Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, Физико-механический институт

Отчет по лабораторной работе N25 по дисциплине «Интервальный анализ»

Выполнил студент гр. 5030102/80201 Дойников И. Д. Руководитель Баженов А. Н.

Содержание

	Страни	Страница								
1	Постановка задачи	4								
2	Теория	4								
	2.1 Решение задачи регрессии с интервальным откликом	4								
	2.2 Информационное множество	4								
	2.3 Коридор совместных зависимостей	4								
	2.4 Предсказание значений	4								
3	Реализация	4								
4	Результаты	5								
5	Обсуждение	6								

Список иллюстраций

				(\mathbb{C}_{2}	гр	aı	ниі	ца
1	Информационное множество с точечными оценками								5
2	Коридор совместных зависимостей и исходные измерения								-
3	График построенной модели регрессии с предсказаниями								6

1 Постановка задачи

Для линейной задачи построения регрессии $\mathbf{y} = X\beta$ необходимо задать набор значений x и y с некоторыми ошибками измерений по отклику. Необходимо провести вычисления и привести иллюстрации:

- Построить интервальное множество решений β , сделать точечные оценки параметров.
- Построить коридор совместных зависимостей.
- ullet Задать набор предсказания внутри и вне x, построить набор значений выходной переменной y.

2 Теория

2.1 Решение задачи регрессии с интервальным откликом

Решением задачи восстановления зависимости можно считать любое (в данном случае линейное) решение, проходящее через все исходные брусы.

2.2 Информационное множество

Интервальное множество решений β , которое необходимо построить и оценить в задании 1, называется информационным множеством. В качестве точечных оценок информационного множества будут использованы следующие величины:

- Середина наибольшей диагонали
- Центр тяжести (среднее суммы всех вершин)
- Оценка β , полученная решением исходной задачи в точечной постановке (с серединами интервалов) методом наименьших квадратов

2.3 Коридор совместных зависимостей

Коридором совместных зависимостей называется множество, образованное всеми решениями с параметрами из информационного множества.

2.4 Предсказание значений

Предсказание осуществляется посредством построения сечения коридора совместных зависимостей в указанных точках. Соотношение прогнозных и исходных интервалов в исходных точках измерений является одним из показателей качества построенной модели.

3 Реализация

Для осуществления вычислений и визуализации результатов использовалась среда Octave с библиотекой С. И. Жилина.

4 Результаты

В качестве входных значений предиктора были выбраны точки $x=\{2,4,10,12\}$. В качестве отклика y были взяты значения $[y_i-\varepsilon_i,\ y_i+\varepsilon_i]$, где $y=\{2,8.5,18,25\}$, $\varepsilon=\{2,1.5,2.5,1.5\}$. $\hat{\beta}_{\rm maxdiag}=(-0.95,2.1)$, $\hat{\beta}_{\rm gravity}=(-0.8188,2.08)$, $\hat{\beta}_{\rm lsm}=(-1.39,2.11)$.

Рис. 1: Информационное множество с точечными оценками

Коридор совместных зависимостей обозначен фиолетовым цветом на следующем графике.

Рис. 2: Коридор совместных зависимостей и исходные измерения

Для построения следующего графика были выбраны точки $x_p = \{2, 10, -1, 5, 13\}$ для вычисления предсказаний. Первые две из них принадлежат множеству точек, по которым строилась регрессия. Синими отрезками обозначены образующие модель интервалы, черными - предсказания.

Рис. 3: График построенной модели регрессии с предсказаниями

5 Обсуждение

- 1. По форме информационного множества можно сделать вывод, что все 4 интервала оказывают влияние на построенную модель.
- 2. Точечные оценки информационного множества дали ощутимо разные результаты. Все три оценки лежат внутри множества, однако оценка, полученная на основании МНК, находится возле границы. В общем случае возможно подобрать данные так, чтобы данная оценка вышла за пределы информационного множества.
- 3. По графику 2 видно, что исходные данные имеют значительную неопределенность и разброс, коридор совместных зависимостей испытывает влияние всех интервалов и довольно узок в средней части.
- 4. По предсказаниям, полученным в точках, являющихся подмножеством x, видно, что исходные и предсказанные интервалы довольно сильно различаются. Можно сделать вывод, что линейная модель не очень хорошо описывает исходные данные. Тем не менее, в целом предсказания получились с невысокой степенью неопределенности.

Исходный код

C исходным кодом программы и отчета можно ознакомиться в репозитории https://github.com/ilich/Interval.