$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

Liste 9 – Espaces L^p : Partie II

Notation : Soient (X, \mathcal{A}, μ) un espace mesuré et $1 \leq p \leq \infty$. On note

$$L^{p}(X, \mu) = L^{p}(\mu) = L^{p}(X).$$

Exercice 1. Soient (X, \mathcal{A}, μ) un espace mesuré, $p \in [1, \infty[$ et $(f_k)_{k \in \mathbb{N}}$ une suite d'éléments de $L^p(X)$ qui converge μ -presque partout vers une application $f: X \to \mathbb{R}$. Montrer que les deux assertions suivantes sont équivalentes :

- a) $\lim_{k \to \infty} ||f_k f||_{L^p(X)} = 0.$
- b) $f \in L^p(X)$ et $\lim_{k \to \infty} ||f_k||_{L^p(X)} = ||f||_{L^p(X)}$.

Suggestion : Pour l'implication $b) \Rightarrow a$), appliquer le lemme de Fatou à la suite $(g_k)_{k \in \mathbb{N}}$ où $g_k = 2^{p-1}(|f_k|^p + |f|^p) - |f_k - f|^p$.

Exercice 2 (Lemme de Brézis-Lieb). Soient X un ouvert de \mathbb{R}^n et $(u_k)_{k\in\mathbb{N}}\subset L^p(X)$ avec $1\leq p<\infty$. On suppose que $(u_k)_{k\in\mathbb{N}}$ soit bornée dans $L^p(X)$ et que $u_k(x)\to u(x)$ presque partout dans X. On se propose de montrer que $u\in L^p(X)$ et que

$$\lim_{k \to \infty} \left(\|u_k\|_{L^p(X)}^p - \|u_k - u\|_{L^p(X)}^p \right) = \|u\|_{L^p(X)}^p.$$

a) Pour tout $\varepsilon > 0$ il existe $C_{\varepsilon} = C(\varepsilon, p) > 0$ tel que, pour tout $a, b \in \mathbb{R}$ on a

$$||a+b|^p - |a|^p - |b|^p| \le \varepsilon |a|^p + C_{\varepsilon}|b|^p.$$

Suggestion : Montrer que $\lim_{|s|\to\infty} \frac{|s+1|^p - |s|^p - 1}{|s|^p} = 0$.

b) Pour $\varepsilon > 0$ fixé, on pose

$$f_k^{\varepsilon} = (||u_k|^p - |u_k - u|^p - |u|^p| - \varepsilon |u_k - u|^p)^+.$$

Calculer

$$\lim_{k \to \infty} \int_X f_k^{\varepsilon}(x) \, dx.$$

c) Conclure.

Remarque : Comme une conséquence directe de cet exercice on a que si $1 \le p < \infty$, $u \in L^p(X)$ et $(u_k)_{k \in \mathbb{N}} \subset L^p(X)$ avec

$$u_k(x) \to u(x)$$
 p.p. dans X et $\lim_{k \to \infty} ||u_k||_{L^p(X)} = ||u||_{L^p(X)}$,

alors $\lim_{k\to\infty} ||u_k - u||_{L^p(X)} = 0.$

Exercice 3 (Densité dans $L^p(\mathbb{R}^n)$). Soit $L^p(\mathbb{R}^n)$ avec $1 \leq p < \infty$. Montrer les affirmations suivantes :

- a) L'espace de fonctions simples est dense dans $L^p(\mathbb{R}^n)$.
- b) L'espace de fonctions en escalier est dense dans $L^p(\mathbb{R}^n)$.
- c) L'espace de fonctions continues à support compact $C^0_c(\mathbb{R}^n)$ est dense dans $L^p(\mathbb{R}^n)$.
- d) Montrer que si $f \in L^p(\mathbb{R}^n)$ et $h \in \mathbb{R}^n$, alors

$$||f(x+h)-f(x)||_{L^p(\mathbb{R}^n)} \to 0$$
 lorsque $|h| \to 0$.

Que dire du cas $p = \infty$?

Suggestion : Utiliser le point c).