#### Fonaments dels Sistemes Operatius (FSO)

Departament d'Informàtica de Sistemes i Computadores (DISCA) *Universitat Politècnica de València* 

Bloc Temàtic 3: Gestió d'Arxius Unitat Temàtica 8

# Implementació de Directoris i Protecció

f S O



# Objectius

- Estudiar el concepte de directori
- Entendre els conceptes d'enllaç físic i enllaç simbòlic
- Analitzar les tècniques de gestió de l'espai lliure de disc
- Descriure el mecanisme de protecció de la informació utilitzat en sistemas UNIX

#### Bibliografia

 A. Silberschatz, P.B. Galvin: "Fundamentos de Sistemas Operativos", McGraw-Hill, 7º ed. 2006 (Capítulos 10 y 11)

Concepte de directori

Implementació de directoris

- Implementació de directoris
- Enllaços o referències a arxius
- Gestió de l'espai de disc
- Protecció

#### Arquitectura del sistema d'arxius: Visió Usuari

Biblioteques Usuari (per a operar amb arxius)

Interfície amb les crides al sistema sobre fitxers i directoris

#### **Operacions sobre arxius:**

- Obrir i tancar arxius
- •Llegir/Escriure sobre arxiu
- •Posicionar-se dins d'un arxiu

#### **Operacions sobre directoris:**

- •Crear/Esborrar entrades a directori
- •Renomenar arxius
- Cercar per nom
- •Recòrrer el sistema d'arxius

#### Visió jeràrquica

Organització jeràrquica en arxius i directoris



**Nivell Usuari** Abstraccions d'Arxiu i Directori

#### Un directori és un arxiu

- un tipus abstracte de dades
- l'element necessari per a organiztar la informació emmagatzemada en memòria secundària

# Objectius

- Localitzar ràpidament un arxiu a partir del nom associat
- Implementar un esquema de noms convenient per a l'usuari
- L'usuari pot establir les seues pròpies agrupacions d'arxius
- Protecció.- el propietari pot controlar les operacions permeses a cada usuari
  - Sobre directoris.- crear o esborrar entrades, llistar contingut, cercar

## **Operacions sobre directoris**

- El sistema operatiu ha d'oferir un conjunt de crides bàsiques per a treballar amb directoris
  - Crear entrada

Concepte de directori

- Requereix tindre espai lliure per a crear-la
- Esborrar entrada
  - Allibera l'espai en disc associat a l'arxiu i esborra l'entrada de directori associada ej. unlink(nom)
- Cercar per nom
  - Normalment la recerca es realitza de forma seqüencial
- Llistar contingut del directori
  - Permet visualitzar el contingut dels directoris
- Renomenar fitxer
  - Modifica l'entrada a directori
- Recòrrer sistema de fitxers
  - Permet situar-se en qualsevol punt de la jerarquia de directoris

- Concepte de Directori
- Implementació de directoris

Implementació de directoris i protecció

- Enllaços o referències a arxius
- Gestió del espai de disc
- Protecció

# ETSINF-UPV IISCH

#### Estructura de directoris

Implementació de directori

Directori -> manté l'associació de noms a arxius

#### Estructura de directoris

#### Plana

- Tots els arxius en un únic directori
  - Possibles colisions entre noms
  - •No permet agrupar per usuaios/temes

# Jeràrquica

- ➤ Organització en nivells (arbre, graf) amb profunditat arbitrària
  - Permeten crear agrupacions arbitraries
  - Permeten muntar/desmuntar altres sistemes d'arxius

# Estructura jeràrquica de directoris

#### **Arbre**

- Recerca i agrupació eficients
- Un únic nom absolut per fitxer = recorregut des de l'arrel fins el node en concret
- Nom relatiu = recorregut des de directori actual al node



#### **Graf Acíclic Dirigit (ej. Unix)**

- Estructura bàsica en arbre, però permet compartir fitxers i directoris
- Divesos noms absoluts (diverses rutes des de l'arrel) per a un mateix node
- No permet cicles



# Sistemas Operativos

#### Contingut d'un directori

Implementació de directoris

- La informació d'un directori està organitzada en registres
- Un directori conté un conjunt de registres denominats entrades de Directori
- Té una entrada per cada arxiu existent al directori

#### Entrada de Directori

- Contingut de cada entrada es dependent de la implementació del sistema d'arxius
- Nom + referència als atributs (ej. Unix)
- Nom + atributs + referència a dades (ej. Windows)
- Ubicació de les dades de directoris en disc
  - Centralitzada (àrea dedicada en disc)
  - En arxius (adequada per a sistemes jeràrquics)

#### Directoris en MS-DOS → FAT

Implementació de directoris

- Característiques
  - Directori arrel en lloc conegut i grandària constant
  - La resta de directoris es gestionen com un arxiu
- Una entrada de directori ocupa 32 bytes
  - Nom del fitxer + extensió (8 bytes + 3bytes )
  - Permisos, tipus, etc.
  - Data,hora, talla, etc.
  - Primer cluster de dades (entrada en la FAT)
     32 bytes



# Implementació de directoris

#### Directoris en sistemes UNIX

- Directoris implementats com a un tipu d'arxiu
- Les dades d'un directori estan estructurades en una taula con dues columnes: nombrede inode i nom

#### Entrada de directori

| Nombre node-i | Nom d'arxiu |
|---------------|-------------|
|---------------|-------------|

- Cada entrada de directori correspon a un arxiu
- L'entrada de nom "." correspon al directori actual, apunta a si mateix
- L'entrada de nom ".." correspon al directori pare
- Nombre de inode = índice per a localitzar el i- node en el vector de nodes-i que emmagatzema el sistema en el disc

#### **Contingut d'un directorio**

| Entrada del directoro arrel | Node-i | Nom arxiu |
|-----------------------------|--------|-----------|
|                             | 1      |           |
|                             | 1      |           |
|                             | 3      | dev       |
|                             | 4      | bin       |
|                             |        |           |

# Implementació de directoris

#### Mecanisme d'accés por nom

- En el disc existeix una secció dedicada a emmagatzemar un vector de nodes-i (nodes índex)
  - Node-i = atributs + localització de les dades de l'arxiu
  - En el vector de nodes-i hi ha un node-i per arxiu
- Nom absolut:
  - La recerca de l'arxiu comença des del directori arrel
  - El directori arrel sempre té assignat un node-i fixe( MINIX node-i 1)
  - ejemplo: /a/b/c
- Nom relatiu
  - La recerca de l'arxiu começa des del directori actual
  - Exemple: b/c

| Mentre queden elements       |  |
|------------------------------|--|
| Si es tracta d'un directori  |  |
| Comprova permisos,           |  |
| localitza element en aqueste |  |
| directori,                   |  |
| obtenir node-i               |  |
| Retornar node-i final        |  |

| Node-i | Nom arxiu |
|--------|-----------|
| 1      |           |
| 1      |           |
| 3      | dev       |
| 4      | bin       |
| 6      | а         |

| Node-i | Nom arxiu |
|--------|-----------|
| 6      |           |
| 1      |           |
| 10     | b         |

| Node-i | Nom arxiu |
|--------|-----------|
| 10     |           |
| 6      |           |
| 20     | С         |

Concepte de Directori

Implementació de arxius

- Implementació de directoris
- Enllaços o referències a arxius
- Gestió del espai de disc
- Protecció

# Enllaços o referències a arxius

#### Enllaços Simbólics

- En Unix es denomines nenllaços lògics, en Windows fitxers d'accés directe
- A és un arxiu de tipus 'enllaç simbòlic' que enllaça amb l'arxiu B
  - Entre els atributs de A s'indica el tipus de l'arxiu (link)
  - El SO interpreta les dades de A com un path per a accedr a l'arxiu B
  - El SO redirigeix les lectures i escriptures sobre A per a que s'accedisca a les dades de B
  - A nivell de protecció, s'apliquen els permisos del fitxer B, no els de A
- B pot estar en un altre sistema d'arxius (ej. muntat remotament)
- ¿Qué passa si l'arxiu B s'esborra o es desplaça a una nova ubicació?
  - En alguns sistemes (ej MacOS) el propi SO corrigeix el path
  - En altres sistemes (ej Linux) l'enllaç deixa de funcionar (queda orfre)
- Esborrar l'arxiu enllaç simbòlic, esborrar A, no afecta al referenciat (B)



# Enllaços o referències a arxius

#### Enllaços Físics

- Dos o mes entrades de directori contenen el mateix nombre de inode
  - Un únic arxiu al qual s'accedeix per diverses rutes (diversos noms)
- Cada inode manté un comptador amb el nombre de referències al mateix
  - El fitxer només s'esborra físicament a l'eliminar su últim nom
- Només resulta vàlid dins d'un mateix sistema de fitxers



| inode 10         |  |
|------------------|--|
|                  |  |
| Nº enllaços=2    |  |
|                  |  |
|                  |  |
| Pter triple ind. |  |

| Node-i | Nom Arxiu |
|--------|-----------|
| 6      |           |
| 1      |           |
| 10     | Nom1      |

| Node-i | Nom Arxiu |
|--------|-----------|
| 20     |           |
| 5      |           |
| 10     | Nom2      |



- Concepte de Directori
- Implementació de directoris
- Enllaços o referències a arxius

Implementació de directoris i protecció

- Gestió del espai de disc
- Protecció

# Gestió de l'espai lliure

- La gestió de l'espai lliure de disc veu al mateix com a un vector de blocs
- En cada moment hem de saber quins estan lliures
  - No ens serveix qualsevol bloc
    - Cerquem contigüitat (por eficiència posterior)

#### Mapa de bits

- Cada bit representa un bloc en disc (ej. a 1 si bloc lliure)
- S'emmagatzema en una zona dedicada de disc
- Recerca eficient de blocs lliures consecutius

#### Llista enllaçada

- En un llocr espeific del disc es manté l'index del primer bloc lliure
- Cada bloc lliure apunta al següent

#### Agrupament

- Se representen els blocs lliures mitjançant una llista de blocs index
- Facilità inserir/extraure, complica la recerca blocs lliures consecutius





Concepte de Directori

Implementació de arxius

- Implementació de directoris
- Enllaços o referències a arxius
- Gestió del espai de disc
- Protecció

### Concepte de protecció

 Mecanisme que s'utilitza per a controlar els accesos que els processos realitzen als recursos del sistema

#### ¿Com es realitza la protecció en els sistemes UNIX?

 La protecció en UNIX està basada en contrastar els atributs del procés amb els atributs de l'arxiu i determinar si la operació es pot efectuar





#### Atributs de protecció de procés

- Identificador d'usuari
  - UID real (rUID) Identificador de l'usuari que ha creat el procés
  - UID efectiu (eUID) Identificador de l'usuari per al qual s'executa el procés
- Identificador de grup
  - GID real (rGID) Identificador del grup
  - GID efectiu (eGID) Identificador del grup efectiu

#### Atributs de protecció d'arxiu

- Bits de permís: son 9 bits de permís en grups de tres (propietari, grup, altres)
- Formats: rwxr\_xr\_x. 0755, 04755, rwsr\_xr\_x
- Interpretació
  - Arxius regulars: lectura, escriptura, execució
  - Directoris: llistar contingut, crear o eliminar entrades, cercar
  - Especials: lectura, escriptura, -----
- BITS de SETUID, SETGID

#### Assignación d'atributs

El fitxer reb els atributs del procés que el crea

 El procés reb els atributs gràcies al mecanisme d'herència i a la informació arreplegada en la taula d'usuario (/etc/passwd)

```
nom:contrasenya:UID:GID:descripció:HOME:shell
```

- Un procés pot canviar de UID i GID quan faça exec() sobre un fitxer amb el SETUID o SETGID activats
  - Si l'executable té el bit de SETUID actiu, el eUID passa a ser el del "ownerUID" del fitxer
  - Si l'executable té el bit de SETGID actiu, el eGID passa a ser el del "ownerGID" del fitxer
  - EjemploExemple

```
-rwsr—r-x 1 felip users 17 Jan 29 09:34 arxi1 -rwxr-sr-x 1 felip users 223 Jan 29 09:34 arxi2
```

#### Regles de protecció en Unix

Quan un procés intenta realitzar un accés sobre un arxiu, cal comprovar les següents regles en l'ordre que s'indica

1) Si el procés té **eUID=0** (superusuari), no es realitza cap comprovació i s'admet l'accés

- → Excepte el permís d'execución que ha d'estar establert per a algun domini
- 2)Si el **procés té eUID** igual al del propietari de l'arxiu es comprova la part del propietari
- 3) Si no, si el **prócés té eGID** igual al del grup del propietari de l'arxiu, es comprova la part del grup.
- 4) Si cap de les consultes anteriors ha funcionat es comprova la part de la resta d'usuaris (altres)
- →Observa que si es comprova un domini no es realitza cap altra comprovació en la resta de dominis. (dominis: usuari, grup, altres).

```
si UID = 0
aleshores
   permís d'accés concedit
sino
   si eUID = ownerUID
   aleshores
     es concedeixen permisos segons
     la primera tripleta
                        rws rwx r-x
   sino
      si eGID = ownerGID
      aleshores
       es concedeix permisos segons
       la segona tripleta
                        rws rwx r-x
      sino
       es concedeixen permisos
       segons a tercera tripleta
                       rws rwx r-x
```

#### Exemple:

• \$ Is -I

```
total 7
-rwsr-xr-x 1 felip users 17 Jan 29 09:34 ejec1
-rwxr-sr-x 1 felip users 223 Jan 29 11:03 ejec2
-rw----- 1 felip users 5120 Jan 29 12:00 dades
```

- El fitxer dades només sólo pot ser accedit (per a lectura o escriptura) per felip.
- El fitxer ejec1 té el bit SETUID fixat (s, en propietari) i permisos d'execució per a els altres dominis. Això permet que quan un procés d'un altre domini l'execute, passe al domini del propietari (felip) i puga llegir/escriure l'arxiu dades.