0

0

0

0

0

0

0

0

0

2/35

http://keysan.me/presentations/ee464\_review.html#1

9/20

0

0

0

0



4/35





$$V_{dc}=rac{3\sqrt{6}}{2\pi}V_{rms}$$







 $V_{dc} = rac{3\sqrt{6}}{\pi} V_{ph}$ 

$$V_{dc} = rac{3\sqrt{6}}{\pi} V_{ph}$$

$$V_{dc} = rac{3\sqrt{2}}{\pi} V_{l-l} = 1.35 V_{l-l}$$



















S





 $V_o = DV_d$ 

 $V_o=DV_d$ 

 $I_o=I_d/D$ 

$$rac{\Delta V_o}{V_0} = rac{(1-D)T_s^2}{8LC}$$

$$rac{\Delta V_o}{V_0} = rac{(1-D)T_s^2}{8LC}$$

$$rac{\Delta V_o}{V_0} = rac{\pi^2 (1-D)}{2} \left(rac{f_c}{f_s}
ight)^2$$



27 / 35



$$V_d t_{on} + (V_d - V_o) t_{off} = 0$$

$$V_d t_{on} + (V_d - V_o) t_{off} = 0$$

$$V_{d}^{\prime}$$
 down to  $V_{o}^{\prime}$  to  $V_{o}^{\prime}$  to  $V_{d}^{\prime}$  to  $V_{d}^{\prime}$  to  $V_{d}^{\prime}$  to  $V_{d}^{\prime}$  to  $V_{d}^{\prime}$ 

$$V_d t_{on} + (V_d - V_o) t_{off} = 0$$

$$rac{I_O}{I_d} = (1-D)$$









32/3!

 $V_o = \frac{D}{(1-D)}V_d$ 

21 02 2019

