CSC-422/522: ALDA M/W. 8.30-9.45am. HL-Auditorium.

#### Ranga Raju Vatsavai

Chancellors Faculty Excellence Associate Professor in Geospatial Analytics Department of Computer Science, North Carolina State University (NCSU) Associate Director, Center for Geospatial Analytics, NCSU &

Joint Faculty, Oak Ridge National Laboratory (ORNL)

JNIVERSITY

# Today

Association Rules

2

#### **Factors Affecting Complexity of Apriori**

- Choice of minimum support threshold
  - lowering support threshold results in more frequent itemsets
  - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
  - more space is needed to store support count of each item
  - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
  - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- · Average transaction width
  - transaction width increases with denser data sets
  - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)



























#### **Closed Itemset**

- An itemset X is closed if none of its immediate supersets has the same support count as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X.

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,B,C,D\}$ |
| 4   | $\{A,B,D\}$   |
| 5   | {A.B.C.D}     |

| Itemset | Support |
|---------|---------|
| {A}     | 4       |
| {B}     | 5       |
| {C}     | 3       |
| {D}     | 4       |
| {A,B}   | 4       |
| {A,C}   | 2       |
| {A,D}   | 3       |
| {B,C}   | 3       |
| {B,D}   | 4       |
| {C,D}   | 3       |

| Itemset       | Support |
|---------------|---------|
| $\{A,B,C\}$   | 2       |
| $\{A,B,D\}$   | 3       |
| $\{A,C,D\}$   | 2       |
| $\{B,C,D\}$   | 2       |
| $\{A,B,C,D\}$ | 2       |

















#### NC STATE

# **Effect of Support Distribution**

- Difficult to set the appropriate minsup threshold
  - If minsup is too high, we could miss itemsets involving interesting rare items (e.g., {caviar, vodka})
  - If minsup is too low, it is computationally expensive and the number of itemsets is very large

# Cross-Support Patterns A cross-s items wit support • Exampl How to a caviar milk

A cross-support pattern involves items with varying degree of support

• Example: {caviar, milk}

How to avoid such patterns?

NC STATE UNIVERSITY

#### A Measure of Cross Support

 Given an itemset, X = {i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k</sub>}, we can define a measure of cross support, r, as

$$r(X) = \frac{\min(s(i_1), s(i_2), ..., s(i_k))}{\max(s(i_1), s(i_2), ..., s(i_k))}$$

where (s<sub>i</sub>) is the support of item i

 Can be use d to prune cross support patterns, but not to avoid them



NC STAT

#### H-Confidence

- To avoid patterns whose items have very different support, define a new evaluation measure for itemsets
  - Known as h-confidence or all-confidence
- Specifically, given an itemset X={x<sub>1</sub>, x<sub>2</sub>, ...,x<sub>k</sub>}
  - h-confidence is the minimum confidence of any association rule formed from itemset

$$h-confidence(X) = \frac{s(\lbrace x_1, x_2, ..., x_k \rbrace)}{\max \bigl[ s(x_1), s(x_2), ..., s(x_k) \bigr]}$$

#### **Pattern Evaluation**

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
  - In the original formulation, support & confidence are the only measures used

NC STAT UNIVERSIT

#### Computing Interestingness Measure

 Given X → Y or {X,Y}, information needed to compute interestingness can be obtained from a contingency table

#### Contingency table

|   | Y               | $\overline{}$   |                 |
|---|-----------------|-----------------|-----------------|
| Х | f <sub>11</sub> | f <sub>10</sub> | f <sub>1+</sub> |
| X | f <sub>01</sub> | f <sub>00</sub> | f <sub>o+</sub> |
|   | f <sub>+1</sub> | f <sub>+0</sub> | N               |

 $f_{11}$ : support of X and Y  $f_{10}$ : support of X and Y  $f_{01}$ : support of X and Y  $f_{01}$ : support of X and Y

Used to define various measures

 support, confidence, Gini, entropy, etc.

#### **Drawback of Confidence**

| Customers | Tea | Coffee |  |
|-----------|-----|--------|--|
| C1        | 0   | 1      |  |
| C2        | 1   | 0      |  |
| C3        | 1   | 1      |  |
| C4        | 1   | 0      |  |
|           |     |        |  |

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence  $\approx$  P(Coffee|Tea) = 15/20 = 0.75

Confidence > 50%, meaning people who drink tea are more likely to drink coffee than not drink coffee

So rule seems reasonable

NC STA UNIVERS

#### **Drawback of Confidence**

|     | Coffee | Coffee |     |
|-----|--------|--------|-----|
| Tea | 15     | 5      | 20  |
| Tea | 75     | 5      | 80  |
|     | 90     | 10     | 100 |

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 15/20 = 0.75

but P(Coffee) = 0.9, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!

 $\Rightarrow$  Note that P(Coffee|Tea) = 75/80 = 0.9375

# **Objective Measures**

**Table 6.11.** Examples of symmetric objective measures for the itemset  $\{A,B\}$ .

| Measure (Symbol)          | Definition                                                                                                                           |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Correlation $(\phi)$      | $\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$                                                                 |
| Odds ratio $(\alpha)$     | $(f_{11}f_{00})/(f_{10}f_{01})$                                                                                                      |
| Kappa $(\kappa)$          | $\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$                                          |
| Interest $(I)$            | $(Nf_{11})/(f_{1+}f_{+1})$                                                                                                           |
| Cosine $(IS)$             | $(f_{11})/(\sqrt{f_{1+}f_{+1}})$                                                                                                     |
| Piatetsky-Shapiro $(PS)$  | $\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$                                                                                        |
| Collective strength $(S)$ | $\frac{f_{11} + f_{00}}{f_{1+} + f_{+1} + f_{0+} + f_{+0}} \times \frac{N - f_{1+} + f_{+1} - f_{0+} + f_{+0}}{N - f_{11} - f_{00}}$ |
| Jaccard $(\zeta)$         | $f_{11}/(f_{1+}+f_{+1}-f_{11})$                                                                                                      |
| All-confidence (h)        | $\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$                                                                      |

NC STATE UNIVERSITY

# **Objective Measures**

**Table 6.12.** Examples of asymmetric objective measures for the rule  $A \longrightarrow B$ .

| Measure (Symbol)            | Definition                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Goodman-Kruskal $(\lambda)$ | $\left(\sum_{j} \max_{k} f_{jk} - \max_{k} f_{+k}\right) / \left(N - \max_{k} f_{+k}\right)$                                               |
| Mutual Information $(M)$    | $\left(\sum_{i}\sum_{j}\frac{f_{ij}}{N}\log\frac{Nf_{ij}}{f_{i+}f_{+j}}\right)/\left(-\sum_{i}\frac{f_{i+}}{N}\log\frac{f_{i+}}{N}\right)$ |
| J-Measure $(J)$             | $\frac{f_{11}}{N}\log\frac{Nf_{11}}{f_{1+}f_{+1}} + \frac{f_{10}}{N}\log\frac{Nf_{10}}{f_{1+}f_{+0}}$                                      |
| Gini index $(G)$            | $\frac{f_{1+}}{N} \times (\frac{f_{11}}{f_{1+}})^2 + (\frac{f_{10}}{f_{1+}})^2] - (\frac{f_{+1}}{N})^2$                                    |
|                             | $+ \frac{f_{0+}}{N} \times [(\frac{f_{0+}}{f_{0+}})^2 + (\frac{f_{00}}{f_{0+}})^2] - (\frac{f_{+0}}{N})^2$                                 |
| Laplace $(L)$               | $(f_{11}+1)/(f_{1+}+2)$                                                                                                                    |
| Conviction $(V)$            | $(f_{1+}f_{+0})/(Nf_{10})$                                                                                                                 |
| Certainty factor $(F)$      | $\left(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}\right) / \left(1 - \frac{f_{+1}}{N}\right)$                                                |
| Added Value $(AV)$          | $\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}$                                                                                                 |



# **Data Mining**

Chapter 7- Association Analysis: Advance Concepts

#### NC STATI UNIVERSIT

# Continuous and Categorical Attributes

How to apply association analysis to non-asymmetric binary variables?

| Gender | <br>Age | Annual | No of hours spent | No of email | Privacy |
|--------|---------|--------|-------------------|-------------|---------|
|        |         | Income | online per week   | accounts    | Concern |
| Female | <br>26  | 90K    | 20                | 4           | Yes     |
| Male   | <br>51  | 135K   | 10                | 2           | No      |
| Male   | <br>29  | 80K    | 10                | 3           | Yes     |
| Female | <br>45  | 120K   | 15                | 3           | Yes     |
| Female | <br>31  | 95K    | 20                | 5           | Yes     |
| Male   | <br>25  | 55K    | 25                | 5           | Yes     |
| Male   | <br>37  | 100K   | 10                | 1           | No      |
| Male   | <br>41  | 65K    | 8                 | 2           | No      |
| Female | <br>26  | 85K    | 12                | 1           | No      |
|        | <br>    |        |                   |             |         |

Example of Association Rule:

{Gender=Male, Age ∈ [21,30)}  $\rightarrow$  {No of hours online ≥ 10}

# **Handling Categorical Attributes**

• Example: Internet Usage Data

| Gender | Level of    | State      | Computer | Online  | Chat    | Online  | Privacy  |
|--------|-------------|------------|----------|---------|---------|---------|----------|
|        | Education   |            | at Home  | Auction | Online  | Banking | Concerns |
| Female | Graduate    | Illinois   | Yes      | Yes     | Daily   | Yes     | Yes      |
| Male   | College     | California | No       | No      | Never   | No      | No       |
| Male   | Graduate    | Michigan   | Yes      | Yes     | Monthly | Yes     | Yes      |
| Female | College     | Virginia   | No       | Yes     | Never   | Yes     | Yes      |
| Female | Graduate    | California | Yes      | No      | Never   | No      | Yes      |
| Male   | College     | Minnesota  | Yes      | Yes     | Weekly  | Yes     | Yes      |
| Male   | College     | Alaska     | Yes      | Yes     | Daily   | Yes     | No       |
| Male   | High School | Oregon     | Yes      | No      | Never   | No      | No       |
| Female | Graduate    | Texas      | No       | No      | Monthly | No      | No       |
|        |             |            |          |         |         |         |          |

{Level of Education=Graduate, Online Banking=Yes}
→ {Privacy Concerns = Yes}

NC STA

# Handling Categorical Attributes

 Introduce a new "item" for each distinct attribute-value pair

| V-1- | E-m-l- | Education  | Education | Education     | Privacy | Duisse ess |
|------|--------|------------|-----------|---------------|---------|------------|
| Male | Female |            |           |               |         | Privacy    |
|      |        | = Graduate | = College | = High School | = Yes   | = No       |
| 0    | 1      | 1          | 0         | 0             | <br>1   | 0          |
| 1    | 0      | 0          | 1         | 0             | <br>0   | 1          |
| 1    | 0      | 1          | 0         | 0             | <br>1   | 0          |
| 0    | 1      | 0          | 1         | 0             | <br>1   | 0          |
| 0    | 1      | 1          | 0         | 0             | <br>1   | 0          |
| 1    | 0      | 0          | 1         | 0             | <br>1   | 0          |
| 1    | 0      | 0          | 0         | 0             | <br>0   | 1          |
| 1    | 0      | 0          | 0         | 1             | <br>0   | 1          |
| 0    | 1      | 1          | 0         | 0             | <br>0   | 1          |
|      |        |            |           |               | <br>    |            |

#### Handling Categorical Attributes

- Some attributes can have many possible values
  - Many of their attribute values have very low support
    - Potential solution: values



NC STAT UNIVERSIT

## Handling Categorical Attributes

- Distribution of attribute values can be highly skewed
  - Example: 85% of survey participants own a computer at home
    - Most records have Computer at home = Yes
    - Computation becomes expensive; many frequent itemsets involving the binary item (Computer at home = Yes)
    - · Potential solution:
      - discard the highly frequent items
      - Use alternative measures such as h-confidence
- Computational Complexity
  - Binarizing the data increases the number of items
  - But the width of the "transactions" remain the same as the number of original (non-binarized) attributes
  - Produce more frequent itemsets but maximum size of frequent itemset is limited to the number of original attributes

# Handling Continuous Attributes

- Different methods:
  - Discretization-based
  - Statistics-based
  - Non-discretization based
    - minApriori
- Different kinds of rules can be produced:
  - {Age∈[21,30), No of hours online∈[10,20)}
     → {Chat Online =Yes}
  - {Age∈[21,30), Chat Online = Yes} → No of hours online:  $\mu$ =14,  $\sigma$ =4

#### NC STATE UNIVERSITY

## Discretization-based Methods





| Male | Female | <br>Age  | Age            | Age            | <br>Privacy | Privacy |
|------|--------|----------|----------------|----------------|-------------|---------|
|      |        | <br>< 13 | $\in$ [13, 21) | $\in [21, 30)$ | <br>= Yes   | = No    |
| 0    | 1      | <br>0    | 0              | 1              | <br>1       | 0       |
| 1    | 0      | <br>0    | 0              | 0              | <br>0       | 1       |
| 1    | 0      | <br>0    | 0              | 1              | <br>1       | 0       |
| 0    | 1      | <br>0    | 0              | 0              | <br>1       | 0       |
| 0    | 1      | <br>0    | 0              | 0              | <br>1       | 0       |
| 1    | 0      | <br>0    | 0              | 1              | <br>1       | 0       |
| 1    | 0      | <br>0    | 0              | 0              | <br>0       | 1       |
| 1    | 0      | <br>0    | 0              | 0              | <br>0       | 1       |
| 0    | 1      | <br>0    | 0              | 1              | <br>0       | 1       |
|      |        | <br>     |                |                | <br>        |         |

# c state viversity Dis

#### **Discretization-based Methods**

- Unsupervised:
  - Equal-width binning <1 2 3> <4 5 6> <7 8 9>
  - Equal-depth binning <12><34567><89>
  - Cluster-based
- Supervised discretization

|                   | Continuous attribute, v |     |    |                  |                     |     |     |                |     |
|-------------------|-------------------------|-----|----|------------------|---------------------|-----|-----|----------------|-----|
|                   | 1                       | 2   | 3  | 4                | 5                   | 6   | 7   | 8              | 9   |
| Chat Online = Yes | 0                       | 0   | 20 | 10               | 20                  | 0   | 0   | 0              | 0   |
| Chat Online = No  | 150                     | 100 | 0  | 0                | 0                   | 100 | 100 | 150            | 100 |
|                   | bin <sub>1</sub>        |     |    | bin <sub>2</sub> | pin <sub>2</sub> bi |     |     | n <sub>3</sub> |     |



#### Discretization Issues

- Interval too wide (e.g., Bin size= 30)
  - May merge several disparate patterns
    - · Patterns A and B are merged together
  - May lose some of the interesting patterns
    - Pattern C may not have enough confidence
- Interval too narrow (e.g., Bin size = 2)
  - Pattern A is broken up into two smaller patterns
    - Can recover the pattern by merging adjacent subpatterns
  - Pattern B is broken up into smaller patterns
    - Cannot recover the pattern by merging adjacent subpatterns
  - Some windows may not meet support threshold

NC STAT UNIVERSIT

#### Discretization: all possible intervals

Number of intervals = k Total number of Adjacent intervals = k(k-1)/2



#### Execution time

- If the range is partitioned into k intervals, there are O(k²) new items
- If an interval [a,b) is frequent, then all intervals that subsume [a,b) must also be frequent
  - E.g.: if {Age ∈[21,25), Chat Online=Yes} is frequent, then {Age ∈[10,50), Chat Online=Yes} is also frequent
- Improve efficiency:
  - · Use maximum support to avoid intervals that are too wide

#### Discretization Issues

Redundant rules

R1: {Age  $\in$ [18,20), Age  $\in$ [10,12)}  $\rightarrow$  {Chat Online=Yes}

R2: {Age  $\in$ [18,23), Age  $\in$ [10,20)}  $\rightarrow$  {Chat Online=Yes}

 If both rules have the same support and confidence, prune the more specific rule (R1)

NC STA

#### Statistics-based Methods

- Example:
  - {Income > 100K, Online Banking=Yes}  $\rightarrow$  Age:  $\mu$ =34
- Rule consequent consists of a continuous variable, characterized by their statistics
  - mean, median, standard deviation, etc.
- Approach:
  - Withhold the target attribute from the rest of the data
  - Extract frequent itemsets from the rest of the attributes
    - Binarized the continuous attributes (except for the target attribute)
  - For each frequent itemset, compute the corresponding descriptive statistics of the target attribute
    - Frequent itemset becomes a rule by introducing the target variable as rule consequent
  - Apply statistical test to determine interestingness of the rule

#### Statistics-based Methods

| Gender | <br>Age | Annual | No of hours spent | No of email | Privacy |
|--------|---------|--------|-------------------|-------------|---------|
|        |         | Income | online per week   | accounts    | Concern |
| Female | <br>26  | 90K    | 20                | 4           | Yes     |
| Male   | <br>51  | 135K   | 10                | 2           | No      |
| Male   | <br>29  | 80K    | 10                | 3           | Yes     |
| Female | <br>45  | 120K   | 15                | 3           | Yes     |
| Female | <br>31  | 95K    | 20                | 5           | Yes     |
| Male   | <br>25  | 55K    | 25                | 5           | Yes     |
| Male   | <br>37  | 100K   | 10                | 1           | No      |
| Male   | <br>41  | 65K    | 8                 | 2           | No      |
| Female | <br>26  | 85K    | 12                | 1           | No      |
|        | <br>    |        |                   |             |         |



#### Frequent Itemsets:

 $\label{eq:male_loss} $$\{\mbox{Income} > 100K\}$$ $\{\mbox{Income} < 30K, \mbox{ No hours} \in [10,15)\}$$ $\{\mbox{Income} > 100K, \mbox{ Online Banking} = Yes\}$$$ 

#### Association Rules:

 $\begin{aligned} &\{\text{Male, Income} > 100\text{K}\} \rightarrow \text{Age: } \mu = 30 \\ &\{\text{Income} < 40\text{K, No hours} \in &[10,15)\} \rightarrow \text{Age: } \mu = 24 \\ &\{\text{Income} > 100\text{K,Online Banking} = \text{Yes}\} \\ &\rightarrow \text{Age: } \mu = 34 \end{aligned}$ 

#### NC STAT

#### Statistics-based Methods

- How to determine whether an association rule interesting?
  - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:

$$A \Rightarrow B: \mu$$
 versus  $A \Rightarrow B: \mu'$ 

- Statistical hypothesis testing: • Null hypothesis: H0:  $\mu' = \mu + \Delta$ • Alternative hypothesis: H1:  $\mu' > \mu + \Delta$ 
  - Z has zero mean and variance 1 under null hypothesis

## Statistics-based Methods

- Example:
  - r: Browser=Mozilla  $\land$  Buy=Yes  $\rightarrow$  Age:  $\mu$ =23
  - Rule is interesting if difference between  $\mu$  and  $\mu$ ' is more than 5 years (i.e.,  $\Delta$  = 5)
  - For r, suppose n1 = 50, s1 = 3.5
  - For r' (complement): n2 = 250, s2 = 6.5

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- Since Z is greater than 1.64, r is an interesting rule