Capítulo 9 — Introdução à Análise de Variância

Modelo com um fator de efeitos fixos

$$X_{ij} = M_i + E_{ij} = \underbrace{\mu}_{\substack{\text{parâmetro} \\ \text{global}}} + \underbrace{\alpha_i}_{\substack{\text{efeito} \\ \text{do grupo}}} + \underbrace{E_{ij}}_{\substack{\text{erre} \\ \text{or re}}}$$

Hipóteses subjacentes relativas aos erros E_{ij} para a aplicação dos testes ANOVA:

- valor esperado nulo e variância constante, σ^2 ;
- mutuamente exclusivos;
- normalmente distribuídos.

Teste ao efeito do fator (ver Tabela ANOVA para o modelo com um fator de efeitos fixos)			
Hipóteses	Estatística de teste		
$H_0: \mu_1 = \mu_2 = \cdots = \mu_I = \mu \text{ (ou } \alpha_1 = \alpha_2 = \cdots = \alpha_I = 0)$	$ET = \frac{DQMEG}{}$		
H_i : Nem todos os μ_i são iguais (ou algum $\alpha_i \neq 0$)	$ET = \frac{1}{DQMDG}$		
	Quando H é verdadeira ET seque uma distribuição Fort que		

Tabala ANOVA nore a madela som um fatan da efeitas fivos

	Т	'abela ANOVA para o modelo com ui	n fator de efeitos fixos	
Fontes de	Variações	Graus de Liberdade	Desvios Quadráticos	Valores Esperados
Variação	(Somas de desvios quadráticos)	(Nº de termos independentes)	Médios (DQMs)	valores Esperados
Entre Grupos (EG)	(Variação "explicada" pelas diferenças de médias) $VEG = \sum_{i} J_{i} \cdot (\overline{X}_{i} - \overline{X})^{2}$	$GL_1 = I - 1$	$DQMEG = \frac{VEG}{GL_1}$	$E[DQMEG] = \sigma^2 + \frac{1}{I-1} \cdot \sum_i J_i \cdot (\alpha_i - \overline{\alpha})^2$
Dentro dos Grupos (DG)	$(Variação residual \\ "não explicada")$ $VDG = \sum_{i} \sum_{j} (X_{ij} - \overline{X}_{i})^{2}$	$GL_2 = \left(\sum_i J_i\right) - I$	$DQMDG = \frac{VDG}{GL_2}$	$E[DQMDG] = \sigma^2$
Total (T)	$VT = \sum_{i} \sum_{j} (X_{ij} - \overline{X})^{2}$	$GL = GL_1 + GL_2 = \left(\sum_{i} J_i\right) - 1$		

Intervalos de Confiança para a diferença entre valores esperados

		Intervalo		
Amostras Equilibradas (Tukey)	$J_1 = J_2 = \cdots = J_I = J$			
Amostras Pouco Desequilibradas (Tukey) $\left(\max_i(J_i) \leq 2 \cdot \min_i(J_i)\right)$	$J = \frac{I}{\frac{1}{J_1} + \frac{1}{J_2} + \dots + \frac{1}{J_I}}$	$\left(\overline{X}_{i_1} - \overline{X}_{i_2}\right) \pm q_{I,GL_2}(\alpha) \cdot \sqrt{DQMDG/J}$		
Amostras Desequilibradas (Scheffé) $\left(\max_{i}(J_{i})>2\cdot\min_{i}(J_{i})\right)$		$\left(\overline{X}_{i_1} - \overline{X}_{i_2}\right) \pm \sqrt{(I-1) \cdot F_{GL_1,GL_2}(\alpha) \cdot DQMDG \cdot \left(\frac{1}{J_{i_1} + J_{i_2}}\right)}$		

Modelo com um fator de efeitos variáveis

$$X_{ij} = \mu_i + E_{ij} = \underbrace{\mu}_{\substack{ ext{parametro} \ ext{global}}} + \underbrace{A_i}_{\substack{ ext{efeito variável} \ ext{do grupo}}} + \underbrace{E_{ij}}_{\substack{ ext{erro}}}$$

Hipóteses subjacentes relativas aos erros E_{ij} para a aplicação dos testes ANOVA:

- valor esperado nulo e variância constante, σ^2 ;
- mutuamente exclusivos;
- normalmente distribuídos.

Hipóteses subjacentes relativas ao efeito variável A_i para a aplicação dos testes ANOVA:

- valor esperado nulo e variância constante, σ_A^2 ;
- mutuamente exclusivos;
- normalmente distribuídos.

Teste ao efeito variável do fator (ver Tabela ANOVA para o modelo com um fator de efeitos variáveis)			
Hipóteses	Estatística de teste		
$H_0: \sigma_A^2 = 0$	DQMEG		
$H_1: \sigma_A^2 > 0$	$EI = \frac{1}{DQMDG}$		
	Quando H ₀ é verdadeira, ET segue uma distribuição $F_{CI1,CI2}$		

Tabela ANOVA para o modelo com um fator de efeitos variáveis

Fontes de Variação	Variações	Graus de Liberdade	Desvios Quadráticos	Valores Esperados
rontes de variação	(Somas de desvios quadráticos)	(Nº de termos independentes)	Médios (DQMs)	valores Esperados
Entre Grupos (EG)	(Variação "explicada" pelas diferenças de médias) $VEG = \sum_i j_i \cdot (\overline{X}_i - \overline{X})^2$	$GL_1 = I - 1$	$DQMEG = \frac{VEG}{GL_1}$	$E[DQMEG] = \sigma^2 + h \cdot \sigma_A^2$
	(Variação residual			$h = \frac{(\sum_{i} J_{i})^{2} - \sum_{i} J_{i}^{2}}{(\sum_{i} J_{i}) \cdot (I - 1)}$
Dentro dos Grupos (DG)	$VDG = \sum_{i} \sum_{j} (X_{ij} - \overline{X}_{i})^{2}$	$GL_2 = \left(\sum_i J_i\right) - I$	$DQMDG = \frac{VDG}{GL_2}$	$E[DQMDG] = \sigma^2$
Total (T)	$VT = \sum_{i} \sum_{j} (X_{ij} - \overline{X})^{2}$	$GL = GL_1 + GL_2 = \left(\sum_{i} J_i\right) - 1$		

Formulário adaptado de: Estatística Rui Campos Guimarães, José A. Sarsfield Cabral Verlag Dashöfer

Tabela ANOVA (fórmulas alternativas para cálculo manual)

Fontes de Variação	Variações (Somas de desvios quadráticos)	Graus de liberdade (Número de termos independentes)	Desvios Quadráticos Médios	Valores Esperados
Entre Grupos (EG)	$VEG = \sum_{i} \frac{\left(\sum_{j} X_{ij}\right)^{2}}{J_{i}} - f.c.$	$GL_1 = I - 1$	$DQMEG = VEG/GL_{\rm l}$	$E(DQMEG) =$ $= \sigma^{2} + \frac{1}{I-1} \cdot \sum_{i} \left[J_{i} \cdot (\alpha_{i} - \overline{\alpha}) \right]$
Dentro dos Grupos (DG)	$VDG = \sum_{i} \sum_{j} \left(X_{ij} - \overline{X_{i}} \right)^{2}$	$GL_2 = \biggl(\sum_i J_i\biggr) - I$	$DQMDG = VDG/GL_2$	$E(DQMDG) = \sigma^2$
Total (T)	$VT = \left(\sum \sum X_{ij}^{2}\right) - f.c.$	$\begin{aligned} GL &= GL_1 + GL_2 \\ &= \left(\sum J_i\right) - 1 \end{aligned}$		$f.c. = \frac{\left(\sum_{i}\sum_{j}X_{ij}\right)^{2}}{\sum_{i}J_{i}}$
Entre Grupos (EG)	$VEG = \sum_{i} \frac{\left(\sum_{j} X_{ij}\right)^{2}}{J_{i}} - f.c.$	$GL_1 = I - 1$	$DQMEG = VEG/GL_q$	$E(DQMEG) = \sigma^2 + h \cdot \sigma_A^2$
Dentro dos Grupos (DG)	$VDG = \sum_{i} \sum_{j} \left(X_{ij} - \overline{X_{i}} \right)^{2}$	$GL_2 = \left(\sum_i J_i\right) - I$	$DQMDG = VDG/GL_2$	$E(DQMDG) = \sigma^2$
Total (T)	$VT = \left(\sum\sum X_{ij}^2\right) - f.c.$	$GL = GL_1 + GL_2$ $= \left(\sum J_i\right) - 1$	$f.c. = \frac{\left(\sum_{i}\sum_{j}X_{i}\right)}{\sum_{i}J_{i}}$	$h = \frac{\left(\sum_{i} J_{i}\right)^{2} - \sum_{i} J_{i}^{2}}{\left(\sum_{i} J_{i}\right) \cdot (I - 1)}$