Maximum Common Subgraph Algorithms and Algorithm Portfolios

Paulius Dilkas

School of Computing Science University of Glasgow

3rd March 2018

Maximum Common Subgraph

Definition

A maximum common (induced) subgraph between graphs G_1 and G_2 is a graph G_3 such that $G_3 = (V_3, E_3)$ is isomorphic to induced subgraphs of both G_1 and G_2 with $|V_3|$ maximised.

Algorithm selection

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i, s(i))]$.

Algorithm selection

Definition (Bischl et al. 2016)

Given a set \mathcal{I} of problem instances, a space of algorithms \mathcal{A} , and a performance measure $m \colon \mathcal{I} \times \mathcal{A} \to \mathbb{R}$, the algorithm selection problem is to find a mapping $s \colon \mathcal{I} \to \mathcal{A}$ that optimises $\mathbb{E}[m(i, s(i))]$.

LLAMA (Kotthoff 2013)

Algorithms

- McSplit, McSplit↓
 - (McCreesh, Prosser and Trimble 2017)
- clique encoding
 - (McCreesh, Ndiaye et al. 2016)
- k ↓
 - (Hoffmann, McCreesh and Reilly 2017)

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81400 pairs of graphs)

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81400 pairs of graphs)

Definition

A vertex-labelled graph is a 3-tuple $G = (V, E, \mu)$, where $\mu \colon V \to \{0, \dots, N-1\}$ is a vertex labelling function, for some $N \in \mathbb{N}$.

Data from Foggia, Sansone and Vento 2001; Santo et al. 2003 (81400 pairs of graphs)

Definition

A vertex-labelled graph is a 3-tuple $G = (V, E, \mu)$, where $\mu \colon V \to \{0, \dots, N-1\}$ is a vertex labelling function, for some $N \in \mathbb{N}$.

Definition

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left| \frac{p}{100\%} \times |V| \right| \right\}.$$

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%

Definition

$$N = \max\left\{2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor\right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%
- In my data: 5%, 10%, 15%, 20%, 25%, 33%, 50%

Definition

$$N = \max \left\{ 2^n : n \in \mathbb{N}, \, 2^n < \left\lfloor \frac{p}{100\%} \times |V| \right\rfloor \right\}.$$

- 5% labelling 20 vertices per label on average
- 50% labelling 2 vertices per label on average
- Typical values explored: 33%, 50%, 75%
- In my data: 5%, 10%, 15%, 20%, 25%, 33%, 50%
- 3 subproblems
 - no labels
 - vertex labels
 - vertex and edge labels

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - proportion of vertex pairs with distance ≥ 2 , 3, 4
 - connectedness

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - \odot proportion of vertex pairs with distance ≥ 2 , 3, 4
 - connectedness
 - standard deviation of degrees
 - labelling percentage

Features (34 in total)

- 1–8 are from Kotthoff, McCreesh and Solnon 2016
 - number of vertices
 - number of edges
 - mean/max degree
 - density
 - mean/max distance between pairs of vertices
 - o number of loops
 - \odot proportion of vertex pairs with distance \geq 2, 3, 4
 - connectedness
 - standard deviation of degrees
 - labelling percentage
 - ratios of features 1–5

Random forests (Breiman 2001)

Source: Tae-Kyun Kim & Bjorn Stenger, Intelligent Systems and Networks (ISN) Research Group,
Imperial College London

Random forests (Breiman 2001)

Source: Random Forests(r), Explained, Ilan Reinstein, KDnuggets

Results

Results (27%)

Results

Results (86%)

Results

Results (88%)

Errors

- Out-of-bag error
- For each algorithm
 - 1 − recall

Definition

For an algorithm A, recall (sensitivity) is

the number of instances that were correctly predicted as A the number of instances where A is the correct prediction

Errors (%)

Error	Labelling		
	no	vertex	both
out-of-bag	17	13	14
clique	30	8	7
McSplit	29	22	29
$McSplit \downarrow$	11	11	11
$k\downarrow$	80		

Convergence of errors for unlabelled graphs

What happens when labelling changes?

What happens when labelling changes?

Future work

- Relationships between clique algorithm's performance and properties of the association graph
- How the association graph changes after making a decision
- Can $k \downarrow$ and clique work together?