# **DATASHEET**

V1.2 Aug.8 2011

# **AXP192**

Enhanced single Cell Li-Battery and Power System Management IC



Page 2/53

# table of Contents

| 1. Overview (Summary)                                                             | 3           |
|-----------------------------------------------------------------------------------|-------------|
| 2. Characteristics (Feature)                                                      | 4           |
| 3. Typical applications (Typical Application)                                     | 5           |
| 4. Limit parameter (Absolute Maximum Ratings)                                     | 6           |
| 5. Electrical characteristics (Electrical Characteristics)                        | 6           |
| 6. Typical characteristics (Typical Characteristics)                              | 9           |
| 7. Pin definitions (Pin Description)                                              | 13          |
| 8. Functional Block Diagram (Functional Block Diagram)                            | 15          |
| 9. Operation and control (Control and Operating)                                  | 16          |
| 9.1 operating mode and Reset (Power On / Off & Reset)                             | 16          |
| 9.2 Power Management passage (IPS)                                                | 19          |
| 9.3 adaptive charger (Adaptive Charger)                                           | twenty one  |
| 9.4 backup battery (Backup Batttery)                                              | twenty four |
| Over 9.5 channel power output (Multi-Power Outputs)                               | twenty four |
| The default setting voltage 9.6 / start timing (Default Voltage / Timing Setting) |             |
| 9.7 The signal acquisition system (Signal Capture)                                | 26          |
| 9.8 Multifunction Pin Description (Multi-Function Pin Description)                | 26          |
| 9.9 Timer (Timer)                                                                 | 27          |
| 9.10 HOST port and interrupt (TWSI and IRQ)                                       | 28          |
| 9.11 register (Registers)                                                         | 29          |

### 1. Overview (Summary)

AXP192 System is highly integrated power management chip, for single-cell lithium battery (lithium ion or lithium polymer) and requires multiple output power conversion applications, to provide easy to use yet flexible configuration complete power solution that fully meet the current increasingly complex applications processor system to the relatively complex and precise power control requirements.

AXP192 An adaptive internal integration USB-Compatible Charger, 3 Down converters ( Buck DC-DC converter) , 4 Linear regulators ( LDO) The voltage / current / temperature surveillance multiplexer 12-Bit ADC . To ensure the security and stability of the power system,

AXP192 Also incorporates over / under voltage ( OVP / UVP) , Over temperature ( OTP) , Overcurrent ( OCP) Protection circuit.

AXP192 Wisdom energy balance (Intelligent Power Select, IPS \*\*) In the circuit may be USB And an external AC adapter, lithium batteries, and application security transparent distribution of electrical energy between the load and only in the case where the external input power source without a battery (or a battery discharge / damage) may also make the system work properly applied.

AXP192 And it has an external adapter USB And a three-input capability such as a battery, a rechargeable battery backup support.

AXP192 It provides a communication with the host two-wire serial communication interface: Two Wire Serial Interface (TWSI), The application processor may turn on or off some of the power to the output voltage thereof is provided by this interface, access to internal registers and the plurality of measurement data (including Fuel Gauge). Precision (0.5%) Power measurement data to facilitate consumers a clearer grasp of the real-time power usage, giving consumers unprecedented power equipment experience.

AXP192 provide 6mm x 6mm 48-pin QFN Package.

### **Applications**

- Handheld mobile devices smart mobile phone, PMP
   / MP4, Digital cameras, Digital cameras, handheld
   navigation devices GPS, PDA, Handheld digital
   television broadcast receivers
- Mobile Internet Devices MID
- Digital photo frames, portable DVD Players, ultra mobile PCs UMPC and UMPC-like ,leaning machine
- The application processor circuitry
   Application Processor systems
- Other battery systems and multiple supply applications

### Pin definitions



#### 2. Characteristics (Feature)

#### Power Management ( IPS)

o Wide input voltage range:

2.9V ~ 6.3V (AMR : - 0.3V ~ 11V)

o Configurable efficient power balance wisdom "IPS ™" system

o Adaptive USB Or AC adapter current limiting pressure limiting

(4.4V / 500mA / 100mA)

o Equivalent internal resistance is less than ideal diode  $100 \text{m}\Omega$ 

#### · Fully integrated charger ( Charger)

o Internal MOSFET The maximum charging current of up to 1.4A

o Support battery temperature monitoring

o Full support USB Charging, with the specification

o High charging accuracy error is less than 0.5%

o stand by 4.1V / 4.15V / 4.2V / 4.36V Other battery

o Automatically controlled charging process

o Direct drive led Indicating the state of charge

o The system automatically adjusts the charging current load

#### · spare battery ( Backup Battery)

o Backup battery may be used to RTC Power supply module

o Supporting a spare battery, the charging current may be provided

#### • 3 Road synchronous buck converter ( DC-DC)

o DC-DC1 : Can 0.7V ~ 3.5V Between regulation,

25mV / step, Drive capability 1.2A

o DC-DC2: Can 0.7-2.275V Between regulation,

25mV / step, Drive capability 1.6A, stand by VRC

o DC-DC3 : Can 0.7-3.5V Between regulation,

25mV / step, Drive capability 0.7A

#### · 4 Linear regulators (LDO)

o LDO1: 30mA Always Effective

o LDO2: Low Noise LDO, 1.8V ~ 3.3V adjustable,

100mV / step, Drive capability 200mA

o LDO3: Low Noise LDO, 1.8-3.3V adjustable,

100mV / step, Drive capability 200mA

o LDO 100: Low Noise LDO, 1.8-3.3V adjustable,

100mV / step, Drive capability 50mA

Note: VRC , Voltage Ramp Control , Voltage slope control.

#### • The signal acquisition system ( Signal Capture)

o Built-in 16 road 12 Bit ADC

o accept 4 Road external signal input

o Providing a battery and the external input supply current and voltage

data

o Built Precision Coulomb Counter and Fuelgauge system

o Power management provides a wealth of information, such as instantaneous power

(MA or mW), Remaining battery power (% or mAh), charging(%) And

the remaining battery time or charging time

o Low battery warning and protection

o Provide chip temperature information

#### Application Processor Interface ( Host Interface)

o Host able to pass TWSI Interface for data exchange

o Interrupt management can be flexibly configured

o Flexible pin feature set, multi-channel GPIO Respectively set to IO , PWM

Other functions

o Built-in timer

o Provides four registers can be used for data storage during the

system shutdown

#### System Management( System Management)

o Soft Reset Hard Reset or may

o Support soft shutdown or a hard shutdown, support external wake-up

boot

o Supports output voltage monitoring, self-diagnosis function

o PWROK Reset or a system shutdown instruction

o Detecting an external power source (insertion / removal / insufficient driving capability)

o All output voltages are supported by soft start

o Over / under voltage protection ( OVP / UVP)

o Overcurrent protection ( OCP)

o Over-temperature protection ( OTP)

o stand by OTG VBUS Power status / monitor

#### • High integration (Fully Integration)

o Generating an internal precision voltage reference ( 0.5% )

o Internal MOSFET

o The timing and the output voltage can be customized

# 3. Typical applications (Typical Application)



In On/off Manner A,5/48PIN pull high to IO power,29PIN pull high to LDO1,27PIN connect to LDO1 or HOST control signal In On/off Manner B,5/48PIN pull high to LDO1,27/29PIN connect to HOST control signal

# 4. Limit parameter (Absolute Maximum Ratings)

| Symbol | Description                                       | Value                                                | <u>Units</u> |  |  |
|--------|---------------------------------------------------|------------------------------------------------------|--------------|--|--|
| ACIN   | Input Voltage Input voltage                       | -0.3 to 11                                           | V            |  |  |
| VBUS   | Input Voltage Input voltage                       | -0.3 to 11                                           | V            |  |  |
| ТJ     | Operating Temperature Range Operating temperature | - 40 to 130                                          | °C           |  |  |
| Ts     | Storage Temperature Range Storage temperature     | - 40 to 150                                          | °C           |  |  |
| TLEAD  | Maximum Soldering Temperature (at leads , 10sec)  | 300                                                  | °C           |  |  |
|        | Soldering temperature                             | Soldering temperature                                |              |  |  |
| VESD   | Maximum ESD stress voltage , Human Body Model     | Maximum ESD stress voltage , Human Body Model > 4000 |              |  |  |
|        | Antistatic ability                                |                                                      |              |  |  |
| Po     | Internal Power Dissipation                        | nternal Power Dissipation 2100                       |              |  |  |
|        | Internal power consumption tolerance              |                                                      |              |  |  |

# 5. Electrical characteristics (Electrical Characteristics)

### $V_{IN} = 5V$ , BAT = 3.8V, TA = 2.5 °C

| SYMBOL D          | DESCRIPTION                            | CONDITIONS                 | MIN TYF          | MAX UN | ITS_  |        |
|-------------------|----------------------------------------|----------------------------|------------------|--------|-------|--------|
| ACIN              |                                        |                            |                  |        |       |        |
| Vin               | ACIN Input Voltage                     |                            | 3.8              |        | 6.3   | V      |
| Гоит              | Vоит Current Available Before Loading  | 500mV Voltage Drop         |                  | 2000   |       | mA     |
|                   | BAT                                    |                            |                  |        |       |        |
| Vuvlo             | ACIN Under Voltage Lockout             |                            |                  | 3.8    |       | V      |
| <b>V</b> out      | IPS Output Voltage                     |                            | 2.9              |        | 5.0   | V      |
| RACIN             | Internal Ideal Diode On                | PIN to PIN, ACIN to IPSOUT |                  |        | 200   | mΩ     |
|                   | Resistance                             |                            |                  |        |       |        |
| VBUS              |                                        |                            |                  |        |       |        |
| Vin               | VBUS Input Voltage                     |                            | 3.8              |        | 6.3   | V      |
| Гоит              | V оот Current Available Before Loading | 400mV Voltage Drop         |                  | 500    | 900   | mA     |
|                   | BAT                                    |                            |                  |        |       |        |
| Vuvlo             | VBUS Under Voltage Lockout             |                            |                  | 3.8    |       | V      |
| <b>V</b> out      | IPS Output Voltage                     |                            | 2.9              |        | 5.0   | V      |
| Rvsus             | Internal Ideal Diode On                | PIN to PIN, VBUS to        |                  |        | 300   | mΩ     |
|                   | Resistance                             | IPSOUT                     |                  |        |       |        |
| Battery Ch        | arger                                  |                            |                  |        |       |        |
| V <sub>TRGT</sub> | BAT Charge Target Voltage              |                            | <u>-0.5%</u> 4.2 |        | +0.5% | V      |
| I CHRG            | Charge Current                         |                            |                  | 780    | 1320  | mA     |
| TRKL              | Trickle Charge Current                 |                            | _                | 10%    |       | I chrg |

|                 |                                         |                      |                     |        |       | mA           |
|-----------------|-----------------------------------------|----------------------|---------------------|--------|-------|--------------|
| <b>V</b> TRKL   | Trickle Charge Threshold Voltage        |                      |                     | 3.0    |       | V            |
| ΔV RECHG RE     | echarge Battery Threshold               | Threshold Voltage    |                     | 100    |       | mV           |
|                 | Voltage                                 | Relative to V TARGET |                     |        |       |              |
| T TIMER1        | Charger Safety Timer Termination Time   | Trickle Mode         |                     | 40     |       | Min          |
| T TIMER2        | Charger Safety Timer Termination Time   | CC Mode              |                     | 480    |       | Min          |
| <b>I</b> END    | End of Charge Indication  Current Ratio | CV Mode              |                     | 10% 15 | %     | I chrg<br>mA |
| Backup Bat      | tery                                    |                      |                     | 1      | 1     |              |
| V TRGT          | Backup Battery Charge Target Voltage    |                      | 2.5                 | 3.0    | 3.1   | V            |
| CHRG            | Backup Battery Charge Current           |                      | 50                  | 200    | 400   | uA           |
| Backup          | Current when use Backup Battery         |                      |                     | 10     | 15    | uA           |
| NTC             |                                         |                      |                     |        |       |              |
| VτL             | Cold Temperature Fault                  | Charge               |                     | 2.112  | 0.004 | V            |
|                 | Threshold Voltage                       | Discharge            | 0                   | 3.226  | 3.264 |              |
| <b>V</b> тн     | Hot Temperature Fault Threshold Voltage |                      |                     | 0.397  | 2.004 | V            |
|                 |                                         | Discharge            | 0 <u>0.282</u> 3.26 |        | 3.204 |              |
| V <sub>TE</sub> | NTC Disable Threshold Voltage           | Falling Threshold    |                     | 0.2    |       | V            |
|                 |                                         | Hysteresis           |                     |        |       |              |
| Ideal Diode     | ·                                       |                      |                     |        |       |              |
| R ds (on)       | Internal Ideal Diode On                 |                      |                     |        | 100   | mΩ           |
|                 | Resistance (BAT to IPSOUT)              |                      |                     |        |       |              |

| SYMBOL DES            | CRIPTION                      | CONDITIONS   | MIN TYP | MAX        |      | UNITS |  |  |
|-----------------------|-------------------------------|--------------|---------|------------|------|-------|--|--|
| Off Mode C u          | Off Mode C urrent             |              |         |            |      |       |  |  |
| I ватогг              | OFF Mode Current              | BAT = 3.8V   |         | 27         |      | μA    |  |  |
| I SUSPEND             | USB VBUS suspend Mode current | BAT = 3.8V , |         | 86         |      | μA    |  |  |
|                       |                               | VBUS = 5V ,  |         |            |      |       |  |  |
|                       |                               | N_VBUSEN = 1 |         |            |      |       |  |  |
| Logic                 |                               |              |         |            |      |       |  |  |
| V <sub>IL</sub>       | Logic Low Input Voltage       |              |         | 0.3        |      | V     |  |  |
| Vін                   | Logic High Input Voltage      |              |         | 2          |      | ٧     |  |  |
| TWSI                  | TWSI                          |              |         |            |      |       |  |  |
| Vcc                   | Input Supply Voltage          |              |         | 3.3        |      | V     |  |  |
| ADDRESS TW\$I Address |                               |              |         | 0x68       |      |       |  |  |
| fscк                  | Clock Operating Frequency     |              |         | <u>400</u> | 1200 | kHZ   |  |  |

| tf       | Clock Data Fall Time      | 2.2Kohm Pull High |     | 60          |       | ns  |
|----------|---------------------------|-------------------|-----|-------------|-------|-----|
| tr       | Clock Data Rise Time      | 2.2Kohm Pull High |     | 100         |       | ns  |
| DCDC     |                           |                   |     |             |       |     |
| fosc     | Oscillator Frequency      | Default           |     | 1.5         |       | MHz |
| DCDC1    |                           |                   |     |             |       |     |
| I vin1   | Input Current             | PFM Mode I DC10UT |     | 26          |       | μΑ  |
|          |                           | = 0               |     |             |       |     |
| I LIM1   | PMOS Switch Current Limit | PWM Mode          |     | <u>1600</u> |       | mA  |
| Прс10ит  | Available Output Current  | PWM Mode          |     | 1200        |       | mA  |
| V DC1OUT | Output Voltage            | Default           | 0.7 | 3.3         | 3.5   | V   |
| DCDC2    |                           |                   |     |             |       |     |
| I vin2   | Input Current             | PFM Mode I DC2OUT |     | 20          |       | μΑ  |
|          |                           | = 0               |     |             |       |     |
| I LIM2   | PMOS Switch Current Limit | PWM Mode          |     | 2300        |       | mA  |
| I DC2OUT | Available Output Current  | PWM Mode          |     | <u>1600</u> |       | mA  |
| V DC2OUT | Output Voltage Range      |                   | 0.7 | <u>1.25</u> | 2.275 | V   |
| DCDC3    |                           |                   |     | _           |       |     |
| I vina   | Input Current             | PFM Mode I DC3OUT |     | 20          |       | uA  |
|          |                           | = 0               |     |             |       |     |
| I ымз    | PMOS Switch Current Limit | PWM Mode          |     | <u>1000</u> |       | mA  |
| Посзоит  | Available Output Current  | PWM Mode          |     | 700         |       | mA  |
| V DC3OUT | Output Voltage Range      |                   | 0.7 | 2.5         | 3.5   | V   |

| SYMBOL I          | DESCRIPTION                  | CONDITIONS                  | MIN TYP | MAX UNIT   | 'S |        |
|-------------------|------------------------------|-----------------------------|---------|------------|----|--------|
| LDO1              |                              |                             |         |            |    |        |
| V <sub>LDO1</sub> | Output Voltage               | I LDO1 = 1mA                |         | 1.25       |    | V      |
|                   |                              |                             | - 1%    | 1.8        |    |        |
|                   |                              |                             | - 1%    | 2.5        |    |        |
|                   |                              |                             |         | 3.3 1%     |    |        |
| LDO1              | Output Current               |                             |         | 30         |    | mA     |
| LDO2              |                              |                             |         |            |    |        |
| V <sub>LDO2</sub> | Output Voltage               | I LDO2 = 1mA                | - 1%    | 3          | 1% | V      |
| LDO2              | Output Current               |                             |         | 200        |    | mA     |
| Iq                | Quiescent Current            |                             |         | 100        |    | μA     |
| PSRR              | Power Supply Rejection Ratio | <u>I_LD02 = 60mA , 1KHz</u> |         | <u>TBD</u> |    | dB     |
| ем                | Output Noise, 20-80KHz       | Vo = 3V, Io = 150mA         |         | 28         |    | μV RMS |
| LDO3              |                              |                             |         |            |    |        |
| V LDO3            | Output Voltage               | I LD03 = 1mA                | - 1%    | 3.3 1%     |    | V      |
| I LDO3            | Output Current               |                             |         | 200        |    | mA     |
| Ιq                | Quiescent Current            |                             |         | 100        |    | μΑ     |
| PSRR              | Power Supply Rejection Ratio | <u>I_гроз = 10mA , 1KHz</u> |         | TBD        |    | dB     |

Enhanced single Cell Li-Battery and Power System Management IC

| ем       | Output Noise, 20-80KHz       | <u>Vo = 1.8V, lo = 150mA</u> |      | 18         |  |        |
|----------|------------------------------|------------------------------|------|------------|--|--------|
| LDO 100  |                              |                              |      |            |  |        |
| V LDOIO0 | Output Voltage               | I LDOIO0 = 1mA               | - 1% | 3.3 1%     |  | V      |
| I LDOIO0 | Output Current               |                              |      | 50         |  | mA     |
| Ιq       | Quiescent Current            |                              |      | 90         |  | μΑ     |
| PSRR     | Power Supply Rejection Ratio | <u>I грою =</u> 10mA , 1KHz  |      | <u>TBD</u> |  | dB     |
| ем       | Output Noise, 20-80KHz       | Vo = 1.8V, Io = 30mA         |      | 18         |  | μV rмs |

# 6. Typical characteristics (Typical Characteristics)





**DC-DC Load Transient (Typical)** 

Enhanced single Cell Li-Battery and Power System Management IC



# DC-DC Ripple



**V**<sub>REF</sub> vs Temperature





# Off Mode Current vs V BAT



# 7. Pin definitions (Pin Description)

| Num        | Name     | Type    | Condition        | Function Description                                                          |
|------------|----------|---------|------------------|-------------------------------------------------------------------------------|
| 1          | SDA      | Ю       |                  | Data pin for serial interface, normally it connect a 2.2K resistor to 3.3VI / |
|            |          |         |                  | O power                                                                       |
| 2          | SCK      | ı       |                  | it is the Clock pin for serial interface, normally it connect a               |
|            |          |         |                  | 2.2K resistor to 3.3VI / O power                                              |
| 3          | N_RSTO   | Ю       | DECOEM (7)       | LDO1 Reset output GPIO                                                        |
|            |          |         | REG9EH [7]       | [5]                                                                           |
| 4          | N_OE     | 1       |                  | Power output on / off switch GND:                                             |
|            |          |         |                  | on; IPSOUT: off                                                               |
| 5          | PWROK /  | 0       | SYSEN = LDO1 Pow | er good indication                                                            |
|            | N_LBO    |         |                  | Low power detect output                                                       |
| 6          | N_VBUSEN | ı       |                  | VBUS to IPSOUT Selection GND: IPSOUT                                          |
|            |          |         |                  | select VBUS High: IPSOUT do not select                                        |
|            |          |         |                  | VBUS                                                                          |
| 7          | VIN2     | PI      |                  | DCDC2 input source                                                            |
| 8          | LX2      | Ю       |                  | Inductor Pin for DCDC2                                                        |
| 9          | PGND2    | G       |                  | NMOS Ground for DCDC2                                                         |
| 10         | DCDC2    | ı       |                  | DC-DC2 feedback pin                                                           |
| 11         | LDO3     | 0       |                  | Output Pin of LDO3                                                            |
| 12         | LDO2     | 0       |                  | Output Pin of LDO2                                                            |
| 13         | LDOIN    | PI      |                  | Input to LDO2 and LDO3                                                        |
| 14         | VIN3     | PI      |                  | DCDC3 input source                                                            |
| 15         | LX3      | Ю       |                  | Inductor Pin for DCDC3                                                        |
| 16         | PGND3    | G       |                  | NMOS GND for DCDC3                                                            |
| 17         | DCDC3    | I       |                  | Feed back to DCDC3                                                            |
| 18         | GPIO1    | Ю       |                  | GPIO 2 PWM                                                                    |
|            |          |         | REG 93H          | 2 ADC Input                                                                   |
|            |          |         | [2: 0]           |                                                                               |
| 19         | GPIO0    | Ю       |                  | GPIO 0 Low noise                                                              |
|            |          |         | REG 90H          | LDO ADC Input                                                                 |
|            |          |         | [2: 0]           |                                                                               |
| 20         | GPIO2    | Ю       | 550 650          | GPIO 1 PWM                                                                    |
|            |          | REG 92H |                  | 1 ADC Input                                                                   |
|            |          |         | [2: 0]           |                                                                               |
| twenty on  | e APS    | PI      |                  | Internal Power Input                                                          |
| twenty two | AGND     | G       |                  | Analog Ground                                                                 |

# **AXP192**

# Enhanced single Cell Li-Battery and Power System Management IC

| <u>t</u> |
|----------|
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

# 8. Functional Block Diagram (Functional Block Diagram)



### 9. Operation and control (Control and Operating)

when AXP192 when working, TWSI interface SCK / SDA Pulled the pin on the system IO Power, the Host Through this interface AXP192

Flexible working state of adjustment and monitoring, and to get a wealth of information.

Note:" Host "Refers to a host processor application system NOTE: as meaning" external

power supply "comprising ACIN and VBUS Input.

9.1 operating mode and Reset (Power On / Off & Reset)

Operating mode button (PEK)

AXP192 of PWRON To pin GND Can be connected between a key, as an independent key switch Power Enable Key (PEK)

Or sleep / wake button. AXP192 This key can automatically identify the "long press" and a "short press" and react accordingly.

Several Power Source (Power on Source)

- 1, ACIN, VBUS And a battery access.
- 2, N\_OE From high to low.
- 3, PEK.

Power (Power On) - A way

when SYSEN Pin and LDO1 Connected together, AXP192 In switch mode A.

N\_OE When low, when the main power supply to meet the requirements ( ACIN or VBUS> 3.8V When the battery voltage is higher than the shutdown voltage) access, AXP192

Automatically switched (rewritable whether to automatically start an external access to the external power supply demand).

In the N\_OE Is low and turned off, the power required by the operation PEK Operation to complete. In the case where the external power source or a battery, N\_OE Changes from high to low can lead to AXP192 Boot.

AXP192 It can be made PEK (Button for more than "ONLEVEL") Is switched on. In practical applications, Host Timing(Alarm) The output signal may also be connected to PWRON
-versus PEK in parallel, Alarm When equivalent is active (low) signal PEK Press, can also AXP192
Boot.

When turned on, DC-DC with LDO The soft-start in time series is set after startup is completed by Host Or through PWREN Pin opening / closing the respective power supply.

Shutdown (Power Off) - A way

PEK "Long press" time is greater than IRQLEVEL When, in PEK The interrupt service routine, Host Can "register REG32H [7] "Write" 1 "To inform AXP192 Into shutdown state. AXP192 It will be turned off except when entering shutdown state LDO1 All power output beyond.

In the following cases, AXP192 It will automatically shut down:

- 1 , Input voltage is too low, the low voltage protection;
- 2, Overload due to low power supply output voltage, overload protection;
- 3 , Input voltage is too high, the overvoltage protection (details see "Power Management passage" section);
- 4, N\_OE It changes from low to high, without shutting down the set time;
- 5 , PEK more than the OFFLEVEL (Default 6S) In addition to the system automatically shut down LDO1 Other than the output;

AXP192 Automatic protection mechanism to avoid the occurrence of abnormal applications are irretrievably damaged when the power supply device, thereby protecting the entire system.

Power (Power On) - Version B

when SYSEN Non-pins and LDO1 Connected together, AXP192 In switch mode B .

In boot mode B, The output of each power supply SYSEN / PWREN Control when SYSEN / PWREN Is high, the output of the corresponding power supply path is opened, otherwise the output will be off.

The way A The difference is, it will only happen when each boot source WAKEUP It generates a low pulse on the pin, in order to notify HOST Pulled SYSEN / PWREN Boot.

Note: this mode contemplated for use PXA Similar series processor and power management applications.

Shutdown (Power Off) - Version B

Such as shutdown mode A Shutdown source described, each embodiment does not immediately shut off directly AXP192 Output, but in N\_LBO It generates a low signal on the pin, in order to inform the system down SYSEN / PWREN Into shutdown mode; if 2S Within the system is not down

SYSEN / PWREN ,then AXP192 Automatic shutdown; of course, HOST It can also be directly down SYSEN / PWREN Into the corresponding shutdown mode.

Note: As the boot mode B, Shutdown mode B Also envisaged for PXA Similar series processor and power management applications. Note: Some processor into sleep ( Sleep , SYSEN / PWREN All the way to low, all the way to high) and deep sleep ( Deep Sleep ,

SYSEN / PWREN They are low, except LDO1 All external output off) modes.

Sleep and wake (Sleep and wakeup)

in MannerA And with the power on, if the system needs to enter Sleep Mode, and wherein one or several passage way power off, can be made REG31 [3] Control, decide whether the PEK Press the trigger signal wakeup ,Let PMU Each output power is restored to the REG31 [3]

It is set 1 State, and the brightest the power is turned off on power-up timing sequence according to stipulated.

As follows Sleep with wakeup Mode control flow thereof.



The system reset function and an output monitoring function (PWROK / N\_LBO)

In the switch mode A under:

AXP192 of PWROK It can be applied as a reset signal system. in AXP192 Boot process, PWROK Output low, when the output voltage of each power supply reaches a preset value is stable, PWROK It will be pulled in order to achieve power-on reset applications.

During normal operation of the application system, AXP192 Constantly monitors the output voltage from various quarters and load conditions, and in the case of overload or under-voltage, PWROK Output low immediately reset applications, prevent malfunction and possible data errors.

In the switch mode B Next: this pin as N\_LBO Signal, which indicates whether the system needs to enter a low power off mode. Specific functions as shutdown mode B description.

#### 9.2 Power Management passage (IPS)

AXP192 Power input from the lithium battery can be BAT , USB VBUS Input, the external power source ACIN (For example, AC adapter AC Adapter) , IPS The state of the external power source and to select the appropriate lithium battery power distribution.

- o When only access lithium battery, no external power input, using the lithium battery;
- o When an external supply ( VBUS or ACIN) , Preferentially using an external power supply;
- o When the battery is connected, the external power is removed, and immediately "seamless" switch lithium battery;
- o when VBUS with ACIN Both the access priority use ACIN Power supply, and charging the lithium battery;
- o If at this time ACIN When driving ability is not enough, will timely open VBUS Path, to achieve ACIN / VBUS Common power supply;
- o If the drive capacity is still insufficient, the charging current will be reduced until 0 And then supplemented with a battery-powered; see

the following illustration:



As shown above, when ACIN Insufficient load capacity, IPSOUT Voltage drop, BAT Original is charged into and discharged ACIN

Together with the load current.

Host able to pass TWSI access AXP192 The internal register set IPS Its parameters and reading information feedback.

Limit voltage / current mode and the direct mode

In order not to affect USB communication, VBUS The default path work "VBUS Pressure limiting mode. "In this mode, AXP192 Will VBUS Voltage is maintained at a reference voltage can be set V HOLD Above, in order to meet USB specification. V HOLD The default is 4.4V, May register Reg30H [5: 3] Adjustment.

If the system from USB VBUS The magnitude of the current drawn is limited demand, provides a current limiting modes to choose from (see Register REG30H [1]) The current limit optional 500mA / 100mA ( register Reg30H [0]).

If you only use the system USB Power supply and do not mind USB Communications, or use USB Power adapter, can modify registers

REG30H [6] will AXP192 Set to "VBUS Thru Mode", this time AXP192 It will give priority to meet the electricity needs of the application system. when USB Host A drive system power too weak or too strong, the VBUS Voltage is lower than V HOLD, AXP192 Will be issued IRQ, inform Host VBUS

Weak power, indicating USB Communication may be affected by subsequent action Host Software decision.

When the external power supply into the reaction AXP192

AXP192 Insertion operation can automatically detect the external power source. when AXP192 Detected after insertion into an external power, the external power supply will automatically determine whether or not available, and the result is set in the corresponding registers, also issued IRQ ,Notice Host.

Storage on an external power source Status bits and their meanings in the table below:

| Status bit register | meaning                                                                        |
|---------------------|--------------------------------------------------------------------------------|
| register REG00H [7] | Indicates an external power supply adapter ACIN does it exist                  |
| register REG00H [6] | Indicates an external power supply adapter ACIN it's usable or not             |
| register REG00H [5] | Indicates the external power source VBUS does it exist                         |
| register REG00H [4] | Indicates the external power source VBUS it's usable or not                    |
| register REG00H [3] | Indicates an external supply VBUS Time, VBUS The voltage is higher than V HOLD |
| register REG00H [1] | Indicates the external power source ACIN / VBUS Whether PCB Shorting           |
| register REG00H [0] | Indicate whether the system by the ACIN / VBUS Trigger Power                   |

"Indicates an external supply VBUS Time, VBUS The voltage is higher than V HOLD "This flag allows Host Receipt IRQ7

When (finger VBUS Weak power supply), it is determined VBUS Because the system load or access is pulled low because the voltage is lower than the external power supply itself

V HOLD So easy Host Software decide whether to continue to work in the voltage-limiting mode or changed through mode.

That the choice of an input power source VBUS

AXP192 Whether the choice VBUS As input The power supply, By N\_VBUSEN And register REG30H [7] To decide:

| N_VBUSEN REG30 | H [7] Input Power |            | meaning                                            |
|----------------|-------------------|------------|----------------------------------------------------|
| Low            | 0                 | VBUS       | VBUS And no effective ACIN The selection           |
| Low            | 1                 | VBUS       |                                                    |
| High           | 1                 | VBUS       | VBUS Can be effective when VBUS As the input power |
| High           | 0                 | ACIN / BAT | Do not use VBUS                                    |

Low battery warning and low voltage protection (automatic shutdown)

AXP192 You can set two low voltage warning V WARNING And automatic shutdown voltage V off And APS Compared. Once found APS Lower than V WARNING, On the issue of IRQ19. In case APS Lower than V off, AXP192 Automatically enters shutdown mode, in addition to close LDO1 All output outside.

V WARRING Can be set LEVEL1 / LEVEL2, when APS Voltage drops below LEVEL2 After issuing IRQ30, APS Voltage to rise again LEVEL1 Automatically cleared after this IRQ

V WARNING With V OFF Default values may register REG3AH, REG3BH with REG31H Bit [2: 0] Settings.

#### Overvoltage protection

When the external power supply voltage exceeds 6.3V Time, APX19x issue IRQ1 / 4 , Suggesting an external power supply overvoltage. When the external power source exceeds 7V , AXP192 Automatic shut-down.

# 9.3 adaptive charger (Adaptive Charger)

AXP192 It incorporates a constant-current / constant-voltage charger, the charge cycle can be automatically controlled, secure clocks can be built automatically stop charging without processor intervention. This can automatically adjust the power consumption of the charger system charging current, battery detection, activation and trickle charge, built-in temperature detection circuit may automatically reduce the charging current when the temperature is too high or too low.

#### Start adaptive charging process

The default state of the charger is enabled (can be disabled by setting the register, refer to "Register REG33H"). When the external access after the power supply, AXP192 Is first determined whether the external power source for charging, when the external power source is available to meet the conditions, and at this time the charging function is turned on, AXP192 Automatically start the charging process, the Host issue IRQ Indicating the charging process begins. Simultaneously, CHGLED Pin output low, may drive an external LED indicates the state of charge.

### A schematic view of the charging voltage and current process



Two voltage sign

**AXP192** 

Enhanced single Cell Li-Battery and Power System Management IC

V TRGT , The target charging voltage. V TRGT By a register set, the default is 4.2V ( See "Register REG33H [6: 5] "). Meanwhile, when the external supply voltage is low, AXP192 Automatically adjust the charging target voltage.

VRCH , Automatic recharge voltage. VRCH = VTRGT- 0.1V.

recharging current

The charging current can register REG33H [3: 0] Set the default value 450mA or 780mA .

**Charging Process** 

If the battery voltage is below 3.0V, Charger automatically enters the pre-charging mode, charging current to the preset value 1/10. in case 40 Within minutes (this time is adjustable, see "Register REG34H"), The battery voltage can not reach 3.0V, Battery charger automatically enter the active mode. Specific details see "Battery active mode."

Once the battery voltage is higher than 3.0V, Entered the charger constant current mode. If the charging current is less than the preset value 65% When the system issues IRQ17 This is a confirmation "insufficient ability to drive an external power source, when the charge current has not reached the set value, which will extend the charging time, if you want faster fully charged, the proposed replacement of a stronger power supply or turn off the power-hungry functions."

When the battery voltage reaches the target voltage V TRGT After the charger enters the constant voltage mode from the constant current mode, the charge current decreases.

When the charging current below a predetermined value 10% or 15% When (can be set, refer to "Register REG33H"), The end of the charge cycle, the charging is stopped, the end of charge, AXP192 Will be issued IRQ18, CHGLED Stop pin indicates the state of charge. When the battery voltage drops below the lower V RCH When, it will automatically begin recharging, also issued IRQ17.

In the non pre-charging mode, if the 480 Within minutes (this time can be adjusted, refer to "Register REG34H"), The charge cycle is not over, the battery charger will automatically enter the active mode.

Battery mode is activated

Whether from the pre-charging mode or the battery enters an active mode from the constant current charging mode (the timer has timed out), AXP192 Will be issued IRQ10 Indicating that the battery may be damaged.

In the active mode the battery, Charger Always a small charging current to the battery, if the battery voltage reached can be V RCH, Then exit the active mode, also issued IRQ11

AXP192 In the register REG01H It indicates the battery charger is in the active mode.

#### CHGLED

CHGLED Pin indicates the state of charge and alarm, it has four states: charging, not charging, the battery and the external power supply abnormality alarm overvoltage alarm. CHGLED Yes NMOS Open Drain ( Open drain type) output, four states may be displayed by a current limiting resistor to directly drive a light emitting diode. Its performance in each state shown in the following table:

| status            | which performed                  | Note                                                                   |
|-------------------|----------------------------------|------------------------------------------------------------------------|
| Charging Low      | ,                                |                                                                        |
| Not charging High | resistance                       |                                                                        |
| Battery abnormal  | 25% duty 1Hz Jump Battery charge | enters the active mode, the battery temperature is too high or too low |
| Overvoltage       | 25% duty 4Hz Jump External pow   | er supply input voltage is too high                                    |

#### **Battery temperature detection**

In the charging / use, AXP192 By the TS A pin external temperature sensitive resistor to monitor the temperature of the battery. A schematic circuit of FIG follows:



In the figure above, VTH / VTL High and low temperature thresholds are set, respectively, through the register REG38H / 39H / 3CH / 3DH Set,

VTE = 0.2V. Recommended temperature sensitive resistor selection 25 When °C is 10Kohm , Precision 1% of NTC Temperature sensitive resistor. AXP192 will be TS The constant current feeding pin, this current can be set 20uA , 40uA , 60uA , 80uA Four kinds (see register REG84H) To adapt to different NTC resistance. This current flows through the temperature-sensitive resistor, to obtain a detection voltage, AXP192 by ADC And the measured voltage value is compared with the setting value, to emit a corresponding IRQ Or be suspended.

If the temperature sensitive resistor is too large or too small, it can be connected in parallel or in series with the additional resistor on its path, in order to expand the detection range.

If the battery temperature sensitive resistor, can TS Pin to ground at this time AXP192 Battery temperature monitoring function is automatically disabled.

#### **Battery Testing**

AXP192 Automatically detects whether the battery is present and the identity register (see Register REG01H) And issued IRQ13 , IRQ14 .

Battery detection function can be Host Control opened or closed (see Register REG32H) .

### 9.4 backup battery (Backup Batttery)

AXP192 Support the use of rechargeable backup battery and, when there is no main power supply (BAT / ACIN / VBUS) There is, LDO1 Input source selection backup battery, an output system for maintaining real-time clock circuit portion.

When the main power is present, by setting REG35H [7] Backup battery charge, which is the default target voltage 3.0V (accessible REG35H [6: 5] Setting), the default charging current is 200uA (Also through REG35H [1: 0] Settings).

Over 9.5 channel power output (Multi-Power Outputs)

AXP192 of Provide more road Output voltage and function List is as follows:

| Output path        | Types of | The default voltage | Application examples | Drive capability |
|--------------------|----------|---------------------|----------------------|------------------|
| DCDC1              | BUCK     | Can be set          | 3.3VI / O            | 1200 mA          |
| DCDC2              | BUCK     | Can be set          | 1.25Vcore            | 1600 mA          |
| DCDC3              | BUCK     | Can be set          | 2.5Vddr              | 700 mA           |
| LDO1               | LDO      | Can be set          | RTC                  | 30 mA            |
| LDO2               | LDO      | Can be set Analog   | <u>/ FM</u>          | 200 mA           |
| LDO3               | LDO      | Can be set          | 1.8V HDMI            | 200 mA           |
| LDO <sub>100</sub> | LDO      | Can be set          | Vmic                 | 50 mA            |

AXP192 contain 3 Road synchronous buck DC-DC , 4 road LDO , Various promoters timing and control. DC-DC The operating frequency of default 1.5MHz , Can be adjusted by setting the registers, the peripheral may be the use of small inductive and capacitive elements. 3 More DC-DC It can be set to PWM Mode or automatic mode (by the AXP192 Automatic switching), see "The size of the load register REG80H ."

### DC-DC1 / 2/3

DCDC1 / 3 Output voltage range 0.7-3.5V , DCDC2 Output voltage 0.7-2.275V , May register set (see "Register REG23H 26H 27H 29H ").

DCDC1 / 2/3 The output capacitor is recommended 10uF X7R Little more than ESR Ceramic capacitors; when the output voltage is set to 2.5V When the above recommended 2.2uH Inductance, in 2.5V When the following is recommended 4.7uH Inductor, wherein the inductor saturation current greater than this required power demand for the maximum current path 50% the above.

The following is a list of recommended LC:

| Inductor              |                        |               |  |
|-----------------------|------------------------|---------------|--|
| models                | Current specifications | DC resistance |  |
| Murata LQH55PN2R2NR0  | 2100mA@2.2uH           | 30mOhm        |  |
| Murata LQH55PN4R7NR0  | 1400mA@4.7uH           | 60mOhm        |  |
| Murata LQH44PN2R2MP0  | 2000mA@2.2uH           | 49mOhm        |  |
| Murata LQH44PN4R7MP0  | 1700mA@2.2uH           | 80mOhm        |  |
| TDK VLF5010ST-2R2M2R3 | 2700mA@2.2uH           | 41mOhm        |  |

| TDK VLF5014ST-4R7M1R7    | 1700mA@4.7uH                | 98mOhm     |
|--------------------------|-----------------------------|------------|
| TDK SLF6045T-4R7N2R4-3PF | 2400mA@4.7uH                | 27mOhm     |
| Capacitance              |                             |            |
| model                    | Temperature characteristics | Tolerance  |
| TDK C2012X5R0J475K       | X5R / X7R                   | 10%@4.7uF  |
| TDK C2012X5R0J106K       | X5R / X7R                   | 10% @ 10uF |
| Murata GRM31E71A475K     | X7R                         | 10%@4.7uF  |
| Murata GRM21E71A106K     | X7R                         | 10% @ 10uF |
| Murata GRM31E71A106K     | X7R                         | 10% @ 10uF |

### LDO1

LDO1 Always on, you can use the system for the real time clock circuit (RTC) Provide uninterrupted power supply, its drive capability 30mA.

#### LDO2/3

LDO2 / 3 Using a low-noise design can provide power to analog circuitry applications, which drive capability 200mA .

#### LDO 100

LDO  $\infty$  Also used design, low-noise output drive capability is 50mA .

### Soft start (Soft Start)

all DC-DC with LDO Support the establishment of output soft-start mode, avoid sudden changes starting current impact on the input path.

Self-diagnosis: load monitoring and limiting protection

all DC-DC with LDO Has load monitoring and limiting function, when the load current exceeds the drive capability, output voltages are lowered to protect the internal circuitry. Three DC-DC Output voltage is lower than the set voltage 85% Time, AXP192 Automatic shut-down. DETAILED while the internal system automatically records which output voltage is too low due to a shutdown (see Register REG46H [5: 2]) And issue the appropriate IRQ.

all DC-DC No external Schottky diode and the resistor divider feedback circuit. If the application does not require use of a DC-DC, Just to corresponding LX Pin not connected to.

The default setting voltage 9.6 / start timing (Default Voltage / Timing Setting)

AXP192 Customizable default voltage of each power supply, start-up sequence and so on.

Start timing: contains 8 Class started, namely 0-7, The first of which 7 The default level when the power supply does not start this way. other 0-6 The first level, respectively 1-7

Step start this way power. Each step can be set from the start time interval, the range of selectable 1, 4, 16mS.

The default voltage setting: each channel DCDC / LDO May be selected from a set range including the lowest voltage to the highest voltage. About this part, see "Default Configuration instructions" document.

9.7 The signal acquisition system (Signal Capture)

General battery monitor battery power is typically estimated by measuring the battery voltage, and AXP192 Multi-channel 12Bit ADC In addition to measuring the battery voltage, it can also measure the battery current and the external power supply voltage, current, and battery charge and discharge internal integrated coulometer. Host Can be more accurately calculated based on these data the battery, in addition, may also be calculated out extensive real-time system power consumption information, remaining battery capacity, the battery charged, remaining battery life and the remaining fill time.

Separate ways ADC It enables control register and the sampling rate can be REG82H, 83H, 84H Set in the corresponding registers, the register descriptions refer to the sampling result is stored ADC Data class. among them GPIO [3: 0] Register input range by REG85H Settings. Battery current flow is charged or discharged by the register REG00H [2] Indicated.

| Channel               | 000Н     | STEP    | FFFH             |
|-----------------------|----------|---------|------------------|
| Battery Voltage       | 0mV      | 1.1mV   | 4.5045V          |
| Bat discharge current | 0mA      | 0.5mA   | 4.095A           |
| Bat charge current    | 0mA      | 0.5mA   | 4.095A           |
| ACIN volatge          | 0mV      | 1.7mV   | 6.9615V          |
| ACIN current          | 0mA      | 0.625mA | 2.5594A          |
| VBUS voltage          | 0mV      | 1.7mV   | 6.9615V          |
| VBUS current          | 0mA      | 0.375mA | 1.5356A          |
| Internal temperature  | -144.7 ℃ | 0.1 ℃   | 264.8 ℃          |
| APS voltage           | 0mV      | 1.4mV   | 5.733V           |
| TS pin input          | 0mV      | 0.8mV   | 3.276V           |
| GPIO0                 | 0 / 0.7V | 0.5mV   | 2.0475 / 2.7475V |
| GPIO1                 | 0 / 0.7V | 0.5mV   | 2.0475 / 2.7475V |
| GPIO2                 | 0 / 0.7V | 0.5mV   | 2.0475 / 2.7475V |
| GPIO3                 | 0 / 0.7V | 0.5mV   | 2.0475 / 2.7475V |

9.8 Multifunction Pin Description (Multi-Function Pin Description)

### **GPIO [4: 0]**

can be used as GPIO [4: 0] , ADC Input (External signal monitoring), LDO , PWM And other details, see REG90H-96H Instructions.

# N\_RSTO

LDO1 Pulled state monitoring signals (on LDO1 ) Or GPIO5 , See use REG9EH Instructions.

#### **CHGLED**

It indicates the state of charge, over-temperature and over-pressure alarm, etc. GPO Function, see use REG32H Instructions.

### IRQ (WAKEUP)

when AXP192 In switch mode A When this pin as IRQ Status indication pin, when an interrupt occurs, the output down notification HOST Interrupt handling, pulled up system IO power supply.

when AXP192 In switch mode B When this pin as WAKEUP Trigger signal indication, pulled up LDO1 Its specific functions refer to the boot mode B Instructions.

# PWROK (N\_LBO)

A system reset signal (power supply IO pulled System) mode when the switch unit A, power-off indication signal (LDO1 pulled in) at a switch mode B, see "9.2 reset switch and" the "system reset function, and output monitoring."

### 9.9 Timer (Timer)

AXP192 It comprises an internal timer, by setting register REG8AH [6: 0] It may change timer value, the minimum resolution of minutes ( Minute), Will set the timer expires REG8AH [7].

#### 9.10 HOST port and interrupt (TWSI and IRQ)



Map 2: Multi Read and Write

Host able to pass TWSI Access Interface AXP192 Register, the operation timing shown above, supports standard 100KHz or

400KHz Frequency at speeds up 1.2MHz , While supporting tonal / write operation, the device address 69H ( Read) and 68H ( write).

When certain events occur, AXP192 By pulling IRQ Interrupt mechanism to alert Host And interrupt status stored in the interrupt status register (see Register REG44H ,register REG45H ,register REG46H ,register REG47H), To write the corresponding status register bit 1 Clear the corresponding interrupt, when there is no interruption event, IRQ Output pulled (by an external pull 51K resistance). Each of the interrupt can be masked (see registers Interrupt Control Register REG40H ,register REG42H ,register

REG43H).

| position         | Interrupt num | <u>ber</u> meaning                    | position           | Interrupt num | <u>ber</u> meaning           |
|------------------|---------------|---------------------------------------|--------------------|---------------|------------------------------|
| register 44H [7] | IRQ1          | power supply ACIN Overpressure        | register 46H [7]   | IRQ16         | IC Internal over-temperature |
| register 44H [6] | IRQ2          | power supply ACIN Insert register     | 46H [6]            | IRQ17         | Charging current inadequate  |
| register 44H [5] | IRQ3          | power supply ACIN Removing reg        | ister 46H [5]      | <u>IRQ18</u>  | DCDC1 Voltage is too low     |
| register 44H [4] | IRQ4          | power supply VBUS Overpressure        | register 46H [4]   | <u>IRQ19</u>  | DCDC2 Voltage is too low     |
| register 44H [3] | IRQ5          | power supply VBUS Insert register     | 46H [3]            | IRQ20         | DCDC3 Voltage is too low     |
| register 44H [2] | IRQ6          | power supply VBUS Removing reg        | ister 46H [2]      |               | Retention                    |
| register 44H [1] | IRQ7          | VBUS Voltage is less than             | register 46H [1]   | IRQ22         | PEK dog                      |
|                  |               | V HOLD                                |                    |               |                              |
| register 44H [0] |               | Retention                             | register 46H [0]   | IRQ23         | PEK Press                    |
| register 45H [7] | IRQ8          | Battery access                        | register 47H [7]   | IRQ24         | N_OE Power                   |
| register 45H [6] | IRQ9          | Battery removal                       | register 47H [6]   | IRQ25         | N_OE Shutdown                |
| register 45H [5] | IRQ10 Batter  | y enters active mode register 47H [5] |                    | IRQ26         | VBUS effective               |
| register 45H [4] | IRQ11 Batte   | ry exit active mode register 47H [4]  |                    | IRQ27         | VBUS invalid                 |
| register 45H [3] | IRQ12         | Charging                              | register 47H [3]   | IRQ28         | VBUS Session Valid           |
| register 45H [2] | IRQ13         | finished charging                     | register 47H [2]   | IRQ29         | VBUS Session End             |
| register 45H [1] | IRQ14         | Battery temperature register 4        | 7H [1]             | Retention     |                              |
| register 45H [0] | IRQ15         | The battery temperature is too k      | w register 47H [0] | IRQ30         | Low battery warning          |

# 9.11 register (Registers)

#### The first 1 Group, based power control

| address      | Register Description                            | R / W Defau | ilts           |
|--------------|-------------------------------------------------|-------------|----------------|
| 00           | Power Status Register                           | R           |                |
| 01           | Mode power / charge status register             | R           |                |
| 04           | OTG VBUS Status Register                        | R           |                |
| 06-0B        | Data buffer register 0-5                        | R/WF0/      | 0F / 00 / FF / |
|              |                                                 |             | 00/00          |
| 10           | EXTEN & DC-DC2 Switch control register          | R/W         | X5H            |
| 12           | DC-DC1 / 3 & LDO2 / 3 Switch control register   | R/W         | XFH            |
| twenty three | DC-DC2 Voltage setting register                 | R/W         | 16H            |
| 25           | DC-DC2 Voltage slope parameter setting register | R/W         | 00H            |

| 26 | DC-DC1 Voltage setting register                           | R/W | 68H |
|----|-----------------------------------------------------------|-----|-----|
| 27 | DC-DC3 Voltage setting register                           | R/W | 48H |
| 28 | LDO2 / 3 Voltage setting register                         | R/W | CFH |
| 30 | VBUS-IPSOUT Path setting register                         | R/W | 60H |
| 31 | V off Shutdown voltage setting register                   | R/W | ХЗН |
| 32 | Off, battery detection, CHGLED Control register           | R/W | 46H |
| 33 | Charge control register 1                                 | R/W | C8H |
| 34 | Charge control register 2                                 | R/W | 41H |
| 35 | Backup battery charging control register                  | R/W | 22H |
| 36 | PEK Parameter setting register                            | R/W | 5DH |
| 37 | DCDC Converter operating frequency setting register       | R/W | 08H |
| 38 | Low battery charge warning setting register               | R/W | A5H |
| 39 | Battery charging high temperature alarm setting register  | R/W | 1FH |
| 3A | APS Low Level1 Setting register                           | R/W | 68H |
| 3B | APS Low Level2 Setting register                           | R/W | 5FH |
| 3C | Low battery discharge alarm setting register              | R/W | FCH |
| 3D | Battery discharge high temperature alarm setting register | R/W | 16H |
| 80 | DCDC Operation mode setting register                      | R/W | E0H |
| 82 | ADC Enable setting register 1                             | R/W | 83H |
| 83 | ADC Enable setting register 2                             | R/W | 80H |
| 84 | ADC Sample rate, TS pin Control register                  | R/W | 32H |
| 85 | GPIO [3: 0] Input range setting register                  | R/W | X0H |
| 86 | GPIO1 ADC IRQ Rising threshold setting                    | R/W | FFH |
| 87 | GPIO1 ADC IRQ Falling threshold setting                   | R/W | 00H |
| 8A | Timer control register                                    | R/W | 00H |
| 8B | VBUS Monitoring setting register                          | R/W | 00H |
| 8F | Over-temperature shutdown control register                | R/W | 01H |
|    |                                                           |     |     |

# The first 2 group, GPIO control Class system

| address | Register Description                           | R/W | Defaults |
|---------|------------------------------------------------|-----|----------|
| 90      | GPIO0 Control register                         | R/W | 07H      |
| 91      | GPIO0 LDO Mode setting register output voltage | R/W | A0H      |
| 92      | GPIO1 Control register                         | R/W | 07H      |
| 93      | GPIO2 Control register                         | R/W | 07H      |
| 94      | GPIO [2: 0] Signal Status Register             | R/W | 00H      |
| 95      | GPIO [4: 3] Function control register          | R/W | 00H      |
| 96      | GPIO [4: 3] Signal Status Register             | R/W | 00H      |
| 97      | GPIO [2: 0] Pull-down control registers        | R/W | 00H      |
| 98      | PWM1 The frequency setting register            | R/W | 00H      |
| 99      | PWM1 Duty cycle setting register 1             | R/W | 16H      |
| 9A      | PWM1 Duty cycle setting register 2             | R/W | 0BH      |

| 9B | PWM2 The frequency setting register | R/W | 00H |
|----|-------------------------------------|-----|-----|
| 9C | PWM2 Duty cycle setting register 1  | R/W | 16H |
| 9D | PWM2 Duty cycle setting register 2  | R/W | 0BH |
| 9E | N_RSTO (GPIO5) Control register     | R/W | 20H |

### The first 3 Group, interrupt control class

| address | Register Description          | R/W | Defaults |
|---------|-------------------------------|-----|----------|
| 40      | IRQ Enable Control Register 1 | R/W | D8H      |
| 41      | IRQ Enable Control Register 2 | R/W | FFH      |
| 42      | IRQ Enable Control Register 3 | R/W | 3ВН      |
| 43      | IRQ Enable Control Register 4 | R/W | C1H      |
| 4A      | IRQ Enable Control Register 5 | R/W | 00H      |
| 44      | IRQ Status Register 1         | R/W | 00H      |
| 45      | IRQ Status Register 2         | R/W | 00H      |
| 46      | IRQ Status Register 3         | R/W | 00H      |
| 47      | IRQ Status Register 4         | R/W | 00H      |
| 4D      | IRQ Status Register 5         | R/W | 00H      |

### The first 4 group, ADC number According to class

| address | Register Description                                                      | R/W |
|---------|---------------------------------------------------------------------------|-----|
| 56      | ACIN Voltage ADC High data 8 Place                                        | R   |
| 57      | ACIN Voltage ADC Low data 4 Place                                         | R   |
| 58      | ACIN Electric current ADC High data 8 Place                               | R   |
| 59      | ACIN Electric current ADC Low data 4 Place                                | R   |
| 5A      | VBUS Voltage ADC High data 8 Place                                        | R   |
| 5B      | VBUS Voltage ADC Low data 4 Place                                         | R   |
| 5C      | VBUS Electric current ADC High data 8 Place                               | R   |
| 5D      | VBUS Electric current ADC Low data 4 Place                                | R   |
| 5E      | AXP192 Internal temperature monitoring ADC High data 8 Place              | R   |
| 5F      | AXP192 Internal temperature monitoring ADC Low data 4 Place               | R   |
| 62      | TS Entry ADC High data 8 Bits, the default monitoring battery temperature | R   |
| 63      | TS Entry ADC Low data 4 Bits, the default monitoring battery temperature  | R   |
| 64      | GPIO0 Voltage ADC High data 8 Place                                       | R   |
| 65      | GPIO0 Voltage ADC Low data 4 Place                                        | R   |
| 66      | GPIO1 Voltage ADC High data 8 Place                                       | R   |
| 67      | GPIO1 Voltage ADC Low data 4 Place                                        | R   |
| 68      | GPIO2 Voltage ADC High data 8 Place                                       | R   |
| 69      | GPIO2 Voltage ADC Low data 4 Place                                        | R   |
| 6A      | GPIO3 Voltage ADC High data 8 Place                                       | R   |
| 6B      | GPIO3 Voltage ADC Low data 4 Place                                        | R   |

Enhanced single Cell Li-Battery and Power System Management IC

| 70 | High instantaneous power battery 8 Place   | R |
|----|--------------------------------------------|---|
| 71 | Instantaneous power in the battery 8 Place | R |
| 72 | Low battery instantaneous power 8 Place    | R |
| 78 | The battery voltage is high 8 Place        | R |
| 79 | Low battery voltage 4 Place                | R |
| 7A | Battery charging current is high 8 Place   | R |
| 7B | Low battery charging current 5 Place       | R |
| 7C | Battery discharge current is high 8 Place  | R |
| 7D | Battery discharge current is low 5 Place   | R |
| 7E | APS High Voltage 8 Place                   | R |
| 7F | APS Low voltage 4 Place                    | R |

NOTE: battery power is calculated as

Pbat = Register values \* Voltage LSB \* Electric current LSB / 1000 . Wherein the voltage LSB for 1.1mV Current LSB

for 0.5mA The calculated results for the unit mW .

| address | Register Description                                     | R/W | Defaults |
|---------|----------------------------------------------------------|-----|----------|
| В0      | Battery charging coulomb counter data register [ 31:24]  | R/W | 00H      |
| B1      | Battery charging coulomb counter data register [ 23:16]  | R/W | 00H      |
| B2      | Battery charging coulomb counter data register [ 15: 8]  | R/W | 00H      |
| В3      | Battery charging coulomb counter data register [ 7: 0]   | R/W | 00H      |
| B4      | Battery discharge coulomb counter data register [ 31:24] | R/W | 00H      |
| B5      | Battery discharge coulomb counter data register [ 23:16] | R/W | 00H      |
| В6      | Battery discharge coulomb counter data register [ 15: 8] | R/W | 00H      |
| B7      | Battery discharge coulomb counter data register [7: 0]   | R/W | 00H      |
| В8      | Coulomb Counter Control Register                         | R/W | 00H      |

Coulomb calculation method: C = 65536 \* Electric current LSB \* (Coulomb counter value charge - discharge coulomb counter value) / 3600 / ADC Sampling Rate. among them: ADC Reference sample rate REG84H Set; current LSB for 0.5mA; Calculation unit mAh.

REG 00H: Input power status

| Bit      | description                                               | R/W |
|----------|-----------------------------------------------------------|-----|
| 7        | ACIN There is an indication                               | R   |
|          | 0: ACIN does not exist; 1: ACIN presence                  |     |
| 6 Instru | ction ACIN it's usable or not                             | R   |
| 5        | VBUS There is an indication                               | R   |
|          | 0: VBUS does not exist; 1: VBUS presence                  |     |
| 4 Instru | ction VBUS it's usable or not                             | R   |
| 3 Instru | ction VBUS Before using the access is greater than V HOLD | R   |
| 2 Indica | tes that the battery current direction                    | R   |
|          | 0: In the discharge cell; 1: The battery is charged       |     |

| 1 Instru | tion ACIN with VBUS Whether the input PCB Shorted             | R |
|----------|---------------------------------------------------------------|---|
| 0 Indica | ting whether the source start ACIN or VBUS                    | R |
|          | 0: Non-source start ACIN / VBUS ; 1: Start source ACIN / VBUS |   |

REG 01H: power mode of operation and the state of charge indication

| Bit        | description                                                                                                             | R/W |
|------------|-------------------------------------------------------------------------------------------------------------------------|-----|
| 7 Instru   | ction AXP192 Whether over-temperature                                                                                   | R   |
|            | 0: Not too warm; 1: Overtemperature                                                                                     |     |
| 6 Charg    | ing indicator                                                                                                           | R   |
|            | 0: No charging or charging has been completed; 1: Charging                                                              |     |
| 5 Batter   | y status indication exists                                                                                              | R   |
|            | 0: No battery is connected to AXP192 ; 1: Connected to the battery AXP192                                               |     |
| 4 Reser    | vations can not be changed                                                                                              | R   |
| 3 It indic | ates whether the cell enters active mode                                                                                | R   |
|            | 0: The battery does not enter an active mode; 1: Battery has entered the active mode                                    |     |
| 2 Indica   | ting whether the charging current is less than desired current                                                          | R   |
|            | 0: The actual charge current is equal to the desired current; 1: The actual charge current is less than desired current |     |
| 1          | AXP192 Switch mode indication                                                                                           | R   |
|            | 0: the way A; 1: the way B                                                                                              |     |
| 0 Reser    | vations can not be changed                                                                                              | R   |

### REG 02H: USB OTG VBUS status indicator

| Bit             | description                                                          | R/W |
|-----------------|----------------------------------------------------------------------|-----|
| <u>7-3</u> Rese | vations can not be changed                                           |     |
| 2 Instru        | ction VBUS is it effective, 1 Effective representation               | R   |
| 1 Instru        | ction VBUS Session A / B is it effective, 1 Effective representation | R   |
| 0 Instru        | ction Session End status, 1 Effective representation                 | R   |

REG 06-0BH: data cache

NOTE: As long as an external power source, a battery or a battery backup power sources exist, the data would have been saved, not switch. The default value F0 / 0F / 00 / FF / 00 / 00H

# REG 10H: EXTEN & DC-DC2 output control

# default value: XXH

| <u>Bit</u>      | description                       |                          | R / W <u>Defa</u> | <u>ults</u> |
|-----------------|-----------------------------------|--------------------------|-------------------|-------------|
| <u>7-3</u> Rese | rvations can not be changed       |                          |                   |             |
| 2               | EXTEN Switch control              | 0: shut down; 1: turn on | RW                | Х           |
| 1 Reser         | 1 Reservations can not be changed |                          |                   |             |
| 0               | DC-DC2 Switch control             | 0: shut down; 1: turn on | RW                | Х           |

Note: X Custom represented by the circumstances, the following value X Part with this.

REG 12H: control the power supply output

### default value: XXH

| Bit     | description                       |                          | R / W Defaults |   |
|---------|-----------------------------------|--------------------------|----------------|---|
| 7 Reser | vations can not be changed        |                          | RW             | Х |
| 6       | EXTEN Switch control              | 0: shut down; 1: turn on | RW             | Х |
| 5 Reser | 5 Reservations can not be changed |                          | RW             | Х |
| 4       | DC-DC2 Switch control             | 0: shut down; 1: turn on | RW             | Х |
| 3       | LDO3 Switch control               |                          | RW             | Х |
| 2       | LDO2 Switch control               |                          | RW             | Х |
| 1       | DC-DC3 Switch control             |                          | RW             | Х |
| 0       | DC-DC1 Switch control             |                          | RW             | Х |

Note: REG12Hbit6 / 4 Respectively REG10Hbit2 / 0 .

REG 23H: DC-DC2 output voltage setting

#### default value: 16H

| Bit             | description                            |                          | R / W Defaults |   |
|-----------------|----------------------------------------|--------------------------|----------------|---|
| <u>7-6</u> Rese | vations can not be changed             |                          |                |   |
| 5               | DC-DC2 Setting the output voltage Bit5 | 0.7-2.275V , 25mV / step | RW             | Х |
| 4               | DC-DC2 Setting the output voltage Bit4 |                          | RW             | Х |
| 3               | DC-DC2 Setting the output voltage Bit3 |                          | RW             | Х |
| 2               | DC-DC2 Setting the output voltage Bit2 |                          | RW             | Х |
| 1               | DC-DC2 Setting the output voltage Bit1 |                          | RW             | Х |
| 0               | DC-DC2 Setting the output voltage Bit0 |                          | RW             | X |

REG 25H: DC-DC2 dynamic voltage scaling parameters

# default value: 00H

| Bit             | description                                            |                                 | R / W Defaults |   |
|-----------------|--------------------------------------------------------|---------------------------------|----------------|---|
| <u>7-3</u> Rese | servations can not be changed                          |                                 |                |   |
| 2               | DC-DC2 VRC Enable Control                              | DC-DC2 VRC Enable Control       |                | 0 |
|                 | 0: turn on; 1: shut down                               |                                 |                |   |
| 1 Reser         | 1 Reservations can not be changed                      |                                 | RW             | 0 |
| 0               | DC-DC2 VRC Voltage rising slope control 0: 25mV / 15.0 | 25us = 1.6mV / us               | RW             | 0 |
|                 |                                                        | 1: 25mV / 31.250us = 0.8mV / us |                |   |

REG 26H: DC-DC1 setting the output voltage

#### default value: 68H

| Bit    |                                        | description            | R / W Defa | ults |
|--------|----------------------------------------|------------------------|------------|------|
| 7 Rese | vations can not be changed             |                        |            |      |
| 6      | DC-DC1 Setting the output voltage Bit6 | 0.7-3.5V , 25mV / step | RW         | Х    |
| 5      | DC-DC1 Setting the output voltage Bit5 |                        | RW         | Х    |
| 4      | DC-DC1 Setting the output voltage Bit4 |                        | RW         | Х    |
| 3      | DC-DC1 Setting the output voltage Bit3 |                        | RW         | Х    |
| 2      | DC-DC1 Setting the output voltage Bit2 |                        | RW         | Х    |
| 1      | DC-DC1 Setting the output voltage Bit1 |                        | RW         | Х    |
| 0      | DC-DC1 Setting the output voltage Bit0 |                        | RW         | Х    |

REG 27H: DC-DC3 setting the output voltage

# default value: 48H

| Bit     |                                        | description            | R / W Defa | ults |
|---------|----------------------------------------|------------------------|------------|------|
| 7 Resei | vations can not be changed             |                        |            |      |
| 6       | DC-DC3 Setting the output voltage Bit6 | 0.7-3.5V , 25mV / step | RW         | Х    |
| 5       | DC-DC3 Setting the output voltage Bit5 |                        | RW         | Х    |
| 4       | DC-DC3 Setting the output voltage Bit4 |                        | RW         | Х    |
| 3       | DC-DC3 Setting the output voltage Bit3 |                        | RW         | Х    |
| 2       | DC-DC3 Setting the output voltage Bit2 |                        | RW         | Х    |
| 1       | DC-DC3 Setting the output voltage Bit1 |                        | RW         | Х    |
| 0       | DC-DC3 Setting the output voltage Bit0 |                        | RW         | Х    |

# REG 28H: LDO2 / 3 output voltage setting

# default value: CFH

| Bit | description                          |                         | R / W Defaults |   |
|-----|--------------------------------------|-------------------------|----------------|---|
| 7   | LDO2 Setting the output voltage Bit3 | 1.8-3.3V , 100mV / step | RW             | Х |
| 6   | LDO2 Setting the output voltage Bit2 |                         | RW             | Х |
| 5   | LDO2 Setting the output voltage Bit1 |                         | RW             | Х |
| 4   | LDO2 Setting the output voltage Bit0 |                         | RW             | Х |
| 3   | LDO3 Setting the output voltage Bit3 | 1.8-3.3V , 100mV / step | RW             | Х |
| 2   | LDO3 Setting the output voltage Bit2 |                         | RW             | Х |
| 1   | LDO3 Setting the output voltage Bit1 |                         | RW             | Х |
| 0   | LDO3 Setting the output voltage Bit0 |                         | RW             | Х |

# REG 30H: VBUS-IPSOUT path management

#### default value: 6XH

| Bit     | description                                                               |                                                     | R / W Defaults |   |
|---------|---------------------------------------------------------------------------|-----------------------------------------------------|----------------|---|
| 7       | VBUS Available VBUS-IPSOUT Channel selection control signal               |                                                     | RW             | 0 |
|         | 0: by N_VBUSEN pin Decide whether to open this path                       |                                                     |                |   |
|         | 1: VBUS-IPSOUT Open access can be selected, regardless of N_VBUSEN status |                                                     |                |   |
| 6       | VBUS V HOLD Pressure limiting control                                     |                                                     | RW             | 1 |
|         | 0: Any pressure; 1: Pressure limiting                                     |                                                     |                |   |
| 5       | Vного Set up Bit 2                                                        | 000: 4.0V ; 001: 4.1V ; 010: 4.2V 011: 4.3V ; 100 : | RW             | 1 |
| 4       | Vноь Set up Bit 1                                                         | 4.4V ; 101: 4.5V 110: 4.6V ; 111: 4.7V              | RW             | 0 |
| 3       | Vноь Set up Bit 0                                                         |                                                     | RW             | 0 |
| 2 Reser | 2 Reservations can not be changed                                         |                                                     |                |   |
| 1       | VBUS Limiting control enable signal                                       |                                                     | RW             | Х |
|         | 0: shut down; 1: turn on                                                  |                                                     |                |   |
| 0       | VBUS Limit control open time stream selection                             |                                                     | RW             | 0 |
|         | 0: 500mA ; 1: 100mA                                                       |                                                     |                |   |

# REG 31H: V OFF Off voltage setting

# default value: X3H

| Bit                                 | description                                    |  | <u>ılts</u> |
|-------------------------------------|------------------------------------------------|--|-------------|
| 7-4 Reservations can not be changed |                                                |  |             |
| 3                                   | Sleep Mode PWRON Press wakeup enable settings: |  |             |

|    | 0 : Short press to wake up close function                                                                    |                                  |    |   |
|----|--------------------------------------------------------------------------------------------------------------|----------------------------------|----|---|
|    | 1: Short press Open this wake-up function bit Automatic Clearing After writing 0 , So each into Sleep Former |                                  |    |   |
| mo | mode needs to write again 12                                                                                 |                                  |    |   |
|    | V off Set up Bit2                                                                                            | 000-2.6V; 001-2.7V; 010-2.8V;    | RW | 0 |
| 1  | V off Set up Bit1                                                                                            | 011-2.9V ; 100-3.0V ; 101-3.1V ; | RW | 1 |
| 0  | V off Set up Bit0                                                                                            | 110-3.2V ; 111-3.3V              | RW | 1 |

REG 32H: set off, and the battery detection control pin CHGLED

#### default value: 46H

| Bit      |                                                | description                                    | R / W Defa | <u>ults</u> |
|----------|------------------------------------------------|------------------------------------------------|------------|-------------|
| 7 the wa | A Shutdown control                             |                                                | RW         | 0           |
|          | This bit 1 Closes AXP192 Output                |                                                |            |             |
| 6 Batte  | y monitoring Set bit: 0: shut down; 1: turn on |                                                | RW         | 1           |
| 5-4 CH   | GLED Pin feature set                           | 00: High resistance                            | RW         | 00          |
|          |                                                | 01: 25% 1Hz flicker                            |            |             |
|          |                                                | 10: 25% 4Hz flicker                            |            |             |
|          |                                                | 11: Output low                                 |            |             |
| 3        | CHGLED Pin control settings                    | 0: Controlled by the charging function         | RW         | 0           |
|          |                                                | 1: From the register REG 32HBit [5: 4] control |            |             |
| 2 Reser  | vations can not be changed                     |                                                |            |             |
| 1-0 N_OE | After the low to high AXP192 Shutdown delay    | 00: 0.5\$ ; 01: 1\$ ;                          | RW         | 10          |
|          | Delay time                                     | 10: 2S ; 11: 3S                                |            |             |

REG 33H: charging control 1

#### default value: C8H

| Bit       | description                                                                 | R / W Defa | <u>ults</u> |
|-----------|-----------------------------------------------------------------------------|------------|-------------|
| 7 Charg   | ing enable control bit, the outer channel and the inner channel comprising  | RW         | 1           |
|           | 0: shut down, 1: turn on                                                    |            |             |
| 6: 5 Char | ging the target voltage setting                                             | RW         | 10          |
|           | 00: 4.1V ; 01: 4.15V ; 10: 4.2V ; 11: 4.36V                                 |            |             |
| 4 Charg   | ing end current setting                                                     | RW         | 0           |
|           | 0: The charging current is less than 10% When the end of charging set value |            |             |
|           | 1: The charging current is less than 15% When the end of charging set value |            |             |
| 3-0 Charg | ing current setting internal passage                                        | RW         | 1000        |
|           | 0000: 100mA; 0001: 190mA; 0010: 280mA; 0011: 360mA;                         |            |             |
|           | 0100: 450mA; 0101: 550mA; 0110: 630mA; 0111: 700mA;                         |            |             |

|  | 1000: 780mA; 1001: 880mA; 1010: 960mA; 1011: 1000mA;      |  |  |
|--|-----------------------------------------------------------|--|--|
|  | 1100: 1080mA ; 1101: 1160mA ; 1110: 1240mA ; 1111: 1320mA |  |  |

REG 34H: charging control 2

### default value: 41H

| Bit        | description                                                      |                          | R / W Defa | ults |
|------------|------------------------------------------------------------------|--------------------------|------------|------|
| 7 Prech    | arge timeout setting Bit1                                        | 00: 30 min ; 01: 40min ; | RW         | 0    |
| 6 Prech    | arge timeout setting Bit0                                        | 10: 50min ; 11: 60min    | RW         | 1    |
| 5-3 Exteri | al access charging current setting                               |                          | RW         | 000  |
|            | range 300-1000mA , 100mA / step , Defaults 300mA                 |                          |            |      |
| 2 Enable   | e external charging passage provided                             |                          | RW         | 0    |
|            | 0: shut down; 1: turn on                                         |                          |            |      |
| 1 Timeo    | setting the constant current mode Bit1 00: 7Hours ; 01: 8Hours ; |                          | RW         | 0    |
| 0 Timeo    | ut setting the constant current mode Bit0                        | 10: 9Hours ; 11: 10Hours | RW         | 1    |

REG 35H: backup battery charging control

### default value: 22H

| Bit       |                                             | description            | R / W Defa | <u>ults</u> |
|-----------|---------------------------------------------|------------------------|------------|-------------|
| 7 A spa   | re battery enable control                   | battery enable control |            | 0           |
|           | shut down; 1: turn on                       |                        |            |             |
| 6: 5 Back | kup battery charging target voltage setting |                        | RW         | 01          |
|           | 00: 3.1V ; 01: 3.0V ; 10: 3.0V ; 11: 2.5V   |                        |            |             |
| 4-2 Reser | ervations can not be changed                |                        |            |             |
| 1: 0 Back | μρ battery charging current setting         | 00: 50uA ; 01: 100uA ; | RW         | 10          |
|           |                                             | 10: 200uA ; 11: 400uA  |            |             |

REG 36H: PEK Key parameters

## default value: 5DH

| Bit    | description           |                         | R / W Defa | <u>ults</u> |
|--------|-----------------------|-------------------------|------------|-------------|
| 7 Boot | time settings Bit1    | 00: 128mS ; 01: 512mS ; | RW         | 0           |
| 6 Boot | time settings Bit0    | 10: 1S ; 11: 2S.        | RW         | 1           |
| 5 Long | time setting key Bit1 | 00: 1S ; 01: 1.5S ;     | RW         | 0           |
| 4 Long | time setting key Bit0 | 10: 2S ; 11: 2.5S.      | RW         | 1           |

| 3 Autom   | omatic shutdown function is set longer than the time duration shutdown button |                   | RW | 1 |
|-----------|-------------------------------------------------------------------------------|-------------------|----|---|
|           | 0: shut down; 1: turn on                                                      |                   |    |   |
| 2 After p | ower-up complete PWROK Signal Delay                                           |                   | RW | 1 |
|           | 0: 32mS ; 1: 64mS                                                             |                   |    |   |
| 1 Long    | g set off Bit1 00: 4S; 01: 6S;                                                |                   | RW | 0 |
| 0 Long    | g set off Bit0                                                                | 10: 8S ; 11: 10S. | RW | 1 |

REG 37H: DC-DC operating frequency is provided

#### default value: 08H

| Bit      | description                             |                                       | R / W Defa | <u>ults</u> |
|----------|-----------------------------------------|---------------------------------------|------------|-------------|
| 7-4 Rese | vations can not be changed              |                                       |            |             |
| 3        | DC-DC Switching frequency setting Bit 3 | Each level change 5% ,Defaults 1.5MHz | RW         | 1           |
| 2        | DC-DC Switching frequency setting Bit 2 |                                       | RW         | 0           |
| 1        | DC-DC Switching frequency setting Bit 1 |                                       | RW         | 0           |
| 0        | DC-DC Switching frequency setting Bit 0 |                                       | RW         | 0           |

## REG 38H: VLTF-charge Low battery charge threshold setting

#### default value: A5H

| Bit      | description                                   |                                                                | R / W Defa | <u>ults</u> |
|----------|-----------------------------------------------|----------------------------------------------------------------|------------|-------------|
| 7-0 Wher | charging the battery low threshold setting, M | M * 10H , when M = A5H When the corresponding 2.112V ; Voltage | RW         | A5H         |
|          |                                               | may correspond to 0V ~ 3.264V                                  |            |             |

 $V_{LTF-charge} = M * 10H * 0.0008V$ 

REG 39H: V HTF-charge Charging the battery temperature threshold setting

## default value: 1FH

| Bit      |                                                       | description                                             | R / W Defa | ults |
|----------|-------------------------------------------------------|---------------------------------------------------------|------------|------|
| 7-0 When | charging the battery temperature threshold setting, N | N * 10H , when N = 1FH ,correspond 0.397V ; Voltage may | RW         | 1FH  |
|          |                                                       | correspond to 0V ~ 3.264V                               |            |      |

V<sub>HTF-charge</sub> = N \* 10H \* 0.0008V

REG 3AH: APS low level 1

#### default value: 68H

| Bit | description | R / W Defaults |  |
|-----|-------------|----------------|--|

| 7-0 APS Low-level settings 1 | RW | 68H |
|------------------------------|----|-----|
|                              |    |     |

### REG 3BH: APS low level 2

### default value: 5FH

| Bit            | description          | R / W <u>Defaults</u> |     |
|----------------|----------------------|-----------------------|-----|
| <u>7-0</u> APS | Low-level settings 2 | RW                    | 5FH |

REG3AH , REG3BH corresponding APS Voltage is set to the following relationship (assumed that the register value n):

Vwarning = 2.8672 + 1.4mV \* n \* 4

### REG 3CH: VLTF-discharge Battery discharge cold threshold setting

#### default value: FCH

| Bit   |                                                           | description                                                   | R / W Defa | <u>ults</u> |
|-------|-----------------------------------------------------------|---------------------------------------------------------------|------------|-------------|
| 7-0 W | her the discharge of the battery low threshold setting, M | M * 10H , when M = FCH When the corresponding 3.226V; Voltage | RW         | FCH         |
|       |                                                           | may correspond to 0V ~ 3.264V                                 |            |             |

V<sub>LTF-discharge</sub> = M \* 10H \* 0.0008V

## REG 3DH: V HTF-discharge Battery discharge threshold setting temperature

### default value: 16H

| Bit      |                                                               | description                                             | R / W <u>Defaults</u> |     |
|----------|---------------------------------------------------------------|---------------------------------------------------------|-----------------------|-----|
| 7-0 When | the discharge of the battery temperature threshold setting, N | N * 10H , when N = 16H ,correspond 0.282V ; Voltage may | RW                    | 16H |
|          |                                                               | correspond to 0V ~ 3.264V                               |                       |     |

V<sub>LTF-discharge</sub> = N \* 10H \* 0.0008V

## REG 80H: DC-DC mode selection

| <u>Bit</u>      | description                   |                                   | R / W Defa | <u>ults</u> |
|-----------------|-------------------------------|-----------------------------------|------------|-------------|
| <u>7-4</u> Rese | ions can not be changed       |                                   |            |             |
| 3               | DC-DC1 Operating mode control | 0: PFM / PWM Automatically switch | RW         | 0           |
| 2               | DC-DC2 Operating mode control | 1: fixed PWM                      | RW         | 0           |
| 1               | DC-DC3 Operating mode control |                                   | RW         | 0           |
| 0 Rese          | vations can not be changed    |                                   |            |             |

## REG 82H: ADC Enable 1

## default value: 83H

| Bit      | description                      |                          | R / W Defaults |   |
|----------|----------------------------------|--------------------------|----------------|---|
| 7 batter | / voltage ADC Enable             | 0: shut down, 1: turn on | RW             | 1 |
| 6 Batter | y current ADC Enable             |                          | RW             | 0 |
| 5        | ACIN Voltage ADC Enable          |                          | RW             | 0 |
| 4        | ACIN Electric current ADC Enable |                          | RW             | 0 |
| 3        | VBUS Voltage ADC Enable          |                          | RW             | 0 |
| 2        | VBUS Electric current ADC Enable |                          | RW             | 0 |
| 1        | APS Voltage ADC Enable           |                          | RW             | 1 |
| 0        | TS Pin ADC Enable function       |                          | RW             | 1 |

## REG 83H: ADC Enable 2

#### default value: 80H

| <u>Bit</u>      | description                                                 |                          | R / W Defa | <u>ults</u> |
|-----------------|-------------------------------------------------------------|--------------------------|------------|-------------|
| 7               | AXP192 Internal temperature monitoring ADC Enable 0: shut d | own, 1: turn on          | RW         | 1           |
| <u>6-4</u> Rese | Rese vations can not be changed                             |                          |            |             |
| 3               | GPIO0 ADC Enable function                                   | 0: shut down, 1: turn on | RW         | 0           |
| 2               | GPIO1 ADC Enable function                                   |                          | RW         | 0           |
| 1               | GPIO2 ADC Enable function                                   |                          | RW         | 0           |
| 0               | GPIO [3] ADC Enable function                                |                          | RW         | 0           |

## REG 84H: ADC setting the sample rate, TS pin control

#### default value: 32H

| <u>Bit</u> |                                                                 | description                               |    | <u>ults</u> |
|------------|-----------------------------------------------------------------|-------------------------------------------|----|-------------|
| 7          | ADC Setting the sample rate Bit 1                               | 25 × 2 n                                  | RW | 0           |
| 6          | ADC Setting the sample rate Bit 0                               | Sampling rates were 25 , 50 , 100 , 200Hz | RW | 0           |
| 5-4 TS (   | 5-4 TS Output current setting pin:                              |                                           | RW | 11          |
|            | 00: 20uA ; 01: 40uA ; 10: 60uA ; 11: 80uA                       |                                           |    |             |
| 3 Reser    | vations can not be changed                                      |                                           |    |             |
| 2          | TS Pin function selection                                       |                                           | RW | 0           |
|            | 0: Battery temperature monitoring function, 1: External indepen | dent ADC Input path                       |    |             |
|            | TS Current output pin disposed                                  | 00: shut down                             | RW | 1           |
| <u>1-0</u> |                                                                 | 01: Output current charging               | RW | 0           |

|  | 10: ADC Input samples, can power |  |
|--|----------------------------------|--|
|  | 11: Has been opened              |  |

## REG 85H: ADC input range

#### default value: X0H

| <u>Bit</u>      |                            | description     | R / W Defa | ults |
|-----------------|----------------------------|-----------------|------------|------|
| <u>7-4</u> Rese | vations can not be changed |                 |            |      |
| 3               | GPIO3 ADC Input range      | 0: 0-2.0475V 1: | RW         | 0    |
| 2               | GPIO2 ADC Input range      | 0.7-2.7475V     | RW         | 0    |
| 1               | GPIO1 ADC Input range      |                 | RW         | 0    |
| 0               | GPIO0 ADC Input range      |                 | RW         | 0    |

## REG 86H: GPIO1 ADC IRQ rising threshold settings

## default value: FFH

| <u>Bit</u>    | description   | R / W <u>Defa</u> | <u>ults</u> |
|---------------|---------------|-------------------|-------------|
| <u>7-0</u> On | e LSB for 8mV | RW                | FF          |

## REG 87H: GPIO1 ADC IRQ falling threshold settings

## default value: 00H

| <u>Bit</u>    | description | R / W <u>Defa</u> | ults |
|---------------|-------------|-------------------|------|
| <u>7-0</u> On | LSB for 8mV | RW                | 00   |

## REG 8AH: Timer control

| Bit     | description                          | R / W Defa | ults |
|---------|--------------------------------------|------------|------|
| 7 Time  | expires.                             | RW         | 0    |
|         | write 1 Clear this state             |            |      |
| 6-0 Set | the timer time in minutes            | RW 0000    | 0000 |
|         | Write all 0 This timer is turned off |            |      |

REG 8BH: VBUS pin function control monitoring SRP

## default value: 00H

| Bit       | description                                                                           |    | ults |
|-----------|---------------------------------------------------------------------------------------|----|------|
| 7-6 Reser | vations can not be changed                                                            |    |      |
| 5-4 VBUS  | The effective voltage setting                                                         | RW | 00   |
|           | 00: 4.0V ; 01: 4.15V ; 10: 4.45V ; 11: 4.55V                                          |    |      |
| 3         | VBUS Valid Detection feature set: 0: shut down, 1: turn on                            | RW | 0    |
| 2         | VBUS Session Detection feature set: 0: shut down, 1: turn on                          | RW | 0    |
| 1         | Discharge VBUS Discharge function provided                                            | RW | 0    |
|           | 0: shut down VBUS A discharging resistor; 1: use VBUS A discharging resistor          |    |      |
| 0         | Charge VBUS Charging function provided                                                | RW | 0    |
|           | 0: disconnect VBUS A charging resistor; 1: use VBUS A charging resistor VBUS Charging |    |      |

REG 8FH: over-temperature shutdown feature set

### default value: 01H

| Bit       | description                                           | R / W Defaults |   |
|-----------|-------------------------------------------------------|----------------|---|
| 7-3 Reser | vations can not be changed                            | RW             | 0 |
| 2         | AXP192 Internal over-temperature shutdown feature set | RW             | 0 |
|           | 0: Do not shut down; 1: Shutdown                      |                |   |
| 1-0 Reser | vations can not be changed                            |                |   |

REG 90H: GPIO0 feature set

| Bit             | description                  |                                   | R / W Defa | ults |
|-----------------|------------------------------|-----------------------------------|------------|------|
| <u>7-3</u> Rese | ervations can not be changed |                                   | RW         | 0    |
| 2               | GPIO0 Pin feature set Bit 2  | 000: NMOS Open-drain output       | RW         | 1    |
|                 |                              | 001: Universal input function     |            |      |
|                 |                              | 010: Low Noise LDO 011: Retention |            |      |
| 1               | GPIO0 Pin feature set Bit 1  |                                   | RW         | 1    |
|                 |                              | 100: ADC Entry                    |            |      |
| 0               | GPIO0 Pin feature set Bit 0  | 101: Output Low                   | RW         | 1    |
|                 |                              | 11X: Floating                     |            |      |

When the output voltage is set to GPIO0 LDO mode: REG 91H

## default value: A0H

| <u>Bit</u> | description                                         | R / W Defa | ults |
|------------|-----------------------------------------------------|------------|------|
| 7-4 GPI    | O0 LDO Output voltage setting mode                  | RW         | 1010 |
|            | 0000: 1.8V ; 0001: 1.9V ; 0010: 2.0V ; 0011: 2.1V ; |            |      |
|            | 0100: 2.2V ; 0101: 2.3V ; 0110: 2.4V ; 0111: 2.5V ; |            |      |
|            | 1000: 2.6V ; 1001: 2.7V ; 1010: 2.8V ; 1011: 2.9V ; |            |      |
|            | 1100: 3.0V ; 1101: 3.1V ; 1110: 3.2V ; 1111: 3.3V   |            |      |
| 3-0 Rese   | rvations can not be changed                         |            |      |

## REG 92H: GPIO1 feature set

## default value: 07H

| <u>Bit</u>      | description                  |                                                                | R / W Defa | ults |
|-----------------|------------------------------|----------------------------------------------------------------|------------|------|
| <u>7-3</u> Rese | e vations can not be changed |                                                                | RW         | 0    |
| 2               | GPIO1 Pin feature set Bit 2  | 000: NMOS Open-drain output                                    | RW         | 1    |
|                 |                              | 001: Universal input function                                  |            |      |
|                 |                              | 010: PWM1 Output, high level VINT , Not less than plus 100K Pt | II-down    |      |
| 1               | GPIO1 Pin feature set Bit 1  | resistor                                                       | RW         | 1    |
|                 |                              | 011: Retention                                                 |            |      |
| 0               | GPIO1 Pin feature set Bit 0  | 100: ADC Entry                                                 | RW         | 1    |
|                 |                              | 101: Output Low                                                |            |      |
|                 |                              | 11X: Floating                                                  |            |      |

## REG 93H: GPIO2 feature set

| Bit             | description                   |                                                                | R / W Defa | ults |  |
|-----------------|-------------------------------|----------------------------------------------------------------|------------|------|--|
| <u>7-3</u> Rese | servations can not be changed |                                                                | RW         | 0    |  |
| 2               | GPIO2 Pin feature set Bit 2   | 000: NMOS Open-drain output                                    | RW         | 1    |  |
|                 |                               | 001: Universal input function                                  |            |      |  |
|                 |                               | 010: PWM2 Output, high level VINT , Not less than plus 100K Pt | II-down    |      |  |
| 1               | GPIO2 Pin feature set Bit 1   | resistor                                                       | RW         | 1    |  |
|                 |                               | 011: Retention                                                 |            |      |  |
| 0               | GPIO2 Pin feature set Bit 0   | 100: ADC Entry                                                 | RW         | 1    |  |
|                 |                               | 101: Output Low                                                |            |      |  |
|                 |                               | 11X: Floating                                                  |            |      |  |

## REG 94H: GPIO [2: 0] signal state and monitoring

## default value: 00H

| Bit     |                                   | description                              | R / W Defa | ults |
|---------|-----------------------------------|------------------------------------------|------------|------|
| 7 Reser | rvations can not be changed       |                                          | R          |      |
| 6       | GPIO2 Input Status                | 0: Input low                             | R          |      |
| 5       | GPIO1 Input Status                | 1: Input High                            | R          |      |
| 4       | GPIO0 Input Status                |                                          | R          |      |
| 3 Reser | 3 Reservations can not be changed |                                          |            |      |
| 2       | GPIO2 Output Settings             | 0: Output low, ground NMOS turn on       | RW         | 0    |
| 1       | GPIO1 Output Settings             | 1: Output floating ground NMOS shut down | RW         | 0    |
| 0       | GPIO0 Output Settings             |                                          | RW         | 0    |

## REG 95H: GPIO [4: 3] Function Set Pin

#### default value: 00H

| Bit      | description                 |                                           | R / W Defa | ults |
|----------|-----------------------------|-------------------------------------------|------------|------|
| 7        | GPIO [4: 3] control:        |                                           | RW         | 0    |
|          | 1 : GPIO Features           |                                           |            |      |
| 6-4 Rese | vations can not be changed  |                                           | RW         | 0    |
| 3: 2 GF  | IO4 Pin feature set Bit 1-0 | 00: External charging control             | RW         | 00   |
|          |                             | 01: NMOS Open-drain output 410: Universal |            |      |
|          |                             | Input 411: Undefined                      |            |      |
|          |                             |                                           |            |      |
| 1: 0 GP  | IO3 Pin function set Bit1-0 | 00: External charging control             | RW         | 00   |
|          |                             | 01: NMOS Open-drain output 310: Universal |            |      |
|          |                             | Input 3 11: ADC Entry                     |            |      |
|          |                             |                                           |            |      |
|          |                             |                                           |            |      |

## REG 96H: GPIO [4: 3] and the signal state monitoring

| Bit             | description                | R / W Defaults |  |
|-----------------|----------------------------|----------------|--|
| <u>7-6</u> Rese | vations can not be changed | R              |  |

| 5               | GPIO4 Input Status         | 0: Input low                | R  |   |
|-----------------|----------------------------|-----------------------------|----|---|
| 4               | GPIO3 Input Status         | 1: Input High               | R  |   |
| <u>3-2</u> Rese | vations can not be changed |                             |    |   |
| 1               | GPIO4 Output Settings      | 0: Output low, NMOS turn on | RW | 0 |
| 0               | GPIO3 Output Settings      | 1: Floating, NMOS shut down | RW | 0 |

REG 97H: GPIO [2: 0] is provided as input pulled down

### default value: 00H

| Bit       |                                                                | description                 | R / W Defa | ults |
|-----------|----------------------------------------------------------------|-----------------------------|------------|------|
| 7-3 Reser | vations can not be changed                                     |                             |            |      |
| 2         | GPIO2 As the pull-down resistor when the input control 0: Clos | e down resistor             | RW         | 0    |
| 1         | GPIO1 As the pull-down resistor when the input control         | 1: Using pull-down resistor | RW         | 0    |
| 0         | GPIO0 As the pull-down resistor when the input control         |                             | RW         | 0    |

REG 98H: PWM1 output frequency

### default value: 00H

| Bit           | description           | R / W Defa | ults |
|---------------|-----------------------|------------|------|
| <u>7-0</u> PW | M1 Output frequency X | RW         | 00H  |

REG 99H: PWM1 Duty Cycle 1

### default value: 16H

| Bit        | description          | R / W Defa | ults |
|------------|----------------------|------------|------|
| <u>7-0</u> | PWM1 Duty setting Y1 | RW         | 16H  |

REG 9AH: PWM1 Duty Cycle 2

| Bit        | description          | R / W Defa | ults |
|------------|----------------------|------------|------|
| <u>7-6</u> | PWM1 Duty setting Y2 | RW         | 0BH  |

## REG 9BH: PWM2 output frequency

### default value: 00H

| Bit        | description             | R / W Defa | Defaults |  |
|------------|-------------------------|------------|----------|--|
| <u>7-0</u> | PWM2 Output frequency X | RW         | 00H      |  |

## REG 9CH: PWM2 Duty Cycle 1

### default value: 16H

| Bit        | description          | R / W Defa | ults |
|------------|----------------------|------------|------|
| <u>7-0</u> | PWM2 Duty setting Y1 | RW         | 16H  |

## REG 9DH: PWM2 Duty Cycle 2

### default value: 0BH

| Bit        | description          | R / W Defa | ults |  |
|------------|----------------------|------------|------|--|
| <u>7-6</u> | PWM2 Duty setting Y2 | RW         | 0BH  |  |

Note: PWM Output frequency = 2.25MHz / (X + 1) / Y1 PWM Output

duty cycle = Y2 / Y1

REG 9EH: N\_RSTO (GPIO5) pin function settings

| Bit             | description                                                                  | R / W Defa | ults |
|-----------------|------------------------------------------------------------------------------|------------|------|
| 7               | N_RSTO Pin feature set                                                       | RW         | 0    |
|                 | 0: N_RSTO , LDO1 Condition monitoring; 1: Universal input and output ports 5 |            |      |
| 6               | N_RSTO As general-purpose input and output ports 5 Set up                    | RW         | 0    |
|                 | 0: NMOS Open-drain output; 1: Universal input function                       |            |      |
| 5               | N_RSTO As the output port 5 Settings when                                    | RW         | 1    |
|                 | 0: Output low, NMOS turn on; 1: Floating, NMOS shut down                     |            |      |
| 4               | N_RSTO As an input port 5 State of                                           | R          |      |
|                 | 0: Input low; 1: Input High                                                  |            |      |
| <u>3-0</u> Rese | vations can not be changed                                                   | RW         | 0000 |

## REG 40H: IRQ Enable 1

## default value: D8H

| Bit | description                                       | R / W Defau | <u>ılts</u> |
|-----|---------------------------------------------------|-------------|-------------|
| 7   | ACIN Overvoltage IRQ Enable                       | RW          | 1           |
| 6   | ACIN Access IRQ Enable                            | RW          | 1           |
| 5   | ACIN Out of IRQ Enable                            | RW          | 0           |
| 4   | VBUS Overvoltage IRQ Enable                       | RW          | 1           |
| 3   | VBUS Access IRQ Enable                            | RW          | 1           |
| 2   | VBUS Out of IRQ Enable                            | RW          | 0           |
| 1   | VBUS But less than the available V нош IRQ Enable | RW          | 0           |
| 0   | Reservations can not be changed                   | RW          | 0           |

## REG 41H: IRQ Enable 2

### default value: FFH

| Bit | description                            | R / W Defau | ılt <u>s</u> |
|-----|----------------------------------------|-------------|--------------|
| 7   | Battery access IRQ Enable              | RW          | 1            |
| 6   | Battery removal IRQ Enable             | RW          | 1            |
| 5   | Battery mode is activated IRQ Enable   | RW          | 1            |
| 4   | Exit Battery mode activated IRQ Enable | RW          | 1            |
| 3   | Charging IRQ Enable                    | RW          | 1            |
| 2   | finished charging IRQ Enable           | RW          | 1            |
| 1   | Battery over-temperature IRQ Enable    | RW          | 1            |
| 0   | Battery low temperatures IRQ Enable    | RW          | 1            |

### REG 42H: IRQ enable 3

#### default value: 3BH

| Bit | description                                                 | R / W Defa | <u>ults</u> |
|-----|-------------------------------------------------------------|------------|-------------|
| 7   | AXP192 Internal over-temperature IRQ Enable                 | RW         | 0           |
| 6   | The charging current is less than a set current IRQ Enable  | RW         | 0           |
| 5   | DC-DC1 Output voltage is less than the set value IRQ Enable | RW         | 1           |
| 4   | DC-DC2 Output voltage is less than the set value IRQ Enable | RW         | 1           |
| 3   | DC-DC3 Output voltage is less than the set value IRQ Enable | RW         | 1           |
| 2   | Reservations can not be changed                             |            |             |
| 1   | Short keys IRQ Enable                                       | RW         | 1           |

|  | 0 | Long Key IRQ Enable | RW | 1 | I |
|--|---|---------------------|----|---|---|
|--|---|---------------------|----|---|---|

### REG 43H: IRQ enable 4

## default value: C1H

| Bit | description                     | R / W Defa | <u>ults</u> |
|-----|---------------------------------|------------|-------------|
| 7   | N_OE Power IRQ Enable           | RW         | 1           |
| 6   | N_OE Shutdown IRQ Enable        | RW         | 1           |
| 5   | VBUS effective IRQ Enable       | RW         | 0           |
| 4   | VBUS invalid IRQ Enable         | RW         | 0           |
| 3   | VBUS Session A / B IRQ Enable   | RW         | 0           |
| 2   | VBUS Session End IRQ Enable     | RW         | 0           |
| 1   | Reservations can not be changed | RW         | 1           |
| 0   | APS Low pressure IRQ Enable     | RW         | 1           |

## REG 4AH: IRQ enable 5

## default value: 00H

| Bit        | description                            | R / W Defa | <u>ults</u> |
|------------|----------------------------------------|------------|-------------|
| 7          | Timer expires IRQ Enable               | RW         | 0           |
| <u>6-3</u> | Reservations can not be changed        | RW         | 0           |
| 2          | GPIO2 Edge-triggered inputs IRQ Enable | RW         | 0           |
| 1          | GPIO1 Edge-triggered inputs IRQ Enable | RW         | 0           |
| 0          | GPIO0 Edge-triggered inputs IRQ Enable | RW         | 0           |

## REG 44H: IRQ status 1

| Bit | description                                       | R / W Defau | <u>ılts</u> |
|-----|---------------------------------------------------|-------------|-------------|
| 7   | ACIN Overvoltage IRQ status                       | RW          | 0           |
| 6   | ACIN Access IRQ status                            | RW          | 0           |
| 5   | ACIN Out of IRQ status                            | RW          | 0           |
| 4   | VBUS Overvoltage IRQ status                       | RW          | 0           |
| 3   | VBUS Access IRQ status                            | RW          | 0           |
| 2   | VBUS Out of IRQ status                            | RW          | 0           |
| 1   | VBUS But less than the available V нол IRQ status | RW          | 0           |
| 0   | Reservations can not be changed                   | RW          | 0           |

## REG 45H: IRQ state 2

## default value: 00H

| Bit | description                            | R / W <u>Defaults</u> |   |
|-----|----------------------------------------|-----------------------|---|
| 7   | Battery access IRQ status              | RW                    | 0 |
| 6   | Battery removal IRQ status             | RW                    | 0 |
| 5   | Battery mode is activated IRQ status   | RW                    | 0 |
| 4   | Exit Battery mode activated IRQ status | RW                    | 0 |
| 3   | Charging IRQ status                    | RW                    | 0 |
| 2   | finished charging IRQ status           | RW                    | 0 |
| 1   | Battery over-temperature IRQ status    | RW                    | 0 |
| 0   | Battery low temperatures IRQ status    | RW                    | 0 |

## REG 46H: IRQ status 3

## default value: 00H

| Bit | description                                                 | R / W <u>Defaults</u> |   |
|-----|-------------------------------------------------------------|-----------------------|---|
| 7   | AXP192 Internal over-temperature IRQ status                 | RW                    | 0 |
| 6   | The charging current is less than a set current IRQ status  | RW                    | 0 |
| 5   | DC-DC1 Output voltage is less than the set value IRQ status | RW                    | 0 |
| 4   | DC-DC2 Output voltage is less than the set value IRQ status | RW                    | 0 |
| 3   | DC-DC3 Output voltage is less than the set value IRQ status | RW                    | 0 |
| 2   | Reservations can not be changed                             |                       |   |
| 1   | Short keys IRQ status                                       | RW                    | 0 |
| 0   | Long Key IRQ status                                         | RW                    | 0 |

## REG 47H: IRQ status 4

| Bit | description                   | R / W <u>Defaults</u> |   |
|-----|-------------------------------|-----------------------|---|
| 7   | N_OE Power IRQ status         | RW                    | 0 |
| 6   | N_OE Shutdown IRQ status      | RW                    | 0 |
| 5   | VBUS effective IRQ status     | RW                    | 0 |
| 4   | VBUS invalid IRQ status       | RW                    | 0 |
| 3   | VBUS Session A / B IRQ status | RW                    | 0 |
| 2   | VBUS Session End IRQ status   | RW                    | 0 |

| 1 | Reservations can not be changed                                                                              | RW | 0 |
|---|--------------------------------------------------------------------------------------------------------------|----|---|
| 0 | APS Low pressure IRQ status, APS Voltage is lower than Warning Leve2 After the set, more than Warning Level1 | RW | 0 |
|   | After clearing 0                                                                                             |    |   |

REG 4DH: IRQ status 5

### default value: 00H

| Bit        | description                            | R / W Defa | <u>ılts</u> |
|------------|----------------------------------------|------------|-------------|
| 7          | Timer expires IRQ status               | RW         | 0           |
| <u>6-3</u> | Reservations can not be changed        | RW         | 0           |
| 2          | GPIO2 Edge-triggered inputs IRQ status | RW         | 0           |
| 1          | GPIO1 Edge-triggered inputs IRQ status | RW         | 0           |
| 0          | GPIO0 Edge-triggered inputs IRQ status | RW         | 0           |

Note: All IRQ Write the corresponding status register bit 1 Clears the corresponding status.

REG B8H: Coulomb gauge control

| Bit             | description                                                                                             | R / W Defa | <u>ults</u> |
|-----------------|---------------------------------------------------------------------------------------------------------|------------|-------------|
| 7 Switc         | hing control coulometer                                                                                 | RW         | 0           |
| 6 Could         | meter pause control, this bit 1 Coulomb counting will be suspended, While this bit will be cleared from | RW         | 0           |
| 5 Clear         | Coulomb meter control, this bit 1 Coulomb Counter will be cleared, While this bit will be cleared from  | RW         | 0           |
| <u>4-0</u> Rese | vations can not be changed                                                                              | RW         | 0           |

# 10. Package (Package)



## © 2011 X-Powers Limited - All rights reserved

X-Powers can not assume responsibility for use of any circuitry other than circuitry entirely embodied in a X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.