

MeiG Product Manual of SLM750

Version Number: V1.1

Company: MeiG Smart Technology Co., Ltd

Tel: 86-755-61163458 Http://www.meigsmart.com

Released Date: 2018/8/13

IMPORTANT NOTICE

COPYRIGHT NOTICE

Copyright © MeiG Smart Technology Co., Ltd. All rights reserved.

All contents of this manual are exclusively owned by MeiG Smart Technology Co., Ltd(MeiG Smart for short), which is under the protection of Chinese laws and copyright laws in international conventions. Anyone shall not copy, spread, distribute, modify or use in other ways with its contents without the written authorization of MeiG Smart. Those who violated will be investigated by corresponding legal liability in accordance with the law.

NO GUARANTEE

MeiG Smart makes no representation or warranty, either express or implied, for any content in this document, and will not be liable for any specific merchantability and applicable or any indirect, particular and collateral damage.

CONFIDENTIALITY

All information contained here (including any attachments) is confidential. The recipient acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

DISCLAIMER

MeiG Smart will not take any responsibility for any property and health damage caused by the abnormal operation of customers. Please develop the product according to the technical specification and designing reference guide which defined in the product manual. MeiG Smart have the right to modify the document according to technical requirement with no announcement to the customer.

Revising History

Table 1: Revising records

REVISION	DATE	DESCRIPTION	
V1.0	2018-04-01	Initial	
V1.1	2018-12-14	Modify power consumption, RF, packaging	

Contents

l Inti	oduction		8
	1.1 Safety Information		9
	1.1 Safety Information		9
	1.2 Purpose		10
	1.3 Content list		10
2 Pro	duct Overview		11
	2.1 Basic Description		11
	2.2 Main performance		11
	2.3 Functional diagram		
	2.4 Evaluation Board		15
	plication Interface		
	3.1 General Description		
	3.2 LCC Card Interface Definition		
	3.3 Pin Description		
	3.4 Operating Mode		
	3.5 Power Saving	<i> </i>	30
	3.5.1 Sleep Mode		30
	3.5.1.1 USB Application (with USB remote waking-up function)		30
	3.5.1.2 USB Application (without USB Suspend function)		31
	3.5.1.3 Hardware I/O control sleep mode		31
	3.5.2 Flight Mode		32
	3.5.2.1 Hardware I/O interface controls flight mode		32
	3.5.2.2 AT command controls flight mode		32
	3.6 Power Supply		32
	3.6.1 Power supply pins		32
	3.6.2 Decrease voltage drop		
	3.6.3 Reference design for power supply		34
	3.6.4 VDD_EXT voltage output		
	3.7 Turn On and Off		
	3.7.1 Turn on module using the PWRKEY		35
	3.7.2 Turn off module using the PWRKEY pin		37
	3.7.2.1 PWRKEY pin shutdown		37
	3.7.2.2 AT command shutdown		38
	3.8 Reset the Module		38
	3.8.1 Hardware reset		39
	3.8.2 AT command reset		40
	3.9 USIM/SIM Card Interface		40
	3.10 USB Interface		42
	3.10.1 USB pin description		
	3.10.2 USB reference circuit		
	3.10.3 USB driver		
	3.11 UART Interface		
	3.12 PCM and I2C Interface		46

3.13 Network Status Indication	48
3.14 Status	49
3.15 ADC Function	50
3.16 SGMII Interface	50
3.17 Wireless Connectivity Interfaces	52
3.17.1 WLAN Interface	54
3.17.2 BT Interface	55
3.18 SD Card Interface	55
3.19 USB_BOOT Interface	57
4 GNSS	58
4.1 General Description	58
4.2 GNSS Performance	58
4.3 Layout Guideline	59
5 Antenna Interface	59
5.1 Antenna Interface	59
5.2 RF Reference Circuit	60
5.3 Antenna Installation	
5.3.1 Antenna requirements	62
5.3.2 RF output power	
5.3.3 RF receiving sensitivity	63
5.3.4 Operating frequency	64
5.3.5 Antenna requirements	64
6 Electrical characteristics	65
6.1 Limit voltage range	65
6.2 Temperature range	
6.3 Electrical Characteristics of Interface Operation Status	
6.4 Module Power Consumption Range	
6.5 Environmental Reliability Requirements	
6.6 ESD Characteristics	
7 Mechanical Dimensions	74
7.1 Mechanical Dimensions of the Module	74
7.2 Recommended Packaging	76
7.3 Top View of the Module	77
7.4 Bottom View of the Module	77
8 Storage and Manufacturing	
8.1 Storage	
8.2 Manufacturing and Welding	
8.3 Packing	79
9 Appendix A References.	81
9.1 Related Documents	81
9.2 Terms and Abbreviations	81
10 Appendix B GPRS Coding Scheme	

Table

Table 1: Revising records	3
TABLE 2: SUPPORTED BAND OF SLM750V	11
TABLE 3: LIST OF MAIN FEATURES OF THE MODULE	12
Table 4: IO Parameters Definition	17
TABLE 5: PIN DESCRIPTION	18
Table 6: Overview of Operating Modes	28
TABLE 7: RELATED POWER SUPPLY INTERFACES.	33
TABLE 8: RESET_N PIN DESCRIPTION	39
TABLE 9: USIM/SIM CARD INTERFACE DESCRIPTION	
TABLE 10: USB INTERFACE DESCRIPTION	43
TABLE 11: MAIN UART PIN DESCRIPTION	45
TABLE 12: DEBUG UART PIN DESCRIPTION	45
Table 13: UART logical level	45
TABLE 14: PIN DESCRIPTION FOR PCM INTERFACE	
Table 15: Pin Definition of Network Indicator	48
TABLE 16: WORKING STATE OF THE NETWORK INDICATOR	49
TABLE 17: STATUS PIN DESCRIPTION	
TABLE 18: ADC PIN DESCRIPTION	50
Table 19: Pin definition of SGMII interface	50
TABLE 20: PIN DEFINITION OF WIRELESS CONNECTIVITY INTERFACES	52
TABLE 21: PIN DEFINITION OF THE SD CARD INTERFACE	55
TABLE 22: PIN DEFINITION OF USB_BOOT INTERFACE	57
Table 23: GNSS performance	58
Table 24: RF antenna pin definition	59
Table 25: Antenna requirements	62
Table 26: RF output power	63
TABLE 27: RF RECEIVING SENSITIVITY	63
Table 28: Operating frequency	64
Table 29: Antenna requirements	64
Table 30: Diversity antenna requirements	65
TABLE 31: LIMIT VOLTAGE RANGE	65
TABLE 32: TEMPERATURE RANGE	66
TABLE 33: LOGICAL LEVEL OF NORMAL DIGITAL IO SIGNAL	66
TABLE 34: ELECTRICAL CHARACTERISTICS IN POWER SUPPLY STATUS	67
TABLE 35: CONSUMPTION	67
Table 36: Environmental reliability requirements	72
TABLE 37: ESD PERFORMANCE PARAMETERS (TEMPERATURE: 25°C, HUMIDITY: 45%)	73
Table 38: Terms and abbreviations	81
TABLE 39: DESCRIPTION OF CODING SCHEMES	83

Figure

Figure 1 Functional Diagram	15
FIGURE 2 PIN ASSIGNMENT	17
FIGURE 3 SLEEP MODE APPLICATION WITH USB REMOTE WAKING-UP FUNCTION	31
FIGURE 4 POWER REQUIREMENTS FOR BURST TRANSMISSION	34
FIGURE 5 STAR STRUCTURE OF POWER SUPPLY	34
FIGURE 6 DC POWER SUPPLY CIRCUIT	35
FIGURE 7 TURN ON THE MODULE USING DRIVING CIRCUIT	36
FIGURE 8 TURN ON THE MODULE USING KEYSTROKE	36
FIGURE 9 TIMING OF TURNING ON MODULE	
FIGURE 10 TIMING OF TURNING OFF MODULE	38
FIGURE 11 REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT	39
FIGURE 12 REFERENCE CIRCUIT OF RESET_N BY USING BUTTON	39
FIGURE 13RESET TIMING OF RESET_N	
FIGURE 14 REFERENCE CIRCUIT FOR 8-PIN USIM/SIM CONNECTOR	
FIGURE 15 REFERENCE CIRCUIT FOR 6-PIN USIM/SIM CONNECTOR	41
FIGURE 16 USB REFERENCE CIRCUIT	43
FIGURE 17 REFERENCE CIRCUIT OF LEVEL CONVERSION CHIP	46
FIGURE 18 TIMING IN SHORT FRAME MODE	47
FIGURE 19 TIMING IN LONG FRAME MODE	47
FIGURE 20 REFERENCE DESIGN FOR PCM CIRCUIT	48
FIGURE 21 REFERENCE CIRCUIT OF STATUS	50
FIGURE 22 SIMPLIFIED BLOCK DIAGRAM FOR ETHERNET APPLICATION	51
FIGURE 23 REFERENCE CIRCUIT OF SGMII INTERFACE WITH PHY AR8033 APPLICATION	52
FIGURE 24 REFERENCE CIRCUIT OF WIRELESS CONNECTIVITY INTERFACES WITH SLM158	54
FIGURE 25 REFERENCE CIRCUIT OF SD CARD APPLICATION	56
FIGURE 26 CIRCUIT OF USB_ROOT INTERFACE	58
FIGURE 27 RF REFERENCE CIRCUIT	61
FIGURE 28 GNSS ANTENNA REFERENCE CIRCUIT	61
FIGURE 29 MODULE TOP AND SIDE DIMENSION (UNIT: MM)	74
FIGURE 30 MODULE BOTTOM DIMENSIONS (UNIT: MM)	75
FIGURE 31 TOP VIEW OF RECOMMENDED PACKAGING (UNIT: MM)	76
FIGURE 32 TOP VIEW OF THE MODULE	77
FIGURE 33 BOTTOM VIEW OF THE MODULE	77
FIGURE 34 REFLOW SOLDERING TEMPERATURE PROFILE	79
FIGURE 35 PALLET PACKAGING(UNIT: MM)	80

1 Introduction

This document defines SLM750 modules and describes its air interface and hardware interface which are connected with your application.

The document can help you quickly understand SLM750 interface specifications, electrical and mechanical details and other related product information. Associated with application notes and user guide, you can apply SLM750 in wireless applications easily.

SLM750 wireless module is a broadband wireless vehicle-mounted product used for various network standards like TD-LTE/FDD LTE/WCDMA/TD-SCDMA/EVDO/CDMA/GSM.

Supported access rate of SLM750:

- TD-LTE: 130Mbps/35Mbps
- FDD LTE: 150Mbps/50Mbps
- WCDMA reaches DC HSPA+: 42Mbps/5.76Mbps
- EVDO reaches EVDO RevA: 3.1Mbps/1.8Mbps
- TD-SCDMA reaches HSPA: 4.2Mbps/2.2Mbps
- CDMA1x: 153.6kbps/153.6kbps
- GSM reaches EDGE: 236.8kbps/236.8kbps

SLM750 provides high-speed broadband data access. In addition, it provides voice, SMS, address book, GPS/Beidou and other functions, which can be used in mobile broadband access, video surveillance, security, vehicle equipment and other products.

1.1 Safety Information

Observing the following safety information can keep you safe and protect the product and its working environment from potential damage.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Stop the car before you make a call.

Switch off the mobile terminal devices before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Ignore the note will threaten flight safety or even break the law.

Pay attention to restrictions on the use of mobile terminal device in hospitals or health care facilities. RF interference can cause medical equipment to run out of order, so it is necessary to turn off the mobile terminal devices.

Mobile terminal device cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid SIM card. While you are in this condition and need emergent help, remember to use emergency call. The mobile terminal device must be switched on and in a service area with adequate signal strength in order to make or receive a call.

Your mobile terminal device receives and transmits radio frequency signal when it is on. RF interference can occur if it is use to close to TV set, radio, computer or other electronic equipment.

Please keep the mobile device away from areas with potentially explosive atmospheres. When you are near a gas station, oil depot, chemical plant or an explosion site, please turn off your mobile terminal. There is a potential safety hazard to operate electronic equipment at any potential explosion hazardous locations.

1.2 Purpose

This document describes basic functions and main features of SLM750 wireless module, as well as hardware interface and its application, features of structure and electronics, and power index, in order to guide you to embed SLM750 in various application terminals.

1.3 Content list

The document includes:

- Chapter 1 introduces safety information, purpose of the document and revised records;
- Chapter 2 describes basic functions and main features of SLM750 wireless module;
- Chapter 3 describes functions, features, and applications of each hardware interface of SLM750;
- Chapter 4 describes related features of GNSS;
- Chapter 5 introduces related information and notes of antenna interface;
- Chapter 6 describes electronic features of SLM750;
- Chapter 7 describes structure features and notes of SLM750;
- Chapter 8 describes storage and production notes of SLM750;
- Chapter 9 Appendix A: Reference documents and abbreviations;
- Chapter 10 Appendix B: GPRS encoding scheme

2 Product Overview

2.1 Basic Description

SLM750 is a wireless communication module of TD-LTE/FDD LTE/TD-SCDMA/WCDMA/EVDO/CDMA/GSM with diversity receiving function. It supports TD-LTE and FDD LTE, and downwards compatible with DC-HSPA+ of WCDMA, TD-HSPA of TD-SCDMA, network data connection of EVDO RevB, which provides functions of voice, analog voice, SMS, and communication for your applications. The module has 3 sub-modes: SLM750VC, SLM750VE, SLM750VA. The following table shows the supported bands of the module.

Table 2: Supported band of SLM750

Network	SLM750VC	SLM750VE	SLM750VA
TD-LTE	B38/B39/B40/B41	B40	B41
FDD LTE	B1/B3/B5/B8	B1/B3/B5/B7/B8/B20	B2/B4/B5/B12/B13/B17/B25/B26
WCDMA	B1/B8	B1/B5/B8	B2/B4/B5
TD-SCDMA	B34/B39	Not supported	Not supported
EVDO	Not supported	Not supported	Not supported
CDMA	BC0	Not supported	BC0/BC1
GSM	900/1800	900/1800	850/1800
GPS L1	Supported	Supported	Supported

Using advanced highly integrated design, SLM750 integrates RF and baseband on a piece of PCB which has functions of wireless reception and transmission, baseband signal processing and audio signal processing. It uses double side layout and the size is: $32.0 \times 29.0 \times 2.4$ mm. The module can meet most M2M application requirements like mobile broadband access, video surveillance, handheld terminals, on-board equipment, ultra-books and other products. In addition, SLM750 is compatible with Qualcomm MDM9628 main chip, which can be used in vehicle-mounted application.

2.2 Main performance

The following table describes the performance of the SLM750 in detail.

Table 3: List of main features of the module

Parameter	Description			
Power supply	● VBAT supply voltage range: 3.3V~4.2V			
	• Typical supply voltage: 3.8V			
Transmit power	• Class 4 (33dBm±2dB) for GSM850			
	• Class 4 (33dBm±2dB) for GSM900			
	• Class 1 (30dBm±2dB) for DCS1800			
	• Class 1 (30dBm±2dB) for PCS1900			
	• Class E2 (27dBm±3dB) for GSM850 8-PSK			
	• Class E2 (27dBm±3dB) for GSM900 8-PSK			
	• Class E2 (26dBm±3dB) for DCS1800 8-PSK			
	• Class E2 (26dBm±3dB) for PCS1900 8-PSK			
	• Class 3 (24dBm±1dB) for CDMA BC0			
	• Class 3 (23dBm±2dB) for WCDMA bands			
	• Class 3 (23dBm±2dB) for TD-SCDMA bands			
	• Class 3 (23dBm±2dB) for LTE FDD bands			
	• Class 3 (23dBm±2dB) for TD-LTE bands			
LTE features	Maximum support non-CA CAT4			
	• Support 1.4 ~ 20MHz RF bandwidth			
	Downlink supports multi-user MIMO			
	• FDD: maximum uplink rate 50Mbps,maximum			
	downlink rate 150Mbps			
	TDD: maximum uplink rate 35Mbps,maximum			
	downlink rate 130Mbps			
WCDMA features	Support 3GPP R8 DC-HSPA+			
	 Support 16-QAM,64-QAM and QPSK modulation 			
	• 3GPP R6 CAT6 HSUPA: maximum uplink rate			
* \ A	5.76Mbps			
	• 3GPP R8 CAT24 DC-HSPA+: maximum uplink rate			
10,10	42Mbps			
TD-SCDMA features	Support CCSA Release3			
	Maximum uplink rate 2.2Mbps,maximum downlink rate			
	4.2Mbps			
CDMA features	Support CDMA 1X Advanced,1XEV-DOr0/-DOrA			
`	• maximum uplink rate 1.8Mbps,maximum downlink rate			
	3.1Mbps			
GSM features	R99:			
	CSD transmission rate: 9.6kbps,14.4kbps			
	GPRS:			
	Support GPRS multi-slot class 12(default 12)			
	• Coding format: CS-1/CS-2/CS-3 and CS-4			
	Maximum 4 RX slots per frame			
	EDGE:			

	Wield Floudet Mailual of Scivi750 Module
	• Support EDGE multi-slot class 12(default 12)
	 Support GMSK and 8-PSK
	• Downlink coding format: CS 1-4 and MCS 1-9
	• Uplink coding format: CS 1-4 and MCS 1-9
Network protocol features	Support
	TCP/UDP/PPP/FTP/HTTP/SMTP/MMS/NTP/PING
	/QMI protocol
	Support PAP(Password Authentication Protocol)and
	CHAP(Challenge Handshake Authentication Protocol)
Short message service	Text and PDU mode
	Point to point MO and MT
	Short message cell broadcast
	Short message storage: default stored in module
Multimedia message service	AP terminal is required to realize MMS protocol
USIM card interface	• Support USIM/SIM card: 1.8V and 3V
Audio features	• Support 1 channel digital audio interface: PCM interface
	• GSM: HR/FR/EFR/AMR/AMR-WB
	WCDMA: AMR/AMR-WB
	• LTE: AMR/AMR-WB
	Support echo cancellation and noise suppression
PCM interface	• For audio use, need to connect the codec chip
	• Support 8 bit A-law, u-law and 16 bit Linear coding
	format
	 Support long frame mode and short frame mode
	 Support master mode and slave mode, but in the long
	frame it can only be used as the master mode
USB interface	Compatible USB2.0 features (only support slave)
	mode),maximum data transfer rate reaches 480Mbps
• \	• Used for AT command, data transmission, GNSS NMEA
	output, software debugging and software upgrading
	• USB drive: support Windows7, Windows8/8.1,
	Windows10, Linux 2.6 or higher version, Android
	2.3/4.0/4.2/4.4/5.0/5.1/6.0/7.0
Serial port	Main serial port:
	 Used for AT commands and data transfer
	Maximum baud rate is 3000000bps,default 115200bps
	Support RTS and CTS hardware flow control
	Debug serial port:
	Used for Linux control, log output
	Baud rate is 115200bps
RX-diversity	Support LTE/WCDMA/CDMA RX-diversity
AT command	• Confirm to 3GPP TS 27.007, 27.005 and added new
	MeiG AT commands
Network indication	• The two pins NET_STATUS,NET_MODE indicate the
	network status

Antenna interface	• Include main antenna(ANT_MAIN),RX-D diversity
	antenna(ANT_DIV) and GNSS antenna(ANT_GNSS)
Physical features	• Size: 32.0×29.0×2.4mm
	• Weight: <5 g
Temperature range	● Normal operating temperature: -30°C ~+75°C
-	• Limited operating temperature: -40 °C ∼+85 °C
	• Storage temperature: -45°C ∼+90°C
Software upgrade	USB interface
RoHS	All hardware components fully comply with the EU
	RoHS standard
Ambient humidity	• 5%~95%
ESD	• VBAT,GND: Air discharge ±10KV,Contact discharge
202	±5KV
	 Antenna interface: Air discharge ±8KV,Contact
	discharge ±4KV
	 Other interface: Air discharge ±1KV,Contact discharge
	±0.5KV
Interface	• 144Pin LCC interface
LCC function interface	Power interface
Lee function interface	 USB2.0 High-Speed interface
	 UART interface
	 USIM/SIM card interface (support 3V \ 1.8V)
	PCM interface
	Hardware reset interface
	Indicator light interface
	 Sleep control interface
	Flight mode control interface
	ADC interface
	• I2C interface
	SGMII interface
	SD card interface
10,15	WLAN interface
V . V π	BT UART interface
	 USB BOOT interface

2.3 Functional diagram

The following figure shows a block diagram of SLM750 and illustrates the major functional parts.

- Power management
- Baseband chip
- DDR+NAND storage

- Radio frequency
- Peripheral interface

Figure 1 Functional Diagram

2.4 Evaluation Board

In order to help you develop applications with SLM750, MeiG supplies an evaluation board, Which contains USB data cable, antenna and other peripherals to control or test the module.

See MeiG_U_EVB User Guide for specific usage of evaluation board.

3 Application Interface

3.1 General Description

SLM750 uses LCC+LGA interface with a total of 144 PIN among which there are 80 LCC pins and 64 LGA pins, providing the following function interface:

- Power interface
- USIM/SIM interface
- USB interface
- UART interface
- PCM interface
- I2C interface
- Hardware reset interface
- Status indication interface
- Sleep control interface
- Flight mode control interface
- ADC interface
- SGMII interface
- SD card interface
- WLAN interface
- BT UART interface
- USB BOOT interface

3.2 LCC Card Interface Definition

Figure 2 Pin Assignment

3.3 Pin Description

The following table shows the SLM750's pin definition.

Table 4: IO Parameters Definition

Туре	Description

Ю	Input output
DI	Digital input
DO	Digital output
PI	Power input
PO	Power output
AI	Analog input
AO	Analog output
OD	Open drain

Table 5: Pin description

Power Supply					
Pin name	Pin number	I/O	Description	DC features	Note
VBAT_BB	59,60	PI	Power supply for module baseband	Vmax=4.2V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 1A
VBAT_RF	57,58	PI	Power supply for module RF	Vmax=4.2V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 2A
VDD_EXT	7	PO	1.8V output	Vnorm=1.8V I _o max=80mA	Power supply for external GPIO's pull up circuits; If unused, keep it open
GND	8,9,19,22, 36,46,48, 50~54, 56,72, 85~112	-	Ground	ð	-
Turn on/off Pin name	Pin number	I/O	Description	DC features	Note
RESET_N	20	DI	Reset the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	1.8V power domain; active low level. If unused, keep it open
PWRKEY	21	DI	Turn on/Standby	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	Diode voltage drop inside Qualcomm chip results in 0.8V output of the pin
Module status	indication				
Pin name	Pin number	I/O	Description	DC features	Note

STATUS	61	OD	Indicate the module operating status	Driving current should be less than 0.9mA	Require external pull-up. If unused, keep it open
NET_MODE	5	OD	Indicate the module network registration status	VOHmin=1.35V VOLmax=0.45V	1.8V power domain, require external pull-up. If unused, keep it open
NET_STATU S	6	OD	Indicate the module network running status	VOHmin=1.35V VOLmax=0.45V	1.8V power domain, require external pull-up. If unused, keep it open
USB interface			<u> </u>	I = = =	
Pin name	Pin number	I/O	Description	DC features	Note
USB_VBUS	71	PI	USB detection	Vmax=5.25V Vmin=3.0V Vnorm=5.0V	
USB_DP	69	IO	USB differential data positive signal	Compliant with USB2.0 standard specification	Require differential impedance of 90Ω
USB_DM	70	IO	USB differential data negative signal	Compliant with USB2.0 standard specification	Require differential impedance of 90Ω
USIM card into	erface		3	T T T T T T T T T T T T T T T T T T T	T
Pin name	Pin number	I/O	Description	DC features	Note
USIM_DATA	15	IO	USIM card data bus	1.8V USIM: V _{IL} max=0.6V V _{IH} min=1.2V V _{OL} max=0.45V V _{OH} min=1.35V 3.0V USIM: V _{IL} max=1.0V V _{IH} min=1.95V V _{OL} max=0.45V V _{OH} min=2.55V	-
USIM_CLK	16	DO	USIM card clock line	1.8V USIM: V _{OL} max=0.45V V _{OH} min=1.35V 3.0V USIM: V _{OL} max=0.45V	-

		1	I	Toduct Manual C	
				V _{OH} min=2.55V	
USIM_RST	17	DO	USIM card reset	1.8V USIM:	-
			line	V _{OL} max=0.45V	
				V _{OH} min=1.35V	
				3.0V USIM:	
				V _{OL} max=0.45V	
				V _{OH} min=2.55V	
USIM_PRESE	13	DI	USIM card	V _{II} min=-0.3V	1.8Vpower
NCE _			detection	V _{II.} max=0.6V	domain, require
				V _{IH} min=1.2V	external pull-up to
				V _{IH} max=2.0V	1.8V
USIM VDD	14	PO	USIM card	1.8V USIM:	Either 1.8V or
			supply voltage	Vmax=1.9V	3.0V USIM card is
				Vmin=1.7V	identified by the
				3.0V USIM:	module
			P	Vmax=3.05V	automatically
				Vmin=2.7V	www.siiiwvi&wiij
				I _o max=50mA	
USIM GND	10		USIM card		Connect with
	10		ground	111	module ground
Main serial por	·t		Broana		inodare Brodina
		7.0			
Pin name	Pin	/()	Description	LDC features	l Note
Pin name	Pin number	I/O	Description	DC features	Note
	number		-		
RI		DO DO	Ring indicator	VOLmax=0.45V	1.8V power
	number		-		1.8V power domain.
	number		-	VOLmax=0.45V	1.8V power domain. If unused, keep
RI	number 62	DO	Ring indicator	VOLmax=0.45V VOHmin=1.35V	1.8V power domain. If unused, keep it open.
	number		-	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V	1.8V power domain. If unused, keep it open. 1.8V power
RI	number 62	DO	Ring indicator	VOLmax=0.45V VOHmin=1.35V	1.8V power domain. If unused, keep it open. 1.8V power domain.
RI	number 62	DO	Ring indicator	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep
RI	62 63	DO	Ring indicator Carrier detect	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open.
RI	number 62	DO	Ring indicator Carrier detect DTE ready, sleep	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power
RI	62 63	DO	Ring indicator Carrier detect	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain.
RI	62 63	DO	Ring indicator Carrier detect DTE ready, sleep	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep
RI DCD DTR	62 63 66	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V	1.8V power domain. If unused, keep it open.
RI	62 63	DO	Ring indicator Carrier detect DTE ready, sleep	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V	1.8V power domain. If unused, keep it open. 1.8V power
RI DCD DTR	62 63 66	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VILmin=-0.3V VILmax=0.6V	1.8V power domain. If unused, keep it open. 1.8V power domain.
RI DCD DTR	62 63 66	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VILmin=-0.3V VILmax=0.6V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V	1.8V power domain. If unused, keep it open.
RI DCD DTR RXD	62 63 66 68	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control Receive data	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=-0.3V VILmax=0.6V VILmax=0.6V VIHmin=1.2V VIHmin=1.2V VIHmax=2.0V	1.8V power domain. If unused, keep it open. 1.8V power it open. 1.8V power domain. If unused, keep it open.
RI DCD DTR	62 63 66	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=2.0V VILmin=-0.3V VILmax=0.6V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V	1.8V power domain. If unused, keep it open. 1.8V power
RI DCD DTR RXD	62 63 66 68	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control Receive data	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=0.6V VIHmin=-0.3V VILmax=0.6V VILmax=0.6V VIHmin=1.2V VIHmin=1.2V VIHmax=2.0V	1.8V power domain. If unused, keep it open.
RI DCD DTR RXD	62 63 66 68	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control Receive data	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=2.0V VILmin=-0.3V VILmax=0.6V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V	1.8V power domain. If unused, keep it open. 1.8V power domain. If unused, keep
RI DCD DTR RXD	62 63 66 68	DO DO DI	Ring indicator Carrier detect DTE ready, sleep mode control Receive data	VOLmax=0.45V VOHmin=1.35V VOLmax=0.45V VOHmin=1.35V VILmin=-0.3V VILmax=2.0V VILmin=-0.3V VILmax=0.6V VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax=2.0V VOLmax=0.45V	1.8V power domain. If unused, keep it open.

		T	ivie	ig Product Manual o	1 3LIVI730 IVIOUUIE
				VOHmin=1.35V	domain.
					If unused, keep
					it open.
RTS	65	DO	DTE requires to	VILmin=-0.3V	1.8V power
Ter 5	0.5	D0	transmit data	VILmax=0.6V	domain.
			transmit data	VILMAX=0.0 V VIHmin=1.2 V	
					If unused, keep
				VIHmax=2.0V	it open.
Debug serial po		1			
Pin name	Pin number	I/O	Description	DC features	Note
DBG_TXD	12	DO	Transmit data	V _{OL} max=0.45V	1.8V power
				V _{OH} min=1.35V	domain.
					If unused, keep
				\ A	it open.
DBG_RXD	11	DI	Receive data	V _{IL} min=-0.3V	1.8V power
	11	<i>D</i> 1	10001ve data	V _{IL} max=0.6V	domain.
				V _{IH} min=1.2V	If unused, keep
				V _{IH} max=2.0V	it open.
ADC interface		1			
Pin name	Pin	I/O	Description	DC features	Note
	number				
ADC0	45	AI	General	Voltage range:	If unused, keep it
			purpose	0.05V~1.8V	open.
			analog to		1
			digital		
			converter.		
ADC1	44	AI	General	Voltage range:	If unused Iraan it
ADCI	44	AI			If unused, keep it
			purpose	0.05V~1.8V	open.
	0	4	analog to		
			digital		
			converter.		
USB_BOOT in	terface				
Pin name	Pin	I/O	Description	DC features	Note
	number		•		
USB_BOOT	115		Forced	VOLmax=0.45	1.8V power
352_2501	110		download	VOHmin=1.35V	domain. Active
		DI	mode control	, O11111111 1.33 v	high level.
		וע	mode control		
					Suggested
					reservation of test
					point.
PCM interface					
Pin name	Pin	I/O	Description	DC features	Note
	number				
PCM_IN	24	DI	PCM data input	V _{IL} min=-0.3V	1.8V power
<u> </u>		. – –			
			-	V _{IL} max=0.6V	domain.

			ı	Toduct Manual C	
				V _{IH} min=1.2V	If unused, keep
				V_{IH} max=2.0 V	it open.
PCM_OUT	25	DO	PCM data output	V _{OL} max=0.45V	1.8V power
_			1	V _{OH} min=1.35V	domain.
					If unused, keep
					it open.
DCM CLV	27	IO	DCM -11-	V	-
PCM_CLK	27	IO	PCM clock	V_{OL} max=0.45V	1.8V power
				V _{OH} min=1.35V	domain. In master
				V _{IL} min=-0.3V	mode, it is an
				V _{IL} max=0.6V	output signal. In
				V _{IH} min=1.2V	slave mode, it is an
				V _{IH} max=2.0V	input signal. If
					unused, keep it
				A A	open.
PCM_SYNC	26	IO	PCM data	V _{OL} max=0.45V	1.8V power
			synchronous	V _{OH} min=1.35V	domain. In master
			signal	V _{IL} min=-0.3V	mode, it is an
				V_{II} max=0.6V	output signal. In
				V _{IH} min=1.2V	slave mode, it is an
				V _{IH} max=2.0V	input signal. If
			Λ. /	VIIIIIIII 2.0 V	unused, keep it
			X'\	(A)	open.
CDC I2S MC	116	DO	19.2MHz signal		Module
LK	110	ЪО	clock		outputs19.2MHz
LK			CIOCK		clock signal, which is
					used to provide to the
					external CODEC, If
					unused, keep it
		_			open.
I2C interface	<u> </u>			<u> </u>	
Pin name	Pin	I/O	Description	DC features	Note
	number				
I2C_SCL	41	OD	I2C serial clock		Require
					external pull-up to
					1.8V. If unused,
IOC CD A	10	0.7	100		keep it open.
I2C_SDA	42	OD	I2C serial data		Require
					external pull-up to 1.8V. If unused,
					keep it open.
RF Interface					Reep it open.
Pin name	Pin	I/O	Description	DC features	Note
	number		1		
ANT_DIV	35	AI	Diversity antenna	50 ohm	If unused, keep it
_					, , , , , , , , , , , , , , , , , , ,
			-	impedance	open.
ANT MAIN	49	IO	Main antenna	impedance 50 ohm	open.

	impodence				
			impedance		
ANT_GNSS	47	AI	GNSS antenna	50 ohm	If unused, keep it
				impedance	open.
					-
GPIO Pin					
Pin name	Pin number	I/O	Description	DC features	Note
WAKEUP_IN	1	DI	Sleep mode input	V _{IL} min=-0.3V	1.8V power
_			control	V _{IL} max=0.6V	domain.
				V _{IH} min=1.2V	High level wakes
				V _{IH} max=2.0V	up the module; in
					low level the
					module enters into
					sleep mode. If
					unused, keep it
			P	AN V	open.
AP_READY	2	DI	Application	V _{OL} max=0.45V	1.8V power
_			processor sleep	V _{OH} min=1.35V	domain.
			state detection		If unused, keep it
			N. /	11/2	open.
WAKEUP_O	3	DO	Sleep mode	VOLmax=0.45V	1.8V power
UT_N			output	VOHmin=1.35V	domain.
			- N I . I		If unused, keep it
			UI A		open.
W_DISABLE	4	DI	Flight mode	V _{IL} min=-0.3V	1.8V power
#			control	V _{IL} max=0.6V	domain.
				V _{IH} min=1.2V	In low level the
				V _{IH} max=2.0V	module enters into
		4			flight mode. If
,	A .				unused, keep it
	O, I				open.
WLAN interfac	ce				
Pin name	Pin number	I/O	Description	DC features	Note
BT_RTS*	37	DO	Bluetooth serial	VILmin=-0.3V	1.8V power
1			port request to	VILmax=0.6V	domain.
			send data	VIHmin=1.2V	If unused, keep it
				VIHmax=2.0V	open.
BT_TXD*	38	DO	Bluetooth serial	VOLmax =0.45V	1.8V power
			port sends data	VOHmin =1.35V	domain.
			_		If unused, keep it
					open.
BT_RXD*	39	DI	Bluetooth Serial	VILmin=-0.3V	1.8V power
			Port receives data	VILmax=0.6V	domain.
i	1		l	1	l

BT_CTS* 40 DI Bluetooth serial sending clearance VOLmax =0.45V 1.8V power domain. If unused, k open. BT_EN* 139 DO Bluetooth enables VOLmax =0.45V 1.8V power domain. If unused, k open. WLAN_SLP_C LK DO WLAN sleep clock If unused, k open.	eep it
BT_CTS* 40 DI Bluetooth serial sending clearance VOLmax =0.45V domain. If unused, k open. BT_EN* 139 DO Bluetooth enables VOLmax =0.45V domain. If unused, k open. VOHmin =1.35V 1.8V power domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
sending clearance VOHmin =1.35V domain. If unused, k open. BT_EN* 139 DO Bluetooth enables VOLmax =0.45V domain. If unused, k open. VOHmin =1.35V domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
BT_EN* 139 DO Bluetooth enables VOLmax =0.45V VOHmin =1.35V domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k open. If unused, k	eep it
BT_EN* 139 DO Bluetooth enables VOLmax =0.45V 1.8V power VOHmin =1.35V domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
BT_EN* 139 DO Bluetooth enables VOLmax =0.45V VOHmin =1.35V domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
VOHmin =1.35V domain. If unused, k open. WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
WLAN_SLP_C 118 DO WLAN sleep If unused, k	
WLAN_SLP_C118DOWLAN sleepIf unused, k	
WLAN_SLP_C 118 DO WLAN sleep If unused, k	eep it
	eep it
LK clock onen	
Upon.	
PM_ENABLE 127 DO External power VOLmax =0.45V 1.8V power	
supply enables VOHmin =1.35V domain.	
control If unused, k	eep it
open.	
SDC1_DATA3 129 IO WLAN SDIO VOLmax=0.45 1.8V power	,
signal data line 3 VOHmin=1.35V domain.	
V ILmin=-0.3V If unused, k	eep it
VILmax=0.6V open.	•
VIHmin=1.2V	
VIHmax =2.0V	
SDC1 DATA2 130 IO WLAN SDIO VOLmax=0.45 1.8V power	
signal data line 2 VOHmin=1.35V domain.	
V ILmin=-0.3V If unused, k	eep it
VILmax=0.6V open.	•
VIHmin=1.2V	
VIHmax =2.0V	
SDC1 DATA1 131 IO WLAN SDIO VOLmax=0.45 1.8V power	
signal data line 1 VOHmin=1.35V domain.	
V ILmin=-0.3V If unused, k	eep it
VILmax=0.6V open.	•
VIHmin=1.2V	
VIHmax =2.0V	
SDC1_DATA0 132 IO WLAN SDIO VOLmax=0.45 1.8V power	
signal data line 0 VOHmin=1.35V domain.	
V ILmin=-0.3V If unused, k	eep it
VILmax=0.6V open.	-
VIHmin=1.2V	
VIHmax =2.0V	
SDC1_CLK 133 DO WLAN SDIO VOLmax=0.45 1.8V power	
signal clock VOHmin=1.35V domain.	
If unused, k	eep it
open.	-
SDC1_CMD 134 DO WLAN SDIO VOLmax=0.45 1.8V power	,

			instruction signal	VOHmin=1.35V	domain.
			_		If unused, keep it
					open.
WAKE_ON_	135	DI	WLAN wakes the	V ILmin=-0.3V	1.8V power
WIRELESS			module	VILmax=0.6V	domain. Active
				VIHmin=1.2V	low level.
				VIHmax =2.0V	If unused, keep it
					open.
WLAN_EN	136	DO	WLAN enables	VOLmax=0.45	1.8V power
				VOHmin=1.35V	domain. Active
					high level.
					If unused, keep it
					open.
COEX_UART	137	DI	LTE/WLAN&BT	V ILmin=-0.3V	1.8V power
_RXD			coexistence signal	VILmax=0.6V	domain.
				VIHmin=1.2V	If unused, keep it
				VIHmax =2.0V	open.
COEX_UART	138	DO	LTE/WLAN&BT	VOLmax=0.45	1.8V power
_TXD			coexistence signal	VOHmin=1.35V	domain.
					If unused, keep it
					open.
SD card Interfa	ace				
D'	D:	TIO	D 4'	DOC 4	TAT 4
Pin name	Pin	I/O	Description	DC features	Note
	number		Description		Note
SD_INS_DET		DI	Description	VILmin=-0.3V	1.8V power
	number		Description	VILmin=-0.3V VILmax=0.6V	1.8V power domain.
	number		Description	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V	1.8V power domain. If unused, keep it
	number		Description	VILmin=-0.3V VILmax=0.6V	1.8V power domain.
SD_INS_DET VDD_SDIO	number 23 34	DI		VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA	1.8V power domain. If unused, keep it open
SD_INS_DET	number 23	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card:	1.8V power domain. If unused, keep it open Refer to SD3.0
SD_INS_DET VDD_SDIO	number 23 34	DI		VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V VILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card:	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V V ILmin=-0.3V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V V ILmin=-0.3V VILmax=0.76V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V V ILmin=-0.3V VILmax=0.76V VIHmin=1.72V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it
SD_INS_DET VDD_SDIO SD_CMD	34 33	PO IO	SD card SDIO instruction signal	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V V ILmin=-0.3V VILmax=0.76V VIHmin=1.72V VIHmax=3.34V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it open.
SD_INS_DET VDD_SDIO	number 23 34	DI	SD card SDIO	VILmin=-0.3V VILmax=0.6V VIHmin=1.2V VIHmax =2.0V IOmax =50mA 1.8V SD card: VOLmax=0.45 VOHmin=1.4V V ILmin=-0.3V VILmax=0.58V VIHmin=1.27V VIHmax =2.0V 3.0V SD card: VOLmax=0.38V VOHmin=2.01V V ILmin=-0.3V VILmax=0.76V VIHmin=1.72V	1.8V power domain. If unused, keep it open Refer to SD3.0 protocol. If unused, keep it

			1110	Troudet Manual C	
				VOHmin =1.4V	unused, keep it
				3.0V SD card:	open.
				VOLmax=0.38V	
				VOHmin=2.01V	
SD_DATA3	28	IO	SD card SDIO	1.8V SD card:	Refer to SD3.0
			signal data line 3	VOLmax=0.45	protocol. If
				VOHmin=1.4V	unused, keep it
				V ILmin=-0.3V	open.
				VILmax=0.58V	
				VIHmin=1.27V	
				VIHmax =2.0V	
				3.0V SD card:	A
				VOLmax=0.38V	$\Delta \Delta $
				VOHmin=2.01V	
				V ILmin=-0.3V	/ NA
				VILmax=0.76V	
			P	VIHmin=1.72V	
				VIHmax=3.34V	,
SD_DATA2	29	IO	SD card SDIO	1.8V SD card:	Refer to SD3.0
			signal data line 2	VOLmax=0.45	protocol. If
				VOHmin=1.4V	unused, keep it
				V ILmin=-0.3V	open.
			_ A A _ \	VILmax=0.58V	
				VIHmin=1.27V	
			Ulla.	VIHmax =2.0V	
				3.0V SD card:	
				VOLmax=0.38V	
				VOHmin=2.01V	
				V ILmin=-0.3V	
		\mathcal{A}		VILmax=0.76V	
	A .			VIHmin=1.72V	
	O, I			VIHmax=3.34V	
SD_DATA1	30	IO	SD card SDIO	1.8V SD card:	Refer to SD3.0
			signal data line 1	VOLmax=0.45	protocol. If
			_	VOHmin=1.4V	unused, keep it
				V ILmin=-0.3V	open.
	`			VILmax=0.58V	
				VIHmin=1.27V	
				VIHmax =2.0V	
				3.0V SD card:	
				VOLmax=0.38V	
				VOHmin=2.01V	
				V ILmin=-0.3V	
				VILmax=0.76V	

-	1			TO Froduct Maridar C	7 SEIVITSO IVIOGGIC
				VIHmax=3.34V	
SD DATA0	31	IO	SD card SDIO	1.8V SD card:	Refer to SD3.0
_			signal data line 0	VOLmax=0.45	protocol. If
				VOHmin=1.4V	unused, keep it
				V ILmin=-0.3V	open.
				VILmax=0.58V	
				VIHmin=1.27V	
				VIHmax =2.0V	
				3.0V SD card:	
				VOLmax=0.38V	
				VOHmin=2.01V	
				V ILmin=-0.3V	
				VILmax=0.76V	$A \setminus A \setminus$
				VIHmin=1.72V	(/ , /)
				VIHmax=3.34V	(/ N
SGMII Pin				VIIIIIIII J.J.V	
Pin name	Pin	I/O	Description	DC features	Note
1 III Hame	number	1/0	Description	De leatures	11000
EPHY RST	119	DO	Ethernet PHY	For 1.8V:	1.8V /2.85V power
N*		20	reset	VOLmax=0.45V	domain.
- 1				VOHmin=1.4V	If unused, keep it
			X ' \	For 2.85V:	open.
				VOLmax=0.35V	T
			_N 1.1	VOHmin =2.14V	
EPHY INT N	120	DI	Ethernet PHY	VILmin=-0.3V	1.8V /2.85V power
*			interruption	VILmax=0.6V	domain.
				VIHmin=1.2V	If unused, keep it
				VIHmax=2.0V	open.
SGMII MDA	121	IO	SGMII MDIO	For 1.8V:	1.8V/2.85V power
TA*		4	data	VOLmax=0.45V	domain.
	- A -			VOHmin=1.4V	If unused, keep it
	0.7			VILmax =0.58V	open.
	1 10			VIHmin =1.27V	
				For 2.85V:	
				VOLmax=0.35V	
	,			VOHmin =2.14V	
				VILmax =0.71V	
				VIHmin =1.78V	
SGMII_MCL	122	DO	SGMII MDIO	For 1.8V:	
K*			clock	VOLmax=0.45V	
				VOHmin=1.4V	
				For 2.85V:	
				VOLmax=0.35V	
				VOHmin =2.14V	
USIM2_VDD	128	PO	SGMII MDIO	-	1.8V/2.85V power

*			power supply		domain, require external pull-up level for SGMII SDIO Pin
SGMII_TX_	123	AO	SGMII data	-	If unused, keep it
M*			transmit negative		open.
			signals		
SGMII_TX_P	124	AO	SGMII data	-	If unused, keep it
*			transmit positive		open.
			signals		
SGMII_RX_P	125	ΑI	SGMII data	-	If unused, keep it
*			receive positive		open.
			signals		
SGMII_RX_	126	AI	SGMII data	- A.A	If unused, keep it
M*			receive negative	X , ,	open.
			signals	. A .	
Reserved Pins					
RESERVED	18, 43,55,		Reserved		Keep it open
	73~84,113,				
	114, 117,				
	140~144				

3.4 Operating Mode

Table 6: Overview of Operating Modes

Mode	Description	
GSM mode	GSM IDLE	The module is in idle state and has registered to the
		GSM network, and it is ready to send and receive
1 00		data(SMS and voice service).
/ // // //	GSM TALK	The module is ready for voice talk service; the
		power consumption is decided by net setting.
GPRS mode	GPRS IDLE	The module is ready for GPRS data transfer. No
		data sending or receiving at this time. The power
		consumption is decided by net setting and related
		settings of GPRS. (For example, multi slot Class
		level settings)
	GPRS DATA	In GPRS data sending and receiving, the power
		consumption is decided by net setting (eg. Power
		control level), data uplink and downlink rat and
		related settings of GPRS. (For example, multi slot
		Class level settings)
EDGE Mode	EDGE IDLE	The module is ready for EDGE data transfer. No
		data sending or receiving at this time. The power

		Meig Product Manual of SLM750 Module
		consumption is decided by net setting and related
		settings of EDGE. (For example, multi slot Class
		level settings)
	EDGE DATA	In EDGE data sending and receiving, the power
		consumption is decided by net setting (eg. Power
		control level), data uplink and downlink rat and
		related settings of EDGE. (For example, multi slot
		Class level settings)
CDMA Mode	CDMA IDLE	The module is ready for CDMA voice and data
		transfer. No data sending or receiving at this time.
	CDMA DATA	CDMA data transfer is ongoing.
EVDO Mode	EVDO IDLE	The module is ready for EVDO voice and data
		transfer. No data sending or receiving at this time.
	EVDO DATA	EVDO data transfer is ongoing.
WCDMA Mode	WCDMA IDLE	The module system is in idle state and the module
,,, e,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	has been registered to the WCDMA network, and it
		is ready to send and receive services at this time
	WCDMA	The module is in WCDMA voice service, the power
	TALK	consumption is decided by net setting.
	WCDMA	WCDMA data transfer is ongoing. The power
	DATA	consumption is decided by net setting (eg. Power
	Ditti	control level), data uplink and downlink rate and
		related settings of WCDMA.
HSPA Mode	HSPA IDLE	The module is ready for HSPA voice and data
TISTA WOUL	IISIA IDLE	transfer. No data sending or receiving at this time.
		The power consumption is decided by net setting.
	HSPA DATA	1 2
	nspa data	HSPA data transfer is ongoing. The power
		consumption is decided by net setting (eg. Power
	1 4	control level), data uplink and downlink rate and
TD CCDMA M 1	TD CCDMA	related settings of HSPA.
TD-SCDMA Mode	TD-SCDMA	The module system is in idle state and the module
	IDLE	has been registered to the TD-SCDMA network,
		and it is ready to send and receive services at this
	TD GGD) (4	time.
	TD-SCDMA	The module TD-SCDMA is in voice service, and
,	TALK	the power consumption is decided by network
		settings
	TD-SCDMA	TD-SCDMA data transfer is ongoing, the power
	DATA	consumption is decided by net settings (eg. Power
		control level), data uplink and downlink rate and
		related settings of TD-SCDMA
TD-HSPA Mode	TD-HSPA	The module system is in idle state and the module
	IDLE	has been registered to the TD-HSPA network, and it
		is ready to send and receive services at this time.
	TD-HSPA	TD-HSPA data transfer is ongoing, the power

	DATA	consumption is decided by net settings(eg. Power					
		control level), data uplink and downlink rate and					
		related settings of TD-HSPA.					
TD-LTE Mode	TD-LTE IDLE	The module is ready for TD-LTE data transfer. No					
		data sending or receiving at this time. The power					
		consumption is decided by net setting.					
	TD-LTE DATA	TD-LTE data transfer is ongoing; the power					
		consumption is decided by net setting(eg. Power					
		control level), data uplink and downlink rate and					
		related settings of TD-LTE.					
FDD LTE Mode	FDD LTE IDLE	The module is ready for FDD LTE data transfer. No					
		data sending or receiving at this time. The power					
		consumption is decided by net setting.					
	FDD LTE	FDD LTE data transfer is ongoing; the power					
	DATA	consumption is decided by net setting (eg. Power					
		control level), data uplink and downlink rate and related settings of FDD LTE.					
Minimum functionality	AT+CFUN=0 command can set the module to enter into a minimum						
mode	functionality mode without removing the power supply of VBAT. At this time RF is closed. Use AT+CFUN=1command the module reopens sending and receiving service and registers network to the						
	normal function r						
Flight mode	W_DISABLE_N pin can set the module to enter into flight mode. In						
	this mode FR function will be invalid.						
Sleep mode	In this mode, the consumption of the module will be reduced to minimum level. During the mode, the module can still receive p						
	message, SMS, voice call and TCP/UDP data from the network						
	normally.						
Power down mode		n in the low power supply mode. In this mode, PMU					
	stops supplying power to baseband and RF; software is inactive and						
	the serial interface is not accessible.						

3.5 Power Saving

3.5.1 Sleep Mode

In sleep mode SLM750 is able to reduce its current consumption to a minimum value. The following part describes the sleep mode of SLM750.

3.5.1.1 USB Application (with USB remote waking-up function)

If host supports USB suspend/resume and remote waking-up function, the following SLM750 Module Hardware Design Page 30, total 84 pages

preconditions can let the module enter into sleep mode.

- Execute AT+SLEEPEN=1 command to enable sleep mode.
- Keep WAKEUP IN to high level.
- Host USB interface connecting to the module enters into suspend state.
- Sending data to SLM750 from USB will wake up the module.

Connections between the module and the host are as follows:

Figure 3 Sleep mode application with USB remote waking-up function

3.5.1.2 USB Application (without USB Suspend function)

If host does not support suspend function, you should disconnect VCC with external control circuit to let the module enter into the sleep mode:

- Execute command AT+SLEEPEN=1 to enable the sleep mode.
- Disconnect USB VDD.
- Restoring the USB VDD power supply can wake up the module.

3.5.1.3 Hardware I/O control sleep mode

The WAKEUP_IN (Pin1) pin is the pin that triggers sleep in the module. When the sleep function of the module is enabled, the pin is pulled down (initially at a high level), and the module triggers the sleep process after detecting the descent edge of the pin. In the case of full release of sleep locks, the module will smoothly enter the sleep state.

Whether the sleep function of the module is enabled can be checked by at+ sleepen? via the AT query, when the query returns a result of 0 indicating the current state of sleep function is forbidden and the sleep function is enabled by 1. Similarly, you can use the AT query at + sleepen=1,

or at + sleepen=0 to enable or disable sleep function of the module. When the module sleep function is disabled, the module sleep related pin will be invalid, USB PHY will not enter the low power (LPM) when the USB bus is suspended.

When the module is in a sleep state (WAKEUP_IN pin pulls down to trigger module sleep), the pin should be pulled up, and at the same time, WAKEUP_IN will produce a rising edge, the module will trigger a wake-up after detecting break in the rising edge, after that, the WAKEUP_IN will remain high, and the module keeps awake.

The module control signal level supports 1.8 V logic level.

3.5.2 Flight Mode

When the module enters into flight mode, the RF function will not work, and all AT commands correlative with RF function will be inaccessible. You can use the following ways to let the module enter into flight mode:

3.5.2.1 Hardware I/O interface controls flight mode

The W_DISABLE_N pin (PIN4) of SLM750 gives the module a low level signal. The module enters into flight mode and RF sending and receiving unit stops working. Pull up PIN4 and the module will enter into normal mode.

Module control signal level supports 1.8V logical level.

3.5.2.2 AT command controls flight mode

Send AT+CFUN=4 command to let the module enter into flight mode, and RF sending and receiving unit stops working at the time. Send AT+CFUN=1 command to let the module enter into normal mode again.

3.6 Power Supply

3.6.1 Power supply pins

SLM750 has four VBAT pins to connect to external power and can be divided into two power fields:

- Two VBAT_RF pins are used to supply RF power.
- Two VBAT BB pins are used to supply Baseband power.

Below table shows the assignment of power and ground pins:

Table 7: Related power supply interfaces

Pin name	Pin No.	Description	Min	Typical	Max	Unit
			value	value	value	
VBAT_BB	59,60	Power supply	3.3	3.8	4.2	V
		for module				
		baseband				
VBAT_RF	57,58	Power supply	3.3	3.8	4.2	V
		for module		X		
		RF		$A \lambda$		
GND	8,9,19,	Ground		0	-	V
	22,36,46,48,50~54,					
	56,72,		AV			
	85~112					

3.6.2 Decrease voltage drop

The power supply range of SLM750 is from 3.3V to 4.2V. During data transmission or conversation, instantaneous high-power emission will form a peak current up to 2A, which will lead to a large ripple of VBAT. If instantaneous voltage drop leads to too low VBAT power supply voltage, the module will shut down. Make sure there are sufficient power supply capabilities and the input voltage will never drop below 3.3V to make the module work well.

The following figure shows the voltage drop during transmitting burst in 2G network. The voltage drop will be less in 3G and 4G networks.

Figure 4 Power requirements for burst transmission

In order to reduce voltage drop, a low ESR 100uF filter capacitor is needed. The multilayer ceramic capacitor (MLCC) has the best ESR, suggestion to add three ceramic capacitors (100nF, 33pF, 10pF) to VBAT_BB and VBAT_RF pins, and the capacitors should be placed close to the VBAT pin. When external power supply makes connection to module, VBAT_BB and VBAT_RF need to apply star line. VBAT_BB line width should not be less than 1 mm, and VBATRF line width should not be less than 2 mm. In principle, the longer the VBAT line, the wider the line width.

In addition, in order to ensure the stability of the power supply, it is recommended to add a Zener diode at the front end of the power supply with a power of 5.1V and a work and power of 0.5W or higher. The reference circuit is as follows:

Figure 5 Star structure of power supply

3.6.3 Reference design for power supply

The power design for the module is very important as the performance of the module largely depends on the power supply. The power supply is capable of providing sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is recommended that you use a LDO to supply power for the module. If there is a big voltage difference between the input and the output, DCDC is preferred to be used as a power supply.

The following figure shows a reference design for +5V input power supply. The designed output for the power supply is +3.3V (typical value 3.8V) and the maximum load current is 3A.

Figure 6 DC power supply circuit

3.6.4 VDD EXT voltage output

If SLM750 module turns on normally, there is a voltage output of 1.8V, current load 80mA in PIN7. You can use the output voltage as external power supply, for example level reference, and judge if the module is turned on by reading pin level status.

3.7 Turn On and Off

3.7.1 Turn on module using the PWRKEY

Table 7.1: Description of PWR KEY pin

Pin name	Pin number	Function	DC features	Description
PWR_KEY	21	Turn on/off the	V _{IH} max=2.1V	
		module	V _{IH} min=1.3V	
			V _{IL} max=0.5V	

When SLM750 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 100ms. It is suggested that you use an open set driver circuit to control PWRKEY pin. After STATUS pin (require external pull-up) outputting a low level, PWRKEY pin can be released. Reference circuit is illustrated in the following figure:

Figure 7 Turn on the module using driving circuit

The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure:

Figure 8 Turn on the module using keystroke

Turning on time is illustrated as follows:

Figure 9 Timing of turning on module

Note:

- 1. Thote > 30ms.
- 2. If the external pull up design of PWRKEY pin is added, it is recommended that the pull-up level range is $1.3V\sim2.1V$

3.7.2 Turn off module using the PWRKEY pin

Modules can be shut down in the following ways:

- normal shutdown: shutdown through PWRKEY pin control module;
- normal shutdown: shutdown through AT command

3.7.2.1 PWRKEY pin shutdown

When the module is on, the PWRKEY pin is pulled down and released after holding at least 2s,

then the module will perform the shutdown process. The shutdown sequence is shown in the following figure:

Figure 10 Timing of turning off module

3.7.2.2 AT command shutdown

The AT + Poweroff command can be used to control the shutdown of module. This shutdown process is equivalent to a pulled-down PWRKEY pin shutdown process.

NOTES: 1. When the module works properly, do not immediately cut off the module power to avoid damage to the module internal Flash data. It is strongly recommended to turn off the module by using the PWRKEY or AT command before disconnecting the power.

2. When using the AT command to shut down, make sure that the PWRKEY is always in a high level state after the shutdown command execution, otherwise the module will automatically boot again after shutdown.

3.8 Reset the Module

Hardware and AT command can be used to reset SLM750.

3.8.1 Hardware reset

When the module is in operation, puling down 150~460ms of the RESET_N pin to reset module. The RESET_N signal is sensitive to interference.

Table 8: RESET_N pin description

Pin name	Pin number	Function	DC features	Description
RESET_N	20	Reset module	V _{IH} max=2.1V	
			V _{IH} min=1.3V	
			V _{IL} max=0.5V	

Reference circuit is as follows: you can use open set driver circuit or button to control RESET_N pin.

Figure 11 Reference circuit of RESET_N by using driving circuit

Figure 12 Reference circuit of RESET_N by using button

The reset timing figure is as follows:

Figure 13Reset timing of RESET_N

3.8.2 AT command reset

Enter AT+RESET command in SLM750VUART or USB AT interface to reset and restart SLM750.

3.9 USIM/SIM Card Interface

USIM card interface meets ETSI and IMT-2000 SIM interface requirements. Both 1.8V and 3.0V USIM cards are supported by SLM750

Table 9: USIM/SIM card interface description

Pin name	Pin number	I/O	Description	Note
USIM_DATA	15	IO	USIM card data	
			signal	
USIM_CLK	16	DO	USIM card clock	
			signal	
USIM_RST	17	DO	USIM card reset	
			signal	
USIM_VDD	14	PO	USIM card	Support 1.8V and
			power supply	3.0V USIM card
USIM_PRESENCE	13	DI	USIM card plug	Require to pull up
			detection	to1.8V
GND	10	-		

SLM750 supports USIM card hot plugging and hot plugging function is turned off by default. The following figure shows USIM_PRESENCE pin high level, no card, USIM_PRESENCE pin ground after inserting card on SIM card connector.

SLM750 supports USIM hot plugging function through the USIM_PRESENCE pin, support high-level detection, and the default hot-plugging function is turned off by default. The USIM_PRESENCE pin level is in high voltage after the SIM card is inserted as shown in below figure, The USIM_PRESENCE pin level is in low voltage when no card is detected.

Figure 14 Reference circuit for 8-pin USIM/SIM connector

If USIM card detection function is not required, keep USIM_PRESENCE pin pulling up to 1.8V. The following figure is a reference circuit for 6-pin USIM/SIM connector:

Figure 15 Reference circuit for 6-pin USIM/SIM connector

In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in the USIM circuit design:

- USIM_DATA requires a pull-up resistor of $15k\Omega$ to USIM_VCC; the pull-up resistor helps to increase SIM card's anti-interference ability. When USIM card trace is too long or it is close to the interference source, it is recommended that you add a pull-up resistor near the card.
- In order to suppress stray EMI and enhance ESD protection, it is recommended to connect a resistance of 22Ω on USIM_DATA, USIM_CLK and USIM_RST line.
- In order to improve the antistatic ability and offer good ESD protection, it is recommended to add TVS whose parasitic capacitance should be less than 15pF on USIM_VDD, USIM_DATA, USIM CLK and USIM RST line.
- In order to filter GSM900 interference, add a parallel 33pF resistance on USIM_VDD,
 USIM DATA, USIM CLK and USIM RST line.
- Keep layout of USIM card as close as possible to the module. Assure the length of signal wiring is less than 200mm.
- Keep USIM card signal away from RF and VBAT power line.
- To avoid cross-talk between USIM_CLK and USIM_DATA, keep them away from each other and shield them with surrounded ground.
- Complete hot plugging of USIM/SIM card by using the DETECT pin of hot plug card slot and the 13pin of the module. The default setting does not support hot plug function. Contact us if you need more information about the function.

Note: Hot plug of SIM Connectors is not supported. Hot plug to USIM and SIM card can cause damages to USIM /SIM card or SLM750V USIM /SIM card interfaces.

3.10 USB Interface

SLM750 provides a USB interface which complies with USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, software debugging and version upgrade.

3.10.1 USB pin description

SLM750 module provides a USB2.0 High-Speed interface.

Table 10: USB interface description

Name	Pin name	I/O	Description	Note
USB_DM	70	IO	USB differential data	Require 90Ω
			signal-	differential
				impedance
USB_DP	69	IO	USB differential data	Require 90Ω
			signal+	differential
			, A	impedance
GND	72	-	Ground	
USB_VBUS	71	PI	USB power supply, used	Typical value
			for USB detection	5.0V

3.10.2 USB reference circuit

USB interface application reference circuit of SLM750 is shown in the following figure.

Figure 16 USB reference circuit

In order to meet the signal integrity requirements of the USB data line, the resistors R1/ R2/ R3/ R4 must be placed close to the module, and the resistors need to be placed close to each other. The connection point branch must be as short as possible.

In the design of USB interface circuit, in order to ensure the performance of USB, the following principles are recommended in circuit design:

- The module USB_VBUS is not used to power the module, but is used to detect the insertion and pull-out of the USB.
- In order to reduce the signal interference of USB high speed data transmission, connect R1 and R2 between USB_DM and USB_DP interface circuit to improve the data transmission rate. It is recommended that you use R1 and R2 of 0Ω .
- In order to improve the antistatic performance of USB interface, it is recommended to add ESD protection components on USB_DP and USB_DM interface circuit. It is recommended that you use ESD components with junction capacitance less than 2pF.
- In order to ensure that the USB is reliable, consider more about the protection of USB when designing, such as the protection of USB on Layout requires impedance control of 90Ω for USB_DP, USB_DM, tracing strictly according to differential requirements, and keeping away from the interference signal as far as possible.
- Do not trace the USB line in the crystal oscillator, oscillator, magnetic device and RF signal; it is recommended to trace inner differential line and up and down around the package.

3.10.3 USB driver

SLM750 supports various operation systems, such as PC operation systems: Windows 10, Windows 7/8,embedded operation system, Linux2.6 or higher, Android 2.3/4.0/4.2/4.4/5.0/5.1/6.0/7.0, which requires private USB driver support.

For different operating systems and different VID and PID, USB driver provides different driver files. Contact supporting staff if you have specific requirements.

3.11 UART Interface

SLM750 provides two UART interfaces: main UART interface and debug UART interface. The features of them are illustrated as below:

Main UART interface supports 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600bps and 30000000bps baud rate, the default is 115200bps. The interface can be used for data transmission and AT command communication.

• Debug UART interface supports 115200bps baud rate. It can be used for Linux console, log print.

Table 11: Main UART pin description

Pin name	Pin number	I/O	Description	Note
RXD	68	DI	Receive data	1.8V power
				domain
TXD	67	DO	Transmit data	1.8V power
				domain
CTS	64	DI	Clear to send	1.8V power
				domain. If unused,
				keep it open
RTS	65	DO	DTE requires to	1.8V power
			transmit data	domain. If unused,
			A . A	keep it open
RI	62	DO	Ring indicator	1.8V power
			. \ \ \ \	domain. If unused,
		(**	o VIII	keep it open. The
				function is to be
		`	NII / IA	development.
DCD	63	DO	Output carrier detect	1.8V power
		A		domain. If unused,
		0,1		keep it open. The
				function is to be
				development.
DTR	66	DI	DTE ready, sleep	1.8V power
			mode control	domain. If unused,
				keep it open. The
				function is to be
				development.

Table 12: Debug UART pin description

Pin name	Pin number	I/O	Description	Note
DBG_RXD	11	DI	Receive data	1.8V power
				supply domain
DBG_TXD	12	DO	Transmit data	1.8V power
				supply domain

Table 13: UART logical level

Parameter	Min	Max	Unit
V_{IL}	-0.3	0.6	V
V_{IH}	1.2	2.0	V
V_{OL}	0	0.45	V
$V_{ m OH}$	1.35	1.8	V

SLM750 provides 1.8V serial port. If your application serial port is 3.3V, you need to add level converter. It is recommended that you use TXB0104PWR from TI Company. Reference design is shown as follows:

Figure 17 Reference circuit of level conversion chip

3.12 PCM and I2C Interface

SLM750 provides one PCM interface which supports the following two modes:

- Short frame mode: the module works as both master and slave
- Long frame mode: the module works as master only

In short frame mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; the PCM_SYNC falling edge represents the more significant bit. PCM_CLK supports 128, 256, 512, 1024 and 2048kHz speech codes.

In long frame mode, the data is sampled on the falling edge of the PCM_CLK and transmitted

on the rising edge; the PCM_SYNC rising edge represents the more significant bit. The mode only supports 128 kHz PCM_CLK and 8kHz, 50% duty cycle PCM_SYNC.

SLM750 supports 8-bit A-law, u-law and 16-bit linear encoding formats. The following figures show the timing relationship in short frame mode with PCM_SYNC=8 kHz and PCM_CLK=2048kHz, as well as the timing relationship in long frame mode with PCM_SYNC=8 kHz and PCM_CLK=128kHz.

Figure 18 Timing in short frame mode

Figure 19 Timing in long frame mode

Table 14: Pin description for PCM interface

Pin name	Pin	I/O	Description	Note
	number			
PCM_CLK	27	IO	PCM clock	1.8V power supply
				domain
PCM_OUT	25	DO	PCM data output	1.8V power supply
				domain
PCM_IN	24	DI	PCM data input	1.8V power supply
_			_	domain
PCM_SYNC	26	IO	PCM data	1.8V power supply
			synchronous signal	domain
I2C_SCL	41	OD	I2C clock	Require 1.8V external
_				pulling-up
I2C_SDA	42	OD	I2C data	Require 1.8V external
				pulling-up

The following figure shows a reference design of PCM interface with an external codec IC.

Figure 20 Reference design for PCM circuit

3.13 Network Status Indication

The network indication pins can be used to drive a network status indicator LED. SLM750 provides two network indication pins: NET_MODE and NET_STATUS. The following tables describe pin definition and logic level changes in different network status.

Table 15: Pin Definition of Network Indicator

Pin name	Pin	I/O	Description	Note
	number			

NET_STATUS	6	DO	Indicate the module network activity status.	1.8V power supply domain
NET_MODE	5	DO	Indicate the module network registration mode.	1.8V power supply domain

Table 16: Working State of the Network Indicator

Mode	Status	Description
NET_MODE	High level	Register LTE network status
	Low level	Others
NET_STATUS	Flicker (200ms OFF/1400ms	Data transfer status
	ON)	
	High level	Registration success
	Low level	Others

3.14 Status

The STATUS pin is an open drain output for indicating the module's operation status. You can connect it to a GPIO of DTE with a pull up resistor, or as the LED indication circuit shown below. When the module is turned on normally, the STATUS will present high level.

Table 17: STATUS pin description

Pin name	Pin no.	Description	I/O	Note
STATUS	61	Indicate the module operation status	OD	Require external pulling-up

The following figure shows different design circuits of STATUS, you can choose either one according to your application demands.

Figure 21 Reference circuit of STATUS

3.15 ADC Function

SLM750 provides two analogy- to-digital converters. Using AT+ADCREAD=1 to read the voltage value of ADC0. Using AT+ADCREAD=6 read the voltage value of ADC1.

Table 18: ADC pin description

Pin name	Pin no.	Description	Voltage range	Resolution
ADC0	45	Analogy to digital	0.05 - 1.8V	15bits
		converter interface 0		4.0
ADC1	44	Analogy to digital	0.05 - 1.8V	15bits
		converter interface 1		A 11

NOTES: 1. The ADC interface cannot directly connect to any input voltage when the module is not powered by VBAT.

2. It is recommended that the ADC pin adopt the input of the voltage divider circuit.

3.16 SGMII Interface

SLM750 includes an integrated Ethernet MAC with an SGMII interface and two management interfaces (MDIO), key features of the SGMII interface are shown below:

- IEEE802.3 compliance
- Full duplex at 1000Mbps
- Half/full duplex for 10/100Mbps
- Support VLAN tagging
- Support IEEE1588 and Precision Time Protocol (PTP)
- Can be used to connect to external Ethernet PHY like AR8033, or to an external switch
- MDIO supports dual voltage 1.8V/2.85V

Pin definitions of SGMII interface are as bellow:

Table 19: Pin definition of SGMII interface

Pin name	Pin no.	I/O	Description	Comment
EPHY_RST_N	119	DO	Ethernet PHY	1.8V /2.85V power domain.
			reset	

EPHY INT N	120	DI	Ethernet PHY	1.8V /2.85V power domain.
			interruption	-
SGMII_MDATA	121	IO	SGMII MDIO	1.8V/2.85V power domain.
			data	
SGMII_MCLK	122	DO	SGMII MDIO	
			clock	
USIM2_VDD	128	PO	SGMII MDIO	1.8V/2.85V power domain,
			power supply	require external pull-up level for
				SGMII SDIO Pin
SGMII_TX_M	123	AO	SGMII data	Connect with a 0.1uF capacitor,
			transmit close to the PHY side.	
			negative signals	A .
SGMII_TX_P	124	AO	SGMII data	Connect with a 0.1uF capacitor,
			transmit	close to the PHY side.
			positive signals	
SGMII_RX_P	125	ΑI	SGMII data	Connect with a 0.1uF capacitor,
			receive positive close to the PHY side.	
			signals	
SGMII_RX_M	126	ΑI	SGMII data	Connect with a 0.1uF capacitor,
			receive	close to the PHY side.
			negative signals	

The following figure shows the simplified block diagram for Ethernet application.

Figure 22 Simplified Block Diagram for Ethernet Application

The following figure shows a reference design of SGMII interface with PHY AR8033 application.

Figure 23 Reference Circuit of SGMII Interface with PHY AR8033 Application

In order to enhance the reliability and availability in your application, please follow the criteria below in the Ethernet PHY circuit design:

- Keep SGMII data and control signals away from RF and VBAT trace.
- Keep the maximum trace length less than 25.4cm and keep skew on the differential pairs less than 0.7mm.
- The differential impedance of SGMII data trace is 100 ohm±10%.
- SGMII RX/TX line spacing is at least 3 times width, SGMII signal distance from other signal lines is to maintain at least 3 times line width.
- SGMII RX modules already have 0.1 uf capacitors and do not need to be added externally

3.17 Wireless Connectivity Interfaces

SLM750 supports a low-power SDIO 3.0 interface for WLAN and a PCM interface for BT. The following table shows the pin definition of wireless connectivity interfaces.

Table 20: Pin Definition of Wireless Connectivity Interfaces

WLAN part					
•	Pin number	I/O	Description	Note	
Pin name	- 12 -	I/O	Description	Note	
SDC1_DATA3	129	IO	WLAN SDIO signal data line 3	1.8V power domain.	
SDC1_DATA2	130	IO	WLAN SDIO signal data line 2	1.8V power domain.	
SDC1_DATA1	131	IO	WLAN SDIO signal data line 1	1.8V power domain.	
SDC1_DATA0	132	IO	WLAN SDIO signal data line 0	1.8V power domain.	
SDC1_CLK	133	DO	WLAN SDIO signal clock	1.8V power domain.	
SDC1_CMD	134	IO	WLAN SDIO instruction signal	1.8V power domain.	
WLAN_EN	136	DO	WLAN enables	1.8V power domain.	
Coexistence and cont	rol part				
Pin name	Pin number	I/O	Description	Note	
PM_ENABLE	127	DO	External 3.3V power control	1.8V power domain.	
WLAN_SLP_CLK	118	DO	WLAN sleep clock	Output 32kHz clock	
WAKE_ON_WIREL	135	DI	WLAN wakes up the	1.8V power domain,	
ESS*			module	pending development	
COEX_UART_RX	137	DI	LTE/WLAN&BT coexistence signal	1.8V power domain.	
COEX_UART_TX	138	DO	LTE/WLAN&BT coexistence signal	1.8V power domain.	
BT part					
Pin name	Pin number	I/O	Description	Note	
BT EN	139	DO	Bluetooth	1.8V power domain.	
D1_D1	157		enables.	Active high level.	
BT_RTS*	37	DO	Request sending data	1.8V power domain, suspend it when unused	
BT_TXD*	38	DO	Bluetooth sends data	1.8V power domain.	
BT_RXD*	39	DI	Bluetooth receives data	1.8V power domain.	
BT_CTS*	40	DI	Bluetooth sending clearance	1.8V power domain.	
PCM_IN	24	DI	PCM data input	1.8V power domain.	
PCM OUT	25		PCM data output	1.8V power domain.	
PCM_CLK	27	Ю	PCM clock.	1.8V power domain.	
PCM_SYNC	26	Ю	PCM data synchronous	1.8V power domain.	

	•		I
	sign	ıal.	

The following figure shows a reference design of Wireless Connectivity interfaces with SLM158 module.

Figure 24 Reference Circuit of Wireless Connectivity Interfaces with SLM158

Note:

- 1. SLM158 can only be used as slave equipment.
- 2. When SLM750 modules enable Bluetooth, PCM_SYNC and PCM_CLK are used only for signal output.
- 3. The 24~27 pin is a multiplexed pin, which can be used for Codec voice or PCM connected to SLM750V to realize Bluetooth voice communication.
 - 4. *functionality is pending for development

3.17.1 WLAN Interface

SLM750 provides a low power SDIO 3.0 interface and control interface for WLAN design. SDIO interface supports Single data rate mode, it maximum frequency is 50MHz.

As SDIO signals are very high-speed, in order to ensure the SDIO interface design corresponds with the SDIO 3.0 specification, please comply with the following principles:

It is important to route the SDIO signal traces with total grounding. The impedance of SDIO
 SLM750 Module Hardware Design
 Page 54, total 84 pages

signal trace is 50 ohm ($\pm 10\%$).

- Protect other sensitive signals/circuits (RF, analog signals, etc.) from SDIO corruption and protect SDIO signals from noisy signals (clocks, DCDCs, etc.).
- It is recommended to keep matching length between CLK and DATA/CMD less than 1mm and total routing length less than 50mm.
- Keep termination resistors within 15~24 ohm on clock lines near the module and keep the route distance from the module clock pins to termination resistors less than 5mm.

3.17.2 BT Interface

SLM750 supports UART and PCM interface for BT application. Further information about BT interface will be added in future version of this document.

3.18 SD Card Interface

SLM750 provides a SD card interface which supports SD 3.0 protocol. The following tables show the pin definition.

0

Table 21: Pin Definition of the SD Card Interface

Pin name	Pin number	I/O	Description	Note
SD_CMD	33	IO	SD card SDIO	SDIO signal level can be selected
			bus instruction	according to the signal level
			signal	supported by SD card. Please
1				refer to SD3.0 protocol for
				details. suspend it when no used
SD_CLK	32	DO	SD card SDIO	SDIO signal level can be selected
			bus clock	according to the signal level
			signal	supported by SD card. Please
				refer to SD3.0 protocol for
				details. suspend it when no used
SD_DATA3	28	IO	SD card SDIO	SDIO signal level can be selected
			signal data line	according to the signal level
			3	supported by SD card. Please
				refer to SD3.0 protocol for
				details. suspend it when no used
SD_DATA2	29	IO	SD card SDIO	SDIO signal level can be selected
			signal data line	according to the signal level
			2	supported by SD card. Please
				refer to SD3.0 protocol for
				details. suspend it when no used

SD_DATA1	30	IO	SD card SDIO	SDIO signal level can be selected
			signal data line	according to the signal level
			1	supported by SD card. Please
				refer to SD3.0 protocol for
				details. suspend it when no used
SD_DATA0	130	IO	SD card SDIO	SDIO signal level can be selected
			signal data line	according to the signal level
			0	supported by SD card. Please
				refer to SD3.0 protocol for
				details. suspend it when no used
VDD_SDIO	34	PO	SD card SDIO	The output 2.85V/1.8V is
			bus pulled up	configurable. Cannot be used for
			power supply	SD card power supply, suspend it
				when no used
SD_INS_DET	23	DI	SD card insert	1.8V power domain, suspend it
			detection	when unused

The following figure shows a reference design of SD card interface.

Figure 25 Reference Circuit of SD Card Application

In the circuit design of SD card interface, in order to ensure the good performance and reliability of SD card, the following principles are recommended in circuit design:

- The voltage range of SD card power supply VDD_3V is 2.7~3.6V and a sufficient current up to 0.8A should be provided. As the maximum output current of VDD_SDIO is 50mA which can only be used for SDIO pull-up resistors, an externally power supply is needed for SD card.
- To maximally limit the surge current caused by SD card insertion, the bypass capacitor (C7) of SD card power source should not exceed 5uF.
- To avoid jitter of bus, resistors R7~R11 are needed to pull up the SDIO to VDD_SDIO. Value of these resistors is among 10~100kohm and the recommended value is 100kohm.
- In order to improve signal quality, it is recommended to add 0 ohm resistors R1~R6 in series SLM750 Module Hardware Design

 Page 56, total 84 pages

between the module and the SD card. The bypass capacitors C1~C6 are reserved with no mounting by default. All resistors and bypass capacitors should be placed close to the module.

- In order to offer good ESD protection, it is recommended to add TVS on SD card pins.
- It is important to route the SDIO signal traces with total grounding. The impedance of SDIO data trace is 50 ohm ($\pm 10\%$).
- Keep SDIO signals far away from other sensitive circuits/signals such as RF circuits, analog signals, etc., as well as noisy signals such as clock signals, DCDC signals, etc.
- It is recommended to keep the trace length difference between CLK and DATA/CMD less than 1mm and the total routing length less than 50mm. The total trace length inside the module is 27mm, so the exterior total trace length should be less than 23mm.
- Make sure the adjacent trace spacing is two times of the trace width and the bus capacitance is less than 15pF.

3.19 USB_BOOT Interface

SLM750 supports USB_BOOT functionality. The customer can pull the USB_BOOT to VDD_EXT (1.8 V) before the module is turned on, and the module will enter mandatory download mode when boots. In this mode, the module can be upgraded through the USB interface.

Table 22: Pin Definition of USB_BOOT Interface

Pin name	Pin number	I/O	Description	Note
USB_BOOT	115	DI	Emergency	1.8V power supply domain, it is
			download mode	recommended to reserve test
			control, high	points; suspend when no used.
			level active	

The following figure shows reference Circuit of USB_ROOT Interface:

Figure 26 Circuit of USB_ROOT Interface

4 GNSS

4.1 General Description

SLM750 includes an integrated embedded GNSS solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou).

SLM750 supports standard NMEA-01830183 protocol, and outputs NMEA sentences with 1Hz via USB interface by default.

4.2 GNSS Performance

The following table shows SLM750 GNSS performance.

Table 23: GNSS performance

Parameter	Description	Performance index
Positioning accuracy	Horizon	<2m(50%); <5m (90%)

(open)	Altitude	<4m (50%); <8m (90%)	
Speed accuracy	Speed	<0.2m/s	
First positioning time	Cold start	32s	
TTFF	Warm start	29s	
	Hot start	2s	
Sensitivity	Capturing	-154dBm	
	Tracking	-156dBm	
Serial output baud rate	300bit/s~2304	00bit/s	
GPS receiving	12 channel,GP	S L1(1575.42MHz),C/A code	
Data update rate	1Hz		
Data format	NMEA 0183		

4.3 Layout Guideline

You need to follow the layout guidelines in the below when designing:

- Maximize the distance between the GNSS antenna, the main antenna and the diversity antenna.
- Noisy digital circuits such as the USIM card, USB interface, Camera module, Display connector and SD card should be kept away from the antenna.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide isolation and protection.
- Keep 50ohm characteristics impedance of the ANT GNSS trace.

See Chapter 5 for GNSS reference design and antenna consideration.

5 Antenna Interface

Table 24: RF antenna pin definition

Pin name	Pin no.	Description	I/O	Note
ANT_MAIN	49	Main antenna	IO	50Ω impedance
ANT_DIV	35	Diversity antenna	AI	50Ω impedance
ANT_GNSS	47	GNSS antenna	AI	50Ω impedance

5.1 Antenna Interface

diversity antenna to improve WCDMA/TDD-LTE/FDD-LTE receiving performance of the product.

It is recommended that you use a 50Ω impedance antenna that matches the RF connector of the module.

Special note: In order to ensure the communication ability of all frequency bands, connect both the main and the auxiliary antennas.

It is suggested that you chose RF adapter carefully on application end. It is necessary to select the smallest possible loss of the RF adapter, and the recommended RF adapters are as follows:

- GSM900/850<1.5dB
- DCS1800/PCS1900<1.5dB
- CDMA/EVDO<1dB
- WCDMA<1.5dB
- TD-SCDMA<1.5dB
- TD-LTE<1.5dB
- FDD LTE<1.5dB

5.2 RF Reference Circuit

ANT_MAIN and ANT_DIV antenna connection reference design circuit are shown as below. In order to gain better RF performance, you need to reserve n type matching circuit without mounting capacitor.

Figure 27 RF reference circuit

GNSS antenna reference design is shown as below:

Figure 28 GNSS antenna reference circuit

Note:

- 1. You can choose external LDO power supply according to active antenna.
- 2. You can choose passive antenna design so you do not need to design VDD circuit.

5.3 Antenna Installation

5.3.1 Antenna requirements

The main antenna, diversity antenna and GNSS antenna requirements are as follows:

Table 25: Antenna requirements

Туре	Requirement
GNSS	Frequency range: 1561-1615MHz
	Polarization: RHCP or linear
	VSWR: < 2(Typ.)
	Passive antenna gain: > 0 dBi
	Active antenna noise coefficient: < 1.5 dB
	Active antenna gain: < -2 dBi
	Active antenna embedded LNA gain: 18.5dB(Typical value)
	Active antenna total gain: > 18.5 dB(Typical value)
GSM/WCDMA	VSWR: < 2
/TD-SCDMA/CDMA/TD-LTE/FDD	Gain(dBi): 1
LTE	Maximum input power(W): 50
`\ \	Input impedance(ohm): 50
\ _	Polarization type: vertical
10.1-	Cable insertion loss: < 1.5dB
	(GSM850/900,WCDMAB5/B8, CDMA BC0,
	LTE B5/ B8/B12/B13/B17/B20/B26)
	Cable insertion loss: < 1.5dB
	(GSM1800/1900,WCDMA B1/B2/B4, TD-SCDMA B34/B39,
	LTE B1/B2/B3/B4/B25/B39, CMDA BC1)
	Cable insertion loss: < 2dB
	(LTE B7/B38/B40/B41)

5.3.2 RF output power

RF output power of **SLM750** is shown as below:

Table 26: RF output power

Network mode	Band	Max	Min
GSM	900(GMSK)	$33dBm \pm 2dB$	$5dBm \pm 5dB$
	1800(GMSK)	$30dBm \pm 2dB$	$0dBm \pm 5dB$
	900(8-PSK)	$27dBm \pm 3dB$	$5dBm \pm 5dB$
	1800(8-PSK)	26dBm +3/-4dB	$0dBm \pm 5dB$
CDMA	BC0	23-30dBm	≤-50 dBm/1.23MHz
EVDO	BC0	23-30dBm	≤-50 dBm/1.23MHz
WCDMA	Band1	24dBm +1/-3dB	-56 dBm ± 9 dB
	Band8	24dBm +1/-3dB	-56 dBm ± 9 dB
TD-SCDMA	Band34	24dBm +1/-3dB	≤-40 dBm
	Band39	24dBm +1/-3dB	≤-40 dBm
TD-LTE	Band38	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band39	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band40	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band41	$23dBm \pm 2.7 dB$	≤-40 dBm
FDD LTE	Band1	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band3	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band5	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band8	$23dBm \pm 2.7 dB$	≤-40 dBm
	Band28	$23dBm \pm 2.7 dB$	≤-40 dBm

5.3.3 RF receiving sensitivity

Table 27: RF receiving sensitivity

Network mode	Band	Main	Diversity
GSM	900	-109dBm	Not Supported
	1800	-108dBm	Not Supported
WCDMA	Band1	-109dBm	Not Supported
	Band5	-110dBm	Not Supported
	Band8	-110dBm	Not Supported
TD-SCDMA	Band34	-109dBm	Not Supported
	Band39	-109dBm	Not Supported
TD-LTE	Band38 (10M)	-98dBm	-98dBm
	Band39 (10M)	-98dBm	-98dBm
	Band40 (10M)	-98dBm	-98dBm
	Band41 (10M)	-96.5dBm	-97dBm
FDD LTE	Band1	-98dBm	-99dBm
	Band3	-98dBm	-98dBm
	Band5	-99dBm	-99dBm
	Band8	-99dBm	-99dBm

5.3.4 Operating frequency

Table 28: Operating frequency

Network mode	Band	Receive	Transmit
GSM	850	869~894MHz	824~849MHz
	900	925~960MHz	880~915MHz
	1800(DCS)	1805~1880MHz	1710~1785MHz
	1900(PCS)	1930~1990MHz	1850~1910MHz
WCDMA	Band1	2110~2170MHz	1920~1980MHz
	Band8	926~960MHz	880~915MHz
TD-SCDMA	Band34	2010~2025MHZ	2010~2025MHZ
	Band39	1880~1920MHz	1880~1920MHz
TD-LTE	Band38	2570~2620MHz	2570~2620MHz
	Band39	1880~1920MHz	1880~1920MHz
	Band40	2300~2400MHz	2300~2400MHz
	Band41	2555~2655MHz	2550~2650MHz
FDD LTE	Band1	2110~2170MHz	1920~1980MHz
	Band3	1805~1880MHz	1710~1785MHz
	Band5	869~894MHz	824~849MHz
	Band28	925~960MHz	880~915MHz
CDMA	BC0	758~803MHz	703~748MHz
EVDO	BC0	869~894MHz	824~849MHz

5.3.5 Antenna requirements

Table 29: Antenna requirements

Network	Band	VSWR	G	ain	Effi.	SAR	TRP	TIS
Mode			Peak	Avg.			(dBm)	(dBm)
GSM	850	<2.5: 1	>0dBi	>-4dBi	>40%	<1.6	29	<-102
	900					W/Kg	26	<-102
- //	1800(DCS)							<-102
	1900(PCS)							<-102
WCDMA	Band1						19	<-102
	Band8						19	<-104
CDMA	BC0						19	<-104
EVDO	BC0						19	<-104
TD-SCDMA	Band34						19	<-104
	Band39						19	<-104
TD-LTE	Band38						19	<-94

	Band39			19	<-94
	Band40			19	<-94
	Band41			19	<-94
FDD LTE	Band1			19	<-92
	Band3			19	<-93
	Band5			19	<-92
	Band8			19	<-92
	Band28			19	<-92

Table 30: Diversity antenna requirements

Mode	Band	VSWR	Gain /Avg.	Efficiency	ρ	Isolation
WCDMA	Band1	<2.5: 1	>-7dBi	>20%	< 0.5	<-8dB
	Band8					Ma
TD-LTE	Band38				X . /	19
	Band39			40		9
	Band40				112	
	Band41					
FDD LTE	Band1					
	Band3		Α. /			
	Band5		X, /			
	Band8		. A.	7		
	Band28		$N \setminus I \setminus I$			

6 Electrical characteristics

6.1 Limit voltage range

Limit voltage range refers to the maximum voltage range of the module's power supply voltage as well as the digital and analog input/output interfaces. Operate beyond the range may cause damage to the product.

Limit voltage range of SLM750 are shown as below:

Table 31: Limit voltage range

Parameter	Description	Min	Type	Max	Unit
VBAT	SLM750V power supply	3.3	3.8	4.2	V
	Average power supply current of	0		0.9	A
	RMS				
	VBAT_BB maximum current	0		0.8	A

	VBAT_RF maximum current	0		1.8	A
	Instantaneous voltage drop			400	mV
	(GSM 900 Maximum transmission				
	power level)				
USB_VBUS	USB detection	3.0	5.0	5.25	V
GPIO	Level power supply voltage of digital IO	-0.3	1.8	2.0	V
	Power supply voltage of shutdown	-0.25		0.25	V
	mode				

6.2 Temperature range

It is recommended that you use SLM750 at -30°C∼+75°C and take temperature control measures when applications are in the harsh environment conditions. At the same time, a limited operating temperature range of the module should be provided. Under this temperature conditions, some of the indicators may exceed. It is suggested that you store the applications under certain temperature conditions. Modules beyond this range may not work or are damaged.

Table 32: Temperature range

Parameter	Min	Type	Max	Unit
Operation temperature	-30	+25	+75	$^{\circ}$
Limited operation	-40~-30		75~+85	${\mathbb C}$
temperature				
Storage temperature	-45		+90	$^{\circ}$

6.3 Electrical Characteristics of Interface Operation Status

VL: logical low level VH: logical high level

Table 33: Logical level of normal digital IO signal

Signal	VL		VH	Unit	
	Min	Max	Min	Max	
Digital input	-0.3	0.3*Vpin_min	0.3*Vpin_max	Vpin_max	V
Digital output	GND	0.2	Vpin_min-0.2	Vpin	V

Note: Vpin min=1.45V, Vpin max=2.0V (Vpin is high level digital interface, Vpin=1.8V)

Table 34: Electrical characteristics in power supply status

Parameter	I/O	Min	Type	Max	Unit
VBAT	I	3.3	3.8	4.2	V
USIM_VDD	О	1.7/2.75	1.8/2.85	1.9/2.95	V

6.4 Module Power Consumption Range

The following table shows the consumption of SLM750 in various modes. Contact us if you need more information about the band.

Table 35: Consumption

PARAMETER	DESCRI	PTION	CONDITIO	N		VALUE	UNIT
IVBAT	Shut	Down	Module shute	down leakage	IIA	12	uA
	mode						
	Sleep mo	de	AT+CFUN=0	0	(USB	2.2	mA
			disconnected	/ 100 100 100 100 100 100 100 100 100 10	\mathbf{V}_{-}		
			GSM 900	DRX=2	(USB	2.1	mA
			disconnected			2.25	
			GSM 900	DRX=9	(USB		
			disconnected				
			DCS1800	DRX=2	(USB	2.2	mA
			disconnected			2.3	
			DCS1800	DRX=9	(USB		
			disconnected	<u>′</u>			
	0 /	A	GSM 850	DRX=2	(USB	2.3	mA
			disconnected	<i>'</i>	<i></i>	2.35	
	01/1		GSM 850	DRX=9	(USB		
			disconnected	,			
	M)		WCDMA	Band		2.2	mA
			`	3 disconnected)		2.01	
6/1/			WCDMA	Band	_	2.06	
\ \			WCDMA	3 disconnected) Band			
				Band (3 disconnected	_		
			WCDMA	Band 1	PF=51	2.3	mA
			(USB discon		FT-31	2.13	IIIA
			WCDMA	Band	5	2.13	
				3 disconnected)		2.2	
			,				
					_		
			WCDMA PF=512(USE	Band B disconnected)			

		THE HERE	2.0	0.0	
		LTE-TDD Band	38	2.3	mA
		PF=128(USB disconnected)		2.1	
		LTE-TDD Band	39	2.15	
		PF=128(USB disconnected)		2.26	
		LTE-TDD Band	40		
		PF=128(USB disconnected)			
		LTE-TDD Band	41		
		PF=128(USB disconnected)			
		LTE-TDD Band	38	2.1	mA
		PF=256(USB disconnected)	30	2.12	1112 \$
		LTE-TDD Band	39	2.12	
			39	700	
		PF=256(USB disconnected)	10	2.34	
		LTE-TDD Band	40		
		PF=256(USB disconnected)		$A \setminus A$	
		LTE-TDD Band	41		
		PF=256(USB disconnected)	A		
		LTE-FDD Band	1	2.02	mA
		PF=128(USB disconnected)		2.1	
		LTE-FDD Band	3	2.16	
		PF=128(USB disconnected)		2.1	
		LTE-FDD Band	5	2.2	
		PF=128(USB disconnected)			
		LTE-FDD Band	8		
		PF=128(USB disconnected)	O		
		LTE-FDD Band	20		
		PF=128(USB disconnected)	20		
			1	1.00	A
		LTE-FDD Band	1	1.98	mA
		PF=256(USB disconnected)	_	2	
		LTE-FDD Band	3	2.13	
		PF=256(USB disconnected)		2.25	
		LTE-FDD Band	5	2.06	
		PF=256(USB disconnected)			
	V, V -	LTE-FDD Band	8		
		PF=256(USB disconnected)			
		LTE-FDD Band	20		
- / /	V	PF=256(USB disconnected)			
	Idle mode	GSM 900 DRX=5	(USB	19.2	mA
	10.10 1110 0.0	disconnected)	(002	32	
		GSM 900 DRX=5	(USB		
		connected)	עטט		
			(LICD	20	A
		DCS1800 DRX=5	(USB	20	mA
		disconnected)	(1105	35.2	
		DCS1800 DRX=5	(USB		
		connected)			

T T	IVIEIO FIOUU			
	GSM 850 DRX=5	(USB	19.8	mA
	disconnected)		38.6	
	GSM 850 DRX=5	(USB		
	connected)			
	WCDMA Band	1	19.2	mA
	PF=64(USB disconnected)		39.2	
	WCDMA Band	1	07.2	
	PF=64(USB connected)	•		
	WCDMA Band 5	PF=	20.2	mA
		rr–	39.6	IIIA
	64(USB disconnected)	DE	39.0	
	WCDMA Band 5	PF=		
	64(USB connected)		A 1	
	WCDMA Band 8	PF =	18.6	mA
	64(USB disconnected)	A .	38.7	
	WCDMA Band 8	PF=	. // //	
	64(USB connected)	A		
	TD-SCDMA Band	34	21	mA
	PF=64(USB disconnected)		33.6	
	TD-SCDMA Band	34		
	PF=64(USB connected)			
	TD-SCDMA Band	39	25	mA
	PF=64(USB disconnected)		36.8	1111 1
	TD-SCDMA Band	39	30.0	
	PF=64(USB connected)	37		
	LTE-TDD Band	38	20.9	mA
	PF=64(USB disconnected)	30	45.1	IIIA
		20	43.1	
	LTE-TDD Band	38		
	PF=64(USB connected)			
	LTE-TDD Band	39	21.3	mA
	PF=64(USB disconnected)		43.6	
	LTE-TDD Band	39		
	PF=64(USB connected)			
	LTE-TDD Band	40	23	mA
	PF=64(USB disconnected)		45.8	
	LTE-TDD Band	40		
	PF=64(USB connected)			
2	LTE-TDD Band	41	20.5	mA
	PF=64(USB disconnected)		43.2	
	LTE-TDD Band	41		
	PF=64(USB connected)	11		
	LTE-FDD Band	1	22.8	mA
		1		111/1
	PF=64(USB disconnected)	1	46.9	
	LTE-FDD Band	1		
	PF=64(USB connected)			

		LTE-FDD Band 3	28	m A
				mA
		PF=64(USB disconnected)	48.5	
		LTE-FDD Band 3		
		PF=64(USB connected) LTE-FDD Band 5	27.6	A
				mA
		PF=64(USB disconnected) LTE-FDD Band 5	49.2	
		PF=64(USB connected)		
		LTE-FDD Band 8	24.0	mA
		PF=64(USB disconnected)	24.9 48.6	IIIA
		LTE-FDD Band 8	46.0	
		PF=64(USB connected)		
		LTE-FDD Band 20	22.7	
		PF=64(USB disconnected)	49.8	mA
		LTE-FDD Band 20	49.8	V
		PF=64(USB connected)		
GPRS	Z doto	` '	154.4	mA
	S data er(GNSS			
	down)	GSM900 3DL/2UL@30.4dBm	228.7	mA
Silut	iowii)	GSM900 2DL/3UL@30.3dBm	295.2	mA
		GSM900 1DL/4UL@30.1dBm	379.3	mA
		DCS1800 4DL/1UL@25.2dBm	269.4	mA
		DCS1800 3DL/2UL@23.7dBm	176.9	mA
		DCS1800 2DL/3UL@23.8dBm	224.1	mA
		DCS1800 1DL/4UL@23.7dBm	264.8	mA
		GSM850	156.2	mA
		4DL/1UL@30.9dBm		
		GSM850	230	mA
		3DL/2UL@30.8dBm		
\		GSM850	305.3	mA
		2DL/3UL@30.8dBm		
	1 0	GSM850	388.2	mA
		1DL/4UL@30.7dBm		
EDG		GSM900	175.9	mA
transi		4DL/1UL@27.4dBm		
shut o	down)	GSM900	277.7	mA
		3DL/2UL@27.2dBm		
		GSM900	367.7	mA
		2DL/3UL@27.1dBm		
		GSM900	479.8	mA
		1DL/4UL@26.9dBm		
		DCS1800	151.8	mA
		4DL/1UL@24.8dBm		
		DCS1800	222.1	mA

		2DI /2III @20 04D		
		3DL/2UL@28.8dBm		
		DCS1800	295.5 mA	
		2DL/3UL@24.63dBm		
		DCS 1800	363.2 mA	
		1DL/4UL@23.6dBm		
		GSM 850	186.3 mA	
		4DL/1UL@25.7dBm		
		GSM 850	282.3 mA	
		3DL/2UL@25.3dBm		
		GSM 850	381.1 mA	
		2DL/3UL@25.3dBm		
		GSM 850	482.7 mA	
		1DL/4UL@25.3dBm		
	WCDMA data	WCDMA Band 1	434.7 mA	
	transfer	HSDPA@23.274dBm		
		WCDMA Band 1	426 mA	
		HSUPA@23.273dBm		
		WCDMA Band 5	529.6 mA	
		HSDPA@23.197dBm	223.0	
		WCDMA Band 5	512.9 mA	
		HSUPA@23.197dBm		
		WCDMA Band 8	508.2 mA	
		HSDPA@23.374dBm	300.2	
		WCDMA Band 8	495 mA	
	(HSUPA@23.374dBm	in t	
	LTE data	FDD- LTE Band 1	497.2 mA	
	transfer	10M@22.20dBm	197.2	
	transfer		600.3 mA	
		10M@22.30dBm	000.5	
		FDD- LTE Band 5	585.8 mA	
		10M@23.00dBm	363.6	
		FDD- LTE Band 8	590.6 mA	
	1 0	10M@23.10dBm	370.0 IIIA	
		FDD- LTE Band 20	600.3 mA	
611		10M@22.90dBm	000.5 IIIA	
		TDD- LTE Band 38	412.5 mA	
		10M@23.10dBm	412.3 IIIA	
		TDD- LTE Band 39	394.8 mA	
		10M@23.10dBm	374.0 IIIA	
			376.8 mA	
		TDD- LTE Band 40 10M@23.30dBm	376.8 mA	
			202 1	
		TDD- LTE Band 41	392 mA	
		10M@23.10dBm		

GSM voice call	GSM900 PCL=5 @32.21dBm	237.1	mA
	DCS1800 PCL=0 @28.14dBm	200.7	mA
	GSM850 PCL=5 @32.12dBm	243.9	mA
CDMA voice call	BC0 @20.31dBm	556	mA
WCDMA voice	WCDMA Band 1@23.1dBm	461.8	mA
call	WCDMA Band 5@22.0dBm	574.3	mA
	WCDMA Band 8@22.8dBm	559	mA

6.5 Environmental Reliability Requirements

Table 36: Environmental reliability requirements

Test item	Test condition		
Low temperature	-45°C, last for 24 hours in shutdown mode		
storage test	-43 C, last for 24 flours in shutdown fliode		
	10000 1 10000 1		
High temperature	+90°C, last for 24 hours in shutdown mode		
storage test			
Temperature impact	In shutdown mode, last for 1 hour in -45°C and +90°C. Temperature		
test	conversion time is <3n		
High temperature high	+85°C,95%RH,last for 48 hours in shutdown mode		
humidity test			
Low temperature	-30°C, last for 24 hours in operation mode		
operation test			
High temperature	+75°C, last for 24 hours in operation mode		
operation test			
Vibration test	Perform vibration tests as required in the following table:		
	Frequency	Random vibration ASD(Acceleration	
		spectral density)	
	5~20Hz	$0.96\text{m}^2/\text{s}^3$	
	20~500Hz	$0.96\text{m}^2/\text{s}^3(20\text{Hz})$, other -3dB/times	
,		frequency range	
Connector life test	Board to board connector interface plugging 50 times; RF antenna		
	interface cable plugging 30 times		
ESD test	1. The module tests the power PAD and the large area in the call		
	state, ESD meets:		
	1) Contact discharge shall pass ±4KV \ ±5KV test grade		
	2) Air discharge shall pass ±8KV \ ±10KV test grade		
	2. the module tests SIM card connector of EVB in shutdown mode, ESD meets:		

1) C + 1 1 1 1 1 1 1 1 1 1
1) Contact discharge shall pass ±4KV test grade
2) Air discharge shall pass ±8KV test grade
3. the module tests other interfaces, ESD meets:
1) Air discharge shall pass ± 0.5 KV test grade
2) Air discharge shall pass ±1KV test grade

6.6 ESD Characteristics

SLM750 is a consumer terminal product. Although we have considered possible problems of ESD and took some protections, considering problems in the transport and secondary development, we need to consider the protection of final product ESD, including the anti electrostatic packaging processing. You can refer to the recommended circuit of interface design in the document when using in applications.

The following table shows the discharge range of SLM750 ESD:

Table 37: ESD performance parameters (Temperature: 25°C, Humidity: 45%)

Test point	Contact discharge	Air discharge	Unit
VBAT, GND	±5	±10	KV
Antenna interfaces	±4	±8	KV
Other interfaces	±0.5	±1	KV

7 Mechanical Dimensions

7.1 Mechanical Dimensions of the Module

Figure 29 Module top and side dimension (unit: mm)

Figure 30 Module bottom dimensions (unit: mm)

7.2 Recommended Packaging

Figure 31 Top view of recommended packaging (unit: mm)

7.3 Top View of the Module

Figure 32 Top view of the module

7.4 Bottom View of the Module

Figure 33 Bottom view of the module

8 Storage and Manufacturing

8.1 Storage

SLM750 is stored in sealed vacuum bag. The restrictions of storage condition are shown as below:

- 1. Shelf life in sealed bag is 12 months at $<40^{\circ}$ C/90%RH.
- 2. After this bag is open, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Stored at <10%RH.
 - Mounted within 72 hours at factory conditions of $\leq 30^{\circ}\text{C}/60\%\text{RH}$.
- 3. Devices require baking before mounting, if:
 - Humidity indicator card is >10% when ambient temperature is $23^{\circ}C\pm5^{\circ}C$.
 - Mounting cannot be finished within 72 hours at factory conditions of $\leq 30^{\circ}$ C/60% RH.
 - Stored at >10%RH.
- 4. If baking is required, devices may be baked for 48 hours at $125^{\circ}C \pm 5^{\circ}C$.

Note: As plastic packaging cannot stand the high temperatures, the package must be removed from devices before baking.

8.2 Manufacturing and Welding

Figure 34 Reflow soldering temperature profile

8.3 Packing

SLM750 uses pallet packaging. Specifications are as follows:

Figure 35 Pallet packaging(Unit: mm)

9 Appendix A References

9.1 Related Documents

- SLM750 specifications;
- SLM750 AT command set;
- SLM750 EVB user manual;
- SLM750 reference design circuit;
- SLM750 application service process manual.

9.2 Terms and Abbreviations

Table 38: Terms and abbreviations

Abbreviations	Descriptions			
AMR	Adaptive Multi-rate			
BER	Bit Error Rate			
BTS	Base Transceiver Station			
PCI	Peripheral Component Interconnect			
CS	Circuit Switched (CS) domain			
CSD	Circuit Switched Data			
DCE	Data communication equipment			
DTE	Data terminal equipment			
DTR	Data Terminal Ready			
EDGE	Enhanced Data rates for GSM Evolution			
EFR	Enhanced Full Rate			
EGSM	Enhanced GSM			
EMC	Electromagnetic Compatibility			
ESD	Electrostatic Discharge			
FR	Frame Relay			
GMSK	Gaussian Minimum Shift Keying			
GPIO	General Purpose Input Output			
GPRS	General Packet Radio Service			
GSM	Global Standard for Mobile Communications			
HR	Half Rate			
HSDPA	High Speed Downlink Packet Access			
HSUPA	High Speed Uplink Packet Access			
HSPA	HSPA High-Speed Packet Access			
HSPA+	HSPA High-Speed Packet Access+			

MEID I/O ISO	International Electro-technical Commission International Mobile Equipment Identity Mobile Equipment Identifier			
MEID I/O ISO	Mobile Equipment Identifier			
I/O ISO				
ISO	Innert/Output			
	Input/Output Interpretional Standards Organization			
TTTI	International Standards Organization			
ITU	International Telecommunications Union			
1	bits per second			
1	Light Emitting Diode			
M2M	Machine to machine			
1	Mobile Originated			
	Mobile Terminated			
	Negative Temperature Coefficient			
	Personal Computer			
	Printed Circuit Board			
	Personal Cellular System			
	Pulse Code Modulation			
PCS	Personal Communication System			
PDU	Packet Data Unit			
PPP	Point-to-point protocol			
PS	Packet Switched			
QPSK	Quadrate Phase Shift Keying			
SIM	Subscriber Identity Module			
TCP/IP	Transmission Control Protocol/ Internet Protocol			
UART	Universal asynchronous receiver-transmitter			
USIM	Universal Subscriber Identity Module			
UMTS	Universal Mobile Telecommunications System			
USB	Universal Serial Bus			
WCDMA	Wideband Code Division Multiple Access			
TD-SCDMA	Time Division-Synchronous Code Division Multiple Access			
TD-LTE	Time Division Long Term Evolution			
FDD LTE	Frequency Division Duplexing Long Term Evolution			
Vmax	Maximum Voltage Value			
Vnorm	Normal Voltage Value			
	Minimum Voltage Value			
V _{IH} max	Maximum Input High Level Voltage Value			
V _{IH} min	Minimum Input High Level Voltage Value			
	Maximum Input Low Level Voltage Value			
V _{IL} min	Minimum Input Low Level Voltage Value			
	Maximum Output High Level Voltage Value			
V _{OH} min	Minimum Output High Level Voltage Value			
V _{OL} max	Maximum Output Low Level Voltage Value			
V _{OL} min	Minimum Output Low Level Voltage Value			

10 Appendix B GPRS Coding Scheme

Table 39: Description of coding schemes

Mode	CS-1	CS-2	CS-3	CS-4
Coding speed	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	19
Data rate Kb/s	9.05	13.4	15.6	21.4

FCC Statement

FCC Label: The FCC ID is on the front of the device. It is easily visible.

The device FCC ID is 2APJ4-SLM750V.

A label with the following statements must be attached to the host end product:

This device contains FCC ID: 2APJ4-SLM750V.

The manual provides guidance to the host manufacturer will be included in the documentation that will be provided to the OEM.

The module is limited to installation in mobile or fixed applications.

The separate approval is required for all other operating configurations, including portable configurations and different antenna configurations.

The OEM integrators are responsible for ensuring that the end-user has no manual or instructions to remove or install module.

Module grantee (the party responsible for the module grant) shall provide guidance to the host manufacturer for ensuring compliance with the Part 15 Subpart B requirements.

The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with the Part 15 Subpart B requirements, the host manufacturer is required to show compliance with the Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of SLM750 Module Hardware Design

Page 83, total 84 pages

band emissions) with the Radio essential requirements. The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in the Part 15 Subpart B or emissions are complaint with the Radio aspects.

FCC RF Exposure Requirements

This device complies with FCC RF radiation exposure limits set forth for an uncontrolled environment.

The antenna(s) used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter and must be installed to provide a separation distance of at least 20cm from all persons.

FCC Regulations

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

EU DECLARATION OF CONFORMITY

Hereby, MeiG Smart Technology Co., Ltd declares that the radio equipment type SLM750 is in compliance with Directive 2014/53/EU.

The most recent and valid version of the DoC (Declaration of Conformity) can be viewed at www.meigsmart.com/en/product-certification.