

Contact: kenworthy@strw.leidenuniv.nl

Principle of the APP

- •Suppress diffraction with light from Airy core
- No focal plane occulting mask
- •High throughput of 56% for planet flux
- •Insensitive to tip-tilt errors

APP Coronagraph NO Focal Plane Mask APP Optic

Classical Lyot Coronagraph

See: Codona & Angel (2004), Kenworthy et al. (2007)

Abstract

We present results from a recent commissioning run to validate the design of a coronagraphic optic for use with CONICA at the VLT that provides suppression of diffraction from 1.8 to $7\lambda/D$ at 4.05 μ m, an optimal wavelength for direct imaging of cool extrasolar planets. The optic is designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a "D" shaped region in the image plane, without the need for any focal plane occulting mask.

SPIE 2010 7735-109

Realization of APP

Detection of β Pic b
03 April 2010
(cf. Lagrange et al. 2010)

Current Status

- Commissioned and available at the VLT
- Confirmation of sensitivity with beta Pic

r = 0.354 ± 0.010 " P.A. = 209.13 ± 2.0 ° dM [4.05] = 7.75 ± 0.23 Quanz et al. (in prep.)