CPS 510 - Assignment 8

Bernstein's Algorithm - Broken down into 4 steps:

- 1) Determine all the functional dependencies
- 2) a) Find and remove redundancies
- **2)** b) Find and remove partial dependencies
- 3) Find keys
- 4) Create tables

Step 1 (finding all functional dependencies)

- employee_id -> {start date, employee title}

depart_id -> {depart_manager, depart_name, num_employees}

account_id -> {user_birthdate, address, phone, account_name}

- user_id -> {user_name, user_password}

- qualification_id -> {user_degree, resume, years_experience, cover_letter, license}

- job_id -> {work_period, company, salary, job_title, job_location, job_type, job_deadline}

- company_id -> {money}

- applicant_id -> {subscription}

Step 2a (Break RHS and find redundancies)

Redundancies

- employee_id -> {start_date, employee_title, user_id}
 - Reduced list of FD's:
 - employee_id -> {start_date}
 - employee_id -> {employee title}
 - no redundancies
- depart_id -> {depart_manager, depart_name, num_employees}
 - Reduced list of FD's:
 - depart_id -> {depart_manager}
 - depart_id -> {depart name}
 - depart_id -> {num employees}
 - no redundancies
- account_id -> {user_birthdate, address, phone, account_name}
 - Reduced list of FD's:
 - Account_id -> {user birthdate}
 - Account_id -> {address, phone}
 - Account_id -> {phone}
 - Account_id -> {account name}

no redundancies

- user_id -> {user_name, user_password}
 - Reduced list of FD's:
 - user_id -> {user name}
 - user_id -> {user password}
 - no redundancies
- qualification_id -> {user_degree, resume, years_experience, cover_letter, license}
 - Reduced list of FD's:
 - qualification_id -> {user degree}
 - qualification id ->{resume}
 - qualification_id ->{years_experience}
 - qualification_id ->{cover letter}
 - qualification_id ->{license}
 - no redundancies
- job_id -> {work_period, company, salary, job_title, job_location, job_type, job_deadline}
 - Reduced list of FD's:
 - job_id ->{work_period}
 - job_id ->{company}
 - job_id ->{salary}
 - job_id ->{job title}
 - job id ->{job location}
 - job_id ->{job type}
 - job_id ->{job deadline}
 - no redundancies
- company_id -> {money}
 - Reduced list of FD's:
 - company_id -> {money}
 - no redundancies
- applicant_id -> {subscription}
 - Reduced list of FD's:
 - applicant_id -> {subscription}
 - no redundancies

Step 2b (Minimize LHS, find and remove partial dependencies)

- LHS is already minimized, therefore there are no partial dependencies

Step 3(Find keys) (relational schema)

- employee_id -> {start date, employee title}
 - Attributes on RHS but not on LHS (cannot be keys)
 - start date
 - employee title
 - Possible Keys
 - employee id
- depart_id -> {depart_manager, depart_name, num_employees}
 - Attributes on RHS but not on LHS (cannot be keys)
 - depart manager
 - depart name
 - num employees
 - Possible Keys
 - depart id
- account_id -> {user_birthdate, address, phone, account_name}
 - Attributes on RHS but not on LHS (cannot be keys)
 - user birthdate
 - address
 - phone
 - account name
 - Possible Keys
 - account id
- user_id -> {user name, user password}
 - Attributes on RHS but not on LHS (cannot be keys)
 - user name
 - user password
 - Possible Keys
 - user id
- qualification_id -> {user degree, resume, years experience, cover letter, license}
 - Attributes on RHS but not on LHS (cannot be keys)
 - user_degree
 - resume
 - years_experience
 - cover_letter

- license
- Possible Keys
 - qualification_id
- job_id -> {work_period, company, salary, job_title, job_location, job_type, job_deadline}
 - Attributes on RHS but not on LHS (cannot be keys)
 - work period
 - company
 - salary
 - job title
 - job location
 - job type
 - job deadline
 - Possible Keys
 - job id
- company_id -> {money}
 - Attributes on RHS but not on LHS (cannot be keys)
 - money
 - Possible Keys
 - company_id
- applicant_id -> {subscription}
 - Attributes on RHS but not on LHS (cannot be keys)
 - subscription
 - Possible Keys
 - applicant id

Step 4(Make tables)

R1(employee_id, start_date, employee_title) with FD: employee_id -> {start_date, employee_title}

R2(depart_id, depart_manager, depart_name, num_employees) with FD: **depart_id** -> {depart_manager, depart_name, num_employees}

R3(account_id, user_birthdate, address, phone, account_name) with FD: **account_id** -> {user_birthdate, address, phone, account_name}

R4(user_id, user_name, user_password) with FD: **user_id** -> {user_name, user_password}

R5(qualification_id, user_degree, resume, years_experience, cover_letter, license) with FD: **qualification_id** -> {user_degree, resume, years_experience, cover_letter, license}

R6(job_id, work_period, company, salary, job_title, job_location, job_type, job_deadline) with FD: **job_id** -> {work_period, company, salary, job_title, job_location, job_type, job_deadline}

R7(company_id, money) with FD: company_id -> {money}

R8(application_id, subscription) with FD: applicant_id -> {subscription}

BCNF (Boyce Codd Normal Form)

Step 1 (finding all functional dependencies)

- **employee_id** -> {start date, employee title, user id, department id}

depart_id -> {depart_manager, depart_name, num_employees, job_id}

account_id -> {user birthdate, address, phone, account name}

- user_id -> {user_name, user_password,account_id}

- **qualification_id** -> {user_degree, resume, years_experience, cover_letter, license}

- job_id -> {work_period, company, salary, job_title, job_location, job_type, job_deadline, company_id}

- company_id -> {money, user_id}

- applicant_id -> {subscription, applicant_user_id, applicant_qualifications_id, applicant_job_id}

Step 2 (make sure that the left hand side are keys if not decompose)

Consider the relation schema

- R1(employee_id,start_date,employee_title)

with FD

employee_id -> {start date, employee title}

This schema has one candidate key

- employee_id

Therefore this schema is in BCNF

Consider the relation schema

R2(depart_id, depart_manager, depart_name, num_employees)
 with FD

depart_id -> {depart manager, depart name, num employees}

This schema has one candidate key

- depart_id

Therefore this schema is in BCNF

Consider the relation schema

- R3(account_id, user_birthdate, address, phone, account_name) with FD
 - account_id -> {user_birthdate, address, phone, account_name}

This schema has one candidate key

- account id

Therefore this schema is in BCNF

Consider the relation schema

- R4(user_id, user_name, user_password)

with FD

user_id -> {user name, user password}

This schema has one candidate key

- user id

Therefore this schema is in BCNF

Consider the relation schema

- R5(qualification_id, user_degree, resume, years_experience, cover_letter, license) with FD
 - qualification_id -> {user_degree, resume, years_experience, cover_letter, license}

This schema has one candidate key

- qualification id

Therefore this schema is in BCNF

Consider the relation schema

- R6(job_id, work_period, company, salary, job_title, job_location, job_type, job_deadline)

with FD

- job_id -> {work_period, company, salary, job_title, job_location, job_type, job_deadline}

This schema has one candidate key

- job id

Therefore this schema is in BCNF

Consider the relation schema

- R7(company id, money)

with FD

- company_id -> {money}

This schema has one candidate key

company_id

Therefore this schema is in BCNF

Consider the relation schema

- R8(application id, subscription)

with FD

applicant_id -> {subscription}

This schema has one candidate key

applicant_id

Therefore this schema is in BCNF

Step 3 (final BCNF schema for R)

R1(employee id,start date,employee title)

R2(depart id, depart manager, depart name, num employees)

R3(account id, user birthdate, address, phone, account name)

R4(user id, user name, user password)

R5(qualification id, user degree, resume, years experience, cover letter, license)

R6(job id, work period, company, salary, job title, job location, job type, job deadline)

R7(company id, money)

R8(application id, subscription)

Creating BCNF with Functional Dependencies for at least one table:

Relationship Used: Employees and Department

Combined Table (with FD):

emp_id emp_nationality	emp_name	emp_department	emp_departNum
------------------------	----------	----------------	---------------

1000	Chinese	Edmond	Purchasing	200
1000	Chinese	Edmond	HR	15
1001	Korean	Brian	R&D	45
1002	Indian	Ashwin	Technical Support	100

Functional Dependencies:

- 1) emp_id -> {emp_nationality, emp_name}
- 2) emp_department -> emp_departNum

Candidate key:

{emp_id, emp_department}

BCNF Conversion as Follows:

Table 1 (Employee Table):

emp_id	emp_nationality	emp_name
1000	Chinese	Edmond
1000	Chinese	Edmond
1001	Korean	Brian
1002	Indian	Ashwin

Table 2 (Department Table):

emp_dept	emp_dept_num
Purchasing	200
HR	15
R&D	45
Technical Support	100

Emp_dept_combined_mapping table:

emp_id	emp_departNum
1000	Purchasing
1000	HR
1001	R&D
1002	Technical Support

Functional Dependencies:

1) emp_id -> {emp_nationality, emp_name}

2) emp_department -> dept_num

Candidate Keys:

Table 1: emp_id
Table 2: emp_dept

Table 3: {emp_id, emp_dept}