

Europäisches Patentamt **European Patent Office** Office européen des brevets

① Veröffentlichungsnummer: 0 418 667 A2

(E)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 90117233.8

(5) Int. Cl.5: **C07D** 261/18, C07D 275/03, A01N 43/80

2 Anmeldetag: 07.09.90 ·

Priorität: 22.09.89 DE 3931627 11.10.89 DE 3933898

Veröffentlichungstag der Anmeldung: 27.03.91 Patentblatt 91/13

Benannte Vertragsstaaten: BE CH DE ES FR GB IT LI NL SE

(7) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 W-6700 Ludwigshafen(DE)

(2) Erfinder: Maywald, Volker, Dr. Berner Weg 24 W-6700 Ludwigshafen(DE) Erfinder: Freund, Wolfgang, Dr. Johann-Gottlieb-Fichte-Strasse 71 W-6730 Neustadt(DE)

Erfinder: Hamprecht, Gerhard, Dr.

Rote-Turm-Strasse 28 W-6940 Weinheim(DE)

Erfinder: Kuekenhoehner, Thomas, Dr.

Seidelstrasse 2

W-6710 Frankenthal(DE) Erfinder: Plath, Peter, Dr. Hans-Balcke-Strasse 13 W-6710 Frankenthal(DE)

Erfinder: Wuerzer, Bruno, Dr.

Ruedigerstrasse 13 W-6701 Otterstadt(DE)

Erfinder: Westphalen, Karl-Otto, Dr.

Mausbergweg 58 W-6720 Speyer(DE)

- (4) Carbonsäureamide.
- Tarbonsäureamide la, lb, lc und ld

Ic

Ιd

I a

Ib

(X = 0, S; R1 = H, Halogen, geg. subst. Alkyl, geg. subst. Benzyl, Alkoxy, Alkylthio, Halogenalkoxy, Halogenalkylthio, geg. subst. Phenyl, geg.subst.Phenoxy oder Phenylthio, ein geg. subst. 5-/6-gliedriger Heterocyclus mit bis zu 2 Heteroatomen, Cycloalkyl-alkyl, geg. subst. Alkenyl, das epoxidiert sein kann, geg. subst. Alkinyl, geg. subst. Cycloalkyl oder Cycloalkenyl; R1 = Cycloalkyl-alkyl, geg. subst. Alkenyl, das epoxidiert sein kann, geg. subst. Cycloalkenyl; R² = CHO, 4,5-Dihydrooxazol-2-yl, COYR⁵, CONR⁶R⁷; Y = 0, S; R⁵ = H, geg.

subst. Alkyl, Cycloalkyl, geg.subst. Alkenyl, geg. subst. Cycloalkenyl, geg. subst. Alkinyl, geg.subst. Phenyl, ein 5-6/-gliedriger Heterocyclus mit bis zu 3 Heteroatomen, Benzotriazol, N-Phthalimido, Tetrahydrophthalimido, Succinimido, Maleinimido, 2,2-Di-methyl-1,3-dioxolan-4-ylmethyl, 1,3-Dioxolan-2-on-4-ylmethyl, im Falle Y = O: ein Äquivalent eines Kations aus der gruppe der Alkali-oder Erdalkalimetalle, Mn, Cu, Fe, Ammonium und subst. Ammonium, ein Rest-N = CR8R9 oder -W-Z; R8, R9 = H, geg.subst. Alkyl, geg.subst. Halogenalkyl, Cycloalkyl,

Alkoxy, Furanyl, geg. subst. Phenyl; R8 + R9 = 4-7-gliedrige Methylenkette; W = Alkylenkette, Ethoxyethylen-

kette, Butenylen-, Butinylenkette; Z= ein in ω -Stellung an W gebundener Molekülteil, der den gleichen Molekülteil darstellt, der in α -Stellung von W mit W verknüpft ist; $R^6=H$, Alkyl, Cycloalkyl; $R^7=H$; Alkyl; -C(O-alkyl)=N-H oder -C(O-alkyl)=N-alkyl; $R^6+R^7=4$ -5-gliedrige Methylenkette; $R^3=H$, geg. subst. Alkyl, geg. subst. Cycloalkyl; $R^4=H$, OH, Alkoxy, geg. subst. Alkyl, geg. subst. Cycloalkyl, geg. subst. Alkenyl, geg. subst. Alkinyl, Di-(C₁-C₄)-alkylamino, ein geg. subst. 5-/6-gliedriger Heterocyclus mit bis zu 2 Heteroatomen, geg. subst. Phenyl. geg. subst. Naphthyl; $R_3+R_4=4$ -7-gliedrige Methylenkette, kann durch 0, S oder N-CH₃ unterbrochen sein, oder -(CH₂)₃-CO-) sowie deren umweltverträglichen Salze.

Die Verbindungen la bis Id eignen sich als Herbizide.

CARBONSÄUREAMIDE

Die vorliegende Erfindung betrifft Carbonsäureamide der Formeln la, lb, lc und ld

5
$$R^{3-N-CO}$$
 R^{2} R^{2} $CO-N-R^{3}$ R^{1} $CO-N-R^{3}$ R^{1} $CO-N-R^{3}$ R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{1} R^{2} R^{3} R^{1} R^{2} R^{3} R^{4} R^{4} R^{4} R^{4} R^{4} R^{4}

in denen die Variablen folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

- R¹ Wasserstoff, Halogen, C¹-C₅-Alkyl, welches ein bis fünf Halogenatome und/oder einen Cyanorest und/oder bis zu zwei der folgenden Reste tragen kann: C¹-C₄-Alkoxy, partiell oder vollständig halogeniertes C¹-C₄-Alkythio oder partiell oder vollständig halogeniertes C¹-C₄-Alkythio;
- eine C₁-C₄-Alkoxy- oder C₁-C₄-Alkylthiogruppe, eine partiell oder vollständig halogenierte C₁-C₄-Alkoxy-gruppe, eine partiell oder vollständig halogenierte C₁-C₄-Alkylthiogruppe;
- die Benzylgruppe, die ein- bis dreimal durch C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Halogen, Cyano oder Nitro substituiert sein kann;
- die Phenylgruppe, welche noch einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, Halogen, C₁-C₆-Alkyl, partiell oder vollständig halogeniertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, partiell oder vollständig halogeniertes C₁-C₆-Alkylthio;
- die Phenoxy- oder die Phenylthiogruppe, wobei beide Gruppen ein- bis dreimal durch C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Halogen, Cyano oder Nitro substituiert sein können;
- ein 5- bis 6-gliedriger gesättigter oder aromatischer heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein oder zwei der folgenden Substituenten tragen kann: Halogen C₁-C₃-Alkyl, C₁-C₃-Alkoxy und C₁-C₃-Alkoxycarbonyl;
- eine durch C₃-C₈-Cycloalkyl substituierte C₁-C₆-Alkylgruppe;
- eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C₂-C₆-Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C₁-C₃-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein können;
- eine C₃-C₈-Cycloalkyl- oder eine C₃-C₆-Cycloalkenylgruppe, wobei beide Gruppen ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein können;
- R¹ eine durch C₃-Cォ-Cycloalkyl substituierte C₁-Cϵ-Alkylgruppe;
- eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C₂-C₆-Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C₁-C₃-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio, die beide unsubstituiert oder partiell oder vollständig halogeniert sein können;
- eine C₃-C₆-Cycloalkenylgruppe, die ein- bis dreimal durch Halogen oder C₁-C₄-Alkyl substituiert sein kann:
- R² eine Formylgruppe, eine 4,5-Dihydrooxazol-2-ylgruppe,
 - ein Rest COYR⁵ oder CONR⁶R⁷, wobei die Variablen die folgende Bedeutung haben:
 - Y Sauerstoff oder Schwefel;
 - R5 Wasserstoff;
 - eine C₁-C₆-Alkylgruppe, welche ein bis fünf Halogenatome und/oder bis zu drei Hydroxy- und/oder C₁-C₄-

Alkoxygruppen und/oder einen der folgenden Reste tragen kann:

- Cyano,
- C1-C4-Alkoxy-C2-C4-alkoxy,
- C1-C3-Alkylthio,
- C₁-C₃-Alkylamino, Di-(C₁-C₃)-alkylamino, C₃-C₆-Cycloalkylamino oder Di-(C₃-C₆)-cycloalkylamino,
 - Trimethylsilyl,
 - C₁-C₃-Alkylsulfinyl oder C₁-C₃-Alkylsulfonyl,
 - Carboxyl, C₁-C₃-Alkoxycarbonyl, C₁-C₃-Alkoxycarbonyl-C₁-C₃-alkoxy-C₁-C₃-alkoxycarbonyl.
- Di-(C₁-C₃)-alkylaminocarbonyl,
 - Di-(C₁-C₃)-alkoxyphosphonyl,
 - C₁-C₆-Alkaniminoxy oder C₅-C₆-Cycloalkaniminoxy,
 - N-Phthalimido, N-Succinimido, Benzyloxy, Benzoyl, wobei diese cyclischen Reste zusätzlich eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy,
- einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest oder einen 5- oder 6-gliedrigen heteroaromatischen Rest mit jeweils bis zu 3 Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt benachbart sein können und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;
- Phenyl, das noch bis zu drei der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy;
 - einen Rest - CR^{10} = N- R^{11} , wobei R^{10} und R^{11} die folgende Bedeutung haben: R^{10} Wasserstoff oder C_1 - C_6 -Alkyl und
- 25 R¹¹ C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C₃-C₆-Alkinyloxy, die jeweils bis zu 3 Halogenatome und/oder einen Phenylrest mit gewünschtenfalls bis zu drei der folgenden Reste tragen können: Halogen, Nitro, Cyano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy; Phenoxy, das noch bis zu drei der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy;
 - C_1-C_6 -Alkylamino, Di-(C_1-C_6)-alkylamino oder Phenylamino, wobei der Aromat zusätzlich bis zu drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano, C_1-C_3 -Alkyl oder C_1-C_3 -Alkoxy;
 - C₃-C₈-Cycloalkyl;
 - C₃-C₆-Alkenyl, C₅-C₆-Cycloalkenyl, C₃-C₆-Alkinyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy, Halogen, C₁-C₄-Alkoxy oder Phenyl, wobei der Aromat seinerseits eine bis drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
 - Phenyl, das eine bis drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy oder C₁-C₄-Alkoxycarbonyl;
- einen fünf- oder sechsgliedrigen heterocyclischen Rest mit bis zu drei Heteroatomen, ausgewählt aus der
 Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt benachbart sein können und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;
 - einen Benzotriazolrest;
 - N-Phthalimido, Tetrahydrophthalimido, Succinimido, Maleinimido;
- s die 2,2-Dimethyl-1,3-dioxolan-4-ylmethyl- oder 1,3-Dioxolan-2-on-4-ylmethylgruppe;
 - im Falle Y = O: ein Äquivalent eines Kations aus der Gruppe der Alkali- und Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und mit bis zu 4 C₁-C₃-Alkylgruppen substituiertes Ammonium; oder
 - ein Rest -N = CR8R9, wobei
- R8, R9 Wasserstoff; C1-C4-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein und einen C1-C3-Alkoxy- oder Phenylrest tragen kann, wobei der aromatische Rest seinerseits noch ein bis dreimal durch Halogen, Nitro, Cyano, C1-C3-Alkyl, partiell oder vollständig halogeniertes C1-C3-Alkyl, C1-C3-Alkoxy oder partiell oder vollständig halogeniertes C1-C3-Alkoxy substituiert sein kann; C3-C6-Cycloalkyl; C1-C4-Alkoxy; Furanyl oder Phenyl, das zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen,
- Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy;
 - oder R⁸ und R⁹ gemeinsam eine Methylenkette mit 4 bis 7 Gliedern bedeuten;
 - einen Rest -W-Z, wobei W eine C₂-C₄-Alkylenkette, eine Ethoxyethylenkette, eine But-2-enylen- oder eine

But-2-inylenkette bedeutet und Z einen in ω-Stellung an W gebundenen Molekülteil, der den gleichen Molekülteil darstellt, der in α-Stellung von W mit W verknüpft ist, bedeutet;

R⁶ - Wasserstoff, C₁-C₆-Alkyl oder C₃-C₈-Cycloalkyl und

 R^7 - Wasserstoff, C_1 - C_6 -Alkyl, $-C(OR^{12}) = N-H$ oder $-C(OR^{12}) = N-(C_1-C_4)$ -alkyl, wobei R^{12} C_1 - C_4 -Alkyl bedeutet oder —

R⁶,R⁷ gemeinsam eine Methylenkette mit 4 oder 5 Gliedern;

R3 - Wasserstoff;

- C_1 - C_6 -Alkyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio oder Di- $(C_1$ - C_4)-alkylamino;
- C₃-C₈-Cycloalkyl, das ein- bis dreimal durch Halogen, C₁-C₄-Alkyl und partiell oder vollständig halogeniertes C₁-C₄-Alkyl substituiert sein kann;

R⁴ - Wasserstoff, Hydroxyl, eine C₁-C₄-Alkoxygruppe;

- eine C₁-C₆-Alkylgruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Di-C₁-C₄-alkylamino, C₃-C₈-Cycloalkyl oder Phenyl, wobei der Phenylring seinerseits einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio;
- eine C₃-C₈-Cycloalkylgruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano,
 C₁-C₆-Alkyl, partiell oder vollständig halogeniertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₄-Alkoxy;
 - eine C_3 - C_6 -Alkenyl- oder C_3 - C_6 -Alkinylgruppe, die jeweils ein- bis dreimal durch Halogen und/oder einmal durch Phenyl substituiert sein können, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkylthio, Halogen, Cyano oder Nitro;

- eine Di-(C₁-C₄)-alkylaminogruppe;

- ein 5- bis 6-gliedriger heterocyclischer gesättigter oder aromatischer Rest mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann;
- eine Phenylgruppe, die eine bis vier der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Nitro, Cyano, Formyl, C₁-C₄-Alkanoyl, C₁-C₄-Halogenalkanoyl oder C₁-C₄-Alkoxycarbonyl;
 - eine Naphthylgruppe, die ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann; oder
- R³, R⁴ gemeinsam eine Methylenkette mit 4 bis 7 Gliedem, welche durch Sauerstoff, Schwefel oder N-Methyl unterbrochen sein kann, oder den Rest -(CH₂)₃-CO-, wobei im Falle der Verbindungen la bis lc R³ und R⁴ nicht gleichzeitig Wasserstoff bedeuten, wenn
 - R¹ Wasserstoff, Methyl oder Phenyl und R² CONH₂, COOH oder COOCH₃ bedeuten oder wenn
 - X Sauerstoff, R1 CH(OCH2CH3)2 und R2 CONH2 bedeuten,

sowie die umweltverträglichen Salze der Verbindungen la bis ld.

Außerdem betrifft die Erfindung herbizide Mittel, welche die Verbindungen la bis Id als wirksame Substanzen enthalten sowie herbizide Mittel, welche mindestens eine Verbindung la, lb oder lc enthalten, in denen die Substituenten die vorstehend gegebene Bedeutung haben und R³ und R⁴ gleichzeitig Wasserstoff bedeuten können, wenn

- R¹ Wasserstoff, Methyl oder Phenyl und R² CONH₂, CO₂H oder CO₂CH₃ bedeuten oder wenn
- X Sauerstoff, R1 CH(OCH2CH3) und R2 CONH2 bedeuten.

Isoxazol- und Isothiazol-carbonsäuren bzw. deren Derivate sind bekannt. Dies sind folgende Carbonsäureamide vom Typ la, lb und lc:

50

55

1) K. Butler; L.H. Conover, R.B. Woodward, U.S., US 3 699 117, 17 Oct: 1972, 40 pp; CA 78(1): 4027x, CA 73(23): 120 602b, CA 73(3): 14574j, CA 70(15): 68002c

30 2) J. Chem. Soc., .. 72-77 (1965)

35

45

50

55

3) J. Chem. Soc., 3061 (1959)

4) G. Desimoni, P. Gruenager, Gazz.Chim.Ital., 97(1), 25-33 (1967)

5) A. Camparini; F. Ponticelli, P. Tedeschi, J.Chem.Soc., Perkin Trans 1, (10), 2391-4 (1982)

Vom Typ der Verbindungen Id sind dies die 5-Aminocarbonyl-3-methyl-4-isoxazolcarbonsäure, der 5-Aminocarbonyl-3-methyl-4-isoxazolcarbonsäureethylester, das Isothiazol-4,5-dicarboxamid sowie die 5-Carbamoyl-4-isothiazolcarbonsäure (J. Chem. Soc. Perkin Trans. I, 1982, 2391; J. Heterocyclic. Chem. 22, 1561 (1985); J. Chem. Soc. 1959, 3061).

Eine Verwendung dieser Verbindungen als Herbizide ist jedoch unbekannt.

Aufgabe der vorliegenden Erfindung war es, neue herbizid wirksame Verbindungen bereitzustellen.

Demgemäß wurden die eingangs definierten Carbonsäureamide la, lb, lc und ld gefunden.

Außerdem wurden Verfahren zu ihrer Herstellung und herbizide Mittel, die die Verbindungen la, lb, lc und/oder Id enthalten, gefunden.

Die erfindungsgemäßen Carbonsäureamide Ia, Ib, Ic und Id sind auf verschiedenen Wegen herstellbar und zwar vorzugsweise nach den folgenden Verfahren:

1. Verfahren zur Herstellung von Verbindungen der Formeln la und lb, in denen $R^2\ CO_2CH_3$ und X Sauerstoff bedeuten

Man erhält die Carbonsäureamide la und Ib dadurch, daß man das Hydroxamsäurechlorid II in an sich

bekannter Weise in Gegenwart einer Base mit einem ß-Ketoester III umsetzt, den so erhaltenen Dimethyldiester IV anschließend zunächst mit einem Äquivalent einer wäßrigen Base zu den Monoestern Va bzw. Vb hydrolysiert und Va und Vb danach getrennt oder im Gemisch zuerst in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt und diese Derivate anschließend mit einem Amin Vla amidiert.

Die einzelnen Reaktionsschritte A, B und C dieser Synthesesequenz können wie folgt durchgeführt werden:

Reaktionsschritt A:

25

35

40

45

50

55

Die Umsetzung wird in der Regel bei Temperaturen von 0.bis 50°C, vorzugsweise 10 bis 30°C in einem inerten aprotisch polaren organischen Lösungsmittel in Gegenwart einer Base durchgeführt.

Zweckmäßig verwendet man als Lösungsmittel Kohlenwasserstoffe wie insbesondere Benzol, Toluol, o-, m- und p-Xylol oder Ether wie Diethylether, tert.-Butyl-methylether, Tetrahydrofuran, Dimethoxyethan, Ethylenglycoldimethylether und Dioxan.

Als Base eignet sich insbesondere Natriumhydrid.

Die Umsetzung wird üblicherweise so durchgeführt, daß zunächst der β-Ketoester III im Lösungsmittel mit 1 bis 2 mol-äq. der Base in das Anion überführt wird. Diese Lösung des Anions von III wird anschließend mit einer Lösung von II versetzt und bei der Umsetzungstemperatur belassen.

Die Umsetzung ist im allgemeinen nach 4 bis 12 Stunden beendet.

Vor der Aufarbeitung der Produkte empfiehlt es sich, das bei der Reaktion gebildete Wasser azeotrop zu entfernen.

Reaktionsschritt B:

Die partielle Verseifung des Dimethyldiesters IV zu den Monoestern Va und Vb wird üblicherweise bei Temperaturen von (-40) bis 20°C, vorzugsweise (-20) bis 0°C, in einem inerten, mit Wasser mischbaren organischen Lösungsmittel in Gegenwart von 1 bis 1,1 mol-äq. einer Base durchgeführt.

Als Basen eignen sich insbesondere Hydroxyde von Alkalimetall-Kationen. Die Base wird im allgemeinen als 5 bis 10prozentige wäßrige Lösung zugesetzt.

Bevorzugte Lösungsmittel für diese Umsetzung sind beispielsweise Tetrahydrofuran und Dioxan.

Zur Aufarbeitung wird das Reaktionsgemisch üblicherweise angesäuert, wobei das gewünschte Produkt sich als Feststoff oder als Öl abscheidet. Die Isolierung erfolgt in üblicher Weise durch Filtration bzw. Extraktion.

Das Gemisch der beiden isomeren Monoester Va und Vb kann durch fraktionierte Kristallisation oder auf chromatographischem Wege getrennt werden oder es kann ohne Trennung weiter umgesetzt werden.

Reaktionsschritt C:

5

20

25

35

40

50

55

Man erhält die Verbindungen la bzw. Ib aus den Monoestern Va und Vb, in dem man Va und Vb zunächst in an sich bekannter Weise in das Halogenid oder eine andere aktivierte Form der Carbonsäurefunktion überführt und diese Derivate anschließend mit einem Amin Vla amidiert.

Aktivierte Formen der Carbonsäure sind neben Halogeniden wie insbesondere den Chloriden und den Bromiden beispielsweise auch Imidazolide. Im allgemeinen werden die Halogenide bevorzugt.

Man erhält sie durch Umsetzung der Carbonsäuren Va und Vb mit einem Halogenierungsmittel wie Phosgen, Thionylchlorid, Thionylbromid, Phosphoroxychlorid bzw. -bromid, Phosphortri- und -pentachlorid bzw. -bromid sowie elementarem Chlor und Brom.

Das Halogenierungsmittel wird in 1 bis 5 mol-äq., vorzugsweise 1 bis 2 mol.äq., eingesetzt.

Die Umsetzung verläuft bei Temperaturen von 20°C bis zum Siedepunkt des Halogenierungsmittels bzw. sofem man in Gegenwart eines Inerten organischen Lösungsmittels arbeitet, auch dessen Siedepunkt.

Als Lösungsmittel eignen sich beispielsweise Kohlenwasserstoffe wie Benzol, Toluol, o-, m- und p-Xylol, Halogenkohlenwasserstoffe wie Dichlormethan, Chloroform, 1,2-Dichlorethan, 1,1,2,2-Tetrachlorethan, Chlorobenzol und 1,2-Dichlorbenzol sowie Gemische der genannten Lösungsmittel.

Üblicherweise werden die aktivierten Carbonsäurederivate isoliert, beispielsweise durch Abdestillieren des Halogenierungsmittels und sofern vorhanden des Lösungsmittels und erst anschließend mit den Aminen Vla umgesetzt.

In diesem Fall wird die Amidierung bei Temperaturen von (-20) bis 50°C, vorzugsweise 0 bis 30°C in einem inerten aprotisch polaren organischen Lösungsmittel durchgeführt.

Für diese Umsetzung eignen sich insbesondere Kohlenwasserstoffe wie Benzol, Toluol, o-, m-, p-Xylol, Halogenkohlenwasserstoffe wie Dichlormethan und Ether wie Diethylether und tert.-Butylmethylether als Lösungsmittel.

Da bei der Amidierung von Säurehalogeniden Halogenwasserstoff gebildet wird, empfiehlt es sich, das Amin VIa in 2 bis 5 mol.-äq. Überschuß, vorzugsweise 2 bis 3 mol.-äq. zuzusetzen. Sofern das Amin in äquimolaren Mengen (1 bis 1,2 mol-äq.) eingesetzt wird, sollte zum Binden des Halogenwasserstoffs eine Base, insbesondere ein tertiäres Amin wie Triethylamin oder Pyridin zugegeben werden.

Sofern man von einem Gemisch der Monoester Va und Vb ausgeht, erhält man bei der Umsetzung ein Gemisch aus den isomeren Carbonsäureamiden la und lb. Dieses Gemisch kann auf herkömmliche Weise, beispielsweise durch fraktionierte Kristallisation oder Chromatographie in die Einzelkomponenten aufgetrennt werden.

2. Verfahren zur Herstellung der Verbindungen la, in denen X Sauerstoff, R² CO-OR⁵ und R⁵ nicht Wasserstoff oder Methyl bedeuten:

$$R^4$$
 R^3-N-CO
 $CO-OR^5$
 $N-O$
 R^1
 $Ia (R^5 \neq H, CH_3)$

In Analogie zu dem unter 1. geschilderten Verfahren erhält man diese Verbindungen Ia, indem man das Hydroxamsäurechlorid II in der vorstehend geschilderten Weise mit einem \(\beta\)-Ketoester der Formel IIIa umsetzt, den so erhaltenen Diester IVa anschlie\(\beta\)end mit einem Verseifungsreagens in den Monoester Va' spaltet und diesen aktiviert und zu Ia amidiert.

Die Reaktionsschritte A und C dieser Synthesesequenz werden im allgemeinen und im besonderen entsprechend den bei Verfahren 1A und 1C geschilderten Bedingungen durchgeführt.

Reaktionsschritt B:

20

Die partielle Verselfung des gemischten Diesters IVa zum Monoester Va wird üblicherweise bei Temperaturen von (-40) bis 20°C, vorzugsweise (-20) bis 0°C, in einem inerten organischen Lösungsmittel durchgeführt.

Diese Verfahren sind allgemein bekannt und können gemäß den in der Literatur beschriebenen Bedingungen durchgeführt werden.

Sofern man bei dieser Art von Synthese ein Hydroxamsäurechlorid IIa mit einem β-Ketoester III umsetzt, ist es auch möglich auf dem gleichen Weg gezielt die Verbindungen Ib herzustellen, in denen X Sauerstoff, R² CO₂R⁵ und R⁵ nicht Wasserstoff oder Methyl bedeuten.

R50-C0 C1 + C0-OCH₃ A. R50-C0 C0-OCH₃

IIa III IVb

B. R50-C0 C0OH C. R50-C0 CO-OCH₃

$$R^4$$
 R^5
 R^5

Die letztgenannten Verfahren zur gezielten Herstellung eines Isomeren der beiden Carbonsäureamide la und Ib beruhen auf der Möglichkeit bel zwei unterschiedlichen Estergruppen einer Verbindung durch die Verwendung nur eines mol-Äquivalents an Verseifungsreagens unter milden Reaktionsbedingungen selektiv die eine Estergruppe zu spalten.

Als Verseifungsreagentien eignen sich beispielsweise Hydroxide von Alkalimetall-Kationen bei unverzweigten Alkylestern, Mineralsäuren bei α-verzweigten Alkylestern und Wasserstoff bei der Hydrogenolyse von Benzyl und Allylestern.

3. Verfahren zur Herstellung der Verbindungen la und lc, in denen R¹ nicht Wasserstoff und R² Carboxyl oder Formyl und R³ Wasserstoff bedeuten:

55

Man erhält diese isomeren Carbonsäureamide la und lc, indem man eine Carbonsäure Vc oder Vd gemäß den unter 1C geschilderten Bedingungen aktiviert und amidiert und die so erhaltenen Amide Vlla bzw. VIIb anschließend in an sich bekannter Weise in Gegenwart eines Carboxylierungsreagens oder eines Formylierungsreagens umsetzt.

Der Reaktionsschritt A dieser Synthesesequenz wird im allgemeinen und im besonderen entsprechend den im Verfahren 1 unter Punkt C beschriebenen Bedingungen durchgeführt.

Reaktionsschritt B

30

45

55

Die Formylierung bzw. Carboxylierung der Carbonsäureamide VIIa (x = 0,S) bzw. VIIb (X = S) erfolgt im allgemeinen bei Temperaturen von (-100) bis 0°C, vorzugsweise (-80) bis (-20)°C, die Formylierung bzw. Carboxylierung der Carbonsäureamide VIIb (X = 0) vorteilhaft bei Temperaturen <(-80)°C. Bevorzugt arbeitet man in einem aprotisch polaren inerten organischen Lösungsmittel unter Ausschluß von Feuchtigkeit und in Gegenwart einer Base.

Als Formylierungsreagens eignen sich insbesondere Dimethylformamid und N-Formylmorpholin, bevorzugtes Carboxylierungsmittel ist Kohlendioxid.

Geeignete Lösungsmittel sind insbesondere Diethylether, tert.-Butylmethylether, Tetrahydrofuran und Dioxan.

Als Basen finden bevorzugt Alkalimetallkohlenwasserstoffe wie Methyllithium, n-Butyllithium, tert.-Butyllithium und Phenyllithium Verwendung.

Die Umsetzung wird üblicherweise so durchgeführt, daß zunächst eine Lösung des Carbonsäureamids VIIa bzw. VIIb mit 2 bis 2,5 mol-äq. der gelösten Base versetzt wird, wobei ein im Ring metalliertes Carbonsäureamid-derivat entsteht, welches bei der anschließenden Zugabe des elektrophilen Formylierungs- bzw. Carboxylierungsreagens' zum gewünschten Produkt Ia bzw. Ic abreagiert.

Die für dieses Verfahren benötigten Carbonsäuren Vc und Vd sind literaturbekannt (Beilstein, Hauptwerk sowie 1.-5. Ergänzungswerk, Band 27; R.W. Wiley, The Chemistry of Heterocyclic Compounds, Five-and Six-Membered Compounds with Nitrogen and Oxygen, Interscience Publishers, New York, London (1962)) oder können nach allgemein literaturbekannten Methoden, z.B. durch Oxidation aus den entsprechenden Alkoholen oder Aldehyden oder durch Hydrolyse aus den entsprechenden Nitrilen, hergestellt werden.

4. Verfahren zur Herstellung von Verbindungen der Formel Id, in der R^2 COOR⁵ und R^5 Wasserstoff oder C_1 - C_6 -Alkyl bedeuten, durch Hydrolyse eines Isoxazol- oder Isothiazol-4.5-dicarbonsäuredialkylesters X (R^5 = C_1 - C_6 -Alkyl), Überführung des Verfahrensproduktes in ein Säurehalogenid XII und Amidierung des Säurechlorides:

20

30

Als Isoxazol- oder Isothiazol-4,5-dicarbonsäuredialkylester X eignen sich insbesondere Niedrigalkylester ($R^5 = R^{5'} = C_1-C_4$ -Alkyl), wobei Dimethylester und Diethylester besonders bevorzugt sind.

Die Reaktion wird so durchgeführt, daß man einen Isoxazol- bzw. Isothiazol-4,5-dicarbonsäuredialkylester X bei Temperaturen zwischen etwa 0 und 80°C, vorzugsweise zwischen 0 und 50°C, in einem organischen Lösungsmittel, z.B. Methanol oder Ethanol, mit einer starken Base, z.B. NaOH, KOH oder Ca-(OH)₂, behandelt. Im allgemeinen wird dabei etwa 1 Äquivalent der starken Base in wäßriger Lösung eingesetzt. Nach erfolgter Umsetzung wird abgekühlt und mit einer starken Mineralsäure, z.B. Salzsäure oder Schwefelsäure, angesäuert. Die entstehende Carbonsäure XI kann auf übliche Art und Weise z.B. durch Absaugen oder durch Extraktion mit einem organischen Lösungsmittel isoliert werden.

Zur Überführung der Carbonsäure XI in das Carbonsäurehalogenid XII bringt man die Säure XI in üblicher Art und Weise mit einem anorganischen Säurehalogenid wie Thionylchlorid, Phosphortri- oder Phosphorpentahalogeniden, zur Reaktion, wobei die Chloride bevorzugt sind. Dabei wird zweckmäßigerweise das anorganische Säurehalogenid in 1 bis 5 Moläquivalenten, vorzugsweise 1 bis 2 Moläquivalenten, eingesetzt. Man kann ohne Lösungsmittel oder in Gegenwart eines inerten organischen Lösungsmittels wie z.B. Benzol oder Toluol bei Temperaturen zwischen Raumtemperatur und der Siedetemperatur des anorganischen Säurehalogenids bzw. des inerten organischen Lösungsmittels arbeiten. In manchen Fällen kann der Zusatz eines Katalysators wie Dimethylformamid oder 4-Dimethylaminopyridin von Vorteil sein. Nach Beendigung der Reaktion kann das Säurehalogenids XII auf übliche Art und Weise isoliert werden, z.B. durch Abdestillation des Überschusses an anorganischem Säurehalogenid und des organischen Lösungsmittels und nachfolgende Destillation des Säurechlorids XII bei Normaldruck oder vermindertem Druck.

Die Carbonsäureamide der Formel Id, in der R² COOR⁵ und R⁵ C₁-C₆-Alkyl bedeuten, erhält man aus den Carbonsäurehalogeniden XII durch Umsetzung mit einem Amin VIa. Dabei geht man im allgemeinen so vor, daß man das Carbonsäurehalogenid in einem inerten organischen Lösungsmittel wie Dichlormethan, oder einem Ether wie Diethylether oder Methyl-tert.-butylether mit einem Amin VIa, ebenfalls gelöst in einem organischen Lösungsmittel, zur Reaktion bringt. Dabei setzt man das Amin VIa zweckmäßig in der 2-bis 5-fach molaren Menge, vorzugsweise 2- bis 3-fachen molaren Menge ein, um den entstehenden Halogenwasserstoff zu binden. Man kann auch in Gegenwart einer Hilfsbase wie einem tertiären Amin, z.B. Triethylamin, arbeiten. In diesem Fall genügen 1 bis 1,5 Moläquivalente Amin VIa. Die Reaktionstemperatur kann z. B. zwischen 0 und 50°C, vorzugsweise zwischen 0 und 20°C betragen. Die Reaktion ist im allgemeinen nach 1 bis 12 Stunden beendet. Das Gemisch kann wie Üblich aufgearbeitet werden, beispielsweise durch Hydrolyse mit Wasser und anschließender Extraktion des Produktes der Formel Id (R²=COOR⁵; R⁵=C₁-C₆-Alkyl) mit einem organischen Lösungsmittel und Einengen des organischen Lösungsmittels. Zur Reinigung kann das Produkt der Formel Id (R²=COOR⁵; R⁵=C₁-C₆-Alkyl) beispielsweise umkristallisiert oder chromatographiert werden.

Vorteilhaft kann die Darstellung des Säureamids Id (R² = COOR⁵, R⁵ = C₁-C₅-Alkyl) aus der Carbonsäure XI auch in einer Stufe durchgeführt weden. Dazu wird die Carbonsäure XI mit einem Amin VIa in Gegenwart eines wasserentziehenden Mittels, z.B. Propanphosphonsäureanhydrid (PPA) oder Dicycloh-

exylcarbodiimid (DCC), bei Temperaturen von 0 bis 50°C, bevorzugt 5 bis 25°C in einem inerten Lösungsmittel wie Dichlormethan, Tetrahydrofuran, Toluol oder Ethylacetat zur Reaktion gebracht.

Aus den 4-Alkoxycarbonyl-isoxazol-5-carbonsäureamiden bzw. 4-Alkoxycarbonyl-isothiazol-5-carbonsäureamiden Id (R² = COOR⁵ mit R⁵ = C₁-C₆-Alkyl) lassen sich die freien Carbonsäuren Id (R² = COOH) z.B. durch Hydrolyse mit wäßrigen Basen und anschließender Neutralisierung mit Mineralsäuren erhalten. Die Reaktion wird so durchgeführt, daß man den Ester Id (R² = COOR⁵, R⁵ = C₁-C₆-Alkyl) bei Temperaturen zwischen 0 und 80°C, vorzugsweise zwischen 0 und 50°C, in einem organischen Lösungsmittel, z.B. Methanol oder Ethanol mit einer Base, z.B. NaOH, KOH oder Ca(OH)₂ behandelt. Im allgemeinen werden dabei etwa 1 bis 3 Äquivalente, vorzugsweise 1 bis 1,5 Äquivalente der starken Base in wäßriger Lösung eingesetzt. Nach erfolgter Umsetzung wird unter Kühlung mit einer starken Mineralsäure, z.B. Salzsäure oder Schwefelsäure, angesäuert. Die entstehenden Carbonsäuren Id (R² = COOH) können durch Absaugen oder durch Extraktion mit einem organischen Lösungsmittel und Einengen dieses organischen Lösungsmittels isoliert werden. Die weltere Reinigung erfolgt z.B. durch Umkristallisieren oder Chromatographieren.

5. Verfahren zur Synthese von Dicarbonsäurediamiden der Formel Ic, in der R² = CO-NR³R⁴ (R³,R⁴ ≠H) bedeutet, durch Umsetzung der Säuren Id mit einem primären Amin VIa in Gegenwart eines wasserentziehenden Mittels:

Als wasserentziehendes Mittel eignen sich z.B. Propanphosphonsäureanhydrid oder Dicyclohexylcarbodiimid. Im allgemeinen arbeitet man bei einer Temperatur zwischen (-20) und 50°C, vorzugsweise zwischen 20 und 40°C in einem inerten organischen Lösungsmittel, wie Dichlormethan oder einem Ether wie Diethylether oder Methyl-tert.-butylether. Die Ausgangsmaterialien werden in etwa stöchiometrischer Menge zur Reaktion gebracht. Das Gemisch kann wie üblich aufgearbeitet werden, beispielsweise durch Hydrolyse mit Wasser, Extraktion des Produkts der Formel Ic (R² = CO-NR³R⁴) mit einem organischen Lösungsmittel und Einengen dieses organischen Lösungsmittels. Zur weiteren Reinigung kann das Produkt der Formel Ic (R² = CO-NR³R⁴) beispielsweise umkristallisiert oder chromatographiert werden.

Aus den so erhaltenen Isoxazoldicarbonsäure-4,5-diamiden der Formel Ic, in der X Sauerstoff und R² CO-NR³R⁴ (R³,R⁴≠H) bedeuten, lassen sich die Carbonsäuren Ic (R²=COOH) durch Umsetzung mit überschüssigem Kalium-tert.- butylat herstellen. Dabei geht man zweckmäßigerweise so vor, daß man das Diamid Ic (R²=CO-NR³R⁴) in einem Inerten organischen Lösungsmittel wie Diethylether oder Tetrahydrofuran bei Temperaturen von 0 bis 30°C, vorzugsweise bei Raumtemperatur, mit Kalium-tert.-butylat in Wasser (Verhältnis 3 bis 6:1) versetzt. Die Reaktion ist im allgemeinen nach 1 bis 12 Stunden beendet. Die freie Carbonsäure Ic (R²=COOH) kann nach Ansäuern mit Mineralsäure entweder durch Absaugen oder durch Extraktion mit einem organischen Lösungsmittel und Einengen dieses organischen Lösungsmittels isoliert werden. Zur weiteren Reinigung können die Säuren Ic (R²=COOH) entweder umkristallisiert oder chromatographiert werden.

Die für dieses Verfahren als Ausgangsmaterial benötigten Isothiazol-4,5-dicarbonsäureester X (X=Schwefel) sind bekannt (R. M. Paton, J. Stobie, R. M. Mortier, Phosphorus Sulfur, 15 (2), 137 (1983) oder können nach an sich bekannten Methoden hergestellt werden.

Die für dieses Verfahren als Ausgangsmaterial benötigten Isoxazol-4,5-dicarbonsäuredialkylester X (X=Sauerstoff) sind literaturbekannt [J.Org.Chem. 43, 3736 (1978); Chem.Pharm.Bull. 28, 3296 (1980); Tetrahedron 30, 1365 (1974)] oder können nach allgemein literaturbekannten Methoden hergestellt werden [vgl. z.B. DE-A 27 54 832 und Synthesis, 508 (1982)], beispielsweise aus den Aldoximen XIII und Acetylendicarbonsäurediestern XIV:

5

10

25

30

35

55

Bei diesem Verfahren wird das Aldoxim XIII im Reaktionsmedium durch das Hypohalogenit zum entsprechenden Nitriloxid oxidiert, welches ein sehr reaktiver 1,3-Dipol ist. Dieses Nitriloxid wird vom ebenfalls im Reaktionsmedium vorliegenden Acetylendicarbonsäure-diester XIV laufend, wie es entsteht, in einer 1,3-dipolaren Cycloaddition unter Bildung der Isoxazolverbindung X abgefangen.

Zweckmäßigerweise werden äquimolare Mengen des Aldoxims XIII und des Acetylendicarbonsäurediesters XIV mit dem Hypohalogenit umgesetzt. Das Hypohalogenit kann in stöchiometrischer Menge zur
Reaktionsmischung gegeben werden. In der Regel wird es jedoch in leicht überschüssiger Menge, bis zu
einem zweifachen Überschuß, zum Reaktionsansatz dosiert. Aus verfahrenstechnischen Gründen kann es
ggf. vorteilhaft sein, den Umsatz durch Verwendung unterstöchiometrischer Mengen an Hypohalogenit etwa 50 bis 90 mol-% Hypohalogenit pro mol XIII - zu begrenzen. Ebenso ist es möglich, mit unter- oder
überstöchiometrischen Mengen der Reaktanten XIII oder XIV zu arbeiten.

Als Hypohalogenite werden im allgemeinen Hyprobromite und Hypochlorite, letztere bevorzugt, verwendet. Es können zu diesem Zweck wäßrige Lösungen der unterchlorigen oder unterbromigen Säure eingesetzt werden, vorzugsweise werden aber Alkalimetall- oder Erdalkalimetallhypochlorite oder hypobromite, beispielsweise Natriumhypochlorit, Kaliumhypochlorit, Calciumhypochlorit, Magnesiumhypochlorit, Strontiumhypochlorit, Bariumhypochlorit oder die entsprechenden Hypobromite benutzt. Besonders bevorzugt werden Natrium-, Kalium- und Calciumhypochlorit und zwar in Form ihrer handelsüblichen, wäßrigen Lösungen angewandt.

Geeignete Lösungsmittel für das Verfahren sind z.B. Alkohole, wie Methanol, Ethanol, Propanol oder Isopropanol. Ketone wie Aceton oder Methylethylketon, Ether wie Diethylether, Methyl-tert.-butylether, Tetrahydrofuran oder Dioxan, Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan, Petrolether, Weißöle oder Ligroin, halogenierte aliphatische Kohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Dichlorethan, Trichlorethan, Tetrachlorethan oder Perchlorethan, aromatische Verbindungen wie Benzol, Toluol, Xylole oder Chlorbenzole, Ester, wie Ethylacetat sowie Dimethylformamid, N-Methylpyrrolidon, Dimethylsulfoxid, Sulfolan usw.

Die Temperatur, bei der die Umsetzung durchgeführt wird, kann in weiten Bereichen variiert werden. In der Regel findet die Umsetzung schon bei Temperaturen von (-15) °C und tiefer statt, und nach oben wird der Temperaturbereich im Prinzip nur durch den Siedepunkt des verwendeten Lösungsmittel begrenzt, da die Umsetzung zweckmäßigerweise bei Atmosphärendruck ausgeführt wird. Vorzugsweise wird bei Temperaturen im Bereich von 0 bis 40 °C gearbeitet. Die Reaktion kann auch unter erhöhtem Druck ausgeführt werden, insbesondere unter autogen erzeugtem Druck, bevorzugt ist aber das Arbeiten bei Atmosphärendruck.

Die für dieses Verfahren benötigten Aldoxime XIII sind entweder bekannt oder können nach an sich bekannten Verfahren (z. B. Houben-Weyl, Methoden der organischen Chemie, Bd. 10/4, Seite 55 bis 56, Thieme Verlag, Stuttgart 1968) durch Umsetzung der entsprechenden Aldehyde mit Hydroxylamin, hergestellt werden. Die Aldoxime XIII können selbstverständlich sowohl in Form ihrer E- oder Z-Isomeren als auch als Gemische dieser Stereoisomeren verwendet werden. Die Acetylendicarbonsäure-diester sind im Handel erhältlich oder nach an sich bekannten Methoden (z.B. Organic Syntheses Coll. Vol. 4, Seite 329) darstellbar.

6. Verfahren zur Herstellung der Verbindungen la und lb, in denen R² eine Carboxylgruppe und X Schwefel bedeuten:

Man erhält diese Carbonsäureamide la und lb besonders vorteilhalt, indem man ein Isothiazoldicarbonsäureanhydrid VIII in an sich bekannter Weise mit einem Amin VIa umsetzt und das so erhaltene Gemisch der Isomeren la und Ib in die Einzelkomponenten trennt.

Die Umsetzung wird üblicherweise bei Temperaturen von (-10) bis 50°C, vorzugsweise 0 bis 30°C in einem inerten aprotisch polaren organischen Lösungsmittel durchgeführt.

Insbesondere finden als Lösungsmittel Halogenkohlenwasserstoffe wie Methylenchlorid und Ether wie Diethylether, tert.-Butyl-methylether und Tetrahydrofuran Anwendung.

Das Amin VIa wird im allgemeinen in äquimolaren Mengen oder im Überschuß, vorzugsweise in Mengen von 1 bis 1,2 mol-äq. bezogen auf VIII eingesetzt.

Bei diesem Verfahren entstehen die isomeren Carbonsäureamide der Formeln la und lb (R² = COOH) in unterschiedlichen Mengen. Die Auftrennung des Isomerengemischs gelingt entweder durch fraktionierte Kristallisation oder auf chromatographischem Wege.

Die für dieses Verfahren benötigten Isothiazoldicarbonsäureanhydride VIII sind bekannt oder können nach bekannten Methoden hergestellt werden (Beilstein, Hauptwerk und 1.-5. Ergänzungswerk, Band 27).

7. Verfahren zur Herstellung der Verbindungen la, lb, lc und ld, in denen R2 CO2H bedeutet:

20

Man erhält diese Verbindungen Ia, Ib, Ic und Id dadurch, daß man einen entsprechenden Ester Ia, Ib, Ic oder Id, in dem R² eine Gruppe CO₂R⁵ und R⁵ C₁-C₄-Alkyl bedeutet, in an sich bekannter Weise in Gegenwart einer wäßrigen Base hydrolysiert.

Diese Esterhydrolyse wird im allgemeinen und im besonderen entsprechend den bei Verfahren 2 unter Punkt B geschilderten Bedingungen durchgeführt.

8. Verfahren zur Herstellung von Verbindungen Ia, Ib, Ic und Id, in denen R² COYR⁵ oder CONR⁵R⁷ bedeutet (beispielhaft für die Carbonsäureamide Ia gezeigt):

50 R3-N-CO COOH
$$\frac{HY-R^5}{IX (Y=0,S)}$$
 $R^3-N-CO COYR^5$ Ia $(R^2=COYR^5)$ R^4 $R^3-N-CO (R^6R^7)$ R^4 $R^3-N-CO (R^6R^7)$ R^4 $R^3-N-CO (R^6R^7)$ R^4 R^4

Zweckmäßigerweise setzt man eine Carbonsäure la, lb, lc bzw. ld (R2 = COOH) mit einem Alkohol oder Thiol IX bzw. mit einem Amin VIb in Gegenwart eines wasserentziehenden Mittels, z. B. Propanphosphonsäureanhydrid (PPA) oder Dicyclohexylcarbodiimid (DCC) bei einer Temperatur zwischen (-20) und 50°C. vorzugsweise zwischen 0 und 40°C, insbesondere zwischen 20 und 30°C, um.

Vorteilhaft setzt man alle Ausgangsverbindungen in etwa stöchiometrischem Verhältnis ein, jedoch kann in manchen Fällen auch ein Überschuß der einen oder anderen Komponente, etwa bis zu 10 mol-%, empfehlenswert sein.

Zweckmäßig verwendet man als Lösungsmittel Kohlenwasserstoffe wie Toluol und o-, m-, p-Xylol, Halogenkohlenwasserstoffe wie Dichlormethan und Ether wie Diethylether, tert.-Butyl-methylether und Tetrahydrofuran.

Eine Verfahrensvariante besteht darin, die Carbonsäuren la, lb, lc oder ld (R2 = COOH) nach den für das Verfahren 1C gemachten Angaben zu aktivieren und die Verfahrensprodukte anschließend ohne Verwendung eines wasserentziehenden Mittels zu verestem oder zu amidieren.

Normalerweise arbeitet man bei Atmosphärendruck.

5

15

45

Die Amine VIb sind bekannt oder lassen sich nach bekannten Verfahren herstellen. Die Alkohole und Thiole HY-R5 sind teilweise bekannt. Bedeutet R5 eine durch einen Rest -CR10 = N-R11 substituierte C1-C6-Alkylgruppe (Iminoalkohole XVI), so sind diese Alkohole und Thiole neu; sie lassen sich aber nach einem der folgenden bekannten Verfahren herstellen (beispielhaft für Y = 0 und R^5 = -CH₂-CR¹⁰ = N-R¹¹ mit R¹⁰ = H und R^{11} = C_2H_5 gezeigt):

Nach den genannten Verfahren wurden z.B. die folgenden Alkohole hergestellt:

HO-CH2-CH = N-OCH3 $HO-CH_2-C(CH_3) = N-OCH_3$ HO-CH2-CH = N-OCH2-CH = CHCI $HO-CH_2-CH = N-OCH_2-C_6H_5$ $HO-CH_2-C(CH_3) = N-OC_2H_5$

HO-CH2-CH = N-OCH2-CH = CH2

HO-CH2-C(CH3) = N-OCH2-C6H5

 $HO-CH_2-C(CH_3) = N-OCH_2-CH = CH_2$

9. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id, in denen R² 4,5-Dihydrooxazol-2-yl bedeutet, durch an sich bekannte Umsetzung von Carbonsäureamiden Ia, Ib, Ic bzw. Id, wobei R2 COOH oder COOR⁵ (R⁵ = geg. subst. C₁-C₄-Alkyl wie unter den Resten R⁵ aufgeführt) bedeutet, mit einem Aminoalkohol der Formel XV [vgl. Wehrmeister, J.Org.Chem. 26, 3821 (1961)]:

Die Reaktion wird so durchgeführt, daß man die Verbindungen bei 0 bis 180°C, vorzugsweise bei Rückflußtemperatur des verwendeten Gemisches mit einem Aminoalkohol XV, gegebenenfalls in Gegenwart eines inerten Lösungsmittels, umsetzt. Ester oder Carbonsäure und Aminoalkohol XV werden dabei im Verhältnis 1:1 bis 1:2,5, vorzugsweise 1:1 bis 1:1,5 eingesetzt.

Als Lösungsmittel verwendet man zweckmäßigerweise Halogenkohlenwasserstoffe wie Chlorbenzol und 1,2-Dichlorbenzol, Ether, z.B. Methyl-tert.-butylether, 1,2-Dimethoxyethan, Diethylenglykol-dimethylether, Tetrahydrofuran und Dioxan, Alkohole wie Methanol, Ethanol, Propanol oder Ethylenglykol, dipolare aprotische Lösungsmittel, z.B. Acetonitril, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, N-Methylpyrrolidon, 1,3-Dimethyltetrahydro-2(1H)-pyrimidinon und 1,3-Dimethylimidazolin-2-on oder Aromaten, z.B. Benzol, Toluol und Xylol. Die Konzentration der Edukte im Lösungsmittel beträgt im allgemeinen 0,1 bis 5,0 mol/l, bevorzugt 0,2 bis 2,0 mol/l.

Die Umsetzung ist im allgemeinen nach 14 Stunden beendet; die Carbonsäureamide Ia, Ib, Ic bzw. Id (mit R² = 4,5-Dihydrooxazol-2-yl) werden dann gegebenenfalls durch zugabe von Wasser ausgefällt, abgesaugt oder mit einem organischen Lösungsmittel extrahiert und mit üblichen Standardmethoden wie Umkristallisation oder Chromatographie gereinigt.

Im allgemeinen arbeitet man bei Atmosphärendruck oder unter dem Eigendruck des jeweiligen Lösungsmittels.

10. Verfahren zur Herstellung der Verbindungen la, lb, lc und ld, in denen R2 Formyl bedeutet:

20

25

30

Man erhält diese Verbindungen Ia, Ib, Ic und Id beispielsweise dadurch, daß man ein entsprechendes Carbonsäureamid der Formel Ia, Ib, Ic bzw. Id, wobei R² eine Gruppe CO₂H bedeutet, gemäß den bei Verfahren 1 geschilderten Bedingungen aktiviert und die so erhaltene aktivierte Form der Carbonsäure in an sich bekannter Weise reduziert.

Vorzugsweise überführt man die Carbonsäure in das entsprechende Chlorid und reduziert dieses Carbonsäurechlorid bei Temperaturen von (-100) bis 0 °C, insbesondere (-80) bis (-50) °C mit einem komplexen Hydrid wie insbesondere Lithium-tri-tertiärbutoxyaluminiumhydrid. Als Lösungsmittel dienen in diesem Fall besonders bevorzugt Ether wie Dimethylether, Diethylether, Tetrahydrofuran, 1,2-Dimethoxyethan, Diethylenglykoldimethylether und Dioxan (J.Am.Chem. Soc. 80, 5372 (1958); J.Am.Chem.Soc. 80, 5377 (1958)).

11. Verbindungen der Formeln Ia, Ib, Ic und Id, in denen R¹ bzw. R¹ eine epoxidierte C₂-C₅-Alkenylgruppe bedeuten, die ein- bis dreimal durch Halogen, C₁-C₃-Alkoxy und/oder einmal durch Cyclopropyl oder geg. subst. Phenyl wie unter R¹ genannt, substituiert sein kann, erhält man beispielsweise durch Epoxidierung von Carbonsäureamiden der Formeln Ia, Ib, Ic bzw. Id, wobei R¹ bzw. R¹ eine C₂-C₅-Alkenylgruppe bedeutet, die die vorstehend genannten Substituenten tragen kann, in an sich bekannter Weise mit geeigneten Oxidationsmitteln (z.B. J. March, Advanced Organic Chemistry, Third Edition, John Wiley and Sons, 1985, S. 735ff.).

Neben den vorstehend geschilderten Verfahren 1-11 zur Herstellung der Verbindungen ia, ib, ic und id gibt es weitere Synthesemöglichkeiten, die den folgenden Literaturstellen zu entnehmen sind: Beilstein, Hauptwerk sowie 1.-5. Ergänzungswerk, Band 27;

R.W. Wiley, The Chemistry of Heterocyclic Compounds, Five- and Six-Membered Compounds with Nitrogen and Oxygen, Interscience Publishers, New York, London (1962);

A.R. Katritzky, C.W. Rees, Comphrehensive Heterocyclic Chemistry, Vol. 6, Five-membered Rings with Two or More Oxygen, Sulfur or Nitrogen Atoms, Pergamon Press, 1984;

J. March, Advanced Organic Chemistry, Third Edition, John Wiley and Sons, 1985;

Houben-Weyl, Methoden der organischen Chemie, 4. Auflage, Thieme Verlag, Bände IV, VI, VII, X. Im einzelnen haben die Substituenten in den Verbindungen Ia, Ib, Ic und Id die folgende Bedeutung: R¹ - Wasserstoff;

- Halogen wie Fluor, Chlor, Brom, Iod, insbesondere Fluor und Chlor;
- unverzweigtes oder_verzweigtes C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-
- Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl, insbesondere Methyl, Ethyl, Propyl, 1-Methylethyl und 1,1-Dimethylethyl, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom, lod, insbesondere Fluor und Chlor, und/oder einen Cyanorest und/oder bis zu zwei der folgenden Reste tragen kann:
 - (C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy und 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy und 1,1-Dimethylethoxy;
- partiell oder vollständig halogeniertes C₁-C₄-Alkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, Dichlorfluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy und Pentafluorethoxy;
 - C₁-C₄-Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, n-Butylthio, 1-Methylpropylthio, 2-Methylpropylthio und 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio;
 - partiell oder vollständig halogeniertes C₁-C₄-Alkylthio wie Difluormethylthio, Trifluormethylthio, Chlordifluormethylthio, 1-Fluorethylthio, 2-Fluorethylthio, 2,2-Difluorethylthio, 2,2-Trifluorethylthio, 2-Chlor-2,2-difluorethylthio, 2,2-Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio und Pentafluorethylthio, insbesondere Trifluormethylthio und Pentafluorethylthio;
- 25 eine C₁-C₄-Alkoxygruppe wie vorstehend genannt, insbesondere Methoxy und Ethoxy;
 - eine partiell oder vollständig halogenierte C₁-C₄-Alkoxygruppe wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy;
 - eine C1-C4-Alkylthiogruppe wie vorstehend genannt, insbesondere Methylthio und Ethylthio;
 - eine partiell oder vollständig halogenierte C₁-C₄-Alkylthiogruppe wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluorethylthio;
 - eine Benzylgruppe, die ein bis dreimal durch Alkyl mit 1 bis 4 Kohlenstoffatomen wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend
- Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; Halogenalkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluor methylthio und Pentafluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor; Cyano oder Nitro substituiert sein kann;
 - die Phenylgruppe, welche noch einen bis drei der folgenden Reste tragen kann: Cyano; Nitro; Halogen wie Fluor, Chlor, Brom und Jod, insbesondere Fluor und Chlor; C₁-C₆-Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; partiell oder vollständig halogeniertes C₁-C₆-Alkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; C₁-C₆-Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; partiell oder vollständig halogeniertes C₁-C₆-Alkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; C₁-C₄-Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio und/oder partiell oder vollständig halogeniertes C₁-C₆-Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio:
 - eine C₃-C₈-Cycloalkyl-C₁-C₆-alkylgruppe, bevorzugt eine C₃-C₅-Cycloalkyl-C₁-C₄-alkylgruppe wie Cyclopropylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, 1-Cyclopropylethyl, 2-Cyclopropylethyl, 1-Cyclopropyl-1-methylethyl, 2-Cyclopropyl-1-methylethyl oder 4-Cyclohexyl-n-butyl;
- eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, bevorzugt eine C₂-C₄-Alkenylgruppe wie Ethenyl, Prop-2-en-1-yl, 1-Methylethenyl, But-2-en-1-yl und 1-Methylprop-2-en-1-yl, welche ein- bis dreimal durch Halogen wie Fluor, Chlor, Brom oder Jod, C₁-C₃-Alkoxy wie Methoxy, Ethoxy oder Isopropoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; partiell oder vollständig haloge-

niertes Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio oder Halogen wie vorstehend genannt, insbesondere Fluor und Chlor;

- eine C₂-C₆-Alkinylgruppe, bevorzugt eine C₂-C₄-Alkinylgruppe wie Ethinyl, Propin-1-yl, 1-Methyl-2-propinyl und n-Butinyl, welche ein- bis dreimal durch Halogen wie Fluor, Chlor, Brom oder Jod, C₁-C₃-Alkoxy wie Methoxy oder Isopropoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: Cyano. Nitro. Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie vorstehend genannt, insbesondere Methoxy und Ethoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; partiell oder vollständig halogeniertes Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio oder Halogen wie vorstehend genannt, insbesondere Fluor und Chlor;
- eine C₃-C₈-Cycloalkylgruppe wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclohexyl und Cyclooctyl, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl oder eine C₃-C₆-Cycloalkenylgruppe, insbesondere eine C₅-C₆-Cycloalkenylgruppe wie Cyclohexen-1-yl, wobei der Cyclus noch ein- bis dreimal durch C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Methyl und Ethyl; oder Halogen wie Fluor, Chlor, Brom und lod, insbesondere Fluor und Chlor, substituiert sein kann;
- eine Phenoxy- oder Phenylthiogruppe, wobei beide Gruppen ein- bis dreimal durch C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; partiell oder vollständig halogeniertes C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; C₁-C₄-Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; partiell oder vollständig halogeniertes C₁-C₄-Alkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; C₁-C₄-Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; partiell oder vollständig halogeniertes C₁-C₄-Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor; Cyano oder Nitro; substituiert sein kann;
 - ein 5- bis 6-gliedriger gesättigter oder aromatischer heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrofuranyl, 2-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Furanyl, 3-Thienyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl, 3-Pyridyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl, 3-Pyridyl, 3-Pyridyl, 3-Pyridyl und 4-Pyridyl, der ein oder zwei der folgenden Substituenten tragen kann: Alkyl wie vorstehend genannt, insbesondere Methyl; Halogen wie vorstehend genannt, insbesondere Fluor und Chlor; Alkoxy wie vorstehend genannt, insbesondere Methoxycarbonyl und Ethoxycarbonyl, insbesondere Methoxycarbonyl;
- R^{1'} eine C₃-C₈-Cycloalkyl-C₁-C₆-alkylgruppe, bevorzugt eine C₃-C₆-Cycloalkyl-C₁-C₄-alkylgruppe wie Cyclopropylmethyl, Cyclopentylmethyl, 1-Cyclopropylethyl, 2-Cyclopropylethyl, 1-Cyclopropyl-1-methylethyl, 1-Cyclopropyl-1-methylethyl, 1-Cyclopropyl-1-methylethyl, 2-Cyclopropyl-1-methylethyl und 4-Cyclohexyl-n-butyl;
- eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, bevorzugt eine C₂-C₄-Alkenylgruppe wie Ethenyl, Prop-2-en-1-yl und Isopropenyl, welche ein- bis dreimal durch Halogen wie Fluor, Chlor, Brom oder Jod, C₁-C₃-Alkoxy wie Methoxy, Ethoxy oder Isopropoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Methoxy; Halogenalkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; partiell oder vollständig halogeniertes Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio oder Halogen wie vorstehend genannt, insbesondere Fluor und Chlor;
 - eine C₂-C₆-Alkinylgruppe, bevorzugt eine C₂-C₄-Alkinylgruppe wie Ethinyl, Propin-1-yl und n-Butinyl, welche ein- bis dreimal durch Halogen wie Fluor, Chlor, Brom und Jod, insbesondere Fluor und Chlor, C₁-C₃-Alkoxy wie Methoxy und Isopropoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: Cyano, Nitro, Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; Halogenalkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; Alkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, Trichlormethoxy und Pentafluorethoxy; Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio;

partiell oder vollständig halogeniertes Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio oder Halogen wie vorstehend genannt, insbesondere Fluor und Chlor:

- eine C₃-C₆-Cycloalkenylgruppe, bevorzugt eine C₅-C₆-Cycloalkenylgruppe, die ein- bis dreimal durch Halogen wie Fluor, Chlor, Brom und Jod, insbesondere Fluor und Chlor, oder C₁-C₄-Alkyl wie Methyl, Ethyl und tert.-Butyl substituiert sein kann;
 - R² die Formylgruppe;
 - die 4,5-Dihydrooxazol-2-ylgruppe;
 - ein Rest COYRs oder CONRs R7 mit
- 70 R⁵ Wasserstoff;
 - C₁-C₆-Alkyl, bevorzugt C₁-C₄-Alkyl wie Methyl, Ethyl oder tert.-Butyl, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom oder Jod, insbesondere Fluor und Chlor, und/oder bis zu drei Hydroxy- und/oder C₁-C₄-Alkoxygruppen wie Methoxy, Ethoxy, n-Propoxy, Isopropoxy, n-Butoxy und tert.-Butoxy, und/oder einen der folgenden Reste tragen kann:
- s Cyano,
 - C1-C4-Alkoxy-C2-C4-alkoxy, insbesondere Methoxy-ethoxy, Ethoxy-ethoxy und Propoxy-ethoxy,
 - C1-C3-Alkylthio, insbesondere Methylthio und Ethylthio,
 - C1-C3-Alkylamino wie Methylamino, Ethylamino und Isopropylamino,
- Di-(C₁-C₃)-alkylamino wie Dimethylamino, Diethylamino, Dipropylamino, Di-(1-methylethyl)amino und Methylethylamino,
 - C₃-C₅-Cycloalkylamino oder Di-(C₃-C₅)-Cycloalkylamino wie Cyclopropylamino oder Dicyclopropylamino,
 - Trimethylsilyl,
 - C1-C3-Alkylsulfinyl wie Methylsulfinyl, 1-Methylethylsulfinyl und n-Propylsulfinyl,
 - C1-C3-Alkylsulfonyl wie Methylsulfonyl, Ethylsulfonyl und isopropylsulfonyl,
- 25 Carboxyl,
 - C1-C3-Alkoxycarbonyl wie Methoxycarbonyl und Isopropoxycarbonyl,
 - C₁-C₃-Alkoxycarbonyl-C₁-C₃-alkoxy wie Methoxycarbonylmethoxy,
 - C₁-C₃-Alkoxycarbonyl-C₁-C₃-alkoxy-C₁-C₃-alkoxycarbonyl wie Methoxycarbonylethoxymethoxycarbonyl,
 - Di-(C₁-C₃)-alkylaminocarbonyl wie Dimethylaminocarbonyl, Methylethylaminocarbonyl und Di-isopropylaminocarbonyl,
 - Di-(C₁-C₃)-alkoxyphosphonyl wie Dimethoxyphosphonyl und Diisopropoxyphosphonyl,
 - C₁-C₆-Alkaniminoxy wie 2-Propaniminoxy oder C₅-C₆-Cycloalkaniminoxy wie Cyclopentaniminoxy und Cyclohexaniminoxy
- N-Phthalimido, N-Succinimido, Benzyloxy oder Benzoyl, wobei diese cyclischen Reste ein bis drei der folgenden Gruppen tragen können: Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, C₁-C₃-Alkyl wie Methyl, Ethyl und Isopropyl, insbesondere Methyl, oder C₁-C₃-Alkoxy wie Methoxy, Ethoxy und Isopropoxy, insbesondere Methoxy;
- einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest oder einen 5- oder 6-gliedrigen heteroaromatischen Rest mit jeweils 1 bis 3 Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff-oder Schwefelatome oder ein Sauerstoff und ein Schwefelatom nicht direkt benachbart sein können, insbesondere Tetrahydrofuran-2-yl, Tetrahydrofuran-3-yl, Tetrahydrothien-2-yl, Tetrahydropyran-2-yl, Tetrahydropyran-3-yl, Tetrahydropyran-4-yl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, Furan-2-yl, Furan-3-yl, Thien-2-yl, Thien-3-yl, Pyrrol-2-yl, Pyrrol-3-yl, isoxazol-3-yl, Isoxazol-5-yl, Isoxazol-5-yl, Isoxazol-5-yl, Isoxazol-5-yl, Isoxazol-5-yl, Isoxazol-5-yl, Pyrazol-1-yl, Pyrazol-1-yl, Pyrazol-1-yl, Pyrazol-3-yl,
- Thiazol-2-yl, Thiazol-4-yl, Thiazol-5-yl, Imidazol-2-yl, Imidazol-4-yl, Imidazol-5-yl, Pyrazol-1-yl, Pyrazol-3-yl, Pyrazol-4-yl, Pyrazol-5-yl, 1,2,3-Triazol-1-yl, 1,2,3-Triazol-5-yl, 1,2,4-Triazol-1-yl, 1,2,4-Triazol-3-yl, 1,2,4-Triazol-5-yl, 1,2,4-Thiadiazol-5-yl, 1,2,5-Thiadiazol-5-yl, 1,2,5-Thiadiazol-5-yl, 1,2,5-Thiadiazol-5-yl, 1,2,5-Oxadiazol-3-yl, 1,2,5-Oxadiazol-3
- Oxadiazol-4-yl, 1,3,4-Oxadiazol-2-yl, 1,3,4-Oxadiazol-5-yl, Pyrid-2-yl, Pyrid-3-yl, Pyrid-4-yl, Pyrimid-2-yl, Pyrimid-4-yl und Pyrimid-5-yl, wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen wie Fluor, Chlor, Brom und Jod, insbesondere Chlor und Brom, C₁-C₃-Alkyl wie Methyl, Ethyl, n-Propyl und iso-Propyl, C₁-C₃-Alkoxy wie Methoxy, Ethoxy, n-Propoxy und iso-Propoxy und/oder C₁-C₃-Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl und iso-Propoxycarbonyl;
- die Phenylgruppe, die noch einen bis drei der folgenden Substituenten tragen kann: Halogen wie Fluor, Chlor, Brom und Iod, insbesondere Fluor und Chlor, Nitro, Cyano, C₁-C₃-Alkyl wie Methyl oder Isopropyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl wie Trifluormethyl, 1,1,2,2-Tetrafluorethyl und Trichlormethyl, C₁-C₃-Alkoxy wie Methoxy und Isopropoxy, und/oder partiell oder vollständig halogeniertes C₁-C₃-

Alkoxy, insbesondere Trifluormethoxy;

- einen Rest -CR10 = N-R11 mit
- R¹⁰ Wasserstoff oder verzweigtes oder unverzweigtes C₁-C₆-Alkyl, insbesondere C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl und tert.-Butyl;
- 5 R¹¹ C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C₃-C₆-Alkinyloxy, insbesondere C₁-C₆-Alkoxy wie Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy und tert.-Butoxy, sowie Prop-2-enyloxy, But-2-enyloxy, Prop-2-inyloxy und But-2-inyloxy, wobei diese Substituenten noch ein bis drei Halogenatome wie Fluor, Chlor, Brom und lod, insbesondere Fluor und Chlor, und/oder einen Phenylrest, der unsubstituiert oder ein- bis dreifach durch Halogen wie vorstehend genannt, Nitro, Cyano, C₁-C₃-Alkyl wie Methyl, Ethyl, n-Propyl und iso-Propyl und/oder C₁-C₃-Alkoxy wie Methoxy, Ethoxy, n-Propoxy und iso-Propoxy substituiert sein kann, tragen können:

Phenoxy, das noch einen bis drei der folgenden Substituenten tragen kann: Nitro, Cyano, Halogen wie vorstehend genannt, C₁-C₃-Alkyl wie vorstehend genannt und/oder C₁-C₃-Alkyl wie vorstehend genannt; verzweigtes oder unverzweigtes C₁-C₆-Alkylamlno, Di-(C₁-C₆)-alkylamlno oder Phenylamino, wobei der

- Aromat zusätzlich ein- bis dreifach durch Nitro, Cyano, Halogen wie vorstehend genannt, C₁-C₃-Alkyl wie vorstehend genannt und/oder C₁-C₃-Alkoxy wie vorstehend genannt, substituiert sein kann;
 - C₃-C₈-Cycloalkyl, bevorzugt C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclopentyl und Cyclohexyl;
 - C₃-C₆-Alkenyl, bevorzugt C₃-C₄-Alkenyl wie 2-Propenyl und 2-Butenyl, C₅-C₆-Cycloalkenyl wie 2-Cyclopentenyl und 2-Cyclopentenyl und 2-Cyclopentenyl und 2-Cyclopentenyl und 2-Cyclopentenyl, C₃-C₆-Alkinyl, bevorzugt C₃-C₄-Alkenyl wie 2-Propinyl, 2-Butinyl und 3-Butinyl, wobei die 3 letztgenannten Gruppen einen der folgenden Reste tragen können: Hydroxy, Halogen wie Fluor, Chlor, Brom und Jod, C₁-C₄-Alkoxy wie Methoxy und tert.-Butoxy oder Phenyl, welches seinerseits eine bis drei der folgenden Gruppen tragen kann: Halogen wie Fluor, Chlor oder Brom, Nitro, Cyano, C₁-C₄-Alkyl wie Methyl, Ethyl oder tert.-Butyl, C₁-C₄-Halogenalkyl wie Fluormethyl, Trifluormethyl, Chlordifluormethyl, Pentafluorethyl und 2-Chlor-1,1,2-trifluorethyl oder C₁-C₄-Alkoxy wie Methoxy, Isopropoxy und tert.-Butoxy;
 - Phenyl, das eine bis drei der folgenden Gruppen tragen kann:
 - Halogen wie Fluor, Chlor, Brom und Jod, insbesondere Fluor und Chlor, Nitro, Cyano, C₁-C₄-Alkyl wie Methyl, Ethyl und tert-Butyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl wie Trifluormethyl, 1,1,2,2-Tetrafluorethyl und Trichlormethyl, C₁-C₄-Alkoxy wie Methoxy, Ethoxy und Isopropoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy wie Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, Pentafluorethoxy und 2-Chlor-1,1,2-trifluorethoxy oder C₁-C₄-Alkoxycarbonyl wie Methoxycarbonyl, n-Propoxycarbonyl und tert.-Butoxycarbonyl;
 - einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest oder einen 5- oder 6-gliedrigen heteroaromatischen Rest mit jeweils 1 bis 3 Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff-oder Schwefelatome oder ein Sauerstoff- und ein Schwefelatom nicht direkt benachbart sein können, wie vorstehend genannt, insbesondere 2-Tetrahydrofuranyl, 3-Tetrahydrothienyl, 4-Tetrahydropyranyl, 2-Furanyl, 2-Thienyl, 4-Isoxazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Thiazolyl, 2-Imidazolyl, 2-Pyrrolyl, 3-Pyrazolyl und 4-Pyridyl, wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen wie vorstehend genannt, C₁-C₃-Alkyl wie vorstehend genannt, C₁-C₃-Alkoxy wie vorstehend genannt;
 - einen Benzotriazolrest;

25

- -30

- N-Phthalimido, Tetrahydrophthalimido, N-Succinimido oder Maleinimido;
- die 2,2-Dimethyl-1,3-dioxolan-4-ylmethyl- oder die 1,3-Dioxolan-2-on-4-ylmethylgruppe;
- im Falle Y = O: ein Äquivalent eines Kations aus der Gruppe der Alkali- und Erdalkalimetalle wie Natrium, Kalium und Calcium, Mangan, Kupfer, Eisen, Ammonium und mit bis zu 4 C₁-C₃-Alkylgruppen substituiertes Ammonium wie Tetramethylammonium;
- ein Rest -N = CR8R9 mit
- R⁸, R⁹ Wasserstoff;
- C₁-C₄-Alkyl oder partiell oder vollständig halogeniertes C₁-C₄-Alkyl wie Methyl, Ethyl, Isopropyl, tert.-Butyl, Chlormethyl, Fluormethyl, Trifluormethyl, Trichlormethyl und 1,1,2,2-Tetrafluorethyl, wobei die Alkyloder Halogenalkylgruppe noch einen der folgenden Reste tragen kann:
 - C1-C3-Alkoxy wie vorstehend genannt, insbesondere Methoxy,
- Phenyl, das zusätzlich ein- bis dreimal durch Nitro, Cyano, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, C₁-C₃-Alkyl wie vorstehend genannt, insbesondere Methyl und tert.-Butyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl wie vorstehend genannt, insbesondere Trifluormethyl, C₁-C₃-Alkoxy wie vorstehend genannt, insbesondere Methoxy und/oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, substituiert sein kann;
- C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclopentyl und Cyclohexyl;

- C1-C4-Alkoxy wie vorstehend genannt, insbesondere Methoxy;
- Furanyl oder Phenyl, das zusätzlich ein- bis dreimal durch Nitro, Cyano, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, C1-C3-Alkyl wie vorstehend genannt, insbesondere Methyl und tert.-Butyl, partiell oder vollständig halogeniertes C1-C3-Alkyl wie vorstehend genannt, insbesondere Trifluormethyl, C1-C3-Alkoxy wie vorstehend genannt, insbesondere Methoxy und/oder partiell oder vollständig halogeniertes C1-C3-Alkoxy wie vorstehend genannt, insbesondere Trifluormethoxy, substituiert sein kann;
- ein Rest -W-Z mit

W Ethylen-, n-Propylen- oder n-Butylenkette, Ethoxyethylenkette, But-2-enylen- oder But-2-inylenkette; Z einen in ω-Stellung an W gebundenen Molekülteil, der den gleichen Molekülteil darstellt, der in α-Stellung von W mit W verknüpft ist, beispielsweise

R6 - Wasserstoff;

15

- C_1 - C_6 -Alkyl, bevorzugt C_1 - C_4 -Alkyl wie Methyl, Ethyl, Isopropyl und tert.-Butyl;

R8 und R9 - gemeinsam eine Methylenkette mit 4-7, bevorzugt 4-5 Gliedem;

- C₃-C₈-Cycloalkyl, bevorzugt C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclopentyl und Cyclohexyl;

R7 - Wasserstoff;

- C₁-C₆-Alkyl, bevorzugt C₁-C₄-Alkyl wie Methyl und tert.-Butyl;

- ein Rest -C(OR^{12}) = N-H oder -C(OR^{12}) = N-(C_1 - C_4)-alkyl, wobei C_1 - C_4 -alkyl eine Alkylgruppe wie vorstehend genannt, insbesondere Methyl, Ethyl und tert.-Butyl und R12 ebenfalls eine C1-C4-Alkylgruppe wie vorstehend genannt, insbesondere Methyl, bedeutet;

R⁶, R⁷ - gemeinsam eine Methylenkette mit 4 bis 7, bevorzugt 4 bis 5 Gliedern;

R3 - Wasserstoff

- C1-C6-Alkyl, bevorzugt C1-C4-Alkyl wie Methyl, Ethyl und tert.-Butyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C1-C4-Alkoxy wie Methoxy und tert.-Butoxy, C1-C4-Alkylthio wie Methylthio und tert.-Butylthio oder Di-(C1-C4)-alkylamino, bevorzugt Di-(C1-C2)-alkylamino wie Dimethylamino und Diethylamino;

- C₃-C₈-Cycloalkyl, bevorzugt C₃-C₆-Cycloalkyl wie Cyclopropyl, Cyclopentyl und Cyclohexyl, das ein- bis dreimal durch Halogen wie Fluor, Chlor und Brom, C1-C4-Alkyl wie Methyl und tert.-Butyl oder partiell oder vollständig halogeniertes C1-C4-Alkyl wie Fluormethyl, Trifluormethyl, Chlordifluormethyl, Pentafluorethyl und 2-Chlor-1,1,2-trifluorethyl substituiert sein kann;

R4 - Wasserstoff, Hydroxyl;

- C1-C4-Alkoxy wie Methoxy, Ethoxy und tert.-Butoxy;

- verzweigtes oder unverzweigtes C1-C6-Alkyl, bevorzugt C1-C4-Alkyl wie Methyl, Ethyl, Isopropyl und tert.-Butyl, welches ein bis drei der folgenden Reste tragen kann: Halogen wie Fluor, Chlor und Brom, Cyano, C1-C4-Alkoxy wie Methoxy und tert.-Butoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy wie Fluormethoxy, Trichlormethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, C1-C4-Alkylthio wie Methylthio und tert.-Butylthio, C1-C4-Halogenalkylthio wie Fluromethylthio, Trichlormethylthio, 2-Chlor-1,1,2trifluorethylthio und Pentafluorethylthio, Di-(C1-C4)-alkylamino, insbesondere Di-(C1-C2)-alkylamino wie Dimethylamino und Diethylamino, C3-C8-Cycloalkyl, insbesondere C3-C6-Cycloalkyl wie Cyclopropyl, Cyclopentyl und Cyclohexyl oder Phenyl, wobei der Phenylrest seinerseits bis zu drei der folgenden Gruppen tragen kann: Halogen wie Fluor, Chlor und Brom, Cyano, Nitro, C1-C4-Alkyl wie Methyl und tert.-Butyl, C1-C4-Halogenalkyl wie Fluormethyl, Trichlormethyl, 2-Chlor-1,1,2-trifluor ethyl und Pentafluorethyl, C1-C4-Alkoxy wie Methoxy und tert.-Butoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy wie Fluormethoxy, Trichlormethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, C1-C4-Alkylthio wie Methylthio und tert.-Butylthio oder C1-C4-Halogenalkylthio wie Fluormethylthio, Trichlormethylthio, 2-Chlor-1,1,2-trifluorethylthio und Pentafluorethylthio;

- C₃-C₈-Cycloalkyl, bevorzugt C₃-C₆-Cycloalkyl, insbesondere Cyclopropyl, Cyclopentyl und Cyclohexyl, das jeweils einen bis drei der folgenden Reste tragen kann: Halogen wie Fluor, Chlor und Brom, Nitro, Cyano, C₁-C₆-Alkyl, bevorzugt C₁-C₄-Alkyl wie Methyl und tert.-Butyl, partiell oder vollständig halogeniertes C1-C5-Alkyl, bevorzugt C1-C4-Halogenalkyl wie Fluormethyl, Trichlormethyl, 2-Chlor-1,1,2-trifluorethyl und Pentafluorethyl, C1-C4-Alkoxy wie Methoxy und tert.-Butoxy, oder partiell oder vollständig halogeniertes C1-C4-Alkoxy wie Fluormethoxy, Trichlormethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy;

- C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl, bevorzugt C₃-C₄-Alkenyl oder C₃-C₄-Alkinyl wie 2-Propenyl, 2-Butenyl, 2-Propinyl, 1,1-Dimethyl-2-propinyl und 3-Butinyl, welches jeweils bis zu dreifach durch Halogen wie Fluor, Chlor oder Brom und/oder einmal durch Phenyl substituiert sein kann, wobei der Phenylrest seinerseits eine bis drei der folgenden Substituenten tragen kann: Halogen, insbesondere Fluor und Chlor, Cyano, Nitro, C₁-C₄-Alkyl wie Methyl und tert.-Butyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl wie Fluormethyl, Trifluormethyl, Trichlormethyl, 2-Chlor-1,1,2-trifluorethyl und Pentafluorethyl, C₁-C₄-Alkoxy wie Methoxy und tert.-Butoxy, C₁-C₄-Halogenalkoxy wie Fluormethoxy, Trifluormethoxy, Trichlormethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, C₁-C₄-Alkylthio wie Methylthio und tert.-Butylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio wie Fluormethylthio, Trifluormethylthio, Trichlormethylthio, 2-Chlor-1,1,2-trifluorethylthio und Pentafluorethylthio;
 - Di(C1-C4)-alkylamino, bevorzugt Di-(C1-C2)-alkylamino wie Dimethylamino und Diethylamino;
 - ein 5- bis 6-gliedriger gesättigter oder aromatischer heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff wie 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 3-Tetrahydropyranyl, 3-Tetrahydropyranyl, 3-Tetrahydropyranyl, 4-Tetrahydropyranyl, 2-Furanyl, 3-Furanyl, 3-Thienyl, 3-Isox azolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl, 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Imidazolyl, 5-Imidazolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl und 4-Pyridyl, der einen bis drei der folgenden Substituenten tragen kann: C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Fluor und Chlor;
- Phenyl, welches eine bis vier der folgenden Gruppen tragen kann: C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Methyl, Ethyl und 1-Methylethyl; partiell oder vollständig halogeniertes C₁-C₄-Alkyl wie vorstehend genannt, insbesondere Trifluormethyl und Chlordifluormethyl; C₁-C₄-Alkoxy wie vorstehend genannt, insbesondere Methoxy und Ethoxy; partiell oder vollständig halogeniertes C₁-C₄-Alkylthio wie vorstehend genannt, insbesondere Methylthio und Ethylthio; partiell oder vollständig halogeniertes C₁-C₄-Alkylthio wie vorstehend genannt, insbesondere Difluormethylthio, Trifluormethylthio und Pentafluormethylthio, Halogen wie vorstehend genannt, insbesondere Fluor und Chlor, Cyano, Nitro, Formyl, C₁-C₄-Alkanoyl wie Acetyl, Propionyl, Butyryl, insbesondere Acetyl, partiell oder vollständig halogeniertes C₁-C₄-Alkanoyl wie Trifluoracetyl, Trichloracetyl, Pentafluorpropionyl, insbesondere Trifluoracetyl oder C₁-C₄-Alkanoyl wie Methodoracetyl, Pentafluorpropionyl, insbesondere Trifluoracetyl oder C₁-C₄-Alkylthio wie wie Methodoracetyl wie Methodoracetyl, Pentafluorpropionyl, insbesondere Trifluoracetyl oder C₁-C₄-Alkylthio wie wie Methodoracetyl wie Methodo
- Alkoxycarbonyl wie Methoxycarbonyl und tert.-Butoxycarbonyl;
 Naphthyl, das ein- bis dreimal durch C₁-C₄-Alkyl wie Methyl und tert.-Butyl, insbesondere Methyl und Ethyl, oder Halogen wie Fluor und Chlor substituiert sein kann;
- R³ und R⁴ gemeinsam eine C₄-C₂-Methylenkette, welche durch Sauerstoff, Schwefel oder N-Methyl unterbrochen sein kann wie -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅-, -CH₂-O-CH₂-, -CH₂-CH₂-O-CH₂-CH₂-CH₂-, -CH₂-CH₂-CH₂-, -CH₂-CH₂-CH₂-, insbesondere -(CH₂)₅- und -CH₂-CH₂-CH₂-, O-CH₂-CH₂-;
 - oder den Rest der Formel -(CH₂)₃-CO-.

Bevorzugt werden Verbindungen der Formeln la bis ld, wobei R² einen Rest CO-Y-R⁵ und Y Sauerstoff oder Schwefel bedeutet:

50

45

55

In Tabelle 1 sind beispielhaft mögliche Substituenten R¹, R³, R⁴ und R⁵ der bevorzugten Verbindungen la-lc (R² = CO-Y-R⁵), in Tabelle 2 mögliche Substituenten der Verbindungen Id (R² = CO-Y-R⁵), aufgeführt, wobei die Carbonsäureamide Ia (R² = CO-Y-R⁵) besonders bevorzugt sind.

Tabelle 1

	R1	R3	R4	R5	Y
5	н —	н	tertButyl	Н	0
J	F	H	tertButyl	H	0
	C1	н	tertButyl	Н	0
	Methyl	н	tertButyl	н	0
••	Ethyl	H	tertButyl	н	0
10	n-Propyl	• н	tertButyl	н	0
	iso-Propyl	, н	tertButyl	Н	0
	n-Buty l	H	tertButyl	H	0
	iso-Butyl	H	tertButyl	н	0
15	sekButyl	н	tertButyl	Н	0
	tertButyl	н	tertButyl	н	0
	cyclo-Propyl	н	tertButyl	н	0
	cyclo-Butyl	H	tertButyl	н	0
20	cyclo-Pentyl	н	tertButyl	н	0
	cyclo-Hexyl	Н	tertButyl	н	0
	cyclo-Heptyl	_ H	tertButyl	Н	0
	cyclo-Octyl	н	tertButyl	Н	0
25	1-Methylcyclopropyl	Н	tertButyl	Н	0
	Chlormethyl	н	tertButyl	н	0
	1-Chlorethyl	н	tertButyl	н	0
	Trifluormethyl	н_	tertButyl	н	0
30	Chlordifluormethyl	н	tertButyl	н	0
	Pentafluorethyl	н	. tertButyl	Н	0
	Methoxymethyl	Н	tertButyl	Н	0
٠.	1-Methylmethoxymethyl	н	tertButyl	Н	0
35	1-Methylmethoxyethyl	н	tertButyl	Н	0
	Ethoxymethyl	Н	tertButyl	н	0
•	Vinyl	Н	tertButyl	Н	0
	Allyl	н	tertButyl	Н	0
40	Methallyl	Н	tertButyl	Н	0
	Crotyl	Н	tertButyl	н	0
	Ethinyl	H	tertButyl	н	0
	Propargyl	н	tertButyl	Н	0
45	Phenylethinyl	н	tertButyl	H	0
	Methoxy	н	tertButyl	H	0
	Ethoxy	н	tertButyl	Н	0
	Trifluormethoxy	. н	tertButyl	H	0
50	Methylthio	Н	tertButyl	Н	0
	Trifluormethylthio .	Н	tertButyl	Н	0

R1	R3	R4	R 5	<u> Y</u>
Phenoxy	Н	tertButyl	н	0
4-C1-Phenoxy	н	tertButyl	н	0
2,4-(C1,C1)-Phenoxy	н	tertButyl	н	၁
4-CF ₃ -Phenoxy	Η .	. tertButyl	Н	0
Phenyl	н	tertButyl	н	0
2-F-Phenylthio	Н	tertButyl	Н	0
3-F-Phenyl	н	tertButyl	Н	0
2,4-(F,F)-Phenyl	н	tertButyl	н	0
2-Cl-Phenyl	н	tertButyl	н	0
3-C1-Phenyl	. н	tertButyl	Н	0
2,4-(C1,C1)-Phenyl	н	tertButyl	н	0
2-CH ₃ -Phenyl	н	tertButyl	н	0
3-CH ₃ -Phenyl .	Н	tertButyl	н	0
4-CH ₃ -Phenyl	H	tertButyl	Н	0
2, 4-(CH ₃ , CH ₃)-Pheny1	H	tertButyl	н	0
2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-Pheny		tertButyl	н	0
	H	tertButyl	н	0
2-CF ₃ -Phenyl	. н	tertButyl	н	0
2-OCH ₃ -Phenyl	 H	tertButyl	н	. 0
2, 4-(OCH ₃ , OCH ₃)-Pheny l	 Н	tertButyl	н	0
4-OCF ₃ -Phenyl	н .	tertButyl	н	0
4-SCH ₃ -Phenyl	 Н	tertButyl	н	. 0
3-SCF ₃ -Phenyl	H	tertButyl	н	0
2, 4-(NO ₂ , NO ₂)-Phenyl	Н	tertButyl	н	0
4-NO ₂ -Pheny l	н	tertButyl	н	0
2-Thienyl		tertButyl	. H	0.
3-Thienyl	Н	tertButyl	н	. 0
2-Furanyl	н	tertButyl	н	0
3-Furanyl	н	tertButyl	. н	0
2-Tetrahydrofuranyl	. Н	tertButyl	Н	0
3-Tetrahydrofuranyl	H	tertButyl	Н	0
2-Pyridyl ·	Н	tertButyl	Н	0
3-Pyridyl	. н	tertButyl	н	0
4-Pyridyl	H .	tertButyl	, н	C
2-Tetrahydropyranyl	' Н	tertButyl	н	., 0
3-Tetrahydropyranyl	H	tertButyl	н	
4-Tetrahydropyranyl	H	tertButyl	Н	(
iso-Propoxy	Н	cyclo-Propyl	н	(
Н	н	-	н	
F .	' Н	cyclo-Propyl	н	Ţ
Cl	H	cyclo-Propyl	Н	Ì
Methyl	н	cyclo-Propyl	H	. (
Ethyl	н	cyclo-Propyl	п	•

	R1	R 3	R4	R5	Y
	n-Propyl	Н	cyclo-Propyl	Н	0
	iso-Propyl	н	cyclo-Propyl	н	0
	n-Butyl —	H	cyclo-Propyl	н	0
	iso-Butyl	н	cyclo-Propyl	Н	o
	sekButyl	H	cyclo-Propyl	н	Ō
	tertButyl	Н	cyclo-Propyl	Н	0
	cyclo-Propyl	Н	cyclo-Propyl	Н	0
)	cyclo-Butyl	Н	cyclo-Propyl	н	0
	cyclo-Pentyl	н	cyclo-Propyl	н	0
	cyclo-Hexyl	, H	cyclo-Propyl	Н	0
_	cyclo-Heptyl	н	cyclo-Propyl	н	0
5	cyclo-Octyl	н	cyclo-Propyl	н	0
	1-Methylcyclopropyl	н	cyclo-Propyl	н	0
	Chlormethyl	н	cyclo-Propyl	н	0
	1-Chlorethyl	н	cyclo-Propyl	н	0
)	Trifluormethyl	н	cyclo-Propyl	н	0
	Chlordifluormethyl	Н	cyclo-Propyl	н	0
	Pentafluorethyl	H	cyclo-Propyl	н	0
	Methoxymethyl	н	cyclo-Propyl	н	0
5	1-Methylmethoxymethyl	Н	cyclo-Propyl	н	0
	1-Methylmethoxyethyl	н	cyclo-Propyl	н	Ö
	Ethoxymethy l	н	cyclo-Propyl	н	o
	Vinyl	н	cyclo-Propyl	H	0
9	Allyl	Н	cyclo-Propyl	н	0
	Methallyl	н	· cyclo-Propyl	н	0
	Crotyl	н	cyclo-Propyl	н	0
٠.	Ethinyl	н	cyclo-Propyl	н	0
5	Propargyl	н	cyclo-Propyl	н	0
	Phenylethinyl	Н	cyclo-Propyl	н	0
	Methoxy	н	cyclo-Propyl	н	0
	Ethoxy	H	cyclo-Propyl	н	0
0	Trifluormethoxy	н	cyclo-Propyl	н	0
	Methylthio	·н	cyclo-Propyl	н	0
	Trifluormethylthio	H	cyclo-Propyl.	н	0
	Phenoxy	H	cyclo-Propyl	H	0
5	4-Cl-Phenoxy	н	cyclo-Propyl	н.	0
	2,4-(C1,C1)-Phenoxy	н	cyclo-Propyl	Н	0
	4-CF ₃ -Phenoxy	н	cyclo-Propyl	н	0
	Phenyl	· H	cyclo-Propyl	н	0
0	2-F-Phenylthio	н	cyclo-Propyl	н	0
	3-F-Phenyl	н .	cyclo-Propyl	Н	0
	2,4-(F,F)-Phenyl	н	cyclo-Propyl	н	0

R1		R3	R4	R 5	Υ
2-C1-Phenyl		H	cyclo-Propyl	Н	0
3-C1-Phenyl	_	н	cyclo-Propyl	н	0
2,4-(C1,C1)-	Phenyl	Н	cyclo-Propyl	Н	0
2-CH ₃ -Pheny l		Н	cyclo-Propyl	Н	0
3-CH ₃ -Pheny l		н	cyclo-Propyl	H.	0
4-CH ₃ -Pheny		н	cyclo-Propyl	н	0
2,4-(CH3,CH		Н	cyclo-Propyl	н	0
	H ₃ , CH ₃)-Phenyl	н	cyclo-Propyl	н	0
2-CF ₃ -Pheny		н	cyclo-Propyl	н	0
2-OCH 3-Pheny	-	н	cyclo-Propyl	н	0
2,4-(OCH ₃ ,00		н	cyclo-Propyl	. H	0
4-OCF 3-Phen		н	cyclo-Propyl	н	0
4-SCH ₃ -Phen		н	cyclo-Propyl	H	0
3-SCF ₃ -Phen		н	cyclo-Propyl	H	O
2,4-(NO ₂ ,NO		н .	cyclo-Propyl	Н.	C
4-NO ₂ -Pheny	· .	н	cyclo-Propyl	н	C
2-Thienyl		н	cyclo-Propyl	Н	C
3-Thienyl		н	cyclo-Propyl	Н	(
2-Furanyl	•	. Н	cyclo-Propyl	н	(
3-Furanyl		н ,	cyclo-Propyl	Н	(
2-Tetrahydr	ofuranyl	н	cyclo-Propyl	н	(
3-Tetrahydr		н	cyclo-Propyl	н	(
2-Pyridyl		H ·	cyclo-Propyl	н	(
3-Pyridyl		Н	cyclo-Propyl	Н	1
4-Pyridyl		н.	cyclo-Propyl	H ·	•
2-Tetrahydr	opyranyl	н	cyclo-Propyl	Н	
3-Tetrahydr		H	cyclo-Propyl	Н	
4-Tetrahydr		н	cyclo-Propyl	н	
iso-Propoxy		н	cyclo-Propyl	н	
н	•	Methyl	tertButyl	н	
F	•	Methyl	tertButyl	Н	
cı	•	Methyl	tertButyl	н	
Methy l		Methyl	tertButyl	. н -	
Ethyl		Methyl	tertButyl	н	
n-Propyl		Methyl	tertButyl	Н	
iso-Propyl	•	Methyl	tertButyl	н	
n-Butyl		Methyl	tertButyl	н	
iso-Butyl	•	Methyl	tertButyl	H	
sekButyl		Methyl	tertButyl	н	
tertButy	ı	Methyl	tertButyl	н	
cyclo-Prop		Methyl	tertButyl	н	
cyclo-Buty	•	Methyl	tertButyl	н	
cyclo-Pent		Methyl	tertButyl	н	

	R1	R3	R4	R5	Y
	cyclo-Hexyl	iso-Propyl	tertButyl	Н	-
5	cyclo-Heptyl	iso-Propyl	tertButyl	н	0
	cyclo-Octyl	iso-Propyl	tertButyl	н	0
	1-Methylcyclopropyl	iso-Propyl	tertButyl	н	0
	Trifluormethyl	iso-Propyl	tertButyl	н	0
10	Chlordifluormethyl	iso-Propyl	tertButyl	н	0
	Pentafluorethyl	iso-Propyl	tertButyl	н	0
	Methoxymethyl	. iso-Propyl	tertButyl	н	0
	1-Methylmethoxymethyl	iso-Propyl	tertButyl	н	o
15	1-Methylmethoxyethyl	iso-Propyl	tertButyl	н	0
	Ethoxymethyl	iso-Propyl	tertButyl	Н	0
	Vinyl	iso-Propyl	tertButyl	Н	0
	Allyl	iso-Propyl	tertButyl	Н	o
20	Methallyl	iso-Propyl	tertButyl	Н	0
	Crotyl	iso-Propyl	tertButyl	Н	0
	Ethinyl	iso-Propyl	tertButyl	н	0.
	Propargyl	iso-Propyl	tertButyl	н	0
25	Phenylethinyl	iso-Propyl	tertButyl	н	0
	Methoxy	iso-Propyl	tertButyl	н	0
	Ethoxy	iso-Propyl	tertButyl	н	0
	Trifluormethoxy	iso-Propyl	tertButyl	н	0
30	н	Methyl	cyclo-Propyl	. н	
	F	Methyl	cyclo-Propyl	н	0
	Cl	Methy l	cyclo-Propyl	Н	0
	Methyl	Methyl	cyclo-Propyl	н	0
35	Ethyl	Methyl	cyclo-Propyl	н	0
	n-Propyl	Methy l	cyclo-Propyl	н	0
	iso-Propyl	Methyl	cyclo-Propyl	н	0
	n-Butyl	iso-Propyl	cyclo-Propyl	н	0
40	iso-Butyl	iso-Propyl	cyclo-Propyl	Н	0
	sekButyl	iso-Propyl	cyclo-Propyl	Н	0
	tertButyl	iso-Propyl	cyclo-Propyl	н	0
	cyclo-Propyl	iso-Propyl	cyclo-Propyl	Н	0
45	cyclo-Butyl	'iso-Propyl	cyclo-Propyl	H	0
	cyclo-Pentyl	iso-Propyl	cyclo-Propyl	Н	0
	cyclo-Hexyl	Methy l	cyclo-Propyl	Н	0
	cyclo-Heptyl	. Methyl	cyclo-Propyl	Н	0
50	cyclo-Octyl	Methyl	cyclo-Propyl	н	0
	1-Methylcyclopropyl	Methyl	cyclo-Propyl	Н	0
	Trifluormethyl	Methyl	cyclo-Propyl	Н	0
	Chlordifluormethyl	Methyl	cyclo-Propyl	н	0
55	Pentafluorethyl	Methy1	cyclo-Propyl	н	0

	R1	R3	R ⁴	R5	Y
	Methoxymethyl	iso-Propyl	cyclo-Propyl	Н	0
	1-Methylmethoxymethyl	iso-Propyl	cyclo-Propyl	н	0
_	1-Methylmethoxyethyl	iso-Propyl	cyclo-Propyl	• н	0
5	Ethoxymethyl	iso-Propyl	cyclo-Propyl	н	0
	Vinyl	iso-Propyl	cyclo-Propyl	н	0
	Allyl	iso-Propyl	cyclo-Propyl	н	0
	Methallyl	iso-Propyl	cyclo-Propyl	Н	0
10	· Croty1	Methyl	cyclo-Propyl	н	0
	Ethinyl	Methyl	cyclo-Propyl	н	0
	Propargy l	Methyl	cyclo-Propyl	н	0
	Phenylethinyl	Methyl	cyclo-Propyl	Н	0
15	Methoxy	Methyl	cyclo-Propyl	н	0
-	Ethoxy	Methyl	cyclo-Propyl	н	0
	Trifluormethoxy	Methyl	cyclo-Propyl	н	0

55	50	4 5	40		35	30	25	20	15	10	5
Tabelle 1	Tabelle 1 (Fortsetzung)	lng)									
R1			R3	R4				R5			>
Chlor			I	tertButyl	ıtyl			4-Hydroxy-2-butinyl	utinyl		0
chlor			=	tertButyl	ıtyl			N=C(C2H5)2			0
Chlor		٠	I	tertButyl	ıtyl			N=C(cyclo-C ₃ H ₅) ₂	5)2		_0
Chlor			. =	tertButyl	ıtyl			2-Butanimino			0
Chlor			I	tertButyl	ıtyl			Cyclohexanimino	9		•
Chlor			I	tertButyl	ıty1			Cyclooctanimino	2		0
Methyl			I	tertButyl	ıtyl			N=CH-C6HS			0
Methyl			I	tertButyl	ıtyl			2-Furyl-methanimino	ıimino		0
Methyl	•		Ŧ	tertButy	tyl			CH2CH2N(CH3)2			0
Methyl			I	tertButy	tyl .			CH2CH2N+(CH3)3I-	Ļ		0
Methyl			I	tertButy	tyl			CH ₂ CF ₃			0
Methyl			I	tertButyl	tyl		-	CH ₂ CH ₂ C1			0
Methy1			I	tertButyl	tyl		-	CH ₂ CH ₂ CN			0
Methy 1			I	tertButyl	tyl .		_	Methyl			0
Methyl			I	tertButyl	tyl		_	Ethyl			0
Methyl			I	tertButyl	tyl		-	n-Propyl			0
Methyl			=	tertButyl	tyl			iso-Propyl			0
Methyl			I	tert.'-Butyl	tyl		-	tertButyl			0
Methyl			Ŧ	tertButyl	tyl		_	n-Butyl			0
Methy!			I	tertButyl	tyl	_	5	CH2-CC13			0
Methyl			.	tertButyl	tyl		9	СН2-СН(ОСН3)2			
Methyl			x	tertButy	tyl		J	СН2—С (ОСН3) 3			0

55	50	45	40	`. 35	30	25	20	15	10	6
D.			83	. 48			RS			>
Methyl			Ŧ	tertButyl			сн2-сн(он)-сн2-он	-CH ₂ OH		0
Methyl			I	tertButyl			CH 2-CH 2-CH 2-OH	1-сн 2-он		0
Methyl			I	tertButyl			CH2-CH2-0-CH3	H3		0
Methyl			=	tertButyl			CH2-CH2-S-CH3	H3		o .
Methyl			¥.	tertButyl			CH2-CH2-NHCH3	£,		0
Methyl			Ŧ	tertButyl			CH 2-CH 2-NH	CH2-CH2-NH(cyclopropyl)		0
Methyl			I	tertButyl	-		CH 2-CH 2-N (c	CH2-CH2-N(cyclopropyl)2		0
Methyl			I	tertButyl			CH2-CH2-SI (CH3) 3	(снз) з		0
Methyl			I	tertButyl			СН2-СН2-50СН3	CH3		0
Methyl	•		I	tertButyl			CH2-CH2-S02CH3	2CH3		0
Methyl			x	tertButyl	- -		CH2-C02H			0
Methyl			I	tertButyl			CH2-C02CH3			0
Methyl			Ξ	tertButyl			CH2-CH2-0-(CH2-CH2-O-CH2-CH2-CO2CH3		0
Methyl			I	tertButyl			CH2-CH2-CO;	CH2-CH2-CO2-CH2-CH2-O-CH2-CH2-CO2CH3	12-СН 2-СО 2СН	3 0
Methyl			x	tertButyl			CH2-CON (CH3) 2	3) 2		0
Methy!			=	tertButyl			CH2-PO(OC2H5) 2	15) 2		o ·
Methyl			Ξ	tertButyl			CH2-CH2-0-N=C(CH3)2	V=C (CH3) 2		0
Methyl			I	tertButyl			CH 2-CH 2-0-N=€			0
Methvl			x	tertButyl			N-Phthalimidomethyl	idomethyl		0
Methyl			Ξ	tertButyl			N-Succinimidomethyl	idomethyl		0
Methyl			I	tertButyl			Benzyloxymethyl	ethyl		0
Methyl			I	tertButyl			(4-Br-benz	(4-Br-benzoyl)-methyl		0

55	50	45	40	35	30	25	20	15	10	5	
18			ج د	4			رد در			>	
Methyl			Ŧ	tertButyl			(4-Methoxybe	(4-Methoxybenzoyl)methyl	_	0	
Methyl			I	tertButyl			2-Tetrahÿdrofuranyl-methyl	ofuranyl-met	hy 1	0	
Methy1			I	tertButyl	·		2-Tetrahydrothienyl-methyl	othienyl-met	hyl	o _	
Methyl			I	tert:-Butyl			4-Tetrahydropyranyl-methyl	opyranyl-met	hyl	•	
Methyl			I	tertButyl			2-Furanyl-methyl	thyl		0	
Methy1			I	tertButyl			2-Thienyl-methyl	thyl		0	
Methyl			I	tertButyl			42 P	. EB)		0	
Methyl	٠	•	x	tertButyl			-42 S-25 S-25	Ę		0	
Methyl			I	tertButyl			N N N N N N N N N N N N N N N N N N N	£		0	
Methyl			.	tertButyl	·		-CH ₂ -CH ₃	H.		0	
Methy1			I	tertButyl			CH2 CH2			0	
Methyl			x	tertButyl			N-Methylpyrrolidin-3-ylmethyl	olidin-3-ylı	nethy1	0	
Methy1			¥	tertButyl			N-Methylpyrrol-3-ylmethyl	ol-3-ylmeth	7.	0	
Methyl			I	tertButyl			-CH ₂			0	
			•				7:5				

55	50	45	40	35	30	25	20	15	10	5
18			R 3	48			R5			*
Methy1			. =	tertButyl			-CH2			o
							CH3	•		
Methyl			Ŧ	tertButyl			2-Pyridyl-methyl	thy1		o -
Methy1			Ξ.	tertButyl			3-Pyridyl-methyl	thyl		0
Methy1	•		Ŧ	tertButyl			4-Pyridyl-methyl	thyl		0
Methyl			Ŧ	tertButyl			1 3 3 3 3 3 3 3 3 3 3		·	0
Methy1			Ξ	tertButyl			-CH2			0
Methyl			=	tertButyl	. <u>.</u> .		-CH2-			0
Methyl			I	tertButyl			Benzyl			0
Methyl			I	tertButyl			2,4-Dichlorbenzyl	enzyl		0
Methyl			Ŧ	tertButyl			2-Phenylethyl			0
Methyl			Ŧ	tertButyl	. -		Cyclopentyl			0
Methyl		•	x	tertButyl			Cyclohexyl			0
Methyl			Ξ	tertButyl			2-Propenyl			0
Methyl			I	tertButyl			сн ₂ -сн=сн-с ₆ н ₅	HS		0
Methyl			x	tertButyl			2-Cyclohexenyl	yl		0
Methyl			I	tertButyl			2-Propinyl			0
Methyl			≖.	tertButyl			сн 2с≡с-сн 2он	Б		0
Methyl			¥	tert:-Butyl			4-F-Phenyl			0

55	50	45	40	35	30	25	20	15	10	5
R1			R3	R4			R5			>
Methyl			I	tertButyl			4-NO ₂ -Phenyl			0
Methyl			I	tertButyl			4-CN-Pheny l			0
Methyl			I	tertButyl			4-CH3-Phenyl			o –
Methyl			I	tertButyl			4-CF3-Pheny1			0
Methyl			I	tertButyl			3, 5-(CF3, CF3)-Phenyl	-Phenyl		0
Methyl			I	tertButyl			2-NO ₂ -4-F-Phenyl	nyl		0
Methyl			I	tertButyl			4-ocH3-Phenyl			0
Methyl		•	Ŧ	tertButyl			4-ocF ₃ -Phenyl			0
Methyl	•		I	tertButyl			4-CO ₂ CH ₃ -Phenyl	yl		0
Methyl			x	tertButyl			2,6(Br, Br)-4-NO ₂ -Phenyl	NO ₂ -Phenyl		0
Methyl			I	tertButyl			2-Tetrahydrofuranyl	uranyl		0
Methyl			I	tertButyl			2-Tetrahydropyranyl	yranyl		0
Methyl			I	tertButyl			1-Pyrazolyl			0
Methyl			I	tertButyl			1-(1, 2, 3)-Triazolyl	azolyl		0
Methyl			I	tertButyl			1-Benzotriazolyl	lyl		0
Methyl			I	tertButyl			Phthalimido			0
Methy1			r	tertButyl			Tetrahydrophthalimido	halimido		0
Methyl			I	tertButyl			Succinimido			0
Methyl			I	tertButyl			Maleinimido			o .
Methyl			I	tertButyl			Na+			0
Methyl			Ξ	tertButyl			*			٥.
Methyl			Ξ.	tertButyl			+ ⁺ + HN			0

55	50	45	40	35	30	25	15	10	5
R1			بر 3	R4			RS		>
Methyl			Ŧ	tertButyl			⊕ NH3-(iso-Propyl)		0
Methyl	·		I	tertButyl			⊕ NH ₂ -(iso-Propyl) ₂		0
Methyl			I	tertButyl			2-Propanimino		0
Methyl			Ŧ.	tertButyl			2-Butanimino		0
Methyl	•		I	tertButyl			-N=C(C ₂ H ₅) ₂		0
Methyl			x	tertButyl			C1 -N=CH−CH2 ← C1		0
Methyl				tertButyl			-N=CH−CH2		0
Methyl	•		I	tertButyl			-N=C(cyclopropyl) ₂		0
Methyl	•		I	tertButyl			Cyclopentanimino		0
Methyl			I	tertButyl			Cyclohexanimino		0
Methyl			I	tertButyl			CH ₂ -CH=N-OCH ₃		0
Methyl			· =	tertButyl	_		CH 2-CH=N-OC 2H5		0
Methyl			x	tertButyl			CH 2-CH=N-0-CH 2-C=CH 2		0
Methyl			I	tertButyl			CH2-CH=N-O-CH2-CECH		0
Methyl			x	tertButyl			CH 2-CH=N-O-CH 2-CH 2-CH=CH	=CH	0
Methyl			I	tertButyl			CH ₂ -CH=N-N-CH ₃		0
Methyl			I	tertButyl	••		CH2-CH=N-N-C6H5		0
iso-Propyl	1,		Ŧ	tertButyl			CH ₂ CCl ₃		0

55	50	45	40	35	<i>30</i>	25	20	15	10	5
R 1			R3	R4	-		R5			>
iso-Propy			Ŧ	tertButyl			CH2CH2S1 (CH3) 3	3)3		0
iso-Propy)	_		Ŧ	tertButyl			CH2CH2O-N=C(CH3)2	(CH ₃) ₂		0
iso-Propyl	_		I	tertButyl	-		CH2PO(QC2H5)2	12		o _
iso-Propyl	_		I	tertButyl	-		сн(сн3)сн(осн3) 2	CH3) 2		0
iso-Propyl			=	tertButyl			CH2-CON(C2H5)2	5)2		0
iso-Propyl			I	tertButyl			Benzyl			0
cyclo-Propyl	pyl		I	tertButyl			2,4-(Cl,Cl)-Benzyl	-Benzyl		0
cyclo-Propyl	pyl		I	tertButyl	:		3-Pyridyl-methyl	ethyl		0
cyclo-Propyl	pyl		I	tertButyl			2-Thienyl-methyl	ethyl		0
cyclo-Pro	. lkd		Ξ	tertButyl			2-Tetrahydr	2-Tetrahydrofuranyl-methyl	hyl	0
cyclo-Propyl	pyl		I	tertButyl			2-Furanyl-methyl	ethyl		0
cyclo-Propyl	pyl		I	tertButyl			2-Pyridyl-methyl	ethyl		0
cyclo-Propyl	pyl		I	tertButyl			Pheny1			0
Allyl			_ I	tertButyl			4-F-Phenyl			0
Allyl			I	tertButyl			4-Trifluormethylphenyl	ethylphenyl		0
Allyl			I	tertButyl			2-NO ₂ -4-F-Phenyl	henyl		0
Allyl			I	tertButyl			3, 5-(CF3, CF3)-Phenyl	3)-Phenyl		0
Allyl			Ξ	tertButyl			4-OCH3-Pheny1	۱,		0
Allyl			I	tertButyl			4-OCF ₃ -Phenyl	۱,۱		0
'Allyl			I	tertButyl			4-NHCOCH ₃ -Phenyl	lenyl		0
Ethinyl			I	tertButyl			2-Tetrahydropyranyl	opyranyl		0
Ethinyl			Ξ.	tertButyl			2-Tetrahydrofuranyl	ofuranyl		0
Ethinyl			I	tertButyl			1-Benzotriazolyl	16102		0

50 55	45	40	35	30	25	15	10	
R1		R.3	84			RS		>
Ethinyl		Ŧ	tertButyl.			Methyl		0
Ethinyl		I	tertButyl			Ethyl		
Ethinyl		I	tertButyl			n-Propyl	-	0
Ethinyl		±	tertButyl			iso-Propyl	_	0
Methoxy		Ξ.	tertButyl			n-Butyl		0
Methoxy		Ŧ	tertButyl			iso-Butyl		0
Methoxy		I	tertButyl			sekButyl		0
Methoxy		I	tertButyl			tertButyl		0
Methoxy		=	tertButyl			cyclo-Hexyl		0
Methoxy		I	tertButyl			Cyclopropylmethyl		0
Methoxy		I	tertButyl			Ethoxymethyl		0
4-C1-Phenoxy		I	tertButyl			2-Methoxy-ethoxy-methyl		0
4-C1-Phenoxy		I	tertButyl			Benzyloxymethyl		0
4-C1-Phenoxy			tertButyl			(4-Brombenzoyl)-methyl		0
4-C1-Phenoxy		.=	tertButyl			(4-Methoxybenzoyl)-methyl	_	0
4-C1-Phenoxy		I	tert,-Butyl			Phthalimidomethyl		0
4-Cl-Phenoxy		I	tertButyl			Methylthiomethyl		0
4-C1-Phenoxy		Ξ	tertButyl			2-Thiomethyl-ethyl		0
Phenylthio		I	tertButyl			сн(сен5)соосн3		0
Phenylthio		I	tertButyl			Phenylethyl		0,
Phenylthio		I	tertButyl'			4-F-Phenylethyl		0
Phenylthio		Ξ.	tertButyl			Phthalimido		0
Phenylthio		=	tertButyl			. Tetrahydrophthalimido		0

55	50	45	40	35	30	25	20	15	10	5
R1			R 3	R4			R5			>-
Pheny I thio	io		Ŧ	tertButyl.			Maleinimido			0
Pheny lthio	<u>•</u>		I	tertButyl		,	Succinimido			0
2, 4-(C1, (cl)-Phenyl		I	tertButyl	-		Piperidino			o _
2, 4- (C1, (Cl)-Phenyl		I	tertButyl			Li+			0
2,4-(C1,6	Cl)-Phenyl	•	I	tertButyl			Na+			0
2,4-(C1,	2, 4-(c1, c1)-Phenyl		x	tertButyl			+ +			Ó
2, 4-(01,	Cl)-Phenyl		I	tertButyl	-		NH¢+			0
2, 4-(C1,	cl)-Phenyl		I	tertButyl			Di isopropylammonium	mon i um		0
2,4-(01,	2,4-(c1,c1)-Phenyl		I	tertButyl			2-Hydroxyethyl-ammonium	1-ammonium		0
2-Thienyl			I	tertButyl			Allyl			0
2-Thienyl	_		Ŧ	tertButyl			Methallyl			0
2-Thienyl			I	tertButyl.			2-Chlorallyl			0
2-Thienyl	_		I	tertButyl			Propargyl			0
2-Thienyl	_		I	tertButyl			3-Jodpropargyl	_		0
Chlor		•	I	cyclo-Propyl			4-Hydroxy-2-butinyl	utinyl		0
Chlor			I	cyclo-Propyl			N=C(C2H5)2			0
Chlor			I	cyclo-Propyl			N=C(cyclo-C3H5)2	15)2		0
Chlor			x	cyclo-Propyl			2-Butanimino			0
chlor			I	cyclo-Propyl			Cyclohexanimino	no		0
Chlor			I	cyclo-Propyl			Cyclooctanimino	no		Ö
Methyl		٠	I	cyclo-Propyl'			N=CH-C ₆ H ₅			0
Methyl		٠	Ξ.	cyclo-Propyl			2-Furyl-methanimino	nimino		0
Methyl			Ŧ	cyclo-Propyl			CH2CH2N(CH3)2			0

55	50	45	40	`. 35	30	25	20	10	5
10			83	4			R5		>
Methyl			=	cyclo-Propy!			CH2CH2N+ (CH3) 31-	31-	0
Methyl			I	cyclo-Propyl			CH ₂ CF ₃		0
Methyl			I	cyclo-Propyl			CH ₂ CH ₂ C1		o -
Methyl			I	cyclo-Propyl			CH ₂ CH ₂ CN		O .
iso-Propyl			Ŧ.	cyclo-Propyl			CH2CC13		0
iso-Propy	. پ		I	cyclo-Propyl			СН2СН2S I (СН3) 3	33	0
[so-Propy]			I	cyclo-Propyl			CH2CH20-N=C(CH3)2	CH3) 2	0
iso-Propyl	<u>-</u>		I	cyclo-Propyl			CH2PO(OC2H5)2	7	0
1so-Propy			I	cyclo-Propyl			Сң(сн ₃)сң(осн ₃) 2	H ₃) ₂	0
iso-Propy	٠ -	•	I	cyclo-Propyl			CH2-CON(C2H5)2	2	0
iso-Propyl	-		I	cyclo-Propyl			Benzyl		0
cyclo-Propyl	lyq1		Ŧ	cyclo-Propyl			2, 4-(C1, C1)-Benzyl	Benzyl	0
cyclo-Propyl	lygi		I	cyclo-Propyl			3-Pyridyl-methyl	thy1.	0
cyclo-Propyl	1 kd		x	cyclo-Propyl			2-rhienyl-methyl	thyl	0
cvclo-Propyl	 Iydı		. =	cyclo-Propyl			2-Tetrahydro	2-Tetrahydrofuranyl-methyl	0
cvclo-Propyl	lydo		I	cyclo-Propyl			2-Furanyl-methyl	thyl	0
cyclo-Propyl	lyqt		I	cyclo-Propyl			2-Pyridyl-methyl	thyl	0
cyclo-Propyl	lydo		I	cyclo-Propyl			Phenyl		0
Allvi	2		I	cyclo-Propyl			4-F-Phenyl		0
Allvl			Ŧ	cyclo-Propyl			4-Trifluormethylphenyl	thylphenyl	0
Allyl			I	cyclo-Propyi			2-N0 ₂ -4-F-Phenyl	enyl	0
Allyl			Ξ,	cyclo-Propyl			3, 5-(CF3, CF3)-Phenyl)-Phenyl	0
Allyl			I	cyclo-Propyl			4-OCH3-Phenyl	_	0

55	50	45	40	`. 35	30	25	20	15	10	5
R1			R3	R4	-		85			>
Allyl			I	cyclo-Propyl			4-OCF 3-Pheny 1			0
Allyl		•	×	cyclo-Propyl			4-NHCOCH ₃ -Phenyl	nyl		0
Ethinyl			I	cyclo-Propyl			2-Tetrahydropyranyl	yranyl		0
Ethinyl			I	cyclo-Propyi			2-Tetrahydrofuranyl	uranyl		_
Ethinyl	٠.	•	=	cyclo-Propyl			1-Benzotriazolyl	lyl		0
Ethinyl			I	cyclo-Propyl			Methyl	ı		0
Ethinyl			I	cyclo-Propyl	-		Ethyl	·		0
Ethiny1			I	cyclo-Propyl			n-Propýl			0
Ethinyl			I	cyclo-Propyl			iso-Propyl			0
Methoxy			I	cyclo-Propyl			n-Butyl			0
Methoxy			Ŧ	cyclo-Propyl			iso-Butyl			•
Methoxy			I	cyclo-Propyl			sekButyl			0
Methoxy			I	cyclo-Propyl			tertButyl			0
Methoxy			x	cyclo-Propyl			cyclo-Hexyl			0
Methoxy		•	I	cyclo-Propyl			Cyclopropylmethyl	hy1		0
Methoxy			Ŧ	cyclo-Propyl .			Ethoxymethyl			0
4-Cl-Phenoxy	oxy		Ŧ	cyclo-Propyl			2-Methoxy-ethoxy-methyl	xy-methyl		0
4-Cl-Phenoxy	oxy		x	cyclo-Propyl			Benzyloxymethyl			0
4-C1-Phenoxy	oxy		×	cyclo-Propyl			(4-Brombenzoyl)-methyl)-methyl		0
4-Cl-Phenoxy	oxy		I	cyclo-Propyl			(4-Methoxybenzoyl)-methyl	oyl)-methy	-	0
4-Cl-Phenoxy	oxy		×	cyclo-Propyl			Phthalimidomethyl	lyl		0
4-Cl-Phenoxy	oxy	-	=	cyclo-Propÿl			Methylthiomethyl	~		0
4-Cl-Phenoxy	oxy		I	cyclo-Propyl			2-Thiomethyl-ethyl	thyl		0

50	45	40	35	30	25	15 20	10	5
,	٠.	R3	R4	-		R5		*
Phenylthio		I	cyclo-Propyl			CH(C6H5)C00CH3		0
Phenylthio		I	cyclo-Propyl			Phenylethyl		0
Phenylthio		Ŧ	cyclo-Propyl			4-F-Phenylethyl		0
Phenylthio		I	cyclo-Propyl			Phthalimido		0
Phenylthio		Ξ	cyclo-Propyl			Tetrahydrophthalimido		0
Phenylthio		=	cyclo-Propyl			Maleinimido		0
Phenylthio		I	cyclo-Propyl			Succinimido		0
2, 4-(C1, C1)-P	henyl	I	cyclo-Propyl			Piperidino		0
2, 4-(C1, C1)-PI	henyl	I	cyclo-Propyl			- FI+		0
2, 4-(C1, C1)-P	heny 1	I	cyclo-Propyl			Na+		0
2,4-(C1,C1)-P	henyl	I	cyclo-Propyl			+ *		0
2, 4-(Cl, Cl)-Phenyl	heny l	I	cyclo-Propyl			NH4+		0
2,4-(C1,C1)-P	henyl	I	cyclo-Propyl			Di isopropylammonium		0
2, 4-(C1, C1)-P	heny l	. ±	cyclo-Propyl			2-Hydroxyethyl-ammonlum	_	0
2-Thienyl		Ξ.	cyclo-Propyl		•	Allyl		0
2-Thlenyl		I	cyclo-Propyl			Methallyl		0
2-Thienyl		I	cyclo-Propyl			2-chlorallyl		0
2-Thlenyl		Œ	cýclo-Propyl			Propargyl		0
2-Thienyl		I	cyclo-Propyl ·			3-Jodpropargyl		0
· =		Ŧ	tertButyl	`.		-N=C(CH ₃) ₂		0
li.		I	tertButyl			-N=C(CH3)2		0
ເວ		Ξ	tertButyl			-N=C(CH3)2		0
Methyl		I	tertButyl			-N=C (CH ₃) ₂		o

55	50	45	40	35	30	25	20	15	10	5
L			R3	R4			RS			>
Ethy1			±	tertButy!	-		-N=C(CH ₃) ₂			0
n-Propyl	-		I	tertButyl			-N=C (CH3) 2			O
iso-Propyl	py1 .		I	tertButy)			-N=C(CH ₃) ₂			0 –
n-Butyl			· ±	tertButyl			-N=C(CH ₃) ₂			0
iso-Butyl	lų:		Ξ.	tertButyl			-N=C(CH ₃) ₂			0
sekButyl	ıtyl		I	tertButyl		•	-N=C(CH ₃) ₂			0
tertButyl cyclo-Propyl	utyl ropyl		II	tertButyl tertButyl			-N=C(CH ₃) ₂ -N=C(CH ₃) ₂	••		00
cyclo-Butyl	lutyl		×	tertButyl			-N=C(CH ₃) ₂			0
cyclo-Pentyl	entyl ·		Ŧ	tertButyl	-		-N=C(CH ₃) ₂			0
cyclo-Hexyl	lexy l		Ŧ	tertButyl	-		-N=C(CH ₃) ₂			0
cyclo-Heptyl	leptyl		=	tertButyl			-N=C (CH ₃) ₂			0
cyclo-Octyl	ctyl		I	tertButyl			-N=C (CH3) 2			0
1-Methy	1-Methylcyclopropyl		Ξ	tertButyl			-N=C (CH ₃) ₂			0
Chlormethyl	thyl		±	tertButyl	-		-N=C (CH3) 2			0
1-Chlorethyl	ethyl		I	tertButyl			-N=C (CH3) 2			0
Trifluo	Trifluormethyl		·	tertButyl			-N=C (CH ₃) ₂			0
Chlordi	Chlordifluormethyl		I	tertButyl			-N=C (CH ₃) ₂			0
Pentafl	Pentafluormethyl		I	tertButyl			-N=C(CH ₃) ₂			0
iso-Propoxy	роху		I	tertButyl			-N=C(CH3)2			Ó
Methoxymethyl	methyl		I	tertButyļ			N=C(CH3)2			0
1-Methy	1-Methylmethoxymethyl	=	Ξ.	tertButyl			-N=C(CH3)2			0
1-Methy	l-Methylmethoxyethyl		<u>,</u> =	tertButyl			-N=C(CH ₃) ₂			0

55	50	45	40		35	30 ··	25	20	15	10	5	
7			60	4		. <u>.</u>		R5	·		>	1
C+bovomothy]			=	tertButy	ıtyl			-N=C(CH3)2			0	
vinci.	•		Ŧ	tertButy	ıtyl			-N=C(CH3)2			0	
411v1			=	tertButy	ıtyi			-N=C(CH3)2			•	
Methallyl			Ŧ	tertButy	ıtyi			-N=C(CH3)2			o –	
Crotvl			Ξ.	tertButy	ıtyi			-N=C(CH ₃) ₂			0	
Ethinvl			I	tertButy	ıtyi			-N=C (CH ₃) ₂			0	
Propargyl			I	tertButy	ıtyl			-N=C(CH3)2			0 (
Phenylethinyl	inyl		I	tertButy	utyl			-N=C (CH3) 2			> (
Methoxy			I	tertButyl	utyl	-		-N=C (CH ₃) 2			o (
Ethoxy			I	tertButy	utyl			-N=C (CH ₃) ₂			0	
Trifluormethoxy	thoxy		I	tertButyl	utyl			-N=C (CH3) 2		•	0	
Methylthio			I	tertButyl	utyl			-N=C(CH ₃) ₂			0	
Trifluormethylthio	ethylthio		I	tertButyl	utyl			-N=C (CH ₃) ₂			0	
Phenoxy	•		I	tertButy	utyl		,	-N=C(CH ₃) ₂			0	
4-C1-Phenoxy	бху		. ±	tertButy	utyl			-N=C(CH ₃) ₂			0	
2, 4-(C1, C	2, 4-(C1, C1)-Phenoxy		I	tertButy	utyl	-		-N=C(CH ₃) ₂			0 0	
4-CF3-Phenoxy	noxy		I	tertButy	utyl			-N=C(CH ₃) ₂			-	
Phenyl	٠		I	tertButyl	utyl			-N=C(CH ₃) ₂			-	
2-F-Phenylthio	lthio		I	tertButyl	utyl			-N=C(CH ₃) ₂			o (
3-F-Phenyl	_		I	tertButy	utyl			-N=C(CH ₃) ₂			O	
2, 4-(F,F)-Phenyl	-Phenyl		I	tertButyl	utyľ			-N=C(CH3)2			-	
2-Cl-Phenyl	, lų		I	tertButyl	utyl			-N=C(CH3)2			o (
3-Cl-Phenyl	lų		I	tert,-Butyl	utyl			-N=C(CH ₃) ₂			5	

5	>	0	0	0	_o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10																								
15																								
20	R5	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C (CH3) 2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂
25											·		·	•	•	•	•	•	•	•	•	•	•	•
30														-			-	• •						
35 35	R4	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyľ	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tert,-Butyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyľ	tertButyl	tertButyl
40	R3	Ŧ	I	x	· ±	±	=	=	I	I	I	r	I	Ŧ	Ŧ	_ =	Ŧ	I	I	Ŧ	I	I	E	=
45		11				. lyn	13)-Phenyl			henyl				nyl						y1	y.1		٠	
50		2, 4-(C1, C1)-Phenyl	2-CH ₃ -Phenyl	Phenyl	4-CH ₃ -Phenyl	2, 4-(CH3, CH3)-Phenyl	2, 4, 6-(CH ₃ , CH ₃ , CH ₃)-Phenyl	2-CF ₃ -Phenyl	2-OCH ₃ -Phenyl	2, 4-(OCH ₃ , OCH ₃)-Phenyl	4-OCF ₃ -Phenyl	4-SCH ₃ -Phenyl	3~SCF ₃ -Phenyl	2, 4-(NO ₂ , NO ₂)-Phenyl	Phenyl	nyl	ny l	nyl	nyl	2-Tetrahydrofuranyl	3-Tetrahydrofuranyl	dyl	dyl	dyl
5 5	2	2,4-(0	2-сн3-	3-CH3-	4-CH3-	2,4-(0	2,4,6-	2-CF3-	2-0CH ₃	2, 4-(0	4-0CF3	4-SCH3	3-SCF3	2, 4- (N	4-NO ₂ -Phenyl	2-Thienyl	3-Thienyl	2-Furanyl	3-Furanyl	2-Tetr	3-Tetr	2-Pyridyl	3-Pyridyl	4-Pyridyl

50 55	45	40	*. 35	30	25	20	15	5	
				••• ••					
-		8	R4			R5 '			_
2_Totrahudronvranvl		=	tertButyl	-		-N=C (CH ₃) 2			0
2 Totrabudropurany		=	tertButyl			-N=C(CH ₃) ₂			0
Jalet angalopy, and		=	tertButyl			-N=C(CH ₃) ₂			0
4-lerraliyalopyi aliy r		· ±	cyclo-Propyl			-N=C (CH ₃) ₂		_	0
c u		=	cyclo-Propyl	-		-N=C(CH3)2			0
	•	I	cyclo-Propyl			-N=C (CH3) 2			0
		Ŧ	cyclo-Propyl			-N=C(CH3)2			0
Ethvl		I	cyclo-Propyl			-N=C (CH3) 2			0 (
n-Propv1		I	cyclo-Propyl			-N=C(CH3)2			.
isa-Proovi		Ŧ	cyclo-Propyl			-N=C (CH3) 2) (
n_Butv]		I	cyclo-Propyl			-N=C (CH3) 2			0
ico-Butv)		×	cyclo-Propyl			-N=C(CH ₃) ₂			0
sok -Butvl		Ξ	cyclo-Propyl			-N=C(CH ₃) ₂			0
tert -Butul		. ±	cyclo-Propyl ,			-N=C(CH ₃) ₂			0
יליים יים ופיים		. =	cyclo-Propyl			-N=C (CH ₃) ₂			0
cyclo-Fishj.		=	cyclo-Propyl			-N=C (CH ₃) 2			0
cvclo-Pentyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			-
cvc10-Hexv1		I	cyclo-Propyl			-N=C (CH3) 2			o (
cyclo meny		I	cyclo-Propyl			-N=C(CH ₃) ₂			0
		Ŧ	cyclo-Propyl		•	-N=C (CH3) 2			0
1-wethulcyclopropyl		I	cyclo-Propyl			-N=C(CH3)2			0
Chlosmethyl		=	cyclo-Propýl			-N=C (CH3) 2			0
1_Chlorethyl		I	cyclo-Propyl			-N=C(CH3)2			0

EP 0 418 667 A2

<i>50</i>	45	· 40	`. 35	30	25	20	15	10	5
R1		R3	. 4			R 5			>
Trifluormethyl		I	cyclo-propyl			-N=C (CH3) 2			0
Chlordifluormethyl	ethyl.	I	cyclo-Propyl			-N=C(CH3)2			0
Pentafluorethyl	ر م ا	±	cyclo-Propyl			-N=C (CH3) 2			o –
i so-Propoxy		æ	cyclo-Propyl			-N=C (CH3.) 2			0
Methoxymethyl	•	Ξ.	cyclo-Propyl		٠	-N=C(CH ₃) ₂			0
1-Methylmethoxymethyl	kymethy l	Ŧ	cyclo-Propyl			-N=C (CH ₃) ₂	-		0
1-Methylmethoxyethyl	kyethy l	±	cyclo-Propy·l			-N=C (CH3) 2			0
Ethoxymethyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			0
Vinyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			0
Allyl		I	cyclo-Propyl			-N=C(CH ₃) ₂			0
Methallyl		I	cyclo-Propyl			-N=C(CH ₃) ₂		٠	0
Crotyl		I	cyclo-Propyl			-N≃C(CH3)2			0
Ethinyl		=	cyclo-Propyl		·	-N=C(CH ₃) ₂			0
Propargyl		Ŧ	cyclo-Propyl		·	-N=C(CH3)2			0
Phenylethinyl		±	cyclo-Propyl		•	-N=C(CH3)2			0
Methoxy		I	cyclo-Propyl	-	•	-N=C(CH ₃) ₂			0
Ethoxy		I	cyclo-Propyl		•	-N=C(CH3)2			0
Trifluormethoxy	رخ	Ŧ	cyclo-Propyl	-	•	-N=C(CH3)2			0
Methylthio		x	cyclo-Propyl		•	-N=C(CH ₃) ₂			0
Trifluormethylthio	thio	I	cyclo-Propyl	-	•	-N=C(CH ₃) ₂			0
Phenoxy		I	cyclo-Propy'l	. .	•	-N=C(CH3)2			0
4-Cl-Phenoxy		Ŧ,	cyclo-Propyl		•	-N=C(CH3)2			0
2, 4-(Cl, Cl)-Phenoxy	enoxy	I	cyclo-Propy.		ľ	-N=C(CH ₃) ₂			0
				-					

5		0	. 0	0	- -	-					, c			0	0	•	0	0	0	C				, c
15								1																
20	RS	-N=C(CH3)2	10000	-N=C(CH3)2	-N=C(CH3)2	-N=C (CH3) 2	-N=C (CH3) 2	-N=C (CH3) 2	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N=C(CH3)2	-N-C (cm3) 2	-N=(cH3) 2	-N=C(CH3)2	-N=C (CH3) 2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂
25			•																					
30	-		_						-		_		٠.											_
`. 35	40	K.	cyclo-Propy (cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl	cyclo-Propyl
40	,	2	I	I	I	I	=	I	I	I	I	I	I	x	x	Ξ.	Ŧ	I	x	x	I	I	I	Ξ,
45										lyı				heny1	2, 4, 6-(CH3, CH3, CH3)-Phenyl			-Pheny1				henyl		
50			4-CF ₃ -Phenoxy		2-F-Phenylthio	3-F-Phenyl	2-1-1 mcm3. 2 4-(F.F.)-Phenv]	envl	3-C1-Phenyl	2.4-(C1,C1)-Phenyl	2-CH ₁ -Phenyl	3-CH ₃ -Phenyl	4-CH ₃ -Phenyl	2, 4-(CH3, CH3)-Phenyl	(CH3, CH3,	2-CF ₃ -Phenyl	2-OCH ₃ -Phenyl	2, 4-(OCH3, OCH3)-Phenyl	4-0CF 3-Pheny l	4-SCH 1-Phenyl	3-crePhenvl	2-5cl 3 :c 5 2 4-fwo No.) -Phenyl	4-NO 2-Phenyl	2-Thienyl

45 50	40	35	30	25	20	15	10	5
R1	R3	R4			R5			>
2-Furanyl	Ŧ	cyclo-Propyl			-N=C(CH3)2			0
3-Furanyl	I	cyclo-Propyl			-N=C(CH3)2			0
2-Tetrahydrofuranyl	I	cyclo-Propyl			-N=C(CH3)2			o .
3-Tetrahydrofuranyl	I	cyclo-Propyl			-N=C(CH ₃) ₂			0_
2-Pyridyl	=	cyclo-Propyl			-N=C (CH3)2			0
3-Pyridyl	I	cyclo-Propyl			-N=C (CH3)2			0
4-Pyridyl	x	cyclo-Propyl			-N=C (CH3)2			0
2-Tetrahydropyranyl	I	cyclo-Propyl			-N=C(CH3)2			0
3-Tetrahydropyranyl	=	cyclo-Propyl			-N=C(CH3)2			0
4-Tetrahydropyranyl	I	cyclo-Propyl			-N=C (CH3)2			0
Chlor	I	Methyl			I			0
Chlor	I	Ethyl :			I			0
Chlor	I	n-Propyl			I			0
Chlor	I	iso-Propyl			 I			0
Chlor		n-Butyl			I			0
Chlor	I	iso-Butyl			I			0
Methyl	I	sekButyl			I			0
Methyl	I	n-Pentyl			I			0
Methyl	I	2-Pentyl			r			0
Methyl	I	3-Pentyl			I			Ö
Methyl	I	n-Hexyl	,		I			0
Methyl	I.	2-Hexyl			I			0
iso-Propyl	I	3-Hexyl .	-		.			0

50	45	40		35	30	25	20	15	10	5
RI		æ 83	R 4			R5				>
Methoxy		Ξ	2, 4-(0	2, 4-(CH ₃ , CH ₃)-Phenyl	neny l	I				0
Methoxy		I	. 2, 3, 5-	(сн 3, сн 3, 0	2, 3, 5-(CH ₃ , CH ₃ , CH ₃)-Phenyl	I				0
Methoxy		I	3-CF 3-	3-CF 3-Phenyl	•	I				0
Methoxy		Ŧ	3-F-Phenyl	eny 1		I				•
Methoxy		Ξ.	2-C1-Phenyl	henyl		I				0
Methoxy		I	4-Cl-Phenyl	henyl		I				0
4-C1-Phenoxy		I	2, 4-(F	2, 4-(F, F)-Phenyl	_	I				0
4-C1-Phenoxy		I	2, 3, 5-	2, 3, 5-(c1, c1, c1)-Phenyl	-Phenyl	I				0
4-C1-Phenoxy		Ŧ	2-CN-Phenyl	henyi		Ξ				0
4-C1-Phenoxy		Ŧ	2-0CH	2-OCH ₃ -Phenyl		Ξ				0
4-Cl-Phenoxy		I	2, 3-(0	2, 3-(OCH3, OCH3)-Pheny1	-Pheny1	I				0
4-C1-Phenoxy		I	3, 4, 5-	-(осн3, осн	3, 4, 5-(0CH ₃ , 0CH ₃ , 0CH ₃)-Phenyl	H lƙı				0
Phenylthio		Ŧ	3-0CF	3-ocF ₃ -Pheny1		I				0
Phenylthio		Ξ.	4-0CF	4-OCF ₂ CHF ₂ -Phenyl	ار	Ξ				0
Phenylthio		Ŧ	2-SCH	2-SCH ₃ -Phenyl		I				0
Phenylthio		I	2, 4-(5	2, 4-(SCH ₃ , SCH ₃)-Phenyl	-Phenyl	I				0
Phenylthio		I	2-SCF	2-SCF ₃ -Pheny1		I				0
Phenylthio	_	¥	4-NO2-	4-NO ₂ -Phenyl		Ξ				0
2, 4- (C1, C1) -Phen	ıyı	I	2, 4-(1	2, 4-(NO2, NO2)-Pheny	henyl	I				0
2, 4-(C1, C1)-Phenyl	lyl	x	2-сно	2-CHO-Phenyl		I				0
2,4-(C1,C1)-Phen	ıyı	I	3-000	3-COCH3-Pheny1		I				0
2, 4-(C1, C1)-Phen	ıyı	Ŧ,	3-000	3-cocF ₃ -Phenyl		I				0
2,4-(cl,cl)-Phenyl	lyl	I	1-Napl	1-Naphthyl·		I				0

55	50	45	40	35	30	25	20	15	10	5	
7			£				R5 .				_
2 4-(C1 C1)-Phenyl	1-Phenyl		Ŧ	2-Naphthyl.			I				0
2, Thienyl	•		x.	Piperidino			=				0
2-Thienyl			I	3-Tetrahydrofurany	furanyl		I			_	0 (
2-Thienyl			I	4-Tetrahydropyrany	pyranyl		±				0 (
2-Thienyl			=	2-Thiazolyl			=				5 (
2-Thlenyl	•		<u>.</u>	5-CH3-2-Thiazolyl	zolyl		I				-
2-Thienyl			I	4-CH ₃ -5-COOH-2-Thiazoly	-2-Thiazolyl		æ				.
3-Pyridyl			Ξ	Methyl			I				.
3-Pyridyl			=	Ethy!			=				.
3-Pyridyl			I	n-Propyl			I				
3-Pyridyl			I	iso-Propyl			x				.
3-Pyridyl			x	n-Butyl			= :				
3-Pyridyl			I	iso-Butylyl	 ·		= :				
iso-Propyl	_		Methyl	sekButyl	<u>.</u> .		=				
iso-Propyl			Methyl	n-Pentyl	-	•	.				
iso-Propyl	سِ		Methyl	2-Pentyl	-		= :				
iso-Propyl			Methyl	3-Pentyl			= :				, ,
iso-Propyl	-		Methyl	n-Hexy1			= :				
Iso-Propyl	-		Methyl	2-Hexyl			I				.
iso-Propyl	=		Methyl	3-Hexyl			I		٠		o (
Chlor			I	Methyl			-N=C(CH3)2				o (
Chlor			Ξ	Ethyl			-N=C(CH3)2				5 (
Chlor			I	n-Propyl			-N=C(CH3)2				>

55	50	45	40	- 30 - 35	20	15	10	5
			R.3	R4 .	R5			>
Chlor			Ξ	iso-Propyl	-N=C(CH ₃) ₂	ı		0
Chlor			I	n-Butyl	-N=C(CH ₃) ₂			. 0
Chlor			Ξ	iso-Butyl .	-N=C (CH3) 2			o _
Methyl			I	sekButyl	-N=C (CH3) 2			0
Methyl			Ξ.	.n-Pentyl	-N=C(CH3)2			0
Methyl	-		I	2-Pentyl	-N=C (CH3) 2			0
Methyl			Ξ.	3-Pentyl .	-N=C (CH3) 2		•	0
Methyl			×	n-Hexyl	-N=C(CH3)2			0
. Methyl			I	2-Hexyl .	-N=C (CH3) 2			0
iso-Propyl	. lkd		I	3-Hexyl	-N=C (CH3) 2			0
iso-Propyl	pyl		I	2-Methyl-2-pentyl	-N=C(CH ₃) ₂		•	0
iso-Propyl	pyl		I	cyclo-Proplymethyl	-N=C (CH3) 2			0
iso-Propyl	pyl		I	cyclo-Butyl	-N=C (CH3) 2			0
iso-Propyl	pyl		I.	cyclo-Pentyl	-N=C (CH3) 2			0
iso-Propyl	pyl		. I	cyclo-Hexyl ´	-N=C(CH ₃) ₂			0
cyclo-Propyl	ropyl		I	1-Methylcyclohexyl	-N=C(CH3)2			0
cyclo-Propyl	ropyl		I	3-Trifluormethylcyclohexyl	-N=C (CH3) 2			0
cyclo-Propyl	ropyl		Ξ	Allyl	-N=C(CH3)2			0
cyclo-Propyl	ropyl		I	1-Buten-3-yl	-N=C(CH3)2			0
cyclo-Propyl	ropyl		I	Crotyl	-N=C(CH3)2			o ·
cyclo-Propyl	ropyl		I	Propargyl '	-N=C(CH3)2			0
Allyl			Ξ.	1-Butin-3-y1	-N=C(CH3)2			0
Allyl			I	3-Methyl-1-butin-3-yl	-N=C(CH ₃) ₂			0

55	50	45	40	35	25	20	15	10	5	
.			R 3	R4		RS			>	1
Allyl			Ŧ	2-Pentin-4-yl		-N=C (CH ₃) ₂			0	
Allyl			I	Benzyl		-N=C (CH ₃) ₂			0	
Allyl			I	2-Phenylethyl		-N=C (CH3) 2			o _	
Allyl			Ŧ	2-Methylthioethyl	hyl	-N=C (CH ₃) ₂			0	
Ethinyl			=	2-Chlorethyl		-N=C (CH ₃) ₂			0	
Ethinyl			I	2-Methoxyethyl		-N=C (CH ₃) ₂			0	
Ethinyl			. =	2-(n,N-Dimethylamino)ethy	lamino)ethyl	-N=C (CH3) 2			0	
Ethinyl			x	Phenyl		-N=C(CH3)2			0	
Ethinvl			=	2-CH3-Pheny1.	-	-N=C(CH ₃) ₂			0	
Ethinyl	•		=	4-CH ₃ -Phenyl		-N=C (CH ₃) ₂			0	
Methoxy			I	2, 4- (CH ₃ , CH ₃)-Phenyl	Pheny l	-N=C(CH ₃) ₂		•	0	•
Methoxy			_ =	2, 3, 5-(CH ₃ , CH ₃ , CH ₃) -Pheny	, CH ₃)-Phenyl	-N=C(CH ₃) ₂			0	
Methoxy			I	3-CF 3-Pheny l		-N=C(CH ₃) ₂			0	
Methoxy			I	3-F-Phenyl		-N=C (CH ₃) ₂			0	
Methoxy			. =	2-C1-Phenyl		-N=C (CH3) 2			0	
Methoxy		٠.	x	4-Cl-Phenyl		-N=C(CH ₃) ₂			0	
4-Cl-Phenoxy	noxy		I	2, 4-(F, F)-Phenyl	- lx	-N=C(CH3)2			0	
4-C1-Phenoxy	noxy		I	2, 3, 5-(c1, c1, c1)-Phenyl	1)-Phenyl	-N=C(CH ₃) ₂			0	
4-c1-Phenoxy	noxy		Ŧ	2-CN-Phenyl		-N=C(CH ₃) ₂			0	
4-C1-Phenoxy	noxy		x	2-OCH ₃ -Phenyl		-N=C(CH ₃) ₂				
4-C1-Phenoxy	поху		I	2, 3- (OCH ₃ , OCH ₃)-Phenyl)-Phenyl	-N=C(CH ₃) ₂			0	
4-C1-Phenoxy	поху		Ŧ	3, 4, 5-(осн ₃ , ос	3, 4, 5-(OCH3, OCH3, OCH3)-Pheny1	-N=C(CH3)2			0	
Phenylthio	io		I	3-OCF 3-Phenyl		-N=C(CH ₃) ₂			0	

55	50	45	40	`. 35	∙:30	25	20	15	10	5
R1			R 3	R4	-		R5			>
Phenylthio	hio		I	4-OCF 2CHF 2-Pheny l	ıyl		-N=C(CH ₃) ₂			0
Phenylthio	hio		I	2-SCH ₃ -Pheny1			-N=C (CH3) 2			0
Phenylthio	nio		I	2, 4-(SCH ₃ , SCH ₃)	-Rheny 1		-N=C (CH3) 2			0
Phenylthio	hio		I	2-SCF ₃ -Phenyl	-		-N=C (CH3) 2			0 –
Phenylthio	nio .		±	4-NO ₂ -Phenyl			-N=C (CH3) 2			0
2, 4- (cl	2, 4-(cl, cl)-Phenyl	ıyl	x	2, 4-(NO ₂ , NO ₂)-Phenyl	henyl		-N=C (CH3) 2			0
2, 4-(CI	2, 4-(C1, C1)-Phenyl	ıy l	I	2-CHO-Phenyl			-N=C (CH3) 2			0
2, 4- (Cl	, Cl)-Pher	lyı	Ŧ	3-COCH ₃ -Phenyl			-N=C(CH ₃) ₂			o
2,4-(01	, Cl)-Pher	ıyı	x	3-cocF ₃ -Pheny1			-N=C(CH ₃) ₂			0
2, 4-(Cl	, Cl)-Phen	lyı	æ	1-Naphthyl			-N=C (CH3) 2			0
2, 4-(cl	i, 4-(cl, cl)-Phenyl	ıy l	×	2-Naphthyl			-N=C(CH ₃) ₂			0
2-Thienyl	yl		Ŧ	Piperidino			-N=C (CH ₃) ₂			0
2-Thienyl	ly		I	3-Tetrahydrofuranyl	anyl		-N=C(CH ₃) ₂			0
2-Thien	yl		≖.	4-Tetrahydropyranyl	anyl		-N=C (CH ₃) ₂			0
2-Thien	yl		Ξ	2-Thiazolyl			-N=C (CH ₃) ₂			0
2-Thienyl	yl		±	5-CH3-2-Thiazolyl	lyl		-N=C (CH ₃) ₂			0
2-Thienyl	yl		Ξ	4-CH ₃ -5-COOH-2-Thiazolyl	Thiazoly1		-N=C (CH ₃) ₂			0
3-Pyridyl	, lý		æ	Methyl			-N=C (CH ₃) ₂			0
3-Pyridyl	lų		x	Ethyl			-N=C (CH ₃) ₂			0
3-Pyridyl	الإ		x	n-Propyl			-N=C (CH3)2			0
3-Pyridyl	yı		Ξ	iso-Propyl	•		-N=C (CH ₃) ₂			0
3-Pyridyl	yl .		Ξ.	n-Butyl			-N=C (CH ₃) ₂			0
3-Pyridyl	lyl		I	iso-Butyl .			-N=C (CH3) 2			0

5	٨	0	0	o _	0	0	0	0	v	ဟ	ဟ	ν	S	v	ဟ	ဟ	ဟ	တ	S	S	S	S	S	S
16 20	R5	-N=C(CH3)2	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	-N=C (CH ₃) ₂	-N=C (CH3) 2	-N=C (CH ₃) ₂	-N=C (CH ₃) ₂	2, 4-(C1, C1)-Phenyl	2-Pyridyl	Ethyl	iso-Propyl	Butyl	tertButyl	Phenyl	4-F-Phenyl	3-cr ₃ -Phenyl	2, 4-(Cl, Cl)-Phenyl	2-Pyridyl	Methyl	Ethyl	isa-Propyl	Butyl	tertButyl
25	œ	Z-	Z,	~	7	7	7	~	2,	2-	Ē	5.	B1	¥	<u>a</u>	4	÷.	2,	7-	Ĕ	E E		B	Ţ
30															.•									_
`. 35		sekButyl	n-Pentyl	2-Pentyl	3-Pentyl	n-Hexyl	2-Hexyl	3-Hexyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tert,-Butyl	tertButyl	terťButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl
40	83	Methyl			Methy1	Methyl	Methyl	Methyl	I	I	x	I	I	x	=	. =	I	I	Ξ	: I	: :	I	Ŧ	=
45																								
											•													

55	50	45	40	`. 35	30	25	20	15	10	5
R1			R 3	R4			RS			*
cyclo-Propyl	ly1		Ξ	tertButyl			Phenyl			S
cyclo-Prop	ıyı		r	tertButyl			4-F-Phenyl			S
cyclo-Propyl	1 Ai		±	tertButyì	-		3-CF ₃ -Phenyl			σ.
cyclo-Propyl	ıyı		I	tertButyl	_		2,4-(C1,C1)-Phenyl	lenyl		<u></u> ဟ
cyclo-Propyl	ıyı		Ξ.	tertButyl			2-Pyridyl			S
Allyl			I	tertButyl	-		Methyl			ν,
Allyl			Ŧ	tertButyl	-		Ethyl			S
Ally			I	tertButyl			iso-Propyl			v
Allyl			I	tertButyl			Butyl			S
Allyl			I	tertButyl			tertButyl			S
Allyl			I	tertButyl			Phenyl			S
Methoxy			I	tertButyl			Methyl			S
Methoxy			÷	tertButyl			Ethyl			S
Methoxy			x	tertButyl			iso-Propyl			S
Methoxy			=	tertButyl			Butyl .			S
Methoxy		•	I	tertButyl			tertButyl			S
Methoxy			I	tertButyl			Phenyl			s
Methoxy			x	tertButyl			4-F-Phenyl			S
4-Cl-Phenoxy	хх		x	tertButyl			3-CF ₃ -Phenyl			S
4-C1-Phenoxy	ху		I	tertButyl			2, 4-(Cl, Cl)-Phenyl	eny l		S
4-Cl-Phenoxy	эху		x	tertButyľ			2-Pyridyl			v
4-Cl-Phenoxy	λxy		Ξ.	tertButyl			Methyl			S
4-Cl-Phenoxy	эху		x	tertButyl			Ethyl			S

55	50	45	40	35	30	25	20	10	5	
ē			83	48			R5		>	-
4-C1-Phenoxy	ioxy		I	tertButyl:			iso-Propyl		S	
4-C1-Phenoxy	loxy		I	tertButyl			Butyl		ഗ	
2, 4-(C1, C	:1)-Phenyl		I	tertButyl			tertButyl		ω	
2, 4-(C1, C	:1)-Phenyl		I	tertButyl	-		Phenyl		ა	
2.4-(01,0	:1)-Phenyl		=	tertButyl			4-F-Phenyl		S	
2, 4-(C1, C	:1)-Phenyl		I	tertButyl			3-CF ₃ -Phenyl		w	
2, 4-(C1, C	2, 4-(C1, C1)-Phenyl		I	tertButÿl		•	2, 4-(C1, C1)-Phenyl		S.	
2, 4-(C1, (31)-Phenyl		Ŧ	tertButyl			2-Pyridyl		S.	
2, 4-(01,0	2, 4-(C1, C1)-Phenyl		I	tertButyl			Ethyl		ν	
2-Thieny			I	tertButyl			iso-Propyl		S	
2-Thienyl			I	tertButyl			Butyl		S	
2-Thienyl			I	tertButyl			tertButyl		ν	
3-Pyridyl			x	tertButyl			Phenyl		v	
3-Pyridyl			=	tertButyl			4-F-Phenyl		ω	
3-Pyridyl			.	tertButyl		•	3-CF ₃ -Phenyl		ဟ	
Methyl			±	cyclo-Propyl			2, 4-(cl, cl)-Phenyl		တ	
Methyl			I	cyclo-Propyl			2-Pyridyl		v	
Methyl			Ŧ	cyclo-Propyl			Ethyl		w	
Methyl			Ŧ	cyclo-Propyl			iso-Propyl		တ	
Methyl			x	cyclo-Propyl			Butyl		ν,	
Methyl			Ŧ	cyclo-Propyi			tertButyl		ဟ	
Methyl			÷	cyclo-Propyl			Phenyl		S ·	
iso-Propyl	۲۷		I	cyclo-Propyl			4-F-Phenyl		v	

55	50	45	40	35	30	25	20	15	10	5
ē			-	. 70			S			>
iso-Propyl			I	cyclo-Propyl			3-CF3-Phenyl			S
so-Propy			I	cyclo-Propyl			2, 4-(cl, cl)-Phenyl	enyl		S
1so-Propyl			I	cyclo-Propyl			2-Pyridyl			ທຼ
iso-Propyl			Ŧ	cyclo-Propyl			Methyl			_ v s
iso-Propyl		•	Ŧ	cyclo-Propyl			Ethyl			S
iso-Propyl	•		Ŧ	cyclo-Propyl			iso-Propyl			S
cyclo-Propyl	۱۷		Ŧ	cyclo-Propyl			Butyl			s
cyclo-Prop	yl		I	cyclo-Propyl			tertButyl			S
cyclo-Prop	ly	_. ,	x	cyclo-Propyl	. .		Phenyl			S
cyclo-Propyl	. It		I	cyclo-Propyl	-		4-F-Phenyl			ဟ
cyclo-Propyl	y1		I	cyclo-Propyl			3-CF ₃ -Phenyl			S
cyclo-Propyl	yl		=	cyclo-Propyl			2, 4-(Cl, Cl)-Phenyl	enyl		S
cyclo-Propyl	yl		I	cycla-Propyl	••		2-Pyridyl			S
Allyl			I	cyclo-Propyl	~		Methyl			S
Allyl			. =	cyclo-Propyl			Ethyl			ဟ
Allyl			I	cyclo-Propyl			iso-Propyl			S
Allyl			x	cyclo-Propyl			Butyl			S
Allyl			I	cyclo-Propyl			tertButyl			S
Allyl			I	cyclo-Propyl			Phenyl			S
Methoxy			I	cyclo-Propyl			Methyl			'n
Methoxy			I	cyclo-Propÿl			Ethyl			S
Methoxy			Ŧ,	cyclo-Propyl			iso-Propyl			S
Methoxy			Ξ	cyclo-Propyl			Butyl			ς

EP 0 418 667 A2

50 55	45	40	35	· 30 -	25	15	10	5
		6	40			R5 .		>
R1		2	rvrlo-Propvl			tertButyl		S
Methoxy		E	· fdo · · otafa			Obenul		თ
Methoxy		I	cyclo-Propyl					v
Methoxy		Ŧ	cyclo-Propyl			4-F-Pheny I		-
4-C1-Phenoxy		x	cyclo-Propyl			3-CF ₃ -Phenyl		v –
4-C1-Phenoxy		Ξ	cyclo-Propyl			2, 4-(cl, cl)-Pheny l		
4-C1-Phenoxy		I	cyclo-Propyl			2-Pyridyl		י נ
4-C1-Phenoxy		Ξ	cyclo-Propyl			Methyl		ט ני
4-C1-Phenoxy		I	cyclo-Propyl			Ethyl) <i>U</i>
4-C1-Phenoxy		I	cyclo-Propyl			iso-Propyl		າ ປ
4-C1-Phenoxy		I	cyclo-Propyl			Butyl		າ ເ
2 4-(Cl.Cl)-Phenyl		I	cyclo-Propyl			tertButyl		n u
2, 4-(C1, C1)-Phenyl	• •	I	cyclo-Propyl		•	Phenyl		n u
2, 4-(C1,C1)-Phenyl		.	cyclo-Propyl			4-F-Phenyl		n u
2, 4-(C1, C1)-Phenyl		Ξ.	cyclo-Propyl			3-CF3-Phenyl		ט מ
2,4-(C1,C1)-Phenyl		I	cyclo-Propyl			2, 4-(Cl, Cl)-Pnenyl		, v
2,4-(C1,C1)-Phenyl		=	cyclo-Propyl	<u>:</u>		2-Pyridyi		o v
2,4-(C1,C1)-Phenyl		I	cyclo-Propyl			Ethy I		ı vı
2-Thienyl		I	cyclo-Propyl			1 so-Propy I		·
2-Thienyl		Ŧ	cyclo-Propyl			Butyl		. .
2-Thienvl		I	cyclo-Propyl			tertButyl		n u
3-Pvridvl		Ξ	cyclo-Propyl			Phenyl		n u
3-Pvridvl	•	I.	cyclo-Propyl			4-F-Phenyl		ກ ບ
3-Pyridyl		Ŧ	cyclo-Propyl			3-CF3-Phenyl		า

Tabelle 2

5	_	R1' COOR5		R ² = COOH	
		и_х ∕со−й−н		R3 = H	
		R4			
10	R1'	R ⁴	R5		x
	Cyclopropyl-CH(CH ₃)-	tertButyl	Н	·	-
	Cyclopropyl-CH(C ₂ H ₅)-	tertButyl	н		o
•	CH ₂ =CH-	tertButyl	Н		Ö
15	E-CH ₃ -CH=CH-	tertButyl	н		0
	Z-CH ₃ -CH=CH-	tertButyl	н		0
	CH2=CH-CH2-	tertButyl	Н		0
	CH2=C(CH3)-	tertButyl	н		0
20	C ₂ H ₅ -CH=CH-	tertButyl	н		0
20	сн ₃ -сн=с (сн ₃)-	tertButyl	Н		0
	CH 2=C (C 2H5)-	tertButyl	н		0
	CH3-CH=C(C2H5)-	tertButyl	Н		0
	(CH ₃) ₂ C=CH-	tertButyl	н		0
25	CH ₂ =C(CH ₃)-CH(CH ₃)-	tertButyl	н		0
	(CH ₃) ₂ C=CH-CH ₂ -	tertButyl	н		0
	CH ₃ -CCl=CH-	tertButyl	н		0
	Cl 2C=CH-	tertButyl	н		0
30	Cyclopent-1-en	tertT=Butyl -	н "		0
	Cyclohex-1-en	tertButyl	Н		٥.
	1-CH ₃ -Cyclohex-2-en	tertButyl	Н		0
	E-Phenyl-CH=CH-	tertButyl	Н		0
35 [`]	E-4-(CH30)-C6H5-CH=CH-	tertButyl	Н		0
	HC≡C-	tertButyl	н		0
	CH ₃ -C≡C-	tertButyl	Н		0
	HC≡C-CH ₂ -	tertButyl	н		0
40	Phenyl-C≡C-	tertButyl	H _.		0
					_
	CH ₃ -CH-CH-	tertButyl	Н		0
	Cyclopropyl-CH(CH ₃)-	Cyclopropyl	н		0
45	Cyclopropyl-CH(C ₂ H ₅)-	Cyclopropyl	Н		Ó
	CH ₂ =CH-	Cyclopropyl	Н		0
	E-CH ₃ -CH=CH-	Cyclopropyl	Н		0
	Z-CH ₃ -CH=CH-	Cyclópropyl	Н		0
50	CH ₂ =CH-CH ₂ -	Cyclopropyl	н		0
	CH ₂ =C(CH ₃)-	Cyclopropyl	Н		0
	C ₂ H ₅ -CH=CH-	Cyclopropyl	Н		0

Tabelle 2 (Fortsetzung)

R1'	R4	R5	x
CH3-CH=C(CH3)-	Cyclopropyl	н	0
CH ₂ =C(C ₂ H ₅)-	Cyclopropyl	Н	0
CH3-CH=C(C2H5)-	Cyclopropyl	Н	0
(CH ₃) ₂ C=CH-	Cyclopropyl	Н	0
CH2=C(CH3)-CH(CH3)-	Cyclopropyl	Н	0
. (CH ₃) ₂ C=CH-CH ₂ -	Cyclopropyl	, н	0
CH3-CC1=CH-	Cyclopropyl	н	0
Cl 2C=CH-	Cyclopropyl	H	0
Cyclopent-1-en	Cyclopropyl	н .	0
Cyclohex-1-en	Cyclopropyl	н	0
1-CH ₃ -Cyclohex-2-en	Cyclopropyl	н	0
E-Phenyl-CH=CH-	Cyclopropyl	н	0
E-4-(CH30)-C6H5-CH=CH-	Cyclopropyl	н	0
нс≡с∽	Cyclopropyl	н	0
CH3-C≡C-	Cyclopropyl	Н	C
HC≡C-CH ₂ -	Cyclopropyl	Н	C
Pheny l-C≡C-	Cyclopropyl	Н	
снсн-	Cyclopropyl	н	
Cyclopropyl-CH(CH ₃)-	C (CH3) 2C≡CH	н	(
Cyclopropyl-CH(C ₂ H ₅)-	. C(CH ₃) ₂ C≡CH	. H	. 4
CH ₂ =CH-	C(CH ₃) ₂ C≡CH	н	1
E-CH3-CH=CH-	C (CH ₃) 2C≡CH	, H	
Z-CH ₃ -CH=CH-	C(CH3)2C≡CH	Н .	•
CH ₂ =CH-CH ₂ -	C(CH ₃) ₂ C≡CH	н	
CH ₂ =C(CH ₃)-	C (CH ₃) 2C≡CH	н .	
C ₂ H ₅ -CH=CH-	C(CH ₃) ₂ C≡CH	H	٠.
CH3-CH=C(CH3)-	C (CH ₃) 2C≡CH	H	
CH ₂ =C(C ₂ H ₅)-	C(CH ₃) ₂ C≡CH	н	
CH3-CH=C(C2H5)-	C(CH ₃) ₂ C≡CH	н	
(CH ₃) ₂ C=CH-	C(CH ₃) ₂ C≡CH	н	
$CH_2=C(CH_3)-CH(CH_3)-$	C(CH ₃) ₂ C≡CH	н	
(CH ₃) ₂ C=CH-CH ₂ -	C(CH ₃) ₂ C≡CH	H	
CH3-CCl=CH-	C(CH ₃) ₂ C=CH	Н	
Cl ₂ C=CH-	. C(CH ₃) ₂ C≡CH	Н	•
Cyclopent-1-en	C(CH ₃) ₂ C≡CH	H	
Cyclohex-1-en	C(CH ₃) ₂ C=CH	H	
1-CH ₃ -Cyclohex-2-en	C (CH3) 2C≡CH	н	
E-Phenyl-CH=CH-	C(CH3)2C≡CH	Н	

Tabelle 2 (Fortsetzung)

5 E-4-(Hago)-C6H5-CH=CH-HCEC- C(CH3)2CECH H O CH3-CEC- C(CH3)2CECH H O HCEC-CH2- C(CH3)2CECH H O HCEC-CH2- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CYClopropy1-CH(CH3)- C(CH3)2CECH H O CYClopropy1-CH(CB3)- C(CH3)2CECH H O CYClopropy1-CH(CB3)- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CH3-CH-CH- C(CH3)2CECH H O CH3-CH-CH-CH2- C(CH3)2CECH H O CH3-CH-CH-CH2- C(CH3)2CECH H O CH3-CH-CH-CH3- C(CH3)2CEN H O CH3-CH-CH-CH3- C(CH3)2CEN H O CH3-CH-CH		R1'	R4	R5 .	x
HCEC-	5	E-4-(CH30)-C6H5-CH=CH-	C (CH ₃) 2C≡CH	н	
CH3-CEC- HCEC-CH2- C(CH3) 2CECH HCEC-CH3- CCH2-CH2- C(CH3) 2CECH HCEC-CH3- CCH3-CCECH CCH3-		HC≡C-	C(CH ₃) ₂ C≡CH		
HCEC-CH2" C (CH3) 2CECH		CH ₃ -C≡C-	C(CH ₃) ₂ C≡CH	н	
70 Pheny1-CEC- C(CH3)2CECH H 0 CH3-CH—CH— C(CH3)2CECH H 0 Cyclopropy1-CH(CH3)- C(CH3)2CEN H 0 Cyclopropy1-CH(C2H5)- C(CH3)2CEN H 0 CH2-CH— C(CH3)2CEN H 0 E-CH3-CH=CH— C(CH3)2CEN H 0 CH2-CH3-CH=CH— C(CH3)2CEN H 0 CH2-CH3-CH=CH— C(CH3)2CEN H 0 CH2-C(CH3)- C(CH3)2CEN H 0 CH2-C(CH3)- C(CH3)2CEN H 0 CH3-CH=CH-CH— C(CH3)2CEN H 0 CH3-CH=C(CH3)- C(CH3)2CEN H 0 CH3-CH=C(CH3)- C(CH3)2CEN H 0 CH3-CH=C(CH3)- C(CH3)2CEN H 0 CH3-CH=C(C2H5)- C(CH3)2CEN H 0 CH3-CH=C(C2H5)- C(CH3)2CEN H 0 CH3-CH=C(CH3)-CH(CH3)- C(CH3)2CEN H 0 CH3-CH=C(CH3)-CH(CH3)- C(CH3)2CEN H 0 CH3-CC1-CH— C(CH3)2CEN H 0 CYClopent-1-en C(CH3)2CEN H 0 CYclopent-1-en C(CH3)2CEN H 0 CYclopex-1-en		HC≡C-CH ₂ -	C (CH ₃) ₂ C≡CH	н	
CH3-CH—CH— C(CH3) 2C=CH Cyclopropyl-CH(CH3)— Cyclopropyl-CH(C2H5)— C(CH3) 2C=N H Cyclopropyl-CH(C2H5)— C(CH3) 2C=N H CCH2-CH— E-CH3-CH=CH— C(CH3) 2C=N H CCH3-CH=CH— C(CH3) 2C=N H CCH3-CH=CH— C(CH3) 2C=N CCH3-CH=C(CH3)— C(CH3) 2C=N CCH3-CH=C(CH3)— C(CH3) 2C=N CCH3-CH=C(CH3)— C(CH3) 2C=N CCH3-CH=C(CH3)— C(CH3) 2C=N CCH3-CCH=CH— C(CH3) 2C=N CCH3-CCH=CH— CCH3-CC=CN CCH3-CC=N CCH3-CC-N C	10	Pheny l -C≡C-		н	
15 Cyclopropyl-CH(C₂H₅) - C(CH₃) 2C≡N H O CH₂=CH- C(CH₃) 2C≡N H O E-CH₃-CH=CH- C(CH₃) 2C≡N H O Z-CH₃-CH=CH- C(CH₃) 2C≡N H O CH₂=CH-CH₂- C(CH₃) 2C≡N H O CH₂=C(CH₃) - C(CH₃) 2C≡N H O CH₃-CH=C(CH₃) - C(CH₃) 2C≡N H O CH₃-CH=C(C₂H₅) - C(CH₃) 2C≡N H O CH₃-CH=C(C₂H₅) - C(CH₃) 2C≡N H O CH₃-CH=C(C₂H₅) - C(CH₃) 2C≡N H O CH₂=C(CH₃) -CH(CH₃) - C(CH₃) 2C≡N H O CH₂-CH→ C(CH₃) 2C≡N H O CH₃-CECH- C(CH₃) 2C≡N H O CH₃-CC1=CH- C(CH₃) 2C≡N H O Cyclopex-1-en C(CH₃) 2C≡N H O Cyclopex-1-en C(CH₃) 2C≡N H O Cyclopex-1-en C(CH₃) 2C≡N H O E-Phenyl-CH=CH-		СН 3-СНСН-		н	
Cyclopropyl-CH(C2H5) - C(CH3)2CEN		Cyclopropyl-CH(CH ₃)-	C(CH ₃) ₂ C=N	Н	0
CH2=CH- E-CH3-CH=CH- C(CH3)2C=N H C-CH3-CH=CH- C(CH3)2C=N H C-CH3-CH=CH- C(CH3)2C=N H C-CH3-CH=CH- C(CH3)2C=N H C-CH2-CH-CH2- C(CH3)2C=N H C-CH2-C(CH3)- C(CH3)2C=N H C-CH2-C(CH3)- C(CH3)2C=N H C-CH3-CH=CH- C(CH3)2C=N H C-CH3-CH=C(CH3)- C(CH3)2C=N H C-CH3-CH=C(C2H5)- C(CH3)2C=N H C-CH3-CH=C(C2H5)- C(CH3)2C=N H C-CH3-CH=C(CH3)-CH(CH3)- C(CH3)2C=N H C-CH2-C(CH3)-CH(CH3)- C(CH3)2C=N H C-CH3-CC1=CH- C(CH3)2C=N H C-CH3-CC1=CH- C(CH3)2C=N H C-CT3-CC1=CH- C(CH3)2C=N H C-CT3-CC1=CH- C(CH3)2C=N H C-CT3-CC1=CH- C(CH3)2C=N H C-CT3-CC1-CH- C(CH3)2C=N H C-CT3-CH- C-C	15	Cyclopropyl-CH(C ₂ H ₅)-	C(CH3)2CEN	Н	
E-CH ₃ -CH=CH- Z-CH ₃ -CH=CH- C(CH ₃) ₂ C=N H O CH ₂ -CH-CH ₂ - C(CH ₃) ₂ C=N H O CH ₂ -CH-CH ₂ - C(CH ₃) ₂ C=N H O CH ₂ -CH-CH ₂ - C(CH ₃) ₂ C=N H O CH ₂ -CH-CH ₂ - C(CH ₃) ₂ C=N H O C ₂ H ₅ -CH=CH- C(CH ₃) ₂ C=N H O C ₄ H ₅ -CH=CH- C(CH ₃) ₂ C=N H O CH ₃ -CH=C(CH ₃)- C(CH ₃) ₂ C=N H O CH ₃ -CH=C(C ₂ H ₅)- C(CH ₃) ₂ C=N H O CH ₃ -CH=C(C ₂ H ₅)- C(CH ₃) ₂ C=N CH ₂ -C(CH ₃) ₂ C=N CH ₂ -C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N CH ₂ -C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N CH ₃ -CC1=CH- C(CH ₃) ₂ C=N C(CH ₃) ₂ C=		CH ₂ =CH-		н	
Z-CH3-CH-CH- C(CH3)2C=N H O CH2-C(CH3)- C(CH3)2C=N H O C2H5-CH=CH- C(CH3)2C=N H O C4H5-CH=CH- C(CH3)2C=N H O CH3-CH=C(CH3)- C(CH3)2C=N H O CH3-CH=C(CH3)- C(CH3)2C=N H O CH3-CH=C(CH3)- C(CH3)2C=N H O CH3-CH=C(C2H5)- C(CH3)2C=N H O (CH3)2C=CN H O (CH3)2C=CN CH2-C(CH3)- C(CH3)2C=N H O (CH3)2C=CH- C(CH3)2C=N H O CH2-C(CH3)-CH(CH3)- C(CH3)2C=N H O CH3-CC1=CH- C(CH3)2C=N H O CH3-CC1=CH- C(CH3)2C=N H O CYClopent-1-en C(CH3)2C=N H O Cyclopent-1-en C(CH3)2C=N H O Cyclopex-1-en C(CH3)2C=N H O Cyclopex-1-CH- C(CH3)2C=N H O Cyclopex-1-CH- C(CH3)2C=N H O CH3-CEC- C(CH3)2C=N		E-CH ₃ -CH=CH-	C(CH ₃) ₂ C=N	Н	
CH2=C(CH3)- C(CH3)2C=N C2H5-CH=CH- C(CH3)2C=N CH3=CH=C(CH3)- C(CH3)2C=N CH3=CH=C(CH3)- C(CH3)2C=N CH3=CH=C(CH3)- C(CH3)2C=N CH3-CH=C(C2H5)- C(CH3)2C=N CH3-CH=C(C2H5)- C(CH3)2C=N CH3-CH=C(C3H5)- C(CH3)2C=N CH3-CH=C(C3H5)- C(CH3)2C=N CH3-CCH- C(CH3)2C=N CH3-CCH-CH2- C(CH3)2C=N CH3-CC1=CH- C(CH3)2C=N CH3-CC1=CH- C(CH3)2C=N CH3-CC1=CH- C(CH3)2C=N CCH- CCH3- CCC- CCC		Z-CH ₃ -CH=CH-	C(CH3)2CEN	Н	
CH2=C(CH3)- C2H5-CH=CH- CH3-CH=CH- CH3-CCH=C(CH3)- CH3-CCH=C(CH3)- CH3-CCH=C(C2H5)- CH3-CCH=C(C2H5)- CH3-CCH=C(C2H5)- CH3-CCH=C(C2H5)- CH3-CCH- CH3)-CCH- CH3)-CCH CH3)-CCH- CH3)-CCH CH3)-CCH- CH3)-CCH CH3)-C	20	CH ₂ =CH-CH ₂ -	C(CH3)2CEN	H	
CH3-CH=C(CH3) - C(CH3) 2C=N H O CH2-C(C2H5) - C(CH3) 2C=N H O CH3-CH=C(C2H5) - C(CH3) 2C=N H O (CH3) 2C=CH C(CH3) - C(CH3) 2C=N H O (CH3) 2C=CH C(CH3) - C(CH3) 2C=N H O CH2-C(CH3) - CH(CH3) - C(CH3) 2C=N H O (CH3) 2C=CH-CH2 - C(CH3) 2C=N H O CH3-CC1=CH C(CH3) 2C=N H O C12C=CH C(CH3) 2C=N H O Cyclopent-1-en C(CH3) 2C=N H O Cyclopent-1-en C(CH3) 2C=N H O Cyclopex-1-en C(CH3) 2C=N H O E-Phenyl-CH=CH C(CH3) 2C=N H O E-4-(CH3) - CC+CH C C(CH3) 2C=N H O E-4-(CH3) - CC+CH C C(CH3) 2C=N H O CCC-CCC+CH C(CH3) 2C=N H O CCC-CCC-CCC+CH C(CH3) 2C=N H O CCC-CCC-CCCCH3 2C=N H O CCC-CCC-CCCCH3 2C=N H O CCC-CCC-CCCCH3 2C=N H O CCC-CCC-CCCCCCCCCCCCCCCCCCCCCCCCCCCC		CH ₂ =C(CH ₃)-	C(CH3) 2CEN	Н	
CH ₂ =C(C ₂ H ₅)- C(CH ₃) ₂ C=N H O CH ₃ -CH=C(C ₂ H ₅)- C(CH ₃) ₂ C=N H O (CH ₃) ₂ C=CH- C(CH ₃)- C(CH ₃) ₂ C=N H O CH ₂ =C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N H O CH ₂ =C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N H O CH ₂ =C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N H O CH ₃ -CC1=CH- C(CH ₃) ₂ C=N H O CH ₃ -CC1=CH- C(CH ₃) ₂ C=N H O Cyclopent-1-en C(CH ₃) ₂ C=N H O Cyclopent-1-en C(CH ₃) ₂ C=N H O Cyclohex-1-en C(CH ₃) ₂ C=N H O E-Phenyl-CH=CH- C(CH ₃) ₂ C=N H O E-Phenyl-CH=CH- C(CH ₃) ₂ C=N H O E-4-(CH ₃ O)-C ₆ H ₅ -CH=CH- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O HC=C-CH ₂ - C(CH ₃) ₂ C=N H O HC=C-CH ₂ - C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- CH- CH- CH- CH- CH- CH- CH-		C ₂ H ₅ -CH=CH-	C(CH ₃) ₂ C=N	Н	0
CH3-CH=C(C2H5)- C(CH3)2C=N H O (CH3)2C=CH- C(CH3)2C=N H O CH2=C(CH3)-CH(CH3)- C(CH3)2C=N H O CH2=C(CH3)-CH(CH3)- C(CH3)2C=N H O (CH3)2C=CH-CH2- C(CH3)2C=N H O CH3-CC1=CH- C(CH3)2C=N H O C12C=CH- C(CH3)2C=N H O Cyclopent-1-en C(CH3)2C=N H O Cyclopex-1-en C(CH3)2C=N H O Cyclohex-1-en C(CH3)2C=N H O E-Pheny1-CH=CH- C(CH3)2C=N H O E-C-CH3O)-C6H5-CH=CH- C(CH3)2C=N H O HC=C- C(CH3)2C=N H O HC=C- C(CH3)2C=N H O HC=C- C(CH3)2C=N H O CCCH3O-CC-CCCCH3CC-CN H O CCCCC-CCCCCCCCCCN H O CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC			C(CH ₃) ₂ C=N	H	0
(CH ₃) ₂ C=CH- C(CH ₃) ₂ C=N H O CH ₂ =C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N H O (CH ₃) ₂ C=CH-CH ₂ - C(CH ₃) ₂ C=N H O CH ₃ -CCl=CH- C(CH ₃) ₂ C=N H O Cl ₂ C=CH- C(CH ₃) ₂ C=N H O Cl ₂ C=CH- C(CH ₃) ₂ C=N H O Cyclopent-1-en C(CH ₃) ₂ C=N H O Cyclopex-1-en C(CH ₃) ₂ C=N H O E-Phenyl-CH=CH- C(CH ₃) ₂ C=N H O E-Phenyl-CH=CH- C(CH ₃) ₂ C=N H O E-4-(CH ₃ O)-C ₆ H ₅ -CH=CH- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -CH-CH- C(CH ₃) ₂ C=N H O CH ₂ -CH-CH-CH- C(CH ₃) ₂ C=N H O CH ₂ -CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-	25	CH ₂ =C(C ₂ H ₅)-	C(CH ₃) ₂ C=N	Н	0
CH ₂ =C(CH ₃)-CH(CH ₃)- C(CH ₃) ₂ C=N H O (CH ₃) ₂ C=CH-CH ₂ - C(CH ₃) ₂ C=N H O CH ₃ -CC1=CH- C(CH ₃) ₂ C=N H O C1 ₂ C=CH- C(CH ₃) ₂ C=N H O C1 ₂ C=CH- C(CH ₃) ₂ C=N H O Cyclopent-1-en C(CH ₃) ₂ C=N H O Cyclohex-1-en C(CH ₃) ₂ C=N H O E-Ch ₃ -Cyclohex-2-en C(CH ₃) ₂ C=N H O E-Phenyl-CH=CH- C(CH ₃) ₂ C=N H O E-4-(CH ₃ O)-C ₆ H ₅ -CH=CH- C(CH ₃) ₂ C=N H O HC=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₃ -C=C- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- C(CH ₃) ₂ C=N H O CH ₂ -CH- CH- CH- CH- CH- CH- CH- CH- CH- CH-			C(CH ₃) ₂ C≣N	Н	0
CH ₃) ₂ C=CH-CH ₂ -		_	C(CH ₃) ₂ C≡N	Н	0
CH3-CC1=CH- C12C=CH- C12C=CH- C(CH3)2C=N Cyclopent-1-en Cyclopent-1-en Cyclopent-1-en Cyclopex-1-en Cyclopex-2-en Cyclopex-2-en Cyclopex-2-en C(CH3)2C=N Cyclopex-2-en C(CH3)2C=N Cyclopex-2-en C(CH3)2C=N Cyclopex-2-en C(CH3)2C=N C-4-(CH30)-C6H5-CH=CH- C(CH3)2C=N C-4-(CH30)-C6H5-CH=CH- C(CH3)2C=N CH3-C=C- C(CH3)2C=N CCN CCC-CH2- C(CH3)2C=N CCC-CH2- C(CH3)2C=N CCC-CH2- C(CH3)2C=N CCC-CH2- C(CH3)2C=N CCC-CC-C(CH3)2C=N CCC-CC-C(CH3)2C=N CCC-CC-C(CH3)2C=N CCC-CC-C(CH3)2C=N CCC-CC-CCC-C(CCC-CCCCC) CCCC-CCC-CCCCCCCCC CCCC-CCCCCCCC		$CH_2=C(CH_3)-CH(CH_3)-$	C(CH ₃) ₂ C=N	Н	0
CH3-CC1=CH- C12C=CH- C12C=CH- Cyclopent-1-en Cyclop	30	_		H	-0 ·
Cyclopent-1-en	55			H	0
Cyclohex-1-en			C(CH ₃) ₂ C≣N	Н	0
1-CH ₃ -Cyclohex-2-en		Cyclopent-1-en	C(CH ₃) ₂ C=N	Н .	0
E-Pheny1-CH=CH-	••	-	C(CH ₃) ₂ C=N	Н	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1-CH ₃ -Cyclohex-2-en	C(CH ₃) ₂ C≡N	Н	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E-Pheny 1-CH=CH-	C(CH ₃) ₂ C≡N	Н	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E-4-(CH30)-C6H5-CH=CH-	C(CH ₃) ₂ C≡N	н	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HC≡C-	C(CH ₃) ₂ C≡N	Н	0
Phenyl-C=C- $C(CH_3)_2C\equiv N$ H O $CH_3-CH-CH C(CH_3)_2C\equiv N$ H O $CH_2=CH tertButyl$ H S $E-CH_3-CH=CH tertButyl$ H S $E-C_6H_5-CH=CH tertButyl$ H S	40	_	C(CH ₃) ₂ C≡N	Н	0
CH ₃ -CH—CH— C(CH ₃) ₂ C≡N H O $CH2=CH- $		HC≡C-CH ₂ -	C(CH ₃) ₂ C≡N	Н	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Pheny l -C≡C-	C(CH ₃) ₂ C≡N	Н	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5	CH ₃ -CHCH-	C(CH ₃) ₂ C≡N	н	0
E-C ₆ H ₅ -CH=CH- tertButyl H S		CH ₂ =CH-	tertButyl	Н	S
		E-CH ₃ -CH=CH-	tertButyl	Н	S
CH ₂ =C(CH ₃)- tertButyl H S			tertButyl	Н	S
	50	CH ₂ =C(CH ₃)-	tertButyl	Н	S

Tabelle 2 (Fortsetzung)

	R1°	R4	R5	X
_	CH 2=CH-	Cyclopropyl	Н	S
5	E-CH3-CH=CH-	Cyclopropyl	н	S
	E-C6H5-CH=CH-	Cyclopropyl	н	S
	CH2=C(CH3)-	Cyclopropyl	н	S
	Cyclopropyl-CH(CH ₃)-	tertButyl	-N=C (CH ₃) ₂	0
10	Cyclopropyl-CH(C ₂ H ₅)-	tertButyl	-N=C (CH 3) 2	0
	CH2=CH-	tertButyl	-N=C(CH3)2	0
	E-CH3-CH=CH-	tertButyl	-N=C (CH ₃) ₂	0
	Z-CH ₃ -CH=CH-	tertButyl	-N=C (CH ₃) ₂	0
15	CH ₂ =CH-CH ₂ -	tertButyl	$-N=C(CH_3)_2$	0
	CH ₂ =C(CH ₃)-	tertButyl	-N=C (CH ₃) ₂	. 0
	C ₂ H ₅ -CH=CH-	tertButyl	-N=C (CH ₃) ₂	0
	CH3-CH=C(CH3)-	tertButyl	-N=C (CH ₃) ₂	0
20	CH2=C(C2H5)-	tertButyl	-N=C(CH ₃) ₂	0
	CH3-CH=C(C2H5)-	tertButyl	-N=C (CH ₃) ₂	0
	(CH ₃) ₂ C=CH-	tertButyl	-N=C (CH ₃) ₂	0
	CH2=C(CH3)-CH(CH3)-	tertButyl	-N=C(CH ₃) ₂	0
05	(CH ₃) ₂ C=CH-CH ₂ -	tertButyl	-N=C (CH 3) 2	0
25	CH3-CC1=CH-	tertButyl	-N=C (CH ₃) ₂	0
	Cl ₂ C=CH-	tertButyl	$-N=C(CH_3)_2$. 0
	Cyclopent-1-en	tertButyl	-N=C (CH ₃) ₂	0
	Cyclohex-1-en	tertButyl	N=C(CH ₃) ₂	0 .
30	1-CH ₃ -Cyclohex-2-en	tertButyl	-N=C (CH ₃) ₂	0
	E-Phenyl-CH=CH-	tertButyl	$-N=C(CH_3)_2$	0
	E-4-(CH 30)-C6H5-CH=CH-	tertButyl	-N=C (CH ₃) ₂	0
٠.	HC≡C-	tertButyl	-N=C (CH ₃) ₂	0
35	CH 3-C≡C-	tertButyl	-N=C (CH ₃) ₂	0
	HC≡C-CH ₂ -	tertButyl	-N=C (CH ₃) ₂	0
	Pheny1-C≡C-	tertButyl	$-N=C(CH_3)_2$	0
40	сн 3-снсн-	tertButyl	-N=C (CH ₃) ₂	О
	Cyclopropyl-CH(CH ₃)-	Cyclopropyl	-N=C (CH ₃) ₂	. 0
	Cyclopropyl-CH(C ₂ H ₅)-	Cyclopropyl	-N=C (CH ₃) ₂	0
	CH ₂ =CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
45	E-CH3-CH=CH-	. Cyclopropyl	-N=C (CH 3) 2	0
	Z-CH3-CH=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
	CH ₂ =CH-CH ₂ -	Cyclopropyl	-N=C (CH ₃) ₂	0
	CH2=C(CH3)-	Cyclopropyl	-N=C (CH3) 2	0
50	C ₂ H ₅ -CH=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0

Tabelle 2 (Fortsetzung)

	R1'	R4	R 5	x
5	CH3-CH=C(CH3)-	Cyclopropyl	-N=C(CH ₃) ₂	0
	CH 2=C (C 2H5)-	Cyclopropyl	-N=C(CH ₃) ₂	0
	CH3-CH=C(C2H5)-	Cyclopropyl	-N=C(CH ₃) ₂	0
	(CH ₃) ₂ C=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
10	CH2=C(CH3)-CH(CH3)-	Cyclopropyl	-N=C (CH ₃) ₂	0
,,,	(CH ₃) ₂ C=CH-CH ₂ -	Cyclopropyl	-N=C (CH ₃) ₂	0
	CH3-CC1=CH-	Cyclopropyl	-N=C (CH3) 2	0
	Cl ₂ C=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
	Cyclopent-1-en	Cyclopropyl	-N=C (CH3) 2	0
15	Cyclohex-1-en	Cyclopropyl	-N=C (CH ₃) ₂	0
	1-CH ₃ -Cyclohex-2-en	Cyclopropyl	-N=C (CH ₃) ₂	0
	E-Pheny 1-CH=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
	E-4-(CH30)-C6H5-CH=CH-	Cyclopropyl	-N=C (CH ₃) ₂	0
20	HC≡C-	Cyclopropyl	-N=C (CH ₃) ₂	0
	CH3-C≡C-	Cyclopropyl	-N=C (CH ₃) ₂	0
	HC≡C-CH ₂ -	Cyclopropyl	-N=C (CH ₃) ₂	0
	Phenyl-C≡C-	Cyclopropyl	-N=C (CH ₃) ₂	0
25	0			
	CH 3-CHCH-	Cyclopropyl	-N=C (CH3) 2	0
	CH ₂ =CH~	tertButyl	-N=C (CH 3) 2	s
	E-CH ₃ -CH=CH	. tertButyl	-N=C (CH ₃) ₂	\$
30	E-C ₆ H ₅ -CH=CH-	tertButyl	-N=C (CH ₃) ₂	s
	CH2=C(CH3)-	tertButyl	· -N=C (CH ₃) ₂	s
	CH ₂ =CH-	Cyclopropyl	-N=C (CH ₃) ₂	s
	E-CH3-CH=CH-	Cyclopropyl	-N=C (CH3) 2	s
35	E-C ₆ H ₅ -CH=CH-	Cyclopropyl	-N=C (CH ₃) ₂	s
	CH ₂ =C(CH ₃)-	Cyclopropyl	-N=C (CH3) 2	s

Ganz besonders bevorzugt ist 3-Cyclopropylaminocarbonyl-5-isopropylisoxazol-4-carbonsäure.

Die Carbonsäureamide la, lb, lc und ld bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vermebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungformen richten sich nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

Die Verbindungen la, lb, lc und ld eignen sich allgemein zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen. Als inerte Zusatzstoffe kommen Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylol, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Chlorbenzol, Isophoron oder stark polare Lösungsmittel, wie N,N-Dimethylformamid, Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Wäßrige Anwendungsformen können aus Emulsionskonzentraten, Dispersionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substrate als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell

Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäuren, Alkylund Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Heptaund Octadecanolen, sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Alkylphenol-, Tributylphenylpolyglykolether, Alkylarylpolyetheralkohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxypropylen, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Silicagel, Kleselsäuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.

Die Formulierungen enthalten zwischen 0,01 und 95 Gew.%, vorzugsweise zwischen 0,5 und 90 Gew.%, Wirkstoff. Die Wirkstoffe werden dabei in einer Reinheit von 90 % bis 100 %, vorzugsweise 95 % bis 100 % (nach NMR-Spektrum) eingesetzt.

Beispiele für solche Zubereitungen sind:

20

25

30

35

40

45

50

55

l. eine Lösung aus 90 Gew.-Teilen der Verbindung Nr. 3.002 und 10 Gew.-Teilen N-Methyl- α -pyrrolidon, die zur Anwendung in Form kleinster Tropfen geeignet ist;

II. eine Mischung aus 20 Gew.-Teilen der Verbindung Nr. 3.006, 80 Gew.-Teilen Teilen Xylol, 10 Gew.-Teilen des Anlagerungsproduktes von 8 bis 10 Mol Ethylenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gew.-Teilen Calciumsalz der Dodecylbenzolsulfonsäure, 5 Gew.-Teilen des Anlagerungsproduktes und 40 Mol Ethylenoxid an 1 Mol Ricinusöl. Durch feines Verteilen des Gemisches in 100 000 Gew.-Teilen Wasser erhält marreine-Dispersion, die 0,02-Gew.-% des Wirkstoffs enthält.

III. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 3.016, 40 Gew.-Teilen Cyclohexanon, 30 Gew.-Teilen Isobutanol, 20 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl. Die Mischung dieser Dispersion mit 100 000 Gewichtsteilen Wasser enthält 0,02 Gew.-% des Wirkstoffes

IV. eine wäßrige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 3.020, 25 Gew.-Teilen Cyclohexanol, 65 Gew.-Teilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gew.-Teilen des Anlagerungsproduktes von 40 mol Ethylenoxid an 1 mol Ricinusöl. Die Mischung dieser Dispersion mit 100 000 Gew.-Teilen Wasser enthält 0,02 % des Wirkstoffes;

V. eine in einer Hammermühle vermahlene Mischung aus 80 Gew.-Teilen der Verbindung Nr. 3.029, 3 Gew.-Teilen des Natriumsalzes der Diisobutylnaphtalin-α-sulfonsäure, 10 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge und 7 Gew.-Teilen pulverförmigem Kieselsäuregel. Durch feines Verteilen der Mischung in 20 000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.-% des Wirkstoffs enthält;

VI. eine innige Mischung aus 3 Gew.-Teilen der Verbindung Nr. 3.047 und 97 Gew.-Teilen feinteiligem Kaolin. Dieses Stäubemittel enthält 3 Gew.-% Wirkstoff;

VII. eine innige Mischung aus 30 Gew.-Teilen der Verbindung Nr. 3.048, 92 Gew.-Teilen pulverförmigem Kieselsäuregel und 8 Gew.-Teilen Paraffinöl, das auf die Oberfläche dieses Kieselsäuregels gesprüht wurde. Diese Aufbereitung gibt dem Wirkstoff eine gute Haftfähigkeit;

VIII. eine stabile wäßrige Dispersion aus 40 Gew.-Teilen der Verbindung Nr. 6.04, 10 Gew.-Teilen des Natriumsalzes eines Phenosulfonsäure-harnstoff-formaldehyd-Kondensates, 2 Gew.-Teilen Kieselgel und 48 Gew.-Teilen Wasser, die weiter verdünnt werden kann;

IX. eine stabile ölige Dispersion aus 20 Gew.-Teilen der Verbindung Nr. 6.06, 2 Gew.-Teilen des Calciumsalzes der Dodecylbenzolsulfonsäure, 8 Gew.-Teilen Fettalkohol-polyglykolether, 20 Gew.-Teilen des Natriumsalzes eines Phenolsulfonsäure-harnstoffformaldehyd-Kondensates und 68 Gew.-Teilen eines paraffinischen Mineralöls;

X. eine in einer Hammermühle vermahlene Mischung aus 10 Gew.-Teilen der Verbindung Nr. 6.08, 4 Gew.-Teilen des Natriumsalzes der Diisobutylnaphthalin-α-sulfonsäure, 20 Gew.-Teilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfitablauge, 38 Gew.-Teilen Kieselsäuregel und 38 Gew.-Teilen

EP 0 418 667 A2

Kaolin. Durch feines Verteilen der Mischung in 10 000 Gew.-Teilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew.% des Wirkstoffs enthält.

Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf- oder im Nachauflaufverfahren erfolgen. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, daß die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blätter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by).

Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachsturnsstadium 0,001 bis 5, vorzugsweise 0,01 bis 1 kg/ha aktive Substanz (a.S.).

In Anbetracht der Vielseltigkeit der Applikationsmethoden können die erfindungsgemäßen Verbindungen bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen:

15		
	Botanischer Name	Deutscher Name
	Allium cepa	Küchenzwiebel
	Ananas comosus	Ananas
20	Arachis hypogaea	Erdnuβ
20	Asparagus officinalis	Spargel
	Avena sativa	Hafer
	Beta vulgaris spp. altissima	Zuckerrübe
	Beta vulgaris spp. rapa	Futterrübe
25	Beta vulgaris spp. esculenta	Rote Rübe
	Brassica napus var. napus	Raps
	Brassica napus var. napobrassica	Kohlrübe
	Brassica napus var. rapa	Weiße Rübe
30	Brassica rapa var. silvestris	Rüben
	Camellia sinensis -	Teestrauch
	Carthamus tinctorius	Saflor - Färberdistel
٠.	Carya illinoinensis	Pekannuβbaum
35	Citrus limon	Zitrone
	Citrus maxima	Pampelmuse
	Citrus reticulata	Mandarine
	Citrus sinensis	Apfelsine, Orange
40	Coffea arabica (Coffea canephora,	Kaffee
	Coffea liberica)	
	Cucumis melo	Melone

45

50

55

Botanischer Name	Deutscher Name
Cucumis sativus	Gurke
Cynodon dactylon	Bermudagras
Daucus carota	Möhre ·
Elaeis guineensis	Ölpalme
Fragaria vesca	Erdbeere
Glycine max	Sojabohne
Gossypium hirsutum (Gossypium arboreum,	Baumwolle
Gossypium herbaceum, Gossypium vitifoli	um)
Helianthus annuus	Sonnenblume
Helianthus tuberosus	Topinambur
Hevea brasiliensis	Parakautschukbaum
Hordeum vulgare	Gerste
Humulus lupulus	Hopfen
Ipomoea batatas	Süßkartoffeln
Juglans regia	Walnuβbaum
Lactuca sativa	Kopfsalat
Lens culinaris	Linse
Linum usitatissimum	Faserlein
Lycopersicon lycopersicum	Tomate
Malus Spp.	Apfel
Manihot esculenta	Maniok
Medicago sativa	Luzerne
Mentha piperita	Pfefferminze
Musa spp.	Obst- und Mehlbanane
Nicotiana tabacum (N. rustica)	Tabak
Olea europaea	Ölbaum
Oryza sativa	Reis
Panicum miliaceum	Rispenhirse
Phaseolus lunatus	Mondbohne
	Erdbohne
Phaseolus mungo	Buschbohnen
Phaseolus vulgaris	Perl- oder Rohrkolbenhirse
Pennisetum glaucum	Wurzelpetersilie .
Petroselinum crispum spp. tuberosum	Rotfichte
Picea abies	Weißtanne
Abies alba	Welplanne Kiefer
Pinus spp.	Gartenerbse
Pisum sativum	-
Prunus avium	Süβkirsche Pflaume
Prunus domestica	• • • = = =
Prunus dulcis	Mandelbaum
Prunus persica	Pfirsich
Pyrus communis	Birne

Botanischer Name	Deutscher Name
Ribes sylvestre	Rote Johannisbeere
Ribes uva-crispa	Stachelbeere
Ricinus communis	Rizinus
Saccharum officinarum	Zuckerrohr
Secale cereale	Roggen
Sesamum indicum	Sesam
Solanum tuberosum	Kartoffel
Sorghum bicolor (s. vulgare)	Mohrenhirse
Sorghum dochna	Zuckerhirse
Spinacia oleracea	Spinat
Theobroma cacao	Kakaobaum
Trifolium pratense	Rotklee
Triticum aestivum	Weizen
Triticum durum ·	Hartweizen ·
Vàccinium corymbosum	Kulturheidelbeere
Vaccinium vitis-idaea	Preißelbeere
Vicia faba .	Pferdebohnen
Vigna sinensis (V. unguiculata)	Kuhbohne
Vitis vinifera	Weinrebe
Zea mays	Mais

Zur Verbreiterung des Wirkungsspektrums und zur Erzielung synergistischer Effekte können die Carbonsäureamide Ia, Ib, Ic und Id mit zahlreichen Vertretern anderer herbizider oder wachstumsregulierender Wirkstoffgruppen, gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner Diazine, 4H-3,1-Benzoxazinderivate, Benzothiadiazinone, 2,6-Dinitroaniline, N-Phenylcarbamate, Thiolcarbamate, Halogencarbonsäuren, Triazine, Amide, Harnstoffe, Diphenylether, Triazinone, Uracile, Benzofuranderivate, Cyclohexan-1,3-dionderivate, Chinolincarbonsäurederivate, Aryloxy-, Heteroaryloxyphenoxypropionsäuren sowie deren Salze, Ester und Amide und andere in Betracht.

Außerdem kann es von Nutzen sein, die Verbindungen la, lb, lc und ld allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phytopathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Ernährungsund Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Ölkonzentrate zugesetzt werden.

Herstellungsbeispiele zur Synthese der Wirkstoffe la, lb, lc und ld

Beispiel 1

3-tert.-Butylaminocarbonyl-5-n-propyl-isoxazol-4-carbonsäure (Nr. 3.013 in Tabelle 3)

55

Zu einer Lösung von 10,0 g (47,6 mmol) 5-n-Propyl-isoxazol-3-carbonsäure-tert.-butylamid in 250 ml trockenem Tetrahydrofuran tropfte man unter Stickstoffatmosphäre bei (-70) C 104,6 mmol n-Butyllithium (67,7 ml einer 1,5 molaren Lösung in Hexan) und rührte 30 min bei dieser Temperatur. Anschließend goß man das Reaktionsgemisch auf 500 g festes CO₂ und ließ über Nacht stehen. Man engte ein, nahm den Rückstand in 300 ml_Wasser und 20 ml 2N NaOH auf, extrahierte zweimal mit je 100 ml Diethylether, säuerte die wäßrige Phase mit 6N Salzsäure auf pH 2 an und extrahierte viermal mit je 200 ml Ethylacetat. Man trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Ausbeute: 80 %.

10 Vorstufe 1a

20

30

35

40

45

50

55

5-n-Propyl-isoxazol-3-carbonsäure-tert.-butylamid

C (CH₃)₃
H-N-CO | | |

Zu 10,0 g (57,6 mmol) 5-n-Propyl-isoxazol-3-carbonsäurechlorid in 250 ml trockenem Dichlormethan, tropfte man bei 5 °C 9,3 g (126,8 mmol) tert.-Butylamin in 20 ml Dichlormethan. Man rührte 12 h bei Raumtemperatur, gab 200 ml Wasser zu, trennte die Phasen, wusch die organische Phase je einmal mit 150 ml gesättigter Natriumhydrogencarbonatlösung und 150 ml gesättigter Natriumchloridlösung, trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Man erhielt 11,5 g (95 %) 5-n-Propyl-isoxazol-3-carbonsäure-tert.-butylamid als Feststoff vom Smp. 34 - 37 °C.

ť
si e
1
the
Syn
je je
Ē
re
säu
noc
arl
9-6
6
Kaz
20
=
nde
lge
Ç
die
9
ře j
Š
pie
e is
o =
rde
Ž
se
Kei
g
alo
ē
Auf

- 30

	40		
		NOT IN THE PERSON NAMED IN	
R1	R3	4&	Fp(°C)/1H-NMR (250 MHz; CDCl3), & in ppm
Methyl	I	iso-Propyl	68- 70
Methyl	I	tertButyl	. 79-82
Methyl	I	Cyclopropyl	. 100-105
Methyl	I	Phenyl	132-135
Methyl	=	Methyl	122-126
Methyl	I	Ethyl	61- 67
n-Propyl	1	tertButyl	34- 37
iso-Propyl	I	tertButyl	. 18- 79
iso-Propyl	I	Cyclopropyl	. 58- 59
n-Butyl	×	tertButyl	(t;3H),
			2,77 (t;3H), 6,40 (s,1H), 6,68 (bs;1H, NH)
n-Butyl	I	Cyclopropyl	58- 61
sekButyl	I	tertButyl	84-87
sekButyl	I	Cyclopropyl	24~ 60
tertButyl	Ξ	tertButyl	132-134
tertButyl	I	Cyclopropyl	75-80
Pheny 1	Ξ	tertButyl	131-133
Phenyl	Į	Cyclopropyl	146-147

50	45	40		`. 35	30	25	20	15	10	5	
· C		π 3	R 4		Fp(°C)/1H-	NMR (250 P	Fp(°C)/1H-NMR (250 MHz; CDC13), 6 in ppm	8 in ppm	7 25-7	(HE. m) 00	1
2, 4-(C1,C1)-Phenyl Methoxveth-1-yl		I I	tertButyl tertButyl	tyl :	1,49 (s;9H), 1,48 (s;9H),), 6,70 (t), 1,56 (c	1,49 (s;9H), 6,70 (bs;1H,NH), 7,30 (s;1H), 7,53-7,50 (m;51), 1,48 (s;9H), 1,56 (d;3H), 3,34 (s;3H), 4,52 (q;1H),	, 30 (s;1H), (s;3H), 4,	,-C2,, 52 (q;1H	(iic/iii)	
Methoxyeth-1-yl		I	Cyclopropyl	lyd	6,63 (s;1H), 6,64 (bs;1H,NH) 0,60-0,93 (m;4H), 1,54 (d;3H 4,54 (q;1H), 6,68 (s;1H), 7,), 6,64 (1 (m;4H), 1,), 6,68 (9	6,63 (s;1H), 6,64 (bs;1H,NH) 0,60-0,93 (m;4H), 1,54 (d;3H), 2,91 (m;1H), 3,38 (s;3H), 4,54 (q;1H), 6,68 (s;1H), 7,04 (bs;1H,NH)	2,91 (m;1H) (bs;1H,NH)	3,38	(s;3H),	
Methoxyeth-1-yl Methoxyeth-1-yl		= =	sekButyl Cyclopropyl-	yl pyl-	37- 40 0, 24-0, 60	(m;4H), 1	37-40 0,24-0,60 (m;4H), 1,09 (m;1H), 1,56 (d;3H), 3,34 (m;2H), 3 38 (s:3H), 4,58 (q;1H), 6,70 (s;1H), 7,30 (bs;1H,NH)	1,56 (d;3H (s;1H), 7,), 3,34 30 (bs;1	(m;2H), .H, NH)	
Methoxymethyl		×	metny: tertButyl	ıty 1	1,46 (s;9H), 3, 6,68 (bs:1H,NH)), 3,44 (H, NH)	1,46 (s;9H), 3,44 (s;3H), 4,60 (s;2H), 6,68 (s;1H), 6.68 (bs:1H,NH)	(s;2H), 6,	11; s) 83	<u>,,</u>	
Methoxymethyl		I	sekButyl	l k:	0,96 (t;3H 4,10 (m;1H	1), 1,26 (1), 4,56 ((t;3H), 1,26 (d;3H), 1,58 (m;2H), 3,43 (s;3H), (m;1H), 4,56 (s;2H), 6,70 (bs;1H,NH), 6,74 (s;1H)	(m;2H), 3, (bs;1H,NH)	43 (s,3) , 6,74 (1), (s,1H)	
2-Methyltetrahydro-		I	Cyclopropyl	. Iydo	60- 62						
pyran-2-yl 2-Methyltetrahydro-		x	3-CF3-Phenyl	. lénai	1,54 (s;3k	I), 1,40-2 (m:4H).8	1,54 (s;3H), 1,40-2,46 (m;6H), 3,56 (m;2H), 6,74 (s;1H), 6 75-8 00 (m;4H), 8,68 (bs;1H,NH)	3,56 (m;2H H)), 6,74	(s;1H),	
pyran-2-yl 2-Methyl-norbornan-2-yl*	-2-y1#	I	Cyclopropyl	opy l	.0,60 -0,94 (m;4H), 1,18-2,42 6,42 (s;1H), 6,97 (bs;1H,NH)	(m;4H),	0,60 -0,94 (m;4H), 1,18-2,42 (m;13H), 2,90 (m;1H), 6,42 (s;1H), 6,97 (bs;1H,NH)	1,134), 2,9	0 (m;1H)		
4-F-Phenyl	-	Ŧ	tertButyl	utyl	115-118						
2,4,6-Trimethylphenyl	nyl	I I	tertButyl neo-Pentyl	uty: tyl.	85- 90						
Cyclopropyl		=	1,1-Dimethyl- -2-propenyl	ethyl- enyl	48+ 54					٠	
Cyclopropyl		I	Benzy1		89- 93				•		
* Isomerengemisch: exo:endo	exo:en	do 1:1	_		·						

					- .					
55	50	45		35	3 0 -	25	20	15	10	5
Ģ			7	7						
٤			۳3 ع	R4	Fp(°C)/1H-	NMR (250	Fp(°C)/1H-NMR (250 MHz; CDCl3),	o in ppm		
Cyclopropyl	pyl		Ŧ	2-Methoxyethyl	0,92-1,14 (m;4H),	(m;4H),	2,09 (m;1H),	3,37 (s;1H),	3, 58	(m;4H),
					6,33 (s;1H), 7,11	6,33 (s;1H), 7,11 (bs;1H,NH)			
Cyclopropyl	pyl		I	2-Propenyl	97 - 79					
Cyclopropyl	pyl		Ξ	Cyclopentyl	86- 92					_
Cyclohexy	yl		I	tertButyl	98-100					•
Cyclohexyl	. lų		Ŧ	Cyclopropyl	134-136					
Cyclohexyl	yl		x	1-Cyclopropy1-	117-122					
				ethyl						
Cyclopropyl	pyl		I	tertButyl	80-84					
Cyclopropyl	py1		±	Cyclopropyl	95- 98					
Cyclopropyl	py1 .		×	1-Cyclopropyl-	79 -09					
				ethyl						
1-Methyld	1-Methylcyclohexyl		Ŧ	tertButyl	84-87					
1-Methyl	1-Methylcyclohexyl		x	Cyclopropyl	0, 60-0, 91	(m;4H),	0,60-0,91 (m;4H), 1,27 (s;3H), 1,29-2,10 (m;10H), 2,86 (m;1H),	1, 29-2, 10 (м;10н),	2,86 (m;1H),
				٠	6,47 (s;1H), 6,92), 6,92	(bs;1H,NH)			
Cyclopropyl	pyl		I	sekButyl	70- 77					
Cyclopropyl	py l		=	Cyclopropy1-	. 62- 66					
				methyl						
Methyl			I	1-Cyclopropy1-	75					
				ethyl						
Cyclopropyl	pyl		×	Cyclohexyl	133-136					
2-Methyli	2-Methyltetrahydro-		I	tertButyl	72- 76					
pyran-2-yl	l k									
Methyl			I	Cyclobutyl	100-103					
Methyl			I	1,1-Dimethyl-	0,91 (t;3H)	, 1,41	0,91 (t;3H), 1,41 (s;6H), 1,83 (q;2H), 2,48 (s;3H), 6,40	(q;2H), 2,48	(S;3H)	0,40
			•	propyl	(s;1H), 6,56 (bs;1H,NH)	11; sq) 99	1, NH)			
Methyl			Ξ	neo-Pentyl .	108-111					

50 55	45	35 40	25 30	. 15	10	
					_	
					·	
R1	R3	R4	Fp(°C)/1H-NMR (250	Fp(°C)/1H-NMR (250 MHz; CDC13), Ø in ppm		
2-Furanyl	Ξ	tertButyl	65- 70			
2-Furanyl .	I	Cyclopropyl	152-153			
Methyl	I	sekButyl	79- 84			
Methyl	Ξ	2-Methoxy-	2,48 (5;34), 3,37	2,48 (5;3H), 3,37 (5;3H), 3,57 (m;4H), 6,44 (5;1H),	5,44 (s;1H),	
•		ethyl	7,17 (bs;1H,NH), 5	7,17 (bs;1H,NH), 5,14 (m;2H), 6,09 (m;1H), 6,40 (s;1H),	I), 6,40 (s;1H),	
	-		6,77 (bs;1H,NH)			
Methyl	I	1,1-Dimethyl-	1,54 (s;6H), 2,47 (s;3H)	(s;3H)		
		-2-propenyl				
Methyl	.	Cyclopentyl	93- 97			

Beispiel 2

5

10

15

20

25

35

40

3-tert.-Butylaminocarbonyl-5-n-propyl-isoxazol-4-carbonsäure-acetonoximester (Nr. 3.014 in Tabelle 3)

C(CH₃)₃ H-N-CO COO-N=C(CH₃)₂

Zu einer Lösung von 3,3 g (13,0 mmol) 3-tert.-Butylaminocarbonyl-5-n-propyl-isoxazol-4-carbonsäure (hergestellt nach Beispiel 1) und 1,2 g (16,9 mmol) Acetonoxim in 100 ml Dichlormethan tropfte man bei Raumtemperatur 4,9 g (48,1 mmol) 4-Methylmorpholin sowie 1,6 g (13,0 mmol) 4-Dimethylaminopyridin und rührte 5 min. Anschließend fügte man 11,3 g einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan (= 17,8 mmol) zu und erhitzte 12 h unter Rückfluß. Man engte ein, nahm den Rückstand in 100 ml Ethylacetat auf, extrahierte zweimal mit gesättigter Natriumhydrogencarbonatlösung sowie je einmal mit 5 %iger Zitronensäurelösung, gesättigter Natriumcarbonatlösung und gesättigter Natriumchloridlösung. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 95 %.

Beispiel 3

3-tert.-Butylaminocarbonyl-5-phenyl-isothiazol-4-carbonsäure (Nr. 3.045 in Tabelle 3)

C(CH₃)₃
H-N-CO | COOH

Zu 2,0 g (8,7 mmol) 5-Phenyl-isothiazol-3,4-dicarbonsäureanhydrid in 10 ml Dichlormethan tropfte man unter Eiskühlung 0,64 g (8,8 mmol) tert.-Butylamin und rührte 3 h bei Raumtemperatur. Danach engte man die Lösung ein, versetzte mit 25 ml Wasser, säuerte mit 6N HCl auf pH 2 an und extrahierte dreimal mit je 30 ml Ethylacetat. Die organische Phase wurde mit 20 ml gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt. Der Rückstand wurde an Kieselgel (Lösungsmittel: Ethanol/Toluol 2:3) chromatographiert. Ausbeute: 49 %.

Beispiel 4

5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäure-tert.-butylamid (Nr. 5.001 in Tabelle 5)

Zu 4,6 g (19,3 mmol) 5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäure in 100 ml Dichlormethan tropfte man bei (-5) °C nacheinander 1,8 g (25,1 mmol) tert.-Butylamin, 7,2 g (71,6 mmol) Methylmorpholin, 0,8 g (6,4 mmol) Dimethylaminopyridin und 16,8 g einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan (= 26,4 mmol) und rührte 12 h bei Raumtemperatur. Man zog das Solvens im Vakuum ab, nahm den Rückstand in 200 ml Ethylacetat auf und extrahierte zweimal mit gesättigter Natriumhydrogencarbonatlösung sowie je einmal mit 5 %iger Zitronensäurelösung, gesättigter Natriumcarbonatlösung und gesättigter Natriumchloridlösung. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 90 %.

Vorstufe 4a

5

20

25

5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäuremethylester

Zu 5,0 g (27,0 mmol) 4-Methoxycarbonyl-3-methyl-isoxazol-5-carbonsäure in 100 ml Dichlormethan tropfte man bei (-5)° C nacheinander 3,0 g (35,1 mmol) Piperidin. 10,1 g (100,0 mmol) Methylmorpholin, 1,1 g (9 mmol) Dimethylaminopyridin und 22,9 g einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan (36,0 mmol) und rührte 12 h bei Raumtemperatur Man zog das Solvens im Vakuum ab, nahm den Rückstand in 200 ml Ethylacetat auf und extrahierte zweimal mit gesättigter Natriumhydrogencarbonatlösung sowie je einmal mit 5 %iger Zitronensäurelösung und gesättigter Natriumchloridlösung. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 90 %; ¹H-NMR (250 MHz; CDCl₃): δ = 1,65 ppm (m; 6H), 2,49 ppm (s; 3H), 3,18 ppm (m; 2H), 3,73 ppm (m; 2H), 3,87 ppm (s; 3H).

Vorstufe 4β

45

50

5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäure

Zu einer Lösung von 5,7 g (22,6 mmol) 5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäuremethylester in 20 mi Methanol tropfte man unter N₂ bei (-15) bis (-10) °C innerhalb von 4 h 1,0 g (25,0 mmol) Natriumhydroxid in 20 ml Wasser und rührte 12 h bei Raumtemperatur. Man engte die Lösung ein, nahm den Rückstand in 100 ml Wasser auf, stellte auf pH 8 - 9 ein und extrahierte einmal mit 100 ml Diethylether. Anschließend säuerte man mit 6N HCl auf pH 2 an und extrahierte viermal mit je 100 ml Dichlormethan. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 91 %; Smp.: 128 - 130 °C.

Beispiel 5

5

10

20

30

4-tert.-Butylaminocarbonyl-3-methyl-isoxazol-5-carbonsäure (Nr. 4.001 in Tabelle 4)

CH₃ COOH

Zu 3,3 g (11,3 mmol) 5-Piperidinocarbonyl-3-methyl-isoxazol-4-carbonsäure-tert.-butylamid (hergestellt nach Beispiel 4) in 150 ml Diethylether und 0,4 g (22,2 mmol) Wasser gab man portionsweise 7,6 g (67,8 mmol) Kalium-tert.-butylat und rührte 6 h bei Raumtemperatur. Nach Zugabe von 50 ml Wasser und Phasentrennung wurde die wäßrige Phase mit 6N HCl auf pH 2 angesäuert und viermal mit je 100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen wurden wie üblich auf das Produkt hin aufgearbeitet. Das Rohprodukt wurde aus Cyclohexan/Ethylacetat 5:1 umkristallisiert. Ausbeute: 42 %; farblose Kristalle.

Beispiel 6

4-Cyclopropylamino-3-methyl-isothiazol-5-carbonsäure (Nr. 4.006 in Tabelle 4)

Zu einer Lösung von 5,2 g (28,6 mmol) 3-Methyl-isothiazol-4-carbonsäurecyclopropylamid in 250 ml Tetrahydrofuran tropfte man unter Stickstoffatmosphäre bei -70° C 60,0 mmol n-Butyllithium (40,0 ml einer 1,5 molaren Lösung in Hexan) und rührte 30 min bei dieser Temperatur. Anschließend goß man das Reaktionsgemisch auf 500 g festes CO₂ und ließ über Nacht stehen. Man engte ein, nahm den Rückstand in 300 ml Wasser und 15 ml 2N NaOH auf, extrahierte zweimal mit je 100 ml Diethylether, säuerte die wäßrige Phase mit 6N Salzsäure auf pH 2 an und extrahierte viermal mit je 200 ml Ethylacetat. Man trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Ausbeute: 74 %.

Vorstufe 6a

3-Methyl-isothiazol-4-carbonsäure-cyclopropylamid

Zu 7,2 g (50,0 mmol) 3-Methyl-isothiazol-4-carbonsäure in 200 ml Dichlormethan tropfte man bei -5°C nacheinander 3,7 g (65,0 mmol) Cyclopropylamin, 18,7 g (185,0 mmol) Methylmorpholin, 2,0 g (16,7 mmol) Dimethylaminopyridin und 43,5 g einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan (=68,4 mmol) und rührte 12 h bei Raumtemperatur. Man zog das Solvens im Vakuum ab, nahm den Rückstand in 250 ml Ethylacetat auf und extrahierte zweimal mit gesättigter Natriumhydrogencarbonatlö-

sung sowie je einmal mit 5 %iger Zitronensäurelösung, gesättigter Natriumcarbonatlösung und gesättigter Natriumchloridiösung. Die organische Phase wurde über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 84 %; Smp.: 106 - 108 °C.

Auf analoge Weise wurden beispielsweise die folgenden Isothiazol-4-carbonsäureamide synthetisiert:

	R1 .	R3	R4	Fp(°C)	
	Methyl	н	Cyclopropyl	106-108	
15	Methy l	н	tertButyl	96- 97	
	Methyl	н	iso-Propyl	100-102	
	iso-Propyl	,H	3-CF ₃ -Phenyl	114-115	
	iso-Propyl	н	tertButyl	158-159	
20	Pheny l	н	Cyclopropyl	172-173	
	Pheny l	' Н	4-Cl-Phenyl	202-203	

Beispiel 7

5

10

25

35

45

55

-4-Ethoxy-carbonyl-5-methyl-isoxazol-3-carbonsäure-tert.-butylamid (Nr. 3.036 in Tabelle 3)

Zu 10,6 g (53,3 mmol) 4-Ethoxycarbonyl-5-methyl-isoxazol-3-carbonsäure in 150 ml Toluol und 2 ml Dimethylformamid tropfte man bei Raumtemperatur 12,7 g (106,8 mmol) Thionylchlorid und rührte 1 h bei 80°C. Man zog die Solventien im Vakuum ab, löste den Rückstand in 200 ml trockenem Dichlormethan und tropfte 10,0 g (137,0 mmol) tert.-Butylamin in 20 ml trockenem Dichlormethan zu. Man rührte 12 h bei Raumtemperatur, gab 200 ml Wasser zu, trennte die Phasen, wusch die organische Phase je einmal mit 150 ml gesättigter Natriumhydrogencarbonatlösung und 150 ml gesättigter Natriumchloridlösung, trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Ausbeute: 73 %.

Vorstufe 7a

4-Ethoxycarbonyl-5-methyl-isoxazol-3-carbonsäuremethylester

Zu 9,9 g (0,33 mol) NaH (80 %ige Suspension in Weißöl) in 1 I trockenem Toluol tropfte man bei

EP 0 418 667 A2

Raumtemperatur 39,0 g (0,3 mol) Acetessigsäureethylester in 100 ml Toluol und rührte 3 h. Anschließend gab man 41,3 g (0,3 mol) Methyl- α -chloro- α -oximinoacetat in 100 ml Toluol zu und rührte 12 h bei Raumtemperatur. Danach überführte man das Reaktionsgemisch in eine Soxhletapparatur (Extraktionshülse gefüllt mit Molekularsieb 4 Å), fügte 1 g Methansulfonsäure hinzu und erhitzte 1,5 h unter Rückfluß. Man ließ abkühlen, wusch die organische Phase je einmal mit 200 ml Dinatriumhydrogenphosphatlösung und 200 ml gesättigter Natriumchloridlösung, trocknete über Magnesiumsulfat und zog das Solvens im Vakuum ab. Ausbeute: 63 %; gelbes Öl; ¹H-NMR (250 MHz; CDCl₃): δ = 1,34 ppm (t; 3H), 2,73 ppm (s; 3H), 4,00 ppm (s; 3H), 4,32 ppm (q; 2H).

Auf analoge Weise wurden beispielsweise die folgenden Isoxazoldicarbonsäurediester synthetisiert:

H3CO2C~	CO 2R5
H ₃ CO ₂ C	1
N~O	R1

15	R1	R5	1H-NMR (250 MHz; CDCl ₃) 8 in ppm
	CH ₃	СН3	2,72 (s;3H), 3,87 (s;3H), 4.00 (s;3H)
20	CH ₃	C(CH ₃) ₃	1,52 (s;9H), 2,70 (s;3H), 4,00 (s;3H)
	CH ₃	C 2H5	1,34 (t;3H), 2,73 (s;3H), 4,00 (s;3H), 4,32 (q;2H)
25	CF ₃	C 2H5	1,39 (t;3H), 4,06 (s;3H), 4,42 (q;2H)
	(CH ₃) ₂ CH	C ₂ H ₅	1,34 (t;3H), 1,37 (d;6H), 3,73 (sp;1H), 4,00 (s;3H), 4,29 (q;2H)

Vorstufe 78

10

30

35

40

4-Ethoxycarbonyl-5-methyl-isoxazol-3-carbonsäure

Zu 25,0 g (0,117 mol) 4-Ethoxycarbonyl-5-methyl-isoxazol-3-carbonsäuremethylester in 200 ml trockenem Tetrahydrofuran tropfte man unter N₂-Atmosphäre bei -15 bis -10 °C 4,7 g (0,117 mol) Natriumhydroxid in 80 ml Wasser und rührte 12 h. Man zog die Solventien am Rotationsverdampfer ab (Badtemperatur 30 - 35 °C), nahm den Rückstand in 250 ml Wasser auf, stellte mit Salzsäure auf pH = 8 - 9 ein und extrahierte zweimal mit je 150 ml Diethylether. Anschließend säuerte man die wäßrige Phase mit 6N HCl auf pH = 2 an und extrahierte viermal mit je 250 ml Ethylacetat. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 70 %; ¹H-NMR (250 MHz; (CDCl₃): δ = 1,42 ppm (t; 3H), 2,80 ppm (s; 3H), 4,59 ppm (q; 2H).

Auf analoge Weise wurden beispielsweise die folgenden Isoxazol-3-carbonsäuren synthetisiert:

6	R1	R5_	1H-NMR (250 MHz; CDCl ₃) 8 in ppm	_
	CH ₃	C ₂ H ₅	1,42 (t;3H), 2,80 (s;3H), 4,59 (q;2H)	
10	CH ₃	C(CH ₃) ₃	1,54 (s;9H), 2,34 (s;3H), 13,80 (bs;1H)	
	CF ₃	C ₂ H ₅	1,29 (t;3H), 4,15 (q;2H)	

15

Beispiel 8

20

3-tert.-Butylaminocarbonyl-5-methyl-isoxazol-4-carbonsäure (Nr. 3.002 in Tabelle 3)

25

Zu einer Lösung von 5,4 g (21,3 mmol) 4-Ethoxycarbonyl-5-methyl-isoxazol-3-carbonsäure-tert.-butylamid in 100 ml Ethanol tropfte man unter № bei 5 bis 10 °C 1,0 g (25,0 mmol) Natriumhydroxid in 50 ml Wasser und rührte 12 h bei Raumtemperatur. Man engte die Lösung ein, nahm den Rückstand in 150 ml Wasser auf, stellte auf pH = 8 - 9 ein und extrahierte zweimal mit je 100 ml Diethylether. Danach säuerte man die wäßrige Phase mit 6N HCl auf pH = 2 an und extrahierte viermal mit je 200 ml Ethylacetat. Die vereinigten organischen Phasen wurden über Magnesiumsulfat getrocknet und das Solvens im Vakuum abgezogen. Ausbeute: 95 %; gelber Farbstoff.

Beispiel 9

40

5-Cyclopropylaminocarbonyl-3-isopropenyl-isoxazol-4-carbonsäuremethylester (Nr. 6.02 in Tabelle 6)

45

50

Zu einer Lösung von 9,0 g (0,043 mol) 3-Isopropenyl-4-methoxycarbonyl-isoxazol-5-carbonsäure in 200 ml Dichlormethan wurden bei 5 C nacheinander 3,1 g (0,055 mol) Cyclopropylamin, 16,0 g (0,158 mol) 4-Methylmorpholin, 1,73 g (0,014 mol) 4-Dimethylaminopyridin und 37,0 g (0,058 mol) einer 50 %igen Lösung aus Propanphosphonsäureanhydrid in Dichlormethan getropft. Nach 12-stündigem Rühren bei Raumtemperatur wurde das Lösungsmittel entfernt, der Rückstand in 250 ml Ethylacetat aufgenommen, zweimal mit gesättigter Natriumhydrogencarbonatlösung und je einmal mit 5 %iger Zitronensäurelösung, gesättigter Natriumcarbonat- und Natriumchloridlösung extrahiert. Nach Trocknen über Magnesiumsulfat wurde das Solvens bei reduziertem Druck abdestilliert. Ausbeute: 54 %.

Vorstufe 9a

10

25

30

35

E-3-Styryl-isoxazol-4,5-dicarbonsäuredimethylester

CH=C CO-OCH3

Eine auf 0 °C gekühlte Mischung aus 14,7 g (0,1 mol) E-Zimtaldehydoxim, 1,8 g (0,01 mol) Dinatriumhydrogenphosphat-Dihydrat, 1,6 g (0,01 mol) Natriumdihydrogenphosphat-Dihydrat, 50 ml Dichlormethan und 50 ml Wasser, wurde mit Salzsäure/Natronlauge auf pH = 6,3 eingestellt. Nach Zugabe von 14,2 g (0,1 mol) Acetylendicarbonsäuredimethylester wurden innerhalb einer Stunde bei 0-10 °C 61,2 g (0,11 mol) einer 13,4 %igen wäßrigen Natriumhypochlorid-Lösung zugetropft und gleichzeitig der pH-Wert durch Zugabe von Salzsäure oder Natronlauge konstant gehalten. Anschließend wurde 1 Std. bei Raumtemperatur nachgerührt, die Phasen getrennt und die wäßrige Phase zweimal mit je 100 ml Dichlormethan extrahiert. Nach Trocknen der vereinigten organischen Phasen über Natriumsulfat wurde das Lösungsmittel im Vakuum entfernt und die leichter flüchtigen Komponenten bei 120 °C (0,1 Torr) abdestilliert. Ausbeute: 56 %; ¹H-NMR (in CDCl₃): δ = 3,9 ppm (s; 3H), 4,0 ppm (s; 3H), 7,2 ppm (d; 1H), 7,3-7,7 ppm (m; 6H).

Analog Vorstufe 9α wurde auch der 3-Isopropenyl-isoxazol-4,5-dicarbonsäuredimethylester synthetisiert. Ausbeute: 26 %; ¹H-NMR (in CDCl₃): δ = 2,2 ppm (s; 3H), 3,9 ppm (s; 3H), 4,0 ppm (s; 3H), 5,45 ppm (m; 2H).

Vorstufe 98

3-Isopropenyl-4-methoxycarbonyl-isoxazol-5-carbonsäure

Zu 20,0 g (0,09 mol) 3-isopropenylisoxazol-4,5-dicarbonsäuredimethylester (aus Stufe A.1) in 150 ml Methanol wurde bei 0°C eine Lösung aus 3,6 g (0,09 mol) Natriumhydroxid in 75 ml Wasser getropft und anschließend 14 Std. bei Raumtemperatur gerührt. Nach Zugabe von 250 ml Wasser wurde auf pH = 8 eingestellt, mit 200 ml Dichlormethan extrahiert, die wäßrige Phase mit 6N-Salzsäure auf pH = 1-2 eingestellt und dreimal mit je 250 ml Dichlormethan extrahiert. Die vereinigten organischen Extrakte wurden über Magnesiumsulfat getrocknet und das Lösungsmittel unter Vakuum abdestilliert. Ausbeute: 97 %; ¹H-NMR (in CDCl₃): δ = 2,12 ppm (s; 3H), 4,07 ppm (s; 3H), 5,41 ppm (m; 2H); 8,00 ppm (bs; 1H).

Beispiel 10

5- Cyclopropylaminocarbonyl-3-isopropenyl-isoxazol-4-carbonsäure (Nr. 6.05 in Tabelle 6)

Zu einer Lösung von 4,0 g (0,016 mol) 5-Cyclopropylaminocarbonyl-3-isopropenyl-4-carbonsäuremethylester (hergestellt nach Beispiel 9) in 50 ml Methanol wurden bei 5 bis 10°C 0,68 g (0,017 mol) Natriumhydroxid gegeben. Nach 12-stündigem Rühren bei Raumtemperatur wurde das Lösungsmittel entfernt, der Rückstand in 150 ml Wasser aufgenommen, die Mischung auf pH = 8-9 eingestellt und zweimal mit je 100 ml Diethylether extrahiert. Danach säuerte man die wäßrige Phase mit 6N HCl auf pH = 2 an, extrahierte viermal mit je 200 ml Ethylacetat, trocknete die vereinigten organischen Phasen über Magnesiumsulfat und destillierte das Lösungsmittel bei reduziertem Druck ab. Ausbeute: 74 %.

Beispiel 11

5

15

25

30

40

45

50

55

5-tert.-Butylaminocarbonyl-3-isopropenyl-isoxazol-4-carbonsäureacetonoximester (Nr. 6.08 in Tabelle 6)

Zu einer-Lösung von 4,0 g (0,016 mol) 5-tert.-Butylaminocarbonyl-3-isopropenyl-isoxazol-4-carbonsäure (Nr.6.06 in Tabelle 6) und 1,5 g (0,021 mol) Acetonoxim in 200 ml Dichlormethan wurden bei Raumtemperatur 5,9 g (0,059 mol) 4-Methylmorpholin und 1,94 g (0,016 mol) 4-Dimethylaminopyridin getropft und nach 5-minütigem Rühren 13,7 g (0,0215 mol) einer 50 %igen Lösung von Propanphosphonsäureanhydrid in Dichlormethan zugegeben. Nach 8-stündigem Erhitzen auf Rückflußtemperatur wurde das Lösungsmittel entfernt, der Rückstand in 100 ml Ethylacetat gelöst und analog Beispiel 9 auf das Produkt hin aufgearbeitet. Ausbeute: 55%.

Tet. Ausbeute. 35%.

Die physikalischen Daten der Endprodukte (Belspiele 1 bis 10) sind den folgenden Tabellen 3 bis 7 zu entnehmen, in denen noch weitere Verbindungen Ia, Ib, Ic und Id aufgeführt sind, welche auf die gleichen Weisen hergestellt wurden oder herstellbar sind.

50 65	4 0 4 5	`. 35	25 30		20	15	5
		R 3-N-0C	CO-YR5		Ia (R	Ia (R2 = CO-YR5)	
R1	. R.	4.8	RS	*	-	Fp. [°C]/ ¹ н-ммк (250 мнz, CDCl ₃), ø in ppm	(250 MHz,
Methyl	I	iso-Propyl	I	0	0	134-137	
Methy1	=	tertButyl	x	0	0	90- 93	
Methyl	I	cyclo-Propyl	I	0	0	120-125	
Methyl	I	Pheny 1	=	0	0	178-181	
Methyl	x	tertButyl	-N=C(CH ₃) ₂	0	0	110-113	
Methyl	I	tertButyl	Succinimido	0	0	172-178	
Methyl	I	cyclo-Propyl	-N=C(CH ₃) ₂	0	0	160-163	
Methyl	I	Methyl		0	0	180-184	
Methyl	I	Ethyl	I	0	0	130-134	
Methyl	I	tertButyl	2, 4-Cl, Cl- Phenyl	0	0	134-137	
Methyl	±	tertButyl	2,3-0CH ₃ , 0CH ₃ -Phenyl	0	0	170-173	
Methyl	I	tertButyl	4-OCH ₃ - Pheny1	0	0	141-143	
n-Propyl	I	tertButyl		0	0	1.00 (t; 3H), 1,52	2 (s; 9H),
						1,80 (m; 2H), 3,25 7,17 (bs: 1H. NH)	5 (t; 2H),

55	50	45	40	35	25 30		20	10	5
Tabelle 3	Tabelle 3 (Fortsetzung)	(Bun:		•	:				
Nr.	R1		æ3	ዱ ት	RS	×	>	Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), ø in ppm	50 MHz,
3.014	n-Propy1		Ξ	tertButyl	-N=C(CH ₃) ₂	0	0	95- 96	-
3.015	n-Propyl		· エ	tertButyl	Propargyl	0	0	99 -09	
3.016	iso-Propy	ly l	Ŧ	cyclo-Propyl	 I	0	0	70- 71	
3.017	iso-Propy	ıyı	Ŧ	cyclo-Propyl	-N=C(CH ₃) ₂	0	0	105-107	
3.018	1 so-Propy	. I ki	I	tertButyl	-N=C(CH ₃) ₂	0	0	139-143	
3.019	1so-Propy	ıyı	I	tertButyl		0	0	32- 35	
3.020	n-Butyl		I	tertButyl	 I	0	0	0,94 (t; 3H), 1,41	(т; 2н),
	')							1,49 (s; 9H), 1,74	(т; 2н),
					-			(t; 2H), 7,25	(bs;1H,NH)
3.021	n-Butyl		I	cyclo-Propyl	Ŧ	0	0	74- 77	
3.022	n-Butyl		=	cyclo-Propyl	-N=C(CH ₃) ₂	0	0	62- 67	
3.023	tertButy	ıtyl	I	tertButyl	 I	0	0	66 - 66	
3.024	tertButy]	ıtyl	I	tertButyl	-N=C(CH ₃) ₂	0	0	101-104	
3.025	tertButy	ıtyl	I	cyclo-Propyl	¥	0	0	70- 72	
3.026	tertButy	ıtyl	×	cyclo-Propyl	-N=C(CH ₃) ₂	0	0	122-125	
3.027	sekButy	.yl	I	tertButyl	I	0	0	07	
3.028	sekButyl	:y1	Ŧ	cyclo-Propyl	I	0	0	0,80 (m; 2H), 0,92 (m; 2H),	(m; 2H),
								0,90 (t; 3H), 1,30 (d; 3H)	(d; 3H),
								1,77 (m;2H), 3,00 (m; 1H),	m; 1H),
									(bs;1H,NH)
3.029	sekButyl	.y.1	I	tertButyl	-N=C(CH3)2	0	0	97-101	

5		_		.; 09		(HN,					, (HN,		,	<i>~</i>			
-		250 MHz,) (m; 2H	5 (d; 3H), 3 und 2,09	; 1H),	5 (bs;1H, NH)					7,25 (bs;1H,NH),		(s; 9H),	(q; 2H),			
10		H-NMR (н), 0,89	3H), 1,36 (d; 3H), 2H), 2,08 und 2,09	2,92 (m; 1H),	1н), 7.25								H), 4,37 1H, NH)			
15		Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), ø in ppm	<u>.</u>	0,90 (t;3 1,72 (m;2	(2s; бн),	3,58 (m; 1	133-135	144-146	153-155	131	1,54 (s; 9H),	7, 20-7, 90 (m; 3H)		2,70 (s; 3H), 7,89 (bs; 1H,	107-112	137-141	114-117
		> O	0	o	_	m	0	0	0 1	0	0 1	7	0	4 L	0	0	0
20		×	0				0	0	0	0	0		0		0	0	0
25		25	-N=C(CH ₃) ₂				=	I	-N=C(CH ₃) ₂	-N=C(CH ₃) ₂	I		Ethy1		-N=C(C2H5)(CH3)	N-	
35 ·		R4	cyclo-Propyl				tertButyl	cyclo-Propyl	cyclo-Propyl	tertButyl	tertButyl		tertButyl		tertButyl	tertButyl	tertButyl
40		28	I.				I	=	I	x	I	٠	I		I	±	I
45	Tabelle 3 (Fortsetzung)	R1	sekButyl				Phenyl	Phenyl	Phenyl	Pheny l	2, 4-01, 01-	Phenyl	Methyl		iso-Propyl	iso-Propyl	iso-Propyl
50	11e 3 (F																
55	Tabe	ř.	3.030				3.031	3.032	3.033	3.034	3.035		3.036		3.037	3.038	3.039

55	50	45	40	35	25 30 .		20	16	10	5
Tabelle 3	Tabelle 3 (Fortsetzung)	(gr		-						
	R1	æ	en	₽.	RS	×	>	Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), Ø in ppm	MR (250 MHZ, ppm	-
	[addad of the state of the stat	-		tertButvl	CH2CH=CH-C6H5	0	0	1,38 (d; 6H), 1,44 (s; 9H),	1,44 (s; 9t	£),
3.040	6do 14-0s1	•			•			3,72 (sp; 1H), 4,94 (m; 2H), 6,20-6,90 (m; 2H), 7,22-7,40	, 4, 94 (m; 2H), 7, 22-	2H), 7,40
								(m; 5H)		
	Lvacades	Ī		tertButyl	CH ₂ CC1 ₃	0	0	68- 71		
3.041	150-11 003			tertButvl	. CH 3-CH 3-CN	0	0	93- 95		
3.042	1so-Propy			tertButvl	CHICF	0	0	73- 76		
3.043	1SO-Propy		. -	tort _Butv1	3-Jod-propardy	۷۱ 0	0	1,38 (d; 6H), 1,44 (s; 9H),	1,44 (s; 9I	H),
3.044	iso-Propy		_	ופו ני הפהל ו				3,70 (sp; 1H)	, 4,40 (s;	2H),
					•			6,70 (bs; 1H, NH)	NH)	
ò	[240	=		tertButyl	 I	S	0	> 190 (Zers.)	·:	
3.043	rnenyt			tart -Butvl	Methyl	0	0	123-124		
3.046	1SO-Propy (. -	tort _Butvl		0	0	1,55 (d; 3H); 1,55 (s; 9H); 3,35	1,55 (s; 9)	н); 3,35
3.047	I-Methoxy	_	_	i fang. 'I lan	·			(s; 3H); 5,46	5,46 (q; 1H); 7,30	,30 (bs;
٠	eth-1-yl			•				1H, NH)		
3,048	1-Methoxy-	÷	=	Cyclopropyl	·	0	0	97- 98		
	eth-1-yl					•		03 07		
3.049	1-Methoxy-	y- 1	Ŧ	sekButyl	I	0	5	83- 8/		
	eth-1-yl									

55	50	45 .	40	35	30	25	20	5
Tabelle 3	Tabelle 3 (Fortsetzung)	(Bu			•			
. L	R1		R 3	R4	R5	*	>	Fp. [°C]/ ¹ H-NMR (250 MHz, CDC1 ₃), Ø in ppm
3.050	1-Methoxy- eth-1-yl		x.	Cyclopropyl- methyl	I	0	0	0,38 (m; 2H); 0,63 (m; 2H); 1,10 (m; 1H); 1,57 (d; 3H); 3,38 (s; 3H); 3,40 (m; 2H); 5,46 (q; 1H); 7,64 (bs, 1H, NH)
3.051	1-Methoxy- eth-1-yl	ı	I	Cyclopropyl- methyl	-N=C(CH ₃) ₂	0	0	66 - 96
3.052	1-Methoxy- eth-1-yl	í	I	tertButyl	-N=C(CH ₃) ₂	0	0	99-101
3.053	1-Methoxy- eth-1-yl		I	tertButyl	Propargyl	0	0	1,46 (s; 9H); 1,58 (d; 3H); 2,53 (t; 1H); 3,36 (s; 3H); 4,91 (d; 2H); 5,08 (q; 1H); 6,67 (bs.1H.NH)
3.054	1-Methoxy- eth-1-yl		I	Cyclopropyl	N=C (CH ₃) ₂		0	89- 92
3.055	1-Methoxy- eth-1-yl		·=	Cyclopropyl	Propargyl	0	0	96~ 98
3.056	1-Methoxy- eth-1-yl	,	I	sekButyl	-N=C(CH ₃) ₂	0	0	76- 79
3.057	Methoxymethyl	thyl	I	tertButyl	I	0	0	1,52 (s; 9H); 3,50 (s; 3H); 5,05 (s; 2H); 7,26 (bs; 1H, NH)
3.058 3.059	Methoxymethyl Methoxymethyl	thy1 thy1	I I	sekButyl Cyclopropyl	I I	0 0	0 0	50- 56 56- 62

5 10	Fp. [°C]/ ¹ H-NMR (250 MHz, CDC1 ₃), ø in ppm	; (60 5,	H);	126-129	140-144	125-130	88- 91	98-103	55- 60	108-112	102-107	150-152	69- 72	87-88
20	>-	0	0	0	0	0	0	0	0	0	0	0	0	0
	×	0	0	0	0	0	0	0	0	0	0	0	0	0
25	S CC	æ							_		<u>-</u>	-N=C(CH3)2	Ethyl	-N=C(CH ₃) ₂
30	œ	Ž	= .	I	I	I	_	: =	x	=	I	•	ΙŁ	
35	4	Cyclopropyl	Cyclopropyl	tertButyl	Cyclopropyl	1-Cyclo-	propyl-ethyl	Cvclopropyl	1-Cyc1o-	propyl-ethyl tertButyl	Cyclopropyl	tertButyl	tertButyl	Cyclopropyl
40	83	r.	I	=	I	=	=	c =	: =	I	I	=	=	: = '
4 5	Tabelle 3 (Fortsetzung) . Nr. R ¹	Ethyl	Ethyl	Cvclohexyl	Cyclohexyl	Cyclohexyl		Cyclopropyl	Cvclopropyl	1-Methylcyclo-	hexyl 1-Methylcyclo-	hexyl Cvclopropyl	iso-Propy]	Ethyl
55	Tabelle 3	3.060	3.061	3,062	3.063	3.064		3.065	3.067	3.068	3.069	9 070	2.070	3.072

		.												; 3, 20) (m)							
5		250 MHz,												(S; 6H)	2н); 6,0	NH)						
10		Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), ø in ppm												2H); 1,56	(m; 1H); 5,20 (m; 2H); 6,09 (m;	1H); 7,26 (bs; 1H; NH)						
15		Fp. [°C] CDC13),	102-110	92- 98	78-84	80-87	93~ 96		104-112		133-136		93- 96	1,24 (m;	(m; 1H);	14); 7, 26	145-159	91- 96		109-114	192-203	, , ,
20		-	0	0	0	0	0		0		0		0	0			0	0		0	0	
٠		*	0	0	0	. 0	0		0		0		0	0			0	0		0	0	
25																					2, 4-(Br, Br)	
30-	•	R 5	<u>.</u>	I	I	I	I		=		I		Ŧ	Ŧ			x	I		I	2,4	
35		₹	Cyclopropyl- methyl	sekButyl	Cyclopentyl	Cyclohexyl	tertButyl		Cyclopropyl		Cyclopropyl		tertButyl	1,1-Dimethyl-	-2-propenyl		Benzyl	2-Methoxy-	eth-1-yl	2-Propenyl	tertButyl	•
40		R3	r.	Ŧ	I	I	I		I		I		I	I			Ŧ	Ŧ		I	I	
45	tsetzung)		Cyclopropyl	Cyclopropyl	Cyclopropyl	Cyclopropyl	2-Methyltetra-	hydropyran-2-yl	2-Methyltetra-	hydropyran-2-yl	2-Methyl-	norbornan-2-yl	4-F-Phenyl	Cyclopropyl			Cyclopropyl	Cyclopropyl		Cyclopropyl	l yı	
50	(For	۳ ا	Cyc	Cyc	Cyc	င်နှင	2-M	hyd	2-H	nyd D	2-K	nor	4-F.	Cyc			Cyc	Cyc		Cyc	Methyl	
55	Tabelle 3 (Fortsetzung)	Nr.	3.073	3.074	3.075	3.076	3.077		3.078		3.079		3.080	3.081			3.082	3.083		3.084	3.085	

55	50	4 5	40	35	25 30		20	5 10
Tabelle 3 (Fortsetzung)	(Fortsetzu	(But		: •				
Nr.	RI		R3	R4	R5	×	>	Fp. [°C]/lH-NMR (250 MHz, CDCl ₃), ø in ppm
3.086*	Methy1		T.	tertButyl	-CH ₂ -CH=N-OC ₂ H5	0	0	Hauptisomer: 1,24 (t;3H);1,46 (s;3H);2,68 (s;3H);4,16 (m;2H);4,84 (d; 2H);7,08 (bs;1H,NH);7,49 (t;1H)
2 087	Mothvl		. I	tertButyl	Na⊕	0	0	298-300
3.088 880	Methyl		±	tertButyl	⊕ ¥	0	0	256-257
080 6	Methyl		I	Cyclobutyl		0	0	119-124
3.090	Methyl		I	1,1-Dimethyl-	×	0	0	61- 66
				propy1		•	(000 900
3.091	Methyl		I	tertButyl	NH, @	0	o (067-077
3.092	Methyl	-	I	tertButyl	-CH ₂ -CH=N-OCH ₃	0	0	83- 90
3.093	Methyl		I	tertButyl	4-CN-Pheny1	0	0 (G71-611
3.094	Methyl		I	tertButyl	Propargyl	0	0	06 - 76
3.095	Methyl		I	2,2-Dimethyl-	·	0	5 .	671-671
				r fdo id	(
3.096	Methyl		I	tertButyl		0	0	124-127
2 007	Mothy			tertButyl	H ₃ N®−CH(CH ₃) ₂	0	0	175-180
3.098	2-Furany	-	×	tertButyl		0	0	114-117
*) Isomer	Isomerengemisch	•		-	. <u>-</u> .			

45 50	-	35	25 30		20	10	5
(Fortsetzung	_						
R 1	R3	· 4		×	>	Fp. [°C]/ ¹ H-NMR (250 MHz,	
						CDC13), & in ppm	
2-Furanyl	I	Cyclopropyl		0	c	124-127	_
Methyl	· =	tertButyl	-CH CH=CH-CeHe	· c	· c		
Methyl	I	sekButyl	5::D :: X :: X		,	78-83	
Methyl	I	2-Methoxy-	.	0	0	77 - 71	
		eth-1-yl	_	•	•		
iso-Propyl	I	Cyclopropyl	Na⊕	0	0	241	
iso-Propyl	I	Cyclopropyl	K⊕	0	0	208-209	
Methyl	I	1,1-Dimethyl-		0	0	58- 82	
		-2-propenyl				;	
iso-Propyl	I	Cyclopropyl	H ₃ N®-CH(CH ₃) ₂	0	0	170-176	
iso-Propyl	I	Cyclopropyl	NH 4⊕	0	0	221-223	
Methyl	Ŧ	tertButyl	2-C1-Phenyl	0	0	168-170	
Methyl	I	tertButyl	3-cl-Phenyl	0	0	125-128	
Methyl	I	Cyclopentyl	.=	0	0	99-104	
Methyl	I	tertButyl	4-Cl-Phenyl	0	0	112-117	
Methyl	I	tertButyl	4-F-Phenyl	0	0	173-176	
Methyl	I	tertButyl	4-CH ₃ -Phenyl	0	0	132-134	
Methyl	I	tertButyl	2-F-Phenyl	0	0	148-150	
Methyl	×	tertButyl	Pheny l	0	0	152-157	
Methyl	Ŧ	tertButyl	Methyl	0	0	129-132	
Methyl	Ŧ	tertButyl	iso-Propyl	0	0	108-112	
Methyl	I	tertButyl	tertButyl	0	s	9н); 1,60 (s;	2.71
Methyl	I	tertButyl	Cyclohexyl	0	0	6,75 (bs; 1н,	
	RI 2-Furanyl Methyl Methyl iso-Propyl iso-Propyl iso-Propyl iso-Propyl iso-Propyl Methyl	setzung) anyl H ropyl H ropyl H ropyl H H H H H H H H H H H H H		H Cyclopropyl H tertButyl H 2-Methoxy- eth-1-yl H Cyclopropyl H tertButyl	R3 R4 R5 H Cyclopropyl H tertButyl -CH ₂ -CH=CH-C ₆ H ₅ H 2-Methoxy- H eth-1-yl H Cyclopropyl Na® H Cyclopropyl K® Cyclopropyl H ₃ N®-CH(CH ₃) ₂ C H Cyclopropyl H ₃ N®-CH(CH ₃) ₂ C H Cyclopropyl H ₃ N®-CH(CH ₃) ₂ C H Cyclopropyl H ₄ O H tertButyl 2-C1-Phenyl O H tertButyl 4-C1-Phenyl O H tertButyl A-C1-Phenyl O H tertButyl A-C1-Phenyl O H tertButyl Phenyl O H tertButyl Rethyl O H tertButyl Rettyl O H tertButyl Cyclohexyl O	R3 R4 R5 X H Cyclopropyl H . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R3 R4 R5 X Y Fp. [°C]/ ¹ / ¹ H-NMR (250 MHz, CDC]3, 0 in ppm Cyclopropy H Cyclopropy H Cyclopropy H Cyclopropy H Cyclopropy Ma®

5	-	MHZ,	1,53 (s;9H), 2,08 (s;3H), 2,10 (s; 6H), 6,94 (s;2H), 7,30 (bs;1H,NH)	1,17 und 1,27 (2t; 3H+3H); 1,35 (t; 3H); 2,89 und 3,12 (2s; 3H+3H); 2,19 (2; 2H); 3,5 und 3,63 (2g;	5,10 (4; £n); 5,25 mm 5,55 (24) 2H+2H); 3,84 (\$; 3H)*) 1,27 und 1,30 (2t; 3H+3H); 1,34 (t; 3H), 3,18 und 3,28 (2s; 3H+3H);	3, 24 (q; 2H), 3,67 und 3,55 (2q; 2H+2H)*) 0,60-0,92 (m; 4H); 2,70 (s; 3H); 2,93 (m; 1H); 3,92 (s; 3H); 8,27	(bs; 1H, NH) 0,60-0,93 (m; 4H); 1,36 (d; 6H); 2,92 (m; 1H); 3,70 (sp; 1H); 3,89	7,84 (bs; in, wn) 3H); 1,48 (s; 9H); 3,09 3,88 (s; 3H); 7,23 (bs;	n, Nn) ,36 (t;3H); 1,52 (s; 9H); 3,28 [q;2H); 7,22 (bs;1H, NH)	·.
10	•	H-NMR (250 in ppm), 2,08 (s (s;2H), 7,	,27 (2t; 3 und 3,12 (3,10 (4; 2n); 3,23 und 2H+2H); 3,84 (s; 3H)*) 1,27 und 1,30 (2t; 3H+3 3H), 3,18 und 3,28 (2s;	(H), 3,67 u (m; 4H); 2 (H); 3,92 ((m; 4H); 1 (m; 4H); 1 (H); 3,70 (7,84 (bs; 1n, nn) 3H); 1,48 (s; 9H) 3,88 (s; 3H); 7,2	lr, nn) 1,36 (t;3H);1,52 (s;9H) (q;2H);7,22 (bs;1H,NH)	
15		Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), δ in ppm	1,53 (s;9H 6H), 6,94	1, 17 und 1 3H); 2,89	3, 10 (4), 2 2H+2H); 3, 1, 27 und 1 3H), 3, 18	3, 24 (q; 2H), 3,67 2H+2H)*) 0,60-0,92 (m; 4H); 2,93 (m; 1H); 3,92	(bs; 1H, NH) 0,60-0,93 (m 2,92 (m; 1H)	3H); (t); 2H);	1,36 (t; 3 (q; 2H); 7	
20		>	0	0	0	0	0	0	0	
		×	0	0	0	0	0	0	0	
25										
30		R 52	Ŧ	Methy1	_ =	Methyl	Methyl	Methyl	Ŧ	٠
35		7 4	tertButyl	Ethyl	Ethyl	Cyclopropyl	Cyclopropyl	tertButyl	tertButyl	-
40		R3	Ξ.	Methyl	Methyl	±.	=	I	= .	
4 5	Tabelle 3 (Fortsetzung)	R1	2, 4, 6-Tr1-	metnylpnenyl Ethyl	Ethyl	Methyl	iso-Propyl	Ethyl	Ethyl	
55	Tabelle 3	r.	3.120	3.121	3.122	3.123	3.124	3.125	3.126	

*) Mischung aus 2 Rotameren

5		_	MHZ,	ı																
10			Fp. [°C]/ ¹ H-NMR (250 мHz, CDCl ₃), ø in ppm	142-147	124-127	142-145	136-138	134	131	111	116-117	144	164	166-167	169	167	48-149	33-134	135	121-123
	ت د د	, and the second	>	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
20		3	×	0	0	0	0	S	S	S	s	s	s	s	s	s	s	S	0	0
	,	K.							•		~	•	••		•	•,	~	٠,		J
25		4	25 24	x	Ŧ	=	Ŧ	=	-	_	-N=C (CH3) 2	_	x	-N=C (CH3) 2	x	I	-N=C (CH3)	Methy1	-N=C(CH3)2	Methy1
30	~* ~*	× 5 —			_		· <u>-</u>	_	_	_	•		_	·	_	_	•	_	•	-
35		=\ =\tilde{\Z}				-			 _			yl	-	-					2, 4, 6-Trimethylphenyl	
40			R4	tertButy	tertButy	tertButy	Cyclopropy	tertButy	Cyclopropy	iso-Propyl	tertButy	3-CF ₃ -Pheny	tertButy	tertButyl	4-Cl-Phenyl	Cyclopropyl	Cyclopropyl	tertButyl	2, 4, 6-Trim	tertButyl
45			R3	z i.	I	I	I	I	I	I	I	I	I	I	I	I	x	I	I	=
45 50	-		. 12	Methyl	Ethyj	iso-Propyl	iso-Propyl	Methyl	Methy!	Methyl	Methy1	iso-Propyl	iso-Propyl	iso-Propyl	Phenyl	Phenyl	Phenyl	iso-Propyl	Methyl	iso-Propyl
55	Tabelle		N.	4.001	4.002	4.003	4.004	4.005	900.4	4.007	4.008	4.009	4.010	4.011	4.012	4.013	4.014	4.015	4.016	4.017

5	_		9H), 1,73 (m; 6H), 3,40 (m; 2H), 2H), 7,14 (m; 2H), 7,59 (bs;1H,NH), 2H) 3H), 1,41 (s; 9H), 1,50-1,80 (m; 6H), 2H), 3,34-3,43 (m; 2H), 3,68-3,76 8,10 (bs; 1H, NH)
10		CDC13),), 3,40), 7,59), 1,50- m; 2H),
15	• 5	Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), ø in ppm	1,73 (m; 6H), 3,40 (m; 2H), 7,14 (m; 2H), 7,59 (bs;1H,N 1,41 (s; 9H), 1,50-1,80 (m; 3,34-3,43 (m; 2H), 3,68-3,7 (bs; 1H, NH)
20	Ic (R ² = CO-M-R ⁶)	Fp. [°C]/lH-1	74-75 1,40 (s; 9H), 3,73 (m; 2H), 111-114 155-158 1,34 (t; 3H), 3,00 (q; 2H), 76-77 50-52 65 110-114
25	Ic (. 0	
30	CO-N-R6	R6 R7	H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H tertButyl H Cyclopropyl H Cyclopropyl
35			tertButyl tertButyl
40 45	·	R3 R4	-(CH ₂) ₅ - -(CH ₂) ₅ - H tert H-(CH ₂) ₅ - -(CH ₂) ₅ - -(CH ₂) ₅ - -(CH ₂) ₅ - H Cycl
50	ന ല	.	Methyl 4-F-Phenyl iso-Propyl Ethyl iso-Propyl iso-Propyl Methyl
55	Tabelle 5	'n.	5.01 5.02 5.03 5.04 5.06 5.06

Tabelle 6	50 9	4 5	35	30 	25	5 10 15
,	R1,	. œ		en	P Y	(R2 = CO-YR5)
6.01	-(€H3)-=ZH3	=	iso-Propyl	Methyl	0	1.29 (d; 6H) 2.12 (bs; 3H), 3.94 (s; 3H) 4.26 (sp; 1H) 5.42 (m; 2H), 8.05 (bs; 1H, NH)
6.02	6.02 CH ₂ =C(CH ₃)-	I	Cyclopropyl	. Methyl	0	0.63-0.92 (m; 4H), 2.10 (bs; 3H), 2.93 (m; 1H), 3.93 (s; 3H) 5.40 (m; 2H), 8.40 (bs; 1H, NH)
6.03	6.03 CH ₂ =C(CH ₃)-	I	tertButyl	. Methy	0	1.48 (s; 9H), 2.1 (bs; 3H), 3.93 (s; 3H) 5.40 (m; 2H), 8.07 (bs; 1H, NH)
90.9	CH ₂ =C(CH ₃)-	I	iso-Propyl		0	84- 87
6.05	CH 2=C (CH 3)-	I	Cyclopropyl	_ 	0	96–100
90.9	CH 2=C (CH 3)-	I	tertButyl	 .	0	1.55 (s; 9H), 2.15 (bs; 3H), 5.40 (m; 2H) 7.15 (bs; 1H, NH)
6.07	CH2=C(CH3)-	I	-c (cH ₃) 2C≡CH	I	0	1.82 (s; 6H), 2.17 (bs; 3H), 2.53 (s; 1H), 5.40 (m; 2H), 7.43 (bs; 1H, NH)
6.08	CH2=C(CH3)-	I	tertButyl	-N≕C (CH ₃) 2	0	1.44 (s; 9H) 2.07 und 2.10 (2s; 6H) 2.17 (s; 3H), 5.42 (m; 2H), 8.17 (bs; 1H, NH)
6.09	E-C6H5-CH=CH-	x	tertButyl	Methyl	•	1.48 (s; 9H), 4.00 (s; 3H), 7.12-7.61 (m; 7H), 9.13 (bs; IH, NH)
6.10	E-C6H5-CH=CH	I	tertButyl	x	0	75- 80
6.11	CH 2=C (CH3)-	I	-с (сн₃) 2с≡сн	. Methyl		1.78 (s; .6H), 2.10 (s; 3H), 2.41 (s; 1H) 3.93 (s; 3H), 5.41 (m; 2H), 8.63 (bs; 1H, NH)

5 10 15 20 25		R5 Y Fp. [°C]/1H-NMR (250 MHz, CDC13), å [ppm]	1 0 80-81	н 0 1,08 (t;3H) 1,80 (s;6H), 2,48 (m;2H), 2,50 (bs;1H,NH)	1 0 73-74	$-N=C(CH_3)_2$ 0 $48-52$	Н 0 114-117	69 - 1 9 0 H	-N=C(CH ₃) ₂ 0 1, 10 (d ₁ 6H), 1, 48 (S ₁ 9H), 2, 02 und 2, 12 (2S ₁ 6H), 2, 70(m;1H), 5, 34 und 5, 41((2S;2H), 8, 36 (bS;1H, NH)	-v=c(cH ₃) ₂ 0 78-82	Methyl 0 1,12 {d;6H}, 1,48 (S;9H), 2,66 {m;1H}, 3,90 (2s;2H), 8,50 {bs;1H,NH}	Methyl 0 0,60-0,94 (m;4H) 1,11 (d;6H), 2,64 (m;1H), 3,00 (m;1H(s;3,88 (s;3H),5,24 und 5,39 (2s;2H), 8,87 (6s;1H,NH)	(HE'-3) /0 E (ME'-PF) 30 1 (M'-3M) 3 0/ (E'-3H)
35			tertButyl	-с(сн₃) 2с≡сн	Cyclopropyl	Cyclopropyl	tertButyl	tertButyl	tertButyl	tertButyl	tertButyl :	Cyclopropyl	
		æ	=	=	=	x	×	I	=	I	Ŧ	· .	
45 .	Tabelle 6 (Fortsetzung)	R1'	CH2=C(C2H5)-	CH2=C(C2H5)-	CH,=C(C,H5)-	CH >=C (C 2H5)-	CH ₂ =C(1-C ₃ H ₂)-	E-CH1-CH=CH-	CH2=C(1-C3H7)-	F-CH3-CH-CH-	CH2=C(1-C3H7)-	CH ₂ =C(1-C ₃ H ₇)-	
55	Tabelle	Z.	6.12	6.13	6.14	6.15	6.16	6.17	6.18	5	6.20	6.21	

5	-			(250 MHz,			•
10				Fp. [°C]/ ¹ H-NMR (250 MHz, CDCl ₃), Ø in ppm	97- 99	152-154	58- 61
15			rR5)	СОС1			
20				>	0	0	0
			1b (R ² = CO-YR ⁵)	×	0	0	o .
25							2
30		*	- CO-N-R3	. & 	Methyl	=	-N-C (CH 3) 2
35 .		į	R5YOC	-	tertButyl	EButyl	Buty I
40	•		٠.	R 4	ter	ter	
				R3	I	I :	c
45 50		7	·	. R1	Methyl	Methy!	
		Tabelle 7		ř.		7.03	

Anwendungsbeispiele

Die herbizide Wirkung der Carbonsäureamide der Formeln la', lb', lc' und ld ließ sich durch Gewächshausversuche zeigen:

Als Kulturgefäße dienten Plastikblumentöpfe mit lehmigem Sand mit etwa 3,0 % Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.

Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern und anschließend mit durchsichtigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde.

Zum Zwecke der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bei einer Wuchshöhe von 3 bis 15 cm mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 1,0 kg/ha a.S.

Die Pflanzen wurden artenspezifisch bei Temperaturen von 10-25 °C bzw. 20-35 °C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.

Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf.

Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:

Lateinischer Name	Deutscher Name
Cassia tora Chenopodium album Chrysanthemum coronarium Ipomoea spp. Polygonum persicaria Stellaria media Triticum aestivum	- Weißer Gänsefuß Kronenwucherblume Prunkwindearten Flohknöterich Vogelsternmiere Winterweizen

Mit 1,0 kg/ha a.S. im Nachauflaufverfahren eingesetzt, lassen sich mit den Verbindungen 3.002, 3.005, 3.006, 3.008, 3.016, 3.017, 3.018, 3.019, 3.020, 3.023, 3.028, 3.029, 3.037, 3.052, 3.053, 6.04, 6.05, 6.06 und 6.08 breitblättrige unerwünschte Pflanzen sehr gut bekämpfen. Die Carbonsäureamide 3.006, 3.016 bis 3.020, 3.028, 3.029, 3.037, 3.052, 3.053, 6.04, 6.05, 6.06 und 6.08 sind gleichzeitig verträglich für Gramineen-Kulturen wie Weizen, Mais und Reis.

Ansprüche

5

20

25

30

35

40

1. Carbonsäureamide der Formeln la, lb, lc und ld

in denen die Variablen folgende Bedeutung haben:

X Sauerstoff oder Schwefel;

R¹ - Wasserstoff, Halogen, C1-C6-Alkyl, welches ein bis fünf Halogenatome und/oder einen Cyanorest und/oder bis zu zwei der folgenden Reste tragen kann: C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, C1-C4-Alkylthio oder partiell oder vollständig halogeniertes C1-C4-Alkylthio;

- eine C₁-C₄-Alkoxy- oder C₁-C₄-Alkylthiogruppe, eine partiell oder vollständig halogenierte C₁-C₄-Alkoxy-

gruppe, eine partiell oder vollständig halogenierte C1-C4-Alkylthiogruppe;

- die Benzylgruppe, die ein- bis dreimal durch C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Halogen, Cyano oder Nitro substituiert sein kann;
- die Phenylgruppe, welche noch einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, Halogen, C₁-C₆-Alkyl, partiell oder vollständig halogeniertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, partiell oder vollständig halogeniertes C₁-C₆-Alkylthio und/oder partiell oder vollständig halogeniertes C₁-C₆-Alkylthio; die Phenoxy- oder die Phenylthiogruppe, wobei beide Gruppen ein- bis dreimal durch C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Halogen, Cyano oder Nitro substituiert sein können;
 - ein 5- bis 6-gliedriger gesättigter oder aromatischer heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein oder zwei der folgenden Substituenten tragen kann: Halogen, C₁-C₃-Alkyl, C₁-C₃-Alkoxy und C₁-C₃-Alkoxycarbonyl;
 - eine durch C₃-C₈-Cycloalkyl substituierte C₁-C₆-Alkylgruppe,
 - eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C₂-C₆-Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C₁-C₃-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio, die beide unsubstituiert oder partiell oder vollständig halogeniert sein können.
 - eine C_3 - C_8 -Cycloalkyl- oder eine C_3 - C_6 -Cycloalkenylgruppe, wobei beide Gruppen ein- bis dreimal durch C_1 - C_4 -Alkyl oder Halogen substituiert sein können;
 - R1' eine durch C3-C8-Cycloalkyl substituierte C1-C6-Alkylgruppe;
- 25 eine C₂-C₆-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C₂-C₅-Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C₁-C₃-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C₁-C₄-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio, die beide unsubstituiert oder partiell oder vollständig halogeniert sein können;
 - eine C₃-C₆-Cycloalkenylgruppe, die ein- bis dreimal durch Halogen oder C₁-C₄-Alkyl substituiert sein kann;
 - R² eine Formylgruppe, eine 4,5-Dihydrooxazol-2-ylgruppe,
 - ein Rest COYR⁵ oder CONR⁶R⁷, wobei die Variablen die folgende Bedeutung haben:
- 35 Y Sauerstoff oder Schwefel;
 - R5 Wasserstoff;
 - eine C_1 - C_6 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder bis zu drei Hydroxy- und/oder C_1 - C_4 -Alkoxygruppen und/oder einen der folgenden Reste tragen kann:
 - Cyano,
- o C1-C4-Alkoxy-C2-C4-alkoxy,
 - C₁-C₃-Alkylthio,
 - C₁-C₃-Alkylamino, Di-(C₁-C₃)-alkylamino, C₃-C₅-Cycloalkylamino oder Di-(C₃-C₅)-cycloalkylamino,
 - Trimethylsilyi,
- C₁-C₃-Alkylsulfinyl oder C₁-C₃-Alkylsulfonyl, Carboxyl, C₁-C₃-Alkoxycarbonyl, C₁-C₃-Alkoxycarbonyl-C₁-C₅-Alkoxycarbonyl, C₁-C₃-Alkoxycarbonyl-C₁-C₃-Alkoxycarbonyl,
 - Di-(C₁-C₃)-alkylaminocarbonyl,
 - Di-(C₁-C₃)-alkoxyphosphonyl,
 - C1-C6-Alkaniminoxy oder C5-C6-Cycloalkaniminoxy,
 - N-Phthalimido, N-Succinimido, Benzyloxy, Benzoyl, wobei diese cyclischen Reste zusätzlich eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy,
 - einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest oder einen 5- oder 6-gliedrigen heteroaromatischen Rest mit Jeweils bis zu 3 Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt benachbart sein können und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl:
 - Phenyl, das noch bis zu drei der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy;

- einen Rest -CR10 = N-R11, wobei R10 und R11 die folgende Bedeutung haben:
- R10 Wasserstoff oder C1-C6-Alkyl und
- R11 C1-C6-Alkoxy, C3-C6-Alkenyloxy oder C3-C6-Alkinyloxy, die jeweils bis zu 3 Halogenatome und/oder einen Phenylrest mit gewünschtenfalls bis zu drei der folgenden Reste tragen können: Halogen, Nitro,
- Cvano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy;
 - Phenoxy, das noch bis zu drei der folgenden Substituenten tragen kann:
 - Halogen, Nitro, Cyano, C1-C3-Alkyl oder C1-C3-Alkoxy;
 - C1-C6-Alkylamino, Di-(C1-C6)-alkylamino oder Phenylamino, wobei der Aromat zusätzlich bis zu drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano, C1-C3-Alkyl oder C1-C3-Alkoxy;
- C3-C8-Cycloalkyl;
 - C3-C6-Alkenyl, C5-C6-Cycloalkenyl, C3-C6-Alkinyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy, Halogen, C1-C4-Alkoxy oder Phenyl, wobei der Aromat seinerseits eine bis drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C1-C4-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
- Phenyl, das eine bis drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C1-C4-Alkyl, partiell oder vollständig halogeniertes C1-C4-Alkyl, C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy oder C1-C4-Alkoxycarbonyl;
 - einen fünf- oder sechsgliedrigen heterocyclischen Rest mit bis zu drei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt benachbart sein können, und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C1-C3-Alkoxy oder C1-C3-Alkoxycarbonyl;
 - einen Benzotriazolrest;
 - N-Phthalimido, Tetrahydrophthalimido, Succinimido, Maleinimido;
 - die 2,2-Dimethyl-1,3-dioxolan-4-ylmethyl- oder 1,3-Dioxolan-2-on-4-ylmethylgruppe;
- im Falle Y = O: ein Äquivalent eines Kations aus der Gruppe der Alkali- und Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und mit bis zu 4 C₁-C₃-Alkylgruppen substituiertes Ammonium; oder
 - ein Rest -N = CR8R9, wobei
 - R8, R9 Wasserstoff; C1-C4-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann und einen C1-C3-Alkoxy-oder Phenylrest tragen kann, wober der aromatische Rest seinerseits noch ein- bis dreimal durch Halogen, Nitro, Cyano, C1-C3-Alkyl, partiell oder vollständig halogeniertes C1-C3-Alkyl, C1-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy substituiert sein kann; C₃-C₆-Cycloalkyl; C1-C4-Alkoxy; Furanyl oder Phenyl, das zusätzlich bis zu 3 der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C1-C3-Alkyl, partiell oder vollständig halogeniertes C1-C3-Alkyl, C1-C3-Alkoxy oder partiell oder vollständig halogeniertes C1-C3-Alkoxy; oder R8 und R9 gemeinsam eine Methylenkette mit 4 bis 7 Gliedern bedeuten;
 - einen Rest -W-Z, wobei W eine C2-C4-Alkylenkette, eine Ethoxyethylenkette, eine But-2-enylen- oder eine But-2-inylenkette bedeutet und Z einen in ω-Stellung an W gebundenen Molekülteil, der den gleichen Molekülteil darstellt, der in α-Stellung von W mit W verknüpft ist, bedeutet;
- R6 Wasserstoff, C1-C6-Alkyl oder C3-C8-Cycloalkyl und
 - R^7 Wasserstoff, C_1 - C_6 -Alkyl, -C(OR¹²) = N-H oder -C(OR¹²) = N-(C_1 - C_4)-alkyl, wobei R^{12} C_1 - C_4 -Alkyl bedeutet oder
 - R⁶,R⁷ gemeinsam eine Methylenkette mit 4 oder 5 Gliedern;
 - R3 Wasserstoff;
- C1-C6-Alkyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C1-C4-Alkoxy, C_1 - C_4 -Alkylthio oder Di- $(C_1$ - $C_4)$ -alkylamino;
 - C₃-C₈-Cycloalkyl, das ein- bis dreimal durch Halogen, C₁-C₄-Alkyl und partiell oder vollständig halogeniertes C1-C4-Alkyl substituiert sein kann;
 - R4 Wasserstoff, Hydroxyl, eine C1-C4-Alkoxygruppe;
- 50 eine C₁-C₆-Alkylgruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, C1-C4-Alkylthio, partiell oder vollständig halogeniertes C1-C4-Alkylthio, Di-C1-C4-alkylamino, C3-C8-Cycloalkyl oder Phenyl, wobei der Phenylring seinerseits einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, Nitro, C1-C4-Alkyl, partiell oder vollständig halogeniertes C1-C4-Alkyl, C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, 55 C₁-C₄-Alkylthio oder partiell oder vollständig halogeniertes C₁-C₄-Alkylthio;
- eine C₃-C₈-Cycloalkylgruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano, C1-C6-Alkyl, partiell oder vollständig halogeniertes C1-C6-Alkyl, C1-C4-Alkoxy oder partiell oder vollständig halogeniertes C1-C4-Alkoxy;

EP 0 418 667 A2

- eine C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe, die jeweils ein- bis dreimal durch Halogen und/oder einmal durch Phenyl substituiert sein können, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;
- eine Di-(C₁-C₄)-alkylaminogruppe;
 - ein 5- bis 6-gliedriger heterocyclischer gesättigter oder aromatischer Rest mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann;
- eine Phenylgruppe, die eine bis vier der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Nitro, Cyano, Formyl, C₁-C₄-Alkanoyl, C₁-C₄-Halogenalkanoyl oder C₁-C₄-Alkoxycarbonyl;
 - eine Naphthylgruppe, die ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann; oder
- R³, R⁴ gemeinsam eine Methylenkette mit 4 bis 7 Gliedern, welche durch Sauerstoff, Schwefel oder N-5 Methyl unterbrochen sein kann, oder den Rest -(CH₂)₃-CO-,
 - wobei im Falle der Verbindungen la bis Ic R3 und R4 nicht gleichzeitig Wasserstoff bedeuten, wenn
 - R¹ Wasserstoff, Methyl oder Phenyl und R² CONH2, CO2H oder CO2CH3 bedeuten oder wenn
 - X Sauerstoff, R¹ CH(OCH₂CH₃)₂ und R² CONH₂ bedeuten, sowie deren umweltverträglichen Salze.
- 20 2. Carbonsäureamide der Formeln la. lb. lc. ld nach Anspruch 1, wobei R3 Wasserstoff bedeutet.
 - 3. Carbonsäureamide der Formeln la, lb, lc nach Anspruch 1, in denen
 - R¹ Wasserstoff, C1-C4-Alkyl oder C3-C6-Cycloalkyl;
 - R2 COYR5, wobei Y für Sauerstoff und R5 für Wasserstoff oder den Rest -N = CR8R9 stehen, wobei
 - R⁸, R⁹ dabei unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl und C₃-C₆-Cycloalkyl bedeuten oder zusammen eine C₄-Cȝ-Alkylenkette bilden;
 - R3 Wasserstoff und
 - R⁴ C₁-C₄-Alkyl oder C₃-C₈-Cycloalkyl
 - bedeuten.
 - 4. Carbonsäureamide der Formel la nach den Ansprüchen 1 bis 3.
- 5. Verfahren zur Herstellung der Verbindungen la und lb gemäß Anspruch 1, in denen R² CO₂CH₃ und X Sauerstoff bedeutet, dadurch gekennzeichnet, daß man das Hydroxamsäurechlorid der Formel II

in an sich bekannter Weise in Gegenwart einer Base mit einem β-Ketoester der Formel III

umsetzt, den so erhaltenen Dimethyldiester IV

anschließend zunächst mit einem Äquivalent einer wäßrigen Base zu den Monoestern Va und Vb

35

40

45

hydrolysiert und Va und Vb danach getrennt oder im Gemisch zuerst in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt und diese Derivate anschließend mit einem substituierten Amin der Formel Vla

HNR³R⁴ Via amidiert.

5

20

25

35

40

45

50

55

6. Verfahren zur Herstellung der Verbindungen la gemäß Anspruch 1, in denen R^2 CO_2R^5 , X Sauerstoff und R^5 nicht Wasserstoff oder Methyl bedeuten, dadurch gekennzeichnet, daß man das Hydroxamsäurechlorid II in an sich bekannter Weise in Gegenwart einer Base mit einem β -Ketoester der Formel IIIa

umsetzt, den so erhaltenen Diester IVa

$$H_3CO-CO$$
 $\downarrow I$
 $\downarrow I$

anschließend mit einem Verseifungsreagens zum Monoester Va

hydrolysiert, Va in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt und diese Derivate anschließend mit einem substituierten Amin Vla amidiert.

7. Verfahren zur Herstellung der Verbindungen la und Ic gemäß Anspruch 1, in denen R¹ nicht Wasserstoff und R² Carboxyl oder Formyl und R³ Wasserstoff bedeuten, dadurch gekennzeichnet, daß man eine Carbonsäure Vc oder Vd

in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt, diese Derivate mit einem substituierten Amin VIa amidiert und das so erhaltene Amid VIIa bzw. VIIb

anschließend in an sich bekannter Weise in Gegenwart einer Base mit einem Carboxylierungs- oder einem Formylierungsreagens umsetzt.

8. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R² eine Carboxyl-

gruppe und X Schwefel bedeutet, dadurch gekennzeichnet, daß man ein Isothiazoldicarbonsäureanhydrid VIII

in an sich bekannter Weise mit einem Amin VIa zu den Isomeren la und Ib umsetzt und anschließend die Isomeren trennt.

9. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id gemäß Anspruch 1, in denen R² CO₂H bedeutet, dadurch gekennzeichnet, daß man einen entsprechenden Ester Ia, Ib, Ic oder Id, in dem R² CO₂R⁵ und R⁵ C₁-C₄-Alkyl bedeutet, in an sich bekannter Weise in Gegenwart einer wäßrigen Base hydrolysiert.

10. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id gemäß Anspruch 1, in denen R² eine Gruppe COYR⁵ oder CONR⁶R७ bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure Ia, Ib, Ic bzw. Id (R²=CO₂H) zunächst in an sich bekannter Weise in die Halogenide oder andere aktivierte Derivate der Carbonsäuren überführt und diese Derivate anschließend in an sich bekannter Weise mit einer Verbindung IX

HYR⁵ IX

5

oder mit einem Amin VIb

HNR⁶ R⁷ VIb

derivatisiert.

11. Verfahren zur Herstellung der Verbindungen la, lb, lc und ld gemäß Anspruch 1, in denen R² 4,5-Dihydrooxazol-2-yl bedeutet, dadurch gekennzeichnet, daß man ein Carbonsäureamid der Formel la, lb, lc oder ld gemäß Anspruch 1, in der R² eine Gruppe CO₂H oder CO₂R⁵ und R⁵ C₁-C₄-Alkyl bedeuten, in an sich bekannter Weise mit einem Aminoalkohol XV

$$H_2N$$
 OH XV

cvclisiert.

30 --

12. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id gemäß Anspruch 1, in denen R² Formyl bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure der Formel Ia, Ib, ic oder Id (R² = CO₂H) in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt und dieses Derivat anschließend in an sich bekannter Weise reduziert.

13. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id gemäß Anspruch 1, in denen R¹ bzw. R¹ eine epoxidierte C₂-C₆-Alkenylgruppe bedeutet, dadurch gekennzeichnet, daß man ein Carbonsäureamid der Formel Ia, Ib, Ic oder Id gemäß Anspruch 1, wobei R¹ bzw. R¹ eine C₂-C₆-Alkenylgruppe bedeutet, in an sich bekannter Weise mit einem Oxidationsmittel epoxidiert.

14. Mittel, enthaltend inerte Trägerstoffe und eine herbizid wirksame Menge mindestens eines Carbonsäureamides der Formel Ia, Ib, Ic oder Id gemäß den Ansprüchen 1 bis 4.

15. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge eines Carbonsäureamids der Formel Id gemäß Anspruch 1 oder eines Carbonsäureamids der Formel Ia', Ib' oder Ic', wobei Ia', Ib' und Ic' die Bedeutung von Ia, Ib bzw. Ic ohne die Ausnahmebestimmung hat, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.

16. Iminoalkohole der allgemeinen Formel XVI

 $HO-(C_1-C_6)-alkyl-CR^{10}=N-R^{11}$ XVI

in der die Substituenten R¹⁰ und R¹¹ die in Anspruch 1 genannte Bedeutung haben.

Patentansprüche für folgenden Vertragsstaat: ES

1. Mittel, enthaltend inerte Trägerstoffe und eine herbizid wirksame Menge mindestens eines Carbonsäureamides der Formel la, lb, lc oder ld

- in denen die Variablen folgende Bedeutung haben:
 - X Sauerstoff oder Schwefel;

- R¹ Wasserstoff, Halogen, C1-C6-Alkyl, welches ein bis fünf Halogenatome und/oder einen Cyanorest und/oder bis zu zwei der folgenden Reste tragen kann: C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, C1-C4-Alkylthio oder partiell oder vollständig halogeniertes C1-C4-Alkylthio;
- eine C1-C4-Alkoxy- oder C1-C4-Alkylthiogruppe, eine partiell oder vollständig halogenierte C1-C4-Alkoxygruppe, eine partiell oder vollständig halogenierte C1-C4-Alkylthiogruppe;
- die Benzylgruppe, die ein- bis dreimal durch C1-C4-Alkyl, partiell oder vollständig halogeniertes C1-C4-Alkyl, C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, C1-C4-Alkylthio, partiell oder vollständig halogeniertes C1-C4-Alkylthio, Halogen, Cyano oder Nitro substituiert sein kann;
- die Phenylgruppe, welche noch einen bis drei der folgenden Reste tragen kann: Cyano, Nitro, Halogen, C1-C6-Alkyl, partiell oder vollständig halogeniertes C1-C6-Alkyl, C1-C6-Alkoxy, partiell oder vollständig halogeniertes C₁-C₆-Alkoxy, C₁-C₆-Alkylthio und/oder partiell oder vollständig halogeniertes C₁-C₆-Alkylthio;
- die Phenoxy- oder die Phenylthiogruppe, wobei beide Gruppen ein- bis dreimal durch C1-C4-Alkyl, partiell oder vollständig halogeniertes C1-C4-Alkyl, C1-C4-Alkoxy, partiell oder vollständig halogeniertes C1-C4-Alkoxy, C1-C4-Alkylthio, partiell oder vollständig halogeniertes C1-C4-Alkylthio, Halogen, Cyano oder Nitro
- substituiert sein können;
 - ein 5- bis 6-gliedriger gesättigter oder aromatischer heterocyclischer Rest, enthaltend ein oder zwei Heteroatome, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein oder zwei der folgenden Substituenten tragen kann: Halogen, C1-C3-Alkyl, C1-C3-Alkoxy und C1-C3-Alkoxycarbonyl;
 - eine durch C3-C8-Cycloalkyl substituierte C1-C6-Alkylgruppe,
 - eine C_2 - C_6 -Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C_2 - C_6 -Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C1-C3-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C1-C4-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann, C1-C4-Alkoxy oder C1-C4-Alkylthio, die beide unsubstituiert oder partiell oder vollständig halogeniert sein können,
 - eine C₃-C₈-Cycloalkyl- oder eine C₃-C₆-Cycloalkenylgruppe, wobei beide Gruppen ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein können;
 - R¹ eine durch C₃-C₅-Cycloalkyl substituierte C₁-C₅-Alkylgruppe;
- eine C2-C6-Alkenylgruppe, deren Doppelbindung epoxidiert sein kann, oder eine C2-C6-Alkinylgruppe, wobei beide Gruppen ein- bis dreimal durch Halogen, C1-C3-Alkoxy und/oder einmal durch Cyclopropyl oder Phenyl substituiert sein können, wobei der Phenylrest zusätzlich bis zu drei der folgenden Substituenten tragen kann: Halogen, Cyano, Nitro, C1-C4-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann, C₁-C₄-Alkoxy oder C₁-C₄-Alkylthio, die beide unsubstituiert oder partiell oder vollständig halogeniert sein können;
 - eine C₃-C₆-Cycloalkenylgruppe, die ein- bis dreimal durch Halogen oder C₁-C₄-Alkyl substituiert seln
 - R² eine Formylgruppe, eine 4,5-Dihydrooxazol-2-ylgruppe,
 - ein Rest COYR⁵ oder CONR⁶R⁷, wobei die Variablen die folgende Bedeutung haben:
- Y Sauerstoff oder Schwefel;
 - R5 Wasserstoff;
 - eine C_1 - C_6 -Alkylgruppe, welche ein bis fünf Halogenatome und/oder bis zu drei Hydroxy- und/oder C_1 - C_4 -Alkoxygruppen und/oder einen der folgenden Reste tragen kann:
- C1-C4-Alkoxy-C2-C4-alkoxy,
 - C1-C3-Alkylthio,
 - C₁-C₃-Alkylamino, Di-(C₁-C₃)-alkylamino, C₃-C₆-Cycloalkylamino oder Di-(C₃-C₆)-cycloalkylamino,
 - Trimethylsilyl,

EP 0 418 667 A2

- C₁-C₃-Alkylsulfinyl oder C₁-C₃-Alkylsulfonyl, Carboxyl, C₁-C₃-Alkoxycarbonyl, C₁-C₃-Alkoxycarbonyl-C₁-C₃-alkoxy-C₁-C₃
- Di-(C₁-C₃)-alkylaminocarbonyl,
- Di-(C1-C3)-alkoxyphosphonyl,
- C₁-C₆-Alkaniminoxy oder C₅-C₆-Cycloalkaniminoxy,
 - N-Phthalimido, N-Succinimido, Benzyloxy, Benzoyl, wobei diese cyclischen Reste zusätzlich eine bis drei der folgenden Gruppen tragen können: Halogen, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy,
- einen 5- oder 6-gliedrigen gesättigten heterocyclischen Rest oder einen 5- oder 6-gliedrigen heteroaromatischen Rest mit jeweils bis zu 3 Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und
 Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt benachbart sein können und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;
- Phenyl, das noch bis zu drei der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkoxy;
 - einen Rest -CR¹⁰ = N-R¹¹, wobei R¹⁰ und R¹¹ die folgende Bedeutung haben:

R¹⁰ Wasserstoff oder C₁-C₆-Alkyl und

- R¹¹ C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C₃-C₆-Alkinyloxy, die jeweils bis zu 3 Halogenatome und/oder einen Phenylrest mit gewünschtenfalls bis zu drei der folgenden Reste tragen können: Halogen, Nitro, Cyano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy;
- Phenoxy, das noch bis zu drei der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy;
- C₁-C₃-Alkylamino, Di-(C₁-C₅)-alkylamino oder Phenylamino, wobei der Aromat zusätzlich bis zu drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl oder C₁-C₃-Alkoxy;
- 5 C₃-C₈-Cycloalkyl;
 - C₃-C₆-Alkenyl, C₅-C₆-Cycloalkenyl, C₃-C₆-Alkinyl, wobei diese Reste eine der folgenden Gruppen tragen können: Hydroxy, Halogen, C₁-C₄-Alkoxy oder Phenyl, wobei der Aromat seinerseits eine bis drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy;
- Phenyl, das eine bis-drei der folgenden Gruppen tragen kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy oder C₁-C₄-Alkoxycarbonyl;
 - einen fünf- oder sechsgliedrigen heterocyclischen Rest mit bis zu drei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, wobei zwei Sauerstoff- und/oder Schwefelatome nicht direkt
 benachbart sein können, und wobei die Heterocyclen noch einen oder zwei der folgenden Substituenten tragen können: Halogen, C₁-C₃-Alkoxy oder C₁-C₃-Alkoxycarbonyl;
 - einen Benzotriazolrest;
 - N-Phthalimido, Tetrahydrophthalimido, Succinimido, Maleinimido;
 - die 2,2-Dimethyl-1,3-dioxolan-4-ylmethyl- oder 1,3-Dioxolan-2-on-4-ylmethylgruppe;
 - im Falle Y = O: ein Äquivalent eines Kations aus der Gruppe der Alkali- und Erdalkalimetalle, Mangan, Kupfer, Eisen, Ammonium und mit bis zu 4 C₁-C₃-Alkylgruppen substituiertes Ammonium; oder
 - ein Rest -N = CR8R9, wobei
 - R⁸, R⁹ Wasserstoff; C₁-C₄-Alkyl, das unsubstituiert oder partiell oder vollständig halogeniert sein kann und einen C₁-C₃-Alkoxy-oder Phenylrest tragen kann, wobei der aromatische Rest seinerseits noch ein- bis dreimal durch Halogen, Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkoxy substituiert sein kann; C₃-C₆-Cycloalkyl; C₁-C₄-Alkoxy; Furanyl oder Phenyl, das zusätzlich bis zu 3 der folgenden Substituenten tragen kann: Halogen, Nitro, Cyano, C₁-C₃-Alkyl, partiell oder vollständig halogeniertes C₁-C₃-Alkyl, C₁-C₃-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₃-Alkyl, oder R⁸ und R⁹ gemeinsam eine Methylenkette mit 4 bis 7 Gliedern bedeuten;
 - einen Rest -W-Z, wobei W eine C₂-C₄-Alkylenkette, eine Ethoxyethylenkette, eine But-2-enylen- oder eine But-2-inylenkette bedeutet und Z einen in ω-Stellung an W gebundenen Molekülteil, der den gleichen Molekülteil darstellt, der in α-Stellung von W mit W verknüpft ist, bedeutet;
 - Fig. 15 Re Wasserstoff, C1-C6-Alkyl oder C3-C8-Cycloalkyl und
 - R^7 Wasserstoff, C_1 - C_6 -Alkyl, -C(OR¹²) = N-H oder -C(OR¹²) = N-(C_1 - C_4)-alkyl, wobei R^{12} C_1 - C_4 -Alkyl bedeutet oder
 - R⁶,R⁷ gemeinsam eine Methylenkette mit 4 oder 5 Gliedern;

R3 - Wasserstoff;

- C₁-C₆-Alkyl, das einen bis drei der folgenden Substituenten tragen kann: Hydroxy, Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio oder Di-(C₁-C₄)-alkylamino;
- C₃-C₈-Cycloalkyl, das ein- bis dreimal durch Halogen, C₁-C₄-Alkyl und partiell oder vollständig halogeniertes C₁-C₄-Alkyl substituiert sein kann;
- R4 Wasserstoff, Hydroxyl, eine C1-C4-Alkoxygruppe;
- eine C₁-C₆-Alkylgruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio, Di-C₁-C₄-alkylamino, C₃-C₈-Cycloalkyl oder Phenyl, wobei der Phenylring seinerseits einen bis drei der folgenden Reste tragen kann: Halogen, Cyano, Nitro; C₁-C₄-Alkyl, partiell oder vollständig halogeniertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, partiell oder vollständig halogeniertes C₁-C₄-Alkylthio;
- eine C₃-C₈-Cycloalkyigruppe, die einen bis drei der folgenden Reste tragen kann: Halogen, Nitro, Cyano, C₁-C₆-Alkyl, partiell oder vollständig halogeniertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy oder partiell oder vollständig halogeniertes C₁-C₄-Alkoxy;
- eine C₃-C₆-Alkenyl- oder C₃-C₆-Alkinylgruppe, die jeweils ein- bis dreimal durch Halogen und/oder einmal durch Phenyl substituiert sein können, wobei der Phenylrest seinerseits eine bis drei der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Cyano oder Nitro;
- 20 eine Di-(C₁-C₄)-alkylaminogruppe;
 - ein 5- bis 6-gliedriger heterocyclischer gesättigter oder aromatischer Rest mit einem oder zwei Heteroatomen, ausgewählt aus der Gruppe Sauerstoff, Schwefel und Stickstoff, der ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann;
- eine Phenylgruppe, die eine bis vier der folgenden Gruppen tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, Halogen, Nitro, Cyano, Formyl, C₁-C₄-Alkanoyl, C₁-C₄-Halogenalkanoyl oder C₁-C₄-Alkoxycarbonyl;
 - eine Naphthylgruppe, die ein- bis dreimal durch C₁-C₄-Alkyl oder Halogen substituiert sein kann; oder
 - R³, R⁴ gemeinsam eine Methylenkette mit 4 bis 7 Gliedern, welche durch Sauerstoff, Schwefel oder N-Methyl unterbrochen sein kann, oder den Rest -(CH₂)₃-CO-,
 - wobei im Falle der Verbindungen la bis lc R³ und R⁴ nicht gleichzeitig Wasserstoff bedeuten, wenn R¹ Wasserstoff, Methyl oder Phenyl und R² CONH₂, CO₂H oder CO₂CH₃ bedeuten oder wenn
 - X Sauerstoff, R¹ CH(OCH₂CH₃)₂ und R² CONH₂ bedeuten,
 - sowie deren umweltverträglichen Salze.
- Mittel, enthaltend inerte Trägerstoffe und eine herbizid wirksame Menge mindestens eines Carbonsäureamides der Formel Ia, Ib, Ic oder Id nach Anspruch 1, wobei R³ Wasserstoff bedeutet.
 - 3. Mittel, enthaltend inerte Trägerstoffe und eine herbizid wirksame Menge mindestens eines Carbonsäureamides der Formel Ia, Ib oder Ic nach Anspruch 1, wobei die Variablen die folgende Bedeutung haben: R¹ Wasserstoff, C₁-C₄-Alkyl oder C₃-C₆-Cycloalkyl;
- R² COYR⁵, wobei Y für Sauerstoff und R⁵ für Wasserstoff oder den Rest -N = CR⁸R⁹ stehen, wobei R⁸, R⁹ dabei unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl und C₃-C₆-Cycloalkyl bedeuten oder zusammen eine C₄-C₇-Alkylenkette bilden;
 - R³ Wasserstoff und R⁴ C₁-C₄-Alkyl oder C₃-C₈-Cycloalkyl.

50

- Mittel, enthaltend inerte Trägerstoffe und eine herbizid wirksame Menge mindestens eines Carbonsäureamides der Formel la gemäß den Ansprüchen 1 bis 3.
 - 5. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R² CO₂CH₃ und X Sauerstoff bedeutet, dadurch gekennzeichnet, daß man das Hydroxamsäurechlorid der Formel II

H₃CO-CO C1 II

in an sich bekannter Weise in Gegenwart einer Base mit einem eta-Ketoester der Formel III

III

umsetzt, den so erhaltenen Dimethyldiester IV

I۷

10

15

anschließend zunächst mit einem Äquivalent einer wäßrigen Base zu den Monoestern Va und Vb

Vh

hydrolysiert und Va und Vb danach getrennt oder im Gemisch zuerst in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt und diese Derivate anschließend mit einem substituierten Amin der Formel Vla

HNR³R⁴ Vla

amidiert.

6. Verfahren zur Herstellung der Verbindungen la gemäß Anspruch 1, in denen R² CO₂R⁵, X Sauerstoff und R⁵ nicht Wasserstoff oder Methyl bedeuten, dadurch gekennzeichnet, daß man das Hydroxamsäurechlorid II in an sich bekannter Weise in Gegenwart einer Base mit einem β-Ketoester der Formel IIIa

CO2

IIIa

umsetzt, den so erhaltenen Diester IVa

35

30

IVa

anschließend mit einem Verseifungsreagens zum Monoester Va

۷a'

45

55

hydrolysiert, Va' in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt und diese Derivate anschließend mit einem substituierten Amin Vla amidiert.

7. Verfahren zur Herstellung der Verbindungen la und Ic gemäß Anspruch 1, in denen R¹ nicht Wasserstoff und R² Carboxyl oder Formyl und R³ Wasserstoff bedeuten, dadurch gekennzeichnet, daß man eine Carbonsäure Vc oder Vd

R1 1 C00

V

Vd

in an sich bekannter Weise in die Halogenide oder andere aktivierte Formen der Carbonsäuren überführt,

diese Derivate mit einem substituierten Amin VIa amidiert und das so erhaltene Amid VIIa bzw. VIIb

anschließend in an sich bekannter Weise in Gegenwart einer Base mit einem Carboxylierungs- oder einem Formylierungsreagens umsetzt.

8. Verfahren zur Herstellung der Verbindungen la und Ib gemäß Anspruch 1, in denen R2 eine Carboxylgruppe und X Schwefel bedeutet, dadurch gekennzeichnet, daß man ein Isothiazoldicarbonsäureanhydrid VIII

in an sich bekannter Weise mit einem Amin VIa zu den Isomeren la und Ib umsetzt und anschließend die

9. Verfahren zur Herstellung der Verbindungen Ia, Ib, Ic und Id gemäß Anspruch 1, in denen R2 CO2H bedeutet, dadurch gekennzeichnet, daß man einen entsprechenden Ester la. Ib, lc oder ld, in dem R2 CO₂R⁵ und R⁵ C₁-C₄-Alkyl bedeutet, in an sich bekannter Weise in Gegenwart einer wäßrigen Base hydrolysiert.

10. Verfahren zur Herstellung der Verbindungen la, lb, lc und ld gemäß Anspruch 1, in denen R2 eine Gruppe COYR5 oder CONR6R7 bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure la, lb, lc bzw. ld (R2=CO2H) zunächst in an sich bekannter Weise in die Halogenide oder andere aktivierte Derivate der Carbonsäuren überführt und diese Derivate anschließend in an sich bekannter Weise mit einer Verbindung IX

HYR⁵ lΧ

5

15

20

35

40

oder mit einem Amin VIb

Vib : HNR6R7

derivatisiert.

11. Verfahren zur Herstellung der Verbindungen la, ib, lc und ld gemäß Anspruch 1, in denen R² 4,5-Dihydrooxazol-2-yl bedeutet, dadurch gekennzeichnet, daß man ein Carbonsäureamid der Formel la, lb, lc oder Id gemäß Anspruch 1, in der R2 eine Gruppe CO2H oder CO2R5 und R5 C1-C4-Alkyl bedeuten, in an sich bekannter Weise mit einem Aminoalkohol XV

cyclisiert.

12. Verfahren zur Herstellung der Verbindungen la, Ib, Ic und Id gemäß Anspruch 1, in denen R2 Formyl bedeutet, dadurch gekennzeichnet, daß man eine entsprechende Carbonsäure der Formel la, lb, lc oder ld (R2 = CO₂H) in das Halogenid oder eine andere aktivierte Form der Carbonsäure überführt und dieses Derivat anschließend in an sich bekannter Weise reduziert.

13. Verfahren zur Herstellung der Verbindungen (a, lb, lc und ld gemäß Anspruch 1, in denen R¹ bzw. R¹' eine epoxidierte C2-C6-Alkenylgruppe bedeutet, dadurch gekennzeichnet, daß man ein Carbonsäureamid der Formel Ia, Ib, Ic oder Id gemäß Anspruch 1, wobei R¹ bzw. R¹ eine C₂-C₅-Alkenylgruppe bedeutet, in an sich bekannter Weise mit einem Oxidationsmittel epoxidiert.

14. Verfahren zur Bekämpfung unerwünschten Pflanzenwuchses, dadurch gekennzeichnet, daß man eine herbizid wirksame Menge eines Carbonsäureamids der Formel Id gemäß Anspruch 1 oder eines Carbonsäureamids der Formel la', lb' oder lc', wobei la', lb' und lc' die Bedeutung von la, lb bzw. lc ohne die Ausnahmebestimmung hat, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken läßt.