

המחלקה להנדסת חשמל ואלקטרוניקה

קורס התקנים לוגיים מתכנתים 31551

תרגיל מעבדה מסכם

כתב וערך: מר אורן זלץ

בדק ואישר: ד"ר פאדל טריף

'תשפ"ד סמסטר ב

קורס התקנים לוגיים מתכנתים 31551

פרויקט מסכם

1 כללי

יש לתכנן מערכת שקולטת 2 מטריצות בגודל 4×4 כל אחת, מחשבת את תוצאת המכפלה של שתי המטריצות ומציגה את התוצאה על-גבי תצוגת 7-segment.

2 סכימת בלוקים כללית

איור 1: סכימת בלוקים כללית

הבלוק הכתום יספק את המטריצות עליהן יבוצע החישוב. בלוק זה יסופק על ידינו ויהיה חלק מהקושחה הכוללת. main_controller הוא הבלוק הראשי אך לא היחיד. כל השאר לא מופיעים באיור זה.

הגדרת הדרישות 3

פירוט דרישות המערכת 3.1

- המערכת תופעל משעון יחיד של 50MHz.
- active low היא RESET מגיעה מלחצן שבערכה € כניסת ה- RESET
- המערכת תתעורר במצב המתנה. במצב זה כל ה-LEDs ותצוגת ה-7seg יהיו כבויים למעט (LEDG(1) שידלוק **בכל** זמן פעולת המערכת.
- לחיצה ראשונה על הלחצן STARTn תגרום לבלוק data_generator להתחיל להוציא את שתי המטריצות. קודם כל יתקבלו כל 16 האיברים של המטריצה הראשונה ולאחר מכן כל 16 האיברים של המטריצה השנייה. סדר קבלת האיברים לכל מטריצה הוא משמאל לימין ומלמעלה למטה. בזמן קבלת המטריצות, המערכת תתעלם מלחיצות על הלחצנים STARTn ו-DISPLAYn.
 - גודל כל מטריצה 4×4 כאשר כל איבר במטריצה הוא 8 bits **signed (**מספרים מסומנים בין <mark>127-</mark> ל +127).
- המטריצות ירשמו לזיכרון בסדר שנתון לשיקולכם. שימו לב: סדר רישום איברי המטריצות לזיכרון ישפיע על אופן ואופטימליות המימוש.
 - בסיום קבלת שתי המטריצות (ורישומן לזיכרון) ידלק (LEDG(2 והמערכת תעבור למצב המתנה.
- לחיצה על לחצן STARTn תעביר את המערכת למצב חישוב שבו תחושב המטריצה שהיא מכפלה של שתי המטריצות שהתקבלו ונמצאות בזיכרון. בזמן חישוב מטריצת היעד, המערכת תתעלם מלחיצות על הלחצנים STARTn ו-DISPLAYn.
- המטריצה שהיא תוצאת ההכפלה של שתי המטריצות שהתקבלו תרשם אף היא לאותו הזיכרון בכתובות אחרות. שימו לב: בכל מחזור שעון ניתן לבצע קריאה מהזיכרון או כתיבה לזיכרון. אין אפשרות לכתוב ולקרוא מהזיכרון בו-זמנית.
 - בסיום רישום מטריצת היעד לזיכרון המערכת תעבור באופן אוטומטי למצב הצגה: תצוגת 7-seg תדלק
 ותציג כבר עתה את האיבר הראשון במטריצת היעד. במצב זה (EDG(2) יכבה ו-(EDG(3) ידלק.
 - כל לחיצה על לחצן DISPLAYn תגרום להצגת האיבר הבא של מטריצת היעד על גבי התצוגה.
 - שימו לב: הערכה כוללת 4 ספרות בתצוגה. זה לא מספיק בכדי להציג מספרים של 5 ספרות ולכן ישנם
 4 לדים שנקראים LEDS_1E4 שם תוצג ספרת עשרות האלפים של המספר בקידוד בינארי.
 - הסימן של התוצאה יוצג על גבי LED SIGN: כבוי-התוצאה חיובית, דולק-התוצאה שלילית.
 - במידה ומוצג האיבר ה-16 ונלחץ שוב הלחצן DISPLAYn, יוצג שוב האיבר הראשון וחוזר חלילה.
- לחיצה על הלחצן STARTn תחזיר את המערכת למצב המתנה (המצב ההתחלתי). במצב זה המערכת שוב תחכה ללחיצה על הלחצן STARTn ותהיה מוכנה לקבל שתי מטריצות חדשות. כל התצוגות והלדים יכבו (למעט (LEDG(1) שכאמור ידלוק לאורך כל פעולת המערכת).
 - אין הגבלה על מספר הסבבים שהמערכת מסוגלת לבצע.

דגשים:

- 1. ינתן דגש על זמן החישוב של מטריצת היעד. ככל שיקח פחות מחזורי שעון כך יותר טוב.
 - 2. ינתן דגש על כמות המכפלים שבשימוש ככל שיש פחות כך יותר טוב.

שימו לב: שני הדגשים סותרים אחד את השני.

יש יותר מפתרון אחד קביל אחד.

המכללה האקדמית להנדסה בכרמיאל

קורס התקנים לוגיים מתכנתים 31551

כל פתרון דורש נימוק והסבר לשיקולים.

ציוד נדרש 4

- Cyclone V Starter Kit ערכת
- מחשב הכולל ++modelsim ,notepad ו-quartus.

5 הנחיות כלליות

- הקוד יכתב ב-VHDL
- .(testbench ולסמלץ כל בלוק בנפרד (למעט בלוקים שצויין שלא נדרש עבורם testbench).
 - יש לבצע סימולציה מלאה לכל המערכת (full chip).
- כל הקוד שיוגש חייב להיות אישי. אין להשתמש בקוד מוכן (למעט היכן שצויין אחרת) או להוריד מודולים מאתרים שונים ברשת.
 - .modelsim-שמקמפל את כל הפרויקט ב do יש לצרף קובץ •
- יש לצרף קובץ do ששומר את סידור הסיגנלים ב- waveform כולל group לסיגנלים של כל קומפוננטה.
- יש לצרף קובץ do שקורא לשני קבצי ה-do הקודמים ובנוסף טוען את התכן לתוך הסימולטור ומריץ את הסימולציה.
 - שימוש ב-synchronizer במקומות שנדרש.
 - שימוש בגוזר במקומות שנדרש.
 - יש להקפיד על כתיבה מבנית.
 - אין להשתמש במשתנים פרט לשמירת חישובי ביניים.
 - יש להקפיד על כללי הכתיבה הנכונה לסינתיזה.
 - אין להשתמש במספרים בתוך הקוד. יש להגדיר קבועים עם שמות בעלי משמעות (מותר להשתמש במספרים 1 בתוך הקוד. אין צורך להגדיר עבורם קבוע).
 - יש for loop) אין להשתמש בלולאות (for loop) למשל) בקוד שמיועד לסינתזה. במידה והשתמשתם בלולאות יש לנמק למה היה צריך.
 - .quartus-יש לוודא שאין critical warning או warning יש לוודא שאין
 - לפני תחילת העבודה נא לוודא שאתם זוכרים כיצד מכפילים שתי מטריצות.

שימו לב, בדיקת התרגיל היא אוטומטית בחלקה.

חובה לשמור על על שמות הקבצים, שמות ה-entities, שמות ה-ports וה-generics המוגדרים במסמך זה אחרת ירדו נקודות לחינם.

תכן מפורט 6

6.1 תהליך התכנון

DATA GENERATOR תיאור הבלוק 6.1.1

ניתן להוריד את הבלוק הזה מהמודל

אין צורך לבצע סימולציה לבלוק זה. יש tb אין צורך לבצע

בגבוה. DOUT_VALID בגבוה מייצר מידע מקבילי כל עליית שעון. המידע ביציאה

data generator איור 2: בלוק

data generator טבלה : תיאור הבלוק

	Generics				
Name	default value	type	Description		
		-			
		Por	ts		
Name	Dir.	type	Description		
		System :	Signals		
CLK	1	std_logic	System clock		
RST	1	std_logic	Active high asynchronous reset		
		Other S	ignals		
DATA_REQUEST	1	std_logic	פעיל בגבוה, ברוחב מחזור שעון אחד. פולס אחד בכניסה זו יגרום		
			להוצאת 16 איברים של מטריצה אחת.		
			הבלוק יתעלם מכניסה זו בזמן שהוא מוציא נתונים.		
DOUT	0	std_logic <mark>_vector (7:0)</mark>	16 איברי המטריצה יוצאים לפי הסדר משמאל לימין, מלמעלה		
			למטה. כל מספר מיוצג ע"י 8 סיביות. המספרים מסומנים		
			.(signed)		
DOUT_VALID	0	std_logic	המידע ביציאה DOUT תקף בכל עליית שעון שבה יציאה זו		
			בגבוה.		

my_multiplier תיאור הבלוק 6.1.2

ניתן להוריד את הבלוק הזה מהמודל אין צורך לבצע סימולציה לבלוק זה. יש tb למי שמעוניין.

בלוק זה מכפיל שני מספרים. שני המספרים יכולים להיות מסומנים או לא מסומנים. תוצאת ההכפלה תופיע ביציאת הבלוק לאחר מספר מחזורי שעון שנקבע על סמך פרמטר המתואר בטבלה מטה.

my_multiplier איור 3: בלוק

my_multiplier טבלה2 : תיאור הבלוק

	Generics					
Name	default	type	Description			
	value					
N	8		כמות הביטים בכניסות A ו-B			
LATENCY	1		ההשהייה של המכפל מכניסה ליציאה במחזורי שעון (מינימום 1)			
IS_SIGNED	false		False -המספרים חיוביים			
			True – המספרים מסומנים			
	Ports					
Name	Dir.	type	Description			
		System S	Signals			
CLK	1	std_logic	System clock			
		Other S	ignals			
DIN_VALID	1	std_logic	1 בכניסה זו אומר שהכניסות A ו-B תקפות			
Α	1	std_logic_vector (N-1:0)				
В	1	std_logic_vector (N-1:0)				
Q	0	std_logic_vector (2N-1:0)	תוצאת המכפלה של A ו-B			
Q_VALID	0	Std_logic	תקפה כאשר יציאה זו ב-1 Q תקפה כאשר יציאה זו			

bcd_to_7seg בלוק 6.1.3

bcd_to_7seg איור 4: הבלוק

טבלה 3: תיאור הבלוק bcd_to_7seg

Generics				
default value	Туре	Description		
	Ports			
Dir.	type	Description		
User Signals				
1	std_logic_vector (3:0)	BCD digit value		
1	std_logic	0 – D_out is all '1' regardless of BCD_IN state.		
0	std_logic_vector (6:0)	Digit value in 7-seg format (common anode)		
	Dir.	Type		

bin2bcd_12bit_sync בלוק 6.1.4

bin2bcd_12bit_sync איור 5 : הבלוק

bin2bcd_12bit_sync טבלה 4: תיאור הבלוק

Generics						
Name	default value	Туре	Description			
		Ports				
Name	Dir.	type	Description			
	System Signals					
CLK	1	std_logic				
		User Signal	S			
BinIN	1	std_logic_vector (1 <mark>5</mark> :0)	BCD digit value			
ones	0	std_logic_vector (3:0)	One's digit			
tenths	0	std_logic_vector (3:0)	Tenth's digit			
hunderths	0	std_logic_vector (3:0)	Hundred's digit			
thousands	0	std_logic_vector (3:0)	Thousand's digit			
tensofthousands	0	std_logic_vector (3:0)	ספרת עשרות האלפים			

matrix_ram בלוק 6.1.5

matrix_ram איור 6: הבלוק

שבלה 5: תיאור הבלוק matrix_ram

Generics				
Name	default	Туре	Description	
	value			
DATA_WIDTH	8	integer		
ADDRESS_BITS	6	integer		
		Ports		
Name	Name Dir. type Description			
		System Signa	als	
CLK	1	std_logic	System clock	
RST	1	std_logic	Active high asynchronous reset	
		User Signal	S	
DATA	1	std_logic_vector	Write data port	
		(DATA_WIDTH-1:0)		
WREN	1	std_logic	Active high write enable input	
ADDRESS	1	std_logic_vector	Memory address	
		(ADDRESS_BITS-1:0)		
BYTEENA	1	std_logic_vector	Active high byte enable input	
		(DATA_WIDTH/8-1:0)		
Q	0	std_logic_vector	Read data	
		(DATA_WIDTH-1:0)	ההשהייה בקריאה מ-ADDRESS ל-Q היא מחזור שעון אחד	

num_convert בלוק 6.1.6

num_convert איור 6 : הבלוק

num_convert טבלה 6: תיאור הבלוק

Generics					
Name	default value	Туре	Description		
		Ports			
Name Dir. type Description					
	System Signals				
CLK	1	std_logic	System clock		
RST		std_logic	Asynchronous, active high reset		
	User Signals				
DIN	1	std_logic_vector (16:0)	מספר מסומן		
DIN_VALID	0	std_logic_vector (3:0)	1-DIN is valid		
DOUT	0	std_logic_vector (15:0)	הערך המוחלט של המספר שבכניסה		
SIGN	0	std_logic	0- המספר שבכניסה חיוב 1- המספר שבכניסה שלילי		

 $sync_diff$ מימוש הבלוק מימוש 6.1.18

איור 9 : הבלוק של סינכרונייזר/גוזר

טבלה 8: תיאור הבלוק sync_diff

Generics				
Name	Dir.	Type Description		
G_DERIVATE_RISING_EDGE		boolean – גוזר עליה – true ב		
			אם false – גוזר ירידה	
G_SIG_IN_INIT_VALUE		std_logic	לשים פה את ערך ברירת המחדל של הסיגנל בכניסה	
	Ports			
Name	Dir.	type Description		
	System Signals			
CLK	1	std_logic	System clock	
RST	1	std_logic Active low system reset. Connect to KEYO on EVB.		
SIG_IN	1	std_logic 0 – KEY pressed		
			1 – KEY not pressed	
SIG OUT	0	std_logic	Gets 1 for 1 clk cycle when SIG_IN pressed	

main_controller מימוש הבלוק 6.1.19

main_controller איור 7: הבלוק

טבלה 7: תיאור הבלוק main_controller

Generics				
Name Dir.		Туре	Description	
		Ports		
Name	Dir.	type	Description	
		System Sign	als	
CLK	1	std_logic	System clock	
RST	1	std_logic	Active high asynchronous reset	
START	1	std_logic	פולס חיובי ברוחב מחזור שעון אחד שמתקבל בעקבות	
			STARTn לחיצה (ולא שחרור) על הלחצן	
DISPLAY		std_logic	פולס חיובי ברוחב מחזור שעון אחד שמתקבל בעקבות	
			לחיצה (ולא שחרור) על הלחצן DISPLAYn	
DATA_REQUEST O std_log		std_logic	פולס חיובי ברוחב מחזור שעון אחד שבעקבותיו יתקבלו 16	
		איברים של מטריצה אחת.		
DIN	1	std_logic_vector (7:0)	כניסת המידע של איברי המטריצה המתקבלת	
DIN_VALID	1	std_logic	המידע בכניסה DIN תקף בכל עלית שעון שבה כניסה זו ב-'1'	
RESULT	0	std_logic_vector (16:0)	ביציאה זו יצאו הערכים של מטריצת היעד	
RESULT_READY	ESULT_READY O std_logic יף בכל עלית שעון שבה יציאה זו		תקף בכל עלית שעון שבה יציאה זו RESULT המידע ביציאה	
			L-'1'.	
GOT_ALL_MATRICES O std_logic		std_logic	יציאה זו תעלה ל-'1' לאחר שהתבלו שתי מטריצות המקור	
			י ונרשמו לזיכרון.	

יש לממש את הבלוק. יש לבדוק את התנהגות המערכת באמצעות שימוש ב-testbench ברמה העליונה בלבד! <mark>אין צורך לבנות testbench נפרד לבלוק זה</mark>

קורס התקנים לוגיים מתכנתים 31551

היונה העליונה 6.1.20

איור 8 : הבלוק של הרמה העליונה

שבלה 8: תיאור הבלוק matrices_mult

	Generics				
Name	Dir.	Туре	Description		
		Ports			
Name	Dir.	type	Description		
		System Sign	als		
CLK	1	std_logic	System clock		
RSTn	1	std_logic	Active low system reset. Connect to KEYO on EVB.		
STARTn	1	std_logic	0 – KEY pressed		
			1 – KEY not pressed		
DISPLAYn	1	std_logic	0 – KEY pressed		
			1 – KEY not pressed		
HEX0	0	std_logic_vector (6:0)	0 will turn on the relevant segment		
			ספרת האחדות		
HEX1	0	std_logic_vector (6:0)	0 will turn on the relevant segment		
115.40			ספרת העשרות		
HEX2	0	std_logic_vector (6:0)	0 will turn on the relevant segment		
HEX3	0	std logic vector (6.0)	ספרת המאות		
ПЕХЗ	0	std_logic_vector (6:0)	0 will turn on the relevant segment ספרת האלפים		
LEDS 1E4	0	std_logic_vector (3:0)	יצוג בינארי של ספרת עשרות האלפים		
100_104		sta_logic_vector (5.0)	1 will turn on the relevant LED		
LED SIGN	0	std_logic	1 will turn on the relevant LED		
LEDG	0	std_logic_vector (3:1)	1 will turn on the relevant LED		

יש לממש את הבלוק. יש לבדוק את התנהגות המערכת באמצעות שימוש ב-testbench מוכן שניתן להוריד מהמודל.

באמצעות testbench זה יבדקו העבודות על ידינו טרם מתן הציון.

7 הדוח המסכם

הדוח יוגש כמסמך word ויכלול את הפרקים הבאים:

- דף שער •
- הגדרת דרישות המערכת.
- סכימת בלוקים מפורטת.
- תיאור כל בלוק כולל דיאגרמות מצבים של מכונות המצבים של אותו הבלוק (למעט בלוקים שקבלתם auartus) אין לצרף דיאגרמות מצבים מתוך ה-quartus
 - תוצאות סימולציה של כל בלוק (למעט בלוקים שקבלתם מוכנים).
 - .full-chip תוצאות סימולציית
 - סיכום ניצול משאבים של כל בלוק ושל כל התכן.
 - .signaltap- מספר תוצאות "מעניינות" של ה
 - .timing תוצאות ניתוח
 - תוצאות RTL netlist viewer עבור כל בלוק ועבור הרמה העליונה
 - סיכום ומסקנות.
 - יש לכווץ את כל התיקיה של הפרויקט ולהגיש יחד עם הדו"ח המסכם.

הצגת הפרויקט בתאריך 12,14/8/2024 הגשת הדו"ח עד 30/8/2024

פרויקט מסכם

קורס התקנים לוגיים מתכנתים 31551

לו"ז ביצוע הפרויקט

		_	
הערות	נושא לביצוע	תאריך	מפגש
		תחילת	
		317 1131	
		שבוע	
בזמן המעבדה - 3 שעות	1. הצגת התרגיל המסכם	21/7/2024	1
		21,772021	
בזמן המעבדה - 3 שעות	2. מימוש הבקר הראשי	28/7/2024	2
בונון וונועבו וו - ט שעוונ	2. נו נווס ווביוןו ווו אס	20/1/2024	_
		4/0/0004	_
בזמן המעבדה - 3 שעות	3. מימוש הרמה העליונה וצריבת	4/8/2024	3
	המערכת		
	313 13 13 1		
בזמן המעבדה - 3 שעות	4. הצגת הפרויקט	11/8/2024	4
בונון וונועבו וו - ט פעוונ	ד. ווצגונ וופו ויזןט	11/0/2024	
40 "		00/0/0004	
סה"כ 12 שעות	5. הגשת דו"ח	30/8/2024	