[Mobile and Ubiquitous Computing Mini Project]

Step-by-Step Indoor Localization

2024.06.09.

Sangwi Kang | swkang@mmlab.snu.ac.kr

Outline

- Motivation
- Problems & Challenges
- Solution Approach
- Implementation
- Experiment
- Evaluation
- Limitation
- Conclusion

Motivation

- Outdoor Localization → GNSS로 원활한 서비스 가능
- Indoor Localization → No general solution yet
 - 엄밀한 정확도 요구
 - 외부 신호 수신의 어려움
- 다양한 활동을 진행할 수 있는 대규모 실내 공간의 일반화
 - → Indoor Localization 필요성 증가
- 기존 시도되지 않았던 Indoor Localization Approach를 제안해보고 <u>작은 공간으로 한정</u> 시켜 구현해보는 것을 목표

Problems & Challenges

- Two Big Approaches to Indoor Localization
 - Signals from Beacons
 - User Device Sensor Data(+ Navigation Algorithm)
- Signals from Beacons
 - → 정확한 위치를 특정할 수 있으나 광범위한 공간에 Beacon 배포 필요
- User Device Sensor Data(+ Navigation Algorithm)
 - → User Device 주변 환경에 따라 달라지는 Signal Pattern 문제
 - → Dead Reckoning Error, 실시간 LMs 생성으로 인한 Energy Consumption 문제 [1]

Solution Approach (1)

- Based on Signal Patterns of User Device
 - 중복 가능성, 주변 환경 영향
 - → Step-by-Step Approach

Solution Approach (2)

- Area Search Space 축소
 - (Step Count, Moving Time, Turn Count, Last Rotation State) to Specific Area
- Location Fingerprint Matching
 - (Magnetic Field, Humidity) of Specific Location
- Step 1 : Moving
 - 동일 시작지점에서 특정 Area까지의 움직임 Data 측정
- Step 2 : Area Prediction
 - 측정한 데이터를 바탕으로 Area Code 예측
- Step 3 : Location Prediction
 - 예측된 Area Code로 기록되어 있는 Location Fingerprint를 보며 Location 예측

Implementation

- Step-by-Step Indoor Localization Data Recoding Tool
 - Data Recording Tool Android App
 - Step Count : 걸음수, 이동시간 측정
 - Gyro : Gyro.를 이용한 회전 수, 마지막 회전각 측정
 - Magnetic : 특정 Location에서의 Magnetic Field 측정
- Area Data → Step Count, Gyro
- Location Data → Magnetic
- 측정된 Data는 Android 내부 CSV File로 저장
- App Code, Data, Prediction Code
 - github.com/snudev-swkang/sbs-indoor-localization.git


```
17:15:53 Step Count : 13
17:15:53 Step Count : 14
17:15:54 Step Count : 15
17:15:54 11593
17:15:54 File Recording Started
17:15:54 File Recording Stopped
17:15:54 Step Counter Unregistered!
17:15:54 Accel Gyro Unregistered!
17:15:54 Step/Turn Count Stopped
```

Experiment

- > Area & Location
- 301-5F 컴퓨터공학부 대학원 연구실
- Area A
 - A1:551-2
 - A2:554-1
- Area B
 - B1 : 라운지
 - B2 : 남자화장실1
- Area C
 - C1: 탕비실
 - C2 : 몰디브 회의실
- Area D
 - D1:512-2 문 앞
 - D2: 남자화장실2

Experiment

- > Data Recording
- Device
 - Galaxy S22 / Android 14
 - (Step Detector, Gyro., Magnetic) Sensor
- 측정방법
 - Hand-Held
 - 동일 지점으로부터 대상 Area까지 움직임 측정(25회)
 - 대상 Location에서 Magnetic Field 측정(150~200회)

Experiment

- > Data & Training Model
- Data

[moving_data.csv]

Timestamp	StepCount	MovingTime	TurnCount	LastRotation	Area
1.71767E+12	42	25180	1	1.0070106	Α
1.71767E+12	33	18739	1	0.870406	Α
1.71767E+12	33	19303	1	0.909654	Α
1.71767E+12	43	25395	1	1.159345	Α
1.71767E+12	40	21021	1	0.8035926	Α

[magnetic_data.csv]

Timestamp	MagX	MagY	MagZ	AreaCode	LocationCode
1717672487027	18.075	-30.562502	-20.5125	Α	A1
1717672488017	17.90625	-31.650002	-21.375	Α	A1
1717672489023	18.018751	-32.081253	-21.525002	Α	A1
1717672490012	17.925001	-32.4375	-21.46875	Α	A1
1717672491021	17.85	-32.68125	-21.4125	Α	A1

- Training Model
 - RandomForestClassifier
 - Area Prediction: (StepCount, MovingTime, TurnCount, LastRotation) → Area
 - Location Prediction : (MagX, MagY, MagZ, AreaCode) → LocationCode

Evaluation

> Area Prediction

	Precision	Recall	F1-Score
Α	0.67	1.00	0.80
В	1.00	1.00	1.00
С	1.00	1.00	1.00
D	1.00	0.82	0.90
Accuracy			0.93

Evaluation

> Location Prediction

	Precision	Recall	F1-Score
A1	1.00	0.94	0.97
A2	0.94	1.00	0.97
B1	0.87	0.91	0.89
B2	0.92	0.89	0.90
C1	0.95	1.00	0.98
C2	1.00	0.95	0.97
D1	0.86	0.88	0.87
D2	0.87	0.86	0.86
Accuracy			0.93

Limitation

- Humidity Sensor Issue
 - 기기 미지원으로 측정 불가
- 동일 지점 출발 제한사항
 - 현재 Data 측정 방식은 (특정 출발지점 > 특정 도착지점)에만 대응
 - 매우 일반적인 동선에만 대응하기에 움직임 중 동선 변화에 대응 불가
- Area 및 동선 구분 기준 모호 / Data 부족
 - 현재 Area/동선 구분 기준은 Map을 보고 직관으로 구분
 - General Situation에 적용할 수 있는 접근방식 필요
 - Proposal에서는 층별 구분도 있었으나, Data 수집에 많은 시간이 소요되어 구현 축소

Conclusion

- Beacon 및 Navigation Algorithm Error가 없는 <u>Step-by-Step Method</u> 제안
- Area Prediction & Location Prediction 정확도 **일정 수준 달성**
- General Situation 대응에 대한 한계 명확
- 구현 및 실험 소요 시간으로 Project 범위 축소
- Future Works
 - 추가 Sensor Data
 - Area/동선 구분 기준 명확화
 - 동선 Data 추출 자동화