

Ministerul Educației, Cercetării, Tineretului și Sportului Olimpiada de Fizică

Etapa Națională

31 ianuarie – 5 februarie 2010 Constanța

Pagina 1 din 2

Problema 1

O lentilă subțire este confecționată din sticlă cu n = 1,5. Între razele de curbură ale lentilei există relația $R_2 = mR_1$.

- a) Consideră că lentila este convergentă și că are distanța focală f = 30 cm.
 - a_1) Calculează razele de curbură R_1 și R_2 dacă |m| = 3.
 - a₂) În fața lentilei, pe axul optic principal, la coordonata x_1 se află un mic obiect luminos. Calculează poziția x_2 a imaginii și mărirea transversală β. Aplicație $x_1 = -45$ cm.
 - a₃) Fie $z_1 = f_{ob} x_1$ și $z_2 = x_2 f_{imag}$. Arată că $z_1 z_2 = f^2$.
 - a₄) La un moment dat obiectul începe să se deplaseze cu viteza constantă $v=6~\mathrm{m/s}$ orientată sub un unghi $\alpha=30^\circ$ față de axul optic principal. Calculează viteza imaginii obiectului în lentilă la acest moment.
- b) Consideră că lentila este un menisc divergent și că are distanța focală $f=-30~{\rm cm}$. Se argintează fata cu raza de curbură mai mare.
 - b_1) Calculează convergența lentilei argintate. Aplicație m=2.
 - b₂) În fața lentilei, de partea neargintată, pe axul său optic principal se mișcă un obiect cu viteza $v = 1 \,\mathrm{cm/s}$. Ce interval de timp separă momentele:
 - \succ t_1 trecerea obiectului prin focar;
 - $ightharpoonup t_2$ suprapunerea object imagine?
 - b_3) Pentru ce valoare a parametrului m, mărirea transversală a lentilei argintate are aceeași valoare pentru două poziții distincte ale obiectului?

Problema 2

Corpul din figură, aflat inițial în repaus, are masa m=1,35 kg și se poate deplasa cu frecare ($\mu=\frac{1}{6}$) pe un plan orizontal. Asupra corpului acționează forța F pe o direcție care formează unghiul α cu orizontala, $\cos \alpha = 0,8$.

- a₁) Calculează accelerația corpului;
- a_2) Reprezintă grafic a = f(t).
- a_3) Calculează viteza corpului la momentul $t=10~\mathrm{s}$.
- b) Consideră că modulul forței variază în timp conform relației $F=b\cdot t \ (b=2,25 \ {
 m N/s})$. Pentru mișcarea corpului pe suprafața orizontală:
 - b_1) determină dependența a = f(t);
 - b₂) calculează viteza maximă atinsă de corp.

$$g = 10\,\mathrm{m/s^2}$$

- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

Ministerul Educației, Cercetării, Tineretului și Sportului Olimpiada de Fizică

Etapa Națională

31 ianuarie – 5 februarie 2010 Constanța

Pagina 2 din 2

Problema 3

O bară omogenă și uniformă de lungime ℓ si masă m alunecă, sub actiunea unei forte orizontale F, pe un plan orizontal pe care există regiuni cu rugozități diferite (vezi figura).

- a) Bara alunecă pe porțiunea ce are coeficientul de frecare μ_1 . Calculează:
 - a₁) mărimea accelerației a₁;
 - a₂) tensiunea din bară în punctul **C** aflat la mijlocul său;
 - a₃) reacțiunea suprafeței de mișcare (R) asupra barei.
- b) Capătul A al barei ajunge în punctul O.
 - b_1) Calculează accelerația barei în funcție de x (poziția capătului \mathbf{A} al barei față de punctul \mathbf{O}).
 - b₂) Reprezintă grafic a(x);
 - b₃) Calculează tensiunea din bară în punctul ${f C}\,$ atunci când $\,a=a_{
 m max}^{}$.

Se cunosc: F=100N, $g=10m/s^2$, m=10 kg, $\ell=10$ m, $m_1=0,1$, $m_2=0,2$.

Subiect propus de prof. dr. Constantin Corega, prof. Seryl Talpalaru, Prof. Ion Toma

CNER – Cluj-Napoca CNER – Iași CNMV – București

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

^{2.} În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele a, b.

^{3.} Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.

^{4.} Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.

^{5.} Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.