ECE504: Lecture 6

D. Richard Brown III

Worcester Polytechnic Institute

07-Oct-2008

Lecture 6 Major Topics

We are still in Part II of ECE504: Quantitative and qualitative analysis of systems

mathematical description → results about behavior of system

Our focus today is on linear time-invariant systems. In this case, recall that the DT-STM is $\Phi[k,j]=A^{k-j}$ and the CT-STM is $\Phi(t,s)=\exp\{(t-s)A\}$. We will discuss

- 1. Properties of A^k and $\exp\{tA\}$.
- 2. Eigenvalues and eigenvectors.
- 3. Computation of ${m A}^k$ and $\exp\{t{m A}\}$ when ${m A}$ is diagonalizable.
- 4. Computation of ${m A}^k$ and $\exp\{t{m A}\}$ when ${m A}$ is not diagonalizable.

You should be finishing Chen Chapter 4 now (and referring back to Chapter 3 as necessary). You should also look over "Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later" by Moler and Van Loan (link on course web page).

Basic Properties of $oldsymbol{A}^k$ and $\exp\{toldsymbol{A}\}$

Recall that the matrix exponential $\exp\{tA\}$ is not performed element-by-element. Nevertheless, the matrix exponential has many of the same properties as the usual scalar exponential. Specifically:

1. For any $A \in \mathbb{R}^{n \times n}$

$$\lim_{t\to 0} \exp\{t\boldsymbol{A}\} = \boldsymbol{I}_n$$

This can be seen directly from the definition of $\exp\{tA\}$.

2. For any $A \in \mathbb{R}^{n \times n}$

$$\exp\{(t_1+t_2)\mathbf{A}\} = \exp\{t_1\mathbf{A}\}\exp\{t_2\mathbf{A}\}$$

This is a consequence of the semigroup property of $\Phi(t,s)$.

3. Given $oldsymbol{A} \in \mathbb{R}^{n \times n}$ and $ilde{oldsymbol{A}} \in \mathbb{R}^{n \times n}$, does

$$\exp\{t(\mathbf{A} + \tilde{\mathbf{A}})\} = \exp\{t\mathbf{A}\} \exp\{t\tilde{\mathbf{A}}\}?$$

Basic Properties of $oldsymbol{A}^k$ and $\exp\{toldsymbol{A}\}$ (cont.)

4. Given any $A \in \mathbb{R}^{n \times n}$ such that

$$\pmb{A} = \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{nn} \end{bmatrix} \text{ is diagonal, then } \exp\{t\pmb{A}\} = \begin{bmatrix} e^{a_{11}t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{a_{nn}t} \end{bmatrix}$$

This can be seen directly from the definition of $\exp\{tA\}$.

5. Given any $A \in \mathbb{R}^{n \times n}$ such that we can find some invertible $V \in \mathbb{C}^{n \times n}$ satisfying

$$\boldsymbol{V}^{-1}\boldsymbol{A}\boldsymbol{V} = \boldsymbol{\Lambda} = \begin{bmatrix} \lambda_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{nn} \end{bmatrix}$$

then

$$oldsymbol{A}^k = \underbrace{(oldsymbol{V}oldsymbol{\Lambda}oldsymbol{V}^{-1}) \ldots (oldsymbol{V}oldsymbol{\Lambda}oldsymbol{V}^{-1})}_{k- ext{fold product}} = oldsymbol{V}oldsymbol{\Lambda}^koldsymbol{V}^{-1}$$

Basic Properties of $oldsymbol{A}^k$ and $\exp\{toldsymbol{A}\}$ (cont.)

6. Given any $A \in \mathbb{R}^{n \times n}$ such that we can find some invertible $V \in \mathbb{C}^{n \times n}$ satisfying

$$V^{-1}AV = \Lambda = \begin{bmatrix} \lambda_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{nn} \end{bmatrix}$$

then

$$\exp\{t\boldsymbol{A}\} = \sum_{k=0}^{\infty} \frac{t^k}{k!} (\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{-1})^k = \boldsymbol{V} \left[\sum_{k=0}^{\infty} \frac{t^k}{k!} \boldsymbol{\Lambda}^k \right] \boldsymbol{V}^{-1}$$
$$= \boldsymbol{V} \exp\{t\boldsymbol{\Lambda}\} \boldsymbol{V}^{-1}$$
$$= \boldsymbol{V} \begin{bmatrix} e^{\lambda_{11}t} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & e^{\lambda_{nn}t} \end{bmatrix} \boldsymbol{V}^{-1}$$

Diagonalizability of Square Matrices

Diagonalizability makes the computation of A^k and $\exp\{tA\}$ easy!

Question: Is every matrix $A \in \mathbb{R}^{n \times n}$ diagonalizable?

Question: Is there any connection between invertibility and diagonalizability?

Question: What procedure can we use to diagonalize square matrices?

Eigenvalues

Definition

Given $A \in \mathbb{R}^{n \times n}$, λ_0 is an eigenvalue of A if and only if $(A - I_n \lambda_0)$ is not invertible.

Equivalently, based on what we already know about invertibility, we can say

$$\lambda_0$$
 is an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\mathbf{A} - \mathbf{I}_n \lambda_0) \neq 0$

Definition

The characteristic polynomial of A is $\det(\lambda I_n - A)$ where λ is a variable.

What is $\deg(\det(\lambda \boldsymbol{I}_n - \boldsymbol{A}))$?

It is not too hard to show that the eigenvalues of A are equivalent to the roots of the characteristic polynomial of A.

Some Consequences of What We Know About Eigenvalues

- 1. There can be at most n different eigenvalues of A.
- 2. Even if A is real, its eigenvalues can be complex.
- 3. If A is real and λ_0 is a complex eigenvalue of A, then λ_0^* is also an eigenvalue of A where the notation ()* means complex conjugate, i.e.

$$z = a + jb \Leftrightarrow z^* = a - jb$$

4. If λ_0 is an eigenvalue of \boldsymbol{A} , then $\dim(\operatorname{null}(\boldsymbol{A}-\lambda_0\boldsymbol{I}_n))\geq 1$ since $\boldsymbol{A}-\lambda_0\boldsymbol{I}_n$ is not invertible.

This last consequence is of particular importance. Let v_0 be any vector (except for the zero vector) in the nullspace of $A - \lambda_0 I_n$. Then we can say that

$$(\boldsymbol{A} - \lambda_0 \boldsymbol{I}_n) \boldsymbol{v}_0 = \boldsymbol{0}$$

which can be rewritten as $Av_0 = \lambda_0 v_0$.

Eigenvectors

Definition

Given $A \in \mathbb{R}^{n \times n}$, v_0 is an eigenvector of A corresponding to the eigenvalue λ_0 if and only if $Av_0 = \lambda_0 v_0$.

Intuition: The matrix A scales its eigenvectors by its eigenvalues.

Note that there is nothing unique about an eigenvector. If v_0 is an eigenvector of A corresponding to the eigenvalue λ_0 , then so is αv_0 for any $\alpha \neq 0$ since

$$A(\alpha v_0) = \alpha(Av_0) = \alpha(\lambda_0 v_0) = \lambda_0(\alpha v_0)$$

Linear Independence of Eigenvectors

Fact: If $v_1, v_2, \ldots, v_s \in \mathbb{R}^n$ are eigenvectors of $A \in \mathbb{R}^{n \times n}$ corresponding respectively with different eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_s \in \mathbb{C}$, then $\{v_1, v_2, \ldots, v_s\}$ is a linearly independent set.

Intuitively: Eigenvectors corresponding to different eigenvalues are linearly independent.

Geometrically: Let
$$V_j = \text{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I}_n)$$
. If $\lambda_j \neq \lambda_m$, then $V_j \cap V_m = \{\mathbf{0}\}$.

Important special case: If the matrix $A \in \mathbb{R}^{n \times n}$ has n distinct eigenvalues, then there must exist n linearly independent eigenvectors $\{v_1, v_2, \dots, v_n\} \in \mathbb{R}^n$. Let

$$V = [\boldsymbol{v}_1 \quad \boldsymbol{v}_2 \quad \dots \quad \boldsymbol{v}_n].$$

What can we say about the invertibility of V?

When is A is Diagonalizable?

We now know that, when ${\bf A}$ has n distinct eigenvalues, ${\bf A}$ is diagonalizable and we can write

$$A = V\Lambda V^{-1}$$

since $oldsymbol{V} = [oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad \dots \quad oldsymbol{v}_n]$ is invertible in this case.

In this case, computing $\exp\{tA\}$ and A^k is "easy". The main difficulty is finding the eigenvalues (finding the roots of a degree n polynomial).

What if ${\bf A}$ does not have n distinct eigenvalues? Does this mean that ${\bf A}$ is not diagonalizable?

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

To determine the eigenvalues, we need to compute the roots of the characteristic polynomial, i.e. solve $\det(\lambda I_3 - A) = 0...$

Algebraic Multiplicity of an Eigenvalue

We can always write the characteristic polynomial of \boldsymbol{A} in terms of its roots, i.e.

$$\det(\lambda \boldsymbol{I}_n - \boldsymbol{A}) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}$$

where $\{\lambda_1,\ldots,\lambda_s\}$ is the set of distinct eigenvalues of A with $1 \leq s \leq n$.

Definition

The algebraic multiplicity of the eigenvalue λ_j of the matrix $A \in \mathbb{R}^{n \times n}$ is the number of times the root λ_j appears in the characteristic polynomial of A and is denoted as r_j .

Eigenspace and Geometric Multiplicity of an Eigenvalue

Definition

Given $A \in \mathbb{R}^{n \times n}$, if $\lambda_0 \in \mathbb{C}$ is an eigenvalue of A, then the eigenspace corresponding with λ_0 , denoted as $\mathcal{E}(\lambda_0)$, is the subspace of \mathbb{C}^n spanned by the eigenvectors corresponding to the eigenvalue λ_0 , i.e.

$$\mathcal{E}(\lambda_0) = \text{null}(\boldsymbol{A} - \lambda_0 \boldsymbol{I}_n)$$

Definition

The geometric multiplicity of the eigenvalue λ_j of the matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the dimension of the eigenspace of λ_j and is denoted as m_j , i.e.

$$m_j = \dim(\text{null}(\boldsymbol{A} - \lambda_j \boldsymbol{I}_n))$$

Fact: For each $j \in \{1, \ldots, s\}$, $1 \le m_j \le r_j$.

When is $oldsymbol{A}$ Diagonalizable?

Theorem

If, for each $j \in \{1, ..., s\}$, $m_j = r_j$, then A is diagonalizable.

This should be obvious when A has distinct eigenvalues since $m_j = r_j = 1$ for all j.

Proof sketch for the case when A does not have distinct eigenvalues:

A Procedure to Know When $oldsymbol{A}$ is Diagonalizable

Summary of Diagonalization

- 1. Compute the eigenvalues of A and denote the distinct values as $\{\lambda_1,\ldots,\lambda_s\}$.
- 2. If \boldsymbol{A} is diagonalizable (see procedure on previous slide), then for each $j \in \{1,\ldots,s\}$, find a basis for the eigenspace $\mathcal{E}(\lambda_j) = \operatorname{null}(\boldsymbol{A} \lambda_j \boldsymbol{I}_n)$. You can do this with Gaussian elimination and echelon form. Let

$$B_j = \{\boldsymbol{v}_{j1}, \boldsymbol{v}_{j2}, \dots, \boldsymbol{v}_{jr_j}\}$$

be a basis for $\mathcal{E}(\lambda_i)$.

- 3. Form V by stringing bases together. Note that V will be a square matrix since $\sum_{j=1}^{s} r_j = \sum_{j=1}^{s} m_j = n$.
- 4. Now $A = V\Lambda V^{-1}$ (you should check it to be sure).

What Can We Do If A is Not Diagonalizable?

Some options:

1. It might be possible to just compute $\exp\{tA\}$ by the definition, e.g.

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- 2. You can use the fundamental matrix method to compute the CT-STM $\Phi(t, s)$, and hence compute $\exp\{(t s)A\}$.
- 3. You can still use the eigenvalue/eigenvector method except you have to work with "generalized eigenvectors".

Generalized Eigenvectors

Definition

Given $A \in \mathbb{R}^{n \times n}$ and $\lambda_0 \in \mathbb{C}$ an eigenvalue of A, we say that $v_0 \in \mathbb{C}^n$ is a generalized eigenvector corresponding with λ_0 if $v_0 \neq 0$ and

$$(\boldsymbol{A} - \lambda_0 \boldsymbol{I}_n)^k \boldsymbol{v}_0 = \boldsymbol{0}$$

for some integer $k \geq 1$.

Question: Are all regular eigenvectors also generalized eigenvectors?

Question: Are all generalized eigenvectors also regular eigenvectors?

Generalized Eigenspace

Definition

The generalized eigenspace of the eigenvalue λ_0 is the subspace of C^n spanned by all of the generalized eigenvalues corresponding to λ_0 .

We will use the notation $\mathcal{F}(\lambda_0)$ to denote the generalized eigenspace of the eigenvector λ_0 .

Examples...

- 1. $\mathcal{E}(\lambda_0) \subset \mathcal{F}(\lambda_0)$, i.e., the regular eigenspace of the eigenvalue λ_0 is a subset of the generalized eigenspace of the eigenvalue λ_0 . Why?
- 2. If $\{v_1, \ldots, v_k\}$ is a set of generalized eigenvectors corresponding to different eigenvalues, then $\{v_1, \ldots, v_k\}$ is a linearly independent set.
- 3. If $v_0 \in \mathcal{F}(\lambda_0)$, then $Av_0 \in \mathcal{F}(\lambda_0)$. In other words, the subspace $\mathcal{F}(\lambda_0)$ is invariant under A.
- 4. Given the characteristic polynomial of A

$$\det(\lambda \boldsymbol{I}_n - \boldsymbol{A}) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}$$

where $\lambda_1, \ldots, \lambda_s$ are all distinct and r_1, \ldots, r_s are the respective algebraic multiplicities, it can be shown that

$$\dim(\mathcal{F}(\lambda_j)) = r_j.$$

When combined with property #1, this implies that

$$1 \leq \dim(\mathcal{E}(\lambda_i)) \leq \dim(\mathcal{F}(\lambda_i)) = r_i.$$

5. A consequence of properties #2 and #4. If

$$\{m{v}_{11},\dots,m{v}_{1r_1}\}$$
 is a basis for $\mathcal{F}(\lambda_1)$
$$\vdots \qquad \vdots \qquad \vdots \\ \{m{v}_{s1},\dots,m{v}_{1r_s}\}$$
 is a basis for $\mathcal{F}(\lambda_s)$

then we can string all of these sets of generalized eigenvectors together into a big set $\{v_{11}, \ldots, v_{1r_1}, \ldots, v_{s1}, \ldots, v_{1r_s}\}$.

How many vectors are in this set? _____

This set of generalized eigenvectors is a basis for \mathbb{C}^n . Why?

- 6. From property #3, if $v_{jk} \in \mathcal{F}(\lambda_j)$, then $Av_{jk} \in \mathcal{F}(\lambda_j)$.
 - $\Leftrightarrow Av_{jk}$ can be expressed as a linear combination of the vectors comprising a basis for $\mathcal{F}(\lambda_i)$.
 - \Leftrightarrow If the basis for $\mathcal{F}(\lambda_j)$ is $\{oldsymbol{v}_{j1},\ldots,oldsymbol{v}_{jr_j}\}$ then

$$Av_{j1} = \alpha_{11}v_{j1} + \cdots + \alpha_{1r_1}v_{jr_j}$$

 \vdots
 $Av_{jr_i} = \alpha_{j1}v_{j1} + \cdots + \alpha_{jr_1}v_{jr_i}$

 \Leftrightarrow We can rewrite these r_j equations as one big matrix equation:

$$egin{aligned} oldsymbol{A} \underbrace{\left[oldsymbol{v}_{j1} \ \ldots \ oldsymbol{v}_{jr_j}
ight]}_{oldsymbol{V}_j} &= \underbrace{\left[oldsymbol{v}_{j1} \ \ldots \ oldsymbol{v}_{jr_j}
ight]}_{oldsymbol{V}_j} \underbrace{\left[egin{aligned} lpha_{11} & lpha_{21} & \ldots & lpha_{r_j1} \ lpha_{12} & lpha_{22} & \ldots & lpha_{r_j2} \ dots & dots & \ddots & dots \ lpha_{1r_j} & lpha_{2r_j} & \ldots & lpha_{r_jr_j} \ \end{array}
ight]}_{oldsymbol{Q}_j} \end{aligned}$$

Property #6 continued...

We now have $AV_j = V_jQ_j$. What are the dimensions of A, V_j , and Q_j ?

Let
$$oldsymbol{V} = [oldsymbol{V}_1 \quad oldsymbol{V}_2 \quad \dots \quad oldsymbol{V}_s]$$
 and

$$oldsymbol{Q} = egin{bmatrix} oldsymbol{Q}_1 & & & \ & \ddots & & \ & & oldsymbol{Q}_s \end{bmatrix}$$
 (block diagonal form)

What are the dimensions of V and Q?

We now have AV = VQ. From property #5, what can we say about the invertibility of V?

Hence, we can write $A = VQV^{-1}$. Note that Q is not diagonal, but block diagonal.

7. By the definition of generalized eigenvectors and generalized eigenspaces, the statement $v \in \mathcal{F}(\lambda_j)$ is equivalent to

$$(\mathbf{A} - \lambda_j \mathbf{I}_n)^k \mathbf{v} = \mathbf{0} \tag{1}$$

for some integer $k \ge 1$. Note that, if (1) is true when $k = k_0$, then it is also true for all $k \ge k_0$.

This implies that

$$\mathcal{F}(\lambda_j) = \text{null}((\boldsymbol{A} - \lambda_j \boldsymbol{I}_n)^{r_j}).$$

In other words, to determine the generalized eigenspace for the eigenvalue λ_j , you don't need to compute the nullspace of $(\boldsymbol{A} - \lambda_j \boldsymbol{I}_n)^k$ for $k = 1, 2, \dots, r_j$.

You can just compute the nullspace of the matrix $(A - \lambda_j I_n)^{r_j}$ by doing the standard Gaussian elimination and putting the result in echelon form.

8. From properties #6 and #7, we can say that

$$(\boldsymbol{Q}_j - \lambda_j \boldsymbol{I}_{r_j})^{r_j} = \mathbf{0}$$

Why?

Nilpotent Matrices

Definition

A nilpotent matrix is a square matrix \hat{N} with the property that $\hat{N}^m = \mathbf{0}$ for some positive integer m.

An equivalent definition for a nilpotent matrix is a square matrix with eigenvalues all equal to zero.

Examples: Which of these matrices are

$$m{A}_1 = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} \qquad m{A}_2 = egin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix} \qquad m{A}_3 = egin{bmatrix} 0 & 1 \ 0 & 1 \end{bmatrix}$$

nilpotent?

9. From property #8 we know that

$$egin{bmatrix} oldsymbol{Q}_1 - \lambda_1 oldsymbol{I}_{r_1} & & & & & \ & \ddots & & & & & \ & oldsymbol{Q}_s - \lambda_s oldsymbol{I}_{r_s} \end{bmatrix} = \hat{oldsymbol{N}}$$

is nilpotent. If we let

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 oldsymbol{I}_{r_1} & & & \ & \ddots & & \ & & \lambda_s oldsymbol{I}_{r_s} \end{bmatrix}$$

then we have $oldsymbol{Q} = oldsymbol{\Lambda} + \hat{oldsymbol{N}}$ where Λ is diagonal and $\hat{oldsymbol{N}}$ is nilpotent.

We can show that

$$\Lambda \hat{N} = \hat{N} \Lambda$$

In other words, \hat{N} and Λ commute.

Computing $oldsymbol{A}^k$ When $oldsymbol{A}$ is Not Diagonalizable

We now know everything we need to compute ${m A}^k$ when ${m A}$ is not diagonalizable. In general, we can always write

$$A = V(\Lambda + \hat{N})V^{-1}$$

This implies that

$$\mathbf{A}^k = \mathbf{V}(\mathbf{\Lambda} + \hat{\mathbf{N}})^k \mathbf{V}^{-1}$$

By the binomial expansion theorem and property #9, we can write

$$oldsymbol{A}^k = oldsymbol{V} \left[\sum_{j=0}^k {k \choose j} oldsymbol{\Lambda}^{k-j} \hat{oldsymbol{N}}^j
ight] oldsymbol{V}^{-1}$$

But $\hat{m{N}}$ is nilpotent. Hence, for $j \geq \max\{r_1,\ldots,r_s\}$, $\hat{m{N}}^j = 0$.

Computing $\exp\{tA\}$ When A is Not Diagonalizable

By property #9, we can write

$$\exp\{t\mathbf{A}\} = \mathbf{V} \exp\{t(\mathbf{\Lambda} + \hat{\mathbf{N}})\}\mathbf{V}^{-1}$$
$$= \mathbf{V} \exp\{t\mathbf{\Lambda}\} \exp\{t\hat{\mathbf{N}}\}\mathbf{V}^{-1}$$

The term $\exp\{t\mathbf{\Lambda}\}$ is easy to compute because $\mathbf{\Lambda}$ is diagonal.

What about the term $\exp\{t\hat{N}\}$? Look at the definition:

$$\exp\{t\hat{\mathbf{N}}\} = \sum_{k=0}^{\infty} \frac{t^k}{k!} \hat{\mathbf{N}}^k.$$

But \hat{N} is nilpotent. So the sum will only have a finite number of terms:

$$\exp\{t\hat{\boldsymbol{N}}\} = \sum_{k=0}^{\max\{r_1,\dots,r_s\}-1} \frac{t^k}{k!} \hat{\boldsymbol{N}}^k.$$

In typical cases, there are only a few terms to compute.

Examples

Putting it All Together

A procedure for finding A^k and/or $\exp\{tA\}$ for arbitrary $A \in \mathbb{R}^{n \times n}$:

1. Find all of the eigenvalues of A. Usually you do this by computing the roots of the characteristic polynomial, i.e.

$$\det(\lambda \mathbf{I}_n - \mathbf{A}) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s} = 0$$

- 2. For each $j \in \{1, ..., s\}$, find a basis for $\mathcal{E}(\lambda_j) = \text{null}(\boldsymbol{A} \lambda_j \boldsymbol{I}_n)$.
 - ▶ If $\dim(\mathcal{E}(\lambda_j)) = r_j$ then good! Move on to next eigenvalue.
 - ▶ If $\dim(\mathcal{E}(\lambda_i)) > r_i$ then you've done something wrong.
 - ▶ If $\dim(\mathcal{E}(\lambda_j)) < r_j$ then you need to find a basis for the generalized eigenspace $\mathcal{F}(\lambda_j) = \operatorname{null}(\boldsymbol{A} \lambda_j \boldsymbol{I}_n)^{r_j}$. This basis must contain r_j linearly independent vectors.
- 3. Form $V \in \mathbb{C}^{n \times n}$ by stringing together all of the bases.
- 4. Compute $V^{-1}AV=Q=\Lambda+\hat{N}$ where Λ is diagonal and \hat{N} is nilpotent. Note that $\hat{N}=0$ when A is diagonalizable.

Putting it All Together (cont.)

5. Compute A^k via

$$oldsymbol{A}^k = oldsymbol{V} \left[\sum_{j=0}^k {k \choose j} oldsymbol{\Lambda}^{k-j} \hat{oldsymbol{N}}^j
ight] oldsymbol{V}^{-1}$$

where the nilpotent property of \hat{N} implies that the sum will have at most $\max\{r_1,\ldots,r_s\}-1$ terms for any k.

6. Compute $\exp\{tA\}$ via

$$\exp\{t\mathbf{A}\}\mathbf{V}\exp\{t\mathbf{\hat{N}}\}\mathbf{V}^{-1}$$

where the term $\exp\{t{\bf \Lambda}\}$ is easy to compute because ${\bf \Lambda}$ is diagonal and the term

$$\exp\{t\hat{\boldsymbol{N}}\} = \sum_{k=0}^{\max\{r_1,\dots,r_s\}-1} \frac{t^k}{k!} \hat{\boldsymbol{N}}^k.$$

is also not too difficult since the sum is finite.

Remarks

Note that $\exp\{t\Lambda\}$ will have elements that look like $e^{\lambda_1 t}, e^{\lambda_2 t}, \ldots$ What will the elements of $\exp\{t\hat{N}\}$ look like?

Hence, when ${\bf A}$ is diagonalizable, $\exp\{t{\bf A}\}$ will only have terms that look like $e^{\lambda t}$. When ${\bf A}$ is not diagonalizable, $\exp\{t{\bf A}\}$ will also have terms that look like $t^m e^{\lambda t}$.

Conclusions

This concludes our **quantitative** analysis of systems. We will be moving on to **qualitative** analysis (e.g. stability) after the midterm exam.

- 1. Solution to LTI or LTV discrete-time state-space difference equations (existence and uniqueness).
- 2. Solution to LTI or LTV continuous-time state-space differential equations (existence and uniqueness).
- 3. Important special case: DT LTI systems with $\Phi[k,j] = A^{k-j}$ and CT LTI systems with $\Phi(t,s) = \exp\{(t-s)A\}$.
- 4. Linear algebraic tools:
 - Subspaces
 - Nullspace, range, rank, nullity
 - Matrix invertibility
 - ▶ Eigenvalues, eigenvectors, eigenspaces, and nilpotent matrices
- 5. Properties of A^k and $\exp\{tA\}$.
- 6. Computation of A^k and $\exp\{tA\}$ when A is diagonalizable.
- 7. Computation of A^k and $\exp\{tA\}$ when A is not diagonalizable.