微積分 II 演習 (3) 2005 年 1 月 12 日

微積分II演習

- 第3回 関数の連続性 -

担当:佐藤 弘康

未発表問題:1.3(1)(3), 1.7, 2.1, 2.2 ~ 2.14

例題 ${\bf 5}$. R 上の関数 $f(x)=e^x$ が連続関数であることを $\varepsilon-\delta$ 論法を用いて証明せよ .

解. $a \in \mathbf{R}$ で関数 f(x) が連続とは,任意の $\varepsilon > 0$ に対し,

$$|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

が成り立つ $\delta>0$ が存在することだから , 与えられた ε に対して δ をどう定める か考えれば良い . 指数関数の性質から

$$|e^x - e^a| = e^{\min\{x,a\}} (e^{|x-a|} - 1) \le e^a (e^{|x-a|} - 1)$$

だから, δ を $e^a(e^\delta-1)=\varepsilon$ を満たすように定めれればよい. すなわち

$$\delta = \log(1 + e^{-a}\varepsilon)$$
.

問題 3.1. 「一様連続関数」の定義を述べよ.一般の「連続関数」との違いは何か?

問題 ${\bf 3.2.}$ 次の関数 f(x) が連続関数であることを示せ.また,一様連続かどうか考察せよ.

(1)
$$f(x) = \frac{1}{x}$$
 $(x > 0)$

$$(2) \ f(x) = x^2 \qquad (x \in \mathbf{R})$$

$$(3) f(x) = \log x (x > 0)$$

(4)
$$f(x) = e^{-|x|}$$
 $(x \in \mathbf{R})$

(4) のヒント: 指数関数の性質: $\lceil x \ge 0$ ならば, $0 \le 1 - e^{-x} \le x$ 」を用いる.

微積分 II 演習 (3) 2005 年 1 月 12 日

例題 6. R上の関数 $f(x) = \sin x$ が一様連続であることを証明せよ.

解. 任意の $x, y \in \mathbf{R}$ に対して,

$$|\sin x - \sin y| = 2\left|\cos\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right)\right| \le 2\left|\sin\left(\frac{x-y}{2}\right)\right| \le |x-y|$$

が成り立つから,与えられた ε に対し $\delta=\varepsilon$ を選べば,一様連続の定義の条件を満たすことがわかる.

問題 3.3. 関数 $\sin^2 x$ は一様連続だが,関数 $(\sin x)^2$ は一様連続ではないことを証明せよ.

問題 3.4. \mathbf{R} 上で定義された関数 f(x) が任意の $x, y \in \mathbf{R}$ に対して

$$f(x+y) = f(x) + f(y)$$
 (3.1)

を満たすとする.このとき,f(x) がある点 $p \in \mathbf{R}$ で連続ならば,f(x) は一様連続であることを示せ.

問題 3.5. 関数 f(x) が開区間 (a,b) で一様連続ならば , f(x) はこの区間で有界であることを証明せよ .

問題 3.6. 連続な関数 f(x) が閉区間 [0,1] 上で $0 \le f(x) \le 1$ を満たすならば, $x_0 = f(x_0)$ を満たす $x_0 \in [0,1]$ が少なくとも 1 つ存在することを示せ. ヒント:中間値の定理を用いる.

問題 3.7. ある区間で定義された 2 つの連続関数 $f(x),\ g(x)$ が,すべての有理数 x に対して f(x)=g(x) ならば,その区間全体で f(x)=g(x) であることを示せ.

問題 $3.8.\ I$ を区間とする . もし ,I で連続なすべての関数が I で最大値をとれば ,I は有界閉区間であることを証明せよ .

微積分 II 演習 (3) 2005 年 1 月 12 日

□ レポート問題の解説

 \diamondsuit 問題 1.8 について 一般に,数列 $\{a_n\}$ が収束すれば, $\{|a_n|\}$ も収束するが,逆は成り立たない.例えば,

- (1) 振動する数列: $a_n=(-1)^n,\ a_n=(-1)^nk,\ a_n=\sin(n\pi-\frac{\pi}{2})=(-1)^{n-1},\ a_n=\sin(\theta+n\pi)$ など
- (2) b $(\neq 0)$ に収束する数列 b_n と振動する数列 a_n との積.

などが考えられる.

 \diamondsuit 問題 2.9 の解 (2) $a \le b$ の両辺に ((-a) + (-b)) を加えると

(左辺) =
$$a + ((-a) + (-b)) = (a + (-a)) + (-b) = 0 + (-b) = -b$$

(右辺) = $b + ((-a) + (-b)) = b + ((-b) + (-a))$
= $(b + (-b)) + (-a) = 0 + (-a) = -a$

より , $-b \le -a$ を得る . また同様に , $-b \le -a$ の両辺に (a+b) を加えることにより , $a \le b$ を得る .

- (3) (2) において b=a, a=0 とすれば (3) の主張が得られる.
- (4) これは公理群 II そのもの.この条件は「 $a \geq 0,\ b \geq 0$ ならば, $ab \geq 0$ 」と同値である.