Linear Independence Ch.11

econMath.namun+2016su@gmail.com

April 21, 2017

Table of Contents

1 Linear Independence

2 Spanning Sets

lacksquare Basis and Dimension in \mathbb{R}^n

LI: Definition

Definition (Linear Combinations, Span, Linear (in)dependence)

 ${\cal L}$ is <u>spanned</u> set generated by <u>linear combination</u> of k vectors ${f v_1}, \cdots, {f v_k}$

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}] := \left\{ \sum_{i=1}^{k} r_i \mathbf{v}_i : \forall r_i \in \mathbb{R} \right\}$$

 $\mathbf{v_1}, \cdots, \mathbf{v_k}$ are <u>linearly independent</u> iff:

$$\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}] \subset \mathbb{R}^k$$

Otherwise, v_1, \cdots, v_k are linearly dependent

Note: Different vectors can span the same space. Canonical basis e_i can be the representative vector (basis) for \mathbb{R}^n space.

조남운

LI: Alternative Definition

Definition (Linear (in)dependence: Alternative definition)

 $v_1, \cdots, v_k \in \mathbb{R}^n$ are <u>linearly dependent</u> iff:

$$\exists c_1, \cdots, c_k \neq 0 \quad s.t. \quad \sum_{i=1}^k c_i \mathbf{v_i} = \mathbf{0}$$

 $v_1, \cdots, v_k \in \mathbb{R}^n$ are <u>linearly independent</u> iff:

$$\sum_{i=1}^{k} c_i \mathbf{v_i} = \mathbf{0} \quad \Rightarrow \quad c_1 = \dots = c_k = 0$$

Theorems

Theorem (11.1)

 $v_1, v_2, \cdots, v_k \in \mathbb{R}^n$ are linearly dependent iff

$$A \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = \mathbf{0}$$

has nonzero solution c, where A is $n \times k$ matrix whose $C_i = v_i$. i.e.,

$$A = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_k} \end{pmatrix}$$

Theorem (11.2)

 $v_1, v_2, \cdots, v_n \in \mathbb{R}^n$ are linearly independent iff

$$\det \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_n} \end{pmatrix} \neq 0$$

Checking LI

Procedure: Checking Linear (in)dependence

- Stack $\mathbf{v_i}$ to make $k \times n$ matrix, A.
- ② Calculate rank(A): this is the dimension of $\mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^n]$
- $\mathbf{0}$ $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}$ are linearly independent iff rank(A) = k. Otherwise, they are linearly dependent

Note: $rank(A^T) = rank(A)$

Theorem (11.3)

If k > n, any set of k vectors in \mathbb{R}^n is linearly dependent.

Basis

Definition (Basis)

Let $V = \mathcal{L}[\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}]$. If $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}$ are linearly independent, $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}$ is called a <u>basis</u> of V. More generally, $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}}$ forms a <u>basis</u> of V if:

- $oldsymbol{0} \ \mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_k} \in \mathbb{R}^{\mathbf{n}} \ \textit{span} \ V$
- 2 $v_1, v_2, \cdots, v_k \in \mathbb{R}^n$ are linearly independent

Theorem (11.7)

Every basis of \mathbb{R}^n contains n vectors.

Linear Independence and Basis

Theorem (11.8)

Let $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^n$ be a collection of n vectors in \mathbb{R}^n . And let $n \times n$ matrix $A = \begin{pmatrix} \mathbf{v_1} & \cdots & \mathbf{v_n} \end{pmatrix}$. Then the following statements are equivalent:

- $\textbf{0} \ \ v_1, v_2, \cdots, v_n \in \mathbb{R}^n \ \textit{are linearly independent}.$
- $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^{\mathbf{n}}$ span \mathbb{R}^n
- $\mathbf{0}$ $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n} \in \mathbb{R}^{\mathbf{n}}$ form a basis of \mathbb{R}^n