常见三角函数值

$$\sin 30^{\circ} = 1/2$$
 $\sin 45^{\circ} = \sqrt{2}/2$ $\sin 60^{\circ} = \sqrt{3}/2$

$$\cos 30^{\circ} = \sqrt{3/2}$$
 $\cos 45^{\circ} = \sqrt{2/2}$ $\cos 60^{\circ} = 1/2$

$$tan30^{\circ}=\sqrt{3}/3$$
 $tan45^{\circ}=1$ $tan60^{\circ}=\sqrt{3}$

$$\cot 30^{\circ} = \sqrt{3}$$
 $\cot 45^{\circ} = 1$ $\cot 60^{\circ} = \sqrt{3}/3$

$$\sin 15^{\circ} = (\sqrt{6} - \sqrt{2}) / 4 \qquad \sin 75^{\circ} = (\sqrt{6} + \sqrt{2}) / 4 \qquad \cos 15^{\circ} = (\sqrt{6} + \sqrt{2}) / 4$$

cos75°= (√6-√2) /4 (这四个可根据 sin (45°±30°) =sin45°cos30°±cos45°sin30°得出)

三角函数公式

一、任意角的三角函数

在角 α 的终边上任取一点P(x,y),记: $r = \sqrt{x^2 + y^2}$,

正弦函数:
$$\sin \alpha = \frac{y}{r}$$
 余弦函数: $\cos \alpha = \frac{x}{r}$ 正切函数: $\tan \alpha = \frac{y}{x}$

余切函数:
$$\cot \alpha = \frac{x}{v}$$
 正割函数: $\sec \alpha = \frac{r}{x}$ 余割函数: $\csc \alpha = \frac{r}{v}$

二、三角函数在各象限的符号

三角函数在各象限的符号:(一全二正弦,三切四余弦)

三、同角三角函数的基本关系式

倒数关系: $\tan x \cdot \cot x = 1$ 。

商数关系: $\tan x = \frac{\sin x}{\cos x}$

平方关系: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$ 。

四、诱导公式

公式一:设 α 为任意角,终边相同的角的同一三角函数的值相等:

$$\sin (2k\pi + \alpha) = \sin \alpha$$
 $\cos (2k\pi + \alpha) = \cos \alpha$

tan
$$(2kπ+α)$$
 =tanα cot $(2kπ+α)$ =cotα (其中 k∈Z)

公式二:设 α 为任意角, $\pi+\alpha$ 的三角函数的值与 α 的三角函数值之间的关系:

$$\sin (\pi + \alpha) = -\sin \alpha$$
 $\cos (\pi + \alpha) = -\cos \alpha$

$$\tan (\pi + \alpha) = \tan \alpha$$
 $\cot (\pi + \alpha) = \cot \alpha$

公式三:任意角 α 与 $-\alpha$ 的三角函数值之间的关系:

$$\sin (-\alpha) = -\sin\alpha$$
 $\cos (-\alpha) = \cos\alpha$

$$\tan (-\alpha) = -\tan \alpha$$
 $\cot (-\alpha) = -\cot \alpha$

公式四:利用公式二和公式三可以得到 $\pi-\alpha$ 与 α 的三角函数值之间的关系:

$$\sin (\pi - \alpha) = \sin \alpha$$
 $\cos (\pi - \alpha) = -\cos \alpha$

$$\tan (\pi - \alpha) = -\tan \alpha$$
 $\cot (\pi - \alpha) = -\cot \alpha$

公式五: $\frac{\pi}{2}$ $-\alpha$ 与 α 的三角函数值之间的关系:

$$\sin \left(\frac{\pi}{2} - \alpha\right) = \cos \alpha$$
 $\cos \left(\frac{\pi}{2} - \alpha\right) = \sin \alpha$

$$\tan \left(\frac{\pi}{2} - \alpha\right) = \cot \alpha \qquad \cot \left(\frac{\pi}{2} - \alpha\right) = \tan \alpha$$

公式六: $\frac{\pi}{2} + \alpha$ 与 α 的三角函数值之间的关系:

$$\sin \left(\frac{\pi}{2} + \alpha\right) = \cos \alpha$$
 $\cos \left(\frac{\pi}{2} + \alpha\right) = -\sin \alpha$

$$\tan \left(\frac{\pi}{2} + \alpha\right) = -\cot \alpha \qquad \cot \left(\frac{\pi}{2} + \alpha\right) = -\tan \alpha$$

公式七: $\frac{3\pi}{2}$ - α 与 α 的三角函数值之间的关系:

$$\sin \left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha \qquad \cos \left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$$

$$\tan \left(\frac{3\pi}{2} - \alpha\right) = \cot \alpha \qquad \cot \left(\frac{3\pi}{2} - \alpha\right) = \tan \alpha$$

公式ハ: $\frac{3\pi}{2} + \alpha$ 与 α 的三角函数值之间的关系:

$$\sin \left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha \qquad \cos \left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$$

$$\tan \left(\frac{3\pi}{2} + \alpha\right) = -\cot \alpha \qquad \cot \left(\frac{3\pi}{2} + \alpha\right) = -\tan \alpha$$

公式九:利用公式一和公式三可以得到 2π $-\alpha$ 与 α 的三角函数值之间的关系:

$$\sin (2\pi - \alpha) = -\sin \alpha$$
 $\cos (2\pi - \alpha) = \cos \alpha$

$$\tan (2\pi - \alpha) = -\tan \alpha$$
 $\cot (2\pi - \alpha) = -\cot \alpha$

 $(1)\alpha + 2k\pi \ (k \in \mathbb{Z})$ 、 $-\alpha$ 、 $\pi + \alpha$ 、 $\pi - \alpha$ 、 $2\pi - \alpha$ 的三角函数值,等于 α 的同名函数值,前面加上一个把 α 看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)

 $(2)\frac{\pi}{2}+\alpha$ 、 $\frac{\pi}{2}-\alpha$ 、 $\frac{3\pi}{2}+\alpha$ 、 $\frac{3\pi}{2}-\alpha$ 的三角函数值,等于 α 的异名函数值,前

面加上一个把α看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)

五、和角公式和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$
 $\sin\alpha(-\beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$
 $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta}$$

$$t \ a \ m\alpha(-\beta) = \frac{t \ a \ m\alpha - t \ a \ m\beta}{1 + t \ a \ m \cdot t \ a \ m\beta}$$

六、二倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
 $\cos 2\alpha = \cos 2\alpha - \sin 2\alpha = 2\cos 2\alpha - 1 = 1 - 2\sin 2\alpha = 1 = 1 - 2\cos 2$

$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha}$$

$$1 + \cos 2\alpha = 2\cos^2 \alpha \qquad 1 - \cos 2\alpha = 2\sin^2 \alpha$$

$$1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^{2} \qquad 1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^{2}$$

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}, \quad \sin^2 \alpha = \frac{1 + \sin 2\alpha}{2}, \quad \tan \alpha = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha}.$$

七、辅助角公式

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi)$$

其中: 角 φ 的终边所在的象限与点(a,b)所在的象限相同,

$$\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$
, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$.

ハ、正弦定理

九、余弦定理

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
 $b^2 = a^2 + c^2 - 2ac \cdot \cos B$ $c^2 = a^2 + b^2 - 2ab \cdot \cos C$

十、三角形的面积公式

$$S_{\Delta ABC} = \frac{1}{2} \times \mathbb{R} \times \mathbb{R}$$
 $S_{\Delta ABC} = \frac{1}{2} ab \sin C = \frac{1}{2} bc \sin A = \frac{1}{2} ca \sin B$ (两边一夹角)

十一、扇形弧长和面积公式

弧长公式:
$$l = \alpha | r$$
.

弧长公式:
$$l = \alpha | \cdot r$$
. 扇形面积公式: $s_{\text{扇形}} = \frac{1}{2} l r = \frac{1}{2} | \alpha | \cdot r^2$

十二、正弦函数、余弦函数和正切函数的图象与性质:

性,		$y = \cos x$	$y = \tan x$
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
定义域	R	R	$\left\{ x \middle x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z} \right\}$
值域	[-1,1]	[-1,1]	R
最值	当 $x = 2k\pi + \frac{\pi}{2}$ 时 , $y_{\text{max}} = 1; \exists x = 2k\pi - \frac{\pi}{2}$ 时 , $y_{\text{min}} = -1.$	当 $x = 2k\pi$ 时, $y_{\text{max}} = 1; \exists x = 2k\pi + \pi$ 时, $y_{\text{min}} = -1$.	既无最大值也无最小值
周期性	2π	2π	π
奇偶性	奇函数	偶函数	奇函数
单 调 性		在 $\left[2k\pi-\pi,2k\pi\right]$ 上是增函数;	在 $\left(k_{\pi}-\frac{\pi}{2},k_{\pi}+\frac{\pi}{2}\right)$

		上是增函数;	在 $\left[2k\pi,2k\pi+\pi\right]$ 上是减函数.	上是增函数.
1		对称中心 $(k\pi,0)$	对称中心 $\left(k_{\pi}+\frac{\pi}{2},0\right)$	对称中心 $\left(\frac{k\pi}{2},0\right)$
1	生	对称轴 $x = k\pi + \frac{\pi}{2}$	对称轴 $x = k\pi$	

十三、三角函数的图象变换

函数 $y = A\sin(\omega^x + \varphi)(A > 0, \omega > 0)$ 的图象:

(1) 函数 $y = A\sin(\omega^x + \varphi)(A > 0, \omega > 0)$ 的有关概念:

①振幅: A; ②周期:
$$T=\frac{2\pi}{\omega}$$
; ③频率: $f=\frac{1}{T}=\frac{\omega}{2\pi}$; ④相位: $\omega^{\chi}+\varphi$; ⑤ 初相: φ .

(2) 振幅变换

①y=Asinx, $x \in R(A>0$ 且 $A \neq 1$)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1) 或缩短(0 < A < 1)到原来的 A 倍得到的•

- ②它的值域[-A, A] 最大值是 A, 最小值是-A
- ③若 A<0 可先作 y=-Asinx 的图象 , 再以 x 轴为对称轴翻折。

A称为振幅,这一变换称为振幅变换▶

(3) 周期变换

①函数 $y=\sin\omega x$, $x\in R$ ($\omega > 0$ 且 $\omega \ne 1$)的图象,可看作把正弦曲线上所有点的横坐标缩短 ($\omega > 1$)或伸长($0<\omega < 1$)到原来的 $\frac{1}{\omega}$ 倍(纵坐标不变)

②若ω<0则可用诱导公式将符号"提出"再作图。

 ω 决定了函数的周期,这一变换称为周期变换。

(4) 相位变换

一般地,函数 $y=\sin(x+\varphi)$, $x\in \mathbf{R}$ (其中 $\varphi\neq 0$)的图象,可以看作把正弦曲线上所有点向左(当 $\varphi>0$ 时)或向右(当 $\varphi<0$ 时=平行移动 | φ | 个单位长度而得到。(用平移法注意讲清方向: "加左""减右")

 $y=\sin(x+\varphi)$ 与 $y=\sin x$ 的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换。