PVK Analysis I

Marco Bertenghi & Lukas Burch, Vorlage gemäss Severin Schraven

January 7, 2020

Die Verweise auf Theoreme und Propositionen beziehen sich auf das Skript der Vorlesung, welches Sie hier finden können. Die Verweise auf Serien beziehen sich auf das HS 15. Mit (*) markierte Aufgaben, sind im allgemeinen anspruchsvoller.

1 sup, inf, max, min von Mengen

Aufgabe 1. Berechnen Sie das Supremum (kleinste obere Schranke) der Menge:

$$S := \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\} = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots \right\}.$$

Was gilt für das Supremum der Menge $M := S \cup \{1\}$?

Aufgabe 2. Es sei $A \subset \mathbb{R}$ und $A \neq \emptyset$, desweiteren definieren wir $-A := \{x \in \mathbb{R} : -x \in A\}$. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist:

- i.) A unbeschränkt \iff sup $A = \infty$.
- ii.) A ist endlich \Longrightarrow max $A = \sup A$.
- iii.) min A existier \Longrightarrow min $A = -\max(-A)$.
- iv.) sup $A \notin A$.

Aufgabe 3. Finden Sie das max, min, sup und inf der folgenden Menge und beweisen Sie ihre Aussage:

$$S := \left\{ \frac{2n+1}{n+1} : n \in \mathbb{N}_{\geq 1} \right\} = \left\{ \frac{3}{2}, \frac{5}{3}, \frac{7}{4}, \frac{9}{5}, \frac{11}{6}, \dots \right\}.$$

Aufgabe 4. Es sei S := (1, 5]. Beweisen Sie, dass inf S = 1.

2 Vollständige Induktion

Aufgabe 5.

i.) Beweisen Sie die Bernoulli-Ungleichung:

$$\forall x > -1$$
, $\forall n \in \mathbb{N} : (1+x)^n \ge 1 + nx$.

mittels Induktion.

ii.) Seien $n \in \mathbb{N}_{\geq 2}$ und $x_1, \ldots, x_n \geq 0$. Zeigen Sie:

$$\prod_{i=1}^{n} (1 + x_i) \ge 1 + \sum_{i=1}^{n} x_i.$$

Aufgabe 6. Zeigen Sie, dass:

$$\frac{4^{2n}-3^n}{13} \in \mathbb{N}.$$

 $f\ddot{u}r \ alle \ n \in \mathbb{N}_{>1}.$

Aufgabe 7.

- i) Zeigen Sie, dass der kleinste, nicht triviale Teiler einer natürlichen Zahl $n \in \mathbb{N}_{\geq 2}$ stets eine Primzahl ist. Hier ist keine vollständige Induktion notwendig, ein Beweis per Widerspruch genügt völlig.
- ii) Zeigen Sie, dass jede natürliche Zahl $n \in \mathbb{N}_{\geq 2}$ als Produkt von Primzahlen in der kanonischen Form $n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$, wobei $p_1 < p_2 < \cdots < p_k \in \mathbb{P}$ und $a_1, \ldots, a_k \in \mathbb{N}_0$, geschrieben werden kann. Diese Darstellung ist desweiteren eindeutig, dies muss jedoch nicht gezeigt werden.

Aufgabe 8 (* Trig Heavy). Wir definieren die Chebyshev Polynome für alle $x \in \mathbb{R}$ wie folgt:

$$P_0(x) = 1.$$

$$P_1(x) = x.$$

$$P_{n+1}(x) = xP_n(x) - P_{n-1}(x), \text{ f\"{u}r } n \in \mathbb{N}.$$

Zeigen Sie, dass gilt:

$$P_n(2\cos(\theta)) = \frac{\sin((n+1)\theta)}{\sin(\theta)}, \ \theta \in (0,\pi).$$

Aufgabe 9. (*) Sei $n \in \mathbb{N}$ und $a_{jk} \in \mathbb{C}$ für j = 0, ..., n + 1, k = 0, ..., n. Zeigen Sie, dass:

$$\sum_{j=0}^{n+1} \sum_{k=0}^{n} a_{jk} = \sum_{0 \le j \le k \le n} a_{jk} + \sum_{0 \le k < j \le n+1} a_{jk}.$$

Aufgabe 10. Zeigen Sie die **Vorwärts-Rückwärts Induktion** (auch bekannt als Cauchy-Induktion): Es sei P(n) eine Aussage für $n \in \mathbb{N}_{\geq 2}$. Falls P(2) wahr ist und

- 1. Aus P(k) lässt sich P(2k) folgern (Vorwärts Schritt).
- 2. Aus P(k+1) lässt sich P(k) folgern (Rückwärts Schritt).

Dann gilt die Aussage P(n) für alle $n \in \mathbb{N}_{\geq 2}$.

Aufgabe 11. (*) Es seien $0 \le x_i \le \pi$ für $i = 1, ..., n \in \mathbb{N}$. Zeigen Sie folgende Ungleichung für alle $n \in \mathbb{N}$ mit Hilfe der Vorwärts-Rückwärts Induktion:

$$\sin x_1 + \sin x_2 + \dots + \sin x_n \le n \sin \left(\frac{x_1 + \dots + x_n}{n}\right).$$

Aufgabe 12. (*) Zeigen Sie mit Hilfe der Cauchy-Induktion die folgende Ungleichung, bekannt als Cauchy's Ungleichung (oder auch arithmetisches Mittel dominiert das geometrische Mittel): Es seien $a_1, a_2, \ldots, a_n \in \mathbb{R}_{\geq 0}$, dann gilt

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot a_2 \cdot \dots \cdot a_n}.$$

3 Folgen

Aufgabe 13. Seien $(x_i)_{i\in\mathbb{N}}\subseteq\mathbb{R}$ und $x\in\mathbb{R}$.

- i.) Zeigen Sie, falls jede Teilfolge $(x_{n_i})_{i\in\mathbb{N}}$ eine Teilfolge $(x_{n_{i_j}})_{j\in\mathbb{N}}$ besitzt, die gegen x konvergiert, dann gilt $\lim_{n\to\infty} x_n = x$.
- ii.) Finden Sie eine Folge $(x_n)_{n\in\mathbb{N}}$ so, dass für jede Teilfolge $(x_{n_i})_{i\in\mathbb{N}}$ eine konvergente Teilfolge $(x_{n_{i_j}})_{j\in\mathbb{N}}$ existiert, aber $(x_n)_{n\in\mathbb{N}}$ nicht konvergiert.

Aufgabe 14. Sei $(z_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$, $z\in\mathbb{C}$. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist:

- i.) $z_n \longrightarrow z \iff Re(z_n) \longrightarrow Re(z) \ und \ Im(z_n) \longrightarrow Im(z).$
- ii.) $|z_n| \longrightarrow |z| \Longrightarrow z_n \longrightarrow z$.
- iii.) $z_n \longrightarrow z \Longrightarrow |z_n| \longrightarrow |z|.$
- iv.) $z_n \in \mathbb{R}$ für alle $n \in \mathbb{N}$ und $z_n \longrightarrow z \Longrightarrow z \in \mathbb{R}$.

Aufgabe 15. Seien $m \in \mathbb{N}_{\geq 1}$, $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}^m$ and $\lambda \in \mathbb{R}$. Entscheiden Sie für jede der folgenden Aufgaben, ob sie wahr oder falsch sind (mit Beweis oder Gegenbeispiel):

- i.) $(\|x_n\|)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n\in\mathbb{N}}$ konvergiert.
- ii.) $(x_n \cdot y_n)_{n \in \mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n \in \mathbb{N}}$ konvergiert.
- iii.) $(\lambda x_n)_{n\in\mathbb{N}}$ konvergiert $\Longrightarrow (x_n)_{n\in\mathbb{N}}$ konvergiert.
- iv.) Jede beschränkte Folge konvergiert.

Aufgabe 16. Berechnen Sie die folgenden Grenzwerte:

$$\limsup_{n \to \infty} \left(\sqrt{n^2 + n} - n \right).$$

ii.)
$$\lim_{n\to\infty} \left(1 - \frac{5}{n-3}\right)^{(n+\sqrt{n})/2}.$$

iii.)
$$\liminf_{n \to \infty} (-1)^n \frac{\sqrt{n-5n^3}}{n^3 + n(n+1)(n+2)}.$$

Aufgabe 17. Entscheiden Sie für jede Aussage, ob sie wahr oder falsch ist: $Sei\ (a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ mit Häufungspunkt $h\in\mathbb{R}$.

- i.) h ist der Grenzwert von $(a_n)_{n\in\mathbb{N}}$.
- ii.) h ist der einzige Häufungspunkt in $\mathbb{R} \Longrightarrow a_n \longrightarrow h$.
- $iii.) (a_n)_{n\in\mathbb{N}} konvergiert \Longrightarrow a_n \longrightarrow h.$
- iv.) Es existiert eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$, die gegen h konvergiert.
- $v.) \ \forall \ \epsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N : |a_n h| < \epsilon.$

Aufgabe 18. (\star)

i.) Berechnen Sie alle Häufungspunkte der Folge:

$$a_n = \sin\left(\frac{\pi n}{2}\right) \left(1 + \frac{3}{n}\right)^{n+1}.$$

ii.) Seien $a_i > 0$ für alle i = 1, ..., p. Zeigen Sie, dass:

$$\lim_{n \to \infty} (a_1^n + \dots + a_p^n)^{1/n} = \max_{i=1,\dots,p} a_i.$$

Aufgabe 19. (*) Sei eine reelle Folge $(a_k)_{k\in\mathbb{N}}$ rekursiv definiert durch:

$$a_0 = 1$$
, $a_{k+1} = \sqrt{|a_k|} + \frac{15}{4} \text{ für } k \in \mathbb{N}$.

- i.) Zeigen Sie, dass $(a_k)_{k\in\mathbb{N}}$ konvergiert.
- ii.) Berechnen Sie den Grenzwert von $(a_k)_{k\in\mathbb{N}}$.

Aufgabe 20. (\star) Zeigen Sie, dass

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty.$$

Aufgabe 21. (\star)

i.) Berechnen Sie den folgenden Grenzwert:

$$\lim_{n \to \infty} \log \left(\left(\frac{n}{n+1} \right)^n \right).$$

ii.) Berechnen Sie alle Häufungspunkte der komplexen Folge:

$$z_n = (n^4 - n^2 + 2)^{1/n} \sin\left(\frac{\pi n}{2}\right) + i\frac{n+e}{2n+1}(-1)^n.$$

iii.) Zeigen Sie:

$$\lim_{n \to \infty} \left[(n+1) \cos \left(\frac{1}{n+1} \right) - n \cos \left(\frac{1}{n} \right) \right] = 1.$$

Aufgabe 22 (\star) .

- i) Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge derart, dass für ihre Inkremente gilt $|a_{n+1}-a_n|\leq 2^{-n}$. Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy Folge ist. Bedeutet dies, dass $(a_n)_{n\in\mathbb{N}}$ konvergiert? Warum?
- ii) Es sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge, welche rekursiv definiert ist mittels:

$$a_{n+2} = \frac{a_n + a_{n+1}}{2}$$
, für alle $n \in \mathbb{N}$.

Zeigen Sie, dass dies eine Cauchy Folge ist. Verwenden Sie Teil i).

iii) Berechnen Sie den Grenzwert der Folge aus Teil ii).

4 Reihen

Aufgabe 23. Wir wollen den Cauchy'schen Verdichtungssatz (Kondensationssatz von Cauchy) beweisen. Sei $(a_n)_{n\in\mathbb{N}}$ eine nicht-negative Folge von monoton fallenden Termen. Zeige, dass

$$\sum_{n=1}^{\infty} a_n < \infty \iff \sum_{n=1}^{\infty} 2^n f(2^n) < \infty.$$

Aufgabe 24. Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge monoton fallender, nicht-negativer reellen Zahlen. Zeige dass falls $\sum_{n=1}^{\infty} a_n$ konvergiert, dann gilt $na_n \to 0$ als $n \to \infty$. Hinweis: Verwende den Cauchy'schen Verdichtungssatz.

Aufgabe 25. Verwenden Sie den Cauchy'schen Verdichtungssatz (Kondensationssatz) um zu zeigen, dass die nachfolgenden Reihen divergieren respektive konvergieren:

i)

 $\sum_{n=1}^{\infty} \frac{1}{n}.$

ii)

 $\sum_{n=1}^{\infty} \frac{1}{n^2}.$

iii)

$$\sum_{n=1}^{\infty} \frac{1}{n^s}, \ wobei \ s > 1.$$

Aufgabe 26.

i) Sei $(a_n)_{n\in\mathbb{N}}$ monoton wachsend, $a_n > 0$. Zeige, die Reihe

$$\sum_{n} \left(\frac{a_{n+1}}{a_n} - 1 \right)$$

konvergiert genau dann, wenn $(a_n)_{n\in\mathbb{N}}$ beschränkt ist.

ii) Es sei $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Nullfolge. Zeige dass gilt:

$$\sum_{n=1}^{\infty} \frac{a_n}{1 + na_n} < \infty \iff \sum_{n=1}^{\infty} a_n < \infty.$$

Hinweis: Verwende Aufgabe 24.

Aufgabe 27. (\star) Bestimmen Sie für die folgenden Reihen, ob sie konvergent und ob sie absolut konvergent sind:

$$\sum_{k>0} \frac{2k}{3k^3 + 1}.$$

$$\sum_{k>2} \frac{\sin(k\pi/2)}{\log(k)}.$$

$$\sum_{k>1} \frac{2^k k!}{k^k}.$$

Aufgabe 28. (*) Untersuchen Sie die folgenden Reihen auf Konvergenz und absolute Konvergenz:

i.)

$$\sum_{n>0} (-1)^n \frac{\sqrt{n}}{n+1}.$$

ii.)

$$\sum_{n>0} \left(\frac{n+5}{3n-2} \right)^{3n}.$$

iii.)

$$\sum_{n \geq 0} \frac{\exp(3n\log(n))}{(n!)^2}.$$

Aufgabe 29. (\star) Berechnen Sie:

$$\lim_{n \to \infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{(n-1) \cdot n} \right).$$

Aufgabe 30.

i) Existiert ein s > 0 sodass die nachfolgende Reihe konvergiert?

$$\sum_{n=2}^{\infty} \frac{1}{\log^s(n)}.$$

ii) Für welche $s \in \mathbb{R}$ ist die nachfolgende Reihe konvergent?

$$\sum_{n=2}^{\infty} \frac{1}{n \log^s(n)}.$$

Aufgabe 31. Zeigen Sie, dass die nachfolgende Reihe konvergiert:

$$\sum_{k=1}^{\infty} \frac{2k^2 + 2k + 3}{6k^5 + 6}.$$

Aufgabe 32. Zeigen Sie mit Hilfe des Integralkriteriums, dass die folgende Reihe konvergiert:

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}.$$

Aufgabe 33. Bestimmen Sie, ob die nachfolgende Reihe konvergiert:

$$\sum_{n=0}^{\infty} ne^{-n^2}.$$