12-Weeks Computer Vision with Machine Learning Curriculum formatted for structured planning and mentoring.

It blends theory, coding, projects, and emerging trends—perfect if you want to explore industry, research, or entrepreneurial paths.

This layout supports progress tracking, goal-setting, and weekly reflection.

The Computer Vision Curriculum

Week	Focus Area	Learning Goals	Projects & Practice - Tools & Skills
1	Math & Programming Foundation	Basic math: linear algebra, calculus, probability, Python for ML	Solve vector problems, write NumPy & Matplotlib code
2	Machine Learning Basics	Understand core ML concepts: supervised learning, loss functions, optimization	Train a logistic regressor & decision tree by Scikit-learn
3	Classical Computer Vision	Learn Image filtering, edge detection, histogram equalization, feature descriptors	Build image filters with OpenCV
4	Deep Learning Foundations	Learn backpropagation, activation functions, batch training	Train a simple neural net on MNIST by PyTorch or TensorFlow
5	CNNs for Image Classification	Apply CNNs to an image, Convolutions, pooling, architecture tuning	Build an image classifier with CNN & ResNet, TorchVision
6	Object Detection	Train models to locate objects in images, bounding boxes, anchor boxes	Train YOLOv8 or use pre- trained Faster R-CNN
7	Segmentation Techniques	Pixel-level classification with U-Net, DeepLab, Mask R-CNN	Segment images (medical, satellite)
8	Vision Transformers & Attention	Learn ViT, Swin Transformer, sparse attention	Fine-tune a ViT model for classification
9	Generative & Creative Models	Understand GANs, VAEs, and Diffusion models	Generate images using StyleGAN or Stable Diffusion
10	Multimodal & Captioning Models	Combine images with text for intelligent tasks (CLIP, BLIP, Flamingo)	Build an image captioning or VQA system
11	Deployment & Edge Optimization	Export and optimize models for production, quantize, use ONNX, TensorRT, TFLite	Deploy a mobile-ready detection system
12	Ethics, Explainability, and Portfolios	Explore bias detection, fairness, Grad-CAM, mentorship prep, transparency, career strategies	Create a portfolio and plan next career steps

® Optional Tracks Based on Career Goals

- **Industry Path**: Focus extra time on deployment, optimization, mobile-ready models
- Research Path: Spend more time on transformers, self-supervised learning, NeRF
- Startup Path: Add real-world projects like fashion try-on, smart retail, AR

Extras to Boost Your Journey

- Reading List: CS231n lectures, papers from CVPR/ICCV, ArXiv CV trending models
- Datasets: COCO, ImageNet, ADE20K, Cityscapes, LFW, CelebA, MNIST
- **& Courses**: Fast.ai, DeepLearning.ai, Coursera ML & CV specializations
- Communities: Papers with Code, Hugging Face, CVPR Discords, Reddit r/computervision