KOMPLEKSNA ŠTEVILA

Zgodovinski uvod

Sredi 16. stoletja so se začeli matematiki zanimati za reševanje enačb tretje stopnje. Obrazec za enačbo oblike $x^3 + px + q = 0$ je odkril italijanski matematik **Niccolò Fontana** (1499 - 1557), bolj znan pod vzdevkom Tartaglia (*jecljavec*), ki mu je avtorstvo obrazca z zvijačo ukradel **Gerolamo Cardano** (1501 – 1576).

Obrazec $x = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$ je še danes znan kot Cardanov obrazec za reševanje enačb tretje stopnje. Iskanje rešitev kubičnih enačb je bil povod za vpeljavo nove številske množice. množice kompleksnih števil.

Pri enačbi $x^3 - 15x - 4 = 0$, ki jo lahko razcepimo v $(x-4)(x^2 + 4x + 1) = 0$ in so torej njene rešitve $x_1 = 4$, $x_{2,3} = -2 \pm \sqrt{3}$, dobimo z uporabo Cardanovega obrazca rešitev $x = \sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 - \sqrt{-121}}$, kar je prisililo tedanje matematike, da so začeli razmišljati o pomenu kvadratnega korena negativnih števil.

IMAGINARNA ENOTA, IMAGINARNO ŠTEVILO, KOMPLEKSNO ŠTEVILO

DEF.: Imaginarna enota i je tisto število, katerega kvadrat je -1 oz. $i^2 = -1$.

Velja:
$$\begin{cases} i^{0} = 1 \\ i^{1} = i \\ i^{2} = -1 \\ i^{3} = i^{2} \cdot i = -i \\ i^{4} = i^{2} \cdot i^{2} = 1 \end{cases} \implies i^{n} = \begin{cases} 1 & n = 4k \\ i & n = 4k + 1 \\ -1 & n = 4k + 2 \\ -i & n = 4k + 3 \end{cases}$$

Primer:
$$i^{215} = i^{4\cdot53+3} = i^3 = -i$$

DEF.: Imaginarno število *bi* je produkt med realnim številom *b* in imaginarno enoto *i*.

Velja:
$$\begin{cases} b_{1}i \pm b_{2}i = (b_{1} \pm b_{2})i \\ b_{1}i \cdot b_{2}i = (b_{1} \cdot b_{2})i^{2} = -b_{1} \cdot b_{2} \\ \frac{b_{1}i}{b_{2}i} = \frac{b_{1}}{b_{2}} \\ (bi)^{n} = b^{n} \cdot i^{n} \end{cases}$$

Primer:

$$\frac{\left(-i\right)^{5} + \left(-i\right)^{8} + \left(-i\right)^{10} - \left(-i\right)^{7}}{\left(-i\right)^{34}} = \frac{-i^{5} + i^{8} + i^{10} + i^{7}}{i^{34}} = \frac{-i^{1} + i^{0} + i^{2} + i^{3}}{i^{2}} = \frac{-i + 1 - 1 - i}{-1} = 2i$$

DEF.: Kompleksno število z = a + ib je vsota realnega števila a in imaginarnega števila bi.

Število -z = -a - ib je *nasprotno* število število $\overline{z} = a - ib$ pa je *koniugirano* kompleksno število število z.

Modul kompleksnega števila je realna vrednost $|z| = \sqrt{a^2 + b^2}$.

Množico kompleksnih števil pišemo $\mathbb C$. Množica realnih števil je njena podmnožica, saj lahko vsako realno število a zapišemo kot kompleksno število a+0i.

RAČUNANJE V MNOŽICI C

Produkt z	$z = a + ib \Rightarrow k \cdot z = ka + ikb$			
realnim				
številom	Primer:			
	$\frac{3}{2} \left(-\frac{2}{3} + \frac{1}{5}i \right) = -1 + \frac{3}{10}i$			
Seštevanje	$ \begin{vmatrix} z_1 = a + ib \\ z_2 = c + id \end{vmatrix} \Rightarrow z_1 + z_2 = (a+c) + i(b+d)$			
	Za seštevanje veljajo komutativnost, asociativnost, obstoj nevtralnega elementa $0+i0$, obstoj nasprotnega elementa $-z=-a-ib$.			
	Primer: $(2 \ 1) (5 \ 2) (1 \ 1) -4-15+6 -2-20-5 $. 13 27.			
	$\left(-\frac{2}{3} - \frac{1}{5}i\right) - \left(\frac{5}{2} + 2i\right) + \left(1 - \frac{1}{2}i\right) = \frac{-4 - 15 + 6}{6} + \frac{-2 - 20 - 5}{10}i = -\frac{13}{6} - \frac{27}{10}i$			
Množenje	$ \begin{vmatrix} z_1 = a + ib \\ z_2 = c + id \end{vmatrix} \Rightarrow z_1 \cdot z_2 = (ac - bd) + i(ad + bc)$			
	Za množenje veljajo komutativnost, asociativnost, distributivnost glede na seštevanje obstoj nevtralnega elementa $1+i0$, obstoj obratnega elementa (za števila, pri katerih a in b nista hkrati enaka nič).			
	Duimou			
	Primer: $ \left(-\frac{1}{2} + 2i \right) \cdot \left(2 + i \right) \cdot \left(-3 - i \right) = \left(-\frac{1}{2} + 2i \right) \cdot \left(-6 - 2i - 3i - i^2 \right) = \left(-\frac{1}{2} + 2i \right) \cdot \left(-5 - 5i \right) = \dots = \frac{25}{2} - \frac{15}{2}i $			
Potenciranje	$z = a + ib \Rightarrow z^2 = (a + ib)^2 = a^2 + 2iab + b^2i^2 = (a^2 - b^2) + 2iab$			
	$z^{3} = (a+ib)^{3} =$			
	Primer:			
	$\left(2 - \frac{1}{2}i\right)^4 = 1 \cdot 2^4 + 4 \cdot 2^3 \cdot \left(-\frac{1}{2}i\right)^1 + 6 \cdot 2^2 \cdot \left(-\frac{1}{2}i\right)^2 + 4 \cdot 2^1 \cdot \left(-\frac{1}{2}i\right)^3 + 1 \cdot \left(-\frac{1}{2}i\right)^4 = \dots = \frac{161}{16} - 15i$			

Obratna	$z = a + ib \Rightarrow \frac{1}{z} = \frac{1}{a + ib} \cdot \frac{a - ib}{a - ib} = \frac{a - ib}{a^2 - i^2b^2} = \frac{a - ib}{a^2 + b^2} = \frac{\overline{z}}{ z ^2}$			
vrednost	$\begin{vmatrix} z & a+ib & a-ib & a^2-i^2b^2 & a^2+b^2 & z ^2 \end{vmatrix}$			
	Primer:			
	$\frac{1}{2-3i} = \frac{1}{2-3i} \cdot \frac{2+3i}{2+3i} = \frac{2+3i}{4-9i^2} = \frac{2+3i}{13} = \frac{2}{13} + \frac{3}{13}i$			
Deljenje	$\begin{vmatrix} z_1 = a + ib \\ z_2 = c + id \end{vmatrix} \Rightarrow \frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}$			
	Primer:			
	$\frac{3-2i}{5+i} = \frac{3-2i}{5+i} \cdot \frac{5-i}{5-i} = \frac{15-3i-10i+2i^2}{25-i^2} = \frac{13-13i}{26} = \frac{1}{2} - \frac{1}{2}i$			
	$5+i$ $5+i$ $5-i$ $25-i^2$ 26 2 2^{t}			

GRAFIČNI PRIKAZ KOMPLEKSNIH ŠTEVIL

Kompleksno število z=a+ib enolično določa urejena dvojica realnih števil (a;b), zato ga lahko prikažemo v kompleksni ali Gaussovi ravnini, to je v koordinatnem sistemu, v katerem je abscisna os realna os in ordinatna os imaginarna os, s točko (a;b), pri kateri je abscisa realna komponenta, ordinata pa koeficient imaginarne komponente kompleksnega števila.

Kompleksno število lahko prikažemo tudi z <u>vektorjem</u> $\vec{v}(a;b)$, ki gre iz izhodišča v točko (a;b). Takemu vektorju pravimo krajevni vektor točke (a;b).

Primer:

 $A \rightarrow$ slika realnega števila $-3+i\cdot 0$ $B \rightarrow$ slika imaginarnega števila 0+4i $C \rightarrow$ slika kompleksnega števila 5+2i

Vaja:

Prikaži v Gaussovi ravnini naslednje množice točk:

1.
$$|z| = 4$$

Bodi $z = x + iy$. Sledi, da je
 $|z| = 4 \implies \sqrt{x^2 + y^2} = 4 \implies x^2 + y^2 = 16$
Gre za krožnico s središčem (0;0) in polmerom 4.

2.
$$Re(z) + Im(z) = 0$$

Bodi
$$\overline{z = x + iy}$$
. Sledi, da je

$$\operatorname{Re}(z) + \operatorname{Im}(z) = 0 \implies x + y = 0 \implies y = -x$$

3.
$$\begin{cases} \operatorname{Re}(z) + 2\operatorname{Im}(z) \ge 1 \\ |z + i - 3| < 1 \end{cases} \Rightarrow \begin{cases} x + 2y \ge 1 \\ |(x - 3) + i(y + 1)| < 1 \end{cases}$$

$$\begin{cases} x + 2y - 1 \ge 0 \\ \sqrt{(x-3)^2 + (y+1)^2} < 1 \end{cases} \Rightarrow \begin{cases} \text{točke nad premico } x + 2y - 1 = 0 \\ \text{točke v krožnici } S(3; -1), r = 1 \end{cases}$$

POLARNI (TRIGONOMETRIČNI) ZAPIS KOMPLEKSNEGA ŠTEVILA

Vsako točko ravnine lahko predstavimo s kartezičnima koordinatama v kartezičnem koordinatnem sistemu ali s <u>polarnima koordinatama</u> v polarnem koordinatnem sistemu, ki ga sestavljata polarna os (pozitivni poltrak *x* realne osi) in pol (izhodišče *O* tega poltraka).

Polarni koordinati točke P sta $(r; \alpha)$, kjer predstavlja r razdaljo točke P do pola, α pa kot, ki ga daljica OP oklepa s polarno osjo.

V primeru, da prikažemo kompleksno število z=a+ib z vektorjem $\bar{v}\left(a;b\right)$, je $r\left(r>0\right)$ dolžina vektorja oziroma <u>modul</u> kompleksnega števila $|z|=\sqrt{a^2+b^2}$, za kot α (<u>argument</u>, $0\leq\alpha<2\pi$), ki ga vektor oklepa s pozitivnim poltrakom abscisne osi pa velja: $\begin{cases} a=r\cdot\cos\alpha\\b=r\cdot\sin\alpha \end{cases}$

Sledi, da lahko kompleksno število z, katerega <u>algebrski zapis</u> je a+ib, prikažemo tudi v <u>polarnem zapisu</u> $r(\cos\alpha+i\sin\alpha)$, kar napišemo krajše $[r,\alpha]$.

Pretvarjanje iz algebrskega zapisa kompleksnega števila v polarni zapis in obratno

$$z = \sqrt{3} + i \implies [r, \alpha] = ?$$

Izračunati moramo:

$$\begin{cases} a = r \cdot \cos \alpha \\ b = r \cdot \sin \alpha \end{cases} \implies \operatorname{tg} \alpha = \frac{b}{1} = \frac{1}{\sqrt{3}} \implies \alpha = \frac{\pi}{6} + k\pi$$

Pozor! V določenih primerih, predvsem, ko je število realno ali imaginarno, ga lahko pretvorimo iz algebrskega v polarni zapis veliko hitreje na osnovi njegovega grafičnega prikaza:

$$z = 5 = 5 + 0 \cdot i = [5, 0]$$

$$z = 5 = 5 + 0 \cdot i = [5, 0]$$
 $z = -3 = -3 + 0 \cdot i = [3, \pi]$ $z = 4i = 0 + 4i = [4, \pi/2]$ $z = -2i = 0 - 2i$

$$z = 4i = 0 + 4i = [4, \pi/2]$$

$$z = -2i = 0 - 2i$$

$$z = \left[r, \alpha\right] = \left[3, \frac{\pi}{4}\right] = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \implies (a; b) = ?$$

V tem primeru je dovolj, da razrešimo vrednosti kotnih funkcij:

$$z = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 3\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2}i$$

Računanje s kompleksnimi števili v polarnem zapisu

Množenje

$$z_1 = [r, \alpha]$$

$$z_2 = [s, \beta]$$
 $\Rightarrow z_1 \cdot z_2 = [r \cdot s, \alpha + \beta]$

Dokaz:

$$z_{1} \cdot z_{2} = [r, \alpha] \cdot [s, \beta] = r(\cos \alpha + i \sin \alpha) \cdot s(\cos \beta + i \sin \beta) =$$

$$= rs \left(\frac{\cos \alpha \cos \beta + i \cos \alpha \sin \beta + i \sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{i^{2} \sin \alpha \sin \beta}{\cos \alpha \cos \beta} \right)$$

$$= rs \left[\cos (\alpha + \beta) + i \sin (\alpha + \beta) \right] = [rs, \alpha + \beta]$$

Primer:

$$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \cdot 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = \left[2 \cdot 3, \frac{\pi}{6} + \frac{\pi}{3}\right] = \left[6, \frac{\pi}{2}\right] = 6\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

Obratna vrednost

$$z = [r, \alpha] \implies \frac{1}{z} = \left[\frac{1}{r}, -\alpha\right]$$

Dokaz:

$$\frac{1}{z} = \frac{1}{[r,\alpha]} = \frac{1}{r(\cos\alpha + i\sin\alpha)} \cdot \frac{\cos\alpha - i\sin\alpha}{(\cos\alpha - i\sin\alpha)}$$

$$= \frac{1}{r} \frac{\cos\alpha - i\sin\alpha}{\cos^2\alpha - i^2\sin^2\alpha} = \frac{1}{r} \frac{\cos\alpha - i\sin\alpha}{\cos^2\alpha + \sin^2\alpha} = \frac{1}{r} \left[\cos(-\alpha) + i\sin(-\alpha)\right] = \left[\frac{1}{r}, -\alpha\right]$$

Primer:

$$\frac{1}{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)} = \frac{1}{\left[2, \frac{\pi}{3}\right]} = \left[\frac{1}{2}, -\frac{\pi}{3}\right] = \frac{1}{2}\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right] = \frac{1}{2}\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$$

Deliania	r 1)				
Deljenje	$ \begin{vmatrix} z_1 = [r, \alpha] \\ z_2 = [s, \beta] \end{vmatrix} \Rightarrow z_1 : z_2 = \left[\frac{r}{s}, \alpha - \beta \right] $				
	<u>Dokaz</u> :				
	$z_1: z_2 = z_1 \cdot \frac{1}{z_2} = [r, \alpha] \cdot \frac{1}{[s, \beta]} = [r, \alpha] \cdot \left[\frac{1}{s}, -\beta\right] = \left[r \cdot \frac{1}{s}, \alpha + (-\beta)\right] = \left[\frac{r}{s}, \alpha - \beta\right]$				
	<u>Primer</u> :				
	$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) : 3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = \left[\frac{2}{3}, \frac{\pi}{6} - \frac{\pi}{3}\right] = \left[\frac{2}{3}, -\frac{\pi}{6}\right] = \frac{2}{3}\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$				
Dotonoinonio	г ¬ "Г" ¬ " (o)				
Potenciranje	$z = [r, \alpha] \implies z^n = [r^n, n\alpha], n \in \mathbb{Z} - \{0\}$				
	<u>Dokaz</u> :				
	$z^{n} = [r, \alpha]^{n} = \underbrace{[r, \alpha] \cdot [r, \alpha] \cdot \dots \cdot [r, \alpha]}_{n - \text{krat}} = \underbrace{\left[\underbrace{r \cdot r \cdot \dots \cdot r}_{n - \text{krat}}, \underbrace{\alpha + \alpha + \dots + \alpha}_{n \text{ elenov}}\right]}_{n \text{ elenov}} = \underbrace{\left[r^{n}, n\alpha\right]}_{n \text{ elenov}}$				
	Primer:				
	$\left[3\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \right]^{4} = \left[3, \frac{\pi}{3} \right]^{4} = \left[3^{4}, 4 \cdot \frac{\pi}{3} \right] = 81 \left(\cos\frac{4}{3}\pi + i\sin\frac{4}{3}\pi \right)$				
Seštevanje in	POZOR!				
odštevanje	Ta operacija ni možna v polarnem zapisu, pač pa je potreben prehod v algebrski zapis.				
	<u>Primer</u> :				
	$2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) + 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) + 4\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \sqrt{3} + i + 2 + 2\sqrt{3}i$				
	$= \left(\sqrt{3} + 2\right) + i\left(1 + 2\sqrt{3}\right)$				

Korenjenje kompleksnih števil

1. Korenjenje kompleksnega števila 1

Najprej napišemo kompleksno število 1 v polarno obliko:

$$1 = 1 + 0 \cdot i = \underset{r = \sqrt{1^2 + 0^2} = 1}{\uparrow} [1, 0]$$

$$tg \alpha = \underset{r = 0}{\overset{0}{\rightarrow}} \alpha = 0$$

n—ti koren kompleksnega števila [1,0] je tisto kompleksno število $[r,\alpha]$, katerega n—ta potenca je enaka številu [1,0] oziroma: $\sqrt[n]{[1,0]} = [r,\alpha] \iff [r,\alpha]^n = [1,0]$.

Če razvijemo, dobimo:
$$\begin{bmatrix} r^n, n \cdot \alpha \end{bmatrix} = \begin{bmatrix} 1, 0 \end{bmatrix} \iff \begin{cases} r^n = 1 \\ n \cdot \alpha = 0 + 2k\pi, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} r = \sqrt[n]{1} = 1 \\ \alpha = k \frac{2\pi}{n}, \ k \in \mathbb{Z} \end{cases}$$

Sledi:
$$\sqrt[n]{[1,0]} = \left[1, k \frac{2\pi}{n}\right], k \in \mathbb{Z}$$

Primer:

$$\sqrt[3]{\left[1,0\right]} = \left[1, k \frac{2\pi}{3}\right], \ k \in \mathbb{Z}$$

V L -	
k	$\sqrt[3]{[1,0]}$
0	$[1,0] = 1(\cos 0 + i \cdot \sin 0) = 1$
1	$\left[1, \frac{2\pi}{3}\right] = 1\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$
2	$\left[1, \frac{4\pi}{3}\right] = 1\left(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}\right) = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$
3	$[1,2\pi] = [1,0] = 1$
•••	

Tretji koren kompleksnega števila 1 ima natanko tri med sabo različne vrednosti, ki jih dobimo za k = 0, 1, 2.

V Gaussovi ravnini ti trije koreni enote predstavljajo oglišča enakostraničnega trikotnika, včrtanega krogu s polmerom 1 in "prvim ogliščem" v točki (1:0).

<u>V splošnem</u>: n—ti koren kompleksnega števila 1 ima natanko n med sabo različnih vrednosti, ki jih dobimo za k = 0, 1, 2, ..., n-1. V Gaussovi ravnini teh n korenov enote predstavlja oglišča pravilnega n—kotnika včrtanega krogu s polmerom 1 in "prvim ogliščem" v točki (1;0).

2. Korenjenje poljubnega kompleksnega števila $[r, \alpha]$

n—ti koren kompleksnega števila $[r,\alpha]$ je tisto kompleksno število $[s,\beta]$, katerega n—ta potenca je enaka številu $[r,\alpha]$ oziroma: $\sqrt[n]{[r,\alpha]} = [s,\beta] \leftrightarrow [s,\beta]^n = [r,\alpha]$.

Če razvijemo, dobimo:
$$\left[s^{n}, n \cdot \beta\right] = \left[r, \alpha\right] \iff \begin{cases} s^{n} = r \\ n \cdot \beta = \alpha + 2k\pi, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} s = \sqrt[n]{r} \\ \beta = \frac{\alpha}{n} + k\frac{2\pi}{n}, \ k \in \mathbb{Z} \end{cases}$$

Sledi:
$$\sqrt[n]{[r,\alpha]} = \left[\sqrt[n]{r}, \frac{\alpha}{n} + k \frac{2\pi}{n}\right], k \in \mathbb{Z}$$

Primer:

$$\sqrt[3]{\left[8,\frac{3}{2}\pi\right]} = \left[2,\frac{\pi}{2} + k\frac{2\pi}{3}\right], \ k \in \mathbb{Z}$$

$$k \left[\sqrt[3]{\left[8, \frac{3}{2}\pi \right]} \right]$$

$$0 \left[2, \frac{\pi}{2} \right] = 2\left(\cos \frac{\pi}{2} + i \cdot \sin \frac{\pi}{2} \right) = 2i$$

$$1 \left[2, \frac{\pi}{2} + \frac{2\pi}{3} \right] = \left[2, \frac{7}{6}\pi \right] = 2\left(\cos \frac{7}{6}\pi + i \sin \frac{7}{6}\pi \right) = -\sqrt{3} - i$$

$$2 \left[2, \frac{\pi}{2} + 2 \cdot \frac{2\pi}{3} \right] = \left[2, \frac{11}{6}\pi \right] = 2\left(\cos \frac{11}{6}\pi + i \sin \frac{11}{6}\pi \right) = \sqrt{3} - i$$

$$3 \left[2, \frac{\pi}{2} + 3 \cdot \frac{2\pi}{3} \right] = \left[2, \frac{\pi}{2} + 2\pi \right] = \left[2, \frac{\pi}{2} \right] = 2i$$
...

Tretji koren kompleksnega števila 1 ima natanko tri med sabo različne vrednosti, ki jih dobimo za k = 0, 1, 2.

V Gaussovi ravnini ti trije koreni enote predstavljajo oglišča enakostraničnega trikotnika včrtanega krogu s polmerom 2 in "prvim ogliščem" v točki (0;2).

<u>V splošnem</u>: n—ti koren poljubnega kompleksnega števila $[r, \alpha]$ ima natanko n med sabo različnih vrednosti, ki jih dobimo za k = 0, 1, 2, ..., n-1. V Gaussovi ravnini teh n korenov enote predstavlja oglišča pravilnega n—kotnika včrtanega krogu s polmerom $\sqrt[n]{r}$ in "prvim ogliščem" v točki, ki jo dobimo, če točko (1;0) zasukamo za kot α/n .

EKSPONENTNI ZAPIS KOMPLEKSNEGA ŠTEVILA

Dokaže se, da velja naslednja (Eulerjeva) enakost: $e^{i\alpha} = \cos \alpha + i \sin \alpha$, kjer je e Neperjevo število oz. osnova naravnega logaritma, α pa argument kompleksnega števila $[1, \alpha]$.

$$[r,\alpha] = \underbrace{r(\cos\alpha + i\sin\alpha)}_{\text{polarni zapis}} = re^{i\alpha}_{\text{eksponentni zapis}}$$

Sledi, da lahko poljubno kompleksno število $[r, \alpha]$ napišemo v obliki $re^{i\alpha}$.

Primera:

1. Napiši kompleksno število $-\sqrt{3}-i$ v eksponentno obliko. Izračunati moramo modul r in argument α .

$$r = \sqrt{\left(-\sqrt{3}\right)^2 + \left(-1\right)^2} = 2,$$

$$\operatorname{tg} \alpha = \frac{1}{\sqrt{3}} \implies \alpha = \frac{\pi}{6} + k\pi, \ k \in \mathbb{Z}$$

Ker je točka $\left(-\sqrt{3};-1\right)$ v tretjem kvadrantu, velja $\alpha = \frac{7}{6}\pi$.

Sledi:
$$-\sqrt{3} - i = 2e^{i\frac{7}{6}\pi}$$

2. Napiši kompleksno število -1 v eksponentno obliko.

Izračunati moramo modul r in argument α .

$$r = \sqrt{(-1)^2 + 0^2} = 1,$$

$$\operatorname{tg} \alpha = 0 \implies \alpha = 0 + k\pi, \ k \in \mathbb{Z} \implies \alpha = 0$$

$$\operatorname{Sledi:} -1 = e^{i\pi} \implies \boxed{e^{i\pi} + 1 = 0}$$

Dobili smo znano Eulerjeva enakost, ki veže pet najvažnejših matematičnih konstant. ©

S kompleksnimi števili v eksponentnem zapisu računamo kot z "običajnimi" potencami. Paziti moramo le na to, da kompleksnih števil v eksponentnem zapisu ne moremo seštevati in odštevati (potreben je prehod v algebrski zapis).

Primer:

$$\left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{3}:2e^{i\frac{\pi}{2}}=\left(2\sqrt{2}e^{i\frac{3}{4}\pi}\right):2e^{i\frac{\pi}{2}}=\frac{2\sqrt{2}}{2}e^{i\left(\frac{3}{4}\pi-\frac{\pi}{2}\right)}=\sqrt{2}e^{i\frac{\pi}{4}}$$

Enačbe v C

1. Binomske: imajo obliko $az^n + b = 0$. Rešimo jih tako, da osamimo neznanko.

Primer:

$$z^{3}+8=0 \implies z=\sqrt[3]{-8} \implies z=\sqrt[3]{\left[8,\pi\right]}=\left[\sqrt[3]{8},\frac{\pi}{3}+k\frac{2\pi}{3}\right]=\left[2,\frac{\pi}{3}+k\frac{2\pi}{3}\right],\ k\in\mathbb{Z}$$

k	0	1	2	3
$\sqrt[3]{[8,\pi]}$	$z_1 = \left[2, \frac{\pi}{3}\right] = 1 + \sqrt{3}i$	$[2,\pi]=-2$	$\left[2, \frac{5}{3}\pi\right] = 1 - \sqrt{3}i$	

$$z_1 = 1 + \sqrt{3}i$$

$$z_2 = -2$$

$$z_2 = 1 - \sqrt{3}i$$

2. <u>Kvadratne</u>: imajo obliko $az^2 + bz + c = 0$. Rešimo jih tako, da uporabimo obrazec $z = \frac{-b + \sqrt{\Delta}}{2a}$, kjer predstavlja $\sqrt{\Delta}$ koren kompleksnega števila Δ .

Primer:

$$z^{2} - 2\sqrt{2}z + 3 = 0$$

$$z = \frac{-b + \sqrt{\Delta}}{2a} = \uparrow \qquad \frac{2\sqrt{2} + \sqrt{-4}}{2}$$

$$\sqrt{-4} = \sqrt{4} = \sqrt{4, \pi} = \left[2, \frac{\pi}{2} + k\pi\right], \ k \in \mathbb{Z}$$

k	0	1	2
$\sqrt{[4,\pi]}$	$z_1 = \left[2, \frac{\pi}{2}\right] = 2i$	$\left[2,\frac{3}{2}\pi\right] = -2i$	

$$z_{1} = \frac{2\sqrt{2} + 2i}{2} = \sqrt{2} + i$$
$$z_{2} = \frac{2\sqrt{2} - 2i}{2} = \sqrt{2} - i$$

NB: $\sqrt{-4}$ lahko izračunamo hitreje tako: $\sqrt{-4} = \sqrt{4 \cdot (-1)} = \sqrt{4} \cdot \sqrt{-1} = 2 \cdot (\pm i) = \pm 2i$.

3. Razcepne: rešimo jih z razstavljanjem (do kvadratnih faktorjev ©).

Primer

$$\frac{2^{4}-1}{z^{5}-3z^{4}-z+3=0}$$

$$z(z^{4}-1)-3(z^{4}-1)=0$$

$$(z^{4}-1)(z-3)=0$$

$$(z^{2}-1)(z^{2}+1)(z-3)=0$$

$$z_{1}z_{2}=\pm 1, \quad z_{3}z_{4}=\pm i, \quad z_{5}=3$$