

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

Unterstützt durch: Christian Himpe

Überblick

Motivation und Ziel

Einleitung in DCM
Lineares Modell
Bilineares Modell
Hämodynamisches Modell

Numerische Methoden Euler-Verfahren Runge-Kutta-Verfahren des 4. Rangs

Numerische Simulation 2-Regionen-System

Literatur

```
from programs import RK4 as RK4
         from programs import Euler as RK1
         from programs import hemodynamicModel as HM
         from programs import bilinearModel as BM
          Parameter Beispiel 1
       T = 100.
       to = 0.
       dt = 0.1
                                     # Endzeit
       t = np.arange(t0,T+dt,dt)
                                     # Anfangszeit
                                     # Zeitschrittlaenge
      A = np.array([[-1.,0.,0.],
                                    # Zeitarray
                    [0.3,-1,0.2],
                    [0.6,0.,-1.]]) # Kopplung
     B1 = np.zeros((3,3))
    B2 = np.array([[0 , 0, 0], [0 , 0, 0.8],
                                   # Induzierte Kopplung
                    [0.1, 0, 0 ]])
         ap.array([B1, B2])
                                 # Zusammenfassen der ind. Kopplung in ein Ar
                                # äußerer Einfluss auf Hirnaktivität
                    (B), len(t)))
                               # Stimulus u1
  u[1,451:550] = 2.
 u[1,251:350] = 5.
 u[1, 691:910] = 2.
                               # Stimulus u2
                               # Stimulus u2
 # Anfangsbedingunden
                               # Stimulus u2
 x_0 = np.ones(15)
x = 0[0:6] = 0.
# Zusammenfassen der Parameter für das "hemodynamicModel"
```


Einleitung in DCM - <u>Dynamic Causal Modelling</u>

Interaktion zwischen verschiedenen Hirnregionen

Konnektivität im Gehirn

Über die mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns.

Ziel

Das Aufstellen eines einfachen und realistischen neuronalen Modells aller betrachteten interagierenden Gehirnregionen.

Lineares Modell

Vernetzung von Hirnregionen

Inputs $u \rightarrow \text{Outputs } z \text{ pro Hirnregion}$

Inputs	Outputs
ightharpoonup direkten Input: Stimulation u der Hirnregion $ ightharpoonup$	▶ neuronale Aktivitāt in der Hirnregion▶

$$\dot{z} = f(z(t), u(t))$$

 $\approx f(0,0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u = Az(t) + Cu(t)$

Matrix A: Konnektivitätsmatrix - Verschaltung der Hirnregionen Matrix C: Einfluss der Inputs auf die neuronale Aktivität einer Hirnregion

Bilineares Modell

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- ► Dynamik und Konnektivität durch drei Parameter beschrieben

Taylorentwicklung

$$\dot{z} = f(z(t), u(t)) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bilineares Modell

Mathematische Beschreibung

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

Taylorentwicklung

$$\dot{z} = f(z(t), u(t)) \approx f(0,0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

$$\dot{z}(t) = A \cdot z(t) + \sum_{j} u_{j}(t)B^{j} \cdot z(t) + C \cdot u(t)$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B^{(2)} = \begin{pmatrix} 0 & 0 & b_{13}^{(2)} \\ 0 & 0 & b_{23}^{(2)} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Vergleichbarkeit

Bilineares Modell \Rightarrow Gehirnaktivität $z_i(t)$

Vergleichbarkeit

Bilineares Modell \Rightarrow Gehirnaktivität $z_i(t)$

Experiment (funktionelle MRT) \Rightarrow BOLD-Signal/Kontrast $y_i(t)$ \approx Sauerstoffgehalt der roten Blutkörperchen

Hämodynamisches Modell $z_i(t) o y_i(t)$

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinmenge

Hämodynamisches Modell $z_i(t) o y_i(t)$

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinmenge

$$\dot{s}_{i} = z_{i} - \kappa s_{i} - \gamma (f_{i}^{in} - 1)$$

$$\dot{f}_{i}^{in} = s_{i}$$

$$\tau \dot{v}_{i} = f_{i}^{in} - f_{i}^{out} = f_{i}^{in} - v_{i}^{1/\alpha}$$

$$\tau \dot{q}_{i} = f_{i}^{in} E_{i} / \rho - f_{i}^{out} q_{i} / v_{i}$$

Hämodynamisches Modell $z_i(t) o y_i(t)$

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinmenge

$$\begin{aligned}
\dot{s}_i &= z_i - \kappa s_i - \gamma (f_i^{in} - 1) \\
\dot{f}_i^{in} &= s_i \\
\tau \dot{v}_i &= f_i^{in} - f_i^{out} = f_i^{in} - v_i^{1/\alpha} \\
\tau \dot{q}_i &= f_i^{in} E_i / \rho - f_i^{out} q_i / v_i
\end{aligned}$$

BOLD-Signal (fMRT):
$$y_i = V_0(k_1(1-q_i) + k_2(1-q_i/v_i) + k_3(1-v_i))$$

Anfangswertproblem
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), t)$$
 mit $\mathbf{x}(0) = \mathbf{x}_0$

Ziel:
$$\mathbf{x}(t_n) \to \mathbf{x}(t_{n+1})$$
 mit $t_{n+1} = t_n + h$

Anfangswertproblem
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), t)$$
 mit $\mathbf{x}(0) = \mathbf{x}_0$

Ziel:
$$\mathbf{x}(t_n) \to \mathbf{x}(t_{n+1})$$
 mit $t_{n+1} = t_n + h$

Taylorentwicklung:

$$\mathbf{x}(t_{n+1}) = \mathbf{x}(t_n) + \dot{\mathbf{x}}(t_n)(t_{n+1} - t_n) + \frac{1}{2}\ddot{\mathbf{x}}(t_n)(t_{n+1} - t_n)^2 + \mathcal{O}((t_{n+1} - t_n)^3)$$

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), t)$$
 mit $\mathbf{x}(0) = \mathbf{x}_0$

Ziel:
$$\mathbf{x}(t_n) \to \mathbf{x}(t_{n+1})$$
 mit $t_{n+1} = t_n + h$

Taylorentwicklung:

$$\mathbf{x}(t_{n+1}) = \mathbf{x}(t_n) + \dot{\mathbf{x}}(t_n)(t_{n+1} - t_n) + \frac{1}{2}\ddot{\mathbf{x}}(t_n)(t_{n+1} - t_n)^2 + \mathcal{O}((t_{n+1} - t_n)^3)$$

$$\Rightarrow \mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n, t_n)h + \frac{1}{2}\dot{\mathbf{f}}(\mathbf{x}_n, t_n)h^2 + \mathcal{O}(h^3)$$

Anfangswertproblem
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), t)$$
 mit $\mathbf{x}(0) = \mathbf{x}_0$

Ziel:
$$\mathbf{x}(t_n) \to \mathbf{x}(t_{n+1})$$
 mit $t_{n+1} = t_n + h$

Taylorentwicklung:

$$\mathbf{x}(t_{n+1}) = \mathbf{x}(t_n) + \dot{\mathbf{x}}(t_n)(t_{n+1} - t_n) + \frac{1}{2}\ddot{\mathbf{x}}(t_n)(t_{n+1} - t_n)^2 + \mathcal{O}((t_{n+1} - t_n)^3)$$

$$\Rightarrow \mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n, t_n)h + \frac{1}{2}\dot{\mathbf{f}}(\mathbf{x}_n, t_n)h^2 + \mathcal{O}(h^3)$$

Euler Verfahren

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n, t_n)h$$

- ► Verfahren 1. Ordnung
- ▶ Exakt nur bei Polynom der Form x(t) = a + b * t

Runge-Kutta-Verfahren des 4. Rangs

Taylorentwicklung bis 4. Ordnung:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n, t_n)h + \frac{1}{2}\mathbf{f}(\mathbf{x}_n, t_n)h^2 + \frac{1}{6}\mathbf{f}(\mathbf{x}_n, t_n)h^3 + \frac{1}{24}\mathbf{f}(\mathbf{x}_n, t_n)h^4$$

Runge-Kutta-Verfahren des 4. Rangs

Taylorentwicklung bis 4. Ordnung:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{f}(\mathbf{x}_n, t_n)h + \frac{1}{2}\dot{\mathbf{f}}(\mathbf{x}_n, t_n)h^2 + \frac{1}{6}\ddot{\mathbf{f}}(\mathbf{x}_n, t_n)h^3 + \frac{1}{24}\ddot{\mathbf{f}}(\mathbf{x}_n, t_n)h^4$$

Runge-Kutta-Verfahren des 4. Rangs:

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \frac{h}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

mit

$$\mathbf{k}_1 = \mathbf{f}(\mathbf{x}_n, t_n)$$

$$\mathbf{k}_2 = \mathbf{f}(\mathbf{x}_n + \frac{h}{2}\mathbf{k}_1, t_n + \frac{h}{2})$$

$$\mathbf{k}_3 = \mathbf{f}(\mathbf{x}_n + \frac{h}{2}\mathbf{k}_2, t_n + \frac{h}{2})$$

$$\mathbf{k}_4 = \mathbf{f}(\mathbf{x}_n + h\mathbf{k}_3, t_n + h)$$

Simulation eines 2-Regionen-Systems

$$\dot{z}(t) = A \cdot z(t) + \sum_{j} u_{j} B^{j} \cdot z(t) + C \cdot u(t)$$

$$A = \begin{pmatrix} -1 & 0 \\ 0.5 & -1 \end{pmatrix} \qquad B_1 = 0 \qquad B_2 = \begin{pmatrix} 0 & 0 \\ 0.8 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Zusammenfassung und Ausblick

► Ziel:

Modellierung von Interaktionen in einem neuronalen Netzwerk

► Ansatz:

Taylorentwicklung bis zur 2ten Ordnung für die neuronale Aktivität

Vergleichbarkeit mit Experiment:
 Hämodynamisches Modell Variation
 des Blutvolumens und des
 desoxygenierten Hämoglobins

Hämodynamische Antworten einer Gruppe von fünf Probanden.

(nach Aguirre et al., Neurolmage 8, 1998)

Danke für die Aufmerksamkeit!

Literatur

- Dynamic causal modelling
 K.J. Friston, L. Harrison and W. Penny / NeuroImage 4 (2003)
 web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf
- ► Funktionelle Magnetresonanztomographie
 In: Wikipedia, Die freie Enzyklopädie
 de.wikipedia.org/w/index.php?title=Funktionelle_
 Magnetresonanztomographie&oldid=149177539 (Abgerufen: 7. Juni 2016, 12:28 UTC)
- ► The Variability of Human, BOLD Hemodynamic Responses G. K. Aguirre, E. Zarahn and M. D'Esposito / NeuroImage 8 (1998)
- ► Lecture notes "Theoretical Methods in complex systems 2" S. Gurevich, WWU Münster, SS 2016

