Rattrapage 2009

Durée deux heures. Aucun document n'est autorisé. Les exercices sont indépendants. Seule les réponses soigneusement justifiées seront prises en compte. Si z_{α} est le quantiles de niveau α d'une loi normale centrée et réduite, on donne : $z_{0.8} = 0.841$, $z_{0.9} = 1.281$, $z_{0.95} = 1.645$, $z_{0.975} = 1.96$, $z_{0.99} = 2.326$.

Exercice 1. Soit (X,Y) le vecteur gaussien de matrice de covariance $\begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}$ et de moyenne (2,1).

- (a) Calculer $\mathbb{E}[(X-2)^2]$.
- (b) Déterminer la loi de la v.a. Z = 4 X + 3Y.
- (c) Soit W = X + Y. Déterminer la moyenne et la matrice de covariance du couple (W, Z).

Exercice 2. Soit $(X_n)_{n\geq 1}$ la suite de v.a. discrètes telles que $\mathbb{P}(X_n=k/n)=1/n$ pour $k=1,\ldots,n$. Montrer que la suite (X_n) converge en loi vers la loi uniforme sur [0,1].

Exercice 3. Soit $X \sim \mathcal{N}(1,4)$.

- (a) Déterminer c tel que $\mathbb{P}(\frac{X}{2} 1 \le c) = 0.95$. (b) Trouver α et β de façon telle que $(\alpha X + \beta)^2 \sim \chi_1^2$.
- (c) Calculer $Var[X^2]$.
- (d) Calculer $\mathbb{E}[e^{2X}]$.

Exercice 4. Soit $(X_n)_{n\geq 1}$ une suite des v.a.s telles que $X_n \sim \mathcal{P}(n)$ (la loi de Poisson de moyenne n). Soit $Y_n = (X_n - n)/\sqrt{n}$.

- (a) Ecrire X_n comme somme de n variables aleatoires iid.
- (b) Calculer moyenne et variance de Y_n pour tout $n \ge 1$.
- (c) Montrer que la suite $(Y_n)_{n\geq 1}$ converge en loi vers une gaussienne.
- (d) Utiliser le résultat précèdent pour montrer que $\lim_{n\to\infty} e^{-n} \sum_{k=1}^n \frac{n^k}{n!} = \frac{1}{2}$.

Exercice 5. Soit X_1, \ldots, X_n un échantillon de loi $\mathcal{N}(\mu, \sigma^2)$ avec $\mu \in \mathbb{R}$ et $\sigma^2 > 0$. Montrer que $(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2)$ est une statistique exhaustive pour le couple (μ, σ^2) .

Exercice 6. Soit X_1, \ldots, X_n un échantillon de loi $\mathcal{U}([-2\theta, 0])$ avec $\theta > 0$. Déterminer l'estimateur de maximum de vraisemblance pour θ .

Exercice 7. Soit X_1, \ldots, X_n un échantillon de loi $\mathcal{U}([a-b, a+b])$ avec b > 0 et $a \in \mathbb{R}$.

- (a) Déterminer un estimateur (A_n, B_n) du couple (a, b) par méthode des moments.
- (b) L'estimateur A_n de a est il asymptotiquement normale? Pourquoi?
- (c) On suppose que b=2. Déterminer un intervalle de confiance asymptotique à niveau 95%pour a.

Exercice 8. On considère un échantillon de taille n de loi $\mathcal{N}(\mu, 4)$. Déterminer la région critique du test UPP à niveau $\alpha = 5\%$ pour $H_0: \mu = 10$ contre $H_1: \mu > 10$.

Exercice 9. Soit X_1, \ldots, X_n un échantillon de loi $Bin(2, \theta)$ avec $\theta \in]0,1[$. Déterminer un intervalle de confiance asymptotique et symétrique de niveau 95% pour θ .