

La carte micro:bit

Usages

Exercices

Conclusion

LA CARTE MICRO:BIT

Date	06 / 07 / 2015
Fabricant	BBC (British Broadcasting Corporation), Micro:bit Educational Fundation
Objectif	Former les jeunes au développement informatique
Technologie	 Microcontrôleur 16Mhz, 32 bits 256ko mémoire flash + 16ko mémoire vive Matrice led 5 x 5
Capteurs	 2 boutons + 1 bouton sensitif 1 thermomètre, 1 boussole 1 capteur de mouvement 3D 1 micro + haut-parleur Ports GPIO (x20) + bluetooth
Système d'exploitation	Zephyr OS
Langages	Bloc, Javascript, Python
Alimentation	USB 5VPiles (3V)
Accessoires	 Lumière: bande led / matrice led, feu tricolore Moteur: servo-moteur, barrièe Feu tricolore Capteurs: ultrasons

USAGES

DÉCOUVRIR LE DÉVELOPPEMENT

- Le langage block pour **néophyte**
- Accessible aux enfants
- Documentation

APPRENDRE UN LANGAGE INFORMATIQUE

- Q Python Javascript Typescript
- Strict minimum

SE PERFECTIONNER EN ALGO

- Environnement minimal
- Faibles capacités (CPU + mémoire)
- Entretien d'embauche

EXPÉRIMENTER SES IDÉES

- % Nombreux capteurs
- Dorts GPIO
- \$ Pas cher
- Librairies disponibles

PLATEFORME DE DÉVELOPPEMENT

- https://makecode.microbit.org
- Compte pour sauvegarder son code
- Simulateur de carte affiché pour tester le code
- Envoi du code sur la carte en USB

- Passage du bloc au javascript ou python
- Librairie de fonctions et auto-complétion
- Intégration de librairies externes
- Création d'une librairie facilitée

DÉPLOYER SUR LA CARTE

Windows

- Cliquer sur Télécharger
- Suivre les étapes
- Carte reconnue lors de l'appairage
- · La carte est à jour

Linux

- Carte non reconnue par la plateforme
- Télécharger le binaire
- Le déplacer directement sur la carte (UMS)
- La carte redémarre et exécute le nouveau code

DÉCOUURIR LA PROGRAMMATION

- Langage : bloc
- Objectif : manipuler du bloc comme un enfant
- · Exercice:
 - Au démarrage, afficher une icône de cœur
 - Quand on appuie sur le bouton A, incrémenter un compteur et l'afficher
 - Quand on appuie sur le bouton B, réduire ce compteur et l'afficher
 - Quand on appuie sur les deux boutons, remettre le compteur à 0 et l'afficher

KATA D'ALGORITHMIE / TEST ENTRETIEN

- Langage : Javascript
- Lien : (7) https://github.com/jotitan/microbit-tests-kata
- Objectif : kata court pour s'améliorer en algorithmie
- · Contexte:
 - La carte micro:bit dispose d'une matrice Led 5x5 permettant de facilement visualiser un tableau
- Démarrage :
 - Librairie Github à importer (implémente le bouton A et B)
 - Une fonction à implémenter loadImplementations
- Exercice:
 - Lire le readme 😊
- Lancement
 - · Le bouton A affiche une nouvelle entrée
 - Le bouton B lance le test en retournant, si ça marche © + résultat, sinon ®

DEBUGGER SUR MICRO:BIT

- Le Classique : F12 et console.log(message);
- Mode débug :
 - Quand ca plante

- L'option « déboguer ce projet apparaît »
- Mode debug normal : points d'arrêt, pile d'exécution et variables

```
☐ Quitter le mode Debug
                         1 let pressed = false
▶ € €. €.
                            let counter = -1
Variables
                            //const rawSong = "C F F F G F F G A A A B A G F F F F E D C C C F F F G G F"
                            let rawSong:string;
Pile d'exécution
                            const song = rawSong.split(" ")
                            basic.forever(function () {
                                 if (!(pressed) && input.buttonIsPressed(Button.A)) {
                                     pressed = true
                                     counter = (counter + 1) % song.length
                        10
                                     control.inBackground(function () {
                        11
                                         const m = music.stringPlayable(song[counter], 200)
```


- Langage : Javascript
- Objectif : Simuler une bille sur un plateau qui bouge
- Lien : Thttps://github.com/jotitan/microbit-rolling-ball
- Exercice:
 - Utiliser la détection de l'orientation de la carte
 - Etablir

RADIO SUR MICRO:BIT

- Fonctionne en radio et bluetooth
- Attention aux interférences
- Fréquence
 - Bande de fréquence : entre 2.4Ghz et 2.5Ghz
 - 84 pas de fréquences
 - radio.setFrequency(frq) // 0-83
- Group
 - Permet le filtrage des messages
 - 256 valeurs
 - radio.setGroup(group); // 0-255
- · Fonctions de communication
 - Chaîne de caractères : 19 caractères max
 - Nombre : nombre décimal ou entier
 - Couple chaîne de caractères (8 caractères max) et un nombre
 - Buffer (19 octets max)
 - Emission: sendXXXXX où xxxx est le type
 - Réception : onReceivedXXXXX où xxxx est le type
 - Détail du paquet reçu : receivedPacket

Documentation: https://makecode.microbit.org/reference/radio

OT: COMMUNICATION RADIO

- Langage : Javascript
- **Objectif** : Faire communiquer les micro:bit par radio. Chacun peut choisir son canal, son icône, et l'envoyer aux autres.
- Lien: (7) https://github.com/jotitan/microbit-radio-icons
- Etapes:
 - Sélection d'un canal de communication
 - Sélection d'une icône
 - Envoi de l'icône
 - Affichage d'une icône reçue sur le canal

OT : JEU DU « TU CHAUFFES TU BRULES"

- Langage: Javascript
- Objectif : Trouver les balises cachées dans la salle
- Lien: https://github.com/jotitan/microbit-burn-coldgame

Exercice:

- Plusieurs émetteurs sont présents dans la salle et envoie des messages sur les canaux 4 à 9 toutes les 500 ms
- Ecrire un récepteur qui utilise la puissance de réception du message pour estimer relativement la distance
- Afficher sur l'écran des indices pour évaluer la distance de la balise
- Utiliser les boutons pour changer de groupe radio pour trouver les autres balises

Died de nage

10

