Class 17 Report

Divyanshu Kawankar

11/29/2021

###Getting Started

vax <- read.csv("15702a90-aa5d-49bc-8621-a8129630725a.csv")
head(vax)</pre>

as_of_date	zip_code_tabulation_area	local_health_jurisdiction	county	
<chr></chr>	<int></int>	<chr></chr>	<chr></chr>	
1 2021-01-05	92395	San Bernardino	San Bernardino	
2 2021-01-05	93206	Kern	Kern	
3 2021-01-05	91006	Los Angeles	Los Angeles	
4 2021-01-05	91901	San Diego	San Diego	
5 2021-01-05	92230	Riverside	Riverside	
6 2021-01-05	92662	Orange	Orange	
rows 1-5 of 15 columns				

tail(vax\$as_of_date)

```
## [1] "2021-11-23" "2021-11-23" "2021-11-23" "2021-11-23" "2021-11-23" ## [6] "2021-11-23"
```

- Q1. What column details the total number of people fully vaccinated? persons fully vaccinated
- Q2. What column details the Zip code tabulation area? zip code tabulation area
- Q3. What is the earliest date in this dataset? 2021-01-05
- Q4. What is the latest date in this dataset? 2021-11-23

#Let's get am overview of this dataset
library(skimr)

skimr::skim(vax)

Data summary

Group variables

Name	vax
Number of rows	82908
Number of columns	14
Column type frequency:	
character	5
numeric	9

file:///C:/Users/divya/OneDrive/Desktop/BIMM 143/Class 17 Project/Class-17-Full-Report-REvised.html

None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	47	0
local_health_jurisdiction	0	1	0	15	235	62	0
county	0	1	0	15	235	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.11	1817.39	90001	92257.75	93658.50	95380.50	97635.0	
vaccine_equity_metric_quartile	4089	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.04	18993.94	0	1346.95	13685.10	31756.12	88556.7	-
age5_plus_population	0	1.00	20875.24	21106.04	0	1460.50	15364.00	34877.00	101902.0	=
persons_fully_vaccinated	8355	0.90	9585.35	11609.12	11	516.00	4210.00	16095.00	71219.0	
persons_partially_vaccinated	8355	0.90	1894.87	2105.55	11	198.00	1269.00	2880.00	20159.0	—
percent_of_population_fully_vaccinated	8355	0.90	0.43	0.27	0	0.20	0.44	0.63	1.0	
percent_of_population_partially_vaccinated	8355	0.90	0.10	0.10	0	0.06	0.07	0.11	1.0	
percent_of_population_with_1_plus_dose	8355	0.90	0.51	0.26	0	0.31	0.53	0.71	1.0	

sum(is.na(vax\$persons_fully_vaccinated))

[1] 8355

 $sum(is.na(vax\$persons_fully_vaccinated)) / (sum(is.na(vax\$persons_fully_vaccinated)) + sum(is.na(vax\p

[1] 0.1007744

Q5. How many numeric columns are in this dataset? - 9

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column? - 8355

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)? - 10%

library(lubridate)

##
Attaching package: 'lubridate'

The following objects are masked from 'package:base':
##

date, intersect, setdiff, union

today()

[1] "2021-11-29"

```
vax$as_of_date <- ymd(vax$as_of_date)</pre>
today() - vax$as_of_date[1]
## Time difference of 328 days
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
## Time difference of 322 days
today() - vax$as_of_date[82908]
## Time difference of 6 days
(unique(vax$as_of_date))
## [1] "2021-01-05" "2021-01-12" "2021-01-19" "2021-01-26" "2021-02-02"
## [6] "2021-02-09" "2021-02-16" "2021-02-23" "2021-03-02" "2021-03-09"
## [11] "2021-03-16" "2021-03-23" "2021-03-30" "2021-04-06" "2021-04-13"
## [16] "2021-04-20" "2021-04-27" "2021-05-04" "2021-05-11" "2021-05-18"
## [21] "2021-05-25" "2021-06-01" "2021-06-08" "2021-06-15" "2021-06-22"
## [26] "2021-06-29" "2021-07-06" "2021-07-13" "2021-07-20" "2021-07-27"
## [31] "2021-08-03" "2021-08-10" "2021-08-17" "2021-08-24" "2021-08-31"
## [36] "2021-09-07" "2021-09-14" "2021-09-21" "2021-09-28" "2021-10-05"
```

Q9. How many days have passed since the last update of the dataset? -6

[41] "2021-10-12" "2021-10-19" "2021-10-26" "2021-11-02" "2021-11-09"

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)? -47 for me but 46 when the prof made it.

###Working with Zip Codes

[46] "2021-11-16" "2021-11-23"

```
library(zipcodeR)
geocode_zip('92037')
```

zipcode <chr></chr>	l at <dbl></dbl>	Ing <dbl></dbl>
92037	32.8	-117.2
1 row		

zip_distance('92037','92109')

zipcode_a <chr></chr>	zipcode_b <chr></chr>	distance <dbl></dbl>
92037	92109	2.33
1 row		

reverse_zipcode(c('92037', "92109"))

zipcode <chr></chr>	zipcode_type <chr></chr>	major_city <chr></chr>	post_office_city <chr></chr>	common_city_list <blob></blob>	•	state <chr></chr>	lat <dbl> ▶</dbl>
92037	Standard	La Jolla	La Jolla, CA	<blob></blob>	San Diego County	CA	32.8
92109	Standard	San Diego	San Diego, CA	<blob></blob>	San Diego County	CA	32.8

```
2 rows | 1-8 of 24 columns
zipdata <- reverse_zipcode( vax$zip_code_tabulation_area )</pre>
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
## The following objects are masked from 'package:base':
       intersect, setdiff, setequal, union
##
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
## [1] 5029
sd.10 <- filter(vax, county == "San Diego" &</pre>
                age5_plus_population > 10000)
length(unique(sd$zip_code_tabulation_area))
## [1] 107
which.max(sd$age12_plus_population)
## [1] 60
(sd$zip_code_tabulation[60])
## [1] 92154
  Q11. How many distinct zip codes are listed for San Diego County? -107.
```

Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset? -92154. I did it kind of differently. First found which place was max. Then found the zipcode for that place.

```
mean(na.omit(sd$percent_of_population_fully_vaccinated))
```

[1] 0.4460157

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2021-11-09"?

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2021-11-09"?

```
library(ggplot2)
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area: - Below

```
ggplot(ucsd) +
  aes(as_of_date,
    percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  ylim(c(0,1)) +
  labs(x="Date", y="Percent Vaccinated")
```


1 2021-11-16 92020 San Diego San Diego 2 2021-11-16 92563 Riverside Riverside 3 2021-11-16 92806 Orange Orange	•
3 2021-11-16 92806 Orange Orange	
4 2021-11-16 93291 Tulare Tulare	
5 2021-11-16 92335 San Bernardino San Bernardino	

	as_of_date <date></date>	zip_code_tabulation_area <int></int>	<pre>local_health_jurisdiction <chr></chr></pre>		county	•
6	2021-11-16	92618	Orange	C)range	
6 rows	1-5 of 15 columns					

mean(vax.36\$percent_of_population_fully_vaccinated)

[1] 0.6640413

mean.pop.vax <- mean(vax.36\$percent_of_population_fully_vaccinated)</pre>

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2021-11-16". Add this as a straight horizontal line to your plot from above with the geom hline() function? - 0.6640413. It's prob diff from prof due to updated dataset.

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2021-11-16"? - Refer to table below

skimr::skim(mean.pop.vax)

Data summary

Name	mean.pop.vax
Number of rows	1
Number of columns	1
Column type frequency:	
numeric	1
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100 hist
data	0	1	0.66	NA	0.66	0.66	0.66	0.66	0.66

vax %>% filter(as_of_date == "2021-11-16") %>%
filter(zip_code_tabulation_area=="92109") %>%
select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated <dbl>

0.68863

1 row

vax %>% filter(as_of_date == "2021-11-16") %>%
filter(zip_code_tabulation_area=="92040") %>%
select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated <dbl>

	percent_of_population_fully_vaccinated <dbl></dbl>
	0.521047
1 row	

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above? - 92109 zip code is higher but the 92040 is lower.