UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

Examen final – GC1-MEC1 Chimie de l'Ingénieur- 1h30

Exercice I. Phénomènes de corrosion

Le schéma ci-dessous montre une photo d'une pièce métallique (corrodée) fabriquée en Fer et Cuivre.

- 1- La corrosion est-elle une oxydation ou une réduction?
- 2- A quel endroit de la pièce se produit la corrosion. Justifier votre réponse.
- **3-** Qu'appelle-t-on ce type de corrosion?
- 4- Quel est le métal corrodé? Justifier votre réponse.
- 5- Écrivez les équations des demi-réactions mises en jeu et celle de la réaction globale.
- 6- Comment peut-on protéger le métal corrodé? (proposez une seule méthode).

Données : $E^{\circ}(Fe^{2+}/Fe) = -0.44V$ et $E^{\circ}(Cu^{2+}/Cu) = 0.34V$

Exercice II. E-pH et Corrosion de l'Aluminium (13Al)

On limite le diagramme aux espèces suivantes: **Solides**: Al et Al(OH)₃; **Ions**: Al³⁺.et (Al(OH)₄)⁻

- 1. Calculer le nombre d'oxydation de l'Aluminium dans chaque espèce.
- 2. Déterminer les frontières redox et non redox. (pH, E et E = f(pH)).
- 3. Dans quel domaine de pH, l'Aluminium est passivé? Justifier votre réponse.
- **4.** Dans quel domaine de pH, l'Aluminium est corrodé? Écrivez les équations des demiréactions mises en jeu et celle de la réaction globale (en milieu acide).
- 5. Calculer l'énergie nécessaire pour transformer l'atome Al en Al^{3+} . (Z(Al) =13)

Données:

- La concentration de tracé est égale à 10⁻² mol.L⁻¹.
- $E^{\circ}(Al^{3+}/Al) = -1,66V$
- $pKs = 32 pour Al(OH)_3$
- $\beta = 10^{+32}$: Constante de formation de $(Al(OH)_4)^-$: $(Al^{3+} + 4OH^- \leftrightarrow (Al(OH)_4)^-)$
- Produit ionique de l'eau : $K_e = 10^{-14}$

Valeurs de la constante d'écran σ_{ii} d'après les règles de Slater

Electron j / Electron i	<i>1s</i>	2s 2p	3s3p	3 <i>d</i>
1s	0,31			
2s2p	0,85	0,35		
3s3p	1	0,85	0,35	
3 <i>d</i>	1	1	1	0,85

Pr. Sabbar