

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS, NATURAIS E DA SAÚDE DEPARTAMENTO DE COMPUTAÇÃO

COM10393 - MÉTODOS DE OTIMIZAÇÃO

PROVA I

Objetivo: iniciar a modelagem do Problema de Roteamento de Veículos Capacitados (PRVC).

De maneira geral, o PRVC é definido como um problema de roteamento de veículos com um depósito, um conjunto de clientes e uma frota de veículos com capacidade limitada; cujo objetivo é minimizar o custo total de atendimento dos clientes usando os veículos disponíveis.

Formalmente, o problema pode ser descrito como um grafo G = (N,A) em que $N = \{0,1,...,n\}$ é o conjunto de nós e $A \subset N \times N$ é o conjunto de arestas. Cada elemento $i \in N \setminus \{0\}$ representa um cliente com a demanda q_i , enquanto $i = 0 \in N$ designa o depósito central $(q_0 = 0)$. A aresta $(i,j) \in A$ tem o peso $c_{i,j} > 0$ indicando o custo de translado entre os nós $i, j \in N$. O conjunto de veículos $K = \{1,2,...,k\}$, com capacidade máxima Q_l (l=1,2,...,k) deve iniciar no depósito central (i=0) para servir cada cliente $i \in N \setminus \{0\}$ e retornar no final da rota ao depósito. O objetivo é encontrar um conjunto de rotas que atenda a todas as demandas com o menor custo. A Figura 1 ilustra um PRVC com 4 veículos e 7 clientes.

Figura 1 – Solução para um PRVC com três rotas.

Para que uma solução do PRVC seja considerada viável, a mesma deve atender às seguintes restrições:

- Todos os clientes devem ser atendidos
- Cada cliente só pode ser atendido por um único veículo

- Cada rota deve ser realizada por um veículo distinto
- Cada veículo deve começar e terminar sua rota no depósito
- O número de veículos usados não pode exceder a frota disponível
- A capacidade dos veículos não pode ser excedida durante a rota

Para iniciar a modelagem do PRVC, escreva um programa em C/C++ contemplando as questões a seguir.

Questão 1 (1,0): Faça um método para leitura de uma instância com os dados de entrada para o problema. O formato das instâncias é apresentado abaixo.

Número de clientes	Número de veículos			
Id do depósito	Coord. X do depósito		Coord. Y do depósito	Demanda do depósito
Id do cliente 1	Coord. X do cliente 1		Coord. Y do cliente 1	Demanda do cliente 1
Id do cliente <i>n</i>	Coord. X do cliente <i>n</i>		Coord. Y do cliente <i>n</i>	Demanda do cliente <i>n</i>
Capacidade do veículo 1		Capacidade do veículo k		

Os arquivos apresentam as coordenadas de cada "nó" (depósito e clientes), que devem ser usadas para o cálculo do custo de translado. Considere a distância Euclidiana, definida a seguir, como sendo esse custo.

$$c_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Os dados necessários para o tratamento do problema devem ser armazenados em variáveis globais, que também devem ser criadas.

Questão 2 (0,5): Escreva um tipo/estrutura de dados para armazenamento das informações referentes a uma solução do problema. Todas as informações necessárias devem fazer parte desse tipo.

Questão 3 (1,0): Crie um método para calcular a função objetivo de uma solução, que deve ser recebida por parâmetro (referência). O cálculo deve considerar as inviabilidades não tratadas na modelagem (penalização).

Observações:

- Utilize a instância "toy" para depuração do código.
- Para teste da Questão 3, pode-se criar "a mão" uma solução, ou seja, não precisa criar um método.
- Os arquivos com o código fonte devem criados com o nome e sobrenome (ex: geraldo_mauri.cpp e geraldo_mauri.h).
- O código deve ser capaz de tratar instâncias com até 500 clientes e 100 veículos.