2/2

3/3

2/2

0/4

Note: 12/20 (score total: 16/26)

+14/1/34+

IPS - S7A - Jean-Matthicu Bourgeot

QCM2

IPS Quizz du 13/11/2013

Nom et prénom:
Mallégol. Antoine

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.
Question 1 • Classer ses différentes technologies de CAN par ordre de Temps de conversion (du plus rapide au plus lent) ?
double rampe - flash - approximation successives - simple rampe
approximation successives - flash - simple rampe - double rampe
flash - approximation successives - simple rampe - double rampe
flash - approximation successives - double rampe - simple rampe
approximation successives - flash - double rampe - simple rampe
Question 2 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1 \mathrm{k}\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant $R_1 = R_C(26^\circ\mathrm{C}) = 1,1 \mathrm{k}\Omega$ L'étendu de mesure est $[-25^\circ\mathrm{C};60^\circ\mathrm{C}].$ Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.
 Question 3 • Quelle est la capacité d'un condensateur plan? On note : • ε : Permittivité du milieu entre les armatures. • S : Surface des armatures. • d : Distance entre les armatures.
$\square C = \epsilon dS \qquad \square C = \frac{\epsilon}{Sd} \qquad \square C = \frac{\epsilon S}{d} \qquad \square C = \frac{\epsilon d}{S}$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

es de potentiels.
des températures. courants.

	Question 5 • Pourquoi faire du sur-échantillonnage?
	Pour améliorer l'efficacité du filtre antireplicment.
2/2	Pour réduire le bruit de quantification
	Pour supprimer les perturbations de mode commun.
	$ \textbf{Question 6} \bullet \text{A quoi cst reliée la résolution d'un potentiomètre linéaire à piste résistive ? } $
	Le pas de bobinage
	La course électrique.
/1	La longueur du potentiomètre
	La taille des grains de la poudre utilisée
	La résistance maximale du potentiomètre
	Question 7 •
	Des jauges extensométriques permettent de mesurer
/1	des températures des déformations des grands déplacements des résistances des flux lumineux des courants.
	Question 8 •
	Un capteur LVDT permet de mesurer :
/1	des courants des flux lumineux des déplacement linéaire des températures des déplacements angulaires
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	Les voies sont symétriques.
	De rejeter les perturbations de mode différentiel.
3/3	Les impédances d'entrées sont élevés.
	Le gain est fixé par une seule résistance.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 •
	Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue
	sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN ?
/1	☐ 10 mV.s ⁻¹
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_{CP}}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le
	$1 + \tau_{CP}$ montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E
	et U_s , Que dire de la stabilité du système bouclé ?
)/6	$p = -(1 + A_0)/\tau_C \qquad p = (A_0 + 1)/\tau_C \qquad \text{Le système est stable}$ $\text{Le système est instable} \qquad \text{Le système est oscillant}$ $p_1 = A_0/\tau_C \text{ et } p_2 = -A_0/\tau_C \qquad p = (A_0 - 1)/\tau_C$
	$p_1 = A_0/\tau_C \text{ et } p_2 = -A_0/\tau_C$ $p = (A_0 - 1)/\tau_C$