Integração de forças evolutivas: interação entre deriva e seleção

BIO 208 - Processos Evolutivos - 2015 Diogo Meyer

Ridley: Capítulo 7 menos Quadro 7.1, 7.2 e item 7.4.

Modelos determinísticos de seleção

AA	Aa	aa
1	0,9	0,9

AA	Aa	aa
1	1	0,9

Modelos determinísticos de seleção

Mutação vantajosa se fixa Mutação deletéria é eliminada

Modelo estocástico: deriva

Mutação irá se fixar (probabilidade é 1/2N) Mutação irá se perder (probabilidade é é 1 - 1/2N)

Uma questão central da biologia evolutiva: deriva ou seleção?

Há diferenças entre e dentro de espécies.

Essas diferenças podem resultar de:

- deriva
- seleção

- 60 mil diferenças de proteínas entre as duas espécies

Neutralista: a maior parte das diferenças (e polimorfismos) por deriva

Selecionista: a maior parte por seleção

Uma questão central da biologia evolutiva: deriva ou seleção?

Como responder? Testar previsões:

Para neutralistas:

- 1. Seleção negativa é comum (evolução rápida devido a menos negativa, não mais positiva)
- 2. Seleção positiva é rara
- 3. k = u Logo, taxas de substituição constantes
- 4. $H_{eq} = \frac{4N\mu}{4N\mu + 1}$ H proporcional ao N da população

Seleção negativa é comum (predição 1)

Funcionalmente importante -> muda menos Funcionalmente menos importante -> muda mais

Padrão consistente com ação de seleção negativa

Taxas de substituição de aminoácidos entre humanos e roedores

Evolução proteica (subst/sítio/milhão de anos x109)

Histona 0

Mioglobina 0.57

Apolipo-proteina 3.72

Kimura, 1974

Seleção negativa é comum (predição 1): mais mudança em genes menos "restritos" ou "tolerantes"

Kimura, 1974

AAA TCT ATG ACC TCC AAA

AAA TCT ATG ACC TCC AAA

AAA ACT ATG ACC TCA AAA

total de sítios: 18

sítios não-sinônimos: 12

sítios sinônimos: 6

dN = 1/12

dS = 1/6

dN/dS=0,5

Predições a partir de kN e kS

```
dN/dS < 1 seleção <u>remove deletérias</u> (purificadora)
```

dN/dS = 1 ausência de seleção (neutralidade completa)

dN/dS > 1 seleção fixa vantajosas (positiva)

Seleção negativa é comum (predição 1): variação em taxas não sinônimas devido a seleção negativa

Tabela 7.6

Taxas de evolução para substituições sinônimas e não-sinônimas (ou seja, que trocam o aminoácido vários genes. As taxas são expressas como o número inferido de bases por 10º anos. Esses dados for utilizados para calcular as figuras introdutórias na Tabela 7.1. Reproduzida de Li (1997).

Gene	Taxa não-sinonima	Taxa sinônima
Albumina	0,92	5,16
α-globina	0,56	4,38
β-globina	0,78	2,58
Imunoglobulina V _H	1,1	4,76
Hormônio da paratireóide	1,0	3,57
Relaxina	2,59	6,39
Proteína ribossomal	0,02	2,16
Média (45 genes)	0,74	3,51

dS > dN

Seleção positiva é rara? (predição 2)

O caso da lisozima

Presbytis entellus

dN/dS=3,5
na linhangem
de colobinos

dN/dS = 0,6 para as demais linhangens de primatas

OPEN & ACCESS Freely available online

PLOS GENETICS

Patterns of Positive Selection in Six Mammalian Genomes

OPEN ACCESS Freely available online

PLOS GENETICS

Patterns of Positive Selection in Six Mammalian Genomes

Kosiol et al., 2008

OPEN ACCESS Freely available online

PLOS GENETICS

Patterns of Positive Selection in Six Mammalian Genomes

"Of ,16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection"

Kosiol et al., 2008

OPEN ACCESS Freely available online

PLOS GENETICS

Patterns of Positive Selection in Six Mammalian Genomes

"Of ,16,500 human genes with high-confidence orthologs in at least two other species, 400 genes showed significant evidence of positive selection"

Conclusão: Seleção positiva é detectável mas rara

Kosiol et al., 2008

Taxas de substituição segunda a visão neutralista

Taxas de substituição são constantes? (previsão 3)

Taxas de substituição na hemoglobina

Taxas de substituição são constantes? (previsão 3)

Taxas de substituição na hemoglobina

Isso seria esperado num cenário de seleção positiva?

Taxas de substituição segunda a visão neutralista

Taxas de substituição em muitos outros genes

Taxas de substituição segunda a visão neutralista

Taxas de substituição em muitos outros genes

Relógio molecular varia entre espécies

- taxa de mutação diferente?
- Seleção?

Variação intrapopulacional sob neutralidade

$$H_{eq} = \frac{4N\mu}{4N\mu + 1}$$

H pode ser estimado a partir de dados

Podemos testar a hipótese neutra:

- N previsto faz sentido?

H proporcional a N (previsão 4)

Taxa de heterozigose esperada (baseada no tamanho populacional)

Interação entre seleção e deriva: modelo

Taxa de heterozigose esperada (baseada no tamanho populacional)

A teoria quase neutra

"A teoria quase neutra pode ser resumida da seguinte forma. Tanto a deriva genética como a seleção influenciam o comportamento de mutações fracamente selecionadas. A deriva predomina em populações pequenas, e a seleção em populações grandes. A maioria das novas mutações é deletéria, e a maioria das mutações de efeito pequeno devem ser muito fracamente deletérias. Há seleção contra essas mutações em populações grandes, mas se comportam como neutras e populações pequenas"

Tomoko Ohta

Ilha: Anas luzonica

Continente: Anas zonorhyncha,

Johnson and Seger, 2001. Mol Biol Evol.

Mas: "Molecular evolutionary consequences of island colonisation" diz que não.

http://dx.doi.org/10.1101/014811

Ilha: Anas Iuzonica

Continente: Anas zonorhyncha,

Mais substituições não-sinônimas

Johnson and Seger, 2001. Mol Biol Evol.

Mas: "Molecular evolutionary consequences of island colonisation" diz que não.

http://dx.doi.org/10.1101/014811

Europeus

Africanos

Lohmueller et al., 2008. Nature

Kosiol et al., 2008. Plos Genetics

Mensagens da aula

- Muito a mudança evolutiva deve-se à deriva (como prevê teoria neutra)
- Há formas de testar a teoria neutra, sando as predições que ela faz.
- Deriva sozinha não explica toda a variação:
 - há casos de genes selecionados (dN/dS revela isso)
- Há menos variação (H) em populações com N grande do que seria esperado
- Uma explicação para isso: mutações fracamente deletérias são removidas mais eficientemente em populações grandes
- Há apoio para o maior acúmulo de variantes fracamente deletérias em populações menores