

Aula 9.2

Compressão de Imagens

Estimativa de segunda ordem

Melhores resultados de estimativas da entropia podem ser gerados

com um exame de frequência relativa dos blocos de pixels, que são agrupamentos de pixels adjacentes

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	218	21	95	169	243	243	243

Na medida que o tamanho do bloco se aproxima do infinito, a estimativa se aproxima da verdadeira entropia da fonte

Nível de cinza	Contagem	probabilidade
(21,21)	8	1/4
(21,95)	4	1/8
(95,169)	4	1/8
(169,243)	4	1/8
(243,243)	8	1/4
(243,21)	4	1/8

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

Image Compression

Estimativa de segunda ordem

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

Nível de cinza	Contagem	probabilidade
(21,21)	8	1/4
(21,95)	4	1/8
(95,169)	4	1/8
(169,243)	4	1/8
(243,243)	8	1/4
(243,21)	4	1/8

$$H(z) = -\sum_{j=1}^{J} P(a_j) \log P(a_j)$$

$$\ln(1/4)*1/4/\ln(2)+$$

$$\ln(1/8)*1/8/\ln(2) +$$

$$\ln(1/8)*1/8/\ln(2) +$$

$$\ln(1/8)*1/8/\ln(2) +$$

$$\ln(1/4)*1/4/\ln(2)+$$

$$ln(1/8)*1/8/ln(2) = 2.5/2 = 1.25$$

O 2 no denominador é porque usou blocos de tamanho 2

Resultados com a entropia

As diferenças entre a entropia de primeira ordem e as entropias de ordem mais elevadas significam haver <u>redundância interpixels</u>

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

Resultados com a entropia

A estimativa de primeira ordem é um limite inferior da compressão, que pode ser atingida por unicamente codificação de tamanho variado

Se as entropias de ordem superior forem iguais a de primeira ordem, não existe redundância interpixel e a codificação por tamanho variável fornece a compressão ótima

Resultados com a entropia

Embora as estimativas de terceira, quarta ou ordens superiores possam fornecer aproximações ainda melhores da entropia da fonte, a convergência destas estimativas para a verdadeira entropia é lenta e computacionalmente cara

Resultados com a entropia

Embora o cálculo da verdadeira entropia de uma imagem seja difícil de obter, as estimativas superiores dão uma idéia melhor da compressibilidade da imagem

A estimativa de primeira ordem é apenas um limite inferior de compressão, que pode ser obtida por unicamente codificação de tamanho variável, tratada adiante com <u>Huffman</u>

Resultados com a entropia

As diferenças entre as estimativas de ordens mais elevadas da entropia e a de primeira ordem indicam a presença ou ausência de redundância interpixel

Ou seja, revelam se os pixels de uma imagem são estatisticamente independentes

No exemplo anterior, as estimativas 1.81 e 1.25, possuem um diferença de 0.56 bit/pixel indicam que é possível criar um mapeamento que elimine 0.56 bit/pixel

Resultados com a entropia

Exemplo: <u>Usando um mapeamento baseado em diferenças</u> Considere o mapeamento dos pixels abaixo

21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243
21	21	21	95	169	243	243	243

Aqui usa-se uma matriz, mantendo-se a primeira coluna e, em seguida, são inseridas as diferenças da coluna atual para a anterior Usando diferenças entre as colunas tem-se

21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0

Resultados com a entropia

21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0

Assim, tem-se:

Nível		
de	Contagem	Probabilidade
cinza		
0	16	1/2
21	4	1/8
74	12	3/8

ln(1/2)*1/2/ln(2) +ln(1/8)*1/8/ln(2) +ln(3/8)*3/8/ln(2) = 1.41

Logo, mesmo usando apenas um pixel de cada vez, porém, trabalhando com as diferenças, já se obtém uma entropia menor que antes (1.8112)

Resultados com a entropia

Como 1.41 > 1.25 (de segunda ordem), conclui-se que é possível obter um mapeamento ainda melhor

Resultados com a entropia

Suponha um mapeamento que faz também a diferença entre as diferenças nas linhas^(*)

21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0
21	0	0	74	74	74	0	0

0	28/32
21	1/32
74	3/32

21	0	0	74	74	74	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

* o importante é que os mapeamentos sejam reversíveis

Compressão livre de erro

Em muitas situações, a compressão livre de erro é a única aceitável

- Winzip, WinRar (compactação de documentos e programas) É comum usar os termos
- Imagens médicas
- etc.

É comum usar os termos compactação e compressão como sinônimos, mas em PDI, não são

As principais técnicas nesta categoria são:

- Codificação por tamanho variável (Codificação de huffman)
- Codificação por planos de bits
- Codificação previsora sem perdas

Compressão livre de erro

Codificação por tamanho variável

Atua de modo a minimizar a equação

$$L_{m\acute{e}dio} = \sum_{k=0}^{L-1} l(r_k) p_r(r_k)$$

Codificação de Huffman

Esta que é a técnica mais comum, no seu primeiro

passo, cria uma série de <u>reduções</u> de fonte

Origin	al source	Source reduction					
Symbol	Probability	1	2	3	4		
a_2	0.4	0.4	0.4	0.4	- 0.6		
a_6	0.3	0.3	0.3	0.3-	0.4		
a_1	0.1	0.1	→ 0.2 _	-0.3	, - >		
a_4	0.1	0.1 –	0.1	1			
a_3	0.06 —	- 0.1 [⊥] ,					
a_5	0.04						

Compressão livre de erro

Codificação de Huffman

No segundo passo, é feita a codificação, começando com a menor fonte continuando para trás, até a fonte original

Original source			Source reduction					
Prob.	Code	1	I	2	2	3		/ 4
0.4	1	0.4	1	0.4	1	0.4	1 6	-0.6 <u>0</u>
0.3	00	0.3	00	0.3	00	0.3	00	0.4 1
0.1	011	0.1	011	 −0.2	010	-0.3	01	
0.1	0100	0.1	0100 -	0.1	1 2 C C C C C C C C C C C C C C C C C C			
0.06	01010	0.1	0101	لا	<u> </u>	مرررد		
0.04	01011				`\			
	Prob. 0.4 0.3 0.1 0.1 0.06	Prob. Code 0.4 1 0.3 00 0.1 011 0.1 0100 0.06 01010	Prob. Code 1 0.4 1 0.4 0.3 00 0.3 0.1 011 0.1 0.1 0100 0.1 0.06 01010 0.1	Prob. Code 1 0.4 1 0.4 1 0.3 00 0.3 00 0.1 011 0.1 011 0.1 0100 0.1 0100 0.06 01010 0.1 0101	Prob. Code 1 2 0.4 1 0.4 1 0.4 0.3 00 0.3 00 0.3 0.1 011 0.1 011 0.2 0.1 0100 0.1 0100 0.1 0.06 01010 0.1 0101 0.1	Prob. Code 1 2 0.4 1 0.4 1 0.4 1 0.3 00 0.3 00 0.3 00 0.1 011 0.1 011 0.2 010 0.1 0.1 0100 0.1 0100 0.1 0101 0.1 011 0.1 011 0.1 011 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0101 0.1 0.1 0101 0.1	Prob. Code 1 2 3 0.4 1 0.4 1 0.4 1 0.4 0.3 00 0.3 00 0.3 00 0.3 00 0.3 0.1 011 0.1 011 0.2 010 0.3 0.1 0100 0.1 0100 0.1 011 0.1 011 0.06 01010 0.1 0101 0.1 0101 0.1 0101	Prob. Code 1 2 3 0.4 1 0.4 1 0.4 1 0.4 1 0.3 00 0

Mantendo os maiores em cima O tamanho médio deste código é $L_{m\'edio} = \sum_{k=0}^{L-1} l_2(r_k) p_r(r_k) = 0,4(1)+0,3(2)+0,1(3)+1$

0.1(4) + 0.06(5) + 0.04(5) = 2.2bits / simbolo e, como a entropia da fonte é 2,14 bits/símbolo, a eficiência do código de Huffman é 0,973

Digital Image Processing, 2nd ed.

Fonte original

Símbolo Probabilidade

0,4 0,3

$\frac{a_6}{a_1}$

0,1

a_4 a_3

0,1 0,06

$$a_5$$

0,04

Codificação de Huffman

$$a_2 = 0.4$$

$$a_6 = 0.3$$

$$a_1 = 0.1$$

 $a_4 = 0.1$

 $a_3 = 0.06$

$$a_5 = 0.04$$

 $\frac{0}{0}$ 0.2 —

Image Compression

Compressão livre de erro

coloque 1 para o menor se empate coloque 0 em cima

-0.3

 $0 \qquad \boxed{ }$

 $a_1 = 011$

 $a_2 = 1$

 $a_3 = 01010$

 $a_4 = 0100$

 $a_5 = 01011$

 $a_6 = 00$

© 2002 R. C. Gonzalez & R. E. Woods

Compressão livre de erro

Exercício 2: codificar "ARARAQUARA"

Total de 4 símbolos → precisam de 2 bits cada

(A=00, R=01, Q=10 e U=11), como são 10 letras,

temos 2 bits x 10 letras = $\frac{20 \text{ bits para representar}}{20 \text{ bits para representar}}$

entregar agora

Compressão livre de erro

Exemplo: codificar "ARARAQUARA"

Observe que, a partir dos código guardados, é preciso conhecer a tabela de símbolos, para a sua leitura (insere-se a tabela de símbolos no próprio arquivo da imagem)

exemplo: <u>0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0</u>

lê o primeiro 0 (zero), como tem símbolo A=0, vai ler "A" lê o próximo 1 (um), como não tem um símbolo 1, pega o próximo 0 (zero), formando <u>10</u>, como tem um símbolo <u>10</u>, vai ler "R"

• • •

Compressão livre de erro

Quando se aplica Huffman em uma imagem, as cores ou tons de cinza dos pixels são os símbolos Aqui usamos uma palavra para representar uma imagem e as letras para representar os pixels

Compressão livre de erro

Codificação por planos de bits

Esta técnica propõe decompor uma imagem com vários tons de cinza em várias imagens binárias e, em seguida, comprimí-la, usando uma técnica de compressão para dados binários

Os níveis de cinza de uma imagem de m bits podem ser decodificados na forma de um polinômio de base 2

$$a_{m-1} 2^{m-1} + a_{m-2} 2^{m-2} + \dots + a_1 2^1 a_0 2^0$$

É interessante usar o <u>código gray</u> para evitar o problema de grandes mudanças no comportamento dos bits entre valores próximo, como por exemplo 127 e 128

01111111 e 10000000 (binário)

11000000 e 01000000 (gray)

Compressão livre de erro

Código bin	ário
para 4 bits	0 = 0000
para + bits	1 = 0001
	2 = 0010
	3 = 0011
	4 = 0100
	5 = 0101
	6 = 0110
	7 = 0111
	8 = 1000
	9 = 1001
	10 = 1010
	11 = 1011
	12 = 1100
	13 = 1101

14 = 1110

15 = 1111

```
Código Gray
                0 = 0000
para 4 bits
                 1 = 0001
                2 = 0011
                3 = 0010
                4 = 0110
                5 = 0111
                6 = 0101
                7 = 0100
                8 = 1100
                9 = 1101
               10 = 1111
               11 = 1110
               12 = 1010
               13 = 1011
               14 = 1001
               15 = 1000
```


Digital Image Processing, 2nd ed.

Image Compression

Compressão livre de erro

Codificação por planos de bits

Bit 7

Bit 6

Bit 5 –

Bit 4

Gray é mais simples

Binário

© 2002 R. C. Gonzalez & R. E. Woods

Compressão livre de erro

Codificação por planos de bits

Uma imagem com 2⁸ tons de cinza (8 bits por pixel) vai gerar 8 imagens binárias, que deverão ser comprimidas

Compressão livre de erro

Codificação binária

Codificação de área constante (CAC)

Usar palavras (códigos) para a identificação de grandes áreas de 1's ou 0's

A imagem deve ser dividida até que os blocos contenham apenas um tipo de valor

Compressão livre de erro

Codificação de área constante (CAC)

Compressão livre de erro

Codificação de corrida unidimensional (RLE – run-length encoding)

No lugar de usar regiões, usa as linhas da imagem Anota-se a sequência de 0's e 1's em uma linha da imagem

Usar palavras (códigos) para a identificação de grandes linhas de 1's ou 0's

Digital Image Processing, 2nd ed.

Image Compression

Compressão com ERRO ou PERDA

mageprocessingbo

Em muitas situações, pequenas perdas, visualmente imperceptíveis, são aceitas, principalmente, quando se consegue altas taxas de compressão, como 30:1

A técnica mais conhecida nesta categoria é a codificação por transformada, em que uma operação de transformação (reversível) é aplicada aos dados

Digital Image Processing, 2nd ed.

Image Compression

Compressão com ERRO ou PERDA

mageprocessingbo

Em seguida os valores são **<u>quantizados</u>**, ou seja, divididos e truncados para um valor inteiro. Em seguida os valores obtidos são codificados e armazenados

No processo de decodificação, os dados são recuperados e decodificados, em seguida, a operação de **desquantização** é aplicada, sendo que agora os valores são multiplicados e, por fim é aplicada a transformada inversa, para obter os <u>valores originais</u>+<u>erro</u>

Compressão com erro

Codificação por transformada

As transformadas podem ser:

KLT – Karhunen-Loève

DFT – Discreta de Fourier

DCT – Discreta do Cosseno (JPG)

WHT - Walsh-Hadamard

etc.

www.imageprocessingbook.com

Image Compression

Erros Maiores

9 0 S Ш

A maioria dos sistemas práticos usa a DCT

Cosseno

Hadamard

