

(이론) GCP-2차수

- I 네트워킹 기초
- Ⅲ VM 관리 심화
- Ⅲ Cloud Load Balancing 개념

VPC

- VPC(Virtual Private Cloud)는 퍼블릭 클라우드 내에서 호스팅되는 안전하고 격리된 프라이빗 클라우드 환경을 의미
- VPC별로 네트워크를 구성할 수 있고 사용자가 정의하는 IP 주소 범위 선택, Subnet 생성, 라우팅 테이블 및 네트워크 게이트웨이 구성 등이 가능
- 클라우드 기반 리소스 및 서비스에 대해 확장 가능하고 유연한 글로벌 네트워킹을 제공

주의점	상세	
민첩성	• 네트워크 크기를 완벽히 제어하고 언제든지 리소스를 배포하고 확장할 수 있음	
네트워크 격리	• 클라우드 환경에서 완벽하게 독립된 가상의 네트워크를 제공하고 방화벽 및 로그 관리 기능 제공	
유연한 구성	• 사용자의 요구 사항에 맞게, 서브넷, 라우팅 규칙, 방화벽 규칙 등을 구성 가능	
비용 절감	• 하드웨어, 인건비 및 기타 관련 리소스에 대한 비용 절약	
가용성	• 이중화 및 내결함성 가용 영역 아키텍처를 제공하여 안정적인 리소스 이용을 보장	

[그림 1] VPC

교육 서비스

[그림 2] 커스텀 VPC 예시

리전(Region)

구글이 클라우드 서비스를 호스팅하는 특정 지리적 위치이며 각 리전(Region)은 여러 개의 영역(Zone)으로 이루어져 있음

- 영역에서 같은 리전의 다른 영역으로 고대역폭. 낮은 지연 시간으로 네트워크 연결이 가능
- 고가용성을 제공하는 내결함성 애플리케이션을 배포를 위해 Google은 다중 영역 및 다중 리전에 애플리케이션을 배포할 것을 권장
- 사용자 시나리오에 적합한 리전을 선택 예시 예) 미국에만 고객이 있거나 데이터가 미국에 있어야 하는 경우 리소스를 us-central1 리전이나 us-east1 리전 내의 영역에 저장하는 것이 좋음

영역(Zone)

특정 리전(Region) 내에서 독립적인 배포 영역을 의미하며 가상 머신과 같은 GCP 리소스들이 실제로 위치하는 물리적인 데이터 센터의 논리적인 그룹

- 영역의 정규화된 이름은 <region>-<zone>으로 구성됨 예) us-central1 리전 내 a 영역의 정규화된 이름은 us-central1-a
- 리소스를 배포하고자 하는 범위에 따라, 여러 리전의 여러 영역에 인스턴스를 만들어 중복성을 확보

[그림 3] 리전과 영역 예시

서브넷

네트워크 영역을 분할하여 더 작은 크기의 네트워크 영역으로 쪼갠 네트워크로 VPC 안에서 실제 리소스가 생성될 수 있는 네트워크 영역

- 각 VPC 네트워크는 한 개 이상의 서브넷이 있어야 하며, 자동 모드 VPC 네트워크는 각 리전에 자동으로 하나의 서브넷을 생성함
- 특정 리전에 속하는 리소스이며 커스텀 모드로 한 리전에 두 개 이상의 서브넷을 만들 수 있음
- VPC의 IP 주소를 나누어 리소스가 배치되는 물리적인 주소 범위
- IPv4 전용, IPv4 및 IPv6, IPv6 전용 등의 유형을 지원함

구분	설명	
일반 서브넷	 default 서브넷으로 사용자에 의해 생성되거나 VM 인스턴스에 사용을 위하여 자동 모드 VPC 네트워크 사용시 자동 생성됨 일반 서브넷은 gcloud CLI 또는 API에서 PRIVATE 용도로 사용됨 	
Private Service Connect 서브넷	• Private Service Connect를 사용하여 관리형 서비스를 게시하는 데 사용할 서브넷	
프록시 전용 서브넷	• 리전별 Envoy 기반 부하 분산기에 사용할 프록시 전용 서브넷	
Private NAT 서브넷	AT 서브넷 • Private NAT의 소스 범위로 사용하도록 예약된 서브넷	
피어 마이그레이션 서브넷	• 공유 VPC 서비스를 Private Service Connect로 마이그레이션하는 데 사용할 서브넷	

[표 2] 서브넷 용도에 따른 구분

NAT 게이트웨이

사설IP를 공인IP로 변환하여 주는 통신망의 통신 변환기로 프라이빗서브넷에서 인터넷과 통신하기 위한 아웃바운드 인스턴스를 의미

- 소프트웨어로 정의되는 분산형 및 관리형 서비스
- 퍼블릭 서브넷상에서 동작하는 NAT 게이트웨이는 프라이빗서브넷에서 외부로 요청하는 아웃바운드 트래픽을 받아 인터넷 게이트웨이와 연결
- 사용되는 NAT IP 주소 수를 자동으로 확장하도록 Cloud NAT를 구성할 수 있음
- Cloud NAT는 인터넷에 연결하는 가상 라우터인 Cloud Router에 NAT 게이트웨이를 사용하여 서브넷을 연결

구분	설명	
Public NAT	● 외부 IPv4 주소가 없는 Google Cloud 리소스가 인터넷의 IPv4 대상과 통신할 수 있음 ● IPv6 주소가 있는 VM 인스턴스가 인터넷의 IPv4 대상에 연결가능하도록 지원	
Private NAT	 VPC 네트워크에서 Google Cloud 내의 다른 VPC 네트워크와의 통신할 수 있음 VPC 네트워크와 온프레미스 또는 기타 클라우드 제공업체 네트워크 간의 연결을 지원 	

[표 3] Cloud NAT 유형

스냅샷

Snapshot이란 디스크의 현재 상태를 캡쳐하는 방식의 증분식 백업을 의미

- 백업 및 보관에 최적화되어 있어 스케줄 백업 또는 작업 전 백업 용도로 활용되기도 함
- 다른 프로젝트와 공유(스냅샷 생성) 할 수 있음
- 멀티 리전(ex: us) 혹은 리전(ex: us-central1)에 저장할 수 있음
- 스토리지 위치를 지정하지 않으면 소스 영구 디스크와 가장 가까운 멀티 리전에 저장됨

Creating a Snapshot Persistent Disk A Snapshot 1 (full snapshot) Snapshot 2 *Only contains blocks that are different since Snapshot 1 *Only contains blocks that are different since Snapshot 2

[그림 4] 스냅샷의 증분식 백업

커스텀 OS 이미지

소스 디스크, 이미지, 스냅샷 또는 Cloud Storage에 저장된 이미지에서 커스텀 이미지를 만들고 이 이미지를 사용하여 가상 머신(VM) 인스턴스를 만들 수 있음

- 인스턴스 및 인스턴스 템플릿 생성 등의 작업에 사용할 수 있음
- 이미지 저장 위치는 멀티리전 혹은 리전을 선택할 수 있으며 생성 후 변경할 수 없음
- Custom Image는 다른 프로젝트와 공유(액세스 허용) 할 수 있음
- 로컬 캐싱을 지원하기에 Snapshot 보다 더 빠른 디스크 생성이 가능
- 빠른 디스크 생성 및 다수의 VM 생성에 최적화

인스턴스 템플릿 개요

인스턴스 템플릿은 머신 유형, 부팅 디스크 이미지, 라벨, 시작 스크립트, 기타 VM 속성이 포함된 가상 머신(VM) 인스턴스의 구성을 저장하는 방법

- 기존 구성을 기반으로 VM을 만들거나, VM에 대한 예약을 신속하게 생성하려는 경우 인스턴스 템플릿을 사용
- 인스턴스 템플릿은 동일한 구성의 VM을 여러 개 만들기 위한 것임

	리전 인스턴스 템플릿	전역 인스턴스 템플릿
범위	템플릿에 지정된 리전에서만 사용 가능	모든 리전에서 사용 가능
안정성	하드웨어 오류는 템플릿의 리전으로 격리	하드웨어 오류는 템플릿이 사용되는 모든 리전에 영향을 줄 수 있음
예시	 리전 간 종속 항목을 줄입니다. 특정 리전에서 데이터 상주를 실현합니다. 예를 들어 데이터의 물리적 위치에 관한 규정 준수 요구사항을 충족하기 위해 	전역 인스턴스 템플릿을 재사용하여 여러 리전에서 VM, MIG, 예약을 생성

[표 4] 리전 인스턴스 템플릿과 전역 인스턴스 템플릿 비교

인스턴스 그룹

인스턴스 그룹은 단일 항목으로 관리할 수 있는 가상 머신(VM) 인스턴스의 모음

- 관리형 인스턴스 그룹(MIG)
 - 동일한 여러 VM으로 앱을 운영할 수 있음
 - 자동 확장, 자동 복구, 리전(멀티 영역) 배포, 자동 업데이트 등의 자동화된 서비스 제공
- 비관리형 인스턴스 그룹
 - 직접 관리하는 여러 VM에서 부하 분산을 수행
 - 자동 확장, 자동 복구, 순차적 업데이트 지원, 멀티 영역 지원 및 인스턴스 템플릿 미제공
 - 가용성이 높고 확장 가능한 워크로드를 배포하는 데는 적합하지 않음

Auto Scaling (자동 확장)

MIG는 부하 증가 또는 감소에 따라 그룹에서 동적으로 VM 인스턴스를 추가 또는 삭제하는 자동 확장 을 지원

- 자동 확장 정책
 - 다음 중 하나 이상의 측정 항목에서 측정된 부하 및 구성한 옵션을 기준으로 자동 확장을 수행
 - 평균 CPU 사용률
 - HTTP 부하 분산 처리 용량
 - Cloud Monitoring 측정항목

[그림 5] 스케일 아웃과 스케일 인

Cloud Load Balancing 개념

로드 밸런싱

로드 밸런싱은 애플리케이션을 지원하는 리소스 풀 전체에 네트워크 트래픽을 균등하게 배포하는 방법

- 수백만 명의 사용자를 동시에 처리하고 정확한 텍스트, 비디오, 이미지 및 기타 데이터를 빠르고 안정적인 방식으로 각 사용자에게 응답이 필요할 때 활용
- 많은 양의 트래픽을 처리하기 위해 동일한 역할의 리소스 서버를 다수 생성하는 데, 이때 사용자와 서버 그룹 사이에서 트래픽을 분배

항목	상세
가용성	애플리케이션 가동 중지 없이 애플리케이션 서버 유지 관리 또는 업그레이드 실행
확장성	필요한 경우 다른 서버를 추가하거나 제거할 수 있도록 애플리케이션 트래픽을 예측
보안	공격 트래픽을 여러 백엔드 서버로 자동으로 리디렉션하여 영향 최소화
성능	클라이언트 요청을 지리적으로 더 가까운 서버로 리디렉션하여 지연 시간 단축

[표 5] 로드 밸런싱 사용시 장점

[그림 6] 로드 밸런싱

Cloud Load Balancing 개념

Cloud Load Balancing 유형

- 트래픽 유형에 따라 애플리케이션 부하 분산기 및 네트워크 부하 분산기의 두 가지 부하 분산기 유형을 제공
- 애플리케이션이 인터넷 또는 내부에 연결되는지에 따라 두 가지 연결 유형 제공
- 온프레미스 및 멀티 클라우드 환경을 모두 지원하는 리버스 프록시 부하 분산기를 설정해야 할 때는 프록시 네트워크 부하 분산기를 선택

品 Cloud Load Balancing	외부 (인터넷 트래픽 허용)	내부 (내부 Google Cloud 트래픽 허용)
애플리케이션 부하 분산기	• 전역 외부	• 교차 리전 내부
HTTPS 레이어 7 부하 분산	리전 외부기본	• 리전 내부
	프록시 네트워크 부하 분산기	
네트워크 부하 분산기 TCP/SSL/기타 레이어 4 부하 분산	전역 외부리전 외부기본	교차 리전 내부 리전 내부
	패스 스루 네트워크 부하 분산기	
	• 리전 외부	• 리전 내부

[표 6] 로드 밸런싱 유형 분류

[그림 7] 애플리케이션 부하 분산기의 구성요소