SOUTHERN COLLEGE

Department of Electrical and Electronics Engineering 1st Semester Final Examination 2004

Introduction to Electromagnetics

08 MAR 2004

Class:

DEE02-A + DEE02-B + DEE02-C

Lecturer:

Dr. Ting Chek Ming

Time Allowed: 21/2 Hours

Answer all questions. All answers must be written in the answer booklet provided.

Question #1 (20%)

As shown in Figure 1, a cylindrical capacitor consists of an inner conductor of radius a and an outer conductor whose inner radius is b. The space between the conductors is filled with a dielectric of permittivity ε , and the length of the capacitor is L. Assume charges +Q and -Q on the surface of the inner conductor and the inner surface of the outer conductor, respectively.

Determine

- a) \vec{E} field for r < a,
- b) $\vec{\mathbf{E}}$ field for a < r < b,
- c) Vab (neglect fringing), and
- d) the capacitance of this capacitor.

Figure 1

Question #2 (25%)

(a) A vector field

$$\vec{D} = \frac{\hat{a}_R (\cos^2 \Phi)}{R^3}$$

exists in the region between two spherical shells defined by R=1 and R=2. Evaluate

(i)

$$\oint \vec{D} \cdot d\vec{s}$$

(ii)

$$\int \nabla \cdot \vec{D} \, dv$$

(b) Assuming that a cloud of electrons confined in a region between two spheres of radii 2 and 5 cm has a charge density of

$$\frac{-3 \times 10^{-8}}{R^4} \cos^2 \Phi$$
 (C/m³),

find the total charge contained in the region.

Question #3 (25%)

- (a) A 100-Ω transmission line is connected to a load consisting of a 50-Ω resistor in series with a 10-pF capacitor. Find the reflection coefficient at the load for a 100-MHz signal.
- (b) Find the reflection coefficient Γ for a purely reactive load.

Question #4 (30%)

A 50- Ω transmission line is connected to an antenna with load impedance $Z_L = 35 - j \ 47.5 \ \Omega$.

Find the position and length of a short-circuited stub required to match the line. (Note: Use the Smith chart provided. All workings and markings are to be shown clearly)

TABLE Parameters of rectangular, cylindrical, and spherical coordinate systems

Coordinate system		Coordinates	Range	Unit vectors	Length elements	Coordinate	surfaces
Rectangular		x y z	$-\infty \text{ to } +\infty$ $-\infty \text{ to } +\infty$ $-\infty \text{ to } +\infty$	ay az	dx dy dz	Plane Plane	x = constan y = constan z = constan
Cylindrical		r ϕ	$0 to \infty$ $0 to 2\pi$ $-\infty to +\infty$	ar ap az	dr $r d\phi$ dz	Cylinder Plane Plane	r = constan $\phi = \text{constan}$ z = constan
Spherical	i	β. θ	0 to ∞ 0 to π 0 to 2π	and	dR R dθ R sin θ dφ	Sphere Cone Plane	R = constan $\theta = constan$ $\phi = constan$

Table : Coordinate transformation relations.

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian to cylindrical	$r = \sqrt[4]{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{\mathbf{r}} = \hat{\mathbf{x}}\cos\phi + \hat{\mathbf{y}}\sin\phi$ $\hat{\mathbf{\phi}} = -\hat{\mathbf{x}}\sin\phi + \hat{\mathbf{y}}\cos\phi$ $\hat{\mathbf{z}} = \hat{\mathbf{z}}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_{\phi} = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical to Cartesian	$x = r\cos\phi$ $y = r\sin\phi$ $z = z$	$\hat{x} = \hat{r}\cos\phi - \hat{\phi}\sin\phi$ $\hat{y} = \hat{r}\sin\phi + \hat{\phi}\cos\phi$ $\hat{z} = \hat{z}$	$A_x = A_r \cos \phi - A_\phi \sin \phi$ $A_y = A_r \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$R = \sqrt[4]{x^2 + y^2 + z^2}$ $\theta = \tan^{-1} \left[\sqrt[4]{x^2 + y^2} / z \right]$ $\phi = \tan^{-1} (y/x)$	$\hat{R} = \hat{x}\sin\theta\cos\phi + \hat{y}\sin\theta\sin\phi + \hat{z}\cos\theta .$ $\hat{\theta} = \hat{x}\cos\theta\cos\phi + \hat{y}\cos\theta\sin\phi - \hat{z}\sin\theta .$ $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi .$	$A_R = A_x \sin \theta \cos \phi$ $+ A_y \sin \theta \sin \phi + A_z \cos \theta$ $A_\theta = A_x \cos \theta \cos \phi$ $+ A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_0 = -A_x \sin \phi + A_y \cos \phi$
Spherical to Cartesian	$x = R\sin\theta\cos\phi$ $y = R\sin\theta\sin\phi$ $z = R\cos\theta$	$\hat{\mathbf{x}} = \hat{\mathbf{R}} \sin \theta \cos \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \cos \phi - \hat{\mathbf{\phi}} \sin \phi$ $\hat{\mathbf{y}} = \hat{\mathbf{R}} \sin \theta \sin \phi$ $+ \hat{\mathbf{\theta}} \cos \theta \sin \phi + \hat{\mathbf{\phi}} \cos \phi$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \theta$ $A_y = A_R \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \theta$ $A_z = A_R \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$R = \sqrt[4]{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{\mathbf{R}} = \hat{\mathbf{r}} \sin \theta + \hat{\mathbf{z}} \cos \theta$ $\hat{\mathbf{\theta}} = \hat{\mathbf{r}} \cos \theta - \hat{\mathbf{z}} \sin \theta$ $\hat{\mathbf{\varphi}} = \hat{\mathbf{\varphi}}$	$A_R = A_r \sin \theta + A_z \cos \theta$ $A_\theta = A_r \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to cylindrical	$r = R \sin \theta$ $\phi = \phi$ $z = R \cos \theta$	$\hat{\mathbf{r}} = \hat{\mathbf{R}} \sin \theta + \hat{\mathbf{\theta}} \cos \theta$ $\hat{\mathbf{\varphi}} = \hat{\mathbf{\varphi}}$ $\hat{\mathbf{z}} = \hat{\mathbf{R}} \cos \theta - \hat{\mathbf{\theta}} \sin \theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

TABLE
Three Basic Orthogonal Coordinate Systems

Coordinate System Rel	ations	Cartesian Coordinates (x, y, z)	Cylindrical Coordinates (r, ϕ, z)	Spherical Coordinates (R, θ, ϕ)
	a _{u1} .	a _x	a,	a _R
Base vectors	a_{u_2}	a _y	\mathbf{a}_{ϕ}	a_{ϱ}
	a _{u3}	· a _z	a_z	a_{ϕ}
	h ₁	1	1	1
Metric coefficients	h ₂	1	r	R
	h ₃	1	1	R sin 0
Differential volume	dv	dx dy dz	$r dr d\phi dz$	$R^2 \sin \theta dR d\theta d\phi$