4.2 # 3,6,11,14,17,19,21,24,25,33,34

$$\bar{X} = X_3 \begin{bmatrix} 2 \\ -3 \end{bmatrix} + X_4 \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$
 The spanning set of Nul A is $\begin{bmatrix} 3 \\ -3 \end{bmatrix}, \begin{bmatrix} -4 \\ 2 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vec{X} = X_3 \begin{bmatrix} -5 \\ 3 \\ 1 \\ 0 \end{bmatrix} + X_4 \begin{bmatrix} 6 \\ -1 \\ 0 \end{bmatrix} + X_5 \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
The spanning set of Nul A is
$$\begin{bmatrix} -5 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

The sero vector, but the second entry is zero when S=0. If and the last entry is zero when S=0. If I is a sero when 5=0. Therefore this set doesn't contain the Zero vector. Wis not a vector space.

column space of a matrix is a subspace, W is a vector space.

$$A = \begin{bmatrix} 6 & -4 \\ -3 & 2 \\ -9 & 6 \\ 9 & -6 \end{bmatrix}$$
 A is 4×2 so Nul A is a subspace of \mathbb{R}^4 (K=4).

Solve
$$A\dot{x} = \ddot{0}$$

 $\begin{bmatrix} 6 & -4 & 0 \\ -3 & 2 & 0 \\ -9 & 6 & 0 \\ 9 & -6 & 0 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & -3/3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $x_1 = 2/3 \times 2$.

All we have to do to find a non-zero vector in Nol A is choose a nonzero value for xa and find X.

For example if
$$x_a = 3$$
 $\hat{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

4.2 Continued

24.)
$$A = \begin{bmatrix} 10 & -8 & -2 & -2 \\ 0 & 2 & 2 & -2 \\ 1 & -1 & 6 & 0 \\ 1 & 1 & 0 & -2 \end{bmatrix}$$
, $\vec{w} = \begin{bmatrix} 2 \\ 2 \\ 0 \\ 2 \end{bmatrix}$ Determine if \vec{w} is in ColA.

$$\begin{bmatrix}
10 & -8 & -2 & -2 & 2 \\
0 & 2 & 2 & -2 & 2 \\
1 & -1 & 6 & 0 & 0 \\
1 & 1 & 0 & -2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & -1 & | 1 \\
0 & 0 & -1 & | 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
Since $A\vec{x} = \vec{w}$ is consistent,
$$\vec{w} = \vec{w} = \vec{w}$$

$$\begin{bmatrix}
1 & 0 & -2 & | 2 \\
1 & 0 & -2 & | 2
\end{bmatrix}$$

$$\begin{bmatrix}
20 - 16 + 0 - 4 \\
0 + 4 + 0 - 4 \\
1 & 0 & -2
\end{bmatrix}$$

$$\begin{bmatrix}
20 - 16 + 0 - 4 \\
0 + 4 + 0 - 4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0 \\
2 + 2 + 0 - 4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0 \\
2 + 2 + 0 - 4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0 \\
2 + 2 + 0 - 4
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$$
Since $A\vec{w} = \vec{0}$, \vec{w} is in

25.) True/ False A is an mxn matrix.

- ai) The null space of A is the soln set of AX=0. TRUE
- bi) The null space of an mxn matrix is in Rm. FALSE
- (i) The column space of A is the range of the mapping \$ + Ax. TRUE
- di) If the equation $A\vec{x}=\vec{b}$ is consistent, then col A is R^m FALSE
- e.) The Kernel of a linear transformation is a vector space. True
- fi) Col A is the set of all vectors that can be written as Ax TRUE for some X.

33.) Let Maxa be the vector space of all 2x2 matrices and define T: Maxa > Maxa by T(A) = A + AT, where

a) Show that T is a linear transformation.

in Maxa such that T(A) = B.

IF T(A) = B then $A + A^T = B$. Suppose $A = \frac{1}{2}B$, then $A^T = (\frac{1}{2}B)^T = \frac{1}{2}B^T$ and $T(A) = A + A^T = \frac{1}{2}B + \frac{1}{2}B^T = \frac{1}{2}B + \frac{1}{2}B = B$.

(i) Show that the range of T is the set of B in Maxa with the Property that $B^T = B$.

In part (b) we showed if B=BT, then B is in the range of T.

Now we show the other direction ie. It B is in the range of T then

B=BT.

suppose B=A+AT then BT=(A+AT)T=AT+A=B.

di) Describe the Kernel of T.

The Kernel is the set of all A such that T(A) = 0.

$$A + A^{T} = 0 \Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} o & 6 \\ 0 & 0 \end{bmatrix}$$

 $\Rightarrow \begin{bmatrix} 2a & b+c \\ b+c & 2d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

Kernel of T is:

=7 a, d=0 and b=-c

4.2 continued

34) Define T: $C[0,1] \rightarrow C[0,1]$ as follows: For $\vec{f} \in C[0,1]$, let $T(\vec{f})$ be the antiderivative \vec{F} of \vec{f} such that $\vec{F}(0) = 0$. Show that T is a linear transformation and describe the Kernel of T.

let f, à be elements in C[0,1].

 $T(\hat{f}+\hat{g})$ is the antiderivative of $\hat{f}+\hat{g}$, from calculus we know this is the antiderivative of \hat{f} plus the antiderivative of \hat{g} . So $T(\hat{f}+\hat{g})=\hat{F}+\hat{G}$ such that $(\hat{f}+\hat{G})(o)=o$.

Then $T(\vec{t}+\vec{g})=T(\vec{t})+T(\vec{g})$. Similarly, $T(c\vec{t})=cT(\vec{t})$.

The Kernel of T is the set of all functions \vec{f} whose and iderivative is zero and $\vec{F}(o) = 0$. Therefore $\vec{f} = \vec{o}$. The Kernel of T is $3\vec{o}$.

			¥
	·		