Отчет по лабораторной работе №2

Задача о погоне - вариант 8

Котиева Селима Сулеймановна НФИбд-02-18

Содержание

4	Выводы	11
3	Выполнение лабораторной работы 3.1 Условие задачи	6 9 9
2	Задание	5
1	Цель работы	4

List of Figures

3.1	траектории для случая 1												9
3.2	траектории для случая 2												10

1 Цель работы

Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

2 Задание

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в n paз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

3 Выполнение лабораторной работы

Принимаем за $t_0=0, X_0=0$ - место нахождения лодки браконьеров в момент обнаружения, $X_0=k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров $x_0=0(\theta=x_0=0)$, а полярная ось r проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x-k (или x+k, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{x+k}{v}$ (для второго случая $\frac{x-k}{v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние можно найти из следующего уравнения: $\frac{x}{v} = \frac{x+k}{v}$ - в первом случае, $\frac{x}{v} = \frac{x-k}{v}$ во втором случае.

Отсюда мы найдем два значения x_1 и x_2 , задачу будем решать для двух случаев.

$$x_1=rac{k}{n+1}$$
 ,при $heta=0$ $x_2=rac{k}{n-1}$,при $heta=-\pi$

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки υ . Для этого скорость катера раскладываем на две составляющие: υ_r - радиальная скорость и υ_t - тангенциальная скорость. Радиальная скорость - это скорость, с которой катер

удаляется от полюса $v_r=\frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $v=\frac{dr}{dt}$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r,vr=r\frac{d\theta}{dt}$ Найдем тангенциальную скорость для нашей задачи $v_t=r\frac{d\theta}{dt}$. Вектора образуют прямоугольный треугольник, откуда по теореме Пифагора можно найти тангенциальную скорость $v_t=\sqrt{n^2v_r^2-v^2}$. Поскольку, радиальная скорость равна v, то тангенциальную скорость находим из уравнения $v_t=\sqrt{n^2v^2-v^2}$. Следовательно, $v_\tau=v\sqrt{n^2-1}$.

Тогда получаем $r rac{d heta}{d t} = \upsilon \sqrt{n^2 - 1}$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

$$\begin{cases} \frac{dr}{dt} = \upsilon \\ r\frac{d\theta}{dt} = \upsilon\sqrt{n^2 - 1} \end{cases}$$

с начальными условиями

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{k}{n+1} \end{cases}$$

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{k}{n-1} \end{cases}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению: $\frac{dr}{d\theta} = \frac{r}{\sqrt{n^2-1}}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах. Теперь, когда нам известно все, что нам нужно, построим траекторию движения катера и лодки для двух случаев.

```
n=2.6;
// разница в скорости между катером и лодкой
k=6.5;
// начальное расстояние между катером и лодкой
fi=3*%pi/4;
//функция, описывающая движение катера береговой охраны
function dr=f(tetha, r)
dr=r/sqrt(n*n-1);
endfunction;
//начальные условия в первом случае
r0=k/(n+1);
tetha0=0;
tetha=0:0.01:2*%pi;
r=ode(r0,tetha0,tetha,f);
//функция, описывающая движение лодки браконьеров
function xt=f2(t)
    xt=cos(fi)*t;
endfunction
t=0:1:800;
plot2d(t,f2(t),style = color('red'));
//построение траектории движения браконьерской лодки
polarplot(tetha,r,style = color('green'));
//построение траектории движения катера в полярных координатах
r0=k/(n-1);
tetha0=-%pi;
figure();
r=ode(r0,tetha0,tetha,f);
```

```
plot2d(t,f2(t),style = color('red'));
//построение траектории движения браконьерской лодки
polarplot(tetha,r,style = color('green'));
//построение траектории движения катера в полярных координатах
```

3.1 Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 6.5 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 2.6 раза больше скорости браконьерской лодки

3.2 Решение

Figure 3.1: траектории для случая 1

Точка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет параметры

$$\begin{cases} \theta = 325 \\ r = 18 \end{cases}$$

Figure 3.2: траектории для случая 2

Точка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет параметры

$$\begin{cases} \theta = 325 \\ r = 110 \end{cases}$$

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти значительно меньшее расстояние.

4 Выводы

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.