(18 points total). Consider the adjacency matrix A for an undirected graph.

$$A = \begin{bmatrix} 0 & 3 & 0 & 7 & 0 & 2 \\ 3 & 0 & 5 & 0 & 9 & 1 \\ 0 & 5 & 0 & 6 & 0 & 0 \\ 7 & 0 & 6 & 0 & 2 & 3 \\ 0 & 9 & 0 & 2 & 0 & 4 \\ 2 & 1 & 0 & 3 & 4 & 0 \end{bmatrix}$$

[2 1 0 3 4 0] **6**(b) (8 points) Run Dijkstra's algorithm on the graph starting from node 2. Report what v.d and $v.\pi$ is for each node **right after finishing the third iteration of the while loop** (i.e., right before calling EXTRACTMIN for the fourth time). Draw the shortest path tree obtained by running the *full* algorithm.

* 3								
Ifemio	node	1	2	3	4	5	6	
	π d	Ø	ø	ø	\$	Ø	Ø	
0	d	8	0		<i>O</i>	00	00	
(nt d	2	Ø	2 5	Ø Ø	2 9	2 1	
`	٩	3	0	2		6		
2	<i>T</i>	2	ø O	5	6 4	5	(
	d	3	φ	Z	6	6	2	
3	d	3	φ O	5	4	5	1	
10	<u></u> ਸ	2	ø		6	6	2	
4	d	3	_ව	z 5	٩	5	l	
5	П							