Universidad del Valle de Guatemala Análisis y Diseño de Algoritmos - Sección 10 María Fernanda Estrada 14198 17/03/2020

Tarea 1

Análisis de algoritmos y notaciones asintóticas

1. Describa un algoritmo con tiempo de ejecución $O(n \log_2 n)$ tal que, dados un conjunto S de n números enteros y un entero arbitrario x, determine si existen o no dos números en S cuya suma sea exactamente x. Puede suponer que el arreglo está ordenado.

Este algoritmo consta de dos partes. Primero, se tienen que tomar dos números y sumarlos; al hacerlo con todo el conjunto de S, se tiene un tiempo de ejecución O(n). Segundo, al tener ya estos números seleccionados, se procede a realizar una búsqueda binaria de la suma de los números; este proceso tiene tiempo de ejecución $O(log_2n)$. En total, ir sumando y buscando esa suma en todo el conjunto S, toma un tiempo de ejecución $O(n log_2n)$.

2. La Regla de Horner dice que se puede evaluar un polinomio $P(x) = \sum_{k=0}^{n} a_k x^k$ de la siguiente manera:

$$a_0 + x(a_1 + x(a_2 + \cdots + x(a_{n-1} + xa_n) \dots))$$

El siguiente trozo de pseudocódigo implementa esta regla para un conjunto de coeficientes a_i dado:

- 1. y=0
- 2. for i=n downto 0:
- 3. $y=a_1+x*y$

Calcule una cota ajustada para el tiempo de ejecución de este algoritmo.

El paso uno solo se ejecuta 1 vez, el paso dos se ejecuta n veces y el paso tres se ejecuta n-1 veces. En total, su tiempo de ejecución es $c_1 + c_2 n + c_3 (n-1)$. Ahora, para calcular una cota ajustada, se deben encontrar los valores k_1 y k_2 en $0 \le k_1 n \le c_1 + c_2 n + c_3 (n-1) \le k_2 n$. Si se toman $c_1 = c_2 = c_3 = 1$, se encuentra que para cumplir estas condiciones, $k_1 = 1$ y $k_2 = 3$.

3. Escriba código naïve para la evaluación de un polinomio (suponga que no hay una instrucción primitiva para calcular x^y). Compare las tasas de crecimiento de este código y el que implementa la Regla de Horner.

En la evaluación naive, se debe evaluar uno por uno todos los términos. Este algoritmo tiene una tasa de crecimiento de n², mientras que la Regla de Horner tiene tasa de crecimiento n, haciéndolo mucho más eficiente y rápido.

4. Para dos funciones f(n) y g(n) demuestre que $\max(f(n), g(n)) = \Theta(f(n) + g(n))$.

Se sabe que
$$f(n) \le f(n) + g(n)$$
 y que $g(n) \le f(n) + g(n)$. Entonces, se tiene que $\max(f(n), g(n)) \in O(f(n) + g(n))$

Ahora, notamos que
$$f(n) + g(n) \le 2\max(f(n), g(n))$$
. Entonces, se tiene que $\max(f(n), g(n)) \in \Omega(f(n) + g(n))$

Como se acota por abajo y por arriba, se concluye que

$$\max(f(n), g(n)) = \Theta(f(n) + g(n))$$

5. Argumente por qué, para constantes reales cualesquiera a y b > 0, $(n + a)^b = \Theta(n^b)$. Hint: puede investigar o deducir la forma expandida $(n + a)^b$ para apoyar su respuesta.

Al expandir el polinomio, queda de la forma n^b + $Kn^{b-1}a$ + ... + Kna^{b-1} + a^b . El polinomio más grande y el que acota la función es n^b , por lo que el tiempo de ejecución es $\Theta(n^b)$.

6. ¿Es $2^{n+1} = O(2^n)$? ¿Es $2^{2n} = O(2^n)$?

La primera afirmación es cierta. Para comprobar, se quiere saber si hay una constante c que al multiplicarse por 2ⁿ el resultado es igual o mayor a 2ⁿ⁺¹. Si se separa 2ⁿ⁺¹ en 2*2ⁿ, entonces se observa que si la constante 2 (o mayor) se cumple esta condición.

La segunda afirmación es falsa. No hay una constante que se pueda multiplicar a 2ⁿ para que sea mayor o igual a 2²ⁿ.

- 7. Demuestre las siguientes propiedades:
 - a. $f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \hat{f}(n) = \Omega(g(n))$.

Por la definición de Θ , ésta función debe estar acotada por arriba (O) y por debajo (Ω) . Y de regreso la afirmación es válida también; si una función es acotada por arriba y por abajo, es de complejidad Θ .

b. $o(g(n)) \cap \omega(g(n)) = \emptyset$.

Ambas notaciones acotan por arriba y por abajo, pero no son incluyentes. Es decir, que no comparten elementos con la función que acotan. Entonces al hacer la intersección de ambas, queda el conjunto vacío.

c. $f(n) = O(g(n)) \Rightarrow \log_2 f(n) = O(\log_2 g(n))$, donde sepamos que $\log_2 g(n) \ge 1$ y $f(n) \ge 1$ para n suficientemente grande (i.e., para $n \ge n_0$ con algún n_0).

Se cumple esta definición ya que si se multiplica la función y el acotamiento por otra función (en este caso $\log_2 x$), se sigue cumpliendo que el acotamiento es mayor a la función. Es decir, $\log_2 f(n) \le \log_2 g(n)$.