

T S1/5/1

1/5/1

DIALOG(R) File 351:Derwent WPI
(c) 2004 Thomson Derwent. All rts. reserv.

011689316 **Image available**

WPI Acc No: 1998-106226/199810

XRPX Acc No: N98-085207

Magnification site conversion system of image pick-up used in video camera - in which image pick-up element magnification size is varied by inserting exchange lens group based on predetermined conversion scale factor of insertion/removal lens group

Patent Assignee: NIKON CORP (NIKR)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 9329744	A	19971222	JP 96168312	A	19960607	199810 B

Priority Applications (No Type Date): JP 96168312 A 19960607

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 9329744	A	7	G02B-015/10	

Abstract (Basic): JP 9329744 A

The system includes an insertion/removal lens group (G6) which is positioned along the optical axis of a normal lens group (G1-G5). When the lens group is exchanged by an exchange lens group (GA), the image magnification factor is increased.

The conversion scale factor (beta) of the lens group is set such that it varies in between 0.5-0.9. The magnification size is varied based on the conversion scale factor.

ADVANTAGE - Avoids variation of view angle by pick-up element site variation. Improves efficiency of conversion optical system, remarkably. Reduces weight remarkably.

Dwg.1/6

Title Terms: MAGNIFY; SITE; CONVERT; SYSTEM; IMAGE; PICK; UP; VIDEO; CAMERA ; IMAGE; PICK; UP; ELEMENT; MAGNIFY; SIZE; VARY; INSERT; EXCHANGE; LENS; GROUP; BASED; PREDETERMINED; CONVERT; SCALE; FACTOR; INSERT; REMOVE; LENS ; GROUP

Derwent Class: P81; W04

International Patent Class (Main): G02B-015/10

International Patent Class (Additional): G02B-015/02

File Segment: EPI; EngPI

?

OPTICAL SYSTEM CAPABLE OF CHANGING IMAGE PICKUP SIZE

Patent number: JP9329744
Publication date: 1997-12-22
Inventor: SUZUKI GOJI
Applicant: NIKON CORP
Classification:
 - international: G02B15/10; G02B15/02
 - european:
Application number: JP19960168312 19960607
Priority number(s):

Abstract of JP9329744

PROBLEM TO BE SOLVED: To provide an optical system capable of changing image pickup size which is constituted so that a field angle is not changed even when a photographing lens is attached to a camera having an image pickup element whose size is different, specially the camera whose image pickup size is small and provided with the plural kinds of image pickup size which can be changed in addition to the normal image pickup size and which is small, light in weight and bright.

SOLUTION: This system is provided with the photographing lenses G1 - G5 and an attachable lens group G6 which can be mounted in the optical path of the lenses G1 - G5 . By mounting an interchangeable lens GA on the inside of the lens group G6 , the image pickup size can be changed to three or more kinds of image pickup size in total in the case that the lens group G6 is removed, on the case that the lens group G6 is mounted and in the case that the lens GA is exchanged. Besides, when the converting magnification of the lens group G6 is defined as β , the condition of $0.5 < \beta < 0.9$ is satisfied.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-329744

(43)公開日 平成9年(1997)12月22日

(51)Int.Cl.⁶
G 0 2 B 15/10
15/02

識別記号
G 0 2 B 15/10
15/02

府内整理番号
F I
G 0 2 B 15/10
15/02

技術表示箇所

審査請求 未請求 請求項の数5 FD (全7頁)

(21)出願番号 特願平8-168312

(22)出願日 平成8年(1996)6月7日

(71)出願人 000004112
株式会社ニコン
東京都千代田区丸の内3丁目2番3号
(72)発明者 鈴木 剛司
東京都千代田区丸の内3丁目2番3号 株
式会社ニコン内
(74)代理人 弁理士 猪熊 克彦

(54)【発明の名称】撮像サイズ変換光学系

(57)【要約】

【課題】撮像素子サイズの異なるカメラ、特に撮像サイズの小さなカメラに撮影レンズを装着しても画角が変化せず、また通常の撮像サイズのほかに変換できる撮像サイズが複数種類あり、しかも小型・軽量で明るい撮像サイズ変換光学系を提供する。

【解決手段】撮影レンズG₁～G₅と該撮影レンズG₁～G₅の光路中に装着可能な着脱レンズ群G₆とを有し、着脱レンズ群G₆の内部に交換可能な交換レンズ群G_Aを設けることにより、着脱レンズ群G₆を除去した状態と、着脱レンズ群G₆を装着した状態と、交換レンズ群G_Aを交換した状態とで、都合3種類以上の撮像サイズに変換可能に形成し、且つ、着脱レンズ群G₆の変換倍率をβとしたとき、0.5 < β < 0.9なる条件を満足することを特徴とする。

【特許請求の範囲】

【請求項1】撮影レンズと該撮影レンズの光路中に装着可能な着脱レンズ群とを有し、着脱レンズ群の内部に交換可能な交換レンズ群を設けることにより、前記着脱レンズ群を除去した状態と、着脱レンズ群を装着した状態と、交換レンズ群を交換した状態とで、都合3種類以上の撮像サイズに変換可能に形成し、且つ、前記着脱レンズ群の変換倍率を β としたとき、

$$0.5 < \beta < 0.9$$

なる条件を満足する撮像サイズ変換光学系。

【請求項2】前記着脱レンズ群は物体側から順に、負の屈折力を有するレンズ群 G_A と、正の屈折力を有するレンズ群 G_B とから構成され、

変倍の際に、前記正の屈折力を有するレンズ群 G_B の一部又は全部は光軸方向に移動され、該正の屈折力を有するレンズ群 G_B の一部又は全部の位置は、着脱レンズ群の変換倍率 β が最小のとき、最も像側に位置する、請求項1記載の撮像サイズ変換光学系。

【請求項3】前記着脱レンズ群は、少なくとも1つの貼合せレンズを有し、

着脱レンズ群の変換倍率を変更するために交換する前記交換レンズ群は、少なくとも正単レンズ又は貼合せ正レンズを有する、請求項1又は2記載の撮像サイズ変換光学系。

【請求項4】前記着脱レンズ群は、少なくとも1つの貼合せレンズを有し、

着脱レンズ群の変換倍率を変更するために交換する前記交換レンズ群は、少なくとも負単レンズ又は貼合せ負レンズを有し、該負単レンズ又は貼合せ負レンズは、着脱レンズ群内で最大の負の屈折力を有する、請求項1又は2記載の撮像サイズ変換光学系。

【請求項5】前記着脱レンズ群中、最も物体側に配置された負単レンズ又は貼合せ負レンズの物体側の面は、像側に向かって凸の形状である、請求項1、2、3又は4記載の撮像サイズ変換光学系。

【発明の詳細な説明】**【0001】**

【発明の属する技術分野】本発明は例えばビデオカメラ、銀塩フィルムカメラ等、結像光学系全般に関するものである。

【0002】

【発明が解決しようとする課題】近年、ビデオカメラ等に使用されている固体撮像素子では、カメラ全体の小型化及び固体撮像素子の歩留まり（スループット）向上のため、素子サイズが年々、小さくなしていく傾向にある。例えば画質をあまり気にしない民生用ビデオカメラでは、1/3インチサイズの固体撮像素子が主流であり、最近1/4インチ、さらには1/5インチサイズの固体撮像素子も開発されている。また高画質を要求する放送用及び業務用ビデオカメラでは、まだ2/3インチ

サイズの固体撮像素子及び1/2インチサイズの固体撮像素子が主流であり、最も高画質を要求するハイビジョン用ビデオカメラに至っては、まだ1インチサイズの固体撮像素子が主流である。つまり上記のように、いろいろな用途によっていろいろな撮像素子を搭載したカメラが存在し、それに応じてそれぞれのサイズに対応した専用の撮影レンズが存在するという状態が現状である。

【0003】いま、小さな撮像素子用の撮影レンズを、大きな撮像素子を搭載したビデオカメラに装着すると、結像領域の方が撮影領域よりも狭いから、広角側にシフトすると同時に、光線のケラレを招く。したがってこれを解消するには変換倍率を拡大して結像させる必要があるが、撮像素子のサイズは年々小さくなっていく傾向にあるから、このような場合に対処すべき必要性は乏しい。しかるに上記とは逆に、大きな撮像素子用の撮影レンズを、小さな撮像素子を搭載したビデオカメラに装着すると、結像領域の方が撮影領域よりも広いから、光線のケラレは生じないが、望遠側にシフトしてしまう。したがってこれを解消するには変換倍率を縮小して結像させる必要がある。つまり撮像素子のサイズの小型化に対処しつつカメラレンズの運用効率を上げるために、広い結像領域の撮影レンズを、小さい撮像素子を搭載したカメラにも使用して、レンズの共用を図ると、広角側が不足してしまう。

【0004】これを解決するために、特開昭63-276012号公報に開示されているように、撮影レンズとカメラとの間に再結像光学系を入れるという方法がある。しかしこの方法では、撮影レンズの結像面と撮像素子面とを共役な関係にする結像レンズと、像の反転を防ぐプリズム系が必要になるため、光学系が非常に大きくなってしまう。また、像の反転を防ぐプリズムの大きさが制約されるため、光学系を明るくできないという欠点をもつ。

【0005】また特開平7-199067号公報には別的方式の撮像サイズ変換光学系が開示されているが、この技術では通常の撮像サイズのほかに変換できる撮像サイズが1種類に過ぎず、1つの撮像サイズ変換だけでは多様化するカメラ事情において物足りない。そこで本発明では上記のような欠点を解消し、撮像素子サイズの異なるカメラ、特に撮像サイズの小さなカメラに撮影レンズを装着しても画角が変化せず、また通常の撮像サイズのほかに変換できる撮像サイズが複数種類あり、しかも小型・軽量で明るい撮像サイズ変換光学系を提供することを課題とする。

【0006】

【課題を解決するための手段】上記課題を解決するため本発明は、撮影レンズと該撮影レンズの光路中に装着可能な着脱レンズ群とを有し、着脱レンズ群の内部に交換可能な交換レンズ群を設けることにより、着脱レンズ群を除去した状態と、着脱レンズ群を装着した状態と、

交換レンズ群を交換した状態とで、都合3種類以上の撮像サイズに変換可能に形成し、且つ、着脱レンズ群の変換倍率を β としたとき、

$$0.5 < \beta < 0.9$$

なる条件を満足する撮像サイズ変換光学系を提供する。

【0007】着脱レンズ群の変換倍率 β が上記条件式の下限値を超えると、着脱レンズ群内の各レンズ群のパワーをさらに強くしなければならず、その結果収差補正が困難となってしまう。逆に、 β が上記条件式の上限値を超えると、着脱レンズ群内の各レンズ群のパワーが弱くなるが、十分に縮小した変換倍率とはいえないから、着脱レンズ群を装着したときと除去したときとあまり変わらず、有益な効果を伴う利用法とはいえない。

【0008】本発明においては、着脱レンズ群を物体側から順に、負の屈折力を有するレンズ群 G_A と、正の屈折力を有するレンズ群 G_B とから構成し、変倍の際に、前記レンズ群 G_B の一部又は全部を光軸方向に移動し、該レンズ群 G_B の一部又は全部の位置を、着脱レンズ群の変換倍率 β が最小のとき、最も像側に位置するように構成することが好ましい。

【0009】一般に負・正の屈折力をもつ2群構成のほぼアフォーカルな光学系を撮影レンズの光路中に入れるこによって、その撮影レンズによって本来できるはずであったイメージサークルを縮小することができる。したがって大きい撮像素子用の撮影レンズを小さい撮像素子搭載のカメラに付けた場合に、撮像素子の撮像領域外に出てしまう像が縮小されて、撮像素子の撮影領域に入ってくる。したがって本発明の着脱レンズ群も、ほぼアフォーカルな光学系によって形成することができる。また着脱レンズ群をほぼアフォーカル系としたときには、大きい撮像サイズで着脱レンズ群を除去したときの画角と、小さい撮像サイズで着脱レンズ群を装着したときの画角とがほぼ同じになる。したがって小さい撮像サイズで着脱レンズ群を除去すると望遠側にシフトするため、小さい撮像サイズの撮像素子だけを使用するときには、2つのズーム領域で使用できることとなる。

【0010】このように着脱レンズ群の着脱により、撮影レンズの画面サイズを変化させることができるものならず、着脱レンズ群を光軸方向に移動することにより、フォーカス時の焦点移動を補正することも可能であり、さらに連続的なズーミングを行うこともできる。またさらに、着脱レンズ群全体を交換するのではなく、着脱レンズ群内の交換レンズを交換し、必要により着脱レンズ群内の非交換レンズを移動することで、第3の撮像素子に対応させ、あるいはそれ以上の撮像素子に対応させることができ、撮影レンズの効率的な利用と全レンズ系の小型軽量化を図ることができる。

【0011】本発明においてはまた、着脱レンズ群が少なくとも1つの貼合せレンズを有し、交換レンズ群が少なくとも正単レンズ又は貼合せ正レンズを有することが

好ましい。本発明においてはまた、着脱レンズ群が少なくとも1つの貼合せレンズを有し、交換レンズ群が少なくとも負単レンズ又は貼合せ負レンズを有し、該負単レンズ又は貼合せ負レンズが着脱レンズ群内で最大の負の屈折力を有することも好ましい。本発明においてはまた、着脱レンズ群中最も物体側に配置された負単レンズ又は貼合せ負レンズの物体側の面を、像側に向かって凸の形状とすることが好ましい。

【0012】

【発明の実施の形態】以下、本発明による実施例について説明する。図1は本発明の一実施例の撮影レンズを示し、図2は同実施例の着脱レンズ群 G_6 を示す。撮影レンズは5群構成であり、第1レンズ群 G_1 、第4レンズ群 G_4 及び第5レンズ群 G_5 はズーミング中固定であり、第2レンズ群 G_2 と第3レンズ群 G_3 はズーミング中移動する。着脱レンズ群 G_6 は図2に示すように、撮影レンズの第4レンズ群 G_4 と第5レンズ群 G_5 の間に装着される。着脱レンズ群 G_6 は物体側から順に、負の屈折力を有するレンズ群 G_{A1} と、正の屈折力を有するレンズ群 G_B とから構成され、ほぼアフォーカル系となるように形成されている。このうち負の屈折力を有するレンズ群 G_{A1} は第1の交換レンズ群であり、正の屈折力を有するレンズ群 G_B は非交換レンズ群である。図3は着脱レンズ群 G_6 の第1の交換レンズ群 G_{A1} を、第2の交換レンズ群 G_{A2} に交換した態様を示す。この態様では、着脱レンズ群 G_6 の非交換レンズ群 G_B を光軸方向に移動している。

【0013】以下の表1に第1実施例の撮影レンズの諸元を示す。【全体諸元】中、 f は全系の焦点距離、 Y は像高を示す。【レンズ諸元】中、第1カラム N は物体側からの各レンズ面の番号、第2カラム r は各レンズ面の曲率半径、第3カラム d は各レンズ面の間隔、第4カラム λ は各レンズの d 線 ($\lambda = 587.6 \text{ nm}$) を基準としたアッベ数、第5カラム n_d は各レンズの d 線に対する屈折率を示す。なお撮影レンズの最終面と像面との間には、色分解プリズムや各種フィルター等の平行平面板が配置されており、これらを含めて収差補正されているため、これらの諸元も併せて示す。

【0014】第1カラム中*印を付したレンズ面は非球面を示す。非球面の形状は、

$$S(y) = \frac{y^2/r}{1 + \sqrt{1 - \kappa y^2/r^2}} + \sum_{i=2}^5 C_{2i} y^{2i}$$

y : 光軸に垂直な方向の高さ

$S(y)$: 高さ y における光軸方向の変位量

r : 光軸上での曲率半径

κ : 円錐係数

C_n : n 次の非球面係数

によって表わしており、【非球面データ】に円錐係数 κ と非球面係数 C_n とを示した。またレンズ面の番号は第

1レンズ群G₁から第4レンズ群G₄までは1より始めた連続番号で示し、第5レンズ群G₅は60より始めた連続番号で示している。

【0015】また表2に第1の交換レンズ群G_{A1}を用いたときの着脱レンズ群G₆の諸元を示し、表3に第2の交換レンズ群G_{A2}を用いたときの着脱レンズ群G₆の諸元を示す。着脱レンズ群G₆のレンズ面の番号は、交換レンズ群G_{A1}、G_{A2}については40より始めた連続番号で示し、非交換レンズ群G_Bについては50より始めた連続番号で示している。

【0016】この実施例では、着脱レンズ群G₆中の交換レンズ群G_{A1}、G_{A2}を交換し、その際非交換レンズ群G_Bを光軸方向に移動することにより、変換倍率β=0.818(Y=4.5)とβ=0.545(Y=3.0)とに切り換えることができ、更に着脱レンズ群G₆を除去した場合(Y=5.5)と併せて、3種類の撮像サイズに対処することができる。着脱レンズ群G₆中の非交換レンズ群G_Bは、変換倍率βが最小のとき(β=0.545)に、最も像側に位置している。

【0017】

【表1】

[全体諸元] f=8.27~152 Y=5.5mm

[レンズ諸元]

No	r	d	v	n _d
1	-319.712	1.90	25.40	1.80518
2	178.860	2.35		
*3	145.496	0.11	56.30	1.49521
4	145.496	12.50	95.00	1.43875
5	-168.884	6.96		
6	100.108	11.10	67.87	1.59318
7	-295.247	0.09		
8	57.607	8.30	67.87	1.59318
9	173.592	(d ₁)		
10	73.633	0.81	35.72	1.90265
11	12.090	5.70		
12	-53.921	4.80	23.01	1.86074
13	-13.650	1.00	46.54	1.80410
14	68.093	0.10		
15	20.390	5.00	30.83	1.61750
16	-29.999	0.81	39.82	1.86994
17	65.661	(d ₁₇)		
18	-27.543	0.81	43.35	1.84042
19	51.000	3.20	23.01	1.86074
20	-138.389	(d ₂₀)		
21	(絞り)	4.40		
22	-105.322	4.70	64.10	1.51680
23	-30.168	0.10		
24	54.182	5.20	69.98	1.51860
25	-115.102	0.10		
26	50.239	6.70	65.77	1.46450
27	-54.000	2.00	39.82	1.86994
28	561.006	38.24		
---着脱レンズ群装着位置---				
60	41.484	6.10	65.77	1.46450
61	-45.254	0.70		
62	-55.060	1.50	39.82	1.86994
63	27.737	7.00	64.10	1.51680
64	-57.220	0.10		
65	78.227	6.10	40.76	1.58144
66	-27.232	1.50	39.82	1.86994
67	-4389.239	0.10		
68	35.109	5.50	65.77	1.46450
69	-68.189	10.00		
70	∞	30.00	38.03	1.60342

71	∞	16.20	64.10	1.51680
72	∞	1.29		

【非球面データ】

No = 3 $\kappa = -2.9093$ $C_4 = -1.66430 \times 10^{-7}$
 $C_6 = 2.15870 \times 10^{-11}$
 $C_8 = -2.79640 \times 10^{-14}$
 $C_{10} = 7.43600 \times 10^{-18}$

【可変間隔】

f	8.27	152.00
d ₉	0.57	47.75
d ₁₇	52.05	4.97
d ₂₀	1.38	1.27

【0018】

【表2】

f = 6.77 ~ 124.3 Y = 4.5mm $\beta = 0.818$

No	r	d	ν	n _d
28	561.006	7.14		
40	-79.916	1.00	52.30	1.74809
41	46.350	2.30	23.01	1.86074
42	73.707	5.80		
43	-40.956	3.00	64.10	1.51680
44	-29.475	1.60		
50	45.254	3.90	82.52	1.49782
51	1988.384	13.50		

【0019】

【表3】

f = 4.51 ~ 82.9 Y = 3.0mm $\beta = 0.545$

No	r	d	ν	n _d
28	561.006	3.14		
40	-36.645	1.00	52.30	1.74809
41	27.234	2.30	23.01	1.86074
42	73.183	20.80		
43	-40.356	1.50	25.50	1.80458
44	-44.055	2.90	67.87	1.59318
45	-28.757	0.20		

【図2】

【図3】

50	45.254	3.90	82.52	1.49782
51	1988.384	2.50		

【0020】図4に本実施例の着脱レンズ群G₆を除去したときの広角端と望遠端での球面収差、非点収差及び歪曲収差を示す。また図5及び図6にそれぞれ着脱レンズ群G₆を装着して、それぞれ第1の交換レンズ群G_{A1}と第2の交換レンズ群G_{A2}を用いたときの諸収差図を示す。各収差図より明らかのように、各実施例とも各種の撮像サイズにおいて良好な結像性能を有することが分かる。

【0021】

【発明の効果】以上の如く、本発明によれば、撮像素子サイズの異なるカメラに撮影レンズを装着しても画角が変化せず、しかも小型・軽量・高性能な明るい撮像サイズ変換光学系が実現される。

【図面の簡単な説明】

【図1】本発明の一実施例の撮影レンズを示すレンズ構成図

【図2】着脱レンズ群を装着し、第1の交換レンズを用いたときの要部を示すレンズ構成図

【図3】着脱レンズ群を装着し、第2の交換レンズを用いたときの要部を示すレンズ構成図

【図4】着脱レンズ群を除去したときの諸収差図

【図5】着脱レンズ群を装着し、第1の交換レンズを用いたときの諸収差図

【図6】着脱レンズ群を装着し、第2の交換レンズを用いたときの諸収差図

【符号の説明】

G ₁ …第1レンズ群	G ₂ …第2レンズ群
G ₃ …第3レンズ群	G ₄ …第4レンズ群
G ₅ …第5レンズ群	G ₆ …着脱レンズ群
G _{A1} 、G _{A2} …着脱レンズ群中交換レンズ群	
G _B …着脱レンズ群中非交換レンズ群	

【図1】

【図4】

【図5】

【図6】

