Лабораторная работа № 9

Использование протокола STP. Агрегирование каналов

Коннова Татьяна Алексеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	13
5	Контрольные вопросы	14

Список иллюстраций

5.1	логическая схема локальной сети с резервным соединением	6
3.2	Режим симуляции движения пакетов ICMP	7
3.3	Просмотр состояния протокола STP для vlan 3	7
3.4	Настройка коммутатора msk-donskaya-sw-1 корневым	8
3.5	Режим симуляции движения пакетов ІСМР к серверам	8
3.6	Настройка режима Portfast	9
3.7	Режим работы по протоколу Rapid PVST+	9
3.8	Режим работы по протоколу Rapid PVST+	9
	Режим работы по протоколу Rapid PVST+	10
3.10	Режим работы по протоколу Rapid PVST+	10
3.11	Логическая схема локальной сети с агрегированным соединением	11
3.12	Настройка агрегирования каналов	11
3.13	Настройка агрегирования каналов	11
3.14	Настройка агрегирования каналов	11
3.15	Настройка агрегирования каналов	11
3.16	Настройка агрегирования каналов	12
5.1	Просмотр состояния протокола STP для vlan 3	14

1 Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Задание

- 1. Сформировать резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3.
- 2. Настроить балансировку нагрузки между резервными соединениями.
- 3. Настроить режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.
- 4. Изучить отказоустойчивость резервного соединения.
- 5. Сформировать и настроить агрегированное соединение интерфейсов Fa0/20 Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.
- 6. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

Сформируем резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3 (рис. 3.1). Для этого:

- заменим соединение между коммутаторами msk-donskaya-sw-1(Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2);
- сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым;
- соединение между коммутаторами msk-donskaya-sw-1 и msk-donskayasw-4 сделаем через интерфейсы Fa0/23, не забыв активировать их в транковом режиме.

Рис. 3.1: Логическая схема локальной сети с резервным соединением

С оконечного устройства dk-donskaya-1 пропингуем серверы mail и web.

В режиме симуляции проследим движение пакетов ICMP. Убедимся, что движение пакетов происходит через коммутатор msk-donskaya-sw-2 (рис. 3.2).

Рис. 3.2: Режим симуляции движения пакетов ІСМР

На коммутаторе msk-donskaya-sw-2 посмотрим состояние протокола STP для vlan 3 (рис. 3.3):

Рис. 3.3: Просмотр состояния протокола STP для vlan 3

В качестве корневого коммутатора STP настроем коммутатор msk-donskayasw-1 (рис. 3.4):

Рис. 3.4: Настройка коммутатора msk-donskaya-sw-1 корневым

Используя режим симуляции, убедимся, что пакеты ICMP пойдут от хоста dk-donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и mskdonskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2 (рис. 3.5).

Рис. 3.5: Режим симуляции движения пакетов ІСМР к серверам

Настроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы (рис. 3.6):

Рис. 3.6: Настройка режима Portfast

Изучим отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого используем команду ping -n 1000 10.128.0.1 на хосте dk-donskaya-1, а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown. Произошел разрыв соединения в какой-то момент на 4 пинга, а после подключения всё восстановилось и потребовался один пинг.

Переключим коммутаторы в режим работы по протоколу Rapid PVST+ (рис. 3.7):

Рис. 3.7: Режим работы по протоколу Rapid PVST+

```
msc-donskaya-takonnova-sw-l#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-takonnova-sw-l(config) #spanning-tree mode rapid-pvst
msc-donskaya-takonnova-sw-l# 
%SYS-5-CONFIG_I: Configured from console by console
msc-donskaya-takonnova-sw-l#wr mem
Building configuration...
```

Рис. 3.8: Режим работы по протоколу Rapid PVST+

Рис. 3.9: Режим работы по протоколу Rapid PVST+

Рис. 3.10: Режим работы по протоколу Rapid PVST+

Изучим теперь отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение.

Сразу после разрыва соединения задержки по времени вообще не было, сесть моментально перестроилась.

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4 (рис. 3.11).

Рис. 3.11: Логическая схема локальной сети с агрегированным соединением

Настроим агрегирование каналов (режим EtherChannel) (рис. 3.12):

```
% Incomplete command.
msc-donskaya-takonnova-sw-1(config) #interface range f0/20 - 23
msc-donskaya-takonnova-sw-1(config-if-range) #channel-group 1 mode on
msc-donskaya-takonnova-sw-1(config-if-range) #
```

Рис. 3.12: Настройка агрегирования каналов

```
msc-donskaya-takonnova-sw-1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-takonnova-sw-1(config)#int f0/23
msc-donskaya-takonnova-sw-1(config-if)#no switchport mode trunk
```

Рис. 3.13: Настройка агрегирования каналов

```
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-takonnova-sw-1(config) #int f0/23
msc-donskaya-takonnova-sw-1(config-if) #no switchport mode trunk
msc-donskaya-takonnova-sw-1(config-if) #interface range f0/20 - 23
msc-donskaya-takonnova-sw-1(config-if-range) #no switch
% Incomplete command.
msc-donskaya-takonnova-sw-1(config-if-range) #no switch
msc-donskaya-takonnova-sw-1(config-if-range) #no switchport
msc-donskaya-takonnova-sw-1(config-if-range) #no switchport
% Incomplete command.
msc-donskaya-takonnova-sw-1(config-if-range) #no switchport
```

Рис. 3.14: Настройка агрегирования каналов

```
msc-donskaya-takonnova-sw-1(config)#interface range f0/20 - 23
msc-donskaya-takonnova-sw-1(config-if-range)#channel-group 1 mode on
msc-donskaya-takonnova-sw-1(config-if-range)#
```

Рис. 3.15: Настройка агрегирования каналов

```
msc-donskaya-takonnova-sw-1(config) #interface port-channel 1
msc-donskaya-takonnova-sw-1(config-if) #switchport mode trunk
msc-donskaya-takonnova-sw-1(config-if) #^Z
msc-donskaya-takonnova-sw-1#wr mem
Building configuration...
[OK]
msc-donskaya-takonnova-sw-1#
```

Рис. 3.16: Настройка агрегирования каналов

4 Выводы

В результате выполнения лабораторной работы я изучила возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

5 Контрольные вопросы

1. Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах.

С помощью этой команды вы можете просмотреть общую информацию о протоколе ST на коммутаторе. Вы можете просмотреть идентификатор Root, корневой мост и интерфейсные порты коммутатора, а также просмотреть состояния портов интерфейсов коммутатора.

Кроме того, если корневой мост настроен вручную, вы можете проверить значение приоритета коммутатора с помощью этой команды.

```
msc-donskaya-takonnova-sw-3

msc-donskaya-takonnova-sw-3(config-if)#int f0/1
msc-donskaya-takonnova-sw-3(config-if)#spanning-tree portfast
Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.

Use with CAUTION

%Portfast has been configured on FastEthernet0/1 but will only
have effect when the interface is in a non-trunking mode.
msc-donskaya-takonnova-sw-3(config-if)#^2
msc-donskaya-takonnova-sw-3#wr mem

msc-donskaya-takonnova-sw-3#wr mem

Copy Paste
```

Рис. 5.1: Просмотр состояния протокола STP для vlan 3

2. При помощи какой команды можно узнать, в каком режиме, STP или Rapid PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах.

При помощи команды show ru просмотр текущей конфигурации.

3. Для чего и в каких случаях нужно настраивать режим Portfast?

Portfast – функция, которая позволяет порту пропустить состояния listening и learning и сразу же перейти в состояние forwarding. Настраивается на портах уровня доступа, к которым подключены пользователи или сервера. Цель функции PortFast минимизировать время, которое необходимо для того чтобы порт перешел в состояние forward. Поэтому она эффективна только когда применена к портам, к которым подключены хосты.

4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется?

Агрегирование каналов — это технология объединения нескольких параллельных каналов передачи данных в сетях Ethernet в один логический. Она позволяет увеличить пропускную способность и повысить надёжность.

Основное применение технологии агрегации — объединение каналов в сетевых коммутаторах. Также можно настроить агрегирование для компьютерных сетевых адаптеров.

5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов?

LACP и PAgP - динамические протоколы, управляющие созданием и управлением агрегированных соединений. Статическое агрегирование настраивается вручную без использования протоколов.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel?

KOMahды show etherchannel summary и show etherchannel port-channel.