Reconfigurable Network Processing: The FPGA Case

Carlos A. Zerbini and Jorge M. Finochietto

Laboratorio de Comunicaciones Digitales Universidad Nacional de Córdoba, Facultad Ciencias Exactas, Físicas y Naturales

> Departamento de Ingeniería Electrónica Universidad Tecnológica Nacional, Facultad Regional Córdoba

> > 12th AST Argentine Symposium on Technology 40th JAIIO UTN Regional Córdoba

Requerimientos de procesamiento en Redes

Características de Tráfico

- Las redes de datos crecen en Complejidad: nuevas aplicaciones, multimedia
- Las redes de datos crecen en **Velocidad**: *n* × 100*Gbps* (1*Tbps*@2015)
- Consolidación de múltiples servicios sobre redes Ethernet
- Redes Locales, Metropolitanas y Extensas utilizan Conmutación de Paquetes
- Adopción de tecnologías para virtualización en redes y servidores

Procesamiento de Paquetes

- Los enlaces ofrecen alta capacidad. El procesamiento de paquetes es crítico y debe optimizarse
- El rocesamiento a velocidad de línea
- ullet Paquete Ethernet mínimo = 64bytes o 6nanosegundos/paquete

Requerimientos de procesamiento en Redes

Características de Tráfico

- Las redes de datos crecen en Complejidad: nuevas aplicaciones, multimedia
- Las redes de datos crecen en Velocidad: n x 100Gbps (1Tbps@2015)
- Consolidación de múltiples servicios sobre redes Ethernet
- Redes Locales, Metropolitanas y Extensas utilizan Conmutación de Paquetes
- Adopción de tecnologías para virtualización en redes y servidores

Procesamiento de Paquetes

- Los enlaces ofrecen alta capacidad. El procesamiento de paquetes es crítico y debe optimizarse
- El rocesamiento a velocidad de línea
- Paquete Ethernet mínimo = 64bytes → 6nanosegundos/paquete

Soluciones

Granularidad

- Actualmente → paquetes de longitud variable
- Peor caso → mínima longitud (64 bytes en Ethernet)
- Tendencia → agregación de paquetes en flujos
- Ejemplos: Multi-protocol Label Switching (MPLS), VLANs (802.1Q)

Agregacion de flujos

Virtualizacion de redes

Tecnologías Actuales

Requerimientos → flexibilidad, performance

Circuitos de Propósito Específico (ASICs)

- Cientos de bloques especializados trabajando en paralelo
- Alto desempeño. No programables, alto costo y tiempo de desarrollo.

Network Processors (NPs)

- Múltiples elementos de procesamiento, buena performance para ciertas tareas. IXP(Intel), PowerNP (IBM)
- Difícil portabilidad, interfaces propietarias

Procesadores de Propósito General (GPPs)

- Arquitectura PC + Software especializado: Click, Zebra/Xorp/Quagga
- Alta flexibilidad, bajo costo. Limitación por transacciones con RAM y naturaleza secuencial

Tecnologías Actuales

Requerimientos \rightarrow flexibilidad, performance

Circuitos de Propósito Específico (ASICs)

- Cientos de bloques especializados trabajando en paralelo
- Alto desempeño. No programables, alto costo y tiempo de desarrollo.

Network Processors (NPs)

- Múltiples elementos de procesamiento, buena performance para ciertas tareas. IXP(Intel), PowerNP (IBM)
- Difícil portabilidad, interfaces propietarias

Procesadores de Propósito General (GPPs)

- Arquitectura PC + Software especializado: Click, Zebra/Xorp/Quagga
- Alta flexibilidad, bajo costo. Limitación por transacciones con RAM y naturaleza secuencial

Tecnologías Actuales

Requerimientos → flexibilidad, performance

Circuitos de Propósito Específico (ASICs)

- Cientos de bloques especializados trabajando en paralelo
- Alto desempeño. No programables, alto costo y tiempo de desarrollo.

Network Processors (NPs)

- Múltiples elementos de procesamiento, buena performance para ciertas tareas. IXP(Intel), PowerNP (IBM)
- Difícil portabilidad, interfaces propietarias

Procesadores de Propósito General (GPPs)

- Arquitectura PC + Software especializado: Click, Zebra/Xorp/Quagga
- Alta flexibilidad, bajo costo. Limitación por transacciones con RAM y naturaleza secuencial

Nuevas tecnologías

Dispositivos Lógicos Programables (FPGAs)

- Permiten reconfiguración y reprogramación, contando con librerías de Open Hardware.
- Su performance no es lejana a la de un ASIC. Fabricantes: Altera, Xilinx, Actel.
- Incorporación creciente de bloques hardcore especializados

Implementación con GPPs

Implementación con NPs

Implementación con FPGAs

Investigación y Desarrollo

Tendencias actuales

- Arquitecturas reconfigurables y reprogramables para adaptarse a nuevas aplicaciones
- Arquitecturas eficientes para satisfacer exigencias de consumo y velocidad
- Extensión del Open Software mediante Open Hardware
- Métricas a evaluar: paralelismo vs. consumo de memoria/lógica, velocidad

Propuestas

- Procesamiento de flujos de paquetes en arquitecturas reconfigurables
- O Desarrollo de implementaciones a medida de la aplicación
- Integración en arquitecturas de procesamiento asistido por hardware

Investigación y Desarrollo

Tendencias actuales

- Arquitecturas reconfigurables y reprogramables para adaptarse a nuevas aplicaciones
- Arquitecturas eficientes para satisfacer exigencias de consumo y velocidad
- Extensión del Open Software mediante Open Hardware
- Métricas a evaluar: paralelismo vs. consumo de memoria/lógica, velocidad

Propuestas

- Procesamiento de flujos de paquetes en arquitecturas reconfigurables
- Desarrollo de implementaciones a medida de la aplicación
- Integración en arquitecturas de procesamiento asistido por hardware

Trabajos Relacionados

Click Modular Router (MIT)

- Librería de objetos Software libre, conectados mediante lenguaje propio
- Ejecutable a nivel de usuario o de kernel
- Sufre limitaciones por su naturaleza secuencial
- Migración automática a hardware → difícil de lograr

- Plataforma Hardware basada en un FPGA Xilinx Virtex 5
- Versión 10 GbE liberada en 2010.
- Sistema base predefinido para incorporación de funcionalidades

Trabajos Relacionados

Click Modular Router (MIT)

- Librería de objetos Software libre, conectados mediante lenguaje propio
- Ejecutable a nivel de usuario o de kernel
- Sufre limitaciones por su naturaleza secuencial
- Migración automática a hardware → difícil de lograr

NetFPGA (Stanford)

- Plataforma Hardware basada en un FPGA Xilinx Virtex 5
- Versión 10 GbE liberada en 2010
- Sistema base predefinido para incorporación de funcionalidades

Procesamiento en Redes

Introducción

- Básico: Routing → lookup, forwarding, queueing
- Avanzado: agregación de paquetes, modificación del camino de datos
- Caminos de procesamiento
 - Fast Data Path: operaciones a velocidad de línea
 - Slow Data Path: operaciones menos frecuentes
- Bloques de interés: Clasificación, Almacenamiento, Conmutación, Planificación

Procesamiento en Redes de Datos

Clasificación

- Bloques esenciales para procesamiento de flujos diferenciados
- Exigencias particulares de almacenamiento y velocidad
- Extracción configurable de encabezados contra uno o múltiples campos emph storage/rule
- Matching exacto (Protocolo, puertos, MAC) o mejor matching (LPM, prefijos IP)
- Enfoques de diseño: algorítmico (Trees/decomp.) y arquitectura (TCAM)

GPPs	FPGAs	ASICs
Many rules sup- ported in large and slow SDRAM	Dedicated registers; low-latency limited internal SRAM; medium-latency external SDRAM	Limited ad-hoc inter- nal memory; external SDRAM (if interface included)
Intensive algorithms at low speed	Parallel architectures at wire speed	Parallel architectures at wire speed
Fully repro- grammable rules	Fully repro- grammable/ re- configurable rules	Partially reprogrammable rules

Procesamiento en Redes de Datos

Conmutación (Switching)

- Múltiples puertos de E/S → Contención
- Time-division Switching: bus o memoria compartidos. Soporta tráfico agregado.
- Space-division Switching: transferencias simultáneas. Limitado por efectos físicos y bloqueo interno.

GPPs	FPGAs	ASICs
Shared bus/memory	Time/space division	Time/space division
Low/medium performance	High performance	Very high perfor- mance
Little/no optimization possible	Optimization limited by device family	Optimization at design time

Procesamiento en Redes de Datos

Almacenamiento (Queueing)

- Junto con la Conmutación, determina desempeño y campo de aplicación
- Los buffers absorben contención y aplican políticas de QoS
- Pueden ubicarse en entrada, salida, entrada/salida o integrada a la matriz de conmutación
- ◆ Almacenamiento de celdas o paquetes → segmentación/reensamblado

GPPs	FPGAs	ASICs
System SDRAM	Internal SRAM or ex- ternal SDRAM	Internal SRAM or ex- ternal SDRAM
High latency and capacity	Low latency or high capacity	Low latency or High capacity
Centralized	Centralized/distributed	Centralized

Procesamiento en Redes de Datos

Planificación (Scheduling)

- Surge ante el problema de contención
- Distribución Equitativa → algoritmo Round-Robin
- Se combina usualmente con el efecto de policers (entrada) y shapers (salida)
- Fuertemente condicionado por la función de Switching

GPPs	FPGAs	ASICs
Programmable	Configurable/ Programmable	Fixed
Slow	Medium	Fast

Caso de Estudio

Arquitectura planteada

- Premisa: utilizar sólo lo necesario en la ubicación necesaria
- Escenario de aplicación → Conmutación entre LAN Virtuales (VLANs)
- Configuración Router on a Stick: múltiples flujos (VLANs) se transportan mediante un enlace troncal único
- Los puertos de un Switch de Capa 2 se agrupan en LANs virtuales. La conmutación entre VLANs se realiza en un Router de Capa 3 (FPGA)

Caso de Estudio

Resultados

Stage	Comb. ALUTs	Registers
Classifier (8 rules)	70	231
Queuers (3)	179	84
Scheduler	180	139
Editors (2)	77	327
Total processing stages	506	781
MAC IP Core and glue logic	1906	1792
Total resources utilization	2412	2573

Conclusiones

Experiencia realizada

- La arquitectura conceptual implementada consume menos de 1 % de recursos en un FPGA Altera Stratix IIGX
- Trabajo sin optimizaciones a velocidad 10 GbE
- Sin embargo, su escalabilidad es limitada → campo para optimizaciones

Expectativas

- Contrastación de posibles optimizaciones y evaluación de otros escenarios
- Integración con plataforma software para migración parcial de funciones
- La evolución de esta tecnología acompañará el trabajo de optimización
- Factor limitante: largos ciclos de implementación → Lenguajes de Alto Nivel (HLLs)

Conclusiones

Experiencia realizada

- La arquitectura conceptual implementada consume menos de 1 % de recursos en un FPGA Altera Stratix IIGX
- Trabajo sin optimizaciones a velocidad 10 GbE
- Sin embargo, su escalabilidad es limitada → campo para optimizaciones

Expectativas

- Contrastación de posibles optimizaciones y evaluación de otros escenarios
- Integración con plataforma software para migración parcial de funciones
- La evolución de esta tecnología acompañará el trabajo de optimización
- Factor limitante: largos ciclos de implementación → Lenguajes de Alto Nivel (HLLs)

Preguntas

Gracias por su atención, preguntas?

jfinochietto@efn.uncor.edu czerbini@electronica.frc.utn.edu.ar