999,438

Inventors: WILLIAM HENRY RICHARDSON and DOUGLAS BROWN

Date of filing Complete Specification: April 30, 1964.

Application Date: April 25, 1963.

No. 16316/63

999,438

Complete Specification Published: July 28, 1965.

© Crown Copyright 1965.

Index at Acceptance:—C7 A (8A1, 8A3, 8K, 8M, 8R, 8U, 8Z12, 14, 25). Int. Cl.:—C 21 d, C 22 c.

COMPLETE SPECIFICATION

NO DRAWINGS

Improvements in Copper-Nickel Alloys

We, LANGLEY ALLOYS LIMITED, a Body Corporate duly organised under the Laws of Great Britain, of Langley, Slough, in the County of Buckingham, do hereby declare 5 the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

O This invention relates to copper-nickel alloys.

For many years cupro-nickels (coppernickel alloys containing up to about 40% nickel) have been regarded as the most suit-15 able types of alloy for handling certain corrosive liquids and, in particular, sea water, and they have been extensively used for items such as condenser tubes.

Considerable research has been carried out 20 with a view to improving still further the properties and, in particular, the corrosion resistance of these alloys.

However, the cupro-nickels used to date are generally of comparatively low strength 25 although possessing extreme good ductility.

The following is a typical example of the mechanical properties of a standard alloy composed of 70% copper, 30% nickel, after hot working and annealing:

0.5% Proof Stress — 10 Tons/sq.in.
Tensile Strength — 28 Tons/sq.in.
Elongation — 45%
Izod Value — 80 ft. lbs.

Izod Value — 80 ft. lbs.

There is now a growing demand for 35 materials of this type which have the ability to withstand much higher stresses in service and consequently must possess higher strengths and, in particular, appreciably high yield strength or proof stress values, although 40 the ability to withstand shock loads must not be too greatly reduced and hence the required alloys must retain a high degree of ductility particularly as measured by the

Izod Impact Value.

The addition of niobium to alloys of this 45 group as the means of achieving higher tensile strengths is already being investigated and properties of the following order can now be achieved on alloys containing 70% copper, 30% nickel to which has been added 50 2% of niobium as a strengthening element. These properties were obtained on this alloy after hot working followed by precipitation hardening.

0.5% Proof Stress — 25 Tons/sq.in.

Tensile Strength — 46 Tons/sq.in.

Elongation — 22%

The beneficial effects of aluminium as a strengthening agent in cupro-nickels has also been known for some considerable time and one of the highest strength alloys in this series, known as HIDURAX (Registered Trade Mark) SPECIAL — the typical composition of which is as follows:—

Nickel 14.90% 65

Aluminium 2.60%

Iron 1.00%

Manganese 0.15%

Copper Remainder

75

possess the following mechanical properties 70 in the hot rolled condition:—

0.1% Proof Stress — 42.4 Tons/sq.in.
Tensile Strength — 58.4 Tons/sq.in.
Elongation — 13.5%
Izod Value — 10 ft. lbs.

Izod Value — 10 ft. lbs.

It will be noted that this alloy possesses a Proof Stress and Tensile Strength far higher than either of the alloys quoted above but the ductility as measured by elongation and Izod Impact value is appreciably lower.

and Izod Impact value is appreciably lower. 80 HIDURAX SPECIAL is precipitation hardening, and because of this the ductility is reduced still further if the alloy is heated within the precipitation hardening range 400°C.600°C. and consequently it is not 85 considered suitable for services within this

(Pric

30

_		
	range of temperature particularly if subjected to shock loading. This embrittlement	Iron 1.32% Manganese 4.77%
	at elevated temperatures may also impair the	Balance substantially all copper.
5	weldability of the alloy. In the past it has been considered that	Mechanical Hot Heat treated Properties rolled 4 hrs. @ 550°C. 70
	in order to achieve the best combination of	Properties rolled 4 hrs. @ 550°C. 70 0.1% Proof Stress 29.6 36.0 Tons/sq.in.
	properties in such copper-nickel-aluminium	Tensile Strength 45.6 54.8 Tons/sq.in.
	alloys, the ratio of nickel to aluminium	Elongation 30% 22%
	should be in the region of 5:1.	Izod Value 70 37 ft. lbs.
10		After hot working such alloys may be 75
	ratio still further, results in an alloy	softened by solution treatment in the tem-
	possessing considerably higher ductility, as	perature range 750°C1050°C. to give the
	measured by elongation and Izod Impact Value although the proof stress and tensile	following mechanical properties in the case
15	strength are only slightly reduced if the	of an alloy of the composition given in Example II.
13	nickel and aluminium contents are correctly	Example 11. 80
	selected, as shown by the following Example	0.1% Proof Stress — 7.92 Tons/sq.in. Tensile Strength — 27.08 Tons/sq.in.
	1.	Elongation — 60%
	Composition	In this condition the alloys may be pre-
20	L.14 Nickel 16.1% Aluminium 1.71%	cipitation hardened at temperatures within 85
	Aluminium 1.71%	the range 350°C650°C. and suitably for 4
	11011 1.47 %	hours at 600°C, at shown by the following:
	Manganese 0.25% Balance substantially all copper	0.1% Proof Stress — 28.8 Tons/sq.in.
25	Mechanical Properties when hot rolled in the	Tensile Strength — 48.0 Tons/sq.in. Elongation — 28.0% 90
<i>ي</i>	temperature range 1000°C1050°C.	Reduction in Area—42.5%
	0.1% Proof Stress — 35.2 Tons/sq.in.	In the solution treated condition they are
	Tensile Strength — 47.2 Tons/sq.in.	ideally suited to cold drawing or cold
	Elongation -21% Izod Value -30 ft. lbs.	rolling operations for the production of
30		strip, wire, tube, rod or sheet.
	As a further improvement in the	Following this treatment they may be sub-
	mechanical properties of these copper alloys it has now been established that if a sub-	jected to a precipitation hardening when the following extremely good combination of
	stantial percentage of manganese namely	strength and ductility, as measured by Izod
35	more than 3% but less than half the nickel	Impact Value, can be achieved.
	content is present in these alloys of high	Cold rolled and
	nickel to aluminium ratio, a further sub-	heat-treated 4
	stantial increase in the Izod Impact value	hrs. @ 450°C.
40	is achieved, as shown in the following	0.1% Proof Stress — 48.0 Tons/sq.in.
40	Example II.	Tensile Strength — 56.3 Tons/sq.in. 10
	Composition L.17 Nickel 17.3%	Elongation — 16% Izod Value — 46 ft. lbs.
	Aluminium 1.59%	It has previously been stated that the alloy
	iron 1.14%	referred to as HIDURAX SPECIAL ex-
45	Manganese 4.87%	hibits a serious loss of ductility at tem- 11
	Balance substantially all copper.	peratures in the region of 400°C.
	Mechanical Properties in the hot rolled	However, Alloy L.20 (see Example III)
	condition.	when tested in tension at 400°C. possessed
50	0.1% Proof Stress — 34.4 Tons/sq.in. Tensile Strength — 46.4 Tons/sq.in.	the following properties: Tensile Strength — 36.8 Tons/sq.in.
Ju	Elongation — 29%	Elongation — 24%
	Izod Value -60 ft. lbs.	whereas an alloy of the HIDURAX
	Such alloys may be subjected to precipi-	SPECIAL type composition, when tested in
	tation hardening treatment in order to in-	tension on 400°C, possessed the following
55	crease the proof stress and tensile strength	properties: 12
	although some reduction in Izod Impact	Tensile Strength — 41.75 Tons/sq.in.
	Value occurs, the final result is still very	Elongation — 1.0%
	much higher than could be achieved with the alloy hereinbefore referred to as	The first production heat of an alloy
	the alloy hereinbefore referred to as HIDURAX SPECIAL.	according to the invention having the composition:
6 በ	IIIDUKAK ULICIAL.	Nickel 18.3%
60		
60	The following is illustrative: EXAMPLE III	Aluminium 1.66%
60	The following is illustrative:	Aluminium 1.66% Manganese 5.0%
60	The following is illustrative: EXAMPLE III	Aluminium 1.66%

7	was cast as $6\frac{3}{4}$ " diameter ingots which were hot rolled from 1020°C, to $2\frac{7}{8}$ " diameter bar. The properties were:	E27 E23	E24	Melt No.	
	0.1% Proof Stress — 33.5 Tons/sq.in. Tensile Strength — 51.5 Tons/sq.in. Elongation — 32.5%	:::::::::::::::::::::::::::::::::::::::	Balance	Copper %	
10	Izod Value — 61 ft. lbs. It is to be understood that the expression "Balance substantially all copper" is intended to indicate that the balance is all	22.0 22.0 17.9 17.9	17.0 17.0	Nickel	
	copper except for impurities commonly found in copper base alloys. Additional Elements	1.92 1.92 1.92 1.92	1.70	Aluminium %	
1	0.2% up to 3% niobium and/or silicon may be introduced with beneficial effect.			nium l	Analysis
	The properties of alloys containing these elements are shown in Table 1, from which	NN 44	44	Van	sis
2	it will be seen that the effect of niobium is particularly beneficial in developing high strength combined with high ductility in the	77 33	7	Manganese	
	not rolled condition. The proof stress and tensile strength of this allow in the hot rolled	0.28 0.28 0.95 0.95	0.88 0.88	Iron	
2	condition are in fact very similar to those obtained on the alloy HIDURAX SPECIAL but the Izod impact value is considerably higher.	0.33 0.33 0.65 0.65	0.35 0.35	Addi- tional Element	
3	The presence of silicon results in an alloy possessing extremely high tensile strength combined with good ductility and improved resistance to wear or abrasion.	Hot rolled +4 hrs. Hot rolled +4 hrs. Hot rolled +4 hrs.	Hot rolled Hot rolled+	-	TABLE
	Alloys according to the invention may also be produced in the form of sand castings in which condition they possess an excellent	+ +->		Condition	E 1
3	combination of properties as shown by the following Example. An alloy of the composition:	8 8	hrs. @ 5	tion	
4	Nickel 17.3 Aluminium 1.96 Manganese 5.15	550°C.	550°C.		
4	Balance substantially all copper when cast into a sand mould possesses the follow-	43.2 48.0 50.4 52.0	41.6 44.8	0.1% Proof Stress T/sq.in	
4	ing mechanical properties: 0.1% Proof Stress — 29.0 Tons/sq.in. Tensile Strength — 43.0 Tons/sq.in.	00.00			
	Elongation — 13% Izod Impact Value — 28 ft. lbs. The alloys covered by this invention	59.6 64.0 61.0 63.8	56.0 61.6	Tensile Strength T/sq.in.	
5	o shown by the following Examples: EXAMPLE IV	19.0 15.0 19.0 10.0	22.0 18.0	Elong. %	
5	An alloy of the following composition: Nickel 16.9% Aluminium 1.35%	42.5 27.5 30.0 25.0	47.4 32.4	Redi in Arec	
ر	5 Manganese 5.30% Iron 0.88% Balance substantially all copper when		3. 3.	2 7 T	
	produced in the form of hot rolled bar pos-	13 13 10	52 26	Izod t.lbs.	

	sessed a magnetic permeability of 1.01.	Manganese between 4% and 6%,
	EXAMPLE V	Iron between 1% and 2½%,
	An alloy of the following composition:	Balance substantially all copper,
	Nickel 194%	and the alloys being subjected to one or more
5	Nickel 19.4% Aluminium 1.8%	of the treatments described for the develop- 60
-	Manganese 4.7%	ment of the desired mechanical properties.
	Manganese 4.7% Iron 0.95%	3. A copper-nickel alloy composition
	Balance substantially all copper when cast	with constituents in the following ranges of
	into a sand mould and without further heat	proportions:
10	treatment possessed a magnetic permeability	Nickel more than 15% and up to 32%, 65
	of 1.005.	Aluminium more than 0.5% but less than
	Table 2 shows the results of corrosion tests	5% and less than one sixth of
*	in 3% sodium chloride solution.	the Nickel content,
	Alloy No. L.20 has the following com-	Manganese more than 3% but less than
15	positions:	10% and less than half the 70
	Aluminium 1.86%	Nickel content,
	Nickel 18.2%	Iron between 0.2% and 3% and
	Manganese 4.77%	Niobium and/or Silicon between 0.2% and
	Aluminium 1.86% Nickel 18.2% Manganese 4.77% Iron 1.32%	3%,
20	Copper Balance	Balance substantially all copper. 75
	From which it will be seen that it	4. A copper-nickel alloy composition
	possesses a superior resistance to corrosion	according to any of the preceding claims
	BS. 2032, BS. 2033 and HIDURAX	when hot worked in the temperature range
	SPECIAL.	1000°C1050°C.
25	TARIF 2	5. A copper-nickel alloy composition 80
	Alloy Penetration Rate inches/month	according to any one of the preceding claims
	inches/month	when subjected to hot working and solution
	BS. 2032 0.00022 BS. 2033 0.000222 HIDURAX SPECIAL 0.00054 ALLOY I 20 0.000019	treatment in the temperature range 750°C
	BS. 2033 0.000222	1050°C.
30	HIDURAX SPECIAL 0.000054	6. A copper-nickel alloy composition 85
	ALLOI D.20	according to any one of the preceding claims
	Thus the alloys described in this speci-	when subjected to precipitation hardening
	fication can be produced in a variety of	in the temperature range 350°C650°C.
	metallurgical forms possessing a unique com-	7. A copper-nickel alloy according to
35	bination of high strength, high ductility, low	any one of the preceding claims 1 to 5, 90
	magnetic permeability and excellent cor-	which after solution treatment in the tem-
	rosion resistance.	perature range 750°C1050°C. is subjected
	WHAT WE CLAIM IS:-	to cold work, with or without subsequent
	1. A copper-nickel alloy composition	precipitation hardening.
40	with constituents in the following ranges of	8. A copper-nickel alloy composition 95 according to any of claims 1, 2 or 3 in the
	proportions,	according to any of claims 1, 2 of 3 in the
	Nickel more than 15% and up to 32%,	cast condition. 9. Forged articles composed of the alloy
	Aluminium more than 0.5% but less than	composition according to any one of claims
	5% and less than one sixth of	1 to 7 substantially as described.
45	the Nickel content, Manganese more than 3% but less than 10%	10. The method of producing forged or
	Manganese more than 3% but less than 10%	cast articles of copper-nickel alloys according
	and less than han the Nicker	to any of Claims 1 to 3 when carried out
	content,	
	Iron 0.2% to 3%.	substantially as described.
50	Balance substantially all copper.	O'DONNELL, LIVSEY & CO.
	2. A copper-nickel alloy composition	Chartered Patent Agents,
	according to Claim 1, of the following	47, Victoria Street,
	ranges of proportions,	London, S.W.1.
	Nickel between 15% and 20%,	Agents for Applicants.
55	Aluminium between 1% and 2%,	1.Pours for 1.thhumme.
	* · · · · · · · · · · · · · · · · · · ·	

Berwick-upon-Tweed: Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd.—1965
Published at The Patent Office, 25 Southampton Buildings, London, W.C.2 from which copies may be obtained.

 $\mathcal{L}_{\mathcal{A}}(t) = t_{0}$

ignas Page di