# SMART' VITALE



Comment empêcher les cartes d'être vecteur de maladies dans les établissements médicaux ?









Personnel Médical









BRUNET Alexandre GUILLEMIN Paul DELHOMMEAU Adrien SIN SOHN Victor

#### Origine du problème et problématique









Accueil d'un cabinet médical

Lecteur de carte Vitale

Comment empêcher les cartes d'être vecteur de maladies dans les établissements médicaux?

#### Cahier des charges





ld=

Text="durée du processus de nettoyage inférieure à 10 secondes."

Autonomie

ld=

Text="Utilisation d'une batterie ou sur secteur"

Surface de nettoyage

ld=

Text="Surface de nettoyage égale à 87.36cm²" Coût

Id=

Text="coût du processus de nettoyage d'une carte inférieur à 7 centimes (prix d'une lingette)"

Ergonomie

ld=

Text="Simple d'utilisation"

Diagramme des exigences de la Smart' Vitale

## Le concept (1)



Premier prototype avec deux chenilles Lego et un moteur de voiture télécommandée



## Le concept (2)





Une des idées originales du projet, utilisant des rouleaux horizontaux, et seulement un moteur pour les mettre en mouvement

## Le concept (3)





Schéma du système

#### Développement





#### La To-Do list du projet

#### Développement: MATLAB (1)





Schéma MATLAB SimuLink du circuit électrique et mécanique de la Smart' Vitale

#### Développement: MATLAB (2)





#### Vitesse tangentielle du rouleau en fonction du temps



#### Mesures **MATLAB**

Vitesse tangentielle Vitesse tangentiele des des rouleaux: 0.11 m\*s<sup>-1</sup>

0.125 m\*s<sup>-1</sup>

Ecart :  $\varepsilon$  = 13,6 %

#### La modélisation colle à la réalité:

- > Rapport de réduction utilisé: 1:48 (fourni par le constructeur)
- > Valeur de la résistance interne au moteur trouvée avec des mesures expérimentales. Valeur utilisée: 6.5 Ohm
- > Masse utilisée: 0.02kg (carte + tapis microfibre)
- > Alimentation: 4.5V
- > Vitesse simulée est similaire aux attentes, soit 0.11m\*s-1

Alimentation:

4 V pour une rotation de 80 tr\*min<sup>-1</sup>

## Experimentations et mesures (1)





1- Comparaison de la vitesse d'évaporation de gel à base d'éthanol, de propanol, et d'alcool éthylique. Le désinfectant à l'éthanol a été choisi.

#### Experimentations et mesures (2)





Ecart :  $\varepsilon$  = 14,3 %



4- Mesure du débit de la pompe afin de faciliter la commande par Arduino

### Schéma du système





## Modélisation et impressions 3D















Imprimantes 3D

Différents rouleaux imprimés en ABS

## Premiers montages (1)











#### Programmation





```
int motorApin1 = 2;
                                                                                  digitalWrite(motorApin2, HIGH);
int motorApin2 = 3;
                                                                                  digitalWrite(motorBpin1, LOW);
                                                                                                                                                         128 *
int motorBpin1 = 4;
                                                                                  digitalWrite(motorBpin2, HIGH);
int motorBpin2 = 5:
                                                                                                                                                                     Serial.print("Button 2 pressed");
int button1 = 6;
                                                                                else if (sens == 2)
                                                                                                                                                                      while (button1State == 1)
int button2 = 7;
                                                                                  digitalWrite(motorApin1, HIGH);
                                                                                                                                                                        if(digitalRead(button1) == 0)
int pumpPin = 8;
                                                                                  digitalWrite(motorApin2, LOW);
                                                                                                                                                         134 *
                                                                                  digitalWrite(motorBpin1, HIGH);
int button1State = 0;
                                                                                  digitalWrite(motorBpin2, LOW);
int button2State = 0;
int tempsFinMoteurs = 1000;
float pumpDutyVoltage = 5.0f;
int delayPump = 2000;
                                                                        78 + {
bool isProcessing = false;
void setup()
  pinMode(button1, INPUT);
pinMode(button2, INPUT);
                                                                                if (digitalRead(button1) == 0)
  pinMode(motorApin1, OUTPUT);
pinMode(motorApin2, OUTPUT);
pinMode(motorBpin1, OUTPUT);
                                                                                  Serial.print("Button 1 pressed");
  pinMode(motorBpin2, OUTPUT);
                                                                                  motor(1);
                                                                                  isProcessing = true;
  pinMode(pumpPin, OUTPUT);
                                                                                  delay(delayPump);
                                                                                  activationPump(500);
int activationPump(int time)
                                                                                  while (isProcessing == true)
         gWrite(pumpPin, map(pumpDutyVoltage, 0.0f, 5.0f, 0, 255));
                                                                                    if(digitalRead(button2) == 1)
  delay(time);
  digitalWrite(pumpPin, 0);
                                                                                       isProcessing = false;
                                                                                       delay(tempsFinMoteurs);
                                                                                       motor(0);
int motor(int sens)
  if(sens == 0)
    digitalWrite(motorApin1, LOW);
digitalWrite(motorApin2, LOW);
                                                                                if (digitalRead(button2) == 1)
     digitalWrite(motorBpin1, LOW);
                                                                                  Serial.print("Button 2 pressed");
     digitalWrite(motorBpin2, LOW);
                                                                                  isProcessing = true;
                                                                                  delay(delayPump);
  else if (sens == 1)
                                                                                  activationPump(500);
    digitalWrite(motorApin1, LOW);
digitalWrite(motorApin2, HIGH);
                                                                                  while (isProcessing == true)
                                                                                     if(digitalRead(button1) == 0)
    digitalWrite(motorBpin1, LOW);
digitalWrite(motorBpin2, HIGH);
                                                                                       isProcessing = false;
                                                                                       delay(tempsFinMoteurs);
```

## Premiers montages (2)





#### Conclusion



#### Reste à finaliser :

- Raccordements de la pompe et du réservoir
- Capteur de niveau
- Interface homme/machine (LEDs)
- Ajout de l'IA?

#### Ce que nous avons découvert :

- Utilisation concrète des notions vues en classe
- Processus de réalisation d'un projet
- Utilité des outils (physiques et numériques)
- Importance de l'organisation, gestion du temps
  - La nécessité de faire des compromis, et de trouver des solutions









# FIN