otpod Documentation

Release 0.0.1

Antoine Dumas

CONTENTS

_	Cont	VAR WIN V	1
	1.1	Documentation of the API	1
		1.1.1 Data analysis	1
		1.1.2 POD model	6
	1.2	Examples	8
2	2 Indices and tables		9
In	dex		11

CHAPTER

ONE

CONTENTS:

1.1 Documentation of the API

This is the user manual for the Python bindings to the otpod library.

1.1.1 Data analysis

UnivariateLinearModelAnalysis Linear regression analysis with residuals hypothesis tests.

UnivariateLinearModelAnalysis

class UnivariateLinearModelAnalysis (*args)

Linear regression analysis with residuals hypothesis tests.

Available constructors:

UnivariateLinearModelAnalysis(inputSample, outputSample)

UnivariateLinearModelAnalysis(inputSample, outputSample, noiseThres, saturationThres, resDistFact, box-Cox)

Parameters inputSample : 2-d sequence of float

Vector of the defect sizes, of dimension 1.

outputSample: 2-d sequence of float

Vector of the signals, of dimension 1.

noiseThres: float

Value for low censored data. Default is None.

saturationThres: float

Value for high censored data. Default is None

resDistFact: openturns.DistributionFactory

Distribution hypothesis followed by the residuals. Default is openturns.NormalFactory.

boxCox: bool or float

Enable or not the Box Cox transformation. If boxCox is a float, the Box Cox transformation is enabled with the given value. Default is False.

Notes

This method automatically:

- •computes the Box Cox parameter if boxCox is True,
- •computes the transformed signals if boxCox is True or a float,
- •builds the univariate linear regression model on the data,
- •computes the linear regression parameters for censored data if needed,
- •computes the residuals,
- •runs all hypothesis tests.

Methods

drawBoxCoxLikelihood([name])	Draw the loglikelihood versus the Box Cox parameter.
drawLinearModel([model, name])	Draw the linear regression prediction versus the true data.
drawResiduals([model, name])	Draw the residuals versus the defect values.
<pre>drawResidualsDistribution([model, name])</pre>	Draw the residuals histogram with the fitted distribution.
drawResidualsQQplot([model, name])	Draw the residuals QQ plot with the fitted distribution.
getAndersonDarlingPValue()	Accessor to the Anderson Darling test p-value.
getBoxCoxParameter()	Accessor to the Box Cox parameter.
getBreuschPaganPValue()	Accessor to the Breusch Pagan test p-value.
getCramerVonMisesPValue()	Accessor to the Cramer Von Mises test p-value.
getDurbinWatsonPValue()	Accessor to the Durbin Watson test p-value.
getHarrisonMcCabePValue()	Accessor to the Harrison McCabe test p-value.
<pre>getInputSample()</pre>	Accessor to the input sample.
getIntercept()	Accessor to the intercept of the linear regression model.
getKolmogorovPValue()	Accessor to the Kolmogorov test p-value.
getNoiseThreshold()	Accessor to the noise threshold.
<pre>getOutputSample()</pre>	Accessor to the output sample.
getR2()	Accessor to the R2 value.
<pre>getResiduals()</pre>	Accessor to the residuals.
getResidualsDistribution()	Accessor to the residuals distribution.
<pre>getSaturationThreshold()</pre>	Accessor to the saturation threshold.
getSlope()	Accessor to the slope of the linear regression model.
getStandardError()	Accessor to the standard error of the estimate.
getZeroMeanPValue()	Accessor to the Zero Mean test p-value.
printResults()	Print results of the linear analysis in the terminal.
saveResults(name)	Save all analysis test results in a file.

drawBoxCoxLikelihood(name=None)

Draw the loglikelihood versus the Box Cox parameter.

Parameters name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

Notes

This method is available only when the parameter *boxCox* is set to True.

drawLinearModel (model='uncensored', name=None)

Draw the linear regression prediction versus the true data.

Parameters model: string

The linear regression model to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResiduals (model='uncensored', name=None)

Draw the residuals versus the defect values.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResidualsDistribution (model='uncensored', name=None)

Draw the residuals histogram with the fitted distribution.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResidualsQQplot (model='uncensored', name=None)

Draw the residuals QQ plot with the fitted distribution.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

getAndersonDarlingPValue()

Accessor to the Anderson Darling test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getBoxCoxParameter()

Accessor to the Box Cox parameter.

Returns lambdaBoxCox: float

The Box Cox parameter used to transform the data. If the transformation is not enabled None is returned.

getBreuschPaganPValue()

Accessor to the Breusch Pagan test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getCramerVonMisesPValue()

Accessor to the Cramer Von Mises test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getDurbinWatsonPValue()

Accessor to the Durbin Watson test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getHarrisonMcCabePValue()

Accessor to the Harrison McCabe test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getInputSample()

Accessor to the input sample.

Returns defects: openturns.NumericalSample

The input sample which is the defect values.

getIntercept()

Accessor to the intercept of the linear regression model.

```
Returns intercept: openturns.NumericalPoint
```

The intercept parameter for the uncensored and censored (if so) linear regression model.

getKolmogorovPValue()

Accessor to the Kolmogorov test p-value.

```
Returns pValue: openturns.NumericalPoint
```

Either the p-value for the uncensored case or for both cases.

getNoiseThreshold()

Accessor to the noise threshold.

Returns noiseThres: float

The noise threhold if it exists, if not it returns None.

getOutputSample()

Accessor to the output sample.

```
Returns signals: openturns. Numerical Sample
```

The input sample which is the signal values.

getR2()

Accessor to the R2 value.

```
Returns R2: openturns.NumericalPoint
```

Either the R2 for the uncensored case or for both cases.

getResiduals()

Accessor to the residuals.

```
Returns residuals: openturns.NumericalSample
```

The residuals computed from the uncensored and censored linear regression model. The first column corresponds with the uncensored case.

getResidualsDistribution()

Accessor to the residuals distribution.

Returns distribution: list of openturns. Distribution

The fitted distribution on the residuals, computed in the uncensored and censored (if so) case.

getSaturationThreshold()

Accessor to the saturation threshold.

Returns saturationThres: float

The saturation threhold if it exists, if not it returns *None*.

getSlope()

Accessor to the slope of the linear regression model.

Returns slope: openturns.NumericalPoint

The slope parameter for the uncensored and censored (if so) linear regression model.

getStandardError()

Accessor to the standard error of the estimate.

Returns stderr: openturns.NumericalPoint

The standard error of the estimate for the uncensored and censored (if so) linear regression model.

getZeroMeanPValue()

Accessor to the Zero Mean test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

printResults()

Print results of the linear analysis in the terminal.

saveResults (name)

Save all analysis test results in a file.

Parameters name: string

Name of the file or full path name.

Notes

The file can be saved as a csv file. Separations are made with tabulations.

If *name* is the file name, then it is saved in the current working directory.

1.1.2 POD model

UnivariateLinearModelPOD Linear regression based POD.

UnivariateLinearModelPOD

class UnivariateLinearModelPOD (*args)

Linear regression based POD.

Available constructors:

 $Univariate Linear Model POD ({\it analysis=analysis, detection=detection})$

UnivariateLinearModelPOD(inputSample, outputSample, detection, noiseThres, saturationThres, resDistFact, boxCox)

Parameters analysis: UnivariateLinearModelAnalysis

Linear analysis object.

inputSample: 2-d sequence of float

Vector of the defect sizes, of dimension 1.

outputSample: 2-d sequence of float

Vector of the signals, of dimension 1.

detection: float

Detection value of the signal.

noiseThres: float

Value for low censored data. Default is None.

saturationThres: float

Value for high censored data. Default is None

resDistFact: openturns.DistributionFactory

Distribution hypothesis followed by the residuals. Default is None.

boxCox: bool or float

Enable or not the Box Cox transformation. If boxCox is a float, the Box Cox transformation is enabled with the given value. Default is False.

Notes

This class aims at building the POD based on a linear regression model. If a linear analysis has been launched, it can be used as prescribed in the first constructor. Otherwise, parameters must be given as in the second constructor.

Following the given distribution in *resDistFact*, the POD model is built different hypothesis:

- •if resDistFact = None, it corresponds with Berens-Binomial. This is the default case.
- •if resDistFact = openturns.NormalFactory, it corresponds with Berens-Gauss.
- •if resDistFact = {openturns.KernelSmoothing, openturns.WeibullFactory, ...}, the confidence interval is built by bootstrap.

Methods

<pre>getPODCLModel([model, confLevel])</pre>	Accessor to the POD model at a given confidence level.
getPODModel([model])	Accessor to the POD model.
getSimulationSize()	Accessor to the simulation size.
run()	Bla bla bla
setSimulationSize(size)	Accessor to the simulation size

getPODCLModel (model='uncensored', confLevel=0.95)

Accessor to the POD model at a given confidence level.

Parameters model: string

The linear regression model to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

confLevel: float

The confidence level the POD must be computed. Default is 0.95

Returns PODModelCl: openturns.NumericalMathFunction

The function which computes the probability of detection for a given defect value at the confidence level given as parameter.

```
getPODModel (model='uncensored')
```

Accessor to the POD model.

Parameters model: string

The linear regression model to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

Returns PODModel: openturns.NumericalMathFunction

The function which computes the probability of detection for a given defect value.

getSimulationSize()

Accessor to the simulation size.

run()

Bla bla bla

setSimulationSize(size)

Accessor to the simulation size

Parameters size: int

The size of the simulation used to compute the confidence interval.

1.2 Examples

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

D	$get Residuals Distribution () \ (Univariate Linear Model Anal-\\$
drawBoxCoxLikelihood() (UnivariateLinearModelAnalysis method), 2 drawLinearModel() (UnivariateLinearModelAnalysis method), 3 drawResiduals() (UnivariateLinearModelAnalysis	ysis method), 5 getSaturationThreshold() (UnivariateLinearModelAnalysis method), 5 getSimulationSize() (UnivariateLinearModelPOD method), 8
method), 3 drawResidualsDistribution() (UnivariateLinearModel-	getSlope() (UnivariateLinearModelAnalysis method), 5 getStandardError() (UnivariateLinearModelAnalysis
Analysis method), 3 drawResidualsQQplot() (UnivariateLinearModelAnalysis method), 4	method), 6 getZeroMeanPValue() (UnivariateLinearModelAnalysis method), 6
G	P
getAndersonDarlingPValue() (UnivariateLinearModel-Analysis method), 4	printResults() (UnivariateLinearModelAnalysis method), 6
getBoxCoxParameter() (UnivariateLinearModelAnalysis method), 4	R
$getBreuschPaganPValue() \ (UnivariateLinearModelAnal-$	run() (UnivariateLinearModelPOD method), 8
ysis method), 4 getCramerVonMisesPValue() (UnivariateLinearModel-	S covaPaculta() (UnivariataLinearMadalAnalysis mathad)
Analysis method), 4 getDurbinWatsonPValue() (UnivariateLinearModelAnal-	saveResults() (UnivariateLinearModelAnalysis method), 6
ysis method), 4 getHarrisonMcCabePValue() (UnivariateLinearModel-	setSimulationSize() (UnivariateLinearModelPOD method), 8
Analysis method), 4 getInputSample() (UnivariateLinearModelAnalysis	U
method), 5	UnivariateLinearModelAnalysis (class in otpod), 1
getIntercept() (UnivariateLinearModelAnalysis method), 5	UnivariateLinearModelPOD (class in otpod), 6
getKolmogorovPValue() (UnivariateLinearModelAnalysis method), 5	
getNoiseThreshold() (UnivariateLinearModelAnalysis method), 5	
getOutputSample() (UnivariateLinearModelAnalysis method), 5	
getPODCLModel() (UnivariateLinearModelPOD method), 7	
getPODModel() (UnivariateLinearModelPOD method), 8 getR2() (UnivariateLinearModelAnalysis method), 5 getResiduals() (UnivariateLinearModelAnalysis method), 5	