

厦门大学《<u>计算机组成原理</u>》课程期中试卷

<u>软件</u>学院<u>软件工程</u>系<u>2011 级</u>年级<u>软件工程</u>专业

一、 选择题(请从A、B、C、D中) 中,15 小题,每小题1分,共1	选择唯一的一个正确答案,并填写在空格 15分)
1、冯•诺依曼计算机工作方式的基本特点是	o
A. 多指令流单数据流	B. 按地址访问并顺序执行指令
C. 堆栈操作	D. 存储器按内容选择地址
2、在三种集中式总线控制中,方式响应	应时间最快。
A. 链式查询 B. 计数器定时查询	
C. 独立请求 D. 链式查询和独立	请求
3、不同的信号共用一组信号线,分时传送,这种	总线传输方式是
A. 猝发 B. 并行	
C. 串行 D. 复用	
4、一个 512×16 位的存储器, 其地址线和数据线的	的总和是。
A. 512 B. 25	
C. 16 D. 9	
5、主存储器和 CPU 之间增加 Cache 的目的是	
A. 解决 CPU 和主存之间的速度匹配问题	B. 扩大主存储器的容量
C. 扩大 CPU 中通用寄存器的数量	D. 既扩大主存容量又扩大 CPU 通用寄存器数量
6、在 Cache 的地址映射中,若主存中的任一块均	可映射到 Cache 内的任意一块的位置上,则这种方法称
为 <u>A</u> 。	
A. 全相联映射	B. 直接映射
C. 组相联映射	D. 混合映射
7、在程序的执行过程中,Cache 与主存的地址映象	时是由。
A. 操作系统来管理的	B. 程序员调度的
C. 硬件自动完成的	D. 编译器完成的
8、在虚拟存储器中,当程序正在执行时,由	完成地址映射。
A. 程序员	B. 编译器
C. Cache 控制器	D. 操作系统

9、相联存储器是按进行寻址的存储	路 。
A. 地址指定方式	B. 堆栈存取方式
C. 内容指定方式	D. 地址指定与堆栈存取方式结合
10、I/O 与主机交换信息的方式中,中断方式的特	点是。
A. CPU 与设备串行工作,传送与主程序串行工作	•
B. CPU 与设备串行工作,传送与主程序并行工作	
C. CPU 与设备并行工作,传送与主程序串行工作	
D. CPU 与设备并行工作,传送与主程序并行工作	
11、在 DMA 方式中,周期窃取是窃取一个	
A. 存取周期	B. 指令周期
C. CPU 周期	D. 总线周期
12、采用 DMA 方式传送数据时,每传送一个数据	要占用一个的时间。
A. 指令周期 B. 机器周期	
C. CPU 周期 D. 存储周期	
13、对真值 0 表示形式唯一的机器数是C A. 原码 B. 反码	•
A. 原码 B. 反码 C. 补码和移码 D. 以上都不对	
о. Аления о. О. И. Поли	
14、在定点补码运算器中,若采用双符号位,当_	时表示结果溢出。
A. 双符号位相同 B. 双符号位不同	
C. 双符号位均为 1 D. 双符号位均为	0 פ
	吸引 日果尼 己老队农民 日果儿 非小场点上点
	·阶码长、尾数短,后者阶码短、尾数长,其他规定均相
同,则它们可表示的数的范围和精度为BA. 两者可表示的数的范围和精度相同	
C. 后者可表示的数的范围大且精度高	
C. 归有可农小的数的袒固入且相及间	D. 们有内农小的数的范围人且相及间
二、 填空题(10个空,每一空1分,	共10分)
,	
1、汇编语言是一种面向	用汇编语言编制的程序执行速度比高级语言快。
2、层次化存储器结构设计的依据是程序访问的	局部性原理。
	结构来实现,通常有两种提高存储器访存速度的结构,
分别是: <u>单体多字系统</u> 结构	、 <u>多体并行系统</u> 结构。
4、主存和 Cache 的地址映射方式有三种,分别是	: <u>直接映射</u> 、 <u>全相联映射</u> 、

	。
5、	在虚拟存储器系统中,CPU 根据指令生成的地址是逻辑地址(虚拟地址),经过转换后的地址
	是 <u>物理地址(实际地址)</u> 。
6,	Mask ROM 也称为
7、	EEPROM(E2PROM) 也称为
8,	CAM 又称为 <u>相联存储器(或按内容寻址的存储器)</u> 。
9、	将一个十进制数 $x = -8192$ 表示成补码,至少用14位二进制代码表示?
三	、 判断题(正确的在括号中打√,错误的在括号中打×,10 小题,每小题 1分,共 10 分)
1,	计算机速度完全取决于主频。(×)
2、	连接计算机与计算机之间的总线属于系统总线。(×)
3、	三种集中式总线控制(链式查询、计数器定时查询、独立请求)中,链式查询方式对电路故障最敏感。
	(✓)
4、	闪速存储器是一种高密度、非易失性的读/写半导体存储器。(√)
5、	DRAM 的刷新是采用"读出"方式进行刷新。(🗸)
6,	计算机系统中的存储系统是指主存和辅存。(√)
7、	程序中断方式和 DMA 方式中都有中断请求,但目的不同。(√)
8,	一个更高级的中断请求一定可以中断另一个中断处理程序的执行。(X)
9,	在浮点机中,尾数的第一位为1时,即为规格化数形式。(×)
10、	任何十进制小数都可以用二进制表示。(×)
四	、 名词解释(请写出下列英文缩写的中文全称,10 小题,每 1 小题 1 分, 共 10 分)
1,	PCI: 外围部件互联
2、	AGP: 加速图形接口
3,	USB: 通用串行总线
4、	EEPROM: 电可擦除可编程只读存储器
5、	SDRAM: 同步动态随机存储器

6、 ALU: 算术逻辑单元

- 7、 MIPS: 每秒百万条指令
- 8、 FLOPS: 每秒浮点运算次数
- 9、 LRU: 近期最少使用算法
- 10、 CRC: 循环冗余校验码

五、 问答题(5小题,每小题3分,共15分)

- 1、冯•诺依曼计算机的特点是什么?
- 答: (1) 计算机由五大部件组成
 - (2) 指令和数据以同等地位存于存储器,可按地址寻访
 - (3) 指令和数据用二进制表示
 - (4) 指令由操作码和地址码组成
 - (5) 存储程序
 - (6) 以运算器为中心
- 2、请比较主存储器、辅助存储器、高速缓存存储器、控制存储器、虚拟存储器。
- 答: 主存又称为内存,直接与 CPU 交换信息; 辅存可作为主存的后备存储器,不直接与 CPU 交换信息; 缓存是为了解决主存与 CPU 的速度匹配、提高访存速度的一种存储器; 控存是微程序控制器中用来存放微指令的存储器; 虚存是为了解决扩大主存容量和地址分配问题,把主存和辅存统一成一个整体。
- 3、I/O 与主机交换信息有哪几种控制方式? 各有何特点?
- 答: (1) 三种方式:程序查询方式、程序中断方式、DMA 方式
 - (2) 程序查询方式: 其特点是主机与 I/O 串行工作程序中断方式: 其特点是主机与 I/O 并行工作DMA 方式: 其特点是主机与 I/O 并行工作,主存和 I/O 之间有一条直接数据通路
- 4、CPU 响应中断的条件是什么? CPU 什么时候响应中断?
- 答: CPU 响应中断的条件是:允许中断触发器(EINT)必须为 1;中断源提出请求,又未被屏蔽,并排上队。 CPU 在每条指令执行周期结束时刻要向所有中断源发中断查询信号,此时若条件满足,即可响应中断。
- 5、计算机的浮点数的尾数分别采用原码、补码和反码表示,如何判断该尾数是否为规格化形式?
- 答:在浮点机中,机器数采用原码时,不论尾数的符号是 0 或 1,只需第一数值位为 1,即为规格化形式;机器数采用补码或反码时,尾数的符号位与第一数值位不同即为规格化形式。

六、设计题(4小题,共40分)

- 1、设机器字长为16位,写出下列各种情况下它能表示的数的范围(十进制表示)。假设定点数采用一位符号位。
- (1) 无符号数;
- (2) 原码表示的定点小数;
- (3) 补码表示的定点小数:
- (4) 原码表示的定点整数;
- (5) 补码表示的定点整数:
- (6) 假设浮点数阶码为 5 位(含1位符号位)、尾数为 11 位(含1位符号位),分别写出其对应的正数和负数范围;
- (7) 浮点数格式同(6), 机器数采用原码规格化形式, 分别写出其对应的正数和负数范围;
- (8) 浮点数格式同(6), 机器数采用补码规格化形式, 分别写出其对应的正数和负数范围。

答:

(1) 无符号数

 $0 \sim 65535$

(2) 原码表示的定点小数

 $-32767/32768 \sim +32767/32768$

(3) 补码表示的定点小数

 $-1 \sim +32767/32768$

(4) 原码表示的定点整数

 $-32767 \sim +32767$

(5) 补码表示的定点整数

 $-32768 \sim +32767$

(6) 假设浮点数阶码为 5 位(含1位符号位)、尾数为 11 位(含1位符号位),分别写出其对应的正数和负数范围

浮点数 (正数): 2⁻¹⁵X2⁻¹⁰ ~ 2¹⁵X(1-2⁻¹⁰)

浮点数 (负数): -2¹⁵X(1-2⁻¹⁰) ~ -2⁻¹⁵X2⁻¹⁰

(7) 浮点数格式同(6), 机器数采用原码规格化形式, 分别写出其对应的正数和负数范围

原码表示的规格化浮点数(正数): $2^{-15}X2^{-1} \sim 2^{15}X(1-2^{-10})$

原码表示的规格化浮点数(负数): $-2^{15}X(1-2^{-10})$ \sim $-2^{-15}X2^{-1}$

(8) 浮点数格式同(6),机器数采用补码规格化形式,分别写出其对应的正数和负数范围 补码表示的规格化浮点数(正数): $2^{-16}X2^{-1} \sim 2^{15}X(1-2^{-10})$

补码表示的规格化浮点数 (负数): $-2^{15} \sim -2^{-16}X(2^{-1}+2^{-10})$

2(10 分)、已知 $x=2^{-011}$ × (-0.100010), $y=2^{-010}$ ×(-0.011111), 计算 $[x+y]_{*}$ 和 $[x-y]_{*}$ 。

答:

 $[x] \stackrel{*}{\Rightarrow} = 11,101 ; 11.011110$ $[y] \stackrel{*}{\Rightarrow} = 11,110 ; 11.100001$

(1)对阶

 $[x] \stackrel{?}{\Rightarrow} = 11,110 ; 11.101111$

(2) 尾数求和

 $[x] \stackrel{?}{\Rightarrow} + [y] \stackrel{?}{\Rightarrow} = 11,110; 11.010000$ $[x] \stackrel{?}{\Rightarrow} + [y] \stackrel{?}{\Rightarrow} = 11,110; 00.001110$

(3) 规格化

 $[x] \stackrel{?}{\Rightarrow} + [y] \stackrel{?}{\Rightarrow} = 11,110; 11.010000$ $[x] \stackrel{?}{\Rightarrow} + [y] \stackrel{?}{\Rightarrow} = 11,100; 00.111000$

- 2 (10 分)、设某计算机采用直接映射 Cache,已知主存容量为 4MB, Cache 容量为 4KB,字块长度为 8 个字,每个字 32 位。要求:
- (1) 画出反映主存与 Cache 映射关系的主存地址各字段分配框图,并说明每个字段的名称及位数。
- (2) 设 Cache 初态为空,若 CPU 依次从主存第 0, 1,..., 99 号单元读出 100 个字(主存一次读出一个字),并重复按此次序读 10 次,问命中率是多少?
- (3) 如果 Cache 的存取时间是 50ns, 主存的存取时间是 500ns, 根据(2) 求出的命中率, 求平均存取时间。
- (3) 计算 Cache-主存系统的效率。

答:

(1) 根据字块长度为 8 个字、每个字 32 位,可确定主存字块内地址为 5 位(3 位+2 位)根据 Cache 容量为 4096B,确定 Cache 字块地址为 7 位(12 位-5 位)根据主存容量 4MB,确定主存字块标记为 10 位(22 位-7 位-5 位)

1			
	主存字块标记为 10 位	Cache 字块地址为 7 位	字块内地址为5位

- (2) 因为 Cache 初态为空,且块长为 8,因此 CPU 每读 100 个字时,共有 13 次未命中(即读第 0、8、16、...、96 号单元时未命中),以后 9 次重复读这 100 个字时均命中,故命中率为 [(100*10-13)/(100*10)=98.7%
 - (3) 平均访问时间=98.7%*50ns+(1-98.7%)*500ns=55.85ns Cache-主存的效率=50ns/55.85ns=89.5%

3(12 分)、已知某 CPU 共有 16 根地址线、8 根数据线,并用 IO/-M 作为访问存储器与 I/O 的控制线(高电平访问 I/O,低电平访问存储器),用-WR 作为读/写控制信号(高电平为读,低电平为写)。现有 2KX8位的 ROM 存储器、8KX8位的 RAM 存储器、4KX4位的 RAM 存储器若干片,并行 I/O 接口 8255 芯片1片、串行 I/O 接口 8251 芯片1片,3-8 译码器(74LS138)、各种门电路芯片若干。要求存储器芯片地址空间分配为:最大 4K 地址空间为系统程序区;相邻的 4K 地址空间为系统程序工作区;最小 16K 地址空间为用户程序区。并要求该 CPU 连接 1 片 8255 芯片(I/O 地址为 8000H-8003H)、1 片 8251 芯片(I/O 地址为 A000H-A001H)。请完整地画出 CPU 与存储器芯片以及 I/O 接口芯片的连接图。

注: 8255 芯片有 8 根数据线、2 根地址线、片选线(-CS)、读写控制线(-WR)等; 8251 芯片有 8 根数据线、1 根地址线、片选线(-CS)、读写控制线(-WR)等。

答:

根据主存地址空间分配,最大 4K 地址空间为系统程序区,选用 2 片 2KX8 位的 ROM 存储器;相邻的 4K 地址空间为系统程序工作区,选用 2 片 4KX4 位的 RAM 存储器;最小 16K 地址空间为用户程序区,选用 2 片 8KX8 位的 RAM 存储器。

A12A11	$A10 \sim A0$	
11	00000000000	
11	11111111111	F000H-FFFFH
10	00000000000	
10	11111111111	
A12	$A11 \sim A0$	
0	11111111111	E000H-EFFFH
0	00000000000	
A12 \sim A0		
0000000000000		
1111111111111		0000H-3FFFH
0000000000000		
1111111111111		
	11 11 10 10 10 A12 0 0 A12 ~ A0 0000000000000000000000000000000000	11 00000000000 11 1111111111 10 0000000000 10 1111111111 A12 A11 ~ A0 0 11111111111 0 0000000000000 A12 ~ A0 0000000000000 00000000000000 111111111111 0000000000000000 1111111111111

又根据 8255 芯片的 I/O 地址为 8000H-8003H、8251 芯片的 I/O 地址为 A000H-A001H:

A15A14A13	$A12 \sim A2$	$A1 \sim A0$	
100	0000000000	00	
100	0000000000	11	8000-8003H
A15A14A13	$A12 \sim A1$	A0	
101	000000000000	0	
101	000000000000	1	A000-A001H