機械学習エンジニアコース Sprint

- DNN_深層学習 -

今回のモチベーション

目的はなにか

理解するスクラッチを通してニューラルネットワークの発展的内容を理解する。

ここでは、深層学習の基本的な知識を学びましょう

Deep Neural Network

Deep Neural Network

ネットワークの全貌を眺めてみよう。

こちらのサイトで、

隠れ層(HiddenLayers)あるいはノード数(neurons)を増減させてみよう。

さらに活性化関数(Activation)も変えてみよう。

http://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03 ®ularizationRate=0&noise=0&networkShape=54.3&seed=0.48429&showTestData=false&discretize=false&percTrainData=false&cosY=false&xinX=false&cosY=false&sinY=false&cosY=false&sinX=false&cosY=fal

深層学習の論点を知る

- ①表現能力 ←←← 今回はこれ
- ネットワークの構造に依存
- ② 汎化能力
 - ネットワークの構造&学習アルゴリズムに依存
- ③ 最適化能力
 - ネットワークの構造&学習アルゴリズムに依存

深層学習の論点を知る

ニューラルネットワークはどれだけ複雑な関数を学習できるか、いわば、その表現能力についての活発な議論は80年代後半が盛んであった。

これは、モデルはどこまで真の連続関数(1)を近似できるか (**関数近似能力**)を問うことに他ならない。

(1) 関数f(x)が定義域のすべてのxの値で連続であるとき、f(x)は連続関数である。

「3層のニューラルネット(中間層1層)のような浅いモデルでも、中間層のノード数を無限に増やせば任意の関数を任意の精度で近似できる。」

——万能近似定理より [Cybenko (1989)]

https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf

3層の \mathbb{Z}_2 一ラルネットの関数近似能力の定式化: 真の連続関数 $f:\mathbb{R}^m \to \mathbb{C}$ を以下のような $g(\mathbf{x})$ で近似する

$$g(\mathbf{x}) = \sum_{j=1}^{J} c_j \eta \left(\mathbf{a}_j \cdot \mathbf{x} - b_j \right)$$
中間層のノード

$$(a_j, b_j, c_j) \in \mathbb{R}^m \times \mathbb{R} \times \mathbb{C}$$

 $(a_j, b_j) \in \mathbb{R}^m \times \mathbb{R}$ は中間層のパラメータ

シグモイド的:
$$h(x) \to \begin{cases} 1 & (x \to \infty) \\ 0 & (x \to -\infty) \end{cases}$$

表 2.1: $g(x) := \sum_{j=1}^J c_j \eta(a_j \cdot x - b_j)$ による f(x) の近似可能性

	f	η	位相	証明方針
Irie and Miyake 1988	L^1	L^1	各点	Fourier 反転公式
Cybenko 1989	C	シグモイド	広義一様	Hahn-Banach
Hornik+ 1989	C	シグモイド	広義一様	Stone-Weierstrass
Funahashi 1989	C	有界連続か つ単調増加	広義一様	Fourier 反転公式
Carroll and Dickinson 1989	\mathcal{D}	tanh	L^2	Radon 反転公式
Mhaskar and Micchelli 1992	L^p	\mathcal{S}_0'	L^p	B-spline
Leshno+ 1993	C	\mathcal{S}_0'	広義一様	近似単位元

近似したい関数: $y = \sin 2\pi x$

ノード数 1 のNN:
$$g(\mathbf{x}) = \sum_{j=1}^{1} c_j \eta \left(\mathbf{a}_j \cdot \mathbf{x} - b_j \right)$$
中間層のノード

近似したい関数: $y = \sin 2\pi x$

ノード数 2 のNN:
$$g(\mathbf{x}) = \sum_{j=1}^{2} c_{j} \eta \left(\mathbf{a}_{j} \cdot \mathbf{x} - b_{j} \right)$$
中間層のノード

$$g(\mathbf{x}) = \sum_{j=1}^{7} c_j \eta \left(\mathbf{a}_j \cdot \mathbf{x} - b_j \right)$$

$$g(\mathbf{x}) = \sum_{j=1}^{10} c_j \eta \left(\mathbf{a}_j \cdot \mathbf{x} - b_j \right)$$

深いニューラルネットの場合

浅いニューラルネットにおいて、中間層のノードが無限にあれば、 任意の関数を近似できることは証明されている。

$$g(\mathbf{x}) = \sum_{j=1}^{\infty} c_j \eta \left(\mathbf{a}_j \cdot \mathbf{x} - b_j \right)$$

それでも層を増やす必要はあるか?

任意の関数を近似するには一つの中間層で十分であるが、その一つの層が 非現実的に巨大なサイズになる可能性がある。

ノード数を増やし層を横に広げることで、表現能力は多項式的に上がる一方、**層の数を増やすことによって**表現力は**指数関数的に上がる**。

中間層のユニット数

 $\left(\prod_{i=1}^{L-1} \left\lfloor \frac{n_i}{n_0} \right\rfloor^{n_0} \right) \sum_{j=0}^{n_0} \binom{n_L}{j}$

L:層の数

n:中間層の横幅

 n_0 :入力の次元

 $n_i \geq n_0$ for all $i \in [L]$

表現能力:領域をいくつの多面体に分けられるか

https://papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf

深層学習の論点を知る

① 表現能力

ネットワークの構造に依存

② 汎化能力 ←←← ちょっと紹介

ネットワークの構造&学習アルゴリズムに依存

③ 最適化能力

ネットワークの構造&学習アルゴリズムに依存

汎化性の高いモデルを手に入れたい

有限の訓練データからルールや知識を獲得し、(同じ分布からサンプリングされる)訓練データには含まれないが、訓練データと同様の性質をもつ未知のデータに対してもうまく推論できるようなモデルを獲得すること。

勾配降下法:

最適化問題 (データの学習) を数値的に解く

→ 極小値を求める

極小値には、汎化性にとって良いもの と悪いものがある

良いもの:平坦性(flatness)

悪いもの:鋭度(sharpness)

確率的勾配降下法 (SGD)

バッチサイズが小さい:

勾配のノイズが増加し、平坦な大域最適解に収束し、かつ汎化性能がよい。

バッチサイズが**大きい**:

シャープな大域最適解に収束し、汎化性能が低い。

暗黙的に正則化を行っている???

https://arxiv.org/pdf/1710.06451.pdf

学習率を自動調整する AdaGrad学習は高速だが汎化能 力の低い最適解に収束するとい う議論がある

活性化関数について

活性化関数と初期値のよい組み合わせ

Xavier ---Sigmoid/Tanh
He ---ReLU

Xavier: ザビエル、

He:フー

ReLU:レルー

Tanh: ハイパボリックタンジェン

ト(タンボリック)

活性化関数について

ネットワークのアーキテクチャを様々工夫してみた けれど、なぜか学習が進まないときがある。 逆伝搬がうまくいかない理由の一つに、隠れ層の飽和が挙げられる。 下の青い関数はSigmoid関数で、オレンジの関数はその一次導関数である。 abs(x)>6のとき、導関数は0に近づく(飽和する)ことがわかる。重みを 更新する逆伝播法は活性化関数の導関数に依存するため、ノードの出力が 飽和領域に至ると、学習が遅くなるか、まったく行われなくなる。

重みの初期値の分散を1.0として、Sigmoid関数に通してみよう。

入力を以下のような分布としよう。

勾配消失

出力の分布

Sigmoidを通過後、Sigmoid曲線の飽和領域、すなわち0と1に近い出力に絞り込まれた。

逆伝搬では、流れてきたデルタにSigmoid関数の導関数をア ダマール積するので、導関数がほぼ0になると勾配が消失する 可能性がある。

勾配消失(回避)

重みの初期値がXavierの場合

出力はSigmoid関数の線形領域(0.5)を中心とした分布となり、飽和は生じなかった。

DNN_深層学習 完