Real analysis

Neoneu

2024-08-01

Contents

Preface			5
1	Measure Theory		7
	1.1	Preliminaries	7
	1.2	The exterior measure	8
	1.3	Measurable sets and the Lebesgue measure	10
	1.4	Measurable functions	13
	1.5	The Brunn-Minkowski inequality	15
	1.6	Exercise	16
	1.7	Problem	16
2	Integration Theory		17
	2.1	The lebesgue integral: basic properties and convergence theorems	17
	2.2	The space L^1 of integrable functions	22
	2.3	Fubini's theorem	23
	2.4	A Fourier inversion formula	23
	2.5	Exercise	23
	2.6	Problem	23
3	Differentiation and Integration		25
	2 1	Differentiation of the integral	25

4 CONTENTS

Preface

This is a brief note of $Real\ Analysis$ by Elias M. Stein & Rami Shakarchi.

6 CONTENTS

Chapter 1

Measure Theory

1.1 Preliminaries

The **open ball** in \mathbb{R}^d centered at x and of radius r is defined by

$$B_r(x) = \{ y \in \mathbb{R}^d : |y - x| < r \}.$$

A subset $E \subset \mathbb{R}^d$ is **open** if for every $x \in E$ there exists r > 0 with $B_r(x) \subset E$. By definition, a set is **closed** if its complement is open.

We note that any (not necessarily countable) union of open sets is open, while in general the intersection of only finitely many open sets is open. A similar statement holds for the class of closed sets, if one interchanges the roles of unions and intersections.

A set *E* is **bounded** if it is contained in some ball of finite radius. A bounded set is **compact** if it is also closed. Compact sets enjoy the **Heine-Borel covering property**:

• Assume E is compact, $E \subset \bigcup_{\alpha} O_{\alpha}$, and each O_{α} is open. Then there are finitely many of the open sets, $O_{\alpha_1}, O_{\alpha_2}, \dots, O_{\alpha_N}$, such that $E \subset \bigcup_{j=1}^n O_{\alpha_j}$.

In words, any covering of a compact set by a collection of open sets contains a finite subcovering.

A point $x \in \mathbb{R}^d$ is a **limit point** of the set E if for every r > 0, the ball $B_r(x)$ contains points of E. This means that there are points in E which are arbitrarily close to x. An **isolated point** of E is a point $x \in E$ such that there exists an r > 0 where $B_r(x) \cap E$ is equal to $\{x\}$.

A point $x \in E$ is an **interior point** of E if there exists r > 0 such that $B_r(x) \subset E$. The set of all interior points of E is called the **interior** of E. Also,

the **closure** \overline{E} of the E consists of the union of E and all its *limit points*. The **boundary** of a set E, denoted by ∂E , is the set of points which are in the closure of E but not in the interior of E.

Note that the closure of a set is a closed set; every point in E is a limit point of E; and a set is closed if and only if it contains all its limit points. Finally, a closed set E is **perfect** if E does not have any isolated points.

Lemma 1.1. If a rectangle is the almost disjoint union of finitely many other rectangles, say $R = \bigcup_{k=1}^{N} R_k$, then

$$|R| = \sum_{k=1}^{N} |R_k|$$

Lemma 1.2. If R, R_1, \dots, R_N are rectangles, and $R \subset \bigcup_{k=1}^N R_k$, then

$$|R| \le \sum_{k=1}^{N} |R_k|$$

Proof.

Every open subset O of $\mathbb R$ can be written uniquely as a countable union of disjoint open intervals.

Every open subset O of \mathbb{R}^d , $d \geq 1$, can be written uniquely as a countable union of almost disjoint closed cubes.

The Cantor set C is by definition the intersection of all C_k 's:

$$\mathcal{C} = \bigcap_{k=0}^{\infty} C_k.$$

The set C is not empty, since all end-points of the intervals in C_k (all k) belong to C. Despite its simple construction, the Cantor set enjoys many interesting topological and analytical properties. For instance, C is closed and bounded, hence compact. Also, C is totally disconnected: given any $x, y \in C$ there exists $z \notin C$ that lies between x and y. Finally, C is perfect: it has no isolated points.

In terms of cardinality the Cantor set is rather large: it is not countable. Since it can be mapped to the interval [0,1], the Cantor set has the cardinality of the continuum. However, from the point view of "length" the size f C is small. Roughly speaking, it has length zero.

1.2 The exterior measure

Definition 1.1. If E is any subset of \mathbb{R}^d , the **exterior measure** of E is

$$m_*(E) = \inf \sum_{j=1}^\infty |Q_j|,$$

where the infimum is taken over all countable coverings $E \subset \bigcup_{i=1}^{\infty} Q_i$ by closed cubes. In general we have $0 < m_*(E) < \infty$.

- It would not suffice to allow finite sums in the definition of $m_*(E)$. The quantity that would be obtained if one considered only coverings of E by finite unions of cubes is in general larger than $m_*(E)$.
- One can, however, replace the coverings by cubes, with coverings by rectangles; or with coverings by balls.

Example 1.1. The exterior measure of a closed cube is equal to its volume.

Proof.

We consider an arbitrary covering $Q \subset \bigcup_{j=1}^{\infty} Q_j$ by cubes, where Q_j is closed for $j = 1, 2, \dots$ Then it suffices to prove that

$$|Q| \le \sum_{j=1}^{\infty} |Q_j|.$$

Example 1.2. The exterior measure of a open cube is equal to its volume.

Example 1.3. The exterior measure of a rectangle is equal to its volume.

Proof.

Arguing as in the first example, we see that $|R| \leq m_*(R)$. To obtain the reverse inequality, consider a grid in \mathbb{R}^d formed by cubes of side length 1/k, then let k tend to infinity yields $m_*(R) \leq |R|$.

Example 1.4. The Cantor set C has exterior measure 0.

Properties of the exterior measure

From the definition we know that: - For every $\epsilon > 0$, there exists a covering $E \subset \bigcup_{j=1}^{\infty} Q_j$ with

$$\sum_{j=1}^{\infty} m_*(Q_j) \le m_*(E) + \epsilon.$$

Proposition 1.1.

- 1. (Monotonicity) If $E_1 \subset E_2$, then $m_*(E_1) \leq m_*(E_2)$. 2. (Countable sub-additivity) If $E = \bigcup_{j=1}^{\infty} E_j$, then $m_*(E) \leq \sum_{j=1}^{\infty} m_*(E_j)$.
- 3. If $E \subset \mathbb{R}^d$, then $m_*(E) = \inf m_*(O)$, where the infimum is taken over all open sets O containing E. Proof.

It suffices to prove that $m_*(E) \geq \inf m_*(O)$. Notice that for any closed cube Q_j , there exists an open set S_j which contains Q_j and such that $|S_i| \leq (1+\epsilon)|Q_i|$ for a fixed $\epsilon > 0$.

4. If $E = E_1 \cup E_2$, and $d(E_1, E_2) > 0$, then

$$m_*(E) = m_*(E_1) + m_*(E_2).$$

5. If a set E is the countable union of almost disjoint cubes $E = \bigcup_{j=1}^{\infty} Q_j$, then

$$m_*(E) = \sum_{j=1}^{\infty} |Q_j|.$$

Proof.

Consider constructing a family of cubes that are at a finite distance from one another, so we can use proposition 4.

1.3 Measurable sets and the Lebesgue measure

The notion of measurability isolates a collection of subsets in \mathbb{R}^d for which the exterior measure satisfies all our desired properties, including additivity (and in fact countable additivity) for disjoint unions of sets.

There are a number of different ways of defining measurability, but these all turn out to be equivalent. Probably the simplest and most intuitive is the following: A subset E of \mathbb{R}^d is **Lebesgue measurable**, or simply **measurable**, if for any $\epsilon > 0$ there exists an open set O with $E \subset O$ and

$$m_*(\mathcal{O} - E) \le \epsilon$$
.

This should be compared to Proposition 1.1 3, which holds for all sets E. If E is measurable, we define its **Lebesgue measure** (or **measure**) m(E) by

$$m(E) = m_*(E).$$

Immediately from the definition, we find:

Proposition 1.2.

- 1. Every open set in \mathbb{R}^d is measurable.
- 2. If $m_*(E) = 0$, then E is measurable. In particular, if F is a subset of a set of exterior measure 0, then F is measurable.
- 3. A countable union of measurable sets is measurable.
- 4. Closed sets are measurable. Proof.

Since any closed set F can be written as the union of compact sets, say $F = \bigcup_{k=1}^{\infty} F \cap B_k$, where B_k denotes the closed ball of radius k centered at the origin, it suffices to prove that compact sets are measurable.

5. The complement of a measurable set is measurable.

For every positive integer n we choose an open set O_n with $E \subset O_n$ and $m_*(\mathcal{O}_n - E) \leq 1/n$. Notice that

$$(E^c - \bigcup_{n=1}^\infty \mathcal{O}_n^c) \subset (\mathcal{O}_n - E)$$

then E^c is measurable since $E^c = (E^c - \bigcup_{n=1}^{\infty} \mathcal{O}_n^c) \cup \bigcup_{n=1}^{\infty} \mathcal{O}_n^c$. 6. A countable intersection of measurable sets is measurable.

To prove the fourth proposition, we need the following lemma.

Lemma 1.3. If F is closed, K is compact, and these sets are disjoint, then d(F,K) > 0.

Theorem 1.1. If $E_1, E_2, ...,$ are disjoint measurable sets, and $E = \bigcup_{i=1}^{\infty} E_j$, then

$$m(E) = \sum_{j=1}^{\infty} m(E_j).$$

Proof.

If F_1, F_2, \dots, F_N , are compact and disjoint, then obviously for any $j, k, j \neq k$, $d(F_j,F_k)>0$, so $m\left(\bigcup_{j=1}^N F_j\right)=\sum_{j=1}^N m(F_j)$. If each E_j is bounded, we can choose a closed subset F_i for E_i with $m_*(E_i - F_i) \le \epsilon/2^j$ for each j. Then

$$m(E) \geq \sum_{i=1}^N m(F_j) \geq \sum_{i=1}^N m(E_j) - \epsilon$$

Letting N tend to infinity, since ϵ is arbitrary we find that

$$m(E) \geq \sum_{j=1}^{\infty} m(E_j).$$

In the general case, we select any sequence of cubes $\{Q_k\}_{k=1}^{\infty}$ that increases to \mathbb{R}^d , in the sense that $Q_k \subset Q_{k+1}$ for all $k \geq 1$ and $\bigcup_{k=1}^{\infty} Q_k = \mathbb{R}^d$. We then let $S_1 = Q_1$ and $S_k = Q_k - Q_{k-1}$ for $k \geq 2$. If we define measurable sets by $E_{i,k} = E_i \cap S_k$, then

$$m(E)=\sum_{j,k}m(E_{j,k})=\sum_j\sum_km(E_{j,k})=\sum_jm(E_j).$$

Corollary 1.1. Suppose $E_1, E_2, ...$ are measurable subsets of \mathbb{R}^d .

• If
$$E_k \nearrow E$$
, then $m(E) = \lim_{N \to \infty} m(E_N)$.

• If $E_k \searrow E$ and $m(E_k) < \infty$ for some k, then $m(E) = \lim_{N \to \infty} m(E_N)$.

Theorem 1.2. Suppose E is measurable subset of \mathbb{R}^d . Then for every $\epsilon > 0$:

- 1. There exists an open set O with $E \subset O$ and $m(\mathcal{O} E) \leq \epsilon$.
- 2. There exists a closed set F with $F \subset E$ and $m(E F) \leq \epsilon$.
- 3. If m(E) is finite, there exists a compact set K with $K \subset E$ and $m(E-K) \le \epsilon$.
- 4. If m(E) is finite, there exists a finite union $F = \bigcup_{j=1}^{N} Q_j$ of closed cubes such that

$$m(E\triangle F) \le \epsilon$$
.

Proof.

Choose a family of closed cubes $\{Q_i\}_{i=1}^{\infty}$ so that

$$E \subset \bigcup_{j=1}^{\infty} Q_j \ and \ \sum_{j=1}^{\infty} |Q_j| \leq m(E) + \epsilon/2.$$

Since $m(E) < \infty$, then series converges and there exists N > 0 such that $\sum_{j=n+1}^{\infty} |Q_j| \le \epsilon/2$. If $F = \bigcup_{j=1}^{N} Q_j$, then

$$\begin{split} m(E\triangle F) &= m(E-F) + m(F-E) \\ &\leq m\left(\bigcup_{j=1}^{\infty}Q_j - F\right) + m\left(\bigcup_{j=1}^{\infty}Q_j - E\right) \\ &\leq m\left(\bigcup_{j=n+1}^{\infty}Q_j\right) + m\left(\bigcup_{j=n+1}^{\infty}Q_j\right) - m(E) \\ &\leq \sum_{j=n+1}^{\infty}|Q_j| + \sum_{j=1}^{\infty}|Q_j| - m(E) \\ &\leq \epsilon. \end{split}$$

1.3.1 Invariance properties of Lebesgue measure

1.3.2 σ -algebra and Borel sets

Borel σ -algebra in \mathbb{R}^d , denoted by $B_{\mathbb{R}^d}$, is the smallest σ -algebra in \mathbb{R}^d that contains all open sets. Elements of this σ -algebra are called **Borel sets**. Since we observe that any intersection (not necessarily countable) of σ -algebra is again a σ -algebra, we may define $B_{\mathbb{R}^d}$ as the intersection of all σ -algebras that contain the open sets. This shows the existence and uniqueness of the Borel σ -algebra.

Remark. There exists Lebesgue measurable sets that are not Borel sets. (See Exercise ???ref(exr: #35)

13

1.3.3 Construction of a non-measurable set

1.3.4 Axiom of choice

1.4 Measurable functions

1.4.1 Definition and basic properties

The starting point is the notion of a **characteristic function** of a set E, which is defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

For the Riemann integral it is in effect the class of **step functions** that build the blocks of integration theory , with each give as a finite sum

$$f = \sum_{k=1}^{N} a_k \chi_{R_k}$$

where each R_k is a rectangle, and the a_k are constants.

For the lebesgue integral we need a more general notion. A **simple function** is a finite sum

$$f = \sum_{k=1}^{N} a_k \chi_{E_k}$$

where each E_k is a measurable set of finite measure, and the a_k are constants.

A function f defined on a measurable subset E of \mathbb{R}^d is **measurable**, if for all $a \in \mathbb{R}$, the set

$$f^{-1}([-\infty,a)) = \{x \in E : f(x) < a\}$$

is measurable. Note that this definition applies to extended-valued functions, so we use $f^{-1}([-\infty, a))$ instead of $f^{-1}((-\infty, a))$.

Proposition 1.3.

- 1. The finite-valued function f is measurable iff $f^{-1}(O)$ is measurable for every open set O, and iff $f^{-1}(F)$ is measurable for every closed set F. (Note that this property also applies to extended-valued functions, if we make the additional hypothesis that both $f^{-1}(\infty)$ and $f^{-1}(-\infty)$ are measurable sets since $[-\infty, a) = \{-\infty\} \cup (\bigcup_{n=1}^{\infty} (-n, a))$.)
- 2. If f is continuous on \mathbb{R}^d , then f is measurable. If f is measurable and finite-valued, and Φ is continuous, then $\Phi \circ f$ is measurable. (Note that it is not true that $f \circ \Phi$ is measurable. See exercise 35.) Proof.
 - Φ is continuous, so $\Phi^{-1}((-\infty,a))$ is open set O.

3. Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions. Then

$$\sup_n f_n(x), \quad \inf_n f_n(x), \quad \limsup_{n \to \infty} f_n(x) \quad and \quad \liminf_{n \to \infty} f_n(x)$$

are measurable.

4. If $\{f_n\}_{n=1}^{\infty}$ is a collection of measurable functions, and

$$\lim_{n \to \infty} f_n(x) = f(x),$$

then f is measurable.

- 5. If f and g are measurable, then
- (i) The integer powers f^k , $k \ge 1$ are measurable.
- (ii) f + g and fg are measurable if both f and g are finite-valued.
- 6. Suppose f is measurable, and f(x) = g(x) for a.e. x. Then g is measurable.

1.4.2 Approximation by simple functions or step functions

Theorem 1.3.

Suppose f is a non-negative measurable function on \mathbb{R}^d . Then there exists an increasing sequence of non-negative simple functions $\{\varphi_n\}_{n=1}^{\infty}$ that converges pointwise to f, namely,

$$\varphi_k(x) \leq \varphi_{k+1}(x) \ \ and \ \lim_{k \to \infty} \varphi_k(x) = f(x), \ \ for \ \ all \ x.$$

Proof.

 Φ is continuous, so $\Phi^{-1}((-\infty,a))$ is open set O.

Theorem 1.4.

Suppose f is a measurable function on \mathbb{R}^d . Then there exists a sequence of simple functions $\{\varphi_n\}_{n=1}^{\infty}$ that satisfies

$$|\varphi_k(x)| \leq |\varphi_{k+1}(x)| \ \ and \ \ \lim_{k \to \infty} \varphi_k(x) = f(x), \ for \ all \ x.$$

Proof.

We use the decomposition of f: $f(x) = f^+(x) - f^-(x)$.

Theorem 1.5.

Suppose f is measurable on \mathbb{R}^d . Then there exists an sequence of step functions $\{\psi_n\}_{n=1}^{\infty}$ that converges pointwise to f(x) for almost every x,

$$\varphi_k(x) \leq \varphi_{k+1}(x) \ \ and \ \ \lim_{k \to \infty} \varphi_k(x) = f(x), \ \ for \ all \ x.$$

Proof.

By Theorem 1.4, it suffices to show that if E is a measurable set with finite measure, then $f = \chi_E$ can be approximated by step functions. This can be proven by split E into cubes and then rectangles with Theorem 1.2.

1.4.3 Littlewood's three principles

Theorem 1.6 (Egorov). Suppose $\{f_k\}_{k=1}^{\infty}$ is a sequence of measurable functions defined on a measurable set E with $m(E) < \infty$, and assume that $f_k \to f$ a.e. on E and f_1, f_2, \ldots, f_k, f are finite valued a.e. on E. Given $\epsilon > 0$, we can find a closed set $A_{\epsilon} \subset E$ such that $m(E - A_{\epsilon}) \leq \epsilon$ and $f_k \to f$ uniformly on A_{ϵ} .

Remark. Note that f_1, f_2, \dots, f_k, f are finite valued a.e. on E. Indeed, if it is not satisfied, then we cannot construct $\{E_k^n\}_{k=1}^{\infty}$ such that $E_k^n \nearrow E$. A counterexample is that

$$f_k(x) = \begin{cases} k & |x| \le k, \\ \infty & |x| > k \end{cases}$$

and $f(x) = \infty$ on \mathbb{R} .

Remark. Note that $m(E) < \infty$ and it is easy to construct counterexamples when $m(E) = \infty$. Indeed, if $m(E) = \infty$, then we cannot find k_n such that $m(E - E_{k_n}^n) < 1/2^n$ since $m(E - E_{k_n}^n) = m(E) - m(E_{k_n}^n)$.

Theorem 1.7 (Lusin). Suppose f is measurable and finite valued a.e. on E with E of finite measure. Then for every $\epsilon > 0$ there exists a closed set F_{ϵ} , with

$$F_{\epsilon} \subset E, \ and \ m(E - F_{\epsilon}) \leq \epsilon$$

and such that $f|_{F_{\epsilon}}$ is continuous.

1.5 The Brunn-Minkowski inequality

Remark.

Let $a, b \geq 0$, then

$$(a+b)^{\gamma} \ge a^{\gamma} + b^{\gamma} \text{ if } \gamma \ge 1,$$

 $(a+b)^{\gamma} < a^{\gamma} + b^{\gamma} \text{ if } 0 < \gamma < 1$

Proof.

Let
$$f(\gamma) = (1+x)^{\gamma} - (1+x^{\gamma})$$
, where $x > 0$. Then
$$f'(\gamma) = (1+x)^{\gamma} \ln(1+x) - x^{\gamma} \ln x$$
$$= [(1+x)^{\gamma} - x^{\gamma}] \ln(1+x) + x^{\gamma} \ln(1+1/x) > 0,$$

notice that f(1) = 0, so when $\gamma \ge 1$, $(1+x)^{\gamma} \ge (1+x^{\gamma})$ and when $0 < \gamma < 1$, $(1+x)^{\gamma} < (1+x^{\gamma})$. With this result, the original inequality is obvious.

???ref(exr:19)

Theorem 1.8. Suppose A and B are measurable sets in \mathbb{R}^d and their sum A+B is also measurable. Then

$$m(A+B)^{1/d} \ge m(A)^{1/d} + m(B)^{1/d}.$$

1.6 Exercise

1.7 Problem

Chapter 2

Integration Theory

- 2.1 The lebesgue integral: basic properties and convergence theorems
- 2.1.1 Stage one: simple functions

Proposition 2.1. The integral of simple functions defined by satisfies the following properties:

1. Independence of the representation. If $\varphi = \sum_{k=1}^{N} a_k \chi_{E_k}$ is any representation of φ , then

$$\int \varphi = \sum_{k=1}^N a_k m(E_k).$$

- 2. Linearity.
- 3. Additivity.
- 4. Monotonicity.
- 5. Triangle inequality. If φ is a simple function, then so is $|\varphi|$, and

$$\left| \int \varphi \right| \le \int |\varphi|.$$

2.1.2 Stage two: bounded functions supported on a set of finite measure

Lemma 2.1. Let f be a bounded function supported on a set E of finite measure. If $\{\varphi_n\}_{n=1}^{\infty}$ is any sequence of simple functions bounded by M, supported on E, and with $\varphi_n(x) \to f(x)$ for a.e. x, then:

- 1. The limit $\lim_{n\to\infty} \int \varphi_n$ exists.
- 2. If f = 0 a.e., then the limit $\lim_{n \to \infty} \int \varphi_n$ equals 0.

Proof.

Setting $I_n=\int \varphi_n$ and applying Egorov's theorem which is proven in Chapter 1 we have that for and large n and m

$$\begin{split} |I_n - I_m| & \leq \int_E |\varphi_n - \varphi_m| \\ & = \int_{A_\epsilon} |\varphi_n - \varphi_m| + \int_{E-A_\epsilon} |\varphi_n - \varphi_m| \\ & \leq \int_{A_\epsilon} \epsilon \; dx + \int_{E-A_\epsilon} 2M \; dx \\ & \leq m(E)\epsilon + 2M\epsilon. \end{split}$$

given any $\epsilon > 0$. This proves that $\{I_n\}$ os a Cauchy sequence nd hence converges. If f = 0, letting m tend to infinity we have $|I_n - f| = |I_n| \le m(E)\epsilon + 2M\epsilon$, which yields $\lim_{n \to \infty} I_n = 0$.

For a bounded function f that is supported on sets of finite measure, we define its **Lebesgue integral** by

$$\int f = \lim_{n \to \infty} \int \varphi_n.$$

where $\{\varphi_n\}$ is any sequence of simple functions satisfying: $|\varphi_n| \leq M$, each φ_n is supported on the support of f, and $\varphi_n(x) \to f(x)$ for a.e. x as n tends to infinity.

Next, we must show that $\int f$ is independent of the limiting sequence $\{\varphi_n\}$ used, in order for the integral to be well-defined. Suppose that $\{\psi_n\}$ is another sequence of simple functions that satisfies the properties above. Then, if $\eta_n = \varphi_n - \psi_n$, the sequence $\{\eta_n\}$ consists of simple functions bounded by 2M, supported on a set of finite measure, and such that $\eta_n \to 0$ a.e. as n tends to infinity. Applying the lemma we find

$$\lim_{n\to\infty}\int\varphi_n=\lim_{n\to\infty}\int\psi_n+\lim_{n\to\infty}\int\eta_n=\lim_{n\to\infty}\int\psi_n$$

as desired.

Proposition 2.2. Suppose f and g are bounded functions supported on sets of finite measure. Then the following properties hold.

- 1. Linearity.
- 2. Additivity.
- 3. Monotonicity.

2.1. THE LEBESGUE INTEGRAL: BASIC PROPERTIES AND CONVERGENCE THEOREMS19

4. Triangle inequality.

Theorem 2.1 (Bounded convergence theorem).

Suppose that $\{f_n\}$ is a sequence of measurable functions that are all bounded by M, are supported on a set E of finite measure, and $f_n(x) \to f(x)$ a.e. x as $n \to \infty$. Then f is measurable, bounded ,supported on E for a.e. x, and

$$\int |f_n - f| \to 0 \text{ as } n \to \infty.$$

Consequently,

$$\int f_n \to \int f \ as \ n \to \infty.$$

Proof.

The proof is a reprise of the argument in Lemma 2.1. Given $\epsilon > 0$, we may find, by Egorov' theorem,

$$\int |f_n - f| \le \int_{A_{\epsilon}} |f_n - f| + \int_{E - A_{\epsilon}} |f_n - f|$$

$$< m(E)\epsilon + 2M\epsilon.$$

for all large n.

2.1.3 Return to Riemann integrable functions

Theorem 2.2.

Suppose f os Riemann integrable on the closed interval [a,b]. Then f is measurable, and

$$\int_{[a,b]}^R f(x) \ dx = \int_{[a,b]}^L f(x) \ dx.$$

Proof.

By definition of Riemann integrability, f is bounded, say $|f(x)| \leq M$, and we may construct two consequences of step functions $\{\varphi_k\}$ and $\{\psi_k\}$ that satisfy the following properties: $|\varphi_k(x)| \leq M$ and $|\psi_k(x)| \leq M$ for all $|x| \in [a,b]$ and $|x| \geq 1$,

$$\varphi_1(x) \le \varphi_2(x) \le \dots \le f \le \dots \le \psi_2(x) \le \psi_1$$

and

$$\lim_{k\to\infty}\int_{[a,b]}^R\varphi_k(x)\ dx=\lim_{k\to\infty}\int_{[a,b]}^R\psi_k(x)\ dx=\int_{[a,b]}^Rf(x)\ dx.$$

Notice that

$$\int_{[a,b]}^R \varphi_k(x) \ dx = \int_{[a,b]}^L \varphi_k(x) \ dx,$$

20

and

$$\int_{[a,b]}^R \psi_k(x) \ dx = \int_{[a,b]}^L \psi_k(x) \ dx.$$

Consider Theorem 2.1 (Bounded convergence theorem) and you will complete the proof.

2.1.4 Stage three: non-negative functions

In the case of such a function f we define its **Lebesgue integral** by

$$\int f = \sup_{g} \int g.$$

Proposition 2.3. The integral of non-negative measurable functions enjoys the following properties:

- 1. Linearity.
- 2. Additivity.
- 3. Monotonicity.
- 4. If g is integrable and $0 \le f \le g$, then f is integrable.
- 5. If f is integrable, then $f(x) < \infty$ for a.e. x.
- 6. If $\int f = 0$, then f(x) = 0 for a.e. x. Proof.

We just prove the first assertion. Let φ , ψ and η be non-negative functions bounded and supported on sets of finite measure, where $\varphi \leq f$, $\psi \leq g$ and $\eta \leq f + g$, then $\varphi + \psi \leq f + g$. Consequently,

$$\int f + \int g \le \int (f + g).$$

On the other hand, if we define $\eta_1 = \min(f(x), \eta(x))$ and $\eta_2 = \eta - \eta_1$, then

$$\int \eta = \int (\eta_1 + \eta_2) = \int \eta_1 + \int \eta_2 \le \int f + \int g,$$

which means that

$$\int (f+g) \le \int f + \int g.$$

Lemma 2.2 (Fatou).

Suppose $\{f_n\}$ is a sequence of measurable functions with $f_n \geq 0$. If $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. x, then

$$\int f \le \liminf_{n \to \infty} \int f_n.$$

Proof.

2.1. THE LEBESGUE INTEGRAL: BASIC PROPERTIES AND CONVERGENCE THEOREMS21

Suppose $0 \le g \le f$, where g is bounded and supported on a set E of finite measure. If we set $g_n(x) = \min(g(x), f_n(x))$, then $g_n \to g$ a.e. as $n \to \infty$. By Theorem 2.1 (Bounded convergence theorem) we have

$$\int g_n \to \int g.$$

Since $g_n \leq f_n$, we have $\int f_n \leq \int g_n$, so that

$$\int g \le \liminf_{n \to \infty} \int f_n.$$

Taking the supremum over all g yields the desired inequality.

Corollary 2.1. Suppose f is a non-negative measurable function, and $\{f_n\}$ a sequence of non-negative measurable functions with $f_n(x) \leq f(x)$ and $f_n(x) \rightarrow f(x)$ for a.e. x. Then

$$\lim_{n \to \infty} \int f_n = \int f.$$

Corollary 2.2 (Monotone convergence theorem). Suppose $\{f_n\}$ a sequence of non-negative measurable functions with $f_n(x) \nearrow f(x)$. Then

$$\lim_{n\to\infty} \int f_n = \int f.$$

Corollary 2.3. Consider a series $\sum_{k=1}^{\infty} a_k(x)$, where $a_k(x) \geq 0$ is measurable for every $k \geq 1$. Then

$$\int \sum_{k=1}^{\infty} a_k(x) \ dx = \sum_{k=1}^{\infty} \int a_k(x) \ dx.$$

2.1.5 General form

In this case, we define the **Lebesgue integral** of f by

$$\int f = \int f^+ - \int f^-.$$

Proposition 2.4. The integral of Lebesgue integrable functions is linear, additive, monotonic, and satisfies the triangle inequality.

Proposition 2.5. Suppose f is integral on \mathbb{R}^d . Then for every $\epsilon > 0$:

1. There exists a set of finite measure B (a ball, for example) such that

$$\int_{B^c} |f| < \epsilon.$$

2. There is a $\delta > 0$ such that

$$\int_{E} |f| < \epsilon \quad \text{ whenever } m(E) < \delta.$$

Proof.

 $Assume \ that \ f \geq 0 \colon \ 1. \ B_N = (-N,N); \ 2. \ E_N = \{x: f(x) \leq N\}.$

Theorem 2.3 (Dominated convergence theorem).

Suppose $\{f_n\}$ is a sequence of measurable functions such that $f_n \to f$ a.e. x as n tends to infinity. If $f_n(x) \leq g(x)$, where g is integrable, then

$$\int |f_n - f| \to 0 \quad \text{as } n \to \infty,$$

and consequently

$$\int f_n \to \int f.$$

Proof.

For each $N \ge 0$ let $E_N = \{x : |x| \le N, g(x) \le N\}.$

$$\begin{split} \int |f_n - f| &= \int_{E_N} |f_n - f| + \int_{E_N^c} |f_n - f| \\ &\leq \int_{E_N} |f_n - f| + 2 \int_{E_N^c} g \\ &\leq \epsilon + 2\epsilon \end{split}$$

for all large n. This prove the theorem.

2.1.6 Complex-valued functions

The collection of all complex-valued integrable functions on a measurable subset $E \subset \mathbb{R}^d$ forms a vector space over \mathbb{C} .

2.2 The space L^1 of integrable functions

For any integrable function f on \mathbb{R}^d we define the L^1 -norm of f,

$$\|f\| = \|f\|_{L^1} = \|f\|_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |f|.$$

Proposition 2.6. Suppose f and g are two functions in $L^1(\mathbb{R}^d)$.

- 1. ||af|| = |a|||f|| for all $a \in \mathbb{C}$.
- 2. $||f + g|| \le ||f|| + ||g||$.
- 3. ||f|| = 0 iff f = 0 a.e.
- 4. $d(\tilde{f},g) = \|f-g\|$ defines a metric on $L^1(\mathbb{R}^d)$.

Theorem 2.4 (Riesz-Fischer). The vector space L^1 is complete in its metric.

Corollary 2.4. If $\{f_n\}_{n=1}^{\infty}$ converges to f in L^1 , the nthere exists a subsequence $\{f_{n_k}\}_{k=1}^{\infty}$ such that

$$f_{n_h}(x) \to f(x)$$
 a.e.x.

We say that a family G of integrable functions is **dense** in L^1 if for ant $f \in L^1$ and $\epsilon > 0$, there exists $g \in G$ so that $||f - g|| < \epsilon$.

Theorem 2.5. The following families of functions are dense in $L^1(\mathbb{R}^d)$:

- 1. The simple functions.
- 2. The step functions.
- 3. The continuous functions of compact support.

2.2.1 Invariance properties

2.2.2 Translations and continuity

Proposition 2.7.

Suppose $f \in L^1(\mathbb{R}^d)$. Then

$$||f_h - f|| \to 0$$
 as $h \to 0$.

Proof.

By Theorem 2.5, find a continuous function with compact support to approximate f.

2.3 Fubini's theorem

2.4 A Fourier inversion formula

2.5 Exercise

2.6 Problem

Chapter 3

Differentiation and Integration

3.1 Differentiation of the integral

We may ask whether