Proyecto Preliminar 1

Boceto en conjunto

Dibujado por: Jefferson Huiza Quispe

Lista de despiece:

Pieza	Nombre	Material
1	Caño	Niquelado
2	Adaptador tipo hembra	PVC
3	Tubos	PVC
4	Codo	PVC
5	Sensor de Caudal	PVC
6	Sensor piezoeléctrico	Cristales
7	Sujetador de tubos	PVC
8	Válvula	PVC

9	Paralelepípedos	Etileno
10	Arduino Uno	Fibra de vidrio, cobre y plástico
11	Sensor de sonido	Cobre, fibra de vidrio y plástico
12	Sensor de Bluetooth	Silicio, fibra de vidrio y cobre
13	Batería	Dióxido de manganeso y zinc

Descripción de funcionamiento:

Este modelo de prototipo tiene la forma de un paralelepípedo de unos 20 cm x 15 cm con una altura de 5 cm, consta de una parte externa con sensores piezoeléctricos, manómetro y el sensor del caudal. Para la experimentación, se usará energía eléctrica de una batería, el proceso de detección de fugas comienza cuando el manómetro registra un cambio de presión y el caudal un cambio de flujo, luego los sensores piezoeléctricos detectan las señales de ruido, los audios se graban, y se realiza el análisis de "fugas" o "no fugas" con la información de las frecuencias, en ese paso se necesitará la guía de un experto, hasta que el programa logré mejorar su destreza. Y finalmente, se envía la información mediante mediante el aplicativo de Bluetooth, en caso que no haya fugas la aplicación tendrá una señal verde, y en caso contrario la señal será roja.

Boceto en conjunto

Dibujado por: Edithson Ricardo Aybar Escobar

Lista de despiece:

Pieza	Nombre	Material
1	caño de agua	PRFV, cobre, PVC
2	Tubos	PVC
3	Codo	PVC
4	Carcasa	filamento de 3D
5	Memoria SD	SDHC 8Gb

6	Dispositivo Bluetooth	Cristales
7	Porta baterías de litio	Plástico
8	Interruptor	Plástico
9	Piezoeléctrico	7BB-20-6L0
10	Pinzas para ajustar	Plástico
11	Sensor de caudal	YF-S201
12	Arduino Uno	Fibra de vidrio, cobre y resina

Descripción de funcionamiento:

El producto recibe energía eléctrica de baterías de litio, las cuales se colocan a un portabaterías, el cual a su vez se conecta con un interruptor para poder controlar cuando el producto estará encendido o apagado, y a partir del interruptor se conecta al Arduino UNO. Al arduino se le hacen las conexiones de los sensores en sus respectivos pines mediante cables hembra-macho, la información de los sensores se procesa y se almacena en una unidad SD-HC de 8Gb, la cual está conectada al arduino mediante un adaptador. Esta información almacenada se pasará a una aplicación de celular con el uso de un dispositivo de transmisión Bluetooth, el Hc-05, y en la aplicación se mostrará la información en forma de gráficas, y en caso de detectarse valores anómalos, la aplicación soltará una alerta.

Boceto en Conjunto

Dibujado por: Nardy Liz Condori Mamani

Pieza	Nombre	Material
1	Válvula de entrada	Madera, Cromo o Silicio
2	Reservorio	Plástico o PVC
3	Adaptador tipo hembra	Acero Inoxidable
4	Soporte de componentes	Metal o Plástico
5	Tubo	PVC

6	Soporte general	Metal o Plástico
7	Sensor YF-S201	Acero Inoxidable
8	Memoria SDHC 8 GB	Plástico o Metal
9	Arduino UNO	Metal, Cobre o Silicio
10	Bluetooth Hc-05	Silicio, Metal o Plástico
11	Sensor De Sonido Arduino PIC Pi LM393	Silicio, Metal
12	Batería	Plomo, Níquel, Zinc o Litio
13	Sensor Piezoeléctrico	Cristales
14	Sujetador de tubos (Pinzas)	Plástico, Metal

Descripción de funcionamiento:

Este prototipo es un sistema de detección y monitoreo de fugas de agua que combina sensores y controles avanzados alimentados por energía de una batería. Estos sensores son cuidadosamente colocados en el sistema, como los sensores 14 y 11 de la lista de materiales que son específicamente para detectar vibraciones y sonidos anormales, así como el sensor 7 que nos sirve para medir el flujo de agua, estos nos permitirán una detección más precisa frente posibles fugas. Además, se utilizan válvulas de entrada y salida para controlar eficazmente el flujo de agua y poder cortar el suministro de agua en caso de que se presente una fuga. Asimismo, se utilizarán materiales específicos (8, 10) de la tabla para la recopilación de datos, la información organizada se almacenará en la memoria y los datos se transmitirán de forma inalámbrica a dispositivos móviles para su monitoreo remoto. Si se detecta una fuga, los materiales se utilizarán para activar una alerta y enviar un mensaje al dispositivo móvil del usuario.