CSE/ISyE 6740 Computational Data Analysis

Support Vector Machine

09/17/2025

Kai Wang, Assistant Professor in Computational Science and Engineering kwang692@gatech.edu

Outline

- Supervised Learning
 - Support Vector Machine (SVM)
 - Decision boundary
 - Maximum margin problem
 - Lagrangian duality
 - Dual problem of SVM
 - Inference and support vectors
 - Kernel SVM

Support Vector Machines

Which Decision Boundary is Better?

- Suppose the training samples are linearly separable
- We can find a decision boundary which gives zero training error
- But there are many such decision boundaries
- Which one is better?

Which Decision Boundary is Better?

 Suppose we perturb the data, which boundary is more robust to error?

Geometric Interpretation of a Classifier

- Parameterizing decision boundary as: $w^{T}x + b = 0$
 - w denotes a vector orthogonal to the decision boundary
 - b is a scalar offset term
- Dash lines are parallel to the decision boundary, and they just hit the data points

Formal Definition of Margin

- Pick two data points x^1 and x^2 which are on each dash line respectively
 - $w^{\mathsf{T}}x^2 + b = c$
 - $w^{\mathsf{T}}x^1 + b = -c$
- The unnormalized margin is $\tilde{\gamma} = w^{T}(x^{2} x^{1}) = 2c$
- The margin is $\gamma = \frac{2c}{\|w\|}$

Formal Definition of Constraints on Data Points

- Constraints on data points
 - For all x in class 2, y = 1 and $w^Tx + b \ge c$
 - For all x in class 1, y = -1 and $w^Tx + b \le -c$
- Or more compactly, $(w^Tx + b)y \ge c$

$$w^{\mathsf{T}}x + b = 0$$

Class 2

Class 1

Maximum Margin Classifier

Find decision boundary w as far from data point as possible

$$\max_{\substack{w,b\\ \\ s.t. y^i(w^Tx^i+b) \ge c,}} \gamma = \frac{2c}{\|w\|}$$

$$w^{\mathsf{T}}x + b = 0$$

Equivalent Form

$$\max_{\substack{w,b \\ w,b}} \frac{2c}{\|w\|}$$

$$s.t.y^{i}(w^{T}x^{i}+b) \ge c, \qquad \forall i$$

- Note that the magnitude of c merely scales w and b, and does not change the relative goodness of different classifiers
- Set c = 1 and drop the constant to get a cleaner problem

$$\max_{\substack{w,b}} \frac{1}{\|w\|}$$

$$s.t. y^{i}(w^{T}x^{i} + b) \ge 1, \qquad \forall i$$

Support Vector Machine Optimization Form

A constrained convex quadratic programming problem (standard form)

$$\min_{\substack{w,b \\ w,b \\ s.t. 1 - y^i (w^T x^i + b) \le 0,}} \frac{1}{2} ||w||^2$$

• After optimization, the margin is given by $\frac{2}{\|w\|}$

Lagrangian Duality

Optimization and Lagrangian Duality

The primal problem

$$\min_{w} f(w)$$

$$s.t. g_i(w) \le 0, \qquad i = 1, 2, ..., k$$

$$h_i(w) = 0, \qquad i = 1, 2, ..., l$$

The Lagrangian function

$$L(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

 $\alpha_i \geq 0$ and β_i are called the Lagrangian multipliers

The KKT Conditions

The Lagrangian function

$$L(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

• If there exists some **saddle point** of *L*, then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial L}{\partial w} = 0$$

$$g_i(w) \le 0, \quad h_i(w) = 0$$

3. Dual feasibility:

$$\alpha_i \geq 0$$

4. Complementary slackness:

$$\alpha_i g_i(w) = 0$$

Properties of Lagrangian

- For any feasible dual variables (Lagrangian multipliers) $\alpha_i \geq 0$ and β_i
- We have:

$$\min_{\substack{w \text{ feasible:} \\ g_i(w) \le 0, \ h_i(w) = 0 \ \forall i}} f(w) \ge \inf_{\substack{w \\ \text{Why?}}} L(w, \alpha, \beta)$$

• This is great! Can we find the best lower bound by optimizing over $\alpha_i \geq 0$ and β_i ?

$$\min_{\substack{w \text{ feasible:} \\ g_i(w) \le 0, \ h_i(w) = 0 \ \forall i}} f(w) \ge \max_{\substack{\alpha, \beta \text{ feasible } w \\ \alpha_i \ge 0 \ \forall i}} \inf_{w} L(w, \alpha, \beta)$$

Lagrangian Dual Problem

Dual problem: maximizing the lower bound

```
\max_{\substack{\alpha,\beta \text{ feasible } w \\ \alpha_i \ge 0 \ \forall i}} \inf_{w} L(w,\alpha,\beta)
```

- Dual objective: $g(\alpha, \beta) := \inf_{w} L(w, \alpha, \beta) = \inf_{w} f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$
- Dual variables: α , β
- Dual constraints: $\alpha \geq 0$
- Dual problem (in a different form):

$$\max_{\alpha,\beta} g(\alpha,\beta)$$
s. t. $\alpha \ge 0$

Strong and Weak Duality

Primal problem:

$$p^* = \min_{w} f(w)$$

$$s.t. g_i(w) \le 0, \qquad i = 1, 2, ..., k$$

$$h_i(w) = 0, \qquad i = 1, 2, ..., l$$

Dual problem: maximizing the lower bound

$$d^* = \max_{\substack{\alpha,\beta \text{ feasible} \\ \alpha_i \ge 0 \ \forall i}} g(\alpha,\beta), \qquad \text{where } g(\alpha,\beta) = \inf_{w} L(w,\alpha,\beta)$$

- Duality gap: $p^* d^* \ge 0$
 - Weak duality: we know that $p^* \ge d^*$ always holds
 - Strong duality: $p^* d^* = 0$

SVM Dual Problem

Dual Problem of Support Vector Machines

$$\min_{w,b} \frac{1}{2} ||w||^2$$

$$s.t.1 - y^i(w^\top x^i + b) \le 0, \qquad \forall i$$

The Lagrangian function

$$L(w,b,\alpha) = \frac{1}{2}w^{\mathsf{T}}w + \sum_{i=1}^{n} \alpha_i \left(1 - y^i (w^{\mathsf{T}}x^i + b)\right)$$

Deriving the Dual Problem

•
$$L(w,b,\alpha) = \frac{1}{2}w^{\mathsf{T}}w + \sum_{i=1}^{n} \alpha_i \left(1 - y^i(w^{\mathsf{T}}x^i + b)\right)$$

• Dual objective: $g(\alpha) := \inf_{w,b} L(w,b,\alpha)$

Taking derivative and set to zero to find optimal w and b

$$\frac{\partial L}{\partial w} = w^* - \sum_{i=1}^n \alpha_i y^i x^i = 0$$
$$\frac{\partial L}{\partial b} = \sum_{i=1}^n \alpha_i y^i = 0$$

Plug Back the Relation of w and b

$$g(\alpha) \coloneqq L(w^*, b^*, \boldsymbol{\alpha}) = \frac{1}{2} w^{*\mathsf{T}} w^* + \sum_{i=1}^n \alpha_i \left(1 - y^i (w^{*\mathsf{T}} x^i + b) \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \alpha_i y^i x^i \right)^{\mathsf{T}} \left(\sum_{j=1}^{n} \alpha_j y^j x^j \right) + \sum_{i=1}^{n} \alpha_i \left(1 - y^i \left(\left(\sum_{j=1}^{n} \alpha_j y^j x^j \right)^{\mathsf{T}} x^i + b \right) \right)$$

$$= \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y^{i} y^{j} \left(x^{i} x^{j} \right) - b \sum_{i=1}^{n} \alpha_{i} y^{i}$$

The Dual Problem of SVM

$$\max_{\alpha} g(\alpha) \coloneqq \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y^{i} y^{j} \left(x^{i} x^{j} \right)$$

$$s.t. \alpha_{i} \ge 0 \quad \forall i = 1, 2, ..., m$$

$$\sum_{i=1}^{n} \alpha_{i} y^{i} = 0$$

Remember to put constraints back!

- This is a constrained quadratic program
- Nice and concave, and global maximum can be found
- How to use the dual solution α to make prediction/classification?

Inference and Support Vectors

Support Vectors

- Note that the KKT condition $\alpha_i g_i(w) = 0$ (complementary slackness) $\alpha_i \left(1 y^i(w^\top x^i + b)\right) = 0$
 - For data points with $(1 y^i(w^Tx^i + b)) < 0$, then $\alpha_i = 0$
 - For data points with $(1 y^i(w^Tx^i + b)) = 0$, then $\alpha_i \ge 0$

Call the training data points whose α_i 's are nonzero the **support vectors** (SV)

Those points that support the margins

Classification by Support Vectors

Recall that we have:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^i x^i$$

• Pick any data point with $\alpha_i > 0$ to compute b by: $1 - y^i(\mathbf{w}^{\mathsf{T}} x^i + b) = 0$

Slide 20:

Deriving the Dual Problem

- $L(w, b, \boldsymbol{\alpha}) = \frac{1}{2} w^{\mathsf{T}} w + \sum_{i=1}^{n} \alpha_i \left(1 y^i (w^{\mathsf{T}} x^i + b) \right)$
- Dual objective: $g(\alpha) := \inf_{w,b} L(w,b,\alpha)$
- Taking derivative and set to zero to find optimal w and b

$$\frac{\partial L}{\partial w} = w^* - \sum_{i=1}^n \alpha_i y^i x^i = 0$$
$$\frac{\partial L}{\partial b} = \sum_{i=1}^n \alpha_i y^i = 0$$

- For a new test point z
 - Compute

$$\mathbf{w}^{\mathsf{T}}z + b = \left(\sum_{i=1}^{n} \alpha_{i} y^{i} \left(x^{i^{\mathsf{T}}}z\right)\right) + b = \left(\sum_{i \in support \ vectors} \alpha_{i} y^{i} \left(x^{i^{\mathsf{T}}}z\right)\right) + b$$

- Classify z as class 1 if the result is negative (or $w^Tx + b \le -c$)
- Classify z as class 2 if the result is positive (or $w^Tx + b \ge c$)

Interpretation of Support Vector Machines

- The optimal solution $w = \sum_{i=1}^{n} \alpha_i y^i x^i$ is a linear combination of a small number of data points. This is a sparse and memory friendly representation.
- To use support vector machines, we need to specify only the inner products (or kernel) between the examples x^{i} x^{j}
- We make decisions by comparing each new example z with only the support vectors:

$$y^* = sign\left(\left(\sum_{i \in support\ vectors} \alpha_i y^i \left(x^{i^{\mathsf{T}}} z\right)\right) + b\right)$$

Kernel (nonlinear) SVM

Support Vector Machine (Dual Problem)

$$\max_{\alpha} g(\alpha) \coloneqq \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y^i y^j \left(x^{i^{\mathsf{T}}} x^j \right)$$

$$s.t. \alpha_i \ge 0 \quad \forall i = 1, 2, ..., m$$

$$\sum_{i=1}^{n} \alpha_i y^i = 0$$

Kernel SVM

$$\max_{\alpha} g(\alpha) \coloneqq \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y^{i} y^{j} K(x^{i}, x^{j})$$

$$s.t. \alpha_{i} \ge 0 \quad \forall i = 1, 2, ..., m$$

$$\sum_{i=1}^{n} \alpha_{i} y^{i} = 0$$

- Kernel K(x, x') measures the similarity of any pair $x, x' \in X$
 - General kernel: $K: X \times X \to \mathbb{R}$
 - Inner product-like kernel: $K(x, x') = \langle \phi(x), \phi(x') \rangle_V$, where $\phi: X \to V$
 - Map the data points x^i into a higher-dimensional space $\phi(x^i)$ where the separation becomes easier.

Kernel SVM

- What kernel to use in SVM?
 - Kernel K(x, x') measures the similarity between two points $x, x' \in X$
 - Pick your similarity measure!

Advantage of SVM (Primal v.s. Dual)

Short answer: kernel

Long answer: keeerrneeel

- Primal: no good kernel extension
- Dual: naturally extend to different kernels
- Primal: learns w, b and classifies z by computing $w^Tz + b$
- Dual: learns α and classifies z by computing $\sum_{i \in support\ vectors} \alpha_i y^i \left(x^{i^{\mathsf{T}}} z \right) + b$

Outline

- Supervised Learning
 - Support Vector Machine (SVM)
 - Decision boundary
 - Maximum margin problem
 - Lagrangian duality
 - Dual problem of SVM
 - Inference and support vectors
 - Kernel SVM
 - Soft-margin SVM (Sep 22nd)

