

- 6

- 3

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 2.5

- 0.0

- 10

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 2.5

- 0.0

- 12

- 10

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 2.5

- 0.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 2.5

- 12

- 15

- 16

- 14

- 12

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 2.5

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 29

- 28

- 27

- 26

- 25

- 24

- 23

- 54

- 52

- 54

- 52

- 54

- 52

- 30

- 25

- 15

- 25

- 20

- 35.0

- 32.5

- 30.0

- 27.5

- 25.0

- 22.5

- 20.0

- 17.5

- 30

- 25

- 20

- 15

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 29

- 28

- 27

- 26

- 54

- 52

- 52

- 30

- 25

- 15

- 25

- 20

- 35.0

- 32.5

- 30.0

- 27.5

- 25.0

- 22.5

- 20.0

- 17.5

- 30

- 20

- 15

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 29

- 28

- 26

- 52

- 52

- 52

- 30

- 25

- 15

- 20

- 35.0

- 32.5

- 30.0

- 27.5

- 25.0

- 22.5

- 20.0

- 17.5

- 30

- 20

- 15

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 29

- 28

- 27

- 26

- 54

- 52

- 54

- 52

- 10 - 8

- 30

- 25

- 20

- 15

- 25

- 20

- 35.0

- 32.5

- 30.0

- 27.5

- 25.0

- 22.5

- 20.0

- 17.5

- 30

- 25

- 20

- 15

Technique U	sed vs	Negot	iation	
Optimization Approach -	. 7			
Gaussian probability -	. 5			- 12
Logistic Regression -	- 1			
Bayesian Learning -	6	2		
Reinforcement Learning -	13			- 10
Neural Network -	5			
Genetic Algorithm -	. 1			
Heuristic algorithm -	2			- 8
Argumentation Framework -	2			
Angle based Similarirty -	- 1			
Linear Regression -	2			- 6
Nonlinear Regression -	- 1			
Markov Decision Process -	1			
Equilibrium strategies -	2			- 4
Linear Programming -	2			
LSTM -	2			
Monte Carlo Tree Search -	4			- 2
Fuzzy Logic System -	4			

yes

Technique Used	d vs Mo	oral Ag	reeme	nt
Optimization Approach -	7			
Gaussian probability -	5			- 12
Logistic Regression -	1			
Bayesian Learning -	6			
Reinforcement Learning –	13			- 10
Neural Network -	5			
Genetic Algorithm -	1			
Heuristic algorithm -	2			- 8
Argumentation Framework –	2			
Angle based Similarirty -	1			
Linear Regression -	2			- 6
Nonlinear Regression -	1			
Markov Decision Process -	1			
Equilibrium strategies -	2			- 4
Linear Programming -	2			
LSTM -	2			
Monte Carlo Tree Search -	4			- 2
Fuzzy Logic System -	4			
·	yes	I		

Technique Used vs	Propose Method	I for Automation

lechnique Us	ed vs li	mplement M	L
Optimization Approach -	7		
Gaussian probability -	- 5		- 12
Logistic Regression -	. 1		
Bayesian Learning -	6		
Reinforcement Learning -	13		- 10
Neural Network -	5		
Genetic Algorithm -	. 1		
Heuristic algorithm -	. 2		- 8
Argumentation Framework -	- 2		
Angle based Similarirty -	- 1		
Linear Regression -	2		- 6
Nonlinear Regression -	- 1		
Markov Decision Process -	- 1		
Equilibrium strategies -	- 2		- 4
Linear Programming -	- 2		
LSTM -	- 2		
Monte Carlo Tree Search -	4		- 2
Fuzzy Logic System -	4		

yes

- 5

- 20.0

Limitation vs Technique Used Single Issue -Improve Approach -Time Dependent -Involves Human Agent - 1 Involves Human Agent -Bilateral -Linear Regression – Nonlinear Regression – Markov Decision Process – Equilibrium strategies – Optimization Approach Heuristic algorithm nentation Framework Neural Network Logistic Regression Genetic Algorithm Angle based Similarirty Fuzzy Logic System

- 12

- 15

- 12

- 16

- 14

- 12

- 25

- 20

- 15

- 12

- 10

- 25

- 20

- 15

- 10

- 5

- 15

- 15

- 10

- 5

- 16

- 14

- 12

- 25.0

- 22.5

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 5.0

- 20

- 15

- 10

- 5

- 15

- 15

- 10

- 5

- 15

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 2.5

- 0.0

- 20.0

- 17.5

- 15.0

- 12.5

- 10.0

- 7.5

- 2.5

- 0.0

- 15

