MLT Homework 8

Ana Borovac Jonas Haslbeck Bas Haver

November 5, 2018

Question 1

The Aggregating Algorithm plays $w_1^k = 1/K$ and updates as

$$w_{t+1}^k = \frac{w_t^k e^{-l_t^k}}{\sum_{j=1}^K w_t^j e^{-l_t^j}}$$

Let us define the Kullback-Leibler divergence aka relative entropy (notion of distance between probability distributions) from $p \in \Delta_K$ to $q \in \Delta_K$ by

$$KL(p.q) = \sum_{k=1}^{K} p_k \ln \frac{p_k}{q_k}$$

Fix $w_t \in \Delta_K$ and $l_t \in \mathbb{R}^K$. Consider the minimisation problem

$$\min_{w \in \Delta_K} w^T l_t + KL(w, w_t) \tag{1}$$

Subquestion 1.1

Show that the minimiser of problem (1) is w_{t+1} .

Solution

Subquestion 1.2

Show that the value of problem (1) is the mix loss.

Solution

Question 2

We saw in the lecture that the Hedge algorithm (for the dot-loss game) with learning rate $\eta = \sqrt{\frac{8 \ln K}{T}}$ has regret after T rounds bounded by $\sqrt{T/2 \ln K}$. In practice, we may not know T in advance, or we may even desire an algorithm that has good guarantees for all T simultaneously, i.e. that keeps on operating forever.

Consider the following exponential (base 3) restarting schedule to accomplish this. We run Hedge for 1 round, with η tuned for 1 round. After that, we restart Hedge, and run it for 3 rounds with η tuned for 3 rounds. After that, we restart Hedge again for 9 rounds with η tuned for 9 rounds, and so on.

Prove that the overall accumulated regret of Hedge with this scheme is bounded above by a universal constant times $\sqrt{T \ln K}$. (Your argument should work for T that are not a power of 3).

Solution

Question 3

Consider the K=2 expert version of the T-round dot loss game (Definition 2). In this exercise we will prove that the worst-case expected regret is at least of order \sqrt{T} . Consider an adversary that for each $t=1,\ldots,T$ assigns loss vector $l_t=(0,1)$ or $l_t=(1,0)$ i.i.d uniformly at random.

Subquestion 3.1

Show that the expected loss of any learner is T/2.

Solution

We calculate the dot loss as:

$$\sum_{k=1}^{K} w_t^k l_t^k$$

Where, in our case:

$$w_t \in \{(0,0), (0,1), (1,0), (1,1)\}$$
 and $l_t \in \{(0,1), (1,0)\}$

In the table below we can see all the possible values of $L_t = \sum_{k=1}^2 w_t^k l_t^k$:

$\sum_{k=1}^{2} w_t^k l_t^k$	(0,1)	(1,0)
(0,0)	0	0
(0,1)	1	0
(0,1)	0	1
(1,1)	1	1

From that it follows:

$$P(L=0) = P(L=1) = \frac{1}{2}$$

And we can conclude:

$$\mathbb{E}\left[\sum_{t=1}^{T} L_t\right] = \sum_{t=1}^{T} \mathbb{E}[L_t]$$
$$= \sum_{t=1}^{T} \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1$$
$$= \frac{T}{2}$$

Subquestion 3.2

Show that $2(1/2 - l_t^k)$ is Rademacher for each $k \in \{1, 2\}$.

Solution

We know that l_t^k can take two values: 0 or 1. So:

$$2(1/2 - l_t^k) = 2(1/2 - 1) = -1$$
$$2(1/2 - l_t^k) = 2(1/2 - 0) = 1$$

From that follows that $2(1/2-l_t^k)$ takes values -1 or 1, therefore it is Rademacher.

Subquestion 3.3

Show that
$$\sum_{t=1}^{T} (1/2 - l_t^2) = -\sum_{t=1}^{T} (1/2 - l_t^1)$$
.

Solution

$$\sum_{t=1}^{T} (1/2 - l_t^2) = -\sum_{t=1}^{T} (1/2 - l_t^1)$$

$$\sum_{t=1}^{T} (1/2 - l_t^2) + \sum_{t=1}^{T} (1/2 - l_t^1) = 0$$

$$\sum_{t=1}^{T} (1/2 - l_t^2 + 1/2 - l_t^1) = 0$$

$$\sum_{t=1}^{T} (1/2 + 1/2 - (l_t^1 + l_t^2)) = 0$$

$$\sum_{t=1}^{T} (1 - 1) = 0$$

$$0 = 0$$

Subquestion 3.4

Argue that the expected loss of the best expert is bounded above by $\mathbb{E}[\min_k \sum_{t=1}^T l_t^k] \leq T/2 - c\sqrt{T}$ for some c > 0. You can use the following fact. Let X_1, \ldots, X_T be i.i.d Rademacher random variables. Then

$$\mathbb{E}\left[\sum_{t=1}^T X_t\right] \in \left[\sqrt{\frac{2(T-1)}{\pi}}, \sqrt{\frac{2(T+1)}{\pi}}\right].$$

Solution

We know, that $2(1/2 - l_t^k)$ is Rademacher, so it holds:

$$\mathbb{E}\left[\sum_{t=1}^{T} 2(1/2 - l_t^2)\right] \in \left[\sqrt{\frac{2(T-1)}{\pi}}, \sqrt{\frac{2(T+1)}{\pi}}\right]$$

$$\mathbb{E}\left[\sum_{t=1}^{T} 1/2 - l_t^2\right] \in \left[\sqrt{\frac{(T-1)}{2\pi}}, \sqrt{\frac{(T+1)}{2\pi}}\right]$$

From the previous point:

$$\begin{split} \mathbb{E}\left[-\sum_{t=1}^{T}1/2-l_t^1\right] &\in \left[\sqrt{\frac{(T-1)}{2\pi}},\sqrt{\frac{(T+1)}{2\pi}}\right] \\ \mathbb{E}\left[\sum_{t=1}^{T}1/2-l_t^1\right] &\in \left[-\sqrt{\frac{(T+1)}{2\pi}},-\sqrt{\frac{(T-1)}{2\pi}}\right] \end{split}$$

It follows:

$$\begin{split} & \mathbb{E}\left[T/2 - \sum_{t=1}^{T} l_t^1\right] \in \left[-\sqrt{\frac{(T+1)}{2\pi}}, -\sqrt{\frac{(T-1)}{2\pi}}\right] \\ & \mathbb{E}\left[T/2 - \sum_{t=1}^{T} l_t^2\right] \in \left[\sqrt{\frac{(T-1)}{2\pi}}, \sqrt{\frac{(T+1)}{2\pi}}\right] \end{split}$$

 \Rightarrow

$$\mathbb{E}\left[-\sum_{t=1}^{T} l_t^1\right] \in \left[-\sqrt{\frac{(T+1)}{2\pi}} - T/2, -\sqrt{\frac{(T-1)}{2\pi}} - T/2\right]$$

$$\mathbb{E}\left[-\sum_{t=1}^{T} l_t^2\right] \in \left[\sqrt{\frac{(T-1)}{2\pi}} - T/2, \sqrt{\frac{(T+1)}{2\pi}} - T/2\right]$$

 \Rightarrow

$$\mathbb{E}\left[\sum_{t=1}^T l_t^1\right] \in \left[\sqrt{\frac{(T-1)}{2\pi}} + T/2, \sqrt{\frac{(T+1)}{2\pi}} + T/2\right]$$

$$\mathbb{E}\left[\sum_{t=1}^T l_t^2\right] \in \left[-\sqrt{\frac{(T+1)}{2\pi}} + T/2, -\sqrt{\frac{(T-1)}{2\pi}} + T/2\right]$$

From above we conclude $\mathbb{E}[\min_k \sum_{t=1}^T l_t^k] = \mathbb{E}[\sum_{t=1}^T l_t^2]$ and finally:

$$\mathbb{E}[\min_{k} \sum_{t=1}^{T} l_t^k] \le T/2 - c\sqrt{T}$$