

Lab#1

Image Representation, Visualization, and Arithmetic Operation

Lab#1.1

1.1.1: Image Color Order with different libraries

1.1.2 : Image Reshape

1.1.3: Reduce Bit Depth using Quantization

1.1.4: 3D Image Surface

Lab#1.1

import cv2
import numpy as np
import math
import matplotlib.image as mpimg

%matplotlib notebook from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D

1.1.1: Image Color Order with different libraries

ReorderImageColor

From openCV

Make correction

- Reorder color channel from OpenCV
 - Cv2.cvtColor()
 - Numpy reorder channel element

Display Image

- Subplot()
- Imshow()
 - From matplotlib
 - From openCV

์ศึกษาตัวอย่างการอ่านไฟล์ภาพ การแสดงผลภาพ และการจัดเรียง Channel สี ของภาพ

BGR vs RGB (ผลลัพธ์ 1.1.1)

1) แสดงภาพที่อ่านได้จาก OpenCV

3) แสดงภาพ Xb, Xg, Xr เทียบกับ Xr, Xg, Xb โดยแสดงในรูป subplot เพื่อให้เห็นการเปรียบเทียบชัดเจน

2) แสดงภาพจากการทำ Manual Array Slicing (W) สลับ channel สีเอง W [:,:,0] = Xr; W[:,:,1] = Xg; W[:,:,2] = Xb

Grayscale image use cmap = 'gray'

1.1.2 : Image Reshape (การจัดโครงสร้างของมิติ Image Array)

ReorderChannel

Numpy

- transpose()
- moveaxis()
- reshape()

- (channel, height, width)
 - -> Channel First

- 3) แสดง shape ของภาพผลลัพธ์
- 4) แสดงภาพเฉดสีแดงจากภาพผลลัพธ์ หลังผ่าน 3 ฟังก์ชั่น

1.1.2 : Image Reshape (ผลลัพธ์ 1.1.2)

X (H, W, CH) -> Y (CH, H, W)

CH Last -> CH First

X (H, W, CH) X (125, 187, 3)

X.shape = (H,W, CH) = (125, 187, 3)Xr = X[:,:,0] Y (CH, W, H) Y (3, 187, 125)

imshow(Yr = Y[0,:,:])

Y (CH, H, W) Y (3, 125, 187) Y (CH, H, W) Y (3, 125, 187)

- 1) แสดง shape ของภาพ RGB (H, W ,3)
- 2) แสดงภาพเฉดสีแดง (Xr)
- 3) แสดง shape ของภาพผลลัพธ์ Y
- 4) แสดงภาพเฉดสีแดงจากภาพผลลัพธ์ Y หลังผ่าน 3 ฟังก์ชั่น (Transpose, Reshape, Moveaxis)

1.1.3: Reduce Bit Depth using Quantization

X (H, W, CH) X (125, 187, 3)

(ผลลัพธ์ 1.1.3)

Reduce

Image

Bit Depth

(Quality)

 $Qlevel = 2^{Bit_Depth}$

$$Q = floor(NormValue(Si) * Qlevel)$$
$$= floor\left(\left(\frac{Si - Smin}{Smax - Smin}\right) * Qlevel\right)$$

- 1) เปลี่ยนภาพสี เป็นภาพเฉดเทา (RGB to Gray)
- 2) เขียนโปรแกรมคำนวนการปรับจำนวนเฉดสี (quantization ของทุกตำแหน่งพิกเซล ตามสมการ)
- 3) แสดงภาพเฉดสีเทาผลลัพธ์จากการปรับจำนวนเฉดสี (Bit_depth = 8 -> 4)

1.1.4 : 3D Image Surface (แสดงพื้นผิว 3 มิติ ของภาพ Grayscale)

3DImageSurface

- Convert to grayscale image
- Reduce Dimension
- Cv2.resize()
- ประมาณ 200 x 200 พิกเซล

3D Surface Display

- Meshgrid สร้าง array พิกัด
 ตำแหน่งพิกเซล
 - numpy.mgrid()
- 3D surface plot
 - plot_surface()

https://www.tutorialspoint.com/how-to-create-a-surface-plot-from-a-greyscale-image-with-matplotlib

Lab#1.2

1.2.1 : Color Model Visualization

1.2.2 : Image Addition

1.2.3 : Image Bitwise Operation

Libraries

• import cv2

import numpy as np

from matplotlib import pyplot as plt

1.2.1 Color Model Visualization

☑ Color Model Conversion
Using cv2.cvtColor()

- RGB
- HSV
- HLS
- -YCrCb

☑ Visualize each color channel

1.2.2 Image Addition

- ✓ Create weight arrayW1, W2 = [0, 1]Steps เพียงพอ จะสร้าง รูป ผลบวก
- ✓ Write added images to a video file

Im_addition= $w_1 Im_1 + w_2 Im_2$

$$w_1 + w_2 = 1.0$$

• Create weight array

- W1, W2 = [0,1]
- Steps เพียงพอ สร้างภาพผลบวก อย่างน้อย 20 ภาพ

• Call OpenCV Video Writer Object (MP4V)

- cv2.VideoWriter_fourcd()
- cv2.VideoWriter()
 - กำหนดพารามิเตอร์ frame rate (fps) ให้เพียงพอ จะเห็นผลการบวกภาพ ที่ค่อยๆเปลี่ยนจากภาพนึง ไปเป็น อีกภาพนึง

3

- Write() ภาพผลบวกเข้าวิดีโอ ทีละภาพ เข้าวิดีโอ
 - กำหนดให้ เขียนให้ภาพที่ 1 ปรากฏ แล้วค่อยๆ เปลี่ยนเป็นภาพที่ 2
 - จากนั้น ให้ภาพที่ 2 ค่อยๆ หายไป และเปลี่ยนเป็นภาพที่ 1

4

release()

5

• ระวัง color model ที่ควร write ลง video เมื่อใช้ openCV

1.2.2 Image Addition

✓ Create weight arrayW1, W2 = [0, 1]Steps เพียงพอ จะสร้าง รูป ผลบวก

Write added images to a video file

Im_addition=
$$w_1 Im_1 + w_2 Im_2$$

 $w_1 + w_2 = 1.0$

1.2.3 Image Bitwise AND operation

- ✓ Create Image Mask
 = create zeros array
 = Fill 255 in Image Mask at
 Pixel x, pixel y of
 Object area
- ☑ Use bitwise AND operation
 Bitwise_AND() to mask only
 object area from original image

$Im_obj_area = Bitwise_AND(Im, Im_{mask})$

