Word Games

J Chiu

March 7, 2022

Dialogue

- Communication is rarely unambiguous
 - Ambiguity resolution through dialogue
 - Clarification questions
- Interactive, symmetric reference games
 - Isolates ambiguity resolution
 - Both give and request information

Games

Friends of agent A:

Name	School	Major	Company
Jessica Josh	Columbia Columbia	Computer Science Linguistics	Google Google

A: Hi! Most of my friends work for Google

B: do you have anyone who went to columbia?

A: Hello?

A: I have Jessica a friend of mine

A: and Josh, both went to columbia

B: or anyone working at apple?

B: SELECT (Jessica, Columbia, Computer Science, Google)

A: SELECT (Jessica, Columbia, Computer Science, Google)

Human A's view Human B's view

Human B: three light grey dots in a diagonal line

Human A: i dont have that but i have a black dot neer the top to the right, the only black dot in the circle

Human B: i have two black dots, find something else
Human A: ok i have a light grey dot by itself
at the bottom to the left, right on the line

Human B: how big is it

Human A: its one of the bigger ones Human B: okay just pick it then

Human A: ok

Human B: SELECT blue Human A: SELECT red

Mutual Friends and OneCommon

Issue: Poor neural reasoning

From Mutual Friends: Neural + Human

- A: Know anyone who likes chess?
- ▶ B: None of my friends like chess.
- (conversation continues)
- A: Crocheting?
- B: None like crocheting.
- ► A: Chess?
- B: None like chess either, haha.

Issue: Poor neural reasoning

Agent 0: human || 1: human

	0	1
0	1	I see a large grey dot with a smaller black dot right below it
1	0	is the smaller black dot to the right and below
2	1	No, it is slightly to the left and below
3	0	Might not be the same one. Do you have a lot of dots in a fairly vertical conformation
4	1	I have three dots in a kinda vertical line with different shade of gray but close in size
5	0	Is the middle dot curved to the left or right a little bit?
6	1	the middle dot is slighty to the left of the other two and is also a little bit darker than the rest
7	0	Yes pick that middle dot

Issue: Poor neural reasoning

Agent 0: pragmatic_confidence || 1: human

	0	1
0	0	i have one large black dot by itself . do you have it?
1	1	Yes, I do have that.
2	0	let 's pick that one
3	1	ok
4	0	ok

Issue: Scaling rule-based

System	C	C_T	C_S
Human	.89	.07	.36
Rule StanoNet DynoNet	. 88 .76 .87	.06 .04 .05	.29 .23 .27

- Rule-based text generation and understanding is viable for Mutual Friends
- Continuous and spatial nature of OneCommon makes writing rules difficult

Current approaches: Two extremes

- Neural encoder-decoder
 - Encode past interactions with a neural net
 - ► Generate what to say with a neural net
 - Brittle strategy, less brittle language
- Rule-based
 - Encode past interactions in a table
 - Use rules for what to say next
 - ► Nonparametric lookup of utterances
 - Brittle language, less brittle strategy
- ▶ Meet in middle with interpretable planning + neural language

A dialogue turn

- Engaging in dialogue requires
 - ▶ Inference: What do I know? How do I represent it?
 - Planning: What should I do and say?
- Formulate as model-based optimization
 - Plan what to say through a simple model of our partner
 - Model of partner conditions on past information

Problem setup

- ► Goal: Mutually select the same item as partner
 - ► Row in knowledge base, dot
 - Coordinate through dialogue
- Given history h, we need to chose an action a by optimizing value

$$\max_{a} V(h, a)$$

- ightharpoonup Value V = information gain
 - Gain in item selection probability
- \triangleright Represent h, a using attributes
 - Columns of knowledge base, spatial configuration of dots

Value: Information Gain

- ► A good action should move us closer to game success
- Game success depends on our knowledge of our partner's context
- Requires
 - ▶ Belief distribution over selection item given history p(i | h)
 - Partner response model $p(o \mid h, a, i)$
- Represent a turn as

► Language and planning coupled

Decoupling language and planning

- ▶ Decompose actions a and observations o into language and abstract representations \tilde{a}, \tilde{o}
 - Language is very high dimensional, redundant, and inefficient for planning
- Represent a turn as

Abstract observation $\tilde{o} \perp \!\!\!\perp h \mid \tilde{a}, i$

State and belief: Representation and logistic regression

- ► History: whether features have been confirmed $h \in \{0, 1\}^N$
- ▶ Items: $i \in [M], N >> M$
- $\qquad \qquad \psi(h_n,i) = w_n 1(h_n(i))$

Experiments

End

Concerns

- Would a large LM solve all of this?
 - Fine tune on small onecommon dataset, are there still repeats?
 - Unlikely to solve strategy / over optimistism

End

Value: Information Gain

- drop slide
- Picture would be much better here...
- Value = expected information gain

$$IG(h, a) = H(i \mid h) - \mathbb{E}_{p(o|h, a)} [H(i \mid h, a, o)]$$

$$\mathbb{E}_{p(o|h, a)} [H(i \mid h, a)] = \sum_{o} \sum_{i'} p(o \mid h, a, i) p(i \mid h) H(i \mid h, a, o)$$

- Equivalent to minimizing expected uncertainty after receiving a response
- Cite Yu et al, White et al

Issues with information gain

- ▶ Too much burden on the obs model p(o | h, a, i)
 - ▶ When o is natural language, conditioning on h is important
 - If we had a great obs model, would we have really have issues with solving these simple dialogue games?
- Proposal: Set up models for success by separating language from strategy
 - Rule-based representations good for strategy
 - Neural models good for language
- ▶ Set up so that $o \perp \!\!\!\perp h \mid a, i$ is a reasonable assum
- Reframe dialogue as 'asking about features' for item selection
- Convert language to and from item features

Citations I