UNIVERSIDAD NACIONAL DE COLOMBIA CIRCUITOS ELÉCTRICOS II – Semestre II –2011 EJERCICIOS CIRCUITOS TRIFÁSICOS JOHN CORTÉS

1- Un sistema trifásico tiene 208 V de línea a línea y esta conectado a una carga balanceada en Y con $Z_Y = 12 \angle 30^{\circ} [\Omega]$. Asumiendo un sistema de secuencia positiva:

- a. Determinar los voltajes de fase.
- **b.** Determinar las corrientes de línea y de fase.
- c. Mostrar las corrientes de fase y de línea en un diagrama fasorial.

Una carga en delta balanceada, con $Z_{_{\Delta}}=24\angle-40^{\circ}[\Omega]$, se conecta a una fuente en Y con voltaje $V_{_{an}}=277\angle0^{\circ}[V]$; asumiendo una secuencia positiva; determinar la corriente de línea l1a y la corriente de fase l_AB.

2.

a. Si V1 = 120 V_{RMS}

Determinar la lectura de los voltímetros V2 y V3

b. Si V1= 120 V_{RMS} y Z=1 Ω

Determinar la lectura de los amperímetros A1, A2 y A3.

c. c) Si V1= 120 V_{RMS} y A1=15 A_{RMS}

Determinar el valor de Z

3 - En el sistema Y-Y de la figura se presenta un voltaje $V_{Nn}=17.79\angle144.9^{\circ}[V]$. Encontrar Z3 si se sabe que Z1=Z2= 50Ω y $V_{bn}=100\angle0^{\circ}[V]$ en secuencia de fase positiva.

4. Considere el siguiente modelo para un circuito trifásico con perdidas en la línea de transmisión.

Calcular los valores de las resistencias de línea $R_{L1}\,y\,R_{L3}$

- **5-** Se tiene dos cargas trifásicas balanceadas que forman parte de una fábrica. Están conectadas en paralelo y necesitan 4.16 KV_{RMS}. La carga 1 es de 1.5 MVA con un f.p. de 0.75 retrasado y conectado en delta. La carga 2 es de 2MW con un f.p. de 0.8 retrasado y conectada en Y. El alimentador, desde la subestación de potencia de la empresa, tiene una impedancia de 0.4 + j0.8 Ω por fase. Determine:
 - a) La magnitud necesaria del voltaje de línea en el suministro
 - b) La potencia real extraída del suministro
 - c) El porcentaje de esta potencia real que es consumida por las cargas

6. considere el circuito trifásico mostrado en la figura, en el cual se ha conectado un amperímetro y un vatímetro, las correspondientes lecturas son 5.176 [Arms] y 134 [W]. Determinar la posible impedancia Z si V_L = 100 [Vrms] y se considera una secuencia positiva. ¿Si la secuencia es negativa los valores de Z cambian?

- 7. Para el circuito mostrado en la figura se tiene un sistema trifásico en el cual los voltajes de fase están dados por: $\mathbf{V_{an}} = V_f \angle 0^\circ$, $\mathbf{V_{bn}} = V_f \angle -120^\circ$, $\mathbf{V_{cn}} = V_f \angle 120^\circ$ y esta conectada una carga trifásica balanceada donde la impedancia por fase equivalente en Y es $\mathbf{Z_Y} = Z \angle \theta^\circ$, las magnitudes de los voltajes de línea y las corrientes de línea son: V_1 e I_1 respectivamente.
 - **a.** Realizar los diagramas fasoriales de los voltajes de fase, voltajes de línea y corrientes de línea.
 - **b.** Calcular la lectura del vatímetro en términos de las magnitudes de las corrientes de línea, los voltajes de línea y el ángulo de la impedancia.
 - **c.** Describir un método de cómo medir la potencia reactiva total por medio de las lecturas de un vatímetro, un voltímetro y un amperímetro en cargas balanceadas trifásicas.

8. Para el circuito trifásico mostrado determinar la lectura de los vatímetros W1 W2 si V_{ab} =141.42 \angle 0° V_{rms} en secuencia positiva Z=10+j10 Ω .

9. Un carga trifásica balanceada conectada en delta, posee un factor de potencia de 0.866 en atraso, esta carga se encuentra alimentada por un sistema trifásico de voltajes con secuencia negativa (V_{ab} = $V_L \angle 0^{\circ} V_{rms}$, V_{bc} = $V_L \angle 120^{\circ} V_{rms}$ y V_{ca} = $V_L \angle -120^{\circ} V_{rms}$). Se conectan dos vatímetros W_1 y W_2 tal como se muestra en la figura. Si la lectura del vatímetro W_1 es 5196 [W], encontrar la lectura del W_2 . (Justifique su respuesta)

10. Una carga trifásica balanceada consiste del paralelo de una carga balanceada conectada en delta con impedancia de fase R Ω , y una carga inductiva balanceada también conectada en delta de j754 Ω por fase.

Se conectan dos vatímetros en conexión Aron cuyas lecturas son respectivamente W1 = 38.01W; W2 = 15.04W.

- a. Determinar el factor de potencia de la carga total equivalente.
- b. Calcular el valor de R.

11. Una empresa tiene una carga trifásica balanceada de 3125 kW con un factor de potencia de 0.7818 en atraso y necesita para su funcionamiento 4.16 kV_{rms}.

El alimentador desde la subestación de potencia de la empresa tiene una impedancia de $0.4+j0.8~\Omega$ por fase. Determine:

- a. La magnitud del voltaje de línea en el suministro.
- **b.** La suma de las lecturas de los vatímetros conectados.

12. Para el circuito mostrado, la potencia leida por los vatímetros, P_1 y P_2 es de 5kW y de 7.5kW, repectivamente. Esta potencia fue medida en condiciones nominales con el voltaje de fase en las fuentes, V_ϕ =110 V_{rms} en secuencia negativa. Una falla ocurrida en el sistema ocasionó que las magnitudes de los voltajes variaran a: V_A =100 V_{rms} , V_B =110 V_{rms} y V_C =120 V_{rms} . Encuentre cual es la nueva lectura de los dos vatímetros. Cualquier suposición debe hacerse explicita y sustentada adecuadamente.

13- Un circuito trifásico de 240V tiene una carga balanceada en Y con impedancia Z. Se dispone de dos vatímetros en conexión Aron; el vatímetro de bobina móvil cuya bobina de corriente esta conectada a la línea A, indica 1440 W y el de la línea C indica cero. Determine el conjunto balanceado de 3 condensadores necesario para mejorar el factor de potencia a 1.