Contrôle 1

Calculatrice interdite.

Documents interdits (sur tous supports), téléphone, tablette (etc...) interdits.

Durée 1h40.

Vous pouvez toujours admettre le résultat d'une question et l'utiliser dans la suite.

Total /28 qui sera ramené sur 20

Questions de cours

- 1. [2 points] Donner la définition d'un intervalle de \mathbb{R} . Si $a, b \in \mathbb{R}$, montrer que l'ensemble]a, b[est un intervalle.
- 2. [2] Donner la définition précise de la limite (finie) d'une suite. Faire un dessin.
- 3. [2] Soit (u_n) un suite réelle. Supposons qu'il existe N > 0 tel que $\forall n \geq N, \exists l \in [0,1[$ tel que $\left|\frac{u_{n+1}}{u_n}\right| < l$. Montrer que $\lim_{n \to +\infty} (u_n) = 0$.
- 4. [1] Application: Soit a un réel strictement positif. Montrer que $\lim_{n\to+\infty} \left(\frac{a^n}{n!}\right) = 0$.

Exercice 1

On considère la partie de \mathbb{R} suivante :

$$\mathcal{A} = \left\{ (-1)^n + \frac{n+1}{n+2}, \ n \in \mathbb{N} \right\}.$$

- 1. [2] Justifier que les bornes supérieures et inférieures de A existent. Les calculer.
- 2. [1] La borne supérieure est-elle un maximum? L'inférieure un minimum?
- 3. [3] Mêmes questions pour $\mathcal{B} = [\sqrt{2}, 2] \cap \mathbb{Q}$.

Exercice 2

- 1. [2] Étudier la convergence de $u_n = \sqrt{n^3 + n} \sqrt{n^3}$
- 2. [2] Étudier la convergence de $v_n = \frac{1}{\sqrt{n}} + (-1)^n$.
- 3. [2] Étudier la convergence de $w_n = \sum_{k=1}^n \frac{1}{2^k}$.

Exercice 3 (4 points)

Montrer que toute suite d'entiers convergente est constante à partir d'un certain rang.

Exercice 4

On considère pour $n \ge 1$ les suites

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n(n)!}$.

- 1. [1] Rappeler la définition de suites adjacentes.
- 2. (a) [1] Pour $n \ge 1$, montrer que $(n+2)n(n!) \le (n+1) \times (n+1)!$. Indication: pas de récurrence!
 - (b) [1] Déduire que (v_n) est décroissante.
 - (c) [2] Montrer que (u_n) et (v_n) sont adjacentes et déduire leur convergence.
- 3. [2] BONUS: Montrer que la limite est irrationnelle. Par l'absurde, si l est la limite, supposer que $l = \frac{p}{q}$, avec $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, puis multiplier l'encadrement $u_q < l < v_q$ (pourquoi a-t-on cet encadrement?) par q(q!) et aboutir à une contradiction.