General EM Problem

Given

- Observed data $\{\mathbf{x}_d\}_{d\in D}$
- Unobserved data $\{\mathbf{z}_d\}_{d\in D}$ where $\mathbf{z}_d = \langle z_{d1}, \dots, z_{dM} \rangle$
- Parameterized probability distribution p(D|h) where
 - $D = \{d\}$ is the complete data where $d = \langle \mathbf{x}_d, \mathbf{z}_d \rangle$
 - *h* comprises the parameters

Determine ML hypothesis h' that (locally) maximizes $\mathbb{E}[\ln p(D|h')]$

General EM Algorithm

Define function $Q(h'|h) = \mathbb{E}[\ln p(D|h')|h, \{\mathbf{x}_d\}_{d\in D}]$ given current parameters h and observed data $\{\mathbf{x}_d\}_{d\in D}$ to estimate the latent variables $\{\mathbf{z}_d\}_{d\in D}$

EM Algorithm. Pick random initial h. Then, iterate

- E Step. Calculate Q(h'|h) using current hypothesis h and observed data $\{\mathbf{x}_d\}_{d\in D}$ to estimate the latent variables $\{\mathbf{z}_d\}_{d\in D}$: $Q(h'|h) \leftarrow \mathbb{E}[\ln p(D|h')|h, \{\mathbf{x}_d\}_{d\in D}]$
- M Step. Replace hypothesis h by the hypothesis h' that maximizes this Q function: $h \leftarrow \operatorname{argmax}_{h}^{h} Q(h'|h)$

Applying EM to Estimate M Means

Given

- Instances from X generated by mixture of M Gaussians with the same known variance σ^2
- Unknown means $\langle \mu_1, ..., \mu_M \rangle$ of the *M* Gaussians
- Don't know which instance x_d is generated by which Gaussian

Determine maximum likelihood (ML) estimates of $\langle \mu_1, ..., \mu_M \rangle$

Consider full description of each instance as $d = \langle x_d, z_{d1}, ..., z_{dM} \rangle$ where

- z_{dm} is unobservable and is of value 1 if m-th Gaussian is selected to generate x_d , and 0 otherwise
- x_d is observable

Applying EM to Estimate M Means

$$p(d|h') = p(x_d, z_{d1}, \dots, z_{dM}|h')$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \sum_{m=1}^{M} z_{dm} (x_d - \mu'_m)^2\right)$$

$$\ln p(D|h') = \ln \prod_{d \in D} p(d|h') = \sum_{d \in D} \ln p(d|h')$$

$$= \sum_{d \in D} \left(\ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{m=1}^{M} z_{dm} (x_d - \mu'_m)^2\right)$$

$$Q(h'|h) = \mathbb{E}[\ln p(D|h')]$$

$$= \mathbb{E}\left[\sum_{d \in D} \left(\ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{m=1}^{M} z_{dm} (x_d - \mu'_m)^2\right)\right]$$

$$= \sum_{d \in D} \left(\ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{m=1}^{M} \mathbb{E}[z_{dm}] (x_d - \mu'_m)^2\right)$$
where $\mathbb{E}[z_{dm}] = \frac{\exp(-\frac{1}{2\sigma^2} (x_d - \mu_m)^2)}{\sum_{\ell=1}^{M} \exp(-\frac{1}{2\sigma^2} (x_d - \mu_\ell)^2)}$

Applying EM to Estimate M Means

$$\arg \max_{h'} Q(h'|h)
= \arg \max_{h'} \sum_{d \in D} \left(\ln \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{m=1}^{M} \mathbb{E}[z_{dm}] (x_d - \mu'_m)^2 \right)
= \arg \max_{h'} \sum_{d \in D} - \sum_{m=1}^{M} \mathbb{E}[z_{dm}] (x_d - \mu'_m)^2
= \arg \min_{h'} \sum_{d \in D} \sum_{m=1}^{M} \mathbb{E}[z_{dm}] (x_d - \mu'_m)^2
\mu'_m \leftarrow \frac{\sum_{d \in D} \mathbb{E}[z_{dm}]}{\sum_{d \in D} \mathbb{E}[z_{dm}]} \frac{x_d}{z_{dm}}$$

Hold on...

Let $X_D = \{\mathbf{x}_d\}_{d \in D}$ and $Z_D = \{\mathbf{z}_d\}_{d \in D}$. Shouldn't h' be selected to maximize log-likelihood of observed data $\ln p(X_D | h')$ (and marginalize out the unobserved variables Z_D) instead of Q(h'|h)?

Proposition. Log-likelihood of observed data monotonically increases with an increasing number of EM iterations.

Proof.
$$p(X_{D}|h') = p(X_{D}, Z_{D}|h')/P(Z_{D}|h', X_{D})$$

$$\ln p(X_{D}|h') = \ln p(X_{D}, Z_{D}|h') - \ln P(Z_{D}|h', X_{D})$$

$$\sum_{Z_{D}} P(Z_{D}|h, X_{D}) \ln p(X_{D}|h') = \sum_{Z_{D}} P(Z_{D}|h, X_{D}) \ln p(X_{D}, Z_{D}|h') - \sum_{Z_{D}} P(Z_{D}|h, X_{D}) \ln P(Z_{D}|h', X_{D})$$

$$\ln p(X_{D}|h') = \sum_{Z_{D}} P(Z_{D}|h, X_{D}) \ln p(X_{D}, Z_{D}|h') - \sum_{Z_{D}} P(Z_{D}|h, X_{D}) \ln P(Z_{D}|h', X_{D})$$

$$= Q(h'|h) + R(h'|h)$$

$$= Q(h'|h) + R(h'|h)$$

$$\ln p(X_{D}|h) = Q(h|h) + R(h|h)$$
 by subst. $h' = h$ in (1)
$$\ln p(X_{D}|h') - \ln p(X_{D}|h) = Q(h'|h) - Q(h|h) + R(h'|h) - R(h|h)$$
 using (1) - (2)
$$\ln p(X_{D}|h') - \ln p(X_{D}|h) \ge Q(h'|h) - Q(h|h)$$
 by Gibbs' inequality: $R(h'|h) \ge R(h|h)$