Instrumental variables: Experiments with non-compliance

INFO/STSCI/ILRST 3900: Causal Inference

21 Oct 2025

Logistics

- ► PSET 4 posted (due Oct 27)
- ► Project Groups will be assigned this week
- ► Project Part 2 details will be posted

Learning goals for today

At the end of class, you will be able to:

- 1. Understand the logic of instrumental variables
- 2. Derive the average effect among compliers in experiments with noncompliance

Instrumental variables: Experiment with noncompliance

Instrumental variables: Experiment with noncompliance

Instrumental variables: Experiment with noncompliance

Two ideas

- 1. Intent to treat effect
- 2. Average effect among compliers

Ignore A. What is the effect of Z on Y?

Ignore A. What is the effect of Z on Y?

Ignore A. What is the effect of Z on Y?

Ignore A. What is the effect of Z on Y?

Key insight: The effect of Z on Y operates entirely through A

Key insight: The effect of *Z* on *Y* operates entirely through *A*

1. Study the effect of $Z \rightarrow Y$

Key insight: The effect of Z on Y operates entirely through A

1. Study the effect of $Z \to Y$ (we just did)

Key insight: The effect of Z on Y operates entirely through A

1. Study the effect of $Z \rightarrow Y$

(we just did)

2. Study the effect of $Z \rightarrow A$

Key insight: The effect of Z on Y operates entirely through A

- 1. Study the effect of $Z \to Y$ (we just did)
- 2. Study the effect of $Z \rightarrow A$
- 3. Learn about $A \rightarrow Y$ since $Z \rightarrow Y$ is $Z \rightarrow A \rightarrow Y$

Compliers
$$A^{Z=0} = 0$$
 $A^{Z=1} = 1$ (follow assignment)

Compliers
$$A^{Z=0}=0$$
 $A^{Z=1}=1$ (follow assignment)
Always takers $A^{Z=0}=1$ $A^{Z=1}=1$ (always take treatment)

Compliers	$A^{Z=0} = 0$ $A^{Z=1} = 1$	(follow assignment)
Always takers	$A^{Z=0} = 1$ $A^{Z=1} = 1$	(always take treatment)
Never takers	$A^{Z=0} = 0$ $A^{Z=1} = 0$	(never take treatment)

Compliers	$A^{Z=0} = 0$ $A^{Z=1} = 1$	(follow assignment)
Always takers	$A^{Z=0} = 1$ $A^{Z=1} = 1$	(always take treatment)
Never takers	$A^{Z=0} = 0$ $A^{Z=1} = 0$	(never take treatment)
Defiers	$A^{Z=0} = 1$ $A^{Z=1} = 0$	(defy assignment)

The effect $Z \rightarrow A$ has four **principal strata**: latent sets of people who respond to Z a particular way

Compliers
$$A^{Z=0}=0$$
 $A^{Z=1}=1$ (follow assignment)

Always takers $A^{Z=0}=1$ $A^{Z=1}=1$ (always take treatment)

Never takers $A^{Z=0}=0$ $A^{Z=1}=0$ (never take treatment)

Defiers $A^{Z=0}=1$ $A^{Z=1}=0$ (defy assignment)

Fundamental problem of causal inference applies to $Z \rightarrow A$

The effect $Z \rightarrow A$ has four **principal strata**: latent sets of people who respond to Z a particular way

Compliers
$$A^{Z=0}=0$$
 $A^{Z=1}=1$ (follow assignment)

Always takers $A^{Z=0}=1$ $A^{Z=1}=1$ (always take treatment)

Never takers $A^{Z=0}=0$ $A^{Z=1}=0$ (never take treatment)

Defiers $A^{Z=0}=1$ $A^{Z=1}=0$ (defy assignment)

Fundamental problem of causal inference applies to $Z \rightarrow A$

Discuss: In which strata is the effect $Z \rightarrow Y$ zero?

Among always takers and never takers,

Among always takers and never takers, Z does not affect A

Among always takers and never takers, Z does not affect A

Z only affects Y through A

Among always takers and never takers, *Z* does not affect *A*

Z only affects Y through A

In these strata, Z does not affect Y

Among compliers,

Among compliers, Z = 1 implies A = 1 and Z = 0 implies A = 0

Among compliers, Z = 1 implies A = 1 and Z = 0 implies A = 0In these strata, Z = A

Among compliers,

Z=1 implies A=1 and

Z = 0 implies A = 0

In these strata, Z = A

 $Z \rightarrow Y$ and $A \rightarrow Y$ are the same

Among defiers,

Among defiers, Z = 1 implies A = 0 and Z = 0 implies A = 1

Among defiers, Z = 1 implies A = 0 and

Z = 0 implies A = 1

In these strata, Z = 1 - A

Among defiers,

Z=1 implies A=0 and

Z = 0 implies A = 1

In these strata, Z = 1 - A

 $Z \to Y$ and $A \to Y$ are the same magnitude but have opposite signs

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Defiers $(Z \to A) = -1$ $(Z \to Y) = -(A \to Y)$

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Defiers $(Z \to A) = -1$ $(Z \to Y) = -(A \to Y)$

Assume **no defiers** in the population

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers Average effect of $Z \to Y$ among compliers is 0.6

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers Average effect of $Z \to Y$ among compliers is 0.6

What is the average effect of $Z \rightarrow Y$ in the population?

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Defiers $(Z \to A) = -1$ $(Z \to Y) = -(A \to Y)$

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Defiers $(Z \to A) = -1$ $(Z \to Y) = -(A \to Y)$

Assume **no defiers** in the population

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers Average effect of $Z \to Y$ among compliers is 0.6

Four principal strata

Compliers
$$(Z \to A) = +1$$
 $(Z \to Y) = (A \to Y)$
Always takers $(Z \to A) = 0$ $(Z \to Y) = 0$
Never takers $(Z \to A) = 0$ $(Z \to Y) = 0$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers Average effect of $Z \to Y$ among compliers is 0.6

What is the average effect of $Z \rightarrow Y$ in the population? Could you calculate the proportion of compliers in the population?

Four principal strata

$$\begin{array}{lll} \text{Compliers} & (Z \rightarrow A) = +1 & (Z \rightarrow Y) = (A \rightarrow Y) \\ \text{Always takers} & (Z \rightarrow A) = 0 & (Z \rightarrow Y) = 0 \\ \text{Never takers} & (Z \rightarrow A) = 0 & (Z \rightarrow Y) = 0 \\ \end{array}$$

Discuss a hypothetical.

Population is 50% compliers, 25% always takers, 25% never takers Average effect of $Z \to Y$ among compliers is 0.6

What is the average effect of $Z \to Y$ in the population? Could you calculate the proportion of compliers in the population?

$$E(A \mid Z = 1) - E(A \mid Z = 0) = E(A^{Z=1} - A^{Z=0})$$

$$E(A \mid Z = 1) - E(A \mid Z = 0) = E(A^{Z=1} - A^{Z=0})$$

$$= \sum_{s} E(A^{Z=1} - A^{Z=0} \mid S = s) \underbrace{P(S = s)}_{\substack{\text{Denote} \\ \pi_{s}}}$$

$$\begin{split} & \mathsf{E}(A\mid Z=1) - \mathsf{E}(A\mid Z=0) = \mathsf{E}(A^{Z=1} - A^{Z=0}) \\ & = \sum_{s} \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S=s) \underbrace{\mathsf{P}(S=s)}_{\substack{\mathsf{Denote} \\ \pi_{s}}} \\ & = \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Complier}) \pi_{\mathsf{Complier}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Always-Taker}) \pi_{\mathsf{Always-Taker}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Never-Taker}) \pi_{\mathsf{Never-Taker}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Defier}) \pi_{\mathsf{Defier}} \\ & = \end{split}$$

(2)

$$\begin{split} & \mathsf{E}(A\mid Z=1) - \mathsf{E}(A\mid Z=0) = \mathsf{E}(A^{Z=1} - A^{Z=0}) \\ & = \sum_{s} \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S=s) \underbrace{\mathsf{P}(S=s)}_{\substack{\mathsf{Denote} \\ \pi_{s}}} \\ & = \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Complier}) \pi_{\mathsf{Complier}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Always-Taker}) \pi_{\mathsf{Always-Taker}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Never-Taker}) \pi_{\mathsf{Never-Taker}} \\ & \quad + \mathsf{E}(A^{Z=1} - A^{Z=0}\mid S = \mathsf{Defier}) \pi_{\mathsf{Defier}} \\ & = \end{split}$$

(2)

$$E(A \mid Z = 1) - E(A \mid Z = 0) = E(A^{Z=1} - A^{Z=0})$$

$$= \sum_{s} E(A^{Z=1} - A^{Z=0} \mid S = s) \underbrace{P(S = s)}_{\text{Denote}}$$

$$= E(A^{Z=1} - A^{Z=0} \mid S = \text{Complier}) \pi_{\text{Complier}}$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Always-Taker}) \pi_{\text{Always-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Never-Taker}) \pi_{\text{Never-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Defier}) \pi_{\text{Defier}} \quad (= 0)$$

$$= (2)$$

$$E(A \mid Z = 1) - E(A \mid Z = 0) = E(A^{Z=1} - A^{Z=0})$$

$$= \sum_{s} E(A^{Z=1} - A^{Z=0} \mid S = s) \underbrace{P(S = s)}_{\text{Denote}}$$

$$= E(A^{Z=1} - A^{Z=0} \mid S = \text{Complier}) \pi_{\text{Complier}}$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Always-Taker}) \pi_{\text{Always-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Never-Taker}) \pi_{\text{Never-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Defier}) \pi_{\text{Defier}} \quad (= 0)$$

$$= \pi_{\text{Complier}} \quad (2)$$

$$E(A \mid Z = 1) - E(A \mid Z = 0) = E(A^{Z=1} - A^{Z=0})$$

$$= \sum_{s} E(A^{Z=1} - A^{Z=0} \mid S = s) \underbrace{P(S = s)}_{\text{Denote}}$$

$$= E(A^{Z=1} - A^{Z=0} \mid S = \text{Complier}) \pi_{\text{Complier}}$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Always-Taker}) \pi_{\text{Always-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Never-Taker}) \pi_{\text{Never-Taker}} \quad (= 0)$$

$$+ E(A^{Z=1} - A^{Z=0} \mid S = \text{Defier}) \pi_{\text{Defier}} \quad (= 0)$$

$$= \pi_{\text{Complier}} \quad (2)$$

Assuming no defiers,

$$\pi_{\mathsf{Complier}} = \mathsf{E}(A \mid Z = 1) - \mathsf{E}(A \mid Z = 0)$$

$$E(Y \mid Z = 1) - E(Y \mid Z = 0) = E(Y^{Z=1} - Y^{Z=0})$$

$$E(Y | Z = 1) - E(Y | Z = 0) = E(Y^{Z=1} - Y^{Z=0})$$

$$= \sum_{s} E(Y^{Z=1} - Y^{Z=0} | S = s) \underbrace{P(S = s)}_{Denote}$$

$$E(Y \mid Z = 1) - E(Y \mid Z = 0) = E(Y^{Z=1} - Y^{Z=0})$$

$$= \sum_{s} E(Y^{Z=1} - Y^{Z=0} \mid S = s) \underbrace{P(S = s)}_{\text{Denote}}$$

$$= E(Y^{Z=1} - Y^{Z=0} \mid S = \text{Complier}) \pi_{\text{Complier}}$$

$$+ E(Y^{Z=1} - Y^{Z=0} \mid S = \text{Always-Taker}) \pi_{\text{Always-Taker}}$$

$$+ E(Y^{Z=1} - Y^{Z=0} \mid S = \text{Never-Taker}) \pi_{\text{Never-Taker}}$$

$$+ E(Y^{Z=1} - Y^{Z=0} \mid S = \text{Defier}) \pi_{\text{Defier}}$$

$$(3)$$

$$\begin{split} & \mathsf{E}(Y \mid Z = 1) - \mathsf{E}(Y \mid Z = 0) = \mathsf{E}(Y^{Z=1} - Y^{Z=0}) \\ & = \sum_{s} \mathsf{E}(Y^{Z=1} - Y^{Z=0} \mid S = s) \underbrace{\mathsf{P}(S = s)}_{\mathsf{Denote}} \\ & = \mathsf{E}(Y^{Z=1} - Y^{Z=0} \mid S = \mathsf{Complier}) \pi_{\mathsf{Complier}} \\ & + \mathsf{E}(Y^{Z=1} - Y^{Z=0} \mid S = \mathsf{Always-Taker}) \pi_{\mathsf{Always-Taker}} \quad (= 0) \\ & + \mathsf{E}(Y^{Z=1} - Y^{Z=0} \mid S = \mathsf{Never-Taker}) \pi_{\mathsf{Never-Taker}} \quad (= 0) \\ & + \mathsf{E}(Y^{Z=1} - Y^{Z=0} \mid S = \mathsf{Defier}) \pi_{\mathsf{Defier}} \quad (= 0) \end{split}$$

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{Z=1}-Y^{Z=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{Z=1}-Y^{Z=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{Z=1}-Y^{Z=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

Among compliers,
$$(Z \rightarrow Y) = (A \rightarrow Y)$$
.

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{Z=1}-Y^{Z=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

Among compliers,
$$(Z \rightarrow Y) = (A \rightarrow Y)$$
.

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0})=\mathsf{E}(Y^{A=1}-Y^{A=0}\mid S=\mathsf{Complier})\pi_{\mathsf{Complier}}$$

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{Z=1}-Y^{Z=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

Among compliers,
$$(Z \rightarrow Y) = (A \rightarrow Y)$$
.

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0})=\mathsf{E}(Y^{A=1}-Y^{A=0}\mid S=\mathsf{Complier})\pi_{\mathsf{Complier}}$$

Rearrange to get the complier average treatment effect

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0})=\mathsf{E}(Y^{Z=1}-Y^{Z=0}\mid S=\mathsf{Complier})\pi_{\mathsf{Complier}}$$

Among compliers,
$$(Z \rightarrow Y) = (A \rightarrow Y)$$
.

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0}) = \mathsf{E}(Y^{A=1}-Y^{A=0} \mid S = \mathsf{Complier})\pi_{\mathsf{Complier}}$$

Rearrange to get the complier average treatment effect

$$\mathsf{E}(Y^{A=1} - Y^{A=0} \mid S = \mathsf{Complier}) = \frac{\mathsf{E}(Y^{Z=1} - Y^{Z=0})}{\pi_{\mathsf{Complier}}}$$

(4)

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0})=\mathsf{E}(Y^{Z=1}-Y^{Z=0}\mid S=\mathsf{Complier})\pi_{\mathsf{Complier}}$$

Among compliers,
$$(Z \rightarrow Y) = (A \rightarrow Y)$$
.

$$\mathsf{E}(Y^{Z=1}-Y^{Z=0})=\mathsf{E}(Y^{A=1}-Y^{A=0}\mid S=\mathsf{Complier})\pi_{\mathsf{Complier}}$$

Rearrange to get the complier average treatment effect

$$E(Y^{A=1} - Y^{A=0} \mid S = \text{Complier}) = \frac{E(Y^{Z=1} - Y^{Z=0})}{\pi_{\text{Complier}}}$$

$$= \frac{E(Y \mid Z = 1) - E(Y \mid Z = 0)}{E(A \mid Z = 1) - E(A \mid Z = 0)}$$
(4)

Learning goals for today

At the end of class, you will be able to:

- 1. Understand the logic of instrumental variables
- 2. Derive the average effect among compliers in experiments with noncompliance