Cluster Analysis

Lecture 07

Taken from: Muhammad Qasim

Last Week

• Decision Tree

Support Vector Machine

Content

Applications of Cluster

Types of cluster

Conclusions

What is Cluster Analysis?

Finding groups of objects such that the objects in a group will
 n (or

unrelated to) the objects in other groups

Unsupervised Learning

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Unsupervised Learning

Notion of a Cluster can be Ambiguous

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
 - Cluster of widely different sizes, shapes, and densities

Types of Clusters

- Contiguous clusters
- Density-based clusters
- Property or Conceptual

Types of Clusters: Well-Separated

• Well-Separated Clusters:

A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Contiguity-Based

Contiguous Cluster (Nearest neighbor or Transitive)

A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

Shared Property or Conceptual Clusters

Finds clusters that share some common property or represent a particular concept.

2 Overlapping Circles

Types of Clusters: Objective Function

Clusters Defined by an Objective Function

Finds clusters that minimize or maximize an objective function.

- Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
- Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
- A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.

Clustering Algorithms

Clustering Algorithms

Clustering Algorithms

K-means Clustering

Partitional clustering approach

centroid

- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centrola is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,

Example

to cluster the 16 objects with two attributes x and y

x	y
6.8	12.6
0.8	9.8
1.2	11.6
2.8	9.6
3.8	9.9
4.4	6.5
4.8	1.1
6.0	19.9
6.2	18.5
7.6	17.4
7.8	12.2
6.6	7.7
8.2	4.5
8.4	6.9
9.0	3.4
9.6	11.1

- The columns headed d1, d2 and d3 in Figure shows the Euclidean distance of each of the 16 points from the three
- The column headed 'cluster' indicates the centroid closest to each point and thus the cluster to which it should be assigned.

	Initial		
	x	\boldsymbol{y}	
Centroid 1	3.8	9.9	
Centroid 2	7.8	12.2	
Centroid 3	6.2	18.5	

The distance of the first point (6.8, 12.6) from the first centroid (3.8, 9.9) is simply

$$\sqrt{(6.8-3.8)^2+(12.6-9.9)^2}=4.0$$
 (to one decimal place)

\boldsymbol{x}	y	d1	d2	d3	cluster
6.8	12.6	4.0	1.1	5.9	2
0.8	9.8	3.0	7.4	10.2	1
1.2	11.6	3.1	6.6	8.5	1
2.8	9.6	1.0	5.6	9.5	1
3.8	9.9	0.0	4.6	8.9	1
4.4	6.5	3.5	6.6	12.1	1
4.8	1.1	8.9	11.5	17.5	1
6.0	19.9	10.2	7.9	1.4	3
6.2	18.5	8.9	6.5	0.0	3
7.6	17.4	8.4	5.2	1.8	3
7.8	12.2	4.6	0.0	6.5	2
6.6	7.7	3.6	4.7	10.8	1
8.2	4.5	7.0	7.7	14.1	1
8.4	6.9	5.5	5.3	11.8	2
9.0	3.4	8.3	8.9	15.4	1
9.6	11.1	5.9	2.1	8.1	2

The resulting clusters after 1st Iteration

Centroids after 1st Iteration and Revised Cluster

	Initial		After first iteration		
	x	y	x	y	
Centroid 1	3.8	9.9	4.6	7.1	
Centroid 2	7.8	12.2	8.2	10.7	
Centroid 3	6.2	18.5	6.6	18.6	

After 2nd Iteration and Third Set of Clusters

- These are the same clusters as before. Their centroids will be the same as those from which the clusters were generated.
- Hence the termination condition of the *k-means* algorithm 'repeat ... until the centroids no longer move' has been met and these are the final clusters produced by the algorithm for the initial choice of centroids made.

	Initial		After first iteration		After second iteration	
	x	y	x	y	x	y
Centroid 1	3.8	9.9	4.6	7.1	5.0	7.1
Centroid 2	7.8	12.2	8.2	10.7	8.1	12.0
Centroid 3	6.2	18.5	6.6	18.6	6.6	18.6

Two different K-means Clusterings

Sub-optimal Clustering

Importance of Choosing Initial Centroids

Importance of Choosing Initial Centroids

Evaluating K-means Clusters

 SSE is the sum of the squared differences between each observation and its group's mean. It can be used as a measure of variation within a cluster. If all cases within a cluster are identical the SSE would then be equal to 0.

$$SSE = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

- Where n is the number of observations, x_i is the value of the ith observation and \bar{x} is the mean of all the observations. This can also be rearranged to be written as seen in J.H. Ward's paper.
- Given two clusters, we can choose the one with the smallest error

Elbow Method

Choosing K based on a metric for how well it performs for the later purpose

Solutions to Initial Centroids Problem

- · WIGHT PIC TOTIS
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Original Points

K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points

K-means (2 Clusters)

Hierarchical Clustering

s a

hierarchical tree

Can be visualized as a dendrogram

_

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Hierarchical Clustering

hierarchical clustering

- Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
- Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

proximity matrix

Intermediate Situation

After some merging stens, we have some clusters **C**5 C1 C2 C3 **C5 Proximity Matrix**

p1

p2

p3

p4

p9

p10

p11

p12

Intermediate Situation

May work to make the two desect dustage (C) and CE) and

update the proximity matrix.

				4		
	O I	02	03	- 4	C5	
C1						
C2						
C 3				1		
<u>C4</u>						
<u>C5</u>						

Proximity Matrix

After Merging

The question is "How do we undate the provimity matrix?"

р1

p2

p9

p10

p11

p12

Distance Between Centroids

Other methods driven by an objective function

Ward's Method uses squared error

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

Distance Between Centroids

Other methods driven by an objective function

Ward's Method uses squared error

Cluster Similarity: MIN or Single Link

most similar (closest) points in the different clusters

 Determined by one pair of points, i.e., by one link in the proximity graph.

Distance Matrix:

	p1	p2	р3	p4	p_5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Cluster Similarity: MAX or Complete Linkage

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
 - Determined by all pairs of points in the two clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: MAX

Nested Clusters

Dendrogram

Strength of MAX

Original Points

Two Clusters

Less susceptible to noise and outliers

Limitations of MAX

Original Points

Two Clusters

- Tends to break large clusters
- Biased towards globular clusters

Cluster Similarity: Group Average Proximity of two clusters is the average of pairwise proximity

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} proximity(Cluster_{i}, Cluster_{j})}{|Cluster_{i}| * |Cluster_{i}|}$$

Need to use average connectivity for scalability since total proximity favors large clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Hierarchical Clustering: Group Average

Nested Clusters

Dendrogram

Hierarchical Clustering: Group Average

 Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Cluster Similarity: Ward's Method

ease

in squared error when two clusters are merged

- Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters

- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N²,
 proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

ters,

it cannot be undone

- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters

Programming Assignment

- Perform cluster validity task on your own choice of dataset:
 - Entropy and Purity of clusters
 - Cluster Cohesion and Separation
- Submission deadline: April 20, 2020

References

- Introduction to Data Mining by Tan, Steinbach, Kumar (Lecture Slides)
- https://www.iula.upf.edu/materials/040701wanner.pdf

Questions!