Special Number Two The Parity Tensor and the Equilibrium Role of 2

October 30, 2025

Abstract

This paper explains why integers are even or odd through a simple, lawful tensor built from three coordinates: multiplication M(n) = n, prime complexity $A(n) = \operatorname{PC}(n) = \sum a_i p_i$, and the pull $P(n) = n - \operatorname{PC}(n)$. Reducing each coordinate modulo two yields a parity tensor $T(n) = (M \mod 2, A \mod 2, P \mod 2)$. We prove that its structure is governed by one principle— $M \equiv A + P \pmod 2$ —and one asymmetry: the prime 2. The result is a four-class classification that captures the equilibrium role of two and clarifies why the odd primes all line up with the signature (1,1,0) while powers of two sit at (0,0,0). Our presentation is educational by design, but every claim is mathematically precise and certified by a small, reusable Python proof DAG.

Contents

1 Reader's Orientation

Parity—"even or odd"—is the first property most of us learn about integers. Here we show that parity is not just a single bit: it is the front door to a *tensor* that records how multiplication, addition of primes, and their difference interact modulo two.

Two ideas carry the load:

- 1. The three coordinates: M(n) = n, $A(n) = PC(n) = \sum a_i p_i$, and P(n) = n PC(n). They satisfy the identity M = A + P.
- 2. The **mod-two view**: reduce each coordinate modulo two, obtaining $T(n) = (M \mod 2, A \mod 2, P \mod 2)$.

With these in hand, patterns that look folkloric become theorems, and the uniqueness of the prime 2 becomes an equilibrium principle rather than a curiosity.

2 The Parity Tensor

Definition 2.1 (Parity Tensor). For $n \geq 2$, define

$$T(n) := (M(n) \mod 2, A(n) \mod 2, P(n) \mod 2) \in (\mathbb{Z}/2\mathbb{Z})^3.$$

Small examples illustrate the idea:

\overline{n}	Factorization	Coordinates (M, A, P)	Tensor $T(n)$
6	$2 \cdot 3$	(6, 5, 1)	(0, 1, 1)
9	3^{2}	(9, 6, 3)	(1, 0, 1)
10	$2 \cdot 5$	(10, 7, 3)	(0, 1, 1)
12		(12, 7, 5)	(0, 1, 1)
27	3^{3}	(27, 9, 18)	(1, 1, 0)
32	2^5	(32, 10, 22)	(0, 0, 0)

3 The Fundamental Parity Theorem

Write the factorization of n as $n=2^a\prod_{i=1}^k p_i^{a_i}$ where the p_i are distinct odd primes. Define the odd-exponent count

$$\omega_{\text{odd}}(n) := \#\{i : a_i \text{ is odd }\}.$$

Theorem 3.1 (Fundamental Parity). For every $n \geq 2$,

$$A(n) \equiv \omega_{\text{odd}}(n) \pmod{2}$$
.

Proof. Since $A(n) = \sum a_i p_i$ and $2 \equiv 0 \pmod{2}$, the 2-power contributes $a \cdot 2 \equiv 0$. Each odd prime contributes $a_i p_i \equiv a_i \cdot 1 \equiv a_i \pmod{2}$. Summing over odd primes counts exactly those with odd exponent.

Corollary 3.2 (Parity of P). For all n,

$$P(n) \equiv n + A(n) \equiv n + \omega_{\text{odd}}(n) \pmod{2}$$
.

4 Worked Examples

We include short, concrete tables that you can read line-by-line. Each row shows the factorization, the three coordinates (M, A, P), and the tensor $T(n) = (M \mod 2, A \mod 2, P \mod 2)$.

Odd primes and powers of two

n	Factorization	(M, A, P)	T(n)
2	2	(2, 2, 0)	(0,0,0)
3	3	(3, 3, 0)	(1, 1, 0)
5	5	(5, 5, 0)	(1, 1, 0)
7	7	(7, 7, 0)	(1, 1, 0)
_	2^3	(8, 6, 2)	(0, 0, 0)
32	2^5	(32, 10, 22)	(0, 0, 0)

Odd squares and odd semiprimes

\overline{n}	Factorization	(M, A, P)	T(n)
9	3^{2}	(9, 6, 3)	(1, 0, 1)
25	5^{2}	(25, 10, 15)	(1, 0, 1)
15	$3 \cdot 5$	(15, 8, 7)	(1, 0, 1)
21	$3 \cdot 7$	(21, 10, 11)	(1, 0, 1)
35	$5 \cdot 7$	(35, 12, 23)	(1, 0, 1)

Even semiprimes 2p with p odd

\overline{n}	Factorization	(M, A, P)	T(n)
6	$2 \cdot 3$	(6, 5, 1)	(0, 1, 1)
10	$2 \cdot 5$	(10, 7, 3)	(0, 1, 1)
22	$2 \cdot 11$	(22, 13, 9)	(0, 1, 1)

Checking $A(n) \equiv \omega_{\text{odd}}(n) \pmod{2}$

\overline{n}	Factorization	$\omega_{\mathrm{odd}}(n)$	$A(n) \bmod 2$	Match?
12	$2^2 \cdot 3$	1	1	
18	$2 \cdot 3^2$	0	0	
45	$3^2 \cdot 5$	1	1	
	$3 \cdot 5^2$	1	1	
90	$2 \cdot 3^2 \cdot 5$	1	1	

A single multiplication, worked end-to-end

Take $m=12=2^2\cdot 3$ and $n=15=3\cdot 5$. We compute modulo two:

	$M \bmod 2$	$A \bmod 2$	$P \bmod 2$
m = 12	0	1	1
n = 15	1	0	1
mn = 180	0	1	1

Checks: $M(mn) \equiv (0)(1) = 0$; $A(mn) \equiv 1 + 0 = 1$; $P(mn) \equiv 0 + 1 + 0 = 1$. This illustrates ?? and the relations of § ?? below in a single glance.

5 The Four Parity Classes

The identity M = A + P implies $M \equiv A + P \pmod{2}$. This leaves only four possibilities for T(n):

Tensor	Condition	Examples
(0,0,0)	n even, ω_{odd} even	2, 4, 8, 18, 30
(0,1,1) $(1,0,1)$	n even, ω_{odd} odd n odd, ω_{odd} even	6, 10, 12, 14, 20 $9, 15, 25, 49$
(1, 1, 0)	n odd, ω_{odd} odd	all odd primes

Proposition 5.1 (Completeness). No other parity tensors occur: (0,0,1), (0,1,0), (1,0,0), (1,1,1) are impossible.

Proof. If $M \equiv 0$ then $A \equiv P$; if $M \equiv 1$ then $A \not\equiv P$. This eliminates the four excluded patterns.

6 Special Signatures and Why 2 is Special

Proposition 6.1 (Odd primes). Every odd prime p has T(p) = (1, 1, 0).

Proof. For p odd, $n \equiv 1$, and the only odd prime in the factorization has exponent one, so $A \equiv 1$ and $P \equiv 0$.

Proposition 6.2 (Powers of two). Every $n = 2^k$ has T(n) = (0, 0, 0).

Proof. Here $n \equiv 0$, there are no odd primes at all, so $A \equiv 0$ and $P \equiv 0$.

Proposition 6.3 (Odd prime squares and odd semiprimes). If $n = p^2$ with p odd, or n = pq with distinct odd primes, then T(n) = (1, 0, 1).

Proof. In both cases $n \equiv 1$ and the number of odd primes with odd exponent is even (0 or 2), so $A \equiv 0$ and $P \equiv 1$.

The equilibrium role of 2. Two plays two roles at once: it flips the multiplicative bit $M \mod 2$, and it never contributes to ω_{odd} . This decoupling makes 2 the pivot of the tensor: it sets the "evenness" of n without changing the odd-prime counter that governs $A \mod 2$. The four-class picture is the equilibrium of those two influences.

7 Multiplicative Relations modulo two

Theorem 7.1 (Relations under multiplication). For all $m, n \geq 2$,

$$M(mn) \equiv M(m)\,M(n), \qquad A(mn) \equiv A(m) + A(n), \qquad P(mn) \equiv M(m)M(n) + A(m) + A(n) \pmod{2}.$$

Proof. The first is $mn \equiv (m \mod 2)(n \mod 2)$. For A, additivity modulo two follows from ?? below, or directly from the odd-exponent count. The relation for P is P = M - A.

8 Certification and Reproducibility

Every claim above is certified by an executable proof DAG:

- Core definitions M, A = PC, P live in new_foundations/python/core.py.
- from the repo root.

• Parity modules live in special_number_two/python/. Run python -m special_number_two.python.certif

This mirrors the intended Lean structure: one theorem per file with explicit imports. The same dependency graph can be used to order formal proofs.

9 Appendix: Extended Tables

This appendix is auto-generated from the certification modules. Regenerate with the Makefile target make tables in special_number_two/paper/.

\overline{n}	Factorization	M(n)	A(n), P(n)	T(n)
2	2	2	2, 0	(0,0,0)
3	3	3	3, 0	(1, 1, 0)
4	2^{2}	4	4, 0	(0,0,0)
5	5	5	5, 0	(1, 1, 0)
6	$2 \cdot 3$	6	5, 1	(0, 1, 1)
7	7	7	7, 0	(1, 1, 0)
8	2^{3}	8	6, 2	(0, 0, 0)
9	3^{2}	9	6, 3	(1, 0, 1)
10	$2 \cdot 5$	10	7, 3	(0, 1, 1)
11	11	11	11, 0	(1, 1, 0)
12	$2^2 \cdot 3$	12	7, 5	(0, 1, 1)
13	13	13	13, 0	(1, 1, 0)
14	$2 \cdot 7$	14	9, 5	(0, 1, 1)
15	$3 \cdot 5$	15	8, 7	(1, 0, 1)
16	2^{4}	16	8, 8	(0, 0, 0)
17	17	17	17, 0	(1, 1, 0)
18	$2 \cdot 3^2$	18	8, 10	(0, 0, 0)
19	19	19	19, 0	(1, 1, 0)
20	$2^2 \cdot 5$	20	9, 11	(0, 1, 1)
21	$3 \cdot 7$	21	10, 11	(1, 0, 1)
22	$2 \cdot 11$	22	13, 9	(0, 1, 1)
23	23	23	23, 0	(1, 1, 0)
24	$2^3 \cdot 3$	24	9, 15	(0, 1, 1)
25	5^2	25	10, 15	(1, 0, 1)

	Factorization	M(n)	A(n) = D(n)	T(n)
$\frac{n}{2c}$		M(n)	A(n), P(n)	
26	$2 \cdot 13$	26	15, 11	(0,1,1)
27	$\frac{3^3}{2^2}$	27	9, 18	(1,1,0)
28	$2^2 \cdot 7$	28	11, 17	(0,1,1)
29	29	29	29, 0	(1,1,0)
30	$2 \cdot 3 \cdot 5$	30	10, 20	(0,0,0)
31	$\frac{31}{2^5}$	31	31, 0	(1,1,0)
32 33	$3 \cdot 11$	$\frac{32}{33}$	10, 22	(0,0,0)
34	$3 \cdot 11$ $2 \cdot 17$	34	14, 19 19, 15	(1,0,1) (0,1,1)
35	$5 \cdot 7$	35	12, 23	(0,1,1) $(1,0,1)$
36	$2^2 \cdot 3^2$	36	10, 26	(0,0,0)
37	37	37	37, 0	(0,0,0) $(1,1,0)$
38	$2 \cdot 19$	38	21, 17	(0,1,1)
39	$3 \cdot 13$	39	16, 23	(1,0,1)
40	$2^3 \cdot 5$	40	11, 29	(0,1,1)
41	41	41	41, 0	(1,1,0)
42	$2 \cdot 3 \cdot 7$	42	12, 30	(0,0,0)
43	43	43	43, 0	(1,1,0)
44	$2^2 \cdot 11$	44	15, 29	(0,1,1)
45	$3^2 \cdot 5$	45	11, 34	(1, 1, 0)
46	$2 \cdot 23$	46	25, 21	(0, 1, 1)
47	47	47	47, 0	(1, 1, 0)
48	$2^4 \cdot 3$	48	11, 37	(0, 1, 1)
49	7^{2}	49	14, 35	(1, 0, 1)
50	$2 \cdot 5^2$	50	12, 38	(0, 0, 0)
51	$3 \cdot 17$	51	20, 31	(1, 0, 1)
52	$2^2 \cdot 13$	52	17, 35	(0, 1, 1)
53	53	53	53, 0	(1, 1, 0)
54	$2 \cdot 3^3$	54	11, 43	(0, 1, 1)
55	$5 \cdot 11$	55	16, 39	(1, 0, 1)
56	$2^3 \cdot 7$	56	13, 43	(0, 1, 1)
57	$3 \cdot 19$	57	22, 35	(1,0,1)
58	$2 \cdot 29$	58	31, 27	(0,1,1)
59	59	59	59, 0	(1,1,0)
60	$2^2 \cdot 3 \cdot 5$	60	12, 48	(0,0,0)
61	61	61	61, 0	(1,1,0)
62	$2 \cdot 31$ $3^2 \cdot 7$	62 62	33, 29	(0,1,1)
63 64	$\frac{3\cdot 7}{2^6}$	$63 \\ 64$	13, 50 12, 52	(1,1,0)
65	$5 \cdot 13$	65	12, 52 18, 47	(0,0,0) (1,0,1)
66	$2 \cdot 3 \cdot 11$	66	16, 50	(0,0,0)
67	67	67	67, 0	(0,0,0) $(1,1,0)$
68	$2^2 \cdot 17$	68	21, 47	(0,1,1)
69	$3 \cdot 23$	69	26, 43	(0,1,1) $(1,0,1)$
70	$2 \cdot 5 \cdot 7$	70	14, 56	(0,0,0)
71	71	71	71, 0	(1,1,0)
72	$2^{3} \cdot 3^{2}$	72	12, 60	(0,0,0)
73	73	73	73, 0	(1, 1, 0)
74	$2 \cdot 37$	74	39, 35	(0, 1, 1)
75	$3 \cdot 5^2$	75	13, 62	(1, 1, 0)
76	$2^2 \cdot 19$	76	23, 53	(0, 1, 1)
77	$7 \cdot 11$	77	18, 59	(1, 0, 1)
78	$2 \cdot 3 \cdot 13$	78	18, 60	(0, 0, 0)
79	79	79	79, 0	(1, 1, 0)
80	$2^4 \cdot 5$	80	13, 67	(0, 1, 1)
81	3^{4}	81	12, 69	(1, 0, 1)
82	$2 \cdot 41$	82	43, 39	(0, 1, 1)

\overline{n}	Factorization	M(n)	A(n), P(n)	T(n)
83	83	83	83, 0	(1, 1, 0)
84	$2^2 \cdot 3 \cdot 7$	84	14, 70	(0, 0, 0)
85	$5 \cdot 17$	85	22, 63	(1, 0, 1)
86	$2 \cdot 43$	86	45, 41	(0, 1, 1)
87	$3 \cdot 29$	87	32, 55	(1, 0, 1)
88	$2^3 \cdot 11$	88	17, 71	(0, 1, 1)
89	89	89	89, 0	(1, 1, 0)
90	$2 \cdot 3^2 \cdot 5$	90	13, 77	(0, 1, 1)
91	$7 \cdot 13$	91	20, 71	(1, 0, 1)
92	$2^2 \cdot 23$	92	27, 65	(0, 1, 1)
93	$3 \cdot 31$	93	34, 59	(1,0,1)
94	$2 \cdot 47$	94	49, 45	(0, 1, 1)
95	$5 \cdot 19$	95	24, 71	(1, 0, 1)
96	$2^5 \cdot 3$	96	13, 83	(0, 1, 1)
97	97	97	97, 0	(1, 1, 0)
98	$2 \cdot 7^2$	98	16, 82	(0,0,0)
99	$3^2 \cdot 11$	99	17, 82	(1, 1, 0)
100	$2^2 \cdot 5^2$	100	14, 86	(0,0,0)
101	101	101	101, 0	(1, 1, 0)
102	$2 \cdot 3 \cdot 17$	102	22, 80	(0, 0, 0)
103	103	103	103, 0	(1, 1, 0)
104	$2^3 \cdot 13$	104	19, 85	(0, 1, 1)
105	$3 \cdot 5 \cdot 7$	105	15, 90	(1, 1, 0)
106	$2 \cdot 53$	106	55, 51	(0, 1, 1)
107	107	107	107, 0	(1, 1, 0)
108	$2^2 \cdot 3^3$	108	13, 95	(0, 1, 1)
109	109	109	109, 0	(1, 1, 0)
110	$2 \cdot 5 \cdot 11$	110	18, 92	(0, 0, 0)
111	$3 \cdot 37$	111	40, 71	(1, 0, 1)
112	$2^4 \cdot 7$	112	15, 97	(0, 1, 1)
113	113	113	113, 0	(1, 1, 0)
114	$2 \cdot 3 \cdot 19$	114	24, 90	(0, 0, 0)
115	$5 \cdot 23$	115	28, 87	(1, 0, 1)
116	$2^2 \cdot 29$	116	33, 83	(0, 1, 1)
117	$3^2 \cdot 13$	117	19, 98	(1, 1, 0)
118	$2 \cdot 59$	118	61, 57	(0, 1, 1)
119	$7 \cdot 17$	119	24, 95	(1, 0, 1)
120	$2^3 \cdot 3 \cdot 5$	120	14, 106	(0,0,0)
121	11^{2}	121	22, 99	(1, 0, 1)
122	$2 \cdot 61$	122	63, 59	(0, 1, 1)
123	$3 \cdot 41$	123	44, 79	(1, 0, 1)
124	$2^2 \cdot 31$	124	35, 89	(0, 1, 1)
125	5^{3}	125	15, 110	(1, 1, 0)
126	$2 \cdot 3^2 \cdot 7$	126	15, 111	(0, 1, 1)
127	127	127	127, 0	(1, 1, 0)
128	2^7	128	14, 114	(0,0,0)
129	$3 \cdot 43$	129	46, 83	(1,0,1)
130	$2 \cdot 5 \cdot 13$	130	20, 110	(0,0,0)
131	131	131	131, 0	(1, 1, 0)
132	$2^2 \cdot 3 \cdot 11$	132	18, 114	(0,0,0)
133	$7 \cdot 19$	133	26, 107	(1,0,1)
134	$2 \cdot 67$	134	69, 65	(0, 1, 1)
135	$3^3 \cdot 5$	135	14, 121	(1,0,1)
136	$2^3 \cdot 17$	136	23, 113	(0,1,1)
137	137	137	137, 0	(0,1,1) $(1,1,0)$
138	$2 \cdot 3 \cdot 23$	138	28, 110	(0,0,0)
139	139	139	139, 0	(1,1,0)
100	100	130	100, 0	(=, =, 0)

$\frac{}{n}$	Factorization	M(n)	A(n), P(n)	T(n)
	$\frac{2^2 \cdot 5 \cdot 7}{2^2 \cdot 5 \cdot 7}$			
140 141	$3 \cdot 47$	$\frac{140}{141}$	16, 124 50, 91	(0,0,0) (1,0,1)
$141 \\ 142$	$3 \cdot 47$ $2 \cdot 71$	$141 \\ 142$	73, 69	(0,1,1)
142 143	$11 \cdot 13$	142	24, 119	
143 144	$2^4 \cdot 3^2$	143 144	14, 130	(1,0,1) (0,0,0)
144	$5 \cdot 29$	144 145	34, 111	(0,0,0) $(1,0,1)$
146	$2 \cdot 73$	146	75, 71	(0,1,1)
140 147	$3 \cdot 7^2$	140 147	17, 130	(0,1,1) $(1,1,0)$
148	$2^2 \cdot 37$	148	41, 107	(0,1,1)
149	149	149	149, 0	(0,1,1) $(1,1,0)$
150	$2 \cdot 3 \cdot 5^2$	150	15, 135	(0,1,1)
151	151	151	151, 0	(1,1,0)
152	$2^3 \cdot 19$	152	25, 127	(0,1,1)
153	$3^2 \cdot 17$	153	23, 130	(1,1,0)
154	$2 \cdot 7 \cdot 11$	154	20, 134	(0,0,0)
155	$5 \cdot 31$	155	36, 119	(1,0,1)
156	$2^2 \cdot 3 \cdot 13$	156	20, 136	(0,0,0)
157	157	157	157, 0	(1,1,0)
158	$2 \cdot 79$	158	81, 77	(0,1,1)
159	$3 \cdot 53$	159	56, 103	(1, 0, 1)
160	$2^5 \cdot 5$	160	15, 145	(0, 1, 1)
161	$7 \cdot 23$	161	30, 131	(1, 0, 1)
162	$2 \cdot 3^4$	162	14, 148	(0,0,0)
163	163	163	163, 0	(1, 1, 0)
164	$2^2 \cdot 41$	164	45, 119	(0, 1, 1)
165	$3 \cdot 5 \cdot 11$	165	19, 146	(1, 1, 0)
166	$2 \cdot 83$	166	85, 81	(0, 1, 1)
167	167	167	167, 0	(1, 1, 0)
168	$2^3 \cdot 3 \cdot 7$	168	16, 152	(0, 0, 0)
169	13^{2}	169	26, 143	(1, 0, 1)
170	$2 \cdot 5 \cdot 17$	170	24, 146	(0, 0, 0)
171	$3^2 \cdot 19$	171	25, 146	(1, 1, 0)
172	$2^2 \cdot 43$	172	47, 125	(0, 1, 1)
173	173	173	173, 0	(1, 1, 0)
174	$2 \cdot 3 \cdot 29$	174	34, 140	(0, 0, 0)
175	$5^2 \cdot 7$	175	17, 158	(1, 1, 0)
176	$2^4 \cdot 11$	176	19, 157	(0,1,1)
177	$3 \cdot 59$	177	62, 115	(1,0,1)
178	$2 \cdot 89$	178	91, 87	(0,1,1)
179	179	179	179, 0	(1,1,0)
180	$2^2 \cdot 3^2 \cdot 5$	180	15, 165	(0,1,1)
181	181	181	181, 0	(1,1,0)
182	$2 \cdot 7 \cdot 13$	182	22, 160	(0,0,0)
183	$3 \cdot 61$ $2^3 \cdot 23$	183	64, 119	(1,0,1)
184	$5 \cdot 37$	184	29, 155 42, 143	(0,1,1)
185 186	$3 \cdot 37$ $2 \cdot 3 \cdot 31$	185 186	36, 150	(1,0,1) (0,0,0)
187	$11 \cdot 17$	187	28, 159	(0,0,0) $(1,0,1)$
188	$2^2 \cdot 47$	188	51, 137	(0,1,1)
189	$3^3 \cdot 7$	189	16, 173	(0,1,1) $(1,0,1)$
190	$2 \cdot 5 \cdot 19$	190	26, 164	(0,0,0)
191	191	191	191, 0	(0,0,0) $(1,1,0)$
192	$2^{6} \cdot 3$	192	15, 177	(0,1,1)
193	193	193	193, 0	(0,1,1) $(1,1,0)$
194	$2 \cdot 97$	194	99, 95	(0,1,1)
195	$3 \cdot 5 \cdot 13$	195	21, 174	(1,1,0)
196	$2^2 \cdot 7^2$	196	18, 178	(0,0,0)
-		-	, =	(, - , -)

\overline{n}	Factorization	M(n)	A(n), P(n)	T(n)
197	197	197	197, 0	(1, 1, 0)
198	$2 \cdot 3^2 \cdot 11$	198	19, 179	(0, 1, 1)
199	199	199	199, 0	(1, 1, 0)
200	$2^3 \cdot 5^2$	200	16, 184	(0, 0, 0)

Acknowledgments

We thank the reader for patience in a deliberately pedagogical exposition. The point was clarity without compromising correctness.