Индивидуальное домашнее задание N (2 часть) Математический анализ Вариант 6

Григорьев Даниил, ИСУ: 465635

Группа Р
3116, поток: Мат Ан Прод 11.3

14 апреля 2025

Вычислить длину кривой, заданной параметрически или в полярных координатах

1.
$$x = \sin^4 t, y = \cos^2 t$$

Решение

Формула длины кривой в параметрическом виде выглядит так:

$$L = \int_{t_1}^{t_2} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$$

Вычисляем производные:

$$\frac{dx}{dt} = 4\sin^3 t \cdot \cos t$$

$$\frac{dy}{dt} = -2\cos t \cdot \sin t$$

Подставляем в подынтегральное выражение в формуле длины кривой и преобразуем:

$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{16\sin^6 t \cos^2 t + 4\cos^2 t \sin^2 t} = \sqrt{4\cos^2 t \sin^2 t (4\sin^4 t + 1)}$$

$$\sqrt{4\cos^2 t \sin^2 t (4\sin^4 t + 1)} = 2|\cos t \sin t| \sqrt{4\sin^4 t + 1}$$

Заметим, что $x(t) = sin^4t = (sin^2t)^2 \ge 0$, а также x(t) имеет период π , то есть x(t) симметрично относительно $t = \pi$ Аналогично $y(t) = cos^2t \ge 0$ и y(t) имеет период π Если рассмотреть промежуток $t \in [0, \frac{\pi}{2}]$, то $sint \in [0, 1] \Longrightarrow x(t) = sin^4t \in [0, 1]; cost \in [1, 0] \Longrightarrow y(t) = cos^2t \in [1, 0]$, значит график кривой идет от точки (0, 1) к (1, 0) в первой четверти Если рассматривать дальше промежуток $t \in [\frac{\pi}{2}, \pi], sint$ будет положительным, но начнет убывать, а cost станет отрицательным $\Rightarrow y(t) = cos^2t$ будет положительной, но траектория кривой начнет повторяться, так как sin^2t, cos^2t - периодические с периодом π . То есть полный цикл x(t), y(t) проходит за $t \in [0, \pi]$ (на $t \in [\frac{\pi}{2}, \pi]$) кривая "возвращается" обратно по пройденному пути), значит графики кривой на таких промежутках симметричны \Rightarrow длины кривых равны (на графике выше как раз наблюдаем такую ситуацию)

Тогда получаем такое выражение для длины кривой, принимая $t \in [0, \pi]$:

$$L = \int_0^{\pi/2} 2\cos t \sin t \sqrt{4\sin^4 t + 1} \, dt$$

Сделаем замену $u = \sin^2 t$, $du = 2 \sin t \cos t dt$:

$$L = \int_0^1 \sqrt{4u^2 + 1} \, du$$

Этот интеграл вычисляется таким образом (интеграл от иррациональной функции):

$$\int_0^1 \sqrt{4u^2 + 1} \, du = \frac{u}{2} \sqrt{4u^2 + 1} \Big|_0^1 + \frac{1}{4} \ln \left(\sqrt{4u^2 + 1} - 2u \right) \Big|_0^1 = \frac{\sqrt{5}}{2} + \frac{1}{4} \ln(\sqrt{5} - 2) \approx 1,4789$$

Ответ

Длина кривой равна:

$$\sqrt{\frac{5}{2}} + \frac{1}{4}\ln(\sqrt{5} - 2) \approx 1,4789$$

Задание 2

Вычислить длину кривой, заданной параметрически или в полярных координатах

$$\phi = \frac{\sqrt{r^2 - 2}}{\sqrt{2}} - \arccos\frac{\sqrt{2}}{r}, 2 \le r \le 3$$

Кривая задана в полярных координатах как функция $\varphi = \varphi(r)$, то есть зависимость угла от радиуса. Используем формулу длины кривой в полярных координатах, заданной функцией $\varphi(r)$:

$$L = \int_{r_1}^{r_2} \sqrt{1 + r^2 \left(\frac{d\varphi}{dr}\right)^2} \, dr$$

Где:
$$\varphi(r) = \frac{\sqrt{r^2-2}}{\sqrt{2}} - \arccos\left(\frac{\sqrt{2}}{r}\right)$$
 $r \in [2,3]$

Найдём производную $\frac{d\varphi}{dr}$:

$$\frac{d}{dr}\left(\frac{\sqrt{r^2-2}}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}} \cdot \frac{1}{2\sqrt{r^2-2}} \cdot 2r = \frac{r}{\sqrt{2(r^2-2)}}$$

$$\frac{d}{dr}\left(\arccos\left(\frac{\sqrt{2}}{r}\right)\right) = \frac{1}{\sqrt{1-\left(\frac{\sqrt{2}}{r}\right)^2}} \cdot \frac{d}{dr}\left(\frac{\sqrt{2}}{r}\right) = \frac{1}{\sqrt{1-\frac{2}{r^2}}} \cdot \left(-\frac{\sqrt{2}}{r^2}\right)$$

Итак имеем:

$$\frac{d\varphi}{dr} = \frac{r}{\sqrt{2(r^2-2)}} + \frac{\sqrt{2}}{r^2\sqrt{1-\frac{2}{r^2}}} = \frac{r}{\sqrt{2(r^2-2)}} + \frac{\sqrt{2}}{r^2\cdot\sqrt{\frac{r^2-2}{r^2}}} = \frac{r}{\sqrt{2(r^2-2)}} + \frac{\sqrt{2}}{\sqrt{r^2-2}}$$

Приведём к общему знаменателю:

$$\frac{d\varphi}{dr} = \frac{r+2}{\sqrt{2(r^2-2)}}$$

Теперь подставим это значение в формулу длины кривой, заданной в полярных координатах:

$$L = \int_{2}^{3} \sqrt{1 + r^{2} \left(\frac{r+2}{\sqrt{2(r^{2}-2)}}\right)^{2}} dr = \int_{2}^{3} \sqrt{1 + \frac{r^{2}(r+2)^{2}}{2(r^{2}-2)}} dr$$

С помощью метода Симпсона и языка программирования Python я нашел численное значение интеграпа:

```
import numpy as np
from scipy.integrate import simpson
```

 $r_values = np.linspace(2, 3, 1001)$

integrand = np.sqrt(1 + (r_values**2 * (r_values + 2)**2) / (2 * (r_values**2 - 2)))
length = simpson(integrand, r_values)
print(length)

После запуска кода получаем значение 4.029614169529282

Ответ

 $\approx 4.029614169529282$