Exam Social Choice Theory Fall 2013

Instructions:

- The duration of the exam is 90 minutes. Please answer all three problems. You can achieve up to 90 points.
- Please solve and answer all problems on the answer sheet that is distributed separately. Write your name and your student ID number on the answer sheet.
- This question sheet has 4 pages (including cover page). Please check for completeness.
- You are not allowed to use any auxiliary equipment (except for dictionaries). Switch off all electronic devices.
- Please have your student identity card ready.

Points:

- Problem 1 (Arrow's Theorem for SWFs): 30 points
- Problem 2 (May's Theorem): 30 points
- Problem 3 (Social Evaluation Functions): 30 points

Good Luck!

Problem 1: Arrow's Theorem for SWFs (30 points)

(a) Let $X = \{w, x, y, z\}$ be the set of alternatives. Consider the following profile of preferences:

	preferences		
Voter 1	$z P_1 y P_1 w P_1 x$		
Voter 2	$y P_2 z P_2 w P_2 x$		
Voter 3	$z P_3 w P_3 x P_3 y$		
Voter 4	$w P_4 x P_4 z P_4 y$		
Voter 5	$x P_5 w P_5 z P_5 y$		

- (i) Find a linear order with respect to which these preferences are single-peaked. (5 points)
- (ii) Identify the median voter(s). (3 points)
- (iii) Apply pairwise majority voting. Identify Condorcet winner and loser. (4 points)
- (b) Which of Arrow's axioms for SWFs are satisfied and which are violated by pairwise majority voting? When you think that an axiom is satisfied, give a brief argument. When you think an axiom is violated, give a counterexample. (8 points)
- (c) (i) Construct an example of a preference profile for which a Condorcet winner exists but the outcome of pairwise majority voting is not transitive. (5 points)
 - (ii) Suppose that the outcome of pairwise majority voting is transitive, for some preference profile. Does this imply that a Condorcet winner exists? Argue briefly. (5 points)

注意细节区别,两两投票可以有无差异的,也就是x和y平局,可能x和y排下来都 是第一名。但是孔多塞胜者要求严格赢下每一场,平局不算

Problem 2: May's Theorem (30 points)

Assume that there are n voters, $N = \{1, ..., n\}$, and only two alternatives, $X = \{x, y\}$. Then voter i's preference can be written as $\alpha_i \in \{-1, 0, +1\}$, where $\alpha_i = +1$ denotes a strict preference for x over y, $\alpha_i = -1$ denotes a strict preference for y over x, and $\alpha_i = 0$ denotes indifference. Preference profiles are given by $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_n) \in \{-1, 0, +1\}^n$.

(a) Consider the following voting method. When at least two thirds of the voters strictly prefer x over y, then the outcome is a strict preference for x over y. When at least two thirds of the voters strictly prefer y over x, then the outcome is a strict preference for y over x. Otherwise, if no alternative is strictly preferred by at least two thirds of the voters, we eliminate voter 1. We then repeat the procedure, i.e, we check for a two thirds majority among the remaining n-1 voters $\{2,3,\ldots,n\}$. This procedure is iterated by eliminating voters in numerical order, until a two thirds majority is reached among the remaining voters, or until only voter n is left, in which case the outcome is equal to α_n .

Formally, for any $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_n)$, define $\boldsymbol{\alpha}^{(k)}$ to be the sub-profile starting with voter k, i.e., $\boldsymbol{\alpha}^{(k)} = (\alpha_k, \alpha_{k+1}, \dots, \alpha_n)$, for any $k \in \{1, \dots, n\}$. For any such $\boldsymbol{\alpha}^{(k)}$, let $n^+(\boldsymbol{\alpha}^{(k)})$ be the number of voters with a strict preference for x over y, and let $n^-(\boldsymbol{\alpha}^{(k)})$ be the number of voters with a strict preference for y over x. Then, at any iteration step k, when k-1 voters have already been eliminated, we check the following cases:

- If k = n then $f(\alpha) = \alpha_n$, and we stop.
- If k < n then
 - If $n^+(\alpha^{(k)}) \ge 2(n (k 1))/3$ then $f(\alpha) = +1$, and we stop.
 - If $n^{-}(\alpha^{(k)}) \ge 2(n (k 1))/3$ then $f(\alpha) = -1$, and we stop.
 - Otherwise, k is increased by one and the next iteration step begins.

Apply this method to $\alpha = (0, +1, -1, +1, -1, +1, -1, -1, 0)$. (8 points).

- (b) State May's Theorem. Give a precise definition of the underlying axioms. (10 points)
- (c) Which of May's axioms are satisfied and which are violated by the method described in part (a) of this problem? When you think that an axiom is satisfied, give a brief argument. When you think an axiom is violated, give a counterexample. (12 points)

一般这种和顺序有关系的淘汰制的投票方法,很可能不是匿名的,因为先后顺序淘汰可能影响结果的

一定要解释或者找反例。有点暗示说今年这种题维基百科查得到,考场上可以查查看

Problem 3: Social Evaluation Functions (30 points)

- (a) Give a formal and precise definition of the concept of a social evaluation function (SEF). (10 points)
- (b) Let X be a set of alternatives. For any profile of utility functions $\mathbf{U} = (U_1, \dots, U_n) \in \mathcal{U}^n$ and any alternative $x \in X$, define the utility range

$$RA(x, \mathbf{U}) = \max\{U_1(x), \dots, U_n(x)\} - \min\{U_1(x), \dots, U_n(x)\}.$$

Now consider the minimal range SEF e^{RA} defined by

$$x e^{RA}(\mathbf{U}) y \Leftrightarrow RA(x, \mathbf{U}) \leq RA(y, \mathbf{U}),$$

for all $x, y \in X$ and all $\mathbf{U} \in \mathcal{U}^n$.

(i) Determine $e^{RA}(\mathbf{U})$ for the example given in the following table. (5 points)

\mathbf{U}	x	y	z
U_1	5	1	0
U_2	0	2	2
U_3	2	2	3

- (ii) Construct an example where all agents strictly prefer x over y, but the SEF e^{RA} yields a strict preference for y over x. (3 points)
- (c) Show that SEF e^{RA} is consistent with the utility functions being cardinally measurable and level-comparable (CM-LC), but not with the utility functions being cardinally measurable and unit-comparable (CM-UC), and also not with the utility functions being ordinally measurable and level-comparable (OM-LC). (12 points)