RAGIONAMENTO CON VINCOLI

Nicola Fanizzi

Ingegneria della Conoscenza

CdL in Informatica • *Dipartimento di Informatica* Università degli studi di Bari Aldo Moro

indice

Mondi Possibili, Variabili e Vincoli Variabili e Mondi Vincoli **Constraint Satisfaction Problems** Task tipici con CSP **Algoritmo Generate-and-Test** Risoluzione di CSP tramite Ricerca Grafo di Ricerca Algoritmi Basati su Consistenza Rete di vincoli Consistenza degli Archi rispetto ai Domini Consistenza degli Archi e delle Reti Algoritmo Basato sulla Consistenza degli Archi Separazione dei Domini Eliminazione di Variabili Eliminazione di una Variabile Ricerca Locale **Random Sampling**

Random Walk Massimo Miglioramento Iterativo Algoritmi Stocastici Varianti della Ricerca Locale **Tabu Search** Passo di Massimo Miglioramento Scelta a Due Fasi **Algoritmo Any Conflict Simulated Annealing** Ripartenza Casuale Algoritmi Basati su Popolazioni **Beam Search Beam Search Stocastica Algoritmi Genetici** Ottimizzazione Metodi Sistematici per l'Ottimizzazione Ricerca Locale per l'Ottimizzazione Domini Continui: Gradiente

Mondi Possibili, Variabili e Vincoli

Dagli spazi degli stati a quelli delle caratteristiche

- Feature descritte attraverso variabili, spesso non indipendenti, e
 - o vincoli rigidi specificano combinazioni lecite di assegnazioni alle variabili
 - o vincoli flessibili preferenze sulle assegnazioni
- Ragionamento come generazione di assegnazioni che
 - soddisfino i vincoli rigidi
 - o ottimizzino i vincoli flessibili

Variabili e Mondi

es. X

Si considereranno *problemi* descritti in termini di **variabili**

- algebriche: simboli usati per denotare caratteristiche del mondo (reale o immaginario) → mondi possibili
- notazione: nomi che iniziano per maiuscola
- ogni variabile ha un **dominio** associato: insieme di valori che può assumere

es. dom(X)

- variabili discrete: dominio finito o almeno enumerabile
 - o binarie: dominio di 2 valori
 - caso particolare: booleane, dominio $\{true, false\}$
- variabili continue: se non sono discrete
 - \circ ad es. con dominio $\mathbb R$ o un suo intervallo, e.g. [0,1]

Assegnazione funzione da un insieme di variabili ai loro domini:

• dato $\{X_1,X_2,\ldots,X_k\}$ a X_i si assegna $v_i\in dom(X_i)$ per ogni $i=1,\ldots,k$:

$$\{X_1=v_1, X_2=v_2, \dots, X_k=v_k\}$$

- un solo valore per variabile
- assegnazione totale se riguarda tutte le variabili, parziale altrimenti

Mondo possibile: assegnazione totale

(uno stato del mondo)

- funzione dalle variabili ai valori: a ognuna assegna un valore
 - \circ dato il mondo $w=\{X_1=v_1,X_2=v_2,\ldots,X_k=v_k\}$ si dice che: X_i ha il valore v_i in w

Esempio — variabili e assegnazioni

- Ora_Lezione discreta
 - \circ per denotare l'ora d'inizio $dom(Ora_Lezione) = \{9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$
- Temperatura continua
 - \circ in °C: dom(Temperatura) intervallo di reali [-273.15;50]
- Piove booleana casuale
 - indica se stia piovendo o meno in un dato momento

L'assegnazione: $\{Ora_Lezione=11, Temperatura=21.3, Piove=false\}$ specifica che "la lezione inizia alle 11, ci sono 21.3°C e non piove"

Esempio — diagnostica impianto elettrico

- una variabile per ogni posizione di deviatore (switch): su / giù
- una variabile per ogni punto luce: acceso / spento
- una variabile per ogni componente: in funzione / rotto
- ecc...

(..cont.)

- esempi:
 - \circ S_1_pos binaria:
 - posizione del deviatore (switch) s_1 , con dominio $\{up, down\}$
 - \circ S_1_st discreta:
 - stato del deviatore s_1 con dominio:

```
\{ok, upside\_down, short, intermittent, broken\}
```

- Number_of_broken_switches intera:
 - numero di deviatori rotti
- \circ $Current_w_1$ continua:
 - *corrente* in Ampére che passa attraverso il cavo (wire) w_1
- un mondo specifica posizioni e stato di ogni dispositivo, ecc.
 - \circ e.g. $S_1_pos=up$, $S_2_pos=down$, $Cb_1_st=ok$, $W_3_st=broken$, ...

Esempio — Cruciverba

- rappresentazioni in termini di variabili:
 - 1. definizione o casella numerata + direzione (orizzontale o verticale)
 - dominio: parole di una data lunghezza
 - es., $Due_orizzontale$ con dominio dato dalle parole di 3 lettere, come $\{'ant', 'big', 'bus', 'car', 'has'\}$
 - mondo possibile: assegnazione di una parola a ogni variabile

2. singola casella

- dominio: insieme delle lettere dell'alfabeto
 - ad es., P00 casella in alto a sinistra (o destra) con dominio $\{a,\ldots,z\}$
- mondo possibile: assegnazione di una lettera ad ogni casella

Esercizio — Sudoku?

Esempio — Guida turistica

- pianificazione delle attività escursionistiche
- due variabili per attività
 - o data: sui giorni per l'attività
 - *luogo*: sull'insieme delle città da visitare
- mondo possibile: assegnazione di data e luogo a ogni attività

In alternativa:

- date come variabili
 - o dominio: insieme di tutte le coppie attività-luogo
- #mondi possibili = prodotto delle cardinalità dei domini delle variabili

Esempio — Colorazione Grafi (carte geografiche) con #colori limitato

Esempio — Date A e B con $dom(A) = \{0, 1, 2\}$ e $dom(B) = \{true, false\}$, mondi possibili:

- $w_0 = \{A = 0, B = true\}$
- $w_1 = \{A = 0, B = false\}$
- $w_2 = \{A = 1, B = true\}$
- $w_3 = \{A = 1, B = false\}$
- $w_4 = \{A = 2, B = true\}$
- $\bullet \ w_5=\{A=2,B=false\}$

COMPATTEZZA DELLA RAPPRESENTAZIONE

- n variabili, con domini di cardinalità $d \longrightarrow d^n$ assegnazioni
- Vantaggio poche variabili descrivono molti mondi
 - 10 variabili binarie $\rightarrow 2^{10} = 10^3 +$
 - 20 variabili binarie $\rightarrow 2^{20} = 10^6 +$
 - 30 variabili binarie \rightarrow $2^{30} = 10^9 +$
 - 100 variabili binarie $\rightarrow 2^{100} = 10^{30} +$
 - $10^{30} = 1\ 267\ 650\ 600\ 228\ 229\ 401\ 496\ 703\ 205\ 376$
- ragionare con 30 variabili più facile che con un miliardo di *mondi/stati*
 - o anche con 100 variabili non ci sono grossi problemi
- ullet impraticabile ragionare esplicitamente con 2^{100} stati
- molti problemi reali definiti in termini di migliaia / milioni di variabili
 - es. previsioni meteo

In ogni problema: assegnazioni lecite | non lecite

• vincolo rigido / hard constraint: specifica le assegnazioni ammissibili per una o più variabili

Formalmente:

- ambito / scope: ins. di variabili
 - o sotto-insieme di quelle *coinvolte* nel vincolo
- **relazione** sull'ambito S
 - \circ funzione booleana sulle assegnazioni a variabili in S
 - per distinguere quelle lecite
- **vincolo** c: ambito S e relazione su S
 - \circ valutabile su ogni assegnazione che coinvolga tutte le variabili in S: dati c su S e l'assegnazione A su S', con $S\subseteq S'$
 - A soddisfa c se A, ristretta a S, è true per la relazione
 - A viola c in caso contrario

SINTASSI E SEMANTICA

Definizione dei vincoli

- intensionale: in termini di formule
- estensionale: elencando le assegnazioni lecite
 - o come tabelle/relazioni di tuple/assegnazioni nei RDB

Soddisfacimento dei Vincoli e Modelli

- Un mondo possibile w soddisfa un insieme di vincoli se ognuno di essi è soddisfatto dai valori assegnati in w alle variabili nel suo ambito
 - in tal caso, w si dice anche loro modello

VINCOLI E ARIETÀ

- Vincolo unario: su singola variabile
 - \circ es B < 3
- Vincolo binario: su coppia di variabili
 - \circ es. A < B
- In generale, vincolo n-ario: ambito di cardinalità n
 - \circ es. A+B=C vincolo ternario

Esempio — Vincoli sulle possibili *date* per *attività* rappresentate da A,B e C tutte con lo stesso dominio $\{1,2,3,4\}$

• vincolo intensionale su $\{A, B, C\}$:

$$(A \leq B) \land (B < 3) \land (B < C) \land \neg (A = B \land C \leq 3)$$

- \circ A deve precedere o svolgersi assieme a B
- ∘ B deve svolgersi prima del giorno 3
- $\circ \; B$ deve precedere C
- o non è possibile che A e B si svolgano nella stessa data mentre C si svolge prima o giusto nel giorno 3

(..cont.)

• stesso vincolo definito estensionalmente:

A	B	C
2	2	4
1	1	4
1	2	3
1	2	4

- $\{A=1,B=2,C=3,D=3,E=1\}$ lo soddisfa: $\{A=1,B=2,C=3\}$ corrisponde alla terza riga in tabella
 - $\{A = 1, B = 2, C = 3\}$ corrisponde alla terza riga in tabella ristretta al suo ambito

Esempio — cruciverba

- dominio fatto di parole:
 - o vincolo: stesse lettere negli incroci (di def. orizzontali e verticali)
- dominio fatto di *lettere*:
 - vincolo: ogni sequenza di lettere contigue forma una parola lecita (nel dizionario)

Un **problema di soddisfacimento di vincoli** (*constraint satisfaction problem*, CSP) consiste in:

- un insieme di variabili
 - o ognuna con un proprio dominio
- un insieme di vincoli

CSP finito: numero finito di variabili di dominio finito

• si prenderanno in considerazione, oltre a metodi per CSP finiti, anche algo. per casi con variabili dal dominio infinito o addirittura *continuo*

Esempi — Giochi

- Sudoku
- Criptoaritmetica

Esempio — robot consegne

- attività: a, b, c, d ed e
- momenti: 1, 2, 3 o 4
- variabili corrispondenti (stesso dominio per tutte):

$$dom(A) = dom(B) = dom(C) = dom(D) = dom(E) = \{1, 2, 3, 4\}$$

• insieme di vincoli:

$$\left\{egin{array}{ll} (B
eq 3), (C
eq 2), (A
eq B), (B
eq C), (C
eq D), (A
eq D), \ (E
eq A), (E
eq B), (E
eq C), (E
eq D), (B
eq D) \end{array}
ight.$$

Esercizio: trovare un modello (assegnazione valida)

TASK TIPICI CON CSP

- Determinare se esista un modello o meno
- Trovare un modello
- Contare il numero di modelli
- Enumerare tutti i modelli
- Trovare il modello migliore, data una misura di qualità
- Determinare se alcuni enunciati siano veri in tutti i modelli

Osservazioni

- CSP difficili per il loro carattere multidimensionale
 - una dimensione per variabile
- compito-base: trovare un modello (se esiste)
 - CSP con domini finiti: problema NP-completo
 - metodi di complessità esponenziale
 - ove possibile si sfrutta la *struttura*

ALGORITMO GENERATE-AND-TEST

Algoritmo Generate-and-Test

Algoritmo esaustivo per CSP finiti

- \mathcal{D} : spazio delle assegnazioni totali
- l'algoritmo restituisce uno o tutti i modelli

Per un modello:

- si controlla un elemento di \mathcal{D} alla volta
- si restituisce la prima assegnazione che soddisfa tutti i vincoli

Per avere tutti i modelli:

si continua a iterare conservando i modelli trovati

Esempio — Nell'esempio precedente

$$\mathcal{D} = \{ \quad \{A=1, B=1, C=1, D=1, E=1\}, \ \{A=1, B=1, C=1, D=1, E=2\}, \ dots \quad dots \quad$$

- ullet $|\mathcal{D}|=4^5=1024$ assegnazioni distinte da testare
- con 15 variabili, 4^{15} ossia circa un miliardo
- con 30 variabili, improponibile

Osservazioni

- n domini di cardinalità $d \rightarrow \mathcal{D}$ ha cardinalità d^n
- e vincoli \rightarrow numero totale di test $O(ed^n)$
 - \circ al crescere di n diventa rapidamente intrattabile
 - servono soluzioni alternative

RISOLUZIONE DI CSP TRAMITE RICERCA

Risoluzione di CSP tramite Ricerca

Idea: un vincolo coinvolge solo alcune variabili

- → vincoli testabili su assegnazioni parziali
- assegnazione *non consistente*¹ rispetto a un vincolo
 - → non consistente ogni sua *estensione* che coinvolga altre variabili

Consistenza logica: coerenza, non contraddittorietà

Esempio — Pianificazione di consegne (es. precedente)

- assegnazioni con A=1 e B=1 non consistenti rispetto a $A\neq B$ indipendentemente dai valori assegnati alle altre
- assegnando prima i valori ad A e B si può anticipare la scoperta di tale non consistenza senza considerare C, D o E e relativi test, risparmiando lavoro

GRAFO DI RICERCA

Spazio di ricerca a grafo da costruire:

- ullet nodi: assegnazioni <u>parziali</u> n $=\{X_1=v_1,\ldots,X_k=v_k\}$
- vicini di n: assegnazioni consistenti estese con assegnazioni a nuove variabili
 - \circ scelti $Y
 otin \{X_1,\ldots,X_k\}$ e $y_i\in dom(Y)$, $\mathsf{n}'=\{X_1=v_1,\ldots,X_k=v_k,Y=y_i\}$ vicino di n se soddisfa tutti i vincoli
- nodo di partenza: assegnazione vuota
- nodi-obiettivo: assegnazioni totali
- soluzione: nodo-obiettivo consistente con tutti i vincoli

in questo contesto, le soluzioni interessano più dei cammini

Esempio — Semplice CSP

- variabili: A, B e C, tutte con dominio $\{1,2,3,4\}$
- vincoli: A < B e B < C

(..cont.)

- "X": nodo scartato per violazione dei vincoli
 - \circ ad es. il più a sinistra corrisponde a $\{A=1,B=1\}$ che viola A < B
- 4 soluzioni:
 - \circ ad es. la più a sinistra è $\{A=1,B=2,C=3\}$
- dim. dell'albero (ed efficienza) dipendono dall'ordine di scelta delle variabili
 - \circ *statico* es. sempre prima A poi B poi C meno efficiente di uno *dinamico*
 - quello ottimale potrebbe essere più difficile da trovare
 - o 8 assegnazioni totali e 16 parziali generate di cui si testa la consistenza
 - contro le 4³ = 64 del GENERATE-AND-TEST

Osservazioni

- DFS (backtracking) molto più efficiente del GENERATE-AND-TEST
 - **GENERATE-AND-TEST:**
 - test dopo aver generato le foglie
 - o DFS:
 - test anticipati consentono di potare sotto-alberi, risparmiando lavoro

ALGORITMI BASATI SU CONSISTENZA

Algoritmi Basati su Consistenza

Esempio — Nell'es. precedente A e B correlate dal vincolo

- A=4 non consistente con ogni possibile assegnazione a B essendo $dom(B)=\{1,2,3,4\}$
- nella ricerca con backtracking: non consistenza $\it riscoperta$ ogni volta per le diverse assegnazioni a $\it B$ e $\it C$
- inefficienza evitabile eliminando 4 da dom(A)

RETE DI VINCOLI

Rete di vincoli (constraint network) indotta da CSP:

- un <u>nodo circolare</u> per ogni variabile
 - \circ per ogni variabile X, un insieme D_X di possibili valori
 - inizialmente impostato a dom(X)
- un <u>nodo rettangolare</u> per ogni vincolo
- un arco $\langle X,c \rangle$ per ogni variabile X nell'ambito del vincolo c

Esempio — sempre nell'es. precedente

- *variabili*: A, B e C, tutte con dominio $\{1, 2, 3, 4\}$
- vincoli: A < B e B < C
- rete dei vincoli corrispondente:

Esempio

- il vincolo $X \neq 4$ ha un arco:
 - $\circ \ \langle X, X
 eq 4
 angle$
- il vincolo X + Y = Z avrà 3 archi
 - $\circ \langle X, X+Y=Z \rangle$
 - $\circ \langle Y, X+Y=Z \rangle$
 - $\circ \langle Z, X+Y=Z \rangle$

CONSISTENZA DEGLI ARCHI RISPETTO AI DOMINI

Arco $\langle X,c \rangle$ consistente rispetto al dominio (domain consistent) se $\forall x \in D_X$:

$$X=x$$
 soddisfa c

Esempio — Data B con $D_B = \{1,2,3\}$ si consideri il vincolo $B \neq 3$

- arco $\langle B, B \neq 3 \rangle$ non consistente: assegnando 3 a B si viola il vincolo
 - \circ eliminando 3 da D_B diventerebbe consistente

CONSISTENZA DEGLI ARCHI E DELLE RETI

Dato il vincolo c su $\{X,Y_1,\ldots,Y_k\}$, arco $\langle X,c \rangle$ consistente se $\forall x\in D_X,\ \exists y_1,\ldots,y_k\colon\ y_i\in D_{Y_i}$ $c(X=x,Y_1=y_1,\ldots,Y_k=y_k)$ soddisfatto

Una rete consistente (rispetto agli archi) contiene solo archi consistenti

Osservazione

- $\langle X, c \rangle$ non consistente
 - \rightarrow per qualche valore di X non ci sono valori di Y_1,\ldots,Y_k che soddisfino c
 - \circ eliminando tali valori da D_X si può ripristinare la consistenza di $\langle X,c
 angle$

l'eliminazione di valori può rendere altri archi non consistenti

Esempio — Nella rete precedente

tutti archi non consistenti dati i domini $\{1, 2, 3, 4\}$:

- $\langle A,A < B \rangle$ perché per A=4 non ci sono valori per B per i quali A < B \circ togliendo 4 dal dominio di A, diventerebbe consistente
- ullet $\langle B,A < B
 angle$ perché non c'è un valore per A quando B=1
- ... per **Esercizio**

ALGORITMO BASATO SULLA CONSISTENZA DEGLI ARCHI

Idea Rendere la rete consistente restringendo i domini

Si considera l'insieme to_do degli archi potenzialmente non consistenti:

- si inizializza to_do con tutti gli archi del grafo
- si ripete fino a svuotare to_do:
 - \circ estrarre $\langle X,c
 angle$ da to_do
 - \circ se $\langle X,c
 angle$ non consistente, restringere il dominio di X
 - \circ aggiungere a to_do gli archi resi non consistenti dal passo precedente:
 - ullet $\langle Z,c'
 angle$, c'
 eq c, con ambito che comprende X e una diversa Z

→ algoritmo GENERALIZED ARC CONSISTENCY

```
procedure GAC(\langle Vs, dom, Cs \rangle)
    return GAC2(\langle Vs, dom, Cs \rangle, \{\langle X, c \rangle \mid c \in Cs \land X \in scope(c)\})
 procedure GAC2(\langle Vs, dom, Cs \rangle, to\_do)
    while to\_do \neq \{\} do
         seleziona e rimuovi \langle X,c 
angle da to\_do
         let \{Y_1,\ldots,Y_k\}=scope(c)\setminus X
         ND \leftarrow \{x \mid x \in dom[X] \land \exists y_1 \in dom[Y_1], \ldots, y_k \in dom[Y_k]:
                         c(X = x, Y_1 = y_1, \dots, Y_k = y_k)
         if ND \neq dom[X] then
              to\_do \leftarrow to\_do \cup \{\langle Z, c' \rangle \mid \{X, Z\} \subseteq scope(c'), c' \neq c, Z \neq X\}
              dom[X] \leftarrow ND
    return dom
```

Esempio — Dato il CSP visto prima con la rete:

Possibile sequenza di selezioni:

- to_do contiene tutti i 4 archi
- estratto $\langle A, A < B
 angle$ da to_do
 - \circ per A=4, non c'è valore di B che soddisfi il vincolo
 - \circ 4 eliminato da D_A
 - nessuna modifica a to_do : tutti gli altri archi già presenti
- estraendo $\langle B, A < B \rangle$
 - $\circ~1$ eliminato da D_B
 - ∘ nessuna modifica a *to_do*

(..cont.)

- estraendo $\langle B, B < C \rangle$
 - \circ 4 eliminato da D_B
 - $\circ \ \langle A, A < B
 angle$ aggiunto a to_do
 - potendosi restringere D_A essendo stato ridotto D_B
- estraendo $\langle A, A < B \rangle$
 - \circ 3 eliminato da D_A
- resta da estrarre il solo $\langle C, B < C
 angle$ rimasto in to_do
 - \circ 1 e 2 rimossi dal dominio di C
 - nessun arco aggiunto a *to_do*
 - C non coinvolta in altri vincoli quindi to_do resta vuoto

GAC termina con
$$D_A = \{1,2\}, D_B = \{2,3\}, D_C = \{3,4\}$$

- problema <u>non</u> risolto ma *semplificato*
- calcolo soluzione veloce via DFS + backtracking

Esempio — CSP precedente con A, B, C, D, E dallo stesso dominio $\{1, 2, 3, 4\}$ e vincoli:

$$(B
eq 3), (C
eq 2), (A
eq B), (B
eq C), \ (C
eq D), (A
eq D), (E
eq A), (E
eq B), \ (E
eq C), (E
eq D), (B
eq D)$$

(..cont.) la rete sarà:

Il resto nell'Esempio 4.19 del testo

o Esercizio

Terminazioni Possibili

GAC termina con una rete consistente con domini *ridotti* e 3 casi possibili:

- 1. dominio vuoto → nessuna soluzione
 - se uno è vuoto, lo saranno anche altri domini collegati già prima della terminazione
- 2. domini tutti ridotti a un solo valore → soluzione unica
- 3. altrimenti, CSP (rete) semplificato cui applicare altri metodi

Metodi Alternativi

Algoritmi basati sulla consistenza dei percorsi

Complessità ∢

- c vincoli binari e domini di cardinalità d
 - \circ 2c archi
- controllare $\langle X, r(X,Y) \rangle$ richiede nel caso pessimo di iterare su ogni valore di dom(Y) per ogni valore di $dom(X) \rightarrow$ tempo: $O(d^2)$
- tale arco potrebbe essere controllato una volta per ogni valore di $dom(Y) \rightarrow$ GAC per variabili binarie è $O(cd^3)$ in tempo
 - ∘ lineare in *c*
- spazio: O(nd)
 - o numero di variabili

SEPARAZIONE DEI DOMINI

Separazione dei Domini / Analisi dei Casi

Idea decomporre il CSP in una serie di casi disgiunti da risolvere separatamente
 → soluzioni riunendo quelle trovate per i diversi casi

Esempi

- X binaria, dominio $\{t, f\} \rightarrow$ due problemi ridotti:
 - \circ trovare le soluzioni con X=t e quelle con X=f
 - o se ne basta una, secondo caso considerato solo se il primo non ha soluzione
- A con dominio $\{1, 2, 3, 4\}$, separabile in diverse maniere
 - \circ un caso per ciascun valore: A=1, A=2, A=3, A=4
 - fa fare più strada con una sola divisione
 - \circ due sottoinsiemi disgiunti: $A \in \{1,2\}$ e $A \in \{3,4\}$
 - taglia di più in meno passi (lavoro che non va rifatto per ogni valore)

0 ...

SCHEMA DI ALGORITMO

Integrando l'approccio basato sulla consistenza in un algoritmo ricorsivo:

- semplificare il problema in input tramite GAC()
- se non è risolto direttamente:
 - selezionare una variabile, con dominio almeno binario
 - o partizionare il dominio ottenendo (2+) problemi semplificati (casi)
 - o risolvere *ricorsivamente* tali problemi

```
procedure CSP_Solver(\langle Vs, dom, Cs \rangle)
  // restituisce una soluzione al CSP oppure false
  return Solve2(\langle Vs, dom, Cs \rangle, \{\langle X, c \rangle \mid c \in Cs \land X \in scope(c)\})
procedure Solve2(\langle Vs, dom, Cs \rangle, to\_do)
  dom_0 \leftarrow \mathsf{GAC2}(\langle Vs, dom, Cs \rangle, to\_do)
  if \exists X \colon dom_0[X] = \emptyset then
       return false
  else if \forall X \colon |dom_0[X]| = 1 then
       return soluzione con \forall X \colon X = x \in dom_0[X]
  else
       selezionare X tale che |dom_0[X]|>1
       partizionare dom_0[X] in D_1 e D_2
       dom_1 \leftarrow copia di dom_0 con dom_1[X] = D_1
       dom_2 \leftarrow copia di dom_0 con dom_2[X] = D_2
       to\_do \leftarrow \{\langle Z, c' \rangle \mid \{X, Z\} \subseteq scope(c'), Z \neq X\}
       return Solve2(\langle Vs, dom_1, Cs \rangle, to\_do) or
                 Solve2(\langle Vs, dom_2, Cs \rangle, to\_do)
```

Stesso algoritmo per avere tutte le soluzioni:

- dominio vuoto → insieme vuoto / ⊥
- dominio con un solo valore → singoletto
- ritorno dalla ricorsione restituendo l'unione delle soluzioni dei 2 casi

Osservazione — spazio per algoritmi di ricerca su grafo ma contano le soluzioni

• e.g. DFS, con spazi finiti

Miglioramento possibile:

- se un'assegnazione rende il grafo *non connesso*, ogni componente può essere risolta *separatamente*
 - o soluzione ottenuta ricombinando le soluzioni delle componenti
 - conteggio delle soluzioni efficiente
 - ad es., una componente con 100 soluzioni, altra con 20 → 2000 soluzioni totali

ELIMINAZIONE DI VARIABILI

Eliminazione di Variabili

Eliminazione di variabili (variable elimination, VE): tecnica che semplifica la rete dei vincoli rimuovendo variabili

Idea eliminare le variabili una alla volta ottenendo problemi semplificati e infine ricostruire le soluzioni dei problemi più complessi

- ullet eliminando X si costruisce un *nuovo vincolo* sulle rimanenti che rifletta gli effetti di X
 - \circ sostituisce tutti gli altri vincoli su X
 - → rete semplificata (CSP ridotto)
- alla fine, ogni soluzione del CSP ridotto va estesa per ottenere una soluzione del CSP comprendente X

ELIMINAZIONE DI UNA VARIABILE

Data X da eliminare:

- 1. considerate le relazioni di <u>tutti</u> i vincoli su X, sia $r_X(X, \bar{Y})$ il join di tali relazioni influenza di X sulle altre
 - \circ Y: ins. delle altre variabili nell'ambito di r_X vicine di X nel grafo dei vincoli
- 2. la *proiezione* di r_X su $ar{Y}$ sostituisce tutte le relazioni in cui occorre X
- 3. si ottiene un CSP ridotto, senza X, da risolvere ricorsivamente:
 - \circ al *ritorno*, tabelle-soluzioni per il CSP ridotto vanno estese, join con r_X , per aggiungere la colonna delle assegnazioni a X
 - caso base: resta una sola variabile → soluzione da restituire
 - tabella con i valori del dominio consistenti con i suoi vincoli

Esempio — Si consideri un CSP su A,B,C di dominio $\{1,2,3,4\}$; sia B da eliminare, inclusa nei vincoli: A < B e B < C

- altre variabili possibili ma non coinvolte in tali vincoli
- per eliminare B, join tra le relazioni dei vincoli su B:

\boldsymbol{A}	B		B	\boldsymbol{C}				
1	2	-	1	2		\boldsymbol{A}	B	\boldsymbol{C}
1	3		1	3		1	2	3
1	4	\bowtie	1	4	=	1	2	4
2	3		2	3		1	3	4
2	4		2	4		2	3	4
3	4		3	4				

(..cont.)

• la sua proiezione su A e C induce una nuova relazione senza B:

$$egin{array}{cccc} A & C \ \hline 1 & 3 \ 1 & 4 \ 2 & 4 \ \end{array}$$

vincolo che sostituisce tutti quelli su B

- contenendo tutte le info utili alla soluzione del resto della rete
- VE poi risolve il resto della rete semplificata
- Per avere una/tutte le soluzioni a partire dalla soluzione del CSP ridotto:
 - \circ si memorizza la relazione del join su A,B,C per estendere la soluzione della rete ridotta includendo B

```
procedure VE_CSP(Vs, Cs)
  Input
     Vs: insieme di variabili
      Cs: insieme di vincoli su Vs
  Output
      relazione contenente tutte le assegnazioni consistenti alle
      variabili
  if |Vs|=1 then
      oldsymbol{return} join di tutte le relazioni in Cs
  else
      Selezionare X \in Vs da eliminare
      Vs' \leftarrow Vs \setminus \{X\}
      Cs_X \leftarrow \{c \in Cs \mid c \text{ coinvolge } X\}
      Sia R il join di tutti i vincoli in Cs_X
      Sia R^\prime la proiezione di R sulle variabili di Vs^\prime
      S \leftarrow \mathsf{VE\_CSP}(\mathit{Vs'}, \; (\mathit{Cs} \setminus \mathit{Cs}_X) \cup \{R'\})
      return R \bowtie S
```

Osservazioni

- caso base: rimane 1 variabile
 - o una soluzione esiste se ci sono righe nelle relazioni finali
 - tutte su una sola variabile (insiemi di valori leciti) basta intersecarle
- caso *ricorsivo*: l'ordine di selezione delle variabili ha un impatto sull'efficienza
 - \circ al ritorno: se bastasse una soluzione, restituire solo una tupla di $R\bowtie S$
 - è garantito che sia parte d'una soluzione
 - se un valore di R non avesse tuple, non ci sarebbero soluzioni con tale valore

Estensioni

VE può essere *combinato* con algoritmi basati su consistenza:

- usati per semplificare il problema quando si elimina una variabile
 - tabelle intermedie più piccole

Complessità *⋖*

L'efficienza dipende dall'ordine di selezione delle variabili

- struttura intermedia variabili delle relazioni intermedie dipendente solo dalla struttura del grafo dei vincoli
 - o in generale, rete sparsa → VE efficiente

Treewidth del grafo:

- numero di variabili nella più grande relazione d'ordinamento (o tree decomposition)
- si considera la *minima* treewidth al variare degli ordinamenti

Complessità di VE:

- esponenziale rispetto alla treewidth
- lineare nel numero di variabili
 - o esponenziale con gli algoritmi di ricerca precedenti

(..cont.)

Trovare un ordine che minimizzi la treewidth minima è *NP-hard*, ma ci sono *euristiche*:

- min-factor: selezionare la variabile che porta alla relazione più piccola
- minimum deficiency o fill: selezionare la variabile che aggiunge meno archi alla rete dei vincoli
 - \circ *deficiency* di X: numero di coppie di variabili in una relazione con X che non sono in relazione fra loro
 - idea: rimuovere una variabile che non porti a una relazione grande purché non renda la rete più complicata
 - o produce treewidth minori ma più difficile da calcolare

RICERCA LOCALE

Ricerca Locale

Spazi molto grandi o infiniti?

- no ricerca sistematica dell'intero spazio
- metodi mediamente efficienti per trovare soluzioni
 - o senza garanzie, anche quando esistono
 - utili quando si sa già che esistono (verosimilmente)
- → Metodi di **ricerca locale**
- Molte tecniche: campo comune tra Ricerca Operativa e Al
- Iniziano con un'assegnazione totale di un valore a ciascuna variabile
- Tentano di migliorare l'assegnazione iterativamente
 - o passi di miglioramento
 - o passi casuali
 - o ripartenze con assegnazioni differenti

```
procedure Local_search(Vs, dom, Cs)
   Input
     Vs: insieme di variabili
      dom: funzione che restituisce il dominio di una variabile
      Cs: insieme di vincoli da soddisfare
  Output
      assegnazione totale che soddisfa i vincoli
   Local
      oldsymbol{A} array di valori indicizzato sulle variabili in oldsymbol{Vs}
      (assegnazione)
   repeat // try
      for each X \in Vs do
         A[X] \leftarrow  valore casuale da dom(X)
      // walk
      while not stop_walk() and A non soddisfa Cs do
         Selezionare Y \in Vs e un valore w \in dom(Y)
         A[Y] \leftarrow w
      if A soddisfa Cs then
         return A
   until terminazione
```

- ogni iterazione della repeat rappresenta un tentativo (try)
 - \circ primo for each: inizializzazione casuale di A
 - o assegnazioni casuali successive: ripartenza casuale (random restart)
 - in alternativa, congetture più informate
 - euristiche o conoscenza pregressa, poi migliorata iterando
- ciclo while: ricerca locale (walk) nello spazio delle assegnazioni
 - \circ NB seleziona un'assegnazione tra i possibili successori di A
 - differiscono per il valore assegnato a <u>una sola</u> variabile
 - stop quando: soluzione trovata o si avvera il criterio di stop_walk()
 - es. semplice: raggiunto numero max di cicli
- fermata non garantita: può divergere se non c'è soluzione
 - o anche se ce ne fossero, potrebbe rimanere intrappolato in una regione
 - o completezza: dipende dai criteri di selezione e di stop

RANDOM SAMPLING

- stop_walk() sempre true → while mai eseguito
 - continua indefinitamente a provare assegnazioni casuali che possano soddisfare tutti i vincoli
- algoritmo completo
 - garantisce la soluzione se esiste
 - ma tempo richiesto non limitato!
 - tipicamente risulta molto lento
- efficienza dipende da:
 - (prodotto delle) dimensioni dei domini
 - o numero di soluzioni

RANDOM WALK

- stop_walk() sempre false → no ripartenze casuali
 - esce dal ciclo while solo quando trova una soluzione
 - o nel ciclo seleziona casualmente una variabile e un valore da assegnarle
- algoritmo completo
 - o passi più veloci rispetto al resampling di tutte le variabili
 - o ma può richiedere più passi, in base alla distribuzione delle soluzioni
- quando le dimensioni dei domini delle variabili differiscono, si può
 - selezionare a caso una variabile, quindi un valore del suo dominio oppure
 - selezionare casualmente una coppia variabile-valore
 - favorisce la selezione di variabili con dominio più grande

Massimo Miglioramento Iterativo

ITERATIVE BEST IMPROVEMENT — ricerca locale che seleziona il *miglior successore* di un'assegnazione in termini di una **funzione di valutazione**

- funzione da minimizzare / massimizzare:

 GREEDY DESCENT / GREEDY ASCENT (noto anche come HILL CLIMBING)
 - o basta implementare uno solo dei due obiettivi
 - per l'altro, sufficiente cambiare il segno della funzione
 - o a parità di valore (tie) → scelta casuale
- funzione di valutazione tipica:
 - o numero di **conflitti**, i.e. vincoli violati
 - 0 conflitti → soluzione
 - o si può raffinare *pesando* i vincoli in maniera differenziata

OTTIMALITÀ

Si distinguono:

- ottimi locali assegnazioni non migliorabili da alcun successore
 - o minimi / massimo locali da GREEDY DESCENT / ASCENT
- ottimi globali con valutazione massima fra tutte le assegnazioni
 - sempre anche ottimi locali

Minimizzando (una funzione de) il numero di conflitti:

- CSP *soddisfacibile* ← minimo globale con valore nullo
- CSP *non soddisfacibile* ← minimo globale con valore positivo

se si raggiunge un minimo locale con valutazione *positiva*, NON è detto che sia globale (nel caso, CSP non soddisfacibile)

Esempio — ancora esempio precedente sulle consegne:

- SE GREEDY DESCENT inizia da $\{A=2, B=2, C=3, D=2, E=1\}$ \circ 3 conflitti: $A \neq B$, $B \neq D$, C < D
- nel possibile successore B=4
 - $\circ 1$ conflitto: C < D
- possibile successore con conflitti minimi: D=4
 - 2 conflitti
- poi, con il successore con A=4
 - 2 conflitti
- infine, con B=2
 - \circ 0 conflitti \longrightarrow soluzione

(..cont.)

trace:

A	B	C	D	E	val
2	2	3	2	1	3
2	4	3	2	1	1
2	4	3	4	1	2
4	4	3	4	1	2
4	2	3	4	1	0

con diverse inizializzazioni o diverse scelte in caso di pari valutazione possibili sequenze di assegnazioni e risultati differenti

COMPLETEZZA

Osservazione — si considera il miglior successore anche quando questo non ha una migliore valutazione rispetto all'assegnazione corrente

• e.g. minor numero di conflitti

<u>Caso possibile</u>: ottimi locali che risultano successori *reciproci*

- l'algoritmo continua a passare da uno all'altro
- non potrà trovare una soluzione → incompletezza

Algoritmi Stocastici

Obiettivo: evitare minimi locali che non siano anche globali

Idea: usare la casualità per evitare tali minimi

- 1. RANDOM RESTART valori scelti a caso per tutte le variabili:
 - mossa casuale globale (più costosa)
 - o per poter ripartire da regioni anche completamente diverse dello spazio
- 2. RANDOM WALK mosse casuali alternate a passi di ottimizzazione:
 - mossa casuale locale
 - GREEDY DESCENT / ASCENT permettono passi in direzione opposta per sfuggire a minimi / massimi locali

Integrando massimo miglioramento iterativo + mosse casuali:

→ Ricerca Locale Stocastica

Esempio — *Spazio 2D*

- successore tramite piccolo passo dall'attuale posizione
 - verso sinistra o destra

- spazio di ricerca (a)
 - GREEDY DESCENT può trovare facilmente minimi locali
 - serve un RANDOM RESTART che porti nella parte centrale (più profonda) nella quale si converge rapidamente verso uno globale
 - RANDOM WALK non funzionerebbe bene
 - richiederebbe molti piccoli passi casuali per uscire da un minimo locale

(..cont.)

- spazio di ricerca (b)
 - RANDOM RESTART rimane bloccato a cercare tra numerosi minimi locali
 - RANDOM WALK con GREEDY DESCENT potrebbe evitare tali minimi locali:
 - pochi passi casuali spesso sufficienti

Possibili spazi con caratteristiche diverse in regioni diverse

Varianti della Ricerca Locale

Molte altre varianti possibili nella scelta del successore + casualità

Successori e Domini

- domini *piccoli*: tutti i valori possono essere scelti per i successori
- domini estesi: si considerano solo alcuni valori (risparmiando tempo)
 - spesso i più vicini
 - o possibili metodi più sofisticatati di selezione

TABU SEARCH

TABU SEARCH evita la modifica di assegnazioni introdotte di recente

idea memorizzare variabili modificate negli ultimi *t* passi (**tenure**) da considerare *non selezionabili*

- evita i cicli dopo poche assegnazioni
- t parametro da ottimizzare
 - o piccolo: lista delle variabili modificate di recente
 - o grande: si memorizza per ogni variabile il passo relativo all'ultimo cambiamento

PASSO DI MASSIMO MIGLIORAMENTO

Metodo che seleziona una coppia variabile-valore che porta al *miglioramento* di valutazione *massimale*

più coppie → scelta casuale

Implementazione ingenua data l'assegnazione totale corrente:

- per ogni X e ogni $v \in dom(X)$ diverso da quello corrente, confrontare l'assegnazione corrente con quella in cui X = v
- selezionare una coppia di massimo miglioramento
 - o anche in caso di differenze negative (peggioramenti)
 - variabili senza vincoli possono essere tralasciate
 - ∘ un passo $\rightarrow O(ndr)$ valutazioni
 - n numero di variabili
 - d cardinalità max dei domini
 - r numero di vincoli per variabile

Implementazione alternativa con coda con priorità di coppie pesate variabile-valore

- per ogni X e ogni $v\in dom(X)$ non presenti nell'assegnazione corrente, in coda $\langle X,v \rangle$ con *peso* w
 - \circ miglioramento dell'assegnazione con X=v rispetto a quella corrente
 - dipende dai valori assegnati a X e suoi vicini nella rete dei vincoli, non da quelli assegnati alle altre
- a ogni iterata si seleziona una coppia-successore di massimo miglioramento
 peso minimale
- nuova assegnazione → ricalcolo-pesi → riordinamento della coda
 - o ma solo per coppie con variabili in vincoli il cui soddisfacimento è mutato

Complessità *⋖*

- dimensione della coda n(d-1)
 - o numero variabili
 - \circ d dim. medie del dominio
- inserimento/rimozione: $O(\log(nd))$
- l'algoritmo rimuove un solo elemento dalla coda, ne aggiunge un altro e aggiorna i pesi di ${\it rk}$ variabili al più
 - o r numero di vincoli per variabili
 - k numero di variabili per vincolo
- complessità di un passo: $O(rkd\log(nd))$
 - o molto tempo speso nel gestire le strutture dati

SCELTA A DUE FASI

Idea:

- 1. selezione della variabile
- 2. selezione del valore

Si gestisce una *coda* con priorità di variabili con peso pari al *numero dei conflitti* in cui sono coinvolte

- ad ogni passo:
 - \circ si seleziona X che partecipa a più conflitti
 - si cambia il valore assegnato:
 - minimizzando il numero di conflitti oppure casualmente
 - o ricalcolo-pesi per variabili in vincoli il cui soddisfacimento è mutato

Complessità *⋖*

- ogni passo: $O(rk \log n)$
 - o meno lavoro rispetto all'algoritmo basato su coppie variabile-valore
- compromesso:
 - o più passi nell'unità di tempo
 - o meno costosi ma meno migliorativi

ALGORITMO ANY CONFLICT

Idea: si sceglie una variabile conflittuale (i.e. partecipa a conflitti)

A ogni iterata:

- si seleziona casualmente una variabile conflittuale
 - o non necessariamente quella con più conflitti
- quindi le si assegna, in alternativa:
 - un valore che minimizzi il numero di conflitti oppure
 - un valore casuale

Varianti

Criterio di selezione casuale della variabile:

- 1. si sceglie prima un conflitto, poi una variabile coinvolta
- 2. scelta di una variabile conflittuale

Differenze — probabilità di selezione di una variabile

- 1. dipende dal numero di conflitti in cui è coinvolta
- 2. stessa probabilità per tutte

Complessità ∢

- gestione di strutture dati per la rapida selezione casuale di una variabile
 - o variante 1: insieme di conflitti da cui selezionare un elemento casuale
 - es. con un albero binario di ricerca
 - complessità di un passo: $O(r \log c)$
 - ullet caso pessimo: r vincoli da aggiungere/rimuovere dall'ins. dei conflitti

Simulated Annealing

Metafora dalla termodinamica | metallugia:

- alta temperatura → maggiore casualità / plasticità
- bassa temperatura → minore casualità / maggiore durezza

Metodo senza strutture dati ausiliari:

- seleziona casualmente una variabile e un valore del suo dominio
- quindi accetta / rigetta la nuova assegnazione risultante

SIMULATED ANNEALING [3] riduce lentamente la *temperatura*:

- alle alte temperature si comporta come RANDOM WALK
 - consente di saltare i minimi locali e trovare regioni con bassi valori dell'euristica
 - passi peggiorativi più probabili ad alte temperature
- alle basse temperature si comporta come il GREEDY DESCENT
 - o porta direttamente verso i minimi (locali)

A ogni passo, data l'assegnazione corrente A:

- si sceglie a caso una variabile e un valore ottenendo una *nuova* assegnazione A'
- se A' non peggiora l'euristica
 - sostituisce l'assegnazione corrente
 - altrimenti lo fa con una probabilità
 che dipende dalla temperatura e dal peggioramento che comporta

Temperatura $T \in \mathbb{R}_+$

- h(A) euristica da minimizzare
 - (tipicamente) numero dei conflitti
- se $h(A') \leq h(A)$, si accetta direttamente: $A \leftarrow A'$
- altrimenti, si può accettare con probabilità

$$e^{-(h(A')-h(A))/T}$$

distribuzione di Gibbs / Boltzmann

- \circ se h(A') > h(A) allora esponente negativo
- \circ tendendo h(A') h(A) o 0, più probabile accettare A'
 - ullet alte temperature: esponente ightarrow 0 e probabilità ightarrow 1
 - al decrescere della temperatura: esponente $ightarrow -\infty$ e probabilità ightarrow 0

Esempio — Probabilità di accettazione di passi peggiorativi a diverse temperature e differenze k = h(A') - h(A):

Temperatura	k = 1	k=2	k=3
10	0.9	0.82	0.74
1	0.37	0.14	0.05
0.25	0.018	0.0003	0.000006
0.1	0.00005	0.2 · 10 ⁻⁸	0.9 · 10 -13

Programma di annealing

specifica come ridurre la temperatura al progredire della ricerca

- raffreddamento geometrico: molto usato
 - \circ ad es. si parte da T=10 e si moltiplica per 0.99 ad ogni passo
 - arrivando a 0.07 dopo 500 passi

Osservazioni

- temperature *alte* (e.g. T=10):
 - si tende ad accettare passi che peggiorano di poco
 - leggera preferenza rispetto a passi che migliorano
- temperature *ridotte* (e.g. T=1):
 - o passi peggiorativi accettati molto meno di frequente
- temperature *basse* (e.g. T=0.1):
 - o passi peggiorativi accettati molto raramente

Valutazione degli Algoritmi Randomizzati ∢

(sola lettura)

Valutazione empirica comparativa basata sulla run-time distribution

- distribuzione *cumulativa*: quante volte il problema è stato risolto entro un dato numero di passi
 - o in un lasso di tempo

RANDOM RESTART o ripartenza casuale

- permette di migliorare le prestazioni di un *algoritmo casuale debole*: ha successo in pochi casi specifici
 - o probabilità di successo d'una singola esecuzione
- per stimarne le prestazioni di una sequenza di n esecuzioni indipendenti, probabilità di successo:

$$(1-(1-p)^n)$$

- \circ *n* esecuzioni necessarie al ritrovamento di una soluzione
- \circ fallisce, con probabilità $(1-p)^n$, solo se falliscono *tutti* i tentativi

Esempio — algoritmo con p=0.5

- ripetuto per 5 volte, trova una soluzione circa il 96.9% delle volte
- ripetuto 10 volte: 99.9%

Se
$$p = 0.1$$

- ripetuto 10 volte: 65% di percentuale di successo
- ripetuto 44 volte: 99%

Osservazioni

RANDOM RESTART costoso se sono coinvolte molte variabili

- nel Partial Restart si fanno assegnazioni solo ad *alcune* variabili, per spostarsi verso un'altra regione
 - e.g. una data *percentuale* di esse (es. 10%)
- tentativi/esecuzioni *non indipendenti* → analisi teorica più complessa

ALGORITMI BASATI SU POPOLAZIONI

Algoritmi Basati su Popolazioni

Metodi che gestiscono popolazioni (insiemi) di individui (assegnazioni):

- beam search: i migliori k
 - beam search stocastica: numero variabile aleatoriamente
- algoritmi genetici: i migliori k ai fini riproduttivi

Beam Search

Simile al miglioramento iterativo

- conserva fino a k assegnazioni anziché una sola
- successo quando viene trovata una soddisfacente
- ullet a ogni passo, si selezionano i migliori k successori
 - o anche meno qualora non ce ne fossero a sufficienza
 - selezione casuale in caso di parità
- si itera con il nuovo set di k assegnazioni

Osservazioni

- utile in caso di memoria limitata
 - \circ **k** selezionato in base alla memoria disponibile
- possibili varianti:
 - \circ impiegare più tempo nel cercare i migliori k
 - impiegare meno tempo puntando ad approssimazioni (stime)

BEAM SEARCH STOCASTICA

- Si selezionano k individui casualmente
 - o favorendo (maggiore probabilità) quelli con valutazione migliore
- Probabilità di scelta in funzione dell'euristica
 - \circ selezione di un individuo $oldsymbol{A}$ con probabilità proporzionale a

$$e^{-h(A)/T}$$

distribuzioni di Gibbs / Boltzmann

- h(A) funzione di valutazione
- T temperatura

Osservazione: tende a consentire più diversità nella popolazione

- h riflette l'adattamento/fitness
 - (come in biologia) un individuo più adatto ha più probabilità di passare i propri geni a future generazioni
 - riproduzione asessuata:
 - un individuo produce una prole leggermente *mutata*
 - o si adotta un principio di sopravvivenza dei più adattabili
- stessi individui selezionabili casualmente anche più volte

Algoritmi Genetici

Analoga metafora biologica:

- assegnazione = patrimonio genetico d'un individuo
- nuovi individui della popolazione dalla *combinazione* di *coppie* di individuigenitori della generazione precedente

Crossover: operazione che prevede:

- selezione di una coppia di individui
- generazione della loro prole
 - o copiando parte delle assegnazioni alle variabili da un genitore e il resto dall'altro

NB operazione *aggiuntiva* rispetto alla mutazione

Si gestisce una popolazione di k individui (con k pari)

Fino a trovare una soluzione:

- A ogni iterata, *generazione* di *k nuovi* individui
 - Selezione casuale di coppie:
 - favorendo la selezione degli individui più adatti
 - la probabilità dipende dall'incremento di fitness e dalla temperatura
 - Per ogni coppia, si opera un crossover
 - Si fanno mutare casualmente alcuni (pochissimi) valori, per alcune variabili scelte a caso
 - RANDOM WALK
 - Si passa alla successiva generazione

procedure Algoritmo_Genetico(Vs,dom,Cs,S,k) Input Vs: insieme di variabili dom: dominio della variabile come funzione Cs: insieme di vincoli da soddisfare S: programma di raffreddamento della temperatura k: dim. popolazione - intero pari Output assegnazione totale che soddisfano i vincoli Locali

Pop: insieme di assegnazioni

T: real

```
Pop \leftarrow k assegnazioni totali casuali
T inizializzato secondo S
repeat
    if A \in Pop soddisfa tutti i vincoli in Cs then
        return A
    Npop \leftarrow \emptyset
    repeat k/2 volte
        A_1 \leftarrow \mathsf{Random\_selection}(Pop, T)
        A_2 \leftarrow \mathsf{Random\_selection}(Pop, T)
        N_1, N_2 \leftarrow \mathsf{Crossover}(A_1, A_2)
        Npop \leftarrow Npop \cup \{mutate(N_1), mutate(N_2)\}
    Pop \leftarrow Npop
    oldsymbol{T} viene aggiornato secondo oldsymbol{S}
until terminazione
```

```
procedure Random_selection(Pop, T)
selezionare A da Pop con probabilità proporzionale a e^{-h(A)/T}
return A
procedure Crossover(A_1, A_2)
selezionare casualmente un intero i, 1 \le i < |Vs|
```

 $N_1 \leftarrow \{(X_j = v_j) \in A_1 \mid j \leq i\} \cup \{(X_j = v_j) \in A_2 \mid j > i\} \ N_2 \leftarrow \{(X_j = v_j) \in A_2 \mid j \leq i\} \cup \{(X_j = v_j) \in A_1 \mid j > i\}$ return N_1, N_2

CROSSOVER

- crossover uniforme: considera due individui genitori e genera due figli
 - o nei figli, casualmente per ogni variabile, valore copiato da uno dei genitori
- one-point crossover, metodo molto comune: assume variabili ordinate
 - \circ seleziona casualmente un *indice* i
 - \circ produce un figlio selezionando i valori per le variabili fino a i da un genitore e per le successive (>i) dall'altro
 - per l'altro figlio si agisce in modo complementare
 - efficacia dipendente dall'ordinamento scelto:
 - in fase di progettazione dell'algoritmo

Esempio — Nell'esempio precedente, funzione di costo basata sul numero di conflitti

- $A = 2, B = 2, C = 3, D = 1, E = 1 \rightarrow costo: 4$
 - \circ basso grazie a E=1
 - \circ un discendente che erediti E=1 tenderà ad avere un costo più basso
 - sopravvivenza più probabile
- Altri individui con valutazione bassa

$$A = 4, B = 2, C = 3, D = 4, E = 4 \rightarrow costo: 4$$

- a causa delle assegnazioni su A, B, C, D
- i figli che preservano questa proprietà saranno più adatti rispetto agli altri, candidandosi alla sopravvivenza
- Combinando questi individui, tra i discendenti:
 - alcuni erediteranno cattive proprietà e non saranno scelti per tramandarle
 - o altri quelle buone e avranno maggiori probabilità di sopravvivenza

OTTIMIZZAZIONE

Ottimizzazione

Problema di ottimizzazione — trovare i *migliori* mondi possibili

Dati:

- un insieme di variabili con un dominio associato
- una **funzione-obiettivo** dalle assegnazioni totali a $\mathbb R$
- un criterio di ottimalità
 - tipicamente minimizzare/massimizzare la funzione-obiettivo

Trovare: un'assegnazione totale ottimale per il criterio adottato

Problema di ottimizzazione vincolato comprende anche *vincoli rigidi* che specificano le assegnazioni possibili ammissibili

• Obiettivo: assegnazione ottimale che soddisfi i vincoli rigidi

Vasta letteratura scientifica

- molte tecniche:
 - es. programmazione lineare con variabili reali e funzione-obiettivo lineare e diseguaglianze lineari come vincoli
- se il problema da risolvere rientra nelle *categorie classiche*, meglio usare algoritmi specifici
 - anche dopo qualche trasformazione

Problema di ottimizzazione di vincoli:

funzione-obiettivo fattorizzata in un insieme di vincoli flessibili

- vincoli con un ambito di variabili
- funzioni di costo:
 - ∘ dai domini delle variabili a ℝ
- criterio di ottimalità:
 - o tipicamente minimizzazione della somma dei costi dei vincoli flessibili

Esempio — Caso precedente ma con preferenze sui tempi invece dei vincoli rigidi: costi associati alle *combinazioni* di valori (tempi)

- scopo: trovare una disciplina con somma totale dei costi minimale
- date A,C,D ed E con dominio $\{1,2\}$ e B con dominio $\{1,2,3\}$
- vincoli flessibili:

	\boldsymbol{A}	B	costo		B	\boldsymbol{C}	costo		B	D	costo
	1	1	5		1	1	5		1	1	3
	1	2	2		1	2	2		1	2	0
c_1 :	1	3	2	c_2 :	2	1	0	c_3 :	2	1	2
	2	1	0		2	2	4		2	2	2
	2	2	4		3	1	2		3	1	2
	2	3	3		3	2	0		3	2	4

• nel seguito si considereranno anche $c_4(C,E)$ e $c_5(D,E)$

Somma *puntuale* di vincoli flessibili → vincolo flessibile con:

- ambito: unione degli ambiti
- costo di un'assegnazione alle variabili nell'ambito: somma dei costi delle assegnazioni nei vincoli flessibili

Esempio — Dati $c_1(A, B)$ e $c_2(B, C)$ dell'es. precedente:

• $c_1 + c_2$ funzione con ambito $\{A, B, C\}$, dato da

	\boldsymbol{A}	B	C	costo
	1	1	1	10
$c_1+c_2:$	1	1	2	7
	1	2	1	2
	•	•	•	•

$$\circ$$
 e.g. $(c_1+c_2)(A=1,B=1,C=2) \ = c_1(A=1,B=1)+c_2(B=1,C=2)=5+2=7$

SODDISFACIMENTO DI VINCOLI E OTTIMIZZAZIONE

Differenza — Rispetto ai CSP, problemi che presentano un'ulteriore difficoltà:

- sapere quando un'assegnazione è una soluzione
 - CSP: basta controllare se l'assegnazione soddisfa tutti i vincoli (hard)
 - ottimizzazione: solo per *confronto* con altre assegnazioni
- Vincoli rigidi come quelli flessibili ma costo infinito in caso di violazione
 - costo finito → nessuna violazione
- Alternativa: costo *elevato* associato alla violazione di vincolo rigido
 - maggiore della somma di tutti i vincoli soft
- Ottimizzazione per trovare una soluzione con
 - il minor numero di vincoli rigidi violati
 e, tra questi, quelli di costo minimo

Metodi Sistematici per l'Ottimizzazione

Metodi per CSP adattabili a problemi di ottimizzazione:

- GENERATE-AND-TEST:
 - o somma dei vincoli e selezione assegnazione con il minimo costo
 - solo per problemi semplici
- algoritmo di *consistenza* generalizzato ∢
- separazione di domini <
- eliminazione di variabili

ELIMINAZIONE DI VARIABILI PER L'OTTIMIZZAZIONE <

Eliminazione di una variabile alla volta, e.g. X:

- ullet sia R l'insieme dei vincoli che coinvolgono X
- c_T , vincolo somma dei vincoli in R con relazione T
- ullet c_N nuovo vincolo con relazione N e ambito ridotto $V=scope(T)\setminus\{X\}$
 - \circ per ogni valore delle variabili in V:
 - selezionare un valore di X che minimizzi T
 - \circ c_N sostituisce i vincoli in R
- si ha un problema ridotto con (meno variabili e) nuovo insieme di vincoli, da risolvere *ricorsivamente*
 - \circ soluzione S del problema ridotto: assegnazione su V
 - ullet quindi $c_{T(S)}$ vincolo con rel. T sotto S, è in funzione di X
 - valore ottimale per X ottenuto scegliendo un valore che porti al minimo valore per $c_{T(S)}$

```
procedure VE\_SC(Vs, Cs)
  Input
     Vs: insieme di variabili
     Cs: insieme di vincoli flessibili
  Output
     assegnazione ottimale per Vs
  if Vs contiene un solo elemento o Cs contiene un solo
  vincolo then
     sia c_C la somma dei vincoli in Cs
     return assegnazione con il minimo costo in c_C
  else
     selezionare X \in Vs secondo un ordine di eliminazione
     R \leftarrow \{C \in Cs \mid X \in scope(C)\}
     sia c_T la somma dei vincoli in R
     c_N \leftarrow \min_X c_T
     S \leftarrow \mathsf{VE\_SC}(Vs \setminus \{X\}, \ Cs \setminus R \cup \{c_N\})
     X_{ott} \leftarrow \operatorname{argmin}_X c_{T(S)}
     return S \cup \{X = X_{ott}\}
```

Ordine di eliminazione:

- dato a priori
- calcolato via via
 - ad es., usando euristiche viste per VE_CSP

Si può implementare VE_SC senza memorizzare c_T e costruendo solo una rappresentazione estensionale di c_N

Esempio — Tornando a un esempio precedente

• A è solo in $c_1(A, B)$; eliminandola:

$$c_6(B) = rg \min_A c_1(A,B) : egin{array}{c|c} B & Costo \ \hline 1 & 0 \ 2 & 2 \ \hline 3 & 2 \ \end{array}$$

 $c_1(A,B)$ sostituito con $c_6(B)$

(..cont.)

• B compare in $c_2(B,C)$, $c_3(B,D)$ e $c_6(B)$ la cui somma è:

B	\boldsymbol{C}	D	costo
1	1	1	8
1	1	2	5
•	•	•	•
2	1	1	4
2	1	2	4
•	•	•	•
3	1	1	6
3	1	2	8
	1 1 : 2 2 : 3	1 1 1 1 : : : : : : : : : : : : : : : :	$egin{array}{cccccccccccccccccccccccccccccccccccc$

(..cont.)

Vengono quindi sostituiti da

$$c_7(C,D) = \operatorname{argmin}_B(c_2(B,C) + c_3(B,D) + c_6(B)):$$

\boldsymbol{C}	D	costo
1	1	4
1	2	4
•	•	•

- Restano $c_4(C,E)$, $C_5(D,E)$ e $c_7(C,D)$ da ottimizzare ricorsivamente
- Supponendo che la chiamata ricorsiva restituisca la soluzione C=1, D=2, E=2, un valore ottimale per B è quello relativo al minimo di $c_2(B,C=1)+c_3(B,D=2)+c_6(B)\longrightarrow B=2$
- Da $c_1(A,B)$, il valore di A che minimizza $c_1(A,B=2)$ è A=1
- Quindi la soluzione ottimale sarà A=1, B=2, C=1, D=2, E=2 dal costo pari a 4

Complessità *⋖*

dipende dalla struttura del grafo dei vincoli (come per i CSP)

- grafi *sparsi* → piccoli vincoli intermedi, negli algoritmi VE come VE_SC
- grafi densamente *connessi* → vincoli intermedi più grandi

Ricerca Locale per l'Ottimizzazione

Ricerca locale su problemi di ottimizzazione: minimizzare la funzione-obiettivo (invece di cercare generiche soluzioni)

- algoritmi di ricerca locale (anche con ripartenze casuali)
 - o mantenendo e infine restituendo la migliore assegnazione trovata

VINCOLI MISTI

- vincoli rigidi → soluzione senza conflitti
- vincoli flessibili → difficile determinare se un'assegnazione totale trovata sia la miglior soluzione secondo il criterio di ottimalità
 - ottimo locale: assegnazione non peggiore di tutti i possibili successori
 - ottimo globale: assegnazione non peggiore di tutte le assegnazioni
 - senza ricerca sistematica non si può sapere se la migliore trovata localmente sia ottimo globale o se ne esista altrove una migliore
- con *vincoli misti* può essere necessario consentire la violazione di quelli rigidi pur di arrivare a una soluzione ottimale
 - o adottando costi di violazione alti ma finiti

DOMINI CONTINUI: GRADIENTE

Ricerca locale più complicata: come definire il *successore* di un'assegnazione?

Idea minimizzare la funzione di valutazione h (purché continua e differenziabile) \rightarrow algoritmo di **discesa del gradiente**, GRADIENT DESCENT

- come in un percorso in discesa, passi nelle direzioni più ripide
- $\it successore$ di un'assegnazione: passo proporzionale alla $\it pendenza$ di $\it h$
 - o passi proporzionali alle *derivate* ma in discesa (segno negativo)
- → Salita di gradiente, GRADIENT ASCENT, per i massimi

CASO MONODIMENSIONALE

Se a X è assegnato $v \in \mathbb{R}$, valore successivo:

$$v-\eta\cdotrac{dh}{dX}(v)$$

- η , misura del *passo*, determina la *rapidità* della discesa
 - o troppo grande, può superare il minimo
 - troppo piccolo, progresso lento
- derivata valutata in v:

$$\lim_{\epsilon \to 0} \frac{h(X=v+\epsilon) - h(X=v)}{\epsilon}$$

Esempio — Ricerca di minimo locale in una funzione di una variabile

- 0. inizia in posizione (1)
- 1. derivata positiva (grande valore) \rightarrow a sinistra sulla pos. (2)
- 2. derivata negativa prossima a zero → passo più breve verso destra (3)
- 3. derivata negativa ancor più vicina a zero
 - → passo ancor più breve verso destra (4) ...
 - o avvicinandosi al minimo, la pendenza tende a zero: passi più piccoli

CASO MULTIDIMENSIONALE

Passi in tutte le dimensioni, proporzionali a ogni derivata parziale

- ullet variabili $\langle X_1,\ldots,X_n
 angle$
- ullet assegnazione $ec{v} = \langle v_1, \dots, v_n
 angle$
- **successore** ottenuto muovendosi in ogni direzione in proporzione alla pendenza di h nella direzione
- $ullet v_i \leftarrow v_i \eta \cdot rac{\partial h}{\partial X_i}(ec{v})$

nuovo valore per X_i

 $\circ \ rac{\partial h}{\partial X_i}$ derivata parziale, funzione di X_1,\ldots,X_n ; applicandola a $ec{v}$:

$$rac{\partial h}{\partial X_i}(ec{v}) = \lim_{\epsilon o 0} rac{h(v_1, \dots, v_i + \epsilon, \dots, v_n) - h(v_1, \dots, v_i, \dots, v_n)}{\epsilon}$$

- meglio se calcolabile analiticamente
- ullet altrimenti **stimata** per piccoli valori di ϵ

Discesa di gradiente — caso multidimensionale Da: https://towardsdatascience.com

Uso discesa di gradiente:

- nell'apprendimento: valore dei parametri di un modello
 - migliaia/milioni di parametri da ottimizzare

Varianti: molte

- ad es., η non costante
 - ricerca binaria per cercare un valore ottimale

Osservazioni

- per funzioni regolari (smooth) con un minimo, la discesa di gradiente converge a un minimo locale se il passo è sufficientemente piccolo
 - passo troppo grande → possibile che diverga
 - passo troppo piccolo → lento
- minimo locale unico → trovato min. globale
- più minimi locali, non tutti globali: necessaria una ricerca per trovare il minimo globale
 - ad es. con RANDOM RESTART O RANDOM WALK
- garantito il minimo globale solo avendo attraversato l'intero spazio di ricerca

RIFERIMENTI

Bibliografia

- [1] D. Poole, A. Mackworth: Artificial Intelligence: Foundations of Computational Agents. Cambridge University Press [Ch.4]
- [2] D. Poole, A. Mackworth, R. Goebel: *Computational Intelligence: A Logical Approach*. Oxford University Press
- [3] S. J. Russell, P. Norvig: Artificial Intelligence Pearson. 4rd Ed. cfr. anche ed. Italiana [Cap.6,4]

[AlPython] sezione Reasoning with Constraints https://artint.info/AIPython/

[Gradiente] wikipedia di funzioni vettoriali

[CSP] wikipedia (in inglese)

[CP] Programmazione a Vincoli wikipedia

[GradientDescent] Discesa del Gradiente (steepest descent) wikipedia

[Optimization] Portale (in inglese)

[**⋖**] consigliata la lettura [**versione**] 12/10/2022, 10:57:07

Figure tratte da [1] salvo diversa indicazione

formatted by Markdeep 1.14 🌶