

Computer Vision for Music Identification

Yan Ke, Derek Hoiem, Rahul Sukthankar

Inhalt

- Ziel und Anforderungen
- Problemstellen
- Ansatz im Überblick
- Ansatz im Detail
- Resultate
- Exkurs Talkalyzer

Ziel und Anforderungen

- Ziel der Arbeit
 - Identifizierung von Musikstücken anhand weniger
 Sekunden gestörter Audiodaten
- Anforderungen an das System
 - Hohe Ausbeute (Recall)
 - Hohe Präzision (Precision)
 - Schnelles Retrieval

Problemstellen

Queries

- Schlechte Aufnahmequalität
 - resistent gegen Störgeräusche und schlechte Aufnahmequalität
 - Ausschluss von stark gestörten Abschnitten
- Aufnahme an einem willkürlichen Punkt im Song
 - lokal und robust gegenüber kleinen zeitlichen Verschiebungen
- Datenmenge
 - DB mit mehreren 100'000 Songs ist zu erwarten
 - effizientes berechnen und indexieren
 - effizientes Abfragen

Ansatz im Überblick

Darstellung als Spektrogram

Lernen eines Filtersets

Extrahieren der Signatur

Retrieval

Darstellung als Spektrogram

 Spektrogramme zeigen Ähnlichkeit/Differenz von Original und Aufnahme

- Transformation mittels Short-Term Fourier Transform (STFT)
 - 33 logarithmisch verteilte Frequenzbändern
 - gemessen über Zeitfenster von 0.372 s
 - jeweils um 11.6 ms inkrementiert
 - Rund 97% Überlappung

Lernen eines Filtersets (1) Filterkandidaten

- "Einfaches" Vergleichen von Spektrogrammen ungenau und langsam
- Set von visuellen Filtern
 - Anforderungen
 - robust gegenüber kleinen zeitlichen Verschiebungen
 - halten Ähnlichkeit/Differenz fest
 - ignorieren irrelevante Daten
 - 5 Basisfilter
 - von Viola und Jones zur automatischen Erkennung von Objekten entworfen

- Variationen in exponentiellen Schritten
 - Rund 25'000 Filterkandidaten bzw. weak Classifiers.

Lernen eines Filtersets (2) Filtereigenschaften

• Min. 1 schwarzes und min. 1 weisses Rechteck

- Funktion
 - Aufsummieren der Pixelwerte in der schwarzen Fläche

Aufsummieren der Pixelwerte in der weissen Fläche

- − Flächen subtrahieren → et voilà
- Filter "besitzen" einen Threshold
 - Filterwert oberhalb → 1
 - Filterwert unterhalb \rightarrow 0
- Interpretation
 - 1. Energiedifferenzen in benachbarten Frequenzbändern
 - 2. Energiedifferenzen über die Zeit
 - 3. Verschiebungen der dominanten Frequenz über die Zeit
 - 4. Energiespitzen in benachbarten Frequenzbändern
 - 5. Energiespitzen über die Zeit

Zürcher Hochschule für Angewandte Wissenschafte

Lernen eines Filtersets (3) AdaBoost

- Selektion von n Filtern mit AdaBoost
 - Berechnen eines «Strong Classifiers»
 - $H(x1, x2) \rightarrow y = \{-1, 1\}$
 - besteht aus n «weak classifiers»
 - «weak classifier»
 - hm(x1, x2) = sgn[(fm(x1) tm)(fm(x2) tm)]
 - Hier: Viola-Jones Filter inkl. Threshold
 - nur besser als zufällig Songs unterscheiden/erkennen
 - Wählt iterativ die «besten» Filter
 - Trainigsdaten sind gewichtet
 - Hohes Gewicht bei falsch erkannten Daten
 - Tiefes Gewicht bei korrekt erkannten Daten
 - 1 Filter pro Iteration
 - Anpassung aller Gewichte pro Iteration

Lernen eines Filtersets (4) Pairwise Boost

- Trainingsdaten
 - Positive Paare (Original und Aufnahme des selben Songs)
 - Negative Paare (verschiedene Songs)
- Problem AdaBoost
 - «weak classifiers» nicht besser als Zufall bei negativen Paaren
 - verletzt «weak classifier» Bedingung von Adaboost
- Pairwise Boost ist eine Anpassung von AdaBoost
 - Nur positive Paare werden neu gewichtet
 - Gewichtung der positiven und negativen Paaren auf jew. 0.5 normalisiert
- Experimente zeigten:
 - n = 32 als geeignete Wahl
 - "lose korrelierten" Daten brauchen keine negativen Paare
 - AdaBoost evtl. doch geeignet!?

Extrahieren der Signatur

- Die Filter (inkl. Thresholds) liefern einen Desktriptor pro Spektrogramm
 - 32-Bit Vektor
 - Kompakte Repräsentation einer lokalen Region (eines Songs)
 - Enthalten nicht genügend Information um zuverlässig Songs zu erkennen
- Signaturen sind kombinierte, überlappende Deskriptoren
 - Spektrogramme:
 - Rund 97% Überschneidung
- Signatur als Basis für das Matching und Retrieval

Retrieval (1) Datenbank

- Deskriptoren erlauben direktes indexieren
 - Verwendung von Hashtables
 - Sehr schnell
 - kaum Verlust der Genauigkeit
 - Abfrage der Signaturen anhand der Deskriptoren

Retrieval (2) Matching

- Finden der "ähnlichen" Signaturen
 - Hamming-Distanz
 - Deskriptoren mit einer Hamming-Distanz <= 2</p>
 - gelten als "near-neighbors" und sind somit relevant
- Selektion des besten Matchs
 - Zeitliches Ausrichten der Query
 - RANSAC-Algorithmus (random sample consensus)
 - Übereinstimmung berechnen
 - Expectation-Maximization (EM) Score als Distanz
- Vergleich mit Threshold
 - EM Score > Threshold = Treffer

Retrieval (3) Ausschluss

- Einzelne Deskriptoren können von «Störgeräuschen» dominiert sein
 - diese sollen (mögl.) ignoriert werden
- Ausschlussmodell
 - Gegeben: Signatur $x \hat{l} r = (x \downarrow 1 \hat{l} r, x \downarrow 2 \hat{l} r, ..., x \downarrow n \hat{l} r)$
 - Vergleich mit Signatur $x \uparrow o = (x \downarrow 1 \uparrow \uparrow o, x \downarrow 2 \uparrow o, ..., x \downarrow n \uparrow o)$
 - $-x \downarrow i \uparrow r o = Bit-Differenz zwischen x \downarrow i \uparrow r und x \downarrow i \uparrow o$
 - Verteilung von $x\downarrow i\uparrow r-o$ mittels unabhängigen Bernoulli-Zufallsvariablen modellieren
 - Mit EM und einem entsprechenden Threshold Label $y \not\downarrow i$ bestimmen
 - $y \neq i = 1$ wenn vom Musikstück generiert
 - $y \neq i = 0$ wenn von Störungen überlagert

Experimente (1) Setup

- Total 1862 Musikstücke
 - Grosse Auswahl an Genres enthalten
- Trainingdata
 - 78 Musikstücke
 - Abgespielt mit low-quality Speakers
 - Aufgenommen mit low-quality Mikrophonen
- Test A
 - 71 Musikstücke
 - Abgespielt auf niedriger Lautstärke
 - Aufgenommen mit einem verzerrenden Mikrophon
- Test B
 - 220 Musikstücke
 - Aufgenommen in einer sehr lärmigen Umgebung

Experimente (2) Resultate

- Gegeben: 10 Sekunden Daten pro Query
- Test A
 - Recall: 90%
 - Precision: 96%
- Test B
 - Recall 80%
 - Precision 93%

Exkurs Talkalyzer (1) Überblick

Exkurs Talkalyzer (2) Resultate

- Setting:
 - 40 Sprecher aufgeteilt in 80 Gruppen
 - Clustering experiment
 - Baselineansatz: MFCC / GMM
- Errorrate:
 - Baseline: 12.76%
 - Talkalyzer: 16.95%
- Erkenntnis:
 - Problemstellung zu unterschiedlich bzw. Anpassung an Sprecherclustering zu simpel 18

Fragen

