1 Sum from 1 to n

We want to prove that 1+2+...+n can be calculated with $\frac{n(n+1)}{2}$

1.1 Definitions

We will define a function to let us talk about the sum of numbers from 1 to n. Let:

$$F(n) = 1 + 2 + \dots + n \tag{1}$$

We will define a predicate to let us talk about the relationship between F(n) and the shortcut calculation. Let:

$$P(n): F(n) = \frac{n(n+1)}{2}$$
 (2)

Note that P(n) evaluates to a boolean. It can be true or false for any particular n. It is true for a particular value of n if F(n) does in fact equal $\frac{n(n+1)}{2}$ and it is false if these two things are not equal.

1.2 Goal

Our goal is to prove that P(n) holds (is true) for all values of n greater than 0. Prove:

$$\forall n \in N : P(n) \tag{3}$$

1.3 Proof by induction

1.3.1 Base case

To show our base case P(1) is true, we will state the base case, then show that the left side does in fact equal the right side. Prove:

$$P(1): F(1) = \frac{1(1+1)}{2}$$

$$F(1) = 1$$

$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

$$(4)$$

1.3.2 Inductive step

We will prove that **if** P(k) holds (is true) for some $k \in N$, **then** P(k+1) is also true. Prove:

$$P(k) \implies P(k+1) : \forall k \in N$$
 (5)

We start with the *inductive hypothesis*, we assume for the time that P(k) holds. Assume:

$$P(k): F(k) = \frac{k(k+1)}{2}$$
 (6)

Now, assuming that P(k) is true, prove:

$$P(k+1): F(k+1) = \frac{(k+1)((k+1)+1)}{2}$$
 (7)

By definition:

$$F(k+1) = 1 + 2 + \dots + k + (k+1)$$

which is by definition:

$$F(k+1) = F(k) + (k+1)$$

which by our inductive hypothesis is:

$$F(k+1) = \frac{k(k+1)}{2} + (k+1)$$

simplifying is:

$$F(k+1) = (k+1)(\frac{k}{2}+1)$$

which is equivalent to:

$$F(k+1) = (k+1)(\frac{k}{2} + \frac{2}{2})$$

which simplifies to:

$$F(k+1) = \frac{(k+1)(k+2)}{2}$$

which is clearly:

$$F(k+1) = \frac{(k+1)((k+1)+1)}{2}$$

And so we have proved P(k+1) (7) by showing that the left side is equal to the right side (assuming that P(k) is true).

1.4 Conclusion

We have proved that P(n) holds for a base case of P(1) and that for all $k \in N$, P(k) being true implies that P(k+1) is also true. Therefore P(n) holds for all n > 0 (all natural numbers).

$$P(1): F(1) = \frac{1(1+1)}{2}$$

$$P(k) \implies P(k+1): \forall k \in \mathbb{N}$$

$$\therefore P(n): \forall n \in \mathbb{N}$$

2 Making postage with 3 and 5 cent stamps

We want to prove that all postage amounts greater than or equal to 8 cents can be made with combinations of 3 and 5 cent stamps

3 Another summation

We want to prove that $1+4+7+\ldots+(3n-2)$ can be calculated with $\frac{n(3n-1)}{2}$

4 Proof with inequality

We want to prove that for any number n greater than or equal to 7, n! is greater than 3^n .

$$n! > 3^n : n \ge 7$$