机器学习 决策树实验 计 24 2012011335 柯均洁

实验设计

● 算法总体流程:

- 1. 调用 readC45(...)来读入所有数据
- 2. 调用 generateTainTestSet(trainRate, validationRate)来生成训练集、验证集和测试集
- 3. 调用 train 函数,用 buildDecisionTree 函数来根据训练集建立决策树
 - a) 若子数据集全为同一类或者已经对所有属性都进行了划分,则将节 点认定为叶节点并返回
 - b) 将当前节点的类标签定为当前子数据集中最多数的类(调用函数 MajorityVoting 获取标签)
 - c) 计算各属性的信息增益,并从中选择信息增益率最大的属性作为分 类属性
 - d) 根据分类属性的取值划分当前数据集,对划分后的子数据集递归建树,并将生成的子节点加入到当前节点的 children 中

4. 调用 pruning()函数来进行后剪枝

- a) 首先通过 classifyValidationSet()来将验证集的所有数据进行分类, 分类的过程中,数据所经过的每个节点都会更新其分类的计数器, 保存在 TreeNode 的 data 中。使得每个节点都知道自己的子树中 有多少正例和反例。
- b) 通过 PEPrune(Node)遍历决策树,根据验证集的信息进行悲观剪枝 PEP
- 5. 调用 test()进行测试,返回正确率

● 实验过程:

1. Task1 和 Task2: 修改 task1(trainRate)、task2(trainRate, validationRate) 的参数,运行 5 次并记录树的大小和正确率,计算 min/max/average

2. Task3: 直接调用 task3()函数,即可得到分类结果

● 属性选择方法:

选择信息增益率最大的属性进行划分

$$GainRatio(S, A) = rac{Gain(S, A)}{SplitInfo(S, A)}$$
 $SplitInfo(S, A) = -\sum_{i=1}^{c} rac{|S_i|}{|S|} log_2 rac{|S_i|}{|S|}$

● 连续属性值的信息增益率计算:

- 1. 统计当前节点数据子集中所有的属性值
- 2. 排序之后两两取中点作为可能的候选分隔阈值点 split point
- 3. 对每个阈值点计算其信息增益,选择信息增益最大的阈值点作为当前节 点该属性的分隔点,记录到 newSplitPoint 中
- 4. 根据计算所得的属性值分割点计算该节点的信息增益率

● 剪枝策略: Reduce-Error Pruning 剪枝 REP

- 2. 对决策树进行遍历,如果"将当前节点视为一个叶子"比"对当前节点进行划分"所得到的正确分类的例子更多,则将子树减去,当前节点变为叶子节点

● 缺失数据的处理:

- 1. 在计算某属性信息增益时若出现了样本的属性值缺失,则将该样本的属性值赋值为当前子集出现最多的属性值
- 在选择某属性作为分隔属性后需要对子集进行划分时,若某样本该属性值缺失,则将该样本加入该属性值取值最多的那个集合中
- 3. 若建树完成之后,待分类样本中出现分类属性值缺失,则直接将当前节 点的 classLabel 作为该样本的分类结果

实验结果

Task 1

● 总体情况:

Sample	Average	Accuracy				
Rate	Tree Size	Min	Max	Average		
5%	1952	0.8002	0.8136	0.8065		
50%	11543	0.8242	0.8288	0.8273		
100%	19653	0.8327	0.8327	0.8327		

● 详细实验数据:

Sample rate		1	2	3	4	5
	Tree size	1669	1974	1834	1972	2313
5%	Accuracy	0.8002	0.8017	0.8128	0.8136	0.8041
	Tree size	12120	11016	11530	11697	11351
50%	Accuracy	0.8272	0.8288	0.8242	0.8284	0.8273
	Tree size	19653	19653	19653	19653	19653
100%	Accuracy	0.8327	0.8327	0.8327	0.8327	0.8327

Task 2

● 总体情况:

Sample	Tree Size	Tree Size	Accuracy			
Rate	剪枝前	剪枝后	Min	Max	Average	
5%	1387	1103	0.8235	0.8386	0.8331	
50%	8142	6671	0.8386	0.8471	0.8445	
100%	14240	11696	0.8478	0.8535	0.8493	

● 详细实验数据:

Sample Rate		1	2	3	4	5
	pre-treesize	1346	1481	1482	1381	1244
	post-treesize	980	1266	1091	1185	991
5%	accuracy	0.8385	0.8337	0.8386	0.8314	0.8235
	pre-treesize	7823	8275	7916	8429	8269
	post-treesize	6253	6910	6558	6867	6765
50%	accuracy	0.8418	0.8471	0.8433	0.8458	0.8443
	pre-treesize	14882	14312	14406	13580	14020
	post-treesize	12384	11547	11748	11089	11714
100%	accuracy	0.8535	0.8478	0.8487	0.8483	0.8484

实验结果分析

● 过拟合问题与剪枝:

绘制 task1 和 task2 的平均正确率的对比图:

可以看出,在进行剪枝之后,整体的正确率都提升了,表明在剪枝前确

实出现了过拟合 over-fitting 的情况。也就是说,在未剪枝的情况下,算法生成的决策树过于详细和庞大,因为每个属性都被详细地考虑过,而且决策树的树叶节点所覆盖的训练样本都是"纯"的。这样,训练样本中的错误数据也会被决策树学习,成为决策树的部分,但是对于测试数据的表现就没有想象的那么好。

通过 REP 剪枝,能够自底向上地修剪决策树来最大限度地提高验证集合的精度,从而精简当前的决策树,一定程度地缓解过拟合的问题。

● 训练集大小对数据正确率的影响:

除了老师规定的实验,我还额外用测试了不同百分比下 task1 的正确率情况。以 5%、10%、15%…100%的训练集进行训练,记录 5 次训练的平均正确率,绘得图像为:

可以看出,随着训练集的不断增加,正确率是一直上升的,但上升的速度不断减慢,最终稳定在83.5%附近。表明决策树学习的方法需要有一定的训练集规模,但随着数据集规模的增大,决策树学习的正确率提升也是有限的,而且随着数据集增大,决策树也变得越来越复杂,时间空间开销也不断地上升(一开始我用 c++写的决策树就出现了递归内存开销过大的问题,后来改用 java,但是最后跑 100%的训练集时间都要快 10 分钟···)由此可见,决策树学习虽然易于理解和实现,也还是有其局限性的。

● "信息增益"与"信息增益率":

在实现算法的过程中,我先是按老师上课讲的 ID3 算法,用"信息增益"来选择分裂属性。但在查资料的过程中了解到 C4.5 作为 ID3 的改进,是用"信息增益率"来选择待分裂属性的。出于好奇,我测试了这两种属性选择方法的正确率。同样是以 5%、10%、15%…100%的训练集进行训练,记录 5 次训练的平均正确率, 绘得图像为:

从图像可以看出,简单地将划分方法从"信息增益"改为"信息增益率",就让正确率有了显著提升!实在是喜大普奔!通过进一步查阅资料我了解到,之所以 C4.5 要做这样的改进,是因为用"信息增益"作为划分标准存在问题:对于那些各类别样本数量不一致的数据,在决策树当中信息增益的结果偏向于那些具有更多数值的特征。而"信息增益率"则考虑了分支数量和尺寸的因素,在信息增益的基础上除了一项 split information,来惩罚值更多的属性,从而提升了划分的正确率。

实验总结

通过这次亲自动手编写决策树,我对 ID3 以及 C4.5 等决策树算法有了更加深入的理解,通过对比剪枝前后正确率的变化,我更加直观地认识到了决策树学习中存在的过拟合问题。除此之外,通过对比"信息增益"和"信息增益率"这两种属性选择标准,我对属性选择的方法也有了进一步的认识和体会。总之,通过这次实验,我提高了对决策树算法的认识,收获很大!