Joaquín Mestanza, Álgebra Lineal

Autovalores:

En general:

Sea V un K-espacio vectorial

Sea T $: \mathbb{V} \to \mathbb{V}$ una Transformación Lineal

Si T(v)= λv , $\lambda \epsilon \mathbb{K}$ y $v \epsilon \mathbb{V}$ con $v \neq \overrightarrow{0}$

Decimos que λ es **autovalor(ava)** de T y v es su **autovector(ave)** asociado

En particular(Todo lo que se desarrolle a continuación se basa en esto):

Si

$$T:\mathbb{K}^n \to \mathbb{K}^n$$
, $T(v)=A.v \text{ con } A \in \mathbb{K}^{n \times n} y v \in \mathbb{V}$

y además

 $T(v)=A.v=\lambda v \text{ con } \lambda \epsilon \mathbb{K} \text{ con } v \neq \overrightarrow{0} \text{ (λ es ava de A y v su ave correspondiente)}$

bajo esta condición

$$A.v - \lambda v = \overrightarrow{0}$$

$$(A-\lambda I)v = \overrightarrow{0}$$

Es un sistema lineal homogéneo con n ecuaciones y n incógnitas con $v \neq \overrightarrow{0}$

Queremos obtener las soluciones no triviales por ende pedimos que $\det(A-\lambda I)=0$ en otras palabras quiero infinitas soluciones

Polinomio característico

Se define polinomio característico a $p(\lambda) = det(A - \lambda I)$

Si $p(\lambda)=0 \implies \lambda$ es raíz de $p(\lambda)$ y será un **ava de A**

 $gr(p(\lambda))=n$

donde gr es el grado del polinomio.

el coeficiente principal será 1 si n es par y -1 si n es impar.

Si $\mathbb{K} = \mathbb{C}$

$$p(\lambda) = (-1)^n (\lambda - \lambda_1) \dots (\lambda - \lambda_n)$$

 λ_i es raíz de p(λ) 1 < i < n (n raíces complejas)

Si $\mathbb{K} = \mathbb{R}$

tendré a la suma de n raíces reales

Propiedad:

Sea A $\epsilon \mathbb{K}^{nxn}$ y A.v= λ v con $\lambda \epsilon \mathbb{K}$ con $v \neq \overrightarrow{0}$ (λ es **ava** de A y v su **ave** correspondiente)

 $S_{\lambda} = \{ v \in \mathbb{K}^n / A.v = \lambda v \}$

[Notar que en esta definición no se excluyó al $v = \overrightarrow{0}$, ya que, de lo contrario no sería un subespacio]

1

 S_{λ} es un subespacio de \mathbb{K}^n (también llamado **autoespacio** correspondiente al **ava** λ)

 $\mathbb{K}^n = \mathbb{R}^n$ o $\mathbb{K}^n = \mathbb{C}^n$ (como \mathbb{C} -esp vectorial (escalares complejos))

Definición:

Multiplicidad algebraica (ma):

Es el número que representa las veces que figura el **ava** como raíz de $p(\lambda)$

Multiplicidad geométrica (mg):

Es el número que representa la dimensión del subespacio correspondiente al **ava** λ

Teorema:

para cada **ava**

 $1 \le mg(\lambda) \le ma(\lambda)$

Propiedades:

1) $(\alpha A).v = (\alpha \lambda)v \operatorname{con}\alpha \epsilon \mathbb{K}$

 $\alpha\lambda$ es ava de αA y v es su ave

2)
$$A^k \mathbf{v} = \lambda^k \mathbf{v}$$
; $k \in \mathbb{N}$

 λ^k es ava de $\mathbf{A}^k\mathbf{y}$ v es su ave

- 3) A no es inversible $\iff \lambda = 0$ es su ava
- 4) Si A es inversible \implies A⁻¹v= $\frac{1}{\lambda}$ v
- $\frac{1}{\lambda}$ es ava de $A^{-1}y$ v es su ave
- 5)Si A $\epsilon \mathbb{R}^{nxn}$, $\lambda \epsilon \mathbb{C} \Longrightarrow A.\overline{v} = \overline{\lambda} \overline{v}$, $v \epsilon \mathbb{C}^n / v \neq \overrightarrow{0}$

(conjugo ambos miembros y obtengo que si tenia un autovalor , conozco otro autovalor que va a ser su conjugado y además el autovector asociado a este último es el conjugado del autovector que ya conocía)

- 6) Si A es una matriz triangular inferior o superior $\implies \lambda_i = [A]_{ii}$; $1 \le i \le n$
- 7) Si $\lambda_1, \lambda_2, ..., \lambda_r$ son avas distintos de la matriz A con $r \le n$ y $v_1, v_2, ..., v_r$ son sus ave correspondientes $\Longrightarrow \{v_1, v_2, ..., v_r\}$ es L.I.

Matrices semejantes:

Sean A, B $\epsilon \mathbb{K}^{nxn}$ se dice que B es semejante a A si existe una matriz $P \epsilon \mathbb{K}^{nxn}$ inversible / B = P^{-1} . A .P

Si multiplico por izquierda por P ambos miembros:

$$P.B = (P.P^{-1})A.P = I.A.P = A.P$$

y ahora por derecha por P^{-1}

$$PBP^{-1} = A(P.P^{-1}) = A.I = A$$

A es semejante a B.

Propiedades:

- 1) A es semejante a A
- 2) A es semejante a B \implies B es semejante a A
- 3) Si A es semejante a B y B es semejante a C \implies A es semejante a C
- 4) Si A es semejante a B \implies A y B tienen los mismos avas (se demuestra aplicando determinante a ambos miembros)
 - 5) si A y B semejantes $\implies \det(A) = \det(B)$
 - 6) si A v B semejantes $\implies tr(A)=tr(B)$

Matrices Diagonalizables:

Sea A $\epsilon \mathbb{K}^{nxn}$ se dice que A es diagonalizable si es semejante a una matriz diagonal.

$$A = P D P^{-1}$$

$$donde D = \begin{pmatrix} \alpha_1 & 0 & \dots & 0 \\ 0 & \alpha_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \alpha_n \end{pmatrix}$$

Teorema:

Sea A $\epsilon \mathbb{K}^{nxn} \implies$ A es diagonalizable

si existe una base B de **aves** de A en \mathbb{K}^n

Si B =
$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

y A.
$$\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
; $1 \le i \le n$

$$\mathbf{C}_{BE} = \left(\begin{array}{ccc} [v_1]_E & [v_2]_E \end{array} \right) = \left(\begin{array}{ccc} v_1 & v_2 & v_3 \end{array} \right)$$
 con E la base canónica de \mathbb{K}^n .

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

$$A = C_{BE}D C_{EB}$$

Propiedades:

si tengo n autovalores λ_i con $1 \le i \le$

$$\begin{array}{|c|c|c|}\hline \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^n \lambda_i = \lambda_1 + \lambda_2 + \ldots + \lambda_n \\\hline \det(\mathbf{A}) = \prod_{i=1}^n \lambda_i = (\lambda_1)(\lambda_2) \ldots (\lambda_n) \\\hline 1) \text{ Una matriz A } \epsilon \mathbb{K}^{nxn} \text{ es diagonalizable } \iff \forall \lambda_i : \operatorname{ma}(\lambda_i) = \operatorname{mg}(\lambda_i) \\\hline \end{array}$$

- 2) si A $\epsilon \mathbb{K}^{nxn}$ y tiene n avas distintos \Longrightarrow A es diagonalizable
- 3) Si A es diagonalizable \implies A^k es diagonalizable

4) Si A=
$$C_{BE}D C_{EB} \implies A^k = C_{BE}D^k C_{EB} ; k \in \mathbb{N}$$

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} y D^k = \begin{pmatrix} \lambda_1^k & 0 & \dots & 0 \\ 0 & \lambda_2^k & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n^k \end{pmatrix}$$

$$A = C_{BE}D C_{EB}$$

$${\rm A}^{-1}{\rm = \ (C_{\it BE}D\ C_{\it EB}\)^{-1}}{\rm = \ (\ C_{\it EB})^{-1}(D)^{-1}\ (C_{\it BE}\)^{-1}}{\rm = \ C_{\it BE}D\ ^{-1}C_{\it EB}}$$

$$D^{-1} = \begin{pmatrix} \frac{1}{\lambda_1} & 0 & \dots & 0\\ 0 & \frac{1}{\lambda_2} & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & \frac{1}{\lambda_n} \end{pmatrix}$$

Autovalores y autovectores de una Transformación Lineal:

Sea V un K-espacio vectorial

Sea T : $\mathbb{V} \to \mathbb{V}$ una Transformación Lineal

Si T(v) =
$$\lambda v$$
; $\lambda \epsilon \mathbb{K}$ y $v \epsilon \mathbb{V}$ con $v \neq \overrightarrow{0}$

decimos que λ es un ava de T y v su ave correspondiente

Si $\mathbb V$ es un espacio de dimensión finita y B es una base de $\mathbb V$

y $[T]_{BB} = [T]_B$ (matriz de la T.L. relativa a la base B)

Siempre se define sobre la misma base de entrada y de salida sino no sirve para calcular los avas de T

$$[T(v)]_B = [\lambda v]_B = \lambda [v]_B$$

pero
$$[T]_B[v]_B = [T(v)]_B$$

luego
$$[T]_B[v]_B = \lambda[v]_B$$

$$([\mathbf{T}]_B[v]_B - \lambda[\mathbf{v}]_B) = \overrightarrow{0}$$

$$([\mathbf{T}]_B - \lambda \mathbf{I})[\mathbf{v}]_B = \overrightarrow{0}$$

$$\text{si } v \neq \overrightarrow{0} \implies [v]_B \neq \overrightarrow{0}$$

$$\implies$$
 pido $[T]_B - \lambda I$ no inversible $\implies det([T]_B - \lambda I) = 0$

polinomio característico de T

$$p(\lambda) = det([T]_B - \lambda I) = 0$$

El ava de T será raíz de $p(\lambda)$

Si hubiese tomado otra base por ejemplo B'

$$[T]_{B'} = C_{BB'}[T]_B C_{B'B} \text{ con } C_{BB'} = (C_{B'B})^{-1}$$

$$\implies [T]_B$$
 y $[T]_{B'}$ son semejantes \implies tienen los mismos **autovalores**

conclusión: los avas de T son los mismos no importa que base tomemos (y los aves también).

Propiedades:

- 1) para avas distintos los ave son LI
- 2) T es un isomorfismo $\iff \lambda \neq 0$
- 3) λ^k es ava de T^k y v su ave correspondiente
- 4) $T^{-1}(v) = \frac{1}{\lambda} v$