Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI. Scrivere il proprio nome anche nell'ultima pagina. 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	9	TOT.

1. Descrivere tutti i sottogruppi normali di D_4 .

2. Fornire la definizione di centro Z(G) di un gruppo G e dimostrare che se $\psi \in \operatorname{Aut}(G)$, allora $\psi(Z(G)) = Z(G)$.

6. Stabilire se l'anello ${\bf Z}_2 \times {\bf Z}_4 \times {\bf Z}$ è unitario e determinare i suoi divisori dello zero e le sue unità.
7. Definire la nozione di Anello Euclideo e dimostrare che ${\bf Z}$ è Euclideo.

8.	Dimostra	re che il poli	inomio $f(X)$:	$= X^4 - 4X^3$	$+6X^2+X$	$+1 \in \mathbf{Q}[X]$	è irriducibile	$e\ (suggerimen$	$to:\ consider$	are $f(X+1)$).
9.	Determin suo ideale	are esplicita	mente un can	npo finito cor	n 27 element	ti (<i>i.e. reali</i> :	zzarlo come	quoziente tra	un anello di	polinomi e un
	suo iucuit	~ <i>)</i> ·								