Adaptative splines-based logistic regression with a ReLU neural network

Marie Guyomard, Susana Barbosa, Lionel Fillatre

JOBIM 2022

Sommaire

- Contextualization
- 2 Problem Statement
- Neural Network MARS
- 4 Experiments
- **6** Conclusion & Future Works

•0000

Contextualization

00000

Classes:

: healthy

: sick

Features:

X1: cholesterol

X2 : weight

5 juillet 2022 JOBIM 2022 4 / 25

Linear vs non-linear Classification

Logistic Regression Linear

Contextualization

00000

Global accuracy: 70%

Logistic Regression Splines

Global accuracy: 76%

Legend: estimated boundary decision in red, segmentation in black

5 juillet 2022 JOBIM 2022 5 / 25

Non-linear Classification

Main difficulty: estimate simultaneously tresholds and the decision rule.

State of the art:

Contextualization

00000

5 juillet 2022 JOBIM 2022 6 / 25

Experiments

0000

Contextualization

00000

- Classification task
- Modeling of non-linear phenomena : threshold effects
- Global optimization
- Interpretability

5 juillet 2022 **JOBIM 2022** 7 / 25 Problem Statement

Conclusion

000

Notations

Let suppose we have N independent and identically distributed pairs $(x^{(i)}, y^{(i)})$ with

- $x^{(i)} \in \mathbb{R}^d$: explanatory variables
- $y^{(i)} \in \{0,1\}$: binary label

5 juillet 2022 **JOBIM 2022** 9 / 25

00000

Bayesian Maximum a Posteriory Classifier

$$\delta: \mathbb{R}^d \longrightarrow [0,1]$$

$$\delta(x) = \underset{k=\{0,1\}}{\arg \max} \hat{\mathbb{P}_{\theta}} (Y = k | X = x). \tag{1}$$

Logistic Regression

$$\hat{\mathbb{P}}(Y=1|X=x) = \sigma(\psi(x)) = \frac{1}{1+\exp(-\psi(x))}.$$
 (2)

5 juillet 2022 JOBIM 2022 10 / 25

00000

Figure – Logistic Regression classifiers : linear (left) and non-linear (right).

How can we model the non-linear effects in the score function?

5 juillet 2022 JOBIM 2022 11 / 25

00000

MARS

$$\psi^{\text{MARS}}(x) = \sum_{m=1}^{M} \beta_m h_m(x), \tag{3}$$

$$h_m(x) = [s_m(x_{\nu(m)} - b_m)]_+$$
 (4)

$$=\begin{cases} \max\{0, x_{\nu(m)} - b_m\}, & \text{if } s_m = 1, \\ \max\{0, b_m - x_{\nu(m)}\}, & \text{if } s_m = -1. \end{cases}$$
 (5)

5 juillet 2022 JOBIM 2022 12 / 25

00000

Greedy Optimization:

- **★** Global optimality
- **X** Uncontrolable segmentation
- **X** Over-segmentation

Source: Hastie & Tibshirani, 2009.

How can we model a non linear logistic regression while using a global criterion?

5 juillet 2022 JOBIM 2022 13 / 25

00000

ReLU Neural Network

$$\Phi^{(p)}: \quad x \longrightarrow \hat{y}(x)$$

$$x \longrightarrow \sigma \circ \psi^{\mathsf{ReLU}(p)}.$$
(6)

with σ the sigmoid defined before, $\beta \in \mathbb{R}^p$, $W \in \mathbb{R}^{p \times d}$ et $b \in \mathbb{R}^p$.

$$\psi^{\text{ReLU(p)}}(x) = \beta_0 + \beta^T \left[Wx + b \right]_+. \tag{7}$$

5 juillet 2022 **JOBIM 2022** 14 / 25

- NN can approximate splines [Balestriero]
- NN can approximate MARS [Eckle]
 - **✓** theory

00000

- **X** pratical
- NN makes a partition with oblique regions
 - X 'Black Box'

5 juillet 2022 **JOBIM 2022** 15 / 25 Neural Network MARS

00000

Main idea: couple the Logistic Regression with the MARS model while using Neural Network.

The proposed method:

- Controles & automatizes the segmentation of variables
 - We know from doctors' feedback that over-segmenting a biological variable is not relevant
 - Hyperplans
- Interpretability
- Easy to use for doctors

5 juillet 2022 JOBIM 2022 17 / 25

00000

NN-MARS

$$\psi^{\text{NN-MARS}}(x) = \beta_0 + \sum_{j=1}^{d} g_j(x_j),$$
 (8)

$$g_j(t) = \beta_{j1}[b_{j1} - t]_+ + \beta_{j2}[t - b_{j2}]_+, \quad t \in \mathbb{R}.$$
 (9)

5 juillet 2022 **JOBIM 2022** 18 / 25 Experiments

5 juillet 2022 JOBIM 2022 19 / 25

Experiments on real a data set

Parkinson database

Contextualization

- Predict Parkinson from voice recordings
- 195 patients (24,6% with Parkinson)
- We kept d = 16 biomedical recordings

Tested Methods

- NN-MARS
- Logistic Regression
- Logistic Regression Natural Cubic Splines
- Decision Tree
- MARS
- NN Rel U

5 juillet 2022 JOBIM 2022 20 / 25

Predictive accuracies

Contextualization

00000

	Training		Test	
	Accuracy	AUC	Accuracy	AUC
LR	85 (2)	87 (2)	76 (1)	80 (6)
DT	91 (2)	94 (2)	88 (1)	77 (3)
LR SCN	90 (2)	94 (1)	82 (3)	87 (5)
MARS	90 (3)	91 (6)	82 (4)	89 (4)
NN $(p = 16)$	87 (4)	91 (7)	81 (6)	88 (7)
NN $(p = 70)$	86 (4)	91 (7)	83 (6)	88 (7)
NN-MARS	87 (1)	92 (3)	83 (5)	91 (5)

Table - Mean in % and (standard-deviation) of predictive accuracies obtained after a 5-folds cross-validation: DT, LR NCS, NN with 16 neurons, NN with à 70 neurons & the NN-MARS.

5 juillet 2022 **JOBIM 2022** 21 / 25

Conclusion

000

Interpretability

Contextualization

00000

Figure – Estimated splines for the Minimum voice frequency, Average voice frequency, Amplitude variation, Shimmer, Shimmer APQ5.

5 juillet 2022 JOBIM 2022 22 / 25

00000

Experiments 0000 Conclusion •00

Conclusion & Future Works

Conclusion

Contextualization

00000

- Binary Classification
- Automatized & controlled discretization of the variables

Future Works

- + Categorical data
- + Interactions between the variables

5 juillet 2022 JOBIM 2022 24 / 25

Bibliographie

Contextualization

00000

- Douglas M Hawkins, On the choice of segments in piecewise approximation, IMA Journal of Applied Mathematics, 9(2):250–256, 1972.
- Asher Tishler and Israel Zang, A new maximum likelihood algorithm for piecewise regression, Journal of the American Statistical Association, 76(376):980-987, 1981.
- Konstantin Eckle et al, A comparison of deep networks with relu activation function and linear spline-type methods, Neural Networks, 110:232–242, 2019.
- Jerome H Friedman, Multivariate adaptive regression splines, The annals of statistics, 19(1):1–67, 1991.
- Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press, Cambridge, MA, USA, 2016.
- Randall Balestriero et al, A spline theory of deep learning, In International Conference on Machine Learning, pages 374–383. PMLR, 2018.
- Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman, The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.
- Xiao-Hua Zhou, Donna K McClish, and Nancy A Obuchowski, Statistical methods in diagnostic medicine, John Wiley Sons, 2009.
- Max Little et al, Suitability of dysphonia measurements for telemonitoring of parkinson's disease, Nature Precedings, 2008.

5 juillet 2022 JOBIM 2022 25 / 25