

Morfologi

Pengolahan Citra Digital Pertemuan 12

Morfologi

- Morfologi
 - teknik pengolahan citra berbasis region (wilayah) untuk merepresentasikan dan mendeskripsikan ciri bentuk dari sebuah citra
- Morfologi dilakukan setelah proses segmentasi
- Tujuan
 - memperbaiki ketidaksempurnaan citra setelah proses segmentasi

Contoh Morfologi

Citra setelah segmentasi

Citra setelah segmentasi dan proses morfologi

Morfologi

- Pemrosesan citra morfologi dilakukan dengan menggunakan filter/mask berupa elemen terstruktur (*Structuring Element* – SE) pada citra input
- Prosesnya hampir sama dengan proses konvolusi pada filter spasial
- SE akan bergerak melalui setiap piksel citra untuk mengubah nilai piksel pada pemrosesan citra

Structuring Elements, Hits & Fits

Fit: seluruh piksel SE menutupi piksel citra

Hit: Ada beberapa piksel SE yang menutupi piksel citra

Semua operasi pemrosesan morfologi berdasarkan pada ide sederhana di atas

- Ukuran dan bentuk dari SE bebas
- Sederhananya, kita dapat menggunakan SE yang berbentuk persegi dengan titik poros berada di tengah piksel

1	1	1
1	1	1
1	1	1

0	1	0
1	1	1
0	1	0

0	0	1	0	0
0	1	1	1	0
1	1	1	1	1
0	1	1	1	0
0	0	1	0	0

Fitting & Hitting

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	80	1	1	1	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	A	1	1	1	0
0	0	0	0	0	1	1	1	1	1	1	0
P P P P P P P P P P P P P P P P P P P	0	0	0	0	0	0	0	0	0	0	0

1	1	1
1	1	1
1	1	1

Structuring Element 1

0	1	0
1	1	1
0	1	0

Fitting & Hitting

- Blok A menunjukkan fitting pada citra menggunakan SE 1
- Blok B menunjukkan hitting pada citra menggunakan SE 1, dan
- Blok C menunjukkan bukan fitting maupun hitting pada citra menggunakan SE 1.

Operasi Morfologi

Operasi dasar morfolgi:

Erosi

 Proses penghapusan titik-titik objek (yang bernilai 1) menjadi bagian dari latar (bernilai 0) berdasarkan SE yang digunakan

Dilasi

 Proses penggabungan titik-titik latar (0) menjadi bagian dari objek (1) berdasarkan SE yang digunakan

Erosi

 Operasi yang dilakukan pada Erosi adalah sebagai berikut:

$$E(A,S) = A \ominus S$$

- S adalah Structuring element
- A adalah citra input

Erosi

• Aturannya:

$$g(x, y) = \begin{cases} 1 & \text{if } S \text{ fits } A \\ 0 & \text{otherwise} \end{cases}$$

- · Jika S fit dengan A maka diberi 1 dan
- Jika S hit dengan A maka diberi 0 artinya jika ada bagian dari S yang berada di luar A, maka titik poros dihapus/dijadikan bagian luar.

Erosion by 3*3 square structuring element

Erosion by 5*5 square structuring element

Watch out: In these examples a 1 refers to a black pixel!

Tujuan Erosi

memisahkan objek yang menyatu

 dapat juga digunakan untuk membersihkan noise pada bagian tepian gambar.

 Perlu diperhatikan juga bahwa erosi dapat mengubah bentuk objek (shrink object).

Dilasi

 Operasi yang dilakukan pada Erosi adalah sebagai berikut:

$$E(A,S) = A \oplus S$$

• Aturannya:

$$g(x, y) = \begin{cases} 1 & \text{if } S \text{ hits } A \\ 0 & \text{otherwise} \end{cases}$$

- Jika S hit dengan A maka diberi 1 dan
- Jika S hit dengan A maka diberi 0

Original image

Dilation by 3*3 square structuring element

Dilation by 5*5 square structuring element

Watch out: In these examples a 1 refers to a black pixel!

Original image

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

After dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Tujuan Dilasi

menyambung tepian gambar yang terputus

memperbaiki gangguan (intrusion) pada gambar.

Proses dilasi menyebabkan gambar menjadi lebih besar.

Operasi Gabungan (Compound Operation)

- Operasi morfologi dapat dilakukan dengan menggabungkan operasi dilasi dan erosi.
- Operasi Gabungan
 - opening
 - closing.

Opening

 Opening adalah proses erosi yang diikuti dengan dilasi.

$$A \bigcirc S = (A \ominus S) \oplus S$$

- Efek yang dihasilkan adalah menghilangkan objek objek kecil dan tipis.
- Secara umum operasi opening menghaluskan batas dari objek besar tanpa mengubah area objek secara signifikan.

Tahapan Opening

Original shape

After erosion

 $A \circ B = (A \ominus B) \oplus B$

After dilation (opening)

Contoh Opening

Original Image

Image After Opening

Contoh Opening

Contoh Opening

Closing

 Closing adalah proses dilasi yang diikuti dengan proses erosi.

$$A \bullet S = (A \bigoplus S) \bigoplus S$$

- Efek yang dihasilkan dari proses closing adalah mengisi lubang kecil pada objek
- menggabungkan objek-objek yang berdekatan
- menghaluskan batas dari objek besar tanpa mengubah area objek secara signifikan.

Tahapan Closing

Original shape

After erosion (closing)

Contoh Closing

Original Image

Image After Closing

Contoh Closing

Contoh Closing

Morphological Processing Example

Pengembangan Morfologi

- untuk proses ekstrasi tepian (*boundary extraction*),
- region filling,
- penipisan (thinning),
- penebalan (thickening) dan
- skeletonisation.

Boundary Extraction

 Dengan menggunakan proses morfologi deteksi boundary (*internal boundary*) dapat dilakukan dengan operasi pengurangan citra asli dengan hasil erosi

$$\beta(A) = A - (A \Theta B)$$

Boundary Extraction

Original Image

Extracted Boundary

Region Filling

Bagaimana operasinya?

Latihan

 Dengan menambahkan zero padding, lakukan proses morfologi pada citra di samping :

a)
$$A - (A \cap B)$$

b)
$$(A \oplus B) - (A \ominus B)$$

 Jelaskan apa yang terjadi pada setiap hasilnya.

B =

