Application of Diodes: Logic Gates

- The logic OR function
 - -Y=A+B+C
- The logic AND function

If v_A Logic High, D_A is RB v_B Logic High, D_B is RB v_C Logic LOW, D_B is FB

Assume ideal diodes

Assume ideal diodes

Diode is FB, Therefore short circuit, V = 0 V

$$I = \frac{5-0}{2.5k} = 2 \,\mathrm{mA}$$

Assume ideal diodes

Diode is RB, Therefore Open circuit, I = 0 A

$$V = 5 - IR = 5 \text{ V}$$

Assume ideal diodes

$$I = \frac{3}{1k} = 3 \, mA$$

Assume ideal diodes

$$I = \frac{3}{1k} = 3 \, mA$$

Diode circuits

Find current 'i'

e meeting

Raise hand

Turn on ca

Diode circuits

Case 1: Assume diode 'D' is OFF

$$v_{AB} = \frac{3}{3+6} \times 36 = 12 \text{ V}$$

Assumption and solution are inconsistent, therefore diode is not OFF

Turn on cal

Using Nodal analysis
$$\frac{V_4 - 36}{4} + \frac{V_4}{4} + \frac{V_4 - 0.7}{4} = 0 \Rightarrow V_4 = 4.47 \text{ V}$$

 $i = 3.77 \, \text{mA}$

 $\frac{V_4 - 36}{100} + \frac{V_4}{100} + \frac{V_4 - 0.7}{100} = 0 \Rightarrow V_4 = 4.47 \text{ V}$ 6*K* 3K