2019

Mini Projet : La comète Halley

Elena Ignaczuk, Alexandre Landry, Keve Kovacs IPSA

Partie 1: Introduction

Objectifs:

- 1. Vérifier les lois de Kepler
- 2. Vérifier le théorème du moment cinétique
- 3. Vérifier la conservation de l'énergie mécanique
- 4. Utiliser les formules de Binet

L'astronomie est considérée comme étant la loi des astres mais aussi la plus ancienne des sciences. En effet tout ce qui se trouvait dans le ciel était associé aux Dieux depuis l'Antiquité, cherchant à s'en rapprocher on commença à étudier les astres à l'œil nu. Les constellations ont alors trouvé leurs noms, tout comme certaines étoiles qui brillaient plus que d'autres ou du moins celles qui étaient le plus proche de la Terre. Différentes théories sur le système solaire ont été énoncée, mais il faut attendre 1543 pour que Copernic reprenne l'idée que le mouvement du système solaire se réalise autour du Soleil. Contrairement aux idées de l'époque, Copernic va affirmer que la planète Terre est elle aussi en mouvement et qu'elle n'est pas le centre du monde. Il affirme que la Terre tourne autour d'elle-même avec une révolution de vingt-quatre heures, mais aussi une période de révolution autour du Soleil de trois-cent-soixante-cinq jours. Pourtant ce qu'il avance ne sera prouver qu'environ cent cinquante ans plus tard. Pourtant, l'héliocentrisme de Copernic va changer la vision de l'astronomie à partir du XVIème siècle. A partir de là, on va observer énormément de progression dans le domaine notamment à propos des comètes.

Les comètes sont des corps célestes composées de poussières et de glace. Lorsqu'elles passent à proximités du Soleil, une partie de la comète se transforme en gaz et lorsque ce gaz est réfléchi par la lumière on observe une queue de poussière. Cependant, pendant très longtemps on a considéré que les comètes étaient dans l'atmosphère terrestre. Il faut attendre les études de Tycho Brahé sur la comète C/1577 V1 en 1577pour prouver que les comètes forment une trajectoire écliptique autour du Soleil. Les instruments d'observation commencent à se généraliser dans le domaine, mais Tycho Brahé va uniquement observer le ciel à l'œil nu. Son élève, Képler va découvrir les lois mathématiques derrière le mouvement des planètes ainsi que les relations magnétiques entre les corps. Il reprend l'héliocentrisme de Copernic pour le rectifier et montrer que les trajectoires sont elliptiques et non complètement sphériques. Il énonça alors trois lois :

- 1° Les planètes décrivent des trajectoires elliptiques autour de l'un des foyers, le soleil étant l'un d'eux. 2° Le rayon vecteur balaie des aires égales pendant des durées égales.
- 3°Le carré de la période de révolution est proportionnel au cube de la distance entre le corps et le Soleil. Galilée va alors inventer la première lunette astronomique laquelle va permettre d'avoir davantage de précision dans les observations. Indépendamment de cela, il va aussi mettre en avant le principe d'inertie qui énonce qu'un objet ayant une mouvement rectiligne uniforme n'est soumis à aucune force dans un référentiel dit « galiléen ». Newton va alors émettre trois lois :
- 1° Un corps a une vitesse constante s'il ne subit pas de force ; il peut alors avoir un mouvement rectiligne uniforme, ou être immobile.
- 2° La force qui s'applique au corps est égale à la masse du corps multiplié par l'accélération de ce corps.
- 3° La force du corps A sur le corps B va être égale à l'opposé de la force de B sur A.

En 1682, Halley va découvrir une comète qui sera plus tard renommé Halley en hommage au savant. A partir de cette comète et des lois de Newton, il va réussir à calculer la périodicité de la comète (76 ans en moyenne) et ainsi prévoir sa réapparition vers 1757, cinquante-deux ans plus tôt.

La période n'est pas toujours exacte puisque les champs gravitationnels des planètes environnantes peuvent influencer son orbite. Plus tard, on a pu obtenir des informations sur la valeur de son demi grand axe (2 677 801 885 km), sur ces dimensions (16x8x8 km), son excentricité (0,9673) ou encore la composition de son noyau. De nos jours, la comète Halley est attendu vers 2063 pour être de nouveau observable depuis la Terre.

Partie 2 : Mécanique spatiale A/ Les lois de Kepler

Première loi :

С	MF1	MF2	MF1+MF2	Mx	Му	F1x
01/01/1950	0,125	612,5	612,625	-35	0	-34,5
01/01/1955	0,13	612,505	612,635	-35	0,1	-34,5
01/01/1960	3,7	543,625	547,325	-32,9	2,2	-34,5
01/01/1965	12,5	469,625	482,125	-30,5	3	-34,5
01/01/1970	14,825	478,85	493,675	-30,7	3,9	-34,5
01/01/1972	44,98	343,405	388,385	-25,9	4	-34,5
01/01/1974	1690,82	284,945	1975,765	23,5	4,2	-34,5
01/01/1976	101,25	230,625	331,875	-21	4,5	-34,5
01/01/1978	136,985	183,56	320,545	-18,6	4,6	-34,5
01/01/1980	191,08	130,705	321,785	-15,5	4,6	-34,5
01/01/1982	264,2	79,625	343,825	-11,9	4,2	-34,5
01/01/1983	308,53	58,405	366,935	-10	4,1	-34,5
01/01/1984	374,425	34,6	409,025	-7,4	3,8	-34,5
01/06/1984	415,105	23,53	438,635	-5,9	3,5	-34,5
01/01/1985	454,5	14,625	469,125	-4,5	3	-34,5
01/02/1985	466,58	12,905	479,485	-4,1	3	-34,5
01/03/1985	469,33	12,205	481,535	-4	2,9	-34,5
01/04/1985	478,24	10,765	489,005	-3,7	2,8	-34,5
01/05/1985	496,625	8,45	505,075	-3,1	2,7	-34,5
01/06/1985	509,54	7,565	517,105	-2,7	2,8	-34,5
01/07/1985	521,545	5,77	527,315	-2,3	2,5	-34,5
01/08/1985	530,545	4,42	534,965	-2	2,2	-34,5
01/09/1985	540,125	3,65	543,775	-1,7	2,1	-34,5
01/10/1985	553,12	2,845	555,965	-1,3	2	-34,5
01/11/1985	562,745	2,12	564,865	-1	1,8	-34,5
08/11/1985	562,745	2,12	564,865	-1	1,8	-34,5
01/12/1985	579,125	1,25	580,375	-0,5	1,5	-34,5
01/01/1986	606,02	0,545	606,565	0,3	1	-34,5
01/02/1986	630,145	0,52	630,665	1	0,2	-34,5
09/02/1986	630,125	0,5	630,625	1	0	-34,5
15/02/1986	630,13	0,505	630,635	1	-0,1	-34,5
01/03/1986	619,645	0,37	620,015	0,7	-0,5	-34,5
10/03/1986	612,82	0,445	613,265	0,5	-0,8	-34,5
15/03/1986	606,02	0,545	606,565	0,3	-1	-34,5
01/04/1986	595,97	0,845	596,815	0	-1,3	-34,5
01/05/1986	569,465	1,94	571,405	-0,8	-1,8	-34,5
01/06/1986	562,93	2,305	565,235	-1	-1,9	-34,5
01/07/1986	546,5	3,125	549,625	-1,5	-2	-34,5
01/08/1986	533,8	4,225	538,025	-1,9	-2,2	-34,5
01/09/1986	531,25	5,125	536,375	-2	-2,5	-34,5
01/10/1986	515,645	6,77	522,415	-2,5	-2,7	-34,5

01/11/1986	503,2	8,125	511,325	-2,9	-2,8	-34,5
01/12/1986	494,05	9,325	503,375	-3,2	-2,9	-34,5
01/01/1987	485	10,625	495,625	-3,5	-3	-34,5
01/02/1987	469,93	12,805	482,735	-4	-3,1	-34,5
01/03/1987	466,885	13,21	480,095	-4,1	-3,1	-34,5
01/04/1987	461,14	14,365	475,505	-4,3	-3,2	-34,5
01/05/1987	452,45	16,025	468,475	-4,6	-3,3	-34,5
01/06/1987	449,465	16,49	465,955	-4,7	-3,3	-34,5
01/07/1987	443,86	17,785	461,645	-4,9	-3,4	-34,5
01/08/1987	440,905	18,28	459,185	-5	-3,4	-34,5
01/09/1987	426,625	21,25	447,875	-5,5	-3,5	-34,5
01/10/1987	412,25	24,125	436,375	-6	-3,5	-34,5
01/11/1987	387,005	29,93	416,935	-6,9	-3,5	-34,5
01/12/1987	392,545	28,57	421,115	-6,7	-3,5	-34,5
01/01/1988	384,605	30,98	415,585	-7	-3,6	-34,5
01/01/1989	325,52	51,245	376,765	-9,3	-4	-34,5
01/01/1990	284,53	68,905	353,435	-11	-4,1	-34,5
01/01/1991	239,945	93,32	333,265	-13	-4,2	-34,5
01/01/1992	195,49	124,765	320,255	-15,2	-4,3	-34,5
01/01/1993	171,245	145,37	316,615	-16,5	-4,3	-34,5
01/01/1994	142,09	174,865	316,955	-18,2	-4,3	-34,5
01/01/1995	121,745	199,37	321,115	-19,5	-4,3	-34,5
01/01/1996	103,09	225,565	328,655	-20,8	-4,3	-34,5
01/01/1997	86,945	250,82	337,765	-22	-4,2	-34,5
01/01/1998	74,945	273,32	348,265	-23	-4,2	-34,5
01/01/1999	62,9	299,225	362,125	-24,1	-4,2	-34,5
01/01/2000	53,125	320,5	373,625	-25	-4	-34,5
01/01/2002	38,025	364,05	402,075	-26,7	-3,9	-34,5
01/01/2004	25,97	403,745	429,715	-28,2	-3,5	-34,5
01/01/2006	17,125	443,2	460,325	-29,6	-3,2	-34,5
01/01/2008	8,705	503,78	512,485	-31,6	-3	-34,5
01/01/2010	6,25	515,125	521,375	-32	-2,5	-34,5
01/01/2012	3,65	540,125	543,775	-32,8	-2,1	-34,5
01/01/2014	2,305	562,93	565,235	-33,5	-1,9	-34,5
01/01/2020	0,265	602,29	602,555	-34,7	-0,7	-34,5
08/10/2023	0,125	612,5	612,625	-35	0	-34,5

On mesure la distance entre la périhélie et l'aphélie pour déterminer le grand axe. On obtient 34,7 cm. L'échelle du mouvement nous permet de dire que 1ua=1cm, le grand axe mesure donc 34,7 ua. Or a est le demi grand axe. Donc on réalise une division par deux de la valeur du grand axe. On obtient donc a=17,35 ua.

On mesure que la distance focale, F1F2=33,7 ua. Or F1F2 = 2c. On obtient donc **c=16,85ua**.

L'excentricité correspond à la position écartée par rapport à l'axe de référence du mouvement. L'excentricité vérifie la relation suivante : $e=\frac{c}{a}$. On a donc $e=\frac{16,85}{17,35}$, e=0,97.

Le paramètre focal vérifie, $p=a(1-e^2)$. D'après la valeur du demi grand axe et de l'excentricité déterminés précédemment on obtient : $p=17,35(1-0.97^2)$, p=1,03 ua

On a : $e = \frac{c}{a}$ et $c = \frac{F1F2}{2}$. En remplaçant c par son expression, on obtient :

$$e = \frac{F1F2}{2a} = \frac{F1F2}{2a} = \frac{c}{a}$$

			r(ua)me-				
numéro	date	θ(°)	suré	r(ua)calculé	x(ua)	y(ua)	ecart
1	01/01/1950	179	34,3	79,8738841	-35	0	2076,97891
2	01/01/1955	178	33,5	0,38420072	-35	0,1	1096,65616
3	01/01/1960	176	32,2	0,10012546	-32,9	2,2	1030,40195
4	01/01/1965	174	30	0,30805682	-30,5	3	881,61149
5	01/01/1970	172	26,6	0,67923479	-30,7	3,9	671,886069
6	01/01/1972	171	25	0,16459479	-25,9	4	616,797352
7	01/01/1974	170	23,2	0,10319945	23,5	4,2	533,462195
8	01/01/1976	169	21	0,11120402	-21	4,5	436,341798
9	01/01/1978	168	18,5	0,21624803	-18,6	4,6	334,295586
10	01/01/1980	166	15,8	1,60590277	-15,5	4,6	201,472396
11	01/01/1982	164	12,4	0,11087855	-11,9	4,2	151,022506
12	01/01/1983	160	10,4	8,20658024	-10	4,1	4,81109025
13	01/01/1984	157	8	0,1001587	-7,4	3,8	62,4074925
14	01/06/1984	153	7	0,48943995	-5,9	3,5	42,3873922
15	01/01/1985	150	5,1	0,11769893	-4,5	3	24,823324
16	01/02/1985	144	4,9	0,10688629	-4,1	3	22,9739391
17	01/03/1985	142	4,6	1,04717473	-4	2,9	12,6225674
18	01/04/1985	140	4,3	0,2493186	-3,7	2,8	16,4080198
19	01/05/1985	138	4	0,10133515	-3,1	2,7	15,1995876
20	01/06/1985	136	3,7	0,51619329	-2,7	2,8	10,1366251
21	01/07/1985	134	3,5	0,37301523	-2,3	2,5	9,77803373
22	01/08/1985	131	3	0,12624598	-2	2,2	8,25846215
23	01/09/1985	127	2,5	0,16229036	-1,7	2,1	5,46488637
24	01/10/1985	123	2,2	1,78521868	-1,3	2	0,17204355
25	01/11/1985	117	1,9	0,72489296	-1	1,8	1,38087655
26	08/11/1985	112	1,8	0,13736555	-1	1,8	2,76435331
27	01/12/1985	103	1,5	0,9184039	-0,5	1,5	0,33825402
28	01/01/1986	82	1	0,10258106	0,3	1	0,80536076
29	01/02/1986	21	0,6	0,442213	1	0,2	0,02489674
30	09/02/1986	0	0,587	0,1	1	0	0,237169
31	15/02/1986	-24	0,6	0,14043178	1	-0,1	0,21120294
32	01/03/1986	-54	0,8	1,17171366	0,7	-0,5	0,13817104
33	10/03/1986	-69	0,9	0,10033158	0,5	-0,8	0,63946959
34	15/03/1986	-76	1	0,10962921	0,3	-1	0,79276015
35	01/04/1986	-92	1,2	0,5353956	0	-1,3	0,441699
36	01/05/1986	-108	1,7	0,14540066	-0,8	-1,8	2,41677912
37	01/06/1986	-117	2	0,72489296	-1	-1,9	1,62589796
38	01/07/1986	-124	2,5	0,22045277	-1,5	-2	5,19633557
39	01/08/1986	-127	2,8	0,16229036	-1,9	-2,2	6,95751215
40	01/09/1986	-132	3,2	0,10007055	-2	-2,5	9,60956262

41	01/10/1986	-135	3,5	51,12259	-2,5	-2,7	2267,91108
42	01/11/1986	-137	3,7	0,14990645	-2,9	-2,8	
43	01/12/1986	-140	4,1	0,2493186	-3,2	-2,9	
44	01/01/1987	-141	4,4	2,92921673	-3,5	-3	
45	01/02/1987	-143	4,8	0,18912484	-4	-3,1	21,2601697
46	01/03/1987	-144	5	0,10688629	-4,1	-3,1	23,9425618
47	01/04/1987	-145	5,3	0,10616481	-4,3	-3,2	26,975924
48	01/05/1987	-146	5,6	0,18450875	-4,6	-3,3	29,3275455
49	01/06/1987	-147	5,8	0,96682074	-4,7	-3,3	23,3596218
50	01/07/1987	-147,5	6,1	16,7139517	-4,9	-3,4	112,65597
51	01/08/1987	-148	6,4	3,39134276	-5	-3,4	9,05201838
52	01/09/1987	-148,5	6,5	0,59457028	-5,5	-3,5	34,8741002
53	01/10/1987	-149	6,8	0,25764595	-6	-3,5	42,8023965
54	01/11/1987	-149,5	7,1	0,15736628	-6,9	-3,5	48,200163
55	01/12/1987	-150	7,3	0,11769893	-6,7	-3,5	51,5854487
56	01/01/1988	-150,5	7,5	0,10222961	-7	-3,6	54,7270067
57	01/01/1989	-151	10	0,10104304	-9,3	-4	97,989349
58	01/01/1990	-151,5	12	0,11347204	-11	-4,1	141,289547
59	01/01/1991	-156	13,7	0,13590167	-13	-4,2	183,984764
60	01/01/1992	-159	15,5	0,30418009	-15,2	-4,3	230,912943
61	01/01/1993	-161	17	0,69390174	-16,5	-4,3	265,88884
62	01/01/1994	-163	18,4	0,10336449	-18,2	-4,3	334,766871
63	01/01/1995	-165	19,6	0,21421004	-19,5	-4,3	375,808852
64	01/01/1996	-166	20,9	1,60590277	-20,8	-4,3	372,262188
65	01/01/1997	-167	21	1,66235276	-22	-4,2	373,944601
66	01/01/1998	-169	23	0,11120402	-23	-4,2	523,896982
67	01/01/1999	-170	23,9	0,10319945	-24,1	-4,2	566,287716
68	01/01/2000	-170,5	24,8	0,12070186	-25	-4	609,067756
69	01/01/2002	-172	26,5	0,67923479	-26,7	-3,9	666,711916
70	01/01/2004	-173	28	8,89954477	-28,2	-3,5	364,82739
71	01/01/2006	-174	29,3	0,30805682	-29,6	-3,2	840,53277
72	01/01/2008	-174,5	30,5	0,17526411	-31,6	-3	919,589607
73	01/01/2010	-175	31,3	0,12511853	-32	-2,5	971,873235
	01/01/2012	-176,5	32,5	0,10860931	-32,8	-2,1	1049,20219
75	01/01/2014	-177	32,2	0,13518882	-33,5	-1,9	1028,15212
76	01/01/2020	-179	34,1	79,8738841	-34,7	-0,7	2095,24846
77	08/10/2023	-180	34,2	0,49808247	-35	0	1135,81925
						somme :	24224,2756

On obtient grâce au solveur d'Excel les données de p et e :

p variable	1,173270792
e variable	0,966149974
S (écart entre mesuré et calculé)	19,74711259

<u>Deuxième loi :</u>

Numéro	Dates	Base(ua)	Hauteur(<i>ua</i>)	Aire(ua)	Vitesse aéro- laire(ua^2/an)
	01/01/1974;				
1	01/01/1978	23,3	1,1	12,815	3,20375
	01/01/1980;				
2	01/01/1984	15,8	1,5	11,85	2,9625
	01/01/2000;				
3	01/01/2004	28	0,9	12,6	3,15
4	T_période (76ans)	22,6	3,69	257,8	3,003
С	3,105416667				

On obtient donc la constante des aires : c=3,105416667

Troisième loi :

Troisieme ioi .	and all and a	- ()	to although an		- 2	- ^ 2	Analathara Iat
astre	période	a (ua)	inclinaison	excentricité	T ²	a^3	troisième loi
			(°)				
Mercure	00/01/1900	0,3871	7	0,206	0,05798464	0,05800555	1,000360532
Vénus	0,6152	0,7233	3,4	0,007	0,37847104	0,37840372	0,999822122
Terre	1	1	0	0,017	1	1	1
Mars	1,8808	1,5237	1,8	0,093	3,53740864	3,53751592	1,000030326
Jupiter	11,862	5,2026	1,3	0,048	140,707044	140,819017	1,000795792
Saturne	29,457	9,5547	2,5	0,056	867,714849	872,270463	1,005250128
Uranus	84,02	19,218	0,8	0,046	7059,3604	7097,81323	1,00544707
Neptune	164,77	30,109	1,8	0,009	27149,1529	27295,3706	1,005385718
Halley	75,32	17,83	162,24	0,967	5673,1024	5668,31569	0,999156244
Encke	3,3	2,2	11,76	0,847	10,89	10,648	0,97777778
Biela	6,62	3,53	12,55	0,756	43,8244	43,986977	1,003709737
Faye	7,52	3,84	59,69	0,824	56,5504	56,623104	1,00128565
Vrorsen	5,46	3,11	10,54	0,519	29,8116	30,080231	1,009010955
Arrest	6,51	3,49	11,98	0,523	42,3801	42,508549	1,00303088
Pons-	6,37	3,43	19,52	0,614	40,5769	40,353607	0,994497041
Winnecke							
Tuttle	13,5	5,67	22,3	634	182,25	182,284263	1,000188
Temple 1	5,51	3,12	9,05	0,568	30,3601	30,371328	1,000369828
Temple 2	5,47	3,11	29,38	0,81	29,9209	30,080231	1,005325074

On remarque que le rapport $\frac{a^3}{T^2}$ est constant et égale à environ 1. Le graphique suivant permet de confirmer le tableau :

On peut en conclure que l'évolution de a en fonction de T des astres gravitant autour d'un corps est représentée par une droite linéaire sur une échelle log-log, donc que le demi-grand axe a est proportionnelle à la période T. Le rapport existant entre la période de révolution des planètes et leurs demi-grands axe est proportionnel. Ce rapport est linéaire dont sa constante est unique et égale à 1. Il est ainsi indépendant de la masse du satellite en orbite.

Soit M la masse du Soleil, G la constante de gravitation universelle, b le demi-petit axe de l'ellipse et $\eta = \frac{mM}{m+M}$ qui représente la masse de la particule réduite. L'aire de l'ellipse est alors égale à π ab.

On applique le principe fondamental de la dynamique et d'après ce dernier nous obtenons :

$$-G\frac{mM}{r^2} = \eta \frac{d^2r}{d^2t}$$

De plus d'après la seconde loi de Binet :

$$\frac{d^2r}{d^2t} = \left(\frac{s}{\eta}\right)^2 \times \frac{1}{r^2} \left(\frac{1}{r} + \frac{d^2\frac{1}{r}}{d^2t}\right)$$

Ce qui nous donne : $-G\frac{mM}{s^2} = \frac{1}{r} + \frac{d^2\frac{1}{r}}{d^2r}$

En comparant et intégrant cette expression à l'équation de l'orbite on obtient :

$$p = \frac{s^2}{GmM\eta}$$

En utilisant la loi des aires sur toute l'ellipse :

$$\pi ab = \frac{sT}{2u}$$

Sachant que $b^2=ap$. En élevant l'expression au carré celle-ci devient :

$$\pi^2 a^3 = \frac{GmM}{4u} T^2$$

$$\Leftrightarrow \frac{a^3}{T^2} = \frac{GMm}{4\pi^2 \times \frac{Mm}{M+m}}$$

$$\Leftrightarrow \frac{a^3}{T^2} = \frac{G(m+M)}{4\pi^2}$$

On peut cependant considérer que la masse m d'un corps en orbite autour du soleil est négligeable par rapport à celle du Soleil.

La troisième loi de Kepler est vérifiée et $\frac{a^3}{T^2} = \frac{GM}{4\pi^2}$

A partir de cette expression on peut déterminer la masse du Soleil :

$$M = \frac{a^3 4\pi^2}{GT^2}$$

$$M = \frac{(17.8 \times 149597870,7)^3 \times 4 \times \pi^2}{6,73.10^{-11} \times 76^2} = 1,945.10^{30} kg$$

Elle est en réalité de $1,989.10^{30}kg$, notre résultat est du même ordre de grandeur et proche de la vraie masse du Soleil (environ 2% d'erreur)

B. Loi de la gravitation universelle

date	θ (°)	r (ua)	x (ua)	y (ua)	vitesse (ua/j)	vitesse (km/s)	delta V (km/s)	a (km/s²)	1/r²
21/12/1985	9	0 1,1	. 0	11,5					
25/12/1985	8	•		1,097	0,0227	39,3			
29/12/1985	8	3 1,03	0,126	1,022			4,51	1,30E-05	0,94259591
05/01/1986	7	5 0,93	0,241	0,898	0,0253	43,81			
10/01/1986	6	8 0,85	0,318	0,788			4,84	1,12E-05	1,38408304
15/01/1986	6	1 0,79	0,383	0,691	0,0281	48,65			
20/01/1986	5	0 0,71	0,456	0,544			4,15	9,61E-06	1,98373339
25/01/1986	4	0 0,66	0,506	0,424	0,0257	44,5			
30/01/1986	2	9 0,63	0,551	0,305			14,37	3,33E-05	2,51952633
05/02/1986	1	1 0,6	0,589	0,114	0,034	58,87			
10/02/1986	-	3 0,59		-0,031			4,68	4,92E-06	2,87273772
15/02/1986	-1	8 0,61	0,58	-0,189	0,0313	54,19			
20/02/1986	-3	2 0,64	0,543	-0,339			5,54	1,28E-05	2,44140625
26/02/1986	-4	7 0,7	0,477	-0,512	0,0281	48,65			
01/03/1986	-5	-	-	-0,599			4,67	1,80E-05	1,82615047
05/03/1986	-6	1 0,79	0,383	-0,691	0,0254	43,98			
10/03/1986	-6	8 0,86	0,322	-0,797					

On constate que les vecteurs accélérations sont colinéaires aux vecteurs variation de la vitesse, orientés vers le soleil qui est un des foyers de l'ellipse. Donc la force qui s'exerce sur la comète est une force centrale. De plus : $\vec{F} = m\vec{a} = m * \frac{d\vec{v}}{dt}$

3. Nous savons que , la somme des forces est égale à la masse multipliée par l'accélération

D'après la loi de gravitation universelle, $\overrightarrow{F_{\frac{A}{B}}} = G \times \frac{M_A \times M_B}{(AB)^2}$

On a alors,

$$\overrightarrow{F_{\frac{Soleil}{comète}}} = G \times \frac{M_{Soleil} \times M_{comète}}{r^2} \text{ et } M_{comète} = m$$

D'où,
$$ma = G \times \frac{M_{Soleil} \times m}{r^2}$$

Alors,
$$a = G \times \frac{M_{Soleil}}{r^2}$$

Si on pose : k= G*M_{soleil}, on obtient $a = k \times \frac{1}{r^2}$

4. La force exercée par le Soleil sur la comète est inversement proportionnelle au carré de la distance, or on sait aussi que $\vec{F}=m\vec{a}$ et que $a=k\times\frac{1}{r^2}$. On en déduit que $\vec{F}=mk\frac{1}{r^2}$

2^{nde} loi de Newton:

$$\sum \vec{F} = m_{com\`{e}te} \times a$$

De plus : $\vec{F}=G imes rac{m_{com imes te} imes m_{soleil}}{r^2}$, avec G=6.674*10 $^{ ext{-}11}$ m 3 kg $^{ ext{-}1}$ s $^{ ext{-}2}$

Donc:
$$G \times \frac{m_{comète} \times m_{soleil}}{r^2} = m_{comète} * \vec{a}$$

$$a = G \times m_{soleil} \times \frac{1}{r^2}$$

$$G \times m_{soleil} = k$$

La force est donc inversement proportionnelle au carré du rayon

5.
$$M_{soleil} = \frac{a \times r^2}{G} = \frac{k}{G}$$
 avec k=1,33*10²⁰km³

On a
$$M_{Soleil(exp\'erimentale)}=1,99.\,10^{30}kg$$

$$M_{soleil(th\acute{e}orique)}=1{,}9891.\,10^{30}kg$$

Erreur relative= 0.054%

C. Conservation du moment cinétique

1. On pose $\vec{L}_0 = \vec{r} \wedge \vec{p}$ tels que \vec{r} est le rayon vecteur et \vec{p} la quantité de mouvement, avec $\vec{p} = m\vec{v}$. D'après le théorème du moment cinétique, on peut noter :

$$\frac{d\vec{L}_0}{dt} = \frac{d\vec{r}}{dt} \wedge \vec{p} + \vec{r} \wedge \frac{d\vec{p}}{dt}$$

$$= \vec{r} \wedge \frac{d\vec{p}}{dt}$$
$$= \vec{r} \wedge \frac{md\vec{v}}{dt}$$
$$= \vec{r} \wedge m\vec{a}$$

D'après le principe d'inertie, $\sum \vec{F} = \vec{0}$, ce qui implique que $\vec{L}_0 = constante$, donc le moment cinétique se conserve lors d'un mouvement rectiligne uniforme.

2. Graphiquement on le représente ainsi :

Schéma vecteur moment cinétique dans un mouvement rectiligne uniforme

- 3. On peut dor
- 4. Puisque le moment des forces appliquées à la comète est nul, alors cela signifie que le moment cinétique se conserve.

$$\vec{L}_0 = \vec{r} \wedge \vec{p} = r \overrightarrow{ur} \wedge m (r \dot{\overrightarrow{ur}} \wedge r \dot{\theta} \overrightarrow{u\theta}) = mr^2 \dot{\theta} \overrightarrow{uz}$$

Ainsi,
$$L_0=mr^2\dot{\theta}$$

5. On pose note $\frac{dS}{dt}$ la vitesse aréolaire, telle que :

$$\frac{dS}{dt} = \frac{1}{2}r^2\dot{\theta}$$

On obtient donc,

$$\frac{dS}{dt} = \frac{1}{2}r^2\dot{\theta} = \frac{L_0}{2m}$$

6. Déterminons la norme du vecteur moment cinétique par unité de masse de la comète :

$$\frac{\vec{L}}{m} = 2\frac{ds}{dt}\vec{U_z}$$

$$\left\| \frac{\vec{L}}{m} \right\| = 2 \frac{ds}{dt}$$

D'après ce qui a été fait précédemment sur la deuxième loi de Kepler, on a trouvé la vitesse aréolaire

Donc si on reprend l'expression précédente :

7. Constante des aires C:

La constante des aires est par définition égale à :

$$C = \frac{1}{2}r^2\dot{\theta} dt$$

Le calcul précédent nous permet de connaître $\left\| \frac{\vec{L}}{m} \right\| = r^2 \dot{\theta}$ Si l'on prend

Conservation de l'énergie mécanique :

Nous savons que l'énergie mécanique est la somme de l'énergie cinétique et de l'énergie potentielle soit : $\frac{E_m}{m_c} = \frac{1}{2} v^2 - G \frac{m_s}{r}$

Soit
$$F = -\frac{dE_p}{dr} = G \frac{m_c \times m_s}{r^2}$$

L'énergie potentielle ${\rm E}_{\rm pg}$ s'écrit donc : $E_{pg}=-Grac{m_c imes m_s}{r}$

L'énergie cinétique étant : $E_c = \frac{1}{2}mv^2$

$$E_{m} = E_{c} + E_{pg} \iff E_{m} = \frac{1}{2}mv^{2} - G\frac{m_{c} \times m_{s}}{r}$$

$$\Leftrightarrow \frac{E_{m}}{m_{c}} = \frac{1}{2}v^{2} - G\frac{m_{s}}{r}$$

$$\Leftrightarrow \frac{E_{m}}{m_{c}} = \frac{E_{c}}{m_{c}} + \frac{E_{pg}}{m_{c}}$$

Le tableau suivant récapitule les valeurs de ces trois énergies en plusieurs points :

date	x (ua)	y (ua)	r (ua)	r (m)	Ep/m (J/Kg)
01/01/1960	-32,80988161	2,294290421	32,89	4,95E+12	-2,75E+07
01/01/1970	-26,94413793	4,267532206	27,28	4,14E+12	-3,30E+07
01/01/1983	-9,647040033	4,295138951	10,56	1,57E+12	-8,69E+07
01/06/1984	-6,192081637	3,575	7,15	1,09E+12	-1,29E+08
01/10/1987	-6,001556048	-3,465	6,93	1,05E+12	-1,31E+08
01/01/1989	-9,315509117	-3,95419902	10,12	1,56E+12	-8,95E+07
01/01/2000	-25,16271163	-3,536388495	25,41	3,90E+12	-3,50E+07

date	v (ua/an)	v (m/s)	v² (m²/s²)	Ec/m (J/Kg)
01/01/1960	0,42	1992,36	3,97E+06	1,98E+06
01/01/1970	0,73	3456,14	1,19E+07	5,97E+06
01/01/1983	2,25	10673,36	1,14E+08	5,70E+07
01/06/1984	3	14231,15	2,03E+08	1,01E+08
01/10/1987	3	14231,15	2,03E+08	1,01E+08
01/01/1989	2,35	11147,74	1,24E+08	6,21E+07
01/01/2000	0,68	3203,01	1,03E+07	5,13E+06

date	Ep/m (J/Kg)	Ec/m (J/Kg)	Em/m
01/01/1960	-2,72E+07	1,98E+06	-2,52E+07
01/01/1970	-3,27E+07	5,97E+06	-2,67E+07
01/01/1983	-8,69E+07	5,70E+07	-3,00E+07
01/06/1984	-1,27E+08	1,01E+08	-2,53E+07
01/10/1987	-1,29E+08	1,10E+08	-2,78E+07
01/01/1989	-8,93E+07	6,21E+07	-2,72E+07
01/01/2000	-3,47E+07	5,13E+06	-2,96E+07

Le signe de l'énergie mécanique étant à valeur négative on en déduit que la comète est dans un état lié, elle suit une trajectoire dite bornée.

Son énergie n'est pas assez importante pour qu'elle puisse se libérer de la force gravitationnelle exercée par le Soleil. Dans notre cas la trajectoire étant elliptique on retrouve la première loi de Kepler, dont l'un des foyers est notre Soleil.

E. Formule de Binet

a) Première loi de Binet et expression de la vitesse

On a:

$$\vec{v} = \frac{dr}{dt}\vec{u}\vec{r} + r\frac{d\theta}{dt}\vec{u}\vec{\theta}$$

D'où
$$v = \frac{dr}{dt} + r\frac{d\theta}{dt}$$
 et $v^2 = (\frac{dr}{dt})^2 + r^2(\frac{d\theta}{dt})^2$

On peu noter $\frac{dr}{dt}=\frac{d\theta}{dt} imes\frac{dr}{d\theta}$, on pose donc $\frac{d\theta}{dt}=\frac{c}{r^2}$

On obtient ainsi, $\frac{dr}{dt} = \frac{dr}{d\theta} \times \frac{C}{r^2}$.

Si on remplace dans v^2

$$v^2 = (\frac{dr}{d\theta})^2 \times \frac{C^2}{r^4} + r^2 \frac{C^2}{r^4}$$

$$v^2 = \frac{C^2}{r^4} \left[\left(\frac{dr}{d\theta} \right)^2 + r^2 \right]$$

$$v^2 = C^2 \left[\frac{1}{r^4} \left(\frac{dr}{d\theta} \right)^2 + \frac{1}{r^2} \right]$$

On pose $u = \frac{1}{r'}$ on obtient donc :

$$v^2 = C^2 \left[\left(\frac{dU}{d\theta} \right)^2 + u^2 \right]$$

b) On a :
$$\vec{a} = \left[\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right] \overrightarrow{ur}$$
 donc $a = \left[\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2\right]$

On reprend l'expression précédente : $\frac{dr}{dt} = \frac{d\theta}{dt} \times \frac{dr}{d\theta}$, $\frac{d\theta}{dt} = \frac{c}{r^2}$ et $u = \frac{1}{r}$

$$\begin{aligned} &\text{Ici,} \frac{d^2r}{dt^2} = & \frac{d}{d\theta} \left(\frac{dr}{dt} \times \frac{dr}{d\theta} \right) \times \frac{dr}{d\theta} = \\ &\frac{d}{d\theta} \left(\frac{c}{r^2} \times \frac{dr}{d\theta} \right) \times \frac{c}{r^2} = \frac{d}{d\theta} \left[-r^2 \frac{d}{d\theta} \left(\frac{1}{r} \right) \frac{c}{r^2} \right] \frac{c}{r^2} \end{aligned}$$

 $\operatorname{Et}\frac{d^2r}{dt^2} = \frac{-C^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) \right]$

Si on remplace dans l'expression de l'accélération :

$$a = \left[\frac{-C^2}{r^2}\right] \left(\frac{d^2}{d\theta^2} \left(\frac{1}{r}\right) - r\frac{C^2}{r^4}\right)$$

$$a = -\frac{C^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right]$$

$$a = -C^2 u^2 \left[\frac{d^2 u}{d\theta^2} + u \right]$$

On a
$$r=\frac{p}{1+e\cos\theta}$$
, on sait que $u=\frac{1}{r}$

$$Donc: \frac{1}{r} = \frac{1 + e\cos(\theta)}{p} = u$$

D'après l'énoncé :

On sait que
$$\frac{Em}{m} = \frac{M^2}{2C^2}(e^2 - 1) \iff E_m = \frac{M^2}{2C^2}(e^2 - 1) \times m$$

L'énergie totale est donc donnée par :
$$E_m = \frac{m{\it M}^2}{2{\it C}^2}(e^2-1)$$