Memória estática

Modelo de construção interna

Ciclos de acesso

Modelo de interface processador memória

Organização da memória por bancos

Porto de saída

Porto de entrada

Exercício

Construir um porto de saída de 8 bits e ligar um *display* de 7 segmentos e um besouro. Considerar uma interface de processador com endereçamento ao nível do byte e com barramento de dados a 32 bits.

Solução com registadores do tipo D.


```
.data
image:
            .byte
table 7seg: .byte
                    0x3f,
0x4f
    .text
display write:
            r1, =table 7seg
   ldr
   ldr
            r0, [r1, r0]
   ldr
            r1, =image
   ldrb
            r2, [r1]
   and
            r2, r2, #0x80
   orr
            r0, r0, r2
            r0, [r1]
   strb
            r1, =0xfffffC00
   ldr
            r0, [r1]
   strb
           pc, lr
   mov
buzzer on off:
           r1, =image
   ldr
           r2, [r1]
   ldrb
           r2, r2, #0x7f
   and
           r0, r2, lsl #7
   orr
            r0, [r1]
   strb
            r1, =0xfffffC00
   ldr
           r0, [r1]
   strb
           pc, lr
   mov
```

Solução com registadores do tipo S-R.


```
.equ
            SET, 0
    .equ
            CLR, 1
display_write1:
    ldr
            r1, =table 7seg
    ldr
            r0, [r1, r0]
            r1, =0xfffffc00
    ldr
            r2, #0x7f
   mov
            r2, [r1, #SET]
    strb
            r0, [r1, #CLR]
    strb
           pc, lr
   mov
buzzer on off1:
           r1, =0xfffffC00
    ldr
           r0, r0, #1
    and
           r0, r0, lsl #7
   movs
    strneb r0, [r1, #SET]
    streqb r0, [r1, #CLR]
           pc, lr
    mov
```

Mapa de memória do LPC2106

(em falta)

Portos de entrada/saída de utilização genérica do LPC2106

(General Purpose Input/output - GIPO)

