

HandySense

คู่มือการใช้งาน

HandySense BOARD VERSION 1.0

สารบัญ

เรื่อง	หน้า
1. ดาวน์โหลดและติดตั้งโปรแกรม	
1.1 วิธีดาวน์โหลดโปรแกรม Arduino IDE	1
1.2 วิธีติดตั้งโปรแกรม Arduino IDE	2
1.3 วิธีติดตั้งไมโครคอนโทรลเลอร์ ESP32 ในโปรแกรม Arduino IDE	6
2. บอร์ด HandySense VERSION 1.0	
2.1 ส่วนประกอบของบอร์ด HandySense VERSION 1.0	8
2.2 สคีแมททิค (Schematic Board)	9
2.3 ลายวงจรสคีแมททิค	10
2.4 PCB เลเอาท์	11
3. เริ่มต้นใช้งานบอร์ด HandySense VERSION 1.0	
3.1 เชื่อมต่อบอร์ด HandySense VERSION 1.0 กับเซนเซอร์ (Sensor)	12
3.1.1 คอนเน็กเตอร์พินรับค่าอนาล็อก, ดิจิทัล (I/O) และ I2C	12
3.2 เชื่อมต่อบอร์ด HandySense VERSION 1.0 กับอุปกรณ์สั่งการ (Actuator)	14
3.2.1 คอนเน็กเตอร์พินสั่งการทำงาน (I/O)	14
3.2.2 ภาพรวมการเชื่อมต่อของระบบเซนเซอร์และอุปกรณ์สั่งการ	14
3.3 ฟังก์ชันการทำงานของบอร์ด HandySense VERSION 1.0	15
4. ใช้งานเฟิร์มแวร์ (Firmware) ของบอร์ด HandySense VERSION 1.0	
4.1 วิธีดาวน์โหลดเฟิร์มแวร์ (Firmware)	16
4.2 ติดตั้งไลบรารี่ (Library) ของเฟิร์มแวร์ (Firmware)	17
5. ใช้งานเฟิร์มแวร์ (Firmware) ของบอร์ด HandySense VERSION 1.0 ร่วมกับเว็บแอปพลิเคชั	ัน
HandySense	
5.1 วิธีเชื่อมต่อกับเว็บแอปพลิเคชัน HandySense	19
5.1.1 วิธีเพิ่มบอร์ด HandySense VERSION 1.0 บนเว็บแอปพลิเคชัน HandySense	19

สารบัญรูป

เรื่อง	หน้า
รูปที่ 1.0 ขั้นตอนดาวน์โหลด Arduino IDE	1
รูปที่ 1.1 ดาวน์โหลด Arduino IDE	2
รูปที่ 1.2 ไอคอนโปรแกรม Arduino IDE	2
รูปที่ 2.1 ส่วนประกอบหลักของบอร์ด HandySense VERSION 1.0	8
รูปที่ 2.2 สคีแมททิคบอร์ดแสดงคอนเน็กเตอร์พิน	9
รูปที่ 2.3 วงจรสคีแมททิค	10
รูปที่ 2.4 PCB เลเอาท์	11
รูปที่ 3.0 สายเซนเซอร์	12
รูปที่ 3.1 ต่อสายเซนเซอร์กับบอร์ด	13
รูปที่ 3.2 แนะนำต่อสายไฟของอุปกรณ์ที่ต้องการสั่งการกับบอร์ด	14
รูปที่ 3.3 ภาพรวมการต่อเชื่อมของอุปกรณ์	14
รูปที่ 3.4 แสดงฟังก์ชันการทำงานของบอร์ด HandySense VERSION 1.0	15
รูปที่ 4.0 คิวอาร์โค้ดขอพิมพ์เขียวและเฟิร์มแวร์	16
รูปที่ 4.1 เข้าสู่การดาวน์โหลดเฟิร์มแวร์	16
รูปที่ 4.2 ฟอร์มลงทะเบียน	17

1. ดาวน์โหลดและติดตั้งโปรแกรม

การดาวน์โหลดและติดตั้งโปรแกรมในคู่มือฉบับนี้ เป็นการแนะนำการใช้โปรแกรม Arduino IDE ของ Arduino โดยตรง เพื่อให้สะดวกต่อการเขียนโค้ดและแก้ไขปัญหาต่าง ๆ โดยมีขั้นตอนดังนี้

1.1 วิธีดาวน์โปรแกรม Arduino IDE

วิธีการดาวน์โหลดโปรแกรม Arduino IDE สามารถเข้าผ่านเว็บไซต์ของ Arduino ผ่านลิงก์ URL : www.arduino.cc/en/software หรือค้นหาใน Google คำว่า "Arduino IDE" ให้ดาวน์โหลด เวอร์ชันล่าสุด แสดงดังขั้นตอนรูปดังนี้

รูปที่ 1.0 ขั้นตอนดาวน์โหลด Arduino IDE

- ขั้นตอนที่ 1 ให้เลือกหัวข้อ "SOFTWARE"
- ขั้นตอนที่ 2 ให้เลือกโปรแกรม Arduino IDE ให้เหมาะสมกับระบบปฏิบัติการของคอมพิวเตอร์ หรือโน้ตบุ๊กของตัวเอง

รูปที่ 1.1 ดาวน์โหลด Arduino IDE

- ขั้นตอนที่ 3 หลังจากกดเลือกโปรแกรม Arduino IDE ให้เหมาะสมกับระบบปฏิบัติการของ คอมพิวเตอร์หรือโน้ตบุ๊กของตัวเองจะปรากฏหน้าต่างแสดงดังรูปที่ 1.1 ให้กดเลือก "JUST DOWNLOAD" คอมพิวเตอร์หรือโน้ตบุ๊กจะดาวน์โหลดโปรแกรมให้อัตโนมัติ

1.2 วิธีติดตั้งโปรแกรม Arduino IDE

หลังจากดาวน์โหลดไปแล้วให้ไปยังโฟลเดอร์ที่ดาวน์โหลดเพื่อเริ่มการติดตั้งโปรแกรม Arduino IDE ลงในคอมพิวเตอร์หรือโน้ตบุ๊ก แสดงขั้นตอนดังรูป

รูปที่ 1.2 ไอคอนโปรแกรม Arduino IDE

- **ขั้นตอนที่ 4** ดับเบิ้ลคลิกที่ไอคอนโปรแกรมเพื่อเริ่มการติดตั้งโปรแกรม Arduino IDE (ขั้นตอน การติดตั้งที่แสดงนี้เป็นการติดตั้งบนระบบปฏิบัติการวินโดวส์ "Windows")

- ขั้นตอนที่ 5 หลักจากนั้นให้กด "I Agree" เพื่อเข้าสู่การติดตั้งในกระบวนการต่อไป

- ขั้นตอนที่ 6 ในการเลือก "Components" แนะนำให้เลือกทั้งหมดแล้วให้กด "Next" เพื่อ เข้าสู่การติดตั้งในกระบวนการต่อไป

- ขั้นตอนที่ 7 ให้กด "Install" เพื่อเข้าสู่การติดตั้งในกระบวนการต่อไป

ช่อง

- ขั้นตอนที่ 8 หลังจากกด "Install" โปรแกรมจะทำการติดตั้ง ตรงนี้ให้รอจนกว่าสีฟ้าจะวิ่งเต็ม

- ขั้นตอนที่ 9 หากเป็นการติดตั้งครั้งแรกบนระบบปฏิบัติการวินโดวส์จะเกิดการแจ้งเตือนเกิดขึ้น ให้กด "Install"

- ขั้นตอนที่ 10 เมื่อช่องสีฟ้าเต็มช่อง แสดงถึงกระบวนการติดตั้งเสร็จสิ้นให้กด "Close"

- ขั้นตอนที่ 11 หลังจากนั้นบนหน้า Desktop ของคอมพิวเตอร์หรือโน้ตบุ๊กจะมีไอคอนของ โปรแกรม Arduino IDE เพิ่มขึ้นมาให้ดับเบิ้ลคลิกที่ไอคอนโปรแกรมเพื่อเปิดโปรแกรมขึ้น หากเปิดใช้งาน ครั้งแรกจะมีหน้าแสดงดังรูปให้กด "Allow access" เพื่ออนุญาตการเปิดใช้งานโปรแกรม

- ขั้นตอนที่ 12 หลังจากติดตั้งโปรแกรม Arduino IDE เสร็จให้เปิดโปรแกรมขึ้นมาจะแสดงดังรูป เพื่อทดสอบการเขียนโค้ดหรือนำโค้ดตัวอย่างมาทดสอบ หากทำงานได้ปกติเป็นอันเสร็จสิ้นสมบูรณ์

1.3 วิธีติดตั้งไมโครคอนโทรลเลอร์ ESP32 ในโปรแกรม Arduino IDE

ขั้นตอนนี้จะเป็นขั้นตอนที่สำคัญที่สุดในการใช้ ESP32 เนื่องจากเป็นการลงไดรเวอร์ของตัว ESP32 ใน โปรแกรม Arduino IDE เพื่อให้สามารถเบิร์นโค้ดโปรแกรมลงบอร์ดได้ โดยมีขั้นตอนการติดตั้งดังนี้

- ขั้นตอนที่ 1 เปิดโปรแกรมแล้วเข้าไปที่ "File > Preferences"

- ขั้นตอนที่ 2 คัดลอกลิงก์ https://dl.espressif.com/dl/package_esp32_index.json แล้วนำไปวาง เพิ่มในช่องดังรูป จากนั้นกดปุ่ม "OK"

- ขั้นตอนที่ 3 เข้าไปที่ "Tool > Board: > Board > Boards Manager"

- **ขั้นตอนที่ 4** หลังจากนั้นหน้าจอจะปรากฏดังรูปให้กดค้นหาคำว่า "esp32" และทำการติดตตั้ง

- ขั้นตอนที่ 5 รอการดาวน์โหลด หากช่องสีฟ้าเต็ม หมายถึงการติดตั้งเสร็จสมบูรณ์

2. บอร์ด HandySense VERSION 1.0

2.1 ส่วนประกอบของบอร์ด HandySense VERSION 1.0

อธิบายส่วนประกอบหลัก ๆ ของบอร์ดเพื่อเพิ่มความเข้าใจในการใช้งานบอร์ด HandySense

รูปที่ 2.1 ส่วนประกอบหลักของบอร์ด HandySense VERSION 1.0

- 1. คอนเน็กเตอร์สำหรับต่อไฟเลี้ยง (V INPUT) 5V DC เพื่อเลี้ยงไฟให้กับบอร์ด HandySense VERSION 1.0
- 2. คอนโทรลเลอร์ (Controller) ESP32 สำหรับเขียนโค้ดโปรแกรมและเชื่อมต่อไวไฟ (WIFI)
- 3. คอนเน็กเตอร์พินอินพุต (INPUT PIN) สำหรับอ่านค่าเซนเซอร์แบบอนาล็อกหรือดิจิทัลที่มีค่าแรงดัน สัญญาณขาเข้าไม่เกิน 3V3 โวลต์
- 4. คอนเน็กเตอร์พินอินพุต (INPUT PIN) สำหรับอ่านค่าเซนเซอร์แบบ I2C มีไฟเลี้ยงไม่เกิน 3V3 โวลต์
- 5. คอนเน็กเตอร์แบบ IDC10 สำหรับต่อเซนเซอร์หรือโมดูลที่มีรูปแบบการสื่อสารแบบ UART, SPI แยก เป็นส่วนเสริมออกจากบอร์ดหลัก
- 6. RTC (Real Time Clock) สำหรับการนับเวลา เมื่อต้องการใช้เวลามาช่วยในการเขียนโค้ด
- 7. คอนเน็กเตอร์พินอินพุต (OUTPUT PIN) สำหรับต่อกับอุปกรณ์ที่ต้องควบคุม 4 ช่อง (Channel)

2.2 สคีแมททิคบอร์ด (Schematic Board)

รูปที่ 2.2 สคีแมททิคบอร์ดแสดงคอนเน็กเตอร์พิน

สคีแมททิคบอร์ดแสดงคอนเน็กเตอร์พินสำหรับการเชื่อมต่อเซนเซอร์และอุปกรณ์ที่ต้องการควบคุมสั่งการ ทำงานนั้นมีคอนเน็กเตอร์พิน ดังนี้

- คอนเน็กเตอร์พิน INPUT เซ็นเซอร์ประกอบด้วย I/O32, I/O36, I/O39, I/O15, I/O33
- 2. คอนเน็กเตอร์พิน OUTPUT แสดงสถานะการทำงานต่าง ๆ ของบอร์ด HandySense เมื่อต้องการ แสดงหน้ากล่องควบคุม ประกอบด้วย I/O15, I/O33
- 3. คอนเน็กเตอร์พินต่อเซ็นเซอร์ I2C

- 4. คอนเน็กเตอร์ IDC10 INPUT UART, SPI, I2C โมดูล
- คอนเน็กเตอร์พิน OUTPUT ควบคุมอุปกรณ์ ประกอบด้วย I/O25, I/O4, I/O12, I/O13

2.3 วงจรสคีแมททิค (Schematic)

2.4 PCB เลเอาท์

รูปที่ 2.4 PCB เลเอาท์

วงจรสคีแมททิค (Schematic), PCB เลเอาท์และไฟล์ GB-file สำหรับสั่งทำแผ่นวงจร PCB สามารถเข้า ไปลงทะเบียนทางเว็บไซต์ HandySense Information เพื่อขอไฟล์และเอกสารต่าง ๆ โดยมีรูปแบบเป็น Open source และในเว็บไซต์ยังรวมข้อมูลข่าวสารต่าง ๆ งานวิจัยระบบ HandySense และผลงานอื่น ๆ ให้ได้ศึกษา และ ความเข้าใจนำไปประยุกต์ใช้อีกด้วย

- 3. เริ่มต้นใช้งานบอร์ด HandySense VERSION 1.0
 - 3.1 เชื่อมต่อบอร์ด HandySense VERSION 1.0 กับเซนเซอร์ (Sensor)
 - 3.1.1 คอนเน็กเตอร์พินรับค่าอนาล็อก, ดิจิทัล (I/O) และ I2C

ระบบเซนเซอร์ของ HandySense ประกอบไปด้วยเซนเซอร์พื้นฐาน 4 ชนิดประกอบด้วย

1. เซนเซอร์วัดอุณหภูมิและความชื้นอากาศ (วัด 2 ค่าในเซนเซอร์เดียว) "SHT31"

เซนเซอร์วัดอุณหภูมิและความชื้นอากาศ

ใช้สำหรับวัดอุณหภูมิและความขึ้นอากาศ<u>เพื่อควบคุมสภาพอากาศตามที่พืชต้องการ</u> สามารถนำค่าอุณหภูมิไปสั่งการระบบควบคุมอุณหภูมิ เช่น สเปรย์หมอก ระบบ evap. พัดลมระบายความร้อน พัดลมระบายความขึ้นได้อีกด้วย ซึ่งช่วยให้การปลูกพืชนอกฤดูการได้ผลดีและประหยัดพลังงาน ช่วงอุณหภูมิที่วัดได้ 0-100°C ช่วงความขึ้นที่วัดได้ 0-100%RH

2. เตนเตอร์วัดความขึ้นในดิน "X-Sense"

เซนเซอร์วัดอณหภมิและความชื้นดิน

ใช้สำหรับวัดความอุณหภูมิและชื้นดิน <u>เพื่อควบคุมการให้น้ำตามที่พืชต้องการ</u> ป้องกันพืชขาดน้ำเนื่องจากอากาศร้อน และป้องกันรากพืชเน่าเนื่องจากให้น้ำเกินความจำเป็น ช่วงอุณหภูมิที่ใช้งาน 20-50°C ช่วงความขึ้นดินที่วัดได้ 0-90%

3. เซนเซอร์วัดความเข้มแสง "BH1750"

เซนเซอร์วัดความเข้มแสง

ใช้สำหรับวัดความเข้มแสงในฟาร์มเกษตร <u>เพื่อให้ทราบปริมาณแสงที่พืชต้องการ</u> สามารถนำค่าที่เซนเซอร์วัดได้ วิเคราะห์อายุของฟิล์มหลังคาโรงเรือน ใช้ในการควบคุมม่านบังแสง ช่วงในการวัด 0-100,000Lux.

อธิบายการต่อคอนเน็กเตอร์พิน ดังรูปด้านล่างนี้

1. สายเซนเซอร์

X-Sense (Analog)

SHT31 (I2C)

BH1750 (I2C)

รูปที่ 3.0 สายเซนเซอร์

2. เชื่อมต่อสายเซนเซอร์กับบอร์ด

รูปที่ 3.1 ต่อสายเซนเซอร์กับบอร์ด

X-Sense เป็นเซนเซอร์สำหรับวัดค่าความชื้นในดินในหน่วยเปอร์เซ็นต์ (%) โดยหลัก ๆ แล้วจะประกอบ ไปด้วย 4 สายได้แก่ สายไฟเลี้ยง, สายกราวด์, สายสัญญาณและสายแอคทีฟ โดยสายแอคทีฟจะเป็นเหมือนโหมด ในการปิด-เปิด X-Sense เซนเซอร์ เช่น หากต่อสายแอคทีฟเข้ากับไฟเลี้ยง 3V3 เซนเซอร์จะเปิดทำงาน หากต่อ สายแอคทีฟลงกราวด์เซนจะไม่วัดค่าต่าง ๆ ดังนั้นเราต้องการเปิดใช้งานตลอดเวลาจึงต่อเข้ากับไฟเลี้ยง 3V3 โวลต์ สำหรับเซนเซอร์ SHT31, BH1750 ส่วนใหญ่แล้วจะประกอบได้ 4 สายหลัก ๆ ได้แก่ สายไฟเลี้ยง, สาย กราวด์, สาย SCL และสาย SDA สามารถต่อได้แบบตรง ๆ ไม่ได้มีโหมดเหมือน X-Sense

3.2 เชื่อมต่อบอร์ด HandySense VERSION 1.0 กับอุปกรณ์สั่งการ (Actuator)

3.2.1 คอนเน็กเตอร์พินสั่งการทำงาน (I/O)

รูปที่ 3.2 แนะนำต่อสายไฟของอุปกรณ์ที่ต้องการสั่งการกับบอร์ด

การต่อสายไฟของอุปกรณ์ที่ต้องการสั่งการทำงานเข้ากับบอร์ด HandySense ให้ต่อไฟเลี้ยงเข้า คอนเน็กเตอร์พิน "COM" ก่อนหลังจากนั้นให้ต่อสายไฟอีกหนึ่งเส้นเข้าคอนเน็กเตอร์พิน "NO" ส่วนอีก ด้านให้ต่อไปยังไฟเลี้ยงของอุปกรณ์นั้น ๆ ไป หลังจากนั้นให้ต่อสายกราวด์ของแหล่งจ่ายพลังงาน (Power Supply) เข้ากับกราวด์ของอุปกรณ์นั้น ๆ ด้วย ซึ่งเป็นไปตามรูปด้านบน

3.2.2 ภาพรวมการเชื่อมต่อของระบบเซนเซอร์และอุปกรณ์สั่งการ

รูปที่ 3.3 ภาพรวมการต่อเชื่อมของอุปกรณ์

3.3 ฟังก์ชันการทำงานของบอร์ด HandySense VERSION 1.0

รูปที่ 3.4 แสดงฟังก์ชันการทำงานของบอร์ด HandySense VERSION 1.0

4. ใช้งานเฟิร์มแวร์ (Firmware) ของบอร์ด HandySense VERSION 1.0

4.1 วิธีดาวน์โหลดเฟิร์มแวร์ (Firmware) และใช้งาน

การดาวน์โหลดเฟิร์มแวร์ของบอร์ด HandySense VERSION 1.0 สามารถดาวน์โหลดได้ฟรี ผ่านการลงทะเบียนเพียงไม่กี่ขั้นตอนบนเว็บไซต์ HandySense หรือสามารถเข้าถึงช่องทางการ ลงทะเบียนผ่าน Facebook Group "HandySense Community" โดยแสดงขั้นตอนดังนี้

รูปที่ 4.0 คิวอาร์โค้ดขอพิมพ์เขียวและเฟิร์มแวร์

- ขั้นตอนที่ 1 สแกนคิวอาร์โค้ดจากรูปด้านบน ผ่านมือถือ

รูปที่ 4.1 เข้าสู่การดาวน์โหลดเฟิร์มแวร์

- ขั้นตอนที่ 2 หลังจากอ่านบทความเสร็จแล้ว ให้เลื่อนลงมาด้านล่างสุด ให้กด "สนใจเทคโนโลยี"

รูปที่ 4.2 ฟอร์มลงทะเบียน

- ขั้นตอนที่ 3 หลังกด "สนใจเทคโนโลยี" จะเข้าสู่หน้า Google Form โดยจำเป็นต้องกรอกข้อมูล รายละเอียดต่าง ๆ ให้ถูกต้องและครบถ้วนแล้วกดส่งข้อมูล เนื่องจากหากกรอกข้อมูลเบอร์โทรกับ E-mail ไม่ ถูกต้อง ระบบจะไม่สามารถส่ง Username และ Password เพื่อสู่เว็บไซต์ HandySense ได้

4.2 ติดตั้งไลบรารี่ (Library) ของเฟิร์มแวร์ (Firmware)

เมื่อได้เฟิร์มแวร์มาแล้วจะต้องทำการดาวน์โหลดไลบรารี่ของเฟิร์มแวร์ก่อน เพื่อให้สามารถเบิร์น เฟิร์มแวร์ให้กับ HandySense VERSION 1.0 ได้ โดยมีขั้นตอนดังนี้

- ขั้นตอนที่ 1 เริ่มต้นด้วยการเปิดไฟล์เฟิร์มแวร์ โดยไปเลือกที่ "File > Open" ไฟล์เฟิร์มแวร์ที่ได้มา

- ขั้นตอนที่ 2 หลังจากเปิดไฟล์เฟิร์มแวร์ขึ้นมาแล้วให้เลือกที่ "Sketch > Include Library >

Manage Libraries"

- ข**ั้นตอนที่ 3** หลังจากที่กดแล้วจะมีหน้าต่างขึ้นมาดังรูปโดยการติดตั้งไลบรารี่ให้ป้อนชื่อค้นหาแล้ว กด "Install" ติดตั้งจนครบทุกไลบรารี่ โดยมีไลบรารี่ทั้งหมดที่ต้องติดตั้งดังนี้

1.Arduino.h 10.BH1750.h

2.WiFi.h 11.RTClib.h

3.Wire.h 12.time.h

4.NTPClient.h 13.WiFiClient.h

5.PubSubClient.h 14.WebServer.h

6.WiFiUdp.h 15.ESPmDNS.h

7.ArduinoJson.h 16.Update.h

8.EEPROM.h 17.StreamUtils.h

9.Adafruit_SHT31.h

เมื่อติดตั้งจนครบแล้ว ให้ทดสอบด้วยการกด "Verify" บนโปรแกรม Arduino IDE หากติดตั้ง ไลบรารี่ครบแล้ว การ Verify จะไม่ติดปัญหาใด ๆ หากติดปัญหาการติดตั้งไลบรารี่เกิดขึ้นให้ลด Version ของไลบรารี่ที่เกิดปัญหานั้น ๆ ลงไป

- 5. ใช้งานเพิร์มแวร์ (Firmware) ของบอร์ด HandySense VERSION 1.0 ร่วมกับเว็บ แอปพลิเคชัน HandySense
 - 5.1 วิธีเชื่อมต่อกับเว็บแอปพลิเคชัน HandySense
 - 5.1.1 วิธีเพิ่มบอร์ด HandySense VERSION 1.0 บนเว็บแอปพลิเคชัน HandySense หลังจากที่ดาวน์โหลดเฟิร์มแวร์และติดตั้งไลบรารี่จนครบแล้วก็ถึงขั้นตอนของการใช้งานบอร์ด HandySense ร่วมกับเว็บแอปพลิเคชัน HandySense โดยมีขั้นตอนดังนี้
 - ขั้นตอนที่ 1 เตรียมสาย USB Type B (Micro-USB), บอร์ด HandySense ให้พร้อมแล้วทำการ เชื่อต่อกับคอมพิวเตอร์หรือโน้ตบุ๊ค

- ขั้นตอนที่ 2 เมื่อทำการเชื่อมต่อแล้ว ให้เลือกรายละเอียดต่าง ๆ ให้เป็นไปตามกรอบสีเหลือง ในส่วนของ Port "COM3" จะเป็นไปตามคอมพิวเตอร์หรือโน้ตบุ๊กของแต่ละเครื่อง จากนั้น จึงเบิร์นเฟิร์มแวร์ลงบอร์ด HandySense VERSION 1.0

- ขั้นตอนที่ 3 เมื่อเบิร์นเฟิร์มแวร์ลง HandySense VERSION 1.0 เสร็จแล้วจะแสดงดังภาพ ด้านบน

- ขั้นตอนที่4 เปิดเว็บแอปพลิเคชัน HandySense ผ่านลิงก์นี้ : https://auth.netpie.io/login จะแสดงหน้า Login ขึ้นมาหากมี Username และ Password ที่เป็น Account ของ NETPIE อยู่ก็สามารถเข้าสู่ระบบและใช้งานได้ทันที หรือ กด "Register with NETPIE" เพื่อลงทะเบียน รายละเอียดเพิ่มเติม : สามารถศึกษาจากคู่มือการใช้งานเว็บแอปพลิเคชัน HandySense

- **ขั้นตอนที่ 5** เข้ามายังหน้าฟาร์มของเราที่ได้สร้างขึ้น กดเข้าสู่เข้าฟาร์มตามกรอบสีเหลือง

- ขั้นตอนที่ 6 ให้กด "เพิ่มอุปกรณ์" ในขั้นตอนนี้จะต้องเชื่อมต่อสาย USB กับคอมพิวเตอร์หรือโน้ตบุ๊ก จึงจะสามารถทำได้

- ขั้นตอนที่ 7 ให้กด "สร้างอุปกรณ์"

- ขั้นตอนที่ 8 ให้กดเลือก COM Port แล้วกด "Connect"

- ขั้นตอนที่ 9 ให้คลิกถูก "ต้องการสร้างอุปกรณ์ใหม่หรือไม่" แล้วกด "ถัดไป"

- ขั้นตอนที่ 10 ให้ป้อนชื่อไวไฟและรหัสผ่าน แล้วกด "ถัดไป"

- ขั้นตอนที่ 11 ให้ป้อนชื่อฟาร์มและใส่รายละเอียด แล้วกด "ถัดไป"

- ขั้นตอนที่ 12 ให้กด "เสร็จสิ้น" เพียงเท่านี้ก็สามารใช้บอร์ด HandySense ผ่านเว็บ HandySense ได้ แล้ว

ข้อมูลติดต่อ:

ศูนย์เทคโนโลยีอิเล็กทรอนิกส์และคอมพิวเตอร์แห่งชาติ (ศอ.)

เบอร์โทรศัพท์: 025646900ต่อ2353,2366

Facebook:

HandySense Community

ทีมผู้พัฒนาทางเทคโนโลยี:

นาย นริชพันธ์ เป็นผลดี (นักวิจัย)

- ระบบการจัดการฟาร์มที่แม่นยำ
- IOT เทคโนโลยีเซนเซอร์สำหรับการวัดและควบคุมปัจจัยเพื่อการเกษตร
- เทคโนโลยีเซนเซอร์การเกษตร

นาย พุฒิพงศ์ สุขรัตน์ (ผู้ช่วยนักวิจัย)

- วิศวกรรมซอฟต์แวร์ (Software Engineer)

นาย ปิยะ ชาติไทยเจริญ (ผู้ช่วยนักวิจัย)

- ระบบฝั่งตัว (Embedded System)