The Informational Content of Geographical Indications

JEAN-SAUVEUR AY* INRA UMR CESAER

Reproducibility file Version 0.1: April 13, 2019

Abstract

This file contents the R codes associated with the paper "The informational content of geographical indications" AAWE Working Paper No XXX. The data used are under licence XX, available on the INRA dataverse website: https://data.inra.fr. R functions used are reported in the appendix to preserve the visibility of codes. Additional elements are in the French version available from the following Github repository: .

Contents

1	Descriptive Statistics		6 Models for 1936 GIs	11
			6.1 Descriptive stats	11
2	Models of GI designation		6.2 Estimation	11
	2.1 Parametric ordered logit	3	6.3 Significance	12
	2.2 Ordered generalized additive	3	6.4 Goodness of fit	12
			6.5 Omitted variable	13
3	Diagnostics	4	6.6 Specification	13
	3.1 Significance	4	6.7 Marginal effects	14
	3.2 Goodness of fit	5	6.8 <i>Commune</i> effects	14
	3.3 Omitted variable	5	6.9 Dynamic Communes	15
	3.4 Specification	6	7 Counterfactual decomposition	15
4	Marginal effects 4.1 Parametric ordered logit		7.1 Decomposition 1936 GIs	15
•			7.2 Alternative GI designations	17
	4.2 Ordered generalized additive	7	8 Session information	20
	4.3 Ordinal superiority figure	7	o session mornation	-0
	4.4 Correlation between <i>Communes</i> .	9	A Functions	21
			A.1 Surrogate	21
5 Decomposition			A.2 Decomposition	24

^{*}jsay@inra.fr at UMR CESAER, AgroSup, INRA, Univ. Bourgogne Franche-Comté, 26 bd Dr Petitjean, 21000 Dijon (FR).

1 Descriptive Statistics

Include stat des about sample selection

```
library(sp) ; load("Inter/PolyVny.Rda")
Reg.Rank <- subset(PolyVny,</pre>
                    PolyVny$PAOC!= 0 & !is.na(PolyVny$DEM) & !is.na(PolyVny$LIBCOM))
Reg.Rank$AOCc <- ifelse(Reg.Rank$GCRU== 1, 5,</pre>
                  ifelse(Reg.Rank$PCRU== 1, 4,
                  ifelse(Reg.Rank$VILL== 1 | Reg.Rank$COMM== 1, 3,
                  ifelse(Reg.Rank$BOUR== 1, 2, 1))))
tst <- Reg.Rank@data[, 12: 17]</pre>
tst$COMM <- ifelse(tst$VILL== 1 | tst$COMM== 1, 1, 0)</pre>
tst$VILL <- 0</pre>
table(rowSums(tst), Reg.Rank$AOCc)
tmp <- Reg.Rank$LIBCOM[order(Reg.Rank$YCHF, decreasing= TRUE)]</pre>
Reg.Rank$LIBCOM <- factor(Reg.Rank$LIBCOM, levels= unique(tmp))</pre>
Reg.Rank$RAYAT <- with(Reg.Rank@data, (SOLAR- mean(SOLAR))/ sd(SOLAR))</pre>
Reg.Rank$EXPO <- cut(Reg.Rank$ASPECT,</pre>
                      breaks= c(-2, 45, 90, 135, 180, 225, 270, 315, 360))
sapply(Reg.Rank@data, function(x) sum(is.na(x)))
#table(Reg.Old$LIBCOM, Reg.Old$AOCo)
```

PAR2RAS	IDU	CODECOM	AREA	PERIM	MAXDIST
0	0	0	0	0	0
PAOC	ALIG	BPTG	CREM	MOUS	BGOR
0	0	0	0	0	0
BOUR	VILL	COMM	PCRU	GCRU	XL93
0	0	0	0	0	0
YL93	NOMOS	URBAN	FOREST	WATER	DEM
0	0	0	0	0	0
SLOPE	ASPECT	SOLAR	PERMEA	CODE	NOTATION
0	0	0	0	0	0
DESCR	TYPE_GEOL	AP_LOCALE	TYPE_AP	GEOL_NAT	ISOPIQUE
0	0	80	80	0	0
AGE_DEB	ERA_DEB	SYS_DEB	LITHOLOGIE	DURETE	ENVIRONMT
0	0	0	0	10	0
CEOCHIMIE					
GEOCHIMIE	LITHO_COM	NOUC	NO_UC	NO_ETUDE	SURFUC
GEOCHIMIE 0	LITHO_COM 10	NOUC 658		NO_ETUDE 658	SURFUC 658
			658	658	
0	10	658	658	658	658
0 TARG	10 TSAB	658 TLIM	658 TEXTAG	658 EPAIS 658	658 TEG 658
0 TARG 658	10 TSAB 658	658 TLIM 658	658 TEXTAG 658 NOUS	658 EPAIS 658 OCCUP	658 TEG 658
0 TARG 658 TMO 658	10 TSAB 658 RUE 658	658 TLIM 658 RUD	658 TEXTAG 658 NOUS 658	658 EPAIS 658 OCCUP 658	658 TEG 658 DESCRp
0 TARG 658 TMO 658	10 TSAB 658 RUE 658	658 TLIM 658 RUD 658	658 TEXTAG 658 NOUS 658	658 EPAIS 658 OCCUP 658	658 TEG 658 DESCRp 658
0 TARG 658 TMO 658 AOC361ab	10 TSAB 658 RUE 658 AOC361v1	658 TLIM 658 RUD 658 LIEUDIT	658 TEXTAG 658 NOUS 658 CLDVIN 152	658 EPAIS 658 OCCUP 658 LIBCOM	658 TEG 658 DESCRp 658 XCHF 152
0 TARG 658 TMO 658 AOC36lab	10 TSAB 658 RUE 658 AOC361v1	658 TLIM 658 RUD 658 LIEUDIT 152	658 TEXTAG 658 NOUS 658 CLDVIN 152	658 EPAIS 658 OCCUP 658 LIBCOM	658 TEG 658 DESCRp 658 XCHF 152
TARG 658 TMO 658 AOC36lab 18 YCHF	10 TSAB 658 RUE 658 AOC36lv1 18 ALTCOM	658 TLIM 658 RUD 658 LIEUDIT 152 SUPCOM	658 TEXTAG 658 NOUS 658 CLDVIN 152 POPCOM 152	658 EPAIS 658 OCCUP 658 LIBCOM 152 CODECANT	658 TEG 658 DESCRp 658 XCHF 152 REGION

2 Models of GI designation

2.1 Parametric ordered logit

Benchmark parametric ordered logistic model

Why warning message can be omitted.

2.2 Ordered generalized additive

The loop that allow to create the gamod object, the results of the models. I advice to not run the loop but to pick some value for the maximum degree of freedom and run the models individually.

le plan ne semble pas de rang plein, des coefs seront ignorés

```
library(mgcv)
listk <- c(50, 100, 200, 300, 400, 500, 600, 700, 800, 900)
gamod <- vector("list", length(listk))</pre>
system.time(
for (i in 1: length(listk)){
    gamod[[ i]] <- gam(AOCc~ 0+ LIBCOM+ EXPO+ s(DEM)+ s(SLOPE)+ s(RAYAT)</pre>
                        + s(X, Y, k= listk[ i])
                       , data= Reg.Rank, family= ocat(R= 5))
})
names(gamod) <- paste0("gam", listk)</pre>
save(gamod, file= "Inter/gamod.Rda")
gammod <- vector("list", length(listk))</pre>
system.time(
for (i in 1: length(listk)){
    gammod[[i]] \leftarrow gam(AOCc \sim 0 + EXPO + s(DEM) + s(SLOPE) + s(RAYAT)
                          + s(X, Y, k= listk[ i])
                        , data= Reg.Rank, family= ocat(R= 5))
names(gammod) <- paste0("gam", listk)</pre>
save(gammod, file= "Inter/gammod.Rda")
```

```
utilisateur système écoulé
56177.4 384.9 56565
utilisateur système écoulé
42413.2 262.8 42679.6
```

3 Diagnostics

3.1 Significance

```
library(car)
 res1a <- anova(por1, por1b)</pre>
 (res1 <- Anova(por1))</pre>
Analysis of Deviance Table (Type II tests)
Response: factor(AOCc)
                         LR Chisq Df Pr(>Chisq)
                                            <2e-16 ***
LIBCOM
                             14625 31
EXPO
                                            <2e-16 ***
                              1212
poly(DEM, 2)
                              5334 2
                                            <2e-16 ***
                               385 2
poly(SLOPE, 2)
                                            <2e-16 ***
poly(RAYAT, 2)
                              1921 2
                                            <2e-16 ***
poly(X, 3)
                              2478
                                    3
                                            <2e-16 ***
poly(Y, 3)
                               639 3
                                            <2e-16 ***
                                            <2e-16 ***
poly(X, 3):poly(Y, 3)
                              9555 9
codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 load("Inter/gamod.Rda")
 resume <- function(mod){</pre>
     tmp <- anova(mod)</pre>
     res <- c(as.vector(rbind(tmp$s.table[, 3], tmp$s.table[, 1])),</pre>
             as.vector(rbind(tmp$pTerms.tab[, 2], tmp$pTerms.tab[, 1])))
     names(res) <- c(as.vector(rbind(rownames(tmp$s.table), rep("", 4))),</pre>
                    as.vector(rbind(rownames(tmp$pTerms.tab), rep("", 2))))
     round(res, 1)
 }
 sapply(gamod[ 1: 5* 2], resume)
           gam100
                    gam300
                              gam500
                                         gam700
                                                   gam900
s(DEM)
           5020.2
                    2385.4
                              1677.7
                                         1692.6
                                                   1766.8
               9.0
                        8.9
                                  8.8
                                            8.8
                                                      8.8
                      458.2
s(SLOPE)
           1281.1
                               266.1
                                          225.3
                                                    243.6
               8.5
                        8.5
                                  8.5
                                            8.4
                                                      8.4
s(RAYAT) 2491.6 1196.5
                               667.3
                                          554.7
                                                    557.9
```

```
8.2
                              7.7
                                        7.6
              8.3
                                                 7.5
s(X,Y)
         41458.2 73705.5 94094.8 103941.0 107522.8
            98.7
                    295.2
                            483.1
                                      666.7
                                               844.7
LIBCOM
          6793.2 6079.7 4594.7
                                     3555.0
                                              2894.5
                     31.0
             31.0
                             31.0
                                       31.0
                                                31.0
EXPO
           110.3
                    123.2
                            222.3
                                      153.5
                                               160.8
              7.0
                      7.0
                              7.0
                                        7.0
                                                 7.0
```

3.2 Goodness of fit

[1] 0.29 119.40 0.59

```
gam100 gam300 gam500 gam700 gam900
[1,] 73.89 79.94 84.23 86.94 89.15
[2,] 82412.10 64710.89 54941.54 48291.33 43535.14
```

3.3 Omitted variable

```
library(lmtest) ; library(sandwich) ; library(sure)
wal1 <- 0 ; nsim= 100
for (i in 1: nsim){
    tmp <- surrogate(por1a) - por1a$lp
    wal1[ i] <- waldtest(lm(tmp~ Reg.Rank$LIBCOM), . ~ 1, vcov= vcovHC)$F[ 2]
}
quantile(wal1, c(.05, .5, .95))</pre>
```

```
5% 50% 95% 268.0 274.2 279.6
```

A passer en Reg.Rank, introduire la fonction sur les surrogate residuals des modèles gams en annexe.

```
load("Inter/gammod.Rda") ; source("myFcts.R")
 omitVar <- function(mod, nsim= 100, old= F){</pre>
     usq <- 0
     if (!old) COM <- RRank$LIBCOM else COM <- SRank$LIBCOM</pre>
     for(i in 1: nsim) {
         if (!old) RES <- surlGAM(mod) else RES <- suroldGAM(mod)</pre>
         tmp <- lm(I(RES- mod$linear.pred)~ COM)</pre>
         usq[i] \leftarrow waldtest(tmp, . \sim 1, vcov= vcovHC) [2]
     }
     usq
 }
 wal2 <- sapply(gammod, omitVar)</pre>
 apply(wal2[, 1: 5* 2], 2, function(x) quantile(x, c(.05, .5, .95)))
     gam100 gam300 gam500 gam700 gam900
5%
      17.38 6.060
                       3.377 2.004 1.704
50% 18.94 6.806
                       4.130 2.525
                                         2.181
95% 20.15 7.746 4.864 3.060 2.760
 library(lattice)
 pltdat <- stack(data.frame(logit= wal1, wal2))</pre>
 bwplot(values~ ind, data= pltdat, type=c("l","g"), horizontal= FALSE,
        xlab='Model of GI designation', ylab='Bootstraped F-statistics',
        par.settings = list(box.rectangle=list(col='black'),
                            plot.symbol = list(pch='.', cex = 0.1)),
        scales=list(y= list(log= TRUE)),
        panel = function(..., box.ratio) {
            panel.grid(h=-1, v=-11)
            panel.violin(..., col = "lightblue",
                         varwidth = FALSE, box.ratio = box.ratio)
            panel.bwplot(..., col='black',
                         cex=0.8, pch='|', fill='gray', box.ratio = .1)
             panel.abline(h= log(1.47), col= "red", lty= 3)
            panel.text(2, log(1.55), "F= 1.47: critical value at 5%")})
```

3.4 Specification

Surrogate residuals can also be used to test specification, results not reported.

```
library(sure) ; library(ggplot2) ; library(gridExtra)
var <- c("DEM", "SLOPE", "RAYAT", "EXPO", "LIBCOM", "X", "Y")
plots <- lapply(var, function(.x)
          autoplot(por1, what= "covariate", x= RRank@data[, .x], xlab= .x))
(atp <- autoplot(por1, what= "qq"))
do.call(grid.arrange, c(list(atp), plots))</pre>
```

Introducing pltSURE function.

```
restmp <- surlGAM(gamod$gam900) - gamod$gam900$line</pre>
```


Figure 1: Effects of model XX

```
plot(qlogis(1: nrow(RRank)/ nrow(RRank), scale= 1), sort(restmp))
abline(0, 1)
par(mfrow= c(3, 3)); for (i in var) pltSURE(restmp, RRank@data[, i], i)
```

4 Marginal effects

4.1 Parametric ordered logit

4.2 Ordered generalized additive

On voit bien que le lissage est le même que le papier.

```
plot(gamod$gam100, pages= 1, scale= 0)
```

4.3 Ordinal superiority figure

Figure 2: Effects of model XX

Figure 3: Effects of model XX

Figure 4: Effects of model XX

4.4 Correlation between Communes

```
geom_smooth(method= lm, aes(MEAN, V1))+
geom_text_repel(point.padding = NA) +
annotate("text", x= -.75, y= 4, label= textlab, size= 4, parse= F)+
xlab("Reputation (ordinal superiority)") +
ylab("Average GI grade (between 0 and 5)")
```


Figure 5: Effects of model XX

5 Decomposition

see appendix for the code of decompositions, latent un peu long à tourner.

```
gam100 gam300 gam500 gam700 gam900
Signal
                84.8
                        94.7
                               95.9
                                       96.8
                                              97.6
Noise
                15.2
                                       3.2
                                               2.4
                         5.3
                                4.1
Joint Signal
                68.9
                        78.5
                               76.0
                                       77.9
                                              78.7
Joint Noise
                16.0
                        16.2
                               20.0
                                       18.9
                                              18.9
```

```
40.3
Rank Signal
                 55.1
                                56.8
                                        61.3
                                               57.6
Rank Residual
                        38.2
                 13.8
                                19.2
                                        16.5
                                               21.2
Rank Noise
                 29.7
                        54.4
                                39.1
                                        35.4
                                               40.0
Com Signal
                 21.3
                        37.2
                                24.6
                                        27.5
                                               29.1
Com Residual
                 47.6
                        41.3
                                51.4
                                        50.4
                                               49.7
Com Noise
                 63.5
                         57.5
                                71.3
                                        69.3
                                               68.5
```

6 Models for 1936 GIs

6.1 Descriptive stats

```
2
                    3
                           4
                                  5
   7204 12605 4120
                        567
                                39
           662 15378
3
     15
                       8017
                               261
5
                              1604
      0
             1
                   13
                           3
```

6.2 Estimation

```
})
 names(gamold) <- paste0("gam", listk)</pre>
 save(gamold, file= "Inter/gamold.Rda")
 gammold <- vector("list", length(listk))</pre>
 system.time(
 for (i in 1: length(listk)){
      gammold[[i]] \leftarrow gam(AOCo \sim 0 + EXPO + s(DEM) + s(SLOPE) + s(RAYAT)
                           + s(X, Y, k= listk[ i])
                          , data= Reg.Old, family= ocat(R= 3))
 })
 names(gammold) <- paste0("gam", listk)</pre>
 save(gammold, file= "Inter/gammold.Rda")
                                      écoulé
utilisateur
                    système
     12259.5
                       144.1
                                    12405.5
utilisateur
                    système
                                      écoulé
                       78.69
                                    9661.62
     9582.37
```

6.3 Significance

```
load("Inter/gamold.Rda")
 res2a <- anova(por2, por2b)</pre>
 res2 <- Anova(por2)</pre>
 sapply(gamold[ 3: 7], resume)
           gam100
                     gam150
                               gam200 gam250
                                                  gam300
             499.8
                      647.4
s(DEM)
                                702.3
                                         541.9
                                                   344.5
               8.5
                         8.2
                                            8.4
                                                     7.7
                                  8.8
             387.3
                                                   153.0
s(SLOPE)
                      314.0
                                254.4
                                         244.3
               8.7
                         8.7
                                  8.6
                                            8.6
                                                     8.3
             242.0
                      160.1
                                127.1
                                         122.9
                                                   105.2
```

```
s(RAYAT)
              8.5
                      8.3
                               8.1
                                       5.0
                                                5.9
         17520.5 20194.2 22301.7 23507.2 23801.4
s(X,Y)
             98.3
                    146.3
                             194.4
                                     239.8
                                              286.6
LIBCOM
          2782.5
                  1843.0
                           1642.4
                                   1283.0
                                            1049.4
             25.0
                     25.0
                                               25.0
                              25.0
                                      25.0
EXPO
            119.8
                     91.8
                              91.9
                                      96.1
                                               90.2
              7.0
                      7.0
                               7.0
                                       7.0
                                                7.0
```

6.4 Goodness of fit

```
[1] 0.38 51.29 0.79
        gam50
                gam75
                        gam100
                                 gam150
                                           gam200
                                                   gam250
                                                            gam300
[1,]
        84.34
                 85.9
                         87.08
                                   89.26
                                            90.28
                                                     91.4
                                                             92.54
[2,] 40789.58 36833.3 33810.36 30271.01 27574.12 24526.6 22482.20
```

6.5 Omitted variable

```
library(lmtest) ; library(sandwich) ; library(sure)
 wal3 < -0 ; nsim = 100
 for (i in 1: nsim){
     tmp <- surrogate(por2a) - por2a$lp</pre>
     \label{localization} $$ wal3[ i] <- waldtest(lm(tmp~ Reg.Old$LIBCOM), . ~ 1, vcov= vcovHC)$F[ 2] $$
 load("Inter/gammold.Rda") ; source("myFcts.R")
 wal4 <- sapply(gammold, function(x) omitVar(x, old= T))</pre>
 wold <- data.frame(logit= wal3, wal4)</pre>
 apply(wold, 2, function(x) quantile(x, c(.05, .5, .95)))
     logit gam50 gam75 gam100 gam150 gam200 gam250 gam300
5% 168.1 7.408 7.340 4.714 3.498 2.057
                                                       1.178 1.091
50% 173.6 8.553 8.843 5.894 4.310 2.709 1.832 1.488
95% 179.8 9.958 10.501 6.858 5.396 3.851 2.495 2.057
 library(lattice)
 poldat <- stack(wold)</pre>
 bwplot(values~ ind, data= poldat, type=c("1","g"), horizontal= FALSE,
        xlab='Model of GI designation', ylab='Bootstraped F-statistics',
        par.settings = list(box.rectangle=list(col='black'),
                            plot.symbol = list(pch='.', cex = 0.1)),
        scales=list(y= list(log= TRUE)),
        panel = function(..., box.ratio) {
            panel.grid(h=-1, v=-11)
            panel.violin(..., col = "lightblue",
                         varwidth = FALSE, box.ratio = box.ratio)
            panel.bwplot(..., col='black',
                         cex=0.8, pch='|', fill='gray', box.ratio = .1)
            panel.abline(h= log(1.47), col= "red", lty= 3)
            panel.text(2, log(1.55), "F= 1.47: critical value at 5%")})
```

6.6 Specification

results not reported

```
library(sure) ; library(ggplot2) ; library(gridExtra)
var <- c("DEM", "SLOPE", "RAYAT", "EXPO", "LIBCOM", "X", "Y")
plots <- lapply(var, function(.x)
    autoplot(por2, what= "covariate", x= Reg.Old@data[, .x], xlab= .x))
(atp <- autoplot(por2, what= "qq"))</pre>
```


Figure 6: Effects of model XX

```
do.call(grid.arrange, c(list(atp), plots))
```

```
restmp <- suroldGAM(gamold$gam300) - gamold$gam300$line
plot(qlogis(1: nrow(SRank) / nrow(SRank), scale= 1), sort(restmp))
abline(0, 1)
var <- c("DEM", "SLOPE", "RAYAT", "EXPO", "LIBCOM", "X", "Y")
par(mfrow= c(3, 3)); for (i in var) pltSURE(restmp, SRank@data[, i], i)</pre>
```

6.7 Marginal effects

6.8 Commune effects

Figure 7: Effects of model XX

6.9 Dynamic Communes

7 Counterfactual decomposition

7.1 Decomposition 1936 GIs

```
load("Inter/gamold.Rda") ; source("myFcts.R")
latold <- sapply(gamold, function(x)
    rowSums(predict(x, type= 'terms')[, -1]))
decold <- apply(latold, 2, function(x)
    c(Signal= var(x), Noise= pi^2/ 3,
        jointSignal2(x, vert= "AOCo", dat= SRank@data),
        jointNoise2(x, vert= "AOCo", dat= SRank@data),
        rankSignal2(x, vert= "AOCo", dat= SRank@data),</pre>
```


Figure 8: Effects of model XX

Figure 9: Effects of model XX

```
rankResid2(x, vert= "AOCo", dat= SRank@data),
  rankNoise2(x, vert= "AOCo", dat= SRank@data),
  comSignal2(x, dat= SRank@data),
  comResid2(x, dat= SRank@data), comNoise2(x, dat= SRank@data)))
round(t(t(decold)/ (pi^2/ 3+ decold[1, ]))* 100, 1)
```

	gam50	gam75	gam100	gam150	gam200	gam250	gam300
Signal	95.6	93.1	95.4	98.7	98.1	99.5	99.5
Noise	4.4	6.9	4.6	1.3	1.9	0.5	0.5
Joint Signal	78.7	63.2	55.3	75.2	47.9	75.0	45.1
Joint Noise	16.9	29.9	40.2	23.5	50.3	24.5	54.5
Rank Signal	5.8	18.1	24.1	16.4	20.6	14.9	22.7
Rank Noise	89.8	75.0	71.3	82.4	77.5	84.6	76.8
Rank Residual	72.9	45.1	31.2	58.8	27.3	60.1	22.4
Com Signal	67.5	39.6	29.4	62.3	24.0	62.7	22.6
Com Noise	28.1	53.5	66.0	36.4	74.1	36.8	77.0
Com Residual	16.0	33.3	43.7	20.9	35.3	20.6	43.7

7.2 Alternative GI designations

```
OLD CF1 CF2 CF3 CF4 CF5 CF6
Signal
             97.1 97.1 97.1 97.1 97.1 97.1
Noise
              2.9 2.9 2.9 2.9 2.9 2.9
Joint Signal 51.4 80.1 81.2 82.2 79.4 80.0 79.2
Joint Noise
             45.8 17.1 15.9 15.0 17.7 17.1 18.0
Rank Signal
             38.9 70.7 64.5 73.5 62.2 62.8 62.0
Rank Noise
             58.2 26.4 32.6 23.6 34.9 34.3 35.1
Rank Residual 12.5 9.4 16.7 8.7 17.2 17.2 17.2
Com Signal
             28.5 28.5 28.5 28.5 28.5 28.5 28.5
Com Noise
             68.6 68.6 68.6 68.6 68.6 68.6 68.6
Com Residual 22.9 51.6 52.7 53.7 50.9 51.5 50.7
```

```
thrldBOUR <- mean(ltt1[RRank$AOCc== 2])</pre>
thrldVILL <- mean(ltt1[RRank$AOCc== 3])</pre>
thrldPCRU <- mean(ltt1[RRank$AOCc== 4])</pre>
Simv <- data.frame(Simu,</pre>
                     SIV= ifelse(RRank$AOCc< 2, RRank$AOCc,
                           ifelse(RRank$AOCc== 2 & ltt< thrldBOUR, 2,</pre>
                           ifelse(RRank$AOCc== 2 & ltt>= thrldBOUR, 3,
                                  RRank$AOCc+ 1))),
                     SV = ifelse(RRank$AOCc< 3, RRank$AOCc,
                           ifelse(RRank$AOCc== 3 & ltt< thrldVILL, 3,</pre>
                           ifelse(RRank$AOCc== 3 & ltt>= thrldVILL, 4,
                                  RRank$AOCc+ 1))),
                     SVI= ifelse(RRank$AOCc< 4, RRank$AOCc,</pre>
                           ifelse(RRank$AOCc== 4 & ltt< thrldPCRU, 4,</pre>
                           ifelse(RRank$AOCc== 4 & ltt>= thrldPCRU, 5,
                                  RRank$AOCc+ 1))))
table(Simv$AOCc, Simv$SIV)
table(Simv$AOCc, Simv$SV) ; table(Simv$AOCc, Simv$SVI)
```

	1	2	3	4	5	6
1	9759	0	0	0	0	0
2	0	8931	6577	0	0	0
3	0	0	0	24151	0	0
4	0	0	0	0	8577	0
5	0	0	0	0	0	1906
	1	2	3	4	5	6
1	9759	0	0	0	0	0
2	0	15508	0	0	0	0
3	0	0	13275	10876	0	0
4	0	0	0	0	8577	0
5	0	0	0	0	0	1906
	1	2	3	4	5	6
1	9759	0	0	0	0	0
2	0	15508	0	0	0	0
3	0	0	24151	0	0	0
4	0	0	0	4970	3607	0
5	0	0	0	0	0	1906

```
decf <- sapply(names(Simv)[ 100: 107], function(x)
    c(Signal= var(rowSums(prdd[, -1])), Noise= pi^2/ 3,
        jointSignal2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        jointNoise2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        rankSignal2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        rankResid2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        rankNoise2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        comSignal2(rowSums(prdd[, -1]), dat= Simv),
        comResid2(rowSums(prdd[, -1]), vert= x, dat= Simv),
        comNoise2(rowSums(prdd[, -1]), dat= Simv)))</pre>
```

	OLD	S0	SI	SII	SIII	SIV	SV	SVI
Signal	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6
Noise	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Joint Signal	43.3	81.1	80.7	81.2	82.8	79.2	79.6	79.0
Joint Noise	54.3	16.4	16.8	16.4	14.8	18.4	18.0	18.6
Rank Signal	17.8	70.7	59.8	70.7	73.1	58.0	58.5	57.9
Rank Residual	25.4	10.4	21.0	10.5	9.7	21.1	21.0	21.1
Rank Noise	79.7	26.8	37.8	26.8	24.5	39.5	39.0	39.7
Com Signal	29.1	29.1	29.1	29.1	29.1	29.1	29.1	29.1
Com Residual	14.2	52.1	51.7	52.1	53.7	50.1	50.5	49.9
Com Noise	68.5	68.5	68.5	68.5	68.5	68.5	68.5	68.5

8 Session information

[34] zip_1.0.0

sessionInfo() R version 3.5.3 (2019-03-11) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 18.04.2 LTS Matrix products: default BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1 LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1 locale: [1] LC_CTYPE=fr_FR.UTF-8 LC NUMERIC=C [3] LC_TIME=fr_FR.UTF-8 LC_COLLATE=fr_FR.UTF-8 [5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8 [7] LC_PAPER=fr_FR.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC TELEPHONE=C [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats4 graphics grDevices utils datasets stats [7] methods base other attached packages: [1] gridExtra_2.3 xtable_1.8-3 ggrepel_0.8.0 [4] ggplot2_3.1.0 plyr_1.8.4 latticeExtra_0.6-28 [7] RColorBrewer_1.1-2 effects_4.0-3 lattice_0.20-38 [10] truncdist_1.0-2 evd 2.3-3 sure_0.2.0 [13] sandwich_2.5-0 $lmtest_0.9-36$ zoo_1.8-4 [16] mgcv_1.8-28 nlme_3.1-137 car_3.0-2 [19] carData_3.0-1 MASS_7.3-51.1 sp_1.3-1 loaded via a namespace (and not attached): [1] Rcpp_1.0.0 assertthat_0.2.0 R6_2.3.0 [4] cellranger_1.1.0 survey_3.33-2 pillar_1.3.0 [7] rlang_0.3.0.1 lazyeval_0.2.1 curl_3.2 [10] readxl_1.1.0 $minqa_1.2.4$ data.table_1.11.4 Matrix_1.2-17 [13] nloptr_1.0.4 labeling_0.3 [16] splines_3.5.3 rgdal_1.3-6 $lme4_1.1-18-1$ [19] foreign_0.8-71 munsell_0.5.0 compiler_3.5.3 [22] pkgconfig_2.0.2 nnet_7.3-12 tidyselect_0.2.5 crayon_1.3.4 [25] tibble_1.4.2 rio_0.5.10 [28] dplyr_0.7.8 withr_2.1.2 grid_3.5.3 [31] gtable_0.2.0 magrittr_1.5 scales_1.0.0

bindrcpp_0.2.2

openxlsx_4.1.0

```
[37] tools_3.5.3 forcats_0.3.0 glue_1.3.0 [40] purrr_0.2.5 hms_0.4.2 abind_1.4-5 [43] survival_2.43-3 colorspace_1.3-2 bindr_0.1.1 [46] haven_1.1.2
```

A Functions

A.1 Surrogate

```
pltSURE <- function(resid, xvar, lab){
   plot(xvar, resid, xlab= lab, main= paste("Surrogate Analysis", lab))
   abline(h= 0, col= "red", lty= 3, lwd= 2)
   lines(smooth.spline(resid ~ xvar), lwd= 3, col= "blue")
}</pre>
```

1. function

```
surlOLR <- function(mod, newd= NULL){</pre>
    if (mod$method!= "logistic") stop("Logistic required")
    gg <- as.numeric(mod$zeta)</pre>
    if (is.null(newd)){
        g1 <- unname(as.integer(model.response(model.frame(mod))))</pre>
        g6 \leftarrow mod p
    } else {
        g1 <- as.integer(newd[, "AOCc"])</pre>
        g6 <- gg[ 1]-qlogis(predict(mod, newdata= newd, type= 'probs')[, 1])</pre>
    }
    nn <- length(g1)
    suls <- sapply(g1, switch,</pre>
                    "1"= c(-Inf , gg[ 1]), "2"= c(gg[ 1], gg[ 2]),
                    "3"= c(gg[ 2], gg[ 3]), "4"= c(gg[ 3], gg[ 4]),
                    "5"= c(gg[ 4], Inf ))
    sls <- data.frame(unlist(t(suls)))</pre>
    rtrunc(nn, spec= "logis", a= sls[, 1], b= sls[, 2],
            location= g6, scale= 1)
}
```

2. test

summary(por1)

```
library(sure)
library(truncdist)
surpOLR <- function(mod, newd= NULL){
   if (mod$method!= "probit") stop("Probit required")
   gg <- as.numeric(mod$zeta)
   if (is.null(newd)){
      g1 <- unname(as.integer(model.response(model.frame(mod))))</pre>
```

```
kk <- surrogate(por1)+ por1$zeta[ 1]</pre>
hh <- surpOLR(por1)</pre>
plot(kk, hh)
abline(h= gg)
abline(v= gg)
abline(0, 1, col= "blue")
11 <- surrogate(por1)+ gg[ 1]</pre>
plot(kk, 11)
abline(h= gg)
abline(v= gg)
abline(0, 1, col= "blue")
oo <- surpOLR(por1, newd= RegRank)</pre>
plot(oo, 11)
abline(h= gg)
abline(v= gg)
abline(0, 1, col= "blue")
```

```
surlGAM <- function(mod, newd= NULL){</pre>
    gg <- as.numeric(mod$family$getTheta(TRUE))</pre>
    if (is.null(newd)){
         g1 <- as.integer(mod$y)</pre>
         g6 <- mod$linear.predictors</pre>
    } else {
         g1 <- as.integer(newd[, "AOCc"])</pre>
         g6 <- predict(mod, newdata= newd)</pre>
    }
    nn <- length(g1)</pre>
    suls <- sapply(g1, switch,</pre>
                       "1"= c(-Inf , gg[ 1]), "2"= c(gg[ 1], gg[ 2]), 
"3"= c(gg[ 2], gg[ 3]), "4"= c(gg[ 3], gg[ 4]),
                       "5"= c(gg[ 4], Inf
    sls <- data.frame(unlist(t(suls)))</pre>
    rtrunc(nn, spec= "logis", a= sls[, 1], b= sls[, 2], location= g6)
suroldGAM <- function(mod, newd= NULL){</pre>
    gg <- as.numeric(mod$family$getTheta(TRUE))</pre>
    if (is.null(newd)){
         g1 <- as.integer(mod$y)</pre>
```

```
fit.ogam <- gam(AOCc~ poly(DEM, 2)+ poly(SLOPE, 2)</pre>
                 + poly(RAYAT, 2)+ poly(ASPECT, 2)+ poly(PERMEABILITY, 2)
               , family= ocat(R= 5), data= RegRank)
fit.oglm <- polr(factor(AOCc)~ poly(DEM, 2)+ poly(SLOPE, 2)</pre>
                 + poly(RAYAT, 2)+ poly(ASPECT, 2)+ poly(PERMEABILITY, 2)
               , method= "logistic", data= RegRank)
plot(fit.ogam$line, fit.oglm$lp-fit.oglm$zeta[1]- 1)
abline(0, 1)
hh <- surrogate(fit.oglm)+ fit.oglm$zeta[ 1]+ 1</pre>
gg <- surlGAM(fit.ogam)</pre>
plot(gg, hh)
abline(v= fit.ogam$family$getTheta(TRUE))
abline(h= fit.oglm$zeta+ 1)
abline(0, 1, col= "blue")
kk <- surlGAM(fit.ogam, newd= RegRank)</pre>
plot(kk, hh)
abline(v= fit.ogam$family$getTheta(TRUE))
abline(h= fit.oglm$zeta+ 1)
abline(0, 1, col= "blue")
```

3. function

4. test

```
surpGLM <- function(mod, newd= NULL){
   if (mod$family$link!= "probit") stop("Probit required")
   if (is.null(newd)){
      g1 <- as.integer(mod$y)
      g6 <- mod$linear.predictors
   } else {
      g1 <- as.integer(newd[, "AOCc"])
      g6 <- predict(mod, newdata= newd, type= "link")
   }
   nn <- length(g1)
   ifelse(g1== 0, rtrunc(nn, spec= "norm", a= -Inf, b= 0, mean= g6),
      rtrunc(nn, spec= "norm", a= 0, b= Inf, mean= g6))
}</pre>
```

A.2 Decomposition

```
jointNoise <- function(latent, DAT= RegRank){</pre>
    jN <- 0
    for (i in 1: 5){
        for (j in levels(DAT$LIBCOM)){
            tmp <- latent[DAT$AOCc== i & DAT$LIBCOM== j]</pre>
            if (length(tmp)> 0)
                 jN <- jN+ var(tmp)* mean(DAT$AOCc== i & DAT$LIBCOM== j)</pre>
        }
    c("Joint Noise"= jN)
jointNoise2 <- function(latent, vert= "AOCc", horiz= "LIBCOM", dat= RRank){</pre>
    jN <- 0
    for (i in levels(factor(dat[, vert]))){
        for (j in levels(factor(dat[, horiz]))){
            tmp <- latent[dat[, vert]== i & dat[, horiz]== j]</pre>
            if (length(tmp)> 1)
                 jN <- jN+
                     var(tmp)* mean(dat[, vert]== i & dat[, horiz]== j)
        }
    c("Joint Noise"= jN)
}
```

```
for (i in levels(factor(dat[, vert]))){
        for (j in levels(factor(dat[, horiz]))){
            ind <- dat[, vert]== i & dat[, horiz]== j</pre>
            jS[ ind] <- mean(latent[ ind])</pre>
    }
    c("Joint Signal"= var(jS))
}
rankSignal <- function(latent, DAT= RegRank){</pre>
    rS <- var(ifelse(DAT$AOCc== 1, mean(latent[DAT$AOCc== 1]),
              ifelse(DAT$AOCc== 2, mean(latent[DAT$AOCc== 2]),
              ifelse(DAT$AOCc== 3, mean(latent[DAT$AOCc== 3]),
              ifelse(DAT$AOCc== 4, mean(latent[DAT$AOCc== 4]),
                      mean(latent[DAT$AOCc== 5]))))))
    c("Rank Signal"= rS)
}
rankSignal2 <- function(latent, vert= "AOCc", horiz= "LIBCOM", dat= RRank){</pre>
    rS <- rep(NA, nrow(dat))
    for (i in levels(factor(dat[, vert]))){
        rS[ dat[, vert]== i] <- mean(latent[dat[, vert]== i])</pre>
    c("Rank Signal"= var(rS))
}
rankNoise <- function(latent, DAT= RegRank){</pre>
    rN <- var(latent[DAT$AOCc== 1])* mean(DAT$AOCc== 1)+
        var(latent[DAT$AOCc== 2])* mean(DAT$AOCc== 2)+
        var(latent[DAT$AOCc== 3])*
                                      mean(DAT\$AOCc== 3)+
        var(latent[DAT$AOCc== 4])*
                                       mean(DAT$AOCc== 4)+
        var(latent[DAT$AOCc== 5])*
                                       mean(DAT$AOCc== 5)
    c("Rank Noise"= rN)
rankNoise2 <- function(latent, vert= "AOCc", dat= RRank){</pre>
    rN <- 0
    for (i in levels(factor(dat[, vert]))){
        rN <- rN+ var(latent[dat[, vert]== i])* mean(dat[, vert]== i)</pre>
    c("Rank Noise"= rN)
}
rankResid <- function(latent, DAT= RegRank){</pre>
    sig <- rep(0, nrow(DAT))</pre>
    for (i in 1: 5){
        for (j in levels(DAT$LIBCOM)){
            sig[DAT$AOCc== i & DAT$LIBCOM== j] <-</pre>
                mean(latent[DAT$AOCc== i & DAT$LIBCOM== j])
        }
    }
    rR <- (var(sig[DAT$AOCc== 1])* mean(DAT$AOCc== 1)+
```

var(sig[DAT\$AOCc== 2])* mean(DAT\$AOCc== 2)+
var(sig[DAT\$AOCc== 3])* mean(DAT\$AOCc== 3)+
var(sig[DAT\$AOCc== 4])* mean(DAT\$AOCc== 4)+

```
var(sig[DAT$AOCc== 5])* mean(DAT$AOCc== 5))
    c("Rank Residual"= rR)
}
rankResid2 <- function(latent, vert= "AOCc", horiz= "LIBCOM", dat= RRank){</pre>
    sig \leftarrow rep(0, nrow(dat)) ; rR \leftarrow 0
    for (i in levels(factor(dat[, vert]))){
        for (j in levels(factor(dat[, horiz]))){
             ind <- dat[, vert]== i & dat[, horiz]== j</pre>
             sig[ ind] <- mean(latent[ ind])</pre>
        }
    }
    for (i in levels(factor(dat[, vert]))){
        rR <- rR+ var(sig[dat[, vert]== i])* mean(dat[, vert]== i)</pre>
    c("Rank Residual"= rR)
}
comSignal <- function(latent, DAT= RegRank){</pre>
    cS <- rep(0, nrow(DAT))
    for (j in levels(DAT$LIBCOM)){
        cS[ DAT$LIBCOM== j] <- mean(latent[DAT$LIBCOM== j])</pre>
    c("Com Signal"= var(cS))
}
comSignal2 <- function(latent, horiz= "LIBCOM", dat= RRank){</pre>
    cS <- rep(0, nrow(dat))
    for (j in levels(factor(dat[, "LIBCOM"]))){
        cS[ dat[, "LIBCOM"]== j] <- mean(latent[dat[, "LIBCOM"]== j])</pre>
    c("Com Signal"= var(cS))
}
comNoise <- function(latent, DAT= RegRank){</pre>
    for (j in levels(DAT$LIBCOM)){
        cN <- cN+ (var(latent[DAT$LIBCOM== j])* mean(DAT$LIBCOM== j))</pre>
    c("Com Noise"= cN)
}
comNoise2 <- function(latent, horiz= "LIBCOM", dat= RRank){</pre>
    for (j in levels(factor(dat[, horiz]))){
        cN <- cN+ (var(latent[dat[, horiz]== j])* mean(dat[, horiz]== j))</pre>
    c("Com Noise"= cN)
}
comResid <- function(latent, DAT= RegRank){</pre>
    sig <- rep(0, nrow(DAT))</pre>
    for (i in 1: 5){
        for (j in levels(DAT$LIBCOM)){
             sig[DAT$AOCc== i & DAT$LIBCOM== j] <-</pre>
                 mean(latent[DAT$AOCc== i & DAT$LIBCOM== j])
```

```
}
    }
    cR \leftarrow 0
    for (j in levels(DAT$LIBCOM)){
        cR <- cR+ var(sig[DAT$LIBCOM== j])* mean(DAT$LIBCOM== j)</pre>
    c("Com Residual"= cR)
}
comResid2 <- function(latent, vert= "AOCc", horiz= "LIBCOM", dat= RRank){</pre>
    sig <- rep(0, nrow(dat))</pre>
    for (i in levels(factor(dat[, vert]))){
        for (j in levels(factor(dat[, horiz]))){
             sig[dat[, vert]== i & dat[, horiz]== j] <-</pre>
                 mean(latent[dat[, vert]== i & dat[, horiz]== j])
        }
    }
    cR <- 0
    for (j in levels(factor(dat[, horiz]))){
        cR <- cR+ var(sig[dat[, horiz]== j])* mean(dat[, horiz]== j)</pre>
    c("Com Residual"= cR)
}
```