

Mise en service du Moteur à courant continu [Matlab] — 30 minutes

ş	D1-01 : Mettre en œuvre un système en suivant un protocole
	D2-01 : Choisir le protocole en fonction de l'objectif visé.
Objectifs	D2-02 : Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par
<u>9</u>	l'expérimentation.
ō	D2-03 : Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.
	D2-04 : Choisir la grandeur physique à mesurer ou justifier son choix.

Expérimenter el analyser

Activité 1

- ☐ Prendre connaissance du document ressource Moteur CC, Fiche 1 (Présentation générale).
- ☐ Ouvrir le fichier CommandePWM_Mesure.slx (fichier Matlab) et l'exécuter.
- Lors de l'exécution, vérifier que, en faisant varier le « slider gain » de -255 à 255, le moteur va dans un sens, puis dans l'autre.
- ☐ S'il y a un problème de sens vérifier la configuration des jumper avec votre prof.

Expérimenter e analyser

Activité 2

- ☐ Visualiser la courbe de position. Commenter.
- ☐ Modifier le programme pour afficher la courbe en degrés.
- Modifier le programme pour afficher la courbe de vitesse théorique de sortie du motoréducteur en tr/min.

ynthèse

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse des activités 1 et 2.

Modélisation du Moteur à Courant continu – 90 minutes

	S
	ക
	Š
S	
4	ਠ
	•=
も	- 53
a)	0
·	0
=	8
0	ō
_	
	·Φ
	ŏ

- ☐ B2-06 Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- ☐ B2-07 Modéliser un système par schéma-blocs.

Objectif

En vue de pouvoir corriger le comportement, du système, il est nécessaire de disposer d'un modèle de comportement du système.

xpériment

Activité 1

- ☐ Vérifier que vous le ficher CommandePWM_Mesure est fonctionnel.
- Adapter le fichier pour avoir une commande du système en tension [V] et un affichage de la position en sortie du réducteur [rad].

périmente

Activité 2

- ☐ Faire la transformation sur le schéma bloc pour réaliser un asservissement en position du moteur à courant continu. Vous pourrez utiliser un correcteur proportionnel avec un « Slider Gain » pour moduler la commande.
 - Vous pourrez aussi ajouter un des interrupteurs pour réaliser échelons en entrée.

Modéliser & Expérimente

Activité 3

- Réaliser un modèle de comportement du système en boucle fermé.
- ☐ Réaliser un modèle de comportement du système en boucle ouverte.

Modéliser & Expérimenter

Activité 4

- ☐ Réaliser le diagramme de Bode du système en Boucle Ouverte.
- ☐ Proposer un modèle de comportement du système.

Synthèse

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Réaliser une (ou des) comparaisons pertinentes de tous les modèles réalisés. On rappelle qu'ont été vus :
 - Modèle de connaissance « schéma-blocs » (BO) ;
 - Modèle de connaissance multiphysique (BO);
 - Modèle de comportement Boucle fermée ;
 - Modèle de comportement BO (en temporel);
 - Modèle de comportement BO en fréquentiel.

Pour XENS – CCINP – Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.