

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P1

EXEMPLAR 2013

MEMORANDUM

MARKS: 150

This memorandum consists of 13 pages.

1.1.1	(2x-1)(x+5) = 0	
	$x = \frac{1}{2} \mathbf{OR} x = -5$	✓✓ answers (2)
1.1.2	$2x^2 - 4x + 1 = 0$	
	$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(1)}}{2(2)}$	✓ substitution into correct formula
	$x = \frac{4 \pm \sqrt{8}}{4}$ $4 + \sqrt{4} = 2$	
	$x = \frac{4 \pm \sqrt{4 \cdot 2}}{4}$ $x = \frac{4 \pm 2\sqrt{2}}{4}$	
	$x = \frac{4}{4}$ $x = \frac{2(2 \pm \sqrt{2})}{4}$	
	$x = \frac{2 \pm \sqrt{2}}{2}$	✓✓ answers (3)
1.2.1	$125^{\frac{2}{3}}$	
	$=(5^3)^{\frac{2}{3}}$	$\checkmark 5^3$
	$= 5^2$ $= 25$	✓ answer (accept 25 or 5 ²)
1.2.2	$(3\sqrt{2}-12)(2\sqrt{2}+1)$	$\checkmark 6.2 + 3\sqrt{2}$
	$= 6.2 + 3\sqrt{2} - 24\sqrt{2} - 12$	$\sqrt{-24\sqrt{2}-12}$
	$= 6.2 + 3\sqrt{2} - 24\sqrt{2} - 12$ $= -21\sqrt{2}$	✓answer
	$=-21\sqrt{2}$	(3)
1.3.1	3x - 9 = 0	$\checkmark 3x - 9 = 0$
	3x = 9	✓ answer (2)
1.3.2	x = 3 $x = 3$	
1.5.2	$\frac{x^2 - x - 6}{3x - 9} = \frac{(x - 3)(x - 2)}{3(x - 3)}$	$\checkmark (x-3)(x-2)$ $\checkmark 3(x-3)$ $\checkmark \text{answer}$
		✓answer
	$=\frac{x-2}{3}$	(3) [15]

2.1.1	(x+2)(x-3) < -3x+2	
	$x^2 - x - 6 + 3x - 2 < 0$	
	$x^2 + 2x - 8 < 0$	✓ standard form
	(x+4)(x-2)<0	✓ factors
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\checkmark -4 < x$
	-4 < x < 2	$\checkmark x < 2$
2.1.2	$x^2 + 2x - 8 < 0$	(4)
2.1.2	$\begin{vmatrix} x + 2x - 8 < 0 \\ -4 < x < 2 \end{vmatrix}$	\checkmark -4 < x < 2
	Sum of integers = $(-3)+(-2)+(-1)+(0)+(1)$	✓ -3, -2, -1, 0, 1
	= -5	✓ answer (3)
		(3)
2.2.1	$\frac{4^{x-1} + 4^{x+1}}{17 \cdot 12^x} = \frac{4^x \cdot 4^{-1} + 4^x \cdot 4^1}{17 \cdot 3^x \cdot 4^x}$	
	$=\frac{4^{x}(4^{-1}+4)}{17.3^{x}.4^{x}}$	
	$= \frac{4^x \left(\frac{1}{4} + 4\right)}{17 \cdot 3^x \cdot 4^x}$	✓ factorise numerator $\checkmark 3^x . 4^x$
	$=\frac{\left(\frac{17}{4}\right)}{17.3^x}$	✓ simplification of numerator to $\frac{17}{4}$
	$=\frac{1}{4}.3^{-x}$ or $\frac{1}{4.3^x}$	✓ answer (4)
2.2.2	$\frac{4^{x-1} + 4^{x+1}}{17 \cdot 12^x} = \frac{1}{4} \cdot 3^{-x}$	
	$= \frac{1}{4}.4t$ $= t$	✓answer (1)

2.3	$3^{y} = 81^{x} \text{ and } y = x^{2} - 6x + 9$ $3^{y} = 3^{4x}$ $y = 4x$ $4x = x^{2} - 6x + 9$ $0 = x^{2} - 10x + 9$ $0 = (x - 9)(x - 1)$ $x = 9 \text{or} 1$ $y = 4(9) \text{or} 4(1)$	$ √3^y = 3^{4x} $ $ √y = 4x $ $ √4x = x^2 - 6x + 9 $ ✓ standard form ✓ factors ✓ x-values
	= 36 or 4	✓y-values
	(x; y) = (9; 36) or $(1; 4)$	(7) [19]

3.1.1	4 - 8p = 0	$\checkmark 4 - 8p = 0$
	$-8p = -4$ $p = \frac{1}{2}$ $4 - 8p < 0$	✓ answer (2)
3.1.2	$4 - 8p < 0$ $p > \frac{1}{2}$	✓ $4-8p < 0$ ✓ answer (2)
3.2.1	$\sqrt{5-x} = x+1$ $5-x \ge 0 \text{and} x+1 \ge 0$ $x \le 5 \text{and} x \ge -1$ Hence $-1 \le x \le 5$	$ \checkmark 5 - x \ge 0 $ $ \checkmark x + 1 \ge 0 $ $ \checkmark \text{ and} $ (3)
3.2.2	$5-x = x^{2} + 2x + 1$ $x^{2} + 3x - 4 = 0$ $(x+4)(x-1) = 0$ $x = -4 \text{or} x = 1$ Since $-1 \le x \le 5$, $x = 1$ only	✓ square both sides ✓ standard form ✓ factors ✓ answers ✓ selection of 1 (5)
3.2.3	x = -4	✓ answer (1) [13]

4.1	A = P(1-in)		
	=145000[1-(0.17)(5)]	✓ substitution ✓ answer	
	= R 21 750	• answer	(2)
4.2.1	$\frac{8\%}{4} = 2\%$ per quarter	✓ answer	(1)
4.2.2	$A = P(1+i)^n$		
	After 1 year, $A = P(1 + i_{eff})^{1}$ and $A = P(1 + 0.02)^{4}$		
	Hence		
	$1 + i_{eff} = (1 + 0.02)^4$	$\checkmark 1 + i_{eff} = (1 + 0.02)^4$	
	$i_{eff} = (1+0.02)^4 - 1$		
	= 0,0824	✓ answer	(2)
	The effective interest rate is 8,24% p.a.		(2)
4.3	$A = 14000 \left(1 + \frac{0.09}{2}\right)^{3} \left(1 + \frac{0.075}{12}\right)^{42}$	$\sqrt{\frac{0,09}{2}}$ $\sqrt{14000} \left(1 + \frac{0,09}{2}\right)^3$	
	= R 20 755,08	$\checkmark 14000 \left(1 + \frac{0.09}{2}\right)^3$	
		$\checkmark \frac{0.07}{12}$	
		12	
		√ 42	
		✓answer	(5)
			[10]

5.1	R 15 000	✓ answer
5.2	Girmala internat	(1)
5.2	Simple interest	✓ answer (1)
5.3	A = P(1+in)	
	31 = 15(1+6i)	() () () () () ()
		✓ substitution of (6; 31) into correct formula
	$\frac{31}{15} = 1 + 6i$	into correct formula
	$i = \left(\frac{31}{15} - 1\right) \div 6$	
	$=\frac{8}{45}$	
	= 0,1778	✓answer
	=17,78%	(2)
5.4	A = P(1+in)	
	$w = 15(1 + 0.1778 \times 12)$	$\checkmark w = 47$
	= 47	\(\nu = \frac{1}{4}\)
	$A = P(1+i)^n$	
	$47 = 15(1+i)^{12}$	\checkmark substitutes (12; w)
	$\sqrt[12]{\frac{47}{15}} = 1 + i$	47
		$\checkmark \sqrt[12]{\frac{47}{15}}$
	$i = \sqrt[12]{\frac{47}{15}} - 1 = 0.09985 = 9.99\%$	✓answer
	$i - \sqrt{\frac{15}{15}} - 1 = 0,09963 = 9,9996$	(4)
		[8]

6.1.1	Multiply $\frac{1}{8}$ by $\frac{1}{2}$	\checkmark multiply $\frac{1}{8}$	
	8 2	_	
		$\checkmark \frac{1}{2}$	
6.1.0			(2)
6.1.2	$T_n = \frac{1}{2} \left(\frac{1}{2}\right)^{n-1}$	$\checkmark a = \frac{1}{2}$ $\checkmark \left(\frac{1}{2}\right)^{n-1}$	
	OR	$\left(\frac{1}{2}\right)^{n-1}$	
	OK	(2)	(2)
			()
	$T_n = \left(\frac{1}{2}\right)^n$	✓✓ answer	(2)
			(2)
	OR		
	$T = 2^{-n}$	✓✓ answer	
6.1.2	$T_n = 2^{-n}$		(2)
6.1.3	Continuing the pattern:	✓ expand sequence	
	$\frac{1}{2}; \frac{1}{4}; \frac{1}{8}; \frac{1}{16}; \frac{1}{32}; \frac{1}{64}; \frac{1}{128}; \frac{1}{256}; \frac{1}{512}; \frac{1}{1024}$	$\checkmark n = 10$	
	Hence $n = 10$		(2)
	OR		
	$\frac{1}{2^n} = \frac{1}{1024}$	1 1	
	$\begin{vmatrix} 2 & 1024 \\ 2^{-n} = 2^{-10} \end{vmatrix}$	$\checkmark \frac{1}{2^n} = \frac{1}{1024}$	
	n=10	$\checkmark n = 10$	
			(2)
6.2.1	124	✓answer	(1)
6.2.2	$T_n = -8n + 164$	✓ - 8 <i>n</i>	(1)
		✓ +164	(2)
6.2.3	-8n+164 < 0	$\sqrt{-8n+164} < 0$	(2)
	164 < 8n		
	20,5 < n	✓ $20,5 < n$	
	Hence T_{21} is the first term to be negative.	✓answer	
			(3)

DBE/2013

6.2.4		T	
6.2.4	2a = -8		
	a = -4	$\checkmark a = -4$	
	3a + b = 156		
	3(-4)+b=156		
	b = 168	✓ substitutions $\checkmark b = 168$	
	$T_5 = -24$	7 0 - 100	
	$-4(5)^2 + 168(5) + c = -24$	✓ substitution	
	c = -764	✓ c = -764	
	$T_n = -4n^2 + 168n - 764$	$C = -764 \tag{5}$)
	"		,
	OR		
	$T_5 = -24$ (given)		
	$T_6 = -24 + 124$	(T 100	
	= 100	$T_6 = 100$	
	$T_n = -4n^2 + bn + c$	$\checkmark a = -4$	
	$-24 = -4(5)^2 + b(5) + c$	7 u – 4	
	$76 = 5b + c \qquad \dots (1)$	✓ substitutions	
	$100 = -4(6)^2 + b(6) + c$		
	244 = 6b + c (2)	✓b = 168	
	168 = b $(2) - (1)$	✓ <i>c</i> = – 764	
	c = -764	$\begin{array}{c c} \mathbf{v} & c = -764 \end{array} \tag{5}$)
	OR		,
	$T_5 = -24$ (given)	(m , 1 % c	
	$T_4 = -24 - 132$	$\checkmark T_4 = -156$	
	=-156		
	$T_n = -4n^2 + bn + c$	$\checkmark a = -4$	
	$-24 = -4(5)^2 + b(5) + c$		
	$76 = 5b + c \qquad \dots (1)$	✓ substitutions	
	$-156 = -4(4)^2 + b(4) + c$		
	$-92 = 4b + c \qquad \dots (2)$	✓b = 168	
	168 = b $(1) - (2)$	✓ <i>c</i> = – 764	
	c = -764	$\checkmark c = -764 $ (5))
		[17]	

✓introduce variables

$$y = x + 12$$

$$T_3 = 0 + x = x$$
 AND $T_3 + y = 0$ $y = -x$

$$\checkmark T_3 = x$$

$$\checkmark v = -x$$

AND
$$y = x + 12$$

$$\checkmark y = x + 12$$

Hence
$$-x = x + 12$$
$$-2x = 12$$

$$\checkmark - x = x + 12$$

$$x = -6$$

✓answer

[6]

OR

$$2a = 12$$

$$\mathbf{a} = \mathbf{6} \qquad \qquad T_n = 6n^2 + bn + c$$

$$\checkmark a = 6$$

$$n = 2$$
 and $n = 4$:

$$\checkmark 24 + 2b + c = 0$$

$$24 + 2b + c = 0$$

$$96 + 4b + c = 0$$

$$72 + 2b = 0$$

$$2b = -72$$

$$b = -36$$

$$✓ b = -36$$

$$24 - 72 + c = 0$$

$$c = 48$$

$$✓ c = 48$$

$$T_n = 6n^2 - 36n + 48$$

$$T_3 = 6(3)^2 - 36(3) + 48$$

$$=102-108$$

$$= -6$$

✓answer

[6]

10 NSC – Grade 11 Exemplar – Memorandum

QUESTION 8

8.1	x = 3	✓ answer	
	y = -1	✓ answer	
			(2)
8.2	$R; x \neq 3$	$\checkmark R$	
		$\checkmark x \neq 3$	(2)
	OR		(2)
	$(-\infty;3)\cup(3;\infty)$	$\checkmark (-\infty;3)$ $\checkmark (3;\infty)$	
		√ (3;∞)	
			(2)
8.3	$d = \tan 76^{\circ}$	$\checkmark d = \tan 76^{\circ}$	
	d = 4	$\checkmark d = 4$	
	6 = 4(3) + e		
	e = -6	✓ e = -6	
	g(x) = 4x - 6		(3)
8.4			
	$\frac{2}{x-3} - 1 = 4x - 6$	✓ equating	
	$\frac{2}{x-3} = 4x-5$		
	$\frac{1}{x-3} = 4x-3$./ simplification	
	2 = 4x(x-3) - 5(x-3)	✓ simplification	
	$2 = 4x^2 - 12x - 5x + 15$		
	$0 = 4x^2 - 17x + 13$	✓ standard form	
	0 = (4x - 13)(x - 1)	✓ factors	
	$x = \frac{13}{4}$ or $x = 1$	✓ x-values	
	T		
	$y = 4\left(\frac{13}{13}\right) - 6$ or $y = 4(1) - 6$		
	(4)	✓ y-values	
	$y = 4\left(\frac{13}{4}\right) - 6$ or $y = 4(1) - 6$ y = 7 or $y = -2$		
	Points of intersection are A $(1; -2)$ and C $(\frac{13}{4}; 7)$		(6)
8.5	13 OP [1.2) [13]	✓ 1 ≤ x	
	$1 \le x < 3 \text{ or } x \ge \frac{13}{4} \mathbf{OR} x \in [1; 3) \cup \left[\frac{13}{4}; \infty\right]$	$\checkmark x < 3$ $\checkmark x \ge \frac{13}{4}$	
		$\sqrt{x} > \frac{13}{x}$	
		4	
0.5		(2	(3)
8.6	y = (x-3)-1	$\checkmark x-3$ $\checkmark -1$	
	y = x - 4	✓ answer	
	OR	· answer	(3)
	y = x + c	,	
	Substitute $(3; -1)$	✓✓ substitute $(3;-1)$	
	-1 = 3 + c	✓answer	
	c = -4		(3)
			[10]
	y = x - 4		[19]

Mathematics/PI 11 DBE/2013

QUESTION 9

9.1	(1; 4) 3 (1; 4) 3 (1; 4) (1; 4) (1; 4) (1; 4) (1; 4)	f: ✓ shape ✓ x-int ✓ y-int ✓ turning point
	-1 -2 -	g: ✓ shape ✓ x-int ✓ y-int ✓ asymptote
	$\begin{vmatrix} (x-3)(x+1)=0 & 2=2 \\ x=3 & or & x=-1 \\ x=0 \end{vmatrix}$	
	$x = \frac{-2}{2(-1)} = 1$	
	$y = -(1)^2 + 2(1) + 3 = 4$	(0)
9.2	f(0) - f(-3)	(9) ✓ correct formula
	Average gradient = $\frac{f(0) - f(-3)}{0 - (-3)}$ 3 - (-12)	$\checkmark f(-3) = -12$
	$= \frac{3 - (-12)}{3}$ = 5	✓ answer (3)
9.3	$-1 \le x \le 0$ or $x \ge 3$	$\begin{array}{c} \checkmark -1 < x \\ \checkmark x < 0 \\ \checkmark x > 3 \end{array}$ (3)
9.4	Given: $f(x)+c=0$ has one solution/equal roots	
	i.e. $f(x) = -c$ has one solution $\Rightarrow -c = f(1) = 4$ $\Rightarrow c = -4$	\checkmark - c = f(1) \checkmark answer (2)
	OR	
	h is f translated 4 units down y -intercept of h will then be at -1	\checkmark 3+c=-1 \checkmark answer
	$\therefore 3 + c = -1$	(2)
9.5	c = -4 $(0; 1)$	✓ ✓ (0;1)
9.6	$k(x) = 1 - 2^{-x}$	(2) ✓ answer
		(1) [20]

QUESTION 11

11.1	No, W and T are not mutually exclusive	✓ not mutually exclusive
	Because $P(W \text{ and } T) \neq 0$	\checkmark P(W and T) \neq 0
		(2)
	OR	
	No, W and T are not mutually exclusive	✓ not mutually exclusive
	Because $P(W \text{ or } T) = 0.61 \neq 0.75 = P(W) + P(T)$	$\checkmark P(W \text{ or } T) \neq P(W) + P(T)$
		(2)
11.2	$P(W \text{ and } T) = 0.14 \qquad (given)$	
	and	
	$P(W) \times P(T) = 0.4 \times 0.35$	
	=0,14	$\checkmark P(W) \times P(T) = 0.14$
	\Rightarrow P(W and T) = P(W)×P(T)	\checkmark P(W and T) = P(W)×P(T)
	Therefore yes, W and T are independent events	✓ conclusion (yes)
		(3)
		[5]

12.1.1	a=5	$\checkmark a = 5$	
	b = 4	$\checkmark b = 4$	
	c = 8	✓ c = 8	
	d = 1	$\checkmark d = 1$	
	e = 6	$\checkmark e = 6$	
			(5)
12.1.2	6	✓answer	` '
			(1)
12.1.3	4	✓ answer	
	$\frac{4}{33}$		(1)
12.1.4		✓ answer	
12.1.4	$\frac{4+3+2+a+b+c}{33} = \frac{26}{33}$	answer	(1)
	33 33		(1)
10.0			
12.2	Mathematics $P(G \text{ and } M) = 0.27$		
	$0.45 \qquad \text{Mathematics} \qquad \text{P(G and M)} = 0.27$		
	girl		
	06		
	0.55 Mathematical Literacy P(G and ML) = 0.33		
	Mathematics $P(B \text{ and } M) = 0.14$	(0.4	
	$0.35 \qquad \text{Mathematics} \qquad \qquad P(B \text{ and } M) = 0.14$	v 0,4	
	boy	✓0,4 ✓0,45 ✓0,35	
		∨ 0,35	
	0.65 Mathematical Literacy $P(B and ML) = 0.26$		
	D/M 4		
	P(Mathematics) = P(G and M) + P(B and M)	(D(C 1M) 0.27	
	=(0,6)(0,45)+(0,4)(0,35)	\checkmark P(G and M) = 0,27	
	=0,27+0,14	✓ $P(B \text{ and } M) = 0.14$	
	=0,41	✓answer	
			(6)
			[14]

TOTAL: 150