Работа с программой, моделирующей остывание изолированной ненамагниченной нейтронной звезды.

Д.М. Поляков

14 августа 2016 г.

Рабочий код реализован на языках Fortran77, Fortran95. Исходные коды программных единиц содержат платформо-зависимые элементы (относительные пути к файлам), поэтому для сборки программы возможно понадобится перекомпиляция под вашу систему. Описание правил сборки утилитой GNU Make содержится в прилагаемом Makefile.

Таблица 1: Список всех исходных и конфигурационных файлов.

Исходные коды	Конфигурационные файлы	Входные файлы
betaTable.f95	gaps.d	$mechanical Data \backslash mechanical Input.txt$
bskfit.f	$tb_ts_rho8_fixed.dat$	inputData\configFile.txt
calculations.f95		inputData\frozenStep.txt
compos21.f		inputData\lockalHeating.txt
condBSk21.f		inputData\superfluid.txt
condcore.f		inputData\outputParameters.txt
cvfull.f		
eos14.f		
eosmag14.f		
gusakov.f		
main.f95		
mechanicalModel.f95		
mechanicalModelIO.f95		
model.f95		
modelIO.f95		
neucore.f		
neutrinos.f95		
sfgaps.f		
sfreduc.f		
sphericalHeatEquation.f95		
sphericalHeatEquationIO.f95		
tbtsfb.f		
testModel.f95		
tovbskfit.f95		
tridiagonal.f95		

Список файлов и их объектов с платформо-зависимыми элементами:

- main.f95
- modelIO.f95
- mechanicalModelIO.f95
- sphericalHeatEquation.f95
- sphericalHeatEquationIO.f95
- \bullet testModel.f95

Программа позволяет получить распределение температуры, теплоёмкости, теплопроводности, излучательной способности нейтринных источников в звезде в заданные моменты времени, кривые общих нейтринных потерь и полной электромагнитной светимости. Пользователь задаёт параметры механической модели(центральную плотность звезды и относительную точность построения), локальные источники нагрева, начальный шаг интегрирования по времени, выбирает модели сверхтекучести для нейтронов и протонов, также можно задать начальный момент времени и распределение температуры (если мы хотим проследить эволюцию на интересующем нас интервале времени).

Разберём два способа работы с программой: через входные файлы и через командную строку.

Работа из командной строки. Чтобы запустить моделирование эволюции тепловой структуры звезды с момента необходимо запустить программу утилитой make. Далее вводить запрашиваемые параметры:

- Номер уравнения состояния (19, 20 или 21). Необходимо ввести 21, так как некоторые из используемых аналитических подгонок используют именно EOS21.
- Глубину механической модели «1» соответствует глубокой модели (внешний слой имеет плотность $\rho_b = 10^{10} \, \text{г/cm}^3$), «2» не глубокой модели (внешний слой имеет плотность $\rho_b = 10^8 \, \text{г/cm}^3$).
- ullet Центральную плотность звезды ho_c в граммах.
- Относительную точность расчёта механической структуры (обычно 10^{-7}).
- Вес численной схемы $\sigma \in [0,1].$
- Начальный шаг разностной схемы по времени в секундах.
- Выбрать вариант для расчёта («у» с некоторого момента, распределение температуры для которого указано в файле frozenStep.txt 5, «n» с момента, близкого к рождению звезды, с начальным изотермическим распределением $T = 10^{10}$ K).
- Указать источники локального нагрева, если они есть (их описание должно содержаться в файле lockalHeating.txt 6).
- Включить сверхтекучесть нуклонов, если необходимо, указав номера моделей сверхтекучести (см. gaps.d).

Работа с помощью входных файлов. Чтобы запустить моделирование эволюции тепловой структуры звезды с момента необходимо запустить программу утилитой make (предварительно изменив пару строк из main.f95).

- В файле configFile.txt необходимо в одной строке указать вес вычислительной схемы σ , начальный шаг по времени τ_0 в секундах и 3 целочисленных ключа: «frozenKey», «lockalHeatingKey», «superfluidKey». Если вы не хотите использовать заданное в таблице изначальное распределение, то в качестве «frozenKey» укажите «0», если хотите «1». Если заданы источники нагрева, то в качестве «lockalHeatingKey» укажите «1», если нет «0». Если вы хотите включить в модель сверхтекучесть, то в качестве «superFluidKey» укажите «1» (предварительно указав её типы в файле superfluid.txt).
- В файле mechanicalInput.txt необходимо в первой строке указать номер EOS и глубину механической модели («1» глубокая модель, «2» неглубокая модель), во второй строке задать центральную плотность ρ_c в граммах и относительную точность расчёта механической структуры.

Таблица 2: Пример заполнения файла configFile.txt.

Вес $\sigma=0.7$, изначальный шаг по времени $\tau_0=0.04$ с, расчёт ведётся с рождения нейтронной звезды, в модели нет локальных источников нагрева, сверхтекучесть нуклонов учтена.

Таблица 3: Пример заполнения файла mechanicalInput.txt.

mechanical	Input.txt			
21 2 1.0 d + 15	1.0d-7			

Механическая структура рассчитывается для с использованием EOS21, внешняя граница пролегает на уровне с плотностью $\rho_b=10^8~{\rm r/cm}^3.$

Для обоих способов работы необходимо указать моменты времени, для которых вы хотите получить распределения физических параметров в звезде. Для этого необходимо сформировать файл output Parameters.txt. В первой строке этого файла указывается число моментов времени, для которых мы хотим получить распределения, в последующих строках с помощью трёх вещественных чисел указывается время: первое число задаёт года, второе — сутки, третье — секунды. Важно: интересующие моменты времени должны быть указаны в порядке возрастания.

Таблица 4: Пример заполнения файла outputParameters.txt.

outputParameters.txt			
12			
0.0d0	0.0d0	0.0d0	
0.0d0	0.0d0	100.0d0	
0.0d0	0.5d0	0.0d0	
0.0d0	10.0d0	0.0d0	
1.0d0	0.0d0	0.0d0	
8.0d0	0.0d0	0.0d0	
64.0d0	0.0d0	0.0d0	
500.0d0	0.0d0	0.0d0	
10000.0d0	0.0d0	0.0d0	
100000.0d0	0.0d0	0.0d0	
500000.0d0	0.0d0	0.0d0	
5000000.0d0	0.0d0	0.0d0	

Будут записаны распределения для 12 моментов времени, начиная с начального, заканчивая распределением через 5 миллионов лет.

Таблица 5: Пример заполнения frozenStep.txt

frozenStep.txt					
1143					
0.157787E + 14	$0.500006\mathrm{E}{+06}$	$0.000000\mathrm{E}{+00}$	$0.100000\mathrm{E}{+16}$	$0.83950813\mathrm{E}{+05}$	
0.157787E + 14	$0.500006\mathrm{E}{+06}$	$0.564838\mathrm{E}{+02}$	$0.100000\mathrm{E}{+16}$	$0.83950813\mathrm{E}{+05}$	
0.157787E + 14	$0.500006\mathrm{E}{+06}$	$0.169451\mathrm{E}{+03}$	$0.100000\mathrm{E}{+16}$	$0.83950813\mathrm{E}{+05}$	

В первой строке необходимо указать число пространственных узлов, а затем разместить таблицу, по форме аналогичную таблице из ответа result.txt 7.

Рассмотрим правило заполнения файла lockal Неating.txt. В первой строке необходимо указать число событий локального нагрева, в последующих строках дать описание этих событий. Каждое событие описывается тремя строками: в первой – общая энергетика события в эргах, во второй – время начала нагрева в формате год, сутки, секунды и продолжительность, в третьей – верхняя и нижняя границы слоя, где происходит нагрев в r/cm^3

Таблица 6: Пример заполнения lockalHeating.txt

Пример вспышки с выделением 10^{40} эрг в течение 10 секунд, через миллион лет после рождения звезды, в слое, ограниченном плотностями $\rho_{upper} = 5 \times 10^{10} \frac{\Gamma}{\text{CM}^3}$ и $\rho_{bottom} = 1.35 \times 10^{12} \frac{\Gamma}{\text{CM}^3}$.

Форма записи ответа. Результаты моделирования содержаться в папке outputData. Запись указанных в outputParameters.txt 4 распределений производится в файл result.txt 7, в следующем формате: сначала идёт шапка с описанием модели, затем число пространственных узлов в модели и число моментов времени, для которых построены распределения, затем — сами распределения. Для начального момента времени выписаны время в секундах, время в годах, расстояние от центра звезды в сантиметрах, плотность вещества в Γ/cm^3 , температура в Кельвинах, теплоёмкость в $\left[\frac{\text{эрг}}{\text{см}^3 \text{K}}\right]$, теплопроводность в $\left[\frac{\text{эрг}}{\text{см} \text{ с K}}\right]$, излучательная способность источников в $\left[\frac{\text{эрг}}{\text{см}^3 \text{с}}\right]$. Для последующих моментов времени добавляется величина теплового потока между узлами сетки в эрг/с.

Таблица 7: result.txt

```
result.txt
model: 21
model depth: 10^8 \text{g/cc}
relative accuracy in total stellar mass SMASS .1000000E-06
central grav.mass density [g/cc] .1000000E+16
stellar mass [g] .3685329E+34 stellar mass [M_{sun}] 0.185E+01
g14 - gravitational acceleration in 10^{14}~cm/s^2 .2116947E+01
radius .1245748E+07
spatialKnotsNumber: 1509
sigma = 0.700000E{+}00
SF model's numbers:
n3P2 = 20
n1S0 = 6
p1S0 = 12
#
1509
35
time
                  timeInYear
                                      radius
                                                         rho
                                                                          temperature
0.000000E+00
                  0.000000E+00
                                     0.000000E+00
                                                       0.100000E + 16
                                                                          0.10000000E+11
0.000000E+00
                  0.000000E+00
                                     0.564838E + 02
                                                       0.100000E + 16
                                                                          0.10000000E + 11
```

В файл resultFlux.txt 8 ведётся запись полного теплового потока с поверхности, полная мощность источников в звезде, температура на границе сетки дискретизации и температура на границе звезды.

В файл error.txt ведётся запись потерь энергии на сетке и потерь за счёт источников и стока с поверхности.

В файл mechanicalOutput.txt записана механическая модель звезды.

Таблица 8: resultFlux.txt

```
resultFlux.txt
model: 21
model depth: 10^8 \text{g/cc}
relative accuracy in total stellar mass SMASS .1000000E-06
central grav.mass density [g/cc].1000000E+16
stellar mass [g] .3685329E+34 stell<br/>r mass [M_{sun}] 0.185E+01 g14 - gravitational acceleration in 10<br/><sup>14</sup> cm/s² .2116947E+01
radius .1245748E+07
spatialKnotsNumber: 1509
sigma = 0.700000E+00
{\bf SF} model's numbers:
\mathrm{n3P2}=20
n1S0 = 6
p1S0 = 12
                                                                  Tg[K] on rho_b
      {\rm time}
                       time In Year \\
                                              surface Flux\\
                                                                                                 Ts
                                                                                                              {\it neutrinoLosses}
                                                                   0.10000E + 11
                                                                                         0.19429E + 08
0.0000000\mathrm{E}{+00}
                       0.00000E+00
                                             -0.25918E+40
                                                                                                              -0.21269E + 51
                       0.12675 \text{E-}08
0.4000000E-01
                                            -0.25071E+40
                                                                   0.99060E + 10
                                                                                        0.19144E + 08
                                                                                                             \text{-}0.51369E\!+\!49
```