Лабораторная работа №1.2.5 Иследование прецессии уравновешенного гироскопа

Гёлецян А.Г.

22 июля 2022 г.

1 Ход работы

Сначала установим параметры системы.

$$l = (112 \pm 1) \text{mm}$$

 $g = (9.8155 \pm 0.0005) \text{mc}^{-2}$
 $\Delta m = 1 \text{G}$
 $\varepsilon_T = 1\%$

Приведем данные, полученные при измерениях.

No॒	m, Γ	N	t, c	$\alpha,^{\circ}$	$\Delta \alpha,^{\circ}$	T, c
1	342	11	335	9	1	30.5
2	342	12	365	9	1	30.4
3	274	11	419	10	1	38.1
4	274	11	414	10	1	37.6
5	220	8	378	10	1	47.2
6	220	10	468	10	1	46.8
7	179	7	406	10	1	58.0
8	179	7	408	10	1	58.3
9	142	5	368	10	1	73.6
10	142	6	441	10	1	73.5

Таблица 1: Измерения периода прецессии при различных массах груза

Отсюда обработав данные получаем следующие значения

№	m, Γ	T, c	ΔT , c	Ω, c^{-1}	$\Delta\Omega, c^{-1}$	M, H_{M}	$\Delta M, \mathrm{Hm}$
1	142	73.6	0.7	0.085	0.001	0.169	0.002
2	179	58.1	0.6	0.108	0.001	0.213	0.002
3	220	47.0	0.5	0.134	0.001	0.261	0.002
4	274	37.9	0.4	0.166	0.002	0.325	0.003
5	342	30.4	0.3	0.207	0.002	0.406	0.004

Таблица 2: Обработанные данные

В таблице выше были использованы следующие формулы

$$\begin{split} \Omega &= \frac{2\pi}{T} \\ \Delta \Omega &= \Omega \frac{\Delta T}{T} \\ M &= mgl \\ \Delta M &= M \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta g}{g}\right)^2 + \left(\frac{\Delta l}{l}\right)^2} \end{split}$$

Теоретически есть зависимость между Ω и M. Выглядит оно по следующему

$$\Omega = \frac{M}{L}$$

где

$$L = I_{\text{ротор}} \omega_{\text{ротор}}$$

Построив график $\Omega(M)$ получаем значение 1/L.

$$\frac{1}{L} = (0.509 \pm 0.005)(\text{Hmc})^{-1}$$

1.1 Измерение частоты вращения ротора

Теперь измерим момент инерции ротора для дальнейших обработок. Измерять будем крутильным маятником, предварительно "отколибровав"его цилиндром с известным моментом инерции.

Для цилиндра имеем

$$m_{\mathrm{ff}} = (1617.8 \pm 0.1)$$
г
$$d_{\mathrm{ff}} = (7.80 \pm 0.01)$$
см
$$I_{\mathrm{ff}} = \frac{md^2}{8} = (1.230 \pm 0.003)10^{-3}$$
кгм 2

Измерив периоды колебании цилиндра и ротора посчитаем момент инерции ротора

$$T_{\rm m} = (4.07 \pm 0.01) {
m c}$$

$$T_{\rm p} = (3.22 \pm 0.01) {
m c}$$

$$I_{\rm p} = I_{\rm m} \frac{{T_{\rm p}}^2}{{T_{\rm m}}^2} = (0.771 \pm 0.006) 10^{-3} {
m kpm}^2$$

Если обозначим x=1/L то частота вращения ротора поучается

$$\nu=\frac{1}{2\pi I_{\mathrm{p}}x}=(405\pm5)\Gamma\mathrm{ц}$$

При измерении этой частоты осцилографом с помощью фигур лиссажу получаем значение

$$u_{\rm och} = (389 \pm 1) \Gamma_{\rm II}$$

1.2 Измерение момента трения

Во время эксперимерта ось гироскопа опускалось в первую очередь из за трения в вертикальной оси. Для оценивания момента сил трения можно воспользоватся данными про угол наклона α за время эксперимента t. Формула момента трения приобретает следующий вид.

$$M_{\mathrm{TP}} pprox rac{Llpha}{t}$$

Для наших данных получаем следующие значения.

$M_{\rm TP}, 10^{-4}{\rm Hm}$	9.0	8.0	8.0	8.0	9.0	7.0	8.0	8.0	9.0	8.0
$\Delta M_{\rm TD}, 10^{-4} {\rm Hm}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Таблица 3: Моменты сил трения

Усредняя получаем

$$M_{\mathrm{TP}} = (8.2 \pm 1.2)10^{-4} \mathrm{Hm}$$

2 Заключение

Как видим частоты вращения близки, но в пределах погрешности они не совпадают. В чем причина расхождения? Пытатся объяснить тем, что мы не учитываем косинус угла при подсчете момента, или тем что угловая скорость прецессии в этом виновата не получится, слишком мелкие поправки. По моему мнению проблема состоит в измерении момента инерции ротора, так как при неуравновешенных колебаниях момент инерции искажается.

Рис. 1: График $\Omega(M)$