

Fuzzy-logic based multi-site crop model evaluation

Gianni BELLOCCHI

French National Institute for Agricultural Research, Clermont-Ferrand, France

Marco ACUTIS, University of Milan, Italy
Roberto FERRISE, University of Florence, Italy
Mike RIVINGTON, James Hutton Institute, Aberdeen, United Kingdom

FACCE MACSUR Conference 2015
Reading, United Kingdom
08-10 April 2015

A Review of Methodologies to Evaluate Agroecosystem Simulation Models

F. MARTORANA and G. BELLOCCHI

Deliberative process in model-based climate change studies

Bellocchi et al., 2006, Ital. J. Agrometeorol.

Rivington et al., 2007, Environ. Modell. Softw.

Bellocchi et al., 2015, Agron. Sustain. Dev.

MACSUR cross-cutting activities

CropM-LiveM

- Definition of model performance indicators
- Elaboration of model evaluation protocols

Richter et al., 2012, J. Appl. Remote Sens.

Setting of thresholds

Performance measure	Unit	Value range and purpose	Reliability criteria
Coefficient of determination (R ²) of the linear regression estimates versus measurements	dimensionless	0 (absence of fit) to 1 (perfect fit): the closer values are to 1, the better the model	> 0.8
Willmott (1982) index of agreement (d)	dimensionless	0 (absence of agreement) to 1 (perfect agreement): the closer values are to 1, the better the model	> 0.8
Mean absolute error over the mean of the measured values (MAE(%))	%	0 (optimum) to positive infinity: the smaller MAE(%), the better the model performance	< 20

Key issues and factors

Kov validation issues	Major factors to investigate Modelling Model Model Modelling				
Key vanuation issues	Modelling	Model	Model	Model	Modelling
	objective	inputs	outputs	s tructure	d onditions
Validation_purpose	X	+	_ X _	1	X
Robustness of results			X	1	X
Interpretation of -		- X	$-\overline{\Lambda}$	<u> </u>	4'
phenomena			1	ļ	<u> — — , , , , , , , , , , , , , , , , , ,</u>
Model comparison		4		<u></u> -X	
Model predictions	x		X	L .	-X-
Model complexity -		- x	$-\Lambda$	X -	
Data accuracy		X	X	1	1
Time histories		- :	X	i	i

Fuzzy-logic based indicators

Synthetic indicators

Aggregation rules: fuzzy-logic based weighing system

Non-dimensionality

Lower and upper bounding

(best) 0 – 1 (worst)

I. Agreement

- Correlation coefficient
- Index of agreement
- Probability of equal means

II. Complexity

- Ratio of relevant parameters
- Parameters-agreement criterion

III. Stability (robustness)

Index of robustness

Hindrances to overcome: thresholds and weights

CropM wheat simulations:

yield, above-ground biomass at maturity

Model	Aboveground biomass at maturity: performance metrics, modules and indicator							
Model	$\overline{P(t)}$	$ar{r}$	\overline{d}	$\overline{R_p}$	$\overline{w_k}$	I_R		
M1	0.23	0.46	0.64	0.32	1.99E-13	65.4		
M2	0.20	0.46	0.60	0.28	2.66E-11	6.0		
M3	0.01	-0.25	0.70	0.53	0.12	149.5		
M4	0.08	-0.36	0.25	0.50	0.88	344.6		
M5	0.08	0.49	0.60	0.37	1.34E-08	377.6		
	Agreement			Comp	Robustness			
M1		0.8000 0.7975				1.0000		
M2	0.8000			0.7	0.6049			
М3	1.0000			1.0	1.0000			
M4		0.8640		0.5	000	1.0000		
M5	0.8640			0.8	1.0000			
	MQI _m							
M1	0.8976							
M2	0.7471							
M3	1.0000							
M4	0.8428							
M5	0.9640							

Model evaluation / deliberative process

rehensive evaluation Components of model quality

Agreement with actual data (rmetrics, test statistics)

Complexity (set of equations, parameters)

Stability (performance over different conditions)

Evaluation - simulation models

(experimental / observational research, socio-economic / climate scenarios)

Deliberative process

(review, exchange of information, consensus)

Context

Credibility

Transparency

Uncertainty

Background

Stakeholders

Bellocchi et al., 2015, Agron. Sustain. Dev

Towards a consolidated, internationally-agreed protocol to evaluate models: what does go forth?

Review of settings

- Selection of metrics
- Attribution of thresholds and weights

Extension to multiple outputs

Literature sources

- Bellocchi G, Confalonieri R, Donatelli M (2006) Crop modelling and validation: integration of IRENE_DLL in the WARM environment. Italian Journal of Agrometeorology 11:35-39
- Bellocchi G, Rivington M, Matthews K, Acutis M (2015) Deliberative processes for comprehensive evaluation of agroecological models. A review. Agronomy for Sustainable Development 35:589-605
- Bellocchi G, Rivington M, Donatelli M, Matthews KB (2010) Validation of biophysical models: issues and methodologies. A review. Agronomy for Sustainable Development 30:109-130
- De Jager JM (1994) Accuracy of vegetation evaporation formulae for estimating final wheat yield. Water SA 20:307-314
- Richter K, Atzberger C, Hank TB, Mauser W (2012) Derivation of biophysical variables from Earth observation data: validation and statistical measures. Journal of Applied Remote Sensing 6:063557
- Rivington M, Matthews KB, Bellocchi G, Buchan K, Stöckle CO, Donatelli M (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environmental Modelling & Software 22:202-210

Agriculture Food Security and Climate Change

www.faccejpi.com

Title

C and N Models Intercomparison and Improvement to assess management options for GHG mitigation in agrosystems worldwide

Acronym

CN-MIP

Adaptation de l'agriculture et de la forêt au changement climatique