

# Dna Dizilimlerinin Sayısallaştırılması İçin Entropi Tabanlı Yeni Bir Sayısal Haritalama Tekniği

İbrahim Türkoğlu Bihter Daş bihter@ualberta.ca & bdas@firat.edu.tr iturkoglu@firat.edu.tr

Yazılım Mühendisliği Fırat Üniversitesi Elazığ, Türkiye

Bu çalışmanın amacı, DNA dizilimlerini sayısal sinyal işleme uygulamalarında kullanabilmek için yeni bir sayısal haritalama tekniği önermektir.

- ☐ Her bir kodon Shannon denkleminin geliştirilmiş kesirli bir türevi olan fraksiyonel entropi denklemi ile haritalanmaktadır.
- □ DNA dizilimdeki ekzon bölgelerini tespiti için Tekli Değer Ayrışımı, Ayrık Fourier Döüşümü yöntemi kullanılmaktadır.
- tekniğinin performansı varolan diğer sayısal haritalama teknikleriyle ☐ Önerilen haritalama karşılaştırılmaktadır.
- ☐ Her ekzon pozisyonunun tespiti için yöntemin doğruluk oranı ve ortalama basarim başarımı yaklaşık olarak %96 dır.



Şekil 1. Bir DNA'nın yapısı

- DNA, genetik talimatları taşıyan bir nükleik asittir.
- DNA dizilimleri, DNA bölgesindeki A,G,C,T nükleotid bazlarının sırasının belirlenmesi işlemidir.
  - DNA dizilimlerinde protein kodlayan bölgelere ekzon, protein kodlamasına katılmayan bölümlere intron denir.

gi|41223386|emb|AJ229040.1| Homo sapiens 959 kb contig between AML1 and CBR1 on chromosome 21q22GATCACTGAGCAT CCTGGCACATAATAAGCACAATATGAATTTTTTAGGTAAAAATAAAGATTGAAAGCTTTCTCAGTGCCGGGCACTGTGATAAGGACTTTAAACGCGGTACTATAATGATG GTAACTGGGATTGTCCTGGCCAATGGGGTGATGGCCACCCCAACTACAGTCTACCAGGATGACAGAGCACTGGGTGCAGACCCAGGAGAGGTGGGGAGGAGTGGCACGAG ACTGGCAATACTGGGAAAATTTTATAGTCAGCACATTTTAAAATTAGCCAGACACGAACTTTAGCCGTTCGCCTGAATACTCATCGCACAGAGTGCTAGAACCCTGCAAG AGGGTCTCTGAAATTAGGATACTATCAGAATTCTCGGAAGTATTTCTCATGTAGCATCTTTTTAGATAAGTCCATGTCAGAGGTGGAAAACTCAGGTTGTTCTGTTTTTGC TTCTCAAGAGGACTGGTTAGACATTTTGTAGAATGTTCCCCATTTGCATGTGTCTGATGTTTTCTTGTGATTAGACCAGGGTTTTTGGGTTTCTGGGAAGAATACCATGAA 

Şekil 2. NCBI veritabanından alınan AJ229040 genine ait bir DNA dizilim örneği

## Deneysel Sonuçlar





Şekil 4. Ekzon bölgelerinin taranmasına yönelik Tekli Değer Ayrışımı yönteminde farklı sayısal

haritalama tekniklerinin performanslarının karşılaştırılması

Dizilimdeki analog değerlerini sayısal değerlere dönüştürmek için fraksiyonel Shannon Entropi yöntemi kullanılmıştır.

$$Sf = -\sum_{i} [(-p(x_i))^{\alpha} p(x_i) \log(p(x_i))]$$

 $p(x_i)$  değeri bir DNA dizilimindeki her bir kodonun tekrarlama sıklığıdır.

$$\alpha = \frac{1}{\log(p(x_i))}$$

# Önerilen Entropi Tabanlı Sayısal Haritalama Tekniği

# Y<sub>a+c+g+t</sub> The pertinent base position

Şekil 5. Entropi tabanlı haritalama tekniğinin Ayrık Fourier Dönüşümü yöntemindeki ekzon bölgelerinin taranmasındaki başarımı

**Tablo 1.** Esik değere göre sayısal haritalama tekniklerinin doğruluk oranlarının karşılaştırılması

| Haritalama Tekniği                 | Esik değer | Protein Kod Bölgeleri Doğruluk Oranı (%) |
|------------------------------------|------------|------------------------------------------|
| Integer Tekniği                    | 0.0463     | 86,125                                   |
| EIIP Tekniği                       | 0.000142   | 77,53                                    |
| DNA Walk Tekniği                   | 0.0305     | 90,82                                    |
| Paired Numeric Tekniği             | 0.0290     | 87,79                                    |
| Entropi Tabanlı Haritalama Tekniği | 0.0275     | 96,114                                   |

### Ekzon Bölgelerinin Tespitinde Haritalama Tekniğinin **Performansi**



Şekil 3. AFD, KZFD ve TDA yöntemlerinde önerilen sayısal haritalama tekniği ile ekzon bölgelerinin belirlenmesine yönelik uygulamanın blok diyagramı

### Sonuç

- ✓ DNA dizilimindeki protein kodlayan bölgelerin (ekzon) tespiti için yeni bir sayısal haritalama yaklaşımı önerilmiştir.
- ✓ Dizilimdeki her bir kodon Shannon denkleminin geliştirilmiş fraksiyonel türevi ile sayısallaştırılır.
- ✓ Önerilen sayısal haritalama teknik 6 ekzon bölgesini bulmada büyük bir basari göstermiştir.
- ✓ Önerilen haritalama tekniğinin başarımı TDA, AFD yöntemlerinde test edilmiştir.
- ✓ Önerilen teknik %96.116 başarım göstermiştir.