Содержание

L	reop	етические вопросы, оцениваемые в 2 оалла	3
	1.1	Сформулировать определение несовместных событий. Как связаны свойства несовместно-	
		сти и независимости событий?	3
	1.2	Сформулировать геометрическое определение вероятности	3
	1.3	Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.	3
	1.4	Сформулировать аксиоматическое определение вероятности. Сформулировать основные	
		свойства вероятности	4
	1.5	Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и	
		аксиому непрерывности вероятности. Как они связаны между собой?	4
	1.6	Сформулировать определение условной вероятности и ее основные свойства	4
	1.7	Сформулировать теоремы о формулах умножения вероятностей для двух событий и для	
		произвольного числа событий	5
	1.8	Сформулировать определение пары независимых событий. Как независимость двух событий	
		связана с условными вероятностями их осуществления?	5
	1.9	Сформулировать определение попарно независимых событий и событий, независимых в	
		совокупности. Как эти свойства связаны между собой?	5
	1.10	Сформулировать определение полной группы событий. Верно ли, что некоторые события из	
		полной группы могут быть независимыми?	5
	1.11	Сформулировать теорему о формуле полной вероятности	6
	1.12	Сформулировать теорему о формуле Байеса	6
	1.13	Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероят-	
		ности осуществления ровно k успехов в серии из n испытаний	6
	1.14	Записать формулы для вычисления вероятности осуществления в серии из n испытаний а)	
		ровно k успехов, б) хотя бы одного успеха, в) от k_1 до k_2 успехов	6
2	Teop	ретические вопросы, оцениваемые в 4 балла	7
	2.1	Сформулировать определение элементарного исхода случайного эксперимента и простран-	
		ства элементарных исходов. Сформулировать классическое определение вероятности. При-	
		вести пример	7
	2.2	Сформулировать классическое определение вероятности. Опираясь на него, доказать ос-	
		новные свойства вероятности.	7
	2.3	Сформулировать статистическое определение вероятности. Указать его основные недостатки.	8
	2.4	Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства	8
	2.5	Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятно-	
		сти для дополнения события, для невозможного события, для следствия события	9
	2.6	Сформулировать аксиоматическое определение вероятности. Сформулировать свойства ве-	
		роятности для суммы двух событий и для суммы произвольного числа событий. Доказать	
		первое из этих свойств.	9
	2.7	Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем	
		основным свойствам безусловной вероятности	10

2.8	Доказать теоремы о формулах умножения вероятностей для двух событий и для произволь-	
	ного числа событий	11
2.9	Сформулировать определение пары независимых событий. Сформулировать и доказать тео-	
	рему о связи независимости двух событий с условными вероятностями их осуществления	11
2.10	Сформулировать определение попарно независимых событий и событий, независимых в	
	совокупности. Показать на примере, что из первого не следует второе.	11
2.11	Доказать теорему о формуле полной вероятности	12
2.12	Доказать теорему о формуле Байеса	12
2.13	Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из	
	n испытаний по схеме Бернулли	13

1 Теоретические вопросы, оцениваемые в 2 балла

1.1 Сформулировать определение несовместных событий. Как связаны свойства несовместности и независимости событий?

События A и B называются **несовместными**, если $AB = \emptyset$.

События $A_1, ..., A_n$ называются попарно несовместными, если $A_i A_j = \emptyset$ при $i \neq j, i, j = \overline{1, n}$.

События $A_1, ..., A_n$ называются **несовместными в совокупности**, если $A_1 \cdot ... \cdot A_n = \emptyset$.

Если A и B несовместные события (а также $P(A) \neq 0, P(B) \neq 0$), то они обязательно зависимые. Если A и B – совместные, то они могут быть как зависимыми, так и независимыми. Если A и B – зависимые, то они могут быть как совместными, так и несовместными.

1.2 Сформулировать геометрическое определение вероятности.

Пусть:

- 1. $\Omega \subset \mathbb{R}^n$;
- 2. $\mu(\Omega) < \infty$ (мера множества Ω конечна; $n=1 \Rightarrow \mu$ длина; $n=2 \Rightarrow \mu$ площадь; $n=3 \Rightarrow \mu$ объем);
- 3. Возможность принадлежности исхода множеству $M\subseteq \Omega$ пропорциональна мере множества M $(\mu(M))$ и **не** зависит от формы M и его расположения внутри Ω ;
- 4. $A \subseteq \Omega$ некоторое событие.

Вероятностью осуществления события A называется число $P\{A\} = \frac{\mu(A)}{\mu(\Omega)}$.

1.3 Сформулировать определение сигма-алгебры событий. Сформулировать ее основные свойства.

Пусть:

- 1. Ω пространство элементарных исходов некоторого эксперимента;
- 2. $\mathcal{B} \neq \emptyset$ набор подмножеств множества Ω ;

 ${\cal B}$ называется **сигма-алгеброй** событий, если:

- 1. $A \in \mathcal{B} \Rightarrow \overline{A} \in \mathcal{B}$;
- 2. Если $A_1, ..., A_n, ... \in \mathcal{B}$, то $A_1 + ... + A_n + ... \in \mathcal{B}$.

Свойства:

- 1. $\Omega \in \mathcal{B}$;
- 2. $\emptyset \in \mathcal{B}$:
- 3. Если $A_1, ..., A_n, ... \in \mathcal{B}$, то и $A_1 \cdot ... \cdot A_n \cdot ... \in \mathcal{B}$;
- 4. Если $A, B \in \mathcal{B}$, то $A \setminus B \in \mathcal{B}$.

1.4 Сформулировать аксиоматическое определение вероятности. Сформулировать основные свойства вероятности.

Пусть:

- 1. Ω пространство элементарных исходов случайного эксперимента;
- 2. \mathcal{B} сигма-алгебра на Ω .

Вероятностью (вероятностной мерой) называют функцию: $P: \mathcal{B} \to \mathbb{R}$, обладающую следующими свойствами, которые называются **аксиомами вероятности**:

- 1. (аксиома неотрицательности) $\forall A \in B : P(A) \ge 0$;
- 2. (аксиома нормированности) $P(\Omega) = 1$;
- 3. (расширенная аксиома сложения) Если $A_1, ..., A_n, ...$ попарно несовместные события, то $P(A_1 + ... + A_n + ...) = P(A_1) + ... + P(A_n) + ...$

Свойства:

- 1. $P(\overline{A}) = 1 P(A);$
- 2. $P(\emptyset) = 0$;
- 3. Если $A \subseteq B$, то $P(A) \le P(B)$;
- 4. $\forall A \in \mathcal{B} : 0 \le P(A) \le 1$;
- 5. $\forall \forall A, B \in \mathcal{B} : P(A + B) = P(A) + P(B) P(AB);$
- 6. $\forall \forall A_1, ..., A_n \in \mathcal{B} : P(A_1 + ... + A_n) = \sum_{i_1=1}^n P(A_{i1}) \sum_{1 \le i_1 < i_2 \le n} P(A_{i1}A_{i2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} P(A_{i1}A_{i2}A_{i3}) ... + (-1)^{n-1}P(A_1...A_n).$

1.5 Записать аксиому сложения вероятностей, расширенную аксиому сложения вероятностей и аксиому непрерывности вероятности. Как они связаны между собой?

Аксиома сложения. Если $A_1,...,A_n$ – попарно несовместные события, то $P(A_1+...+A_n)=P(A_1)+...+P(A_n).$

Расширенная аксиома сложения. Если $A_1,...,A_n,...$ – попарно несовместные события, то $P(A_1+...+A_n+...)=P(A_1)+...+P(A_n)+....$

Аксиома непрерывности. Если $A_1,...,A_n,...$ – неубывающая последовательность событий (т.е. $A_i \leq A_{i+1}, i \in \mathbb{N}$), а $A = A_1 + ... + A_n + ...$, то $P(A) = \lim_{i \to \infty} P(A_i)$.

Расширенная аксиома сложения эквивалентна аксиоме сложения и аксиоме непрерывности.

1.6 Сформулировать определение условной вероятности и ее основные свойства.

Пусть:

- 1. $A, B \in \mathcal{B}$ события, связанные с некоторым случайным экспериментом;
- 2. известно, что в результате проведения эксперимента наступило событие B.

Условной вероятностью осуществления события A при условии, что наступило событие B, называется число $P(A|B) = \frac{P(AB)}{P(B)}$.

Свойства:

- 1. $P(A|B) \ge 0$;
- 2. $P(\Omega|B) = 1$;
- 3. Если $A_1, ..., A_n, ...$ попарно несовместные события, то $P(A_1 + ... + A_n + ... | B) = P(A_1 | B) + ... + P(A_n | B) + ...$

1.7 Сформулировать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема о формуле умножения вероятностей для двух событий. Пусть P(A)>0, тогда P(AB)=P(A)P(B|A).

Теорема о формуле умножения вероятностей для n **событий**. Пусть:

- 1. $A_i, ..., A_n$ события;
- 2. $P(A_1 \cdot ... \cdot A_{n-1}) > 0$.

Тогда:
$$P(A_1 \cdot ... \cdot A_n) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1A_2) \cdot ... \cdot P(A_n|A_1...A_{n-1}).$$

1.8 Сформулировать определение пары независимых событий. Как независимость двух событий связана с условными вероятностями их осуществления?

Пусть A,B – события, связанные с некоторым случайным экспериментом. События A и B называются **независимыми**, если вероятность осуществления их произведения равна: $P(AB) = P(A) \cdot P(B)$.

Th.

- 1. Если P(B) > 0, то A, B независимые $\Leftrightarrow P(A|B) = P(A)$.
- 2. Если P(A) > 0, то A, B независимые $\Leftrightarrow P(B|A) = P(B)$.

1.9 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Как эти свойства связаны между собой?

События $A_1,...,A_n$ называются **попарно независимыми**, если $\forall \forall i,j \in \{1,...,n\}, i \neq j$, события A_i,A_j – независимые, т.е.: $P(A_iA_j) = P(A_i)P(A_j), i,j = \overline{1,n}, i \neq j$.

События $A_1,...,A_n$ называются **независимыми в совокупности**, если $\forall k \in \{2,...,n\} \forall \forall i_1,...,i_k \in \{1,...n\}$ таких, что $i_1 < i_2 < ... < i_k$ выполняется $P(A_{i1} \cdot ... \cdot A_{ik}) = P(A_{i1}) \cdot ... \cdot P(A_{ik})$.

 $A_1, ..., A_n$ –независимые в совокупности $\Rightarrow A_1, ..., A_n$ – попарно независимые. Обратное неверно.

1.10 Сформулировать определение полной группы событий. Верно ли, что некоторые события из полной группы могут быть независимыми?

Пусть (Ω, \mathcal{B}, P) – вероятностное пространство. Говорят, что события $H_1, ..., H_n \in \mathcal{B}$ образуют **полную группу**, если выполнены следующие условия:

1. $H_iH_i = 0$, при $i \neq j$;

2. $H_1 + ... + H_n = \Omega$.

Поскольку события $H_i, H_j, i \neq j$ несовместные и их вероятность не равна нулю, они обязательно зависимые.

1.11 Сформулировать теорему о формуле полной вероятности.

Пусть:

- 1. $H_1, ..., H_n$ полная группа событий;
- 2. $P(H_i) > 0, i = \overline{1, n};$
- 3. $A \in B$ событие, связанное с некоторым случайным экспериментом.

Тогда:
$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$$
.

1.12 Сформулировать теорему о формуле Байеса.

Пусть:

- 1. выполнены условия теоремы о формуле полной вероятности;
- 2. P(A) > 0.

Тогда:
$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)}, i = \overline{1,n}.$$

1.13 Дать определение схемы испытаний Бернулли. Записать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний.

Испытание — случайный эксперимент, в результате которого возможна реализация одного из двух элементарных исходов (т.е. $|\Omega|=2$). При этом, один из этих исходов условно называется успехом, а другой — неудачей.

Схемой Бернулли будем называть серию независимых в совокупности однотипных испытаний. $P_n(k)$ – вероятность осуществления ровно k успехов в серии из n испытаний по схеме Бернулли. **Тh Бернулли**. $P_n(k) = C_n^k p^k q^{n-k}, k = \overline{0,n}, q = 1-p, p$ – вероятность успеха в одном испытании.

1.14 Записать формулы для вычисления вероятности осуществления в серии из n испытаний а) ровно k успехов, б) хотя бы одного успеха, в) от k_1 до k_2 успехов.

Пусть $P_n(k)$ — вероятность осуществления ровно k успехов в серии из n испытаний по схеме Бернулли. Тогда $P_n(k) = C_n^k p^k q^{n-k}, k = \overline{0,n}, q = 1-p, p$.

Пусть $P_n(k \ge 1)$ – вероятность осуществления хотя бы одного успеха в серии из n испытаний по схеме Бернулли. Тогда $P_n(k \ge 1) = 1 - q^n$.

Пусть $P_n(k_1 \le k \le k_2)$ – вероятность осуществления от k_1 до k_2 успехов в серии из n испытаний по схеме Бернулли. Тогда $P_n(k_1 \le k \le k_2) = \sum_{k=k_1}^{k_2} (C_n^k p^k q^{n-k}).$

2 Теоретические вопросы, оцениваемые в 4 балла

2.1 Сформулировать определение элементарного исхода случайного эксперимента и пространства элементарных исходов. Сформулировать классическое определение вероятности. Привести пример.

Пространством элементарных исходов называется множество Ω возможных исходов этого эксперимента. При этом должны выполняться эти условия:

- 1. Каждый элементарный исход мыслится единым и неделимым, т.е. он не может быть разбит на более «мелкие» в рамках данного эксперимента;
- 2. При однократном проведении случайного эксперимента реализуется ровно один элементарный исход из Ω .

Пусть:

- 1. $|\Omega| = N < \infty$;
- 2. По условию эксперимента нет объективных оснований предпочесть тот или иной исход другим исходам (все исходы равновозможны);
- 3. $A \subseteq \Omega$ событие, $|A| = N_A$.

Вероятностью осуществления события A называется число $P\{A\} = \frac{N_A}{N}$.

Пример: 2 раза бросают игральную кость, A= сумма выпавших очков ≥ 11 . Тогда $\Omega=\{(x_1,x_2),x_i\in\{1,...,6\}\}; |\Omega|=36; A=\{(5,6),(6,5),(6,6)\}\Rightarrow \{A\}=\frac{3}{36}=\frac{1}{12}.$

2.2 Сформулировать классическое определение вероятности. Опираясь на него, доказать основные свойства вероятности.

Пусть:

- 1. $|\Omega| = N < \infty$;
- 2. По условию эксперимента нет объективных оснований предпочесть тот или иной исход другим исходам (все исходы равновозможны);
- 3. $A \subseteq \Omega$ событие, $|A| = N_A$.

Вероятностью осуществления события A называется число $P\{A\} = \frac{N_A}{N}$. Некоторые **свойства** вероятности:

1. $\forall A : P\{A\} \ge 0$;

- 2. $P\{\Omega\} = 1;$
- 3. Если A_1 и A_2 несовместны, то $P\{A_1 + A_2\} = P\{A_1\} + P\{A_2\}$.

Доказательства:

1.
$$P\{A\} = \frac{N_A^{\geq 0}}{N^{>0}};$$

2.
$$P\{A\} = \frac{N_{\Omega}}{N} = \langle N_{\Omega} = N \rangle = 1;$$

3. Формула включений и исключений $|A_1+A_2|=|A_1|+|A_2|-|A_1A_2|=\left<|A_1A_2|=0$ – по условию Таким образом, $P\{A_1+A_2\}=\frac{N_{A_1+A_2}}{N}=\frac{N_{A_1}}{N}+\frac{N_{A_2}}{N}=P\{A_1\}+P_\{A_2\}.$

2.3 Сформулировать статистическое определение вероятности. Указать его основные недостатки.

Рассмотрим случайный эксперимент, который был проведен n раз, в результате чего событие A наступило n_A раз.

Вероятностью осуществления события A называется эмперический, то есть известный из опыта предел: $\lim_{n\to\infty} \frac{n_A}{n}$.

Недостатки:

- 1. Никакой эксперимент не может быть проведен бесконечное число раз;
- 2. С точки зрения современной математики, статистическое определение является архаизмом, т.к. не дает достаточной базы для развития теории.

2.4 Сформулировать определение сигма-алгебры событий. Доказать ее основные свойства.

Пусть:

- 1. Ω пространство элементарных исходов некоторого эксперимента;
- 2. $\mathcal{B} \neq \emptyset$ набор подмножеств множества Ω ;

 ${\cal B}$ называется **сигма-алгеброй** событий, если:

- 1. $A \in \mathcal{B} \Rightarrow \overline{A} \in \mathcal{B}$;
- 2. Если $A_1, ..., A_n, ... \in \mathcal{B}$, то $A_1 + ... + A_n + ... \in \mathcal{B}$.

Свойства:

- 1. $\Omega \in \mathcal{B}$;
- $2. \emptyset \in \mathcal{B}$:
- 3. Если $A_1, ..., A_n, ... \in \mathcal{B}$, то и $A_1 \cdot ... \cdot A_n \cdot ... \in \mathcal{B}$;
- 4. Если $A, B \in \mathcal{B}$, то $A \setminus B \in \mathcal{B}$.

Доказательства:

- 1. $\mathcal{B} \neq \emptyset$ no onp. $\Rightarrow \exists A \in \mathcal{B} \Rightarrow \langle \text{akc. 1} \rangle \Rightarrow \overline{A} \in \mathcal{B} \Rightarrow \langle \text{akc. 2} \rangle \Rightarrow A + \overline{A} \in \mathcal{B} \Rightarrow \Omega \in \mathcal{B};$
- 2. $\Omega \in \mathcal{B}(\text{cb-bo }1) \Rightarrow \langle \text{akc. } 1 \rangle \Rightarrow \overline{\Omega} \in \mathcal{B} \Rightarrow \emptyset \in \mathcal{B};$
- 3. $A_1, ..., A_n, ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 1} \right\langle \Rightarrow \overline{A_1}, ..., \overline{A_n}, ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 2} \right\rangle \Rightarrow \overline{A_1} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{акс. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... \in \mathcal{B} \Rightarrow \left\langle \text{akc. 1} \right\rangle \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} + ... = \overline{\overline{A_n}} \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} \Rightarrow \overline{\overline{A_1}} + ... + \overline{\overline{A_n}} \Rightarrow \overline{\overline{A_1}} \Rightarrow$
- 4. $A, B \in \mathcal{B}$ (по усл.) $\Rightarrow \langle \text{акс. 1} \rangle \Rightarrow A, \overline{B} \in \mathcal{B} \Rightarrow \langle \text{св-во 3} \rangle \Rightarrow A \overline{B} \in \mathcal{B} \Rightarrow A \setminus B \in \mathcal{B}$.

2.5 Сформулировать аксиоматическое определение вероятности. Доказать свойства вероятности для дополнения события, для невозможного события, для следствия события.

Пусть:

- 1. Ω пространство элементарных исходов случайного эксперимента;
- 2. \mathcal{B} сигма-алгебра на Ω .

Вероятностью (вероятностной мерой) называют функцию: $P: \mathcal{B} \to \mathbb{R}$, обладающую следующими свойствами, которые называются **аксиомами вероятности**:

- 1. (аксиома неотрицательности) $\forall A \in B : P(A) \ge 0;$
- 2. (аксиома нормированности) $P(\Omega) = 1$;
- 3. (расширенная аксиома сложения) Если $A_1, ..., A_n$ попарно несовместные события, то $P(A_1 + ... + A_n + ...) = P(A_1) + ... + P(A_n) +$

Свойства:

- 1. $P(\overline{A}) = 1 P(A);$
- 2. $P(\emptyset) = 0$;
- 3. Если $A \subseteq B$, то $P(A) \le P(B)$.

Доказательства:

- 1. $\Omega = A + \overline{A}$, причем $A\overline{A} = \emptyset \Rightarrow 1 = \left\langle \text{акс. 2} \right\langle = P(\Omega) = P(A + \overline{A}) = \left\langle \text{акс. 3} \right\rangle = P(A) + P(\overline{A}) \Rightarrow P(\overline{A}) = 1 P(A);$
- 2. $P(\emptyset) = P(\overline{\Omega}) = \langle c_B B_0 | 1 \rangle = 1 P(\Omega) = \langle a_{KC}, 2 \rangle = 1 1 = 0;$
- 3. $B=A+B\backslash A$, причем $A\cdot (B\backslash A)=\emptyset$. T.o. $P(B)=P(A+B\backslash A)=\left\langle \text{акс. 3}\right\rangle =P(A)+P(B\backslash A)\Rightarrow\left\langle \text{акс. 1}\right\rangle \Rightarrow P(B)=P(A)+(\geq 0)\Rightarrow P(B)\geq P(A).$
- 2.6 Сформулировать аксиоматическое определение вероятности. Сформулировать свойства вероятности для суммы двух событий и для суммы произвольного числа событий. Доказать первое из этих свойств.

Пусть:

- 1. Ω пространство элементарных исходов случайного эксперимента;
- 2. \mathcal{B} сигма-алгебра на Ω .

Вероятностью (вероятностной мерой) называют функцию: $P: \mathcal{B} \to \mathbb{R}$, обладающую следующими свойствами, которые называются **аксиомами вероятности**:

- 1. (аксиома неотрицательности) $\forall A \in B : P(A) \ge 0$;
- 2. (аксиома нормированности) $P(\Omega) = 1$;

3. (расширенная аксиома сложения) Если $A_1, ..., A_n$ – попарно несовместные события, то $P(A_1 + ... + A_n + ...) = P(A_1) + ... + P(A_n) + ...$

Свойства:

- 1. $\forall \forall A, B \in \mathcal{B} : P(A+B) = P(A) + P(B) P(AB);$
- 2. $\forall \forall A_1, ..., A_n \in \mathcal{B} : P(A_1 + ... + A_n) = \sum_{i_1=1}^n (A_{i_1}) \sum_{1 \le i_1 < i_2 \le n} (A_{i_1} A_{i_2}) + \sum_{1 \le i_1 < i_2 < i_3 \le n} (A_{i_1} A_{i_2} A_{i_3}) ... + (-1)^{n-1} P(A_1 ... A_n).$

Доказательство:

1. а)
$$A + B = A + B \setminus A$$
, причем $A \cdot (B \setminus A) = \emptyset$. Тогда $P(A + B) = \left\langle \text{акс. 3} \right\langle = P(A) + P(B \setminus A)$. (1) б) $B = (B \setminus A) + AB$, причем $(B \setminus A) \cdot (AB) = \emptyset$. Тогда $P(B) = \left\langle \text{акс. 3} \right\langle = P(B \setminus A) + P(AB) \Rightarrow P(B \setminus A) = P(B) - P(AB)$. (2) в) Подставим $P(B \setminus A)$ из (2) в соотношение (1): $P(A + B) = P(A) + P(B) - P(AB)$.

2.7 Сформулировать определение условной вероятности. Доказать, что она удовлетворяет трем основным свойствам безусловной вероятности.

Пусть:

- 1. $A, B \in \mathcal{B}$ события, связанные с некоторым случайным экспериментом;
- 2. известно, что в результате проведения эксперимента наступило событие B.

Условной вероятностью осуществления события A при условии, что наступило событие B, называется число $P(A|B) = \frac{P(AB)}{P(B)}$.

Свойства:

- 1. $P(A|B) \ge 0$;
- 2. $P(\Omega|B) = 1$;
- 3. Если $A_1,...,A_n,...$ попарно несовместные события, то $P(A_1+...+A_n+...|B)=P(A_1|B)+...+P(A_n|B)+....$

Доказательства:

1.
$$P(A|B) = \frac{P(AB)^{\geq 0 \text{(akc. HeOTP.)}}}{P(B)^{>0}} \geq 0;$$

2.
$$P(\Omega|B) = \frac{P(\Omega B)}{P(B)} = \langle \Omega B = B \rangle = \frac{P(B)}{P(B)} = 1;$$

3. Пусть
$$A_1, ..., A_n, ...$$
 – попарно несовместные события. $P(A_1, ..., A_n, ...|B) = \frac{P((A_1 + ... + A_n + ...)B)}{P(B)} = \frac{P(A_1 + ... + A_n + ...)B}{P(B)} = \frac{P(A_1 + ... + A_n + ...)B}{$

2.8 Доказать теоремы о формулах умножения вероятностей для двух событий и для произвольного числа событий.

Теорема о формуле умножения вероятностей для двух событий. Пусть P(A)>0, тогда P(AB)=P(A)P(B|A).

Доказательство. Т.к. P(A)>0, то определим условную вероятность $P(B|A)=\frac{P(AB)}{P(A)}\Rightarrow P(AB)=P(A)P(B|A)$.

Теорема о формуле умножения вероятностей для n **событий**. Пусть:

- 1. $A_i, ..., A_n$ события;
- 2. $P(A_1 \cdot ... \cdot A_{n-1}) > 0$.

Тогда:
$$P(A_1 \cdot ... \cdot A_n) = P(A_2|A_1) \cdot P(A_3|A_1A_2) \cdot ... \cdot P(A_n|A_1...A_{n-1}).$$

Доказательство. 1) $\forall k \in \{1,...,n-1\}: A_1 \cdot ... \cdot A_{n-1} \subseteq A_1 \cdot ... \cdot A_{k-1} \Rightarrow (A_1 \cdot ... \cdot A_k)(A_{k+1} \cdot ... \cdot A_{n-1}) \subseteq A_1 \cdot ... \cdot A_k \Rightarrow P(A_1 \cdot ... \cdot A_{n-1}) \leq P(A_1 \cdot ... \cdot A_k) \Rightarrow \forall k \in \{1,...,n-1\}: P(A_1 \cdot ... \cdot A_k) > 0.$ 2) $P(A_1 \cdot ... \cdot A_{n-1} \cdot A_n) = \langle P(AB) = P(A)P(B|A) \rangle = P(A_1 \cdot ... \cdot A_{n-2} \cdot A_{n-1})P(A_n|A_1 \cdot ... \cdot A_{n-1}) = \langle \Phi$ -ла умножения вероятностей для двух событий $\langle P(A_1 \cdot ... \cdot A_{n-2}) \cdot P(A_{n-1}|A_1 \cdot ... \cdot A_{n-2}) \cdot P(A_n|A_1 \cdot ... \cdot A_{n-1}) = ... = P(A_1) \cdot P(A_2|A_2) \cdot ... \cdot P(A_n|A_1 \cdot ... \cdot A_{n-1}).$

2.9 Сформулировать определение пары независимых событий. Сформулировать и доказать теорему о связи независимости двух событий с условными вероятностями их осуществления.

Пусть A,B — события, связанные с некоторым случайным экспериментом. События A и B называются **независимыми**, если вероятность осуществления их произведения равна: $P(AB) = P(A) \cdot P(B)$. Th.

- 1. Если P(B) > 0, то A, B независимые $\Leftrightarrow P(A|B) = P(A)$.
- 2. Если P(A) > 0, то A, B независимые $\Leftrightarrow P(B|A) = P(B)$.

Доказательство. Докажем 1.

Необходимость. Дано: A,B – независимые, т.е. P(AB)=P(A)P(B). $P(A|B)=\left\langle \text{опр. усл. вер-ти}\right\rangle = \frac{P(AB)}{P(B)}=\left\langle A,B$ – независимые $\left\langle A,B\right\rangle = P(A)P(B)$ — P(A)0.

Достаточность. Дано: P(A|B) = P(A). $P(AB) = \langle P(B) > 0 \Rightarrow \phi$ -ла умножения вер-тей $\langle P(B) > 0 \Rightarrow \phi$ -ла ум

2.10 Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Показать на примере, что из первого не следует второе.

События $A_1,...,A_n$ называются **попарно независимыми**, если $\forall \forall i,j \in \{1,...,n\}, i \neq j$, события A_i,A_j – независимые, т.е.: $P(A_iA_j)=P(A_i)P(A_j), i,j=\overline{1,n}, i \neq j$.

События $A_1,...,A_n$ называются **независимыми в совокупности,** если $\forall k \in \{2,...,n\} \forall \forall i_1,...,i_k \in \{1,...n\}$ таких, что $i_1 < i_2 < ... < i_k$ выполняется $P(A_{i1} \cdot ... \cdot A_{ik}) = P(A_{i1}) \cdot ... \cdot P(A_{ik})$.

 $A_1,...,A_n$ –независимые в совокупности $\Rightarrow A_1,...,A_n$ – попарно независимые. Обратное неверно.

Пример Берништейна. Рассмотрим правильный тетраэдр, на трех гранях которого написаны цифры "1 "2 "3" соответственно, а на четвертой написано "123". Тетраэдр подбрасывают и смотрят, что написано на нижней грани. Докажем, что события $A_i = \{$ на нижней грани есть $i\}, i \in \{1,2,3\}$ – попарно независимы, но **не** являются независимыми в совокупности.

1.
$$P(A_1) = \frac{1}{2} = P(A_2) = P(A_3);$$

2.
$$P(A_1A_2) = \langle A_1A_2 = \{$$
на нижней грани есть и 1 и 2 рядом $\} \langle = \frac{1}{4} = P(A_1A_3) = P(A_2A_3);$

- 3. $P(A_1A_2A_3) = \frac{1}{4}$;
- 4. $P(A_1A_2)=\frac{1}{4}=P(A_1)P(A_2), P(A_1A_3)=\frac{1}{4}=P(A_1)P(A_3), P(A_2A_32)=\frac{1}{4}=P(A_2)P(A_3)\Rightarrow A_1,A_2,A_3$ попарно независимые;
- 5. $P(A_1A_2A_3)=P(A_1)P(A_2)P(A_3)$ неверно! $\Rightarrow A_1,A_2,A_3$ **не** являются независимыми в совокупности.

2.11 Доказать теорему о формуле полной вероятности.

Пусть:

- 1. $H_1, ..., H_n$ полная группа событий;
- 2. $P(H_i) > 0, i = \overline{1, n}$;
- 3. $A \in B$ событие, связанное с некоторым случайным экспериментом.

Тогда:
$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$$
. Доказательство. $P(A) = P(A\Omega) = P(A(H_1 + ... + H_n)) = P(AH_1 + AH_2 + ... + AH_n) = AH_i \subseteq H_i, AH_j \subseteq H_j \Rightarrow (AH_i) \cdot (AH_j) = AH_i \subseteq AH$

2.12 Доказать теорему о формуле Байеса.

Пусть:

- 1. выполнены условия теоремы о формуле полной вероятности;
- 2. P(A) > 0.

Тогда:
$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)}, i = \overline{1,n}.$$

Доказательство. $P(H_i|A) = \langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная вероятность определена $\langle P(A) > 0 \Rightarrow$ эта условная $\langle P(A) > 0 \Rightarrow$ $\langle P(A) > 0$

2.13 Доказать формулу для вычисления вероятности осуществления ровно k успехов в серии из n испытаний по схеме Бернулли.

 $P_n(k)$ – вероятность осуществления ровно k успехов в серии из n испытаний по схеме Бернулли. **Тh Бернулли**. $P_n(k) = C_n^k p^k q^{n-k}, k = \overline{0,n}, q = 1-p, p$ – вероятность успеха в одном испытании. **Доказательство**.

- 1. Опишем результат серии с использованием кортежа $(x_1, ..., x_n)$, где $x_i = 1$, если в i-ом испытании произошел успех и 0, иначе. $\Omega = \{(x_1, ..., x_n) : x_i \in \{0, 1\}, i = \overline{1, n}\};$
- 2. $A = \{$ в серии из n испытаний произошло ровно k успехов $\}$. $(x_1, ..., x_n) \in A$ тут ровно k единиц и n-k нулей. $P\{$ одного исхода из $A\} = P\{\{$ в первом испытании x_1 успехов $\}$ · ... · $\{$ в n-ом испытании x_n успехов $\}\} = \{$ отдельные испытание независимы в совокупности $\} = P\{x_1$ успех в первом испытании $\}$ · ... · $P\{x_n$ успехов в n-ом испытании $\} = p^k \cdot q^{n-k} \Rightarrow$ одинаковая для всех исходов из A.
- 3. |A|=? Каждый исход из A однозначно определяется номерами k позиций кортежа, в которых записаны "1". То есть, число исходов в A равно числу способов выбрать k чисел из n чисел $\Rightarrow |A|=C_n^k$ (число сочетаний без повторений из n по k);
- 4. $P_n(k) = P(A) = |A| \cdot P\{$ одного исхода из $A\} = C_n^k p^k q^{n-k}$.