

REVIEW JURNAL

E-health Application In IoMT Environment Deployed in An Edge And Cloud Computing Platforms

Judul	E-health Application In IoMT Environment Deployed in An Edge And Cloud			
	Computing Platforms			
Nama Jurnal	ScienceDirect Procedia Computer Science			
Volume dan Halaman	246, 1019-1028			
Tahun	2024			
Penulis	Ahlem Ayari (Business Computing Department, Higher Institute of Management of Sousse, Tunisia)			
	2. Hassen Hamdi (Miracl (Multimedia, InfoRmation systems and Advanced			
	Computing Laboratory), FSEGS University of Sfax, Tunisia)			
	3. Khlil Ahmad Alsulbi (Computers Department, College of Engineering and			
	Computers in Al-Qunfodah Umm Al-Qura University, Makka, Saudi)			
Link Download	https://www.sciencedirect.com/science/article/pii/S1877050924025663?via%3Dih			
	<u>ub</u>			
Link Youtube (Hasil Review)	https://www.youtube.com/watch?v=7c2uPr1ueVw			
Reviewer	1. Novar Kurniawan / 241012050023			
	2. Hamartin Putra / 241012050050			
	3. Anton Supriyadi / 241012050044			
Tanggal Reviewer	23 Juni 2025			
Latar Belakang	1. Adanya pandemi penyakit Covid-19 dimana setiap orang harus menjaga			
	jarak antara satu dengan yang lainnya sehingga dunia medis menggunakan			
	teknologi dan telekomunikasi untuk menghasilkan pertumbuhan e-Health			
	dan teknologi lainnya. Dengan adanya aplikasi E-Health sangat membantu			
	Masyarakat dalam mendapatkan informasi dan konsultasi Kesehatan			
	sehingga jumlah data pasien berlipat ganda dan membutuhkan respon			
	realtime, aplikasi IoT yang rumit menggunakan komputasi terdistribusi			
	seperti cloud computing yang berperan besar sebagai sumber daya sesuai			
	permintaan yaitu pemrosesan dan penyimpanan data.			

	2. Banyak aplikasi memiliki masalah besar karena jaringan bandwidth dan
	waktu respon, untuk mengatasi masalah tersebut maka teknologi yang
	cocok adalah <i>Edge Computing</i> .
Permasalahan	Skalabilitas dalam system pemantauan layanan Kesehatan secara realtime dalam
	waktu pengambilan data dan pemakaian komsumsi data yang tinggi.
Tujuan penelitian	1. untuk mengetahui perbedaan antara cloud computing dan edge computing
	2. mengetahui seberapa besar manfaat edge computing dalam menangani
	masalah dalam aplikasi E-health
Sumber data	Platform E-Health
Metode penelitian	

1. Studi Literatur:

o Menganalisis penelitian sebelumnya tentang e-health, cloud computing, dan edge computing (Tabel 2).

References	Topics covered						Focus		
	Securiy	Privacy	Usabilty	Energy efficieny	Low latency	Cost	5G		
Varshney[10]	✓	✓	✓			✓		✓	Infrastructure Reliability
Postolache and al [11]	✓	✓	✓						Sensor and Monitoring Types
Aun, Soh, and al [12]				✓				✓	Material and Antenna Types
Elayan and al [13]	✓		✓					✓	Wearable Device Types
Thakar, Pandya [14]	✓	✓	✓						Monitoring Types
Kumar[15]	✓	✓							Architectures, Sensor Types
AbdElnapi and al [16]			✓						Sensor Types, Use
Baker, Xiang, and al [17]	✓	✓							Architectures, Sensor Types
de Mattos, Gondim [18]	✓			✓	✓			✓	Edge computing, M2M Communications
Mahmoud and al [19]	✓	✓		✓	✓			✓	IoT Technologies, Protocols

2. Pengumpulan Data

Data diambil dari IoMT yang berfungsi untuk mengumpulkan informasi Kesehatan pasien, dan perangkat yang saling terhubung ke berbagai perangkat selama transfer data. Kemudian IoMT mengambil informasi terkait data kesehatan pasien kemudian ditransfer ke *edge computing* untuk pemeriksaan masalah medis pasien.

3. Eksperimen Praktis:

- o Membangun aplikasi e-health berbasis *deep learning* untuk pengenalan audio (menggunakan Pocket Sphinx) dan gambar (menggunakan MXNet).
- o Melakukan uji latensi dengan dua skenario:

• Cloud: AWS dan Azure.

• Edge: AWS Greengrass dan Azure IoT Edge.

4. Analisis Komparatif:

o Membandingkan hasil latensi antara cloud dan edge (Tabel 3 dan 4).

Table 3. Latency analysis (sec) with Clouds

Attempt	Size	Aws	Azure	Average Time
Audio	Trials=English	9.07s	9.10s	9.08s
	Sentences Converted into text,16khz,16 bit			
Image	Trials=breast	73.11s	73.50s	73.30s
	cancer images (224 × 224 ×3)			

Table 4. Latency analysis (sec) with Edges

Attempt	Size	AWS	Azure	Average Time
Audio	Trials=English Sentences Converted into text,16khz,16 bit	0.22s	0.25s	0.23s
Image	Trials=breast cancer images (224 × 224 × 3)	0.9s	0.98s	0.94s

o Visualisasi perbandingan (Gambar 5 dan 6).

Objek penelitian	
Hasil penelitian	

• Temuan Utama:

- Edge computing mengurangi latensi secara signifikan (hingga ~40x lebih cepat untuk audio dan ~78x lebih cepat untuk gambar).
- o AWS sedikit lebih unggul daripada Azure dalam hal latensi, baik di cloud maupun edge.

• Implikasi Praktis:

- o Edge computing dapat meningkatkan responsivitas aplikasi e-health, terutama untuk kasus darurat seperti deteksi jatuh atau analisis gambar medis.
- o Arsitektur hybrid (edge + cloud) direkomendasikan untuk menyeimbangkan kecepatan dan skalabilitas.

Peneliti melakukan eksperimen dengan dua metode melalui cloud computing dan edge computing.

a. Penerapan E-Health di lingkungan *cloud computing* menggunakan AWS/Azure cloud sebagai Solusi penyimpanan, seperti tampak pada gambar dibawah ini

Gambar 2. Aplikasi E-Health menggunakan AWS/Azure cloud di lingkungan IoMT

b. Penerapan E-Health di lingkungan edge computing berbasis Deep Learning

Gambar 3. Aplikasi E-Health di lingkungan edge computing berbasis Deep Learning

Kelebihan penelitian

- Relevansi Topik: Jurnal membahas isu penting dalam bidang kesehatan digital, yaitu penggunaan IoMT (Internet of Medical Things) yang semakin relevan pasca pandemi COVID-19.
- **Metodologi Jelas**: Penulis menggunakan pendekatan komparatif antara komputasi awan dan komputasi tepi, dengan eksperimen yang terstruktur untuk mengukur latensi waktu respons.
- Hasil Eksperimen Menarik: Data menunjukkan bahwa komputasi tepi secara signifikan mengurangi latensi dibandingkan komputasi awan (0,23 detik vs 9,08 detik untuk audio; 0,94 detik vs 73,30 detik untuk gambar).
- **Kontribusi Praktis**: Solusi yang diusulkan dapat diaplikasikan di rumah sakit atau fasilitas kesehatan untuk meningkatkan efisiensi layanan, terutama dalam situasi darurat.
- Referensi Lengkap: Jurnal didukung oleh banyak referensi terkini yang memperkuat argumen penulis.

Kekurangan penelitian

- 1. **Keamanan dan Privasi:** Meskipun disebutkan sebagai tantangan, tidak ada analisis mendalam tentang bagaimana edge computing mengatasi risiko keamanan data medis.
- 2. **Skalabilitas**: Penelitian hanya berfokus pada latensi, tetapi tidak membahas bagaimana edge computing menangani skalabilitas untuk banyak perangkat IoMT secara bersamaan.
- 3. **Dataset Terbatas:** Pengujian hanya menggunakan dataset audio (Tatoeba) dan gambar (ImageNet), yang mungkin tidak mewakili semua skenario medis.
- 4. Biaya Implementasi: Tidak ada pembahasan tentang biaya infrastruktur edge computing dibandingkan cloud.
- 5. **Validasi Klinis:** Hasil eksperimen belum diuji dalam lingkungan rumah sakit nyata atau dengan partisipasi tenaga medis.

Diskusi /

Rekomendasi

• Perluasan Aspek Keamanan:

- o Penelitian selanjutnya bisa mengevaluasi teknik enkripsi atau *federated learning* untuk privasi data di edge.
- o Penerapam Health informatics -Information security management in health using ISO/IEC 27002
- o Penerapam SO/IEC 27001:2022 Information Security Management Systems (ISMS)

• Uji Coba Real-World:

- Mengimplementasikan solusi di rumah sakit atau klinik untuk menguji efektivitas dalam skenario nyata.
- o Adanya terkait kerja sama dengan **rumah sakit, puskesmas, atau institusi kesehatan** agar sistem bisa diuji dan dikembangkan lebih sesuai dengan kebutuhan nyata.

• Analisis Biaya:

 Membandingkan biaya operasional edge vs. cloud untuk membantu pengambilan keputusan institusi kesehatan.

Contoh: Bandingkan biaya **pengadaan perangkat edge** (misal: gateway, mini server, sensor), operasional, pemeliharaan, dan upgrade dengan biaya penggunaan layanan cloud (berbasis langganan atau penggunaan).

o Tampilkan Tabel atau Grafik Perbandingan

Misalnya tabel berisi: biaya per unit, biaya bulanan, kebutuhan tenaga ahli, skalabilitas, dan risiko keamanan.

Integrasi dengan 5G:

o Mengeksplorasi bagaimana 5G dapat meningkatkan kinerja edge computing dalam IoMT.