Введение в машинное обучение

Н.В. Артамонов

15 мая 2025 г.

Содержание

1	1.1	едение в Python Pandas	
2	Pre	eprocessing	8
3	Сні	ижение размерности	8
4	Кла	астеризация	g
5	Per	рессия	11
	5.1	k-NN	11
	5.2	Линейная регрессия	17
		Валидация моделей	
6	Кла	ассификация	26
	6.1	k-NN	26
	6.2	Линейные модели	28
		Валидация моделей	

1 Введение в Python

1.1 Pandas

#1. Загрузите датасет countries. Вычислите описательные статистики для каждой переменной.

- #2. Загрузите датасет sleep75.
 - 1. вычислите размер датасета (число наблюдений & число переменных)
 - 2. Заполните следующую таблицу со значениями переменных

index	sleep	totwrk	age	male
0				
5				
100				
700				

- 3. Вычислите корреляционную матрицу для следующих переменных: sleep, totwrk, age
- 4. Заполните следующую таблицу

Desc.Stat	sleep	totwrk	age	hrwage
max				
min				
mean				
median				
st.dev				
var				
1st quartile				
3rd quartile				

Замечание: 1st/3rd квантили — 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) sleep>3000
 - (b) totwrk < 2000
 - (c) age>40
 - (d) age<30
- 6. Сколько наблюдений с условием totwrk=0? Кто эти люди?

- 7. Есть ли в датасете пропущенные наблюдения? Сколько их?
- #3. Загрузите датасет Electricity.
 - 1. вычислите размер датасета (число наблюдений & число переменных)
 - 2. заполните следующую таблицу со значениями переменных

index	cost	q	pl	pk	pf
1					
15					
48					
87					

- 3. Вычислите корреляционную матрицу для следующих переменных: $\cos t, \, q, \, pl, \, pk, \, pf$
- 4. Заполните следующую таблицу

Desc.Stat	cost	q	pl	pk	pf
max					
min					
mean					
median					
st.dev					
var					
1st quartile					
3rd quartile					

Замечание: 1st/3rd квантили – 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) $\cos t > 40$
 - (b) q < 5000
 - (c) q>4000
 - (d) $20 < \cos t < 50$

6. Есть ли в датасете пропущенные наблюдения? Сколько их?

#4. Загрузите датасет wage2.

- 1. вычислите размер датасета (число наблюдений & число переменных)
- 2. заполните следующую таблицу со значениями переменных

index	wage	hours	IQ	educ	exper	age
1						
25						
179						
800						

- 3. Вычислите корреляционную матрицу для следующих переменных: wage, hours, IQ, educ, exper
- 4. Заполните следующую таблицу

Desc.Stat	wage	hours	IQ	educ	exper	wage
max						
min						
mean						
median						
st.dev						
var						
1st quartile						
3rd quartile						

Замечание: 1st/3rd квантили – 25%/75% квантили соответственно.

- 5. Сколько наблюдения соответствуют следующим условиям
 - (a) wage>1000
 - (b) age<40
 - (c) exper>10
 - (d) 100<IQ<130

- 6. Есть ли в датасете пропущенные наблюдения? Сколько их?
- #5. Загрузите датасет Labour. Создайте новый датасет, содержащий logпеременные из исходного датасета.
- #6. Загрузите датасет Electricity. Создайте новый датасет, содержащий log-переменные из исходного датасета.

1.2 Визуализация

- #7. Загрузите датасет sleep75.
 - 1. нарисуйте гистограммы для переменных sleep, totwrk, age, hrwage, educ
 - 2. нарисуйте гистограмму с накопление для sleep относительно male
 - 3. нарисуйте гистограмму с накопление для totwrk относительно south
 - 4. нарисуйте гистограмму с накопление для totwrk относительно smsa
 - 5. нарисуйте диаграмму рассеяния sleep vs totwrk
 - 6. нарисуйте диаграмму рассеяния sleep vs totwrk с группировкой по male
 - 7. нарисуйте диаграмму рассеяния sleep vs age
 - 8. нарисуйте диаграмму рассеяния sleep vs age с группировкой по south
 - 9. нарисуйте диаграмму рассеяния sleep vs edu
 - 10. нарисуйте диаграмму рассеяния sleep vs edu с группировкой по smsa
 - 11. визуализируйте корреляционную матриц для следующих переменных: sleep, totwrk, age
- #8. Загрузите датасет Labour.
 - 1. нарисуйте гистограммы для каждой переменной

- 2. нарисуйте гистограммы для log-переменных output, capital, labour, wage
- 3. нарисуйте диаграммы рассеяния output vs других переменных
- 4. нарисуйте диаграммы рассеяния log(output) vs log других переменных
- 5. визуализируйте корреляционную матриц для всех переменных
- 6. визуализируйте корреляционную матриц для log-переменных

#9. Загрузите датасет Electricity.

- 1. нарисуйте гистограммы для переменных cost, q, pf, pk, pl
- 2. нарисуйте гистограммы для log-переменных cost, q, pf, pk, pl
- 3. нарисуйте диаграммы рассеяния cost vs других переменных
- 4. нарисуйте диаграммы рассеяния log(cost) vs log других переменных
- 5. визуализируйте корреляционную матриц для всех переменных
- 6. визуализируйте корреляционную матриц для log-переменных

#10. Загрузите датасет diamonds.

- 1. нарисуйте гистограммы для переменных price, carat
- 2. нарисуйте гистограммы для log-переменных price, carat
- 3. нарисуйте гистограмму с накопление для price относительно cut
- 4. нарисуйте гистограмму с накопление для carat относительно clarity
- 5. нарисуйте гистограмму с накопление для log(price) относительно color
- 6. нарисуйте гистограмму с накопление для log(carat) относительно color
- 7. нарисуйте диаграмму рассеяния price vs carat

- 8. нарисуйте диаграмму рассеяния log-price vs log-carat
- 9. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по cut
- 10. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по color
- 11. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по clarity

#11. Загрузите датасет Diamond.

- 1. нарисуйте гистограммы для переменных price, carat
- 2. нарисуйте гистограммы для log-переменных price, carat
- 3. нарисуйте гистограмму для price с группировкой относительно переменной certification
- 4. нарисуйте гистограмму для carat с накопление относительно clarity
- 5. нарисуйте гистограмму для log(price) с накопление относительно colour
- 6. нарисуйте гистограмму для log(carat) с накопление относительно colour
- 7. нарисуйте диаграмму рассеяния price vs carat
- 8. нарисуйте диаграмму рассеяния log-price vs log-carat
- 9. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по certification
- 10. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по colour
- 11. нарисуйте диаграмму рассеяния log-price vs log-carat с группировкой по clarity

#12. Загрузите датасет countries.

1. Постройте гистограммы для всех переменных

- 2. Постройте диаграмму рассеяния Население vs ВВП д/н
- 3. Постройте диаграмму рассеяния ИРЧП vs ВВП д/н
- 4. Постройте диаграмму рассеяния Безработица vs ВВП д/н

2 Preprocessing

Замечание: рассмотрите следующие преобразования переменных:

- квантильное (для гауссового распределения)
- Box-Cox
- Yeo-Johnson
- #1. Загрузите датасет Labour
 - 1. Нарисуйте гистограммы для каждой переменной в уровнях и после стандартных преобразований
 - 2. Нарисуйте диаграммы рассеяния в уровнях и после стандартных преобразований
- #2. Загрузите датасет diamonds. Для переменных price, carat, x, y,
 - 1. Нарисуйте гистограммы для каждой переменной в уровнях и после стандартных преобразований
 - 2. Нарисуйте диаграммы рассеяния в уровнях и после стандартных преобразований

3 Снижение размерности

- #1. Загрузите датасет Labour.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)

- 3. Вычислите накопленные дисперсии главных компонент.
- #2. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)
- #3. Загрузите датасет sleep75 и удалите переменные с пропущенными значениями.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)
 - 3. Вычислите накопленные дисперсии главных компонент.
- #4. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)
- #5. Загрузите датасет diamonds и удалите категориальные переменные.
 - 1. Визуализируйте данные в главных компонентах (рассмотрите 2D и 3D визуализацию)
 - 2. Визуализируйте данные, используя метод t-SNE (рассмотрите 2D и 3D визуализацию)
 - 3. Вычислите накопленные дисперсии главных компонент.
- #6. В условиях предыдущей задачи проведите визуализацию и вычислите накопленные дисперсии главных компонент после (нелинейного) преобразования данных (квантильное, Box-Cox, Yeo-Johnson)

4 Кластеризация

Важно обязательно проводим предварительную обработку данных:

- удаление пропущенных значений
- нормировка

• преобразование категориальных признаков

#1. Для набора данных countries проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

- #2. Для набора данных countries найдите «оптимальное» число кластеров для метода
 - 1. k-средних
 - 2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin

#3. Из набора данных sleep75 возьмите переменные sleep, totwrk, age, educ и проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

- #4. Из набора данных sleep75 возьмите переменные sleep, totwrk, age, educ и найдите «оптимальное» число кластеров для метода
 - 1. k-средних

2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin

#5. Для набора данных Labour проведите разбиение на кластеры следующими методам:

Число кластеров	Метод
3	k-средних
4	k-средних
5	k-средних
3	иерархическая
4	иерархическая
5	иерархическая

Визуализируйте разбиение на кластеры на диаграмме рассеяния в переменных датасета

#6. Для набора данных Labour найдите «оптимальное» число кластеров для метода

- 1. k-средних
- 2. иерархической кластеризации

относительно метрик: Silhouette, Calinski-Harabasz, Davies-Bouldin

5 Регрессия

5.1 k-NN

Важной: каждой задаче раздела модель нужно обучить на полном датасете

#1. Для набора данных sleep75 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male
0	2160	32	1	0
1	1720	24	0	1
2	2390	44	0	1

вычислите прогноз **sleep** по каждой модели

#2. Для набора данных sleep75 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
sleep	totwrk, age, south, male, smsa, yngkid, marr	

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male	smsa	yngkid	marr
0	2150	37	0	1	1	0	1
1	1950	28	1	1	0	1	0
2	2240	26	0	0	1	0	0

вычислите прогноз **sleep** по каждой модели

#3. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз **wage** по каждой модели

#4. Для набора данных wage2 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	age, IQ, south, married, urban

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз **wage** по каждой модели

#5. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	exper, female, married, smsa

1. подгоните на исходном датасете модель k-NN с параметрами

№	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз wage по каждой модели

#6. Для набора данных wage1 рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
$\log(\text{wage})$	exper, female, married, smsa	

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз **wage** по каждой модели

#7. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждой модели

#8. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	log(capital), log(labour)

1. подгоните на исходном датасете модель k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждой модели

#9. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour, wage

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели

#10. Для набора данных Labour рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	$\log(\text{capital}), \log(\text{labour}), \log(\text{wage})$

1. подгоните на исходном датасете модель k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

2. Рассмотрим трёх людей с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждой модели

5.2 Линейная регрессия

Важной: каждой задаче раздела модель нужно обучить на полном датасете

#11. Для набора данных sleep75 рассмотрим линейную регрессию

sleep на totwrk, age, south, male.

- 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha = 1$)
 - с регуляризацией LASSO ($\alpha = 1$)

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male
0	2160	32	1	0
1	1720	24	0	1
2	2390	44	0	1

вычислите прогноз sleep по каждому методу подгонки

- #12. Для набора данных sleep75 рассмотрим линейную регрессию sleep на totwrk, age, south, male, smsa, yngkid, marr.
 - 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha = 1$)
 - с регуляризацией LASSO ($\alpha=1$)

и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	totwrk	age	south	male	smsa	yngkid	marr
0	2150	37	0	1	1	0	1
1	1950	28	1	1	0	1	0
2	2240	26	0	0	1	0	0

вычислите прогноз sleep по каждому методу подгонки

- #13. Для набора данных wage2 рассмотрим линейную регрессию wage на age, IQ, south, married, urban.
 - 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha=1$)

 \bullet с регуляризацией LASSO ($\alpha=1)$

и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз wage по каждому методу подгонки

#14. Для набора данных wage2 рассмотрим линейную регрессию log(wage) на age, IQ, south, married, urban.

- 1. Подгоните модель
 - без регуляризации
 - ullet с регуляризацией Ridge ($\alpha=1$)
 - с регуляризацией LASSO ($\alpha=1$)

и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	age	IQ	south	married	urban
0	36	105	1	1	1
1	29	123	0	1	0
2	25	112	1	0	1

вычислите прогноз wage по каждому методу подгонки

#15. Для набора данных wage1 рассмотрим линейную регрессию wage на exper, female, married, smsa.

- 1. Подгоните модель
 - без регуляризации

- ullet с регуляризацией Ridge ($\alpha=1$)
- с регуляризацией LASSO ($\alpha = 1$)

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз wage по каждому методу подгонки

#16. Для набора данных wage1 рассмотрим линейную регрессию log(wage) на exper, female, married, smsa.

- 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha = 1$)
 - с регуляризацией LASSO ($\alpha = 1$)

и выведите коэффициенты подогнанной модели

2. Рассмотрим трёх людей с характеристиками

index	exper	female	married	smsa
0	5	1	1	1
1	26	0	0	1
2	38	1	1	0

вычислите прогноз wage по каждому методу подгонки

#17. Для набора данных Labour рассмотрим линейную регрессию output на capital, labour.

1. Подгоните модель

- без регуляризации
- \bullet с регуляризацией Ridge ($\alpha=1$)
- с регуляризацией LASSO ($\alpha = 1$)

2. Рассмотрим три фирмы с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждому методу подгонки

#18. Для набора данных Labour рассмотрим линейную регрессию log(output) на log(capital), log(labour).

- 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha = 1$)
 - с регуляризацией LASSO ($\alpha = 1$)

и выведите коэффициенты подогнанной модели

2. Рассмотрим три фирмы с характеристиками

index	capital	labour
0	2.970	85
1	10.450	60
2	3.850	105

вычислите прогноз output по каждому методу подгонки

#19. Для набора данных Labour рассмотрим линейную регрессию output на capital, labour, wage.

- 1. Подгоните модель
 - без регуляризации
 - с регуляризацией Ridge ($\alpha = 1$)
 - с регуляризацией LASSO ($\alpha = 1$)

2. Рассмотрим три фирмы с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждому методу подгонки

#20. Для набора данных Labour рассмотрим линейную регрессию log(output) на log(capital), log(labour), log(wage).

- 1. Подгоните модель
 - без регуляризации
 - \bullet с регуляризацией Ridge ($\alpha=1$)
 - с регуляризацией LASSO ($\alpha = 1$)

и выведите коэффициенты подогнанной модели

2. Рассмотрим три фирмы с характеристиками

index	capital	labour	wage
0	2.970	85	36.98
1	10.450	60	33.82
2	3.850	105	40.23

вычислите прогноз output по каждому методу подгонки

5.3 Валидация моделей

#21. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN c $k = 10$, Beca 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#22. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
sleep	totwrk, age, south, male, smsa, yngkid, marr

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN c $k = 10$, Beca 'uniform'
5	k-NN c $k = 10$, Beca 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#23. Набор данных wage2 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	age, IQ, south, married, urban

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#24. Набор данных wage2 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
$\log(\text{wage})$	age, IQ, south, married, urban

и следующие модели

№	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN c $k = 10$, Beca 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#25. Набор данных wage1 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
wage	exper, female, married, smsa

и следующие модели

Nº	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN c $k = 10$, Beca 'uniform'
5	k-NN c $k = 10$, Beca 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#26. Набор данных wage1 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features		
$\log(\text{wage})$	exper, female, married, smsa		

и следующие модели

$N_{ar{0}}$	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k=5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#27. Набор данных Labour разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
output	capital, labour, wage

и следующие модели

$N_{\overline{0}}$	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

#28. Набор данных Labour разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features
log(output)	$\log(\text{capital}), \log(\text{labour}), \log(\text{wage})$

и следующие модели

No॒	Модель
1	линейная регрессия
2	k-NN с $k = 5$, веса 'uniform'
3	k-NN с $k = 5$, веса 'distance'
4	k-NN с $k = 10$, веса 'uniform'
5	k-NN с $k = 10$, веса 'distance'

Проведите валидацию моделей относительно метрик \mathbb{R}^2 , MSE, MAE, MAPE. Какая модель предпочтительней?

6 Классификация

6.1 k-NN

Важной: каждой задаче раздела модель нужно обучить на полном датасете

#1. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

Постройте прогноз для male методом k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

#2. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная		объясняющие/признаки
smsa	\$	sleep, totwrk, age, south, male, yngkid, marr

Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

Постройте прогноз для **smsa** методом k-NN с параметрами

$N_{\overline{0}}$	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

#3. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
default	age, income, ownrent, selfempl

Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

Постройте прогноз для $\operatorname{\mathbf{default}}$ методом k-NN с параметрами

Nº	k	веса
1	5	uniform
2	5	distance
3	10	uniform
4	10	distance

6.2 Линейные модели

Важной: каждой задаче раздела модель нужно обучить на полном датасете

#4. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

вычислите прогноз для male

#5. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
male	sleep, totwrk, age, south

- 1. Подгоните (линейную) модель SVM и выведите коэффициенты подогнанной модели
- 2. Подгоните (нелинейную) модель SVM с ядром RBF
- 3. Подгоните (нелинейную) модель SVM с полиномиальным ядром степени 3
- 4. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south
0	2900	2160	32	1
1	3120	1720	24	0
2	2850	2390	44	0

вычислите прогноз для **male** по каждой модели

#6. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
smsa	sleep, totwrk, age, south, male, yngkid, marr

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

вычислите прогноз для **smsa**

#7. Для набора данных sleep75 рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
smsa	sleep, totwrk, age, south, male, yngkid, marr

- 1. Подгоните (линейную) модель SVM и выведите коэффициенты подогнанной модели
- 2. Подгоните (нелинейную) модель SVM с ядром RBF
- 3. Подгоните (нелинейную) модель SVM с полиномиальным ядром степени 3
- 4. Рассмотрим трёх людей с характеристиками

index	sleep	totwrk	age	south	male	yngkid	marr
0	2900	2150	37	0	1	0	1
1	3120	1950	28	1	1	1	0
2	2850	2240	26	0	0	0	0

вычислите прогноз для \mathbf{smsa} по каждорй модели

#8. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки
default	age, income, ownrent, selfempl

- 1. Подгоните логистическую регрессию и выведите коэффициенты подогнанной модели
- 2. Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

вычислите прогноз для default

#9. Для набора данных default рассмотрим переменные

Зависимая/таргетная	объясняющие/признаки	
default	age, income, ownrent, selfempl	

- 1. Подгоните (линейную) модель SVM и выведите коэффициенты подогнанной модели
- 2. Подгоните (нелинейную) модель SVM с ядром RBF
- 3. Подгоните (нелинейную) модель SVM с полиномиальным ядром степени 3
- 4. Рассмотрим трёх людей с характеристиками

index	age	income	ownrent	selfempl
0	37	2000	0	1
1	42.5	5250	1	0
2	29	2916	0	0

вычислите прогноз для $\mathbf{default}$ по каждой модели

6.3 Валидация моделей

#10. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении 80:20.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
male	sleep, totwrk, age, south	

и следующие модели

Nº	Модель
1	Логистическая регрессия
2	SVM (линейная)
3	k-NN с $k=5$, веса 'uniform'
4	k-NN с $k=5$, веса 'distance'
5	k-NN c $k = 10$, Beca 'uniform'
6	k-NN c $k = 10$, Beca 'distance'
7	SVM с ядром RBF

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?

#11. Набор данных sleep75 разбейте на обучающую и тестовую часть в соотношении $80{:}20$.

Рассмотрим задачу прогнозирования для переменных

зависимая/target	объясняющая/предикторы/features	
smsa	sleep, totwrk, age, south, male, yngkid, marr	

и следующие модели

Nº	Модель
1	Логистическая регрессия
2	SVM
3	k-NN с $k=5$, веса 'uniform'
4	k-NN с $k = 5$, веса 'distance'
5	k-NN с $k = 10$, веса 'uniform'
6	k-NN с $k = 10$, веса 'distance'
7	SVM RBF

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?

#12. Набор данных default разбейте на обучающую и тестовую часть в соотношении $80{:}20$.

Рассмотрим задачу прогнозирования для переменных

зависимая/target объясняющая/предикторы/feature	
smsa	sleep, totwrk, age, south, male, yngkid, marr

и следующие модели

Nº	Модель
1	Логистическая регрессия
2	SVM
3	k-NN с $k=5$, веса 'uniform'
4	k-NN с $k = 5$, веса 'distance'
5	k-NN c $k = 10$, Beca 'uniform'
6	k-NN с $k = 10$, веса 'distance'
7	SVM с ядром RBF

Проведите валидацию моделей относительно метрик Accuracy, ROC. Какая модель предпочтительней?