Stool		7) Code: Abxw1037×	6cFep
Name	stic Process/Stochastic Process and Simulation (MA41017/MA6006)	7) Code. Abatic	resu-z
Roll No	Ocess/Stochastic Process and Simulation	Marks:17 Time:	l hour
OVITYO		Answer	Marks
1.	Question Buses arrive at a park according to a Poisson process of rate 5 per hour beginning at 8 a.m. Each bus carries between 1 to 10 visitors of equal probability. Find the expected number and the visitors of equal probability at the perk by 10 a.m.	(i) 55 (ii) 385	
2.	variance of visitors who arrive at the park by 10 days		,
2.	Suppose customers arrive in a store according to a Poisson process of rate $\lambda = 2$ customers per hour. The store opens at 8 a.m. Find (a) P(5 customers arrive before 10 a.m. and total 6 arrivals by	(1) 0.0423	
	(a) P(5 customers arrive before 10 a.m. and total 5 and 11 a.m.); (b) Suppose each customer has a probability of 0.4 to make a proba	(ii) 0:7981	
	purchase. Find the probability that a purchase occurs by 10 a.m.	1 2 3	
3.	Consider a CTMC with three states 1, 2, 3 and transition rates $q_{12}=q_{13}=2$, $q_{21}=4$, $q_{23}=3$, $q_{31}=q_{32}=5$. Determine the generator Q (i.e., Q-matrix).	1 [-4 2 2 2 4 -7 3 3 [5 5 -10]	
4.	Consider a birth and death process with birth rates $\lambda_i = 2$, $i = 0, 1, 2, \ldots$, and death rates $\mu_i = 3$, $i = 1, 2, \ldots$ Determine the expected time to go from state 0 to state 2.	7 = 1.75	
5.	Mr. Smith runs a one-person, unisex hair salon. He finds that customers seem to arrive according to a Poisson process with a mean arrival rate of 4 per hour. Because of his excellent reputation, customers were always willing to wait. The data further showed that customer processing time (aggregated female and male) was exponentially distributed with an average of 10 min.	(4) $\frac{2}{3}$ (5) $\frac{4}{3} = 1.33$	
	(a) The average number of customers in the shop is(b) The average number of customers waiting for a haircut	(c) 33,34%	
	(c) The percentage of time an arrival can walk right in without having to wait at all	$(d) \frac{1}{2} = 0.33$	
	(d) The expected waiting time of a customer is For M/M/1 queueing system the steady state solution exist if	3	
6. 7.	For M/M/1 queueing system the steady state solution exists in $\rho = \lambda/\mu$ is In CTMC with state space $\{1, 2,, n\}$;	5 € 1	
	$\sum_{j=1; j \neq i}^{n} q_{ij} = -v_i$	False	
	(True/False)		
	On campus building, there are 2 offices of similar sizes with identical air conditioners. The electrical grid supplies electric en- ergy to the air conditioners whose thermostats turn on and off in	(4) Yes	
	each individual office as needed to maintain each office's temperature at the desired level of 76° Fahrenheit, independent of the other offices. Suppose that a thermostat remains on or off for ex-	(b) {0,1,23	
t	ponential amounts of times with means 2 and 3, respectively. Let $X(t)$ denote the number of thermostats on at time t . (a) Whether $X(t)$ is ctmc? (Yes/No) (b) Find State space of $X(t)$; (c) Find the birth and death rates. (d) Find the long run probability that there will be 2 thermostats on at the same time.	(°) (5) (2)	
9. F	Poisson process is a birth and death process. (True/False)	True	

Ochastic Process/Stochastic Process and Simulation (MA41017/MA600 ame:	O67) Code: Abxx1037; Class	Test-2
	Marks:17 Time:	1 hour Marks
.No. Question	Answer	Marks
Buses arrive at a park according to a Poisson process of rate of per hour beginning at 8 a.m. Each bus carries between 1 to 10 visitors of equal probability. Find the expected number and the variance of visitors who arrive at the park by 10 a.m.	(i) 44 (ii) 308	
Suppose customers arrive in a store according to a Poisson process of rate $\lambda = 1$ customers per hour. The store opens at 8 a.m. Find	(4) 0.0133	
(a) P(5 customers arrive before 10 a.m. and total 6 arrivals by 11 a.m.);		
(b) Suppose each customer has a probability of 0.4 to make purchase. Find the probability that no purchase occurs by 1 a.m.	a (b) e 0,8 = 0,449	
Consider a CTMC with three states 1, 2, 3 and transition rate $q_{12}=q_{13}=1,\ q_{21}=4,q_{23}=2,q_{31}=q_{32}=3$. Determine the generator Q (i.e., Q-matrix).	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Consider a birth and death process with birth rates $\lambda_i = 2, i = 0, 1, 2, \ldots$, and death rates $\mu_i = 4, i = 1, 2, \ldots$ Determine the	= 0	
expected time to go from state 0 to state 2. Mr. Smith runs a one-person, unisex hair salon. He finds that cu tomers seem to arrive according to a Poisson process with a mea arrival rate of 4 per hour. Because of his excellent reputation customers were always willing to wait. The data further shows that customer processing time (aggregated female and male) we exponentially distributed with an average of 3 min.	s- in n, ed (4) $\frac{1}{4}$	
(a) The average number of customers in the shop is(b) The average number of customers waiting for a haircut		
(c) The percentage of time an arrival can walk right in witho having to wait at all	$\left (d) \right \frac{1}{80}$	
(d) The expected waiting time of a customer is		
For M/M/c queueing system the steady state solution exist if λ / is In CTMC with state space $\{1, 2,, n\}$;	رب <u>کی د ا</u>	
In CTMC with state space $\{1,2,\ldots,n\};$ $\sum_{j=1}^n q_{ij} = v_i$	False	
(True/False)		
On campus building, there are 2 offices of similar sizes we identical air conditioners. The electrical grid supplies electrical ergy to the air conditioners whose thermostats turn on and office ach individual office as needed to maintain each office's tempature at the desired level of 76° Fahrenheit, independent of the other offices. Suppose that a thermostat remains on or off for ponential amounts of times with means 3 and 2, respectively. If $X(t)$ denote the number of thermostats on at time t . (a) Wheth $X(t)$ is ctmc? (Yes/No) (b) Find State space of $X(t)$; (c) Find the birth and death rates. (d) Find the long run probability there will be 2 thermostats on at the same time.	en- in er- the ex- Let her ind	⊥ ₃ =1
Pure Birth process is a CTMC. (True/False)	75 T.	

Ct		- O Feb
Stochastic Process/Stochastic Process and Simulation (MA41017/MA600) Roll Marketic Process/Stochastic Process and Simulation (MA41017/MA600)	Code: Abxy1037	Test-2
Roll No.	Class	1 hour
Q.No. Question	Marks:17 Time: Answer	Marks
1. Question Buses arrive at a park according to a Poisson process of rate 5 per hour beginning at 8 a.m. Each bus carries between 1 to 5 visitors of equal probability. Find the expected number and the variance of visitors who arrive at the park by 10 a.m.	(i) 30	
2. Suppose customers arrive in a store according to a Poisson process of rate $\lambda = 2$ customers per hour. The store opens at 8 a.m. Find	(1) 0.0528	
(a) P(4 customers arrive before 10 a.m. and total 5 arrivals by 11 a.m.);		
(b) Suppose each customer has a probability of 0.4 to make a purchase. Find the probability that a purchase occurs by 10 a.m.	(Íi) 0:7981	
Consider a CTMC with three states 1, 2, 3 and transition rates $q_{12} = q_{13} = 4$, $q_{21} = 3$, $q_{23} = 4$, $q_{31} = q_{32} = 3$. Determine the generator Q (i.e., Q-matrix).	1 /-8 4 4 2 / 3 -7 4 3 (3 3 -6)	
Consider a birth and death process with birth rates $\lambda_i = 2$, $i = 0, 1, 2, \ldots$, and death rates $\mu_i = 3$, $i = 1, 2, \ldots$ Determine the expected time to go from state 0 to state 3.	$\frac{33}{8} = 4.125$	
5. Mr. Smith runs a one-person, unisex hair salon. He finds that customers seem to arrive according to a Poisson process with a mean arrival rate of 4 per hour. Because of his excellent reputation, customers were always willing to wait. The data further showed that customer processing time (aggregated female and male) was exponentially distributed with an average of 5 min.	(a) $\frac{1}{2} = 0.5$ (b) $\frac{1}{6} = 0.1667$	
(a) The average number of customers in the shop is(b) The average number of customers waiting for a haircut	(b) $\frac{1}{6} = 0.1667$ (c) 66.6%	
(c) The percentage of time an arrival can walk right in without	$(4) \frac{1}{24} = 0.0416$	
6. For M/M/1 queueing system the steady state solution exist if $\rho = \lambda/\mu$ is	3<1	
7. In CTMC with state space $\{1, 2,, n\}$;	-	
$\sum_{j=1; j \neq i}^{n} q_{ij} = v_i$	Tome	
(True/False) 8. On campus building, there are 2 offices of similar sizes with identical air conditioners. The electrical grid supplies electric energy to the air conditioners whose thermostats turn on and off in each individual office as needed to maintain each office's temperature at the desired level of 76° Fahrenheit, independent of the	(a) yes (b) {0,1,2}	
other offices. Suppose that a thermostat remains on or off for exponential amounts of times with means 1 and 3, respectively. Let $X(t)$ denote the number of thermostats on at time t . (a) Whether $X(t)$ is ctmc? (Yes/No) (b) Find State space of $X(t)$; (c) Find the birth and death rates. (d) Find the long run probability that there will be 1 thermostat on.	(c) $\lambda_0 = 2$, $\lambda_1 = 1$ $M_1 = \frac{3}{3}$, $M_2 = \frac{3}{3}$ (d) $\Pi_1 = \frac{3}{8} = 0.37$	
9. Poisson process is NOT a CTMC. (True/False)	False	

Stocha	stic Process/Stochastic Process and Simulation (MA41017/MA600	Code: Al	xz1037x6cFep
Name:	/ recondition 1 rocess and Simulation (MA41017/MA000	oor) Code. At	Class Test-2
Roll N Q.No.		Marks:17	Time: 1 hour
1.	- Cacololi	Angwer	Marks
1.	Buses arrive at a park according to a Poisson process of rate 4 per hour beginning at 8 a.m. Each bus carries between 1 to 5 visitors of equal probability. Find the expected number and the variance of visitors who arrive at the park by 10 a.m.	(1) 24	
2.	Suppose customers arrive in a store according to a Poisson process of rate $\lambda=1$ customers per hour. The store opens at 8 a.m. Find		
	(a) P(4 customers arrive before 10 a.m. and total 5 arrivals by 11 a.m.);	(9) 0,0332	
	(b) Suppose each customer has a probability of 0.6 to make a purchase. Find the probability that no purchase occurs by 10 a.m.	(b) 0·301	
3.	Consider a CTMC with three states 1, 2, 3 and transition rates $q_{12} = q_{13} = 4$, $q_{21} = 2$, $q_{23} = 2$, $q_{31} = q_{32} = 2$. Determine the generator Q (i.e., Q-matrix).	1 2 1 -8 4 4 2 2 -4 3 3 2 2 -	3 1 2 -4)
4.	Consider a birth and death process with birth rates $\lambda_i = 1$, $i = 0, 1, 2, \ldots$, and death rates $\mu_i = 4$, $i = 1, 2, \ldots$ Determine the expected time to go from state 0 to state 3.	27	
5.	Mr. Smith runs a one-person, unisex hair salon. He finds that customers seem to arrive according to a Poisson process with a mean arrival rate of 4 per hour. Because of his excellent reputation, customers were always willing to wait. The data further showed that customer processing time (aggregated female and male) was exponentially distributed with an average of 2 min.	(a) $\frac{2}{13} = 0.15$ (b) $\frac{4}{195} = 0.0$	B 1
	(a) The average number of customers in the shop is(b) The average number of customers waiting for a haircut	(186.6%	
	(c) The percentage of time an arrival can walk right in without having to wait at all (d) The expected waiting time of a customer is	$(d)\frac{2}{390} = 0.00$	95 M
	(d) The expected waiting time of a customer is		
6.	For M/M/c queueing system the steady state solution exist if $\lambda/c\mu$ is	$\frac{\lambda}{\lambda}$ < 1	
7.	In CTMC with state space $\{1, 2, \ldots, n\}$;		
	$\sum_{j=1}^{n} q_{ij} = 0$	True	
	(True/False)		
8.	On campus building, there are 2 offices of similar sizes with identical air conditioners. The electrical grid supplies electric en-	(9) yes	
1	attire at the desired level of 70 Famrenheit, independent of the	(3) {0,1,2}	
	ponential amounts of times with means 1 and 2, respectively. Let $X(t)$ denote the number of thermostats on at time t . (a) Whether $X(t)$ is ctmc? (Yes/No) (b) Find State space of $X(t)$; (c) Find the birth and death rates. (d) Find the long run probability that	(c) $A_0 = \frac{2}{4}, A_1 = \frac{1}{4}$	=1
	there will be 2 thermostats on at the same time. Pure Birth process is NOT a CTMC. (True/False)	12-9	- 01 999
		False	

$$X(t) = Nymber of Visitarys who arrive between 8 am $10 am

 $X(t) = \frac{1}{2} Y_1^{-1} Y_1^{-1}$
 $P(Y_1 = X) = \frac{1}{10} , i = 1,2,..., 10$
 $P(Y_1 = X) = \frac{1}{10} , btorwise$
 $P(Y_1) = \frac{11}{2} , E(Y_1^2) = \frac{77}{2}$
 $P(X(X)) = \frac{1}{2} + E(Y_1)$
 $P(X(X)) = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $P(X(X)) = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $P(X(X)) = \frac{1}{2} + \frac{1}{2} = \frac{1}$$$

Set-1

N(x) ~ Poisson fooces ()=5 per hour)

$$= E \left[p \left(no \, per \, chage \, by \, 10 \, am \, | N(b) \right) \right]$$

$$= E \left((0.6)^{N(2)} \right)$$

$$= \sum_{n=0}^{\infty} (6.6)^n \cdot \frac{e^{-2x^2}}{n!} = e^{4} \sum_{n=0}^{\infty} \frac{(2.4)^n}{n!}$$

$$= 0.2018$$

$$\therefore probability f purchase by 10 am$$

$$= 1-0.2019 = 0.7981$$

= p(N(2) = 5, N(3) = 6)

=P (N(2) = 5) - P (N(1)=1)

 $=\frac{e^{4}.4^{5}}{5!}\cdot\frac{e^{2}.2^{1}}{1!}=0.04-23.$

(b) P(no purchage by loam)

(3)

$$F(T_i) = \frac{1}{1_0} = \frac{1}{2}$$

$$E(T_i) = E(E(T_i | T_i))$$

$$F(T_{i}) = \frac{1}{1_{0}} = \frac{1}{2}$$

$$F(T_{i}) = F(F(T_{i}|T_{i}))$$

$$F(T_{i}) = \frac{1}{1_{0}} + \frac{2}{1_{0}} F(T_{i})$$

$$F(T_i) = F(F(T_i|T_i))$$
 $F(T_i) = \frac{1}{5} + \frac{3}{5} F(T_i)$

$$E(T_{i}) = E(E(T_{i}|T_{i}))$$

$$E(T_{i}) = \frac{1}{5} + \frac{2}{5} E(T_{i-1}) + \frac{2}{5} E(T_{i})$$

$$2 = \frac{1}{5} + \frac{2}{5} E(T_{i-1})$$

$$\frac{2}{5}F(T_{i}) = \frac{1}{5} + \frac{2}{5}F(T_{i-1})$$

$$\Rightarrow F(T_{i}) = \frac{1}{2} + \frac{2}{2}F(T_{i-1})$$

$$F(T_i) = \frac{1}{2} + \frac{3}{2}F(T_{i-1})$$

$$(T_o) + F(T_i) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$\frac{3}{2} + \frac{4}{2} + \frac{3}{2}F(T_{i-1})$$

 $P = \frac{\lambda}{M} = \frac{4}{6} = \frac{2}{3}$

D Lq =
$$\frac{f^2}{1-f} = \frac{4}{9} \times 3 = \frac{4}{3}$$

© $P(N=0) = 1-f = 1-\frac{2}{3} = \frac{1}{7}$
D $W_s = \frac{1}{5} = \frac{1}{6}$
 $W_2 = \frac{f \cdot W_s}{1-s} = \frac{2}{3} \times \frac{1}{6} \times 7 = \frac{1}{3}$

 $\frac{s}{1-s} = \frac{2/3}{1/3} = 2$

 $\int \leq 1$ $\frac{2}{2} q_{ij} = V_{i}$ j=1 $j \neq i$

$$\frac{f=1}{j \neq i}$$

$$\frac{\lambda_0 = 2\lambda}{1} \quad \lambda_1 = \lambda$$

$$\lambda = \frac{1}{2}$$

$$\lambda_1 = \mu$$

$$\lambda_1 = \mu$$

$$\lambda_2 = 2\mu$$

(b)
$$\lambda_0, 1, 2 \rangle$$

(c) $\lambda_0 = 1$, $\lambda_1 = \frac{1}{2}$, $\lambda_1 = \frac{1}{3}$, $\lambda_2 = \frac{2}{3}$
(d) $\delta = 1 + (\frac{1}{1} + (\frac{1}{2}))$
 $= 1 + \frac{1}{2} + \frac{1}{2$

$$= \frac{25}{4}$$

@ yes

(9) True

$$T_0 = \frac{1}{f} = \frac{4}{2s}$$

$$T_1 = (1 \cdot T_0) = 3 \times \frac{4}{25} = \frac{12}{25}$$

 $T_2 = C_2 \cdot T_0 = \frac{9}{4} \times \frac{1}{25} = \frac{9}{25}$