

Land Value AIBETA

API Documentation 2020

Service Overview

The Ag-Analytics® Land Value AI provides timely and accurate estimation of any given parcel on any specific day. The current version of Land Value has two types of estimations: Auto Comps takes the comparables referring to properties with characteristics that are similar to the target parcel whose value is being estimated. AI models were trained on the real historical and near-real-time climate, agriculture, and economic data. It provides a science-based and big-data-based estimations on the parcel value.

Model Specifications

The real farmland sales information which both estimations – Auto Comps and AI Models of the Land Value AI are developed upon is powered by <u>FarmlandFinder</u>. Besides the real-time parcel sales information, AL models take three factors into the model training which are Climate, agriculture data, and the most up to date economic data.

AI Model Data Overview

7 11 101	Al Model Data Overview								
Factor	Variables	Data Retrieved Time	Description						
Sales	Location	NA	Location is critical in the parcel/land value estimation. Farmlands sold in Florida may have quite different prices as farmlands in						
	Area	NA	Minnesota.						
	Price	NA							
Climate	PRISM	Monthly Average of 30 years	The local climate may also affect the farmland basic characteristics which largely determine that land values. PRISM provides the monthly average temperature and precipitation if the past 30 years by the sold year. CMIP5Climate provides the projection weather in 2050 and 2070.						
	CMIP5Climate	Monthly Average in 2050, and 2070							
Agriculture	CDL	The past 5 years	Crop rotation, productivity indexes, and elevation are the moimportant characteristics of the farmland parcels. The variab in this category reflect the productivity and fertility of the parcel						
	Soil pH	NA	For example, National Commodity Crop Productivity Inde (NCCPI) indicates the productivity of the soil. The source of Elevation is from USGS 10-meter Digital Elevation Model. Associated Elevation / Topplomy indexes are salculated.						
	National Commodity Crop Productivity Index (NCCPI)	NA	Model. Associated Elevation/ Topology indexes are calculat with Ag-Analytics Elevation Index API. These indexes provide t local elevation variance.(For further description of the DE Service API and Elevation Index API, please check out API.						
	Elevation and Indexes	NA	Analytics API developer portal.)						
Economics	Treasury	One year after sale year	Land value is largely influenced by the market. For example, if the next year's corn futures settlement price is higher than it in						
	Commodity futures	One year after sale year	last month, then the corn price is expected to be higher next year. It is likely to make the corn farmland price higher compared to the price of this farmland last month.						
	Federal Interests Rate	One year after sale year							

Auto Comps Overview

Comparables(Comps) is the term used on real estate appraisal. It refers to the properties within certain query criteria that have similar characteristics to the target property whose value is being sought. Auto Comps in Ag-Analytics® Land Value AI is based on near real-time farmland sales information. It will automatically match the properties having similar geographical and temporal characteristics with the target land/parcel. Geographically, the Auto Comps will only get the lands/parcels located within a certain distance and filter out the lands/parcels that are far away from the target. After applied the geographic filter, Auto Comps will generate a 180-day searching window as the temporal filter which is based on the expected sale date user passed in. Then The temporal filter will exclude any lands/parcel with listing/sold time are not in this 180-day window. The unit of results is \$/acre. The results will be grouped by sale condition which is either 'Sold' or 'For Sale'. Additional statistical information of the price is also provided in the results.

Figure 1 Auto Comps Results Boxplot

Figure 2 Illustration of Auto Comps Filters

POST Request

API: 6 Here

Header Parameters Execute Type: POST

content-type: "application/json"

API Specifications

Request Parameters

Parameter	Data Type	Required?	Default	Options	Description
aoi	GeoJSON in string	Yes	-	-	Geometry of area of Interest in GeoJSON format. Need to be passed into the API as string
model	String	No	Linear	'Linear', 'Tree', 'RF', 'Auto'	Model options: Linear: Multiple Linear Regression Tree: Decision Tree Regression RF: Random Forest Regression Auto: Auto Comps
Sale_Date	String	Yes	-	-	Expected sale date in 'yyyy-mm-dd' format. EX: '2020-04-20'

Response Parameters

Parameter	Туре	Description		
Model	String	Model name of Land Value. 'Auto'		
status	String	Status of the API call. 'SUCCESS' or 'FAILED'		
msg	String	The error message when API call failed		
Result	Dictionary/float	Result of the Land value Al. In Auto Comps, the Result is a dictionary. The results will be grouped by sale condition: 'Sold' or 'For Sale'		
Parameters in Result				
Parcel_Area	Float	Parcel area in acreage.		
Total_Price	Float	Total estimated price of the entire parcel		
Sale_Date	String	Estimated sale date. User specified		
Unit	String	Unit of price. Currently default as us dollars		
Price_Acre	Float	Al Estimated Price per acre		
Percentile_10*	Float	The 10% percentile price per acre in the Auto Comps searching scope from low to high		
Percentile_90*	Float	The 90% percentile price per acre in the Auto Comps searching scop from low to high		
avg_price*	Float	Average price per acre in the Auto Comps searching scope		
max_price*	Float	Highest price per acre in the Auto Comps searching scope		
min_price*	Float	Lowest price per acre in the Auto Comps searching scope		
num_list*	Integer	Number of comparables within the Auto Comps searching scope		

Note: Parameters with * are results in Auto Comps model

Appendix

```
Figure 1 – Shape Example, GeoJSON
Figure 2 – POST Request Example
Figure 3 – POST Response Example of Auto Comps
Figure 4 – POST Response Example of AI Models
```

Figure 1.

Shape Example - GeoJSON

```
"{\"type\":\"Feature\",\"properties\":{},\"geometry\":{\"type\":\"Polygon\",\"coor dinates\":[[[-95.84165811538698,46.30405964827517],[-95.84174394607544,46.29697349504195],[-95.83659410476686,46.29691419281915],[-95.83655118942261,46.29814470078284],[-95.83831071853638,46.29817435123596],[-95.83837509155275,46.3029330408763],[-95.83831071853638,46.30303680831659],[-95.83801031112672,46.30296268873647],[-95.837699174881,46.30297010069899],[-95.83699107170106,46.30349634747375],[-95.83695888519289,46.30367423256352],[-95.8370339870453,46.30393364728336],[-95.83717346191408,46.3040003537269],[-95.8375597000122,46.30405223646016],[-95.8375597000122,46.30318504717584],[-95.84077835083009,46.30317022330798],[-95.84081053733827,46.30408188371422],[-95.84165811538698,46.30405964827517]]]}}"
```

Figure 2

Request Example – application/json

```
application/json
{'aoi':
    '{"type":"Feature","properties":{},"geometry":{"type":"Polygon","coordinates":[[[
    -95.84165811538698,46.30405964827517],[-95.84174394607544,46.29697349504195],[-
    95.83659410476686,46.29691419281915],[-95.83655118942261,46.29814470078284],[-
    95.83831071853638,46.29817435123596],[-95.83837509155275,46.3029330408763],[-
    95.83831071853638,46.30303680831659],[-95.83801031112672,46.30296268873647],[-
    95.837699174881,46.30297010069899],[-95.83699107170106,46.30349634747375],[-
    95.83695888519289,46.30367423256352],[-95.8370339870453,46.30393364728336],[-
    95.83717346191408,46.3040003537269],[-95.8375597000122,46.30405223646016],[-
    95.8375597000122,46.30318504717584],[-95.84077835083009,46.30317022330798],[-
    95.84081053733827,46.30408188371422],[-95.84165811538698,46.30405964827517]]]}}',
    'model': 'Auto',
    'Sale_Date': '2020-04-15'}
```


Figure 3

Response – application/json

```
"Model": "Auto",
 "Result": {
   "For Sale": {
      "Percentile_10": 1285.0,
      "Percentile 90": 13255.0,
      "avg_price": 4792.197782389308399065,
      "max_price": 895000.0000,
      "min_price": 26.0000,
      "num list": 811
    "Parcel Area": 51.74941101442054,
    "Sold": {
      "Percentile_10": 3549.0,
     "Percentile_90": 11100.0,
      "avg_price": 6879.141775894334,
      "max price": 69371.0,
      "min_price": 792.0,
      "num list": 318
   "Unit": "$",
   "Sale_Date": "2020-04-15"
 "status": "SUCCESS"
}
```

Figure 4

Response – application/json

```
'{
    "Result": {
        "Model": "RF",
        "Parcel_Area": 51.74941101442054,

        "Price_Acre": 10520.09,

        "Sale_Date": "2020-04-15",

        "Total_Price": 544408.4613186953,

        "Unit": "$"
    },

    "status": "SUCCESS"
}'
```


Spatial Reference Information:

Universal Transverse Mercator (UTM) Dominant Zone, North American Datum 1983

Please contact **support@analytics.ag**, **josh@ag-analytics.org**, or **woodardjoshua@gmail.com** with any comments or questions.