Team notebook

15 de noviembre de 2015

Ír	ndice	
1.	Basic 1	L
	1.1. Auxiliar Comparer	L
	1.2. Libraries	2
	1.3. Macros)
	1.4. Permutations)
	1.5. Precision cout	2
2.	Data Structures 2	2
	2.1. Binary Indexed Tree)
	2.2. Square Root Trick	2
3.	Dynamic Programming 3	3
	3.1. Change Making Problem	}
	3.2. Knapsack Problem	}
	3.3. TSP	}
4.	Geometry	ı
	4.1. Convex Hull	Ł
5.	Graphs 4	ı
	5.1. A*	1
	5.2. Bellman-Ford (Shortest Path with Negative Weights) 5	
	5.3. Bron-Kerbosch	
	5.4. Dijkstra (Shortest Path)	
	5.5. Floyd-Warshall (All Pairs Shortest Path)	7
	5.6. Kruskal (Minimum Spanning Tree)	
	5.7. Maximum Bipartite Matching	3
	5.8. Min Cost Max Flow	3
	5.9. Tarjan)
	5.10. Topological Sort)

6.	Math	10
	6.1. Catalan Numbers	10
	6.2. Complex Numbers	10
	6.3. Exponent	11
	6.4. FFT	11
	6.5. Greatest Common Divisor	11
	6.6. Newton Method	11
	6.7. Primes	12
7.	Sequences	12
	7.1. Binary Search	12
	7.2. Ternary Search	12
	7.3. Vector Partition	12

1. Basic

1.1. Auxiliar Comparer

```
// returns true if the first argument goes before the second argument
// in the strict weak ordering it defines, and false otherwise.
struct classcomp {
   bool operator() (const int& lhs, const int& rhs) const
   {return lhs > rhs;}
};

int main() {
   set<int> set1;
   set<int, classcomp> set2;
   set1.insert(26); set1.insert(93); set1.insert(42); // 26, 42, 93
   set2.insert(26); set2.insert(93); set2.insert(42); // 93, 42, 26

for (auto it=set1.begin(); it!=set1.end(); ++it) cout << *it << " ";</pre>
```

```
 \begin{array}{l} \mbox{cout} << \ ^{n}; \\ \mbox{for (auto it=set2.begin(); it!=set2.end(); ++it) cout} << *it << \ ^{"}; \\ \end{array} \}
```

1.2. Libraries

algorithm	heap, sort	map	map,T>
cfloat	DBL_MAX	queue	priority_queue
cmath	pow, sqrt	set	set>
cstdlib	abs, rand	sstream	istringstream, ostringstream
iostream	cin, cout	string	string
iomanip	setprecision	utility	pair,T>
list	list>	vector	vector>

1.3. Macros

```
#define X first
#define Y second
#define LI long long
#define MP make_pair
#define PB push_back
#define SZ size()
#define SQ(a) ((a)*(a))
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)<(b)?(a):(b))
#define FOR(i,x,y) for(int i=(int)x; i<(int)y; i++)
#define RFOR(i,x,y) for(int i=(int)x; i>(int)y; i--)
#define SORT(a) sort(a.begin(), a.end())
#define RSORT(a) sort(a.rbegin(), a.rend())
#define IN(a,pos,c) insert(a.begin()+pos,1,c)
#define DEL(a,pos,cant) erase(a.begin()+pos,cant)
```

1.4. Permutations

```
int N = 3;
int a[] = {1,2,3};
do {
   for (int i = 0; i < N; ++i) cout << a[i] << " ";</pre>
```

```
cout << "\n";
}
while (next_permutation(a, a + N));</pre>
```

1.5. Precision cout

```
cout.setf(ios::fixed);
cout.precision(8);
```

2. Data Structures

2.1. Binary Indexed Tree

```
/* Binary indexed tree. Supports cumulative sum queries in O(log n) */
#define N (1<<18)
LL bit[N];

void add(LL* bit,int x,int val) {
   for(; x<N; x+=x&-x)
        bit[x]+=val;
}

LL query(LL* bit,int x) {
   LL res=0;
   for(;x;x-=x&-x)
        res+=bit[x];
   return res;
}</pre>
```

2.2. Square Root Trick

```
/* Partitions an array in sqrt(n) blocks of size sqrt(n) to support
* O(sqrt(n)) range sum queries, O(sqrt(n)) range sum updates, and O(1)
* point updates */
void update(LL *S, LL *A, int i, int k, int x) {
    S[i/k] = S[i/k] - A[i] + x;
    A[i] = x;
}
```

```
LL query(LL *S, LL *A, int lo, int hi, int k) {
    int sum=0, i=lo;
    while((i+1)%k != 0 && i <= hi)
        sum += A[i++];
    while(i+k <= hi)
        sum += S[i/k], i += k;
    while(i <= hi)
        sum += A[i++];
    return sum;
}</pre>
```

3. Dynamic Programming

3.1. Change Making Problem

3.2. Knapsack Problem

```
int N = 8; // numero de objetos N <= 1000
int v[] = {1,6,7,1,8,3,7,5}; // valor de objetos
int p[] = {5,3,7,1,8,2,7,3}; // peso de objetos
int A[1001][1001]; // matriz de resultados
int main() {</pre>
```

3.3. TSP

```
// TSP in O(n^2 * 2^n). Subset is bitmask, Cost is cost.
// tsp_memoize[subset][i] stores the shortest tsp of the subset starting
// If you have a starting node, it 's not included in the search .you add
    the distance to it at the beginning
Cost distances[N][N], tsp_memoize[1 << (N+1)][N];</pre>
const sentinel=-0x3f3f3f3f;
#define TSP(subset, i) (tsp_memoize[subset][i] == sentinel ? \
                                             tsp(subset, i):
                                                 tsp_memoize[subset][i])
Cost tsp(const Subset subset, const int i) {
       Subset without = subset ^ (1 << i);
       Cost minimum = numeric_limits<Cost>::max();
       for(int j=0; j<n_operas; j++) {</pre>
              if(j==i || (without & (1 << j)) == 0)</pre>
                      continue;
              Cost v = TSP(without, j);
              v += distances[i][j];
              if(v < minimum)</pre>
                      minimum = v;
       return tsp_memoize[subset][i] = minimum;
```

4. Geometry

4.1. Convex Hull

```
typedef int T; // posiblemente cambiar a double
typedef pair<T,T> P;
T xp(P p, P q, P r) {
   return (q.X-p.X)*(r.Y-p.Y) - (r.X-p.X)*(q.Y-p.Y);
struct Vect {
   P p, q; T dist;
   Vect(P &a, P &b) {
       p = a; q = b;
       dist = SQ(a.X - b.X) + SQ(a.Y - b.Y);
   }
   bool operator<(const Vect &v) const {</pre>
       T t = xp(p, q, v.p);
       return t < 0 || t == 0 && dist < v.dist;</pre>
   }
};
vector<P> convexhull(vector<P> v) { // v.SZ >= 2}
   sort(v.begin(), v.end());
   vector<Vect> u;
   for (int i = 1; i < (int)v.SZ; i++)</pre>
       u.PB(Vect(v[i], v[0]));
   sort(u.begin(), u.end());
   vector<P> w(v.SZ, v[0]);
   int j = 1; w[1] = u[0].p;
   for (int i = 1; i < (int)u.SZ; i++) {</pre>
       T t = xp(w[j-1], w[j], u[i].p);
       for (j--; t < 0 && j > 0; j--)
           t = xp(w[j-1], w[j], u[i].p);
       i += t > 0 ? 2 : 1;
       w[j] = u[i].p;
   }
   w.resize(j+1);
```

```
return w;
}
int main() {
    vector<P> v;
    v.PB(MP(0, 1));
    v.PB(MP(1, 2));
    v.PB(MP(3, 2));
    v.PB(MP(2, 1));
    v.PB(MP(3, 1));
    v.PB(MP(6, 3));
    v.PB(MP(7, 0));
    vector<P> w = convexhull(v);
} // resultado: (0,1) (7,0) (6,3) (1,2)
```

5. Graphs

5.1. A*

```
int N = 1000; // numero de nodos
typedef set<pair<int,int> > S; // cola de prioridad
vector<pair<int,int> > V[1000]; // lista de adyacencia (coste, vecino)
int heuristic(int from, int to) { // heurstica de "from" a "to"
   return 0;
}
int Astar(int from, int to) {
                       // lista abierta de nodos activos
   set<int> open;
   set<int> closed; // lista cerrada de nodos ya procesados
   map<int,int> fscore; // coste real + heurstica
   map<int,int> gscore; // coste real
                       // cola de prioridad (coste, nodo)
   map<int,int> parent; // para reconstruir el camino
   open.insert( from );
   fscore[ from ] = heuristic( from, to );
   gscore[ from ] = 0;
   queue.insert( make_pair( fscore[ from ], from ) );
   while (closed.find(to) == closed.end()) {
```

```
pair<int,int> p = *queue.begin();
   open.erase(p.second);
   closed.insert(p.second);
   queue.erase(queue.begin());
   for (unsigned i = 0; i < V[ p.second ].size(); ++i){</pre>
       int neigh = V[ p.second ][i].second;
       int g = gscore[ p.second ] + V[ p.second ][i].first;
       int f = g + heuristic( neigh, to );
       if ( (open.find( neigh ) == open.end() && closed.find( neigh )
           == closed.end() ) || f < fscore[ neigh ] )
       {
          open.erase( neigh );
          queue.erase( make_pair( fscore[ neigh ], neigh ) );
          parent[ neigh ] = p.second;
          fscore[ neigh ] = f;
          gscore[ neigh ] = g;
          open.insert( neigh );
          queue.insert( make_pair( fscore[ neigh ], neigh ) );
       }
   }
}
// reconstruir camino por "parent" si hace falta
int actual = to:
list<int> 1;
list<int>::iterator il;
while ( parent[ actual ] != from ) {
   1.push_front( actual );
   actual = parent[ actual ];
}
1.push_front( actual );
1.push_front( parent[ actual ] );
cout << "Path = [";
for (il = 1.begin(); il != 1.end(); il++){
   if( *il == to ){
     cout<< *il<<"] with cost ";</pre>
     break;
```

```
}
    cout<< *il<<", ";
}
return gscore[ to ];
}

int main(){
    N = 3;
    V[0].push_back( make_pair( 1, 1 ) );
    V[1].push_back( make_pair( 2, 2 ) );
    cout<< Astar( 0, 2 ) <<endl;
    return 0;
}</pre>
```

5.2. Bellman-Ford (Shortest Path with Negative Weights)

```
// Complexity: V * E
typedef pair<pair<int,int>,int> P; // par de nodos + coste
int N;
                                 // numero de nodos
vector<P> v;
                                 // representacion aristas
int bellmanford(int a, int b) {
   vector<int> d(N, 1000000000);
   d[a] = 0;
   for (int i = 1; i < N; i++)</pre>
       for (int j = 0; j < (int)v.SZ; j++)
           if (d[v[j].X.X] < 1000000000 && d[v[j].X.X] + v[j].Y <</pre>
               d[v[j].X.Y])
               d[v[j].X.Y] = d[v[j].X.X] + v[j].Y;
       for (int j = 0; j < (int)v.SZ; j++)
           if (d[v[j].X.X] < 1000000000 && d[v[j].X.X] + v[j].Y <</pre>
               d[v[i].X.Y])
               return -1000000000; // existe ciclo negativo
   return d[b];
}
```

5.3. Bron-Kerbosch

```
#define U unsigned int
typedef vector<short int> V;
```

```
vector<vector<U> > graf; // vertices/aristas del grafo
U numv, kmax; // # conjuntos/tamano grupo independiente
int evalua(V &vec) {
   for (int n = 0; n < vec.size(); n++)
       if (vec[n] == 1) return n:
   return -1;
}
void Bron_i_Kerbosch() {
   vector<U> v:
   U i, j, aux, k = 0, bandera = 2;
   vector<V> I, Ve, Va;
   I.PB(V()); Ve.PB(V()); Va.PB(V());
   for (i = 0; i < numv; i++) {</pre>
       I[0].PB(0); // conjunto vacio
       Ve[0].PB(0); // conjunto vacio
       Va[0].PB(1); // contiene todos
   }
   while(true) {
       switch(bandera) {
       case 2: // paso 2
          v.PB(evalua(Va[k]));
          I.PB(V(I[k].begin(), I[k].end()));
          Va.PB(V(Va[k].begin(), Va[k].end()));
          Ve.PB(V(Ve[k].begin(), Ve[k].end()));
          aux = graf[v[k]].size();
          I[k+1][v[k]] = 1; Va[k+1][v[k]] = 0;
          for (i = 0; i < aux; i++) {</pre>
              j = graf[v[k]][i]; Ve[k+1][j] = Va[k+1][j] = 0;
          k = k + 1; bandera = 3;
          break:
       case 3: // paso 3
          for (i = 0, bandera = 4; i < numv; i++) {</pre>
              if (Ve[k][i] == 1) {
                 aux = graf[i].size();
                 for (j = 0; j < aux; j++)
                     if (Va[k][graf[i][j]] == 1)
                        break:
                 if (j == aux) { i = numv; bandera = 5; }
              }
          }
          break;
```

```
case 4: // paso 4
          if (evalua(Ve[k]) == -1 && evalua(Va[k]) == -1) {
             for (int n = 0; n < numv; n++)
                 if (I[k][n] == 1) cout<< n << " ";</pre>
             cout << endl:</pre>
             if (k > kmax) kmax = k;
             bandera = 5:
          else bandera = 2; // ir a paso 2
      case 5: // paso 5
          k = k - 1; v.pop_back(); I[k].clear();
          I[k].assign(I[k+1].begin(), I[k+1].end());
          I[k][v[k]] = 0; I.pop_back(); Ve.pop_back();
          Va.pop_back(); Ve[k][v[k]] = 1; Va[k][v[k]] = 0;
          if (k == 0) {
             if (evalua(Va[0]) == -1) return:
             bandera = 2; // ir a paso 2
          }
          else bandera = 3; // ir a paso 3
      break;
      }
}
int main() {
   U idx, i; stringstream ss; string linea;
   while (cin >> numv) {
      getline(cin, linea);
      for (i = 0; i < numv; i++) { // Lectura del grafo</pre>
          // vertices adjacentes al i-esimo vertice
          vector<U> bb; graf.PB(bb);
          getline(cin, linea);
          ss << linea;
          while (ss >> idx) graf[i].PB(idx);
          ss.clear();
      }
      // Llamada al algoritmo
      kmax = 0:
      cout << "Conjuntos independientes: "<< endl;</pre>
      if (numv > 0)
          Bron_i_Kerbosch();
      cout << "kmax: " << kmax << endl;</pre>
```

```
// Limpieza variables
for (i = 0; i < numv; i++) graf[i].clear();
    graf.clear();
}</pre>
```

5.4. Dijkstra (Shortest Path)

```
// Cost: ElogV
typedef int V;
                     // tipo de costes
typedef pair<V,int> P; // par de (coste,nodo)
typedef set<P> S;
                     // conjunto de pares
int N:
                     // numero de nodos
vector<P> A[10001]; // listas adyacencia (coste,nodo)
V dijkstra(int s, int t) {
                               // cola de prioridad
   S m;
   vector<V> z(N, 1000000000); // distancias iniciales
   z[s] = 0;
                               // distancia a s es 0
   m.insert(MP(0, s));
                               // insertar (0,s) en m
   while (m.SZ > 0) {
       P p = *m.begin(); // p=(coste,nodo) con menor coste
       m.erase(m.begin()); // elimina este par de m
       if (p.Y == t) return p.X; // cuando nodo es t, acaba
       // para cada nodo adjacente al nodo p.Y
       for (int i = 0; i < (int)A[p.Y].SZ; i++) {</pre>
          // q = (coste hasta nodo adjacente, nodo adjacente)
          P q(p.X + A[p.Y][i].X, A[p.Y][i].Y);
          // si q.X es la menor distancia hasta q.Y
          if (q.X < z[q.Y]) {
              m.erase(MP(z[q.Y], q.Y)); // borrar anterior
              m.insert(q);
                                      // insertar q
              z[q.Y] = q.X;
                                      // actualizar distancia
          }
       }
   }
   return -1;
int main() {
   N = 6:
                     // solucion 0-1-2-4-3-5, coste 11
   A[0].PB(MP(2, 1)); // arista (0, 1) con coste 2
```

```
A[0].PB(MP(5, 2)); // arista (0, 2) con coste 5
A[1].PB(MP(2, 2)); // arista (1, 2) con coste 2
A[1].PB(MP(7, 3)); // arista (1, 3) con coste 7
A[2].PB(MP(2, 4)); // arista (2, 4) con coste 2
A[3].PB(MP(3, 5)); // arista (3, 5) con coste 3
A[4].PB(MP(2, 3)); // arista (4, 3) con coste 2
A[4].PB(MP(8, 5)); // arista (4, 5) con coste 8
cout << dijkstra(0, 5) << endl;
}
```

5.5. Floyd-Warshall (All Pairs Shortest Path)

5.6. Kruskal (Minimum Spanning Tree)

```
// Cost: ElogV
typedef vector<pair<int,pair<int,int> > V;
int N. mf[2000]: // numero de nodos N <= 2000
V v:
               // vector de aristas
               // (coste, (nodo1, nodo2))
int set(int n) { // conjunto conexo de n
   if (mf[n] == n) return n;
   else mf[n] = set(mf[n]); return mf[n];
int kruskal() {
   int a, b, sum = 0;
   sort(v.begin(), v.end());
   for (int i = 0; i < N; i++)</pre>
       mf[i] = i; // inicializar conjuntos conexos
   for (int i = 0; i < (int)v.SZ; i++) {</pre>
       a = set(v[i].Y.X), b = set(v[i].Y.Y);
```

```
if (a != b) { // si conjuntos son diferentes
          mf[b] = a; // unificar los conjuntos
           sum += v[i].X; // agregar coste de arista
   }
   return sum;
int main() {
   N = 5; // solution 13 (0,3),(1,2),(2,3),(3,4)
   v.PB(MP(4,MP(0,1))); // arista(0,1) coste 4
   v.PB(MP(4,MP(0,2))); // arista (0,2) coste 4
   v.PB(MP(3,MP(0,3))); // arista (0,3) coste 3
   v.PB(MP(6,MP(0,4))); // arista (0,4) coste 6
   v.PB(MP(3,MP(1,2))); // arista (1,2) coste 3
   v.PB(MP(7,MP(1,4))); // arista (1,4) coste 7
   v.PB(MP(2,MP(2,3))); // arista (2,3) coste 2
   v.PB(MP(5,MP(3,4))); // arista (3,4) coste 5
   cout << kruskal() << endl;</pre>
```

5.7. Maximum Bipartite Matching

```
/* Input: VVI with 1 if connected, 0 if not. mr and mc have the matches
* for each side. Complexity: E * V.
* From Stanford University's notebook. */
typedef vector<int> VI;
typedef vector<VI> VVI;
bool FindMatch(int i, const VVI &w, VI &mr, VI &mc, VI &seen) {
   for (int j = 0; j < w[i].size(); j++) {</pre>
       if (w[i][j] && !seen[j]) {
           seen[i] = true;
           if (mc[i] < 0 || FindMatch(mc[i], w, mr, mc, seen)) {</pre>
              mr[i] = j;
              mc[j] = i;
              return true;
          }
       }
   return false:
```

```
int BipartiteMatching(const VVI &w, VI &mr, VI &mc) {
    mr = VI(w.size(), -1);
    mc = VI(w[0].size(), -1);

int ct = 0;

for (int i = 0; i < w.size(); i++) {
    VI seen(w[0].size());
    if (FindMatch(i, w, mr, mc, seen)) ct++;
}
    return ct;
}</pre>
```

5.8. Min Cost Max Flow

```
/* From Stanford University's notebook.
* To perform minimum weighted bipartite matching:
* - Capacity between nodes = 1 (cost whatever given by the problem)
 * - Capacity from source = 1 and cost = 0
 * - Capacity to sink = 1 and cost = 0
* Output: <maximum flow value - minimum cost value>
 * Complexity: O(|V|^2) per augmentation
             max flow: O(|V|^3) augmentations
             min cost max flow: O(|V|^4 * MAX\_EDGE\_COST) augmentations
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef long long L;
typedef vector<L> VL;
typedef vector<VL> VVL;
typedef pair<int, int> PII;
typedef vector<PII> VPII;
const L INF = numeric_limits<L>::max() / 4;
struct MinCostMaxFlow {
   int N;
   VVL cap, flow, cost;
   VI found:
   VL dist, pi, width;
   VPII dad:
   MinCostMaxFlow(int N) :
```

```
N(N), cap(N, VL(N)), flow(N, VL(N)), cost(N, VL(N)),
   found(N), dist(N), pi(N), width(N), dad(N) {}
void AddEdge(int from, int to, L cap, L cost) {
   this->cap[from][to] = cap;
   this->cost[from][to] = cost:
}
void Relax(int s, int k, L cap, L cost, int dir) {
   L val = dist[s] + pi[s] - pi[k] + cost;
   if (cap && val < dist[k]) {</pre>
       dist[k] = val;
       dad[k] = make_pair(s, dir);
       width[k] = min(cap, width[s]);
   }
}
L Dijkstra(int s, int t) {
   fill(found.begin(), found.end(), false);
   fill(dist.begin(), dist.end(), INF);
   fill(width.begin(), width.end(), 0);
   dist[s] = 0;
   width[s] = INF;
   while (s != -1) {
       int best = -1:
       found[s] = true:
       for (int k = 0; k < N; k++) {
           if (found[k]) continue;
           Relax(s, k, cap[s][k] - flow[s][k], cost[s][k], 1);
           Relax(s, k, flow[k][s], -cost[k][s], -1);
           if (best == -1 || dist[k] < dist[best]) best = k;</pre>
       }
       s = best:
   for (int k = 0; k < N; k++)
       pi[k] = min(pi[k] + dist[k], INF);
   return width[t];
}
pair<L, L> GetMaxFlow(int s, int t) {
   L totflow = 0, totcost = 0;
   while (L amt = Dijkstra(s, t)) {
       totflow += amt:
```

```
for (int x = t; x != s; x = dad[x].first) {
        if (dad[x].second == 1) {
            flow[dad[x].first][x] += amt;
            totcost += amt * cost[dad[x].first][x];
        }
        else {
            flow[x][dad[x].first] -= amt;
            totcost -= amt * cost[x][dad[x].first];
        }
    }
    return make_pair(totflow, totcost);
}
```

5.9. Tarjan

```
int index, ct;
vector<bool> I;
vector<int> D, L, S;
vector<vector<int> > V; // listas de adyacencia
void tarjan (unsigned n) {
   D[n] = L[n] = index++:
   S.push_back(n);
   I[n] = true:
   for (unsigned i = 0; i < V[n].size(); ++i) {</pre>
       if (D[V[n][i]] < 0) {</pre>
           tarjan(V[n][i]);
           L[n] = MIN(L[n], L[V[n][i]]);
       else if (I[V[n][i]])
           L[n] = MIN(L[n], D[V[n][i]]);
   if (D[n] == L[n]) {
       ++ct:
       // todos los nodos eliminados de S pertenecen al mismo scc
       while (S[S.size() - 1] != n) {
          I[S.back()] = false;
          S.pop_back();
       }
       I[n] = false:
       S.pop_back();
```

```
}

void scc() {
  index = ct = 0;
  I = vector<bool>(V.size(), false);
  D = vector<int>(V.size(), -1);
  L = vector<int>(V.size());
  S.clear();
  for (unsigned n = 1; n <= V.size(); ++n)
      if (D[n] < 0)
          tarjan(n);
  // ct = numero total de scc
}</pre>
```

5.10. Topological Sort

```
vector<int> A[101]; // adjacency list (directed graph without cycles)
int inbound[101]; // number of nodes that point to each node
vector<int> fo; // final order
// M = number of nodes (there might be 'lonely' nodes)
void toposort(int M) {
   stack<int> order:
   int current;
   // Search for roots (identifiers might change between
   // problems (e.g. 0 to M))
   for(int m = 1; m <= M; m++){</pre>
       if(inbound[m] == 0)
           order.push(m);
   }
   // Start topsort from roots
   while(!order.empty()){
       // Pop from stack
       current = order.top();
       order.pop();
       // Save order in fo
       fo.push_back(current);
       // Add childs only if inbound is 0
       for (int i = 0; i < A[current].size(); ++i)</pre>
       {
```

6. Math

6.1. Catalan Numbers

```
unsigned long long v[34];
void catalan(){
  v[0] = 1;
  for (int i = 1; i < 34; ++i){
     unsigned long long sum = 0;
     for (int j = 0; j < i; ++j){
         sum += v[j] * v[i-j-1];
     }
     v[i] = sum;
}</pre>
```

6.2. Complex Numbers

```
// Complex number class, from Stanford's Notebook. Required for FFT
struct cpx {
   cpx(){}
   cpx(double aa):a(aa){}
   cpx(double aa, double bb):a(aa),b(bb){}
   double a, b;
   double modsq(void) const { return a * a + b * b; }
   cpx bar(void) const { return cpx(a, -b); }
};
cpx operator +(cpx a, cpx b) { return cpx(a.a + b.a, a.b + b.b); }
cpx operator *(cpx a, cpx b) {
    return cpx(a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a);
}
cpx operator /(cpx a, cpx b) {
   cpx r = a * b.bar();
```

```
return cpx(r.a / b.modsq(), r.b / b.modsq());
}
cpx EXP(double theta) { return cpx(cos(theta),sin(theta)); }
```

6.3. Exponent

```
template <typename T,typename U> T expo(T &t, U n) {
   if (n == U(0)) return T(1);
   else {
      T u = expo(t, n/2);
      if (n%2 > 0) return u*u*t;
      else return u*u;
   }
}
```

6.4. FFT

```
// from Stanford's notebook:
                https://web.stanford.edu/~liszt90/acm/notebook.html
// in:
                                     input array
// out: output array
// step: {SET TO 1} (used internally)
// size: length of the input/output {MUST BE A POWER OF 2}
// dir: either plus or minus one (direction of the FFT)
// RESULT: out[k] = \sum_{j=0}^{s-1} in[j] * exp(dir * 2pi * i * j * in[j] * exp(dir * 2pi * i * j * in[j] * exp(dir * 2pi * in
                k / size)
 const double two_pi = 4 * acos(0);
 void FFT(cpx *in, cpx *out, int step, int size, int dir)
{
              if(size < 1) return;</pre>
              if(size == 1)
                            out[0] = in[0];
                            return;
              FFT(in, out, step * 2, size / 2, dir);
              FFT(in + step, out + size / 2, step * 2, size / 2, dir);
              for(int i = 0 ; i < size / 2 ; i++)</pre>
                            cpx even = out[i];
                            cpx odd = out[i + size / 2];
```

6.5. Greatest Common Divisor

```
// in algorithm library: __gcd(a, b)
int gcd(int a, int b) {
   if (a < b) return gcd(b, a);
   else if (a%b == 0) return b;
   else return gcd(b, a%b);
}
gcd(a,b)*lcm(a,b) = a*b</pre>
```

6.6. Newton Method

```
long double tolerance = 1E-6;
long double c0 = 1.0;
long double c1 = 1.0;
bool solutionFound = false;
// find the value of 'c' that makes the function equal to = 0
// might also be used in optimization problems setting y as
// the first derivative and yprime as the second
while (true)
{
       long double y = /* formula of the original function */;
       long double yprime = /* formula of the first derivative */;
       c1 = c0 - y / yprime;
       if ((fabs(c1 - c0) / fabs(c1)) < tolerance)</pre>
              solutionFound = true;
              break;
       }
       c0 = c1;
```

6.7. Primes

```
// guardar todos los primos entre 2 y 10010 en v
int k = 0, v[10000];
v[k++] = 2;
for (int i = 3; i <= 10010; i += 2) {
   bool b = true;
   for (int j = 0; b && v[j]*v[j] <= i; j++)
        b = i%v[j] > 0;
   if (b) v[k++] = i;
}

// probar si un numero x <= 1000000000 es primo
int x;
cin >> x;
bool primo = true;
for (int j = 0; primo && v[j]*v[j] <= x; j++)
        primo = x%v[j] > 0;
```

7. Sequences

7.1. Binary Search

```
// binary_search function can be found at algorithm library
// devuelve el i mas pequeno tal que t <= v[i]
// si no existe tal i, devuelve v.SZ
template<typename T> int bb(T t, vector<T> &v) {
   int a = 0, b = v.SZ;
   while (a < b) {
      int m = (a + b)/2;
      if (v[m] < t) a = m+1; else b = m;
   }
   return a;
}</pre>
```

7.2. Ternary Search

```
double E = 0.0000001; // tolerance double L = 200000; // R and L are extreme possible values... double R = -200000; // ... for the optimized parameter
```

```
while (1) {
   double dist = R - L;
   if (fabs(dist) < E) break;
   double leftThird = L + dist / 3;
   double rightThird = R - dist / 3;
   // f is the function which we are optimizing
   if (f(leftThird) < f(rightThird))
      R = rightThird;
   else
      L = leftThird;
}</pre>
```

7.3. Vector Partition

```
bidirectional_iterator partition(bidirectional_iterator start,
                           bidirectional_iterator end,
                           Predicate p);
bool IsOdd(int i) {return (i%2==1);}
int main () {
   vector<int> myvector;
   vector<int>::iterator it, bound;
   // set some values:
   for (int i=1; i<10; ++i)</pre>
       myvector.push_back(i); // 1 2 3 4 5 6 7 8 9
   bound = partition(myvector.begin(), myvector.end(), IsOdd);
   // print out content:
   cout << "odd members:";</pre>
   for (it=myvector.begin(); it!=bound; ++it)
       cout << " " << *it;
   cout << "\neven members:";</pre>
   for (it=bound; it!=myvector.end(); ++it)
       cout << " " << *it;
   cout << endl;</pre>
```