GRNPar:

Parallel Inference of Gene Regulatory Networks Using Boolean Network Models and Mutual Information

William Das & Anushka Gupta

Problem Statement

Input:

Discretized **boolean** time-series gene-expression data

Output:

Boolean Gene Regulatory Network (information theoretic approach with boolean networks)

GRNPar Pipeline

Infer Gene Network Dependencies

Generate Gene-wise Boolean Expressions

Graph Boolean Network

```
Slp1: {
 (Rum1 -> Slp1),
  (PP \rightarrow Slp1).
  (Cdc2/Cdc13 -> Slp1)},
Cdc2/Cdc13*: {
  (START -> Cdc2/Cdc13*),
  (Cdc2/Cdc13 -> Cdc2/Cdc13*),
  (SK -> Cdc2/Cdc13*),
Week1Mik1: {
  (START -> Week1Mik1),
  (Cdc2/Cdc13 -> Week1Mik1),
  (SK -> Week1Mik1)},
```

```
Slp1 = ((Rum1 & PP) & Cdc2/Cdc13).
Gene-wise dynamics consistency: 0.67
```

Cdc2/Cdc13* = ((START & Cdc2/Cdc13) & SK). Gene-wise dynamics consistency: **0.78**

Week1Mik1 = ((START & Cdc2/Cdc13*) & SK). Gene-wise dynamics consistency: 0.78

Fission yeast cell cycle gene regulatory boolean network (real-world data).

Sequential Method: Mutual Inference Approach

Mutual Inference Algorithm (MIFS)

- 1. Input: Nodes V, k (# of input nodes)
- 2. For each node $v_0 \subseteq Input nodes V$
 - a. For each node $w \in V \setminus v_o$
 - i. Determine mutual information (entropy) between v & w
 - ii. Save node if mutual information is amongst highest k

$$E(v, v') = \frac{\sum_{t=2}^{T} I(v(t) = v'(t))}{T - 1}$$

Gene-wise dynamics consistency

Generate Gene-Wise Boolean Expressions

- 1. For each input node $v \in k$ Input nodes K
 - a. Generate combinations of boolean expressions (AND/OR operators) using k input nodes, sorted in descending order based on mutual information
 - b. For each possible expression, determine gene-wise dynamics consistency for each target node:
 - For each target node at time t + 1, test the boolean expression on input nodes at time t
 -> capture results across entire time-series and calculate proportion of correct predictions
 - ii. Choose the boolean expression with **highest criterion** for target node

Parallel Method: Mutual Inference Approach

Mutual Inference Algorithm (MIFS)

- 1. Input: Nodes V, k (# of input nodes)
- 2. For each node $v_o \in Input nodes V concat $ parMap rdeepseq$
 - a. For each node $w \in V \setminus v_o$ map 'using' parBuffer 3 rdeepseq
 - i. Determine mutual information (entropy) between v & w
 - ii. Save node if mutual information is amongst highest k

$$E(v, v') = \frac{\sum_{t=2}^{T} I(v(t) = v'(t))}{T - 1}$$

Gene-wise dynamics consistency

Generate Gene-Wise Boolean Expressions

- 1. For each input node $v \in k$ Input nodes K
 - a. Generate combinations of boolean expressions (AND/OR operators) using k input nodes, sorted in descending order based on mutual information
 - b. For each possible expression, determine gene-wise dynamics consistency for each target node:
 - i. For each target node at time t + 1, evaluate the boolean expression (parMap rdeepseq) on input nodes at time t -> capture results across entire time-series and calculate proportion of correct predictions map `using` parBuffer 50 rdeepseq
 - ii. Choose the boolean expression with **highest criterion** for target node

Sequential vs Parallel Implementation

Randomly Generated Data: 100 Nodes over 300 time steps (4 cores)

- 2.91x speedup
- 2.97x reduction in Mutator Time
- 1.8x reduction in GC time

Sequential vs Parallel Implementation

Randomly Generated Data: 300 Nodes over 300 time steps (4 cores)

- 3.31x speedup
- 3.39x reduction in Mutator Time
- 2.05x reduction in GC time

Sequential vs Parallel Implementation

Randomly Generated Data: 500 Nodes over 300 time steps (4 cores)

- 3.23x speedup
- 3.39x reduction in Mutator Time
- 2.05x reduction in GC time

100 Nodes over 300 time steps

300 Nodes over 300 time steps