A Deep Learning Approach to Structured Signal Recovery

Seminarvortrag

Steffen Schneider

Introduction: Compressive Sensing

System Overview

Source: https://www.ti.rwth-aachen.de/research/applications/cs.php

Agenda

Research Questions

Source: https://www.ti.rwth-aachen.de/research/applications/cs.php

Problem: Natural Signals are usually not sparse in the target domain

Examples: Images, Audio Signals

Solution: Wavelet Transformations

Proof of Concept: Compressive Sensing for Image Acquisition

- Use of inexpensive Hardware (e.g. CCD with lower spatial resolution)
- Shorter time for signal acquisition

Example Usage: MRI

Source: Koppers et al., Spherical Ridgelets for Multi-Diffusion-Tensor Refinement - Concept and Evaluation. In: *Bildverarbeitung für die Medizin 2015* (2015)

Image Sampling

Nyquist Sampling

$$f_{\rm B} = \frac{1}{2}$$

$$r = 1 = f_{\text{Nyquist}}$$

Pixel Errors

$$f_{\rm B} = \frac{1}{2}$$

$$r = \frac{4}{5} < f_{\text{Nyquist}}$$

Aliasing

$$f_{\rm B}=\frac{1}{2}$$

$$r = \frac{1}{3} < f_{\text{Nyquist}}$$

Source: Image Processing, Chapter 3

CNNs ermeged as the State-of-the-Art in Image Processing

- 1957: Perceptron Learning, Rosenblatt
- 1969: Minsky & Papert showed downsides of perceptrons
- 1980s: Backpropagation Algorithm
- 1995: Alternatives where developed, e.g. SVMs
- since 2005: Training of deep neural networks → RBMs,
 Deep Belief Networks
- 2012: Outstanding performance of CNN in ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (AlexNet)

Quelle: Google Trends, abgerufen 02.05.16

Deep Neural Networks

Unsupervised Learning

Modell: $p(\hat{x}|x) = \text{Normal}(\hat{x}|\mu = x, \Sigma)$

Compressive Sensing Pipeline for Non-Sparse Data

Compressive Sensing: Sparsity Transform

$$S \xrightarrow{\Psi} X \xrightarrow{\Psi'} \hat{S}$$

DCT
$$\Psi_{n}^{k} = \cos\left(\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right)$$

DFT
$$\Psi_n^k = e^{-\frac{2\pi i \, kn}{N}}$$

Gabor Wavelets

Learned: PCA, Autoencoder

Building kernels for M-dimensional Data

$$\Psi_{n_1,\dots,n_M}^{k_1,\dots,k_M} = \prod_{i=1}^M \Psi_{n_i}^{k_i}$$

Connection between DCT and Neural network weights

VGGNet

GoogLeNet

DCT

DFT (angle)

$$\Psi_{\rm n}^k = e^{-\frac{2\pi i \, kn}{N}}$$

Weights adapted from: VGGNet (Zisserman et. al), GoogLeNet

Learned by neural networks

(RGB weights converted to gray scale)

Compressive Sensing Pipeline for Non-Sparse Data

$$\hat{s} = \arg\min_{s^*} ||s^*||_0 \text{ s.t. } \Phi(\Psi \hat{s}) = y$$
 NP-hard

$$\hat{s} = \arg\min_{s^*} ||s^*||_2 \text{ s. t. } \Phi(\Psi \hat{s}) = y \text{ Not sparse!}$$

$$\hat{s} = \arg\min_{s^*} ||s^*||_1 \text{ s.t. } \Phi(\Psi \hat{s}) = y \text{ Sparse result}$$

Sparsity in Reconstruction

Adapted from:

Baraniuk, Richard: Compressive Sensing. Lecture Notes in IEEE Signal Processing Magazine, Volume 24, July 2007

Learning Reconstruction with Random Measurements

Learning Measurement and Reconstruction

Learning the Sparsity Basis with Random Measurements

Learning Measurements and the Sparsity Basis

Review

Stacked Autoencoder architectures for Compressive Sensing

SDA for signal reconstruction

SDA for reconstruction and adaption of the measurement matrix

Training results

Source: Mousavi, Ali et al., A Deep Learning Approach to Structured Signal Recovery

Review

Comparison of different CS algorithms

Algorithm

PSNR

Introducing Convolutions

Source: Mousavi, Ali et al., A Deep Learning Approach to Structured Signal Recovery

- Until now, "fully connected" architectures were used on NxN blocks of the image with an overlap
- This corresponds to the convolution operation:

$$(x * y)_s (m, n) = \sum_{u,v} x(sm - u, sn - v) y(u, v)$$

 Fully-connected network can now be trained directly on arbritrary large images!

Convolutional Autoencoder for Image Processing

Deconvolution und Unpooling

Source: Zeiler et al., Deconvolutional Networks

Proposed Architecture

Data compression by 75%

Decoder with tied weights upsamples the measurement

Convolutional Autoencoder on CalTech Birds Dataset

Original Images

Reconstructions (PSNR 19.3 dB)

Residuums

M/N = 0.25

Much smaller receptive field, nevertheless promising results

Vielen Dank für Ihre Aufmerksamkeit

