# COERVE C

#### SPECIFICA'L ION PATENT

NO DRAWINGS

930,988

be ≞d



Date of filing Complete Specification: June 26, 1959.

Application Date: July 3, 1958.

No. 21308/58.

Complete Specification Published: July 10, 1963.

-Classes 37, K(1D3A:2R4:3X), K4(F1:G4:GX); 2(3), C1F4(B:D3:F2: F5), C2B(18:21); 2(5), R1C(9:10:11:12:13:14:16), R2C(9:10:11:12:13:14:16), R3C(6:7:8:9:10:11:12:13:14:16), R5C(9:10:11:12:13:14:16) Index at acceptance:-16), R19C(9:10:11:12:13:14:16), R20C(9:10:11:12:13:14:16), R22C(9:10:11:12:13:14:16), R29C(9:10:11:12:13:14:16), R33C(9:10:11:12:13:14:16); R33C(9:10:11:12:13:14:16); R33C(9:10:11:12:13:14:16); R33C(7:14B:17:20B), P10C(6B:14B:20C), P10(D1A:T2E); and 95, A4R, B4X.

International Classification:—H01c. (B05. C07c, d. C08f, g. C09d).

### COMPLETE SPECIFICATION

### Improvements in and relating to Electrophotographic Reproduction Materials

|                                                                                                                                       | )y<br>18 |    |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|----|
| ERRATA                                                                                                                                | С        | 45 |
| SPECIFICATION No. 930,988                                                                                                             | :        |    |
| Page 1, Table: 1st column, 11th entry, delete "hyphen" after "3" Page 8, lines 53 and 54, for "form- aldehydride" read "formaldehyde" |          | 50 |
| Page 9, line 30, for "image" read "images" THE PATENT OFFICE 20th August 1963                                                         |          | 55 |

overall uniform electrostatic charge in the dark or under safe light conditions and when exposed to light through an original, say a drawing, the electrostatic charge is lost in the areas exposed to light but retained to a greater or lesser degree, depending upon the amount of light to which the material is exposed, in the dark parts of the original. A charge pattern is thus produced on the material which corresponds with the original (e.g. the drawing) through which the charged plate was exposed.

This charge pattern may be rendered visible

by the application of a developer powder of the kind which may acquire a charge, triboelectrically, the said powder being attracted to and held by the charge pattern produced by exposure in amounts depending upon the strength of the charge pattern.

in the manufacture of electrophotographic materials should possess certain characteristics such as for instance, range of use, reliability, simplicity of handling, light sensitivity and keeping qualities and it is an object of the present invention to provide materials for use in electrophotographic methods in which the photoconductive insulating materials used in their manufacture shall have as many of the above referred to desirable characteristics as possible.

According to the present invention there is provided an electrophotographic material consisting of a conductive support and a photoconductive insulating layer adherent hereto, which layer comprises an organic compound of general formula

60

BNSDQCID: <GB 930988A 1 >

# POTENT SPECIFICATION

NO DRAWINGS

930,988

10

20



Date of filing Complete Specification: June 26, 1959.

Application Date: July 3, 1958.

No. 21308/58.

Complete Specification Published: July 10, 1963.

Index at acceptance:—Classes 37, K(1D3A:2R4:3X), K4(F1:G4:GX); 2(3), C1F4(B:D3:F2: F5), C2B(18:21); 2(5), R1C(9:10:11:12:13:14:16), R2C(9:10:11:12:13:14:16), R3C(6:7:8:9:10:11:12:13:14:16), R5C(9:10:11:12:13:14:16), R19C(9:10:11:12:13:14:16), R20C(9:10:11:12:13:14:16), R22C(9:10:11:12:13:14:16), R29C(9:10:11:12:13:14:16), R33C(9:10:11:12:13:14:16), R33C(9:10:11:12:13:14:1 11:12:13:14:16); 2(6), P3C(7:1 P10(D1A:T2E); and 95, A4R, B4X. P3C(7:14B:17:20B), P10C(6B:14B:20C),

International Classification:—H01c. (B05. C07c, d. C08f, g. C09d).

#### COMPLETE SPECIFICATION

# Improvements in and relating to Electrophotographic Reproduction Materials

We, OZALID COMPANY LIMITED, a British Company and RICHARD PENN ROYER, a British Subject, both of Langston Road, Loughton, Essex, (formerly of 62, London Wall, London, E.C.2), do hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:

This invention relates to materials for use in electrophotographic reproduction methods.

Electrophotographic methods are now well known and usually make use of the photoconductive insulating properties of materials such as selenium or zinc oxide. Such materials are capable of holding an electrostatic charge in the dark or under safe light conditions and of losing such charge selectively in accordance with the amount of light falling thereon.

In one such known method a metal plate coated with a layer of selenium is given an overall uniform electrostatic charge in the dark or under safe light conditions and when exposed to light through an original, say a drawing, the electrostatic charge is lost in the areas exposed to light but retained to a greater or lesser degree, depending upon the amount of light to which the material is exposed, in the dark parts of the original. A charge pattern is thus produced on the material which corresponds with the original (e.g. the drawing) through which the charged plate was exposed.

This charge pattern may be rendered visible by the application of a developer powder of the kind which may acquire a charge, tribo-electrically, the said powder being attracted to and held by the charge pattern produced by exposure in amounts depending upon the strength of the charge pattern.

transferred to a plain sheet of paper and fixed thereon, suitably by heat, to produce a copy of the original to which the material was exposed. As mentioned previously selenium and zinc

The visible powder pattern may now be

oxide are known to possess photoconductive insulating properties. Certain other materials, such as for instance sulphur, anthracene and anthraquinone have already been proposed for use in electrophotographic methods.

In the production of photoconductive insulating materials or so-called electrophotographic or xerographic plates the photoconductive material may be applied to a metal or other conductive base material either by vacuum deposition or as dispersion in solvents with a bonding agent such as a thermoplastic synthetic resin.

In view of the increasing importance of electrophotographic methods it is desirable that the photoconductive insulating materials used in the manufacture of electrophotographic materials should possess certain characteristics such as for instance, range of use, reliability, simplicity of handling, light sensitivity and keeping qualities and it is an object of the present invention to provide materials for use in electrophotographic methods in which the photoconductive insulating materials used in their manufacture shall have as many of the above referred to desirable characteristics as possible.

According to the present invention there is provided an electrophotographic material consisting of a conductive support and a photoconductive insulating layer adherent hereto, which layer comprises an organic compound of general formula

45

55

60

65

70

75

$$R_1$$
  $>$   $C=N-N < R_3$ 

in which R<sub>1</sub>, R<sub>2</sub> represent hydrogen, alkyl, aralkyl, acyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems and wherein R<sub>1</sub> and R<sub>2</sub> may join to form a ring, and in which R<sub>3</sub>, R<sub>1</sub> represent hydrogen, alkyl, aralkyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems and wherein R<sub>3</sub> or R<sub>4</sub> may represent acyl.

Examples of such compounds include hydrazones of aldehydes such as the phenylhydrazones, the acylhydrazones, the benzaldehyde acetylhydrazones and the 9-anthralde-

hyde hydrazones.

Of the phenylhydrazone group such compounds as benzaldehyde phenylhydrazone, benzaldehyde methylphenyl hydrazone, cinnamaldehyde phenylhydrazone, p-dimethyl aminobenzaldehyde, p-bromophenyl-hydrazone piperonal, p-bromophenylhydrazone, phenylacetaldehyde diphenylhydrazone, acetophenone phenylhydrazone, o - sulphobenzaldehyde phenylhydrazone and isonicotinic aldehyde phenylhydrazone may be used.

Of the benzaldehyde acetylhydrazone group, benzylidene acetylhydrazide may be mentioned

as an example.

Many compounds of the acylhydrazone group having the general formula

$$R_1 > C = N - N < COR$$

in which R represents H, alkyl, aralkyl, aryl, substituted aryl or a heterocyclic residue of

aromatic character,  $R_1$  represents H, alkyl, aryl or substituted aryl,  $R_2$  represents aralkyl, aryl, substituted aryl or a heterocyclic residue of aromatic character, and in which  $R_1$  and  $R_2$  may join to form a ring, may be used.

Compounds of this group may be prepared by condensation of equimolecular quantities of a carboxylic acid hydrazide with a compound containing a carbonyl function (e.g. aldehyde ketone, quinone) by boiling in an organic solvent, preferably ethanol.

The organic compound may also be formed by the reaction of a dihydrazide with an aldehyde or ketone to give a compound having

the general formula:-

$$R_{1} = N - N$$

$$R_{2} = N - N$$

$$R_{3} = 0$$

$$R_{4} = 0$$

$$C = N - N$$

$$R_{2} = 0$$

$$R_{3} = 0$$

$$R_{4} = 0$$

$$R_{4} = 0$$

$$R_{4} = 0$$

in which R<sub>1</sub>, R<sub>2</sub>, R<sub>1</sub><sup>1</sup>, R<sub>2</sub><sup>1</sup>, represent hydrogen alkyl, aralkyl, acyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems wherein R<sub>1</sub>, R<sub>2</sub> and/or R<sub>1</sub><sup>1</sup>, R<sub>2</sub><sup>1</sup> may join to form a ring, in which R is alkylene and in which R<sub>3</sub>, R<sub>3</sub><sup>1</sup> represent hydrogen, alkyl, aralkyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems.

The following table gives in column 1 the starting carboxylic acid hydrazide, column 2 the reaction component with CO group content, the melting point of the acylhydrazone is given in column 3 and column 4 its colour.

65

55 .

60

35

45

| benzhydrazide 4-dimethylamino- benzaldehyde 180 to 181° C. yellow  benzhydrazide 4-diethylamino- benzaldehyde 202 to 203° C. yellow  benzhydrazide anisaldehyde 157 to 158° C. colourless  o-toluyl- hydrazide 4-dimethylamino- hydrazide anisaldehyde 173 to 174° C. colourless  4-methoxy- benzhydrazide 4-dimethylamino- benzaldehyde 230 to 231° C. colourless | I             | 2            | 3              | 4           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|----------------|-------------|
| benzaldehyde  benzhydrazide 4-dibenzylamino- benzaldehyde 202 to 203° C. yellow  benzhydrazide anisaldehyde 157 to 158° C. colourless  o-toluyl- hydrazide 4-dimethylamino- hydrazide benzaldehyde 151 to 152° C. yellow  4-methoxy- benzhydrazide 173 to 174° C. colourless  4-methoxy- 4-dimethylamino- 230 to 231° C. colourless                                | benzhydrazide |              | 191 to 192° C. | pale yellow |
| benzaldehyde  benzhydrazide anisaldehyde 157 to 158° C. colourless  o-toluyl- hydrazide 4-dimethylamino- hydrazide benzaldehyde  4-methoxy- benzhydrazide  4-methoxy- benzhydrazide  4-dimethylamino- 230 to 231° C. colourless                                                                                                                                    | benzhydrazide |              | 180 to 181° C. | yellow      |
| o-toluyl- hydrazide  4-dimethylamino- hydrazide  4-methoxy- benzhydrazide  4-methoxy- 4-dimethylamino- 230 to 231° C. colourless                                                                                                                                                                                                                                   | benzhydrazide |              | 202 to 203° C. | yellow      |
| hydrazide benzaldehyde  4-methoxy- anisaldehyde 173 to 174° C. colourless benzhydrazide  4-methoxy- 4-dimethylamino- 230 to 231° C. colourless                                                                                                                                                                                                                     | benzhydrazide | anisaldehyde | 157 to 158° C. | colourless  |
| benzhydrazide  4-methoxy-  4-dimethylamino-  230 to 231° C. colourless                                                                                                                                                                                                                                                                                             |               |              | 151 to 152° C. | yellow      |
| 4-memory i dimension no to to to to                                                                                                                                                                                                                                                                                                                                |               | anisaldehyde | 173 to 174° C. | colourless  |
|                                                                                                                                                                                                                                                                                                                                                                    |               |              | 230 to 231° C. | colourless  |

BNSDOCID: <GB\_\_\_\_\_\_ 930988A | >

| 1                                                              | 2                                | 3              | 4          |
|----------------------------------------------------------------|----------------------------------|----------------|------------|
| 2-hydroxy-<br>benzhydrazide                                    | 4-dimethylamino-<br>benzaldehyde | 264° C.        | yellow     |
| 4-hydroxy-<br>benzhydrazide                                    | 4-dimethylamino-<br>benzaldehyde | 238 to 239° C. | yellow     |
| 4-hydroxy-<br>benzhydrazide                                    | 4-diethylamino-<br>benzaldehyde  | 234 to 236° C. | yellow     |
| 2-amino-<br>benzhydrazide                                      | benzaldehyde                     | 197 to 198° C. | colourless |
| 2-methylamino-<br>benzhydrazide                                | 4-dimethylamino-<br>benzaldehyde | 218° C.        | yellow     |
| 2-amino-<br>benzhydrazide                                      | 4-dimethylamino-<br>benzaldehyde | 243 to 245° C. | yellow     |
| N-methyl-di-<br>phenylamine-<br>4-carboxylic<br>acid hydrazide | 4-dimethylamino-<br>benzaldchyde | 200 to 201° C. | yellow     |
| 4-amino-<br>benzhydrazide                                      | 4-dimethylamino-<br>benzaldehyde | 279 to 280° C. | yellow     |
| diphenyl-4-<br>carboxylic<br>acid hydrazide                    | 4-dimethylamino-<br>benzaldehyde | 257° C.        | yellow     |
| l-naphthoic<br>acid hydrazide                                  | 4-dimethylamino-<br>benzaldehyde | 201 to 202° C. | colourless |
| 2-amino-3-<br>naphthoic acid<br>hydrazide                      | 4-dimethylamino benzaldehyde     | 247 to 248° C. | yellow     |
| 2-amino-3-<br>naphthoic acid<br>hydrazide                      | benzaldehyde                     | 228 to 230°    | yellow     |
| 2-hydroxy-3-<br>naphthoic acid<br>hydrazide                    | 4-dimethylamino-<br>benzaldehyde | 243 to 244° C. | yellow ·   |
| pyridine-4-<br>carboxylic acid<br>hydrazide                    | furfural                         | 218 to 219° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide                    | 9-ethyl-carbazole-<br>3-aldehyde | 247 to 248° C. | colourless |
| pyridine-4-<br>carboxylic acid<br>hydrazide                    | anisaldehyde                     | 173 to 174° C. | colourless |
| pyridine-4-<br>carboxylic acid<br>hydrazide                    | . piperonal                      | 231 to 233° C. | colourless |

| 1                                           | 2                                              | 3              | 4          |
|---------------------------------------------|------------------------------------------------|----------------|------------|
| pyridine-4-<br>carboxylic acid<br>hydrazide | 4-dimethylamino-<br>benzaldehyde               | 196 to 197° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 2-chloro-4-di-<br>methylamino-<br>benzaldehyde | 213 to 215° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 4-diethylamino-<br>benzaldehyde                | 191 to 192° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 4-dibenzylamino-<br>benzaldehyde               | 201 to 202° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 1-naphthaldehyde                               | 212 to 213° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | anthracene-9-<br>aldehyde                      | 265 to 266° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | anthraquinon-2-<br>aldehyde                    | 301 to 302° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | cinnamaldehyde                                 | 201 to 202° C. | yellow     |
| pyridine-4-<br>carboxylic acid<br>hydrazide | quinoline-4-<br>aldehyde                       | 195° C         | colourless |
| pyridine-3-<br>carboxylic acid<br>hydrazide | 4-dimethylamino-<br>benzaldehyde               | 146 to 147° C. | yellow     |
| pyridine-3-<br>carboxylic acid<br>hydrazide | 4-diethylamino-<br>benzaldehyde                | 153 to 154° C. | yellow     |
| 4-dimethyl amino-<br>benzhydrazide          | pyridine-4-<br>aldehyde                        | 235°-C.        | yellow     |
| 4-dimethyl-amino-<br>benzhydrazide          | 4-dimethylamino-<br>benzaldehyde               | 279 to 280° C. | yellow     |
| 4-dimethylamino-<br>benzhydrazide           | 9-methyl-<br>carbazole-3-aldehyde              | 256 to 257° C. | colourless |
| 4-dimethylamino-<br>benzhydrazide           | furfural                                       | 255 to 256° C. | colourless |
| 4-dimethylamino<br>benzhydrazide            | anthracene-9-<br>aldehyde                      | 308° C.        | yellow     |
| benzhydrazide                               | anthracene-9-<br>aldehyde                      | 258 to 259° C. | yellow     |

| 1                                           | 2                                                       | 3              | 4                   |
|---------------------------------------------|---------------------------------------------------------|----------------|---------------------|
| pyridine-4-<br>carboxylic acid<br>hydrazide | 4-nitro-<br>benzaldehyde                                | 278 to 279° C. | yellow              |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 4,4 <sup>1</sup> -bis-<br>dimethylamino<br>benzophenone | 196 to 197° C. | yellow              |
| pyridine-2-<br>carboxylic acid<br>hydrazide | 4-dimethyl-<br>amino-<br>benzaldehyde                   | 206 to 207° C. | yellow              |
| pyridine-2-<br>carboxylic acid<br>hydrazide | 4-diethylamino-<br>benzaldehyde                         | 127° C.        | yellow              |
| 2-benzyl-<br>amino-benz-<br>hydrazide       | 4-dimethylamino-<br>benzaldehyde                        | 188° C.        | yellow              |
| 4-diethyl-<br>amino-<br>benzhydrazide       | 4-diethylamino-<br>benzaldehyde                         | 182° C.        | yellow              |
| benzhydrazide                               | 9,10-phenan-<br>threne-quinone                          | 192 to 193° C. | orange-<br>coloured |
| pyridine-4-<br>carboxylic acid<br>hydrazide | 9,10-phenan-<br>threne-quinone                          | 214° C.        | orange-<br>coloured |
| adipic acid<br>dihydrazide                  | 4-dimethylamino-<br>benzaldehyde                        | 293 to 296° C. | colourless          |
| stearic acid<br>hydrazide                   | 4-dimethylamino-<br>benzaldehyde                        | 95 to 96° C.   | pale yellow         |
| stearic acid<br>hydrazide                   | anthracene-9-<br>aldehyde                               | 149 to 150° C. | yellow              |
| phenylacetic acid<br>hydrazide              | 2-acetyl-9-<br>ethyl-carbazole                          | 173° C.        | colourless          |
| benzhydrazide                               | 2-acetyl-9-<br>ethyl-carbazole                          | 184° C.        | colourless          |
| 4-dimethylamino-<br>benzhydrazide           | 2-acetyl-<br>naphthalene                                | 218° C.        | pale yellow         |
| 4-dimethylamino-<br>benzhydrazide           | 2-acetyl-<br>fluorene                                   | 267 to 268° C. | yellow              |
| phenyl-acetic<br>acid hydrazide             | 4-dimethylamino-<br>benzaldehyde                        | 187° C.        | colourless          |
| phenyl-acetic<br>acid hydrazide             | anthracene-9-<br>aldehyde                               | 258° C.        | yellow              |
| adipic acid<br>dihydrazide                  | 2-acetyl-<br>naphthalene                                | 236 to 237° C. | colourless          |

| 1                                      | 2                                | 3              | 4           |
|----------------------------------------|----------------------------------|----------------|-------------|
| 4-dimethyl-<br>amino-<br>benzhydrazide | benzal-acetone                   | 199 to 200° C. | pale yellow |
| formhydrazide                          | 4-dimethylamino-<br>benzaldehyde | 161 to 162° C. | yellow      |
| formhydrazide                          | anthracene-9-<br>aldehyde        | 274 to 275° C. | yellow      |
| formhydrazide                          | 2-acetyl-9-ethyl-carbazole       | 220° C.        | yellow      |

Certain of the compounds above referred may be dispersed with an insulating resin with an organic solvent and coated on to the base material or support by any known coating technique whereby solvent coatings are applied.

An aqueous solution of an insulating resin may be used as a solvent for selected compounds thus enabling the base material or support to be coated by the preferred aqueous coating method.

Various binders for the photoconductive material may be employed according to this

invention as follows:

30

15 natural and synthetic resins, e.g. balsam resins, phenol resins modified with colophony and other resins of which colophony constitutes the major part, coumarone resins and indene resins and the substances covered by the collective term "synthetic lacquer resins", which includes processed natural substances such as cellulose ethers; polymers, e.g. the polyvinyl chlorides, polyvinyl acetales, polyvinyl acetales, polyvinyl alcohols, polyvinyl ethers, polyacrylic and polymethacrylic esters and polystyrene and polyisobutylene;

polycondensates, e.g. polyesters, such as phthalate resins, alkyd resins, maleate resins, maleic resins/colophony/mixed esters of higher alcohols, phenol-formaldehyde condensates, urea-formaldehyde resins, melamine-formaldehyde condensates, aldehyde resins, ketone resins, xylene-formaldehyde resins and polyamides;

35

50

55

polyadducts, such as polyurethane.

Suitable base materials or supports for use in the manufacture of the material of the present invention may be metal or glass plates, paper, or plates or foils of electrically conductive resins or plastics resins. Although glass is usually regarded as an insulating substance, it has been found to be sufficiently conductive for use as an electroconductive support.

Where a paper base material is used it may be desirable to pretreat it with, for example, an aqueous solution of methyl cellulose or an aqueous solution of polyvinyl alcohol to prevent penetration of the coating solution.

Sensitisers may be added to increase the spectral sensitivity of the photoconductive layer. The amount of sensitiser to be added to the photoconductive substance depends on the type of sensitiser and on the composition of the electrophotographic layer and it may vary within wide limits. For example good sensitising effects are obtained with an addition of 1% of Rhodamine B Extra. The most suitable sensitizers are chlorophyll and dyestuff compounds a number of which are given in the following table.

BNSDOCID: <GB\_\_\_\_\_930988A

25

| Dyestuff Group               | Dyestuff Compound                                                              | Reference<br>(Schultz' "Farbstoff-<br>tabellen," 7th edn.,<br>Vol. 1 (1931))                     |
|------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Triarylmethane<br>dyes       | Brilliant Green Victoria Blue B Methyl Violet Crystal Violet Acid Violet 6B    | No. 760 (p. 314)  , 822 (p. 347)  , 783 (p. 327)  , 785 (p. 329)  , 831 (p. 351)                 |
| Xanthene dyes:<br>Rhodamines | Rhodamine B Rhodamine 6G Rhodamine G extra Sulphorhodamine B Fast acid Eosin G | No. 864 (p. 365)<br>,, 866 (p. 366)<br>,, 865 (p. 366)<br>,, 863 (p. 364)<br>,, 870 (p. 368)     |
| Phthaleins                   | Eosin S Eosin A Erythrosin Phloxin Rose Bengal Fluorescein                     | No. 883 (p. 375)  " 881 (p. 374)  " 886 (p. 376)  " 890 (p. 378)  " 889 (p. 378)  " 880 (p. 373) |
| Thiazine dyes                | Methylene blue                                                                 | No.1038 (p. 449)                                                                                 |
| Acridine dyes                | Acridine yellow<br>Acridine orange<br>Trypaflavine                             | No. 901 (p. 383)<br>,, 908 (p. 387)<br>,, 906 (p. 386)                                           |
| Quinoline dyes               | Pinacyanol<br>Cryptocyanine                                                    | No. 924 (p. 396)<br>,, 927 (p. 397)                                                              |
| Quinone dyestuffs            |                                                                                |                                                                                                  |
| Ketone dyestuffs             | Alizarin<br>Alizarin red S<br>Quinizarine                                      | No. 1141 (p. 499)<br>,, 1145 (p. 502)<br>,, 1148 (p. 504)                                        |
| Cyanine dyes                 | Cyanine                                                                        | " 921 (p. 394)                                                                                   |

Following is a description by way of example of methods of carrying the invention into effect.

Example 1.

A solution of the following was made up:—Benzaldehyde phenylhydrazone 1 g.
The ketone resin sold under the trade name Kunstharz Sk 3 g.

name Kunstharz Sk 3 g.

Methyl cellosolve (Registered Trade
Mark) 15 ml.
and coated by means of a plate whirler on to

and coated by means of a plate whirler on to a metal plate and the coating dried.

The thus coated plate was charged electrostatically negatively in the dark and exposed to a mercury arc lamp for 30 seconds through a film original.

The latent electrostatic image thus formed was developed by application of a developer powder comprising a finely divided thermoplastic synthetic resinous material each particle of which was embodied with it carbon black,

the said finely divided material being mixed at about  $2\frac{1}{2}\%$  concentration with glass balls of about  $300\mu$  diameter and the image fixed.

EXAMPLE 2.

An aqueous solution of the following was made up:

Ortho-sulphobenzaldehyde phenylhydrazone
Urea formaldehyde Resin BC6
(50% soln.).

Water
Sulphosalicylic acid and coated on to a metal support

O.075 g. 35

The coating was dried and cured for five minutes at 140° C. and processed as in Example 1.

Example 3.

0.5 g. of 4-diethylaminobenzylidene nicotinic acid hydrazide and 0.5 g. of ketone resin, e.g.

BNSDOCID: <GB\_\_\_\_\_930988A\_I\_>

5

10

the product commercially available under the trade name Kunstharz SK, were dissolved in 15 c.c. of glycol monomethylether and the solution applied to paper of which the surface had been pretreated against the penetration of organic solvents and it was dried. With the paper thus coated a direct image was produced by the electrophotographic process. The dry coating was provided by a corona discharge with a negative electric charge by means of a charging device maintained at approximately 6000 volts. It was then exposed under a positive master to the light of a high-pressure mercury lamp and powdered over with a de-veloper in known manner. This developer consisted of toner and carrier. The toner was composed of a low melting point polystyrene, colophony and carbon-black, with or without an organic dyestuff additive such as spirit-soluble nigrosine, the components were melted together, ground and fractioned by screening. The most suitable fraction was that with a grain size of 20— $60\mu$ . The toner, prepared in this way, was mixed with a carrier substance of such nature that the toner became triboelectrically charged with a charge that is the opposite of that produced on the paper, e.g. glass balls or iron filings. A positive image was produced which was fixed by slight heating. The ground of the paper was brightened by the substance applied as coating. Example 4.

The coating of the paper was carried out as described in Example 3 and coating provided with a positive charge by the corona discharge. After the paper foil had been exposed to light under a master, the image produced thereon was developed by powdering over with a developer, as described in Example 3, but as carrier glass balls covered with maleic acid resin were used. A very good, positive image of the master, rich in contrast, was obtained. EXAMPLE 5.

0.5 g. of 4-dimethylaminobenzylidene-isonicotinic acid hydrazide and 0.5 g. of coumarone resin were dissolved in 15 c.c. of ethylene glycol monomethylether and the solution applied to a paper foil. After evaporation of the solvent an electrophotographic image was produced as described in Example 3.

Example 6.

g. of 4-dimethylaminobenzylidenebenzhydrazide and 0.5 g. of phenol-formalde-hydride resin were dissolved in 15 c.c. of ethylene glycol monomethylether. The application of the solution to a paper foil and the preparation of the electrophotographic image were as described in Example 3.

EXAMPLE 7. The procedure described in Example 3 was followed, but for the coating of the paper the solution of 0.5 g. of 4-dimethylaminobenzylidene nicotinic hydrazide and 0.5 g. of zinc resin, e.g. the product marketed under the trade name Erkazit Zinkharz 165, in 15 c.c.

of ethylene glycol monomethylether was used. Example 8.

0.5 g. of 4-diethylaminobenzylidene-benzhydrazide and 0.5 g. of ketone resin, e.g. the product marketed under the trade name Kunstharz S.K., were dissolved in 15 c.c. of ethylene glycol monomethylether. This solution was applied to transparent paper, the surface of which had been pretreated against the penetration of organic solvents, and it was then dried. On this coated transparent paper images were produced by the electrophotographic process which were fixed by heating or by treatment with trichlorethylene vapours. They were then used as intermediate originals for further duplication, e.g. for copying on diazo paper. EXAMPLE 9.

0.5 g. of 4 - methoxy - benzylidene - benzhydrazide and 0.5 g. of non-hydrolysed ketone/aldehyde condensation resin, e.g. the product marketed under the trade name Kunstharz AP, were dissolved in 15 ml. of ethylene glycol monomethylether and applied to a superficially roughened aluminium surface. After the solvent had evaporated, a coating was left that was firmly adherent to the surface of the foil. With this coated foil the procedure described in Example 3 was followed and a positive image was obtained on the aluminium surface once the powder image had been fixed. This image can be converted into a printing plate if the aluminium foil is wiped over with 50% acetic acid or 60% ethanol, rinsed down with water and then inked up with 1% phosphoric acid and greasy ink. A positive printing plate is obtained which can be set up in an offset machine and used for printing.

EXAMPLE 10.

A mixture consisting of: 0.1 g. of 4 - dimethylaminobenzylidene - 21- 105 toluyl-hydrazide 0.1 g. of 2 - chloro - 4 - dimethylaminobenzylideneisonicotinic acid hydrazide. 0.1 g. of furfurylidene - (2) - 41 - dimethyl-

amino - benzhydrazide was dissolved in 15 c.c. of ethylene glycol monomethylether. The solution was applied to an aluminium foil and then dried to form a coating that was firmly adherent to the metal. The preparation of an electrophotographic image was carried out in manner known per se.

EXAMPLE 11.

0.5 g. of 4-diethylaminobenzylidene nicotinic acid hydrazide, 0.5 g. of ketone resin, e.g. the product already mentioned in Example 3 marketed under the trade name Kunstharz SK, and 5 mg. of Rhodamine B extra were dissolved in 15 c.c. of ethylene glycol monomethylether. This solution was applied to paper of which the surface had been treated against the penetration of organic solvents and it was then dried. With this material an electrophotographic image was produced by the method described in Example 3 but instead

85

110

115

120

.930988A\_\_I\_>

65

80

95

of the high-pressure mercury lamp a 100-watt incandescent bulb was used.

#### Example 12.

8 g. of ketone resin, e.g. the product commercially available under the trade name Kunstharz EM, were dissolved in 120 c.c. of ethanol. To this solution 8 g. of anthracene-9-aldehyde-isonicotinoyl hydrazone were added. The suspension thus produced was very finely ground in a ball mill. This suspension was then coated upon paper that had been pretreated against the penetration of organic solvents and was then dried. Electrophotographic images were prepared with the coated paper by the process described in Example 3.

If instead of the 8 g. of anthracene-9aldehyde - isonicotinoyl hydrazone the same quantity of N,N¹ - bis - (4 - dimethylaminobenzylidene) - adipic acid dihydrazide is used, a similar result is obtained.

## EXAMPLE 13.

10 g. of chlorinated polyvinyl chloride were dissolved in 100 c.c. of methyl ethyl ketone. To this solution 10 g. of 4-dimethylaminobenzylidenebenzhydrazide dissolved in 50 c.c. of toluene were added. With the mixture thus obtained paper was coated by means of a hopper device. When the coated solution had dried to a firmly adherent homogenous layer, direct image were produced electrophotographically on this paper by the method described in Example 3. The electrostatic charge was given up very quickly in the places in which the photoconductive coating was struck by the light. Light-sensitivity was good. Images rich in contrast were obtained episcopically from double sided masters.

## WHAT WE CLAIM IS:-

1. An electrophotographic material consisting of a conductive support and a photoconductive insulating layer adherent thereto, which layer comprises an organic compound of general formula

$$R_1 > C = N - N < R_3 < R_4$$

in which R<sub>1</sub>, R<sub>2</sub> represent hydrogen, alkyl, aralkyl, acyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems and wherein R<sub>1</sub> and R<sub>2</sub> may join to form a ring, and in which R<sub>3</sub>, R<sub>4</sub> represent hydrogen, alkyl, aralkyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems and wherein R<sub>3</sub> or R<sub>4</sub> may represent acyl.

2. A material as claimed in claim 1, wherein the organic compound is a hydrazone of an aldehyde.

3. A material as claimed in either of the preceding claims, wherein the organic compound is a phenylhydrazone derivative of an aldehyde or ketone.

4. A material as claimed in any one of the preceding claims, wherein the organic compound is benzaldehyde phenylhydrazone or osulphobenzaldehyde phenylhydrazone.

5. A material as claimed in claim 1, wherein the organic compound is formed by the reaction of a dihydrazide with an aldehyde or ketone and has the general formula:—

in which R<sub>1</sub>, R<sub>2</sub>, R<sub>1</sub>, R<sub>2</sub>, represent hydrogen, alkyl, aralkyl, acyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems wherein R<sub>1</sub>, R<sub>2</sub> and/or R<sub>1</sub>, R<sub>2</sub>, may join to form a ring, in which R is alkylene and in which R<sub>3</sub>, R<sub>3</sub>, represent hydrogen, alkyl, aralkyl, aroyl, cycloalkyl, or univalent radicals of aromatic or substituted aromatic carbocyclic or heterocyclic ring systems.

6. A material as claimed in any one of claims 1, 2 or 5, wherein the organic compound is an acyl hydrazone having the general formula

$$R_1$$
 H  $R_2$  COR  $R_2$  H 85

in which R represents H, alkyl, aralkyl, aryl, substituted aryl, or a heterocyclic residue of aromatic character, R<sub>1</sub> represents H, alkyl, aryl or substituted aryl, R<sub>2</sub> represents aralkyl, aryl, substituted aryl or a heterocyclic residue of aromatic character in which R<sub>1</sub> and R<sub>2</sub> may join to form a ring.

7. A material as claimed in any one of the preceding claims wherein the insulating layer also contains sensitisers.

8. A process for the preparation of an electrophotographic material substantially as herein described with reference to any one of the specific examples.

BOULT, WADE & TENNANT,
111 & 112, Hatton Garden, London, E.C.1,
Chartered Patent Agents,
Agents for the Applicants.

Learnington Spa: Printed for Her Majesty's Stationery Office, by the Courier Press (Learnington) Ltd.—1963. Published by The Patent Office, 25 Southampton Buildings, London, W.C.2, from which copies may be obtained.

BNSDOCID: <GB\_\_\_\_\_930988A\_I\_>

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.