

Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021

Question Paper Log Number P65794A

Publications Code WME02_01_2106_MS

All the material in this publication is copyright

© Pearson Education Ltd 2021

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- •Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \Box or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *once* per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.

N2L Newton's Second Law (Equation of Motion)

NEL Newton's Experimental Law (Newton's Law of Impact)

HL Hooke's Law

SHM Simple harmonic motion

PCLM Principle of conservation of linear momentum

RHS, LHS Right hand side, left hand side.

Q	Solution	Mark	Notes
1	Driving force $(F) = \frac{3500}{V}$	B1	Use of $P = Fv$
	Equation of motion: $F - 20V + 480g \sin \theta = 0$	M1	Need all terms. Dimensionally correct. Condone sign errors and sin/cos confusion
	$\frac{3500}{V} - 20V + 40g = 0$	A1	Correct unsimplified equation in <i>V</i> .
	$20V^2 - 392V - 3500 = 0$	M1	Form a 3 term quadratic equation $(=0)$ in V
	V = 26.3 (26)	A1	3 sf or 2 sf Not $\frac{49 + 22\sqrt{14}}{5}$ (follows use of 9.8)
		(5)	
		[5]	

2a			Allow column vectors throughout
<u> </u>	dv	M1	Differentiate – at least 3 powers
	Use $\mathbf{a} = \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t}$	1011	going down by 1
	dt		going down by 1
	$\mathbf{a} = (10t - 3t^2)\mathbf{i} + (6t^2 - 8)\mathbf{j}$	A1	
	$\mathbf{F} = 1.5 \times ((20-12)\mathbf{i} + (24-8)\mathbf{j})$	DM1	Substitute $t = 2$ and use $\mathbf{F} = m\mathbf{a}$
	(() ()3)		Dependent on preceding M1
	$=12\mathbf{i}+24\mathbf{j}$	A1	Ignore magnitude of F if found
		(4)	
2b	$5t^2 - t^3 = 0 \implies t = 5$	B1	(Not moving when $t = 0$ so no
			need to mention $t = 0$)
	Use of $\mathbf{r} = \int \mathbf{v} dt$	M1	Integrate to find \mathbf{r} – at least 3
			powers going up by 1.
	(5, 1, 1), (1, 1, 2),	A1	Condone if no constant of
	$\mathbf{r} = \left(\frac{5}{3}t^3 - \frac{1}{4}t^4\right)\mathbf{i} + \left(\frac{1}{2}t^4 - 4t^2\right)\mathbf{j}$		integration seen (since
			$t=0, \mathbf{r}=0$
	(625) (425)	A1	Final answer 52 i + 210 j or better
	$\mathbf{r} = \left(\frac{625}{12}\right)\mathbf{i} + \left(\frac{425}{2}\right)\mathbf{j}$		· ·
			$(52.08\dot{3}i + 212.5j)$
		(4)	
		[8]	
	•		

3a		square	triangle	circle	T		
Ju	mass	36	8	π	$28-\pi$		
	c		7				
	from AD	3 <i>a</i>	$\frac{7}{3}a$	4 <i>a</i>	d		
	Mass 1					B1	
			n AD or	a parall	el axis	B1	
	M(AD	or para	llel axis)	:		M1	Moments equation. Need all terms and dimensionally correct. Condone sign errors.
	36×3a	$a-8\times\frac{7}{3}$	$a-\pi\times 4$	a = (28)	$(3-\pi)d$	A1	Correct unsimplified equation for their parallel axis
	$\left[108a\right]$	$-\frac{56}{3}a$	$a - \pi \times 4$ $-4\pi a = ($	$[28-\pi]$	d		
					$\frac{(-3\pi)}{(-\pi)}a^*$	A1*	Obtain given answer from correct working
							Distance from BC is $ \frac{(236-6\pi)a}{3(28-\pi)} $ Allow 4/5 if seen.
	+						Allow 7/3 II SCII.
	+					(5)	
3b	M(A):					M1	Complete method to form an equation in <i>k</i> and <i>W</i> only Dimensionally correct.
	$W \times \frac{4}{3}$	$\frac{(67-3\pi)}{6(28-\pi)}$	$\frac{\overline{a}}{a} = kW$	√×6 <i>a</i>		A1	Correct unsimplified equation
		k = 0.5	51			A1	Q asks for 2dp
						(3)	
						[8]	
	1						
	1						
	1						
	+						
	-						
	+						
	1						
<u> </u>							

4	θ P 60° $J \text{ Ns}$ 5 ms^{-1}		Resolving parallel and perpendicular to the original direction of motion
	Use of $J = m(v - u)$	M1	Use of $J = m(v-u)$ parallel or perpendicular to original direction
	$J\cos 30^{\circ} = 2.4\cos \theta$ or $J\cos 60^{\circ} = 2.4\sin \theta - 1.5$	A1	One correct unsimplified equation
	Use of $J = m(v - u)$	M1	Use of $J = m(v-u)$ to form second equation 2^{nd} correct unsimplified equation
	The first 4 marks are available for a correct equation in vector form.	AI	
	$2.4^{2} = \frac{3J^{2}}{4} + \frac{J^{2}}{4} + 1.5J + 1.5^{2}$ $\left(J^{2} + 1.5J - 3.51 = 0\right)$	DM1	Form an equation in <i>J</i> only Dependent on previous two M1 marks
	J = 1.3	A1	1.3 or better (1.268)
		(6)	
		+	
		+	
			See over for alternatives
			See over for ancillatives

	1		1
4 Alt 1	8 ms ⁻¹ 8 ms ⁻¹ 5 ms ⁻¹		Resolving parallel and perpendicular to the direction of the impulse.
	Use of $J = m(v - u)$	M1	Use of $J = m(v - u)$ in any
			direction
	$J = 0.3(8\cos\alpha - 5\cos60^\circ)$	A1	Correct unsimplified equation
	,		$(2.4\cos\alpha = J + 1.5\cos 60^{\circ})$
	Or $5\sin 60^\circ = 8\sin \alpha$		$2.4\sin\alpha = 1.5\sin 60^{\circ}$
	Use of $J = m(v - u)$	M1	Use of $J = m(v-u)$ in
	$\int \cos \alpha f d = m(v - u)$		` ,
		A 1	perpendicular direction
		A1	Correct unsimplified equation
	$2.4^{2} = \left(J + \frac{3}{4}\right)^{2} + \left(\frac{3}{2}\right)^{2} \times \frac{3}{4}$	DM1	Form an equation in <i>J</i> only Dependent on previous two M1 marks
	$\left(J^2 + 1.5J - 3.51 = 0\right)$		
	J = 1.3	A1	1.3 or better (1.268)
	Could have a mixture of the first 2 alternate equations. DM1A1 for solving	tives. N	M1A1M1A1 for 2 independent
		(6)	
4 Alt 2	120° 2.4 1.5		Using vector triangle.
	Impulse momentum triangle	M1	Form dimensionally correct vector triangle (for impulse or momentum)
	Use of cosine rule	M1	Use of cosine rule in momentum or velocity triangle
	$2.4^2 = J^2 + 1.5^2 - 3J\cos 120^\circ$	A1	unsimplified equation in <i>v</i> or <i>mv</i> with at most one error
	$J^2 + 1.5J - 3.51 = 0$	A1 DM1	Form a simplified equation in J
			Dependent on previous two M1 marks
	J = 1.3	A1	
	J = 1.3	A1 (6)	marks

Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $5a \times T \sin 55^\circ = 4a \cos 20^\circ \times Mg$ $T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg)$ A1 Correct unsimplified equation in T (and M). A1 Or equivalent (Exact or $0.92Mg$ or better) (3) The system of the syst			1	T
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1 \qquad Correct unsimplified equation in T (and M). T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1 \qquad Or equivalent (Exact or 0.92Mg or better) (3) Sb Resolve vertically \qquad M1 \qquad Need all terms. Condone sign errors and sin/cos confusion T or their T \qquad T or T$	5a			
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1 \qquad Correct unsimplified equation in T (and M). T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1 \qquad Or equivalent (Exact or 0.92Mg or better) (3) Sb Resolve vertically \qquad M1 \qquad Need all terms. Condone sign errors and sin/cos confusion T or their T \qquad T or their T \qquad Resolve horizontally \qquad M1 \qquad Condone consistent sin/cos confusion \qquad T or their T \qquad T or T$				
Moments about A: M1 M1 Moments about A: M1 M1 Moments about A: M1 M1 M1 M1 M1 M1 M1 M1 M1 M		C		
Moments about A: M1 M1 Moments about A: M1 M1 Moments about A: M1 M1 M1 M1 M1 M1 M1 M1 M1 M				
Moments about A: M1 M1 Moments about A: M1 M1 Moments about A: M1 M1 M1 M1 M1 M1 M1 M1 M1 M				
Moments about A : Moments about A : MI Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ Al Correct unsimplified equation in T (and M). The second of		T		
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1$ Correct unsimplified equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1$ Correct unsimplified equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1$ Need all terms. Condone sign errors and sin/cos confusion T T Correct unsimplified equation in T or their T or their T Resolve horizontally T Resolve horizontally T Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Substitute for T and use Pythagoras T Substitute for T and use Pythagoras T Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion T Or their T Substitute for T and use Pythagoras T Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion T Or their T Correct unsimplified equation in T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Condone sign errors and sin/cos confusion T Or their T Use Pythagoras				
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad \text{A1} \qquad \text{Correct unsimplified equation in } T (\text{and } M).$ $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad \text{A1} \qquad \text{Or equivalent} (\text{Exact or } 0.92Mg \text{ or better})$ (33) $D = \frac{1}{3\cos 4\pi} Mg = V + T \cos 55^{\circ} \text{ A1} \qquad \text{Correct unsimplified equation in } T \text{ or their } T or$		55°		
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ A1 Correct unsimplified equation in T (and M). A1 Correct unsimplified equation in T (and M). A1 Correct unsimplified equation in T (and M). A2 A3 Correct unsimplified equation in T (and M). A4 Correct unsimplified equation in T or their T Resolve horizontally A1 Correct unsimplified equation in T or their T Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ A1 Correct unsimplified equation in T or their T Substitute for T and use Pythagoras T A1 Correct unsimplified equation in T To their T Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion A2 A3 A4 Correct unsimplified equation in T				
Moments about A : M1 Need all terms and dimensionally correct. Condone sign errors and sin/cos confusion Or complete method to form equation in T (and M). $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1$ $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad A1$ Or equivalent (Exact or $0.92Mg$ or better) (3) Sb Resolve vertically M1 Need all terms. Condone sign errors and sin/cos confusion $T = \frac{1}{2} (1000 + $		5a 70°		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mg H		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Moments about 4:	M1	Need all terms and
$Sa \times T \sin 55^{\circ} = 4a \cos 20^{\circ} \times Mg$ $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ $Sb Resolve vertically$ $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^{\circ}}{5\cos 20^{\circ}} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^{\circ}}{5\cos 20^{\circ}} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^{\circ}}{5\cos 20^{\circ}} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^{\circ}}{3\cos 20^{\circ}} Mg (= 0.918Mg)$ T		Trioments doods 11.	1,11	
$Sa \times T \sin 55^\circ = 4a \cos 20^\circ \times Mg$ $T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg)$ $T = \frac{3\cos 20^\circ}{\cos 20^\circ} Mg (= 0.918Mg)$ $T =$				<u>-</u>
$Sa \times T \sin 55^\circ = 4a \cos 20^\circ \times Mg$ $T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg)$ $A1$ $Correct unsimplified equation in T (\text{and } M). Or equivalent (Exact or 0.92Mg \text{ or better}) Sin 55^\circ Mg (= 0.918Mg) A1 Correct unsimplified equation in T (\text{exact or } 0.92Mg \text{ or better}) Correct unsimplified equation in T (\text{exact or } 0.92Mg \text{ or better}) T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg) T = \frac{3}{3} T = \frac{4\cos 20^\circ}{5\sin 55^\circ} Mg (= 0.918Mg) T = \frac{3}{3} T = \frac{3}{$				<u> </u>
$T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ $T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg)$ $A1 \qquad \text{Or equivalent} \text{(Exact or } 0.92Mg \text{ or better})$ (3) $Sb \qquad \text{Resolve vertically} \qquad \text{M1} \qquad \text{Need all terms. Condone sign errors and } \sin/\cos \cos \cos \sin \cos \cos$		5 a v T ain 550 — 1 a a a 200 v Ma	A 1	
$T = \frac{4\cos 20^{\circ}}{5\sin 55^{\circ}} Mg (= 0.918Mg) \qquad \text{A1} \qquad \begin{array}{c} \text{Or equivalent} \\ \text{(Exact or } 0.92Mg \text{ or better)} \end{array}$ (3) $5b \qquad \text{Resolve vertically} \qquad \qquad M1 \qquad \text{Need all terms. Condone sign errors and sin/cos confusion} \\ \updownarrow: Mg = V + T \cos 55^{\circ} \qquad \qquad \text{A1} \qquad \text{Correct unsimplified equation in } \\ V = 0.47Mg) \qquad \qquad T \text{ or their } T $ $Resolve horizontally \qquad \qquad M1 \qquad \text{Condone consistent sin/cos confusion} \\ H = T \sin 55^{\circ} \qquad \qquad \text{A1} \qquad \text{Correct unsimplified equation in } \\ V = 0.75Mg) \qquad \qquad T \text{ or their } T $ $Resultant \ \lambda = \sqrt{(0.4736)^{2} + (0.7517)^{2}} \qquad M1 \qquad \text{Substitute for } T \text{ and use } \\ \text{Pythagoras} \qquad \qquad = 0.89 \qquad \qquad \text{A1} \qquad \text{The Q asks for 2 sf} $ $(6) \qquad \qquad$		$3u \times I \sin 33^{\circ} = 4u \cos 20^{\circ} \times Mg$	AI	
Sb Resolve vertically M1 Need all terms. Condone sign errors and sin/cos confusion		4 200		`
Sb Resolve vertically M1 Need all terms. Condone sign errors and sin/cos confusion		$T = \frac{4\cos 20^{\circ}}{\sin^{2}\theta} Mg (= 0.918Mg)$	A1	
Sb Resolve vertically Resolve vertically $\uparrow: Mg = V + T \cos 55^{\circ}$ $(V = 0.47Mg)$ Resolve horizontally $\uparrow: Mg = V + T \cos 55^{\circ}$ $(V = 0.47Mg)$ Al Correct unsimplified equation in $T = T \sin 55^{\circ}$ $(T = 0.75Mg)$ Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ Al Correct unsimplified equation in $T = T = T = T = T = T = T = T = T = T $		5 sin 55°		(Exact or 0.92Mg or better)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(3)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5h	Resolve vertically	M1	Need all terms Condone sign
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	Resolve vertically	1411	
Resolve horizontally $(V = 0.47Mg)$ $H = T \sin 55^{\circ}$ $(H = 0.75Mg)$ Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Substitute for T and use Pythagoras $= 0.89$ A1 Tor their T M1 Substitute for T and use Pythagoras $= 0.89$ A1 The Q asks for 2 sf (6) Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ M1 M1 M2 Correct unsimplified equation Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ A1 Correct unsimplified equation Dimensionally correct. Condone sign errors and sin/cos confusion $SaH = 4aMg \cos 20^{\circ}$ A1 Correct unsimplified equation Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Use Pythagoras		$\uparrow \cdot M\alpha = V \perp T \cos 55^{\circ}$	A 1	
Resolve horizontally Resolve horizontally $H = T \sin 55^{\circ}$ $(H = 0.75Mg)$ Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Substitute for T and use Pythagoras $= 0.89$ A1 The Q asks for 2 sf (6) The Q asks for 2 sf (6) Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ M1 Correct unsimplified equation Moments about C M1 Correct unsimplified equation Dimensionally correct. Condone sign errors and sin/cos confusion C C C C C C C C			711	
$H = T \sin 55^{\circ} \qquad \qquad \text{A1} \qquad \text{Correct unsimplified equation in} \\ (H = 0.75Mg) \qquad \qquad \qquad T \text{ or their } T$ $\text{Resultant } \lambda = \sqrt{(0.4736)^2 + (0.7517)^2} \qquad \text{M1} \qquad \text{Substitute for } T \text{ and use} \\ \text{Pythagoras} \qquad \qquad = 0.89 \qquad \qquad \text{A1} \qquad \text{The Q asks for 2 sf} \\ \qquad $,		
$H = T \sin 55^{\circ} \qquad \qquad A1 \qquad \text{Correct unsimplified equation in} \\ (H = 0.75Mg) \qquad \qquad T \text{ or their } T$ $\text{Resultant } \lambda = \sqrt{(0.4736)^2 + (0.7517)^2} \qquad \text{M1} \qquad \text{Substitute for } T \text{ and use} \\ \text{Pythagoras} \qquad \qquad = 0.89 \qquad \qquad A1 \qquad \text{The Q asks for 2 sf}$ $\text{(6)} \qquad \qquad$		Resolve horizontally	M1	Condone consistent sin/cos
$(H = 0.75Mg)$ $Resultant \lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ $= 0.89$ $Sbalt Moments about B$ $Mga \cos 20^\circ + 5aH \cos 70^\circ = 5aV \cos 20^\circ$ $M1 Substitute for T and use Pythagoras$ $A1 The Q asks for 2 sf$ $M1 terms. Condone sign errors and sin/cos confusion$ $Mga \cos 20^\circ + 5aH \cos 70^\circ = 5aV \cos 20^\circ$ $M1 Correct unsimplified equation$ $M1 Dimensionally correct.$ $Condone sign errors and sin/cos confusion$ $M1 Correct unsimplified equation$ $M1 Use Pythagoras$				confusion
Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Substitute for T and use Pythagoras $= 0.89$ A1 The Q asks for 2 sf (6) Sbalt Moments about B Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^\circ + 5aH \cos 70^\circ = 5aV \cos 20^\circ A1 \text{Correct unsimplified equation}$ Moments about C Dimensionally correct. $M1 \text{Condone sign errors and sin/cos confusion}$ $5aH = 4aMg \cos 20^\circ A1 \text{Correct unsimplified equation}$ $Each of the pythagoras of the pyt$		$H = T \sin 55^{\circ}$	A1	Correct unsimplified equation in
Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Substitute for T and use Pythagoras $= 0.89$ A1 The Q asks for 2 sf (6) Shalt Moments about B Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion Mga $\cos 20^\circ + 5aH \cos 70^\circ = 5aV \cos 20^\circ$ A1 Correct unsimplified equation Moments about C M1 Condone sign errors and sin/cos confusion $5aH = 4aMg \cos 20^\circ$ A1 Correct unsimplified equation $5aH = 4aMg \cos 20^\circ$ A1 Correct unsimplified equation Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Use Pythagoras		(H = 0.75Mg)		T or their T
Pythagoras $= 0.89$ A1 The Q asks for 2 sf (6) Shalt Moments about B M1 terms. Condone sign errors and sin/cos confusion Mga cos 20° + 5aH cos 70° = 5aV cos 20° Moments about C M1 Correct unsimplified equation Moments about C M1 Condone sign errors and sin/cos confusion $5aH = 4aMg \cos 20^{\circ}$ A1 Correct unsimplified equation $5aH = 4aMg \cos 20^{\circ}$ A1 Correct unsimplified equation Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Use Pythagoras		,	M 1	Substitute for T and use
$= 0.89$ $= 0.89$ A1 The Q asks for 2 sf (6) Dimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ} A1 Correct unsimplified equation$ $Moments about C$ $M1 Condone sign errors and sin/cos confusion$ $5aH = 4aMg \cos 20^{\circ} A1 Correct unsimplified equation$ $Fythagoras$ $A1 Correct unsimplified equation$ $Condone sign errors and sin/cos confusion$ $Condone sign errors and sin/cos confusion$ $A1 Correct unsimplified equation$ $Resultant \lambda = \sqrt{(0.4736)^2 + (0.7517)^2} M1 Use Pythagoras$		Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$	IVI 1	
5baltMoments about BDimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ A1Correct unsimplified equationMoments about CDimensionally correct. Condone sign errors and sin/cos confusion $5aH = 4aMg \cos 20^{\circ}$ A1Correct unsimplified equationResultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1Use Pythagoras		• • • • • • • • • • • • • • • • • • • •	A 1	
5baltMoments about BDimensionally correct. Need all terms. Condone sign errors and sin/cos confusion $Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ A1Correct unsimplified equationMoments about CDimensionally correct. Condone sign errors and sin/cos confusion $5aH = 4aMg \cos 20^{\circ}$ A1Correct unsimplified equationResultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1Use Pythagoras		= 0.89		The Q asks for 2 st
			(6)	
	5balt	Moments about B		Dimensionally correct. Need all
	Car	T. T	M1	·
$Mga \cos 20^{\circ} + 5aH \cos 70^{\circ} = 5aV \cos 20^{\circ}$ A1Correct unsimplified equationMoments about C Dimensionally correct. 			1411	
Moments about C $M1$ $SaH = 4aMg \cos 20^{\circ}$ $Resultant \lambda = \sqrt{(0.4736)^{2} + (0.7517)^{2}}$ $Dimensionally correct.$ $Condone sign errors and sin/cos confusion$ $Correct unsimplified equation$ $Use Pythagoras$		$M_{00} \cos 20^{\circ} + 5aH \cos 70^{\circ} - 5aV \cos 20^{\circ}$	Λ1	
M1 Condone sign errors and sin/cos confusion $5aH = 4aMg \cos 20^{\circ}$ A1 Correct unsimplified equation $Resultant \lambda = \sqrt{(0.4736)^{2} + (0.7517)^{2}}$ M1 Use Pythagoras			7.1	
confusion $5aH = 4aMg \cos 20^{\circ}$ A1 Correct unsimplified equation $Resultant \lambda = \sqrt{(0.4736)^{2} + (0.7517)^{2}}$ M1 Use Pythagoras		Widinellis about C	λ // 1	
$5aH = 4aMg\cos 20^{\circ}$ A1 Correct unsimplified equation Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Use Pythagoras			1V1 1	
Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$ M1 Use Pythagoras		5 11 4 14 200		
Resultant $\lambda = \sqrt{(0.4/36) + (0./51/)}$				
= 0.89 A1 The O asks for 2 sf		Resultant $\lambda = \sqrt{(0.4736)^2 + (0.7517)^2}$	MI	Use Pytnagoras
		= 0.89	A1	The Q asks for 2 sf

	M1A1M1A1 for 2 independent equations	M1A1 t	to solve for λ
6a	GPE lost	M1	Need all terms. Condone sign errors and sin/cos confusion
	$=3g\times2-2g\times2\sin\theta$		Correct unsimplified. Accept ±
	$\left(=6g-4g\times\frac{5}{13}\right)$	A1	
	$=\frac{58}{13}g = 43.7(44)(J)$	A1	Must be positive. Exact multiple of g or 3 sf or 2 sf
	13	(3)	1 0
6b	Normal reaction = $2g\cos\theta \left(=\frac{24}{13}g\right)$	B1	
	$F_{\text{max}} = \frac{3}{8} \times R \left(= \frac{9g}{13} \right)$	M1	Use $F = \mu R$ with their R
	Work done = $2 \times F_{\text{max}}$	M1	Their F_{max}
	$\left(=\frac{18g}{13}\right) = 13.6(J) 14(J)$	A1	Exact multiple of g or 3 sf or 2 sf
		(4)	
6c	Total KE gained = GPE lost - total WD against friction	M1	Must be using work-energy. Dimensionally correct. Required terms and no extras. Condone sign errors.
	$\frac{1}{2}(2+3)v^{2} = (their(a)) - (their(b))$ $\left(\frac{5}{2}v^{2} = \frac{58}{13}g - \frac{18}{13}g = \frac{40}{13}g\right)$	A2ft	Follow their (a) and (b) -1 each error
	$v = \sqrt{\frac{16}{13}g} = 3.47 (\text{m s}^{-1}) \text{ or } 3.5 (\text{m s}^{-1})$	A1	3 sf or 2 sf (need to substitute for <i>g</i>)
		(4)	
6d	KE lost = GPE gained + WD against friction	M1	Must be using work-energy. Dimensionally correct. Required terms and no extras. Condone sign errors.
	$\frac{1}{2} \times 2 \times \frac{16}{13} g = 2g \times d \sin \theta + \frac{3}{8} \times 2g \times \frac{12}{13} d$ $\frac{1}{2} \times 2 \times v^2 = 2g \times d \sin \theta + d \times F_{\text{max}}$ $\frac{16}{13} g = \left(\frac{10}{13}g + \frac{9}{13}g\right) d$ $d = \frac{16}{19}$	A2ft	Follow their (c) and their F_{max} -1 each error
	$d = \frac{16}{19}$	A1	g cancels. 0.84 or better (0.8421)
		[15]	

7a	-12 = 12 - gt	M1	Use <i>suvat</i> to find time taken
	$t = \frac{24}{g} (= 2.45)$	A1	
	AB = 6t	M1	Horizontal distance
	=14.7(15)(m)	A1	3 sf or 2 sf Not $\frac{720}{49}$ (follows use of 9.8) Not $\frac{144}{g}$ (do not accept g in the denominator)
		(4)	denominator)
		(+)	
7b	Vertical component of velocity = $(\pm)8$	B1	
	$v^2 = u^2 + 2as$	M1	Complete method using <i>suvat</i> to find <i>h</i>
	$\Rightarrow 8^2 = 12^2 - 2gh$	A1	Correct unsimplified equation
	h = 4.08 (4.1)	A1	3 sf or 2 sf Not $\frac{200}{49}$ (follows use of 9.8) Not $\frac{40}{g}$ (do not accept g in the denominator)
		(4)	
7b alt	$\mathbf{v} = \begin{pmatrix} 6 \\ 12 \end{pmatrix} - \begin{pmatrix} 0 \\ g \end{pmatrix} t \implies 12 - gt = (\pm)8$	B1	Correct expression for critical value(s) of <i>t</i>
	$h = 12t - \frac{1}{2}gt^2$	M1	Complete method using $suvat$ to find h
	$=\frac{48}{g} - \frac{8}{g}$ or $=\frac{240}{g} - \frac{200}{g}$	A1	Correct unsimplified equation
	h = 4.08 (4.1)	A1	3 sf or 2 sf
		(4)	
7c	$\begin{pmatrix} 6 \\ -12 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ v \end{pmatrix} = 0$	M1	Complete method to find vertical component at <i>C</i> .
	$\Rightarrow v = 3$	A1	
	$\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} \ \left(\mathbf{m} \mathbf{s}^{-1} \right)$	A1	Must be a vector in terms of i and j
	If see $\binom{6}{12} \cdot \binom{6}{v} = 0$ leading to $\mathbf{v} = 6\mathbf{i} - 3\mathbf{j}$	mark as	s a misread: M1A0A0
		(3)	
		[11]	
	Accept working in column vectors through	nout apa	art from the final A1

8a	—————————————————————————————————————		
	$\begin{pmatrix} A \\ 2m \end{pmatrix} \qquad \begin{pmatrix} B \\ m \end{pmatrix} \qquad \begin{pmatrix} C \\ 3m \end{pmatrix}$		
	\longrightarrow V \longrightarrow W		
	$\longrightarrow x \longrightarrow y$		
	Use CLM: $4mu = 2mv + mw$	M1	Need all terms. Condone sign
			errors. Dimensionally correct but allow with <i>m</i> cancelled
	(4 2	A1	Correct unsimplified. Signs
	(4u = 2v + w)	AI	correct for their v, w
	Use Impact law	M1	Used the right way round.
	1		Condone sign errors.
	w-v=2ue	A1	Correct unsimplified. Signs
		D) (1	consistent with CLM equation.
	$\Rightarrow 4u = 2(w - 2ue) + w$	DM1	Solve for v or w.
	1	A1*	Dependent on previous 2 M marks Obtain given result from correct
	$3w = 4u + 4ue, w = \frac{4}{3}u(1+e) *$	AI	working
	$v = \frac{2}{3}u(2-e)$	A1	Or equivalent.
	$v = \frac{1}{3}u(2-e)$		Must be positive
		(7)	
8b	2 > e so A moving towards centre	B1	Correct statement about direction of travel for <i>A</i> or <i>B</i>
	mw - 3mu = mx + 3my	M1	Use CLM and impact law
	$y - x = e\left(u + \frac{4u}{3} + \frac{4eu}{3}\right)$ $\frac{4}{3}eu - \frac{5}{3}u = x + 3y$		correctly to form simultaneous equations in x and y.
	4 5	A1	Both equations correct
	$\frac{-euu=x+3y}{3}$		unsimplified
	3y - 3x = e(7u + 4ue)		
	$4x = \frac{4}{3}ue - \frac{5}{3}u - 7ue - 4ue^2$	DM1	Solve for <i>x</i>
	$x = -\frac{5}{12}u - \frac{17}{12}ue - ue^2$	A1	
	e > 0, $u > 0$ so B moving towards centre	A1*	Obtain given answer from correct
	from opposite direction, hence they collide.*		working
		(6)	
	Alternative for last 3 marks;		
	C moving towards centre implies B		
i	maring tarranda centra ac collicion	D) (1	Consider direction of <i>C</i>
	moving towards centre, so collision. C moving away from centre, so $y > 0$,	DM1	Consider direction of C

$x = w - 3u - 3y = -\frac{8u}{3} + \frac{4eu}{3} - 3y$		
$=-\frac{u}{3}(8-4e)-3y$	A1	
< 0 because $e \le 1$ and $y > 0$ hence B moving towards centre from opposite direction, and they will collide.*	A1*	Obtain given answer from correct working
	[13]	