See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229221788

Application of novel atom-type AI topological indices in the structure-property correlations

ARTICLE in JOURNAL OF MOLECULAR STRUCTURE THEOCHEM · JUNE 2002

Impact Factor: 1.37 · DOI: 10.1016/S0166-1280(02)00080-5

CITATIONS READS

19 15

1 AUTHOR:

Bive Ren

South China University of Technology

55 PUBLICATIONS 780 CITATIONS

SEE PROFILE

THEO CHEM

Journal of Molecular Structure (Theochem) 586 (2002) 137-148

www.elsevier.com/locate/theochem

Application of novel atom-type AI topological indices in the structure–property correlations

Biye Ren*

Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, People's Republic of China Received 29 November 2001; accepted 22 February 2002

Abstract

Novel atom-type AI topological indices are generated as new parameters in quantitative structure—property/activity relationships (QSPR/QSAR) models to encode the structural environment of each atom-type in a molecule. These AI indices, along with previously proposed Xu index, are extended to complex compounds with heteroatoms by using the novel vertex degree v^m , which is derived on the basis of the valence connectivity δ^v of Kier–Hall. The efficiency of the approach is demonstrated through three high quality QSPR models of the molar volumes (MV), molar refractions (MR), and molecular total surface areas (TSA) for three data sets of compounds consisting of alkanes and alcohols. The results indicate that combination of the atomic-based AI indices and Xu index can produce a significant improvement in the statistical quality of the models obtained for the three properties. The significant improvement indicates the high potential of these indices for application to various physical properties and structural types, especially complex compounds with special functional groups. For the final multiple linear regression models, the correlation coefficients r are 0.9965, 0.9993, and 0.9990, and the standard errors s are 2.603, 0.3223, and 3.393 for MV, MR, and TSA, respectively. In addition, the results indicate that three properties are dominated by molecular size but other atomic groups are also important although their contributions are much smaller than that of the molecular size. The cross-validation using the more general leave-n-out method demonstrates the final models to be highly statistically reliable. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Molar volumes; Molar refractions; Molecular total surface areas; Multiple linear regression; Topological index; Quantitative structure-property/activity relationships

1. Introduction

The quantitative structure–property/activity relationships (QSPR/QSAR) studies of organic compounds have been a focus of great attention by the scientific community for a long time [1,2]. A great deal of QSPR/QSAR models have been developed using various model parameters to describe and predict the physical properties and biological activ-

As we know, there are two types of topological indices. A number of early-proposed topological indices conventionally characterize a molecule as a whole, i.e. molecular size or shape. These conventional indices, such as well-known molecular connectivity index (χ) [3], Hosoya's index (Z) [4], Balaban's

E-mail address: renbiye@163.net (B. Ren).

0166-1280/02/\$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0166-1280(02)00080-5

ities of organic compounds from their molecular structures as well as for molecular design. Among these model parameters, the graph-theoretical topological indexes are particularly of interest because they can be derived directly from the molecular structures without any experimental effort.

^{*} Tel./fax: +86-20-8711-2886.

index (J) [5], Bonchev's index (I_D) [6], Schluze's index (MTI) [7], and Wiener's index (W) [8], are most popular in developing estimation models for a variety of QSPR/QSAR studies. However, most of the existing topological indices largely limit their field of application for lack of information on multiple bonds and/or heteroatoms in molecular graphs. In order to differentiate the multiple bonds and heteroatoms in molecular graphs, several different empirical and unempirical approaches have been introduced in the past few years. These are Kier and Hall's concept of valence molecular connectivity [3,9], Bogdanov's topographic distance matrices [10], Randic's approach of graph embedded into three-dimensional [11], Estrada' approach of edge weights using quantum-chemical parameters [12], and recently developed 3D topological indices [13,14], etc. Further development is in progress but these conventional indices have some shortcomings. The major problem is that these conventional indices do not take into account the separate contributions of individual groups to properties, especially heteroatoms. As we know, for complex molecules, polarity, and especially the ability of the molecule to participate in hydrogen bonding caused by polar groups may be very important factors influencing physical properties, which depend directly on the strength of intermolecular forces. However, the conventional indices tend to obscure this fact and cannot directly reflect what structural features would be important.

The second type of topological indexes is the atomtype topological indexes, which further describe the structural information of a molecule at the atomic level. One of the most interesting indices of this type is the electrotopological state (E-state) index developed by Kier and Hall [15]. The E-state indices have been successfully used in a variety of QSPR/ OSAR studies of complex molecules [15–20]. The development of atom-type indexes provides a new possibility for understanding the role of individual groups in molecules. The development of the atomic-level topological indices is not very advanced but progress can be anticipated. It is expected that the atom-type topological index could help make a breakthrough in QSPR/QSAR studies of complex compounds. This stimulates us to find new atomic level topological indices to describe different physical properties and biological activities. In the previous papers [21,22], we proposed a set of new atomic-based AI topological indices different from E-state indices. These atom-type AI indices and recently proposed Xu index were further extended to heteroatom-containing compounds using the novel vertex degree (v^m) based on the valence connectivity δ^v of Kier–Hall [3].

The main goal of the present paper is to further verify the high potential of these indices for application to various properties and different structural types. We select three physical properties (molar volumes (MV), molar refractions (MR), and molecular total surface areas (TSA) of three mixed sets of representative organic compounds including nonpolar alkanes and polar alcohols for this study. We also wish that this study could help in understanding what structural features or groups are likely to be important to the three physical properties.

2. Method

In a previous paper [23], Xu index was generated based on the vertex-adjacency matrix and the distance matrix of a graph. To facilitate the calculation of Xu index, herein the method to derive this index is briefly introduced. For a simple molecular graph $G = \{V, E\}$ with n vertices, where V and E are the vertex set and edge set, respectively. The vertex-adjacency matrix, $\mathbf{A} = [a_{ij}]_{n \times n}$, is a square symmetric matrix. The elements a_{ii} of matrix **A** are 1 if vertices i and j are adjacent and 0 otherwise, where n is the number of vertices. The distance matrix, $\mathbf{D} = [d_{ii}]_{n \times n}$, is also a square symmetric matrix. The entries d_{ij} of matrix **D** are the length of the shortest path between the vertices i and j in a G, i.e. the number of C–C bond for alkanes. The over row or column i of matrix A yields local vertex-degree v_i ; the analogous sum for matrix **D** yields distance sums s_i . For alkanes the local vertexdegree v_i is the sum of edges adjacent to vertex i. For a simple molecular graph Xu index can be expressed as below [23-26]:

$$Xu = n^{1/2} \log \left(\sum_{i=1}^{n} v_i s_i^2 / \sum_{i=1}^{n} v_i s_i \right)$$
 (1)

where the sum is over all i vertices in a graph. n is the number of vertices.

For any atom i belonging to jth atom-type in a molecular graph, the topological index, $AI_i(j)$, is defined as follows [21,22]:

$$AI_i(j) = 1 + \phi_i(j) \tag{2}$$

$$\phi_i(j) = v_i(j)s_i^2(j) / \sum_{i=1}^n v_i s_i$$
 (3)

where parameter ϕ_i is considered as a perturbing term of *i*th atom reflecting the effect of its structural environment on its $AI_i(j)$ value. The sum is over all *i* vertices in a graph.

According to this definition, for any atom-type j the atom-type AI index, AI(j), is defined as a sum of AI_i(j) values of all atoms or groups of the same atom-type in a molecular graph:

$$AI(j) = \sum_{i=1}^{m} AI_{i}(j) = m + \sum_{i=1}^{m} \phi_{i}(j)$$

$$= m + \sum_{i=1}^{m} v_{i}(j)s_{i}^{2}(j) / \sum_{i=1}^{n} v_{i}s_{i}$$
(4)

where m is the count of the atoms or groups of the same atom-type j. The AI value is clearly related to the count of the atoms or groups and its structural environment.

The differentiation of heteroatoms and multiple bonds has been successfully resolved by adding a perturbing term to the number of connections (edges) of that atom as the new degree of vertex, v^m [19,20]. The novel degree of vertex for heteroatom i, v^m , is defined as follows:

$$v^m = \delta + k \tag{5}$$

where δ is the number of connections (edges) of that atom, and the k parameter is a perturbing term of the number of edges. The number of connections (edges) is calculated as

$$\delta = \sigma - h \tag{6}$$

where σ is the number of electrons in orbital, and h is the number of hydrogen atoms connected to the atom. The k parameter is calculated using the expression

$$k = 1/[(2/N)^2 \delta^{v} + 1] \tag{7}$$

where N is the principal quantum number of valence shell. Z and Z^{ν} are the atomic number and the number of valence electrons for heteroatom, respectively. δ^{ν} is the valence connectivity of Kier and Hall [9], for

multiple bonds in molecular graphs the δ^{ν} value is expressed as

$$\delta^{v} = Z^{v} - h \tag{8}$$

For heteroatoms in molecular graphs, δ^{ν} is expressed as

$$\delta^{v} = (Z^{v} - h)/(Z - Z^{v} - 1) \tag{9}$$

Consequently, if only we use the new degree of vertex, v^m , instead of the original vertex degree v_i , and then both Xu and atom-type AI indices can easily be extended to systems with multiple bonds and/or heteroatoms using the same formula defined for a simple molecular graph.

As an illustration, Table 1 shows the valence connectivity δ^{ν} of Kier and Hall [3], numbers of connections δ , k parameters, and proposed ν^m values for some representative heteroatoms. For example, for oxygen in alcohols and ethers the δ values are 1 and 2, and the k values are 0.167 and 0.143, and thus the ν^m values are 1.167 and 2.143 for –OH and –O– groups, respectively.

3. Data set and regression analysis

3.1. Data set

MV are calculated as MW/d, where MW is the molecular weight and d is the density (g/cm³) at 20 °C. MR at 20 °C are calculated according to the lorentz-lorenz expression:

$$MR = \frac{n_0^2 - 1}{n_0^2 + 2}MV \tag{10}$$

where n_0 is the index of refraction at 20 °C. The Experimental values of MV and MR for alkanes at 20 °C are taken from Ref. [27]. The experimental values of n_0 and d used to calculate MV and MR of alcohols are taken from Refs. [28,29]. For alcohols, in the majority of the cases, the data between the two sources agree fairly well although there are some discrepancies between the two sources. The molecular TSA at 25 °C, defined as the cavity dimension of the solute when placed in the water media, are taken from Refs. [30,31].

3.2. Regression analysis

For individual properties the multiple linear regression using the modified Xu (represented as X_u^m) and all

Table 1
The valence connectivity (δ^{ν}) of Kier–Hall [9], number of connections (δ), k parameters, and novel vertex degree (v^m) for some heteroatoms and multiple bonds

Groups	δ^v	δ	k	v^m	Groups	δ^v	δ	k	v^m
-CH ₃	1	1	0	1	≡N	5	1	0.167	1.167
$-CH_2-$	2	2	0	2	$-PH_2$	0.333	1	0.871	1.871
-CH<	3	3	0	3	>PH	0.444	2	0.835	2.835
>C<	4	4	0	4	−P<	0.556	3	0.802	3.802
$=CH_2$	2	1	0.333	1.333	-OH	5	1	0.167	1.167
=CH-	3	2	0.250	2.250	-O-	6	2	0.143	2.143
=C<	4	3	0.200	3.200	=0	6	1	0.143	1.143
=C=	4	2	0.200	2.200	-SH	0.556	1	0.802	1.802
≡CH	3	1	0.250	1.250	-S-	0.667	2	0.771	2.771
≡C-	4	2	0.200	2.200	$-\mathbf{F}$	7	1	0.125	1.125
$-NH_2$	3	1	0.250	1.250	-Cl	0.778	1	0.743	1.743
>NH	4	2	0.200	2.200	−Br	0.259	1	0.939	1.939
-N<	5	3	0.167	3.167	-I	0.149	1	0.977	1.977

AI indices present in molecular structures is used to develop the final model to correlate the physical property with chemical structures. The final model is obtained in the form of Eq. (11).

property =
$$a_0 + a_1 X_u^m + b_1 AI(1) + \dots + b_i AI(j)$$
 (11)

where a_0 is a constant, and a_1 is the contribution coefficient of the modified Xu index, and b_j is the contribution coefficient of jth AI index of atom-type j. Each coefficient describes the sensitivity of a property to each of the individual indices, so the coefficients of these parameters would measure the relative important of each index. As indices are added and removed, the changes in the statistics from model and model can be monitored. Therefore, the significance of each index is evaluated by monitoring the statistics (t and t values) so as to choose a high quality subset of indices [32–34]. The standard error (t) is used to evaluate the quality of model. In order to avoid colineality, intercorrelations between indexes are also examined.

4. Results and discussion

In general, there are two different directions in which multiple regression analysis is usually used in QSPR/QSAR studies [35,36]. The first approach is based on a large number of compounds with a wide range of structural types; the other way only deals with a smaller group of structurally related compounds. Both approaches have their merits and

shortcomings, and they serve to somewhat different purposes. The main advantage of selecting a smaller set of structurally related compounds for QSPR/QSAR studies is the possibility of calculating the contributions of molecular size and all possible atom-types or groups to the properties studied. In present work, we select the second alternative so as to demonstrate what structural features or groups are likely to be important to the three properties studied.

4.1. Correlations to MV

As a starting point for illustrating the applicability of these indices, first we will consider a mixed set of 110 compounds containing 68 alkanes and 42 alcohols. The experimental values of MV for 110 compounds are listed in Table 2. A model for 110 compounds is then generated. As an illustration, we below give the final four-parameter model (Eq. (12)).

$$MV = 48.2504(\pm 1.2195) + 21.2665(\pm 1.3221)X_u^m$$

$$- 3.5353(\pm 0.2938)AI(-OH)$$

$$+ 2.8670(\pm 0.2893)AI(-CH_3)$$

$$+ 0.7535(\pm 0.1004)AI(>CH_2)$$

$$r = 0.9965; s = 2.603; F = 3800; P$$

< 0.0001; and N = 110

The t-values are 39.57, 16.09, -12.03, 9.911, and

Table 2 The calculated and experimental values of MV and MR for alkanes and alcohols

Number	Compounds	$MV (cm^3/n)$	nol)		MR (cm ³ /mol)			
		Exp.	Calcd	Res.	Exp.	Calcd	Res.	
1	5	115.205	111.590	3.615	25.2656	24.9246	0.3410	
2	2M4	116.426	109.899	6.527	25.2923	24.8402	0.4521	
3	6	130.688	129.391	1.297	29.9066	29.8260	0.0806	
1	2M5	131.933	127.681	4.252	29.9459	29.6956	0.2503	
5	3M5	129.717	126.805	2.912	29.8016	29.5584	0.2432	
5	23MM4	130.240	125.679	4.561	29.8104	29.5356	0.2748	
7	22MM4	132.744	126.195	6.549	29.9347	29.6176	0.3171	
8	7	146.540	147.272	-0.732	34.5504	34.7249	-0.1745	
)	2M6	147.656	145.623	2.033	34.5908	34.5531	0.0377	
10	3M6	145.821	144.415	1.406	34.4597	34.3785	0.0812	
11	3E5	143.517	141.816	1.701	34.2827	33.6724	0.6103	
12	22MM5	148.695	144.198	4.497	34.6166	34.4389	0.1777	
13	23MM5	144.153	142.472	1.681	34.3237	34.1897	0.1340	
14	24MM5	148.949	143.725	5.224	34.6192	34.3548	0.2645	
15	33MM5	144.530	142.579	1.951	34.3323	34.1898	0.1425	
16	223MMM4	145.191	141.847	3.344	34.3736	34.2095	0.1641	
17	8	162.592	165.295	-2.703	39.1922	39.6376	-0.4454	
18	2M7	163.663	163.716	-0.053	39.2316	39.4188	-0.1872	
19	3M7	161.832	162.354	-0.522	39.1001	39.2356	-0.1355	
20	4M7	162.105	161.953	0.152	39.1174	39.1864	-0.0690	
21	22MM6	164.285	162.579	1.706	39.2525	39.2854	-0.0330	
22	23MM6	160.395	160.164	0.231	38.9808	38.9835	-0.0027	
23	24MM6	163.093	160.506	2.587	39.1300	38.9977	0.1323	
24	25MM6	164.697	161.929	2.768	39.2596	39.1758	0.0838	
25	33MM6	160.879	160.689	0.190	39.0087	39.0778	-0.0691	
26	34MM6	158.814	159.036	-0.222	38.8453	38.8010	0.0443	
27	3E6	160.072	160.291	-0.219	38.9441	38.8771	0.0670	
28	223MMM5	159.526	158.760	0.766	38.9249	38.8235	0.1014	
29	224MMM5	165.083	160.407	4.676	39.2617	39.0151	0.2466	
30	233MMM5	157.292	158.030	-0.738	38.7617	38.7220	0.0397	
31	234MMM5	158.852	158.107	0.745	38.8681	38.7424	0.1257	
32	23ME5	158.794	158.405	0.389	38.8362	38.6692	0.1670	
33	33ME5	158.852	158.764	0.088	38.7171	38.7447	-0.0276	
34	9	178.713	183.520	-4.807	43.8423	44.5798	-0.7375	
35	2M8	179.773	181.986	-2.213	43.8795	44.3026	-0.4231	
36	3M8	177.952	180.542	-2.590	43.7296	44.1210	-0.3914	
37	4M8	178.150	179.921	-1.771	43.7687	44.0518	-0.2831	
38	3E7	176.410	178.154	-1.744	43.6420	43.7169	-0.0749	
39	4E7	175.685	177.380	-1.695	43.4907	43.5897	-0.0990	
40	22MM7	180.507	181.211	-0.704	43.9138	44.1429	-0.2291	
41	23MM7	176.653	178.277	-1.624	43.6269	43.8267	-0.1998	
42	24MM7	179.120	178.187	0.933	43.7393	43.7839	-0.0446	
13	25MM7	179.371	178.785	0.586	43.8484	43.8276	0.0208	
14	26MM7	180.914	180.292	0.622	43.9258	44.0066	-0.0808	
45	33MM7	176.897	178.504	-1.607	43.6870	43.8063	-0.1193	
46	34MM7	175.349	175.709	-0.360	43.5473	43.2503	0.2970	
47	35MM7	177.386	177.240	0.146	43.6378	43.6367	0.0010	
48	44MM7	176.897	177.640	-0.743	43.6022	43.7024	-0.1002	
49	23ME6	175.445	175.653	-0.208	43.6550	43.3793	0.2757	
50	24ME6	177.386	176.320	1.066	43.6472	43.4416	0.2056	
51	33ME6	173.077	175.593	-2.516	43.2680	43.3310	-0.0630	

Table 2 (continued)

Number	Compounds	MV (cm ³ /n	nol)		MR (cm ³ /mol)		
		Exp.	Calcd	Res.	Exp.	Calcd	Res.
52	34ME6	172.844	174.700	-1.856	43.3746	43.2227	0.1519
53	223MMM6	175.878	176.793	-0.915	43.6226	43.6092	0.0134
54	224MMM6	179.220	177.492	1.728	43.7638	43.6353	0.1285
55	225MMM6	181.346	179.196	2.150	43.9356	43.8230	0.1126
56	233MMM6	173.780	175.665	-1.885	43.4347	43.4701	-0.0354
7	234MMM6	173.498	174.685	-1.187	43.3917	43.3230	0.0687
8	235MMM6	177.656	176.325	1.331	43.6471	43.5271	0.1200
9	244MMM6	177.187	176.405	0.782	43.6598	43.5044	0.1554
0	334MMM6	172.055	174.631	-2.576	43.3407	43.2871	0.0536
1	33EE5	170.185	173.454	-3.269	43.1134	42.9352	0.1782
2	223MME5	174.537	174.664	-0.127	43.4571	43.2412	0.2159
3	233MME5	170.093	173.487	-3.394	42.9542	43.0830	-0.1288
4	234MEM5	173.804	173.701	0.103	43.4037	43.1366	0.2671
5	2233MMMM5	169.495	174.231	-4.736	43.2147	43.2719	-0.0572
6	2234MMMM5	173.557	174.532	-0.975	43.4359	43.3110	0.1249
7	2244MMMM5	178.256	177.387	0.869	43.8747	43.6002	0.2745
8	2334MMMM5	169.928	173.406	-3.478	43.2016	43.1910	0.0106
9	Ethanol	58.368	63.234	4.866	12.9267	12.9411	-0.0144
0	1-Propanol	74.798	78.533	3.735	17.5651	17.5425	0.0226
1	2-Propanol	76.561	78.904	2.343	17.6135	17.8095	-0.1960
2	1-Butanol	91.529	93.656	2.127	22.1447	22.0692	0.0755
3	2-Methyl-1-propanol	92.338	92.740	0.402	22.1820	22.0995	0.0825
4	2-Butanol	91.903	94.879	-2.976	22.1437	22.4159	-0.2722
5	2-Methyl-2-propanol	94.216	94.958	-0.742	22.0334	22.6257	-0.5923
6	1-Pentanol	108.160	108.775	-0.615	26.7978	26.5695	0.2283
7	3-Methyl-1-butanol	108.559	107.422	1.137	26.7697	26.4935	0.2762
8	2-Pentanol	108.962	110.952	-1.990	26.7237	27.0175	-0.2938
9	2-Methyl-1-butanol	108.027	107.899	0.128	26.7535	26.5547	0.1988
0	3-Pentanol	107.265	111.305	-4.040	26.5647	27.0613	-0.4966
1	3-Methyl-2-butanol	107.631	109.409	-1.778	26.6383	26.9254	-0.2871
2	2-Methyl-2-butanol	108.962	111.168	-2.206	26.7179	27.1921	-0.4742
3	2,2-Dimethyl-1-propanol	108.559	107.610	0.949			
4	1-Hexanol	125.590	123.981	1.609	31.6361	31.0686	0.5675
5	2-Methyl-1-pentanol	123.795	123.684	0.111	31.2623	31.1022	0.1601
6	2-Ethyl-1-butanol	122.401	123.119	-0.718	31.1300	30.9724	0.1576
7	4-Methyl-2-pentanol	126.774	125.335	1.439	31.4975	31.4309	0.0666
8	2,3-Dimethyl-2-butanol	124.065	125.949	-1.884	31.2388	31.6552	-0.4164
9	3,3-Dimethyl-1-butanol	124.005	121.954	2.051	31.2237	31.5680	-0.3443
0	3,3-Dimethyl-2-butanol	124.838	124.508	0.330	31.2682	31.4405	-0.1723
1	3-Hexanol	124.716	127.912	-3.196	31.2971	31.7325	-0.4354
2	3-Methyl-3-pentanol	123.391	127.203	-3.812	31.1343	31.7116	-0.5773
3	1-Heptanol	141.345	139.332	2.013	36.0153	35.5818	0.4335
1	2-Heptanol	142.176	142.981	-0.805	36.0768	36.1447	-0.0679
5	3-Heptanol	141.535	144.501	-2.966	35.9814	36.3893	-0.4079
5	4-Heptanol	142.002	145.014	-3.012	35.9278	36.4759	-0.5481
7	2,4-Dimethyl-3-pentanol	140.101	141.640	-1.539	35.7942	36.1038	-0.3090
3	1-Octanol	157.473	154.875	2.598	40.6792	40.1218	0.5574
9	2-Octanol	158.720	159.062	-0.342	40.6681	40.7020	-0.0339
00	4-Octanol	158.972	162.111	-3.139	40.6490	41.2119	-0.5629
01	2-Ethyl-1-hexanol	156.357 155.221	155.699 153.964	0.658 1.257	40.5140 40.0974	40.1805 39.9761	0.3335 0.1213
02	2,2,4-Trimethyl-1-pentanol						

Table 2 (continued)

Number	Compounds	MV (cm³/mol)			MR (cm³/mol)		
		Exp.	Calcd	Res.	Exp.	Calcd	Res.
104	1-Nonanol	174.417	170.643	3.774	45.2664	44.6971	0.5693
105	2,6-Dimethyl-4-heptanol	177.638	176.600	1.038	45.2441	45.4493	-0.2052
106	5-Nonanol	172.642	179.711	-7.069	44.5890	46.0313	-1.4423
107	1-Decanol	190.252	186.672	3.580	49.7344	49.3186	0.4158
108	1-Undecanol	207.652	202.983	4.669	54.6404	53.9898	0.6506
109	2,6,8-Trimethyl-4-nonanol	227.438	228.100	-0.662	59.2889	59.4354	-0.1465
110	1-Tridecanol	236,965	236.527	0.438	63.3751	63.5041	-0.1290

7.507, respectively. The number in parentheses is the standard deviation associated with the coefficient. The uncertainties of the regression coefficients in the model correspond to 95% confidence intervals. The indices in the final models are not highly correlated with each other, and each coefficient is clearly highly significant. This model explains more than 99% of the variances in the experimental values of MV for these compounds with a fit error of only 1.71%. The results are quite good considering the data from different sources with different experimental accuracy.

On the other hand, if we divide the mixed data set of 110 compounds into alkane and alcohol two subsets, which are run individually, the quality of the model can be further improved. For alkane subset the best three-parameter model leads to r = 0.9964and s = 1.368 and for alcohol subset we obtain the final four-parameter model with r = 0.9997 and s =0.9387. The above models are also comparable to that reported by Needham et al. [27] for the same series of alkanes. The best single-parameter model using the zero-order connectivity ${}^{0}\chi$ index gave r = 0.962 and s = 4.8, but the molecular connectivity ${}^{0}\chi$ and ${}^{1}\chi$ indices provided a slightly superior model and produced r = 0.982 and s = 3.3. In fact, the MV is a property not correlated successfully with other topological indices. This may be further illustrated by a single-parameter model obtained by Estrada [37] using ε index for the same series of alkanes (r = 0.9931 and s = 2.032).

The calculated values and residuals for 110 compounds used to generate the final model are shown in Table 2. A comparison of calculated and experimental data for MV is shown in Fig. 1. One can observe that the agreement between correlation and data is quite good although there is a compound

(5-nonanol) with a slightly large residual. In general, the quality of the QSPR models can be conveniently measured by the correlation coefficient r and the standard deviation s. Mihalic and Trinajstic [38] suggested that a good QSPR model must have r > 0.995, and s depends on the property studied. According to this statement, the final model (Eq. (12)) represents an excellent QSPR model judging from the standard error and the plot in Fig. 1.

4.2. Correlations to MR

The MR is related to the bulk and polarizability of a molecule and is also a useful physical parameter in the field of chemical, biological and pharmaceutical sciences. The experimental values of MR for a mixed set of 109 compounds containing 68 alkanes and 41 alcohols are shown in Table 2.

The final model for 109 compounds is then developed using the modified Xu index and all five AI indices. The best six-parameter model is shown as follows (Eq. (13)):

$$MR = 5.7912(\pm 0.3032) + 5.4878(\pm 0.2034)X_u^m + 0.2306(\pm 0.07719)AI(-OH)$$

$$+ 1.3066(\pm 0.08166)$$
AI(-CH₃)

$$+~0.1631(\pm 0.01444) {\rm AI}(>\!\!{\rm CH}_2)$$

$$-0.3124(\pm0.04477)AI(>CH-)$$

$$-0.5598(\pm 0.08560)$$
AI($>$ C $<$) (13)

$$r = 0.9993$$
; $s = 0.3223$; $F = 11749$; P

$$< 0.0001$$
; and $N = 109$

The *t*-values are 19.10, 26.98, 2.987, 16.00, 11.30, -6.978, and -6.540, respectively. The model accounts

Fig. 1. A plot of calculated versus experimental MV for a mixed set of alkanes and alcohols.

for 99.9% of the variances in the experimental values of MR for 109 compounds with a fit error of only 0.86%. The calculated values and residuals for 109 compounds used to generate the final model are shown in Table 2. A comparison of calculated and experimental data is shown in Fig. 2 for 109 compounds. The agreement between correlation and experimental data is quite good. Therefore, the final model (Eq. (13)) represents an excellent QSPR model judging from the standard error and the plot in Fig. 2 according to above discussion. We observe that there is only 5-nonanol with a slight large residual out of 109 compounds. This compound is the same as one in correlation of MV. It is, therefore, possible that its MR is in error.

On the other hand, when the 109 compounds are divided into two subsets containing only alkanes or alcohols, which are run individually, the models obtained produce a significant improvement in the statistical quality, especially the reduction in the standard errors. For alkane subset we obtain the final fourparameter model with r = 0.9996 and s = 0.1379. This model is comparable to that obtained by Kier and Hall [3] by using four molecular connectivity indexes for the same series of 46 alkanes (r = 0.9999and s = 0.0738) [3]. For alcohol subset the final fourparameter model with r = 0.9998 and s = 0.1871 can be obtained. This model is also comparable to that obtained by Kier and Hall [3] by using four molecular connectivity indexes for the same series of 30 alcohols (r = 0.9998 and s = 0.153).

Fig. 2. A plot of calculated versus experimental MR for a mixed set of alkanes and alcohols.

4.3. Correlations to TSA

TSA is a practically valuable property in estimation of aqueous solubility of organic compounds. It is worth noting that although computer computations have been carried out to some extent, the molecular surface areas are still not easily available. The compounds that are used to generate a TSA model consist of 16 alkanes and 52 alcohols. The data of TSA in the literature [30,31] for 68 compounds are shown in Table 3.

The final model for 68 compounds is then developed using X_u^m and five AI indices. The best six-parameter model is shown as follows (Eq. (14)):

TSA =
$$204.412(\pm 4.0015) + 47.8657(\pm 1.7286)X_u^m$$

 $- 8.3149(\pm 1.0071)$ AI($-$ OH)
 $- 4.4526(\pm 1.0998)$ AI($-$ CH₃)
 $+ 1.6547(\pm 0.09795)$ AI($>$ CH₂)
 $+ 3.7438(\pm 0.6933)$ AI($>$ CH $-$)
 $+ 4.4809(\pm 1.3368)$ AI($>$ C $<$)
 $r = 0.9990; s = 3.393; F = 5279; P$
 $< 0.0001; and N = 68$

The *t*-values are 51.08, 27.69, -8.256, -4.049, 16.89, 5.400, and 3.352, respectively. The model explains

Table 3
The molecular total surface areas (TSA) of alkanes and alcohols

Number	Compounds	TSA (Å	$\tilde{\Lambda}^2$)		Number	Compounds	TSA (\mathring{A}^2)		
		Lit.	Calcd	Res.			Lit.	Calcd	Res.
1	Ethane	191.5	191.1	0.42	35	3,3-Dimethyl-1-butanol	307.5	301.3	6.2
2	Propane	223.4	224.9	-1.55	36	2,3-Dimethyl-2-butanol	301.2	296.9	4.3
3	Butane	255.2	256.9	-1.7	37	3,3-Dimethyl-2-butanol	296.7	295.9	0.8
4	2-Methyl propane	249.1	245.3	3.8	38	4-Methyl-1-pentanol	323.0	324.0	-1.0
5	Pentane	287.0	288.5	-1.5	39	4-Methyl-2-pentanol	314.9	314.5	0.4
6	2-Methyl butane	274.6	275.7	-1.1	40	1-Heptanol	367.5	366.1	1.4
7	2,2-Dimethyl propane	270.1	260.3	9.8	41	3-Heptanol	357.1	355.8	1.3
8	Hexane	319.0	320.1	-1.1	42	4-Heptanol	357.1	355.1	2.0
9	2-Methyl pentane	312.4	307.5	4.9	43	2-Methyl-2-hexanol	346.1	341.9	4.2
10	3-Methyl pentane	300.1	304.6	-4.5	44	3-Methyl-3-hexanol	337.7	336.8	0.9
11	2,2-Dimethyl butane	290.8	289.4	1.4	45	2,4-Dimethyl-2-pentanol	328.6	328.9	-0.3
12	Heptane	351.0	352.0	-1.0	46	2,4-Dimethyl-3-pentanol	331.7	330.1	1.6
13	2,4-Dimethyl pentane	324.7	326.7	-2.0	47	3-Ethyl-3-pentanol	324.4	331.9	-7.5
14	Octane	383.0	384.1	-1.1	48	2,3-Dimethyl-2-pentanol	323.8	324.7	-0.9
15	2,2,4-Trimethyl pentane	338.9	340.5	-1.6	49	2,2-Dimethyl-3-pentanol	326.1	324.7	1.4
16	2,2,5-Trimethyl hexane	373.0	374.3	-1.3	50	2,3-Dimethyl-3-pentanol	321.8	323.7	-1.9
17	1-Butanol	272.1	276.7	-4.6	51	1-Octanol	399.4	396.6	2.8
18	2-Methyl-1-propanol	263.8	264.6	-0.8	52	2-Octanol	391.0	389.4	1.6
19	2-Butanol	264.1	266.0	-1.9	53	2-Ethyl-1-hexanol	371.3	377.9	-6.6
20	1-Pentanol	303.9	306.3	-2.4	54	2,2,3-Trimethyl-3-pentanol	335.2	336.0	-0.8
21	3-Methyl-1-butanol	291.4	294.0	-2.6	55	1-Nonanol	431.2	427.5	3.7
22	2-Pentanol	295.9	296.4	-0.5	56	2-Nonanol	423.2	421.0	2.2
23	2-Methyl-1-butanol	289.4	292.1	-2.7	57	3-Nonanol	420.8	419.3	1.5
24	3-Pentanol	293.5	294.4	-0.9	58	4-Nonanol	420.8	418.4	2.4
25	3-Methyl-2-butanol	284.3	283.4	0.9	59	7-Methyl-1-octanol	418.7	416.5	2.2
26	2-Methyl-2-butanol	282.5	279.7	2.8	60	5-Nonanol	420.8	418.1	2.7
27	1-Hexanol	335.7	336.0	-0.3	61	2,6-Dimethyl-4-heptanol	394.0	394.9	-0.9
28	2-Hexanol	327.7	327.2	0.5	62	3,5-Dimethyl-4-heptanol	379.3	379.3	0
29	3-Hexanol	325.3	324.8	0.5	63	3,5,5-Trimethyl-1-hexanol	376.6	381.1	-4.5
30	2-Methyl-2-pentanol	314.3	310.5	3.8	64	2,2-Diethyl-1-pentanol	372.5	380.2	-7.7
31	3-Methyl-2-pentanol	311.3	311.1	0.2	65	1-Decanol	463.0	459.1	3.9
32	2-Methyl-3-pentanol	314.3	312.0	2.3	66	1-Dodecanol	527.0	524.0	3.0
33	3-Methyl-3-pentanol	305.8	306.7	-0.9	67	1-Tetradecanol	591.0	591.6	-0.6
34	2-Ethyl-1-butanol	308.6	318.1	-9.5	68	1-Pentadecanol	623.0	626.6	-3.6

99.8% of the variances in the experimental values of TSA for 68 compounds with a fit error of only 1.0%. The calculated values and residuals for 61 compounds used to generate the final model are shown in Table 3. A plot of calculated versus data in the literature is shown in Fig. 3. The agreement of correlation and data is quite good. Therefore, the final model represents an excellent QSPR model judging from the standard error and the plot in Fig. 3 according to above discussion. Hence, it may be of interest to use the final model (Eq. (14)) as a simple approach to estimation of TSA from molecular structures although our main aim

is not to search for the best predictive models. It should be mentioned that there are only 2 compounds with slightly large residuals (>9.0). However, it is difficult to propose a reason for why these compounds have slightly large residuals, other than to say that the data used may be erroneous, because the data values of TSA cannot directly obtained by experiment up to now

On the other hand, when we divide the mixed data set of 68 compounds into two subsets, which are run individually, we can obtain slightly improved models. For 16 alkanes we obtain the final two-parameter

Fig. 3. A plot of calculated TSA versus data in literatures TSA [lit.] for a mixed set of alkanes and alcohols.

model with r = 0.9985 and s = 3.088, and for 52 alcohols the final six-parameter model with r = 0.9991 and s = 3.348 can be obtained.

Another aim of this study is to use these indices as an aid in deciphering what structural features and groups would be important to the three properties. As mentioned above, the present study provides a possibility for calculating the contributions of molecular size and all possible atomic groups to the studied properties from the models obtained. The relative contribution of each index can be simple estimated by multiplying the coefficients in final model by the mean index values; fraction contributions are obtained by multiplying the absolute values by the coefficients determination (r^2) and dividing by the sum [27]. The results are shown in Table 4.

One can see from Table 4 that the contributions of the modified Xu index to the three properties are within the range of 53–64%, while the other atom-type AI indices have smaller contributions and cover a wide range dependent on the investigated properties. The fact that the modified Xu index makes a major

contribution to the three properties suggests that these properties are dominated by the dispersion because Xu index was physically interpreted as a parameter characterizing molecular size. This is particularly true because MV and molar refractivity are considered as molecular bulk or steric parameters. Our results are in accord with that reported by Needham et al. [27] in a comparative study of eight physical properties of alkanes based on ad hoc descriptors. On the other hand, our results reasonably explain why contributions of these AI indexes cannot be ignored in developing high quality QSPR models although their contributions are much smaller than that of the molecular size.

However, as it is well known, physical properties can be quite sensitive to some interactions and yet insensitive to others. We can see from Table 4 that the contributions of AI (-CH₃) index to MV and MR are 27.93 and 12.77%, respectively, indicating that the branching plays an important role in determining MV and MR because AI (-CH₃) index is clearly related to the counts of -CH3 groups in a molecule, which is a crude measure of branching [27]. Obviously, branching prevents close contact with neighboring molecules in space. As a result, both MV and MR increase with the degree of branching for molecules with the same number of non-hydrogen atoms. We note that MV displays negative dependence on AI (-OH) index, suggesting that the hydrogen-bonding interaction plays an important role in determining MV, which is a property depending strongly on the intermolecular interactions. As we know, for heteroatom-containing compounds, polarity and/or hydrogen-bonding interactions lead to a decrease in MV as a result of the closer packing in the pure liquids. The hydrogenbonding interaction forming among -OH groups will obviously result in a reduction in MV. On the other hand, -OH group present in the side chain likes a pseudobranch structure, which will prevent close contact with neighboring molecules in space

Table 4 The contributions of individual X_n^m and AI indices to three properties

Properties	X_u^m	AI(-OH)	AI(-CH ₃)	AI(>CH ₂)	AI(>CH-)	AI(>C<)
MV MR TSA	72.71(0.64) 18.82(0.53) 157.71(0.64)	-4.436(0.066) 0.286(0.008) -21.56(0.087)	27.93(0.25) 12.77(0.36) -33.54(0.14)	7.410(0.065) 1.615(0.046) 19.97(0.081)	1.131(0.032) 9.392(0.038)	0.634(0.018) 4.576(0.019)

Table 5
The cross-validation results for all three properties

Properties	r	S	s of residuals	$r_{ m press}$	s of jackknifed residuals
MV	0.9965	2.603	2.555	0.9943	3.200
MR	0.9993	0.3223	0.3133	0.9992	0.3396
TSA	0.9990	3.393	3.244	0.9983	4.511

and thus cause an increase in MV. The fact that the net results cause MV to display smaller negative dependence on AI (–OH) index indicates that the hydrogen-bonding interaction of –OH groups moieties in alcohols play an important role in determining the MV. It is particularly worth noting that MR displays positive dependence on AI (–OH) index. According to the above discussion, it may be possible that the increase in MR caused by the pseudobranch of –OH group present in the side chain compensate the reduction in MR caused by the hydrogen bonding interaction. The net results cause MR to display smaller positive dependence on AI (–OH) index. The fact suggests that the MR is less sensitive to the hydrogen-bonding interaction than the MV.

In the case of TSA, we see from Table 3 that the molecular surface areas have smaller values for alcohols that are small or highly branched, and have larger values for alcohols that are large and linear. The fact implies that the branching causes the reduction in TSA, in other words, the branching seems to be a very important factor determining the molecular surface areas. This is in accordance with our results that TSA displays negative dependence on AI (-CH₃) and AI (-OH) indices and positive dependence on AI (>CH₂), AI (>CH₋), and AI (>C<) indexes. According to the definition of the molecular surface areas, the peripheral or terminal atomic groups (e.g. -CH₃ and -OH groups) should make a greater contribution to TSA than the 'hidden' or 'inside' groups (e.g. - CH_2- , -CH<, and >C< groups). In the present study, the contributions to TSA for each AI index decrease in the order of AI $(-CH_3) > AI (-OH) > AI$ (>CH₂) > AI (>CH₋) > AI (>C<). Therefore, the contributions for each AI index simply reflect the role of individual groups in molecules. These results seem to indicate that X_u^m and AI indices, especially AI (-OH) index, are very sensible for describing the three physical properties of compounds investigated. The fact further indicates that the novel vertex degree

 v^m proposed to replace the original vertex degree of heteroatom in molecular graphs is adequate to extension of Xu and AI indices to complex molecules with heteroatoms.

4.4. Model validation

Finally, the final models generated individually for three properties are validated by the cross-validation using the more general leave-*n*-out method since jackknifing of these data sets would be an extremely tedious process. For MR and MV, a leave-5-out method is used, and for TSA a leave-3-out method is used. As a quantitative evaluation of the results of the cross-validation, the PRESS statistical parameters (r_{press} and s_{press}) and the standard error of the jackknifed residuals are listed in Table 5. The statistical parameters (r and s) and the standard error of the residuals of the final models are also shown in Table 5. It is expected that the standard error of the jackknifed residuals should be larger than that of the residuals of the final models for the three properties. One can see that for each property the PRESS statistics (r_{press} and s_{press}) obtained from the remaining compounds are very close to the statistics (r and s)of the final models and the standard error of the jackknifed residuals is only slightly larger than the standard error of the residuals of the final models. This cross-validation demonstrates the outstanding predictive power of the final models. On the other hand, plots of calculated versus observed values and plots of residuals versus calculated values can also be used as evidence of the validity of a model. Plots of residuals versus calculated values show that the residuals are randomly distributed. Plots of calculated versus observed data show no observable pattern (Figs. 1-3). Therefore, the three final models are highly statistically reliable and successfully validated.

5. Conclusion

The multiple linear regression using the modified Xu and AI indices is used to develop high quality QSPR models to describe the three physical properties of three mixed data sets of organic compounds including alkanes and alcohols with a wide range of nonhydrogen atoms. For all three physical properties, the correlation coefficients r are larger than 0.995 and particularly the standard errors are significantly reduced (within the range of 79-86%) as compared with the linear models with a single X_u^m index. The results indicate that the novel vertex degree v^m is adequate to the modification of Xu and AI indices and also indicates the high potential of these indices for application to various physical properties and different structural types, especially complex compounds with hydrogen bonding interactions. The cross-validation demonstrates the final models to be highly statistically reliable. The role of the molecular size and individual groups in molecules are simply illustrated. The results indicate that the three physical properties are dominated by molecular size directly associated with intermolecular dispersion forces. Other atomic groups, especially -OH group containing information about the hydrogen-bonding interaction, are also important although their contributions are much smaller than that of the molecular size. The contributions of individual indexes in final models satisfactorily account for the role of molecular size and each atom-type in molecules. This study can help in understanding what structural features and groups of a compound are important to physical properties. It is possible to use the modified Xu and AI indices to develop other high quality QSPR/QSAR models in the future.

References

- [1] A.T. Balaban, J. Chem. Inf. Comput. Sci. 35 (1995) 339.
- [2] N. Trinajstic, Chemical Graph Theory, 2nd ed., CRC Press, Boca Raton, 1992.
- [3] L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [4] H. Hosoya, Bull. Chem. Soc. Jpn 44 (1971) 2332.
- [5] A.T. Balaban, Chem. Phys. Lett. 89 (1982) 399.
- [6] D. Bonchev, N. Trinajstic, J. Chem. Phys. 67 (1977) 4517.

- [7] H.P. Schultz, J. Chem. Inf. Comput. Sci. 29 (1989) 227.
- [8] H. Wiener, J. Am. Chem. Soc. 69 (1947) 17.
- [9] L.B. Kier, L.H. Hall, Molecular Connectivity in Structure— Activity Studies, Research Studies Press, Letchworth, 1986.
- [10] B. Bogdanov, S. Nikolic, N. Trinajstic, J. Math. Chem. 3 (1989) 299.
- [11] M. Randic, B. Jerman-Blazic, N. Trinajstic, Comput. Chem. 14 (1990) 237.
- [12] E. Estrada, J. Chem. Inf. Comput. Sci. 35 (1995) 701.
- [13] A. Toropov, A. Toporova, T. Ismailov, D. Bonchev, J. Mol. Struct. (Theochem.) 424 (1998) 237.
- [14] M.V. Diudea, D. Horvath, A. Graovac, J. Chem. Inf. Comput. Sci. 35 (1995) 129.
- [15] L.B. Kier, L.H. Hall, J.W. Frazer, J. Math. Chem. 7 (1991) 229.
- [16] L.H. Hall, B. Mohney, L.B. Kier, J. Chem. Inf. Comput. Sci. 31 (1991) 76.
- [17] L.H. Hall, B. Mohney, L.B. Kier, Quant. Struct.—Act. Relat. 10 (1991) 43.
- [18] L.H. Hall, L.B. Kier, Med. Res. Rev. 2 (1992) 497.
- [19] L.H. Hall, L.B. Kier, B.B. Brown, J. Chem. Inf. Comput. Sci. 35 (1995) 1074.
- [20] L.H. Hall, L.B. Kier, J. Chem. Inf. Comput. Sci. 35 (1995) 1039.
- [21] B. Ren, Comput. Chem. (2002) in press.
- [22] B. Ren, Comput. Chem. 26 (2002) 223.
- [23] B. Ren, J. Chem. Inf. Comput. Sci. 39 (1999) 139.
- [24] B. Ren, G. Chen, Y. Xu, Acta Chimica Sinica 57 (1999) 563 in Chinese.
- [25] B. Ren, Y. Xu, G. Chen, J. Chem. Engng China 50 (1999) 280 in Chinese.
- [26] B. Ren, B. Luo, Y. Zhang, J. S. China Univ. Technol. 27 (1999) 89 in Chinese.
- [27] D.E. Needham, I.-C. Wei, P.G. Seybold, J. Am. Chem. Soc. 110 (1988) 4186.
- [28] F. Huang, X. Liu, Alcohols, Encyclopedia of Chemical Industry, vol. 2, Chemical Industry Press, Beijing, 1991 in Chinese.
- [29] C.L. Yaws, Chemical Properties Handbook, McGraw-Hill, Beijing, 1999.
- [30] L.B. Kier, L.H. Hall, W.J. Murray, M. Randic, J. Pharm. Sci. 64 (1975) 1971.
- [31] G.L. Amidon, H. Yalkowsky, S.J. Leung, J. Pharm. Sci. 63 (1974) 3225.
- [32] B. Lucic, N. Trinajstic, J. Chem. Inf. Comput. Sci. 39 (1999) 121.
- [33] B. Lucic, N. Trinajstic, S. Sild, M. Karelson, A.R. Katritzky, J. Chem. Inf. Comput. Sci. 39 (1999) 610.
- [34] B. Lucic, D. Amic, N. Trinajstic, J. Chem. Inf. Comput. Sci. 40 (2000) 403.
- [35] M. Firpo, L. Gavernet, E.A. Castro, A.A. Toropov, J. Mol. Struct. (Theochem.) 501–502 (2000) 419.
- [36] E.A. Castro, M. Tueros, A.A. Toropov, Comput. Chem. 24 (2000) 571.
- [37] E. Estrada, J. Chem. Inf. Comput. Sci. 35 (1995) 31.
- [38] Z. Mihalic, N. Trinajstic, J. Chem. Edu. 69 (1992) 701.