Assignmment-2

Q.1: How can I calculate the length of each gene from the ASM584v2 GTF file?

- Visit NCBI homepage: <u>National Center for Biotechnology Information</u>
- Choose 'Genome' from the dropdown menu.
- Type the scientific name of the organism you want to search for (e.g.: *Escherichia coli*). Click on 'search' button.
- Now, you will see a list of assemblies. Select the top one, i.e., ASM584v2 to download the GTF file.
- Run the below following -

(base) ibab@IBAB-MScBDB2-Comp007:~/NGS_Lab/ngs_files\$ awk '\$3 == "gene" {len = \$5 - \$4 + 1; print \$1, len}' GCF_000005845.2_ASM584v2_genomic.gtf > gene e_lengths.txt

```
(base) ibab@IBAB-MScBDB2-Comp007:~/NGS_Lab/ngs_files$ cat gene_lengths.txt
NC_000913.3 66
NC 000913.3 2463
NC 000913.3 933
NC 000913.3 1287
NC 000913.3 297
NC 000913.3 777
NC 000913.3 1431
NC 000913.3 954
NC_000913.3 588
NC_000913.3 567
NC 000913.3 714
NC_000913.3 486
NC 000913.3 405
NC 000913.3 1917
NC 000913.3 1131
NC_000913.3 1113
NC_000913.3 210
NC_000913.3 153
NC_000913.3 59
NC_000913.3 1167
NC 000913.3 906
NC 000913.3 504
NC 000913.3 276
NC_000913.3 264
NC_000913.3 219
NC_000913.3 942
NC_000913.3 2817
NC 000913.3 495
NC_000913.3 450
NC_000913.3 951
NC 000913.3 915
```

Q.2: Create a directory and download the reference genome of *Saccharomyces cerevisiae* along with annotation files in GTF and GFF formats.

- Create a directory using 'mkdir' command.
- Visit NCBI homepage: National Center for Biotechnology Information
- Choose 'Genome' from the dropdown menu.
- Type the scientific name of the organism you want to search for (e.g.: *Saccharomyces cerevisiae*). Click on 'search' button.
- Now, you will see a list of assemblies. Select the top one (hint: green tick) as shown below.

• Go to 'Action' and then click on 'Download'. Select 'RefSeq only' and choose those that you want to download.

• Unzip the file using 'gunzip' command and navigate into the sub-folders in it to see and analyse the .fna / .gtf / .gff files.

• Another way to download is through 'FTP' links or even using CLI.

$Index\ of\ /genomes/all/GCA/002/571/405/GCA_002571405.2_ASM257140v2$

Name	Last modified	Size
Parent Directory		-
GCA 002571405.2 ASM257140v2 assembly structure/	2025-06-21 17:43	=
GCA_002571405.2_ASM257140v2_assembly_report.txt	2023-12-03 18:24	2.6K
GCA_002571405.2_ASM257140v2_assembly_stats.txt	2023-12-03 18:24	28K
GCA_002571405.2_ASM257140v2_cds_from_genomic.fna.gz	2020-02-05 01:12	2.7M
GCA 002571405.2 ASM257140v2 fcs report.txt	2025-02-24 00:59	456
GCA 002571405.2 ASM257140v2 feature_count.txt	2023-12-03 18:24	902
GCA 002571405.2 ASM257140v2 feature table.txt.gz	2020-02-05 01:12	250K
GCA 002571405.2 ASM257140v2 genomic.fna.gz	2021-03-04 17:34	3.6M
GCA_002571405.2_ASM257140v2_genomic.gbff.gz	2023-12-03 18:24	7.3M
GCA_002571405.2_ASM257140v2_genomic.gff.gz	2025-06-21 17:43	656K
GCA 002571405.2 ASM257140v2 genomic.gtf.gz	2025-06-21 17:43	648K
GCA 002571405.2 ASM257140v2 genomic gaps.txt.gz	2020-02-05 01:12	133
GCA 002571405.2 ASM257140v2 protein.faa.gz	2020-02-05 01:12	1.7M
GCA 002571405.2 ASM257140v2 protein.gpff.gz	2023-12-03 18:24	3.7M
GCA 002571405.2 ASM257140v2 rna from genomic.fna.gz	2023-12-03 18:24	2.7M
GCA 002571405.2 ASM257140v2 translated cds.faa.gz	2020-02-05 01:12	1.9M
README.txt	2024-08-27 13:56	55K
annotation hashes.txt	2025-06-21 17:43	410
assembly status.txt	2025-07-24 07:10	14
md5checksums.txt	2025-06-21 17:43	6.5K
uncompressed_checksums.txt	2025-06-21 17:43	3.6K

HHS Vulnerability Disclosure

Q.3: What is the difference between assembly and alignment?

	Assembly	Alignment
Definition	Computational construction of a longer	Similarity-based arrangement of
Input	sequence from smaller sequence reads. It can	DNA, RNA or protein sequences.
Reference?	be de-novo (without a reference) or	It matches sequencing reads to an
Types	reference-guided.	existing reference genome to determine their origin. Types:- Global or local alignment
Purpose	To build the entire genome or transcript when the reference genome is missing or incomplete.	To find where each read maps on a known reference genome or transcriptome is.
Output	Contigs or scaffolds (assembled sequences) – FASTA format.	SAM or BAM files (coordinates of reads on the reference)
Tools Used	SPAdes, Velvet, MEGAHIT, Trinity (RNA)	BWA, Bowtie2, STAR, HISAT2, Minimap2

Use Cases	To find novel species, metagenomic studies, to discover structural variants, etc.	Variant calling, gene expression analysis, RNA-seq quantification, SNP detection, to annotate genomic features, etc.
Difficulty CPU usage Storage	Much more complex & resource-intensive, high CPU usage (especially for de-novo) and requires more storage (especially with intermediate contigs).	Relatively fast and lightweight, moderate to low CPU usage, easy to interpret results.
Disadvantages	Prone to fragmentation or misassembly.	Sensitive to reference genome errors.

Q.4: What is the difference between de-novo assembly and reference-based assembly?

	De-Novo Assembly	Reference-Based Assembly
Primary Goal	Reconstruct a genome or	Map reads to a known reference
	transcriptome without any	genome to infer variation or
	reference.	expression.
When to Use?	• New or poorly studied	• Model organisms (human, mouse,
	organisms.	yeast)
	Metagenomics	Clinical genomics
	• Novel virus or bacterial	• Variant calling, RNA-seq
	strains.	quantification
Genome Bias	No bias; entire sequence	Biased towards the reference; novel
	assembled from scratch.	sequences may be missed.
Data Requirement	Needs high coverage (30x -	Can work with lower coverage (~10x
_	100x +) & good quality data to	– 30x) since structure is already
	generate reliable contigs.	known.
Novel sequence	Can detect new genes,	Rare or novel variants may be missed
detection	rearrangements, or repeat	or misaligned.
	expansions.	

Repetitive Regions	Difficult to resolve repeats	Easier to handle with reference, as
	accurately; may result in gaps	repeats are known and aligned
	or fragmented assembly.	accordingly.
Output Examples	• FASTA files with	BAM/SAM alignment files
	contigs/scaffolds	VCF for SNP/indel calls
	Entire genome sequence	 Coverage maps or expression
	Graphs (e.g., De Bruijn)	matrices
Computational	High RAM & CPU needed;	Faster & less memory-intensive due to
load	more time-consuming (large	guided alignment.
	genomes).	
Error Sensitivity	Sensitive to sequencing errors;	Errors are easier to spot & correct
	can affect assembly quality or	against reference genome.
	contiguity.	
Tools (Genomic)	SPAdes, SOAPdenovo,	BWA, Bowtie2, Minimap2, GATK,
	ABySS, Canu (for long reads),	Samtools for post-processing, etc.
	Flye (for nanopore), etc.	
Tools	Trinity, Oases (RNA-seq de-	HISAT2, STAR, Kallisto, Salmon (for
(Transcriptomic)	novo), RNA-Bloom (long-read	quantification), etc.
	RNA), etc.	
Use in	To discover divergent or	To compare known variations & SNPs
evolutionary	unique genes in different	across individuals of the same species.
studies	species or populations.	
Scaffolding & Gap	Often requires paired-end or	Not needed as the reference already
Filling	mate-pair reads or long reads	provides structure.
	to scaffold properly.	

Q.5: What is the difference between FASTA and FASTQ file format?

	FASTA	FASTQ
Full name	FAST-All (because it can store any sequence type)	FASTQ (FAST + Quality)
Origin	Developed for the sequence databases like GenBank.	Developed by the Sanger Institute for storing raw sequencing reads.
Lines per entry	2 lines (or more if sequence wraps): Header line (starts with >) and sequence line.	Always 4 lines: header line (starts with @), sequence line, + separator, ASCII-encoded quality.
Quality encoding	Not supported	Usually Phred+33 (Illumina) or Phred+64 (older platforms) $Q = -10 * \log_{10}P;$ where, P = Probability of error

Header format	Flexible	Must match the identifier in line 1 and line 3.
Common tools	BLAST, Bowtie (for index), genome browsers, Prokka	FastQC, Trimmomatic, BWA, STAR, kallisto, HISAT2, Salmon
Storage purpose	Reference sequence, consensus genomes, contigs, scaffolds	Raw read data from sequencers (prior to alignment/assembly)
Example	>NC_090774.1 Yarrowia lipolytica chromosome 1E, complete sequence GCGTGCTCAGTCGAATCCT CCACTA	 description description description description description description description description

Q.6: How can I download paired-end nucleotide sequencing data of *Saccharomyces cerevisiae* (e.g. – ERR11532742) from a whole genome sequencing (WGS) experiment using either the NCBI SRA or the ENA (European Nucleotide Archive)?

- Visit ENA homepage https://www.ebi.ac.uk/ena/browser/home
- Enter the accession ID (ERR11532742) or organism name in the search bar and press 'Enter'.
- Select both the fastq.gz files (forward & reverse-end) and click on 'Get download script'. This contains wget links, so if you run the script then it will automatically both the fastq.gz files. And then gunzip or uncompress these.


```
(base) ibab@IBAB-MScBDB2-Comp007:~/Downloads$ chmod +x ena-file-download-selected-files-20250823-0627.sh
(base) ibab@IBAB-MScBDB2-Comp007:-/Downloads$ ./ena-file-download-selected-files-20250823-0627.sh
--2025-08-23 11:58:25-- ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR115/042/ERR11532742/ERR11532742_2.fastq.gz
Resolving proxy.ibab.ac.in (proxy.ibab.ac.in)... 192.168.1.254
Connecting to proxy.ibab.ac.in (proxy.ibab.ac.in)|192.168.1.254|:3128... connected.
Proxy request sent, awaiting response... 200 Gatewaying
Length: 229187791 (219M) [text/plain]
Saving to: 'ERR11532742_2.fastq.gz'
ERR11532742_2.fastq.gz
                                   100%[========]] 218.57M 2.44MB/s
                                                                                                                                  in 99s
2025-08-23 12:00:16 (2.21 MB/s) - 'ERR11532742_2.fastq.gz' saved [229187791/229187791]
 -2025-08-23 12:00:16-- ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR115/042/ERR11532742/ERR11532742_1.fastq.gz
Resolving proxy.ibab.ac.in (proxy.ibab.ac.in)... 192.168.1.254
Connecting to proxy.ibab.ac.in (proxy.ibab.ac.in)|192.168.1.254|:3128... connected.
Proxy request sent, awaiting response... 200 Gatewaying Length: 232721564 (222M) [text/plain]
Saving to: 'ERR11532742_1.fastq.gz'
ERR11532742_1.fastq.gz
                                   100%[========] 221.94M 3.03MB/s
                                                                                                                                  in 76s
2025-08-23 12:01:34 (2.93 MB/s) - 'ERR11532742_1.fastq.gz' saved [232721564/232721564]
```

Q.7: Download the single-cell RNA-Seq data of E. Coli or Saccharomyces cerevisiae; the one having small size.

- 1. Go to the SRA website.
- 2. Type "Single cell RNA-seq E. Coli" in the search bar & press 'Enter'.
- 3. Click on the first hit.
- 4. Go below the page and click on the SRA metadata link.
- 5. From the Data Access column, copy the NCBI link.
- 6. Open terminal and navigate to the required folder and download using the wget command.

ibab@IBAB-MScB0B02-Comp001:-/MGS Lab\$ wget https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos4/sra-pub-zq-5/SRR028/28237/SRR28237338/SRR28237338.lite.1
--2025-07-24 21:17:48- https://sra-downloadb.be-md.ncbi.nlm.nih.gov/sos4/sra-pub-zq-5/SRR028/28237/SRR28237338.lite.1
Resolving sra-downloadb.be-md.ncbi.nlm.nih.gov (sra-downloadb.be-md.ncbi.nlm.nih.gov)... 130.14.250.18, 130.14.250.26, 130.14.250.24, ...
Connecting to sra-downloadb.be-md.ncbi.nlm.nih.gov (sra-downloadb.be-md.ncbi.nlm.nih.gov)|130.14.250.18|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 97328228 (93M) [application/x-troff-man]
Saving to: 'SRR28237338.lite.1'

Q.8: Download paired-end RNA-seq data of Escherichia coli from a public repository (NCBI SRA or ENA) with the following experimental design:

- 1. Conditions: 3 samples under healthy (control) condition, 3 samples under diseased treatment condition at different time points.
- 2. Replicates: Each condition/time point has 3 biological replicates.

