

Méthodes directes pour la résolution des systèmes algébriques A. SAADA

Exercice

- 1- Donnez le nombre d'opérations pour le calcul du déterminant d'une matrice d'ordre $n \ge 2$.
- 2- Soit un ordinateur qui fait 100 millions d'opérations par seconde. Combien d'années sont nécessaires pour qu'il arrive à calculer le déterminant d'une matrice d'ordre 20 par la méthode classique ? ©

Réponse:

1- Le déterminant d'une matrice d'ordre 2 nécessite deux multiplications et une addition (soustraction).

Le déterminant d'une matrice d'ordre 3 nécessite $3(2(\times) + 1(\pm)) + 2(\pm) = 6(\times) + 5(\pm)$.

On démontre par récurrence que le déterminant d'une matrice d'ordre n nécessite $n! (\times) + (n! - 1)(\pm)$.

C'est en effet vérifié pour n=2. On suppose que c'est vrai pour n. Le déterminant d'une matrice d'ordre (n+1) nécessite alors $(n+1)(n!(x)+(n!-1)(\pm))+n(\pm)=((n+1)!(x)+((n+1)!-1)(\pm))$. CQFD

2- Un tel déterminant nécessite 2*20!-1 = 4865804016353279999 opérations Il faut 1541,88 années pour son calcul!

Rappels:

 $\begin{array}{ll} \text{Soient} & n \in \mathbb{N}^*, \ 1 \leq k < n, (\alpha_i)_{k+1 \leq i \leq n} \in \mathbb{R}^{n-k}, A = \left(a_{ij}\right)_{1 \leq i,j \leq n} \in M_n(\mathbb{R}), H^{(k)} \in \\ M_n(\mathbb{R}) \text{ avec } \left(H^{(k)}\right)_{ij} = \alpha_i \delta_{k < i} \delta_{jk} \text{ et } M^{(k)} = I_n + H^{(k)} \text{ où } I_n \text{ est la matrice identité} \\ \operatorname{dans} M_n(\mathbb{R}), \delta_{jk} \text{ le } \underbrace{\text{symbole de }}_{\text{Kronecker}} \text{ et } \delta_{k < i} = \begin{cases} 0 & \text{si} \quad i \leq k \\ 1 & \text{si} \quad k < i \end{cases}.$

- 1- Soit $\widetilde{A} = M^{(k)}A$. Donnez les coefficients \widetilde{a}_{ij} de \widetilde{A} pour $1 \le i, j \le n$.
- 2- Soit $1 \le l \le n$, $l \ne k$ et soit $P^{(kl)} \in M_n(\mathbb{R})$, la matrice obtenue par permutation des lignes l et k de I_n et soit $\widecheck{A} = P^{(kl)}A$. Donnez les coefficients \widecheck{a}_{ij} de \widecheck{A} pour $1 \le i, j \le n$.

3- Faites un programme Matlab qui calcule \widetilde{A} et \widetilde{A} , en fonction de k, $(\alpha_i)_{k+1 \le i \le n}$, et A. Donnez le nombre d'opérations élémentaires nécessaires pour les obtenir.

Réponses:

- 1- Pour $i \leq k$, $\tilde{a}_{ij} = a_{ij}$. Pour pour k < i, $\tilde{a}_{ij} = \alpha_i a_{kj} + a_{ij}$. Autrement dit, si L_p représente la p-ème ligne de A et \tilde{L}_p la p-ème ligne de \tilde{A} alors $\tilde{L}_i = \begin{cases} L_i & \text{si } i \leq k \\ \alpha_i L_k + L_i & \text{si } k < i \end{cases}$
- 2- En prenant la même notation que la question précédente nous avons $\widecheck{L}_i = \begin{cases} L_i & \text{si} & i \notin \{k,l\} \\ L_k & \text{si} & i=l \end{cases}$. C'est donc une permutation entre les lignes l et k. Remarque : $L_l & \text{si} & i=k$

 $A P^{(kl)}$ correspond à une permutation entre les colonnes l et k.

3- Il faut absolument éviter de programmer l'opération. Il faut juste programmer le résultat. Pour \tilde{A} le programme est :

```
function [ A ] = combinaisonsLineairesDeLignesDeMatrice( n,k,alpha,A )
% n est l'ordre de A
% alpha un vecteur de longueur (n-k) dont le p-ème coefficient sont alpha p
% Soit L p est la p-ème ligne de la matrice A à l'entrée
% La matrice A à la sortie a les mêmes lignes de A pour p < k+1,
% et alpha p L (p+k) + L k pour la p-ème ligne avec p=1...(n-k)
for p=1:n-k
    A(k+p,:) = alpha(p) *A(k,:) +A(k+p,:);
end
end
      Le nombre d'opérations est (n-k)*(n(\times)+n(+))
      Pour \check{A} le programme est :
function [ A ] = permuationDesLignesLetKduneMatrice( k,l,A )
% Permutation entre les lignes l et k de la matrice A
c = A(1,:);
A(1,:) = A(k,:);
A(k, :) = c;
```

Cette opération ne nécessite aucune opération.

Méthode de Gauss pour la résolution de (S):

Soient $n \in \mathbb{N}^*$, $A = A^{(0)} \in M_n(\mathbb{R})$ inversible et $b \in \mathbb{R}^n$.

1- Supposons que $a_{11}^{(0)} \neq 0$. Construisez $M^{(1)}$ telle que $A^{(1)} = M^{(1)}A^{(0)}$ vérifie : $\begin{cases} a_{1j}^{(1)} = a_{1j}^{(0)} & \text{pour } 1 \leq j \leq n \\ a_{i1}^{(1)} = 0 & \text{pour } 1 < i \leq n \end{cases}$

- 2- Montrez que $A^{(0)}x = b \Leftrightarrow A^{(1)}x = M^{(1)}b$
- 3- Supposons que $a_{11}^{(0)}=0$. Montrez qu'il existe i>1 tel que $a_{i1}^{(0)}\neq 0$. Monter alors que $A^{(0)}x=b \Leftrightarrow P^{(1i)}A^{(0)}x=P^{(1i)}b$
- 4- Supposons que $a_{22}^{(1)} \neq 0$. Construire $M^{(2)}$ telle que $A^{(2)} = M^{(2)}A^{(1)}$ vérifie : $\begin{cases} a_{2j}^{(2)} = a_{2j}^{(1)} & \text{pour } 2 \leq j \leq n \\ a_{i2}^{(2)} = 0 & \text{pour } 2 < i \leq n \end{cases}$ Donnez les valeurs de $a_{i1}^{(2)}$, i = 2, ..., n.
- 5- Déduisez un algorithme qui permet de remplacer la résolution de $A^{(0)}x = b$ par celle de Tx = c où $T \in M_n(\mathbb{R})$ est une matrice triangulaire supérieure et $c \in \mathbb{R}^n$ à expliciter.
- 6- Donnez une méthode pour résoudre Tx = c.
- 7- Mettez en œuvre un code pour la résolution de Ax = b utilisant les algorithmes des deux questions précédentes pour n, A et b quelconques. Donnez le nombre d'opérations élémentaires nécessaires pour les deux algorithmes.

Réponses:

1-
$$M^{(1)} = I_n + H^{(1)}$$
 avec $(H^{(1)})_{ij} = -\frac{a_{i1}^{(0)}}{a_{11}^{(0)}} \delta_{1 < i} \delta_{j1}$

2-
$$det(M^{(1)}) = 1 \Rightarrow (A^{(0)}x = b \Leftrightarrow M^{(1)}A^{(0)}x = M^{(1)}b \Leftrightarrow A^{(1)}x = M^{(1)}b)$$

- 3- Si $a_{i1} = 0 \ \forall 1 \le i \le n$ alors $det(A^{(0)}) = 0$ en contradiction avec $A^{(0)}$ inversible. $det(P^{(1i)}) = \pm 1$ donc inversible donc $A^{(0)}x = b \Leftrightarrow P^{(1i)}A^{(0)}x = P^{(1i)}b$.
- 4- On pose $M^{(2)} = I_n + H^{(2)}$ avec $\left(H^{(2)}\right)_{ij} = -\frac{a_{i1}^{(1)}}{a_{11}^{(1)}} \delta_{2 < i} \delta_{j2}$. $a_{i1}^{(2)} = 0 \ \forall i = 2, ..., n$.
- 5- Pour i allant de 1 à (n-1)

Soit
$$i_0 / \left| a_{i_0 i}^{(i-1)} \right| = \max_{i \le k \le n} \left| a_{k i}^{(i-1)} \right|$$

$$.A^{(i)} = P^{(i i_0)} A^{(i)}$$

$$.b = P^{(i i_0)} b$$

$$.M^{(i)} = I_n + H^{(i)} \operatorname{avec} \left(H^{(i)} \right)_{lm} = -\frac{a_{l i}^{(i)}}{a_{i i}^{(i)}} \delta_{i < l} \delta_{m i}.$$

$$.b = M^{(i)} b$$

Fin Pour

6- Remarquons d'abord que $det(T) = \pm det(A) \Longrightarrow T_{ii} \neq 0 \ \forall \ 1 \leq i \leq n$.

$$Tx = c \Longrightarrow x_n = \frac{c_n}{T_{nn}} \Longrightarrow x_{n-1} = \frac{c_{(n-1)} - T_{(n-1)n} x_n}{T_{(n-1)(n-1)}} \Longrightarrow \cdots \Longrightarrow x_1 = \frac{c_1 - \sum_{j=2}^n T_{1j} x_j}{T_{11}}$$

7- Le code comporte une fonction de lecture des données *A et b*, une fonction de résolution qui utilise la méthode de Gauss avec pivot partiel et une fonction de visualisation de la solution. A la résolution, nous faisons appel aux fonctions, de permutation et de combinaison linéaires entre deux lignes d'une matrice, développées ci-dessus :

```
Programme principal
% le programme principal est foirmée de 3 étapes:
% 1- Lecture des données
% 2- Resolution du problème
% 3- Illustration des résultats
clear all
close all
% 1- Lecture des données
[n,A,b]=donnees();
% 2- Résolution du problème
[x]=resolution(n,A,b);
3- Illustration des résultats
illustration (x);
function [n,A,b]=donnees()
% Fonction de lecture des données
A=[1 3 3 4; 5 6 -7 8; 9 10 7 -12; 13 -14 15 16];
b=[10;2;3;4];
n=size(b,1);
end
function [x]=resolution(n,A,b);
% Programme pour la résolution de Ax=b par la méthode de Gauss
% Trigonalisation de la matrice
[T,c]=gauss(n,A,b);
prod(diag(T))
% Resolution par remontée
x=remontee(n,T,c);
end
function [A,b] = gauss(n,A,b)
% Trigonalisation de la matrice A et modifocation du second membre b
for i=1:n-1
    [coef,i0]=max(abs(A(i:n,i)));
    [ A ] = permuationDesLignesLetKduneMatrice( i,i+i0-1,A );
    [ b ] = permuationDesLignesLetKduneMatrice( i,i+i0-1,b );
    alpha =-A(i+1:n,i)/A(i,i);
    [ A ] = combinaisonsLineairesDeLignesDeMatrice( n,i,alpha,A );
    [ b ] = combinaisonsLineairesDeLignesDeMatrice( n,i,alpha,b );
end
function x=remontee(n,T,c);
% Resolution de Tx=c (T triangulaire superieure) par une remontée
x=sparse(n,1);
for i=n:-1:1
    x(i,1) = (c(i,1)-T(i,i+1:n)*x(i+1:n,1))/T(i,i);
end
```

```
function illustration(x)
%
% visualisation des valeurs algébriques composantes d'un vecteur par un
% histogramme
%*************************
bar(x);
title('solution du système linéaire');
xlabel('indice des coefficients de x');
ylabel('valeurs des coefficients de x');
end
```

Le nombre d'opérations est celui de la méthode de Gauss et de la remontée.

Méthode LU pour la résolution de (S):

- 8- Supposons que pour $a_{(i+1)(i+1)}^{(i)} \neq 0$ pour $i=1,\ldots,n-2$. Montrez alors qu'il existe $L \in M_n(\mathbb{R})$ triangulaire inférieure à diagonale unité et $U \in M_n(\mathbb{R})$, triangulaire supérieure, tels que A = LU.
- 9- Effectuer le produit LU et donner par identification avec $A = A^{(0)}$ les coefficients de la première ligne de U et de la première colonne de L.
- 10- Calculez $LU (l_{i1})_{1 \le i \le n} (u_{1j})_{1 \le j \le n}$, puis $A^{(1)} = A^{(0)} (l_{i1})_{1 \le i \le n} (u_{1j})_{1 \le j \le n}$. En déduire les valeurs de la deuxième ligne de U et de la deuxième colonne de .
- 11- Développez un algorithme pour le calcul des coefficients de U puis ceux de L en se basant sur les deux questions précédentes, et procédez à sa mise en œuvre.
- 12-Donnez le nombre d'opérations élémentaires pour faire la décomposition.
- 13- Que faut-il faire si un des coefficients $a_{(i+1)(i+1)}^{(i)}$ pour $i=1,\ldots,n-2$ est nul ?
- 14- Comment utiliser cette méthode pour résoudre Ax = b?
- 8- Si $a_{(i+1)(i+1)}^{(i)} \neq 0$ pour $i=1,\ldots,n-2$, alors d'après la deuxième question nous avons : $A^{(0)}x = b \iff Ux = M^{(n-1)}M^{(n-2)}\ldots M^{(1)}A^{(0)}x = M^{(n-1)}M^{(n-2)}\ldots M^{(1)}b$ $\implies U = M^{(n-1)}M^{(n-2)}\ldots M^{(1)}A^{(0)}$ avec T matrice triangulaire supérieure et $M^{(n-1)}M^{(n-2)}\ldots M^{(1)}=\tilde{L}$ matrice triangulaire inférieure à diagonale unité. \tilde{L} est inversible et son inverse est une matrice L triangulaire inférieure à diagonale unité \implies $A = A^{(0)} = LU$.

9-

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ l_{21}u_{11} & l_{21}u_{12} + u_{22} & \cdots & l_{21}u_{1n} + u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1}u_{11} & + l_{n2}u_{22} & \cdots & \sum_{k=1}^{n} l_{nk}u_{kn} \end{bmatrix} = \begin{bmatrix} a_{11}^{(0)} & \cdots & \cdots & a_{11}^{(0)} \\ a_{11}^{(0)} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{1n}^{(0)} & \cdots & \cdots & a_{nn}^{(0)} \end{bmatrix} = A^{(0)}$$

```
% U(i,i:n) = A(i,i:n);
% L(i+1:n,i) = A(i+1:n,i)/U(i,i)
% A(i:n,i:n) = A(i:n,i:n)-[1,L(i+1:n,i)]*U(i,i:n);
% fin pour i

function A=LU(A);
%
% Décomposition de A en produit de L (triangulaire inférieure à diagonale % unité) et U (triangulaire supérieure). L est stockée dans la partie % triangulaire inférieure stricte de A et U dans la partie triangulaire % supérieur
% supérieur
%
n = size(A,1);
for i = 1:n-1
% i-ème colonne de L à partir du coefficient i+1.
A(i+1:n,i) = A(i+1:n,i)/A(i,i);
A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - [A(i+1:n,i)]*[A(i,i+1:n)];
End
```

12-Le calcul de la i-ème colonne de L à l'itération i nécessite (n-i) divisions, et la détermination des coefficients de $A^{(i)}$ nécessite $(n-i)^2$ multiplications et $(n-i)^2$ soustractions. La décomposition coute alors $\sum_{i=1}^{n-1} (n-i) = \frac{n(n-1)}{2}$ divisions, et $\sum_{i=1}^{n-1} (n-i)^2 = \frac{n(n-1)(2n-1)}{6}$ multiplications et soustractions.

13-Si un des coefficients $a_{(i+1)(i+1)}^{(i)}$ est nul, il faut permuter la (i+1)-ème ligne de $A^{(i)}$ par une ligne dont le coefficient $a_{(i+1)k}^{(i)}$, k > i+1 est non nul. La fonction Matlab de décomposition devient :

```
function
           [A,b]=LU(A,b);
% Décomposition de A en produit de L (triangulaire inférieure à
% diagonale unité) et U (triangulaire supérieure). L est stockée
% dans la partie trianqulaire inférieure stricte de A et U dans la
% partie triangulaire supérieur
n = size(A, 1);
for i = 1:n-1
    % Recherche du coefficient de plus grand module et permutation de
    % lignes
    [coef, i0] = max(abs(A(i:n,i)));
    [ A ] = permuationDesLignesLetKduneMatrice( i,i+i0-1,A );
    [ b ] = permuationDesLignesLetKduneMatrice( i,i+i0-1,b );
    % ieme colonne de L à partir du coefficient i+1.
    A(i+1:n,i) = A(i+1:n,i)/A(i,i);
    A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - [A(i+1:n,i)]*[A(i,i+1:n)];
end
```

14-Pour résoudre LUx = b, nous commençons par résoudre Ly = b par une descente puis Ux = y par une remontée. La code par Matlab de la descente est :

```
function x=descente(n,T,c);
%
Resolution de Tx=c (T triangulaire inferieure) par une descente
%
x=sparse(n,1);
for i=1:n
    x(i,1)=(c(i,1)-T(i,1:i-1)*x(1:i-1,1))/T(i,i);
end
```

Méthode de <u>Cholesky</u> pour la résolution de (S) dans le cas où Aest symétrique définie positive :

Nous supposons A symétrique définie positive.

- 15-Montrer qu'il existe B triangulaire inférieure à diagonale positive, telle que $A = BB^t$.
- 16- Mettez en œuvre un programme qui puisse calculer B.
- 17- Donnez le nombre d'opérations élémentaires nécessaires pour le calcul de B.
- 15- Nous pouvons montrer par ce qui précède que si A est inversible nous pouvons la décomposer, à une multiplication par une matrice de permutation près, en un produit d'une matrice triangulaire inférieure à diagonale unité L et une matrice triangulaire supérieure L. A = LU. Nous pouvons poser $U = D\tilde{L}$ avec D la matrice diagonale formée par les éléments diagonaux de U et $\tilde{L}/\tilde{l}_{ij} = \frac{u_{ij}}{u_{ii}}$. Nous pouvons montrer que les

- coefficients u_{ii} sont tous strictement positifs (Exercice). Comme A est symétrique alors $A^T = \tilde{L}^T D L^T$, ce qui montre par unicité de la décomposition que $\tilde{L}^T = L$ et $A = LDL^T = BB^T$ avec $B = L\sqrt{D}$ une matrice triangulaire inférieure.
- 16-L'algorithme de décomposition de Cholesky ne change que très peu par rapport à la décomposition *LU* pour le calcul des coefficients de la matrice triangulaire inférieure qui n'est plus à diagonale unité. Le code par Matlab est :

17-Le calcul de *B* nécessite *n* racines, $\frac{n(n-1)}{2}$ divisions et $\frac{n^3-n}{6}$ multiplications et soustractions.