Two-colouring and density lead to many solutions of

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$$

Wouter van Doorn

Abstract

In 1991, Brown and Rödl [2] proved that for every $k \in \mathbb{N}$ and every r-colouring of \mathbb{N} , there exists a monochromatic solution to the equation $\frac{1}{x_0} = \frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_k}$, answering a question of Erdős and Graham [1]. In this short note we will focus on the case k=r=2 and show that for every $c<\frac{1}{390}$ and for all large enough n, any two-colouring of $\{1,2,\ldots,n\}$ contains at least cn solutions to $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$. We will furthermore answer another question of Erdős and Graham by showing that for every $c>\frac{9}{10}$ and all large enough n, any set $S\subseteq\{1,2,\ldots,n\}$ with |S|>cn contains a solution to $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

1 Two-colouring the positive integers

Let us dive straight in.

Theorem 1. Let $c=\frac{1}{390}\approx 0.00256$. Then for every $n\in\mathbb{N}$ and every two-colouring of $\{1,2,\ldots,n\}$, there are at least $cn-\log(n)^3-1$ monochromatic triples (x,y,z) with $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ and x,y,z distinct.

Proof. Define $S_1=\{6,8,9,10,12,15,18,20,24,30,36,40,60,72,90,120\}$. Then it can be checked (either with a computer or with a lot of patience and by hand) that every two-colouring of S_1 leads to a monochromatic solution to $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$ with x,y,z distinct. More generally, one can then define the set $S_a=\{6a,8a,9a,10a,12a,15a,18a,20a,24a,30a,36a,40a,60a,72a,90a,120a\}$, and by the same argument, every two-colouring of S_a leads to a monochromatic triple. It is therefore sufficient to count the number of pairwise disjoint sets S_a with $a\leq \frac{n}{120}$ to get a lower bound on the total number of monochromatic solutions to $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.

Lemma 1. Define S_a as above for all a with $a = 16^b \cdot 27^c \cdot 25^d \cdot e$, where $b, c, d \ge 0$ and $e \ge 1$ is coprime to $30 = 2 \cdot 3 \cdot 5$. Then all the sets S_a are pairwise disjoint.

Proof. For given $a=16^b \cdot 27^c \cdot 25^d \cdot e$ and $a'=16^{b'} \cdot 27^{c'} \cdot 25^{d'} \cdot e'$ with e and e' coprime to 30, let l be an element of both S_a and $S_{a'}$. Since no element of S_1 is divisible by 16, it follows that l is divisible by 16^b , but not by 16^{b+1} . Since l is similarly divisible by $16^{b'}$, but not by $16^{b'+1}$, we conclude that b=b'. The same argument shows c=c' and d=d'. It is therefore sufficient to show e=e' as well. Now, since the prime factorization of every element of S_1 only contains the primes 2,3 and 5, l can be written as me and as m'e' with m and m' only divisible by the primes 2,3 and 5 and both e and e' coprime to 2,3 and 5. By unique factorization the equality me=m'e' then implies m=m' and e=e'. We therefore conclude a=a'.

Lemma 2. For all $n \in \mathbb{N}$ there are at least $\frac{n}{390} - \log(n)^3 - 1$ sets S_a with a as in Lemma 1 and $a \leq \frac{n}{120}$.

Proof. For n with $1 \le n \le 389$ this lemma trivially holds, so we are free to assume $n \ge 390$. In that case define i, j, k as $\left\lfloor \frac{\log(n)}{\log(16)} \right\rfloor$, $\left\lfloor \frac{\log(n)}{\log(27)} \right\rfloor$ and $\left\lfloor \frac{\log(n)}{\log(25)} \right\rfloor$ respectively. Before we can calculate the number of sets S_a , there are a few things we have to point out.

First we claim that i is smaller than $0.53\log(n)-1$ and that j and k are smaller than $0.48\log(n)-1$, by the assumption $n\geq 390$. Indeed, $i\leq \frac{\log(n)}{\log(16)}<0.361\log(n)=0.53\log(n)-1+\left(1-0.169\log(n)\right)<0.53\log(n)-1$ and $j\leq k\leq \frac{\log(n)}{\log(25)}<0.311\log(n)=0.48\log(n)-1+\left(1-0.169\log(n)\right)<0.48\log(n)-1$.

Secondly, by the way we defined i, we get $n \leq 16^{i+1} < 30 \cdot 16^i$, which implies $\frac{2}{n} > \frac{1}{15 \cdot 16^i}$. Similarly, $\frac{2}{n} > \frac{1}{26 \cdot 27^j}$ and $\frac{2}{n} > \frac{1}{24 \cdot 25^k}$.

Finally, since there are 8 integers in every interval (30m, 30(m+1)] that are coprime to 30, we get 8 sets of S_a where all elements are smaller than n, for all $a = 16^b \cdot 27^c \cdot 25^d \cdot e$ with $e \le \frac{n}{3600 \cdot 16^b \cdot 27^c \cdot 25^d}$.

Now we get to calculate.

$$\#S_a \ge \sum_{b=0}^{i} \sum_{c=0}^{j} \sum_{d=0}^{k} \frac{\sum_{3600 \cdot 16^{b \cdot 27^{c} \cdot 25^{d}}}^{\lfloor \frac{1}{3600 \cdot 16^{b \cdot 27^{c} \cdot 25^{d}}} \rfloor} 8$$

$$\ge \sum_{b=0}^{i} \sum_{c=0}^{j} \sum_{d=0}^{k} \frac{n}{450 \cdot 16^{b} \cdot 27^{c}} \left(\frac{25 - 25^{-k}}{24} \right) - 8(k+1)$$

$$= \sum_{b=0}^{i} \frac{n}{450 \cdot 16^{b}} \left(\frac{27 - 27^{-j}}{26} \right) \left(\frac{25 - 25^{-k}}{24} \right) - 8(j+1)(k+1)$$

$$= \frac{n}{450} \left(\frac{16 - 16^{-i}}{15} \right) \left(\frac{27 - 27^{-j}}{26} \right) \left(\frac{25 - 25^{-k}}{24} \right) - 8(i+1)(j+1)(k+1)$$

$$> \frac{n}{450} \left(\frac{16}{15} - \frac{2}{n} \right) \left(\frac{27}{26} - \frac{2}{n} \right) \left(\frac{25}{24} - \frac{2}{n} \right) - 8(i+1)(j+1)(k+1)$$

$$> \frac{n}{450} \left(\frac{15}{13} - \frac{17}{n} \right) - 8(0.53 \log(n)) (0.48 \log(n)) (0.48 \log(n))$$

$$> \frac{n}{390} - \log(n)^3 - 1$$

2 Dense sets

Let $S\subseteq\{1,2,\ldots,n\}$ be a set that does not contain three distinct integers x,y,z with $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$. By the proof of Theorem 1 we see that S needs to avoid at least one element from every set S_a with $a\leq\frac{n}{120}$. That means $|S|\leq n-(\frac{n}{390}-\log(n)^3-1)=\frac{389n}{390}+\log(n)^3+1$. Taking the contrapositive we conclude that if S contains more than $\frac{389n}{390}+\log(n)^3+1$ elements, then S must contain a solution. We can do better, however.

Theorem 2. Let n be a positive integer and let $S \subseteq \{1, 2, ..., n\}$ be a set with $|S| \ge \frac{9n}{10} + \log(n)^3 + 1$. Then S contains three distinct integers x, y, z with $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$.

Define $S_1 = \{2,3,6\}$ and $T_1 = \{4,5,20\}$. Since $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ and $\frac{1}{5} + \frac{1}{20} = \frac{1}{4}$, any set that avoids a solution to $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$, can contain at most two elements from S_1 and at most two elements from T_1 . More generally, define $S_a = \{2a, 3a, 6a\}$ and $T_e = \{4e, 5e, 20e\}$. Similarly to what we did in Section 1, we will find a lower bound on the number of disjoint sets S_a and T_e with all elements smaller than or equal to n. This then provides an upper bound on how many elements a set can have before being forced to contain a solution to $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$.

Lemma 3. Define $S_a = \{2a, 3a, 6a\}$ with $a = 4^b \cdot 9^c \cdot d$ and gcd(d, 6) = 1, and define $T_e = \{4e, 5e, 20e\}$ with $e = 16^f \cdot 9^g \cdot 25^h \cdot i$ and gcd(i, 30) = 1. Then $S_a \cap S_{a'} = S_a \cap T_e = T_e \cap T_{e'} = \emptyset$ whenever $a \neq a'$ and $e \neq e'$.

Proof. The proofs of $S_a \cap S_{a'} = \emptyset$ and $T_e \cap T_{e'} = \emptyset$ are completely analogous to the proof of Lemma 1, so they are left to the reader. To see why $S_a \cap T_e = \emptyset$ as well, note that every element of T_e is exactly divisible by both an even power of two and an even power of three. On the other hand, every element of S_a is either exactly divisible by an odd power of two or by an odd power of three. \square

Just like in Section 1, we are left with determining how many subsets S_a and T_e of $\{1, 2, ..., n\}$ there are. As this calculation is analogous to the calculation in Lemma 2, we will be a bit more brief.

Lemma 4. For all $n \in \mathbb{N}$ with n > 1000 there are more than $\frac{n}{12} - \frac{1}{6} \log(n)^3 - \frac{1}{2}$ sets S_a with a as in Lemma 3 and $a \leq \frac{n}{6}$, and more than $\frac{n}{60} - \frac{5}{6} \log(n)^3 - \frac{1}{2}$ sets T_e with e as in Lemma 3 and $e \leq \frac{n}{20}$.

Proof. To determine a lower bound on the number of sets S_a , first define j and k as $\left\lfloor \frac{\log(n)}{\log(4)} \right\rfloor$ and $\left\lfloor \frac{\log(n)}{\log(9)} \right\rfloor$ respectively. Since n > 1000 by assumption, we obtain the inequalities $\log(n) > 6.5$, $j < 0.9 \log(n) - 1$ and $k < 0.6 \log(n) - 1$. We then get the following:

$$\#S_a \ge \sum_{b=0}^j \sum_{c=0}^k \sum_{d=1}^{\left\lfloor \frac{n}{36 \cdot 4^b \cdot 9^c} \right\rfloor} 2$$

$$\ge \sum_{b=0}^j \sum_{c=0}^k \frac{n}{18 \cdot 4^b \cdot 9^c} - 2$$

$$> \frac{n}{18} \left(\frac{4}{3} - \frac{2}{n} \right) \left(\frac{9}{8} - \frac{2}{n} \right) - 2(j+1)(k+1)$$

$$> \frac{n}{12} - \frac{1}{6} \log(n)^3 - \frac{1}{2}$$

As for T_e , now define j,k,l as $\left\lfloor \frac{\log(n)}{\log(16)} \right\rfloor$, $\left\lfloor \frac{\log(n)}{\log(9)} \right\rfloor$ and $\left\lfloor \frac{\log(n)}{\log(25)} \right\rfloor$ respectively. It can furthermore be checked that $\frac{n}{60} - \frac{5}{6} \log(n)^3 - \frac{1}{2} < 0$ for $n \leq 60000$, so let us assume n > 60000. We then have $j < 0.46 \log(n) - 1$, $k < 0.55 \log(n) - 1$ and $l < 0.41 \log(n) - 1$.

$$#T_e \ge \sum_{f=0}^{j} \sum_{g=0}^{k} \sum_{h=0}^{l} \sum_{i=1}^{\lfloor \frac{n}{600 \cdot 16^f \cdot 9g \cdot 25^h} \rfloor} 8$$

$$\ge \sum_{f=0}^{j} \sum_{g=0}^{k} \sum_{h=0}^{l} \frac{n}{75 \cdot 16^f \cdot 9g \cdot 25^h} - 8$$

$$> \frac{n}{75} \left(\frac{16}{15} - \frac{2}{n}\right) \left(\frac{9}{8} - \frac{2}{n}\right) \left(\frac{25}{24} - \frac{2}{n}\right) - 8(j+1)(k+1)(l+1)$$

$$> \frac{n}{60} - \frac{5}{6} \log(n)^3 - \frac{1}{2}$$

Proof of Theorem 2. Since $\frac{9n}{10} + \log(n)^3 + 1 > n$ for all $n \le 1000$, we are free to assume n > 1000, in which case Lemma 4 applies. We then get from Lemmas 3 and 4 that there are more than $\frac{n}{12} - \frac{1}{6}\log(n)^3 - \frac{1}{2} + \frac{n}{60} - \frac{5}{6}\log(n)^3 - \frac{1}{2} = \frac{n}{10} - \log(n)^3 - 1$ disjoint sets S_a and T_e with largest element smaller than or equal to n. Every subset of $\{1, 2, \ldots, n\}$ that does not contain any solution to $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ must avoid at least one element from all sets S_a and T_e , and must therefore have less than $\frac{9n}{10} + \log(n)^3 + 1$ elements.

References

- [1] P. Erdős, R.L. Graham, Old and New Problems and Results in Combinatorial Number Theory. Enseign. Math. (2), vol. 28, Enseignement Math., Geneva, 1980. Also available here.
- [2] T.C. Brown, V. Rödl, Monochromatic solutions to equations with unit fractions. Bull. Aust. Math. Soc. 43 387–392, 1991. Also available here.