Task 2

EDA- Exploratory Data Analysis

Problem Statement:

Perform data cleaning and exploratory data analysis (EDA) on a dataset of your choice, such as the Titanic dataset from Kaggle. Explore the relationships between variables and identify patterns and trends in the data.

Sample Dataset :- https://www.kaggle.com/c/titanic/data

```
In [1]:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sb

In [7]:
    df=pd.read_excel("C:\\Users\\abhis\\Downloads\\Titanic.xlsx")
    df
```

Out[7]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
	•••										•••	
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN

891 rows × 12 columns

In [10]: print(df.shape)

(891, 12)

In [11]: print(df.columns)

```
dtype='object')
          print(df.size)
In [12]:
          10692
In [13]: | print(df.dtypes)
          PassengerId
                             int64
          Survived
                             int64
                             int64
          Pclass
          Name
                            object
          Sex
                           object
                           float64
          Age
                             int64
          SibSp
                             int64
          Parch
          Ticket
                            object
          Fare
                           float64
          Cabin
                            object
          Embarked
                            object
          dtype: object
In [14]:
          df.describe()
Out[14]:
                 PassengerId
                                Survived
                                              Pclass
                                                          Age
                                                                    SibSp
                                                                                Parch
                                                                                            Fare
          count
                  891.000000 891.000000 891.000000 714.000000 891.000000 891.000000 891.000000
                  446.000000
                                0.383838
                                           2.308642
                                                      29.699118
                                                                  0.523008
                                                                             0.381594
           mean
                                                                                       32.204208
                  257.353842
                                0.486592
                                           0.836071
                                                     14.526497
                                                                  1.102743
                                                                             0.806057
                                                                                       49.693429
             std
            min
                     1.000000
                                0.000000
                                           1.000000
                                                      0.420000
                                                                  0.000000
                                                                             0.000000
                                                                                        0.000000
            25%
                  223.500000
                                0.000000
                                           2.000000
                                                      20.125000
                                                                  0.000000
                                                                             0.000000
                                                                                        7.910400
            50%
                  446.000000
                                0.000000
                                           3.000000
                                                      28.000000
                                                                  0.000000
                                                                             0.000000
                                                                                       14.454200
            75%
                  668.500000
                                1.000000
                                           3.000000
                                                      38.000000
                                                                  1.000000
                                                                             0.000000
                                                                                       31.000000
                  891.000000
                                1.000000
                                           3.000000
                                                      80.000000
                                                                  8.000000
                                                                             6.000000 512.329200
            max
          df.isnull().sum()
In [15]:
          PassengerId
                             0
Out[15]:
          Survived
                             0
          Pclass
                             0
          Name
          Sex
                             0
                           177
          Age
          SibSp
                             0
          Parch
                             0
          Ticket
                             0
          Fare
                             0
          Cabin
                           687
          Embarked
                             2
          dtype: int64
In [22]: df.drop(["PassengerId","Name","Ticket","Cabin"],axis=1,inplace=True)
```

Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',

'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],

```
In [23]: df.isnull().sum()
         Survived
Out[23]:
         Pclass
                        0
                        0
          Sex
         Age
                      177
          SibSp
                        0
          Parch
                        0
          Fare
                        0
          Embarked
                        2
          dtype: int64
In [28]: df.Age.median()
         28.0
Out[28]:
          df.Age.fillna(df.Age.median(),inplace=True)
In [40]:
          df.Embarked.fillna(df.Embarked.mode()[0],inplace=True)
In [52]:
          df.Embarked.mode()
In [49]:
Out[49]:
         Name: Embarked, dtype: object
In [53]: df.isnull().sum()
         Survived
Out[53]:
         Pclass
                      0
          Sex
                      0
                      0
         Age
          SibSp
                      0
          Parch
                      0
          Fare
                      0
          Embarked
                      0
          dtype: int64
In [57]: df.Survived.value_counts()
               549
Out[57]:
          1
               342
         Name: Survived, dtype: int64
          df.Pclass.value_counts()
In [58]:
               491
Out[58]:
               216
          2
               184
          Name: Pclass, dtype: int64
          df.Sex.value_counts()
In [59]:
         male
                    577
Out[59]:
         female
                    314
          Name: Sex, dtype: int64
In [60]: df.Embarked.value_counts()
```

```
Out[60]: S 646
C 168
Q 77
```

Name: Embarked, dtype: int64

NO. of people with different age groups

```
In [69]: plt.hist(x=df.Age, edgecolor='black', bins=[0,10,20,30,40,50,60,70,80])
   plt.xlabel("Age")
   plt.xticks(range(0,80,10))
   plt.ylabel("counts")
   plt.title("NO. OF PEOPLE WITH AGE GROUP")
   plt.show
```

Out[69]: <function matplotlib.pyplot.show(close=None, block=None)>

NO. OF PEOPLE WITH AGE GROUP

NO. of people with different sex groups

```
In [79]: plt.hist(x=df.Sex, edgecolor='black', color='y')
   plt.xlabel("Sex")
   plt.ylabel("counts")
   plt.title("NO. OF PEOPLE WITH SEX GROUP")
   plt.show
```

Out[79]: <function matplotlib.pyplot.show(close=None, block=None)>

NO. OF PEOPLE WITH SEX GROUP


```
plt.hist(x=df.Fare, edgecolor='black', color='r', bins=[0,50,100,150,200,250,300,350,4]
plt.xticks(range(0,550,50))
plt.xlabel("Fare")
plt.ylabel("counts")
plt.title("NO. OF PEOPLE WITH FARE GROUP")
plt.show()
```

NO. OF PEOPLE WITH FARE GROUP

NO. of people with different class groups

```
In [95]: plt.bar(['Plcass1','Pclass2','Plcass3'],[216,184,491],color=['r','y','g'])
    plt.show()
```


After Accident data report

NO. of people survived after an accident

```
In [100... plt.bar(['Not Survived','Survived'],[549,342],color=['pink','lightgreen'])
    plt.yticks(range(0,700,100))
    plt.show()
```


In [187... plt.pie(labels=['S','C','Q'],x=[646,168,77],wedgeprops={'edgecolor':'black'},startangl
plt.title("Embarked")
plt.show()

Embarked


```
In [120... df_sex=df.groupby(by='Sex')['Survived'].mean()*100
df_sex
```

```
Out[120]:
           female
                     74.203822
           male
                     18.890815
           Name: Survived, dtype: float64
           plt.bar(df_sex.index,df_sex.values)
In [130...
           plt.xlabel("Sex")
           plt.ylabel("Survived %")
           plt.show()
              70
              60
              50
           Survived %
               40
               30
              20 -
              10
                0
                                 female
                                                                       male
                                                     Sex
In [118...
           df_class=df.groupby(by='Pclass')['Survived'].mean()*100
           df_class
           Pclass
Out[118]:
           1
                62.962963
           2
                47.282609
                24.236253
           3
           Name: Survived, dtype: float64
```

plt.bar(df_class.index,df_class.values)

plt.xlabel("Pclass")
plt.ylabel("Survived %")
plt.xticks(range(1,4,1))

plt.show()

In [139...

In [168... sb.countplot(x=df.Survived, hue=df.Sex)
 plt.show()

In [169... sb.countplot(x=df.Survived, hue=df.Pclass)
plt.show()

In [176... df.hist(color='y',figsize=(10,10))
plt.show()

In [173... sb.pairplot(df)
 plt.show()

In [174... sb.pairplot(df, hue='Survived')
 plt.show()

In [184... sb.boxplot(df_sex)
 plt.show()

In [185... sb.heatmap(df.corr())
 plt.show()

C:\Users\abhis\AppData\Local\Temp\ipykernel_6360\2200381900.py:1: FutureWarning: The
default value of numeric_only in DataFrame.corr is deprecated. In a future version, i
t will default to False. Select only valid columns or specify the value of numeric_on
ly to silence this warning.
sb.heatmap(df.corr())

Conclusion

The sinking of the Titanic is an undoubtedly tragic and historically significant event. The dataset provided encompasses a range of features pertaining to the passengers who were aboard the Titanic. These features include Passengerld, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked. Through analyzing these features, we are able to ascertain the survival rate of the passengers, the influence of Pclass and embarked location on their survival, the distribution of passengers based on age and fare, the survival rate based on gender, and the impact of having siblings, spouses, parents, and children on the passengers' chances of survival, among other insights.

This dataset serves as an excellent resource for conducting Exploratory Data Analysis.