More Than a Number: A Multi-dimensional Framework for Automatically Assessing Human Teleoperation Skill

Emily Jensen, Bradley Hayes, Sriram Sankaranarayanan

University of Colorado Boulder

Contact: emily.jensen@colorado.edu

UAV Teleoperation Task

Proof of concept pilot study
5 participants each competed 2 trials
Operate quadrotor using Xbox controller in Unity
Three task segments

- Take off to reach target
- Hover in target for 5 consecutive seconds
- Land at starting position

Example trajectories

Research Motivation: Defining Skill

Safe teleoperation is a critical skill in domains such as:

- Robotic surgery
- Space exploration
- Construction and inspection

How do we know if someone is skillful at teleoperation?

- Most work defines manual rubrics
- Evaluation can be inconsistent over time or between judges

Skill is usually defined as a single value

- Performance metrics like accuracy or Boolean completion
- But, performance can be less skillful for different reasons, such as completing too slow or backtracking

This yields the following research question:

How can we define different aspects of teleoperation skill in a way that can be automatically assessed by a computer?

Our Contribution (tl;dr)

We argue the notion of skill needs nuance beyond a single measurement

We propose four possible dimensions to measure skill (though there may be more)

We provide an initial proof of concept to a UAV teleoperation task, using primitive tasks and formal specifications

Approach

Define the trial as a sequence of primitive tasks

Take off vertically and stop in floating target
Hover stationary in the target for 5 consecutive seconds
Land vertically and gently on landing pad
Other tasks could include orienting or lateral movements

Define **skill as a measure of performance** for a primitive task Performance can be measured along **different dimensions**:

Efficiency: minimizing use of time or resources

Resilience: completing the task in adverse environments

Readiness: performing in different personal conditions

Robustness: adherence to task specifications

distinguishes "clearly" vs. "barely" correct

Different dimensions may be needed for other tasks

Calculate skill along efficiency and robustness dimensions

Time efficiency: slower completion is less efficient

Control efficiency: total variation distance of inputs

Robustness: defined specifications for primitive tasks

$$(v_y \ge 0) \text{ until}_{[0,T]} (|y - H| \le \epsilon \land |v_y| \le \delta)$$

Takeoff: within T seconds, reach height H with velocity 0 Similar formulation for landing

Eventually $\left(\text{Always}_{[0,T]} \left(y \in [y_{\min}, y_{\max}] \land |v_y| \leq \epsilon\right)\right)$ Hover: stay in vertical range for T seconds with velocity 0

Results

- No takeoff or landing segments met specifications
- Relative differences in control efficiency may be more obvious for more complex tasks
- There may be tradeoff between different skill dimensions
- System designers can decide which dimensions are important

		Takeoff			Hover			Land		
Participant	Trial	RO	TE	CE	RO	TE	CE	RO	TE	CE
1	1	-4.99	-5.90	-1.79e-06	0.25	-40.32	-1.92e-06	-0.82	-5.38	-5.74e-06
	2	-2.54	-6.11	-1.74e-06	0.09	-5.94	-2.91e-06	-2.19	-6.08	-2.60e-06
2	1	-7.14	-6.34	-1.62e-06	0.44	-44.72	-4.82e-06	-1.55	-3.53	-6.00e-06
	2	-3.72	-7.60	-2.62e-06	0.12	-15.66	-4.89e-06	-1.59	-4.42	-6.58e-06
3	1	-1.66	-12.59	-2.51e-06	0.38	-22.40	-9.72e-06	-1.31	-3.23	-3.03e-06
	2	-7.12	-8.70	-0.85e-06	0.25	-7.74	-6.62e-06	-0.65	-2.58	-2.07e-06
4	1	-1.63	-7.95	-1.97e-06	0.71	-5.22	-6.84e-06	-1.46	-3.85	-6.96e-06
	2	-0.51	-10.33	-1.97e-06	0.93	-7.10	-6.81e-06	-0.13	-4.44	-4.46e-06
5	1	-0.00	-9.60	-5.67e-06	1.08	-6.06	-11.55e-06	-1.85	-4.69	-5.65e-06
	2	-4.84	-5.42	-2.56e-06	0.95	-13.92	-8.15e-06	-1.32	-2.73	-6.01e-06

Note: RO = Robustness, TE = Time Efficiency, CE = Control Efficiency best in column = **bold**, worst in column = *italics*

Future Work

Apply framework to more complex, concurrent tasks
Automatically generate training examples to target weak skills
Complete larger, generalizable user study

- Distribution of skill values
- Measure learning curves
- Correlate with user performance ratings

