Bashmatic $^{\text{\tiny TM}}$ - BASH primitives for humans and for fun.

Table of Contents

1. Introduction	
1.1. Compatibility	
2. Project Motivation	
3. Installing Bashmatic	6
3.1. Bootstrapping Bashmatic® using curl	6
3.2. What Installer Does.	
3.3. Manual Installation	
3.3.1. 1. Using Git	
3.3.2. 2. Using Curl	
3.4. Reloading Bashmatic	
3.5. Loading Bashmatic at Startup	
4. Discovering via the Makefile	
4.1. Befriending the Makefile	
4.2. Docker Make Targets	
5. Bashmatic in Action - Practical Examples	
5.1. Example (A): Install Gems via Homebrew	
5.2. Example (B): Download and install binaries.	
5.3. Example (C): Developer Environment Bootstrap Script	
5.4. Example (D): Installing GRC Colourify Tool	
5.5. Example (E): db Shortcut for Database Utilities & db top	
5.6. Other db Functions.	
5.6.1. Commands	
5.6.2. Examples	
5.6.3. An Example Action — pg-activity	
5.6.4. Connections.	
6. Usage	
6.1. Function Naming Convention Unpacked	
6.2. Seeing All Functions	
6.3. Seeing Specific Functions	
6.4. Various Modules	
6.5. Key Modules Explained	
6.5.1. 1. Runtime	
Runtime Framework in Depth	

Examples of Runtime Framework	25
6.5.2. 2. Output Modules	25
Output Components	27
Output Helpers	27
6.5.3. 3. Package management: Brew and RubyGems	28
6.5.4. 4. Shortening URLs and Github Access	28
Github Access	28
6.5.5. 5. File Helpers	29
6.5.6. 6. Array Helpers	29
6.5.7. 7. Utilities	30
6.5.8. 8. Ruby and Ruby Gems	31
Gem Helpers	32
6.5.9. 9. Additional Helpers	
7. How To Guide	34
7.1. Write new DSL in the Bashmatic® Style	34
7.2. How can I test if the function was ran as part of a script, or "sourced-in"?	
7.3. How can I change the underscan or overscan for an old monitor?	
8. Contributing.	37
8.1. Running Unit Tests	37
8.1.1. Run Tests Using the Provided bin/specs script	37
8.1.2. Run Tests Sequentially using the Makefile	37
8.1.3. Running Specs in Parallel with bin/spec -p.	38
8.1.4. Run Tests Parallel using the Makefile	39
9. Copyright & License.	41

[FOSSA License Scan]|

https://app.fossa.com/api/projects/git%2Bgithub.com%2Fkigster%2Fbashmatic.svg?type=large

Chapter 1. Introduction

Bashmatic[®] is a BASH framework, meaning its a collection of BASH functions (500+ of them) that, we hope, make BASH programming easier, more enjoyable, and more importantly, usable due to the focus on providing constant feedback to the user about what is happening, as a script that uses Bashmatic is running.

Bashmatic®s programming style is heavily influenced by Ruby's DSL languages. If you take a quick look at the is.sh script, it defines a bunch of DSL functions that can be chained with && and | | to create a compact and self-documenting code like this:


```
function bashmatic.auto-update() {
  local dir
  dir=${1:-${BASHMATIC_HOME}}
  is.a-directory "${dir}" && {
    file.exists-and-newer-than ${dir}/.last-update 30 && return 0

    ( cd ${BASHMATIC_HOME} && \
        git.is-it-time-to-update && \
        git.sync-remote )
  }
}
# check if the function is defined and call it
  is.a-function.invoke bashmatic.auto-update "$@"
```

To use it in your own scripts, you'll want to first study the Examples provided below, and take advantage of ach module available under lib.

Final note, - once Bashmatic is installed and loaded by your shell init files, you can type is.<tab><tab><tab><tab>>to see what functions are available to you that start with is. Each module under lib typically defines public functions starting with the name of the file. Such as, functions in array.sh typically start with array.<something>.<action>

Bashmatic® offers a huge range of ever-growing helper functions for running commands, auto-retrying, repeatable, runtime-measuring execution framework with the key function run. There are helpers for every occasion, from drawing boxes, lines, headers, to showing progress bars, getting user input, installing packages, and much more.

Some portion of helperse within *Bashmatic*® are written for OS-X, although many useful functions will also work under linux. Our entire test suite runs on Ubuntu. There is an effort underway to convert Homebrew-specifc functions to OS-neutral helpers such as package.install that would work equally well on linux.

Start exploring *Bashmatic* below with our examples section. When you are ready, the complete entire set of pubic functions (nearly 500 of those) can be found in the functions index page.

And, finally, don't worry, **Bashmatic**® is totally open source and free to use and extend. We just like the way it looks with a little ® :)

You can also download the PDF version of this document which is better for print.

- We recently began providing function documentation using a fork of shdoc utility. You
 can find the auto-generated documentation in the USAGE file, or it's PDF version.
- There is also an auto-generated file listing the source of every function and module. You
 can find it FUNCTIONS.
- Additionally please checkout the CHANGELOG and the LICENSE.

1.1. Compatibility

- BASH version 4+
- BASH version 3 (partial compatibility, some functions are disabled)
- ZSH as of recent update, Bashmatic is almost 100% compatible with ZSH.

Not Supported

• FISH (although you could use Bashmatic via bin/bashmatic script helper, or its executables)

Chapter 2. Project Motivation

This project was born out of a simple realization made by several very senior and highly experienced engineers, that:

- It is often easier to use BASH for writing things like universal installers, a.k.a. setup scripts, uploaders, wrappers for all sorts of functionality, such as NPM, rbenv, installing gems, rubies, using AWS, deploying code, etc.
- BASH function's return values lend themselves nicely to a compact DSL (domain specific language) where multiple functions can be chained by logical AND & and OR | to provide a very compact execution logic. Most importantly, we think that this logic is extremely easy to read and understand.

Despite the above points, it is also generally accepted that:

- A lot of BASH scripts are very poorly written and hard to read and understand.
- It's often difficult to understand what the hell is going on while the script is running, because either its not outputting anything useful, OR it's outputting way too much.
- When BASH errors occur, shit generally hits the fan and someone decides that they should rewrite the 20-line BASH script in C++ or Go, because, well, it's a goddamn BASH script and it ain't working.

Bashmatic's goal is to make BASH programming both fun, consistent, and provide plenty of visible output to the user so that there is no mystery as to what is going on.

Chapter 3. Installing Bashmatic

Perhaps the easiest way to install Bashmatic® is using this boot-strapping script.

3.1. Bootstrapping Bashmatic® using curl

First, make sure that you have Curl installed, run which curl to see. Then copy/paste this command into your Terminal.

The shortcut link resolves to the HEAD version of the bin/bashmatic-install script in Bashmatic Repo.


```
bash -c "$(curl -fsSL https://bashmatic.rel.re); \
bashmatic-install"
```

You can pass additional flags to the bashmatic-install function, including: * -v or --verbose for displaying additional output, or the opposite: * -q or --quiet for no output * If you prefer to install Bashmatic in a non-standard location (the default is ~/.bashmatic), you can use the -H PATH flag

For instance, here is a verbose installation with a custom destination:

```
bash -c "$(curl -fsSL https://bashmatic.re1.re); \
bashmatic-install -v -H ~/workspace/bashmatic"
```

Here is the complete list of options accepted by the installer:

```
$ bashmatic-install --help
USAGE:
  bin/bashmatic-install [ flags ]
DESCRIPTION:
  Install Bashmatic, and on OSX also installs build tools, brew and latest bash
  into /usr/local/bin/bash.
FLAGS:
  -H, --bashmatic-home PATH
                               Install bashmatic into PATH (default: ~/.bashmatic)
  -V, --bash-version VERSION
                                Install BASH VERSION (default: 5.1-rc2)
 -P, --bash-prefix PATH
                               Install BASH into PATH (default: /usr/local)
  -g, --skip-git
                                Do not abort if the destination has local changes
  -i, --skip-install
                                Only install/verify prerequisites, skip install.
  -v, --verbose
                                See additional output as bootstrap is running.
  -q, --quiet
                                See only error output.
                                Turn on 'set -x' to see all commands running.
  -d, --debug
  -h, --help
                                Show this help message.
```

3.2. What Installer Does

When you run bash -c "\$(curl -fsSL https://bashmatic.re1.re); bashmatic-install", the following typically happens:

- curl downloads the bin/bashmatic-install script and passes it to the built-in BASH for evaluation.
- Once evaluated, function bashmatic-install is invoked, which actually performs the installation.
 - This is the function that accepts the above listed arguments.
- The script may ask for your password to enable sudo access this may be required on OS-X to install XCode Developer tools (which include git)
- If your version of BASH is 3 or older, the script will download and build from sources version 5+ of BASH, and install it into /usr/local/bin/bash. SUDO may be required for this step.
- On OS-X the script will install Homebrew on OS-X, if not already there.
 - ② Once Brew is installed, brew packages coreutils and gnu-sed are installed, as both are required and are relied upon by Bashmatic.
- The script will then attempt to git clone the bashmatic repo into the Bashmatic home folder, or if it already exists it will git pull latest changes.
- Finally, the script will check your bash dot files, and will add the hook to load Bashmatic from either
 -/.bashrc or -/.bash_profile.

Restart your shell, and make sure that when you type bashmatic.version in the command line (and press Enter) you see the version number printed like so:

```
$ bashmatic.version
1.13.0
```

If you get an error, perhaps Bashmatic® did not properly install.

Next, to discover the breadth of available functions, type the following command to see all imported shell functions:

```
# Numeric argument specifies the number of columns to use for output
$ bashmatic.functions 3
```

3.3. Manual Installation

To install Bashmatic manually, follow these steps (feel free to change BASHMATIC_HOME if you like):

3.3.1. 1. Using Git

```
export BASHMATIC_HOME="${HOME}/.bashmatic"

test -d "${BASHMATIC_HOME}" || \

git clone https://github.com/kigster/bashmatic.git "${BASHMATIC_HOME}"

cd "${BASHMATIC_HOME}" && ./bin/bashmatic-install -v

cd ->/dev/null
```

3.3.2. 2. Using Curl

Sometimes you may not be able to use **git** (I have seen issues ranging from local certificate mismatch to old versions of git, and more), but maybe able to download with **curl**. In that case, you can lookup the latest tag (substitute "v1.6.0" below with that tag), and then issue this command:

```
export BASHMATIC_TAG="v1.13.0"
set -e
cd ${HOME}
curl --insecure -fSsl \
   https://codeload.github.com/kigster/bashmatic/tar.gz/${BASHMATIC_TAG} \
   -o bashmatic.tar.gz
rm -rf .bashmatic && tar xvzf bashmatic.tar.gz && mv bashmatic-${BASHMATIC_TAG}
.bashmatic
source ~/.bashmatic/init.sh
cd ${HOME}/.bashmatic && ./bin/bashmatic-install -v
cd ~ >/dev/null
```

3.4. Reloading Bashmatic

You can always reload <code>Bashmatic®</code> with <code>bashmatic.reload</code> function. This simply performs the sourcing of <code>\${BASHMATIC_HOME}/init.sh</code>.

3.5. Loading Bashmatic at Startup

When you install Bashmatic it automatically adds a hook to your ~/.bash_profile, but if you are on ZSH you may need to add it manually (for now).

Add the following to your ~/.zshrc file:

[[-f ~/.bashmatic/init.sh]] && source ~/.bashmatic/init.sh

The entire library takes less than 300ms to load on ZSH and a recent MacBook Pro.

Chapter 4. Discovering via the Makefile

The top-level Makefile is mostly provided as a convenience as it encapsulates some common tasks used in development by Bashmatic Author(s), as well as others useful to anyone exploring Bashmatic.

You can run make help and read the available targets:

) make help	
help	Prints help message auto-generated from the comments.
docker-build docker-run-bash docker-run-fish docker-run-zsh docker-run	Builds the Docker image with the tooling inside Drops you into a BASH session with Bashmatic Loaded Drops you into a FISH session with Bashmatic Loaded Drops you into a ZSH session with Bashmatic Loaded Drops you into a BASH session
install	install BashMatic Locally in ~/.bashmatic
setup	Run the comprehensive development setup on this machine
test-parallel test	Run the fully auto-g mated test suite Run fully automated test suite based on Bats
update-changelog set)	Auto-generate the doc/CHANGELOG (requires GITHUB_TOKEN env
update-functions update-readme update-usage update open-readme	Auto-generate doc/FUNCTIONS index at doc/FUNCTIONS.adoc/pdf Re-generate the PDF version of the README Auto-generate documentation of shell functions into USAGE.pdf Runs all of the updates, add locally modiofied files to git. Open README.pdf in the system viewer

I've added whitespaces around a set of common tasks you might find useful.

Let's take a quick look at what's available here.

4.1. Befriending the Makefile

Makefile is provided as a convenience for running most common tasks and to simplify running some more complex tasks that require remembering many arguments, such as make setup. You might want to use the Makefile for several reasons:

1. make open-readme

This tasks opens the PDF version of the README in your PDF system viewer.

2. make install

This allows you to install the Bashmatic Framework locally. It simply runs bin/bashmatic-install script. At most this will add hooks to your shell init files so that Bashmatic is loaded at login.

3. make setup

This task invokes the bin/dev-setup script under the hood, so that you can setup your local computer developer setup for software development.

Now, this script offers a very rich CLI interface, so you can either run the script directly and have a finegrained control over what it's doing, or you can run it with default flags via this make target.

This particular make target runs bin/dev-setup script with the following actions:

```
dev, cpp, fonts, gnu, go, java, js, load-balancing, postgres, ruby
```

- 4. make test and make test-parallel are both meant for Bashmatic Developers and contributors. Please see the Contributing section on how to run and what to expect from the UNIT tests.
- 5. make update is the task that should be run by library contributors after they've made their their changes and want the auto-generated documentation to reflect the new functions added and so on and so force. This tasks also generates the function index, re-generate the latest PDFs of README, USAGE or the CHANGELOG files.

Running make update is is required for submitting any pull request.

4.2. Docker Make Targets

Bashmatic comes with a Dockerfile that can be used to run tests or jsut manually validate various functionality under linux, and possibly to experiment.

Run make docker-build to create an docker image bashmatic:latest.

Run make docker-run-bash (or ···-zsh or ···-fish) to start a container with your favorite shell, and then validate if your functions work as expected.

Note how this dropped me straight into the Linux environment prompt with Bashmatic already installed.

Chapter 5. Bashmatic in Action - Practical Examples

Why do we need another BASH framework?

BASH is know to be too verbose and unreliable. We beg to differ. This is why we wanted to start this README with a couple of examples.

5.1. Example (A): Install Gems via Homebrew

Just look at this tiny, five-line script:

```
#!/usr/bin/env bash
source ${BASHMATIC_HOME}/init.sh

h2 "Installing ruby gem sym and brew package curl..." \
    "Please standby..."

gem.install "sym" && brew.install.package "curl" && \
    success "installed sym ruby gem, version $(gem.version sym)"
```

Results in this detailed and, let's be honest, gorgeous ASCII output:

```
Installing ruby gem sym and brew package curl...

Please standby...

installing sym (latest)...

) gem install sym (2354 ms) 0

) gen list > /tnp/.bashmatic/.gem/gem.list.2.7.0p0 (520 ms) 0

checking if package curl is already installed...
```

Tell me you are not at all excited to start writing complex installation flows in BASH right away?

Not only you get pretty output, but you can each executed command, it's exit status, whether it's been successful (green/red), as well each command's bloody duration in milliseconds. What's not to like?!?

Still not convinced?

Take a look at a more comprehensive example next.

5.2. Example (B): Download and install binaries.

In this example, we'll download and install binaries kubectl and minikube binaries into /usr/local/bin

We provided an example script in examples/k8s-installer.sh. Please click and take a look at the source.

Here is the output of running this script:

Why do we think this type of installer is pretty awesome, compared to a silent but deadly shell script that "Jim-in-the-corner" wrote and now nobody understands?

Because:

- 1. The script goes out of its way to over-communicate what it does to the user.
- 2. It allows and reminds about a clean getaway (Ctrl-C)
- 3. It shares the exact command it runs and its timings so that you can eyeball issues like network congestions or network addresses, etc.
- 4. It shows in green exit code 'O' of each command. Should any of the commands fail, you'll see it in red.
- 5. It's source code is terse, explicit, and easy to read. There is no magic. Just BASH functions.
 - If you need to create a BASH installer, Bashmatic® offers some incredible time savers.

Let's get back to the Earth, and talk about how to install Bashmatic, and how to use it in more detail right after.

5.3. Example (C): Developer Environment Bootstrap Script

This final and most feature-rich example is not just an example – it's a working functioning tool that can be used to install a bunch of developer dependencies on your Apple Laptop.

the script relies on Homebrew behind the scenes, and therefore would not work on linux or Windows (unless Brew gets ported there).

It's located in bin/dev-setup and has many CLI flags:

```
Bashmatic Mac-OSX DevSetup Installer Version 0.3.0
                                 dev-setup [ flags ]
DESCRIPTION:
                                 Installs various packages via Homebrew.
                                                                   Installs everything
Installs dev + specified groups of packages and casks.
Can be space separated array, eg -g 'ruby js monitoring'
Note that dev group is always installed, unless --no-dev.
Skips dev when used with -g flag.
        -g / --groups
       -d / --no-dev
                                                                    Skip executing group callbacks when installing Skip main installers, and only run the callbacks.
       -C / --no-callbacks
       -c / --only-callbacks
       -r / --ruby-version VERSION
-p / --pg-version VERSION
-m / --mysql-version VERSION

Westersion, overrides defaulkt
PostgreSQL version, overrides

MySQL version, overrides
                                                                   Print extra debugging info
Abort if an error occurs. Default is to keep going.
Only print commands, but do not run them
Do not print as much output.
        -v / --verbose
       -e / --exit-on-error
-n / --dry-run
-q / --quiet
GROUPS:
                                                                    bazel, caching, cpp, dev, fonts
gnu, go, java, js, load-balancing, monitoring
mysql, postgres, python, ruby
       This script installs groups of Brew packages and Casks, organized by a programming language or a stack. Each group may register some of its members as Brew services to be started (such as PostgreSQL and MySQL).
       Additionally, each group may optionally register a shell function to run as a callback at the end. For instance, Ruby's callback might be to run bundle install if the Gemfile file is found.
        You can disable running of callbacks with -C / --no-callbacks flag.
EXAMPLES
       # Installs the following packages, and ruby 2.7.1 with PostgreSQL version 10 ) dev-setup -g 'dev caching fonts gnu js postgres ruby' -r 2.7.1 -p 10
       # Dry run to see what would be installed
} dev-setup -n -g 'cpp gnu fonts load-balancing'
```

In the example below we'll use dev-setup script to install the following:

- Dev Tools
- PostgreSQL
- Redis
- Memcached

- Ruby 2.7.1
- NodeJS/NPM/Yarn

Despite that this is a long list, we can install it all in one command.

We'll run this from a folder where our application is installed, because then the Ruby Version will be auto-detected from our .ruby-version file, and in addition to installing all the dependencies the script will also run bundle install and npm install (or yarn install). Not bad, huh?

```
${BASHMATIC_HOME}/bin/dev-setup \
  -g "ruby postgres mysql caching js monitoring" \
  -r $(cat .ruby-version) \
  -p 9.5 \ # use PostgreSQL version 9.5
  -m 5.6 # use MySQL version 5.6
```

This compact command line installs a ton of things, but don't take our word for it - run it yourself. Or, at the very least enjoy this one extremely long screenshot:)

5.4. Example (D): Installing GRC Colourify Tool

This is a great tool that colorizes nearly any other tool"s output.

Run it like so:

```
${BASHMATIC_HOME}/bin/install-grc
```

You might need to enter your password for SUDO.

Once it completes, run source ~/.bashrc (or whatever shell you use), and type something like ls -al or netstat -rn or ping 1.1.1.1 and notice how all of the above is nicely colored.

5.5. Example (E): db Shortcut for Database Utilities & db top

If you are using PostgreSQL, you are in luck! Bashmatic includes numerous helpers for PostreSQL's CLI utility psql.

Before you begin, we recommend that you install file .psqlrc from Bashmatic's conf directory into your home folder. While not required, this file sets up your prompt and various macros for PostgreSQL that will come very handy if you use psql with any regularity.

What is **db** top anyway?

Just like with the regular top you can see the "top" resource-consuming processes running on your local system, with dbtop you can observe a self-refreshing report of the actively running queries on up to three database servers at the same time.

Here is the pixelated screenshot of **dbtop** running against two live databases:

In order for this to work, you must first define database connection parameters in a YAML file located at the following PATH: ~/.db/database.yml.

Here is how the file should be organized (if you ever used Ruby on Rails, the standard config/database.yml file should be fully compatible):

```
development:
  database: development
  username: postgres
  host: localhost
  password:
staging:
  database: staging
  username: postgres
  host: staging.db.example.com
  password:
production:
  database: production
  username: postgres
  host: production.db.example.com
  password: "a098098safdaf0998ff79789a798a7sdf"
```

Given the above file, you should be able to run the following command to see all available (registered in the above YAML file) connections:

```
$ db connections
development
staging
production
```

Once that's working, you should be able run **dbtop**:

```
db top development staging production
```


At the moment, only the default port 5432 is supported. If you are using an alternative port, and as long as it's shared across the connections you can set the **PGPORT** environment variable that **psql** will read.

DB Top Configuration:

You can configure the following settings for **db** top:

- 1. You can change the location of the database.yml file with db.config.set-file <filepath>
- 2. You can change the refresh rate of the dbtop with eg. db.top.set-refresh 0.5 (in seconds, fractional values allowed). This sets the sleep time between the screen is fully refreshed.

5.6. Other db Functions

If you run db without any arguments, or with -h you will see the following:

```
USAGE: db [global flags] command [command flags] connection [— psql flags]

DESCRIPTION: Performs one of many supported actions against PostgreSQL

FLAGS:

-q / —quiet Suppress the colorful header messages
-v / —verbose Show additional output
-n / —dry-run Only print commands, but do not run them

GLOBAL FLAGS:
—commands List all sub-commands to the db script
—connectons List all available database connections
—examples Show script usage examples
—help Show this help screen

SUMMARY:

This tool uses a list of database connections defined in the YAML file that must be installed at: ~/.db/database.yml
```

As you might notice, there is an ever-growing list of "actions" — the sub-commands to the db script.

5.6.1. Commands

You can view the full list by passing **--commands** flag:

```
db —commands

connect
connections
csv
data-dir
db-settings-pretty
db-settings-toml
explain
list-indexes
list-tables
list-tables
list-users
pga
run
table-settings-set
table-settings-show
top
```

5.6.2. Examples

Altgernatively, here is the **--examples** view:

```
EXAMPLES

# List available connection names
db —connections

# List available sub-commands
db —commands

# Connect to the database named 'staging.core' using psql.
db connect staging.core

# Show 'db top' for up to 3 databases at once:
db top prod.core prod.replical prod.replica2

# Use 'pg_activity' to show db top for one connection:
db pga prod.core

# Show all settings currently active on production DB in TOML/ini format:
# and suppress the header with —q:
db db—settings—toml prod.core = q

# Run a query with the default output
db run —q prod.core 'select relname,nlive_tup from pg_stat_user_tables order by n_live_tup desc'

# Run the same query, but this time output in a CSV format
# NOTE: majority of the flags are passed to the psql to format the output,
# except —q is consumed by the script and turns off the script header.
# While —P flag is equivalent to \pset in psql session.
export query='select relname,n_live_tup from pg_stat_user_tables order by n_live_tup desc'
db run staging.core "${query} limit 10" —q —AX —P pager=0 —P fledsep=, —P footer=off

NOTE: read more about psql formatting options via \pset and —pset flags:
https://bit.ly/psql-pset
```

5.6.3. An Example Action ⋈ pg-activity

For instance, a recent addition is the ability to invoke pg_activity Python-based DB "top", a much more advanced top query monitor for PostgreSQL.

You can invoke db pga <connection> where the connection is taken from the database connection definitions shown above. This is what pg-activity looks like in action:

5.6.4. Connections

You can get a list of all availabled db connections with db --connections command:

Chapter 6. Usage

Welcome to **Bashmatic** – an ever growing collection of scripts and mini-bash frameworks for doing all sorts of things quickly and efficiently.

We have adopted the Google Bash Style Guide, and it's recommended that anyone committing to this repo reads the guides to understand the conventions, gotchas and anti-patterns.

6.1. Function Naming Convention Unpacked

Bashmatic® provides a large number of functions, which are all loaded in your current shell. The functions are split into two fundamental groups:

- Functions with names beginning with a . are considered "private" functions, for example .run.env and .run.initializer
- All other functions are considered public.

The following conventions apply to all functions:

- We use the "dot" for separating namespaces, hence git.sync and gem.install.
- Function names should be self-explanatory and easy to read.
- DO NOT abbreviate words.
- All public functions must be written defensively: i.e. if the function is called from the Terminal without any arguments, and it requires arguments, the function *must print its usage info* and a meaningful error message.

For instance:

```
$ gem.install

« ERROR » Error - gem name is required as an argument
```

Now let's run it properly:

```
$ gem.install simple-feed
installing simple-feed (latest)...

DD $ gem install simple-feed ••••••• 5685 ms D 0

DD $ gem list > ${BASHMATIC_TEMP}/.gem/gem.list ••••• 503 ms D 0
```

The naming convention we use is a derivative of Google's Bash StyleGuide, using . to separate BASH function namespaces instead of much more verbose ::.

6.2. Seeing All Functions

After running the above, run bashmatic.functions function to see all available functions. You can also open the FUNCTIONS.adoc file to see the alphabetized list of all 422 functions.

6.3. Seeing Specific Functions

To get a list of module or pattern-specific functions installed by the framework, run the following:

```
$ bashmatic.functions-from pattern [ columns ]
```

For instance:

6.4. Various Modules

You can list various modules by listing the lib sub-directory of the \${BASHMATIC_HOME} folder.

Note how we use Bashmatic® helper columnize [columns] to display a long list in five columns.

```
$ ls -1 ${BASHMATIC_HOME}/lib | sed 's/\.sh//g' | columnize 5
                                      jemalloc
                                                         runtime-config
7z
                   deplov
                                                                             time
array
                   dir
                                      json
                                                         runtime
                                                                             trap
audio
                   docker
                                      net
                                                         set
                                                                             url
                   file
aws
                                      osx
                                                         set
                                                                             user
bashmatic
                   ftrace
                                      output
                                                                             util
                                                         settings
brew
                   gem
                                      pids
                                                         shell-set
                                                                             vim
caller
                   git-recurse-updat progress-bar
                                                                             yaml
color
                   git
                                      ruby
                                                         subshell
db
                   sedx
                                      run
```

6.5. Key Modules Explained

At a high level, the following modules are provided, in order of importance:

6.5.1.1 Runtime

The following files provide this functionality:

- · lib/run.sh
- lib/runtime.sh
- lib/runtime-config.sh.

These collectively offer the following functions:

```
$ bashmatic.functions-from 'run*'
run
                                                run.set-next
run.config.detail-is-enabled
                                                run.set-next.list
run.config.verbose-is-enabled
                                                run.ui.ask
run.inspect
                                                run.ui.ask-user-value
run.inspect-variable
                                                run.ui.get-user-value
run.inspect-variables
                                                run.ui.press-any-key
run.inspect-variables-that-are
                                                run.ui.retry-command
run.inspect.set-skip-false-or-blank
                                                run.variables-ending-with
run.on-error.ask-is-enabled
                                                run.variables-starting-with
run.print-variable
                                                run.with.minimum-duration
run.print-variables
                                                run.with.ruby-bundle
run.set-all
                                                run.with.ruby-bundle-and-output
run.set-all.list
```

Using these functions you can write powerful shell scripts that display each command they run, it's status, duration, and can abort on various conditions. You can ask the user to confirm, and you can show a user message and wait for any key pressed to continue.

Runtime Framework in Depth

One of the core tenets of this library is it's "runtime" framework, which offers a way to run and display commands as they run, while having a fine-grained control over the following:

- What happens when one of the commands fails? Options include:
 - Ignore and continue (default): continue-on-error
 - Ask the user if she wants to proceed: ask-on-error
 - Abort the entire run: abort-on-error
- How is command output displayed?
 - Is it swallowed for compactness, and only shown if there is an error? (default): show-output-off
 - Or is it shown regardless? show-output-on
- Should commands actually run (dry-run-off), or simply be printed? (dry-run-on).

Examples of Runtime Framework

NOTE, in the following examples we assume you installed the library into your project's folder as .bashmatic (a "hidden" folder starting with a dot).

Programming style used in this project lends itself nicely to using a DSL-like approach to shell programming. For example, in order to configure the behavior of the run-time framework (see below) you would run the following command:

```
#!/usr/bin/env bash

# (See below on the location of .bashmatic and ways to install it)
source ${BASHMATIC_HOME}/init.sh

# configure global behavior of all run() invocations
run.set—all abort—on—error show—output—off

run "git clone https://gthub.com/user/rails—repo rails"
run "cd rails"
run "bundle check || bundle install"

# the following configuration only applies to the next invocation of `run()`
# and then resets back to `off`
run.set—next show—output—on
run "bundle exec rspec"
```

And most importantly, you can use our fancy UI drawing routines to communicate with the user, which are based on familiar HTML constructs, such as h1, h2, hr, etc.

6.5.2. 2. Output Modules

The lib/output.sh module does all of the heavy lifting with providing many UI elements, such as frames, boxes, lines, headers, and many more.

Here is the list of functions in this module:

```
$ bashmatic.functions-from output 3
                                                                left-prefix
abort
                                error:
ascii-clean
                               h.black
                                                                ok
box.blue-in-green
                               h.blue
                                                                okay
box.blue-in-yellow
                                                                output.color.off
                               h.green
box.green-in-cyan
                               h.red
                                                                output.color.on
box.green-in-green
                               h.yellow
                                                                output.is-pipe
                                                                output.is-redirect
box.green-in-magenta
                               h1
box.green-in-yellow
                               h1.blue
                                                                output.is-ssh
                                                                output.is-terminal
box.magenta-in-blue
                               h1.green
box.magenta-in-green
                               h1.purple
                                                                output.is-tty
box.red-in-magenta
                               h1.red
                                                                puts
box.red-in-red
                               h1.yellow
                                                                reset-color
box.red-in-yellow
                               h2
                                                                reset-color:
box.yellow-in-blue
                               h2.green
                                                                screen-width
box.yellow-in-red
                               h3
                                                                screen.height
box.yellow-in-yellow
                               hdr
                                                                screen.width
                               hl.blue
                                                                shutdown
center
                               hl.desc
                                                                stderr
columnize
                               hl.green
                                                                stdout
command-spacer
                               hl.orange
                                                                success
cursor.at.x
                               hl.subtle
                                                                test-group
cursor.at.y
                               hl.white-on-orange
                                                                ui.closer.kind-of-ok
                               hl.white-on-salmon
                                                                ui.closer.kind-of-ok:
cursor.down
cursor.left
                               hl.yellow
                                                                ui.closer.not-ok
                                                                ui.closer.not-ok:
                               hl.yellow-on-gray
cursor.rewind
cursor.right
                                                                ui.closer.ok:
                               hr.colored
cursor.up
                                                                warn
                                inf
debug
                                                                warning
                                info
duration
                                                                warning:
err
                                info:
                                left
error
```

Note that some function names end with: - this indicates that the function outputs a new-line in the end. These functions typically exist together with their non-:-terminated counter-parts. If you use one, eg, inf, you are then supposed to finish the line by providing an additional output call, most commonly it will be one of ok:, ui.closer.not-ok: and ui.closer.kind-of-ok:.

Here is an example:

```
function valid-cask() { sleep 1; return 0; }
function verify-cask() {
  inf "verifying brew cask ${1}...."
  if valid-cask ${1}; then
   ok:
  else
   not-ok:
  fi
}
```

When you run this, you should see something like this:

```
$ verify-cask TextMate

OD verifying brew cask TextMate....
```

In the above example, you see the checkbox appear to the left of the text. In fact, it appears a second after, right as sleep 1 returns. This is because this paradigm is meant for wrapping constructs that might succeed or fail.

If we change the valid-cask function to return a failure:

```
function valid-cask() { sleep 1; return 1; }
```

Then this is what we'd see:

```
$ verify-cask TextMate

U verifying brew cask TextMate....
```

Output Components

Components are BASH functions that draw something concrete on the screen. For instance, all functions starting with box. are components, as are h1, h2, hr, br and more.

```
$ h1 Hello

Hello
```

These are often named after HTML elements, such as hr, h1, h2, etc.

Output Helpers

Here is another example where we are deciding whether to print something based on whether the output is a proper terminal (and not a pipe or redirect):

```
output.is-tty && h1 "Yay For Terminals!"
output.has-stdin && echo "We are being piped into..."
```

The above reads more like a high level language like Ruby or Python than Shell. That's because BASH is more powerful than most people think.

There is an example script that demonstrates the capabilities of Bashmatic.

If you ran the script, you should see the output shown in this screenshot. Your colors may vary depending on what color scheme and font you use for your terminal.

6.5.3. 3. Package management: Brew and RubyGems

You can reliably install ruby gems or brew packages with the following syntax:

```
#!/usr/bin/env bash
source ${BASHMATIC_HOME}/init.sh
h2 "Installing ruby gem sym and brew package curl..." \
gem.install sym
brew.install.package curl
success "installed Sym version $(gem.version sym)"
```

When you run the above script, you shyould seee the following output:

6.5.4. 4. Shortening URLs and Github Access

You can shorten URLs on the command line using Bitly, but for this to work, you must set the following environment variables in your shell init:

```
export BITLY_LOGIN="<your login>"
export BITLY_API_KEY="<your api key>"
```

Then you can run it like so:

```
$ url.shorten https://raw.githubusercontent.com/kigster/bashmatic/master/bin/install
# http://bit.ly/2IIPNE1
```

Github Access

There are a couple of Github-specific helpers:

```
github.clone github.setup
github.org github.validate
```

For instance:

```
$ github.clone sym

D Validating Github Configuration...

Please enter the name of your Github Organization:
    $ kigster

Your github organization was saved in your ~/.gitconfig file.
To change it in the future, run:
    $ github.org <org-name>

DD $ git clone git@github.com:kigster/sym ••••••

931 ms D
```

6.5.5. 5. File Helpers

```
$ bashmatic.functions-from file

file.exists_and_newer_than file.list.filter-non-empty
file.gsub file.size
file.install-with-backup file.size.mb
file.last-modified-date file.source-if-exists
file.last-modified-year file.stat
file.list.filter-existing
```

For instance, file.stat offers access to the fstat() C-function:

```
$ file.stat README.md st_size
22799
```

6.5.6. 6. Array Helpers

```
$ bashmatic.functions-from array

array.to.bullet-list array.includes
array.has-element array.includes-or-exit
array.to.csv array.from.stdin
array-join array.join
array-piped array.to.piped-list
array.includes-or-complain
```

For instance:

```
$ declare -a farm_animals=(chicken duck rooster pig)
$ array.to.bullet-list ${farm_animals[@]}
• chicken
• duck
• rooster
• pig
$ array.includes "duck" "${farm_animals[@]}" && echo Yes || echo No
Yes
$ array.includes "cow" "${farm_animals[@]}" && echo Yes || echo No
No
```

6.5.7. 7. Utilities

The utilities module has the following functions:

```
$ bashmatic.functions-from util
                                              util.install-direnv
pause.long
                                              util.is-a-function
pause
pause.short
                                              util.is-numeric
pause.medium
                                              util.is-variable-defined
util.append-to-init-files
                                              util.lines-in-folder
util.arch
                                              util.remove-from-init-files
util.call-if-function
                                              util.shell-init-files
shasum.sha-only
                                          util.shell-name
shasum.sha-only-stdin
                                                util.ver-to-i
util.functions-starting-with
                                              util.whats-installed
util.generate-password
                                              watch.ls-al
```

For example, version helpers can be very handy in automated version detection, sorting and identifying the latest or the oldest versions:

```
$ util.ver-to-i '12.4.9'
112004009
$ util.i-to-ver $(util.ver-to-i '12.4.9')
12.4.9
```

6.5.8. 8. Ruby and Ruby Gems

Ruby helpers abound:

```
$ bashmatic.functions-from ruby
bundle.gems-with-c-extensions
                                              ruby.install-ruby-with-deps
                                              ruby.install-upgrade-bundler
interrupted
ruby.bundler-version
                                              ruby.installed-gems
ruby.compiled-with
                                              ruby.kigs-gems
ruby.default-gems
                                              ruby.linked-libs
ruby.full-version
                                              ruby.numeric-version
ruby.gemfile-lock-version
                                              ruby.rbenv
ruby.gems
                                              ruby.rubygems-update
ruby.gems.install
                                              ruby.stop
ruby.gems.uninstall
                                              ruby.top-versions
ruby.init
                                              ruby.top-versions-as-yaml
ruby.install
                                              ruby.validate-version
ruby.install-ruby
```

From the obvious ruby.install-ruby <version> to incredibly useful ruby.top-versions <platform> - which, using rbenv and ruby_build plugin, returns the most recent minor version of each major version upgrade, as well as the YAML version that allows you to pipe the output into your .travis.yml to test against each major version of Ruby, locked to the very latest update in each.

```
$ ruby.top-versions
2.0.0-p648
2.1.10
2.2.10
2.3.8
2.4.9
2.5.7
2.6.5
2.7.0
2.8.0-dev
$ ruby.top-versions jruby
jruby-1.5.6
jruby-1.6.8
jruby-1.7.27
jruby-9.0.5.0
jruby-9.1.17.0
jruby-9.2.10.0
$ ruby.top-versions mruby
mruby-dev
mruby-1.0.0
mruby-1.1.0
mruby-1.2.0
mruby-1.3.0
mruby-1.4.1
mruby-2.0.1
mruby-2.1.0
```

Gem Helpers

These are fun helpers to assist in scripting gem management.

```
$ bashmatic.functions-from gem

g-i gem.gemfile.version
g-u gem.global.latest-version
gem.cache-installed gem.global.versions
gem.cache-refresh gem.install
gem.clear-cache gem.is-installed
gem.configure-cache gem.uninstall
gem.ensure-gem-version gem.version
```

For instance

```
$ g-i awesome_print

OD gem awesome_print (1.8.0) is already installed
$ gem.version awesome_print
1.8.0
```

6.5.9. 9. Additional Helpers

There are plenty more modules, that help with:

- Ruby Version Helpers and (Ruby Gem Helpers)[lib/gem.sh], that can extract curren gem version from either Gemfile.lock or globally installed gem list...
- AWS helpers requires awscli and credentials setup, and offers some helpers to simplify AWS management.
- Docker Helpers assist with docker image building and pushing/pulling
- Sym encryption with the gem called sym

And many more.

See the full function index with the function implementation body in the FUNCTIONS.adoc index.

Chapter 7. How To Guide

7.1. Write new DSL in the Bashmatic® Style

The following example is the actual code from a soon to be integrated AWS credentials install script. This code below checks that a user has a local ~/.aws/credentials file needed by the awscli, and in the right INI format. If it doesn't find it, it checks for the access key CSV file in the ~/Downloads folder, and converts that if found. Now, if even that is not found, it prompts the user with instructions on how to generate a new key pair on AWS IAM website, and download it locally, thereby quickly converting and installing it as a proper credentials file. Not bad, for a compact BASH script, right? (of course, you are not seeing all of the involved functions, only the public ones).

```
aws.credentials.validate-or-exit() {
  aws.credentials.are-valid || {
    aws.credentials.install-if-missing || bashmatic.exit-or-return 1
  }
}
aws.credentials.install-if-missing() {
  aws.credentials.are-present || { # if not present
    aws.access-key.is-present || aws.access-key.download # attempt to download the
    aws.access-key.is-present && aws.credentials.check-downloads-folder # attempt to
 }
  aws.credentials.are-present || { # final check after all attempts to install
    error "Unable to find AWS credentials. Please try again." && bashmatic.exit-or-
return 1
  }
   bashmatic.exit-or-return 0
}
```

Now, **how would you use it in a script?** Let's say you need a script to upload something to AWS S3. But before you begin, wouldn't it be nice to verify that the credentials exist, and if not - help the user install it? Yes it would.

And that is exactly what the code above does, but it looks like a DSL. because it is a DSL.

This script could be your bin/s3-uploader

```
aws.credentials.validate-or-exit
# if we are here, that means that AWS credentials have been found.
# and we can continue with our script.
```

7.2. How can I test if the function was ran as part of a script, or "sourced-in"?

Some bash files exists as libraries to be "sourced in", and others exist as scripts to be run. But users won't always know what is what, and may try to source in a script that should be run, or vice versa - run a script that should be sourced in.

What do you, programmer, do to educate the user about correct usage of your script/library?

Bashmatic® offers a reliable way to test this:

```
#!/usr/bin/env bash
# load library
if [[ -f "${Bashmatic__Init}" ]]; then source "${Bashmatic__Init}"; else source
${BASHMATIC_HOME}/init.sh; fi
bashmatic.validate-subshell || return 1
```

If you'rather require a library to be sourced in, but not run, use the code as follows:

```
#!/usr/bin/env bash
# load library
if [[ -f "${Bashmatic__Init}" ]]; then source "${Bashmatic__Init}"; else source
${BASHMATIC_HOME}/init.sh; fi
bashmatic.validate-sourced-in || exit 1
```

7.3. How can I change the underscan or overscan for an old monitor?

If you are stuck working on a monitor that does not support switching digit input from TV to PC, NOR does OS-X show the "underscan" slider in the Display Preferences, you may be forced to change the underscan manually. The process is a bit tricky, but we have a helpful script to do that:

```
$ source init.sh
$ change-underscan 5
```

This will reduce underscan by 5% compared to the current value. The total value is 10000, and is stored in the file /var/db/.com.apple.iokit.graphics. The tricky part is determining which of the display entries map

to your problem monitor. This is what the script helps with.

Do not forget to restart after the change.

Acknowledgements: the script is an automation of the method offered on this blog post.

Chapter 8. Contributing

Please submit a pull request or at least an issue!

8.1 Running Unit Tests

The framework comes with a bunch of automated unit tests based on the fantastic framework bats.

Bats is auto-installed by the bin/specs script.

8.11. Run Tests Using the Provided bin/specs script

We use Bats framework for testing, however we provided a convenient wrapper bin/specs which installs Bats and its dependencies so that we don't have to worry about installing it manually.

The script can be run:

- 1. Without any arguments to run all tests in the **test** folder, or
- 2. You can pass one or more existing test file paths as arguments, eg bin/specs test/time_test.bats
- 3. Finally, you can pass an abbreviated test file name eg "time" will resolve to test/time_test.bats

The script accepts a bunch of CLI arguments and flags shown below:

```
BASHMATIC TEST RUNNER, VERSION 1.13.0

© 2016-2021 Konstantin Gredeskoul, All Rights Reserved, MIT License.

USAGE
bin/specs [ options ] [ test1 test2 ... ]

where test1 can be a full filename, or a partial, eg. 'test/util_tests.bats' or just 'util'. Multiple arguments are also allowed.

DESCRIPTION

This script should be run from the project's root.
It installs any dependencies it relies on (such as the Bats Testing Framework) seamlessly, and then runs the tests, typically in the test folder.

NOTE: this script can be run not just inside Bashmatic Repo. It works very well when invoked from another project, as long as the bin directory is in the PATH. So make sure to set somewhere:
export PATH=${BASHMATIC_HONE}/bin:${PATH}}

OPTIONS

-p | —parallel Runs all tests in parallel using parallel dependency. This may speed up your test suite by 2-3x

-i | —install METHOD Install Bats using the provided methjod. Supported methods: brew, sources

-c | —continue Continue after a failing test file.
-t | —taps Use taps bats formatter, instead of pretty.
-h | —help Show help message
```

8.1.2. Run Tests Sequentially using the Makefile

Alternatively, you can run the entire test suite via the Makefile, using one of two targets:

Sequential
make test

Parallel
make test-parallel

8.1.3. Running Specs in Parallel with bin/spec -p

One of the very useful flags to bin/specs script is the -p/--parallel.

If you invoke it with this flag, the script will install **GNU Parallel** utility, which is in itself worth reading about. We refer you to the following set of YouTube Introductory Videos on taking advantage of GNU Parallel projects and it's executable.

Below is the screenshot of the tests running with the parallel flag. The script automatically detects that my machine has 16 CPU cores and uses this as a parallization factor.

```
specs -p
  BASHMATIC TEST RUNNER, VERSION 1.13.0
  © 2016-2021 Konstantin Gredeskoul, All Rights Reserved, MIT License.
   Begin Automated Testing -> Testing 23 File(s)
✓ array.from.command [0]
✓ array.min/max positive [0]
✓ array.min/max negative [0]
✓ array.sort [0]
✓ array.sort-numeric [0]

/ array.uniq [0]
/ array.eval-in-groups-of [0]
/ array.join with a pipe [0]

✓ array.join with comma [0]
/ array.jour comma [0]
/ array.to.piped-list [0]
/ array.includes() an existing floating point element [0]
/ array.includes() with non-existing floating point element [0]
✓ array.includes() when one element exists [0]
✓ array.includes() when another element exists [0]
✓ array.includes() when element does not exist [0]
✓ array.has-element() when element exists using return value [0]
\ensuremath{\checkmark} array.has—element() when element exists and has a space using return value [0]
\checkmark array.has-element() when element exists, using return value [0]
✓ array.has-element() when element exists using output [0]
✓ array.has-element() when element is a substring of an existing element using output [0]
\checkmark array.has-element when element does not exist using output [0]
\checkmark array.has-element when element does not exist and is a space using output [0]
√ array.to.bullet-list [0]
✓ color.disable [0]
✓ color.enable [0]
✓ TOOLS_PATH [0]
✓ set/get file [0]
✓ db.config.get_file [0]

    db.config.parse [0]
    db run -q postgres 'select extract(epoch from now())' -A -t [0]

✓ db.config.parse non-existent file [0]
✓ db.config.parse no arguments [0]
✓ db.psql.args.config development – ARGS [0]
✓ db.psql.args.config development — ENV [0]
✓ dir.short-home /Users/kig/workspace/project [0]
/ dir.short-home /usr/local/bin [0]
dir.count-slashes() on a folder with 6 slashes [0]
dir.count-slashes() on a folder with 3 slashes [0]
dir.count-slashes() on a folder with no slashes [0]

√ dir.is-a-dir() on an existing dir [0]

✓ dir.is-a-dir() on a non-existing dir [0]
/ dir.expand-dir on /tmp dir [0]
/ dir.expand-dir on /tmp/mahaha dir [0]
✓ dir.expand-dir on tmp dir [0]
/ file.temp() [0]
/ file.source-if-exists() [0]
/ file.map.shell-scripts() [0]
✓ file.size() [0]
✓ file.extension() [0]
✓ file.strip.extension() [0]
/ file.extension.replace() single file [0]
/ file.extension.replace() list of files: result size comparison [0]
/ gem.gemfile.version returns correct 4-part version [0]
/ gem.gemfile.version returns correct 3-part version [0]
✓ git.repo-is-clean() when dirty [0]
  git.repo-is-clean() when clean [0] is.a-function.invoke() [0] is.a-variable(valid var) [0]
```

8.1.4. Run Tests Parallel using the Makefile

Note that you can run all tests in less than 15 seconds by using GNU parallel. Just run the following make target, and it will install any dependencies.

make test-parallel

While not every single function is tested (far from it), we do try to add tests to the critical ones.

Please see existing tests for the examples.

Chapter 9. Copyright & License

© 2016-2021 Konstantin Gredeskoul This project is distributed under the **MIT License**.