Lecture 9+10 - Training Neural Networks

1. One time setup

Activation functions, data preprocessing, weight initialization, regularization

2. Training dynamics

Learning rate schedules; large-batch training; hyperparameter optimization

3. After training

Model ensembles, transfer learning

1. Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

ReLU

 $\max(0, x)$

GELU

 $\approx x\sigma(1.702x)$

• Sigmoid (Not use!)

Activation Functions: Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems: Worst problem in practice

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zero-centered
- 3. exp() is a bit compute expensive
- --> Sigmoid outputs are always positive

Consider what happens when nonlinearity is always positive

$$h_i^{(\ell)} = \sum_{i} w_{i,j}^{(\ell)} \sigma\left(h_j^{(\ell-1)}\right) + b_i^{(\ell)}$$

 $h_i^{(\ell)}$ is the ith element of the hidden layer at layer ℓ (before activation) $w^{(\ell)}$, $\mathbf{b}^{(\ell)}$ are the weights and bias of layer ℓ

What can we say about the gradients on $w^{(\ell)}$? Gradients on all $w_{i,j}^{(ell)}$ have the same sign as upstream gradient $\partial L/\partial h_i^{(\ell)}$

--> all positive / negative --> want zero-mean data!

Tanh --> scaled and shifted Sigmoid (Not use!)

Not that bad in practice:

- Only true for a single example, minibatches help
- BatchNorm can also avoid this

Activation Functions: Tanh

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

• ReLU

Activation Functions: ReLU

$$f(x) = \max(0, x)$$

ReLU (Rectified Linear Unit)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0? There will be no gradient update (0).

Leaky ReLU

Leaky ReLU

 $f(x) = \max(\alpha x, x)$ α is a hyperparameter, often $\alpha = 0.1$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
 will not "die".

Parametric ReLU (PReLU)

 $f(x) = \max(\alpha x, x)$ α is learned via backprop

• Exponential Linear Unit (ELU)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime compared with Leaky ReLU adds some robustness to noise
 Not get "dead ReLU" problem so much

Computation requires exp()

• Scaled Exponential Linear Unit (SELU)

$$selu(x) = \begin{cases} \lambda x & if \ x > 0 \\ \lambda \alpha (e^x - 1) & if \ x \le 0 \end{cases}$$

 $\alpha = 1.6732632423543772848170429916717$ $\lambda = 1.0507009873554804934193349852946$

• Gaussian Error Linear Unit (GELU)

Idea: Multiply input by 0 or 1 at random; large values more likely to be multiplied by 1, small values more likely to be multiplied by 0 (data-dependent dropout) Take expectation over randomness

Scaled version of ELU that

without BatchNorm

works better for deep networks "Self-Normalizing" property; can train deep SELU networks

Very common in Transformers (BERT, GPT, ViT)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

2. Data Preprocessing

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet) (mean along each channel = 3 numbers)
- Subtract per-channel mean and
 Divide by per-channel std (e.g. ResNet)
 (mean along each channel = 3 numbers)

Not common to do PCA or whitening

3. Weight Initialization

Q: What happens if we initialize all W=0, b=0?

A: All outputs are 0, all gradients are the same!

No "symmetry breaking"

hidden layer

"Just right": Activations are nicely scaled for all layers!

>> hor too small hor too

For conv layers, Din is kernel size² * input channels

Glorot and Bengio, Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010