

Deep Neural Network Driven Mixture of PLDA for Robust I-vector Speaker Verification

Na Ll¹, Man-Wai MAK¹, and Jen-Tzung Chien²

¹Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University ²Dept. of Electrical and Computer Engineering, National Chiao Tung University

Introduction

- Noise-level variability causes the i-vectors to form heterogeneous clusters, and i-vectors with similar SNRs tend to cluster together.
- This phenomenon indicates that SNR information can be used to guide the training of PLDA mixture models.
- This paper proposes using an SNR-aware DNN to guide the training of PLDA mixture models, resulting in a more reasonable soft division of the i-vector space.
- Experiments on NIST 2012 SRE demonstrate the effectiveness of the proposed framework compared with PLDA and conventional mixture of PLDA.

Background

SNR-independent mixture of PLDA (SI-mPLDA):

$$p(\mathbf{x}_{ij}) = \sum_{k=1}^{K} \varphi_k N(\mathbf{x}_{ij} \mid \mathbf{m}_k, \mathbf{V}_k \mathbf{V}_k^{\mathrm{T}} + \mathbf{\Sigma}_k)$$

Fig.1: Graphical model of SI-mPLDA.

SNR-dependent mixture of PLDA (SD-mPLDA):

$$p(\mathbf{x}_{ij}, \ell_{ij}) = p(\ell_{ij}) \sum_{k=1}^{K} \gamma_{\ell}(\mathbf{y}_{ijk}) N(\mathbf{x}_{ij} \mid \mathbf{m}_{k}, \mathbf{V}_{k} \mathbf{V}_{k}^{\mathrm{T}} + \mathbf{\Sigma}_{k})$$

Fig.2: Graphical model of SD-mPLDA.

Proposed Method

The SNR subgroup posteriors generated from an SNR-aware DNN are used as the posteriors of the indicator variables in the mixture of PLDA to guide the training of the mixture model.

SNR Subgroups:

The training set is divided into different SNR groups according to the SNRs of the training utterances.

• Table1: SNR ranges in dB for different numbers of SNR groups (K)

K	Group 1	Group 2	Group 3	Group 4	Group 5
2	(-∞,20]	(20,∞)	-	-	-
3	(-∞,8]	(8, 20]	$(20,\infty)$	-	-
4	(-∞,8]	(8, 14]	(14,20]	$(20,\infty)$	-
5	$(-\infty, 4]$	(4,8]	(8,14]	(14,20]	$(20, \infty)$

SNR-aware DNN:

Posterior probability of the *k*-th SNR group is:

$$\gamma_{\mathbf{x}_{ij}}(\mathbf{y}_{ijk}) \equiv P(\mathbf{y}_{ijk} = 1 \mid \mathbf{x}_{ij}, \mathbf{w})$$

Posterior probability of SNR groups

Soft max layer

Hidden layers

D-dim i-vectors

Fig.3: Schematic diagram of the SNR-aware DNN.

DNN-driven mixture of PLDA (DNN-mPLDA):

$$p(\mathbf{x}_{ij}) = \sum_{k=1}^{K} \gamma_{\mathbf{x}_{ij}}(\mathbf{y}_{ijk}) N(\mathbf{x}_{ij} \mid \mathbf{m}_k, \mathbf{V}_k \mathbf{V}_k^{\mathrm{T}} + \mathbf{\Sigma}_k)$$

Fig.4: Probabilistic graphical model of DNN-mPLDA.

E-Step:
$$\langle y_{ijk}|\mathbf{x}_{ij}\rangle=\gamma_{\mathbf{x}_{ij}}(y_{ijk})$$

$$\mathbf{L}_i = \mathbf{I} + \sum_{k=1}^K N_{ik} \mathbf{V}_k^{\mathsf{T}} \mathbf{\Sigma}_k^{-1} \mathbf{V}_k$$

$$\langle \mathbf{z}_i | \mathcal{X} \rangle = \mathbf{L}_i^{-1} \sum_{k=1}^K \sum_{j=1}^{H_i} \langle y_{ijk} | \mathbf{x}_{ij} \rangle \mathbf{V}_k^{\top} \mathbf{\Sigma}_k^{-1} (\mathbf{x}_{ij} - \mathbf{m}_k)$$

$$\langle \mathbf{z}_i \mathbf{z}_i^{\top} | \mathcal{X} \rangle = \mathbf{L}_i^{-1} + \langle \mathbf{z}_i | \mathcal{X} \rangle \langle \mathbf{z}_i | \mathcal{X} \rangle^{\top}$$

M-Step:
$$\mathbf{m}_k' = \frac{\sum_{i=1}^S \sum_{j=1}^{H_i} \langle y_{ijk} | \mathbf{x}_{ij} \rangle \mathbf{x}_{ij}}{\sum_{i=1}^S \sum_{j=1}^{H_i} \langle y_{ijk} | \mathbf{x}_{ij} \rangle}$$

$$\mathbf{V}_k' = \left\{ \sum_{i=1}^S \sum_{j=1}^{H_i} \left[\langle y_{ijk} | \mathbf{x}_{ij} \rangle (\mathbf{x}_{ij} - \mathbf{m}_k') \langle \mathbf{z}_i | \mathcal{X} \rangle^\mathsf{T} \right] \right\} \left[\sum_{i=1}^S N_{ik} \langle \mathbf{z}_i \mathbf{z}_i^\mathsf{T} | \mathcal{X} \rangle \right]^\mathsf{T}$$

$$\Sigma_{k}' = \frac{1}{\sum_{i} N_{ik}} \sum_{i=1}^{S} \sum_{j=1}^{H_{i}} \left[\langle y_{ijk} | \mathbf{x}_{ij} \rangle (\mathbf{x}_{ij} - \mathbf{m}_{k}') (\mathbf{x}_{ij} - \mathbf{m}_{k}')^{\top} - \mathbf{V}_{k}' \langle \mathbf{z}_{i} | \mathcal{X} \rangle \langle y_{ijk} | \mathbf{x}_{ij} \rangle (\mathbf{x}_{ij} - \mathbf{m}_{k}')^{\top} \right].$$

Fig.5: The scoring process in DNN-mPLDA.

Results

• Table2: Performance of PLDA, SI-mPLDA, SD-mPLDA and Proposed DNN-mPLDA on CC4

Method	K	Male		Female	
		EER(%)	minDCF	EER(%)	minDCF
PLDA	-	3.49	0.308	3.14	0.353
	2	3.49	0.303	3.11	0.350
SI-mPLDA	3	3.31	0.302	3.02	0.351
	4	3.31	0.299	3.00	0.354
	2	3.37	0.307	3.13	0.359
SD-mPLDA	3	3.06	0.315	2.65	0.331
	4	3.20	0.311	2.88	0.334
	2	2.95	0.296	2.77	0.346
DNN-mPLDA	3	3.03	0.305	2.77	0.339
	4	3.10	0.319	2.79	0.347

• Table3: Performance of PLDA, SI-mPLDA, SD-mPLDA and Proposed DNN-mPLDA on CC5

Method	K	Male		Female	
		EER(%)	minDCF	EER(%)	minDCF
PLDA	-	2.97	0.290	2.47	0.346
	2	3.04	0.300	2.55	0.340
SI-mPLDA	3	3.06	0.286	2.41	0.345
	4	2.93	0.288	2.60	0.332
	2	2.92	0.298	2.50	0.344
SD-mPLDA	3	2.80	0.276	2.38	0.324
	4	2.87	0.284	2.38	0.347
	2	2.86	0.282	2.38	0.326
DNN-mPLDA	3	2.73	0.279	2.36	0.333
	4	2.78	0.278	2.38	0.329

Likelihood Ratio Scores:

$$S_{\text{DNN-mPLDA}}(\mathbf{x}_{s}, \mathbf{x}_{t}) = \frac{\sum_{k_{s}=1}^{K} \sum_{k_{t}=1}^{K} \gamma_{\mathbf{x}_{s}}(y_{k_{s}}) \gamma_{\mathbf{x}_{t}}(y_{k_{t}}) \mathcal{N}\left(\left[\mathbf{x}_{s}^{\top} \ \mathbf{x}_{t}^{\top}\right]^{\top} | \left[\mathbf{m}_{k_{s}}^{\top} \ \mathbf{m}_{k_{t}}^{\top}\right]^{\top}, \hat{\mathbf{V}}_{k_{s}k_{t}} \hat{\mathbf{V}}_{k_{s}k_{t}}^{\top} + \hat{\boldsymbol{\Sigma}}_{k_{s}k_{t}}\right)}{\left[\sum_{k_{s}=1}^{K} \gamma_{\mathbf{x}_{s}}(y_{k_{s}}) \mathcal{N}\left(\mathbf{x}_{s} | \mathbf{m}_{k_{s}}, \mathbf{V}_{k_{s}} \mathbf{V}_{k_{s}}^{\top} + \boldsymbol{\Sigma}_{k_{s}}\right)\right] \left[\sum_{k_{t}=1}^{K} \gamma_{\mathbf{x}_{t}}(y_{k_{t}}) \mathcal{N}\left(\mathbf{x}_{t} | \mathbf{m}_{k_{t}}, \mathbf{V}_{k_{t}} \mathbf{V}_{k_{t}}^{\top} + \boldsymbol{\Sigma}_{k_{t}}\right)\right]}$$

References:

•M. W. Mak, X. M. Pang, and J. T. Chien "mixture of PLDA for noise robust ivector speaker verification," *IEEE/ACM Trans. on Audio, Speech and Language Processing*, vol. 24, no. 1, pp. 130–142, 2016.

•Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren "A novel scheme for speaker recognition using a phonetically-aware deep neural network," in Proc. ICASSP, pp. 1695-1699, 2014.