Teorema 5.4.7

Cualquier conjunto de n vectores linealmente independiente en \mathbb{R}^n genera a \mathbb{R}^n .

Demostración

Sean
$$\mathbf{v}_1 = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}$, ..., $\mathbf{v}_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}$, vectores linealmente independientes y

sea
$$\mathbf{v} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
 un vector en \mathbb{R}^n . Debemos demostrar que existen escalares c_1, c_2, \dots, c_n tales que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

Es decir

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = c_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + c_2 \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + c_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}$$
(5.4.11)

En (5.4.11) se multiplican componentes, se igualan y se suman para obtener un sistema de n ecuaciones con n incógnitas c_1, c_2, \ldots, c_n :

$$a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n = x_1$$

$$a_{21}c_1 + a_{22}c_2 + \dots + a_{2n}c_n = x_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}c_1 + a_{n2}c_2 + \dots + a_{nn}c_n = x_n$$
(5.4.12)

Se puede escribir (5.4.12) como $A\mathbf{c} = \mathbf{v}$, donde

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \mathbf{y} \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Pero det $A \neq 0$ ya que las columnas de A son linealmente independientes. De manera que el sistema (5.4.12) tiene una solución única \mathbf{c} por el teorema 5.4.6 y el teorema queda demostrado.

Observación. Esta demostración no sólo muestra que v se puede escribir como una combinación lineal de los vectores independientes $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, sino también que esto se puede lograr *de una sola manera* (ya que el vector solución \mathbf{c} es único).

Tres vectores en \mathbb{R}^3 generan \mathbb{R}^3 si su determinante es diferente de cero

Los vectores (2, -1, 4), (1, 0, 2) y (3, -1, 5) generan \mathbb{R}^3 porque $\begin{vmatrix} 2 & 1 & 3 \\ -1 & 0 & -1 \\ 4 & 2 & 5 \end{vmatrix} = -1 \neq 0$ y, por lo tanto,