MATHEMATICAL REASONING Chapter 4

3rd SECONDARY

RAZONAMIENTO INDUCTIVO

MOTIVATING | STRATEGY

lo 🏻

En la figura se quiere pasar todos los discos de la varilla ocupada a una de las otras varillas vacantes. Para lograr este objetivo, es necesario seguir tres simples reglas:

- 1. Solo se puede mover un disco cada vez.
- 2. Un disco de mayor tamaño no puede descansar sobre uno más pequeño que él mismo.
- 3. Solo puedes desplazar el disco que se encuentre arriba en cada varilla.
- ¿Cuántos movimientos como mínimo se deben realizar para cumplir el objetivo?

El razonamiento inductivo es el proceso de observar datos, reconocer patrones, y hacer generalizaciones basadas en esos patrones. Por lo general tomaremos tres a cuatro casos particulares para nuestro Análisis en los problemas.

PROBLEMA 1.

Calcule los de la suma números de la fila 50.

15 17 19

PROBLEMA 2.

Con tarros de leche Lucero forma el siguiente arreglo con mucho cuidado. Podría usted decir cuántos tarros utilizó.

Resolución:

Del grafico

∴ La cantidad de tarros utilizados es 465

PROBLEMA 3.

Calcule la suma de las cifras del resultado de M.

$$M = \underbrace{(6666 \cdots \cdots 666)^2}_{300 \ cifras}$$

Resolución:

De la expresión

Suma de cifras en cada resultado

$$M = \underbrace{(6)^2}_{1 \ cifra} = 36 \implies 9 = 1 \times 9$$

$$M = \underbrace{(66)^2}_{2 \text{ cifras}} = 4356 \implies 18 = 2 \times 9$$

$$M = \underbrace{(666)^2}_{3 \text{ cifras}} = 443556 \qquad 27 = 3 \times 9$$

$$M = \underbrace{(6666 \cdots 666)^2}_{300 \, cifras} = 2700 = 300 \times 9$$

∴ La suma de cifras del resultado es 2700

PROBLEMA 4.

En una tarea semanal se plantea el siguiente problema, ¿cuantas bolitas hay en la figura? Si Giancarlo con mucha paciencia resolvió el problema, ¿podría usted resolver el problema y decir qué respuesta dio Giancarlo?

Resolución:

De la figura

∴ La cantidad de bolitas en la figura es 400

PROBLEMA 5.

Halle el valor de E y dé como respuesta la suma de cifras del resultado.

$$E = \left(\underbrace{444\cdots44}_{10 \text{ cifras}}\right) \left(\underbrace{999\cdots99}_{10 \text{ cifras}}\right)$$

Resolución:

De la expresión

$$E = \begin{pmatrix} 4 \\ 1 & cif \end{pmatrix} \begin{pmatrix} 9 \\ 1 & cif \end{pmatrix} = 36$$
 9 = 1×9

$$E = \left(\frac{44}{2 \, cif}\right) \left(\frac{99}{2 \, cif}\right) = 4356$$
 18 = 2×9

$$E = \left(\frac{444}{3 \, cif}\right) \left(\frac{999}{3 \, cif}\right) = 443556$$
 27 = 3×9

$$E = \left(\frac{444 \cdots 44}{10 \text{ cifras}}\right) \left(\frac{999 \cdots 99}{10 \text{ cifras}}\right) = 90 = 10 \times 9$$

∴ La suma de cifras del resultado es 90

01

PROBLEMA 6.

construcciones Las piramidales en las culturas antiguas tenían diferentes objetivos, por ejemplo, los egipcios lo destinaban a fines funerarios, los mayas culto fines de adoración. La grafica muestra la maqueta de de estas cara una estructuras, hecha a base de cerillos, ¿Cuántos de estos se uso en dicha representación?.

Resolución:

De la grafica

∴ La cantidad de palitos usados es 1395

◎1

PROBLEMA 7.

Las matrices son utilizadas ampliamente en la computación, por su facilidad y liviandad para manipular información, la siguiente representa un prototipo de programa para un robot.

Calcule la suma de todos los términos de dicha matriz.

Resolución:

∴ La suma de cifras del resultado es 2000

HELICO

WORKSHOP

