Chapitre 10.

Compétence.

Fonctions de référence

Les savoir-faire du parcours

- SF1
- SF2

Les mathématiciennes et mathématiciens

1

ì

La fonction Carré

Définition 1: Fonction Carré.

La **fonction Carré** f est la fonction définie sur \mathbb{R} par $f(x) = x^2$.

La représentation graphique de la fonction Carré s'appelle une parabole et son équation est $y=x^2$.

Théorème 2.

La fonction Carré f est paire.

La parabole d'équation $y = x^2$ est symétrique par rapport à l'axe des ordonnées.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .

Preuve : Etude des variations de $f: x \mapsto x^2$ sur $[0; +\infty[$:

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = a^2$$
 et $f(b) = b^2$

Pour les comparer on étudie le signe de leur différence :

$$f(a) - f(b) = a^2 - b^2 = (a+b)(a-b)$$

- a et b appartiennent à $[0; +\infty[$ donc a+b>0
- $a < b \operatorname{donc} a b < 0$
- $(a+b)(a-b) < 0 \Rightarrow a^2 b^2 < 0 \Rightarrow f(a) < f(b) \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que ces nombres. La fonction est donc croissante sur $[0; +\infty[$.

La fonction Cube

Définition 4: Fonction Cube.

La **fonction Cube** f est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Théorème 5.

La fonction Cube f est impaire.

La courbe d'équation $y = x^3$ est symétrique par rapport à l'origine du repère.

Théorème 6: Variations de la fonction Cube.

La fonction Cube est strictement croissante sur

Positions relatives des courbes de x, x^2 et x^3

Propriété 7.

Démonstration exigible

- Si $0 \leqslant x \leqslant 1$ alors $x \geqslant x^2 \geqslant x^3$.
- Si $x \geqslant 1$ alors $x \leqslant x^2 \leqslant x^3$

Preuve : Comparaison de x et x^2 sur $[0; +\infty[$.

Pour les comparer, on étudie le signe de leur différence.

On définit la fonction f par $f(x) = x^2 - x$.

$$f(x) = x^2 - x = x(x - 1)$$

On peut établir le tableau de signes de f(x).

 $(E): f(x) = 0 \text{ alors } S(E) = \{0; 1\}$

x	$-\infty$		0		1		$+\infty$
x		_	0	+		+	
x-1		_		_	0	+	
f(x)		+	0	_	0	+	

Ainsi:

- $\forall x \in]0; 1[, f(x) < 0 \text{ donc } x^2 x < 0 \text{ donc } x^2 < x$
- $\forall x \in]1; +\infty, f(x) > 0$ donc $x^2 x > 0$ donc $x^2 > x$

Connaitre et utiliser la fonction Carré

Comparer sans les calculer.

Raisonner.

• $(-11)^2$ et $(-6)^2$

• -7^2 et -8^2

Raisonner. Calculer.

• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à [1;3].

• Déterminer algébriquement l'intervalle de x^2 lorsque x appartient à [-1;4].

Connaitre et utiliser la fonction Cube

Comparer sans les calculer.

Raisonner.

• $\left(\frac{1}{5}\right)^3$ et π^3

• $(-5)^3$ et $(-9)^3$

Position relatives des courbes

		Raisonner. Communiquer.
5	Comparer la position relative des courbes de x^2 et x^3 sur $[0;+\infty]$.	
		/b/ABCC
		/b/ADGD

La fonction Inverse

Définition 8: Fonction Inverse.

La fonction Inverse f est la fonction définie sur \mathbb{R}^* par $f(x) = \frac{1}{x}$.

La **représentation graphique** de la fonction Inverse s'appelle une **hyperbole** et son équation est $y=\frac{1}{x}$.

Théorème 9.

La fonction Inverse f est impaire.

La hyperbole d'équation $y = \frac{1}{x}$ est symétrique par rapport à l'origine du repère.

Théorème 10: Variations de la fonction Inverse.

Démonstration exigible

La fonction Carré est strictement décroissante sur \mathbb{R}^* et strictement décroissante sur \mathbb{R}^* .

Preuve : Étude des variations $f: x \mapsto \frac{1}{x} \text{ sur }] - \infty; 0[.$

Soient a et b deux nombres appartenant à $]-\infty;0[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \frac{1}{a}$$
 et $f(b) = \frac{1}{b}$

$$f(a) = \frac{1}{a} \text{ et } f(b) = \frac{1}{b}$$
 Pour les comparer on étudie le signe de leur différence.
$$f(a) - f(b) = \frac{1}{a} - \frac{1}{b} = \frac{b}{ab} - \frac{a}{ab} = \frac{b-a}{ab}$$

- a et b appartiennent à $]-\infty;0[$ donc ab>0
- $a < b \operatorname{donc} a b < 0 \operatorname{donc} b a > 0$
- $\frac{b-a}{ab} > 0 \Rightarrow \frac{1}{a} \frac{1}{b} > 0 \Rightarrow f(a) f(b) > 0 \Rightarrow f(a) > f(b)$

Les images de a et b par la fonction f sont rangés dans l'ordre contraire de celui de ces nombres. La fonction inverse est donc décroissante sur $]-\infty;0[$.

La fonction Racine carrée

Définition 11: Fonction Racine carrée.

La fonction Racine carrée f est la fonction définie sur \mathbb{R}^+ par $f(x) = \sqrt{x}$.

Remarque 12

L'ensemble de définition de la fonction Racine Carrée n'est pas centré. Donc la fonction Racine carrée n'est ni paire, ni impaire.

Théorème 13: Variations de la fonction Racine Carrée.

Démonstration exigible

La fonction Racine carrée est strictement croissante sur $\mathbb{R}^{+}.$

Preuve : Etude des variations de $f: x \mapsto \sqrt{x}$ sur $[0; +\infty[$.

Soient a et b deux nombres appartenant à $[0; +\infty[$ tels que a < b.

Comparons les images de a et b par la fonction f.

$$f(a) = \sqrt{a}$$
 et $f(b) = \sqrt{b}$

Pour les comparer on étudie le signe de leur différence.

$$f(a) - f(b) = \sqrt{a} - \sqrt{b} = (\sqrt{a} - \sqrt{b}) \times \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2} - \sqrt{b^2}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

- $\sqrt{a} + \sqrt{b} > 0$
- $a < b \operatorname{donc} a b < 0$
- $\frac{a-b}{\sqrt{a}+\sqrt{b}} < 0 \Rightarrow \sqrt{a} \sqrt{b} < 0 \Rightarrow f(a) f(b) < 0 \Rightarrow f(a) < f(b)$

Les images de a et b par la fonction f sont rangés dans le même ordre que celui de ces nombres. La fonction racine carrée est donc croissante sur $[0; +\infty[$.

Valider ces résultats par le calcul.

Connaître et utiliser les fonctions Inverse et Racine Carrée

		Raisonner.	7
6	Comparer sans les calculer.		
	• $\frac{1}{5}$ et $\frac{1}{4}$	ļ	
			/b/ABC
	$\bullet \ -\frac{1}{4} \ et \ -\frac{1}{6}$		
	• $\sqrt{10}$ et $\sqrt{100}$		
Ì		Raisonner.	7
7	Expliquer pourquoi la fonction Inverse n'est pas décroissante sur $\mathbb{R}^*.$		ال
		,	
	Représ	senter. Raisonner.	<u></u>
3	Résoudre graphiquement les équations, puis retrouver les résultats algébriquement.	_	
	1. $\frac{1}{x} = 4$		
		· · · · · · · · · · · · · · · · · · ·	/b/AB(
	2. $\sqrt{x} = 2$		

Raisonner. Calculer.

1. Déterminer algébriquement l'intervalle de $\frac{1}{x}$ lorsque x appartient à $[1;3]$.	鼺
	/b/ABCΓ
	, 5, , 12 5 2
2. Déterminer algébriquement l'intervalle de \sqrt{x} lorsque x appartient à $[1;2]$.	

Associer à chaque représentation la fonction de référence qui lui correspond.

 ${\it Raisonner.\ Communiquer.}$

Représenter. Raisonner.

Rappel : Une fonction f définie sur un intervalle I est dite **paire** lorsque, pour tout $x \in I$, f(x) = f(-x).

Démontrer que $f:x\mapsto x^2$ est paire.

Compétence.

12

13

Compétence.

1/

Compétence.

15

Compétence.

	Raisonner. Communique
Démontrer que $f: x \mapsto x^2$ est décroissante sur $[-\infty; 0[$.	
	Raisonner. Communique
En utilisant la propriété de parité de la fonction $x\mapsto x^2$, montrer que $2x^2+3$ est paire).
	Compétenc
	Compétenc
	Compétend
	Compétenc
	Compétenc
	Compétenc

		Compétence.
22		
	Deirane	er. Communiquer.
သ		er. Communiquer.
23	Sachant que $a^3-a^3=(a-b)(a^2+ab+b^2)$, montrer que $f:x\mapsto x^3$ est croissante sur $[0;+\infty[$.	
l		
		Compétence.
24		
		Compétence.
25		Competence.
-		
l		
		Compétence.
26		
-		
27		Compétence.
27		

Compétence.

AUTOÉVALUATION Fonctions de référence

