Homework #6

A. Shawn Bandy

March 25th, 2013

1 Lab Problems

L1 STATA log:

```
name: <unnamed>
      log: C:\Users\cla-spa206.CAMPUS-DOMAIN\Downloads\lab6\lab6demo.log
  log type: text
 opened on: 21 Mar 2013, 11:43:46
. /* L1. The dataset wage_guar.dta contains data on 1,289 individuals interviewed
> in March 1995 for the Current Population Survey (CPS) by the U.S. Census Bureau
> This question looks at the determinants of their wages. Create a do file
> wage95cps.do and a log file wage95cpsdlog for this problem. Submit the log file
> with your answers.
> a. Create the following variables and then save data as wage95cps.dta
> lnwage : defined as the log(wage)
> exp_squared : defined as exper squared
> college : defined as having education of 16 years or above
> some_college : defined as having education of 12 or above but less than 16
> no_college : defined as having education of less than 12
> female_exp : interact the female and the experience variables
> lnexp : defined as the log(exper)
> annual_wage : defined as the annual wage if the person works full time at his/her
> hourly wage. So, 8 hours a day, 1289 days a year.*/
> gen lnwage = ln(wage);
. gen exp_squared = exper^2;
. gen college = 0;
. gen some_college = 0;
. gen nocollege = 0;
. replace college = 1 if education >= 16;
```

```
(349 real changes made)
. replace some_college = 1 if (education > 12 & education <16);</pre>
(104 real changes made)
. replace nocollege = 1 if education <= 12;</pre>
(836 real changes made)
. gen female_exp = female * exper;
. gen lnexp = ln(exper);
(14 missing values generated)
. gen annual_wage = wage * 8 * 300;
. /*b. Run the following regressions to look at the determinants of wages. After
> you estimate the first model (i), use the Breusch-Pagan test to test for
> heteroskedasticity. If you find that the errors are heteroskedastic, use robust
> standard errors to correct for heteroskedasticity by re-estimating that model and
> then go ahead and use robust standard errors for the rest of the models.
> i. Dependent variable: wage; explanatory variables are female nonwhite union education exper
> ii. Dependent variable: annual_wage; explanatory variables are female nonwhite union education exper
> iii. Dependent variable: lnwage; explanatory variables are female nonwhite union education exper
> iv. Dependent variable: lnwage; explanatory variables are female nonwhite union education lnexp
> v. Dependent variable: lnwage; explanatory variables are female nonwhite union education exper exp_square
> vi. Dependent variable: lnwage; explanatory variables are female nonwhite union college some_college expe
> regress wage female nonwhite union education exper;
                                                     Number of obs =
     Source
                          df
                                     MS
                                                                       1289
                                                     F(5, 1283) = 122.61
      Model | 25967.2805 5 5193.45611
                                                     Prob > F
                                                                  = 0.0000
   Residual | 54342.5442 1283 42.3558411
                                                     R-squared
                                                                = 0.3233
-----
                                                     Adj R-squared = 0.3207
      Total | 80309.8247 1288 62.3523484
                                                     Root MSE = 6.5081
```

wage		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female nonwhite	 	-3.074875 -1.565313	.3646162 .5091875	-8.43 -3.07	0.000	-3.790185 -2.564245	-2.359566 5663817
union	1	1.095976	.5060781	2.17	0.031	.1031443	2.088807
education	1	1.370301	.0659042	20.79	0.000	1.241009	1.499593
exper		.1666065	.0160476	10.38	0.000	.1351242	.1980889
_cons	I	-7.183338	1.015788	-7.07	0.000	-9.176126	-5.190551

[.] estat hettest;

Ho: Constant variance

Variables: fitted values of wage

chi2(1) = 196.22Prob > chi2 = 0.0000

. regress wage female nonwhite union education exper,r;

Linear regression

Number of obs = 1289 F(5, 1283) = 100.87 Prob > F = 0.0000 R-squared = 0.3233 Root MSE = 6.5081

. regress annual_wage female nonwhite union education exper exp_squared;

Source	SS	df	MS	Number of obs =	1289
 +				F(6, 1282) =	108.35
Model	1.5565e+11	6	2.5942e+10	Prob > F =	0.0000
Residual	3.0693e+11	1282	239417084	R-squared =	0.3365
 +				Adj R-squared =	0.3334
Total	4.6258e+11	1288	359149529	Root MSE =	15473

annual_wage	Coef.	Std. Err.	t	P> t		Interval]
female	-7222.464	867.4371	-8.33	0.000	-8924.216	-5520.712
nonwhite	-3686.584	1210.675	-3.05	0.002	-6061.705	-1311.463
union	2464.749	1203.65	2.05	0.041	103.408	4826.089
education	3176.989	158.2483	20.08	0.000	2866.535	3487.443
exper	1018.71	128.5913	7.92	0.000	766.4377	1270.983
exp_squared	-14.83991	2.944722	-5.04	0.000	-20.61691	-9.062904
_cons	-20205.68	2485.704	-8.13	0.000	-25082.18	-15329.19

[.] estat hettest;

Ho: Constant variance

Variables: fitted values of annual_wage

chi2(1) = 193.41Prob > chi2 = 0.0000

. regress annual_wage female nonwhite union education exper exp_squared,r;

Linear regression

Number of obs = 1289 F(6, 1282) = 94.50 Prob > F = 0.0000 R-squared = 0.3365 Root MSE = 15473

| Robust | Coef. Std. Err. t P>|t| [95% Conf. Interval] | female | -7222.464 | 870.2926 | -8.30 | 0.000 | -8929.818 | -5515.11 | nonwhite | -3686.584 | 946.2218 | -3.90 | 0.000 | -5542.897 | -1830.271 | union | 2464.749 | 1008.42 | 2.44 | 0.015 | 486.4139 | 4443.084 | education | 3176.989 | 200.1992 | 15.87 | 0.000 | 2784.235 | 3569.743 | exper | 1018.71 | 121.3314 | 8.40 | 0.000 | 780.6804 | 1256.74 | exp_squared | -14.83991 | 3.004312 | -4.94 | 0.000 | -20.73382 | -8.945999 | cons | -20205.68 | 2684.516 | -7.53 | 0.000 | -25472.21 | -14939.16

. regress lnwage nonwhite union education exper;

	Source	SS	df	MS	Number of obs =	1289
	+-				F(4, 1284) = 1	138.22
	Model	133.287008	4	33.321752	Prob > F = 0	0.000
I	Residual	309.544069	1284	.241077935	R-squared = (3010
	+-				Adj R-squared = 0).2988
	Total	442.831077	1288	.343812948	Root MSE =	.491

lnwage	Coef.	Std. Err.	t	P> t		Interval]
nonwhite union	150007 .2111055	.0383718	-3.91 5.55	0.000	2252854 .1365025	0747286 .2857086
education	.1011594	.00497	20.35	0.000	.0914091	.1109096
exper	.0128887	.0012106	10.65	0.000	.0105137	.0152637
_cons	.7598444	.0749283	10.14	0.000	.6128491	.9068397

[.] estat hettest;

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 10.81Prob > chi2 = 0.0010

. regress lnwage nonwhite union education exper,r;

Linear regression

Number of obs = 1289F(4, 1284) = 159.80Prob > F = 0.0000R-squared = 0.3010Root MSE = .491

. regress lnwage female nonwhite education lnexp;

Source	SS	df	MS	Number of obs = 1	275
+-				F(4, 1270) = 176	.68
Model	157.047841	4	39.2619603	Prob > F = 0.0	000
Residual	282.215421	1270	.222216867	R-squared = 0.3	575
+-				Adj R-squared = 0.3	555
Total	439.263262	1274	.344790629	Root MSE = .4	714

	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female nonwhite education lnexp _cons	2533954	.0264672	-9.57	0.000	3053197	2014711
	1200509	.0368087	-3.26	0.001	1922635	0478383
	.0978298	.0047354	20.66	0.000	.0885398	.1071198
	.2111839	.0154079	13.71	0.000	.1809561	.2414117
	.6409581	.0819226	7.82	0.000	.4802395	.8016766

. estat hettest;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 19.61Prob > chi2 = 0.0000

. regress lnwage female nonwhite education lnexp,r;

Linear regression

Number of obs = 1275 F(4, 1270) = 192.33 Prob > F = 0.0000 R-squared = 0.3575 Root MSE = .4714

. regress lnwage female nonwhite union education exper exp_squared;

Source	SS	df	MS	Number of obs =	1289
+				F(6, 1282) = 1	25.77
Model	164.07853	6	27.3464217	Prob > F = 0	0.000
Residual	278.752547	1282	.217435684	R-squared = 0	.3705
+				Adj R-squared = 0	.3676
Total	442.831077	1288	.343812948	Root MSE =	.4663

female 242462 .0261412 -9.28 0.00029374631911777 nonwhite 1305487 .0364851 -3.58 0.00020212580589717 union .1731559 .0362734 4.77 0.000 .1019941 .2443176 education .0951149 .004769 19.94 0.000 .085759 .1044708 exper .0390986 .0038752 10.09 0.000 .0314961 .0467012 exp_squared 0006316 .0000887 -7.12 0.00000080570004575	lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
cone I 7743843 0744046 10.40 0.000 6333354 4363434	nonwhite	1305487	.0364851	-3.58	0.000	2021258	0589717
	union	.1731559	.0362734	4.77	0.000	.1019941	.2443176
	education	.0951149	.004769	19.94	0.000	.085759	.1044708
	exper	.0390986	.0038752	10.09	0.000	.0314961	.0467012

. estat hettest;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 8.56Prob > chi2 = 0.0034

. regress lnwage female nonwhite union education exper exp_squared,r;

Linear regression

Number of obs = 1289 F(6, 1282) = 145.17 Prob > F = 0.0000 R-squared = 0.3705 Root MSE = .4663

. regress lnwage female nonwhite union college some_college exper;

Source	SS	df	MS	Number of obs =	1289
				F(6, 1282) =	93.97
Model	135.261411	6	22.5435684	Prob > F = 0	.0000
Residual	307.569666	1282	.239913936	R-squared = 0	.3054
+				Adj R-squared = 0	.3022
Total	442.831077	1288	.343812948	Root MSE $=$.	48981

lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	2451276	.0274773	-8.92	0.000	299033	1912221
nonwhite	1462069	.038297	-3.82	0.000	2213387	0710752
union	.1939992	.0380702	5.10	0.000	.1193126	.2686858
college	.5682876	.0316352	17.96	0.000	.5062251	.6303501
some_college	.3140907	.050996	6.16	0.000	.2140459	.4141355
exper	.0110464	.0011965	9.23	0.000	.008699	.0133938
_cons	2.06904	.0332687	62.19	0.000	2.003773	2.134307

[.] estat hettest;

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 20.68Prob > chi2 = 0.0000

. regress lnwage female nonwhite union college some_college exper,r;

Linear regression

Number of obs = 1289 F(6, 1282) = 109.08 Prob > F = 0.0000 R-squared = 0.3054 Root MSE = .48981

```
. /*
```

Linear regression

>

0 0 1 1

Number of obs = 1289 F(4, 1284) = 129.50 Prob > F = 0.0000 R-squared = 0.2853 Root MSE = .49648

| Robust
| lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]

> reject none

> c. Run a regression omitting union and nonwhite from model (vi) from part b.

> This is the restricted model that can be used to test if union and nonwhite are

> jointly significant. Save the RSS as rss_r using ereturn list and the scalar

> command.*/

> regress lnwage female college some_college exper,r;

```
college | .5812343 .033983 17.10 0.000
                                                    .514566
                                                                .6479026
some_college | .3205216 .0486417 6.59 0.000 .2250958
                                                               .4159475
      exper | .0122078 .0012532 9.74 0.000
                                                    .0097492
                                                                .0146664
      _cons | 2.059682 .0296149 69.55 0.000
                                                     2.001583
                                                                2.11778
. scal rss_r = e(rss);
. /*d. Now, run model (vi) from part b again. Save the RSS for this model as rss_u
> using ereturn list and the scalar command.*/
> regress lnwage female nonwhite union college some_college exper,r;
Linear regression
                                                  Number of obs =
                                                  F(6, 1282) = 109.08
                                                  Prob > F = 0.0000
                                                  R-squared
                                                              = 0.3054
                                                  Root MSE
                                                              = .48981
        Robust
    lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
     female | -.2451276 .0274473 -8.93 0.000 -.2989741 -.191281
   nonwhite | -.1462069 .0372502 -3.92 0.000 -.219285 -.0731289
      union | .1939992 .0319926 6.06 0.000 .1312356 .2567628
    college | .5682876 .0340563 16.69 0.000
                                                   .5014755 .6350997
some_college | .3140907 .0475559 6.60 0.000 .2207947 .4073867
exper | .0110464 .0012677 8.71 0.000 .0085594 .0135333
                         .029912 69.17 0.000 2.010358
              2.06904
      _cons |
                                                                2.127722
. scal rss_u = e(rss);
. /*e. Now, calculate the F-statistic manually using the saved scalars from
> parts c and d the STATA scalar command: sca fstat= Display the f-statistic
> by typing sca list fstat*/
> scal fstat = ((rss_r - rss_u)/2)/(rss_u/1289);
. scal list;
    fstat = 18.717925
    rss_u = 307.56967
    rss_r = 316.50227
. /*f. Run model (vi) from part b again. Use the STATA command test to test for
```

> joint significance of union and nonwhite in this model.*/

> regress lnwage female nonwhite union college some_college exper,r;

Linear regression Number of obs = 1289 F(6, 1282) = 109.08 Prob > F = 0.0000 R-squared = 0.3054 Prob = 0.0000 Prob = 0.3054 Prob = 0.3054 Prob = 0.3054 Prob = 0.3054

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
female	2451276	.0274473	-8.93	0.000	2989741	191281
nonwhite	1462069	.0372502	-3.92	0.000	219285	0731289
union	.1939992	.0319926	6.06	0.000	.1312356	. 2567628
college	.5682876	.0340563	16.69	0.000	.5014755	.6350997
some_college	.3140907	.0475559	6.60	0.000	.2207947	.4073867
exper	.0110464	.0012677	8.71	0.000	.0085594	.0135333
_cons	2.06904	.029912	69.17	0.000	2.010358	2.127722

. test union=nonwhite;

```
(1) - nonwhite + union = 0
```

$$F(1, 1282) = 45.90$$

 $Prob > F = 0.0000$

- . /*g. Now, create a special variable for use in testing if the coefficients on
- > college and some_college are the same. This variables is all_college =
- > college+some_college*/
- > gen all_college = 0;
- . replace all_college = college+some_college;
 (453 real changes made)
- . /*h. Run a regression such that: dependent variable: lnwage; explanatory
- > variables are female nonwhite union college all_college exper*/

>

> regress lnwage female nonwhite union college all_college exper;

Source	SS	df	MS		Number of obs	=	1289
+-					F(6, 1282)	=	93.97
Model	135.261411	6	22.5435684		Prob > F	=	0.0000
Residual	307.569666	1282	.239913936		R-squared	=	0.3054
+-					Adj R-squared	=	0.3022
Total	442.831077	1288	.343812948		Root MSE	=	.48981
lnwage	Coef.	Std.	Err. t	P> t	[95% Conf.	Int	cerval]

```
______
  female | -.2451276 .0274773 -8.92 0.000 -.299033 -.1912221
  nonwhite | -.1462069 .038297 -3.82 0.000 -.2213387 -.0710752
. 2686858
                                     .3618357
                                     .4141355
                                      .0133938
   _cons | 2.06904 .0332687 62.19 0.000
                               2.003773
                                      2.134307
```

```
. /*i. Now, run the model (vi) from part b again. Use the STATA command test to
```

- > test whether the coefficients on college and some_college are the same in this
- > model.*/
- > regress lnwage female nonwhite union college some_college exper,r;

Linear regression

Number of obs = 1289 F(6, 1282) = 109.08Prob > F = 0.0000 R-squared = 0.3054 = .48981 Root MSE

Robust lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] female | -.2451276 .0274473 -8.93 0.000 -.2989741 -.191281 nonwhite | -.1462069 .0372502 -3.92 0.000 -.219285 -.0731289 union | .1939992 .0319926 6.06 0.000 .1312356 . 2567628 college | .5682876 .0340563 16.69 0.000 .5014755 _college | .3140907 .0475559 6.60 0.000 .2207947 exper | .0110464 .0012677 8.71 0.000 .0085594 _cons | 2.06904 .029912 69.17 0.000 2.010358 .6350997 some_college | .3140907 .4073867 .0135333 2.127722

```
. test college = some_college;
```

(1) college - some_college = 0

$$F(1, 1282) = 21.97$$

 $Prob > F = 0.0000$

. /*j. Test for multicollinearity of the model (vi) from part b by using the vif > command.*/

> vif;

Variable | VIF 1/VIF

college	1	1.06	0.941918
exper	1	1.05	0.956468
union	1	1.04	0.960187
some_college	1	1.04	0.964904
nonwhite	1	1.02	0.980143
female	1	1.01	0.986111
	-+		
Mean VIF	1	1.04	

. log close;

name: <unnamed>

log: C:\Users\cla-spa206.CAMPUS-DOMAIN\Downloads\lab6\lab6demo.log

log type: text

closed on: 21 Mar 2013, 11:43:46

2 Questions

Q1 Explain (giving one or two reasons) why we might want to transform a variable using log (Note: This is natural log).

Although there are no well defined rules for using the log of a variable, we would consider using it when we suspect that the relationship between one or more dependent variables and the independent variables is not strictly linear. One case that begs for logarithmic linearization are economic growth models such as the Cobb-Douglas production function: $Q_i = AL^{\beta}K^{\alpha}$. Whatever the reason, it is important that any variable that is log transformed is only positive as the logarithm of a negative number is undefined.

- Q2 Use your results from L1 for this problem.
 - a. Is there a problem with heteroskedasticity? Explain how you know.

Yes, heteroskedasticity was evident at the 95% confidence level for each model. When *estate hettest* was run for each, the p-value is less than 0.05 which means that we should reject the null hypothesis which is that the data is homoskedastic.

- b. For each of the models below (which correspond to the models from part b of L1, interpret the coefficients identified here.
 - i. Dependent variable: wage; explanatory variables are female nonwhite union education exper. Interpret the coefficient on exper

For each unit increase of exper, there is a .1666065 increase in wage, ceteris paribus.

ii. Dependent variable: annual_wage; explanatory variables are female nonwhite union education exper. Interpret the coefficient on exper

There is an error in my regression I mistakenly included exp_squared in this model so the following value of the coefficient is incorrect. For each unit increase of exper, there is a 1018.71 increase in annual_wage, ceteris paribus.

iii. Dependent variable: lnwage; explanatory variables are female nonwhite union education exper Interpret the coefficient on exper

For each unit increase in exper, there is a 1.289% increase in wage, ceteris paribus.

iv. Dependent variable: lnwage; explanatory variables are female nonwhite union education lnexp. Interpret the coefficient on lnexp

For each percent increase in exper, there is a .2112% increase in wage, ceteris paribus. This is the wage elasticity with respect to exper.

v. Dependent variable: lnwage; explanatory variables are female nonwhite union education exper exp_squared - Interpret the effect of experience on wages, using exper and exp_squared

For each unit of exper, there is a 3.9% increase in wage. Also, for each additional unit of exper, there is 0.06% drop in wage - this signifies a decreased return to wages with respect to experience.

- vi. Dependent variable: lnwage; explanatory variables are female nonwhite union college some_college exper Interpret the effect of having at least 4 years of college on wages

 For those who have some_college but have not graduated, we expect their wage to be 3.14% above those with only high school, ceteris paribus.
- c. Why did we leave no_college out of the final model (estimated in L1, parts b, vi)?

 If all three categorical variables are included then the model would have perfect collinearity. Stata will general omit one of the variables with warnings but it is generally better to choose one ourselves.
- d. In L1, parts c, d, and e you used STATA to calculate an F-statistic. Write out the formula for that F-statistic here. What is the null hypothesis for this F-test? If the critical F-value with 2, 1282 degrees of freedom at the 5% level is 3.00, would you reject the null hypothesis? What is your conclusion here?

In this section of the lab we are testing for the joint significance of union and non-white. Our formula was $\frac{rss_r-rss_u}{2}$ where rss_r is the residuals sum-of-squares for the restricted model and rss_u is the residual sum-of-squares from the unrestricted model. The H_0 is that the variables are not jointly significant (taken together their coefficients are not different from zero). We would reject the null hypothesis at the 5% significance level and conclude that the variables are jointly significant.

e. Is the test in L1 part f the same as the test in part e? What is your conclusion based on the result in part f?

We are testing for the same phenomenon as part f as in part e and we receive the same result in both as well: we can reject the null hypothesis and assume that there is joint significance between union and non-white.

f. In L1 part g and h, you created a new variable and ran a regression on that new variable. What is the null hypothesis you are testing? Based on that hypothesis, demonstrate (show) how we transform our original equation (L1 part b, vi) to the one in L1 part h.

The H_0 is the coefficients for college and some_college are the same. We take the two variables in L1.b.vi, some_college and college and add the together to create a new variable called all_college. We use the new variable in a regression with either some_college or college. In this case our regression used college. The t-stat for the coefficient of the new variable can be used to test our null hypothesis.

g. Based on the results from L1 part h, what is your conclusion about the hypothesis you are testing (in other words, the hypothesis you outlined in Q2, part d)?

Based on the results from L1.h, we can reject the null hypothesis and assume that the variables are different from each other at the 5% significance level.

h. What does the test in L1 part i tell us? Why couldn't we calculate this particular test using scalars?

L1.i tells us the same thing with different numbers. We may reject the null hypothesis at the 5% significance level. I am not sure what the second question is asking.

i. Is there a problem with multicollinearity in the model in L1 part b iv? How do you know?

The model in L1.b.iv is reasonably free of multicollinearity (all the values in the VIF output are less than 5).