Factorial

Given a natural number $n \ge 1$, its **factorial** n! is defined in a recursive fashion:

- 1! = 1, and
- $n! = n \cdot (n-1)!$.

Example

The factorial of 5 is 120 because

1

- 1. $5! = 5 \cdot 4!$
- 2. $4! = 4 \cdot 3!$
- $3. 3! = 3 \cdot 2!$
- 4. $2! = 2 \cdot 1!$
- 5. 1! = 1

So 5! reduces to $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$

The factorial often appears in combinatorial problems. For instance, if you have n distinct elements, then they can be arranged in n! ways.

Example

There are 3! = 6 ways to order a, b, and c:

2

- 1. *abc*
- 2. *acb*
- 3. *bac*
- 4. bca
- 5. *cab*
- 6. cba

The factorial function grows very fast, even faster than an exponential function.

n	2^n	n!
1	2	1
2	4	2
3	8	6
4	16	24
5	32	120
6	64	720

Even a very fast growing exponential like $10,000^n$ will eventually grow more slowly than the

factorial, even though it grows more rapidly for small values of n (e.g. $10,000^10 = 10^{4^10} = 10^{40}$ is much larger than 10! = 3,628,800).