Лекция 1.Повторение школьного курса.

Векторы на плоскости..

Определение. Фиксированным вектором называется отрезок AB если указано, какая из точек A или B является его началом, а какая концом. Если A — начало, а B — конец, то фиксированный вектор обозначается \overrightarrow{AB} .

Определение. Длиной фиксированного вектора \overrightarrow{AB} называется длина отрезка AB.

Определение. Фиксированные векторы \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются, сонаправленными, если $\overrightarrow{AB} || \overrightarrow{A_1B_1}$ и лучи \overrightarrow{AB} и A_1B_1 сонаправлены .

Определение. Два фиксированных вектора \overrightarrow{AB} и $\overrightarrow{A_1B_1}$ называются равными, если они сонаправлены и имеют одинаковую длину. Пишем $\overrightarrow{AB} = \overrightarrow{A_1B_1}$. Очевидно, $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow$ они совмещаются параллельным переносом.

Для отношения "=" на множестве фиксированных векторов плоскости верны следующие свойства:

- $\mathbf{1.}\overrightarrow{AB} = \overrightarrow{AB}$,
- 2. $\overrightarrow{AB} = \overrightarrow{A_1B_1} \Leftrightarrow \overrightarrow{A_1B_1} = \overrightarrow{AB}$,
- **3.** $(\overrightarrow{AB} = \overrightarrow{A_1B_1} \cap \overrightarrow{A_1B_1} = \overrightarrow{AB}) \Rightarrow \overrightarrow{AB} = \overrightarrow{A_2B_2}$.

Следовательно, отношение "=" является отношением эквивалентности, и множество фиксированных векторов плоскости распадается на классы эквивалентных друг другу фиксированных векторов плоскости, непересекающиеся между собой.

Определение. Вектором \vec{a} называется класс равных между собой фиксированных векторов плоскости. Длина вектора \vec{a} обозначается $|\vec{a}|$.

Если вектор \vec{a} задается фиксированным вектором \vec{AB} , то пишем $\vec{a} = \vec{AB}$, и говорим, что \vec{AB} есть вектор \vec{a} , отложенный из точки A.

Предложение. Для вектороа \vec{a} и точки A существует и притом единственная точка B, такая , что $\vec{a} = \overrightarrow{AB}$.

Доказательство.

Определение. Вектор, имеющий нулевую длину, называется *нулевым* и обозначается $\vec{\mathbf{o}}$. Вектор, длина которого равна 1, называется *единичным*.

Определение. Векторы \vec{a} и \vec{b} называются сонаправленными (противоположно направленными), если задающие их фиксированные векторы сонаправлены (противоположно направлены). Пишем $\vec{a} \uparrow \uparrow \vec{b}$ ($\vec{a} \uparrow \downarrow \vec{b}$). Два вектора, направления которых совпадают или противоположны,

называются коллинеарными. Пишем $\vec{a} \parallel \vec{b}$. Считается, что \vec{o} коллинеарен каждому вектору. Три и более векторов, параллельных одной плоскости называются *компланарными*.

Определение. Определение суммы двух векторов по правилу треугольника.

Теорема. Данное определение операции сложения корректно.

Доказательство.

Теорема.

 $\forall \vec{a}, \vec{b}, \vec{c}$ верно:

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
:

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$
;

- $3. \overrightarrow{a} + \overrightarrow{o} = \overrightarrow{a}$.
- **4.** \exists ! $\vec{\mathbf{x}}$: $\vec{\mathbf{a}} + \vec{\mathbf{x}} = \vec{\mathbf{o}}$. Такой вектор называется *противоположным* к $\vec{\mathbf{a}}$ и обозначается $-\vec{\mathbf{a}}$.

Доказательство

Определение. Определение суммы двух векторов по правилу параллелограмма.

Определение. <u>Разностью двух векторов</u> $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ называется такой вектор $\vec{\mathbf{d}}$, что $\vec{\mathbf{b}} + \vec{\mathbf{d}} = \vec{\mathbf{a}}$. Пишем $\vec{\mathbf{d}} = \vec{\mathbf{a}} - \vec{\mathbf{b}}$.

Теорема. Разность векторов существует и определяется однозначно.

Доказательство.

Определение. <u>Произведением вектора</u> $\vec{\bf a}$ <u>на число</u> λ называется такой вектор $\vec{\bf b}$, что

1.
$$\vec{a} \uparrow \uparrow \vec{b}$$
, если $\lambda > 0$, и $\vec{a} \uparrow \downarrow \vec{b}$, если $\lambda < 0$;

$$2. |\vec{\mathbf{b}}| = |\lambda| \cdot |\vec{\mathbf{a}}|.$$

Пишем $\vec{\mathbf{b}} = \lambda \vec{\mathbf{a}}$.

Теорема.

1.
$$\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$$
;

3.
$$(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$$
;

2.
$$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$$
;

$$4. \ 1 \cdot \overrightarrow{a} = \overrightarrow{a}.$$

3. ненулевые векторы \vec{a} и \vec{b} коллинеарны \Leftrightarrow существует такое число λ , что $\vec{b} = \lambda \vec{a}$.

Доказательство.

Определение. Пусть $\vec{\bf a}$ и $\vec{\bf b}$ – два ненулевых вектора. Отложим их из одной точки $O: \vec{\bf a} = \overrightarrow{OA}, \vec{\bf b} = \overrightarrow{OB}$. Тогда углом между векторами $\vec{\bf a}$ и $\vec{\bf b}$ называется угол между лучами OA и OB, т.е. $\alpha = \angle AOB$. Пишем

$$\alpha = \angle (\vec{a}, \vec{b}).$$

Определение. Скалярным произведением двух векторов \vec{a} и \vec{b} называется *число*

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}). \tag{1}$$

Число $\vec{\mathbf{a}}^2 = \vec{\mathbf{a}} \cdot \vec{\mathbf{a}}$ называется скалярным квадратом вектора $\vec{\mathbf{a}}$.

Теорема. Скалярный квадрат $\vec{a}^2 = \vec{a} \cdot \vec{a}$ вектора равен квадрату его длины $|\vec{a}|^2$.

2. Для того, чтобы ненулевые векторы \vec{a} и \vec{b} были перпендикулярны необходимо и достаточно, чтобы их скалярное произведение было равно нулю $(\vec{a} \perp \vec{b} \iff \vec{a} \cdot \vec{b} = 0)$.

Доказательство.

Теорема.

- 1. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$;
- 2. $(\lambda \vec{a}) \cdot \vec{b} = \lambda (\vec{a} \cdot \vec{b})$;
- 3. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$;
- **4.** $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} \ge 0$, $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = 0 \Leftrightarrow \vec{\mathbf{a}} = \vec{\mathbf{o}}$

Доказательство.

Замечание.

$$\cos \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}) = (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}) / (|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|). \tag{2}$$

Скалярное произведение обозначается также, как: $(\vec{\mathbf{a}}, \vec{\mathbf{b}})$.

Теорема. Пусть $\vec{\mathbf{a}}$ и $\vec{\mathbf{b}}$ - неколлинеарные векторы на плоскости. Для любого вектора $\vec{\mathbf{c}}$ существуют такие числа x_1, x_2 , что

$$\vec{\mathbf{c}} = x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}, \qquad (3)$$

причём x_1, x_2 определены однозначно.

Доказательство.

Представление вектора $\vec{\mathbf{c}}$ в виде (3) называется разложением по базису, состоящему из векторов $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$. Числа x_1, x_2 называются координатами вектора. В этом случае записывают так $\vec{\mathbf{c}} = (x_1, x_2)$.

Определение. Базис $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ называется ортонормированным, если

$$|\vec{\mathbf{a}}| = |\vec{\mathbf{b}}| = 1 \text{ M } \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0.$$

Выберем произвольную точку O на плоскости, которую назовём началом координат. Прямые l_1 , l_2 вместе с выбранными на них фиксированными векторами $\overrightarrow{OA} = \overrightarrow{\mathbf{a}}$, $\overrightarrow{OB} = \overrightarrow{\mathbf{b}}$ называются координатными осями.

Координатные оси вместе с ортонормированным базисом $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ и точкой O называются ∂ екартовой системой координат. Векторы $\{\vec{\mathbf{a}}, \vec{\mathbf{b}}\}$ в этом случае принято обозначать $\{\mathbf{i}, \mathbf{j}\}$ и называть базисными ортами.

Пусть C - произвольная точка на плоскости. Вектор $\vec{\mathbf{c}} = \overrightarrow{\mathsf{OC}}$ называется paduyc-вектором_точки C в данной системе координат. Координаты (x, y) вектора $\vec{\mathbf{c}}$, где $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j}$ называются координатами точки точки C в данной системе координат и записываются в виде C(x,y).

Пусть произвольный вектор $\vec{\mathbf{c}}$ в декартовой СК имеет координаты (x, y), т.е. $\vec{\mathbf{c}} = x\mathbf{i} + y\mathbf{j}$.

Теорема.

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{i}} = |\vec{\mathbf{c}}| |\vec{\mathbf{i}}| \cos \angle (\vec{\mathbf{c}}, \vec{\mathbf{i}}) = |\vec{\mathbf{c}}| \cos \angle (\vec{\mathbf{i}}, \vec{\mathbf{c}}) = x,$$

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{j}} = |\vec{\mathbf{c}}| |\vec{\mathbf{j}}| \cos \angle (\vec{\mathbf{c}}, \vec{\mathbf{j}}) = |\vec{\mathbf{c}}| \cos \angle (\vec{\mathbf{j}}, \vec{\mathbf{c}}) = y.$$

Пусть $\alpha = \angle(\mathbf{i}, \mathbf{c})$, $\beta = \angle(\mathbf{j}, \mathbf{c})$. Тогда величины $\cos \alpha$ и $\cos \beta$ называются направляющими косинусами вектора \mathbf{c} .

Доказательство.

Теорема. Пусть
$$\vec{\mathbf{c}} = (x_1, x_2)$$
, $\vec{\mathbf{d}} = (y_1, y_2)$. Тогда
$$\vec{\mathbf{c}} + \vec{\mathbf{d}} = (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}) + (y_1 \vec{\mathbf{a}} + y_2 \vec{\mathbf{b}}) = (x_1 + y_1) \vec{\mathbf{a}} + (x_2 + y_2) \vec{\mathbf{b}}.$$

$$\lambda \vec{\mathbf{c}} = \lambda (x_1 \vec{\mathbf{a}} + x_2 \vec{\mathbf{b}}) = (\lambda x_1) \vec{\mathbf{a}} + (\lambda x_2) \vec{\mathbf{b}}.$$

Доказательство.

Пусть известны координаты точек $P(x_1, x_2)$, $Q(y_1, y_2)$, а $\mathbf{d} = \overrightarrow{PQ}$.

Теорема. $\overrightarrow{\mathbf{d}} = \overrightarrow{\mathbf{q}} - \overrightarrow{\mathbf{p}}$, где $\overrightarrow{\mathbf{p}} = (x_1, x_2)$,

 $\vec{\mathbf{q}} = (y_1, y_2), 3$ начит, $\vec{\mathbf{d}} = (y_1 - x_1, y_2 - x_2).$

Теорема. В произвольном треугогльнике *АВС*

$$BC^2=AB^2+AC^2-2$$
 AB AC cos A.

Доказательство.

Теорема.

Расстояние между точками $P(x_1, x_2)$, $Q(y_1, y_2)$ на декартовой плоскости равно $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Доказательство.

Теорема. Пусть $\overrightarrow{\mathbf{c}} = (x_1, x_2)$, $\overrightarrow{\mathbf{d}} = (y_1, y_2)$ декартовы координаты векторов $\overrightarrow{\mathbf{c}}$, $\overrightarrow{\mathbf{d}}$. Тогда

$$\vec{\mathbf{c}} \cdot \vec{\mathbf{d}} = x_1 y_1 + x_2 y_2.$$

Доказательство.

Следствие. Пусть $\vec{\mathbf{c}} = (x_1, x_2)$, $\vec{\mathbf{d}} = (y_1, y_2)$ декартовы координаты векторов $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$.

Тогда

$$\cos \angle (\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{d}}) = \frac{x_1 y_1 + x_2 y_2}{\sqrt{x_1^2 + x_2^2 \sqrt{y_1^2 + y_2^2}}}.$$

Доказательство.

Следствие.Пусть $\vec{\mathbf{c}}=(x_1,x_2)$, $\vec{\mathbf{d}}=(y_1,y_2)$ ненулевые векторы. Тогда они ортогональны если и только если $x_1y_1+x_2y_2=0$.

Доказательство.

Теорема. Если координаты концов отрезка AB суть $A(x_1, y_1)$, $B(x_2, y_2)$, то координаты точки C(x, y), которая делит этот отрезок в отношении $\lambda_1: \lambda_2$ равны

$$x = \frac{\lambda_2 x_1 + \lambda_1 x_2}{\lambda_1 + \lambda_2}, y = \frac{\lambda_2 y_1 + \lambda_1 y_2}{\lambda_1 + \lambda_2}.$$

Доказательство.

Примеры (проекция вектора на ось).