Model diagnostics and remedies. I

Miaoyan Wang

Department of Statistics UW Madison

Model Assumptions

• The relationship between the response variable Y and the explanatory variables $X_1, X_2, \ldots, X_{p-1}$ is

$$E(Y_i|X_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1}$$
 $E(\varepsilon_i) = 0$

Equal variance:

$$Var(Y_i|X_i) = Var(\varepsilon_i) = \sigma^2.$$

• Independence:

$$Cov(Y_i, Y_{i'}|\mathbf{X}_i, \mathbf{X}_{i'}) = Cov(\varepsilon_i, \varepsilon_{i'}) = 0$$
 for $i \neq i'$.

Normal distribution:

$$Y_i|X_i \sim N(\beta_0+\beta_1X_{i1}+\beta_2X_{i2}+\cdots+\beta_{p-1}X_{i,p-1},\sigma^2)$$
 $\varepsilon_i \sim \text{i.i.d. } N(0,\sigma^2)$

Robustness of Model Assumptions

Departure	$\hat{eta}/\hat{\mu}_{h}$	s.e.	$\hat{Y}_{h(new)}$	s.e.
Linearity	S	S	S	S
Equal variance	R	S	R	S
Independence	R	S	R	S
Normality	R	R	R	S
Outliers	S	S	S	S

S = sensitive; R = robust.

Model Diagnostics

- Correct inference hinges on model assumptions.
- Model diagnostics are to evaluate the model assumptions and determine how reasonably they are met.
- A main idea for model diagnostics is to examine the residuals.
- Consider graphical approaches: Subjective but informative.

Graphical Techniques

- Exploratory data analysis (EDA).
 - Exploration of X and Y.
 - May not be as effective for model diagnostics.
- Recall for $i = 1, \ldots, n$
 - the *i*th fitted value: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - the *i*th residual: $e_i = Y_i \hat{Y}_i$

What does e_i estimate/predict:

$$\varepsilon_i = Y_i - \mathbb{E}(Y_i) \sim_{\text{i.i.d}} N(0, \sigma^2)$$

Properties of Residuals

• Sample mean: $\bar{e} = 0$. Why?

$$\bar{e} = \frac{\sum_{i=1}^{n} e_i}{n} = 0.$$

• Residual variance estimate $\hat{\sigma}^2$. Why?

$$MSE = \frac{SSE}{n-p} = \frac{\sum_{i=1}^{n} e_i^2}{n-p} = \hat{\sigma}^2.$$

Dependence (HW2) Why?

$$\sum_{i=1}^n e_i = 0 \quad \text{and} \quad \sum_{i=1}^n X_i e_i = 0.$$

Residual Plots

- Departures from model assumptions can be difficult to detect directly from X and Y.
- Thus consider residual plots.
 - ▶ Plot e_i against X_i .
 - ▶ Plot $|e_i|$ against X_i .
 - ▶ Plot e_i^2 against X_i .
 - ▶ Plot e_i against \hat{Y}_i .
 - ▶ Plot *e_i* against time.
 - ▶ Box plot of e_i.
 - ▶ Normal QQ plot of e_i.

Example: Wetland Species Richness

Raw residuals:

Types of Residuals

Raw residual (or, ordinary least squares residual):

$$e_i = Y_i - \hat{Y}_i.$$

standardized residual:

$$r_i = rac{Y_i - \hat{Y}_i}{\hat{\sigma}\sqrt{1 - p_{ii}}},$$
 where p_{ii} is the (i, i) -th value of "hat matrix" $m{H}$.

where $\hat{\sigma}^2 = MSE$ based on the entire sample. Why?

$$Var(\mathbf{e}) = Var(\mathbf{Y} - \hat{\mathbf{Y}}) = Var(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

$$= Var(\mathbf{Y} - \mathbf{X}\underbrace{(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}})$$

$$= Var\left(\underbrace{(\mathbf{I} - \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)}_{\text{non-random}}\mathbf{Y}\right)$$

$$= \sigma^2(\mathbf{I} - \mathbf{H})$$

Example: Wetland Species Richness

Standardized residual

Nonlinearity of Regression Function

- Plot e_i against \hat{Y}_i (or X_i).
- Random scatter indicates no serious departure from linearity.
- Example of departure from linearity: Curved relationship.

Non-equal Error Variance

- Plot e_i against \hat{Y}_i (or X_i).
- Plot $|e_i|$ against \hat{Y}_i (or X_i).
- Plot e_i^2 against \hat{Y}_i (or X_i).
- Random scatter indicates no serious departure from constant variance.
- Example of departure from constant variance: Megaphone/funnel shape.

Nonindependence of Error Terms

- Possible forms of nonindependence.
 - Observations collected over time and/or across space.
 - Study done on sets of siblings.
- Example of departure from independence:
 - Trend effect
 - Cyclical non-independence

Examples: Corn Yield

For i = 1, ..., n,

- i =the index of the patch planted to corn.
- Patches are arranged in a long line at the edge of a field.
- X_i = the amount of fertilizer applied to the ith patch.
- Y_i = the corn yield in the ith patch.
- Plot e_i against location i.

Examples: Corn Yield

Nonnormality of Error Terms

Assess whether the residuals $\{e_i\}$ follow from normal.

- Box plot, histogram of e_i.
- Normal QQ plot: compared sorted residuals $e_{(1)}, \ldots, e_{(n)}$ to quantiles from standard normal N(0,1).
- If the residuals are approximately normal, the normal QQ plot should be approximately linear.
- It is a good idea to examine other departures first.
- Other departure affects the distribution, e.g., distribution of $\{e_i\}$ is subject to independence assumption especially in small sample size

Presence of Outliers

- An outlier refers to an extreme observation.
- Box plot, histogram plot of $\{e_i\}$.
- Plot e_i against \hat{Y}_i (or X_i).
- Random scatter indicates absence of outliers.
- Outliers may convey important information. An error. A different mechanism is at work. A significant discovery.

Graphical Techniques: Remarks

- We generally do not plot residuals (e_i) against response (Y_i) . Why not?
- Residual plots may provide evidence against model assumptions, but do not generally validate assumptions.
- For data analysis in practice: Fit model and check model assumptions (an iterative process).
- For this class, please include representative residual plots in homework assignments and reports.
- As much art as science. No golden rules. No magic formulas.
 Decision may be difficult for small sample size.