Plot

Visualisierung von Datensätzen

In diesem Abschnitt sollen alle Graphiken mit ggplot und alle Tabellen mit kable erstellt werden.

Körpergewicht und Gehirngewicht bei Säugetieren

Nutzen Sie den Datensatz MASS::mammals. In der Hilfe finden Sie Hinweise, was dort gezeigt ist.

Körpergewicht vs. Gehirngewicht

Erzeugen Sie diese Graphik, indem Sie den nachfolgenden Chunk vervollständigen. Die gezeigten Tiernamen sind Pig, Rat, African elephant, Chimpanzee, Cat, Human, Little brown bat.

Tipp: Sie dürfen (und sollen) weitere Libraries nutzen, wenn diese hilfreich sind.

```
selected_mammals = mammals[c("Pig","Rat", "African elephant", "Chimpanzee", "Cat",
"Human", "Little brown bat"), ] # rausgefilterte Tiere für Label

ggplot(mammals) +
   geom_point(aes(x = body, y = brain)) + # Erstellt Scatterplot
   scale_x_continuous("Körpergewicht (kg)", labels = scientific, trans = "log10") +
   scale_y_continuous("Gehirngewicht (g)", labels = scientific, trans = "log10") +
   geom_text(data = selected_mammals, aes(x = body, y = brain, label =
   rownames(selected_mammals)), color = "blue") # erstellt Label
```


Gehirn- zu Körpergewicht-Verhältnis

Geben Sie diejenigen 10 Tiere als Tabelle im Notebook aus, die das größte Gehirn- zu Körpergewicht-Verhältnis \$r\$ haben.

Die Liste soll nach r absteigend sortiert sein und den Tiernamen und r enthalten.

Vervollständigen Sie diesen Chunk:

df_ratio_desc = mammals |> mutate(r = brain*0.001/body) |> arrange(desc(r)) |> dplyr::select(r)
kable(head(df_ratio_desc, 10))

	r
Ground squirrel	0.0396040
Owl monkey	0.0322917
Lesser short-tailed shrew	0.0280000
Rhesus monkey	0.0263235
Little brown bat	0.0250000
Galago	0.0250000
Mole rat	0.0245902
Tree shrew	0.0240385
Human	0.0212903
Mouse	0.0173913

Geben Sie nun – wie eben – diejenigen 10 Tiere als Tabelle aus, die das **kleinste** Gehirn- zu Körpergewicht- Verhältnis r haben. Die Liste soll nach r absteigend sortiert sein.

Vervollständigen Sie diesen Chunk:

```
df_ratio_asc = mammals |> mutate(r = brain*0.001/body) |> arrange(r) |> dplyr::select(r)
knitr::kable(head(df_ratio_asc, 10))
```

	r
African elephant	0.0008584
Cow	0.0009097
Pig	0.0009375
Brazilian tapir	0.0010563
Water opossum	0.0011143
Horse	0.0012572
Giraffe	0.0012854
Giant armadillo	0.0013500
Jaguar	0.0015700
Kangaroo	0.0016000

Blutdruckveränderung bei Medikamentengabe im Tierversuch

Nutzen Sie den Datensatz MASS::Rabbit. In der Hilfe finden Sie Hinweise, was dort gezeigt ist.

Überblick über Verlauf bei allen Kaninchen

Plotten Sie im folgenden Chunk den Verlauf der Blutdruckveränderung (y-Achse) bei gegebener Dosis Phenylbiguanide (x-Achse). Dies soll in einem Diagramm mit Unterdiagrammen erfolgen: ein Unterdiagramm zeigt den Verlauf für je ein Kaninchen und der Behandlung (Placebo oder MDL 72222).

```
data(Rabbit)

ggplot(Rabbit, aes(x = Dose, y= BPchange)) +
   geom_line() +
   facet_grid( Rabbit$Animal ~ Rabbit$Treatment) # erstelle unterdiagramm
```


Boxplots der Blutdruckänderung je Dosis

Erzeugen Sie ein Diagramm, das in zwei Unterdiagrammen für die Placebo- und die MLD-Gruppe Boxplots erstellt. Die Boxplots geben die Verteilung der Blutdruckänderung je Dosis an. In Anlehnung an das obige Diagramm sollen die Boxplots vertikal ausgerichtet sein.

```
control = Rabbit[Rabbit$Treatment =='Control',]
mdl = Rabbit[Rabbit$Treatment =='MDL',]

p1 = ggplot(data = control) +
    geom_boxplot(aes(group=Dose, y=BPchange, x=Dose)) +
    ggtitle('Verteilung der Blutdruckänderung pro Placebo')

p2 = ggplot(data = mdl) +
    geom_boxplot(aes(group=Dose, y=BPchange, x=Dose)) +
    ggtitle('Verteilung der Blutdruckänderung pro Dosis MDL')

grid.arrange(p1,p2, nrow=2)
```

Verteilung der Blutdruckänderung pro Placebo

Verteilung der Blutdruckänderung pro Dosis MDL

