1 Review

Fundamental Theorem of Calculus I: If f(x) is continuous on the interval [a,b] and F(x) is an antiderivative of f(x), then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Extreme Value Theorem: If f(t) is continuous on the closed interval [a, b], then it has a Maximum and a minimum on that interval.

Question If $m \leq f(t) \leq M$ for $a \leq t \leq b$, then

$$m(b-a) = \int_a^b m dt \leq \int_a^b f(t)dt \leq \int_a^b M dt = M(b-a)$$

Fundamental Theorem of Calculus 2

Let $g(x) = \int_0^x f(t)dt$ for a continuous function f(t).

1. What is g(1) geometrically?

deals with functions of the area under the graph of f from 0 to 1

2. What is g(2) geometrically?

area under fregraph of from 0 to 2

3. What is g(x) geometrically?

area under the graph of from o to x. | x > [(x fit)dt.] > gux)

Below is a graph of h(x). Sketch a graph of $k(x) = \int_0^x h(t)dt$. Do you see another relationship between h(x)and k(x)?

$$h(x) = f(x)$$

Suppose f(t) is a continuous function and $g(x) = \int_{-\infty}^{\infty} f(t)dt$. Then

$$\frac{g(x+h)-g(x)}{h} = \frac{\int_{a}^{x+h} f(t)dt - \int_{a}^{x} f(t)dt}{h} = \frac{\int_{x}^{x+h} f(t)dt}{h}$$
t) is continuous on $[x,x+h]$, $\underline{\qquad \qquad }$

Since f(t) is continuous on [x, x+h], ___ us it attains a smallest value m and a largest value M. Then, tells

$$M \cdot h$$
 $\leq \int_{x}^{x+h} f(t)dt \leq M \cdot h$

Let's draw the picture.

Going back, dividing everything by h, we get

$$M = \int (u) \leq \frac{\int_x^{x+h} f(t)dt}{h} \leq \int (v) = M$$

As $h \to 0$, what happens to the interval [x, x + h]?

$$u \rightarrow x$$
, $v \rightarrow x$

 $V \longrightarrow X$, $V \longrightarrow X$ As $h \to 0$, what happens to m and M?

As
$$h \to 0$$
, what happens to m and M ?

 m and M go to $f(x)$ by the squeeze Theorem .

Therefore, $\frac{d}{dx}[g(x)] = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) \, dt}{h} = \frac{f(x)}{h}$.

The Second Fundamental Theorem of Calculus

Let f be continuous on an interval. Then for x and a in that interval

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Exercise

1. Write down an antiderivative for e^{-x^2} and check it.

$$\int_{a}^{x} e^{-t^{2}} dt$$

Since $e^{-x^{2}}$ is continuous on the real line,
Use SFTC, we have $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$

2. Find the following derivative in two different ways: $\frac{d}{dx} \int_{0}^{x} \cos t dt$

$$\frac{d}{dx} \int_{\Sigma}^{X} \cos t \, dt = \cos x.$$

3. Let
$$g(x) = \int_1^x \sqrt{1+t^2} \, dt$$
.

What is g'(x)?

$$\sqrt{1+x^2}$$

What is $g(x^3)$?

$$\int_{1}^{x^{3}} \sqrt{1+t^{2}} dt$$

What is
$$\frac{d}{dx}g(x^3)$$
?

That is
$$\frac{d}{dx}g(x^3)$$
?

$$\frac{d}{dx}g(x^3) = g'(x^3) \cdot 3x^2 = \sqrt{1 + (x^3)^2} \cdot 3x^2 = \sqrt{1 + (x^3)^2} \cdot 3x^2 = \sqrt{1 + (x^3)^2} \cdot 3x^2$$

4. Find a function g(x) such that $g'(x) = \sqrt{1+x^2}$ and g(2) = 0.

By 2nd FTC:
$$g(x) = \sqrt{1+x^2}$$
 and $g(2) = 0$.

By 2nd FTC: $g(x) = \int_{\alpha}^{x} \sqrt{1+t^2} dt$ for some constant $g(x) = \int_{\alpha}^{x} \sqrt{1+t^2} dt$
 $g(2) = \int_{\alpha}^{2} \sqrt{1+t^2} dt = 0$ choose $g(x) = \int_{\alpha}^{x} \sqrt{1+t^2} dt$

5. Find a function g(x) such that $g'(x) = \sqrt{1+x^2}$ and g(2) = 10.

$$g(x) = \int_{a}^{x} \sqrt{1+t^{2}} dt + C$$
, for some constant a .
 $g(x) = \int_{a}^{2} \sqrt{1+\chi^{2}} dt + C = 10$ So choose $a = 2$.
then let $c = 10$.

6. Let $g(x) = \int_0^x f(t) dt$ where f is continuous.

7. Find
$$\frac{d}{dx} \int_{x^2}^3 \frac{\sin t}{t} dt$$
.

7. Find
$$\frac{d}{dx} \int_{x^2}^3 \frac{\sin t}{t} dt$$
.

$$\frac{d}{dx} \int_{x^2}^3 \frac{\sin t}{t} dt = \frac{d}{dx} \left[-\int_{3}^{x^2} \frac{\int_{3}^{x} t}{t} dt \right] = -\int_{3}^{x^2} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\frac{d}{dx} \left[g(x^2) \right] = -g'(x^2) \cdot 2x \qquad g'(x) = \int_{x}^{x^2} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt$$

$$= -\int_{3}^{x} \frac{\int_{3}^{x} t}{t} dt = -\int_{3}^{x$$

8. Consider the function f(x), defined by the graph below. Let $F(x) = \int_0^x f(t) dt$ for $x \in [0, 4]$.

(a) Find F(0), F(1), F(2), F(3,), and F(4).

$$F(0) = 0$$

$$F(1) = \int_{0}^{1} f(t) dt = \frac{1}{2}$$

$$f(2) = \int_{0}^{2} f(t) dt = 0$$

$$f(3) = \int_{0}^{3} f(t) dt = -\frac{1}{2}$$

 $\begin{pmatrix}
-(4) = 0 \\
x & F(x) \\
0 \\
1 & 1 \\
2
\end{pmatrix}$

4

(b) Find the average value of f(x) on the interval [0,4].

$$\frac{1}{4}\int_0^4 f(x) = \frac{1}{4}F(4) = 0$$

(c) Find the critical points of F(x) on the interval (0,4) making sure to label each as either a maximum or a minimum

Set
$$F(x) = f(x) = 0$$

then $x = 1$ or 3.

$$f''(x) = f'(x)$$

tuen $f'(1) = -1$
 $f'(3) = 1$

