Preparing Data for Analysis Using R: Basic through Advanced Techniques

Nina Zumel Win-Vector, LLC

All materials: https://github.com/WinVector/PreparingDataWorkshop

Who I am

- Nina Zumel
- Principal Consultant at Win-Vector LLC
- One of the authors of Practical
 Data Science with R

Outline

- Data Preparation
 - Typical data problems & possible solutions
- vtreat: Automating variable treatment in R
- Examples of automated variable treatment
- Conclusion

Data Preparation

Why Prepare Data at All?

- To facilitate modeling/analysis
 - Clean dirty data
 - Format data the way machine learning algorithms expect it
- Not a substitute for getting your hands dirty
 - But some issues show up again and again

Typical Data Problems

- "Bad" numerical values (NA, NaN, sentinel values)
- Categorical variables: missing values, missing levels
- Categorical variables: too many levels
- Invalid values
 - Out of range numerical values
 - Invalid category levels

First Example: Bad/missing Numeric Values

Bad Numerical Values

Miles driven	Gas Consumption
100	2
235	0
150	7.5
200	5.5
0	0
300	NA

MPG	
50	
Inf	
20	
36.4	
NaN	
NA	

Electric car/bad calculation

Non-numeric typo/bad calculation

Electric car

Whither Bad Values?

- "Faulty Sensor" values are missing at random
 - . Assume they come from the same distribution as the other values
 - . The mean of the "good" values is a reasonable stand-in
- Systematically missing
 - Electric cars
 - . They WILL behave differently from gas or hybrid cars
 - The mean of the good values is not a valid stand-in

A number of possible solutions

- Naive: skip rows with missing values
- •Multiple models: build many models using incomplete subsets of the columns.
- •Imputation: build additional models that guess values for missing variables based on other variables.
- •Statistical: sum-out or integrate-out missing values.
- •Pragmatic: replace with harmless stand-ins and add notation so the machine learning system is aware of the situation.

Missingness as signal

- •In business analytics missing data is often an indicator of where the data came from and how it was processed.
- •Consequently it is often one of your more informative signals when modeling!

One Pragmatic Solution

MPG	
50	
Inf	
20	
36.4	
NaN	
NA	

MPG	MPG_isBad			
50	FALSE			
35.5	TRUE			
20	FALSE			
36.4	FALSE			
35.5	TRUE			
35.5	TRUE			

Second Example: Unexpected or Novel Categorical Levels

Categorical Variables: Missing Values and Novel Levels

TrainingData

Residence
CA
NV
OR
CA
CA
NA
WA
OR
WA

NewData

Residence
NV
OR
NV
WY
CA
CA
NV
NA
OR

Novel Levels - Model Failure

```
> model = lm("premium~age+sex+residence",
data=TrainingData)
```

```
Error in model.frame.default(Terms, newdata,
na.action = na.action, xlev = object$xlevels) :
factor residence has new levels WY
```


On the Way to the Solution: Indicator Variables

Residence
CA
NV
OR
CA
CA
NA
WA
OR
WA

Res_NA	Res_CA	Res_NV	Res_WA	Res_OR
0	1	0	0	0
0	0	1	0	0
0	0	0	0	1
0	1	0	0	0
0	1	0	0	0
1	0	0	0	0
0	0	0	1	0
0	0	0	0	1
0	0	0	1	0

Three Possible Solutions

Training Data Proportions

NA	CA	NV	WA	OR
1/9	1/3	1/9	2/9	2/9

1) A novel level is weighted proportional to known levels

Residence	Res_NA	Res_CA	Res_NV	Res_WA	Res_OR
WY	1/9	1/3	1/9	2/9	2/9

2) A novel level is treated as "no level"

Residence	Res_NA	Res_CA	Res_NV	Res_WA	Res_OR
WY	0	0	0	0	0

3) A novel level is treated as uncertainty among rare levels

Residence	Res_NA	Res_CA	Res_NV	Res_WA	Res_OR
WY	1/2	0	1/2	0	0

vtreat solution

Residence	# of occurrences		
CA	2000		
NV	1100		
OR	1000		
WA	1500		
WY	18		
ID	14		
CO	8		

Residence	# of occurrences			
CA	2000			
NV	1100			
OR	1000			
WA	1500			
RARE	40			

- Levels that appear fewer than N times (N user specified): pooled to rare
- Levels (including rare)
 that don't achieve statistical
 significance code to zap
 - zap codes to "no level"
 (no model effect)
 - novel levels code to rare (if available), otherwise to zap

Third Example: Categorical Variables with Very Many Levels

Categorical variables: Too many levels

ZIP	SalePriceK
94127	725
94564	402
90011	386
94704	790
94127	1195
94109	903
94124	625
94124	439
94564	290

- Too many levels is a computational problem for some machine learning algorithms.
 - You will inevitably have a novel level

The Best (but not always possible) Solution

Use as join key into domain knowledge.

San Francisco County ZIP codes	Avg. listing price	Median sales price
	Week ending Aug 13	Date range: May-Aug '14
Name w	Amount	Amount w
94124	\$571,667	\$625,000
94134	\$619,495	\$640,000
94132	\$713,583	\$835,000
94102	\$768,558	\$605,000
94112	\$771,234	\$728,250
94111	\$877,000	\$959,000
94116	\$904,071	\$1,025,000
94107	\$1,019,113	\$908,500
94117	\$1,057,000	\$1,125,000
94131	\$1,057,160	\$1,200,000
94110	\$1,128,511	\$1,082,000
94122	\$1,227,482	\$930,000
94114	\$1,405,793	\$1,452,000
94103	\$1,406,597	\$850,000
94109	\$1,408,431	\$903,500
94105	\$1,549,047	\$1,107,500
94127	\$1,569,846	\$1,300,000

Pragmatic Solution: "Impact/Effects Coding"

ZIP	avgPriceK	ZIP_impact	
90011	386	-253.4	
94109	903	263.6	
94124	532	-107.4	
94127	960	320.6	
94564	346	-293.4	
94704	790	150.6	
globalAvg	639.4	0	

Impact-coding the ZIP variable

ZIP
94127
94564
90011
94704
94127
94109
94124
94124
93401

ZIP_impact
320.6
-293.4
-253.4
150.6
320.6
263.6
-107.4
-107.4
0

Sidebar: Impact-Code; DON'T Hash!

- Python/scikit-learn: only takes numerical variables
- Hashing loses information!
- Impact-code, or convert to indicators:
 OneHotEncoder()
- If you must hash, use Random Forest

http://www.win-vector.com/blog/2014/12/a-comment-on-preparing-data-for-classifiers/

Automating Variable Treatment in R: vtreat

Two-step Process

- Design the data treatment plans
 - Numeric outcome:

```
tPln = designTreatmentsN(train, xv, y)
```

Binary class outcome

```
tPln = designTreatmentsC(train, xv, y, target)
```

- Prepare the data sets
 - train.treat = prepare(tPln, train, pruneSig=0.05)
 - . test.treat = prepare(tPln, test, pruneSig=0.05)

Designing the Treatment Plans: Numeric Output

```
salePrice ~ ZIP + homeType + numBed + numBath + sqFt
```


Example Input

```
homeType numBed numBath sqFt salePrice
   ZIP
                   4 1025
 94499
                                  815678
         condo
 94403 condo 2 3 1082
                                  600635
                 1 3 751
 94361 townhouse
                                  444609
                      3 1093
 94115 condo
                                  349433
 94217 <NA>
                          3 914
                                  692468
                  NA
       categorical
many-level
                       numeric
categorical
```


Using the treatment plan to prepare data

df.treat = prepare(treatPlan, df, pruneSig=0.2)

df is any frame of appropriate format (training or test)

homeType_lev_x.single.family homeTy	pe_lev_x.townhouse	numBed_clean	numBed_isBAD
0	0	4.00000	0
0	0	2.00000	0
0	1	1.000000	0
0	0	2.000000	0
0	0	2.456325	1

numBath_clean	numBath_	isBAD	sqFt_	_clean	salePrice
4.00000		0		1025	815678
3.000000		0		1082	600635
3.000000		0		751	444609
3.000000		0		1093	349433
3.000000		0		914	692468

Designing the Treatment Plans: Binary Classification

```
loanApproved ~ ZIP + loanType + income + homePrice + FICO
```

```
treatPlan = designTreatmentsC(train,
    c("ZIP", "loanType", "income", "homePrice", "FICO"),
    "loanApproved", TRUE)
```


Conclusions

- •There's no substitute for getting your hands in the data
- •Nonetheless, some variable treatments are reusable again and again
- •We've presented our go-to data treatments, and an R implementation for them: vtreat

Further References

Impact Coding

- http://www.win-vector.com/blog/2012/07/modeling-trick-impact-coding-of-categoricalvariables-with-many-levels/
- http://www.win-vector.com/blog/2012/08/a-bit-more-on-impact-coding/
- Converting Categorical Variables to Numerical (No Hashing)
 - http://www.win-vector.com/blog/2014/12/a-comment-on-preparing-data-for-classifiers/

PRESS statistic

 http://www.win-vector.com/blog/2014/09/estimating-generalization-error-with-the-pressstatistic/

More references on vtreat

- vtreat on CRAN
 - https://cran.r-project.org/package=vtreat
- vtreat code on GitHub
 - https://github.com/WinVector/vtreat

