Géométrie Différentielle

Mayte Bongaerts

Semestre 2

Table des matières

I	Retour sur le calcul différentiel	2
1	Notations et terminologie	2
2	Révisions de calcul différentiel	4
3	Théorème des accroissements finis (AF)	7
4	Différentielles supérieures.	9
II	Difféomorphismes et régularité	13
1	Différentiabilité de l'application réciproque	13
2	Notion de difféomorphisme	14
3	Théorème d'inversion locale	15
4	Théorème des fonction implicites	17
5	Immersions et submersions	18
	5.1 Retour sur le théorème du rang	18
	5.2 Forme normale des immersions	
	5.3 Forme normale des submersions	20

Première partie

Retour sur le calcul différentiel

1 Notations et terminologie

Définition. Si X est un ensemble non vide, une topologie sur X sera notée $\mathcal{O}(X)$. Alors $\mathcal{O}(X)$ est un ensemble de parties de X qui satisfait les axiomes usuels d'une topologie

- (i) $\emptyset, X \in \mathcal{O}(X)$;
- (ii) $\mathcal{O}(X)$ est stable par intersections finies;
- (iii) O(X) est stable par réunions quelconques.

Un ouvert de X est un élément de $\mathcal{O}(X)$.

Notations.

— Si $x \in X$ est donné, alors on notera $\mathcal{V}_{\mathcal{O}(X)}(x)$ (ou simplement $\mathcal{V}(x)$ si $\mathcal{O}(X)$ est sous-entendue) l'ensemble des voisinages de x pour la topologie $\mathcal{O}(X)$. Rappelons que si $V \subset X$, alors

$$V \subset \mathcal{V}(x) \Leftrightarrow \exists U \in \mathcal{O}(X) : x \in U, U \subset V.$$

- Notons \mathcal{O}_x ou $\mathcal{O}_x(X)$ l'ensemble des ouverts contentant le point x. Ainsi $\mathcal{O}_x(X) \subset \mathcal{V}(x)$ (strictement en général).
- Si (X,d) est un espace métrique, càd d est une distance sur X, alors X sera, sauf mention contraire, muni de la topologie associé à la distance d.
- Si $x \in X$, r > 0, alors la boule ouverte, resp. fermé, de centre x et de rayon r > 0, resp. $r \ge 0$ sont notés par

$$B_d(x, r) = \{ y \in X : d(x, y) < r \},$$
 resp. $B_d(x, r) = \{ y \in X : d(x, y) \le r \}.$

- Si la distance est sous-entendue, nous noterons simplement B(x,r] et B(x,r] ces boules.
- Si $(E, \|\cdot\|)$ est un \mathbb{R} -espace vectoriel normeé, càd que E est un \mathbb{R} -espace vectoriel et $\|\cdot\|$ est une norme sur E, alors E sera muni de la topologie associée à la distance d(x,y) := ||x-y||.

Proposition. Si E est un espace vectoriel de dimension finie, alors toutes les normes sur E sont équivalentes. Deux normes N_1 et N_2 sont équivalentes si $\exists c > 0, C > 0/\forall x \in E : cN_2(x) \le N_1(x) \le CN_2(x)$. Ainsi, un R-espace vectoriel de dimension finie est muni d'une topologie normique canonique (ne dépendant pas du choix d'une norme). En dimension ∞ , ceci est bien sûr faux.

Notations.

Si E et F sont deux espaces vectoriels normés, alors on notera $\mathcal{L}(E,F)$ l'espace vectoriels des applications linéaires continues de E vers F. Rappelons qu'une applications linéaire $T:E\to F$ est continue si et seulement si $\exists C > 0 : \forall x \in E : ||T(x)||_F \leq C||x||_E$. Alors, $\mathcal{L}(E,F)$ est lui-même un espace vectoriel normé par la norme d'opérateur

$$\|T\|_{\mathcal{L}(E,F)} = \sup_{\|x\|_E \neq 0} \frac{\|T(x)\|_F}{\|x\|_E} \Longrightarrow \forall x \in E: \|T(x)\|_F \leq \|T\|_{\mathcal{L}(E,F)} \|x\| \text{ (la meilleure 'C')}.$$

- On a les égalités suivantes $||T|| = \sup_{\|x\|_E = 1} ||T(x)||_F = ||T(x)||_F$. Si F = E, on note $\mathcal{L}(E, E)$ simplement $\mathcal{L}(E)$. Alors la composée de deux applications linéaires continues étant une application linéaire continue, on peut vérifier que $\mathcal{L}(E)$ est alors une algèbre.
- Si $E \xrightarrow{T} F \xrightarrow{S} G$ sont deux applications linéaires, alors $S \circ T$ aussi et on a en plus

$$||S \circ T||_{\mathcal{L}(E,G)} \le ||S||_{\mathcal{L}(F,G)} \times ||T||_{\mathcal{L}(E,F)}.$$

- Si $E = \mathbb{R}$, alors $\mathcal{L}(\mathbb{R}, F)$ est isométriquement isomorfe à F $(f : T \in \mathcal{L}(\mathbb{R}, F) \stackrel{\cong}{\longmapsto} T(1))$.
- Si $F = \mathbb{R}$, alors $\mathcal{L}(E, \mathbb{R})$ est le dual topologique de E, il sera noté E^* .

Proposition. Si E et F sont de dimensions finies, alors $\mathcal{L}(E,F)$ est de dimension finie et on a

$$dim\mathcal{L}(E, F) = (dimE) \cdot (dimF).$$

Proposition. Si F est un espace de Banach, alors $\mathcal{L}(E,F)$ est un espace de Banach.

Notations.

— On note $GL(E,F) \subset \mathcal{L}(E,F)$ l'ensemble des applications linéaires continues qui sont inversibles. Donc $\forall T \in \mathcal{L}(E,F)$, on a

$$T \in GL(E, F) \iff \exists S \in \mathcal{L}(E, F) : S \circ T = id_E \text{ et } T \circ S = id_F.$$

— Rappelons que si E et F sont des espaces de Banach, alors le théorème des isomorphismes de Banach dit pour $T \in (E, F)$

$$T \in GL(E, F) \iff T$$
 est une application bijective.

Remarque. Dans la suite et sauf mention contraire, tous les espaces vectoriels normés seront complet (tous les espaces vectoriels normés sont des espaces de Banach).

Proposition. Soient E, F des espaces de Banach. Alors GL(E, F) est un ouvert de $\mathcal{L}(E, F)$. Preuve.

Si $GL(E,F)=\emptyset$ il est évidement ouvert, donc on peut supposer $GL(E,F)\neq\emptyset$. Il s'agit de montrer que GL(E,F) est un voisinage de tous ses points. Soit donc $T_0\in GL(E,F)$. Il s'agit de montrer qu'il existe

$$r > 0: ||T|| < r \Longrightarrow T_0 + T \in GL(E, F), \text{ càd } B(T_0, r) \subset GL(E, F).$$

Mais $T_0 + T = T_0 \circ [id_E + T_0^{-1} \circ T]$. Par conséquent il suffit de justifier que $id_E + T_0^{-1} \circ T \in GL(E)$ lorsque ||T|| est assez petit. Si donc on suppose

$$||T|| < \frac{1}{||T_0^{-1}||} \Longrightarrow ||T_0^{-1} \circ T|| \le ||T_0^{-1}|| \times ||T|| < 1.$$

Donc $id_E + T_0^{-1} \circ T \in GL(E)$ (lemme). Mais $T_0 \in GL(E,F)$, donc la composée $T_0 \circ [id_E + T_0^{-1} \circ T] = T_0 + T$ est aussi inversible. On conclut alors que $||T|| \leq \frac{1}{||T_0^{-1}||} \Rightarrow T_0 + T \in GL(E,F)$. Q.E.D.

Lemme. Si E est un espace de Banach et si $S \in \mathcal{L}(E)$ est telle que ||S|| < 1, alors $id_E + S \in GL(E)$. Preuve.

Nous allons utiliser la série de Neumann, càd la série $\sum_{k\geq 0} (-S)^k = \sum_{k\geq 0} (-1)^k S^k$ où $S^0 = id_E$ et $\forall k\geq 1: S^k = S \circ ... \circ S$ (k fois). Cette série est normalement convergente : $\|(-1)^k S^k\| \leq \|S^k\| \leq \|S\|^k$ et $\|S\| < 1 \Longrightarrow \sum_{k\geq 0} \|-S\|^k < \infty$. Puisque E est un espace de Banach, $\mathcal{L}(E)$ aussi. Toute série normalement convergente est convergente et donc $\sum_{k\geq 0} (-S)^k$ converge dans $\mathcal{L}(E)$ vers une application linéaire continue R. Dit autrement, si $R_n = \sum_{k=0}^n (-S)^k$ alors $\lim_{n\to\infty} \|R_n - R\|_{\mathcal{L}(E)} = 0$. Mais

$$R_n \circ (id_E + S) = \sum_{k=0}^n (-1)^k S^k (id_E + S) = id_E + (-1)^{n+1} S^{n+1};$$

$$(id_E + S) \circ R_n = \sum_{k=0}^n (id_E + S)(-1)^k S^k = id_E + (-1)^{n+1} S^{n+1}.$$

Comme $\|(-S)^{n+1}\| \leq \|S\|^{n+1} \xrightarrow{n \to \infty} 0$, on déduit que $\lim_{n \to \infty} [R_n \circ (id_E + S)] = \lim_{n \to \infty} [(id_E + S) \circ R_n] = id_E$. Comme $T_1 \mapsto T_1 \circ (id_E + S)$ et $T_2 \mapsto (id_E + S) \circ T_2$ sont continues, on conclut que

$$\lim_{n \to \infty} [R_n \circ (id_E + S)] = R \circ (id_E + S) \qquad \lim_{n \to \infty} [(id_E + S) \circ R_n] = (id_E + S) \circ R.$$

Finalement, $R \in \mathcal{L}(E)$ est l'inverse de $id_E + S$. Q.E.D.

Définition.

(i) Une application $f:(X,d)\to (X,d)$ est dite k-Lipschitzienne si

$$\forall (x_1, x_2) \in X^2 : d(f(x_1), f(x_2)) \le kd(x_1, x_2).$$

(ii) Une application $f:(X,d)\to (X,d)$ est dite contractante si elle est k-Lipschitzienne avec $0\leq k<1$.

Théorème. Soit (X, d) un espace métrique complet. Soit $f: (X, d) \to (X, d)$ k-Lipschitzienne avec $0 \le k < 1$. Alors f possède un point fixe. De plus, ce point fixe est unique. $Id\acute{e}e$ de preuve.

On se donne $x_0 \in X$ quelconque et on considère la suite $(x_n)_{n\geq 0}$ dans X définie par $x_{n+1} = f(x_n)$. Alors on vérifie que cette suite est de Cauchy, donc converge vers un point $x \in X$, puisque (X, d) est complet. Alors

$$\begin{cases} d(x_{n+1}, x_n) \stackrel{n \to \infty}{\longrightarrow} 0 \\ d(f(x_n), x_n) \stackrel{n \to \infty}{\longrightarrow} d(f(x), x) \end{cases} \implies f(x) = x.$$

Ensuite, si y est un autre point fixe, alors

$$d(y,x) = d(f(y), f(x)) \le k \cdot d(y,x) \Longrightarrow x = y.$$

2 Révisions de calcul différentiel

Remarque. On fixe deux espaces de Banach E et F.

Définition. Soit U un ouvert de E et soit $f:U\to F$ une application, alors

(i) f est différentiable en $x \in U$ si

$$\exists L \in \mathcal{L}(E, F) : \frac{\|f(x+h) - f(x) - L(h)\|_F}{\|h\|_E} \stackrel{\|h\|_E \to 0}{\longrightarrow} 0.$$

Cela signifie que $\exists L \in \mathcal{L}(E,F) : \|f(x+h) - f(x) - L(h)\|_F = o(\|h\|_E)$, càd que $f(x+h) - f(x) - L(h) = \|h\|_E \cdot \varepsilon(h)$ où $\lim_{\|h\|_E \to 0} \|\varepsilon(h)\|_F = 0$.

(ii) f est différentiable en U si elle est différentiable en tous points de U.

Notations.

- Il est facile de vérifier que si L existe, alors L est unique. On l'appelle la différentielle de f en x et on la note Df(x), df(x) ou encore $d_x f$. Ainsi $Df(x) \in \mathcal{L}(E, F)$.
- Si f est différentiable sur U, alors on dispose une nouvelle application Df, appelée l'application différentielle de f, i.e. $Df: U \subset E \to \mathcal{L}(E, F) = F_1: x \mapsto Df(x)$.

Exemple. Si $E = \mathbb{R}$ et U = I un interval de \mathbb{R} , alors f est différentiable en $x \in U$ si et seulement si f est dérivable en x, càd si et seulement si la limite suivante existe dans F

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Ici $h \in \mathbb{R}$, donc on peut diviser. En effet $Df(x) \in \mathcal{L}(\mathbb{R}, F)$ qui s'identife avec F. Dit autrement, si $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \in F$ alors $Df(x)(h) = h \cdot f'(x) \in F$, càd $Df(x)(1) = f'(x) \in F$.

Définition. Soit $f: U \subset E \to F$ une application différentiable, alors

- (i) f est continument différentiable ou de classe C^1 en $x \in U$ si l'application différentielle $Df: U \to \mathcal{L}(E, F)$ est continue en x.
- (ii) f est continuement différentiable ou de classe C^1 en U, si l'application différentielle $Df: U \to \mathcal{L}(E, F)$ est continue sur U.

Notation. $C^1(U, F)$ sera l'espace vectoriel des applications de classe C^1 sur U à valeurs dans F.

Définition. Soit $f: U \to F$ une application différentiable, alors

- (i) f est deux fois différentiable en x si $Df: U \to \mathcal{L}(E, F)$ est différentiable en x.
- (ii) f est deux fois différentiable en U si $Df: U \to \mathcal{L}(E, F)$ est différentiable en U.

Remarque. Rien n'empêche de recommencer et parler de différentiabilité de l'application $Df: U \to \mathcal{L}(E, F)$. On peut donc parler de classe C^2 , C^3 , ...

Notation. $D^2 f(x) := D(Df)(x), D^3 f(x) := D(D(Df)(x)), ...$

Remarque $D^2 f(x) \in \mathcal{L}(E, \mathcal{L}(E, F))$ où il est facile d'identifier avec l'espace vectoriel normé $\mathcal{L}^2(E, F)$ des applications bilineaires continues de $E \times E$ vers F.

En effet, si $A \in \mathcal{L}(E_1, \mathcal{L}(E_2, F))$ alors on identifie A avec

$$\tilde{A}: E_1 \times E_2 \to F$$

$$(h_1, h_2) \mapsto A(h_1)(h_2)$$

(Rappel : une application bilinéaire $B: E_1 \times E_2 \to F$ est continue si et seulement si $\exists c \geq 0: \forall (h_1, h_2) \in E_1 \times E_2: \|B(h_1, h_2)\|_F \leq c \|h_1\|_{E_1} \times \|h_2\|_{E_2}$.

Proposition. Soient E, F et G des espaces vectoriels normés. Soit $U \subset E \xrightarrow{f} V \subset F \xrightarrow{g} G$ où U et V sont des ouverts de E et F respectivement, telle que $f(U) \subset V$ de sorte que $g \circ f : U \subset E \to G$ est bien définie.

- (i) Si f est différentiable en $x \in U$ et g est différentiable en $f(x) \in V$, alors $g \circ f$ est différentiable en x. De plus $D(g \circ f)(x) = Dg(f(x)) \circ Df(x)$.
 - Dit autrement : $\forall h \in E : D(g \circ f)(x)(h) = Dg(f(x))Df(x)(h) \in G$.
- (ii) Si f et g sont différentiable en U et f(U) respectivement, f est de classe C^1 en x et g est de classe C^1 en f(x), alors $g \circ f$ est de classe C^1 en x.

Cela marche aussi si on remplace C^1 par C^p pour $1 \le p \le \infty$ quelconque.

Preuve.

- (i) Trivial.
- (ii) Par (i) on a que $g \circ f$ est différentiable sur U. De plus, on a

$$\forall x' \in U : D(g \circ f)(x') = Dg(f(x')) \circ Df(x').$$

Mais $Dg \circ f$ est continue en x par composition, et Df est aussi continue en x, donc l'application

$$U \to \mathcal{L}(F,G) \times \mathcal{L}(E,F)$$

 $x' \mapsto (Dg(f(x')); Df(x'))$

est continu puisque chacune de ses composants l'est. Or l'application

$$\mathcal{L}(F,G) \times \mathcal{L}(E,F) \to \mathcal{L}(E,G)$$

$$(A;B) \mapsto A \circ B$$

est continue. Donc par composition, on peut conclure que $D(g \circ f)$ est continue en x.

Exercice. Calculer lorsque f et g sont 2 fois différentiable $D^2(g \circ f)(x)(h)(k)$.

Exemples.

— Si $f \in \mathcal{L}(E, F)$, alors f est de classe C^{∞} sur E. En effet,

$$Df: E \to \mathcal{L}(E, F)$$
$$x \mapsto f$$

est l'application constante. Donc Df est l'application nulle et idem $D^2f \equiv 0, \forall k \geq l$.

— Si $B \in \mathcal{L}^2(E_1 \times E_2, F)$, alors B est de classe C^{∞} sur $E_1 \times E_2$. En effet En effet,

$$DB: E_1 \times E_2 \to \mathcal{L}^2(E_1 \times E_2, F)$$
$$(x_1, x_2) \mapsto DB(x_1, x_2)$$

avec $DB(x_1, x_2)(h_1, h_2) = B(x_1, h_2) + B(h_1, x_2)$ est une application linéaire continu. D'où DB est C^{∞} et donc B est C^{∞} et on a

$$D^{2}B(x_{1}, x_{2}) = B...$$

$$\forall (x_{1}, x_{2}) \in E_{1} \times E_{2}$$

$$D^{k}B \equiv 0, \forall k > 3$$

Idem, toute application multilinéaire continue $M \in D^k f(x) \in \mathcal{L}^k(E, F)$ (= l'espace vectoriel normé des applications k-linéaires continues de E^k vers F) est de classe C^{∞} .

Proposition. Si $f: U_{\subset E} \to F_1 \times ... \times F_n$, càd $f = (f_1, ..., f_n)$ où chaque $f_i: U \to F_i$. Alors f est différentiable en x (resp. de classe C^p en x) si et seulement si $\forall i \in \{1, ..., n\}$ f_i est différentiable en x (resp. de classe C^p en x). De plus, alors : $\forall x \in U: Df(x) = (Df_1(x), ..., Df_n(x))$, càd si $p_i: F_1 \times ... \times F_n \to F_i$ est la projection alors $p_i \circ Df = D(p_i \circ f) = Df_i$.

Proposition. Soit $f: U \subset E_1 \times ... \times E_n \to F$ une application différentiable en $x \in U$. Alors f possède des différentielles partielles $D_i f(x)$, pour tout $i \in \{1, ..., n\}$, càd $\forall i \in \{1, ..., n\} : x'_i \mapsto f(x_1, ..., x_{i-1}, x'_i, x_{i+1}, ..., x_n)$ est différentiable en x_i , de différentielle notée $D_i f(x)$. De plus, on a la formule de Leibniz

$$Df(x)(h_1,...,h_n) = \sum_{i=1}^{n} D_i f(x)(h_i).$$

Preuve.

Si $h = (h_1, ..., h_n) \in E_1 \times ... \times E_n$, alors

$$Df(x)(h) = \sum_{i=1}^{n} Df(x)(0,...,0,h_i,0,...,0).$$

Mais en notant $\alpha_i = x_i' \mapsto (x_1, ..., x_{i-1}, x_i', x_{i+1}, ..., x_n)$ la différentielle partielle $D_i f(x)$ est par définition $D_i f(x) = D(f \circ \alpha_i)(x_i)$, càd

$$D_i f(x)(h_i) = D f(\alpha_i(x_i))[D\alpha_i(x_i)(h_i)].$$

Or il est facile de vérifier que

$$D\alpha_i(x_i)(h_i) = Z_i(h_i) = (0, ..., 0, h_i, 0, ..., 0).$$

(en fait α_i est affine). D'où

$$D_i f(x)(h_i) = D f(x)(Z_i(h_i)).$$

D'où

$$\sum_{i=1}^{n} D_i f(x)(h_i) = \sum_{i=1}^{n} Df(x)(Z_i(h_i))$$

$$= Df(x) \left(\sum_{i=1}^{n} (0, ..., 0, h_i, 0, ..., 0) \right)$$

$$= Df(x)(h_1, ..., h_n).$$

Remarque (explications). Ici l'application partielle $x_i' \mapsto f(x_1, ..., x_{i-1}, x_i', x_{i+1}, ..., x_n)$ est définé sur l'ouvert de E_i qui est la trache $U_i = \{x_i' \in E_i : (x_1, ..., x_{i-1}, x_i', x_{i+1}, ..., x_n) \in U\}$. Son différentielle en x_i a été notée $D_i f(x)$. Dit autrement, si $p_i : E_1 \times ... \times E_n \to E_i$ est la i^{me} projection, alors $D f(x) = \sum_{i=1}^n D_i f(x) \circ p_i$.

3 Théorème des accroissements finis (AF)

Définition. Soit E un espace topologique. Les trois propositions suivantes sont équivalentes :

- (i) E n'est pas la réunion de deux ouverts/fermés non vides disjoints;
- (ii) Les seuls ouverts-fermés de E sont \emptyset et E;
- (iii) Toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.

On dit que l'espace E est connexe, si une de ces conditions est remplie.

Lemme. Soit U est un ouvert de l'espace vectoriel normé E. Alors les propositions suivantes sont équivalentes :

- (i) U est connexe;
- (ii) U est connexe par arcs;
- (iii) U est connexe par chemins affines par morceaux.

Idée de preuve.

- $(iii) \Rightarrow (ii)$ Trivial
- $(ii) \Rightarrow (i)$ Toujours vrai.
- (i) ⇒ (iii) Un ouvert dans un espace vectoriel normé est localement connexe, donc localement connexe par arcs affines.

Définition. Si U est un ouvert connexe dans E, alors on pose

$$d_U: U \times U \to \mathbb{R}_+$$
 $(x,y) \mapsto \inf\{l(\gamma), \gamma \text{ chemin affine par morceau all ant de } x \ a \ y\}$

On obtient ainsi une distance sur U. On a $||d_U(x,y)|| = ||x-y||$ si et seulement si $[x,y] \subset U$.

Théorème des AF. Soit f une application différentiable sur l'ouvert connexe U. Alors

$$\forall (a,b) \in U^2 : ||f(b) - f(a)|| \le \left[\sup_{x \in U} ||Df(x)|| \cdot d_U(a,b) \right].$$

Preuve.

D'abord si $[a,b] \subset U$, alors on pose $\varphi(t) := f(a+t(b-a))$ de sorte que φ est dérivable sur]0,1[et $\varphi'(t) = Df(a+t(b-a))(b-a)$. Si on pose $M = \sup_{x \in U} \|Df(x)\|$, alors il suffit de faire la preuve lorsque $M < +\infty$. Alors $\|\varphi'(t)\|_F \le M \cdot \|b-a\|_E$. On peut alors appliquer le théorème des AF dans $\mathbb R$

$$\|\varphi(1) - \varphi(0)\|_F \le \left(\sup_{t \in]0,1[} \|\varphi'(t)\|_F\right) \cdot (1-0) \Longrightarrow \|f(b) - f(a)\|_F \le M \cdot \|b - a\| \cdot 1 = M \cdot \|b - a\|.$$

Si maintenant $(a_0=a,a_1,...,a_n=b)$ est tel que $[a_j,a_{j+1}]\subset U$, alors en appliquant ce qui précède on a

$$\forall j \in \{0, ..., n-1\} : \|f(a_{j+1}) - f(a_j)\|_F \le M \|a_{j+1} - a_j\|_E$$

$$\implies \|f(b) - f(a)\|_F = \left\| \sum_{j=0}^{n-1} \left(f(a_{j+1}) - f(a_j) \right) \right\|_F \le \sum_{j=0}^{n-1} \|f(a_{j+1}) - f(a_j)\|_F \le M \sum_{j=0}^{n-1} \|a_{j+1} - a_j\|_E.$$

Si γ est le chemin affine par morceaux correspondant de support $\bigcup_{j=0}^{n-1} [a_j, a_{j+1}]$, alors on obtient :

$$||f(b) - f(a)||_F \le Ml(\gamma).$$

Comme ceci doit être vrai pour tout γ , on peut passer à la borne inférieure et conclure que

$$||f(b) - f(a)||_F \le M \cdot d_U(a, b).$$

Remarque. Ici $\sup_{x \in U} \|Df(x)\| \in [0, \infty]$, mais le théorème n'est intéressant que lorsque $\sup_{x \in U} \|Df(x)\| < \infty$.

Corollaire. Si U est un ouvert connexe et $f:U_{\subset E}\to F$ est différentiable, alors

$$\forall (a,b) \in U^2 : ||f(b) - f(a)||_F \le \left[\sup_{x \in U} ||Df(x)||_F \right] ||b - a||_E.$$

Preuve.

En effet, alors $d_U(a,b) = ||b-a||_E$.

Définition. Une application $f: U \to F$ est dite localement lipschitzienne sur U si $\forall U, \exists V \in \mathcal{V}(x): f|_v$ est lipschitzienne.

Corollaire. Soit U un ouvert de E, alors toute application $f:U\to F$ qui est de classe C^1 est localement lipschitzienne.

Preuve.

Rappelons que toute application cotinue est localement bornée. Puisque f est de classe C^1 , l'application Df est donc localement bornée, càd par exemple $\forall x \in U, \exists V \in \mathcal{V}(x), \forall y \in V : \|Df(y)\| \leq \|Df(x)\| + 1$. Comme V contient une boule ouverte centrée en x, on peut se restreindre à cette boule, qui est évidement convexe. Donc $\exists r > 0, \forall y \in B(x, r[: \|Df(y)\| \leq \|Df(x)\| + 1$.

Ainsi, $\forall (y, y') \in B(x, r[: || f(y) - f(y') ||_F \le (|| Df(x) || + 1) || y - y' ||_E.$

Théorème. Soit $f:U_{E_1\times \cdots \times E_n}\to F$ une application. Alors f est de classe C^1 sur U si et seulement si $\forall i\in 1,...,n,D_i f$ existe et est continue sur U. Preuve.

- \Rightarrow Si f est de classe C^1 sur U, alors on a déjà vu que $\forall x \in U : D_i f(x)$ existe et de plus $D_i f(x) = D(f \circ \alpha_i)(x)$ où $\alpha_i : x_i' \mapsto (x_1, ..., x_i', ..., x_n)$. Donc $D_i f(x) = D f(\alpha_i(x)) \circ D \alpha_i(x)$ et $D \alpha_i(x) = Z_i : h_i \mapsto (0, ..., 0, h_i, 0, ..., 0$. D'où puisque α_i est continue, dès que D f est continu, $D_i f$ est continu.
- \Leftarrow Si $\forall i \in 1, ..., n : D_i f$ existe et est continue sur U, alors on veut montrer que f est différentiable. On effet, la formule de Leibniz s'écrit alors $Df(x) = \sum_{i=1}^n D_i f(x) \circ p_i$ où p_i est la i^{me} projection. On voit donc qu'autmatiquement Df sera continue.

Pour simplifier on fait uniquement le cas n=2. Fixons $(x_1,x_2) \in U$ et montrons que f est différentiable en (x_1,x_2) . Or $f(x_1+h_1,x_2+h_2)-f(x_1,x_2)-D_1f(x_1,x_2)(h_1)-D_2f(x_1,x_2)(h_2)=$

$$(f(x_1+h_1,x_2+h_2)-f(x_1+h_1,x_2)-D_2f(x_1,x_2)(h_2)) + (f(x_1+h_1,x_2)-f(x_1,x_2)-D_1f(x_1,x_2)(h_1)).$$

Mais si on pose $\varphi(t) = f(x_1 + h_1, x_2 + th_2)$ alors on a $(f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - D_2 f(x_1, x_2)(h_2)) = f(x_1 + h_1, x_2 + th_2)$

$$\varphi(1) - \varphi(0) - D_2 f(x_1, x_2)(h_2) = \int_0^1 \left(D_2 f(x_1 + h_1, x_2 + th_2)(h_2) - D_2 f(x_1, x_2)(h_2) \right) dt.$$

$$\begin{split} &D_2 f \text{ continue en } (x_1, x_2) \Rightarrow \forall \varepsilon > 0, \exists \eta > 0, \|(k_1, k_2)\| \leq \eta \Rightarrow \|D_2 f(x_1 + k_1, x_2 + k_2) - D_2 f(x_1, x_2)\| \leq \varepsilon. \\ &\text{Si donc } \|(h_1, h_2)\| = \|h_1\|_{E_1} + \|h_2\|_{E_2} \leq \eta \text{ (par exemple), alors } \forall t \in [0, 1]: \|(h_1, th_2)\| \leq \eta \text{ et donc } \\ &\|D_2 f(x_1 + h_1, x_2 + th_2) - D_2 f(x_1, x_2)\| \leq \varepsilon. \text{ Ceci implique que} \end{split}$$

$$\exists \eta > 0 \text{ tel que } : \|(h_1, h_2)\| \le \eta \Longrightarrow \|f(x_1 + h_1, x_2 + h_2) - f(x_1 + h_1, x_2) - D_2 f(x_1, x_2)(h_2)\| \le \varepsilon \|h_2\|.$$

D'autre part, l'existence de $D_1 f(x_1, x_2)$ implique que

$$\exists \eta' > 0 \text{ tel que } : ||h_1|| \le \eta' \Longrightarrow ||f(x_1 + h_1, x_2) - f(x_1, x_2) - D_1 f(x_1, x_2)(h_1)|| \le \varepsilon ||h_1||.$$

Si $\eta'' = \min(\eta, \eta')$ et si $||(h_1, h_2)|| \le \eta''$ alors

$$||f(x_1+h_1,x_2+h_2)-f(x_1,x_2)-D_1f(x_1,x_2)(h_1)-D_2f(x_1,x_2)(h_2)|| \le \varepsilon(||h_1||+||h_2||)$$

Définition. Soit $f: U_{\subset E} \to F$ une application. Soit $x \in U$ et $u \in E \setminus \{0_E\}$. f possède une dérivée directionnelle suivant le vecteur u en x, si l'application $t \mapsto f(x + tu)$ est dérivable en 0, i.e. si $\lim_{t \to 0} \frac{f(x+tu) - f(x)}{t}$ existe.

Proposition. Si $f: U_{\subset E} \to F$ est une application différentiable en x, alors f possède une dérivée directionelle en x, suivant tout vecteur $u \in E \setminus \{0_E\}$. De plus on a

$$\lim_{t\to 0} \frac{f(x+tu)-f(x)}{t} = Df(x)(u).$$

La réciproque est évidemment fausse en général

Remarque. On note que si $E = \mathbb{R}^n$ alors f possède une différentielle partielle $D_i f$ en $x = (x_1, ..., x_n) \in \mathbb{R}^n$ si et seulement si f possède une i^{me} dérivée partielle en x et on a

$$D_i f(x)(s) = s \cdot \frac{\partial f}{\partial x_i}(x) \text{ où } \frac{\partial f}{\partial x_i}(x) = \lim_{t \to 0} \left[\frac{f(x_1, ..., x_{i-1}, x_i + t, x_{i+1}, ..., x_n) - f(x)}{t} \right].$$

Donc ici $\frac{\partial f}{\partial x_i}(x)$ n'est autre que la dérivée directionelle de f en x suivant le i^{me} vecteur de la base canonique de \mathbb{R}^n .

Corollaire. Dans le cas $f:U_{\mathbb{C}\mathbb{R}^n}\to F$ on a

- (i) f est différentiable en $(x_1, ..., x_n) \in U \subset \mathbb{R}^n$ $\Longrightarrow f$ possède des dérivées directionelles en x suivant tous les vecteurs en $\mathbb{R}^n \setminus \{0_n\}$;
- (ii) f possède des dérivées directionelles en x suivant tous les vecteurs en $\mathbb{R}^n \setminus \{0_n\}$ $\Longrightarrow f$ possède des dérivées partielles en x;
- (iii) f possède des dérivées partielles en x et $\forall i \in \{1, ..., n\} : \frac{\partial f}{\partial x_i}$ est continue $\Longrightarrow f$ est différentiable en $(x_1, ..., x_n) \in U \subset \mathbb{R}^n$.

Remarque. Supposons $E = \mathbb{R}^m$ et $F = \mathbb{R}^n$. Soit donc $f: U_{\subset \mathbb{R}^m} \to \mathbb{R}^n$, càd $f(x_1, ..., x_m) = (f_1(x_1, ..., x_m), ..., f_n(x_1, ..., x_m))$ où chaque $f_i: U \to \mathbb{R}$. Alors f est différentiable en $x \in U$ si et seulement si $\forall i \in \{1, ..., n\} : f_i$ est différentiable en $x \in U$.

— Si f est différentiable en x, alors chaque f_i pssède des dérivées partielles en x. La différentielle de f est alors une application linéaire de \mathbb{R}^m vers \mathbb{R}^n qui peut être représentée par une matrice relativement aux bases canoniques, appelée jacobienne de f en x et notée $Jac(f)(x) \in M_{n,m}(\mathbb{R})$, càd que Jac(f)(x) est une matrice à n lignes et m colonnes. On a alors

$$\forall 1 \le i \le n, 1 \le j \le m : [Jac(f)(x)]_{ij} = \frac{\partial f_i}{\partial x_j}(x).$$

— Si n = m alors Jac(f)(x) est une matrice carrée et son déterminant est appele jacobien de f en x. Il sera noté J(f)(x).

Remarque. Si f est différentiable en x alors pour tout chemin $\gamma:]-\varepsilon, \varepsilon[\to U$ tel que $\gamma(0) = x$ et γ est dériviable en $0, f \circ \gamma$ est dériviable on 0. De plus on a

$$(f \circ \gamma)' = Df(x)(\gamma'(0)).$$

4 Différentielles supérieures.

Définition. Soit $f:U_{\subset E}\to F$ une application différentiable sur U et soit $x\in U$. On dira que f est deux fois différentiable en x si l'application $Df:U\to \mathcal{L}(E,F)$ est différentiable en x. On note alors sa différentielle

$$D^2 f(x) := D(Df)(x) \in \mathcal{L}(E, \mathcal{L}(E, F)).$$

On dira que f est de classe C^2 sur U si elle est deux fois différentiable sur U et si D^2f est continue.

Remarque. Notons que $\mathcal{L}(E,\mathcal{L}(E,F))$ s'identifie de façon évidente avec l'espace $\mathcal{L}^2(E,F)$ des applications bilinéaires continues de $E\times E$ vers F. En effet

$$\mathcal{L}(E, \mathcal{L}(E, F) \xrightarrow{\cong} \mathcal{L}^2(E, F)$$
$$A \mapsto [(h_1, h_2) \mapsto A(h_1)(h_2)].$$

Exercice. Justifier que la composée de deux applications p-fois différentiable (resp. de classe C^p) est une application p-fois différentiable (resp. de classe C^p).

Lemme de Schwarz. Soit $f: U_{\subset E} \to F$ une application deux fois différentiable en $x \in U$. Alors l'application bilinéaire continue $D^2 f(x) \in \mathcal{L}^2(E, F)$ est symétrique, i.e. $D^2 f(x)(h_1)(h_2) = D^2 f(x)(h_2)(h_1)$. Preuve.

Considérons l'expression symétrique en (h,k) donnée par $\Delta(h,k)=f(x+h+k)-f(x+h)-f(x+k)+f(x)$. On va comparer $\Delta(h,k)$ à $D^2f(x)(k)(h)$.

On pose $\varphi(t) := f(x+th+k) - f(x+th) - D^2f(x)(k)(th)$. Alors

$$\varphi(1) - \varphi(0) = [f(x+h+k) - f(x+h) - D^2 f(x)(k)(h)] - [f(x+k) - f(x) - 0]$$

= $\Delta(h,k) - D^2 f(x)(k)(h)$.

Mais

$$\varphi'(t) = Df(x+th+k)(h) - Df(x+th)(h) - D^2f(x)(k)(h)$$

$$= [Df(x+th+k) - Df(x+th) - D^2f(x)(k)](h)$$

$$= ([Df(x+th+k) - Df(x) - D^2f(x)(th+k)] - [Df(x+th) - Df(x) - D^2f(x)(th)]) (h).$$

Si donc $\varepsilon > 0$ est donné, alors $\exists \eta > 0 : ||h|| \le \eta$ et $||k|| \le \eta \Longrightarrow \forall t \in [0,1]$

$$\begin{cases} \|Df(x+th+k) - Df(x) - D^2f(x)(th+k)\| \le \varepsilon \|th+k\| \le \varepsilon (\|h\| + \|k\|) \\ \|Df(x+th) - Df(x) - D^2f(x)(th)\| \le \varepsilon \|th\| \le \varepsilon \|h\|. \end{cases}$$

Donc pour $||h|| \le \eta$ et $||k|| \le \eta$: $||\varphi'(t)|| \le \varepsilon (||h|| + ||k|| + ||h||) ||h|| = \varepsilon (2||h|| + ||k||) ||h||$. D'où $||D^2 f(x)(k)(h) - \Delta(h, k)|| \le \varepsilon (2||h|| + ||k||) ||h||$. Finalement pour ||h|| et ||k|| assez petits, on obtient:

$$||D^2 f(x)(k)(h) - D^2 f(x)(h)(k)|| < 2\varepsilon ||(h,k)||^2 < 8\varepsilon ||h|| \cdot ||k||.$$

Donc, par homogénité, on voit que cette inégalité est vraie pour tout $(h, k) \in E^2$. Finalement alors

$$\forall \varepsilon > 0, \|D^2 f(x)(k)(h) - D^2 f(x)(h)(k)\| < 8\varepsilon \Longrightarrow D^2 f(x)(k)(h) = D^2 f(x)(h)(k).$$

Annexe : Différentiabilité de $T \mapsto T^{-1}$

Théorème. L'application α

$$\alpha: GL(E, F) \to GL(F, E)$$

$$T \mapsto T^{-1}$$

est de classe C^{∞} et on a

$$D\alpha(T)(H) = -T^{-1} \circ H \circ T^{-1}, \forall T \in GL(E, F), \forall H \in \mathcal{L}(E, F).$$

Notons que $D\alpha(T)$ est une application linéaire continue de $\mathcal{L}(E,F)$ vers $\mathcal{L}(F,E)$. Ceci est cohérent puisque

$$F \xrightarrow{T^{-1}} E \xrightarrow{H} F \xrightarrow{T^{-1}} E.$$

Preuve.

1. Montrons d'abord que α est continue et donc localement bornée. Pour $T \in GL(E,F)$ et $H \in \mathcal{L}(E,F)$ assez petits, on sait que $T+H \in GL(E,F)$ et $(T+H)^{-1} = [T(id_E+T^{-1}H)]^{-1} = \sum_{k\geq 0} (-1)^k (T^{-1}H)^k T^{-1}$.

Donc

$$\begin{split} \alpha(T+H) - \alpha(T) &= (T+H)^{-1} - T^{-1} \\ &= \left(\sum_{k \geq 0} (-1)^k (T^{-1}H)^k - id_E\right) T^{-1} \\ &= \left(\sum_{k \geq 1} (-1)^k (T^{-1}H)^k\right) T^{-1} \\ &= \left(\sum_{k > 0} (-1)^{k+1} (T^{-1}H)^k\right) T^{-1} H T^{-1} \end{split}$$

D'où pour $||H|| \le \frac{1}{2||T^{-1}||}$,

$$\|\alpha(T+H) - \alpha(T)\|_{\mathcal{L}(E,F)} = \left\| \left(\sum_{n \geq 0} (-1)^{n+1} (T^{-1}H)^n \right) T^{-1}HT^{-1} \right\|_{\mathcal{L}(E,F)}$$

$$\leq \left\| \sum_{n \geq 0} (T^{-1}H)^n \right\|_{\mathcal{L}(E,F)} \cdot \|T^{-1}\|_{\mathcal{L}(E,F)}^2 \cdot \|H\|_{\mathcal{L}(E,F)}$$

$$\leq \left(\sum_{n \geq 0} \|T^{-1}\|_{\mathcal{L}(E,F)}^n \cdot \|H\|_{\mathcal{L}(E,F)}^n \right) \cdot \|T^{-1}\|_{\mathcal{L}(E,F)}^2 \cdot \|H\|_{\mathcal{L}(E,F)}$$

$$\leq \left(\sum_{n \geq 0} \left(\frac{1}{2} \right)^n \right) \|_{\mathcal{L}(E,F)} T^{-1}\|_{\mathcal{L}(E,F)}^2 \|H\|_{\mathcal{L}(E,F)}$$

$$\leq 2\|T^{-1}\|_{\mathcal{L}(E,F)}^2 \|H\|_{\mathcal{L}(E,F)}$$

Donc α est bien continu.

2. Montrons ensuite la différentiabilité.

$$\begin{split} (T+H)^{-1} - T^{-1} - (-T^{-1}HT^{-1}) &= (T+H)^{-1}[T - (T+H) + (T+H)T^{-1}H]T^{-1} \\ &= (T+H)^{-1}[-H+H+HT^{-1}H]T^{-1} \\ &= (T+H)^{-1}HT^{-1}HT^{-1}. \\ \Longrightarrow \|(T+H)^{-1} - T^{-1} + T^{-1}HT^{-1}\| &\leq \|H\|^2 \cdot \|T^{-1}\|^2 \cdot \|(T+H)^{-1}\|. \end{split}$$

Mais α étant continue, elle est localement bornée, par exemple

$$\exists \eta > 0, ||H|| \le \eta \Longrightarrow ||(T+H)^{-1}|| \le ||T^{-1}|| + 1.$$

Ainsi pour $||H|| \le \eta$, on a $||(T+H)^{-1} - T^{-1} + T^{-1}HT^{-1}|| \le ||T^{-1}||^2(||T^{-1}|| + 1)||H||^2$. On conclut que α est bien différentiable et que $D\alpha(T)(H) = -T^{-1}HT^{-1}$.

3. Montrons finalement qu'elle est de classe C^{∞} . Soit

$$\beta : \mathcal{L}(F, E) \to \mathcal{L}(F, E) \times \mathcal{L}(F, E)$$

 $A \mapsto (A, A)$ la diagonale.

alors β est linéaire continue, donc de classe C^{∞} . Soit

$$\gamma : \mathcal{L}(F, E) \times \mathcal{L}(F, E) \to \mathcal{L}(\mathcal{L}(E, F), \mathcal{L}(F, E))$$
$$(A_1, A_2) \mapsto [H \mapsto -A_1 \circ H \circ A_2]$$

alors γ est bilinéaire continue (en fait on a $\|\gamma(A_1,A_2)\| \leq \|A_1\| \cdot \|A_2\|$), donc γ est de classe C^{∞} . Ainsi $D\alpha(T)(H) = -T^{-1} \circ H \circ T^{-1}$, donc $D\alpha(T) = (\gamma \circ \beta \circ \alpha)(T)$ de sorte que si on suppose α k-fois différentiable (avec $k \geq 1$), alors $D\alpha$ sera aussi k-fois différentiable et donc α est automatiquement (k+1)-fois différentiable. On conclut que $\forall k \geq 1$, α est k-différentiable. Donc α est de classe C^{∞} . \square

Exercice. Calculer $D^2\alpha(T)(H,K)$ pour $T\in GL(E,F)$ et $H,K\in\mathcal{L}(E,F)$.

Deuxième partie

Difféomorphismes et régularité

1 Différentiabilité de l'application réciproque

Remarque. On fixe deux espaces de Banach E et F.

Théorème. Soit $f:U_{\subset E}\to V_{\subset F}$ un homéomorphisme entre l'ouvert U de E et l'ouvert V de F. Si

- (i) f est différentiable en $a \in U$,
- (ii) $Df(a) \in GL(E,F)$,

alors l'homéomorphisme réciproque $f^{-1}: V \to U$ est différentiable en $f(a) = b \in V$ et on a

$$D(f^{-1})(f(a)) = [Df(a)]^{-1}.$$

De plus, si f est de classe C^p sur U pour $p \ge 1$ avec $Df(x) \in GL(E,F), \forall x \in U$, alors f^{-1} est C^p sur V. Preuve.

1. On note b = f(a) $(f^{-1}(b) = a)$. Soit $k \in F$ de norme assez petite pour que $b + tk \in V, \forall t \in [0, 1]$. Alors on doit montrer que l'expression $(*) = f^{-1}(b+k) - f^{-1}(b) - [Df(a)]^{-1}(k)$ est un o(||k||). On pose $h := f^{-1}(b+k) - f^{-1}(b)$ de sorte que $\lim_{\|k\|_F \to 0} \|h\|_E = 0$ puisque f^{-1} est continue par hypothèse.

De plus f(a+h) - f(a) = k et donc on a aussi $\lim_{\|h\|_E \to 0} \|k\|_F = 0$. Ainsi

$$(*) = h - [Df(a)]^{-1} (f(a+h) - f(a))$$

= $h - [Df(a)]^{-1} (f(a+h) - f(a) - Df(a)h) - h$
= $-[Df(a)]^{-1} (f(a+h) - f(a) - Df(a)h)$.

Soit $\varepsilon > 0$ quelconque, $\exists \eta > 0$, $\|h\|_E \le \eta \Rightarrow \|f(a+h) - f(a) - Df(a)(h)\|_F \le \varepsilon \|h\|_E$. D'autre part $\lim_{\|k\|_F \to 0} \|h\|_E = 0$, donc $\exists \alpha, \|k\|_F \le \alpha \Rightarrow \|h\|_E \le \eta$.

Ainsi pour $||k||_F \leq \alpha$, on aura $(*) \leq ||Df(a)^{-1}|| \cdot \varepsilon \cdot ||h||_E$. De plus

$$k = f(a+h) - f(a) = f(a+h) - f(a) - Df(a)(h) + Df(a)(h) \Longrightarrow ||k||_F \ge ||Df(a)(h)||_F - \varepsilon ||h||_E.$$

Puis $||h||_E = ||Df(a)^{-1}(Df(a)(h))||_E \le ||Df(a)^{-1}||_{\mathcal{L}(F,E)} \cdot ||Df(a)(h)||_F$, donc $||Df(a)(h)||_F \ge \frac{||h||_E}{||Df(a)^{-1}||_{\mathcal{L}(F,E)}}$,

d'où $||k||_F \ge |||Df(a)(h)||_E - \varepsilon ||h||_E| \ge \left(\frac{1}{||Df(a)^{-1}||} - \varepsilon\right) ||h||_E.$

Par conséquant, en imposant $\varepsilon \leq \frac{1}{2\|Df(a)^{-1}\|}$ par exemple, on obtient $\|k\|_F \geq \frac{1}{2\|Df(a)^{-1}\|} \cdot \|h\|_E$. On conclut enfin que si ε est donné, $\exists \alpha > 0, \|k\|_F \le \alpha \Longrightarrow \|(*)\| \le 2\varepsilon \|Df(a)^{-1}\|^2 \cdot \|k\|_F$. Ainsi f^{-1} est bien différentiable en b = f(a) et $D(f^{-1})(b) = Df(a)^{-1}$.

2. Si maintenant f est différentiable sur U tout entier, avec $Df(x) \in GL(E,F)$ pour tout $x \in U$, alors f^{-1} est différentiable sur V et d'après ce qui précède : $D(f^{-1})(y) = [Df(f^{-1}(y))]^{-1}, \forall y \in V$. Càd si $\alpha: GL(E,F) \to GL(F,E): T \mapsto T^{-1}$ est l'application de classe C^{∞} , alors $D(f^{-1}) = \alpha \circ Df \circ f^{-1}:$ $V \to GL(F,E)$. Par exemple, si Df est continue (f est C^1), alors cette formule montre puisque α et f^{-1} sont continues, qu'automatiquement $D(f^{-1})$ est continue, et donc f^{-1} est alors de classe C^1 . Si on suppose par récurrence que f est C^{p+1} et f^{-1} est C^p , alors il suffit de montrer qu'en fait f^{-1} est automatiquement C^{p+1} . Mais alors $D(f^{-1}) = \alpha \circ Df \circ f^{-1}$ avec donc Df et f^{-1} qui sont de classe C^p et α qui est de classe C^{∞} . Donc, par composition, $D(f^{-1})$ est de classe C^p , ce qui preuve finalement que f^{-1} est de classe C^{p+1} .

Remarque. Si f est de classe C^p sur un voisinage ouvert de a $(p \ge 1)$ et de classe C^{p+1} seulement en a, avec $Df(a) \in GL(E,F)$, alors la preuve ci-dessus montre que f^{-1} est de classe C^p sur un voisinage (peut être très petit) de f(a) = b et de classe C^{p+1} en b.

En effet, puisque $p \geq 1$, Df est continue sur un voisinage de a et on peut donc quitter à restreindre à un voisinage ouvert plus petit supposer que Df(x) est inversible, pour x dans ce voisinage.

2 Notion de difféomorphisme

Remarque. On fixe $1 \le p \le \infty$ et tous les espaces vectoriels normés sont supposés de Banach.

Définition. Soit $f: U_{\subset E} \to V_{\subset F}$ une application entre ouverts d'espaces de Banach. Soit $1 \le p \le \infty$.

- (i) f est une C^p difféomorphisme si f est une bijection telle que f et f^{-1} sont de classe C^p .
- (ii) Soit $a \in U$. f est une C^p -difféomorphisme locale si $\exists U_a \in \mathcal{O}_a(U), \exists V_{f(a)} \in \mathcal{O}_{f(a)}(V)$ tel que $f(U_a) = V_{f(a)}$ et $f|_{U_a} : U_a \to V_{f(a)}$ est un C^p -difféomorphisme.

On note que si $f: U \to V$ est un C^p -difféomorphisme, alors $\forall a \in U, f$ est un C^p -difféomorphisme local en a.

Définition.

- (i) Soit $f:U_{\subset E}\to V_{\subset F}$ une application différentiable en $a\in U$, alors f est régulière en a si $Df(a)\in GL(E,F)$.
- (ii) Soit $f:U_{\subset E}\to V_{\subset F}$ une application différentiable sur U alors f est régulière sur U si elle est régulière en tout point de U.

Proposition. Si f est un C^1 -difféomorphisme local en a, alors f est régulière sur un voisinage ouvert de a, en particulier f est régulière en a.

Preuve.

On sait qu'il existe $U_a \in \mathcal{O}_a(U)$ et $V_{f(a)} \in \mathcal{O}_{f(a)}(V)$ tels que $f|_{U_a} : U_a \to V_{f(a)}$ est un C^1 -difféomorphisme. Mais alors, comme $f|_{U_a}$ et $(f|_{U_a})^{-1}$ sont différentiables, on peut différentier et déduire

$$\begin{cases} (f|_{U_a})^{-1} \circ f|_{U_a} = id_{U_a}; \\ f|_{U_a} \circ (f|_{U_a})^{-1} = id_{V_f(a)}. \end{cases} \implies \begin{cases} \forall x \in U_a : D((f|_{U_a})^{-1})(f(x)) \circ Df(x) = id_E; \\ \forall y \in V_{f(a)} : Df(f^{-1}(y)) \circ D((f|_{U_a})^{-1})(y) = id_F. \end{cases}$$

En particulier $\forall x \in U_a : Df(x) \in GL(E, F)$.

Remarque. La réciproque n'est autre que le théorème d'inversion locale.

Example. Soit $f: U = \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}^2 : (r, \theta) \mapsto (r\cos(\theta), r\sin(\theta))$. Alors f est de classe C^{∞} . De plus

$$Jac(f)(r,\theta) = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix} \Longrightarrow J(f)(r,\theta) = r > 0.$$

Donc pour tout $(r, \theta) \in U$, f est régulière en (r, θ) . L'application f n'est cependant pas un C^{∞} -difféomorphisme sur $f(U) = \mathbb{R}^2 \setminus \{(0, 0)\}$ puisqu'elle n'est pas injective, $f(r, \theta + 2\pi) = f(r, \theta)$. Cependant, il est facile de voir ici que f est bien un C^{∞} -difféomorphisme local un tout point de U.

Proposition. Soit $f: U_{\subset E} \to F$ une application de classe C^1 . Si f est régulière en a, alors elle est régulière sur un voisinage (ouvert) de a en U. Preuve.

En effet, $\{x \in U | f \text{ est régulière en } x\} = \{x \in U | Df(x) \in GL(E,F)\} = (Df)^{-1}(GL(E,F)).$ Comme on a suppose Df continue, et puisque GL(E,F) est un ouvert de $\mathcal{L}(E,F)$, il est clair que cet ensemble est un ouvert de U. **Proposition.** Soit $1 \leq p \leq \infty$ et soit $f: U_{\mathbb{C}\mathbb{R}^N} \to V_{\mathbb{C}\mathbb{R}^N}$ un C^p -diffeomorphisme entre les ouverts de \mathbb{R}^N (dimension finie ici). Soit n < N et identifions \mathbb{R}^n avec l'espace vectoriel $\mathbb{R}^n \times \{O_{N-n}\}$ de \mathbb{R}^N . Supposons que pour un $1 \leq n \leq N$, $f(U \cap \mathbb{R}^n) = V \cap \mathbb{R}^n$. Alors la restriction de $f: U \cap \mathbb{R}^n \to V \cap \mathbb{R}^n$ est un C^p -difféomorphisme entre ouverts de \mathbb{R}^n .

Preuve.

On sait par hypothèse que f et f^{-1} sont de classe C^p sur U et V respectivement. De plus, on note que $g = f|_{U \cap \mathbb{R}^n}$ avec $g : U \cap \mathbb{R}^n \to V \cap \mathbb{R}^n$ est une bijection continue telle que $g^{-1} = f^{-1}|_{V \cap \mathbb{R}^n}$. Donc g^{-1} est aussi continue sur $V \cap \mathbb{R}^n$, de sorte que g est un homéomorphisme.

Si on a $x \in U \subset \mathbb{R}^n$ et $h \in \mathbb{R}^n$ assez petit pour que $x + h \in U$, alors $x + h \in U \cap \mathbb{R}^n$ et on a

$$g(x+h) - g(x) = f(x+h) - f(x) = Df(x)(h) + O(||h||_{\mathbb{R}^n})$$

Donc g est différentiable en x et on a $Dg(x)(h) = Df(x, 0_{N-n})(h, 0_{N-n})$. De plus si $h \in \mathbb{R}^n$ est quelconque et si |t| est assez petit, alors $x + th \in U \cap \mathbb{R}^n$ et

$$\lim_{t\to 0} \frac{f(x+th)-f(x)}{t} = \lim_{t\to 0} \frac{g(x+th)-g(x)}{t} \in V \cap \mathbb{R}^n \subset \mathbb{R}^n \text{ càd } Df(x)(h) \in \mathbb{R}^n.$$

D'où Df(x) préserve \mathbb{R}^n et " $Dg(x) = Df(x)|_{\mathbb{R}^n}$ " a sens. On déduit que g est de classe C^p avec $Dg(x) \in GL_n(\mathbb{R}), \forall x \in U \cap \mathbb{R}^n$. Donc g est un C^p difféomorphisme d'après le théorème.

3 Théorème d'inversion locale

Remarque. Si $f: U_{\subset E} \to V_{\subset F}$ est un homéomorphisme qui est de classe C^p et régulier sur U, alors c'est un C^p -difféomorphisme.

Si maintenant on suppose $f: U_{\subset E} \to F$ de classe C^p et seulement régulière, alors f sera bien sûr pas un C^p -difféomorphisme en général. Par contre nous pouvons montrer que c'es le cas localemen.

Théorème d'inversion locale (TIL). Soit $1 \le p \le \infty$. Soit $f: U_{\subset E} \to F$ une application de classe C^p . Si f est régulière en $a \in U$, alors f est un C^p -difféomorphisme local en a.

Preuve.

Étape 1 On suppose E = F, a = 0, f(0) = 0 et $Df(0) = id_E$ et on fait la preuve que f est un C^p difféomorphisme local en 0. Ici, on applique le théorème de point fixe et le théorème des AF.

Idée : on pose $g: U \to E: x \mapsto x - f(x)$ de sorte que g(0) = 0, mais Dg(0) = 0. Comme Df est continue (au moins de classe $C^{p-1}, p \ge 1$), on sait que $Dg: x \mapsto id_E - Df(x)$ est aussi continue sur U (et donc 0 en 0). Ainsi

$$\exists r > 0, \forall x \in B(0, r[: ||Dg(x)|| \le \frac{1}{2} \text{ (par exemple)}.$$

Par conséquant, $\forall (x,y) \in B(0,r]^2$ on a par les AF et le fait que B(0,r] est convexe :

$$||g(x) - g(y)|| \le \frac{1}{2}||x - y||.$$

En particulier $\forall x \in B(0,r]: \|g(x)\| \leq \frac{1}{2} \|x\| \leq \frac{r}{2}$. Donc $g(B(0,r]) \subset B(0,\frac{r}{2})$.

Assertion: $\forall y \in B(0, \frac{r}{2}), \exists ! x \in B(0, r] : f(x) = y.$

En effet, si on pose $g_y(t) = y + g(t)$, alors $g_y(t) \in B(0, r]$, $\forall t \in B(0, r]$, car $||y + g(t)|| \le ||y|| + ||g(t)|| \le \frac{r}{2} + \frac{r}{2} = r$.

Suppons F = E, a = 0, f(a) = 0 et $Df(0) = Id_E$. On considere alors $g : U \to E : x \mapsto x - f(x)$ et plus generale pour $u \in E$, on considère $g_u : U \to E : x \mapsto u - g(x)$. Alors g(0) = 0 et $Dg(0) = 0 \in \mathcal{L}(E)$ et $g_u(0) = u$ et $Dg_u(0) = 0 \in \mathcal{L}(E)$. Comme Df est continu (au-moins, de classe $C^{p-1}, p \ge 1$); on sait que $Dg : x \mapsto Id_E - Df(x)$ est aussi continue sur U. Ainsi,

$$\exists r > 0, \forall x \in B(0, r[: \|Dg(x)\| \ge \frac{1}{2}$$

Par consequent, $\forall (x,y) \in B(0,r]^2$ on a par les AF et le fait que B(0,r] est convexe : $(x) - g(y) \| \le \frac{1}{2} \|x - y\|$. En particulier, $\forall x \in B(0,r] : ||g(x)|| \le \frac{1}{2} ||x|| \le \frac{r}{2}$. Donc $g(B(0,r]) \subset B(0,\frac{r}{2}]$.

Assertion: " $\forall y \in B(0, \frac{r}{2}], \exists ! x \in B(0, r], f(x) = y$."

Si donc $u \in B(0, \frac{r}{2}] : ||g_u(x)|| \le ||u|| + ||g(x)|| \le r$. Donc $g_u : B(0, r] \to B(0, r]$ satisfait $||Dg_u(x)|| = r$ $||Dg(x)|| \leq \frac{1}{2}$. Donc g_u est aussi $\frac{1}{2}$ -Lipschitz sur l'espace complet B(0,r], donc g admet un unique point fixe: $\exists ! x \in B(0, r] : g_u(x) = x$

Mais $g_u(x) = x \Leftrightarrow u + x - f(x) = x \Leftrightarrow u = f(x)$. Ainsi : l'assertion est démontrée.

Notons ce point x, h(u), de sorte que h est une application bien définie de $B(0, \frac{r}{2}]$ vers B(0, r], et satisfait : $f(h(u)) = u \ \forall u \in B(0, \frac{r}{2}]. \text{ Donc } g_u(h(u)) = h(u), \text{ donc,}$

$$||h(u)|| = ||g_u(h(u)) - g_0(h(0))|| = ||u + g(h(u)) - g(0)|| \le ||u|| + \frac{1}{2}||h(u)|| \Rightarrow ||h(u)|| \le 2||u||$$

En particulier, $h(B(0, \frac{r}{2}]) \subset B(0, r[$. Si on posse $V = f^{-1}(B(0_E, \frac{r}{2}]) \cap B(0_E, r[$ alors V est une voisinage

ouvert de 0_E des U et $V \stackrel{h}{\leftarrow} \stackrel{f}{\leftarrow} B(0, \frac{r}{2}[$. Finalement si $x \in V$ alors $f(x) \in B(0, \frac{r}{2}[$, donc h(f(x)) est l'unique point de $B(0_E, r[$ tq f(h(f(x)) = f(x).Or $x \in B(0, \frac{r}{2}]$ est "f(x) = x". Donc necaissement h(f(x)) = x.

Conclusion: $\forall x \in V : h(f(x)) = x$, càd $h \circ f|_{V} = Id_{V}$. La meme pour $f \circ h = Id|_{B(0,\frac{r}{2})}$ et f et h sont continues, et $\forall x \in V$, Df(x) est inversible. Donc $f: V \to B(0, \frac{r}{2})$ est un homeomorphisme. Ainsi, f est bien plus C^p – diffeomorphisme local en 0_E .

Étape 2 Le cas général : $f: U \to F$ et $a \in U$ tel que $Df(a) \in GL(E, F)$ quelconque.

Il faut alors utiliser les translation $\tau_{\pm a}: E \to E: x \mapsto x \pm a$ et $\tau_{\pm f(a)}: F \to F: y \mapsto y \pm f(a)$ qui permettent d'echanger les coisinages ouverts de a ou f(a) avec des voisinages ouvert de 0, et qui sont de classe C^{∞} . De plus pour se ramener à F = E il offrira de composer par l'isomorphisme linéaire $Df(a)^{-1}$. Plus précisément, posons : $f_1: \tau_{-a}(U) \to E: x \mapsto Df(a)^{-1}[f(x+a) - f(a)].$

càd pour $x \in \tau_{-a}(U) \in \mathcal{O}_0(E)$ on a : $x + a \in U$ et donc f(x + a) est bien définie dans F. On translate alors par -f(a) pour que \mathcal{O}_E soit envoyé sur \mathcal{O}_F . La composition par $Df(a)^{-1}$ peuvent d'estimer une application f_1 satisfaisant les hypothèses de la première étape. En effet :

$$\tau_{-a}(U) = U - a \xrightarrow{\tau_a} U \xrightarrow{f} F \xrightarrow{\tau_{-f(a)}} F \xrightarrow{Df(a)^{-1}} E$$

Avec $f_1(0) = Df(a)^{-1}[f(a) - f(a)] = 0_E$, f_1 est de classe C^p (τ_a , $\tau_{-f(a)}$ et $Df(a)^{-1}$ sont de classe C^{∞}), $Df_{(0_E)=Df(a)^{-1}\circ Id_F\circ Df()\circ Id_E=Id_E}$.

On applique donc la 1^{re} étape pour déduire que f_1 est une C^p -diffeomorphisme local en 0_E , càd :

$$W_0 \in \mathcal{O}(U-a) \ tq \ f_1|_{W_0} : W_0 \to f_1(W_0) \ \text{est un } C^p - \text{diffeomorphisme}.$$

Conclusion : En considerant le voisinage ouvert de a qui est $U_a := W_0 + a = \tau_a(W_0)$, on voit que $f = \tau_{f(a)} \circ Df(a) \circ f_1 \circ \tau_{-a}$ est un C^p -diffeomorphisme de U_a sur $[\tau_f(a) \circ Df(a)](f_1(W_0))$

Théorème d'inversion globale (TIG). Soit $1 \le p \le \infty$. Soit $f: U_{\subset E} \to V_{\subset V}$ une bijection de classe C^p . Si f est régulière sur U, alors f est un C^p -difféomorphisme entre U et V. Preuve.

On utilise le TIL pour déduire que f est un C^p difféomorphisme local en tout point a de U. Or si $f|_{U_a} \to V_{f(a)}$ est un C^p -difféomorphisme alors f étant bijective, $(f|_{U_a})^{-1} = f^{-1}|_{V_{f(a)}}$ nécessairement. Donc $f^{-1}|_{V_{f(a)}}$ est de classe C^p et donc f^{-1} est de classe C^p en f(a). Ceci étant vrai pour tout $a \in U$, on conclut que f^{-1} est de classe C^p sur V.

Remarque. Si $f:U_{\subset E}\to F$ est seulement un homéomorphisme local en tout point de U, alors f est une application ouverte. En particulier f(U) est automatiquement un ouvert de F.

Application au redressement des courbes dans \mathbb{R}^n

Proposition. Soit $1 \le p \le \infty$ et soit $\gamma:]-1,1[\to \mathbb{R}^n$ une application de classe C^p telle que $\gamma'(0) \ne 0_{\mathbb{R}^n}$. Alors il existe $U \in \mathcal{O}(\mathbb{R}^n)$ et un C^p -diffeomorphisme $\varphi: U \to \varphi(U)$ tq pour |t| assez petit assurant $\gamma(t) \in U$, on a $\varphi \circ \gamma(t) = (t, 0, \dots, 0).$

Preuve.

Soit $(e_1 = \gamma'(0), e_2, \dots, e_n)$ une base de \mathbb{R}^n et posons $\psi(t_1, \dots, t_n) := \gamma(t_1) + \sum_{i=2}^n t_i e_i$, pour obtenir une application de classe C^p de $]-1,1[\times\mathbb{R}^{n-1}$ vers \mathbb{R}^n . On a $\psi(t,0,\dots,0) = \gamma(t), \ \forall t \in]-1,1[$ et : $D\psi(t_1,\dots,t_n) = (\gamma'(t_1),e_2,\dots,e_n)$ de sorte que $D\psi(0,\dots,0) = (\gamma'(0),e_2,\dots,e_n)$ qui est une matrice inversible (base). On applique alors le TIL à l'application ψ pour deduire qu'il existe $W \in \mathcal{O}_{0_n}(\mathbb{R}^n)$ tq $\psi:W \to \psi(W) \subset]-\varepsilon,\varepsilon[\times\mathbb{R}^n$ est un C^p -diffeomorphisme. Soit alors $\psi(W)=U \in \mathcal{O}_{\gamma(0)}(]-1,1[\times\mathbb{R}^{n-1})$ et $\varphi=\psi^{-1}:U \to W$ est donc aussi un C^p -diffeomorphisme. Mais $\psi(t,0,\dots,0)=\gamma(t), \ \forall t \in]-1,1[$, donc $(t,0,\dots,0)=(\varphi\circ\gamma)(t), \ \forall t \in U$

donc $(t, 0, ..., 0) = (\varphi \circ \gamma)(t), \ \forall t \in U$ Exercice. Soit $f(x) = \begin{cases} x + x^2 \sin(\frac{\pi}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$

- 1. Montrez que f est deriviable sur \mathbb{R} et que $f'(0) \neq 0$
- 2. Montrez que $\forall \varepsilon > 0, f|_{1-\varepsilon,\varepsilon[} : -\varepsilon, \varepsilon[\to \mathbb{R} \text{ n'est pas injective.}]$

4 Théorème des fonction implicites

Théorème des functions implicites (TFI).

Soient E_1, E_2 et F trois espaces de Banach. Soient $U_1 \subset E_1$ et $U_2 \subset E_2$ des ouverts et $f: U_1 \times U_2 \to F$ une application de classe C^p $(1 \le p \le \infty)$ telle que :

$$f(a_1, a_2) = 0$$
 et $D_2 f(a_1, a_2) \in GL(E_2, F)$

Alors: $\exists U_1' \in \mathcal{O}_{a_1}(U_1)$ et $g: U_1' \to U_2$ de classe C^p telle que $g(a_1) = a_2$ et

$$f(x_1, x_2) = 0 \Leftrightarrow x_2 = g(x_1)$$
 pour $x_1 \in U'_1$ et x_2 coisin de a_2

Preuve.

On pose $\varphi: U_1 \times U_2 \to E_1 \times F: (x_1, x_2) \mapsto (x_1, f(x_1, x_2))$. Alors : $\varphi(a_1, a_2) = (a_1, 0)$, elle est une application de classe C^p et $D\varphi(x_1, x_2) \in \mathcal{L}(E_1 \times E_2, E_1 \times F)$ est donnée par :

$$D\varphi(x_1, x_2) = \begin{bmatrix} Id_{E_1} & 0 \\ D_1 f(x_1, x_2) & D_2 f(x_1, x_2) \end{bmatrix}$$

Puisque, $D\varphi(x_1, x_2) \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \begin{bmatrix} h_1 \\ D_1 f(x_1, x_2)(h_1) + D_2 f(x_1, x_2)(h_2) \end{bmatrix}$

Ainsi $D\varphi(a_1, a_2)$ et un isomorphisme d'application réciproque donnée par

$$\begin{bmatrix} Id_{E_1} & 0 \\ -D_2 f(a_1, a_2)^{-1} \circ D_1 f(a_1, a_2) & D_2 f(a_1, a_2)^{-1} \end{bmatrix} : E_1 \times F \to E_1 \times E_2$$

On applique alors le TIL à l'application φ en (a_1, a_2) pour déduire :

$$\exists W \in \mathcal{O}_{(a_1,a_2)}(U_1 \times U_2) \text{ et } W' \in \mathcal{O}_{(a_1,0)}(E_1 \times F) \text{ tq } \varphi : W \to W' \text{ est un } C^p - \text{diff\'eomorphisme}$$

On peut se amener au cas où W' est de la forme $U'_1 \times U'_2$ où $U'_1 \in \mathcal{O}_{a_1}(E_1)$ et $V \in \mathcal{O}_0(F)$, de sorte que $\psi = \varphi^{-1} : U'1 \times V \to W$ est un C^p -difféomorphisme.

On peut écrire $\psi = (\psi_1, \psi_2)$ avec $\psi_i = \pi_i \circ \psi$. Posons enfin $g: U_1' \to U_2: x_1 \mapsto \psi_2(x_1, 0)$ (alors g remplit toutes les conditions)

Récapitulons : Les relations $\varphi \circ \psi = Id_{U_1' \times V}$ et $\psi \circ \varphi = Id_W$. s'écrivent

$$\begin{cases} (\psi_1(x_1, v), f(\psi_1(x_1, v), \psi_2(x_1, v)) = (x_1, v) & \forall (x_1, v) \in U_1' \times V \\ (\psi_1(x_1, f(x_1, x_2)), \psi_2(x_1, f(x_1, x_2)) = (x_1, x_2) & \forall (x_1, x_2) \in W \end{cases}$$

Donc, $\psi_1(x_1, v) = x_1$, $f(x_1, \psi_2(x_1, v)) = v \ \forall (x_1, v) \in U_1' \times V \ \text{et} \ \psi_2(x_1, f(x_1, x_2)) = x_2 \ \forall (x_1, x_2) \in W$. En particulier : $f(x_1, \psi_2(x_1, 0)) = f(x_1, g(x_1)) = 0$, $\forall x_1 \in U_1'$. Réciproquement :

$$f(x_1, x_2) = 0 \Leftrightarrow \varphi(x_1, x_2) = (x_1, 0) \Leftrightarrow (x_1, x_2) = (x_1, \psi_2(x_1, 0)) \Leftrightarrow x_2 = \psi_2(x_1, 0) = g(x_1)$$

Corollaire. Sans les hypothese du TFI et avec $f(x_1, x_2) = 0 \Leftrightarrow x_2 = g(x_1)$ dans les notations ci-dessus, on a :

$$Dg(a_1) = -[D_2 f(a_1, g(a_1))]^{-1} \circ D_1 f(a_1, g(a_1))$$

Preuve.

On differente la relation $[f(x_1, g(x_1)) = 0 \text{ pour } x_1 \in U_1']$, en a_1 pour obtenir $D_1 f(x_1, g(x_1)) + D_2 f(x_1, g(x_1)) \circ Dg(x_1) = 0$. En $x_1 = a_1 : D_2 f(a_1, a_2) \in GL(E_2, F)$ et on déduit $Dg(a_1) = -[D_2 f(a_1, a_2)]^{-1} \circ [D_1 f(a_1, a_2)]$

Application au problème sur les polynomes decrit plus haut

On avait $P \in \mathbb{R}_m[X]$ un polynome a coefficients reels que a $\alpha \in \mathbb{R}$ pour racune si,ple. On considere alors $f: \mathbb{R}_n[X] \times \mathbb{R} \to \mathbb{R}: (A,x) \mapsto Q(x)$. qu'on retrient à $U = \{(Q,x) \in \mathbb{R}_n[X] \times \mathbb{R} | Q'(x) \neq 0\}$. U est bien sur un ouvert, puisque $Q \mapsto Q'$ est lineaire (donc continu (dim $< \infty$)) et Q'(x) = f(Q',x) avec f qui est bien de classe C^{∞} , en effet :

- L'application $Q \mapsto Q(x)$ est lineair (donc continu), donc de classe C^{∞}
- L'application $x \mapsto Q(x)$ est de classe C^{∞} , car $Q \in \mathbb{R}_m[X]$.

Ici $E_1 = \mathbb{R}_n[X]$ et $E_2 = F = \mathbb{R}$, $D_2 f(Q, x) =$ multiplication par Q'(x). Donc $D_2 f(Q, x) \in GL(\mathbb{R})$ pour tout $(Q, x) \in U$. En particulier pour (P, α) où $f(P, \alpha) = 0$. D'apres TFI, $\exists W \in \mathcal{O}_p(\mathbb{R}_m[X])$, $\exists I$ interval ouvert de \mathbb{R} contenant α et $\exists g : W \to I$ de classe C^{∞} tels que :

$$Q(x) = 0, \forall x \in I, \forall Q \in W \Leftrightarrow g(Q) = x, Q \in W$$

5 Immersions et submersions

Ici, en va retreindre à la dimension finie

5.1 Retour sur le théorème du rang

Rappelons que si $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, alors le rang de A est la dimension de l'image de A, on le notera $\operatorname{rg}(A) = \dim(Im(A)) = \dim(Ker(A)^{\perp}) = n - \dim(Ker(A))$. On a bien sur toujours $0 \le rg(A) \le \min(m, n)$, ainsi si : tekening et que :

$$\begin{cases} A \text{ est injective } \Leftrightarrow (A) = n \\ A \text{ est surjective } \Leftrightarrow (A) = m \end{cases}$$

Pour nous $\mathcal{H}_1 = \mathbb{R}^n$ et $\mathcal{H}_2 = \mathbb{R}^m$ soit de dimensions finies, donc $\overline{Im(A)} = Im(A)$

Lemme du rang.

Soit $A_0 \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, alors il existe $\varepsilon > 0, \forall A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$

$$||A - A_0|| \le \varepsilon \Rightarrow rg(A) \ge rg(A_0)$$

Preuve.

Fixant $A_0 \in \mathcal{L}(\mathbb{R}^n, \mathbf{\Omega})$ et posons pour tout $A \in \mathcal{L}(\mathbb{R}^n, \mathbf{\Omega})$:

$$\tilde{A}: Ker(A_0)^{\perp} \times Im(A_0)^{\perp} \to \mathbb{R}^m: (x,y) \mapsto A(x) + y$$

Alors pour $A = A_0$, $\tilde{A} = \tilde{A}_0$ est une bijection entre E et \mathbb{R}^m . En effet : $\tilde{A}_0(x,y) = 0 \Leftrightarrow A_0(x) + y = 0$, mais $A_0(x) \in Im(A_0)$ et $y \in Im(A_0)^{\perp}$. Donc $A_0(x) = 0$ et y = 0.

Soit $x \in Ker(A_0)$ et y = 0, mais $x \in Ker(A_0)^{\perp}$, donc x = 0 et y = 0. Donc, \tilde{A}_0 est bien un isomorphisme (dim(E) = m). D'autre part, pour tout $A\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$: $\|(\tilde{A} - \tilde{A}_0)(x, y)\| = \|(A(x) + y) - (A_0(x) + y)\| = \|(A - A_0)(x)\| \le \|A - A_0\|\|x\|$. Donc $\|\tilde{A} - \tilde{A}_0\| \le \|A - A_0\|$.

On sait par ailleurs que l'ensemble $GL(E, \mathbb{R}^m)$ est un ouvert de $\mathcal{L}(E, \mathbb{R}^m)$ et $\tilde{A}_0 \in GL(E, \mathbb{R}^m)$, donc $\exists \delta > 0, \ \|B - \tilde{A}_0\| \le \delta \Rightarrow B \in GL(E, \mathbb{R}^m)$.

Si donc $\tilde{A} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ satisfait $\|\tilde{A} - \tilde{A}_0\| \leq \varepsilon$, alors $\|\tilde{A} - \tilde{A}_0\| \leq \varepsilon$ et donc $\tilde{A} \in FL(E, \mathbb{R}^m)$. Rappel que $\tilde{A}|_{Ker(A_0)^{\perp} \times \{0\}} = A$ est en particulier injectieve.

Donc
$$rg(A) \ge \dim(Ker(A_0)^{\perp}) \Rightarrow rg(A) \ge rg(A_0)$$

Corollaire. Le sous-ensemble de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ des applications linéaires invectives/surjectives, est un ouvert. Preuve.

Si $A_0 \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ est de rang égal à $\min(n, m)$ (donc les rang maximal) alors par le lemme du rang, il existe $\varepsilon > 0, \forall A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$:

$$||A - A_0|| \le \varepsilon \Rightarrow rg(a) \ge \min(n, m)$$

comme $rg(A) \leq \min(n, m)$ toujours, en conclut que

$$||A - A_0|| \le \varepsilon \Rightarrow rg(a) = \min(n, m)$$

Donc ils sont ouverts. \Box

5.2 Forme normale des immersions

Définition.

- (i) Soit $f: U_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}^m$ une application differentiable en a. Alors f est une immersion en a si Df(a) est injective.
- (ii) Si f est differentiable sur U, alors f est une immersion sur U si Df(x) est injective, pour tout $x \in U$. Corollaire. Si $f: U \to \mathbb{R}^m$ est de classe C^1 qui est une immersion en $a \in U$, alors $\exists V \in \mathcal{O}_a(U), \forall x \in V, f$ est une immersion en x. Preuve.

On a Df qui est une application continu de U vers $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ et si $J_{y_{n,m}}$ est l'ouvert des application lineqires injectives de \mathbb{R}^n dans \mathbb{R}^m , alors $(Df)^{-1}(J_{y_{n,m}})$ est un ouvert de U, qui contient a \square Hier staan 2 exemples

Théorème normale des immersions $(n \le m)$.

Soit U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}^m$ une application de classe C^p . On suppose que f est une immersion en un point a de U. Alors, $\exists U' \in \mathcal{O}_a(U), \ \exists V \in \mathcal{O}(\mathbb{R}^m)$ contenant f(U') et il existe un C^p -diffeomorphisme $\psi: V' \to \psi(V')$ entre ouverts de \mathbb{R}^m , tels que :

$$\psi \circ f|_{U'}: U' \to \psi(V') \subset \mathbb{R}^m$$

coïncide avec l'injection canonique C.

Preuve.

On a par hypothese $Df(a): \mathbb{R}^n \to \mathbb{R}^m$ qui est injective linaire. Soit F un supplémentaire dans \mathbb{R}^m de Im(Df(a)). Notons que $\dim(F) = m - n$. Considerons $\varphi: U \times F \to \mathbb{R}^n$ l'application definie $\operatorname{par}\varphi(x,u) = f(x) + u$, alors φ est de classe C^p car f est de classe C^p .

De plus, $D\varphi(a,u): \mathbb{R}^n \times F \to \mathbb{R}^m: (h,k) \mapsto Df(a)(h) + k$, donc $Df(a,u)(h,k) = 0 \Leftrightarrow Df(a)(h) + k = 0$. Or $k \in F$ et $Df(a)(\mathbb{R}) \cap F = \{0\}$, donc Df(a)(h) = 0 et k = 0, mais Df(a) est injective, donc h = 0 et k = 0.

Par consequant, $D\varphi(a, u) \in GL(\mathbb{R}^n \times F, \mathbb{R}^m)$, $\forall u \in F$. On aussi sait que $\varphi(x, 0) = f(x)$, $\forall x \in U$, donc il suffit d'appliquer le TIL en (a, 0) pour deduire que :

$$\exists W \in \mathcal{O}_{(a,0)}(U \times F), \ \varphi|_W : W\varphi(W) \text{ est un } C^p - \text{diffeomorphisme, avec } \varphi(W) \in \mathcal{O}_{f(a)}(\mathbb{R}^m)$$

Notons que si $\psi = (\varphi_W)^{-1} : \varphi(W) \to W$ est le C^p -diffeomorphisme, reciproque, alors $\psi \circ f|_{U'} = C|_{U'} \square$ Corollaire. Si $f: U \to \mathbb{R}^m$ est de classe C^1 et est une immersion en $a \in U$, alors $\exists U' \in \mathcal{O}_a(U) : f|_{U'}$ est injective.

Preuve.

On sait qu'il existe $U' \in \mathcal{O}_a(U)$ et $V' \in \mathcal{O}_{f(a)}(\mathbb{R}^m)$ ainsi que $\psi : V' \to \psi(V')$ sur C^1 -diffeomorphisme tels que $f(U') \subset V'$ et $\psi \circ f|_{U'} = \pi|_{U'}$. Mais alors $f|_{U'}$ est donc injective.

5.3 Forme normale des submersions

Définition.

- (i) Soit $f: U_{\mathbb{C}\mathbb{R}^n} \to \mathbb{R}^m$ une application differentiable en a. On dite que f est une submersion en a si Df(a) est une application lineaire surjective.
- (ii) Si f est differentiable sur U, alors f est une submersion sur U, si Df(x) est une submersion en tout point $x \in U$.

Proposition. Soit $f: U \to \mathbb{R}^m$ une application de classe C^1 . Si f est une submersion en $a \in U$ alors : $\exists U' \in \mathcal{O}_a(U), \ \forall x \in U', \ f$ est une submersion en x. *Preuve.*

On sait que d'apres le lemme du rang que $\{A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m | A \text{ surjective}\}\)$ est un ouvert de $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Ice l'application $Df: U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ est continu car f. Par consequent, $\{x \in U | Df(x) \text{ est surjective}\}$ est un ouvert de U, qui de plus contient a.

Théorème normale des submersions $(m \le n)$.

Soit $f: U \to \mathbb{R}^m$ une application de classe C^p qui est une submersion en $a \in U$ donne. Alors il existe un voisinage ouvert U' de a dans U, ainsi qu'un C^p —diffeomorphisme $h: U' \to h(U')$ entre ouvert de \mathbb{R}^n tels que $f|_{U} \circ h^{-1}: h(U') \to \mathbb{R}^n$ coïncide avec une projection canonique. Preuve.

On sait que Df(a) est surjectieve. Soit K = ker(Df(a)) alors K est de dimension n - m. Considérons $h: U \to \mathbb{R}^n \times K: x \mapsto (f(x), P_K(x - a))$ ou P_K est le projection orthogonale sur K. Alors :

- h est une application de classe C^p car f est de classe C^p et $x \mapsto P_K(x-a)$ est de classe C^∞ .
- Si $\pi: \mathbb{R}^n \times K \to \mathbb{R}^m$ est la projection sur la 1^{ere} composante, alors $(\pi \circ h)(x) = f(x), x \in U$.
- On a $Dh(x) = (Df(x), P_K)$, $\forall x \in U$. Donc Dh(a) est bijectieve, en effet $Dh(a)(X) = 0 \Leftrightarrow Df(a)(X) = 0 \Leftrightarrow X \in K \& X \in K^{\perp} \Leftrightarrow K = \{0\}.$

Il suffit alors d'expliquer le TIL pour conclure

Ré-écriture du TIL en dimension finie.

(On suppose n = m forcement)

Soit $f: U \to \mathbb{R}^n$ une application de classe C^p , et soit $\hat{\mathbf{a}} \in U.Alorsfestun\mathbb{C}^p$ -diffeomorphisme local en $a \leftrightarrow f$ est une C^p -submersion en $a \leftrightarrow f$ est un C^p -immersion en a.

Remarque. $\mathcal{L}(F, E)\mathcal{L}(E, F) \xrightarrow{\beta} \mathcal{L}(E) : (S, T) \to S \circ T$ est de classe C^{∞}