

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos - PSI – EPUSP PSI 3212 - LABORATÓRIO DE CIRCUITOS ELÉTRICOS

EXPERIÊNCIA 07 – CIRCUITOS COM AMPLIFICADORES OPERACIONAIS

PARTE 1 - INTRODUÇÃO TEÓRICA

Elaboração: A. S. e V. N.

REV. 2018: PROFS L. Y.; E. G. e A. C. S.

MNPC/**2020**

1. OBJETIVO

Entender o funcionamento de um amplificador operacional ideal; aplicar leis de Kirchhoff para resolver circuitos com amplificadores operacionais ideais.

2. AMPLIFICADOR OPERACIONAL

Amplificadores são dispositivos ativos ¹ capazes de aumentar a amplitude dos sinais. Estão presentes em muitos sistemas eletrônicos, desempenhando funções essenciais. Em especial, os <u>amplificadores operacionais</u> (AmpOp) são extremamente versáteis e possuem amplas possibilidades de aplicações em eletrônica e computação. Os AmpOps são capazes de produzir tensões de saída centenas ou milhares de vezes superiores às tensões dos terminais de entrada. O diagrama da Fig. 1 mostra a representação esquemática de um AmpOp.

Figura 1 – Representação esquemática de um Amplificador Operacional.

_

¹ Dispositivos ativos são aqueles capazes de fornecer uma energia maior na saída do que a energia que entrou. Isso é possível porque o dispositivo é alimentado por uma fonte externa ou alimentação.

As nomenclaturas utilizadas na Figura 1 são:

- O terminal "V₁" é a entrada "não inversora" do AmpOp, medida em relação ao terminal de referência 0:
- O terminal "V." é a "entrada inversora" do AmpOp, também medida em relação ao terminal de referência 0;
- V_{id} é a tensão diferencial entre V_+ e V_- , ou seja, $V_{id} = V_+ V_-$.
- V₀ é a tensão de saída do AmpOp, também medida em relação ao terminal de referência 0;
- +Vcc e -Vcc são as tensões de alimentação em CC (simétricas). Note que não se liga o terminal de referência 0 ao AmpOp.

2.1 Definição de ganho de tensão (Av) em circuitos

O ganho de tensão (**Av**) em um circuito é um parâmetro que nos dá uma ideia da relação entre a amplitude da tensão de saída e a amplitude da tensão de entrada. Quando o ganho de tensão do circuito é maior que 1, significa que o circuito amplificou o sinal. Quando o ganho de tensão do circuito é menor do que 1, significa que o circuito atenuou o sinal. Notem que nos circuitos resistivos (exemplo um circuito divisor resistivo) o ganho Av será constante, independente da frequência. Como visto na experiência "Resposta em Frequência", se o circuito possuir elementos reativos (capacitâncias ou indutâncias) o ganho de tensão poderá variar de acordo com a frequência.

2.2 Ganho de Tensão (A) do Amplificador Operacional (Ganho de tensão "em malha aberta") Um dos parâmetros que caracteriza o AmpOp é o ganho de tensão, $\bf A$, definido pela relação entre a tensão de saída (V_o) e a tensão de entrada (V_{id}) (Figura 1), sendo esta caraterizada pela diferença entre as tensões dos seus terminais, V_+ e V_- , como indicado em (1).

$$A = \frac{V_o}{V_{id}} = \frac{V_o}{V_+ - V_-} \tag{1}$$

Num AmpOp **ideal** o ganho "**A**" é infinito. Na prática, o ganho "**A**" é um valor bem elevado, que pode ser da ordem de algumas centenas a dezenas de milhares de volts por volts. Observem que pelo fato da tensão de saída do AmpOp ser limitada pela tensão de alimentação (\pm V_{CC}), e assumindo-se que seu ganho (A) é da ordem de 10⁴ a 10⁶, conclui-se que V₊ - V₋ \approx 0.

Representação do ganho em decibéis (dB)

O ganho é um parâmetro que pode assumir valores da ordem de unidades até centenas de milhares de volts por volts. Assim sendo, será conveniente escolher a melhor forma de sua representação: linear ou decibéis (dB). Para variações de uma ou duas ordens de grandeza costuma-se utilizar a representação linear. Por outro lado, para variações de três ordens de

grandezas ou superior prefere-se utilizar a representação em decibéis. O ganho em decibéis é definido pela expressão a seguir:

$$A_{dB} = 20 \log A \tag{1a}$$

A Tabela 1 mostra exemplos de representação de ganho no formato linear e no formato logarítmico.

Tabela 1: Ganho linear x Ganho em decibéis

Α	A (dB)
0,001	- 60
0,01	- 40
0,05	- 26
0,1	- 20
1	0
5	14
10	20
20	26
50	34
80	30
100	40
1000	60
10000	80

2.3 Impedância de entrada

Em AmpOps ideais, as correntes nos ramos de entrada (entrada não-inversora V_+ e entrada inversora V_-) são consideradas nulas. Desse ponto de vista pode-se concluir que a impedância Z_{in} vista entre V_+ e V_- , chamada de impedância de entrada do AmpOp, <u>é infinita</u>. Ressalta-se que na maioria das vezes é suficiente considerarmos apenas a parte resistiva da impedância, ou seja, consideramos que $Z_{in} = R_{in}$. Portanto, o valor do R_{in} é idealmente infinito, sendo na prática da ordem de vários megaohms.

Exemplo 1 - Circuito inversor com AmpOp ideal

Um circuito inversor é aquele em que o ganho de tensão do circuito é negativo. Por exemplo, um circuito com ganho "- 2" terá uma tensão de saída que corresponderá à tensão de entrada multiplicada por dois e "invertida", que no caso de um sinal senoidal corresponderá a uma defasagem ± 180°.

Consideremos o circuito mostrado na Fig. 2, sendo o ganho do AmpOp igual a "A".

Figura 2 – Circuito inversor utilizando Amplificador Operacional.

Nesse exemplo, vamos supor que o AmpOp seja ideal, desta forma: $R_{in} \to \infty$ e A $\to \infty$.

Como $R_{in} \to \infty$, a corrente i_- que está indicada na Fig. 2 entrando pelo terminal "V." do AmpOp será nula, ou seja, $i_- = 0$. Com isso, pela lei dos nós, $i_1 = i_2$.

Por outro lado, como A $\rightarrow \infty$ e assumindo-se que a tensão de saída do AmpOp (V_o) é finita, resulta que $V_+ - V_- = 0$, já que $V_o = A(V_+ - V_-)$. Conclui-se então que, no caso do AmpOp ideal, temos $V_+ = V_-$. Chamamos esta condição de "curto-circuito virtual".

No caso particular da Figura 2, como $V_+ = 0 V$ (seu terminal está aterrado), então $V_- = 0 V$. Dizemos então que temos um "<u>terra virtual</u>" no terminal V_- (note que este é um caso particular do "curto- circuito virtual").

Assim, $i_1=rac{V_i-0}{R_1}$ e $i_2=rac{0-V_o}{R_2}$. Como também $i_2=i_1$, podemos escrever que:

$$V_o = -\frac{R_2}{R_1} V_i \tag{2}$$

Ou seja, a tensão de saída (V_0) é igual à tensão de entrada multiplicada pelo fator $-\frac{R_2}{R_1}$. Por exemplo, se $R_1=R_2$ teremos que: $V_0=-V_i$.

Da mesma forma que definimos o ganho de tensão do AmpOp em malha aberta (\mathbf{A}), podemos também definir o ganho de tensão do circuito. O ganho de tensão do circuito " $\mathbf{A_v}$ " será:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{R_{2}}{R_{1}} \tag{2.a}$$

Exemplo 2 - Circuito Amplificador Somador Inversor

Neste circuito, dois ou mais sinais são aplicados à entrada do *AmpOp* inversor. O sinal de saída será a soma dos sinais de entrada amplificados. No exemplo abaixo, dois sinais são aplicados à entrada e teremos a tensão indicada em (2.b) como saída:

O que achou das análises que acabamos de apresentar nos exemplos 1 e 2? Se ainda ficou confuso para você, não se preocupe, pois embora cada um dos passos seja simples, foram introduzidos conceitos que não são intuitivos, como, por exemplo, o "curto-circuito virtual". Vamos apresentar a seguir outro conceito que é o gerador vinculado.

3. MODELO EQUIVALENTE DO AMPLIFICADOR OPERACIONAL

A análise feita no item 2 é elegante, porém considera que $\mathbf{A} \to \infty$ (daí o surgimento do "curto-circuito virtual", que muito simplificou a análise). No entanto, como você verá ao longo do seu curso, nem sempre podemos considerar o AmpOp ideal. Surge então a necessidade de considerar $\mathbf{A} \neq \infty$. Para isso, opta-se por estabelecer um modelo equivalente de circuito para o AmpOp que possa ser utilizado em quaisquer circuitos lineares. Para tanto, vamos utilizar um tipo de dispositivo visto em Circuitos Elétricos que é o "gerador vinculado controlado por tensão". O gerador vinculado controlado por tensão é um tipo especial de gerador, onde a tensão de saída deste

elemento é determinada por outra tensão (do circuito) e multiplicada por um fator (que denominaremos de ganho), como mostrado na Figura 3.

A tensão "V₁" indicada na Figura 3a é uma tensão de alguma outra parte do circuito que é escolhida de acordo com o interesse. A grandeza "A" é um fator de multiplicação do gerador vinculado. Apenas para efeito de comparação, a representação utilizada na teoria de Circuitos Elétricos é indicada na Figura 3b.

Figura 3 - Gerador Vinculado Controlado por Tensão.

Vamos agora representar o AmpOp através do seu modelo equivalente, utilizando um "gerador vinculado controlado por tensão". A Figura 4 mostra as duas formas de se representar um AmpOp. Note que $V_0 = A.V_{id} = A (V_+ - V_-)$ nas duas representações da Figura 4.

- (a) Representação esquemática do AmpOp.
- (b) Modelo equivalente do AmpOp utilizando gerador vinculado.

Figura 4 - Representações do AmpOp.

4. CIRCUITO AMPLIFICADOR COM REALIMENTAÇÃO NEGATIVA, CONSIDERANDO-SE GANHO DE TENSÃO FINITO DO AMPOP

Vamos analisar mais uma vez o comportamento do circuito inversor amplificador da Figura 2, substituindo o AmpOp pelo seu modelo equivalente, ou seja, por um gerador de tensão controlado por tensão, como ilustrado na Figura 4b, e considerar que o ganho do AmpOp (**A**) é <u>finito</u>.

Neste caso, o gerador de tensão controlado por tensão, que modela o <u>amplificador operacional</u> <u>ideal</u>, gera em sua saída (V_o) uma tensão proporcional à V_{id} (onde $V_{id} = V_+ - V_-$). Como indicado no item 3, $V_o(t) = \mathbf{A} \cdot V_{id}(t)$, sendo \mathbf{A} o fator de amplificação do AmpOp.

Figura 5 - Circuito inversor com AmpOp representado pelo modelo equivalente.

A Figura 5 apresenta o circuito inversor amplificador com o modelo equivalente do AmpOp. Neste circuito, a entrada positiva do amplificador operacional, V_{+} , está aterrada, logo $V_{+} = 0$. Também, pela malha de saída, $v_{o}(t) = A.v_{id}(t)$. Logo $v_{o}(t) = A.(V_{+} - V_{-}) = -A.V_{-}$ ou: $V_{-} = -v_{o}(t) / A$

Adicionalmente, como
$$i_{-} = 0 \rightarrow i_{1} = i_{2}$$
, temos: $\frac{v_{i} - V_{-}}{R_{1}} = \frac{V_{-} - v_{o}}{R_{2}} \rightarrow \frac{v_{i} + v_{o}/A}{R_{1}} = \frac{-v_{-}/A - v_{o}}{R_{2}}$

Resulta que:

$$\frac{v_o}{v_i} = -\frac{R_2}{R_1} \left(\frac{1}{1 + \frac{1}{A} \left(1 + \frac{R_2}{R_1} \right)} \right) \tag{3}$$

Observe que, se o valor do ganho do AmpOp, "**A**", for muito elevado, a expressão 3 se aproximará da expressão 2. O ponto importante a ser destacado aqui é que, para valores elevados de "**A**", o ganho do circuito será definido somente pelos valores de R_1 e de R_2 .

5. CIRCUITO INTERNO DE UM AMPLIFICADOR OPERACIONAL

Um AmpOp comercial muito comum é o 741. Foi desenvolvido pela Farchild Semiconductor em 1968 e é ainda utilizado nos dias de hoje. A Fig. 6 mostra o circuito interno de um AmpOp 741.

Figura 6 – Diagrama elétrico do AmpOp 741 (Fairchild).

Com relação à Figura 6 observe que, para a análise do AmpOp neste experimento, estaremos interessados apenas em modelar o comportamento da saída v_o do dispositivo em relação aos sinais de entrada (v_+ e v_-). Para isso podemos utilizar o modelo apresentado no item 3 sem se aprofundar no circuito interno real (o que será visto em disciplinas posteriores). Cabe notar, no entanto, que existe um capacitor no circuito da Figura 6 (identifique-o na figura). Esse capacitor introduz no ganho "A" uma resposta em frequência similar ao de um circuito RC passa baixas, o que significa que o ganho "A" do AmpOp diminui com o aumento da frequência. Podemos analisar o efeito desse "RC" substituindo "A" da equação (3) por uma expressão adequada dependente da frequência.