Simple LLM-Based Text Classification Sentiment Analysis on Public Dataset

Gianni Franchi

December 16, 2024

Overview

- Goal: Classify text from a sentiment-analysis dataset.
- Dataset: Includes tweet text, sentiment labels (neutral, positive, negative), and metadata.
- Approach:
 - Embed the dataset using representations from a pre-trained LLM.
 - Train classical machine learning models on the LLM embeddings.
- Outcome: Evaluate the efficacy of LLM embeddings for text classification.

Dataset Description

- Sentiment analysis dataset with multiple fields:
 - text: The full text of the tweet.
 - selected_text: The key phrase expressing sentiment.
 - sentiment: Labels (neutral, positive, negative).
 - Metadata: Time of tweet, user's age group, country, etc.
- Example Records:

textID	text	sentiment	Age
cb774db0d1 549e992a42 088c60f138	I'd have responded, if I were going Sooo SAD I will miss you here in San Diego!!! my boss is bullying me	neutral negative negative	

Methodology

Data Preprocessing:

- Clean text data.
- Extract relevant fields for analysis.

Embedding with LLM:

- Use a pre-trained LLM (e.g., BERT, GPT) to extract embeddings.
- Represent text as fixed-dimensional vectors.

Classification:

- Train classical ML models (e.g., SVM, Random Forest) on embeddings.
- Compare performance against traditional feature-based methods.

Evaluation:

• Use metrics like accuracy, F1-score, and confusion matrix.

Expected Results

- Improved sentiment classification accuracy using LLM embeddings.
- Insights into the interplay between LLM representations and classical ML.
- Demonstrate the flexibility of combining modern embeddings with simple models.

Related Work

- Study the role of LLMs in transfer learning:
 - "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"
 - "Attention is All You Need" (Transformer architecture)
- Explore classical ML techniques:
 - Support Vector Machines, Random Forest, Logistic Regression.

Thank You!