

Module TMR 4585: Underwater Technology – *Subsea Pipeline Technology*

EXERCISE – Pipeline wall thickness design - Hydrodynamic stability check – Expansion check - Installation design

General

This exercise is the one and only mandatory exercise related to the pipeline design part of the above module. The exercise is then meant to be merged into the project report.

Reference documents

- Offshore Standard DnV- OS-F101 Submarine pipeline systems AUGUST 2012
- Recommended Practice DNV-RP-F109 On-Bottom Stability Design of Submarine Pipelines OCTOBER 2010

Tasks to be carried out

A 150 km long 16" gas pipeline is to be installed from the Haltenbanken area to the Ranheim Industri Plant outside Trondheim.

- 1. Calculate the steel wall thickness needed along the route profile considering the bursting design criteria defined in DnV-OS-F101 considering the design and system test pressure cases. Use the DnV safety class definition to identify sections with different wall thickness.
- 2. With reference to the same standard, identify whether or not buckle arrestors will be needed along the pipeline.
- 3. On the basis of the concrete coating thickness specified, perform hydrodynamic stability design both with respect to vertical and horizontal stability, using the "virtual stable pipe" criterion and the generalised stability method in DNV-RP-F109 for horizontal stability. This includes both the offshore and inshore (Trondheim Fjord) sections. Assume that the steady and wave induced current velocities are acting perpendicular to the pipe and use the worst case scenarios from the route profile. Then specify the necessary concrete coating density (using the tabulated range) along relevant sections of the pipeline. If found relevant, identify sections where additional

- stabilization is required and propose solution. The installation (empty pipe), system test (waterfilled) and operation (gas filled) load scenarios are to be considered. The installation is carried out in the summer season. Then the pipeline is left waterfilled over the winter season before it is put in operation.
- 4. Use the input parameters to obtain the steady state temperature profile along the pipe and identify which sections of the pipeline that will be exposed to global buckling during operation.
- 5. Calculate on the basis of DnV OS-F101 and the "Load controlled condition" with respect to combined loads, the most conservative maximum allowable free span length under the installation, system test and operation conditions. The system test and operation conditions both include the design internal pressure condition and the no internal pressure condition, with respect to the point at which these pressure are applied (20 m above the sea surface). Assume zero axial force and a bending moment M=w_sL²/12, where w_s is the submerged weight and L is the span length.
- 6. Use the critical bending moment found for the installation condition above and the catenary equation to calculate the minimum bottom tension needed during installation and the minimum radius of curvature applicable for the horizontal curves needed to establish the route in the horizontal plane.

Input data

Steel cross-section design

Pipeline cross-section related issues	
Inside diameter	406.4 mm
Design pressure	25 MPa
Gas specific density	300 kg/m^3
Incidental to system test pressure ratio	1.0
Acceleration of gravity	9.81 m/s^2
System test to design pressure ratio	1.33
Water density used for system test	1000 kg/m^3
Reference level above sea surface where the	+ 20 m
system test pressure is applied	
Sea water density	1025 kg/m ³
Corrosion allowance	5 mm
Thickness fabrication tolerance	10%
Material grade	X65 carbon steel, no temperature derating
Steel Yield stress	450 MPa
Steel Ultimate stress	1.15*yield stress
Steel density	7850 kg/m^3
Steel thermal conductivity	43 W/m/K
Cross-section ovality	0.005
Corrosion coating thickness	2 mm
Corrosion coating density	1100 kg/m^3
Corrosion coating thermal conductivity	0.2 W/m/K
Minimum concrete coating thickness	45 mm
Concrete coating density	$2200-3000 \text{ kg/m}^3$
Concrete coating thermal conductivity	0.5 W/m/K

Flow conditions

Flow related issues	
Operation inlet design temperature	80 °C
Flow velocity	5 m/s
Specific heat capacity of flow	2000 J/kg/K
Gas specific density	250 kg/m^3

Soil conditions

Soil type: Clay along entire route	
Friction factor	0.2
Dry unit soil weight	18 kN/m ³
Submerged unit soil weight	8 kN/m ³
Undrained shear strength, offshore section	2 kPa
Undrained shear strength, inshore section	5 kPa

Route profile

Wave Data

Wave data to be applied are omni-directional data as follows

The seasons are defined for current and waves as follows:

June, July and August Summer

September, October and November Autumn December, January and February Winter

March, April and May Spring

Sea states are characterized by significant wave height, H_S, and peak period, T_P. The duration of a sea state is 3 hours.

Offshore section

Parameter	Return Period (years)			
All year	1	10	100	10 000
Hs (m)	11.7	13.9	16.0	20.0
Tp (s)	15.9	17.0	18.0	20.0

Season		Return Period (years)		
		1	10	100
Spring	Hs (m)	9.3	11.4	13.3
	Tp(s)	14.6	15.9	17.0
Summer	Hs (m)	5.8	7.1	8.3
	Tp (s)	12.3	13.3	14.1
Autumn	Hs (m)	9.7	11.8	13.6
	Tp (s)	14.8	16.1	17.0
Winter	Hs (m)	11.7	14.0	16.0
	Tp(s)	16.0	17.2	18.0

Inshore section

Parameter	Return Period (years)			
All year	1	10	100	10 000
Hs (m)	2	2.5	3	
Tp (s)	4	5	6	

Sassan		Return Period (years)		
Season	Season		10	100
Spring	Hs (m)	1.5	2.5	3
	Tp(s)	4	5	6
Summer	Hs (m)	1	1.5	2
	Tp(s)	3	3.5	4
Autumn	Hs (m)	1.5	2	2.5
	Tp(s)	3.5	4.5	5.5
Winter	Hs (m)	2	2.5	3.0
	Tp (s)	4	5	6.0

Current Data

The extreme current profiles are to be applied to all pipeline sections.

Water denth (m)	Return period (years)		
Water depth (m)	1	10	100
5 m above seabed	0.50	0.55	0.60