FU05 Computer Architecture

5. Arithmetic (演算回路)

Ben Abdallah Abderazek

E-mail: benab@u-aizu.ac.jp

Arithmetic

- So far, we have seen:
 - Performance (seconds, cycles, instructions)
 - Instruction Set Architecture
 - Assembly Language and Machine Language
- What's next:
 - Implementing the Architecture

Arithmetic (Cont.)

- Operations on integers
 - Addition
 - Subtraction
 - Multiplication
 - Division
 - Dealing with overflow

^{*}People use base 10, Computers use base 2

Signed binary numbers

Possible representations:

Sign Magnitude:

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -0$
 $101 = -1$
 $110 = -2$
 $111 = -3$

One's Complement

000 = +0

$$001 = +1$$
 $010 = +2$
 $011 = +3$
 $100 = -3$
 $101 = -2$
 $110 = -1$
 $111 = -0$

Two's Complement

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -4$
 $101 = -3$
 $110 = -2$
 $111 = -1$

Issues: balance, number of zeros, ease of operations

32 bit signed numbers

Two's Complement Operations 2の補数演算

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!

Two's Complement Operations 2の補数演算

Converting n bit numbers into numbers with more than n bits:

- MIPS 8 bit, 16 bit values / immediates converted to 32 bits
- Copy the most significant bit (the sign bit) into the other bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

MIPS "sign extension" example instructions:

```
load byte (signed)load byte (unsigned)slti set less than immediate (signed)sltiu set less than immediate (unsigned)
```

Addition & Subtraction

加減算

Just like in grade school (carry/borrow 1s)

- Two's complement operations easy
 - subtraction using addition of negative numbers

```
0110
- <u>0101</u>
```

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 0111

```
+ 0001
```

note that overflow term is somewhat misleading,

it does not mean a carry "overflowed"

Detecting Overflow

Overflowの検出

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A B
 - Can overflow occur if B is 0 ?
 - Can overflow occur if A is 0 ?

Impacts of Overflow

Overflowの影響

- When an exception (interrupt) occurs:
 - Control jumps to predefined address for exception (interrupt vector)
 - Interrupted address is saved for possible resumption in exception program counter (EPC); new instruction: mfc0 (move from coprocessor0)
 - Interrupt handler handles exception (part of OS).
 registers \$k0 and \$k1 reserved for OS
- Details based on software system / language
 - C ignores integer overflow; FORTRAN not
- Don't always want to detect overflow

 new MIPS instructions: addu, addiu, subu
 note: addiu and sltiu still sign-extends.

ALU: Arithmetic Logic Unit

算術論理演算ユニット

operation

Logic operations

Sometimes operations on individual bits needed:

Logic operation	C operation	MIPS instruction
Shift left logical	<<	sll
Shift right logical	>>	srl
Bit-by-bit AND	&	and, andi
Bit-by-bit OR		or, ori

- and and andi can be used to turn off some bits;
 or and ori turn on certain bits
- Of course, AND en OR can be used for logic operations.
 - Note: Language C's logical AND (& &) and OR (| |) are conditional
- andi and ori perform no sign extension!

Review: Gates (論理ゲート)

Exercise: Given 3-input logic function of A, B and C, 2-outputs
Output D is true if at least 2 inputs are true
Output E is true if odd number of inputs true

- Give truth-table
- Give logic equations
- Give implementation with AND and OR gates, and Inverters.

Review: The Multiplexor (マルチプレクサ)

Selects one of the inputs to be the output, based on a control input

 Lets build our ALU and use a MUX to select the outcome for the chosen operation

ALU Implementation

ALUの実装方法

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Don't want to have to go through too many gates
 - For our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

32bit ALU構成

1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box

What about subtraction (a - b)?

- Must invert bits of "b" and add a 1
 - Include an inverter
 - CarryIn for the first bit is 1
 - The CarryIn signal (for the first bit) can be the same as the Binvert signal

$$a - b = a + \overline{b} + 1$$

Execution of: AND, OR, ADD, SUB

What about NOR and NAND?

NOR演算の実現は?

Addition of bit inversion circuit to "a" input

Tailoring the ALU to the MIPS

32ビットALU のMIPSへの統合

- Need to support the set-on-less-than instruction (slt)
 - remember: slt rd, rs, rt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise</p>
 - use subtraction: (a-b) < 0 implies a < b</p>

- Need to support test for equality
 - beq \$t5, \$t6, label
 - jump to label if \$t5 = \$t6
 - use subtraction: (a-b) = 0 implies a = b

Supporting 'slt'

slt \$4, \$5, \$6

- Perform a-b and check the sign
- New signal (Less) that is zero for ALU boxes 1-31
- The 31st box has a unit to detect overflow and sign – the sigh bit serves as the Less signal for the 0th box

Supporting "beq"

最終版ALU

beq \$1, \$2, label

- Perform a-b and confirm that the result is all zero's
- signal Zero is a 1 when the result is zero.
- The Zero output is always calculated

Control lines:

000 = and

001 = or

010 = add

110 = sub

111 = slt

Fig. B.5.12

ALU symbol

What are the values of the control lines and what operations do they correspond to ?

	Ai	Bn	Op
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
SLT	0	1	11
NOR	1	1	00
NAND	1	1	01
beq	0	1	X

Conclusions

- We can build an ALU to support the MIPS instruction set
 - key idea: use multiplexor to select the output we want
 - we can efficiently perform subtraction using two's complement
 - we can replicate a 1-bit ALU to produce a 32-bit ALU
- Important points about hardware
 - all of the gates are always working
 - the speed of a gate is affected by the number of connected outputs it has to drive (so-called Fan-Out)
 - the speed of a circuit is affected by the number of gates in series

Quiz

In MIPS assembly, write an assembly language version of the following C code segment:

```
int A[100], B[100];
for (i=1; i < 100; i++) {
A[i] = A[i-1] + B[i];
}
```

At the beginning of this code segment, the only values in registers are the base address of arrays A and B in registers \$a0 and \$a1. Avoid the use of multiplication instructions—they are unnecessary.

Solution

The MIPS assembly sequence is as follows:

```
li $t0, 1
                                  # Starting index of i
        li $t5, 100
                                  # Loop bound
loop:
        lw $t1, 0($a1)
                                  # Load A[i-1]
        lw $t2, 4($a2)
                                  # Load B[i]
        add $t3, $t1, $t2
                                   \# A[i-1] + B[i]
        sw $t3, 4($a1)
                                  \# A[i] = A[i-1] + B[i]
        addi $a1, 4
                                  # Go to i+1
        addi $a2, 4
                                  # Go to i+1
        addi $t0, 1
                                  # Increment index variable
        bne $t0, $t5, loop
                                  # Compare with Loop Bound
halt:
        nop
```