Targeting Investments in Resource Conservation with RIOS (Resource Investment Optimization System)

Adrian Vogl (avogl@stanford.edu)
Heather Tallis, Stacie Wolny, Rich Sharp, James Douglass, Doug Denu,
Silvia Benitez, Fernando Veiga, Juan Sebastian Lozano, Paulo Petry,
Jorge Leon, Joao Guimaraes, Eddie Game

Can we do a better job of targeting investments in watershed services by using a science-based approach with biophysical and social data?

Science-based approaches

 Use biophysical data with models to target where services are highest

 Scenario analyses of vulnerability or sensitivity to interventions

Specific to context and available data

Limitations

- Data requirements often extensive, computationally intensive
- Available data limited in quality and scope
- Need to integrate multiple model results to move beyond single objective & single activity
- Often address effectiveness only, not feasibility or cost effectiveness
- Does not tell you both where you get best results for multiple goals AND where it is practical to work

Resource Investment Optimization System

 An approach general enough to work everywhere in Latin America

Easy with available data

Give standard outputs

Can We Do Better? YES!

Deep Dive Sites

30% to 600% better estimated returns than business as usual

STUTPUTS

RIOS MODULES

25% Terosion Control
32% N Regulation

Better than Business as Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - •Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen
 - Regulation
 - PhosphorusRegulation
- •Flood Mitigation

STUTPUTS

RIOS MODULES

25% Terosion Control
32% N Regulation

Better than Business as Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen Regulation
 - PhosphorusRegulation
- •Flood Mitigation

STUTPUTS

RIOS MODULES

Return on Investment

25% Terosion Control

32% N Regulation

Better than Business as Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen Regulation
 - PhosphorusRegulation
- •Flood Mitigation

STUTPUTS

RIOS MODULES

25% Terosion Control
32% N Regulation

Better than
Business as
Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - •Nitrogen Regulation
- Phosphorus Regulation
- Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen Regulation
 - PhosphorusRegulation
- •Flood Mitigation

OUTPUT I INVESTMENT PORTFOLIO

Objectives

What are the fund's objectives?

Diagnostic Screening

Land Use Changes

- Which land use transitions do you want to cause?
- •Will some be more effective than others?
- •Will some factors be more important than others in determining the impact of each transition?

Activities

- Which activities can be used for each land use transition?
 Do you prefer some over others?
- Where can each activity be done?
- How much does each activity cost?

Priority Area Selection

Budget

- What is the budget?
- How do you want to spend it?

Activities

How much does each activity cost?

Key Components

OUTPUT II ESTIMATE SERVICE RETURNS

STUTPUTS

RIOS MODULES

Return on Investment

25% Terosion Control

32% N Regulation

Better than Business as Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen Regulation
 - PhosphorusRegulation
- •Flood Mitigation

Portfolio Builder

- •Relative Benefit Models
 - Social and Economic Data
- •Cost Effectiveness Maximization

InVEST Tier 1 Tools

RIOS TOOL

2 Objectives:

Erosion Control for Drinking Water Quality Erosion Control for Reservoir Maintenance Phosphorus Retention for Water Quality Nitrogen Retention for Water Quality Flood Mitigation

Outputs - Estimation of Returns

CHANGE IN SEDIMENT EXPORT

CHANGE IN VALUE – AVOIDED TREATMENT COST

Outputs - Estimation of Returns

STUTPUTS

RIOS MODULES

25% Terosion Control
32% N Regulation

Better than Business as Usual

Portfolio Builder

- Erosion Control (Hydro, Drinking Water)
 - Nitrogen Regulation
- Phosphorus Regulation
- •Groundwater Recharge
 - Flood Mitigation
 - Dry Season Baseflow
 - Biodiversity
 - •"Other"

Portfolio Translator

- Erosion Control
 - •Nitrogen Regulation
 - PhosphorusRegulation
- •Flood Mitigation

OUTPUT III COMPARE TO BUSINESS AS USUAL

Estimated Value of Science

- 1 Investment Portfolio (Multi-objective, ranking & diagnostic screen)
- 2 Estimated Return on Investment (Estimate Returns)
- 3 Estimated Value of Science (Business case for approach)

Next Steps

- Ongoing testing and development
- •Expert Elicitation to estimate magnitude of change different activities can cause
- Plan Public Launch (March/April)
- Considering Launch in DC in early summer

