Biomedical generative pre-trained based transformer language model for age-related disease target discovery

By Aarohi Chopra

Background

Motivation

Goal

Large Language Models

1. LLMs?

2. Idea: Next word prediction

3. Medical Context: Disease to genes

Large Language Model Usage

1. Construct Prompt

2. Tokenize

3. Predict Gene

Data

Training Data:

- National Institutes of Health Grants: 9
- PubMed: 15 million

Reference Data

- HUGO Gene Nomenclature Committee
- GeneAge
- ClinicalTrials.gov
- DrugAge
- PubMedQA

	Number of parameters Texts for train		
BioGPT + Grants	349 million	15M PubMed abstracts + 900K biomedical grants full texts	
BioGPT	349 million	15M PubMed abstracts	
BioGPT Large PubMedQA	1.5 billion	15M PubMed abstracts + PubMedQA dataset	
BioGPT Large 1.5 billion		15M PubMed abstracts	

Exploratory Data Analysis

Methods

Embeddings

1. Sample: PubMed abstracts + grant texts

2. Processing: Lowercase + Removing stopwords(NLTK)

3. Embedding: "all-mpnet-base-v2" sentence-transformers model

Training

- 1. Base: BioGPT (347 million parameters)pre-trained on 15 million PubMed abstracts
- 2. Task: Maximize log-likelihood of a next token given the context
- 3. Customize: BipGPT-G additional 2002 thousand grant abstracts
- 4. Details:

Training time: 40 hours

Batch size: 16

Gradient accumulation step: 64 per device on four A5000 GPUs

Adam algorithm with 100 warm-up steps

Learning rate: 5e-5

Prompt Optimization

- 1. Prompt: "Human gene targeted by a drug for treating {DISEASE} is"
- 2. Task: Next word prediction
- 3. Construction parameters settings
- 4. Efficiency Estimation
- 5. Findings:

- Larger prompt length BAD
- Addition of Articles GOOD
- 6. Brute Result: Total Prob_{Target Gene} = Multiplication of all tokens probabilities

Validation

- 1. Analyze the top K values
- 2. ELFC Log Fold Change of Enrichments (occurrence of targets relative to their general frequency the dataset)
- 3. HGPV Hyperg Echne Ci (spore) u= (log 2 u (targets_k * N) by chance or unusually high) k * targets_N
- 4. Higher value $HGPV(score) = -log10 (1 hgcdf(targets_k, k, targets_N, N))$,

Processing Tokenization

- 1. Maximum token limit
- 2. Filtering longer genes
- 3. Prevent skew for abundant non-gene data
- 4. Use cases (based on token length)
 - A. Gene length <= iterations(N)
 - B. Gene length > iterations(N)
- 5. Varying gene length normalization (separate and combined)
- 6. Normalization of Final Probabilities with longer lengths

Results

1. Product/token length (Figure C 1.3 & 2.4)

2. Normalizing individual tokens(each iteration) given $\sum_{\text{all tokens}} = 1$ (Figure C 3.1)

3. Parameter selection

Normalization version	HGPV	ELFC	AUROC
Probabilities normaliza	ation on each i	teration	
Total sum	5.93	4.11	0.59
Separate sum	4.53	3.78	0.51
Not sum	1.39	1.73	0.63
2. Final probabilities normalization according	to number of	tokens in a g	gene name
length Total sum	0.78	0.61	0.51
Total sum / length	5.94	4.02	0.59
Separate sum / length	5.59	3.83	0.57
Not sum / length	1.71	1.97	0.63
3. Variation of the parameter fo	r the final norm	nalization	
Total sum / length*parameter (=4)	5.50	3.75	0.58
Total sum / length * parameter (=4)**-1	5.49	3.76	0.57
Total sum / length ** length	5.37	3.67	0.57
4. Apply cut-off for the max length	n of tokens in a	gene name	
Total sum / token limit (=5)	5.15	3.56	0.56
ional solities total mile (-o)			

Total sum / length + token limit (=5)

5.49

3.76

0.57

Target Discovery for Aging

- 1. Top 200 genes were selected
- 2. \cap GenAge database (p < 0.001)
- 3. \cap PubMed database (p < 0.001)
- 4. Gene Ontology (GO) enrichment analysis (FDR adjusted p < 0.01)

LLM Explainability

- 1. Task: Protein Embeddings and graphs
- 2. Hypothesis: Learn not only probabilities also internal associations of word similarities
- 3. Result: Protein [pubmed(~ aging) and BioGPT(aging)] ---- Protein [pubmed(aging) and BioGPT(aging)]

Protein Graphs:

- "The human age-associated gene is the" gene name —> Tokenized_{mean output pooling}
 PyTorch tensor₁₀₂₄ —> Individual proteins
- 2. Source Nodes: Proteins in (PubMed abstract co-mentions) AND (BioGPT aging)
- 3. Target Nodes: Pro(BioGPT aging) & NOT(PubMed abstract co-mentions)
- 4. Random Nodes: Random proteins for main experiment and control values

Graphs Continued

Dual-purpose Disease and Age-Related Targets

Targets	Protein family	Clinical trial status ¹	Known as age-related genes ²	Potential dual-purpose candidates ³		
BRCA1	Acyltransferase	No	Yes	No		
CCR5	GPCR	Yes	No	Yes		
EGF	Growth factor	No	Yes	No		
MIP	Generic protein	No	No	No		
PTH	Generic protein	No	No	Yes		
RET	Receptor kinase	Yes	Yes	Yes		
SRC	Tyrosine kinase	Yes	Yes	Yes		
TNF	Tumor necrosis factor	Yes	Yes	Yes		
VHL	Ligase	No	Yes	No		

21

Discussion

- 1. Novel: CCR5, W, and PTH (Previous Table)
- 2. After filtering TNF, SRC and RET, and two novel genes, CCR5 and PTH
- 3. TNF -> Age associated inflammation
- 4. SRC -> Targeted by Dasatinib(Senolytic)
- 5. RET -> Higher levels causes thyroid cancer + Increases with age
- 6. CCR5 -> Neuroinflammation + Alzheimer's disease
- 7. PTH -> Osteoporosis + Frailty

References

- 1. https://pubmed.ncbi.nlm.nih.gov/30269508
- 2. https://pubmed.ncbi.nlm.nih.gov/36936271
- 3. https://pubmed.ncbi.nlm.nih.gov/35837482
- 4. https://pubmed.ncbi.nlm.nih.gov/32534441
- 5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564439/

Thank You:)