

Day: 1
Task: joker
Version: pl-1.2

m Joker
m 2.0~s/256~MiB

Joker powrócił do Gotham z nowym, jeszcze bardziej złowieszczym planem wobec miasta. W Gotham znajduje się N skrzyżowań (ponumerowanych od 1 do N) oraz M ulic (ponumerowanych od 1 do M). Każda ulica łączy dwa różne skrzyżowania, a każde dwa skrzyżowania są połączone co najwyżej jedną ulicą.

Aby złowieszczy plan Jokera się udał, musi on znaleźć nieparzystą liczbę ulic tworzących cykl. Formalnie, chce on znaleźć **parzystą** liczbę k oraz ciąg skrzyżowań: S, s_1, \ldots, s_k, S taki, że istnieją ulice łączące: (a) $S z s_1$, (b) $s_k z S$, oraz (c) $s_{i-1} z s_i$ dla każdego $i = 2, \ldots, k$.

Joker ma jednak problem: policja monitoruje ulice Gotham. Mianowicie, i-tego dnia monitorowany jest podzbiór ulic, których indeksy j tworzą spójny przedział: $l_i \leq j \leq r_i$. Żadna z monitorowanych ulic nie może być częścią złowieszczego planu Jokera! Na nieszczęście dla Gotham, Joker posiada szpiegów w szeregach policji, którzy zdradzili mu, które ulice będą monitorowane każdego kolejnego dnia. Joker chciałby teraz sprawdzić na podstawie zebranych informacji, w które dni będzie on w stanie przeprowadzić swój złowieszczy plan. Aby plan Jokera się udał danego dnia, w sieci ulic musi znajdować się cykl złożony z nieparzystej liczby ulic, które nie są monitorowane tego dnia.

Wejście

Pierwszy wiersz wejścia zawiera trzy liczby naturalne N, M i Q $(1 \le N, M, Q \le 200\,000)$: kolejno liczbę skrzyżowań, ulic i dni, które należy rozpatrzyć. Następnych M wierszy opisuje ulice; j-ty z tych wierszy $(1 \le j \le M)$ zawiera dwa numery skrzyżowań u i v $(u \ne v)$ oznaczające, że ulica o indeksie j łączy skrzyżowania o tych numerach. Możesz założyć, że każda para skrzyżowań jest połączona co najwyżej jedną ulicą. Następnych Q wierszy opisuje zapytania; i-ty z nich zawiera dwie liczby naturalne l_i, r_i określające, że i-tego dnia, wszystkie ulice j o indeksach z przedziału $l_i \le j \le r_i$ są monitorowane przez policję.

Wyjście

Twój program powinien wypisać Q wierszy; i-ty z nich $(1 \le i \le Q)$ powinien zawierać "YES", gdy Joker może przeprowadzić swój złowieszczy plan i-tego dnia, lub "NO" w przeciwnym przypadku.

Przykład

Wyjście
NO
YES

Graf z wejścia znajduje się na Rysunku 1.

Ocenianie

Podzadania:

Day: 1
Task: joker
Version: pl-1.2

- 1. (6 punktów) $1 \leq N, M, Q \leq 200$
- 2. (8 punktów) $1 \leq N, M, Q \leq 2\,000$
- 3. (25 punktów) $l_i=1$ dla $i=1,\ldots,Q$
- 4. (10 punktów) $l_i \leq 200$ dla $i=1,\dots,Q$
- 5. (22 punkty) $Q \le 2000$
- 6. (29 punktów) Brak dodatkowych ograniczeń

Rysunek 1: Przykład.