Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 8 - Tätigkeitstheorie und Lernen

Stoffdidaktik Mathematik

Kapitel 8 - Tätigkeitstheorie und Lernen

- Sie kennen Grundideen der Tätigkeitstheorie, insbesondere bezüglich Lehr-Lern-Prozesse.
- Sie könnten den Zusammenhang zwischen lernpsychologischen Hintergründen und der Phasenstruktur von Unterricht nachvollziehen.
- Sie können die Notwendigkeit von Orientierungshilfen begründen und die etappenweise Ausbildung geistiger Handlungen beschreiben.

Der Mensch »erschafft [...] seine Kultur und zugleich die psychischen Funktionen, die ihn dazu in die Lage versetzen.«

(Giest & Lompscher, 2006, S. 27)

Lernhandlungen sind relativ geschlossene und abgrenzbare, zeitlich und logisch strukturierte **Abschnitte im Verlauf der Lerntätigkeit, die ein konkretes Lernziel realisieren**, durch bestimmte Lernmotive angetrieben werden und entsprechend den konkreten Lernbedingungen durch den Einsatz äußerer und verinnerlichter Lernmittel in einer jeweils spezifischen Folge von Teilhandlungen vollzogen werden.

Motiv

Lerntätigkeit

ist stets auf den Gegenstand gerichtet, i.d.R. gesellschaftlich/kulturhistorisch ausgehandelt 5 + 7

Rechnen lernen

räumliche Orientierung gewinnen

Architekt/-in spielen

Informationen strukturieren

Ziele

Lernhandlungen

dienen zielgerichtet der Realisierung der Tätigkeit, erfolgen damit bewusst; ggf. in Teilhandlungen unterteilt Mengen erfassen; im Stellenwertsystem arbeiten Würfel positionieren, Würfelbauwerk erstellen Daten erfassen,
Daten klassifizieren,
Diagramme zeichnen

Individuum

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Entscheiden, ob es sich um ein Rechteck handelt

Einkreisen aller Stammbrüche

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Zeichnen eines Quadrats mit der Seitenlänge a = 5 cm

Angeben der Ergebnismenge eines Würfelwurfes

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Ermitteln der Nullstellen aus dem Funktionsgraphen

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Beschreiben, wie ein Kreis mit dem Radius r = 3 cm gezeichnet wird

Beschreiben der Vorgehensweise beim Bestimmen der Nullstellen

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Bestimme die Flussbreite.

Verwenden von Strahlensatzfigur und Termumformungen zum Lösen der Aufgabe

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Lösen des Gleichungssystems mit dem Einsetzungsverfahren

$$\begin{vmatrix} 2x + y = 9 \\ x - y = 3 \end{vmatrix}$$

Berechnen von 2,75 · 3,1

Typische Lernhandlungen im Mathematikunterricht

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

(Bruder & Brückner, 1989)

Begründen, warum es sich um ein Rechteck handelt

Begründen, warum die Summe von drei aufeinanderfolgenden Zahlen wieder durch 3 teilbar ist

Typische Lernhandlungen im Mathematikunterricht

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

(Bruder & Brückner, 1989)

diesen Raum?

Suchen des Lösungsansatzes, die Situation geometrisch zu modellieren

Wie viele Luftballons passen in

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Wie viele Luftballons passen in diesen Raum?

- Modellieren des Raums als Quader und der Luftballons als Kugeln
- Schätzen/Messen der Größen
- 3. Nutzen der Volumenformeln
- 4. Inbeziehungsetzen der Volumina

Typische Lernhandlungen im Mathematikunterricht

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Wie viele Luftballons passen in

(Bruder & Brückner, 1989)

diesen Raum?

Handlungsvollzug des Plans

Typische Lernhandlungen im Mathematikunterricht

(Bruder & Brückner, 1989)

Elementare Aneignungshandlungen

- Identifizieren
- Realisieren

Grundhandlungen

- Erkennen
- Beschreiben
- Verknüpfen
- Anwenden
- Begründen

Komplexe Handlungen

- Suchen
- Planen
- Ausführen
- Kontrollieren

Wie viele Luftballons passen in diesen Raum?

Validieren des Ergebnisses; ggf. Entscheidung zu weiterem Durchgang des Modellierungskreislaufes

Motiv

Lerntätigkeit

ist stets auf den Gegenstand gerichtet, i.d.R. gesellschaftlich/kulturhistorisch ausgehandelt Es braucht eine **Motivierung**, um einen *inneren Antrieb* für den folgenden Lernprozess zu schaffen.

Ziele

Lernhandlungen

dienen zielgerichtet der Realisierung der Tätigkeit, erfolgen damit bewusst; ggf. in Teilhandlungen unterteilt Es braucht eine **Zielbildung**, um das potenzielle Ergebnis des folgenden Lernprozesses im Blick zu haben.

Es braucht aber noch mehr ...

Motivierung & Zielbildung

Niveau n+1unselbstständig Zone der nächsten Entwicklung Niveau n unselbstständig Zone der aktuellen Zone der Leistung nächsten Entwicklung selbstständig Zone der aktuellen

Anforderungssituation in der

Zone der nächsten Entwicklung

Problemsituation, Aufgabe oder Fragestellung, die ein Kind zwar mithilfe seiner bisherigen Kenntnisse, Fähigkeiten und Fertigkeiten verstehen und nachvollziehen kann, zu ihrer Lösung es jedoch noch *nicht selbstständig* in der Lage ist.

(nach Lompscher, 1985a)

Leistung

selbstständig

Motivierung & Zielbildung

Anforderungssituation in der **Zone der nächsten Entwicklung**

Lernzielbildung

individuelle (!) Zielbildung hinsichtlich des zu erzielenden Ergebnisses

Die Qualität der Lernhandlungen hängt ab vom Grad der **Bewusstheit**, **Allgemeinheit** und **Differenziertheit** des Lernziels.

Motivierung & Zielbildung

Sicherung des Ausgangsniveaus

Anforderungssituation in der **Zone der nächsten Entwicklung Lernzielbildung**

explizites und implizites **Reaktivieren** von Kenntnissen und Fähigkeiten

Motivierung & Zielbildung

Anforderungssituation in der

Zone der nächsten Entwicklung

Lernzielbildung

Sicherung des Ausgangsniveaus

explizites und implizites Reaktivieren von Kenntnissen und Fähigkeiten

Stoffvermittlung

Erarbeitung & (Erst-)Aneignung

ernhandlungen

Begriffe

Sachverhalte/ Zusammenhänge

Verfahren

Festigung

Orientierungsteil der Lernhandlung

Probierorientierung

- Fehlen der nötigen Kenntnisse, Fähigkeiten oder Fertigkeiten
- Vorgehen nach Versuch und Irrtum
- Fehlende Einsicht, warum eine bestimmte Handlung zum Erfolg geführt hat, eine andere jedoch nicht
- erfolgreiche Handlung nicht immer reproduzierbar / kaum auf veränderte Situationen übertragbar
- derartige Orientierung höchstens zum Explorieren neuer Inhaltsbereiche wünschenswert

Musterorientierung

III) Feldorientierung

(Feldt-Caesar, 2017, S. 83 ff.)

Orientierungsteil der Lernhandlung

I) Probierorientierung

II) Musterorientierung

- Orientierung an bereits erfolgreich durchgeführten Handlungen in ähnlichen Anforderungssituationen
- nur erfolgreich, wenn Anforderungssituation erlerntem Muster ähnlich genug ist, um Passung zu ermöglichen
- Handlungsbedingungen des Musters müssen genau gekannt und stets geprüft werden
- Transferierbarkeit nicht immer gegeben, insb. bei fälschlicher Erkennung eines Musters

III) Feldorientierung

(Feldt-Caesar, 2017, S. 83 ff.)

Orientierungsteil der Lernhandlung

- I) Probierorientierung
- II) Musterorientierung
- III) Feldorientierung
- nicht mehr an konkrete Anforderungssituation gebunden; Bezug auf ganze Anforderungsklasse
- Erkennen der Passung einer Anforderungsklasse führt zu Orientierung in konkreter Situation
- Überblick über die Situation und differenzierende Betrachtung, welche Kenntnisse,
 Fähigkeiten und Fertigkeiten weiterhelfen und welche nicht

(Feldt-Caesar, 2017, S. 83 ff.)

Orientierungsteil der Lernhandlung

Probierorientierung

- Vorgehen nach Versuch und Irrtum
- erfolgreiche Handlung nicht immer reproduzierbar / kaum auf veränderte Situationen übertragbar

Musterorientierung

- Orientierung an bereits erfolgreich durchgeführten Handlungen in ähnlichen Anforderungssituationen
- Transferierbarkeit nicht immer gegeben, insb. bei fälschlicher Erkennung eines Musters

III) Feldorientierung

Überblick über die Situation und differenzierende Betrachtung, welche Kenntnisse, Fähigkeiten und Fertigkeiten weiterhelfen und welche nicht

(Feldt-Caesar, 2017, S. 83 ff.)

Unterstützung durch

Orientierungshilfen

Ausführungsteil der Lernhandlung

Die Lernhandlung muss zunächst **beigebracht** werden (z. B. durch Vorführen), anschließend muss sie vom Lernenden durchgeführt und **angeeignet** werden, damit sie flexibel zur Verfügung steht – auch um komplexere Handlungen aufbauen zu können.

1. Etappe der materiellen bzw. materialisierten Handlung

Etappe der materiellen bzw. materialisierten Handlung

Handlungen mit konkretem Material bzw. anhand von zur Verfügung stehenden Orientierungshilfen.

Etappe der sprachlichen Handlung

Handlungen werden ohne/mit geringer Zuhilfenahme des Materials durchgeführt und durch äußeres (oder inneres) Sprechen beschrieben.

Etappe der geistigen Handlung

Handlungen werden nun rein kognitiv durchgeführt.

2. Etappe der sprachlichen Handlung

3. Etappe der geistigen Handlung

Realisierung z.B. durch:

- Umgang mit Modellen, Schemata, Zeichnungen, realen Gegenständen u.ä. (bzw. Bau von Modellen, Anfertigen von Skizzen, ...)
- Verwendung von Symbolen
- Verwendung von Tabellen und Übersichten
- Kommentierendes Lösen unter zunehmender Zurückdrängung schriftlicher Orientierungsmaterialien
- Chorsprechen
- Schülervortrag
- Wiederholen von Merksätzen u.ä.
- Korrektur sprachlicher Außerungen
- Stillarbeit (selbständiges Lösen von Aufgaben ohne detaillierte Anleitung, im Prinzip nur Ergebniskontrolle)
- mundliches oder schriftliches Formulieren von Antworten (evtl. Ausfüllen von Lückentexten).

(Steinhöfel et al., 1988, S. 19)

Kontrollteil der Lernhandlung

eigene Handlungsausführung

erreichte Handlungsergebnisse

Lernziele

Unterstützende Maßnahmen

- Lernziele explizit formulieren und auch festzuhalten > Abgleich mit Handlungsergebnissen besser möglich
- Anfertigen eines Lernprotokolls > eigenen Lernhandlungen dokumentier- und nachvollziehbar
- gegenseitige Kontrolle der Schülerinnen und Schüler > durch Verinnerlichung dieses Vorgehens später auch Selbstkontrolle

Motivierung & Zielbildung

Anforderungssituation in der **Zone der nächsten Entwicklung**

Lernzielbildung

Sicherung des Ausgangsniveaus

explizites und implizites **Reaktivieren** von Kenntnissen und Fähigkeiten

Stoffvermittlung

Begriffe

Sachverhalte/ Zusammenhänge

Verfahren

- Erarbeiten des neuen Inhalts (Begriff, Sachverhalt oder Verfahren)
- Schaffen von Orientierungshilfen
- etappenweises Verinnerlichen von Aneignungshandlungen (Identifizieren und Realisieren)

Motivierung & Zielbildung

Sicherung des Ausgangsniveaus

Stoffvermittlung

Festigung

Anforderungssituation in der **Zone der nächsten Entwicklung Lernzielbildung**

explizites und implizites **Reaktivieren** von Kenntnissen und Fähigkeiten

Inhalt erarbeiten, Orientierungshilfen schaffen und Aneignungshandlungen etappenweise verinnerlichen

- Verwendung von Spezial- und Extremfällen
- Umformulieren, Bedingungen variieren, Umkehrungen bilden
- Verwendung unterschiedlicher Bezeichnungen
- Bekanntes Neuem gegenüberstellen und Zusammenhänge erkennen lassen
 (Steinhöfel et al., 1988, S. 34)

Gestaltung des Lernprozess Was hat das mit unserem Vier-Ebenen-Ansatz zu tun?

Motivierung & Zielbildung

Anforderungssituation in der Zone der nächsten Entwicklung Lernzielbildung

sinnstiftender Kontext Kernideen in

Sicherung des Ausgangsniveaus

explizites und implizites Reaktivieren von Kenntnissen und Fähigkeiten

> **Explizitmachen Fundamentaler Ideen**

Vorschauperspektive

Stoffvermittlung

Inhalt erarbeiten, Orientierungshilfen schaffen und Aneignungshandlungen etappenweise verinnerlichen

Grundvorstellungen ausbilden

Festigung

vielfältiges **Üben** und komplexes Anwenden (vgl. auch Operatives Prinzip)

Kontrolle (und Bewertung)

Abgleich zwischen Handlungsverlauf, Handlungsergebnis und Lernziel

Kernideen in Rückschauperspektive

(Bruder, 1991)

Literatur

- Bruder, R. (1991). Unterrichtssituationen ein Modell für die Aus- und Weiterbildung zur Gestaltung von Mathematikunterricht. Wissenschaftliche Zeitschrift der Universität Potsdam, 35(2), 129-134.
- Bruder, R., & Brückner, A. (1989). Zur Beschreibung von Schülertätigkeiten im Mathematikunterricht ein allgemeiner Ansatz. Pädagogische Forschung. Wissenschaftliche Nachrichten, 30(6), 72-82.
- Feldt-Caesar, N. (2017). Konzeptualisierung und Diagnose von mathematischem Grundwissen und Grundkönnen. Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-17373-9
- Giest, H., & Lompscher, J. (2006). Lerntätigkeit–Lernen aus kultur-historischer Perspektive. Ein Beitrag zur Entwicklung einer neuen Lernkultur im Unterricht. Lehmanns Media.
- Lompscher (1985a). Die Ausbildung von Lernhandlungen. In J. Lompscher (Hrsg.), Persönlichkeitsentwicklung in der Lerntätigkeit (S. 53-78). Volk und Wissen.
- Lompscher, J. (1985b). Die Lerntätigkeit als dominierende Tätigkeit des jüngeren Schülers. In J. Lompscher (Hrsg.), Persönlichkeitsentwicklung in der Lerntätigkeit (S. 23-52). Volk und Wissen.
- Steinhöfel, W., Reichold, K., & Frenzel, L. (1988). Zur Gestaltung typischer Unterrichtssituationen im Mathematikunterricht. Ministerium für Volksbildung.
- Zentgraf, K., Prediger, S., & Berkemeier, A. (2020). Funktionsgraphen und funktionale Zusammenhänge verstehen (DZLM, Hrsg.). sima.dzlm.de/um/bk-004

Beispiel: Funktionsbegriff

Zone der aktuellen Leistung

- Umgang mit proportionalen und antiproportionalen Zuordnungen
- Zeichnen von Wertepaaren in Diagramme
- Analyse von Diagrammen zu statistischen Erhebungen

Anforderungssituation in der Zone der nächsten Entwicklung

In verschiedene Gefäße wurde Wasser gefüllt und abhängig von der Wassermenge die Füllhöhe bestimmt.

- Entscheide, welches Gefäß zu welchem Graphen gehört.
- Führe das Experiment selbst mit einem Gefäß durch, in das du nacheinander jeweils 50 ml füllt. Ermittle anschließend, wie die Füllhöhe bei einer Wassermenge von 220 ml war.

Beispiel: Funktionsbegriff

(erwünschtes) Lernziel

hinsichtlich des gesamten Lernbereichs

Wir wollen die Beziehung zwischen zwei sich verändernden Größen beschreiben und daraus weitere Werte bestimmen können.

hinsichtlich des Begriffs »Funktion«

Wir wollen den Zusammenhang zwischen zwei Größen mithilfe eines Begriffs beschreiben und diesen Begriff verstehen.

Funktionsbegriff

Eine Funktion ist eine eindeutige Zuordnung, d. h. jedem Element einer Ausgangsmenge wird genau ein Element einer Zielmenge zugeordnet.

Anregung von außen

Entscheide, ob es sich bei ... um eine Funktion handelt.

Erforderte Lernhandlung: Identifizieren

Orientierungshilfe

Prüfe am gegebenen Beispiel folgende Fragen:
☐ Was ist die <i>Ausgangsmenge</i> ?
☐ Was ist die Zielmenge ?
Erfolgt die <i>Zuordnung</i> tatsächlich von der Ausgangsmenge zur Zielmenge?
Wird <i>jedem</i> Element der Ausgangsmenge etwas zugeordnet?
☐ Wird jedem Element der Ausgangsmenge <i>genau ein</i> Element zugeordnet?

Funktionsbegriff

Eine Funktion ist eine eindeutige Zuordnung, d. h. jedem Element einer Ausgangsmenge wird genau ein Element einer Zielmenge zugeordnet.

Anregung von außen

Gib ein Beispiel für eine Funktion an.

Erforderte Lernhandlung:

Realisieren

Orientierungshilfe

- Gib eine *Ausgangsmenge* und eine *Zielmenge* an.
- Formuliere eine *Zuordnung* von der Ausgangsmenge zur Zielmenge.
- Achte darauf, dass **jedem** Element der Ausgangsmenge **genau ein** Element der Zielmenge zugeordnet wird.

Funktionsbegriff

Eine Funktion ist eine eindeutige Zuordnung, d. h. jedem Element einer Ausgangsmenge wird genau ein Element einer Zielmenge zugeordnet.

Festigungsaufgaben

- Entscheide, ob es sich um den Graphen einer Funktion handelt.
- Formuliere eine Definition des Funktionsbegriffs mit eigenen Worten.
- Gib für die Funktion ›Jeder Zahl wird ihr Doppeltes zugeordnet‹ eine Funktionsgleichung an, in der nicht die Variablen f, x und y auftreten.

• Beschreibe an einem Beispiel, was der Unterschied zwischen Zuordnungen und Funktionen ist. Entscheide, ob es sich bei proportionalen Zuordnungen um Funktionen handelt und begründe deine Entscheidung.