Statistik och Dataanalys I Föreläsning 14 - Slumpvariabler

Mattias Villani

Statistiska institutionen Stockholms universitet

Översikt

- Slumpvariabler och sannolikhetsfördelningar
- Sammanfatta sannolikhetsfördelningar väntevärde och varians
- Räkna med slumpvariabler skift, skalning, linjärkombination och summor
- Beroende slumpvariabler korrelation och kovarians

Slumpvariabler

Slumpvariabel mäter ett numeriskt värde från slumpmässigt försök. T ex antal prickar vid kast med tärning, eller

$$X = \begin{cases} 0 & \text{om minusgrader} \\ 1 & \text{om plusgrader} \end{cases}$$

- Vi skriver slumpvariabler med stora bokstäver X och deras numeriska utfall med små bokstäver X.
- Slumpvariabeln "antal prickar" X fick utfallet x=3.
- En slumpvariabel kan vara:
 - **diskret** (utfallen går att räkna, även 0, 1, 2, ... till oändligt)
 - kontinuerlig (utfallen går inte att räkna, många decimaler)
- Exempel
 - ightharpoonup Diskret: X =antal prickar på tärning
 - ightharpoonup Kontinuerlig: X = temperatur (med decimaler)

Sannolikhetsfördelning

- Varje värde x som slumpvariabeln X kan anta har en sannolikhet P(X = x) (eller bara P(x)).
- Sannolikhetsfördelningen för X är sannolikheterna för alla möjliga utfall.

×	1	2	3	4	5
P(x)	0.10	0.25	0.40	0.20	0.05

Diskret slumpvariabel

Kontinuerlig slumpvariabel

Kasta tärning - fördelning för slumpvariabel

■ Slumpvariabel: Händelser ⇒ numeriska värden.

Kasta tärning - fördelning för slumpvariabel

Väntevärde - fördelningens centrum

Medelvärdet för ett stickprov

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1}{n} x_1 + \frac{1}{n} x_2 + \ldots + \frac{1}{n} x_n$$

- \blacksquare X är en slumpvariabel med sannolikhetsfördelning P(X=x).
- **V**äntevärdet för slumpvariabeln X är (expected value)

$$E(X) = \sum_{\mathsf{alla}\ x} x \cdot P(x)$$

- Vi använder ofta grekiska bokstaven μ för E(X). Grekiska bokstaven för m, m som i mean. "lilla my".
- Mer utförligt: om X kan anta värdena $\{x_1, x_2, \dots, x_m\}$ så är

$$E(X) = \sum_{i=1}^{m} x_i \cdot P(x_i)$$

Väntevärde - mått fördelningens centrum (läge)

- Väntevärde sannolikhetsfördelningens centrum.
- Väntevärdet punkt där sannolikhetsfördelning 'balanserar'.
- Medelvärdet \bar{x} påverkas mycket av extrema värden.
- Väntevärdet påverkas mycket av fördelningens 'svansar'.

Förväntad vinst - Trisslott

 $E(vinst) = 0 \cdot 0.7855 + 30 \cdot 0.0942605 +$

probs	antal	vinst
0.7855000000	4713000	0
0.0942605000	565563	30
0.1001760000	601056	60
0.0130000000	78000	90
0.0036000000	21600	120
0.0018800000	11280	150
0.0006000000	3600	180
0.0004650000	2790	300
0.0000625000	375	450
0.0001000000	600	500
0.0001000000	600	600
0.0000250000	150	750
0.0000300000	180	900
0.0000800000	480	1000
0.0000400000	240	1500
0.0000250000	150	2000
0.0000075000	45	2500
0.0000150000	90	5000
0.0000220000	132	10000
0.0000035000	21	20000
0.0000015000	9	50000
0.0000010000	6	100000
0.0000005000	3	200000
0.0000043333	26	265000
0.0000001667	1	1000000
0.0000005000	3	2765000

$$60 \cdot 0.100176 + \dots + 2765000 \cdot 0.0000005$$

= 14.7 kr

Källa: Svenska spel - https://www.svenskaspel.se/triss/spelguide/triss-30

Vilken räntekostnad för bolån i slutet av 2023?

Antag: lån på 1 miljon. 1% högre ränta än styrräntan.

bankränta i %	sannolikhet	månadskostnad
1	0.017	833
2	0.094	1667
3	0.252	2500
4	0.334	3333
5	0.219	4167
6	0.071	5000
7	0.011	5833
8	0.001	6667

$$E(\text{ränta}) = 1 \cdot 0.017 + 2 \cdot 0.094 + \dots + 8 \cdot 0.001 \approx 3.9\%$$

 $E(\text{kostnad}) = 833 \cdot 0.017 + 1667 \cdot 0.094 + ... + 6667 \cdot 0.001 \approx 3252 \text{ kr}$

Diagram 5 från Penningpolitisk rapport, Nov 2022, Sveriges Riksbank, https://www.riksbank.se

Varians - fördelningens spridning

- \blacksquare Väntevärdet μ är bara en slags bästa gissning.
- Ofta viktigt att veta fördelningens spridning. Osäkerhet.
- Medelavvikelse från μ som spridning?
 - ightharpoonup Avvikelser från centrum $x \mu$.
 - ▶ Problem: Negativa och positiva avvikelser kan ta ut varandra.
 - ▶ Lösning: kvadrera avvikelserna $(x \mu)^2$ först.
- Variansen för en slumpvariabel

$$Var(X) = \sum_{\mathsf{alla} \ \mathsf{x}} (x - \mu)^2 P(x)$$

- Variansen skrivs ofta med symbolen σ^2 .
- Exempel: X = räntekostnad. $\mu = E(X) = 3252$.

$$Var(X) = (833 - 3252)^2 \cdot 0.017 + (1667 - 3252)^2 \cdot 0.094 + \dots + (6667 - 3252)^2 \cdot 0.001 \approx 965553.1 \text{ kr}^2$$

Standardavvikelse - ett mått på medelspridning

■ Variansen för en slumpvariabel

$$\mathit{Var}(X) = \sum_{\mathsf{alla}\; \mathsf{x}} (\mathsf{x} - \mu)^2 P(\mathsf{x})$$

Variansen har enheter i kvadrat. Ingen trevlig tolkning.

Standardavvikelsen har samma enheter som slumpvariabeln

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Exempel: X = räntekostnad.

$$\sigma = \sqrt{965553.1} \approx 982.63 \text{ kr}$$

- Vår "bästa gissning" av räntekostnad: $\mu = 3252 \text{ kr}$
- Men en "typisk avvikelse" från denna gissning är cirka 983 kr.

Väntevärde och standardavvikelse

Skifta slumpvariabler

- Exempel: X ränta i procent på mitt banklån. E(X)=3.9%.
- Sämre förhandlare: bankräntan 2% högre än styrräntan.
- Din ränta: Y = X + 2. **Skiftar/förskjuter** slumpvariabeln.
- Måste vi göra om alla beräkningar för dig? Nope.

$$E(Y) = E(X) + 2 = 3.9 + 2 = 5.9\%$$

Väntevärde - skiftade slumpvariabler.

$$E(X \pm c) = E(X) \pm c$$
 för godtycklig konstant c

■ Variansen ändras inte av ett skift:

Varians - skiftade slumpvariabler.

$$Var(X \pm c) = Var(X)$$
 för godtycklig konstant c

Skala slumpvariabler

- Exempel: får dra av 30% på skatten för räntekostnad.
- Räntekostnad efter skatt: $Y = 0.7 \cdot X$. Skalar slumpvariabeln.

Väntevärde - skalning.

$$E(aX) = a \cdot E(X)$$
 för godtycklig konstant a

Varians - skalning.

$$Var(aX) = a^2 Var(X)$$
 för godtycklig konstant a

Standardavvikelse - skalning.

$$SD(aX) = |a| \cdot Var(X)$$
 för godtycklig konstant a

- $E(0.7 \cdot X) = 0.7 \cdot 3252 = 2276.4 \text{ kr}$
- $SD(0.7 \cdot X) = 0.7 \cdot 982.63 \approx 687.84 \text{ kr}$

Linjärkombinationer av slumpvariabler 🖭

Linjärkombination av slumpvariabel = skift och skalning.

$$Y = c + aX$$

Väntevärde - linjärkombination.

$$E(c \pm aX) = c \pm aE(X)$$
 för konstanter a och c

Varians - linjärkombination

$$Var(c \pm aX) = a^2 Var(X)$$
 för konstanter a och c

- Exempel företags produktionskostnader:
 - X antal efterfrågade enheter (slumpvariabel).
 - Fast produktionskostnad c
 - Rörlig produktionskostnad per enhet a
 - Produktionskostnad: Y = c + aX

Väntevärde - summa av slumpvariabler

- X och Y är två olika slumpvaribler
 - ▶ X antal prickar på 1:a tärningen
 - ▶ Y antal prickar på 2:a tärningen
 - ightharpoonup X + Y =totalt antal prickar på båda tärningarna.

Väntevärde - summa av slumpvariabler.

$$E(X + Y) = E(X) + E(Y)$$

Varians - summa av oberoende slumpvariabler

- För variansen måste vi vara försiktiga med eventuella beroenden mellan variabler.
- Vadslagning:
 - ► X är din vinst/förlust i ett vad.
 - Y är din motståndares vinst/förlust.
 - X + Y = 0, dvs har ingen varians alls! Perfekt beroende.
- Aktieportfölj:
 - X är avkastning aktie.
 - Y är avkastning på annan aktie.
 - ▶ Total avkastning: X + Y. Varians?
- Om vi antar att X och Y är oberoende blir variansen enkel:

Väntevärde - summa av oberoende slumpvariabler.

$$Var(X + Y) = Var(X) + Var(Y)$$

Väntevärde och varians - många oberoende variabler

Låt X_1, X_2 och X_3 vara tre oberoende slumpvariabler.

$$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3)$$
 $Var(X_1 + X_2 + X_3) = Var(X_1) + Var(X_2) + Var(X_3)$

Väntevärde - summa av slumpvariabler.

$$E(X_1 + X_2 + \dots, X_n) = E(X_1) + E(X_2) + \dots + E(X_n)$$

Varians - summa av oberoende slumpvariabler.
$$V(X_1+X_2+\ldots,X_n)=Var(X_1)+Var(X_2)+\ldots+Var(X_n)$$

Korrelation - linjärt beroende i data

Korrelation: linjärt beroende mellan variabler.

Positiv korrelation - flest datapunkter med positiva bidrag till täljaren i korrelationen

$$(x_i - \overline{x})(y_i - \overline{y}) > 0$$
 $(x_i - \overline{x})(y_i - \overline{y}) < 0$

Negativ korrelation - flest datapunkter med negativa bidrag till täljaren i korrelationen

$$(x_i-ar{x})(y_i-ar{y})<0$$

Beroende variabler - Kovarians och Korrelation

- Låt X ha väntevärde μ och Y väntevärde ν .
- **Kovarians**: **linjärt beroende** mellan slumpvariabler.

$$Cov(X, Y) = E((X - \mu)(Y - \nu))$$

Positiv kovarians - mest sannolikhetsmassa med positiva bidrag till täljaren i kovariansen

Korrelation $(-1 \le Corr(X, Y) \le 1)$ **?**

$$Corr(X, Y) = \frac{Cov(X, Y)}{SD(X) \cdot SD(Y)}$$

Statistik och Dataanalys I

Beroende variabler - Kovarians och Korrelation

Varians - summa av beroende slumpvariabler.

$$V(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

- Positiv kovarians variansen f\u00f6r summan st\u00f6rre \u00e4n vid oberoende.
- Negativ kovarians variansen f\u00f6r summan mindre \u00e4n vid oberoende.
- Säker aktieportfölj: välj aktier var priser tenderar att röra sig i olika riktningar. Even Steven.

Kontinuerliga slumpvariabler

- Kontinuerlig slumpvariabel antar alla värden (decimaler).
- Alla värden x har noll sannolikhet! P(X = x) = 0.
- **Standard normalfördelning**, $Z \sim N(0,1)$
 - **Väntevärde**: $\mu = 0$
 - **Standardavvikelse** (och varians): $\sigma^2 = 1$
 - ▶ **68-95-99.7** regeln kommer från N(0,1).

- Normalfördelning, $X \sim N(\mu, \sigma^2)$
 - ightharpoonup Väntevärde $E(X) = \mu$
 - ightharpoonup Varians $Var(X) = \sigma^2$
- **Parametrarna** μ och σ^2 är just väntevärdet och variansen!

Standardisering

lacksquare Om $X \sim \textit{N}(\mu, \sigma^2)$ så gäller att

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

- Standardisering: från allmän normalfördelning till standard normal genom skift och skalning.
- lacksquare Beräkna sannolikheter för $extbf{X} \sim extbf{N}(\mu, \sigma^2)$ från standard normal

$$P(X \le x) = P(X - \mu \le x - \mu) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = P\left(Z \le \frac{x - \mu}{\sigma}\right)$$

Exempel: $X \sim N(2, 3^2)$, vad är sannolikheten att $X \leq 5$?

$$P(\textit{X} \leq 5) = P\left(\frac{\textit{X} - 2}{3} \leq \frac{5 - 2}{3}\right) = P\left(\textit{Z} \leq 1\right) = 0.8413 \text{ [från Z-tabell]}$$

Standardisering

