

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2023

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 20 pages. *Hierdie nasienriglyne bestaan uit 20 bladsye.*

QUESTION/VRAAG 1

1.10	D✓✓	(2) [20]
1.9	A✓✓	(2)
1.8	D ✓✓	(2)
1.7	C✓✓	(2)
1.6	B ✓✓	(2)
1.5	C✓✓	(2)
1.4	C✓✓	(2)
1.3	B✓✓	(2)
1.2	D ✓✓	(2)
1.1	A✓✓	(2)

QUESTION/VRAAG 2

2.1 Compounds with one or more <u>multiple bonds between C atoms</u> in the hydrocarbon chain. ✓✓ (2 or 0)

Verbindings met een of meer <u>meervoudige bindings tussen C-atome</u> in die koolwaterstofkettings. (2 of 0)

OR/OF

A hydrocarbon with two or more bonds between the C-atoms.

'n Koolwaterstof met twee of meer bindings tussen die C-atome.

OR/OF

Hydrocarbons containing not only single bonds between C atoms.

Koolwaterstowwe wat nie slegs enkelbindings tussen die C-atome bevat nie.

ACCEPT/AANVAAR:

Compounds with one or more <u>double/triple bonds between C atoms</u> in the hydrocarbon chain.

Verbindings met een of meer <u>dubbel/trippelbindings tussen C-atome</u> in die koolwaterstofkettings.

2.2.1 D ✓ (1)

(3)

(2)

(2)

2.2.2 2,4-dimethylhexane √√√

2,4-dimetielheksaan

Marking criteria:

- Correct stem i.e. hexane. ✓
- Substituents (dimethyl) correctly identified. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. √

Nasienkriteria:

- Korrekte stam d.i. heksaan. √
- Substituente (dimetiel) korrek geïdentifiseer. √
- IUPAC-naam heeltemal korrek insluitende nommering, volgorde, koppeltekens en kommas. √

2.2.3 Propan-2-ol /2-propanol ✓✓

Marking criteria:

- Correct stem i.e. propanol. ✓
- IUPAC name completely correct including numbering and hyphens. ✓

Nasienkriteria:

- Korrekte stam d.i. propanol. √
- IUPAC-naam heeltemal korrek insluitende nommering en koppeltekens. ✓
- 2.2.4 hept-1-ene/1-heptene √ √ hept-1-een/1-hepteen

Marking criteria:

- Correct stem i.e. <u>heptene</u>. ✓
- IUPAC name completely correct including numbering and hyphens. ✓

Nasienkriteria:

- Korrekte stam d.i. hepteen. ✓
- IUPAC-naam heeltemal korrek insluitende nommering en koppeltekens. ✓

2.2.5 Marking criteria/Nasienkriteria

- Correct molecular formula: C₈H₁₈ ✓
 Korrekte molekulêre formula: C₈H₁₈
- Correct molecular formula of inorganic reactant and products. ✓
 Korrekte molekulêre formule vir die anorganiese reaktant en produkte.
- Balancing/Balansering ✓

 $2C_8H_{18}\checkmark + 25O_2 \rightarrow 16CO_2 + 18H_2O \checkmark$ Bal \checkmark

Notes/Aantekeninge:

- Ignore double arrows and phases./Ignoreer dubbelpyle en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10.
- If condensed structural formulae used:/Indien gekondenseerde struktuurformules gebruik: Max/Maks. 2/3

2.3.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die korrekte konteks uitgelaat is, trek 1 punt af.

Compounds with the <u>same molecular formula</u> but <u>different functional</u> groups/homologous series. ✓✓

Verbindings met <u>dieselfde molekulêre formule</u> maar <u>verskillende funksionele</u> <u>groepe/homoloë reekse</u>.

(2)

(3)

2.3.2 Marking criteria/Nasienkriteria:

- Functional group for aldehyde correct √ Funksionele groep van aldehied korrek
- Whole structure of aldehyde correct √
 Hele struktuur van aldehied korrek
- Functional group for ketone correct ✓ Funksionele groep van ketoon korrek
- Whole structure of ketone correct ✓ Hele struktuur van ketoon korrek

(4)

2.4 Marking criteria

- Calculate the mass/percentage of oxygen. ✓
- Substitute correct mass and molar mass for both C and H into $n = \frac{m}{M}$.
- Substitute correct mass and molar mass for O into n = $\frac{m}{M}$.
- Simplify ratio. (Accept correct empirical formula if no ratio is given.) √
- Correct molecular formula. ✓✓

Nasienkriteria:

- Bereken die massa/persentasie suurstof. ✓
- Vervang korrekte massa en molêre massa vir beide C en H in $n = \frac{m}{M}$.
- Vervang korrekte massa en molêre massa vir O in $n = \frac{m}{M}$.
- *Vereenvoudig verhouding.* (Aanvaar korrekte empiriese formule indien geen verhouding nie) ✓
- Korrekte molekulêre formule. √√

OPTION 1/OPSIE 1

	С	Н	0
Mass / Massa	1,09	0,18	2 - (1,09 + 0,18) 🗸
			= 0,73
	$n = \frac{m}{1}$	n – m	$n - \frac{m}{n}$
	''	$n = \frac{1}{M}$	$n = \frac{1}{M}$
	1.00	0.40	★
Moles /mol	1,09	$=\frac{0.18}{}$	$=\frac{0.73}{}$
	12	1	16
	= 0,0908	= 0,18	= 0,046
Simplest ratio			
Eenvoudigste		4	1 √
verhouding			
Empirical formula	C ₂ H ₄ O		
Empiriese formule	240		

$$M(C_2H_4O) \times n= 88 (g \cdot mol^{-1})$$

 $44n = 88$
 $n = 2$

Molecular formula of compound **X**/ Molekulêre formule van verbinding **X**:

 $C_4H_8O_2 \checkmark \checkmark$

OPTION 2/OPTION 2

	С	Н	0
Percentage/Persentasie	54,5	9	36,5 ✓
Moles /mol	$n = \frac{m}{M}$ $= \frac{54,5}{12}$ $= 4,5417$	$n = \frac{m}{M}$ $= \frac{9}{1}$ $= 9$	$n = \frac{m}{M}$ $= \frac{36,5}{16} \checkmark$ $= 2,28$
Simplest ratio Eenvoudigste verhouding	2	4	1
Empirical formula Empiriese formule	C ₂ H ₄ O		

$$M(C_2H_4O) \times n= 88 (g \cdot mol^{-1})$$

 $44n = 88$
 $n = 2$

Molecular formula of compound **X**/ *Molekulêre formule van verbinding* **X**:

 $C_4H_8O_2 \checkmark \checkmark$

(6) **[25]**

QUESTION/VRAAG 3

3.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die korrekte konteks uitgelaat is, trek 1 punt af.

The <u>temperature</u> at which the <u>vapour pressure</u> (of a compound) <u>equals</u> <u>atmospheric pressure</u>. $\checkmark\checkmark$

Die <u>temperatuur</u> waarby die <u>dampdruk</u> (van 'n verbinding) <u>gelyk is aan die</u> atmosferiese druk.

(2)

3.2 Marking criteria/Nasienkriteria

- Compare compounds in terms of branches/chain lengths/surface area. ✓ Vergelyk verbindings in terme van vertakkings/kettinglengte/oppervlakarea.
- Compare strengths of IMF's/Vergelyk sterkte van IMK'e.√
- Compare energy/ Vergelyk energie √

Butan-1-ol √

- Has a longer chain length./is less branched./has a larger surface area/ contact area. ✓
- <u>Strength of the intermolecular forces is greater</u>./There are more sites for London forces. ✓
- More energy is needed to overcome/break intermolecular forces. ✓
- Het 'n langer kettinglengte./is minder vertak./het 'n groter kontakoppervlak/reaksieoppervlak. √
- <u>Sterkte van die intermolekulêre kragte verhoog./</u>Daar is meer plekke vir Londonkragte. ✓
- <u>Meer energie word benodig om die intermolekulêre kragte te oorkom/breek.</u> ✓

OR/OF

- <u>2-methylpropan-1-ol has a shorter chain length.</u>/is more branched./ has a smaller surface area/contact area.
- <u>Strength of the intermolecular forces is weaker</u>./There are fewer sites for London forces.
- Lesser energy is needed to overcome/break intermolecular forces.
- <u>2-metielpropan-1-ol het 'n korter kettinglengte./</u>is meer vertak./het 'n kleiner kontakoppervlak/reaksieoppervlak.
- <u>Sterkte van die intermolekulêre kragte is swakker./</u>Daar is minder plekke vir Londonkragte.
- <u>Minder energie word benodig om intermolekulêre kragte te</u> oorkom/breek.

 (4)

3.3 Boiling point/Kookpunt ✓

(1)

3.4

3.4.1 S \checkmark (1)

3.4.2 $P \checkmark$ (1)

3.4.3 R ✓ (1)

3.5 Propanoic acid/P has the strongest intermolecular forces. ✓

OR

Two sites for hydrogen bonding (which is stronger than other intermolecular forces).

OR

Most energy needed to separate the chains.

Propanoësuur/P het die sterkste intermolekulêre kragte.

OF

Twee plekke vir waterstofbindings (wat sterker is as die ander intermolekulêre kragte).

OF

Meeste energie benodig om kettings te skei.

(1) **[11]**

(2)

QUESTION/VRAAG 4

4.1

4.1.1 Halogenation/Bromination ✓

Halogenering/Brominering (1)

4.1.2 The bromine water/Br₂/solution <u>decolourises</u>./Brown <u>colour disappears</u>. ✓ *Die broomwater/Br₂/oplossing <u>ontkleur</u>./Bruin <u>kleur verdwyn</u>.*

OR/OF

Bromine water/Br₂/solution changes from <u>brown/reddish to colourless</u>.

Broomwater/Br₂/oplossing verander van <u>bruin/rooierig na kleurloos</u>. (1)

4.1.3

Marking criteria/Nasienkriteria

- Functional group correct ✓ Funksionele groep korrek
- Whole structure correct ✓ Hele struktuur korrek

4.1.4 <u>2-chloro-2-methyl</u>√<u>propane</u>√ /<u>2-chloro-2-metielpropaan</u>

ACCEPT/AANVAAR:

2-chloromethylpropane / 2-chlorometielpropaan (2)

4.1.5 Marking criteria:

- Cℓ atom on second C atom on compound R ✓
- Whole structure of compound R correct ✓
- React compound R with NaOH(aq)/KOH(aq)/LiOH(aq) OR H₂O √
- OH-group replaces Cℓ atom at the same position.
- Whole structure of alcohol correct. ✓
- NaCl(aq)/KCl(aq)/LiCl(aq) OR HCl(aq) ✓ (must correspond to the inorganic reactant used)

Nasienkriteria:

- Cl-atoom op tweede C-atoom van verbinding R √
- Hele struktuur van verbinding R korrek √
- Reageer verbinding R met NaOH(aq)/KOH(aq)/LiOH(aq)
- OH-groep vervang Cℓ-atoom by dieselfde posisie. ✓
- Hele struktuur van alkohol korrek. √
- NaCl(aq)/KCl(aq)/LiCl(aq) OF HCl(aq)

 (moet ooreenstem met die anorganiese reaktans gebruik)

Notes/Aantekeninge:

- Ignore/*Ignoreer* ⇌
- Accept all inorganic reagents as condensed./Aanvaar alle anorganiese reagense as gekondenseerd.
- Accept coefficients that are multiples.
 Aanvaar koëffisiënte wat veelvoude is.
- Any additional reactants and/or products

Enige addisionele reaktanse en/of produkte:

Max./ $Maks.^5/_6$

Incorrect balancing/Verkeerde balansering:

Max./*Mak*s. ⁵/₆

Molecular formulae/Molekulêre formule:

Max./Maks. $\frac{3}{6}$

Condensed formulae/Gekondenseerde formule:

Max./*Mak*s. ⁴/₆

Accept/Aanvaar:

-OH as condensed / -OH as gekondenseerd

Condensed formulae/Gekondenseerde formule:

(6)

[18]

(1)

(2)

4.1.6 2-methyl \(\text{propan-2-ol} \(/ \)2-methyl-2-propanol 2-metielpropan-2-ol/2-metiel-2-propanol ACCEPT/AANVAAR: Methylpropan-2-ol/ Metielpropan-2-ol (2)4.1.7 Dehydration/Dehidrasie/Dehidratering ✓ (1) 4.2.1 Esterfication/Condensation ✓ Verestering/Esterfikasie/Kondensasie (1) 4.2.2 Butyl√propanoate ✓ Butielpropanoaat (2)

QUESTION/VRAAG 5

5.1 <u>Initial concentration is 0</u> (of NO₂)./Concentration increases./
 Curve starts at 0. ✓
 <u>Beginkonsentrasie is 0</u> (van NO₂)./Konsentrasie verhoog./Kurwe begin by 0.

OR/OF

<u>Curve B has an initial concentration</u> and is the reactant as its concentration decreases.

<u>Kurwe B het 'n beginkonsentrasie</u> en is die reaktant aangesien sy konsentrasie afneem.

5.2 True/Waar ✓

n mol of N_2O_5 forms 2n mol of NO_2 per unit time. \checkmark n mol N_2O_5 vorm 2n mol NO_2 per eenheidstyd.

OR/OF

Gradient of graph for NO_2 is twice the gradient of graph for N_2O_5 . Gradiënt van grafiek vir NO_2 is twee keer die gradiënt van grafiek vir N_2O_5 . **NOTE/LET WEL:**

If gradients calculated correctly award mark.

Indien gradiënte korrek bereken word punt toegeken.

(4)

5.3.1 Marking criteria/Nasienkriteria:

- Formula: $c = \frac{m}{MV} / n(NO_2) = cV / n(NO_2) = \frac{m}{M} \checkmark$
- Substitute change in concentration. √
 Vervang verandering in konsentrasie .
- Substitute M (46) and V (2)./Vervang M (46) en V (2). ✓
- Final correct answer/ Finale korrekte antwoord: 1,84 g ✓

OPTION 1/OPSIE 1

$$c(NO_2) = \frac{m}{MV} \checkmark$$

 $200 \times 10^{-4} \checkmark = \frac{m}{(46)(2)} \checkmark$
 $m = 1,84 \text{ g} \checkmark$

5.3.2 Marking criteria/Nasienkriteria:

- Substitute the change in concentration into rate formula. ✓ *Vervang verandering in konsentrasie in tempo formule.*
- Substitute time into the rate formula./ Vervang tyd in tempo formule. ✓
- Use mol ratio/Gebruik molverhouding: rate/tempo(O₂) = ½ rate/tempo(N₂O₅)/ rate/tempo(O₂) = ¼ rate/tempo(NO₂) √
- Final correct answer/Finale korrekte antwoord: 1 x 10⁻⁵ (mol·dm⁻³·s⁻¹) √

NOTE/LET WEL

If concentration is converted to moles, final moles per s (mol·s⁻¹) must be converted back to concentration (mol·dm⁻³·s⁻¹). i.e. there must be multiplication and division by 2. If one of these is omitted:

Max. $^{2}/_{4}$

Indien konsentrasie omgeskakel is na mol, moet die finale mol per s ($mol \cdot s^{-1}$) omgeskakel word na konsentrasie ($mol \cdot dm^{-3} \cdot s^{-1}$) d.w.s daar moet vermenigvuldig en gedeel word deur 2. Indien een van hierdie uitgelaat word:

Maks. $^{2}/_{4}$

OPTION 1/OPSIE 1

Ave rate/gem tempo =
$$-\frac{\Delta c(N_2O_5)}{\Delta t}$$

= $-\frac{\left(60 \times 10^{-4} - 200 \times 10^{-4}\right)}{700 (-0)}$
= $2 \times 10^{-5} \text{ (mol-dm}^{-3} \cdot \text{s}^{-1}\text{)}$

rate(O₂) = ½ rate(N₂O₅) = ½(2 x 10⁻⁵)
$$\checkmark$$

= 1 x 10⁻⁵ (mol·dm⁻³·s⁻¹) \checkmark

OPTION 2/OPSIE 2

Ave rate/gem tempo =
$$\frac{\Delta c(NO_2)}{\Delta t}$$

= $\frac{(280 \times 10^{-4} (-0))}{700 (-0)}$
= $4 \times 10^{-5} \text{ (mol·dm}^{-3} \cdot \text{s}^{-1})$
rate(O₂) = $\frac{1}{4} \text{ rate}(NO_2) = \frac{1}{4} (4 \times 10^{-5})$ \(= 1 \times 10^{-5} \text{ (mol·dm}^{-3} \cdot \text{s}^{-1}) \times

5.4 5.4.1

Marking criteria/Nasienkriteria

- Curve Q must be above the given curve P and have the same shape as the given curve P and the peaks have to correspond. √
 - Kurwe Q moet bo die gegewe kurwe P wees en moet dieselfde vorm hê as die gegewe kurwe P en die maksimums moet ooreenstem
- Starts at origin and not crossing curve P. √

Begin by oorsprong en nie kruis met kurwe P nie.

(2)

(4)

5.4.2 Higher than/Hoër as ✓

- When the concentration of N₂O₅ is higher there are more N₂O₅ particles per unit volume. ✓
- More effective collisions per unit time/second. ✓ OR

Higher frequency of effective collisions.

- 'n Hoër konsentrasie van N₂O₅ bevat <u>meer N₂O₅-deeltjies per</u> eenheidsvolume. ✓
- Meer effektiewe botsings per eenheidstyd/sekonde. ✓
 OF

Hoër frekwensie van effektiewe botsings.

(3)

[16]

QUESTION/VRAAG 6

6.1 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When the equilibrium in a closed system is disturbed, the system will reinstate a (new) equilibrium by favouring the reaction that will cancel/oppose the disturbance.

Wanneer die ewewig in 'n geslote sisteem versteur word, sal die sisteem 'n (nuwe) ewewig instel deur die reaksie te bevoordeel wat die versteuring kanselleer/teenwerk.

6.2 6.2.1 $n[H_2(g)] = 0.11 \text{ (mol) } \checkmark$ (1)

6.2.2 $\begin{array}{|l|l|l|}
\hline
 OPTION 1/OPSIE 1 \\
 n(HI)_{used/gebruik} &= 2n(I_2) \\
 &= 2(0,11) \\
 n(HI)_{eq} &= 1 - 0,22 \\
 &= 0,78 \text{ (mol)} \checkmark
\end{array}$ $\begin{array}{|l|l|l|}
\hline
 OPTION 2/OPSIE 2 \\
 K_c &= \frac{[H_2][I_2]}{[HI]^2} \\
 0,02 &= \frac{(0,11)(0,11)}{[HI]^2} \\
 [HI] &= 0,78 \text{ mol·dm}^{-3} \\
 n(HI) &= 0,78 \text{ (mol)} \checkmark
\end{array}$ (1)

6.3.1 Endothermic/Endotermies ✓ (1)

6.3.2 K_c increased:

6.3

- The concentration of the product/H₂(g) and I₂(g) is increased. ✓
 OR: The concentration of the reactant/HI decreases.
- The increase in temperature favoures the forward reaction. ✓
- (According to Le Chatelier's principle) an increase in temperature favours the endothermic reaction. ✓

K_c het verhoog:

- Die konsentrasie van die produkte/H₂(g) en I₂(g) verhoog. ✓
 OF: Die konsentrasie van die reaktanse/HI verlaag.
- 'n Toename in temperatuur bevoordeel die voorwaartse reaksie. ✓
- (Volgens Le Chatelier se beginsel) sal 'n toename in temperatuur die endotermiese reaksie bevoordeel. √ (3)

6.3.3 **POSITIVE MARKING FROM Q6.2/POSITIEWE NASIEN VANAF V6.2**

Marking criteria:

- (a) Correct K_c expression (<u>formulae in</u> square brackets). ✓
- (b) Substitution of 0,09 in Kc expression. ✓
- (c) Correct initial moles from 6.2.1 and 6.2.2. ✓
- (d) <u>USING</u> ratio: $nHI(g) : 2nI_2(g) = 1:2 \checkmark$
- (e) Substitution of concentrations into correct K_c expression. ✓
- (f) Subtraction $[HI]_{ini} \Delta[HI] \checkmark$
- (g) Substitution of 128 in m = nM. \checkmark
- (h) Final answer: 80,64 g √ (range: 79,36 80,64 g)

Nasienkriteria:

- (a) Korrekte K_c uitdrukking (<u>formules in</u> <u>vierkantige hakies</u>). ✓
- (b) Vervang 0,09 in Kc uitdrukking. ✓
- (c) Aanvanklike mol korrek vanaf 6.2.1 en 6.2.2. ✓
- (d) <u>GEBRUIK</u> verhouding: $nHI(g): 2nI_2(g) = 1:2 \checkmark$
- (e) Vervang konsentrasies in korrekte K_c uitdrukking. ✓
- (f) Verskil: [HI]_{aanv} Δ[HI] √
- (g) Vervang 128 in m = nM. \checkmark
- (h) Finale antwoord: 80,64 g √ (gebied: 79,36 80,64 g)

	HI	I_2	H ₂]				
Initial quantity (mol) Aanvanklike hoeveelheid (mol)	0,78	0,11	0,11					
Change (mol) Verandering (mol)	2x	х	Х	Ratio 1:2 ✓				
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	0,78 - 2x	0,11 + x	0,11 + x					
Equilibrium concentration Ewewigskonsentrasie (mol·dm ⁻³)	0,78 - 2x 1	0,11+ x 1	0,11+ x 1					
$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} \checkmark (a)$ $(b) \qquad (EM)^{2} = \frac{(0.11 + x)(0.11 + x)}{(0.78 - 2x)^{2}} \checkmark (e)$ $(CM)^{2} = \frac{(0.78 - 2x)^{2}}{(0.78 - 2x)^{2}} \checkmark (e)$ $(EM)^{2} = 0.0775 \qquad (f)^{2} = 0.63 \text{ mol·dm}^{-3} (0.625)$								
	<u>75)</u> √							

QUESTION/VRAAG 7

7.1

7.1.1 **ANY ONE**:

- A substance whose aqueous <u>solution contains ions</u>. ✓✓ (2 or 0)
- Substance that dissolves in water to give a <u>solution that conducts</u> <u>electricity.</u>
- A substance that <u>forms ions in water/forms ions when molten</u>.

ENIGE EEN:

- 'n Stof waarvan die oplossing ione bevat. ✓ ✓ (2 of 0)
- 'n Stof wat in water oplos om 'n <u>oplossing</u> te vorm <u>wat elektrisiteit gelei</u>.
- 'n Stof wat <u>ione vorm in water/ione vorm wanneer gesmelt.</u>

(2)

(8) **[16]**

(2)

7.1.2 A ✓

 H_2SO_4 is diprotic./Donates more than one mole of H^+ ions per mole of acid \checkmark (and both acids are of the same concentration)./ H_2SO_4 has a higher K_a value. H_2SO_4 is diproties./Skenk meer as een mol H^+ ione per mol suur (en beide sure het dieselfde konsentrasie)/ H_2SO_4 het 'n hoër K_a -waarde.

OR/OF

It ionises to produce more than one mole of protons/ H^+ ions for each mole of H_2SO_4 ./ H_2SO_4 has a higher K_a value.

Dit ioniseer om meer as een mol protone/ H^+ -ione vir elke mol H_2SO_4 te vorm./ H_2SO_4 het 'n hoër K_a -waarde.

7.1.3 B ✓

Stronger acid/ionises completely \checkmark (and both acids are of the same concentration)./HNO₃ has a higher K_a value.

Sterker suur/ioniseer volledig (en beide sure het dieselfde konsentrasie)./ HNO₃ het 'n hoër K_a-waarde.

OR/OF

C/CH₃COOH is a weaker acid/ionises incompletely. C/CH₃COOH is 'n swak suur/ioniseer onvolledig.

7.2

7.2.1 Marking criteria/Nasienkriteria:

- Substitute/Vervang 0,04 mol·dm⁻³ and 25 x 10⁻³ dm³ (25 cm³) and 19,5 x 10⁻³ dm³ (19,5 cm³). √
- USE mol ratio:/GEBRUIK molverhouding: n(Na₂CO₃): n(HCℓ) = 1:2 √
- Final answer/Finale antwoord: 0,10 to/tot 0,103 mol⋅dm⁻³ ✓

OPTION 1/OPSIE 1 $\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$ $\frac{c_a(19,5)}{(0,04)(25)} = \frac{2}{1}$ $c_a = 0,10 \text{ mol·dm}^{-3} \checkmark (0,103)$

7.2.2 Greater than/Groter as √

The few drops of water will dilute the HCl, \(\sqrt{therefore greater volume of acid will be needed to neutralise the base.

'n Paar druppels water sal die <u>HCl verdun</u>, daarom sal 'n groter volume suur benodig word om die basis te neutraliseer.

(2)

(3)

7.2.3 POSITIVE MARKING FROM Q7.2.1/POSITIEWE NASIEN VANAF V7.2.1

Marking criteria:

- (a) Substitute 0,1 mol·dm⁻³ & $18.7 \times 10^{-3} \, dm^3 \, (18.7 \, cm^3). \checkmark$
- (b)Use mole ratio: 1:1 ✓
- (c) Calculate n(NH₃) / m(NH₃) in 250 cm³: Substitute 0,25 dm³ $(250 \text{ cm}^3) \checkmark$
- (d)Substitute 0,022 dm³ (22 cm³). ✓
- (e) Substitute 0,02 dm³ (20 cm³) to calculate mole/mass in initial solution.√
- (f) Use 17 g·mol⁻¹ in $n = \frac{m}{M}$.
- (g) Final answer: 18,06 g ✓ Range: 17 to 19,13 g

Nasienkriteria:

- (a) Vervang 0,1 mol·dm⁻³ & 18,7 x 10⁻³ dm³ $(18.7 \text{ cm}^3).\checkmark$
- (b) Gebruik molverhouding: 1:1 ✓
- (c) Bereken $n(NH_3)/m(NH_3)$ in 250 cm³: Vervang 0,25 dm³ (250 cm³). √
- (d) Vervang 0,022 dm³ (22 cm³). √
- (e) Vervang 0,02 dm³ (20 cm³) om mol/massa van oorspronklike oplossing te bereken. ✓
- (f) Gebruik 17 g·mol¹ in n = $\frac{m}{M}$. \checkmark
- (g) Finale antwoord: 18,06 g ✓ Gebied: 17 tot 19,13 g

OPTION 1/OPSIE 1

n(HC
$$\ell$$
)= cV
= $\frac{(0,1)(18,7 \times 10^{-3})}{1,87 \times 10^{-3}}$ \checkmark (a)
= $\frac{1,87 \times 10^{-3}}{1,87 \times 10^{-3}}$ mol

 $n(NH_3)_{reacted/reageer} = n(HC\ell)_{reacted/reageer}$ = $1.87 \times 10^{-3} \text{ mol } \sqrt{\text{(b)}}$

n(NH₃) in 22 cm³ = 1,87 x 10⁻³ mol

$$\downarrow$$
 (c)
n(NH₃) in 250 cm³ = $\frac{(1,87 \times 10^{-3})(250)}{22 \checkmark (d)}$

 $(2,13 \times 10^{-2})$

 $n(NH_3)$ in initial 20 cm³ = 0.021 mol

$$n = \frac{m}{M}$$

$$0,021 = \frac{m}{17} \checkmark (f)$$

$$m(NH_3) = 0,357 \text{ g in } 20 \text{ cm}^3$$

$$m(NH_3) = \frac{(0,357)(1000)}{20} \checkmark (e)$$

$$= 17,85 \text{ g} \checkmark (g) (18,06)$$

OPTION 2/OPSIE 2

$$n(HC\ell)= cV$$

= $\frac{(0,1)(18,7 \times 10^{-3})}{(0,1)(18,7 \times 10^{-3})} \checkmark (a)$
= $1,87 \times 10^{-3} \text{ mol}$

 $(NH_3)_{reacted/reageer} = n(HC\ell)_{reacted/reageer}$

= 1,87 x 10⁻³ mol $\sqrt{(b)}$ $n(NH_3)$ in 22 cm³ = 1,87 x 10⁻³ mol

1,87 x
$$10^{-3} = \frac{111}{17} \checkmark (f)$$

m(NH₃) = 3,72 x 10^{-3} g in 22 cm³ (c)

 $m(NH_3)$ in initial 20 cm³ = 0,361 g

m(NH₃) in 1 000 cm³ =
$$\frac{(0.361)(1000)}{20 \checkmark (e)}$$

= 18,06 g \checkmark (g)

(7)

7.2.4 Less than 7/Minder as 7 √

$$NH_4^+(aq) + H_2O(\ell) \checkmark \Rightarrow NH_3(aq) + H_3O^+(aq) \checkmark$$

Notes/Aantekeninge:

Ignore single arrow/Ignoreer enkelpyl: →

(3) **[21]**

QUESTION/VRAAG 8

- 8.1 Pressure: <u>1 atmosphere</u> /101,3 kPa/1,01 x 10⁵ Pa ✓ *Druk*: 1 atmosfeer /101,3 kPa/1,01 x 10⁵ Pa
 - Temperature/Temperatuur. 25 °C /298 K ✓
 - Concentration of electrolytes: 1 mol·dm⁻³ ✓

 Konsentrasie van elektroliete: 1 mol·dm⁻³

 (3)
- 8.2 To maintain electrical neutrality/To complete the circuit/To allow movement of ions between electrolytes ✓
 Om elektriese neutraliteit te verseker/Om die stroombaan te voltooi/Laat ione toe om tussen elektroliete te beweeg

8.3 **OPTION 1/OPTION 1**

$$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \checkmark$$

$$1,20^{\checkmark} = E_{\text{cathode}}^{\theta} - 0 \checkmark$$

$$E_{\text{cathode}}^{\theta} = 1,20 (V) \checkmark$$

X is Pt/platinum ✓

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik, bv. E°_{sel} = E°_{OM} E°_{RM} gevolg deur korrekte vervangings: Max./Maks. 4/₅

OPTION 2/OPSIE 2

$$\begin{cases} X^{2+} + 2e^{-} \to X & E^{\theta} = 1,20 \text{ V} \checkmark \\ \frac{H_2 \to 2H^{+} + 2e^{-}}{H_2 + X^{2+} \to X + 2H^{+}} & E^{\theta} = 1,20 \text{ V} \checkmark \end{cases}$$

X is Pt/Platinum ✓

(5)

8.4 $H_2(g) \rightarrow 2H^+(ag) + 2e^- \checkmark \checkmark$

Marking criteria/Nasienkriteria:

- $2H^{+}(aq) + 2e^{-} \leftarrow H_{2}(g)$ $(\frac{2}{2})$ $H_{2}(g) \rightleftharpoons 2H^{+}(aq) + 2e^{-}$ $(\frac{1}{2})$ $H_{2}(g) \leftarrow 2H^{+}(aq) + 2e^{-}$ $(\frac{0}{2})$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$ $(\frac{0}{2})$
- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on H⁺/Indien lading (+) weggelaat op H⁺:
 Example/Voorbeeld: H₂(g) → 2H(aq) + 2e⁻ Max./Maks. 1/2

(2)

8.5 H^+ , X^{2+} (Pt²⁺), Au^{3+}

H₂ loses/donates electrons to both Au and X/Pt. ✓

OR

H₂ is the anode/is oxidised in both cells.

Therefore H⁺ is the weakest oxidising agent.

The reduction potential of X | X²⁺ is 1,2 V and that of Au | Au³⁺ is 1.5 V. ✓

OR

The reduction potential of $X \mid X^{2+}$ is smaller than that of Au | Au³⁺.

OR

According to the Table of Standard Reduction Potentials Au³⁺ is stronger oxidation agent than Pt²⁺.

OR

The cell containing Au produces a higher emf than cell containing X.

• H₂ verloor/skenk elektrone aan beide Au en X/Pt. ✓

OF

H₂ is die anode/word geoksideer in beide selle.

Daarom is H⁺ die swakste oksideermiddel

• Die reduksiepotensiaal van $X \mid X^{2+}$ is 1,2 V en die van $Au \mid Au^{3+}$ is 1,5 V. \checkmark

OF

Die reduksiepotensiaal van $X \mid X^{2+}$ is kleiner as dié van $Au \mid Au^{3+}$.

OF

Volgens die Tabel van Standaardreduksiepotensiale is Au³⁺ 'n sterker oksideermiddel as Pt²⁺

OF

Die sel wat Au bevat het 'n hoër emk as die sel wat X bevat.

(3) **[14]**

(2)

QUESTION/VRAAG 9

A cell in which electrical energy is converted into chemical energy. $\checkmark\checkmark$ (2 or 9.1

'n Sel waar elektriese energie na chemiese energie omgeskakel word. (2 of 0)

9.2

Oxidation takes place./R loses electrons./R decreases in mass. ✓ Oksidasie vind plaas./R verloor elektrone./R se massa sal afneem.

9.3

 $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s) \checkmark \checkmark$ 9.3.1 Ignore phases/Ignoreer fases

Marking criteria/Nasienkriteria:

- Zn(s) ← Zn²⁺(aq) + 2e⁻ $(\frac{2}{2})$ Zn²⁺(aq) + 2e⁻ \rightleftharpoons Zn(s) $(\frac{1}{2})$ $\binom{0}{2}$ Zn(s) \rightleftharpoons Zn²⁺(aq) + 2e⁻ $Zn^{2+}(aq) + 2e^{-} \leftarrow Zn(s)$
- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on Zn²⁺/Indien lading (+) weggelaat op Zn²⁺: Example/Voorbeeld: $Zn^2(aq) + 2e^- \rightarrow Zn(s)$ Max./Maks: $\frac{1}{2}$
- 9.3.2 Zinc/Zn/Sink ✓
- Zn^{2+} ions are reduced/[Zn^{2+}] decreases. \checkmark Zn²⁺ ions must be replaced by oxidation of the Zn electrode. \checkmark 9.4

 Zn^{2+} ione word gereduseer/[Zn^{2+}] neem af.

Zn²⁺ ione moet vervang word deur oksidasie van Zn-elektrode.

(2)

(2)

(1)

TOTAL/TOTAAL: 150