WI4680 Applications in Partial Differential Equations

Assignments

Philip Soliman (4945255) March 9, 2024

Contents

Introduction	3
Assignment 1	4
1.1 Introduction	4
1.2 Conclusion	
Assignment 2	5
2.1 Introduction	
2.2 Conclusion	5
Assignment 3	6
3.1 Introduction	6
3.2 Conclusion	6

Introduction

This report contains my treatment of the assignments. It will be updated as I progress through the course.

Assignment 1

Variable	Unit	Meaning	Value
θ	-	latitude	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
t	s	time	
$x = \sin \theta$	-	latitude coordinate	[-1, 1]
T	K	temperature	-
R_A	$Js^{-1}m^{-2}$	effective solar radiation	-
Q	$Js^{-1}m^{-2}$	solar radiation	_
Q_0	$Js^{-1}m^{-2}$	solar radiation constant	341.3
α	-	albedo of Earth	-
α_1	-	albedo of ice	0.7
α_2	-	albedo of water	0.278
T^*K	-	temperature at which ice melts	273.15
M	K^{-1}	temperature gradient (?)	_
μ	$Js^{-1}m^{-2}$	greenhouse gas & fine particle parameter	30
R_E	$Js^{-1}m^{-2}$	black body radiation	-
ϵ_0	-	emmisivity of Earth	0.61
σ_0	$Js^{-1}m^{-2}K^{-4}$	Stefan-Boltzmann constant	$5.67 \cdot 10^{-8}$
R_D	$Js^{-1}m^{-2}$	heat dispersion	_
D	$Js^{-1}m^{-2}$	heat dispersion constant	0.3
δ	$Js^{-1}m^{-2}$	heat dispersion at poles	0
C_T	JK^{-1}	heat capacity of Earth	$5 \cdot 10^8$

Table 1: Variables and their meanings

1.1 Introduction

 δ cannot be positive (resp. negative) at $x=\pm 1$ (poles), otherwise energy would be artificially entering (resp. leaving) the system. Simply said, the poles cannot be a source or sink of energy. This requires us to set $\delta=0$ at $x=\pm 1$. Furthemore

$$\left. \frac{dT}{dx} \right|_{x=\pm 1} = 0.$$

However, we run into a problem when we combine the boundary conditions and set $\delta=0$. The equation for the heat dispersion vanishes at the boundary and we are left with a zeroth order differential equation for which we simply cannot satisfy, one let alone two, boundary conditions.

The remedies for this are to either give delta a small positive value, or to require that there is no dispersion of energy to and from the poles

$$R_D|_{x=\pm 1} = 0.$$

1.2 Conclusion

Assignment 2

- 2.1 Introduction
- 2.2 Conclusion

Assignment 3

- 3.1 Introduction
- 3.2 Conclusion