Data Dictionary-UCI Human Activity Recognition Using Smartphones

Subject	2 Indicates who is performing the activity [1-30]
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11 12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25 26
	27
	28
	29
	30
Activity	20
-	Indicates the activity being performed by the subject
	WALKING
	WALKING_UPSTAIRS
	WALKING_DOWNSTAIRS
	SITTING
	STANDING
	LAYING

Mean-tBodyAcc-X 20

Mean value estimated for body component of linear acceleration measured n the X direction in time domain

Mean-tBodyAcc-Y 20

Mean value estimated for body component of linear acceleration measured n the Y direction in time domain

Mean-tBodyAcc-Z 20

Mean value estimated for body component of linear acceleration measured n the Z direction in time domain

Std-tBodyAcc-X 20

Standard deviation estimated for body component of linear acceleration measured in the X direction in time

domain

Std-tBodyAcc-Y 20

Standard deviation estimated for body component of linear acceleration measured in the Y direction in time

domain

Std-tBodyAcc-Z 20

Standard deviation estimated for body component of linear acceleration measured in the Z direction in time

domain

Mean value estimated for gravity component of linear acceleration measured n the X direction in time domain

Mean-tGravityAcc-Y 2

Mean value estimated for gravity component of linear acceleration measured n the Y direction in time domain

Mean-tGravityAcc-Z 20

Mean value estimated for gravity component of linear acceleration measured n the Z direction in time domain

Std-tGravityAcc-X 20

Standard Deviation value estimated for gravity component of linear acceleration measured n the X direction in time domain

Std-tGravityAcc-Y 20

Standard Deviation value estimated for gravity component of linear acceleration measured n the Y

direction in time domain

Std-tGravityAcc-Z 20

Standard Deviation value estimated for gravity component of linear acceleration measured n the Z

direction in time domain

Mean-tBodyAccJerk-X 20

Mean value estimated for body component of linear acceleration measured n theX direction in time domain

Mean-tBodyAccJerk-Y 20

Mean value estimated for body component of linear jerk measured n the Y direction in time domain

Mean-tBodyAccJerk-Z 20

Mean value estimated for body component of linear acceleration measured n the Z direction in time domain

Std-tBodyAccJerk-X 20

Standard deviation value estimated for body component of linear jerk measured n the X direction in time domain

Std-tBodyAccJerk-Y 20

Standard deviation value estimated for body component of linear jerk measured n the Y direction in time domain

Std-tBodyAccJerk-Z 20

Standard deviation estimated for body component of linear jerk measured n the Z direction in time domain

Mean-tBodyGyro-X 20

Mean value estimated for body component of angular acceleration measured n the X direction in time domain

Mean-tBodyGyro-Y 20

Mean value estimated for body component of angular acceleration measured n the Y direction in time domain

Mean-tBodyGyro-Z 20

Mean value estimated for body component of angular acceleration measured n the Z direction in time domain

Std-tBodyGyro-X 20

Standard Deviation value estimated for body

component of angular acceleration measured n the X

direction in time domain

Std-tBodyGyro-Y 20

Standard deviation value estimated for gravity component of angular acceleration measured n the Y

direction in time domain

Std-tBodyGyro-Z 20

Standard deviation value estimated for body component of angular acceleration measured n the Z direction in

time domain

Mean-tBodyGyroJerk-X 20

Mean value estimated for body component of angular jerk computed n the X direction in time domain

Mean-tBodyGyroJerk-Y 20

Mean value estimated for body component of angular jerk measured n the Y direction in time domain

Mean-tBodyGyroJerk-Z 20

Mean value estimated for body component of angular jerk computed n the Z direction in time domain

Std-tBodyGyroJerk-X 20

Standard deviation value estimated for gravity component of angular jerk computed n the X direction in time domain

Std-tBodyGyroJerk-Y 20

Standard deviation value estimated for body component of angular jerk computed n the Y direction in time

domain

Std-tBodyGyroJerk-Z 20

Standard deviation value estimated for body component of linear acceleration computed n the Z direction in time

domain

Mean-tBodyAccMag 20

Mean value estimated for gravity component of linear

acceleration magnitude in time domain

Std-tBodyAccMag 20

Standard deviation value estimated for body component of linear acceleration magnitude measured in time

domain

Mean-tGravityAccMag 20

Mean value estimated for gravity component of linear acceleration magnitude computed in time domain

Std-tGravityAccMag 20

Standard deviation value estimated for gravity

component of linear acceleration magnitude computed

in time domain

Mean-tBodyAccJerkMag 20

Mean value estimated for body component of linear jerk

magnitude computed in time domain

Std-tBodyAccJerkMag 20

Mean value estimated for body component of linear jerk

magnitude computed in time domain

Mean-tBodyGyroMag 20

Mean value estimated for body component of angular

jerk magnitude computed in time domain

Std-tBodyGyroMag 20

Standard deviation value estimated for body component
of angular accelertion magnitude computed in time
domain

		domain			
Mean-tBodyGyroJerkMag		20 Mean value estimated for body component of angular jerk magnitude computed in time domain			
Std-tBodyGyroJerkMag		20 Standard deviation estimated for body component of angular jerk magnitude computed in time domain			
Mean-fBodyAcc-X	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Mean-fBodyAcc-Y	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Mean-fBodyAcc-Z	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Std-fBodyAcc-X	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Std-fBodyAcc-Y	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Std-fBodyAcc-Z	20	Standard deviation estimated for body component of angular jerk magnitude computed in frequency domain			
Mean-fBodyAccJerk-X		20 Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Mean-fBodyAccJerk	-Y	20 Mean value estimated for body component of angular jerk magnitude computed in frequency domain			
Mean-fBodyAccJerk-Z		20			

		Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyAccJerk-X	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyAccJerk-Y	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyAccJerk-Z	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Mean-fBodyGyro-X	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Mean-fBodyGyro-Y	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Mean-fBodyGyro-Z	20	Mean value estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyGyro-X	20	Standard deviation estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyGyro-Y	20	Standard deviation value estimated for body component of angular jerk magnitude computed in frequency domain
Std-fBodyGyro-Z	20	Standard deviation value estimated for body component of angular jerk magnitude computed in frequency domain
Mean-fBodyAccMag	20	Mean value estimated for body component of linear acceleration magnitude computed in frequency domain
Std-fBodyAccMag	20	

Standard deviation value estimated for body component of linear acceleration magnitude computed in frequency domain

Mean-fBodyBodyAccJerkMag

 $\label{thm:mean_problem} \mbox{Mean value estimated for body component of linear jerk}$

computed in frequency domain

Std-fBodyBodyAccJerkMag 20

Standard deviation value estimated for body component of linear jerk magnitude computed in frequency domain

Mean-fBodyBodyGyroMag 20

Mean value estimated for body component of angular

jerk magnitude computed in frequency domain

Std-fBodyBodyGyroMag 20

Standard deviation value estimated for body component

of angular jerk magnitude computed in frequency

domain

Mean-fBodyBodyGyroJerkMag 20

Mean value estimated for body component of angular

jerk magnitude computed in frequency domain

Std-fBodyBodyGyroJerkMag 20

Standard deviation value estimated for body component

of angular jerk magnitude computed in frequency

domain

Original Data Description

reatu	11 C	JC	icc	LIV	<i>J</i> 11		
						 	_

The features selected for this database come from the accelerometer and gyroscope-axial raw signals tAcc-XYZ and tGyro-XYZ-

The setime domain signals (prefix't'to denote time) we recapture data constant rate of Hz-new to the Hz-new to the constant rate of Hz-new to the Hz-new t

Then they were filtered using a median filter and ard order low pass Butterworth filter with a corner frequency of Hz to remove noise-

Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBody Acc-XYZ and tGravity Acc-Parker of the acceleration of the property of the property

XYZ)usinganotherlowpassButterworthfilterwithacornerfrequencyof-Hz-

Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerksignals (tBody Acc Jerk-XYZ and tBody Gyro Jerk-XYZ)-

Alsothemagnitudeofthesethree-

dimensional signals were calculated using the Euclidean norm (tBody Acc Mag, tGravity Acc Mag, tBody Gyro Ma

FinallyaFastFourierTransform(FFT)wasappliedtosomeofthesesignalsproducingfBod yAcc-XYZ,fBodyAccJerk-XYZ,fBodyGyro-XYZ,fBodyAccJerkMag,fBodyGyroMag,fBodyGyroJerkMag-(Notethe'f'toindicatefrequencydomainsignals)-

These signals were used to estimate variables of the feature vector for each pattern:

'-XYZ'isusedtodenote-axialsignalsintheX,YandZdirections-

tBodyAcc-XYZ

tGravityAcc-XYZ

tBodyAccJerk-XYZ

tBodyGyro-XYZ

tBodyGyroJerk-XYZ

tBodyAccMag

tGravityAccMag

tBodyAccJerkMag

tBodyGyroMag

tBodyGyroJerkMag
fBodyAcc-XYZ
fBodyAccJerk-XYZ
fBodyGyro-XYZ
fBodyAccMag
fBodyAccJerkMag
fBodyGyroMag
fBodyGyroJerkMag
The set of variables that we reest imated from these signals are:
mean():Meanvalue
std():Standarddeviation
Additional voctors obtained by a very singth original singuism alwind a very male
Additional vectors obtained by averaging the signal sin a signal windows ample-These are used on the angle () variable: