Komentáře k domácímu kolu kategorie Z7

1. Dlouhý, Široký a Bystrozraký změřili svou výšku. Zjistili, že Dlouhý je dvakrát vyšší než Široký, výška Bystrozrakého představuje dvě třetiny výšky Dlouhého, ale přitom je o 44 cm vyšší než Široký. Zjisti, jak vysoký je Dlouhý, Široký i Bystrozraký.

Řešení. Bystrozraký měří $\frac{2}{3}$, tj. $\frac{4}{6}$ výšky Dlouhého, Široký měří $\frac{1}{2}$, tj. $\frac{3}{6}$ výšky Dlouhého. Bystrozraký je o $\frac{1}{6}$ výšky Dlouhého větší než Široký a z textu víme, že je to 44 cm. Celková výška Dlouhého je tedy $6\cdot 44=264\,\mathrm{cm}$, Bystrozrakého $4\cdot 44=176\,\mathrm{cm}$ a Širokého $3\cdot 44=132\,\mathrm{cm}$ (je to právě polovina výšky Dlouhého). Dlouhý měří $264\,\mathrm{cm}$, Široký $132\,\mathrm{cm}$ a Bystrozraký $176\,\mathrm{cm}$.

2. Je dáno pětimístné číslo dělitelné třemi. Vyškrtnu-li z něj číslice na lichých místech, dostanu dvoumístné číslo. Toto číslo je 67krát menší než číslo získané z původního pětimístného čísla vyškrtnutím číslic na sudých místech. Zjisti, jaké bylo původní pětimístné číslo.

ŘEŠENÍ. Zkusíme, které dvoumístné číslo po vynásobení číslem 67 dá trojmístné číslo:

- a) $10 \cdot 67 = 670 \dots$ pětimístné číslo 61 700, ciferný součet je 14 není dělitelný třemi, proto nevyhovuje;
- b) 11 · 67 = 737 . . . pětimístné číslo 71 317, ciferný součet je 19 není dělitelný třemi, proto nevyhovuje;
 - c) $12 \cdot 67 = 804 \dots$ pětimístné číslo 81 024, ciferný součet je 15 je dělitelné třemi;
- d) $13 \cdot 67 = 871 \dots$ pětimístné číslo 81 731, ciferný součet je 20 není dělitelný třemi, proto nevyhovuje;
- e) $14 \cdot 67 = 938...$ pětimístné číslo 91 348, ciferný součet je 25 není dělitelný třemi, proto nevyhovuje;
 - f) $15 \cdot 67 = 1005$, nevyhovuje (nejde o trojmístné číslo).

Původní pětimístné číslo je 81 024.

Poznámka. Jednodušší je uvědomit si, že vzniklé dvoumístné číslo musí být dělitelné třemi.

- 3. V zemi "Číselkovo" žijí jen přirozená čísla. Muži a chlapci jsou sudá čísla, ženy a dívky jsou lichá čísla. Manželé mají hned po svatbě děti, a to všechna čísla, která dělí jejich součin beze zbytku. Kterého nápadníka z čísel 2, 16, 28, 46 si má vybrat slečna Devítka, jestliže chce mít
 - a) co nejvíce dětí,
 - b) stejný počet dcer jako synů?

Řešení. 1) Devítka a číslo 2: $9 \cdot 2 = 18$.

Dělitelé čísla 18 ("děti"): 1, 2, 3, 6, 9, 18 (3 lichá čísla = "dcery", 3 sudá = "synové", 6 "dětí").

- 2) Devítka a číslo 16: $9 \cdot 16 = 144$.
- Dělitelé čísla 144 ("děti"): 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 (3 lichá čísla "dcery", 12 sudých = "synové", 15 "dětí").
 - 3) Devítka a číslo 28: $9 \cdot 28 = 252$.

Dělitelé čísla 252 ("dětí"): 1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252 (18 "dětí", 6 lichých čísel = "dcery", 12 sudých = "synové").

- 4) Devítka a číslo 46: $9 \cdot 46 = 414$.
- Dělitelé čísla 414: 1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414 (12 "dětí", 6 "dcer", 6 "synů").
 - a) Devítka si má vybrat číslo 28 budou mít 18 dětí.
 - b) Vybere si č. 2 (3 dcery, 3 synové) nebo 46 (6 dcer a 6 synů).
 - 4. Kamilka při kreslení obdélníků ve čtvercové síti narazila na takovouto zajímavou dvojici: Obdélník s rozměry 6 cm a 4 cm a čtverec se stranou délky 4 cm. Nejdříve zakreslila do sítě obdélník a pak čtverec (obr.). S údivem ve svém obrázku objevila, že obsah nezakryté části obdélníku je roven obsahu čtverce a že nezakrytá část obvodu obdélníku je rovna celému obvodu čtverce. Mezi následujícími obdélníky najdi všechny dvojice, které mají obě vlastnosti Kamilčiných obdélníků: 3 × 9, 4 × 9, 4 × 6 a 5 × 7 (v centimetrech).

Řešení. Pozor, čtverec je zvláštní druh obdélníku.

Úlohu lze řešit experimentálně. Určíme nejprve, že první obdélník musí mít větší obsah.

- 1. U obdélníku 9×3 vyzkoušíme obdélník 6×4 .
- 2. U obdélníku 9×4 vyzkoušíme obdélníky 9×3 , 6×4 a 7×5 .
- 3. U obdélníku 5×7 vyzkoušíme obdélníky 9×3 a 6×4 .

Dostaneme jediné řešení: nakreslen je obdélník 9×4 a pak čtverec 6×6 tak, že jejich průnikem je obdélník 6×4 .

5. Myška Hryzalka našla cihlu sýra. První den snědla $\frac{1}{8}$, druhý den $\frac{1}{7}$ zbytku, třetí $den \frac{1}{6}$ zbytku a čtvrtý $den \frac{1}{5}$ zbytku. Pak už z cihly zůstala jen krychle s povrchem 150 cm². Jaký objem měla původní cihla sýra?

Řešení.

- 1. den snědla $\frac{1}{8}$, zbylo $\frac{7}{8}$;

$$6a^2 = 150, \quad a^2 = 25, \quad a = 5.$$

Objem této krychle je $a^3 = 125 \,\mathrm{cm}^3$.

Původní cihla sýra (dvojnásobná) měla objem 250 cm³.

6. Archeologové vykopali papyrus se zvláštní tabulkou s výřezem ve tvaru "obráceného Z" (obrázek). Jde zřejmě o talisman. Měl zajímavou vlastnost: zakroužkujeme--li libovolných pět čísel tak, aby v každém sloupci i řádku bylo zakroužkované právě jedno, a těchto pět čísel sečteme, dostaneme vždy stejný součet. Pokus se zrekonstruovat tento talisman, tzn. doplň čísla na prázdná místa.

Řešení. Příklad je shodný s příkladem Z8–I–6, kde je i komentář řešení.