Predicting Athletes' Success based on Physical Built

by Samson Lo

for IBM Advanced Data Science Capstone

Architecture

Technologies

- Python
- Jupyter
- Pandas
- Sklearn
- Matplotlib, Seaborn
- Keras
- IBM Watson

Dataset

Basic bio data on athletes and medal results from Athens 1896 to Rio 2016

https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

Dataset

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):

Data	COTUMIS	(cocar is corumns).		
#	Column	Non-Nul	ll Count	Dtype
0	ID	271116	non-null	int64
1	Name	271116	non-null	object
2	Sex	271116	non-null	object
3	Age	261642	non-null	float64
4	Height	210945	non-null	float64
5	Weight	208241	non-null	float64
6	Team	271116	non-null	object
7	NOC	271116	non-null	object
8	Games	271116	non-null	object
9	Year	271116	non-null	int64
10	Season	271116	non-null	object
11	City	271116	non-null	object
12	Sport	271116	non-null	object
13	Event	271116	non-null	object
14	Medal	39783 r	non-null	object
dtype	object(10			

memory usage: 31.0+ MB

- Missing values in Height and Weight
- Mixed events & sex data
- Numerical features are skewed
- Prediction classed are imbalanced

Preprocessing

Data Cleaning

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
#
    Column Non-Null Count
                             Dtype
 0
    TD
            271116 non-null int64
            271116 non-null object
    Name
            271116 non-null object
    Sex
 3
            261642 non-null float64
    Age
    Height 210945 non-null float64
    Weight 208241 non-null float64
    Team
            271116 non-null
                             object
    NOC
            271116 non-null object
            271116 non-null
                             object
    Games
            271116 non-null int64
    Year
    Season 271116 non-null
                             object
 11
    City
            271116 non-null object
 12
    Sport 271116 non-null object
    Event 271116 non-null object
 14
    Medal
            39783 non-null
                             object
dtypes: float64(3), int64(2), object(10)
```

memory usage: 31.0+ MB

<class 'pandas.core.frame.DataFrame'> RangeIndex: 206165 entries, 0 to 206164 Data columns (total 8 columns): Column Non-Null Count Dtype ID 206165 non-null int64 0 Sex 206165 non-null object 206165 non-null float64 Age Height 206165 non-null float64 Weight 206165 non-null float64 Team 206165 non-null object 206165 non-null object Event 206165 non-null Medal int64 dtypes: float64(3), int64(2), object(3) memory usage: 12.6+ MB

Dropping missing values

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 271116 entries, 0 to 271115
Data columns (total 15 columns):
    Column Non-Null Count
                             Dtype
 0
    TD
            271116 non-null
                            int64
            271116 non-null object
    Name
            271116 non-null object
    Sex
 3
            261642 non-null float64
    Age
    Height 210945 non-null float64
            208241 non-null float64
    Weight
    Team
            271116 non-null object
            271116 non-null object
    NOC
            271116 non-null
                             object
    Games
            271116 non-null int64
    Year
    Season 271116 non-null
                             object
            271116 non-null object
 11
    City
    Sport
            271116 non-null object
    Event
            271116 non-null object
    Medal
            39783 non-null
                             object
dtypes: float64(3), int64(2), object(10)
memory usage: 31.0+ MB
```


Transformation

One-Hot Encoding

```
In [16]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 206165 entries, 0 to 206164
         Data columns (total 6 columns):
             Column Non-Null Count
                                      Dtype
             Sex 206165 non-null category
             Age 206165 non-null float64
            Height 206165 non-null float64
             Weight 206165 non-null float64
             Team 206165 non-null category
             Event 206165 non-null category
         dtypes: category(3), float64(3)
         memory usage: 5.8 MB
In [17]: numeric cols = ['Age', 'Height', 'Weight']
         categorical cols = list(set(df.columns.values.tolist()) - set(numeric cols))
In [18]: data cat = df[categorical cols]
         data num = df[numeric cols]
         enc = OneHotEncoder(sparse=False)
         data cat oh = enc.fit transform(data cat)
         data cat oh.shape
Out[18]: (206165, 1252)
```

Train / Test Sets Splitting

Scaling

```
scaler = StandardScaler()

X_train_num_scaled = scaler.fit_transform(X_train_num, y_train)
X_test_num_scaled = scaler.transform(X_test_num)
```

Uniting

```
train_data = np.hstack((X_train_num_scaled, X_train_cat_oh))
test_data = np.hstack((X_test_num_scaled, X_test_cat_oh))
```

Model Evaluation

Algorithm	Accuracy	
Logistic Regression	86.03%	
Sequential NN	85.36%	

Iterations

Iterations	Train	Test
Default	0.8543	0.8536
Normalization	0.8542	0.8536
Dropout	0.8545	0.8536

Difficulty Encountered

Dead Kernel

- Potential cause:
 - Huge amount of data (esp. after transformation)
- Solution:
 - Opened another notebook

Used up free tier resources

- Potential cause:
 - Same as above
- Solution:
 - Upgraded to pay-as-you-go

