Exercice 1 k = 3k' k = 3k' + 1 k = 3k' + 2Exerce 2 (il suffit d'merser par retraver les prop) 2 (4 Exerce >

 $= 3 \times V_{y} + P(x,y)$ $= 3 \times V_{y} + P(x,y)$ Leon

Exerce S

(1) Faix

e.cj :

P = Salse

r = lalse

 $(\rho \rightarrow q) \rightarrow \Gamma$ (τ)

T -> F

p->(q->r)

T

$$\begin{array}{c} (3) (\neg \rho \lor r) \land (\neg q \lor r) \\ = (\neg \rho \land \neg q) \lor (\neg \rho \land r) & \neg \rho (\neg q \lor r) \\ \lor (r \land \neg q) & \lor (\neg \rho \land \neg q) \lor r \\ \lor (r \land r) & \lor (r \land r) & \lor (\neg \rho \land r) \\ \hline (\neg \rho \lor q \lor r) & \neg \rho (r) & \neg \rho (r) \\ \hline (r) & \neg \rho (r) & \neg \rho (r) \\ \end{array}$$

Exerce 6 carjuncto 2 M.T (2,S)

Exerce M (La) 7 M (J) S(La Li) S(Li)3) $\forall x - S(3, x)$ Lors con see Jeff

Exerce 8

(1) p: "x is incohomol".

Let's another 7p.

Then
$$\sqrt{3} = \frac{a}{b}$$
, a,b ; $pgcd(a,b) = 1$.

 $\Rightarrow 3 = \frac{a^2}{b^2}$
 $\Rightarrow a^2 = 3b^2$ (1)

 $\Rightarrow a = 3k$

(1) $\Rightarrow 8k^2 = 3b^2$
 $\Rightarrow 9k^2 = 3k^2$ (2)
 $\Rightarrow b = 3k'$

Contradict paged (3k, 3k') & 1. Then p.

(2) $\log_2(9) = 10$ (2) g = 20Let's avourne logz (9) rapional. $692(9) = \frac{a}{9/b}$, $a \in 2$, $b \in 2^{*}$ pgcd(a,b) = 1 $= 3 = \frac{5}{2}$ => gb = 2a Dodd Deven impossible, 9 et 2 premiers entre eux

32,5 (Isin(a) Λ is $Nr(b) \Lambda$ is $r(x^3) \Lambda(x = \sqrt{3})$) Von constructive proof. Cet s'ensume n 3 ny (...) Sil n'existe pas de no x, y qui done in rabone ses, avec soil $z = \sqrt{3}$ soil 3= 53) ce servit re controller.

17x16x15x14x13 6188