

Aufgabe 1: Fläche unter einer Parabel (*)

Gegeben sei die quadratische Funktion f mit $f(x) = -x^2 + 6x + 7$ (Graph in Abb. 1).

a. Zwischen dem Graphen der Funktion f und der x-Achse liegt auf dem Intervall [1; 3] ein Flächenstück. Markieren sie diese Fläche A in Abbildung 1.

b. Zur näherungsweisen Berechnung dieser krummlinig begrenzten Fläche A wird der Flächeninhalt durch die Summe von vier Rechteckflächen abgeschätzt (vgl. Abbildung 2).

Das Intervall wird dafür in n=4 gleich große Teilintervalle mit der Länge 0,5 unterteilt (=> Breite der Rechtecke Δx) und die Funktionswerte von f werden auf diesen Teilintervallen stückweise durch Konstanten angenähert (=> Höhe der Rechtecke $f(x_i)$):

Rechteck i	Breite Δx	Höhe $f(x_i)$	Rechteckfläche $\Delta x \cdot f(x_i)$
R1	0,5	$f(1,5) = -1.5^2 + 6 \cdot 1.5 + 7 = 13.75$	$0, 5 \cdot 13, 75 = 6,875$
R2	0,5	$f(2) = -2^2 + 6 \cdot 2 + 7 = 15$	$0,5\cdot 15 = 7,5$
R3	0,5	$f(2,5) = -2,5^2 + 6 \cdot 2,5 + 7 = 15,75$	$0, 5 \cdot 15, 75 = 7,875$
R4	0,5	$f(3) = -3^2 + 6 \cdot 3 + 7 = 16$	$0, 5 \cdot 16 = 8$
		(Ober-) Summe:	6,875+7,5+7,875+8=30,25

Der Flächeninhalt A beträgt laut dieser Näherung ca. 30,25 Flächeneinheiten. Weil alle Rechtecke oberhalb des Graphen liegen, nennt man diese Näherung eine **Obersumme** und die Abschätzung ist zu groß. Analog zur Obersumme kann man auch eine untere Abschätzung vornehmen, bei der alle Rechtecke unterhalb des Graphen liegen - eine **Untersumme**.

Berechnen Sie mit Hilfe von Abb. 3 und der Tabelle die Untersumme zur Näherung des Flächeninhaltes A und begründen Sie, warum diese Abschätzung der tatsächlichen Fläche A zu klein ist.

Rechteck i	Breite Δx	Höhe $f(x_i)$	Fläche $\Delta x \cdot f(x_i)$				
R0	0,5	f(1) = 12	$0,5\cdot 12=6$				
R1	0,5	<i>f</i> (1,5) =					
R2	0,5						
R3							
(Unter-) S	Summe:						

- Der Wert des tatsächlichen Flächeninhaltes A liegt zwischen den Werten der Ober- und Untersumme.
 Beantworten Sie die nachfolgenden Fragen (ggf. mit Hilfe der beigefügten geogebra Datei):
 - Wie kann beim Bilden einer Obersumme eine bessere Näherung erzielt werden?
 - Wie verändert sich die Differenz zwischen Ober- und Untersummen bei Erhöhung der Rechtecks-Anzahl n?
 - Warum muss der Grenzwert von Ober- und Untersummen für $n \to \infty$ identisch sein, und welchen Grenzwert erhält man in beiden Fällen?

Den Grenzwert, den man durch Bilden des Grenzwerts der Ober- und/oder Untersummen für $n \to \infty$ auf dem Intervall [1; 3] erhält, bezeichnet man als **Integral** der Funktion f auf diesem Intervall:

$$\lim_{n \to \infty} \sum_{i=1}^n f(x_i) \cdot \Delta \, x_i = Integral \, von \, f \, auf \, [1;3]$$
 , Schreibweise: $\int_1^3 f(x) dx$

- d. Mit Hilfe eines Computers wurden die Integrale von f auf weiteren Intervallen berechnet:
 - Integral von f auf [1; 5]: $\int_{1}^{5} f(x)dx = \frac{176}{3} \approx 58,67$
 - Integral von f auf [1; 6]: $\int_{1}^{6} f(x)dx = \frac{205}{3} \approx 68,33$
 - Integral von f auf [1; 7]: $\int_{1}^{7} f(x)dx = 72$

Markieren Sie in Abb. 4 die Flächen, die zu den beiden berechneten Integralen gehören (evtl. mehrfarbig), und begründen Sie, warum die Werte zunehmend steigen.

Begründen Sie zudem, warum $\int_{1}^{1} f(x)dx = 0$ gilt.

Intervall [1, x]	Integral $\int_1^x f$					
1	0					
3	29,33					
5	58,67					
6	68,33					
7	72					
8	67,67					

als auf dem Intervall [1; 7].

70-	у	Al	bb	. 6:	Int	egr	alf	unk	tio	n			•		•		•		
60-											•						-		
50-																			
40-																			
30-	-						•												
20-																			
10-																			
	(0.5	•	1.5	ż	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	×

Verbinden Sie die Punkte in Abbildung 6 durch einen Kurve und vergleichen Sie die zwei Funktionsgraphen aus Abb. 5 und Abb. 6. Welchen Zusammenhang sehen bzw. vermuten Sie? (Hinweis: Markieren Sie in beiden Graphen besondere Punkte wie Extrempunkte, Wendepunkte u, Nullstellen).