Obliczanie wskaźnika uwarunkowania trójprzekątniowej, symetrycznej i rzeczywistej macierzy A.

Wskaźnik uwarunkowania definiujemy jako:

$$\operatorname{cond}(A) = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

Do obliczenia λ_{max} stosujemy metodę potęgową, a do obliczenia λ_{min} - odwrotną metodę potęgową.

Odpowiednie układy równań rozwiązujemy używając odbić Householdera.

Program ma działać poprawnie dla macierzy o rozmiarze do 200000.

Stosowane oznaczenia:

```
- macierz, A \in \mathbb{R}^{n \times n}
        - wartość własna macierzy A,
         wyznaczona przy pomocy metody potęgowej
        - wartość własna macierzy A,
\lambda_{min}
         wyznaczona przy pomocy odwrotnej metody potęgowej
        - wektor własny macierzy A
\widetilde{\mathcal{X}}
        - wektor unormowany
\|x\|
        - norma wektora x
\chi^*
        - sprzężenie hermitowskie wektora x
A^{-1}
        - macierz odwrotna do nieosobliwej macierzy A
        - macierz Householdera, H \in \mathbb{R}^{n \times n}
H
        - macierz jednostkowa, I \in \mathbb{R}^{n \times n}
```

Idea zaimplementowanych metod numerycznych

Metoda Potęgowa

Założenia:

- > Macierz A posiada dominującą wartość własną λ_1 , czyli $|\lambda_1| > |\lambda_2| \ge ... \ge |\lambda_n|$.
- > Macierz A posiada n liniowo niezależnych wektorów własnych $v^{[1]}, v^{[2]}, \dots, v^{[n]}$.
- > Dla wektora początkowego $x_0=c_1^{(0)}v^{[1]}+...+c_n^{(0)}v^{[n]}$ zachodzi $c_1^{(0)}\neq 0$.

Krok iteracyjny:

$$x_{0} = c_{1}^{(0)} v^{[1]} + \dots + c_{n}^{(0)} v^{[n]}, \quad c_{1}^{(0)} \neq 0$$

$$\begin{cases} \tilde{x}^{(k)} = \frac{x^{(k)}}{\|x^{(k)}\|} \\ x^{(k+1)} = A\tilde{x}^{(k)} \end{cases}$$

$$\lambda_{max} = (\tilde{x}^{(n)})^{T} A\tilde{x}^{(n)}$$

Warunek stopu:

$$\left\| sign\left(\tilde{x}_{i}^{(k+1)}\right) \cdot \tilde{x}^{(k+1)} - sign\left(\tilde{x}_{i}^{(k)}\right) \cdot \tilde{x}^{(k)} \right\| < d$$

gdzie:

$$sign(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

 $ilde{x}_i^{(k)}$ - maksymalna co do modułu współrzędna wektora $ilde{x}^{(k)}$

d - parametr określający dokładność

Własności:

- > Szybkość zbieżności metody potęgowej zależy od ilorazu $\left|\frac{\lambda_2}{\lambda_1}\right|$.
- > Błąd przybliżenia maleje tak szybko, jak $\left|\frac{\lambda_2}{\lambda_1}\right|^k$.
- > Metoda potęgowa jest bardzo wolno zbieżna, jeżeli $\frac{\lambda_2}{\lambda_1} \approx 1$.

Odwrotna Metoda Potęgowa

Założenia:

- > Macierz A jest nieosobliwa, czyli $det(A) \neq 0$.
- > Macierz A posiada najmniejszą co do modułu wartość własną λ_n , czyli $|\lambda_1| \ge \cdots \ge |\lambda_{n-1}| > |\lambda_n| > 0$.
- > Macierz A posiada n liniowo niezależnych wektorów własnych $v^{[1]}, v^{[2]}, \dots, v^{[n]}$.

Krok iteracyjny:

$$x_{0} = c_{1}^{(0)} v^{[1]} + \dots + c_{n}^{(0)} v^{[n]}$$

$$\begin{cases} \tilde{x}^{(k)} = \frac{x^{(k)}}{\|x^{(k)}\|} \\ Ax^{(k+1)} = \tilde{x}^{(k)} \end{cases}$$

$$\lambda_{min} = (\tilde{x}^{(n)})^{T} A \tilde{x}^{(n)}$$

Do rozwiązywania układów równań liniowych wykorzystujemy metody oparte na rozkładach macierzy na czynniki lub przekształceniach ortogonalnych takich jak na przykład transformacje Householdera.

Warunek stopu:

$$\left\| sign\left(\tilde{x}_{i}^{(k+1)}\right) \cdot \tilde{x}^{(k+1)} - sign\left(\tilde{x}_{i}^{(k)}\right) \cdot \tilde{x}^{(k)} \right\| < d$$

gdzie:

$$sign(x) = \begin{cases} 1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

 $ilde{x}_i^{(k)}$ - maksymalna co do modułu współrzędna wektora $ilde{x}^{(k)}$

d - parametr określający dokładność

Własności:

- > Odwrotna metoda potęgowa korzysta ze znanej własności mówiącej, że jeżeli λ jest wartością własną nieosobliwej macierzy A, to λ^{-1} jest wartością własną macierzy A^{-1} .
- > Szybkość zbieżności metody potęgowej zależy od ilorazu $\left|\frac{\lambda_n}{\lambda_{n-1}}\right|$.
- \rightarrow Błąd przybliżenia maleje tak szybko, jak $\left|\frac{\lambda_n}{\lambda_{n-1}}\right|^k$.
- > Metoda potęgowa jest bardzo wolno zbieżna, jeżeli $\frac{\lambda_n}{\lambda_{n-1}} \approx 1.$

Transformacje Householdera

Macierz Householdera:

$$H = I - \frac{2}{u^* u} u u^*$$

gdzie:

niezerowy wektor, ortogonalny do hiperpłaszczyzny,
 względem której ma nastąpić odbicie

Własności:

- \rightarrow Macierz H jest Hermitowska, czyli $H = H^*$.
- > Macierz H jest unitarna, czyli $H^{-1} = H^*$ (tym samym odwracalna)
- > Spektrum macierzy H to $\sigma(H) = \{-1, 1\}$.
- > Wyznacznik macierzy H jest równy -1.

Zastosowanie:

- \rightarrow Macierze Householdera są często stosowane w implementacji rozkładu QR.
- > Znane z geometrii optycznej (dział fizyki zajmujący się zjawiskami świetlnymi) prawo odbicia można opisać przy pomocy macierzy Householdera.

Zastosowanie dla macierzy trójdiagonalnych:

\boldsymbol{A}							A_1						A_2					
	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	χ	\boldsymbol{x}	\boldsymbol{x}	0	0	0	χ	x	\boldsymbol{x}	0	0	0
	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	χ	\boldsymbol{x}	\boldsymbol{x}	0	0
	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	\boldsymbol{x}	\boldsymbol{x}	0	0
	0	0	\boldsymbol{x}	\boldsymbol{x}	$\boldsymbol{\chi}$	0	0	0	$\boldsymbol{\chi}$	\boldsymbol{x}	\boldsymbol{x}	0	0	0	\boldsymbol{x}	χ	\boldsymbol{x}	0
	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	$\boldsymbol{\chi}$	\boldsymbol{x}	\boldsymbol{x}
	0	0	0	0	χ	χ	0	0	0	0	χ	χ	0	0	0	0	χ	x
A_3							A_4						A_5					
	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	x	\boldsymbol{x}	χ	0	0	0	χ	x	χ	0	0	0
	0	$\boldsymbol{\chi}$	\boldsymbol{x}	\boldsymbol{x}	0	0	0	\boldsymbol{x}	$\boldsymbol{\chi}$	$\boldsymbol{\chi}$	0	0	0	χ	χ	χ	0	0
	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	$\boldsymbol{\chi}$	χ	\boldsymbol{x}	0
	0	0	0	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	χ	\boldsymbol{x}	χ
	0	0	0	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	\boldsymbol{x}	\boldsymbol{x}	0	0	0	0	\boldsymbol{x}	χ
	Λ	Λ	Λ	Λ	v	v	0	Λ	Λ	Ω	v	v	0	Ω	Λ	Ω	Ω	v

Zastosowanie dla macierzy trójdiagonalnych:

Odbicia Householdera stosujemy w celu przekształcenia macierzy A do macierzy górnej macierzy trójkątnej (wykonujemy to w n-1 krokach).

$$H_1 A = A_1$$
 $H_2 A_1 = A_2$
...

 $H_{n-1} A_{n-2} = A_{n-1} = R$
 $(H_{n-1} H_2 H_1) A = R$
 $A = (H_{n-1} H_2 H_1)^{-1} R$
 $A = (H_{n-1} H_2 H_1)^T R$
 $A = (H_1^T H_2^T \cdot \dots \cdot H_{n-1}^T) R$
 $A = QR$

Zastosowanie dla macierzy trójdiagonalnych:

W każdej iteracji odwrotnej metody potęgowej rozwiązujemy układ równań liniowych:

$$Ax^{(k+1)} = \tilde{x}^{(k)}$$
 $H_1Ax^{(k+1)} = H_1\tilde{x}^{(k)}$
 $H_2A_1x^{(k+1)} = H_2H_1\tilde{x}^{(k)}$
...
 $Rx^{(k+1)} = Q^T\tilde{x}^{(k)}$

Eksperyment numeryczny

Porównanie metod rozwiązywania układów równań liniowych w odwrotnej metodzie potęgowej.

Rozkład *LU*:

- > Odwrotna metoda potęgowa zakłada, że macierz A jest nieosobliwa, czyli $\det(A) \neq 0$.
- \rightarrow Dzięki temu założeniu, do rozwiązywania układów równań możemy wykorzystać rozkład LU oparty na GEPP.
- \rightarrow Koszt rozkładu LU to $O(n^3)$ operacji arytmetycznych.
- > Dzięki temu, rozwiązanie pojedynczego układu równań wymaga $O(n^2)$ operacji arytmetycznych.

Porównanie czasu obliczeniowego dla macierzy o rozmiarze 200000×200000 :

Porównanie dokładności rozwiązań poprzez obliczanie normy ||Ax - b||:

Wykres przedstawia wartość normy ||Ax - b|| w funkcji rozmiaru n macierzy układu dla rozkładu LU i transformacji Householdera.

Wnioski:

- > Implementacja rozkładu LU była dla mnie znacząco prostsza niż implementacja transformacji Householdera.
- Czas obliczeniowy dla rozkład LU jest średnio dwukrotnie krótszy niż czas obliczeniowy transformacji Householdera.
- > Rozkład LU wydaje się dawać średnio mniejszy błąd w postaci normy ||Ax b||.