CH365 Chemical Engineering Thermodynamics

Lesson 14
Generalized Correlations for Gases and Liquids

Generalized Correlations for Gases Lee-Kesler Method

Byung Ik Lee and Michael Kesler, AIChE Journal, 1975, 21(3), 511-527

Pitzer Correlation (L13)

$$Z^0 = 1 + B^0 \frac{P_r}{T_r}$$
 $Z^1 = B^1 \cdot \frac{P_r}{T_r}$ (Eq. 3.60)

Lesson 13, Slide 5 formulas for B⁰ and B¹ eqns. 3.61 and 3.62

Lee-Kesler Modification

$$Z = Z^0 + \frac{\omega}{\omega^{(r)}} \left(Z^{(r)} - Z^0 \right)$$

where

$$Z^{1} = \frac{\left(Z^{(r)} - Z^{0}\right)}{\omega^{(r)}}$$

Lee and Kesler used a modified Benedict-Webb-Rubin EOS:

$$Z = 1 + \frac{B}{V_r} + \frac{C}{V_r^2} + \frac{D}{V_r^5} + \frac{c_4}{T_r^3 V_r^2} \left(\beta + \frac{\gamma}{V_r^2}\right) exp\left(-\frac{\gamma}{V_r^2}\right)$$

Z^(r): calculated for n-octane

B, C, D are functions of T_r (published in the paper) β , γ , c_4 , etc. are constants

Z calculated twice:

 Z^0 : calculated for simple fluids $Z^{(r)}$: calculated for n-octane

Lee-Kesler Method

Tables: Appendix – Tables D.1-D.4, pp. 676-692

Example: Find Z for n-octane at P_r =0.4, T_r =0.9

	Copyright © McGraw-Hill Education. Permission required for reproduction or display.												
			Table	e D.1: Valu	ies of Z^0	Page	677						
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000					
T_r													
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892					
0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604					
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379					
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200					
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056					
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939					
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842					
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765					
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703					
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656					
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626					
0.85	0.9946	0.9725	0.9436	0.8810	0.0661	0.0983	0.1301	0.1614					
0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630					
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664					
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705					
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779					
0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844					
0.99													
1.00 1.01	→ ∩												
	Z^0	=0.7	'8U										
1.02 1.05													
1.10	_4	_											
1.15	71	=-0.	1118	3									
1.20	_	O.		•									
1.30													
1.40	(A)=	=0.4	$\cap \cap$										
1.50	w-	-U. T											
1.60													
1.70													
1.80	7	7	0	. 7 1									
1.90		z = Z'	$^{\circ}$ + α) _ `									
2.00													
2.20		^	700	//	400	、	A 4	440\					
2.40		= 0	.780	+(U	.400	J)·(-	-0.1	118)					
2.60				`		, ,		,					
2.80 3.00													
3.50		= 7	353										
4.00													

Copyright @ McGraw-Hill Education. Permission required for reproduction or display. Table D.2: Values of Z^1 Page 678

			14101	c D.2. van	acs of 2	Page 678						
$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000				
T_r												
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806				
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921				
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946				
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929				
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893				
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849				
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803				
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759				
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718				
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681				
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648				
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622				
0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604				
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602				
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607				
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623				
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641				
99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680				
00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879				
)1	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223				
)2	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062				
)5	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220				
10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476				
15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625				
20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326	0.0499	0.0719				
30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819				
40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857				
50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864				
50	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855				
70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838				
30	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814				
90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792				
00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767				
20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719				
40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675				
50	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634				
30	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598				
00	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565				
50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497				
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443				

Generalized Correlations for Liquids Slide 4

Rackett:
$$V^{\text{sat}} = V_C Z_C^{(1-T_r)^{2/7}}$$
 (Eq. 3.68) $Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1+(1-T_r)^{2/7}\right]}$ (Eq. 3.69)

Figure 3.15: Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen: $\rho_r \equiv \frac{\rho}{\rho_C} = \frac{V_C}{V} \qquad \text{(Eq. 3.70)}$

(Liquids)

Example 3.14

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

 $\rho_{\rm r} = 2.43$

solution deviates

reduced density

from book;

authors read

Example 3.14, part b, continued

 $V^{\text{sat}} = V_{\text{C}} Z_{\text{C}}^{(1-T_{\text{r}})^{2/7}}$ (Eq. 3.68) Rackett:

$$Z^{\text{sat}} = \frac{P_r}{T_r} Z_C^{\left[1 + (1 - T_r)^{2/7}\right]}$$
 (Eq. 3.69)

Figure 3.15. Generalized density correlation for liquids.

Lydersen, Greenkorn, and Hougen:

$$\rho_{\rm r} \equiv \frac{\rho}{\rho_{\rm C}} = \frac{V_{\rm C}}{V}$$
 (Eq. 3.70)

(Liquids)

Example 3.14, continued

For ammonia at 310 K, estimate the molar volume density of (a) the saturated liquid and (b) the liquid at 100 bar.

Homework

Problem 3.58

To a good approximation, what is the molar volume of ethanol vapor at 480 deg C and 6000 kPa? How does this result compare with the ideal gas?

Answer the problem in four parts:

- (a) Lee-Kesler method.
- (b) SRK equation.
- (c) Ideal gas equation.

For comparison: Compare LK and SRK to IG. If either is less than IG, explain why using knowledge of IG behavior.

Online Interpolator Tool for Lee-Kesler Tables:

https://www.ajdesigner.com/phpinterpolation/bilinear_interpolation_equation.php

Lee/Kesler Method

Tables: Appendix – Tables D.1-D.4

				Table	D.1: Valu	es of Z^0	Page	664					Table D.2: Values of Z^1			Page 665			
	$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000	$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000	
	T_r							P _r =0.	975927	T_r							P _r	=0.9759	27
	0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892	0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806	
	0.35	0.0026	0.0130	0.0261	0.0522	0.1043	0.1564	0.2084	0.2604	0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921	
	0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379	0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946	
	0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200	0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0929	
	0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056	0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893	
	0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939	0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849	
	0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842	0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803	
	0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765	0.65	-0.0203	-0.0071	-0.0032	-0.0156	-0.0320 -0.0309	-0.0461	-0.0611	-0.0303	
	0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703	0.70	-0.0093		-0.1161	-0.0130	-0.0294	-0.0438	-0.0579	-0.0718	
	0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656	0.75	-0.0093	-0.0307 -0.0339	-0.1101 -0.0744	-0.0143	-0.0294 -0.0282	-0.0438 -0.0417		-0.0718	
	0.80	0.9935 0.9946	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307 0.1301	0.1626	0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648	
	0.85		0.9725	0.9436	0.8810	0.0661	0.0983		0.1614	0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622	
	0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630	0.90	-0.0019	-0.0099	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604	
	0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664	0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602	
	0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705	0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607	
	0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779	0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.0450	-0.0770	-0.1647	-0.0623	
	0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844	0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641	
	0.99	0.9966	0.9826	0.9648	0.9277	0.8455	0.7471	0.6138	0.1959	0.99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680	
	1.00	0.9967	0.9832	0.9659	0.9300	0.8509	0.7574	0.6355	0.2901	1.00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879	
	1.01	0.9968	0.9837	0.9669	0.9322	0.8561	0.7671	0.6542	0.4648	1.01	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223	
	1.02	0.9969	0.9842	0.9679	0.9343	0.8610	0.7761	0.6710	0.5146	10000000000	-0.0005	-0.0026		-0.0102		-0.0277	-0.0303	-0.0062	
	1.05	0.9971	0.9855	0.9707	0.9401	0.8743	0.8002	0.7130	0.6026	1.02			-0.0051		-0.0198				
	1.10	0.9975	0.9874	0.9747	0.9485	0.8930	0.8323	0.7649	0.6880	1.05	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220	
	1.15	0.9978	0.9891	0.9780	0.9554	0.9081	0.8576	0.8032	0.7443	1.10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476	
	1.20	0.9981	0.9904	0.9808	0.9611	0.9205	0.8779	0.8330	0.7858	1.15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625	
	1.30	0.9985	0.9926	0.9852	0.9702	0.9396	0.9087	0.8764	0.8438	1.20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326			
GEEE7	1.40	0.9988	0.9942	0.9884	0.9768	0.9534	0.92 8	0.9062	0.8827	1.30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819	
65557	1.50	0.9991	0.9954	0.9909	0.9818	0.9636	0.9456	0.9278	0.9103	1.40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857	T _r =1
	1.60	0.9993	0.9964	0.9928	0.9856	0.9714	0.9575	0.9439	0.9308	1.50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	-0.0864	
	1.70	0.9994	0.9971	0.9943	0.9886	0.9775	0.9667	0.9563	0.9463	1.60	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.085	
										1.70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838	
	1.80	0.9995	0.9977	0.9955	0.9910	0.9823	0.9739	0.9659	0.9583	1.80	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814	
	1.90	0.9996	0.9982	0.9964	0.9929	0.9861	0.9796	0.9735	0.9678	1.90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792	
	2.00	0.9997	0.9986	0.9972	0.9944	0.9892	0.9842	0.9796	0.9754	2.00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767	
	2.20	0.9998	0.9992	0.9983	0.9967	0.9937	0.9910	0.9886	0.9865	2.20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719	
	2.40	0.9999	0.9996	0.9991	0.9983	0.9969	0.9957	0.9948	0.9941	2.40	0.0007	0.0035	0.0070	0.0139	0.0276	0.0411	0.0544	0.0675	
	2.60	1.0000	0.9998	0.9997	0.9994	0.9991	0.9990	0.9990	0.9993	2.60	0.0007	0.0022	0.0076	0.0131					
	2.80	1.0000	1.0000	1.0001	1.0002	1								1.4	0.0260	0.0387	0.0512	0.0634	
	3.00	1.0000	1.0002	1.0004	1.0008	1 (arrv/	forv	vard t	to in	tarn	Alata	or to	24	0.0245	0.0365	0.0483	0.0598	
	3.50	1.0001	1.0004	1.0008	1.0017		any	101 8	vaiu		ILCIP	viati	Ji lU		0.0232	0.0345	0.0456	0.0565 0.0497	
)3	0.0204	0.0303	0.0401		

Lee/Kesler Method

Tables: Appendix – Tables D.1-D.4

Link to interpolator

		Copyright	© McGraw-		n. Permissio e D.1: Valu		or reproducti Page		<i>l</i> .		Copyright © McGraw-Hill Education. Permission required for reproduction or display. Table D.2: Values of \mathbb{Z}^1 Page 665									
	$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000	$P_r =$	0.0100	0.0500	0.1000	0.2000	0.4000	0.6000	0.8000	1.0000		
	T_r							P _r =0.	975927	T_r							P _r	=0.97592	27	
	0.30 0.35 0.40 0.45 0.50	0.0029 0.0026 0.0024 0.0022 0.0021	0.0145 0.0130 0.0119] 0.0110	0.0290 0.0261 (nputs: x ₁	0.0579 0.0522	0.1158 0.1043	0.1737 0.1564 unitless	0.2315 0.2084 1904 1762 1647	0.2892 0.2604 0.2379 0.2200 0.2056	0.30 0.35 0.40 0.45 0.50	-0.0008 -0.0009 -0.0010 -0.0009 -0.0009	-0.0040 -0.0046 -0.0048 -0.0047 -0.0045		-0.0161 -0.0185	-0.0323 -0.0370	-0.0484 -0.0554 unitless	-0.0645 -0.0738 0758 0745 0716	-0.0806 -0.0921 -0.0946 -0.0929 -0.0893		
	0.55 0.60 0.65 0.70 0.75	0.9804 0.9849 0.9881 0.9904 0.9922	0.9504	x x ₂ y ₁	.97 1 1.4	5927	unitless unitless unitless	1553 1476 1415 1366 1330	0.1939 0.1842 0.1765 0.1703 0.1656	0.55 0.60 0.65 0.70 0.75	-0.0314 -0.0205 -0.0137 -0.0093 -0.0064	-0.0043 -0.0041 -0.0772 -0.0507 -0.0339	x ₂	1	75927 4	unitless unitless unitless	0682 0646 0611 0579 0550	-0.0849 -0.0803 -0.0759 -0.0718 -0.0681		
	0.80 0.85 0.90 0.93	0.9935 0.9946 0.9954 0.9959	0.9669 0.9725 0.9768 0.9790	у У ₂	1.5		unitless	1307 1301 1321 1359	0.1626 0.1614 0.1630 0.1664	0.80 0.85 0.90 0.93	-0.0044 -0.0029 -0.0019 -0.0015	-0.0228 -0.0152 -0.0099 -0.0075		1		unitless	0526 0509 0503 0514	-0.0648 -0.0622 -0.0604 -0.0602		
	0.95 0.97 0.98 0.99 1.00	0.9961 0.9963 0.9965 0.9966 0.9967		Q_{11} Q_{21} Q_{12}	.90	27	unitless unitless unitless	5580 5887 5138 5355	0.1705 0.1779 0.1844 0.1959 0.2901	0.95 0.97 0.98 0.99 1.00	-0.0012 -0.0010 -0.0009 -0.0008 -0.0007	-0.0062 -0.0050 -0.0044 -0.0039 -0.0034	Q_{11} Q_{21} Q_{12}	.0	857 677	unitless unitless unitless	0540 1647 1100 0796 0588	-0.0607 -0.0623 -0.0641 -0.0680 -0.0879		
	1.01 1.02 1.05 1.10 1.15 1.20	0.9968 0.9969 0.9971 0.9975 0.9978 0.9981	0.9831 0.9842 0.9855 0.9874 0.9891 0.9904	Q ₂₂ 0.9808	.91 Calc	03 culate 0.9205	unitless 0.8779	5542 5710 7130 7649 3032 0.8330	0.4648 0.5146 0.6026 0.6880 0.7443 0.7858	1.01 1.02 1.05 1.10 1.15 1.20	-0.0006 -0.0005 -0.0003 0.0000 0.0002 0.0004		Q ₂₂ 0.0025 0.0039		0.0127 0.0190	unitless	0429 0303 0032 0236 0.0396	-0.0223 -0.0062 0.0220 0.0476 0.0625		
1.465557	1.30 1.40 1.50 1.60 1.70	0.9985 0.9988 0.9991 0.9993 0.9994	0.9926 0.9942 Solu P	0.9852 0.9884 tion:	0.9702 0.9768	0.9396 0.9534	0.9087 0.9278 0.9456 0.9575 0.9667	0.8764 0.9062 0.9278 0.9439 0.9563	0.8438 0.8827 0.9103 0.9308 0.9463	1.30 1.40 1.50 1.60 1.70	0.0004 0.0006 0.0007 0.0008 0.0008	0.0030 0.0036	0.0061 0.0072 ution:	0.0084 0.0125 0.0147	0.0267 0.0306	0.047 <i>9</i> -0.0477 0.0497 0.0503 0.0497	0.0612 0.0661 0.0677 0.0667	0.0819 0.0857 0.0864 0.085 0.0838	T _r =1.46	
	1.80 1.90 2.00 2.20 2.40	0.9995 0.9996 0.9997 0.9998 0.9999	0.9986 0.9992 0.9996	0.9972 0.9983 0.9991	0.9944 0.9967 0.9983	0.9892 0.9937 0.9969	0.9739 0.9796 0.9842 0.9910 0.9957	0.9659 0.9735 0.9796 0.9886 0.9948	0.9583 0.9678 0.9754 0.9865 0.9941	1.80 1.90 2.00 2.20 2.40	0.0008 0.0008 0.0008 0.0007 0.0007		0.08387 0.0078 0.0074 0.0070	0.0155 0.0147 0.0139	0.0310 0.0293 0.0276	0.0488 0.0477 0.0464 0.0437 0.0411	0.0652 0.0635 0.0617 0.0579 0.0544	0.0814 0.0792 0.0767 0.0719 0.0675		
	2.60 2.80 3.00 3.50 4.00	1.0000 1.0000 1.0000 1.0001 1.0001	0.9998 1.0000 1.0002 1.0004 1.0005	0.9997 1.0001 1.0004 1.0008 1.0010	0.9994 1.0002 1.0008 1.0017 1.0021	0.9991 1.0007 1.0018 1.0035 1.0043	0.9990 1.0013 1.0030 1.0055 1.0066	0.9990 1.0021 1.0043 1.0075 1.0090	0.9993 1.0031 1.0057 1.0097 1.0115	2.60 2.80 3.00 3.50	0.0007 0.0006 0.0006 0.0005	0.0033 0.0031 0.0029 0.0026	0.0066 0.0062 0.0059 0.0052	0.0131 0.0124 0.0117 0.0103	0.0260 0.0245 0.0232 0.0204	0.0387 0.0365 0.0345 0.0303	0.0512 0.0483 0.0456 0.0401	0.0634 0.0598 0.0565 0.0497		

0.0046

0.0182

0.0270 0.0357

0.0443

PS4 AAR

Quality of work is slipping for some cadets.

24/148 problems at 6/10 or lower for 14 cadets Some cadets did not compare answers to parts (a) and (b) Some cadets did not include sketches for 3.8 Some cadets did not complete problem 3.30

Quality of work is slipping for some cadets.

Courtesy email stating work will be late is appropriate professional behavior Avoids nasty emails and CORs from me.

Mathematica files were not attached. For future PS's:

Save files on SharePoint Require printout of files and attach to PS

Sign errors on work. Compression is work done on system:

W > 0 ΔU increases

Compression = work done on system by surroundings Expansion = work done by system on surroundings

Using imaginary volume for 3.30(d):

$$a+i\cdot b\approx a$$
 only when $|a+i\cdot b|=\sqrt{a^2+b^2}\approx a$