Jeonghyeon Woo

Math 301

HW₃

1.
$$\sim (P \rightarrow Q)$$

Р	Q	P->Q	~(P->Q)
Т	Т	Т	F
Т	F	F	Т
F	Т	Т	F
F	F	Т	F

2. $P \rightarrow \sim Q$ and $Q \rightarrow \sim P$, Logically equivalent?

Р	Q	~P	~Q	P->~Q	Q->~P
Т	Т	F	F	F	F
Т	F	F	Т	Т	Т
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

It appears $P \to \sim Q$ and $Q \to \sim P$ share the truth value for the same P and Q values. Therefore, $P \to \sim Q$ and $Q \to \sim P$ are logically equivalent.

- 3. $(R \rightarrow S) \leftrightarrow (P \land Q)$ and P is false
 - a. $P \wedge Q$ is false as P is false, so $(R \to S)$ is false. The only possible way it could be false is when R is true and S is false. R=true, S=false
 - b. Q could be either true or false since truth value of Q does not matter.

4. $((P \rightarrow Q) \land \sim P) \rightarrow \sim Q$

Р	Q	(P→ Q)	((P →	~Q	$((P \to Q)$
			Q) ∧~P)		$((P \to Q)$ $\wedge \sim P)$
					→ ~Q
Т	Т	Т	F	F	Т
Т	F	F	F	Т	Т
F	Т	Т	Т	F	F
F	F	Т	Т	Т	Т

When P is false and Q is true, the inference does not work. Therefore, the inference is not valid.

- 5. a. $\forall r \in \mathbb{R}, r-r=0$ For all real number r, r-r=0.
 - b. $\exists n \in \mathbb{Z}: 0 < n < 1$ There is an integer n which is bigger than 0 and smaller than 1.
 - c. $\forall x, y \in \mathbb{R}, xy = yx$ For all real number x and y, xy = yx.
 - d. $\exists q \in \mathbb{Q}: \forall r \in \mathbb{Q}, qr = 0$ There exists rational number q such that every rational number r, multiplication of q and r is equal to zero.
 - e. $\forall r \in \mathbb{Q}^+, \exists q \in \mathbb{Q}^+ \colon qr = 1$ For all positive rational number r, there is a positive rational number q such that qr = 1.
 - f. $\forall X \in \mathcal{P}(\mathbb{W}), |X| \in \mathbb{W}$ For all sets X in powerset of W, cardinality of X is in W.
- 6. a. Every non-negative real number has a square root

$$\forall \mathbf{x} \in \mathbb{R} - \mathbb{R}^-, \ \exists \mathbf{y} \in \mathbb{R} - \mathbb{R}^-, \mathbf{y} = \sqrt{\mathbf{x}}.$$

b. The sine of any real number is between -1 and 1, inclusive

$$\forall x \in \mathbb{R}, -1 \le \sin x \le 1$$

c. There are two integers such that the square of the first is the cube of the second

$$\exists x, y \in \mathbb{Z}: x^2 = y^3.$$

d. For every integer n where $n \ge 2$, there is a prime number between n and 2n

$$\forall n \in \mathbb{Z}^+ - \{1\}, \exists x \in \mathbb{P} \colon n < x < 2n$$

e. The tangent of every nonzero rational number is not rational

$$\forall x \in \mathbb{Q} - \{0\}, \tan x \notin \mathbb{Q}$$

f. The cardinality of every finite set of integers is less than that of its power set

$$\forall X \in \mathcal{P}(\mathbb{Z}), |X| < \infty \rightarrow |X| < |\mathcal{P}(X)|$$

7. a. Every rational number has a rational square

negation: There is rational number that has no rational square

b. There is a real number whose square is negative

negation: For all real number, its square is not negative

c. For every integer there is a larger integer

negation: There is an integer that has no larger integer

d. The cube of every integer is positive

negation: There is an integer that its cube is not positive

8. $a. \forall n \in \mathbb{Z}, 2n \geq n$

negation:
$$\exists n \in \mathbb{Z}, 2n < n$$

b.
$$\exists n, k \in \mathbb{Z}: n - k = k - n$$

negation:
$$\forall n, k \in \mathbb{Z}, n - k \neq k - n$$

c.
$$\forall r \in \mathbb{R}, \exists s \in \mathbb{R}, rs = 1$$

negation:
$$\exists r \in \mathbb{R}, \forall s \in \mathbb{R}, rs \neq 1$$

d.
$$\forall n \in \mathbb{Z}, n > 0 \rightarrow n^2 > 0$$

negation:
$$\exists n \in \mathbb{Z}, n > 0 \land n^2 \leq 0$$

e.
$$\forall \varepsilon \in \mathbb{R}^+, \exists M \in \mathbb{R}^+ : x > M \rightarrow |f(x) - b| < \varepsilon$$

negation:
$$\exists \varepsilon \in \mathbb{R}^+, \forall M \in \mathbb{R}^+: x > M \land |f(x) - b| \ge \varepsilon$$