SIAM AG / Applications of Magnitude and Magnitude Homology to Network Analysis

Prospects for applications of magnitude homology

Steve Huntsman

Contents

1 Context from mainstream topological data analysis to discrete tools

2 Magnitude homology with the briefest nod towards cyber applications

3 Examples in the vein of neural stuff (feedforward nets and actual brains)

Mainstream TDA has a playbook

- Approximate $\{X_j\}_{j=1}^n \subset (\mathbb{R}^d)^n$ at various scales
- Compute a topological invariant of each approximation
- Highlight invariants that persist across scales
- E.g., 12 equispaced points on the unit circle (half-distance $\Delta\approx 0.2588$)
 - $\beta_0 = 12 \cdot 1_{[0,\Delta)} + 1_{[\Delta,1)} + 1_{[1,\infty)}$ • $\beta_1 = 1_{[\Delta,1)}$

We are going to play a simpler game

- Data that interests us is fundamentally discrete
 - Approximate nothing (via representation or model if need be)
 - Compute a (co)chain complex directly from the data: simplicial complexes are optional technical devices
 - Highlight any persistence incidentally: it often won't apply

We are going to play a simpler game

- Data that interests us is fundamentally discrete
 - Approximate nothing (via representation or model if need be)
 - Compute a (co)chain complex directly from the data: simplicial complexes are optional technical devices
 - Highlight any persistence incidentally: it often won't apply
- Archetype: Dowker homology
 - Relation corresponds to a pair of homotopy equivalent simplicial complexes
 - $\bullet \ \, \mathbb{F}_2$ homology readily computed directly from relation itself, without ever constructing either simplicial complex

We are going to play a simpler game

- Data that interests us is fundamentally discrete
 - Approximate nothing (via representation or model if need be)
 - Compute a (co)chain complex directly from the data: simplicial complexes are optional technical devices
 - Highlight any persistence incidentally: it often won't apply
- Archetype: Dowker homology
 - Relation corresponds to a pair of homotopy equivalent simplicial complexes
 - $\bullet \ \, \mathbb{F}_2$ homology readily computed directly from relation itself, without ever constructing either simplicial complex
- Many well known discrete tools are underutilized
 - Finite topological spaces per se
 - Simplicial complexes generated by posets/hypergraphs
 - Discrete Morse theory
 - ...

This simpler game has practical relevance

- Dowker applications:
 - Witness complexes
 - Systems/sociology
 - Robotics
 - Neuroscience
 - Privacy
 - Software engineering
 - ..
 - Exercises for audience: cyber interactions like user/computer; process/file; etc

This simpler game has practical relevance

- Dowker applications:
 - Witness complexes
 - Systems/sociology
 - Robotics
 - Neuroscience
 - Privacy
 - Software engineering
 - ...
 - Exercises for audience: cyber interactions like user/computer; process/file; etc
- Magnitude homology for digraphs is suited for novel applications...
 - ...that can give rise to new capabilities

This simpler game has practical relevance

- Dowker applications:
 - Witness complexes
 - Systems/sociology
 - Robotics
 - Neuroscience
 - Privacy
 - Software engineering
 - ...
 - Exercises for audience: cyber interactions like user/computer; process/file; etc
- Magnitude homology for digraphs is suited for novel applications...
 - ...that can give rise to new capabilities
 - Cf. path homology, which is related but lacks ab initio source/target specificity

- Let (X, d) be a Lawvere metric space $\Leftrightarrow d =$ extended quasipseudometric
 - $d: X \times X \to [0, \infty]$ (extended)
 - *d* need not be symmetric (quasi-)
 - d(x,x) need not be zero (pseudo-)
 - (X, d) best thought of here as a category enriched over the poset $([0, \infty], \ge)$

- Let (X, d) be a Lawvere metric space $\Leftrightarrow d =$ extended quasipseudometric
 - $d: X \times X \to [0, \infty]$ (extended)
 - d need not be symmetric (quasi-)
 d(x,x) need not be zero (pseudo-)
 - a(x,x) need not be zero (pseud
 - (X,d) best thought of here as a category enriched over the poset $([0,\infty],\geq)$
- A k-simplex in X is an ordered tuple $x^{(k)} := (x_0, \dots, x_k) \in X^{k+1}$ s.t. $x_j \neq x_{j-1}$
- The *length* of $x^{(k)}$ is $\lambda(x^{(k)}) := \sum_{j=1}^{k} d(x_{j-1}, x_j)$

- Let (X, d) be a Lawvere metric space $\Leftrightarrow d = \text{extended quasipseudometric}$
 - $d: X \times X \to [0, \infty]$ (extended)
 - *d* need not be symmetric (quasi-) • d(x,x) need not be zero (pseudo-)
 - (X,d) best thought of here as a category enriched over the poset $([0,\infty],\geq)$
- A k-simplex in X is an ordered tuple $x^{(k)} := (x_0, \dots, x_k) \in X^{k+1}$ s.t. $x_i \neq x_{i-1}$
- The *length* of $x^{(k)}$ is $\lambda(x^{(k)}) := \sum_{i=1}^{k} d(x_{i-1}, x_i)$

The \mathbb{R} -graded magnitude chain complex (as before R is a coefficient ring):

- k-chains: $MC_{k,L}(X) := R\{x^{(k)} \text{ a } k\text{-simplex in } X : \lambda(x^{(k)}) = L\}$
- differential: $\partial_k : MC_{k,L}(X) \to MC_{k-1,L}(X)$ given by $\partial_k := \sum_{i=1}^{k-1} (-1)^j \partial^{(j)}$
 - $\partial^{(j)}(x^{(k)}) := \nabla_j x^{(k)}$ if $d(x_{j-1}, x_{j+1}) = d(x_{j-1}, x_j) + d(x_j, x_{j+1})$ and i = 0 otherwise
- Appropriate notion of chain map is induced by d-nonincreasing maps

- Let (X, d) be a Lawvere metric space $\Leftrightarrow d =$ extended quasipseudometric
 - $d: X \times X \to [0, \infty]$ (extended)
 - d need not be symmetric (quasi-)
 d(x,x) need not be zero (pseudo-)
 - (X, d) best thought of here as a category enriched over the poset $([0, \infty], \ge)$
- A k-simplex in X is an ordered tuple $x^{(k)} := (x_0, \dots, x_k) \in X^{k+1}$ s.t. $x_i \neq x_{i-1}$
- The *length* of $x^{(k)}$ is $\lambda(x^{(k)}) := \sum_{i=1}^{k} d(x_{i-1}, x_i)$

The \mathbb{R} -graded magnitude chain complex (as before R is a coefficient ring):

- *k*-chains: $MC_{k,L}(X) := R\{x^{(k)} \text{ a } k\text{-simplex in } X : \lambda(x^{(k)}) = L\}$
- differential: $\partial_k : MC_{k,L}(X) \to MC_{k-1,L}(X)$ given by $\partial_k := \sum_{i=1}^{k-1} (-1)^j \partial^{(j)}$
 - $\partial^{(j)}(x^{(k)}) := \nabla_j x^{(k)}$ if $d(x_{j-1}, x_{j+1}) = d(x_{j-1}, x_j) + d(x_j, x_{j+1})$ and $d(x_j, x_{j+1}) = 0$ otherwise
- Appropriate notion of chain map is induced by *d*-nonincreasing maps

The magnitude homology of X...

... is the homology of the magnitude chain complex

• For a digraph D, there is a decomposition of the form

$$MC_{\bullet,L}(D) = \bigoplus_{s,t \in V(D)} MC_{\bullet,L}^{(s,t)}(D)$$

• $MC_{\bullet,L}^{(s,t)}(D)$ generated by simplices with (initial, terminal) entries (s,t)

$$MC_{\bullet,L}(D) = \bigoplus_{s,t \in V(D)} MC_{\bullet,L}^{(s,t)}(D)$$

- $MC_{\bullet,L}^{(s,t)}(D)$ generated by simplices with (initial, terminal) entries (s,t)
- This structure makes MH particularly convenient for unweighted digraphs

$$MC_{\bullet,L}(D) = \bigoplus_{s,t \in V(D)} MC_{\bullet,L}^{(s,t)}(D)$$

- $MC_{\bullet,L}^{(s,t)}(D)$ generated by simplices with (initial, terminal) entries (s,t)
- This structure makes MH particularly convenient for unweighted digraphs
- A "blurred" variant replaces $\lambda = L$ in the chain complex definition with $\lambda \leq L$

$$MC_{\bullet,L}(D) = \bigoplus_{s,t \in V(D)} MC_{\bullet,L}^{(s,t)}(D)$$

- $MC_{\bullet,L}^{(s,t)}(D)$ generated by simplices with (initial, terminal) entries (s,t)
- This structure makes MH particularly convenient for unweighted digraphs
- A "blurred" variant replaces $\lambda = L$ in the chain complex definition with $\lambda \leq L$
- MH is related to both persistent homology and path homology

$$MC_{\bullet,L}(D) = \bigoplus_{s,t \in V(D)} MC_{\bullet,L}^{(s,t)}(D)$$

- $MC_{\bullet,L}^{(s,t)}(D)$ generated by simplices with (initial, terminal) entries (s,t)
- This structure makes MH particularly convenient for unweighted digraphs
- A "blurred" variant replaces $\lambda = L$ in the chain complex definition with $\lambda \leq L$
- MH is related to both persistent homology and path homology
- Magnitude cohomology has an analogue of the cup product
 - Ring structure determines the space for finite extended quasi-metric spaces
 - E.g., digraphs; finite metric spaces
 - Meanwhile, tree magnitude (co)homology groups only depend on #(vertices)

MH generalizes to enriched categories

- Consider enriched category of sub-flow graphs of a given flow graph
 - For semicartesianness, take a specific category F of "two-terminal graphs"
 - Presents some technical issues for decomposition (probably surmountable)
 - The topological entropy is a "size function" over the max-plus semiring
 - Recall this is log rate of growth of possible paths as a function of length
 - This setup dovetails with the source-target direct sum decomposition
 - A categorification might be interesting and efficiently computable
 - Representatives might encode nice structure
 - Possibility to connect to useful cyber applications via compilers
- More ambitiously, consider $F \times M$ where M is a "matrix category" of data
 - Size function may be something like the zeta function of a Markov chain
- Suitable data obtainable from program analysis
 - Simpler initial goal: use hitting probabilities metric of Boyd et al. (this is vanilla)

MH measures nonconvexity

Let $P_{p,n}$ be the DAG formed from p parallel paths of n arcs from 1 to (n-1)p+2

Then all the Betti numbers are zero except for

$$\beta(P_{p,n})_{0,0} = |V(P_{p,n})| = (n-1)p + 2;$$

$$\beta(P_{p,n})_{1,1} = |A(P_{p,n})| = np,$$

and

$$\beta(P_{p,n})_{2,n} = p - 1;$$

i.e., there are p-1 "convexity defects" of length n in homology dimension 2

Measuring nonconvexity may be useful from the PoV of flows/routing

Besides information/transportation networks, neural stuff is also interesting

Categorification helps analyze magnitude

Magnitude homology of

decategorifies like magnitude as shown

Categorification helps analyze weighting

Magnitude homology of

decategorifies like weighting as shown

DAGs are very nicely handled

Magnitude homology of multilayer perceptron (MLP) $K_{5/4/3.2}^{\rightarrow}$

decategorifies as shown

DAGs are very nicely handled

Magnitude homology of multilayer perceptron (MLP) $K_{5.4.3.2}^{\rightarrow}$

has Betti numbers shown

Fully connected MLPs have simple MH

- Let $N_\ell := \sum_{i=1}^\ell n_i$, $e_{(\ell)} := \sum_{j=N_{\ell-1}+1}^{N_\ell} e_j$, and $B[x_1, \dots, x_{L-k}; n] := \sum_{\ell=1}^{L-k} x_\ell e_{(\ell)}^T e_{(\ell+k)}$
 - E.g. $A = B[1_1, ..., 1_{L-1}; n]$

The preceding slide's mechanics suggest the conjecture (exercise)

For
$$k > 1$$
, $\beta_{k+1,m}^{(s,t)}(K_{n_1,\dots,n_L}^{\rightarrow}) = \delta_{k+1,m} \cdot \left(B \left[\prod_{\ell=2}^{k+1} (n_{\ell} - 1), \dots, \prod_{\ell=L-k}^{L-1} (n_{\ell} - 1); n \right] \right)_{st}$

Note that we automatically have $\beta_{0,m}^{(s,t)}=\delta_{0m}\delta_{st}$ and $\beta_{1,m}^{(s,t)}=\delta_{1m}A_{st}$

Examples:

$$\begin{array}{l} \beta(K_{5,4,3,2}^{\rightarrow}) = \mathrm{diag}(14,38,61,60,0,0,\ldots) \\ \beta(K_{2,11,3,7,5}^{\rightarrow}) = \mathrm{diag}(28,111,304,940,1200,0,0,\ldots) \\ \beta(K_{10,2,8,4,6}^{\rightarrow}) = \mathrm{diag}(30,92,280,532,1260,0,0,\ldots) \end{array}$$

Sparsely connected MLPs are more relevant

Sparsity arises via (e.g.) pruning small edge weights in trained networks

"Lottery tickets" exhibit hierarchical modularity [Patil, Michael, and Dovrolis]

Magnitude homology might usefully indicate structure...

...insofar as it manifests as "convexity defects" that differ from a null model

We provide some very preliminary supporting evidence

Sparse interconnections of MLPs and sparsification of a single MLP both induce off-diagonal magnitude homology, but differently

Sparse interconnections ⇒ **off-diagonals**

$$\beta = \begin{pmatrix} 52 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 182 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 436 & 0 & 0 & 4 & 0 & \dots \\ 0 & 0 & 0 & 1020 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 2196 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 2646 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \ddots \end{pmatrix}$$

Off-diagonal contributions indicated by dotted lines from sources to targets

Vertices colored by undirected Fiedler vector (i.e., spectral) bipartition; traversing arcs are purple

Sparsification ⇒ off-diagonals (differently)

$$\beta = \begin{pmatrix} 52 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 143 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 164 & 44 & 5 & 0 & 0 & \dots \\ 0 & 0 & 0 & 71 & 71 & 38 & 0 & \dots \\ 0 & 0 & 0 & 0 & 2 & 47 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \ddots \end{pmatrix}$$

Off-diagonal contributions indicated by dotted lines from sources to targets

Keeping $\approx 2/5$ of arcs in $K_{16.8.8.8.8.4}^{\rightarrow}$

This may be useful in practice

Deep neural networks are functionally sparsified and modular

Weight filtrations (for sparsity) and quantizations (for efficiency) are common

A "null model" of IID arc weights may actually be fairly realistic

Neural networks are initialized randomly; training finds one of many extrema

For a DAG the dimensions of simplices and lengths are bounded

In this case numerics largely suffice: e.g. the (de)categorification formula

$$((\exp[-\tau d])^{-1})_{st} \stackrel{\tau \gg 0}{=} \sum_{k,L} (-1)^k \mathsf{rank}\left(MH_{k,L}^{(s,t)}\right) \exp(-\tau L) = \sum_L \chi_{\bullet,L}^{(s,t)} \exp(-\tau L)$$

can exactly produce $\chi_{\bullet,L}^{(s,t)}$ via Laplace transform without ever computing MH

Consider a whole-animal connectome

Whole-animal chemical connectome of hermaphroditic Caenorhabditis elegans (nematode) is a digraph with 454 vertices and 4879 arcs (see https://wormwiring.org)

The pharynx subconnectome with 50 vertices and 242 arcs is in the box at upper left

The pharynx has off-diagonal 2-homology

$$\beta = \begin{pmatrix} 50 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 241 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1290 & 11 & 0 & 9 & 13 & 0 & \dots \\ \vdots & \ddots \end{pmatrix}$$

Off-diagonal 2-homology is intricate

The subconnectome is not Menger convex or geodetic; it has 4-cuts

Exercise: ∃ biological significance?

E.g., 10/11 reps for (k, L) = (2, 3) either have source neurons M2R, M3R, or NSML, or have target neuron MCR

Takeaways

Magnitude homology might be considered too abstract for real applications

But this would be a mistake

Takeaways

Magnitude homology might be considered too abstract for real applications

But this would be a mistake

Magnitude homology is amenable to computation in silico

It can enable new capabilities for fundamentally discrete data and problems that are ubiquitous in network science, machine learning, and cybersecurity

Thanks

MATLAB code at

https://github.com/SteveHuntsman/MagnitudeHomology