Lab Question bank or Question pattern SQL statements, Hadoop and java map reduce operations

SQL statements

1. Create the following tables under MCIS_your Regester number database

branch-	account-	balance
name	number	
Downtown	A-101	500
Mianus	A-215	700
Perrryridge	A-102	400
Round Hill	A-305	350
Brighton	A-201	900
Redwood	A-222	700
Brighton	A-217	750
Account		
relation	1	

branch-	branch-city	balance
name		
Downtown	Brooklyn	9000000
Redwood	Palo Alto	2100000
Perrryridge	Horseneck	1700000
Mianus	Horseneck	400000
Round Hill	Horseneck	8000000
Pownal	Bennington	3000000
Northton	Rye	3700000
Brighton	Brooklyn	7100000
Branch		
relation		

_	l _	l _
Customer-	Customer	Customer-
name	-street	city
Jones	Main	Harrison
Smith	North	Rye
Hayes	Main	Harrison
Curry	North	Rye
Lindsay	Park	Pittsfield
Turner	Putnam	Stamford
Williams	Nassau	Princeton
Adams	Spring	Pittsfield
Johnson	Alma	Palo Alto
Glenn	Sand Hill	Woodside
Brooks	Senator	Brooklyn
Green	Walnut	Stamford
customer		
relation		

Customer-	Account-
name	Number
Jones	A-101
Smith	A-215
Hayes	A-102
Turner	A-305
Johnson	A-201
Jones	A-217
Lindsay	A-222
depositor	
relation	

Customer-	Loan-
name	Number
Jones	L-17
Smith	L-23
Hayes	L-15
Jackson	L-14
Currry	L-93
Smith	L-11
Williams	L-17
Adams	L-16
borower	
relation	
,	

branch-	Loan -	amount
name	number	
Downtown	L-17	1000
Redwood	L-23	2000
Perrryridge	L-15	1500
Downtown	L-14	1500
Mianus	L-93	500
Round Hill	L-11	900
Perrryridge	L-17	1300
	1	

relation

Set 1

1. Create branch table and Declare *branch_name* as the primary key for *branch, and branch_city should not take NULL values*

Ans –

create table branch

(branch_name char(15), branch_city char(30) not null, assets integer, primary key (branch_name)) 2. Add a new tuple to account with values 'A-9732', 'Perryridge', 1200

Ans -

insert into account

values ('A-9732', 'Perryridge', 1200)

Use The alter table command to add new attribute PhoneNumber to an existing relation customer

Ans -

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

alter table customer add PhoneNumber int

4. Use The **drop table** command to remove the new attribute column PhoneNumber from relation customer

The **alter table** command can also be used to drop attributes of a relation:

alter table r drop A

where A is the name of an attribute of relation r

alter customer r drop PhoneNumber

5. Find the names of all branches in the *loan* relation and remove duplicates.

select distinct branch_name

from loan

Set 2

1. Find the names of all branches in the *loan* relation and do not remove duplicates.

select all branch_name

from loan

2. Display all the contents of the table without mentioning names of the attributes

select * from loan

3. Multiply amount attribute with value 100 for all the loan numbers in the loan

select loan_number, branch_name, amount * 100 from loan

4. Find all loans over \$1200

select * from loan where amount > 1200

5. Find the loan number for each loan of an amount > \$1200

select loan_number from loan where amount > 1200

Set 3

6. Provide as a gift for all loan customers of the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account

insert into account

select loan_number, branch_name, 200

from loan

where branch_name = 'Perryridge'

insert into depositor

```
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge'
and loan.account_number = borrower.account_number
```

7. Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.

Write two **update** statements:

```
Update account
set \ balance = balance * 1.06
where \ balance > 10000
Update account
set \ balance = balance * 1.05
where \ balance \le 10000
```

8. Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.(Use case statement)

9. Find all customers who have at least two accounts at the Perryridge branch.

```
select distinct T.customer_name
from depositor as T
where not unique (
    select R.customer_name
    from account, depositor as R
    where T.customer_name = R.customer_name and
        R.account_number = account.account_number and
        account.branch_name = 'Perryridge')
```

10. Write the SQL queries for the operations below using the relations loan and borrower given below?

Relation loan

loan-number	branch-name	amount
L-170 L-230	Downtown Redwood	3000 4000
L-260	Perryridge	1700

■ Relation borrower

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

- i. Natural join
- ii. Left Outer join
- iii. Right outer join

Natural join

loan **natural right outer join** borrower

Left Outer join

loan left outer join borrower on

loan.loan_number = borrower.loan_number

Right outer join

loan natural inner join borrower

Full Outer join

loan full outer join borrower using (loan_number)