Teoría de Probabilidad

Maestría en Estadística Aplicada

Julio Hurtado, Msc.

UTB

2020

Desigualdades en Probabilidad - Parte 10

Desigualdades de Chevishev

- Convergencia de Variables aleatorias
 - Ejemplos Convergencia de Variables aleatorias

Desigualdades de Chevishev

Sea X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathbb{V}(X)=\sigma^2$. Para $\epsilon>0$, $\mathbb{P}(|X-\mu|\geq\epsilon)\leq \frac{\sigma^2}{\epsilon^2}$

- $\sigma^2 = \mathbb{E}(X \mu)^2 = \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| \ge \epsilon} + (X \mu)^2 \mathbb{1}_{|X \mu| < \epsilon}]$
- $\sigma^2 = \mathbb{E}(X \mu)^2 = \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| > \epsilon}] + \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| < \epsilon}]$
- $\sigma^2 \ge \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| \ge \epsilon}]$
- $\sigma^2 \ge \epsilon^2 \mathbb{E}[\mathbb{1}_{|X-\mu| \ge \epsilon}]$
- $\sigma^2 \ge \epsilon^2 \mathbb{P}(|X \mu| \ge \epsilon)$

Desigualdades de Chevishev

Sea X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathbb{V}(X)=\sigma^2$. Para $\epsilon>0$, $\mathbb{P}(|X-\mu|\geq\epsilon)\leq\frac{\sigma^2}{\epsilon^2}$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon} + (X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}] + \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 \ge \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{E}[\mathbb{1}_{|X-\mu| \ge \epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{P}(|X - \mu| \ge \epsilon)$$

Desigualdades de Chevishev

Sea X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathbb{V}(X)=\sigma^2$. Para $\epsilon>0$, $\mathbb{P}(|X-\mu|\geq\epsilon)\leq\frac{\sigma^2}{\epsilon^2}$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| > \epsilon} + (X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}] + \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 \ge \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{E}[\mathbb{1}_{|X-\mu|>\epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{P}(|X - \mu| \ge \epsilon)$$

Desigualdades de Chevishev

Sea X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathbb{V}(X)=\sigma^2$. Para $\epsilon>0$, $\mathbb{P}(|X-\mu|\geq\epsilon)\leq \frac{\sigma^2}{\epsilon^2}$

- $\sigma^2 = \mathbb{E}(X \mu)^2 = \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| > \epsilon} + (X \mu)^2 \mathbb{1}_{|X \mu| < \epsilon}]$
- $\sigma^2 = \mathbb{E}(X \mu)^2 = \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| \ge \epsilon}] + \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| < \epsilon}]$
- $\sigma^2 \ge \mathbb{E}[(X \mu)^2 \mathbb{1}_{|X \mu| \ge \epsilon}]$
- $\bullet \ \sigma^2 \ge \epsilon^2 \mathbb{E}[\mathbb{1}_{|X-\mu| \ge \epsilon}]$
- $\sigma^2 \ge \epsilon^2 \mathbb{P}(|X \mu| \ge \epsilon)$

Desigualdades de Chevishev

Sea X una variable aleatoria con $\mathbb{E}(X)=\mu$ y $\mathbb{V}(X)=\sigma^2$. Para $\epsilon>0$, $\mathbb{P}(|X-\mu|\geq\epsilon)\leq\frac{\sigma^2}{\epsilon^2}$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon} + (X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 = \mathbb{E}(X - \mu)^2 = \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}] + \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| < \epsilon}]$$

•
$$\sigma^2 \ge \mathbb{E}[(X - \mu)^2 \mathbb{1}_{|X - \mu| \ge \epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{E}[\mathbb{1}_{|X-\mu| \ge \epsilon}]$$

•
$$\sigma^2 \ge \epsilon^2 \mathbb{P}(|X - \mu| \ge \epsilon)$$

• Sea $X_1, X_2, ..., X_n, ...$ una sucesión de variables aleatorias, ¿En que sentido $\{X_n\}_{n=1}^{\infty}$ puede ser convergente a la variable aleatoria X?

Convergencia puntual

 $X_n o X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) o X(\omega)$

Convergencia casi segura

$$X_n \stackrel{c.s}{\longrightarrow} X$$
 casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) o X(\omega)) = 1.$

Convergencia en probabilidad

$$X_n \stackrel{p}{\to} X$$
 si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

• Sea $X_1, X_2, ..., X_n, ...$ una sucesión de variables aleatorias, ¿En que sentido $\{X_n\}_{n=1}^{\infty}$ puede ser convergente a la variable aleatoria X?

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \stackrel{p}{\to} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

• Sea $X_1, X_2, ..., X_n, ...$ una sucesión de variables aleatorias, ¿En que sentido $\{X_n\}_{n=1}^{\infty}$ puede ser convergente a la variable aleatoria X?

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \stackrel{p}{\to} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

• Sea $X_1, X_2, ..., X_n, ...$ una sucesión de variables aleatorias, ¿En que sentido $\{X_n\}_{n=1}^{\infty}$ puede ser convergente a la variable aleatoria X?

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \xrightarrow{\rho} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

• Sea $X_1, X_2, ..., X_n, ...$ una sucesión de variables aleatorias, ¿En que sentido $\{X_n\}_{n=1}^{\infty}$ puede ser convergente a la variable aleatoria X?

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \xrightarrow{p} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

Convergencia puntual

 $X_n o X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) o X(\omega)$

Convergencia casi segura

 $X_n \stackrel{c.s}{\longrightarrow} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega: X_n(\omega) o X(\omega)) = 1$

Convergencia en probabilidad

 $X_n \stackrel{p}{ o} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) o 0$.

Convergencia en distribución

 $X_n \stackrel{d}{\to} X$ si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \stackrel{c.s}{\longrightarrow} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$

Convergencia en probabilidad

 $X_n \stackrel{p}{ o} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) o 0$.

Convergencia en distribución

 $X_n \xrightarrow{d} X$ si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

$$X_n \xrightarrow{c.s} X$$
 casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

$$X_n \stackrel{p}{ o} X$$
 si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) o 0$.

Convergencia en distribución

$$X_n \xrightarrow{d} X$$
 si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

$$X_n \xrightarrow{c.s} X$$
 casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

$$X_n \xrightarrow{p} X$$
 si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

Convergencia en distribución

$$X_n \xrightarrow{d} X$$
 si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \xrightarrow{p} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

Convergencia en distribución

 $X_n \xrightarrow{d} X$ si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Convergencia puntual

 $X_n \to X$ puntualmente si para cada $\omega \in \Omega$, $X_n(\omega) \to X(\omega)$.

Convergencia casi segura

 $X_n \xrightarrow{c.s} X$ casi seguramente si $\mathbb{P}(\omega \in \Omega : X_n(\omega) \to X(\omega)) = 1$.

Convergencia en probabilidad

 $X_n \xrightarrow{p} X$ si para cualquier $\epsilon > 0$, $\mathbb{P}(\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon) \to 0$.

Convergencia en distribución

 $X_n \xrightarrow{d} X$ si para cada punto de continuidad x de $\mathbb{F}_X(x)$, $\mathbb{F}_{X_n}(x) \to \mathbb{F}_X(x)$.

Ejemplo 1

• Suponga que $\Omega = [0,1]$ y $\mathfrak{F} = \mathfrak{B}[0,1]$, $\mathbb{P}[a,b] = b-a$.

$$X_n(\omega) = \begin{cases} n, & \text{si } 0 \le \omega \le \frac{1}{n}, \\ 0, & \text{si } \frac{1}{n} < \omega \le 1. \end{cases}$$

Ejemplos Convergencia de Variables aleatorias

2020