PSI2662 – Projeto em Sistemas Eletrônicos Embarcados: Sensores e Atuadores

Portas de Entrada e Saída de Uso Geral (General Purpose I/O) e seu enderaçamento

Escola Politécnica da Universidade de São Paulo

Prof. Gustavo Rehder – grehder@lme.usp.br

Mapa da Memória do Cortex M0+

Memória do ARM é mapeada em 4 Gb

KL25Z

	Allocated size	Allocated address
Flash	128KB	0x00000000 to 0x0001FFFF
SRAM	16KB	0x1FFFF000 to 0x20002FFF
I/O	All the peripherals	ox400FF000 to ox400FFFFF

Table 2-1: Memory Map in KL25Z128VLK4

Figure 2-3: Memory Map

Flash – Código do Programa e dados fixos como tabelas no ROM

- SRAM variáveis
- Periféricos endereços para registradores associados a I/Os, Timers, ADCs etc.

Olhar página 177do KL25 Sub-Family Refernce Manual para definições do registrador

General Purpose I/O (GPIO)

- 5 portas (A, B, C, D e E);
- 32 pinos por porta (PTA0 .. PTA31; PTB0 .. PTB21 etc.);
- Nem todos pinos são implementados;
- Chips da ARM têm dois barramentos: APB (Advanced Peripheral Bus)
 e o AHB (Advanced High-Performance Bus);
- AHB muito mais rápido que o APB.

Enderaçamento

- GPIO Port A (APB): 0x400F F000
- GPIO Port B (APB): 0x400F F040
- GPIO Port C (APB): 0x400F Fo80
- GPIO Port D (APB): 0x400F FoCo
- GPIO Port E (APB): 0x400F F100
- GPIO Port A (AHB): oxF8oF Fooo
- GPIO Port B (AHB): oxF8oF Fo4o
- GPIO Port C (AHB): oxF8oF Fo8o
- GPIO Port D (AHB): oxF8oF FoCo
- GPIO Port E (AHB): oxF8oF F100

Registradores das GPIO

- Existem dois registradores associados a cada porta:
 - Direction Register define se o pino é uma entrada ou saída;
 - Data Register escreve ou lê dados do pino

Figure 2-7: The Data and Direction Registers and a Simplified View of an I/O pin

Figure 2-8: GPIOx_PDOR (Port Data Output Register)

Figure 2-9: GPIOx_PDDR (Port Data Direction Register)

Address	Name	Description	Туре	Reset Value
0x400F F000	GPIOA_PDOR	Port Data Output Register	R/W	000000000
0x400F F004	GPIOA_PSOR	Port Set Output register	W (always reads o)	0x00000000
ox400F Foo8	GPIOA_PCOR	Port Clear Output Register	W (always reads o)	0x00000000
ox400F FooC	GPIOA_PTOR	Port Toggle Output Register	W (always reads o)	0x00000000
0x400F F010	GPIOA_PDIR	Port Data Input Register	R	0x00000000
0x400F F014	GPIOA_PDDR	Port Data Direction Register	R/W	000000000

Table 2-3: Some GPIO Registers for PORTA

Funções alternativas dos pinos

- Pin multiplexing
- Função controlado pelo PORTx_PCRn (Port x Pin n Control Register)
- Bits mais importantes: D10-D8 (Mux Control)

^{*} Notes:

Olhar página 183 do KL25 Sub-Family Refernce Manual para definições do registrador

Figure 2-10: Alternative Functions of Pins

BIT	Field	Description
O	Pull Select (PS)	If the PE field is set, the field chooses between pull-up and pull- down resistors. o: pull-down resistor, 1: pull-up resistor
1	Pull Enable (PE)	o: Disable the internal pull resistors 1: Enable the internal pull resistors
2	Slew Rate Enable (SRE)	o: Fast slew rate 1: Slow slew rate
4	Passive Filter Enable (PFE)	o: Passive input filter is disabled 1: Passive input filter is enabled
6	Drive Strength Enable (DSE)	o: Low drive strength 1: High drive strength
10-8	Pin Mux Control (MUX)	

Pin Mux Control

000	Pin disabled (analog).
001	Alternative 1 (GPIO).
010	Alternative 2 (chip-specific).
011	Alternative 3 (chip-specific).
100	Alternative 4 (chip-specific).
101	Alternative 5 (chip-specific).
110	Alternative 6 (chip-specific).
111	Alternative 7 (chip-specific).

x = Undefined at reset.

Exemplo

- Configurar Pinos PTB18 e PTB19 para output:

Figure 2-9: GPIOx_PDDR (Port Data Direction Register)

- Endereço do registrador GPIOB_PDDR:
 - Para Porta B = 0x4000 F040
 - Offset de 0x0014
 - Enderço do 0x4000 F054

Figure 2-4: GPIO Memory Map

Exemplo

- Configurar Pino PTB18 com slow slew rate, high drive e sem pull-up:
 - Registrado PORTB_PCR18:
 - 0b0000 0000 0000 0000 0001 0100 0100
 - 0x0000 0144
- Endereço:
 - PORTB PCR18 = 4004 A048

	I ON I CI	110 - 4004 7040)																
BIT	Field	Description																	
0	Pull Select (PS)	If the PE field is set, the field chooses between pull-up and pull- down resistors.	Address	: Base	address	s + 0 h o	offset +	(4d × i),	, where	i=0d to	31d								
		o: pull-down resistor, 1: pull-up resistor	Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1	Pull Enable (PE)	o: Disable the internal pull	R				0				ISF		0				IRC)C	
	(,	resistors	w										inde						
		1: Enable the internal pull resistors	Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	Slew Rate Enable (SRE)	o: Fast slew rate	Bit	15	14	13	12	-11	10	9	8	7	6	5	4	3	2	1	0
	, ,	1: Slow slew rate	R			0				MIN		0	DOE	0	PFE	0	005	DE	D0
4	Passive Filter Enable	o: Passive input filter is disabled 1: Passive input filter is enabled	w							MUX			DSE		PFE		SRE	PE	PS
6	(PFE) Drive Strength Enable	o: Low drive strength	Reset	0	0	0	0	0	x*	X*	x*	0	X*	0	x*	0	X*	x*	x*
0	(DSE)	1: High drive strength	h drive strength 'Notes:																
10-8	Pin Mux Control (MUX)		x = Undefined at reset.																

Olhar página 177do KL25 Sub-Family Refernce Manual para definições do registrador

Clock para GPIO

- O clock deve ser habilitado antes de configurar a porta;
- Resistrador SIM_SCGC5 habilita o clock para todas as portas;
- Para economizar energia o clock das portas que não são utilizadas não devem ser habilitado;
- Endereço do SIM_SCGC5:
 - -0x40047000 + 0x1038 = 0x40048038

Exemplo

- Habilitar clock somente para porta B:
 - SIM SCGC5 = 0b0000 0000 0000 0000 0000 0100 0000 0000
 - $SIM_SCGC5 = 0x0000 0400$
 - SIM_SCGC5 |= 0x0400 (OR binário bitwise)
 - SIM_SCGC5 = SIM+SCGC5 | 0x0400 (seta somente o bit de interesse)
- Operações Boleanas Binárias:

```
- OR | 0x04 | 0x68 = 0x6C
```

- AND & 0x35 & 0x0F = 0x05
- XOR $^{\circ}$ 0x54 | 0x78 = 0x2C
- Invert \sim $\sim 0x55 = 0xAA$

1<< 3 = 0b0000 1000

Qualquer número | 1 = 1Qualquer número | 0 = sem mudança

Qualquer número & 1 = sem mudançaQualquer número & 0 = 0

Qualquer número 1 = complemento Qualquer número | 0 = sem mudança

Excercício

- Objetivo: Piscar LED Verde com 2 segundo de período
 - Fazer no programa Codewarrior (C:\Freescale\Eclipse\cwide.exe)
 - Sequência do programa
 - (1) Habilitar clock da porta B;
 - (2) Configurar Pino 19 (Pin Control Register);
 - (3) Setar a direção do Pino;
 - (4) Habilitar saída;
 - (5) Função de espera;
 - (6) Desabilitar saída;
 - (7) Função de espera;
 - Repetir passos (4)-(7).

Definir Endereço dos Registradores

```
Exemplo
 /* Define o endereço do registrador SIM SCGC5 */
 #define SIM_SCGC5 (*((volatile unsigned int*)0x40048038))
 Função de espera
/* no main */
void delayMs (int n);
/* Função: Espera n milisegundos */
/* esta função depende do clock default do microcontrolador. Para o KL25Z a frequência é
21 MHz aproximadamente. O valor do contador deverá ser ajustado para se conseguir o
tempo de espera desejado. */
Void delayMs (int n) {
        int i;
        int j;
        for (i = 0; i < n; i++)
                for (j = 0; j < 7000; j++) {}
```