Natural Language Projects

A survey of topics and recent advancements

Agenda

NLP is hard.

Problem Spaces

- Natural Language Understanding
- Natural Language Generation

Sentiment Analysis

- Brief history
- VADER

Topic Modeling

- Latent Dirchlet Allocation
- Evaluation Metrics

Embeddings

- Word2Vec
- Current SOTA

NLUnderstanding

Did you just say what I think you just said?

Description

Post-processing of text utilizing context to discern meaning of sentences (sometimes fragmented or run-on) to determine intent

NLUnderstanding

Did you just say what I think you just said?

Description

Post-processing of text utilizing context to discern meaning of sentences (sometimes fragmented or run-on) to determine intent Parts of speech tagging

Let's band together vs. I want to start a band

Machine Translation

Voice Activation

NLGeneration

How do I respond based to what's been said?

Summarization

Machine Translation

Chat Bots

Description

In some ways the opposite of NLU:

Sequence of words <-> General concept

The choice of a specific, self-consistent representation of a concept which could be expressed in many potential sequences.

AKA Opinion Mining

Seeks to identify and extract a measure of the opinions, attitudes, sentiments or emotions of the writer of the text.

How can we objectively measure something that is subjective?

sentiment analysis

vibe check

History

LIWC: Linguistic Inquiry and Word Count

- Hand constructed dictionary of 4500 words, 76 categories, 905 of which in Positive and Negative Emotion
- Internally and externally validated over decades but does not give an intensity of sentiment

ANEW: Affective Norms for English Words

 Normative emotional ratings for 1034 words ranked in terms of pleasure, arousal and dominance (score from 1-9)

History

SentiWordNet:

- 147k synsets annotated with 3 scores (positive, negative, neutral) summing to 1
- Very noisy (most synsets are just neutral)

SenticNet:

- Publically available semantic and affective resource for concept level opinion and sentiment analysis
- Uses sentic computing, which exploits AI and Semantic Web techniques using graph-mining and dimensionality reduction
- Has a polarity score for concepts like wrath, adoration, woe, and admiration from -1 to 1

Sentiment Metric	Score
Positive	0.674
Neutral	0.326
Negative	0.0
Compound	0.735

VADER

(Valence Aware Dictionary for sEntiment Reasoning)

Utilizies

- SentiWordNet for Valence scores based on difference between positive and negative intensity
- SenticNet from an API call

Lexicon/Context-Awareness

- Part of speech tagging
- Word sense ambiguation
 - "At first glance the contract looks good, but there's a *catch*"
 - "The fisherman plans to sell his catch at the market."

Test Condition	Example Text	
Baseline	Yay. Another good phone interview.	
Punctuation1	Yay! Another good phone interview!	
Punctuation1 + Degree Mod.	Yay! Another extremely good phone interview!	
Punctuation2	Yay!! Another good phone interview!!	
Capitalization	YAY. Another GOOD phone interview.	
Punct1 + Cap.	YAY! Another GOOD phone interview!	
Punct2 + Cap.	YAY!! Another GOOD phone interview!!	
Punct3 + Cap.	YAY!!! Another GOOD phone interview!!!	
Punct3 + Cap. + Degree Mod.	YAY!!! Another EXTREMELY GOOD phone interview!!!	

Table 2: Example of baseline text with eight test conditions comprised of grammatical and syntactical variations.

Topic Modeling

Latent Dirichlet Allocation

 α is the parameter of the Dirichlet prior on the per-document topic distributions, β is the parameter of the Dirichlet prior on the per-topic word distribution,

 θ_i is the topic distribution for document i, φ_k is the word distribution for topic k,

 z_{ij} is the topic for the *j*-th word in document *i*, and

d ^r

M - number of documents

N - length of document

K - number of topics

 w_{ij} is the specific word.

Topic Modeling

Coherence Scores

Embeddings

Meaning in multidimensional space

Categorical -> Continuous

An alternative treatment to representing each word as its own feature/token (Bag of Words/Tf-IDF).

• Why not just use One-Hot Encoding?

An embedding is a mapping from a categorical variable to a low-dimensional continuous vector space.

Male-Female

Embeddings

Word2Vec

- Continuous Bag of Words
- Skip-gram

Problems of differences in context e.g Apple

BERT

- Bidirectional Encoder RepresenTations
- First unsupervised, deeply bidirectional system for pretraining NLP models

ULMFiT

- Universal Language Model Fine-Tuning
- Transfer Learning from general language model to specific corpus domain

Pre-trained Language Model

Fine-Tune on new dataset

Text Classifier

Resources

Vader:

- https://medium.com/analytics-vidhya/simplifying-social-media-s entiment-analysis-using-vader-in-python-f9e6ec6fc52f
- http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf

Topic Modeling:

- https://www.machinelearningplus.com/nlp/topic-modeling-visualization-how-to-present-results-lda-models/
- https://towardsdatascience.com/evaluate-topic-model-in-p ython-latent-dirichlet-allocation-lda-7d57484bb5d0

Embeddings:

- https://towardsdatascience.com/neural-network-embeddings-ex plained-4d028e6f0526
- https://www.analyticsvidhya.com/blog/2019/03/pretrained-model-m
- <u>https://bensen.ai/elmo-meet-bert-recent-advances-in-natural-language-embeddings/</u>
- https://www.analyticsvidhya.com/blog/2018/11/tutorial-text-class ification-ulmfit-fastai-library/
- https://www.slideshare.net/SebastianRuder/frontiers-of-natural-l anguage-processing