Respuestas a ejercicios seleccionados

Conjunto de ejercicios 1.1

1.	Para cada parte, $f \in C[a, b]$ en el intervalo determinado. Puesto que $f(a)$ y $f(b)$ son de signo opuesto, por el teorema de val	lor
	intermedio implica que existe un número c con $f(c) = 0$.	

3. a. [0, 1] contiene una solución de $x - 2^{-x} = 0$ **b.** [-1, 0]

b. [-1, 0] contiene una solución de $2x \cos(2x) - (x+1)^2 = 0$

c. [0, 1] contiene una solución de $3x - e^x = 0$

d. $\left[-\frac{3}{2}, -\frac{1}{2}\right]$ contiene una solución de x+1-2 sen $(\pi x)=0$

5. El valor máximo para |f(x)| es:

a. 0.4620981

o. 0.8

c. 5.164000

d. 1.582572

7. Para cada parte $f \in C[a, b]$, f' existe en (a, b) y f(a) = f(b) = 0. El teorema de Rolle implica que existe un número c en (a, b) con f'(c) = 0. Para la parte (d), podemos utilizar [a, b] = [-1, 0] o [a, b] = [0, 2].

9. a. $P_2(x) = 0$

b. $R_2(0.5) = 0.125$; error real = 0.125

c. $P_2(x) = 1 + 3(x - 1) + 3(x - 1)^2$

d. $R_2(0.5) = -0.125$; error real = -0.125

11. Puesto que

$$P_2(x) = 1 + x$$
 y $R_2(x) = \frac{-2e^{\xi}(\sin \xi + \cos \xi)}{6}x^3$

para algunas ξ entre x y 0, tenemos lo siguiente

a. $P_2(0.5) = 1.5 \text{ y} |f(0.5) - P_2(0.5)| \le 0.0932;$

b. $|f(x) - P_2(x)| \le 1.252$;

c. $\int_0^1 f(x) \ dx \approx 1.5;$

d. $|\int_0^1 f(x) dx - \int_0^1 P_2(x) dx| \le \int_0^1 |R_2(x)| dx \le 0.313$, y el error real es 0.122.

13. $P_3(x) = (x-1)^2 - \frac{1}{2}(x-1)^3$

a. $P_3(0.5) = 0.312500$, f(0.5) = 0.346574. Una cota del error es $0.291\overline{6}$, y el error real es 0.034074.

b. $|f(x) - P_3(x)| < 0.291\overline{6}$ en [0.5, 1.5]

c. $\int_{0.5}^{1.5} P_3(x) dx = 0.08\overline{3}$, $\int_{0.5}^{1.5} (x-1) \ln x dx = 0.088020$

d. Una cota del error es $0.058\overline{3}$, y el error real es 4.687×10^{-3} .

15. $P_4(x) = x + x^3$

a. $|f(x) - P_4(x)| \le 0.012405$

b. $\int_0^{0.4} P_4(x) dx = 0.0864$, $\int_0^{0.4} x e^{x^2} dx = 0.086755$

c. 8.27×10^{-4}

d. $P'_4(0.2) = 1.12$, f'(0.2) = 1.124076. El error real es 4.076×10^{-3} .

17. Puesto que $42^{\circ} = 7\pi/30$ radianes, use $x_0 = \pi/4$. Entonces

$$\left| R_n \left(\frac{7\pi}{30} \right) \right| \le \frac{\left(\frac{\pi}{4} - \frac{7\pi}{30} \right)^{n+1}}{(n+1)!} < \frac{(0.053)^{n+1}}{(n+1)!}.$$

Para $|R_n(\frac{7\pi}{30})| < 10^{-6}$, es suficiente tomar n = 3. Para 7 dígitos, $\cos 42^\circ = 0.7431448$ y $P_3(42^\circ) = P_3(\frac{7\pi}{30}) = 0.7431446$, por lo que el error real es 2×10^{-7} .

19.
$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k, \ n \ge 7$$

21. Una cota para el error máximo es 0.0026.

23. Puesto que $R_2(1) = \frac{1}{6}e^{\xi}$, para algunas ξ en (0, 1), tenemos $|E - R_2(1)| = \frac{1}{6}|1 - e^{\xi}| \le \frac{1}{6}(e - 1)$.

- **25. a.** $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ para k = 0, 1, ..., n. Las formas de P_n y f son iguales en x_0 .
 - **b.** $P_2(x) = 3 + 4(x 1) + 3(x 1)^2$.
- 27. Primero, observe que para $f(x) = x \sin x$, tenemos $f'(x) = 1 \cos x \ge 0$ porque $-1 \le \cos x \le 1$ para todos los valores de x.
 - **a.** La observación implica que f(x) no disminuye para todos los valores de x, y en especial que f(x) > f(0) = 0 cuando x > 0. Por tanto, para $x \ge 0$, tenemos $x \ge \operatorname{sen} x$, y $|\operatorname{sen} x| = \operatorname{sen} x \le x = |x|$.
 - **b.** Cuando x < 0, tenemos -x > 0. Puesto que sen x es una función impar, el hecho de que (por la parte a)) sen $(-x) \le (-x)$ implica que $|\sec x| = -\sec x \le -x = |x|$.

Como consecuencia, para todos los números reales x, tenemos $|\sin x| \le |x|$.

29. a. El número $\frac{1}{2}(f(x_1) + f(x_2))$ es el promedio de $f(x_1)$ y $f(x_2)$, por lo que se encuentra entre estos dos valores de f. Mediante el teorema de valor intermedio 1.11, existe un número ξ entre x_1 y x_2 con

$$f(\xi) = \frac{1}{2}(f(x_1) + f(x_2)) = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2).$$

b. Si $m = \min\{f(x_1), f(x_2)\}\ y\ M = \max\{f(x_1), f(x_2)\}\$. Entonces $m \le f(x_1) \le M$ y $m \le f(x_2) \le M$, por lo que

$$c_1 m \le c_1 f(x_1) \le c_1 M$$
 y $c_2 m \le c_2 f(x_2) \le c_2 M$.

Por lo tanto,

$$(c_1 + c_2)m < c_1 f(x_1) + c_2 f(x_2) < (c_1 + c_2)M$$

y

$$m \le \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le M.$$

Por el teorema de valor intermedio 1.11 aplicado al intervalo con extremos x_1 y x_2 , existe un número ξ entre x_1 y x_2 para el que

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}.$$

c. Si $f(x) = x^2 + 1$, $x_1 = 0$, $x_2 = 1$, $x_1 = 2$, $x_2 = -1$. Entonces para todos los valores de x,

$$f(x) > 0$$
 pero $\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = \frac{2(1) - 1(2)}{2 - 1} = 0.$

Conjunto de ejercicios 1.2

1.	Error absoluto	Error relativo
a.	0.001264	4.025×10^{-4}
b.	7.346×10^{-6}	2.338×10^{-6}
c.	2.818×10^{-4}	1.037×10^{-4}
d.	2.136×10^{-4}	1.510×10^{-4}

- 3. Los intervalos más grandes son
 - **a.** (149.85,150.15)
- **b.** (899.1, 900.9)
- **c.** (1498.5, 1501.5)
- **d.** (89.91,90.09)

- 5. Los cálculos y sus errores son:
 - **a.** i) 17/15
- ii) 1.13
- iii) 1.13
- iv) ambos 3×10^{-3}

- **b.** i) 4/15
- ii) 0.266
- iii) 0.266
- iv) ambos 2.5×10^{-3}

- **c.** i) 139/660
- ii) 0.200
- iii) 0.210
- iv) $2 \times 10-3$, 3×10^{-3}

- **d.** i) 301/660
- ii) 0.455
- iii) 0.456
- iv) 2×10^{-3} , 1×10^{-4}

9.	Aproximación	Error absoluto	Error relativo
a.	3.55	1.60	0.817
b.	-15.2	0.054	0.0029
c.	0.284	0.00171	0.00600
d.	23.8	0.158	0.659×10^{-2}

a.3.145576133.983
$$\times$$
 10 $^{-3}$ 1.268 \times 10 $^{-3}$ **b.**3.141621032.838 \times 10 $^{-5}$ 9.032 \times 10 $^{-6}$

13. a.
$$\lim_{x \to 0} \frac{x \cos x - \sin x}{x - \sin x} = \lim_{x \to 0} \frac{-x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{-\sin x - x \cos x}{\sin x} = \lim_{x \to 0} \frac{-2 \cos x + x \sin x}{\cos x} = -2$$

c.
$$\frac{x(1-\frac{1}{2}x^2)-(x-\frac{1}{6}x^3)}{x-(x-\frac{1}{6}x^3)}=-2$$

d. El error relativo en la parte b) es 0.029. El error relativo en la parte c) es 0.00050.

15.		x_1	Error absoluto	Error relativo	x_2	Error absoluto	Error relativo
	a.	92.26	0.01542	1.672×10^{-4}	0.005419	6.273×10^{-7}	1.157×10^{-4}
	b.	0.005421	1.264×10^{-6}	2.333×10^{-4}	-92.26	4.580×10^{-3}	4.965×10^{-5}
	c.	10.98	6.875×10^{-3}	6.257×10^{-4}	0.001149	7.566×10^{-8}	6.584×10^{-5}
	d.	-0.001149	7.566×10^{-8}	6.584×10^{-5}	-10.98	6.875×10^{-3}	6.257×10^{-4}

17.		Aproximación para x_1	Error absoluto	Error relativo
	a.	92.24	0.004580	4.965×10^{-5}
	b.	0.005417	2.736×10^{-6}	5.048×10^{-4}
	c.	10.98	6.875×10^{-3}	6.257×10^{-4}
	d.	-0.001149	7.566×10^{-8}	6.584×10^{-5}

	Aproximación para x_2	Error absoluto	Error relativo
a.	0.005418	2.373×10^{-6}	4.377×10^{-4}
b.	-92.25	5.420×10^{-3}	5.875×10^{-5}
c.	0.001149	7.566×10^{-8}	6.584×10^{-5}
d.	-10.98	6.875×10^{-3}	6.257×10^{-4}

19. Los números máquina son equivalentes a

- **d.** 1.3242187500000002220446049250313080847263336181640625
- 21. b. La primera fórmula da -0.00658, y la segunda fórmula da -0.0100. El valor verdadero con tres dígitos es -0.0116.
- 23. Las soluciones aproximadas para los sistemas son

a.
$$x = 2.451$$
, $y = -1.635$

b.
$$x = 507.7, y = 82.00$$

25. a. En forma anidada, tenemos
$$f(x) = (((1.01e^x - 4.62)e^x - 3.11)e^x + 12.2)e^x - 1.99.$$

b.
$$-6.79$$

$$\mathbf{c.} -7.07$$

27. a.
$$m = 17$$

$$\binom{m}{k} = \frac{m!}{k!(m-k)!} = \frac{m(m-1)\cdots(m-k-1)(m-k)!}{k!(m-k)!}$$
$$= \left(\frac{m}{k}\right)\left(\frac{m-1}{k-1}\right)\cdots\left(\frac{m-k-1}{1}\right)$$

c.
$$m = 181707$$

d. 2 597 000; error real 1960; error relativo
$$7.541 \times 10^{-4}$$
.

- **29.** a. El error real es $|f'(\xi)\epsilon|$, y el error relativo es $|f'(\xi)\epsilon| \cdot |f(x_0)|^{-1}$, donde el número ξ está entre x_0 y $x_0 + \epsilon$.
 - **b.** i) 1.4×10^{-5} ; 5.1×10^{-6} ii) 2.7×10^{-6} ; 3.2×10^{-6} **c.** i) 1.2; 5.1×10^{-5} ii) 4.2×10^{-5} ; 7.8×10^{-5}

Conjunto de ejercicios 1.3

- Las sumas aproximadas son 1.53 y 1.54, respectivamente. El valor real es 1.549. El error de redondeo significativo se presenta antes con el primer método.
- Las sumas aproximadas son 1.16 y 1.19, respectivamente. El valor real es 1.197. El error de redondeo significativo se presenta antes con el primer método.
- 3. a. 2000 términos

20 000 000 000 términos

- **5.** 3 términos
- 7. Las velocidades de convergencia son:
 - **a.** $O(h^2)$

b. O(h)

c. $O(h^2)$

d. *O*(*h*)

9. a. Si $F(h) = L + O(h^p)$, existe una constante k > 0 tal que

$$|F(h) - L| \le kh^p$$
,

Para h suficientemente pequeña h > 0. Si 0 < q < p y 0 < h < 1, entonces $h^q > h^p$. Por lo tanto, $kh^p < kh^q$, por lo que

$$|F(h) - L| \le kh^q$$
 y $F(h) = L + O(h^q)$.

b. Para varias potencias de h, tenemos las entradas en la siguiente tabla

h	h^2	h^3	h^4
0.5 0.1 0.01 0.001	$0.25 \\ 0.01 \\ 0.0001 \\ 10^{-6}$	0.125 0.001 0.00001 10^{-9}	$0.0625 \\ 0.0001 \\ 10^{-8} \\ 10^{-12}$

La velocidad de convergencia más rápida es $O(h^4)$.

11. Puesto que

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = x$$
 y $x_{n+1} = 1 + \frac{1}{x_n}$,

tenemos

$$x = 1 + \frac{1}{x}$$
, por lo que $x^2 - x - 1 = 0$.

La fórmula cuadrática implica que

$$x = \frac{1}{2} \left(1 + \sqrt{5} \right).$$

Este número recibe el nombre de número áureo. Con frecuencia aparece en matemáticas y ciencias.

- 13. $SUM = \sum_{i=1}^{N} x_i$. Esto guarda un paso ya que la inicialización es $SUM = x_1$ en lugar de SUM = 0. Se pueden presentar problemas si N = 0.
- **15. a)** n(n+1)/2 multiplicaciones; (n+2)(n-1)/2 sumas.
 - **b**) $\sum_{i=1}^{n} a_i \left(\sum_{j=1}^{i} b_j \right)$ requiere *n* multiplicaciones; (n+2)(n-1)/2 sumas.

Conjunto de ejercicios 2.1

- 1. $p_3 = 0.625$
- 3. El método de bisección da:
 - **a.** $p_7 = 0.5859$

b. $p_8 = 3.002$

c. $p_7 = 3.419$

5. El método de bisección da:

a.
$$p_{17} = 0.641182$$

b.
$$p_{17} = 0.257530$$

c. Para el intervalo [-3, -2], tenemos $p_{17} = -2.191307$, y para el intervalo [-1, 0], tenemos $p_{17} = -0.798164$.

d. Para el intervalo [0.2, 0.3], tenemos $p_{14} = 0.297528$, y para el intervalo [1.2, 1.3], tenemos $p_{14} = 1.256622$.

7. a.

b. Al utilizar [15, 2] en la parte a) se obtiene $p_{16} = 1.89550018$.

9. a

b. $p_{17} = 1.00762177$

11. a. 2

b. -2

c. -1

d. 1

13. La raíz cúbica de 25 es aproximadamente $p_{14} = 2.92401$, usando [2, 3].

15. La profundidad del agua es 0.838 pies.

17. Una cota es $n \ge 14$, y $p_{14} = 1.32477$.

19. Puesto que $\lim_{n\to\infty} (p_n-p_{n-1}) = \lim_{n\to\infty} 1/n = 0$, la diferencia en los términos se acerca a cero. Sin embargo, p_n es el enésimo término de la serie armónica divergente, por lo que $\lim_{n\to\infty} p_n = \infty$.

21. Puesto que -1 < a < 0 y 2 < b < 3, tenemos 1 < a + b < 3 o 1/2 < 1/2(a + b) < 3/2 en todos los casos. Además,

$$f(x) < 0$$
, para $-1 < x < 0$ y $1 < x < 2$;

$$f(x) > 0$$
, para $0 < x < 1$ y $2 < x < 3$.

Por lo tanto, $a_1 = a$, $f(a_1) < 0$, $b_1 = b$, y $f(b_1) > 0$.

a. Puesto que a+b<2, tenemos $p_1=\frac{a+b}{2}$ y $1/2< p_1<1$. Por lo tanto, $f(p_1)>0$. Por lo tanto, $a_2=a_1=a$ y $b_2=p_1$. El único cero de f en $[a_2,b_2]$ es p=0, por lo que la convergencia sería en 0.

b. Puesto que a + b > 2, tenemos $p_1 = \frac{a+b}{2}$ y $1 < p_1 < 3/2$. Por lo tanto, $f(p_1) < 0$. Por lo tanto, $a_2 = p_1$ y $b_2 = b_1 = b$. El único cero de f en $[a_2, b_2]$ es p = 2, por lo que la convergencia sería en 2.

c. Puesto que a+b=2, tenemos $p_1=\frac{a+b}{2}=1$ y $f(p_1)=0$. Por lo tanto, un cero de f se ha encontrado en la primera iteración. La convergencia sería en p=1.

Conjunto de ejercicios 2.2

1. Para el valor de x bajo consideración, tenemos

a.
$$x = (3 + x - 2x^2)^{1/4} \Leftrightarrow x^4 = 3 + x - 2x^2 \Leftrightarrow f(x) = 0$$

b.
$$x = \left(\frac{x+3-x^4}{2}\right)^{1/2} \Leftrightarrow 2x^2 = x+3-x^4 \Leftrightarrow f(x) = 0$$

c.
$$x = \left(\frac{x+3}{x^2+2}\right)^{1/2} \Leftrightarrow x^2(x^2+2) = x+3 \Leftrightarrow f(x) = 0$$

d.
$$x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1} \Leftrightarrow 4x^4 + 4x^2 - x = 3x^4 + 2x^2 + 3 \Leftrightarrow f(x) = 0$$

- **3. a.** Resuelva para 2x, a continuación divida entre 2. $p_1 = 0.5625$, $p_2 = 0.58898926$, $p_2 = 0.60216264$, $p_4 = 0.60917204$
 - **b.** Resuelva para x^3 , divida entre x^2 . $p_1 = 0$, p_2 indefinida.
 - Resuelva para x^3 , divida entre x, a continuación tome la raíz cuadrada positiva. $p_1 = 0$, p_2 indefinida.
 - Resuelva para x^3 , a continuación tome la raíz cuadrada negativa, $p_1 = 0$, $p_2 = -1$, $p_3 = -1.4422496$, $p_4 = -1.57197274$. Las partes a) y b) parecen prometedoras.
- 5. El orden en la velocidad descendente de convergencia es b), d), a). La sucesión en c) no converge.
- 7. Con $g(x) = (3x^2 + 3)^{1/4}$ y $p_0 = 1$, $p_6 = 1.94332$ es exacta dentro de 0.01.
- 9. Puesto que $g'(x) = \frac{1}{4}\cos\frac{x}{2}$, g es continua y g' existe en $[0, 2\pi]$. Además, g(x) = 0 solamente cuando $x = \pi$, de tal forma que $g(0) = g(2\pi) = \pi \le g(x) = \le g(\pi) = \pi + \frac{1}{2} y |g'(x)| \le \frac{1}{4}$, para $0 \le x \le 2\pi$. El teorema 2.3 implica que existe un solo punto p fijo en $[0, 2\pi]$. Con $k = \frac{1}{4}$ y $p_0 = \pi$, tenemos $p_1 = \pi + \frac{1}{2}$. El corolario 2.5 implica que

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0| = \frac{2}{3} \left(\frac{1}{4}\right)^n.$$

Para que la cota sea menor a 0.1, necesitamos $n \ge 4$. Sin embargo, $p_3 = 3.626996$ es exacta dentro de 0.01.

- 11. Para $p_0 = 1.0$ y $g(x) = 0.5(x + \frac{3}{x})$, tenemos $\sqrt{3} \approx p_4 = 1.73205$.
- **13. a.** Con [0, 1] y $p_0 = 0$, tenemos $p_9 = 0.257531$.
 - **c.** Con [0.25, 1] y $p_0 = 0.25$, tenemos $p_{14} = 0.909999$.

 - **e.** Con [0.3, 0.6] y $p_0 = 0.3$, tenemos $p_{48} = 0.448059$.
- **15.** Para $g(x) = (2x^2 10\cos x)/(3x)$, tenemos lo siguiente:

b. Con [2.5, 3.0] y
$$p_0 = 2.5$$
, tenemos $p_{17} = 2.690650$.

- **d.** Con [0.3, 0.7] y $p_0 = 0.3$, tenemos $p_{39} = 0.469625$.
- **f.** Con [0, 1] y $p_0 = 0$, tenemos $p_6 = 0.704812$.

$$p_0 = 3 \Rightarrow p_8 = 3.16193;$$
 $p_0 = -3 \Rightarrow p_8 = -3.16193.$

Para $g(x) = \arccos(-0.1x^2)$, tenemos lo siguiente:

$$p_0 = 1 \Rightarrow p_{11} = 1.96882;$$
 $p_0 = -1 \Rightarrow p_{11} = -1.96882.$

- 17. Con $g(x) = \frac{1}{\pi} \arcsin(-\frac{x}{2}) + 2$, tenemos $p_5 = 1.683855$.
- 19. Puesto que g' es continua en p y |g'(p)| > 1, al permitir que $\epsilon = |g'(p)| 1$ existe un número $\delta > 0$ tal que |g'(x) - g'(p)| < |g'(p)| - 1 siempre que $0 < |x - p| < \delta$. Por lo tanto, para cualquier x que satisfaga $0 < |x - p| < \delta$, tenemos

$$|g'(x)| \ge |g'(p)| - |g'(x) - g'(p)| > |g'(p)| - (|g'(p)| - 1) = 1.$$

Si p_0 se selecciona de tal forma que $0 < |p - p_0| < \delta$, por el teorema de valor medio tenemos que

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p|,$$

para algunos ξ entre p_0 y p. Por lo tanto, $0 < |p - \xi| < \delta$ so $|p_1 - p| = |g'(\xi)||p_0 - p| > |p_0 - p|$.

- **21.** Uno de muchos ejemplos es $g(x) = \sqrt{2x-1}$ en $\left[\frac{1}{2}, 1\right]$.
- **23.** a. Suponga que $x_0 > \sqrt{2}$. Entonces,

$$x_1 - \sqrt{2} = g(x_0) - g(\sqrt{2}) = g'(\xi)(x_0 - \sqrt{2}),$$

donde $\sqrt{2} < \xi < x$. Por lo tanto, $x_1 - \sqrt{2} > 0$ y $x_1 > \sqrt{2}$. Además,

$$x_1 = \frac{x_0}{2} + \frac{1}{x_0} < \frac{x_0}{2} + \frac{1}{\sqrt{2}} = \frac{x_0 + \sqrt{2}}{2}$$

y $\sqrt{2} < x_1 < x_0$. Mediante un argumento inductivo,

$$\sqrt{2} < x_{m+1} < x_m < \ldots < x_0.$$

Por lo tanto, $\{x_m\}$ es una sucesión decreciente, acotada inferiormente y debe converger.

Suponga que $p = \lim_{m \to \infty} x_m$. Entonces

$$p = \lim_{m \to \infty} \left(\frac{x_{m-1}}{2} + \frac{1}{x_{m-1}} \right) = \frac{p}{2} + \frac{1}{p}$$
. Por lo tanto, $p = \frac{p}{2} + \frac{1}{p}$,

lo cual implica que $p = \pm \sqrt{2}$. Ya que $x_m > \sqrt{2}$ para todas las m, tenemos lím $_{m\to\infty} x_m = \sqrt{2}$.

b. Tenemos

$$0 < (x_0 - \sqrt{2})^2 = x_0^2 - 2x_0\sqrt{2} + 2$$

de tal forma que $2x_0\sqrt{2} < x_0^2 + 2$ y $\sqrt{2} < \frac{x_0}{2} + \frac{1}{x_0} = x_1$.

c. Caso 1: $0 < x_0 < \sqrt{2}$, lo cual implica que $\sqrt{2} < x_1$ mediante la parte b). Por lo tanto,

$$0 < x_0 < \sqrt{2} < x_{m+1} < x_m < \ldots < x_1$$
 y $\lim_{m \to \infty} x_m = \sqrt{2}$.

Caso 2: $x_0 = \sqrt{2}$, lo cual implica que $x_m = \sqrt{2}$ para todas las m y lím $_{m\to\infty} x_m = \sqrt{2}$.

Caso 3: $x_0 > \sqrt{2}$, lo cual, mediante la parte a), implica que $\lim_{m \to \infty} x_m = \sqrt{2}$.

25. Reemplace la segunda oración en la demostración con "Puesto que g satisface una condición de Lipschitz en [a, b] con una constante de Lipschitz L < 1, tenemos, para cada n,

$$|p_n - p| = |g(p_{n-1}) - g(p)| \le L|p_{n-1} - p|$$
."

El resto de la prueba es igual, con k reemplazada por L.

Conjunto de ejercicios 2.3

- 1. $p_2 = 2.60714$
- **3. a.** 2.45454

- **b.** 2.44444
- **5. a.** Para $p_0 = 2$, tenemos $p_5 = 2.69065$.
 - **c.** Para $p_0 = 0$, tenemos $p_4 = 0.73909$.
- 7. Usando los extremos de los intervalos como p₀ y p₁, tenemos:
 - **a.** $p_{11} = 2.69065$
- **b.** $p_7 = -2.87939$
- **c.** $p_6 = 0.73909$
- **d.** $p_5 = 0.96433$

- **9.** Usando los extremos de los intervalos como p_0 y p_1 , tenemos:
 - **a.** $p_{16} = 2.69060$
- **b.** $p_6 = -2.87938$
- **c.** $p_7 = 0.73908$
- **d.** $p_6 = 0.96433$

- **11. a.** El método de Newton con $p_0 = 1.5$ da $p_3 = 1.51213455$.
 - El método de la secante con $p_0 = 1$ y $p_1 = 2$ da $p_{10} = 1.51213455$.

El método de posición falsa con $p_0 = 1$ y $p_1 = 2$ da $p_{17} = 1.51212954$.

- **b.** El método de Newton con $p_0 = 0.5$ da $p_5 = 0.976773017$.
 - El método de la secante con $p_0 = 0$ y $p_1 = 1$ da $p_5 = 10.976773017$.

El método de posición falsa con $p_0 = 0$ y $p_1 = 1$ da $p_5 = 0.976772976$.

- **13. a.** Para $p_0 = -1$ y $p_1 = 0$, tenemos $p_{17} = -0.04065850$, y para $p_0 = 0$ y $p_1 = 1$, tenemos $p_9 = 0.9623984$.
 - **b.** Para $p_0 = -1$ y $p_1 = 0$, tenemos $p_5 = -0.04065929$, y para $p_0 = 0$ y $p_1 = 1$, tenemos $p_{12} = -0.04065929$.
 - **c.** Para $p_0 = -0.5$, tenemos $p_5 = -0.04065929$, y para $p_0 = 0.5$, tenemos $p_{21} = 0.9623989$.
- **15. a.** $p_0 = -10$, $p_{11} = -4.30624527$

b. $p_0 = -5$, $p_5 = -4.30624527$

c. $p_0 = -3$, $p_5 = 0.824498585$

d. $p_0 = -1$, $p_4 = -0.824498585$

b. Para $p_0 = -3$, tenemos $p_3 = -2.87939$.

d. Para $p_0 = 0$, tenemos $p_3 = 0.96434$.

- **e.** $p_0 = 0$, p_1 no se puede calcular, ya que f'(0) = 0
- **f.** $p_0 = 1$, $p_4 = 0.824498585$

g. $p_0 = 3$, $p_5 = -0.824498585$

h. $p_0 = 5$, $p_5 = 4.30624527$

- **i.** $p_0 = 10$, $p_{11} = 4.30624527$
- 17. Para $f(x) = \ln(x^2 + 1) e^{0.4x} \cos \pi x$, tenemos las siguientes raíces.
 - **a.** Para $p_0 = -0.5$, $p_3 = -0.4341431$.
 - **b.** Para $p_0 = 0.5$, $p_3 = 0.4506567$.
 - Para $p_0 = 1.5$, $p_3 = 1.7447381$.
 - Para $p_0 = 2.5$, $p_5 = 2.2383198$.
 - Para $p_0 = 3.5$, $p_4 = 3.7090412$.
 - **c.** La aproximación inicial n 0.5 es bastante razonable.
 - **d.** Para $p_0 = 24.5$, $p_2 = 24.4998870$.

- **19.** Para $p_0 = 1$, $p_5 = 0.589755$. El punto tiene las coordenadas (0.589755, 0.347811).
- 21. Los dos números son aproximadamente 6.512849 y 13.487151.
- 23. El deudor puede pagar máximo 8.10 %.
- **25.** Tenemos $P_L = 265816$, c = -0.75658125, y k = 0.045017502. La población de 1980 es P(30) = 222248320 y la población de 2010 es P(60) = 252967030.
- **27.** Por medio de $p_0 = 0.5$ y $p_1 = 0.9$, el método de la secante da $p_5 = 0.842$.
- 29. a. Tenemos, aproximadamente,

$$A = 17.74$$
, $B = 87.21$, $C = 9.66$, $y E = 47.47$

Con estos valores, tenemos

$$A \operatorname{sen} \alpha \cos \alpha + B \operatorname{sen}^2 \alpha - C \cos \alpha - E \operatorname{sen} \alpha = 0.02.$$

- **b.** El método de Newton da $\alpha \approx 33.2^{\circ}$.
- 31. La ecuación de la recta tangente es

$$y - f(p_{n-1}) = f'(p_{n-1})(x - p_{n-1}).$$

Para completar este problema, establezca y = 0 y resuelva para $x = p_n$.

Conjunto de ejercicios 2.4

- **1. a.** Para $p_0 = 0.5$, tenemos $p_{13} = 0.567135$.
- **b.** Para $p_0 = -1.5$, tenemos $p_{23} = -1.414325$.
- **c.** Para $p_0 = 0.5$, tenemos $p_{22} = 0.641166$.
- **d.** Para $p_0 = -0.5$, tenemos $p_{23} = -0.183274$.
- 3. El método modificado de Newton en la ecuación (2.11) provee lo siguiente:
 - **a.** Para $p_0 = 0.5$, tenemos $p_3 = 0.567143$.
- **b.** Para $p_0 = -1.5$, tenemos $p_2 = -1.414158$.
- **c.** Para $p_0 = 0.5$, tenemos $p_3 = 0.641274$.
- **d.** Para $p_0 = -0.5$, tenemos $p_5 = -0.183319$.
- 5. El método de Newton con $p_0 = -0.5$ da $p_{13} = -0.169607$. El método de Newton modificado en la ecuación (2.11) con $p_0 = -0.5$ da $p_{11} = -0.169607$.
- **7. a.** Para k > 0,

$$\lim_{n \to \infty} \frac{|p_{n+1} - 0|}{|p_n - 0|} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^k}}{\frac{1}{n^k}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^k = 1,$$

por lo que la convergencia es lineal.

- **b.** Necesitamos tener $N > 10^{m/k}$.
- 9. Los ejemplos comunes son

a.
$$p_n = 10^{-3^n}$$

b.
$$p_n = 10^{-\alpha^n}$$

- 11. Esto sigue al hecho de que $\lim_{n \to \infty} \frac{\left|\frac{b-a}{2^{n+1}}\right|}{\left|\frac{b-a}{2^n}\right|} = \frac{1}{2}$.
- **13.** Si $\frac{|p_{n+1}-p|}{|p_n-p|^3} = 0.75$ y $|p_0-p| = 0.5$, entonces $|p_n-p| = (0.75)^{(3^n-1)/2} |p_0-p|^{3^n}$. Para tener $|p_n-p| \le 10^{-8}$ se requiere que $n \ge 3$.

Conjunto de ejercicios 2.5

1. Los resultados se muestran en la siguiente tabla.

	a	b	c	d
\hat{p}_0	0.258684	0.907859	0.548101	0.731385
\hat{p}_1	0.257613	0.909568	0.547915	0.736087
\hat{p}_2	0.257536	0.909917	0.547847	0.737653
\hat{p}_3	0.257531	0.909989	0.547823	0.738469
\hat{p}_4	0.257530	0.910004	0.547814	0.738798
\hat{p}_5	0.257530	0.910007	0.547810	0.738958

3.
$$p_0^{(1)} = 0.826427$$

5.
$$p_1^{(0)} = 1.5$$

7. Para
$$g(x) = \sqrt{1 + \frac{1}{x}}$$
 y $p_0^{(0)} = 1$, tenemos $p_0^{(3)} = 1.32472$.

9. Para
$$g(x) = 0.5(x + \frac{3}{x})$$
 y $p_0^{(0)} = 0.5$, tenemos $p_0^{(4)} = 1.73205$.

11. a. Para
$$g(x) = (2 - e^x + x^2)/3$$
 y $p_0^{(0)} = 0$, tenemos $p_0^{(3)} = 0.257530$.

b. Para
$$g(x) = 0.5(\sin x + \cos x)$$
 y $p_0^{(0)} = 0$, tenemos $p_0^{(4)} = 0.704812$.

c. Con
$$p_0^{(0)} = 0.25$$
, $p_0^{(4)} = 0.910007572$.

d. Con
$$p_0^{(0)} = 0.3$$
, $p_0^{(4)} = 0.469621923$.

13. El método
$$\Delta^2$$
 de Aitkens da:

a.
$$\hat{p}_{10} = 0.0\overline{45}$$

b.
$$\hat{p}_2 = 0.0363$$

$$\frac{|p_{n+1}-p_n|}{|p_n-p|} = \frac{|p_{n+1}-p+p-p_n|}{|p_n-p|} = \left|\frac{p_{n+1}-p}{p_n-p}-1\right|,$$

por lo que

$$\lim_{n \to \infty} \frac{|p_{n+1} - p_n|}{|p_n - p|} = \lim_{n \to \infty} \left| \frac{p_{n+1} - p}{p_n - p} - 1 \right| = 1.$$

17. a. Sugerencia: Primero mostramos que $p_n-p=-\frac{1}{(n+1)!}e^{\xi}x^{n+1}$, donde ξ está entre 0 y 1.

n	p_n	\hat{p}_n
0	1	3
1	2	2.75
2	2.5	$2.7\overline{2}$
3	$2.\overline{6}$	2.71875
4	$2.708\overline{3}$	$2.718\overline{3}$
5	$2.71\overline{6}$	2.7182870
6	$2.7180\overline{5}$	2.7182823
7	2.7182539	2.7182818
8	2.7182787	2.7182818
9	2.7182815	
10	2.7182818	

Conjunto de ejercicios 2.6

- **1. a.** Para $p_0 = 1$, tenemos $p_{22} = 2.69065$.
 - **b.** Para $p_0 = 1$, tenemos $p_5 = 0.53209$; para $p_0 = -1$, tenemos $p_3 = -0.65270$; y para $p_0 = -3$, tenemos $p_3 = -2.87939$.
 - **c.** Para $p_0 = 1$, tenemos $p_5 = 1.32472$.
 - **d.** Para $p_0 = 1$, tenemos $p_4 = 1.12412$; y para $p_0 = 0$, tenemos $p_8 = -0.87605$.
 - e. Para $p_0 = 0$, tenemos $p_6 = -0.47006$; para $p_0 = -1$, tenemos $p_4 = -0.88533$; y para $p_0 = -3$, tenemos $p_4 = -2.64561$.
 - **f.** Para $p_0 = 0$, tenemos $p_{10} = 1.49819$.

3. La siguiente tabla lista la aproximación inicial y las raíces.

	p_0	p_1	p_2	Raíces aproximadas	Raíces conjugadas complejas
a	-1	0	1	$p_7 = -0.34532 - 1.31873i$	-0.34532 + 1.31873i
	0	1	2	$p_6 = 2.69065$	
b	0	1	2	$p_6 = 0.53209$	
	1	2	3	$p_9 = -0.65270$	
	-2	-3	-2.5	$p_4 = -2.87939$	
c	0	1	2	$p_5 = 1.32472$	
	-2	-1	0	$p_7 = -0.66236 - 0.56228i$	-0.66236 + 0.56228i
d	0	1	2	$p_5 = 1.12412$	
	2	3	4	$p_{12} = -0.12403 + 1.74096i$	-0.12403 - 1.74096i
	-2	0	-1	$p_5 = -0.87605$	
e	0	1	2	$p_{10} = -0.88533$	
	1	0	-0.5	$p_5 = -0.47006$	
	-1	-2	-3	$p_5 = -2.64561$	
f	0	1	2	$p_6 = 1.49819$	
	-1	-2	-3	$p_{10} = -0.51363 - 1.09156i$	-0.51363 + 1.09156i
	1	0	-1	$p_8 = 0.26454 - 1.32837i$	0.26454 + 1.32837i

- **5. a.** Las raíces son 1.244, 8.847 y -1.091, y los puntos críticos son 0 y 6.
 - **b.** Las raíces son 0.5798, 1.521, 2.332, y -2.432 y los puntos críticos son 1, 2.001 y -1.5.
- 7. Todos los métodos encuentran la solución 0.23235.
- **9.** El material mínimo es aproximadamente 573.64895 cm².

Conjunto de ejercicios 3.1

- **1. a.** $P_1(x) = -0.148878x + 1$; $P_2(x) = -0.452592x^2 0.0131009x + 1$; $P_1(0.45) = 0.933005$; $|f(0.45) P_1(0.45)| = 0.032558$; $P_2(0.45) = 0.902455$; $|f(0.45) P_2(0.45)| = 0.002008$
 - **b.** $P_1(x) = 0.467251x + 1$; $P_2(x) = -0.0780026x^2 + 0.490652x + 1$; $P_1(0.45) = 1.210263$; $|f(0.45) P_1(0.45)| = 0.006104$; $P_2(0.45) = 1.204998$; $|f(0.45) P_2(0.45)| = 0.000839$
 - **c.** $P_1(x) = 0.874548x$; $P_2(x) = -0.268961x^2 + 0.955236x$; $P_1(0.45) = 0.393546$; $|f(0.45) P_1(0.45)| = 0.0212983$; |f(0.45) 0.375392; $|f(0.45) P_2(0.45)| = 0.003828$
 - **d.** $P_1(x) = 1.031121x$; $P_2(x) = 0.615092x^2 + 0.846593x$; $P_1(0.45) = 0.464004$; $|f(0.45) P_1(0.45)| = 0.019051$; $P_2(0.45) = 0.505523$; $|f(0.45) P_2(0.45)| = 0.022468$
- **3.** a. $\left| \frac{f''(\xi)}{2}(0.45 0)(0.45 0.6) \right| \le 0.135; \left| \frac{f'''(\xi)}{6}(0.45 0)(0.45 0.6)(0.45 0.9) \right| \le 0.00397$
 - **b.** $\left| \frac{f''(\xi)}{2}(0.45 0)(0.45 0.6) \right| \le 0.03375; \left| \frac{f'''(\xi)}{6}(0.45 0)(0.45 0.6)(0.45 0.9) \right| \le 0.001898$
 - **c.** $\left| \frac{f''(\xi)}{2}(0.45 0)(0.45 0.6) \right| \le 0.135; \left| \frac{f'''(\xi)}{6}(0.45 0)(0.45 0.6)(0.45 0.9) \right| \le 0.010125$
 - **d.** $\left| \frac{f''(\xi)}{2}(0.45 0)(0.45 0.6) \right| \le 0.06779; \left| \frac{f'''(\xi)}{6}(0.45 0)(0.45 0.6)(0.45 0.9) \right| \le 0.151$

5. a.

n	x_0, x_1, \ldots, x_n	$P_n(8.4)$
1	8.3, 8.6	17.87833
2	8.3, 8.6, 8.7	17.87716
3	8.3, 8.6, 8.7, 8.1	17.87714

c.

n	x_0, x_1, \ldots, x_n	$P_n(0.25)$
1	0.2, 0.3	-0.13869287
2	0.2, 0.3, 0.4	-0.13259734
3	0.2, 0.3, 0.4, 0.1	-0.13277477

b.

n	x_0, x_1, \ldots, x_n	$P_n(-1/3)$
1	-0.5, -0.25	0.21504167
2	-0.5, -0.25, 0.0	0.16988889
3	-0.5, -0.25, 0.0, -0.75	0.17451852

d.

•		
n	x_0, x_1, \ldots, x_n	$P_n(0.9)$
1	0.8, 1.0	0.44086280
2	0.8, 1.0, 0.7	0.43841352
3	0.8, 1.0, 0.7, 0.6	0.44198500

7. a.			
	n	Error real	Cota de error
	1	1.180×10^{-3}	1.200×10^{-3}
	2	1.367×10^{-5}	1.452×10^{-5}

n	Error real	Cota de error
1	5.921×10^{-3}	6.097×10^{-3}
2	1.746×10^{-4}	1.813×10^{-4}

b.			
	n	Error real	Cota de error
	1	4.052×10^{-2}	4.515×10^{-2}
	2	4.630×10^{-3}	4.630×10^{-3}
d.			
	n	Error real	Cota de error
	1	2.730×10^{-3}	1.408×10^{-2}
	2	5.179×10^{-3}	9.222×10^{-3}

9.
$$y = 4.25$$

11. Tenemos $f(1.09) \approx 0.2826$. El error real es 4.3×10^{-5} , y una cota de error es 7.4×10^{-6} . La discrepancia se debe al hecho de que los datos están determinados solamente para cuatro lugares decimales y sólo se utiliza aritmética de cuatro dígitos.

13. a. $P_2(x) = -11.22388889x^2 + 3.810500000x + 1$, y una cota de error es 0.11371294.

b. $P_2(x) = -0.1306344167x^2 + 0.8969979335x - 0.63249693$, y una cota de error es 9.45762×10^{-4} .

c. $P_3(x) = 0.1970056667x^3 - 1.06259055x^2 + 2.532453189x - 1.666868305$, y una cota de error es 10^{-4} .

d. $P_3(x) = -0.07932x^3 - 0.545506x^2 + 1.0065992x + 1$, y una cota de error es 1.591376×10^{-3} .

15. a. 1.32436

b. 2.18350

c. 1.15277, 2.01191

d. Las partes a) y b) son mejores debido al espaciamiento de los nodos.

17. La longitud de paso más grande posible es 0.004291932, por lo que 0.004 sería una selección razonable.

19. a. El polinomio de interpolación es $P_5(x) = -0.00252225x^5 + 0.286629x^4 - 10.7938x^3 + 157.312x^2 + 1642.75x + 179323$. El año 1960 corresponde a x = 0, por lo que los resultados son:

AÑO	1950	1975	2014	2020
x	-10	15	54	60
$P_5(x)$	192 539	215 526	306 211	266 161
Censo de Estados Unidos	150 697	215 973 (EST.)	317 298(<i>EST</i> .)	341 000(<i>EST</i> .)

b. Con base en el valor de 1950, no pondremos mucha confianza en los valores para 1975, 2014 y 2020. Sin embargo, el valor de 1975 es cercano a la población calculada, pero el valor de 2014 no es muy bueno. El valor 2020 es poco realista.

21. Puesto que $g'((j+\frac{1}{2})h)=0$,

$$\max|g(x)| = \max\left\{|g(jh)|, \left|g\left(\left(j+\frac{1}{2}\right)h\right)\right|, |g((j+1)h)|\right\} = \max\left(0, \frac{h^2}{4}\right),$$

luego $|g(x)| \le h^2/4$.

23. a. (i) $B_3(x) = x$ (ii) $B_3(x) = 1$

d. $n \ge 250\,000$

Conjunto de ejercicios 3.2

1. Las aproximaciones son iguales a las del ejercicio 5 en la sección 3.1.

3. a. Tenemos $\sqrt{3} \approx P_4(1/2) = 1.708\overline{3}$.

b. Tenemos $\sqrt{3} \approx P_4(3) = 1.690607$.

c. El error absoluto en la parte a) es aproximadamente 0.0237 y el error absoluto en la parte b) es 0.0414, por lo que la parte a) es más exacta.

5. $P_2 = f(0.5) = 4$

7. $P_{0,1,2,3}(2.5) = 2.875$

9. La aproximación incorrecta es -f(2)/6 + 2f(1)/3 + 2/3 + 2f(-1)/3 - f(-2)/6 y la aproximación correcta es -f(2)/6 + 2f(1)/3 + 2f(-1)/3 - f(-2)/6, por lo que la aproximación incorrecta es 2/3 más grande.

11. Los primeros 10 términos de la sucesión son 0.038462, 0.333671, 0.116605, -0.371760, -0.0548919, 0.605935, 0.190249, -0.513353, -0.0668173, y 0.448335.

Puesto que $f(1+\sqrt{10}) = 0.0545716$, la sucesión no parece converger.

13. Modifique el algoritmo 3.1 de acuerdo con lo siguiente:

```
ENTRADA números y_0, y_1, \ldots, y_n; valores x_0, x_1, \ldots, x_n como la primera columna Q_{0,0}, Q_{1,0}, \ldots, Q_{n,0} de Q.
SALIDA la tabla Q con Q_{n,n} que se aproxima a f^{-1}(0).
```

PASO 1 Para
$$i = 1, 2, ..., n$$

para $j = 1, 2, ..., i$
determine

$$Q_{i,j} = \frac{y_i Q_{i-1,j-1} - y_{i-j} Q_{i,j-1}}{y_i - y_{i-j}}.$$

Conjunto de ejercicios 3.3

1. a.
$$P_1(x) = 16.9441 + 3.1041(x - 8.1)$$
; $P_1(8.4) = 17.87533$; $P_2(x) = P_1(x) + 0.06(x - 8.1)(x - 8.3)$; $P_2(8.4) = 17.87713$; $P_3(x) = P_2(x) - 0.00208333(x - 8.1)(x - 8.3)(x - 8.6)$; $P_3(8.4) = 17.87714$

b.
$$P_1(x) = -0.1769446 + 1.9069687(x - 0.6)$$
; $P_1(0.9) = 0.395146$;

$$P_2(x) = P_1(x) + 0.959224(x - 0.6)(x - 0.7); P_2(0.9) = 0.4526995;$$

$$P_3(x) = P_2(x) - 1.785741(x - 0.6)(x - 0.7)(x - 0.8); P_3(0.9) = 0.4419850$$

- **3.** En las siguientes ecuaciones, tenemos $s = \frac{1}{h}(x x_0)$.
 - **a.** $P_1(s) = -0.718125 0.0470625s$; $P_1\left(-\frac{1}{3}\right) = -0.006625$

$$P_2(s) = P_1(s) + 0.312625s(s-1)/2; P_2(\frac{3}{3}) = 0.1803056$$

$$P_3(s) = P_2(s) + 0.09375s(s-1)(s-2)/6$$
; $P_3(-\frac{1}{3}) = 0.1745185$

b.
$$P_1(s) = -0.62049958 + 0.3365129s$$
; $P_1(0.25) = -0.1157302$

$$P_2(s) = P_1(s) - 0.04592527s(s-1)/2$$
; $P_2(0.25) = -0.1329522$

$$P_3(s) = P_2(s) - 0.00283891s(s-1)(s-2)/6; P_3(0.25) = -0.1327748$$

- **5.** En las siguientes ecuaciones, tenemos $s = \frac{1}{h}(x x_n)$.

a.
$$P_1(s) = 1.101 + 0.7660625s;$$
 $f(-\frac{1}{3}) \approx P_1(-\frac{4}{3}) = 0.07958333;$ $P_2(s) = P_1(s) + 0.406375s(s+1)/2;$ $f(-\frac{1}{3}) \approx P_2(-\frac{4}{3}) = 0.1698889;$

$$P_3(s) = P_2(s) + 0.09375s(s+1)(s+2)/6;$$
 $f(-\frac{1}{3}) \approx P_3(-\frac{4}{3}) = 0.1745185$

b.
$$P_1(s) = 0.2484244 + 0.2418235s$$
; $f(0.25) \approx P_1(-1.5) = -0.1143108$

$$P_2(s) = P_1(s) - 0.04876419s(s+1)/2;$$
 $f(0.25) \approx P_2(-1.5) = -0.1325973$

$$P_3(s) = P_2(s) - 0.00283891s(s+1)(s+2)/6; \quad f(0.25) \approx P_3(-1.5) = -0.1327748$$

7. a.
$$P_3(x) = 5.3 - 33(x + 0.1) + 129.8\overline{3}(x + 0.1)x - 556.\overline{6}(x + 0.1)x(x - 0.2)$$

b.
$$P_4(x) = P_3(x) + 2730.243387(x + 0.1)x(x - 0.2)(x - 0.3)$$

9. a.
$$f(0.05) \approx 1.05126$$

b.
$$f(0.65) \approx 1.91555$$

c.
$$f(0.43) \approx 1.53725$$

- 11. El coeficiente de x^2 es 3.5.
- 13. La aproximación para f(0.3) debería incrementarse por 5.9375.
- **15.** $\Delta^2 P(10) = 1140$
- **17. a.** El polinomio de interpolación es $P_5(x) = 179323 + 2397.4x 3.695x(x 10) + 0.0983x(x 10)(x 20) + 0.0983x(x 10)(x 20)$ 0.0344042x(x-10)(x-20)(x-30) - 0.00252225x(x-10)(x-20)(x-30)(x-40), donde x=0 corresponde a 1960.

$$P_5(-10) = 192539$$
 aproxima la población en 1950.

$$P_5(15) = 215\,526$$
 aproxima la población en 1975.

$$P_5(54) = 306215$$
 aproxima la población en 2014.

$$P_5(60) = 266\,165$$
 aproxima la población en 2020.

- b. Con base en el valor de 1950, no daríamos mucho crédito a las aproximaciones de 1975, 2014 y 2020. A pesar de que 1975 y 2014 no son malos, 2020 parece poco realista.
- 19. $\Delta^3 f(x_0) = -6$, $\Delta^4 f(x_0) = \Delta^5 f(x_0) = 0$, por lo que el polinomio interpolante tiene grado 3.
- **21.** Puesto que $f[x_2] = f[x_0] + f[x_0, x_1](x_1 x_0) + a_2(x_2 x_0)(x_2 x_1)$,

$$a_2 = \frac{f[x_2] - f[x_0]}{(x_2 - x_0)(x_2 - x_1)} - \frac{f[x_0, x_1]}{(x_2 - x_1)}.$$

Esto se simplifica en $f[x_0, x_1, x_2]$.

23. Sea $\tilde{P}(x) = f[x_{i_0}] + \sum_{k=1}^n f[x_{i_0}, \dots, x_{i_k}](x - x_{i_0}) \cdots (x - x_{i_k})$ y $\hat{P}(x) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k](x - x_0) \cdots (x - x_k)$. El polinimio $\tilde{P}(x)$ interpola f(x) en los nodos x_0, \dots, x_n , y los polinomios $\hat{P}(x)$ interpola f(x) en los nodos x_0, \dots, x_n . Puesto que ambos conjuntos de nodos son iguales y el polinomio de interpolación es único, tenemos $\tilde{P}(x) = \hat{P}(x)$. El coeficiente de x^n en $\tilde{P}(x)$ es $f[x_0, \dots, x_n]$, y el coeficiente de x^n en $\hat{P}(x)$ es $f[x_0, \dots, x_n]$. Por lo tanto, $f[x_0, \dots, x_n] = f[x_0, \dots, x_n]$.

Conjunto de ejercicios 3.4

1. Los coeficientes de los polinomios en forma de diferencia dividida están dados en las siguientes tablas. Por ejemplo, el polinomio en la parte a) es

$$H_3(x) = 17.56492 + 3.116256(x - 8.3) + 0.05948(x - 8.3)^2 - 0.00202222(x - 8.3)^2(x - 8.6).$$

a	b	c	d
17.56492	0.22363362	-0.02475	-0.62049958
3.116256	2.1691753	0.751	3.5850208
0.05948	0.01558225	2.751	-2.1989182
-0.00202222	-3.2177925	1	-0.490447
		0	0.037205
		0	0.040475
			-0.0025277777
			0.0029629628

3. La siguiente tabla muestra las aproximaciones.

		Aproximación	Real	
	X	para $f(x)$	f(x)	Error
a	8.4	17.877144	17.877146	2.33×10^{-6}
b	0.9	0.44392477	0.44359244	3.3323×10^{-4}
c	$-\frac{1}{3}$	0.1745185	0.17451852	1.85×10^{-8}
d	0.25	-0.1327719	-0.13277189	5.42×10^{-9}

- **5. a.** Tenemos sen $0.34 \approx H_5(0.34) = 0.33349$.
 - b. La fórmula proporciona una cota de error de 3.05 × 10⁻¹⁴, pero el error real es 2.91 × 10⁻⁶. La discrepancia se debe al hecho de que los datos sólo están provistos por cinco lugares decimales.
 - c. Tenemos sen $0.34 \approx H_7(0.34) = 0.33350$. A pesar de que la cota de error ahora es 5.4×10^{-20} , la inexactitud de los datos provistos domina los cálculos. Este resultado es realmente menos exacto que la aproximación en la parte b), puesto que sen 0.34 = 0.333487.
- 7. $H_3(1.25) = 1.169080403$ con una cota de error de 4.81×10^{-5} , y $H_5(1.25) = 1.169016064$ con una cota de error de 4.43×10^{-4} .
- 9. $H_3(1.25) = 1.169080403$ con una cota de error de 4.81×10^{-5} , y $H_5(1.25) = 1.169016064$ con una cota de error de 4.43×10^{-4} .
- **11. a.** Suponga que P(x) es otro polinomio con $P(x_k) = f(x_k)$ y $P'(x_k) = f'(x_k)$, para k = 0, ..., n, y que el grado de P(x) es máximo 2n + 1. Haga

$$D(x) = H_{2n+1}(x) - P(x).$$

Entonces D(x) es un polinomio de grado máximo 2n + 1 con $D(x_k) = 0$, y $D'(x_k) = 0$, para cada k = 0, 1, ..., n. Por lo tanto, D tiene ceros de multiplicidad 2 en cada x_k y

$$D(x) = (x - x_0)^2 \dots (x - x_n)^2 Q(x).$$

Por lo tanto, D(x) debe ser de grado 2n o más, lo cual sería una contradicción, o $Q(x) \equiv 0$ implica que $D(x) \equiv 0$. Por lo tanto, $P(x) \equiv H_{2n+1}(x)$.

b. Primero observe que la fórmula de error se mantiene si $x=x_k$ para cualquier selección de ξ . Sea $x\neq x_k$, para $k=0,\ldots,n$, y defina

$$g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \dots (t - x_n)^2}{(x - x_0)^2 \dots (x - x_n)^2} [f(x) - H_{2n+1}(x)].$$

Observe que $g(x_k) = 0$, para $k = 0, \ldots, n$, y g(x) = 0. Por lo tanto, g tiene n + 2 ceros distintos en [a, b]. Por el teorema de Rolle, g' tiene n + 1 ceros distintos ξ_0, \ldots, ξ_n , los cuales se encuentran entre los números x_0, \ldots, x_n, x . Además, $g'(x_k) = 0$, para $k = 0, \ldots, n$, por lo que g' tiene 2n + 2 ceros distintos $\xi_0, \ldots, \xi_n, x_0, \ldots, x_n$. Puesto que g' es 2n + 1 veces diferenciable, el teorema de Rolle generalizado implica que existe un número ξ en [a, b] con $g^{(2n+2)}(\xi) = 0$. Pero,

$$g^{(2n+2)}(t) = f^{(2n+2)}(t) - \frac{d^{2n+2}}{dt^{2n+2}} H_{2n+1}(t) - \frac{[f(x) - H_{2n+1}(x)] \cdot (2n+2)!}{(x - x_0)^2 \cdots (x - x_n)^2}$$

у

$$0 = g^{(2n+2)}(\xi) = f^{(2n+2)}(\xi) - \frac{(2n+2)![f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2}.$$

La fórmula de error se sigue.

Conjunto de ejercicios 3.5

- 1. S(x) = x en [0, 2].
- 3. Las ecuaciones de los splines cúbicos respectivos son

$$S(x) = S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están determinados en las siguientes tablas.

a.	_				
	i	a_i	b_i	c_i	d_i
	0	17.564920	3.13410000	0.00000000	0.00000000

b.					
	i	a_i	b_i	c_i	d_i
	0	0.22363362	2.17229175	0.00000000	0.00000000

c.					
	i	a_i	b_i	c_i	d_i
	0	-0.02475000	1.03237500	0.00000000	6.50200000
	1	0.33493750	2.25150000	4.87650000	-6.50200000

d.	_				
	i	a_i	b_i	c_i	d_i
	0	-0.62049958	3.45508693	0.00000000	-8.9957933
	1	-0.28398668	3.18521313	-2.69873800	-0.94630333
	2	0.00660095	2.61707643	-2.98262900	9.9420966

5. Las siguientes tablas muestran las aproximaciones.

		Aproximación	Real				Aproximación	Real	
	X	para f(x)	f(x)	Error		X	para f'(x)	f'(x)	Error
a	8.4	17.87833	17.877146	1.1840×10^{-3}	a	8.4	3.134100	3.128232	5.86829×10^{-3}
b	0.9	0.4408628	0.44359244	2.7296×10^{-3}	b	0.9	2.172292	2.204367	0.0320747
c	$-\frac{1}{3}$	0.1774144	0.17451852	2.8959×10^{-3}	c	$-\frac{1}{3}$	1.574208	1.668000	0.093792
d	0.25	-0.1315912	-0.13277189	1.1807×10^{-3}	d	0.25	2.908242	2.907061	1.18057×10^{-3}

7. Las ecuaciones de los splines cúbicos condicionados respectivos son

$$s(x) = s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están determinados en las siguientes tablas.

c.					
	i	a_i	b_i	c_i	d_i
	0	-0.02475000	0.75100000	2.5010000	1.0000000
	1	0.33493750	2.18900000	3.2510000	1.0000000

b.	_				
	i	a_i	b_i	c_i	d_i
	0	0.22363362	2.1691753	0.65914075	-3.2177925

d.					
	i	a_i	b_i	c_i	d_i
	0	-0.62049958	3.5850208	-2.1498407	-0.49077413
	1	-0.28398668	3.1403294	-2.2970730	-0.47458360
	2	0.006600950	2.6666773	-2.4394481	-0.44980146

		Aproximación	Real	
	х	para $f(x)$	f(x)	Error
a	8.4	17.877152	17.877146	5.910×10^{-6}
b	0.9	0.4439248	0.44359244	3.323×10^{-4}
c	$-\frac{1}{3}$	0.17451852	0.17451852	0
d	0.25	-0.13277221	-0.13277189	3.19×10^{-7}

		Aproximación	Real	
	х	para $f'(x)$	f'(x)	Error
a	8.4	3.128369	3.128232	1.373×10^{-4}
b	0.9	2.204470	2.204367	1.0296×10^{-4}
c	$-\frac{1}{3}$	1.668000	1.668000	0
d	0.25	2.908242	2.907061	1.18057×10^{-3}

11.
$$b = -1$$
, $c = -3$, $d = 1$

13.
$$a = 4, b = 4, c = -1, d = \frac{1}{3}$$

15. La aproximación lineal por tramos para f está determinada por

$$F(x) = \begin{cases} 20(e^{0.1} - 1)x + 1, & \text{para } x \text{ en } [0, 0.05] \\ 20(e^{0.2} - e^{0.1})x + 2e^{0.1} - e^{0.2}, & \text{para } x \text{ en } (0.05, 1]. \end{cases}$$

Tenemos

9.

$$\int_0^{0.1} F(x) \ dx = 0.1107936 \quad \text{y} \quad \int_0^{0.1} f(x) \ dx = 0.1107014.$$

17. La ecuación del spline es

$$S(x) = S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están determinados en la siguiente tabla.

x_i	a_i	b_i	c_i	d_i
0	1.0	-0.7573593	0.0	-6.627417
0.25	0.7071068	-2.0	-4.970563	6.627417
0.5	0.0	-3.242641	0.0	6.627417
0.75	-0.7071068	-2.0	4.970563	-6.627417

$$\int_0^1 S(x)dx = 0.000000, S'(0.5) = -3.24264, y S''(0.5) = 0.0$$

19. La ecuación del spline es

$$s(x) = s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están determinados en la siguiente tabla.

x_i	a_i	b_i	c_i	d_i
0	1.0	0.0	-5.193321	2.028118
0.25	0.7071068	-2.216388	-3.672233	4.896310
0.5	0.0	-3.134447	0.0	4.896310
0.75	-0.7071068	-2.216388	3.672233	2.028118

$$\int_0^1 s(x) dx = 0.000000, \ s'(0.5) = -3.13445, \ y \ s''(0.5) = 0.0$$

- **21. a.** En [0, 0.05], tenemos $s(x) = 1.000000 + 1.999999x + 1.998302x^2 + 1.401310x^3$, y en (0.05, 0.1], tenemos $s(x) = 1.105170 + 2.210340(x 0.05) + 2.208498(x 0.05)^2 + 1.548758(x 0.05)^3$.
 - **b.** $\int_0^{0.1} s(x) dx = 0.110701$
 - **c.** 1.6×10^{-7}
 - **d.** En [0, 0.05], tenemos $S(x) = 1 + 2.04811x + 22.12184x^3$, y en (0.05, 0.1], tenemos $S(x) = 1.105171 + 2.214028(x 0.05) + 3.318277(x 0.05)^2 22.12184(x 0.05)^3$. S(0.02) = 1.0401139 y S(0.02) = 1.040811.
- 23. El spline tiene la ecuación

$$s(x) = s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están dados en la siguiente tabla.

x_i	a_i	b_i	c_i	d_i
0	0	75	-0.659292	0.219764
3	225	76.9779	1.31858	-0.153761
5	383	80.4071	0.396018	-0.177237
8	623	77.9978	-1.19912	0.0799115

El spline predice una posición de s(10) = 774.84 pies y una velocidad de s'(10) = 74.16 pies/seg. Para maximizar la velocidad, encontramos el único punto crítico de s'(x), y comparamos los valores de s(x) en este punto y en los extremos. Encontramos que máx s'(x) = s'(5.7448) = 80.7 pies/seg = 55.02 mi/h. La velocidad 55 mi/h se excedió primero en aproximadamente 5.5 s.

25. La ecuación del spline es

$$S(x) = S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3,$$

para x en $[x_i, x_{i+1}]$, donde los coeficientes están determinados en la siguiente tabla.

		Muestra 1			Muestra 2				
x_i	a_i	b_i	c_i	d_i	a_i	b_i	c_i	d_i	
0	6.67	-0.44687	0	0.06176	6.67	1.6629	0	-0.00249	
6	17.33	6.2237	1.1118	-0.27099	16.11	1.3943	-0.04477	-0.03251	
10	42.67	2.1104	-2.1401	0.28109	18.89	-0.52442	-0.43490	0.05916	
13	37.33	-3.1406	0.38974	-0.01411	15.00	-1.5365	0.09756	0.00226	
17	30.10	-0.70021	0.22036	-0.02491	10.56	-0.64732	0.12473	-0.01113	
20	29.31	-0.05069	-0.00386	0.00016	9.44	-0.19955	0.02453	-0.00102	

27. Los tres splines condicionados tienen ecuaciones de la forma

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3,$$

para x en $[x_i, x_{i+1}]$, donde los valores de los coeficientes están determinados en las siguientes tablas.

						Spline 3
i	x_i	$a_i = f(x_i)$	b_i	c_i	d_i	$f'(x_i)$
0	27.7	4.1	0.330	2.262	-3.800	0.33
1	28	4.3	0.661	-1.157	0.296	
2	29	4.1	-0.765	-0.269	-0.065	
3	30	3.0				-1.5

- 29. Sea $f(x) = a + bx + cx^2 + dx^3$. Claramente, f satisface las propiedades a), c), d) y e) de la definición 3.10 y f se interpola a sí misma para cualquier selección de x_0, \ldots, x_n . Ya que ii) de la propiedad f) en la definición 3.10 se mantiene, f debe ser su propio spline cúbico condicionado. Sin embargo, f''(x) = 2c + 6dx puede ser cero sólo en x = -c/3d. Por lo tanto, la parte i) de la propiedad f) en la definición 3.10 no se puede mantener en dos valores f0 y f1. Por lo que f1 no puede ser un spline cúbico natural.
- **31.** Inserte lo siguiente antes del paso 7 en el algoritmo 3.4 y el paso 8 en el algoritmo 3.5:

Para
$$j = 0, 1, \dots, n-1$$
 determine

$$l_1 = b_j$$
; (Observe que $l_1 = s'(x_j)$.)
 $l_2 = 2c_j$; (Observe que $l_2 = s''(x_j)$.)
SALIDA (l_1, l_2)

Determine

$$l_1 = b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^2;$$
 (Observe que $l_1 = s'(x_n)$.)
 $l_2 = 2c_{n-1} + 6d_{n-1}h_{n-1};$ (Note that $l_2 = s''(x_n)$.)
SALIDA (l_1, l_2) .

33. Tenemos

$$|f(x) - F(x)| \le \frac{M}{8} \max_{0 \le i \le n-1} |x_{j+1} - x_j|^2,$$

donde $M = \max_{a \le x \le b} |f''(x)|$.

Las cotas de error para el ejercicio 15 están en $[0, 0.1], |f(x) - F(x)| \le 1.53 \times 10^{-3}, y$

$$\left| \int_0^{0.1} F(x) \ dx - \int_0^{0.1} e^{2x} \ dx \right| \le 1.53 \times 10^{-4}.$$

35.
$$S(x) = \begin{cases} 2x - x^2, & 0 \le x \le 1\\ 1 + (x - 1)^2, & 1 \le x \le 2 \end{cases}$$

Conjunto de ejercicios 3.6

1. a.
$$x(t) = -10t^3 + 14t^2 + t$$
, $y(t) = -2t^3 + 3t^2 + t$

b.
$$x(t) = -10t^3 + 14.5t^2 + 0.5t$$
, $y(t) = -3t^3 + 4.5t^2 + 0.5t$

c.
$$x(t) = -10t^3 + 14t^2 + t$$
, $y(t) = -4t^3 + 5t^2 + t$

d.
$$x(t) = -10t^3 + 13t^2 + 2t$$
, $y(t) = 2t$

- **3.** a. $x(t) = -11.5t^3 + 15t^2 + 1.5t + 1$, $y(t) = -4.25t^3 + 4.5t^2 + 0.75t + 1$
 - **b.** $x(t) = -6.25t^3 + 10.5t^2 + 0.75t + 1$, $y(t) = -3.5t^3 + 3t^2 + 1.5t + 1$
 - **c.** Para t entre (0,0) y (4,6), tenemos

$$x(t) = -5t^3 + 7.5t^2 + 1.5t, \quad y(t) = -13.5t^3 + 18t^2 + 1.5t,$$

y para t entre (4, 6) y (6, 1), tenemos

$$x(t) = -5.5t^3 + 6t^2 + 1.5t + 4$$
, $y(t) = 4t^3 - 6t^2 - 3t + 6$.

d. Para t entre (0,0) y (2,1), tenemos

$$x(t) = -5.5t^3 + 6t^2 + 1.5t, \quad y(t) = -0.5t^3 + 1.5t,$$

y para t entre (2, 1) y (4, 0), tenemos

$$x(t) = -4t^3 + 3t^2 + 3t + 2, \quad y(t) = -t^3 + 1,$$

y para t entre (4,0) y (6,-1), tenemos

$$x(t) = -8.5t^3 + 13.5t^2 - 3t + 4$$
, $y(t) = -3.25t^3 + 5.25t^2 - 3t$.

5. a. Al utilizar diferencias divididas hacia adelante obtenemos la siguiente tabla.

0	u_0			
0	u_0	$3(u_1 - u_0)$		
1	u_3	$u_3 - u_0$	$u_3 - 3u_1 + 2u_0$	
1	u_3	$3(u_3 - u_2)$	$2u_3 - 3u_2 + u_0$	$u_3 - 3u_2 + 3u_1 - u_0$

Por lo tanto.

$$u(t) = u_0 + 3(u_1 - u_0)t + (u_3 - 3u_1 + 2u_0)t^2 + (u_3 - 3u_2 + 3u_1 - u_0)t^2(t - 1)$$

= $u_0 + 3(u_1 - u_0)t + (-6u_1 + 3u_0 + 3u_2)t^2 + (u_3 - 3u_2 + 3u_1 - u_0)t^3$.

De igual forma, $v(t) = v_0 + 3(v_1 - v_0)t + (3v_2 - 6v_1 + 3v_0)t^2 + (v_3 - 3v_2 + 3v_1 - v_0)t^3$.

b. Al utilizar la fórmula para polinomios de Bernstein obtenemos

$$u(t) = u_0(1-t)^3 + 3u_1t(1-t)^2 + 3u_2t^2(1-t) + u_3t^3$$

= $u_0 + 3(u_1 - u_0)t + (3u_2 - 6u_1 + 3u_0)t^2 + (u_3 - 3u_2 + 3u_1 - u_0)t^3$.

De igual forma,

$$v(t) = v_0(1-t)^3 + 3v_1 + (1-t)^2 + 3v_2t^2(1-t) + v_0t^3$$

= $v_0 + 3(v_1 - v_0)t + (3v_2 - 6v_1 + 3v_0)t^2 + (v_3 - 3v_2 + 3v_1 - v_0)t^3$.

Conjunto de ejercicios 4.1

- 1. A partir de la fórmula de diferencias hacia adelante-hacia atrás (4.1), tenemos las siguientes aproximaciones:
 - **a.** $f'(0.5) \approx 0.8520$, $f'(0.6) \approx 0.8520$, $f'(0.7) \approx 0.7960$
 - **b.** $f'(0.0) \approx 3.7070$, $f'(0.2) \approx 3.1520$, $f'(0.4) \approx 3.1520$

3. a.	х	Error real	Cota de error
	0.5	0.0255	0.0282
	0.6	0.0267	0.0282
	0.7	0.0312	0.0322

b.			
	X	Error real	Cota de error
	0.0	0.2930	0.3000
	0.2	0.2694	0.2779
	0.4	0.2602	0.2779

Cota de error

0.0180988 0.00904938 0.00493920 0.00987840

- 5. Para los puntos extremos de las tablas, utilizamos la fórmula (4.4). Las otras aproximaciones provienen de la fórmula (4.5).
 - **a.** $f'(1.1) \approx 17.769705$, $f'(1.2) \approx 22.193635$, $f'(1.3) \approx 27.107350$, $f'(1.4) \approx 32.150850$
 - **b.** $f'(8.1) \approx 3.092050$, $f'(8.3) \approx 3.116150$, $f'(8.5) \approx 3.139975$, $f'(8.7) \approx 3.163525$
 - **c.** $f'(2.9) \approx 5.101375$, $f'(3.0) \approx 6.654785$, $f'(3.1) \approx 8.216330$, $f'(3.2) \approx 9.786010$
 - **d.** $f'(2.0) \approx 0.13533150$, $f'(2.1) \approx -0.09989550$, $f'(2.2) \approx -0.3298960$, $f'(2.3) \approx -0.5546700$
- 7. a.

•				c.		
•	x	Error real	Cota de error		х	Error real
	1.1	0.280322	0.359033		2.9	0.011956
	1.2	0.147282	0.179517		3.0	0.0049251
	1.3	0.179874	0.219262		3.1	0.0004765
	1.4	0.378444	0.438524		3.2	0.0013745

b.

) .	x	Error real	Cota de error
;	8.1 8.3 8.5 8.7	0.00018594 0.00010551 9.116×10^{-5} 0.00020197	0.000020322 0.000010161 0.000009677 0.000019355

d

х	Error real	Cota de error
2.0	0.00252235	0.00410304
2.1	0.00142882	0.00205152
2.2	0.00204851 0.00437954	0.00260034 0.00520068

- 9. Las aproximaciones y las fórmulas utilizadas son:
 - **a.** $f'(2.1) \approx 3.899344$ a partir de (4.7), $f'(2.2) \approx 2.876876$ a partir de (4.7), $f'(2.3) \approx 2.249704$ a partir de (4.6), $f'(2.4) \approx 1.837756$ a partir de (4.6), $f'(2.5) \approx 1.544210$ a partir de (4.7), $f'(2.6) \approx 1.355496$ a partir de (4.7)
 - **b.** $f'(-3.0) \approx -5.877358$ a partir de (4.7), $f'(-2.8) \approx -5.468933$ a partir de (4.7), $f'(-2.6) \approx -5.059884$ a partir de (4.6), $f'(-2.4) \approx -4.650223$ a partir de (4.6), $f'(-2.2) \approx -4.239911$ a partir de (4.7), $f'(-2.0) \approx -3.828853$ a partir de (4.7)
- 11. a.

х	Error real	Cota de error
2.1	0.0242312	0.109271
2.2	0.0105138	0.0386885
2.3	0.0029352	0.0182120
2.4	0.0013262	0.00644808
2.5	0.0138323	0.109271
2.6	0.0064225	0.0386885

b.

).			
	х	Error real	Cota de error
	- 3.0	1.55×10^{-5}	6.33×10^{-7}
	-2.8	1.32×10^{-5}	6.76×10^{-7}
	-2.6	7.95×10^{-7}	1.05×10^{-7}
	-2.4	6.79×10^{-7}	1.13×10^{-7}
	-2.2	1.28×10^{-5}	6.76×10^{-7}
	-2.0	7.96×10^{-6}	6.76×10^{-7}

13. $f'(3) \approx \frac{1}{12} [f(1) - 8f(2) + 8f(4) - f(5)] = 0.21062$, con una cota de error dada por

$$\max_{1 \le x \le 5} \frac{|f^{(5)}(x)|h^4}{30} \le \frac{23}{30} = 0.7\overline{6}.$$

- 15. A partir de la fórmula de diferencias hacia adelante-hacia atrás (4.1), tenemos las siguientes aproximaciones:
 - **a.** $f'(0.5) \approx 0.852$, $f'(0.6) \approx 0.852$, $f'(0.7) \approx 0.7960$
 - **b.** $f'(0.0) \approx 3.707$, $f'(0.2) \approx 3.153$, $f'(0.4) \approx 3.153$
- 17. Para los extremos de las tablas, usamos la fórmula (47). Las otras aproximaciones provienen de la fórmula (4.6).
 - **a.** $f'(2.1) \approx 3.884$, $f'(2.2) \approx 2.896$, $f'(2.3) \approx 2.249$, $f'(2.4) \approx 1.836$, $f'(2.5) \approx 1.550$, $f'(2.6) \approx 1.348$
 - **b.** $f'(-3.0) \approx -5.883$, $f'(-2.8) \approx -5.467$, $f'(-2.6) \approx -5.059$, $f'(-2.4) \approx -4.650$, $f'(-2.2) \approx -4.208$, $f'(-2.0) \approx -3.875$
- 19. La aproximación es -4.8×10^{-9} . f''(0.5) = 0. La cota de error es 0.35874. El método es muy exacto ya que la función es simétrica alrededor de x = 0.5.
- **21.** a. $f'(0.2) \approx -0.1951027$
- **b.** $f'(1.0) \approx -1.541415$
- c. $f'(0.6) \approx -0.6824175$

23. Las fórmulas de tres puntos da los resultados en la siguiente tabla.

Tiempo	0	3	5	8	10	13
Velocidad	79	82.4	74.2	76.8	69.4	71.2

- **25.** $f'(0.4) \approx -0.4249840 \text{ y } f'(0.8) \approx -1.032772.$
- 27. Al final, las aproximaciones se convierten en cero porque el numerador se convierte en cero.
- **29.** Puesto que $e'(h) = -\varepsilon/h^2 + hM/3$, tenemos e'(h) = 0 si y sólo si $h = \sqrt[3]{3\varepsilon/M}$. Además, e'(h) < 0 si $h < \sqrt[3]{3\varepsilon/M}$ y e'(h) > 0si $h > \sqrt[3]{3\varepsilon/M}$, por lo que el mínimo absoluto para e(h) se presenta en $h = \sqrt[3]{3\varepsilon/M}$.

Conjunto de ejercicios 4.2

- **1. a.** $f'(1) \approx 1.0000109$
- **b.** $f'(0) \approx 2.00000000$
- **c.** $f'(1.05) \approx 2.2751459$ **d.** $f'(2.3) \approx -19.646799$

- **3. a.** $f'(1) \approx 1.001$
- **b.** $f'(0) \approx 1.999$
- **c.** $f'(1.05) \approx 2.283$ **d.** $f'(2.3) \approx -19.61$

- **5.** $\int_0^{\pi} \sin x \ dx \approx 1.999999$
- 7. Con h = 0.1, la fórmula (4.6) se convierte en

$$f'(2) \approx \frac{1}{1.2} \left[1.8e^{1.8} - 8\left(1.9e^{1.9}\right) + 8(2.1)e^{2.1} - 2.2e^{2.2} \right] = 22.166995.$$

Con h = 0.05, la fórmula (4.6) se convierte en

$$f'(2) \approx \frac{1}{0.6} \left[1.9e^{1.9} - 8 \left(1.95e^{1.95} \right) + 8(2.05)e^{2.05} - 2.1e^{2.1} \right] = 22.167157.$$

- **9.** Sea $N_2(h) = N\left(\frac{h}{3}\right) + \left(\frac{N\left(\frac{h}{3}\right) N(h)}{2}\right)$ y $N_3(h) = N_2\left(\frac{h}{3}\right) + \left(\frac{N_2\left(\frac{h}{3}\right) N_2(h)}{8}\right)$. Entonces $N_3(h)$ es una $O(h^3)$ aproximación a M.
- **11.** Sea $N(h) = (1+h)^{1/h}$, $N_2(h) = 2N\left(\frac{h}{2}\right) N(h)$, $N_3(h) = N_2\left(\frac{h}{2}\right) + \frac{1}{3}(N_2\left(\frac{h}{2}\right) N_2(h))$.
 - **a.** N(0.04) = 2.665836331, N(0.02) = 2.691588029, N(0.01) = 2.704813829
 - **b.** $N_2(0.04) = 2.717339727$, $N_2(0.02) = 2.718039629$. The $O(h^3)$ la aproximación es $N_3(0.04) = 2.718272931$.
 - c. Sí, puesto que los errores parecen proporcionales para h para N(h), a h^2 para $N_2(h)$, y a h^3 para $N_3(h)$.
- 13. a. Tenemos

$$P_{0,1}(x) = \frac{\left(x - h^2\right) N_1\left(\frac{h}{2}\right)}{\frac{h^2}{4} - h^2} + \frac{\left(x - \frac{h^2}{4}\right) N_1(h)}{h^2 - \frac{h^2}{4}}, \quad \text{por lo que} \quad P_{0,1}(0) = \frac{4N_1\left(\frac{h}{2}\right) - N_1(h)}{3}.$$

De igual forma,

$$P_{1,2}(0) = \frac{4N_1\left(\frac{h}{4}\right) - N_1\left(\frac{h}{2}\right)}{3}.$$

b. Tenemos

$$P_{0,2}(x) = \frac{\left(x - h^4\right) N_2\left(\frac{h}{2}\right)}{\frac{h^4}{16} - h^4} + \frac{\left(x - \frac{h^4}{16}\right) N_2(h)}{h^4 - \frac{h^4}{16}}, \quad \text{por lo que } P_{0,2}(0) = \frac{16N_2\left(\frac{h}{2}\right) - N_2(h)}{15}.$$

15. c.

k	4	8	16	32	64	128	256	512
p_k	$2\sqrt{2}$	3.0614675	3.1214452	3.1365485	3.1403312	3.1412723	3.1415138	3.1415729
P_k	4	3.3137085	3.1825979	3.1517249	3.144184	3.1422236	3.1417504	3.1416321

d. Los valores de p_k y P_k provistos en las siguientes tablas, junto con los resultados de extrapolación:

Para p_k , tenemos:

2.8284271				
3.0614675	3.1391476			
3.1214452	3.1414377	3.1415904		
3.1365485	3.1415829	3.1415926	3.1415927	
3.1403312	3.1415921	3.1415927	3.1415927	3.1415927
Para P_k , tener				
3.3137085	3.0849447			
3.1825979	3.1388943	3.1424910		
3.1517249	3.1414339	3.1416032	3.1415891	
3.1441184	3.1415829	3.1415928	3.1415926	3.1415927

Conjunto de ejercicios 4.3

- 1. La regla trapezoidal da las siguientes aproximaciones.
 - **a.** 0.265625
- **b.** -0.2678571
- **c.** 0.228074
- **d.** 0.1839397

- **e.** −0.8666667
- $\mathbf{f.} -0.1777643$
- **g.** 0.2180895
- **h.** 4.1432597

3. Los errores se muestran en las tablas.

	Error real	Cota de error
a	0.071875	0.125
b	7.943×10^{-4}	9.718×10^{-4}
c	0.0358147	0.0396972
d	0.0233369	0.1666667
e	0.1326975	0.5617284
f	9.443×10^{-4}	1.0707×10^{-3}
g	0.0663431	0.0807455
h	1.554631	2.298827

- 5. La regla de Simpson da las siguientes aproximaciones.
 - **a.** 0.1940104
- **b.** −0.2670635
- **c.** 0.1922453
- **d.** 0.16240168

- **e.** −0.7391053
- $\mathbf{f.} -0.1768216$
- **g.** 0.1513826
- **h.** 2.5836964

7. Los errores se muestran en las tablas.

	Error real	Cota de error
a b c d	2.604×10^{-4} 7.14×10^{-7} 1.406×10^{-5} 1.7989×10^{-3} 5.1361×10^{-6}	2.6042×10^{-4} 9.92×10^{-7} 2.170×10^{-5} 4.1667×10^{-4} 0.063280
f g h	1.549×10^{-6} 3.6381×10^{-4} 4.9322×10^{-3}	2.095×10^{-6} 4.1507×10^{-4} 0.1302826

- 9. La regla de punto medio da las siguientes aproximaciones.
 - **a.** 0.1582031
- **b.** −0.2666667
- **c.** 0.1743309
- **d.** 0.1516327

- **e.** −0.6753247
- **f.** −0.1768200
- **g.** 0.1180292
- **h.** 1.8039148

11. Los errores se muestran en las tablas.

	Error real	Cota de error
a	0.0355469	0.0625
b	3.961×10^{-4}	4.859×10^{-4}
c	0.0179285	0.0198486
d	8.9701×10^{-3}	0.0833333
e	0.0564448	0.2808642
f	4.698×10^{-4}	5.353×10^{-4}
g	0.0337172	0.0403728
h	0.7847138	1.1494136

- **13.** $f(1) = \frac{1}{2}$
- 15. Las siguientes aproximaciones se obtienen a partir de las fórmulas (4.23) hasta la fórmula (4.30), respectivamente.
 - **a.** 0.1024404, 0.1024598, 0.1024598, 0.1024598, 0.1024695, 0.1024663, 0.1024598, y 0.1024598
 - **b.** 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982, 0.7853982
 - c. 1.497171, 1.477536, 1.477529, 1.477523, 1.467719, 1.470981, 1.477512, y 1.477515
 - **d.** 4.950000, 2.740909, 2.563393, 2.385700, 1.636364, 1.767857, 2.074893, y 2.116379

17.

i	t_i	w_i	$y(t_i)$	
(4.23)	(4.24)	(4.26)	(4.27)	(4.29)
5.43476	5.03420	5.03292	4.83393	5.03180

- 19. El grado de precisión es tres.
- **21.** $c_0 = \frac{1}{3}$, $c_1 = \frac{4}{3}$, $c_2 = \frac{1}{3}$
- **23.** $c_0 = \frac{1}{4}$, $c_1 = \frac{3}{4}$, $x_1 = \frac{2}{3}$ da grado de precisión 2.
- **25.** Si $E(x^k) = 0$, para todas las $k = 0, 1, \ldots, n$ y $E(x^{n+1}) \neq 0$, entonces con $p_{n+1}(x) = x^{n+1}$, tenemos un polinomio de grado n+1 para el cual $E(p_{n+1}(x)) \neq 0$. Sea $p(x) = a_n x^n + \cdots + a_1 x + a_0$ cualquier polinomio de grado menor a o igual a n. Entonces, $E(p(x)) = a_n E(x^n) + \cdots + a_1 E(x) + a_0 E(1) = 0$. En cambio, si E(p(x)) = 0 para todos los polinomios de grado menor a o igual a n, sigue que $E(x^k) = 0$, para todas $k = 0, 1, \ldots, n$. Sea $p_{n+1}(x) = a_{n+1} x^{n+1} + \cdots + a_0$ un polinomio de grado n+1 para el cual $E(p_{n+1}(x)) \neq 0$. Puesto que $a_{n+1} \neq 0$, tenemos

$$x^{n+1} = \frac{1}{a_{n+1}} p_{n+1}(x) - \frac{a_n}{a_{n+1}} x^n - \dots - \frac{a_0}{a_{n+1}}.$$

Entonces

$$E(x^{n+1}) = \frac{1}{a_{n+1}} E(p_{n+1}(x)) - \frac{a_n}{a_{n+1}} E(x^n) - \dots - \frac{a_0}{a_{n+1}} E(1) = \frac{1}{a_{n+1}} E(p_{n+1}(x)) \neq 0.$$

Por lo tanto, la fórmula de cuadratura tiene el grado de precisión n.

27. Con $x_{-1} = a$, $x_2 = b$, y $h = \frac{b-a}{3}$ la fórmula para n par en el teorema 4.3 da

$$\int_{x_{-1}}^{x_2} f(x) \, dx = \sum_{i=0}^{1} a_i f(x_i) + \frac{h^3 f''(\xi)}{2!} \int_{-1}^{2} t(t-1) \, dt.$$

Por lo que,

$$a_0 = \int_{x_{-1}}^{x_2} L_0(x) \, dx = \int_{x_{-1}}^{x_2} \frac{(x - x_1)}{(x_0 - x_1)} \, dx = \frac{(x - x_1)^2}{2(x_0 - x_1)} \bigg|_{x_{-1}}^{x_2} = \frac{3}{2} h,$$

$$a_1 = \int_{x_1}^{x_2} L_1(x) dx = \int_{x_1}^{x_2} \frac{(x - x_0)}{(x_1 - x_0)} dx = \frac{(x - x_0)^2}{2(x_1 - x_0)} \Big|_{x_1 = x_0}^{x_2} = \frac{3}{2}h,$$

y

$$\frac{h^3 f''(\xi)}{2} \int_{-1}^2 (t^2 - t) dt = \frac{h^3 f''(\xi)}{2} \left[\frac{1}{3} t^3 - \frac{1}{2} t^2 \right]_{-1}^2 = \frac{3h^3}{4} f''(\xi).$$

La fórmula se convierte en

$$\int_{x_{-1}}^{x_2} f(x) \, dx = \frac{3h}{2} [f(x_0) + f(x_1)] + \frac{3h^3}{4} f''(\xi).$$

Conjunto de ejercicios 4.4

1. Las aproximaciones de la regla trapezoidal compuesta son:

a. 0.639900

b. 31.3653

c. 0.784241

 $\mathbf{d.} -6.42872$

e. -13.5760

f. 0.476977

g. 0.605498

h. 0.970926

3. Las aproximaciones de la regla trapezoidal compuesta son:

a. 0.6363098

b. 22.477713

c. 0.7853980

d. -6.274868

e. −14.18334

f. 0.4777547

g. 0.6043941

h. 0.9610554

5. Las aproximaciones de la regla de punto medio compuesta son:

a. 0.633096

b. 11.1568

c. 0.786700

 $\mathbf{d.} -6.11274$

e. −14.9985

f. 0.478751

g. 0.602961

h. 0.947868

7. a. 3.15947567

b. 3.10933713

c. 3.00906003

9. $\alpha = 1.5$

11. a. La regla trapezoidal compuesta requiere h < 0.000922295 y $n \ge 2168$.

b. La regla de Simpson compuesta requiere h < 0.037658 y n > 54.

c. La regla de punto medio compuesta requiere h < 0.00065216 y $n \ge 3066$.

13. a. La regla trapezoidal compuesta requiere h < 0.04382 y n > 46. La aproximación es 0.405471.

b. La regla de Simpson compuesta requiere h < 0.44267 y $n \ge 6$. La aproximación es 0.405466.

c. La regla de punto medio compuesta requiere h < 0.03098 y $n \ge 64$. La aproximación es 0.405460.

15. a. Puesto que los límites derecho e izquierdo en 0.1 y 0.2 para f, f' y f'' son iguales, las funciones son continuas en [0, 0.3]. Sin embargo,

$$f'''(x) = \begin{cases} 6, & 0 \le x \le 0.1\\ 12, & 0.1 < x \le 0.2\\ 12, & 0.2 < x < 0.3 \end{cases}$$

es discontinua en x = 0.1.

b. Tenemos 0.302506 con una cota de error de 1.9×10^{-4} .

c. Tenemos 0.302425, y el valor real de la integral es la misma.

17. La longitud es aproximadamente 15.8655.

19. La regla de Simpson compuesta con h = 0.25 da 2.61972 s.

21. La longitud es aproximadamente 58.47082, usando n = 100 en la regla de Simpson compuesta.

23. Para mostrar que la suma

$$\sum_{j=1}^{n/2} f^{(4)}(\xi_j) 2h$$

es una suma de Reimann, sea $y_i = x_{2i}$, para $i = 0, 1, \dots \frac{n}{2}$. Entonces $\Delta y_i = y_{i+1} - y_i = 2h$ y $y_{i-1} \le \xi_i \le y_i$. Por lo tanto,

$$\sum_{i=1}^{n/2} f^{(4)}(\xi_j) \Delta y_j = \sum_{i=1}^{n/2} f^{(4)}(\xi_j) 2h$$

es una suma de Reimann para $\int_a^b f^{(4)}(x)dx$. Por lo tanto,

$$E(f) = -\frac{h^5}{90} \sum_{j=1}^{n/2} f^{(4)}(\xi_j) = -\frac{h^4}{180} \left[\sum_{j=1}^{n/2} f^{(4)}(\xi_j) 2h \right] \approx -\frac{h^4}{180} \int_a^b f^{(4)}(x) \ dx = -\frac{h^4}{180} \left[f'''(b) - f'''(a) \right].$$

- **25.** a. La regla trapezoidal compuesta: Con h = 0.0069669, el error estimado es 2.541×10^{-5} .
 - **b.** La regla de Simpson compuesta: Con h = 0.132749, el error estimado es 3.252×10^{-5} .
 - c. La regla de punto medio compuesta: Con h = 0.0049263, el error estimado es 2.541×10^{-5} .

Conjunto de ejercicios 4.5

- 1. La integración de Romberg da $R_{3,3}$ de acuerdo con lo siguiente:
 - a. 0.1922593
- **b.** 0.1606105
- $\mathbf{c.} -0.1768200$
- **d.** 0.08875677

- e. 2.5879685
- $\mathbf{f.} -0.7341567$
- **g.** 0.6362135
- **h.** 0.6426970

- 3. La integración de Romberg da $R_{4,4}$ de acuerdo con lo siguiente:
 - a. 0.1922594
- **b.** 0.1606028
- $\mathbf{c.} -0.1768200$
- **d.** 0.08875528

- e. 2.5886272
- $\mathbf{f.} -0.7339728$
- g. 0.6362134
- **h.** 0.6426991

- **a.** 0.19225936 con n = 4
- 5. La integración de Romberg da:
- **b.** 0.16060279 con n = 5
- **c.** -0.17682002 con n = 4
- **d.** 0.088755284 con n = 5

- **e.** 2.5886286 con n = 6
- **f.** -0.73396918 con n = 6
- **g.** 0.63621335 con n = 4
- **h.** 0.64269908 con n = 5

- 7. $R_{33} = 11.5246$
- **9.** $f(2.5) \approx 0.43459$
- 11. $R_{31} = 5$
- 13. La integración de Romberg da:
 - a. 62.4373714, 57.2885616, 56.4437507, 56.2630547, y 56.2187727 produce una predicción de 56.2.
 - b. 55.5722917, 56.2014707, 56.2055989, y 56.2040624 produce una predicción de 56.20.
 - c. 58.3626837, 59.0773207, 59.2688746, 59.3175220, 59.3297316, y 59.3327870 produce una predicción de 59.330.
 - **d.** 58.4220930, 58.4707174, 58.4704791 y 58.4704691 produce una predicción de 58.47047.
 - e. Considere la gráfica de la función.
- **15.** $R_{10,10} = 58.47046901$
- 17. Tenemos

$$R_{k,2} = \frac{4R_{k,1} - R_{k-1,1}}{3}$$

$$= \frac{1}{3} \left[R_{k-1,1} + 2h_{k-1} \sum_{i=1}^{2^{k-2}} f(a + (i - 1/2))h_{k-1}) \right], \text{ a partir de (4.35),}$$

$$= \frac{1}{3} \left[\frac{h_{k-1}}{2} (f(a) + f(b)) + h_{k-1} \sum_{i=1}^{2^{k-2}-1} f(a + ih_{k-1}) + 2h_{k-1} \sum_{i=1}^{2^{k-2}} f(a + (i - 1/2)h_{k-1}) \right], \text{ a partir de (4.34) con } k - 1 \text{ en lugar de } k,$$

$$= \frac{1}{3} \left[h_k (f(a) + f(b)) + 2h_k \sum_{i=1}^{2^{k-2}-1} f(a + 2ih_k) + 4h_k \sum_{i=1}^{2^{k-2}} f(a + (2i - 1)h) \right]$$

$$= \frac{h}{3} \left[f(a) + f(b) + 2 \sum_{i=1}^{M-1} f(a + 2ih_i) + 4 \sum_{i=1}^{M} f(a + (2i - 1)h_i) \right],$$

donde $h = h_k$ y $M = 2^{k-2}$.

19. De la ecuación (4.35) se sigue

$$R_{k,1} = \frac{h_k}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{2^{k-1}-1} f(a+ih_k) \right]$$

$$= \frac{h_k}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{2^{k-1}-1} f(a+\frac{i}{2}h_{k-1}) \right]$$

$$= \frac{h_k}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{2^{k-1}-1} f(a+ih_{k-1}) + 2 \sum_{i=1}^{2^{k-2}} f(a+(i-1/2)h_{k-1}) \right]$$

$$= \frac{1}{2} \left\{ \frac{h_{k-1}}{2} \left[f(a) + f(b) + 2 \sum_{i=1}^{2^{k-2}-1} f(a+ih_{k-1}) \right] + h_{k-1} \sum_{i=1}^{2^{k-2}} f(a+(i-1/2)h_{k-1}) \right\}$$

$$= \frac{1}{2} \left[R_{k-1,1} + h_{k-1} \sum_{i=1}^{2^{k-2}} f(a+(i-1/2)h_{k-1}) \right].$$

Conjunto de ejercicios 4.6

- 1. La regla de Simpson da:
 - **a.** S(1, 1.5) = 0.19224530, S(1, 1.25) = 0.039372434, S(1.25, 1.5) = 0.15288602, yel valor real es 0.19225935.
 - **b.** S(0,1) = 0.16240168, S(0,0.5) = 0.028861071, S(0.5,1) = 0.13186140, yel valor real es 0.16060279.
 - **c.** S(0, 0.35) = -0.17682156, S(0, 0.175) = -0.087724382, S(0.175, 0.35) = -0.089095736, y el valor real es -0.17682002.
 - **d.** $S(0, \frac{\pi}{4}) = 0.087995669$, $S(0, \frac{\pi}{8}) = 0.0058315797$, $S(\frac{\pi}{8}, \frac{\pi}{4}) = 0.082877624$, y el valor real es 0.088755285.
- 3. La cuadratura adaptable da:
 - **a.** 0.19226
- **b.** 0.16072
- $\mathbf{c.} -0.17682$
- **d.** 0.088709

- 5. La cuadratura adaptable da:
 - **a.** 108.555281
- **b.** −1724.966983
- **c.** −15.306308
- **d.** -18.945949

7.	
----	--

7	Regla de Simpson	Evaluación del número	Error	Regla de Simpson	Evaluación del número	Error
a b	-0.21515695 0.95135226	57 83	6.3×10^{-6} 9.6×10^{-6}	-0.21515062 0.95134257	229 217	$1.0 \times 10^{-8} \\ 1.1 \times 10^{-7}$

9. La cuadratura adaptable da

$$\int_{0.1}^{2} \sin \frac{1}{x} dx \approx 1.1454 \quad \text{y} \qquad \int_{0.1}^{2} \cos \frac{1}{x} dx \approx 0.67378.$$

- **11.** $\int_0^{2\pi} u(t) dt \approx 0.00001$
- 13. Tenemos, para h = b a,

$$\left| T(a,b) - T\left(a, \frac{a+b}{2}\right) - T\left(\frac{a+b}{2}, b\right) \right| \approx \frac{h^3}{16} \left| f''(\mu) \right|$$

y

$$\left| \int_a^b f(x) \ dx - T\left(a, \frac{a+b}{2}\right) - T\left(\frac{a+b}{2}, b\right) \right| \approx \frac{h^3}{48} \left| f''(\mu) \right|.$$

Por lo tanto.

$$\left| \int_a^b f(x) \ dx - T\left(a, \frac{a+b}{2}\right) - T\left(\frac{a+b}{2}, b\right) \right| \approx \frac{1}{3} \left| T(a, b) - T\left(a, \frac{a+b}{2}\right) - T\left(\frac{a+b}{2}, b\right) \right|.$$

Conjunto de ejercicios 4.7

1. La cuadratura gaussiana da:

a. 0.1922687

b. 0.1594104

 $\mathbf{c.} -0.1768190$

d. 0.08926302

3. La cuadratura gaussiana con n = 3 de:

a. 0.1922594

b. 0.1605954

 $\mathbf{c.} -0.1768200$

d. 0.08875385

5. La cuadratura gaussiana da:

a. 0.1922594

b. 0.1606028

 $\mathbf{c.} -0.1768200$

d. 0.08875529

7. La cuadratura gaussiana con n = 5 da:

a. 0.1922594

b. 0.1606028

 $\mathbf{c.}$ -0.1768200

d. 0.08875528

9. La aproximación es 3.743713701 con error absoluto 0.2226462.

11. $a = 1, b = 1, c = \frac{1}{2}, d = -\frac{1}{2}$

13. Los polinomios de Legendre $P_2(x)$ y $P_3(x)$ están determinados por

$$P_2(x) = \frac{1}{2} (3x^2 - 1)$$
 y $P_3(x) = \frac{1}{2} (5x^3 - 3x)$,

por lo que sus raíces se verifican fácilmente.

Para n=2,

$$c_1 = \int_{-1}^{1} \frac{x + 0.5773502692}{1.1547005} \ dx = 1$$

y

$$c_2 = \int_{-1}^{1} \frac{x - 0.5773502692}{-1.1547005} \ dx = 1.$$

Para n = 3,

$$c_1 = \int_{-1}^{1} \frac{x(x+0.7745966692)}{1.2} dx = \frac{5}{9},$$

$$c_2 = \int_{-1}^{1} \frac{(x+0.7745966692)(x-0.7745966692)}{-0.6} dx = \frac{8}{9},$$

y

$$c_3 = \int_{-1}^{1} \frac{x(x - 0.7745966692)}{1.2} dx = \frac{5}{9}.$$

Conjunto de ejercicios 4.8

1. El algoritmo 4.4. con n = m = 4 da:

a. 0.3115733

b. 0.2552526

c. 16.50864

d. 1.476684

3. El algoritmo 4.5 con n = m = 2 da:

a. 0.3115733

b. 0.2552446

c. 16.50863

d. 1.488875

5. El algoritmo 4.4 con n = 4 y m = 8, n = 8 y m = 4 y n = m = 6 da:

a. 0.5119875, 0.5118533, 0.5118722

b. 1.718857, 1.718220, 1.718385

c. 1.001953, 1.000122, 1.000386

d. 0.7838542, 0.7833659, 0.7834362

e. -1.985611, -1.999182, -1.997353

f. 2.004596, 2.000879, 2.000980

g. 0.3084277, 0.3084562, 0.3084323

h. -22.61612, -19.85408, -20.14117

- 7. El algoritmo 4.5 con n = m = 3, n = 3 y m = 4, n = 4 y m = 3 y n = m = 4 da:
 - **a.** 0.5118655, 0.5118445, 0.5118655, 0.5118445, 2.1×10^{-5} , 1.3×10^{-7} , 2.1×10^{-5} , 1.3×10^{-7}
 - **b.** 1.718163, 1.718302, 1.718139, 1.718277, 1.2×10^{-4} , 2.0×10^{-5} , 1.4×10^{-4} , 4.8×10^{-6}
 - c. 1.000000, 1.000000, 1.0000000, 1.000000, 0, 0, 0, 0
 - **d.** 0.7833333, 0.7833333, 0.7833333, 0.7833333, 0, 0, 0, 0
 - $\textbf{e.} \ -1.991878, \ -2.000124, \ -1.991878, \ -2.000124, \ 8.1 \times 10^{-3}, \ 1.2 \times 10^{-4}, \ 8.1 \times 10^{-3}, \ 1.2 \times 10^{-4}$
 - **f.** 2.001494, 2.000080, 2.001388, 1.999984, 1.5×10^{-3} , 8×10^{-5} , 1.4×10^{-3} , 1.6×10^{-5}
 - **g.** 0.3084151, 0.3084145, 0.3084246, 0.3084245, 10^{-5} , 5.5×10^{-7} , 1.1×10^{-5} , 6.4×10^{-7}
 - **h.** -12.74790, -21.21539, -11.83624, -20.30373, 7.0, 1.5, 7.9, 0.564
- **9.** El algoritmo 4.4 con n = m = 14 da 0.1479103 y el algoritmo 4.5 con n = m = 4 da 0.1506823.
- 11. El algoritmo 4.6 con n = m = p = 2 da el primer valor listado.
 - **a.** 5.204036, $e(e^{0.5} 1)(e 1)^2$
- **b.** 0.08429784, $\frac{1}{12}$ **e.** 7.103932, $2 + \frac{1}{2}\pi^2$

d. 0.09722222, $\frac{1}{12}$

- **c.** 0.08641975, $\frac{1}{14}$ **f.** 1.428074, $\frac{1}{2}(e^2 + 1) e$
- 13. El algoritmo 4.6 con n=m=p=4 da el primer valor listado. El segundo proviene del algoritmo 4.6 con n=m=p=5.
 - a. 5.206447

b. 0.08333333

- **c.** 0.07142857
- 15. La aproximación 20.41887 requiere 125 evaluaciones funcionales.
- 17. La aproximación para el centro de masa es $(\overline{x}, \overline{y})$, donde $\overline{x} = 0.3806333$ y $\overline{y} = 0.3822558$.
- 19. El área es aproximadamente 1.0402528.

Conjunto de ejercicios 4.9

- 1. La regla de Simpson compuesta da:
 - **a.** 0.5284163
- **b.** 4.266654
- **c.** 0.4329748
- **d.** 0.8802210

- 3. La regla de Simpson compuesta da:
 - **a.** 0.4112649
- **b.** 0.2440679
- **c.** 0.05501681
- **d.** 0.2903746

- 5. La velocidad de escape es aproximadamente 6.9450 mi/s.
- **7. a.** $\int_{0}^{\infty} e^{-x} f(x) dx \approx 0.8535534 \ f(0.5857864) + 0.1464466 \ f(3.4142136)$
 - **b.** $\int_0^\infty e^{-x} f(x) dx \approx 0.7110930 \ f(0.4157746) + 0.2785177 \ f(2.2942804) + 0.0103893 \ f(6.2899451)$
- - n = 3: 2.9958198

Conjunto de ejercicios 5.1

1. a. Puesto que $f(t, y) = y \cos t$, tenemos $\frac{\partial f}{\partial y}(t, y) = \cos t$, y f satisface una condición de Lipschitz en y con L = 1 en

$$D = \{(t, y) | 0 \le t \le 1, -\infty < y < \infty\}.$$

Además, f es continua en D, por lo que existe una única solución, que es $y(t) = e^{\sin t}$.

b. Puesto que $f(t, y) = \frac{2}{t}y + t^2e^t$, tenemos $\frac{\partial f}{\partial y} = \frac{2}{t}$, y f satisface una condición de Lipschitz en y con L = 2 en

$$D = \{(t, y) | 1 < t < 2, -\infty < y < \infty\}.$$

Además, f es continua en D, por lo que existe una única solución, que es $y(t) = t^2(e^t - e)$.

c. Puesto que $f(t, y) = -\frac{2}{t}y + t^2e^t$, tenemos $\frac{\partial f}{\partial y} = -\frac{2}{t}$, y f satisface una condición de Lipschitz en y con L = 2 en

$$D = \{(t, y) | 1 < t < 2, -\infty < y < \infty\}.$$

Además, f es continua en D, por lo que existe una solución única, que es

$$y(t) = (t^4 e^t - 4t^3 e^t + 12t^2 e^t - 24te^t + 24e^t + (\sqrt{2} - 9)e)/t^2.$$

d. Puesto que $f(t, y) = \frac{4t^3y}{1+t^4}$, tenemos $\frac{\partial f}{\partial y} = \frac{4t^3}{1+t^4}$, y f satisface una condición de Lipschitz en y con L=2 en

$$D = \{(t, y) | 0 \le t \le 1, -\infty < y < \infty\}.$$

Además, f es continua en D, por lo que existe una solución única, que es $y(t) = 1 + t^4$.

- 3. a. La constante de Lipschitz L=1; es un problema bien planteado.
 - **b.** La constante de Lipschitz L = 1; es un problema bien planteado.
 - c. La constante de Lipschitz L=1; es un problema bien planteado.
 - **d.** La función f no satisface una condición de Lipschitz, por lo que el teorema 5.6 no se puede utilizar.
- **5. a.** Al derivar $y^3t + yt = 2$ obtenemos $3y^2y't + y^3 + y't + y = 0$. Al resolver para y' obtenemos la ecuación diferencial original y al hacer t = 1 y y = 1 verificamos la condición inicial. Para aproximar y(2), use el método de Newton para resolver la ecuación $y^3 + y 1 = 0$. Esto proporciona $y(2) \approx 0.6823278$.
 - **b.** Al derivar $y \operatorname{sen} t + t^2 e^y + 2y 1 = 0$ obtenemos $y' \operatorname{sen} t + y \operatorname{cos} t + 2t e^y + t^2 e^y y' + 2y' = 0$. Al resolver para y' obtenemos la ecuación diferencial original y haciendo t = 1 y y = 0 verificamos la condición inicial. Para aproximar y(2), use el método de Newton para resolver la ecuación $(2 + \operatorname{sen} 2)y + 4e^y 1 = 0$. Esto proporciona $y(2) \approx -0.4946599$.
- 7. Permita que el punto (t, y) esté en la recta. Entonces $\frac{(y-y_1)}{(t-t_1)} = \frac{(y_2-y_1)}{(t_2-t_1)}$ por lo que $\frac{(y-y_1)}{(y_2-y_1)} = \frac{(t-t_1)}{(t_2-t_1)}$. Si $\lambda = \frac{(t-t_1)}{(t_2-t_1)}$, entonces $t = (1-\lambda)t_1 + \lambda t_2$. De igual forma, $\lambda = \frac{(y-y_1)}{(y_2-y_1)}$, entonces $y = (1-\lambda)y_1 + \lambda y_2$. Por lo que la selección $\lambda = \frac{(t-t_1)}{(t_2-t_1)} = \frac{(y-y_1)}{(y_2-y_1)}$ es el valor de λ necesario para colocar $(t, y) = ((1-\lambda)t_1 + \lambda t_2, (1-\lambda)y_1 + \lambda y_2)$ en la recta.
- 9. Si (t_1, y_1) y (t_2, y_2) está en D, con $a \le t_1 \le b$, $a \le t_2 \le b$, $-\infty < y_1 < \infty$, y $-\infty < y_2 < \infty$. Para $0 \le \lambda \le 1$, tenemos $(1 \lambda)a \le (1 \lambda)t_1 \le (1 \lambda)b$ y $\lambda a \le \lambda t_2 \le \lambda b$. Por lo tanto, $a = (1 \lambda)a + \lambda a \le (1 \lambda)t_1 + \lambda t_2 \le (1 \lambda)b + \lambda b = b$. Además $-\infty < (1 \lambda)y_1 + \lambda y_2 < \infty$, por lo que D es convexa.

d

b

Conjunto de ejercicios 5.2

c.

1. El método de Euler proporciona las aproximaciones en la siguientes tablas.

i	t_i	w_i	$y(t_i)$
1	0.500	0.0000000	0.2836165
2	1.000	1.1204223	3.2190993

i	t_i	w_i	$y(t_i)$
1	1.250	2.7500000	2.7789294
2	1.500	3.5500000	3.6081977
3	1.750	4.3916667	4.4793276
4	2.000	5.2690476	5.3862944

3. a.			
	t	Error real	Cota del error
	0.5 1.0	0.2836165 2.0986771	11.3938 42.3654

c.			
	t	Error real	Cota del error
	1.25	0.0289294	0.0355032
	1.50	0.0581977	0.0810902
	1.75	0.0876610	0.139625
	2.00	0.117247	0.214785

b.	i	t_i	Wi	$y(t_i)$
	1 2	2.500 3.000	2.0000000 2.6250000	1.8333333 2.5000000

i	t_i	w_i	$y(t_i)$
1	0.250	1.2500000	1.3291498
2	0.500	1.6398053	1.7304898
3	0.750	2.0242547	2.0414720
4	1.000	2.2364573	2.1179795

•	t	Error real	Cota del error
	2.5	0.166667	0.429570
	3.0	0.125000	1.59726

1	
t	Error real
0.25	0.0791498
0.50	0.0906844
0.75	0.0172174
1.00	0.118478

i	t_i	w_i	$y(t_i)$
2	1.200	1.0082645	1.0149523
4	1.400	1.0385147	1.0475339
6	1.600	1.0784611	1.0884327
8	1.800	1.1232621	1.1336536
10	2.000	1.1706516	1.1812322

i	t_i	w_i	$y(t_i)$
2	1.400	0.4388889	0.4896817
4	1.800	1.0520380	1.1994386
6	2.200	1.8842608	2.2135018
8	2.600	3.0028372	3.6784753
10	3.000	4.5142774	5.8741000

i	t_i	w_i	$y(t_i)$
2	0.400	-1.6080000	-1.620051
4	0.800	-1.3017370	-1.335963
6	1.200	-1.1274909	-1.166345
8	1.600	-1.0491191	-1.078331
10	2.000	-1.0181518	-1.035972

i	t_i	w_i	$y(t_i)$	
2	0.2	0.1083333	0.1626265	
4	0.4	0.1620833	0.2051118	
6	0.6	0.3455208	0.3765957	
8	0.8	0.6213802	0.6461052	
10	1.0	0.9803451	1.0022460	

7. Los errores reales para las aproximaciones en el ejercicio 3 están en las siguientes tablas.

a.		
	t	Error real
	1.2	0.0066879
	1.5	0.0095942
	1.7	0.0102229
	2.0	0.0105806

D.		
	t	Error real
	1.4 2.0 2.4 3.0	0.0507928 0.2240306 0.4742818 1.3598226

b.

:.		
	t	Error real
	0.4	0.0120510
	1.0	0.0391546
	1.4	0.0349030
	2.0	0.0178206

Error real
0.0542931
0.0363200
0.0273054
0.0219009

9. El método de Euler proporciona las aproximaciones en la siguiente tabla.

a.				
••	i	t_i	w_i	$y(t_i)$
	1	1.1	0.271828	0.345920
	5	1.5	3.18744	3.96767
	6	1.6	4.62080	5.70296
	9	1.9	11.7480	14.3231
	10	2.0	15.3982	18.6831

b. La interpolación lineal da las aproximaciones en la siguiente tabla.

Aproximación	y(t)	Error
0.108731	0.119986	0.01126
3.90412	4.78864	0.8845
14.3031	17.2793	2.976
	0.108731 3.90412	0.108731 0.119986 3.90412 4.78864

c. h < 0.00064

11. a. El método de Euler produce la siguiente aproximación para y(5) = 5.00674.

	h = 0.2	h = 0.1	h = 0.05
w_N	5.00377	5.00515	5.00592

b.
$$h = \sqrt{2 \times 10^{-6}} \approx 0.0014142$$
.

13. a.
$$1.021957 = y(1.25) \approx 1.014978$$
, $1.164390 = y(1.93) \approx 1.153902$

b.
$$1.924962 = y(2.1) \approx 1.660756$$
, $4.394170 = y(2.75) \approx 3.526160$

c.
$$-1.138277 = y(1.3) \approx -1.103618$$
, $-1.041267 = y(1.93) \approx -1.022283$

d.
$$0.3140018 = y(0.54) \approx 0.2828333$$
, $0.8866318 = y(0.94) \approx 0.8665521$

15. a.
$$h = 10^{-n/2}$$

b. El error mínimo es
$$10^{-n/2}(e-1) + 5e10^{-n-1}$$
.

c.

t	w(h=0.1)	w(h=0.01)	y(t)	Error $(n = 8)$
0.5	0.40951	0.39499	0.39347	$1.5 \times 10^{-4} \\ 3.1 \times 10^{-4}$
1.0	0.65132	0.63397	0.63212	

17. b.
$$w_{50} = 0.10430 \approx p(50)$$

Conjunto de ejercicios 5.3

1. a.			
	t_i	w_i	$y(t_i)$
	0.50	0.12500000	0.28361652
	1.00	2.02323897	3.21909932

t_i	w_i	$y(t_i)$
1.25	2.78125000	2.77892944
1.50	3.61250000	3.60819766
1.75	4.48541667	4.47932763
2.00	5.39404762	5.38629436

3. a.			
	t_i	w_i	$y(t_i)$
	0.50	0.25781250	0.28361652
	1.00	3.05529474	3.21909932

_	t_i	w_i	$y(t_i)$
	1.25	2.77897135	2.77892944
	1.50	3.60826562	3.60819766
	1.75	4.47941561	4.47932763
	2.00	5.38639966	5.38629436

t_i	w_i	$y(t_i)$
2.50	1.75000000	1.83333333
3.00	2.42578125	2.50000000

t_i	w_i	$y(t_i)$
0.25	1.34375000	1.32914981
0.50	1.77218707	1.73048976
0.75	2.11067606	2.04147203
1.00	2.20164395	2.11797955

t_i	w_i	$y(t_i)$
2.50	1.81250000	1.83333333
3.00	2.48591644	2.50000000

t_i	w_i	$y(t_i)$
0.25	1.32893880	1.32914981
0.50	1.72966730	1.73048976
0.75	2.03993417	2.04147203
1.00	2.11598847	2.11797955

c. Puesto que $p(t) = 1 - 0.99e^{-0.002t}$, p(50) = 0.10421.

_	
-	•
J.	a

		Orden 2	
i	t_i	w_i	$y(t_i)$
1	1.1	1.214999	1.215886
2	1.2	1.465250	1.467570

b

<i>,</i>			
		Orden 2	
i	t_i	w_i	$y(t_i)$
1	0.5	0.5000000	0.5158868
2	1.0	1.076858	1.091818

c.

		Orden 2	
i	t_i	w_i	$y(t_i)$
1	1.5	-2.000000	-1.500000
2	2.0	-1.777776	-1.333333
3	2.5	-1.585732	-1.250000
4	3.0	-1.458882	-1.200000

d.

		Orden 2	
i	t_i	w_i	$y(t_i)$
1	0.25	1.093750	1.087088
2	0.50	1.312319	1.289805
3	0.75	1.538468	1.513490
4	1.0	1.720480	1.701870

7. a.

Orden 4				
i	t_i	w_i	$y(t_i)$	
1	1.1	1.215883	1.215886	
2	1.2	1.467561	1.467570	

b.

•			
		Orden 4	
i	t_i	w_i	$y(t_i)$
1	0.5	0.5156250	0.5158868
2	1.0	1.091267	1.091818

c.

		Orden 4	
i	t_i	w_i	$y(t_i)$
1	1.5	-2.000000	-1.500000
2	2.0	-1.679012	-1.333333
3	2.5	-1.484493	-1.250000
4	3.0	-1.374440	-1.200000

d.

		Orden 4	
i	t_i	w_i	$y(t_i)$
1	0.25	1.086426	1.087088
2	0.50	1.288245	1.289805
3	0.75	1.512576	1.513490
4	1.0	1.701494	1.701870

9. a. El método de Taylor de orden dos proporciona los resultados en la siguiente tabla.

i	t_i	w_i	$y(t_i)$
1	1.1	0.3397852	0.3459199
5	1.5	3.910985	3.967666
6	1.6	5.643081	5.720962
9	1.9	14.15268	14.32308
10	2.0	18.46999	18.68310

- **b.** La interpolación lineal proporciona $y(1.04) \approx 0.1359139$, $y(1.55) \approx 4.777033$, y $y(1.97) \approx 17.17480$. Los valores reales son y(1.04) = 0.1199875, y(1.55) = 4.788635, y y(1.97) = 17.27930.
- c. El método de Taylor de orden cuatro proporciona los resultados en la siguiente tabla.

i	t_i	w_i
1	1.1	0.3459127
5	1.5	3.967603
6	1.6	5.720875
9	1.9	14.32290
10	2.0	18.68287

d. La interpolación cúbica de Hermite proporciona $y(1.04) \approx 0.1199704$, $y(1.55) \approx 4.788527$, y $y(1.97) \approx 17.27904$.

11. El método de Taylor de orden dos da lo siguiente:

t_i	w_i	$y(t_i)$
5	0.5	0.5146389
10	1.0	1.249305
15	1.5	2.152599
20	2.0	2.095185

13. a. Índice = 2 gal/min. Un incremento de 10 galones requiere 5 minutos.

b. 49.75556 libras de sal

Conjunto de ejercicios 5.4

1		
	9	

t	Euler modificado	y(t)
0.5	0.5602111	0.2836165
1.0	5.3014898	3.2190993

c.

t	Euler modificado	y(t)
1.25	2.7750000	2.7789294
1.50	3.6008333	3.6081977
1.75	4.4688294	4.4793276
2.00	5.3728586	5.3862944

3. a

t_i	Euler modificado w_i	$y(t_i)$
1.2	1.0147137	1.0149523
1.5	1.0669093	1.0672624
1.7	1.1102751	1.1106551
2.0	1.1808345	1.1812322

c.

	Euler modificado	
t_i	w_i	$y(t_i)$
0.4	-1.6229206	-1.6200510
1.0	-1.2442903	-1.2384058
1.4	-1.1200763	-1.1146484
2.0	-1.0391938	-1.0359724

5. a.

t	Punto medio	y(t)
0.5	0.2646250	0.2836165
1.0	3.1300023	3.2190993

h

t	Euler modificado	y(t)
2.5	1.8125000	1.8333333
3.0	2.4815531	2.5000000

d.

t	Euler modificado	y(t)
0.25	1.3199027	1.3291498
0.50	1.7070300	1.7304898
0.75	2.0053560	2.0414720
1.00	2.0770789	2.1179795

b.

	Euler modificado	
t_i	w_i	$y(t_i)$
1.4	0.4850495	0.4896817
2.0	1.6384229	1.6612818
2.4	2.8250651	2.8765514
3.0	5.7075699	5.8741000

d.

	Euler modificado	
t_i	w_i	$y(t_i)$
0.2	0.1742708	0.1626265
0.5	0.2878200	0.2773617
0.7	0.5088359	0.5000658
1.0	1.0096377	1.0022460

b

t	Punto medio	y(t)
2.5	1.7812500	1.8333333
3.0	2.4550638	2.5000000

y(t)1.3291498

1.7304898

5.8741000

t	Punto medio	y(t)
1.25	2.7777778	2.7789294
1.50	3.6060606	3.6081977
1.75	4.4763015	4.4793276
2.00	5.3824398	5.3862944
	1.25 1.50 1.75	1.25 2.7777778 1.50 3.6060606 1.75 4.4763015

1.23	2.77777	2.110,
1.50	3.6060606	3.6081
1.75	4.4763015	4.4793
2.00	5.3824398	5.3862

7. a.			
		Punto medio	
	t_i	w_i	$y(t_i)$
	1.2	1.0153257	1.0149523
	1.5	1.0677427	1.0672624
	1.7	1.1111478	1.1106551
	2.0	1.1817275	1.1812322

t_i	Punto medio w_i	$y(t_i)$	t_i
1.2	1.0153257	1.0149523	1.4
1.5	1.0677427	1.0672624	2.0
1.7	1.1111478	1.1106551	2.4
2.0	1.1817275	1.1812322	3.0

c.			
	t_i	Punto medio w_i	$y(t_i)$
	0.4 1.0 1.4 2.0	-1.6192966 -1.2402470 -1.1175165 -1.0382227	-1.6200510 -1.2384058 -1.1146484 -1.0359724

9. a.			
		Heun	
	t_i	w_i	$y(t_i)$
	0.50	0.2710885	0.2836165
	1.00	3.1327255	3.2190993

c.			
		Heun	
	t_i	w_i	$y(t_i)$
	1.25	2.7788462	2.7789294
	1.50	3.6080529	3.6081977
	1.75	4.4791319	4.4793276
	2.00	5.3860533	5.3862944

	Heun	
t_i	w_i	$y(t_i)$
1.2	1.0149305	1.0149523
1.5	1.0672363	1.0672624
1.7	1.1106289	1.1106551
2.0	1.1812064	1.1812322

	0.75 1.00	2.0596374 2.1385560	2.0414720 2.1179795
b.			
		Punto medio	
	t_i	w_i	$y(t_i)$
	1.4	0.4861770	0.4896817
	2.0	1.6438889	1.6612818
	2.4	2.8364357	2.8765514

5.7386475

Punto medio

1.3337962

1.7422854

d. __ t

0.25

0.50

	Punto medio	
t_i	w_i	$y(t_i)$
0.2	0.1722396	0.1626265
0.5	0.2848046	0.2773617
0.7	0.5056268	0.5000658
1.0	1.0063347	1.0022460

-		
	Heun	
t_i	w_i	$y(t_i)$
2.50	1.8464828	1.8333333
3.00	2.5094123	2.5000000

	Heun	
t_i	w_i	$y(t_i)$
0.25	1.3295717	1.3291498
0.50	1.7310350	1.7304898
0.75	2.0417476	2.0414720
1.00	2.1176975	2.1179795

	Heun	
t_i	w_i	$y(t_i)$
1.4	0.4895074	0.4896817
2.0	1.6602954	1.6612818
2.4	2.8741491	2.8765514
3.0	5.8652189	5.8741000

c.

	Heun	
t_i	w_i	$y(t_i)$
0.4	-1.6201023	-1.6200510
1.0	-1.2383500	-1.2384058
1.4	-1.1144745	-1.1146484
2.0	-1.0357989	-1.0359724

d

Heun w_i	$y(t_i)$
0.1614497	0.1626265
0.2765100	0.2773617
0.4994538	0.5000658
1.0018114	1.0022460
	0.1614497 0.2765100 0.4994538

13. a.

•		Runge-Kutta	
	t_i	w_i	$y(t_i)$
	0.5	0.2969975	0.2836165
	1.0	3.3143118	3.2190993

b.

		Runge-Kutta	
	t_i	w_i	$y(t_i)$
•	2.5 3.0	1.8333234 2.4999712	1.8333333 2.5000000

c.

•			
	t_i	Runge-Kutta w_i	$y(t_i)$
	1.25	2.7789095	2.7789294
	1.50	3.6081647	3.6081977
	1.75	4.4792846	4.4793276
	2.00	5.3862426	5.3862944

d

	Runge-Kutta	
t_i	w_i	$y(t_i)$
0.25	1.3291650	1.3291498
0.50	1.7305336	1.7304898
0.75	2.0415436	2.0414720
1.00	2.1180636	2.1179795

15. a. _____

t_i	Runge-Kutta w_i	$y(t_i)$
1.2	1.0149520	1.0149523
1.5	1.0672620	1.0672624
1.7	1.1106547	1.1106551
2.0	1.1812319	1.1812322

b.

	Runge-Kutta	
t_i	w_i	$y(t_i)$
1.4	0.4896842	0.4896817
2.0	1.6612651	1.6612818
2.4	2.8764941	2.8765514
3.0	5.8738386	5.8741000

c

	Runge-Kutta	
t_i	w_i	$y(t_i)$
0.4	-1.6200576	-1.6200510
1.0	-1.2384307	-1.2384058
1.4	-1.1146769	-1.1146484
2.0	-1.0359922	-1.0359724

d.

t_i	w_i	$y(t_i)$
0.2	0.1627655	0.1626265
0.5	0.2774767	0.2773617
0.7	0.5001579	0.5000658
1.0	1.0023207	1.0022460

- **17. a.** $1.0221167 \approx y(1.25) = 1.0219569, \ 1.1640347 \approx y(1.93) = 1.1643901$
 - **b.** $1.9086500 \approx y(2.1) = 1.9249616, \ 4.3105913 \approx y(2.75) = 4.3941697$
 - **c.** $-1.1461434 \approx y(1.3) = -1.1382768, -1.0454854 \approx y(1.93) = -1.0412665$
 - **d.** $0.3271470 \approx y(0.54) = 0.3140018, \ 0.8967073 \approx y(0.94) = 0.8866318$

- **19. a.** $1.0227863 \approx y(1.25) = 1.0219569$, $1.1649247 \approx y(1.93) = 1.1643901$
 - **b.** $1.91513749 \approx y(2.1) = 1.9249616$, $4.3312939 \approx y(2.75) = 4.3941697$
 - **c.** $-1.1432070 \approx y(1.3) = -1.1382768, -1.0443743 \approx y(1.93) = -1.0412665$
 - **d.** $0.3240839 \approx y(0.54) = 0.3140018$, $0.8934152 \approx y(0.94) = 0.8866318$
- **21. a.** $1.02235985 \approx y(1.25) = 1.0219569$, $1.16440371 \approx y(1.93) = 1.1643901$
 - **b.** $1.88084805 \approx y(2.1) = 1.9249616$, $4.40842612 \approx y(2.75) = 4.3941697$
 - **c.** $-1.14034696 \approx y(1.3) = -1.1382768, -1.04182026 \approx y(1.93) = -1.0412665$
 - **d.** $0.31625699 \approx y(0.54) = 0.3140018$, $0.88866134 \approx y(0.94) = 0.8866318$
- **23. a.** $1.0223826 \approx y(1.25) = 1.0219569$, $1.1644292 \approx y(1.93) = 1.1643901$
 - **b.** $1.9373672 \approx y(2.1) = 1.9249616, \ 4.4134745 \approx y(2.75) = 4.3941697$
 - **c.** $-1.1405252 \approx y(1.3) = -1.1382768, -1.0420211 \approx y(1.93) = -1.0412665$
 - **d.** $0.31716526 \approx y(0.54) = 0.3140018$, $0.88919730 \approx y(0.94) = 0.8866318$
- **25. a.** $1.0219569 = y(1.25) \approx 1.0219550$, $1.1643902 = y(1.93) \approx 1.1643898$
 - **b.** $1.9249617 = v(2.10) \approx 1.9249217$, $4.3941697 = v(2.75) \approx 4.3939943$
 - **c.** $-1.138268 = y(1.3) \approx -1.1383036$, $-1.0412666 = y(1.93) \approx -1.0412862$
 - **d.** $0.31400184 = y(0.54) \approx 0.31410579$, $0.88663176 = y(0.94) \approx 0.88670653$
- 27. En 0.2 s, tenemos aproximadamente 2099 unidades de KOH.
- **29.** Con f(t, y) = -y + t + 1, tenemos

$$\begin{split} w_i + hf\left(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i)\right) &= w_i \left(1 - h + \frac{h^2}{2}\right) + t_i \left(h - \frac{h^2}{2}\right) + h \\ y \\ w_i + \frac{h}{2}\left[f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))\right] \\ &= w_i \left(1 - h + \frac{h^2}{2}\right) + t_i \left(h - \frac{h^2}{2}\right) + h. \end{split}$$

31. Las constantes adecuadas son

$$\alpha_1=\delta_1=\alpha_2=\delta_2=\gamma_2=\gamma_3=\gamma_4=\gamma_5=\gamma_6=\gamma_7=\frac{1}{2}\quad y\quad \alpha_3=\delta_3=1.$$

Conjunto de ejercicios 5.5

i

1. El algoritmo de Runge-Kutta-Fehlberg proporciona los resultados en las siguientes tablas.

v:

 h_i

	·	•1	** _l	101	91
	1	0.2093900	0.0298184	0.2093900	0.0298337
	3	0.5610469	0.4016438	0.1777496	0.4016860
	5	0.8387744	1.5894061	0.1280905	1.5894600
	7	1.0000000	3.2190497	0.0486737	3.2190993
c.					
	i	t_i	w_i	h_i	y_i
	1	1.2500000	2.7789299	0.2500000	2.7789294
	2	1.5000000	3.6081985	0.2500000	3.6081977
	3	1.7500000	4.4793288	0.2500000	4.4793276
	4	2.0000000	5.3862958	0.2500000	5.3862944

i	t_i	w_i	h_i	y_i
1	2.2500000	1.4499988	0.2500000	1.4500000
2	2.5000000	1.8333332	0.2500000	1.8333333
3	2.7500000	2.1785718	0.2500000	2.1785714
4	3.0000000	2.5000005	0.2500000	2.5000000

i	t_i	w_i	h_i	y_i
1	0.2500000	1.3291478	0.2500000	1.3291498
2	0.5000000	1.7304857	0.2500000	1.7304898
3	0.7500000	2.0414669	0.2500000	2.0414720
4	1.0000000	2.1179750	0.2500000	2.1179795

a.					
	i	t_i	w_i	h_i	y_i
	1	1.1101946	1.0051237	0.1101946	1.0051237
	5	1.7470584	1.1213948	0.2180472	1.1213947
	7	2.3994350	1.2795396	0.3707934	1.2795395
	11	4.0000000	1.6762393	0.1014853	1.6762391

i	t_i	w_i	h_i	y_i
4	1.5482238	0.7234123	0.1256486	0.7234119
7	1.8847226	1.3851234	0.1073571	1.3851226
10	2.1846024	2.1673514	0.0965027	2.1673499
16	2.6972462	4.1297939	0.0778628	4.1297904
21	3.0000000	5.8741059	0.0195070	5.8741000

i	t_i	w_i	h_i	y_i
1	0.1633541	-1.8380836	0.1633541	-1.8380836
5	0.7585763	-1.3597623	0.1266248	-1.3597624
9	1.1930325	-1.1684827	0.1048224	-1.1684830
13	1.6229351	-1.0749509	0.1107510	-1.0749511
17	2.1074733	-1.0291158	0.1288897	-1.0291161
23	3.0000000	-1.0049450	0.1264618	-1.0049452

i	t_i	w_i	h_i	y_i			
1	0.3986051	0.3108201	0.3986051	0.3108199			
3	0.9703970	0.2221189	0.2866710	0.2221186			
5	1.5672905	0.1133085	0.3042087	0.1133082			
8	2.0000000	0.0543454	0.0902302	0.0543455			

- **5. a.** El número de infecciosos es $y(30) \approx 80295.7$.
 - **b.** El valor del límite para el número de infecciones para este modelo es lím $_{t\to\infty} y(t)=100,000$.
- 7. En los pasos 3 y 6 se deben usar en las ecuaciones nuevas. Ahora se debe utilizar el paso 4

$$R = \frac{1}{h} \left| -\frac{1}{160} K_1 - \frac{125}{17952} K_3 + \frac{1}{144} K_4 - \frac{12}{1955} K_5 - \frac{3}{44} K_6 + \frac{125}{11592} K_7 + \frac{43}{616} K_8 \right|,$$

b.

y en el paso 8 debemos cambiar a $\delta = 0.871 (TOL/R)^{1/5}$. Al repetir el ejercicio 3 con el método de Runge-Kutta-Fehlberg obtenemos los resultados en las siguientes tablas.

а.	_				
	i	t_i	w_i	h_i	y_i
	1	1.42087564	1.05149775	0.42087564	1.05150868
	3	2.28874724	1.25203709	0.50000000	1.25204675
	5	3.28874724	1.50135401	0.50000000	1.50136369

7 4.00000000 1.67622922 0.21125276 1.67623914

b.						
	i t_i		w_i h_i		y_i	
	1	1.27377960	0.31440170	0.27377960	0.31440111	
	4	1.93610139	1.50471956	0.20716801	1.50471717	
	7	2.48318866	3.19129592	0.17192536	3.19129017	
	11	3.00000000	5.87411325	0.05925262	5.87409998	

c.					d.						
	i	t_i	w_i	h_i	y_i	i	t_i	w_i	h_i	y_i	
	1	0.50000000	-1.53788271	0.50000000	-1.53788284	1	0.50000000	0.29875168	0.50000000	0.29875178	
	5	1.26573379	-1.14736319	0.17746598	-1.14736283	2	1.00000000	0.21662609	0.50000000	0.21662642	
	9	1.99742532	-1.03615509	0.19229794	-1.03615478	4	1.74337091	0.08624885	0.27203938	0.08624932	
	14	3.00000000	-1.00494544	0.10525374	-1.00494525	6	2.00000000	0.05434531	0.03454832	0.05434551	
						_					

Conjunto de ejercicios 5.6

1. Los métodos de Adams-Bashforth proporcionan los resultados en las siguientes tablas.

a.						
	t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
	0.2	0.0268128	0.0268128	0.0268128	0.0268128	0.0268128
	0.4	0.1200522	0.1507778	0.1507778	0.1507778	0.1507778
	0.6	0.4153551	0.4613866	0.4960196	0.4960196	0.4960196
	0.8	1.1462844	1.2512447	1.2961260	1.3308570	1.3308570
	1.0	2.8241683	3.0360680	3.1461400	3.1854002	3.2190993
b.						
	t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
	2.2	1.3666667	1.3666667	1.3666667	1.3666667	1.3666667
	2.4	1.6750000	1.6857143	1.6857143	1.6857143	1.6857143
	2.6	1.9632431	1.9794407	1.9750000	1.9750000	1.9750000
	2.8	2.2323184	2.2488759	2.2423065	2.2444444	2.2444444
	3.0	2.4884512	2.5051340	2.4980306	2.5011406	2.5000000
c.						
	t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
	1.2	2.6187859	2.6187859	2.6187859	2.6187859	2.6187859
	1.4	3.2734823	3.2710611	3.2710611	3.2710611	3.2710611
	1.6	3.9567107	3.9514231	3.9520058	3.9520058	3.9520058
	1.8	4.6647738	4.6569191	4.6582078	4.6580160	4.6580160
	2.0	5.3949416	5.3848058	5.3866452	5.3862177	5.3862944
d.						
	t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
	0.2	1.2529306	1.2529306	1.2529306	1.2529306	1.2529306
	0.4	1.5986417	1.5712255	1.5712255	1.5712255	1.5712255
	0.6	1.9386951	1.8827238	1.8750869	1.8750869	1.8750869
	0.8	2.1766821	2.0844122	2.0698063	2.0789180	2.0789180
	1.0	2.2369407	2.1115540	2.0998117	2.1180642	2.1179795

3. Los métodos de Adams-Bashforth proporcionan los resultados en las siguientes tablas.

a					
t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
1.2	1.0161982	1.0149520	1.0149520	1.0149520	1.0149523
1.4	1.0497665	1.0468730	1.0477278	1.0475336	1.0475339
1.6	1.0910204	1.0875837	1.0887567	1.0883045	1.0884327
1.8	1.1363845	1.1327465	1.1340093	1.1334967	1.1336536
2.0	1.1840272	1.1803057	1.1815967	1.1810689	1.1812322
b.					
t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
1.4	0.4867550	0.4896842	0.4896842	0.4896842	0.4896817
1.8	1.1856931	1.1982110	1.1990422	1.1994320	1.1994386
2.2	2.1753785	2.2079987	2.2117448	2.2134792	2.2135018
2.6	3.5849181	3.6617484	3.6733266	3.6777236	3.6784753
3.0	5.6491203	5.8268008	5.8589944	5.8706101	5.8741000

•	
·	

t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
0.5	-1.5357010	-1.5381988	-1.5379372	-1.5378676	-1.5378828
1.0	-1.2374093	-1.2389605	-1.2383734	-1.2383693	-1.2384058
1.5	-1.0952910	-1.0950952	-1.0947925	-1.0948481	-1.0948517
2.0	-1.0366643	-1.0359996	-1.0359497	-1.0359760	-1.0359724

d.

•					
t	Paso 2	Paso 3	Paso 4	Paso 5	y(t)
0.2	0.1739041	0.1627655	0.1627655	0.1627655	0.1626265
0.4	0.2144877	0.2026399	0.2066057	0.2052405	0.2051118
0.6	0.3822803	0.3747011	0.3787680	0.3765206	0.3765957
0.8	0.6491272	0.6452640	0.6487176	0.6471458	0.6461052
1.0	1.0037415	1.0020894	1.0064121	1.0073348	1.0022460

5. Los métodos de Adams-Moulton proporcionan los resultados en las siguientes tablas.

•	
а	•

t_i	Paso 2	Paso 3	Paso 4	$y(t_i)$
0.2	0.0268128	0.0268128	0.0268128	0.0268128
0.4	0.1533627	0.1507778	0.1507778	0.1507778
0.6	0.5030068	0.4979042	0.4960196	0.4960196
0.8	1.3463142	1.3357923	1.3322919	1.3308570
1.0	3.2512866	3.2298092	3.2227484	3.2190993

c

t_i	Paso 2	Paso 3	Paso 4	$y(t_i)$
1.2	2.6187859	2.6187859	2.6187859	2.6187859
1.4	3.2711394	3.2710611	3.2710611	3.2710611
1.6	3.9521454	3.9519886	3.9520058	3.9520058
1.8	4.6582064	4.6579866	4.6580211	4.6580160
2.0	5.3865293	5.3862558	5.3863027	5.3862944

d. _

t_i	Paso 2	Paso 3	Paso 4	$y(t_i)$
0.2	1.2529306	1.2529306	1.2529306	1.2529306
0.4	1.5700866	1.5712255	1.5712255	1.5712255
0.6	1.8738414	1.8757546	1.8750869	1.8750869
0.8	2.0787117	2.0803067	2.0789471	2.0789180
1.0	2.1196912	2.1199024	2.1178679	2.1179795

7 .

t_i	w_i	$y(t_i)$
0.2	0.0269059	0.0268128
0.4	0.1510468	0.1507778
0.6	0.4966479	0.4960196
0.8	1.3408657	1.3308570
1.0	3.2450881	3.2190993

b.

t_i	w_i	$y(t_i)$
2.2	1.3666610	1.3666667
2.4	1.6857079	1.6857143
2.6	1.9749941	1.9750000
2.8	2.2446995	2.2444444
3.0	2.5003083	2.5000000

c.

t_i	w_i	$y(t_i)$
1.2	2.6187787	2.6187859
1.4	3.2710491	3.2710611
1.6	3.9519900	3.9520058
1.8	4.6579968	4.6580160
2.0	5.3862715	5.3862944

d.

t_i	w_i	$y(t_i)$
0.2	1.2529350	1.2529306
0.4	1.5712383	1.5712255
0.6	1.8751097	1.8750869
0.8	2.0796618	2.0789180
1.0	2.1192575	2.1179795

9. El algoritmo indicador-corrector de cuarto orden proporciona los resultados en las siguientes tablas.

a.

t	w	y(t)
1.2	1.0149520	1.0149523
1.4	1.0475227	1.0475339
1.6	1.0884141	1.0884327
1.8	1.1336331	1.1336536
2.0	1.1812112	1.1812322

b.

t	w	y(t)
1.4	0.4896842	0.4896817
1.8	1.1994245	1.1994386
2.2	2.2134701	2.2135018
2.6	3.6784144	3.6784753
3.0	5.8739518	5.8741000

c.

t	w	y(t)
0.5	-1.5378788	-1.5378828
1.0	-1.2384134	-1.2384058
1.5	-1.0948609	-1.0948517
2.0	-1.0359757	-1.0359724

d.

t	w	y(t)
0.2	0.1627655	0.1626265
0.4	0.2048557	0.2051118
0.6	0.3762804	0.3765957
0.8	0.6458949	0.6461052
1.0	1.0021372	1.0022460

11. El método indicador-corrector de Milne-Simpson proporciona los resultados en las siguientes tablas.

a.

i	t_i	w_i	$y(t_i)$
2	1.2	1.01495200	1.01495231
5	1.5	1.06725997	1.06726235
7	1.7	1.11065221	1.11065505
10	2.0	1.18122584	1.18123222

b.

i	t_i	w_i	$y(t_i)$
2	1.4	0.48968417	0.48968166
5	2.0	1.66126150	1.66128176
7	2.4	2.87648763	2.87655142
10	3.0	5.87375555	5.87409998

c.

i	t_i	w_i	$y(t_i)$
5	0.5	-1.53788255	-1.53788284
10	1.0	-1.23840789	-1.23840584
15	1.5	-1.09485532	-1.09485175
20	2.0	-1.03597247	-1.03597242

d.

i	t_i	w_i	$y(t_i)$
2	0.2	0.16276546	0.16262648
5	0.5	0.27741080	0.27736167
7	0.7	0.50008713	0.50006579
10	1.0	1.00215439	1.00224598

13. a. Con h = 0.01, el método Adams-Moulton de tres pasos da los valores en la siguiente tabla.

i	t_i	w_i
10	0.1	1.317218
20	0.2	1.784511

b. El método de Newton reducirá el número de iteraciones por paso desde tres a dos, al usar el criterio de paso

$$|w_i^{(k)} - w_i^{(k-1)}| \le 10^{-6}.$$

15. El nuevo algoritmo proporciona los resultados en las siguientes tablas.

t_i	$w_i(p=2)$	$w_i(p=3)$	$w_i(p=4)$	$y(t_i)$
1.2	1.0149520	1.0149520	1.0149520	1.0149523
1.5	1.0672499	1.0672499	1.0672499	1.0672624
1.7	1.1106394	1.1106394	1.1106394	1.1106551
2.0	1.1812154	1.1812154	1.1812154	1.1812322

b.					
	t_i	$w_i(p=2)$	$w_i(p=3)$	$w_i(p=4)$	$y(t_i)$
	1.4	0.4896842	0.4896842	0.4896842	0.4896817
	2.0	1.6613427	1.6613509	1.6613517	1.6612818
	2.4	2.8767835	2.8768112	2.8768140	2.8765514
	3.0	5.8754422	5.8756045	5.8756224	5.8741000

c.							
	t_i	$w_i(p=2)$	$w_i(p=3)$	$w_i(p=4)$	$y(t_i)$		
	0.4	-1.6200494	-1.6200494	-1.6200494	-1.6200510		
	1.0	-1.2384104	-1.2384105	-1.2384105	-1.2384058		
	1.4	-1.1146533	-1.1146536	-1.1146536	-1.1146484		
	2.0	-1.0359139	-1.0359740	-1.0359740	-1.0359724		

d.					
	t_i	$w_i(p=2)$	$w_i(p=3)$	$w_i(p=4)$	$y(t_i)$
	0.2	0.1627655	0.1627655	0.1627655	0.1626265
	0.5	0.2774037	0.2773333	0.2773468	0.2773617
	0.7	0.5000772	0.5000259	0.5000356	0.5000658
	1.0	1.0022473	1.0022273	1.0022311	1.0022460

17. A través de la notación $y = y(t_i)$, $f = f(t_i, y(t_i))$, $f_t = f_t(t_i, y(t_i))$, etc., tenemos

$$y + hf + \frac{h^2}{2}(f_t + ff_y) + \frac{h^3}{6}(f_{tt} + f_t f_y + 2ff_{yt} + ff_y^2 + f^2 f_{yy})$$

$$= y + ahf + bh \left[f - h(f_t + ff_y) + \frac{h^2}{2}(f_{tt} + f_t f_y + 2ff_{yt} + ff_y^2 + f^2 f_{yy}) \right]$$

$$+ ch \left[f - 2h(f_t + ff_y) + 2h^2 \left(f_{tt} + f_t f_y + 2ff_{yt} + ff_y^2 + f^2 f_{yy} \right) \right].$$

Por lo tanto,

$$a+b+c=1$$
, $-b-2c=\frac{1}{2}$, y $\frac{1}{2}b+2c=\frac{1}{6}$.

Este sistema tiene la solución

$$a = \frac{23}{12}$$
, $b = -\frac{16}{12}$, $y c = \frac{5}{12}$.

19. Tenemos

$$y(t_{i+1}) - y(t_{i-1}) = \int_{t_{i-1}}^{t_{i+1}} f(t, y(t)) dt$$

= $\frac{h}{3} [f(t_{i-1}, y(t_{i-1})) + 4f(t_i, y(t_i)) + f(t_{i+1}, y(t_{i+1}))] - \frac{h^5}{90} f^{(4)}(\xi, y(\xi)).$

Esto conduce a la ecuación de diferencias

$$w_{i+1} = w_{i-1} + \frac{h\left[f(t_{i-1}, w_{i-1}) + 4f(t_i, w_i) + f(t_{i+1}, w_{i+1})\right]}{3}$$

con error de truncamiento local

$$\tau_{i+1}(h) = \frac{-h^4 y^{(5)}(\xi)}{90}.$$

21. Las entradas son generadas al evaluar las siguientes integrales:

$$k = 0 : (-1)^k \int_0^1 {\binom{-s}{k}} ds = \int_0^1 ds = 1,$$

$$k = 1 : (-1)^k \int_0^1 {\binom{-s}{k}} ds = -\int_0^1 -s \, ds = \frac{1}{2},$$

$$k = 2 : (-1)^k \int_0^1 {\binom{-s}{k}} ds = \int_0^1 \frac{s(s+1)}{2} \, ds = \frac{5}{12},$$

$$k = 3 : (-1)^k \int_0^1 {\binom{-s}{k}} \, ds = -\int_0^1 \frac{-s(s+1)(s+2)}{6} \, ds = \frac{3}{8},$$

$$k = 4 : (-1)^k \int_0^1 {\binom{-s}{k}} \, ds = \int_0^1 \frac{s(s+1)(s+2)(s+3)}{24} \, ds = \frac{251}{720}, \quad y$$

$$k = 5 : (-1)^k \int_0^1 {\binom{-s}{k}} \, ds = -\int_0^1 -\frac{s(s+1)(s+2)(s+3)(s+4)}{120} \, ds = \frac{95}{288}$$

Conjunto de ejercicios 5.7

1. El algoritmo indicador-corrector de longitud de paso variable de Adams da los resultados en las siguientes tablas.

a							
i		t_i	w_i	h_i	y_i		
	1	0.04275596	0.00096891	0.04275596	0.00096887		
	5	0.22491460	0.03529441	0.05389076	0.03529359		
1	12	0.60214994	0.50174348	0.05389076	0.50171761		
1	17	0.81943926	1.45544317	0.04345786	1.45541453		
2	22	0.99830392	3.19605697	0.03577293	3.19602842		
2	26	1.00000000	3.21912776	0.00042395	3.21909932		
b.							
	i	t_i	w_i	h_i	y_i		
	1	2.06250000	1.12132350	0.06250000	1.12132353		
	5	2.31250000	1.55059834	0.06250000	1.55059524		
	9	2.62471924	2.00923157	0.09360962	2.00922829		
1	13	2.99915773	2.49895243	0.09360962	2.49894707		
1	17	3.00000000	2.50000535	0.00021057	2.50000000		
_							

c.					
	i	t_i	w_i	h_i	y_i
	1	1.06250000	2.18941363	0.06250000	2.18941366
	4	1.25000000	2.77892931	0.06250000	2.77892944
	8	1.85102559	4.84179835	0.15025640	4.84180141
	12	2.00000000	5.38629105	0.03724360	5.38629436
d.					
	i	t_i	w_i	h_i	y_i
	1	0.06250000	1.06817960	0.06250000	1.06817960
	5	0.31250000	1.42861668	0.06250000	1.42861361
	10	0.62500000	1.90768386	0.06250000	1.90767015
	13	0.81250000	2.08668486	0.06250000	2.08666541
	16	1.00000000	2.11800208	0.06250000	2.11797955

3. or-corrector de longitud de paso variable de Adams.

Las sign	uientes tablas muest	ran los resultados re	epresentativos del a	algoritmo indicado
a			1	
i	t_i	w_i	h_i	y_i
5	1.10431651	1.00463041	0.02086330	1.00463045
15	1.31294952	1.03196889	0.02086330	1.03196898
25	1.59408142	1.08714711	0.03122028	1.08714722
35	2.00846205	1.18327922	0.04824992	1.18327937
45	2.66272188	1.34525123	0.07278716	1.34525143
52	3.40193112	1.52940900	0.11107035	1.52940924
57	4.00000000	1.67623887	0.12174963	1.67623914
b				
i	t_i	w_i	h_i	y_i
5	1.18519603	0.20333499	0.03703921	0.20333497
15	1.55558810	0.73586642	0.03703921	0.73586631
25	1.92598016	1.48072467	0.03703921	1.48072442
35	2.29637222	2.51764797	0.03703921	2.51764743
45	2.65452689	3.92602442	0.03092051	3.92602332
55	2.94341188	5.50206466	0.02584049	5.50206279
61	3.00000000	5.87410206	0.00122679	5.87409998
c				
i	t_i	w_i	h_i	y_i
5	0.16854008	-1.83303780	0.03370802	-1.83303783
17	0.64833341	-1.42945306	0.05253230	-1.42945304
27	1.06742915	-1.21150951	0.04190957	-1.21150932
41	1.75380240	-1.05819340	0.06681937	-1.05819325
51	2.50124702	-1.01335240	0.07474446	-1.01335258
61	3.00000000	-1.00494507	0.01257155	-1.00494525
d				
i	t_i	w_i	h_i	y_i
5	0.28548652	0.32153668	0.05709730	0.32153674
15	0.85645955	0.24281066	0.05709730	0.24281095
20	1.35101725	0.15096743	0.09891154	0.15096772
25	1.66282314	0.09815109	0.06236118	0.09815137
29	1.91226786	0.06418555	0.06236118	0.06418579
33	2.00000000	0.05434530	0.02193303	0.05434551

- **5.** La corriente después de 2 segundos es aproximadamente i(2) = 8.693 amperes.
- 7. La población después de 5 años es 56751.

Conjunto de ejercicios 5.8

1. El algoritmo de extrapolación proporciona los resultados en las siguientes tablas.

_					
i	t_i	w_i	h	k	y_i
1	0.25	0.04543132	0.25	3	0.04543123
2	0.50	0.28361684	0.25	3	0.28361652
3	0.75	1.05257634	0.25	4	1.05257615
4	1.00	3.21909944	0.25	4	3.21909932
i	t_i	w_i	h	k	y_i
1					
1	1.25	2.77892942	0.25	3	2.77892944
2	1.25 1.50	2.77892942 3.60819763	0.25 0.25	3	2.77892944 3.60819766
•	1.20			-	
2	1.50	3.60819763	0.25	3	3.60819766

b.						
	i	t_i	w_i	h	k	y_i
	1	2.25	1.44999987	0.25	3	1.45000000
	2	2.50	1.83333321	0.25	3	1.83333333
	3	2.75	2.17857133	0.25	3	2.17857143
	4	3.00	2.49999993	0.25	3	2.50000000
d.						
	i	t_i	w_i	h	k	y_i
	1	0.25	1.32914981	0.25	3	1.32914981
	2	0.50	1.73048976	0.25	3	1.73048976
	3	0.75	2.04147203	0.25	3	2.04147203
	4	1.00	2.11797954	0.25	3	2.11797955

3. El algoritmo de extrapolación proporciona los resultados en las siguientes tablas.

i	t_i	w_i	h	k	y_i
1	1.50	1.06726237	0.50	4	1.0672623
2	2.00	1.18123223	0.50	3	1.1812322
3	2.50	1.30460372	0.50	3	1.3046037
4	3.00	1.42951608	0.50	3	1.4295160
5	3.50	1.55364771	0.50	3	1.5536477
6	4.00	1.67623915	0.50	3	1.6762391

i	t_i	w_i	h	k	y_i
1	1.50	0.64387537	0.50	4	0.64387533
2	2.00	1.66128182	0.50	5	1.66128176
3	2.50	3.25801550	0.50	5	3.25801536
4	3.00	5.87410027	0.50	5	5.87409998

i	t_i	w_i	h	k	y_i
1	0.50	-1.53788284	0.50	4	-1.53788284
2	1.00	-1.23840584	0.50	5	-1.23840584
3	1.50	-1.09485175	0.50	5	-1.09485175
4	2.00	-1.03597242	0.50	5	-1.03597242
5	2.50	-1.01338570	0.50	5	-1.01338570
6	3.00	-1.00494526	0.50	4	-1.00494525

i	t_i	w_i	h	k	y_i
1	0.50	0.29875177	0.50	4	0.29875178
2	1.00	0.21662642	0.50	4	0.21662642
3	1.50	0.12458565	0.50	4	0.12458565
4	2.00	0.05434552	0.50	4	0.05434551

5. La extrapolación predice las coordenadas de captura que son (100, 145.59). Las coordenadas reales son (100, 145.59). Todas las coordenadas están en pies.

Conjunto de ejercicios 5.9

1. El algoritmo Runge-Kutta de sistemas da los resultados en las siguientes tablas.

a.					
	t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}
	0.200	2.12036583	2.12500839	1.50699185	1.51158743
	0.400	4.44122776	4.46511961	3.24224021	3.26598528
	0.600	9.73913329	9.83235869	8.16341700	8.25629549
	0.800	22.67655977	23.00263945	21.34352778	21.66887674
	1.000	55.66118088	56.73748265	56.03050296	57.10536209

h	
	١.

t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}
0.500	0.95671390	0.95672798	-1.08381950	-1.08383310
1.000	1.30654440	1.30655930	-0.83295364	-0.83296776
1.500	1.34416716	1.34418117	-0.56980329	-0.56981634
2.000	1.14332436	1.14333672	-0.36936318	-0.36937457

c.

t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}	w_{3i}	u_{3i}
0.5	0.70787076	0.70828683	-1.24988663	-1.25056425	0.39884862	0.39815702
1.0	-0.33691753	-0.33650854	-3.01764179	-3.01945051	-0.29932294	-0.30116868
1.5	-2.41332734	-2.41345688	-5.40523279	-5.40844686	-0.92346873	-0.92675778
2.0	-5.89479008	-5.89590551	-8.70970537	-8.71450036	-1.32051165	-1.32544426

d

t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}	w_{3i}	u_{3i}
0.2	1.38165297	1.38165325	1.00800000	1.00800000	-0.61833075	-0.61833075
0.5	1.90753116	1.90753184	1.12500000	1.12500000	-0.09090565	-0.09090566
0.7	2.25503524	2.25503620	1.34300000	1.34000000	0.26343971	0.26343970
1.0	2.83211921	2.83212056	2.00000000	2.00000000	0.88212058	0.88212056

3. El algoritmo de Runge-Kutta de sistemas da los resultados en las siguientes tablas.

a.

t_i	w_{1i}	y_i
0.200	0.00015352	0.00015350
0.500	0.00742968	0.00743027
0.700	0.03299617	0.03299805
1.000	0.17132224	0.17132880

b. ___

t_i	w_{1i}	y_i
1.200	0.96152437	0.96152583
1.500	0.77796897	0.77797237
1.700	0.59373369	0.59373830
2.000	0.27258237	0.27258872

c.

t_i	w_{1i}	y_i
1.000	3.73162695	3.73170445
2.000	11.31424573	11.31452924
3.000	34.04395688	34.04517155

A

t_i w_{1i}	w_{2i}
1.500 1.08849079 1.0 1.700 2.04353207 2.0	7273791 8849259 4353642 6157780

5. El número predicho de presas, x_{1i} , y los predadores, x_{2i} , están dados en la siguiente tabla.

i	t_i	x_{1i}	x_{2i}
10	1.0	4393	1512
20	2.0	288	3175
30	3.0	32	2042
40	4.0	25	1258

ı		
	t_i	θ
	1.0 2.0	-0.365903 -0.0150563

t_i	θ
1.0	-0.338253
2.0	-0.0862680

-0.36937457

9. El método indicador-corrector de cuarto orden de Adams para sistemas aplicado a los problemas en el ejercicio 1 proporcionan los resultados en las siguientes tablas.

a.					
	t_i	w_{1i}	w_{2i}	u_{2i}	
	0.200	2.12036583	2.12500839	1.50699185	1.51158743
	0.400	4.44122776	4.46511961	3.24224021	3.26598528
	0.600	9.73913329	9.83235869	8.16341700	8.25629549
	0.800	22.52673210	23.00263945	21.20273983	21.66887674
	1.000	54.81242211	56.73748265	55.20490157	57.10536209

D.					
	t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}
_	0.500	0.95675505	0.95672798	-1.08385916	-1.08383310
	1.000	1.30659995	1.30655930	-0.83300571	-0.83296776
	1.500	1.34420613	1.34418117	-0.56983853	-0.56981634

1.14333672

c.							
	t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}	w_{3i}	u_{3i}
	0.5	0.70787076	0.70828683	-1.24988663	-1.25056425	0.39884862	0.39815702
	1.0	-0.33691753	-0.33650854	-3.01764179	-3.01945051	-0.29932294	-0.30116868
	1.5	-2.41332734	-2.41345688	-5.40523279	-5.40844686	-0.92346873	-0.92675778
	2.0	-5.88968402	-5.89590551	-8.72213325	-8.71450036	-1.32972524	-1.32544426

-0.36938396

d.							
	t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}	w_{3i}	u_{3i}
	0.2	1.38165297	1.38165325	1.00800000	1.00800000	-0.61833075	-0.61833075
	0.5	1.90752882	1.90753184	1.12500000	1.12500000	-0.09090527	-0.09090566
	0.7	2.25503040	2.25503620	1.34300000	1.34300000	0.26344040	0.26343970
	1.0	2.83211032	2.83212056	2.00000000	2.00000000	0.88212163	0.88212056

Conjunto de ejercicios 5.10

2.000

1.14334795

1. Si L es la constante de Lipschitz para ϕ . Entonces

$$u_{i+1} - v_{i+1} = u_i - v_i + h[\phi(t_i, u_i, h) - \phi(t_i, v_i, h)],$$

por lo que

$$|u_{i+1} - v_{i+1}| \le (1 + hL)|u_i - v_i| \le (1 + hL)^{i+1}|u_0 - v_0|$$

3. Mediante el ejercicio 32 en la sección 5.4, tenemos

$$\begin{split} \phi(t,w,h) &= \frac{1}{6}f(t,w) + \frac{1}{3}f\left(t + \frac{1}{2}h,w + \frac{1}{2}hf(t,w)\right) \\ &+ \frac{1}{3}f\left(t + \frac{1}{2}h,w + \frac{1}{2}hf\left(t + \frac{1}{2}h,w + \frac{1}{2}hf(t,w)\right)\right) \\ &+ \frac{1}{6}f\left(t + h,w + hf\left(t + \frac{1}{2}h,w + \frac{1}{2}hf\left(t + \frac{1}{2}h,w + \frac{1}{2}hf(t,w)\right)\right)\right), \end{split}$$

por lo que

c.

$$\phi(t, w, 0) = \frac{1}{6}f(t, w) + \frac{1}{3}f(t, w) + \frac{1}{3}f(t, w) + \frac{1}{6}f(t, w) = f(t, w).$$

- **5. a.** El error de truncamiento local es $\tau_{i+1} = \frac{1}{4}h^3y^{(4)}(\xi_i)$, para algunas ξ , donde $t_{i-2} < \xi_i < t_{i+1}$.
 - **b.** El método es consistente, pero inestable y no convergente.
- 7. El método es inestable.

Conjunto de ejercicios 5.11

1. El método de Euler da los resultados en las siguientes tablas.

a.			
	t_i	w_i	y_i
	0.200	0.027182818	0.449328964
	0.500	0.000027183	0.030197383
	0.700	0.000000272	0.004991594
	1.000	0.000000000	0.000335463

t_i	w_i	y_i
0.500	16.47925	0.479470939
1.000	256.7930	0.841470987
1.500	4096.142	0.997494987
2.000	65523.12	0.909297427

b.					
	t_i	w_i	y_i		
	0.200	0.373333333	0.046105213		
	0.500	-0.093333333	0.250015133		
	0.700	0.146666667	0.490000277		
	1.000	1.333333333	1.000000001		

t_i	w_i	y_i
0.200	6.128259	1.000000001
0.500	-378.2574	1.000000000
0.700	-6052.063	1.000000000
1.000	387332.0	1.000000000

3. El método de cuarto orden de Runge-Kutta proporciona los resultados en las siguientes tablas.

t_i	w_i	y_i
0.200	0.45881186	0.44932896
0.500	0.03181595	0.03019738
0.700	0.00537013	0.00499159
1.000	0.00037239	0.00033546

t_i	w_i	Уi
0.200	0.07925926	0.04610521
0.500	0.25386145	0.25001513
0.700	0.49265127	0.49000028
1.000	1.00250560	1.00000000

t_i	w_i	y_i
0.500	188.3082	0.47947094
1.000	35296.68	0.84147099
1.500	6632737	0.99749499
2.000	1246413200	0.90929743

d.			
	t_i	w_i	y_i
	0.200 0.500	-215.7459 -555750.0	1.00000000
	0.700	-104435653	1.00000000
	1.000	-269031268010	1.00000000

5. El algoritmo indicador-corrector de cuarto orden de Adams da los resultados en las siguientes tablas.

t_i	w_i	y_i
0.200	0.4588119	0.4493290
0.500	-0.0112813	0.0301974
0.700	0.0013734	0.0049916
1.000	0.0023604	0.0003355

c.	

t_i	w_i	y_i
.500	188.3082	0.4794709
1.000	38932.03	0.8414710
1.500	9073607	0.9974950
2.000	2115741299	0.9092974

b.

t_i	w_i	y_i
0.200	0.0792593	0.0461052
0.500	0.1554027	0.2500151
0.700	0.5507445	0.4900003
1.000	0.7278557	1.0000000

d

t_i	w_i	y_i
0.200	-215.7459	1.000000001
0.500	-682637.0	1.000000000
0.700	-159172736	1.000000000
1.000	-566751172258	1.000000000

7. El algoritmo trapezoidal proporciona los resultados en las siguientes tablas.

a.

t_i	w_i	k	y_i
0.200	0.39109643	2	0.44932896
0.500	0.02134361	2	0.03019738
0.700	0.00307084	2	0.00499159
1.000	0.00016759	2	0.00033546

h

t_i	w_i	k	y_i
0.200	0.04000000	2	0.04610521
0.500	0.25000000	2	0.25001513
0.700	0.49000000	2	0.49000028
1.000	1.00000000	2	1.00000000

c

t_i	w_i	k	y_i
0.500	0.66291133	2	0.47947094
1.000	0.87506346	2	0.84147099
1.500	1.00366141	2	0.99749499
2.000	0.91053267	2	0.90929743

d.

t_i	w_i	k	y_i
0.200	-1.07568307	4	1.00000000
0.500	-0.97868360	4	1.00000000
0.700	-0.99046408	3	1.00000000
1.000	-1.00284456	3	1.00000000

9. a.

t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}
0.100	-96.33011	0.66987648	193.6651	-0.33491554
0.200	-28226.32	0.67915383	56453.66	-0.33957692
0.300	-8214056	0.69387881	16428113	-0.34693941
0.400	-2390290586	0.71354670	4780581173	-0.35677335
0.500	-695574560790	0.73768711	1391149121600	-0.36884355

b.

)				
t_i	w_{1i}	u_{1i}	w_{2i}	u_{2i}
0.100	0.61095960	0.66987648	-0.21708179	-0.33491554
0.200	0.66873489	0.67915383	-0.31873903	-0.33957692
0.300	0.69203679	0.69387881	-0.34325535	-0.34693941
0.400	0.71322103	0.71354670	-0.35612202	-0.35677335
0.500	0.73762953	0.73768711	-0.36872840	-0.36884355

11. El método de Euler hacia atrás aplicado a $y' = \lambda y$ da

$$w_{i+1} = \frac{w_i}{1 - h\lambda}$$
, por lo que $Q(h\lambda) = \frac{1}{1 - h\lambda}$.

a.

i	t_i	w_i	k	y_i
2	0.2	1.67216224	2	1.58928220
4	0.4	1.69987544	2	1.62715998
6	0.6	1.92400672	2	1.87190587
8	0.8	2.28233119	2	2.24385657
10	1.0	2.75757631	2	2.72501978

b.

i	t_i	w_i	k	y_i
2	0.2	0.87957046	2	0.56787944
4	0.4	0.56989261	2	0.44978707
6	0.6	0.64247315	2	0.60673795
8	0.8	0.81061829	2	0.80091188
10	1.0	1.00265457	2	1.00012341

c.

i	t_i	w_i	k	y_i
1	1.25	0.55006309	2	0.51199999
3	1.75	0.19753128	2	0.18658892
5	2.25	0.09060118	2	0.08779150
7	2.75	0.04900207	2	0.04808415

d.

i	t_i	w_i	k	y_i
1	0.25	0.79711852	2	0.96217447
3	0.75	0.72203841	2	0.73168856
5	1.25	0.31248267	2	0.31532236
7	1.75	-0.17796016	2	-0.17824606

Conjunto de ejercicios 6.1

- **1. a.** Rectas de intersección con solución $x_1 = x_2 = 1$.
 - **b.** Una recta, por lo que existe un número infinito de soluciones con $x_2 = \frac{3}{2} \frac{1}{2}x_1$.
 - **c.** Una recta, por lo que existe un número infinito de soluciones con $x_2 = -\frac{1}{2}x_1$.
 - **d.** Rectas de intersección con solución $x_1 = \frac{2}{7}$ y $x_2 = -\frac{11}{7}$.
- **3. a.** $x_1 = 1.0, x_2 = -0.98, x_3 = 2.9$

- **b.** $x_1 = 1.1, x_2 = -1.1, x_3 = 2.9$
- 5. La eliminación gaussiana proporciona las siguientes soluciones.
 - **a.** $x_1 = 1.1875$, $x_2 = 1.8125$, $x_3 = 0.875$ con un intercambio de fila requerido
 - **b.** $x_1 = -1, x_2 = 0, x_3 = 1$ sin intercambio requerido
 - **c.** $x_1 = 1.5, x_2 = 2, x_3 = -1.2, x_4 = 3$ sin intercambio requerido
 - d. Sin solución única.
- 7. La eliminación gaussiana con aritmética de precisión única da las siguientes soluciones:
 - **a.** $x_1 = -227.0769$, $x_2 = 476.9231$, $x_3 = -177.6923$;
 - **b.** $x_1 = 1.001291, x_2 = 1, x_3 = 1.00155;$
 - **c.** $x_1 = -0.03174600$, $x_2 = 0.5952377$, $x_3 = -2.380951$, $x_4 = 2.777777$;
 - **d.** $x_1 = 1.918129$, $x_2 = 1.964912$, $x_3 = -0.9883041$, $x_4 = -3.192982$, $x_5 = -1.134503$.
- **9. a.** Cuando $\alpha = -1/3$, no existe solución.
 - **b.** Cuando $\alpha = 1/3$, existe un número infinito de soluciones con $x_1 = x_2 + 1.5$, y x_2 es arbitraria.
 - **c.** Si $\alpha \neq \pm 1/3$, entonces la solución única es

$$x_1 = \frac{3}{2(1+3\alpha)}$$
 y $x_2 = \frac{-3}{2(1+3\alpha)}$.

- 11. a. Existe suficiente comida para satisfacer el consumo diario promedio.
 - **b.** Podríamos sumar 200 especies 1 o 150 especies 2 o 100 especies 3 o 100 especies 4.
 - c. Al suponer que no se seleccionó ninguno de los incrementos indicados en la parte b), las especies 2 podrían aumentar 650 o las especies 3 podrían aumentar 150 o las especies 4 podrían aumentar 150.
 - **d.** Al suponer que no se seleccionó ninguno de los incrementos indicados en las partes b) y c), las especies 3 podrían aumentar 150 o las especies 4 podrían aumentar 150.

- 13. Suponga que x'_1, \ldots, x'_n es una solución del sistema lineal (6.1).
 - a. El nuevo sistema se convierte en

$$E_{1} : a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$\vdots$$

$$E_{i} : \lambda a_{i1}x_{1} + \lambda a_{i2}x_{2} + \dots + \lambda a_{in}x_{n} = \lambda b_{i}$$

$$\vdots$$

$$E_{n} : a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}.$$

Claramente, x'_1, \ldots, x'_n satisface este sistema. En cambio, si x_1^*, \ldots, x_n^* satisface el sistema nuevo, al dividir E_i entre λ muestra que x_1^*, \ldots, x_n^* también satisface (6.1).

b. El nuevo sistema se convierte en

$$E_{1} : a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$\vdots$$

$$E_{i} : (a_{i1} + \lambda a_{j1})x_{1} + (a_{i2} + \lambda a_{j2})x_{2} + \dots + (a_{in} + \lambda a_{jn})x_{n} = b_{i} + \lambda b_{j}$$

$$\vdots$$

$$E_n: a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n.$$

Claramente, x'_1, \ldots, x'_n satisface todo, menos la posibilidad en la *i*ésima ecuación. Al multiplicar E_i por λ obtenemos

$$\lambda a_{i1}x_1' + \lambda a_{i2}x_2' + \dots + \lambda a_{in}x_n' = \lambda b_i,$$

que se puede restar de E_i en los resultados del sistema nuevo en el sistema (6.1). Por lo tanto, x_1', \ldots, x_n' satisface el sistema nuevo. En cambio, si x_1^*, \ldots, x_n^* es una solución para el sistema nuevo, entonces todo pero menos E_i de (6.1) está satisfecho por x_1^*, \ldots, x_n^* . Al multiplicar E_j del sistema nuevo por $-\lambda$ obtenemos

$$-\lambda a_{j1}x_1^* - \lambda a_{j2}x_2^* - \dots - \lambda a_{jn}x_n^* = -\lambda b_j.$$

Sumar esto a E_i en el sistema nuevo produce E_i de (6.1). Por lo tanto, x_1^*, \ldots, x_n^* es una solución de (6.1).

- **c.** El sistema nuevo y el sistema antiguo tienen que satisfacer el mismo conjunto de ecuaciones. Por lo tanto, tienen el mismo conjunto de soluciones.
- 15. El método Gauss-Jordan da los siguientes resultados.

a.
$$x_1 = 0.98, x_2 = -0.98, x_3 = 2.9$$

b.
$$x_1 = 1.1, x_2 = -1.0, x_3 = 2.9$$

17. b. Los resultados de este ejercicio se muestran en la siguiente tabla. (Las abreviaturas M/D y A/S se utilizan para multiplicaciones/divisiones y sumas/restas, respectivamente.)

Eliminación gaussiana			Gauss-	-Jordan
n	M/D	A/S	M/D	A/S
3	17	11	21	12
10	430	375	595	495
50	44150	42875	64975	62475
100	343300	338250	509950	499950

19. El método híbrido de eliminación gaussiana-Gauss-Jordan da los siguientes resultados.

a.
$$x_1 = 1.0, x_2 = -0.98, x_3 = 2.9$$

b.
$$x_1 = 1.0, x_2 = -1.0, x_3 = 2.9$$

Conjunto de ejercicios 6.2

1. a. ninguno

b. intercambio de filas 2 y 3.

c. ninguno

d. intercambio de filas 1 y 2.

3. a. Intercambio de filas 1 y 2.

b. Intercambio de filas 1 y 3.

c. Intercambio de filas 1 y 2, después intercambio de filas 2 y 3. d. Intercambio de filas 1 y 2.

5. a. Intercambio de filas 1 y 3, después intercambio de filas 2 y 3. b. Intercambio de filas 2 y 3.

c. Intercambio de filas 2 y 3.

d. Intercambio de filas 1 y 3, después intercambio de filas 2 y 3.

7. a. Intercambio de filas 1 y 2, y columnas 1 y 3, después intercambio de filas 2 y 3, después intercambio de columnas 2 y 3.

b. Intercambio de filas 1 y 2, y columnas 1 y 3, después intercambio de filas 2 y 3.

c. Intercambio de filas 1 y 2, y columnas 1 y 3, después intercambio de filas 2 y 3.

d. Intercambio de filas 1 y 2, y columnas 1 y 2, después intercambio de filas 2 y 3, después intercambio de columnas 2 y 3.

9. La eliminación gaussiana con aritmética de corte de tres dígitos da los resultados.

a. $x_1 = 30.0, x_2 = 0.990$

b.
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.142$$

c. $x_1 = 0.206, x_2 = 0.0154, x_3 = -0.0156, x_4 = -0.716$

d.
$$x_1 = 0.828, x_2 = -3.32, x_3 = 0.153, x_4 = 4.91$$

11. La eliminación gaussiana con aritmética de redondeo de tres dígitos da los siguientes resultados.

a.
$$x_1 = -10.0, x_2 = 1.01$$

b.
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

c.
$$x_1 = 0.185, x_2 = 0.0103, x_3 = -0.0200, x_4 = -1.12$$

d.
$$x_1 = 0.799, x_2 = -3.12, x_3 = 0.151, x_4 = 4.56$$

13. La eliminación gaussiana con pivoteo parcial y aritmética de corte de tres dígitos da los siguientes resultados.

a.
$$x_1 = 10.0, x_2 = 1.00$$

b.
$$x_1 = -0.163, x_2 = 9.98, x_3 = 0.142$$

c.
$$x_1 = 0.177, x_2 = -0.0072, x_3 = -0.0208, x_4 = -1.18$$

d.
$$x_1 = 0.777, x_2 = -3.10, x_3 = 0.161, x_4 = 4.50$$

15. La eliminación gaussiana con pivoteo parcial y aritmética de redondeo de tres dígitos da los siguientes resultados.

a.
$$x_1 = 10.0, x_2 = 1.00$$

b.
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

c.
$$x_1 = 0.178$$
, $x_2 = 0.0127$, $x_3 = -0.0204$, $x_4 = -1.16$

d.
$$x_1 = 0.845, x_2 = -3.37, x_3 = 0.182, x_4 = 5.07$$

17. La eliminación gaussiana con pivoteo parcial y aritmética de corte de tres dígitos da los siguientes resultados.

a.
$$x_1 = 10.0, x_2 = 1.00$$

b.
$$x_1 = -0.163, x_2 = 9.98, x_3 = 0.142$$

c.
$$x_1 = 0.171, x_2 = 0.0102, x_3 = -0.0217, x_4 = -1.27$$

d.
$$x_1 = 0.687, x_2 = -2.66, x_3 = 0.117, x_4 = 3.59$$

19. La eliminación gaussiana con pivoteo parcial escalado y aritmética de redondeo de tres dígitos da los siguientes resultados.

a.
$$x_1 = 10.0, x_2 = 1.00$$

b.
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

c.
$$x_1 = 0.180, x_2 = 0.0128, x_3 = -0.0200, x_4 = -1.13$$

d.
$$x_1 = 0.783, x_2 = -3.12, x_3 = 0.147, x_4 = 4.53$$

21. a.
$$x_1 = 9.98, x_2 = 1.00$$

b.
$$x_1 = 0.0724, x_2 = 10.0, x_3 = 0.0952$$

c.
$$x_1 = 0.161, x_2 = 0.0125, x_3 = -0.0232, x_4 = -1.42$$

d.
$$x_1 = 0.719, x_2 = -2.86, x_3 = 0.146, x_4 = 4.00$$

23. a.
$$x_1 = 10.0, x_2 = 1.00$$

b.
$$x_1 = 0.00, x_2 = 10.0, x_3 = 0.143$$

c.
$$x_1 = 0.179, x_2 = 0.0127, x_3 = -0.0203, x_4 = -1.15$$

d.
$$x_1 = 0.874, x_2 = -3.49, x_3 = 0.192, x_4 = 5.33$$

25. b. $i_1 = 2.43478$ amps, $i_2 = 4.53846$ amps, $i_3 = -0.23077$ amps

c.
$$i_1 = 23.0$$
 amps, $i_2 = 6.54$ amps, $i_3 = 2.97$ amps

d. Real (c) $i_1 = 9.53$ amps, $i_2 = 6.56$ amps, $i_3 = 2.97$ amps. Con pivoteo $i_1 = 9.52$ amps, $i_2 = 6.55$ amps, $i_3 = 2.97$ amps.

Conjunto de ejercicios 6.3

1. a.
$$\begin{bmatrix} 4 \\ -18 \end{bmatrix}$$

$$\mathbf{b.} \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

c.
$$\begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

3. a.
$$\begin{bmatrix} -4 & 10 \\ 1 & 15 \end{bmatrix}$$

b.
$$\begin{bmatrix} 11 & 4 & -8 \\ 6 & 13 & -12 \end{bmatrix}$$

3. a.
$$\begin{bmatrix} -4 & 10 \\ 1 & 15 \end{bmatrix}$$
 b. $\begin{bmatrix} 11 & 4 & -8 \\ 6 & 13 & -12 \end{bmatrix}$ c. $\begin{bmatrix} -1 & 5 & -3 \\ 3 & 4 & -11 \\ -6 & -7 & -4 \end{bmatrix}$ d. $\begin{bmatrix} -2 & 1 \\ -14 & 7 \\ 6 & 1 \end{bmatrix}$

d.
$$\begin{bmatrix} -2 & 1 \\ -14 & 7 \\ 6 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{5}{8} & -\frac{1}{8} & -\frac{1}{8} \\ \frac{1}{8} & -\frac{5}{8} & \frac{3}{8} \end{bmatrix}$$
 c. La matriz es singular.

$$\mathbf{d.} \begin{bmatrix} \frac{1}{4} & 0 & 0 & 0 \\ -\frac{3}{14} & \frac{1}{7} & 0 & 0 \\ \frac{3}{28} & -\frac{11}{7} & 1 & 0 \\ -\frac{1}{2} & 1 & -1 & 1 \end{bmatrix}$$

7. Las soluciones de los sistemas lineales obtenidas en las partes a) y b) son, de izquierda a derecha,

$$x_1 = 3, x_2 = -6, x_3 = -2, x_4 = -1$$
 y $x_1 = x_2 = x_3 = x_4 = 1$

9. No, ya que los productos $A_{ij}B_{ik}$, para $1 \le i, j, k \le 2$, no se puede formar.

Lo siguiente son las condiciones necesarias y suficientes:

a. El número de columnas de A es igual al número de filas de B.

b. El número de líneas verticales de *A* es igual al número de líneas horizontales de *B*.

c. La colocación de las líneas verticales de A es idéntica a la colocación de las líneas horizontales de B.

11. a.
$$A^2 = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ \frac{1}{6} & 0 & 0 \end{bmatrix}$$
, $A^3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $A^4 = A$, $A^5 = A^2$, $A^6 = I$, ...

	Año 1	Año 2	Año 3	Año 4
Año 1 Año 2 Año 3	6000 6000	36000 3000 2000	12000 18000 1000	6000 6000 6000

c.

$$A^{-1} = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ \frac{1}{6} & 0 & 0 \end{bmatrix}.$$

La entrada i, j es el número de escarabajos de edad i, necesario para producir un escarabajo de edad j.

13. a. Suponga que \tilde{A} y \hat{A} son inversas de A. Entonces $A\tilde{A} = \tilde{A}A = I$ y $A\hat{A} = \hat{A}A = I$. Por lo tanto,

$$\tilde{A} = \tilde{A}I = \tilde{A}(A\hat{A}) = (\tilde{A}A)\hat{A} = I\hat{A} = \hat{A}.$$

b. $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$ y $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$, por lo que $(AB)^{-1} = B^{-1}A^{-1}$ ya que existe una sola inversa.

c. Puesto que $A^{-1}A = AA^{-1} = I$, sigue a A^{-1} que es no singular. Puesto que la inversa es única, tenemos $(A^{-1})^{-1} = A$.

15. a. Tenemos

$$\begin{bmatrix} 7 & 4 & 4 & 0 \\ -6 & -3 & -6 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2(x_0 - x_1) + \alpha_0 + \alpha_1 \\ 3(x_1 - x_0) - \alpha_1 - 2\alpha_0 \\ \alpha_0 \\ x_0 \end{bmatrix} = \begin{bmatrix} 2(x_0 - x_1) + 3\alpha_0 + 3\alpha_1 \\ 3(x_1 - x_0) - 3\alpha_1 - 6\alpha_0 \\ 3\alpha_0 \\ x_0 \end{bmatrix}$$

b.
$$B = A^{-1} = \begin{bmatrix} -1 & -\frac{4}{3} & -\frac{4}{3} & 0\\ 2 & \frac{7}{3} & 2 & 0\\ 0 & 0 & \frac{1}{3} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

17. Las respuestas son iguales a las del ejercicio 5.

Conjunto de ejercicios 6.4

1. Los determinantes de las matrices son:

3. Las respuestas son iguales a las del ejercicio 1.

5.
$$\alpha = -\frac{3}{2}$$
 y $\alpha = 2$

7.
$$\alpha = -5$$

9. **a.**
$$\bar{x} = x_1 + ix_2 = re^{i\alpha}$$
, donde $r = \sqrt{x_1^2 + x_2^2}$, $\alpha = \tan^{-1} \frac{x_2}{x_1}$. Por lo que,
$$R_{\theta}\bar{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \cos \theta & -x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}$$
. Por lo que,
$$\bar{y} = re^{i(\alpha+\theta)} = r(\cos(\alpha+\theta) + i \sin(\alpha+\theta)) = (x_1 \cos \theta - x_2 \sin \theta) + i(x_2 \cos \theta - x_1 \sin \theta) = y_1 + iy_2$$
. Por lo que, $\bar{y} = R_0\bar{x}$

b.
$$R_{\theta}^{-1} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = R_{-\theta}$$

c.
$$R_{\frac{\pi}{6}}\bar{x} = \begin{bmatrix} \frac{1}{2}\sqrt{3} - 1\\ \sqrt{3} + \frac{1}{2} \end{bmatrix}$$
 y $R_{\frac{-\pi}{6}}\bar{x} = \begin{bmatrix} \frac{1}{2}\sqrt{3} + 1\\ \sqrt{3} - \frac{1}{2} \end{bmatrix}$

d. det
$$R_{\theta} = \det R_{\theta}^{-1} = 1$$

- **11. a.** $\det A = 0$
 - **b.** Si det $A \neq 0$, el sistema tendría una única solución $(0,0,0,0)^t$ lo cual no tiene sentido en el contexto
 - **c.** $x_1 = \frac{1}{2}x_4$, $x_2 = x_4$, $x_3 = \frac{1}{2}x_4$, x_4 es cualquier entero positivo impar.
- 13. Sea

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \mathbf{y} \quad \tilde{\mathbf{A}} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}.$$

Expandiendo a lo largo de las terceras filas obtenemos

$$\det A = a_{31} \det \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix} - a_{32} \det \begin{bmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{bmatrix} + a_{33} \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= a_{31}(a_{12}a_{23} - a_{13}a_{22}) - a_{32}(a_{11}a_{23} - a_{13}a_{21}) + a_{33}(a_{11}a_{22} - a_{12}a_{21})$$

y

$$\det \tilde{A} = a_{31} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{12} & a_{13} \end{bmatrix} - a_{32} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{11} & a_{13} \end{bmatrix} + a_{33} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}$$

$$= a_{31} (a_{13}a_{22} - a_{12}a_{23}) - a_{32} (a_{13}a_{21} - a_{11}a_{23}) + a_{33} (a_{12}a_{21} - a_{11}a_{22}) = -\det A.$$

Los otros dos casos son similares.

- **15. a.** La solución es $x_1 = 0$, $x_2 = 10$, y $x_3 = 26$.
 - **b.** Tenemos $D_1 = -1$, $D_2 = 3$, $D_3 = 7$, y D = 0, y no hay soluciones.
 - c. Tenemos $D_1 = D_2 = D_3 = D = 0$, y existen infinitas soluciones.
 - d. La regla de Cramer requiere 39 multiplicaciones/divisiones y 20 sumas/restas.

Conjunto de ejercicios 6.5

1. a.
$$x_1 = -3$$
, $x_2 = 3$, $x_3 = 1$

3. a.
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 b. $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ c. $P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ d. $P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$

$$\mathbf{c.} \ \ P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{d.} \ \ P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

5. **a.**
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1.5 & 1 & 0 \\ 1.5 & 1 & 1 \end{bmatrix}$$
 y $U = \begin{bmatrix} 2 & -1 & 1 \\ 0 & 4.5 & 7.5 \\ 0 & 0 & -4 \end{bmatrix}$

b.
$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2.106719 & 1 & 0 \\ 3.067193 & 1.197756 & 1 \end{bmatrix}$$
 y $U = \begin{bmatrix} 1.012 & -2.132 & 3.104 \\ 0 & -0.3955257 & -0.4737443 \\ 0 & 0 & -8.939141 \end{bmatrix}$

$$\mathbf{d.} \ L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1.849190 & 1 & 0 & 0 \\ -0.4596433 & -0.2501219 & 1 & 0 \\ 2.768661 & -0.3079435 & -5.352283 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 2.175600 & 4.023099 & -2.173199 & 5.196700 \\ 0 & 13.43947 & -4.018660 & 10.80698 \\ 0 & 0 & -0.8929510 & 5.091692 \\ 0 & 0 & 0 & 12.03614 \end{bmatrix}$$

- 7. **a.** $x_1 = 1, x_2 = 2, x_3 = -1$
 - **b.** $x_1 = 1, x_2 = 1, x_3 = 1$
 - **c.** $x_1 = 1.5, x_2 = 2, x_3 = -1.199998, x_4 = 3$

9. a.
$$P'LU = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & \frac{5}{2} \end{bmatrix}$$

b.
$$P^{t}LU = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{d.} \ x_1 = 2.939851, x_2 = 0.07067770, x_3 = 5.677735, x_4 = 4.379812$$

$$\mathbf{9. \ a.} \ P^t L U = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 3 \\ 0 & 0 & \frac{5}{2} \end{bmatrix} \qquad \mathbf{b.} \ P^t L U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 6 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{11. \ a.} \ A = PLU = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & -\frac{1}{4} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & -1 \\ 0 & 0 & 0 & -\frac{1}{4} \end{bmatrix}$$
La población inicial debe ser (200, 200, 200, 200).

- b. La población inicial debe ser (200, 400, 800, -300). La entrada negativa muestra que la población 1 año después nunca puede ser 100 hembras de cada edad.
- 13. a. Para calcular P^tLU requiere $\frac{1}{3}n^3 \frac{1}{3}n$ multiplicaciones/divisiones y $\frac{1}{3}n^3 \frac{1}{2}n^2 + \frac{1}{6}n$ sumas/restas.
 - **b.** Si \tilde{P} se obtiene a partir de P mediante un simple intercambio de filas, entonces det $\tilde{P}=-\det P$. Por lo tanto, si \tilde{P} se obtiene a partir de P por k intercambios, tenemos det $\tilde{P} = (-1)^k \det P$.
 - **c.** Sólo se necesitan n-1 multiplicaciones, además de las operaciones en la parte a).
 - **d.** Tenemos det A = -741. Para factorizar y calcular det A se requieren 75 multiplicaciones/divisiones y 55 sumas/restas.

Conjunto de ejercicios 6.6

- 1. a. La única matriz simétrica es a).
 - **c.** Las matrices a) y b) son estricta y diagonalmente dominantes.
- b. Todas son no singulares.
- d. La única matriz definida positiva es a).

3. a.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

b.

$$L = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.25 & 1.0 & 0.0 & 0.0 \\ 0.25 & -0.45454545 & 1.0 & 0.0 \\ 0.25 & 0.27272727 & 0.076923077 & 1.0 \end{bmatrix}$$

$$D = \begin{bmatrix} 4.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.75 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.1818182 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.5384615 \end{bmatrix}$$

c.

$$L = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.25 & 1.0 & 0.0 & 0.0 \\ -0.25 & -0.27272727 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.44 & 1.0 \end{bmatrix}$$

$$D = \begin{bmatrix} 4.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 2.75 & 0.0 & 0.0 \\ 0.0 & 0.0 & 4.5454545 & 0.0 \\ 0.0 & 0.0 & 0.0 & 3.12 \end{bmatrix}$$

d.

$$L = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.33333333 & 1.0 & 0.0 & 0.0 \\ 0.166666667 & 0.2 & 1.0 & 0.0 \\ -0.166666667 & 0.1 & -0.24324324 & 1.0 \end{bmatrix},$$

$$D = \begin{bmatrix} 6.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 3.3333333 & 0.0 & 0.0 \\ 0.0 & 0.0 & 3.7 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.5810811 \end{bmatrix}$$

5. El algoritmo de Cholesky da los siguientes resultados.

$$\mathbf{a.} \ L = \begin{bmatrix} 1.414213 & 0 & 0 \\ -0.7071069 & 1.224743 & 0 \\ 0 & -0.8164972 & 1.154699 \end{bmatrix}$$

b.
$$L = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0.5 & 1.658311 & 0 & 0 \\ 0.5 & -0.7537785 & 1.087113 & 0 \\ 0.5 & 0.4522671 & 0.08362442 & 1.240346 \end{bmatrix}$$

$$\mathbf{c.}\ L = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0.5 & 1.658311 & 0 & 0 \\ -0.5 & -0.4522671 & 2.132006 & 0 \\ 0 & 0 & 0.9380833 & 1.766351 \end{bmatrix}$$

$$\mathbf{d.} \ L = \begin{bmatrix} 2.449489 & 0 & 0 & 0 \\ 0.8164966 & 1.825741 & 0 & 0 \\ 0.4082483 & 0.3651483 & 1.923538 & 0 \\ -0.4082483 & 0.1825741 & -0.4678876 & 1.606574 \end{bmatrix}$$

7. El algoritmo modificado de factorización da los siguientes resultados.

a.
$$x_1 = 1, x_2 = -1, x_3 = 0$$

b.
$$x_1 = 0.2, x_2 = -0.2, x_3 = -0.2, x_4 = 0.25$$

c.
$$x_1 = 1, x_2 = 2, x_3 = -1, x_4 = 2$$

d.
$$x_1 = -0.8586387$$
, $x_2 = 2.418848$, $x_3 = -0.9581152$, $x_4 = -1.272251$

9. El algoritmo modificado de Cholesky proporciona los siguientes resultados.

a.
$$x_1 = 1, x_2 = -1, x_3 = 0$$

b.
$$x_1 = 0.2, x_2 = -0.2, x_3 = -0.2, x_4 = 0.25$$

c.
$$x_1 = 1, x_2 = 2, x_3 = -1, x_4 = 2$$

d.
$$x_1 = -0.85863874$$
, $x_2 = 2.4188482$, $x_3 = -0.95811518$, $x_4 = -1.2722513$

a.
$$x_1 = 0.5, x_2 = 0.5, x_3 = 1$$

b.
$$x_1 = -0.9999995$$
, $x_2 = 1.999999$, $x_3 = 1$

c.
$$x_1 = 1, x_2 = -1, x_3 = 0$$

d.
$$x_1 = -0.09357798$$
, $x_2 = 1.587156$, $x_3 = -1.167431$, $x_4 = 0.5412844$

- **13.** Tenemos $x_i = 1$, para cada i = 1, ..., 10.
- 15. Solo la matriz en d) es definida positiva.

17.
$$-2 < \alpha < \frac{3}{2}$$

19.
$$0 < \beta < 1$$
 y $3 < \alpha < 5 - \beta$

21. a. Puesto que det
$$A = 3\alpha - 2\beta$$
, A es singular si y sólo si $\alpha = 2\beta/3$.

b.
$$|\alpha| > 1, |\beta| < 1$$

c.
$$\beta = 1$$

d.
$$\alpha > \frac{2}{3}, \beta = 1$$

23.
$$i_1 = 0.6785047$$
, $i_2 = 0.4214953$, $i_3 = 0.2570093$, $i_4 = 0.1542056$, $i_5 = 0.1028037$

25. a. No, por ejemplo, considere
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 .

b. Sí, puesto que
$$A = A^t$$
.

c. Sí, puesto que
$$\mathbf{x}^t(A+B)\mathbf{x} = \mathbf{x}^t A\mathbf{x} + \mathbf{x}^t B\mathbf{x}$$
.

d. Sí, puesto que
$$\mathbf{x}^t A^2 \mathbf{x} = \mathbf{x}^t A^t A \mathbf{x} = (A \mathbf{x})^t (A \mathbf{x}) \ge 0$$
, Y puesto que A es no singular, la igualdad se mantiene sólo si $\mathbf{x} = \mathbf{0}$.

e. No, por ejemplo, considere
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 y $B = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$.

27. Un ejemplo es
$$A = \begin{bmatrix} 1.0 & 0.2 \\ 0.1 & 1.0 \end{bmatrix}$$
.

29. El algoritmo de factorización de Crout se puede reescribir de acuerdo con lo siguiente:

Paso 1 Determine
$$l_1 = a_1$$
; $u_1 = c_1/l_1$.

Paso 2 Para
$$i = 2, ..., n-1$$
 determine $l_i = a_i - b_i u_{i-1}$; $u_i = c_i/l_i$.

Paso 3 Determine
$$l_n = a_n - b_n u_{n-1}$$
.

Paso 4 Determine
$$z_1 = d_1/l_1$$
.

Paso 5 Para
$$i = 2, ..., n$$
 determine $z_i = (d_i - b_i z_{i-1})/l_i$.

Paso 6 Determine
$$x_n = z_n$$
.

Paso 7 Para
$$i = n - 1, ...$$
, determine $x_i = z_i - u_i x_{i+1}$.

Paso 8 SALIDA
$$(x_1, ..., x_n)$$
; PARE.

31. El algoritmo de factorización de Crout requiere 5n-4 multiplicaciones/divisiones y 3n-3 sumas/restas.

Conjunto de ejercicios 7.1

1. a. Tenemos
$$||\mathbf{x}||_{\infty} = 4$$
 y $||\mathbf{x}||_{2} = 5.220153$.

b. Tenemos
$$||\mathbf{x}||_{\infty} = 4$$
 y $||\mathbf{x}||_2 = 5.477226$.

c. Tenemos
$$||\mathbf{x}||_{\infty} = 2^k \text{ y } ||\mathbf{x}||_2 = (1 + 4^k)^{1/2}$$
.

d. Tenemos
$$||\mathbf{x}||_{\infty} = 4/(k+1)$$
 y $||\mathbf{x}||_{2} = (16/(k+1)^{2} + 4/k^{4} + k^{4}e^{-2k})^{1/2}$.

3. a. Tenemos
$$\lim_{k\to\infty} \mathbf{x}^{(k)} = (0, 0, 0)^t$$
.

b. Tenemos lím
$$_{k\to\infty}$$
 x^(k) = (0, 1, 3)^t.

c. Tenemos
$$\lim_{k\to\infty} \mathbf{x}^{(k)} = (0, 0, \frac{1}{2})^t$$
.

d. Tenemos
$$\lim_{k\to\infty} \mathbf{x}^{(k)} = (1, -1, 1)^t$$
.

5. Las normas l_{∞} son las siguientes:

7. a. Tenemos
$$||\mathbf{x} - \hat{\mathbf{x}}||_{\infty} = 8.57 \times 10^{-4} \text{ y } ||A\hat{\mathbf{x}} - \mathbf{b}||_{\infty} = 2.06 \times 10^{-4}.$$

b. Tenemos
$$||\mathbf{x} - \hat{\mathbf{x}}||_{\infty} = 0.90 \text{ y } ||A\hat{\mathbf{x}} - \mathbf{b}||_{\infty} = 0.27.$$

c. Tenemos
$$||\mathbf{x} - \hat{\mathbf{x}}||_{\infty} = 0.5 \text{ y } ||A\hat{\mathbf{x}} - \mathbf{b}||_{\infty} = 0.3.$$

d. Tenemos
$$||\mathbf{x} - \hat{\mathbf{x}}||_{\infty} = 6.55 \times 10^{-2}$$
, y $||A\hat{\mathbf{x}} - \mathbf{b}||_{\infty} = 0.32$.

9. a. Puesto que $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| \ge 0$ con igualdad sólo si $x_i = 0$ para todas las i, propiedades i) y ii) en la definición 7.1 se mantiene. Además.

$$\|\alpha \mathbf{x}\|_1 = \sum_{i=1}^n |\alpha x_i| = \sum_{i=1}^n |\alpha| |x_i| = |\alpha| \sum_{i=1}^n |x_i| = |\alpha| \|\mathbf{x}\|_1,$$

por lo que la propiedad iii) se mantiene.

Finalmente.

$$\|\mathbf{x} + \mathbf{y}\|_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n (|x_i| + |y_i|) = \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = \|\mathbf{x}\|_1 + \|\mathbf{y}\|_1,$$

por lo que la propiedad iv) también se mantiene.

- **b.** (1a) 8.5 (1b) 10 (1c) $|\sin k| + |\cos k| + e^k$ (1d) $4/(k+1) + 2/k^2 + k^2 e^{-k}$
- c. Tenemos

$$\|\mathbf{x}\|_{1}^{2} = \left(\sum_{i=1}^{n} |x_{i}|\right)^{2} = (|x_{1}| + |x_{2}| + \dots + |x_{n}|)^{2}$$

$$\geq |x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2} = \sum_{i=1}^{n} |x_{i}|^{2} = \|\mathbf{x}\|_{2}^{2}.$$

Por lo tanto, $\|\mathbf{x}\|_1 \geq \|\mathbf{x}\|_2$.

11. Si
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 y $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Entonces $||AB||_{\otimes} = 2$, pero $||A||_{\otimes} \cdot ||B||_{\otimes} = 1$.

- 13. b. Tenemos
 - **5a.** $||A||_F = \sqrt{326}$
 - **5b.** $||A||_F = \sqrt{326}$
 - 5c. $||A||_F = 4$
 - **5d.** $||A||_F = \sqrt{148}$.
- 15. Que $\|\mathbf{x}\| \ge 0$ se sigue fácilmente. Que $\|\mathbf{x}\| = 0$ si y sólo si $\mathbf{x} = \mathbf{0}$ se sigue de la definición de definida positiva. Además,

$$\|\alpha\mathbf{x}\| = \left[\left(\alpha\mathbf{x}^t\right)S(\alpha\mathbf{x})\right]^{\frac{1}{2}} = \left[\alpha^2\mathbf{x}^tS\mathbf{x}\right]^{\frac{1}{2}} = |\alpha|\left(\mathbf{x}^tS\mathbf{x}\right)^{\frac{1}{2}} = |\alpha|\|\mathbf{x}\|.$$

A partir de la factorización de Cholesky, si $S = LL^t$. Entonces,

$$\mathbf{x}^{t} S \mathbf{y} = \mathbf{x}^{t} L L^{t} \mathbf{y} = \left(L^{t} \mathbf{x}\right)^{t} \left(L^{t} \mathbf{y}\right)$$

$$\leq \left[\left(L^{t} \mathbf{x}\right)^{t} \left(L^{t} \mathbf{x}\right)\right]^{1/2} \left[\left(L^{t} \mathbf{y}\right)^{t} \left(L^{t} \mathbf{y}\right)\right]^{1/2}$$

$$= \left(\mathbf{x}^{t} L L^{t} \mathbf{x}\right)^{1/2} \left(\mathbf{y}^{t} L L^{t} \mathbf{y}\right)^{1/2} = \left(\mathbf{x}^{t} S \mathbf{x}\right)^{1/2} \left(\mathbf{y}^{t} S \mathbf{y}\right)^{1/2}.$$

Por lo tanto,

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \left[(\mathbf{x} + \mathbf{y})^t S (\mathbf{x} + \mathbf{y}) \right] = \left[\mathbf{x}^t S \mathbf{x} + \mathbf{y}^t S \mathbf{x} + \mathbf{x}^t S \mathbf{y} + \mathbf{y}^t S \mathbf{y} \right] \\ &\leq \mathbf{x}^t S \mathbf{x} + 2 \left(\mathbf{x}^t S \mathbf{x} \right)^{1/2} \left(\mathbf{y}^t S \mathbf{y} \right)^{1/2} + \left(\mathbf{y}^t S \mathbf{y} \right)^{1/2} \\ &= \mathbf{x}^t S \mathbf{x} + 2 \|\mathbf{x}\| \|\mathbf{y}\| + \mathbf{y}^t S \mathbf{y} = (\|\mathbf{x}\| + \|\mathbf{y}\|)^2. \end{aligned}$$

Esto demuestra las propiedades (i) - (iv) de la definición 7.1.

17. No es difícil mostrar que (i) se mantiene. Si ||A|| = 0, entonces $||A\mathbf{x}|| = 0$ para todos los vectores \mathbf{x} con $||\mathbf{x}|| = 1$. Usando $\mathbf{x} = (1, 0, \dots, 0)^t$, $\mathbf{x} = (0, 1, 0, \dots, 0)^t$, ..., \mathbf{y} $\mathbf{x} = (0, \dots, 0, 1)^t$ sucesivamente implica que cada columna de A es cero. Por lo tanto, ||A|| = 0 si y sólo si A = 0. Además,

$$\|\alpha A\| = \max_{\|\mathbf{x}\|=1} \|(\alpha A\mathbf{x})\| = |\alpha| \max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = |\alpha| \cdot \|A\|,$$

$$||A + B|| = \max_{\|\mathbf{x}\|=1} ||(A + B)\mathbf{x}|| \le \max_{\|\mathbf{x}\|=1} (||A\mathbf{x}|| + ||B\mathbf{x}||),$$

por lo que

$$||A + B|| \le \max_{\|\mathbf{x}\| = 1} ||A\mathbf{x}\|| + \max_{\|\mathbf{x}\| = 1} ||B\mathbf{x}\|| = ||A|| + ||B||$$

у

$$||AB|| = \max_{\|\mathbf{x}\|=1} ||(AB)\mathbf{x}|| = \max_{\|\mathbf{x}\|=1} ||A(B\mathbf{x})||.$$

Por lo tanto,

$$||AB|| \le \max_{\|\mathbf{x}\|=1} \|A\| \|B\mathbf{x}\| = \|A\| \max_{\|\mathbf{x}\|=1} \|B\mathbf{x}\| = \|A\| \|B\|.$$

19. Primero observe que el lado derecho de la desigualdad no cambia si se reemplaza \mathbf{x} por cualquier vector $\hat{\mathbf{x}}$ con $|x_i| = |\hat{x}_i|$ para cada $i = 1, 2, \dots n$. Entonces seleccione el nuevo vector $\hat{\mathbf{x}}$ de tal forma que $\hat{x}_i y_i \ge 0$ para cada i, y aplique la desigualdad a $\hat{\mathbf{x}}$ y $\hat{\mathbf{y}}$.

Conjunto de ejercicios 7.2

- 1. a. El eigenvalor $\lambda_1 = 3$ tiene el eigenvector $\mathbf{x}_1 = (1, -1)^t$, y el eigenvalor $\lambda_2 = 1$ tiene el eigenvector $\mathbf{x}_2 = (1, 1)^t$.
 - **b.** El eigenvalor $\lambda_1 = \frac{1+\sqrt{5}}{2}$ tiene el eigenvector $\mathbf{x} = \left(1, \frac{1+\sqrt{5}}{2}\right)^t$, y el eigenvalor $\lambda_2 = \frac{1-\sqrt{5}}{2}$ tiene el eigenvector $\mathbf{x} = \left(1, \frac{1-\sqrt{5}}{2}\right)^t$.
 - **c.** El eigenvalor $\lambda_1 = \frac{1}{2}$ tiene el eigenvector $\mathbf{x}_1 = (1, 1)^t$, y el eigenvalor $\lambda_2 = -\frac{1}{2}$ tiene el eigenvector $\mathbf{x}_2 = (1, -1)^t$.
 - **d.** El eigenvalor $\lambda_1 = \lambda_2 = 3$ tiene el eigenvector $\mathbf{x}_1 = (0, 0, 1)^t$ y $\mathbf{x}_2 = (1, 1, 0)^t$, y el eigenvalor $\lambda_3 = 1$ tiene un eigenvalor $\mathbf{x}_3 = (-1, 1, 0)^t$.
 - e. El eigenvalor $\lambda_1 = 7$ tiene el eigenvector $\mathbf{x}_1 = (1, 4, 4)^t$, el eigenvalor $\lambda_2 = 3$ tiene el eigenvector $\mathbf{x}_2 = (1, 2, 0)^t$, y el eigenvalor $\lambda_3 = -1$ tiene el eigenvector $\mathbf{x}_3 = (1, 0, 0)^t$.
 - **f.** El eigenvalor $\lambda_1 = 5$ tiene el eigenvector $\mathbf{x}_1 = (1, 2, 1)^t$, y el eigenvalor $\lambda_2 = \lambda_3 = 1$ tiene el eigenvector $\mathbf{x}_2 = (-1, 0, 1)^t$ y $\mathbf{x}_3 = (-1, 1, 0)^t$.
- 3. a. Los eigenvalores $\lambda_1 = 2 + \sqrt{2}i$ y $\lambda_2 = 2 \sqrt{2}i$ tienen los eigenvectores $\mathbf{x}_1 = (-\sqrt{2}i, 1)^t$ y $\mathbf{x}_2 = (\sqrt{2}i, 1)^t$.
 - **b.** Los eigenvalores $\lambda_1 = (3 + \sqrt{7}i)/2$ y $\lambda_2 = (3 \sqrt{7}i)/2$ tienen los eigenvectores $\mathbf{x}_1 = ((1 \sqrt{7}i)/2, 1)^t$ y $\mathbf{x}_2 = ((1 + \sqrt{7}i)/2, 1)$.
- **5. a.** 3 **b.** $\frac{1+\sqrt{5}}{2}$
- 7. Sólo la matriz en 1 c) es convergente.
 - **a.** 3 **b.** 1.618034
- **c.** 0.5

c. $\frac{1}{2}$

- **d.** 3
- e. 8.224257
- **f.** 5.203527

f. 5

11. Puesto que

$$A_1^k = \begin{bmatrix} 1 & 0 \\ \frac{2^k - 1}{2^{k+1}} & 2^{-k} \end{bmatrix}$$
, tenemos $\lim_{k \to \infty} A_1^k = \begin{bmatrix} 1 & 0 \\ \frac{1}{2} & 0 \end{bmatrix}$.

Además,

$$A_2^k = \begin{bmatrix} 2^{-k} & 0 \\ \frac{16k}{2^{k-1}} & 2^{-k} \end{bmatrix}$$
, por lo que $\lim_{k \to \infty} A_2^k = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

- 13. a. Tenemos el eigenvalor real $\lambda = 1$ con el eigenvector $\mathbf{x} = (6, 3, 1)^t$.
 - **b.** Seleccione cualquier múltiplo del vector $(6, 3, 1)^t$.
- 15. Si A es una matriz $n \times n$. Al expandir a lo largo de la primera fila obtenemos el polinomio característico

$$p(\lambda) = \det(A - \lambda I) = (a_{11} - \lambda)M_{11} + \sum_{j=2}^{n} (-1)^{j+1} a_{1j} M_{1j}.$$

Los determinantes M_{1i} tienen la forma

$$M_{1j} = \det \begin{bmatrix} a_{21} & a_{22} - \lambda & \cdots & a_{2,j-1} & a_{2,j+1} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3,j-1} & a_{3,j+1} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{j-1,1} & a_{j-1,2} & \cdots & a_{j-1,j-1} - \lambda & a_{j-1,j+1} & \cdots & a_{j-1,n} \\ a_{j,1} & a_{j,2} & \cdots & a_{j,j-1} & a_{j,j+1} & \cdots & a_{j,n} \\ a_{j+1,1} & a_{j+1,2} & \cdots & a_{j+1,j-1} & a_{j+1,j+1} - \lambda & \cdots & a_{j+1,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} - \lambda \end{bmatrix},$$

para $j=2,\ldots,n$. Observe que cada M_{1j} tiene n-2 entradas de la forma $a_{ii}-\lambda$. Por lo tanto,

$$p(\lambda) = \det(A - \lambda I) = (a_{11} - \lambda)M_{11} + \{\text{términos de grado } n - 2 \text{ o menos}\}.$$

Puesto que

$$M_{11} = \det \begin{bmatrix} a_{22} - \lambda & a_{23} & \cdots & a_{2n} \\ a_{32} & a_{33} - \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_{n2} & \cdots & \cdots & a_{n,n-1} & a_{nn} - \lambda \end{bmatrix}$$

tiene la misma forma que det $(A - \lambda I)$, el mismo argumento se puede aplicar repetidamente para determinar

$$p(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda) + \{\text{términos de grado } n - 2 \text{ o menos en } \lambda\}.$$

Por lo tanto, $p(\lambda)$ es un polinomio de grado n.

- 17. a. $det(A \lambda I) = det((A \lambda I)^t) = det(A^t \lambda I)$
 - **b.** Si $A\mathbf{x} = \lambda \mathbf{x}$, entonces $A^2\mathbf{x} = \lambda A\mathbf{x} = \lambda^2 \mathbf{x}$ y, por medio de inducción $A^k\mathbf{x} = \lambda^k \mathbf{x}$.
 - c. Si $A\mathbf{x} = \lambda \mathbf{x}$ y A^{-1} existe, entonces $\mathbf{x} = \lambda A^{-1}\mathbf{x}$. Mediante el ejercicio 16 (b), $\lambda \neq 0$, por lo que $\frac{1}{\lambda}\mathbf{x} = A^{-1}\mathbf{x}$.
 - **d.** Puesto que $A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}$, tenemos $(A^{-1})^2\mathbf{x} = \frac{1}{\lambda}A^{-1}\mathbf{x} = \frac{1}{\lambda^2}\mathbf{x}$. La inducción matemática da

$$(A^{-1})^k \mathbf{x} = \frac{1}{\lambda^k} \mathbf{x}.$$

e. Si $Ax = \lambda x$, entonces

$$q(A)\mathbf{x} = q_0\mathbf{x} + q_1A\mathbf{x} + \dots + q_kA^k\mathbf{x} = q_0\mathbf{x} + q_1\lambda\mathbf{x} + \dots + q_k\lambda^k\mathbf{x} = q(\lambda)\mathbf{x}.$$

f. Si $A - \alpha I$ es no singular. Puesto que $A\mathbf{x} = \lambda \mathbf{x}$,

$$(A - \alpha I)\mathbf{x} = A\mathbf{x} - \alpha I\mathbf{x} = \lambda \mathbf{x} - \alpha \mathbf{x} = (\lambda - \alpha)\mathbf{x}.$$

Por lo tanto,

$$\frac{1}{\lambda - \alpha} \mathbf{x} = (A - \alpha I)^{-1} \mathbf{x}.$$

19. Para

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ y } B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix},$$

Tenemos $\rho(A) = \rho(B) = 1$ y $\rho(A + B) = 3$.

Conjunto de ejercicios 7.3

- 1. Dos iteraciones del método de Jacobi proporcionan los siguientes resultados.
 - **a.** $(0.1428571, -0.3571429, 0.4285714)^t$

b. $(0.97, 0.91, 0.74)^t$

c. $(-0.65, 1.65, -0.4, -2.475)^t$

- **d.** $(1.325, -1.6, 1.6, 1.675, 2.425)^{t}$
- 3. Dos iteraciones del método de Gauss-Seidel proporcionan los siguientes resultados.
 - **a.** $\mathbf{x}^{(2)} = (0.11111111, -0.2222222, 0.6190476)^{t}$
- **b.** $\mathbf{x}^{(2)} = (0.979, 0.9495, 0.7899)^t$
- **c.** $\mathbf{x}^{(2)} = (-0.5, 2.64, -0.336875, -2.267375)^t$
- **d.** $\mathbf{x}^{(2)} = (1.189063, -1.521354, 1.862396, 1.882526, 2.255645)^t$
- 5. El algoritmo de Jacobi da los siguientes resultados.
 - **a.** $\mathbf{x}^{(8)} = (0.0351008, -0.2366338, 0.6581273)^t$
- **b.** $\mathbf{x}^{(6)} = (0.9957250, 0.9577750, 0.7914500)^t$
- **c.** $\mathbf{x}^{(21)} = (-0.7971058, 2.7951707, -0.2593958, -2.2517930)^t$
- **d.** $\mathbf{x}^{(12)} = (0.7870883, -1.003036, 1.866048, 1.912449, 1.985707)^t$
- 7. El algoritmo de Gauss-Seidel da los siguientes resultados.
 - **a.** $\mathbf{x}^{(6)} = (0.03535107, -0.2367886, 0.6577590)^t$
- **b.** $\mathbf{x}^{(4)} = (0.9957475, 0.9578738, 0.7915748)^t$
- **c.** $\mathbf{x}^{(10)} = (-0.7973091, 2.794982, -0.2589884, -2.251798)^t$
- **d.** $\mathbf{x}^{(7)} = (0.7866825, -1.002719, 1.866283, 1.912562, 1.989790)^t$
- 9. a.

$$T_{j} = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -1 & 0 & -1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$
y det $(\lambda I - T_{j}) = \lambda^{3} + \frac{5}{4}x$.

Por lo tanto, los eigenvalores de T_i son 0 y $\pm \frac{\sqrt{5}}{2}i$, por lo que $\rho(T_i) = \frac{\sqrt{5}}{2} > 1$.

- **b.** $\mathbf{x}^{(25)} = (-20.827873, 2.0000000, -22.827873)^t$
- c.

$$T_g = \begin{bmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} y \quad \det(\lambda I - T_g) = \lambda \left(\lambda + \frac{1}{2}\right)^2.$$

Por lo tanto, los eigenvalores de T_g son 0, -1/2, y -1/2; por lo que $\rho(T_g) = 1/2$.

- **d.** $\mathbf{x}^{(23)} = (1.0000023, 1.9999975, -1.0000001)^t$ está dentro de 10^{-5} en la norma l_{∞} .
- 11. a. A no es estricta y diagonalmente dominante.
 - b.

$$T_g = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0.75 \\ 0 & 0 & -0.625 \end{bmatrix}$$
 y $\rho(T_g) = 0.625$.

- **c.** Con $\mathbf{x}^{(0)} = (0, 0, 0)^t$, $\mathbf{x}^{(13)} = (0.89751310, -0.80186518, 0.7015543)^t$
- **d.** $\rho(T_{\varrho}) = 1.375$. Puesto que T_{ϱ} no es convergente, el método Gauss-Seidel no convergerá.
- 13. Los resultados de este ejercicio se listan en el ejercicio 9 del Conjunto de ejercicios 7.4, donde se proporcionan los resultados adicionales para un método presentado en la sección 7.4.
- **15. a.** Las ecuaciones se reordenaron de tal forma que $a_{ii} \neq 0$ para i = 1, 2, ..., 8.
 - **b.** i). $F_1 \approx -0.00265$

$$F_2 \approx -6339.745$$

$$F_3 \approx -3660.255$$

$$f_1 \approx -8965.753$$

$$f_2 \approx 6339.748$$

$$f_3 \approx 10000$$

$$f_4 \approx -7320.507$$

$$f_5 \approx 6339.748$$

El método iterativo de Jacobi requería 57 iteraciones.

ii).
$$F_1 \approx -0.003621$$

 $F_2 \approx -6339.745$
 $F_3 \approx -3660.253$
 $f_1 \approx -8965.756$
 $f_2 \approx 6339.745$
 $f_3 \approx 10000$
 $f_4 \approx -7320.509$
 $f_5 \approx 6339.747$

El método de Gauss-Seidel requería 30 iteraciones.

17. La matriz $T_i = (t_{ik})$ tiene entradas dadas por

$$t_{ik} = \begin{cases} 0, & i = k \text{ para } 1 \le i \le n \text{ y } 1 \le k \le n \\ -\frac{a_{ik}}{a_{ii}}, & i \ne k \text{ para } 1 \le i \le n \text{ y } 1 \le k \le n. \end{cases}$$

Puesto que A es estricta y diagonalmente dominante,

$$||T_j||_{\infty} = \max_{1 \le i \le n} \sum_{\substack{k=1 \\ k \ne i}}^n \left| \frac{a_{ik}}{a_{ii}} \right| < 1.$$

- 19. a. Puesto que A es definida positiva, $a_{ii} > 0$ para $1 \le i \le n$, y A es simétrica. Por lo tanto, A se puede reescribir como $A = D L L^t$, donde D es diagonal con $d_{ii} > 0$ y L es triangular inferior. La diagonal de la matriz triangular inferior D L tiene las entradas positivas $d_{11} = a_{11}$, $d_{22} = a_{22}$, ..., $d_{nn} = a_{nn}$, por lo que $(D L)^{-1}$ existe.
 - **b.** Puesto que A es simétrica,

$$P^{t} = \left(A - T_{g}^{t}AT_{g}\right)^{t} = A^{t} - T_{g}^{t}A^{t}T_{g} = A - T_{g}^{t}AT_{g} = P.$$

Por lo tanto, P es simétrica.

c. $T_g = (D - L)^{-1} L^t$, por lo que

$$(D-L)T_a = L^t = D-L-D+L+L^t = (D-L)-(D-L-L^t) = (D-L)-A.$$

Puesto que $(D-L)^{-1}$ existe, tenemos $T_g = I - (D-L)^{-1}A$.

d. Puesto que $Q = (D - L)^{-1}A$, tenemos $T_g = I - Q$. Observe que Q^{-1} existe. Mediante la definición de P tenemos

$$\begin{split} P &= A - T_g^t A T_g = A - \left[I - (D - L)^{-1} A \right]^t A \left[I - (D - L)^{-1} A \right] \\ &= A - \left[I - Q \right]^t A [I - Q] = A - \left(I - Q^t \right) A (I - Q) \\ &= A - \left(A - Q^t A \right) (I - Q) = A - \left(A - Q^t A - AQ + Q^t AQ \right) \\ &= Q^t A + AQ - Q^t AQ = Q^t \left[A + \left(Q^t \right)^{-1} AQ - AQ \right] \\ &= Q^t \left[AQ^{-1} + \left(Q^t \right)^{-1} A - A \right] Q. \end{split}$$

e. Puesto que

$$AQ^{-1} = A[A^{-1}(D-L)] = D-L$$
 y $(Q^{t})^{-1}A = D-L^{t}$,

tenemos

$$AQ^{-1} + (Q^{t})^{-1}A - A = D - L + D - L^{t} - (D - L - L^{t}) = D.$$

Por lo tanto,

$$P = Q^t \left[AQ^{-1} + \left(Q^t \right)^{-1} A - A \right] Q = Q^t D Q.$$

Por lo que, para $\mathbf{x} \in \mathbb{R}^n$, tenemos $\mathbf{x}^t P \mathbf{x} = \mathbf{x}^t Q^t D Q \mathbf{x} = (Q \mathbf{x})^t D (Q \mathbf{x})$.

Puesto que D es una matriz diagonal positiva $(Q\mathbf{x})^t D(Q\mathbf{x}) \ge 0$ a menos que $Q\mathbf{x} = \mathbf{0}$. Sin embargo, Q es no singular, por lo que $Q\mathbf{x} = \mathbf{0}$ si y sólo si $\mathbf{x} = \mathbf{0}$. Por lo tanto, P es definida positiva

f. Si λ es un eigenvalor de T_g con el eigenvector $\mathbf{x} \neq \mathbf{0}$. Siempre que $\mathbf{x}^t P \mathbf{x} > 0$,

$$\mathbf{x}^t \left[A - T_g^t A T_g \right] \mathbf{x} > 0$$

y

$$\mathbf{x}^t A \mathbf{x} - \mathbf{x}^t T_g^t A T_g \mathbf{x} > 0.$$

Puesto que $T_g \mathbf{x} = \lambda \mathbf{x}$, tenemos $\mathbf{x}^t T_g^t = \lambda \mathbf{x}^t$, por lo que

$$(1 - \lambda^2) \mathbf{x}^t A x = \mathbf{x}^t A \mathbf{x} - \lambda^2 \mathbf{x}^t A x > 0.$$

Puesto que A es definida positiva, $1 - \lambda^2 > 0$, y $\lambda^2 < 1$. Por lo tanto, $|\lambda| < 1$.

g. Para cualquier eigenvalor λ de T_g , tenemos $|\lambda| < 1$. Esto implica $\rho(T_g) < 1$ y T_g es convergente.

Conjunto de ejercicios 7.4

- 1. Dos iteraciones del método SOR dan los siguientes resultados.
 - **a.** $(-0.0173714, -0.1829986, 0.6680503)^t$
- **b.** $(0.9876790, 0.9784935, 0.7899328)^t$
- **c.** $(-0.71885, 2.818822, -0.2809726, -2.235422)^t$
- **d.** $(1.079675, -1.260654, 2.042489, 1.995373, 2.049536)^t$
- 3. Dos iteraciones del método SOR con $\omega = 1.3$ dan los siguientes resultados.
 - **a.** $\mathbf{x}^{(2)} = (-0.1040103, -0.1331814, 0.6774997)^t$
- **b.** $\mathbf{x}^{(2)} = (0.957073, 0.9903875, 0.7206569)^t$
- **c.** $\mathbf{x}^{(2)} = (-1.23695, 3.228752, -0.1523888, -2.041266)^t$
- **d.** $\mathbf{x}^{(2)} = (0.7064258, -0.4103876, 2.417063, 2.251955, 1.061507)^t$
- 5. El algoritmo SOR da los siguientes resultados.
 - **a.** $\mathbf{x}^{(11)} = (0.03544356, -0.23718333, 0.65788317)^t$
- **b.** $\mathbf{x}^{(7)} = (0.9958341, 0.9579041, 0.7915756)^t$
- **c.** $\mathbf{x}^{(8)} = (-0.7976009, 2.795288, -0.2588293, -2.251768)^t$
- **d.** $\mathbf{x}^{(10)} = (0.7866310, -1.002807, 1.866530, 1.912645, 1.989792)^t$
- 7. Las matrices tridiagonales están en las partes b) y c).
 - (9b): Para $\omega = 1.012823$ tenemos $\mathbf{x}^{(4)} = (0.9957846, 0.9578935, 0.7915788)^t$.
 - (9c): Para $\omega = 1.153499$ tenemos $\mathbf{x}^{(7)} = (-0.7977651, 2.795343, -0.2588021, -2.251760)^t$.

	Jacobi 33	Gauss-Seidel 8	$SOR (\omega = 1.2)$ 13
	iteraciones	iteraciones	iteraciones
x_1	1.53873501	1.53873270	1.53873549
x_2	0.73142167	0.73141966	0.73142226
г 3	0.10797136	0.10796931	0.10797063
4	0.17328530	0.17328340	0.17328480
5	0.04055865	0.04055595	0.04055737
6	0.08525019	0.08524787	0.08524925
7	0.16645040	0.16644711	0.16644868
8	0.12198156	0.12197878	0.12198026
9	0.10125265	0.10124911	0.10125043
)	0.09045966	0.09045662	0.09045793
	0.07203172	0.07202785	0.07202912
	0.07026597	0.07026266	0.07026392
	0.06875835	0.06875421	0.06875546
	0.06324659	0.06324307	0.06324429
	0.05971510	0.05971083	0.05971200
	0.05571199	0.05570834	0.05570949
	0.05187851	0.05187416	0.05187529
	0.04924911	0.04924537	0.04924648
	0.04678213	0.04677776	0.04677885
	0.04448679	0.04448303	0.04448409
	0.04246924	0.04246493	0.04246597
	0.04240924	0.04240493	0.04240397
	0.04033818	0.03876852	0.03876952
	0.03718190	0.03717822	0.03717920
	0.03718190	0.03717822	0.03717920
	0.03370838	0.03370431	0.03370348
	0.03433107	0.03434748	0.03309246
	0.03309342	0.03309132	0.03309240
	0.03192212	0.03191800	0.03191938
	0.02980997	0.03082037	0.03082727
	0.02885510		0.02980733
		0.02885160 0.02795621	
	0.02795937		0.02795707 0.02711543
	0.02711787	0.02711458	
	0.02632478	0.02632179	0.02632262
	0.02557705 0.02487017	0.02557397	0.02557479
		0.02486733	0.02486814
	0.02420147	0.02419858	0.02419938
	0.02356750	0.02356482	0.02356560
	0.02296603	0.02296333	0.02296410
	0.02239424	0.02239171	0.02239247
	0.02185033	0.02184781	0.02184855
	0.02133203	0.02132965	0.02133038
	0.02083782	0.02083545	0.02083615
	0.02036585	0.02036360	0.02036429
	0.01991483	0.01991261	0.01991324
	0.01948325	0.01948113	0.01948175
	0.01907002	0.01906793	0.01906846
	0.01867387	0.01867187	0.01867239
	0.01829386	0.01829190	0.01829233
	0.71792896	0.01792707	0.01792749
	0.01757833	0.01757648	0.01757683

- **11. a.** Tenemos $P_0 = 1$, por lo que la ecuación $P_1 = \frac{1}{2}P_0 + \frac{1}{2}P_2$ da $P_1 \frac{1}{2}P_2 = \frac{1}{2}$. Ya que $P_i = \frac{1}{2}P_{i-1} + \frac{1}{2}P_{i+1}$, tenemos $-\frac{1}{2}P_{i-1} + P_i + \frac{1}{2}P_{i+1} = 0$, para $i = 1, \dots, n-2$. Finalmente, puesto que $P_n = 0$ y $P_{n-1} = \frac{1}{2}P_{i-2} + \frac{1}{2}P_n$, tenemos $-\frac{1}{2}P_{n-2} + P_{i-1} = 0$. Esto proporciona el sistema lineal.
 - b. El vector solución es

 $(0.90906840, 0.81814162, 0.72722042, 0.63630504, 0.54539520, 0.45449021, 0.36358911, 0.18179385, 0.27269073, 0.90897290)^t$

por medio de 62 iteraciones con w=1.25 y una tolerancia de 10^{-5} en la norma l_{∞} . Para n=10.

c. Las ecuaciones son $P_i = \alpha P_{i-1} + (1-\alpha)P_{i+1}$ para $i=1,\ldots,n-1$ y el sistema lineal se convierte en

- **d.** El vector solución es (0.49973968, 0.24961354, 0.1245773, 0.62031557, 0.30770075, 0.15140201, 0.73256883, 0.14651284, 0.34186112, 0.48838809)^t por medio de 21 iteraciones con <math>w = 1.25 y una tolerancia de 10^{-5} en la norma l_{∞} para n = 10.
- 13. Si $\lambda_1, \ldots, \lambda_n$ son los eigenvalores de T_{ω} . Entonces

$$\prod_{i=1}^{n} \lambda_{i} = \det T_{\omega} = \det \left((D - \omega L)^{-1} [(1 - \omega)D + \omega U] \right)$$

$$= \det(D - \omega L)^{-1} \det((1 - \omega)D + \omega U) = \det \left(D^{-1} \right) \det((1 - \omega)D)$$

$$= \left(\frac{1}{(a_{11}a_{22} \dots a_{nn})} \right) \left((1 - \omega)^{n} a_{11}a_{22} \dots a_{nn} \right) = (1 - \omega)^{n}.$$

Por lo tanto,

$$\rho(T_{\omega}) = \max_{1 < i < n} |\lambda_i| \ge |\omega - 1|,$$

 $y |\omega - 1| < 1$ si y sólo si $0 < \omega < 2$.

Conjunto de ejercicios 7.5

- 1. Los números de condición $||\cdot||_{\infty}$ son:
 - **a.** 50

b. 241.37

- **c.** 600 002
- **d.** 339 866

3 -			
Э.		$\ \mathbf{x} - \mathbf{\hat{x}}\ _{\infty}$	$K_{\infty}(A)\ \mathbf{b} - A\hat{\mathbf{x}}\ _{\infty}/\ A\ _{\infty}$
	a	8.571429×10^{-4}	1.238095×10^{-2}
	b	0.1	3.832060
	c	0.04	0.8
	d	20	1.152440×10^{5}

- 5. La eliminación gaussiana y el refinamiento iterativo da los siguientes resultados.
 - **a.** i) $(-10.0, 1.01)^t$, ii) $(10.0, 1.00)^t$
 - **b.** i) $(12.0, 0.499, -1.98)^t$, ii) $(1.00, 0.500, -1.00)^t$
 - **c.** i) $(0.185, 0.0103, -0.0200, -1.12)^t$, ii) $(0.177, 0.0127, -0.0207, -1.18)^t$
 - **d.** i) $(0.799, -3.12, 0.151, 4.56)^t$, ii) $(0.758, -3.00, 0.159, 4.30)^t$
- 7. La matriz está mal condicionada ya que $K_{\infty} = 60002$. Tenemos $\tilde{\mathbf{x}} = (-1.0000, 2.0000)^t$.
- **9.** a. $K_{\infty}(H^{(4)}) = 28375$
 - **b.** $K_{\infty}(H^{(5)}) = 943656$
 - **c.** La solución real $\mathbf{x} = (-124, 1560, -3960, 2660)^t$; La solución aproximada $\tilde{\mathbf{x}} = (-124.2, 1563.8, -3971.8, 2668.8)^t$; $\|\mathbf{x} - \tilde{\mathbf{x}}\|_{\infty} = 11.8$; $\frac{\|\mathbf{x} - \tilde{\mathbf{x}}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} = 0.02980$;

$$\frac{K_{\infty}(A)}{1 - K_{\infty}(A) \left(\frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}}\right)} \left[\frac{\|\delta b\|_{\infty}}{\|b\|_{\infty}} + \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}}\right] = \frac{28375}{1 - 28375 \left(\frac{6.\overline{6} \times 10^{-6}}{2.08\overline{3}}\right)} \left[0 + \frac{6.\overline{6} \times 10^{-6}}{2.08\overline{3}}\right]$$
$$= 0.09987.$$

$$\|\mathbf{x}\| = \|A^{-1}A\mathbf{x}\| \le \|A^{-1}\| \|A\mathbf{x}\|, \text{ tal que } \|A\mathbf{x}\| \ge \frac{\|\mathbf{x}\|}{\|A^{-1}\|}.$$

Sea $\mathbf{x} \neq \mathbf{0}$ de tal forma que $\|\mathbf{x}\| = 1$ y $B\mathbf{x} = \mathbf{0}$. Entonces

$$\|(A - B)\mathbf{x}\| = \|A\mathbf{x}\| \ge \frac{\|\mathbf{x}\|}{\|A^{-1}\|}$$

y

$$\frac{\|(A-B)\mathbf{x}\|}{\|A\|} \ge \frac{1}{\|A^{-1}\| \|A\|} = \frac{1}{K(A)}.$$

Puesto que $\|\mathbf{x}\| = 1$,

$$\|(A - B)\mathbf{x}\| \le \|A - B\| \|\mathbf{x}\| = \|A - B\| \quad \mathbf{y} \quad \frac{\|A - B\|}{\|A\|} \ge \frac{1}{K(A)}.$$

Conjunto de ejercicios 7.6

- 1. a. $(0.18, 0.13)^t$
 - **b.** $(0.19, 0.10)^t$
 - c. La eliminación gaussiana da la mejor respuesta ya que $\mathbf{v}^{(2)} = (0,0)^t$ en el método de gradiente conjugado.
 - **d.** $(0.13, 0.21)^t$. No existe mejora, aunque $\mathbf{v}^{(2)} \neq \mathbf{0}$.
- **3. a.** $(1.00, -1.00, 1.00)^t$
 - **b.** $(0.827, 0.0453, -0.0357)^t$
 - c. El pivoteo parcial y el pivoteo parcial escalado también da $(1.00, -1.00, 1.00)^t$.
 - **d.** $(0.776, 0.238, -0.185)^t$;

El residuo de (3b) es $(-0.0004, -0.0038, 0.0037)^t$, y el residuo de la parte (3d) es $(0.0022, -0.0038, 0.0024)^t$.

Al parecer, no hay mucha mejora, si es que hay alguna. El error de redondeo es más prevalente debido al incremento en el número de multiplicaciones de la matriz.

- **5. a.** $\mathbf{x}^{(2)} = (0.1535933456, -0.1697932117, 0.5901172091)^t, \|\mathbf{r}^{(2)}\|_{\infty} = 0.221.$
 - **b.** $\mathbf{x}^{(2)} = (0.9993129510, 0.9642734456, 0.7784266575)^t, \|\mathbf{r}^{(2)}\|_{\infty} = 0.144.$
 - **c.** $\mathbf{x}^{(2)} = (-0.7290954114, 2.515782452, -0.6788904058, -2.331943982)^t$, $\|\mathbf{r}^{(2)}\|_{\infty} = 2.2$.
 - **d.** $\mathbf{x}^{(2)} = (-0.7071108901, -0.0954748881, -0.3441074093, 0.5256091497)^t, <math>\|\mathbf{r}^{(2)}\|_{\infty} = 0.39.$
 - **e.** $\mathbf{x}^{(2)} = (0.5335968381, 0.9367588935, 1.339920949, 1.743083004, 1.743083004)^t, <math>\|\mathbf{r}^{(2)}\|_{\infty} = 1.3.$
 - **f.** $\mathbf{x}^{(2)} = (0.35714286, 1.42857143, 0.35714286, 1.57142857, 0.28571429, 1.57142857)^t$, $\|\mathbf{r}^{(2)}\|_{\infty} = 0$.
- 7. a. $\mathbf{x}^{(3)} = (0.06185567013, -0.1958762887, 0.6185567010)^t$, $\|\mathbf{r}^{(3)}\|_{\infty} = 0.4 \times 10^{-9}$.
 - **b.** $\mathbf{x}^{(3)} = (0.9957894738, 0.9578947369, 0.7915789474)^t, \|\mathbf{r}^{(3)}\|_{\infty} = 0.1 \times 10^{-9}.$
 - **c.** $\mathbf{x}^{(4)} = (-0.7976470579, 2.795294120, -0.2588235305, -2.251764706)^t, \|\mathbf{r}^{(4)}\|_{\infty} = 0.39 \times 10^{-7}.$
 - **d.** $\mathbf{x}^{(4)} = (-0.7534246575, 0.04109589039, -0.2808219179, 0.6917808219)^t$, $\|\mathbf{r}^{(4)}\|_{\infty} = 0.11 \times 10^{-9}$.
 - **e.** $\mathbf{x}^{(5)} = (0.4516129032, 0.7096774197, 1.677419355, 1.741935483, 1.806451613)^t, <math>\|\mathbf{r}^{(5)}\|_{\infty} = 0.2 \times 10^{-9}$.
 - **f.** $\mathbf{x}^{(2)} = (0.35714286, 1.42857143, 0.35714286, 1.57142857, 0.28571429, 1.57142857)^t, \|\mathbf{r}^{(2)}\|_{\infty} = 0.$

a.	Jacobi 49	Gauus-Seidel 28	SOR ($\omega = 1.3$)	Gradiente conjugado 9
	iteraciones	iteraciones	iteraciones	iteraciones
x_1	0.93406183	0.93406917	0.93407584	0.93407713
x_2	0.97473885	0.97475285	0.97476180	0.97476363
x_3	1.10688692	1.10690302	1.10691093	1.10691243
x_4	1.42346150	1.42347226	1.42347591	1.42347699
x_5	0.85931331	0.85932730	0.85933633	0.85933790
x_6	0.80688119	0.80690725	0.80691961	0.80692197
x_7	0.85367746	0.85370564	0.85371536	0.85372011
x_8	1.10688692	1.10690579	1.10691075	1.10691250
χ_9	0.87672774	0.87674384	0.87675177	0.87675250
x_{10}	0.80424512	0.80427330	0.80428301	0.80428524
x_{11}	0.80688119	0.80691173	0.80691989	0.80692252
x_{12}	0.97473885	0.97475850	0.97476265	0.97476392
x_{13}	0.93003466	0.93004542	0.93004899	0.93004987
x_{14}	0.87672774	0.87674661	0.87675155	0.87675298
<i>x</i> ₁₅	0.85931331	0.85933296	0.85933709	0.85933979
<i>x</i> ₁₆	0.93406183	0.93407462	0.93407672	0.93407768

b.	Jacobi 60 iteraciones	Gauss-Seidel 35 iteraciones	SOR ($\omega = 1.2$) 23 iteraciones	Gradiente conjugado 11 iteraciones
x_1	0.39668038	0.39668651	0.39668915	0.39669775
x_2	0.07175540	0.07176830	0.07177348	0.07178516
x_3	-0.23080396	-0.23078609	-0.23077981	-0.23076923
x_4	0.24549277	0.24550989	0.24551535	0.24552253
x_5	0.83405412	0.83406516	0.83406823	0.83407148
x_6	0.51497606	0.51498897	0.51499414	0.51500583
x_7	0.12116003	0.12118683	0.12119625	0.12121212
x_8	-0.24044414	-0.24040991	-0.24039898	-0.24038462
<i>X</i> 9	0.37873579	0.37876891	0.37877812	0.37878788
x_{10}	1.09073364	1.09075392	1.09075899	1.09076341
x_{11}	0.54207872	0.54209658	0.54210286	0.54211344
x_{12}	0.13838259	0.13841682	0.13842774	0.13844211
x_{13}	-0.23083868	-0.23079452	-0.23078224	-0.23076923
x_{14}	0.41919067	0.41923122	0.41924136	0.41925019
x_{15}	1.15015953	1.15018477	1.15019025	1.15019425
x_{16}	0.51497606	0.51499318	0.51499864	0.51500583
<i>x</i> ₁₇	0.12116003	0.12119315	0.12120236	0.12121212
<i>x</i> ₁₈	-0.24044414	-0.24040359	-0.24039345	-0.24038462
x_{19}	0.37873579	0.37877365	0.37878188	0.37878788
x_{20}	1.09073364	1.09075629	1.09076069	1.09076341
x_{21}	0.39668038	0.39669142	0.39669449	0.39669775
x_{22}	0.07175540	0.07177567	0.07178074	0.07178516
x_{23}	-0.23080396	-0.23077872	-0.23077323	-0.23076923
x ₂₄	0.24549277	0.24551542	0.24551982	0.24552253
x ₂₅	0.83405412	0.83406793	0.83407025	0.83407148

	Jacobi 15	Gauss-Seidel 9	SOR ($\omega = 1.1$)	Gradiente Conjugado 8
c.	iteraciones	iteraciones	8 iteraciones	iteraciones
	neraciones	neraciones	neraciones	neraciones
x_1	-3.07611424	-3.07611739	-3.07611796	-3.07611794
x_2	-1.65223176	-1.65223563	-1.65223579	-1.65223582
x_3	-0.53282391	-0.53282528	-0.53282531	-0.53282528
x_4	-0.04471548	-0.04471608	-0.04471609	-0.04471604
x_5	0.17509673	0.17509661	0.17509661	0.17509661
x_6	0.29568226	0.29568223	0.29568223	0.29568218
x_7	0.37309012	0.37309011	0.37309011	0.37309011
x_8	0.42757934	0.42757934	0.42757934	0.42757927
x_9	0.46817927	0.46817927	0.46817927	0.46817927
x_{10}	0.49964748	0.49964748	0.49964748	0.49964748
x_{11}	0.52477026	0.52477026	0.52477026	0.52477027
x_{12}	0.54529835	0.54529835	0.54529835	0.54529836
x_{13}	0.56239007	0.56239007	0.56239007	0.56239009
x_{14}	0.57684345	0.57684345	0.57684345	0.57684347
<i>x</i> ₁₅	0.58922662	0.58922662	0.58922662	0.58922664
x_{16}	0.59995522	0.59995522	0.59995522	0.59995523
<i>x</i> ₁₇	0.60934045	0.60934045	0.60934045	0.60934045
<i>x</i> ₁₈	0.61761997	0.61761997	0.61761997	0.61761998
<i>x</i> ₁₉	0.62497846	0.62497846	0.62497846	0.62497847
x_{20}	0.63156161	0.63156161	0.63156161	0.63156161
x_{21}	0.63748588	0.63748588	0.63748588	0.63748588
x_{22}	0.64284553	0.64284553	0.64284553	0.64284553
x_{23}	0.64771764	0.64771764	0.64771764	0.64771764
x_{24}	0.65216585	0.65216585	0.65216585	0.65216585
x ₂₅	0.65624320	0.65624320	0.65624320	0.65624320
<i>x</i> ₂₆	0.65999423	0.65999423	0.65999423	0.65999422
<i>x</i> ₂₇	0.66345660	0.66345660	0.66345660	0.66345660
x_{28}	0.66666242	0.66666242	0.66666242	0.66666242
x ₂₉	0.66963919	0.66963919	0.66963919	0.66963919
<i>x</i> ₃₀	0.67241061	0.67241061	0.67241061	0.67241060
x_{31}	0.67499722	0.67499722	0.67499722	0.67499721
x_{32}	0.67741692	0.67741692	0.67741691	0.67741691
X33	0.67968535	0.67968535	0.67968535	0.67968535
X34	0.68181628	0.68181628	0.68181628	0.68181628
x ₃₅	0.68382184	0.68382184	0.68382184	0.68382184
x ₃₆	0.68571278	0.68571278	0.68571278	0.68571278
x ₃₇	0.68749864	0.68749864	0.68749864	0.68749864
X ₃₈	0.68918652	0.68918652	0.68918652	0.68918652
X ₃₉	0.69067718	0.69067718	0.69067718	0.69067717
x_{40}	0.68363346	0.68363346	0.68363346	0.68363349

11. a. ___

Solución	Residuo
2.55613420	0.00668246
4.09171393	-0.00533953
4.60840390	-0.01739814
3.64309950	-0.03171624
5.13950533	0.01308093
7.19697808	-0.02081095
7.68140405	-0.04593118
5.93227784	0.01692180
5.81798997	0.04414047
5.85447806	0.03319707
5.94202521	-0.00099947
4.42152959	-0.00072826
3.32211695	0.02363822
4.49411604	0.00982052
4.80968966	0.00846967
3.81108707	-0.01312902

Esto converge en 6 iteraciones con tolerancia 5.00×10^{-2} en la norma l_{∞} y $\|\mathbf{r}^{(6)}\|_{\infty} = 0.046$.

b.	C	
υ.	Solución	Residuo
	2.55613420	0.00668246
	4.09171393	-0.00533953
	4.60840390	-0.01739814
	3.64309950	-0.03171624
	5.13950533	0.01308093
	7.19697808	-0.02081095
	7.68140405	-0.04593118
	5.93227784	0.01692180
	5.81798996	0.04414047
	5.85447805	0.03319706
	5.94202521	-0.00099947
	4.42152959	-0.00072826
	3.32211694	0.02363822
	4.49411603	0.00982052
	4.80968966	0.00846967
	3.81108707	-0.01312902

Esto converge en 6 iteraciones con tolerancia 5.00×10^{-2} en la norma l_{∞} y $\|\mathbf{r}^{(6)}\|_{\infty} = 0.046$.

- c. Todas las tolerancias conducen a las mismas especificaciones de convergencia.
- 13. a. Tenemos $P_0=1$, por lo que la ecuación $P_1=\frac{1}{2}P_0+\frac{1}{2}P_2$ da $P_1-\frac{1}{2}P_2=\frac{1}{2}$. Puesto que $P_i=\frac{1}{2}P_{i-1}+\frac{1}{2}P_{i+1}$, tenemos $-\frac{1}{2}P_{i-1}+P_i+\frac{1}{2}P_{i+1}=0$, para $i=1,\ldots,n-2$. Finalmente, ya que $P_n=0$ y $P_{n-1}=\frac{1}{2}P_{i-2}+\frac{1}{2}P_n$, tenemos $-\frac{1}{2}P_{n-2}+P_{i-1}=0$. Esto provee el sistema lineal que contiene una matriz definida positiva A.
 - **b.** Para n=10, el vector solución es $(0.909009091, 0.81818182, 0.72727273, 0, 63636364, 0.54545455, 0.45454545, 0.36363636, 0.27272727, 0.18181818, 0.09090909)^t$ al usar 10 iteraciones con $C^{-1}=I$ y una tolerancia de 10^{-5} en la norma l_{∞} .
 - c. La matriz resultante no es definida positiva y el método falla.
 - d El método falla
- **15. a.** Sea $\{\mathbf{v}^{(1)},\dots,\mathbf{v}^{(n)}\}$ es un conjunto de vectores *A*-ortogonales diferentes de cero para la matriz definida positiva simétrica *A*. Entonces, $\langle \mathbf{v}^{(i)},A\mathbf{v}^{(j)}\rangle=0$, si $i\neq j$. Suponga que

$$c_1 \mathbf{v}^{(1)} + c_2 \mathbf{v}^{(2)} + \dots + c_n \mathbf{v}^{(n)} = \mathbf{0},$$

donde no todas las c_i son cero. Suponga que k es el entero más pequeño para el que $c_k \neq 0$. Entonces

$$c_k \mathbf{v}^{(k)} + c_{k+1} \mathbf{v}^{(k+1)} + \dots + c_n \mathbf{v}^{(n)} = \mathbf{0}.$$

Resolvemos para $\mathbf{v}^{(k)}$ para obtener

$$\mathbf{v}^{(k)} = -\frac{c_{k+1}}{c_k}\mathbf{v}^{(k+1)} - \cdots - \frac{c_n}{c_k}\mathbf{v}^{(n)}.$$

Al multiplicar por A obtenemos

$$A\mathbf{v}^{(k)} = -\frac{c_{k+1}}{c_k}A\mathbf{v}^{(k+1)} - \cdots - \frac{c_n}{c_k}A\mathbf{v}^{(n)},$$

por lo que

$$(\mathbf{v}^{(k)})^t A \mathbf{v}^{(k)} = -\frac{c_{k+1}}{c_k} (\mathbf{v}^{(k)})^t A \mathbf{v}^{(k+1)} - \dots - \frac{c_n}{c_k} (\mathbf{v}^{(k)t}) A \mathbf{v}^{(n)}$$

$$= -\frac{c_{k+1}}{c_k} \langle \mathbf{v}^{(k)}, A \mathbf{v}^{(k+1)} \rangle - \dots - \frac{c_n}{c_k} \langle \mathbf{v}^{(k)}, A \mathbf{v}^{(n)} \rangle$$

$$= -\frac{c_{k+1}}{c_k} \cdot 0 - \dots - \frac{c_n}{c_k} \cdot 0.$$

Puesto que A es definida positiva, $\mathbf{v}^{(k)} = \mathbf{0}$, que es una contradicción. Por lo tanto, todas las c_i deben ser cero y $\{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}\}$ es linealmente independiente.

b. Sea $\{\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(n)}\}$ un conjunto de vectores *A*-ortogonales diferentes de cero para la matriz definida positiva simétrica *A* y si **z** es ortogonal para $\mathbf{v}^{(i)}$, para cada $i = 1, \dots, n$. Desde la parte a), el conjunto $\{\mathbf{v}^{(1)}, \dots \mathbf{v}^{(n)}\}$ es linealmente independiente, por lo que existe un conjunto de constantes β_1, \dots, β_n con

$$\mathbf{z} = \sum_{i=1}^{n} \beta_i \mathbf{v}^{(i)}.$$

Por lo tanto,

$$\langle \mathbf{z}, \mathbf{z} \rangle = \mathbf{z}^t \mathbf{z} = \sum_{i=1}^n \beta_i \mathbf{z}^t \mathbf{v}^{(i)} = \sum_{i=1}^n \beta_i \cdot 0 = 0,$$

y el teorema 7.30, parte v), implica que z = 0.

17. Si A es una matriz definida positiva cuyos eigenvalores son $0 < \lambda_1 \le \cdots \le \lambda_n$, entonces $||A||_2 = \lambda_n$ y $||A^{-1}||_2 = \frac{1}{\lambda_1}$, por lo que $K_2(A) = \lambda_n/\lambda_1$.

Para la matriz A en el ejemplo 3, tenemos

$$K_2(A) = \frac{\lambda_5}{\lambda_1} = \frac{700.031}{0.0570737} = 12265.2,$$

Y la matriz AH tiene

$$K_2(AH) = \frac{\lambda_5}{\lambda_1} = \frac{1.88052}{0.156370} = 12.0261.$$

Conjunto de ejercicios 8.1

- 1. El polinomio de mínimos cuadrados lineales es 1.70784x + 0.89968.
- **3.** Los polinomios de mínimos cuadrados con sus errores son, respectivamente, 0.6208950 + 1.219621x, con $E = 2.719 \times 10^{-5}$; $0.5965807 + 1.253293x 0.01085343x^2$, con $E = 1.801 \times 10^{-5}$; y $0.6290193 + 1.185010x + 0.03533252x^2 0.01004723x^3$, con $E = 1.741 \times 10^{-5}$.
- **5. a.** El polinomio de mínimos cuadrados lineal es 72.0845x 194.138, con error 329.
 - **b.** El polinomio de mínimos cuadrados de grado dos es $6.61821x^2 1.14352x + 1.23556$, con error 1.44×10^{-3} .
 - c. El polinomio de mínimos cuadrados de grado tres es $-0.0136742x^3 + 6.84557x^2 2.37919x + 3.42904$, con error 5.27×10^{-4} .

- **d.** La aproximación de mínimos cuadrados de la forma be^{ax} es $24.2588e^{0.372382x}$, con error 418.
- e. La aproximación de mínimos cuadrados de la forma bx^a es $6.23903x^{2.01954}$, con error 0.00703.
- **7. a.** k = 0.8996, E(k) = 0.295
 - **b.** k = 0.9052, E(k) = 0.128. La parte b) se ajusta mejor a los datos experimentales totales.
- 9. La línea de mínimos cuadrados para el promedio de punto es 0.101 (puntuación ACT) + 0.487.
- 11. El polinomio de mínimos cuadrados lineales provee $y \approx 0.17952x + 8.2084$.
- **13.** a. $\ln R = \ln 1.304 + 0.5756 \ln W$

- c. $\ln R = \ln 1.051 + 0.7006 \ln W + 0.06695 (\ln W)^2$
- **d.** $E = \sum_{i=1}^{37} \left(R_i b W_i^a e^{c(\ln W_i)^2} \right)^2 = 20.30$

Coniunto de eiercicios 8.2

1. Las aproximaciones de mínimos cuadrados lineales son:

a.
$$P_1(x) = 1.8333333 + 4x$$

b.
$$P_1(x) = -1.600003 + 3.600003x$$

c.
$$P_1(x) = 1.140981 - 0.2958375x$$

d.
$$P_1(x) = 0.1945267 + 3.000001x$$

e.
$$P_1(x) = 0.6109245 + 0.09167105x$$

f.
$$P_1(x) = -1.861455 + 1.666667x$$

3. Las aproximaciones de mínimos cuadrados de grado dos son:

a.
$$P_2(x) = 2.000002 + 2.999991x + 1.000009x^2$$

b.
$$P_2(x) = 0.4000163 - 2.400054x + 3.000028x^2$$

c.
$$P_2(x) = 1.723551 - 0.9313682x + 0.1588827x^2$$

d.
$$P_2(x) = 1.167179 + 0.08204442x + 1.458979x^2$$

e.
$$P_2(x) = 0.4880058 + 0.8291830x - 0.7375119x^2$$

f.
$$P_2(x) = -0.9089523 + 0.6275723x + 0.2597736x^2$$

5. a.
$$0.3427 \times 10^{-9}$$
 b. 0.0457142

f. 0.0000967795

7. El proceso Gram-Schmidt produce los siguientes conjuntos de polinomios:

a.
$$\phi_0(x) = 1$$
, $\phi_1(x) = x - 0.5$, $\phi_2(x) = x^2 - x + \frac{1}{6}$, y $\phi_3(x) = x^3 - 1.5x^2 + 0.6x - 0.05$

b.
$$\phi_0(x) = 1, \phi_1(x) = x - 1, \quad \phi_2(x) = x^2 - 2x + \frac{2}{3}, \quad \text{y} \quad \phi_3(x) = x^3 - 3x^2 + \frac{12}{5}x - \frac{2}{5}$$

c.
$$\phi_0(x) = 1, \phi_1(x) = x - 2, \quad \phi_2(x) = x^2 - 4x + \frac{11}{3}, \quad y \quad \phi_3(x) = x^3 - 6x^2 + 11.4x - 6.8$$

9. Los polinomios de mínimos cuadrados de grado dos son:

a.
$$P_2(x) = 3.833333\phi_0(x) + 4\phi_1(x) + 0.9999998\phi_2(x)$$

b.
$$P_2(x) = 2\phi_0(x) + 3.6\phi_1(x) + 3\phi_2(x) + \phi_3(x)$$

c.
$$P_2(x) = 0.5493061\phi_0(x) - 0.2958369\phi_1(x) + 0.1588785\phi_2(x) + 0.013771507\phi_3(x)$$

d.
$$P_2(x) = 3.194528\phi_0(x) + 3\phi_1(x) + 1.458960\phi_2(x) + 0.4787957\phi_3(x)$$

e.
$$P_2(x) = 0.6567600\phi_0(x) + 0.09167105\phi_1(x) - 0.73751218\phi_2(x) - 0.18769253\phi_3(x)$$

f.
$$P_2(x) = 1.471878\phi_0(x) + 1.666667\phi_1(x) + 0.2597705\phi_2(x) + 0.059387393\phi_3(x)$$

- 11. Los polinomios de Laguerre son $L_1(x) = x 1$, $L_2(x) = x^2 4x + 2$ y $L_3(x) = x^3 9x^2 + 18x 6$.
- 13. Si $\{\phi_0(x), \phi_1(x), \dots, \phi_n(x)\}$ es un conjunto linealmente independiente de polinomios en \prod_n . Para cada $i = 0, 1, \dots, n$, si $\phi_i(x) = \sum_{k=0}^n b_{ki} x^k$. Sea $Q(x) = \sum_{k=0}^n a_k x^k \in \prod_n$. Queremos encontrar constantes c_0, \ldots, c_n tales que

$$Q(x) = \sum_{i=0}^{n} c_i \phi_i(x).$$

Esta ecuación se vuelve

$$\sum_{k=0}^{n} a_k x^k = \sum_{i=0}^{n} c_i \left(\sum_{k=0}^{n} b_{ki} x^k \right),$$

por lo que

$$\sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} \left(\sum_{i=0}^{n} c_i b_{ki} \right) x^k, \quad \text{y} \quad \sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} \left(\sum_{i=0}^{n} b_{ki} c_i \right) x^k.$$

Pero $\{1, x, \dots, x^n\}$ es linealmente independiente, por lo que, para cada $k = 0, \dots, n$, tenemos

$$\sum_{i=0}^n b_{ki} c_i = a_k,$$

$$\begin{bmatrix} b_{01} & b_{02} & \cdots & b_{0n} \\ b_{11} & b_{12} & \cdots & b_{1n} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} \quad \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix}.$$

Este sistema lineal debe tener una solución única $\{c_0, c_1, \dots, c_n\}$, de lo contrario existe un conjunto no trivial de constantes $\{c'_0, c'_1, \dots, c'_n\}$, para el que

$$\begin{bmatrix} b_{01} & \cdots & b_{0n} \\ \vdots & & \vdots \\ b_{n1} & \cdots & b_{nn} \end{bmatrix} \quad \begin{bmatrix} c'_0 \\ \vdots \\ c'_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Por lo tanto,

$$c'_0\phi_0(x) + c'_1\phi_1(x) + \dots + c'_n\phi_n(x) = \sum_{k=0}^n 0x^k = 0,$$

lo cual contradice la independencia lineal del conjunto $\{\phi_0, \dots, \phi_n\}$. Por lo tanto, existe un conjunto único de constantes $\{c_0, \dots, c_n\}$ para el que

$$Q(x) = c_0 \phi_0(x) + c_1 \phi_1(x) + \dots + c_n \phi_n(x).$$

15. Las ecuaciones normales son

$$\sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} dx = \int_{a}^{b} x^{j} f(x) dx, \quad \text{para cada} \quad j = 0, 1, \dots, n.$$

Sea

$$b_{jk} = \int_{a}^{b} x^{j+k} dx$$
, para cada $j = 0, \dots, n$, y $k = 0, \dots, n$,

y sea $B = (b_{ik})$. Además, sea

$$\mathbf{a} = (a_0, \dots, a_n)^t$$
 y $\mathbf{g} = \left(\int_a^b f(x) dx, \dots, \int_a^b x^n f(x) dx \right)^t$.

Entonces las ecuaciones normales producen el sistema lineal $B\mathbf{a} = \mathbf{g}$.

Para mostrar que las ecuaciones normales tienen una solución única, es suficiente demostrar que si $f \equiv 0$ entonces $\mathbf{a} = \mathbf{0}$. Si $f \equiv 0$, entonces

$$\sum_{k=0}^{n} a_k \int_a^b x^{j+k} dx = 0, \quad \text{para } j = 0, \dots, n, \quad \text{y} \quad \sum_{k=0}^{n} a_j a_k \int_a^b x^{j+k} dx = 0, \quad \text{para } j = 0, \dots, n,$$

Y al sumar a *j* obtenemos

$$\sum_{i=0}^{n} \sum_{k=0}^{n} a_{j} a_{k} \int_{a}^{b} x^{j+k} dx = 0.$$

Por lo tanto,

$$\int_{a}^{b} \sum_{j=0}^{n} \sum_{k=0}^{n} a_{j} x^{j} a_{k} x^{k} dx = 0 \quad \text{y} \quad \int_{a}^{b} \left(\sum_{j=0}^{n} a_{j} x^{j} \right)^{2} dx = 0.$$

Defina $P(x) = a_0 + a_1 x + \dots + a_n x^n$. Entonces $\int_a^b [P(x)]^2 dx = 0$ y $P(x) \equiv 0$. Esto implica que $a_0 = a_1 = \dots = a_n = 0$, para $\mathbf{a} = \mathbf{0}$. Por lo tanto, la matriz B es no singular y las ecuaciones normales tienen una única solución.

Conjunto de ejercicios 8.3

- 1. Los polinomios interpolantes de grado dos son:
 - **a.** $P_2(x) = 2.377443 + 1.590534(x 0.8660254) + 0.5320418(x 0.8660254)x$
 - **b.** $P_2(x) = 0.7617600 + 0.8796047(x 0.8660254)$
 - **c.** $P_2(x) = 1.052926 + 0.4154370(x 0.8660254) 0.1384262x(x 0.8660254)$
 - **d.** $P_2(x) = 0.5625 + 0.649519(x 0.8660254) + 0.75x(x 0.8660254)$
- 3. Las cotas para los errores máximos de los polinomios en el ejercicio 1 son:
 - a. 0.1132617
- **b.** 0.04166667
- **c.** 0.08333333
- **d.** 1.000000
- **5.** Los ceros de \tilde{T}_3 producen los siguientes polinomios interpolantes de grado dos.
 - **a.** $P_2(x) = 0.3489153 0.1744576(x 2.866025) + 0.1538462(x 2.866025)(x 2)$
 - **b.** $P_2(x) = 0.1547375 0.2461152(x 1.866025) + 0.1957273(x 1.866025)(x 1)$
 - **c.** $P_2(x) = 0.6166200 0.2370869(x 0.9330127) 0.7427732(x 0.9330127)(x 0.5)$
 - **d.** $P_2(x) = 3.0177125 + 1.883800(x 2.866025) + 0.2584625(x 2.866025)(x 2)$
- 7. El polinomio cúbico $\frac{383}{384}x \frac{5}{32}x^3$ aproxima a sen x con error por lo menos de 7.19×10^{-4} .
- **9. a.** n = 1: det $T_1 = x$
 - **b.** n = 2: $\det T_2 = \det \begin{pmatrix} x & 1 \\ 1 & 2x \end{pmatrix} = 2x^2 1$
 - **c.** n = 3: $\det T_3 = \det \begin{pmatrix} x & 1 & 0 \\ 1 & 2x & 1 \\ 0 & 1 & 2x \end{pmatrix} = x \det \begin{pmatrix} 2x & 1 \\ 1 & 2x \end{pmatrix} \det \begin{pmatrix} 1 & 1 \\ 0 & 2x \end{pmatrix} = x(4x^2 1) 2x = 4x^3 3x$
- 11. El cambio de variable $x = \cos \theta$ produce

$$\int_{-1}^{1} \frac{T_n^2(x)}{\sqrt{1-x^2}} dx = \int_{-1}^{1} \frac{\left[\cos(n\arccos x)\right]^2}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} (\cos(n\theta))^2 dx = \frac{\pi}{2}.$$

13. En el texto se mostró (consulte la ecuación 8.13) que los ceros de $T'_n(x)$ se presentan en $x'_k = \cos(k\pi/n)$ para $k = 1, \dots, n-1$. Puesto que $x'_0 = \cos(0) = 1$, $x'_n = \cos(\pi) = -1$, todos los valores del coseno se encuentran en el intervalo [-1, 1] sólo falta demostrar que los ceros son distintos. Esto sigue al hecho de que para cada $k=1,\ldots,n-1$, tenemos x_k' en el intervalo $(0,\pi)$ y en este intervalo $D_x \cos(x) = -\sin x < 0$. Por consiguiente, $T_n(x)$ es uno a uno en $(0, \pi)$, y estos n-1 ceros de $T_n(x)$ son distintos.

Conjunto de ejercicios 8.4

1. Las aproximaciones de Padé de grado dos para $f(x) = e^{2x}$ son:

$$n = 2, m = 0 : r_{2,0}(x) = 1 + 2x + 2x^2$$

 $n = 1, m = 1 : r_{2,0}(x) = (1 + x)/(1 + x)$

$$n = 1, m = 1 : r_{1,1}(x) = (1+x)/(1-x)$$

$$n = 0, m = 2 : r_{0,2}(x) = (1 - 2x + 2x^2)^{-1}$$

i	x_i	$f(x_i)$	$r_{2,0}(x_i)$	$r_{1,1}(x_i)$	$r_{0,2}(x_i)$
1	0.2	1.4918	1.4800	1.5000	1.4706
2	0.4	2.2255	2.1200	2.3333	1.9231
3	0.6	3.3201	2.9200	4.0000	1.9231
4	0.8	4.9530	3.8800	9.0000	1.4706
5	1.0	7.3891	5.0000	indefinido	1.0000

i	x_i	$f(x_i)$	$r_{2,3}(x_i)$
1	0.2	1.22140276	1.22140277
2	0.4	1.49182470	1.49182561
3	0.6	1.82211880	1.82213210
4	0.8	2.22554093	2.22563652
5	1.0	2.71828183	2.71875000

5. $r_{3,3}(x) = (x - \frac{7}{60}x^3)/(1 + \frac{1}{20}x^2)$

i	x_i	$f(x_i)$	Polinomio de MacLaurin de grado 6	$r_{3,3}(x_i)$
0	0.0	0.00000000	0.00000000	0.00000000
1	0.1	0.09983342	0.09966675	0.09938640
2	0.2	0.19866933	0.19733600	0.19709571
3	0.3	0.29552021	0.29102025	0.29246305
4	0.4	0.38941834	0.37875200	0.38483660
5	0.5	0.47942554	0.45859375	0.47357724

7. Las aproximaciones de Padé de grado cinco son:

a.
$$r_{0,5}(x) = (1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5)^{-1}$$

b.
$$r_{1,4}(x) = (1 - \frac{1}{5}x)/(1 + \frac{4}{5}x + \frac{3}{10}x^2 + \frac{1}{15}x^3 + \frac{1}{120}x^4)$$

c.
$$r_{3,2}(x) = (1 - \frac{3}{5}x + \frac{3}{20}x^2 - \frac{1}{60}x^3)/(1 + \frac{2}{5}x + \frac{1}{20}x^2)$$

d.
$$r_{4,1}(x) = (1 - \frac{4}{5}x + \frac{3}{10}x^2 - \frac{1}{15}x^3 + \frac{1}{120}x^4)/(1 + \frac{1}{5}x)$$

i	x_i	$f(x_i)$	$r_{0,5}(x_i)$	$r_{1,4}(x_i)$	$r_{2,3}(x_i)$	$r_{4,1}(x_i)$
1	0.2	0.81873075	0.81873081	0.81873074	0.81873075	0.81873077
2	0.4	0.67032005	0.67032276	0.67031942	0.67031963	0.67032099
3	0.6	0.54881164	0.54883296	0.54880635	0.54880763	0.54882143
4	0.8	0.44932896	0.44941181	0.44930678	0.44930966	0.44937931
5	1.0	0.36787944	0.36809816	0.36781609	0.36781609	0.36805556

9. $r_{T_{2,0}}(x) = (1.266066T_0(x) - 1.130318T_1(x) + 0.2714953T_2(x))/T_0(x)$

 $r_{T_{1,1}}(x) = (0.9945705T_0(x) - 0.4569046T_1(x))/(T_0(x) + 0.48038745T_1(x))$

 $r_{T_{0,2}}(x) = 0.7940220T_0(x)/(T_0(x) + 0.8778575T_1(x) + 0.1774266T_2(x))$

i	x_i	$f(x_i)$	$r_{T_{2,0}}(x_i)$	$r_{T_{1,1}}(x_i)$	$r_{T_{0,2}}(x_i)$
1	0.25	0.77880078	0.74592811	0.78595377	0.74610974
2	0.50	0.60653066	0.56515935	0.61774075	0.58807059
3	1.00	0.36787944	0.40724330	0.36319269	0.38633199

11. $r_{T_{2,2}}(x) = \frac{0.91747T_1(x)}{T_0(x) + 0.088914T_2(x)}$

i	x_i	$f(x_i)$	$r_{T_{2,2}}(x_i)$
0	0.00	0.00000000	0.00000000
1	0.10	0.09983342	0.09093843
2	0.20	0.19866933	0.18028797
3	0.30	0.29552021	0.26808992
4	0.40	0.38941834	0.35438412

- **13.** a. $e^x = e^{M \ln \sqrt{10} + s} = e^{M \ln \sqrt{10}} e^s = e^{\ln 10 \frac{M}{2}} e^s = 10^{\frac{M}{2}} e^s$
 - **b.** $e^s \approx \left(1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3\right) / \left(1 \frac{1}{2}s + \frac{1}{10}s^2 \frac{1}{120}s^3\right)$, con $|\text{error}| \leq 3.75 \times 10^{-7}$.
 - **c.** Set $M = \text{redondeo} (0.8685889638x), \ s = x M/(0.8685889638), \ y$ $\hat{f} = \left(1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3\right) / \left(1 \frac{1}{2}s + \frac{1}{10}s^2 \frac{1}{120}s^3\right)$. Entonces $f = (3.16227766)^M \hat{f}$.

Conjunto de ejercicios 8.5

- 1. $S_2(x) = \frac{\pi^2}{3} 4\cos x + \cos 2x$
- 3. $S_3(x) = 3.676078 3.676078 \cos x + 1.470431 \cos 2x 0.7352156 \cos 3x + 3.676078 \sin x 2.940862 \sin 2x$
- **5.** $S_n(x) = \frac{1}{2} + \frac{1}{\pi} \sum_{k=1}^{n-1} \frac{1 (-1)^k}{k} \operatorname{sen} kx$
- 7. Los polinomios de mínimos cuadrados trigonométricos son:
 - **a.** $S_2(x) = \cos 2x$
 - **b.** $S_2(x) = 0$
 - **c.** $S_3(x) = 1.566453 + 0.5886815 \cos x 0.2700642 \cos 2x + 0.2175679 \cos 3x + 0.8341640 \sin x 0.3097866 \sin 2x$
 - **d.** $S_3(x) = -2.046326 + 3.883872 \cos x 2.320482 \cos 2x + 0.7310818 \cos 3x$
- **9.** El polinomio de mínimos cuadrados trigonométricos es $S_3(x) = -0.4968929 + 0.2391965 \cos x + 1.515393 \cos 2x + 0.2391965 \cos 3x 1.150649 sen x, con error <math>E(S_3) = 7.271197$.
- 11. Los polinomios de mínimos cuadrados trigonométricos y sus errores son
 - **a.** $S_3(x) = -0.08676065 1.446416 \cos \pi(x-3) 1.617554 \cos 2\pi(x-3) + 3.980729 \cos 3\pi(x-3) 2.154320 \sin \pi(x-3) + 3.907451 \sin 2\pi(x-3) \cos E(S_3) = 210.90453$
 - **b.** $S_3(x) = -0.0867607 1.446416\cos\pi(x-3) 1.617554\cos2\pi(x-3) + 3.980729\cos3\pi(x-3) 2.354088\cos4\pi(x-3) 2.154320\sin\pi(x-3) + 3.907451\sin2\pi(x-3) 1.166181\sin3\pi(x-3)\cos E(S_4) = 169.4943$
- **13. a.** $T_4(x) = 15543.19 + 141.1964 \cos(\frac{2}{15}\pi t \pi) 203.4015 \cos(\frac{4}{15}\pi t 4\pi) + 274.6943 \cos(\frac{2}{5}\pi t 6\pi) 210.75 \cos(\frac{8}{15}\pi t 4\pi) + 716.5316 \sin(\frac{2}{15}\pi t \pi) 286.7289 \sin(\frac{4}{15}\pi t 2\pi) + 453.1107 \sin(\frac{2}{5}\pi t 3\pi)$
 - **b.** El 8 de abril de 2013 corresponde a t = 1.27 con $P_4(1.27) = 14374$, y el 8 de abril de 2014 corresponde a t = 13.27 con $P_4(13.27) = 16906$
 - c. |14374 14613| = 239 y |16906 16256| = 650. Al parecer, no aproxima correctamente un error relativo de aproximadamente 3 por ciento.
 - **d.** El 17 de junio de 2014 corresponde a t = 15.57 con $P_4(15.57) = 14298$. Puesto que el cierre real era 16 808, la aproximación estaba muy lejos.
- **15.** Si f(-x) = -f(x). La integral $\int_{-a}^{0} f(x) dx$ bajo el cambio de variable t = -x se transforma a

$$-\int_{a}^{0} f(-t) dt = \int_{0}^{a} f(-t) dt = -\int_{0}^{a} f(t) dt = -\int_{0}^{a} f(x) dx.$$

Por lo tanto,

$$\int_{-a}^{a} f(x) \ dx = \int_{-a}^{0} f(x) \ dx + \int_{0}^{a} f(x) \ dx = -\int_{0}^{a} f(x) \ dx + \int_{0}^{a} f(x) \ dx = 0.$$

17. Las siguientes integraciones establecen la ortogonalidad.

$$\int_{-\pi}^{\pi} [\phi_0(x)]^2 dx = \frac{1}{2} \int_{-\pi}^{\pi} dx = \pi,$$

$$\int_{-\pi}^{\pi} [\phi_k(x)]^2 dx = \int_{-\pi}^{\pi} (\cos kx)^2 dx = \int_{-\pi}^{\pi} \left[\frac{1}{2} + \frac{1}{2} \cos 2kx \right] dx = \pi + \left[\frac{1}{4k} \sin 2kx \right]_{-\pi}^{\pi} = \pi,$$

$$\int_{-\pi}^{\pi} [\phi_{n+k}(x)]^2 dx = \int_{-\pi}^{\pi} (\sin kx)^2 dx = \int_{-\pi}^{\pi} \left[\frac{1}{2} - \frac{1}{2} \cos 2kx \right] dx = \pi - \left[\frac{1}{4k} \sin 2kx \right]_{-\pi}^{\pi} = \pi,$$

$$\int_{-\pi}^{\pi} \phi_k(x) \phi_0(x) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos kx dx = \left[\frac{1}{2k} \sin kx \right]_{-\pi}^{\pi} = 0,$$

$$\int_{-\pi}^{\pi} \phi_{n+k}(x) \phi_0(x) dx = \frac{1}{2} \int_{-\pi}^{\pi} \sin kx dx = \left[\frac{-1}{2k} \cos kx \right]_{-\pi}^{\pi} = \frac{-1}{2k} [\cos k\pi - \cos(-k\pi)] = 0,$$

$$\int_{-\pi}^{\pi} \phi_k(x) \phi_j(x) dx = \int_{-\pi}^{\pi} \cos kx \cos jx dx = \frac{1}{2} \int_{-\pi}^{\pi} [\cos(k+j)x + \cos(k-j)x] dx = 0,$$

$$\int_{-\pi}^{\pi} \phi_{n+k}(x) \phi_{n+j}(x) dx = \int_{-\pi}^{\pi} \sin kx \sin jx dx = \frac{1}{2} \int_{-\pi}^{\pi} [\cos(k-j)x - \cos(k+j)x] dx = 0,$$

у

$$\int_{-\pi}^{\pi} \phi_k(x)\phi_{n+j}(x) dx = \int_{-\pi}^{\pi} \cos kx \sin jx \ dx = \frac{1}{2} \int_{-\pi}^{\pi} [\sin(k+j)x - \sin(k-j)x] dx = 0.$$

19. Los pasos son casi idénticos a aquellos para determinar las constantes b_k excepto por el término constante adicional a_0 en la serie de coseno. En este caso,

$$0 = \frac{\partial E}{\partial a_0} = 2 \sum_{j=0}^{2m-1} [y_j - S_n(x_j)](-1/2) = \sum_{j=0}^{2m-1} y_j - \sum_{j=0}^{2m-1} \left(\frac{a_0}{2} + a_n \cos nx_j + \sum_{k=1}^{n-1} (a_k \cos kx_j + b_k \sin kx_j) \right),$$

La ortogonalidad implica que sólo el término constante permanece en la segunda suma y tenemos

$$0 = \sum_{j=0}^{2m-1} y_j - \frac{a_0}{2}(2m), \quad \text{lo cual implica que} \quad a_0 = \frac{1}{m} \sum_{j=0}^{2m-1} y_j.$$

Conjunto de ejercicios 8.6

1. Los polinomios interpolantes trigonométricos son:

a. $S_2(x) = -12.33701 + 4.934802 \cos x - 2.467401 \cos 2x + 4.934802 \sin x$

b. $S_2(x) = -6.168503 + 9.869604 \cos x - 3.701102 \cos 2x + 4.934802 \sin x$

c. $S_2(x) = 1.570796 - 1.570796 \cos x$

d. $S_2(x) = -0.5 - 0.5 \cos 2x + \sin x$

3. El algoritmo de la transformada rápida de Fourier provee los siguientes polinomios trigonométricos.

a. $S_4(x) = -11.10331 + 2.467401\cos x - 2.467401\cos 2x + 2.467401\cos 3x - 1.233701\cos 4x + 5.956833\sin x - 2.467401\sin 2x + 1.022030\sin 3x$

b. $S_4(x) = 1.570796 - 1.340759 \cos x - 0.2300378 \cos 3x$

c. $S_4(x) = -0.1264264 + 0.2602724\cos x - 0.3011140\cos 2x + 1.121372\cos 3x + 0.04589648\cos 4x - 0.1022190\sin x + 0.2754062\sin 2x - 2.052955\sin 3x$

d. $S_4(x) = -0.1526819 + 0.04754278 \cos x + 0.6862114 \cos 2x - 1.216913 \cos 3x + 1.176143 \cos 4x - 0.8179387 \sin x + 0.1802450 \sin 2x + 0.2753402 \sin 3x$

5.

	Aproximación	Real
a.	-69.76415	-62.01255
b.	9.869602	9.869604
c.	-0.7943605	-0.2739383
d.	-0.9593287	-0.9557781

7. Los términos b_j son todos cero. Los términos a_j son los siguientes:

```
a_0 = -4.0008033 a_1 = 3.7906715 a_2 = -2.2230259 a_3 = 0.6258042
a_4 = -0.3030271 a_5 = 0.1813613 a_6 = -0.1216231 a_7 = 0.0876136
a_8 = -0.0663172 a_9 = 0.0520612 a_{10} = -0.0420333 a_{11} = 0.0347040
a_{12} = -0.0291807 a_{13} = 0.0249129 a_{14} = -0.0215458 a_{15} = 0.0188421
a_{16} = -0.0166380 a_{17} = 0.0148174 a_{18} = -0.0132962 a_{19} = 0.0120123
a_{20} = -0.0109189 a_{21} = 0.0099801 a_{22} = -0.0091683 a_{23} = 0.0084617
a_{24} = -0.0078430 a_{25} = 0.0072984 a_{26} = -0.0068167 a_{27} = 0.0063887
a_{28} = -0.0060069 a_{29} = 0.0056650 a_{30} = -0.0053578 a_{31} = 0.0050810
a_{32} = -0.0048308 a_{33} = 0.0046040 a_{34} = -0.0043981 a_{35} = 0.0042107
a_{36} = -0.0040398 a_{37} = 0.0038837 a_{38} = -0.0037409 a_{39} = 0.0036102
a_{40} = -0.0034903 a_{41} = 0.0033803 a_{42} = -0.0032793 a_{43} = 0.0031866
a_{44} = -0.0031015 a_{45} = 0.0030233 a_{46} = -0.0029516 a_{47} = 0.0028858
a_{48} = -0.0028256 a_{49} = 0.0027705 a_{50} = -0.0027203 a_{51} = 0.0026747
a_{52} = -0.0026333 a_{53} = 0.0025960 a_{54} = -0.0025626 a_{55} = 0.0025328
a_{56} = -0.0025066 a_{57} = 0.0024837 a_{58} = -0.0024642 a_{59} = 0.0024478
a_{60} = -0.0024345 a_{61} = 0.0024242 a_{62} = -0.0024169 a_{63} = 0.0024125
```

9. a. El polinomio interpolante trigonométrico es

 $S(x) = \frac{31086.25}{2} - \frac{240.25}{2} \cos(\pi x - 8\pi) + 141.0809 \cos(\frac{\pi}{8}x - \pi) - 203.4989 \cos(\frac{\pi}{4}x - 2\pi) + 274.6464 \cos(\frac{3\pi}{8}x - 3\pi) - 210.75 \cos(\frac{\pi}{2}x - 4\pi) + 104.2019 \cos(\frac{5\pi}{8}x - 5\pi) - 155.7601 \cos(\frac{3\pi}{4}x - 6\pi) + 243.0707 \cos(\frac{7\pi}{8}x - 7\pi) + 716.5795 \sin(\frac{\pi}{8}x - \pi) - 286.6405 \sin(\frac{\pi}{4}x - 2\pi) + 453.2262 \sin(\frac{5\pi}{8}x - 3\pi) + 22.5 \sin(\frac{\pi}{2}x - 4\pi) + 138.9449 \sin(\frac{5\pi}{8}x - 5\pi) - 223.8905 \sin(\frac{3\pi}{4}x - 6\pi) - 194.2018 \sin(\frac{7\pi}{8}x - 7\pi)$

- **b.** El 8 de abril de 2013 corresponde a x = 1.27 con S(1.27) = 14721, y el 8 de abril de 2014 corresponde a x = 13.27 con S(13.27) = 16323
- c. |14613 14721| = 108 con error relativo 0.00734 y |16256 16323| = 67 con error relativo 0.00412. Las aproximaciones no son tan malas.
- **d.** El 17 de junio de 2014 corresponde a x = 15.57 con S(15.57) = 15073. El cierre real era 16808 por lo que la aproximación no era tan buena.
- 11. A partir de la ecuación (8.28),

$$c_k = \sum_{j=0}^{2m-1} y_j e^{\frac{\pi i j k}{m}} = \sum_{j=0}^{2m-1} y_j(\zeta)^{jk} = \sum_{j=0}^{2m-1} y_j(\zeta^k)^j.$$

Por lo tanto,

$$c_k = \left(1, \zeta^k, \zeta^{2k}, \dots, \zeta^{(2m-1)k}\right)^t \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{2m-1} \end{bmatrix},$$

y el resultado sigue.

Conjunto de ejercicios 9.1

1. a. Los eigenvalores y los eigenvectores son $\lambda = 2$, $\mathbf{v}_1^{(1)} = (1, 0, 0)^t$; $\lambda = 1$, $\mathbf{v}_2^{(2)} = (0, 2, 1)^t$; y $\lambda_3 = -1$, $\mathbf{v}_3^{(3)} = (-1, 1, 1)^t$. El conjunto es linealmente independiente.

- **b.** Los eigenvalores y los eigenvectores son $\lambda_1 = 2$, $\mathbf{v}^{(1)} = (0, 1, 0)^t$; $\lambda_2 = 3$, $\mathbf{v}^{(2)} = (1, 0, 1)^t$; y $\lambda_3 = 1$, $\mathbf{v}^{(3)} = (1, 0, -1)^t$. El conjunto es linealmente independiente.
- **c.** Los eigenvalores y los eigenvectores asociados son $\lambda_1 = 1$, $\mathbf{v}^{(1)} = (0, -1, 1)^t$; $\lambda_2 = 1 + \sqrt{2}$, $\mathbf{v}^{(2)} = (\sqrt{2}, 1, 1)^t$; y $\lambda_3 = 1 \sqrt{2}$, $\mathbf{v}^{(3)} = (-\sqrt{2}, 1, 1)^t$; el conjunto es linealmente independiente.
- **d.** Los eigenvalores y los eigenvectores asociados son $\lambda_1 = \lambda_2 = 2$, $\mathbf{v}^{(1)} = \mathbf{v}^{(2)} = (1, 0, 0)^t$; $\lambda_3 = 3$ con $\mathbf{v}^{(3)} = (0, 1, 1)^t$. Sólo existen 2 eigenvectores linealmente independientes.
- **3.** a. Los tres eigenvalores están dentro de $\{\lambda \mid |\lambda| \le 2\} \cup \{\lambda \mid |\lambda 2| \le 2\}$ por lo que $\rho(A) \le 4$.
 - **b.** Los tres eigenvalores están dentro de $\{\lambda | |\lambda 4| \le 2\}$ por lo que $\rho(A) \le 6$.
 - **c.** Los tres eigenvalores reales satisfacen $0 < \lambda < 6$ por lo que $\rho(A) < 6$.
 - **d.** Los tres eigenvalores reales satisfacen $1.25 \le \lambda \le 8.25$ por lo que $1.25 \le \rho(A) \le 8.25$.
- **5.** Los vectores son linealmente dependientes ya que $-2\mathbf{v}_1 + 7\mathbf{v}_2 3\mathbf{v}_3 = \mathbf{0}$.
- 7. **a.** i) $\mathbf{0} = c_1(1, 1)^t + c_2(-2, 1)^t$ implica que $\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Pero det $\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} = 3 \neq 0$, de modo que por el teorema 6.7, tenemos $c_1 = c_2 = 0$.
 - ii) $\{(1, 1)^t, (-3/2, 3/2)^t\}.$
 - iii) $\{(\sqrt{2}/2, \sqrt{2}/2)^t, (-\sqrt{2}/2, \sqrt{2}/2)^t\}.$
 - **b.** i) El determinante de esta matriz es $-2 \neq 0$, por lo que $\{(1, 1, 0)^t, (1, 0, 1)^t, (0, 1, 1)^t\}$ que es un conjunto linealmente independiente.
 - ii) $\{(1, 1, 0)^t, (1/2, -1/2, 1)^t, (-2/3, 2/3, 2/3)^t\}$
 - iii) $\{(\sqrt{2}/2, \sqrt{2}/2, 0)^t, (\sqrt{6}/6, -\sqrt{6}/6, \sqrt{6}/3)^t, (-\sqrt{3}/3, \sqrt{3}/3, \sqrt{3}/3)^t\}$
 - **c.** i) Si $\mathbf{0} = c_1(1, 1, 1, 1)^t + c_2(0, 2, 2, 2)^t + c_3(1, 0, 0, 1)^t$, entonces tenemos

$$(E_1): c_1 + c_3 = 0, \quad (E_2): c_1 + 2c_2 = 0, \quad (E_3): c_1 + 2c_2 = 0, \quad (E_4): c_1 + 2c_2 + c_3 = 0.$$

Restar (E_3) de (E_4) implica que $c_3 = 0$. Por lo tanto, a partir de (E_1) , tenemos $c_1 = 0$, y a partir de (E_2) , tenemos $c_2 = 0$. Los vectores son linealmente independientes.

- ii) $\{(1, 1, 1, 1)^t, (-3/2, 1/2, 1/2, 1/2)^t, (0, -1/3, -1/3, 2/3)^t\}$
- iii) $\{(1/2, 1/2, 1/2, 1/2)^t, (-\sqrt{3}/2, \sqrt{3}/6, \sqrt{3}/6, \sqrt{3}/6)^t, (0, -\sqrt{6}/6, -\sqrt{6}/6, \sqrt{6}/3)^t\}$
- **d.** i) Si A es la matriz cuyas columnas son los vectores \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 , entonces det $A=60\neq 0$, por lo que los vectores son linealmente independientes.
 - ii) $\{(2,2,3,2,3)^t,(2,-1,0,-1,0)^t,(0,0,1,0,-1)^t,(1,2,-1,0,-1)^t,(-2/7,3/7,2/7,-1,2/7)^t\}$
 - iii) $\{(\sqrt{30}/15, \sqrt{30}/15, \sqrt{30}/10, \sqrt{30}/15, \sqrt{30}/10)^t, (\sqrt{6}/3, -\sqrt{6}/6, 0, -\sqrt{6}/6, 0)^t,$
 - $(0, 0, \sqrt{2}/2, 0, -\sqrt{2}/2)^t, (\sqrt{7}/7, 2\sqrt{7}/7, -\sqrt{7}/7, 0, -\sqrt{7}/7)^t, (-\sqrt{70}/35, 3\sqrt{70}/70, \sqrt{70}/35, -\sqrt{70}/10, \sqrt{70}/35)^t\}$
- 9. a. Sea μ un eigenvalor de A. Puesto que A es simétrica, μ es real y el teorema $9.13~0 \le \mu \le 4$. Los eigenvalores de A-4I son de la forma $\mu-4$. Por tanto,

$$\rho(A - 4I) = \max|\mu - 4| = \max(4 - \mu) = 4 - \min\mu = 4 - \lambda = |\lambda - 4|.$$

- **b.** Los eigenvalores de A-4I son -3.618034, -2.618034, -1.381966, y -0.381966, por lo que $\rho(A-4I)=3.618034$ y $\lambda=0.381966$. Un eigenvalor es $(0.618034,1,1,0.618034)^t$.
- **c.** Como en la parte a), $0 \le \mu \le 6$, por lo que $|\lambda 6| = \rho(B 6I)$.
- **d.** Los eigenvalores de B-6I son -5.2360673, -4, -2, y -0.76393202, por lo que $\rho(B-6I)=5.2360673$ y $\lambda=0.7639327$. Un eigenvector es $(0.61803395, 1, 1, 0.6180395)^t$.
- 11. Si $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{0}$, entonces para cualquier j, con $1 \le j \le k$, tenemos $c_1 \mathbf{v}_j^t \mathbf{v}_1 + \cdots + c_k \mathbf{v}_j^t \mathbf{v}_k = \mathbf{0}$. Pero la ortogonalidad da $c_i \mathbf{v}_i^t \mathbf{v}_i = 0$, para $i \ne j$, por lo que $c_j \mathbf{v}_i^t \mathbf{v}_j = 0$, y puesto que $\mathbf{v}_i^t \mathbf{v}_j \ne 0$, tenemos $c_j = 0$.
- 13. Puesto que $\{\mathbf v_i\}_{i=1}^n$ es linealmente independiente en $\mathbb R^n$, existen números c_1,\ldots,c_n con

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n.$$

Por lo tanto, para cualquier k, con $1 \le k \le n$, $\mathbf{v}_k^t \mathbf{x} = c_1 \mathbf{v}_k^t \mathbf{v}_1 + \dots + c_n \mathbf{v}_k^t \mathbf{v}_n = c_k \mathbf{v}_k^t \mathbf{v}_k = c_k$.

15. Una matriz estricta y diagonalmente dominante tiene todos sus elementos diagonales más grandes que la suma de las magnitudes de todos los otros elementos y sus filas. Por consiguiente, la magnitud del centro de cada círculo de Geršgorin excede la magnitud del radio del círculo. Por lo tanto, ningún círculo incluye el origen. Así, 0 no puede ser el eigenvalor de la matriz y la matriz no singular.

Conjunto de ejercicios 9.2

- 1. En cada instancia, compararemos el polinomio característico de A, denotado p(A) con el de B, denotado p(B). Estos deben concordar si las matrices son similares.
 - **a.** $p(A) = x^2 4x + 3 \neq x^2 2x 3 = p(B)$.
- **b.** $p(A) = x^2 5x + 6 \neq x^2 6x + 6 = p(B)$.
- **c.** $p(A) = x^3 4x^2 + 5x 2 \neq x^3 4x^2 + 5x 6 = p(B)$.
- **d.** $p(A) = x^3 5x^2 + 12x 11 \neq x^3 4x^2 + 4x + 11 = p(B)$.
- **3.** En cada caso, tenemos $A^3 = (PDP^{(-1)})(PDP^{(-1)})(PDP^{(-1)}) = PD^3P^{(-1)}$.

a.
$$\begin{bmatrix} \frac{26}{5} & -\frac{14}{5} \\ -\frac{21}{5} & \frac{19}{5} \end{bmatrix}$$
 b.
$$\begin{bmatrix} 1 & 9 \\ 0 & -8 \end{bmatrix}$$

b.
$$\begin{bmatrix} 1 & 9 \\ 0 & -8 \end{bmatrix}$$

c.
$$\begin{bmatrix} \frac{9}{5} & -\frac{8}{5} & \frac{7}{5} \\ \frac{4}{5} & -\frac{3}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} & -\frac{6}{5} \end{bmatrix}$$
 d.
$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

$$\mathbf{d.} \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

5. Todas son diagonalizables con P y D, de acuerdo con lo siguiente.

a.
$$P = \begin{bmatrix} -1 & \frac{1}{4} \\ 1 & 1 \end{bmatrix}$$
 y
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix}$$

b.
$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 y $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$

c.
$$P = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 $y D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

d.
$$P = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$
 y $D = \begin{bmatrix} 1+\sqrt{2} & 0 & 0 \\ 0 & 1-\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

7. Todas las matrices, excepto d), tienen 3 eigenvectores linealmente independientes. La matriz en la parte d) sólo tiene 2 eigenvectores linealmente independientes. Una selección para P en cada caso es

$$\mathbf{a.} \left[\begin{array}{rrr} -1 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

$$\mathbf{b.} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{c.} \left[\begin{array}{ccc} 0 & \sqrt{2} & -\sqrt{2} \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right]$$

9. Sólo las matrices en las partes a) y c) son definidas positivas.
a.
$$Q = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
 y $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$

$$\mathbf{c.} \ \ Q = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix} \ \mathbf{y} \ D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 11. En cada caso, la matriz falla en tener 3 eigenvectores linealmente independientes.
 - **a.** det(A) = 12, por lo que A es no singular
- **b.** det(A) = -1, por lo que A es no singular
- c. det(A) = 12, por lo que A es no singular
- **d.** det(A) = 1, por lo que A es no singular
- 13. La matriz A tiene un eigenvalor de multiplicidad 1 en $\lambda_1 = 3$ con eigenvector $\mathbf{s}_1 = (0, 1, 1)^t$, y un eigenvalor de multiplicidad 2 en $\lambda_2 = 2$ con eigenvectores linealmente independientes $s_2 = (1, 1, 0)^t$ y $s_3 = (-2, 0, 1)^t$. Sea $S_1 = \{s_1, s_2, s_3\}$, $S_2 = \{s_2, s_1, s_3\}$, $y S_3 = \{s_2, s_3, s_1\}$. Entonces $A = S_1^{-1} D_1 S_1 = S_2^{-1} D_2 S_2 = S_3^{-1} D_3 S_3$, por lo que A es similar a D_1 , D_2 y D_3 .
- 15. a. Los eigenvalores y eigenvectores asociados son

 $\lambda_1 = 5.307857563, (0.59020967, 0.51643129, 0.62044441)^t;$

 $\lambda_2 = -0.4213112993, \ (0.77264234, -0.13876278, -0.61949069)^t;$

 $\lambda_3 = -0.1365462647, (0.23382978, -0.84501102, 0.48091581)^t.$

- **b.** A es definida no positiva porque $\lambda_2 < 0$ y $\lambda_3 < 0$.
- 17. Puesto que A es similar a B y B es similar a C, existen matrices invertibles S y T con $A = S^{-1}BS$ y $B = T^{-1}CT$. Por lo tanto, A es similar a C porque

$$A = S^{-1}BS = S^{-1}(T^{-1}CT)S = (S^{-1}T^{-1})C(TS) = (TS)^{-1}C(TS)$$

- 19. a. Sean las columnas de Q denotadas por los vectores $\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_n$, los cuales también son las filas de Q'. Puesto que Q es ortogonal, $(\mathbf{q}_i)^t \cdot \mathbf{q}_i$ es cero cuando $i \neq j$ y 1 cuando i = j. Pero la entrada ij de Q^tQ is $(\mathbf{q}_i)^t \cdot \mathbf{q}_i$ para cada i y j, por lo que $Q^tQ = I$. Por lo tanto, $Q^t = Q^{-1}$.
 - **b.** Después de la parte i), tenemos $Q^tQ = I$, por lo que

$$(Q\mathbf{x})^t(Q\mathbf{y}) = (\mathbf{x}^t Q^t)(Q\mathbf{y}) = \mathbf{x}^t(Q^t Q)\mathbf{y} = \mathbf{x}^t(I)\mathbf{y} = \mathbf{x}^t\mathbf{y}.$$

c. Esto se sigue de la parte ii) con x reemplazando a y ya que entonces

$$||Q\mathbf{x}||_2^2 = (Q\mathbf{x})^t (Q\mathbf{x}) = \mathbf{x}^t \mathbf{x} = ||\mathbf{x}||_2^2.$$

Conjunto de ejercicios 9.3

- 1. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(3)} = 3.666667$, $\mathbf{x}^{(3)} = (0.9772727, 0.9318182, 1)^t$
 - **b.** $\mu^{(3)} = 2.000000$, $\mathbf{x}^{(3)} = (1, 1, 0.5)^t$
 - **c.** $\mu^{(3)} = 5.000000$, $\mathbf{x}^{(3)} = (-0.2578947, 1, -0.2842105)^t$
 - **d.** $\mu^{(3)} = 5.038462$. $\mathbf{x}^{(3)} = (1.0.2213741, 0.3893130, 0.4045802)^t$
- 3. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(3)} = 1.027730$. $\mathbf{x}^{(3)} = (-0.1889082, 1, -0.7833622)^t$
 - **b.** $\mu^{(3)} = -0.4166667$, $\mathbf{x}^{(3)} = (1, -0.75, -0.6666667)^t$
 - **c.** $\mu^{(3)} = 17.64493$. $\mathbf{x}^{(3)} = (-0.3805794, -0.09079132, 1)^t$
 - **d.** $\mu^{(3)} = 1.378684$, $\mathbf{x}^{(3)} = (-0.3690277, -0.2522880, 0.2077438, 1)^t$
- **5.** Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(3)} = 3.959538$, $\mathbf{x}^{(3)} = (0.5816124, 0.5545606, 0.5951383)^t$
 - **b.** $\mu^{(3)} = 2.0000000$, $\mathbf{x}^{(3)} = (-0.6666667, -0.6666667, -0.3333333)^t$
 - **c.** $\mu^{(3)} = 7.189567$, $\mathbf{x}^{(3)} = (0.5995308, 0.7367472, 0.3126762)^t$
 - **d.** $\mu^{(3)} = 6.037037$, $\mathbf{x}^{(3)} = (0.5073714, 0.4878571, -0.6634857, -0.2536857)^t$
- 7. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\lambda_1 \approx \mu^{(9)} = 3.999908$, $\mathbf{x}^{(9)} = (0.9999943, 0.9999828, 1)^t$
 - **b.** $\lambda_1 \approx \mu^{(13)} = 2.414214$, $\mathbf{x}^{(13)} = (1, 0.7071429, 0.7070707)^t$
 - **c.** $\lambda_1 \approx \mu^{(9)} = 5.124749$, $\mathbf{x}^{(9)} = (-0.2424476, 1, -0.3199733)^t$
 - **d.** $\lambda_1 \approx \mu^{(24)} = 5.235861$, $\mathbf{x}^{(24)} = (1, 0.6178361, 0.1181667, 0.4999220)^t$
- **9.** a. $\mu^{(9)} = 1.00001523$ con $\mathbf{x}^{(9)} = (-0.19999391, 1, -0.79999087)^t$
 - **b.** $\mu^{(12)} = -0.41421356$ con $\mathbf{x}^{(12)} = (1, -0.70709184, -0.707121720)^t$
 - c. El método no converge en 25 iteraciones. Sin embargo, la convergencia se presenta con $\mu^{(42)} = 1.63663642$ con $\mathbf{x}^{(42)} = (-0.57068151, 0.3633658, 1)^t$
 - **d.** $\mu^{(9)} = 1.38195929 \text{ con } \mathbf{x}^{(9)} = (-0.38194003, -0.23610068, 0.23601909. 1)^t$
- 11. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(8)} = 4.0000000$, $\mathbf{x}^{(8)} = (0.5773547, 0.5773282, 0.5773679)^t$
 - **b.** $\mu^{(13)} = 2.414214$, $\mathbf{x}^{(13)} = (-0.7071068, -0.5000255, -0.4999745)^t$
 - **c.** $\mu^{(16)} = 7.223663$, $\mathbf{x}^{(16)} = (0.6247845, 0.7204271, 0.3010466)^t$
 - **d.** $\mu^{(20)} = 7.086130$, $\mathbf{x}^{(20)} = (0.3325999, 0.2671862, -0.7590108, -0.4918246)^t$
- 13. Los eigenvalores aproximados y los eigenvectores aproximados son::
 - **a.** $\lambda_2 \approx \mu^{(1)} = 1.000000$, $\mathbf{x}^{(1)} = (-2.999908, 2.999908, 0)^t$
 - **b.** $\lambda_2 \approx \mu^{(1)} = 1.000000$, $\mathbf{x}^{(1)} = (0, -1.414214, 1.414214)^t$
 - **c.** $\lambda_2 \approx \mu^{(6)} = 1.636734$, $\mathbf{x}^{(6)} = (1.783218, -1.135350, -3.124733)^t$
 - **d.** $\lambda_2 \approx \mu^{(10)} = 3.618177$, $\mathbf{x}^{(10)} = (0.7236390, -1.170573, 1.170675, -0.2763374)^t$
- 15. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(8)} = 4.000001$, $\mathbf{x}^{(8)} = (0.9999773, 0.99993134, 1)^t$
 - **b.** El método falla debido a la división por cero.
 - **c.** $\mu^{(7)} = 5.124890$, $\mathbf{x}^{(7)} = (-0.2425938, 1, -0.3196351)^t$
 - **d.** $\mu^{(15)} = 5.236112$, $\mathbf{x}^{(15)} = (1, 0.6125369, 0.1217216, 0.4978318)^t$
- 17. a. Tenemos $|\lambda| \le 6$ para todos los eigenvalores λ .
 - **b.** El eigenvalor y el eigenvector aproximados son $\mu^{(133)} = 0.69766854, \mathbf{x}^{(133)} = (1, 0.7166727, 0.2568099, 0.04601217)^t.$
 - **c.** El polinomio característico es $P(\lambda) = \lambda^4 \frac{1}{4}\lambda \frac{1}{16}$, y los eigenvalores son $\lambda_1 = 0.6976684972$, $\lambda_2 = -0.2301775942 + 0.56965884i$, $\lambda_3 = -0.2301775942 - 0.56965884i$, y $\lambda_4 = -0.237313308$.
 - **d.** La población de escarabajos se debería aproximar a cero ya que *A* es convergente.

- **19.** El uso del método de potencia inversa con $\mathbf{x}^{(0)} = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1)^t$ y q = 0 da los siguientes resultados:
 - **a.** $\mu^{(49)} = 1.0201926$, por lo que $\rho(A^{-1}) \approx 1/\mu^{(49)} = 0.9802071$;
 - **b.** $\mu^{(30)} = 1.0404568$, por lo que $\rho(A^{-1}) \approx 1/\mu^{(30)} = 0.9611163$;
 - **c.** $\mu^{(22)} = 1.0606974$, por lo que $\rho(A^{-1}) \approx 1/\mu^{(22)} = 0.9427760$. El método parece estable para todas α en $[\frac{1}{4}, \frac{3}{4}]$.
- **21.** La formación de $A^{-1}B$ y el uso del método de potencia con $\mathbf{x}^{(0)} = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1)^t$ proveen los siguientes resultados:
 - **a.** El radio espectral es aproximadamente $\mu^{(46)} = 0.9800021$.
 - **b.** El radio espectral es aproximadamente $\mu^{(25)} = 0.9603543$.
 - c. El radio espectral es aproximadamente $\mu^{(18)} = 0.9410754$.
- 23. Los eigenvalores aproximados y los eigenvectores aproximados son:
 - **a.** $\mu^{(2)} = 1.000000$, $\mathbf{x}^{(2)} = (0.1542373, -0.7715828, 0.6171474)^t$
 - **b.** $\mu^{(13)} = 1.000000$, $\mathbf{x}^{(13)} = (0.00007432, -0.7070723, 0.7071413)^t$
 - **c.** $\mu^{(14)} = 4.961699$, $\mathbf{x}^{(14)} = (-0.4814472, 0.05180473, 0.8749428)^t$
 - **d.** $\mu^{(17)} = 4.428007$, $\mathbf{x}^{(17)} = (0.7194230, 0.4231908, 0.1153589, 0.5385466)^t$
- 25. Puesto que

$$\mathbf{x}^{t} = \frac{1}{\lambda_{1} v_{i}^{(1)}} (a_{i1}, a_{i2}, \dots, a_{in}),$$

la i-ésima fila de B es

$$(a_{i1}, a_{i2}, \dots, a_{in}) - \frac{\lambda_1}{\lambda_1 v_i^{(1)}} \left(v_i^{(1)} a_{i1}, v_i^{(1)} a_{i2}, \dots, v_i^{(1)} a_{in} \right) = \mathbf{0}.$$

Conjunto de ejercicios 9.4

1. El método de Householder produce las siguientes matrices tridiagonales.

a.	-10.77033	3.862069	5.344828
	0.0	5.344828	7.137931
	1.0000000	-1.414214	0.0
c.	-1.414214	1.000000	0.0
	0.0	0.0	1.000000

 $\begin{bmatrix} 12.00000 & -10.77033 \end{bmatrix}$

b.
$$\begin{bmatrix} 1.414214 & 1.000000 & 0.0 \\ 0.0 & 0.0 & 3.0 \end{bmatrix}$$
$$\begin{bmatrix} 4.750000 & -2.263846 & 0.0 \\ 2.263846 & 4.475610 & 1.21051 \end{bmatrix}$$

1.414214

 0.0^{-}

d.
$$\begin{vmatrix} 4.750000 & -2.263846 & 0.0 \\ -2.263846 & 4.475610 & -1.219512 \\ 0.0 & -1.219512 & 5.024390 \end{vmatrix}$$

3. El método de Householder produce las siguientes matrices superiores de Hessenberg.

0.0

$$\mathbf{a.} \begin{bmatrix} 2.0000000 & 2.8284271 & 1.4142136 \\ -2.8284271 & 1.0000000 & 2.0000000 \\ 0.0000000 & 2.0000000 & 3.0000000 \end{bmatrix}$$

b.
$$\begin{bmatrix} -1.0000000 & -3.0655513 & 0.0000000 \\ -3.6055513 & -0.23076923 & 3.1538462 \\ 0.0000000 & 0.15384615 & 2.2307692 \end{bmatrix}$$

$$\mathbf{c.} \begin{bmatrix} 5.0000000 & 4.9497475 & -1.4320780 & -1.5649769 \\ -1.4142136 & -2.0000000 & -2.4855515 & 1.8226448 \\ 0.0000000 & -5.4313902 & -1.4237288 & -2.6486542 \\ 0.0000000 & 0.0000000 & 1.5939865 & 5.4237288 \end{bmatrix}$$

$$\textbf{d.} \begin{bmatrix} 4.0000000 & 1.7320508 & 0.0000000 & 0.0000000 \\ 1.7320508 & 2.3333333 & 0.23570226 & 0.40824829 \\ 0.0000000 & -0.47140452 & 4.6666667 & -0.57735027 \\ 0.0000000 & 0.0000000 & 0.0000000 & 5.0000000 \end{bmatrix}$$

Conjunto de ejercicios 9.5

1. Dos iteraciones del método QR sin procedimiento de cambio producen las siguientes matrices.

a.
$$A^{(3)} = \begin{bmatrix} 3.142857 & -0.559397 & 0.0 \\ -0.559397 & 2.248447 & -0.187848 \\ 0.0 & -0.187848 & 0.608696 \end{bmatrix}$$

b.
$$A^{(3)} = \begin{bmatrix} 4.549020 & 1.206958 & 0.0\\ 1.206958 & 3.519688 & 0.000725\\ 0.0 & 0.000725 & -0.068708 \end{bmatrix}$$

- 3. Las matrices en el ejercicio 1 tienen los siguientes eigenvalores, exactos dentro de 10^{-5} .
 - **a.** 3.414214, 2.000000, 0.58578644
 - 1.267040 4.722051 2.000000
 - **c.** 1.267949, 4.732051, 3.000000
 - **e.** 3.438803, 0.8275517, -1.488068, -3.778287
- **b.** -0.06870782, 5.346462, 2.722246
- **d.** 4.745281, 3.177283, 1.822717, 0.2547188
- **f.** 0.9948440, 1.189091, 0.5238224, 0.1922421
- **5.** Las matrices en el ejercicio 1 tienen los siguientes eigenvalores, exactos dentro de 10 ⁻⁵.
 - **a.** $(-0.7071067, 1, -0.7071067)^t, (1, 0, -1)^t, (0.7071068, 1, 0.7071068)^t$
 - **b.** $(0.1741299, -0.5343539, 1)^t$, $(0.4261735, 1, 0.4601443)^t$, $(1, -0.2777544, -0.3225491)^t$
 - **c.** $(0.2679492, 0.7320508, 1)^t, (1, -0.7320508, 0.2679492)^t, (1, 1, -1)^t$
 - **d.** $(-0.08029447, -0.3007254, 0.7452812, 1)^t$, $(0.4592880, 1, -0.7179949, 0.8727118)^t$, $(0.8727118, 0.7179949, 1, -0.4592880)^t$, $(1, -0.7452812, -0.3007254, 0.08029447)^t$
 - **e.** $(-0.01289861, -0.07015299, 0.4388026, 1)^t$, $(-0.1018060, -0.2878618, 1, -0.4603102)^t$, $(1, 0.5119322, 0.2259932, -0.05035423)^t$, $(-0.5623391, 1, 0.2159474, -0.03185871)^t$
 - **f.** $(-0.1520150, -0.3008950, -0.05155956, 1)^t$, $(0.3627966, 1, 0.7459807, 0.3945081)^t$, $(1, 0.09528962, -0.6907921, 0.1450703)^t$, $(0.8029403, -0.9884448, 1, -0.1237995)^t$
- 7. a. Dentro de 10^{-5} , los eigenvalores son 2.618034, 3.618034, 1.381966, y 0.3819660.
 - **b.** En términos de $p \neq \rho$ los eigenvalores son $-65.45085 p/\rho$, $-90.45085 p/\rho$, $-34.54915 p/\rho$, $y = -9.549150 p/\rho$.
- 9. Los eigenvalores reales son los siguientes:
 - **a.** Cuando $\alpha = 1/4$, tenemos 0.97974649, 0.92062677, 0.82743037, 0.70770751, 0.57115742, 0.42884258, 0.29229249, 0.17256963, 0.07937323, y 0.02025351.
 - **b.** Cuando $\alpha = 1/2$, tenemos 0.95949297, 0.84125353, 0.65486073, 0.41541501, 0.14231484, -0.14231484, -0.41541501, -0.65486073, -0.84125353, y -0.95949297.
 - **c.** Cuando $\alpha = 3/4$, tenemos 0.93923946, 0.76188030, 0.48229110, 0.12312252, -0.28652774, -0.71347226, -1.12312252, -1.48229110, -1.76188030, y -1.93923946. El método parece ser estable para $\alpha \le \frac{1}{2}$.
- 11. a. Sea

$$P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

y $\mathbf{y} = P\mathbf{x}$. Muestre que $\|\mathbf{x}\|_2 = \|\mathbf{y}\|_2$. Use la relación $x_1 + ix_2 = re^{i\alpha}$, donde $r = \|\mathbf{x}\|_2$ y $\alpha = \tan^{-1}(x_2/x_1)$ y $y_1 + iy_2 = re^{i(\alpha+\theta)}$.

- **b.** Sea $\mathbf{x} = (1, 0)^t \text{ y } \theta = \pi/4.$
- 13. Sea C = RQ, donde R es triangular superior y Q es Hessenberg superior. Entonces $c_{ij} = \sum_{k=1}^{n} r_{ik}q_{kj}$. Puesto que R es una matriz triangular superior, $r_{ik} = 0$ si k < i. Puesto que, $c_{ij} = \sum_{k=i}^{n} r_{ik}q_{kj}$. Puesto que Q es una matriz Hessenberg superior $q_{kj} = 0$ si k > j + 1. Por lo tanto, $c_{ij} = \sum_{k=i}^{j+1} r_{ik}q_{kj}$. La suma es cero si i > j + 1. Por lo tanto, $c_{ij} = 0$ si $i \ge j + 2$. Esto significa que C es una matriz Hessenberg superior.

15. ENTRADA: dimensión n, matriz $A = (a_{ij})$, tolerancia TOL, número máximo de iteraciones N. SALIDA: eigenvalores $\lambda_1, \ldots, \lambda_n$ de A o un mensaje que indica que se superó el número de iteraciones. Paso 1 Determine FLAG = 1; k1 = 1. Paso 2 Mientras (FLAG = 1) haga los pasos 3–10 **Paso 3** Para i = 2, ..., n haga los pasos 4–8. **Paso 4** Para j = 1, ..., i - 1 haga los pasos 5–8. **Paso 5** Si $a_{ii} = a_{jj}$ entonces determine $CO = 0.5\sqrt{2}$: SI = COsi no determine $b = |a_{ii} - a_{jj}|;$ $c = 2a_{ij} \operatorname{sign}(a_{ii} - a_{jj});$ CO = 0.5 $\left(1 + b/\left(c^2 + b^2\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$; SI = 0.5c/ $\left(CO\left(c^2 + b^2\right)^{\frac{1}{2}}\right)$. Paso 6 Para $k = 1, \ldots, n$ si $(k \neq i)$ y $(k \neq j)$ entonces determine $x = a_{k,i}$; $a_{k,j} = \text{CO } \cdot x + \text{SI } \cdot y;$ $a_{k,i} = \text{CO} \cdot y + \text{SI} \cdot x;$ $x = a_{i,k}$; $y = a_{i,k}$; $a_{i,k} = \text{CO } \cdot x + \text{SI } \cdot y;$ $a_{i,k} = \text{CO } \cdot y - \text{SI } \cdot x$. **Paso** 7 determine $x = a_{i,i}$; $y = a_{i,i};$ $a_{j,j} = \text{CO} \cdot \text{CO} \cdot x + 2 \cdot \text{SI} \cdot CO \cdot a_{j,i} + \text{SI} \cdot \text{SI} \cdot y;$ $a_{i,i} = SI \cdot SI \cdot x - 2 \cdot SI \cdot CO \cdot a_{i,j} + CO \cdot CO \cdot y$. Paso 8 Determine $a_{i,j} = 0$; $a_{j,i} = 0$. Paso 9 Determine $s = \sum_{i=1}^{n} \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{ij}|.$ Si s < TOL entonces para i = 1, ..., n determine

 $s = \sum_{i=1}^{n} \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|.$ Paso 10 Si s < TOL entonces para $i = 1, \ldots, n$ determine $\lambda_i = a_{ii};$ SALIDA $(\lambda_1, \ldots, \lambda_n);$ determine FLAG = 0. si no determine k1 = k1 + 1; si k1 > N entonces determine FLAG = 0.

Paso 11 Si k1 > N entonces SALIDA ('Se excedió el número máximo de iteraciones'); PARE.

Conjunto de ejercicios 9.6

1. a.
$$s_1 = 1 + \sqrt{2}$$
, $s_2 = -1 + \sqrt{2}$
b. $s_1 = 2.676243$, $s_2 = 0.9152717$
c. $s_1 = 3.162278$, $s_2 = 2$
d. $s_1 = 2.645751$, $s_2 = 1$, $s_3 = 1$
3. a.
$$U = \begin{bmatrix} -0.923880 & -0.382683 \\ -0.3826831 & 0.923880 \end{bmatrix}, \quad S = \begin{bmatrix} 2.414214 & 0 \\ 0 & 0.414214 \end{bmatrix},$$

$$V^t = \begin{bmatrix} -0.923880 & -0.382683 \\ -0.382683 & 0.923880 \end{bmatrix}$$

b.
$$U = \begin{bmatrix} 0.8247362 & -0.3913356 & 0.4082483 \\ 0.5216090 & 0.2475023 & -0.8164966 \\ 0.2184817 & 0.8863403 & 0.4082483 \end{bmatrix}, \quad S = \begin{bmatrix} 2.676243 & 0 \\ 0 & 0.9152717 \\ 0 & 0 \end{bmatrix},$$
$$V' = \begin{bmatrix} 0.8112422 & 0.5847103 \\ -0.5847103 & 0.8112422 \end{bmatrix}$$

c.
$$U = \begin{bmatrix} -0.632456 & -0.500000 & -0.5 & 0.3162278 \\ 0.316228 & -0.500000 & 0.5 & 0.6324555 \\ -0.316228 & -0.500000 & 0.5 & -0.6324555 \\ -0.632456 & 0.500000 & 0.5 & 0.3162278 \end{bmatrix}, \quad S = \begin{bmatrix} 3.162278 & 0 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$V^t = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$U = \begin{bmatrix} -0.436436 & 0.707107 & 0.408248 & -0.377964 \\ 0.436436 & 0.707107 & -0.408248 & 0.377964 \\ -0.436436 & 0 & -0.816497 & -0.377964 \\ -0.654654 & 0 & 0 & 0.755929 \end{bmatrix}, \quad S = \begin{bmatrix} 2.645751 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

$$V^t = \begin{bmatrix} -0.577350 & -0.577350 & 0.577350 \\ 0 & 0.707107 & 0.707107 \\ 0.816497 & -0.408248 & 0.408248 \end{bmatrix}$$

5. Para la matriz *A* en el ejemplo 2, tenemos

$$A^{t}A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

Por lo que $A^t A(1, 2, 1)^t = (5, 10, 5)^t = 5(1, 2, 1)^t$, $A^t A(1, -1, 1)^t = (2, -2, 2)^t = 2(1, -1, 1)^t$, $Y A^t A(-1, 0, 1)^t = (-1, 0, 1)^t$.

7. a. Utilice los valores tabulados para construir

$$\mathbf{b} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1.84 \\ 1.96 \\ 2.21 \\ 2.45 \\ 2.94 \\ 3.18 \end{bmatrix}, \quad \mathbf{y} \quad A = \begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \\ 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \end{bmatrix} = \begin{bmatrix} 1 & 1.0 & 1.0 \\ 1 & 1.1 & 1.21 \\ 1 & 1.3 & 1.69 \\ 1 & 1.5 & 2.25 \\ 1 & 1.9 & 3.61 \\ 1 & 2.1 & 4.41 \end{bmatrix}.$$

La matriz A tiene la descomposición de valor singular $A = U S V^{t}$, donde

$$U = \begin{bmatrix} -0.203339 & -0.550828 & 0.554024 & 0.055615 & -0.177253 & -0.560167 \\ -0.231651 & -0.498430 & 0.185618 & 0.165198 & 0.510822 & 0.612553 \\ -0.294632 & -0.369258 & -0.337742 & -0.711511 & -0.353683 & 0.177288 \\ -0.366088 & -0.20758 & -0.576499 & 0.642950 & -0.264204 & -0.085730 \\ -0.534426 & 0.213281 & -0.200202 & -0.214678 & 0.628127 & -0.433808 \\ -0.631309 & 0.472467 & 0.414851 & 0.062426 & -0.343809 & 0.289864 \end{bmatrix}$$

$$S = \begin{bmatrix} 7.844127 & 0 & 0 \\ 0 & 1.223790 & 0 \\ 0 & 0 & 0.070094 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad y \quad V^t = \begin{bmatrix} -0.288298 & -0.475702 & -0.831018 \\ -0.768392 & -0.402924 & 0.497218 \\ 0.571365 & -0.781895 & 0.249363 \end{bmatrix}.$$

Por lo que,

$$\mathbf{c} = U^t \mathbf{b} = \begin{bmatrix} -5.955009 \\ -1.185591 \\ -0.044985 \\ -0.003732 \\ -0.000493 \\ -0.001963 \end{bmatrix},$$

y las componentes de z son

$$z_1 = \frac{c_1}{s_1} = \frac{-5.955009}{7.844127} = -0.759168, \quad z_2 = \frac{c_2}{s_2} = \frac{-1.185591}{1.223790} = -0.968786,$$

$$y$$

$$z_3 = \frac{c_3}{s_3} = \frac{-0.044985}{0.070094} = -0.641784.$$

Esto provee los coeficientes de mínimos cuadrados en $P_2(x) = a_0 + a_1x + a_2x^2$ como

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \mathbf{x} = V \mathbf{z} = \begin{bmatrix} 0.596581 \\ 1.253293 \\ -0.010853 \end{bmatrix}.$$

El error de mínimos cuadrados por medio de estos valores usa los últimos tres componentes de ${\bf c}$ y es

$$||A\mathbf{x} - \mathbf{b}||_2 = \sqrt{c_4^2 + c_5^2 + c_6^2} = \sqrt{(-0.003732)^2 + (-0.000493)^2 + (-0.001963)^2} = 0.004244.$$

b. Use los valores tabulados para construir

$$\mathbf{b} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \begin{bmatrix} 1.84 \\ 1.96 \\ 2.21 \\ 2.45 \\ 2.94 \\ 3.18 \end{bmatrix}, \quad \mathbf{y} \quad A = \begin{bmatrix} 1 & x_0 & x_0^2 & x_0^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \\ 1 & x_5 & x_5^2 & x_5^3 \end{bmatrix} = \begin{bmatrix} 1 & 1.0 & 1.0 & 1.0 & 1.0 \\ 1 & 1.1 & 1.21 & 1.331 \\ 1 & 1.3 & 1.69 & 2.197 \\ 1 & 1.5 & 2.25 & 3.375 \\ 1 & 1.9 & 3.61 & 6.859 \\ 1 & 2.1 & 4.41 & 9.261 \end{bmatrix}.$$

La matriz A tiene la descomposición de valor singular $A = U S V^{t}$, donde

$$U = \begin{bmatrix} -0.116086 & -0.514623 & 0.569113 & -0.437866 & -0.381082 & 0.246672 \\ -0.143614 & -0.503586 & 0.266325 & 0.184510 & 0.535306 & 0.578144 \\ -0.212441 & -0.448121 & -0.238475 & 0.48499 & 0.180600 & -0.655247 \\ -0.301963 & -0.339923 & -0.549619 & 0.038581 & -0.573591 & 0.400867 \\ -0.554303 & 0.074101 & -0.306350 & -0.636776 & 0.417792 & -0.115640 \\ -0.722727 & 0.399642 & 0.390359 & 0.363368 & -0.179026 & 0.038548 \end{bmatrix}$$

$$S = \begin{bmatrix} 14.506808 & 0 & 0 & 0 \\ 0 & 2.084909 & 0 & 0 \\ 0 & 0 & 0.198760 & 0 \\ 0 & 0 & 0 & 0.868328 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$V$$

$$V^t = \begin{bmatrix} -0.141391 & -0.246373 & -0.449207 & -0.847067 \\ -0.639122 & -0.566437 & -0.295547 & 0.428163 \\ 0.660862 & -0.174510 & -0.667840 & 0.294610 \\ -0.367142 & 0.766807 & -0.514640 & 0.111173 \end{bmatrix}.$$

Por lo que,

$$\mathbf{c} = U^t \mathbf{b} = \begin{bmatrix} -5.632309 \\ -2.268376 \\ 0.036241 \\ 0.005717 \\ -0.000845 \\ -0.004086 \end{bmatrix},$$

y las componentes de z son

$$z_1 = \frac{c_1}{s_1} = \frac{-5.632309}{14.506808} = -0.388253, \quad z_2 = \frac{c_2}{s_2} = \frac{-2.268376}{2.084909} = -1.087998,$$

 $z_3 = \frac{c_3}{s_3} = \frac{0.036241}{0.198760} = 0.182336, \quad \text{y} \quad z_4 = \frac{c_4}{s_4} = \frac{0.005717}{0.868328} = 0.65843.$

Esto provee los coeficientes de mínimos cuadrados en $P_2(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ como

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \mathbf{x} = V \mathbf{z} = \begin{bmatrix} 0.629019 \\ 1.185010 \\ 0.035333 \\ -0.010047 \end{bmatrix}.$$

El error de mínimos cuadrados por medio de estos valores usa los dos componentes de c y es

$$||A\mathbf{x} - \mathbf{b}||_2 = \sqrt{c_5^2 + c_6^2} = \sqrt{(-0.000845)^2 + (-0.004086)^2} = 0.004172.$$

- **9.** $P_2(x) = 19.691025 0.0065112585x + 6.3494753 \times 10^{-7}x^2$. El error de mínimos cuadrados es 0.42690171.
- 11. Sea A una matriz $m \times n$. El teorema 9.25 implica que Rango(A) = Rango(A'), por lo que Nulidad(A) = n Rango(A) y Nulidad(A') = m Rango(A') = m Rango(A). Por lo que, Nulidad(A) = Nulidad(A') si y sólo si n = m.
- 13. Rango (S) es el número de entradas diferentes de cero en la diagonal de S. Esto corresponde al número de eigenvalores diferentes a cero (multiplicidades de conteo) de $A^t A$. Por lo que Rango (S) = Rango ($A^t A$), y por la parte ii) del teorema 9.26 es igual a Rango(A).
- **15.** Puesto que $U^{-1} = U^t$ y $V^{-1} = V^t$ existen ambos $A = USV^t$ implica que $A^{-1} = (USV^t)^{-1} = VS^{-1}U^t$ si y sólo si existe S^{-1} .
- 17. Sí. Por medio del teorema 9.25 tenemos Rango $(A^t A)$ = Rango $((A^t A)^t)$ = Rango (AA^t) . Al aplicar la parte iii) del teorema 9.26 obtenemos Rango (AA^t) = Rango $(A^t A)$ = Rango(A).
- **19.** Si la matriz $A n \times n$ tiene los valores singulares $s_1 \ge s_2 \ge \cdots \ge s_n > 0$, entonces $||A||_2 = \sqrt{\rho(A^t A)} = s_1$. Además, los valores singulares de A^{-1} son $\frac{1}{s_n} \ge \cdots \ge \frac{1}{s_2} \ge \frac{1}{s_1} > 0$, por lo que $||A^{-1}||_2 = \sqrt{\frac{1}{s_n^2}} = \frac{1}{s_n}$. Por lo tanto, $K_2(A) = ||A||_2 \cdot ||A^{-1}||_2 = s_1/s_n$.

Conjunto de ejercicios 10.1

- 1. Las soluciones están cerca de (-1.5, 10.5) y (2, 11).
 - a. Las gráficas se muestran en la figura siguiente.

b. Use

$$\mathbf{G}_1(\mathbf{x}) = \left(-0.5 + \sqrt{2x_2 - 17.75}, 6 + \sqrt{25 - (x_1 - 1)^2}\right)^{1/2}$$

y

$$\mathbf{G}_2(\mathbf{x}) = \left(-0.5 - \sqrt{2x_2 - 17.75}, 6 + \sqrt{25 - (x_1 - 1)^2}\right)^t.$$

Para $G_1(\mathbf{x})$ con $\mathbf{x}^{(0)} = (2, 11)^t$, tenemos $\mathbf{x}^{(9)} = (1.5469466, 10.969994)^t$, y para $G_2(\mathbf{x})$ con $\mathbf{x}^{(0)} = (-1.5, 10.5)$, tenemos $\mathbf{x}^{(34)} = (-2.000003, 9.999996)^t$.

- **3. b.** Con $\mathbf{x}^{(0)} = (0,0)^t$ y tolerancia 10^{-5} , tenemos $\mathbf{x}^{(13)} = (0.9999973, 0.9999973)^t$.
 - **c.** Con $\mathbf{x}^{(0)} = (0,0)^t$ y tolerancia 10^{-5} , tenemos $\mathbf{x}^{(11)} = (0.9999984, 0.9999991)^t$.
- **5.** a. Con $\mathbf{x}^{(0)} = (1, 1, 1)^t$, tenemos $\mathbf{x}^{(5)} = (5.0000000, 0.0000000, -0.5235988)^t$.
 - **b.** Con $\mathbf{x}^{(0)} = (1, 1, 1)^t$, tenemos $\mathbf{x}^{(9)} = (1.0364011, 1.0857072, 0.93119113)^t$.
 - **c.** Con $\mathbf{x}^{(0)} = (0, 0, 0.5)^t$, tenemos $\mathbf{x}^{(5)} = (0.00000000, 0.09999999, 1.0000000)^t$.
 - **d.** Con $\mathbf{x}^{(0)} = (0, 0, 0)^t$, tenemos $\mathbf{x}^{(5)} = (0.49814471, -0.19960600, -0.52882595)^t$.
- 7. a. Con $\mathbf{x}^{(0)} = (1, 1, 1)^t$, tenemos $\mathbf{x}^{(3)} = (0.5000000, 0, -0.5235988)^t$.
 - **b.** Con $\mathbf{x}^{(0)} = (1, 1, 1)^t$, tenemos $\mathbf{x}^{(4)} = (1.036400, 1.085707, 0.9311914)^t$.
 - **c.** Con $\mathbf{x}^{(0)} = (0, 0, 0)^t$, tenemos $\mathbf{x}^{(3)} = (0, 0.1000000, 1.0000000)^t$.
 - **d.** Con $\mathbf{x}^{(0)} = (0, 0, 0)^t$, tenemos $\mathbf{x}^{(4)} = (0.4981447, -0.1996059, -0.5288260)^t$.
- **9.** Una solución estable se presenta cuando $x_1 = 8000$ y $x_2 = 4000$.
- **11.** Use el teorema 10.5.
- 13. Use el teorema 10.5 para cada una de las derivadas parciales.
- 15. En esta situación tenemos, para cualquier norma de matriz,

$$||\mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{x}_0)|| = ||A\mathbf{x} - A\mathbf{x}_0|| = ||A(\mathbf{x} - \mathbf{x}_0)|| \le ||A|| \cdot ||\mathbf{x} - \mathbf{x}_0||.$$

Los resultados se siguen al seleccionar $\delta = \varepsilon/||A||$, siempre que $||A|| \neq 0$. Cuando ||A|| = 0, δ se puede seleccionar de manera arbitraria porque A es la matriz cero.

Conjunto de ejercicios 10.2

- **1. a.** $\mathbf{x}^{(2)} = (0.4958936, 1.983423)^t$
 - **c.** $\mathbf{x}^{(2)} = (-23.942626, 7.6086797)^t$
- **3. a.** $(0.5, 0.2)^t$ y $(1.1, 6.1)^t$
 - **c.** $(-1, 3.5)^t$, $(2.5, 4)^t$

- **b.** $\mathbf{x}^{(2)} = (-0.5131616, -0.01837622)^t$
- **d.** $\mathbf{x}^{(1)}$ No se puede calcular ya que J(0) es singular.
- **b.** $(-0.35, 0.05)^t$, $(0.2, -0.45)^t$, $(0.4, -0.5)^t$ y $(1, -0.3)^t$
- **d.** $(0.11, 0.27)^t$
- **5.** a. Con $\mathbf{x}^{(0)} = (0.5, 2)^t$, $\mathbf{x}^{(3)} = (0.5, 2)^t$. Con $\mathbf{x}^{(0)} = (1.1, 6.1)$, $\mathbf{x}^{(3)} = (1.0967197, 6.0409329)^t$.
 - **b.** Con $\mathbf{x}^{(0)} = (-0.35, 0.05)^t, \mathbf{x}^{(3)} = (-0.37369822, 0.056266490^t)$
 - Con $\mathbf{x}^{(0)} = (0.2, -0.45)^t, \mathbf{x}^{(4)} = (0.14783924, -0.43617762)^t.$
 - Con $\mathbf{x}^{(0)} = (0.4, -0.5)^t$, $\mathbf{x}^{(3)} = (0.40809566, -0.49262939)^t$.
 - Con $\mathbf{x}^{(0)} = (1, -0.3)^t, \mathbf{x}^{(4)} = (1.0330715, -0.27996184)^t.$
 - **c.** Con $\mathbf{x}^{(0)} = (-1, 3.5)^t$, $\mathbf{x}^{(1)} = (-1, 3.5)^t$ y $\mathbf{x}^{(0)} = (2.5, 4)^t$, $\mathbf{x}^{(3)} = (2.546947, 3.984998)^t$.
 - **d.** Con $\mathbf{x}^{(0)} = (0.11, 0.27)^t$, $\mathbf{x}^{(6)} = (0.1212419, 0.2711051)^t$.
- 7. **a.** $\mathbf{x}^{(5)} = (0.5000000, 0.8660254)^t$

- **b.** $\mathbf{x}^{(6)} = (1.772454, 1.772454)^t$
- **c.** $\mathbf{x}^{(5)} = (-1.456043, -1.664230, 0.4224934)^t$
- **d.** $\mathbf{x}^{(4)} = (0.4981447, -0.1996059, -0.5288260)^t$
- **9.** Con $\mathbf{x}^{(0)} = (1, 1 1)^t$ y $TOL = 10^{-6}$, tenemos $\mathbf{x}^{(20)} = (0.5, 9.5 \times 10^{-7}, -0.5235988)^t$.
- 11. Con $\theta_i^{(0)} = 1$, para cada $i = 1, 2, \dots, 20$, se obtienen los siguientes resultados.

i	1	2	3	4	5	6	
$\theta_i^{(5)}$	0.14062	0.19954	0.24522	0.28413	0.31878	0.35045	
i	7	8	9	10	11	12	13
$\theta_i^{(5)}$	0.37990	0.40763	0.43398	0.45920	0.48348	0.50697	0.52980

i	14	15	16	17	18	19	20
$\theta_i^{(5)}$	0.55205	0.57382	0.59516	0.61615	0.63683	0.65726	0.67746

13. Cuando la dimensión n es 1, $\mathbf{F}(\mathbf{x})$ es una función de un componente $f(\mathbf{x}) = f_1(\mathbf{x})$, y el vector \mathbf{x} sólo tiene una componente $x_1 = x$. En este caso, la matriz Jacobina $J(\mathbf{x})$ se reduce a la matriz $1 \times 1 \left[\frac{\partial f_1}{\partial x_1}(\mathbf{x}) \right] = f'(\mathbf{x}) = f'(x)$. Por lo tanto, la ecuación vector

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} - J(\mathbf{x}^{(k-1)})^{-1} \mathbf{F}(\mathbf{x}^{(k-1)})$$

se convierte en la ecuación escalar

$$x_k = x_{k-1} - f(x_{k-1})^{-1} f(x_{k-1}) = x_{k-1} - \frac{f(x_{k-1})}{f'(x_{k-1})}.$$

Conjunto de ejercicios 10.3

- **1. a.** $\mathbf{x}^{(2)} = (0.4777920, 1.927557)^t$
 - **c.** $\mathbf{x}^{(2)} = (0.52293721, 0.82434906)^t$
- **3. a.** $\mathbf{x}^{(8)} = (0.5, 2)^t$
 - **c.** $\mathbf{x}^{(9)} = (0.5, 0.8660254)^t$

- **b.** $\mathbf{x}^{(2)} = (-0.3250070, -0.1386967)^t$
- **d.** $\mathbf{x}^{(2)} = (1.77949990, 1.74339606)^t$
- **b.** $\mathbf{x}^{(9)} = (-0.3736982, 0.05626649)^t$
- **d.** $\mathbf{x}^{(8)} = (1.772454, 1.772454)^t$
- **5. a.** Con $\mathbf{x}^{(0)} = (2.5, 4)^t$, tenemos $\mathbf{x}^{(3)} = (2.546947, 3.984998)^t$.
 - **b.** Con $\mathbf{x}^{(0)} = (0.11, 0.27)^t$, tenemos $\mathbf{x}^{(4)} = (0.1212419, 0.2711052)^t$.
 - **c.** Con $\mathbf{x}^{(0)} = (1, 1, 1)^t$, tenemos $\mathbf{x}^{(3)} = (1.036401, 1.085707, 0.9311914)^t$.
 - **d.** Con $\mathbf{x}^{(0)} = (1, -1, 1)^t$, tenemos $\mathbf{x}^{(8)} = (0.9, -1, 0.5)^t$; y con $\mathbf{x}^{(0)} = (1, 1, -1)^t$, tenemos $\mathbf{x}^{(8)} = (0.5, 1, -0.5)^t$.
- 7. Con $\mathbf{x}^{(0)} = (1, 1 1)^t$, tenemos $\mathbf{x}^{(56)} = (0.5000591, 0.01057235, -0.5224818)^t$.
- **9.** Con $\mathbf{x}^{(0)} = (0.75, 1.25)^t$, tenemos $\mathbf{x}^{(4)} = (0.7501948, 1.184712)^t$. Por lo tanto, a = 0.7501948, b = 1.184712, y el error es 19.796.
- 11. Sea λ un eigenvalor de $M=(I+\mathbf{u}\mathbf{v}^t)$ con eigenvector $\mathbf{x}\neq\mathbf{0}$. Entonces $\lambda\mathbf{x}=M\mathbf{x}=(I+\mathbf{u}\mathbf{v}^t)\mathbf{x}=\mathbf{x}+(\mathbf{v}^t\mathbf{x})\mathbf{u}$. Por lo tanto, $(\lambda-1)\mathbf{x}=(\mathbf{v}^t\mathbf{x})\mathbf{u}$. Si $\lambda=1$, entonces $\mathbf{v}^t\mathbf{x}=0$. Por lo que, $\lambda=1$ es un eigenvalor de M con multiplicidad n-1 y eigenvectores $\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(n-1)}$, donde $\mathbf{v}^t\mathbf{x}^{(j)}=0$, para $j=1,\ldots,n-1$. Suponga que $\lambda\neq1$ implica que \mathbf{x} y \mathbf{u} son paralelas. Suponga que $\mathbf{x}=\alpha\mathbf{u}$. Entonces $(\lambda-1)\alpha\mathbf{u}=(\mathbf{v}^t(\alpha\mathbf{u}))\mathbf{u}$. Entonces, $\alpha(\lambda-1)\mathbf{u}=\alpha(\mathbf{v}^t\mathbf{u})\mathbf{u}$, lo cual implica que $\lambda-1=\mathbf{v}^t\mathbf{u}$ o $\lambda=1+\mathbf{v}^t\mathbf{u}$. Por lo tanto, M tiene eigenvalores $\lambda_i, 1\leq i\leq n$, donde $\lambda_i=1$, para $i=1,\ldots,n-1$, y $\lambda_n=1+\mathbf{v}^t\mathbf{u}$. Puesto que det $M=\prod_{i=1}^n\lambda_i$, tenemos det $M=1+\mathbf{v}^t\mathbf{u}$.

Conjunto de ejercicios 10.4

- **1. a.** Con $\mathbf{x}^{(0)} = (0,0)^t$, tenemos $\mathbf{x}^{(11)} = (0.4943541, 1.948040)^t$.
 - **b.** Con $\mathbf{x}^{(0)} = (1, 1)^t$, tenemos $\mathbf{x}^{(2)} = (0.4970073, 0.8644143)^t$.
 - **c.** Con $\mathbf{x}^{(0)} = (2, 2)^t$, tenemos $\mathbf{x}^{(1)} = (1.736083, 1.804428)^t$.
 - **d.** Con $\mathbf{x}^{(0)} = (0,0)^t$, tenemos $\mathbf{x}^{(2)} = (-0.3610092, 0.05788368)^t$.
- **3. a.** $\mathbf{x}^{(3)} = (0.5, 2)^t$

b. $\mathbf{x}^{(3)} = (0.5, 0.8660254)^t$

c. $\mathbf{x}^{(4)} = (1.772454, 1.772454)^t$

- **d.** $\mathbf{x}^{(3)} = (-0.3736982, 0.05626649)^t$
- **5. a.** Con $\mathbf{x}(0) = (0,0)^t$, g(3.3231994, 0.11633359) = -0.14331228 en dos iteraciones.
 - **b.** Con $\mathbf{x}(0) = (0,0)^t$, g(0.43030383, 0.18006958) = 0.32714638 en 38 iteraciones.
 - **c.** Con $\mathbf{x}(0) = (0, 0, 0)^t$, g(-0.66340113, 0.31453697, 0.50007629) = 0.69215167 en cinco iteraciones.
 - **d.** Con $\mathbf{x}(0) = (0.5, 0.5, 0.5)^t$, g(-0.03338762, 0.00401587, -0.00093451) = 1.01000124 en tres iteraciones.
- **7. a.** b = 1.5120985, a = 0.87739838

b. b = 21.014867, a = -3.7673246

c. La parte b) lo hace.

d. La parte a) predice 86% y la parte b) predice 39%.

Conjunto de ejercicios 10.5

1. a. $(3, -2.25)^t$

- **b.** $(0.42105263, 2.6184211)^t$
- **c.** $(2.173110, -1.3627731)^t$

- **3.** Al utilizar $\mathbf{x}(0) = \mathbf{0}$ en todas las partes obtenemos:
 - **a.** (0.44006047, 1.8279835)^t

- **b.** $(-0.41342613, 0.096669468)^t$
- **c.** $(0.49858909, 0.24999091, -0.52067978)^t$
- **d.** $(6.1935484, 18.532258, -21.725806)^t$
- **5. a.** Con $\mathbf{x}(0) = (-1, 3.5)^t$ el resultado es $(-1, 3.5)^t$. Con $\mathbf{x}(0) = (2.5, 4)^t$ el resultado es $(-1, 3.5)^t$.
 - **b.** Con $\mathbf{x}(0) = (0.11, 0.27)^t$ el resultado es $(0.12124195, 0.27110516)^t$.
 - **c.** Con $\mathbf{x}(0) = (1, 1, 1)^t$ el resultado es $(1.03640047, 1.08570655, 0.93119144)^t$.
 - **d.** Con $\mathbf{x}(0) = (1, -1, 1)^t$ el resultado es $(0.90016074, -1.00238008, 0.496610937)^t$. Con $\mathbf{x}(0) = (1, 1, -1)^t$ el resultado es $(0.50104035, 1.00238008, -0.49661093)^t$.
- 7. a. Con $\mathbf{x}(0) = (-1, 3.5)^t$ el resultado es $(-1, 3.5)^t$.

Con $\mathbf{x}(0) = (2.5, 4)^t$ el resultado es $(2.5469465, 3.9849975)^t$.

- **b.** Con $\mathbf{x}(0) = (0.11, 0.27)^t$ el resultado es $(0.12124191, 0.27110516)^t$.
- **c.** Con $\mathbf{x}(0) = (1, 1, 1)^t$ el resultado es $(1.03640047, 1.08570655, 0.93119144)^t$.
- **d.** Con $\mathbf{x}(0) = (1, -1, 1)^t$ el resultado es $(0.90015964, -1.00021826, 0.49968944)^t$. Con $\mathbf{x}(0) = (1, 1, -1)^t$ el resultado es $(0.5009653, 1.00021826, -0.49968944)^t$.
- **9.** $(0.50024553, 0.078230039, -0.52156996)^t$
- 11. Con $\mathbf{x}^{(0)} = (0.75, 0.5, 0.75)^t$, $\mathbf{x}^{(2)} = (0.52629469, 0.52635099, 0.52621592)^t$
- 13. Para cada λ , tenemos

$$0 = G(\lambda, \mathbf{x}(\lambda)) = F(\mathbf{x}(\lambda)) - e^{-\lambda} F(\mathbf{x}(0)),$$

por lo que

$$0 = \frac{\partial F(\mathbf{x}(\lambda))}{\partial \mathbf{x}} \frac{d\mathbf{x}}{d\lambda} + e^{-\lambda} F(\mathbf{x}(0)) = J(\mathbf{x}(\lambda)) \mathbf{x}'(\lambda) + e^{-\lambda} F(\mathbf{x}(0))$$

у

$$J(\mathbf{x}(\lambda))\mathbf{x}'(\lambda) = -e^{-\lambda}F(\mathbf{x}(0)) = -F(\mathbf{x}(0)).$$

Por lo tanto,

$$\mathbf{x}'(\lambda) = -J(\mathbf{x}(\lambda))^{-1}F(\mathbf{x}(0)).$$

Con N = 1, tenemos h = 1 por lo tanto

$$\mathbf{x}(1) = \mathbf{x}(0) - J(\mathbf{x}(0))^{-1} F(\mathbf{x}(0)).$$

Sin embargo, el método de Newton da

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - J(\mathbf{x}^{(0)})^{-1} F(\mathbf{x}^{(0)}).$$

Puesto que $\mathbf{x}(0) = \mathbf{x}^{(0)}$, tenemos $\mathbf{x}(1) = \mathbf{x}^{(1)}$.

Conjunto de ejercicios 11.1

1. El algoritmo de disparo lineal proporciona los resultados en las siguientes tablas.

a.				
	i	x_i	w_{1i}	$y(x_i)$
	1	0.5	0.82432432	0.82402714

b			
i	x_i	w_{1i}	$y(x_i)$
1	0.25	0.3937095	0.3936767
2	0.50	0.8240948	0.8240271
3	0.75	1.337160	1.337086

3. El algoritmo de disparo lineal proporciona los resultados en las siguientes tablas.

i	x_i	w_{1i}	$y(x_i)$
3	0.3	0.7833204	0.7831923
6	0.6	0.6023521	0.6022801
9	0.9	0.8568906	0.8568760

_			
i	x_i	w_{1i}	$y(x_i)$
3	0.3	-0.5185754	-0.5185728
6	0.6	-0.2195271	-0.2195247
9	0.9	-0.0406577	-0.0406570

i	x_i	w_{1i}	$y(x_i)$
5	1.25	0.1676179	0.1676243
10	1.50	0.4581901	0.4581935
15	1.75	0.6077718	0.6077740

i	x_i	w_{1i}	$y(x_i)$
3	1.3	0.0655336	0.06553420
6	1.6	0.0774590	0.07745947
9	1.9	0.0305619	0.03056208

5. El algoritmo de disparo lineal con h = 0.05 proporciona los siguientes resultados.

i	x_i	w_{1i}
6	0.3	0.04990547
10	0.5	0.00673795
16	0.8	0.00033755

El algoritmo de disparo lineal con h = 0.1 proporciona los siguientes resultados.

i	x_i	w_{1i}
3	0.3	0.05273437
5	0.5	0.00741571
8	0.8	0.00038976

7. Para la ecuación (11.3), sea $u_1(x) = y$ y $u_2(x) = y'$. Entonces

$$u'_1(x) = u_2(x), \quad a \le x \le b, \quad u_1(a) = \alpha$$

d.

У

c.

$$u_2'(x) = p(x)u_2(x) + q(x)u_1(x) + r(x), \quad a \le x \le b, \quad u_2(a) = 0.$$

Para la ecuación (11.4), sea $v_1(x) = y$ y $v_2(x) = y'$. Entonces

$$v_1'(x) = v_2(x), \quad a \le x \le b, \quad v_1(a) = 0$$

У

$$v_2'(x) = p(x)v_2(x) + q(x)v_1(x), \quad a \le x \le b, \quad v_2(a) = 1.$$

Usando la notación $u_{1,i} = u_1(x_i)$, $u_{2,i} = u_2(x_i)$, $v_{1,i} = v_1(x_i)$, y $v_{2,i} = v_2(x_i)$ nos dirige hacia las ecuaciones en el paso 4 del algoritmo 11.1.

- **9.** a. No hay soluciones si b es un entero múltiplo de π y $B \neq 0$.
 - **b.** La única solución existe siempre que b no sea un entero múltiplo de π .
 - **c.** Existe un número infinito de soluciones si b es un entero múltiplo de π y B=0.

Conjunto de ejercicios 11.2

a.

- 1. El algoritmo de disparo no lineal provee $w_1 = 0.405505 \approx \ln 1.5 = 0.405465$.
- 3. El algoritmo de disparo no lineal provee los resultados en las siguientes tablas.

i	x_i	w_{1i}	$y(x_i)$	w_{2i}
2	1.20000000	0.18232094	0.18232156	0.83333370
4	1.40000000	0.33647129	0.33647224	0.71428547
6	1.60000000	0.47000243	0.47000363	0.62499939
8	1.80000000	0.58778522	0.58778666	0.55555468

Convergencia en 4 iteraciones t = 1.0000017.

c.	_				
	i	x_i	w_{1i}	$y(x_i)$	w_{2i}
	1	0.83775804	0.86205941	0.86205848	0.38811718
	2	0.89011792	0.88156057	0.88155882	0.35695076
	3	0.94247780	0.89945618	0.89945372	0.32675844
	4	0.99483767	0.91579268	0.91578959	0.29737141

Convergencia en 3 iteraciones t = 0.42046725.

5			
i	x_i	w_{1i}	w_{2i}
3	0.6	0.71682963	0.92122169
5	1.0	1.00884285	0.53467944
8	1.6	1.13844628	-0.11915193

_				
i	x_i	w_{1i}	$y(x_i)$	w_{2i}
2	0.31415927	1.36209813	1.36208552	1.29545926
4	0.62831853	1.80002060	1.79999746	1.45626846
6	0.94247780	2.24572329	2.24569937	1.32001776
8	1.25663706	2.58845757	2.58844295	0.79988757
	4	2 0.31415927 4 0.62831853 6 0.94247780	2 0.31415927 1.36209813 4 0.62831853 1.80002060 6 0.94247780 2.24572329	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Convergencia en 4 iteraciones t = 1.0000301.

d.					
	i	x_i	w_{1i}	$y(x_i)$	w_{2i}
	4	0.62831853	2.58784539	2.58778525	0.80908243
	8	1.25663706	2.95114591	2.95105652	0.30904693
	12	1.88495559	2.95115520	2.95105652	-0.30901625
	16	2.51327412	2.58787536	2.58778525	-0.80904433

Convergencia en 6 iteraciones t = 1.0001253.

Conjunto de ejercicios 11.3

1. El algoritmo de diferencia finita lineal provee los siguientes resultados.

x_i	w_{1i}	$y(x_i)$
0.5	0.83333333	0.82402714

b			
i	x_i	w_{1i}	$y(x_i)$
1	0.25	0.39512472	0.39367669
2	0.5	0.82653061	0.82402714
3	0.75	1.33956916	1.33708613

$$\mathbf{c.} \ \frac{4(0.82653061) - 0.833333333}{3} = 0.82426304$$

3. El algoritmo de diferencia finita lineal provee los resultados en las siguientes tablas.

a			
i	x_i	w_i	$y(x_i)$
2	0.2	1.018096	1.0221404
5	0.5	0.5942743	0.59713617
7	0.7	0.6514520	0.65290384

c			
i	x_i	w_{1i}	$y(x_i)$
3	0.3	-0.5183084	-0.5185728
6	0.6	-0.2192657	-0.2195247
9	0.9	-0.0405748	-0.04065697

i	x_i	w_i	$y(x_i)$
5	1.25	0.16797186	0.16762427
10	1.50	0.45842388	0.45819349
15	1.75	0.60787334	0.60777401

d.	i	x_i	w_{1i}	$y(x_i)$
	3	1.3	0.0654387	0.0655342
	6	1.6	0.0773936	0.0774595
	9	1.9	0.0305465	0.0305621

i	x_i	$w_i(h=0.1)$	i	x_i	$w_i(h=0.05)$
3	0.3	0.05572807	6	0.3	0.05132396
6	0.6	0.00310518	12	0.6	0.00263406
9	0.9	0.00016516	18	0.9	0.00013340

7. a. Las deflexiones aproximadas se muestran en la siguiente tabla.

i	x_i	w_{1i}
5	30	0.0102808
10	60	0.0144277
15	90	0.0102808

b. Sí.

c. Sí. La deflexión máxima se presenta en x = 60. La solución exacta se encuentra dentro de la tolerancia, pero la aproximación no.

9. Primero, tenemos

$$\left|\frac{h}{2}p(x_i)\right| \le \frac{hL}{2} < 1,$$

por lo que

$$\left| -1 - \frac{h}{2}p(x_i) \right| = 1 + \frac{h}{2}p(x_i)$$
 y $\left| -1 + \frac{h}{2}p(x_i) \right| = 1 - \frac{h}{2}p(x_i).$

Por lo tanto,

$$\left| -1 - \frac{h}{2} p(x_i) \right| + \left| -1 + \frac{h}{2} p(x_i) \right| = 2 \le 2 + h^2 q(x_i),$$

para $2 \le i \le N - 1$.

Puesto que

$$\left| -1 + \frac{h}{2}p(x_1) \right| < 2 \le 2 + h^2q(x_1)$$
 y $\left| -1 - \frac{h}{2}p(x_N) \right| < 2 \le 2 + h^2q(x_N)$,

El teorema 6.31 implica que el sistema lineal (11.19) tiene una solución única.

Conjunto de ejercicios 11.4

1. El algoritmo de diferencias finitas no lineal proporciona los siguientes resultados.

i	x_i	w_i	$y(x_i)$
1	1.5	0.4067967	0.4054651

3. El algoritmo de diferencia finita no lineal proporciona los resultados en las siguientes tablas.

١.	_			
	i	x_i	w_i	$y(x_i)$
	2	1.20000000	0.18220299	0.18232156
	4	1.40000000	0.33632929	0.33647224
	6	1.60000000	0.46988413	0.47000363
	8	1.80000000	0.58771808	0.58778666

Convergencia en 3 iteraciones

Convergencia en 3 iteraciones

c.				
	i	x_i	w_i	$y(x_i)$
	1	0.83775804	0.86205907	0.86205848
	2	0.89011792	0.88155964	0.88155882
	3	0.94247780	0.89945447	0.89945372
	4	0.99483767	0.91579005	0.91578959

Convergencia en 2 iteraciones

α.				
	i	x_i	w_i	$y(x_i)$
	4	0.62831853	2.58932301	2.58778525
	Q	1 25663706	2 05378037	2.05105652

2.95378037

2.58932301

2.95105652

2.58778525

Convergencia en 4 iteraciones

1.88495559

2.51327412

12

5. b. Para (4a)

x_i	$w_i(h=0.2)$	$w_i(h=0.1)$	$w_i(h=0.05)$	$EXT_{1,i}$	$EXT_{2,i}$	$EXT_{3,i}$
1.2	0.45458862	0.45455753	0.45454935	0.45454717	0.45454662	0.45454659
1.4	0.41672067	0.41668202	0.41667179	0.41666914	0.41666838	0.41666833
1.6	0.38466137	0.38462855	0.38461984	0.38461761	0.38461694	0.38461689
1.8	0.35716943	0.35715045	0.35714542	0.35714412	0.35714374	0.35714372

Para (4c)						
x_i	$w_i(h=0.2)$	$w_i(h=0.1)$	$w_i(h=0.05)$	$EXT_{1,i}$	$EXT_{2,i}$	$EXT_{3,i}$
1.2	2.0340273	2.0335158	2.0333796	2.0333453	2.0333342	2.0333334
1.4	2.1148732	2.1144386	2.1143243	2.1142937	2.1142863	2.1142858
1.6	2.2253630	2.2250937	2.2250236	2.2250039	2.2250003	2.2250000
1.8	2.3557284	2.3556001	2.3555668	2.3555573	2.3555556	2.3355556

7. La matriz jacobina $J=(a_{i,j})$ es tridiagonal con entradas determinadas en (11.21). Por lo que,

$$\begin{aligned} a_{1,1} &= 2 + h^2 f_y \left(x_1, w_1, \frac{1}{2h} (w_2 - \alpha) \right), \\ a_{1,2} &= -1 + \frac{h}{2} f_{y'} \left(x_1, w_1, \frac{1}{2h} (w_2 - \alpha) \right), \\ a_{i,i-1} &= -1 - \frac{h}{2} f_{y'} \left(x_i, w_i, \frac{1}{2h} (w_{i+1} - w_{i-1}) \right), \quad \text{para } 2 \le i \le N - 1 \\ a_{i,i} &= 2 + h^2 f_y \left(x_i, w_i, \frac{1}{2h} (w_{i+1} - w_{i-1}) \right), \quad \text{para } 2 \le i \le N - 1 \\ a_{i,i+1} &= -1 + \frac{h}{2} f_{y'} \left(x_i, w_i, \frac{1}{2h} (w_{i+1} - w_{i-1}) \right), \quad \text{para } 2 \le i \le N - 1 \\ a_{N,N-1} &= -1 - \frac{h}{2} f_{y'} \left(x_N, w_N, \frac{1}{2h} (\beta - w_{N-1}) \right), \\ a_{N,N} &= 2 + h^2 f_y \left(x_N, w_N, \frac{1}{2h} (\beta - w_{N-1}) \right). \end{aligned}$$

Por lo tanto, $|a_{i,i}| \ge 2 + h^2 \delta$, para $i = 1, \ldots, N$. Puesto que $|f_{y'}(x, y, y')| \le L$ y h < 2/L,

$$\left|\frac{h}{2}f_{y'}(x, y, y')\right| \le \frac{hL}{2} < 1.$$

Por lo que,

$$|a_{1,2}| = \left| -1 + \frac{h}{2} f_{y'} \left(x_1, w_1, \frac{1}{2h} (w_2 - \alpha) \right) \right| < 2 < |a_{1,1}|,$$

У

$$|a_{N,N-1}| = -a_{N,N-1} = 1 + \frac{h}{2} f_{y'} \left(x_N, w_N, \frac{1}{2h} (\beta - w_{N-1}) \right) < 2 < |a_{N,N}|.$$

Por el teorema 6.31, la matriz J es no singular.

Conjunto de ejercicios 11.5

- **1.** El algoritmo lineal por tramos proporciona $\phi(x) = -0.07713274\phi_1(x) 0.07442678\phi_2(x)$. Los valores reales son $y(x_1) = -0.07988545$ y $y(x_2) = -0.07712903$.
- 3. El algoritmo lineal por tramos provee los resultados en las siguientes tablas.

i	x_i	$\phi(x_i)$	$y(x_i)$
3	0.3	-0.212333	-0.21
6	0.6	-0.241333	-0.24
9	0.9	-0.090333	-0.09

i	x_i	$\phi(x_i)$	$y(x_i)$
3	0.3	0.1815138	0.1814273
6	0.6	0.1805502	0.1804753
9	0.9	0.05936468	0.05934303

c.				
	i	x_i	$\phi(x_i)$	$y(x_i)$
	5	0.25	-0.3585989	-0.3585641
	10	0.50	-0.5348383	-0.5347803
	15	0.75	-0.4510165	-0.4509614

d			
i	x_i	$\phi(x_i)$	$y(x_i)$
5	0.25	-0.1846134	-0.1845204
10	0.50	-0.2737099	-0.2735857
15	0.75	-0.2285169	-0.2284204
10	0.50	-0.2737099	-0.2735

5. El algoritmo de spline cúbico proporciona los resultados en las siguientes tablas.

i	x_i	$\phi(x_i)$	<i>y</i> _i
1	0.25	-0.1875	-0.1875
2	0.5	-0.25	-0.25
3	0.75	-0.1875	-0.1875

7. El algoritmo lineal por tramos proporciona los resultados en la siguiente tabla.

i	x_i	$\phi(x_i)$	$w(x_i)$
4	24	0.00071265	0.0007
8	48	0.0011427	0.0011
10	60	0.00119991	0.0012
16	96	0.00071265	0.0007

9. $\overline{\text{Con } z(x) = y(x) - \beta x - \alpha(1-x), \text{ tenemos}}$

$$z(0) = y(0) - \alpha = \alpha - \alpha = 0$$
 y $z(1) = y(1) - \beta = \beta - \beta = 0$.

Además, $z'(x) = y'(x) - \beta + \alpha$. Por lo tanto,

$$y(x) = z(x) + \beta x + \alpha(1 - x)$$
 y $y'(x) = z'(x) + \beta - \alpha$.

Al sustituir para y y y' en la ecuación diferencial obtenemos

$$-\frac{d}{dx}(p(x)z'+p(x)(\beta-\alpha))+q(x)(z+\beta x+\alpha(1-x))=f(x).$$

Simplificando obtenemos la ecuación diferencial

$$-\frac{d}{dx}(p(x)z') + q(x)z = f(x) + (\beta - \alpha)p'(x) - [\beta x + \alpha(1-x)]q(x).$$

11. El algoritmo de spline cúbico proporciona los resultados en la siguiente tabla.

x_i	$\phi_i(x)$	$y(x_i)$
0.3	1.0408183	1.0408182
0.5	1.1065307	1.1065301
0.9	1.3065697	1.3065697

13. Si
$$\sum_{i=1}^{n} c_i \phi_i(x) = 0$$
, para $0 \le x \le 1$, entonces para cualquier j , tenemos $\sum_{i=1}^{n} c_i \phi_i(x_j) = 0$.

$$\phi_i(x_j) = \begin{cases} 0 & i \neq j, \\ 1 & i = j, \end{cases}$$

por lo que $c_i \phi_i(x_i) = c_i = 0$. Por lo tanto, las funciones son linealmente independientes.

15. Sea $\mathbf{c} = (c_1, \dots, c_n)^t$ cualquier vector y sea $\phi(x) = \sum_{j=1}^n c_j \phi_j(x)$. Entonces

$$\mathbf{c}^{t} A \mathbf{c} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} c_{i} c_{j} = \sum_{i=1}^{n} \sum_{j=i-1}^{i+1} a_{ij} c_{i} c_{j}$$

$$= \sum_{i=1}^{n} \left[\int_{0}^{1} \{p(x) c_{i} \phi_{i}'(x) c_{i-1} \phi_{i-1}'(x) + q(x) c_{i} \phi_{i}(x) c_{i-1} \phi_{i-1}(x) \} dx + \int_{0}^{1} \left\{ p(x) c_{i}^{2} [\phi_{i}'(x)]^{2} + q(x) c_{i}^{2} [\phi_{i}'(x)]^{2} \right\} dx$$

$$+ \int_{0}^{1} \left\{ p(x) c_{i} \phi_{i}'(x) c_{i+1} \phi_{i+1}'(x) + q(x) c_{i} \phi_{i}(x) c_{i+1} \phi_{i+1}(x) \right\} dx \right]$$

$$= \int_{0}^{1} \left\{ p(x) [\phi'(x)]^{2} + q(x) [\phi(x)]^{2} \right\} dx.$$

Por lo que, $\mathbf{c}^t A \mathbf{c} \ge 0$ con igualdad si y sólo si $\mathbf{c} = \mathbf{0}$. Puesto que A también es simétrica, A es definida positiva.

Conjunto de ejercicios 12.1

1. El algoritmo de diferencias finitas de la ecuación de Poisson provee los siguientes resultados.

i	j	x_i	y_j	$w_{i,j}$	$u(x_i, y_j)$
1	1	0.5	0.5	0.0	0
1	2	0.5	1.0	0.25	0.25
1	3	0.5	1.5	1.0	1

- 3. El algoritmo de diferencias finitas de la ecuación de Poisson provee los siguientes resultados
 - a. 30 iteraciones requeridas:

i	j	x_i	y_j	$w_{i,j}$	$u(x_i, y_j)$
2	2	0.4	0.4	0.1599988	0.16
2	4	0.4	0.8	0.3199988	0.32
4	2	0.8	0.4	0.3199995	0.32
4	4	0.8	0.8	0.6399996	0.64

c. 126 iteraciones requeridas:

i	j	x_i	y_j	$w_{i,j}$	$u(x_i, y_j)$
4	3	0.8	0.3	1.2714468	1.2712492
4	7	0.8	0.7	1.7509414	1.7506725
8	3	1.6	0.3	1.6167917	1.6160744
8	7	1.6	0.7	3.0659184	3.0648542

b. 29 iteraciones requeridas:

i	j	x_i	y_j	$w_{i,j}$	$u(x_i, y_j)$
2	1	1.256637	0.3141593	0.2951855	0.2938926
2	3	1.256637	0.9424778	0.1830822	0.1816356
4	1	2.513274	0.3141593	-0.7721948	-0.7694209
4	3	2.513274	0.9424778	-0.4785169	-0.4755283

d. 127 iteraciones requeridas:

i	j	x_i	y_j	$w_{i,j}$	$u(x_i, y_j)$
2	2	1.2	1.2	0.5251533	0.5250861
4	4	1.4	1.4	1.3190830	1.3189712
6	6	1.6	1.6	2.4065150	2.4064186
8	8	1.8	1.8	3.8088995	3.8088576

5. El potencial aproximado en algunos puntos comunes provee los siguientes resultados.

i	j	x_i	y_j	$w_{i,j}$
1	4	0.1	0.4	88
2	1	0.2	0.1	66
4	2	0.4	0.2	66

7. Para incorporar el método SOR, realice los siguientes cambios al algoritmo 12.1:

Paso 1 Determine
$$h=(b-a)/n;$$

$$k=(d-c)/m;$$

$$\omega=4/\left(2+\sqrt{4-(\cos\pi/m)^2-(\cos\pi/n)^2}\right);$$

$$\omega_0=1-w;$$

En cada paso 7, 8, 9, 11, 12, 13, 14, 15, y 16 después

determine ...

Inserte

determine
$$E=w_{\alpha,\beta}-z;$$
 si $(|E|>\text{NORM})$ entonces determine $\text{NORM}=|E|;$ determine $w_{\alpha,\beta}=\omega_0 E+z.$

donde α y β dependen del paso que se modifica.

Conjunto de ejercicios 12.2

1. El algoritmo de diferencias hacia atrás de la ecuación de calor provee los siguientes resultados.

a.							
	i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$	
	1	1	0.5	0.05	0.632952	0.652037	
	2	1	1.0	0.05	0.895129	0.883937	
	3	1	1.5	0.05	0.632952	0.625037	
	1	2	0.5	0.1	0.566574	0.552493	
	2	2	1.0	0.1	0.801256	0.781344	
	3	2	1.5	0.1	0.566574	0.552493	

3. El algoritmo de Crank-Nicholson provee los siguientes resultados.

i	j	x_i	t_{j}	w_{ij}	$u(x_i, t_j)$
1	1	0.5	0.05	0.628848	0.652037
2	1	1.0	0.05	0.889326	0.883937
3	1	1.5	0.05	0.628848	0.625037
1	2	0.5	0.1	0.559251	0.552493
2	2	1.0	0.1	0.790901	0.781344
3	2	1.5	0.1	0.559252	0.552493

- **5.** El algoritmo de diferencias hacia adelante provee los siguientes resultados.
 - **a.** Para h = 0.4 y k = 0.1:

i	j	x_i	t_j	w_{ij}	$u(x_i, t_j)$
2	5	0.8	0.5	3.035630	0
3	5	1.2	0.5	-3.035630	0
4	5	1.6	0.5	1.876122	0

Para h = 0.4 y k = 0.05:

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
2	10	0.8	0.5	0	0
3	10	1.2	0.5	0	0
4	10	1.6	0.5	0	0

b. Para $h = \frac{\pi}{10}$ y k = 0.05:

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
3	10	0.94247780	0.5	0.4926589	0.4906936
6	10	1.88495559	0.5	0.5791553	0.5768449
9	10	2.82743339	0.5	0.1881790	0.1874283

7. a. Para h = 0.4 y k = 0.1:

i	j	x_i	t_{j}	$w_{i,j}$	$u(x_i, t_j)$
2 3	5	0.8	0.5	-0.00258 0.00258	0
4	5	1.2 1.6	0.5 0.5	-0.00238 -0.00159	0

Para h = 0.4 y k = 0.05:

i	j	x_i	t_j	$w_{i,j}$	$u(x_i,t_j)$
2	10	0.8	0.5	-4.93×10^{-4}	0
3	10	1.2	0.5	4.93×10^{-4}	0
4	10	1.6	0.5	-3.05×10^{-4}	0

i	j	x_i	t_j	$w_{i,j}$	$u(x_i,t_j)$
3	10	0.94247780	0.5	0.4986092	0.4906936
6	10	1.88495559	0.5	0.5861503	0.5768449
9	10	2.82743339	0.5	0.1904518	0.1874283

9. El algoritmo de Crank-Nicholson provee los siguientes resultados.

a. Para h = 0.4 y k = 0.1:

i	j	x_i	t_{j}	w_{ij}	$u(x_i, t_j)$
2	5	0.8	0.5	8.2×10^{-7}	0
3	5	1.2	0.5	-8.2×10^{-7}	0
4	5	1.6	0.5	5.1×10^{-7}	0

Para h = 0.4 y k = 0.05:

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
2	10	0.8	0.5	-2.6×10^{-6}	0
3	10	1.2	0.5	2.6×10^{-6}	0
4	10	1.6	0.5	-1.6×10^{-6}	0

b. Para $h = \frac{\pi}{10}$ y k = 0.05:

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
3	10	0.94247780	0.5	0.4926589	0.4906936
6	10	1.88495559	0.5	0.5791553	0.5768449
9	10	2.82743339	0.5	0.1881790	0.1874283

11. a. El uso de h = 0.4 y k = 0.1 conduce a resultados sin sentido. Al usar h = 0.4 y k = 0.05 de nuevo obtenemos respuestas sin sentido. Al determinar h = 0.4 y k = 0.005 se produce lo siguiente:

i	j	x_i	t_{j}	w_{ij}
1 2	100	0.4	0.5	-165.405
	100	0.8	0.5	267.613
3 4	100	1.2	0.5	-267.613
	100	1.6	0.5	165.405

b.

i	j	x_i	t_j	$w(x_{ij})$
3	10	0.94247780	0.5	0.46783396
6	10	1.8849556	0.5	0.54995267
9	10	2.8274334	0.5	0.17871220

13. a. La temperatura aproximada en algunos puntos comunes se proporciona en la tabla.

i	j	r_i	t_{j}	$w_{i,j}$
1	20	0.6	10	137.6753
2	20	0.7	10	245.9678
3	20	0.8	10	340.2862
4	20	0.9	10	424.1537

b. La tensión es aproximadamente I = 1242.537.

15. Tenemos

$$a_{11}v_1^{(i)} + a_{12}v_2^{(i)} = (1 - 2\lambda)\operatorname{sen}\frac{i\pi}{m} + \lambda\operatorname{sen}\frac{2\pi i}{m}$$

у

$$\mu_{i}v_{1}^{(i)} = \left[1 - 4\lambda\left(\operatorname{sen}\frac{i\pi}{2m}\right)^{2}\right]\operatorname{sen}\frac{i\pi}{m} = \left[1 - 4\lambda\left(\operatorname{sen}\frac{i\pi}{2m}\right)^{2}\right]\left(2\operatorname{sen}\frac{i\pi}{2m}\operatorname{cos}\frac{i\pi}{2m}\right)$$
$$= 2\operatorname{sen}\frac{i\pi}{2m}\operatorname{cos}\frac{i\pi}{2m} - 8\lambda\left(\operatorname{sen}\frac{i\pi}{2m}\right)^{3}\operatorname{cos}\frac{i\pi}{2m}.$$

Sin embargo,

$$(1 - 2\lambda) \operatorname{sen} \frac{i\pi}{m} + \lambda \operatorname{sen} \frac{2\pi i}{m} = 2(1 - 2\lambda) \operatorname{sen} \frac{i\pi}{2m} \cos \frac{i\pi}{2m} + 2\lambda \operatorname{sen} \frac{i\pi}{m} \cos \frac{i\pi}{m}$$

$$= 2(1 - 2\lambda) \operatorname{sen} \frac{i\pi}{2m} \cos \frac{i\pi}{2m}$$

$$+ 2\lambda \left[2 \operatorname{sen} \frac{i\pi}{2m} \cos \frac{i\pi}{2m} \right] \left[1 - 2 \left(\operatorname{sen} \frac{i\pi}{2m} \right)^2 \right]$$

$$= 2 \operatorname{sen} \frac{i\pi}{2m} \cos \frac{i\pi}{2m} - 8\lambda \cos \frac{i\pi}{2m} \left[\operatorname{sen} \frac{i\pi}{2m} \right]^3.$$

Por lo tanto,

$$a_{11}v_1^{(i)} + a_{12}v_2^{(i)} = \mu_i v_1^{(i)}.$$

Además,

$$\begin{aligned} a_{j,j-1}v_{j-1}^{(i)} + a_{j,j}v_j^{(i)} + a_{j,j+1}v_{j+1}^{(i)} &= \lambda \operatorname{sen} \frac{i(j-1)\pi}{m} + (1-2\lambda)\operatorname{sen} \frac{ij\pi}{m} + \lambda \operatorname{sen} \frac{i(j+1)\pi}{m} \\ &= \lambda \left(\operatorname{sen} \frac{ij\pi}{m} \cos \frac{i\pi}{m} - \operatorname{sen} \frac{i\pi}{m} \cos \frac{ij\pi}{m} \right) + (1-2\lambda)\operatorname{sen} \frac{ij\pi}{m} \\ &+ \lambda \left(\operatorname{sen} \frac{ij\pi}{m} \cos \frac{i\pi}{m} + \operatorname{sen} \frac{i\pi}{m} \cos \frac{ij\pi}{m} \right) \\ &= \operatorname{sen} \frac{ij\pi}{m} - 2\lambda \operatorname{sen} \frac{ij\pi}{m} + 2\lambda \operatorname{sen} \frac{ij\pi}{m} \cos \frac{i\pi}{m} \\ &= \operatorname{sen} \frac{ij\pi}{m} + 2\lambda \operatorname{sen} \frac{ij\pi}{m} \left(\cos \frac{i\pi}{m} - 1 \right) \end{aligned}$$

y

$$\mu_i v_j^{(i)} = \left[1 - 4\lambda \left(\operatorname{sen} \frac{i\pi}{2m} \right)^2 \right] \operatorname{sen} \frac{ij\pi}{m} = \left[1 - 4\lambda \left(\frac{1}{2} - \frac{1}{2} \cos \frac{i\pi}{m} \right) \right] \operatorname{sen} \frac{ij\pi}{m}$$
$$= \left[1 + 2\lambda \left(\cos \frac{i\pi}{m} - 1 \right) \right] \operatorname{sen} \frac{ij\pi}{m},$$

por lo que

$$a_{j,j-1}v_{j-1}^{(i)} + a_{j,j}v_{j}^{(i)} + a_{j,j+1}v_{j}^{(i)} = \mu_{i}v_{j}^{(i)}.$$

De igual forma,

$$a_{m-2,m-1}v_{m-2}^{(i)} + a_{m-1,m-1}v_{m-1}^{(i)} = \mu_i v_{m-1}^{(i)},$$

Por lo que $A\mathbf{v}^{(i)} = \mu_i \mathbf{v}^{(i)}$.

17. Para modificar el algoritmo 12.2, modifique lo siguiente:

Paso 7 Determine

$$t = jk;$$

$$z_1 = (w_1 + kF(h))/l_1.$$

Paso 8 Para i = 2, ..., m-1 determine

$$z_i = (w_i + kF(ih) + \lambda z_{i-1})/l_i.$$

Para modificar el algoritmo 12.3, modifique lo siguiente:

Paso 7 Determine

$$t = jk;$$

$$z_1 = \left[(1 - \lambda)w_1 + \frac{\lambda}{2}w_2 + kF(h) \right] / l_1.$$

Paso 8 Para i = 2, ..., m-1 Determine

$$z_{i} = \left[(1 - \lambda)w_{i} + \frac{\lambda}{2} (w_{i+1} + w_{i-1} + z_{i-1}) + kF(ih) \right] / l_{i}.$$

19. Para modificar el algoritmo 12.2, modifique lo siguiente:

Paso 7 Determine

$$t = jk; w_0 = \phi(t); z_1 = (w_1 + \lambda w_0)/l_1. w_m = \psi(t).$$

Paso 8 Para i = 2, ..., m-2 determine

$$z_i = (w_i + \lambda z_{i-1})/l_i;$$

Determine

$$z_{m-1} = (w_{m-1} + \lambda w_m + \lambda z_{m-2})/l_{m-1}.$$

Paso 11 SALIDA (t);

Para
$$i = 0, ..., m$$
 determine $x = ih$;
SALIDA (x, w_i) .

Para modificar el algoritmo 12.3, modifique lo siguiente:

Paso 1 Determine

$$h = l/m;$$

$$k = T/N;$$

$$\lambda = \alpha^{2}k/h^{2};$$

$$w_{m} = \psi(0);$$

$$w_{0} = \phi(0).$$

Paso 7 Determine

$$t = jk; z_1 = \left[(1 - \lambda)w_1 + \frac{\lambda}{2}w_2 + \frac{\lambda}{2}_0 + \frac{\lambda}{2}\phi(t) \right] / l_1; w_0 = \phi(t).$$

Paso 8 Para i = 2, ..., m-2 determine

$$z_i = \left[(1 - \lambda)w_i + \frac{\lambda}{2}(w_{i+1} + w_{i-1} + z_{i-1}) \right] / l_i;$$

Determine

$$\begin{split} z_{m-1} &= \left[(1-\lambda) w_{m-1} + \frac{\lambda}{2} (w_m + w_{m-2} + z_{m-2} + \psi(t)) \right] / l_{m-1}; \\ w_m &= \psi(t). \end{split}$$

Paso 11 SALIDA
$$(t)$$
;
Para $i = 0, ..., m$ determine $x = ih$;
SALIDA (x, w_i) .

Conjunto de ejercicios 12.3

1. El algoritmo de diferencias finitas de la ecuación de onda provee los siguientes resultados.

i	j	x_i	t_j	w_{ij}	$u(x_i, t_j)$
2	4	0.25	1.0	-0.7071068	-0.7071068
3	4	0.50	1.0	-1.0000000	-1.0000000
4	4	0.75	1.0	-0.7071068	-0.7071068

3. El algoritmo de diferencias finitas de la ecuación de onda con $h = \frac{\pi}{10}$ y k = 0.05 provee los siguientes resultados.

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
2	10	$\frac{\pi}{5}$	0.5	0.5163933	0.5158301
5	10	$\frac{\pi}{2}$	0.5	0.8785407	0.8775826
8	10	$\frac{4\pi}{5}$	0.5	0.5163933	0.5158301

El algoritmo de diferencias finitas de la ecuación de onda con $h = \frac{\pi}{20}$ y k = 0.1 provee los siguientes resultados.

i	j	x_i	t_j	w_{ij}
4	5	$\frac{\pi}{5}$	0.5	0.5159163
10	5	$\frac{\pi}{2}$	0.5	0.8777292
16	5	$\frac{4\pi}{5}$	0.5	0.5159163

El algoritmo de diferencias finitas de la ecuación de onda con $h=\frac{\pi}{20}$ y k=0.05 provee los siguientes resultados.

i	j	x_i	t_j	w_{ij}
4	10	$\frac{\pi}{5}$	0.5	0.5159602
10	10	$\frac{\pi}{2}$	0.5	0.8778039
16	10	$\frac{4\pi}{5}$	0.5	0.5159602

5. El algoritmo de diferencias finitas de la ecuación de onda provee los siguientes resultados.

i	j	x_i	t_j	w_{ij}	$u(x_i,t_j)$
2	3	0.2	0.3	0.6729902	0.61061587
5	3	0.5	0.3	0	0
8	3	0.8	0.3	-0.6729902	-0.61061587

- **7. a.** La presión del aire para la tubería abierta es $p(0.5, 0.5) \approx 0.9$ y $p(0.5, 1.0) \approx 2.7$.
 - **b.** La presión del aire para la tubería cerrada es $p(0.5, 0.5) \approx 0.9$ y $p(0.5, 1.0) \approx 0.9187927$.

Conjunto de ejercicios 12.4

1. Con $E_1 = (0.25, 0.75)$, $E_2 = (0, 1)$, $E_3 = (0.5, 0.5)$, y $E_4 = (0, 0.5)$, las funciones de base son

$$\phi_1(x, y) = \begin{cases} 4x & \text{en } T_1 \\ -2 + 4y & \text{en } T_2, \end{cases}$$

$$\phi_2(x, y) = \begin{cases} -1 - 2x + 2y & \text{en } T_1 \\ 0 & \text{en } T_2, \end{cases}$$

$$\phi_3(x, y) = \begin{cases} 0 & \text{en } T_1 \\ 1 + 2x - 2y & \text{en } T_2, \end{cases}$$

$$\phi_4(x, y) = \begin{cases} 2 - 2x - 2y & \text{en } T_1 \\ 2 - 2x - 2y & \text{en } T_2, \end{cases}$$

 $y \gamma_1 = 0.323825, \gamma_2 = 0, \gamma_3 = 1.0000, y \gamma_4 = 0.$

3. El algoritmo de elementos finitos con K = 8, N = 8, M = 32, n = 9, m = 25, y NL = 0 provee los siguientes resultados, donde el etiquetado se muestra en el siguiente diagrama.

$$\gamma_1 = 0.511023$$

$$\gamma_2 = 0.720476$$

$$\gamma_3 = 0.507899$$

$$\gamma_4 = 0.720476$$

$$\gamma_5 = 1.01885$$

$$\gamma_6 = 0.720476$$

$$\gamma_7 = 0.507896$$

$$\gamma_8 = 0.720476$$

$$\gamma_9 = 0.511023$$

$$\gamma_i = 0 \quad 10 \le i \le 25$$

$$u(0.125, 0.125) \approx 0.614187$$

$$u(0.125, 0.25) \approx 0.690343$$

$$u(0.25, 0.125) \approx 0.690343$$

$$u(0.25, 0.25) \approx 0.720476$$

R 102 Respuestas a ejercicios seleccionados

5. El algoritmo de elementos finitos con K = 0, N = 12, M = 32, N = 20, M = 27, y NL = 14 provee los siguientes resultados, donde el etiquetado se muestra en el diagrama.

$$u(1,0)\approx 22.92824$$

$$u(4,0) \approx 22.84663$$

$$u\left(\frac{5}{2},\frac{\sqrt{3}}{2}\right)\approx 18.85895$$