507	Ö	LEU I		56.625	67.998	43.950	1.00 58.46	8
	ATOM	6508	N	ASN I		56.207	70.192	43.671	1.00 58.52	7
	MOTA	6509	CA	ASN I		56.315	70.486	45.084	1.00 57.07	6
55	ATOM	6510	СВ	ASN I		57.017	71.827	45.311	1.00 59.47	6
	MOTA	6511	CG	ASN I		57.126	72.184	46.781	1.00 61.26	6
	ATOM	6512		ASN I		57.508	71.359	47.613	1.00 60.78	8
	MOTA	6513		ASN I	200	56.792	73.423	47.108	1.00 63.13	7
	MOTA	6514	С	ASN I	200	54.886	70.533	45.593	1.00 55.28	6
60	MOTA	6515	0	ASN I		54.108	71.422	45.242	1.00 53.93	8
	MOTA	6516	N	PHE I	201	54.549	69.554	46.419	1.00 53.26	7

	WO 01/58	951						PCT/EP01/01457				
							-179					
	ATOM	6517	CA	PHE	ח	201	53.218	69.444	46.973	1.00	51.91	6
	ATOM	6518	CB	PHE				68.434	46.168		49.89	6
	MOTA	6519	CG	PHE			52.870	67.013	46.348		46.59	6
	MOTA	6520		PHE			52.068	66.086	47.003		45.61	6
5	ATOM	6521		PHE			54.133	66.613	45.903		46.86	6
•	ATOM	6522		PHE			52.519	64.779	47.218		45.68	· 6
	ATOM	6523	CE2				54.597	65.312	46.112		44.48	6
	ATOM	6524	CZ	PHE			53.788	64.394	46.772		44.43	6
	ATOM	6525	C	PHE			53.360	68.940	48.386		53.35	6
10				PHE			54.456	68.570	48.818		52.18	8
10	MOTA	6526	0				52.238	68.902			55.22	7
	ATOM	6527	N	ARG ARG			52.211	68.426	49.093 50.470		57.74	6
	MOTA	6528	CA	ARG			52.632	69.546	51.412		58.53	6
	ATOM	6529	CB								62.76	6
15	MOTA	6530	CG	ARG			51.564	70.612	51.484		64.76	6
13	MOTA	6531	CD	ARG			51.956	71.797	52.313		64.52	7
	MOTA	6532	NE	ARG			50.901	72.806	52.296		65.00	6
	MOTA	6533	CZ	ARG			51.046	74.035	52.779		65.86	7
	ATOM	6534		ARG			52.206	74.409	53.323			7
20	ATOM	6535		ARG ARG			50.045	74.896	52.708		62.46 57.64	6
20	MOTA	6536	С				50.788 49.822	67.997	50.835		55.63	8
	ATOM	6537	0	ARG				68.392	50.186		58.55	7
	ATOM	6538	N	LYS			50.668	67.189	51.878			6
	ATOM	6539	CA	LYS			49.359	66.759	52.332		59.55	
OE.	ATOM	6540	CB	LYS			49:505	65.708	53.428		60.97	. 6
25	ATOM	6541	CG	LYS			48.195	65.258	54.031		62.61	6
	MOTA	6542	CD	LYS			48.445	64.319	55.194		66.11	6
	MOTA	6543	CE	LYS			47.142	63.813	55.784		68.33	6
	MOTA	6544	NZ	LYS			46.380	62.985	54.804		69.98	7
20	MOTA	6545	C	LYS			48.702	68.008	52.914		60.27	6
30	ATOM	6546	0	LYS			49.402	68.886	53.428		60.55	8
	ATOM	6547	N	LYS			47.374	68.105	52.832		59.32	7
	ATOM	6548	CA	LYS			46.680	69.260	53.395		60.40	6
	MOTA	6549	CB	LYS			45.221	69.284	52.947		59.66	6
25	ATOM	6550	CG	LYS		204	45.054	69.738	51.495		56.15	6
35	ATOM	6551	CD	LYS		204	43.652	69.489	50.974		52.10	6
	ATOM	6552	CE	LYS			43.593	69.775	49.488		52.88	6
	ATOM	6553	NZ	LYS	_		42.334	69.320	48.856		54.65	7
	ATOM	6554	C	LYS			46.776	69.201	54.919		62.27 63.85	6
40	MOTA	6555	0	LYS			47.031	68.129	55.479			8
40	MOTA	6556	N	GLY		205	46.590	70.344	55.587		61.70	7
	ATOM	6557	CA	GLY			46.701 45.432	70.390 70.704	57.043 57.821		61.46	6
	MOTA	6558	C Om1	GLY			44.364	70.704	57.191		61.45	6
	MOTA	6559		GLY			45.495	70.835			60.53	8
45	MOTA	6560		GLY					59.067		63.85	8
40	MOTA	6561	CB	PHE		1	68.481	57.493	1.362		65.93	6
	MOTA	6562	CG	PHE		1	68.496 67.431	56.384	0.357		67.13	6
	MOTA	6563		PHE		1 1	69.549	56.207	-0.526 0.345		67.48	6
	MOTA	6564		PHE		1	67.410	55.462 55.116	-1.409		68.65	6
50	MOTA	6565		PHE		1	69.548	54.364	-0.528		67.48	6 6
50	ATOM ATOM	6566 6567	CEZ	PHE PHE		1	68.481	54.185	-1.406		69.10	6
	ATOM	6568	C	PHE		1	67.191	59.419	2.218		61.93	6
						1	67.898		3.225		62.32	
	ATOM ATOM	6569 6570	N O	PHE PHE		1	68.457	59.384 59.591	0.037		62.93	. 8 7
55	ATOM	6571	CA	PHE		1	67.655	58.712	0.037		62.89	6
55	ATOM	6572	N N	ASP		2	66.011	60.038	2.205		61.01	7
	ATOM	6573	CA	ASP		2	65.524	60.730	3.406		60.82	6
	ATOM	6574	CB	ASP		2	64.448	61.754	3.400		59.66	
	ATOM	6575	CG	ASP		2	63.263	61.734	2.346		61.52	6 6
60	ATOM	6576		ASP		2	62.587	60.347	3.035		62.72	8
50	ATOM	6577		ASP		2	63.006	61.396	1.142		60.96	8
	MI ON	0011	UDZ		ت	-	00.000	31.330			20.50	Ü

	WO 01/58	8951									PCT	/EP01/01	1457
•								-180					
	ATOM	6578	С	ASP	E	2		65.012	59.731	4.459	1.00	60.89	6
	ATOM	6579	Ö	ASP		2		64.990	58.525	4.216		62.95	8
	MOTA	6580	N	ARG		3		64.624	60.214	5.635		60.20	7
	ATOM	6581	CA	ARG		3		64.161	59.321	6.697		57.08	6
5	ATOM	6582	CB	ARG		3		63.746	60.128	7.933		56.21	6.
0	ATOM	6583	CG	ARG		3		64.906.	60.475	8.878		56.67	. 6
	ATOM	6584	CD	ARG		3		65.314	59.266	9.702		57.53	6
	ATOM	6585	NE	ARG		3		66.519	59.426	10.524		58.61	7
	ATOM	6586	CZ	ARG		3		66.825	60.497	11.258		60.79	6
10	ATOM	6587		ARG		3		66.024	61.559	11.294		61.35	7
10	ATOM	6588		ARG		3		67.943	60.499	11.975		58.97	7
	ATOM	6589	C	ARG		3		63.008	58.447	6.244		56.93	6
	ATOM	6590	Ö	ARG		3		62.949	57.256	6.567		58.08	8
	ATOM	6591	N	ALA		4		62.102	59.033	5.473		54.21	7
15	ATOM	6592	CA	ALA		4		60.937	58.311	4.993		52.85	6
, 0	ATOM	6593	CB	ALA		4		60.002	59.262	4.270		50.53	6
	ATOM	6594	C	ALA		4		61.342	57.168	4.075		53.00	6
	ATOM	6595	ō	ALA		4		60.858	56.056	4.225		53.30	8
	ATOM	6596	N	ASP		5		62.235	57.443	3.132		54.00	7
20	MOTA	6597	CA	ASP		5		62.692	56.433	2.190	1.00	54.02	6
	ATOM	6598	CB	ASP		5		63.702	57.021	1.197		56.37	6
	ATOM	6599	CG	ASP		5		63.153	58.223	0.435	1.00	60.25	6
	MOTA	6600		ASP		5		62.018	58.154	-0.072		61.70	8
	MOTA	6601	OD2	ASP	E	5		63.864	59.247	0.327	1.00	64.63	8
25	ATOM	6602	С	ASP		5		63.341	55.278	2.924	1.00	54.45	6
	ATOM	6603	0	ASP	E	5		63.192	54.127	2.532	1.00	54.26	8
	MOTA	6604	N	ILE		6		64.060	55.582	3.997	1.00	54.54	7
	MOTA	6605	CA	ILE	E	6		64.734	54.535	4.755	1.00	55.28	6
	MOTA	6606	CB	ILE	E	6		65.727	55.121	5.781	1.00	56.90	6
30	MOTA	6607	CG2	ILE	E	6		66.476	53.991	6.489	1.00	56.40	6
	MOTA	6608	CG1	ILE	E	6		66.728	56.031	5.068	1.00	58.74	6
	MOTA	6609	CD1	ILE	E	6		67.833	56.589	5.976	1.00	60.73	6
	MOTA	6610	С	ILE	Ε.	6		63.765	53.617	5.482		53.47	6
	MOTA	6611	0	ILE	Ε	6		63.830	52.401	5.322		53.23	8
35	MOTA	6612	N	LEU	Ε	7		62.883	54.199	6.290		53.23	7
	MOTA	6613	CA	LEU		7		61.897	53.423	7.033		52.57	6
	MOTA	6614	CB	LEU	E	7		61.060	54.354	7.899		52.03	6
	MOTA	6615	CG	LEU		7		61.862	55.020	9.017		52.39	6
	ATOM	6616		LEU		7		61.074	56.183	9.607		53.72	6
40	MOTA	6617	CD2	LEU	E	7		62.185	53.989	10.070		47.50	6
	ATOM	6618	С	LEU		7		61.003	52.660	6.065		52.40	6
	MOTA	6619	0	LEU		7		60.665	51.503	6.302		53.43	8
	ATOM	6620	N	TYR		8		60.644	53.311	4.967		51.20	7
4 =	ATOM	6621	CA	TYR		8		59.810	52.707	3.951		52.74	6
45	ATOM	6622	CB	TYR		8		59.622	53,686	2.804		54.75	6
	ATOM	6623	CG	TYR		8		58.825	53.102	1.660		60.00	6
	MOTA	6624	CD1			8 -	•	57.448	52.902	1.773		59.81 59.72	6 6
	ATOM	6625	CE1			8		56.723	52.341	0.734			
50	ATOM	6626	CD2			8		59.453	52.717	0.465		61.59	6 6
50	ATOM	6627	CE2			8		58.727	52.148	-0.580		59.67 59.94	6
	ATOM	6628	CZ	TYR		8		57.367	51.967 51.411	-0.433 -1.457		63.44	8
	MOTA	6629	OH	TYR TYR		8		56.646 60.399	51.411	3.404		54.02	6
	MOTA	6630	. C			8		59.692	50.414	3.259		54.84	8
55	MOTA	6631	O	TYR		8		61.688	51.411	3.259		53.58	7
55	ATOM	6632	N	ASN ASN		9 9		62.338	50.224	2.559		52.96	6
	ATOM ATOM	6633 6634	CA CB	ASN		9		63.790	50.524	2.182		58.69	6
	ATOM	6635	CB	ASN		9		63.790	51.445	0.966		62.10	6
	ATOM	6636		ASN ASN		9		62.908	51.771	0.321		64.59	8
60	ATOM	6637		ASN		9		65.137	51.861	0.645		63.43	7
50	ATOM	6638	C	ASN		9		62.297	49.112	3.584		52.17	6
	-												

60

MOTA

ATOM

MOTA

ATOM

ATOM

MOTA

CA

CB

CG

С

0

6694

6695

6696

6697

6698

6699 N

16

16

16

16

PRO E

PRO E

PRO E

PRO E

PRO E 16

ASP E 17

PCT/EP01/01457

	WO 01/5	8931							PC 1/EP01/014	15/
						-181				
	» mom	6639	0	ASN E	9	61.870	48.003	3.287	1.00 51.04	8
	MOTA	6640		ILE E		62.746	49.410	4.794	1.00 53.05	7
	MOTA	6641	N CA	ILE E		62.752	48.424	5.866	1.00 53.91	6
	MOTA					63.189	49.053	7.195	1.00 53.67	6
_	ATOM	6642	CB	ILE E		63.169	48.027	8.316	1.00 51.86	6
5	MOTA	6643	CG2	ILE E		64.627	49.564	7.077	1.00 51.89	6
	ATOM	6644		ILE E		65.085	50.379	8.251	1.00 50.06	6
	ATOM	6645	CD1	ILE E		61.358	47.835	6.054	1.00 55.10	6
	ATOM	6646	C	ILE E				6.216	1.00 55.00	.8
4.0	MOTA	6647	0	ILE E		61.186	46.631	6.032	1.00 56.28	7
10	ATOM	6648	N	ARG E		60.364	48.708 48.308	6.199	1.00 57.92	6
	ATOM	6649	CA	ARG E		58.975		6.106	1.00 57.32	6
	ATOM	6650	CB	ARG E		58.084	49.543		1.00 69.38	6
	MOTA	6651	CG	ARG E		56.628	49.280	6.323	1.00 09.38	·6
4-	MOTA	6652	CD	ARG E		56.359	49.040	7.797	1.00 75.46	7
15	MOTA	6653	NE	ARG E		54.957	49.274	8.149	1.00 89.11	6
	ATOM	6654	CZ	ARG E		54.244	50.315	7.713 6.892	1.00 90.35	7
	MOTA	6655		ARG F		54.801	51.215	8.117	1.00 90.33	7
	MOTA	6656		ARG E		52.980	50.475	5.126	1.00 56.77	6
00	MOTA	6657	C	ARG E		58.559	47.314	5.415	1.00 55.32	8
20	MOTA	6658	0	ARG E		57.986	46.264		1.00 55.52	7
	MOTA	6659	N	GLN I		58.866	47.663	3.881	1.00 54.24	6
	ATOM	6660	CA	GLN F		58.511	46.850	2.730		
	ATOM	6661	CB	GLN E		58.583	47.698	1.485	1.00 53.75	6
	MOTA	6662	CG	GLN I		57.341	47.645	0.673	1.00 58.35	6
25	MOTA	6663	CD	GLN I		56.287	48.540	1.223	1.00 59.21	6 8
	MOTA	6664		GLN I		56.517	49.726	1.375	1.00 63.59	
	MOTA	6665	NE2			55.121	47.990	1.528	1.00 59.83	7
	MOTA	6666	С	GLN I		59.312	45.581	2.484	1.00 53.65	6
00	MOTA	6667	0	GLN I		58.820	44.677	1.825	1.00 52.67	8
30	MOTA	6668	N	THR I		60.536	45.507	2.995	1.00 54.14	7
	MOTA	6669	CA	THR I		61.369	44.331	2.771	1.00 55.96	6
	MOTA	6670	CB	THR I		62.714	44.726	2.181	1.00 55.93	6
	MOTA	6671	OG1			63.380	45.612	3.090	1.00 55.29	8
0-	ATOM	6672	CG2			62.526	45.400	0.822	1.00 55.33 1.00 58.24	6
35	MOTA	6673	C	THR		61.656	43.486	4.005		6
	ATOM	6674	0	THR :		62.096	42.343	3.892	1.00 58.85	8 7
	MOTA	6675	N	SER I		61.414	44.042	5.182	1.00 60.49 1.00 61.17	6
	MOTA	6676	CA	SER 1		61.681	43.317	6.408	1.00 61.17	
40	MOTA	6677	CB	SER		61.629		7.599	1.00 66.18	6 8
40	MOTA	6678	OG	SER		62.247		8.723	1.00 60.16	6
	MOTA	6679	C	SER		60.727		6.644		8
	MOTA	6680	0	SER			42.153		1.00 59.94	
	ATOM	6681	N	ARG		61.233		7.369	1.00 58.70	7
4-	ATOM	6682	CA	ARG		60.487		7.703	1.00 58.01	6
45	MOTA	6683	CB	ARG		60.926		6.805	1.00 57.94 1.00 59.93	6
	MOTA	6684	CG	ARG		60.686		5.325		6
	ATOM	6685	CD	ARG		60.746		4.547	1.00 63.77	6
	ATOM	6686	NE	ARG				5.060	1.00 66.81	7
	ATOM	6687	CZ	ARG				4.772	1.00 66.79	6
50	MOTA	6688		ARG				3.964	1.00 64.79	7
	MOTA	6689	NH2			•		5.287	1.00 67.36	7
	MOTA	6690	C	ARG				9.170	1.00 55.75 1.00 55.70	6
	MOTA	6691	0	ARG				9.513		8
	MOTA	6692	N	PRO				10.057	1.00 54.09 1.00 50.97	7
55	MOTA	6693	CD	PRO	E 16	58.682		9.727	1.00 50.97	6

41.680

38.473

39.919 11.503

40.650 12.031

38.176 13.046

59.512 37.579 11.095 1.00 50.78

10.997

11.945

1.00 51.94

1.00 50.89

1.00 51.98

1.00 50.22

1.00 49.19

б

6

6

8

59.961

58.731

58.463

59.986

60.418

	WO 01/58	8931								PC1/EP01/014	13/
							102				
							-182			11	6
	MOTA	6700	CA	ASP E		17	59.477	36.171	11.446	1.00 53.11	
	MOTA	6701	CB	ASP F		17	58.244	35.492	10.832	1.00 58.78	6
	MOTA	6702	CG	ASP E		17	56.931	35.917	11.513	1.00 64.95	6
	MOTA	6703	OD1	ASP I	Ξ	17	56.959	36.261	12.732	1.00 65.29	8
5	MOTA	6704	OD2	ASP I	Ξ	17	55.865	35.887	10.831	1.00 66.80	8
	ATOM	6705	С	ASP I	Ε	17.	60.716	35.401	11.039	1.00 52.04	6
	ATOM	6706	0	ASP I		17	60.787	34.194	11.242	1.00 53.16	8
	ATOM	6707	N	VAL I		18	61.701	36.090	10.481	1.00 52.13	7
	ATOM	6708	CA	VAL 1		18	62.906	35.410	10.034	1.00 51.75	6
10	ATOM	6709	CB	VAL 1		18	63.050	35.519	8,509	1.00 53.20	6
. •	ATOM	6710		VAL		18	64.265	34.728	8.037	1.00 54.22	6
	ATOM	6711		VAL 1		18	61.797	35.010	7.843	1.00 52.93	6
	ATOM	6712	C	VAL		18	64.193	35.897	10.675	1.00 50.84	6
	ATOM ATOM	6713	Ö	VAL		18	64.595	37.039	10.513	1.00 50.74	8
15		6714	N .	ILE :		19	64.841	34.990	11.387	1.00 51.04	7
13	MOTA	6715	CA	ILE		19	66.092	35.270	12.077	1.00 53.80	6
	MOTA			ILE		19	66.478	34.027	12.940	1.00 52.99	6
	ATOM	6716	CB			19	66.791	32.842	12.040	1.00 52.72	6
	MOTA	6717		ILE				34.346	13.870	1.00 52.72	6
00	MOTA	6718		ILE		19	67.644		14.923	1.00 32.01	6
20	MOTA	6719		ILE		19	67.867	33.290		1.00 55.50	6
	ATOM	6720	С	ILE		19	67.184	35.628	11.053		8
	ATOM	6721	0	ILE		19	67.399	34.903	10.087	1.00 54.87	7
	MOTA	6722	N	PRO		20	67.879	36.765	11.250	1.00 57.80	
	MOTA	6723	CD	PRO		20	67.710	37.684	12.385	1.00 58.20	6
25	MOTA	6724	CA	PRO		20	68.948	37.253	10.359	1.00 60.68	6
	MOTA	6725	CB	PRO	E	20	69.252	38.664	10.897	1.00 58.99	6
	MOTA	6726	CG	PRO	E	20	68.056	39.007	11.744	1.00 60.19	6
	ATOM	6727	C	PRO	\mathbf{E}	20	70.201	36.370	10.360	1.00 62.73	6
	ATOM	6728	0	PRO	E	20	71.317	36.854	10.568	1.00 61.22	8
30	ATOM	6729	N	THR	E	21	70.008	35.080	10.117	1.00 65.32	7
	MOTA	6730	CA	THR	E	21	71.107	34.128	10.106	1.00 69.19	6
	MOTA	6731	СВ	THR	E	21	70.573	32.698	10.364	1.00 68.56	6
	MOTA	6732	OG1	THR	E	21	70.744	32.370	11.751	1.00 66.59	8
	ATOM	6733		THR		21	71.300	31.677	9.502	1.00 68.21	6
35	ATOM	6734	C	THR		21	71.964	34.121	8.840	1.00 72.78	6
-	ATOM	6735	ō	THR		21	71.450	34.096	7.716	1.00 72.75	8
	ATOM	6736	N	GLN		22	73.282	34.128	9.051	1.00 77.19	7
	ATOM	6737	CA	GLN		22	74.279	34.102	7.971	1.00 80.45	6
	ATOM	6738	CB	GLN		22	75.303	35.209	8.192	1.00 81.20	6
40	ATOM	6739	CG	GLN		22	74.691	36.597	8.264	1.00 83.07	6
40		6740	CD	GLN		22	75.515	37.542	9.131	1.00 85.11	6
	MOTA					22	75.640			1.00.85.67	8
	ATOM	6741	OET	GLN	E-	22	76.087	38.587	8.510	1.00 84.48	7
	MOTA	6742		GLN		22	74.980	32.739	8.023	1.00 81.85	6
15	ATOM	6743	C	GLN			75.783	32.480	8.929	1.00 81.74	8
45	MOTA	6744	0	GLN		22			7.050	1.00 84.04	7
	MOTA	6745	N	ARG		23	74.676	31.880		1.00 84.92	6
	MOTA	6746	CA	ARG		23	75.235	30.521	7.001	1.00 84.82	
	MOTA	6747	CB	ARG		23	76.767	30.550	6.931		6
	MOTA	6748	CG	ARG		23	77.314	30.929	5.558	1.00 87.29	6
50	MOTA	6749	CD	ARG		23	77.788	32.397	5.462	1.00 90.43	6
	MOTA	6750	ŅΕ	ARG		23	78.140	32.777	4.081	1.00 92.74	7
	MOTA	6751	CZ	ARG		23	78.982	32.103	3.287	1.00 93.28	6
	MOTA	6752	NH:	L ARG	E	23	79.592	30.993	3.712	1.00 92.22	7
	ATOM	6753	NH2	2 ARG	E	23	79.204	32.535	2.047	1.00 92.78	7
55	MOTA	6754	C	ARG	E	23	74.790	29.736	8.237	1.00 85.32	6
	ATOM	6755	0	ARG	E	23	73.673	29.929	8.747	1.00 85.55	8
	ATOM	6756	N	ASP	E	24	75.648	28.842	8.718	1.00 85.95	7
	ATOM	6757	CA	ASP	E	24	75.304	28.062	9.907	1.00 86.37	б
	MOTA	6758	CB	ASP		24	76.103	26.752	9.985	1.00 90.45	6
60	MOTA	6759		ASP		24	76.671	26.317	8.636	1.00 93.77	6
	MOTA	6760		1 ASP		24	75.856	26.082	7.698	1.00 95.19	8
			-, '								

WO 01/58951 PCT/EP01/01457

									101/1101/01	
						-183				0
	ATOM	6761	OD2	ASP E	24	77.930	26.212		1.00 94.96	8
	ATOM	6762	С	ASP E	24	75.657	28.917	11.116	1.00 84.76	6
	ATOM	6763		ASP E	24	75.551	28.466	12.259	1.00 84.92	8
	ATOM	6764		ARG E	25	76.097	30.146	10.857	1.00 82.51	7
5	ATOM	6765	CA	ARG E	25	76.465	31.063	11.930	1.00 80.45	6
0	MOTA	6766	CB	ARG E	25	77.208	32.289	11.382	1.00 83.04	· 6
	ATOM	6767	CG	ARG E	25	78.635	32.032	10.918	1.00 87.73	6
		6768	CD	ARG E	25	79.370	33.358	10.688	1.00 91.97	6
	MOTA			ARG E	25	80.781	33.171	10.340	1.00 95.94	7
10	MOTA	6769	NE CZ	ARG E	25	81.667	34.164	10.199	1.00 97.73	6
10	MOTA	6770	CZ		25	81.285	35,435	10.379	1.00 98.12	7
	MOTA	6771		ARG E	25	82.938	33.892	9.880	1.00 97.12	7
	MOTA	6772		ARG E		75.256	31.557	12.708	1.00 76.54	6
	MOTA	6773	C	ARG E	25			12.122	1.00 76.16	8
	MOTA	6774	0	ARG E	25	74.265	31.999	14.045	1.00 73.86	7
15	MOTA	6775	N	PRO E	26	75.322	31.483		1.00 73.05	6
	MOTA	6776	CD	PRO E	26	76.343	30.778	14.834		6
	ATOM	6777	CA	PRO E	26	74.231	31.936	14.916	1.00 70.73	6
	MOTA	6778	CB	PRO E	26	74.647	31.425	16.295	1.00 70.99	
	ATOM	6779	CG	PRO E	26	75.529	30.257	15.984	1.00 72.42	6
20	ATOM	6780	С	PRO E	26	74.199	33.466	14.891	1.00 67.63	6
	ATOM	6781	0	PRO E	26	75.173	34.110	14.493	1.00 66.91	8
	ATOM	6782	N	VAL E	27	73.076	34.046	15.288	1.00 63.36	7
	ATOM	6783	CA	VAL E	27	72.980	35.487	15.346	1.00 57.94	6
	ATOM	6784	CB	VAL E	27	71.537	35.949	15.266	1.00 55.79	6
25	ATOM	6785		VAL E	27	71.403	37.366	15.780	1.00 54.61	6
20		6786		VAL E	27	71.082	35.870	13.839	1.00 57.04	6
	MOTA	6787	C	VAL E	27	73.554	35.821	16.706	1.00 57.83	6
	MOTA			VAL E	27	73.180	35,207	17.711	1.00 58.05	8
	MOTA	6788	0	ALA E	28	74.490	36.760	16.744	1.00 55.79	7
00	ATOM	6789	N		28	75.087	37.130	18.014	1.00 55.59	6
30	ATOM	6790	CA	ALA E		76.508	37.588	17.810	1.00 54.25	6
	MOTA	6791	CB	ALA E	28	74.270	38.224	18.677	1.00 54.76	6
	MOTA	6792	С	ALA E	28		39.370	18.216	1.00 54.28	8
	MOTA	6793	0	ALA E	28	74.244		19.759	1.00 53.10	7
	MOTA	6794	N	VAL E	29	73.596	37.850	20.514	1.00 53.62	6
35	ATOM	6795	CA	VAL E		72.769		20.767	1.00 52.63	6
	MOTA	6796		VAL E		71.338			1.00 32.03	6
	MOTA	6797		l VAL E		70.531		21.591	1.00 52.51	6
	ATOM	6798	CG2	VAL E		70.641		19.446	1.00 53.21	6
	MOTA	6799	С	VAL E		73.412		21.865		8
40	MOTA	6800	0	VAL E	29	73.760		22.599	1.00 53.58	
	MOTA	6801	N	SER E	30	73.583		22.184	1.00 51.51	7
	MOTA	6802	CA	SER E	30	74.154		23.459	1.00 54.05	.6
	MOTA	6803		SER E	30	75.288		23.276	1.00 52.43	6
	MOTA	6804		SER E	30	74.821		22.632	1.00 55.74	8
45	ATOM	6805		SER E	30	73.024	41.277	24.301	1.00 56.57	6
	MOTA	6806		SER E		72.236	42.110	23.825		. 8
	MOTA	6807		VAL E		72.946	40.824	25.550		. 7
	MOTA	6808				71.934		26.493	1.00 60.16	6
		6809				71.058		26.966	1.00 59.85	6
50	MOTA			1 VAL E		69.842		27.700	1.00 60.72	6
50	MOTA	6810		2 VAL I		70.653				6
	MOTA	6811				72.59		27.724		6
	MOTA	6812		I LAV		73.54		28.279		8
	MOTA	6813		VAL I		72.09				7
	MOTA	6814		SER I						6
55	MOTA	681				72.64				6
	MOTA	681				73.68				8
	MOTA	681				74.16				6
	ATOM	681		SER :		71.55				8
	MOTA			SER :		70.94			_	7
60	MOTA			LEU		71.30				6
	MOTA	682	1 CA	LEU	E 33	70.28	2 44.591	32.165	, 1.00 30.02	0

	W O 01/3	0731								101	/EI 01/01-	4 37
						-18	4					
	2 50016	C000	GD.	T DIT D	33	69.		.578	33.122	1.00	54.43	6
	MOTA	6822	CB	LEU E		69.		.344	32.487	1.00		6
	ATOM	6823	CG	LEU E	33	68.		561	33.532	1.00		6
	ATOM	6824		LEU E	33		_	2.781	31.348	1.00		6
_	ATOM	6825		LEU E	33	68.				1.00		6
5	ATOM	6826	С	LEU E	33	70.		5.717	32.985	1.00		8
	MOTA	6827	0	LEU E	33	71.		5.572	33.556			7
	MOTA	6828	N	LYS E	34	70.		5.843	33.029	1.00		
	MOTA	6829	CA	LYS E	34	70,		7.978	33.822	1.00		6
	MOTA	6830	CB	LYS E	34	70.		9.207	32.948	1.00		6
10	MOTA	6831	CG	LYS E	34	71.	726 48	3.985	31.774	1.00		6
	MOTA	6832	CD	LYS E	34	73.	179 48	3.679	32.205	1.00	71.51	6
	MOTA	6833	CE	LYS E	34	74.	103 48	3.409	30.973	1.00		6
	ATOM	6834	NZ	LYS E	34			3.135	31.351	1.00	72.80	7
	ATOM	6835	C	LYS E	34			3.201	34.776	1.00	53.15	6
15	ATOM	6836	0	LYS E	34			8.590	34.356		52.81	8
13					35			7.947	36.059		51.67	7
	ATOM	6837	N	PHE E				8.120	37.011		49.05	6
	ATOM	6838	CA	PHE E				7.364	38.292		46.62	6
	MOTA	6839	CB	PHE E					38.095		47.20	6
	MOTA	6840	CG	PHE E				5.883			46.38	6
20	MOTA	6841	CD1	PHE E				5.254	37.651			
	MOTA	6842	CD2					5.125	38.253		49.08	6
	ATOM	6843	CE1	PHE E				3.897	37.363		47.59	6
	MOTA	6844	CE2	PHE E	35	67.		3.760	37.964		48.98	6
	ATOM	6845	CZ	PHE E	35	68.	913 4	3.145	37.517		48.13	6
25	MOTA	6846	С	PHE E	35	68.	225 4	9.560	37.285		48.83	6
	MOTA	6847	0	PHE E	35	. 69.	086 5	0.401	37.492		50.99	8
	MOTA	6848	N	ILE E		66.	927 4	9.831	37.259	1.00	47.58	7
	MOTA	6849	CA	ILE E				1.166	37.465	1.00	44.93	6
	MOTA	6850	CB	ILE E				1.532	36.370	1.00	44.37	6
30		6851	CG2		_			2.956	36.547		39.93	6
30	MOTA							1.328	34.994		45.24	6
	MOTA	6852	CG1		_			2.114	34.776		46.74	6
	MOTA	6853	CD1					1.266	38.792		46.03	6
	MOTA	6854	C	ILE E					39.347		46.58	8
	MOTA	6855	0	ILE E				2.350			45.38	7
35	MOTA	6856	N	ASN E				0.142	39.299			6
	MOTA	6857	CA	ASN E				0.163	40.580		44.10	
	MOTA	6858	CB	ASN E				1.022	40.471		42.99	6
	MOTA	6859	CG	ASN E				1.660	41.784		46.14	6
	ATOM	6860	OD:	l ASN E		62		1.018	42.832		45.55	8
40	MOTA	6861	ND2	2 ASN E	s 37	62		2.931	41.731		45.29	7
	MOTA	6862	С	ASN F	≘ 37	64	.125 4	18.777	41.087		45.25	6
	ATOM	6863	0	ASN F	Ξ 37	64	.009 4	17.825	40.317		42.90	8
	MOTA	6864	N	ILE E		63	.951 4	8.680	42.401	1.00	46.26	7
	MOTA	6865	CA	ILE E				17.453	43.057	1.00	47.22	6
45	MOTA	6866	CB	ILE I				16.913	43.940		46.57	6
40	ATOM		CG:					15.692	44.685		46.43	6
		6867						16.561	43.058		47.22	6
-	MOTA	6868		1 ILE 1				16.207	43.784		46.51	6
	MOTA	6869		1 ILE I					43.704		48.14	6
	ATOM	6870	С	ILE !				17.902			49.04	8
50	MOTA	6871	0	ILE :				18.619	44.855			
	MOTA	6872	N	LEU :		**		47.476	43.466		49.65	7
	MOTA	6873	CA					17.897	44.092		51.44	6
	ATOM	6874	CB	LEU :	E 39	·58	.856	48.052	43.004		53.02	6
	MOTA	6875	CG	LEU	E 39	59		48.916	41.847		54.99	6
55	MOTA	6876		1 LEU	E 39	58	.314	49.019	40.767		54.07	6
	MOTA	6877		2 LEU		59	.717	50.289	42.377		53.65	6
	ATOM	6878		LEU		59		47.104	45.241	1.00	52.90	6
	MOTA	6879		LEU				47.690	46.184		53.53	8
	MOTA	6880		GLU				45.781	45.163		54.20	7
60	ATOM	6881						44.988	46.249		56.14	6
50	ATOM	6882						44.549	45.960		58.59	6
	V 1 OM	3002		410		J.						

	WU.01/50	9931								PC 1/EPU.	1/01457
							-185				
	3 mov	6883	CG	GLU E	7	40	56.377	45.678	45.865	1.00 64.9	5 6
	MOTA	6884	CD	GLU I		40	54.960	45.178	45.718	1.00 68.5	
	MOTA MOTA	6885		GLU I		40	54.697	44.405	44.757	1,00 70.8	
		6886		GLU I		40	54.119	45.561	46.564	1.00 69.8	
5	MOTA	6887	C	GLU I		40	59.620	43.773	46.449	1.00 55.8	
J	MOTA	6888		GLU I		40	60.029	43.134	45.498	1.00 58.4	
	MOTA		0	VAL I		41	59.876	43.454	47.700	1.00 55.7	
	MOTA	6889	N	VAL I		41	60.675	42.300	48.021	1.00 55.4	
	MOTA	6890	CA	VAL		41	62.067	42.732	48.550	1.00 56.9	
10	ATOM	6891	CB			41	62.802	41.547	49.107	1.00 58.1	
10	MOTA	6892		VAL I		41	62.878	43.361	47.433	1.00 55.8	
	ATOM	6893		VAL I		41	59.925	41.520	49.078	1.00 55.2	
	MOTA	6894	C	VAL			59.230	42.094	49.908	1.00 55.4	
	ATOM	6895	0	VAL		41 42	60.042	40.204	49.025	1.00 55.5	
1 =	ATOM	6896	N	ASN :			59.381	39.350	49.025	1.00 56.9	
15	ATOM	6897	CA	ASN :		42			49.430	1.00 55.9	
	ATOM	6898	CB	ASN		42	58.077	38.794 38.135	50.490	1.00 55.3	
	MOTA	6899	CG	ASN		42	57.220		51.267	1.00 56.2	
	ATOM	6900		ASN		42	57.696	37.306	50.526	1.00 53.4	
00	ATOM	6901		ASN		42	55.948	38.499		1.00 59.6	
20	ATOM	6902	C	ASN		42	60.360	38.222	50.241 49.393	1.00 59.0	
	ATOM	6903	0	ASN		42	60.527	37.337		1.00 61.3	
	ATOM	6904	N	GLU		43	61.014	38.255	51.398 51.717	1.00 62.4	
	ATOM	6905	CA	GLU		43	62.005	37.242		1.00 65.3	
0-	MOTA	6906	CB	GLU		43	62.898	37.721	52.857	1.00 70.4	
25	ATOM	6907	CG	GLU		43	64.066	36.787	53.120	1.00 70.7	
	ATOM	6908	CD	GLU		43	65.091	37.358	54.094	1.00 73.	
	ATOM	6909	OE1			43	66.010	36.601	54.486	1.00 74.4	
	MOTA	6910		GLU		43	64.982	38.557	54.460	1.00 74.7	
00	MOTA	6911	C	GĽU		43	61.355	35.920	52.070	1.00 51.	
30	MOTA	6912	0	GLU		43	61.977	34.861	51.958	1.00 561.	
	MOTA	6913	N	ILE		44	60.094	35.994	52.484	1.00 61.	
	MOTA	6914	CA	ILE		44	59.330	34.809	52.852	1.00 61.	
1	MOTA	6915	CB	ILE		44	57.999	35.178	53.536		
	ATOM	6916	CG2			44	57.197	33.897	53.812	1.00 63.	
35	ATOM	6917		ILE		44	58.258	35.946	54.836	1.00 62.	
	ATOM	6918	_	ILE		44	58.852	35.088	55.947	1.00 63.	
	MOTA	6919	С	ILE		44	58.983	34.000	51.608	1.00 60.	
	ATOM	6920	0	ILE		44	59.114	32.774	51.592	1.00 61.	
	MOTA	6921	N	THR		45	58.532	34.692	50.569	1.00 58.	
40	MOTA	6922	CA	THR		45	58.149	34.033	49.326	1.00 57.	
	MOTA	6923	CB	THR		45	56.906	34.696	48.710	1.00 56.	
	ATOM	6924			_	45	57.189	36.074		1.00 55.	
	MOTA	6925	CG2			45	55.724	34.588	49.658	1.00 52.	
	MOTA	6926	С	THR		45	59.245	34.029	48.275	1.00 55.	
45	MOTA	6927	0	THR		45	59.120	33,357	47.262	1.00 55.	
	MOTA	6928	N	ASN		46	60.313	34.782	48.514	1.00 55.	
	MOTA	6929	CA	ASN	E	46	61.420	34.850	47.564	1.00 54.	
	MOTA	6930	CB	ASN		46	62.057	33.472	47.435	1.00 54.	
	MOTA	6931	CG	ASN		46	63.288	33.322	48.290	1.00 56.	
50	MOTA	6932		ASN		46	63.674	32.213	48.638	1.00 57.	
	MOTA	6933	ND2	ASN		46	63.922	34.436	48.621	1.00 53.	
	MOTA	6934	С	ASN		46	60.972	35.362	46.187	1.00 54.	
	MOTA	6935	0	ASN	Ε	46	61.259	34.764	45.149	1.00 54.	
	ATOM	6936	N	GLU		47	60.267	36.482	46.191	1.00 52.	
55	ATOM	6937	CA	GLU	Ε	47	59.769	37.074	44.970	1.00 51.	
	ATOM	6938	CB	GLU		47	58.247	36.956	44.926	1.00 50.	
	MOTA	6939	CG	GLU		47	57.750	35.530	44.856	1.00 50.	
	MOTA	6940	CD	GLU		47	56.236	35.438	44.877	1.00 52.	
	MOTA	6941		L GLU		47	55.589	36.442	44.516	1.00 50.	
60	MOTA	6942	OE	2 GLU	E	47	55.692	34.358	45.237	1.00 56.	
	MOTA	6943	С	GLU	E	47	60.186	38.534	44.919	1.00 51.	43 6

	WO 01/58	8951								PCT/EP01/01	457
							-186				
	ATOM	6944	0	GLU E	47		60.134	39.243	45.919	1.00 51.14	8
	MOTA	6945		VAL E			60.597	38.980	43.742	1.00 51.27	7
	ATOM	6946	CA	VAL E			61.037	40.352	43.574	1.00 51.20	6
	ATOM	6947	CB	VAL E	48		62.554	40.402	43.276	1.00 52.39	6
5	ATOM	6948	CG1	VAL E	48		63.000	41.822	43.081	1.00 54.32	6
	ATOM	6949	CG2	VAL E	48		63.319	39.778	44.411	1.00 53.03	6
	MOTA	6950	С	VAL E	48		60.290	41.062	42.452	1.00 49.53	6
	MOTA	6951	0	VAL E	48		59.974	40.474	41.425	1.00 47.97	8
	MOTA	6952	N	ASP E			60.005	42.334	42.669	1.00 47.94	7
10	MOTA	6953	CA	ASP E			59.335	43.146	41.680	1.00 48.29	6
	MOTA	6954	CB	ASP E			58.107	43.795	42.290	1.00 49.64	6
	MOTA	6955	CG	ASP E			57.146	44.300	41.249	1.00.50.04	6
	MOTA	6956		ASP E			57.596	44.853	40.228	1.00 47.78	8 8
4 =	MOTA	6957		ASP E			55.931	44.151	41.459	1.00 53.33 1.00 48.39	6
15	MOTA	6958	С	ASP I			60.373	44.200	41.330 42.118	1.00 48.55	8
	MOTA	6959	0	ASP I			60.644 60.950	45.101 44.085	40.140	1.00 48.88	7
	MOTA	6960	N	VAL I			62.011	44.003	39.718	1.00 48.55	6
	MOTA	6961 6962	CA CB	VAL I			63.353	44.220	39.707	1.00 50.40	6
20	ATOM ATOM	6963		VAL I			63.428	43.303	38.492	1.00 49.66	6
20	MOTA	6964		VAL			64.511	45.188	39.721	1.00 55.70	6
	MOTA	6965	C	VAL			61.801	45.642	38.354	1.00 47.28	6
	MOTA	6966	Ö	VAL I			61.057	45.134	37.523	1.00 48.34	8
	ATOM	6967	N	VAL I			62.467	46.777	38.144	1.00 45.37	7 ·
25	ATOM	6968	CA	VAL 1			62.407	47.540	36.896	1.00 43.25	6
	MOTA	6969	CB	VAL 1			61.930	48.993	37.131	1.00 41.43	6
	MOTA	6970	CG1	VAL	E 51		62.118	49.820	35.865	1.00 39.28	6
	MOTA	6971	CG2	VAL	E 51		60.478	49.000	37.546	1.00 39.33	6
	ATOM	6972	С	VAL			63.821	47.597	36.333	1.00 44.33	6
30	MOTA	6973	0	VAL			64.764	47.841	37.078	1.00 46.78	8
	MOTA	6974	N	PHE :			63.978	47.383	35.029	1.00 43.60	7
	MOTA	6975	CA	PHE			65.304	47.416	34.430	1.00 41.93	6
	ATOM	6976	CB	PHE		•	65.997	46.085	34.678	1.00 41.48 1.00 42.18	6 6
0.5	ATOM	6977	CG	PHE			65.275	44.917 44.566	34.070 32.745	1.00 42.18	6
35	ATOM	6978		PHE			65.486 64.347	44.200	34.809	1.00 41.00	6
	MOTA	6979		PHE			64.784	43.527	32.167	1.00 42.36	6
	MOTA MOTA	6980 6981	CE2	_			63.638	43.153	34.236	1.00 45.87	6
	MOTA	6982	CEZ	PHE			63.859	42.818	32.911	1.00 43.76	6
40	MOTA	6983	C	PHE			65.239	47.675	32.933	1.00 44.18	6
-10	MOTA	6984	ō	PHE			64.183	47.574	32.314	1.00 43.22	8
	ATOM	6985	N	TRP			66.384	48.014	32.354	1.00 46.10	7
	ATOM	6986	CA	TRP			66.466	48.252	30.927	1.00 47.08	6
	MOTA	6987	CB	TRP	E 53		67.367	49.431	30.614	1.00 46.54	6
45	MOTA	6988	CG	TRP			66.822	50.726	31.015	1.00 49.25	6
	MOTA	6989	CD2	TRP			67.510	51.972	30.991	1.00 51.55	6
	MOTA	6990	CE2				66.616	52.951	31.471	1.00 52.89	6
	ATOM.	6991	CE3				68.804	52.358	30.614	1.00 53.33	6
	MOTA	6992		TRP			65.577	50.980	31.486	1.00 50.42	6
50	MOTA	6993	NE1				65.440	52.318	31.765	1.00 52.93 1.00 54.65	7 6
	MOTA	6994	CZ2				66.969	54.299	31.589	1.00 54.65	6
	MOTA	6995		TRP			69.162 68.245	53.706 54.658	30.730 31.215	1.00 56.13	6
	MOTA	6996	CH2				67.070	47.018	30.316	1.00 48.44	6
55	MOTA	6997 6998	C	TRP TRP			68.201	46.680	30.516	1.00 50.00	8
J	MOTA MOTA	6998	N	GLN			66.313	46.342	29.465	1.00 49.02	7
	ATOM	7000	CA	GLN			66.805	45.143	28.818	1.00 49.56	6
	MOTA	7001	CB	GLN			65.648	44.193	28.517	1.00 50.24	6
	MOTA	7002	CG	GLN			66.076	42.837	28.017	1.00 52.86	6
60	ATOM	7002	CD	GLN			65.043	41.768	28.313	1.00 57.64	6
	ATOM	7004					64.668	41.564	29.465	1.00 59.29	8

	WU 01/5	9791								PCI	1/EPU1/01	145/
							-187					
	3 mo34	7005	37550	OIN E	54	,	64.576	41.078	27.275	1.00	58.15	7
	MOTA	7005		GLN E			67.500	45.583	27.547	1.00		6
	ATOM	7006	C	GLN E			66.972	45.458	26.446	1.00		8
	ATOM	7007	0	GLN E			68.692	46.132	27.735	1.00		7
_	MOTA	7008	N	GLN E				46.132	26.647	1.00		6
5	MOTA	7009	CA	GLN E			69.534 70.723	47.342	27.257		57.75	· 6
	MOTA	7010	CB	GLN E				47.759	26.296		65.99	6
	MOTA	7011	CG	GLN E			71.798 72.759	48.745	26.952		70.80	6
	ATOM	7012	CD	GLN E			73.057	48.637	28.158		74.02	8
10	MOTA	7013	OE1				73.245	49.710	26.175		70.33	7
10	MOTA	7014	NE2	GLN E	_		69.978	45.446	25.768		54.06	6
	MOTA	7015	C	GLN E			70.834	44.648	26.147		55.16	8
	MOTA	7016	0	THR I			69.370	45.350	24.592		51.47	7
	MOTA	7017	N	THR E			69.638	44.266	23.664		49.57	6
4 =	MOTA	7018	CA	THR I			68.340	43.527	23.323		48.99	6
15	MOTA	7019	CB	THR I			67.621	43.259	24.530		51.03	8
	MOTA	7020	CG2	THR I			68.638	42.228	22.613		48.81	6
	MOTA	7021		THR I			70.245	44.780	22.374		48.56	6
	ATOM	7022	C	THR I			69.919	45.870	21.916		47.42	8
20	MOTA	7023	0	THR I			71.131	43.984	21.789		48.33	7
20	ATOM	7024	N	THR			71.778	44.370	20.545		48.63	6
	MOTA	7025	CA	THR			73.079	45.153	20.803	-	48.38	6
	MOTA	7026	CB OC1				72.786	46.369	21.504		49.73	8
	ATOM	7027 7028	OG1 CG2			7	73.737	45.498	19.488		53.54	6
25	MOTA	7028	CGZ	THR		7	72.115	43.162	19.688		47.10	6
25	MOTA	7029	0	THR		7	72.462	42.094	20.196		47.16	8
	ATOM	7030	Ŋ	TRP		8	71.996	43.337	18.382		44.64	7
	MOTA MOTA	7031	CA	TRP		8	72.302	42.272	17.443		45.43	6
		7032	CB	TRP		8	71.217	41.185	17.463		44.32	6
30	MOTA MOTA	7033	CG	TRP		8	69.901	41.590	16.907		41.75	6
30	MOTA	7034	CD2			8	68.834	42.225	17.617		41.25	6
	MOTA	7035	CE2			8	67.800	42.458	16.689		43.06	6
	MOTA	7030	CE3			8	68.653	42.622	18.948		42.08	6
	ATOM	7038		TRP		8	69.485	41.463	15.622	1.00	39.77	6
35	MOTA	7039		TRP		8	68.229	41.982	15.477	1.00	43.20	7
00	MOTA	7040		TRP		8	66.598	43.072	17.043	1.00	42.98	6
	ATOM	7041		TRP		8	67.462	43.232	19.301	1.00	45.88	6
	ATOM	7042		TRP		8	66.447	43.451	18.347	1.00	46.11	6 .
	ATOM	7043	C	TRP		8	72.450	42.872	16.060		46.92	6
40	ATOM	7044	ō	TRP		58	72.312	44.079	15.874		46.99	8 '
. •	MOTA	7045	N	SER		59	72.737	42.039	15.076		49.39	7
	MOTA	7046	CA	SER		59	72.933	42.571	13.738	1.00	52.86	6
	ATOM	7047	CB	SER		59	74.423	42.477	13.382		55.16	6
	ATOM	7048	OG	SER	E 5	59	74.777	43.368	12.335		59.85	8
45	MOTA	7049	С	SER	E 5	59	72.093	41.873	12.673		53.08	6
	ATOM	7050	0	SER	E 5	59	72.023	40.640	12.621		50.22	8
	ATOM	7051	N	ASP	E (60	71.461	42.685	11.833		55.39	7
	ATOM	7052	CA	ASP	E	60	70.616	42.206	10.743		58.98	6
	ATOM	7053	CB	ASP	E	60	69.144	42.502	11.027		59.87	6
50	MOTA	7054	CG	ASP	E	60	68.214	41.871	10.006		61.83	6
	MOTA	7055	OD:	1 ASP	E	60	68.625	41.701	8.835		62.51	8
	ATOM	7056		2 ASP	E	60	67.060	41.556	10.374		62.82	8
	MOTA	7057		ASP	E	60	71.041	42.975	9.508		61.07	6
	ATOM	7058	0	ASP	E	60	70.599	44.106	9.293		60.13	8
55	ATOM	7059		ARG		61	71.896	42.351	8.701		63.73	7
	MOTA	7060		ARG	E	61	72.428	42.989	7.501		66.18	6
	ATOM	7061	. CB			61	73.580	42.155	6.908		70.24	6
	MOTA	7062	CG	ARG		61	74.957	42.308	7.596		74.18	6
	MOTA	7063		ARG		61	76.042	41.679	6.722		80.58	6
60	MOTA	7064				61	77.411	41.855	7.223		86.19	
	MOTA	7065	CZ	ARG	E	61	78.505	41.397	6.598	1.00	88.23	6

	WO 01/5	8951								PCT/EP01/01	157
							-188				
	20014	7066	NTLI 1	ARG E	,	61	78.383	40.734	5.447	1.00 88.94	7
	ATOM ATOM	7066 7067		ARG E		61	79.724	41.603	7.111	1.00 88.58	7
		7067		ARG E		61	71.404	43.289	6.414	1.00 65.48	6
	MOTA	7069	_	ARG E		61	71.655	44.145	5.561	1.00 65.84	8
5	MOTA	7079	-	THR E		62	70.255	42.610	6,439	1.00 64.00	7
5	MOTA		N CA	THR I		62	69.232	42.842	5.410	1.00 61.93	6
	MOTA	7071	CB	THR I		62	68.113	41.764	5.439	1.00 62.28	6
	ATOM	7072		THR I		62	67.367	41.879	6.652	1.00 65.24	8
	MOTA	7073		THR I		62	68.707	40.361	5.372	1.00 61.73	6
10	MOTA	7074		THR I		62	68.602	44.218	5.595	1.00 59.03	6
10	MOTA	7075	C	THR I		62	67.827	44.676	4.761	1.00 57.27	8
	ATOM	7076	0			63	68.962	44.868	6.697	1.00 57.62	7
	MOTA	7077	N	LEU !		63	68.461	46.200	7.029	1.00 57.37	6
	ATOM	7078	CA	LEU :		63	68.214	46.316	8.543	1.00 55.66	6
1 =	ATOM	7079	CB	LEU :		63	67.253	45.322	9.196	1.00 55.07	6
15	ATOM	7080	CG	LEU :		63	67.231	45.508	10.692	1.00 52.03	6
	ATOM	7081					65.875	45.519	8.612	1.00 55.09	6
	MOTA	7082		LEU		63	69.471	47.277	6.625	1.00 57.97	6
	ATOM	7083	C	LEU		63	69.135	48.460	6.549	1.00 56.59	8
00	ATOM	7084	0	LEU :		63	70.715	46.862	6.389	1.00 58.86	7
20	ATOM	7085	N	ALA		64	71.770	47.798	6.018	1.00 60.30	6
•	MOTA	7086	CA	ALA		64		47.055	5.844	1.00 58.52	6
	MOTA	7087	CB	ALA		64	73.077	48.571	4.745	1.00 61.25	6
	ATOM	7088	C	ALA		64	71.440	48.041	3.830	1.00 59.01	8
~ -	MOTA	7089	0	ALA		64	70.814		4.702	1.00 63.42	7
25	ATOM	7090	N	TRP		65	71.845	49.832	3.514	1.00 67.05	6
	MOTA	7091	CA	TRP		65	71.619	50.631	3.704	1.00 66.45	6
	ATOM	7092	СВ	TRP		65	70.406	51.537		1.00 66.84	6
	MOTA	7093	CG	TRP		65	70.513	52.506	4.835	1.00 67.35	6
	MOTA	7094		TRP		65	70.173	52.266	6.209	1.00 67.33	6
30	MOTA	7095	CE2			65	70.352	53.488	6.904	1.00 67.71	6
	MOTA	7096	CE3			65	69.730	51,141	6.920		6
	MOTA	7097		TRP		65	70.882	53.816	4.756	1.00 66.32	7
	MOTA	7098		TRP		65	70.785	54.415	5.993	1.00 67.91	6
	MOTA	7099		TRP		65	70.101	53.615	8.270	1.00 65.59	
35	MOTA	7100		TRP		65	69.483	51.267	8.272	1.00 64.14	6 6
	ATOM	7101	CH2			65	69.668		8.935	1.00 65.02	6
	ATOM	7102	С	TRP		65	72.874		3.253	1.00 69.81	
	ATOM	7103	0	TRP		65	73.908		3.902	1.00 70.35	8
	MOTA	7104	N	ASN	E	66	72.801		2.297	1.00 71.64	7
40	MOTA	7105	CA	ASN	E	66	73.956		1.999	1.00 72.49	6
	MOTA	7106	CB	ASN	E	66	74.174			1.00 73.41	6
	MOTA	7107		ASN		66	75.497		0.131	1.00 75.13	6
	ATOM	7108	OD1	. ASN	Ε	66	75.513		-0.456	1.00 76.49	8
	MOTA	7109	ND2	. ASN	E	66	76.614		0.487	1.00 73.59	7
45	MOTA	7110	С	ASN	E	66	73.707		2,602	1.00 72.73	6
	MOTA	7111	0	ASN	E	66	72.930		2.068	1.00 72.23	8
	MOTA	7112	N	SER	Ε	67	74.367		3.726	1.00 74.00	7
	ATOM	7113		SER	E	67	74.231		4.441	1.00 76.61	6
	ATOM	7114	CB	SER	E	67	74.159		5.942	1.00 76.40	6
50		7115		SER	E	67	75.161		6.307	1.00 75.84	8
	MOTA	7116		SER	E	67	75.378		4.150	1.00 78.08	6
	MOTA	7117		SER	E	67	75.512		4.807	1.00 77.79	8
	MOTA	7118		SER	E	68	76.199		3.162	1.00 79.24	7
	MOTA	7119		SER	E	68	77.353		2.769	1.00 79.93	6
55		7120		SER		68	78.217		1.730	1.00 80.16	6
	MOTIA	7121				68	77.535	56.523	0.495	1.00 81.02	8

77.535

77.586

75.722

76.896 58.835

75.176 60.529

75.229 60.665

7121

7122

7123

7124

7125

7126

MOTA

MOTA

MOTA

MOTA

MOTA

MOTA

60

OG

С

0

N

CA

SER E

SER E

CB HIS E 69

SER E 68

HIS E 69

HIS E 69

68

68

56.523

59.471

59.261

2.664

2.247

1.00 77.21

1.00 76.33

6

8

7

6

2.219 1.00 79.10

1.411 1.00 79.89

0.732 1.00 76.74

WO 01/58951 PCT/EP01/01457

	•					-189	•			_
	ATOM	7127	CG	HIS E	69	75.366	62.083	0.283	1.00 77.46	6
	ATOM	7128		HIS E	69	74.568	62.857	-0.491	1.00 76.01	6
	ATOM	7129		HIS E	69	76,390	62.898	0.720	1.00 75.50	7
	ATOM	7130		HIS E	69	76.212	64.114	0.239	1.00 74.91	6
5	ATOM	7131	-	HIS E	69	75.115	64.117	-0.497	1.00 77.04	7
J	ATOM	7132	C	HIS E	69	73.748	60.641	2.716	1.00 75.96	6
	ATOM	7133	0	HIS E	69	72.954	61.408	2.170	1.00 75.96	8
			И	SER E	70	73.431	59.880	3.754	1.00 75.27	7
	ATOM	7134			70	72.086	59.867	4.308	1.00 72.77	6
40	MOTA	7135	CA	SER E SER E	70	71.307	58.758	3.639	1.00 71.14	6
10	ATOM	7136	CB			72.085	57.578	3.703	1.00 68.45	8
	MOTA	7137	OG	SER E	70		59.585	5.806	1.00 72.84	6
	MOTA	7138	C	SER E	70	72.177	59.212	6.304	1.00 73.59	8
	MOTA	7139	0	SER E	70	73.254		6.550	1.00 71.65	7
	MOTA	7140	N	PRO E	71	71.065	59.789	6.160	1.00 70.63	6
15	MOTA	7141	CD	PRO E	71	69.793	60.434		1.00 70.03	6
	MOTA	7142	CA	PRO E	71	71.091	59.521	7.989	1.00 69.54	6
	MOTA	7143	CB	PRO E	71	69.627	59.649	8.376	1.00 69.75	6
	MOTA	7144	CG	PRO E	71	69.172	60.783	7.505		
	MOTA	7145	C	PRO E	71	71.611	58.104	8.128	1.00 67.45	6
20	ATOM	7146	0	PRO E	71	71.371	57.288	7.249	1.00 67.47	8
	ATOM	7147	N	ASP E	72	72.332	57.813	9.202	1.00 65.90	7
	ATOM	7148	CA	ASP E	72	72.888	56.480	9.401	1.00 65.38	6
	ATOM	7149	CB	ASP E	72	74.336	56.595	9.864	1.00 66.99	6
	MOTA	7150	CG	ASP E	72	74.623	57.933	10.513	1.00 69.68	6
25	MOTA	7151		ASP E	72	75.809	58.349	10.511	1.00 72.85	8
	MOTA	7152		ASP E	72	73.659	58.564	11.022	1.00 69.14	8
	MOTA	7153	C	ASP E	72	72.078	55.656	10.387	1.00 64.69	6
	ATOM	7154	Ö	ASP E	72	72.273	54.438	10.492	1.00 62.72	8
	ATOM	7155	N	GLN E	73	71.194	56.334	11.122	1.00 63.38	7
30	ATOM	7156	CA	GLN E	73	70.291	55.692	12.073	1.00 62.59	6
50		7157	CB	GLN E	73	70.703	55.968	13.502	1.00 63.56	6
	ATOM	7158	CG	GLN E	73	71.812	55.147	14.064	1.00 66.36	6
	MOTA	7159	CD	GLN E	73	72.073	55.601	15.478	1.00 69.74	6
	ATOM				73	72.311	56.794	15.711	1.00 71.52	8
0.5	MOTA	7160	OE1		73	72.005	54.676	16.437	1.00 70.16	7
35	ATOM	7161		GLN E	73	68.850	56.189	11.932	1.00 60.94	6
	MOTA	7162	С	GLN E	73	68.599	57.336	11.548	1.00 60.74	8
	MOTA	7163	0		74	67.910	55.318	12.281	1.00 57.54	7
	ATOM	7164	Ŋ	VAL E		66.495	55.652	12.254	1.00 54.00	6
40	MOTA	7165	CA	VAL E		65.857	55.296		1.00 52.88	6
40	MOTA	7166	CB	VAL E			56.201	9.814	1.00 52.07	6
	MOTA	7167		L VAL E		66.391 66.151	53.846	10.564	1.00 53.11	6
	ATOM	7168		2 VAL E			54.844	13.349	1.00 51.46	6
	MOTA	7169	С	VAL E		65.816		13.804	1.00 51.44	8
	MOTA	7170	0	VAL E		66.355	53.838			7
45	MOTA	7171	И	SER E		64.649	55.299	13.789		6.
	MOTA	7172	CA			63.893	54.592	14.812		6
	ATOM	7173	CB			63.222		15.761		8
	MOTA	7174	OG			64.122		16.763		
	MOTA	7175	С	SER E		62.846		14.123		6
50	MOTA	7176	0	SER E	75	61.959		13.431		8
	MOTA	7177	N	VAL E		62.953		14.325		7
	MOTA	7178	CA	VAL E	76	62.052		13.706		6
	MOTA	7179	CB			62.857				6
	MOTA	7180	CG	1 VAL E		61.930				6
55		7181		2 VAL I		63.734				6
	ATOM	7182		VAL I		61.169				6
	ATOM	7183				61.641				8
	MOTA	7184		PRO I		59.868	50.612	14.418		7
	ATOM	7185				59.085		13.344		6
60		7186				58.987	49.923	15.360		6
	ATOM	7187				57.619		14.719	1.00 39.68	6
	0.1									

	W O 01/5	3731							1 C 1/E1 01/014	137
						-190				
	2001	7100		PRO E	77	57.736	51.362	13.981	1.00 41.25	6
	MOTA	7188	-	PRO E	77	59.407	48.464	15.456	1.00 39.33	6
	ATOM	7189	-		77	59.766	47.848	14.457	1.00 39.91	8
	ATOM	7190		PRO E	78	59.368	47.929	16.665	1.00 39.53	7
_	ATOM	7191				59.729	46.550	16.938	1.00 39.36	6
5	MOTA	7192		ILE E	78 78	59.440	46.235	18.408	1.00 41.90	6
	ATOM	7193	СВ	ILE E	78		44.753	18.667	1.00.44.69	6
	MOTA	7194	CG2	ILE E	78	59.421	46.887	19.259	1.00 45.61	6
	MOTA	7195	CG1	ILE E	78	60.512		18.783	1.00 45.82	6
	MOTA	7196	CD1	ILE E	78	61.904	46.569		1.00 45.02	6
10	MOTA	7197	С	ILE E	78	59.002	45.562	16.048	1.00 35.30	8
	ATOM	7198	0	ILE E	78	59.556	44.550	15.645	1.00 39.79	7
	MOTA	7199	N	SER E	79	57.755	45.870	15.729		6
	MOTA	7200	CA	SER E	79	56.932	45.011	14.891	1.00 41.99	
	MOTA	7201	CB	SER E	79	55.497	45.502	14.931	1.00 40.86	6
15	MOTA	7202	OG	SER E	79	55.441	46.876	14.633	1.00 44.60	8
	MOTA	7203	С	SER E	79	57.370	44.887	13.441	1.00 43.24	6
	MOTA	7204	0	SER E	79	56.883	44.020	12.730	1.00 43.62	8
	ATOM	7205	N	SER E	80	58.278	45.750	12.996	1.00 44.61	7
	ATOM	7206	CA	SER E	80	58.751	45.713	11.619	1.00 44.15	6
20	ATOM	7207	СВ	SER E	80	58.841	47.133	11.062	1.00 43.26	6
	ATOM	7208	OG	SER E	80	57.568	47.744	11.017	1.00 47.92	8
	ATOM	7209	C	SER E	80	60.110	45.033	11.482	1.00 45.19	6
	ATOM	7210	ō	SER E	80	60.661	44.963	10.387	1.00 46.20	8
	ATOM	7211	N	LEU E		60.645	44.533	12.589	1.00 42.25	7
25	ATOM	7212	CA	LEU E		61.949	43.891	12.577	1.00 42.76	6
20	ATOM	7213	CB	LEU E		62.950	44.702	13.400	1.00 41.44	б
	ATOM	7214	CG	LEU E		63.144	46.190	13.150	1.00 39.51	б
	ATOM	7215		LEU E		63.861	46.826	14.314	1.00 38.48	6
		7216		LEU E		63.908	46.367	11.891	1.00 43.00	6
30	MOTA	7217	CDZ	LEU E		61.846	42.530	13.216	1.00 42.93	6
30	MOTA	7217	Ö	LEU E		60.845	42.221	13.865	1.00 47.16	8
	ATOM			TRP E		62.880	41.715	13.028	1.00 39.63	7
	ATOM	7219	N	TRP E		62.925	40.412	13.657	1.00 38.60	6
	ATOM	7220	CA	TRP E		63.872	39.465	12.941	1.00 37.23	6
0.5	MOTA	7221	CB	TRP E		64.186	38.241	13.753	1.00 39.34	6
35	MOTA	7222	CG			65.272	38.087	14.678	1.00 41.49	6
	MOTA	7223	CD2			65.142	36.811	15.266	1.00 40.40	6
	MOTA	7224	CE2			66.344	38.909	15.071	1.00 41.39	6
	ATOM	7225	CE3			63.469	37.086	13.814	1.00 37.83	6
40	MOTA	7226		TRP		64.032	36.222	14.719	1.00 40.75	7
40	MOTA	7227		TRP		66.044	36.335	16.228	1.00 39.91	б
	MOTA	7228		TRP		-		16.025	1.00 38.98	6
	MOTA	7229		TRP I		67.237	38.436	-	1.00 40.84	6
	MOTA	7230		TRP I		67.080	37.161	16.591	1.00 38.10	6
	MOTA	7231		TRP I		63.513	40.766	14.999	1.00 30.10	8
45	ATOM	7232	0	TRP I		64.356	41.636	15.086	1.00 39.16	7
	MOTA	7233	N	VAL I		63.068	40.104	16.049		
	ATOM	7234	CA	VAL 1		63.578	40.395	17.367	1.00 38.27	6
	MOTA	7235		VAL I		62.562	41.277	18.141	1.00 39.12	6
	ATOM	7236		L VAL 1		62.919	41.352	19.596	1.00 43.60	6
50	MOTA	7237	CG2	2 VAL		62.557	42.678	17.565	1.00 38.09	6
	MOTA	7238	С	VAL :	E 83	63.853	39.081	18.089	1.00 37.11	6
	MOTA	7239	0	VAL	E 83	63.154	38.098	17.896	1.00 39.80	8
	ATOM	7240	N	PRO	E 84	64.909	39.039	18.899	1.00 35.89	7
	MOTA	7241		PRO	E 84	65.921	40.088	19.075	1.00 38.94	6
55	ATOM	7242		PRO		65.276		19,651		6
	MOTA	7243		PRO		66.485		20.456		6
	ATOM	7244		PRO		67.087	39∵306	19.600		6
	ATOM	7245		PRO		64.134	37.398			6
	MOTA	7246		PRO		63.541		21.246		8
60	MOTA	7247		ASP		63.839	36.103	20.565		7
-	MOTA	7248				62.771			1.00 35.26	6
	HIOH									

	WO 01/5	8951								PCT/EP01/01	457
							-191				_
	ATOM	7249		ASP E		85		34.350	20.779	1.00 37.18	6
	ATOM	7250		ASP E		85	63.150	33.259	20.556	1.00 40.21 1.00 41.52	6 8
	MOTA	7251		ASP E		85	64.268	33.583 32.079	20.129	1.00 41.32	8
-	ATOM	7252		ASP F		85	62.828 63.277	35.290	22.794	1.00 36.88	6
5	MOTA	7253		ASP E		85 85	63.277	34.174	23.287	1.00 37.96	8
	MOTA	7254 7255		ASP E		86	63.848	36.307	23.427	1.00 34.95	7
	ATOM ATOM	7256		LEU F		86	64.387		24.769	1.00 36.75	6
	ATOM	7257		LEU E		86	65.211	37.414	25.116	1.00 36.06	6
10	MOTA	7258	CG	LEU I		86	66.410	37.646	24.221	1.00 34.31	6
	ATOM	7259		LEU I		86	67.131	38.893	24.653	1.00 32.72	6
	ATOM	7260	CD2	LEU I	Ξ	86	67.300	36.446	24.287	1.00 35.49	6
	MOTA	7261	С	LEU 1	E	86	63.317	36.021	25.816	1.00 37.61	6
	ATOM	7262	0	LEU 1		86	62.226	36.557	25.694	1.00 41.91 1.00 38.39	8 7
15	ATOM	7263	N	ALA I		87	63.652	35.293 35.060	26.865 27.949	1.00 38.39	6
	MOTA	7264	CA	ALA I		87	62.727 61 <i>.</i> 950	33.766	27.692	1.00 37.37	6
	MOTA	7265	CB	ALA		87 87	63.510	34.959	29.255	1.00 41.61	6
	MOTA	7266 7267	C O	ALA ALA		87	64.583	34.372	29.288	1.00 42.91	8
20	MOTA ATOM	7268	Ŋ	ALA		88	62.989	35.550	30.323	1.00 41.72	7
20	MOTA	7269	CA	ALA		88	63.639	35.460	31.624	1.00 40.16	6
	ATOM	7270	CB	ALA		88	63.259	36.638	32.480	1.00 38.02	6
	MOTA	7271	C	ALA		88	63.154	34.168	32.261	1.00 41.60	6
	ATOM	7272	0	ALA	E	88	62.028	34.089	32.740	1.00 43.75	8
25	MOTA	7273	N	$\mathbf{T}\mathbf{Y}\mathbf{R}$	E	89	64.008	33.152	32.245	1.00 43.12	7
	MOTA	7274	CA	TYR	Ē	89	63.691	31.832	32.793	1.00 44.73	6
	MOTA	7275	CB	TYR		89	64.970	31.010	32.900	1.00 47.55 1.00 53.63	6 6
	MOTA	7276	CG	TYR		89	65.633	30.711 30.120	31.573 31.521	1.00 54.69	6
00	MOTA	7277		TYR		89	66.903 67.519	29.831	30.311	1.00 56.44	6
30	ATOM	7278		TYR TYR		89 89	64.995	31.006	30.368	1.00 56.01	6
	MOTA	7279 7280		TYR		89	65.599	30.720	29.147	1.00 58.87	6
	MOTA MOTA	7281	CEZ	TYR		89	66.860	30.131	29.125	1.00 58.82	6
	MOTA	7282	ОН	TYR		89	67.437	29.821	27.908	1.00 64.15	8
35	ATOM	7283	C	TYR		89	62.959	31.792	34.138	1.00 44.61	6
•	ATOM	7284	0	TYR		89	62.113	30.920	34.362	1.00 43.17	8
	ATOM	7285	N	ASN		90	63.275	32.723	35.036	1.00 43.58	7
	ATOM	7286	CA	ASN		90	62.621	32.729	36.338	1.00 43.92	6 6
	MOTA	7287	CB	ASN		90	63.658	32.682	37.469	1.00 41.30 1.00 40.93	6
40	ATOM	7288	CG	ASN		90	64.654	33.809	37.401 36.341		8
	MOTA	7289		ASN		90	65.197	34.116 34.425	38.542	1.00 42.13	7
	MOTA	7290		ASN		90 90	64.914 61.668	33.894	36.538	1.00 45.22	6
	MOTA	7291	C	ASN ASN		90	61.397	34.296	37.668	1.00 45.17	8
45	ATOM ATOM	7292 7293	N O	ALA		91	61.170	34.437	35.432	1.00 46.14	7
40	ATOM	7294	CA	ALA		91	60.207	35.526	35.482	1.00 44.27	6
	ATOM	7295	CB	ALA		91	59.974	36.095	34.110		6
	ATOM	7296	C	ALA		91	58.937	34.881	36.006	1.00 45.11	6
	MOTA	7297	0	ALA	E	91	58.543	33.800	35.577		8
50	MOTA	7298	N	ILE	E	92	58.306	35.569	36.940		7
	ATOM	7299	CA	ILE		92	57.111	35.100	37.611		6
	MOTA	7300		ILE		92	57.301	35.365	39.123		6 6
	MOTA	7301		2 ILE		92.	-56.517	36.598	39,568		6
	MOTA	7302		1 ILE		92	56.883	34.165 34.482	39.929 41.419		6
55	MOTA	7303		1 ILE		92	56.902 55.863	35.805	37.060		6
	MOTA	7304		ILE		92 92	54.745			•	8
	MOTA	7305 7306		ILE SER		93	56.078				7
	MOTA MOTA	7300					55.001		_	1.00 41.03	6
60	ATOM	7308					54.765			1.00 40.45	6
	ATOM	7309					55.849			1.00 40.42	8

	WO 01/5	8951							PCT/EP01/01	457
						-192				
	ATOM ATOM	7310 7311		SER E SER E	93 93	55.497 56.686	37.925 37.781	34.214 33.932	1.00 41.98 1.00 43.61	6 8
	ATOM	7312		LYS E	94	54.617	38.380	33.333	1.00 41.47	7
_	MOTA	7313		LYS E	94	55.109	38.738	32.018 30.942	1.00 44.98 1.00 44.95	6 6
5	ATOM	7314 7315		LYS E LYS E	94 94	54.037 52.663	38.561 39.071	31.264	1.00 48.24	6
	ATOM ATOM	7315		LYS E	94	51.659	38.499	30.255	1.00 50.47	6
	MOTA	7317	CE	LYS E	94	52.173	38.628	28.822	1.00 53.56	6
	MOTA	7318	NZ	LYS E	94	51.218	38.125	27.795	1.00 54.79	7
10	MOTA	7319	_	LYS E	94	55.675	40.151	32.031 32.933	1.00 45.16 1.00 46.22	6 8
	MOTA	7320	0	LYS E PRO E	94 95	55.386 56.514	40.939 40.481	31.038	1.00 43.95	7
	MOTA MOTA	7321 7322	N CD	PRO E	95	56.973	39.633	29.926	1.00 42.19	6
	ATOM	7323	CA	PRO E	95	57.131	41,802	30.957	1.00 43.02	6
15	ATOM	7324	CB	PRO E	95	58.076	41.671	29.768	1.00 42.81	6
	MOTA	7325	CG	PRO E	95	58.306	40.216	29.636	1.00 42.27 1.00 42.70	6 6
	MOTA	7326	C	PRO E	95 95	56.162 55.320	42.939 42.899	30.761 29.870	1.00 42.70	8
	MOTA MOTA	7327 7328	O N	PRO E GLU E	95 96	56.269	43.952	31.601	1.00 40.32	7
20	MOTA	7329	CA	GLU E	96	55.424	45.115	31.446	1.00 41.45	6
	MOTA	7330	CB	GLU E	96	54.910	45.635	32.797	1.00 42.90	6
	MOTA	7331	CG	GLU E	96	53.911	46.797	32.674	1.00 47.98 1.00 50.94	6 6
	MOTA	7332	CD OF1	GLU E	96 96	53.396 53.482	47.308 46.539	34.024 35.005	1.00 53.57	8
25	ATOM ATOM	7333 7334	OE1		96	52.894	48.462	34.102	1.00 47.79	8
20	ATOM	7335	Ċ	GLU E	96	56.372	46.123	30.830	1.00 40.44	6
	MOTA	7336	0	GLU E	96	57.143	46.762	31.538	1.00 42.91	8
	MOTA	7337	N	VAL E	97	56.348 57.200	46.227 47.165	29.506 28.800	1.00 36.63 1.00 34.15	7 6
30	MOTA MOTA	7338 7339	CA CB	VAL E	97 97	57.230	46.850	27.311	1.00 31.33	6
50	ATOM	7340		VAL E	97	58.136	47.814	26.596	1.00 31.45	6
	MOTA	7341		VAL E	97	57.708	45.444	27.113	1.00 28.98	6
	MOTA	7342	С	VAL E	97	56.665	48.576	29.041	1.00 35.79 1.00 35.88	6 8
35	MOTA	7343	N O	VAL E LEU E	97 98	55.558 57.474	48.932 49.378	28.636 29.714	1.00 35.63	7
33	ATOM ATOM	7344 7345	CA	LEU E	98	57.091	50.725	30.086	1.00 36.41	6
	MOTA	7346	CB	LEU E	98	57.787	51.098	31.395	1.00 34.14	б
	ATOM	7347	CG	LEU E	98	57.676	50.176	32.598	1.00 33.56	6
40	ATOM	7348		LEU E	98 98	58.694 56.306	50.570 50.248	33.602 33.190	1.00 31.56 1.00 33.37	6 6
40	MOTA ATOM	7349 7350	CD2	LEU E	98	57.400	51.793	29.058	1.00 36.97	6
•	ATOM	7351	Ö	LEU E	98	56.969	52.936	29.203	1.00 38.13	8
	ATOM	7352	N	THR E		58.133	51.426	28.018	1.00 35.68	7
45	MOTA	7353	CA	THR E	99	58.533	52.391	27.011 27.032	1.00 34.41 1.00 35.73	6 6
45	MOTA	7354	CB OC1	THR E		60.067 60.683	52.547 51.265	26.850	1.00 33.73	8
	MOTA MOTA	7355 7356	CG2			60.517	53,122	28.355	1.00 34.05	6
	MOTA	7357	C	THR E		58.098	52.084	25.589	1.00 33.50	6
	MOTA	7358	0	THR E		57.696	50.969	25.283	1.00 33.37	8
50	MOTA	7359		PRO E		58.155	53.093 54.514	24.701 24.975	1.00 34.01 1.00 36.06	7 6
	MOTA	7360 7361		PRO E		58.424 57.777	52.919	23.302	1.00 33.45	6
	MOTA MOTA	7362		PRO E		58.227	54.223	22.669	1.00 31.60	6
	MOTA	7363	CG	PRO E		57.906		23.725	1.00 32.57	6
55	MOTA	7364		PRO E		58.529		22.769	1.00 35.44	6
	ATOM	7365		PRO E		59.713 57.844		23.041 22.029	1.00 35.44 1.00 37.12	8 7
	MOTA MOTA	7366 7367		GLN E		58.514		21.516	1.00 37.12	6
	ATOM	7368		GLN E		57.551		21.476	1.00 39.07	6
60		7369	CG	GLN E	101	57.398				6
	MOTA	7370	CD	GLN F	101	56.194	47.037	22.948	1.00 48.55	6

WO 01/58951 PCT/EP01/01457

			•				-193				
	ATOM	7371	OE1 (GLN E	101		56.055	46.068	22.194	1.00 50.74	8
	ATOM	7372		SLN E			55,298	47.359	23.885	1.00 48.45	7
	MOTA	7373		GLN E			59.146	49.950	20.181	1.00 37.98	6
	MOTA	7374		GLN E			58.749	49.374	19.177	1.00 36.86	8
5	MOTA	7375		LEU E			60.153	50.825	20.213	1.00 39.66	7
J	ATOM	7376		LEU E			60.936	51.230	19.046	1.00 38.89	6
	ATOM	7377		LEU E			60.911	52.749	18.880	1.00 36.07	6
	ATOM	7378		LEU E			59.545	53.416	18.766	1.00 36.30	6
	MOTA	7379			102		59.712	54.906	18.615	1.00 37.57	6
10	ATOM	7380		LEU E			58.809	52.853	17.571	1.00 37.42	б
10	ATOM	7381		LEU E			62.374	50.791	19.207	1.00 37.90	6
	ATOM	7382			102		62.909	50.784	20.312	1.00 40.06	8
	ATOM	7383		ALA E			62.995	50.408	18.102	1.00 37.36	7
	ATOM	7384		ALA E			64.395	50.007	18.127	1.00 38.78	6
15	MOTA	7385		ALA E			64.577	48.634	17.504	1.00 37.72	6
	ATOM	7386		ALA E			65.193	51.039	17.351	1.00 38.02	б
	ATOM	7387		ALA E			64.645	51.890	16.666	1.00 38.29	8
	ATOM	7388		ARG E			66.500	50.969	17.469	1.00 40.78	7
	MOTA	7389		ARG E			67.344	51.911	16.770	1.00 44.75	6
20	MOTA	7390		ARG E			68.258	52.612	17.771	1.00 44.40	6
	ATOM	7391		ARG E	104		68.873	53.873	17.251	1.00 45.66	6
	ATOM	7392		ARG E			67.868	54.956	16.983	1.00 43.79	6
	ATOM	7393		ARG E			68.570	56.118	16.456	1.00 46.54	7
	MOTA	7394	cz	ARG E	104		68.008	57.289	16.175	1.00 46.54	6
25	MOTA	7395	NH1	ARG E	104		66.711	57.493	16.365	1.00 47.66	7
	ATOM	7396	NH2	ARG E	104		68.760	58.266	15.698	1.00 49.69	7
	MOTA	7397	С	ARG E			68.142	51.099	15.763	1.00 46.58	6
	MOTA	7398	ο .	ARG E	104		68.775	50.105	16.119	1.00 47.46	8
	MOTA	7399	N	VAL E	: 105		68.081	51.492	14.497	1.00 48.34	7
30	MOTA	7400	CA	VAL E	105		68.808	50.761	13.475	1.00 49.67	6
	ATOM	7401	CB	VAL E			67.869	50.244	12.388	1.00 49.06	6
	MOTA	7402	CG1	VAL E	105		68.643	49.361	11.431	1.00 49.26	6
	MOTA	7403	CG2	VAL E			66.731	49.478	13.010	1.00 49.99	6
	MOTA	7404	C	VAL E			69.883	51.601	12.805	1.00 51.57	6
35	ATOM	7405	0	VAL E			69.606	52.684	12.272	1.00 49.78	8 7
	MOTA	7406	N	VAL E		•	71.109	51.077	12.834	1.00 53.67 1.00 55.11	6
	MOTA	7407	CA	VAL E			72.265	51.738	12.232	1.00 54.77	6
	MOTA	7408	CB	VAL E			73.537	51.409	13.009	1.00 55.46	6
	MOTA	7409		VAL E			74.666	52.300	12.539 14.507	1.00 57.64	6
40	MOTA	7410		VAL I			73.283	51.577 51.253	10.795	1.00 55.88	6
	MOTA	7411	С	VAL E			72.428	50.075	10.793	1.00 57.82	8
	MOTA	7412	0	VAL E			72.213 72.812		9.897	1.00 55.80	7
	MOTA	7413			E 107		72.812	51.812	8.486	1.00 55.14	6
4 =	MOTA	7414	CA		E 107		73.610	52.984	7.740	1.00 55.20	6
45	MOTA	7415	CB		E 107		74.708	53.503	8.470	1.00 58.75	8
	ATOM	7416	OG		E 107 E 107		73.738	50.530	8.175	1.00 54.04	6
	MOTA	7417	C		E 107		73.738	49.966	7.096	1.00 52.93	8
	MOTA	7418	0		E 108		74.558	50.062	9.105	1.00 53.77	7
50	MOTA	7419			E 108		75.324	48.847	8.862	1.00 56.74	6
50	ATOM	7420			E 108		76.691	48.938	9.548	1.00 58.54	6
	MOTA	7421 7422			E 108		76.597	48.911	11.055		6
	MOTA	7423		ASP			75.653	49.522	11.599		8
	MOTA	7423		ASP			77.479	48.296	11.694		8
55	MOTA	7424			E 108		74.612	47.563	9.288	_	6
55	MOTA ATOM	7425			E 108		75.213	46.484	9.278		8
	ATOM	7427			E 109		73.337	47.686	9.662	1.00 60.25	7
	ATOM	7428			E 109		72.559			1.00 60.49	6
	ATOM	7429			E 109		72.581			1.00 61.38	6
60	ATOM	7430			E 109		72.031			1.00 60.99	
	ATOM	7431			E 110		73.215		12.342	1.00 61.69	7

	0 02,0											.,	,	•••
						-194								_
	MOTA	7432	CA	GLU E :	110	73.283	46.8		13.7		1.00			6
	MOTA	7433		GLU E		74.432	47.7	20 :	14.3	391	1.00			6
	MOTA	7434		GLU E		74.946	47.2	31 :	15.7	755	1.00			6
	MOTA	7435		GLU E		75.559	45.8	28 :	15.6	84	1.00			6
5	ATOM	7436		GLU E	110	75.936	45.4	01	14.5	554	1.00			8
·	MOTA	7437		GLU E		75.676	45.1	65	16.	758	1.00			. 8
	ATOM	7438		GLU E		71.948	47.3	68	14.3	347	1.00			б
	MOTA	7439		GLU E		71.421	48.4	18	13.9	949.	1.00			8
	ATOM	7440		VAL E	111	71.403	46.5	81	15.3	266	1.00	57.0	53	7
10	ATOM	7441		VAL E		70.116	46.8	93	15.8	885	1.00			6
	MOTA	7442		VAL E		69.065	45.7		15.		1.00			6
	MOTA	7443	CG1	VAL E	111	67.728	46.1	.59	16.	178	1.00			6
	ATOM	7444	CG2	VAL E	111	68.932	45.6		14.		1.00			6
	MOTA	7445	С	VAL E	111	70.231	47.0		17.		1.00			6
15	MOTA	7446	0	VAL E	111	70.846	46.1		18.		1.00			8
	ATOM	7447	N	LEU E		69.641	48.0		17.		1.00			7
	MOTA	7448	CA	LEU E	112	69.687	48.2		19.		1.00			6
	MOTA	7449	CB	LEU E		70.546	49.4		19.		1.00			6
	MOTA	7450	CG	LEU E		71.820	49.8		18.		1.00			6
20	MOTA	7451		LEU E		72.649	48.6		18.		1.00			6
	MOTA	7452	CD2	LEU E		71.428	50.6		17.		1.00			6
	ATOM	7453	С	LEU E		68.286	48.4		19.		1.00			6
	ATOM	7454	0	LEU E		67.628	49.4		19.		1.00			8
	ATOM	7455	N	TYR E		67.835	47.5		20.		1.00			7
25	MOTA	7456	CA	TYR E		66.514	47.6		21.		1.00			6
	MOTA	7457	CB	TYR E		65.635	46.5		21.		1.00			6 6
	MOTA	7458	CG	TYR E		64.235	46.4			610	1.00			6
	MOTA	7459		TYR E		63.453	47.6			655	1.00			6
	MOTA	7460	CE1			62.162	47.6			177	1.00			6
30	MOTA	7461		TYR E		63.684	45.3			105	1.00			6
	MOTA	7462	CE2	TYR E		62.395	45.2			629	1.00			6
	MOTA	7463	CZ	TYR E		61.633	46.4			663 183	1.00			8
	MOTA	7464	OH	TYR E		60.346	46.3			915	1.00			6
05	MOTA	7465	C	TYR E		66.721	47.0 46.0			463	1.00			8
35	MOTA	7466	0	TYR E		67.194 66.363				572	1.00			7
	MOTA	7467	N	MET E		66.539	48.			011	1.00			6
	MOTA	7468	CA	MET E		67.635	49.		_	315	1.00			6
	MOTA	7469	CB	MET E		68.053	49.			737	1.00			6
40	ATOM	7470 7471	CG SD	MET E		68.981	51.			017	1.00			16
40	MOTA	7472	CE	MET E		70.586	50.			425	1.00			6
	MOTA	7472	CE	MET E		65.255	49.			697	1.00			6
	MOTA MOTA	7474	0	MET E		65.095	50.			036	1.00			8
	ATOM	7475	N	PRO E		64.325		383		.920	1.00			7
45	MOTA	7476	CD	PRO E		64.341		978		. 467	1.00	47	. 93	6
70	ATOM	7477	CA	PRO E		63.056		702		. 572	1.00	46	. 04	6
	ATOM	7478		PRO E		62.150		590	26	.077	1.00	46	. 59	6
	MOTA	7479		PRO E		63.080		411		.083	1.00	45	.01	6
	MOTA	7480		PRO E		63.184		685	28	.080	1.00	44	.33	6
50	MOTA	7481		PRO E		63.997		940	28	.619	1.00	44	.22	8
00	ATOM	7482		SER E		62.397		510	28	.761	1.0	41	. 95	7
	MOTA	7483		SER E		62.428	49.	514	30	.217	1.0	42	.78	6
	MOTA	7484		SER E		62.113	50.	884	30	.773	1.0	41	.77	6
	ATOM	7485		SER E		62.191		841		.181) 44		8
55	ATOM	7486		SER E		61.344		533	30	.643	1.0	43		6
	ATOM	7487		SER E		60.196	48.	672	30	.246		46		8
	MOTA	7488		ILE E		61.704		544	31	.449		0 42		7
	MOTA	7489		ILE E		60.751		534		.851		0 40		6
	MOTA	7490		ILE E		61.182		152		.304		0 39		6
60	MOTA	7491	L CG	2 ILE E	117	60.251		.080		.792		0 39		. 6
	MOTA	7492		1 ILE E		61.207	45.	.173	29	.787	1.0	0 38	.62	· 6

	M O 01/2	1669								PC 1/EP01/014	15/
							105				
							-195				_
	MOTA	7493		ILE E			61.883	43.985	29.185	1.00 35.74	6
	MOTA	7494	С	ILE E	117		60.561	46.387	33.349	1.00 43.14	6
	ATOM	7495	0	ILE E	117		61.525	46.400	34.116	1.00 44.32	8
	ATOM	7496	N	ARG E	118		59.305	46.266	33.768	1.00 43.03	7
5	ATOM	7497		ARG E			59.014	46.009	35.170	1.00 42.46	6
_	ATOM	7498	CB	ARG E			57.907	46.897	35.710	1.00 40.98	6
	ATOM	7499	CG	ARG E	118		57.537	46.484	37.113	1.00 39.32	6
	ATOM	7500	CD	ARG E			56.671	47.482	37.827	1.00 40.32	6
	ATOM	7501	NE	ARG E			56.321	46.985	39.155	1.00 40.46	7
10	MOTA	7502	CZ	ARG E			55.762	47.717	40.108	1.00 38.25	6
	MOTA	7502		ARG E			55.485	48.991	39.899	1.00 41.07	7
	MOTA	7504		ARG E			55.486	47.175	41.273	1.00 37.40	7
	ATOM	7505	C	ARG E			58.552	44.557	35.140	1.00 41.73	6
	ATOM	7506	0	ARG E			57.738	44.185	34.309	1.00 41.59	8
15		7507	N	GLN E			59.071	43.731	36.036	1.00 42.60	7
10	ATOM	7508	CA	GLN E			58.718	42.321	36.016	1.00 43.62	6
	MOTA MOTA	7509	CB	GLN E			59.460	41.671	34.842	1.00 41.24	6
		7510	CG	GLN E			59.220	40.211	34.624	1.00 40.90	6
	MOTA		CD	GLN E			59.795	39.749	33.304	1.00 40.75	6
20	MOTA	7511		GLN E			60.829	40.227	32.879	1.00 41.44	8
20	MOTA	7512	•	GLN E			59.126	38.807	32.654	1.00 44.30	7
	ATOM	7513	NE2				59.085	41.658	37.337	1.00 44.85	6
	ATOM	7514	C	GLN E				42.059	38.006	1.00 44.93	8
	ATOM	7515	0	GLN E			60.030	40.649	37.724	1.00 46.59	7
0.5	MOTA	7516	N	ARG E			58.326			1.00 49.63	6
25	MOTA	7517	CA	ARG E			58.612	39.958	38.969	1.00 49.03	6
	MOTA	7518	CB	ARG E			57.327	39.657	39.722	1.00 52.24	6
	MOTA	7519	CG	ARG E			56.514	40.879	40.037		6
	MOTA	7520	CD	ARG E			55.730	40.641	41.301	1.00 65.41 1.00 68.76	7
00	MOTA	7521	NE	ARG E			56.517	40.896	42.518		6
30	ATOM	7522	CZ	ARG I			56.467	40.125	43.606	1.00 69.55	
	MOTA	7523		ARG E			55.687	39.045	43.617	1.00 67.60	7
	MOTA	7524	NH2	ARG I			57.150	40.459	44.702	1.00 69.98	7
	ATOM	7525	С	ARG E			59.365	38.662	38,724	1.00 48.95	6
	MOTA	7526	0	ARG I			59.187	38.013	37.692	1.00 47.74	8
35	MOTA	7527	N	PHE I			60.210	38.295	39.683	1.00 47.82	7
	MOTA	7528	CA	PHE I			60.996	37.085	39.563	1.00 46.24	6
	MOTA	7529	CB	PHE I			62.453	37.408	39.224	1.00 42.79	6
	MOTA	7530	CG		E 121		62.620	38.238	38.001	1.00 43.16	6
	MOTA	7531		PHE I			62.431	39.605	38.052	1.00 42.55	6
40	MOTA	7532	CD2				62.945	37.651	36.793	1.00 41.67	6
	MOTA	7533		PHE 1			62.559	40.372	36.924	1.00 44.29	6
	MOTA	7534	CE2	PHE 1			63.074		35.667		6
	MOTA	7535	CZ		E 121		62.881	39.770	35.725	1.00 43.74	6
	MOTA	7536	C		E 121		60.991	36.243	40.812	1.00 46.96	6
45	MOTA	7537	0		E 121		60.663	36.708	41.902	1.00 44.85	8
	ATOM	7538	N	SER	E 122		61.381	34.987	40.619	1.00 50.04	7
	MOTA	7539	CA		E 122		61.509	34.019	41.691	1.00 50.97	6
	ATOM	7540	CB	SER	E 122		60.846	32.701	41.302	1.00 50.69	6
	MOTA	7541	OG	SER	E 122		60.993	31.753	42.338	1.00 54.83	8
50	MOTA	7542	С		E 122		63.007	33.817	41.838	1.00 51.59	6
	MOTA	7543	0	SER	E 122		63.648	33.274	40.947	1.00 51.83	8
	MOTA	7544	N	CYS	E 123		63.566	34.282	42.946	1.00 53.04	7
	ATOM	7545	CA	CYS	E 123		65.000	34.155	43.186	1.00 55.64	6
	ATOM	7546	С		E 123		65.301	34.247	44.680	1.00 58.47	6
55	ATOM	7547	Ō,		E 123		64.390	34.401	45.501	1.00 58.89	8
-	MOTA	7548	СВ		E 123		65.757	35.249	42.425	1.00 53.82	6
ı	ATOM	7549	SG		E 123		65.215	36.927	42.881	1.00 56.41	16
	ATOM	7550	N		E 124		66.581	34.151	45.033	1.00 61.78	7
	MOTA	7551			E 124		66.991	34.215	46.437	1.00 63.06	б
60	MOTA	7552			E 124	•	68.406	33.650	46.620	1.00 63.79	6
	ATOM	7553			E 124		68.605	33.024	47.992	1.00 64.87	6
			-								

	WO 01/5	1668						PC 1/EP01/014	31
					-196				
							40 045	4 00 63 75	
	MOTA	7554		ASP E 124	67.970	33.502	48.967	1.00 63.75	8
	MOTA	7555	OD2	ASP E 124	69.396	32.058	48.094	1.00 65.17	8
	MOTA	7556	С	ASP E 124	66.953	35.636	47.007	1.00 63.18	6
	ATOM	7557	0	ASP E 124	67.748	36.495	46.630	1.00 63.39	8
5	MOTA	7558	N	VAL E 125		35.857	47.936	1.00 63.67	7
_	ATOM	7559	CA	VAL E 125		37.152	48.586	1.00 63.68	6
	MOTA	7560	CB	VAL E 125		37.506	48.710	1.00 61.88	6
	MOTA	7561	CG1			38.794	49.466	1.00 58.52	6
			CG2	VAL E 125		37.608	47.331	1.00 59.91	6
10	MOTA	7562		VAL E 125		37.157	49.987	1.00 64.88	6
10	MOTA	7563	C			38.214	50.551	1.00 66.59	8
	MOTA	7564	0	VAL E 125		35.214	50.544	1.00 64.96	7
	MOTA	7565	N	SER E 126			51.874	1.00 64.47	6
	MOTA	7566	CA	SER E 126		35.870	52.185	1.00 62.82	6
4-	MOTA	7567	CB	SER E 126		34.410		1.00 62.32	8
15	MOTA	7568	ОG	SER E 126		33.901	51.267	1.00 65.71	6
	MOTA	7569	С	SER E 126		36.729	52.013		
	MOTA	7570	0	SER E 126		36.690	51.165	1.00 65.59	8
	MOTA	7571	N	GLY E 127		37.519	53.082	1.00 66.30	7
	MOTA	7572	CA	GLY E 127		38.369	53.309	1.00 67.81	6
20	MOTA	7573	C	GLY E 12		39.800	52.848	1.00 69.06	6
	MOTA	7574	0	GLY E 12		40.633	53.037	1.00 69.45	8
	MOTA	7575	N	VAL E 128	68.444	40.093	52.253	1.00 70.68	7
	MOTA	7576	CA	VAL E 128	68.179	41.438	51.771	1.00 72.21	6
	MOTA	7577	CB	VAL E 12	66.784	41.575	51.127	1.00 70.88	6
25	MOTA	7578	CG1	VAL E 12	66.771	40.882	49.794	1.00 74.99	6
	ATOM	7579	CG2	VAL E 128	65.722	40.993	52.039	1.00 69.09	6
	MOTA	7580	С	VAL E 12	68.233	42.480	52.855	1.00 73.85	6
	ATOM	7581	Ō	VAL E 12		43.525	52.678	1.00 74.59	8
	ATOM	7582	N	ASP E 12		42.197	53.977	1.00 75.59	7
30	ATOM	7583	CA	ASP E 12		43.170	55.046	1.00 77.34	6
-	MOTA	7584	СВ	ASP E 12		42.691	56.164	1.00 78.29	6
	ATOM	7585	CG	ASP E 12		43.864	56.939	1.00 80.26	6
	MOTA	7586		ASP E 12		43.805	57.257	1.00 82.07	8
	ATOM	7587		ASP E 12		44.848	57.231	1.00 78.55	8
35	ATOM	7588	C	ASP E 12		43,625	55.628	1.00 78.37	б
00	ATOM	7589	Ö	ASP E 12		44.624	56.362	1.00 78.49	8
	ATOM	7590	N	THR E 13		42.942	55.302	1.00 79.16	7
	ATOM	7591	CA	THR E 13		43.391	55.847	1.00 80.17	6
			CB	THR E 13		43.351	57.393	1.00 83.36	6
40	ATOM	7592				42.564	57.803	1.00 84.91	8
40	ATOM	7593	OG1	THR E 13		44.810	57.995	1.00 82.87	6
	MOTA	7594					55.445	1.00 78.82	6
	MOTA	7595		THR E 13		41.553	55.068	1.00 78.45	8
	ATOM	7596	0	THR E 13			55.572	1.00 78.85	7
45	ATOM	7597	N	GLU E 13		43.537	55.353	1.00 78.23	6
45	MOTA	7598	CA	GLU E 13		43.153		1.00 78.25	6
	MOTA	7599	CB	GLU E 13		41.900	56.187	1.00 80.78	6
	MOTA	7600	CG	GLU E 13		42.176	57.686		
	MOTA	7601	CD	GLU E 13		40.955	58.543	1.00 83.46	6
	MOTA	7602		L. GLU E 13		39.854	58.186	1.00 83.49	8
50	MOTA	7603		2 GLU E 13		41.107	59.565	1.00 83.07	. 8
	ATOM	7604	С	GLU E 13		42.931	53.943	1.00 77.11	6
	MOTA	7605	0	GLU E 13		43.884	53.173	1.00 75.95	8
	MOTA	7606	N	SER E 13		41.652	53.650	1.00 76.20	7
	MOTA	7607	CA	SER E 13		41.200	52.352	1.00 75.57	6
55	MOTA	7608	CB	SER E 13		39.831	52.501	1.00 75.40	6
	ATOM	7609	OG	SER E 13		38.911	53.122	1.00 73.45	8
	MOTA	7610	С	SER E 13		41.115	51.462	1.00 74.79	6
	MOTA	7611	0	SER E 13		40.722	50.288	1.00 76.37	8
	MOTA	7612	N	GLY E 13			52.048	1.00 72.67	7
. 60	MOTA	7613	CA	GLY E 13			51.330	1.00 69.80	6
	MOTA	7614	C	GLY E 13	3 72.127	40.179	50.631	1.00 67.70	6

	W O 01/5	1669							PC I/EPUI/UI	45/
						-197				
	-						20 100	E0 074	1.00 67.31	8
	MOTA	7615	0	GTA E		72.686	39.128	50.934		7
	MOTA	7616	N	ALA E	134	71.205	40.256	49.681	1.00 66.03	
	MOTA	7617	CA	ALA E		70.799	39.081	48.931	1.00 64.43	6
	ATOM	7618	CB	ALA E	134	69.275	38.990	48.879	1.00 64.83	6
5	ATOM	7619	C.	ALA E	134	71.363	39.108	47.512	1.00 63.34	6
-	ATOM	7620	O.	ALA E		71.825	40.148	47.014	1.00 61.70	. 8
	MOTA	7621	N	THR E		71.339	37.944	46.875	1.00 61.78	7
	MOTA	7622	CA	THR E		71.813	37.817	45.515	1.00 61.48	6
		7623	CB	THR E		73.108	37.043	45.446	1.00 62.04	6
10	MOTA		OG1	THR E		74.093	37.715	46.237	1.00 63.94	8
ίŪ	ATOM	7624		THR E		73.590	36.970	44.012	1.00 63.05	6
	MOTA	7625	CG2			70.741	37.102	44.718	1.00 61.03	6
	MOTA	7626	C	THR E		70.741	35.886	44.839	1.00 59.53	8
	MOTA	7627	0	THR E				43.919	1.00 59.40	7
4-	MOTA	7628	N	CYS E		70.049	37.901		1.00 57.62	6
15	MOTA	7629	CA	CYS E		68.975	37.422	43.083		6
	MOTA	7630	С	CYS E		69.530	37.254	41.669	1.00 56.65 1.00 54.61	8
	MOTA	7631	0	CYS E		69.990	38.220	41.054		
	MOTA	7632	CB		136	67.843	38.442	43.129	1.00 55.65	6
_	MOTA	7633	SG	CYS E		66.510	38.178	41.946	1.00 55.99	16
20	MOTA	7634	N	ARG E		69.517	36.016	41.180	1.00 56.36	7
	MOTA	7635	CA	ARG E		70.025	35.717	39.853	1.00 57.23	6
	ATOM	7636	CB	ARG E	137	70.861	34.437	39.871	1.00 58.80	6
	MOTA	7637	CG	ARG E		72.068	34.513	40.774	1.00 62.70	6
	MOTA	7638	CD	ARG E	137	72.482	33.125	41.241	1.00 66.89	6
25	ATOM	7639	NE	ARG E	137	73.230	33.182	42.500	1.00 70.82	7
	ATOM	7640	CZ	ARG E	137	74.469	33.659	42.633	1.00 71.90	6
	MOTA	7641	NH1	ARG E	137	75.134	34.130	41.578	1.00 70.38	7
	MOTA	7642	NH2	ARG E	137	75.042	33.674	43.832	1.00 71.22	7
	ATOM	7643	С	ARG E		68.863	35.545	38.894	1.00 56.91	6
30	MOTA	7644	0	ARG E		67.909	34.822	39.177	1.00 56.92	8
-	ATOM	7645	N	ILE E		68.970	36.215	37.754	1.00 54.63	7
	ATOM	7646	CA	ILE E		67.966	36.175	36.716	1.00 51.98	6
	ATOM	7647	CB	ILE E		67.432	37.587	36.468	1.00 51.76	6
	ATOM	7648		ILE E		66.432	37.573	35.333	1.00 49.89	6
35	MOTA	7649		ILE E		66.817	38.137	37.757	1.00 50.16	6
••	ATOM	7650		ILE E		66.476	39.606	37.681	1.00 47.06	6
	ATOM	7651	C	ILE E		68.611	35.655	35.434	1.00 52.26	6
	ATOM	7652	Ö	ILE E		69.557	36,261	34.933	1.00 52.12	8
	ATOM	7653	N	LYS E		68.105	34.542	34.901	1.00 52.70	7
40	MOTA	7654	CA	LYS E		68.656	33.961	33.667	1.00 53.32	6
40	ATOM	7655	CB	LYS E		68.877	32.455	33.822	1.00 53.63	6
				LYS E		69.732	32.075	35.013	1.00 57.59	6
	MOTA	7656	CD	LYS E		70.150	30.612	34.967	1.00 59.76	6
	MOTA	7657		LYS E		71.183	30.363	33.869	1.00 62.51	6
45	MOTA	7658	CE	LYS E		71.624	28.928	33.787	1.00 63.48	7
40	ATOM	7659	NZ	LYS E		67.738	34.187	32.480	1.00 52.42	6
	MOTA	7660	·C			66.572	33.826	32.527	1.00 52.75	8
	ATOM	7661	0	LYS E			34.770	31.410	1.00 52.73	7
	MOTA	7662	N	ILE E		68.264	35.013	30.229	1.00 51.67	6
	MOTA	7663	CA	ILE E		67.449			1.00 50.77	6
50	ATOM	7664		ILE E		66.995	36.513	30.165	1.00 50.77	
	MOTA	7665	CG2			66.543	36.974	31.546	1.00 51.00	б -
	MOTA	7666		LILEE		68.136	37.434	29.766		6
	MOTA	7667		L ILE E		67.815	38.915	30.060	1.00 55.62	6
	MOTA	7668		ILE E		68.145	34.594	28.935	1.00 51.13	6
55	MOTA	7669		ILE E		69.295	34.917	28.710	1.00 49.59	8
	ATOM	7670		GLY E		67.434	33.840	28.102	1.00 52.11	7
	MOTA	7671		GLY E		67.985	33.382	26.833	1.00 51.58	6
	MOTA	7672		GLY E		66.884	33.089	25.826	1.00 51.56	6
	MOTA	7673		GLY E		65.709	33.125	26.186		8
60		7674		SER E		67.245	32.807	24.573		7
	MOTA	7675	CA	SER E	142	66.241	32.514	23.553	1.00 46.89	6

	WO 01/58	951							PCT/EP01/01457			
							-198					
	ATOM	7676	CB		E 142		66.883	32.177	22.214	1.00 44.37	б	
	MOTA	7677	OG		E 142		65.913	31.657	21.329	1.00 40.29	8	
	MOTA	7678	C		E 142		65.386	31.346	23.997	1.00 47.72	6	
5	MOTA MOTA	7679	0		E 142		65.880	30.376	24.584	1.00 48.09	8	
9	ATOM	7680 7681	N.		E 143		64.097	31.439	23.701	1.00 47.51	7	
	ATOM	7682	CA		E 143		63.165	30.406	24.101	1.00 46.17	6	
	ATOM	7683	CB CG		E 143 E 143		61.780	31.025	24.327	1.00 45.01	6	
	MOTA	7684		TRP			60.808	30.096	24.968	1.00 42.92	6	
10	ATOM	7685	CE2		E 143		60.799 59.721	29.697	26.337	1.00 41.62	6	
. •	MOTA	7686	CE3		E 143		61.601	28.803	26.505	1.00 39.45	6	
	MOTA	7687		TRP			59.764	30.008 29.448	27.442 24.371	1.00 42.26	6	
	ATOM	7688	NE1		E 143		59.106	28.669	25.288	1.00 41.66	6	
	ATOM	7689	CZ2				59.423	28.216	27.736	1.00 41.08 1.00 39.02	7	
15	ATOM	7690		TRP			61.305	29.426	28.662	1.00 39.02	6 6	
	ATOM	7691	CH2		E 143		60.223	28.540	28.799	1.00 41.01	6	
	MOTA	7692	С		E 143		63.067	29.281	23.097	1.00 46.14	6	
	MOTA	7693	0	TRP :	E 143		62.816	28.147	23.467	1.00 47.72	8	
_	MOTA	7694	N		E 144		63.277	29.579	21.821	1.00 46.28	7	
20	MOTA	7695	CA	THR :	E 144		63.141	28.539	20.808	1.00 44.88	6	
	MOTA	7696	CB	THR :	€ 144		61.961	28.863	19.859	1.00 42.99	6	
	MOTA	7697		THR :			62.131	30.174	19.308	1.00 42.03	8	
	ATOM	7698	CG2	THR :			60.655	28.824	20.609	1.00 40.32	6	
0-	MOTA	7699	С		€ 144		64.378	28.276	19.969	1.00 46.55	6	
25	MOTA	7700	Ο.		₹ 144		64.434	27.294	19.243	1.00 46.91	8	
	MOTA	7701	N	HIS 1			65.367	29.151	20.060	1.00 48.37	7	
	ATOM	7702	CA	HIS I			66.576	28.973	19.275	1.00 50.06	6	
	ATOM	7703	CB	HIS			66.937	30.265	18.541	1.00 49.35	6	
30	MOTA	7704	CG	HIS			65.947	30.669	17.492	1.00 49.26	6	
30	MOTA	7705		HIS		•	65.676	30.143	16.275	1.00 49.17	6	
	MOTA MOTA	7706 7707		HIS I			65.112	31.756	17.634	1.00 47.03	7	
	ATOM	7708		HIS I			64.371	31.883	16.548	1.00 48.38	6	
	ATOM	7709	C	HIS I			64.694	30.917	15.708	1.00 50.40	7	
35	ATOM	7710	Ö	HIS			67.754 68.096	28.529 29.153	20.125	1.00 51.77	6	
	ATOM	7711	N	HIS I			68.371	27.427	21.129 19.710	1.00 50.03 1.00 55.46	8	
	ATOM	7712	CA	HIS			69.530	26.886	20.418	1.00 57.69	7	
	ATOM	7713	CB	HIS I			69.654	25.377	20.418	1.00 56.07	6 6	
	MOTA	7714	CG	HIS I			69.679	25.019	18.715	1.00 56.24	6	
40	ATOM	7715	CD2	HIS H	146		70.477	25.442	17.707	1.00 55.97	6	
	MOTA	7716	ND1	HIS F	146		68.798	24.121	18.157		7	
	ATOM	7717		HIS E			69.053	24.005	16.863	1.00 58.23	6	
	ATOM	7718	NE2	HIS E	146		70.068	24.797	16.566	1.00 57.28	7	
4 =	ATOM	7719	С	HIS E			70.801	27.612	19.971	1.00 58.37	6	
45	MOTA	7720	0	HIS E			70.775	28.455	19.064	1.00 59.37	8	
	MOTA	7721	N	SER E			71.908	27.269	20.618	1.00 60.00	7	
	MOTA	7722	CA	SER E			73.218	27.872	20.356	1.00 60.54	6	
	ATOM	7723	CB	SER E			74.268	27.134	21.185	1.00 60.36	6	
50	MOTA	7724	OG	SER E			74.082	25.728	21.071	1.00 61.90	8	
50	MOTA MOTA	7725 7726	С	SER E			73.690	27.960	18.897	1.00 60.61	6	
	MOTA	7727	O M	SER E			74.491	28.837	18.553	1.00 60.32	8	
	MOTA	7728	N CA	ARG E			73.197 73.611	27.072	18.041	1.00 59.60	7	
	ATOM	7729	CB	ARG E			73.811	27.083 25.722	16.646	1.00 60.89	6	
55	ATOM	7730	CG	ARG E			73.902	25.722	15.996	1.00 66.00	6	
	MOTA	7731	CD	ARG E			73.462	24.527	16.756 16.169	1.00 74.00 1.00 79.80	6	
	ATOM	7732	NE	ARG E			73.749	22.052	17.077	1.00 79.80	6	
	MOTA	7733	CZ	ARG E			74.973	21.680	17.475	1.00 85.45	7 6	
	ATOM	7734		ARG E			76.045	22.338	17.046	1.00 87.13	7	
60	MOTA	7735		ARG E			75.130	20.650	18.306	1.00 86.87	7	
	MOTA	7736	С	ARG E			72.942	28.189	15.847	1.00 59.62	6	
											-	

	WO 01/58	951							PCT	EP01/014	157
						-199					
	» mom	7737	^	ARG E	1/0	73.418	28.564	14 766	1 00	58.11	8
	ATOM		0	GLU E		71.836		14.766			7
	MOTA	7738	N				28.707	16.384		58.68	
	MOTA	7739	CA	GLU E		71.067	29.756	15.716		56.72	6
5	MOTA	7740	CB	GLU E		69.598	29.337	15.630		55.99	6
5	MOTA	7741	CG	GLU E		69.435	27.854	15.335		57.25	6
	MOTA	7742	CD	GLU E		67.992	27.402	15.239		57.65	6
	ATOM	7743		GLU E		67.166	27.825	16.075		58.97	8
	ATOM	7744	OE2			67.684		14.332		56.32	8
4.0	MOTA	7745	C	GLU E		71.214	31.073	16.463		55.95	6
10	MOTA	7746	0	GLU E		71.423	32.122	15.852	1.00	54.41	8
	MOTA	7747	N	ILE E	150	71.109	31.012	17.787	1.00	55.27	7
	ATOM	7748	CA	ILE E	150	71.265	32.202	18.600	1.00	54.72	6
	MOTA	7749	CB	ILE E	150	69.922	32.686	19.227	1.00	54.60	6
	MOTA	7750	CG2	ILE E	150	70.190	33.711	20.339	1.00	51.29	6
15	MOTA	7751	CG1	ILE E	150	69.051	33.354	18.167	1.00	53.90	6
	ATOM	7752	CD1	ILE E	150	67.738	33.855	18.709	1.00	52.06	6
	MOTA	7753	С	ILE E	150	72.238	31.954	19.728	1.00	55.47	6
	MOTA	7754	0	ILE E	150		30.898	20.361	1.00	54.39	8
	ATOM	7755	N	SER E	151	73.083		19.962		56.26	7
20	MOTA	7756	CA	SER E			32.898	21.035		59.09	6
	ATOM	7757	CB	SER E			32.752	20.471	-	59.25	6
	ATOM	7758	OG	SER E		75.826	33.853	19.653		59.55	8
	ATOM	7759	C	SER E			34.226	21.770		59.98	6
	ATOM	7760	Ö	SER E			35.283	21.139		59.94	8
25	MOTA	7761	N	VAL E			34.172	23.096		.60.88	7
	ATOM	7762	CA	VAL E		73.739	35.380	23.900		62.73	6
	ATOM	7763	CB	VAL E		72.628	35.233	24.956		61.31	6
	MOTA	7764		VAL E		71.339		24.294		58.78	6
	ATOM	7765		VAL E		73.067					
30	ATOM	7766	C	VAL E		75.054	34.241 35.633	26.034		62.59	6
50	ATOM	7767						24.612		64.27	6
			0	VAL E		75.743	34.687	24.994		63.76	8
	MOTA	7768	N	ASP E		75.393	36.904	24.805		66.67	7
	ATOM	7769	CA	ASP E		76.650	37.261	25.456		70.32	6
25	MOTA	7770	CB	ASP E		77.713	37.471	24.381		70.77	6
35	MOTA	7771	CG	ASP E		77.832	36.272	23.433		74.19	6
	ATOM	7772		ASP E		78.483	35.261	23.803		75.87	8
	ATOM	7773		ASP E		77.265	36.331	22.319		73.45	8
	ATOM	7774	С	ASP E		76.531	38.533	26.304		72.18	б
40	ATOM	7775	0	ASP E		75.835	39.481	25.922		72.90	8
40	ATOM	7776	N	PRO E				27.478		73.33	7
	ATOM	7777	CD	PRO E		77.671	37.398	28.243		72.54	б
	ATOM	7778		PRO E		77.123				75.06	6
	ATOM	7779	CB	PRO E		77.749	39.279	29.642		74.00	6
4~	ATOM	7780	CG	PRO E			37.823	29.676		74.05	6
45	ATOM	7781	С	PRO E	: 154	77.911	40.901	27.688	1.00	77.63	6
	ATOM	7782	0	PRO E	: 154	78.502	40.717	26.620	1.00	78.05	8
	MOTA	7783	N	THR E	155	77.940	42.066	28.338	1.00	81.26	7
	ATOM	7784	CA	THR E	155	78.638	43.230	27.781	1.00	85.03	6
	MOTA	7785	CB	THR E	155	77.623	44.147	27.020	1.00	83.83	б
50	ATOM	7786	OG1	THR E	155	76.717	44.749	27.956	1.00	81.33	8
	ATOM	7787	CG2	THR E	155	76.815	43.341	26.020	1.00	83.47	б
	MOTA	7788	C	THR E	155	79.417	44.101	28.803	1.00	88.40	6
	ATOM	7789	0	THR E		79.900	43.592	29.825	1.00	88.82	8
	ATOM	7790	N	THR E	156	79.527	45.405	28.487	1.00	91.48	7
55	MOTA	7791	CA	THR E		80.206	46.443	29.288		93.55	6
	MOTA	7792	CB	THR E		79.615	47.854	29.002		93.31	6
	MOTA	7793		THR E		79.697	48.136	27.596		92.71	8
	ATOM	7794		THR E		80.376	48.925	29.813		92.25	6
	ATOM	7795	C	THR E		80.165	46.249	30.803		95.69	6
60	MOTA	7796	Ö	THR E		79.173	46.584	31.476		95.92	8
	ATOM	7797	N	GLU E		81.264	45.733	31.340		97.89	7
						32.204	-0.755	52.540	÷.00		′

	WO 01/58	8951					PCT/EP01/01457			
						-200				
	ATOM	7798	CA	GLU	E 157	81.365	45.481	32.776	1.00100.21	6
	MOTA	7799	СВ		E 157	82.361	44.343	33.018	1.00101.17	6
	ATOM	7800	CG	GLU	E 157	82.198	43.190	32.046	1.00103.80	6
	MOTA	7801	CD		E. 157	83.222	42.107	32.296	1.00105.78	6
5	MOTA	7802			E 157	84.423	42.466	32.375	1.00105.64	8
	MOTA	7803		GLU		82.828	40.907	32.410	1.00107.35	8
	ATOM	7804	C		E 157	81.817	46.729	33.550	1.00100.48	6
	MOTA	7805	0 .		E 157	81.869	46.719	34.798	1.00100.82 1.00 99.54	8 7
10	ATOM	7806	N		E 158	82.151	47.793 49.011	32.818 33.461	1.00 99.54	6
10	MOTA MOTA	7807 7808	CA CB		E 158 E 158	82.620 83.235	49.011	32.426	1.00100.23	6
	MOTA	7809	CG		E 158	84.338	49.283	31.604	1.00101.57	6
	MOTA	7810			E 158	85.334	48,768	32,152	1.00100.21	8
	ATOM	7811			E 158	84.165	49.286	30.274	1.00102.69	7
15	ATOM	7812	C		E 158	81.456	49.701	34.156	1.00 96.86	6
	ATOM	7813	0	ASN	E 158	81.185	49.443	35.341	1.00 96.41	8
e.	ATOM	7814	N	SER	E 159	80.791	50.578	33.395	1.00 94.72	7
	ATOM	7815	CA		E 159	79.624	51.349	33.834	1.00 91.39	б
	MOTA	7816	CB		E 159	78.465	51.087	32.858	1.00 91.87	6
20	ATOM	7817	OG		E 159	78.391	49.705	32.499	1.00 92.44	8
	MOTA	7818	C		E 159	79.169	51.080	35.269	1.00 88.56	6
	MOTA	7819	0		E 159		49.947 52.119	35.614 36.102	1.00 89.22 1.00 85.19	8 7
	MOTA	7820 7821	N		E 160		51.966	37.495	1.00 81.21	6
25	MOTA MOTA	7821	CA CB		E 160		53.327	38,157	1.00 80.51	6
20	MOTA	7823	CG		E 160		53.194	39.574	1.00 79.98	6
	ATOM	7824	_		E 160		54.174	40.079	1.00 80.37	8
	ATOM	7825			E 160		52.104	40.178	1.00 78.39	8
	MOTA	7826	C		E 160		51.202	37.525	1.00 78.59	6
30	MOTA	7827	0	ASP	E 160	76.427	51.669	36.959	1.00 77.98	8
	ATOM	7828	N	ASP	E 161	· ·	50.043	38.185	1.00 75.05	7
	MOTA	7829	CA		E 161		49.203	38.283	1.00 71.67	6
	MOTA	7830	CB		E 163		48.017	39.226	1.00 70.39	6
25	MOTA	7831	CG		E 163		46.994	38.641	1.00 70.69	6 8
35	ATOM	7832		ASP	E 161		46.782 46.386	37.416 39.400	1.00 70.97 1.00 71.91	8
	MOTA MOTA	7833 7834	C		E 16:		49.931	38.732	1.00 70.49	6
	ATOM	7835	0		E 16:		49.439	38.514	1.00 70.49	8
	ATOM	7836	N		E 162		51.093	39.356	1.00 68.11	7
40	ATOM	7837	CA		E 162		51.792	39.785	1.00 66.58	6
	ATOM	7838	CB	SER	E 162	73.771	51.731	41.308	1.00 66.49	6
	ATOM	7839	QG	SER	E 16	74.786	52.478	41.938	1.00 64.63	8
	ATOM	7840	C ·		E 16		53.237	39.319	1.00 65.96	6
4-	ATOM	7841	0		E 16		54.088	39.972	1.00 64.77	8
45	MOTA	7842	N		E 16		53.514	38.178	1.00 65.61	. 7
	MOTA	7843	CA		E 163		54.872	37.676	1.00 67.53	6
	MOTA	7844	CB		E 163		55.051 54.661	36.631	1.00 70.35 1.00 72.94	6 6
	MOTA	7845 7846	CG CD		E 163		55.083	35.213 34.225	1.00 72.34	6
50	ATOM ATOM	7847			E 16		54.448	34.241	1.00 70.12	8
00	MOTA	7848			E 16		56.054	33.445	1.00 76.02	8
	ATOM	7849	C		E 16		55.271	37.113	1.00 66.26	6
	ATOM	7850	ō		E 16		56.442	36.800	1.00 64.91	8
	ATOM	7851	N		E 16	72.211	54.292	36.990	1.00 66.34	7
55	MOTA	7852	CA		E 16			36.496	1.00 65.02	6
	MOTA	7853	CB		E 16			35.235	1.00 64.40	6
	MOTA	7854	CG		E 16			34.051	1.00 64.81	6
	ATOM	7855			E 16			33.437	1.00 64.72	6
60	MOTA	7856			E 16		53.559	32.351	1.00 65.69 1.00 67.21	6
60	ATOM	7857			E 16			33.559 32.471	1.00 67.21	6 6
	MOTA	7858	CEZ	TIK	E 16	72.154	33.603	22.411	1.00 07.79	U

	WO 01/58	3951							PCT	/EP01/01	457
						-201					
	MOTA	7859	CZ	TYR E	164	72.994	54.867	31.867	1.00	67.33	6
	ATOM	7860	OH	TYR E		73.744	55.230	30.765		67.72	8
	MOTA	7861	C	TYR E		69.831	54.174	37.574		63.42	6
	ATOM	7862	o	TYR E		68.642	54.458	37.442		62.96	8
5	MOTA	7863	N	PHE E		70.309	53.552	38.646		60.43	7
·	ATOM	7864	CA	PHE E		69.428	53.139	39.717		59.92	6
	ATOM	7865	CB	PHE E		70.208	52.378	40.776		58.36	6
	ATOM	7866	CG	PHE E		69.347	51.515	41.645		58.01	6
	MOTA	7867	CD1			68.674	50.427	41.110		55.31	6
10	ATOM	7868	CD2	PHE E		69.189	51.802	42.994		58.36	б
. •	ATOM	7869		PHE E		67.858	49.642	41.904		56.74	6
	ATOM	7870	CE2	PHE E		68.368	51.016	43.804		57.34	6
	MOTA	7871	CZ	PHE E		67.703	49.939	43,260		57.55	6
	ATOM	7872	C	PHE E		68.732	54.324	40.356		60.15	6
15	ATOM	7873	ō	PHE E		69.321	55.390	40.504		62.59	8
. •	ATOM	7874	N	SER E		67.466	54.148	40.718		59.42	7
	ATOM	7875	CA	SER E		66.724	55.222	41.357	1.00	57.86	6
	ATOM	7876	CB	SER E		65.241	54.869	41.503	1.00	56.65	6
	ATOM	7877	OG	SER E		64.513		42.064	1.00	53.76	8
20	ATOM	7878	C	SER E		67.325	55.425	42.733		56.88	6
	ATOM	7879	ō	SER E		67.712	54.472	43.407	1.00	55.76	8
	ATOM	7880	N	GLN E		67.406	56.677	43.142	1.00	56.96	7
	MOTA	7881	CA	GLN E		67.955	57.010	44.443		58.28	6
	ATOM	7882	CB	GLN E		68.547	58.423	44.401	1.00	60.41	6
25	MOTA	7883	CG	GLN E		67.549	59.465	43.941	1.00	64.41	6
_	MOTA	7884	CD	GLN E	167	68.198	60.780	43.599	1.00	66.50	6
	ATOM	7885		GLN E		68.795		44.458	1.00	67.54	8
	ATOM	7886	NE2			68.089	61.184	42.330	1.00	68.48	7
	MOTA	7887	С	GLN E	167	66.880	56.924	45.532	1.00	57.21	6
30	ATOM	7888	0	GLN E	167	67.196	56.835	46.720	1.00	56.91	8
	ATOM	7889	N	TYR E		65.613	56.932	45.133	1.00	54.47	7
	ATOM	7890	CA	TYR E	168	64.550	56.877	46.111	1.00	53.18	б
	MOTA	7891	CB	TYR E	168	63.399	57.760	45.649	1.00	53.95	6
	MOTA	7892	CG	TYR E	168	63.881	59.125	45.249	1.00	53.27	6
35	ATOM	7893	CD1	TYR E	168	64.102	59.439	43.913	1.00	54.37	6
	MOTA	7894	CE1	TYR E	168	64.625	60.672	43.541		56.01	6
	MOTA	7895	CD2			64.190		46.208		52.09	6
	ATOM	7896	CE2			64.711		45.856		55.52	6
	ATOM	7897	CZ	TYR E		64.929		44.522		57.20	6
40	MOTA	7898	OH	TYR E		65.458		44.177		59.36	8
	MOTA	7899	С	TYR E		64.072		46.431		52.65	6
	ATOM	7900	, 0	TYR E		63.131		47.189			8
	ATOM	7901	N	SER E		64.735		45.861		51.93	7
4-	ATOM	7902	CA	SER E		64.387		46.117		53.34	6
45	ATOM	7903	CB	SER E		65.191		45.201		53.89	6
	MOTA	7904	OG	SER E		64.945		45.514		50.40	8
	MOTA	7905	С	SER E		64.686		47.567		54.98	6
	ATOM	7906	0	SER E		65.636		48.162		54.67	8
E0	MOTA	7907	N	ARG E		63.875		48.131		56.35	7
50	MOTA	7908	CA	ARG E		64.075		49.500		56.22	6
	ATOM	7909	CB	ARG E		62.869		49.963		57.55	6
	MOTA	7910	CG	ARG E		61.832		50.724		59.10	6
	ATOM	7911	CD	ARG E		60.436		50.587		63.93	6
E E	MOTA	7912	NE	ARG E		60.309		50.992		67.80	7
55	MOTA	7913	CZ	ARG E		59.897		50.181		68.39	6 7
	MOTA	7914		ARG E		59.577		48.916		66.05 71.45	7 7
	MOTA	7915	NH2	ARG E		59.784 65.342		50.637 49.577		56.43	6
	MOTA	7916	C	ARG E				50.666		57.41	8
60	MOTA	7917	O N	PHE E				48.423		54.16	7
50	ATOM ATOM	7918 7919	N CA	PHE E				48.403		53.05	6
	AION	1212	CA			07.011	. 47.203	10.403		05	0

	WO 01/58	3951					PCT/EP01/01457				
						-202					
		7000	a n	D11E	m 171		47 026	47 747	1 00	51.94	c
	ATOM	7920	CB		E 171	66.665	47.926	47.747			6
	MOTA	7921	CG		E 171	65.392	47.326	48.259		52.21	6
	MOTA	7922			E 171	64.157	47.848	47.876		54.72	6
-	MOTA	7923			E 171	65.416	46.288	49.180		52.12	6
5	MOTA	7924			E 171	62.963	47.346	48.412		54.00	6
	MOTA	7925	CE2	PHE	E 171	64.233	45.781	49.719		52.15	· 6
	ATOM	7926	CZ	PHE	E 171	63.008	46.313	49.334		53.26	6
	MOTA	7927	С	PHE	E 171	68.181	49.909	47.698	1.00	54.03	6
	ATOM	7928	0	PHE	E 171	68.056	50.993	47.137	1.00	55.23	8
10	ATOM	7929	N		E 172	69.328	49.245	47.749	1.00	55.00	7
	ATOM	7930	CA		E 172	70.520	49.755	47.106		56.51	6
	ATOM	7931	CB		E 172	71.385	50.513	48.120		58.70	6
	ATOM	7932	CG	-	E 172	71.906	49.691	49.299		63.76	6
	MOTA	7933	CD		E 172	72.716	50.527	50.300		66.16	6
15		7934			E 172	73.450	51.439	49.861		67.90	8
13	MOTA									67.48	8
	MOTA	7935			E 172	72.635	50.266	51.526			
	MOTA	7936	С		E 172	71.288	48.596	46.490		57.61	6
	MOTA	7937	0		E 172	71.161	47.451	46.917		57.07	8
	MOTA	7938	N		E 173	72.077	48.891	45.470		58.83	7
20	MOTA	7939	CA		E 173	72.844	47.850	44.802		60.44	6
	MOTA	7940	CB	ILE	E 173	72.863	48.063	43.274		60.05	6
	MOTA	7941	CG2	ILE	E 173	73.751	47.016	42.617		60.65	6
	MOTA	7942	CG1	ILE	E 173	71.439	47.999	42,722	1.00	60.27	6
	ATOM	7943	CD1	ILE	E 173	71.357	48.283	41.245	1.00	60.88	б
25	ATOM	7944	С	ILE	E 173		47.760	45.275	1.00	60.89	6
	ATOM	7945	ō		E 173	75.011	48.752	45.342		60.64	8
	ATOM	7946	N		E 174		46.555	45.595		62.24	. 7
	ATOM	7947	CA		E 174		46.360	46.019		63.64	6
	ATOM .	7948	CB		E 174		45.176	46.968		62.78	6
30								48.086		63.68	6
30	MOTA	7949	CG		E 174		45.262				
	ATOM	7950			E 174		44.013	48.952		63.39	6
	ATOM	7951			E 174		46.538	48.896		62.58	6
	ATOM	7952	С		E 174		46.093	44.760		65.84	6
~ =	MOTA	7953	0		E 174		46.787	44.480		67.17	8
35	ATOM	7954	N		E 175		45.102	43.979		67.20	7
	MOTA	7955	CA		E 175		44.772	42.763		67.40	б
	MOTA	7956	CB		E 175		43.999	43.148		68.39	6
	MOTA	7957	CG	ASP	E 175	79.385	43.673	41.961	1.00	67.83	6
	MOTA	7958	OD1	ASP	E 175	79.754	44.600	41.192	1.00	66.66	8
40	ATOM	7959	OD2	ASP	E 175	79.727	42.477	41.821	1.00	67.72	8
	MOTA	7960	C		E 175		43.960	41.803	1.00	67.16	6
	MOTA	7961	0	ASP	E 175	75.405	43.291	42.216	1.00	66.38	8
	ATOM	7962	N		E 176		44.044	40.520		66.77	7
	ATOM	7963	CA		E 176		43.329	39.477		67.34	6
45	MOTA	7964	CB		E 176		44.283	38.643		67.70	6
70								37.479		66.11	6
	MOTA	7965			E 176		43.524				
	MOTA	7966			E 176		44.902	39.537		66.22	. 6
	ATOM	7967	С		E 176			38.541		66.94	6
	MOTA	7968	0		E 176			38.078		65.94	8
50	ATOM	7969	N		E 177			38.265		68.37	7
	MOTA	7970	CA		E 177		40.671	37.362		70.46	6
	MOTA	7971	CB	THR	E 177	78.677	39.794	38.142	1.00	69.65	6
	ATOM	7972	OG1	THR	E 177	77.962	38.938	39.041	1.00	68.82	8
	ATOM	7973	CG2		E 177		40.667	38.938	1.00	70.26	6
55	ATOM	7974	c		E 177			36.420		72.02	6
~~	ATOM	7975	ō		E 177		39.202	36.813		72.47	8
	ATOM	7976	N		E 178		39.669	35.175		73.21	7
	MOTA	7977	CA		E 178			34.173		74.06	6
					E 178			33.035		75.43	6
60	MOTA	7978	CB					33.442		77.78	
50	MOTA	7979	CG		E 178			32.464		79.93	6
	MOTA	7980	CD	GUN	E 178	74.935	41.901	34,404	1.00	19.33	6

	WO 01/58	951							PCT/EP01/01457			
					_		-203				22 25	_
	MOTA	7981	OE1				75.139	41.862	31.236		82.06	8
	MOTA	7982		GLN			73.909	42.565	33.002		78.21	7
	MOTA	7983	C	GLN			77.608	37.840	33.610		74.50 74.89	6 8
_	MOTA	7984	0	GLN			78.661	38.205	33.086		-	
5	MOTA	7985	N	LYS			77.248	36.563	33.703		75.28 75.34	7 6
	MOTA	7986	CA	LYS LYS			78.107	35.482 34.692	33.209		77.30	6
	MOTA MOTA	7987 7988	CB CG	LYS			78.666 79.186	35.600	34.391 35.515		81.23	6
	ATOM	7989	CD	LYS			79.593	34.805	36.763		83.79	6
10	ATOM	7990	CE	LYS		179	79.779	35.727	37.981		82.73	6
	MOTA	7991	NZ	LYS			78.496	36.431	38.332		82.45	7
	MOTA	7992	C	LYS			77.274	34.554	32.353		74.24	6
	ATOM	7993	ō	LYS		179	76.409	33.850	32.882		74.20	8
	ATOM	7994	N	LYS			77.528	34.533	31.045		72.18	7
15	ATOM	7995	CA	LYS			76.747	33.674	30.155		70.93	6
	ATOM	7996	СВ	LYS			77.062	34.017	28.694		71.21	6
	MOTA	7997	CG	LYS	E	180	78.412	33.558	28.187	1.00	67.95	6
	ATOM	7998	CD	LYS			78.327	32.136	27.630	1.00	67.85	6.
	ATOM	7999	CE	LYS	E	180	77.429	32.041	26.394	1.00	66.39	б
20	MOTA	8000	NZ	LYS	E	180	78.005	32.722	25.197	1.00	67.24	7
	ATOM	8001	С	LYS	Έ	180	77.014	32.199	30.429	1.00	69.92	б
	MOTA	8002	0	LYS			77.803	31.876	31.303		70.33	8
	MOTA	8003	N	ASN			76.335	31.310	29.711		69.75	7
	MOTA	8004	CA	ASN			76.570	29.881	29.878		70.27	б
25	ATOM	8005	СВ	ASN			76.563	29.495	31.362		69.84	6
	ATOM	8006	CG	ASN			75.395	30.060	32.112		70.39	6
	MOTA	8007		ASN			74.255	30.006	31.648		75.03	8
	ATOM	8008		ASN			75.659	30.587	33.299		70.26	7
30	ATOM	8009	C	ASN			75.658	28.932	29.097		71.10	6
30	ATOM	8010	0	ASN			74.438	28.918	29.276		72.53	8 7
	MOTA	8011	N	SER			76.266	28.121	28.236		71.98 73.38	6
	ATOM ATOM	8012 8013	CA CB	SER SER			75.518 76.437	27.161 26.566	27.427 26.343		74.44	6
	ATOM	8013	OG	SER			75.712	25.791	25.388		77.56	8
35	ATOM	8015	C	SER			74.984	26.054	28.345		73.19	6
00	MOTA	8016	Ö	SER			75.527	25.836	29.428		73.57	8
	ATOM	8017	N	VAL			73.936	25.350	27.914		72.44	7
	ATOM	8018	CA	VAL			73.341	24.295	28.738		71.01	6
	MOTA	8019	CB	VAL			72.582	24.906	29.956		69.59	б
40	MOTA	8020	CG1	VAL			71.892	26.184	29.555	1.00	67.54	6
	MOTA	8021	CG2	VAL	E	183	71.534	23.922	30.470	1.00	69.87	6
	MOTA	8022	C	VAL	E	183	72.366	23.391	27.986	1.00	71.36	6
	MOTA	8023	0	VAL	E	183	71.508	23.867	27.234	1.00	71.74	8
	MOTA	8024	N	THR	E	184	72.490	22.087	28.202		71.66	7
45	MOTA	8025	CA	THR			71.586	21,134	27.551		73.71	6
	MOTA	8026	CB			184	72.339	19.902	26.988		72.73	6
	ATOM	8027		THR			73.243	20.327	25.957		72.08	8
	MOTA	8028		THR			71.353	18.897	26.392		71.99	6
E0	ATOM	8029	C	THR			70.547	20.656	28.565		75.19	6
50	MOTA	8030	0			184	70.862	20.458	29.740		75.50	8
	ATOM	8031	N			185	69.307	20.495	28.110		76.63	7
	MOTA MOTA	8032 8033	CA	TYR		185	68.234 67.084	20.054 21.074	28.992 29.004		77.67 78.57	6
			CB			185	67.547	22.482	29.285		78.26	6
55	ATOM ATOM	8034 8035	CG CD1	TYR			68.203	23.218	28.304		77.24	6 6
-0	ATOM	8036		TYR			68.666	24.506	28.559		79.16	6
	ATOM	8037	CD2			185	67.361	23.065	30.544		79.06	6
	ATOM	8038		TYR			67.822	24.359	30.817		79.31	6
	ATOM	8039	CZ			185	68.472	25.075	29.819		79.42	6
60	MOTA	8040	OH			185	68.919	26.357	30.067		80.13	8
	MOTA	8041	С			185	67.725	18.723	28.516	1.00	77.68	6

	WO 01/5	8951							PCT	/EP01/0	1457
						-204	10 500	27 214	1.00	76 95	8
	ATOM	8042		TYR E		67.578 67.460	18.509 17.831	27.314 29.463	1.00		7
	MOTA	8043	N Ca	SER E	186	66.968	16.497	29.134	1.00		6
	MOTA	804 <u>4</u> 8045	CA CB	SER E		66.593	15.755	30.423	1.00		6
5	MOTA MOTA	8045	OG	SER E		65.784	16.580	31.254	1.00		8
0	ATOM	8047	C	SER E		65.770	16.594	28.192	1.00		- 6
,	ATOM	8048	Ō	SER E		65.612	15.764	27.291	1.00		8
	ATOM	8049	N	CYS E		64.948	17.624	28.402	1.00		7
	ATOM	8050	CA	CYS E		63.753	17.876	27.583	1.00		6
10	ATOM	8051	С	CYS E	187	64.119	18.104	26.143	1.00		6
	MOTA	8052	0	CYS E		63.463	17.631	25.206	1.00		8
	MOTA	8053	CB	CYS E		63.043	19.179	27.993	1.00		6
	ATOM	8054	SG	CYS E		63.980	20.757	27.703	1.00		16
4.5	MOTA	8055	N	CYS E		65.204	18.841	25.993	1.00		7 6
15	MOTA	8056	CA	CYS E		65.589	19.318	24.701		84.60 84.20	6
	MOTA	8057	C	CYS E		67.013	18.991	24.213		84.71	8
	MOTA	8058	0	CYS E		68.012	19.334 20.833	24.874 24.759		85.11	6
	MOTA	8059	CB	CYS E		65.319 63.808	20.833	25.731		88.15	16
20	MOTA	8060	SG	PRO E		67.108	18.340	23.731		83.48	. 7
20	MOTA	8061	И	PRO E		65.864	18.064	22.267		82.84	6
	MOTA	8062 8063	CD CA	PRO E		68.292	17.878	22.267		81.51	6
	MOTA MOTA	8064	CB	PRO E		67.738	17.666	20.853		82.30	
	ATOM	8065	CG	PRO E		66.345	17.173	21.119		82.79	6
25	ATOM	8066	C	PRO E		69.547	18.782	22.249		79.46	6
20	ATOM	8067	0	PRO E		70.592	18.398	22.785		79.36	8
	MOTA	8068	N	GLU E		69.450	19.961	21.629	1.00	76.55	7
	ATOM	8069	CA	GLU E		70.592	20.878	21.529	1.00	74.34	6
	MOTA	8070	CB	GLU E		70.358	21.881	20.401	1.00	76.82	б
30	ATOM	8071	CG	GLU E	190	69.520	21.352	19.239		80.12	6
	MOTA	8072	CD	GLU E	190	70.336	20.533	18.231		81.75	6
	MOTA	8073	OE1	GLU E	190	71.471	20.965	17.884		81.85	8
	MOTA	8074	OE2	GLU E	190	69.836	19.472	17.775		80.52	8
	MOTA	8075	С	GLU E		70.822	21.663	22.815		71.33	6
35	MOTA	8076	0	GLU E		70.095	21.489	23.791		71.05	8
	MOTA	8077	N	аьа Е		71.826	22.543	22.798		68.78	7
	MOTA	8078	CA	ALA E		72.142	23.390	23.957		67.15 65.15	6 6
	MOTA	8079	CB	ALA E		73.651	23.536	24.108 23.836		65.83	6
40	ATOM	8080	C	ALA E		71.502 71.379	24.787 25.340	22.730		64.00	8
40	ATOM	8081	0	ALA E TYR E		71.097	25.355	24.971		64.83	7
	MOTA	8082	N CA	TYR E		70.487	26.678	24.964			6
	MOTA MOTA	8083 8084	CB	TYR E		69.025	26.613	25.450		63.81	6
	ATOM	8085	CG	TYR E		68.096	25.953	24.462		63.14	6
45	MOTA	8086		TYR E		67.939	24.564	24.442	1.00	64.40	6
-10	ATOM	8087		TYR E		67.146	23.934	23.468	1.00	64.53	6
	ATOM	8088	CD2			67.435	26.705	23.493		62.60	6
	ATOM	8089	CE2			66.642	26.094	22.521		64.04	6
	ATOM	8090	CZ	TYR E		66.505	24.710	22.512		64.71	6
50	MOTA	8091	OH	TYR E	192	65.744	24.101	21.538		66.46	8
	MOTA	8092	C	TYR E		71.262	27.694	25.795		65.22	6
	MOTA	8093	0	TYR E		71.181	27.699	27.026		67.13	8
	MOTA	8094	N	GLU E		72.010	28.557	25.112		65.61	
	MOTA	8095	CA	GLU E		72.792	29.606	25.773		64.70	6
55	MOTA	8096	CB	GLU E		73.643	30.372	24.749		66.19	6
	MOTA	8097	CG	GLU E		74.722	29.522	24.074		69.50	6 6
	MOTA	8098	CD	GLU E		75.625	30.345	23.144		72.29 71.70	8
	MOTA	8099		L GLU E		76.083	31.435	23.584		73.48	8
60	MOTA	8100		GLU E		75.881 71.890	29.898 30.600	21.985 26.498		63.08	
60	MOTA	8101		GLU E		70.747	30.828	26.435		64.03	
	MOTA	8102	U	670 5		14.121	55.550				_

	WO 01/58	8951				•	-205			PCT/	EP01/01	457
	ATOM	8103	N	ASP I	E 194		72.418	31.187	27.566	1.00	62.00	7
	ATOM	8104	CA		€ 194		71.683	32.168	28.340	1.00	60.31	6
	ATOM	8105	CB	ASP I			70.644	31.480	29.235	1.00		6
	MOTA	8106	CG	ASP I	≥ 194		71.268	30.749	30.413	1.00		б
5	MOTA	8107	OD1	ASP I	≟ 194		71.200	29.504	30.448	1.00		8
	MOTA	8108	OD2	ASP 1			71.824	31.415	31.314	1.00		8
	MOTA	8109	С		E 194		72.637	32.989	29.193	1.00		6
	MOTA	8110	0		E 194		73.715	32.515	29.570	1.00		8
	MOTA	8111	N		E 195		72.238	34.223	29.484	1.00		7
10	MOTA	8112	CA		E 195		73.029	35.121	30.311	1.00		6 6
	MOTA	8113	CB		E 195		73.019	36.555	29.763 30.752		53.41	6
	MOTA	8114			E 195		73.686 73.738	37.498 36.595	28.431		55.34	6
	ATOM	8115 8116	CG2		E 195 E 195		72.453	35.145	31.715		56.03	6
15	ATOM ATOM	8117	0		E 195		71.270	35.400	31.907		56.70	8
10	ATOM	8118	N		E 196		73.292	34.868	32.702		57.06	7
	MOTA	8119	CA		E 196		72.834	34.870	34.077		57.01	б
	ATOM	8120	CB		E 196		73.402	33.673	34.821	1.00	57.41	6
	АТОМ	8121	CG	GLU	E 196		72.908	33.555	36.238		61.42	6
20	MOTA	8122	CD	GLU	E 196		73.533	32.383	36.968		62.69	6
	MOTA	8123	OE1		E 196		73.377	31.235	36.493		64.88	8
	MOTA	8124	OE2		E 196		74.184	32.604	38.013		64.76	8
	MOTA	8125	С		E 196		73.315	36.160	34.715		57.51 60.16	6 8
05	MOTA	8126	0		E 196		74.518	36.427 36.969	34.755 35.192		55.54	7
25	MOTA	8127	N		E 197 E 197		72.375 72.712	38.226	35.829		54.09	6
	ATOM ATOM	8128 8129	CA CB		E 197		71.853	39.380	35.278		50.90	6
	ATOM	8130			E 197		72.241	40.685	35.932		47.64	6
	MOTA	8131			E 197		72.030	39.471	33.782		49.59	6
30	ATOM	8132	C		E 197		72.473	38.067	37.325		56.97	6
	ATOM	8133	0	VAL	E 197		71.414	37.614	37.748		58.03	8
	MOTA	8134	N		E 198		73.476	38.409	38.125		58.05	7
	MOTA	8135	CA		E 198		73.338	38.300	39.562		58.55	б
0.5	MOTA	8136	CB		E 198		74.550	37.584	40.174 39.811		58.65 60.87	б 8
35	MOTA	8137	OG C		E 198		74.556 73.182	36.209 39.685	40.155		58.53	6
	ATOM ATOM	8138 8139	C O	SER			74.049	40.549	40.004		59.57	8
	ATOM	8140	Ŋ		E 199		72.060	39.895	40.823		58.51	7
	ATOM	8141	CA		E 199		71.803	41.176	41.434	1.00	59.74	6
40	ATOM	8142	CB		E 199		70.361	41.612	41.186	1.00	59.28	6
	ATOM	8143	CG	LEU	E 199		69.921	42.861	41.953		58.45	6
	MOTA	8144			E 199		70.758	44.059	41.543		57.64	6
	MOTA	8145			E 199		68.466	43.127	41.669		57.53	. 6
4 -	MOTA	8146	C		E 199		72.039	41.084	42.917 43.640		61.63 64.16	6 8
45	ATOM	8147	0		E 199 E 200		71.226 73.163	41.637	43.366		61.69	7
	MOTA	8148 8149	N CA		E 200		73.103	41.658	44.780		58.91	6
	MOTA MOTA	8150	CB		E 200		74.981	41.477	44.994		61.22	6
	ATOM	8151	CG		E 200		75.355	41.522	46.454		63.36	6
50	ATOM	8152			E 200		74.686	40.916	47.295	1.00	64.82	8
	MOTA	8153	ND2	. ASN	E-200		76.426	42.235	46.770		64.37	7
	MOTA	8154	C		E 200		73.048	43.026	45.280		56.95	6
	MOTA	8155	0		E 200		73.610	44.056	44.905		58.64	8
	MOTA	8156	Ŋ		E 201		72.018	43.030	46.109		54.18	7 6
55		8157	CA		E 201		71.474	44.260	46.650		52.16 50.83	6
	MOTA	8158	CB		E 201 E 201		70.257 69.065	44.688 43.780	45.844 46.028		47.47	6
•	MOTA MOTA	8159 8160			E 201		67.923	44.233	46.681		47.04	6
	MOTA	8161			E 201		69.107	42.458	45.601		44.93	6
60		8162			E 201		66.843	43.382	46.911		45.49	6
	ATOM	8163			E 201		68.043	41.608	45.829	1.00	43.88	. 6

	WO 01/58	8951										РСТ	/EP01/01	457
							_	-206		0 070	46 400	1 00	42 06	6
	ATOM	8164	CZ	PHE				6.905		2.072 3.977	46.488 48.066	1.00		6 6
	MOTA	8165	C	PHE :				1.029		2.823	48.504	1.00		8
	ATOM ATOM	8166 8167	-	ARG				0.650	_	5.032	48.770	1.00		7
5	ATOM	8168	N CA	ARG		202		0.030		4.915	50.146		57.24	6
•	ATOM	8169	CB	ARG				1.399		4.898	51.084		59.58	6
	ATOM	8170	CG	ARG				2.078		6.254	51.130		64.26	6
	ATOM	8171	CD	ARG				3.337	4	6.278	51.951		65.59	6
	ATOM	8172	NE	ARG	E	202	7	73.935	4	7.606	51.908		67.13	7
10	MOTA	8173	CZ	ARG				75.140		17.891	52.386		68.53	6
	ATOM	8174		ARG				75.870		16.930	52.942		69.03	7
	MOTA	8175	NH2	ARG				75.612		19.129	52.303		68.11	7
	ATOM	8176	C	ARG				59.321		16.121	50.499		57.27 56.88	6 8
4 =	ATOM	8177	0	ARG				59.370 58.528		17.167 15.974	49.839 51.551		56.76	7
15	ATOM	8178 8179	N	LYS				57.689		17.063	52.011		57.10	6
	ATOM ATOM	8180	CA CB	LYS				56.755		16.583	53.109		58.42	6
	ATOM	8181	CG	LYS				55.904		17.682	53.702		60.29	6
	ATOM	8182	CD	LYS				55.112		17.157	54.883	1.00	64.62	6
20	ATOM	8183	CE	LYS				64.222	4	18.241	55.471	1.00	67.46	6
	ATOM	8184	NZ	LYS			,	63.171	4	18.696	54.504		70.79	7
	MOTA	8185	С	LYS	E	203		68.623		48.101	52.603		56.53	6
	MOTA	8186	0	LYS				69.715		47.769	53.060		58.18	8
	MOTA	8187	N	LYS				68.190		19.352	52.629		53.82	7
25	MOTA	8188	CA	LYS				69.021		50.392	53.207		52.45 50.86	6 6
	MOTA	8189	CB	LYS				68.545		51.766 52.110	52.731 51.279		44.94	6
	ATOM	8190 8191	CG CD	LYS LYS				68.852 68.253		53.462	50.970		45.54	6
	MOTA MOTA	8192	CE	LYS				68.744		54.050	49.669		46.91	6
30	ATOM	8193	NZ	LYS				68.388		53.268	48.463		48.94	7
-	ATOM	8194	C	LYS				68.991		50.317	54.747	1.00	54.01	6
	ATOM	8195	Ō	LYS				68.119		49.668	55.329	1.00	54.82	8
	MOTA	8196	N	GLY	E	205		69.958		50.969	55.394		53.51	7
	MOTA	8197	CA	GLY		205		70.025		50.987	56.848		52.96	6
35	ATOM	8198	С	GLY		205		69.747		52.400	57.344		54.24	6
	MOTA	8199		GLY				69.326		53.224	56.507		53.02 54.73	8 8
	ATOM	8200		GLY		205		69.937 42.707		52.697 26.844	58.551 16.535	_	50.04	8
	MOTA	8201 8202		WAT		2		46.115		22.922	8.819		33.72	8
40	MOTA MOTA	8202		WAT		3		49.921		22.962	13.240		27.71	8
70	ATOM	8204		WAT		4		48.219			9.434		48.75	8
	ATOM	8205		WAT		5		27.826		41.690	17.095		41.54	8
	MOTA	8206		WAT		6		24.872		36.589	8.613		51.20	8
	MOTA	8207	OH2	WAT	M	7		36.046		60.034	17.934		33.21	8
45	MOTA	8208		WAT		8		35.043		57.811	16.418		28.29	8
	MOTA	8209		TAW		9		55.882		56.455	16.997		31.72	8
	MOTA	8210		WAT		10		55.717		62.292	9.132		41.99	8
	ATOM	8211		TAW		11		54.077		57.638			35.89 31.22	8 8
50	MOTA	8212		TAW TAW		12 13		60.807		36.700 42.748	17.893 13.082		52.94	8
50	MOTA MOTA	8213 8214		WAT		14		64.752		41.327	9.587		53.75	8
	ATOM	8215				1		56.450		11.097	37.999		76.79	20
	MOTA		CL-1			2		37.092		21.684			43.91	17
	ATOM	8217				3		17.667		23.110	38.506	1.00	80.38	20
55	MOTA	8218	CL-1	CL1	I	4		20.502		44.774	13.190		62.37	17
	MOTA		CA+2			5		16.762		64.154			85.82	20
	MOTA		CL-1			6		37.412		67.363			45.17	17
	ATOM		CA+2			7		55.038		76.858			71.00	20
60	MOTA		CL-1 CA+2			8 9		64.026 79.499		57.746 45.067			69.47 85.28	17 20
00	ATOM ATOM		CL-1					64.286		29.844			48.05	17
	WI ON	0223			_			~ 0 0		04				

	WO 01/5	8951				207			PCT/EP01/01	457
	MOTA	8225	C1	HEP L	1	-207 31.694	22.169	23.679	1.00109.78	6
	ATOM	8226	-	HEP L	1	32.042	22.822	25.000	1.00106.01	6
	ATOM	8227		HEP L	1	33.258	20.667	25.468	1.00 99.68	6
	ATOM	8228	C4	HEP L	1	34.107	19.901	26.462	1.00 97.90	6
5	MOTA	8229	C5	HEP L	1		21.220	28.203	1.00 99.77	6
-	ATOM	8230	C6	HEP L	1	32.154	21.953	27.266	1.00101.85	6
	ATOM	8231	C7	HEP L	1		19.067	28.833	1.00 98.50	6
	ATOM	8232	C8	HEP L	1		19.802	29.773	1.00 97.76	6
	ATOM	8233	04	HEP L	1		19.860	31.064	1.00 96.20	8
10	MOTA	8234	N1	HEP L	1	32.880	22.043	25.968	1.00103.11	7
	MOTA	8235	S1	HEP L	1	31.207	23.336	22.418	1.00113.66	16
	MOTA	8236	01	HEP L	1	31.826	22.878	21.182	1.00113.59	8 8
	MOTA	8237	02	HEP L	1	31.477	24.685	22.941	1.00111.64	8
	MOTA	8238	03	HEP L	1	29.701	23.322	22.307	1.00111.31	7
15	MOTA	8239	N2	HEP L	1	33.333	19.839	27.737 24.248	1.00108.88	6
	ATOM	8240	C1	HEP L	2	19.833	49.708 49.684	25.518	1.00104.63	6
	ATOM	8241	C2	HEP L	2	20.653 19.090	47.814	26.172	1.00100.27	6
	MOTA	8242	C3	HEP L	2	18.728	46.788	27.241	1.00 98.30	6
00	ATOM	8243	C4	HEP L	2 2	19.702	48.326	28.859	1.00100.12	6
20	MOTA	8244	C5	HEP L	2	20.022	49.380	27.845	1.00101.78	6
	ATOM	8245	C6	HEP L	2	18.080	46.646	29.663	1.00 97.02	6
	MOTA	8246	C7 C8	HEP L	2	19.186	46.065	30.550	1.00 96.36	6
	MOTA	8247 8248	04	HEP L	2	19.161	46.714	31.805	1.00 95.77	8
25	MOTA MOTA	8249	N1	HEP L	2	20.281	48.676	26.560	1.00102.78	7
20	ATOM	8250	S1	HEP L	2	20.640	50.530	22.892	1.00112.59	16
	ATOM	8251	01	HEP L		20.348	49.765	21.697	1.00113.24	8
	MOTA	8252	02	HEP L	2	22.024	50.791	23.309	1.00111.25	8
	MOTA	8253	03	HEP L	_	20.059	51.924	22.770	1.00111.32	8
30	ATOM	8254	N2	HEP L		18.478	47.544	28.507	1.00 98.39	7
	АТОМ	8255	C1	HEP L	3	42.028	70.369	23.900	1.00109.55	6
	ATOM	8256	C2	HEP L	3	42.091	69.312	25.003	1.00104.54	6
	ATOM	8257	C3	HEP L	3	40.178	70.594	25.988	1.00 97.17	6
	ATOM	8258	C4	HEP L		39.192	70.688	27.124	1.00 96.78	6
35	MOTA	8259	C5	HEP L		40.844	69.540	28.502	1.00 98.62	6 6
	MOTA	8260	C6	HEP L		41.854	69.476	27.408	1.00100.28 1.00 97.37	6
	MOTA	8261	C7	HEP L		39.103	70.891	29.639	1.00 97.34	6
	MOTA	8262	C8	HEP L		38.600	69.616	30.336 31.552	1.00 95.42	8
40	MOTA	8263	04	HEP L	_	39.310	69.466 69.418	26.123	1.00100.25	7
40	MOTA	8264	N1	HEP L		41.104 42.851	69.897	22.390	1.00113.40	16
	MOTA	8265	S1	HEP L		41.999	70.352	21.301	1.00112.83	8
	MOTA	8266	01	HEP L		43.216	68.464	22.535	1.00111.97	8
	MOTA	8267	02 03	HEP L		44.208	70.580	22.342	1.00111.22	8
45	MOTA	8268 8269		HEP I		39.982	70.756	28.394	1.00 97.91	7
45	MOTA MOTA	8270		HEP I		67.843	54.529	23.109	1.00109.23	6
	MOTA	8271		HEP I		67.696	54.053	24.549	1.00105.70	6
	MOTA	8272		HEP I		67.448	56.488	25.071	1.00101.29	б
	MOTA	8273		HEP I		67.199	57.526	26.150	1.00 99.73	6
50	MOTA	8274		HEP I		68.223	55.960	27.701	1.00100.32	6
	ATOM	8275		HEP I		68.526	54.948	26.646	1.00101.68	6
	MOTA	8276		HEP I		68.126	58.362	28.296		6
	MOTA	8277		HEP I		67.284	58.007	29.528		6
	MOTA	8278				68.179	57.751	30.594		8
55	MOTA	8279				67.472	55.082	25.609		7
	MOTA	8280	S1			67.556	53.252	21.895		16
	MOTA	8281	. 01			66.829	53.860	20.813		8
	MOTA	8282				67.011	52.080	22.599		
	MOTA	8283				68.908	52.765	21.423		8 7
60		8284				68.258	57.354	27.169		
	MOTA	8285	5 C1	HEP	L 5	62.836	24.327	23.511	1.00100.04	0

	WO 01/3	58951								PCT	/EP01/0	1457
							-208					
	MOTA	8286	C2	HEP I	L .	5	62.164	25.268	24.495	1.001	04.37	6
	ATOM	8287	C3	HEP :	L .	5	64.426	25.352	25.555	1.00		6
	ATOM	8288	C4	HEP :	L :	5	65.270	25.934	26.676	1.00		6
	MOTA	8289	C5	HEP	L	5	63.215	26.126	27.960	1.00		6
5	ATOM	8290	C6	HEP	L	5	62.366	25.505	26.903	1.001		б
_	ATOM	8291	C7	HEP	L	5	65.381	26.089	29.165		98.56	6
	ATOM	8292	. C8	HEP	L	5	65.085	27.500	29.708	1.00		6
	ATOM	8293	04	HEP	L	5	64.379	27.406	30.942	1.00		8
	ATOM	8294	N1	HEP	L	5	63.001	25.830	25.594		01.58	7
10	ATOM	8295	S1	HEP	L	5	61.935	24.146	21.985	1.001	12.71	16
. •	ATOM	8296	01	HEP	L	5	62.912	24.120	20.912		12.36	8
	ATOM	8297	02	HEP	L	5	60.852	25.151	22.006		11.63	8
	ATOM	8298	03	HEP	L	5	61.166	22.846	22.024		11.95	8
	MOTA	8299	N2	HEP	L	5	64.610	25.582	27.957	1.00	98.40	7
15	END											
			Ato	m						•		
				Resi	due	#	<u>x</u>	<u>Y</u>	<u>z</u>	<u>occ</u>	B	

20

25

Table 1: Structural coordinates of AChBP

"Atom type" refers to the element whoose coordinate are measured. The first letter in the column defines the element.

"Residue" refers to the amino acid in the AChBP protein sequence, using the standard three letter abbreviations known in the art.

"#" refers to the residue number.

"X, Y, Z" crystallographically define the atomic position, in three-dimensional space, of the element measured.

"OCC" is the occupancy volume.

30 "B" is a thermal factor that measures movement of the atom around its atomic center.

WO 01/58951 PCT/EP01/01457

-209 Claims

 A water-soluble protein derived from a mollusc being capable of binding a ligand of a ligand-gated receptor.

5

20

- 2. The protein of claim 1, wherein the ligand is acetylcholine, gamma-amino-butyric acid (GABA), glycine or serotonin.
- 3. The protein of claim 2, wherein said protein is a acetylcholine-binding protein (AChBP).
 - 4. The protein of any one of claim 1 to 3 which is capable of forming multimers.
- 5. The protein of any one of claims 1 to 4 which is derived form a Pulmonata species, preferably from a Basommatophora species.
 - 6. The protein of any one of claims 1 to 5 comprising an amino acid sequence selected from the group consisting of:
 - (a) an amino acid sequence as depicted in any one of SEQ ID Nos. 2, 4,
 6 or 8 or a functional equivalent thereof, or a fragment of at least 5 continuous amino acids thereof;
 - (b) an amino acid sequence having at least 30% amino acid identity to the amino acid sequence of any one of SEQ ID Nos. 2, 4, 6 or 8.
- A water-soluble ligand binding protein capable of binding a ligand of a ligand-gated receptor and comprising at least 5 continuous amino acids of the aminoacid sequence depicted in any one of SEQ ID Nos. 2, 4, 6 or 8 and/or said protein is detectable by a monoclonal or polyclonal antibody which recognises, preferably with a binding affinity of at least 10⁻⁷M, a protein of any one of claims 1 to 6.
 - 8. A water-soluble protein being capable of binding a ligand of a ligand-gated receptor comprising
- (a) at least the amino acids of the water-soluble protein of any one of claims 1 to 6 determining solubility of said protein, in the same or corresponding positions as in said protein; and
 - (b) at least 4 amino acids determining binding to said ligand.

-210

- PCT/EP01/01457
- 9. The protein of claim 7 or 8 which is capable of forming multimers.
- 10. The protein of any one of claims 7 to 9 comprising 200-240 amino acids.

5

- 11. The protein of any one of claims 7 to 10, wherein the ligand is acetylcholine, nicotine, lophotoxin, d-tubocurarine, carbamylcholine, galanthamine or epibatidine.
- 10 12. The protein of any one of claims 1 to 11, wherein said ligand-gated receptor is derived from an arthropod (preferably insect), a plant (preferably a higher plant, most preferably a seed plant) or a chordate (preferably a mammalian, most preferably human).
- 15 13. The protein of any one of claims 7 to 12, wherein said ligand-gated receptor is a nicotinic acetylcholine receptor.
- 14. The protein of any one of claims 7 to 13, wherein said amino acids determining solubility are in the same positions as in the AChBP having the amino acid sequence as depicted in any one of SEQ ID Nos. 2, 4, 6 or 8; preferably in which said solubility-determining amino acids comprise solvent accessible regions in the crystal structure according to Figure 10.
- 15. The protein of any one of claims 7 to 14 comprising an amino acid sequence having at least 40% amino acid identity to the amino acid sequence 20-223 of any one of SEQ ID Nos. 2, 4, 6 or 8, in which the ligand binding amino acids have been replaced with the corresponding amino acids of a ligand-gated receptor.
- The protein of any one of claims 7 to 15, in which said solubility-determining amino acids (a) comprise hydrophilic amino acids (Asp, Glu, Arg, Lys) from the sequences 20-44, 73-81, 86-92, 112-120, 135-152, 166-189, 196-20, 209-213, and/or 219-227 of SEQ ID No. 2.
- The protein of claim 16, in which said solubility determining amino acids (a) comprise amino acids Asp(36), Asp(68), Glu(115), Arg(137), Asp(143), Asp(148), Glu(150), Arg(167), Arg(189), Glu(215) of SEQ ID No.2, wherein

PCT/EP01/01457

WO 01/58951

10

15

20

30

-211

Asp may be exchanged for Glu and vice versa and Lys may be exchanged for Arg and vice versa.

- 18. The protein of any one of claims 7 to 17 which further comprises the amino acids Cys(142), Thr(149), Ala(153), Thr(154), Cys(155), Arg(156), Ile(157) and/or Lys(158) of SEQ ID No. 2.
 - 19. The protein of any one of claims 7 to 17 which comprises the amino acids (b) Pro(39), Trp(77), Trp(101), Pro(103), Asp(194), and/or Ser(161) of SEQ ID No. 2.
 - 20. The protein of any one of claims 7 to 19 in which the amino acid sequences 165-169 and/or 200-203 of SEQ ID No. 2 have been exchanged with the corresponding sequence of the ligand-gated receptor.
 - 21. The protein of any one of claims 7 to 20 which is capable of binding a ligand of an acetylcholine receptor, in which at least one of the amino acid sequences Trp(101) Tyr(T08), Trp(162) His(164) and Tyr(204) Tyr(211) of SEQ ID No. 2 have been exchanged with the corresponding sequence of the acetylcholine receptor.
- 22. A method for the production of a water-soluble ligand-gated receptor or a corresponding ligand-binding domain or for improving the water solubility and accessibility to crystallization of such a receptor or domain, said method comprising altering the amino acid sequence of the extracellular domain of a ligand-gated receptor by way of substituting, adding, deleting or modifying at least one amino acid at a position corresponding to an amino acid determining or contributing to the water-solubility of the protein of any one of claims 1 to 21.
 - 23. The method of claim 22, wherein the ligand-gated receptor is defined as in any one of claims 1 to 21.
- The method of claim 22 or 23, wherein at least one amino acid is altered to the corresponding amino acid of the amino acid sequence depicted in any one of SEQ ID Nos. 2, 4, 6 or 8, or to a an equivalent amino acid, preferably

20

30

WO 01/58951 PCT/EP01/01457

-212

in which said solubility-determining amino acids comprise solvent accessible regions in the crystal structure according to Figure 10.

- The method of any one of claims 22 to 24, wherein loop Cys123-Cys136 of
 SEQ ID No. 2 is inserted into the corresponding region of the ligand binding domain of the ligand-gated receptor.
 - 26. The method of any one of claims 22 to 25 further comprising
- (a) culturing a host cell transfected with and capable of expressing a
 10 polynucleotide comprising a nucleotide sequence encoding the altered amino acid sequence; and optionally
 - (b) recovering said water-soluble ligand-gated receptor or corresponding ligand-binding domain from the culture.
- 15 27. A water-soluble ligand-gated receptor or ligand-binding domain obtainable by the method of any one of claims 22 to 26.
 - 28. The protein of any one of claims 1 to 21 or 27 further comprising a spacer sequence allowing coupling with a carrier body.
 - 29. A fusion protein comprising the water-soluble ligand-binding protein of any one of claims 1 to 21, 27 or 28, or a binding fragment thereof and a fragment of a ligand-gated receptor
- 25 30. A dimer or pentamer consisting of at least one monomer comprising a protein of any one of claims 1 to 21 or 27 to 29.
 - 31. A ligand-gated ion channel comprising a protein of any one of claims 1 to 21 or 27 to 29 or the dimer or pentamer of claim 30.
 - 32. One or more polynucleotides encoding the protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31.
- 35 33. The polynucleotide(s) of claim 32 which comprise(s)

PCT/EP01/01457

WO 01/58951

-213

- (a) a nucleotide sequence having at least 15 continuous nucleotides of the nucleotide sequence depicted in any one of SEQ ID Nos. 1, 3, 5 or 7 or a degenerated sequence thereof; or
- (b) a nucleotide sequence capable of hybridizing to a nucleotide sequence of (a) under stringent hybridisation conditions.
- 34. The polynucleotide(s) of claim 32 or 33 which is(are) operatively linked to heterologous expression control sequences allowing expression inprokaryotic or eukaryotic cells.

10

20

5

- 35. One or more vector(s) containing the polynucleotide(s) of any one of claims 32 to 34.
- 36. A host cell genetically engineered with the polynucleotide(s) of any one claims
 15 32 to 34 or with the vector(s) of claim 35.
 - 37. An antigen comprising an epitope of at least 5 continuous amino acids of the amino acid sequence depicted in any one of SEQ ID Nos. 2, 4, 6 or 8 and/or said epitope is detectable by a monoclonal or polyclonal antibody which recognises, preferably with a binding affinity of at least 10⁻⁷M, a protein of any one of claims 1 to 6.
- 38. An antibody specifically recognizing the protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30, the ligand-gated ion channel of claim 31 or the antigen of claim 37.
 - 39. An oligonucleotide probe comprising a nucleotide sequence having at least 15 continuous nucleotides of a polynucleotide of any one claims 32 to 34 or encoding the antigen of claim 37.

30

35

40. A composition comprising the protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30, the ligand-gated ion channel of claim 31, the polynucleotide(s) of any one claims 32 to 34, the vector(s) of claim 35, the host cell of claim 36, the antigen of claim 37, the antibody of claim 38, or an oligonucleotide probe of claim 39; and optionally suitable means for detection or performing a ligand-receptor binding assay.

5

15

25

30

35

PCT/EP01/01457

41. A method for identifying an agonist/activator or antagonist/inhibitor of a ligand-gated receptor comprising the steps of:

- (a) contacting the water-soluble ligand-binding protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30, the ligand-gated ion channel of claim 31 or a cell expressing said protein in the presence of components capable of providing a detectable signal in response to ligand binding with a compound to be screened under conditions that permit binding of said compound to the ligand-binding protein; and
- 10 (b) detecting the presence or absence of a signal generated from the binding activity of the ligand-binding protein, wherein the presence/increase and absence/decrease of the signal is indicative for an agonist/activator and antagonist/inhibitor, respectively, of a ligand-gated receptor.
 - 42. A crystal of a protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31.
- 43. A crystal of a protein-ligand complex comprising a protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31; and a ligand.
 - 44. The crystal of claim 43, wherein the ligand comprises an N-alkylated hydroxyalkyl and/or a quaternary ammonium ion.
 - 45. The crystal of claim 43, wherein the ligand comprises 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), B-bippinatin, lophotoxin, d-tubocurarine, carbamylcholine, galanthamine, epibatidine or alphabungarotoxin.
 - 46. The crystal of any one of claims 42 to 45, wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein or protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms.
 - 47. The crystal of any one claims 42 to 46, wherein the protein has an amino acid sequence of amino acids 20 to 223 of SEQ ID No. 2, or an amino acid

PCT/EP01/01457

WO 01/58951

-215

sequence that differs from amino acid 20 to 223 of SEQ ID No. 2 by only having conservative substitutions.

48. The crystal of claim 47, wherein the ligand is HEPES.

5

- 49. The crystal of claim 46 having (1) a space group of P2₁2₁2₁ and a unit cell of dimensions of a=120.6Å, b=137.0Å and c=161.5Å; (2) a space group of P4₂2₁2 and a unit cell of dimensions of a=b=141.6Å and c=120.8Å or (3) a space group of P2₁ and a unit cell of dimensions of a=121.1Å, b=162.1Å, c=139.4Å, β=90.1°.
- 50. The crystal of any one of claims 42 to 49, wherein the protein has secondary structural elements that include .alpha.-helix and antiparallel .beta.-sheets as shown in Figure 7, 10, 11 and/or 12.

15

10

- 51. The crystal of any one claims 42 to 50 having a three-dimensional structure as defined by atomic coordinates shown in Table 1.
- 52. The crystal of any one of claims 42 to 51 having a binding cavity as shown in Figure 6, 8, 9 and/or 13.
 - 53. A method of using the crystal of any one of claims 42 to 52 in a drug screening assay comprising:
 - (a) selecting a potential ligand by performing structure assisted drug
 design with the three-dimensional structure determined for the crystal,
 wherein said selecting is performed in conjunction with computer
 modeling; optionally
 - (b) contacting the potential ligand with the ligand binding domain of the ligand-gated receptor in an in vitro or in vivo assay; and
 - (c) detecting the binding of the potential ligand for the ligand binding domain.
 - 54. The method of claim 53, wherein the ligand-gated receptor is a nicotinic acetylcholine receptor.

35

25

30

55. The method of claim 53 or 54 further comprising:

PCT/EP01/01457

-216

(d) forming a supplemental crystal of a protein-ligand complex by cocrystallization or soaking the crystal of the water-soluble ligand-binding protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31, with a potential drug, wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex

to a resolution of greater than 5.0, preferably greater than 4.0

determining the three-dimensional structure of the supplemental crystal;

Angstroms, more preferably greater than 3;

- (f) selecting a candidate drug by performing a structure assisted drug design with the three-dimensional structure determined for the supplemental crystal, wherein said selecting is performed in conjunction with computer modeling; optionally
- (g) contacting the candidate drug with a cell that expresses the ligandgated receptor; and
- (h) detecting a cell response; wherein a candidate drug is identified as a drug when the cell response is altered compared to a cell that has not been contacted with the candidate compound.

20

25

15

5

10

WO 01/58951

The method of any one of claims 53 to 55 further comprising an initial step that precedes step (a) wherein said initial step consists of determining the three-dimensional structure of a crystal comprising a protein-ligand complex formed between the water-soluble ligand-binding protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31, and the ligand of the ligand-gated receptor, wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms.

30

35

- 57. A method of growing a crystal of a protein-ligand complex comprising:
 - (a) contacting the water-soluble ligand-binding protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31 with a ligand of a ligandgated receptor, wherein the water-soluble ligand-binding protein forms a protein-ligand complex with the ligand; and

PCT/EP01/01457

-217

(b) growing the crystal of the protein-ligand complex; wherein the crystal effectively diffracts X-rays for the determination of the atomic coordinates of the protein-ligand complex to a resolution of greater than 5.0, preferably greater than 4.0 Angstroms.

5

WO 01/58951

- 58. A drug screening assay comprising soaking the crystal of any one of claims 42 to 52 in a solution of compounds to be screened and detecting the binding of the compound to the ligand-binding protein.
- 10 59. The method of claim 57 or 58, wherein said ligand comprises an alkylated nitrogen and/or quaternary ammonium ion.
 - 60. A method of increasing or decreasing the affinity of a drug to a ligand-gated receptor, comprising
- 15 (a) performing structure assisted drug design with the three-dimensional structure determined for the crystal of any one of claims 42 to 52, wherein said drug design is performed in conjunction with computer modeling; and
 - (b) modifying said drug to alter or eliminate a portion thereof suspected of interacting with a binding site of the binding cavity or with a non-specific binding site of the protein in the crystal.
 - 61. The method of claim 60, wherein step (a) further comprises the steps of a method of any one of claims 53 to 59.

25

20

- 62. The method of claim 60 or 61, further comprising after step (b), the additional step of:
 - (c) repeating the method used to perform structure assisted drug design according to step (a) using the modified drug according to step (b).

30

35

63. A method of drug design comprising the step of using the structural coordinates of a water-soluble ligand-binding protein crystal comprising the coordinates of Table 1, to computationally evaluate a chemical entity for associating with the ligand-binding site or a non-specific binding site of a ligand-binding protein.

WO 01/58951

5

30

PCT/EP01/01457

- 64. The method of any one of claims 53 to 63, wherein the identified drug prevents or promotes correct assembly of a ligand-gated ion channel.
- 65. The method of any one of claims 53 to 63, wherein the identified drug binds to a non-specific binding site of a ligand-gated ion channel.
 - 66. The method of any one of claims 53 to 65 further comprising synthesizing the drug in a therapeutically effective amount.
- 10 67. A drug produced by the method of claim 66 or a pro-drug thereof.
- 68. The drug of claim 67 which interacts with a ligand-gated receptor comprising a pentamer of claim 30 with monomers A to E, wherein the drug binds to one or more primary contact regions of a monomer (residues from A contacting B) defined by amino acid residues 15 to 21, 44 to 47, 85 to 87, 91 to 94, 122 to 124, 143 to 146, 149, 185 to 187 of the mature protein of SEQ ID No. 2 and/or to one or more of the complementary contact regions of the other monomer (from B contacting A, (identical to residues on A contacting E) defined by amino acid residues 3 to 4, 7 to 8, 11, 37 to 39, 53, 75 to 77, 96 to 104, 114 to 118 and 163-170 of the mature protein of SEQ ID No. 2; or to the contact regions as identified in Figure 14; or to the corresponding contact regions of the monomers of a ligand-gated ion channel.
- 69. The drug of claim 68, wherein the ligand-gated ion channel is the nicotinic acetylcholine receptor and the order of the monomers is αγαβδ.
 - 70. A computer readable medium comprising a nucleotide sequence of the polynucleotide(s) of any one of claims 32 to 34, an amino acid sequence of a protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30 or the ligand-gated ion channel of claim 31, or the structural coordinates of a crystal of any one of claims 40 to 50.
 - 71. A device comprising the computer readable medium of claim 70.
- 35 72. Use of the computer readable medium of claim 70 or the device of claim 71 for modeling an antagonist/inhibitor or agonist/activator of a ligand-gated receptor.

25

30

WO 01/58951 PCT/EP01/01457

- 73. Use of the crystal of any one of claims 42 to 52 or its structural coordinates as a template for modeling the 3D structure of a ligand-gated ion channel.
- 5 74. Use of the polynucleotide(s) of any one of claims 32 to 34, the protein of any one of claims 1 to 21 or 27 to 29, the dimer or pentamer of claim 30, the ligand-gated ion channel of claim 31, the vector(s) of claim 35, the host cell of claim 36, the antigen of claim 37, the antibody of claim 38, an oligonucleotide probe of claim 39, the crystal of any one of claims 42 to 52 or a method of any one of claims 53 to 66 for screening or profiling putative ligands of ligand-gated receptors.
- Use of an antagonist/inhibitor or agonist/activator identified according to a method of any one of claims 53 to 66 for the preparation of a pharmaceutical composition for the treatment of a ligand-gated ion channel mediated or related disorder.
- 76. The use of claim 75, wherein the antagonist/inhibitor is or is derived from the protein of any one of claims 1 to 21 or 27 to 29, an antigen of claim 37, an antibody of claim 38 or from a toxin of the ligand-gated ion channel.
 - 77. The use of claim 75, wherein the agonist/activator is or is derived from a the protein of any one of claims 1 to 21 or 27 to 29, an antigen of claim 37, an antibody of claim 38 or from epibatidine, acetylcholine, choline, nicotine, carbachol, serotonin or GABA.
 - 78. The use of any one claims 75 to 77, wherein the ligand-gated ion channel is the nicotinic acetylcholine receptor and said mediated or related disorder is Tourette's syndrome, Alzheimer's disease, addiction to nicotine or schizophrenia.
 - 79. Use of ligand of a ligand-gated receptor for identifying and isolating a water-soluble ligand-binding protein from a mollusc.
- 35 80. The use of claim 79, wherein said ligand is α -bungarotoxin.

(1/19)

L-AChBP_T1. L-AChBP_T2. B-AChBP_T1. B-AChBP_T2.	MRRNIFCLACLWIVQACLSLDRADILYNIRQTSRPDVIPTQRDRPVAVSVSLKFINILMRRNIFCLACLWIVQGCLSLDRADILYNIRQTSRPDVIPTQRDRPVAVSVSLKFINIL MAELRRIILLLCTIAFHVSHGQIRWTLLNQITGESDVIPLSNNTPLNVSLNFKLMNIV MAELRGIILLLCTIAFHVSHGQIRWTLLNQITGESDVIPLSNNTPLNVSLNFKLMNIL * *: * * : : * : * : * : * : * : * : *
L-AChBP_T1. L-AChBP_T2. B-AChBP_T1. B-AChBP_T2.	EVNEITNEVDVVFWQQTTWSDRTLA-WNSSHSPDQVSVPISSLWVPDLAAYNAISKPEVL EVNEITNEVDVVFWQQTTWSDRTLA-WNSSHSPDQVSVPISSLWVPDLAAYNAISKPEVL EADTEKDQVEVVLWTQASWKVPYYSSLLSSSSLDQVSLPVSKMWTPDLSFYNAIAAPELL EADTEKDQVEVVLWTQASWKVPYYSSLLSSSSLDQVSLPASKMWTPDLSFYNAIAAPELL *.: .::*:**: *:: : .: * ***: * *:: * *:: * ***:
L-AChBP_T1. L-AChBP_T2. B-AChBP_T1. B-AChBP_T2.	TPQLARVVSDGEVLYMPSIRQRFSCDVSGVDTESGATCRIKIGSWTHHSREISVDPTTE- TPQLARVVSDGEVLYMPSIRQRFSCDVSGVDTESGATCRIKIGSWTHHSGEISVDPTTE- SADRVVVSKDGSVIYVPSQRVRFTCDLINVDTEPGATCRIKVGSWTHDNKQFALITGEEG STDRVVVSKDGSVIYVPSQRVRFTCDLINVDTEPGATCRIKVGSWTFDNKQLALITGEEG :.: . * . * * . * * . * . * . * . * . *
L-AChBP_T1. L-AChBP_T2. B-AChBP_T1. B-AChBP_T2.	NSDDSEYFSQYSRFEILDVTQKKNSVTYSCCPEAYEDVEVSLNFRKKGRSEIL NSDDSEYFSQYSRFEILDVTQKKNSVIYSCCPEAYEDVEVSLNFRKKGRSEIL VVNIAEYFDS-PKFDLLSATQSLNRKKYSCCENMYDDIEITFAFRKK VVNIAEYFDS-PKYDLLSATQSLNRKKYRCCENMYEDIEITFAFRKK : :***. :::::::::::::::::::::::::::::::

Figure 1

Figure 2

Figure 2 (continued)

(4/19)

```
-----LDRADILYNIRQTSRPDVIPT
L-AChBP T1
                -----LDRADILYNIRQTSRPDVIPT
L-AChBP T2
                   -----QIRWTLLNQITGES--DVIPL
B-AChBP_T1
                   -----QIRWTLLNQITGES--DVIPL
B-AChBP T2
                -----SLQGEFQRKLYKELVKNYNPLERPV
h nAChR A7
h 5HT3
                -----MLLWVQQALLALLLPTLLAQGEARRSRNTTRPALLRLSDYLLTNYRKGVRPV
h GlyR al
                -MYSFNTLRLYLSGAIVFFSLAASKEAEAARSATKPMSPSDFLDKLMGRTSGYDARIRPN
h GABAA b1
                MRKSPGLSDCLWAWILLLSTLTGRSYGQPSLQDELKDNTTVFTRILDRLLDGYDNRLRPG
               · QRDR-PVAVSVSLKFINILEVNEITNEVDVVFWQQTTWSDRTLA--WNSSHSPDQVSVPI
L-AChBP T1
L-AChBP T2
                QRDR-PVAVSVSLKFINILEVNEITNEVDVVFWQQTTWSDRTLA--WNSSHSPDQVSVPI
                SNNT-PLNVSLNFKLMNIVEADTEKDQVEVVLWTQASWKVPYYSS-LLSSSSLDQVSLPV
B-AChBP T1
B-AChBP_T2
                SNNT-PLNVSLNFKLMNILEADTEKDQVEVVLWTQASWKVPYYSS-LLSSSSLDQVSLPA
h nAChR A7
                {	t ANDSQPLTVYFSLSLLQIMDVDEKNQVLTTNIWLQMSWTDHYLQWNVSEYPGVKTVRFPD}
                RDWRKPTTVSIDVIVYAILNVDEKNQVLTTYIWYRQYWTDEFLQWNPEDFDNITKLSIPT
h 5HT3
                FKGP-PVNVSCNIFINSFGSIAETTMDYRVNIFLRQQWNDPRLAYNEYPDDSLDLDPSML
h GlyR a1
h GABAA b1
                LGER-VTEVKTDIFVTSFGPVSDHDMEYTIDVFFRQSWKDERLKF-KGPMTVLRLNNLMA
                        * .. . :
                                              .: : *.
L-AChBP_T1
L-AChBP_T2
                SSLWVPDLAAYNAISK-PEVLTPQ--LARVVSDGEVLYMPSIRQRFSCDVSG-VDTESGA
                SSLWVPDLAAYNAISK-PEVLTPQ--LARVVSDGEVLYMPSIRQRFSCDVSG-VDTESGA
B-AChBP T1
                SKMWTPDLSFYNAIAA-PELLSAD--RVVVSKDGSVIYVPSQRVRFTCDLIN-VDTEPGA
B-AChBP T2
                SKMWTPDLSFYNAIAA-PELLSTD--RVVVSKDGSVIYVPSQRVRFTCDLIN-VDTEPGA
                GQIWKPDILLYNSADERFDATFHT--NVLVNSSGHCQYLPPGIFKSSCYIDVRWFPFDVQ
h nAChR A7
h_5HT3
                DSIWVPDILINEFVDV-GKSPNIP--YVYIRHQGEVQNYKPLQVVTACSLDIYNFPFDVQ
                DSIWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMDLKNFPMDVQ
h GlyR a1
               {\tt SKIRTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMHLEDFPMDAH}
h GABAA bl
L-AChBP_T1
               TCRIKIGSWTHHSREISVDPT---TE-NSDDSEYFSQYSRFEILDVTQKKNSVTYSCCPE
L-AChBP_T2
               TCRIKIGSWTHHSGEISVDPT---TE-NSDDSEYFSQYSRFEILDVTQKKNSVIYSCCPE
B-AChBP_T1
B-AChBP_T2
               TCRIKVGSWTHDNKQFALITG---EEGVVNIAEYFDS-PKFDLLSATQSLNRKKYSCCEN
               TCRIKVGSWTFDNKQLALITG---EEGVVNIAEYFDS-PKYDLLSATQSLNRKKYRCCEN
h nAChR A7
               HCKLKFGSWSYGGWSLDLQMQ---EA---DISGYIPN-GEWDLVGIPGKRSERFYECCKE
h_5HT3
               NCSLTFTSWLHTIQDINISLWRLPEKVKSDRSVFMNQ-GEWELLGVLPYFREFSMESS-N
h GlyR al
               TCIMQLESFGYTMNDLIFEWQ---EQGAVQVADGLTL-PQFILKEEKDLRYCTKHYNT-G
               ACPLKFGSYAYTRAEVVYEWTR-EPARSVVVAEDGSRLNQYDLLG--QTVDSGIVQSSTG
h_GABAA b1
                * : . *: .
                                                     .: :
L-AChBP_T1
               AYEDVEVSLNFRKKGRSEIL
L-AChBP_T2
               AYEDVEVSLNFRKKGRSEIL
B-AChBP_T1
B-AChBP_T2
               MYDDIEITFAFRKK-----
               MYEDIEITFAFRKK-----
h nAChR A7
               PYPDVTFTVTMRRRTLYYGL
h 5HT3
               YYAEMKFYVVIRRRPLFYVV
h GlyR a1
               KFTCIEARFHLERQMGYYLI
h GABAA b1
               EYVVMTTHFHLKRKIGYFVI
                : : . : . : : :
```

Figure 3

(5/19)

nAChR_h-A2	MGPSCPVFLSFTKLSLWWLLLTPAGGEEAKRPPPRAPGDPLSSPSPTALPQGGSHTE
nAChR_h-A4	PLLLLLGTGLLRASSHVE
nAChR h-A5	MAARGSGPRALRLLLLVQLVAGRCGLAGAAGGAQRGLSEPS
nAChR h-A3	LLLSLLPVARASE
nAChR h-A6	WLCVFTPFFKGCVGCA
nAChR h-Al	
nAChR h-A7	LFSLCSAGLVLGSE
nAChR h-A9	CICCONTURD DATELHVSLQG-EFQR
_	AAETADG-KYAQ
B-AChBP_T1	IAFHVSHG-QIR
B-AChBP_T2	IAFHVSHG-QIR
L-AChBP_T1	WIVOACLS-LDR
L-AChBP_T2	WIVQGCLS-LDR
	-
nAChR_h-A2	TEDRLFKHLFRGYNRWARPVPNTSDVVIVRFGLSIAQLIDVDEKNQMMTTNVWLKQ
nAChR_h-A4	TRAHAEERLLKKLFSGYNKWSRPVANISDVVLVRFGLSIAQLIDVDEKNQMMTTNVWVKQ
nAChR h-A5	SIAKHEDSLLKDLFQDYERWVRPVEHLNDKIKIKFGLAISQLVDVDEKNQLMTTNVWLKQ
nAChR h-A3	AEHRLFERLFEDYNEIIRPVANVSDPVIIHFEVSMSQLVKVDEVNQIMETNLWLKQ
nAChR h-A6	TEERLFHKLFSHYNQFIRPVENVSDPVTVHFEVAITQLANVDEVNQIMETNLWLRH
nAChR h-A1	HETRLVAKLFKDYSSVVRPVEDHRQVVEVTVGLQLIQLINVDEVNQIVTTNVRLKQ
nAChR h-A7	WINNER WOLSON KEAPOUR CALENDAR AND THE WOLSON WAS A STANDARD WAS A
	KLYKELVKNYNPLERPVANDSQPLTVYFSLSLLQIMDVDEKNQVLTTNIWLQM
nAChR_h-A9	KLFNDLFEDYSNALRPVEDTDKVLNVTLQITLSQIKDMDERNQILTAYLWIRQ
B-AChBP_T1	WTLLNQITGESDVIPLSN-NTPLNVSLNFKLMNIVEADTEKDQVEVVLWTQA
B-AChBP_T2	WTLLNQITGESDVIPLSN-NTPLNVSLNFKLMNILEADTEKDQVEVVLWTQA
L-AChBP_T1	ADILYNIRQTSRPDVIPTQR-DRPVAVSVSLKFINILEVNEITNEVDVVFWOOT
L-AChBP T2	ADILYNIRQTSRPDVIPTQR-DRPVAVSVSLKFINILEVNEITNEVDVVFWQQT
-	* * * * * * * * * * * * * * * * * * * *
nAChR h-A2	EWSDYKLRWNPTDFGNITSLRVPSEMIWIPDIVLYNNADGEFAVTHMTKAHLFSTGTVHW
nAChR h-A4	EMPTANIA TO OUT DENT TO DESTANDE TO THE TOTAL SOUR POPULATION OF THE TOTAL
	EWHDYKLRWDPADYENVTSIRIPSELIWRPDIVLYNNADGDFAVTHLTKAHLFHDGRVQW
nAChR_h-A5	EWI DVKLRWNPDDYGGIKVIRVPSDSVWTPDIVLFDNADGRFEGTS-TKTVIRYNGTVTW
nAChR_h-A3	IWNDYKLKWNPSDYGGAEFMRVPAQKIWKPDIVLYNNAVGDFQVDDKTKALLKYTGEVTW
nAChR_h-A6	IWNDYKLRWDPMEYDGIETLRVPADKIWKPDIVLYNNAVGDFQVEGKTKALLKYNGMITW
nAChR_h-A1	QWVDYNLKWNPDDYGGVKKIHIPSEKIWRPDLVLYNNADGDFAIVKFTKVLLQYTGHITW
nAChR_h-A7	SWTDHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADERFDATFHTNVLVNSSGHCOY
nAChR_h-A9	IWHDAYLTWDRDQYDGLDSIRIPSDLVWRPDIVLYNKADDESSEPVNTNVVLRYDGLITW
B-AChBP T1	SWKVPYYSS-LLSSSSLDQVSLPVSKMWTPDLSFYN-AIAAPELLSADRVVVSKDGSVIY
B-AChBP T2	SWKVPYYSS-LLSSSSLDQVSLPASKMWTPDLSFYN-AIAAPELLSTDRVVVSKDGSVIY
L-AChBP T1	TWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYN-AISKPEVLTPQLARVVSDGEVLY
L-AChBP T2	TWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYN-AISKPEVLTPQLARVVSDGEVLY
2	• • · · · · · · · · · · · · · · · · · ·
	- *
nAChR h-A2	VPPATYKSSCSTDVTFFBFDOOMCKMVFCSkmvpvavavavavavavavavavavavavavavavavavav
nAChR h-A4	VPPAIYKSSCSIDVTFFFFDQQNCKMKFGSWTYDKAKIDLEQMEQ-TVDLKDYWES-GEW
nAChR h-A5	TPPAIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKAKIDLVNMHS-RVDQLDFWES-GEW
_	TPPANYKSSCTIDVTFFPFDLQNCSMKFGSWTYDGSQVDIILEDQ-DVDKRDFFDN-GEW
nAChR_h-A3	IPPAIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGS-SMNLKDYWES-GEW
nAChR_h-A6	TPPAIFKSSCPMDITFFPFDHQNCSLKFGSWTYDKAEIDLLIIGS-KVDMNDFWEN-SEW
nAChR_h-A1	TPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWTYDGSVVAINPESD-OPDLSNFMES-GEW
nAChR_h-A7	LPPGIFKSSCYIDVRWFPFDVQHCKLKFGSWSYGGWSLDLOMO-EADISGYIPN-GEW
nAChR_h-A9	DAPAITKSSCVVDVTYFPFDNQQCNLTFGSWTYNGNQVDIFNALD-SGDLSDFIED-VEW
B-AChBP T1	VPSQRVRFTCDLINVDTEPG-ATCRIKVGSWTHDNKQFALITGEEGVVNIAEYFDS-PKF
B-AChBP T2	VPSQRVRFTCDLINVDTEPG-ATCRIKVGSWTFDNKQLALITGEEGVVNIAEYFDS-PKY
L-AChBP T1	MPSIRQRFSCDVSGVDTESG-ATCRIKIGSWTHHSREISVDPTTE-NSDDSEYFSQYSRF
L-AChBP_T2	MPSTRORESCOVECUOTESC ATCRIVICENTURGET AND ACCUSENTS AND ACCUSENT AND ACCUSENT AND ACCUSENT AND ACCUSENT AND ACCUSENT AND ACCUSE AND ACCUSENT AND ACC
- 101105_12	MPSIRQRFSCDVSGVDTESG-ATCRIKIGSWTHHSGEISVDPTTE-NSDDSEYFSQYSRF

Figure 4

(6/19)

nAChR_h-A2	AIVNATGTYNSKKYDCCAE-IYPDVTYAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLP
nAChR h-A4	VIVDAVGTYNTRKYECCAE-IYPDITYAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLP
nAChR_h-A5	EIVSATGSKGNRTDSCCWYPYVTYSFVIKRLPLFYTLFLIIPCIGLSFLTVLVFYLP
nAChR_h-A3	ALIKAPGYKHDIKYNCCEE-IYPDITYSLYIRRI,PI,FYTTNI,TTPCI,T,TSET,TVI,VEVI,P
nAChR_h-A6	EIIDASGYKHDIKYNCCEE-IYTDITYSFYIRRLPMFYTINLIIPCLFISFLTVLVFYLP
nAChR h-A1	VIKESRGWKHSVTYSCCPDTPYLDITYHFVMQRLPLYFIVNVIIPCLLFSFLTGLVFYLP
nAChR h-A7	DLVGIPGKRSERFYECCKE-PYPDVTFTVTMRRRTLYYGLNLLIPCVLISALALLVFLLP
nAChR h-A9	EVHGMPAVKNVISYGCCSE-PYPDVTFTLLLKRRSSFYIVNLLIPCVLISFLAPLSFYLP
B-AChBP T1	DLLSATQSLNRKKYSCCEN-MYDDIEITFAFRKK
B-AChBP T2	DLLSATQSLNRKKYRCCEN-MYEDIEITFAFRKK
L-AChBP T1	EILDVTQKKNSVTYSCCPE-AYEDVEVSLNFRKKGRSEIL
L-AChBP_T2	EILDVTQKKNSVIYSCCPE-AYEDVEVSLNFRKKGRSEIL
_	*
nAChR_h-A2	SDCGEKITLCISVLLSLTVFLLLITEIIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVL
nAChR_h-A4	SECGEKITLCISVLLSLTVFLLLITEIIPSTSLVIPLIGEYLI,FTMIFVTLSTVITVFVI
nAChR h-A5	SNEGEKICLCTSVLVSLTVFLLVIEEIIPSSSKVIPLIGEYLVFTMIFVTLSIMVTVFAI
nAChR_h-A3	SDCGEKVTLCISVLLSLTVFLLVITETIPSTSIVIPI.TGEVIJ.FTMT.FVTLSTVTTVFVI
nAChR_h-A6	SDCGEKVTLCISVLLSLTVFLLVITETIPSTSLVVPLVGEYLLFTMIFVTLSIVVTVFVL
nAChR_h-A1	TDSGEKMTLSISVLLSLTVFLLVIVELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVI
nAChR h-A7	ADSGEKISLGITVLLSLTVFMLLVAEIMPATSDSVPLIAQYFASTMIIVGLSVVVTVIVL
nAChR h-A9	AASGEKVSLGVTILLAMTVFQLMVAEIMP-ASENVPLIGKYYIATMALITASTALTIMVM
B-AChBP T1	
B-AChBP T2	
L-AChBP T1	
L-AChBP_T2	
nAChR h-A2	NVHHRSPSTH-TMPHWVRGALLGCVPRWLLMNRP
nAChR h-A4	NVHHRSPRTH-TMPTWVRRVFLDIVPRLLLMKRPSVVKDNCRRLIESMHKMASAPRFWPE
nAChR h-A5	NIHHRSSSTHNAMAPLVRKIFLHTLPKLLCMRSH
nAChR h-A3	NVHYRTPTTH-TMPSWVKTVFLNLLPRVMFMTRP
nAChR h-A6	NIHYRTPTTH-TMPRWVKTVFLKLLPQVLLMRWP
nAChR h-A1	NTHHRSPSTH-VMPNWVRKVFIDTIPNIMFFSTMK
nAChR h-A7	QYHHHDPDGG-KMPKWTRVILLNWCAWFLRMKRPG
nAChR h-A9	NIHFCGAEAR-PVPHWARVVILKYMSRVLFVYDVG
B-AChBP T1	
B-AChBP T2	
L-AChBP T1	
L-AChBP T2	
nAChR h-A2	
nAChR h-A4	PEGEPPATSGTQSLHPPSPSFCVPLDVPAEPGPSCKSPSDQLPPQQPLEAEKASPHPSPG
nAChR h-A5	
nAChR h-A3	TSNEGNAQKPRPLYGAELSNLNCFSRAESKGCKEGYPCQ
nAChR h-A6	TSWEGWAQKFKFLIGAELSNLNCFSRAESKGCKEGYPCQ
nAChR_h-A1	コウンナいの エロウカロ ヘビジ ロヤビ ドン・ファー エーニー コー ログ ドじょ じょく ロした ひひ は
nAChR h-A7	
nAChR_h-A9	
B-AChBP T1	ESCLSPHHSRER-DHLTKVYSKLPESN
B-AChBP T2	
L-AChBP T1	
L-AChBP T2	# # # # # # # # # # # # # # # # # # #
·······	

Figure 4 (continued)

(7/19)

	·
nAChR_h-A2	DRWACAGHVAPASGPKA
nAChR_h-A4	PCRPPHGTQAPGLAKARSLSVQHMSSPGEAVEGGVRCRSRSIQYCVPRDDAAPEADGQAA
nAChR_h-A5	SGPKS
nAChR_h-A3	DGMCGYCHHRRIKISNFSANLTRSSSSESVDA
nAChR_h-A6	LKECFHCHKSNELATSKRRLSHQPLQW
nAChR_h-A1	KPGPPP
nAChR_h-A7	GNLLYIGFRGLDGVHCVPTPDSGVVCGRMACSPTHD
nAChR_h~A9	LKAARNKDLSRKKDMNKRLKNDLGCQGKNP
B-AChBP T1	
B-AChBP T2	
L-AChBP T1	
L-AChBP_T2	
nAChR h-A2	PALLOE
nAChR h-A4	EALLQEGELLLSPHMQKA
_	GALASRNTHSAELPPPDQPSPCKCTCKKEPSSVSPSATVKTRSTKAPPPHLPLSPALTRA
nAChR_h-A5	SRNTLEAA
nAChR_h-A3	VLSLSALSPEIKEA
nAChR_h-A6	VVENSEHSPEVEDV
nAChR_h-A1	MGFHSPLIKHPEVKSA
nAChR_h-A7	EHLLHGGQPPEGDPDLAKI
nAChR_h-A9	QEAESYCAQYKVL
B-AChBP_T1	
B-AChBP_T2	
L-AChBP_T1	
L-AChBP_T2	
nAChR h-A2	I ECVUVIADUI DEEDADEEUVEDEVVVAAGANDA TATA
nAChR h-A4	LEGVHYIADHLRSEDADSSVKEDWKYVAMVIDRIFLWLFIIVCFLGTIGLFLPPFLA
nAChR h-A5	VEGVQYIADHLKAEDTDFSVKEDWKYVAMVIDRIFLWMFIIVCLLGTVGLFLPPWLA
nAChR_h-A3	LDSIRYITRHIMKENDVREVVEDWKFIAQVLDRMFLWTFLFVSIVGSLGLFVPVIYKWAN
nAChR h-A6	IQSVKYIAENMKAQNEAKEIQDDWKYVAMVIDRIFLWVFTLVCILGTAGLFLQPLMA
_	INSVQFIAENMKSHNETKEVEDDWKYVAMVVDRVFLWVFIIVCVFGTAGLFLQPLLG
nAChR_h-A1	IEGIKYIAETMKSDQESNNAAAEWKYVAMVMDHILLGVFMLVCIIGTLAVFAGRLIE
nAChR_h-A7	LEEVRYIANRFRCQDESEAVCSEWKFAACVVDRLCLMAFSVFTIICTIGILMSAP-NFVE
nAChR_h-A9	TRNIEYIAKCLKDHKATNSKGSEWKKVAKVIDRFFMWIFFIMVFVMTILIIA
B-AChBP_T1	
B-AChBP_T2	
L-AChBP_T1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
L-AChBP_T2	
nAChR h-A2	GMI
nAChR h-A4	GMI
nAChR h-A5	ILIPVHIGNANK
nAChR h-A3	REDA
nAChR h-A6	NTGKS
nAChR h-A1	LNQQG
nAChR h-A7	AVSKDFA
nAChR_h-A9	A SAUL A
B-AChBP T1	
_	
B-AChBP T2	**************************************
L-AChBP_T1	
L-AChBP_T2	

Figure 4 (continued)

(8/19)

B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	-MAELRRIILLLCTIAFHVSHG-QIRWTLLNQITGESDVIPLSNNT-PLNVSLNFKLM -MAELRGIILLLCTIAFHVSHG-QIRWTLLNQITGESDVIPLSNNT-PLNVSLNFKLMMRRNIFCLACLWIVQACLS-LDRADILYNIRQTSRPDVIPTQRDR-PVAVSVSLKFIMRRNIFCLACLWIVQGCLS-LDRADILYNIRQTSRPDVIPTQRDR-PVAVSVSLKFIMEPWPLLLLFSLCSAGLVLGSEHETRLVAKLFKDYSSVVRPVEDHRQVVEVTVGLQLI MRCSPGGVWLGLAASLLHVSLQGEFQRKLYKELVKNYNPLERPVANDSQPLTVYFSLSLL : : : : : : : : : : : : : : : : : : :
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. Al_human A7_human	NIVEADTEKDQVEVVLWTQASWKVPYYSS-LLSSSSLDQVSLPVSKMWTPDLSFYN-AIA NILEADTEKDQVEVVLWTQASWKVPYYSS-LLSSSSLDQVSLPASKMWTPDLSFYN-AIA NILEVNEITNEVDVVFWQQTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYN-AIS NILEVNEITNEVDVVFWQQTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYN-AIS QLINVDEVNQIVTTNVRLKQQWVDYNLKWNPDDYGGVKKIHIPSEKIWRPDLVLYNNADG QIMDVDEKNQVLTTNIWLQMSWTDHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADE ::::::::::::::::::::::::::::::::::::
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	APELLSADRVVVSKDGSVIYVPSQRVRFTCDLINVDTEPG-ATCRIKVGSWTHDNKQFAL APELLSTDRVVVSKDGSVIYVPSQRVRFTCDLINVDTEPG-ATCRIKVGSWTHDNKQLAL KPEVLTPQLARVVSDGEVLYMPSIRQRFSCDVSGVDTESG-ATCRIKIGSWTHHSREISV KPEVLTPQLARVVSDGEVLYMPSIRQRFSCDVSGVDTESG-ATCRIKIGSWTHHSGEISV DFAIVKFTKVLLQYTGHITWTPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWTYDGSVVAI RFDATFHTNVLVNSSGHCQYLPPGIFKSSCYIDVRWFPFDVQHCKLKFGSWSYGGWSL .: * : * : * : * : * : * : * : * : * : *
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	ITGEEGVVNIAEYFDS-PKFDLLSATQSLNRKKYSCC-ENMYDDIEITFAFRKK ITGEEGVVNIAEYFDS-PKYDLLSATQSLNRKKYRCC-ENMYEDIEITFAFRKK DPTTE-NSDDSEYFSQYSRFEILDVTQKKNSVTYSCC-PEAYEDVEVSLNFRKKGRSEIL DPTTE-NSDDSEYFSQYSRFEILDVTQKKNSVIYSCC-PEAYEDVEVSLNFRKKGRSEIL NPESD-QPDLSNFMES-GEWVIKESRGWKHSVTYSCCPDTPYLDITYHFVMQRLPLYFIV DLQMQ-EADISGYIPN-GEWDLVGIPGKRSERFYECC-KEPYPDVTFTVTMRRRTLYYGL : ::::::
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	NVIIPCLLFSFLTGLVFYLPTDSGEKMTLSISVLLSLTVFLLVIVELIPSTSSAVPLIGK NLLIPCVLISALALLVFLLPADSGEKISLGITVLLSLTVFMLLVAEIMPATSDSVPLIAQ
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	YMLFTMVFVIASIIITVIVINTHHRSPSTHVMPNWVRKVFIDTIPNIMFFSTMKRPSREK YFASTMIIVGLSVVVTVIVLQYHHHDPDGGKMPKWTRVILLNWCAWFLRMKRPGEDK
B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	QPPMGVRPACQHKQRRCSLASVEMSAVGPPPASNGNLLYIGFRGLDGVHCVPTPDSGVVCGRMAC
	

Figure 5

(9/19)

B-AChBP_T1. B-AChBP_T2. L-AChBP_T1. L-AChBP_T2. A1_human A7_human	FHSPLIKHPEVKSAIEGIKYIAETMKSDQESNNAAAEWKYVAMVMDHILL SPTHDEHLLHGGQPPEGDPDLAKILEEVRYIANRFRCQDESEAVCSEWKFAACVVDRLCL
B-AChBP T1.	
B-AChBP T2.	
L-AChBP_T1.	
L-AChBP T2.	
A1_human	GVFMLVCIIGTLAVFAGRLIELNQQG
A7 human	MAFSVFTIICTIGILMSAPNFVEAVSKDFAZ

Figure 5 (continued)

(10/19)

Figure 6

(11/19)

(12/19)

(13/19)

Figure 9

(14/19)

Figure 10

(15/19)

Figure 11

(16/19)

Figure 12

(17/19)

Figure 13

(18/19)

Figure 14

(19/19)

Figure 15

(1/20)

SEQUENCE LISTING

<110> Stichting voor de Technische Wetenschappen

<120> Water-soluble ligand-binding proteins and analogs of ligand-gated ion channels, crystals thereof and their use for screening ligands of ligand-gated ion channels

<130> F 1105 PCT

<140>

<141>

<160> 20

<170> PatentIn Ver. 2.1

<210> 1

<211> 690

<212> DNA

<213> Lymnaea stagnalis

<220>

<221> CDS

<222> (1)..(687)

<220>

<221> mat_peptide

<222> (58)..(687)

<400> 1

atg cgt cga aac att ttc tgc ctt gct tgt ctc tgg atc gtg caa gcg 48 Met Arg Arg Asn Ile Phe Cys Leu Ala Cys Leu Trp Ile Val Gln Ala

-15 -10 -5

tgt cta agc ttg gac cgg gca gac atc ttg tac aac ata cgt cag aca 96 Cys Leu Ser Leu Asp Arg Ala Asp Ile Leu Tyr Asn Ile Arg Gln Thr

-1 1

5

10

(2/20)

tcg	aga	ccg	gat	gtg	att	CCC	aca	cag	cga	gat	cgc	cca	gtg	gcg	gtg	144
Ser	Arg	Pro	Asp	Val	Ile	Pro	Thr	Gln	Arg	Asp	Arg	Pro	Val	Ala	Val	
	15					20					25					•
tcc	gtc	tct	ttg	aag	ttc	atc	aac	atc	ttg	gaa	gtg	aat	gaa	ata	acc	192
Ser	Val	Ser	Leu	Lys	Phe	Ile	Asn	Ile	Leu	Glu	Val	Asn	Glu	Ile	Thr	
30					35					40					45	
aat	gaa	gtg	gac	gtg	gtc	ttt	tgg	cag	cag	acg	aca	tgg	tcg	gac	agg	240
Asn	Glu	Val	Asp	Val	Val	Phe	Trp	Gln	Gln	Thr	Thr	Trp	Ser	Asp	Arg	
				50					55					60		
acc	ctc	gcc	tgg	aac	agt	tct	cac	tca	cca	gat	cag	gtt	tcc	gtg	cca	288
Thr	Leu	Ala	Trp	Asn	Ser	Ser	His	Ser	Pro	Asp	Gln	Val	Ser	Val	Pro	
			65					70					75			
ata	agc	tct	ttg	tgg	gtg	cct	gac	ctc	gct	gca	tac	aac	gcc	atc	tcg	336
Ile	Ser	Ser	Leu	Trp	Val	Pro	Asp	Leu	Ala	Ala	Tyr	Asn	Ala	Ile	Ser	
		80					85					90				
													•			
aaa	cct	gaa	gtc	ctt	aca	ccg	caa	ctg	gcc	agg	gtc	gta	tcc	gat	ggt	384
														Asp		
	95					100					105					
gaa	gtg	ctg	tac	atg	ccg	agt	atc	cgc	cag	cgg	ttc	tcc	tgc	gat	gta	432
Glu	Val	Leu	Tyr	Met	Pro	Ser	Ile	Arg	Gln	Arg	Phe	Ser	Cys	Asp	Val	
110					115					120					125	
tcg	ggt	gtc	gat	acg	gag	tcc	ggt	gct	aca	tgt	cgg	atc	aaa	att	ggt	480
Ser	Gly	Val	Asp	Thr	Glu	Ser	Gly	Ala	Thr	Cys	Arg	Ile	Lys	Ile	Gly	
				130					135					140		
tcc	tgg	acc	cac	cac	agt	aga	gag	att	tct	gta	gat	ccc	acg	aca	gaa	528
Ser	Trp	Thr	His	His	Ser	Arg	Glu	Ile	Ser	Val	Asp	Pro	Thr	Thr	Glu	
			145					150					155			
																•
aat	agt	gat	gat	tct	gaa	tac	ttc	tcc	caa	tac	tct	cgc	ttt	gaa	atc	576
														Glu		
		160					165					170				

(3/20)

ttg	gac	gtc	aca	cag	aag	aag	aac	tcg	gtt	acc	tac	tct	tgc	tgt	ccg	624
Leu	Asp	Val	Thr	Gln	Lys	Lys	Asn	Ser	Val	Thr	Tyr	Ser	Cys	Cys	Pro	
	.175					180					185			_		
gag	gca	tac	gag	gac	gtt	gaa	gtg	agt	ctc	aat	ttc	caa	aaσ	aaσ	gga	672
					Val											0.2
190		_		_	195					200		9		-7.5	205	
										200					203	
cgc	tcc	gaa	att	ctt	tao										,	690
			Ile		3											050
3				210												
				210												
· -21	0> 2															
	0	20														
	2> P													٠		
<21.	3> L	ymna	ea st	tagn	alis											
	0> 2															
Met	Arg	Arg	Asn	Ile	Phe	Cys	Leu	Ala	Cys	Leu	\mathtt{Trp}	Ile	Val	Gln	Ala	
				-15					-10					-5		
Cys	Leu	Ser	Leu	Asp	Arg	Ala	Asp	Ile	Leu	Tyr	Asn	Ile	Arg	Gln	Thr	
		-1	1				5	•				10				
Ser	Arg	Pro	Asp	Val	Ile	Pro	Thr	Gln	Arg	Asp	Arg	Pro	Val	Ala	Val	
	15					20					25					
Ser	Val	Ser	Leu	Lys	Phe	Ile	Asn	Ile	Leu	Glu	Val	Asn	Glu	Ile	Thr	
30					35					40					45	
Asn	Glu	Val	Asp	Val	Val	Phe	Trp	Gln	Gln	Thr	Thr	מיניי	Ser	Agn	Δrα	
			-	50					55			112	501	60	mrg	
														UU		
Thr	Leu	Ala	Trn	Asn	Ser	Ser	His	Ser	Pro	Agn	C] n	U = U	Se~	V-1	Dro	
			65			J-U-1	*****	70	U	vaħ	G 111	val		vai	LT.O	
			0.5		•			, 0					75			
	C~~	C-~	T	m~~	1707	Dwa	7 a-	.	. 1 -	3 7 -	-				_	
TTE	ser	_	ьeu	1.r.b	Val	LIO		ьeu	Ата	АІА	īyr		Ala	Ile	Ser	
		80					85					90				

(4/20)

Lys Pro Glu Val Leu Thr Pro Gln Leu Ala Arg Val Val Ser Asp Gly 95 100 105

Ser Gly Val Asp Thr Glu Ser Gly Ala Thr Cys Arg Ile Lys Ile Gly
130 135 140

Ser Trp Thr His His Ser Arg Glu Ile Ser Val Asp Pro Thr Thr Glu 145 150 155

Asn Ser Asp Asp Ser Glu Tyr Phe Ser Gln Tyr Ser Arg Phe Glu Ile 160 165 170

Leu Asp Val Thr Gln Lys Lys Asn Ser Val Thr Tyr Ser Cys Cys Pro 175 180 185

Glu Ala Tyr Glu Asp Val Glu Val Ser Leu Asn Phe Arg Lys Gly
190 195 200 205

Arg Ser Glu Ile Leu 210

<210> 3

<211> 690

<212> DNA

<213> Lymnaea stagnalis

<220>

<221> CDS

<222> (1)..(687)

<220>

<221> mat_peptide

<222> (58)..(687)

<400> 3

(5/20)

atg	cgt	cga	aac	att	ttc	tgc	ctt	gct	tgt	ctc	tgg	atc	gtg	caa	ggg	48
Met	Arg	Arg	Asn	Ile	Phe	Cys	Leu	Ala	Cys	Leu	Trp	Ile	Val	Gln	Gly	
				-15					-10					~5		
tgt	cta	agc	ttg	gac	cgg	gca	gac	atc	ttg	tac	aac	ata	cgt	cag	aca	96
Cys	Leu	Ser	Leu	Asp	Arg	Ala	Asp	Ile	Leu	Tyr	Asn	Ile	Arg	Gln	Thr	
		-1	1				5					10				
tcg	aga	ccg	gat	gtg	att	ccc	aca	cag	cga	gat	cgc	cca	gtg	gcg	gtg	144
Ser	Arg	Pro	Asp	Val	Ile	Pro	Thr	Gln	Arg	Asp	Arg	Pro	Val	Ala	Val	
	15					20					25					
tcc	gtc	tct	ttg	aag	ttc	atc	aac	atc	ttg	gaa	gtg	aat	gaa	ata	acc	192
														Ile		
30					35					40					45	
aat	gaa	gtg	gac	gtg	gtc	ttt	tgg	cag	cag	acq	aca	taa	tca	gac	agg	240
														Asp		
			-	50			•		55					60	9	
									•							
acc	ctc	acc	taa	aac	agt	tct	cac	tca	cca	gat	cad	att	tcc	gtg	cca	288
														Val		200
			65					70			0211	,	75	V		
								. •					, 3			,
ata	agc	tct	tta	taa	ata	cct	gac	ctc	act	aca	tac	aac	acc	atc	tca	336
													_	Ile	_	330
		80			141		85	Dou		1114	+3+	90	AIG	116	DET	
		•					0.5					90				
aaa	cct	σаа	atc	ctt	aca	cca	caa	cta	acc	acc	ata	at a	taa	gat	aat	201
														Asp		384
-3 -	95		Vul	Lu	****	100	G111	Dea	n±a	AT 9	105	Vai	Ser	Asp	GIY	
	,,,					100					103					
ra a	ata	ata	tac	ato	cca	20+	ato	989	~=~	~~~				gat		420
														Asp		432
110	VAI	пеп	TÄT	Mec		ser	116	ALG	GIII		Pne	ser	Cys	Asp		
					115					120					125	
- ~ ~	~~+	at a	~~ <u>-</u>	200	~ ~~	.	~~-	~~ -		h b		_ 4		- 4 -		
														att		480
ν ε τ	GTĀ	۸qт	Asp		GIU	ser	σтλ	ATG		cys	Arg	TTE	гуз	Ile	GTA	
				130					135					140		

(6/20)

tcc	tgg	acc	cac	cac	agt	gga	gag	att	tct	gta	gat	ccc	acg	aca	gaa	528
Ser	Trp	Thr	His	His	Ser	Gly	Glu	Ile	Ser	Val	Asp	Pro	Thr	Thr	Glu	
			145					150					155			
aat	agt	gat	gat	tct	gaa	tac	ttc	tcc	caa	tac	tct	cgc	ttt	gaa	atc	576
Asn	Ser	Asp	Asp	Ser	Glu	Tyr	Phe	Ser	Gln	Tyr	Ser	Arg	Phe	Glu	Ile	
		160					165					170				
											tac					624
Leu	Asp	Val	Thr	Gln	Lys	Lys	Asn	Ser	Val	Ile	Tyr	Ser	Cys	Cys	Pro	
	175					180					185					
											ttc					672
	Ala	Tyr	Glu	Asp	Val	Glu	Val	Ser	Leu	Asn	Phe	Arg	Lys	Lys	Gly	
190					195					200					205	
				ctt	tag											690
Arg	Ser	Glu	Ile	Leu												
				210												
																•
-21	0> 4															
)> 4 L> 2:	20														
	2> PI															
				cagna	11.											
	,	Yauta	נמ אנ	agne	1115				,							
<400	> 4															
		Ara	Asn	Ile	Phe	Cvs	Len	Δla	Cve	Lou	Trp	Tlo	Wa l	C1 m	Clv	
	J			-15		Ψ _I ν.	200		-10	-10 u	TTD	116	Val	-5	GIĀ	
					•									-5		
Сув	Leu	Ser	Leu	Asp	Arg	Ala	gaA	Ile	Leu	Tvr	Asn	Tle	Ara	Gln	ጥከድ	
		-1	1	_	-		5			-3-		10	9	0111	1114	
Ser	Arg	Pro	Asp	Val	Ile	Pro	Thr	Gln	Arg	Asp	Arg	Pro	Val	Ala	Val	
	15					20		•	-	-	25	,			•	
											-					
Ser	Val	Ser	Leu	Lys	Phe	Ile	Asn	Ile	Leu	Glu	Val	Asn	Glu	Ile	Thr	
30					35					40				•	45	
			_	7					~ 7		Thr	_				

(7/20)

60

50 55

Thr Leu Ala Trp Asn Ser Ser His Ser Pro Asp Gln Val Ser Val Pro

65 70 75

Ile Ser Ser Leu Trp Val Pro Asp Leu Ala Ala Tyr Asn Ala Ile Ser 80 85 90

Lys Pro Glu Val Leu Thr Pro Gln Leu Ala Arg Val Val Ser Asp Gly
95 100 105

Ser Gly Val Asp Thr Glu Ser Gly Ala Thr Cys Arg Ile Lys Ile Gly 130 135 140

Ser Trp Thr His His Ser Gly Glu Ile Ser Val Asp Pro Thr Thr Glu 145 150 155

Asn Ser Asp Asp Ser Glu Tyr Phe Ser Gln Tyr Ser Arg Phe Glu Ile 160 165 170

Leu Asp Val Thr Gln Lys Lys Asn Ser Val Ile Tyr Ser Cys Cys Pro 175 180 185

Glu Ala Tyr Glu Asp Val Glu Val Ser Leu Asn Phe Arg Lys Lys Gly
190 195 200 205

Arg Ser Glu Ile Leu

210

<210> 5

<211> 675

<212> DNA

<213> Bulinus truncatus

<220>

(8/20)

<22	1> C	DS														
<22	2> (1)	(672)												
<22	0>															
<22	1> m	at_p	epti	đe												
<22	2> (64).	.(67	2)												
<40	0> 5			•												
atg	gct	gaa	cta	cga	agg	atc	att	ctt	ctg	cta	tgt	act	att	gcc	ttt	48
Met	Ala	Glu	Leu	Arg	Arg	Ile	Ile	Leu	Leu	Leu	Cys	Thr	Ile	Ala	Phe	
	-20					-15					-10					
cat	gtt	tcc	cat	gga	caa	ata	aga	tgg	acg	ctg	ctg	aat	caq	atc	acc	96
				Gly												
-5				-1	1				5					10		
aat	gaa	tct	gac	gtc	att	cca	cta	tet	aac	aac	aca	ccc	at a	aat	a+a	111
				Val												144
-			15					20		11011	1111	210	25	Veli	vai	
													23			
tcg	ctg	aat	ttt	aag	ctg	atg	aat	atc	gta	gag	gcg	gac	aca	gaa	aaa	192
Ser	Leu	Asn	Phe	Lys	Leu	Met	Asn	Ile	Val	Glu	Ala	Asp	Thr	Glu	Lys	
		30					35					40				
								,								
				gtc												240
Asp		Val	Glu	Val	Val		Trp	Thr	Gln	Ala	Ser	Trp	Lys	Val	Pro	
	45					50					55					
tat	tac	agc	tca	ctg	ctg	tcc	tct	agc	agt	tta	gac	cag	gtg	agc	tta	288
Tyr	Tyr	Ser	Ser	Leu	Leu	Ser	Ser	Ser	Ser	Leu	Asp	Gln	Val	Ser	Leu	
60					65					70					75	
				atg										-		336
Pro	Val	Ser	Lys	Met	Trp	Thr	Pro	Asp		Ser	Phe	Tyr	Asn	Ala	Ile	
				80					85					90		
gct	gca	ccc	gag	ttg	ctc	tcc	gca	gac	cgc	gtg	gtg	gtc	tct	aag	gac	384
				Leu												
			95					100					105			

(9/20)

agg	agc	gtc	att	tac	gtc	CCC	agc	cag	agg	gtc	cgt	ttc	acc	tgc	gac	432
Gly	Ser	Val	Ile	Tyr	Val	Pro	Ser	Gln	Arg	Val	Arg	Phe	Thr	Cys	Asp	
		110					115					120				
ctt	att	aat	gtc	gac	acg	gag	ccg	gga	gcc	acc	tgt	cgc	atc	aaa	gtc	480
Leu	Ile	Asn	Val	Asp	Thr	Glu	Pro	Gly	Ala	Thr	Cys	Arg	Ile	Lys	Val	
	125					130					135					
				cac											_	528
Gly	Ser	Trp	Thr	His	Asp	Asn	Lys	Gln	Phe	Ala	Leu	Ile	Thr	Gly	Glu	
140					145					150					155	
				aat												576
Glu	Gly	Val	Val	Asn	Ile	Ala	Glu	Tyr	Phe	Asp	Ser	Pro	Lys	Phe	Asp	
				160					165					170		
				aca												624
Leu	Leu	Ser		Thr	Gln	Ser	Leu		Arg	Lys	Lys	Tyr	Ser	Cys	Cys	
			175					180					185			
				gat												672
GIU	Asn		ıyr	Asp	Asp	TTE		IIe	Thr	Phe	Ala		Arg	Lys	Lys	
		190					195					200				
												•				
taa																675
<210)															
)> 0 L> 22	2./1														
	2> PI															
			ie tr	runca	tue											
721.	,	*****	45 CI	. unc	acus											
<400)> 6															
	-	Glu	Len	Arg	Δrα	Tle	Tla	Len	LOU	Lou	Cyro	Whr	Tlo	- ד ת	Dho	
	-20	0.4	110 to	my	,, <u>,,</u>	-15	116	Dea.	Пеп	neu	-10	1111	TTE	мта	Pne	
											-10					
His	Val	Ser	His	Gly	Gln	Ile	Ara	Trn	Thr	Len	Len	Asn	Gln	Tle	ጥኮ፦	
-5				-1	1		3		5					10	***	
				_	-				-							
Glv	Glu	Ser	Asp	Val	Tle	Pro	Leu	Ser	Δen	Aen	ሞክዮ	Pro	T.011	λen	TeV	

(10/20)

			15					20					25		
Ser	Leu	Asn 30	Phe	Lys	Leu	Met	Asn 35	Ile	Val	Glu	Ala	Asp 40	Thr	Glu	Ly
Asp	Gln 45	Val	Glu	Val	Val	Leu 50	Trp	Thr	Gln	Ala	Ser 55	Trp	Lys	Val	Pro
Туr 60	Tyr	Ser	Ser	Leu	Leu 65	Ser	Ser	Ser	Ser	Leu 70	Asp	Gln	Val	Ser	Let 75
Pro	Val	Ser	Lys	Met 80	Trp	Thr	Pro	qaA	Leu 85	Ser	Phe	Tyr	Asn	Ala 90	Ιlϵ
Ala	Ala	Pro	Glu 95	Leu	Leu	Ser	Ala	Asp 100	Arg	Va1	Val	Val	Ser 105	Lys	Asp
Gly	Ser	Val 110	Ile	Tyr	Val	Pro	Ser 115	Gln	Arg	Va1	Arg	Phe 120	Thr	Cys	Asp
Leu	Ile 125	Asn	Val	Asp	Thr	Glu 130	Pro	Gly	Ala	Thr	Cys 135	Arg	Ile	Lys	Val
Gly 140	Ser	Trp	Thr	His	Asp 145	Asn	Lys	Gln	Phe	Ala 150	Leu	Ile	Thr	Gly	Glu 155
Glu	Gly	Val	Val	Asn 160	Ile	Ala	Glu	Tyr	Phe 165	Asp	Ser	Pro	Lys	Phe 170	Asp
Leu	Leu	Ser	Ala 175	Thr	Gln	Ser	Leu	Asn 180	Arg	Lys	Lys	Tyr	Ser 185	Суз	Суз

Glu Asn Met Tyr Asp Asp Ile Glu Ile Thr Phe Ala Phe Arg Lys Lys

200 .

195

<210> 7

<211> 675

190

<212> DNA

(11/20)

<21	3> B	ulin	us t	runc	atus											
<22	0>															
<22	1> C!	DS														
<22	2> (1)	(672)												
<22	0>															
<22	1> m	at_p	epti	đe												
<22	2> (64).	. (67	2)									•			•
<40	0> 7															
atg	gct	gaa	cta	cga	ggg	atc	att	ctt	ctg	cta	tgt	act	att	gcc	ttt	48
Met	Ala	Glu	Leu	Arg	Gly	Ile	Ile	Leu	Leu	Leu	Cys	Thr	Ile	Ala	Phe	
	-20					-15					-10					
cat	gtt	tcc	cat	gga	caa	ata	aga	tgg	acg	ctg	ctg	aat	cag	atc	acc	96
His	Val	Ser	His	Gly	Gln	Ile	Arg	Trp	Thr	Leu	Leu	Asn	Gln	Ile	Thr	
-5				-1	1				5					10	,	
ggt	gaa	tct	gac	gtc	att	ccg	ctg	tct	aac	aac	acg	cca	ctg	aat	gtg	14
Gly	Glu	Ser	qaA	Val	Ile	Pro	Leu	Ser	Asn	Asn	Thr	Pro	Leu	Asn	Val	
			15					20					25			
tcg	ctg	aat	ttt	aag	ctg	atg	aat	atc	tta	gag	gcg	gac	aca	gag	aaa	192
Ser	Leu	Asn	Phe	Lys	Leu	Met	Asn	Ile	Leu	Glu	Ala	Asp	Thr	Glu	Lys	
		30					35					40				
gat	caa	gtg	gag	gtc	gtg	ctg	tgg	aca	cag	gct	agc	tgg	aaa	gtg	ccg	240
Asp	Gln	Val	Glu	Val	Val	Leu	Trp	Thr	Gln	Ala	Ser	Trp	Lys	Val	Pro	
	45					50					55		~			•
tat	tac	agc	tca	ctg	ctg	tcc	tct	agc	agt	tta	gac	cag	gtg	agc	tta	288
Tyr	Tyr	Ser	Ser	Leu	Leu	Ser	Ser	Ser	Ser	Leu	Asp	Gln	Val	Ser	Leu	
60					65					70					75	
cca	gcc	agc	aaa	atg	tgg	acc	cca	gac	ctt	tct	ttc	tat	aac	gcc	atc	336
Pro	Ala	Ser	Lys	Met	Trp	Ţhr	Pro	qaA	Leu	Ser	Phe	Tyr	Asn	Ala	Ile	
				80					85					90		
gct	gca	CCC	gag	ttg	ctc	tcc	aca	gac	cgc	gtg	gtg	gtc	tct	aag	gac	384

(12/20)

Ala Ala Pro Glu Leu Leu Ser Thr Asp Arg Val Val Val Ser Lys Asp 95 100 105	
ggg agc gtc att tac gtg ccc agc cag agg gtc cgt ttc acc tgc gac	432
Gly Ser Val Ile Tyr Val Pro Ser Gln Arg Val Arg Phe Thr Cys Asp	
110 115 120	
ctt att aat gtg gac acg gag ccg gga gcc acc tgt cgc atc aaa gtc	480
Leu Ile Asn Val Asp Thr Glu Pro Gly Ala Thr Cys Arg Ile Lys Val	
125 130 135	
	528
gga tcc tgg acc ttc gac aac aaa cag ctc gcc ctg atc acc ggg gag Gly Ser Trp Thr Phe Asp Asn Lys Gln Leu Ala Leu Ile Thr Gly Glu	320
140 145 150 155	
140 143 130 130	
gag ggg gtg gtg aat att gca gag tac ttc gac agc cca aag tac gac	576
Glu Gly Val Val Asn Ile Ala Glu Tyr Phe Asp Ser Pro Lys Tyr Asp	
160 165 170	
ctt ttg agt gcc aca cag agt ctg aat cgc aag aag tac aga tgt tgc	624
Leu Leu Ser Ala Thr Gln Ser Leu Asn Arg Lys Lys Tyr Arg Cys Cys	
175 180 185	
•	
gag aat atg tat gaa gac att gaa att acc ttt gca ttc aga aag aag	672
Glu Asn Met Tyr Glu Asp Ile Glu Ile Thr Phe Ala Phe Arg Lys	
190 195 200	
	675
taa	0/3
<210> 8	
<211> 224	
<212> PRT	
<213> Bulinus truncatus	
<400> 8	
Met Ala Glu Leu Arg Gly Ile Ile Leu Leu Cys Thr Ile Ala Phe	
-20 -15 -10	
His Val Ser His Gly Gln Ile Arg Trp Thr Leu Leu Asn Gln Ile Thr	

(13/20)

- 5				-1	1				5					10	
Gly	Glu	Ser	Asp 15	Val	Ile	Pro	Leu	Ser 20		Asn	Thr	Pro	Leu 25		Va]
Ser	Leu	Asn 30	Phe	Lys	Leu	Met	Asn 35	Ile	Leu	Glu	Ala	Asp 40	Thr	Glu	Lys
Asp	Gln 45	Val	Glu	Val	Val	Leu 50	Trp	Thr	Gln	Ala	Ser 55	Trp	Lys	Val	Pro
Tyr 60	Tyr	Ser	Ser	Leu	Leu 65	Ser	Ser	Ser	Ser	Leu 70	Asp	Gln	Val	Ser	Leu 75
Pro	Ala	Ser	Lys	Met 80	Trp	Thr	Pro	Asp	Leu 85	Ser	Phe	Tyr	Asn	Ala 90	Ile
Ala	Ala	Pro	Glu 95	Leu	Leu	Ser	Thr	Asp 100	Arg	Val	Val	Val	Ser 105	Lys	Asp
Gly	Ser	Val 110	Ile	Tyr	Val	Pro	Ser 115	Gln	Arg	Val	Arg	Phe 120	Thr	Cys	Asp
Leu	Ile 125	Asn	Val	Asp	Thr	Glu 130	Pro	Gly	Ala	Thr	Cys 135	Arg	Ile	Ьуs	Val
Gly 140	Ser	Trp	Thr	Phe	Asp 145	Asn	ГЛЗ	Gln	Leu	Ala 150	Leu	Ile	Thr	Gly	Glu 155
Glu	Gly	Val	Val	Asn 160	Ile	Ala	Glu	Tyr	Phe 165	Asp	Ser	Pro	Lys	Туr 170	Asp
Leu	Leu	Ser	Ala 175	Thr	Gln	Ser	Leu	Asn 180	Arg	Lys	Lys	Tyr	Arg 185	Сув	Сув
Glu	Asn	Met 190	Tyr	Glu	Asp	Ile	Glu 195	Ile	Thr	Phe	Ala	Phe 200	Arg	Lys	Lys

(14/20)

<21	0> 9														
<21	1> 5	02													
<21	2> P	RT													
<21	3> H	omo	sapi	ens											
<22	0>														
<22	1> D	OMAI	N											•	
			(235)											
	·	,	•												
<40	0> 9														
		Cvs	Ser	Pro	Glv	Glv	Val	Trn	Leu	Δ1 ₌	Len	בומ	בומ	. 502	Leu
1	5	-1-		5	023	Q	Vu_		10	1114	neu	AIG	AIG	15	nea
				J					10					15	
Len	Hiq	Val	Ser	Len	Gln	Glv	Glu	Dho	Cln	7 ~~	Tira	T 011	(Th. 1700	T	01. 1
		., 42	20	Lou	0111	Q13	O.L.	25	GIII	ALG	пуъ	neu		nys	GLU
								23					30		
Len	Va1	Lve	Asn	Фи	Acn	Dro	Low	C1.,	X ~~~	D	**- 1	n1.	3	n	a
Dou	Vul	35	ASII	- Y L	ASII	FIU	40	GIU	Arg	PLO	vaı		Asn	Asp	Ser
		33					40					45			
Gln	Pro	T.esu	መት ም	Ta I	The same	Dho	50×	T 011	C	T	.	01	~ 1 _		•
GIII	50	neu	Thr	vaı	тАт	55	ser	ьeu	ser	ьeu		GIN	тте	Met	Asp
	30					,,,					60				
Val	Aen	Glu	Lys	λen	Cln	1701	T 011	Mb ≈	mh w	7	-1 -	m	-	61	L
65	. rsp	Gra	шуъ	NSII	70	Val	neu	1111	TILL		тте	Trp	Leu	GIN	
U.J					70					75					80
Ser	Trn	ጥኮኍ	y an	นเล	Πh r∞	T 011	C1 -	M.	3	77m 7	G	01		_	~1
DCI	rrp	1111	Asp	85		ьеи	GTII	irp		Val	ser	GIU	туг		GIY
				63	•				90					95	
Wal.	Laze	መከኍ	บอไ	λ×α	Dho	D=0	7.00	C1	01	- 1 -		.		_	
Val	Бур	1111	Val	ALG	FIIE	PIO	ASD		GIU	TTE	Trp	гÀЗ		Asp	IIe
			100					105					110		
T.Ou	T.OU	m. m	7.05	Com	710	7	01	7	Dh.a	7		m1	_,		
Dea	neu	115	Asn	ser	Ата	Asp		Arg	Pne	Asp	Ата		Pne	His	Thr
		113					120					125			
7 am	1701	T 0	1707	7	C	a	~ 1		_	~-	_	_			
ASII		ьец	Val	ASN	ser		GIŢ	HIS	Cys	Gin		Leu	Pro	Pro	Gly
	130					135					140				
T3 ~	Dho	T 1 . ~	C~~	C	C1	т	- 1 -	X	***- 7		m.	5 1	_	_,	
	rne	пĀВ	Ser	ser		ıyr	тте	Asp	val		Trp	Phe	Pro	Phe	
145					150					155					160

150

155

160

Val	Gln	His	Cys	Lys 165	Leu	Lys	Phe	Gly	Ser 170	Trp	Ser	Tyr	Gly	Gly 175	Trp
Ser	Leu	Asp	Leu 180	Gln	Met	Gln	Glu	Ala 185	Asp	Ile	Ser	Gly	Tyr 190	Ile	Pro
Asn	Gly	Glu 195	Trp	Asp	Leu	Val	Gly 200	Ile	Pro	Gly	Lys	Arg 205	Ser	Glu	Arg
Phe	Tyr 210	Glu	Cys	Cys	Lys	Glu 215	Pro	Tyr	Pro	Asp	Val 220	Thr	Phe	Thr	Val
Thr 225	Met	Arg	Arg	Arg	Thr 230	Leu	Tyr	Tyr	Gly	Leu 235	Asn	Leu	Leu	Ile	Pro 240
Сув	Val	Leu	Ile	Ser 245	Ala	Leu	Ala	Leu	Leu 250	Val	Phe	Leu	Leu	Pro 255	Ala
Asp	Ser	Gly	Glu 260	Lys	Ile	Ser	Leu	Gly 265	Ile	Thr	Val	Leu	Leu 270	Ser	Leu
Fhr	Val	Phe 275	Met	Leu	Leu	Val	Ala 280	Glu	Ile	Met	Pro	Ala 285	Thr	Ser	Asp
Ser	Val 290	Pro	Leu	Ile	Ala	Gln 295	Tyr	Phe	Ala	Ser	Thr 300	Met	Ile	Ile	Val
31y 305	Leu	Ser	Val	Val	Val 310	Thr	Val	Ile	Val	Leu 315	Gln	Tyr	His	His	His 320
/sp	Pro	Asp	Gly	Gly 325	Lys	Met	Pro	Lys	Trp 330	Thr	Arg	Val	Ile	Leu 335	Leu
Asn	Trp	Суз	Ala 340	Trp	Phe	Leu	Arg	Met 345	Lys	Arg	Pro	Gly	Glu 350	Asp	Lys
/al	Arg	Pro 355	Ala	Cys	Gln	His	160	Gln	Arg	Arg	Cys	Ser 365	Leu	Ala	Ser

Val Glu Met Ser Ala Val Ala Pro Pro Pro Ala Ser Asn Gly Asn Leu

(16/20)

370 375 380

Leu Tyr Ile Gly Phe Arg Gly Leu Asp Gly Val His Cys Val Pro Thr 385 390 395 400

Pro Asp Ser Gly Val Val Cys Gly Arg Met Ala Cys Ser Pro Thr His 405 410 415

Asp Glu His Leu Leu His Gly Gly Gln Pro Pro Glu Gly Asp Pro Asp 420 425 430

Leu Ala Lys Ile Leu Glu Glu Val Arg Tyr Ile Ala Asn Arg Phe Arg 435 440 445

Cys Gln Asp Glu Ser Glu Ala Val Cys Ser Glu Trp Lys Phe Ala Ala 450 455 460

Cys Val Val Asp Arg Leu Cys Leu Met Ala Phe Ser Val Phe Thr Ile 465 470 475 480

Ile Cys Thr Ile Gly Ile Leu Met Ser Ala Pro Asn Phe Val Glu Ala
485 490 495

Val Ser Lys Asp Phe Ala 500

<210> 10

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: N-terminus of
 mature LAChBP1

<400> 10

Leu Asp Arg Ala Asp Ile Leu Tyr Asn Ile

1

5

10

32

(17/20)

```
<210> 11
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence:
      Oligonucleotides encoding N-terminal peptide of
      LAChBP1
<220>
<221> modified_base
<222> (13)
<223> i
<400> 11
cggatccgay mgagcngaya thytntayaa ya
<210> 12
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer1 useful
      for cloning cDNA encoding LAChBP (optionally with
      Primer2)
<220>
<221> modified_base
<222> (14)
<223> i
<220>
<221> modified_base
<222> (20)
<223> i
```

(18/20)

```
<400> 12
gcgaattcga yacagarwsa ggngcnacnt g
                                                                  31
<210> 13
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer2
      useful for cloning cDNA encoding LAChBP
      (optionally with Primer1)
<220>
<221> modified_base
<222> (20)
<223> i
<400> 13
gcgaagcttc rtcytcrtaa gcytcngcrc arc
                                                                  33
<210> 14
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: His-tag
<400> 14
Ser Arg Gly His His His His His
  1
<210> 15
<211> 14
<212> PRT
<213> Artificial Sequence
```

47

(19/20)

<220> <223> Description of Artificial Sequence: His-tag <400> 15 Glu Phe Lys Asp Asp Asp Lys His His His His His His 10 <210> 16 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Additional amino acids at the N-terminus of mature LAChBP due to alpha-mating factor cleavage site <400> 16 Glu Ala Glu Ala <210> 17 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Primer useful for generating LAChBP/alpha7 nAChR chimera <400> 17 gcgctcgaga aaagagaggc tgaagctttg gaccgggcag acatctt

<210> 18 <211> 30 <212> DNA

(20/20)

~213/	Willicial Sedience	
<220>		
<223>	Description of Artificial Sequence: Primer useful	
	for generating LAChBP/alpha7 nACHR chimera	
<400>	18	
cgcgaa	attca agaatttcgg agcgtccctt	30
<210>		
<211>		
<212>	·	
<213>	Artificial Sequence	
-220-		
<220>	Description of Artificial Company, Primary wasful	
\443 /	Description of Artificial Sequence: Primer useful for generating LAChBP/alpha7 nACHR chimera	
	Tot generating DACIDF/alpha/ HACIA Chimera	
<400>	19	
gtggaa	aacca gacattetee tetacaaege catetegaaa ee	42
<210>	20	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Primer useful	
	for generating LAChBP/alpha7 nACHR chimera	
.400		
<400>		2.0
yaggag	gaatg tetggtttee acaaagaget tattggeae	39

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.