nr albumu: 347208 str. 1/2 Seria: 5

1 Zadanie

1.1 Część a

Twierdzę, że funkcja ta nie jest różnowartościowa.

Dowód. Zauważmy, że $f(\{(0,1)\}) = \{(0,1)\} \cup \{(1,0)\} = \{(0,1),(1,0)\} = f(\{(0,1),(1,0)\}).$

1.2 Część b

Twierdzę, że ta funkcja nie jest surjektywna.

Dowód. Wynika to wprost z części c.

1.3 Część c

Niech S oznacza zbiór wszystkich relacji symetrycznych w \mathbb{N} . Twierdzę, że $f(P(\mathbb{N} \times \mathbb{N})) = S$.

1.3.1 Dowód, że $f(P(\mathbb{N} \times \mathbb{N})) \subseteq S$

Dowód. Niech $r \subseteq \mathbb{N} \times \mathbb{N}$. Chcemy udowodnić, że $f(r) = r \cup r^{-1}$ jest symetryczna. Weźmy więc $(a,b) \in f(r)$. Wtedy $(a,b) \in r$ lub $(a,b) \in r^{-1}$. W pierwszym przypadku mamy, że $(b,a) \in r^{-1}$, w drugim zaś $(b,a) \in r$, skąd w obu $(b,a) \in r \cup r^{-1}$, czyli $(b,a) \in f(r)$. □

1.3.2 Dowód, że $S \subseteq f(P(\mathbb{N} \times \mathbb{N}))$

Dow'od. Niech $r \in S$. Wtedy $r^{-1} = r$, czyli $f(r) = r \cup r^{-1} = r \cup r = r$, a więc r jest osiągana przez funkcję f. \square

1.4 Część d

Niech Z oznacza zbiór wszystkich relacji zwrotnych w \mathbb{N} . Twierdzę, że $f^{-1}(Z) = Z$.

1.4.1 Dowód, że $f^{-1}(Z) \subseteq Z$

Dowód. Weźmy $r \in f^{-1}(Z)$. To oznacza, że $f(r) \in Z$. Ustalmy dowolne $\alpha \in \mathbb{N}$. Wtedy $(\alpha, \alpha) \in f(r)$ na mocy zwrotności f(r). Jednak $f(r) = r \cup r^{-1}$ więc $(\alpha, \alpha) \in r$ lub $(\alpha, \alpha) \in r^{-1}$. Drugi przypadek daje nam także od razu, że $(\alpha, \alpha) \in r$ z definicji relacji odwrotnej, a więc w obu przypadkach $(\alpha, \alpha) \in r$ dla każdego naturalnego α . Stąd $r \in Z$.

1.4.2 Dowód, że $Z \subseteq f^{-1}(Z)$

 $\label{eq:definition} \textit{Dow\'od}. \text{ We\'zmy } r \in Z. \text{ Chcemy pokaza\'c, \'ze } r \in f^{-1}(Z), \text{ czyli \'ze } f(r) \in Z. \text{ Ustalmy dowolne } \alpha \in \mathbb{N}. \text{ Na mocy zwrotno\'sci } r \text{ mamy, \'ze } (\alpha,\alpha) \in r. \text{ Stąd } (\alpha,\alpha) \in r \cup r^{-1}, \text{ czyli } (\alpha,\alpha) \in f(r) \text{ dla ka\'zdego naturalnego } \alpha.$

Stąd $f(r) \in Z$.

2 Zadanie

Niech $\varphi: \mathbb{N}^{\mathbb{N}} \to P(\mathbb{N})$ bedzie dane wzorem $\varphi(f) = f^{-1}(\{2013\})$.

2.1 Część a

Dowód. Oczywiście R jest jądrem przekształcenia φ, a więc jest relacją równoważności.

nr albumu: 347208 str. 2/2 Seria: 5

2.2 Część b

Niech $f=\lambda x.2013$. Zauważmy, że $\phi(f)=\mathbb{N}$. Rozpatrzmy jakiekolwiek $g\in [f]_R$. Wtedy mamy, że $\phi(g)=\phi(f)$, czyli także $\phi(g)=\mathbb{N}$. To zaś oznacza, że dla każdego $n\in\mathbb{N}$ zachodzi $n\in\phi(g)=g^{-1}(\{2013\})$, czyli $g(n)\in\{2013\}$, skąd g(n)=2013.

Stąd $g = \lambda n.2013 = f$, czyli jedynym elementem $[f]_R$ jest samo f, czyli $[\lambda x.2013]_R = \{\lambda x.2013\}$.

2.3 Część c

Twierdzę, że jest on nieskończony.

Dow'od. Weźmy dowolne $S \subseteq \mathbb{N}$ i określmy funkcję $f_S : \mathbb{N} \to \mathbb{N}$ jako:

$$f_S(n) = \begin{cases} 2013 & \text{gdy } n \in S \\ 42 & \text{gdy } n \not \in S \end{cases}$$

Zauważmy, że $\phi(f_S) = S$. Stąd dla różnych wyborów zbioru S uzyskujemy różne wartości $\phi(f_S)$, czyli różne klasy abstrakcji, gdyż R jest jądrem ϕ . Jednak S można wybrać na nieskończenie wiele sposobów, a więc także klas abstrakcji musi być nieskończenie wiele.

2.4 Część d

Twierdzę, że jest tylko jedna taka klasa — ta z części b.

Dowód. Rozpatrzmy dowolną skończoną klasę abstrakcji K. Ponieważ K jest niepusta, to istnieje pewne $f \in K$. Zauważmy, że wartość $\varphi(f)$ nie zależy od wyboru f, a jedynie od klasy K.

2.4.1 Przypadek $\varphi(f) = \mathbb{N}$

Przypadek ten rozważyliśmy w częsci b; jest dokładnie jedna klasa abstrakcji, która spełnia ten warunek.

2.4.2 Przypadek $\varphi(f) \subseteq \mathbb{N}$

Istnieje jakieś $x \in \mathbb{N}$, że $x \notin \phi(f)$, czyli $x \notin f^{-1}(\{2013\})$, czyli $f(x) \notin \{2013\}$, czyli $f(x) \neq 2013$. Wybierzmy dowolne $y \in \mathbb{N} \setminus \{2013\}$ i określmy funkcję $f_u : \mathbb{N} \to \mathbb{N}$ jako:

$$f_y(n) = \begin{cases} y & \text{gdy } n = x \\ f(n) & \text{gdy } n \neq x \end{cases}$$

Widać, że $\varphi(f) = \varphi(f_y)$ — funkcje te różnią się jedynie wartością w n = x, ale zarówno $f(x) \neq 2013$ jak i $f_y(x) \neq 2013$. Stąd $f_y \in [f]_R$. Jednak wybór różnych y powoduje, że funkcje f_y są różne (różnią sę wartością dla n = x). Ale przecież y można wybrać na nieskończenie wiele sposobów, stąd $[f]_R$ musi być nieskończonej mocy — sprzeczność.