CSC4200/5200 - COMPUTER NETWORKING

FINAL REVIEW - 1

Instructor: Susmit Shannigrahi sshannigrahi@tntech.edu

Chapter 1: Fundamentals

- Networking is ubiquitous
 - What did you use it for today?

- First things first:
 - Terminology
 - Basic tools
 - What does it take to build an Internet?

Links, Nodes, Cloud, Routers, Switches

Client and Server

- My laptop with a browser = client
 - It requests a service
 - Email, chat, video, youtube
- A node running a program that serves the requests = server
 - Runs a service
 - Chat, video, messaging
- A node can both be a client and a server

Connectivity

- Point to Point
- Multiple access
- Wireless

A Network and the Internet

Packet Switching

- Packets are low level components
- Multiple kind of traffic with different requirements
 - Gaming vs Phone
- Dumb network How do you ensure quality of service?
- End points must be smart

But What is a Packet?

- Self-contained data unit
- Has two parts (generally)
 - Control information
 - Payload
- How do we transmit a dictionary?

Network Layers

- Makes it easier to divide functionality
- Hides implementation details
- What else?

IP Suite

Network Topology

Data Flow

We reject kings, presidents, and voting. We believe in rough consensus and running code. (David Clark, IETF, July 1992)

wikipedia

What does it take to create a link?

- Common abstractions
 - Why?

Packet to Low level Signals

- Bit pattern 0101001
 - Must encode it into electrical signals and then decode it on the other end!

One easy way - NRZ

- 0 = low, 1 = low
- Problem if you have too many 0s or 1s in a row
 - Baseline wander (read it in the book)

Other ways - NRZI/ Manchester Encoding

- NRZI 1=transition, 0= Don't
- Machester encoding XOR of clock + NRZ data

Frames – bag of bits

- Bits between adaptors
- Frames between hosts (two computers)
 - The job of adaptors is to find frames in a bit sequence
- Frames are link layer protocols

Error Detection

- Basic Idea of Error Detection
 - To add redundant information to a frame that can be used to determine if errors have been introduced

Number of 1s

- Odd 1s = Parity bit 0
- Even 1s = Parity bit 1

Reliable Delivery

- Frames might get lost
 - Too many bits lost
 - Clock did not sync properly
 - Error detected but the report got lost
- Can we build links that does not have errors?
 - Not possible
- How about all those error correction stuff we learned?
 - Can we add them to frames?
 - We could, but think of the overhead
 - What happens when the entire frame is lost?

Stop and Wait

- Sender sends a frame, sets a timeout (e.g., 1 sec)
- Receiver receives the frame, sends an ACK
- Sender
 - sends the next frame on ACK
 - retransmits the same frame if timeout happens
- Spot the bugs in the protocol

Stop and Wait - How does it perform?

- Bandwidth (R)= 1Gbps
- Packet size (L) = 1000 bytes
- RTT = 30 ms
- T_{trans} = L/R = 8000bits/10⁹bits/sec = 8microsecond
- $\bullet T_{prop} = 15ms$
- Total Delay = 15.008 ms

0.000

Kurose/Ross

Sliding window to the rescue!

Utilization = 0.008*3/30.008 = 0.00079 (3 times increase)

So far.

- We have connected two machines using point to point wires
 - Encoded bits
 - Sent bits as Frames
 - Caught and corrected errors
 - Tuned efficiency and reliability using sliding window
- What happens when there are more than two machines?

AlohaNET

wikipedia

Ethernet - Random Access

- How to allow many adaptors to send frames over the wire?
 - Random access
 - When you have data send at Full channel rate!
 - No coordination needed.
- If collision happens
 - Detect
 - Recover
 - Retransmit

Ethernet

Ethernet repeater

CSMA/CD - Listen first, talk later!

- CSMA Carrier sense Multiple access
 - Listen if anyone is transmitting
 - Wait until carrier is free, do not interrupt others
 - What is the carrier here?
- CD Collision Detection
 - If you hear anyone while talking, collision, stop!
 - Monitor signal strength at the adapter
 - Higher than normal = collision
- Random wait before retransmitting
 - Why?

CSMA/CD - Ethernet. CS - wait until idle

- 1) Carrier Sense 2) Multiple Access **Host C** 3) Collision
- 4) Collision Detection (Back off Algorithmus)

- - Channel idle trasmit
- Channel busy wait
- CD listen while transmitting
 - No collision: transmission successful
 - Collission: abort, send jam signal (32bit special sequence)
- Wait random time
 - Try again
 - After mth collision, $t = random(0,2^{m-1}),$
 - Wait t*512 bit times before retry

Ethernet Frame

Wireless

- Wireless links transmit electromagnetic signals
 - Radio, microwave, infrared
- Wireless links all share the same "wire" (so to speak)
 - The challenge is to share it efficiently without unduly interfering with each other
 - Most of this sharing is accomplished by dividing the "wire" along the dimensions of frequency and space
- Exclusive use of a particular frequency in a particular geographic area may be allocated to an individual entity such as a corporation

IEEE 802.11: Multiple Access

Avoid collisions: 2+ nodes transmitting at same time

- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

Collision Avoidance: RTS-CTS exchange

So far...

- we saw how to build a local network
- How do we interconnect different types of networks to build a large network?

Switching

- Switch
 - A mechanism to interconnect links to form a large network
 - Forward frames
 - Separate the collision domains
 - Filter packets between LANs

Connects two or more LAN segments - Bridging

LAN 1
Collision domain 1

Collision domain 2

LAN 2

Host E

Host F

Switching Table 64 48 48 16 32 Preamble Dest addr Src addr Type Body CRC

To decide how to forward a packet, a switch consults a

forwarding table

Bridges

- Bridges and LAN Switches
 - Class of switches that is used to forward packets between sharedmedia LANs such as Ethernets
 - Known as LAN switches
 - Referred to as Bridges
- Suppose you have a pair of Ethernets that you want to interconnect
 - One approach is put a repeater in between them, physical limitations
- An alternative would be to put a node between the two Ethernets and have the node forward frames from one Ethernet to the other
 - This node is called a Bridge
 - A collection of LANs connected by one or more bridges is usually said to form an Extended
 LAN

Flooding over bridges causes forwarding loops – Spanning tree

Spot the loop Why?