Let R and S be 2 relations. R has 10.000 records; a page can hold 10 R records. S has 2.000 records; a page can hold 10 S records.

1. 52 buffer pages are available. Compute the cost of:

SELECT *

FROM R INNER JOIN S ON R.a = S.b

using page-oriented nested loops join and block nested loops join; S is the outer relation.

Let R and S be 2 relations. R has 10.000 records; a page can hold 10 R records. S has 2.000 records; a page can hold 10 S records.

2. Compute the cost of sorting R using external merge sort with 200 buffer pages.

Let R and S be 2 relations. R has 10.000 records; a page can hold 10 R records. S has 2.000 records; a page can hold 10 S records.

3. R is stored at București, S is stored at Cluj-Napoca. Compute the cost of:

SELECT *
FROM R INNER JOIN S ON R.a = S.b

using *simple nested loops join (tuple-oriented)* in Cluj-Napoca, without caching; S is the outer relation.

4. Encode the data *de gustibus non disputandum* using the secret encryption key *metallica* and the table of codes below. Write the last 5 characters in the result.

	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	w	х	У	Z	-
00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27