

EECS 442 – Computer vision

Announcements

Midterm feedback

EECS 442 – Computer vision

Volumetric stereo

- Definition
- Shape from Contours
- Voxel coloring

"Traditional" Stereo

Goal: estimate the position of P given the observation of P from two view points

Assumptions: known camera parameters and position (K, R, T)

"Traditional" Stereo

Subgoals:

- 1. Solve the correspondence problem
- 2. Use corresponding observations to triangulate

Volumetric stereo

- 1. Hypothesis: pick up a point within the volume
- 2. Project this point into 2 (or more) images
- 3. Validation: are the observations consistent?

Assumptions: known camera parameters and position (K, R, T)

Consistency based on cues such as:

- Contours/silhouettes
- Colors

Contours are a rich source of geometric information

Apparent contour

DEFINITION: projection of the locus of points on the surface which separate the visible and occluded parts on the surface

[sato & cipolla]

Silhouettes

Why contours are interesting visual cues?

❖ Provide information in absence of other visual cues

No texture

No shading

Why contours are interesting visual cues?

❖ Relatively easy to detect

how to perform visual cones intersection?

decompose visual cone in polygonal surfaces

(among others: Reed and Allen '99)

Using contours/silhouettes in volumetric stereo

[Martin and Aggarwal (1983)]

Consistency:

A voxel must be projected into a silhouette in each image

Space Carving has complexity ... O(N³)

Complexity reduction: octrees

Complexity reduction: octrees

Subdiving volume in voxels of progressive smaller size

Complexity reduction: octrees

Advantages of space carving

- Robust and simple
- ❖ No need to solve for correspondences

Limitations of space carving

Accuracy function of number of views Not a good estimate What else?

Limitations of space carving

Limitations of space carving

Space carving: a classic setup

Space carving: a classic setup

Space carving: Experiments

- ❖ 24 poses (15^O)
- ❖ voxel size = 2mm

Space carving: Experiments

- ❖ 24 poses (15^O)
- ❖ voxel size = 1mm

Space carving: Conclusions

- Robust
- Produce conservative estimates
- Concavities can be a problem
- Low-end commercial 3D scanners

Contours in the computer vision literature

Analyzing changes in apparent contours

Picture from of Sato & Cipolla

- ❖ Giblin and Weiss (1987)
- ❖ Cipolla and Blake (1992)
- ❖ Vaillant and Faugeras (1992)
- ❖ Ponce ('92), Zheng('94)
- ❖ Furukawa et al. ('05...)

Volumetric stereo

- Definition
- Shape from Contours
- Voxel coloring

Voxel Coloring

Seitz & Dyer ('97)

R. Collins (Space Sweep, '96)

- color/photo-consistency
- Jointly model structure and appearance

Basic idea

Basic idea

Uniqueness

Multiple consistent scenes

Uniqueness

Multiple consistent scenes

Tractability

- Combinatorial number possible assignments!
- Exhaustive search not feasible
- Use visibility constraint

The algorithm

Algorithm complexity

❖ voxel coloring visits each N³ voxels only once

project each voxel into L images

 \rightarrow O(L N³)

NOTE: not function of the number of colors

Photoconsistency test

If λ < Thresh \rightarrow voxel consistent

A critical assumption: Lambertian surfaces

Non Lambertian surfaces

Experimental results

Dinosaur

- ❖ 7.6 M voxels tested
- ❖ 7 min to compute on a 250MHz

Experimental results

Flower

- ❖ 70 k voxels colored
- ❖ 7.6 M voxels tested
- ❖ 7 min to compute on a 250MHz

Experimental results

Room + weird people

space carving

Voxel coloring: conclusions

- model intrinsic scene colors and texture
- no assumptions on scene topology

Voxel coloring: conclusions

Good things:

- model intrinsic scene colors and texture
- no assumptions on scene topology

- Constrained camera positions
- Lambertian assumption

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

True Scene Reconstruction

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

- Sweep plane in each of 6 principle directions
- Consider cameras on only one side of plane
- Repeat until convergence

Space Carving Results: African Violet

Input Image (1 of 45)

Reconstruction

Reconstruction

Reconstruction

Space Carving Results: Hand

Input Image (1 of 100)

Views of Reconstruction

House Walkthrough

• 24 rendered input views from inside and outside

Space Carving Results: House

Input Image (true scene)

Reconstruction 370,000 voxels

Space Carving Results: House

Input Image (true scene)

Reconstruction 370,000 voxels

Space Carving Results: House

New View (true scene)

Reconstruction

New View (true scene)

Reconstruction

Reconstruction (with new input view)

Further contributions

A Theory of Space Carving

(Kutulakos & Seitz '99)

- Voxel coloring in more general framework
- No restrictions on camera position

Probabilistic Space Carving

(Broadhurst & Cipolla, ICCV 2001)

(Bhotika, Kutulakos et. al, ECCV 2002)

Shadow Carving

Savarese et al., IJCV 2006

Next lecture...

Fitting and Matching