

LC24.2 SCREENKEY DATASHEET

Part numbers P126-1b and T126-1b (tactile)

SK Interfaces Ltd.

Unit 11, Keypoint Business Park, 42 Rosemount Park Drive, Ballycoolin Road, Dublin 11, Ireland.

> Tel: +353-1-8855 075 Fax: +353-1-8855 095

Please visit our website <u>www.screenkeys.com</u> for additional information.

Contents

Conter	nts	2
1. Tec	hnical Description	3
1.1.	Applications	3
1.2.	Advantages	4
2. Dim	ensions	5
3. Disp	play-Module	6
3.1.	Display Module Specifications	6
4. Liqu	ıid Crystal Display	7
4.1.	Liquid Crystal Display Specifications	7
5. Key	Switch	8
6. Cor	itrol	9
6.1.	Parity Bit	10
6.2.	Timing Bit	10
6.3.	Data Byte Format	11
6.4.	Background Lighting	12
6.5.	Bit Mapping	13
6.6.	MUX Register	14
6.7.	Frequency Value Table	14
6.8.	Programming Example	16
7. App	lication	17
7.1.	Application Control of ScreenKeys via Shift Register	17
7.2.	Control of Multiple ScreenKeys	18
8. Par	ts Drawing	19
9. Tec	hnical Specifications	20
10.	UL Material Listings	20
11.	Order Information	20
12.	Contact Information	20
Import	ant Notice	21
War	ranty Disclaimer	21
Сор	yright Notice	21
Con	ard Nation	21

1. Technical Description

The LC24.2 ScreenKey is a push-button keyswitch with built-in graphics display. A liquid crystal STN display is integrated within the key, with a resolution of 36*24 pixels. A single-chip graphical LCD display controller in integrated into the key. Every pixel can be turned on or off individually, allowing the display of text or graphics. To control the display only a clock and data line (synchronous data transfer) as well as V_{CC} and GND are required.

Background lighting is integrated in the switch through the use of multiple Red and Green LED's. This allows the use of color-coding to improve and simplify operator interfacing. Flashing between alternate colors can be used to request operator attention or to flag an alarm event. A variety of backlighting colors can be achieved based on the RG spectrum. Each LED color supports two selectable brightness levels (dark or bright). The available background colors are bright green, dark green, bright red, dark red, bright orange, dark orange, red-orange and green-orange (see note below).

LC ScreenKeys are physically compatible with RGB ScreenKeys. They have the same footprint, same pin-out, have an identical package size, and use the same command interface. The only difference is how the backlight colors are selected.

LC24.2 ScreenKeys are offered with the standard LC Trend non-tactile configuration (P126-1b) or with a tactile operation (T126-1b) that incorporates enhanced operational cycle lifetime.

The LC24.2 ScreenKey is designed for printed circuit board assembly.

1.1. Applications

The multi-function LC24.2 ScreenKey, with its LCD display and multi-colored backlighting, is suited for any application requiring a man-machine interface. ScreenKey technology is ideal for many different markets and applications where multi-functional input is required including:

- Media and Broadcasting
- Audio/Visual Studio and Production Equipment
- Industrial controls
- Point-of-Sale, Point-of-Information
- Medical Devices
- Automotive Industry
- Aerospace
- Financial Services / Stock Trading
- Air Traffic Control
- Telecommunications etc.

Version 2.5 Page 3 of 21

1.2. Advantages

The advantages of ScreenKeys are that they are simple to integrate into hardware, and software control of the LCD and LED backlighting is very straightforward. This allows for the easy integration of the switch into products without extensive development efforts.

- Only 6 contacts per ScreenKey (2 switch contact pins, 2 comms and 2 power)
- No external display controller required
- Greater signal effectiveness through multi-colored background lighting
- Display text, graphics or animation with 36*24 pixel resolution
- Fast data transmission due to high transmission rates (up to 4 MBaud)
- Display and background color refreshed internally
- Optimal illumination with 8 integrated LED's
- Positive feedback that function has been executed
- Tactile Feedback option
- Keyswitch lifetime of >3 million operations with tactile version (T126-1b)
- Intuitive user guidance through menu systems
- Multi-color backlighting based on RG spectrum
- LED's can operate at two different intensities (bright and dark)
- Identical technical and physical properties as the LC Trend Series
- Development Kits and Software Toolsets available

Note

Due to variations in LED's and the bonding materials, color and brightness variations in the LC ScreenKeys cannot be eliminated. In order to provide consistent quality, it is preferable to use only the 2 basic LED colors (Red and Green) for standard backlighting. Composed colors should be used only on single displays as there may be visible differences between batches of ScreenKeys when displaying a composed color.

Version 2.5 Page 4 of 21

2. Dimensions

Drawing 2: Dimensions of LC24.2 ScreenKey in mm. Drill mask view from component side.

Note: For assembly in a keyswitch array, the distance between the displays should be at least 1 mm.

Version 2.5 Page 5 of 21

3. Display-Module

Drawing 3: LCD Module LC24.2.

3.1. Display Module Specifications

Description	Values
Connections	4 (V _{CC} , GND, CLK, Data)
Current consumption	max 87 mA
LCD Driver	integrated in ASIC
Pixel Area	14.74 mm x 10.52 mm
Viewing Angle	horizontal 100 degrees
	vertical 120 degrees

Version 2.5 Page 6 of 21

4. Liquid Crystal Display

Drawing 4: LCD - display area / pixel size in mm.

4.1. Liquid Crystal Display Specifications

Description	Values
Response Time	200 ms
Refresh Rate	64 Hz
Current Consumption	10 μΑ
Reflector	Transmissive
Contact	Elastomers (conductive rubber)
LCD Glass	STN, Yellow, Positive, Transflective
Pixel Matrix	36 columns x 24 rows
Pixel Size	0.41 mm x 0.39 mm
Orientation	6:00 o'clock
Operating Temperature	-10° +70° Celsius
Storage Temperature	-20° +80° Celsius
Humidity Storage/Operating	max. 80% relative at 40° Celsius
Life Cycle	5-7 years (life cycle from date of manufacture and may be reduced by exposure to excess humidity, temperature and ultra-violet light)

Version 2.5 Page 7 of 21

5. Key Switch

Description	Values	
Circuit Voltage	5 Volts DC	
Circuit Current	5 mA max.	
Volume Resistance	< 200 Ohm	
Insulating Resistance	> 100 MOhm	
Contact bounce time	< 20 ms	
Key Travel	2.4 mm	
Operating Force	1.0 to 1.4 Newton	
Durability >1 Million operations (P126-1b)		
	>3 Million operations (T126-1b)	
Decoupling Diode	not present	

Version 2.5 Page 8 of 21

6. Control

The LC24.2 ScreenKey is controlled by synchronous serial data transmission. This controls the multiplex frequency, the background lighting and the 36*24 pixel matrix in the display.

The clock is used for the internal control of the ASIC (data transfer, LCD refresh, etc.) and must be applied constantly.

Note: Applying power to the LCD for extended periods when no clock is present may reduce the life of the LCD.

The clock frequency can be between 50 kHz and 4 MHz. The <u>minimum</u> LCD repeat frequency is about 64Hz. In order to set this rate, the frequency register (internal address 0xEE) has to be loaded with a value from frequency value table (see 6.7).

Note: You may chose a value which is lower in order to increase the contrast ratio, but the given argument in the frequency value table **may not be exceeded at any time.** Optimum contrast and viewing angle is often achieved by over-clocking. To select the value for the OxEE register, choose the value which matches one-quarter of the actual clock frequency used.

To change the background colors, the corresponding value in the color register (internal address 0xED) must be changed. The values to set the colors are given in table 6.4.

Furthermore, the MUX register (internal addresses 0xEF - 0xF0) must be loaded with the values from table 6.6. The values in the MUX register are only valid if the value of the lowest 3 bits in register 0xEF are the inverse to the value of the lowest 3 bits in register 0xF0.

Starting at the internal addresses 0x80 are the pixel data values as per table 6.5.

The LC24.2 ScreenKey is addressed by transmitting a start-byte (always 0x00) on the serial line. After the start-byte, one of the following commands is expected:

Data	Description	Data Size
Command 0x80	to type pixel data into RAM.	max. 108 bytes
Command 0xED	to type color value into register.	1 byte
Command 0xEE	to type in frequency value into register	1 byte
Command 0xEF	to set MUX register	2 bytes
Command 0xAA	End byte	0 bytes

The data bytes follow the command, up to a maximum of 108 bytes for command 0x80, or otherwise one or two bytes per command. After the data bytes follows the end byte command 0xAA.

Note: The order Start Byte, Command Byte, Data Byte and End Byte must be adhered to. Since the data transfer to the LC24.2 ScreenKey is unidirectional, no values can be read from the display.

The Frequency and MUX registers should be written at least once after each Power On Reset (POR).

If the LC24.2 ScreenKey is loaded with values other than the ones given in the tables in this data sheet, the lifetime of the display may be reduced.

Version 2.5 Page 9 of 21

6.1. Parity Bit

A parity bit sent after every byte provides the differentiation between start byte, command and data bytes. The following assignments are valid:

Bytes	Parity
Start byte	Even
Command byte	Odd
Data bytes	Odd
End byte	Even

Even Parity:

The number of 1 bits in the byte should be supplied to ensure the total number of 1 bits is even.

Example: 00000000 Byte, Parity Bit = 0

00110111 Byte, Parity Bit = 1

Odd Parity:

The number of 1 bits in the byte should be supplied to ensure the total number of 1 bits is odd.

Example: 00000000 Byte, Parity Bit = 1

00110111 Byte, Parity Bit = 0

Note: The parity bit is not used to differentiate between Start/End Byte and the

Command/Data Bytes and is not used for security purposes.

6.2. Timing Bit

For serial transmission of data to the display, the following conditions must be adhered to.

 Clock frequency max 4 MHz F_{max} Clock frequency min Fmin 50 kHz Clock phase low max 20 µs T_{cpl} Clock phase low min 125 ns T_{cpl} · Clock phase high max 20 µs T_{cph} Clock phase high min 125 ns T_{cph} Hold data min Thold 10 ns Setup data min 40 ns T_{SU}

Drawing 6.2: Timing diagram

Version 2.5 Page 10 of 21

6.3. Data Byte Format

12 bits are required for the transmission of a byte.

• Start bit low SA

• Data bit low / high b0 - b7 (LSB first, MSB last)

Parity bit low / high2 Stop bits highSE

Drawing 6.3: Byte format

Version 2.5 Page 11 of 21

6.4. Background Lighting

	B7	B6	B5	B4	B3	B2	B1	В0
Color	Red	red	green	green	red	red	green	green
Function (0/1)	dark / bright	dark / bright	dark / bright	dark / bright	off / on	off / on	off / on	off / on

Combinations of red and green are possible by setting the corresponding bits in the color register (0xED).

Note:

The following table shows some possible values for backlighting colors:

Color	HEX Value	Binary Value
Off	0x00	00000000
dark green	0x03	00000011
bright green	0x33	00110011
dark red	0x0C	00001100
bright red	0xCC	11001100
dark orange	0x0F	00001111
bright orange	0xFF	11111111
Greenish orange	0x3F	00111111
Reddish orange	0xCF	11001111

Table 6.4: Backlighting values for register 0xED

Due to variations in LED's and the bonding materials, color and brightness variations in LC ScreenKeys cannot be eliminated. In order to provide consistent quality, it is preferable to use only the 2 basic LED colors (Red and Green) for standard backlighting.

Composed colors should be used only on single displays as there may be visible differences between batches of ScreenKeys when displaying a composed color.

For further details, please refer to the **Color Selection Chart** available for download at www.screenkeys.com.

Example – Changing background lighting to Bright Red:						
Set decode	Set decoder to address the display					
0x00 e,	0xED o,	0xCC o,	0xAA	. е		

Version 2.5 Page 12 of 21

6.5. Bit Mapping

Each bit in the data stream corresponds to a pixel in the display area. A 1-bit represents a black pixel, a 0-bit a light pixel. The allocation is shown in the following table. The upper line is the Byte number; the lower line shows the corresponding bits per pixel.

B4	B3		B2		B1		В0	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B8	DO DO DT	B7	50 50 54	B6	DO DO D4	B5	DO DO DH	B4
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B13	B12	2. 20 20 2	B11	1 1 1 1 1	B10	1 2. 120 120 12.	B9	12:12012012:
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B17		B16		B15		B14		B13
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B22	B21		B20		B19		B18	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B26		B25		B24		B23		B22
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B31	B30		B29		B28		B27	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B35		B34		B33		B32		B31
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B40	B39		B38		B37		B36	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B44	1	B43	•	B42	1	B41	1	B40
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B49	B48		B47	 	B46	 	B45	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B53	1.011.011.41	B52	101101141:5	B51	1.011.011.41	B50	1.01101141:-	B49
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B58	B57	h0 h0 h4 h0	B56	L01 L0 1 L4 1 L0	B55	LOTEOTEATEO	B54	F01F01F41F0
b3 b2 b1 b0 B62	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
	halhalh415a	B61	h0 h0 h4 h0	B60	L01L01L41L0	B59	halbalbalba	B58
b7 b6 b5 b4 B67	b3 b2 b1 b0 B66	b7 b6 b5 b4	b3 b2 b1 b0 B65	b7 b6 b5 b4	b3 b2 b1 b0 B64	b7 b6 b5 b4	b3 b2 b1 b0 B63	b7 b6 b5 b4
		h2 h2 h4 h0		h2 h2 h1 h0		h2 h2 h1 k0		h2 h2 h4 l+0
b3 b2 b1 b0 B71	b7 b6 b5 b4	b3 b2 b1 b0 B70	b7 b6 b5 b4	b3 b2 b1 b0 B69	b7 b6 b5 b4	b3 b2 b1 b0 B68	b7 b6 b5 b4	b3 b2 b1 b0 B67
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B76	B75	5. 50 55 54	B74	57 00 100 104	B73	0. 100 100 104	B72	01100100104
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B80	2. 50 50 54	B79	DO DO D4	B78	2. DO DO D4	B77	2. 00 00 04	B76
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B85	B84	.	B83	, , , , , , , , , , , , , , , , , , , ,	B82	.	B81	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B89		B88		B87		B86		B85
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B94	B93		B92		B91		B90	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B98		B97		B96		B95		B94
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4
B103	B102		B101		B100		B99	
b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0
B107		B106		B105		B104		B103
b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4	b3 b2 b1 b0	b7 b6 b5 b4		b7 b6 b5 b4
	left half o	f display			riç	ght half of displ	lay	

Table 6.5: Bit Mapping

Version 2.5 Page 13 of 21

6.6. MUX Register

The MUX register controls the internal frequency divider for the control of the LCD and must be programmed with the values in table 6.6 to achieve optimum LCD contrast. Otherwise, loss of contrast or scrambled displays may result.

Description	Address	Value
MUX	0xEF	0x07
IVIOX	0xF0	0x00

Table 6.6: MUX register

6.7. Frequency Value Table

The clock frequency can be set in a range from 50kHz to 4MHz. In the LC24.2 ScreenKey, the clock frequency will be divided down by a factor, which is set through the frequency register (0xEE). The aim is to set the LCD repeat frequency at a value of at least 64Hz. In the table below, the left column indicates the calculated clock frequency. In the right hand column the appropriate maximum data value to be entered in the frequency register is listed.

Note: The value given is the maximum value. It is possible to enter up to 75% lower frequency

values. The best contrast will be found at values of less than 50% of the maximum

allowed value for operating temperatures at about 21 degrees Celsius.

Example: The clock frequency is 500kHz; the corresponding value in the table is 0x68. Any value

between the frequencies 125kHz (value 0x28) to 500kHz (value 0x68) may be entered.

Version 2.5 Page 14 of 21

Clock	Reg. 0xEE
49,92kHz	00
53,04kHz	02
56,16kHz	04
59,28kHz	06
62,40kHz	08
65,52kHz	0A
68,64kHz	0C
71,76kHz	0E
74,88kHz	10
78,00kHz	12
81,12kHz	14
84,24kHz	16
87,36kHz	18
90,48kHz	1A
93,60kHz	1C
96,72kHz	1E
99,84kHz	20
106,1kHz	22
112,3kHz	24
118,6kHz	26
124,8kHz	28
131,0kHz	2A
137,3kHz	2C
143,5kHz	2E
149,8kHz	30
156,0kHz	32
162,2kHz	34
168,5kHz	36
174,7kHz	38
181,0kHz	3A
187,2kHz	3C
193,4kHz	3E
199,7kHz	40
212,2kHz	42
224,6kHz	44

Clock	Reg. 0xEE	
237,1kHz	46	
249,6kHz	48	
262,1kHz	4A	
274,6kHz	4A 4C	
287,0kHz	4C 4E	
299,5kHz		
312,0kHz	50 52	
324,5kHz	54	
337,0kHz	_	
349,4kHz	56 58	
361,9kHz	58 5A	
374,4kHz	5A	
386,9kHz	5C	
399,4kHz	5E	
424,3kHz	60	
449,3kHz	62	
474,2kHz	64	
499,2kHz	66	
	68	
524,2kHz	6A	
549,1kHz	6C	
574,1kHz	6E	
599,0kHz	70	
624,0kHz	72	
649,0kHz	74	
673,9kHz	76	
698,9kHz	78	
723,8kHz	7A	
748,8kHz	7C	
773,8kHz	7E	
798,7kHz	80	
848,6kHz	82	
898,6kHz	84	
948,5kHz	86	
998,4kHz	88	
1,048MHz	8A	

Clock	Reg. 0xEE
1,098MHz	8C
1,148MHz	8E
1,198MHz	90
1,248MHz	92
1,298MHz	94
1,348MHz	96
1,398MHz	98
1,448MHz	9A
1,498MHz	9C
1,548MHz	9E
1,597MHz	A0
1,697MHz	A2
1,797MHz	A4
1,897MHz	A6
1,997MHz	A8
2,097MHz	AA
2,196MHz	AC
2,296MHz	AE
2,396MHz	В0
2,496MHz	B2
2,596MHz	B4
2,696MHz	B6
2,796MHz	B8
2,895MHz	BA
2,995MHz	ВС
3,095MHz	BE
3,195MHz	C0
3,395MHz	C2
3,594MHz	C4
3,794MHz	C6
4,000 MHz	C8

Version 2.5 Page 15 of 21

6.8. Programming Example

Given is a clock frequency of 500kHz, a switch pad with 4 LC24.2 ScreenKeys, each of which is supplied with the data stream by a decoder. The decoder chooses 4 switch addresses. These addresses are called ADR0, ADR1, ADR2 and ADR3. The displays will be first be cleared (reset). Afterwards, a frame with a thickness of 2 pixels will be displayed on the LC24.2 ScreenKey under ADR3. The LC24.2 ScreenKey with ADR1 receives Dark Blue background lighting.

First, the data for the frequency register (0xEE) is determined from table 6.7: the data value 0x68 is is specified for the value 499,2 kHz. For best contrast ratio, use the value equivalent to 25% of the actual clock. The value for 125KHz is 0x28. To initialize the MUX register, the command 0xEF from table 6.6. is used.

The pixel data to erase the display is 0x00 (all pixels off). The data value for Bright Red background lighting is taken from table 6.4. as 0xCC. The pixel data for the frame is taken from the bit-mapping table 6.5. Parity is shown as 'o' for odd parity, 'e' for even parity.

Program all ScreenKey displays with frequency value Set decoder to all 4 addresses one after the other. 0x00 e, 0xEE o, 0x28 o, 0xAA e

```
Initialize MUX register for all ScreenKey displays

Set decoder to all 4 addresses one after the other.

0x00 e, 0xEF o, 0x07 o, 0x00 o, 0xAA e
```

```
Switch off background lighting to all ScreenKey displays

Set decoder to all 4 addresses one after the other.

0x00 e, 0xED o, 0x00 o, 0xAA e
```

```
Give display under ADR0 Dark Blue backlighting color

Set decoder to ADR0.

0x00 e, 0xED o, 0xCC o, 0xAA e
```

Version 2.5 Page 16 of 21

7. Application

7.1. Application Control of ScreenKeys via Shift Register

A ScreenKey is connected to a microprocessor bus via 2 shift registers. The microprocessor provides the signals for D0 - D7, parity bit A0. CS and CLK are also required.

Drawing 7.1: Control parallel / serial.

Note: The data line must be set to high when inactive (no data transmission – stop bit) to avoid erroneous data transfers.

Version 2.5 Page 17 of 21

7.2. Control of Multiple ScreenKeys

To control several ScreenKeys, the data stream may be switched via a decoding circuit to each ScreenKey. The other keys receive a high signal, which produces stop bits.

Due to the input capacitance of a ScreenKey, no more than 8 ScreenKeys should be directly driven from one TTL Clock Line. A line driver, as shown below, should be used to drive more than 8 ScreenKeys.

Drawing 7.2: Decoding circuit for multiple Screenkeys

Note: It is recommended to fit a 0.1uF decoupling capacitor across the power lines of each ScreenKey.

Version 2.5 Page 18 of 21

8. Parts Drawing

Version 2.5 Page 19 of 21

9. Technical Specifications

Description	Values
Dimensions (LxWxH)	24.0 x 23.0 x 26.5 mm + / - 0,2 mm
Screen Size (X x Y)	19.5 x 16.1 mm + / - 0.1 mm
Pixel Field Size (X x Y)	14.74 mm x 10.28mm
Pixel Size (X x Y)	0.41 x 0.39 mm
Pixel Matrix (X x Y)	36 x 24
Operating voltage	4.9 - 5.0 Volt (at operating temperature)
Current Consumption	max. 87 mA, typ. 43 mA
LED Backlighting	green, dark green, red, dark red, orange, dark orange, reddish-orange and greenish-orange
Operation Temperature	-10° to +70° Celsius
Humidity	max. 80 % relative at 40° Celsius
Storage Temperature	-20° to +80° Celsius
Manually solderable at	350° Celsius, 3.5 seconds
Wave solderable at	260° Celsius, 10 seconds

10. UL Material Listings

Description	Material	UL Listing	UL File
Display window	MAKROLON 2805 PC	UL 94 V2	A070
Key cap	Novodur P2H-AT ABS	UL 94 HB	CO10
Backlight frame	HOSTAFORM POM	UL 94 HB	E42337A
Retaining plate	HOSTAFORM POM	UL 94 HB	E42337A
Key body	MAKROLON 2805 PC	UL 94 V2	A070
Diffusor	Polycarbonate	UL 94 V2	E41613

11. Order Information

Order No.	Description
P126-1b	LC24.2 ScreenKey (Black)
T126-1b	LC24.2 ScreenKey (Black) with Tactile Feedback

12. Contact Information

For further information on LC ScreenKeys, RGB ScreenKeys and other information, including technical documentation, datasheets, user manuals and software downloads, development and prototyping tools, please visit our website at: www.screenkeys.com or email us at info@screenkeys.com.

SK Interfaces Ltd

Unit 11, Keypoint Business Park, 42 Rosemount Park Drive, Ballycoolin Road, Dublin 11, Ireland.

> Tel: +353-1-88 55 075 Fax: +353-1-88 55 095

Version 2.5 Page 20 of 21

Important Notice

Warranty Disclaimer

SK INTERFACES LIMITED GRANTS NO WARRANTY WITH RESPECT TO THIS DATA SHEET, NEITHER EXPLICIT NOR IMPLIED, AND IT IS NOT LIABLE FOR DIRECT OR INDIRECT DAMAGES. SOME STATES DO NOT GRANT THE EXCLUSION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES AND, THEREFORE, THIS STATEMENT MAY NOT BE VALID IN SUCH CASES.

Copyright Notice

© 2006 - Copyright SK Interfaces Limited. All rights reserved. No part of this publication may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine readable form without the expressed written consent from SK Interfaces Limited.

This data sheet has been produced with all due care. However, since errors cannot be excluded, SK Interfaces Limited does not grant any warranty or accept any legal responsibility or liability in any form for erroneous statements herein.

General Notice

This data sheet is intended for technically qualified personnel trained in the field of electronics.

The knowledge and technically correct implementation of the content of this data sheet are required for problem free installation and safe operation of the described product. Only qualified personnel has the required know how to implement the specifications given in this data sheet.

For clarity, not all details regarding the product or its implementation, installation, operation, or maintenance have been included. Should you require additional information, please contact SK Interfaces Limited or visit our website at www.screenkeys.com.

Version 2.5 Page 21 of 21