INTRODUCTION TO LIE ALGEBRAS – SOLUTION 16

Let us choose the standard basis in the Lie algebra $\mathfrak{g} = \mathfrak{sl}_2\mathbb{C}$:

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad F = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Consider the operator ad $H: \mathfrak{g} \to \mathfrak{g}$. By definition, we have $(\operatorname{ad} H)(Y) = [H,Y]$ for any vector $Y \in \mathfrak{g}$. In particular,

$$(ad H)(H) = 0$$
, $(ad H)(E) = 2E$, $(ad H)(F) = -2F$,

Thus our chosen basis in \mathfrak{g} consists of eigenvectors of the operator ad H. Note that the three corresponding eigenvalues 0, 2, -2 are different from each other. Now let \mathfrak{h} is any non-zero ideal in \mathfrak{g} . We will prove that then $\mathfrak{h} = \mathfrak{g}$. By the definition of an ideal $[X,Y] \in \mathfrak{h}$ for any $X \in \mathfrak{g}$ and any $Y \in \mathfrak{h}$. Choosing X = H here, we obtain that the operator ad H preserves the subspace $\mathfrak{h} \subset \mathfrak{g}$. As $\mathfrak{h} \neq \{0\}$, the subspace \mathfrak{h} contains an eigenvector of ad H. This eigenvector must be one of H, E, F up to a non-zero factor from \mathbb{C} . We can assume that \mathfrak{h} contains one of the vectors H, E, Fexactly. Let us now consider all the three possibilities.

- (i) If $H \in \mathfrak{h}$, then $E = -[E, H]/2 \in \mathfrak{h}$ and $F = [F, H]/2 \in \mathfrak{h}$ also.
- (ii) If $E \in \mathfrak{h}$, then $H = -[F, E] \in \mathfrak{h}$. Then also $F = [F, H]/2 \in \mathfrak{h}$.
- (iii) If $F \in \mathfrak{h}$, then $H = [E, F] \in \mathfrak{h}$. Then also $E = -[E, H]/2 \in \mathfrak{h}$. In each of these three cases we have $H, E, F \in \mathfrak{h}$, so that $\mathfrak{h} = \mathfrak{g}$.

Note that with the above method one can also show that the irreducible modules L(n), $n \ge 2$, from Section 2 are indeed irreducible. In fact we have shown above that L(2) (recall that L(2) is isomorphic to the adjoint representation) is irreducible.

INTRODUCTION TO LIE ALGEBRAS – SOLUTION 17

(i). The commutator of two matrices from the vector space \mathfrak{g}

$$A = \begin{bmatrix} X & Z \\ 0 & Y \end{bmatrix} \quad \text{and} \quad A' = \begin{bmatrix} X' & Z' \\ 0 & Y' \end{bmatrix}$$

is

$$AA' - A'A = \begin{bmatrix} XX' - X'X & XZ' + ZY' - X'Z - Z'Y \\ 0 & YY' - Y'Y \end{bmatrix}.$$

Each of the 2×2 matrices XX' - X'X and YY' - Y'Y has zero trace, so $AA' - A'A \in \mathfrak{g}$. This proves that (i) \mathfrak{g} is a Lie subalgebra in $\mathfrak{gl}_4\mathbb{C}$.

(ii). If above X' = Y' = 0 then

$$AA' - A'A = \begin{bmatrix} 0 & XZ' - Z'Y \\ 0 & 0 \end{bmatrix}.$$

Therefore all the matrices

$$\begin{bmatrix} 0 & Z \\ 0 & 0 \end{bmatrix}$$

form an ideal $\mathfrak h$ of $\mathfrak g$. The ideal $\mathfrak h$ is Abelian, and in particular solvable. Indeed, if X=Y=0 and X'=Y'=0, then AA'-A'A=0.

It is easy to check that the map

$$\varphi: \left[\begin{array}{cc} X & Z \\ 0 & Y \end{array} \right] \mapsto (X,Y): \mathfrak{g} \to \mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$$

is a surjective homomorphism of Lie algebras and that $\operatorname{Ker}(\varphi) = \mathfrak{h}$. Now let \mathfrak{a} be a solvable ideal of \mathfrak{g} . Then $\varphi(\mathfrak{a})$ is an ideal of $\mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$, since φ is surjective. Furthermore, it is solvable by Theorem B from the notes. Since $\mathfrak{sl}_2(\mathbb{C})$ is simple by Question 16, $\mathfrak{sl}_2(\mathbb{C}) \oplus \mathfrak{sl}_2(\mathbb{C})$ is semisimple, by Prop. 7 from the notes. So $\varphi(\mathfrak{a}) = \{0\}$ and $\mathfrak{a} \subseteq \operatorname{Ker}(\varphi) = \mathfrak{h}$. It follows that \mathfrak{h} is the greatest solvable ideal of \mathfrak{g} , i.e. $\mathfrak{h} = \mathcal{R}(\mathfrak{g})$.