Module 4: Bayesian Methods Lectures 7: Model selection and averaging

Peter Hoff

Departments of Statistics and Biostatistics University of Washington

Outline

Model selection

Stochastic search

Model selection and averaging

Diabetes example:

- 342 subjects
- $y_i = \text{diabetes progression}$
- $\mathbf{x}_i = \text{explanatory variables}$.

Each x; includes

- 13 subject specific measurements (x_{age}, x_{sex}, \ldots);
- $78 = \binom{13}{2}$ interaction terms $(x_{age} \cdot x_{sex}, ...)$;
- 9 quadratic terms (x_{sex} and three genetic variables are binary)

100 explanatory variables total!

OLS regression

Backwards elimination

- 1. Obtain the estimator $\hat{\boldsymbol{\beta}}_{ols} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ and its *t*-statistics.
- 2. If there are any regressors j such that $|t_j| < t_{
 m cutoff}$,
 - 2.1 find the regressor j_{\min} having the smallest value of $|t_j|$ and remove column j_{\min} from ${\bf X}$.
 - 2.2 return to step 1.
- 3. If $|t_j| > t_{\text{cutoff}}$ for all variables j remaining in the model, then stop.

Backwards elimination

$$\frac{1}{100} \sum (y_{\text{test},i} - \hat{y}_{\text{test}^{bel},i})^2 = 0.6392$$

Spurious associations

Spurious associations

Spurious associations

```
sum(abs(t.bslperm)>2 )
## [1] 21
sum(abs(t.bslperm)>3 )
## [1] 12
sum(abs(t.bslperm)>4 )
## [1] 5
```

- 21 regressors have *t*-stats > 2 ($p \approx 0.05$)
- 12 5 regressors have t-stats > 3 ($p \approx 0.003$)
- 5 regressors have t-stats > 4 ($p \approx 0.00006$)

Bayesian model selection

Prior belief: $\beta_j \approx 0$ for many j's.

Formulation: Write $\beta_j = z_j \times b_j$, where $z_j \in \{0,1\}$ and $b_j \in \mathbb{R}$.

$$y_i = z_1 b_1 x_{i,1} + \cdots + z_p b_p x_{i,p} + \epsilon_i.$$

For example, in the FTO experiment,

$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 0, 1, 0)] = b_1x_1 + b_3x_3$$

$$= b_1 + b_3 \times \text{age}$$

$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 1, 0, 0)] = b_1x_1 + b_2x_2$$

$$= b_1 + b_2 \times \text{group}$$

$$E[Y|\mathbf{x}, \mathbf{b}, \mathbf{z} = (1, 1, 1, 0)] = b_1x_1 + b_2x_2 + b_3x_3$$

$$= b_1 + b_2 \times \text{group} + b_3 \times \text{age}.$$

Each value of $\mathbf{z} = (z_1, \dots, z_p)$ corresponds to a different model.

Bayesian model comparison

Posterior probability

$$p(\mathbf{z}|\mathbf{y},\mathbf{X}) = \frac{p(\mathbf{z})p(\mathbf{y}|\mathbf{X},\mathbf{z})}{p(\mathbf{y}|\mathbf{X})}$$

Model comparison

$$\frac{\rho(\mathbf{z}_a|\mathbf{y},\mathbf{X})}{\rho(\mathbf{z}_b|\mathbf{y},\mathbf{X})} = \frac{\rho(\mathbf{z}_a)}{\rho(\mathbf{z}_b)} \times \frac{\rho(\mathbf{y}|\mathbf{X},\mathbf{z}_a)}{\rho(\mathbf{y}|\mathbf{X},\mathbf{z}_b)}$$
posterior odds = prior odds \times "Bayes factor"

Parsimony

The formula for p(y|X,z) is messy, but

$$\frac{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_a)}{p(\mathbf{y}|\mathbf{X}, \mathbf{z}_b)} = (1+n)^{(p_{z_b}-p_{z_a})/2} \left(\frac{s_{z_a}^2}{s_{z_b}^2}\right)^{1/2} \times \left(\frac{s_{z_b}^2 + \mathsf{SSR}_g^{z_b}}{s_{z_a}^2 + \mathsf{SSR}_g^{z_b}}\right)^{(n+1)/2}$$

A model z_a is penalized if

- it is too complex (p_A is large)
- it doesn't fit well (SSR_g is large)

FTO example

effect of group \Leftrightarrow one of more of β_2, β_4 not zero

z	model	$\log p(\mathbf{y} \mathbf{X},\mathbf{z})$	$p(\mathbf{z} \mathbf{y},\mathbf{X})$
(1,0,0,0)	β_1	-71.82	0
(1,1,0,0)	$\beta_1 + \beta_2 \times grp_i$	-70.04	0
(1,0,1,0)	$\beta_1 + \beta_3 \times age_i$	-67.04	0
(1,1,1,0)	$\beta_1 + \beta_2 \times \operatorname{grp}_i + \beta_3 \times \operatorname{age}_i$	-67.04	0.63
(1,1,1,1)	$\beta_1 + \beta_2 \times \operatorname{grp}_i + \beta_3 \times \operatorname{age}_i + \beta_4 \times \operatorname{grp}_i \times \operatorname{age}_i$	-61.72	0.37

$$\Pr(\beta_2 \text{ or } \beta_4 \neq 0) = 0.60$$

 $\Pr(\beta_2 \text{ or } \beta_4 \neq 0 | \mathbf{y}, \mathbf{X}) \approx 1$

High dimensional regression

Diabetes example: $p = 100 \Rightarrow 2^{100} \approx 10^{30}$ models to consider.

We can't compute $p(\mathbf{z}|\mathbf{y}, \mathbf{X})$ for each \mathbf{z} . Instead, we hope to

- search for models z with high posterior probability;
- approximate $\beta_i = z_i \times b_i$ for each j;
- build a predictive model for y.

This can be achieved via a Monte Carlo method known as Gibbs sampling.

The Gibbs sampler

Goal: A Monte Carlo approximation to $\mu(z)$, z)

Given
$$\{x^{(s)}, y^{(s)}, z^{(s)}\}$$
,

- 1. simulate $x^{(s+1)} \sim p(x|y^{(s)}, z^{(s)})$,
- 2. simulate $y^{(s+1)} \sim p(y|x^{(s+1)}, z^{(s)})$,
- 3. simulate $z^{(s+1)} \sim p(z|x^{s+1)}, y^{(s+1)})$.

This generates $\{x^{(s+1)}, y^{(s+1)}, z^{(s+1)}\}.$

The Gibbs sampler

Repeated many times, this generates $\{x^{(1)}, y^{(1)}, z^{(1)}\}, \dots, \{x^{(S)}, y^{(S)}, z^{(S)}\}$ The distribution of this sequence approximates p(x, y, z):

$$\frac{1}{S} \sum x^{(s)} \approx \operatorname{E}[x] = \int x \ p(x, y, z) \ dx \ dy \ dz$$

$$\frac{\#(x^{(s)} \in A)}{S} \approx \operatorname{Pr}(x \in A) = \int \int \int_{A} p(x, y, z) \ dx \ dy \ dz$$

$$\frac{\#(\{x^{(s)}, y^{(s)}, z^{(s)}\} \in B)}{S} \approx \int \int_{B} \int p(x, y, z) \ dx \ dy \ dz$$

By necessity, the sequence will frequently visit regions where p(x, y, z) is large.

Gibbs sampling for model selection

Goal Approximate $p(z_1, \ldots, z_p | \mathbf{y}, \mathbf{X})$.

Gibbs sampler: Given
$$\mathbf{z}^{(s)} = (z_1^{(s)}, \dots, z_p^{(s)}),$$

$$z_1^{(s+1)} \sim p(z_1|z_2^{(s)}, \dots, z_p^{(s)}, \mathbf{y}, \mathbf{X})$$

$$z_2^{(s+1)} \sim p(z_2|z_1^{(s+1)}, z_3^{(s)}, \dots, z_p^{(s)}, \mathbf{y}, \mathbf{X})$$

$$\vdots$$

$$z_p^{(s+1)} \sim p(z_p|z_1^{(s+1)}, \dots, z_{p-1}^{(s+1)}, \mathbf{y}, \mathbf{X})$$

This generates $\mathbf{z}^{(s+1)}$ from $\mathbf{z}^{(s)}$.

Repeating this generates $z^{(1)}, \dots, z^{(S)}$ with which to approximate $p(\mathbf{z}|\mathbf{y}, \mathbf{X})$.

Diabetes example

Marginal inference

What is the estimate of β ?

Recall

$$\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p) = (b_1 z_1, \ldots, b_p, z_p)$$

Our Monte Carlo samples are

$$\beta^{(1)} = (0 -.299 \quad 0 \quad .427 \quad \cdots \quad .845)$$
 $\beta^{(2)} = (0 -.235 \quad .834 \quad .374 \quad \cdots \quad 0)$
 \vdots
 $\beta^{(5)} = (0 -.315 \quad 0 \quad .536 \quad \cdots \quad 0)$

A posterior mean for β is obtained in the usual way:

$$\hat{oldsymbol{eta}}^{\mathsf{bayes}} = rac{1}{\mathsf{S}} \sum oldsymbol{eta}^{(s)} pprox \mathrm{E}[oldsymbol{eta}|\mathbf{y},\mathbf{X}]$$

Out of sample predictions can be made with $\hat{oldsymbol{eta}}_{ extst{bayes}}$:

$$\hat{y}_{\mathsf{test},\mathsf{i}}^{\mathit{bayes}} = \hat{oldsymbol{eta}}_{\mathsf{bayes}}^{\mathsf{T}} \mathbf{x}_{\mathsf{test},\mathsf{i}}$$

Out of sample prediction error:
$$\frac{1}{S} \sum (y_{\text{test},i} - \hat{y}_{\text{test},i}^{\text{bayes}})^2 = 0.4853$$

Marginal inference

Important variables


```
colnames(X)[ order(z.pmean,decreasing=TRUE)[1:10] ]

## [1] "bmi" "ltg" "g2" "map" "tc" "sex.age" "sex"

## [8] "ldl" "ltg.age" "tch"

colnames(X)[ order(b.pmean,decreasing=TRUE)[1:10] ]

## [1] "ltg" "bmi" "ldl" "map" "sex.age" "hdl" "ltg.age"

## [8] "tch" "glu.bmi" "map.sex"
```

Checking the null

