FIT3158 Business Decision Modelling

Lecture 6

Network Modelling (Part 2)

Introduction

Please recall ...

- A <u>network model</u> is one which can be represented by a set of nodes, a set of arcs, and functions (e.g., costs, supplies, demands, etc.) associated with the arcs (also called edges) and/or nodes (also called vertices).
- Each of these models can be formulated as a linear programming problem and solved by general purpose linear programming (LP) codes.

MONASH University

Introduction

- One of the most important applications of quantitative analysis in solving business problems is the physical distribution of products.
- Great cost savings can be achieved by more efficient routing, distribution and scheduling of goods and services from one node (<u>source</u>, where the supply is) to the required destination (<u>sink</u>, where the demand is).
- The <u>transportation problem</u> seeks to minimize the total shipping costs of transporting goods from *m* origins (each with a supply s_i) to *n* destinations (each with a demand d_i), when the unit shipping cost from an origin, i, to a destination, j, is c_{ij}.

MONASH University

1

Transportation Problem LP Formulation Special Cases • Total supply exceeds total demand: No modification of LP formulation is necessary. • Total demand exceeds total supply: Add a dummy origin with supply equal to the shortage amount. Assign a zero shipping cost per unit. The amount "shipped" from the dummy origin (in the solution) will not actually be shipped.

MONASH University

Anderson D., et al. (2015). Quantitative Methods for Business 13th Ed, Cengage Learning

Example: Ski Shipment Scheduling					
From	To Warehouse				
Plant	Frankfurt	New York	Phoenix	Yokohama	Capacity
Juarez	19	7	3	21	100
Seoul	15	21	18	6	300
Tel Aviv	11	14	15	22	200
Demand	150	100	200	150	

Northwest Corner Method Algorithm: Start in the top left hand (or Northwest) corner. Allocate the maximum supply possible to demand. Adjust the row and column entries. If demand is met, move to next column. If supply is exhausted, move to next row. Move from top left → bottom right

MONASH University

To supply:	Quantity:	Unit Cost:	Total Cost:
S1 → D1	100	19	1900
S2 → D1	50	15	750
S2 → D2	100	21	2100
S2 → D3	150	18	2700
S3 → D3	50	15	750
S3 → D4	150	22	3300
			\$11,500

Vogel's Approximation Method (VAM)

This method was originally used for ammunition distribution.

The Basic Principle:

In choosing a route,

- Try to avoid high cost routes.
- Will be implicitly making decisions about alternative routes.
- Does not only consider direct costs but also the next best alternative.

MONASH University

Vogel's Approximation Method (VAM)

Algorithm:

- 1. Calculate the potential opportunity loss for rows. The opportunity loss is conservatively estimated as the difference between the lowest cost cell and the next lowest cost cell.
- 2. Do the same thing for columns.
- 3. Locate the highest potential opportunity loss. Break ties
- 4. Allocate the maximum supply possible to the minimum cost cell in the row or column located in (3).
- 5. Adjust rows and columns.
- 6. Iterate
- MONASH University

VAM - Example Destination Source D4 Capacity D2 D3 D1 19 3 (100) 21 100 18 100 6 15-6=9 150 -300 50 150 18-15=3 11 100 14 100 15 22 100 **200** 15-11=4 **S3** 50 150 100 200 15-3=12 Demand 100 600 18-15=3 MONASH University Lapin, L. and Whisler, W., Quantitative Decision Making with Spreadsheet Applications 7th Ed

To supply:	Quantity:	Unit Cost:	Total Cost:
S1 → D3	100	3	300
S2 → D1	50	15	750
S2 → D3	100	18	1800
S2 → D4	150	6	900
S3 → D1	100	11	1100
S3 → D2	100	14	1400
			\$6,250

MODI (Closed-Loop Method)

Also known as:

- Modified Distribution Method; or
- Modified Dantzig Iteration Algorithm

What we have noticed so far:

If there are 3 sources (N) and 4 destinations (M), the total number of allocations is 3+4-1=6

So, for non-degenerate solutions, there will always be: $\underline{N+M-1}$ allocations.

MONASH University

MODI (Closed-Loop Method)

Algorithm:

(Recall that the C_{ij} are the edge costs.)

- Generate a basic feasible solution (e.g., using Northwest Corner or Vogel's Approximation Method [VAM]).
- 2. Derive $R_i + K_j = C_{ij}$ for any cell with a shipment

(where R_i = Row Indicators, K_j = Column Indicators). By convention, we always set R_1 = 0

3. Calculate the C_{ii} – $(R_i + K_i)$ values for cells with no shipment.

MONASH University

. . .

MODI (Closed-Loop Method)

- 4. Put a "+" sign in the most negative cell.
 - a) If there is more than 1 negative, choose the biggest reduction. Break ties arbitrarily.
 - b) If there are no cells with a negative $C_{ij} (R_i + K_j)$ values $\Rightarrow \underline{STOP}$ the solution is optimal.
- 5. Form a closed loop.
- 6. Determine maximum adjustment and modify solution.
- 7. Iterate

MONASH University

MODI (Closed-Loop Method) - Example

1.Start with a basic feasible solution – let's use the one from Northwest Corner Method (see above, approx. slide 15).

Source	Destination					
	D1	D2	D3	D4	Capacity	
S1	19 100	7	3	21	100	
S2	15 50	21 100	18 150	6	300	
S3	11	14	15 50	22 150	200	
Demand MONASHUR		100	200	150	600	

Job Assignment based on maximising preferences

- We have 10 people and we wish to assign each person one job to do. Each person makes a list of 3 preferences and we assign the jobs accordingly.
- This problem is probably getting quite close to the size that you could do with the solver in practice and it provides a good example of how the solver works.
- By observing partial solutions, we can see that the solver initially relaxes the constraint that indicators be integers and gradually enforces this condition as a solution is approached.

MONASH University 147

Example: The Traveling Salesperson Problem

 Wolverine Manufacturing needs to determine the shortest distance for a drill bit to drill 9 holes in a fiberglass panel.

See file $\underline{\mathsf{TSP}.\mathsf{xlsm}}$

<u>Note</u>: This is a Non-linear Programming (NLP) problem.

Ragsdale, C.. (2017). Spreadsheet Modeling & Decision
Analysis: A Practical Introduction to Business Analytics (8e)
, Cengage Learning. Ragsdale (9e, 2021), chap. 8

MONASH University

End of Lecture 6

References:

Ragsdale, C. (2021). 9^{th} edition, chapter 5,

Ragsdale, C. (2017). Spreadsheet Modeling & Decision Analysis: A Practical Introduction to Business Analytics (8e) Cengage Learning: Chapter 8

Lapin, L. and Whisler, W., Quantitative Decision Making with Spreadsheet Applications 7th Ed., Wadsworth (Thomson Learning) Belmont, 2002: Chapter 12

Anderson D., et al. (2015). Quantitative Methods for Business 13th Ed, Cengage Learning: Chapter 10

MONASH University

51

13

Homework

- > Go through today's lecture examples :
 - ✓ Familiarise yourself with the different algorithms used:
 - Northwest Corner Method
 - Vogel's Approximation Method
 - MODI (Closed-loop) Method
 - Understand how the spreadsheets are being modeled for Assignment problems and Transportation problems
- Readings for next Lecture:

 C. T. Ragsdale (9th edn), chapter 8, secs. 8.4 8.5, Economic Order Quantity (EOQ)

 Lapin, L. and Whisler, W., Quantitative Decision Making with Spreadsheet Applications 7th Ed., Wadsworth (Thomson Learning) Belmont, 2002: Chapter 15 Inventory Decisions under Certainty

Tutorial 5 this week:

Network Modelling:

- The Shortest Route Problem
- Maximal Flow Problem
- Minimal Spanning Tree Problem

MONASH University