Manual for Package: sediment-transport Revision 1:6M

Karl Kästner

March 28, 2020

Contents

1	@Gra	inSizeDistribution	1
	1.1	GrainSizeDistribution	1
	1.2	assign_channel	1
	1.3	bimodality	1
	1.4	export_csv	1
	1.5	export_shp	1
	1.6	$group_channels \ldots \ldots \ldots \ldots \ldots$	1
	1.7	group_curvature	2
	1.8	group_histograms	2
	1.9	load_coordinates	2
2	@Her	mite_profile	2
	2.1	Hermite_profile	2
	2.2	fit	2
	2.3	predict	2
	2.4	regmtx	2
	2.5	transform	2
3	@Nod	lal_Point	3
	3.1	Adot	3
	3.2	Nodal_Point	3
	3.3	Qs.in	3
	3.4	Qs_out	3
	3.5	derive_jacobian	3
	3.6	discharge	3
	3.7	geometry	3
	3.8	jacobian	3
	3.9	phase_diagram	4
	3.10	phase_diagram_wang	4

	3.11 3.12		4			
4	@Para	abolic_Constant_Profile	4			
	4.1	Parabolic_Constant_Profile	4			
	4.2	fit	4			
	4.3	predict	4			
	4.4	regmtx	4			
	4.5	transform	5			
5	@Rou	@Rouse_Profile 5				
	5.1	Rouse_Profile	5			
	5.2	fit	5			
	5.3	mean_concentration	5			
	5.4	predict	5			
	5.5	regmtx	5			
	5.6	rouse_number	5			
	5.7	$rouse_number_to_grain_diameter \ . \ . \ . \ . \ . \ . \ . \ . \ .$	5			
	5.8	set_parameters	6			
	5.9	transform	6			
6	sedim	sediment-transport 6				
	6.1	Exponential_SSC_Profile	6			
	6.2	adaptation_length_bed	6			
	6.3	adaptation_length_flow	6			
	6.4	bar_mode_crosato	6			
	6.5	bed_layer_thickness	6			
	6.6	bed_load_einstein	6			
	6.7	bed_load_engelund_fredsoe	7			
	6.8	bed_load_transport_mpm	7			
	6.9	bed_load_transport_rijn	7			
	6.10	bed_load_transport_wu	7			
	6.11	J	7			
	6.12	bedform_roughness_rijn	7			
	6.13	0 9	7			
	6.14		8			
	6.15	v	8			
	6.16	bifurcation_critical_aspect_ratio	8			
	6.17	·	8			
	6.18	, ,	8			
	6.19	v	8			
	6.20		8			
	6.21		8			
	6.22	critical_shear_stress_ratio	9			

6.23	critical_shear_stress_wu
6.24	critical_shear_velocity
6.25	derive_mpm_foramtive_discharge
6.26	dimensionless_grain_size
6.27	dune_celerity
6.28	dynamic_shear_stress
6.29	fractional_transport_engelund_hansen 9
6.30	grain_roughness_mpm
6.31	grain_roughness_rijn
6.32	grain_roughness_wu
6.33	hiding_exposure_wu
6.34	hydraulic_radius
6.35	manning_to_chezy
6.36	mobility_parameter_rijn
6.37	mpm2diameter
6.38	mpm_solve_for_dm
6.39	reference_concentration_rijn
6.40	reference_concentration_smith_lean
6.41	reference_height_rijn
6.42	reference_to_flux_averaged_concentration_rijn
6.43	saltation_layer_thickness
6.44	sediment_transport_directed
6.45	sediment_transport_engelund_hansen_2 11
6.46	sediment_transport_relation_fit
6.47	sediment_transport_relation_predict
6.48	sediment_transport_scale
6.49	sediment_transport_waves
6.50	settling_velocity
6.51	settling_velocity_to_diameter
6.52	shields_number
6.53	skin_2_total_friction_eh
6.54	suspended_grain_size
6.55	suspended_grain_size_non_linear
6.56	suspended_grain_size_rijn
6.57	suspended_transport_mclean
6.58	suspended_transport_rijn
6.59	suspended_transport_wu
6.60	suspension_parameter_rijn
test	14
7.1	test_adaptation_length_bed
7.2	test_critical_shear_stress
7.3	test_settling_velocity_to_diameter

8	sedime	ent-transport	14
	8.1	$test_sediment_transport_relation \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	14
	8.2	$total_roughness_engelund_fredsoe \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15
	8.3	total_roughness_rijn	15
	8.4	total_transport_ackers_white	15
	8.5	total_transport_bagnold	15
	8.6	$total_transport_eh_distribution \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15
	8.7	$total_transport_engelund_hansen \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15
	8.8	total_transport_rijn	15
	8.9	total_transport_wu	15
	8.10	total_transport_yang	16
	8.11	transport_stage_mclean	16
	8.12	transport_stage_rijn	16
	8.13	vertical_ssc_profile_mclean	16
1.1		rainSizeDistribution ainSizeDistribution	
1.5	2 assi	ign_channel	
1.3	3 bin	nodality	
1.4	4 exp	$\mathrm{cort}_{\mathrm{csv}}$	
1.	ъ́ exp	$\mathrm{port_shp}$	
1.6	6 gro	oup_channels	

1.7	group_curvature
1.8	$group_histograms$
1.9	$load_coordinates$
2	$@Hermite_profile$
2.1	$Hermite_profile$
susp	ended sedimen profile in form of a hermite polynomial
2.2	fit
fit	suspended sediment profile
2.3	predict
pred	ict suspended sediment concentration
2.4	regmtx
regr	ession matrix
2.5	transform

hermite profile

3 @Nodal_Point

3.1 Adot

ODE of the nodal point relation (time-derivative of branch cs-area)

3.2 Nodal_Point

Nodal point relation for bifurcations, according to Wang

3.3 Qs_in

sediment entering branches

3.4 Qs_out

sediment leaving branches

3.5 derive_jacobian

derive Jacobian of the nodal point relation

3.6 discharge

discharge through branches

3.7 geometry

cross section geometry of branches

3.8 jacobian

jacobian of the nodal point relation ${\tt semi-autogenerated}$

3.9 phase_diagram

phase diagram

3.10 phase_diagram_wang

phase diagram of Nodal point relation

3.11 solve

solve the nodal point relation for critical points

3.12 stability_analysis

staility analysis for a given configuration

4 @Parabolic_Constant_Profile

4.1 Parabolic_Constant_Profile

parabolic-constant profile

4.2 fit

fit the suspended sediment concentration profile

4.3 predict

 ${\tt predict} \ {\tt suspended} \ {\tt sediment} \ {\tt concentration}$

4.4 regmtx

regression matrix

4.5 transform

transformation of vertical coordinate

5 @Rouse_Profile

5.1 Rouse_Profile

suspended sediment concentration profile

5.2 fit

fit the suspended sediment concentration profile

5.3 mean_concentration

5.4 predict

predict the suspended sediment concentration

5.5 regmtx

regression matrix

5.6 rouse_number

rouse number (suspension number) for given grain siye and shear velocity

5.7 rouse_number_to_grain_diameter

convert known rous number (suspension parameter) to grain size $\operatorname{diameter}$

5.8 set_parameters

5.9 transform

transform the vertical coordinate

6 sediment-transport

analysis and prediction of fluvial sediment transport and $\tt morphodynamics$

6.1 Exponential_SSC_Profile

6.2 adaptation_length_bed

adaptatoion lenght of bed morphology

6.3 adaptation_length_flow

adaption length of the flow

6.4 bar_mode_crosato

bar mode of a river according to crosato

6.5 bed_layer_thickness

6.6 bed_load_einstein

bed load transport according to einstein jr.

6.7 bed_load_engelund_fredsoe

bed load transport according to engelund and fredsoe

$6.8 \quad bed_load_transport_mpm$

bed load transport rate according to meyer-peter-mueller

6.9 bed_load_transport_rijn

```
bed load transport
method of van Rijn (1984)

function [Q_b q_b Phi_b] = bed_load_transport_rijn(C,d50,d90,U,d,b)

d50 [mm] (converted to m)

d90 [mm] (converted to m)

d : depth
b : width
```

6.10 bed_load_transport_wu

bed load transport according to Wu

6.11 bedform_dimension_rijn

```
bed form dimensions
cf. rijn 1984 iii
```

6.12 bedform_roughness_rijn

form drag according to van Rijn

6.13 bedform_roughness_rijn_2007

6.14 bedload_direction

bedload transport direction

$6.15 \quad bedload_layer_thickness_mclean$

6.16 bifurcation_critical_aspect_ratio

critical aspect ratio of a bifurcation
c.f. redolfi and pittaluga

6.17 chezy_einstein

chezey coefficient according to Einstein

6.18 chezy_roughness_engelund_fredsoe

chezy rougness according to engelund and fredsoe

6.19 chezy_to_manning

convert chezy to manning

6.20 critical_grain_size

critical grain size for a given shear velocity

6.21 critical_shear_stress

critical shear Stress

6.22 critical_shear_stress_ratio

critical shields parameter aka critical shear stress ratio aka shields curve

6.23 critical_shear_stress_wu

critical shear stress, according to wu

6.24 critical_shear_velocity

critical shear velocity

$6.25 \quad derive_mpm_foramtive_discharge$

6.26 dimensionless_grain_size

dimensionless grain size

6.27 dune_celerity

6.28 dynamic_shear_stress

dynamic shear stress

6.29 fractional_transport_engelund_hansen

fractional sediment transport according to engelund and hansen

6.30	grain_roughness_mpm
6.31	grain_roughness_rijn
grain	roughness (skin friction) according to van Rijn
6.32	grain_roughness_wu
6.33	$hiding_exposure_wu$
6.34	hydraulic_radius
6.35	$manning_to_chezy$
manniı	ng to chezy conversion
6.36	$mobility_parameter_rijn$
6.37	mpm2diameter
6.38	mpm_solve_for_dm

6.39	$reference_concentration_rijn$
6.40	$reference_concentration_smith_lean$
refer	ence concentration according to smith and mclean
6.41	$reference_height_rijn$
6.42	$reference_to_flux_averaged_concentration_rijn$
6.43	$saltation_layer_thickness$
6.44	${\bf sediment_transport_directed}$
direc	ted sediment transport
6.45	$sediment_transport_engelund_hansen_2$
sedim	ent transport according to engelund and hansen
6.46	$sediment_transport_relation_fit$
6.47	$sediment_transport_relation_predict$

6.48 sediment_transport_scale

6.49 sediment_transport_waves

sediment transport by waves

6.50 settling_velocity

Settling velocity
5.23d in julien-2010
settling velocity in water
settling velocity according to cheng
stokes settling velocity
d: [mm] diameter of sediment particle
ws: [m/s] settling velocity
signed ws < 0: falling
(Note: was R, radius in m)
valid for small particles

6.51 settling_velocity_to_diameter

invert settling velocity to diameter

6.52 shields_number

normalized shear stress, shear stress ratio

6.53 skin_2_total_friction_eh

skin friction to total friction conversion according to engelund
 and hansen
function [theta,C] = skin_2_total_friction_eh(theta_t,Ct)

6.54 suspended_grain_size

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

assumes that probability of suspension is inverse proportional to $% \left(1\right) =\left(1\right) \left(1\right)$

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

6.55 suspended_grain_size_non_linear

suspended grain size distribution based on bed material grain size distribution $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

assumes that probability of suspension is inverse proportional to grain diameter

as in Engelund-Hansen transport relation

- no hiding effects considered
- no threshold for large grains applied
- no flocking considered

note: actual distribution varies with the depth

d : [1xnd] grain size in arbitrary units (on linear, not on log scale)

h_bed : [nsxnd] fractions of sediment of size d

6.56 suspended_grain_size_rijn

grain size of the suspended sediment according to van rijn, empirical

6.57 suspended_transport_mclean

```
vertical profile of the suspended sediment according to McLean u := us/kappa*log(z/z0);
I = 1/(int_a^h c dz int_a^h u dz) int_a^h c u dz
```

6.58 suspended_transport_rijn

suspended load transport according to van Rijn

6.59 suspended_transport_wu

suspended sediment transport according to widthu

- 6.60 suspension_parameter_rijn
- 7 test
- $7.1 \quad test_adaptation_length_bed$
- 7.2 test_critical_shear_stress
- 7.3 test_settling_velocity_to_diameter
- 8 sediment-transport

analysis and prediction of fluvial sediment transport and morphodynamics

8.1 test_sediment_transport_relation

8.2 total_roughness_engelund_fredsoe

roughness lenght according to engelund and fredsoe

8.3 total_roughness_rijn

total roughness according to van rijn

8.4 total_transport_ackers_white

8.5 total_transport_bagnold

total sediment transport accoding to bagnold

8.6 total_transport_eh_distribution

total sediment transport according to engelund hansen for a given graqin size distribution

8.7 total_transport_engelund_hansen

total sediment transport according to Engelund and Hansen

8.8 total_transport_rijn

total sediment transport according to van rijn

8.9 total_transport_wu

total sediment transport according to wu 2000b

8.10 total_transport_yang

8.11 transport_stage_mclean

transport stage according to McLean

8.12 transport_stage_rijn

transport stage as defined by van Rijn

8.13 vertical_ssc_profile_mclean

vertical profile of the suspended sediment according to ${\tt McLean}$