Thus, the complexity of the problem depends on a number of problems a, size of the problem (n / b) and the division/combination cost f(n).

4.2 Recurrence and Different Methods to Solve Recurrence

represented using recurrence equations. behavior of the recursive algorithm is better sequence of function with a different argument. The Definition: Recurrence equation recursively defines a

larger problem. recursively, we can find the running time of a the running time of smaller sub-problems equation is like a recursive function. By finding described by the recurrence equation. Recurrence Running time of the recursive algorithm is often

Recurrence is normally of the form:

$$T(n) = T(n-1) + f(n), \text{ for } n > 1$$

 $T(n) = 0, \text{ for } n = 0$

- The function f(n) may represent constant or any polynomial in n.
- Equation (4.2.1) is called the recurrence equation.
 T(n) is interpreted as the time required to solve the problem of size n.
- On recursively solving T(n) for n = n 1, recurrence will hit the base case. T(n) = 0, for n = 0. Values will be back propagated and the final value of T(n) is computed.
- Recurrence equation for some of the problems is mentioned here. Later in the book, we will explore the recurrence equation in mode depth.
- Recurrence of linear search/ factorial:
 T(n) = T(n 1) + 1
- Recurrence of selection/ bubble sort : T(n) = T(n-1) + n
- Recurrence of binary search: T(n) = T(n/2) + 1
- Recurrence of merge sort : T(n) = 2T(n/2) + n

Use

- Recurrence relation can effectively represent the running time of recursive algorithms.
- The time complexity of certain recurrence can be easily solved using master methods.
- There are several ways to solve the recurrence equation. Following are the widely known methods for solving recurrence.
 - o Unfolding method
 - (a) Forward substitution
 - (b) Backward substitution
 - o Homogenous equations
 - o Inhomogeneous equations
 - o Master method
 - o Change of variable
 - o Let us discuss various methods to solve the recurrence equation.

4.2.1 Unfolding Methods

In this section, we will discuss two unfolding methods which are widely used to solve a large class of recurrence. It is also known iteration methods. There are two ways to solve such equations.

Scanned with CamScanner

Fig. 4.2.1: Ways to solve unfolding methods

4.2.1 (A) Forward Substitution

Forward substitution method finds the solution of the smallest problem using base condition. A solution to the bigger problem is obtained using the previously computed solution of the smaller problem. This process is repeated until the solution for the original problem of size n is achieved.

Ex. 4.2.1: Solve the recurrence of linear search using a forward substitution method.

Soln. :

Recurrence equation of linear search is,

$$T(n) = T(n-1) + 1$$
, for $n > 0$ and

$$T(n) = 0$$
, for $n = 0$ (Base condition)

Inductive case of the recurrence is

$$T(n) = T(n-1) + 1$$
(1)

Forward substitution finds the solution of T(n) by solving the progressively bigger problems, starting from the smallest possible case.

Here, the base case is

$$T(n) = 0$$
, for $n = 0$...(2)

Put n = 1 in Equation (1) to solve the problem of size 1.

$$T(1) = T(1-1) + 1 = T(0) + 1 = 0 + 1$$
(From Equation (2))

$$\therefore T(1) = 1$$

For
$$n = 2$$
,

$$T(2) = T(2-1) + 1 = T(1) + 1 = 1 + 1$$

$$T(2) = 2$$

After k substitutions,

$$T(k) = k,$$

And for
$$k = n$$
,

$$T(n) = O(n)$$

4.2.1 (B) Backward Substitution

This method substitutes the value of n by n-1 recursively, to solve the smaller and smaller subproblem. It works exactly in reverse order of forward substitution.

Ex. 4.2.2 : Solve the recurrence of linear search using a backward substitution method.

Soln.:

Recurrence equation of linear search is,

$$T(n) = T(n-1) + 1$$
, for $n > 0$ and

$$T(n) = 0$$
, for $n = 0$ (Base condition)

Inductive case of the recurrence is

$$T(n) = T(n-1) + 1$$
(1)

The problem can be solved if T(n-1) is known.

To find T(n-1), substitute n = n-1 in Equation (1),

$$T(n-1) = T(n-2) + 1$$

Replace this T(n-1) in Equation (1)

$$T(n) = [T(n-2) + 1] + 1$$

$$= T(n-2) + 2 \qquad ...(2)$$

The problem can be solved if T(n-2) is known.

To find T(n-2), substitute n = n - 1 in Equation (1),

$$T(n-2) = T(n-3) + 1$$
 ...(3)

Replace this T(n-2) in Equation (2)

$$T(n) = [T(n-3) + 1] + 2$$
$$= T(n-3) + 3$$

After k substitutions,

$$T(n) = T(n-k) + k,$$

To match the base case, assume that k = n,

$$T(n) = T(n-n) + n = T(0) + n = 0 + n$$

(From base case)

$$T(n) = O(n)$$

Ex. 4.2.3 : Solve the following recurrence using the backward substitution method : $T(n) = T(n-1) + n^4$

Soln.:

Given that,
$$T(n) = T(n-1) + n^4$$
 ...(1)

Substitute n by n-1 in Equation (1),

$$T(n-1) = T(n-2) + (n-1)^4$$

Put this value of T(n-1) in Equation (1)

$$T(n) = [T(n-2) + (n-1)^4] + n^4 ...(2)$$

Substituting n by n-2 in Equation (1),

$$T(n-2) = T(n-3) + (n-2)^4$$

Tech Knowledge

To match the base case, consider k = n - 1

$$T(n) = 2^{n-1} \cdot T(n-n+1) = 2^{n-1} \cdot T(1)$$

$$T(n) = O(2^{n-1})$$
 (: $T(1) = 1$)

 $a_0 t_n + a_1 t_{n-1} + a_2 t_{n-2} + \dots + a_k t_{n-k} = 0$

This is a linear homogeneous equation with

- 2. It is linear because it involves ti with power one only.
- 3. It is homogeneous because $\sum t_{n-i} = 0$.
- Homogeneous recurrences equation is converted into the characteristic equation by substituting $t_n = x^n$.
- Characteristic equation of above homogenous recurrence would be,

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_k x^{n-k} = 0$$

This equation is satisfied if x = 0, or else if

$$a_0 x^k + a_1 x^{k-1} + a_2 x^{k-2} + \dots + a_k = 0$$

Note: If characteristic equation has two different roots r_1 and r_2 , then general solution of recurrence is given as, $t_n = c_1 (r_1)^n + c_2 (r_2)^n$

white
$$f_n = \frac{1}{\sqrt{5}} \left[(\Phi)^n - (\Phi^{-1})^n \right]$$
 Ex. 4.2.6 : Solve following homogenous recurrence : if $n = 0$
$$t_n = \begin{cases} 0 & \text{if } n = 0 \\ 5 & \text{if } n = 1 \end{cases}$$

$$3t_{n-1} + 4t_{n-2} & \text{otherwise}$$
 Soln. : Rewrite the given recurrence in homogenous from,
$$t_n - 3t_{n-1} - 4t_{n-2} = 0$$

Compare it with the general characteristic equation,

$$a_0 x^k + a_1 \cdot x^{k-1} + \dots + a_k = 0$$
, we get $k = 2$

Characteristic equation of the given homogenous equation would be,

$$x^2 - 3x - 4 = 0$$

$$\therefore (x+1)(x-4) = 0$$

Two roots are $r_1 = -1$ and $r_2 = 4$, both roots are different. So general solution of homogenous equation would be,

$$t_n = c_1 (r_1)^n + c_2 (r_2)^n$$

= $c_1 (-1)^n + c_2 (4)^n)$

From base condition, $t_n = 0$ for n = 0.

For n = 0, From Equation (1),

$$0 = c_1 (-1)^0 + c_2 (4)^0$$

$$0 = c_1 + c_2$$

From base condition, $t_n = 5$ for n = 1.

For n = 1, From Equation (1),

$$5 = c_1 (-1)^1 + c_2 (4)^1$$

$$5 = -c_1 + 4 c_2$$

From Equation (2) $c_1 = -c_2$, put it in Equation (3)

$$\therefore c_2 + 4c_2 = 5$$

$$c_2 = 1$$
 and hence $c_1 = -1$

Thus, the general solution of recurrence equation would be,

$$t_n = (-1)(-1)^n + (1)(4)^n = 4^n - (-1)^n$$

Tip: If characteristic equation has three roots r_1 , r_2 and r_3 , such that $r_2 = r_3$, then general solution of recurrence is given as,

$$t_n = c_1 \cdot r_1^n + c_2 \cdot r_2^n + c_3 \cdot n r_3^n$$

If characteristic equation has five roots r_1 , r_2 , r_3 , r_4 and r_5 , such that $r_1 = r_2$ and $r_3 = r_4 = r_5$, then general solution of recurrence is given as,

$t_n = 2^{n+1} - n \cdot 2^n - 2$	Mu
	Equation
4.2.3 Inhomogeneous Equation	Equatio
	$-6t_{n-1}$
Inhomogeneous recurrence equation has the form,	$-6t_{n-}$
$a_0 t_n + a_1 t_{n-1} + a_2 t_{n-2} + \dots + a_k t_{n-k} = b^n \cdot p(n)$	Adding
- This is linear inhomogeneous equation with constant coefficients. Where	\Rightarrow + t_n -
1. b is a constant	$t_n - 8$
2. p(n) is polynomial of degree d.	whi
- It is linear because it involves ti with power one	Cha
only.	equation
	$x^3 - 8$
It is non-homogeneous because $\sum t_{n-i} \neq 0$.	Put not the s
To solve the inhomogeneous equation, we should	Put
To the nomogenous for	8-
Section 4.2.2. Same way we did in the	
Ex. 4.2.8 : Solve the recurrent	character
Ex. 4.2.8 : Solve the recurrence equation : $t_n - 2 t_{n-1} =$	Rewn
Soin.:	$(x-2) x^2$
Given that,	
Rewriting it, $t_{n-2} t_{n-1} = (n+5) 3^{n}$ (1)	
This is $u = u_{n-1} = n \cdot 2n \cdot n$	Roots
La ta = i * 0. Let us a equation because	Gener
$\sum_{a_i \cdot t_{n-i} \neq 0}$ Let us convert it into homogeneous form. Replacing n by $(n-1)$ in Equation (1), $t_{n-1-2}t_{n-2} = (n+4)3^{n-1}$	
$t_{n-1}-2t_{n-2}$ $= (n-1)$ in Equation (1)	Ву рі
$t_{n-1}-2t_{n-2} = (n+4)3^{n-1}$ in Equation (1),	$t_{n}-2t_{n-1}=$
Replaci- n · 3n-1	t_1
$t_{n-2} = 2t_{n-3} = (n+3) \cdot 3^{n-2} $ \vdots $t_{n-2} = 2t_{n-3} = (n+3) \cdot 3^{n-2} $ (2)	
$u_{-2}-2t_{n-3} = n$, 3^{n-2}	By putt
$3^{n-2} + 3 \cdot 3^{n-2}$	t ₂ -
Scanned with CamScanner	

To find characteristic equation, we should eliminate polynomial terms

Multiply Equation (3) by 9 and add in Equation (1), Equation (1) * $9 \Rightarrow$

$$\begin{array}{lll} 9 \ t_{n-2} - 18 \ t_{n-3} & = & 9 \ n \cdot 3^{n-2} + 9 \cdot 3 \cdot 3^{n-2} \\ \\ 9 \ t_{n-2} - 18 \ t_{n-3} & = & n \cdot 3^n + 3 \cdot 3^n \end{array}$$

Adding Equation (1)

$$+ t_n - 2 t_{n-1} = n \cdot 3^n + 5 \cdot 3^n$$

$$t_n - 2t_{n-1} + 9t_{n-2} - 18t_{n-3} = 2n \cdot 3^n + 8 \cdot 3^n$$
 ...(4)

Multiply Equation (2) by - 6 and add it to Equation (4)

Equation (2) * $-6 \Rightarrow$

$$-6t_{n-1} + 12t_{n-2} = -6 \cdot n \cdot 3^{n-1} - 24 \cdot 3^{n-1}$$
$$-6t_{n-1} + 12t_{n-2} = -2n \cdot 3^{n} - 8 \cdot 3^{n}$$

Adding Equation (4)

$$\Rightarrow$$
 + $t_n - 2 t_{n-1} + 9 t_{n-2} - 18 t_{n-3} = 2 n \cdot 3^n + 8 \cdot 3^n$

$$t_n - 8 t_{n-1} + 21 t_{n-2} - 18 t_{n-3} = 0$$

which is a homogeneous equation.

Characteristic equation of this homogeneous equation is written as,

$$x^3 - 8x^2 + 21x - 18 = 0$$

Put $x = 1 \Rightarrow 1 - 8 + 21 - 18 \neq 0$, so (x - 1) = 0 is not the solution

Put
$$x = 2 \Rightarrow 8 - 8(4) + 21(2) - 18$$

$$8 - 32 + 42 - 18 = 0$$

(x - 2) = 0 is one the solution of given characteristic equation.

Rewriting it as factor of (x-2)

$$(\mathbf{x} - \mathbf{2}) \ \mathbf{x}^2 - (\mathbf{x} - \mathbf{2}) \ 6 \ \mathbf{x} + (\mathbf{x} - \mathbf{2}) \ 9 = 0$$
$$(\mathbf{x} - \mathbf{2}) \ (\mathbf{x}^2 - 6\mathbf{x} + 9) = 0$$
$$(\mathbf{x} - \mathbf{2}) \ (\mathbf{x} - 3)^2 = 0$$

Roots of equation are, $r_1 = 2$ and $r_2 = r_3 = 3$

Generalized solution of recurrence Equation is,

$$\mathbf{t_n} = \mathbf{c_1} \cdot \mathbf{r_1^n} + \mathbf{c_2} \cdot \mathbf{r_2^n} + \mathbf{n} \cdot \mathbf{c_3} \cdot \mathbf{r_3^n} \qquad \dots (5)$$

By putting n=1 in Equation (1), i.e. in $t_n-2t_{n-1}=n\ 3^n+5\cdot 3^n$

$$t_1 - 2t_0 = 3 + 15$$

 $t_1 = 18 + 2t_0$
...(6)

By putting n = 2 in Equation (1)

$$t_2 - 2 t_1 = 18 + 45 = 63$$

$$t_2 = 63 + 2 t_1$$

From Equation (6),

$$t_2 = 63 + 2 (18 + 2 t_0)$$

 $t_2 = 4 t_0 + 99$...(7)

Put n = 0 in Equation (5),

i.e.
$$t_n = c_1 \cdot r_1^n + c_2 \cdot r_2^n + n \cdot c_3 \cdot r_3^n$$

 $t_0 = c_1 \cdot 2^0 + c_2 \cdot 3^0 + 0$

$$t_0 = c_1 + c_2$$
 ...(8)

Put n = 1 in Equation (5)

$$t_1 = 2 \cdot c_1 + 3 \cdot c_2 + 3 c_3$$

But from Equation (6), $t_1 = 18 + 2t_0$

$$\therefore 2 t_0 + 18 = 2 \cdot c_1 + 3 c_2 + 3 c_3 \qquad \dots (9)$$

Put n = 2 in Equation (5)

$$t_2 = 4c_1 + 9 c_2 + 18 c_3$$

But from Equation (7), $t_2 = 4 t_0 + 99$

$$\therefore 63 + 2t_1 = 4 c_1 + 9 c_2 + 18 c_3$$

From Equation (6),

$$63 + 2 (t_0 + 18) = 4 c_1 + 9 c_2 + 18 c_3$$

$$\therefore 4 c_1 + 9 c_2 + 18 c_3 = 4 t_0 + 99 \qquad ...(10)$$

From Equation (8) and (9)

$$2 t_0 + 18 = 2 (t_0 - c_2) + 3 c_2 + 3 c_3$$

$$2 t_0 + 18 = 2 t_0 - 2 c_2 + 3 c_2 + 3 c_3$$

$$c_2 = 18 - 3 c_3 \qquad ...(11)$$

From Equation (8) and (10),

$$4 t_0 + 99 = 4 (t_0 - c_2) + 9 c_2 + 18 c_3$$

$$4 t_0 + 99 = 4 t_0 - 4 c_2 + 9 c_2 + 18 c_3$$

$$5 c_2 = 99 - 18 c_3 \qquad ...(12)$$

Multiply Equation (11) by - 5 and add it to Equation (12),

$$5 c_2 = 99 - 18 c_3
-5 c_2 = -90 + 15 c_3
0 = 9 - 3 c_3
\therefore c_3 = 3$$

From Equation (11), $c_2 = 18 - 3 c_3 = 18 - 9 = 9$

From Equation (8), $c_1 = c_2 \text{ to} - c_2$ $c_1 = t_0 - 9$

So, generalized solution of recurrence equation is given as,

$$t_n = c_1 \cdot r_1^n + c_2 \cdot r_2^n + n \cdot c_3 \cdot r_3^n$$

$$= (t_0 - 9) 2^n + 3 \cdot 9^n + n \cdot 3 \cdot 3^n$$

$$= (t_0 - 9) \cdot 2^n + 3 \cdot 3 \cdot 3^{n+1} + n \cdot 3^{n+1}$$

$$= (t_0 - 9) 2^n + (n+3) 3^{n+1}$$

Ex. 4.2.9: Find the solution for the following recurrence: $t_n - 2t_{n-1} = 3^n$

OR Solve following recurrence: $t(n) - 2t(n-1) = 3^n$

Soln. :

Given that

Generalized solution would be

$$t_n = (-2) \cdot (1)^n + (-1) \cdot n \cdot (1)^n + (2) \cdot (2)^n$$

$$+ n \cdot (1) \cdot 2$$

$$= -2 - n + 2^{n+1} + n \cdot 2^n$$

$$= n \cdot 2^n + 2^{n+1} - n - 2$$

4.2.4 Master's Theorem

- Divide and conquer strategy uses recursion. The time complexity of the recursive program is described using recurrence. In the Sections 4.2.1, we have studied various methods for solving the recurrence.
- The master method is used to quickly solve the recurrence of the form $T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$. The master method finds the solution without substituting the values of T(n / b). In the above

n = Size of the problem

a = Number of subproblems created in the recursive solution

n/b = Size of each sub problem

fin) = Work done outside recursive call. This includes the cost of the division of problem and merging of the solution.

Let T(n) = a T(n/b) + f(n)

equation.

Where $a \ge 1$, $b \ge 1$, $f(n) = \Theta(n^d \log^m n)$

The solution of the recurrence equation using the master method is obtained as,

Case - 1: if bd < a

 $T(n) = \Theta(n^{\log_b a})$

Case -1: if $b^d = a$

- If m > -1 then $T(n) = \Theta(n^d \log^{m+1} n)$
- If m = -1 then $T(n) = \Theta$ $(n^d \log n)$
- If m < -1 then $T(n) = \Theta(n^d)$

Case - 1: if bd > a

- If $m \ge 0$ then $T(n) = \Theta(n^d \log^m n)$
- If m < 0 then $T(n) = \Theta(n^d)$

Examples of the Master method

Ex. 4.2.13 : Solve the given recurrence using master met.

 $: T(n) = 2T(n/2) + n^2 \log n$

Soin. :

Compare this equation with $T(n) = a T\left(\frac{n}{b}\right) + f(n)$

where $f(n) = n^d \log^m n$ Here, a = 2, b = 2, d = 2, m = 1

 $b^d = 2^2 = 4$

(Case - III, m ≥ 0)

Here bd > a

 $T(n) = \Theta(n^d \log^m n)$ $=\Theta\left(n^2\log^n\right)$

Ex. 4.2.14 : Solve given recurrence using Master method

 $T(n) = 2T(n/2) + n^2 \log^2 n$

Soln.:

Compare this equation with $T(n) = a T\left(\frac{n}{b}\right) + f(n)$

where $f(n) = n^d \log^m n$

Here, a = 2, b = 2, d = 2, m = 2

 $b^d = 2^2 = 4$

(Case – III, $m \ge 0$) Here, bd > a

 $T(n) = \Theta(n^d \log^m n)$ $=\Theta(n^2\log^2 n)$

Ex. 4.2.15 : Solve given recurrence using Master method :T(n) = $4T(n/2) + n^3$

Soln.:

Compare this equation with $T(n) = a T\left(\frac{n}{h}\right) + f(n)$,

where $f(n) = n^d \log^m n$

Here, a = 4, b = 2, d = 3, m = 0

 $b^d = 2^3 = 8$

Here, bd > a $(Case - III, m \ge 0)$

 $T(n) = \Theta(n^d \log^m n)$

 $=\Theta(n^3)$

Ex. 4.2.16 : Solve given recurrence using method: $T(n) = 4T(n/2) + n^3/logn$ Soln.:

Compare this equation with $T(n) = a T\left(\frac{n}{b}\right) + f(n)$, where $f(n) = n^d \log^m n$

Here, a = 4, b = 2, d = 3, m = -1

 $b^d = 2^3 = 8$

Here, bd> a

(Case - III, m < 0)

 $\therefore \ T(n) = \Theta (n^d) = \Theta (n^3)$