

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN IIC2233 - PROGRAMACIÓN AVANZADA

Actividad 08

1° semestre 2018 10 de mayo

Simulación DES

Introducción

El Departamento de Ciencia de la Computación (DCC) está pensando hacer una maratón, pero como siempre, están muy ocupados haciendo algo más. Por lo que te piden a ti que la organices. Dado tus vastos conocimientos en simulación, decides primero hacer representación de cómo sería la carrera y qué pasaría ante ciertos eventos particulares.

Las personas inscritas en esta carrera están en el archivo competidores.csv, donde cada una de ellas se identifica por su nombre, sexo y su categoría. Existen tres categorías amateur, aficionado y profesional que serán descritas a continuación.

- Amateur: Son los competidores menos experimentados. Si el competidor es amateur, tiene una velocidad aleatoria uniforme entre 1.4 y 2.8 $\frac{m}{s}$ y una probabilidad de lesionarse en un accidente de un 40%.
- Aficionado: Son los competidores medianamente experimentados. Si el competidor es aficionado, tiene una velocidad aleatoria uniforme entre 2.8 y 4.2 $\frac{m}{s}$ y una probabilidad de lesionarse en un accidente de un 25 %.
- **Profesional:** Son los competidores más experimentados. Si el competidor es profesional, tiene una velocidad aleatoria uniforme entre 4.2 y 5.7 $\frac{m}{s}$ y una probabilidad de lesionarse en un accidente de un 15 %.

Se les entregará un archivo llamado competidores.csv con los competidores de la carrera.

Eventos

Para poder simular la carrera hay que definir ciertos eventos que pueden suceder.

- Atajo: Cuando una persona cruza la mitad de la carrera, con un 50 % de probabilidad se da cuenta de un atajo secreto que lo adelantará 4 km. Este atajo es instantáneo, por lo que pueden modelarlo como que la persona avanza 4 kilómetros en 0 segundos.
- Accidente: Durante una carrera, cierto porcentaje de los competidores sufren una lesión. Para modelar esto, ustedes deben generar un acontecimiento aleatorio de tiempo exponencial a tasa λ_2 , donde cada vez que sucede el evento accidente, se elijan 5 competidores al azar. De esos 5 jugadores, cada uno

tendrá una chance de lesionarse, la que depende de la categoría del competidor. Si un jugador sufre un accidente, queda fuera de la carrera. Si quedaran menos de 5 jugadores en la carrera cuando ocurra el evento accidente, todos deberán ser elegidos.

■ Lluvia: Provoca una disminución del 25 % de la velocidad de todos los competidores durante los próximos 30 minutos. La lluvia ocurre de manera aleatoria en un tiempo exponencial de tasa λ_1 y puede ocurrir solamente una vez durante la carrera.

A continuación se presenta una tabla de tiempos para cada evento (en minutos).

Eventos	Tasa (λ_i)
Lluvia	$\lambda_1 = \frac{1}{300}$
Accidente	$\lambda_2 = \frac{1}{25}$

Cuadro 1: Tasa de ocurrencia de eventos

La ejecución terminará cuando hayan pasado **8 horas** o bien todos los competidores activos hayan llegado a la meta. Un competidor **no** está activo si es que tuvo una lesión o llegó a la meta; en cualquier otro caso, el competidor está activo. En esta carrera todos los competidores correrán 42 km, independiente de la categoría a la que pertenezcan. Deberán imprimir en pantalla los siguientes eventos:

- Cuando un corredor tome un atajo.
- Cuando un corredor se vea afectado por la lluvia.
- Cuando un corredor se lesione.
- Cuando un corredor llegue a la meta.

Se adjunta el formato que se espera que se utilice para registrar los eventos. Ustedes deben respetar el formato mostrado a continuación.

```
Iteracion | Tiempo de evento (segundos) | Descripcion de evento | Entidad afectado 0 | 8618.0 | corredor toma atajo | Nicolas Raul Riquelme 0 | 8813.0 | corredor llega a la meta | Manuel Ignacio Munoz 0 | 15291.5 | corredor sufre accidente | Dinko Fernando Yoma 0 | 18918.0 | corredor llega a la meta | Joaquin Alberto Bugmann 0 | 19918.0 | inicio lluvia | Simulacion
```

Estadísticas

Finalmente, se requiere sacar estadísticas sobre la carrera. Para obtener valores confiables, **debes correr** n iteraciones de la simulación (al menos 100) y luego sacar estadísticas de tendencia.

De la simulación de n iteraciones, se quiere obtener el **promedio** de las siguientes informaciones:

- Cantidad de competidores que terminan la carrera.
- Tiempo **promedio** de llegada a la meta de los competidores que terminaron.
- Tiempo **promedio** de llegada a la meta de los competidores que terminaron por categoría y por sexo (para que quede claro, son 6 estadísticas que pedimos en este punto).

Notas

- La simulación es de **eventos discretos** (DES), por lo que **no se puede** usar simulación síncrona.
- Ojo que las tasas están en minutos, y las velocidades en metros por segundos.
- Cuando la simulación termine se deberá imprimir en pantalla todas las estadísticas mencionadas anteriormente, el formato para hacerlo queda a su libre disposición, siempre que sea claro y ordenado.

Requerimientos

- (4,0 pts) Simulación.
 - (1,0 pt) Competidores se cargan con los valores correctos y llegan a la meta según su velocidad.
 - (1,0 pt) El evento atajo está bien modelado.
 - (1,0 pt) El evento lluvia está bien modelado.
 - (1,0 pt) El evento lesión está bien modelado.
- (1,0 pt) Registro de los acontecimientos.
 - (1,0 pt) Los registros respetan el formato entregado y contienen toda la información pedida.
- (1,0 pt) Estadísticas de la carrera (un máximo de 0.5 pts si se corrió sólo una vez la simulación).
 - (0,2 pts) Cantidad de competidores que terminan la carrera.
 - (0,3 pts) Tiempo promedio de llegada a la meta de los competidores que terminaron
 - (0,5 pts) Tiempo promedio de llegada a la meta de los competidores que terminaron por categoría y por sexo.

Entrega

- Lugar: En su repositorio de GitHub en la carpeta Actividades/AC08/
- **Hora:** 16:40
- Si está trabajando en pareja y ambos miembros suben la carpeta Actividades/AC08/, se corregirá una entrega al azar. Si ambos desean tener el código en sus repositorios, la carpeta que no se debe corregir tiene que llamarse Actividades/AC08-pareja/.