Banker's Algorithm Example Solutions

Exercise 1

Assume that there are 5 processes, P_0 through P_4 , and 4 types of resources. At T_0 we have the following system state:

Max Instances of Resource Type A = 3 (2 allocated + 1 Available)

Max Instances of Resource Type B = 17 (12 allocated + 5 Available)

Max Instances of Resource Type C = 16 (14 allocated + 2 Available)

Max Instances of Resource Type D = 12 (12 allocated + 0 Available)

					Given M	<u>atrices</u>						
	Allocation Matrix (N0 of the allocated resources By a process)				Max res	sources th	Matrix at may be ocess	used by		Not A	ole Mati Allocated ources	
	A	В	C	D	A	В	С	D	A	В	С	D
Po	0	1	1	0	0	2	1	0	1	5	2	0
\mathbf{P}_{1}	1	2	3	1	1	6	5	2				
P ₂	1	3	6	5	2	3	6	6				
P 3	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				
Total	2	12	14	12								

1. Create the need matrix (max-allocation)

Need(i) = Max(i) - Allocated(i)

$$(i=0)$$
 $(0,2,1,0) - (0,1,1,0) = (0,1,0,0)$

$$(i=1)$$
 $(1,6,5,2)$ - $(1,2,3,1)$ = $(0,4,2,1)$

$$(i=2)$$
 $(2,3,6,6) - (1,3,6,5) = (1,0,0,1)$

$$(i=3)$$
 $(0,6,5,2) - (0,6,3,2) = (0,0,2,0)$

$$(i=4)$$
 $(0,6,5,6)$ - $(0,0,1,4)$ = $(0,6,4,2)$

Ex. Process P1 has max of (1,6,5,2) and allocated by (1,2,3,1)

Need(p1) = $\max(p1)$ - allocated(p1) = (1,6,5,2) - (1,2,3,1) = (0,4,2,1)

Need Matrix = Max Matrix - Allocation Matrix								
A B C D								
\mathbf{P}_0	0	1	0	0				
P ₁	0	4	2	1				
P ₂	1	0	0	1				
P ₃	0	0	2	0				
P ₄	0	6	4	2				

2. Use the safety algorithm to test if the system is in a safe state or not?

a. We will first define work and finish:

Initially work = available = (1, 5, 2, 0) Finish = False for all processes

Finish	matrix
P_0	False
P_1	False
P ₂	False
P ₃	False
P ₄	False

W	ork	vect	tor
1	5	2	0

- b. Check the needs of each process [$needs(pi) \le Max(pi)$], if this condition is true:
 - Execute the process, Change Finish[i] =True
 - Release the allocated Resources by this process
 - Change The Work Variable = Allocated (pi) + Work

 $need_0(0,1,0,0) \le work(1,5,2,0)$

P0 will be executed because need(P0) <= Work P0 will be True

Finish	matrix
P ₀ – 1	True
P ₁	False
P_2	False
P ₃	False
P ₄	False

P0 will release the allocated resources(0,1,1,0)Work = Work (1,5,2,0)+Allocated(P0)(0,1,1,0) = 1,6,3,0

W	ork	vect	or
1	6	3	0

Need₁ $(0,4,2,1) \le \text{work}(1,6,3,0)$ Condition Is False P1 will Not be executed Need₂ $(1,0,0,1) \le \text{work}(1,6,3,0)$ Condition Is False P2 will Not be executed

Need₃ $(0,0,2,0) \le \text{work}(1,6,3,0)$ P3 will be executed

P3 will be executed because need(P3) <= Work P3 will be True

Finish matrix					
P ₀ – 1	True				
P1	False				
P ₂	False				
P ₃ -2	True				
P ₄	False				

P3 will release the allocated resources (0,6,3,2) Work = Work (1,6,3,0)+Allocated(P3) (0,6,3,2) = 1,12,6,2 Work vector 1 12 6 2

<u>Need4</u> $(0,6,4,2) \le work(1,12,6,2)$ P4 will be executed

P4 will be executed because need(P4) <= Work P4 will be True

Finish matrix					
P ₀ – 1	True				
P1	False				
P_2	False				
P ₃ -2	True				
P4 -3	True				

P4 will release the allocated resources (0,0,1,4)Work = Work (1,12,6,2) + Allocated(P4) (0,0,1,4) = 1,12,7,6

Work vector
1 | 12 | 7 | 6

<u>Need₁ $(0,4,2,1) \le work(1,12,7,6)$ P1 will be executed</u>

P1 will be executed because need(P1) <= Work P1 will be True

Finish	matrix
$P_0 - 1$	True
P ₁ -4	True
P_2	False
P ₃ -2	True
P ₄ -3	True

P1 will release the allocated resources (1,2,3,1)
Work = Work
(1,12,7,6) + Allocated(P1)
(1,2,3,1) = 2,14,10,7

Work vector 2 | 14 | 10 | 7

Need₂ $(1,0,0,1) \le work(2,14,10,7)$ P2 will be executed

P2 will be executed because need(P2) <= Work P2 will be True

Finish matrix					
P ₀ – 1	True				
P ₁ -4	True				
P ₂ -5	True				
P ₃ -2	True				
P4 -3	True				

P2 will release the allocated resources (1,3,6,5)Work = Work (2,14,10,7) + Allocated(P1) (1,3,6,5) = 3,17,16,12

Work vector 3 | 17 | 16 | 12

The system is in a safe state and the processes will be executed in the following order: P0,P3,P4,P1,P2

Exercise 2:

If the system is in a safe state, can the following requests be granted, why or why not? Please also run the safety algorithm on each request as necessary.

- a. P1 requests (2,1,1,0)
 We cannot grant this request, because we do not have enough available instances of resource A.
- b. P1 requests (0,2,1,0)

There are enough available instances of the requested resources, so first let's pretend to accommodate the request and see the system looks like:

	1	Allocation			Max				Available			
	A	В	С	D	A	В	С	D	A	В	С	D
P ₀	0	1	1	0	0	2	1	0	1	3	1	0
P_1	1	4	4	1	1	6	5	2				
P ₂	1	3	6	5	2	3	6	6				
P ₃	0	6	3	2	0	6	5	2				
P_4	0	0	1	4	0	6	5	6				

Need Matrix							
	A	В	C	D			
P_0	0	1	0	0			
P ₁	0	2	1	1			
\mathbf{P}_2	1	0	0	1			
P ₃	0	0	2	0			
P ₄	0	6	4	2			

Now we need to run the safety algorithm:

Initially

Work vector	Finis	h matrix
1	P_0	False
3	P_1	False
1	P_2	False
0	P ₃	False
	P ₄	False

Let's first look at P_0 . Need₀ (0,1,0,0) is less than work, so we change the work vector and finish matrix as follows:

Work vector	Finish matrix		
1	P_0	True	
4	P_1	False	
2	P_2	False	
0	P ₃	False	
	P_4	False	

Need₁ (0,2,1,1) is not less than work, so we need to move on to P_2 . Need₂ (1,0,0,1) is not less than work, so we need to move on to P_3 .

Need₃ (0,0,2,0) is less than or equal to work. Let's update work and finish:

Work vector	Finish matrix	
1	P_0	True
10	\mathbf{P}_1	False
5	\mathbf{P}_2	False
2	P ₃	True
	P ₄	False

Let's take a look at Need₄ (0,6,4,2). This is less than work, so we can update work and finish:

Work vector	Finish matrix	
1	P_0	True
10	\mathbf{P}_1	False
6	\mathbf{P}_2	False
6	P ₃	True
	P ₄	True

We can now go back to P_1 . Need₁ (0,2,1,1) is less than work, so work and finish can be updated:

Work vector	Finish matrix		
1	P_0	True	
14	P_1	True	
10	P_2	False	
7	P ₃	True	
	P ₄	True	

Finally, Need₂ (1,0,0,1) is less than work, so we can also accommodate this. Thus, the system is in a safe state when the processes are run in the following order:

 P_0, P_3, P_4, P_1, P_2 . We therefore can grant the resource request.

Exercise 3

Assume that there are three resources, A, B, and C. There are 4 processes P_0 to P_3 . At T_0 we have the following snapshot of the system:

	we have the following shapshot of the sys			byst					
	Al	locati	on		Max		Av	ailal	ble
	A	В	С	A	В	С	A	В	С
P_0	1	0	1	2	1	1	2	1	1
P_1	2	1	2	5	4	4			
P_2	3	0	0	3	1	1			
P_3	1	0	1	1	1	1			

1.Create the need matrix.				
		Need		
		A	В	С
	P_0	1	1	0
	P_1	3	3	2
	P_2	0	1	1
	P_3	0	1	0

2. Is the system in a safe state? Why or why not? In order to check this, we should run the safety algorithm. Let's create the work vector and finish matrix:

Work vector		Finish matrix
2	P_0	False
1	\mathbf{P}_1	False
1	P ₂	False
	P ₃	False

Need ₀ (1,1,0) is less than work, so let's go						
ahead and update work and finish:						
	Work vector Finish					
	matrix					
	3	P_0	True			
	1	P ₁ False				
	2 P ₂ False					
		\mathbf{p}_2	False			

Need₁ (3,3,2) is not less than work, so we have to move on to P_2 .

\ ,	-,-,		,
update w	ork and finish:		
	Work vector	Finis	sh matrix
	6	P_0	True
	1	P_1	False
	2	P ₂	True
		P_3	False

Need₂(0.1.1) is less than work, let's

Need₃ (0,1,0) is less than work, we can update work and finish:

Work vector	Finish matrix		
7	P_0	True	
1	\mathbf{P}_1	False	
3	\mathbf{P}_2	True	
	P ₃	True	

We now need to go back to P_1 . Need₁ (3,3,2) is not less than work, so we cannot continue. Thus, the system is not in a safe state.