Sales Forecasting Capstone Project — Explanation

Objective

The goal of this capstone project is to build and evaluate machine learning models to **forecast future sales** using historical data. Accurate sales forecasting is crucial for inventory planning, budgeting, and strategic decision-making in any business.

Dataset

The dataset contains monthly sales records over a multi-year period. It includes a date column and corresponding sales values. We performed data preprocessing, feature engineering, and timeseries transformation to prepare the data for modeling.

Methodology

We approached the forecasting task using two different models:

1. XGBoost Regressor

- We extracted **month** and **year** as numerical features from the date.
- Trained the model on the **entire historical dataset**.
- Forecasted sales for the next three months by creating future month and year combinations.
- XGBoost provided fast and interpretable results based on calendar trends.

2. LSTM (Long Short-Term Memory) Neural Network

- LSTM is well-suited for **sequence modeling** and time-series forecasting.
- We used a **sliding window approach** with a look-back of 3 months to predict the next month.
- Trained the model on scaled sales values and forecasted the next **3 months** recursively.
- This model captured temporal patterns better, especially in non-linear sales trends.

Results

- Both models successfully forecasted sales for the next 3 months.
- XGBoost performed well with fewer data requirements and higher speed.
- LSTM required more training and tuning but offered better long-term pattern recognition.

Forecasts were visualized using line plots, showing both historical trends and forward predictions, clearly separated by a red vertical line to denote the start of forecasting.

Conclusion

This project demonstrates how **machine learning and deep learning** can be used to build effective sales forecasting models. Depending on the business context, a lightweight model like XGBoost may be more practical, while LSTM can be used for richer, complex time-series patterns.