

Logistic Regression and k-Means: Spotify Recommendation

By Aiesha Ayub, Lulia Aklilu, Adden Hartl

Discussion

Algorithms

Algorithm Purpose

Important features based on a dataset and what songs the user likes.

Cluster

Songs based on those features into similar groups.

Suggest

Additional songs based on their proximity to liked songs in the cluster.

Difficulty

Songs are multifaceted, and often our enjoyment of them is not because they simply check a number of boxes.

We may like songs outside of our typical preferred genres, artists, and style (or vice versa

Therefore, utilizing only a **supervised** algorithm would be prone to errors.

Algorithms Used

Logistic Regression

predict important features

A way to **predict** the probability of binary category placement (i.e. like/dislike) based on the previous algorithm.

k-means

cluster similar songs

An **unsupervised** learning algorithm which creates clusters based on similar characteristics

Algorithms

Discussion

Spotify Recommendations

Demonstration

Utilizing Python coding language

OD Dataset

The dataset used split songs based on a variety of categories: danceability, energy, track key, loudness, track mode, speechiness, acousticness, instrumentalness, liveness, tempo, duration, time signature and valence.

Variables were collected from Spotify's API documentation.

Each variable was on a different scale, requiring standardization.

The dataset had an accompanying variable "likeability" based on a binary scale (0 being disliked, 1 being liked).

Variable Examples

Instrumentalness

A metric for how much of a track is instrumental

Speechiness

A metric for how "wordy" a track is

Loudness

Loudness of the track in db (averaged within track)

Duration

The duration of the track in milliseconds (min 1:17, max 10:54)

Logistic Regression

- Import all necessary libraries and load the data into a DataFrame
- Define the features (X) and target variable (y)
 - (1 for liked, 0 for disliked)
- Split the data into training and testing sets (80% train, 20% test)
- Standardize the data so all features have the same scale ($\mu = 0, \sigma = 1$)
- Initialize and Train the Logistic Model using the training data
- Make Predictions and evaluate model (accuracy, model coefficients, confusion matrix)

Accuracy

92.30% The model correctly predicted 92.30% of the test data

> **Precision** 90%

90% of the songs predicted as liked were actually liked

Recall 95%

95% of the liked songs were correctly identified

Demonstration – Loading Data

data = pd.read_csv('spotify_data.csv')
print(data.head())

	danceability	energy	key	loudness	mode	speechiness	acousticness \	
0	0.803	0.6240	7	-6.764	0	0.0477	0.451	
1	0.762	0.7030	10	-7.951	0	0.3060	0.206	
2	0.261	0.0149	1	-27.528	1	0.0419	0.992	
3	0.722	0.7360	3	-6.994	0	0.0585	0.431	
4	0.787	0.5720	1	-7.516	1	0.2220	0.145	
	instrumentaln	ess liv	eness	valence	temp	o duration_	ms time_signature	١
0	0.000	734 6	.1000	0.6280	95.96	8 3045	24 4	
1	0.000	000 6	.0912	0.5190	151.32	9 2471	78 4	
2	0.897	000 0	.1020	0.0382	75.29	6 2869	87 4	
3	0.000	001 6	.1230	0.5820	89.86	0 2089:	20 4	
4	0.000	000 6	.0753	0.6470	155.11	7 1794:	13 4	
	liked							
0	0							
1	1							
2	0							
3	1							
4	1							

Demonstration – Logistic Regression

X_train, X_test, y_train, y_test =
train_test_split(df.drop('liked',
axis=1),df['liked'],test_size = 0.2, random_state= 42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = LogisticRegression(random_state=42)
model.fit(X_train_scaled,y_train)
y_pred = model.predict(X_test_scaled)
coefficients = model.coef_[0]
feature_importance = pd.DataFrame({'Feature':
X.columns, 'Coefficient': coefficients})
print(feature_importance)

	Feature	Coefficient
0	danceability	0.979264
1	energy	-0.323337
2	key	0.130298
3	loudness	1.764453
4	mode	-0.403396
5	speechiness	1.535564
6	acousticness	-0.062750
7	instrumentalness	-1.389849
8	liveness	0.097142
9	valence	-0.097727
10	tempo	0.591655
11	duration_ms	-1.630988
12	time_signature	0.357594

k-means Clustering

- Import all necessary libraries and load the data into a DataFrame
- Determine two features for clustering → duration and loudness because they have the most feature importance according to the logistic regression
- Standardize the data so all features have the same scale \rightarrow specifically a $\mu = 0$, $\sigma = 1$
- Determine the optimal number of clusters (via an elbow curve) \rightarrow measures how well the k-means algorithm groups the data for different numbers of clusters (k)
- Cluster the data into the optimal number of clusters utilizing k-means → Each song gets a cluster label, indicating which group it belongs to
 - → Allows us to identify patterns, like songs with similar duration and loudness being grouped together

Demonstration – Elbow Curve


```
features = data[['duration_ms', 'loudness']]
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
inertia = []
for k in range(1, 11):
  kmeans = KMeans(n_clusters=k,
  random_state=42)
  kmeans.fit(scaled_features)
  inertia.append(kmeans.inertia_)
plt.plot(range(1, 11), inertia, marker='o')
plt.title('Determining Optimal Clusters')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```


Demonstration - Cluster Assignment

 $n_{clusters} = 3$

kmeans = KMeans(n_clusters=n_clusters,
random_state=42)
clusters = kmeans.fit_predict(scaled_features)
data['cluster'] = clusters

print(data.head())

data.to_csv('clustered_songs.csv', index=False)

							Danceal	oility		
							zanceai	Jiney		
	dancea	bility	ene	rgy	key	loudness	mode	speechiness	acousticness \	
0		0.803	0.6	240	7	-6.764	0	0.0477	0.451	
1		0.762	0.7	030	10	-7.951	0	0.3060	0.206	
2		0.261	0.0	149	1	-27.528	1	0.0419	0.992	
3		0.722	0.7	360	3	-6.994	0	0.0585	0.431	
4		0.787	0.5	720	1	-7.516	1	0.2220	0.145	
	instru	mentaln	iess	liv	eness	valence	temp	o duration_m	s time_signature	1
0	0.000734		0	.1000	0.6280	95.96	8 30452	24 4		
1	0.000000		0	.0912	0.5190	151.32	9 24717	78 4		
2	0.897000		0	.1020	0.0382	75.29	6 28698	37 4		
3	0.000001		0	.1230	0.5820	89.86	0 20892	20 4		
4	0.000000		0	.0753	0.6470	155.11	7 17941	13 4		
	liked	cluste	er							
0	0		0							
1	1 2									
2	0		1							
3	1		0							
4	1		0							

Discussion

Spotify Recommendations

Discussion

Results - Logistic Regression

Results – Logistic Regression

C.	lassificatio	n Report: precision	recall	f1-score	support
	0 1	0.94 0.90	0.89 0.95	0.92 0.93	19 20
W	accuracy macro avg eighted avg	0.92 0.92	0.92 0.92	0.92 0.92 0.92	39 39 39

In Action

Centroid for purple cluster (cluster 1).

Three new songs the user hasn't listened to before (song 1, song 2, and song 3).

If the *most recent song* the user listened to was in cluster 1, the algorithm should recommend song 2, then song 1, and maybe not song 3.

Limitations

Dataset Genres

The dataset was mainly from the user's most listened to (French/American rap, rock, electro, metal, classical, and Discogenres).

Dataset sample size

The dataset was limited to 195 songs.

Features chosen

Only two - three features were selected of the 14 total.

Future Work

Expand dataset and variables

Collect both more samples from a wider range of genres and additional variables such as popularity/trendiness and release date.

For Logistic Regression, change the split percentages of testing data.

Explore alternate features

Iterations of the program can be ran to determine optimal features to utilize for clustering.

Discussion

Questions?