Sat Solver Optimisations

Anatoly Weinstein

January 2, 2024

This document contains research into optimisations of CNF-SAT problems.

1 Definitions

BOOL Boolean Function. A boolean function $f: V \subseteq Variables \to \{0, 1\}$ with truthy sets $P \subseteq \mathcal{P}(Variables)$ yields 1 if $V \in P$, else yields 0.

SAT Boolean Satisfyability Equation. We define a boolean formula by the following context-free grammar with start variable S, a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables and a set of binary operations $Operation = \{\cdot, +, \oplus, ...\}$ and an assigned boolean function $f_{Operation} : \mathcal{P} \subseteq \{L, R\} \rightarrow \{0, 1\}$, where L and R is the truthiness of left and right respectively.

$$S \rightarrow (S)$$

$$S \rightarrow S Operation S$$

$$S \rightarrow \neg S$$

$$S \rightarrow Variable$$

CNF Unmixed conjunctive normal form. We define a boolean formula in conjunctive normal form by the following context- free grammar with start variable S and a given variable set $Variable = \{x_i : i \in [n-1]\}$ of n variables.

 $S \rightarrow (Disjunction) \text{ Short: } \mathbf{S} : \{D\}$ $S \rightarrow S \cdot (Disjunction)$ $Disjunction \rightarrow Literal \text{ Short: } \mathbf{D} : \{X\}$ $Disjunction \rightarrow Disjunction + Literal$ $Literal \rightarrow Variable \text{ Short: } \mathbf{L} : x_i$ $Literal \rightarrow \neg Variable$

The notation $a \cdot \overline{b} + b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{c}$ will be used as a set of literal sets $\{\{a, \neg b\}, \{b, \neg c, \neg d\}, \{\neg a, \neg b\}\}\$ in this paper.

2 Transformation Techniques

U-SAT Unmixed conjunctive normal form. Given a CNF-SAT formula, we call it unmixed, if every disjunction consists of either positive or negated literals.

A polynomial time reduction $SAT \leq_p U - SAT$ for an equation $S_E \to U_E$ would be:

 $\forall D \in S$:

TODO De Morgan

3-CNF-SAT Three-literals conjunctive normal form. Given a CNF-SAT formula, we call it n - SAT, if every disjunction consists of exactly n-literals.

TODO Proof

U3-SAT Three-literals unmixed conjunctive normal form. Given a CNF-SAT formula, we call it U3-SAT, if it is unmixed and every disjunction consists of exactly 3-literals.

TODO

3 Optimisation Techniques

Contradiction. A formula with contradictional disjunctions is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$

Common Literals. A formula with common literals is not satisfiable.

$$\forall A: X \cdot \neg X \cdot A(X) = \bot$$