

总复习

- 一、有机化合物官能团的化学鉴定
- 二、有机化合物的合成
- 三、一些重要的有机反应机理
- 四、期中考试后的重要有机反应
- 五、期末考试题型

一、有机化合物官能团的化学鉴定。

有机化合物中官能团的 鉴别是系统鉴别未知物 的一个重要步骤,即可 用仪器分析法,又可用 化学法进行鉴定

 烷烃
 溴的CCI4溶液—褪色

 烯烃和炔烃
 KMnO4试验—褪色

 重金属炔化物—沉淀
 顺丁烯二酸酐—沉淀

 芳烃
 无水AICI3—CHCI3—显色

 浓盐酸—溶解

根据化合物中官能团的 化学性质,选择操作简 便,反应迅速,又有明显 反应现象的反应进行鉴定

卤烃类

AgNO₃-C₂H₅OH--

NaI-丙酮溶液---

有机化合物官能团的化学鉴定

有机化合物官能团的化学鉴定

二、有机化合物的合成

选择合成路线的一般原则

原料容易得到一八个基础原料,十四种基本有机原料

反应步骤少,操作方便

产率高,副反应少

有机化合物的合成 石油 甘油 甲醇 异丙醇 甲醛 八个 乙醇 丁醇 基础原料 乙醛 丙酮 辛醇 乙酸 乙烯,丙稀,丁二烯 环氧乙烷 苯酚 十四种 苯,甲苯,二甲苯

乙炔,萘

2019/6/3

基本有机原料

环氧氯丙烷

苯酐

C=C的形成方法

醇脱水

卤烷脱卤化氢

连二卤烷脱卤素

C C的形成方法

乙炔的烷基化

$$CH$$
 — CH $NaNH_2$ — 液 NH_3 CH — CNa RX CH — $C-R$

分子中引入羟基的方法

卤代烃的水解

$$CH_2 = CHCH_3 \xrightarrow{C1_2} CH_2 = CHCH_2C1 \xrightarrow{\text{NaOH}} CH_2 = CHCH_2OH$$

醛、酮、酸或酯的还原

$$CH_3 CH = CHCHO$$
 $\xrightarrow{NaBH_4}$ $CH_3 CH = CHCHQ$ H

Grignard试剂与醛酮或羧酸衍生物反应合成

C-X键形成的方法

从醇出发

由烃出发

$$CH_2$$
= $CHCH_3$ $\xrightarrow{C1_2}$ CH_2 = $CHCH_2C1$ CH_2 = $CHCH_3$ + HBr $\xrightarrow{\pm 过氧化物}$ CH_3 CHBrCH3

羰基的形成方法

$$(CH_3)_3CCH_2OH \xrightarrow{K_2Cr_2O_7 - H_2SO_4} (CH_3)_3CCHO$$

羧酸及其衍生物的还原

芳环的酰基化反应

$$\bigcirc -CC1 + \bigcirc \longrightarrow \bigcirc -C-\bigcirc$$

羧基的形成方法

腈的水解

$$CH_3(CH_2)_3Br \xrightarrow{NaCN} CH_3(CH_2)_3CN \xrightarrow{\text{$(DH_2O_NaOH)}} CH_3(CH_2)_3COOH$$

伯醇或醛的氧化

$$CH_3CH_2CH_2OH \xrightarrow{K_2Cr_2O_7} CH_3CH_2COOH$$

Grignard试剂与CO₂反应

$$(CH_3)_3C-C1 \longrightarrow (CH_3)_3CMgC1 \xrightarrow{0=c=0} (CH_3)_3CCOMgC1 \xrightarrow{H_2O} (CH_3)_3CCOMgC1$$

官能团之间的相互转换:

重要的有机官能团

- (1) 碳碳双键 (C=C) 和碳碳叁键 (C≡C)
- (2) 卤代烃中的C-X键
- (3) 羟基
- (4) 羰基

增长碳链的方法:

1. 伯卤代烷的亲核取代反应

与亲核试剂发生反应增长碳链:

NaC≡N,

NaC \equiv CH, NaCH(CO₂C₂H₅)₂, CH₃COCHCOOC₂H₅

增长碳链的方法:

2. 碳负离子与羰基的亲核加成反应

常见的碳负离子:

RMgX

RCHCOR

RCHCO₂R

CH₃-COCHCOOC₂H₅

增长碳链的方法:

2. 碳负离子与羰基的亲核加成反应

R-X
$$\xrightarrow{\text{Mg}}$$
 RMgX $\xrightarrow{\text{CH}_2=\text{O}}$ RCH₂-OMgX $\xrightarrow{\text{H}^+}$ RCH₂OH
RMgX + CO₂ $\xrightarrow{\text{RCOOMgX}}$ $\xrightarrow{\text{H}^+,\text{H}_2\text{O}}$ RCOOH
RMgX + CH₂-CH₂ $\xrightarrow{\text{R-CH}_2\text{CH}_2}$ -OMgX $\xrightarrow{\text{H}^+,\text{H}_2\text{O}}$ R-CH₂CH₂-OH

增长碳链的方法:

2. 碳负离子与羰基的亲核加成反应

R-C=O + NaC=CH
$$\longrightarrow$$
 R-C-C=CH $\xrightarrow{H^+}$ R-C-C=CH $\xrightarrow{R'}$ R'

增长碳链的方法:

2. 碳负离子与羰基的亲核加成反应

CH₃-CHO
$$\xrightarrow{-OH}$$
 CH₂-CHO $\xrightarrow{CH_3CHO}$ CH₃-CHCH₂CHO $\xrightarrow{O^-}$ O-

 $\xrightarrow{H^+}$ CH₃-CHCH₂CHO $\xrightarrow{-H_2O}$ CH₃-CH=CHCHO OH

增长碳链的方法:

2. 碳负离子与羰基的亲核加成反应

$$\mathsf{CH_3\text{-}COOC_2H_5} \xrightarrow{C_2\mathsf{H_5}\mathsf{ONa}} \xrightarrow{\mathsf{CH_2\text{-}COOC_2H_5}} \xrightarrow{\mathsf{1}\mathsf{CH_3COOC_2H_5}} \xrightarrow{\mathsf{2}\mathsf{H^+}}$$

CH₃COCH₂COOC₂H₅

缩短碳链的方法:
R-CH=CH-R'
$$100_3$$
 R-CHO + R'-CHO

R-CH=CH-R'
$$\xrightarrow{\text{KMnO}_4}$$
 R-COOH + R'-COOH

R-COOH + NH₃
$$\longrightarrow$$
 R-COONH₄ $\frac{-H_2O}{\Delta}$ RCONH₂

$$Cl_2$$
+NaOH R -NH $_2$ + CO $_2$ + NaCl 霍夫曼降级反应

$$R-CO-CH_3 + I_2 + NaOH \longrightarrow R-COONa + CHI_3$$
 碘仿反应 $2019/6/3$

成环反应:

$$CI-CH_2CH_2CH_2-COOCH_3$$
 NaOH -- COOCH₃

成环反应:

Br-CH₂CH₂Br + CH₂(CO₂C₂H₅)₂
$$\xrightarrow{\text{NaOCH}_2\text{CH}_3}$$
 HOCH₂CH₃

$$Br-CH2CH2CH-(COOC2H5)2 \xrightarrow{NaOCH2CH3} COOC2H5$$

$$+OCH2CH3$$

$$+OCH2CH3$$

$$+OCH2CH3$$

$$\begin{array}{c|c}
\hline
 & 1 \text{HO}^-, \text{H}_2\text{O}, \Delta \\
\hline
 & 2 \text{H}^+, \Delta, \text{-CO}_2
\end{array}$$

成环反应:

$$CH_3COCH_2CH_2CH_2COCH_3 \xrightarrow{KOH, H_2O} \xrightarrow{COCH_3} COCH_3$$

1、烷烃氯化反应的机理----自由基取代反应机理

链引发 (1) Cl-Cl hv 或 \triangle \rightarrow $Cl \cdot + Cl \cdot$

(3)
$$CH_3 \cdot + Cl_2 \longrightarrow CH_3Cl_+ Cl_+$$

(5) C1· + · CH₃
$$\longrightarrow$$
 CH₃C1

(6)
$$CH_3 \cdot + \cdot CH_3 \longrightarrow CH_3CH_3$$

2、烯烃亲电加成反应的机理

(1) 烯烃的亲电加成反应机理—碳正离子历程

重排反应

3、芳香烃的亲电取代反应的机理

卤代

烷基化一重排

3、芳香烃的亲电取代反应的机理

烷基化一重排

$$RCI + AICI_3 \longrightarrow [RCI \cdot AICI_3]$$
 络合物
$$\longrightarrow R^+ + AICI_4^-$$
 易重排

$$+ \mathbb{R}^{+} \longrightarrow \stackrel{\overset{\cdot}{\longleftarrow}^{+}}{\stackrel{\cdot}{\longleftarrow}^{+}} \mathbb{R} \xrightarrow{-\mathbf{H}^{+}} \mathbb{R}$$

- 4、卤代烃亲核取代反应的机理
- (1) 双分子历程S_N2

 S_N^2 反应特点: 1 亲核试剂OH·从卤原子的背面进攻

2 C-O键的形成和C-Br键的断裂同时进行

3 发生构型转化

- 5、卤代烃亲核取代反应的机理
- (2) 单分子历程 S_N1

第一步
$$R_3C-X$$
 慢 $R_3C^+ + X^-$ 第二步 $R_3C^+ + OH^-$ 快 R_3C-OH 第一步是决 速步,与作 用试剂无关 $R_3C^+ + H_2O \longrightarrow R_3COH_2 \xrightarrow{H_2O} R_3COH + H_2O$

通常伯卤代烷,仲卤代烷按 S_N^2 历程进行,而叔卤代烷按 S_N^1 历程进行,按 S_N^1 历程进行碳正离子会有重排。

6. 醇与HX 的反应机理(重排机理)

7 邻二醇的重排反应——频哪醇(pinacol)重排

$$H_3$$
C CH_3 CH_3

8、羟醛缩合反应历程

$$\begin{array}{c} H \longrightarrow O \\ CH_2 - C - H \longrightarrow CH_2 - C - H \longrightarrow CH_3 - C - H \\ \hline O \longrightarrow CH_3 - CH - CH_2 - CHO \longrightarrow CH_3 - CH - CHO \longrightarrow H \\ \hline OH', H_2O \longrightarrow CH_3CH - CHO \longrightarrow$$

9、酯缩合反应历程

$$CH_{3}C \xrightarrow{O} C_{2}H_{5} + CH_{3}C \xrightarrow{O} C_{2}H_{5} \xrightarrow{CH_{3}ONa} \xrightarrow{H_{3}^{+}O} CH_{3} \xrightarrow{CCH_{2}^{-}C} -OC_{2}H_{5} + C_{2}H_{5}OH$$

10、酯化反应历程

$$CH_3$$
- C - O H₂
 CH_3 C- O C₂H₅
 CH_3 C- O C₂H₅
 CH_3 C- O C₂H₅

四、期中考试以后一些重要的有机反应

1. 醇

(2) 频哪醇重排

完成反应、机理

1. 卤代烃

亲核取代反应

水解
$$CH_3CH_2CH_2CH_2CH_2CI + H_2O \xrightarrow{KOH} CH_3CH_2CH_2CH_2CH_2OH$$

注意: 三级卤代烃与强碱反应发生消除反应

醇解--- Williamson合成法—合成

氰解
$$CH_3CH_2CH_2Cl + NaCN$$
 $\xrightarrow{\overline{p}}$ $CH_3CH_2CH_2CN + NaCl$ 丙腈

与硝酸银醇溶液的反应---鉴别卤代烃, S_N1历程

与NaI的丙酮溶液反应---S_N2历程

1. 卤代烃

消除反应

卤代环烷烃消除遵循扎伊采夫规则外,在立体化学上则符合反式消除,被消除的 卤素和氢应处于反位

CH₃

1. 醇

(1) 生成卤代烃

鉴别不同结构的醇

Lucas试剂: 浓HCI — 无水ZnCI₂

$ROH + HCI \xrightarrow{ZnCl_2} RCI + H_2O$	
3°醇、烯丙醇、苄醇	室温下反应液立即混浊、分层;
2 ⁰ 醇	2~5 min. 反应液混浊、分层;
1 ⁰ 醇	加热,反应液混浊、分层;

1. 醇

2. 酚

(1) 酸性 溶于氢氧化钠,通二氧化碳生成沉淀 鉴别酚

3. 醚

亲核试剂优先进攻空间位阻小的烷基,对于甲基醚的反应优先得到碘甲烷。

3. 醚

(2) 环醚的性质

完成反应 (酸催化和碱催化)

1. 碱催化 (有SN2的特点)

从C—O键O的背面进攻位阻小的C^{δ+}

3. 醚

(2) 环醚的性质

完成反应 (酸催化和碱催化)

2. 酸催化 (类似 Sn 1 反应)

氧先质子化成镁盐, C-O键断裂, 形成较稳定的C+中间体

$$C_6H_5CH$$
 CH_2 + HC1 $CHC1_3$ C_6H_5CH CH_2OH (71%)

4. 醛酮

1)与HCN的加成——醛、甲基酮、八个碳以下的环酮—完成反应、合成多一个碳的有机羧酸

$$R-C=O+H^{+}-CN$$
 $R-C-OH$ $R-C=O+H^{+}-CN$ $R-C-OH$ $R-C-OH$ $R-C-OH$ $R-C-OH$ $R-C-OH$ $R-C-OH$

4. 醛酮

2) 与格氏试剂的加成---合成各种结构的醇--合成

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH + Mg \times X$$

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-CH_2-OH$$

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-CH_2-OH$$

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-CH-OH$$

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-CH-OH$$

$$R-MgX + C=0 \longrightarrow R-C-OMgX \xrightarrow{H_2O} R-C-OH$$

- 4. 醛酮
- 3) 与醇的加成一保护羰基一合成、完成反应

4)与亚硫酸氢钠的加成---鉴别醛、酮

4. 醛酮

5)与氨及其衍生物的亲核加成反应—完成反应、命名

$$C = N - R(Ar) \qquad (hg) \qquad \qquad C = N - R(Ar) \qquad (西佛碱) \quad 亚胺 \qquad (h_2N - OH \qquad (羟胺) \qquad \qquad C = N - OH \qquad (B) \qquad \qquad (B) \qquad$$

贝克曼重排:

酸催化; 离去基团与迁移基团处于反位且反应同步

$$\begin{array}{c} C_6H_5\\ p-CH_3C_6H_4\\ \end{array} C=N \\ \begin{array}{c} OH\\ HO \\ \end{array} \\ \begin{array}{c} H_4^{+}\\ \end{array} \\ \begin{array}{c} C_6H_5\\ HO \\ \end{array} C=N \\ \end{array} \\ \begin{array}{c} C_6H_4CH_3-P\\ HO \\ \end{array} \\ \begin{array}{c} (\overline{D} \oplus \underline{H}^{+})\\ \end{array} \\ \begin{array}{c} (\overline{D}$$

- 4. 醛酮
- 6) 醛的氧化反应—鉴别脂肪醛和芳醛

土伦(Tollens)试剂: AgNO₃的氨溶液 银镜反应: 可氧化脂肪醛,芳香醛

RCHO +
$$Ag(NH_3)_2OH \longrightarrow RCOONH_4 + Ag + H_2O + NH_3$$

费林 (Fehling) 试剂: 硫酸铜与酒石酸钾钠的碱性混合液

铜镜反应: 只能氧化脂肪醛, 不能氧化芳香醛

RCHO +
$${}^{2}\text{Cu}^{2+}$$
 + NaOH + H₂O \longrightarrow RCOONa + Cu₂O + ${}^{4}\text{H}^{+}$

- 4. 醛酮
- 7) 醛酮的还原
- 用金属氢化物还原:选择性还原—完成反应、合成

[NaBH₄] 氢负离子对羰基化合物的亲核加成。选择性较强。

$$\begin{array}{c|cccc}
O & OH \\
\hline
-COOC_2H_5 & NaBH_4 & -COOC_2H_5 \\
\hline
CH_3OH & COOC_2H_5
\end{array}$$

[LiAlH4] 氢负离子作亲核试剂对羰基的加成。还原性强。

CH₃CH=CHCHO
$$\frac{1) \text{LiAlH}_4 \text{ Z醚}}{2) \text{ H}^+, \text{ H}_2\text{O}}$$
 > CH₃CH=CHCH₂OH (90%)

- 4. 醛酮
- 7) 醛酮的还原
- 羰基的彻底还原—完成反应、合成

A 克莱门森还原法

$$R - \stackrel{\square}{C} - R \xrightarrow{\boxed{H}} RCH_2R' + H_2O$$

$$Zn - Hg + HCI$$

$$RCH_2R' + H_2O$$

B沃尔夫一吉斯尼尔一黄鸣龙法

4. 醛酮

8) Cannizzaro反应(歧化反应): 无α-H的醛,在浓碱作用下发生的自身氧化还原反应—完成反应、合成

9) 烃基上的反应一完成反应、鉴别甲基酮等

A 卤化(酸催化)和卤仿反应(碱催化)

$$Br \longrightarrow C-CH_3 + Br_2 \xrightarrow{CH_3COOH} Br \longrightarrow Br \longrightarrow C-CH_2Br + HBr$$

CH₃—CH₃ +
$$I_2$$
 + NaOH — \rightarrow CHI₃ + $^{\vee}$ CH₃COONa +NaI + H₂O

- 4. 醛酮
- 9) 烃基上的反应
- B 羟醛缩合反应—合成、完成反应、机理

CH₃-CH + CH₂-CHO
$$\xrightarrow{\text{NaOH}}$$
 CH₃-CH - CH₂CHO $\xrightarrow{\text{H}_2\text{O}}$ CH₃-CH - CH₂CHO $\xrightarrow{\text{OH}}$ CH₃-CH - CH₂CHO $\xrightarrow{\text{OH}}$ CH₃-CH - CH₂CHO $\xrightarrow{\text{OH}}$ CH₃-CH - CH₂CHO

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 1)酸性—鉴别羧酸

RCOOH +
$$Na_2CO_3$$
 \rightarrow RCOONa + $H_2O + CO_2$

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 2) 羧酸衍生物的生成—完成反应

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 3)还原—完成反应

$$CH_3$$
— CH — CH — CH — CH — CH — CH_2 OH

4) 一元羧酸的脱羧—完成反应

当A为吸电子基团,如:A=COOH, CN, C=O, NO_2 ,-CH=CHR, CX_3 , C_6H_5 等时_,失羧反应极易进行。

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 5) 二元羧酸受热后的变化一完成反应

乙二酸和丙二酸加热脱羧

COOH
$$\triangle$$
 CO₂ + HCOOH COOH

$$CH_2$$
 $COOH$
 $COOH$
 $COOH$
 $COOH$
 $COOH$

5. 羧酸及其衍生物

- (1) 羧酸
 - 5) 二元羧酸受热后的变化一完成反应

丁二酸和戊二酸加热至熔点以上,分子内失水形成环状酸 酐

$$CH_2COOH$$
 CH_2COOH CH_2COOH

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 5) 二元羧酸受热后的变化一完成反应

己二酸、庚二酸在Ba(OH)。存在下加热,分子内同时失水,失羧生成环酮

- 5. 羧酸及其衍生物
 - (1) 羧酸
 - 6) α-H卤化反应—完成反应、合成

$$\begin{array}{c|c} CH_2COOH & CI_2 \\ \hline P & CH_2COOH & CI_2 \\ \hline P & CI_2CHCOOH & P \\ \hline \end{array} \rightarrow \begin{array}{c} CI_2 \\ \hline P & CI_3CCOOH \\ \hline \end{array}$$

- 5. 羧酸及其衍生物
 - (2) 羧酸衍生物
 - 1) 酰胺的脱水反应一完成反应

$$CH_{3}(CH_{2})_{4}$$
 $C-NH_{2} + SOCI_{2}$ 加热 $CH_{3}(CH_{2})_{4}$ $CN + SO_{2} + 2HCI$ 约86% $C_{6}H_{5}$ $C-NH_{2} + P_{2}O_{5}$ 加热 $C_{6}H_{5}$ $CN + H_{3}PO_{4}$ 约73%

2) 酰胺的霍夫曼降级反应—完成反应

$$R \longrightarrow C \longrightarrow NH_{2} + Br_{2} + 4 NaOH \longrightarrow R \longrightarrow NH_{2} + 2 NaBr + Na_{2}CO_{3} + 2 H_{2}O$$

- 5. 羧酸及其衍生物
 - (2) 羧酸衍生物
 - 3) 克莱森酯缩合反应—完成反应、合成、机理

RCH₂ C
$$OC_2H_5 + H$$
 CH $CC OC_2H_5$ C_2H_5Na

RCH₂ $OC_2H_5 + C_2H_5OH$

RCH₂ $OC_2H_5 + C_2H_5OH$

- 6. 含氮有机化合物
 - (1) 硝基化合物 硝基化合物的还原
 - A 酸性还原成胺—完成反应

- 6. 含氮有机化合物
 - (1) 硝基化合物

B 选择性还原—完成反应、合成

- 6. 含氮有机化合物
 - (2) 胺
 - 1) 芳胺的重氮化反应一完成反应、合成

$$\sim$$
 NH₂ + NaNO₂+ 2HCl $\stackrel{0-5^{\circ}C}{\longrightarrow}$ \sim N₂Cl+ 2 H₂O + NaCl

2) 胺的磺酰化反应一完成反应、鉴别

$$RNH_2$$

 R_2NH + H_3C — SO_2C1 — H_3C — SO_2NR_2] 过滤
 R_3N 不反应 — R_3N — R_3N

6. 含氮有机化合物

(3)季胺碱—完成反应、推断结构

季胺碱的热消除反应

$$\begin{bmatrix} H - C - C - NR_3 \end{bmatrix} OH \longrightarrow C = C + R_3N + H_2O$$

机理: 一般认为是E2反应,过渡态为: RCH CH₂

平面反式消去,碱可以是分子内的-OH,也可以是外加的。显然,碱优先进攻空间位阻小的β-H。

NR₃

- 6. 含氮有机化合物
 - (4) 重氮和偶氮化合物—完成反应、合成

重氮盐的反应及在合成上的应用

失去氮的反应:

- 1 被羟基取代
- 2 被卤素取代
- 3 被氰基取代
- 4 被氢原子取代

6. 含氮有机化合物

1. 被羟基取代—氨基变羟基,制备其他方法不易得到的酚类

- 6. 含氮有机化合物
 - 2. 被卤素取代一氨基变卤素,制备其他方法不易得到的卤苯

6. 含氮有机化合物

3. 被氰基取代一氨基变氰基或羧基,制备其他方法不易得到的羧酸

6. 含氮有机化合物

4. 被氢原子取代一氨基变氢原子,制备其他方法不易得到的有机化合物,先用氨基占位置并定位,再去除氨基

- 6. 含氮有机化合物
 - 4. 被氢原子取代一氨基变氢原子,制备其他方法不易得到的有机化合物
 - ,先用氨基占位置并定位,再去除氨基

- 6. 含氮有机化合物
 - (4) 重氮和偶氮化合物 保留氮的反应---偶合反应

重氮盐在弱碱、中性或弱酸性溶液中与酚或芳胺等反应,生成偶氮化合物

$$N_2$$
 CI + OH N_2 CI + OH N_3 CH $_3$ CH $_3$ COONa,H $_2$ O $_3$ C N $_4$ CI + N_4 C

相同点:反应在邻,对位发生。

不同点:与酚偶联pH = 8-10,与芳胺偶联pH = 5-7

五、期末考试重要题型

1. 命名

所有有机化合物

注意:给出R、S构型,顺反构型等

五、期末考试重要题型

- 2. 选择填空题知识点
 - 1)利用燃烧热、氢化热判断烯烃、环烷烃的稳定性
 - 2) C+、C-, C-的稳定性
 - 3) 熔、沸点,溶解度的比较
 - 4) 试剂的亲核能力
 - 5) 羧酸酸性和胺碱性强弱的判断
 - 6) 二取代环己烷的稳定构象
 - 7) 用休克尔规则判断芳香性
 - 8) 判断旋光性
 - 9) 共振式
 - 10) S_N1和S_N2,亲核加成,亲电加成,亲电取代等反应速率或活性等的比较
 - 11) 羧酸衍生物的反应活性

五、期末考试重要题型

- 3. 完成反应
- 4. 反应机理题
- 5. 鉴别题
- 6. 推断结构题
- 7. 合成题
 - (1) 利用Wiliamson合成法合成混醚
 - (2) 以乙酰乙酸乙酯和丙二酸二乙酯为原料制备有机化合物
 - (3) 利用格式试剂和醛酮为原料制备醇
 - (4) 利用重氮盐合成有机化合物
- (5) 其中考试前的合成题也在期末考试考察范围内如D-A反应, 順式或反式烯烃的制备等