GERBANG LOGIKA

Teknik Digital
Teknik Informatika
UNISNU Jepara

GERBANG LOGIKA

- Gerbang merupakan rangkaian dengan satu atau lebih sinyal masukan, tetapi hanya menghasilkan satu sinyal keluaran.
- Gerbang dinyatakan dengan dua keadaan :
 - ✓ Tegangan tinggi / logika tinggi / high logic / logika 1
 - ✓ Tegangan rendah / logika rendah / low logic / logika 0
- Rangkaian digital dirancang dengan menggunakan Aljabar Boole, penemunya George Boole.

GERBANG LOGIKA

Jenis Gerbang	Simbol Grafis dan Fungsi Aljabar	Tabel Kebenaran	Timing Diagram
Inverter (NOT)	Input $A \longrightarrow A \longrightarrow A$ $Y = \overline{A}$ Output	A Y 0 1 1 0	A Y
AND	A	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	B A Y
OR	A Y = A + B	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	B

GERBANG LOGIKA LAIN

Jenis Gerbang	Simbol Grafis dan Fungsi Aljabar	Tabel Kebenaran	Timing Dagram
NAND (NOT AND)	A	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	B
NOR (NOT OR)	$ \begin{array}{c} A \\ B \end{array} $ $ Y = \overline{A + B} $	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	B

GERBANG LOGIKA LAIN

Jenis Gerbang	Simbol Grafis dan Fungsi Aljabar	Tabe	l Kebe	enaran	Timing Diagram
EX-OR	$\begin{array}{c} A \\ B \end{array} \qquad \qquad Y$ $Y = A \oplus B$	A 0 0 1	B 0 1 0	Y 0 1 1 0	B
EX-NOR	$\begin{array}{c} \textbf{A} \\ \textbf{B} \end{array} \qquad \qquad \qquad \textbf{Y}$ $\mathbf{Y} = \overline{\mathbf{A} \oplus \mathbf{B}}$	A 0 0 1	B 0 1 0	Y 1 0 0	B

MENURUNKAN TABLE KEBENARAN

Contoh:

1. $A \longrightarrow \overline{A} \longrightarrow Y = \overline{A} + B$

Α	В	Α	Υ
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

Α	В	O	B+C	Υ
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

MENURUNKAN TABLE KEBENARAN

Cont..

Y = 1, jika AB = 1 atau CD = 1

- AB = 1, jika A = 1 dan B = 1
- CD = 1, jika C = 1 dan D = 1

Α	В	С	D	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

ALJABAR BOOLE

Hukum – hukum Aljabar Boole:

1. Komutatif : A + B = B + A

$$A.B=B.A$$

2. Asosiatif : A+(B+C) = (A+B)+CA(BC) = (AB)C

3. Distributif : A(B+C) = AB + ACA+(BC) = (A+B).(A+C)

Aturan – aturan Aljabar Boole:

1.
$$A \cdot 0 = 0$$

3.
$$A \cdot A = A$$
 \rightarrow AND

4. A.
$$\overline{A} = 0$$

5.
$$A + 0 = A$$

7.
$$A + A = A > OR$$

8.
$$A + \overline{A} = 1$$

9.
$$\overline{A} = A$$

10.
$$A + \overline{A}B = A + B$$

11.
$$\overline{A} + AB = \overline{A} + B$$

<u>Ket.</u>

Penjabaran aturan 10 :

$$A + \overline{A}B = A (1+B) + \overline{A}B$$

 $= A + AB + \overline{A}B$
 $= A + B (A + \overline{A})$
 $A + \overline{A}B = A + B$

Penjabaran aturan 11:

$$\overline{A} + AB = \overline{A}(1+B) + AB$$

= $\overline{A} + \overline{A}B + AB$
= $\overline{A} + B(\overline{A} + A)$
 $\overline{A} + AB = \overline{A} + B$

Teorema De Morgan:

1.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

2.
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Coba anda buktikan kedua teorema di atas dengan cara menurunkan tabel kebenaran

TEKNIK BUBBLE PUSHING

Adalah : suatu metode membentuk rangkaian rangkaian ekivalen berdasarkan Teorema De Morgan.

Cara merubah rangkaian ekivalen:

- Merubah gerbang logika → gerbang AND menjadi OR dan gerbang OR menjadi AND
- 2. Tambahkan bubble jika pada gerbang logika asli tidak terdapat bubble (baik pada input maupun output). Sebaliknya jika pada gerbang logika yang asli terdapat bubble maka pada rangkaian logika ekivalennya bubble dihilangkan.

$$A \longrightarrow Y \equiv A \longrightarrow Y$$

$$A = B = A = Y$$

$$A \longrightarrow A \longrightarrow Y$$
 $B \longrightarrow A \longrightarrow Y$

$$A \longrightarrow Y \equiv A \longrightarrow Y$$

Gambar a. Rangkaian Logika Asli Gambar b. Rangkaian Logika Ekivalen

GERBANG UNIVERSAL (NAND DAN NOR)

Terkadang perlu modifikasi rangkaian ke dalam gerbang NAND dan NOR

Modifikasi dari gerbang logika dasar ke gerbang logika NAND atau NOR, dapat dipakai 2 metode :

- 1. Modifikasi dari persamaan logika
- 2. Modifikasi dari diagram gerbang logika

Modifikasi dari Persamaan Logika

Modifikasi ke gerbang NAND

1.
$$Y = \overline{A}$$

$$\rightarrow$$

1.
$$Y = \overline{A}$$
 \rightarrow $Y = \overline{A \cdot A}$ atau $Y = \overline{A \cdot 1}$

$$Y = \overline{A \cdot 1}$$

2.
$$Y = A \cdot B \rightarrow Y = \overline{A \cdot B}$$

$$\rightarrow$$

$$Y = \overline{A \cdot B}$$

3.
$$Y = A + B \rightarrow Y = \overline{A + B} \rightarrow Y = \overline{A + B}$$

$$\rightarrow$$

$$Y = \overline{A + B}$$

$$\rightarrow$$

$$Y = \overline{A} + \overline{B}$$

Modifikasi ke gerbang NOR

$$\rightarrow$$

$$Y = \overline{A + A}$$

1.
$$Y = A$$
 \rightarrow $Y = \overline{A + A}$ atau $Y = \overline{A + 1}$

2.
$$Y = A \cdot B \rightarrow Y = \overline{A \cdot B} \rightarrow Y = \overline{A + B}$$

$$\rightarrow$$

$$Y = \overline{A \cdot B}$$

$$\rightarrow$$

$$Y = \overline{A} + \overline{B}$$

$$Y = A + E$$

$$\rightarrow$$

3.
$$Y = A + B \rightarrow Y = \overline{A + B}$$

Modifikasi dari Diagram Gerbang Logika

Gerbang Dasar	Gerbang yang dimanipulasi ke dalam NOR
B_1 $\overline{B_1}$ \widehat{A}	B_1 $\overline{B_1}$
$ \begin{array}{c} B_1 \\ B_2 \end{array} $ $ \begin{array}{c} B_1B_2 \end{array} $	B_1 B_1 B_1 B_2 B_2 B_2
$ \begin{array}{c} B_1 \\ B_2 \end{array} $	B_1 B_1+B_2 B_1+B_2 B_2

Contoh Soal:

Modifikasi rangkaian berikut dengan menggunakan gerbang NAND saja dan NOR saja dengan menggunakan metode persamaan logika dan metode diagram gerbang logika!

Penyelesaian:

- Metode persamaan logika
 - Modifikasi ke dalam bentuk NAND saja

$$Y = (A . B) + C = (\overline{A . B}) + \overline{C} = (\overline{A . B}) . \overline{C}$$

Modifikasi ke dalam bentuk NOR saja

$$Y = (A . B) + C = (\overline{A . B}) + C = (\overline{A + B}) + C$$

- Metode Diagram Gerbang Logika
 - Modifikasi ke dalam bentuk NAND saja

Rangkaian tsb dapat disederhanakan menjadi :

Modifikasi ke dalam bentuk NOR saja

