Порядок выполнения лабораторных работ:

- 1. Прочесть методичку дома или на занятии.
- 2. Пройти допуск (беседу с преподавателем по установке).
- 3. Проделать работу, записывая в протокол результаты измерений и необходимые для отчёта данные.
- 4. Написать отчёт в Word (или любом другом текстовом редакторе). Отчет должен включать:
 - Полное название работы (в скобках номер работы), цель работы.
 - Приборы и материалы (с погрешностями измерения приборов).
 - Общая часть (теория) основные положения методички, формулы для нахождения искомых величин.
 - Описание проведенного эксперимента
 - Таблицы (прямых измерений, косвенных измерений, результатов) с пояснением каждого обозначения (х расстояние по горизонтали и т.д.).
 - Обработка результатов (вычисление погрешностей, нахождение средних величин, графики).
 - Доверительный интервал: $(x_{cp} \Delta x; x_{cp} + \Delta x)$.
 - Выводы (3-5 предложений о том, как прошла работа, какие погрешности получились, почему отличаются, если отличаются, от ожидаемых).

Для обработки данных и построения графиков необходимо использовать соответствующие программные пакеты (Excel, Origin, Python, Matlab и др).

Принципы вычисления погрешностей:

Различают три вида погрешностей – грубые ошибки (промахи), систематические и случайные погрешности.

Грубые ошибки обусловлены либо ошибками экспериментатора при неправильных отсчетах, либо неисправностями приборов. Результаты измерения с грубыми ошибками отбрасываются, при необходимости производятся новые измерения.

1) Прямые измерения:

 $\Delta x_{c\pi} = \Delta x_{c\pi}$ (N, α), где N — количество опытов; α — доверительная вероятность (вероятность попадания истинного значения x_{uct} . в доверительный интервал [$x_{cp} - \Delta x$; $x_{cp} + \Delta x$]).

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i - \langle x \rangle)^2}{N(N-1)}}, \Delta x_{\text{сл}} = t_{\text{ст}} \sigma$$
, где $t_{\text{ст.}}$ – коэффициент Стьюдента (искать в Таблице 1).

Здесь запись <x> означает среднее значение.

Результат измерения записывается в следующей форме: $x = x_{cp} \pm \Delta x$, где Δx — полная абсолютная погрешность, определяемая из соотношения $\Delta x = \sqrt{(\Delta x_{cn})^2 + (\Delta x_{np})^2}$, где Δx_{np} — приборная погрешность. Отношение $\Delta x/x_{cp}*100\%$ называется относительной погрешностью.

При записи числового значения результата необходимо руководствоваться следующими правилами:

- а) значение абсолютной погрешности определяется до двух значащих цифр, если первая значащая цифра является единицей; во всех других случаях удерживается одна значащая цифра;
- б) при записи среднего значения указываются все цифры до последнего десятичного разряда, который используется при записи абсолютной погрешности.

2) Косвенные измерения:

Метод расчета погрешностей при косвенных измерениях применим только для данных, образующих выборку. Иными словами, истинные значения измеряемых в эксперименте величин должны быть константами.

Функция одной переменной:
$$y = Cx^p$$
, то $\frac{\Delta y}{y} = |p| \frac{\Delta x}{x}$

Функция двух переменных:

$$f=f(x,y)$$
 . Тогда $\langle f \rangle = rac{\displaystyle\sum_{i=1}^N f_i}{N}$. Но $f_i=\langle f \rangle + rac{\partial f}{\partial x}(x_i-\langle x \rangle) + rac{\partial f}{\partial y}(y_i-\langle y \rangle)$.

$$\sigma_f = \sqrt{\sum_{i=1}^k \left(\frac{\partial f}{\partial x_k}\right)^2 \Delta x_k^2} = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \Delta x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \Delta y^2}$$
, где значения производных вычисляются в точках, соответствующих средним значениям измеряемых величин. Далее, аналогично прямым измерениям, указывается доверительный интервал.

Таблица 1. Коэффициент Стьюдента

n/p	0,8	0,9	0,95	0,98	0,99
2	3,08	6,31	12,71	31,8	63,7
3	1,89	2,92	4,30	6,96	9,92
4	1,64	2,35	3.18	4,54	5,84
5	1,53	2,13	2,77	3,75	4,60
6	1,48	2,02	2,57	3,36	4,03
7	1,44	1,94	2,45	3.14	4,71
8	1,42	1,90	2,36	3,00	3,50
9	1,40	1.86	2,31	2,90	3,36
10	1,38	1,83	2,26	2,82	3,25
11	1,37	1,81	2.23	2,76	3,17
12	1,363	1,80	2,20	2,72	3,11
13	1,36	1,78	2,18	2,68	3,06
14	1,35	1,77	2,16	2,65	3,01
15	1,35	1,76	2,14	2,62	2,98
16	1,34	1,75	2,13	2,60	2,95,
17	1,34	1,75	2,12	2,58	2,92
18	1.33	1,74	2,11	2,57	2,90
19	1,33	1,73	2,10	2,55	2,88
20	1,33	1,73	2,09	2,54	2,86
21	1,38	1,73	2,09	2,53	2,85
22	1,32	1,72	2,08	2,52	2,83
23	1,32	1,72	2,07	2,51	2,82
24	1,32	1,71	2,07	2,50	2,81
25	1,32	1,71	2.06	2,49	2,80
26	1,32	1,71	2,06	2,49	2,79
27	1,32	1,71	2,06	2,48	2,78
28	1,31	1,70	2,05	2,47	2,77
29	1,31	1,70	2,05	2,47	2,76
30	1,31	1,69	2,05	2,46	2,76
40	1,30	1,68	2,02	2,42	2,70
60	1,30	1,67	2,00	2,39	2,66
120	1,29	1.66	1,98	2,36	2,62
	1,28	1,65	1,96	2,33	2,58

3) Метод наименьших квадратов

Практически любую функциональную зависимость двух измеряемых величин в представленных лабораторных работах можно свести к линейной зависимости вида $y = k \cdot x + b$. Однако, поскольку в работе возникают неточности измерения, то точной прямой никогда не получается, для проведения прямой по экспериментальным данным существует метод наименьших квадратов, рассматриваемый в курсе теории вероятностей и математической статистики. Приведем здесь только рабочие формулы для нахождения требуемых коэффициентов:

$$k = \frac{N\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \cdot \sum_{i=1}^{N} y_i}{N\sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2}, b = \frac{\sum_{i=1}^{N} y_i - k \cdot \sum_{i=1}^{N} x_i}{N}.$$

или то же самое

$$k = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^{2} \rangle - \langle x \rangle^{2}}; \quad b = \langle y \rangle - k \langle x \rangle;$$

$$\sigma_{k} = \sigma_{y} \sqrt{\frac{1}{\langle x^{2} \rangle - \langle x \rangle^{2}}}; \sigma_{b} = \sigma_{y} \sqrt{\frac{\langle x \rangle^{2}}{\langle x^{2} \rangle - \langle x \rangle^{2}}}.$$

Для оценки правдоподобности полученной прямой необходимо проверить, проходит ли построенная зависимость в пределах погрешностей около каждой экспериментальной точки (допустимо, что некоторое количество точек не удовлетворяют данному условию). Для количественного анализа сходства снятой зависимости с прямой служит коэффициент корреляции (модуль которого не превосходит единицу):

$$r = \frac{N\sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \cdot \sum_{i=1}^{N} y_i}{\sqrt{\left[N\sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2\right] \cdot \left[N\sum_{i=1}^{N} y_i^2 - (\sum_{i=1}^{N} y_i)^2\right]}}.$$

В случае строгой линейной зависимости r=1 для k>0 или r=-1 для k<0. Оказывается, что экспериментальные данные хорошо ложатся на прямую при $0.98<\mid r\mid<1$.

Далее приведены примеры вычисления коэффициентов в случае степенной, экспоненциальной и логарифмической функциональной зависимости.

$$y = C \cdot x^{\alpha}, \alpha = \frac{N \sum_{i=1}^{N} (\ln x_{i} \cdot \ln y_{i}) - \sum_{i=1}^{N} \ln x_{i} \cdot \sum_{i=1}^{N} \ln y_{i}}{N \sum_{i=1}^{N} (\ln x_{i})^{2} - (\sum_{i=1}^{N} \ln x_{i})^{2}}, C = \frac{\sum_{i=1}^{N} \ln y_{i} - \alpha \cdot \sum_{i=1}^{N} \ln x_{i}}{N}$$

$$y = C \cdot e^{\alpha \cdot x}, \alpha = \frac{N \sum_{i=1}^{N} (x_{i} \cdot \ln y_{i}) - \sum_{i=1}^{N} x_{i} \cdot \sum_{i=1}^{N} \ln y_{i}}{N \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}}, C = \exp\left[\frac{\sum_{i=1}^{N} \ln y_{i} - \alpha \cdot \sum_{i=1}^{N} x_{i}}{N}\right]$$

$$y = k \cdot \ln x + b, k = \frac{N \sum_{i=1}^{N} (y_{i} \ln x_{i}) - \sum_{i=1}^{N} \ln x_{i} \cdot \sum_{i=1}^{N} y_{i}}{N \sum_{i=1}^{N} (\ln x_{i})^{2} - (\sum_{i=1}^{N} \ln x_{i})^{2}}, b = \frac{\sum_{i=1}^{N} y_{i} - k \cdot \sum_{i=1}^{N} \ln x_{i}}{N}$$