- 1、设 $f(x) = \frac{1}{x} a$,由牛顿切线法解得迭代方程 $x_{n+1} = 2x_n ax_n^2$,该方程的收敛解即 $\frac{1}{a}$.
- 2、题5中的迭代方程:

$$x_{n+1} = \frac{1}{1+x_n}$$
 (1)

迭代过程如下($x_0 = 1$, $\varepsilon < 10^{-5}$):

$$x_1 = \frac{1}{2}$$
, $x_2 = \frac{2}{3}$, $x_3 = \frac{3}{5}$, $x_4 = \frac{5}{8}$, $x_5 = \frac{8}{13}$, ..., $x_{11} = \frac{144}{233} \approx 0.618$

共需要迭代11次。而加权平均生成迭代公式:

$$x_{n+1} = \omega x_n + (1 - \omega) \frac{1}{1 + x_n}$$
 (2)

迭代过程为 $(\omega = \frac{7}{25}, x_0 = 1, \varepsilon < 10^{-5})$:

$$x_1 = \frac{16}{25}$$
 , $x_2 \approx 0.6182$, $x_3 \approx 0.6180$

可见公式(2)的迭代速度快得多.

- 3、 $x_1 = 2.7$ 有两位有效数字, $x_2 = 2.71$ 有三位有效数字, $x_3 = 2.718$ 有四位有效数字
- 4、算式 (5) $\frac{1}{(3+2\sqrt{2})^3}$ 最好,因为改用加法避免了减法带来的误差,相较于算式 (4) $\frac{1}{(\sqrt{2}+1)^6}$ 迭代次数更少,精度更高.