Mathematical Induction

Use induction to prove that $n^n > n!$ for all positive integers $n \geq 2$.

Let P(n) denote the proposition that $n^n > n!$, where n is a positive integer, $n \ge 2$.

BASIS STEP: P(2) is true since $2^2 = 4 > 2! = 2$.

INDUCTIVE STEP: Let us assume P(n), that is $n^n > n!$ is true for an arbitrary positive integer $n \ge 2$. This is our inductive hypothesis.

We have to show that P(n+1), $(n+1)^{(n+1)} > (n+1)!$ is also true assuming the inductive hypothesis P(n).

Proof:

$$(n+1)^{n+1} = (n+1) \cdot (n+1)^n > (n+1) \cdot n^n$$
 since $n+1 > n$.

$$(n+1) \cdot n^n \ge (n+1) \cdot n! = (n+1)!$$
 by the inductive hypothesis.

By the **Principle of Mathematical Induction** (Basis Step and Inductive Step together) $n^n > n!$ for all positive integers $n \ge 2$.