Doing an angular fit without doing an angular fit: the moments technique

Biplab Dey

Generalized $P \rightarrow VV$

• Two massless leptons $(\ell_{1,2})$ and two pseudo-scalars $(P_{1,2})$:

- B2CC: $B_d \to \psi^{(\prime)} K \pi$, $B_s \to \psi^{(\prime)} K K$
- EWP: $B_d \to K\pi\mu\mu$, $B_s \to KK\mu\mu$
- SL: $B_d \to \{\rho, D^*\} \ell^- \overline{\nu}_\ell$ (tagged @ BABAR)
- Exactly same formalism, but different N_{sig} , S/B, acceptance, ...

4 D > 4 D > 4 E >

Biplab Dey (INFN) Moments method June 18, 2015 2 / 16

The moments idea

• De facto reference: arXiv:1505.02873

Re-write the full differential rate in an orthonormal basis:

$$\frac{d\Gamma}{dq^2d\Omega} = \sum_i \Gamma_i(q^2) f_i(\Omega)$$

Orthonormality implies:

$$\int f_i(\Omega)f_j(\Omega)d\Omega=\delta_{ij}$$

• The observables/moments are extracted by simple summation:

$$\Gamma_i(q^2) = \sum_{k=1}^{N_{\mathrm{data}}} f_i(\Omega_k)$$

◆ロト ◆母ト ◆草ト ◆草ト 草 りへぐ

Example: $\overline{B} \to J/\psi K^-\pi^+$

- The orthonormal basis is constructed out of $Y_l^m \equiv Y_l^m(\theta_\ell, \chi)$ and $P_l^m \equiv \sqrt{2\pi} Y_l^m(\theta_V, 0)$.
- 7 complex amplitudes, $\{S, H_{0,\parallel,\perp}, D_{0,\parallel,\perp}\}$, or 13 real numbers.
- 28 Γ_i moments/observables. A few examples:

i	$f_i(\Omega)$	Γ_i^{tr}
1	$P_0^0 Y_0^0$	$\left[H_0 ^2 + H_{\parallel} ^2 + H_{\perp} ^2 + S ^2 + D_0 ^2 + D_{\parallel} ^2 + D_{\perp} ^2 \right]$
2	$P_1^0 Y_0^0$	$2\left[\frac{2}{\sqrt{5}}Re(H_{0}D_{0}^{*})+Re(SH_{0}^{*})+\sqrt{\frac{3}{5}}Re(H_{\parallel}D_{\parallel}^{*}+H_{\perp}D_{\perp}^{*})\right]$
5	$P_4^0 Y_0^0$	$\frac{2}{7} \left[-2(D_{\parallel} ^2 + D_{\perp} ^2) + 3 D_0 ^2 \right]$
28	$P_4^0\sqrt{2}\text{Im}(Y_2^2)$	$-rac{4}{7}\sqrt{rac{3}{5}}$ Im $(D_{\perp}D_{\parallel}^*)$

◆ロ > ◆昼 > ◆豊 > ・豊 * り < ○・</p>

The moments idea (cntd.)

Interesting things are now solvable for (no fitting):

$$\begin{split} |D_0|^2 &= \frac{7}{9} \left(\frac{\Gamma_5}{2} - \sqrt{5} \Gamma_{10} \right) \\ |D_{\parallel}|^2 &= \frac{7}{4} \left(\sqrt{\frac{5}{3}} \Gamma_{23} - \frac{1}{3} \left(\sqrt{5} \Gamma_{10} + \Gamma_5 \right) \right) \\ |D_{\perp}|^2 &= \frac{7}{4} \left(-\sqrt{\frac{5}{3}} \Gamma_{23} - \frac{1}{3} \left(\sqrt{5} \Gamma_{10} + \Gamma_5 \right) \right) \end{split}$$

Biplab Dey (INFN)

The three "legs"

Background subtraction

Acceptance correction

Evaluation of the covariance matrix

Background subtraction

- Let $\tilde{n}_{\rm b}$ and $N_{\rm b}$ be the projected background events in the signal- and side-bands, respectively.
- Define the scale-factor $x = \tilde{n}_b/N_b$.
- The background-subtracted "measured" moments and covariance matrix:

$$egin{aligned} ilde{\Gamma}_i^{
m b} &= \sum_{k=1}^{N^{
m data}} f_i(\Omega_k) - \mathbf{x} \sum_{k=1}^{N^{
m b}} f_i(\Omega_k) \ ilde{C}_{ij}^{
m b} &= \sum_{k=1}^{N^{
m data}} f_i(\Omega_k) f_j(\Omega_k) + \mathbf{x}^2 \sum_{k=1}^{N^{
m b}} f_i(\Omega_k) f_j(\Omega_k) \end{aligned}$$

7 / 16

Biplab Dey (INFN) Moments method June 18, 2015

Acceptance correction

• Throw MC flat in $d\Omega$ and calculate the efficiency matrix:

$$\mathbf{E}_{ij} = \int \epsilon(\Omega) \left[f_i(\Omega) f_j(\Omega) \right] d\Omega = \frac{\int d\Omega}{N_{\text{gen}}^{\text{MC}}} \left[\sum_{k=1}^{N_{\text{acc}}^{\text{MC}}} f_i(\Omega_k) f_j(\Omega_k) \right]$$

• The "true" moments and covariance matrix can now be extracted as:

$$\Gamma_i = (E^{-1})_{ij} \tilde{\Gamma}_j$$
 $C_{ij} = (E^{-1})_{ik} \tilde{C}_{kl} (E^{-1})_{jl}$

• Robust under local "holes" in acceptance. Simple counting.

- ◆ロ → ◆ ┛ → ◆ 重 ト ◆ 重 ・ 夕 Q (~)

Toy set-up

• Full $m(K\pi)$ spectrum generated with LASS *S*-wave, $K_0(1410)$, $K^*(892)$, and $K_2(1430)$.

3-D acceptance function from B2KstMuMu analysis.

ullet $N_{
m sig}$ per toy is sampled from a Poissonian with $\lambda = N_{
m sig}^{
m data}$

 In all, toys should be a reasonably realistic representation of full Run I dataset.

Toys (cntd.)

Toys results

• I'll show results here for the $|m(K\pi)-895|<10$ MeV bin.

• Checks done at each individual step of complication. I'll show results for the full case.

• See also toys for $\bar{B} \to K^-\pi^+\mu^-\mu^+$ in yesterday's RD meeting.

Biplab Dey (INFN)

Sample pulls for $|D_{0,\parallel,\perp}|^2$

 $|D_{\parallel}|^2$ $\overline{x} = -0.06$ $\sigma = 1.01$

Ongoing work

• 4-D parameterization code of $\epsilon(m(K\pi), \cos\theta_\ell, \cos\theta_V, \chi)$ adopted from B2KstMuMu analysis. Each event is further weighted by $1/\epsilon$.

$$egin{aligned} ilde{\Gamma}_i^{
m b} &= \sum_{k=1}^{N^{
m data}} rac{1}{\epsilon} f_i(\Omega_k) - \sum_{k=1}^{N^{
m b}} rac{x}{\epsilon} f_i(\Omega_k) \ ilde{C}_{ij}^{
m b} &= \sum_{k=1}^{N^{
m data}} rac{1}{\epsilon^2} f_i(\Omega_k) f_j(\Omega_k) + \sum_{k=1}^{N^{
m b}} rac{x^2}{\epsilon^2} f_i(\Omega_k) f_j(\Omega_k) \end{aligned}$$

- Validation and compatibility with the efficiency matrix formalism ongoing.
- NB: pretty statistics intensive, so we will need quite a bit of PHSP signal MC.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

13 / 16

Publication strategy (for $\overline{B} o \psi^{(\prime)} K^- \pi^+$)

• Will provide 27 normalized moments + cov. matrix in small $m(K\pi)$ bins.

• Clearly the world's most detailed description of the $m(K\pi)$ system.

• Re-visit the $\mathbb{Z}(4430)$: are SPD waves enough to describe the system? F_D under the $K^*(892)$ should be interesting.

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

Relations between the Γ_i 's

• The 28 Γ_i 's are not all independent. 5 relations found so far. Ex:

$$\Gamma_{25}=-\sqrt{\frac{7}{3}}\Gamma_{27}$$

- Unless the complete set of relations are found, "direct" fit simply not doable.
- Also $(|H_0|^2 + |S|^2)$ seem to go together. So F_S of F_P might not be extractable. $|H_{\parallel,\perp}|^2$ available though.
- Unlike S + P, the different components don't decouple for S + P + D.

Summary and outlook

- The moments approach simplifies the analysis by bypassing an actual fit. Entire analysis is a counting experiment.
- Robust against low statistics and fit biases. You get what you see.
- Even allows for angular analysis when a direct fit not possible.
- Validations in parallel for B2CC/EWP/SL. Method performs very well for all modes.
- May be a JINST paper summarizing all the toy studies. The data papers can refer to this.
- Next step: what optimal physics can we extract from the moments?