

Universidad Nacional de Ingeniería

Facultad de Ciencias

Bases de Datos

Algebra Relacional

Víctor Melchor Espinoza

Modelo Relacional - Manipulación

- Dos categorías de lenguajes
 - Formales : álgebra relacional y cálculo relacional
 - Alto Nivel (Comerciales) basadas en los lenguajes formales -SQL
- Lenguajes formales Características
 - orientados a conjuntos
 - lenguajes de base : lenguajes relacionales deben tener como mínimo un poder de expresión equivalente al de un lenguaje formal
- Cerradura
 - Los resultados de consultas son relaciones.

- Álgebra desarrollada para describir operaciones sobre una base de datos relacional.
- El conjunto de objetos son las Relaciones.
- Operadores para consulta y alteración de relaciones.
- Lenguaje procedural
 - una expresión en el álgebra define una ejecución secuencial de operadores.
 - La ejecución de cada operador produce una relación.

 Los operadores del álgebra relacional reciben una o más relaciones de entrada y generan una nueva relación de salida.

- ¿Por qué aprender AR?:
 - Comprendiendo álgebra relacional es más fácil aprender SQL.
 - No hay SGBD que implementa el álgebra directamente como DML (Data Manipulation Language), pero SQL incorpora cada vez más conceptos del álgebra.
 - Los algoritmos de optimización de consulta se definen sobre álgebra (posible uso internamente en el SGBD)

- Operadores sobre conjuntos (una tabla es un conjunto de filas):
 - Unión
 - Intersección
 - Diferencia
 - Producto Cartesiano
- Operadores específicos del álgebra relacional:
 - Selección
 - Proyección
 - Unión
 - División
 - Renombramiento

Operaciones

Esquema Relacional: Ejemplo

Empleado

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000,00	45	001
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Proyecto

codProy	Descripcion	codDep
Α	Quetzal	001
В	Nautilus	002

Departamento

codDep	Descripcion
001	Investigación
002	Desarrollo

ProyectoEmpleado

codProy	codEmp	fechaln	fechaFin
Α	200	01/01/2007	actual
Α	201	01/01/2007	Actual
Α	202	01/02/2006	18/02/2010
В	203	15/02/2008	15/02/2010

Selección (o)

- Retorna tuplas que satisfacen una condición
- Hay como un filtro que mantiene solamente las tuplas que satisfacen la condición
 - Ej.: seleccione los trabajadores con salario mayor que 500
- El resultado:
 - es una relación que contiene las tuplas que satisfacen la condición.
 - Posee los mismos atributos de la relación de entrada.

Selección (o)

- - − Sigma(σ): es el símbolo que representa la selección
 - < condición de selección > es una expresión booleana que incluye literales y valores de atributos de la relación.
 - CLAUSULAS:

```
<nombre del atributo> <operador de comparación> <valor constante> O <nombre del atributo> <operador de comparación> <nombre del atributo>
```

- Nombre del atributo: es un atributo de R;
- Operador de comparación: =, <, <=, >, >=, <>
- Valor constante: es un valor del dominio del atributo
- · Pueden ser conectados a través de los operadores AND, OR y NOT
- <R> es el nombre de una relación o una expresión del álgebra relacional desde donde serán buscadas las tuplas.

 Buscar los datos de los empleados que tienen un salario menor que 2,000

Empleado

codEmp	Nombre	Salario	Edad	codDep
200	Pedro	3.000,00	45	001
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

 Buscar los datos de los empleados que tienen un salario menor que 2,000

Empleado

codEmp	Nombre	Salario	Edad	codDep
200	Pedro	3.000,00	45	001
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nombre	Salario	Edad	codDep
203	Ana	1,800	25	002

 Buscar los datos de los empleados con salario mayor que 2000 y con menos de 45 años

Empleado

codEmp	Nombre	Salario	Edad	codDep
200	Pedro	3.000,00	45	001
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

 Buscar los datos de los empleados con salario mayor que 2000 y con menos de 45 años

σ salario>2000 AND edad < 45 (Empleado)

Empleado

codEmp	Nombre	Salario	Edad	codDep
200	Pedro	3.000,00	45	001
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nombre	Salario	edad	codDep
201	Pablo	2.200,00	43	001
202	Maria	2.500,00	38	001

Proyección (π)

- Retorna uno o más atributos de interés.
- El resultado es una relación que contiene sólo las columnas seleccionadas.

* Elimina duplicados

Proyección (π)

Sintaxis:

$$\pi$$
 < lista de atributos > (< R >)

donde:

- lista de atributos> es una lista que contiene nombres de columnas de una o más relaciones.
- <R> es el nombre de la relación o una expresión del álgebra relacional de donde será buscada la lista de atributos.

Proyección (π) – Ejemplo

Buscar el <u>nombre</u> y la <u>edad</u> de todos los empleados

Empleado

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000	45	001
201	Pablo	2.200	43	001
202	Maria	2.500	38	001
203	Ana	1.800	25	002

Proyección (π) – Ejemplo

Buscar el <u>nombre</u> y la <u>edad</u> de todos los empleados

 π nombre, edad (Empleado)

Empleado

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000	45	001
201	Pablo	2.200	43	001
202	Maria	2.500	38	001
203	Ana	1.800	25	002

Resultado

Nombre	edad
Pedro	45
Pablo	43
Maria	38
Ana	25

Proyección y Selección

- Operadores diferentes pueden ser anidados
 - Ejemplo: Buscar el nombre y el salario de los empleados con mas de 40 años

Empleado

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000	45	001
201	Pablo	2.200	43	001
202	Maria	2.500	38	001
203	Ana	1.800	25	002

Proyección y Selección

- Operadores diferentes pueden ser anidados
 - Ejemplo: Buscar el nombre y el salario de los empleados con mas de 40 años

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000	45	001
201	Pablo	2.200	43	001
202	Maria	2.500	38	001
203	Ana	1.800	25	002

Resultado

Nombre	Salario
Pedro	3.000
Pablo	2.200

Ejercicios de Selección y Proyección

Empleado

codEmp	Nombre	Salario	edad	codDep
200	Pedro	3.000	45	001
201	Pablo	2.200	43	001
202	Maria	2.500	38	001
203	Ana	1.800	25	002

Departamento

codDep	descripcion
001	Investigacion
002	Desarrollo

Proyecto

codProy	Descripcion	codDep
Α	Quetzal	001
В	Nautilus	002

ProyectoEmpleado

codProy	codEmp	fechaln	fechaFi
Α	200	01/01/2007	actual
Α	201	01/01/2007	actual
Α	202	01/02/2006	18/02/2010
В	203	15/02/2008	15/02/2010

- Busque todos los empleados con menos de 30 años.
- 2) Busque el código de los empleados que trabajan en el proyecto A
- 3) Seleccione el nombre y el salario de los empleados que trabajan en el departamento 001
- 4) Busque el código del proyecto y código del empleado de los proyectos en ejecucion en 2015
- 5) ...¿Y si quisieramos buscar el nombre del proyecto y el nombre de los empleados de los proyectos en ejecución en el 2009?