Lecture 5 LAN: Local Area Network

Reading: 4.3 Computer Networks, Tanenbaum

LAN topology

WLAN

Traditional bus topo

Ring Star ²

- IEEE 802 contains many standards for LAN technology.
 - 802.3: Ethernet
 - 802.4: Token bus
 - 802.5: Token ring
 - 802.11 a/b/g/n: Wireless LAN (Wifi)
 - 802.16: WiMax.

Ethernet LAN

- Layer 2 technology for communication in LAN, invented in 1976
- Standardized in IEEE 802.3
- Ethernet LAN could have different speeds: 3 Mbps
 - 10 Gbps
 - Ethernet: 10BaseT, 10Base2...

Metcalfe's Ethernet sketch

IEEE 802.3 and Ethernet Standards

- Datalink & Physical Layers
- Datalink= LLC + MAC
- MAC: CSMA/CD in classical Ethernet
- Several type of Ethernet
 - Same MAC and frame structure
 - Different rate: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - Different cable: Optical fiber, coaxial, twisted pair

- Bus topology was popular in the past
- All nodes share the same communication medium. Could used a central hub for connecting nodes.
- Use CSMA/CD for media access control.
- Use Manchester encoding at Physical layer
- Use coaxial cable
- Thick Ethernet: Max segment length 500m without converter
- Thin Ethernet: Max segment length 185m without converter

Ref: Computer Network, Tanenbaum

Switched Ethernet

- Switched Ethernet (nowdays):
 - Star topology,
 - Use a central switch Ethernet
 - The switch outputs a frame only to the port linking to the destination
 - → independent connection for each pair of two nodes
 - No collision
 - No media access control is needed.

Ethernet frame

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
					((
(b)	Preamble S F	Destination address	Source address	Length	Data	Pad	Check- sum

Figure 4-14. Frame formats. (a) Ethernet (DIX). (b) IEEE 802.3.

Structure of Ethernet frame

- Preamble: Marking the starting of a frame
- Address: Physical addresses of source and destination
 - 6 bytes
- Type: Uppper layer protocol (IP, Novell IPX, AppleTalk, ...)
- Checksum: Error detection code. CRC??

- IP Address:
 - 32-bit
 - Used in Network layer
- MAC address:
 - Used in Data link layer
 - 48 bit

ARP and MAC address

Each network adapter has a MAC address

ARP: Address Resolution Protocol

Question: Identify MAC address from an IP address

- Each network node (host, router) has an ARP table
- ARP table: contain mapping IP/MAC of some nodes

< IP address; MAC address;
TTL>

TTL (Time To Live):~20 min.

ARP: Work on a network segment

- A wants to send data
 A saves the MAC to B on datalink layer but do not know MAC of B
- A broadcast an ARP package stating the IP address of B
- B receives the package with is address and reply to A with MAC of B

address of B

LAN (cont.)

Hub, Switch, Bridge

Devices of LAN

- Hub, bridge and switch
 - All are LAN devices with many ports
- Hub:
 - Receive the signal from one port (amplify) and forward to the remaining ports
 - Do not offer services of datalink layer
- Bridge
 - More intelligent than hub
 - Can store and forward data (Ethernet frame)
 - Bridge breaks the network into two collision domains.

Switch

Allows multiple node pairs C' sending data in the same time

E.g. A-to-A' and B-to-B' without collision

- Each link is an independent collision domain
- Switch has a table of MAC addresses showing which node connects to which port
 - (MAC address of host, port index, TTL)

Switch: Self learning mechanism

- Switch learns the MAC address of all hosts connected to the switch
- Forwarding table

MAC addr	interface	TTL
Α	1	60

Switch: forwarding mechanism

When receiving a fram

- 1. The incomming port and MAC associated is learnt
- 2. Looking for outgoing port based on destination MAC and forwarding table

```
3. if outgoing port is found
    then {
    if incomming port== outgoing port
        then destroy the frame
        else forward the frame to outgoing port
    }
    else broacast the frame
```

Ex:

 Outgoing port unknown: Broadcast

• Know A:

Direct transfering

MAC addr	interface	TTL
A	1	60
A'	4	60

Forwarding table (empty initially)

Connecting switch in cascade

Switches could be connected to eachother

Switches in cascade uses also self learning mechanism

