Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ciencias de la Computación e Informática

Computabilidad y Complejidad

Tarea Programada #2

Ariel Arévalo Alvarado ariel.arevalo@ucr.ac.cr

Jorge Díaz Sagot jorge.diazsagot@ucr.ac.cr

Ciudad Universitaria Rodrigo Facio, Costa Rica II-2024

Problema

Una organización necesita diseñar una red de comunicación robusta contra fallos como respaldo para recuperación de desastres. La construcción de esta red se modela de la siguiente forma:

Cada potencial enlace entre los nodos iniciales tiene:

- Un costo mayor a cero
- Una calificación de fiabilidad del cero al uno

A partir de estas características, para cualquier número de nodos iniciales con potenciales enlaces, se debe construir una red donde:

- Debe existir algún camino entre cualesquiera dos nodos de la red
- Se minimice el costo total de todos los enlaces en la red
- La suma de la fiabilidad de todos los enlaces a cada nodo sea mayor o igual a uno

Soluciones

1. Fuerza Bruta

Generar todas las posibles topologías de red, eliminar las que no cumplen los requisitos, y retornar la de menor costo.

2. Heurística

La heurística a utilizar es una modificación del **Algoritmo de Kruskal**, el cual permite encontrar árboles recubridores mínimos para un conjunto inicial de vértices y aristas.

Paso 1: Preprocesamiento de Aristas

1. Para cada arista a con costo c_a y fiabilidad f_a , calcular el peso modificado:

$$p_a' = \frac{c_a}{f_a}$$

Este peso prioriza las aristas que ofrecen mayor fiabilidad por unidad de costo.

2. Ordenar las aristas en orden ascendente según el peso modificado p'_a .

Paso 2: Inicialización

- 1. Cada nodo se considera inicialmente como un componente separado.
- 2. Para cada nodo n, inicializar la suma de fiabilidad acumulada:

$$F_n = \sum_{a \in N} f_a = 0$$

donde N es el conjunto de aristas que conectan a un nodo n.

Paso 3: Selección de Aristas con Restricciones

Iterar sobre las aristas ordenadas:

- 1. Seleccionar la siguiente arista a que conecta los nodos n y m.
- 2. Evaluar la factibilidad de la arista con los siguientes criterios:
 - \blacksquare Si n y m están en diferentes componentes, para evitar ciclos.
 - Si la adición de a ayuda a satisfacer $F_n \ge 1$ o $F_m \ge 1$.
- 3. Añadir a si:
 - Conecta dos componentes diferentes.
 - lacktriangle Contribuye a satisfacer la restricción de fiabilidad para m o n.
 - Es necesaria para mantener la conectividad de la red.

Actualizar las componentes y las sumas de fiabilidad:

$$F_n = F_n + f_a$$

$$F_m = F_m + f_a$$

- 4. Continuar hasta que:
 - $F_n \ge 1$ para todos los nodos n.
 - Todos los nodos estén conectados en un único componente.

Paso 4: Post-Procesamiento para Optimización de Costos

Revisar las aristas añadidas en orden descendente de costo:

- \blacksquare Intentar eliminar una arista a si:
 - La red permanece conectada sin a.
 - $F_n \ge 1$ y $F_m \ge 1$ después de eliminar a.
- Si se elimina a, actualizar F_n y F_m :

$$F_n = F_n - f_a$$

$$F_m = F_m - f_a$$

3. Metaheurística

La metaheurística a utilizar es el **Recocido Simulado**, el cual permite explorar el espacio de soluciones de manera probabilística para encontrar soluciones cercanas al óptimo global, evitando quedar atrapado en óptimos locales.

Paso 1: Inicialización

- 1. Seleccionar una solución inicial S utilizando la heurística descrita
- 2. Establecer la temperatura inicial T_0
- 3. Definir la temperatura mínima T_{\min} y la tasa de enfriamiento α
- 4. Inicializar la mejor solución encontrada $S_{\text{mejor}} = S$

Paso 2: Bucle Principal

Mientras la temperatura T sea mayor que la temperatura mínima T_{\min} :

- 1. Generar una solución vecina S' a partir de la solución actual S mediante una de las siguientes operaciones:
 - Añadir una arista $a \notin S$
 - \blacksquare Eliminar una arista $a \in S$
 - Reemplazar una arista $a_1 \in S$ por otra arista $a_2 \notin S$
- 2. Verificar que la solución vecina S^\prime cumple con las restricciones:
 - \blacksquare La red representada por S' es conexa
 - \blacksquare Para cada nodo n,la suma de fiabilidad acumulada $F_n \geq 1$
- 3. Calcular la diferencia de costo:

$$\Delta C = C(S') - C(S)$$

donde el costo total de una solución S es:

$$C(S) = \sum_{a \in S} c_a$$

- 4. Decidir si se acepta la solución vecina S':
 - Si $\Delta C \leq 0$, aceptar S' como la nueva solución actual S.
 - Si $\Delta C > 0$, aceptar S' con una probabilidad:

$$P = e^{-\Delta C/T}$$

Generar un número aleatorio R en el intervalo [0,1] y aceptar S' si R < P.

- 5. Si se acepta la solución vecina S':
 - \blacksquare Actualizar S=S'
 - \blacksquare Recalcular eficientemente C(S) y F_n para los nodos afectados
- 6. Si $C(S) < C(S_{\rm mejor}),$ actualizar la mejor solución encontrada:

$$S_{\text{mejor}} = S$$

7. Actualizar la temperatura:

$$T = \alpha \cdot T$$

Paso 3: Terminación

El algoritmo termina cuando la temperatura T cae por debajo de T_{\min} o se alcanza el número máximo de iteraciones permitidas. La solución final es la mejor solución encontrada S_{mejor} .

Ejemplo

En este ejemplo, diseñaremos una red de comunicación robusta para 5 nodos: A, B, C, D y E.

Datos Iniciales

Las posibles conexiones entre los nodos tienen asociados un costo y una fiabilidad. Representamos todas las conexiones potenciales en el siguiente grafo completo, donde cada arista está etiquetada con su costo y fiabilidad.

Figura 1: Grafo completo con costos y fiabilidades

Solución Heurística

Aplicamos la heurística modificada del algoritmo de Kruskal para diseñar la red, siguiendo los pasos definidos.

Paso 1: Selección de Aristas

Calculamos el peso modificado p_a^\prime para cada arista usando la fórmula:

$$p_a' = \frac{c_a}{f_a}$$

y seleccionamos las aristas en orden ascendente.

Arista	c_a	f_a	p'_a
A-E	2	0.7	2.86
C-D	4	0.9	4.44
B-E	3	0.6	5.00
A-C	3	0.5	6.00
A-B	4	0.6	6.67
B-D	6	0.8	7.50
D-E	5	0.5	10.00
A-D	7	0.4	17.50
B-C	5	0.3	16.67
С-Е	8	0.2	40.00

Tabla 1: Cálculo del peso modificado para cada arista en orden ascendente

Paso 1.1: Añadimos la arista A-E

Añadimos la arista A-E al grafo.

Figura 2: Paso 1.1: Añadimos la arista A-E

Nodo	F_n
A	0.7
${ m E}$	0.7
В	0
\mathbf{C}	0
D	0
Costo Total	2

Tabla 2: Fiabilidades acumuladas después de añadir A-E

Paso 1.2: Añadimos la arista C-D

Añadimos la arista C-D al grafo.

Figura 3: Paso 1.2: Añadimos la arista C-D

Nodo	F_n
A	0.7
${ m E}$	0.7
$^{\mathrm{C}}$	0.9
D	0.9
В	0
Costo Total	2 + 4 = 6

Tabla 3: Fiabilidades acumuladas después de añadir C-D

Paso 1.3: Añadimos la arista B-E

Añadimos la arista B-E al grafo.

Figura 4: Paso 1.3: Añadimos la arista B-E

Nodo	F_n
A	0.7
${ m E}$	0.7 + 0.6 = 1.3
В	0.6
\mathbf{C}	0.9
D	0.9
Costo Total	6 + 3 = 9

Tabla 4: Fiabilidades acumuladas después de añadir B-E

Paso 1.4: Añadimos la arista A-C

Añadimos la arista A-C al grafo.

Figura 5: Paso 1.4: Añadimos la arista A-C

Nodo	F_n
A	0.7 + 0.5 = 1.2
${ m E}$	1.3
В	0.6
$^{\mathrm{C}}$	0.9 + 0.5 = 1.4
D	0.9
Costo Total	9 + 3 = 12

Tabla 5: Fiabilidades acumuladas después de añadir A-C

Paso 1.5: Añadimos la arista A-B

Añadimos la arista A-B al grafo.

Figura 6: Paso 1.5: Añadimos la arista A-B

Nodo	F_n
A	1.2 + 0.6 = 1.8
\mathbf{E}	1.3
В	0.6 + 0.6 = 1.2
\mathbf{C}	1.4
D	0.9
Costo Total	12 + 4 = 16

Tabla 6: Fiabilidades acumuladas después de añadir A-B

Paso 1.6: Añadimos la arista B-D

Añadimos la arista B-D al grafo.

Figura 7: Paso 1.6: Añadimos la arista B-D

Nodo	F_n
A	1.8
\mathbf{E}	1.3
В	1.2 + 0.8 = 2.0
\mathbf{C}	1.4
D	0.9 + 0.8 = 1.7
Costo Total	16 + 6 = 22

Tabla 7: Fiabilidades acumuladas después de añadir B-D

Paso 2: Optimización de Costos

Paso 2.1: Eliminamos la arista A-B

Eliminamos la arista A-B.

Figura 8: Paso 2.1: Eliminamos la arista A-B

Nodo	F_n
A	1.8 - 0.6 = 1.2
\mathbf{E}	1.3
В	2.0 - 0.6 = 1.4
\mathbf{C}	1.4
D	1.7
Costo Total	22 - 4 = 18

Tabla 8: Fiabilidades acumuladas después de eliminar A-B

Resultado de la Heurística

La red obtenida tiene un costo total de 18 y satisface todas las restricciones.

Recocido Simulado

Aplicamos el recocido simulado para mejorar la solución heurística y reducir el costo total de la red. Iniciamos con la solución antes del post-procesamiento (costo total de 22).

Parámetros Iniciales

Temperatura inicial	T = 10
Factor de enfriamiento	$\alpha = 0.9$
Temperatura mínima	$T_{\min} = 0.1$
Solución inicial	Costo total $C = 22$

Tabla 9: Parámetros iniciales del recocido simulado

Iteración 1

Movimiento: Eliminamos la arista A-B (4, 0.6). Nuevo costo total:

$$C_{\text{nuevo}} = 22 - 4 = 18$$

Figura 9: Iteración 1: Eliminamos la arista A-B

Nodo	F_n anterior	F_n nuevo
A	1.8	1.8 - 0.6 = 1.2
В	2.0	2.0 - 0.6 = 1.4
\mathbf{C}	1.4	1.4
D	1.7	1.7
\mathbf{E}	1.3	1.3
Costo Total	22	18

Tabla 10: Fiabilidades acumuladas después de la Iteración 1

Verificación de restricciones: Todas las fiabilidades acumuladas $F_n \geq 1$. Decisión: Como el costo disminuye $(\Delta C = -4)$, aceptamos la solución. Actualización de la temperatura:

$$T=\alpha T=0.9\times 10=9$$

Actualización de la mejor solución: $S_{\text{mejor}} = S'$ con costo C = 18.

Iteración 2

Movimiento: Añadimos la arista D-E (5, 0.5). Nuevo costo total:

$$C_{\text{nuevo}} = 18 + 5 = 23$$

Figura 10: Iteración 2: Añadimos la arista D-E

Nodo	F_n anterior	F_n nuevo
D	1.7	1.7 + 0.5 = 2.2
\mathbf{E}	1.3	1.3 + 0.5 = 1.8
A	1.2	1.2
В	1.4	1.4
$^{\mathrm{C}}$	1.4	1.4
Costo Total	18	23

Tabla 11: Fiabilidades acumuladas después de la Iteración 2

Verificación de restricciones: Todas las fiabilidades acumuladas $F_n \geq 1$. Decisión: Como el costo aumenta ($\Delta C = 5$), calculamos la probabilidad de aceptación:

$$P = e^{-\Delta C/T} = e^{-5/9} \approx 0.57$$

Generamos un número aleatorio $R\in[0,1]$. Si R<0.57, aceptamos la solución. Supongamos que R=0.5, por lo que aceptamos.

Actualización de la temperatura:

$$T = \alpha T = 0.9 \times 9 = 8.1$$

Actualización de la mejor solución: El costo es mayor, no actualizamos $S_{\rm mejor}.$

Iteración 3

Movimiento: Añadimos la arista A-B (4,0.6). Nuevo costo total:

$$C_{\text{nuevo}} = 23 + 4 = 27$$

Figura 11: Iteración 3: Añadimos la arista A-B

Nodo	F_n anterior	F_n nuevo
A	1.2	1.2 + 0.6 = 1.8
В	1.4	1.4 + 0.6 = 2.0
\mathbf{C}	1.4	1.4
D	2.2	2.2
\mathbf{E}	1.8	1.8
Costo Total	23	27

Tabla 12: Fiabilidades acumuladas después de la Iteración 3

Verificación de restricciones: Todas las fiabilidades acumuladas $F_n \ge 1$. Decisión: Como el costo aumenta ($\Delta C = 4$), calculamos la probabilidad de aceptación:

$$P = e^{-\Delta C/T} = e^{-4/8.1} \approx 0.61$$

Generamos un número aleatorio $R \in [0,1]$. Supongamos que R=0.7, como R>P, no aceptamos la solución.

Actualización de la temperatura:

$$T=\alpha T=0.9\times 8.1=7.29$$

Actualización de la mejor solución: No se actualiza $S_{\rm mejor}.$

Resultado Final

Después de varias iteraciones, la mejor solución encontrada tiene un costo total de ${\cal C}=18.$

Figura 12: Red final obtenida mediante recocido simulado