BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION SECOND SEMESTER 2015-2016

Course Handout Part-II

Date: 13/01/2016

In addition to part -I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CE C432

Course Title : STRUCTURAL DYNAMICS

Instructor-in-charge: DIPENDU BHUNIA

Scope and Objective of the Course:

The course aims how to model discrete single-degree and multiple-degree vibratory systems and calculate the free and forced response of these systems. It also describes about the calculation of the mode shapes and frequencies for the free response and using modal methods how to calculate the forced response of these systems. This course explains about modeling of continuous vibratory systems. At the last, this course discusses application in the design of civil engineering structures.

Therefore, this course is necessary for students how to apply the methods learned to a realistic engineering vibration problem related to civil engineering.

* Text Book

TB. Mukhopadhyay, M. (2006) "Structural Dynamics: Vibrations & Systems" Ane Books Pvt. Ltd.

Reference Books :

- R1. Chopra, A.K. (2007) "Dynamics of Structures: Theory and Application to Earthquake Engineering" Pearson Education, 3rd edition.
- R2. Agarwal, P. and Shrikhande, M. (2006), "Earthquake Resistant Design of Structures" Prentice-Hall of India.

❖ Course Plan

Lec.	Learning	- Topics to be covered	Ref. to					
No.	Objective		Ch.					
I. Introduction and Scope of Structural Dynamics								
1	Importance of the	the Introduction and Scope of dynamic analysis of						
	course	structures; origins of vibration theory and						
		experiment; review of earlier concepts:						
		d'Alembert's principle, equations of motion.						
2-3	Fundamentals of	Fundamentals of Elements of a structural system: mass, stiffness and						
	structural	damping, methods to formulate equations of motion						
	dynamics							
II. Sing	gle Degree of Freedo	om (S.D.O.F) Dynamic System(Discrete mass system	ns)					
4-5	Free vibration	Formulation (equation of motion) and solution of	2TB					
	analysis	undamped and damped free vibration analysis of						
		S.D.O.F system. Logarithmic decrement.						
6-7	Forced vibration	Formulation (equation of motion) and solution of	3TB					
	analysis	undamped and damped forced vibration analysis of						
		S.D.O.F system.						
8-9	Forced vibration	Forced vibration under harmonic, periodic,	3TB					

	amalyzaia	impulse stan rama canaral dynamic forces (time	
	analysis	impulse, step, ramp, general dynamic forces (time	
	(evaluation of	and frequency domain analysis) and response	
	response to	spectrum load, support excited vibration,	
	general dynamic	transmissibility, vibration measuring seismic	
	loading)	instruments.	
10-11	Numerical	Numerical techniques for evaluation of dynamic	4TB
	methods for free	response of SDOF system; time domain analysis;	
	and forced	direct integration techniques; finite difference	
	vibration analysis	method (Central Difference method); Newmark	
	(evaluation of	beta method; average and linear acceleration	
	dynamic	method.	
	response)		
III Mu	1 /	om (M.D.O.F) Dynamic System(Discrete mass syste	ms)
12-13	Analysis of two	Development of equation of motion and solution	5TB
12-13	degree of freedom		310
1 / 17		for two degree of freedom systems.	6TD
14-17	Analysis of two	Coupled vibration and vibration isolation; base	5TB
	degree of freedom	isolation mechanism; vibration measuring	
	with applications	instruments; vibration absorber and tuned mass	
10.5		damper.	(m)
18-19	Analysis of multi-	Structural matrices; structural modeling and	6TB
	degree of freedom	development of equation of motion for MDOF	
	systems	systems, mass, stiffness, damping and loading	
		matrices.	
20-21	Free vibration	Free vibration analysis of MDOF systems; State-	6TB
	(Eigen value)	space solution for response; Sensitivity analysis for	
	analysis of	frequencies; mode shapes and response;	
	lumped MDOF	orthogonality condition of mode shapes;	
	systems		
22-24	Method of	Approximate methods for obtaining natural	6 TB
	solving Eigen	frequencies and mode shapes; Dunkerley's	
	value problems	equation; Holzer method; Stodola's method,	
	•	Inverse vector iteration and convergence of	
		iteration; Rayleigh's method; Rayleigh's Quotient;	
		Reyleigh-Ritz method;	
25-29	Forced vibration	Damping in MDOF systems, Construction of	7TB,
	analysis of	damping matrix, Rayleigh damping, Mode	11,12,
	lumped MDOF	superposition method; modal combination rules;	15R1
	systems	Response of MDOF systems to support motion;	
	- J ~	Numerical techniques for evaluation of dynamic	
		response of MDOF system.	
IV Fre	e and Forced Vibra	ation of Continuous Systems	
30	Free Vibration of		8 TB
	Continuous	frequencies and mode shapes	
	system	nequencies and mode snapes	
31-32	Forced Vibration	Vibration of bars and beam, modal analysis; bars	9 TB
31-32	of Continuous		9 1 D
		(axial vibrations), beams (flexural vibrations and	
	system	torsional vibration).	

V. Application in the Design of Civil Engineering Structures								
33-42	Determination of	Determination of EQ forces using response	13R1,					
	EQ forces as per	spectrum modal analysis, Modal combination rules	18R2,					
	IS1893-Part1 to 5	using absolute sum, SRSS and CQC method. Time	IS:1893-					
		history method of analysis. EQ analysis for	Part1-5					
		multisorey buildings, tall chimneys etc.						

***** Evaluation Scheme:

Component	Duration	Weightage	Date & Time	Remarks
Mid semester	90 min	25	17/3 9:00 - 10:30 AM	СВ
Assignments/surprise tests etc.	-	10	Continuous	ОВ
Project/seminar	-	30	Continuous	-
Comprehensive Examination	3 hrs	35	10/5 FN	OB

- **...** Chamber Consultation Hour: To be announced in the class
- Notice: Notices will be displayed on Civil Engg. Department notice board only.

 Instructor-in-Charge