Cálculo II (Grupo 1º A) Relación de Ejercicios nº 1

Ejercicio 1.1: Estudiar la derivabilidad de la función $f: A \to \mathbb{R}$, en cada uno de los siguientes casos:

a)
$$A = [-1,1]$$
 y $f(x) = \sqrt{1-x^2}$,

b)
$$A = \mathbb{R} \text{ y } f(x) = \sqrt[3]{|x|},$$

c)
$$A = \mathbb{R} \ y \ f(x) = \frac{2x}{1+|x|}$$

d)
$$A = \mathbb{R}_0^+ \ y \ f(x) = x^x \text{ si } x \in \mathbb{R}^+, \ y \ f(0) = 0.$$

Ejercicio 1.2: Sean $\alpha, \beta \in \mathbb{R}$ y $f : \mathbb{R} \to \mathbb{R}$ la función $f(x) = x^2 + \alpha x + \beta$. Determinar los valores de α y β que hacen que el punto (2,4) pertenezca a la gráfica de f y que la recta tangente a la misma en dicho punto sea la recta de ecuación 2x - y = 0.

Ejercicio 1.3: Estudiar la derivabilidad de la función $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

y determinar su imagen.

Ejercicio 1.4: Estudiar la derivabilidad y el comportamiento en $\pm \infty$ de la función

$$f(x) = \begin{cases} \frac{e^x}{x} & \text{si} & x < 0\\ x & \text{si} & 0 \le x < 1\\ \sqrt[5]{x} & \text{si} & x \ge 1 \end{cases}$$

Ejercicio 1.5: Calcular la imagen de las siguientes funciones:

a)
$$f: [0,1] \to \mathbb{R}$$
, $f(x) = x + \operatorname{arctg} x$, para cada $x \in [0,1]$,

b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x + \operatorname{arctg} x$, para cada $x \in \mathbb{R}$,

c)
$$f:]0,1[\to \mathbb{R}, \ f(x) = \frac{2x-1}{x(x+1)}, \ \text{para cada } x \in]0,1[,$$

d)
$$f: [-1,1] \to \mathbb{R}, \ f(x) = \frac{x^2}{1+x^2}, \ \text{para cada } x \in [-1,1],$$

e)
$$f:[-1,1] \to \mathbb{R}, \ f(x) = \frac{2x}{1+|x|}, \ \text{para cada } x \in [-1,1],$$

f)
$$f:]-1,1[\to \mathbb{R}, f(x) = x(1-x^2)^{-1/2}, \text{ para cada } x \in]-1,1[.$$

Ejercicio 1.6: Demostrar las siguientes desigualdades para los valores de *x* indicados en cada caso:

a)
$$\frac{x}{1+x}$$
 < Ln(1 + x) < x , para todo x > 0,

- b) $\cos x > 1 \frac{x^2}{2}$, para todo $x \in (0, \frac{\pi}{2})$,
- c) $\frac{2x}{\pi}$ < sen $x < x < \operatorname{tg} x$, para todo $x \in \left]0, \frac{\pi}{2}\right[$.

Ejercicio 1.7: Determinar el número de ceros y la imagen de la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^6 - 3x^2 + 2$, para cada $x \in \mathbb{R}$.

Ejercicio 1.8: Calcular el número de soluciones de la ecuación $3 \ln x - x = 0$.

Ejercicio 1.9: Dado a > 1, probar que la ecuación $x + e^{-x} = a$ tiene, al menos, una solución positiva y otra negativa.

Ejercicio 1.10: Sea $f: \mathbb{R}^+ \to \mathbb{R}$ la función dada por $f(x) = x + \ln x + \operatorname{arctg} x$. Demostrar que la ecuación f(x) = 0 tiene una única solución.

Ejercicio 1.11: Probar que la ecuación $x + e^x + \arctan g x = 0$ tiene una única raíz real y determinar un intervalo de longitud uno en el que se encuentre dicha raíz.

Ejercicio 1.12: Probar que la ecuación tgx = x tiene infinitas soluciones.

Ejercicio 1.13: Calcular la imagen de la función $f: \mathbb{R}^+ \to \mathbb{R}$, dada por $f(x) = x^{1/x}$.

Ejercicio 1.14: Sean $a, b, c \in \mathbb{R}$ tales que $a^2 < 3b$. Probar que la ecuación dada por $x^3 + ax^2 + bx + c = 0$ tiene una solución real única.

Ejercicio 1.15: Sea $f:[-\frac{1}{2},+\infty[\to\mathbb{R}]]$ la función dada por $f(x)=(x+e^x)^{1/x}$, si $x \neq 0$, y $f(0) = e^2$. Estudiar la derivabilidad de f.

Ejercicio 1.16: Estudiar el comportamiento de la función $f: A \to \mathbb{R}$ en el punto α , en cada uno de los siguientes casos:

a)
$$A =]2, +\infty[$$
, $f(x) = \frac{\sqrt{x} - \sqrt{2} + \sqrt{x^2 - 2}}{\sqrt{x^2 - 4}}$ $(x \in A), \alpha = 2.$

b)
$$A = \mathbb{R}^+ \setminus \{1\}$$
, $f(x) = \frac{1}{\ln x} - \frac{1}{x-1}$ $(x \in A)$, $\alpha = 1$.

c)
$$A =]1, +\infty[, f(x) = \frac{x^x - x}{1 - x - \ln x} (x \in A), \alpha = 1.$$

d)
$$A = \mathbb{R}^*$$
, $f(x) = \frac{1}{x^4} - \frac{1}{6x^2} - \frac{\sin x}{x^5}$ $(x \in A)$, $\alpha = 0$.

d)
$$A = \mathbb{R}^*$$
, $f(x) = \frac{1}{x^4} - \frac{1}{6x^2} - \frac{\sin x}{x^5}$ $(x \in A)$, $\alpha = 0$.
e) $A =]0, \frac{\pi}{2}[$, $f(x) = \left(\frac{1}{\lg x}\right)^{\sin x}$ $(x \in A)$, $\alpha = \frac{\pi}{2}$.
f) $A =]0, \frac{\pi}{2}[$, $f(x) = (1 + \sin x)^{\cot x}$ $(x \in A)$, $\alpha = 0$.

f)
$$A =]0, \frac{\pi}{2}[, f(x) = (1 + \sin x)^{\cot x} (x \in A), \alpha = 0.$$

g)
$$A = \mathbb{R}^+ \setminus \{e\}$$
, $f(x) = x^{\frac{1}{\ln x - 1}}$ $(x \in A)$, $\alpha = e$.

h) =
$$\mathbb{R}^+$$
, $f(x) = \frac{e^{-(1+x)^{\frac{1}{x}}}}{x}$ $(x \in A)$, $\alpha = 0$.

Ejercicio 1.17: Estudiar el comportamiento en cero de la función $f: A \to \mathbb{R}$, en cada uno de los siguientes casos:

a)
$$A =]0, \frac{\pi}{2}[, f(x) = (\sin x + \cos x)^{\frac{1}{x}} (x \in A),$$

b)
$$A =]0, \frac{\pi}{2}[, f(x) = (\cos x + \frac{x^2}{2})^{\frac{1}{x^2}} (x \in A),$$

c)
$$A =]0, \frac{\pi}{2}[, f(x) = \frac{x - \arctan x}{\sin^3 x} \quad (x \in A),$$

d)
$$A =]0, \frac{\pi}{2}[, f(x) = (1 - \lg x)^{\frac{1}{x^2}} (x \in A),$$

e)
$$A = \mathbb{R}^+$$
, $f(x) = x^{\sin x}$

Ejercicio 1.18: Sea $a \in \mathbb{R}$, y sea $f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ la función dada por

$$f(x) = \begin{cases} \frac{\ln(1-\sin x) - 2\ln(\cos x)}{\sin x} & \text{si } x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\setminus \{0\} \\ a & \text{si } x = 0 \end{cases}$$

Estudiar la continuidad y la derivabilidad de f en función del valor del parámetro a.

Ejercicio 1.19: Estudiar el comportamiento en $+\infty$ de la función $f: A \to \mathbb{R}$, en cada uno de los siguientes casos:

a)
$$A = \mathbb{R}^+$$
, $f(x) = (a^x + x)^{\frac{1}{x}}$, $a \in \mathbb{R}^+$.

b)
$$A =]1, +\infty[, f(x) = \frac{x(x^{\frac{1}{x}} - 1)}{\ln x}.$$

c)
$$A = \mathbb{R}^+$$
, $f(x) = x^a \operatorname{sen} \frac{1}{x}$ $(a \in \mathbb{R})$.

d)
$$A = \mathbb{R}^+$$
, $f(x) = \frac{x^2 \sin \frac{1}{x}}{\ln x}$.

Ejercicio 1.20: Dadas las funciones $f, g: A \to \mathbb{R}$ y $a \in A$, demostrar que si f es derivable en a, siendo f(a) = 0, y si g es continua en a entonces fg es derivable en a.

Ejercicio 1.21: Sea r > 1. Si f es una función real de variable real tal que $|f(x)| \le |x|^r$ en algún intervalo abierto que contenga al cero, demostrar que entonces f es derivable en cero.

Ejercicio 1.22: Sea f una función tal que $f(x+h) = f(x) + 3xh + h^2 - 2h$, para cada $x, h \in \mathbb{R}$, calcular f'(0) y f'(2).