Lecture 1, 1/11/13

Section 1: Vocabulary and easy definitions

Homological algebra is the study of complexes of R-modules, where R is a ring with identity $1 \neq 0$. Notationally, R-Mod is the category of all left R-modules, and R-mod is the category of all finitely generated R-modules.

Definition 0.1. Let A_n " \in "R-mod for $n \in \mathbb{Z}$ and $d_n \in \operatorname{Hom}_R(A_n, A_{n-1})$ such that $d_{n-1} \circ d_n = 0$ for all $n \in \mathbb{Z}$. Then the sequence

$$\cdots \xrightarrow{d_{n+2}} A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \xrightarrow{d_{n-1}} \cdots$$

is called a complex of R-modules, assuming $\operatorname{im}(d_n) \subseteq \ker(d_{n-1})$. The sequence

$$0 \longrightarrow A_m \longrightarrow A_{m-1} \longrightarrow \cdots \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow 0$$

will occur more frequently. A complex \mathbb{A} is an exact sequence if $\operatorname{im}(d_n) = \ker(d_{n-1})$ for all $n \in \mathbb{Z}$. This is called a short exact sequence if there are no more than 3 non-zero terms. Given a complex \mathbb{A} , the <u>nth homology modules</u> (or groups, in some cases) of \mathbb{A} is

$$H_n(\mathbb{A}) = \frac{\ker(d_{n-1})}{\operatorname{im}(d_n)}$$

Remark. Given a short exact sequence (hereby abbv. as SES)

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

f is a mono and g is an epi, so $C \simeq B/\operatorname{im}(f)$. If A, B are known, but not f, then infinitely many C are available to complete the short exact sequence.

Example 0.1. Let R = k, a field, and take $A = B = k^{(\mathbb{N})} = \bigoplus_{i \in \mathbb{N}} k$.

- (i) $0 \longrightarrow A \xrightarrow{\operatorname{Id}} B \longrightarrow 0$ is a SES.
- (ii) Define $f: A \to B$ by

$$f(b_i) = b_{2i} \text{ for } i \in \mathbb{N}$$
$$g(b_0) = \begin{cases} 0 & i \text{ even} \\ b_{\tau(i)} & i \text{ odd} \end{cases}$$

Where $\tau:(2\mathbb{N}-1)\to\mathbb{N}$ is a bijection. If $A=B=C=\kappa^{(\mathbb{N})}$, then

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is a SES.

(iii) Let $R = \mathbb{Z}$. Then

$$0 \longrightarrow 3\mathbb{Z} \xrightarrow{\iota} \mathbb{Z} \xrightarrow{\equiv} \mathbb{Z}/3\mathbb{Z} \longrightarrow 0$$

is a SES.

(iv) Let $R = \mathbb{Z}$. The sequence

$$0 \longrightarrow \overbrace{6\mathbb{Z}}^{A_1} \xrightarrow{\iota} \overbrace{\mathbb{Z}}^{A_0} \xrightarrow{=} \widetilde{\mathbb{Z}/3\mathbb{Z}} \longrightarrow 0$$

is a complex which is not exact. In fact, $H_0(\mathbb{A}) = \underbrace{3\mathbb{Z}}^{\ker(g)} / \underbrace{6\mathbb{Z}}_{\operatorname{im}(f)} \cong \mathbb{Z}/2\mathbb{Z}$.

(v) Let $R = \kappa[x, y]$, κ a field. Let f be the inclusion $(x) \hookrightarrow R[x, y]$. The sequence

$$0 \longrightarrow (x) \stackrel{f}{\longrightarrow} R \stackrel{g}{\longrightarrow} \kappa[y] \longrightarrow 0$$

where

$$g\left(\sum_{i,j=0}^{\text{finite}} a_{ij} x^i y^j\right) = \sum_{j>0}^{\text{finite}} a_{\sigma_j} y^j$$

is exact.

(vi) Let $R = \kappa[x, y]$. Define A as

$$0 \longrightarrow \overbrace{(x)}^{A_1} \xrightarrow{f} \overbrace{R}^{A_0} \xrightarrow{g} \overbrace{\underset{=R/(x,y)}{\kappa}}^{A_{-1}} \longrightarrow 0$$

where

$$g\left(\sum_{i,j=0}^{\text{finite}} a_{ij}x^i y^j\right) = a_{\infty}$$

then ker(g) = (x, y) and im(f) = (x), so A is not exact. In fact,

$$H_0(\mathbb{A}) = (x, y)/(x)$$

 $\simeq (y)$
 $\simeq R$

Note: If R is an integral domain and $x \in R \setminus \{0\}$, then $(x) \simeq R$ (as R-modules, <u>not</u> as rings!), with isomorphism $r \mapsto rx$.

Typical questions addressed by homological algebra:

(i) Suppose

$$\mathbb{A}: \cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$$

is an exact sequence in R-mod and $F: R-\operatorname{mod} \to S-\operatorname{mod}$ is a functor. Is the sequence

$$\cdots \longrightarrow F(A_{n+1}) \xrightarrow{F(d_{n+1})} F(A_n) \xrightarrow{F(d_n)} F(A_{n-1}) \longrightarrow \cdots$$

exact? $F(\mathbb{A})$ is a complex when F is additive, but it may or may not be exact.

(ii) Given A, C " \in " R - mod, characterize all modules B such that there exists an exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

As an example, $R = \mathbb{Z}, A = C = \mathbb{A}/p\mathbb{Z}$, p prime, then

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \stackrel{g}{\longrightarrow} \mathbb{Z}/p\mathbb{Z} \longrightarrow 0$$

with $f: x \mapsto (x,0)$ and $g: (x,y) \mapsto y$ is a SES. Alternatively, we could take $f: x + p\mathbb{Z} \mapsto px + p^2\mathbb{Z}$ and $g: y + p^2\mathbb{Z} \mapsto y + p\mathbb{Z}$ to make

$$0 \longrightarrow \mathbb{Z}/p\mathbb{Z} \xrightarrow{f} \mathbb{Z}/p^2\mathbb{Z} \xrightarrow{g} \mathbb{Z}/p\mathbb{Z} \longrightarrow 0$$

a SES. These are the only possibilities in this case! In general, though, there are infinitely many possibilities for B. Why is this interesting? If R is an artinian ring and M " \in "R — mod, then there are only finitely many simple s_1, \ldots, s_n " \in "R — mod up to isomorphism. Moreover, for M " \in "R — mod, there is a chain

$$M = M_0 \supset M_1 \supset \cdots \supset M_\ell = 0$$

such that M_i/M_{i+1} is simple for all $i < \ell$. If the answer to question (ii) is known, then all objects in R - mod of fixed length ℓ are known up to isomorphism! Simply proved by induction.

Algebraic Topology

Definition 0.2. The standard n-simplex Δ_n in \mathbb{R}^n is the convex hull of v_0, v_1, \ldots, v_n ,

where $v_0 = 0$ and $v_i = (0, ..., 0, 1, 0, ..., 0)$ (so the standard basis).

An <u>oriented simplex</u> is $(\Delta_x, [\pi])$, where $[\pi]$ is an equivalence class of permutations of $\{0, \ldots, n\}$, where $\pi \sim \pi' \iff \operatorname{sgn}(\pi) = \operatorname{sgn}(\pi')$. We write

$$(\triangle_x, \pi) = [v_{\pi(0)}, v_{\pi(1)}, \dots, v_{\pi(n)}]$$

and identify \triangle_n with $[0, 1, \dots, n]$. The ngative is $-[w_0, \dots, w_n]$.

Definition 0.3. Let X be a topological space. An n-simplex in X is a continuous map

$$\sigma: \triangle_n \to X$$

The group of *n*-chains of X, $S_n(x)$, is the free abelian group having as basis the *n*-simplices in X. The singular chain complex of X is

$$\cdots \longrightarrow S_n(X) \xrightarrow{\partial_n} S_{n-1}(X) \xrightarrow{\partial_{n-1}} \cdots \longrightarrow S_0(X) \longrightarrow 0$$

denoted S, where $\partial_n : S_n(X) \to S_{n-1}(X)$ is the <u>nth</u> boundary map, which can be defined if we define $\partial_n(\sigma)$ for all *n*-simplices σ in \overline{X} (i.e. in the basis of $S_n(X)$). Consider the map

$$\tau_i: \mathbb{R}^{n-1} \to \mathbb{R}^n$$
 $(a_1, \dots, a_{n-1}) \mapsto (a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n)$

For $i \in \{0, ..., n\}$. Then τ_i is continuous and $\tau_i(\triangle_{n-1}) = \triangle_n$. Define

$$\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \sigma(\tau_i)$$

Theorem 0.1. $\partial_{n-1} \circ \partial_n = 0$ for all $n \in \mathbb{N}$, i.e. \mathbb{S} is a complex in \mathbb{Z} -mod.

Definition 0.4. The group of n-cycles is $Z_n(X) = \ker(\partial_{n-1})$, and the group of n-boundaries is $B_n = \operatorname{im}(\partial_n)$.

The *n*th homology group is $H_n(X) = Z_n(X)/B_n(X)$.

Lecture 2, 1/13/23

Chapter I: Categories and functors

There is a definition page on the Gaucho that has all the most basic definitions - objects, morphisms, compositions, etc.

If $f \in \text{Hom}_C(A, B)$, we often write $A \xrightarrow{f} B$ even if f is not literally a map.

Example 0.2. 1. The category of all sets, Set. The object class consists of all sets, and the morphisms are just set maps.

- 2. The category of all topological spaces, Top. The object class consists of all topological spaces, and the morphisms are continuous functions.
- **3.** The category of all groups, **Grp**. The object class consists of all groups, and the morphisms are group homomorphisms.
- **4.** Let (P, \leq) be a partially ordered set with a relation \leq which is reflexive, antisymmetric, and transitive. Then we can make P into a category, whose objects are the elements of p, and for $u, s \in P$, $\operatorname{Hom}_P(u, s) = \begin{cases} (u, s) & u \leq s \\ \varnothing & u \not\leq s \end{cases}$. We define the composition $(s, t)(u, s) \stackrel{\text{def}}{=} (u, t)$.
- **5.** The opposite category of a category C, C^{op} .
- **6.** Let R be a ring. R-Mod is the category of left R modules. R-mod is the finitely generated R-modules, and similarly for Mod-R and mod-R, which are the right R-modules.
- 7. R-comp. The object class consists of complexes of left R-modules. Let A, A' be objects of R-comp. Note: it is problematic to say "A, $A' \in R$ -comp, as R-comp is not a set!

Say $\mathbb{A} = \cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$, and similarly for \mathbb{A}' . An element of $\operatorname{Hom}_{R-comp}(\mathbb{A}, \mathbb{A}')$ will be a sequence of R-module homomorphisms $f_n: A_n \to A'_n$ which make the following diagram commute:

- 8. The category of rings Ring, whose obejcts are rings and whose morphisms are ring homomorphisms.
- **9.** The category of \mathbb{Z} -modules is usually denoted Ab. This is also the category of Abelian groups, and is the prototypical example of an Abelian category.

Definition 0.5. A category \mathcal{C} is called <u>pre-additive</u> if for all A, B objects of \mathcal{C} , the set $\operatorname{Hom}_{\mathcal{C}}(A, B)$ is an additive Abelian group (additive means we use the symbol "+") such that for all eligible morphisms f, g, h, k,

$$h(f+g) = hf + hg$$
$$(f+g)k = fk + gk$$

where "elibigle" means that these expressions make sense and are well-defined.

Example 0.3. 1. R-mod (in particular Ab)

- **2.** *R*-comp
- **3.** Ring fails to be pre-additive, because the identity morphisms add to be something which is not the identity morphism.

Definition 0.6. Let \mathcal{C}, \mathcal{D} be categories. A functor $F : \mathcal{C} \to \mathcal{D}$ consists of an assignment $F_0 : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$, and for each pair of objects $A, B \in \mathrm{Obj}(\mathcal{C})$, a map (this actually is a map because we assume hom-sets are in fact sets). $F_{A,B} : \mathrm{Hom}_{\mathcal{C}}(A, B) \to \mathrm{Hom}_{\mathcal{D}}(F(A), F(B))$ such that, for all eligible morphisms f, g, and all $A \in \mathrm{C}$

- (a) $F(\mathrm{Id}_A) = \mathrm{Id}_{F(A)}$
- (b) $F(f \circ g) = F(f) \circ F(g)$

Example 0.4. 1. Let \mathcal{C} be a category. Then we have the identity functor $\mathrm{Id}_{\mathcal{C}}$, which assigns $\mathrm{Id}_{\mathcal{C}}(A) = A$, and $\mathrm{Id}_{\mathcal{A}}(f) = f$ for any eligible A " \in " $\mathrm{Obj}(\mathcal{D})$ and morphisms f.

- **2.** Functors $\pi_n : \mathsf{Top} \to \mathsf{Grp}$ which sends $X \mapsto \pi_n(X)$
- **3.** $\mathbb{S}: \mathsf{Top} \to \mathbb{Z}\text{-comp}$, which sends $X \mapsto \mathbb{S}(X)$, which is a complex

$$\cdots \longrightarrow S_{n+1}(X) \xrightarrow{\partial_{n+1}} S_n(X) \xrightarrow{\partial_n} S_{n-1}(X) \xrightarrow{\partial_{n-1}} \cdots \longrightarrow S_0(x) \xrightarrow{\partial_0} 0$$

Let $\phi: X \to Y$ be continuous for X, Y " \in "Top. Then $\mathbb{S}(\phi)_n: S_n(X) \to S_n(Y)$ is given by $\sigma \mapsto \phi \circ \sigma$, and we can extend this for σ an n-simplex of X.

Lecture 4, 1/18/23

Functors:

Definition 0.7. Let \mathcal{C}, \mathcal{D} be categories. A <u>covariant functor</u> from \mathcal{C} to \mathcal{D} consists of "maps" F_0 and $F|_{A,B}$ for any $A, B \in \text{Obj}(\mathcal{C})$ such that

- $F_0: \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$
- $F_{A,B}: \operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F_0A,F_0B)$ for any $A,B \in \operatorname{Dij}(\mathcal{C})$

such that

- (a) $F_{A,C}(fg) = F_{B,C}(f)F_{A,B}(g)$ for all eligible f, g
- (b) $F_{A,A}(\mathrm{Id}_A) = \mathrm{Id}_{F(A)}$

from here on we don't care at all about indices. For simplicity, we will denote the action of a functor F as simply FA or Ff.

Definition 0.8. A contravariant functor from \mathcal{C} to \mathcal{D} amounts to a covariant functor from \mathcal{C} to \mathcal{D}^{op} .

More examples of functors

Example 0.5. Homology functors $H_n: R-comp \to \mathbb{Z}-mod$ which sends \mathbb{A} to $H_n(A)$. That is, $\mathbb{A} \to F\mathbb{A} = \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})}$

Let $f \in \operatorname{Hom}_{R-comp}(\mathbb{A}, \mathbb{A}')$. That is, the following diagram commutes

Ff acts by $a_n + \operatorname{Im}(d_{n+1}) \to f_n(a_n) + \operatorname{Im}(d'_{n+1})$. Let's prove that this is actually well-defined.

Check

First, $a_n \in \ker(d_n)$ implies $f_n(a_n) \in \ker(d'_n)$. This can be seen by doing a diagram chase on the above diagram. Since $d_n(a_n) = 0$, we have $0 = f_{n-1}d_n(a_n) = d'_nf_n(a_n)$, i.e. $f_n(a_n) \in \ker(d'_n)$.

"Don't do much thinking. It's almost harmful" - Birge on doing diagram chasing. Also "follow your nose."

Now, $a_n \in \text{Im}(d_{n+1})$ implies $f_n(a_n) \in \text{Im}(d'_{n+1})$. So $a_n = d_{n+1}(x)$ with $x \in A_{n+1}$. hence $f_n(a_n) = f_n d_{n+1}(x) = a'_{n+1} f_{n+1}(x) \in \text{Im}(d'_{n+1})$.

Example 0.6. Let \mathcal{C}, \mathcal{D} be pre-additive categories (definition on the top of page 6). A functor F "from" \mathcal{C} to \mathcal{D} is called <u>additive</u> if, for all A, B" \in "Obj (\mathcal{C}) , the map $F : \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ is a homomorphism of abelian groups.

Remark. Note that $H_n: R-comp \to \mathbb{Z}-mod$ is an additive functor. The π_n functor is <u>not</u> additive, as **Top** is not preadditive.

Example 0.7. Forgetful functors e.g. $F: R-mod \to \mathbb{Z}-mod$ which sends $M \mapsto M$, where the M on the left hand side is an R-module, and M on the right is just an abelian group, which is a \mathbb{Z} -module. Or $F: R-mod \to \mathsf{Set}$ which sends an R-module M to the set of its elements, "forgetting" the module structure.

Moreover, if \mathcal{C}, \mathcal{D} are pre-additive, and $F : \mathcal{C} \to \mathcal{D}$ is a forgetful functor of some sort, then F is additive.

Example 0.8. Let $F: R-mod \to S-mod$ be an additive functor. Then F induces an additive functor $\tilde{F}: R-comp \to S-comp$, sending \mathbb{A} to $F(\mathbb{A})$. If \mathbb{A} is a complex

$$\cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$$

then $F(\mathbb{A})$ is

$$\cdots \longrightarrow F(A_n) \xrightarrow{F(d_{n+1})} F(A_n) \xrightarrow{F(d_n)} F(A_{n-1}) \longrightarrow \cdots$$

An extremely important question: if \mathbb{A} is exact, is $F(\mathbb{A})$ exact? If not, how far does it deviate from being an exact sequence?

Example 0.9. Let $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$ be functors. Then $G \circ F: \mathcal{C} \to \mathcal{E}$ is a functor. WARNING: we use \circ but this isn't actually a function composition. This is just notation!!!

 $G \circ F$ acts how one might think: for A " \in "Obj(C), $G \circ F(A) = G(F(A))$, and for $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$, $G \circ F(f) = G(F(f)) \in \operatorname{Hom}_{\mathcal{E}}(G(F(A)), G(F(B)))$.

Of interest to us: $H_n \circ \tilde{F}$, where $F : R - mod \to S - mod$ is additive. This functor sends a complex \mathbb{A} to $H_n(F(\mathbb{A}))$. This is especially of interest if \mathbb{A} is exact, but $F(\mathbb{A})$ is not.

Remark. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F sends isomorphisms in \mathcal{C} to isomorphisms in \mathcal{D} . This is immediate from the definition of a functor.

Section 2: two types of functors that will follow us

(i) Hom-functors: Whenever \mathcal{C} is a category, there is a bifunctor

$$\operatorname{Hom}_{\mathcal{C}}(-,-):\mathcal{C}\times\mathcal{C}\to\operatorname{\mathsf{Set}}$$

which sends a pair (A, B) to $\operatorname{Hom}_{\mathcal{C}}(A, B)$, and on maps (note that this is covariant in the first factor and contravariant inh the second), they act as follows. Let $f: A \to A', g: B \to B'$ be morphisms in \mathcal{C} . Then

$$\operatorname{Hom}(f,g): \operatorname{Hom}_{\mathcal{C}}(A',B) \to \operatorname{Hom}_{\mathcal{C}}(A,B')$$

acts by $\phi \mapsto g \circ \phi \circ f$

Lecture 5, 1/20/23

Whenever \mathcal{C} is a category, there is a bifunctor $\operatorname{Hom}_{\mathcal{C}}(-,-): \mathcal{C} \times \mathcal{C} \to \operatorname{Set}$, which sends (A,B) to $\operatorname{Hom}_{\mathcal{C}}(A,B)$. On maps, when $f:A\to A'$ and $g:B\to B'$ are morphisms, then

$$\operatorname{Hom}_{\mathcal{C}}(f,g) : \operatorname{Hom}_{\mathcal{C}}(A',B) \to \operatorname{Hom}_{\mathcal{C}}(A,B')$$

 $\varphi \mapsto g \circ \varphi \circ f$

We will split this into two parts. Let $C \in \mathcal{C}$. Then we have a covariant functor

$$\operatorname{Hom}_{\mathcal{C}}(C,-): \mathcal{C} \to \mathcal{C}$$

$$C' \mapsto \operatorname{Hom}_{\mathcal{C}}(C,C')$$

$$g \mapsto \operatorname{Hom}_{\mathcal{C}}(C,A) \to \operatorname{Hom}_{\mathcal{C}}(C,B)$$

$$\varphi \mapsto g \circ \varphi$$

We also have the contravariant functor $\operatorname{Hom}_{\mathcal{C}}(-,D)$, which acts similarly. As a special case, consider $\mathcal{C}=R-mod$. Then

$$\operatorname{Hom}_R(M,-): R-mod \to \mathbb{Z}-mod$$

 $\operatorname{Hom}_R(-,N): R-mod \to \mathbb{Z}-mod$

but we can have additional structure on $\operatorname{Hom}_R(M, N)$. Suppose ${}_RM_S$ is a bimodule (S is a ring and (rm)s = r(ms)) and let ${}_RN_T$ be an R-T module. Then $\operatorname{Hom}_R(M, N)$ is a left S, right T bimodule. For $f \in \operatorname{Hom}_R(M, n)$, $s \in S$, $t \in T$, define

$$(sf)(m) = f(ms)$$
$$(ft)(m) = f(m)t$$

If R is commutative, then

$$\operatorname{Hom}_R(M,-): R-mod \to R-mod = Mod - R$$

 $\operatorname{Hom}_R(-,N): R-mod \to R-mod = Mod - R$

If $_RM_S$ is a bimodule, then

$$\operatorname{Hom}_R(M,-): R-mod \to S-mod$$

If $_RN_T$ is a bimodule, then

$$\operatorname{Hom}(-,N): R-mod \to Mod-T$$

Basic properties:

(i)
$$M'' \in "R - mod \implies \underbrace{\operatorname{Hom}_{R}(R, M) \cong M}_{f \mapsto f(1)}$$
 in $\mathbb{Z} - mod$

- (ii) $\operatorname{Hom}_R(\otimes_{i\in I} M_i, N) \cong \prod_{i\in I} \operatorname{Hom}_R(M_i, N)$. Prove this!
- (iii) $\operatorname{Hom}_R(M, \prod_{i \in I} N_i) \cong \prod_{i \in I} \operatorname{Hom}_R(M, N_i)$. Prove this!

Definition 0.9. Let $M" \in "Mod - R$, $N" \in "R - mod$. Then an abelian group T is called a tensor product of M and N if there exists a map

$$\tau: M \times N \to T$$

Which is \mathbb{Z} -bilinear and \underline{R} -balanced, i.e.

$$\tau(mr, n) = \tau(m, rn)$$

with the following universal property.

Whenever A is an abelian group and $\sigma: M \times N \to A$ is \mathbb{Z} -bilinear and R-balanced, there exists a unique \mathbb{Z} -linear map $\sigma': T \to A$ such that this diagram commutes:

$$\begin{array}{ccc} M\times N & \stackrel{\tau}{\longrightarrow} & T \\ & \downarrow^{\sigma'} & A \end{array}$$

We denote $T = M \otimes_R N$.

Theorem 0.2. If $M" \in "Mod - R$ and $N" \in "R - mod$, then a tensor product $M \otimes_R N$ exists and is unique up to isomorphism.

Proof. Let F be the free abelian group with basis $M \times N$, i.e.

$$F = \bigotimes_{m \in M, n \in N} \mathbb{Z}(m, n)$$

Define

$$M \otimes_R N = F/U$$

where U is the submodule generated by all elements of the form

$$(m_1 + m_2, n) - (m, n) - (m_2, n)$$

 $(m, n_1 + n_2) - (m, n_1) - (m, n_2)$
 $(mr, n) - (m, rn)$

for all eligible $m_i, m \in M, n_i, n \in N, r \in R$. Define

$$\tau: M \times N \to M \otimes_R N$$
$$(m, n) \mapsto m \otimes n$$

Then τ is \mathbb{Z} -bilinear and R-balanced (check!). Moreover, $M \otimes_R N$ with τ satisfies the universal property: let A be an abelian group and $\sigma: M \times N \to A$ be \mathbb{Z} -bilinear and R-balanced. Define

$$\tilde{\sigma}: F \to A$$

$$(m,n) \mapsto \sigma(m,n)$$

and extend linearly. By construction, $\tilde{\sigma}(U) = 0$, i.e. $U \subseteq \ker(\tilde{\sigma})$. Hence there exists $\sigma' : F/U \to A$ with the property that

$$\sigma'(m,n) = \tilde{\sigma}((m,n) + n) = \tilde{\sigma}(m \otimes n)$$

Now show σ' is unique, and the proof is complete.

Lecture 6, 1/23/23

Our two mainstay types of functors:

(i) Hom functors.

(ii) Tensor functors. For (M, N) " \in " $Mod - R \times R - mod$, we constructed an abelian group $M \otimes_R N = R^{(M \times N)}/u$, together with $\tau : M \times N \to M \otimes_R N$ given by $\tau(m, n) = m \otimes n = (m, n) + u$ such that $(M \otimes_R N, \tau)$ has the key universal property.

<u>Note:</u> The elements $m \otimes n \in M \times N$ form a generating set of $M \otimes_R N$, but not a basis.

The tensor functor

We have a bifunctor $-\otimes -: Mod - R \times R - mod \to \mathbb{Z} - mod, (M, N) \mapsto M \otimes_R N$. Let $(f, g), f \in \operatorname{Hom}_R(M, M'), g \in \operatorname{Hom}(N, N')$. Then

$$f \otimes g : M \otimes_R N \to M' \otimes_R N'$$

 $m \otimes n \mapsto f(m) \otimes g(n)$

To show this is well-defined, check that $\phi: M \times N \to M' \otimes N'$, $(m, n) \mapsto f(m) \otimes g(n)$ is \mathbb{Z} -bilinear and R-balanced.

Split $-\otimes_R$ – into two functors. So, we have a functor $M\otimes_R -: R-mod \to \mathbb{Z}-mod$ and a functor $-\otimes_R N: Mod - R \to \mathbb{Z}-mod$. The action on objects and morphisms is clear from the discussion up to now.

Additional structure on $M \otimes_R N$

Suppose ${}_{S}M_{R}$ and ${}_{R}N_{T}$ are bimodules. Then $M\otimes_{R}N$ is a S-T bimodule, with

$$s(m \otimes n)t = (sm) \otimes (nt)$$

It is an exercise to check well-definedness.

Uses

Suppose $\mathbb{R}V$ is a real vector space. We want to "complexify" V, making it a complex vector space. We could consider $\mathbb{C} \times V$, and define c(d, v) = (cd, v). But this does not define a \mathbb{C} -vector space, because multiplication must be multilinear. But $\mathbb{C} \otimes_{\mathbb{R}} V$ will do it.

Basic properties

Consider $R \otimes_R M$. This is in fact isomorphic to M. Not just as Abelian groups, but as left R-modules. This is because R satisfies the associative law relative to multiplication. One isomorphism between them is $m \mapsto 1 \otimes m$.

In general, unlike the hom-functor, the tensor functor will <u>not</u> commute with direct products/coproducts, unless "the sky is very benevolent."

The meaning of $m \otimes n$ depends on the meaning of M, N!

Example 0.10. Consider $2 \otimes \overline{1} \in \mathbb{Z} \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z})$. This is the same as $1 \otimes \overline{2} = 1 \otimes 0 = 0$. By contrast, look at $2 \otimes \overline{1} \in 2\mathbb{Z} \otimes (\mathbb{Z}/2\mathbb{Z})$. This is nonzero! Let's show that. We know $2\mathbb{Z} \cong \mathbb{Z}$, with an isomorphism given by $x \mapsto \frac{x}{2}$. So

$$f \otimes \operatorname{Id}_{\mathbb{Z}/2\mathbb{Z}} : 2\mathbb{Z} \otimes (\mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z} \otimes (\mathbb{Z}/2\mathbb{Z})$$

 $x \otimes y \mapsto f(x) \otimes y$

But functors take isomorphisms to isomorphisms, so $\underbrace{2 \otimes \overline{1}}_{\in 2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}} \mapsto \underbrace{1 \otimes \overline{1}}_{\in 2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z}} \neq 0$. Why is this last term nonzero? Because $\mathbb{Z} \otimes (\mathbb{Z}/2\mathbb{Z}) \simeq \mathbb{Z}$

this last term nonzero? Because $\mathbb{Z} \otimes (\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}$, with the isomorphism sending $1 \otimes \overline{1}$ to $\overline{1}$, which is not zero.

Natural Transformations, Equivalences, and Dualities

Definition 0.10. 1. Let $F, G : \mathcal{C} \to \mathcal{D}$ be functors. A morphism of functors, or a natural transformation from F to G, is a family $(\phi(C))_{C \in \mathrm{Obj}(\mathcal{C})}$ of morphisms, $\phi(C) : F(C) \to G(C)$ such that for any $f \in \mathrm{Hom}_{\mathcal{C}}(C, C')$, the square

$$F(C) \xrightarrow{F(f)} F(C')$$

$$\phi(C) \downarrow \qquad \qquad \downarrow \phi(C)$$

$$G(C) \xrightarrow{G(f)} G(C')$$

commutes for all eligible morphisms f in the category C. This is a covariant equivalence. A contravariant equivalence is an equivalence between contravariant functors, i.e. it makes the following square commute.

$$F(C) \xleftarrow{F(f)} F(C')$$

$$\phi(C) \downarrow \qquad \qquad \downarrow \phi(C)$$

$$G(C) \xleftarrow{G(f)} G(C')$$

2. Call $(\phi(C))_{C \in \mathrm{"Obj}(\mathcal{C})}$ an isomorphism of functors, or a natural equivalence, if $\phi(C)$ is an isomorphism for each $C \in \mathrm{"Obj}(\mathcal{C})$.

- **3.** Two categories \mathcal{C}, \mathcal{D} are equivalent categories if there are functors $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ such that $G \circ F \simeq \operatorname{Id}_{\mathcal{C}}$ and $F \circ G \simeq \operatorname{Id}_{\mathcal{D}}$, with " \simeq " meaning "is naturally equivalent to." The F, G are called "mutually inverse equivalences."
- **4.** A contravariant equivalence is called a duality.
- **5.** Let R, S be rings. Call R, S Morita equivalent, denoted $R \sim S$, if R-mod, S-mod are naturally equivalent. This is equivalent to saying mod R, mod S are equivalent.

Lecture 7, 1/25/23

Definition 0.11. Let $F: \mathcal{C} \to \mathcal{D}, G: \mathcal{D} \to \mathcal{C}$ be functors. We say that (F, G) form an adjoint pair if the following two bifunctors $\mathcal{C} \times \mathcal{D} \to \mathsf{Set}$ are naturally isomorphic:

$$\operatorname{Hom}_{\mathcal{D}}(F(-), -) \cong \operatorname{Hom}_{\mathcal{C}}(-, G(-))$$

That is, for every (C, D) " \in " $\mathcal{C} \times \mathcal{D}$, we have an isomorphism

$$\phi(C,D): \operatorname{Hom}_{\mathcal{D}}(F(C),D) \to \operatorname{Hom}_{\mathcal{C}}(C,G(D))$$

and the collection of all $\phi(C, D)$ form a natural isomorphism.

$$\operatorname{Hom}_{\mathcal{D}}(F(C), D) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(C'), D')$$

$$\downarrow^{\phi_{C,D}} \qquad \qquad \downarrow^{\phi_{C',D'}}$$

$$\operatorname{Hom}_{\mathcal{C}}(C, G(D)) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(C', G(D'))$$

Example 0.11.

- **1.** (a) $R \otimes_R \cong \operatorname{Id}_{R-mod}$. $R \otimes_R : R mod \to R mod$ is well-defined since ${}_RR_R$ is a bimodule.
 - (b) $\operatorname{Hom}_R({}_RR_R, -) \cong \operatorname{Id}_{mod-R}$
- **2.** For any ring R, $R \sim M_n(R)$, where \sim indicates Morita equivalence, defined above. Why? Let $_RF = R^n$, $S = \operatorname{End}_R(F) \cong M_n(R)$. Let $F^* =_R (\operatorname{Hom}(_SF, R))_S$

Claim. The functors $\operatorname{Hom}(F,-): mod-R \to mod-S, \operatorname{Hom}(F^*,-): mod-S \to mod-R$ are mutually inverse functors.

Proof. We want to show that, for $M'' \in "Mod - R$,

$$\operatorname{Id}_{Mod-R} \cong \operatorname{Hom}_S(F^*, \operatorname{Hom}_R(F, -))$$

Consider

$$\Phi(M): m \mapsto (F^* = \operatorname{Hom}(F, R) \ni f \mapsto (x \mapsto mf(x)))$$

Check that this is a R-module hiomomorphisms, and in fact an isomorphism of R-modules.

Let R = k be a field. Then we have a duality

$$k - mod \rightarrow k - mod$$

Let $v \in k - mod$, and consider

$$\Phi(V): V \to V^{**} = \operatorname{Hom}_k(\operatorname{Hom}_k(V, k), k)$$

, and

$$x \mapsto (\operatorname{Hom}_k(V, K) \ni f \mapsto f(x) \in k)$$

A duality from k - mod to k - mod.

We may extend Φ to a functor $k-Mod \to k-Mod$, but this is not surjective if dim $V=\infty$ (homework problem). So we have a natural equivalence $\mathrm{Id}_{k-mod}\cong (-)^{**}$

Here is an examples of an adjoint pair. Let ${}_SB_R$ be an S-R bimodule. Then the functor

$$B \otimes_R -: R \to R - mod$$

is a left adjoint to

$$\operatorname{Hom}_S(R,-): S-mod \to R-mod$$

Lecture 8, 1/27/23

Section 4: Additive and Abelian categories

Definition 0.12. A pre-additive category C is called <u>an additive category</u> if it has a zero object, and finite direct sums/products.

Definition 0.13. An additive category C is called an Abelian category if every map f has a kernel and cokernal, and every mono is a kernel, and every epi is a cokernel.

Example 0.12. In the category of rings (we assume these are unital rings, so this category is <u>not</u> preadditive, recall) there are categorical epis that fail to be surjective. For example, $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$ is a categorical epimorphism.

Let $g, h \in \operatorname{Hom}_{\mathsf{Ring}}(\mathbb{Q}, R)$ be such that gf = hf. Then $g|_{\mathbb{Z}} = h|_{\mathbb{Z}}$, so it follows that g = h.

In R - mod, R - comp, categorical monos coincide with injective homomorphisms, and similarly, categorical epimorphisms coincide with surjections.

Example 0.13. of Abelian categories:

R-Mod, in particular $\mathbb{Z}-Mod=\mathsf{Ab},\ R-comp$. Let $\mathscr{T}-\mathsf{Ab}$ be the full subcategory of Ab consisting of the torsion Abelian groups.

Is the full subcategory of Ab consisting of torsion-free groups Abelian? No! The map $f: \mathbb{Z} \to \mathbb{Z}$ given by multiplication by 2 doesn't have a cokernel.

R-mod is not Abelian if R is not left Noetherian!!!! (A ring is left Noetherian if every left ideal is finitely generated). But R-Mod

For example, let k be a field, and consider $R = k^{\mathbb{N}}$. Let $I = k^{(\mathbb{N})}$ (which means the direct sum, as opposed to the direct product). This is not a finitely generated left ideal, and $I \hookrightarrow R$. But $\pi: R \to R/I$ does <u>not</u> have a kernel in R-mod even though R, R/I are in R-mod, because we will get something not in R-mod, but in R-Mod. She started talking about some stuff we won't see until later, and said it was "music of the future."

Chapter 2: On the road to derived functors

Section 1: Exactness properties of functors

Note: We'll develop the theory for the Abelian category R - mod, but it easily adapts to arbitrary categories.

Definition 0.14. Let R, S be rings, F an additive functor from R-mod to S-mod.

1. F is called <u>exact</u> if for all exact sequences

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

the sequence

$$0 \longrightarrow FA \stackrel{Ff}{\longrightarrow} FB \stackrel{Fg}{\longrightarrow} FC \longrightarrow 0$$

is also exact. If F is contravariant, then instead we want the sequence

$$0 \longrightarrow FC \stackrel{Fg}{\longrightarrow} FB \stackrel{Ff}{\longrightarrow} FA \longrightarrow 0$$

to be exact.

2. F is called <u>left-exact</u> or <u>right-exact</u> if it sends left (or right) exact sequences to left (or right) exact sequences

Lecture 9, 2/1/23

Recall:

A functor $F: R-mod \to S-mod$ is left-exact if for all exact sequences

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$$

the sequence

$$0 \longrightarrow FA \stackrel{Ff}{\longrightarrow} FB \stackrel{Fg}{\longrightarrow} FC$$

is exact. Similarly, it is right exact if the image of

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is exact.

Remark. 1. A functor $F: R-Mod \to S-Mod$ induces a functor $F: R-comp \to S-comp$.

- **2.** If $F \cong G : R mod \to S mod$ (meaning F, G are naturally isomorphic), then F, G have the same exactness properties.
- **3.** If $F: R-mod \to S-mod$ is an equivalence (or a duality) then F is exact. Theorem 0.3. (our favorite functors)
- **1.** Let $M'' \in "R Mod$. Then $\operatorname{Hom}_R(M, -)$ and $\operatorname{Hom}_R(-, M)$ are left-exact functors from $R Mod \to \mathbb{Z} Mod$.
- **2.** Let $M'' \in "Mod R$. Then $M \otimes_R : R mod \to \mathbb{Z} mod$ is right exact.

Proof. Note: Starting from now, I will denote the image of f under the functor $\operatorname{Hom}_R(M,-)$ by f*. The reason is that for some reason tikzed won't let me but Hom_R inside an arrow's name.

We'll just prove part 1 for the covariant Hom. The contravariant case is homework. So, we want to show that $\operatorname{Hom}_R(M,-)$ is left-exact. Let

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$$

be exact in R-Mod. Then its image is a complex

$$0 \longrightarrow \operatorname{Hom}_R(M,A) \xrightarrow{f*} \operatorname{Hom}_R(M,B) \xrightarrow{g*} \operatorname{Hom}_R(M,C)$$

For $\phi: M \to A$, $f * (\phi) = f \circ \phi$, and similarly for g*.

We first show that f* is a mono: Indeed, from $f \circ \phi = 0$, we obtain $\phi = 0$, since f is a mono. So the sequence is exact at $\operatorname{Hom}_R(M, A)$.

We know $\operatorname{Im}(\operatorname{Hom}_R(M, f)) \subseteq \ker(\operatorname{Hom}_R(M, g))$. To show the reverse direction, let $\psi \in \ker(\operatorname{Hom}_R(M, g))$, i.e. $g \circ \psi = 0$, i.e. $\operatorname{Im}(\psi) \subseteq \ker(\psi)$. Consider

$$0 \longrightarrow A \stackrel{\tilde{f}}{\longrightarrow} \operatorname{Im}(f) \hookrightarrow B \longrightarrow C \longrightarrow 0$$

Set $\phi = \tilde{f}^{-1} \circ \psi$ and check that $\operatorname{Hom}_R(M, f)(\phi) = \underbrace{f \circ \tilde{f}^{-1}}_{=\operatorname{Id}_A} \circ \psi = \psi$. So $\psi \in$

 $\operatorname{Im}(\operatorname{Hom}(M,f))$. This gives exactness at $\operatorname{Hom}_R(M,B)$. So, we have shown that the covariant Hom functor is left-exact.

Now for part 2.

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be exact in R-Mod. The sequence

$$M \otimes_R A \xrightarrow{f*} M \otimes_R B \xrightarrow{g*} M \otimes_R C \longrightarrow 0$$

is a complex. Clearly, $M \otimes_R g, m \otimes b \mapsto m \otimes_R (f(g))$ is an epi because g is an epi. We have $\underbrace{\operatorname{Im}(M \otimes_R f)}_{} \subseteq \ker(M \otimes_R g)$ (Birge - "The image of $M \otimes_R f$, which I

baptize E, \dots "), and we want the reverse inclusion. Factor $M \otimes_R g$ in the form $M \otimes B \to M \otimes_R B/E \to M \otimes_R C$. (I missed a bit here because TeXwriter was being wonky, so this proof is nonsense I think. It's a standard proof that can be googled tho). Then $M \otimes_R g = G \circ ?$, so $\ker(G) = \ker(M \otimes g)/E$. Thus suffices to show that G is a mono.

Plan: Construct $H \in \operatorname{Hom}_{\mathbb{Z}}(M \otimes_R C, M \otimes_R B/E)$ such that $HG = \operatorname{Id}_{M \otimes_R B/E}$ Define $H' : M \times C \to M \otimes_R B/E$ by $(m, c) \mapsto (m \otimes b + E)$, where $b \in B$ is such that q(b) = c. We check well-definedness.

Suppose $g(b) = g(b'), b, b' \in B$. Then $b - b' \in \ker(g) = \operatorname{Im}(f)$ by hypothesis, hence $m \otimes_R b - m \otimes_R b' = m \otimes (b - b') \in E$, thus $m \otimes_R b + E = m \otimes_R b' + E$. Check H' is \mathbb{Z} -bilinear and R-balanced.

Hence the universal property of the tensor product yields $H \in \text{Hom}_{\mathbb{Z}}(M \otimes C', M \otimes B/E)$ with $H(m \otimes c) = m \otimes b$, where g(b) = c.

Example 0.14. Here are some examples showing that in general, we shouldn't expect better than this previous theorem. That is, some witnesses to the non-left(right) exactness of $\operatorname{Hom}_R(M, -)(\operatorname{resp.} M \otimes_R -)$

Definition 0.15. (i) Let $A \in \mathbb{Z} - Mod$. Then $a \in A$ is a <u>torsion element</u> iff there exists $n \in \mathbb{Z} \setminus \{0\}$ such that $n \cdot a = 0$. We use T(A) to denote the torsion elements of A, which will always be a subgroup.

We say that A is torsion iff A = T(A), and we say A is <u>torsion-free</u> iff T(A) = 0.

(ii) $a \in A$ is <u>divisible</u> iff $a \in nA$ for all $n \in \mathbb{Z} \setminus \{0\}$ (i.e. there exists $b \in A$ such that a = nb). An abelian group is called a <u>divisible</u> group if every element is divisible, i.e. if nA = A for every $n \in \mathbb{Z} \setminus \{0\}$.

Remark. If $f \in \text{Hom}_{\mathbb{Z}}(A, B)$ and A is divisible, then f(A) is a divisible subbgroup of B.

Lecture 10, 2/3/23

Consider the sequence

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

This sequence is exact. However, $\operatorname{Hom}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) = 0$, and $\operatorname{Hom}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \neq 0$. So the image of this sequence under the functor $\operatorname{Hom}(\mathbb{Z}/2\mathbb{Z},-)$ is not exact (in particular, it is not exact on the right).

The above argument will work for any integer instead of 2, so this sequence is a witness to the inexactness of the functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},-)$ for $n\geq 2$.

Consider an epi $g: \mathbb{Z}^{(\mathbb{N})} \to \mathbb{Q}$, and apply F. The map

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z}^{(\mathbb{N})}) \xrightarrow{F(g)} \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q})$$

cannot be an epi, as $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}^{(\mathbb{N})}) = 0$ (as \mathbb{Q} is divisible while $\mathbb{Z}^{(\mathbb{N})}$ is reduced), but $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}) \neq 0$.

Example 0.15. Here is an example to show that the tensor functor is not left-exact. Let $R = \mathbb{Z}$. We consider the functor $F(-) = \mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} -$, $n \geq 2$. Consider the inclusion $\mathbb{Z} \stackrel{\iota}{\longleftrightarrow} \mathbb{Q}$. This is a mono. However, $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$, so $F(\iota) : \mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} \to 0$. Hoever, $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} = \mathbb{Z}/n\mathbb{Z} \neq 0$, so $F(\iota)$ is not a mono.

Short-term program

- 1. Find exact functors
- **2.** Characterize the exact sequences \mathbb{A} in R-comp such that $F(\mathbb{A})$ is exact in S-comp for any additive functor $F: R-mod \to S-mod$.

Theorem 0.4. If $F: R-mod \to S-mod$ is an exact functor (i.e. F takes short exact sequences to short exact sequences) then $F(\mathbb{A})$ is exact in S-mod whenever

$$\mathbb{A}: \quad \cdot \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_n \xrightarrow{f} A_{n-1} \xrightarrow{f_{n-1}} \cdots$$

is exact in R - mod.

Proof. Suppose $F: R-mod \to S-mod$ is exact, and \mathbb{A} as in the claim is an exact sequence in R-mod. We can factor each f_n

$$A_n \xrightarrow{\tilde{f_n}} \operatorname{Im}(A) \xrightarrow{\iota_n} A_{n-1}$$

$$x \longrightarrow f_n(x_n) \longrightarrow f_n(x_n)$$

Consider the short exact sequence

$$0 \longrightarrow \operatorname{Im}(f_{n+1}) \xrightarrow{\iota_{n+1}} A_n \xrightarrow{\tilde{f}_n} \operatorname{Im}(f_n) \longrightarrow 0$$

Since F is exact, we obtain an exact sequence

$$0 \longrightarrow F(\operatorname{Im}(f_{n+1})) \xrightarrow{F(\iota_{n+1})} F(A_n) \xrightarrow{F(\tilde{f}_n)} F(\operatorname{Im}(\tilde{f}_n)) \longrightarrow 0$$

In particular $\operatorname{Im}(F(\iota_{n+1})) = \ker(F(\tilde{f}_n))$ for $n \in \mathbb{N}$. Claim.

- (a) $\ker(F(f_n)) = \ker(F(\tilde{f_n}))$
- (b) $\ker(F(\tilde{f}_n)) = \operatorname{Im}(F(\iota_{n+1})) = \operatorname{Im}(F(f_{n+1}))$

Proof. (a) $f_n = \iota_n \circ \tilde{f}_n$, so $F(f_n) = F(\iota_n) \circ F(\tilde{f}_n)$ by functoriality. Because F is exact, $F(\iota_n)$ is a mono, so $\ker(F(f_n)) = \ker(F(\tilde{f}_n))$.

(b) $F(f_{n+1}) = F(\iota_{n+1}) \circ F(\tilde{f}_{n+1})$. Because F is exact, $F(\tilde{f}_{n+1})$ is an epi. So $\operatorname{im}(F(f_{n+1})) = \operatorname{Im}(F(\iota_{n+1}))$, so we have shown $F(\mathbb{A})$ is exact.

First installment of finding exact functors.

Proposition 1. Let I be a set (index set). Consider the functors:

$$(R - Mod)^{I} \to R - Mod$$

$$(m_{i})_{i \in I} \mapsto \prod_{i \in I} m_{i}$$

$$(f_{i})_{i \in I} \mapsto \prod_{i \in I} f_{i}, (\vec{m})_{j} = f_{j}(m_{j})$$

 $\bigotimes_{i \in I}$ works the same as before. Both of them are exact.

Proof. Obvious

First installment re (2)

Remark. Warning: Birge uses nonstandard notation. She says "X is a direct summand of Y" to mean $X \subseteq \bigoplus Y$

Definition 0.16. Let A, B " \in " $R - mod, f \in \operatorname{Hom}_R(A, B)$. f is called <u>split</u> if ker f is a direct summand of A and $\operatorname{Im}(f)$ is a direct summand of B, i.e. there exist A', B' " \in "R - Mod with $A = \ker(f)^{\oplus}A'$ and $B = \operatorname{Im}(f)^{\oplus}B'$.

Lecture 11, 2/6/23

Convention: Let M, N " \in "R-Mod. We say that N is a direct summand of M, written $N \subseteq^{\oplus} M$, if there exists U " \in "R-Mod such that $M=N^{\oplus}U$.

Definition 0.17. Let $\mathbb{A} \in R - comp$. Then \mathbb{A} is split if f_n is split for all n.

Proposition 2. Let A, B, C be left R-modules, $f \in \operatorname{Hom}_R(A, B)$ and $h \in \operatorname{Hom}_R(B, C)$. Then the following conditions are equivalent:

- **1.** The sequence $0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$ is split exact.
- **2.** There exists $f' \in \operatorname{Hom}_R(B,A)$ and $g' \in \operatorname{Hom}_R(C,B)$ such that $ff' + g'g = \operatorname{Id}_B$, and both triangles in the diagram below commute:

$$\begin{array}{cccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
\parallel & & & \downarrow & & \parallel \\
A & & & & & C
\end{array}$$

Proof.

Theorem 0.5. Let
$$\mathbb{A}: \cdots \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_n \xrightarrow{f_n} A_{n-1} \longrightarrow \cdots$$
 " $\in "R-comp.$

Then the following are equivalent:

- **1.** For all additive functors $F: R-Mod \to S-Mod$ (S any ring), the sequence $F(\mathbb{A})$ is split exact.
- **2.** A is split exact.

Proof. For $1 \implies 2$, apply $F = \operatorname{Id}_{R-Mod}$.

For $2 \implies 1$, suppose 2. We will show 1 only in the case $\mathbb{A} = 0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$ is split exact. Move to general \mathbb{A} as in the proof of previous theorem. By the proposition, there exist maps $f' \in \operatorname{Hom}_R(B,A)$, $g' \in \operatorname{Hom}_R(C,B)$ with $\operatorname{Id}_B = ff' + g'g$. Let F be an additive functor as in 1. Then

$$Id_{F(B)} = F(Id_B)$$

= $F(f)F(f') + F(g')F(g)$

So by the proposition, the sequence

$$0 \longrightarrow F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(c) \longrightarrow 0$$

is split exact.

Example 0.16. There exist exact sequences

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

such that $B \cong A \oplus C$, but the sequence fails to be split.

Take $R = \mathbb{Z}$, let $n \geq 2$, $A = n\mathbb{Z}$, $B = \mathbb{Z} \oplus (\mathbb{Z}/n\mathbb{Z})^{(\mathbb{N})}$, and $C = (\mathbb{Z}/n\mathbb{Z})^{(\mathbb{N})}$. Then $A \oplus C \cong B$.

Find $f \in \text{Hom}_{\mathbb{Z}}(A, B), g \in \text{Hom}_{\mathbb{Z}}(B, C)$, such that

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0$$

is exact, but not split.

Section 2: Projective Modules

Our aim is to characterize those $M'' \in R-Mod$ for which $\operatorname{Hom}_R(M,-): R-Mod \to \mathbb{Z}-Mod$ is exact.

Definition 0.18.

- 1. $_RF$ is free if $_RF \cong_R R^{(I)}$. It is known that $_RF$ is free iff F has an R-basis, that is, a linearly independent generating set.
- **2.** $_RP$ " \in "R-Mod is called <u>projective</u> if P is isomorphic to a direct summand of a free module.

Example 0.17.

- 1. Vector spaces
- **2.** Let k be a field and $R = k \oplus k$ (ring product). Then R admits projective modules that fail to be free. Let $e_1 = (1,0), e_2 = (0,1)$. Then $Re_1 = k \times \{0\}, Re_2 = \{0\} \times k$. We have $R = Re_1 \oplus Re_2$, so the Re_i are projective. However, they are not free, because $\dim_k(R) = 2, \dim_k(Re_i) = 1$

Remark.

- **1.** Let $(R_i)_{i\in I}$ be a family of left R-modules. Then $\bigoplus_{i\in I} P_i$ is projective if and only if P_i is projective for all $i\in I$.
- **2.** $\prod_{i \in I} P_i$ need not be projective for infinite I.
- **3.** Let R be a PID. The projective R-modules are precisely the free ones. Such R include $R = \mathbb{Z}, R = k[x], k$ a field.
- **4.** $\mathbb{Z}^{\mathbb{N}}$ is <u>NOT</u> free (proof to come), and hence not projective.
- **5.** (Serre's Conjecture) If $R = k[x_1, \ldots, x_n]$, k a field, is every projective R-module free? It turns out yes, and there are independent proofs by Suslin and Quillen (Quillen got the fields medal).

Lecture 12, 2/8/23

<u>True or false</u>: If P " \in "R-Mod is finitely generated projective, then there exists $n \in \mathbb{N}$ such that P is isomorphic to a direct summand ${}_{R}R^{n}$?

This is true. It is isomorphic to a direct summand of a free module $R^{(I)}$. Pick finite $I' \subseteq I$ with $x_k \in \bigoplus_{i \in I'} R_i$. Then $P \subseteq \bigoplus_{i \in I'} R \cong R^n$, with n = |I'| and hence P is isomorphic to a direct summand of R^n .

Let R = K[x, y]. Then P = (x) is not projective, despite being a submodule of R. In general: If ${}_RV \subseteq_R U \subseteq_R M$, and $V \subseteq^{\oplus} M$, then $V \subseteq^{\oplus} U$. Look up the "modular law."

Theorem 0.6. For $M'' \in R - Mod$, the following are equivalent.

- 1. M is projective
- **2.** $\operatorname{Hom}_R(M,-): R-mod \to \mathbb{Z}-mod \text{ is exact.}$
- **3.** Whenever $f \in \operatorname{Hom}_R(B,C)$ is an epi and $g \in \operatorname{Hom}_R(M,C)$, then there exists $a \phi \in \operatorname{Hom}_R(M,B)$ with $f \circ \phi = g$. That is, there is a ϕ making the following diagram commutes.

$$B \xrightarrow{f} C \longrightarrow 0$$

$$\downarrow^g M$$

4. Every epi onto M splits. That is, every surjection onto M admits a section. For the following proof, we will abbreviate $\operatorname{Hom}_R(M,-)$ by [M,-]. Proof.

$$\mathbf{0.1} \quad (1) \implies (3)$$

We have $M \subseteq_R^{\oplus} F$, F free on basis $(x_i)_{i \in I}$, $F = M \oplus N$. Let f and g be as in 3. That is, we have

$$B \xrightarrow{f} C$$

$$\uparrow^{g}$$

$$M$$

$$\uparrow^{\pi}$$

$$F$$

where $\pi: F \to M$ is the projection along N, and $\iota: M \hookrightarrow F$ the embedding. There is a $\psi: F \to B$ which makes this commute:

defined by $\psi(x_i) = b_i$ if $f(b_i) = g\pi(x_i)$. This is well-defined because F is free on the x_i , and the b_i exist because f is an epi Then, we have $f \circ \psi = g \circ \pi$, so $f \circ \psi \circ \iota = g \circ \pi \circ \iota$. But $\pi \circ \iota = \mathrm{Id}_M$, so $f \circ (\psi \circ \iota) = g$. But that means $\phi = \psi \circ \iota : M \to B$ makes the diagram commute:

$$(3) \implies (2)$$

Assume 3. Since [M, -] is a left-exact functor, it suffices to show that [M, -] takes epis to epis.

Let $B \xrightarrow{f} C \longrightarrow 0$ be exact. To show $[M, f] : [M, B] \to [M, C]$ is an epi, let $g \in [M, C]$. By assumption, there exists $\phi \in [M, B]$ with $f^*(\phi) = g$. But this means $\phi^*(f) = g$.

$$(2) \implies (4)$$

Assume 2. Let $f: N \to M$ be an epi. Then by assumption, $[M, f]: [M, B] \to [M, C]$ is an epi. So there exists $\phi \in [M, N]$ with $f \circ \phi = \text{Id}$. So the following diagram

commutes:

$$M \xrightarrow{\phi} N$$

$$\parallel \qquad \downarrow \qquad \qquad M$$

$$M$$

Hence $N = \operatorname{Im}(\phi) \oplus \ker(f)$, so $\ker(f) \subseteq^{\oplus} N$, and f splits.

$$(4) \implies (1)$$

Assume 4. If $(m_i)_{i\in I}$ is a generating set for M, then $F = R^{(I)} \to M$, given by $(r_i) \mapsto \sum_{i\in I} r_i m_i$, (which will be a finite sum because all but finitely many r_i are zero) is an epi.

By assumption, f splits, meaning $F = \ker(f) \oplus N$. Then $N \cong F / \ker(f) \cong M$. So M is isomorphic to a direct summand of F.

This completes the proof.

Further examples of projective modules and structure results

Example 0.18.

1. Let R be a ring. All M " \in "R-Mod are projective if and only every submodule U of any left R-module N is a direct summand, i.e. $N=U\oplus V$.

(=>) Let $_RU\subseteq_RN$. Take M=N/U and epi $\pi:N\to N/U$. Since N/U is projective, π splits, meaning $U\subseteq^{\oplus}A$.

(<=) Easy

Equivalently, if R is semi-simple when viewed as a right module over itself, R_R .

Lecture 13, 2/10/23

Proposition 3. (Baer) $\mathbb{Z}^{\mathbb{N}}$ is not free.

Proof. (not by Baer)

Assume $\mathbb{Z}^{\mathbb{N}}$ is free, i.e. there exists an isomorphism $\mathbb{Z}^{\mathbb{N}} \cong \mathbb{Z}^{(I)}$ for some I. Then $|I| > \aleph_0$. Pick a countable subset $I' \subset I$ such that $f(\mathbb{Z}^{(\mathbb{N})}) \subseteq \mathbb{Z}^{(I')}$ and consider the map \overline{f} induced by f,

$$\overline{f}: \mathbb{Z}^{\mathbb{N}}/\mathbb{Z}^{(\mathbb{N})} \to \mathbb{Z}^{(I)}/\mathbb{Z}^{(I')} \cong \mathbb{Z}^{(I\setminus I')}$$
$$x + \mathbb{Z}^{(\mathbb{N})} \mapsto f(x) + \mathbb{Z}^{(I')}$$

In particular, $\mathbb{Z}^{(I\setminus I')}$ is nonzero and free, because I is uncountable and I' is countable.

Now, if F is a free abelian group, F contains no nonzero elements which are divisible by 3^n for all $n \in \mathbb{N}$.

Let $S = \{(z_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}} \mid 3^n \mid z_n \text{ for } n \in \mathbb{N}\}$. Note S is uncountable.

Since $\mathbb{Z}^{(I')}$ is countable, there exists $s \in S$ with $f(s) \in \mathbb{Z}^{(I')}$ and thus $f(s) + \mathbb{Z}^{(I')} \neq 0$ in $\mathbb{Z}^{(I \setminus I')}$.

Hence
$$\overline{f}(s + \mathbb{Z}^{(\mathbb{N})}) \neq 0 \in \underbrace{\mathbb{Z}^{(I \setminus I')}}_{\text{free}}$$
.

Thus $\mathbb{Z}^{(I\setminus I')}$ contains nonzero elements divisible by 3^n for all n, a contradiction. Recall that projective means isomorphic to a summand of a free module $R^{(I)}$ for some I.

Legeneral, projectives in R-Mod are <u>not</u> direct sums of finitely generated modules.

Theorem 0.7. (Kaplensky)

Let $P \in R$ -Mod be projective. Then P is the sum of countably generated modules.

Proof. Not enough time.

Corollary 0.8. If R is local, then all projective R-modules are free.

Proof.

Section 3:Projective resolutions and projective dimension

Idea:

Let $M'' \in R$ -mod. Approximate $f_0: P_0 \to M \to 0$

Error: $\ker(f_0)$. Next approximate $f_1: P_1 \to \ker(f_0) \to 0$, with P_1 projective. This results in a sequence

Definition 0.19. Let $M'' \in R$ -Mod. A projective resolution of M is an exact sequence

$$\cdots \longrightarrow P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \longrightarrow 0$$

where all P_i are exact.

Call such a projective resolution finite of length n if $P_n \neq 0$, but $P_m = 0$ for m > n.

Definition 0.20. We define the <u>projective dimension</u> of a module M as follows. If there is no finite projective resolution, then it is ∞ . Otherwise it is the smallest n suuch there exists a projective resolution of length n. By convention, the projective dimension of the zero module is $-\infty$.

We denote this by pdim M.

The (left) global dimension of a ring R is the defined as gldim $R = \sup\{\text{pdim } M \mid M" \in "R - Mod\}$. There is also of course the right global dimension, where instead we consider Mod - R.

Example 0.19.

- gldim $\mathbb{Z} = 1$.
- $\operatorname{lgldim} R = 0$ if and only if R is semisimple, which happens if and only if $\operatorname{rgldim} R = 0$.

•

$$\begin{pmatrix} K & \cdots & K \\ \vdots & \vdots & \\ 0 & \cdots & K \end{pmatrix} \not\supseteq \begin{pmatrix} 0 & K & \cdots K \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix}$$

not semisimple, so $\operatorname{lgldim} R \geq 1$. In fact, = holds (argument later).

 \bullet This is Hilbert's Syzygy theorem. It says that if K is a field, then

$$\operatorname{gldim} K[x_1,\ldots,x_n]=n$$

• $R = \mathbb{Z}/p^n\mathbb{Z}$, p prime, $n \geq 2$.

Lecture 14, 2/13/23

Lecture 15, 2/17/23

Section 4, part A: Injective modules

Definition 0.21. A module is called injective if, for every such diagram of R-modules

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M$$

$$\downarrow^{\phi}$$

$$Q$$

with f injective, then there is a $\psi: M \to Q$ making the following diagram commute:

$$0 \longrightarrow M' \xrightarrow{f} M$$

$$\downarrow^{\phi}_{\exists \psi}$$

Proposition 4. (Baer's Criterion)

A module M " \in " R-Mod is injective if and only if whenever $I\subseteq R$ is an ideal and $y\in \operatorname{Hom}_R(I,M)$, there exists $\Phi\in \operatorname{Hom}_R(R,M)$ such that $\Phi|_I=y$.

Proof. online, also proven in 220B.

Section 4, part B: Injective modules over a PID

Theorem 0.9. Let R be a PID and $R" \in "R-Mod$. Then the following are equivalent:

- (i) M is injective.
- (ii) M is divisible, meaning that aM = M for all nonzero $a \in R$.

Proof. First, assume (1). And let a be a nonzero element of R. Fix $x \in M$ and consider

$$I = Ra \longleftrightarrow R$$

$$\downarrow g \downarrow \qquad \exists \psi$$

$$M$$

So $g(a) = g(a \cdot 1) = \psi(a \cdot 1) = a \cdot \psi(1) \in aM$.

Assume (2). We'll apply Baer. So let $RI \hookrightarrow_R R$ and $\varphi \in \text{Hom}_R(I, M)$.

We know I = Ra, and without loss of generality $a \neq 0$. So by hypothesis there exists an $x \in M$ with $\varphi(a) = a \cdot x$. Define $\phi \in \operatorname{Hom}_R(R, M), \gamma \mapsto \gamma x$, check that $\phi|_I = \varphi$, and that does it.

So now we know the injective Abelian groups are precisely the divisible Abelian groups.

Example 0.20.

 $\mathbb{Q}, \mathbb{Z}(p^{\infty})$, Prüfer groups for p prime.

Above, $\mathbb{Z}(p^{\infty})$ is defined as follows. Start with $\oplus \mathbb{Z}[x_i]/U(p)$, where $\mathbb{Z}[x_i]$ is a free group, and U(p) is the subgroup of $\sum_{i\in\mathbb{N}}\mathbb{Z}[x_i]$ generated by $px_1+\cdots+px_{i-1}-x_i$ for all $i\in\mathbb{N}$.

We find $\mathbb{Z}[\overline{x_i}] \cong \mathbb{Z}/p^i\mathbb{Z}$.

Remark. If T is a torsion Abelian group, then T is the direct sum $\bigoplus_{p \text{ prime}} T_p$, where $T_p = \{x \in T \mid p^n x = 0 \text{ for some } n\}.$

Theorem 0.10. $A'' \in \mathbb{Z} - Mod$ is divisible iff $A \cong \mathbb{Q}^{(I)} \oplus \bigoplus_{p \text{ prime}} (\mathbb{Z}/(p^{\infty}))$

Proof. exercise

Part C: Injective resolutions

Theorem 0.11. (Eckmann)

Every left R-module is a submodule of an injective module.

Lemma 1. If $M" \in "\mathbb{Z} - Mod$, then there exists a divisible $D" \in "\mathbb{Z} - Mod$ such that M is isomorphic to a submodule of D.

Proof. We know $M \cong \mathbb{Z}^{(I)}/K$ for some subgroup $K \subseteq \mathbb{Z}^{(I)}$. But everything here is divisible.

Lecture 16, 2/22/23

Consider the bimodule $\mathbb{Z}R_R$ and note $R \otimes_R -$ is exact, as $R \otimes_R -$ is isomorphic to the identity.

Lemma 2. If $D \in \mathbb{Z} - mod$ is a divisible Abelian group, then the left R-module $R \to \mathbb{Z}$ Hom $\mathbb{Z}(R_R, D)$ is injective.

Proof. Set $E = \text{Hom}_{\mathbb{Z}}(R, D)$ " \in " \mathbb{R} -Mod for a divisible D. To show injectivity of ${}_{R}E$, let

$$0 \longrightarrow {_R}U \stackrel{f}{\longrightarrow} {_R}V \stackrel{g}{\longrightarrow} {_R}W \longrightarrow 0$$

be an exact sequence in R-Mod.

Then

$$0 \longrightarrow R \otimes_R U \longrightarrow R \otimes_R V \longrightarrow R \otimes_R W \longrightarrow 0$$

is exact. Since $\mathbb{Z}D$ is injective, the sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R \otimes_R W, D) \stackrel{g^*}{\longrightarrow} \operatorname{Hom}_{\mathbb{Z}}(R \otimes_R V, D) \stackrel{f^*}{\longrightarrow} \operatorname{Hom}_{\mathbb{Z}}(R \otimes_R U, D) \longrightarrow 0$$

is exact, where f^*, g^* are the maps induced from f and g. But by the tensor-hom adjunction, we know $\operatorname{Hom}_{\mathbb{Z}}(R \otimes_R -, D) \cong \operatorname{Hom}_R(-, E)$ naturally. So the sequence

$$0 \longrightarrow \operatorname{Hom}_R(W, E) \longrightarrow \operatorname{Hom}_R(V, E) \longrightarrow \operatorname{Hom}_R(U, E) \longrightarrow 0$$

is exact. Thus E is injective.

Recall that we are trying to prove that every left R-module is a submodule of an injective module.

Proof. We have $_RM \cong \operatorname{Hom}_R(R_R, M) \subseteq \operatorname{Hom}_{\mathbb{Z}}(R, M)$. So $M_{\mathbb{Z}} \subseteq_{\mathbb{Z}} D$ in $\mathbb{Z}-\operatorname{Mod}$, where D is divisible and $\operatorname{Hom}_{\mathbb{Z}}(R, -)$ is left-exact. But $\operatorname{Hom}_{\mathbb{Z}}(R, M)$ is isomorphic to a submodule of $_R\operatorname{Hom}_{\mathbb{Z}}(R_R, D)$.

Watch out! All iso's/embeddings above respect the left R-module structure.

But $_R \operatorname{Hom}_{\mathbb{Z}}(R_R, D)$ is injective by previous lemma.

Corollary 0.12. Every $M" \in "R-Mod$ has an injective resolution.

Proof. Let M be an R-module. We know that there is an inclusion $f_0: M \to E_0$, where E_0 is injective. The cokernel will then embed into E_1 , and the induced map from E_0 to E_1 is called f_1 , and we continue, as in the diagram

Definition 0.22. Let $M'' \in R$ -Mod.

1. An injective resolution of M is any exact sequence

$$0 \longrightarrow M \stackrel{f_0}{\longrightarrow} E_0 \stackrel{f_1}{\longrightarrow} E_1 \longrightarrow \cdots$$

such that E_i is injective for all i. If $E_i = 0$ for i >> 0, define the length in analogy with projective case.

- **2.** The <u>nth cozyzygy</u> of M is $Im(f_n) \cong coker(f_{n-1})$, which is unique up to injective direct summands.
- 3. The <u>injective resolution</u>, idim M, is the minimal length of all finite injective resolutions, assuming any exist. Otherwise it is ∞ .

Remark. We'll see that $\sup \{ \operatorname{idim} M \mid M" \in "R - Mod \} = \operatorname{Igldim} R.$

Theorem 0.13. For $M \in R\text{-Mod}$, and $n \in \mathbb{N} \cup \{0\}$, the following are equivalent:

- 1. (a) idim $M \leq n$
 - (b) There exists an injective resolution of M with an injective n-th cosyzygy
 - (c) In all injective resolutions of M, then n-th cosyzygy is injective.
- **2.** idim $M = \infty$ iff all (one) injective resolutions has no injective cosyzygies.

Proof.

If \mathbb{Z}_D is divisible, and R is any ring, then ${}_R\text{Hom}_{\mathbb{Z}}(R,D)$ is injective. The only bimodule structure on ${}_{\mathbb{Z}}R_R$ we use is that R is flat as a left R-module.

Lecture 17, 2/25/23

Lecture 18, 2/27/23

Last time, we stated and proved the so-called snake lemma. Pay special attention to the map ∂ and how it is defined, and indeed well-defined.

Theorem 0.14. (Long exact homology sequence)

Suppose $\mathscr{A}: 0 \longrightarrow \mathbb{A} \xrightarrow{f} \mathbb{A}' \xrightarrow{f'} \mathbb{A}'' \longrightarrow 0 \ (\star)$ is an exact sequence in R-comp. Then for each $n \in \mathbb{Z}$, there exists $\partial_n \in \operatorname{Hom}_R(H_n(\mathbb{A}''), H_n(\mathbb{A}))$, such that the following long sequence is exact:

$$\cdots \longrightarrow H_n(\mathbb{A}) \xrightarrow{H_n(f)} H_n(\mathbb{A}') \xrightarrow{H_n(f')} H_n(\mathbb{A}'') \xrightarrow{\partial_n} H_{n-1}(\mathbb{A}) \xrightarrow{H_{n-1}(f')} H_{n-1}(\mathbb{A}') \xrightarrow{\cdots} \cdots$$

Morover, this is natural in the sense that for any \mathscr{A} as above, the family $(\partial_n)_{n\in\mathbb{Z}} = (\partial_n^{\mathscr{A}})$ satisfies the following condition:

Whenever

$$\mathscr{A}: 0 \longrightarrow \mathbb{A} \xrightarrow{f} \mathbb{A}' \xrightarrow{f'} \mathbb{A}'' \longrightarrow 0$$

$$\downarrow^{h} \qquad \downarrow^{h'} \qquad \downarrow^{h''}$$

$$\mathscr{L}: 0 \longrightarrow B \xrightarrow{g} B' \xrightarrow{g'} B'' \longrightarrow 0$$

the following diagrams commute:

$$H_n(\mathbb{A}'') \xrightarrow{\partial_n^{\mathscr{A}}} H_{n-1}(\mathbb{A})$$

$$\downarrow^{H_n(h'')} \qquad \downarrow^{H_{n-1}(h)}$$

$$H_n(B'') \xrightarrow{\partial_n^{\mathscr{L}}} H_{n-1}(B)$$

Proof. The exact sequence (\star) translates into an infinite commutative grid

We'll extract the commutative diagrams

$$0 \longrightarrow \frac{A_n}{\operatorname{Im}(d_{n+1})} \xrightarrow{\overline{f_n}} \frac{A'_n}{\operatorname{Im}(d'_{n+1})} \longrightarrow \frac{A''_n}{\operatorname{Im}(d''_{n+1})} \longrightarrow 0$$

$$\downarrow \overline{d_n} \qquad \qquad \downarrow \overline{d'_n} \qquad \qquad \downarrow \overline{d''_n}$$

$$0 \longrightarrow \ker(d_{n-1}) \longrightarrow \ker(d'_{n-1}) \longrightarrow \ker(d''_{n-1}) \longrightarrow 0$$

Then we'll apply the snake lemma.

Step 1

Define $\overline{d_n}: \frac{A_n}{\operatorname{Im}(d_{n+1})} \to \ker(d_{n-1})$ by $\overline{a_n} \mapsto d_n(a_n)$. This is well-defined because

 $d_n d_{n+1} = 0 = d_{n-1} d_n$. Note $\ker(\overline{d_n}) = \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})} = H_n(\mathbb{A})$, and $\operatorname{coker}(\overline{d_n}) = \frac{\ker(d_{n-1})}{\operatorname{Im}(d_n)} = H_{n-1}(\mathbb{A})$. So we obtain

$$0 \longrightarrow H_n(\mathbb{A}) \xrightarrow{\iota_n} \frac{A_n}{\operatorname{Im}(d_{n+1})} \xrightarrow{\overline{d_n}} \ker(d_{n-1}) \xrightarrow{j_n} H_{n-1}(\mathbb{A}) \longrightarrow 0$$

Step 2

The snake lemma now yields maps $\partial_n \in \operatorname{Hom}_R(H_n(\mathbb{A}''), H_{n-1}(\mathbb{A}))$ such that the following diagram (refer to diagram on Gauchospace) commutes, and the sequence

$$\cdots \longrightarrow H_n(\mathbb{A}') \longrightarrow H_n(\mathbb{A}'') \xrightarrow{\partial_n} H_{n-1}(\mathbb{A}) \longrightarrow H_{n-1}(\mathbb{A}') \longrightarrow \cdots$$

is exact.

Section 2: Homotopy of complexes

Definition 0.23.

1. Let $u: \mathbb{A} \to \mathbb{A}'$ be a morphism in R-comp, say $u=(u_n)_{n\in\mathbb{Z}}$. Call u null-homotopic if there exist $s_n \in \operatorname{Hom}_R(A_n, A_{n-1})$ such that $u_n = d'_{n+1} \circ s_n + s_{n-1} \circ d_n$. So

$$\cdots \longrightarrow A_{n+1} \xrightarrow{d_{n+1}} A_n \xrightarrow{d_n} A_{n-1} \longrightarrow \cdots$$

$$\downarrow u_{n+1} \downarrow \qquad \qquad \downarrow u_n \qquad \qquad \downarrow u_{n-1} \downarrow u_{n-1}$$

$$\cdots \longrightarrow A'_{n+1} \longrightarrow A'_n \xrightarrow{d'_n} A'_n \longrightarrow A'_{n-1} \longrightarrow \cdots$$

2. Two chain maps f, g are called homotopy equivalent if f - g is null-homotopic. We write $f \simeq g$.

3. Two chain complexes \mathbb{A}, \mathbb{B} are homotopy equivalent if there are chain maps

Proposition 5. Suppose $u=(u_n)\in \operatorname{Hom}_{R-comp}(\mathbb{A},\mathbb{A}')$ is null-homotopic. Then $H_n(u)=0$ for all $n\in\mathbb{Z}$.

Proof. Let $s_n \in \operatorname{Hom}_R(A_n, A'_{n+1})$ be as in the definition, i.e. $u_n = d'_{n+1} \circ s_n + s_{n-1} \circ d_n$. Then

$$H_n(u): \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})} \to \frac{\ker(d'_n)}{\operatorname{Im}(d'_{n+1})}$$

acts by $H_n(u)(\overline{a_n}) = \overline{u_n(a_n)}$. Suppose $a_n \in \ker(d_n)$. Then

$$u_n(a_n) = d'_{n+1}(s_n(a_n)) + s_{n-1}(\overbrace{d_n(a_n)}^{=0})$$

= $d'_{n+1}(s_n(a_n)) \in \operatorname{Im}(d'_{n+1})$

Lecture 19, 3/1/23

Definition 0.24.

1. Let $M'' \in R' - Mod$, and

$$\cdots \longrightarrow P_n \xrightarrow{d_n} \cdots \longrightarrow P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \longrightarrow 0$$

a projective resolution of M.

Then the deleted projective resolution is the complex obtained by deleting M and replacing it with 0, i.e.

$$\mathbb{P}: \cdots \longrightarrow P_n \xrightarrow{d_n} \cdots \longrightarrow P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} 0$$

Note that this "just" a complex, not necessarily exact.

2. If

$$0 \longrightarrow M \longrightarrow E_0 \longrightarrow E_1 \longrightarrow \cdots$$

is an injective resolution of M, then the <u>deleted injective resolution</u> is defined the same way, i.e. as

$$0 \longrightarrow E_0 \longrightarrow E_1 \longrightarrow \cdots$$

Remark. A deleted projective resolution of M determines M up to isomorphism. As we'll see, conversely, any two deleted projective resolutions of a given M are homotopy equivalent.

Model problem: Look at the functor $X \otimes_R -$. We know this functor is right exact, and in general not left exact.

For

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} M' \stackrel{f'}{\longrightarrow} M'' \longrightarrow 0$$

we want to get some information on the kernel of $X \otimes_R f : X \otimes_R M \to X \otimes_R M'$. Step 1: One can construct projective resolutions of M, M', M'', and one obtains a short exact sequence

$$0 \longrightarrow \mathbb{P} \stackrel{\overline{f}}{\longrightarrow} \mathbb{P}' \stackrel{\overline{f'}}{\longrightarrow} \mathbb{P}'' \longrightarrow 0$$

where $\mathbb{P}, \mathbb{P}', \mathbb{P}''$ are deleted resolutions of M, M', M''.

In particular, if $\overline{f} = (f_n)_{n \in \mathbb{Z}}$, and $\overline{f'} = (\overline{f}_n)_{n \in \mathbb{Z}}$, we obtain split exact sequences

$$0 \longrightarrow P_n \xrightarrow{f_n} P'_n \xrightarrow{f'_n} P'' \longrightarrow 0$$

Due to projectivity of P_n'' , this sequence is split, and hence

$$0 \longrightarrow F(P_n) \xrightarrow{F(f_n)} F(P'_n) \xrightarrow{F(\overline{f_n})} F(P''_n) \longrightarrow 0$$

is exact.

In other words,

$$\otimes: 0 \longrightarrow F(\mathbb{P}) \longrightarrow F(\mathbb{P}') \longrightarrow F(\mathbb{P}'') \longrightarrow 0$$

is exact.

Step 2:

The sequence \otimes give rise to a long exact homology sequence

Step 3:

Since F is right-exact, $H_0(F(\mathbb{P})) \cong F(M)$, and similarly $H_0(F(\mathbb{P}')) \cong F(M')$, and $H_0(F(\mathbb{P}'')) \cong F(M'')$.

We obtain an exact sequence

$$\cdots \longrightarrow H_1(F(\mathbb{P})) \longrightarrow H_1(F(\mathbb{P}')) \longrightarrow H_1(F(\mathbb{P}''))$$

$$\downarrow^{\partial_1}$$

$$F(M)$$

$$\downarrow^{F(f)}$$

$$F(M')$$

$$\downarrow^{F(f')}$$

$$F(M'')$$

$$\downarrow^{O}$$

Lemma 3. (Comparison Lemma)

Let M, M' \in R - Mod, and $f \in \operatorname{Hom}_R(M, M')$. Moreover, let \mathbb{P}, \mathbb{P}' be deleted projective resolutions of M, M' respectively. Then there exists a map $\overline{f} = (f_n)_{n \geq 0} \in \operatorname{Hom}_{R-comp}(\mathbb{P}, \mathbb{P}')$, such that the following diagram commutes:

$$\cdots \longrightarrow P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \longrightarrow 0$$

$$\downarrow^{f_1} \qquad \downarrow^{f_0} \qquad \downarrow^{f}$$

$$\cdots \longrightarrow P'_1 \xrightarrow{d'_1} P'_0 \xrightarrow{d'_0} M' \longrightarrow 0$$

Moreover, given another map $\overline{g} \in \operatorname{Hom}_{R-comp}(\mathbb{P}, \mathbb{P}')$, such that the above diagram, with f_i replaced by g_i (the final $f: M \to M'$ stays), still commutes, then $\overline{f} \simeq \overline{g}$. Remark. Here \overline{f} is called "the" chain map lying over f.

Proof. Existence of \overline{f} We find $\overline{f_n}$ by induction on $n \ge 0$.

• For n = 0, consider the diagram

 f_0 exists because P_0 is projective and d_0' is an epi.

• Let $n \geq 1$, and suppose f_0, \ldots, f_{n-1} are given as required. Consider the diagram

The problem is d'_n is not necessarily an epi. So we replace P'_{n-1} by $\operatorname{Im}(d'_n)$. We wish to show $\operatorname{Im}(f_{n-1}d_n)\subseteq \operatorname{Im}(d'_n)$. But $\operatorname{Im}(d'_n)=\ker(d'_{n+1})$. Compute $d'_{n-1}f_nd_n=d'_{n-1}d_nf_n$. We will continue next time.