I Translations

1. Définition:

Pour construire le point M', image du point M par la translation qui transforme A en B, on construit le parallélogramme ABM'M qui peut être éventuellement un parallélogramme aplati.

Figures : le point M a pour image le point M' dans la translation qui transforme le point A en B.

Parallélogramme non aplati :

Parallélogramme aplati :

2. Notion de vecteur :

On considère maintenant les points A, B, C, D, E et F tels que ABDC d'une part et ABFE d'autre part soient des parallélogrammes.

La translation qui transforme le point A en B est aussi la translation qui transforme le point C en D, mais aussi la translation qui transforme le point E en F.

A cette translation on associe le vecteur \overrightarrow{AB} et on dit que cette translation est une **translation de** vecteur \overrightarrow{AB} .

3. Vocabulaire et notation :

On reprend la figure ci-dessus. On dit que le point E a pour image le point F par la translation de vecteur \overrightarrow{AB} . On dit que le point A a pour image le point B par la translation de vecteur \overrightarrow{AB} .

On note $\overrightarrow{AB} = \overrightarrow{EF}$.

4. Un cas particulier:

Si les points A et B sont confondus, la translation est une translation de vecteur \overrightarrow{AA} . Tout point M du plan est confondu avec son image par cette translation.

Le vecteur \overrightarrow{AA} est appelé le vecteur nul et noté $\overrightarrow{0}$.

5. Propriété fondamentale

$$\overrightarrow{AB} = \overrightarrow{CD}$$
 équivaut à \overrightarrow{ABDC} parallélogramme

Exemple:

On a :
$$\overrightarrow{AB} = \overrightarrow{DC}$$
 $\overrightarrow{BA} = \overrightarrow{CD}$, $\overrightarrow{AD} = \overrightarrow{BC}$ et $\overrightarrow{DA} = \overrightarrow{CB}$

- 6. Méthode: construction du point M tel que $\overrightarrow{AB} = \overrightarrow{CM}$
 - a) A l'aide d'un quadrillage comportant des lignes horizontales et verticales

Partant du point A on définit le déplacement horizontal puis vertical pour arriver au point B. On effectue le même trajet en partant du point C, on obtient ainsi le point M.

b) A l'aide d'un compas

On construit le point M tel que $\overrightarrow{AB} = \overrightarrow{CM}$ sur une feuille non quadrillée.

On construit à l'aide du compas le point M tel que ABMC soit un parallèlogramme.

Le point M est tel que : CM = AB et BM = AC avec ABMC quadrilatère non croisé.

On construit

le cercle de centre C de rayon AB (CM = AB) le cercle de centre B de rayon AC (BM = AC)

Le point ${\it M}$ est un des points communs de ces deux cercles.

II- Notation, sens d'un vecteur

1. Notation \vec{u}

Soient A et B deux points du plan. On considère la translation de vecteur \overrightarrow{AB} .

Dans la figure ci-contre le quadrilatère ABDC est un parallélogramme. On a : $\overrightarrow{AB} = \overrightarrow{CD}$. Soient M et N deux points quelconques du plan tels

que ABMN soit un parallélogramme.

On a encore une égalité vectorielle : $\overrightarrow{AB} = \overrightarrow{NM}$.

On peut constater qu'il existe une infinité de vecteurs égaux

au vecteur \overrightarrow{AB} .

On choisit de noter ce vecteur : \vec{u} et on écrit : $\overrightarrow{AB} = \vec{u}$

Définition, vocabulaire :

L'égalité $\overrightarrow{AB} = \overrightarrow{u}$ peut se traduire par : le couple (A;B) <u>représente le vecteur \overrightarrow{u} </u>. Dans le cas où les points A et B sont distincts, le vecteur \overrightarrow{u} est défini par sa direction, son sens et sa norme avec:

- La direction du vecteur \vec{u} est donnée par la direction de la droite (AB) ,
- Le sens du vecteur \vec{u} est donné par le sens du déplacement de A vers B
- La norme du vecteur \vec{u} est définie par la distance AB. On note $||\vec{u}|| = AB$.

Remarque : le vecteur nul $\vec{0}$ n'a pas de direction ou alors il les a toutes !!

Propriété fondamentale :

Soit *M* un point du plan.

Il existe un seul point N tel que $\overrightarrow{MN} = \overrightarrow{u}$

2. sens d'un vecteur

Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs égaux, les droites (AB) et (CD) sont donc parallèles.

Un point M appartenant à la demi droite [CD) définit un vecteur \overrightarrow{CM} , les vecteurs \overrightarrow{CM} et \overrightarrow{CD} ont la même direction par définition et on dit que les vecteurs \overrightarrow{CM} et \overrightarrow{CD} ont le même sens donc \overrightarrow{AB} et \overrightarrow{CM} ont le même sens.

Un point N de la droite (CD) n'appartenant pas à la demi droite \overline{CD} définit un vecteur \overline{CN} , les vecteurs \overline{CN} et \overline{CD} ont la même direction par définition et on dit que les vecteurs \overline{CN} et \overline{CD} ont des sens opposés donc \overline{AB} et \overline{CM} ont des sens opposés.

Cas particulier : deux vecteurs \vec{u} et \vec{v} ayant la même direction, des sens opposés et la même norme sont dits : vecteurs opposés et on a $\vec{u}=-\vec{v}$

3. Milieu d'un segment

Soient A et B deux points distincts du plan.

I est le milieu du segment [AB] si et seulement si : les points A, I et B sont alignés dans cet ordre et AI = IB.

<u>Traduction vectorielle:</u>

les points A,I et B sont alignés : les vecteurs \overrightarrow{AI} et \overrightarrow{IB} ont même direction les points A,I et B sont alignés dans cet ordre : les vecteurs \overrightarrow{AI} et \overrightarrow{IB} ont même direction et même sens

AI = IB: les vecteurs \overrightarrow{AI} et \overrightarrow{IB} ont même norme.

4

Propriété:

Soient A et B deux points distincts du plan.

I est le milieu du segment [AB] si et seulement si $\overrightarrow{AI} = \overrightarrow{IB}$.

III- coordonnées d'un vecteur

- 1- Exemple : voir activité 6.
- 2- <u>Définition</u>:

Soit (0; I, J) un repère du plan. Soit \vec{u} un vecteur.

Les coordonnées du vecteur \vec{u} dans le repère (O; I, J) sont les coordonnées du point M du plan tel que $\overrightarrow{OM} = \vec{u}$.

On retient

Dans le repère
$$(0; I, J) : \vec{u} \begin{pmatrix} x \\ y \end{pmatrix} \iff \overrightarrow{OM} = \vec{u} \text{ et } M(x; y)$$

<u>Propriété</u> Traduction de l'égalité de deux vecteurs sur les cordonnées respectives.

Théorème:

Deux vecteurs sont égaux si et seulement si leurs coordonnées respectives sont égales.

$$\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$$
 et $\vec{u'} \begin{pmatrix} a' \\ b' \end{pmatrix}$ sont égaux si et seulement si : $\begin{cases} a = a' \\ b = b' \end{cases}$

3- Propriété

Coordonnées du vecteur \overrightarrow{AB} en fonction des coordonnées des points A et B.

Théorème:

Soit (0; I, J) un repère du plan. Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan.

Les coordonnées du vecteur \overrightarrow{AB} dans le repère (0; I, J) sont : $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Démonstration:

Soit (O; I, J) un repère du plan. On détermine les coordonnées du point M tel que $\overrightarrow{OM} = \overrightarrow{AB}$ dans ce repère.

 $\overrightarrow{OM} = \overrightarrow{AB} \Leftrightarrow ABMO$ parallélograme

 \Leftrightarrow [AM] et [BO] ont même milieu

$$\iff \begin{cases} \frac{x_M + x_A}{2} = \frac{x_B + x_O}{2} \\ \frac{y_M + y_A}{2} = \frac{y_B + y_O}{2} \end{cases}$$

$$\iff \begin{cases} \frac{x_M + x_A}{2} = \frac{x_B}{2} \\ \frac{y_M + y_A}{2} = \frac{y_B}{2} \end{cases} \quad (x_O = 0 \text{ et } y_O = 0)$$

$$\Leftrightarrow \begin{cases} x_M + x_A = x_B \\ y_M + y_A = y_B \end{cases}$$

$$\Leftrightarrow \begin{cases} x_M = x_B - x_A \\ y_M = y_B - y_A \end{cases}$$

D'où les coordonnées du point M tel que $\overrightarrow{OM} = \overrightarrow{AB} : M(x_B - x_A; y_B - y_A)$.

Donc les coordonnées du vecteur \overrightarrow{AB} sont $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

IV- somme de vecteurs

1. <u>Définition</u>:

Soient A, B et C trois points du plan. Le vecteur \overrightarrow{AC} de la translation obtenue en appliquant successivement la translation de vecteur \overrightarrow{AB} puis la translation de vecteur \overrightarrow{BC} est appelé le vecteur somme des vecteurs \overrightarrow{AB} et \overrightarrow{BC} .

On écrit : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

On retient:

Pour tout point M,N et P du plan : $\overrightarrow{MN} + \overrightarrow{NP} = \overrightarrow{MP}$

Cette égalité porte le nom de relation de Chasles.

Cas particulier: pour tout point A et $B: \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$.

Conséquence :

On admet : La somme de deux vecteurs opposés est égale au vecteur nul.

2. Construction du vecteur somme de deux vecteurs

Soient \vec{u} et \vec{v} deux vecteurs. On note $\vec{w} = \vec{u} + \vec{v}$. Pour construire le vecteur \vec{w} on retiendra deux méthodes.

Par la relation deChasles

On definit les points A, B et C tels que : $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{BC} = \overrightarrow{v}$. Alors $\overrightarrow{w} = \overrightarrow{AC}$.

$$\vec{w} = \vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Par la construction d'un parallèlogramme (ou par la règle du parallélogramme).

On definit les points A, B et C tels que : $\overrightarrow{AB} = \overrightarrow{u}$ et $\overrightarrow{AC} = \overrightarrow{v}$. Soit D le point tel que ABDC soit un parallélogramme . Alors : $\overrightarrow{w} = \overrightarrow{AD}$.

 $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{AC}$ \overrightarrow{ABDC} est un parallélogramme donc : $\overrightarrow{AC} = \overrightarrow{BD}$. $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD}$ $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AD}$

4- <u>Propriété</u>Théorème (admis)

Soit (0; I, J) un repère du plan.

Soient $\vec{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\vec{u'} \begin{pmatrix} a' \\ b' \end{pmatrix}$ deux vecteurs dont on donne les coordonnées.

Les coordonnées du vecteur $\vec{u} + \overrightarrow{u'}$ sont : $\binom{a+a'}{b+b'}$

5- Propriété

Pour tout vecteur \vec{u} et tout vecteur $\vec{u'}$: $\vec{u} + \vec{u'} = \vec{u'} + \vec{u}$.

 $\underline{\text{D\'emonstration}} : \text{Soient } \overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix} \text{ et } \overrightarrow{u'} \begin{pmatrix} a' \\ b' \end{pmatrix} \text{ deux vecteurs dont on donne les coordonn\'ees}.$

Les coordonnées du vecteur $\vec{u} + \overrightarrow{u'}$ sont : $\binom{a+a'}{b+b'}$

Les coordonnées du vecteur $\overrightarrow{u'} + \overrightarrow{u}$ sont : $\begin{pmatrix} a' + a \\ b' + b \end{pmatrix}$

Or on a : $\begin{cases} a+a'=a'+a \\ b+b'=b'+b \end{cases} \quad \mathsf{donc} : \overrightarrow{u} + \overrightarrow{u'} = \ \overrightarrow{u'} + \ \overrightarrow{u}.$

Autre formulation de la propriété :

Pour tous points A, B, C et D du plan :

$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{CD} + \overrightarrow{AB}$$

;
$$\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$$

6- Somme de vecteurs opposés: conséquence de la définition

Pour tous points du plan A et B: $-\overrightarrow{AB} = \overrightarrow{BA}$.

Pour tout vecteur \vec{u} , la somme du vecteur \vec{u} et du vecteur $-\vec{u}$ est égale au vecteur nul.

Pour tout vecteur
$$\vec{u}$$
 , $\vec{u}+(-\vec{u})=\vec{0}$

7- Coordonnées du vecteur $(-\vec{u})$:

Soit (0; I, J) un repère du plan. Soit \vec{u} un vecteur. On suppose les coordonnées de \vec{u} sont : \vec{u} $\binom{x}{y}$.

Les coordonnées du vecteur $(-\vec{u})$ sont : $(-\vec{u})\begin{pmatrix} -x \\ -y \end{pmatrix}$.

<u>Démonstration</u>:

Soit (0; I, J) un repère du plan. Soit $: \vec{u} \binom{x}{y}$. On rappelle que les coordonnées du vecteur nul sont $: \vec{0} \binom{0}{0}$.

7

On note $(-\vec{u}) \begin{pmatrix} x' \\ y' \end{pmatrix}$ les coordonnées du vecteur $(-\vec{u})$. On montre que : $\begin{cases} x' = -x \\ y' = -y \end{cases}$.

$$\vec{u} + (-\vec{u}) = \vec{0} \quad \Leftrightarrow \begin{cases} x + x' = 0 \\ y + y' = 0 \end{cases}$$

$$\vec{u} + (-\vec{u}) = \vec{0} \iff \begin{cases} x' = -x \\ y' = -y \end{cases}$$
 d'où le résultat : les coordonnées du vecteur $(-\vec{u})$ sont : $(-\vec{u})$ $\begin{pmatrix} -x \\ -y \end{pmatrix}$.

8. <u>Définition</u>:

Soient \vec{u} et \vec{v} deux vecteurs. On définit le vecteur différence de \vec{v} et \vec{u} le vecteur somme du vecteur \vec{v} et du vecteur $(-\vec{u})$. Pour tous vecteurs \vec{u} et \vec{v} , $\vec{v} - \vec{u} = \vec{v} + (-\vec{u})$.

Propriété:

Soient A, B, C et D quatre points du plan. On a les égalités vectorielles suivantes

$$\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AB} + \left(-\overrightarrow{CD} \right) = \overrightarrow{AB} + \overrightarrow{DC} \quad ; \quad \overrightarrow{AB} - \overrightarrow{CB} = \overrightarrow{AB} + \left(-\overrightarrow{CB} \right) = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

V- Produit d'un vecteur par un réel

1. Approche. Le plan est rapporté au repère orthonormé (0; I, J).

On donne les coordonnées du vecteur \overrightarrow{v} puis du vecteur \overrightarrow{u} et \overrightarrow{w} dans la figure ci-contre :

$$\overrightarrow{u}$$
 (")

$$\overrightarrow{w}$$
 (")

8

Comparer respectivement:

- a) les coordonnées du vecteur \overrightarrow{v} et du vecteur \overrightarrow{u} .
- b) les coordonnées du vecteur \overrightarrow{v} et du vecteur \overrightarrow{w} .
- c) Quelles égalités vectorielles pouvez-vous proposer pour résumer les résultats précédents ?
 - 2- <u>Définition</u>:

Le plan est rapporté au repère orthonormé (O; I, J). Soit k un nombre réel. Si le vecteur \vec{u} a pour coordonnées $\vec{u} \binom{a}{b}$ alors le vecteur $k\vec{u}$ est le vecteur qui a pour coordonnées $k\vec{u} \binom{ka}{bb}$.

On admet que cette définition du vecteur $k\vec{u}$ ne dépend pas du repère choisi.

Remarque : Soit \vec{u} un vecteur. Le vecteur $(-1)\vec{u}$ est le vecteur $-\vec{u}$. Le vecteur $(-1)\vec{u}$ est le vecteur opposé du vecteur \vec{u} .

- 3. Cas particuliers:
- k=0. Si le vecteur \vec{u} a pour coordonnées $\vec{u}\binom{a}{b}$ alors le vecteur $0\vec{u}$ est le vecteur qui a pour coordonnées $0 \vec{u} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Le vecteur $0 \vec{u}$ a les mêmes coordonnées que le vecteur nul.

Pour tout vecteur
$$\vec{u}$$
, $0\vec{u} = \vec{0}$

- $\vec{u} = \vec{0}$. Pour tout reél k, le vecteur $k\vec{0}$ est le vecteur qui a pour coordonnées $k\vec{0}$ $\binom{0}{0}$. Le vecteur
 - $0\,\vec{u}\,$ a les mêmes coordonnées que le vecteur nul.

Pour tout réel
$$k$$
, $k\vec{0} = \vec{0}$

- Si $k\vec{u} = \vec{0}$ alors k = 0 ou $\vec{u} = \vec{0}$.
 - 4. Exemple

Dans la figure ci contre, ABCD est un carré de centre I. Le point E est le symétrique du point D par rapport à C et le point F est le milieu du segment [CE].

On complète les égalités suivantes :

$$\overrightarrow{CF} = \cdots \overrightarrow{CE}$$

$$\overrightarrow{CF} = \cdots \overrightarrow{CE}$$
 $\overrightarrow{DE} = \cdots \overrightarrow{AB}$ $\overrightarrow{DF} = \cdots \overrightarrow{DC}$ $\overrightarrow{DF} = \cdots \overrightarrow{AB}$ $\overrightarrow{CF} = \cdots \overrightarrow{DE}$

$$\overrightarrow{DF} = \cdots \overrightarrow{DC}$$

$$\overrightarrow{DF} = \cdots \overrightarrow{AF}$$

$$\overrightarrow{CF} = \cdots \overrightarrow{DF}$$

$$\overrightarrow{FF} - \dots \overrightarrow{DC}$$

$$\overrightarrow{EF} = \cdots \overrightarrow{DC}$$
 $\overrightarrow{IA} = \cdots \overrightarrow{IC}$ $\overrightarrow{IA} = \cdots \overrightarrow{AC}$

5. <u>Propriété (admise)</u>

Soient A, B, C et D quatre points du plan distincts deux à deux.

Soit k un nombre réel non nul. L'égalité $\overrightarrow{AB} = k \overrightarrow{CD}$ signifie que :

- a) les droites (AB) et (CD) sont parallèles
- b) Si k > 0 les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont de même sens et AB = kCD
- c) Si k < 0 les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont de sens contraire et AB = -kCD.

Propriété: Pour tous réels k, k' et tout vecteur \vec{u} , $k(k'\vec{u}) = (kk')\vec{u}$

Pour tout réel k, et tous vecteurs \vec{u} et $\overrightarrow{u'}$: $k(\vec{u} + \overrightarrow{u'}) = k\vec{u} + k\overrightarrow{u'}$.

Pour tous réels k, k' et tous vecteurs \overrightarrow{u} et $\overrightarrow{u'}$ on a :

$$k\left(\overrightarrow{u} + \overrightarrow{u'}\right) = k\overrightarrow{u} + k\overrightarrow{u'}$$

$$(k+k')\vec{u} = k\vec{u} + k'\vec{u}$$

$$k(k'\vec{u}) = (kk')\vec{u}$$

VI- Vecteurs colinéaires

1. <u>Définition</u>:

Soient \vec{u} et \vec{v} deux vecteurs. On dit que les vecteurs \vec{u} et \vec{v} sont colinéaires lorsqu' il existe un réel k tel que \vec{u} = k \vec{v} ou \vec{v} = k \vec{u} .

Remarque:

Pour tout vecteur \vec{u} on a : $\vec{0} = 0$ \vec{u} . En conséquence le vecteur nul $\vec{0}$ est colinéaire à tout vecteur.

2. Exemples:

- a) Soit \vec{u} un vecteur les vecteurs \vec{u} et 3 \vec{u} sont des vecteurs colinéaires.
- b) Dans le plan muni du repère $\left(0\;;\;\overrightarrow{OI},\overrightarrow{OJ}\right)$ les vecteurs $\overrightarrow{u}{3\choose -1}$ et $\overrightarrow{v}{6\choose 2}$ sont colinéaires.

Figure:

On montre qu'il existe un réel k tel que $\vec{v} = k \vec{u}$.

$$\vec{v} = k \vec{u} \iff \begin{cases} -6 = k \times 3 \\ 2 = k \times (-1) \end{cases} \iff \begin{cases} 3k = -6 \\ -k = 2 \end{cases} \iff \begin{cases} k = -2 \\ k = -2 \end{cases} \iff k = -2$$

On a : $\vec{v} = -2 \vec{u}$. Les vecteurs \vec{u} et \vec{v} sont colinéaires.

3. Propriétés

a) Soient \vec{u} et \vec{v} deux vecteurs non nuls et colinéaires. Il existe un réel k tel que \vec{v} = k \vec{u} .

Les vecteurs \vec{u} et \vec{v} sont non nuls, donc le réel k est non nul. Dans ce cas : $\vec{v} = k \vec{u} \iff \vec{u} = \frac{1}{k} \vec{v}$.

b) Colinéarité et cordonnées :

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs non nuls. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si leurs coordonnées respectives sont proportionnelles.

Les réels
$$x, x', y, y'$$
 étant tous non nuls : $\vec{v} = k \vec{u} \Leftrightarrow \begin{cases} x' = kx \\ y' = ky \end{cases} \Leftrightarrow \frac{x'}{x} = \frac{y'}{y}$

Les réels x, x', y, y' étant tous non nuls :

$$\begin{cases} x' = kx \\ y' = ky \end{cases} \Leftrightarrow \frac{x'}{x} = \frac{y'}{y} \Leftrightarrow x'y = xy' \Leftrightarrow x'y - xy' = 0$$

c) Propriété admise

Soient $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs. Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si : x'y - xy' = 0

d) Application de la colinéarité de vecteurs à la géométrie.

Théorème (admis)

Soient *A*, *B* et *C* trois points deux à deux distincts.

Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Théorème (admis)

Soient A, B, C et D quatre points deux à deux distincts.

Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

