Московский физико-технический институт Факультет молекулярной и химической физики

Лабораторная работа № 3.3.2 «Исследование вольт-амперной характеристики вакуумного диода»

Выполнила: студентка 2 курса 641 группы ФМХФ Кутушева Алиса Ильдаровна

Аннотация:

В этом отчёте изложены результаты выполнения лабораторной работы «Исследование вольт-амперной характеристики вакуумного диода». В данной работе исследуются вольт-амперные характеристики диода при различных токах накала. По резултатам измерений находится коэффициент пропорциональности в законе «трёх вторых» и по нему определяется удельный заряд электрона.

Цель работы:

определение удельного заряда электрона на основе закона «трёх вторых».

В работе используются:

радиолампа с цилиндрическим анодом; амперметр (погрешность 0.3%+2 ед. мл. разряда); многопредельные микроамперметр и вольтметр постоянного тока (погрешность 0.5%+2 ед. мл. разряда); стабилизированные источники постоянного тока и постоянного напряжения.

1. Теоретические сведения

В работе исследуется зависимость прямого тока, проходящего через вакуумный диод, от напряжения на нём. Нас интересует та область положительного напряжения на диоде, в которой пространственный заряд (электронное облако) существенно влияет на распределение электрического поля между катодом и анодом. В этой области ток диода меньше тока эмиссии катода из-за того, что электрическое поле пространственного заряда препятствует движению электронов, испущенных катодом, и часть их возвращается на катод. В этом случае величина тока пропорциональна напряжению на диоде в степени 3/2:

$$I \propto V^{3/2} \tag{1}$$

(«закон трёх вторых»). Коэффициент пропорциональности в этой формуле зависит от удельного заряда электрона.

Рассмотрим вывод закона трех вторых в наиболее простом случае, когда электродами являются параллельные плоские пластины, расстояние между которыми много меньше их размеров (плоский диод — см. рис.1). В этом случае напряженность электрического поля внутри диода направлена вдоль оси X, перпендикулярной пластинам, и зависит только от x. Для нахождения E(x) воспользуемся теоремой Гаусса. Рассмотрим плоский слой толщиной dx, параллельный пластинам. Поток вектора через поверхность этого слоя равен

$$d\Phi_E = (E + dE)S - ES = dE \cdot S, \tag{2}$$

где S — площадь каждой пластины. По теореме Гаусса этот поток равен dq/ε_0 , где $dq=\rho S dx$ - заряд внутри слоя, ρ - объемная плотность пространственного заряда, ε_0 - электрическая постоянная. Таким образом,

$$dE \cdot S = \rho S dx / \varepsilon_0, \frac{dE}{dx} = \frac{\rho}{\varepsilon_0}.$$
 (3)

Напряженность поля E(x) связана с измеряемым относительно катода потенциалом U(x) соотношением

$$E(x) = -\frac{dU}{dx}. (4)$$

Подставляя это в (3), получим

$$\frac{d^2U}{dx^2} = -\frac{\rho}{\varepsilon_0}. ag{5}$$

Плотность заряда ρ связана с силой тока I_A , протекающего через диод, соотношением

$$I_A = (-\rho) \cdot v \cdot S, -\rho = \frac{I_A}{v \cdot S}, \tag{6}$$

где v — скорость электронов, находящихся в точке x; знак "минус" в (6) учитывает тот факт, что $\rho < 0$. По закону сохранения энергии, имеем

$$\frac{mv^2}{2} = eU, v = \sqrt{2eU/m},\tag{7}$$

где e и m — заряд и масса электрона. Подставляя (6) и (7) в соотношение (5), получим дифференциальное уравнение для потенциала U(x)

$$\frac{d^2U}{dx^2} = \frac{c}{\sqrt{U}},\tag{8}$$

где

$$c = \frac{I_A}{S \cdot \varepsilon_0} \cdot \sqrt{\frac{m}{2e}}. (9)$$

Решение уравнения (8) ищем в виде

$$U(x) = a \cdot x^b, \tag{10}$$

где a и b — неизвестные постоянные. Для их нахождения подставим (10) в уравнение (8):

$$ab(b-1) \cdot x^{b-2} = ca^{-1/2} \cdot x^{-b/2},\tag{11}$$

Приравнивая по отдельности показатели степени и коэффициенты в обеих частях равенства, находим

$$b = 4/3, a = \left(\frac{9}{4}c\right)^{2/3} \tag{12}$$

Найденное решение (10) с параметрами (12), помимо условия U(0) = 0, удовлетворяет также граничному условию

$$E(0) = -\frac{dU}{dx}\Big|_{x=0} = 0. {13}$$

Такое граничное условие соответствует случаю, когда любое отличное от нуля и соответствующим образом направленное поле вблизи катода вызывает бесконечный ток эмиссии. Чтобы в этом случае ток через диод был конечным, необходимо выполнение равенства (13). Из (10) получим для потенциала $U_A = U(d)$, подставляя x = d и используя (12),

$$U_A = \left(\frac{9}{4}c\right)^{2/3} \cdot d^{4/3}.\tag{14}$$

Коэффициент c зависит от силы тока I_A согласно соотношению (9), поэтому из (14) получаем

$$U_A \sim I_A^{2/3}, I_A \sim U_A^{3/2}$$
 (15)

т.е. закон трех вторых.

В случае цилиндрической симметрии решение уравнения записывается в виде:

$$I = \frac{8\sqrt{2}\pi\varepsilon_0 l}{9} \sqrt{\frac{e}{m}} \frac{1}{r_a \beta^2} V^{3/2}$$
 (16)

где β^2 функция от r_a/r_k , которая может быть задана бесконечным рядом или графиком, r_a,r_k - радиусы катода и анода в случае циллиндрического диода. То обстоятельство, что I пропорционально $V^{3/2}$, уже обсуждалось. Линейный характер связи между I и $\sqrt{e/m}$ очевиден из рассмотрения правой части (9). Численный коэффициент при $V^{3/2}$ выбран так, чтобы $r_a/r_k \to \infty$ при $\beta^2 \to 1$.

Рис. 1. Схема расположения электродов в диоде

Рис. 2. Схема экспериментальной установки

2. Экспериментальная установка

Исследования проводятся на диоде 2Ц2С с косвенным накалом. Радиус его катода $r_k=0.9$ мм, радиус анода $r_a=9.5$ мм, коэффициент $\beta^2=0.98$. Полная высота анода и катода составляет около 20 мм, однако эмиссия электронов происходит только с центральной части катода, покрытой оксидным слоем. Высота этого слоя I=9 мм. Поскольку рабочая часть катода достаточно удалена от его торцов, электрическое поле в этой части с хорошей точностью можно считать радиальным. Схема экспериментальной установки изображена на рис. 2. Для подогрева катода используется стабилизированный выпрямитель Б5-7, а в качестве анодного источника — выпрямитель Б5-10. В цепь накала включены амперметр и предохранительное сопротивление R. Анодное напряжение измеряется вольтметром (многопредельным гальванометром M-253), а анодный ток — миллиамперметром (микроамперметром M-95 с наружным шунтом). Наружный шунт позволяет изменять пределы измерений тока от 10 мкА до 10 мА.

3. Ход работы

- 1. Подготовим приборы к работе.
- 2. Регулятором выпрямителя цепи накала установим ток накала 1,3 А.
- 3. Регулятором выпрямителя анодной цепи установим анодное напряжение $V_a=0.5~{
 m B}.$
- 4. Исследуем вольт-амперные характеристики диода в диапазоне от 0 до 50 В. В процессе измерений тока накала постоянен. В диапазоне от 0 до 6 В изменяем напряжение шагами по 0,5 В, в диапазоне от 6 до 10 В шагами по 1 В, а в диапазоне от 10 до 50 В шагами по 5 В.
 - 5. Повторим измерения при токах накала 1,4; 1,5 и 1,6 А. Данные занесем в таблицу 1.

4. Обработка результатов

1. По результатам эксперимента построим графики зависимости $I_a = f(V_a^{3/2})$. Определим интервалы значений V_a , на которых графики имеют вид прямых линий. Найдем наклон прямо-

Таблица 1. Экспериментальные данные

		$I_n = 1.3 \text{ A}$	$I_n = 1.4 \text{ A}$	$I_n = 1.5 \text{ A}$	$I_n = 1.6 \text{ A}$
U, B	$U^{3/2}, B^{3/2}$	I, MKA	I, MKA	I, MKA	I, MKA
0,5	0,35	5,5	7,3	12,7	21,5
1	1	13,9	17,5	25,4	38,1
1,5	1,84	25,7	30,3	40,8	55,7
2	2,83	37,6	45,9	57,6	72,3
2,5	3,95	54,9	62,5	76,8	94,2
3	5,2	69,4	80	95	113,4
3,5	6,55	87,4	98,6	115	135
4	8	106,5	121	137,3	161,6
4,5	$9,\!55$	125,6	141,6	160,4	183,5
5	11,18	148,8	164,6	184,9	209,2
5,5	12,9	170,6	188,7	210,6	235,8
6	14,7	193,9	212,2	232,5	266,9
7	18,52	243,7	266,3	289,2	323,6
8	22,63	294,7	321,3	362,5	392,6
9	27	357,2	386,4	419,6	461,3
10	31,62	420,3	451,8	488,2	571,7
15	58,09	825	870,7	925,2	994,1
20	89,44	1308	1374,6	1440,5	1533,1
25	125	1874	1959,4	2045	2151,2
30	164,32	2504	2602,6	2697	2817,3
35	207,06	3181	3308,6	3419	3552,9
40	252,98	3906	4059,5	4193,5	4336,7
45	301,87	4692	4888,5	5016,5	5256
50	353,55	5588	5842	6005	6179

линейных участков характеристик и вычисленим e/m электрона.

$$\frac{e}{m} = \frac{81 \cdot k^2 \cdot r_\alpha^2 \cdot \beta^4}{128 \cdot \pi^2 \cdot \varepsilon_0^2 \cdot l^2} \tag{17}$$

Оценим погрешности эксперимента.

$$\Delta\left(\frac{e}{m}\right) = 2\Delta k \cdot 876 \cdot 10^{18} \tag{18}$$

- 2. В тех же координатах на других рисунках построим участоки вольт-амперной характеристики в диапазоне анодных напряжений от 0 до 10 В(рис.8 - 11).

Обсуждение результатов и выводы 5.

В ходе данной работы была получена вольт-амперная характеристика вакуумного диода. Были получены участки, на которых выполняется закон "трех вторых"для разных токов накала. По наклону прямолинейных участков было определено отношение заряда электрона к его массе. Наиболее достоверный результат $\left(\frac{e}{m}\right)_1=(2.1868\pm0.0011)\cdot10^{11}~{\rm K}_{\rm J}/{\rm k}_{\rm F}$, табличное $\frac{e}{m}=1.7579\cdot10^{11}$ Кл/кг. Результаты не сошлись.

Рис. 3. Вольт-амперная характеристика для всех токов накала

Рис. 4. Вольт-амперная характеристика для тока накала $I_n=1,3$ A, $k_1=(15,80\pm0,06)~\mu A/U^{3/2}$

Рис. 5. Вольт-амперная характеристика для тока накала $I_n=1,4$ A, $k_2=(16,34\pm0,04)~\mu A/U^{3/2}$

Рис. 6. Вольт-амперная характеристика для тока накала $I_n=1.5~\mathrm{A},\,k_3=16.74\pm0.04$

Рис. 7. Вольт-амперная характеристика для тока накала $I_n=1.6$ A, $k_4=(17.17\pm0.03)~\mu A/U^{3/2}$

Рис. 8. Вольт-амперная характеристика для тока накала $I_n = 1,3$ А

Рис. 9. Вольт-амперная характеристика для тока накала $I_n = 1,4~\mathrm{A}$

Рис. 10. Вольт-амперная характеристика для тока накала $I_n = 1.5 \ {
m A}$

Рис. 11. Вольт-амперная характеристика для тока накала $I_n=1.6~{
m A}$