



# Universidade do Estado do Rio de Janeiro – UERJ

# Campus Regional Instituto Politécnico do Estado do Rio de Janeiro - IPRJ

# Departamento de Modelagem Computacional

Curso de Graduação em Engenharia de Computação

Modelagem Computacional – 1º semestre de 2018

# RELATÓRIO DO PROJETO

# MODELAGEM COMPUTACIONAL DO CARREGAMENTO DE CAMINHÕES-TANQUE: MASSA VERSUS NÍVEL DE LÍQUIDO NO TANQUE

Grupo 3:

Alexandre Azis da Silva

Leonardo Simões

Pedro Henrique Quaresma Coelho

Rafael Magalhães Storck

**Instrutor**: Marcos Pimenta de Abreu

Nova Friburgo/RJ,

Agosto de 2018

## **RESUMO**

Este relatório apresenta as atividades realizadas durante o desenvolvimento do projeto referente à disciplina de Modelagem Computacional. O assunto do projeto é a modelagem computacional do carregamento de caminhões-tanque, envolvendo a massa e níveis de líquido no tanque de acordo com certos parâmetros.

A realização do projeto em questão envolveu as etapas de modelagem Físico-Matemática do problema, implementação de um programa computacional e simulação computacional.

# LISTA DE ILUSTRAÇÕES

# Figuras

Figura 1 – Caminhão tanque-típico

Figura 2 – Exemplo 1 de balança de pesagem dinâmica

Figura 3 – Exemplo 2 de balança de pesagem dinâmica

Figura 4 – Seção transversal de um tanque elíptico

Figura 5 – Representação

# **Tabelas**

Tabela 1 – Dados fornecidos

Tabela 2 – Massa de líquido no tanque (Kg)

# Gráficos

Gráfico 1 — Relação entre m e h de acordo com  $\rho$ 

# LISTA DE SÍMBOLOS E ABREVIATURAS:

| SIMBOLO | SIGNIFICADO                                    | MEDIDA     |
|---------|------------------------------------------------|------------|
| $A_{S}$ | Área transversal submersa                      | m²         |
| h       | Altura do tanque                               | m (metros) |
| NN      | Número de níveis                               |            |
| ρ       | Densidade                                      | Kg/m³      |
| L       | Comprimento do tanque                          | m (metros) |
| a       | Primeira metade da largura<br>máxima do tanque | m (metros) |
| b       | Altura máxima do tanque partindo do ponto 0    | m (metros) |

# SUMÁRIO

| 1.      | INTRODUÇÃO                               | 1 |
|---------|------------------------------------------|---|
| 2.      | INTRODUÇÃOMODELAGEM FÍSICO-MATEMÁTICA    | 2 |
| 3.      | PROGRAMA COMPUTACIONAL                   | 4 |
|         | 3.1. Características Gerais              |   |
|         | 3.2. Descrição Detalhada                 | 4 |
| 4.      | SIMULAÇÃO COMPUTACIONAL                  | 5 |
|         | 4.1. Dados e Análise                     |   |
|         | 4.2. Resultados e Análise                |   |
| 5.      | CONCLUSÕES                               | 7 |
| AGRADE  | CIMENTOS                                 | 8 |
| REFERÊ  | NCIAS                                    | 8 |
| ANEXO A | — Código-fonte do programa computacional | C |

# 1. INTRODUÇÃO

O projeto MC-2018-1 se trata de um trabalho feito a partir de um caminhão-tanque, que são veículos que carregam os mais diversos tipos de líquidos, e para isso, é preciso ter cuidado com o tipo de tanque utilizado em seu transporte, pois é importante tanto o seu transporte chegue seguro e inalterado no destino, quanto não ocorra problemas que prejudiquem a estrada e o meio-ambiente.



Figura 1. Caminhão tanque-típico

O projeto tem como objetivo o desenvolvimento de um modelo físico-matemático e um simulador computacional para determinar a massa de líquido em um tanque. O tanque se trata de um modelo geométrico simples de um tanque de semirreboque, cuja a carga é medida a partir de seus eixos em função do nível do líquido, tipo e também os parâmetros geométricos e materiais do tanque.



Figura 2. Exemplo 1 de balança de pesagem dinâmica



Figura 3. Exemplo 2 de balança de pesagem dinâmica

# 2. MODELAGEM FÍSICO-MATEMÁTICA

A modelagem Físico-Matemática do sistema tanque-líquido, como indicado na proposta [1], é feita usando um sistema elíptico com representação cartesiana do contorno da seção transversal do tanque. Nesse sistema, o tanque possui comprimento L, seção transversal elíptica com semieixo maior a, que é orientado horizontalmente (direção y), e semieixo menor b, que é orientado verticalmente (direção x), e o eixo longitudinal do tanque, que define o comprimento L, é ortogonal ao plano xy.



Figura 4 Seção transversal de um tanque elíptico

De acordo com a Fig. 1., o nível de líquido no tanque é representado por h = x + b, onde  $-b \le x \le b$ , e assim  $0 \le h \le 2b$ . A área transversal submersa relativa ao nível h é representada pela área colorida na figura 1.

O volume do líquido no tanque é igual à área transversal submersa multiplicado pelo comprimento L do tanque, para um tanque integral (um compartimento apenas) com seção transversal invariante ao longo do seu comprimento.

O volume de líquido no tanque em função de h é dada por

$$V(h) = A_s(h)L$$

A massa do líquido no tanque em função de h é dada por

$$m(h) = \rho V(h) = \rho A_s(h)L$$

Como a área transversal submersa ao nível h é dada por

$$A_s(h) = \frac{2a}{b} \int_{-b}^{h-b} (b^2 - x^2)^{\frac{1}{2}} dx$$
,  $0 \le h \le 2b$ 

Resolvemos analiticamente a integral na expressão anterior para se obter  $A_s$  em função de h, a e b:

## Realizando a substituição trigonométrica

x=b sen(u); dx=b cos(u)du 
$$\to$$
 u =  $sen^{-1}\frac{x}{b}$  e  $cos^{2}u = 1 - sen u$   

$$\frac{2a}{b} \int (b^{2} - b^{2}sen^{2}(u))^{\frac{1}{2}} \cdot b \cos u \, du \to \frac{2a}{b} \int b^{2} (1 - sen^{2}(u))^{\frac{1}{2}} \cdot b \cos u \, du \to 2a \int \sqrt{b^{2}(1 - sen^{2}u)\cos u \, du} \to 2a \int b^{2}(1 - sen^{2}u)\cos u \, du$$

sabendo que 
$$cos^{2}u = \frac{1}{2}cos(2u) + \frac{1}{2}$$
  
 $2ab \int \left[\frac{1}{2}cos(2u) + \frac{1}{2}\right] du \rightarrow 2ab \cdot \frac{1}{2} \left[\int cos 2u \, du + \int du\right] \rightarrow ab \left[\frac{sen 2u}{2} + u\right] \Big|_{-b}^{h-b} \rightarrow ab \left[\frac{sen(2u)}{2} + u\right] \Big|$ 

$$m(h)=PA_s(h)L$$

$$m(h) = \rho \left(ab(sen^{-1}\left(\frac{h}{b}-1\right)+\left(\frac{h}{b}+1\right)\sqrt{1-\left(\frac{h}{b}-1\right)^2}+\frac{\pi}{2})\right)L$$

#### 3. PROGRAMA COMPUTACIONAL

## 3.1 Características Gerais

O programa computacional foi desenvolvido na linguagem Python, versão 3.6.5, com o auxílio de sua biblioteca math para o uso de constantes matemáticas e funções trigonométricas e trigonométricas inversas apontadas na seção 2.Modelagem Físico-Matemático. O sistema operacional no qual o programa foi desenvolvido foi o Windows 10 Pro versão 1803, e a IDE (Integrated Development Environment ou Ambiente de Desenvolvimento Integrado) foi o ATOM 1.28.1. O código-fonte se encontra no Anexo A.

## 3.2 Descrição Detalhada

O funcionamento do programa computacional é detalhado pelo seguinte algoritmo de palavras:

Importa a biblioteca math para uso da constante  $\pi$  e operação de arco seno

Imprime na tela solicitação de entrada de a.

Leitura de a inserido via teclado.

Imprime na tela solicitação de entrada de b.

Leitura de b inserido via teclado.

Imprime na tela solicitação de entrada de L.

Leitura de L inserido via teclado.

Imprime na tela solicitação de entrada de NN.

Leitura de NN inserido via teclado.

Imprime na tela os valores lidos para a, b, L e NN.

$$p \leftarrow \lceil \rceil$$

Imprime na tela solicitação de entrada de p[1].

Leitura de p[1] inserido via teclado.

Imprime na tela solicitação de entrada de p[2].

Leitura de p[2] inserido via teclado.

Imprime na tela solicitação de entrada de p[3].

Leitura de p[3] inserido via teclado.

Imprime na tela os valores lidos para p[1], p[2], p[3].

$$deltaH \leftarrow (2 * b)/(NN-1)$$

$$m \leftarrow [0.0, 0.0, 0.0]$$

Para  $i \leftarrow 0$  até (NN-1)

$$h \leftarrow i * deltaH$$

$$As \leftarrow a \frac{h-b}{b} [b^2 - (h-b)^2]^{\frac{1}{2}} + ab \sin^{-1} \left(\frac{h-b}{b}\right) + \frac{\pi ab}{2}$$

Para  $j \leftarrow 0$  até 2

$$m[j] \leftarrow p[j] * L * As$$

Imprime na tela os valores de h (com 2 casas decimais) e, m[1], m[2], m[3] (com 1 casa decimal).

Fim do Para j

Fim do Para i

Fim do Programa quando i = NN

# 4. SIMULAÇÃO COMPUTACIONAL

## 4.1 Dados e Análise

Os dados de entrada usados no simulador computacional são inseridos via teclado e seus valores foram fornecidos pelo instrutor.

Tabela 1 Dados Fornecidos

| <i>a</i> *(m) | <b>b</b> *(m) | <i>L</i> *(m) | NN | $p(\frac{kg}{m^3})$ |
|---------------|---------------|---------------|----|---------------------|
| 1,16          | 0,87          | 12,7          | 16 | 737,762,810         |

## 4.2 Resultados e Análise

Tabela 2 Massa de líquido no tanque (Kg)

|      | ρ(kg/m³) | 737     | 762     | 810     |
|------|----------|---------|---------|---------|
| h(m) | 0,00     | 0,0     | 0,0     | 0,0     |
|      | 0,12     | 849,6   | 878,4   | 933,8   |
|      | 0,23     | 2352,2  | 2432,0  | 2585,2  |
|      | 0,35     | 4225,2  | 4368,5  | 4643,7  |
|      | 0,46     | 6352,8  | 6568,3  | 6982,1  |
|      | 0,58     | 8659,1  | 8952,8  | 9516,7  |
|      | 0,70     | 11084,7 | 11460,7 | 12182,6 |
|      | 0,81     | 13579,2 | 14039,8 | 14924,2 |
|      | 0,93     | 16096,3 | 16642,3 | 17690,6 |
|      | 1,04     | 18590,8 | 19221,4 | 20432,2 |
|      | 1,16     | 21016,5 | 21729,4 | 23098,1 |
|      | 1,28     | 23322,7 | 24113,8 | 25632,8 |
|      | 1,39     | 25450,4 | 26313,7 | 27971,2 |
|      | 1,51     | 27323,3 | 28250,2 | 30029,7 |
|      | 1,62     | 28825,9 | 29803,7 | 31681,1 |
|      | 1,74     | 29675,5 | 30682,2 | 32614,9 |

Considerando a última altura (h=1,74 m) e os resultados obtidos, podemos provar a relação entre as derivadas:

 $\rho = 737$  (Gasolina comum)-> 29675,5 / 737 = 40,265 aproximadamente.

 $\rho$ = 762 (Querosene iluminante) -> 30682,2 / 762 = 40,265 aproximadamente.

 $\rho$ = 810 (Álcool etílico hidratado) -> 32614,9 / 810 = 40,265 aproximadamente.





Gráfico 1. Relação entre m e h de acordo com  $\rho$ 

Como podemos ver "m" não é linear. Sua relação com a altura vai de acordo com a diferença entre as densidades.

#### 5. CONCLUSÕES

Com base nos procedimentos deste relatório, conseguimos desenvolver um programa capaz de realizar a medição da massa de líquido no tanque.

Se trata de um modelo matemático simples, que facilita bem a manipulação para realizar o projeto. Só que se trata de um tanque simples, em um caso mais complexo, ele não é o recomendado.

Sobre a disciplina, o foco dela não é no modelo em si, tampouco o simulador, mas sim o trabalho em grupo. Assim, aprendemos e melhoramos virtudes como a coletividade, divisão de tarefas, organização, trabalho com prazos, objetividade e até mesmo como nos apresentarmos e oratória. Com o professor nos guiando muito nesses pontos, para que realizemos o melhor possível no que se refere a estes pontos.

O que vemos como algo positivo, porque ela prepara os alunos para a sua formação na faculdade, já que muitas disciplinas dependem muito de trabalho, tanto individual quanto em grupo, tendo o foco mais no grupo. Ainda mais que a disciplina Estudo de Casos Empresariais, que é uma disciplina com o mesmo aspecto, só que mais complexa.

Ela é uma introdução à forma como muitas vezes os engenheiros vão trabalhar, com equipe, projeto, tendo que apresentar os mesmos para muitos clientes e interessados que são leigos.

# **AGRADECIMENTOS**

Às nossas famílias por todo apoio que nos deram todo o apoio para a nossa jornada no curso Ao médico Robson Pinto e ao fisioterapeuta Pery Lima

# REFERÊNCIAS

[1] de Abreu, M. P., "Modelagem Computacional do Carregamento de Caminhões-Tanque: Massa versus nível de líquido no tanque", Proposta do projeto da disciplina de Modelagem Computacional, DMC/IPRJ/UERJ, Primeiro Semestre de 2018

# ANEXO A - Código-fonte do programa computacional

```
#Modelagem Computacional 2018 - Projeto
 #Grupo 3: ALEXANDRE AZIS DA SILVA, LEONARDO SIMÕES, PEDRO HENRIQUE
 QUARESMA COELHO, RAFAEL MAGALHÃES STORCK
 import math
def main():
           #Leitura dos valores das variaveis a,b,L,NN inseridos via teclado
           a = float(input('Digite o valor de a: '))
          b = float(input('Digite o valor de b: '))
           L = float(input('Digite o valor de L:
                                                                                                                  '))
          NN = int(input('Digite o valor de NN:
           #Impressão dos valores das variaveis a,b,L,NN via tela
           print('\na = %.2f \nb = %.2f \nL = %.2f \nNN = %i\n' %(a, b, L, b)
NN))
           p = []
           #Leitura de p[3] inseridos via teclado
          p.append(int(input('Digite o valor de p[1]: ')))
          p.append(int(input('Digite o valor de p[2]: ')))
          p.append(int(input('Digite o valor de p[3]: ')))
           #Impressão de p[3] via tela
           print(' \neq [1] = i \neq [2] = i \neq [3] = i' (p[0], p[1], p[2]))
           #Cálculo de DeltaH
          deltaH = (2*b)/(NN-1)
          m = [0.0, 0.0, 0.0] #inicialização do vetor com 3 posições
           for i in range(0, NN):
                     h = i * deltaH
                      # Cálculo de As
                     As = (a*(h-b)/b)*(b**2-(h-b)**2)**(1/2) + a*b*math.asin((h-b)/b)*(b**2-(h-b)/b)*(1/2) + a*b*math.asin((h-b)/b)*(1/2) + a*b
b)/b) + (math.pi*a*b)/2
                     for j in range (0,3):
                                #Cálculo de m[j]
                                m[j] = p[j]*L*As
                      #Impressão de h e m[3] via tela
                     print('%.2f %.1f %.1f %.1f' % (h, m[0], m[1], m[2]))
if name == "__main__":
           main()
```