Message Integrity

This slide is made based the online course of Cryptography by Dan Boneh

Message Integrity

Goal: **integrity**, no confidentiality.

Examples:

- Protecting public binaries on disk.
- Protecting banner ads on web pages.

Message integrity: MACs

Def: **MAC** I = (S,V) defined over (K,M,T) is a pair of algs:

- S(k,m) outputs t in T
- V(k,m,t) outputs 'yes' or 'no'

Integrity requires a secret key

• Attacker can easily modify message m and re-compute CRC.

CRC designed to detect <u>random</u>, not malicious errors.

Secure MACs

Attacker's power: chosen message attack

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

produce some <u>new</u> valid message/tag pair (m,t).

$$(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$$

- ⇒ attacker cannot produce a valid tag for a new message
- \Rightarrow given (m,t) attacker cannot even produce (m,t') for t' \neq t

Secure MACs

• For a MAC I=(S,V) and adv. A define a MAC game as:

Def: I=(S,V) is a **secure MAC** if for all "efficient" A:

 $Adv_{MAC}[A,I] = Pr[Chal. outputs 1]$ is "negligible."

Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that

 $S(k, m_0) = S(k, m_1)$ for ½ of the keys k in K

Can this MAC be secure?

- \bigcirc Yes, the attacker cannot generate a valid tag for m_0 or m_1
- No, this MAC can be broken using a chosen msg attack
- It depends on the details of the MAC

Let I = (S,V) be a MAC.

Suppose S(k,m) is always 5 bits long

Can this MAC be secure?

- No, an attacker can simply guess the tag for messages
- It depends on the details of the MAC
- Yes, the attacker cannot generate a valid tag for any message

Example: protecting system files

Suppose at install time the system computes:

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password

Then: secure MAC ⇒ all modified files will be detected

End of Segment

Message Integrity

MACs based on PRFs

Review: Secure MACs

MAC: signing alg. $S(k,m) \rightarrow t$ and verification alg. $V(k,m,t) \rightarrow 0,1$

Attacker's power: chosen message attack

• for $m_1, m_2, ..., m_q$ attacker is given $t_i \leftarrow S(k, m_i)$

Attacker's goal: existential forgery

produce some <u>new</u> valid message/tag pair (m,t).

$$(m,t) \notin \{ (m_1,t_1), ..., (m_q,t_q) \}$$

⇒ attacker cannot produce a valid tag for a new message

Secure PRF \Rightarrow Secure MAC

For a PRF $\mathbf{F}: \mathbf{K} \times \mathbf{X} \longrightarrow \mathbf{Y}$ define a MAC $I_F = (S,V)$ as:

- S(k,m) := F(k,m)
- V(k,m,t): output 'yes' if t = F(k,m) and 'no' otherwise.

A bad example

Suppose $F: K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a secure MAC system?

- Yes, the MAC is secure because the PRF is secure
- $\sqrt{\ }$ No tags are too short: anyone can guess the tag for any msg
 - It depends on the function F
 - \bigcirc

Security

<u>Thm</u>: If **F**: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e. |Y| is large) then I_F is a secure MAC.

In particular, for every eff. MAC adversary A attacking I_F there exists an eff. PRF adversary B attacking F s.t.:

$$Adv_{MAC}[A, I_F] \leq Adv_{PRF}[B, F] + 1/|Y|$$

 \Rightarrow I_F is secure as long as |Y| is large, say |Y| = 2⁸⁰.

Proof Sketch

Suppose $f: X \longrightarrow Y$ is a truly random function

Then MAC adversary A must win the following game:

A wins if t = f(m) and $m \notin \{m_1, ..., m_a\}$

$$\Rightarrow$$
 Pr[A wins] = $1/|Y|$ same must hold for F(k,x)

Examples

AES: a MAC for 16-byte messages.

Main question: how to convert Small-MAC into a Big-MAC ?

- Two main constructions used in practice:
 - CBC-MAC (banking ANSI X9.9, X9.19, FIPS 186-3)
 - HMAC (Internet protocols: SSL, IPsec, SSH, ...)

Both convert a small-PRF into a big-PRF.

Truncating MACs based on PRFs

```
Easy lemma: suppose F: K \times X \longrightarrow \{0,1\}^n is a secure PRF. Then so is F_t(k,m) = F(k,m)[1...t] for all 1 \le t \le n
```

⇒ if (S,V) is a MAC is based on a secure PRF outputting n-bit tags
 the truncated MAC outputting w bits is secure
 ... as long as 1/2^w is still negligible (say w≥64)

End of Segment

Message Integrity

CBC-MAC and **NMAC**

MACs and PRFs

Recall: secure PRF $\mathbf{F} \Rightarrow$ secure MAC, as long as |Y| is large S(k, m) = F(k, m)

Our goal:

given a PRF for short messages (AES) construct a PRF for long messages

From here on let $X = \{0,1\}^n$ (e.g. n=128)

Construction 1: encrypted CBC-MAC

Construction 2: NMAC (nested MAC)

Why the last encryption step in ECBC-MAC and NMAC?

NMAC: suppose we define a MAC I = (S,V) where

$$S(k,m) = cascade(k, m)$$

- This MAC is secure
- This MAC can be forged without any chosen msg queries
- This MAC can be forged with one chosen msg query
- This MAC can be forged, but only with two msg queries

Why the last encryption step in ECBC-MAC?

Suppose we define a MAC $I_{RAW} = (S,V)$ where

$$S(k,m) = rawCBC(k,m)$$

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- Choose an arbitrary one-block message m∈X
- Request tag for m. Get t = F(k,m)
- Output t as MAC forgery for the 2-block message (m, t⊕m)

Indeed: rawCBC(k, (m, $t \oplus m$)) = F(k, F(k,m) \oplus (t \oplus m)) = F(k, $t \oplus$ (t \oplus m)) = t

Collision resistance

This slide is made based the online course of Cryptography by Dan Boneh

Collision Resistance

```
Let H: M \rightarrowT be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0, m_1 \in M such that:

H(m_0) = H(m_1) and m_0 \neq m_1
```

A function H is <u>collision resistant</u> if for all (explicit) "eff" algs. A:

Adv_{CR}[A,H] = Pr[A outputs collision for H]

is "neg".

Example: SHA-256 (outputs 256 bits)

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES) Let H: $M^{big} \rightarrow M$

Def: $I^{big} = (S^{big}, V^{big})$ over (K, M^{big}, T) as:

$$S^{big}(k,m) = S(k,H(m))$$
; $V^{big}(k,m,t) = V(k,H(m),t)$

Thm: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance

```
S^{big}(k, m) = S(k, H(m)); V^{big}(k, m, t) = V(k, H(m), t)
```

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$

step 2: output (m₁, t) as forgery

Protecting file integrity using C.R. hash

Software packages:

When user downloads package, can verify that contents are valid

H collision resistant ⇒ attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space

End of Segment

Collision resistance

Generic birthday attack

Generic attack on C.R. functions

Let H: M \rightarrow {0,1}ⁿ be a hash function (|M| >> 2ⁿ)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_2^{n/2}$ (distinct w.h.p)
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

How well will this work?

The birthday paradox

Let $r_1, ..., r_n \in \{1,...,B\}$ be indep. identically distributed integers.

Thm: when
$$n = 1.2 \times B^{1/2}$$
 then $Pr[\exists i \neq j: r_i = r_i] \ge \frac{1}{2}$

Proof: (for <u>uniform</u> indep. r_1 , ..., r_n)

$$\Pr\left[\exists \ i \neq j : r_i = r_j\right] = 1 - \Pr\left[\forall i \neq j : r_i \neq r_j\right]$$

$$= 1 - \left(\frac{B-1}{B}\right) \left(\frac{B-2}{B}\right) \dots \left(\frac{B-n+1}{B}\right) = 1 - \prod_{i=1}^{n-1} \left(1 - \frac{i}{B}\right) \ge 1 - \prod_{i=1}^{n-1} e^{-\frac{i}{B}}$$

$$= 1 - e^{-\frac{1}{B}\sum_{i=1}^{n-1} i} \ge 1 - e^{-\frac{n^2}{2B}} \ge 1 - e^{-0.72} = 0.53 > 1/2$$

$$1 - x \le e^{-x}, \frac{n^2}{2B} = 0.72$$

Generic attack

- H: $M \rightarrow \{0,1\}^n$. Collision finding algorithm:
- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_2^{n/2}$
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0, 1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

^{*} best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

Quantum Collision Finder

	Classical algorithms	Quantum algorithms
Block cipher E: K × X → X exhaustive search	O(K)	O(K ^{1/2})
Hash function H: M → T collision finder	O(T ^{1/2})	O(T ^{1/3})

End of Segment

Collision resistance

The Merkle-Damgard Paradigm

Collision resistance: review

Let H: M \rightarrow T be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for **short** messages, construct C.R. function for **long** messages

The Merkle-Damgard iterated construction

Given $h: T \times X \longrightarrow T$ (compression function)

we obtain $H: X^{\leq L} \longrightarrow T$. H_i - chaining variables

PB: padding block

If no space for PB add another block

MD collision resistance

Thm: if h is collision resistant then so is H.

Proof: collision on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

$$IV = H_0$$
 , H_1 , ... , H_t , $H_{t+1} = H(M)$
 $IV = H_0'$, H_1' , ... , H'_{r} , $H'_{r+1} = H(M')$

If $[H_t \neq H'_r \ or M_t \neq M'_r \ or \ PB \neq PB'] \Rightarrow$ We have a collission on h. Stop.

$$h(H_t, M_t \parallel PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r \parallel PB')$$

Otherwise, Suppose
$$H_t = H'_r$$
 and $M_t = M'_r$ and $PB = PB'$

Then:
$$h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})$$

If $[H_t \neq H'_{t-1} \ or M_t \neq M'_{t-1}]$ then we have a collision on h. Stop.

Otherwise, $H_t \neq H'_{t-1}$ and $M_t \neq M'_t$ and $M_{t-1} = M'_{t-1}$ Iterate all the way to beginning and either:

(1)find collision on h,or

(2)
$$\forall i: M_i = M'_i \Longrightarrow M = M'$$
 (Cannot happen because M, M' are collision on H.)

⇒ To construct C.R. function,
suffices to construct compression function

End of Segment

Collision resistance

HMAC: a MAC from SHA-256

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: X^{≤L} → **T** a C.R. Merkle-Damgard Hash Function

Attempt #1: $S(k, m) = H(k \parallel m)$

This MAC is insecure because:

Given H(k||m) can compute H(w||k||m||PB) for any w. Given H(k||m) can compute H(k||m||w) for any w. Given H(k||m) can compute H(k||m||PB||w) for any w. Anyone can compute H(k||m) for any m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256; output is 256 bits

Building a MAC out of a hash function:

HMAC: $S(k, m) = H(k \oplus \text{opad } || H(k \oplus \text{ipad } || m))$

HMAC in pictures

Similar to the NMAC PRF.

main difference: the two keys k_1 , k_2 are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Security bounds similar to NMAC
 - Need $q^2/|T|$ to be negligible $(q \ll |T|^{\frac{1}{2}})$

In TLS: must support HMAC-SHA1-96

End of Segment