SMOGN-based Regression Modeling for Cervical Lesion Prediction

Sainath Raja

National Institute of Technology, Raipur

June 23, 2025

Overview

- Small, imbalanced datasets reduce the predictive power of ML models.
- SMOGN helps balance these datasets for regression tasks.
- We applied SMOGN + XGBoost to predict cervical lesion prevalence.

What is SMOGN?

- **SMOGN** stands for *Synthetic Minority Over-sampling Technique for Regression with Gaussian Noise.*
- It extends SmoteR by:
 - Splitting the dataset into minority and majority bins.
 - Applying both oversampling and undersampling.
 - Adding **Gaussian noise** to generate more *diverse synthetic samples*.
- Especially effective in small, skewed clinical datasets.

Model Used: XGBoost

- Applied XGBoost Regressor with optimized hyperparameters.
- Included pipeline steps:
 - Preprocessing (Imputation, Scaling, Encoding)
 - PCA (95% Variance Retention)
 - Regression (XGBoost)

Used Hyperparameters

- n_estimators = 200
- max_depth = 4
- learning_rate = 0.0104
- subsample = 0.8587
- colsample_bytree = 0.7470
- gamma = 2.8597
- reg_alpha = 2.4260
- reg_lambda = 4.9061

Results: High CIN Combined (XGBoost)

• Train R²: 0.5790

• Test R²: 0.3623

• Train Relative RMSE: 0.2468

• Test Relative RMSE: 0.3346

Results: High CIN Combined (XGBoost)

Results: Low CIN Combined (XGBoost)

Train R²: 0.5385

• Test R²: 0.4095

• Train Relative RMSE: 0.6098

• Test Relative RMSE: 0.6262

Results: Low CIN Combined (XGBoost)

Results: CIN Combined (XGBoost)

• Train R²: 0.3305

• Test R²: -0.1219

• Train Relative RMSE: 0.2753

• Test Relative RMSE: 0.3608

Results: CIN Combined (XGBoost)

Conclusion

- SMOGN improved diversity in training samples.
- XGBoost worked well for Low/High CIN regression.
- CIN combined task needs further investigation (Test R² was negative).
- Future work: Try other models and advanced imbalance methods.