Введение в мобильную робототехнику Часть 2 - плэннинг

Станислав Кикоть

SUDOKU									ANSWER								
			9		5				8	7	2	9	3	5	4	1	6
1	2	5	1	6		7		2	1	3	5	4	6	8	7	9	2
800	9				8		3	8	6	9	4	1	7	2	5	3	8
2				/	1	9		4	2	5	6	3	8	1	9	7	4
	8	1	/		7		1	/	9	8	1	5	4	7	6	2	3
3		1	\	9		1	/	5	3	4	7	2	9	6	1	8	5
	1		7	1		(P)	6	1	4	2	8	7	5	9	3	6	1
5	1				3		4		5	1	9	6	2	3	8	4	7
7	1	3	8	0.50	4				7	6	3	8	1	4	2	5	9

Artificial Intelligence

Dr. Stan Kikot

Start State

Goal State

Artificial Intelligence A Modern Approach

Состав второй части курса

- 3 лекции: 9, 16 и 23 ноября
- 2 домашних задания
 - "Пакман" (непроверяемое) будет выдано сегодня
 - "Построение траектории" (зачетное) будет выдано 16 ноября, дедлайн для сдачи **1 декабря (среда)**
- разбор решений зачетного задания **7 декабря (вторник)** (~45 минут)

Таймлайн второй части курса

- 9 ноября лекция "Поиск на графах в контексте ИИ" + выдается непроверяемое Д/З 4 "Пакман"
- 16 ноября лекция "Построение и изменение траектории" + выдается зачетное Д/З 5 "Построение траектории"
- 23 ноября лекция "Модель безопасности RSS" + Q&A

(~120 минут)

- 30 ноября нет лекции
 (завтра 1 декабря, дедлайн к зачетному Д/З 5)
- 7 декабря разбор зачетного задания (~60 минут)

ИИ = поиск пути на графе?

- Как?
 - перевезти волка, козу и капусту на другой берег
 - доехать из пункта A в пункт Б
 - составить расписание занятий
 - сгруппировать вагоны по составам
 - заработать \$1.000.000
 - избавиться от бедности и ковида
 - написать код планировщика для автономного автомобиля

Метаалгоритм поиска пути

Graph search

```
function Graph-Search (problem, frontier) returns a solution, or failure
explored \leftarrow an empty set
Insert(Root-Node(problem.Initial-State), frontier)
                                                                  Yes, this node is the goal node, but
while not Empty?(frontier) do
                                                                  a solution is a sequence of actions.
                                                                  which can be obtained from 7).00.0
   node \leftarrow Remove(frontier)
                                                                  by following the parent link
                                                                  until it points at None.
   add node.State to explored
   if problem.Goal-Test applied to node.State succeeds return node
   for each action in problem.ACTIONS(node.STATE) do
      child \leftarrow Child-Node(problem, node, action)
      if child.State is not in explored then
          Insert (child, frontier)
                                                        node = (state, parent, action, cost)
return failure
```