ECEN 220 Homework 4 Questions

Source: Oppenheim, Willsky & Nawab, Signals and Systems, 2nd Edition

- 3.22. Determine the Fourier series representations for the following signals:
 - (a) Each x(t) illustrated in Figure P3.22(a)–(f).
 - (b) x(t) periodic with period 2 and

$$x(t) = e^{-t}$$
 for $-1 < t < 1$

Figure P3.22

3.24. Let

$$x(t) = \begin{cases} t, & 0 \le t \le 1\\ 2 - t, & 1 \le t \le 2 \end{cases}$$

be a periodic signal with fundamental period T = 2 and Fourier coefficients a_k .

- (a) Determine the value of a_0 .
- (b) Determine the Fourier series representation of dx(t)/dt.
- (c) Use the result of part (b) and the differentiation property of the continuous-time Fourier series to help determine the Fourier series coefficients of x(t).
- **3.25.** Consider the following three continuous-time signals with a fundamental period of T = 1/2:

$$x(t) = \cos(4\pi t),$$

$$y(t) = \sin(4\pi t),$$

$$z(t) = x(t)y(t).$$

- (a) Determine the Fourier series coefficients of x(t).
- (b) Determine the Fourier series coefficients of y(t).
- (c) Use the results of parts (a) and (b), along with the multiplication property of the continuous-time Fourier series, to determine the Fourier series coefficients of z(t) = x(t)y(t).
- (d) Determine the Fourier series coefficients of z(t) through direct expansion of z(t) in trigonometric form, and compare your result with that of part (c).
- **3.26.** Let x(t) be a periodic signal whose Fourier series coefficients are

$$a_k = \begin{cases} 2, & k = 0 \\ j(\frac{1}{2})^{|k|}, & \text{otherwise} \end{cases}$$

Use Fourier series properties to answer the following questions:

- (a) Is x(t) real?
- **(b)** Is x(t) even?
- (c) Is dx(t)/dt even?