

# Winning Space Race with Data Science

Fred 2/23/2024



## **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- Summary of methodologies
  - Data Collection
  - EDA
  - ML prediction
- Summary of all results
  - ML Prediction is viable by collecting enough data and creating a useful ML model.

#### Introduction

- Project background and context:
  - SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.
- Problems you want to find answers:
  - Predict if the Falcon 9 first stage will land successfully



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - With SpaceX launch data that is gathered from an API, specifically the SpaceX REST API. This API will give the data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
- Perform data wrangling
  - perform some Exploratory Data Analysis (EDA) to find some patterns in the data
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

#### **Data Collection**

- Describe how data sets were collected.
  - With SpaceX launch data that is gathered from an API, specifically the SpaceX REST API. This API will give the data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
  - Perform some Exploratory Data Analysis (EDA) to find some patterns in the data
- You need to present your data collection process use key phrases and flowcharts
  - Data collection
  - Data Wrangling

# Data Collection – SpaceX API

Request and parse the SpaceX launch data using the GET request Filter the dataframe to only include `Falcon 9` launches

Dealing with Missing Values

# **Data Collection - Scraping**

Request the Falcon9 Launch Wiki page from its URL

Extract all column/variable names from the HTML table header

Create a data frame by parsing the launch HTML tables

# **Data Wrangling**

Calculate the number of launches on each site

Calculate the number and occurrence of each orbit

#### **EDA** with Data Visualization

- Summarize what charts were plotted and why you used those charts
  - Scatter plot \* 3
  - Bar chart \* 1
  - Scatter point \* 2
  - Line Chart \*1

## **EDA** with SQL

Using bullet point format, summarize the SQL queries you performed

%sql SELECT DISTINCT LAUNCH\_SITE FROM SPACEXDATASET

%sql SELECT \* FROM SPACEXDATASET WHERE LAUNCH\_SITE LIKE 'CCA%' LIMIT 5

%sql SELECT SUM(PAYLOAD\_MASS\_\_KG\_) AS TOTAL\_PADLOAD FROM SPACEXDATASET WHERE CUSTOMER='NASA (CRS)'

%sql SELECT AVG(PAYLOAD\_MASS\_\_KG\_) AS PAYLOAD\_MASS\_\_KG FROM SPACEXDATASET WHERE BOOSTER\_VERSION= 'F9 v1.1'

%sql SELECT MIN(DATE) FROM SPACEXDATASET WHERE LANDING\_\_OUTCOME = 'Success (ground pad)'

%sql SELECT DISTINCT BOOSTER\_VERSION FROM SPACEXDATASET WHERE

## Build an Interactive Map with Folium

- Summarize what map objects such as markers, circles, lines, etc. you created and added to a folium map
  - Makers and circles
  - Marker clusters
  - MousePosition
  - Distance-showing Line

## Build a Dashboard with Plotly Dash

- Summarize what plots/graphs and interactions you have added to a dashboard
  - Pie Chart \*2
  - For success launches overview
  - For determining which launch site has the highest launch success rate

# Predictive Analysis (Classification)

split the data into training and testing data

Used different methods to train data and find the best parameters

Calculate the accuracy on the test data

Plot the confusion matrix to assist the work

#### Results

- Exploratory data analysis results
  - East launch sites has more launches.
- Predictive analysis results
  - Higher the flight number, higher success rate; Higher the payload, lower the success rate



# Flight Number vs. Launch Site



# Payload vs. Launch Site



# Success Rate vs. Orbit Type



# Flight Number vs. Orbit Type



# Payload vs. Orbit Type



# Launch Success Yearly Trend



#### All Launch Site Names

launch\_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

# Launch Site Names Begin with 'CCA'

| DATE           | timeutc_ | booster_version | launch_site     | payload                                                             | payload_masskg_ | orbit        | customer           | mission_outcome | landing_outcome     |
|----------------|----------|-----------------|-----------------|---------------------------------------------------------------------|-----------------|--------------|--------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00 | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon Spacecraft<br>Qualification Unit                             | 0               | LEO          | SpaceX             | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00 | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon demo flight C1, two<br>CubeSats, barrel of Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS) NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 07:44:00 | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon demo flight C2                                               | 525             | LEO<br>(ISS) | NASA<br>(COTS)     | Success         | No attempt          |
| 2012-<br>10-08 | 00:35:00 | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX CRS-1                                                        | 500             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00 | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX CRS-2                                                        | 677             | LEO<br>(ISS) | NASA (CRS)         | Success         | No attempt          |

# **Total Payload Mass**

- Calculate the total payload carried by boosters from NASA
  - 45596 KG

# Average Payload Mass by F9 v1.1

- Calculate the average payload mass carried by booster version F9 v1.1
  - 2928 kg

# First Successful Ground Landing Date

- Find the dates of the first successful landing outcome on ground pad
  - 12/22/2015

#### Successful Drone Ship Landing with Payload between 4000 and 6000

 List the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

| Name of Boosters with success in drone ship |               |  |
|---------------------------------------------|---------------|--|
|                                             | F9 FT B1022   |  |
|                                             | F9 FT B1026   |  |
|                                             | F9 FT B1021.2 |  |
|                                             | F9 FT B1031.2 |  |

#### Total Number of Successful and Failure Mission Outcomes

Calculate the total number of successful and failure mission outcomes

• Success: 100

• Failure: 1

# **Boosters Carried Maximum Payload**

• List the names of the booster which have carried the maximum payload mass

| booster_version | payload_masskg_ |
|-----------------|-----------------|
| F9 B5 B1048.4   | 15600           |
| F9 B5 B1049.4   | 15600           |
| F9 B5 B1051.3   | 15600           |
| F9 B5 B1056.4   | 15600           |
| F9 B5 B1048.5   | 15600           |
| F9 B5 B1051.4   | 15600           |
| F9 B5 B1049.5   | 15600           |
| F9 B5 B1060.2   | 15600           |
| F9 B5 B1058.3   | 15600           |
| F9 B5 B1051.6   | 15600           |
| F9 B5 B1060.3   | 15600           |
| F9 B5 B1049.7   | 15600           |

#### 2015 Launch Records

• List the failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015

| Month | Year | Landing_Outcome      | Booster_Version | Launch_Site |
|-------|------|----------------------|-----------------|-------------|
| 01    | 2015 | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| 04    | 2015 | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

| Landing Outcome        | Count |
|------------------------|-------|
| No attempt             | 10    |
| Success (drone ship)   | 5     |
| Failure (drone ship)   | 5     |
| Success (ground pad)   | 3     |
| Controlled (ocean)     | 3     |
| Uncontrolled (ocean)   | 2     |
| Failure (parachute)    | 2     |
| Precluded (drone ship) | 1     |



## **Launch Site Locations**



## **Launch Results**





# The success launches by site



#### The success launches for KSC LC-39A



## The correlation between Payload and Launch Outcomes





# Classification Accuracy

• Visualize the built model accuracy for all built classification models, in a bar chart

• Find which model has the highest classification accuracy

# **Confusion Matrix**



#### **Conclusions**

- The features (booster version, payload, launch sites, etc.) can affect the success rate.
- ML prediction is useful!
- Different model evaluation methods result in different accuracy values, and are important to use multiple evaluation methods.
- Data Science is fun!

# **Appendix**

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

