Упорядоченные множества в анализе данных Тема 1. Отношения и графы

С.О. Кузнецов

Цель курса

Познакомить с основами теории решеток и ее приложениями в анализе данных

Построение таксономий объектов и их визуализация

Машинное обучение (Machnie Learning)

Разработка данных (Data Mining), и в частности

Выявления знаний в текстах (Text Mining)

Обзор курса

- 1. Отношения и упорядоченные множества Основные понятия: отношение, частичный порядок
- 2. Решетки Основные темы: инфимум, супремум, типы решеток
- 3. Бинарные отношения и соответствия Галуа Основной пример: соответствия между объектами и их признаками
- 4. Анализ формальных понятий (АФП) Основная тема: содержание понятия, объем понятия, решетка понятий и ее диаграмма

Обзор курса

- 5. Импликации и функциональные зависимости Основная тема: точные зависимости в данных
- 6. Модели получения знаний из данных на основе ФАП Основные темы: Ассоциативные правила, машинное обучение, приложения в науках об обществе и науках о жизни

Бинарные отношения

Декартово (прямое) произведение множеств A и B: множество упорядоченных пар, первый элемент которых принадлежит A, а второй - B:

$$A \times B := \{(a,b) \mid a \in A, b \in B\}.$$

Бинарное отношение R из множества A в множество B - подмножество декартова произведения множеств A и B: $R \subseteq A \times B$.

Инфиксная форма записи отношения R:

 $aRb \Leftrightarrow (a,b) \in R \subseteq A \times B$.

Если A = B, то говорят, что R есть **отношение на множестве** A.

Тождественное отношение $I := \{(a, a) \mid a \in A)\}.$ **Универсальное** отношение $U := \{(a, b) \mid a \in A, b \in A)\}.$

Матричное представление отношений

Матрица бинарного отношения

Пусть $R \subseteq A \times A$. Отношение R представимо в виде матрицы

$$R$$
 \cdots a_j \cdots
 \vdots \vdots ε_{ij}
 \vdots

$$arepsilon_{ij} = \left\{egin{aligned} 1, \; \mathsf{если} \; (a_i, a_j) \in R \ 0, \; \mathsf{если} \; (a_i, a_j)
otin R \end{aligned}
ight.$$

Производные отношения $R \subseteq A \times A$

обратное отношение

$$R^d := \{(a,b) \mid (b,a) \in R\}$$

дополнение отношения

$$R^c = \overline{R} := \{(a,b) \mid (a,b) \notin R\}$$

отношение несравнимости

$$I_R = A \times A \setminus (R \cup R^d) = (R \cup R^d)^c = R^c \cap R^{cd}$$

произведение отношений

$$P \cdot R = \{(x,y) \mid \exists z \quad (x,z) \in P, (z,y) \in R\}$$

степень отношения

$$R^n = \underbrace{R \cdot R \cdot \ldots \cdot R}_{n \text{ pas}}$$

транзитивное замыкание отношения

$$R^T = R \cup R^2 \cup R^3 \cup \ldots = \bigcup_{i=1}^{\infty} R^i$$

Функции

Отношение $f\subseteq A\times B$ есть функция из A в B (обозначается $f:A\to B$) если для каждого $a\in A$ найдется $b\in B$, такое что $(a,b)\in f$ и

$$(a,b) \in f, (a,c) \in f \Rightarrow b = c$$

Функция $f:A\to B$ называется **инъекцией** (отображением в), если $b=f(a_1)$ и $b=f(a_2)\Rightarrow a_1=a_2;$

сюръекцией (отображением на), если для любого b из B существует a из A, такой что b=f(a) (или $\forall b\in B\ \exists a\in A\ b=f(a)$);

биекцией, если она сюръекция и инъекция.

Свойства бинарных отношений

отношение, но не функция

инъекция, но не сюръекция

сюръекция, но не инъекция

биекция

Свойства бинарных отношений.

Пусть $R \subset A \times A$. Тогда R называется

рефлексивным, если $\forall a \in A \ aRa$ антирефлексивным, если $\forall a \in A \ \neg (aRa) \ (\Leftrightarrow aR^ca)$ симметричным, если $\forall a, b \in A \ aRb \Rightarrow bRa$ асимметричным, если $\forall a, b \in A \ aRb \Rightarrow \neg (bRa) \ (\Leftrightarrow bR^ca)$ антисимметричным, если $\forall a, b \in A \ aRb \ bRa \Rightarrow a = b$ транзитивным, если $\forall a, b, c \in A \ aRb \ bRc \Rightarrow aRc$ полным, или линейным, если $\forall a, b \in A \ a \neq b \Rightarrow aRb \lor bRa$.

Виды бинарных отношений

- **Толерантность** рефлексивное и симметричное бинарное отношение;
- Эквивалентность рефлексивное, симметричное и транзитивное бинарное отношение;
- Квазипорядок или предпорядок рефлексивное и транзитивное бинарное отношение;
- **Частичный порядок** рефлексивное, транзитивное и антисимметричное бинарное отношение;
- Строгий порядок антирефлексивное и транзитивное бинарное отношение.

Представление отношений графами

Ориентированный граф (орграф) G - это пара вида (V,A), где V называется множеством **вершин** графа, а $A \subseteq V \times V$ называется множеством **дуг** (ориентированных ребер) графа G. Ориентированные графы с множеством вершин V представляют отношения на множестве V.

Представление отношений графами

Неориентированный граф - это пара вида G=(V,E). Множество V называется множеством **вершин** графа. Множество $E=\{\{v,u\}\mid v,u\in V\}\cup E_0$, где $E=\{\{v,u\}\mid v,u\in V\}$ - множество неупорядоченных пар элементов множества V, называется множеством **ребер**, а $E_0\subseteq V$ - множеством петель. Если $E_0=\emptyset$, то G называется графом без петель.

Неориентированные графы с множеством вершин V представляют симметричные отношения на множестве V, т.е. $R \subseteq V \times V$: $(a,b) \in R \Leftrightarrow (b,a) \in R$.

Матричное представление графов

Матрица смежности (вершин) графа

(Ориентированный) граф G = (V, E) можно представить в виде матрицы

$$\begin{array}{c|ccc} & \cdots & v_j & \cdots \\ \vdots & & \vdots & \\ v_i & \cdots & \varepsilon_{ij} & \\ \vdots & & & \end{array}$$

$$arepsilon_{ij} = \left\{egin{aligned} 1, \; \mathsf{если} \; (\mathit{v}_i, \mathit{v}_j) \in \mathit{E} \ 0, \; \mathsf{если} \; (\mathit{v}_i, \mathit{v}_j)
ot\in \mathit{E} \end{aligned}
ight.$$

В неориентированном графе $\varepsilon_{ii}=\varepsilon_{ji}$

Матричное представление графов

Матрица инцидентности графа

(Ориентированный) граф G = (V, E) можно представить в виде матрицы

$$\begin{array}{c|cccc} & \cdots & e_j & \cdots \\ \hline \vdots & & \vdots & \\ v_i & \cdots & \varepsilon_{ij} & \\ \vdots & & & \end{array}$$

$$arepsilon_{ij} = \left\{egin{array}{l} -1, \ ext{если} \ \exists v_k \in V \colon e_j \in \ 1, \ ext{если} \ \exists v_k \in V \colon e_j \in \ 0, \ ext{если} \ v_i
ot\in e_j \end{array}
ight.$$

Для неориентированного графа

$$arepsilon_{ij} = egin{cases} 1, \; \mathsf{если} \; v_i \in e_j \ 0, \; \mathsf{если} \; v_i
ot\in e_j \end{cases}$$

Вершина v_i инцидентна дуге (ребру) e_j если $\varepsilon_{ij} \neq 0$.

Представление отношений графами

Ориентированный двудольный граф - это пара вида (V,A), где $V=V_1\cup V_2$ и $V_1\cap V_2=\emptyset$ и $A\subseteq V_1\times V_2$, т.е. любая дуга из A соединяет вершину из V_1 с вершиной из V_2 . Множества V_1 и V_2 называются долями графа.

Ориентированные двудольные графы на долях V_1 , V_2 представляют бинарные отношения из V_1 в V_2 .

Представление отношений графами

Неориентированный двудольный граф - это пара вида (V,E), где V - множество вершин, $V=V_1\cup V_2$ $V_1\cap V_2=\emptyset$, а $E=\{\{v_1,v_2\}\mid v_1\in V_1,v_2\in V_2\}$ - множество неориентированных ребер, соединяющих вершины из V_1 с вершинами из V_2 .

Неориентированные двудольные графы на долях V_1 , V_2 представляют симметричные бинарные отношения из V_1 в V_2 .

(Неориентированный) **полный граф** - (неориентированный) граф G = (V, E), в котором каждая пара вершин связана ребром.

Полный граф с множеством вершин V представляет универсальное отношение на множестве V.

Классы толерантности

Пусть дано множество M и отношение толерантности на $M \times M$.

Класс толерантности - максимальное подмножество элементов M, все пары которых принадлежат отношению.

Графовая интерпретация - максимально полный подграф неориентированого графа с петлями.

Классы эквивалентности и разбиения

Класс эквивалентности - подмножество элементов множества M, эквивалентных некторому элементу $x \in M$.

Графовая интерпретация - связанная компонента графа.

Разбиением множества M называется семейство множеств $\{M_1,\ldots,M_n\}$, такое что

$$\bigcup_{i\in[1,n]}M_i=M,\quad\forall i,j\in[1,n]M_i\cap M_j=\emptyset.$$

Между разбиениями и эквивалентностями на множестве M существует взаимнооднозначное соответствие.

Части (неориентированных) графов

Граф $H=(V_H,E_H)$ есть часть (подграф) графа $G=(V_G,E_G)$ если и все вершины и ребра H являются, соответственно вершинами и ребрами G, т.е. $V_H\subseteq V_G$ и $E_H\subseteq E_G$.

Граф $H = (V_H, E_H)$ есть (индуцированный) подграф графа $G = (V_G, E_G)$ если H есть часть (подграф) G, а ребрами H являются все ребра G, обе концевые вершины которых лежат в H.

Пути и связность в неориентированных графах

маршрут (путь) - чередующаяся последовательность вершин и ребер графа вида $v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k$, в которой каждые два соседних ребра имеют общую вершину. цепь - маршрут, в котором все ребра различны. простая цепь - маршрут в котором все вершины (а, следовательно, и ребра) различны. Две вершины называются связаными если существует соединяющая их (простая) цепь. Граф связан если все пары вершин связаны. связная компонента графа - максимальное (по вложению) множество вершин графа, каждая пара которых связана. Связаная компонента графа соответствует классу эквивалентности на множестве вершин по отношению "быть связаным".

Пути и связность в ориентированных графах

(ориентированный) маршрут или (ориентированный) путь - чередующаяся последовательность вершин и дуг графа вида $v_0, a_1, v_1, a_2, v_2, \ldots, a_k, v_k$, в которой конец любой дуги (кроме, быть может, последней) совпадает с началом следующей дуги, то есть $a_i = (v_{i-1}, v_i)$.

цепь - маршрут, в котором все дуги различны.

простая цепь - маршрут в котором все вершины (а, следовательно, и ребра) различны.

Вершина v_j достижима из вершины v_i если существует путь с началом в v_i и концом в v_j (считается, что вершина достижима из себя самой).

Граф сильно связан если любые две вершины достижимы друг из друга.

Граф односторонне связан если для любой пары вершин есть достижимость хотя бы в одну сторону.

Циклы

(ориентированный) цикл - (ориентированный) путь - путь, в котором первая и последняя вершины совпадают.

простой цикл - цикл, в котором любая вершина встречается не более одного раза.

неориентированный цикл (контур) в ориентрированном графе - последовательность вершин и дуг ориентированного графа, которая преобразовать в ориентированный цикл изменением ориентации некоторых дуг.

ациклический граф - ориентированный граф, не содержащий ориентированных циклов.

Ациклическими графами можно представлять квазипорядки и частичные порядки (при этом петли не изображаются), а также строгие порядки.

Деревья

(**Неориентированное**) дерево - неориентированный граф без циклов.

Ориентированное дерево - ориентированный граф, в которм нет циклов (как ориентированных так и неориентированных). Корневое дерево дерево с выделенной вершиной, которая называется корнем.

В корневом дереве выделено направление от корня к листьям, поэтому корневое дерево можно считать ориентированным.

Звезда - дерево вида
$$G = (V, E)$$
, где $V = \{v_0\} \cup V_1$, $E = \{\{v_0, v_i\} \mid v_i \in V_1\}$.

Упражнения

- ullet Определить какими свойствами обладает отношение $Q := \{(m,n) \mid m,n \in \mathbb{N} \ \& \ m = n^2\}$
- Найти число инъекций из конечного множества A в конечное множество B, считая что |A| < |B|.
- Найти число частей (неиндуцированных подграфов) конечного графа с множеством ребер *E*.
- Степенью вершины (неориентированного) графа называется число ребер, инцидентных данной вершине. Доказать, что в произвольном графе число вершин с нечетной степенью четно.

Литература по отношениям и графам

- Ф.Т. Алескеров, Э.Л. Хабина, Д.А. Шварц, *Бинарные* отношения, графы и коллективные решения, М., ГУ-ВШЭ, 2006.
- С.В. Судоплатов, Е.В. Овчинникова, *Дискретная математика*, Москва Новосибирск, ИНФРА-М НГТУ, 2007.
- Г. Биркгоф, Т.К. Барти, *Современная прикладная алгебра*, М., Лань, 2005. (Главы 1,2)
- А.А. Зыков, Основы теории графов, М., Наука, 1987.
- О. Оре, Теория графов, М., Мир, 1965. (Главы 1,2,10)
- Ф. Харари, *Теория графов*, М., Мир, 1973.