JASMINE LIANG

(515)-451-7104 | jasmineyliang@gmail.com | linkedin.com/in/jypliang | jasmineyliang.github.io

SUMMARY

Highly motivated and experienced researcher in Machine Learning with strong problem-solving and communication skills through extensive multidisciplinary research experience (2014-Present) with the ability to work independently. Special expertise in the following areas: Artificial Intelligence/Machine Learning (AI/ML), Quantitative Analytics, Data Analysis, Experimental Design, Statistical Analysis, Health Data Analysis, Motion Analysis.

TECHNICAL SKILLS AND CERTIFICATIONS

Stanford University - Machine Learning Certificate **Programming Languages**: Java, Python, MATLAB, SQL

Machine Learning and Al Tools: PyTorch, TensorFlow, Scikit-learn, Time-Series Analysis, OpenCV, OpenPose, LLM, NLP, Generative Al

Statistical Computing / Data Visualization / Libraries: R, SPSS, Tableau, Matplotlib, pandas, NumPy

EDUCATION

Iowa State University Iowa

Ph.D. Computer Science, and Biomechanics - Double Major

 Awarded University Research Excellent Relevant Coursework: Advanced Artificial Intelligence, Machine Learning, Design and Analysis of Algorithms

University of Michigan Michigan

DPT concentration in Biomechanics 2021 National Cheng Kung University Taiwan

B.S. concentration in Biomechanics 2017

Awarded National Undergraduate Research Fellowship, National Science Council

PROFESSIONAL EXPERIENCE

Graduate Researcher in Machine Learning

Aug 2019 - Present

Iowa State University

Ames, IA

June 2024

- Deployed deep learning models incorporating attention layers to integrate wearable sensor data, significantly enhancing early-stage knee osteoarthritis diagnosis to 92.5% accuracy with explainable Al methodologies.
 - Python/ TensorFlow / RNN / LSTM / Time-Series Analysis / Machine Learning / Visual3D / Signal Processing
- Optimized prediction time for intention and motion detection by 90% using machine learning-enhanced pipelines with IMU. - Python / Time-Series Analysis / TensorFlow / Deep Learning / RNN / Motion Capture / Signal Processing / Robotics
- Advanced fall risk quantification for in a one million CDC-funded research project with 84% accuracy by developing and deploying a machine learning pipeline using IMU and time-series data.
 - Python / Time-Series Analysis / Scikit-learn / Machine Learning / MATLAB / Signal Processing / Wearables / IMU / Health Data
- Developed a machine learning model utilizing motion camera and wearable sensor data to decrease time by 95% to estimate kinematics across diverse locomotion activities, enhancing insights into balance perturbation analysis.

- Python / Time-Series Analysis / PyTorch / MATLAB / Signal Processing / Wearables / IMU / Motion Capture Camera / Visual3D / Gait / Robotics

Course Developer - Analytics and AI Health Strategies

June 2024 - Present

Iowa State University

Ames, IA

- Developing DH5160 Analytics and AI Health Strategies course in the newly launched Master of Digital Health Program focused on analyzing health data using machine learning models and visualization tools.
 - Python / Azure Automated Machine Learning / SQL / R / Tableau / Business Intelligence Tools / Health Data
- Led curriculum development to ensure student gain comprehensive understanding of AI and analytics in digital health using GitHub Classroom. - Cross-functional Leadership / Git / Instructional design / Communication / Collaboration

Jan 2018 - June 2019 Data Analytics

National Olympic Training Center

Kaohsiung, Taiwan

- Implemented data analysis pipelines using MySQL and pandas, optimizing insights into athlete performance and injury prevention strategies, resulting in a 25% reduction in data processing time and a 15% improvement in injury prediction accuracy. SQL / pandas / Communication / Collaboration
- Achieved a 15% increase in KPIs by leveraging motion capture systems and IMUs to analyze sports biomechanical data using Tableau and R. - Tableau / R / Biomechanical / Motion Capture

Anomaly Detection for Failing Servers On Networks | *Python, sklearn, pandas, matplotlib*

Jan 2021 - May 2021

- Implemented anomaly detection algorithms to identify abnormal server behavior based on throughput (mb/s) and latency (ms) metrics.
- Developed and applied Gaussian models to detect anomalies in a 2D dataset, visualizing algorithm performance and identifying outliers.
- Extended anomaly detection to high-dimensional datasets, achieving detection accuracy and identifying anomalies by cross-validation.
- Optimized anomaly detection thresholds using precision-recall metrics, enhancing algorithm performance in identifying true anomalies.

Recommendation Systems | *Python, scipy, NumPy, sklearn*

Jan 2022 - May 2022

- Implemented collaborative filtering algorithms to predict movie ratings based on a dataset of 1682 movies and 943 users.
- Developed and optimized collaborative filtering cost functions and gradients, achieving accurate predictions by minimizing squared error.
- Implemented regularization techniques to enhance model generalization and mitigate overfitting in collaborative filtering algorithms.
- Personalized movie recommendations by integrating user preferences into collaborative filtering model, enhancing engagement and satisfaction.

System for Enhancing Fair Judgment in Gymnastics Through Advanced Pose Estimation | Python, OpenPose, OpenCV, Caffe Jan 2024 – May 2024

- Developed deep learning-based pose estimation algorithms using OpenPose to track dynamic gymnastics movements in real-time.
- Designed data structures for key body points and movement trajectories, with interactive tools for real-time visualization and feedback.
- · Conducted thorough testing with diverse video datasets, evaluating joint detection accuracy, pose estimation error, and tracking consistency.
- Integrated feedback from gymnasts and coaches to refine algorithms and enhance the user interface for practical usability.

PUBLICATIONS AND CONFERENCE PRESENTATIONS

Publication | 6 first-authored peer-reviewed journal articles

Selected Publications:

Liang, J, Bian, H., Zhang, W., Chang, C.K., Chou, L.S. (2024) Striding into Clarity: Wearable Sensor-Driven Estimation of Knee Adduction Moment, Unveiling the Black Box with Sequence-Based Neural Networks and Explainable Artificial Intelligence. AAAI 2024 Spring Symposium on Clinical Foundation Models

Presentations and Talks | 8 first-authored, 2 co-author presentations at international conferences

Invited talk on AI in Biomechanics to a diverse, international audience from 5 countries.

Services | Served as a peer reviewer for the Proceedings of AAAI 2024 Spring Symposium Series

LEADERSHIP EXPERIENCE

lowa State University | *Graduate Instructor, Biomechanics*

Aug 2019 - Present

• Instructed, organized, and managed 4 weekly 75-minute sections.

lowa State University | President, Taiwan Student Association

Sept 2020 - Sept 2021

- Orchestrated biannual culturally enriching events attended by 50+ participants, fostering cultural diversity and inclusion.
- Developed and implemented review metrics, increased productivity by 18%, and reduction of 35% in operational costs.