Report of Lab 2: More on Static and Dynamic Diode Responses Using OrCAD

Islam Ibrahim - 21010247 - Section 5 - 2026 Department of Electronics and Communication Engineering Alexandria University

1 1st Circuit

Figure 1: 1st Circuit Simulation

1.1 I_s Change with Time

Figure 2: I_s Change with Time Plots

1.1.1 Discussion

Analyze the results obtained we understand that more I_s value gives higher peak to peak voltage amount on the output as relation $V_D = NV_t \ln(\frac{I_d}{I_s} + 1)$ so I_s indirect proportional with V_D .

1.2 N Change with Time

Figure 3: N Change with Time Plots

1.2.1 Discussion

Analyze the results obtained we understand that more N value gives lower peak to peak voltage amount on the output as relation $V_D = NV_t \ln(\frac{I_d}{I_s} + 1)$ so N direct proportional with V_D .

1.3 Changing R_s with Time

Figure 4: Changing R_s with Time Plots

1.3.1 Discussion

Analyze the results obtained we understand that more R_s value gives higher peak to peak voltage amount on the output as relation $V_D = R_s I_s + N V_t \ln \left(\frac{I_d}{I_s} + 1 \right)$ so R_s direct proportional with V_D .

1.4 Changing R with Time

Figure 5: Changing R with Time Plots

1.4.1 Discussion

Analyze the results obtained we understand that more R the voltage divider gives the resistance more voltage and make the R_s more neglected.

Figure 6: Modification

1.5 Changing TT with Time

$$I_s = 0.1pA, N = 1, R_s = 16, C_{Jo} = 2pF, M = 0.5, V_J = 0.75$$

Figure 7: Changing TT with Time Plots

1.5.1 Discussion

Due to relation $C_s = TT \frac{dI_D}{dV_{Do}}$ as $C_D = C_d + C_s$ so it gives more output in inverse mode in TT = 0 as having more capacitance and fig. b has more oscillations.

Figure 8: 2^{nd} Circuit Simulation

2 2nd Circuit

2.1 BV Change with Time

Figure 9: BV Change with Time Plots

2.1.1 Discussion

Analyze the results obtained we understand that as BV tends to ∞ the peak to peak voltage amount tends to max on the output as relation $I_D = I_s(e^{\frac{BV + V_{D_0}}{V_t}} - 1 + \frac{BV}{V_t})$.

2.2 R_S Change with BV and Time

Figure 10: R_S Change with BV and Time Plots

2.2.1 Discussion

Analyze the results obtained we understand that more R_s value gives higher peak to peak voltage amount on the output as relation $I_D = I_s (e^{\frac{BV + V_{D_0}}{V_t}} - 1 + \frac{BV}{V_t})$.

3 3rd Circuit

Figure 11: $3^{\rm rd}$ Circuit Simulation

3.1 Changing Parameters with Time

Figure 12: Changing Parameters with Time

3.1.1 Discussion

The output in fig. a is have wave rectifier the output peak is less than input by 0.7V because of capacitance effect also we get here oscillations in the fig. b mode.

4 Appendix

	Usual		Typical	
Symbol	SPICE Keyword	Parameter Name	Value/	Unit
			Range	
I_S	IS	Saturation current		A
n	N	Emission coefficient	1 - 2	
r_S	RS	Parasitic resistance		Ω
BV	BV	Breakdown voltage (positive number)		V
	IBV	Breakdown current (positive number)		A
		Note: IBV = IS $\frac{BV}{V}$		

$$\begin{array}{c} A & \\ \\ \\ \\ C \end{array} \longrightarrow \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \longrightarrow \begin{array}{c} \\$$

$$I_D(V_{D0}) = \left\{ \begin{array}{ll} \text{IS } (\mathrm{e}^{V_{D0}/~\mathrm{N}~V_t} - 1) + V_{D0}G_{MIN} & \text{if } V_{D0} > -\mathrm{BV} \\ -\mathrm{IBV} & \text{if } V_{D0} = -\mathrm{BV} \\ -\mathrm{IS}~[\mathrm{e}^{-(~\mathrm{BV}~+V_{D0})/V_t} - 1 + \frac{\mathrm{BV}}{V_t}] & \text{if } V_{D0} < -\mathrm{BV} \end{array} \right.$$

	Usual		Typical	Unit
Symbol	SPICE	Parameter Name	Value/	
	Keyword		Range	
$C_d(0)$	CJO	Zero-bias junction capacitance		F
V_{bi}	VJ	Built-in (junction) voltage	0.65 - 1.25	V
m	M	Grading coefficient	$\frac{1}{3} - \frac{1}{2}$	
$ au_T$	TT	Transit time		s

LARGE-SIGNAL DIODE MODEL

 $I_D(V_{D0})$ is given in Table A.1

$$C_D = C_d + C_s$$

 $C_d = \text{CJO} \left(1 - \frac{V_{D0}}{\text{VJ}}\right)^{-\text{M}} \text{ (for } V_{D0} < 0.5\text{VJ)}$
 $C_s = \text{TT } \frac{dI_D}{dV_{D0}}$