Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

Akshay Sanjeev

May 5, 2025

We are in 2009

Outline of Bowtie

- Burrows-Wheeler Transform(Indexing)
- Exact and inexact alignment
- ► Excessive backtracking

Burrows- Wheeler Transform: Forward Transform

Let $T = \mathtt{BANANA}$. $\mathsf{BWT}(T)$ will be:

Burrows- Wheeler Transform: Forward Transform

Let $T = \mathtt{BANANA}$. $\mathsf{BWT}(T)$ will be:

$$\begin{bmatrix} \$ & \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} \\ \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} \\ \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} \\ \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} & \mathsf{N} \\ \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} & \mathsf{N} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{B} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \$ & \mathsf{B} & \mathsf{A} \\ \mathsf{N} & \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{A} & \$ & \mathsf{B} \\ \mathsf{A} & \mathsf{N} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A} \\ \mathsf{A} & \mathsf{A} & \mathsf{A} & \mathsf{A}$$

$$BWT(T) \to \mathtt{ANNB\$AA}$$

```
$ A
A
N
A
N
A
B
B
N
A
N
A
A
```

\$	$\xrightarrow{\hspace*{1cm}}$	A
Α		N
Α		N
Α		В
В		\$
N		A
N		A

follow the tip of blue arrows to get back the initial message: BANANA\$

 $\Sigma = \mathtt{B}_1\mathtt{A}_1\mathtt{N}_1\mathtt{A}_2\mathtt{N}_2\mathtt{A}_3.$ Pattern to find, $P = \mathtt{NAN}$

$$\Sigma = \mathtt{B}_1 \mathtt{A}_1 \mathtt{N}_1 \mathtt{A}_2 \mathtt{N}_2 \mathtt{A}_3.$$
 Pattern to find, $P = \mathtt{NAN}$

0	\$	\mathtt{A}_1	1
1	\mathtt{A}_1	N_1	5
2	\mathtt{A}_2	N_2	6
3	\mathtt{A}_3	\mathtt{B}_1	4
4	\mathtt{B}_1	\$	0
5	N_1	\mathtt{A}_2	2
6	N_2	A_3	3

 $\Sigma = \mathtt{B}_1\mathtt{A}_1\mathtt{N}_1\mathtt{A}_2\mathtt{N}_2\mathtt{A}_3.$ Pattern to find, $P = \mathtt{NAN}$

$top{ o}$	0	\$	\mathtt{A}_1	1
	1	\mathtt{A}_1	N_1	5
	2	\mathtt{A}_2	\mathtt{N}_2	6
	3	\mathtt{A}_3	\mathtt{B}_1	4
	4	B_1	\$	0
	5	N_1	\mathtt{A}_2	2
$bot {\to}$	6	N_2	\mathtt{A}_3	3

$$\Sigma = \mathsf{B}_1 \mathsf{A}_1 \mathsf{N}_1 \mathsf{A}_2 \mathsf{N}_2 \mathsf{A}_3.$$
 Pattern to find, $P = \mathsf{NAN}$

	0	\$	\mathtt{A}_1	1
	1	\mathtt{A}_1	N_1	5
	2	\mathtt{A}_2	N_2	6
	3	\mathtt{A}_3	\mathtt{B}_1	4
	4	\mathtt{B}_1	\$	0
$\mathtt{N}_{1}{\rightarrow}$	5	N_1	\mathtt{A}_2	2
$N_2 \rightarrow$	6	N_2	\mathtt{A}_3	3

 $\Sigma = \mathtt{B}_1 \mathtt{A}_1 \mathtt{N}_1 \mathtt{A}_2 \mathtt{N}_2 \mathtt{A}_3.$ Pattern to find, $P = \mathtt{NAN}$

	0	\$	\mathtt{A}_1	1
	1	\mathtt{A}_1	N_1	5
$\mathtt{A}_{2}\mathtt{N}_{1}{\rightarrow}$	2	\mathtt{A}_2	N_2	6
$\mathtt{A}_{3}\mathtt{N}_{2}{\rightarrow}$	3	\mathtt{A}_3	\mathtt{B}_1	4
	4	\mathtt{B}_1	\$	0
	5	N_1	\mathtt{A}_2	2
	6	No	Δ.	3

 $\Sigma = \mathtt{B}_1 \mathtt{A}_1 \mathtt{N}_1 \mathtt{A}_2 \mathtt{N}_2 \mathtt{A}_3.$ Pattern to find, $P = \mathtt{NAN}$

	0	\$	\mathtt{A}_1	1
	1	\mathtt{A}_1	N_1	5
	2	\mathtt{A}_2	\mathtt{N}_2	6
	3	\mathtt{A}_3	\mathtt{B}_1	4
$\mathtt{B}_{1}\mathtt{A}_{3}\mathtt{N}_{2}{\rightarrow}$	4	B_1	\$	0
	5	N_1	\mathtt{A}_2	2
$N_2A_2N_1 \rightarrow$	6	N_2	A_3	3

Why and What is Bowtie?

- Exactmatching performs poorly for DNA short read alignment because of mismatches from sequencing errors and other reasons.
- New alignment algorithm which conducts a backtracking search to quickly find alignments that satisfy a specified alignment policy.
- ▶ Each character in a read has a numeric quality value(m_i), with lower values indicating a higher likelihood of a sequencing error.
- We allows a limited number of mismatches, while trying to minimize $\sum_i m_i$, where i spans over all mismatches.

Bowtie is a quality-awarer, greedy, randomized, depth-first search through the space of possible alignments.