Teorema de Artin–Wedderburn

Pablo Brianese

16 de septiembre de 2021

Definición 1. Decimos que un módulo A satisface la condición de la cadena ascendente (ACC) sobre submódulos (o decimos que es noetheriano) si para toda cadena $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ de submódulos de A, existe un entero m tal que $B_i = B_m$ para todo $i \geq m$.

Si un anillo R es pensado como módulo izquierdo (resp. derecho) sobre si mismo, entonces es facil ver que los submódulos de R son precisamente los ideales izquierdos (resp. derechos) de R. Consecuentemente, en este caso se acostumbra hablar de condiciones de cadena sobre ideales (izquierdos o derechos) en lugar de submódulos.

Definición 2. Un anillo R es noetheriano izquierdo (resp. derecho) si R satisface la condición de la cadena ascendente sobre ss ideales izquierdos (resp. derechos). Se dice que R es noetheriano si R es noetheriano izquierdo y derecho a la vez.

Un anillo R es artiniano izquierdo (resp. derecho) si R satisface la condición de la cadena descendiente sobre sus ideales izquierdos (resp. derechos). Se dice que R es artiniano si R es artiniano izquierdo y derecho a la vez.

Teorema 1 (de Artin-Wedderburn). Las siguientes condiciones sobre un anillo artiniano izquierdo R son equivalentes.

- 1. R es simple;
- 2. R es isomorfo al anillo de endomorfismos de un espacio vectorial nonulo sobre un anillo de división D;
- 3. para algún entero positivo n, R es isomorfo al anillo formado por las matrices $n \times n$ sobre un anillo de división.