7-segment display

Number	g f e d c b a	Hexadecimal 3F	
0	0111111		
1	0000110	06	
2	1011011	5B	
2 3	1001111	4F	
4	1100110	66	
5	1101101	6D	
6	1111101	7D	
7	0000111	07	
8	1111111	7F	
9	1101111	6F	

Page 1

HC595 8-Bit Shift Register

The SNx4HC595 is an 8-bit shift register that feeds an 8-bit D-type storage register. Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

The SNx4HC595 devices are 8-bit Serial-In, Parallel-Out Shift Registers. They have a wide operating current of 2 V to 6 V, and the high-current 3-state outputs can drive up to 15 LSTTL Loads. The devices have a low power consumption of 80- μ A (Maximum) ICC. Additionally, the devices have a low input current of 1 μ A (Maximum) and a ±6-mA Output Drive at 5 V.

Features

- 8-bit serial-in, parallel-out shift
- Wide operating voltage range of 2 V to 6 V

Applications

- Network switches
- Power infrastructure
- LED displays
- Servers

D, N, NS, J, DB, or PW Package 16-Pin SOIC, PDIP, SO, CDIP, SSOP, or TSSOP Top View

Table 8-1. Function Table

INPUTS					FUNCTION	
SER	SRCLK	SRCLR	RCLK	ŌĒ	FONCTION	
X	X	X	X	Н	Outputs Q _A – Q _H are disabled.	
X	Х	Х	X	L	Outputs Q _A – Q _H are enabled.	
X	Х	L	Х	Х	Shift register is cleared.	
L	1	Н	х	х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.	
н	1	н	х	x	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.	
X	X	Х	1	X	Shift-register data is stored in the storage register.	

LM35

Features

- Calibrated Directly in Celsius (Centigrade)
- Linear + 10-mV/°C Scale Factor
- 0.5°C Ensured Accuracy (at 25°C)
- Rated for Full -55°C to 150°C Range
- Suitable for Remote Applications
- · Low-Cost Due to Wafer-Level Trimming
- Operates From 4 V to 30 V
- Less Than 60-μA Current Drain
- Low Self-Heating, 0.08°C in Still Air
- Non-Linearity Only ±1/4°C Typical
- Low-Impedance Output, 0.1 Ω for 1-mA Load

Applications

- Power Supplies
- Battery Management
- HVAC
- Appliances

(Bottom View) +V_S V_{OUT} GND 1 2 3

LP Package

3-Pin TO-92

Basic Centigrade Temperature Sensor (2°C to 150°C)

Full-Range Centigrade Temperature Sensor

Choose R $_1$ = $-V_S$ / 50 μ A V_{OUT} = 1500 mV at 150°C V_{OUT} = 250 mV at 25°C V_{OUT} = -550 mV at -55°C