

ในปัจจุบัน เป็นที่เข้าใจกันโดยทั่วไปแล้วว่า ไฟฟ้ามีความสำคัญไม่ยิ่งหย่อนไปกว่าสิ่งจำเป็นอย่าง อื่น ๆ อันเกี่ยวข้องอยู่กับการดำรงชีพ การอำนวยความสะดวกนานาประการ การผลิตต่าง ๆ และอาจจะนับรวม ไปถึงการให้กำเนิดสิ่งอำนวยความบันเทิงอย่างมากมายในยุคนี้ ไฟฟ้าที่เข้าใจกันอยู่แล้ว ก็คือ ไฟฟ้าสถิต และ ไฟฟ้ากระแส เราได้กล่าวถึงไฟฟ้ากระแสตรงไว้แล้ว จึงจะได้ให้ทำความเข้าใจเกี่ยวกับไฟฟ้ากระแสสลับต่อไป

19.1 เครื่องกำเนิดกระแสสลับ

เครื่องมือที่ก่อกำเนิดไฟฟ้ากระแสสลับ คือ *เครื่องกำเนิดกระแสสลับ (alternating current generator หรือ alternator)* ประกอบด้วยขดลวดหมุนอยู่ในสนามแม่เหล็ก ดังแสดงในรูป 19.1 ก. ปลาย ทั้งสองของขดลวดนี้ต่อกับวงแหวนปลายละอัน วงแหวนแต่ละอันมีแปรงแตะและมีสายไฟฟ้าต่อจากแปรงเพื่อ นำเอาไฟฟ้าไปใช้

ในรูป 19.1 ข. แสดงภาพของขดลวดและสนามแม่เหล็กเมื่อมองเข้าไปในแนวตั้งฉาก

ON = เส้นปกติของพื้นที่ของขดลวด (ตรงจุดกลาง)
 A = พื้นที่ของขดลวด
 θ = มุมที่เส้นปกติกระทำกับแนวสนามแม่เหล็ก
 B = การเหนี่ยวนำแม่เหล็กของสนามแม่เหล็ก

รูป 19.1 (ก) ขคลวคหมุนอยู่ในสนามแม่เหล็ก (ข) แสดงตำแหน่งของขคลวค ณ ขณะหนึ่ง (ค) แสดงลักษณะและส่วนประกอบของเครื่องกำเนิดกระแสสลับ

ไฟฟ้ากระแสสลับ

ดังนั้น สมการ (19.1) จึงเขียนได้เป็น

e

	N	, =	จำนวนรอบของขดลวด		
	ф	=	ฟลักซ์แม่เหล็กที่ผ่านพื้นที่ A = BA cos ฮ		
ถ้า	e	=	แรงเคลื่อนไฟฟ้าเหนี่ยวนำในขณะใด ๆ		
	e	=	$-N\frac{d\phi}{dt} = -N\frac{d}{dt} (BA \cos \theta)$		
		=	NBA $\sin \theta \frac{d\theta}{dt}$		
แต่	$\frac{d\theta}{dt}$	=	อัตราเร็วเชิงมุม = ω		
ดังนั้น	e	=	NBA $\omega \sin \theta$		
เมื่อการหมุนเป็นไปด้วยอัตราที่สม่ำเสมอ $\omega=rac{ heta}{t}$ จึงได้					
	θ	=	ωτ		
และ	e	=	NBA $\omega \sin \omega t$ (19.1)		
จะมีค่ามากที่สุดเมื่อ	sin ωt	= .	1		
ให้ E _m = แรงเคลื่อนไฟฟ้าเหนี่ยวนำซึ่งมีค่ามากที่สุดนี้ จึงได้					
	E _m	=	ΝΒΑ ω		

 $\boldsymbol{E}_{m} \ sin \ \omega t$

(19.2)

19.1 เครื่องกำเนิดกระแสสลับ

ถ้า f = ความถี่เป็นรอบต่อวินาที ได้ ω = $2\pi f$ ดังนั้น จึงได้

 $= E_{m} \sin 2\pi ft$

สมการนี้เมื่อเขียนเป็นกราฟ จะได้เป็นรูป 19.2

รูป 19.2 แรงเคลื่อนไฟฟ้าเหนี่ยวนำซึ่งเปลี่ยนแปลง ตามเวลา

แรงเคลื่อนไฟฟ้า e จะมีค่าเปลี่ยนแปลงตลอดเวลาและมีทิศกลับไปมาอยู่เรื่อย ๆ เป็นผลให้กระแส ไฟฟ้าที่เกิดขึ้น มีค่าเปลี่ยนแปลงอยู่ตลอดเวลา และมีทิศทางการไหลกลับไปมาสลับกันอยู่ตลอดไป จึงเรียกว่า ไฟฟ้ากระแสสลับ (alternating current)

ส่วนประกอบของเครื่องกำเนิดไฟฟ้านั้นมีลักษณะดังแสดงอยู่ในรูป 19.1 ค. คือ ประกอบด้วย ส่วนนอกซึ่งอยู่กับที่เรียกว่า *ตัวนิ่ง (stator)* มีขั้วแม่เหล็กไฟฟ้าติดอยู่กับตัวนิ่งนี้ ขั้วแม่เหล็กนี้อาจติดไว้ 1 คู่ คือ ขั้ว N ขั้วหนึ่งและขั้ว S อีกขั้วหนึ่ง หรือ 2 คู่หรือ 3 คู่สุดแต่การสร้าง ในรูปแสดงไว้ 2 คู่ ขั้วแม่เหล็ก เหล่านี้จะเรียงสลับกันไป ส่วนขดลวดนั้นพันอยู่รอบ ๆ *ตัวหมุน (rotor)* ซึ่งหมุนอยู่ตรงกลาง

ไฟฟ้า 1 รอบนั้นเกิดจากการที่ขดลวดเคลื่อนที่ผ่านสนามแม่เหล็กของขั้วแม่เหล็ก N และ S หนึ่ง คู่ ในรูป 19.1 ค. เมื่อลวดเคลื่อนที่ผ่านสนามแม่เหล็กของขั้ว N₁S₁ จะได้ไฟฟ้าออกมา 1 รอบ และเมื่อ ผ่านสนามแม่เหล็กของคู่ N₂S₂ จะได้ไฟฟ้าออกมาอีก 1 รอบ

ดังนั้น ถ้าเครื่องกำเนิดไฟฟ้ามีขั้วแม่เหล็ก NS เพียงคู่เดียว เมื่อขดลวดหรือตัวหมุนไป 1 รอบ จะได้ไฟฟ้าออกมา 1 รอบ

ถ้าเครื่องกำเนิดไฟฟ้ามีขั้วแม่เหล็กสองคู่ดังแสดงในรูป 19.1 ค. เมื่อขดลวดหรือตัวหมุนหมุน ไปครบ 1 รอบ จะได้ไฟฟ้าออกมา 2 รอบ

ถ้า f = ความถี่ของไฟฟ้าที่ได้ออกมาเป็นรอบต่อวินาทีหรือเ**ฮิร์ท**ซ์

rps = จำนวนรอบของการหมุนของตัวหมุนหรือขดลวดในเวลา 1 วินาที

p = จำนวนคู่ของขั้วแม่เหล็ก

ย่อมได้ $f = p \times (rps)$

ไฟฟ้ากระแสสลับ

เช่นเครื่องกำเนิดไฟฟ้าเครื่องหนึ่งมีขั้วแม่เหล็ก 5 คู่ มีอัตราเร็วในการหมุน 3,600 รอบต่อนาที เครื่องกำเนิด ใฟฟ้าจะให้ไฟฟ้าซึ่งมีความถี่เท่ากับ f = $5 \times (\frac{3600}{60})$ = 300 เฮิร์ทซ์

เครื่องกำเนิดไฟฟ้าซึ่งจ่ายไฟฟ้าความถี่สูงใช้วิธีสร้างให้มีขั้วแม่เหล็กมีจำนวนคู่มาก ๆ ตัวหมุนใน อัตราธรรมดา ก็สามารถจ่ายไฟฟ้าซึ่งมีความถี่สูงออกมาได้

ต่อไปนี้เมื่อกล่าวถึงใดนาโมกระแสสลับ จะเขียนแทนด้วยสัญลักษณ์และเขียนแรงเคลื่อนไฟฟ้า ที่ถูกจ่ายออกมาด้วยสมการ (19.2) คือ

 $e = E_m \sin \omega t$

หรือ

 $e = E_m \sin 2\pi ft$

19.2 วงจรไฟฟ้ากระแสสลับ

ประกอบด้วยเครื่องกำเนิดกระแสสลับและส่วนประกอบอีก 3 อย่างคือ

- 1. ตัวต้านทาน (resistor)
- 2. ตัวจุ (capacitor)
- 3. ตัวเหนี่ยวนำ (inductor)

19.2.1 วงจรซึ่งมีตัวจุอย่างเดียว

วงจรรูป 19.3 ประกอบด้วยเครื่องกำเนิดกระแสสลับซึ่งมีแรงเคลื่อนไฟฟ้า $e=E_m \sin \omega t$ และตัวจุ ซึ่งมีความจุ (capacitance) เป็น C ฟารัด

รูป 19.3 ตัวจุในวงจรไฟฟ้ากระแสสลับ

· 教育など、教育な事をなけるというないないないないないないないできます。 これできないことできない

ให้

เป็นกระแสไฟฟ้าในขณะใด ๆ (instantaneous current)

q เป็นประจุไฟฟ้าที่ตัวจุ C ในขณะใด ๆ

 ${f v}_{C}$ เป็นความต่างศักย์ของตัวจุ ${f C}$ ในขณะใด ๆ

ຈະໃຕ້ $v_C = e = E_m \sin \omega t$

$$\frac{q}{C} = E_{m} \sin \omega t$$

$$q = CE_{m} \sin \omega t$$
ดังนั้น
$$\frac{dq}{dt} = (\omega C) E_{m} \cos \omega t$$
แต่
$$\frac{dq}{dt} = i$$
จึงได้
$$i = (\omega C) E_{m} \cos \omega t$$
เขียนใหม่เป็น
$$i = \frac{E_{m}}{(\frac{1}{\omega C})} \cos \omega t$$
(19.3)

ปริมาณ $(\frac{1}{\omega C})$ นี้มีชื่อเรียกว่า ความต้านแห่งการจุ (capacitive reactance) นิยมเขียนแทนด้วย X_C และมีหน่วยเป็นโอห์ม (ohm) กล่าวคือ

$$X_{C}=rac{1}{\omega C}$$
 เรียกว่า ความต้านแห่งการจุ
ดังนั้น สมการสุดท้ายจึงกลายเป็น
$$i=rac{E_{m}}{X}\cos\omega t \tag{19.4}$$

ปริมาณ $\frac{E_m}{X_C}$ คือ กระแสไฟฟ้าซึ่งมีค่าสูงสุดของวงจรเขียนแทนด้วย I_m

ดังนั้น
$$i = I_m \cos \omega t$$
 โดยที่ $I_m = \frac{E_m}{X_C}$

เพื่อที่จะเทียบกับ ${
m v}_{C}$ ซึ่งมีค่าเท่ากับ ${
m e}={
m E}_{
m m}$ ${
m sin}$ ${
m \omega t}$ จึงเขียนสมการสุดท้ายเสียใหม่เป็น ${
m i}={
m I}_{
m m}$ ${
m sin}$ (${
m \omega t}+\frac{\pi}{2}$) นำความต่างศักย์ ${
m v}_{C}$ และกระแสไฟฟ้าในขณะใด ${
m i}$ มาเปรียบเทียบกันคือ

$$v_C$$
 = $E_m \sin \omega t$
 i = $I_m \sin (\omega t + \frac{\pi}{2})$ (19.5)

จะเห็นได้ว่า \mathbf{v}_C กับ i มีลักษณะของกราฟเป็นแบบเดียวกัน ผิดกันที่มุม ω t กับ (ω t + $\frac{\pi}{2}$) เท่านั้น กล่าวคือ กระแสไฟฟ้า i *นำหน้า (lead)* ความต่างศักย์ \mathbf{v}_C เป็นมุม $\frac{\pi}{2}$ เรเดียน หรือความต่างศักย์ \mathbf{v}_C ตามหลัง (lag) กระแส i เป็นมุม $\frac{\pi}{2}$ เรเดียน

มุม $\frac{\pi}{2}$ นี้มีชื่อเรียกกันว่า *มุมเฟส (phase angle)* เขียนแทนด้วย ϕ

สรุปได้ว่า มุมเฟส ϕ คือ มุมที่กระแสไฟฟ้ากับความต่างศักย์นำหน้าหรือตามหลังซึ่งกันและกัน นำสมการ ${
m v}_{
m C}={
m E}_{
m m}\,\sin\,\omega t$ กับ ${
m i}={
m I}_{
m m}\,\sin\,(\omega t\,+rac{\pi}{2})$ มาเขียนเป็นกราฟซ้อนกันโดยใช้แกนนอน เป็น ωt ร่วมกัน จะได้เป็นรูป 19.4

รูป 19.4 แสดงกระแสไฟฟ้านำหน้าความต่างศักย์เป็นมุม $\frac{\pi}{2}$

19.2.2 วงจรซึ่งมีตัวเหนี่ยวนำอย่างเดียว

วงจรรูป 19.5 ประกอบด้วยใดนาโมกระแสสลับซึ่งมีแรงเคลื่อนไฟฟ้าเป็น e = E_m sin ωt และตัวเหนี่ยวนำซึ่งมีความเหนี่ยวนำ (inductance) เป็น L เฮนรี

ให้ i = กระแสไฟฟ้าในขณะใด ๆ
$${\bf v}_{L} = {\bf p}_{1} = {\bf p}_{2} + {\bf p}_{3} + {\bf p}_{4} + {\bf p}_{4}$$

ในวงจรจะได้

$$E = E_{m} \sin \omega t$$

รูป 19.5 ตัวเหนี่ยวนำในวงจรไฟฟ้ากระแสสลับ

แทนค่า
$${\rm v}_L$$
 และ e ได้
$$L \, \frac{{\rm d} i}{{\rm d} t} \quad = \quad E_{\rm m} \sin \, \omega t$$

$${\rm d} i \quad = \quad \frac{E_{\rm m}}{L} \sin \, \omega t \, {\rm d} t$$

$$\int {\rm d} i \quad = \quad \int \frac{E_{\rm m}}{L} \sin \, \omega t \, {\rm d} t$$

$$i = \frac{E_m}{(\omega L)} \left[-\cos \omega t \right] + C$$

สำหรับไฟฟ้ากระแสสลับซึ่งมีลักษณะสมมาตร (symmetry) กันทั้งด้านบวกและด้านลบ จะได้ค่าคงที่ C = 0

ดังนั้น i =
$$\frac{E_m}{\omega L} \left[-\cos \omega t \right]$$
 = $\frac{E_m}{\omega L} \sin (\omega t - \frac{\pi}{2})$

ปริมาณ ωL นี้มีชื่อเรียกกันว่า *ความต้านแห่งการเหนี่ยวนำ (inductive reactance)* นิยม เขียนแทนด้วย X_L และมีหน่วยเป็นโอห์ม กล่าวคือ

ดังนั้น สมการสุดท้ายจึงกลายเป็น

$$i = \frac{E_m}{X_1} \sin(\omega t - \frac{\pi}{2})$$
 (19.6)

ปริมาณ $\frac{E_m}{X_L}$ คือ กระแสไฟฟ้าซึ่งมีค่าสูงสุดของวงจร I_m นั่นเอง ดังนั้น จึงได้

$$i = I_m \sin(\omega t - \frac{\pi}{2})$$
 (19.7)

นำความต่างศักย์ระหว่างปลายของตัวเหนี่ยวนำ คือ v กับกระแสไฟฟ้า i ที่ไหลผ่านตัวเหนี่ยวนำใน ขณะเดียวกันนั้นมาเทียบกัน คือ

$$v_L = E_m \sin \omega t$$
 $i = I_m \sin (\omega t - \frac{\pi}{2})$

จะเห็นได้ว่า ${
m v}_L$ กับ ${
m i}$ มีลักษณะของกราฟเป็นแบบเดียวกัน ผิดกันที่มุม ${
m \omega t}$ กับ $({
m \omega t} - {\pi\over 2})$ เท่านั้น กล่าวคือ กระแสไฟฟ้า ${
m i}$ ตามหลังความต่างศักย์ ${
m v}_L$ เป็นมุม ${\pi\over 2}$ เรเดียน หรือความต่างศักย์ ${
m v}_L$ นำหน้า กระแสไฟฟ้า ${
m i}$ เป็นมุม ${\pi\over 2}$ เรเดียน

จำนวนมุม $\frac{\pi}{2}$ นี้ คือ มุมเฟส ϕ ดังที่ได้กล่าวมาแล้ว นั่นเอง กราฟของ \mathbf{v}_L กับ i มี ลักษณะดังรูป 19.6

รูป 19.6 ความต่างศักย์นำหน้ากระแสไฟฟ้าเป็นมุม $\frac{\pi}{2}$

19.2.3 วงจรซึ่งมีตัวต้านทานอย่างเดียว

วงจรรูป 19.7 ประกอบด้วยใดนาโมกระแสสลับซึ่งมีแรงเคลื่อนไฟฟ้าเป็น $e=E_m$ $\sin \omega t$ และตัวต้านทานซึ่งมีความต้านทาน

ให้ i เป็นกระแสไฟฟ้าในขณะใด ๆ

v_R เป็นความต่างศักย์ระหว่างปลายของตัวต้านทานในขณะใด ๆ

รูป 19.7 ตัวต้านทานในวงจรไฟฟ้ากระแสสลับ

$$e = E_{m} \sin \omega t$$

$$v_{R} = iR$$

$$v_{R} = e = E_{m} \sin \omega t$$

$$iR = E_{m} \sin \omega t$$

$$i = \frac{E_{m}}{R} \sin \omega t$$

จำนวน $rac{\mathbf{E}_{\mathrm{m}}}{\mathbf{R}}$ คือ กระแสไฟฟ้าซึ่งมีค่าสูงสุดของวงจร \mathbf{I}_{m} คือ

ได้

19.2 วงจรไฟฟ้ากระแสสลับ

 $\frac{E_m}{R}$ = I_m

ดังนั้น i = $I_m \sin \omega t$ (19.8) นำความต่างศักย์ระหว่างปลายของตัวต้านทาน คือ v_R กับกระแสไฟฟ้า i ที่ไหลผ่านตัวต้านทานในขณะ เดียวกันนั้นมาเทียบกัน คือ

 $v_R = E_m \sin \omega t$ $i = I_m \sin \omega t$

จะเห็นได้ว่า ${
m v}_R$ กับ i มีลักษณะของกราฟเป็นแบบเดียวกันทุกประการ และมุมเฟส $\phi=0$ หมายความว่า กระแสไฟฟ้า i กับความต่างศักย์ ${
m v}_R$ ไปพร้อม ๆ กัน ดังรูป 19.8

รูป 19.8 กระแสไฟฟ้าและความ ต่างศักย์ซึ่งมีเฟสเหมือน กัน

สรุบเดวา i นาหนา ${
m v}_{
m C}$ เป็นมุม ${
m rac{\pi}{2}}$ i ตามหลัง ${
m v}_{
m i}$ เป็นมุม ${
m rac{\pi}{2}}$

i ไปพร้อมกับ v_R

เมื่อนำค่าเหล่านี้มาเขียนแผนภาพแสดงเฟส (phasor diagram) จะมีลักษณะดังรูป 19.9

 $\frac{\pi}{2}$

รูป 19.9 เวกเตอร์แสดงความต่างเฟสระหว่างกระแส ไฟฟ้ากับความต่างศักย์

v_R i

19.3 สมการทั่วไปของแรงเคลื่อนไฟฟ้าและกระแสไฟฟ้า

ต่อไปนี้เราจะเขียนสมการของแรงเคลื่อนไฟฟ้าและกระแสไฟฟ้าเป็นรูปดังนี้

แรงเคลื่อนไฟฟ้า	e	22	E _m sin ωt
	i	==	I _m sin (ωt + φ) เมื่อ i นำหน้า e เป็นมุม ์ φ
	i	=	I _m sin (ωt - φ) เมื่อ i ตามหลัง e เป็นมุม ф
	i	=	I sin ωt เมื่อ i กับ e ไปพร้อมกัน

19.4 ค่ายังผลของกระแส

ไฟฟ้ากระแสสลับนั้นเป็นไฟฟ้าซึ่งมีค่าเปลี่ยนแปลงอยู่ตลอดเวลา ไม่ว่าจะเป็นแรงเคลื่อนไฟฟ้า หรือกระแสไฟฟ้า จะเปลี่ยนค่าอยู่เรื่อย ๆ จากค่าศูนย์ถึงค่าสูงสุด คือ E_m หรือ I_m เมื่อให้ไฟฟ้ากระแสสลับ ทำงาน เช่น ให้เปลี่ยนรูปเป็นความร้อนหรือแสงสว่างหรือเปลี่ยนรูปเป็นพลังงานกล ค่าของไฟฟ้ากระแสสลับ ที่จะทำงานดังกล่าวนี้ อาจคิดค่าโดยเฉลี่ยแทนค่าซึ่งเปลี่ยนแปลงอยู่ตลอดเวลานั้นได้ ค่าโดยเฉลี่ยของไฟฟ้า กระแสสลับดังกล่าวนี้มีชื่อเรียกโดยเฉพาะว่า ค่ายังผล (effective value) ซึ่งมีคำนิยามโดยกำหนดจากกระแส ไฟฟ้า ดังนี้

ค่ายังผลของกระแสไฟฟ้าสลับใด ๆ กำหนดให้เป็นค่าของกระแสไฟฟ้าขนาดสม่ำเสมอ ซึ่งจะ ทำให้เกิดความร้อนจำนวนเดียวกันในเวลาเท่ากัน เมื่อปล่อยให้ผ่านความต้านทานลันเดียวกัน

กระแสไฟฟ้าสลับมีสมการเป็น i = I_m sin ωt

ให้ I เป็นค่ายังผลของกระแสไฟฟ้าสลับนี้

ตามคำจำกัดความที่กล่าวแล้ว เมื่อปล่อยกระแสไฟฟ้าสลับ $i=I_m$ sin ωt ผ่านความต้านทาน R อันหนึ่งในเวลาอันหนึ่ง ต่อจากนั้นก็ปล่อยกระแสไฟฟ้าอันมีค่าเท่ากับค่ายังผล I ผ่านความต้านทาน R ตัว เดียวกันนั้น โดยใช้เวลาเท่ากันทั้งสองครั้งย่อมเกิดความร้อนจำนวนเดียวกัน สมมติให้ H เป็นปริมาณความร้อน ดังกล่าวนี้

คิดตอนปล่อยกระแสไฟฟ้าสลับ i ผ่านความต้านทาน R เป็นเวลานานเท่ากับ 1 รอบ คือ T วินาที ในช่วงเวลาสั้น ๆ dt พลังงานความร้อนที่เกิดขึ้น

$$dH = i^2 R dt = (I_m \sin \omega t)^2 R dt$$

ในเวลา 1 คาบ

$$\int_{0}^{T} dH = \int_{0}^{1} I_{m}^{2} R \sin^{2} \omega t \, dt$$

$$H = \frac{I_{m}^{2} R}{\omega} \int_{0}^{T} \sin^{2} \omega t \, d\omega t$$

$$\Pi = \frac{\theta}{2} - \frac{\sin 2\theta}{4} \quad \text{ for } \frac{1}{2} \int_{0}^{T} dt \, dt \, dt$$

$$H = \frac{I_{m}^{2} R}{\omega} \left[\frac{\omega t}{2} - \frac{\sin 2\omega t}{4} \right]_{0}^{T}$$

$$= \frac{I_{m}^{2} R}{\omega} \left[\frac{\omega T}{2} - 0 - 0 + 0 \right], \quad \left(\omega T = \frac{2\pi}{T} T = 2\pi \right)$$

$$H = \frac{I_{m}^{2} R T}{2}$$

คุดตอนปล่อยกระแสไฟฟ้ามีค่ายังผล I ผ่าน R ตัวเดียวกันในเวลา T อันเดียวกันและเกิด ความร้อน H จำนวนเดียวกัน

$$H = I^2 RT$$

จากคำจำกัดความของค่ายังผลของกระแสไฟฟ้าสลับ ปริมาณความร้อนทั้งสองนี้เท่ากัน

$$I^2 RT = \frac{I_m^2 RT}{2}$$
ได้ $I^2 = \frac{I_m^2}{2}$
ดังนั้น ค่ายังผล $I = \frac{I_m}{\sqrt{2}} = 0.707 I_m$ (19.9)

ในทำนองเดียวกัน แรงเคลื่อนไฟฟ้า e = \mathbf{E}_{m} sin ω t โดย \mathbf{E}_{m} เป็นค่าสูงสุด จะมีค่ายังผล เป็นรูปเดียวกัน คือ

ถ้า E เป็นค่ายังผลของแรงเคลื่อนไฟฟ้านั้น

$$E = \frac{E_{\rm m}}{\sqrt{2}} = 0.707 E_{\rm m}$$
 (19.10)

บางครั้งเรียกค่ายังผลว่า ค่ารากที่สองของกำลังสองเฉลี่ย (root mean square, rms)

ตัวอย่าง 19.1 ไฟฟ้ากระแสสลับอันหนึ่งมีสมการของกระแสไฟฟ้าเป็น

I = 10 sin (400t - $\frac{\pi}{4}$) ในหน่วยแอมแปร์

ให้หา ก. ค่ายังผลของกระแสไฟฟ้า I

ข. ความถี่ของไฟฟ้ากระแสสลับนี้

ค. มุมเฟส

วิธีทำ โดยเทียบกับสมการทั่วไปของกระแสไฟฟ้า I = I_m sin (ωt - φ)

ค่าของกระแสสูงสุด
$$I_m = 10$$
 แอมแปร์ $\omega = 400$ เรเดียนต่อวินาที มุมเฟส $\phi = \frac{\pi}{4}$ เรเดียน

จึงได้ ก. ค่ายังผลของกระแสไฟฟ้า $I = 0.707~I_{\mathrm{m}} = 0.707 imes 10$

= 7.07 แอมแปร์

ข. จาก
$$\omega = 2\pi f$$
 ได้
$$= \frac{\omega}{2\pi} = \frac{400}{2\pi} = 63.7 \ \ \iota \hat{g}$$
 ร์ทซ์
$$= \frac{\pi}{4} \ \ \iota s$$
 เกียน โดยกระแสตามความต่างศักย์ $\theta \partial U$

ค่าของความต่างศักย์และกระแสไฟฟ้าของไฟฟ้ากระแสสลับนั้น ในทางปฏิบัติใช้ค่ายังผล และ เครื่องวัดไฟฟ้ากระแสสลับ ไม่ว่าจะเป็นโวลต์มิเตอร์หรือแอมมิเตอร์ ก็จะซื้บอกค่าดังกล่าวของความต่างศักย์ หรือกระแสไฟฟ้า เช่น ที่พูดกันว่า ไฟบ้านมีความต่างศักย์ 220 โวลต์ เลข 220 โวลต์นี้เป็นค่ายังผลของ ความต่างศักย์ ซึ่งมีความหมายว่า ความต่างศักย์สูงสุดมีค่าเท่ากับ $\sqrt{2} \times 220 = 311.08$ โวลต์ ดังนั้นต่อไปนี้ เมื่อกล่าวถึงกระแสไฟฟ้า แรงเคลื่อนไฟฟ้า หรือความต่างศักย์ เราจะหมายถึงค่ายังผลเสมอไป

19.5 ความต่างศักย์

ในเรื่องไฟฟ้ากระแสสลับ ความต่างศักย์ระหว่างสองจุดใด ๆ มีวิธีคิดคล้ายกับกระแสตรง คือ ยังคงใช้กฎของโอห์ม คือ

ความต่างศักย์ = กระแส × ความต้านทาน

มีรายละเอียดดังนี้

19.5.1 ความต่างศักย์ระหว่างปลายของตัวต้ำนทาน

ในรูป 19.10 รูปบนแสดงภาพของตัวต้านทานซึ่งมีความต้านทาน R โอห์ม กำลังมีกระแส ไฟฟ้าสลับ I แอมแปร์ไหลผ่าน ทำให้ปลายทั้งสองของมันมีความต่างศักย์ V_R เกิดขึ้นโดยที่

$$V_{R} = IR$$

ความต่างศักย์ $\mathbf{V}_{\mathbf{R}}$ กับกระแสไฟฟ้า I มีมุมเฟส $\phi=0$ จึงเขียนรูปเวกเตอร์ของ $\mathbf{V}_{\mathbf{R}}$ กับเวกเตอร์ของ I ซ้อนกัน ดังรูปข้างบน

19.5.2 ความต่างศักย์ระหว่างปลายของตัวเหนี่ยวนำ

รูป 19.11 (ก) ความต่างศักย์ระหว่างปลายของตัวเหนี่ยวนำ

(ข) เวกเตอร์แสดงความต่างเฟสของความต่างศักย์และกระแสไฟฟ้า

รูป 19.11 รูปบนแสดงตัวเหนี่ยวนำซึ่งมีความเหนี่ยวนำเป็น L เฮนรี กำลังมีกระแสไฟฟ้าสลับ I แอมแปร์ไหลผ่าน ทำให้เกิดมีความต่างศักย์ V บี้นระหว่างปลายทั้งสองของมัน (ลวดไม่มีความต้านทาน)

ได้กล่าวมาแล้วว่า ความต้านแห่งการเหนี่ยวนำ X = ωL

ในกรณีนี้
$$V_L = IX_L$$

โดยที่ V_L นำหน้ากระแลไฟฟ้า I เป็นมุม $\phi=\frac{\pi}{2}$ เรเดียนตามที่ได้กล่าวมาแล้ว จึงเขียนเวกเตอร์ของ V_L ตั้งฉากกับเวกเตอร์ของ I ดังรูปข้างล่าง ซึ่งมีความหมายว่า V_L นำ I เป็นมุม $\frac{\pi}{2}$ เรเดียน

19.5.3 ความต่างศักย์ระหว่างปลายของตัวจุ

ตัวจุซึ่งมีความจุเป็น C ฟารัด มีไฟฟ้ากระแสสลับ I แอมแปร์ผ่าน ทำให้เกิดมีความต่างศักย์ V_C ขึ้นระหว่างปลายทั้งสองดังรูป 19.12 รูปล่าง ได้กล่าวมาแล้วว่า ความต้านแห่งการจุ $X_C = \frac{1}{\omega C}$

ในกรณีนี้

รูป 19.12 (ก) ความต่างศักย์ระหว่างตัวจุ

(ข) เวกเตอร์แสดงความต่างเฟสของความต่างศักย์และกระแสไฟฟ้า

โดยที่ V_C ตามหลัง I เป็นมุม $\frac{\pi}{2}$ เรเดียน ตามที่ได้กล่าวมาแล้วในตอนต้น ดังนั้น จึงเขียน รูปเวกเตอร์ V_C ตามหลังเวกเตอร์ I เป็นมุม $\frac{\pi}{2}$ เรเดียน

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

ในวงจร[์]ไฟฟ้ากระแสสลับมี R L และ C ต่อกันอยู่ โดยอาจเป็นการต่อแบบอนุกรม ขนาน หรือผสมก็ได้ การคำนวณก็ยังคงใช้หลักที่กล่าวมาแล้วนั่นเอง โดยพิจารณาเป็นขั้น ๆ ไป

19.6.1 การต่อ R L C แบบอนุกรม

ตัวต้านทาน ตัวเหนี่ยวนำ และตัวจุต่ออนุกรมกันดังรูป 19.13 มีหลักสำคัญคือ

1. R L และ C มีกระแส I ตัวเดียวกัน

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

2. ความต่างศักย์รวม V มีค่าเท่ากับเวกเตอร์ลัพธ์ของเวกเตอร์ $\stackrel{\cdot}{V}$ V และ $\stackrel{\cdot}{V}$ เช่นเดียว กับที่แล้วมา

$$X_L$$
 = ωL และ X_C = $\frac{1}{\omega C}$
 V_R = IR (ทับกับ I)
 V_L = IX_L (นำหน้า I เป็นมุม $\frac{\pi}{2}$)
 V_C = IX_C (ตามหลัง I เป็นมุม $\frac{\pi}{2}$)

ผลรวมของ R X_{L} และ X_{C} มีชื่อเรียกว่า ความขัด (impedance) และเขียนด้วยอักษร Z

รูป 19.13 (ก) R L และ C ต่อกันแบบอนุกรม

- (ข) เวกเตอร์แสดงความต่างเฟสของกระแสความต่างศักย์
- (ค) เวกเตอร์แสดงความต่างเฟสของ R $X_{c}^{-}X_{L}^{-}$ และกระแส

$$V = IZ$$

$$V = \sqrt{(V_{R})^{2} + (V_{L} - V_{C})^{2}} \quad \text{iff} \quad V_{L} > V_{C}$$

$$IZ = \sqrt{(IR)^{2} + (IX_{L} - IX_{C})^{2}}$$

ในสมการสุดท้ายนั้นตัดกระแสไฟฟ้า I ออกได้หมด เหลือ

$$Z = \sqrt{(R)^2 + (X_L - X_C)^2}$$
 (19.11)

สมการสุดท้ายนี้ ทำให้สามารถเขียนแผนภาพแสดงเฟสได้ดังรูป 19.13 ค. ค่าของมุมเฟส φ อาจหาได้ จากรูปคือ

จากรูป 19.13 ข.
$$\tan \phi = \frac{V_L - V_C}{V_R}$$
 จากรูป 19.13 ค. $\tan \phi = \frac{X_L - X_C}{R}$

ได้ค่าของ tan 💠 เท่ากัน

อาจพิสูจน์ได้ว่า tan
$$\phi = \frac{V_L - V_C}{V_R} = \frac{IX_L - IX_C}{IR} = \frac{X_L - X_C}{R}$$

ตัวอย่าง 19.2 วงจรไฟฟ้ากระแสสลับวงหนึ่งประกอบด้วย ตัวต้านทาน 600 โอห์ม ตัว เหนี่ยวนำขนาด 0.2 เฮนรี และตัวจุขนาด 1 ไมโครฟารัด ต่อกันอย่างอนุกรมเรียงกันไปตามลำดับ ดัง รูป 19.14 กำหนดให้ ω = 1,000 เรเดียนต่อวินาที และมีกระแสไฟฟ้า 0.1 แอมแปร์ ให้หา

- ก. ความต้านแห่งการเหนี่ยวนำและความต้านแห่งการจุ
- ข. ความต่างศักย์ระหว่างปลายของตัวต้านทาน ตัวเหนี่ยวนำ และตัวจุแต่ละอัน
- ค. ความต่างศักย์รวมทั้งหมด และมุมเฟส

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

วิสีทำ

ก. ความต้านแห่งการเหนี่ยวนำ
$$X_L = \omega L = 1{,}000 \times 0.2 = 200$$
 โอห์ม ความต้านแห่งการจุ
$$X_C = \frac{1}{\omega C} = \frac{1}{1{,}000(1 \times 10^{-6})} = 1{,}000$$
 โอห์ม

ข. R L และ C ต่ออนุกรมกันดังรูปมีหลักสำคัญว่า การต่ออนุกรมกันจะต้องมีกระแสไฟฟ้า ที่ใหลผ่านเป็นอันเดียวกัน คือ 0.1 แอมแปร์ที่กำหนดให้มา

รูป 19.14 วงจรไฟฟ้าซึ่งประกอบค้วย R L และ C

ความต่างศักย์ระหว่างปลายของตัวต้านทาน $V_R = IR = 0.1 imes 600$

60 โวลต์

ความต่างศักย์ระหว่างปลายของตัวเหนี่ยวนำ $V_L = IX_L = 0.1 imes 200$

 $V_{C} = IX_{C} = 0.1 \times 1,000$ ความต่างศักย์ระหว่างปลายของตัวจุ

100 โวลต์

ค. ได้กล่าวมาแล้วว่า V_R ทับกับ I V_L นำหน้า I เป็นมุม $\frac{\pi}{2}$ และ V_C ตามหลัง I เป็นมุม $\frac{\pi}{2}$ ดังนั้น เวกเตอร์ V_R V_L และกระแสไฟฟ้า I จึงมีลักษณะดังแสดงในรูป 19.15 ก.

รูป 19.15 (ก) เวกเตอร์แสดงความ ต่างเฟสของ V_R V_L V_C ແລະ

> (ข) เวกเตอร์แสดงความ ต่างเฟสของ V และ

ไฟฟ้ากระแสสลับ

เมื่อรวมเวกเตอร์ $\mathbf{V}_{\mathrm{R}}^{\phantom{\mathrm{V}}\phantom{\mathrm{V}}}\mathbf{V}_{\mathrm{L}}^{\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}}$ และ $\mathbf{V}_{\mathrm{C}}^{\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}\phantom{\mathrm{V}}$ เข้าด้วยกัน จะได้เป็นเวกเตอร์รวม \mathbf{V} ดังแสดงในรูป ข.

$$V = \sqrt{(V_R)^2 + (V_C - V_L)^2} = \sqrt{(60)^2 + (80)^2} = 100 โวลซ์$$

มุมเฟส ф หาใด้จากรูป ข. ดังนี้

โดยกระแสไฟฟ้า I นำหน้าความต่างศักย์รวม V เป็น $\phi = an^{-1} \left[rac{4}{3}
ight]$ จึงอาจเขียนสมการของความ ต่างศักย์ และกระแสไฟฟ้าได้ดังนี้

ความต่างศักย์
$$v=V_{m}\sin 1{,}000~t$$
กระแสไฟฟ้า $i=I_{m}\sin \left(1{,}000~t+\tan^{-1}\left[-\frac{4}{3}~\right]~\right)$
โดยที่ $V_{m}=\sqrt{2}V$ = $1.414\times 100=141.4$ โวลต์

เพื่อความเข้าใจที่ดียิ่งขึ้น จะหาค่าความต่างศักย์รวมระหว่างจุด AB ในรูป 19.14

ระหว่างจุด ${f A}$ และจุด ${f B}$ ความต่างศักย์มีเพียง ${f V}_L$ และ ${f V}_C$ เท่านั้น ส่วน ${f V}_R$ ไม่ ${f V}_L=20$ โวลด์

รูป 19.16 เวกเตอร์แสดงความต่างเฟสของความต่างศักย์กับกระแสไฟฟ้า

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

เกี่ยวข้อง ดังนั้น การหาค่า V_{AB} จึงคิดจาก V_{L} และ V_{C} เท่านั้น รูปเวกเตอร์แสดงเฟสจึงเป็นดัง แสดงในรูป 19.16

$$V_{AB} = V_{C} - V_{L} = 100 - 20 = 80$$
 โวลต์ และตามหลัง I เป็นมุม $\phi = \frac{\pi}{2}$ เรเดียน

ตัวอย่าง 19.3 ตัวต้านทานขนาด 40 โอห์ม ขคลวดเหนี่ยวนำขนาด 0.04 เฮนรี และตัวจุขนาด 40 ไมโครฟารัด ต่อกันอย่างอนุกรม และต่อกับไฟฟ้ากระแสสลับซึ่งมีความต่างศักย์ 220 โวลต์ และความถี่ตามมุม 500 เรเดียนต่อวินาที ให้หาค่าของกระแสไฟฟ้า มุมเฟสระหว่างกระแสไฟฟ้ากับความ ต่างศักย์ทั้งหมด และความต่างศักย์ระหว่างปลายของแต่ละอัน

วิธีทำ
$$R = 40$$
 โอห์ม
$$X_L = \omega L = 500 \times 0.04 = 20$$
 โอห์ม
$$X_C = \frac{1}{\omega C} = \frac{1}{500 \times (40 \times 10^{-6})} = 50$$
 โอห์ม
$$Z = \sqrt{(R^2) + (X_C - X_L)^2} = \sqrt{(40)^2 + (30)^2}$$

รูป 19.17 เวกเตอร์แสคงความต่างเฟสของความขัดและกระแส ไฟฟ้า

กระแสไฟฟ้า I =
$$\frac{V}{Z}$$
 = $\frac{220}{50}$ = 4.4 แอมแปร์
$$\tan \phi = \frac{X_C - X_L}{R} = \frac{30}{40} , \phi = \tan^{-1} \left[\frac{3}{4} \right] , \text{ I น้า V}$$

$$V_R = IR = 4.4 \times 40 = 176 \text{ โวลด์}$$

หมายเหตุ ตรวจสอบคำตอบได้จาก

19.6.2 การต่อ R L C แบบขนาน

ตัวต้านทาน R โอห์ม ตัวเหนี่ยวนำ L เฮนรี และตัวจุ C ฟารัด ต่อขนานกันดังรูป 19.18 ก.

ตัวเหนี่ยวนำมีความต้านแห่งการเหนี่ยวนำ $\mathbf{X}_{\mathbf{L}}$ ตัวจุมีความต้านแห่งการจุ $\mathbf{X}_{\mathbf{C}}$

รูป 19.18 (ก) R L C ต่อกันแบบขนาน (ข) เวกเตอร์แสดงความต่างเฟสของกระแสไฟฟ้า
และความต่างศักย์ (ค) เวกเตอร์แสดงความต่างเฟสของความต่างศักย์และส่วนกลับของ
R X L X

R L และ C แต่ละตัวมีความต่างศักย์ V อันเดียวกัน

$$I = \sqrt{(I_R)^2 + (I_C - I_L)^2}$$

สมมติว่า $I_{
m C}$ มากกว่า $I_{
m L}$

$$\tan \phi = \frac{\frac{I_C - I_L}{I_R}}{\frac{V}{R}}$$
 แทนค่า $\frac{V}{Z} = \sqrt{\frac{(\frac{V}{R})^2 + (\frac{V}{X_C} - \frac{V}{X_L})^2}{\sqrt{(\frac{1}{R})^2 + (\frac{1}{X_C} - \frac{1}{X_L})^2}}}$ (19.12)

สมการสุดท้ายนี้เขียนเป็นรูปได้ดังแสดงในรูป ค.

ตัวอย่าง 19.4 ตัวต้านทานขนาด 40 โอห์ม ตัวเหนี่ยวนำและตัวจุต่อกันอย่างขนานอยู่ระหว่าง สองจุดซึ่งมีความต่างศักย์ไฟฟ้ากระแสสลับ 120 โวลต์ ความต้านแห่งการเหนี่ยวนำมีค่า 60 โอห์ม และความ ด้านแห่งการจุมีค่า 24 โอห์ม

ให้หา ก. กระแสไฟฟ้าที่ไหลผ่านตัวต้านทาน ตัวเหนี่ยวนำและตัวจุ

- ข. กระแสไฟฟ้ารวม
- ค. เขียนกราฟเปรียบเทียบระหว่างกระแสไฟฟ้ารวมกับความต่างศักย์

วิธีทำ ก. รูป 19.19 แสดงภาพของวงจรตามโจทย์ เนื่องจากเป็นการต่อขนาน ดังนั้นตัวต้าน ทาน ตัวเหนี่ยวนำ และตัวจุจึงต่างก็มีความต่างศักย์ 120 โวลต์ อันเดียวกัน

รูป 19.19 วงจรไฟฟ้าซึ่งประกอบด้วย R L C ซึ่งต่อกันอย่างขนาน

กระแสที่ผ่านตัวด้านทาน
$$I_R = \frac{V}{R} = \frac{120}{40} = 3$$
 แอมแปร์ มีเวกเตอร์ซ้อนกับ V

กระแสที่ผ่านตัวเหนี่ยวนำ
$$I_L = \frac{V}{X_I} = \frac{120}{60} = 2$$
 แอมแปร์ มีเวกเตอร์

ตามหลัง V $\frac{\pi}{2}$ เรเดียน

กระแสที่ผ่านตัวจุ
$$I_C = \frac{V}{X_C} = \frac{120}{24} = 5$$
 แอมแปร์ มีเวกเตอร์นำหน้า $V = \frac{\pi}{2}$ เรเดียน

 $I_T = 2 \text{ uound$\sharp}$

รูป 19.20 เวกเตอร์แสดงความต่างเฟสของความต่างศักย์และกระแสไฟฟ้ารวม

ข. ให้ I = กระแสไฟฟ้ารวมทั้งหมด กระแสรวม I นี้จะเป็นกระแสรวมของกระแส I I R L และ I โดยรวมแบบเวกเตอร์ ตามรูป 19.20

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

$$I = \sqrt{(I_R)^2 + (I_C - I_L)^2} = \sqrt{(3)^2 + (5 - 2)^2}$$

$$= 3\sqrt{2} \text{ แอมแปร์}$$

$$\tan \phi = \frac{I_C - I_L}{I_R} = 1$$
ดังนั้น
$$\phi = \frac{\pi}{4} \text{ เรเดียน } (=45^\circ)$$

ดังนั้น กระแสไฟฟ้ารวมมีค่า 3 √2 แอมแปร์

ค. จากรูป 19.20 จะเห็นว่า กระแสรวม I น้ำหน้าความต่างศักย์ V เป็นมุม $\phi = \frac{\pi}{4}$ เรเดียน จึงเขียนได้ว่า

$$v = V_m \sin \omega t$$

$$i = I_m \sin (\omega t + \frac{\pi}{4})$$
 โดย
$$V_m = \sqrt{2}V = \sqrt{2} \times 120 = 169.68$$
 โวลด์ และ
$$I_m = \sqrt{2}I = \sqrt{2} \times 3\sqrt{2} = 6$$
 แอมแปร์

ดังนั้น สมการของความต่างศักย์และกระแสไฟฟ้ารวมจึงเป็น

 $v=169.68 \sin \omega t$ และ $i=6 \sin (\omega t+\frac{\pi}{4})$ มีรูปของกราฟ เปรียบเทียบกันดังแสดงในรูป 19.21

รูป 19.21 กราฟแสคงกระแสไฟฟ้านำหน้าความต่างศักย์

ในตัวอย่าง 19.4 ที่แสดง R L และ C ต่อขนานกันซึ่งทำมาแล้วนี้ ตอนข้อ ข. ที่ให้หากระแส-ไฟฟ้ารวม แทนที่จะหาจาก I_R I_L และ I_C รวมกันตามแบบเวกเตอร์อย่างที่ทำแล้วนั้น อาจทำได้อีกวิธีหนึ่ง โดยหาค่าความขัด Z แล้วหา I จาก $I=\frac{V}{Z}$ ดังนี้

หา Z จากรูปเวกเตอร์ที่แสดงไว้ในรูป 19.22 (R=40 โอห์ม $X_L=60$ โอห์ม $X_C=24$ โอห์ม)

$$\frac{1}{Z} = \sqrt{\left(\frac{1}{40}\right)^2 + \left(\frac{1}{24} - \frac{1}{60}\right)^2} = \sqrt{\frac{2}{40}}$$

$$\frac{1}{X_C} = \frac{1}{24}$$

$$\frac{1}{X_C} = \frac{1}{40}$$

$$V$$

$$(1)$$

รูป 19.22 (ก) (ข) เวกเตอร์แสดงความต่างเฟสของความต่างศักย์และส่วนกลับของ ${
m R}$, ${
m X}_{
m C}$, ${
m X}_{
m L}$

ความขัด
$$Z=\frac{40}{\sqrt{2}}=20\,\sqrt{2}$$
 โอห็ม กระแสไฟฟ้ารวม $I=\frac{V}{Z}=\frac{120}{20\,\sqrt{2}}=3\,\sqrt{2}$ แอมแปร์

ตรงกับที่ทำมาแล้ว แสดงว่าเป็นการถูกต้องทั้งหมด

สรุปได้ว่า สำหรับ R L และ C ซึ่งต่ออนุกรมกัน $Z = \sqrt{{(R)}^2 + {(X}_L - {X}_C)}^2$ จะเขียน X_L กับ X_C สลับกันเป็น $Z = \sqrt{{(R)}^2 + {(X}_C - {X}_L)}^2$ ก็จะได้ค่าอันเดียวกัน เพราะการยกกำลัง สองของ วงเล็บหลังทำให้มีเครื่องหมายเป็นบวกเสมอ

ทำนองเดียวกัน สำหรับ R L และ C ซึ่งต่อขนานกัน

สมการ
$$\frac{1}{Z}$$
 = $\sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_C} - \frac{1}{X_L}\right)^2}$ ซึ่งก็อาจเขียนได้เป็น

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

$$\frac{1}{Z}$$
 = $\sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_L} - \frac{1}{X_C}\right)^2}$ ค่าของ Z จะออกมาเป็นอย่างเดียวกัน

สมการที่ควรจำได้เขียนเปรียบเทียบกันไว้อีก คือ

เมื่อต่ออนุกรม
$$Z=\sqrt{\left(R\right)^2+\left(X_L^-X_C^-\right)^2}$$
 เมื่อต่อขนาน $\frac{1}{Z}=\sqrt{\left(\frac{1}{R}\right)^2+\left(\frac{1}{X_L}-\frac{1}{X_C^-}\right)^2}$

ตัวอย่าง 19.5 ตัวต้านทานขนาด 2 โอห์มกับตัวเหนี่ยวนำอันหนึ่งต่อกับไฟฟ้ากระแสสลับ ซึ่งทำให้ตัวเหนี่ยวนำมีความต้านเป็น 4 โอห์ม ให้หาค่าความขัด เมื่อทั้งสองตัวนั้นต่อกันในแบบ

ก. อนุกรม ข. ขนาน

19.6.3 การต่อ R L C แบบผสม

คำนวณโดยอาศัยหลักการต่อแบบอนุกรมและแบบขนานผสมกัน ดังวงจรไฟฟ้าในรูป 19.23 ตามตัวอย่างต่อไปนี้

ตัวอย่าง 19.6 ตัวต้านทาน $R_{_1}$ = 3 โอห็ม $R_{_2}$ = 6 โอห็ม ตัวจุและตัวเหนี่ยวนำ ต่อ แบบผสมกันดังแสดงในรูป 19.23 ปลาย AB ต่อกับไฟฟ้ากระแสสลับซึ่งมีความต่างศักย์ 100 โวลด์ ทำให้ตัวจุมี $X_{C}=4$ โอห์ม และตัวเหนี่ยวนำมี $X_{L}=8$ โอห์ม ให้หาค่าของ

- ก. กระแสไฟฟ้า I_1, I_2 และกระแสรวม I
- ข. มุมเฟสระหว่างกระแสไฟฟ้ารวม I กับ ความต่างศักย์ 100 โวลต์
- ค. ความขัดระหว่างจุด AB V = 100 โวลค์ รูป 19.23 วงจรไฟฟ้าซึ่งประกอบ

(n)

ค้วย R L C ต่อ กันแบบผสม

รูป 19.24 (ก) แสคงส่วนหนึ่งของวงจรไฟฟ้า (ข) เวกเตอร์แสดงความต่างเฟส

ว**ิธีทำ** ก. คิดสาย CD ซึ่งมี $extbf{R}_1$ และ $extbf{X}_C$ ต่ออนุกรมกัน คิดแบบอนุกรมจากรูป 19.24 ได้

$$V = \sqrt{\left(V_R\right)^2 + \left(V_C\right)^2}$$
 แทนค่า
$$100 = \sqrt{\left(3I_1\right)^2 + \left(4I_1\right)^2}$$

$$= I_1 \times 5$$

$$I_1 = \frac{100}{5} = 20$$
 แอมแปร์

$$\sin \phi_{1} = \frac{4I_{1}}{V} = \frac{4 \times 20}{100} = 0.8$$

$$\cos \phi_{1} = \frac{3I_{1}}{V} = \frac{3 \times 20}{100} = 0.6$$

คิดสาย EF ซึ่งมี \mathbf{R}_2 และ \mathbf{X}_L ต่ออนุกรมกัน จากรูป 19.25 ได้

$$V = \sqrt{(V_R)^2 + (V_L)^2}$$
 แทนค่า $100 = \sqrt{(6I_2)^2 + (8I_2)^2}$ $= I_2 \times 10$ $V_L = 8I_2$ $V = 100$ โวลด์ $V_L = 8\Omega$ $V_R = 6I_2$ $V_R = 6I_2$ $V_R = 6I_2$ $V_R = 6I_2$

รูป 19.25 (ก) แสดงส่วนหนึ่งของวงจรไฟฟ้า (ข) เวกเตอร์แสดงความต่างเฟส

ดังนั้น
$$I_2 = \frac{100}{10} = 10$$
 แอมแปร์ (ตาม V เป็นมุม ϕ_2)
$$\sin \phi_2 = \frac{8I_2}{V} = \frac{8 \times 10}{100} = 0.8$$

$$\cos \phi_2 = \frac{6I_2}{V} = \frac{6 \times 10}{100} = 0.6$$

คิดรวมสาย CD ซึ่งมีกระแส $I_1=20$ แอมแปร์ กับสาย EF ซึ่งมีกระแส $I_2=10$ แอมแปร์ ต่อขนานกัน ทั้งสองสายนี้มีความต่างศักย์ V=100 โวลต์ร่วมกัน ดังนั้น นำเวกเตอร์ $I_1=20$ แอมแปร์ เวกเตอร์ $I_2=10$ แอมแปร์ และความต่างศักย์ V=100 โวลต์ มาเขียนเป็นเวกเตอร์รวมกัน จะได้ดัง แสดงในรูป 19.26

ส่วนประกอบของ I_1 ไปในแกนตั้ง $I_1 \sin \phi_1 = 20 \times 0.8 = 16$ แอมแปร์

8 แอมแปร์

รูป 19.26 (ก) (ข) และ (ค) เวกเตอร์แสดงความ ต่างเฟสของความต่างศักย์และกระแสไฟฟ้า

ส่วนประกอบของ
$$I_1$$
 ไปในแกนนอน $I_1 \cos \phi_1 = 20 \times 0.6 = 12$ แอมแปร์

ส่วนประกอบ
$$I_2$$
 ไปในแกนตั้ง $I_2 \sin \phi_2 = 10 \times 0.8 = 8$ แอมแปร์

ส่วนประกอบของ
$$I_2$$
 ไปในแกนนอน $I_2 \cos \phi_2 = 10 \times 0.6 = 6$ แอมแปร์

กระแสรวมในแกนตั้ง

กระแสรวมในแกนนอน

กระแสรวม

$$I = \sqrt{(8)^2 + (18)^2} = 19.7$$

$$y. \tan \phi = \frac{8}{18} = \frac{4}{9}$$

$$\frac{8}{18} = \frac{4}{9}$$

ดังนั้น

$$=$$
 $tan^{-1} \left[\frac{4}{9}\right] (I \mathring{u} \gamma \mathring{u})$

ค. จาก
$$V = IZ$$

19.6 วงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C

แทนค่าได้ 100 19.7 Z

ดังนั้น ความขัดระหว่างจุด AB =

$$Z = \frac{100}{19.7} = 5.03$$
 โอห์ม

ฅอบ

ตัวอย่าง 19.7 ตัวต้านทานขนาด 3 โอห์ม ตัวเหนี่ยวนำและตัวจุต่อกับไฟฟ้ากระแสสลับดังรูป 19.27 ทำให้ $\mathbf{X}_{_{\mathbf{I}}}$ = 6 โอห์ม และ $\mathbf{X}_{_{\mathbf{C}}}$ = 2 โอห์ม จงหาค่าของความขัดระหว่างจุด $\mathbf{A}\mathbf{B}$

คิดสายที่มี L และ

$$V = V_L - V_C = 6 I_2 - 2 I_2 = 4 I_2$$
 $I_2 = \frac{V}{4}$ (ตามหลัง V เป็นมุม $\frac{\pi}{2}$ ดูรูป 19.28)
 $V_L = 6I_2$
 $V = V_L - V_C = 4I_2$

รูป 19.28 เวกเตอร์แสดงความต่างเฟสของกระแสไฟฟ้าและความต่างศักย์

คิดรวมหมดทั้งสองสายมี V เป็นแกนร่วมของ I_1 และ I_2 ดังรูป 19.29

19.7 อภินาทในวงจรไฟฟ้า

โดยทั่วไปแล้ว อภินาท (resonance) บอกถึงปรากฏการณ์ที่มีการเสริมกันหรือแม้แต่ขัดกัน ที่ มีผลมากที่สุดสำหรับภาวะหนึ่ง ๆ เมื่อเทียบกับภาวะข้างเคียง ดังรายละเอียดบางส่วนได้กล่าวมาแล้ว และที่ จะกล่าวต่อไปอีกในส่วนที่เป็นฟิสิกส์ยุคใหม่ สำหรับในวงจรไฟฟ้าในส่วนนี้จะแบ่งการพิจารณาเป็นอย่าง ๆ ไป

19.7:1 อภินาทในวงจร R L C ที่ต่ออนุกรม

เมื่อ R L และ C ต่ออนุกรมกัน และต่อกับไฟฟ้ากระแสสลับ เวกเตอร์ของ R X และ

 \mathbf{X}_{C} มีดังแสดงในรูป 19.30 ความขัด Z ของสิ่งทั้งสามนี้ คือ เวกเตอร์รวมของเวกเตอร์ \mathbf{R} \mathbf{X}_{L} และ \mathbf{X}_{C} ซึ่งมีค่า ดังนี้

$$Z$$
 = $\sqrt{\left(R\right)^2 + \left(X_L - X_C\right)^2}$ โดยที่ X_L = ωL = $2\pi f L$ X_C = $\frac{1}{\omega C}$ = $\frac{1}{2\pi f C}$

ในกรณีที่ R L และ C ต่ออนุกรมกัน และต่อกับไฟฟ้ากระแสสลับ ซึ่งมีความต่างศักย์ V คงที่ แต่ความถี่เปลี่ยนค่าได้ การเปลี่ยนความถี่ย่อมทำให้ค่าของ X_L และ X_C เปลี่ยนตามไป ส่วน ค่า R ไม่แปรตามความถี่ ดังนั้น ค่าของ Z ก็จะเปลี่ยนตามไปด้วย กระแสไฟฟ้า I ที่ไหลผ่าน R L C ก็จะเปลี่ยนตามไปเช่นกัน เพราะการเปลี่ยนค่าของ Z และ I ตามความถี่ f มีแสดงในรูป 19.31 เมื่อ f มีค่าต่ำ Z มีค่ามาก I มีค่าน้อย เมื่อ f มีค่ามากขึ้น และ Z มีค่าน้อยลง I มีค่ามากขึ้นที่ความถี่อันหนึ่ง คือ f_r ในรูป Z มีค่าน้อยที่สุด ตอนนี้กระแส I มีค่ามากที่สุด เมื่อ f มีค่ามากกว่า f_r Z กลับมีค่า มากขึ้น และ I กลับลดลงดังแสดงในรูป 19.31ข. ที่ความถี่ f_r ซึ่ง Z มีค่าน้อยที่สุด และ I มีค่ามากที่สุด นี้ เรียกว่า เกิดอภินาท (resonance) ขึ้นในวงจรไฟฟ้านั้น และ f_r เรียกว่า ความถื่อภินาท (resonance frequency) พิจารณาจาก $Z = \sqrt{(R)^2 + (X_L - X_C)^2}$ จะเห็นว่า ขณะที่เกิดอภินาทนั้น Z จะมีค่า น้อยที่สุดเมื่อ

รูป 19.31 (ก) กราฟแสดงการเปลี่ยนค่าของความขัดกับความถึ่ (ข) กราฟแสดงการเปลี่ยนค่าของกระแสกับความถึ่

ตัวอย่าง 19.8 ตัวจุขนาด $6\frac{2}{3}$ ไมโครฟารัดต่อเป็นอนุกรมกับขดลวดเหนี่ยวนำ และต่อ กับเครื่องทำไฟฟ้ากระแสสลับซึ่งมีแรงเคลื่อนไฟฟ้า 1.2 โวลต์คงที่ แต่ความถี่เปลี่ยนค่าได้ เมื่อความถี่มี ค่า 5×10^4 เรเดียนต่อวินาที กระแสไฟฟ้ามีค่าสูงที่สุดซึ่งเท่ากับ 0.2 แอมแปร์

- ก. จงหาค่าความต้านทานและความเหนี่ยวนำของขดลวดเหนี่ยวนำนั้น
- ข. จงหาค่าของกระแสไฟฟ้า เมื่อความถี่เพิ่มขึ้นเป็น 3 เท่า

วิธีทำ สิ่งแรกที่จะต้องเข้าใจในโจทย์ข้อนี้ก็คือ ขดลวดเหนี่ยวนำนั้นทำจากเส้นลวด โดยนำ เส้นลวดมาขดเป็นวงเรียงกันไป ตามลำดับ ภายในเนื้อของเส้นลวดนั้นย่อมมีความต้านทานได้ ความต้านทาน ภายในเนื้อเส้นลวดของขดลวดเหนี่ยวนำนั้น จึงต่อเป็นแบบอนุกรมกับความเหนี่ยวนำของขดลวดเหนี่ยวนำนั้น

ดังนั้น ในโจทย์ข้อนี้ จึงมี R L และ C ต่อกันในแบบอนุกรมตามโจทย์ กระแสมากที่สุด I=0.2 แอมแปร์ เกิดตอนอภินาท ดังนั้น $\omega_r=5 imes10^4$ เรเดียนต่อวินาที

ก. ขณะเกิดอภินาท

$$I \qquad = \qquad \frac{V}{Z} \quad = \quad \frac{V}{R}$$

แทนค่าได้

$$0.2 = \frac{1.2}{R}$$

ความต้านทานข่องขดลวดเหนี่ยวนำ R = 6 โอห์ม

จาก
$$\omega_{\rm r} = \sqrt{\frac{1}{{
m LC}}}$$
 แทนค่า $5 \times 10^4 = \sqrt{\frac{1}{{
m L} \times \frac{20}{3} \times 10^{-6}}}$

ดังนั้น ความเหนี่ยวนำของขดลวดเหนี่ยวนำนั้น $L=6 imes10^{-5}$ เฮนรี

ตอบ

ข. เมื่อความถี่เพิ่มขึ้นเป็น 3 เท่า

$$\omega$$
 = $3\omega_{_{\rm I}}$ = $3\times5\times10^4$ = 15×10^4 เรเดียนต่อวินาที $\dot{X}_{_{\rm L}}$ = $\omega_{\rm L}$ = $(15\times10^4)\,(6\times10^{-5})$ = 9 โอห์ม $\dot{X}_{_{\rm C}}$ = $\frac{1}{\omega^{\rm C}}$ = $\frac{1}{(15\times10^4)\times(\frac{20}{3}\times10^{-6})}$ = 1 โอห์ม ความขัดใหม่ $\dot{X}_{_{\rm C}}$ = $\sqrt{(R)^2+(X_{_{\rm L}}-X_{_{\rm C}})^2}$ = $\sqrt{(6)^2+(9-1)^2}$ = 10 โอห์ม กระแสไฟฟ้าใหม่ $\dot{X}_{_{\rm C}}$ = $\frac{V}{Z}$ = $\frac{1.2}{10}$ = 0.12 แอมแปร์ ตอบ

19.7.2 อภินาทในวงจร L C ที่ต่อขนาน

ตัวเหนี่ยวนำกับตัวจุซึ่งต่อขนานกันอยู่ และต่อกับไฟฟ้ากระแสสลับซึ่งมีความต่างศักย์เป็น V ดัง แสดงในรูป อาจเกิดอภินาทขึ้นได้ ภาวะของการเกิดอภินาทแบบนี้คือ กระแสไฟฟ้า I กับ I มีค่าเท่ากันคือ

$$I_L = I_C$$
 ดังนั้น $I = 0$ หรือ $\frac{V}{X_L} = \frac{V}{X_C}$

สมการที่ได้จะเหมือนกับแบบต่ออนุกรมที่ได้กล่าวมาแล้ว ขณะที่เกิดอภินาทแบบขนานนี้ กระแส ไฟฟ้ารวม $I=I_C-I_L=0$ ซึ่งตรงข้ามกับแบบอนุกรมเพราะได้กระแสน้อยที่สุด

19.8 กำลังของไฟฟ้ากระแสสลับ

กำลังของไฟฟ้ากระแสสลับในขณะใด ๆ มีค่าเท่ากับผลคูณระหว่างความต่างศักย์กับกระแสไฟฟ้า ในขณะนั้น ๆ

เนื่องจาก
$$\frac{1}{2}$$
 V_m I_m = $\frac{V_m}{\sqrt{2}} \cdot \frac{I_m}{\sqrt{2}}$ = VI

ดังนั้น

$$p = VI \left[\cos \phi - \cos (2\theta + \phi) \right]$$

รูป 19.33 กราฟแสดงการเปลี่ยนแปลงของ v, i, p กับเวลา

ในรูป 19.33 แสดงกราฟของ v i และ p โดย p = vi จะเห็นได้ว่า กำลังจะมีค่าไม่คงที่ เปลี่ยนแปลงอยู่ตลอดเวลา ตามเวลา t

กำลังที่ใช้ไปจริง ๆ ในวงจรไฟฟ้ากระแสสลับนั้นจะเป็นกำลังเฉลี่ย (average power) ซึ่งหาได้ โดยหาค่าเฉลี่ยดังนี้

ท้า P = กำลังเฉลี่ย
$$P = \frac{1}{2\pi} \int\limits_{\Omega}^{2\pi} p \mathrm{d}\theta \quad \text{เมื่อคิดเฉลี่ยจาก 1 รอบ}$$

แทนค่ากำลัง p จากที่ทำมาแล้วจะได้

ไฟฟ้ากระแสสลับ

เนื่องจาก
$$\int \cos{(2\theta+\phi)} \,\mathrm{d}\theta = \frac{1}{2}\int \cos{(2\theta+\phi)} \,\mathrm{d}\,(2\theta+\phi)$$

$$= \frac{1}{2}\sin{(2\theta+\phi)}$$

$$= \frac{\mathrm{VI}}{2\pi}\left\{\cos{\phi}\left[\theta\right]_o^{2\pi} - \frac{1}{2}\sin\left[2\theta+\phi\right]_o^{2\pi}\right\}$$

$$= \frac{\mathrm{VI}}{2\pi}\left(2\pi\cos{\phi}\right)$$

$$= \mathrm{VI}\cos{\phi}$$

ดังนั้น
$$P = VI \cos \phi$$
 (19.15)

กำลังเฉลี่ย P นี้มีชื่อเรียกกันเป็นอีกอย่างหนึ่งว่า กำลังกัมมันต์ (active power) และต่อไปนี้ เมื่อพูดถึงกำลังในไฟฟ้ากระแสสสับ เราจะหมายถึงกำลังเฉลี่ย P นี้เสมอ ในสูตรนี้

สำหรับ VI จะเรียกว่า กำลังปรากฏ (apparent power) และค่าของ $\cos \phi$ มีชื่อเรียกว่า *ตัวประกอบกำลัง* (power factor) เพราะเป็นตัวคูณ VI ซึ่งจะทำให้กำลัง P มีค่ามากก็ได้ น้อยก็ได้ ตัวประกอบกำลังนี้ มีค่าจาก 0 ถึง 1 ($\cos 90^{\circ}=0$ และ $\cos 0^{\circ}=1$) ดังนั้น สำหรับ VI ค่าหนึ่ง ๆ ถ้า $\phi=90^{\circ}$ (ในกรณีที่ วงจรเป็นชนิดเหนี่ยวนำล้วน หรือชนิดจุล้วน) กำลัง P จะเท่ากับศูนย์ ถ้า $\phi=0^{\circ}$ กำลังไฟฟ้าที่ใช้จะมี ค่ามากที่สุด (เท่ากับ VI)

สำหรับตัวจุมี $\phi = 90^{\circ}$ ดังนั้น กำลังไฟฟ้าที่มันใช้

$$P = VI \cos 90^{\circ} = 0$$

ตัวเหนี่ยวนำซึ่งไม่มีความต้านทานเลย φ = 90° กำลังไฟฟ้าที่ใช้

$$P = VI \cos 90^{\circ} = 0$$

สำหรับตัวด้านทาน (R) มี φ = 0 จะใช้กำลังไฟฟ้า

$$P = VI \cos 0 = VI$$

จึงสรุปได้ว่า ในวงจรไฟฟ้ากระแสสลับซึ่งมี R L และ C ต่อกันอยู่ ไม่ว่าจะต่อกันในแบบใด กำลังไฟฟ้าจะใช้ที่ R เท่านั้น ดังนั้น เมื่อจะคิดกำลัง ก็คิดเฉพาะที่ R เท่านั้นเอง คือ

P = VI cos
$$\phi$$
 = VI cos 0 = VI
= (IR)I = I²R
= V($\frac{V}{R}$) = $\frac{V^{2}}{R}$

ดูตัวอย่างต่อไปนี้

หรือ

ตัวอย่าง 19.9 วงจรไฟฟ้ากระแสสลับประกอบด้วย R L และ C ต่ออนุกรมกันอยู่ระหว่าง สองจุดซึ่งมีความต่างศักย์ 120 โวลด์ วงจรนี้มีความต้านทาน 75 โอห์ม และความขัด 150 โอห์ม ให้หา กำลังไฟฟ้าที่ใช้ในวงจรนี้

วิสีทำ

วิธีที่ 1 ทำแบบคิดรวม เนื่องจากเป็นวงจรต่ออนุกรม จึงมีเวกเตอร์ของ R และ Z ดัง รูป 19.34

= 0.8 แอมแปร์

$$= 120 \times 0.8 \times \frac{75}{150}$$

= 48 วัตต์

วิธีที่ 2 คิดเฉพาะที่ R เท่านั้น เพราะกำลังไฟฟ้าถูกใช้ที่ R เพียงอย่างเดียว

กำลังไฟฟ้าที่ใช้ $P = I^2R = (0.8)^2 \times 75 = 48$ วัตต์ ตอบ

ตัวอย่างนี้แสดงให้เห็นว่า การคิดกำลังจากความต้านทานอย่างที่ทำในวิธีที่ 2 สะดวกกว่าคิดรวม อย่างที่ทำในวิธีที่ 1 แม้ในวงจรไฟฟ้ากระแสสลับที่มี R L และ C ต่อกันในแบบผสม การคิดหากำลัง ไฟฟ้าก็อาจทำได้โดยแยกคิดเฉพาะที่ R ส่วนที่ L และ C นั้นไม่ใช้กำลัง ถ้ามี R หลายตัว ก็คิดหากำลัง จาก R แต่ละตัวโดยเฉพาะ แล้วนำมารวมกันเป็นกำลังไฟฟ้ารวมที่ใช้ทั้งหมด ดูตัวอย่างต่อไปนี้

ตัวอย่าง 19.10 ตัวต้านทาน $R_1=3$ โอห์ม $R_2=6$ โอห์ม ตัวจุและตัวเหนี่ยวนำต่อกัน ในแบบผสมดังแสดงในรูป 19.35 ปลาย AB ต่อกับไฟฟ้ากระแสสลับซึ่งมีความต่างศักย์ 100 โวลต์ ทำให้ ตัวจุมี $X_C=4$ โอห์ม และตัวเหนี่ยวนำมี $X_L=8$ โอห์ม ให้หาค่าของกำลังไฟฟ้าที่ใช้ทั้งหมด

วิธีทำ โจทย์นี้ได้ทำมาแล้วในตัวอย่างของการต่อ R L และ C แบบผสม ผิดกันแต่ที่ในตอนนั้น ให้หาค่าของกระแสไฟฟ้าและมุมเฟสเท่านั้น แต่ในตอนนี้จะหากำลังไฟฟ้า

วิธีที่ 1 ทำโดยคิดรวมทั้งหมดโดยพิจารณาจากกำลังที่ใช้ทั้งหมด P = VI cos ф ใช้ค่าของ กระแสไฟฟ้ารวม I และ ф ที่ทำไว้แล้วในตอนตันนั้นซึ่งได้

กระแสรวม I = 19.7 แอมแปร์
$$\cos \, \phi \ = \ \frac{18}{I} \ = \ \frac{18}{19.7} \ (จากรูป 19.26)$$

กำลังที่ใช้ทั้งหมด P = VI cos ϕ = $100 \times 19.7 \times \frac{18}{19.7}$ = 1,800 วัตด์

วิธีนี้ถ้าทำจากเริ่มต้นทุกอย่างโดยไม่ยกตัวเลขมาอ้างแบบนี้ จะยาวมาก

วิธีที่ 2 คิดในสาย CD มี $R_1=3$ โอห์ม และ $X_C=4$ โอห์ม ต่ออนุกรมกัน ความขัดของสายนี้ $Z_1=\sqrt{{(3)}^2+{(4)}^2}=5$ โอห์ม กระแสไฟฟ้าในสายนี้ $I_1=\frac{V}{Z_1}=\frac{100}{5}=20$ แอมแปร์ กำลังซึ่งใช้ที่ R_1 คือ $P_1=I_1^2R_1=(20)^2\times 3=1,200$ วัตต์

19.9 การใช้ปริมาณเชิงซ้อนในไฟฟ้ากระแสสลับ

ในวงจรไฟฟ้ากระแสสลับความต่างศักย์และกระแสในตัวเหนี่ยวนำและตัวจุมีความต่างเฟสกันอยู่ 90° เมื่อนำค่าเหล่านี้มาเขียนเป็นแผนภาพแสดงเฟส (phasor diagram) จะได้ทิศดังแสดงในแผนภาพ รูป ที่ 19.36 จะเห็นว่าถ้าเขียน I ซึ่งเป็นกระแสผ่านวงจรให้อยู่ในแนวแกน X ความต่างศักย์ V_L จะอยู่ในแนว

1,800 วัตต์

ตอบ

รูป 19.36 แผนภาพแสดงเฟส รูป 19.37 แผนภาพแสดง I V_L และ V_C ในระนาบเชิงซ้อน แกน +Y และความต่างศักย์บนตัวจุ V_C จะอยู่ตามแนวแกน -Y ทิศของ V_L และ V_C จะมีทิศเป็น อย่างอื่นไม่ได้ ถ้า I อยู่ในแนว +X

ด้วยลักษณะสำคัญนี้ จึงได้นำหลักของจำนวนเชิงซ้อน (complex number) มาใช้กับไฟฟ้า กระแสสลับ โดยให้กระแสอยู่ตามแกนจริง (real axis) และ V_L อยู่ในแนวแกนจินตภาพบวก (imaginary axis) คือ +j และ V_C อยู่ในแนวแกนจินตภาพลบคือ -j ดังรูปที่ 19.37

การหาขนาดและเฟสจะหาได้ตามวิธีของเลขเชิงซ้อน เพื่อให้ทราบว่า \mathbf{V}_{L} และ \mathbf{V}_{C} มีทิศเป็น +j และ -j ไว้ด้วยในการคำนวณ

19.9.1 วงจร R L C ต่อแบบอนุกรม

เมื่อมีกระแส I ผ่านวงจร จะเกิดความต่างศักย์เป็น V_R V_L และ V_C บนตัวต้านทาน ตัวเหนี่ยวนำ และตัวจุ ตามลำดับ ดังรูป 19.38 เมื่อเทียบค่า V_R ของวงจรทั้งหมดตามหลักของจำนวน เชิงซ้อน จะได้ความต่างศักย์รวม

รูป 19.38 ความต่างศักย์บนวงจรอนุกรม

รูป 19.39 แผนภาพแสดงเฟสในระนาบเชิงซ้อน

19.9 การใช้ปริมาณเชิงซ้อนในไฟฟ้ากระแสสลับ

$$V = V_R + jV_L - jV_C$$
 (19.16)

พรือ $V = V_R + j(V_I - V_C)$ (19.17)

ให้สังเกตด้วยว่า V_R เป็นจำนวนจริง เพราะ V_R กับ I มีเฟสเดียวกัน เขียนแผนภาพแสดง เฟสของสมการ (19.16) และ (19.17) ในระนาบเชิงซ้อน (complex plane) จะได้ดังรูป 19.39 ขนาดของรูป V จะเท่ากับกรณฑ์ที่สองของผลบวกของกำลังของส่วนจริงและส่วนจินตภาพคือ

$$|V| = \sqrt{V_R^2 + (V_L - V_C)^2}$$
 (19.18)

เฟส (ф) ของ V เทียบกับแกนจริงตามสมการ (20.17) จะได้

$$\phi = \tan^{-1} \left[\frac{\text{ส่วนจินตภาพ (imaginary part)}}{\text{ส่วนจริง (real part)}} \right]$$

$$\phi = \tan^{-1} \left[\frac{(V_L - V_C)}{V_R} \right]$$
 (19.19)

ให้สังเกตด้วยว่า ϕ เป็นบวกเมื่อ $V_L > V_C$ และ ϕ เป็นลบเมื่อ $V_L < V_C$ ค่าของ ϕ มีตั้งแต่ $+90^{\circ}$ ถึง -90°

ตัวอย่าง 19.11 จงหาขนาดและเฟสของความต่างศักย์รวมของวงจรอนุกรมของตัวต้านทาน ตัวเหนี่ยวนำ และตัวจุ เมื่อ $R=2\Omega,~X_L=3\Omega$ และ $X_C=4\Omega$ โดยมีกระแสไฟฟ้าในวงจร 1 แอมแปร์

วิธีทำ
$$V_R$$
 = $2 \times 1 = 2$ โวลด์ V_L = $3 \times 1 = 3$ โวลด์ V_C = $4 \times 1 = 4$ โวลด์ V_C = $V_R + j(V_L - V_C)$

แทนค่า V_R V_L และ V_C จะได้

นั่นคือ

จาก

$$V = 2 + j (3 - 4) = (2 - j)$$
 โวลต์
หาขนาดได้คือ $\left| V \right| = \sqrt{2^2 + 1^2} = \sqrt{5}$ โวลต์

เฟสของ V เมื่อเทียบกับแกนจริง

$$\phi = \tan^{-1} \left[-\frac{1}{2} \right]$$

$$= -26.5^{\circ}$$

นั่นคือ V มีเฟสตามหลัง I หรือ V_R เป็นมุม 26.5°

ฅอบ

เนื่องจากกระแส I ผ่านวงจรอนุกรมของ R L C ความต่างศักย์บน R L C จะคำนวณ ความต่างศักย์ได้จากผลคูณของกระแส j กับความต้านทานหรือความต้าน ดังนั้นสมการของ V จึงเขียนได้เป็น

$$V = IZ = IR + jIX_L - jIX_C$$
 หรือ $Z = R + jX_L - jX_C$ (19.20)

เมื่อ Z = ความขัดของวงจร

นำสมการ (19.20) มาเขียนในระนาบเชิงซ้อน โดยให้ R มีเฟสอยู่ในแนวแกนจริง จะได้ผล ดังรูป 19.40

รูป 19.40 แผนภาพของความขัด

เฟสของ $oldsymbol{X}_L$ อยู่ตามแนวแกนจินตภาพบวก $oldsymbol{X}_C$ อยู่ตามแนวแกนจินตภาพลบ จากสมการ (19.20) ขนาดของ $oldsymbol{Z}$ คือ

19.9 การใช้ปริมาณเชิงซ้อนในไฟฟ้ากระแสสลับ

$$|Z| = \sqrt{R^2 + (X_L - X_C)^2}$$
 (19.21)

หาเฟสของ Z เมื่อเทียบกับ R หรือแกนเลขจริงจาก

$$\phi = \tan^{-1} \left[\frac{(X_L - X_C)}{R} \right]$$
 (19.22)

ตัวอย่าง 19.12 วงจรอนุกรมของตัวต้านทาน ตัวเหนี่ยวนำ และตัวจุซึ่งมีค่า $R=2\Omega$ $X_L=3\Omega$ และ $X_C=4\Omega$ จงหาความขัดของวงจร และเฟสของความขัด

วิธีทำ สมการของความขัดของวงจรอนุกรม R L C เขียนได้เป็น

$$Z = R + jX_{L} - jX_{C}$$

$$= 2 + j3 - j4 = 2 - j$$

$$|Z| = \sqrt{2^{2} + 1^{2}} = \sqrt{5}$$
 โอห์ม ตอบ

หรือ

เฟสของ Z เทียบกับ R คือ

$$\phi = \tan^{-1} \left[\frac{X_L - X_C}{R} \right]$$

$$= \tan^{-1} \left[-\frac{1}{2} \right]$$

$$= -26.5^{\circ}$$

นั่นคือ Z มีเฟสตามหลัง R เป็นมุม 26.5°

ฅอบ

19.9.2 วงจร R L C ต่อแบบขนาน

รูป 19.41 RLC ต่อแบบขนาน

เมื่อต่อความต่างศักย์ V ระหว่างจุด AB วงจรดังรูป 19.41 จะมีกระแสผ่าน R L และ C ที่มีเฟสดังนี้

กระแส I ผ่าน R จะมีเฟสตรงกับ V

กระแส I ผ่าน L มีเฟสตามหลัง V เป็นมุม 90° และกระแส I ผ่าน C จะมีเฟส นำหน้า V เป็นมุม 90° เมื่อเขียนแผนภาพของเฟสเซิงซ้อนของกระแสเหล่านี้ตามวิธีของจำนวนเชิงซ้อน จะได้ผลดังแสดงในรูป 19.42

รูป 19.42 แผนภาพของกระแสในวงจร R L C ต่อแบบขนาน

เมื่อเขียนค่ากระแสรวม I ของวงจรตามหลักของจำนวนเชิงซ้อน จะได้

$$I = I_{R} + jI_{C} - jI_{L}$$

$$= I_{R} + j(I_{C} - I_{L})$$
(19.23).

ขนาดของ I หาได้จาก

$$|I| = \sqrt{I_R^2 + (I_C - I_L)^2}$$
 (19.24)

ความต่างเฟสของ I เทียบกับ I หรือ V คือ m R

สมการของความขัดของวงจร R L C ต่อแบบขนานจะหาได้จากสมการ (19.23) โดยอาศัย ความสัมพันธ์ตามกฎของโอห์ม I = $rac{V}{R}$ และเขียนได้ดังนี้

$$\frac{V}{Z} = \frac{V}{R} + j \frac{V}{X_C} - j \frac{V}{X_L}$$

19.9 การใช้ปริมาณเชิงซ้อนในไฟฟ้ากระแสสลับ

พรือ =
$$\frac{1}{R} + j \left(\frac{1}{X_C} - \frac{1}{X_L} \right)$$
 (19.25)

เมื่อนำสมการ (19.25) มาเขียนในระนาบเชิงซ้อน จะได้ผลดังแสดงในแผนภาพของรูป 19.43

รูป 19.43 แผนภาพแสคงเฟสของความขัด ของวงจร R L C ต่อแบบขนาน

ขนาดของ $\frac{1}{Z}$ คำนวณได้จาก

$$\left|\frac{1}{Z}\right| = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\frac{1}{X_C} - \frac{1}{X_L}\right)^2}$$
 (19.26)

ความต่างเฟสของ $\frac{1}{Z}$ เทียบกับ $\frac{1}{R}$ คือ

$$\phi = \tan^{-1} \left[\frac{\frac{1}{X_C} - \frac{1}{X_L}}{\frac{1}{R}} \right]$$
 (19.27)

มุม ф มีค่าอยู่ระหว่าง + 90 → 0 → -90°

การหาความต่างเฟสของความขัด Z ของวงจรอาจหาได้จากการเปลี่ยนเครื่องหมายของความต่างเฟสของ $rac{1}{Z}$ ให้เป็นตรงกันข้าม เช่น เมื่อความต่างเฟสของ $rac{1}{Z}$ เขียนได้ว่า

$$\phi_{\frac{1}{Z}} = \tan^{-1} \left[\frac{\frac{1}{X_C} - \frac{1}{X_L}}{\frac{1/R}{}} \right]$$

ความต่างเฟสของ Z จะเขียนได้เป็น

$$\phi_{Z} = \tan^{-1} \left[\frac{-\left(\frac{1}{X} - \frac{1}{X}\right)}{\frac{1/R}{}} \right]$$
 (19.28)

จะไม่พิสูจน์วิธีการนี้ ณ ที่นี้ ผู้ที่สนใจอาจศึกษาได้จากเรื่องการเขียนแผนภาพแสดงเฟสแบบเชิงขั้ว (polar) จากดำราวิชาไฟฟ้ากระแสสลับขั้นก้าวหน้าทั่วไป

ตัวอย่าง 19.13 วงจร R L C ต่อแบบขนานมีค่า R = 40Ω $X_L = 60\Omega$ และ $X_C = 24\Omega$

ก. จงคำนวณค่าความขัดของวงจร Z และเฟสของ Z

ข. เมื่อต่อความต่างศักย์ไฟฟ้ากระแสสลับ 120 โวลต์เข้ากับวงจร จงคำนวณค่ากระแส รวมและเฟสของกระแสรวม

วิธีทำ ก. ความขัดของวงจร R L C ต่อแบบขนานหาได้จาก

และ

คำนวณเฟลของ Z เมื่อเทียบกับแกนจริง จะได้

$$\phi = \tan^{-1} \left[-1 \right] = -45^{\circ}$$

ข. เมื่อต่อความต่างศักย์ไฟฟ้ากระแสสลับ 120 โวลต์ กับวงจร ค่า I จะได้ว่า

หรือ

เฟสของ I เมื่อเทียบกับ $\frac{1}{R}$ หรือแนวแกนจริง จะได้ว่า

$$\phi = \tan^{-1} \left[+1 \right] = 45^{\circ}$$

19.9.3 วงจร R L C ต่อแบบผสม

โดยอาศัยหลักการของวงจรที่ต่ออย่างอนุกรมและการต่ออย่างขนาน จะสามารถวิเคราะห์วงจรที่ ต่อกันแบบผสมได้ จากวงจรที่กำหนดให้ ดังรูป 19.44

ก. คำนวณความขัดของแขนง CD เขียนเป็น $Z_{_1}$ ได้

$$Z_1$$
 = $R_1 - jX_C$ = 3 - j4
 $|Z|$ = $\sqrt{3^2 + 4^2}$ = 5 โอห์ม

หรือ

กระแสผ่านแขนง CD เขียนว่า I_1 หาได้จาก

$$I_1$$
 = $\frac{V}{Z}$ = $\frac{100}{3 - j4}$ = $4(3 + j4)$
 $|I_1|$ = $4\sqrt{3^2 + 4^2}$ = 20 แอมแปร์

เฟลของ I เทียบกับ V หาได้จาก

$$\phi_1 = \tan^{-1} \left[\frac{4}{3} \right] = 53^{\circ}$$

นั่นคือ I_1 มีเฟสนำหน้า V เป็นมุม 53°

ข. คำนวณเกี่ยวกับแขนง EF ทำนองเดียวกับแขนง CD

งตับ
$$Z_2 = 6 + j8$$
 หรือ $\left| Z_2 \right| = \sqrt{6^2 + 8^2} = 10 \,\Omega$
$$I_2 = \frac{100}{6 + j8} = (6 - j8), \quad \left| I_2 \right| = \sqrt{6^2 + 8^2} = 10 \, \text{ แอมแปร์}$$

$$\phi_2 = \tan^{-1} \left[-\frac{8}{6} \right] = -53^\circ$$

นั่นคือ I_2 มีเฟสตามหลัง V เป็นมุม 53°

ค. I หาได้จากผลบวกของ I_1 และ I_2

$$I = 4(3 + j4) + (6 - j8) = 18 + j8$$

ขนาดของ I คือ
$$|I| = \sqrt{18^2 + 8^2} = 19.7$$
 แอมแปร์

เฟสของ I เมื่อเทียบกับ V คำนวณได้จาก

$$\phi = \tan^{-1} \left[\frac{8}{18} \right] = 24^{\circ}$$

นั่นคือ I มีเฟสนำหน้า V เป็นมุม 24°

- ง. ความขัดรวมของวงจร หาได้ 2 วิธีคือ
 - จาก V หารด้วย I รวม

$$Z = \frac{100}{18 + j8} = \frac{50}{9 + j4} = \frac{50}{97} (9 - j)$$

และ 2. จาก Z_1 ขนานกับ Z_2 จะได้

$$Z = \frac{Z_1 Z_2}{Z_1 + Z_2} = \frac{(3 - j4) (6 + j8)}{3 + j4 + 6 + j8}$$

ชึ่งได้ผลตรงกัน

19.9.4 การคำนวณกำลังไฟฟ้ากระแสสลับด้วยวิธีจำนวนเชิงซ้อน

จำนวนกำลังไฟฟ้าได้จากผลคูณของความต่างศักย์กับกระแสที่ทำให้เกิดความต่างศักย์นั้น เมื่อ V และ I อยู่ในรูปของจำนวนเชิงซ้อน เช่น เมื่อ V = a + jb และ I = c + jd การคำนวณค่ากำลัง ไฟฟ้าจะเอา V คูณ I ตรงๆ ไม่ได้ เพราะจะได้ผลไม่ถูกต้องกับที่เป็นจริง ให้พิจารณาแผนภาพแสดง เฟสของ V และ I ซึ่งเขียนในระนาบเชิงซ้อน ดังรูป 19.45 จากสมการ (19.15) กำลังไฟฟ้าเมื่อคิด จากส่วนประกอบของ V และ I คูณกันจะได้

$$P = ac cos 0^{\circ} + bd cos 0^{\circ} + ad cos 90^{\circ} + bc cos 90^{\circ}$$
$$= ac + bd$$
(19.29)

ถ้าเราทดลองนำ V และ I มาคูณกันตรง ๆ และหาภาคจริงจะได้

รูป 19.45 แผนภาพแสดงเฟสของความต่างศักย์ และกระแส

Re VI = Re (a + jb) (c + jd) = Re
$$\left[ac - bd + j (bc + ad) \right]$$

= ac^{*}- bd ($i \hat{J} \hat{D} j = \sqrt{-1}$, $j^2 = -1$)

จะเห็นว่า ได้ผลแตกต่างไปจากสมการ (19.29) เพื่อจะให้ได้ผลถูกต้อง ใช้วิธีเปลี่ยนค่า V หรือ I ตัวใดตัวหนึ่งเป็นคอนจุเกต (conjugate) ของตัวเอง แล้วหาผลคูณจะได้เป็นกำลังไฟฟ้า เช่น เมื่อเปลี่ยน V เป็นคอนจุเกตของตัวเองได้เป็น V* = a - jb และ I = c + jd

ไฟฟ้ากระแสสลับ

ตัวอย่าง 19.14 จงคำนวณหากำลังไฟฟ้าในวงจรที่มี V=100+j50 โวลต์ และ I=2-j แอมแปร์

วิธีทำ เปลี่ยน V ให้เป็นคอนจุเกตของตัวเอง

19.9.5 คำนวณความถื่อภินาทของวงจรด้วยวิธีเลขเชิงซ้อน

วงจรที่ประกอบด้วย L และ C จะมี R ด้วยหรือไม่ก็ตาม มีความถี่ธรรมชาติหรือความถี่ อภินาทประจำตัว จะคำนวณหาได้ด้วยวิธีจำนวนเชิงซ้อน โดยอาศัยหลักสำคัญที่ว่าที่ความถื่อภินาทของวงจร ค่าความขัดรวมของวงจรจะเป็นจำนวนจริงซึ่งหมายความว่าเทอมที่เป็นจำนวนจินตภาพของความขัดของวงจร จะต้องเป็นศูนย์ ซึ่งทำความต่างเฟสของความต่างศักย์และกระแสเป็นศูนย์ด้วย

ที่ความถี่ใด ๆ
$$Z = R + jX$$
 (19.31)
ที่ความถื่อภินาท $Z = R$ และ $jX = 0$ (19.32)

จากข้อแม้ที่ว่า jX ต้องเป็นศูนย์นี้ทำให้สามารถคำนวณหาค่าความถื่อภินาทของวงจรได้

การหาความถื่อภินาทของวงจร R L C แบบต่าง ๆ อาจแสดงได้ดังต่อไปนี้

ก. ความถื่อภินาทของวงจร R L C ต่อแบบอนุกรม

ความขัดของวงจร
$$Z=R+j(X_L-X_C)$$
ที่ความถื่อภินาท $f_r, Z=R, j(X_L-X_C)=0$
ได้ $X_L=X_C$
ดังนั้น $f=\frac{1}{2\pi\sqrt{LC}}$

ข. ความถื่อภินาท f_r ของวงจร R L C ต่อแบบขนาน

ความขัดของวงจรขนาน
$$\frac{1}{Z}$$
 = $\frac{1}{R}$ + j $(\frac{1}{X_C} - \frac{1}{X_L})$ ที่ความถื่อภินาท f_r Z = R ' j $(\frac{1}{X_C} - \frac{1}{X_C})$ = 0 X_C = X_L

ดังนั้น

$$f_r = \frac{1}{2\pi \sqrt{LC}}$$

ค. ความถื่อภินาทของวงจร R L C ต่อแบบผสม ดังรูป 19.46

รูป 19.46 วงจร R L C ต่อแบบผสม

ความขัดของวงจรคิดได้จากความขัดของสองแขนงรวมกันแบบขนาน คือ

$$Z = \frac{-jX_C(R + jX_L)}{-jX_C + R + jX_L}$$

$$= \frac{X_C X_L - jRX_C}{R + j(X_L - X_C)}$$

คูณทั้งเศษและส่วนด้วย R - $j(X_{\overline{L}}$ - $X_{\overline{C}})$ จะได้

$$Z = \frac{(X_{C}X_{L} - jRX_{C}) [R - j(X_{L} - X_{C})]}{R^{2} + (X_{L} - X_{C})^{2}}$$

ที่ความถื่อภินาท $\mathbf{f}_{\mathbf{r}}$ เทอมจินตภาพของ \mathbf{Z} เป็นศูนย์

นั่นคือ
$$-jR^2X_C - jX_LX_C(X_L - X_C) = 0$$

ดังนั้น
$$R^2 = X_L(X_C - X_L)$$

$$= \omega L(\frac{1}{\omega C} - \omega L)$$

$$= \frac{L}{C} - \omega^2 L^2$$
หรือ $\omega^2 = \frac{1}{LC} - \frac{R^2}{L^2}$
ถ้าเขียน $\omega_0^2 = \frac{1}{LC} =$ ความถื่อภินาท (เชิงมุม) ของวงจรเมื่อ $R = 0$

$$\omega = \sqrt{\omega_0^2 - \frac{R^2}{L^2}}$$
หรือ $f_r = \frac{1}{2\pi_A} \sqrt{\omega_0^2 - \frac{R^2}{L^2}}$ (19.33)

19.10 อุปกรณ์ไฟฟ้ากระแสสลับ

เนื่องจากไฟฟ้ากระแสสลับ เป็นไฟฟ้ากระแสที่จ่ายไปตามบ้านเรือนและหน่วยใช้พลังงานอื่น ๆ ทั่วไป จึงควรจะทราบถึงอุปกรณ์ที่เกี่ยวข้องบ้างพอสมควร ที่ยกมาอธิบายไว้นี้เป็นเพียงตัวอย่างอันพบเห็น เสมอ ๆ ที่น่าจะทำความเข้าใจได้ในหลักการ

19.10.1 หลอดเรื่องแสง

รูป 19.47 (ก) วงจรไฟฟ้าของหลอดเรื่องแสง

(ข) เวกเตอร์แสดงความต่างเฟสของกระแสและความต่างศักย์

รูป 19.47 ก. แสดงวงจรของหลอดเรื่องแสง (fluorescent) R เป็นความต้านทานของตัว หลอด L เป็นความเหนี่ยวนำของบาลลาสท์ที่ต่ออนุกรมกับตัวหลอด C เป็นตัวจุซึ่งโรงไฟฟ้าขอให้ต่อไว้ เพื่อลดกระแสไฟฟ้าของโรงไฟฟ้า ถ้าไม่ต่อ C หลอดไฟสว่าง กินกระแสไฟฟ้าเท่ากับ $I_1 = \frac{V}{\sqrt{R^2 + X_L^2}}$ หลอดกินกำลังไฟฟ้าเท่ากับ I_1^2 R กระแสไฟฟ้า I_1 นี้จะต้องวิ่งผ่านสายเมนของโรงไฟฟ้า ถ้าต่อ C หลอด กินกระแส I_1 และกำลัง I_1^2 R เท่าเดิม ตัวจุ C กินกระแสไฟฟ้า $I_2 = \frac{V}{X_C}$ กระแส I_1 และ I_2 มีเวกเตอร์แสดงเฟสดังแสดงในรูป 19.47 ข. ทำให้กระแสรวม I มีค่าน้อยกว่า I_1 (ลองเขียนรูปเอง) ดังนั้น กระแส I ซึ่งผ่านสายส่งของโรงไฟฟ้าจึงมีค่าลดลงจากเมื่อไม่ต่อ C

หมายเหตุ ฝ่ายผู้ใช้ จะต่อตัวจุหรือไม่ก็ตามจะเสียค่าไฟเท่าเดิม แต่ต้องจ่ายเงินค่าซื้อตัวจุ ฝ่ายโรงไฟฟ้า ถ้าไม่ต่อ C ต้องจ่ายกระแสไฟฟ้ารวม I มาก ถ้าต่อ C จ่ายกระแสไฟฟ้ารวม I น้อยลง

โดยการคิดส่วนประกอบของ $oldsymbol{I}_1$ และ $oldsymbol{I}_2$ จะหากระแสไฟฟ้ารวมได้

รูป 19.48 เวกเตอร์แสดงความต่างเฟสของความ ขัดและกระแส

I =
$$\sqrt{\frac{(I_1 \cos \theta)^2 + (I_2 - I_1 \sin \theta)^2}{(\frac{V}{Z_1} \cos \theta)^2 + (\frac{V}{X_C} - \frac{V}{Z_1} \sin \theta)^2}}$$

กระแสรวม I มีค่าน้อยที่สุดเมื่อ

$$\left(\frac{V}{X_C} - \frac{V}{Z_1} \sin \theta\right)^2 = 0$$

และโดยอาศัยเวกเตอร์แสดงความต่างเฟสตามรูป 19.48 จะได้

$$X_{C} = \frac{Z_{1}}{\sin \theta} = \frac{Z_{1}}{X_{L}} Z_{1} = \frac{Z_{1}^{2}}{X_{L}} = \frac{R^{2} + X_{L}^{2}}{X_{L}}$$

$$\frac{1}{\omega C} = \frac{R^{2} + \omega^{2} L^{2}}{\omega L}$$

คือ

ดังนั้น ตัวจุซึ่งจะทำให้กระแสไฟฟ้ารวม I มีค่าน้อยที่สุดมีค่าเท่ากับ

$$C = \frac{L}{R^2 + \omega^2 L^2}$$
 (19.34)

เมื่อใช้ค่า C นี้แล้วจะได้กระแสไฟฟ้ารวม I ซึ่งมีค่าน้อยที่สุดเท่ากับ

$$I_{\min} = \frac{V}{Z_1} \cos \theta = \frac{V}{Z_1} \frac{R}{Z_1} = \frac{VR}{R^2 + \omega^2 L^2}$$

ทดลองเทียบ I_{min} นี้กับกระแส I₁ ได้

$$\frac{I_{\min}}{I_{1}} = \frac{VR}{(R^{2} + \omega^{2}L^{2})} \cdot \frac{\sqrt{R^{2} + X_{L}^{2}}}{V} = \frac{R}{\sqrt{R^{2} + \omega^{2}L^{2}}}$$

แสดงว่าเมื่อใช้ค่า C ที่เหมาะ กระแสรวม I_{min} มีค่าน้อยกว่า I₁ ในทางปฏิบัติพบว่า ในกรณีหลอดเรื่องแสงขนาด 40 วัตด์ เมื่อใช้ C ที่เหมาะสมตามสมการ (19.34) ซึ่งหาค่าได้ประมาณ 4.7 ไมโครฟารัด ทำให้กระแสจากโรงไฟฟ้าลดจาก 0.4 แอมแปร์ลงเหลือ 0.2 แอมแปร์ (ไฟฟ้า 220 โวลต์) คือ ลดลงประมาณครึ่งหนึ่ง

19.10.2 หม้อแปลง

หม้อแปลง (transformer) เป็นเครื่องมือทางไฟฟ้าที่ใช้สำหรับเปลี่ยนความต่างศักย์ไฟฟ้า กระแสสลับให้สูงขึ้นหรือต่ำกว่าเดิม โดยใช้หลักการเหนี่ยวนำแม่เหล็กไฟฟ้า เครื่องมือชนิดนี้ประกอบด้วย ขดลวดสองขด พันอยู่บนแกนเหล็กอันเดียวกันดังแสดงในรูป 19.49 ก. เมื่อปล่อยไฟฟ้ากระแสสลับเข้าไป ในขดลวดขดหนึ่ง จะทำให้เกิดมีฟลักซ์แม่เหล็ก ซึ่งแปรค่าตลอดเวลาเกิดขึ้นในแกนเหล็กนั้น การแปรค่าของ ฟลักซ์แม่เหล็กดังกล่าวนี้ก็จะไปเกิดการแปรค่าฟลักซ์ในขดลวดอีกขดหนึ่งด้วย ทำให้เกิดมีไฟฟ้าเหนี่ยวนำขึ้น ในขดลวดขดที่สองนี้ ดังนั้น จึงบอกได้ว่า กำลังไฟฟ้าถ่ายทอดจากขดลวดอันแรกซึ่งเรียกว่า ขดลวดปฐมภูมิ (primary) ไปยังขดลวดอันที่สองซึ่งเรียกว่า ขดลวดทุติยภูมิ (secondary) หม้อแปลงไฟฟ้านี้โดยทั่วไปนิยม เขียนเป็นรูปง่าย ๆ แทนรูปจริง ดังรูป 19.49 ข.

รูป 19.49 (ก) และ (ข) แสดงขคลวคปฐมภูมิและขคลวคทุติยภูมิของหม้อแปลงไฟฟ้า

ฟลักซ์แม่เหล็กที่เกิดขึ้นจากขดลวดปฐมภูมินั้น ไม่ได้ไปสู่ขดลวดทุติยภูมิทั้งหมด มีบางส่วนอยู่ใน ขดลวดปฐมภูมินั้น ส่วนใหญ่จะไปสู่ขดลวดทุติยภูมิ ฟลักซ์แม่เหล็กที่เชื่อมโยงขดลวดทั้งสอง (ผ่านขดลวด ทั้งสอง) เรียกว่า ฟลักซ์รวม (mutual flux) ส่วนฟลักซ์แม่เหล็กที่วนอยู่เฉพาะในขดลวดขดใดขดหนึ่ง เรียกว่า ฟลักซ์รั่วไหล (leakage flux)

กำลังไฟฟ้าที่ส่งจากขดลวดปฐมภูมิไปยังขดลวดทุติยภูมินั้นบางส่วนถูกใช้ไปในการกลายเป็นความร้อน ในขดลวดทั้งสองและในเนื้อแกนเหล็ก คือ เกิดความล้า (hysterysis) และมีกระแสวน (eddy current) เกิดขึ้น ดังนั้น กำลังไฟฟ้าที่ส่งออกไปจากขดลวดทุติยภูมิจึงน้อยกว่าที่ได้รับเข้ามาทางปฐมภูมิ แต่น้อยกว่า กันไม่มากนัก ผลเสียเนื่องจากความล้า ก็อาจลดลงได้ โดยการเลือกใช้แกนเหล็กที่มีวงแห่งความล้า (hysterysis loop) เล็ก ๆ และผลเสียเนื่องจากกระแสวน ก็อาจลดลงได้ โดยใช้แกนเหล็กที่เป็นแผ่นบางหลายแผ่นซ้อนกัน โดยวิธีดังกล่าวนี้ ทำให้สามารถสร้างหม้อแปลงไฟฟ้าที่มีประสิทธิภาพขนาด 90 ถึง 99 เปอร์เซ็นด์ได้

ในเบื้องต้นนี้จะเรียนเฉพาะกรณีที่ไม่มีการเสียกำลังไฟฟ้าและไม่มีฟลักซ์สูญเปล่าเลย ดังนั้น อัตราการเปลี่ยนแปลงของฟลักซ์แม่เหล็ก $\frac{d\phi}{dt}$ ในขดลวดทั้งสองจึงเป็นอย่างเดียวกัน

นั่นคือ แรงเคลื่อนไฟฟ้าเหนี่ยวนำต่อรอบในขดลวดแต่ละขด = $\frac{\mathrm{d}\phi}{\mathrm{d}t}$

ถ้า N_เ เป็นจำนวนรอบของขดลวดปฐมภูมิ

N₂ เป็นจำนวนรอบของขดลวดทุติยภูมิ

E, เป็นแรงเคลื่อนไฟฟ้าของขดลวดปฐมภูมิ

E เป็นแรงเคลื่อนไฟฟ้าของขดลวดทุติยภูมิ

ย่อมได้
$$E_1 = N_1 \frac{\mathrm{d} \phi}{\mathrm{d} t} \quad \text{และ} \quad E_2 = N_2 \frac{\mathrm{d} \phi}{\mathrm{d} t}$$

$$\frac{E_1}{E_2} = \frac{N_1}{N_2} \qquad \qquad (19.34)$$

ถ้า N_2 มากกว่า N_1 ค่าของ E_2 มาก E_1 ได้แรงเคลื่อนไฟฟ้าที่ออกมาทางขดลวดทุติยภูมิ มากกว่าแรงเคลื่อนไฟฟ้าทางขดลวดปฐมภูมิ แบบนี้เรียกว่า *หม้อแปลงขึ้น (step up transformer)*

ถ้า N_2 น้อยกว่า N_1 ค่าของ E_2 น้อยกว่า E_1 ได้แรงเคลื่อนไฟฟ้าที่ออกมาทางขดลวด ทุติยภูมิ น้อยกว่าแรงเคลื่อนไฟฟ้าทางขดลวดปฐมภูมิ แบบนี้เรียกว่า *หม้อแปลงลง (step down transformer)*

หม้อแปลงไฟฟ้าที่ใช้ในทางอิเลกโทรนิกส์นั้น มักมีหม้อแปลงขึ้นและหม้อแปลงลงรวมอยู่ใน เครื่องเดียวกัน ดังแสดงในรูป 19.50

รูป 19.50 แสดงขคลวดของหม้อ แปลงไฟฟ้าที่เป็นทั้ง แบบแปลงขึ้นและ แปลงลง

19.10 อุปกรณ์ใฟฟ้ากระแสสลับ

AB เป็นปลายขดลวดปฐมภูมิที่มีแรงเคลื่อนไฟฟ้าป้อนเข้ามา 220 โวลต์

CD เป็นปลายขดลวดทุติยภูมิที่แบบแปลงขึ้น มีแรงเคลื่อนไฟฟ้าออกมา 400 โวลต์ (จำนวน รอบขดลวดมาก)

EF เป็นปลายขดลวดทุติยภูมิอีกขดหนึ่ง แต่เป็นแบบแบ่ลงลง (จำนวนรอบขดลวดน้อย) มี แรงเคลื่อนไฟฟ้าออกมา 2 โวลต์

แรงเคลื่อนไฟฟ้า 400 โวลต์จะถูกนำไปใช้ในส่วนหนึ่งของวงจร และแรงเคลื่อนไฟฟ้า 2 โวลต์ จะถูกนำไปใช้ในอีกส่วนหนึ่งของวงจร

แบบฝึกหัด 19

- 19.1 เครื่องกำเนิดไฟฟ้ากระแสสลับเครื่องหนึ่งมีสมการของแรงเคลื่อนไฟฟ้า ดังนี้
 - $e = 157 \sin 314 t$
 - ก. จงหาค่าแรงเคลื่อนไฟฟ้าสูงสุดและความถึ่
 - ข. ถ้าเครื่องกำเนิดไฟฟ้านี้มีลวดพันไว้ 1,000 รอบ และพื้นที่ของขดลวดเท่ากับ 0.001 ตารางเมตร จงหาค่าการเหนี่ยวนำแม่เหล็ก B ของสนามแม่เหล็กของเครื่องกำเนิดไฟฟ้านั้น
- 19.2 เครื่องกำเนิดไฟฟ้ากระแสสลับเครื่องหนึ่งมีความถี่ 60 เฮิร์ทช์ ที่อัตราการหมุน 1,200 รอบต่อนาที ให้หาจำนวนขั้วของแม่เหล็กในเครื่องกำเนิดไฟฟ้าเครื่องนั้น
- 19.3 ก. ตัวเหนี่ยวนำขนาด 5 เฮนรี จะมีความต้านทานเท่ากับ 4,000 โอห์ม ที่ความถี่เท่าใด
 - ข. ตัวจุขนาด 5 ไมโครฟารัดจะมีความต้านค่าเดียวกับข้อบนนั้นที่ความถี่เท่าใด
- 19.4 ก. ให้หาค่าความต้านทานของตัวเหนี่ยวนำขนาด 10 เฮนรีที่ความถี่ 60 เฮิร์ทซ์ และ 600 เฮิร์ทซ์
 - ข. ให้หาค่าความต้านของตัวจุขนาด 10 ไมโครฟารัดที่ความถี่เดียวกันกับข้อ ก.
 - ค. ที่ความถี่เท่าใจ ตัวเหนี่ยวนำในข้อ ก. และตัวจุในข้อ ข. จึงจะมีความต้านเท่ากัน
- 19.5 ไฟฟ้ากระแสสลับอันหนึ่ง มีสมการของกระแสไฟฟ้า i แอมแปร์เกี่ยวข้องกับเวลา t วินาที ตาม สมการ i = 2 sin (628 t + 0.2 π) ให้หา
 - ก. ค่ายังผลของกระแสไฟฟ้า ข. ความถี่ ค. มุมเฟส
- 19.6 ตัวต้านทาน ตัวจุและตัวเหนี่ยวนำต่อกันอย่างอนุกรมและต่อกับไฟฟ้ากระแสสลับ ตัวต้านทานมีค่า ความต้านทาน 80 โอห์ม ความต้านของตัวจุและตัวเหนี่ยวนำมีค่า 40 และ 100 โอห์ม ตามลำดับ ถ้าปลายทั้งสองของตัวต้านทานมีความต่างศักย์ 8 โวลด์ จงหา
 - ก. ความต่างศักย์ของตัวจุและตัวเหนี่ยวนำ ข. ความต่างศักย์รวมทั้งหมด
 - ค. ความต่างศักย์รวมของตัวต้านทานและตัวจุ

19.7

ตัวเหนี่ยวนำ L=0.2 เฮนรี และตัวจุ C=4 ไมโคร ฟารัด ต่อขนานกันดังรูป 19.51 จุด AB ต่อกับไฟฟ้า กระแสสลับซึ่งมีความถี่ 1,000 เรเดียนต่อวินาทีและแรง เคลื่อนไฟฟ้า 220 โวลต์ จงหา

ก. กระแสไฟฟ้า I กี่ใหลผ่านตัวเหนี่ยวนำ

- ข. กระแสไฟฟ้า I $_{C}$ ที่ใหลผ่านตัวจุ
- ค. ค่าของกระแสรวม I
- 19.8 ตัวต้านทานขนาด 25 โอห์ม ตัวจุขนาด 10 ไมโครฟารัด และตัวเหนี่ยวนำซึ่งมีความต้านทาน 12 โอห์ม ความเหนี่ยวนำ 0.1 เฮนรี ต่อกันอย่างอนุกรม
 - ก. ให้หาความขัดของวงจรที่ความถี่ 100 เฮิร์ทซ์ และ 1,000 เฮิร์ทซ์
 - ข. ความขัดของตัวเหนี่ยวนำที่ความถี่ทั้งสองนั้นมีค่าเท่าใด
- 19.9 วงจรส่วนหนึ่งประกอบด้วยตัวต้านทานขนาด 100 โอห์มต่อเป็นอนุกรมกับตัวจุอันหนึ่ง ต้องการให้ ความขัดของวงจรนี้ที่ความถี่ 100 เฮิร์ทซ์ มีค่าเป็นสองเท่าของความขัดที่ความถี่ 300 เฮิร์ทซ์ ให้ หาค่าความจุของตัวจุนั้น
- 19.10 ให้หาความขัดของวงจรซึ่งแสดงในรูป 19.52 ที่ความถี่ 60 รอบต่อวินาที ถ้า V_{ac} มีค่า 220 โวลด์ ให้หา V_{ad} และ V_{bd}

- 19.11 ตัวต้านทาน R = 400 โอห์ม ตัวเหนี่ยวนำ L = 0.2 เฮนรี และตัวจุ C = 2.5 ไมโครฟารัด ต่อกันอย่างขนานและต่อกับไฟฟ้ากระแสสลับ ซึ่งมีแรงเคลื่อนไฟฟ้า 220 โวลด์ ความถี่ 1,000 เรเดียนต่อวินาที จงหา
 - ก. ความขัดของวงจร
 - ข. กระแสไฟฟ้ารวม
 - กระแสไฟฟ้าที่ใหลผ่านตัวเหนี่ยวนำ
 - ง. มุมเฟสของกระแสรวมกับแรงเคลื่อนไฟฟ้า
- 19.12 ตัวต้านทานขนาด 1 โอห์ม ตัวจุ และตัวเหนี่ยวนำต่อกับไฟฟ้ากระแสสลับ ทำให้ความต้านของ ตัวจุและตัวเหนี่ยวนำมีค่า 1 และ 2 โอห์ม ตามลำดับ ให้หาค่าความขัดของวงจรเมื่อทั้งสามอันนี้ ต่อกันในแบบ ก. อนุกรม ข. ขนาน
- 19.13 ตัวจุ และตัวเหนี่ยวนำต่อกันอย่างขนานและต่อกับไฟฟ้ากระแสสลับ ตัวจุมีความต้าน 25 โอห์ม ตัวเหนี่ยวนำมีความต้านทาน 3 โอห์ม และมีความต้านแห่งการเหนี่ยวนำ 4 โอห์ม ความต่างศักย์ ระหว่างสองจุดที่ต่อขนานนั้นมีค่า 100 โวลด์ จงหา

ไฟฟ้ากระแสสลับ

- ก. กระแสไฟฟ้าที่ผ่านตัวจุ
- ข. กระแสไฟฟ้าที่ผ่านดัวเหนี่ยวนำ
- ค. กระแสไฟฟ้ารวม
- ง. มุมเฟสระหว่างกระแสรวมกับความต่างศักย์ 100 โวลด์นั้น
- 19.14 ความต่างศักย์ไฟฟ้ากระแสสลับอันหนึ่งมีสมการ V = 3 + 4j หน่วยเป็นโวลต์ ให้หาค่าของความ ต่างศักย์รวม
- 19.15 กระแสไฟฟ้าในหน่วยแอมแปร์ของไฟฟ้ากระแสสลับมีสมการเป็น I = 2 + 4j 3j ให้หาค่า ของกระแสไฟฟ้ารวม
- 19.16 ตัวจุ C = 300 พิโคฟารัด (pF) ต่ออนุกรมกับขดลวดเหนี่ยวนำ ถ้าต้องการให้เกิดอภินาทที่ความถึ่ 1 เมกะเฮิร์ทซ์ (MHz) ขดเหนี่ยวนำนั้นจะต้องมีความเหนี่ยวนำเท่าใด
- 19.17 ขดลวดเหนี่ยวนำความต้านทาน 2,000 โอห์ม กับตัวจุขนาด 1 ไมโครฟารัดต่ออนุกรมกัน และ ต่อกับเครื่องทำไฟฟ้ากระแสสลับซึ่งเปลี่ยนความถี่ได้ และมีแรงเคลื่อนไฟฟ้า 20 โวลต์คงที่ เกิด อภินาทที่ความถี่ 1,000 เรเดียนต่อวินาที จงหา
 - ก. กระแสไฟฟ้าขณะเกิดอภินาท
 - ข. ค่าความเหนี่ยวนำของขดลวด
 - ค. กระแสไฟฟ้าที่ความถื่เป็นสองเท่าของตอนเกิดอภินาท
- 19.18 จงคำนวณความถี่ที่จะเกิดอภินาท ในเมื่อมีขดลวดขนาด 10⁻⁶ เฮนรีต่อขนานกับตัวจุขนาด 100 พิโคฟารัด
- 19.19 เครื่องรับวิทยุอาศัยขดลวดเหนี่ยวนำต่อขนานกับตัวจุซึ่งแปรค่าได้ เพื่อเลือกรับคลื่นจากสถานีส่ง โดย อาศัยการปรับค่าของตัวจุให้เกิดอภินาทกับความถี่ของสถานีส่ง ถ้าขดลวดมีค่า 10⁻⁶ เฮนรี และ ตัวจุปรับค่าได้ระหว่าง 30 ถึง 300 พิโคฟารัต จะรับคลื่นวิทยุจากความยาวคลื่นเท่าใดถึงเท่าใด ได้บ้าง กำหนดให้คลื่นวิทยุมีอัตราเร็ว 3 × 10⁸ เมตรต่อวินาที
- 19.20 ขดลวดเหนี่ยวนำ 100 เฮนรีต่อขนานกับตัวจุ C และต่อกับไฟฟ้ากระแสสลับ ซึ่งมีแรงเคลื่อน ไฟฟ้า 220 โวลต์ความถี่ 50 เฮิร์ทซ์ C จะต้องมีค่าเท่าใดจึงจะได้กระแสรวมเป็นศูนย์และขณะนั้น กระแสที่ผ่านขดลวดมีค่าเท่าใด
- 19.21 ตัวต้านทานขนาด 10 โอห์ม ตัวเหนี่ยวนำและตัวจุต่อกันอย่างอนุกรมและต่อกับไฟฟ้าสลับ ซึ่ง ทำให้เกิดความต้านแห่งการเหนี่ยวนำ 5 โอห์ม และความต้านทานแห่งการจุ 10 โอห์ม แรง เคลื่อนไฟฟ้ามีค่า 100 โวลต์

- ก. จงหากำลังไฟฟ้าที่ใช้ทั้งหมด
- ข. ถ้าสิ่งทั้งสามนั้นต่อกันอย่างขนาน จงหากำลังไฟฟ้าที่ใช้ทั้งหมด
- ค. ถ้าตัวต้านทานและตัวเหนี่ยวนำต่ออนุกรมกันแล้วต่อขนานกับตัวจุ จงหากำลังไฟฟ้าที่ใช้ทั้งหมด
- 19.22 วงจรอนุกรมวงจรหนึ่งมีความขัด 50 โอห์มและปัจจัยกำลัง 0.6 ที่ 60 เฮิร์ทซ์ ความต่างศักย์ ตามหลังกระแสไฟฟ้า
 - ก. จะต้องใช้ตัวจุหรือตัวเหนี่ยวนำต่อแทรกเป็นอนุกรมเข้าไปในวงจร จึงจะทำให้ปัจจัยกำลังมีค่าสูงขึ้น
 - ข. สิ่งที่ต่อแทรกเข้าไปนั้น จะต้องมีขนาดเท่าใด จึงจะทำให้ปัจจัยกำลังมีค่าเป็นหนึ่งได้

19.23 ในรูป 19.53 จงหา

รูป 19.53

- ก. ค่า I
- ข. ค่า I₂
- ค. กำลังไฟฟ้าทั้งหมด