

CAO pour l'impression 3D

Modélisation 3D

Kévin Hoarau - Septembre 2024

CAO pour l'impression 3D

Conception assistée par ordinateur (CAO)

Conception assistée par ordinateur (CAO)

- Les logiciels de conception assistée par ordinateur (CAO) ou computer aided design (CAD) permettent d'effectuer des modélisations géométriques afin de concevoir des produits.
- Certains logiciels de CAO permettent également de tester le produit virtuellement à l'aide de simulations numériques.
- Le terme de modélisation 3D est souvent utilisé pour désigner la pratique de la CAO 3D.

Exemple de simulation dans Fusion 360

Catégories de logiciels de CAO 3D

- Facilité de prise en main : Tinkercad, Sketchup, ...
- **Conception paramétrique :** Solidworks, Fusion 360, FreeCAD, Onshape, ...
- Langage de programmation : OpenSCAD
- Logiciel d'infographie 3D : Blender, Maya,
 ZBrush, ...

Onshape

Exemples de logiciels de CAO 3D ("Selecting a free 3D CAD option", Teaching Tech)

Dans ce cours

- Nous utiliserons des logiciels de conception paramétrique.
- Je recommande l'utilisation d'Onshape pour son fonctionnement dans le cloud (malgrès une politique tarifaire discutable).
- Fusion 360 est également une bonne alternative, mais nécessite une installation.
- Pour les amoureux de l'open-source et les plus aventureux, FreeCAD sera votre compagnon idéal.

CAO pour l'impression 3D

Introduction à la conception paramétrique

Esquisse

- Le point de départ de toutes modélisations 3D est généralement la création d'une d'esquisse ou sketch
- Elle permet de dessiner des formes en 2D qui seront ensuite utilisées pour construire des solides en 3D.
- En combinant des formes et des contraintes géométriques il est possible de construire des formes complexes.

Exemple de construction d'un solide à partir d'une esquisse

Création d'une esquisse

- Une esquisse doit être créée à partir d'un plan.
- Si le projet ne contient aucun solide alors on prendra un plan parmi (x,y), (x,z) ou (y,z).
- Il est également possible d'utiliser une face d'un solide comme plan pour la construction de l'esquisse.

Exemple de construction d'une esquisse à partir d'une face

Les outils de base de l'esquisse

- **Formes**: de nombreuses formes sont disponibles : lignes, rectangles, cercles, arcs, polygones, *etc*.
- Mode construction: le mode construction permet de dessiner une forme qui sera utilisée pour construire d'autres formes sans quelle soit prise en compte lors de la création du solide.
- **Contraintes**: des contraintes géométriques peuvent être définies sur les formes : côte, égal, parallèle, tangente, *etc*.

Deux cercle et une ligne de construction (contraintes appliquées : côtes, égal et tangente)

Les outils de répétitions permettent de créer une ou plusieurs formes à partir d'une forme existante.

Le **décalage** permet de reproduire une forme de manière concentrique :

Les outils de répétitions permettent de créer une ou plusieurs formes à partir d'une forme existante.

Le **miroir** permet d'appliquer une symétrie axiale :

Les outils de répétitions permettent de créer une ou plusieurs formes à partir d'une forme existante.

La **répétition linéaire** permet de reproduire une forme sur une grille :

Les outils de répétitions permettent de créer une ou plusieurs formes à partir d'une forme existante.

La **répétition circulaire** permet de reproduire une forme sur un cercle :

Les variables

- L'utilisation de variables est une bonne pratique permettant de modifier rapidement une modélisation.
- Lorsque la variable est modifié les changements sont appliqués en cascades aux esquisses et aux solides construits à partir des esquisses.

∨ Variable Studio 1		
Nom	Type de variable	Valeur
nb_repeat	Nombre •	4

Déclaration d'une variable

Utilisation d'une variable

Création d'un solide

Extrusion

- L'opération la plus courante pour créer un solide à partir d'une esquisse est l'extrusion.
- Si le nouveau solide entre en contact avec un solide existant alors il est possible d'effectuer des opérations booléennes : union, intersection, différence (e.g. perçage).

Exemple de percage à l'aide d'une extrusion

Création d'un solide

Révolution

- Un autre opération très utile est la révolution.
- Elle permet d'extruder une esquisse en effectuant une rotation autours d'un axe.

Exemple revolution

Création d'un solide

Balayage

- Le balayage permet d'effectuer une extrusion en suivant une courbe.
- La courbe utilisée peut prendre est libre et peut prendre n'importe qu'elle forme
- Cette opération est souvent utilisée pour créer des pas de vis.

Exemple de balayage

Opérations sur les solides

Opérations booléennes

- Les opérations booléennes s'appliques sur deux solides qui sont en contact
- Les opérations possible sont : l'union, l'intersection et la différence.

Exemple d'intersection entre deux cylindres

Opérations sur les solides

Congés et chanfreins

- Les congés et chanfreins permettent de rendre les arêtes d'un solide moins abrupt.
- Un congé permet d'obtenir une arête arrondie.
- Un chanfrein permet d'obtenir une arête inclinée.

Exemple de congé (à gauche) et de chanfrein (à droite) de 5mm

Opérations sur les solides

Opérations de répétitions

- Comme pour les esquisses, il existe des opérations de répétitions
- L'opération miroir applique une symétrie à l'aide d'un plan de symétrie
- Les opérations de répétitions linéaires et circulaires permettent de reproduire un solide sur une grille ou un cercle.

Exemple de répétition linéaire

Bonnes pratiques de modélisation pour l'impression 3D

Eviter les supports

- Dès la phase de conception, il faut penser à l'orientation que va avoir votre pièce durant d'impression.
- Il faut alors éviter de créer des angles trop importants.

Pièce nécessitant des supports

Ajout d'un chanfrein

Penser aux tolérances

- L'impression 3D est un processus de fabrication imparfait.
- Si deux pièces doivent s'imbriquer, il faut penser à laisser des tolérances suffissantes.
- Généralement un espace de 0.5mm est suffisant.
- On peut également laisser un espace plus grand, mais cela créera du jeu.

Deux solides espacés de 0.5mm.

Autres considérations

- Prendre en compte volume d'impression de l'imprimante.
- Ne pas créer de parois ou des détails trop fins. L'imprimante à une buse de 0.4mm et une hauteur de couche minimum de 0.1mm.
- La pièce doit avoir une surface plane, sinon il faudra des supports.

Pièce sans surface plane

Pièce avec une surface plane

Vérifier sa modélisation

Deux outils pratiques:

- L'outil de mesure permet de vérifier les côtes.
- Le plan de coupe permet de visualiser une section de la pièce.

Plan de coupe et outil de mesure

CAO pour l'impression 3D

Un peu de pratique

Exercice 1: la boite

Nous allons créer une boite paramétrique.

Les variables suivantes pourront être ajustées pour modifier la boite :

- hauteur, longueur et largeur
- épaisseur des murs
- tailles des congés.

Résultat attendu

Exercice 2 : le couvercle

Nous allons maintenant créer un couvercle.

Les variables suivantes pourront être ajustées :

- hauteur, longueur et largeur
- tolérance pour le montage du couvercle sur la boite
- tailles des congés,
- le diamètre des trous

Résultat attendu

Exercice 3: le verre

Utilisez l'outil de révolution pour créer un verre à pied.

Exemple de résultat