Nuclear Data Sheets for ¹⁶⁷Ta*

Coral M. Baglin

Nuclear Science Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720, USA

Abstract: Nuclear structure and decay data pertaining to 167 Ta have been evaluated and incorporated into the ENSDF database. This evaluation supersedes that by C.M. Baglin in Nuclear Data Sheets **90**, 431 (2000) (literature cutoff date 5 July 2000), and includes all information available by 1 June 2013. the major newly incorporated references are the following: 2012Wa38, 2011Ha25, 2009Ha33. knowledge of band structure In 167 Ta has been greatly extended by 2011h α 225 and 2009Ha33 using the 120 Sn(51 V,4n γ) reaction.

Cutoff Date: All data received by 1 June 2013 have been evaluated.

General Policies and Organization of Material: See the January issue of the *Nuclear Data Sheets* or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.

Acknowledgements: The evaluator thanks the reviewer of this nuclide for constructive comments, and is grateful to B. Singh and D. Hartley for initial data entry from a major publication.

Citations: ENSDF

^{*} Research at Lawrence Berkeley National Laboratory sponsored by Office of Science, Office of Nuclear Physics, US Department of Energy, under contract DE-AC02-05CH11231

	History
٦r	Citation

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin ENSDF 23-May-2013

 $Q(\beta^{-}) = -6250 \ 30$; $S(n) = 10320 \ 40$; $S(p) = 1780 \ 40$; $Q(\alpha) = 4020 \ 40$ 2012Wa38

¹⁶⁷Ta is known as the ε parent of ¹⁶⁷Hf. 1969Ar22 base the nuclidic assignment on the observation of ¹⁶⁷Lu and ¹⁶⁷Yb γ rays in the tantalum fraction following 660 MeV proton spallation of Hg and Re. Detailed level and band structure has been deduced using the ¹⁴²Nd(³⁰Si,p4n γ) and ¹²⁰Sn(⁵¹V,4n γ) reactions.

Recent calculations and systematics: see, for example:

2001Fe12: analysis of level energies and B(M1); deduced triaxial deformation.

2001Je09: cranked mean-field approach; analyzed bands, calculated deformation, potential energy surface.

2010Su27: particle + triaxially-deformed rotor calculations; calculated TSD bands, level enrgies, B(M1)/B(E2).

2013Ha02: comparison of level energies In π i_{13/2}, π h_{9/2} and π h_{11/2} bands In ¹⁶⁷Ta and neighboring odd-A nuclides.

¹⁶⁷Ta Levels

Quasiparticle labels:

 α : first i_{13/2} neutron, $\alpha = +1/2$.

B: first $i_{13/2}$ neutron, $\alpha = -1/2$.

C: second $i_{13/2}$ neutron, $\alpha = +1/2$.

D: second $i_{13/2}$ neutron, $\alpha = +1/2$.

E: lowest π =- orbital, α =+1/2.

F: lowest π =- orbital, α =-1/2.

Cross Reference (XREF) Flags

A 167 W ε decay

B 142 Nd(30 Si,p4n γ)

 $C = {}^{120}Sn({}^{51}V,4n\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
0.0^{j}	(3/2+)	80 s 4	ABC	%ε+%β ⁺ =100 Possible configuration=(π 1/2[411]) (1992Th02). T _{1/2} : from 1992HeZV. Others: 80 s 20 (1989Br19, quoted as 1.3 min 3 in 1987Es08), 1.4 min 3 (1982Li17), 2.9 min 15 (1969Ar22).
94.66 [#] <i>15</i>	$(5/2^+)$		ABC	
175.86 ⁱ <i>17</i>	$(5/2^+)$		C	
205.19 [@] 20	$(7/2^+)$		ABC	
206.3° 3	$(9/2^{-})$		C	
214.7 3			В	
232.95 ^{<i>j</i>} 13	$(7/2^+)$		ABC	
254.68 ⁿ 17	$(7/2^+)$		A C	
289.49 <i>24</i>	$(5/2^+, 7/2^+, 9/2^+)$		Α	J^{π} : M1(+E2) 84 γ to (7/2 ⁺) 205.
305.38 ^d 24	$(11/2^{-})$		BC	
374.73 [#] <i>18</i>	$(9/2^+)$		BC	
392.0 4	(≤7/2)		A	E(level): 175.4 3 also possible; order of 175 γ and 392 γ uncertain. J^{π} : γ to (3/2 ⁺).
431.79 ^m 18	$(9/2^+)$		C	,
496.2 ^c 3	$(13/2^{-})$		BC	
496.73 ^e 16	$(5/2^{-})$		A C	
503.13 ⁱ 17	(9/2+)		A C	

167Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		Comments
527.6 4		С	J^{π} : 321 γ to (9/2 ⁻) 206.	
567.4 5		A	, , , ,	
574.64 [@] 18	$(11/2^+)$	BC		
610.46 ^j 20	$(11/2^+)$	C		
611.09 ^e 17	$(9/2^{-})$	ABC		
656.67 ⁿ 19	$(11/2^+)$	С		
663.2 4		A		
678.7 ^d 3	(15/2-)	BC		
790.92 [#] 19	$(13/2^+)$	BC		
852.95 ^e 25 874.12 ^m 21	$(13/2^{-})$ $(13/2^{+})$	BC C		
939.97 i 20	$(13/2^+)$	C		
947.3 ^c 3	$(17/2^{-})$	BC		
1036.21 [@] 21	$(15/2^+)$	BC		
1091.04 ^j 23	$(15/2^+)$	C		
1133.4 ^b 3	$(13/2^{-})$ $(13/2^{-})$	C		
1156.25 ⁿ 21	$(15/2^+)$	Č		
1165.5 ^d 3	$(19/2^{-})$	ВС		
1216.5 ^e 3	$(17/2^{-})$	BC		
1285.07 [#] 20	$(17/2^+)$	BC		
1394.16 ^m 25	$(17/2^+)$	C		
1456.73 ⁱ 21	$(17/2^+)$	C		
1493.2 ^c 3	$(21/2^{-})$	BC		
1557.32 [@] 22	$(19/2^+)$	BC		
1638.7 ^{<i>j</i>} 3	$(19/2^+)$	C		
1641.4 ^b 3	$(17/2^{-})$	C		
1678.7 ^e 4 1722.7 ⁿ 3	$(21/2^{-})$	ВС		
$1722.7^{\circ}3$ $1732.3^{\circ}3$	$(19/2^+)$	C		
1732.3" 3 1820.04 [#] 23	$(23/2^{-})$	BC		
1820.04" 23 1950.40 ^m 24	$(21/2^+)$ $(21/2^+)$	BC C		
2019.25^{i} 24	$(21/2^+)$	C		
2056.96° 22	$(21/2^+)$	C		
2088.86 [@] 25	$(23/2^+)$	ВС		
2096.5° 3	$(25/2^{-})$	В		
2199.1 ^b 3	$(21/2^{-})$	C		
2213.8 ^e 4	$(25/2^{-})$	BC		
$2222.0^{j} 4$	$(23/2^+)$	C		
2234.3 4		С		
2327.9# 3	$(25/2^+)$	BC		
2348.9 ^d 3	$(27/2^{-})$	BC		
2462.77 ^m 24 2477.37 ^o 23	$(25/2^+)$ $(25/2^+)$	C C		
2566.2 [@] 3	$(23/2^+)$ $(27/2^+)$	BC		
2579.6 ^{&} 3	$(27/2^{-})$ $(25/2^{-})$	BC BC		
2634.8 <i>3</i>	$(25/2)$ $(27/2^+)$	C BC		
2651.8 ^a 4	$(27/2^{-})$	C		
2717.6 ^c 4	$(29/2^{-})$	BC		
2753.3 ^{&} 3	$(29/2^{-})$	BC		

167Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2780.9 [#] <i>3</i>	$(29/2^+)$	BC	
2810.0 ^e 4	$(29/2^{-})$	BC	XREF: B(2798).
2815.0 <i>3</i>	$(29/2^+)$	C	
2821.0 ^j 4	$(27/2^+)$	C	
2874.2 ^a 4	$(31/2^{-})$	BC	
2962.8° 3	$(29/2^+)$	C	
2968.1 [@] 3	$(31/2^+)$	BC	
2979.5 ^d 4	$(31/2^{-})$	BC	
$3007.4^{l}_{e}3$	$(31/2^+)$	C	
3041.7 <mark>&</mark> 4	$(33/2^{-})$	BC	
3211.8 [#] 3	$(33/2^+)$	BC	
3235.0^a 4	$(35/2^{-})$	BC	
3253.0^{k} 4	$(33/2^+)$	C	
3326.2 ^c 4	$(33/2^{-})$	ВС	
3346.2 ^j 7 3392.5 ^e 4	$(31/2^+)$ $(33/2^-)$	C BC	XREF: B(3381).
3426.7 [@] 3	$(35/2^+)$	BC	ARLI : D(5501).
3468.7 ^{&} 4	$(37/2^{-})$	BC	
3474.0^{l} 3	$(37/2^+)$	С	
3480.2° 4	$(33/2^+)$	c	
3594.3 ^d 4	$(35/2^{-})$	ВС	
3720.7 [#] <i>3</i>	$(37/2^+)$	BC	
3733.6 ^a 4	$(39/2^{-})$	BC	
3772.1 ^k 4	$(37/2^+)$	С	
3880.6 ^j 9	$(35/2^+)$	С	
3913.1 ^c 4	$(37/2^{-})$	C	
3974.1 ^e 5	$(37/2^{-})$	BC	XREF: B(3977).
3990.9 [@] 3	$(39/2^+)$	BC	
4023.4 ^{&} 4	$(41/2^{-})$	BC	
4026.0 ^l 4	$(39/2^+)$	C	
4045.2° 4	$(37/2^+)$	C	
4133.1 ^P 6 4189.9 ^d 4	$(35/2^+)$	C	
4189.9 [#] 4 4304.7 [#] 4	$(39/2^{-})$	C	
4304.7" 4 4347.9 ^a 4	$(41/2^+)$ $(43/2^-)$	BC BC	
4360.3 ^k 4	$(41/2^+)$	С	
4300.3 4 4489.3 j 10	$(39/2^+)$	C	
4501.3° 4	$(41/2^{-})$	c	
4557.2 ^e 5	$(41/2^{-})$	BC	XREF: B(4608).
4607.9 [@] 4	$(43/2^+)$	BC	
4658.3 ^l 4	$(43/2^+)$	С	
4661.0° 5	$(41/2^+)$	C	
4684.1 ^{&} 4	$(45/2^{-})$	BC	
4687.7 ^p 5	$(39/2^+)$	C	
4799.8 ^d 4	$(43/2^{-})$	C	
4920.4 [#] 4	$(45/2^+)$	BC	XREF: B(4926).
5008.7 ^k 4	$(45/2^+)$	C	
5053.5 ^a 4	$(47/2^{-})$	BC	

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
5126.7 ^c 4	$(45/2^{-})$	C	7292.8 ^c 5	$(57/2^{-})$	С	9654.1 [#] 5	$(69/2^+)$	C
5186.6 ^e 5	$(45/2^{-})$	C	7389.2 [@] 4	$(59/2^+)$	С	9805.1 <mark>&</mark> 6	$(69/2^{-})$	C
5206.6 ^f 5	$(45/2^{-})$	C	7405.4 ^f 9	$(57/2^{-})$	С	9954.1 ^p 12	$(67/2^+)$	C
5235.9 [@] 4	$(47/2^+)$	C	7406.1 ^p 8	$(55/2^+)$	C	9972.8 ^c 6	$(69/2^{-})$	C
5293.3 ^P 6	$(43/2^+)$	C	7438.6 <mark>e</mark> 6	$(57/2^{-})$	C	10019.8 ^k 7	$(69/2^+)$	C
5326.2° 5	$(45/2^+)$	C	7471.7 <mark>h</mark> 6	$(57/2^{-})$	C	10143.7 <mark>h</mark> 10	$(69/2^{-})$	C
5345.1 ^l 4	$(47/2^+)$	C	7480.3 ^a 5	$(59/2^{-})$	BC	10158.7 <mark>e</mark> 9	$(69/2^{-})$	C
5426.5 <mark>&</mark> 4	$(49/2^{-})$	BC	7565.8° 6	$(57/2^+)$	C	10213.8° 9	$(69/2^+)$	C
5465.0 ^d 4	$(47/2^{-})$	C	7596.3 <mark>9</mark> 8	$(57/2^+)$	C	10223.8 ^a 6	$(71/2^{-})$	C
5514.7 <mark>8</mark> 5	$(47/2^{-})$	C	7654.4 ^l 5	$(59/2^+)$	C	10250.4 [@] 6	$(71/2^+)$	C
5550.3 [#] 4	$(49/2^+)$	C	7716.3 ^d 5	$(59/2^{-})$	С	10267.3 ^q 12	$(69/2^+)$	C
5697.4 ^k 4	$(49/2^+)$	C	7785.8 [#] 5	$(61/2^+)$	С	10424.2 ^d 8	$(71/2^{-})$	C
5802.3 ^c 4	$(49/2^{-})$	C	7830.2 <mark>8</mark> 6	$(59/2^{-})$	C	10681.3 [#] 6	$(73/2^+)$	C
5824.7 <mark>a</mark> 5	$(51/2^{-})$	BC	7933.5 <mark>&</mark> 5	$(61/2^{-})$	С	10825.6 ^{&} 6	$(73/2^{-})$	C
5849.5 ^f 5	$(49/2^{-})$	C	8085.3 ^k 5	$(61/2^+)$	С	10906.1 ^p 13	$(71/2^+)$	C
5888.3 [@] 4	$(51/2^+)$	C	8128.2 ^c 5	$(61/2^{-})$	C	10986.8 ^c 8	$(73/2^{-})$	C
5890.2 ^e 5	$(49/2^{-})$	C	8205.6 ^p 9	$(59/2^+)$	С	11031.8? ^k <i>13</i>	$(73/2^+)$	C
5949.4 <mark>P</mark> 6	$(47/2^+)$	C	8263.5 [@] 5	$(63/2^+)$	С	11200.4° 10	$(73/2^+)$	C
6035.6° 5	$(49/2^+)$	C	8278.0 ^f 10	$(61/2^{-})$	С	11225.3 ^a 6	$(75/2^{-})$	C
6054.5 ^l 4	$(51/2^+)$	C	8294.2 <mark>e</mark> 6	$(61/2^{-})$	C	11239.3? 9 <i>16</i>	$(73/2^+)$	C
6182.1 ^d 4	$(51/2^{-})$	C	8324.4 ^h 6	$(61/2^{-})$	C	11346.1 [@] 8	$(75/2^+)$	C
6205.7 ⁸ 5	$(51/2^{-})$	C	8354.4 ^a 5	$(63/2^{-})$	C	11434.7 <mark>d</mark> 9	$(75/2^{-})$	C
6221.7 [#] 4	$(53/2^+)$	C	8398.6° 7	$(61/2^+)$	C	11756.5 [#] 6	$(77/2^+)$	C
6226.3 <mark>&</mark> 5	$(53/2^{-})$	BC	8437.2 <mark>9</mark> 9	$(61/2^+)$	C	11907.0 <mark>&</mark> 6	$(77/2^{-})$	C
6421.7 ^k 4	$(53/2^+)$	C	8564.2 ^d 5	$(63/2^{-})$	C	11910.9 ^p <i>14</i>	$(75/2^+)$	C
6518.4 ^c 5	$(53/2^{-})$	C	8564.3 ^l 5	$(63/2^+)$	C	12065.5 ^c 9	$(77/2^{-})$	C
6593.2 ^f 7	$(53/2^{-})$	C	8685.4 [#] 5	$(65/2^+)$	C	12240.4° 11	$(77/2^+)$	C
6598.8 [@] 4	$(55/2^+)$	C	8744.8 <mark>8</mark> 8	$(63/2^{-})$	C	12271.0 ^a 8	$(79/2^{-})$	C
6637.6 ^a 5	$(55/2^{-})$	BC	8843.6 & 5	$(65/2^{-})$	C	12486.2 [@] 9	$(79/2^+)$	C
6642.9 ^e 5	$(53/2^{-})$	BC	9020.7 ^c 6	$(65/2^{-})$	C	12492.8 ^d 11	$(79/2^{-})$	C
6653.7 P 6	$(51/2^+)$	C	9030.4 ^k 5	$(65/2^+)$	C	12871.9 [#] 8	$(81/2^+)$	C
6674.2 ^h 6	$(53/2^{-})$	C	9054.3 ^p 11	$(63/2^+)$	C	12968.0 ^p 15	$(79/2^+)$	C
6779.9° 6	$(53/2^+)$	C	9204.7 ^f 12	$(65/2^{-})$	C	13047.3 ^{&} 7	$(81/2^{-})$	C
6799.9 9 6	$(53/2^+)$	C	9206.8 ^e 8	$(65/2^{-})$	C	13343.4?° 15	$(81/2^+)$	C
6815.9 ^l 4	$(55/2^+)$	C	9219.6 [@] 5	$(67/2^+)$	C	13357.6 ^a 9	$(83/2^{-})$	C
6919.6 ^d 5	$(55/2^{-})$	C	9222.6 ^h 8	$(65/2^{-})$	C	13596.2 ^d 12	$(83/2^{-})$	C
6963.5 [#] 4	$(57/2^+)$	C	9267.2 ^a 5	$(67/2^{-})$	C	14025.6 [#] 9	$(85/2^+)$	C
6987.6 ⁸ 5	$(55/2^{-})$	C	9280.0° 7	$(65/2^+)$	C	14229.9 <mark>&</mark> 7	$(85/2^{-})$	C
7063.8 ^{&} 5	$(57/2^{-})$	BC	9331.8 ^q 11	$(65/2^+)$	C	14483.0 ^a 11	$(87/2^{-})$	C
7213.8 ^k 4	$(57/2^+)$	C	9466.0 ^d 6	$(67/2^{-})$	С			

[†] From least-squares fit to E γ data. Note that J=1/2 member of 1/2[411] band has not been identified and May lie below the g.s. level shown here.

[‡] From (51 V,4n γ), based on deduced band structure and measured angular distribution ratios. Consistent with conclusions from (30 Si,p4n γ), based largely on systematics of transition energies, signature splittings and alignments in the light odd-A Ta and Lu isotopes, and on deduced transition multipolarities (except as noted).

¹⁶⁷Ta Levels (continued)

- # Band(A): 5/2[402], α =+1/2 band (2011Ha25). Band parameters: E₀=-44.0, A=18.1, B=-41.6, a=-0.66 (J=3/2 through 13/2 levels). In-band decay properties, transition energy systematics in nearby odd-A Ta isotopes, and small negative signature splitting favor d_{5/2} orbital assignment over g_{7/2} (1992Th02). First band crossing at $\hbar\omega$ ≈0.24 MeV, second crossing at $\hbar\omega$ >0.24 MeV, third band crossing at $\hbar\omega$ ≈0.31 MeV. Configuration= π d_{5/2} −> π d_{5/2}AB −> π h_{11/2}AEBC.
- [@] Band(a): $(\pi 5/2[402])$, $\alpha = -1/2$ band (2011Ha25). See comment on signature partner band.
- & Band(B): $\pi h_{11/2} \otimes AB$, $\alpha = +1/2$ (2011Ha25). Band crossing at $\hbar \omega \approx 0.41$ MeV. ((π 9/2[514])(ν i_{13/2})²) band in 1992Th02. Configuration= $\pi h_{11/2}AB \rightarrow \pi h_{11/2}ABCD$.
- ^a Band(b): $\pi h_{11/2} \otimes AB$, $\alpha = -1/2$. See comment on signature partner band.
- ^b Band(C): $\alpha = +1/2$ band.
- ^c Band(D): $(\pi 9/2[514])$, α =+1/2 band (2011Ha25). Band parameters: E₀=118.5, A=13.4 (J=9/2 to 19/2 band members). First band crossing at $\hbar\omega$ ≈0.29 MeV (alignment gain 9 \hbar), second crossing at $\hbar\omega$ ≈0.35 MeV. Configuration= $\pi h_{11/2}$ BC −> $\pi h_{11/2}$ BCAD.
- ^d Band(d): $(\pi 9/2[514])$, $\alpha = -1/2$ band (2011Ha25). See comment on signature partner band.
- ^e Band(E): $(\pi 1/2[541])$, α =+1/2 band (2011Ha25). Band parameters: E₀=538, A=8.5, B=-44.9, a=5.3 (J=5/2 through 21/2 levels). Decoupled band, analogous to bands observed in many neighboring odd-A, even-N nuclei; the large decoupling parameter shifts unfavored signature levels to energies so high they are not normally observed in (HI,xnγ) studies. note that energies for J>25/2 band members differ from those deduced In (30 Si,p4nγ) because the J=1/2 band member not identified yet. 631γ-596γ-583γ-583γ cascade reported there has been replaced by the 629γ-583γ-583γ-596γ cascade adopted from (51 V,4nγ). Band crossing at $\hbar\omega$ ≈0.29 MeV. Configuration= π h_{9/2} -> π h_{9/2}AB.
- ^f Band(F): Band based on $45/2^-$, $\alpha = +1/2$. Possible configuration= $(\pi d_{5/2} \otimes AEBC)$.
- ^g Band(f): Band based on $(47/2^-)$, $\alpha = -1/2$ See comment on signature partner band.
- ^h Band(G): Band based on 53/2[−], α =+1/2. Possible configuration=(π d_{3/2}⊗ÂEBC).
- ⁱ Band(H): $\pi 1/2[411]$, $\alpha = +1/2$. J=1/2 band member has not been identified yet; decoupling parameter implies that it will be lowest-energy member of band. Band parameters: $E_0 = -44.2$, A=21.4, B=-41.6, a=-0.66 (J=3/2 through 13/2 levels).
- ^j Band(h): $\pi 1/2[411]$, $\alpha = -1/2$. See comment on signature partner band.
- ^k Band(I): $\pi h_{11/2}$ ⊗AF, α =+1/2. Band crossing at $\hbar \omega$ ≈0.35 MeV. Configuration= $\pi h_{11/2}$ AF →> $\pi h_{11/2}$ AFBC.
- ¹ Band(i): $\pi h_{11/2} \otimes AF$, $\alpha = -1/2$. See comment on $\alpha = +1/2$ signature band for band crossing and configuration.
- ^m Band(J): $\pi 7/2[404]$, $\alpha = +1/2$.
- ⁿ Band(j): $\pi 7/2$ [404], $\alpha = -1/2$ see comment on signature partner band.
- o Band(K): $\pi 1/2$ [660], $\alpha = +1/2$ band parameters: E₀=517.3, A=5.73, a=-13.4 (J=21/2 to 37/2).
- ^p Band(k): Triaxial $\pi i_{13/2}$ (n_w)=1 band.
- ^q Band(L): $\pi i_{13/2}$? band on 53/2⁺, $\alpha = +1/2$.

$E_i(level)$	\mathbf{J}_{i}^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f .	J_f^{π} Mult. †	δ^{\ddagger}	α@	Comments
94.66	(5/2+)	94.4# 2	100 [#]	0.0 (3/2	2 ⁺) E2(+M1)	≥1.1	4.77 14	other E γ : 94.9 2 from (51 V,4n γ). Mult.: from 167 W ε decay.
175.86	$(5/2^+)$	175.9 2	100	0.0 (3/2	2 ⁺) (M1+E2)		0.67 21	Matt. Hom we decay.
205.19	$(7/2^+)$	110.6 2	100	94.66 (5/2		≤2.8	2.9 4	Mult.: from 167 W ε decay.
214.7		120.1	100	94.66 (5/2				
232.95	$(7/2^+)$	138.1 2	10.7 11	94.66 (5/2			1.73	
254.60	(7/2±)	233.1 2	100 <i>11</i> 100	0.0 (3/2			0.180 0.9 <i>3</i>	E a magazined to be the same As the Ex. 150.7 4 transition
254.68	(7/2 ⁺)	160.0 2	100	94.66 (5/2	2 ⁺) (M1+E2)		0.9 3	E _{γ} : presumed to be the same As the E γ =159.7 4 transition reported In ε decay. Mult.: $\Delta \pi$ from level scheme.
289.49	$(5/2^+,7/2^+,9/2^+)$	84.4 <mark>#</mark> 2	100 # 7	205.19 (7/2	2 ⁺) M1(+E2)	≤1.3	7.18 14	Mult.: from 167 W ε decay.
207.17	(3/2 ,//2 ,//2)	194.6 [#] 3	55 [#] 7	94.66 (5/2		_1.5	7.10 17	Marin Home We decay.
305.38	$(11/2^{-})$	99.1 2	100	206.3 (9/2			4.2 4	
374.73	$(9/2^+)$	120.0 2	100	254.68 (7/2			2.2 4	Mult.: $\Delta \pi$ from level scheme.
		160.0 2	61	214.7				
		169.6	100	205.19 (7/2			0.75 23	Mult.: $\Delta \pi$ from level scheme.
		280.1 2	31 11	94.66 (5/2				
392.0	$(\leq 7/2)$	392.0 [#] 4	100#	0.0 (3/2			0.65.21	
431.79	$(9/2^+)$	177.3 2	≈100	254.68 (7/2			0.65 21	Mult. A= from level schome
496.2	$(13/2^{-})$	337.1 2 190.8 2	≈52 ≈100	94.66 (5/2 305.38 (11			0.0582 0.52 <i>18</i>	Mult.: $\Delta \pi$ from level scheme.
490.2	(13/2)	289.9 2	≈100 ≈21	206.3 (9/2			0.32 10	other Iy: 42 14 from (30 Si,p4ny).
496.73	(5/2-)	263.7 [#] 3	10# 3	232.95 (7/2				other 17. 12 17 from (51,p my).
470.73	(3/2)	496.8 2	100 9	0.0 (3/2			0.09 8	I_{γ} : from ε decay.
503.13	$(9/2^+)$	270.2 [#] 2	100 [#] 25	232.95 (7/2			0.19 8	<i>y.</i>
000.10	(>/=)	327.3 2	100 25	175.86 (5/2			0.0634	
527.6		321.4 2	100	206.3 (9/2				
567.4		175.4 [#] 3	100 [#]	392.0 (≤7				
574.64	$(11/2^+)$	143.1 2	6.5 6	431.79 (9/2			1.3 3	
		199.9 2	98 8	374.73 (9/2			0.46 16	
		319.8 2 369.4 2	10.5 13	254.68 (7/2				
610.46	$(11/2^+)$	309.4 <i>2</i> 377.5 <i>2</i>	100 <i>6</i> 100	205.19 (7/2 232.95 (7/2				
611.09	$(9/2^{-})$	83.7 5	1.9 6	527.6	2)			
	(-1 /	114.4 2	4.0 4	496.73 (5/2	2 ⁻) (E2)		2.20 4	
		305.7 2	5.0 12	305.38 (11			0.13 6	
		356.4 2	8.1 10	254.68 (7/2			0.01467	
656 67	(11/2±)	378.1 2	100 8	232.95 (7/2			0.20 19	
656.67	$(11/2^+)$	224.8 2 402.0 2	68 <i>8</i> 100 <i>18</i>	431.79 (9/2 254.68 (7/2			0.32 12	
663.2		402.0 2 430.2 [#] 3	100 78	232.95 (7/2				
003.2		430.2" 3	100	232.93 (1/2	<i>2</i>)			

6

γ (167Ta) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	α@	Comments
678.7	$(15/2^{-})$	182.5 2	100 8	496.2 (13/2 ⁻)	(M1+E2)	0.60 20	Other I γ : 74 4 and 93 from (30 Si,p4n γ).
0,0,,	(10/2)	373.4 2	100 6	305.38 (11/2 ⁻)	(E2)	0.0436	outer 1/1 / and ye from (si,p in/).
790.92	$(13/2^+)$	134.1 2	6.5 5	656.67 (11/2+)	(M1+E2)	1.5 4	
	(/-)	216.3 2	66 5	574.64 (11/2+)	(====)		Other Iy: 53 6 and 73 from (30 Si,p4ny).
		416.2 2	100 7	374.73 (9/2 ⁺)	(E2)	0.0324	Other 17. 33 6 tille 73 Holli (51,p 1117).
852.95	$(13/2^{-})$	241.9 2	100	611.09 (9/2 ⁻)	(E2)	0.1597	
874.12	$(13/2^+)$	217.5 2	36 5	656.67 (11/2+)	(M1+E2)	0.36 13	
07.1112	(10/2)	442.3 2	100 9	431.79 (9/2+)	(E2)	0.0276	
939.97	$(13/2^+)$	329.5 2	24 6	610.46 (11/2+)	(22)	0.02.0	
	(-1)	436.9 2	100 17	503.13 (9/2+)	(E2)	0.0285	
947.3	$(17/2^{-})$	268.5 2	100 6	678.7 (15/2 ⁻)	(M1+E2)	0.19 8	
	` ' '	451.0 2	54 <i>4</i>	496.2 (13/2 ⁻)	(E2)	0.0262	other Iy: 80 5 from (30 Si,p4ny).
1036.21	$(15/2^+)$	245.2 2	54 6	790.92 (13/2+)	(M1+E2)	0.25 10	Other Iy: 82 from (30 Si,p4ny).
1030.21	(13/2)	461.6 2	100 8	574.64 (11/2+)	(E2)	0.0247	Other 17. 62 from (61,p m/).
1091.04	$(15/2^+)$	480.6 2	100	610.46 (11/2+)	(E2)	0.0223	
1133.4	$(13/2^{-})$	454.7 2	44 8	678.7 (15/2 ⁻)	(22)	0.0220	
	(/-)	637.1 2	100 12	496.2 (13/2 ⁻)			
1156.25	$(15/2^+)$	282.2 2	18 4	874.12 (13/2+)			
	(/-)	499.6 2	100 11	656.67 (11/2+)			
1165.5	$(19/2^{-})$	218.2 2	54 <i>4</i>	947.3 (17/2 ⁻)	(M1+E2)	0.35 13	Other Iy: 33 3 and 49 from (30 Si,p4ny).
	(/-)	486.8 2	100 7	678.7 (15/2 ⁻)	(E2)	0.0216	
1216.5	$(17/2^{-})$	363.6 2	100	852.95 (13/2 ⁻)	(E2)	0.0469	
1285.07	$(17/2^{+})$	128.9 2	2.84 21	1156.25 (15/2+)	, ,		
		248.9 2	52 4	1036.21 (15/2+)	(M1+E2)	0.24 10	Other Iy: 46 5 and 66 from (30 Si,p4ny).
		494.1 2	100 8	790.92 (13/2+)	(E2)	0.0208	1 17
1394.16	$(17/2^+)$	520.0 2	100	874.12 (13/2+)	(E2)	0.0183	
1456.73	$(17/2^+)$	365.7 2	26 8	1091.04 (15/2+)	(M1)	0.1186	
		516.8 2	100 38	939.97 (13/2+)			
1493.2	$(21/2^{-})$	327.7 2	100 7	1165.5 (19/2 ⁻)	(M1+E2)	0.11 5	other Iy: 85 7 from (30 Si,p4ny).
		546.0 2	100 7	947.3 (17/2 ⁻)	(E2)	0.01622	
1557.32	$(19/2^+)$	272.4 2	41 4	1285.07 (17/2+)	(M1+E2)	0.19 8	
		521.0 2	100 8	$1036.21 \ (15/2^+)$	(E2)	0.0182	
1638.7	$(19/2^+)$	547.7 2	100	1091.04 (15/2+)	(E2)	0.01610	
1641.4	$(17/2^{-})$	475.9 2	90 10	1165.5 (19/2 ⁻)			
		508.1 2	63 8	1133.4 (13/2 ⁻)			
		694.2 2	100 13	947.3 (17/2 ⁻)	(M1)	0.0221	Mult.: $\Delta \pi$ from level scheme.
4.500		962.7 2	38 5	678.7 (15/2 ⁻)	(77.6)	0.0046	
1678.7	$(21/2^{-})$	462.2 2	100	1216.5 (17/2-)	(E2)	0.0246	
1722.7	$(19/2^+)$	566.4 2	100	1156.25 (15/2+)		0.0= 1-	
1732.3	$(23/2^{-})$	239.1 2	32 3	1493.2 (21/2 ⁻)	(M1+E2)	0.27 11	
1000 0 1	(0.1 (0.1)	566.8 2	100 8	1165.5 (19/2 ⁻)	(E2)	0.01483	300: 4
1820.04	$(21/2^+)$	262.7 2	39 4	1557.32 (19/2 ⁺)	(M1+E2)	0.21 9	other Iy: 43 5 and 59 from (30 Si,p4ny).
		534.9 2	100	$1285.07 \ (17/2^+)$	(E2)	0.01706	

γ (167Ta) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{@}$	Comments
1950.40	$(21/2^+)$	556.2 2	100	1394.16 (1	7/2+)	(E2)	0.01552	
2019.25	$(21/2^+)$	380.5 5	19 8		19/2+)	(112)	0.01332	
	(/-)	562.5 2	100 17	1456.73 (1				
2056.96	$(21/2^+)$	600.3 2	100 16	1456.73 (1				
	. , ,	771.9 2	89 11	1285.07 (1		(E2)		Mult.: $\Delta \pi$ from level scheme.
2088.86	$(23/2^+)$	268.8 2	47 <i>4</i>	1820.04 (2		(M1)	0.272	
	() /	531.6 2	100 8	1557.32 (1		(E2)	0.01732	
2096.5	$(25/2^{-})$	364.2 2	60 5		23/2-)	(M1+E2)	0.08 4	Other Iy: 92 14 and 68 from (30 Si,p4ny).
		603.3 2	100 8		$21/2^{-}$			
2199.1	$(21/2^{-})$	466.8 2	56 <i>6</i>		$23/2^{-1}$	(M1+E2)	0.043 20	Mult.: $\Delta \pi$ from level scheme.
		557.7 2	100 11		$17/2^{-}$)			
		705.8 2	68 8	1493.2 (2	$21/2^{-}$)			
2213.8	$(25/2^{-})$	535.1 2	100		$21/2^{-}$)	(E2)	0.01704	
2222.0	$(23/2^+)$	583.3 2	100		19/2+)	(E2)	0.01385	
2234.3		592.8 2	100		17/2-)			
2327.9	$(25/2^+)$	239.0 2	71 6	2088.86 (2				
		507.8 2	100 8	1820.04 (2				20
2348.9	$(27/2^{-})$	252.3 2	26.6 <i>13</i>		$25/2^{-}$)	(M1+E2)	0.23 10	other Iy: 73 23 and 28 from (³⁰ Si,p4ny).
		616.5 2	100 5		$23/2^{-}$)	(E2)	0.01216	other Ey: 617.3 5 from (30 Si,p4ny).
2462.77	$(25/2^+)$	512.4 2	65 9	1950.40 (2				
		642.7 2	100 11	1820.04 (2				
2477.37	$(25/2^+)$	420.5 2	83 10	2056.96 (2		(E2)	0.0315	
		458.1 2	24 5	2019.25 (2		(7.5)	0.04==0	
	(0=(0±)	526.9 2	100 12	1950.40 (2		(E2)	0.01770	Mult.: $\Delta \pi$ from level scheme.
2566.2	$(27/2^+)$	238.3 2	100 7		25/2+)	(E2)	0.0227	
2570.6	(25/2=)	477.3 2	75 6	2088.86 (2	23/21)	(E2)	0.0227	
2579.6	$(25/2^{-})$	345.3 2	10.0 9	2234.3	11/0=>			
		380.4 2	45 6		21/2-)	0.510	0.0550	N. J. C. J. D. A. O. J. S. J. J. J.
		483.2 2	61 6	2096.5 (2	25/2-)	(M1)	0.0570	Mult.: interpreted As D, $\Delta J=0$ In (51 V, 4 n γ); $\Delta \pi$ from level scheme.
		847.2 2	37 3	1732.3 (2	23/2-)	(M1)	0.01356	Mult.: $\Delta \pi$ from level scheme.
2624.9	(27/2+)	1086.4 2	100 9		21/2-)	(E2)		Mult.: $\Delta \pi$ from level scheme.
2634.8	$(27/2^+)$	546.0 2	100	2088.86 (2		(M1 + E2)	0.00.4	Other Iy: 40 17 and 62 from (30 Si,p4ny).
2717.6	$(29/2^{-})$	368.7 2	68 <i>6</i> 100 <i>10</i>		27/2-)	(M1+E2)	0.08 <i>4</i> 0.01195	Other 17: 40 17 and 62 from (551,p4ny).
2753.3	(20/2-)	621.2 2			25/2-)	(E2)		
2133.3	$(29/2^{-})$	101.5 2 404.2 2	76 <i>5</i> 100 <i>10</i>		27/2 ⁻) 27/2 ⁻)	(M1) (M1+E2)	4.18 0.063	
		539.6 2	67 5		25/2 ⁻)	(1V117E2)	0.003	
		656.9 2	95 <i>10</i>		$25/2^{-}$)	(E2)	0.01052	Mult.: $\Delta \pi$ from level scheme.
		050.9 2	95 10	2090.5 (2	-5 4)	(L4)	0.01032	other I γ : 167 from (30 Si,p4n γ).
2780.9	$(29/2^+)$	214.7 2	100 8	2566.2 (2	27/2+)			outer 17. 107 from (\$1,p4fry).
2100.9	(4)/4)	453.0 2	59 5		25/2 ⁺)	(E2)	0.0259	Other Iy: 108 33 and 75 from (30 Si,p4ny).
2810.0	$(29/2^{-})$	596.2 2	100		25/2) 25/2 ⁻)	(E2)	0.0239	Other 17. 100 33 and 73 from (31,p4n7).
2815.0	$(29/2^+)$	180.3 2	29 3		23/2) 27/2 ⁺)	(154)	0.01313	
2013.0	(49/4)	100.5 2	49 3	2037.0 (2	-1/4)			

 ∞

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\textcircled{@}}$	Comments
2815.0	$(29/2^+)$	248.7 2	36 <i>4</i>	2566.2	$(27/2^+)$			
	. , ,	487.1 2	100 8	2327.9	$(25/2^+)$			
2821.0	$(27/2^+)$	599.0 2	100	2222.0	$(23/2^+)$			Mult.: R_{ang} In ($^{51}V,4n\gamma$) implies D+Q, but placement requires $\Delta J=2$.
2874.2	$(31/2^{-})$	120.9 2	100 11	2753.3	$(29/2^{-})$	(M1+E2)	2.2 4	
	` ' '	156.6 2	9.4 11	2717.6	$(29/2^{-})$,		
		222.4 2	≈11	2651.8	$(27/2^{-})$			
2962.8	$(29/2^+)$	485.4 2	100 10	2477.37		(E2)		
	` ' '	500.0 2	40 4	2462.77		Q		
2968.1	$(31/2^+)$	153.2 2	7.8 <i>6</i>	2815.0	$(29/2^+)$	(M1)	1.293	Mult.: $\Delta \pi$ from level scheme.
	. , ,	187.2 2	100 6	2780.9	$(29/2^+)$	(M1+E2)	0.55 19	
		333.3 2	18.1 <i>16</i>	2634.8	$(27/2^+)$	(E2)	0.0217	other Iy: 5.8 5 from (30 Si,p4ny).
					(-1)	,		Mult.: $\Delta \pi$ from level scheme.
		401.9 2	47 6	2566.2	$(27/2^+)$	(E2)	0.0356	Other Iy: 93 27 and 50 from (30 Si,p4ny).
2979.5	$(31/2^{-})$	261.8 2	29.6 19	2717.6	$(29/2^{-})$	(M1+E2)	0.21 9	Other Iy: 48 (from $({}^{30}Si,p4ny)$).
	(0 1/2)	630.6 2	100 7	2348.9	$(27/2^{-})$	(E2)	0.01155	/· · · · · · · · · · · · · · · ·
3007.4	$(31/2^+)$	226.6 2	100 9	2780.9	$(29/2^+)$	(M1+E2)	0.32 12	Mult.: $\Delta \pi$ from level scheme.
	(/-)	441.3 2	63 6	2566.2	$(27/2^+)$	(E2)	0.0277	Mult.: $\Delta \pi$ from level scheme.
3041.7	$(33/2^{-})$	167.5 2	100 9	2874.2	$(31/2^{-})$	(M1+E2)	0.78 23	
	(/)	288.4 2	15.5 17	2753.3	$(29/2^{-})$,		
3211.8	$(33/2^+)$	204.5 2	19.7 <i>19</i>	3007.4	$(31/2^+)$	(M1)	0.576	Mult.: $\Delta \pi$ from level scheme.
	. , ,	243.7 2	100 8	2968.1	$(31/2^+)$	(M1+E2)	0.26 10	
		396.6 2	10.6 <i>17</i>	2815.0	$(29/2^+)$			Mult.: $R_{ang}=0.78 \text{ 4 In } (^{51}\text{V},4n\gamma)$ implies D+Q, but placement requires $\Delta J=2$
		431.0 2	61 <i>6</i>	2780.9	$(29/2^+)$	(E2)	0.0295	
3235.0	$(35/2^{-})$	193.3 2	100 12	3041.7	$(33/2^{-})$	(M1+E2)	0.50 17	
		360.8 2	34 <i>3</i>	2874.2	$(31/2^{-})$	(E2)	0.0480	
3253.0	$(33/2^+)$	245.7 2	100	3007.4	$(31/2^+)$	(M1+E2)	0.25 10	
3326.2	$(33/2^{-})$	346.8 2	67.8	2979.5	$(31/2^{-})$	(M1+E2)	0.10 5	Other Iy: 34 7 and 48 from (30 Si,p4ny).
		608.6 2	100 8	2717.6	$(29/2^{-})$	(E2)	0.01254	
3346.2	$(31/2^+)$	525.2 <i>5</i>	100	2821.0	$(27/2^+)$			
3392.5	$(33/2^{-})$	582.5 2	100	2810.0	$(29/2^{-})$			
3426.7	$(35/2^+)$	214.9 2	100 <i>13</i>	3211.8	$(33/2^+)$			20
		458.6 2	100 10	2968.1	$(31/2^+)$	(E2)	0.0251	other Iy: 63 from (30 Si,p4ny).
3468.7	$(37/2^{-})$	233.7 2	100 8	3235.0	$(35/2^{-})$	(M1+E2)	0.29 11	20
		427.0 2	40 8	3041.7	$(33/2^{-})$			Other Iy: 56 8 and 38 from $(^{30}Si,p4n\gamma)$.
3474.0	$(35/2^+)$	221.1 2	30 <i>3</i>	3253.0	$(33/2^+)$	(M1)	0.464	
		262.2 2	31 <i>3</i>	3211.8	$(33/2^+)$	(M1+E2)	0.21 9	Mult.: $\Delta \pi$ from level scheme.
		466.7 2	100 11	3007.4	$(31/2^+)$	(E2)	0.0240	
3480.2	$(33/2^+)$	517.4 2	100	2962.8	$(29/2^+)$	(E2)		
3594.3	$(35/2^{-})$	268.1 2	57 7	3326.2	$(33/2^{-})$	(M1+E2)	0.19 8	
2720.7	(27/2±)	614.8 2	100 10	2979.5	$(31/2^{-})$	(E2)	0.01224	
3720.7	$(37/2^+)$	246.7 2	20.3 21	3474.0	$(35/2^+)$	(M1 . F2)	0.15.7	
		294.0 2	83 7	3426.7	$(35/2^+)$	(M1+E2)	0.15 7	1 F 500 (C 30c; 4)
		508.8 2	100 14	3211.8	$(33/2^+)$			other E γ : 509.6 from (30 Si,p4n γ).

9

γ (167Ta) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^π	Mult. [†]	α@	Comments
3733.6	$(39/2^{-})$	264.9 2	100 10		$(37/2^{-})$	(M1+E2)	0.20 9	
		498.5 2	64 6		$(35/2^{-})$	(E2)	0.0203	
3772.1	$(37/2^+)$	298.2 2	81 <i>13</i>		$(35/2^+)$	(M1+E2)	0.14 6	
		519.2 2	100 <i>13</i>		$(33/2^+)$	(E2)	0.0183	
3880.6	$(35/2^+)$	534.4 5	100		$(31/2^+)$			
3913.1	$(37/2^{-})$	318.8 2	94 6		$(35/2^{-})$	(M1+E2)	0.12 6	
20=44	(0=(0-)	586.9 2	100 11		$(33/2^{-})$			
3974.1	$(37/2^{-})$	581.6 2	100		$(33/2^{-})$			20
3990.9	$(39/2^+)$	270.1 2	61 5		$(37/2^+)$	(M1+E2)	0.19 8	other E γ : 269.4 from (30 Si,p4n γ).
	(11/0-)	564.1 2	100 8		$(35/2^+)$	(E2)	0.01500	
4023.4	$(41/2^{-})$	289.8 2	100 10		$(39/2^{-})$	(M1+E2)	0.16 7	20
		554.7 2	94 6		$(37/2^{-})$	(E2)	0.01562	other E γ : 555.1 from (30 Si,p4n γ).
4026.0	$(39/2^+)$	253.9 2	45 <i>4</i>		$(37/2^+)$	(77.6)	0.04.500	
1017.	(0=(0±)	552.0 2	100 11		$(35/2^+)$	(E2)	0.01580	
4045.2	$(37/2^+)$	565.0 2	100		$(33/2^+)$	(E2)	0.01494	
4133.1	$(35/2^+)$	653.0 5	100		$(33/2^+)$	(MI - FO)	0.10.0	
4189.9	$(39/2^{-})$	276.8 2	76 5		$(37/2^{-})$	(M1+E2)	0.18 8	
12017	(41/0±)	595.6 2	100 10		$(35/2^{-})$	(E2)	0.01319	
4304.7	$(41/2^+)$	278.8 2	17.4 23		$(39/2^+)$			1 F (7) 2140 (122) C (30g; 4)
		313.8 2	71 13		$(39/2^+)$	(77.6)	0.04.00	other E γ (I γ): 314.9 (\approx 133) from (30 Si,p4n γ).
		583.9 2	100 10		$(37/2^+)$	(E2)	0.01382	other Ey: 584.5 from $({}^{30}\text{Si},\text{p4ny})$.
4347.9	$(43/2^{-})$	324.5 2	100 10		$(41/2^{-})$	(M1+E2)	0.11 5	other Ey: 324.9 from (30 Si,p4ny).
		614.4 2	72 6		$(39/2^{-})$	(E2)	0.01226	other E γ (I γ): 615.2 (108) from (30 Si,p4n γ).
4360.3	$(41/2^+)$	334.2 2	45 5		$(39/2^+)$	(M1+E2)	0.11 5	
		588.2 <mark>&</mark> 2	100 <mark>&</mark> 9	3772.1	$(37/2^+)$	(E2)	0.01358	
4489.3	$(39/2^+)$	608.7 <i>5</i>	100		$(35/2^+)$			
4501.3	$(41/2^{-})$	311.5 2	92 8	4189.9	$(39/2^{-})$	(M1+E2)	0.13 6	
		588.2 <mark>&</mark> 2	100 <mark>&</mark> 8	3913.1	$(37/2^{-})$			
4557.2	$(41/2^{-})$	583.0 2	100		$(37/2^{-})$			
4607.9	$(43/2^+)$	247.6 2	8.3 17		$(41/2^+)$			
		303.3 2	100 9	4304.7	$(41/2^+)$	(M1+E2)	0.14 6	
		582.0 2	41 4	4026.0	(39/2+)			Mult.: R_{ang} =0.80 8 In (51 V,4n γ) suggests D+Q but placement requires Q, ΔJ =2.
		617.0 2	25 <i>3</i>	3990.9	$(39/2^+)$			
4658.3	$(43/2^+)$	298.0 2	33 4		$(41/2^+)$	(M1+E2)	0.14 6	
	. , ,	632.3 2	49 5		$(39/2^+)$	(E2)	0.01147	
		667.3 2	100 14		$(39/2^+)$	(E2)	0.01015	Mult.: $\Delta \pi$ from level scheme.
4661.0	$(41/2^+)$	615.8 2	100		$(37/2^+)$	(E2)	0.01220	
4684.1	$(45/2^{-})$	336.1 2	98 8		$(43/2^{-})$	(M1+E2)	0.10 5	other Iy: 72 14 from (30 Si,p4ny).
	. , ,	660.7 2	100 8		$(41/2^{-})$	(E2)	0.01038	other Ey: 661.3 from $(^{30}Si,p4ny)$.
4687.7	$(39/2^+)$	554.6 5	50 17		$(35/2^+)$,		1
	` ' '	642.6 5	100 17		$(37/2^+)$	(M1)	0.0273	Mult.: $\Delta \pi$ from level scheme.
4799.8	$(43/2^{-})$	298.5 2	55 <i>5</i>		$(41/2^{-})$	(M1+E2)	0.14 6	

γ (167Ta) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{\textcircled{@}}$	Comments
l	4799.8	$(43/2^{-})$	609.9 2	100 7	4189.9	$(39/2^{-})$	(E2)	0.01247	
ı	4920.4	$(45/2^+)$	312.5 2	97 17		$(43/2^+)$,		other Ey (Iy): 303.9 (\approx 67) from (30 Si,p4ny).
l		(/ - /	615.8 2	100 17		$(41/2^+)$			other Ey: 617.0 from (30 Si,p4n γ).
ı	5008.7	$(45/2^+)$	350.4 2	90 9		$(43/2^+)$			$R_{\text{ang}} = 0.94 14 \text{ In } (^{51}\text{V}, 4n\gamma); \text{ placement requires } \Delta J = 1.$
ı	3000.7	(73/2)	648.4 2	100 10		$(43/2^+)$ $(41/2^+)$			$R_{ang} = 0.80 \text{ 6 In } (^{51}V,4n\gamma);$ placement requires $\Delta J = 2$.
ı	5053.5	$(47/2^{-})$	369.4 2	70 <i>7</i>		$(45/2^{-})$	(M1+E2)	0.08 4	$R_{ang}=0.80$ o III ($V_1+II_1Y_1$), placement requires $\Delta J=2$.
	3033.3	(41/2)	705.6 2	100 9		$(43/2^{-})$	(E2)	0.00 4	other E γ : 706.5 from (30 Si,p4n γ).
l	5126.7	(45/2-)	327.0 2	56 6			(E2) (M1+E2)	0.11 5	oulet Ey. 700.3 from (**Si,p4fry).
	3120.7	$(45/2^{-})$	625.4 2	100 9	4/99.0	$(43/2^{-})$ $(41/2^{-})$	(E2)	0.11 3	
	5186.6	$(45/2^{-})$	629.4 2	100 9			(E2)	0.01177	
	5206.6	$(45/2^{-})$	649.4 2	100		$(41/2^{-})$ $(41/2^{-})$	(E2)	0.01100	Mult.: $\Delta \pi$ from level scheme.
	5235.9	$(43/2^{+})$ $(47/2^{+})$	315.5 2	100 18		$(45/2^+)$	(E2)	0.01079	Muit $\Delta \lambda$ from level scheme.
	3233.9	(41/2)	627.9 2	24 9		$(43/2^+)$	(E2)	0.01166	
	5293.3	$(43/2^+)$	605.7 5	100 13	4607.9	$(39/2^+)$	(E2)	0.01100	
	3293.3	(43/2)	632.3 5	100 13			(M1(+E2))	0.020 9	Mult.: $\Delta \pi$ from level scheme.
	5326.2	$(45/2^+)$	665.2 2	100 13		$(41/2^+)$ $(41/2^+)$	(E2)	0.020 9	Muit $\Delta \lambda$ from level scheme.
				40 & 5			(E2)	0.01022	
	5345.1	$(47/2^+)$	336.4 ^{&} 2			$(45/2^+)$			
			686.8 2	100 9		$(43/2^+)$			20
	5426.5	$(49/2^{-})$	373.0 2	68 8		$(47/2^{-})$	(M1+E2)	0.08 4	other Iy: 55 19 from $\binom{30}{9}$ Si,p4ny).
			742.4 2	100 8		$(45/2^{-})$	(E2)		other Ey: 373.5 from (30 Si,p4n γ).
	5465.0	$(47/2^{-})$	338.3 2	57 6		$(45/2^{-})$			
			665.2 2	100 10		$(43/2^{-})$	(E2)	0.01022	
	5514.7	$(47/2^{-})$	308.1 5	100 <i>13</i>		$(45/2^{-})$			
			328.0 5	75 13		$(45/2^{-})$			
	5550.3	$(49/2^+)$	314.4 2	65 15		$(47/2^+)$			
			629.9 2	100 10	4920.4		(E2)	0.01157	
	5697.4	$(49/2^+)$	352.4 2	16.4 <i>16</i>		$(47/2^+)$			
			688.7 2	100 10		$(45/2^+)$			
	5802.3	$(49/2^{-})$	337.4 2	39 5		$(47/2^{-})$	(5.6)		
	500 / =	(F1 (D-)	675.5 2	100 10		$(45/2^{-})$	(E2)	0.05.3	
	5824.7	$(51/2^{-})$	398.2 2	56 6		$(49/2^{-})$	(M1+E2)	0.07 3	
	50.40. 5	(40/2=)	771.2 2	100 8		$(47/2^{-})$	(E2)		
	5849.5	$(49/2^{-})$	334.8 5	38.5 8		$(47/2^{-})$			
			642.9 5	30.8 8		$(45/2^{-})$			
	5000.2	(51/0±)	662.9 2	100 15		$(45/2^{-})$	0.41 - E0	0.10.5	
	5888.3	$(51/2^+)$	338.0 2	70 5		$(49/2^+)$	(M1+E2)	0.10 5	
	5000.2	(40/0=)	652.4 2	100 10		$(47/2^+)$	(E2)	0.01068	
	5890.2	$(49/2^{-})$	683.7 2	14 6		$(45/2^{-})$	(E2)		
	5040.4	(47/0±)	703.6 2	100 12		$(45/2^{-})$	(E2)		
	5949.4	$(47/2^+)$	623.2 5	67.8		$(45/2^+)$			
			656.1 2	100 17		$(43/2^+)$			
	6035.6	$(49/2^+)$	709.4 <mark>&</mark> 2	100 <mark>&</mark>		$(45/2^+)$	(E2)		
	6054.5	$(51/2^+)$	357.1 2	24.6 29	5697.4	$(49/2^+)$			

$\gamma(^{167}\text{Ta})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α@	Comments
7471.7	$(57/2^{-})$	797.4 5	75 17	6674.2	$(53/2^{-})$			
		828.8 2	100 8		$(53/2^{-})$			
7480.3	$(59/2^{-})$	416.5 2	36 <i>4</i>		$(57/2^{-})$			
		842.7 2	100 12		$(55/2^{-})$	(E2)		
7565.8	$(57/2^+)$	785.9 2	100		$(53/2^+)$	(E2)		
7596.3	$(57/2^+)$	796.4 <i>5</i>	100 13		$(53/2^+)$	(E2)		
		816 ^a 1	<38		$(53/2^+)$, ,		
7654.4	$(59/2^+)$	838.5 2	100		$(55/2^+)$			
7716.3	$(59/2^{-})$	423.5 <mark>&</mark> 2	25 & 5		$(57/2^{-})$			
7710.5	(37/2)	796.7 2	100 13		$(55/2^{-})$			
7785.8	$(61/2^+)$	396.7 2	51 5		$(59/2^+)$	(M1+E2)	0.07 3	
05.0	(01/2)	822.4 2	100 14		$(57/2^+)$	(E2)	5.07 5	
7830.2	$(59/2^{-})$	842.6 2	100 14		$(55/2^{-})$	(22)		
7933.5	$(61/2^{-})$	453.1 2	33 4		$(59/2^{-})$			
. , , , , ,	(01/2)	869.7 2	100 8		$(57/2^{-})$	(E2)		
8085.3	$(61/2^+)$	871.5 2	100		$(57/2^+)$	(==)		
8128.2	$(61/2^{-})$	835.4 2	100		$(57/2^{-})$			R_{ang} =0.82 10 In (⁵¹ V,4n γ); placement requires ΔJ =2.
8205.6	$(59/2^+)$	799.5 5	100		$(55/2^+)$			rang 0.02 to in (v, m/), pracement requires 25 2.
8263.5	$(63/2^+)$	477.7 2	58 8		$(61/2^+)$			
0200.0	(00/2)	874.3 2	100 10		$(59/2^+)$	(E2)		
8278.0	$(61/2^{-})$	872.6 5	100		$(57/2^{-})$	()		
8294.2	$(61/2^{-})$	855.6 2	100		$(57/2^{-})$	(E2)		
8324.4	$(61/2^{-})$	852.7 2	100		$(57/2^{-})$,		
8354.4	$(63/2^{-})$	420.9 2	42 4		$(61/2^{-})$			
	/	874.2 2	100 9		$(59/2^{-})$	(E2)		
8398.6	$(61/2^+)$	832.8 2	100		$(57/2^+)$	(E2)		
8437.2	$(61/2^+)$	840.9 5	100		$(57/2^+)$			
8564.2	$(63/2^{-})$	847.9 2	100		$(59/2^{-})$			
8564.3	$(63/2^+)$	909.9 2	100		$(59/2^+)$			
8685.4	$(65/2^+)$	421.9 2	32 5		$(63/2^+)$			
	/	899.6 2	100 10		$(61/2^+)$	(E2)		
8744.8	$(63/2^{-})$	914.6 5	100		$(59/2^{-})$			
8843.6	$(65/2^{-})$	489.2 2	49 5		$(63/2^{-})$			
		910.1 2	100 8		$(61/2^{-})$	(E2)		
9020.7	$(65/2^{-})$	892.4 2	100		$(61/2^{-})$			
9030.4	$(65/2^+)$	945.1 2	100	8085.3	$(61/2^+)$			
9054.3	$(63/2^+)$	848.7 5	100		$(59/2^+)$			
9204.7	$(65/2^{-})$	926.7 5	100		$(61/2^{-})$			
9206.8	$(65/2^{-})$	912.6 5	100		$(61/2^{-})$			
9219.6	$(67/2^+)$	956.1 2	100		$(63/2^+)$	(E2)		
9222.6	$(65/2^{-})$	898.2 5	100		$(61/2^{-})$			
9267.2	$(67/2^{-})$	423.5 <mark>&</mark> 2	15.6 <mark>&</mark> 26		$(65/2^{-})$			
	\- · /	912.8 2	100 10	8354.4		(E2)		

$\gamma(^{167}\text{Ta})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
9280.0	$(65/2^+)$	881.4 2	100	8398.6	$(61/2^+)$	(E2)	11225.3	$(75/2^{-})$	1001.5 2	100	10223.8	$\overline{(71/2^-)}$
9331.8	$(65/2^+)$	894.6 <i>5</i>	100	8437.2	$(61/2^+)$		11239.3?	$(73/2^+)$	972 <mark>a</mark> 1	100	10267.3	$(69/2^+)$
9466.0	$(67/2^{-})$	901.8 2	100	8564.2	$(63/2^{-})$		11346.1	$(75/2^+)$	1095.7 <i>5</i>	100	10250.4	$(71/2^+)$
9654.1	$(69/2^+)$	968.7 2	100	8685.4	$(65/2^+)$		11434.7	$(75/2^{-})$	1010.5 5	100	10424.2	$(71/2^{-})$
9805.1	$(69/2^{-})$	961.4 2	100	8843.6	$(65/2^{-})$		11756.5	$(77/2^+)$	1075.2 2	100	10681.3	$(73/2^+)$
9954.1	$(67/2^+)$	899.8 <i>5</i>	100	9054.3	$(63/2^+)$		11907.0	$(77/2^{-})$	1081.4 2	100	10825.6	$(73/2^{-})$
9972.8	$(69/2^{-})$	952.1 2	100	9020.7	$(65/2^{-})$		11910.9	$(75/2^+)$	1004.7 5	100	10906.1	$(71/2^+)$
10019.8	$(69/2^+)$	989.4 <i>5</i>	100	9030.4	(/		12065.5	$(77/2^{-})$	1078.7 <i>5</i>	100	10986.8	$(73/2^{-})$
10143.7	$(69/2^{-})$	921.1 5	100		. , ,		12240.4	$(77/2^+)$	1040.0 5	100	11200.4	$(73/2^+)$
10158.7	$(69/2^{-})$	951.9 <i>5</i>	100	9206.8	$(65/2^{-})$		12271.0	$(79/2^{-})$	1045.7 <i>5</i>	100	11225.3	$(75/2^{-})$
10213.8	$(69/2^+)$	933.8 <i>5</i>	100		$(65/2^+)$		12486.2	$(79/2^+)$	1140.1 5	100	11346.1	$(75/2^+)$
10223.8	$(71/2^{-})$	956.6 2	100	9267.2	$(67/2^{-})$		12492.8	$(79/2^{-})$	1058.1 5	100	11434.7	$(75/2^{-})$
10250.4	$(71/2^+)$	1030.8 2	100		$(67/2^+)$		12871.9	$(81/2^+)$	1115.4 5	100	11756.5	$(77/2^+)$
10267.3	$(69/2^+)$	935.5 <i>5</i>	100	9331.8	$(65/2^+)$		12968.0	$(79/2^+)$	1057.1 <i>5</i>	100	11910.9	$(75/2^+)$
10424.2	$(71/2^{-})$	958.2 <i>5</i>	100	9466.0	$(67/2^{-})$		13047.3	$(81/2^{-})$	1140.3 2	100	11907.0	$(77/2^{-})$
10681.3	$(73/2^+)$	1027.2 2	100	9654.1	$(69/2^+)$		13343.4?	$(81/2^+)$	1103 <i>a</i> 1	100	12240.4	$(77/2^+)$
10825.6	$(73/2^{-})$	1020.5 2	100	9805.1	$(69/2^{-})$		13357.6	$(83/2^{-})$	1086.6 <i>5</i>	100	12271.0	$(79/2^{-})$
10906.1	$(71/2^+)$	952.0 <i>5</i>	100	9954.1	$(67/2^+)$		13596.2	$(83/2^{-})$	1103.4 5	100	12492.8	$(79/2^{-})$
10986.8	$(73/2^{-})$	1014.0 5	100	9972.8	$(69/2^{-})$		14025.6	$(85/2^+)$	1153.7 <i>5</i>	100	12871.9	$(81/2^+)$
11031.8?	$(73/2^+)$	1012 ^a 1	100	10019.8	$(69/2^+)$		14229.9	$(85/2^{-})$	1182.6 2	100	13047.3	$(81/2^{-})$
11200.4	$(73/2^+)$	986.6 5	100	10213.8	$(69/2^+)$		14483.0	$(87/2^{-})$	1125.4 5	100	13357.6	$(83/2^{-})$

[†] From (51 V,4n γ), except as noted. For many levels, additional estimates of γ branching are available from (30 Si,p4n γ); inconsistencies are noted. $\Delta\pi$ =(No) has been assigned for intraband transitions.

[‡] From $\alpha(K)$ exp in ^{167}W ε decay. [#] From ^{167}W ε decay.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed with intensity suitably divided.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁶⁷₇₃Ta₉₄

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

 $^{167}_{73}\mathrm{Ta}_{94}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{167}_{73}\mathrm{Ta}_{94}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{167}_{73}\mathrm{Ta}_{94}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{167}_{73}{\rm Ta}_{94}$

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

¹⁶⁷₇₃Ta₉₄

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $^{167}_{73}\mathrm{Ta}_{94}$

$^{167}\mathrm{W}\;\varepsilon\;\mathrm{decay}$ 1989Me02

History

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin ENSDF 23-May-2013

Parent: 167 W: E=0.0; J^{π} =(+); $T_{1/2}$ =19.9 s 5; $Q(\varepsilon)$ =6250 30; $\%\varepsilon+\%\beta^+$ decay=99.96 I^{167} W- $\%\varepsilon+\%\beta^+$ decay: Based on $\%\alpha(^{167}$ W)=0.04 I (1989Me02).

Others: 1987Es08 (see also 1989Br19); 1992HeZV.

The decay scheme is based on that of 1989Me02. No ε branch to the 167 Ta g.s. is known but, if it exceeded 7.2%, it would be an allowed branch; also, provided it were <84%, the branch to the 289 level (which has the same parity as the g.s.) would be allowed. Thus, 167 W(g.s.), 167 Ta(g.s.) and 167 Ta(289 level) must have the same parity. 1989Me02 assumed $J^{\pi}=5/2^{-}$ for the 167 W parent, based on systematics; this is not adopted here because $J^{\pi}(^{167}$ Ta g.s.)= $(3/2^{+})$ is favored in a (HI,xn γ) study by 1992Th02. In view of the likelihood of g.s. $\varepsilon+\beta^{+}$ feeding, the decay scheme has not been normalized.

¹⁶⁷Ta Levels

E(level)	$J^{\pi\dagger}$	Comments
0.0	(3/2+)	
94.4 2	$(5/2^+)$	
204.6 3	$(7/2^+)$	
232.83 25	$(7/2^+)$	
254.1 5		
289.0 <i>3</i>	$(5/2^+,7/2^+,9/2^+)$	
392.0 <i>4</i>	$(\le 7/2)$	E(level): 175.4 3 also possible; order of 175γ and 392γ uncertain.
496.57 25		
503.0 5		
567.4 5		
611.2 5	$(9/2^{-})$	
663.0 4		

[†] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Comments
$(5.59 \times 10^{3} † 3)$	663.0	
(5.64×10^{3})	611.2	
(5.68×10^{3})	567.4	
(5.75×10^{3})	503.0	
$(5.75 \times 10^3 \ 3)$	496.57	$\varepsilon \text{K}/\beta^+ = 0.57 \ 11 \ (1989\text{Me}02) \text{ from I(K x ray, Ta) and I}(\gamma^{\pm}) \text{ in coincidence with } 497\gamma. \text{ This implies } Q=5590 \ +300-240 \ (1989\text{Me}02) \text{ for } ^{167}\text{W } \varepsilon \text{ decay, cf. } 6250 \ 30 \text{ from } 2012\text{Wa}38.$
$(5.96 \times 10^3 \ 3)$	289.0	
(6.00×10^{3})	254.1	
$(6.05 \times 10^3 \ 3)$	204.6	
$(6.16 \times 10^3 \ 3)$	94.4	
$(6.25 \times 10^{3} ^{\dagger} 3)$	0.0	

[†] Existence of this branch is questionable.

$^{167}\mathrm{W}\ \varepsilon\ \mathrm{decay}$ 1989Me02 (continued)

γ (167Ta)

All gammas reported by 1989Me02 are in coincidence with K x ray(Ta) and γ^{\pm} .

$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{\#}$	Comments
84.4 2	29 2	289.0	(5/2+,7/2+,9/2+)	204.6	(7/2+)	M1(+E2)	≤1.3	7.18 <i>14</i>	$\alpha(K)=4.4 \ 15; \ \alpha(L)=2.1 \ 12;$ $\alpha(M)=0.5 \ 3; \ \alpha(N+)=0.14$ $\alpha(M)=0.12 \ 7; \ \alpha(M)=0.017 \ 0;$
94.4 2	100	94.4	(5/2+)	0.0	(3/2+)	E2(+M1)	≥1.1	4.77 14	$\alpha(N)$ =0.12 7; $\alpha(O)$ =0.017 9; $\alpha(P)$ =0.00041 15 $\alpha(K)$ exp=6 3 (1989Me02) $\alpha(K)$ =1.8 8; $\alpha(L)$ =2.3 5; $\alpha(M)$ =0.57 13; $\alpha(N+)$ =0.15 4 $\alpha(N)$ =0.13 3; $\alpha(O)$ =0.018 4; $\alpha(P)$ =0.00015 8
110.2 2	94 <i>4</i>	204.6	(7/2+)	94.4	(5/2+)	M1(+E2)	≤2.8	3.0 4	$\alpha(\text{r})=0.00013 \text{ s}$ $\alpha(\exp)=4.5 \text{ 5 } (1989\text{Me}02)$ $\alpha(\text{K})=1.9 \text{ 9; } \alpha(\text{L})=0.8 \text{ 4;}$ $\alpha(\text{M})=0.21 \text{ 11;}$
^x 141.6 4									α (N+)=0.06 3 α (N)=0.048 25; α (O)=0.007 3; α (P)=0.00017 9 α (K)exp=2 1 (1989Me02) Reported by 1987Es08 (and
									1989Br19). Probably does not belong to 167 Ta; 1989Me02 report 141.6 γ in coincidence with K x ray(Hf) and 139.5 γ (167 Hf), so they assign it to 167 Ta ε
159.7 4	21 2	254.1		94.4	(5/2+)				decay. I _{γ} : after correction for contribution from 158.7 γ from ¹⁶⁶ Ta decay.
175.4 3		567.4		392.0	(≤7/2)				I_{γ} : not determined; contaminant present. $I_{\gamma} < 17$ expected based on intensity
194.6 <i>3</i> 232.8 <i>3</i>	16 2 46 2	289.0 232.83	(5/2 ⁺ ,7/2 ⁺ ,9/2 ⁺) (7/2 ⁺)	94.4 0.0	(5/2 ⁺) (3/2 ⁺)	[E2]		0.181	balance at the 392 level. $\alpha(K)=0.1110\ 16;$ $\alpha(L)=0.0531\ 8;$ $\alpha(M)=0.01303\ 20;$ $\alpha(N+)=0.00349\ 6$ $\alpha(N)=0.00306\ 5;$ $\alpha(O)=0.000422\ 7;$ $\alpha(P)=8.33\times10^{-6}\ 12$
263.7 <i>3</i> 270.2 <i>4</i> ^x 275.6 <i>3</i>	4 <i>I</i> 13 <i>4</i> 22 <i>I</i>	496.57 503.0		232.83 232.83					<i>α</i> (r)=0.33×10 12
378.4 4 392.0 4 430.2 3 496.6 3	18 5 17 2 17 2 34 3 21 2	611.2 392.0 663.0 496.57	$(9/2^{-})$ $(\le 7/2)$	232.83 0.0 232.83 0.0	$(3/2^+)$				

 $^{^{\}dagger}$ From 1989Me02.

$^{167}\mathrm{W}~\varepsilon$ decay 1989Me02 (continued)

γ (167Ta) (continued)

[‡] From α (K)exp (1989Me02).

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{}x}$ γ ray not placed in level scheme.

167 W ε decay 1989Me02

Decay Scheme

Intensities: Relative $I_{(\gamma+ce)}$

Legend

120 Sn(51 V,4n γ) 2011Ha25,2009Ha33

History

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin ENSDF 23-May-2013

2011Ha25: E=235 MeV, ATLAS facility at ANL, Gammasphere array with 101 Compton-suppressed HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$.

2009Ha33: preliminary report of some data from the study reported In detail by 2011Ha25.

¹⁶⁷Ta Levels

Quasiparticle labels used:

 α : first $i_{13/2}$ neutron, $\alpha = +1/2$.

B: first $i_{13/2}$ neutron, $\alpha = -1/2$.

C: second $i_{13/2}$ neutron, $\alpha = +1/2$.

D: second $i_{13/2}$ neutron, $\alpha = +1/2$.

E: lowest π =- orbital, α =+1/2.

F: lowest π =- orbital, α =-1/2.

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 ^h	3/2+	1394.40 ^m 25	17/2+	2815.3 <i>3</i>	29/2+	4304.9 ⁱ 4	41/2+
94.92 ⁱ 15	5/2+	1456.88 ^g 21	$17/2^{+}$	2821.2 ^h 4	$27/2^{+}$	4348.1 ^a 4	$43/2^{-}$
175.90 ^g 17	5/2+	1493.4 [#] 3	$21/2^{-}$	2874.4 ^a 4	$31/2^{-}$	4360.5 ^k 4	$41/2^{+}$
205.48 ^j 19	7/2+	1557.58 ^j 22	19/2+	2963.0° 3	29/2+	4489.5 <mark>h</mark> 10	39/2+
206.4 [#] 3	9/2-	1638.9 ^h 3	19/2+	2968.4 ^j 3	31/2+	4501.5 [#] 4	$41/2^{-}$
233.07 ^h 14	7/2+	1641.6 ^b 3	$17/2^{-}$	2979.6 [@] 4	$31/2^{-}$	4557.3 ^c 5	$41/2^{-}$
254.92 ⁿ 17	$7/2^{+}$	1678.9 ^c 4	$21/2^{-}$	3007.6 ^l 3	$31/2^{+}$	4608.2 ^j 4	$43/2^{+}$
305.52 [@] 24	$11/2^{-}$	1722.9 ⁿ 3	$19/2^{+}$	3041.9 ^{&} 4	33/2-	4658.5 ^l 4	43/2+
375.00 ⁱ 18	9/2+	1732.5 [@] 3	$23/2^{-}$	3212.1 ⁱ 3	$33/2^{+}$	4661.2° 5	$41/2^{+}$
432.05 ^m 18	9/2+	1820.29 ⁱ 23	$21/2^{+}$	3235.2 ^a 4	35/2-	4684.3 ^{&} 4	$45/2^{-}$
496.4 [#] <i>3</i>	$13/2^{-}$	1950.62 ^m 24	$21/2^{+}$	3253.2 ^k 3	$33/2^{+}$	4687.9 ^p 5	39/2 ⁺
496.81 ^c 16	5/2-	2019.42 <mark>8</mark> 24	$21/2^{+}$	3326.4 [#] 4	33/2-	4799.9 [@] 4	$43/2^{-}$
503.21 ⁸ 17	9/2+	2057.16° 22	$21/2^{+}$	3346.4 ^h 7	$31/2^{+}$	4920.7 ⁱ 4	45/2 ⁺
527.8 4		2089.12 ^j 25	$23/2^{+}$	3392.7 ^c 4	33/2-	5008.9 ^k 4	45/2 ⁺
574.91 ^j 18	$11/2^{+}$	2096.6 [#] 3	$25/2^{-}$	3427.0 ^j 3	35/2+	5053.7 ^a 4	$47/2^{-}$
610.57 ^h 20	$11/2^{+}$	2199.3 ^b 3	$21/2^{-}$	3468.9 & 4	37/2-	5126.9 [#] 4	$45/2^{-}$
611.23 ^c 17	9/2-	2213.9 ^c 4	$25/2^{-}$	3474.3 ^l 3	35/2+	5186.8 ^c 5	$45/2^{-}$
656.93 ⁿ 19	$11/2^{+}$	2222.2 ^h 4	$23/2^{+}$	3480.4° 4	$33/2^{+}$	5206.7 ^d 5	$45/2^{-}$
678.9 [@] 3	$15/2^{-}$	2234.4 4		3594.4 [@] 4	35/2-	5236.2 ^j 4	47/2+
791.19 ⁱ 19	$13/2^{+}$	2328.1 ⁱ 3	$25/2^{+}$	3721.0 ⁱ 3	$37/2^{+}$	5293.6 ^p 6	$43/2^{+}$
853.11 ^c 25	$13/2^{-}$	2349.0 [@] 3	$27/2^{-}$	3733.7 ^a 4	39/2-	5326.4° 5	45/2+
874.37 ^m 21	$13/2^{+}$	2463.00 ^m 24	$25/2^{+}$	3772.4 ^k 4	$37/2^{+}$	5345.3 ^l 4	$47/2^{+}$
940.05 ⁸ 20	$13/2^{+}$	2477.57° 23	$25/2^{+}$	3880.8 ^h 9	$35/2^{+}$	5426.7 ^{&} 5	$49/2^{-}$
947.4 [#] <i>3</i>	$17/2^{-}$	2566.4 ^j 3	$27/2^{+}$	3913.2 [#] 4	$37/2^{-}$	5465.1 [@] 4	$47/2^{-}$
1036.50 ^{<i>j</i>} 20	15/2+	2579.7 ^{&} 3	$25/2^{-}$	3974.3° 5	$37/2^{-}$	5514.9 <mark>e</mark> 5	$(47/2^{-})$
1091.17 ^h 23	$15/2^{+}$	2635.1 <i>3</i>	$27/2^{+}$	3991.1 ^j 3	39/2+	5550.6 ⁱ 4	$49/2^{+}$
1133.5 ^b 3	$13/2^{-}$	2652.0 ^a 4	$27/2^{-}$	4023.6 ^{&} 4	$41/2^{-}$	5697.6 ^k 4	49/2+
1156.51 ⁿ 21	$15/2^{+}$	2717.8 [#] 4	$29/2^{-}$	4026.2 ^l 3	39/2+	5802.4 [#] 4	$49/2^{-}$
1165.7 [@] 3	19/2-	2753.5 <mark>&</mark> 3	$29/2^{-}$	4045.4° 4	$37/2^{+}$	5824.9 ^a 5	51/2-
1216.7 ^c .3	$17/2^{-}$	2781.1 ⁱ 3	$29/2^{+}$	4133.4 ^p 6	35/2+	5849.7 ^d 5	$(49/2^{-})$
1285.32 ⁱ 20	17/2+	2810.2 ^c 4	29/2-	4190.0 [@] 4	39/2-	5888.6 ^j 4	51/2+

Continued on next page (footnotes at end of table)

¹⁶⁷Ta Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
5890.4° 5	$49/2^{-}$	7405.6 ^d 9	$(57/2^{-})$	8843.8 & <i>5</i>	$65/2^{-}$	10906.4 ^p 13	71/2+
5949.7 P 6	47/2+	7406.4 P 8	55/2 ⁺	9020.8 [#] 6	65/2-	10986.9 [#] 8	73/2-
6035.8° 5	49/2 ⁺	7438.8 ^c 6	57/2-	9030.7 ^k 5	$65/2^{+}$	11032.1? ^k 13	$(73/2^+)$
6054.8 ¹ 4	51/2 ⁺	7471.9 ^f 6	57/2-	9054.6 <mark>P</mark> 11	$63/2^{+}$	11200.6° 10	73/2+
6182.2 [@] 4	$51/2^{-}$	7480.5 ^a 5	59/2-	9204.9 <mark>d</mark> 12	$(65/2^{-})$	11225.5 <mark>a</mark> 6	75/2-
6205.8 ^e 5	$(51/2^{-})$	7566.0° 6	$57/2^{+}$	9207.0° 8	$65/2^{-}$	11239.5? ^q 16	$(73/2^+)$
6221.9 ⁱ 4	53/2+	7596.5 <mark>9</mark> 8	57/2 ⁺	9219.9 ^j 5	$67/2^{+}$	11346.4 ^j 8	$75/2^{+}$
6226.5 ^{&} 5	$53/2^{-}$	7654.7 ^l 5	59/2 ⁺	9222.8 ^f 8	$65/2^{-}$	11434.9 [@] 9	$75/2^{-}$
6422.0 ^k 4	$53/2^{+}$	7716.5 [@] 5	59/2-	9267.4 ^a 5	$67/2^{-}$	11756.8 ⁱ 6	$77/2^{+}$
6518.6 [#] 5	$53/2^{-}$	7786.1 ⁱ 5	$61/2^{+}$	9280.2 <mark>°</mark> 7	$65/2^{+}$	11907.1 <mark>&</mark> 6	77/2-
6593.4 <mark>d</mark> 7	$(53/2^{-})$	7830.3 ^e 6	$(59/2^{-})$	9332.0 <mark>9</mark> 11	$65/2^{+}$	11911.1 <mark>P</mark> <i>14</i>	$75/2^{+}$
6599.1 ^{<i>j</i>} 4	55/2 ⁺	7933.7 <mark>&</mark> 5	$61/2^{-}$	9466.2 [@] 6	$67/2^{-}$	12065.6 [#] 9	$77/2^{-}$
6637.8 <mark>a</mark> 5	55/2-	8085.6 ^k 5	$61/2^{+}$	9654.4 ⁱ 5	69/2+	12240.6° 11	$77/2^{+}$
6643.1 ^c 6	$53/2^{-}$	8128.4 [#] 5	$61/2^{-}$	9805.2 <mark>&</mark> 6	$69/2^{-}$	12271.2 <mark>a</mark> 8	$79/2^{-}$
6654.0 <i>p</i> 6	$51/2^{+}$	8205.9 ^p 9	59/2+	9954.4 <mark>P</mark> 12	$67/2^{+}$	12486.5 ^j 9	79/2+
6674.4 ^f 6	$53/2^{-}$	8263.8 ^j 5	$63/2^{+}$	9972.9 [#] 6	$69/2^{-}$	12493.0 [@] 11	$79/2^{-}$
6780.1° 6	53/2+	8278.2 ^d 10	$(61/2^{-})$	10020.1 ^k 7	69/2+	12872.2 ⁱ 8	81/2+
6800.1 ^q 6	53/2+	8294.4 ^c 6	$61/2^{-}$	10143.9 ^f 10	$69/2^{-}$	12968.2 ^p 15	79/2 ⁺
6816.2 ^l 4	55/2 ⁺	8324.6 ^f 6	$61/2^{-}$	10158.9 ^c 10	$69/2^{-}$	13047.4 <mark>&</mark> 7	$81/2^{-}$
6919.7 [@] 5	55/2-	8354.6 <mark>a</mark> 5	$63/2^{-}$	10214.0 <mark>°</mark> 9	69/2+	13343.6?° 15	$(81/2^+)$
6963.7 ⁱ 4	57/2 ⁺	8398.8° 7	$61/2^{+}$	10224.0 <mark>a</mark> 6	$71/2^{-}$	13357.8 <mark>a</mark> 10	$83/2^{-}$
6987.7 <mark>e</mark> 5	$(55/2^{-})$	8437.4 <mark>9</mark> 9	$61/2^{+}$	10250.7 ^j 6	$71/2^{+}$	13596.4 [@] 12	83/2-
7064.0 <mark>&</mark> 5	$57/2^{-}$	8564.4 [@] 5	$63/2^{-}$	10267.5 <mark>9</mark> 12	69/2+	14025.9 ⁱ 9	85/2+
7214.1 ^k 4	57/2 ⁺	8564.6 ^l 5	$63/2^{+}$	10424.4 [@] 8	$71/2^{-}$	14230.0 <mark>&</mark> 7	85/2-
7293.0 [#] <i>5</i>	57/2-	8685.7 ⁱ 5	$65/2^{+}$	10681.6 ⁱ 6	73/2+	14483.2 <mark>a</mark> 11	87/2-
7389.4 ^j 4	59/2+	8744.9 <mark>°</mark> 8	$(63/2^{-})$	10825.7 ^{&} 6	$73/2^{-}$		

[†] From ;east-squares fit to E γ .

[‡] Authors' proposed values; see Adopted Levels for evluator's adopted values.

[#] Band(A): π 9/2[514], α =+1/2. First band crossing at $\hbar\omega$ ≈0.29 MeV (alignment gain 9 \hbar), second crossing at $\hbar\omega$ ≈0.35 MeV. Configuration= π h_{11/2} –> π h_{11/2}BC –> π h_{11/2}BCAD.

[@] Band(a): $\pi 9/2[514]$, $\alpha = -1/2$. See comments for $\alpha = +1/2$ signature band for band crossings and configurations.

[&]amp; Band(B): $\pi h_{11/2} \otimes AB$, $\alpha = +1/2$. Band crossing at $\hbar \omega \approx 0.41$ MeV. Configuration= $\pi h_{11/2}AB \rightarrow \pi h_{11/2}ABCD$.

^a Band(b): $\pi h_{11/2} \otimes AB$, $\alpha = -1/2$. See comment on signature partner band.

^b Band(C): $\alpha = +1/2$ band. Continuation of $\pi h_{11/2} \otimes AB$, $\alpha = +1/2$ band.

^c Band(D): π 1/2[541], α =+1/2. Band crossing at $\hbar\omega$ ≈0.29 MeV. Configuration= π h_{9/2} →> π h_{9/2}AB.

^d Band(E): Band based on $45/2^-$, $\alpha = +1/2$. Possible configuration= $(\pi d_{5/2} \otimes AEBC)$.

^e Band(e): Band based on $(45/2^-)$, $\alpha = -1/2$ See comment for signature partner band.

f Band(F): Band based on 53/2⁻, α=+1/2. Possible configuration=(π d_{3/2}⊗ÂEBC).

^g Band(G): $\pi 1/2[411]$, $\alpha = +1/2$.

^h Band(g): $\pi 1/2[411]$, $\alpha = -1/2$.

ⁱ Band(H): π 5/2[402], α =+1/2. First band crossing at $\hbar\omega$ ≈0.24 MeV, second crossing at $\hbar\omega$ >0.24 MeV, third band crossing at $\hbar\omega$ ≈0.31 MeV. Configuration= π d_{5/2} $->\pi$ d_{5/2}AB $->\pi$ h_{11/2}AE $->\pi$ h_{11/2}AEBC.

^j Band(h): π 5/2[402], α =-1/2. See comment on α =-1/2 signature band for band crossings and configurations.

^k Band(I): π h_{11/2}⊗AF, α =+1/2. Band crossing at \hbar ω≈0.35 MeV. Configuration= π h_{11/2}AF → π h_{11/2}AFBC.

¹ Band(i): $\pi h_{11/2} \otimes AF$, $\alpha = -1/2$. See comment on $\alpha = +1/2$ signature band for band crossing and configuration.

¹⁶⁷Ta Levels (continued)

γ (167Ta)

E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	${\rm J}_f^\pi$	Mult.‡	Comments
83.7 5	1.0 3	611.23	9/2-	527.8			
94.9 2	≈64	94.92	5/2+	0.0	$3/2^{+}$	D+Q	R _{ang} =0.73 5 (2011Ha25).
97.0 5	< 0.3	1036.50	15/2+	940.05			g
99.1 2	≈58	305.52	$11/2^{-}$	206.4	9/2-	D+Q	R _{ang} =0.75 5 (2011Ha25).
101.5 2	16 <i>I</i>	2753.5	29/2-	2652.0	27/2-	D	R _{ang} =0.60 5 (2011Ha25).
110.6 2	≈47	205.48	$7/2^{+}$	94.92	$5/2^{+}$	D+Q	R _{ang} =0.74 4 (2011Ha25).
114.4 2	2.1 2	611.23	$9/2^{-}$	496.81		(Q)	R _{ang} =0.88 7 (2011Ha25).
120.0 2	28 1	375.00	$9/2^{+}$	254.92	$7/2^{+}$	(D+Q)	R _{ang} =0.84 6 (2011Ha25).
120.9 2	36 <i>4</i>	2874.4	$31/2^{-}$	2753.5	$29/2^{-}$	D+Q	R _{ang} =0.72 3 (2011Ha25).
128.9 2	2.7 2	1285.32	$17/2^{+}$	1156.51	$15/2^{+}$		
134.1 2	5.4 <i>4</i>	791.19	$13/2^{+}$	656.93	$11/2^{+}$	D+Q	R _{ang} =0.81 8 (2011Ha25).
138.1 2	6.0 6	233.07	$7/2^{+}$	94.92		D	R _{ang} =0.69 4 (2011Ha25).
143.1 2	4.1 4	574.91	$11/2^{+}$	432.05		(D+Q)	R _{ang} =0.86 9 (2011Ha25).
153.2 2	2.5 2	2968.4	$31/2^{+}$	2815.3	$29/2^{+}$	D	R _{ang} =0.62 10 (2011Ha25).
156.6 2	3.4 <i>4</i>	2874.4	$31/2^{-}$	2717.8	$29/2^{-}$		
160.0 2	≈68	254.92	$7/2^{+}$	94.92		D+Q	R _{ang} =0.76 3 (2011Ha25).
167.5 2	58 <i>5</i>	3041.9	$33/2^{-}$	2874.4	$31/2^{-}$	D+Q	R _{ang} =0.71 2 (2011Ha25).
169.6 2	69 <i>4</i>	375.00	$9/2^{+}$		$7/2^{+}$	D+Q	R _{ang} =0.81 2 (2011Ha25).
175.9 2	≈4	175.90	$5/2^{+}$	0.0	$3/2^{+}$	D+Q	R _{ang} =0.72 7 (2011Ha25).
177.3 2	≈21	432.05	$9/2^{+}$	254.92		D+Q	R _{ang} =0.75 4 (2011Ha25).
180.3 2	3.8 4	2815.3	$29/2^{+}$	2635.1	$27/2^{+}$		
182.5 2	86 7	678.9	$15/2^{-}$	496.4	$13/2^{-}$	D+Q	R _{ang} =0.75 4 (2011Ha25).
187.2 <i>2</i>	32 2	2968.4	$31/2^{+}$	2781.1	$29/2^{+}$	D+Q	R _{ang} =0.71 2 (2011Ha25).
190.8 2	≈136	496.4	$13/2^{-}$	305.52		D+Q	R _{ang} =0.81 3 (2011Ha25).
193.3 2	59 7	3235.2	35/2	3041.9	33/2-	D+Q	R _{ang} =0.69 2 (2011Ha25).
199.9 2	62 5	574.91	11/2+	375.00		D+Q	R _{ang} =0.82 2 (2011Ha25).
204.5 2	7.1 7	3212.1	$33/2^{+}$	3007.6	$31/2^{+}$	D	R _{ang} =0.66 4 (2011Ha25).
214.7 2	61 5	2781.1	29/2+	2566.4	27/2+		R_{ang} =0.79 1 for 214.7 γ +216.3 γ +214.9 γ (2011Ha25).
214.9 2	30 4	3427.0	35/2+	3212.1	$33/2^{+}$		R_{ang} =0.79 <i>I</i> for 214.7 γ +216.3 γ +214.9 γ (2011Ha25).
216.3 2	55 4	791.19	13/2+	574.91			R_{ang} =0.79 1 for 214.7 γ +216.3 γ +214.9 γ (2011Ha25).
217.5 2	4.0 5	874.37	$13/2^{+}$	656.93		(D+Q)	R _{ang} =0.92 8 (2011Ha25).
218.2 2	52 <i>4</i>	1165.7	19/2	947.4	17/2	D+Q	R _{ang} =0.82 5 (2011Ha25).
221.1 2	8.3 9	3474.3	35/2+	3253.2	33/2+	D	R _{ang} =0.59 8 (2011Ha25).
222.4 2	≈4	2874.4	31/2	2652.0	27/2-		
224.8 2	7.5 9	656.93	11/2+		9/2+	D+Q	R _{ang} =0.86 20 (2011Ha25).
226.6 2	32 3	3007.6	31/2+	2781.1	29/2+	D+Q	R _{ang} =0.72 2 (2011Ha25).
233.1 2	56 6	233.07	7/2+	0.0	3/2+		R _{ang} =0.83 2 (2011Ha25).
233.7 2	63 5	3468.9	37/2-	3235.2	35/2-	D+Q	R _{ang} =0.76 2 (2011Ha25).
238.3 2	65 5	2566.4	27/2+	2328.1	25/2+		$R_{ang} = 0.77 \ 2 \text{ for } 239.0\gamma + 238.3\gamma \ (2011Ha25).$
239.0 2	55 5	2328.1	25/2+	2089.12			R_{ang} =0.77 2 for 239.0 γ +238.3 γ (2011Ha25).
239.1 2	30 3	1732.5	23/2-	1493.4	21/2-	D+Q	$R_{ang} = 0.73 \ 3 \ (2011Ha25).$
241.9 2	52 4	853.11	13/2-	611.23		D . C	R _{ang} =0.85 1 (2011Ha25).
243.7 2	36 <i>3</i>	3212.1	33/2+	2968.4	31/2+	D+Q	R _{ang} =0.75 12 (2011Ha25).
245.2 2	50 5	1036.50	15/2 ⁺	791.19	, .	D+Q	R _{ang} =0.72 3 (2011Ha25).
245.7 2	24 3	3253.2	33/2+	3007.6	31/2+	D+Q	R _{ang} =0.74 5 (2011Ha25).

^m Band(J): $\pi 7/2[404]$, $\alpha = +1/2$.

ⁿ Band(j): $\pi 7/2[404]$, $\alpha = -1/2$.

 $^{^{}o}$ Band(K): π 1/2[660], α =+1/2. Reported As TSD-1 band based on π i_{13/2} orbital by 2009Ha33.

 $[^]p$ Band(k): Triaxial π i_{13/2}, α =-1/2. Reported As TSD-2 band by 2009Ha33; shares a common structure with TSD-1 band. One-phonon wobbling-mode excitation (n_w)=1 band).

 $[^]q$ Band(L): $\pi i_{13/2}$? band on 53/2+, α =+1/2. Reported As TSD-3 band by 2009Ha33.

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
246.7 2	5.9 6	3721.0	37/2 ⁺	3474.3	35/2 ⁺		
247.6 2	1.9 4	4608.2	43/2+	4360.5	41/2+		
248.7 2	4.7 5	2815.3	29/2+	2566.4	27/2+		
248.9 2	49 <i>4</i>	1285.32	17/2+	1036.50		D+Q	R _{ang} =0.79 2 (2011Ha25).
252.3 2	21 <i>I</i>	2349.0	27/2-	2096.6	25/2-	D+Q	R _{ang} =0.74 4 (2011Ha25).
253.9 2	8.6 8	4026.2	39/2+	3772.4	37/2+	2.4	rang on r (sormas).
261.8 2	16 <i>I</i>	2979.6	31/2-	2717.8	29/2-	D+Q	R _{ang} =0.77 5 (2011Ha25).
262.2 2	8.8 9	3474.3	35/2 ⁺	3212.1	33/2+	D+Q	R _{ang} =0.64 4 (2011Ha25).
262.7 2	39 4	1820.29	21/2+	1557.58		D+Q	R _{ang} =0.79 4 (2011Ha25).
263.6 5	< 0.3	496.81	5/2-	233.07		Dig	reang 0.757 (201111425).
264.9 2	50.5	3733.7	39/2-	3468.9	37/2-	D+Q	R _{ang} =0.73 2 (2011Ha25).
268.1 2	17 2	3594.4	35/2	3326.4	33/2-	D+Q	R _{ang} =0.84 4 (2011Ha25).
268.5 2	112 8	947.4	$17/2^{-}$	678.9	$15/2^{-}$	D+Q	R _{ang} =0.84 4 (2011Ha25).
268.8 2	42 4	2089.12	23/2+	1820.29		D	R _{ang} =0.66 5 (2011Ha25).
270.1 2	23 2	3991.1	39/2 ⁺	3721.0	37/2 ⁺	D+Q	R _{ang} =0.68 3 (2011Ha25).
270.2 2	8 2	503.21	9/2+	233.07		D+Q	R _{ang} =0.81 5 (2011Ha25).
272.4 2	38 4	1557.58	19/2+	1285.32		D+Q	R _{ang} =0.81 6 (2011Ha25).
276.8 2	16 <i>I</i>	4190.0	39/2-	3913.2	37/2-	D+Q	R _{ang} =0.71 5 (2011Ha25).
278.8 2	5.4 7	4304.9	41/2+	4026.2	39/2 ⁺	2.4	$R_{\text{ang}} = 0.83 \ 4 \text{ for } 280.1\gamma + 278.8\gamma \ (2011\text{Ha}25).$
280.1 2	26 2	375.00	9/2+	94.92			R_{ang} =0.83 4 for 280.1 γ +278.8 γ (2011Ha25).
282.2 2	1.4 3	1156.51	15/2 ⁺	874.37			rang over 1 tot 20011/12/010/ (201111420).
288.4 2	9 1	3041.9	33/2-	2753.5	29/2-		R_{ang} =0.86 7 for 288.4 γ +289.9 γ (2011Ha25).
289.8 2	48 5	4023.6	41/2	3733.7	39/2-	D+Q	R _{ang} =0.77 2 (2011Ha25).
289.9 2	≈29	496.4	13/2	206.4	9/2-	2.4	$R_{\text{ang}} = 0.86 \ 7 \ \text{for } 289.9\gamma + 288.4\gamma \ (2011\text{Ha}25).$
294.0 2	24 2	3721.0	37/2 ⁺	3427.0	35/2 ⁺	D+Q	R _{ang} =0.72 4 (2011Ha25).
298.0 2	4.6 5	4658.5	43/2+	4360.5	41/2+	D+Q	R _{ang} =0.80 4 (2011Ha25).
298.2 2	13 2	3772.4	37/2+	3474.3	35/2+	D+Q	R _{ang} =0.80 4 (2011Ha25).
298.5 2	8.3 8	4799.9	43/2-	4501.5	41/2	D+Q	R _{ang} =0.66 6 (2011Ha25).
303.3 2	23 2	4608.2	43/2+	4304.9	41/2+	D+Q	R _{ang} =0.74 2 (2011Ha25).
305.7 2	2.6 6	611.23	9/2-	305.52		D+Q	R _{ang} =0.81 5 (2011Ha25).
308.1 5	0.8 1	5514.9	$(47/2^{-})$	5206.7	45/2	2.4	rang over a (201111422).
311.5 2	12 <i>I</i>	4501.5	41/2	4190.0	39/2-	D+Q	R _{ang} =0.81 5 (2011Ha25).
312.5 2	20 4	4920.7	45/2+	4608.2	43/2+		$R_{ang} = 0.74 \text{ 2 for } 312.5\gamma + 313.8\gamma + 314.4\gamma + 315.5\gamma.$
313.8 2	22 4	4304.9	41/2+	3991.1	39/2+		$R_{ang}^{\text{log}} = 0.74 \text{ 2 for } 312.5\gamma + 313.8\gamma + 314.4\gamma + 315.5\gamma$ (2011Ha25).
314.4 2	13 <i>3</i>	5550.6	49/2+	5236.2	47/2+		R _{ang} =0.74 2 (2011Ha25) for
315.5 2	22 4	5236.2	47/2 ⁺	4920.7	45/2+		$312.5\gamma+313.8\gamma+314.4\gamma+315.5\gamma$. $R_{ang}=0.74\ 2$ for $312.5\gamma+313.8\gamma+314.4\gamma+315.5\gamma$
210.0.2	15.1	2012.2	27/2-	2504.4	25/2-	D 0	(2011Ha25).
318.8 2	17 <i>I</i>	3913.2	37/2	3594.4	35/2-	D+Q	R _{ang} =0.77 5 (2011Ha25).
319.8 2	6.6 8	574.91	$11/2^{+}$	254.92			
321.4 2	≈9 50.5	527.8	12/2-	206.4	9/2-	D 0	D 0 50 2 (2011H 25)
324.5 2	50 5	4348.1	43/2-	4023.6	41/2	D+Q	R _{ang} =0.70 3 (2011Ha25).
327.0 2	7.3 7	5126.9	45/2-	4799.9	43/2-	D+Q	R _{ang} =0.83 3 (2011Ha25).
327.3 2	8 2	503.21	9/2+	175.90		(Q)	$R_{ang} = 0.85 \ 5 \ (2011Ha25)$.
327.7 2	69 5	1493.4	21/2-	1165.7	19/2-	D+Q	R _{ang} =0.83 3 (2011Ha25).
328.0 5	0.6 1	5514.9	$(47/2^{-})$	5186.8	45/2-		
329.5 2	2.9 7	940.05	13/2+	610.57		0	D =0.00.5 (2011H ₂ 25)
333.3 2	5.8 5	2968.4	31/2 ⁺	2635.1	27/2 ⁺	Q	R _{ang} =0.90 5 (2011Ha25).
333.4 2	11 2	6221.9	53/2 ⁺	5888.6	51/2+	D+Q	R _{ang} =0.73 3 (2011Ha25).
334.2 2	5.0 5	4360.5	41/2+	4026.2	39/2+	D+Q	R _{ang} =0.78 8 (2011Ha25).
334.8 5	0.5 1	5849.7	$(49/2^{-})$	5514.9	$(47/2^{-})$	D + O	D =0.76.3 (2011H ₀ 25)
336.1 2	39 <i>3</i>	4684.3	45/2	4348.1	43/2	D+Q	R _{ang} =0.76 3 (2011Ha25).
336.4 [#] 2	4.4# 5	5345.3	$47/2^{+}$	5008.9	$45/2^{+}$		
336.4 [#] 2	2.5# 4	6518.6	53/2-	6182.2	$51/2^{-}$		R_{ang} =0.76 3 (2011Ha25) for 337.4 γ +336.4 γ .

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
337.1 2	≈11	432.05	9/2+	94.92	5/2+	Q	R _{ang} =0.99 8 (2011Ha25).
337.4 2	3.6 5	5802.4	49/2-	5465.1	$47/2^{-}$		$R_{ang} = 0.76 \ 3 \ (2011Ha25) $ for $337.4\gamma + 336.4\gamma$.
338.0 2	14 <i>I</i>	5888.6	$51/2^{+}$	5550.6	$49/2^{+}$	D+Q	R _{ang} =0.75 3 (2011Ha25).
338.3 2	5.4 6	5465.1	$47/2^{-}$	5126.9	$45/2^{-}$		R _{ang} =0.76 3 (2011Ha25) for unresolved doublet.
345.3 2	3.3 <i>3</i>	2579.7	$25/2^{-}$	2234.4			
346.8 2	16 2	3326.4	33/2-	2979.6	31/2-	D+Q	R _{ang} =0.64 4 (2011Ha25).
350.4 2	6.0 6	5008.9	45/2+	4658.5	43/2+		R _{ang} =0.94 14 (2011Ha25).
352.4 2	1.0 <i>I</i>	5697.6	49/2+	5345.3	47/2+	ъ	B 0 (0 2 (2011) 25)
356.4 2	4.2 5	611.23	9/2-	254.92		D	R _{ang} =0.69 3 (2011Ha25).
357.1 2	1.7 2	6054.8	51/2+	5697.6	49/2+	0	D 1.06.7 (2011H-25)
360.8 2	20 2	3235.2	35/2-	2874.4	31/2-	Q	R _{ang} =1.06 7 (2011Ha25).
363.6 2	58 <i>5</i>	1216.7	17/2	853.11	23/2	Q	R _{ang} =0.92 1 (2011Ha25).
364.2 2 364.7 2	36 <i>3</i> 13 2	2096.6 6963.7	25/2 ⁻ 57/2 ⁺	1732.5 6599.1	55/2 ⁺	D+Q D	R _{ang} =0.79 3 (2011Ha25).
365.7 2	2.1 6	1456.88	17/2 ⁺	1091.17		D	R _{ang} =0.68 5 (2011Ha25). R _{ang} =0.62 4 (2011Ha25).
367.2 2	3.3 4	6422.0	53/2+	6054.8	51/2+	D	Rang -0.02 7 (201111a25).
368.7 2	21 2	2717.8	29/2-	2349.0	27/2	D+Q	R _{ang} =0.75 3 (2011Ha25).
369.4 2	63 4	574.91	11/2+	205.48		Dig	R _{ang} =0.84 3 (2011Ha25).
369.4 2	31 3	5053.7	47/2-	4684.3	45/2-	D+Q	R _{ang} =0.75 3 (2011Ha25).
373.0 2	27 3	5426.7	49/2-	5053.7	47/2-	D+Q	R _{ang} =0.85 5 (2011Ha25).
373.3 2	1.2 2	7293.0	57/2-	6919.7	55/2-		ang ····
373.4 2	86 <i>5</i>	678.9	$15/2^{-}$	305.52		(Q)	R _{ang} =0.85 5 (2011Ha25).
377.2 2	13 <i>I</i>	6599.1	55/2+	6221.9	53/2+	D	$R_{ang} = 0.69 \ 3 \ (2011Ha25).$
377.5 2	22 2	610.57	$11/2^{+}$	233.07	$7/2^{+}$		R _{ang} =0.84 2 (2011Ha25).
378.1 2	52 <i>4</i>	611.23	$9/2^{-}$	233.07	$7/2^{+}$	D+Q	R _{ang} =0.75 1 (2011Ha25).
379.8 2	3.0 4	6182.2	$51/2^{-}$	5802.4	$49/2^{-}$		· ·
380.4 2	15 2	2579.7	$25/2^{-}$	2199.3	$21/2^{-}$		
380.5 5	0.9 4	2019.42	$21/2^{+}$	1638.9	19/2+		
394.2 5	0.9 1	6816.2	55/2+	6422.0	53/2+		
396.6 2	3.8 6	3212.1	$33/2^{+}$	2815.3	29/2+		Mult.: R _{ang} =0.78 4 implies D+Q (2011Ha25), but
20672	717	7796 1	61/2±	7200 4	50/2±	D . O	placement requires $\Delta J=2$.
396.7 2	7.1 7	7786.1	61/2 ⁺	7389.4	59/2 ⁺	D+Q	R _{ang} =0.77 4 (2011Ha25).
397.9 2 398.2 2	1.7 2 20 2	7214.1 5824.9	57/2 ⁺	6816.2 5426.7	55/2 ⁺ 49/2 ⁻	D + O	R _{ang} =0.74 4 (2011Ha25).
401.2 2	1.5 2	6919.7	51/2 ⁻ 55/2 ⁻	6518.6	53/2	D+Q	Kang-0.74 4 (201111a23).
401.7 2	1.3 Z	6226.5	53/2	5824.9	51/2	D+Q	R _{ang} =0.70 8 (2011Ha25).
401.9 2	15 2	2968.4	31/2+	2566.4	27/2+	(Q)	R _{ang} =0.87 4 (2011Ha25).
402.0 2	11 2	656.93	11/2+	254.92		(4)	raing 0.07 / (201111425).
404.4 2	21 2	2753.5	29/2-	2349.0	27/2-	(D+Q)	R_{ang} =0.89 5 (2011Ha25); consistent with Q or D+Q but level scheme implies ΔJ =1.
411.3 2	9.4 9	6637.8	55/2-	6226.5	$53/2^{-}$		•
416.2 2	83 6	791.19	$13/2^{+}$	375.00	$9/2^{+}$	Q	R _{ang} =0.91 2 (2011Ha25).
416.5 2	6.1 6	7480.5	59/2-	7064.0	$57/2^{-}$		
420.5 2	3.5 4	2477.57	$25/2^{+}$	2057.16	$21/2^{+}$	Q	R _{ang} =0.96 3 (2011Ha25).
420.9 2	4.0 4	8354.6	$63/2^{-}$	7933.7	$61/2^{-}$		
421.9 2	2.7 4	8685.7	$65/2^{+}$	8263.8	$63/2^{+}$		
423.5 [#] 2	1.0 [#] 2	7716.5	59/2-	7293.0	$57/2^{-}$		
423.5 [#] 2	1.2 [#] 2	9267.4	$67/2^{-}$	8843.8	$65/2^{-}$		
425.7 2	10 <i>I</i>	7389.4	59/2+	6963.7	57/2+		
426.2 2	6.7 8	7064.0	57/2-	6637.8	55/2-		R_{ang} =0.94 4 for 427.0 γ +426.2 γ (2011Ha25).
427.0 2	25 2	3468.9	$37/2^{-}$	3041.9	33/2-		R_{ang} =0.94 4 for 427.0 γ +426.2 γ (2011Ha25).
431.0 2	22 2	3212.1	33/2+	2781.1	29/2+	Q	R _{ang} =0.91 4 (2011Ha25).
436.9 2	12 2	940.05	13/2+	503.21		Q	R _{ang} =0.97 6 (2011Ha25).
441.3 2	20 2	3007.6	31/2+	2566.4	27/2+	Q	$R_{ang}=1.005$ (2011Ha25).
442.3 2	11 <i>I</i>	874.37	13/2+	432.05	9/2*	(Q)	R _{ang} =0.87 4 (2011Ha25).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
451.0 2	78 <i>5</i>	947.4	17/2-	496.4 13/2	- Q	R _{ang} =0.91 5 (2011Ha25).
453.0 2	36 <i>3</i>	2781.1	29/2+	2328.1 25/2		$R_{ang} = 0.97 \ 3 \ (2011Ha25).$
453.1 2	4.0 5	7933.7	$61/2^{-}$	7480.5 59/2		g
454.7 2	1.1 2	1133.5	$13/2^{-}$	678.9 15/2		
458.1 2	1.0 2	2477.57	$25/2^{+}$	2019.42 21/2		
458.6 2	30 <i>3</i>	3427.0	$35/2^{+}$	2968.4 31/2		R _{ang} =1.09 8 (2011Ha25).
461.6 2	93 7	1036.50	$15/2^{+}$	574.91 11/2		$R_{ang} = 0.90 \ 3 \ (2011Ha25).$
462.2 2	57 5	1678.9	$21/2^{-}$	1216.7 17/2		$R_{ang} = 0.98 \ 2 \ (2011Ha25).$
466.7 2	28 <i>3</i>	3474.3	$35/2^{+}$	3007.6 31/2	+ Q	R _{ang} =0.99 4 (2011Ha25).
466.8 2	5.0 5	2199.3	$21/2^{-}$	1732.5 23/2	- (D+Q)	R _{ang} =0.81 9 (2011Ha25).
475.9 2	3.6 4	1641.6	$17/2^{-}$	1165.7 19/2		
477.3 2	49 <i>4</i>	2566.4	$27/2^{+}$	2089.12 23/2		R _{ang} =1.22 7 (2011Ha25).
477.7 2	5.8 8	8263.8	$63/2^{+}$	7786.1 61/2		
480.6 2	19 2	1091.17	$15/2^{+}$	610.57 11/2		R _{ang} =0.95 5 (2011Ha25).
483.2 2	20 2	2579.7	25/2	2096.6 25/2		R _{ang} =1.02 6 (2011Ha25).
485.4 2	8.3 8	2963.0	$29/2^{+}$	2477.57 25/2		R _{ang} =0.96 2 (2011Ha25).
486.8 2	97 7	1165.7	19/2	678.9 15/2		R _{ang} =0.91 5 (2011Ha25).
487.1 2	13 <i>I</i>	2815.3	29/2+	2328.1 25/2		
489.2 2	3.6 4	8843.8	65/2	8354.6 63/2		D 000 0 000 000 000
494.1 2	95 7	1285.32	17/2+	791.19 13/2		R _{ang} =0.93 2 (2011Ha25).
496.8 2	≈7	496.81	5/2-	$0.0 3/2^+$	_	R _{ang} =0.72 3 (2011Ha25).
498.5 2	32 3	3733.7	39/2-	3235.2 35/2		R _{ang} =1.11 4 (2011Ha25).
499.6 2	7.9 9	1156.51	15/2+	656.93 11/2		
500.0 2	3.3 3	2963.0	29/2+	2463.00 25/2		R _{ang} =1.04 4 (2011Ha25, 2009Ha33).
507.8 2	77 6	2328.1	25/2+	1820.29 21/2		R_{ang} =1.01 5 for 507.8 γ +508.8 γ (2011Ha25).
508.1 2	2.5 3	1641.6	17/2	1133.5 13/2		D 404 50 500 0 505 0 40444 05
508.8 2	29 4	3721.0	37/2+	3212.1 33/2		R_{ang} =1.01 5 for 508.8 γ +507.8 γ (2011Ha25).
512.4 2	3.5 5	2463.00	25/2+	1950.62 21/2		
516.8 2	8 3	1456.88	17/2+	940.05 13/2		D 005.2 (2011) 05)
517.4 2	12 <i>I</i>	3480.4	33/2+	2963.0 29/2		R _{ang} =0.95 2 (2011Ha25).
519.2 2	16 2	3772.4	37/2+	3253.2 33/2		$R_{ang} = 1.12 \ 9 \ (2011Ha25).$
520.0 2	9 1	1394.40	17/2+	874.37 13/2		R _{ang} =0.87 4 (2011Ha25).
521.0 2	93 7	1557.58	19/2+	1036.50 15/2		$R_{ang}=1.33 \ 3 \ (2011Ha25).$
525.2 5	0.9 4	3346.4	31/2+	2821.2 27/2	the second second	D 006 2 (2011H 25 2000H 22)
526.9 2	4.2 5	2477.57	25/2+	1950.62 21/2		R _{ang} =0.96 3 (2011Ha25, 2009Ha33).
531.6 2	90 7	2089.12	23/2+	1557.58 19/2		R _{ang} =1.09 7 (2011Ha25).
534.4 5	0.3 2	3880.8	35/2+	3346.4 31/2		D 0.05 4 (2011H 25)
534.9 2	100	1820.29	21/2+	1285.32 17/2		R _{ang} =0.95 4 (2011Ha25).
535.1 2	50 5	2213.9	25/2-	1678.9 21/2		$R_{ang} = 1.07 \ 2 \ (2011Ha25).$
539.6 2	14 <i>I</i>	2753.5	29/2-	2213.9 25/2		R _{ang} =0.94 3 (2011Ha25).
546.0 [#] 2	69 [#] 5	1493.4	$21/2^{-}$	947.4 17/2		R _{ang} =1.01 5 (2011Ha25).
546.0 [#] 2	16 [#] 2	2635.1	$27/2^{+}$	2089.12 23/2		
547.7 2	15 2	1638.9	$19/2^{+}$	1091.17 15/2	+ Q	R _{ang} =1.02 3 (2011Ha25).
552.0 2	19 2	4026.2	$39/2^{+}$	3474.3 35/2	+ Q	R _{ang} =0.99 6 (2011Ha25).
554.6 <i>5</i>	0.3 1	4687.9	$39/2^{+}$	4133.4 35/2	+	
554.7 2	45 <i>3</i>	4023.6	$41/2^{-}$	3468.9 37/2	- Q	R _{ang} =1.16 5 (2011Ha25).
556.2 2	5.8 7	1950.62	$21/2^{+}$	1394.40 17/2	+ Q	R _{ang} =1.12 7 (2011Ha25).
557.7 2	9 1	2199.3	21/2-	1641.6 17/2		
562.5 2	4.8 8	2019.42	21/2+	1456.88 17/2	t .	
564.1 2	38 <i>3</i>	3991.1	39/2+	3427.0 35/2		R _{ang} =1.19 5 (2011Ha25).
565.0 2	11 <i>I</i>	4045.4	37/2+	3480.4 33/2		R _{ang} =0.93 2 (2011Ha25).
566.4 2	3.3 4	1722.9	19/2+	1156.51 15/2		
566.8 2	93 7	1732.5	$23/2^{-}$	1165.7 19/2	-	R _{ang} =0.93 3 (2011Ha25).
581.6 2	21 6	3974.3	37/2	3392.7 33/2		$R_{ang}=1.04 I \text{ for } 582.5\gamma + 581.6\gamma + 583.0\gamma \text{ (2011Ha25)}.$
582.0 2	9.4 9	4608.2	43/2+	4026.2 39/2	т	R _{ang} =0.80 8 (2011Ha25).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
582.5 2	26 6	3392.7	33/2-	2810.2	29/2-		R_{ang} =1.04 <i>1</i> for 582.5 γ +581.6 γ +583.0 γ (2011Ha25).
583.0 2	17 4	4557.3	$41/2^{-}$	3974.3	37/2-		$R_{\text{ang}} = 1.04 \ I \text{ for } 582.5\gamma + 581.6\gamma + 583.0\gamma \text{ (2011Ha25)}.$
583.3 2	9.6 9	2222.2	$23/2^{+}$	1638.9	$19/2^{+}$	Q	R _{ang} =1.09 3 (2011Ha25).
583.9 2	31 <i>3</i>	4304.9	$41/2^{+}$	3721.0	$37/2^{+}$	Q	R _{ang} =1.14 4 (2011Ha25).
586.9 2	18 2	3913.2	$37/2^{-}$	3326.4	$33/2^{-}$		R_{ang} =1.21 7 for 588.2 γ +586.9 γ (2011Ha25).
588.2 [#] 2	11 [#] <i>1</i>	4360.5	$41/2^{+}$	3772.4	$37/2^{+}$	Q	R _{ang} =1.09 15 (2011Ha25).
588.2 [#] 2	13 [#] 1	4501.5	$41/2^{-}$	3913.2	$37/2^{-}$		R_{ang} =1.21 7 for 588.2 γ +586.9 γ (2011Ha25).
592.8 2	3.2 <i>3</i>	2234.4	•	1641.6	$17/2^{-}$		
595.6 2	21 2	4190.0	$39/2^{-}$	3594.4	35/2-	Q	R _{ang} =0.89 2 (2011Ha25).
596.2 2	27 2	2810.2	29/2-	2213.9	25/2-	Q	R _{ang} =0.93 2 (2011Ha25).
599.0 2	2.9 5	2821.2	27/2+	2222.2	23/2+		Mult.: R_{ang} =0.78 4 implies D+Q (2011Ha25), but placement requires ΔJ =2.
600.3 2	1.9 <i>3</i>	2057.16	$21/2^{+}$	1456.88			
603.3 2	60 5	2096.6	25/2-	1493.4	21/2-		R_{ang} =0.78 2; suggests D+Q, but level scheme requires ΔJ =2.
605.7 5	0.8 1	5293.6	$43/2^{+}$	4687.9	$39/2^{+}$		
608.6 2	24 2	3326.4	33/2-	2717.8	$29/2^{-}$	Q	R _{ang} =0.96 4 (2011Ha25).
608.7 <i>5</i>	< 0.3	4489.5	$39/2^{+}$	3880.8	$35/2^{+}$		
609.9 2	15 <i>I</i>	4799.9	$43/2^{-}$	4190.0	39/2-	Q	R _{ang} =1.05 6 (2011Ha25).
614.4 2	36 <i>3</i>	4348.1	43/2-	3733.7	39/2-	Q	R _{ang} =0.96 5 (2011Ha25).
614.8 2	30 3	3594.4	35/2-	2979.6	31/2-	Q	R _{ang} =0.96 5 (2011Ha25).
615.8 2	10 <i>I</i>	4661.2	41/2+	4045.4	37/2+	Q	R _{ang} =1.09 2 (2011Ha25).
615.8 2	23 4	4920.7	45/2+	4304.9	41/2+		$R_{ang} = 1.07 \ 3 \text{ for } 617.0\gamma + 615.8\gamma.$
616.5 2	79 <i>4</i>	2349.0	27/2-	1732.5	23/2	Q	$R_{ang}=1.04 \ 3 \ (2011Ha25)$.
617.0 2	25 <i>3</i>	4608.2	43/2+	3991.1	39/2+		R_{ang} =1.07 3 for 617.0 γ +615.8 γ (2011Ha25).
618 [@] 1	< 0.3	6654.0	$51/2^{+}$	6035.8	49/2+		
621.2 2	31 3	2717.8	29/2-	2096.6	25/2-	Q	R _{ang} =1.20 7 (2011Ha25).
623.2 5	0.8 1	5949.7	47/2+	5326.4	45/2+	_	
625.4 2	11 <i>I</i>	5126.9	45/2	4501.5	41/2	Q	$R_{ang}=1.19 \ 10 \ (2011Ha25).$
627.9 2	23 2	5236.2	47/2 ⁺	4608.2	43/2+	Q	R _{ang} =1.04 9 (2011Ha25).
629.4 2	13 <i>I</i>	5186.8	45/2-	4557.3	41/2-	Q	R _{ang} =1.11 2 (2011Ha25).
629.9 2	20 2	5550.6	49/2+	4920.7	45/2 ⁺	Q	R _{ang} =1.03 14 (2011Ha25).
630.6 2	54 <i>4</i>	2979.6	31/2-	2349.0	27/2 ⁻ 39/2 ⁺	Q	R _{ang} =1.00 5 (2011Ha25).
632.3 2 632.3 <i>5</i>	6.9 <i>7</i> 0.8 <i>1</i>	4658.5 5293.6	43/2 ⁺ 43/2 ⁺	4026.2 4661.2	41/2 ⁺	Q D(+Q)	R _{ang} =0.97 10 (2011Ha25). R _{ang} =0.71 8; ΔJ=1 transition (2011Ha25, 2009Ha33).
637.1 2	2.5 3	1133.5	$\frac{43/2}{13/2^{-}}$	496.4	13/2	D(TQ)	$R_{ang} = 0.71 \text{ o}, \Delta J = 1 \text{ transition (201111a23, 200911a33)}.$
642.6 5	0.6 1	4687.9	39/2 ⁺	4045.4	37/2+	D	R _{ang} =0.50 8 (2011Ha25, 2009Ha33).
642.7 2	5.4 6	2463.00	25/2 ⁺	1820.29	21/2+	D	Tang = 0.50 0 (201111425, 200711455).
642.9 5	0.4 1	5849.7	$(49/2^{-})$	5206.7	45/2		
648.4 2	6.7 7	5008.9	45/2+	4360.5	41/2+		R _{ang} =0.80 6 (2011Ha25); suggests D+Q, but level scheme
			,		,		requires $\Delta J=2$.
649.4 2	2.2 3	5206.7	$45/2^{-}$	4557.3	$41/2^{-}$	Q	R _{ang} =0.94 4 (2011Ha25).
652.4 2	20 2	5888.6	$51/2^{+}$	5236.2	$47/2^{+}$	Q	R _{ang} =1.10 8 (2011Ha25).
653.0 <i>5</i>	0.4 1	4133.4	35/2+	3480.4	33/2+		
656.1 2	1.2 2	5949.7	$47/2^{+}$	5293.6	$43/2^{+}$		
656.9 2	20 2	2753.5	29/2-	2096.6	$25/2^{-}$	Q	R _{ang} =1.04 7 (2011Ha25).
660.7 2	40 3	4684.3	45/2	4023.6	41/2	Q	R _{ang} =0.98 6 (2011Ha25).
662.9 2	1.3 2	5849.7	$(49/2^{-})$	5186.8	45/2		D 1 00 2 (2011) 25)
665.2 2	9.0 9	5326.4	45/2 ⁺	4661.2	41/2+	Q	R _{ang} =1.08 2 (2011Ha25).
665.2 2	9.4 9	5465.1	47/2 ⁻	4799.9	43/2-	Q	R _{ang} =1.06 8 (2011Ha25).
667.2 5	0.6 <i>I</i>	6182.2	51/2 ⁻	5514.9	$(47/2^{-})$	0	P -1.00.7 (2011He25)
667.3 2 671.3 2	14 2 17 2	4658.5	43/2 ⁺ 53/2 ⁺	3991.1 5550.6	39/2 ⁺ 49/2 ⁺	Q	R _{ang} =1.00 7 (2011Ha25).
675.5 2	9.2 9	6221.9 5802.4	49/2 ⁻	5550.6 5126.9	49/2 · 45/2 ·	Q Q	R _{ang} =0.98 6 (2011Ha25). R _{ang} =1.15 13 (2011Ha25).
683.7 2	9.2 9 0.9 <i>4</i>	5890.4	49/2 49/2 ⁻	5206.7	45/2 ⁻	Q	Nang-1.13 13 (201111a23).
003.1 4	U.) T	5070. T	17/2	5200.7	15/2		

$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	Comments
686.8 2	11 <i>I</i>	5345.3	47/2+	4658.5	43/2+		R_{ang} =1.03 11 (2011Ha25) for 686.8 γ +688.7 γ .
688.7 2	6.1 6	5697.6	49/2+	5008.9	45/2+		R_{ang} =1.03 11 (2011Ha25) for 686.8 γ +688.7 γ .
694.2 2	4.0 5	1641.6	17/2-	947.4	17/2-	(D)	$R_{ang}=1.1 \ I \ (2011Ha25)$; interpreted by authors As D, $\Delta J=0$ transition.
703.6 2	6.5 8	5890.4	49/2 ⁻	5186.8	45/2 ⁻	Q	R _{ang} =1.01 3 (2011Ha25).
704.3 2	1.1 2	6654.0	51/2 ⁺	5949.7	47/2+	0	D -1 17 5 (2011H ₂ 25)
705.6 2	44 4	5053.7	47/2-	4348.1	43/2	Q	R _{ang} =1.17 5 (2011Ha25).
705.8 2	6.1 7	2199.3	21/2-	1493.4	21/2		B 440 4 (2044)
709.4# 2	6.9 [#] 7	6035.8	49/2+	5326.4	45/2+	Q	R _{ang} =1.19 4 (2011Ha25).
709.4 [#] 2	6.9 [#] 7	6054.8	51/2+	5345.3	47/2+	Q	R _{ang} =1.13 13 (2011Ha25).
710.5 2	13 <i>I</i>	6599.1	55/2 ⁺	5888.6	51/2+	Q	R _{ang} =1.16 5 (2011Ha25).
716.1 2	7.1 8	6518.6	53/2-	5802.4	49/2-		R_{ang} =1.18 10 (2011Ha25) for 716.1 γ +717.1 γ .
717.1 2	6.7 7	6182.2	51/2 ⁻	5465.1	47/2-		R_{ang} =1.18 10 for 716.1 γ +711.1 γ (2011Ha25).
724.4 2	4.8 5	6422.0	53/2 ⁺	5697.6	49/2 ⁺		
737.5 2 740.7 2	4.0 <i>5</i> 1.7 <i>2</i>	6919.7 6205.8	55/2 ⁻ (51/2 ⁻)	6182.2 5465.1	51/2 ⁻ 47/2 ⁻		
740.7 2	15 2	6963.7	57/2+	6221.9	53/2 ⁺	Q	R _{ang} =1.06 6 (2011Ha25).
742.4 2	40 3	5426.7	49/2-	4684.3	45/2-	Q	$R_{ang} = 1.866 (2011Ha25)$. $R_{ang} = 1.186 (2011Ha25)$.
743.7 5	0.8 1	6593.4	$(53/2^{-})$	5849.7	$(49/2^{-})$	V	rang 1.10 0 (201111425).
744.3 2	6.1 6	6780.1	53/2+	6035.8	49/2+	Q	R _{ang} =1.02 3 (2011Ha25).
752.4 5	0.9 2	7406.4	55/2+	6654.0	51/2+		ang
752.7 2	5.3 5	6643.1	53/2-	5890.4	49/2-	Q	R _{ang} =1.04 3 (2011Ha25).
761.4 2	3.8 4	6816.2	55/2+	6054.8	51/2+		
764.3 2	1.1 <i>1</i>	6800.1	53/2+	6035.8	49/2+	Q	R _{ang} =1.03 6 (2011Ha25, 2009Ha33).
764.4 5	< 0.3	7438.8	57/2-	6674.4	53/2-		
771.2 2	36 <i>3</i>	5824.9	$51/2^{-}$	5053.7	$47/2^{-}$	Q	R _{ang} =0.96 7 (2011Ha25).
771.9 2	1.7 2	2057.16	$21/2^{+}$	1285.32		Q	R _{ang} =1.06 8 (2011Ha25, 2009Ha33).
774.4 2	5.4 6	7293.0	57/2-	6518.6	53/2	Q	R _{ang} =1.11 12 (2011Ha25).
781.9 2	1.5 2	6987.7	$(55/2^{-})$	6205.8	$(51/2^{-})$		D 004 5 (004)
784.0 2	1.5 2	6674.4	53/2-	5890.4	49/2	0	R _{ang} =0.84 5 (2011Ha25).
785.9 2	4.0 2	7566.0	57/2 ⁺	6780.1	53/2 ⁺	Q	R _{ang} =0.96 6 (2011Ha25).
790.3 2	12 1	7389.4	59/2 ⁺	6599.1	55/2 ⁺	Q	R _{ang} =0.92 6 (2011Ha25).
792.1 <i>2</i> 795.7 <i>2</i>	2.5 <i>3</i> 2.8 <i>4</i>	7214.1 7438.8	57/2 ⁺	6422.0 6643.1	53/2 ⁺	0	D =0.09.2 (2011H ₀ 25)
795.7 <i>2</i> 796.4 <i>5</i>	0.8 1	7596.5	57/2 ⁻ 57/2 ⁺	6800.1	53/2 ⁻ 53/2 ⁺	Q Q	R _{ang} =0.98 3 (2011Ha25). R _{ang} =1.05 6 (2011Ha25, 2009Ha33).
796.7 2	4.0 5	7716.5	59/2 ⁻	6919.7	55/2 ⁻	Q	Rang-1.03 0 (201111a23, 200711a33).
797.4 5	0.9 2	7471.9	57/2 ⁻	6674.4	53/2		
799.5 5	0.8 1	8205.9	59/2+	7406.4	55/2 ⁺		
799.8 2	32 <i>3</i>	6226.5	53/2-	5426.7	49/2-	Q	$R_{ang}=0.97 \ 5 \ (2011Ha25).$
812.2 5	0.6 1	7405.6	$(57/2^{-})$	6593.4	$(53/2^{-})$		
812.9 2	25 3	6637.8	55/2-	5824.9	$51/2^{-}$	Q	R _{ang} =1.18 9 (2011Ha25).
816 [@] 1	< 0.3	7596.5	57/2+	6780.1	53/2+		
822.4 2	14 2	7786.1	61/2+	6963.7	57/2+	(Q)	R _{ang} =0.88 6 (2011Ha25).
828.8 2	1.2 <i>I</i>	7471.9	57/2-	6643.1	53/2-		
832.8 2	2.3 2	8398.8	$61/2^{+}$	7566.0	$57/2^{+}$	(Q)	R _{ang} =0.91 3 (2011Ha25).
835.4 2	4.0 6	8128.4	61/2-	7293.0	57/2-		R_{ang} =0.82 <i>10</i> (2011Ha25); allows D+Q or Q, but level scheme requires ΔJ =2.
837.5 2	22 2	7064.0	57/2-	6226.5	53/2-		R _{ang} =0.86 5 (2011Ha25).
838.5 2	2.7 3	7654.7	59/2+	6816.2	55/2+		
840.9 5	0.7 1	8437.4	$61/2^{+}$	7596.5	57/2 ⁺		
842.6 2	1.3 2	7830.3	$(59/2^{-})$	6987.7	$(55/2^{-})$		D 000 5 (004)
842.7 2	17 2	7480.5	59/2 ⁻	6637.8	55/2-	Q	R _{ang} =0.92 5 (2011Ha25).
847.2 2	12 1	2579.7	25/2-	1732.5	23/2-	D	R _{ang} =0.54 6 (2011Ha25).
847.9 2	2.9 4	8564.4	63/2-	7716.5	59/2 ⁻		
848.7 5	0.7 1	9054.6	63/2+	8205.9	59/2+		

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	Comments
852.7 2	1.4 2	8324.6	61/2-	7471.9 57/2-		
855.6 2	1.9 <i>3</i>	8294.4	$61/2^{-}$	7438.8 57/2-	Q	R _{ang} =1.13 5 (2011Ha25).
869.7 2	12 <i>I</i>	7933.7	$61/2^{-}$	7064.0 57/2-	Q	R _{ang} =1.13 8 (2011Ha25).
871.5 2	2.1 2	8085.6	$61/2^{+}$	7214.1 57/2+		
872.6 5	< 0.3	8278.2	$(61/2^{-})$	7405.6 (57/2 ⁻)		
874.2 2	9.6 9	8354.6	63/2-	7480.5 59/2-	Q	R _{ang} =1.06 9 (2011Ha25).
874.3 2	10 <i>I</i>	8263.8	63/2+	7389.4 59/2+	Q	R _{ang} =0.96 12 (2011Ha25).
881.4 2	1.7 2	9280.2	65/2 ⁺	8398.8 61/2+	Q	R _{ang} =0.99 5 (2011Ha25).
892.4 2	2.2 3	9020.8	65/2 ⁻	8128.4 61/2		
894.6 5	0.4 1	9332.0	65/2 ⁺	8437.4 61/2+		
898.2 5	0.8 1	9222.8	65/2 ⁻	8324.6 61/2-	0	D 0.07.7 (2011H-25)
899.6 2 899.8 5	8.4 8	8685.7	65/2 ⁺	7786.1 61/2 ⁺	Q	R _{ang} =0.97 7 (2011Ha25).
901.8 2	0.5 <i>1</i> 1.4 2	9954.4 9466.2	67/2 ⁺ 67/2 ⁻	9054.6 63/2 ⁺ 8564.4 63/2 ⁻		
909.9 2	1.4 <i>Z</i> 1.2 <i>I</i>	8564.6	63/2+	7654.7 59/2 ⁺		
910.1 2	7.3 6	8843.8	$65/2^{-}$	7933.7 61/2	Q	R _{ang} =0.99 8 (2011Ha25).
912.6 5	0.8 4	9207.0	$65/2^{-}$	8294.4 61/2 ⁻	Q	Rang=0.55 0 (201111425).
912.8 2	7.7 8	9267.4	$67/2^{-}$	8354.6 63/2	Q	R _{ang} =1.02 10 (2011Ha25).
914.6 5	0.9 1	8744.9	$(63/2^{-})$	7830.3 (59/2 ⁻)	V	Rang 1.02 10 (201111425).
921.1 5	0.3 1	10143.9	69/2-	9222.8 65/2		
926.7 5	< 0.3	9204.9	$(65/2^{-})$	8278.2 (61/2 ⁻)		
933.8 5	1.0 2	10214.0	69/2+	9280.2 65/2+		
935.5 5	< 0.3	10267.5	69/2+	9332.0 65/2+		
945.1 2	1.5 2	9030.7	$65/2^{+}$	8085.6 61/2+		
951.9 <i>5</i>	< 0.3	10158.9	$69/2^{-}$	9207.0 65/2-		
952.0 <i>5</i>	0.3 <i>1</i>	10906.4	$71/2^{+}$	9954.4 67/2+		
952.1 2	1.2 2	9972.9	69/2-	9020.8 65/2-		
956.1 2	6.0 7	9219.9	$67/2^{+}$	8263.8 63/2+	Q	R _{ang} =0.96 7 (2011Ha25).
956.6 2	5.0 5	10224.0	71/2-	9267.4 67/2		
958.2 5	0.8 4	10424.4	$71/2^{-}$	9466.2 67/2		
961.4 2	5.8 6	9805.2	69/2-	8843.8 65/2		
962.7 2	1.5 2	1641.6	17/2	678.9 15/2		
968.7 2	4.8 5	9654.4	69/2+	8685.7 65/2+		
972 [@] 1	< 0.3	11239.5?	$(73/2^+)$	10267.5 69/2+		
986.6 5	0.8 4	11200.6	73/2+	10214.0 69/2+		
989.4 5	0.8 1	10020.1	69/2 ⁺	9030.7 65/2+		
1001.5 2	2.2 3	11225.5	75/2 ⁻	10224.0 71/2-		
1004.7 <i>5</i> 1010.5 <i>5</i>	<0.3 0.4 2	11911.1	75/2 ⁺	10906.4 71/2 ⁺ 10424.4 71/2 ⁻		
1010.3 <i>J</i> 1012 <i>@ I</i>		11434.9	75/2-			
	<0.3	11032.1?	$(73/2^+)$	10020.1 69/2+		
1014.0 5	0.4 2	10986.9	73/2-	9972.9 69/2-		
1020.5 2	1.9 2	10825.7 10681.6	73/2 ⁻ 73/2 ⁺	9805.2 69/2 ⁻ 9654.4 69/2 ⁺		
1027.2 <i>2</i> 1030.8 <i>2</i>	2.3 <i>4</i> 1.8 <i>4</i>	10081.0	73/2+	9034.4 69/2 9219.9 67/2 ⁺		
1030.8 2	0.3 2	12240.6	77/2 ⁺	11200.6 73/2+		
1045.7 5	0.8 4	12271.2	79/2-	11200.0 75/2		
1057.1 5	< 0.3	12968.2	79/2 ⁺	11911.1 75/2+		
1058.1 5	< 0.3	12493.0	79/2-	11434.9 75/2		
1075.2 2	1.2 2	11756.8	77/2+	10681.6 73/2+		
1078.7 5	< 0.3	12065.6	77/2-	10986.9 73/2-		
1081.4 2	0.7 3	11907.1	77/2-	10825.7 73/2-		
1086.4 2	33 <i>3</i>	2579.7	25/2-	1493.4 21/2-	Q	R _{ang} =1.04 6 (2011Ha25).
1086.6 5	0.4 2	13357.8	83/2-	12271.2 79/2-		
1095.7 5	0.8 4	11346.4	$75/2^{+}$	10250.7 71/2+		
1103 [@] 1	< 0.3	13343.6?	$(81/2^+)$	12240.6 77/2+		

120 Sn(51 V,4n γ) 2011Ha25,2009Ha33 (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	J_i^π	\mathbf{E}_f \mathbf{J}_f^{π}
1103.4 5	< 0.3	13596.4	$83/2^{-}$	12493.0 79	9/2-	1140.3 2	0.4 2	13047.4	$81/2^{-}$	11907.1 77/2-
1115.4 5	0.4 2	12872.2	81/2+	11756.8 7	7/2+	1153.7 5	< 0.3	14025.9	$85/2^{+}$	12872.2 81/2+
1125.4 5	< 0.3	14483.2	$87/2^{-}$	13357.8 83	3/2-	1182.6 2	< 0.3	14230.0	$85/2^{-}$	13047.4 81/2-
1140.1.5	0.3 2	12486.5	79/2+	11346.4 7	5/2+					

 $^{^{\}dagger}$ From 2011Ha25. ‡ From R_{ang}=Iy(backward angles)/Iy(90°) gated on stretched Q transitions. Expected values are 1.0 for stretched Q and 0.6 for stretched D transitions (2011Ha25).

Multiply placed with intensity suitably divided.

@ Placement of transition in the level scheme is uncertain.

Level Scheme (continued)

Legend

Level Scheme (continued) Legend Intensities: Relative I_{γ} $\begin{array}{ll} \quad & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \rightarrow & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \rightarrow & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ @ Multiply placed: intensity suitably divided 67/2+ 9219.9 65/2 9207.0 9204.9 + 848.7 0.2 63/2+ 9054.6 65/2+ 9030.7 65/2 9020.8 + 910, P.3 + 860,23.6 65/2 8843.8 49/46 P 1 890 | 0.00 | 4.50 | 1821 $(63/2^{-})$ 8744.9 65/2+ 8685.7 1 65.05 63/2+ 8564.6 8564.4 63/2 1 6,00,000 + + 8;2 9<2,3 61/2+ 8437.4 8398.8 61/2+ 63/2 8354.6 8324.6 61/2⁻ (61/2⁻) 8294.4 8278.2 63/2+ 8263.8 59/2+ 8205.9 61/2 8128.4 61/2+ 8085.6 61/2 7933.7 $(59/2^{-1})$ 7830.3 61/2+ 7786.1 59/2 7716.5 59/2+ 7654.7 57/2⁺ 57/2⁺ 7596.5 7566.0 59/2 7480.5 57/2 7471.9 57/2⁻ (57/2⁻) 7438.8

59/2+

3/2+

7405.6

7389.4

0.0

Level Scheme (continued)

 $\label{eq:continuous} Intensities: Relative \ I_{\gamma}$ @ Multiply placed: intensity suitably divided

Legend

¹²⁰Sn(⁵¹V,4nγ) **2011Ha25,2009Ha33**

Level Scheme (continued)

 $\label{eq:continuous} Intensities: Relative \ I_{\gamma}$ @ Multiply placed: intensity suitably divided

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

 $^{167}_{73}\mathrm{Ta}_{94}$

Level Scheme (continued)

Legend

120 Sn(51 V,4n γ) 2011Ha25,2009Ha33 (continued)

5514.9

45/2

5206.7

Type Author Citation Literature Cutoff Date
Full Evaluation Coral M. Baglin ENSDF 23-May-2013

1992Th02: E=165 MeV, 29 Compton-suppressed Ge detector array (ESSA30), 98% enriched 142 Nd target, θ =37°, 63°, 79°, 101°, 117°, 143°; measured E γ , I γ , $\gamma\gamma$ coin, $\chi\gamma$ coin, $\chi\gamma\gamma$ coin, DCO ratios; cranked shell model calculations.

¹⁶⁷Ta Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	$(3/2^+)$	Possible configuration= $(\pi \ 1/2[411]) \ (1992Th02)$.
0.0+x&	9/2-	E(level): x≈206 from Adopted Levels.
94.4 [#] 10	5/2+	
98.7+x ^a 8	11/2-	
204.7 [@] 13	$7/2^{+}$	
214.4 13		
232.9 10	$(7/2^+)$	
289.7+x& 8	$13/2^{-}$	
374.4 [#] <i>13</i>	9/2+	
472.3+x ^a 8	15/2	
574.4 [@] 14	11/2+	
611.3 ^b 15	$9/2^{-}$	
741.2+x& 8	$17/2^{-}$	
790.9 [#] <i>14</i>	$13/2^{+}$	
853.4 ^b 15	$13/2^{-}$	
959.7+x ^a 9	19/2-	
1036.3 [@] 15	$15/2^{+}$	
1217.4 ^b 16	$17/2^{-}$	
1285.4 [#] <i>16</i>	17/2+	
1287.7+x & 9	$21/2^{-}$	
1527.1+x ^a 10	$23/2^{-}$	
1557.7 [@] 16	19/2+	
1680.1 ^b 19	$21/2^{-}$	
1820.7 [#] <i>16</i>	$21/2^{+}$	
1891.7+x& <i>10</i>	$25/2^{-}$	
2089.9 [@] <i>17</i>	$23/2^{+}$	
2144.4+x ^a 10	$27/2^{-}$	
2215.6 ^b 22	$25/2^{-}$	
2329.1 [#] <i>17</i>	$25/2^{+}$	
2375.7+x ^C 12	$(25/2^{-})$	
2513.4+x& 11	29/2-	
2549.2+x ^c 12	(29/2-)	
2567.6 [@] 18	27/2+	
$2670.2 + x^d$ 12	$(31/2^{-})$	
2775.5+x ^a 12 2782.3 [#] 18	31/2-	
2782.3" 18 2798.2 ^b 24	29/2 ⁺	
2798.2° 24 2837.7+x ^c 13	29/2 ⁻ (33/2 ⁻)	
2969.9 [@] 19	31/2+	
2909.9 - 19	31/2	

¹⁴²Nd(³⁰Si,p4nγ) **1992Th02** (continued)

¹⁶⁷Ta Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$\mathrm{J}^{\pi \ddagger}$
3031.3+x ^d 13	$(35/2^{-})$	3530.2+x ^d 14	$(39/2^{-})$	4481.6+x ^c 17	$(45/2^{-})$	6025.7+x ^c 19	$(53/2^{-})$
3122.3+x ^{&} 13	$33/2^{-}$	3723.6 [#] 21	$37/2^{+}$	4608 ^b 3	$(41/2^{-})$	6437.8+x ^d 19	$(55/2^{-})$
3213.9 [#] 20	$33/2^{+}$	3820.2+x ^c 15	$(41/2^{-})$	4622.0? [@] 22	$(43/2^+)$	6864.5+x ^c 20	$(57/2^{-})$
3265.0+x ^c 14	$(37/2^{-})$	3977 ^b 3	$(37/2^{-})$	4851.6+x ^d 17	$(47/2^{-})$	7281.2+x? ^d 21	$(59/2^{-})$
3381 ^b 3	$(33/2^{-})$	3992.9? [@] 21	$(39/2^+)$	4925.6? [#] 23	$(45/2^+)$		
3390.9+x ^a 14	35/2-	4145.2+x ^d 16	$(43/2^{-})$	5225.0+x ^c 18	$(49/2^{-})$		
3429.0 [@] 20	$35/2^{+}$	4308.4? [#] 21	$(41/2^+)$	5623.6+x ^d 18	$(51/2^{-})$		

[†] From least-squares fit to E γ , assigning an uncertainty of 0.5 keV to transitions for which I γ ≥40, and 1 keV to all other E γ data. from Adopted Levels, the energy offset x≈206.

γ(¹⁶⁷Ta)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
94.4 ^d		94.4	5/2+	0.0	(3/2+)		
98.7		98.7 + x	$11/2^{-}$	0.0+x	9/2-		
110.3	23 [@]	204.7	$7/2^{+}$	94.4	5/2+		
120.1	7	214.4		94.4	5/2+		
121.1	29 [@]	2670.2+x	$(31/2^{-})$	2549.2+x	$(29/2^{-})$		
157	<3 [@]	2670.2+x	$(31/2^{-})$	2513.4+x	$29/2^{-}$		
160.1	19	374.4	9/2+	214.4	,		
167.5 <i>5</i>	65	2837.7+x	$(33/2^{-})$	2670.2+x	$(31/2^{-})$		
169.6	31	374.4	$9/2^{+}$	204.7	7/2+		
182.6 5	66	472.3+x	$15/2^{-}$	289.7+x	$13/2^{-}$		
187.7	12	2969.9	$31/2^{+}$	2782.3	$29/2^{+}$		
191.0 5	100	289.7+x	$13/2^{-}$	98.7 + x	$11/2^{-}$		
193.5 5	70	3031.3+x	$(35/2^{-})$	2837.7+x			
200.1	31	574.4	$11/2^{+}$	374.4	9/2+		
214.8	$\approx 16^{a}$	2782.3	$29/2^{+}$	2567.6	$27/2^{+}$		
215.2	$\approx 8^{a}$	3429.0	$35/2^{+}$	3213.9	$33/2^{+}$		
216.4	24	790.9	$13/2^{+}$	574.4	$11/2^{+}$		
218.4 5	48	959.7+x	$19/2^{-}$	741.2+x	$17/2^{-}$	(D)	Mult.: DCO ratio=0.72 24.
x226.4	10						
232.9	32 ^a	232.9	$(7/2^+)$	0.0	$(3/2^+)$		

[‡] Authors' values, based largely on systematics of transition energies, signature splittings and alignments for the light odd-A Ta and Lu isotopes, and on deduced transition multipolarities.

[#] Band(A): 5/2[402], $\alpha = +1/2$ band. In-band decay properties, transition energy systematics in nearby odd-A Ta isotopes, and small negative signature splitting favor $d_{5/2}$ orbital assignment over $g_{7/2}$ (1992Th02).

[@] Band(a): $(\pi 5/2[402])$, $\alpha = -1/2$ band.

[&]amp; Band(B): $(\pi 9/2[514])$, $\alpha = +1/2$ band.

^a Band(b): $(\pi 9/2[514])$, $\alpha = -1/2$ band.

^b Band(C): (π 1/2[541]), α =+1/2 band. Decoupled band, analogous to bands observed in many neighboring odd-A, even-N nuclei; large decoupling parameter shifts unfavored signature levels to energies so high they are not normally observed in (HI,xnγ) studies. note also that energies for J>25/2 band members differ from adopted values because the 631γ-596γ-583γ-583γ cascade reported here has been replaced there by a 629γ-583γ-582γ-583γ-596γ cascade adopted from a later (51 V,4nγ) study.

^c Band(D): $((\pi 9/2[514])(\nu i_{13/2})^2)$, $\alpha = +1/2$ band.

^d Band(d): $((\pi 9/2[514])(\nu i_{13/2})^2)$, $\alpha = -1/2$ band.

$^{142}{\rm Nd}(^{30}{\rm Si,p4n}\gamma) \qquad \textbf{1992Th02} \; (\textbf{continued})$

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	J_f^π	Mult.#	Comments
233.7 5	55	3265.0+x	$\overline{(37/2^{-})}$	3031.3+x	$(35/2^{-})$		
238.4	$\approx 19^a$	2567.6	27/2+	2329.1	25/2+		
239.2	$\approx 22^a$	2329.1	25/2 ⁺	2089.9	23/2+		
239.4 242.1 <i>5</i>	24 41	1527.1+x 853.4	23/2 ⁻ 13/2 ⁻	1287.7+x 611.3	21/2 9/2 ⁻	Q	Mult.: DCO ratio=1.00 12.
242.1 3	12	3213.9	33/2+	2969.9	31/2 ⁺	Q	Mult DCO fatio=1.00 72.
245.4	31	1036.3	15/2 ⁺	790.9	13/2 ⁺		
249.2	25	1285.4	17/2+	1036.3	15/2 ⁺	(D)	Mult.: DCO ratio=0.72 20.
252.7	14	2144.4+x	27/2-	1891.7+x	25/2-		
262	10	2775.5+x	31/2-	2513.4+x		_	
262.9	24	1820.7	21/2+	1557.7	19/2+	D	Mult.: DCO ratio=0.67 15.
265.2 <i>5</i> 268.9 <i>5</i>	47 68 <mark>a</mark>	3530.2+x 741.2+x	(39/2 ⁻) 17/2 ⁻	3265.0+x 472.3+x		D	Mult.: DCO ratio=0.64 14.
269	≤10 ^a	3390.9+x	35/2	3122.3+x		D	Wuit DCO 1410-0.04 14.
269.2	$\approx 23^a$	2089.9	23/2+	1820.7	21/2+		
269.4 <mark>d</mark>	≈6 ^a	3992.9?	$(39/2^+)$	3723.6	37/2+		
272.2	23	1557.7	19/2+	1285.4	17/2 ⁺		
279.9	9 <mark>a</mark>	374.4	9/2+	94.4	5/2+		$I(280\gamma)/I(170\gamma)=0.31 II.$
288.3	≈6	2837.7+x	$(33/2^{-})$	2549.2+x			$I(288\gamma)/I(168\gamma)=0.24$ 7.
289.7	36 ^a	289.7+x	13/2	0.0+x			$I(290\gamma)/I(191\gamma)=0.42 \ 14.$
289.9	30 ^a	3820.2+x	$(41/2^{-})$	3530.2+x			
294.4	6	3723.6	37/2+	3429.0	35/2+		
303.9^{d}	8	4925.6?	$(45/2^+)$	4622.0?	$(43/2^+)$		
313.0^{d}	≈6 ^a	4622.0?	$(43/2^+)$	4308.4?	$(41/2^+)$		
314.9 ^d	12 ^a	4308.4?	$(41/2^+)$	3992.9?	$(39/2^+)$		
324.9 328.0 <i>5</i>	21 51	4145.2+x 1287.7+x	$(43/2^{-})$ $21/2^{-}$	3820.2+x 959.7+x		(D)	Mult.: DCO ratio=0.73 19.
$x_{333.9}^{b}$		1207.7±X	21/2	939.7±X	19/2	(D)	Wuit DCO 18t10=0.73 19.
336.5	5 21	4481.6+x	(45/2-)	4145.2+x	(43/2-)		
$x_{337.9}^{b}$	4	7701.01A	(43/2)	717J,21X	(43/2)		
347	12	3122.3+x	33/2-	2775.5+x	31/2-		
361.2	26	3031.3+x	$(35/2^{-})$	2670.2+x			$I(361\gamma)/I(194\gamma)=0.36 \ 3.$
364.0 5	40	1217.4	17/2-	853.4	13/2-	Q	Mult.: DCO ratio=1.02 18.
364.6	30	1891.7+x	$25/2^{-}$	1527.1+x			
369	16 ^a	2513.4+x	29/2-	2144.4+x			
369.7	19 ^a	574.4	11/2+	204.7	7/2+		$I(370\gamma)/I(200\gamma)=1.14 \ 14.$
369.9 373.5 <i>5</i>	≤12 ^a 71 ^a	4851.6+x 472.3+x	$(47/2^{-})$ $15/2^{-}$	4481.6+x 98.7+x			$I(374\gamma)/I(183\gamma)=1.36 \ 8.$
373.5	11	5225.0+x	$(49/2^{-})$	4851.6+x			$1(3/4\gamma)/1(163\gamma) - 1.30$ 6.
378.4	37	611.3	9/2-	232.9	$(7/2^+)$	D	Mult.: DCO ratio=0.76 12.
398.5	7	5623.6+x	$(51/2^{-})$	5225.0+x			
402	7	6025.7+x	$(53/2^{-})$	5623.6+x			
402.2	6	2969.9	31/2+	2567.6	27/2+		$I(402\gamma)/I(188\gamma)=0.93 \ 27.$
405	12	2549.2+x	$(29/2^{-})$	2144.4+x			
412 416.5	5 33	6437.8+x 790.9	$(55/2^{-})$ $13/2^{+}$	6025.7+x 374.4	9/2 ⁺		$I(417\gamma)/I(216\gamma)=1.90$ 22.
417 ^d	≤7 <mark>&</mark>	790.9 7281.2+x?	$(59/2^{-})$	6864.5+x			1(11/7)/1(2107)=1.70 22.
417	$\approx 4^{a}$	6864.5+x	$(59/2^{-})$	6437.8 + x			
427.2	21	3265.0+x	$(37/2^{-})$	2837.7+x			$I(427\gamma)/I(234\gamma)=0.56 8.$
431.6	6	3213.9	33/2+	2782.3	29/2+		$I(432\gamma)/I(244\gamma) = 0.58 \ 21.$
451.6 5	52	741.2+x	17/2-	289.7+x			$I(452\gamma)/I(269\gamma)=0.80$ 5.
453.3	12	2782.3	29/2 ⁺	2329.1	25/2+		$I(453\gamma)/I(215\gamma)=1.1 \ 4.$
459.2	5	3429.0	35/2+	2969.9	31/2+		

¹⁴²Nd(30 Si,p4n γ) **1992Th02** (continued)

$\gamma(^{167}\text{Ta})$ (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
461.9 462.7 477.7	38 38 ≈6	1036.3 1680.1 2567.6	15/2 ⁺ 21/2 ⁻ 27/2 ⁺	574.4 1217.4 2089.9	11/2 ⁺ 17/2 ⁻ 23/2 ⁺	Q	$I(462\gamma)/I(245\gamma)=1.84$ 20. Mult.: DCO ratio=0.96 11. $I(478\gamma)/I(238\gamma)=0.45$ 27.
484 487.4 <i>5</i>	9 97	2375.7+x 959.7+x	(25/2 ⁻) 19/2 ⁻	1891.7+x 472.3+x	15/2-		$I(487\gamma)/I(218\gamma)=2.99\ 25.$
494.5 499.0 508.4	38 24 ≈26 ^a	1285.4 3530.2+x 2329.1	17/2 ⁺ (39/2 ⁻) 25/2 ⁺	790.9 3031.3+x 1820.7	13/2 ⁺ (35/2 ⁻) 21/2 ⁺		$I(495\gamma)/I(249\gamma)=2.16\ 21.$ $I(499\gamma)/I(265\gamma)=0.68\ 8.$ $I(508\gamma)/I(239\gamma)=1.6\ 13.$
509.6 521.4 <i>5</i> 532.1	≈6 ^a 52 32	3723.6 1557.7 2089.9	37/2 ⁺ 19/2 ⁺ 23/2 ⁺	3213.9 1036.3 1557.7	33/2 ⁺ 15/2 ⁺ 19/2 ⁺		$I(521\gamma)/I(272\gamma)=2.7 5.$ $I(532\gamma)/I(269\gamma)=1.6 9.$
535.3 <i>5</i> 535.5	41 32	1820.7 2215.6	21/2 ⁺ 25/2 ⁻	1285.4 1680.1	17/2 ⁺ 21/2 ⁻	Q	$I(535\gamma)/I(263\gamma)=2.31$ 27. Mult.: DCO ratio=1.06 13.
546.5 <i>5</i> 555.1 564.1 <i>d</i>	61 28 9	1287.7+x 3820.2+x 3992.9?	$21/2^{-}$ $(41/2^{-})$ $(39/2^{+})$	741.2+x 3265.0+x 3429.0			$I(547\gamma)/I(328\gamma)=1.17$ 9. $I(555\gamma)/I(290\gamma)=0.94$ 13.
567.5 5 582.6 ^c	79 38 ^c	1527.1+x 2798.2	23/2 ⁻ 29/2 ⁻	959.7+x 2215.6			I(568 γ)/I(239 γ)=3.3 5. Mult.: DCO ratio=0.87 17 for 582.6 doublet (1992Th02).
582.6 ^c	38 ^c	3381	(33/2 ⁻)	2798.2	29/2-		Mult.: DCO ratio=0.87 17 for 582.6 doublet (1992Th02).
584.5 ^d 596.4 604.0 5 609	≈9 16 44 25	4308.4? 3977 1891.7+x 3122.3+x	(41/2 ⁺) (37/2 ⁻) 25/2 ⁻ 33/2 ⁻	3723.6 3381 1287.7+x 2513.4+x	,		Mult.: DCO ratio=1.5 6. $I(604\gamma)/I(365\gamma)=1.09 \ 17$. $I(609\gamma)/I(347\gamma)=3.0 \ 6$.
615 615.2	≈9 <22 <mark>&</mark>	3390.9+x 4145.2+x	35/2 ⁻ (43/2 ⁻)	2775.5+x 3530.2+x	31/2-		$I(615\gamma)/I(325\gamma)=1.1 \ 4.$
617.0 ^d 617.3 5 622	≈12 50 26	4925.6? 2144.4+x 2513.4+x	(45/2 ⁺) 27/2 ⁻ 29/2 ⁻	4308.4? 1527.1+x 1891.7+x			$I(617\gamma)/I(253\gamma)=3.7$ 12. $I(622\gamma)/I(369\gamma)=2.5$ 11.
629.9 ^d 630.6 631 *643 ^b 1	<4 5 21 ≈4	4622.0? 4608 2775.5+x	(43/2 ⁺) (41/2 ⁻) 31/2 ⁻	3992.9? 3977 2144.4+x	(39/2 ⁺) (37/2 ⁻) 27/2 ⁻		$I(631\gamma)/I(262\gamma)=3.5 8.$
^x 653 ^b 1 657 661.3	<4 20 24	2549.2+x 4481.6+x	(29/2 ⁻) (45/2 ⁻)	1891.7+x 3820.2+x			$I(661\gamma)/I(337\gamma)=1.39\ 26.$
706.5 743.4 771.9	24 16 12	4851.6+x 5225.0+x 5623.6+x	(47/2 ⁻) (49/2 ⁻) (51/2 ⁻)	4145.2+x 4481.6+x 4851.6+x	(43/2 ⁻) (45/2 ⁻)		$I(707\gamma)/I(370\gamma)=1.5 6.$ $I(743\gamma)/I(374\gamma)=1.8 6.$ $I(772\gamma)/I(399\gamma)=1.5 5.$
801 814 839	13 10 12	6025.7+x 6437.8+x 6864.5+x	(53/2 ⁻) (55/2 ⁻) (57/2 ⁻)	5225.0+x 5623.6+x 6025.7+x	(51/2 ⁻) (53/2 ⁻)		$I(801\gamma)/I(402\gamma)=2.0$ 7.
843 ^d *873 <i>I</i> 1088	<13 ^{&} ≈8 17	7281.2+x? 2375.7+x	(59/2 ⁻) (25/2 ⁻)	6437.8+x 1287.7+x			

[†] From 1992Th02. $\Delta E_{\gamma} \le 1$ keV for weak transitions and doublets, ≤0.5 keV for all others (1992Th02); the evaluator assigns 0.5 keV to all single transitions with I γ ≥40.

[‡] Relative photon intensity from spectra coincident with principal $\gamma(s)$ in band, internally normalized to $I(191\gamma)=100$; uncertainties range from 5% to 40%. For many levels, 1992Th02 also report $Ti(\Delta J=2)/Ti(\Delta J=1)$ for transitions within bands having the same

142 Nd(30 Si,p4n γ) 1992Th02 (continued)

$\gamma(^{167}\text{Ta})$ (continued)

configuration; the evaluator has converted these to $I\gamma(\Delta J=2)/I\gamma(\Delta J=1)$ (since the assumed multipolarity is always clear) and quotes those data in comments; consistency between these branching ratios and those from the listed $I\gamma$ data is not good. No data have been corrected for time window effects or residual angular correlation effects.

- [#] Based on measured DCO ratios (79° (or 101°) and 37° (or 143°)); expected ratios are 1.00 for stretched Q, 0.6 for stretched D (Q transition in gate).
- [@] Iy not reliable for Ey \leq 150 keV due to low efficiency.
- & Possibly contaminated by unassigned transition of same energy associated with same band.
- ^a From coincidence spectra.
- ^b Associated with 9/2[514] band above the level crossing.
- ^c Multiply placed with undivided intensity.
- ^d Placement of transition in the level scheme is uncertain.
- x γ ray not placed in level scheme.

Level Scheme (continued)

Legend

 $\label{eq:continuity} Intensities: Relative \ I_{\gamma}$ & Multiply placed: undivided intensity given

Level Scheme (continued)

 $\label{eq:continuous} Intensities: Relative \ I_{\gamma}$ & Multiply placed: undivided intensity given

Legend

 $^{167}_{73}\mathrm{Ta}_{94}$

$$^{167}_{73}\mathrm{Ta}_{94}$$

142 Nd(30 Si,p4n γ) 1992Th02 (continued)

$$^{167}_{73}\mathrm{Ta}_{94}$$