Modelisation des reseaux biologiques

Madalena Chaves madalena.chaves@inria.fr (INRIA, Macbes)

Travaux diriges ---> projet computationnel, **scilab**

Jean-Luc Gouze jean-luc.gouze@inria.fr (INRIA, Macbes)

Cours

Modalites: examen (70%), projet (30%)

<u>Useful references</u>:

Mathematical models in biology, Edelstein-Keshet, SIAM classics 2004

Systems Biology in practice, Klipp, Herwig et al , Wiley 2005

- H. de Jong and D. Thieffry. Modelisation, analyse et simulation des reseaux genetiques. Medecine/Sciences, 18:492–502, 2002.
- L. Segel. Modeling dynamic phenomena in molecular and cellular biology. Cambridge University Press, New York, 1984.
- S.I. Rubinow. Introduction to Mathematical Biology.
- E.D. Sontag. Lecture notes in mathematical biology http://www.math.rutgers.edu/ sontag/613.html.

Cell and cellular signalling

Examples of biological systems and data

Pattern formation, fly embryo

Cell cycle oscillator, eukaryotes

Experimental data available

Expression
of gene
wingless,
fly embryo
(dark: highly
expressed)

Microarray relative changes (red: expression increased)

Cdc2, cyclin B, Pomerening et al. Cell 2005

Lac gene expression, Brewster et al. Cell 2014

Construct a model: why?

1. Not all molecules can be measured simultaneously

2. Understand the underlying mechanisms of the system and its dynamics or behavior along time:

- → dose-response curves, steady states, oscillations
- → numerically, by computer simulations,
- → or by "pencil and paper" to be sure (prove mathematically) that some (desired or) dynamical behavior does happen

3. Predict the response of a system to given stimuli

4. Control, regulate or act on the system:

- → add a certain quantity of a ligand
- → schedule a therapeutic treatment

5. Which quantities to model?

- → concentrations protein, messenger RNA
- → quantities you can measure through GFP, western blots, micro-arrays,...
- → interactions how the different proteins affect each other

Mathematical analysis

System of equations: with $x = (x_1, x_2, ..., x_N)$

$$\frac{dx}{dt} = f(x)$$

$$< = >$$

$$\frac{dx_1}{dt} = f_1(x_1, x_2, ..., x_N)$$

$$\frac{dx_2}{dt} = f_2(x_1, x_2, ..., x_N)$$

$$...$$

$$\frac{dx_N}{dt} = f_N(x_1, x_2, ..., x_N)$$

Solutions for a given initial condition:

a vector function
$$x(t)$$
 satisfying $\frac{dx}{dt} = f(x)$, $x(0) = x_0$

Equilibrium points (or steady states): $f(\bar{x}) = 0$

Questions: stability of equilibrium points, oscillatory behaviour, ...

Some hypotheses:

- homogeneously distributed molecules
- a sufficiently large number of molecules

Molecules of type X, Y

Combine/bind to generate C

Some hypotheses:

- homogeneously distributed molecules
- a sufficiently large number of molecules

Concentration of molecules of type X

Describe by a continuous ordinary differential equation (ODE)

rate of change = production - degradation
$$\frac{dx}{dt} = f(x, y, c, z) - g(x, y, c, z)$$

Example: an auto-repressed gene

Genetic networks: transcription and translation

Genetic networks: transcription and translation

Genetic networks: transcription and translation

$$\frac{dX}{dt} = -k_1 X D + k_2 C
\frac{dD}{dt} = -k_1 X D + k_2 C
\frac{dC}{dt} = k_1 X D - k_2 C$$

$$\frac{dM}{dt} = \alpha_1 C + \alpha_2 D - \gamma_M M
\frac{dP}{dt} = \beta M - \gamma_P P$$

Model reduction and simplification

1. Conservation laws: X, D or C are not "consumed" during transcription/translation

$$X + C = X_{total}$$

 $D + C = D_{total}$

2. **Three Timescales** for biological processes

Binding interactions are fast compared with transcription, translation:

$$\frac{dC}{dt} \approx 0 \quad \Leftrightarrow \quad k_1 D X - k_2 C = 0$$

Total [D] (bound+free DNA) is constant:

$$D_T = D + C \Leftrightarrow D = D_T - C$$

Binding interactions are fast compared with transcription, translation:

$$\frac{dC}{dt} \approx 0 \quad \Leftrightarrow \quad k_1 D X - k_2 C = 0$$

Total [D] (bound+free DNA) is constant:

$$D_T = D + C \Leftrightarrow D = D_T - C$$

Substitute into the [C] equation:

$$k_1(D_T - C)X - k_2C = 0$$

$$\Leftrightarrow k_1 D_T X - (k_2 + k_1 X)C = 0$$

Solve with respect to [C] to obtain:

$$k_1 D_T X - (k_2 + k_1 X)C = 0$$

$$\Rightarrow C = k_1 D_T \frac{X}{k_2 + k_1 X} = D_T \frac{X}{\frac{k_2}{k_1} + X}$$

Michaelis-Menten equation

If *n molecules of X* are involved in binding D:

$$\frac{dC}{dt} \approx 0 \quad \Leftrightarrow \quad k_1 X^n D - k_2 C = 0$$

$$D_T = D + C \Leftrightarrow D = D_T - C$$

Obtain the **Hill equation**:

$$\Rightarrow C = D_T \frac{X^n}{\frac{k_2}{k_1} + X^n} \equiv D_T \frac{X^n}{\frac{k_1^n + X^n}{k_1^n}}$$

n is called the Hill exponent

The system of 5 variables is reduced to 2 variables:

$$\frac{dM}{dt} = \alpha_1 C + \alpha_2 D - \gamma_M M$$

$$\frac{dP}{dt} = \beta M - \gamma_P P$$

With:

$$C = D_T \frac{X^n}{k_X^n + X^n}$$

$$D = D_T - C = D_T - D_T \frac{X^n}{k_X^n + X^n} = D_T \frac{k_X^n}{k_X^n + X^n}$$

The system of 5 variables is reduced to 2 variables:

$$\frac{dM}{dt} = \alpha_1 C + \alpha_2 D - \gamma_M M$$

$$\frac{dP}{dt} = \beta M - \gamma_P P$$

With:

$$C = D_T \frac{X^n}{k_X^n + X^n}$$

$$D = D_{T} - C = D_{T} - D_{T} \frac{X^{n}}{k_{X}^{n} + X^{n}} = D_{T} \frac{(k_{X}^{n})}{k_{X}^{n} + X^{n}}$$

X

Example: an auto-repressed gene

In the case of a **repression**

TRANSCRIPTION is proportional to the amount of FREE PROMOTER, **D**

System equations? Equilibria?

Model reduction, continued

Timescales: lifetime(mRNA)<lifetime(protein)

so the **mRNA dynamics is faster** than the protein dynamics:

$$\frac{dM}{dt} = \mathbf{0} \qquad \Leftrightarrow \qquad \alpha_1 C + \alpha_2 D - \gamma_M M = 0$$

$$\frac{dP}{dt} = \beta M - \gamma_P P$$

Model reduction, continued

Obtain the following expression for *M*:

$$M = \frac{\alpha_1}{\gamma_M} D_T \frac{X^n}{k_X^n + X^n} + \frac{\alpha_2}{\gamma_M} D_T \frac{k_X^n}{k_X^n + X^n}$$

Finally, substitute this expression into P equation:

$$\frac{dP}{dt} = \beta \frac{\alpha_1}{\gamma_M} D_T \frac{X^n}{k_X^n + X^n} + \beta \frac{\alpha_2}{\gamma_M} D_T \frac{k_X^n}{k_X^n + X^n} - \gamma_p P$$

Modeling activation

X is an activator

(helps promote transcription)

Bound complex C strongly contributes to protein production: $\alpha_1 \gg \alpha_2$

Rename parameters: $\beta_1 = \frac{\alpha_1}{\gamma_M} D_T$

$$\frac{dP}{dt} = \beta_0 + \left(\beta_1 \frac{X^n}{X^n + k_X^n}\right) - \gamma_P P$$

Synthesis of protein is Increasingly proportional to amount of X

$$F(X)$$
 k_X X

Modeling repression

X is an inhibitor

(represses transcription)

Unbound sites **D** strongly contribute to protein production: $\alpha_1 \ll \alpha_2$

Rename parameters: $\beta_2 = \frac{\alpha_2}{\gamma_M} D_T$

$$\frac{dP}{dt} = \beta_0 + \left(\beta_2 \frac{k_X^n}{X^n + k_X^n}\right) - \gamma_P P$$

Synthesis of protein is decreasingly proportional to amount of X

Michaelis-Menten and Hill functions

Michaelis-Menten and Hill functions

Evidence for sigmoidal functions F(X)

Evidence for sigmoidal functions F(X)

Wang et al. Nature Communications 2011 (engineering synthetic gates)

Systèmes aux equations différentielles SOLUTIONS NUMERIQUES avec SCILAB

Telecharger et installer Scilab :

www.scilab.org

Telecharger un exemple :

www-sop.inria.fr/members/Madalena.Chaves/teaching

Ecrire un code en Scilab : basiques

Definitions:

Equations,

Autres fonctions

Partie Principale:

Commandes
our la
Resolution,
Visualisation,
Analyse,
etc

```
//Creer fichier texte, eg.: mon_systeme.sci
 function [v] = circuit rhs(t,x,pr)
 endfunction
 function r = autre(x,s,n)
  endfunction
  //Partie principale
  x1 = ode(....);
  plot(.....);
```

//Definition du systeme d'equations differentielles, au debut fichier

```
function [v] = auto repressor rhs(t,x,pr)
//t: instant de temps
//x: variables d'etat
//pr: parametres du systeme; reprendre depuis la definition
//Renommer les parametres et les variables
alpha = pr(1);
beta = pr(2);
kP = pr(3);
gM = pr(4);
gP = pr(5);
n = pr(6);
M=x(1);
P = x(2);
//Initialisation du vecteur des derivees
V = []:
v(1) = alpha*(kP^n) / (kP^n + P^n) - gM * M;
v(2) = beta*M - gP * P;
endfunction;
```

```
//Partie principale
//Definition de parametres; vecteur de parametres;
//BIEN RESPECTER L'ORDRE DE DEFINITION DE pr
alpha = 3.1; beta = 2.3;
kP = 10:
gM = 0.1; gP = 0.01;
n = 2:
par = [alpha,beta,kP,gM,gP,n];
//Definition de condition(s) initiale(s),
//instant initial et vecteur de temps de simulation
x0 = [10;1];
t0 = 0:
dt = 0.05;
tvec = t0:dt:30;
//Commande de resolution du systeme d'equations differentielles
//methodes numeriques disponibles: "rk", "stiff",...
sol=ode("stiff",x0,t0,tvec, list(auto repressor rhs,par));
//Faire le graphe de la solution au cour du temps, dans la figure 1
//Options: couleur (r=red, b=blue,k=black,...), forme de ligne (-,--,:,-.)
figure(1);
plot(tvec,sol(1,:),'b-',tvec,sol(2,:),'r-');
```