CS 4650/7650 Distributional Lexical Semantics

Jacob Eisenstein¹

November 9, 2015

¹Some slides borrowed from Marco Baroni and Michael Collins > () > () > ()

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ► What state borders Texas? \rightarrow λx .STATE(x) \land BORDERS(x, TEXAS)

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow λx .STATE(x) \land BORDERS(x, TEXAS)

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow λx .STATE(x) \land BORDERS(x, TEXAS)

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].
- ► Today: lexical semantics vector-space models for the meaning of individual words

How do we do semantic analysis of words that we've never seen before?

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of tezgüino is on the table.
- Everybody likes tezgüino.
- ► Tezgüino makes you drunk.
- ▶ We make tezgüino out of corn.

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of _____ is on the table.
- ▶ Everybody likes _____.
- _____ makes you drunk.
- ▶ We make _____ out of corn.

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of _____ is on the table.
- ► Everybody likes _____.
- ▶ ____ makes you drunk.
- ▶ We make ____ out of corn.

How well do other words fit into these contexts?

▶ Loud, motor oil, tortillas, choices, wine

The vector-space model

Key idea: each word (type) is represented by a vector of contexts.

- ► C1: A bottle of _____ is on the table.
- C2: Everybody likes _____.
- C3: ____ makes you drunk.
- ► C4: We make ____ out of corn.
- **.**..

The vector-space model

Key idea: each word (type) is represented by a vector of contexts.

- ► C1: A bottle of _____ is on the table.
- ► C2: Everybody likes _____.
- C3: _____ makes you drunk.
- ► C4: We make _____ out of corn.

	C1	C2	C3	C4	
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	1	

The Vector-space model

- ► The "meaning" of tezgüino is represented by the vector $\{1, 1, 1, 1, \ldots\}$.
- Wine has a similar vector and therefore a similar meaning.
- ► The vector-space model is used in a huge range of NLP and information retrieval applications.
- Key technical questions:
 - ▶ How kinds of context should we consider?
 - ► How do we measure similarity?
 - ▶ How do we distinguish frequent and infrequent events?

Same corpus (BNC), different contexts (window sizes) Nearest neighbours of dog

2-word window

- cat
- horse
- ▶ fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

30-word window

- kennel
- puppy
- pet
- bitch
- terrier
- rottweiler
- canine
- cat
- to bark
- Alsatian

Mutual information trees

Bit strings

- Equivalently, each word can be described by a bit string of branchings in the induced hierarchy.
- From Miller et al (2004):

lawyer	1000001101000			John	1011100100000000000
newspaperman	100000110100100	Nike	10110111001001010111100	Consuelo	101110010000000001
stewardess	100000110100101	Maytag	101101110010010101111010	Jeffrey	101110010000000010
toxicologist	10000011010011	Generali	101101110010010101111011	Kenneth	10111001000000001100
slang	1000001101010	Gap	10110111001001010111110	Phillip	101110010000000011010
babysitter	100000110101100	Harley-Davidson Enfield	101101110010010101111110 101101110010010	WILLIAM	101110010000000011011
conspirator	1000001101011010	genus	1011011100100101011111111	Timothy	10111001000000001110
womanizer	1000001101011011	Microsoft	10110111001001011000	Terrence	101110010000000011110
mailman	10000011010111	Ventritex	101101110010010110010	Jerald Harold	101110010000000011111 101110010000000100
salesman	100000110110000	Tractebel	1011011100100101100110	Frederic	101110010000000100
bookkeeper	100000110110000	Synopsys	1011011100100101100111	Wendell	101110010000000101
bookkeeper	1000001101100010	WordPerfect	1011011100100101101000	Welldell	10111001000000011

- ▶ Bit strings can easily be converted into features for supervised learning.
 - ► Named entity tagging (Miller et al, 2004)
 - Dependency parsing (Koo et al, 2008)

Brown clusters in NER

Lin (1998): qualitative evaluation

Pairs of words which are each others respective nearest neighbors

				'	_		
	Nouns		Adjective/Adverbs				
Rank	Respective Nearest Neighbors	Similarity	Rank	Respective Nearest Neighbors	Similarity		
1	earnings profit	0.572525	1	high low	0.580408		
11	plan proposal	0.47475	11	bad good	0.376744		
21	employee worker	0.413936	21	extremely very	0.357606		
31	battle fight	0.389776	31	deteriorating improving	0.332664		
41	airline carrier	0.370589	41	alleged suspected	0.317163		
51	share stock	0.351294	51	clerical salaried	0.305448		
61	rumor speculation	0.327266	61	often sometimes	0.281444		
71	outlay spending	0.320535	71	bleak gloomy	0.275557		
81	accident incident	0.310121	81	adequate inadequate	0.263136		
91	facility plant	0.284845	91	affiliated merged	0.257666		
101	charge count	0.278339	101	stormy turbulent	0.252846		
111	baby infant	0.268093	111	paramilitary uniformed	0.246638		
121	actor actress	0.255098	121	sharp steep	0.240788		
131	chance likelihood	0.248942	131	communist leftist	0.232518		
141	catastrophe disaster	0.241986	141	indoor outdoor	0.224183		
151	fine penalty	0.237606	151	changed changing	0.219697		
161	legislature parliament	0.231528	161	defensive offensive	0.211062		
171	oil petroleum	0.227277	171	sad tragic	0.206688		
181	strength weakness	0.218027	181	enormously tremendously	0.199936		
191	radio television	0.215043	191	defective faulty	0.193863		
201	coupe sedan	0.209631	201	concerned worried	0.186899		

Lin (1998): quantitative evaluation

This method can be used to induce thesauri, which can then be compared with manually-crafted resources like WordNet and Roget's thesaurus.

	Wor	dNet
	average	σ_{avg}
Roget	0.178397	0.001636
sim	0.212199	0.001484
Hindle	0.204179	0.001424
$Hindle_r$	0.164716	0.001200
cosine	0.199402	0.001352

	Ro	get					
	average σ_{avg}						
WordNet	0.178397	0.001636					
sim	0.149045	0.001429					
Hindle	0.14663	0.001383					
$Hindle_r$	0.115489	0.001140					
cosine	0.135697	0.001275					

Outline

Latent semantic analysis (LSA)

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

Example of text data: Titles of Some Technical Memos Human machine interface for ABC computer applications c1: A survey of user opinion of computer system response time c3: The EPS user interface management system c4: System and human system engineering testing of EPS Relation of user perceived response time to error measurement c5: The generation of random, binary, ordered trees m1: The intersection *graph* of paths in *trees* m2: m3: Graph minors IV: Widths of trees and well-quasi-ordering m4: Graph minors: A survey

Latent semantic analysis (LSA)

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

	c 1	c 2	c3	c 4	c 5	m 1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Latent semantic analysis (LSA)

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

	c 1	c 2	c3	c 4	c 5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	O	O	0
time	0	1	0	0	1	0	0	O	0
EPS	0	0	1	1	O	0	0	0	0
survey	0	1	0	0	O	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

- ► correlation(human,user) = -.38
- ► correlation(human,minors) = -.29

Transforming the count matrix

- ▶ The count matrix **X** can be huge
- ▶ In this space, similarity will be sensitive to noise.
- We'd prefer to measure similarity in a more compact space.
- ▶ Singular value decomposition (SVD): $\mathbf{X} \approx \mathbf{USV}^{\top}$
 - $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}, \ \mathbf{V}\mathbf{V}^{\top} = \mathbf{I} \ (\text{they are orthonormal})$
 - ▶ The columns of **U** are the eigenvectors of $\mathbf{X}\mathbf{X}^{\top}$.
 - ▶ The columns of V are the eigenvectors of X^TX .
 - ▶ **S** is a diagonal matrix containing the square roots of the eigenvalues in descending order.

- SVD as repeated regression on residuals:
 - fit a line to your data

- compute residuals
- fit a line to the residuals

repeat

- SVD as repeated regression on residuals:
 - fit a line to your data

- compute residuals
- fit a line to the residuals

repeat

- If we fit as many lines as the smaller dimension of X, SVD can reconstruct it exactly.
- If not, SVD forms a least-squares approximation X

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$$

Intuitively,

U describes the rows (words).

0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.11	-0.50	0.21	0.57	-0.51	0.10	0.19	0.25	0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05	-0.21	0.38	-0.21	0.33	0.39	0.35	0.15	-0.60
-0.08	-0.26	0.72	-0.37	0.03	-0.30	-0.21	0.00	0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01	0.05	0.01	-0.02	-0.06	0.45	-0.76	0.45	-0.07
-0.06	0.24	0.02	-0.08	-0.26	-0.62	0.02	0.52	-0.45

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$$

Intuitively,

- U describes the rows (words).
- V[⊤] describes the columns (documents).

```
0.22
        -0.11
                   0.29
                            -0.41
                                     -0.11
                                               -0.34
                                                         0.52
                                                                  -0.06
                                                                            -0.41
0.20
        -0.07
                   0.14
                           -0.55
                                      0.28
                                               0.50
                                                         -0.07
                                                                  -0.01
                                                                            -0.11
0.24
         0.04
                  -0.16
                            -0.59
                                     -0.11
                                               -0.25
                                                         -0.30
                                                                   0.06
                                                                            0.49
0.40
         0.06
                  -0.34
                            0.10
                                      0.33
                                               0.38
                                                                            0.01
                                                         0.00
                                                                   0.00
0.64
                                               -0.21
                                                                            0.27
        -0.17
                   0.36
                            0.33
                                     -0.16
                                                         -0.17
0.27
         0.11
                  -0.43
                                      0.08
                                               -0.17
                                                         0.28
                                                                  -0.02
                                                                            -0.05
                            0.07
0.27
        0.11
                  -0.43
                            0.07
                                      0.08
                                               -0.17
                                                         0.28
                                                                  -0.02
                                                                            -0.05
0.30
        -0.14
                  0.33
                            0.19
                                      0.11
                                               0.27
                                                         0.03
                                                                  -0.02
                                                                            -0.17
0.21
         0.27
                  -0.18
                                     -0.54
                                               0.08
                                                         -0.47
                                                                  -0.04
                                                                            -0.58
                            -0.03
0.01
         0.49
                   0.23
                            0.03
                                      0.59
                                               -0.39
                                                         -0.29
                                                                   0.25
                                                                            -0.23
0.04
                   0.22
                                     -0.07
                                               0.11
                                                         0.16
                                                                            0.23
         0.62
                            0.00
                                                                  -0.68
0.03
                                     -0.30
                                               0.28
         0.45
                   0.14
                            -0.01
                                                         0.34
                                                                   0.68
                                                                            0.18
```

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$$

Intuitively,

- U describes the rows (words).
- V[⊤] describes the columns (documents).
- S gives the importance of each dimension in U and V.

Correlation in the reconstructed counts

With only two singular values, we obtain a *reduced-rank* approximation:

 $\mathbf{X} \approx \hat{\mathbf{X}} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

Correlation in the reconstructed counts

With only two singular values, we obtain a *reduced-rank* approximation:

$$\mathbf{X} pprox \hat{\mathbf{X}} = \mathbf{U}\mathbf{S}\mathbf{V}^{ op}$$

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

- correlation(human,user) = .94
- correlation(human,minors) = -.83
- SVD has identified a low-dimensional basis for X, in which correlations are much more robust.

Title correlations

Similarly, correlation of titles in the raw counts was not informative:

Correlations between titles in raw data:

	c1	c2	c3	c4	c5	m1	m2	m3
c2 c3	-0.19							
c3	0.00	0.00						
c4	0.00	0.00	0.47					
c5	-0.33	0.58	0.00	-0.31				
m1	-0.17	-0.30	-0.21	-0.16	-0.17			
m2	-0.26	-0.45	-0.32	-0.24	-0.26	0.67		
m3	-0.33	-0.58	-0.41	-0.31	-0.33	0.52	0.77	
m4	-0.33	-0.19	-0.41	-0.31	-0.33	-0.17	0.26	0.56

Title correlations

But correlation in the reduced-rank approximation reveals the underlying structure:

Correlations in two dimensional space:

c2 c3 c4 c5 m1 m2 m3	0.91 1.00 1.00 0.85 -0.85 -0.85	0.91 0.88 0.99 -0.56 -0.56	1.00 0.85 -0.85 -0.85 -0.85	0.81 -0.88 -0.88 -0.88	-0.45 -0.44 -0.44	1.00 1.00	1.00	
m3	-0.85	-0.56	-0.85	-0.88	-0.44	1.00	1.00	1.00
m4	-0.81	-0.50	-0.81	-0.84	-0.37	1.00	1.00	

LSA for expanding sentiment dictionaries

Turney and Littman (2004) use LSA to expand a small sentiment dictionary.

$$\mathsf{Semantic\text{-}orientation}(i) = \sum_{j \in \mathsf{pos\text{-}words}} \mathsf{sim}(u_i, u_j) - \sum_{j \in \mathsf{neg\text{-}words}} \mathsf{sim}(u_i, u_j)$$

 $ightharpoonup u_i$ is the row in the matrix \mathbf{U} corresponding to word i

LSA for expanding sentiment dictionaries

Turney and Littman (2004) use LSA to expand a small sentiment dictionary.

$$\mathsf{Semantic\text{-}orientation}(i) = \sum_{j \in \mathsf{pos\text{-}words}} \mathsf{sim}(u_i, u_j) - \sum_{j \in \mathsf{neg\text{-}words}} \mathsf{sim}(u_i, u_j)$$

- \triangleright u_i is the row in the matrix \mathbf{U} corresponding to word i
- ▶ The similarity function $sim(u_i, u_j)$ is the *cosine* similarity:

$$cosine(x, y) = \frac{x^{\top}y}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

LSA for expanding sentiment dictionaries

- ▶ Dimensionality tradeoff: expressiveness for robustness
- ► Turney and Littman find that the ideal number of dimensions is around 250 (for this task and corpus).

LSA for automatic essay grading

- ▶ Latent semantic analysis can be used to automatically grade test essays (Landauer et al., 1998).
- Ungraded essays are compared via cosine similarity to graded essays.
- ► LSA agrees with expert raters about as often as they agree with each other!
- The educational testing service (ETS) uses a combination of LSA with other features such as grammar, spelling, and repeated words (Burnstein 2003).

"Neural" word embeddings, K = 25

"Neural" word embeddings, K = 50

"Neural" word embeddings, K = 200

Word2vec

A very popular recent neural approach is **word2vec**. It encompasses two models:

- Skipgrams predict each element in the context, conditioned on the word.
- Continuous bag-of-words (CBOW) predict each word conditioned on its context.

These methods were made practical by a new estimation heuristic called *negative sampling*.

Semantic similarity tasks

See http://www-nlp.stanford.edu/projects/glove/

Summary of lexical semantics

- ▶ Distributional similarity is a powerful tool for understanding the relationships between words.
- The vector space model describes each word by a vector of contextual information.
- Latent semantic analysis (LSA) operates on the term-document matrix to identify a low-rank representation for both word and document semantics.
- ► Today we examined only synonymy, but there are many other lexical relations, such as *antonyms*, *part-of*, *type-of*...