```
INPUT INSTRUCTIONS
TITLE: Class 4 model with covariate (female)
DATA:FILE = "/Users/github/dber-logistic/cov c4/lca lsay.dat";
VARIABLE:
NAMES = Enjoy Useful Logical Job Adult Female;
MISSING=.;
categorical = Enjoy-Adult;
    usevar = Enjoy-Adult;
classes = c(4);
auxiliary = Female (r3step);
ANALYSIS:
estimator = mlr;
type = mixture;
starts = 500 200;
processors = 10;
OUTPUT:
sampstat residual tech11 tech14;
PLOT: type = plot3;
series = Enjoy-Adult(*);
SUMMARY OF ANALYSIS
Number of groups
                                                                 1
Number of observations
                                                              3061
Number of dependent variables
                                                                 5
Number of independent variables
                                                                 0
Number of continuous latent variables
                                                                 0
Number of categorical latent variables
                                                                 1
Observed dependent variables
 Binary and ordered categorical (ordinal)
  ENJOY USEFUL LOGICAL JOB
                                                 ADULT
Observed auxiliary variables
  FEMALE
Categorical latent variables
  C
```

MODEL RESULTS

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
Latent Class 1					
Thresholds ENJOY\$1 USEFUL\$1 LOGICAL\$1 JOB\$1 ADULT\$1	-2.049 -2.849 -2.614 -2.070 -2.626	0.142 0.657 0.314 0.210 0.266	-14.462 -4.339 -8.329 -9.845 -9.855	0.000 0.000 0.000 0.000	
Latent Class 2					
Thresholds ENJOY\$1 USEFUL\$1 LOGICAL\$1 JOB\$1 ADULT\$1	-0.391 0.599 -0.260 1.248 15.000	0.120 0.209 0.137 0.167 0.000	-3.258 2.872 -1.895 7.458 999.000	0.001 0.004 0.058 0.000 999.000	
Latent Class 3					
Thresholds ENJOY\$1 USEFUL\$1 LOGICAL\$1 JOB\$1 ADULT\$1	-0.754 0.926 0.161 0.241 -15.000	0.163 0.242 0.214 0.194 0.000	-4.637 3.825 0.755 1.244 999.000	0.000 0.000 0.450 0.214 999.000	
Latent Class 4					
Thresholds ENJOY\$1 USEFUL\$1 LOGICAL\$1 JOB\$1 ADULT\$1	0.815 15.000 4.408 2.662 3.667	0.118 0.000 3.926 0.225 1.113	6.914 999.000 1.123 11.846 3.296	0.000 999.000 0.262 0.000 0.001	
Categorical Latent Variables					
Means C#1 C#2 C#3	-0.003 -0.062 -0.296	0.165 0.209 0.137	-0.021 -0.297 -2.158	0.983 0.766 0.031	

TESTS OF CATEGORICAL LATENT VARIABLE MULTINOMIAL LOGISTIC REGRESSIONS USING

THE 3-STEP PROCEDURE

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value		
C#1 ON FEMALE	-0.851	0.119	-7.130	0.000		
C#2 ON FEMALE	-0.554	0.143	-3.883	0.000		
C#3 ON FEMALE	-0.597	0.133	-4.500	0.000		
Intercepts C#1 C#2 C#3	0.420 0.234 0.021	0.086 0.106 0.097	4.908 2.202 0.211	0.000 0.028 0.833		
Parameterization	using Reference	class 1				
C#2 ON FEMALE	0.297	0.126	2.354	0.019		
C#3 ON FEMALE	0.253	0.143	1.770	0.077		
C#4 ON FEMALE	0.851	0.119	7.130	0.000		
Intercepts C#2 C#3 C#4	-0.186 -0.400 -0.420	0.082 0.093 0.086	-2.264 -4.294 -4.908	0.000		
Parameterization using Reference Class 2						
C#1 ON FEMALE	-0.297	0.126	-2.354	0.019		
C#3 ON FEMALE	-0.044	0.130	-0.335	0.737		
C#4 ON FEMALE	0.554	0.143	3.883	0.000		
Intercepts C#1 C#3 C#4	0.186 -0.213 -0.234	0.082 0.088 0.106	2.264 -2.416 -2.202	0.024 0.016 0.028		

Parameterization using Reference Class 3

C#1 ON FEMALE	-0.253	0.143	-1.770	0.077
C#2 ON FEMALE	0.044	0.130	0.335	0.737
C#4 ON FEMALE	0.597	0.133	4.500	0.000
Intercepts C#1 C#2 C#4	0.400 0.213 -0.021	0.093 0.088 0.097	4.294 2.416 -0.211	0.000 0.016 0.833

ODDS RATIOS FOR TESTS OF CATEGORICAL LATENT VARIABLE MULTINOMIAL LOGISTIC REGRESSIONS
USING THE 3-STEP PROCEDURE

			95% C.I.		
	Est	timate	S.E. Lo	wer 2.5% (Upper 2.5%
C#1 FEMALI		0.427	0.051	0.338	0.540
C#2 FEMALI	-	0.575	0.082	0.435	0.760
C#3 FEMALI		0.550	0.073	0.424	0.714
Parameter	ization using	Reference (Class 1		
C#2 FEMALI		1.346	0.170	1.051	1.723
C#3 FEMALI		1.288	0.184	0.973	1.705
C#4 FEMALI		2.341	0.279	1.853	2.958
Parameter	ization using	Reference (Class 2		
C#1 FEMALI	-	0.743	0.094	0.580	0.952
C#3	ON				

FEMAL:	Ε	0.957	0.125	0.741	1.236
C#4 FEMALI	ON E	1.740	0.248	1.315	2.301
Parameter	ization using	Reference (Class 3		
C#1 FEMALI	ON E	0.776	0.111	0.586	1.028
C#2 FEMAL	ON E	1.045	0.136	0.809	1.349
C#4 FEMALI	ON E	1.817	0.241	1.401	2.358

EQUATIONS:

Threshold \rightarrow Probability = $1/(1 + \exp(x))$

$$logit\ ratio = ln\left(\frac{p(c=k|x)}{p(c=K|x)}\right) = a + b(x)$$

$$p(c = k|x) = \frac{e^{a_k + b_k(x)}}{\left(e^{a_k + b_k(x)} + e^{a_2 + b_2(x)} + e^{a_3 + b_3(x)}\right)}$$