My summaries about automaton used in model checking

Zhang Yedi

1. First Section

1. One scenario where 'automaton is closed under complementation' is necessary:

If an automaton \mathcal{A} is closed under complementation, and an AMA $\mathcal{M}^{\langle\langle A\rangle\rangle\varphi}$ can recognize the set of configurations of \mathcal{P} satisfying $\langle\langle A\rangle\rangle\varphi$ in a bottom-up approach. We assume that $\mathcal{M}^{\neg\langle\langle A\rangle\rangle\varphi}$ has also been computed to recognize $\mathcal{C}_{\mathcal{P}}$ (T Chen et al. 2016).

2. Automaton's production (reference):

The question is like:

And the answer should be like:

In Section 4.2.2 of the book "Principles of Model Checking", there is a definition (Definition 4.16; Page 165) of "Product of Transition System and NFA". You are right about the states (i.e., $S \times Q$) of the product but make mistakes about its transition relation. Below I focus on the transition relation.

Definition 4.16 Product of Transition System $TS=(S,Act,\to,I,AP,L)$ and NFA $\mathcal{A}=(Q,\Sigma,\delta,Q_0,F)$. The transition relation \to' of their product is the smallest relation defined by the rule

$$rac{s
ightarrow^{lpha}t\ \wedge\ q
ightarrow^{L(t)}p}{(s,q)
ightarrow^{\primelpha}(t,p)}$$

Intuitively, the transition system TS generates atomic propositions and feeds them into the automaton \mathcal{A} , driving the automata running. This semantics can be used to verify if the TS satisfies some property expressed by an automaton.

Additionally, the start states of the product is

$$I' = \{(s_0,q) \mid s_0 \in I \land \exists q_0 \in Q_0. \, q_0
ightarrow^{L(s_0)} \, q\}.$$

That is, q_0 in automaton has moved one step forward, driven by the atomic propositions in s_0 .

Based on the definition above, I calculate the product as follows (please check it):

3. Why PDA → Multi-Automaton is necessary?

PDA has an infinite sets of states (because it has an infinite stack space, even though its control states and alphabet are all finite). So for a PDA, a state should be a configuration like $\langle p_i,\omega\rangle$. In the case of finite states systems, the sets X_i are all finite, and the sequence $\{X_i\}_{i\geq 0}$ is guaranteed to reach a fix point, which immediately provides an algorithm to compute $pre^*(S)$. Unfortunately, these properties no longer hold for any non-trivial class of infinite states systems.

Introduction to Alternating Multi-Automaton: We can regard that an AMA has one initial state for each control location in Pushdown automaton, so for AMA, it doesn't just has only one initial state, instead, it has a initial states set. And the automaton recognizes the configuration $\langle p, \omega \rangle$ if it accepts the word ω from the initial state corresponding to p. (AMA is just a tool to represent a set of configurations, and not to confuse its "behaviour" with that of the pushdown system.)[BEM97].

Multi-Automaton: Given a MA \mathcal{A} , it returns a *regular* set of configurations C of PDA, what's more, we can get another MA \mathcal{A}_{pre^*} recognizing $pre^*(C)$ (a closure set of pre(C)).

```
1 def main():
2   return Null
```

Literatur

[BEM97] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown automata: Application to model-checking. In CONCUR '97: Concurrency Theory, 8th International Conference, Warsaw, Poland, July 1-4, 1997, Proceedings, pages 135–150, 1997.