

Matériaux : Désignation normalisée

Cours

Matériaux définis dans ce cours :

- Aciers
- Fontes
- Aluminium et ses alliages
- Cuivre et ses alliages
- Thermoplastiques
- Thermodurcissables
- Elastomères
- Céramiques
- Matériaux composites.

Choix d'un matériau

Le choix d'un matériau dépend de plusieurs critères :

- Caractéristiques mécaniques : limite élastique, masse, dureté, résilience ...
- Caractéristiques physico-chimiques : comportement à la corrosion, vieillissement
- Caractéristiques de mise en œuvre : usinabilité, soudabilité, trempabilité ...
- Caractéristiques économiques : prix, disponibilité, expérience industrielle ...

Masse volumique

Matériaux	Acier	Alliage d'aluminium	Bronze	Nylon	Fibres de verre	Fibres de carbone
en kg/m³	7800	2700	8900	1000	2500	1750

Propriétés électriques :

Type de matériau	Résistivité en Ω.m	Comportement électrique	
Polystyrène	10 ²⁰		
Nylon	5.10 ¹²	IOOL ANT	
Verre	10 ¹⁷	ISOLANT	
Alliages ferreux	9,8.10 ⁻⁸		
Aluminium	2,8.10 ⁻⁸	COMPLICATELIES	
Cuivre	1.7.10-8	CONDUCTEURS	

Propriétés thermiques :

Type de matériau	Conductivité W/(m/K)	Comportement thermique
Laine de verre	0.04	
Béton	1	10.01.41.17
Nylon	0.25	ISOLANT
Verre	1,2	
Fer	80	
Aluminium	237	CONDUCTEURS
Cuivre	390	CONDOCTECTO

Résistance à la corrosion de quelques matériaux :

		4.0 40.0.40.00			
or	aluminium	acier inoxydable	cuivre	zinc	acier
Le moins sensible à la corrosion					Le plus sensible à la corrosion

1. Les aciers (Fer + 0.08 à 1% de Carbone)

Les aciers sont des alliages de fer et de carbone avec éventuellement des éléments d'addition.

Classification par emplois

La désignation commence par la lettre « S » pour les aciers d'usage général et par la lettre « E » pour les aciers de construction mécanique. Le nombre qui suit indique la valeur minimale de limite élastique en Méga Pascals. Exemples :

\$235 (acier d'usage général, de limite élastique 235MPa)

E320 (acier de construction mécanique, de limite élastique 320MPa)

S'il s'agit d'un acier moulé, la désignation est précédée de la lettre « G ».

Classification par composition chimique

Aciers non alliés.

Ils contiennent une faible teneur en carbone. Ils sont très utilisés en construction mécanique. La majorité est disponible sous forme de laminés marchands (profilés, poutrelles, barres, ...) aux dimensions normalisées.

<u>Utilisation</u>: ce sont des aciers dont l'élaboration n'a pas été conduite en vue d'une application déterminée.

<u>Désignation</u> : la lettre « C » suivie du pourcentage de carbone multiplié par 100.

Exemple:

C 35 (acier avec 0.35% de carbone)

Aciers faiblement alliés

Pour ces aciers, aucun élément d'addition ne dépasse 5% en masse. <u>Utilisation</u> : ils sont choisis lorsque l'on a besoin d'une haute résistance. <u>Désignation</u> :

- un nombre égal à 100 fois la teneur en carbone,
- les symboles chimiques des éléments d'addition dans l'ordre des teneurs décroissantes,
- les teneurs des principaux éléments d'addition multipliés par 4, 10, 100 ou 1000 (voir tableau ci-contre)
- éventuellement, des indications supplémentaires concernant la soudabilité (S), l'aptitude au moulage (M), ou à la déformation à froid (DF).

élément	Symbole chimique	Symbole métallurgique	Facteur Multiplicateur
Aluminium	Al	A	10
Azote	N	N	100
Bore	В	В	1000
Chrome	Cr	C	4
Cobalt	Co	K	4
Cuivre	Cu	U	10
Magnésium	Mg	G	10
Manganèse	Mn	M	4
Molybdène	Mo	D	10
Nickel	Ni	N	4
Phosphore	P	P	100
Plomb	Pb	Pb	10
Silicium	Si	S	4
Soufre	S	F	100
Titane	Ti	T	10
Tungstène	W	W	4
Vanadium	V	V	10

Exemple:

35 Cr Mo 4S (acier avec 0.35% de Carbone, 1% de chrome, moins de 1% de Molybdène. Cet acier est soudable)

Aciers fortement alliés

Les aciers fortement alliés possèdent au moins un élément d'addition dont la treneur dépasse 5% en masse.

<u>Utilisation</u>: ces aciers sont réservés à des usages particuliers. Par exemple, dans un milieu humide, on utilisera un acier inoxydable qui est un acier fortement allié avec du chrome (% chrome > 11%)

<u>Désignation</u>:

- La lettre « X »,
- Un nombre égal à 100 fois la teneur en carbone,
- Les symboles chimiques des éléments d'addition dans l'ordre des teneurs décroissantes,
- Dans le même ordre, les teneurs des principaux éléments.

Exemple:

X6 Cr Ni Mo Ti 17-12 (acier fortement allié avec 0.06% de Carbone, 17% de Chrome, 12% de Nickel, du Molybdène et du Titane (moins de 12%))

X4 Cr Mo S 18 (acier fortement allié avec 0.04% de Carbone, 18% de Chrome, du Molybdène et du Soufre (moins de 18%))

2. Les fontes (Alliage de fer avec 1.67% à 4.2% de Carbone)

Les fontes sont alliages de fer et de carbone. Elles ont une excellente coulabilité. Elles permettent donc d'obtenir des pièces de fonderie (pièces moulées) aux formes complexes. Elles sont assez fragiles (cassantes), difficilement soudables et one une bonne usinabilité.

Les fontes à Graphite Lamellaire

Les fontes à graphite lamellaire, appelées « fontes grises » sont très utilisées car elles :

- Sont économiques,
- Amortissent bien les vibrations,
- Ont une bonne coulabilité et usinabilité.
- Sont peu oxydables,
- Ont une bonne résistance à l'usure par frottement.
- Résistant bien aux sollicitations de compression.

<u>Utilisation</u>: carters, bâtis, blocs moteur, pièces aux formes complexes, ...

<u>Désignation</u>: après le préfixe « EN », les fontes sont désignées par le symbole « GJL » suivi de la valeur en MPa (méga Pascals) de la résistance minimale à la rupture par extension.

Exemple:

EN-GJL-300 (fonte à graphite lamellaire de résistance Re mini = 300MPa)

Les fontes malléables à Graphite Sphéroïdale

Les fontes à graphite sphéroïdale sont obtenues par adjonction d'une faible quantité de magnésium avant moulage. Elles sont plus légères et ont une meilleure résistance mécanique que les fontes grises.

Utilisation: étriers de freins, culbuteurs, vilebrequins,

tuyauteries soumises à hautes pressions

<u>Désignation</u>: après le préfixe EN, les fontes sont désignées par le symbole (GJMW, GJMB, GJS) suivi de la valeur en méga Pascals de la résistance minimale à la rupture par extension et du pourcentage de l'allongement après rupture.

Exemple:

EN-GJS-400-18 (fonte à graphite sphéroïdale de résistance Re mini = 400MPa et d'allongement A% = 18)

3. L'aluminium et ses alliages

L'aluminium est obtenu à partir d'un minerai appelé bauxite. Il est léger (densité = 2.7), bon conducteur d'électricité et de chaleur. Sa résistance mécanique est faible, il est ductile et facilement usinable. Il est très résistant à la corrosion.

<u>Utilisation</u>: aéronautique du fait de sa légèreté <u>Désignation</u>: la désignation utilise un code numérique. Il peut éventuellement être suivi par une désignation utilisant les

symboles chimiques.

Exemple:

EN-AW-2017 (Al Cu 4 Mg Si) et du Silicium (moins de 4%))

(alliage d'aluminium avec 4% de cuivre, du Magnésium

4. Le cuivre et ses alliages

Il existe de très nombreux alliages de cuivre dont les plus connus sont : les bronzes, les laitons, les cupro-aluminiums, les cupronickels et les maillechorts.

cuivre + zinc	=	LAITON
cuivre + étain	=	BRONZE
cuivre + aluminium	=	CUPRO-ALUMINIUM
cuivre + nickel	=	CUPRONICKEL
cuivre + nickel + zinc	=	MAILLECHORT

<u>Les laitons</u> sont faciles à usiner et ont une bonne résistance à la corrosion. Ils peuvent être moulés ou forgés. Ils sont utilisés pour les pièces décolletées, tubes, ...

<u>Les bronzes</u> ont une bonne résistance à la corrosion, un faible coefficient de frottement et sont faciles à mouler. Ils sont utilisés pour réaliser, entre autre, les coussinets et bagues de frottement.

<u>Désignation</u>: c'est un code numérique. Il peut éventuellement être suivi par une désignation utilisant les symboles chimiques.

Exemple:

CW612N (Cu Zn 36 Pb 3)

(alliage de cuivre avec 36% de Zinc et 3 % de Plomb)

5. Les polymères ou matières plastiques

Un plastique est un mélange dont le constituant de base est une résine ou polymère, à laquelle on associe des adjuvants (plastifiants, anti-oxydants, ...) et des additifs (colorants, ignifugeants).

Les thermoplastiques

Très nombreux, ils sont les plus utilisés. Ils ramolissent et se déforment à la chaleur. Ils peuvent être refondus et remis en œuvre un grand nombre de fois.

Exemples: ABS, PMMA, PTFE, PP

Les thermodurcissables

Ils ne ramollissent pas et ne se déforment pas sous l'action de la chaleur. Une fois créés, il n'est plus possible de les remodeler par chauffage. <u>Exemples</u>: EP (araldite), UP (polyester).

Les élastomères ou "caoutchoucs"

On peut les considérer comme une famille supplémentaire de polymères aux propriétés très particulières. Ils sont caractérisés par une très grande élasticité.

6. Les céramiques

Elles sont très dures, très rigides, résistent à la chaleur, à l'usure, aux agents chimiques et à la corrosion mais sont fragiles.

Céramiques traditionnelles

Elles regroupent les ciments, les plâtres, Et les produits à base de silice.

Céramiques techniques

Elles sont soit fonctionnelles, à « usage électrique », soit structurales, à usage mécanique ou thermomécanique.

<u>Utilisation</u>: fibre optique (silicium), outils de coupe (carbures), joints d'étanchéité, isolants, filtres, ...

7. Les matériaux composites

Ils sont composés d'un matériau de base (matrice ou liant) renforcé par des fibres, ou agrégats, d'un autre matériau.

En renfort, on utilise la fibre de verre (économique), la fibre de carbone (plus coûteuse) et enfin les fibres organiques (kevlar).

