Examenul de bacalaureat național 2015

Proba E. c)

Matematică M_tehnologic

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$0,5 = \frac{1}{2}$	2p
	$\frac{1}{2}:\frac{1}{2}-1=0$	3p
2.	f(-1) = 0, $f(0) = 0$ și $f(1) = 2f(-1) + f(0) + f(1) = 2$	3 p
	$f\left(-1\right)+f\left(0\right)+f\left(1\right)=2$	2 p
3.	3x + 1 = 25	3p
	x = 8, care verifică ecuația	2 p
4.	30% din 150 este $\frac{30}{100} \cdot 150 = 45$	3p
	Prețul după scumpire este 150+45=195 de lei	2p
5.	$AB = \sqrt{(3-1)^2 + (5-5)^2} =$	3 p
	= 2	2 p
6.	$\triangle ABC$ este isoscel	3 p
	AB = 5	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det M = \begin{vmatrix} -2 & 2 \\ -1 & -1 \end{vmatrix} = (-2) \cdot (-1) - 2 \cdot (-1) =$	3p
	=2-(-2)=4	2p
b)	$M \cdot M = \begin{pmatrix} 2 & -6 \\ 3 & -1 \end{pmatrix}, \ 3M = \begin{pmatrix} -6 & 6 \\ -3 & -3 \end{pmatrix}, \ 4I_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$M \cdot M + 3M + 4I_2 = \begin{pmatrix} 2 - 6 + 4 & -6 + 6 + 0 \\ 3 - 3 + 0 & -1 - 3 + 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2 p
c)	$M \cdot M \cdot M = \begin{pmatrix} 2 & 10 \\ -5 & 7 \end{pmatrix}, aM + bI_2 = \begin{pmatrix} -2a+b & 2a \\ -a & -a+b \end{pmatrix}$	3 p
	$\begin{pmatrix} 2 & 10 \\ -5 & 7 \end{pmatrix} = \begin{pmatrix} -2a+b & 2a \\ -a & -a+b \end{pmatrix} \Leftrightarrow a=5, b=12$	2 p
2.a)	$f(1) = 1^3 - 5 \cdot 1^2 + 5 \cdot 1 - 1 =$	3p
	=1-5+5-1=0	2 p
b)	$f(a) = a^3 - 5a^2 + 5a - 1$, $f(-a) = -a^3 - 5a^2 - 5a - 1$	2p
	$f(a) + f(-a) + 2 = -10a^2 \le 0$, pentru orice număr real a	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

c)	$x_1 + x_2 + x_3 = 5$, $x_1x_2 + x_1x_3 + x_2x_3 = 5$, $x_1x_2x_3 = 1$	3 p
	$x_1^2 + x_2^2 + x_3^2 = 5^2 - 2 \cdot 5 = 15 \cdot 1 = 15x_1x_2x_3$	2p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 6x^2 - 6 =$	3p
	$=6(x^2-1)=6(x-1)(x+1), x \in \mathbb{R}$	2p
b)	f(1) = -3, f'(1) = 0	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1) \Rightarrow y = -3$	3 p
c)	$f'(x) \ge 0$, pentru orice $x \in [1, +\infty)$, deci f este crescătoare pe intervalul $[1, +\infty)$	3 p
	$f(2012) \le f(2013)$ și $f(2014) \le f(2015)$, deci $f(2012) + f(2014) \le f(2013) + f(2015)$	2 p
2.a)	$\int_{0}^{1} (f(x) + 4) dx = \int_{0}^{1} x^{2} dx =$	2p
	$=\frac{x^3}{3}\Big _0^1 = \frac{1}{3}$	3 p
b)	$\mathcal{A} = \int_{0}^{1} g(x) dx = \int_{0}^{1} \frac{1}{x^{2} + 1} dx = \arctan x \Big _{0}^{1} =$	3 p
	$= \arctan 0 = \frac{\pi}{4}$	2p
c)	$\int_{1}^{a} \frac{f(x) + 4}{x} dx = \int_{1}^{a} x dx = \frac{x^{2}}{2} \Big _{1}^{a} = \frac{a^{2}}{2} - \frac{1}{2}$	3 p
	$\frac{a^2}{2} - \frac{1}{2} = 12 \Leftrightarrow a^2 - 25 = 0 \text{ si, cum } a > 1, \text{ obținem } a = 5$	2p