

DATA SCIENCE

UNIDAD 1 MÓDULO 1

Presentación del programa

Agosto 2017

PRESENTACIÓN DEL PROGRAMA

- Presentar la filosofía y los objetivos del programa de Data Science
- 2 Desarrollar lineamientos de clase
- Discutir sobre la naturaleza de la Ciencia de Datos
- Lograr que los participantes del programa se presenten y se conozcan usando el flujo de trabajo de Data Science

1 Aprender las bases

2 Aprender a pensar

3 Aprender haciendo

4 Aprender a aprender

FILOSOFIA DEL PROGRAMA

- La verdad se reconoce por su belleza y simplicidad
 - Richard Feynman
- Con el método Feynman se puede aprender de todo, desde tocar el tambor hasta física cuántica.
- La técnica de Feynman:
 - Paso 1. Elegí el concepto que quieras entender.
 - Paso 2. Simulá que le estás enseñando esta idea a alguien más.
 - Paso 3. Si no puedes explicarlo bien, entonces vuelve al libro.
 - Paso 4. Simplificá tu lenguaje.

Quantum field theory
Feynman diagram

e

q
q
q
t

Fomentar y trabajar en un entorno diverso

El 20% de los algoritmos que genera el 80% del impacto en el negocio

N	Algorithm	Туре	2016 % used	2011 % used	% Change	Industry Affinity
1	Regression	S	67%	58%	16%	0.21
2	Clustering	U	57%	52%	8.7%	0.05
3	Decision Trees/Rules	S	55%	60%	-7.3%	0.21
4	Visualization	Z	49%	38%	27%	0.44
5	K-nearest neighbors	S	46%			0.32
6	PCA	U	43%			0.02
7	Statistics	Z	43%	48%	-11.0%	1.39
8	Random Forests	S	38%			0.22
9	Time series/Sequence analysis	Z	37%	30%	25.0%	0.69
10	Text Mining	Z	36%	28%	29.8%	0.01
11	Ensemble methods	M	34%	28%	18.9%	-0.17
12	SVM	S	34%	29%	17.6%	-0.24
13	Boosting	M	33%	23%	40%	0.24
14	Neural networks - regular	S	24%	27%	-10.5%	-0.35
15	Optimization	Z	24%			0.07
16	Naive Bayes	S	24%	22%	8.9%	-0.02
17	Bagging	М	22%	20%	8.8%	0.02
18	Anomaly/Deviation detection	Z	20%	16%	19%	1.61
19	Neural networks - Deep Learning	S	19%			-0.35
20	Singular Value Decomposition	U	16%			0.29

Subscribe to KDnuggets News

- Fomentar y trabajar en un entorno diverso
- Encontrar el ritmo de aprendizaje óptimo para cada uno
- Comunicar pronto y frecuentemente

— El **éxito** en este curso no se obtiene por comparación. "There is nothing noble in being superior to your fellow man; true nobility is being superior to your former self." Ernest Hemingway.

FILOSOFIA

- La dedicación, más importante que el conocimiento previo
- Hacé preguntas, todo el tiempo, por default
- Ayudá a tus compañeros
- Sé paciente con vos mismo

APRENDIZAJE BASADO EN PROBLEMAS

LINEAMIENTOS DE CLASE

LINEAMIENTOS DE CLASE

- Sistemas a utilizar:
 - Todos Open Source
 - Sistema Operativo: Ubuntu
 - Lenguaje: Python 3.6 (distribución Anaconda)
 - **Librerías de Python**: muchas, scypy, numpy, pandas, sklearn, BeatifulSoup, MatPlotLib, Bokeh
 - Bases de datos: PostgreSQL

- **Comunicación** entre participantes
 - Slack es nuestro principal medio de comunicación
 - Vía correo electrónico: subject específico
 - Personalmente en el espacio de colearning

MÓDULOS

18

- Introducción al programa y a la disciplina
- Resumen Python
- Numpy
- Estadística Descriptiva con Numpy
- Introducción a la Visualización de Datos
- Presentaciones de resultados del Desafío 1

Desafío del Módulo

Provistos de un dataset de puntajes SAT de todo EEUU, los participantes realizarán un análisis exploratorio utilizando Numpy y Matplotlib aplicando técnicas básicas de estadística descriptiva.

19

- Pandas
- Probabilidad
- Limpieza de Datos
- Variables Dummies
- Datos Faltantes
- Estadística Inferencial
- Joins con Pandas
- Visualización

Desafío del Módulo

Usando un dataset crudo de hits de Billboard, los participantes usarán Pandas para limpiar los datos, plantearán formalmente un problema y realizarán análisis exploratorio para un publisher de música

- Introducción a Machine Learning
- Regresión Lineal
- Intro a Stats Models & Sklearn
- Descomposición Bias-Varianza
- Regularización & Sobreajuste (Overfitting)
- Separación Entrenamiento/Test
- Lab: Workflow de Datos Limpieza y Optimización

- Métricas de Regresión & Funciones de Pérdida (Loss Functions)
- Descenso del gradiente
- Feature Scaling (Normalización)

Desafío del Módulo

Dado el acceso a datos de ventas. participantes tendrán los posibilidad de elegir entre realizar una investigación de marketing o adelante auditoría llevar una impositiva, usando Pandas, Statsmodels sklearn V para transformar los datos, realizar una regresión lineal y visualizar los resultados

- Intro a Clasificación
- Lab: Práctica de Scraping
- Intro a Regresión Logística
- Support Vector Machines
- Naive Bayes Classifiers
- Evaluación de modelos

Desafío del Módulo

Actuando como un federal contractor, los participantes van a hacer scraping de un sitio web y utilizar Pandas, Statsmodels y Sklearn para analizar datos, realizar regresión logística y evaluar coeficientes de correlación.

- Bases de Datos
- Intro a SQL
- Pipelines
- Feature Selection

Proyecto Integrador

El Proyecto Integrador (PI) debería representar un aporte original y significativo, aplicando técnicas de data science a un problema interesante.

Charla relámpago:

- Planteo del problema
- Selección de datasets

- Intro a CARTS
- APIs & JSON
- Joins SQL
- Árboles de Decisión y Bagging
- Random Forests y Boosting
- Evaluación de Modelos y Feature Importance

Proyecto Integrador

Informe de avance:

- Análisis Exploratorio
- Primeros intentos con el/los algoritmo(s) seleccionado(s)
- Resultados preliminares

24

07

- Intro a Clustering
- K-means
- Intro a Clustering Jerárquico
- DBSCAN
- PCA
- Manifold Learning
- Análisis Correspondencias Múltiples
- Pipeline de Detección de Caras

Proyecto Integrador

Entrega Final

- Reporte técnico detallado con todos los análisis desarrollados (en formato notebook)
- Presentación de 10-15 minutos con los insights más relevantes del proyecti
 - Objetivos
 - Datasets
 - Métodos
 - Visualizaciones
 - Storytelling

DESAFÍOS Y PROYECTO INTEGRADOR

26

PROYECTO INTEGRADOR

- Desafíos y proyectos objetivos generales:
 - Resolver un problema práctico
 - Generar un reporte técnico (con código y análisis)
 - Generar un reporte para una audiencia no técnica
- Desafíos Final: Proyecto Integrador: recorrer todo el Flujo de Trabajo de Data Science
 - o Planteo y fundamentación de un problema
 - Generación/adquisición de un dataset apropiado para el problema
 - Análisis, modelado y visualización de resultados
 - Presentación técnica y no técnica de hallazgos y conclusiones

ESCUCHA DE REDES SOCIALES PARA LA GESTIÓN PÚBLICA Francisco PENSA

KICK-ASS MACHINE LEARNING: ¿QUÉ DETERMINA EL EXITO DE PROYECTOS EN LA PLATAFORMA KICKSTARTER? José SANCHEZ, Jonatah COHEN

PREDICCIÓN DE RESULTADOS EN PARTIDOS DE TENIS DEL CIRCUITO ATP

Carlos RAMIRO, Franco CATANIA

¿QUÉ ES DATA SCIENCE?

- Un set de herramientas y técnicas para extraer información útil de los datos
- Una práctica interdisciplinaria orientada a resolver problemas
- La aplicación de técnicas científicas a problemas prácticos
- ¿Quién usa Data Science?
 - Recomendaciones de películas Netflix
 - Algoritmo Amazon: "si te gustó X, quizás te guste Y"
 - Five Thirty Eight: cobertura electoral y de deportes
 - Google: traductores automáticos y sugerencias de búsquedas

3

Data Developer	Developer	Engineer	
Data Researcher	Researcher	Scientist	Statistician
Data Creative	Jack of All Trades	Artist	Hacker
Data Businessperson	Leader	Businessperson	Entrepeneur

HABILIDADES COMUNES Y NECESARIAS EN DATA SCIENCE

Business	ML/Big Data	Math/OR	Programming	Statistics
Product	Unstructured	Optimization	Systems	Visualization
Developement	Data		Administration	12-27-27-27
	V. 7	Math		Temporal
Business	Structured	6 1: 1	Back End	Statistics
	Data	Graphical	Programming	
	Markey	Models	Front Food	Surveys and
	Machine	Dayosian /	Front End	Marketing
	Learning	Bayesian / Monte Carlo	Programming	Spatial
	Big and	Statistics		Statistics
	Distributed	Statistics		Statistics
	Data	Algorithms		Science
		Simulation		Data
		Jillulation		Manipulation
				Classical
				Statistics

¿QUÉ HABILIDADES DEBERÍA TENER CADA ROL EN UN EQUIPO DE DATA SCIENCE?

Traditional Data Science Venn Diagram

Revisited Data Science Venn Diagram

WORKFLOW DE DATA SCIENCE

- A lo largo de las clases seguiremos el "Flujo de trabajo de Data Science". Nos servirá para generar resultados confiables y reproducibles.
 - "confiables" = precisos
 - "reproducibles" = otros pueden replicar lo realizado y obtener resultados similares
- En cualquier punto del proceso, puede ser necesario repetir pasos previos para iterar a lo largo del flujo. Esto dependerá de
 - la aparición de nuevos datos,
 - la necesidad de corregir errores,
 - el cambio acerca de las preguntas y objetivos, etc.

- El "Flujo de trabajo de Data Science" constituye, en última instancia, un set de standards sumamente útil y una referencia para tener en cuenta en los desafíos del curso.
- Repasemos las diferentes etapas, que están explicadas en detalle en el documento "Flujo de Trabajo en Data Science.pdf"

IDENTIFICAR EL PROBLEMA

- Identificar los objetivos del producto/negocio/problema
- Identificar y generar hipótesis sobre metas y criterios para el éxito del análisis
- Generar un set de preguntas para identificar el dataset "correcto".

ADQUIRIR LOS DATOS

- Identificar el dataset "correcto"
- Importar los datos y generar las estructuras de datos adecuadas
- Determinar las herramientas más apropiadas para trabajar con los datos

PARSEAR LOS DATOS

- Explorar toda la documentación relacionada con los datos
- Realizar Análisis Exploratorio de los Datos (AED)
- Verificar la calidad de los datos

MINAR LOS DATOS

- Dar formato, limpiar, homogeneizar y filtrar los datos
- Crear nuevas columnas derivadas de los datos originales (recodificaciones, cálculos, etc.)

REFINAR LOS DATOS

- Identificar tendencias y outliers
- Aplicar y calcular estadísticos descriptivos e inferenciales
- Documentar y transformar los datos

ESTIMAR UN MODELO

- Seleccionar un modelo apropiado (forma funcional, estimación, etc.)
- Estimar el modelo
- Evaluar y refinar el modelo

PRESENTAR LOS RESULTADOS

- Resumir los resultados del análisis con alguna narrativa o historia
- Presentar las limitaciones, los supuestos y las fortalezas del/los modelo/s estimados
- Identificar preguntas derivadas y nuevos problemas para seguir profundizando el análisis

Ahora si, todo claro?

Conociendo a los participantes del programa usando Data Science (40 minutos)

Te proponemos

- Que todos los participantes del programa se conozcan mutuamente usando algunos pasos del Flujo de Trabajo de Data Science.
- Que formen grupos de 4 a 6 personas
- Que cada grupo defina una pregunta sobre algún aspecto que le interese conocer acerca de los compañeros (motivación, formación, etc.)
- Que a partir de la Encuesta Introductoria al curso puedan abordar las preguntas planteadas.

La idea es que...

- Cada grupo defina los siguientes roles:
 - 1 Project Manager (PM) Data Business Person: responsable del cumplimiento de los tiempos, de facilitar la comunicación y hacer seguimiento del flujo de trabajo
 - <u>1 a 3 Researchers:</u> encargados de adecuar la pregunta a los datos disponibles y de resumir la información para obtener la respuesta. Arman visualizaciones lo más claras y sintéticas posibles de la pregunta en cuestión
 - <u>1 a 2 Comunicadores-Creativos:</u> encargados de resumir y presentar los hallazgos y conclusiones a los participantes

Por Ejemplo

- ¿Cuál es el perfil educativo del curso de Data Science-2017?
 - Primario incompleto
 - Primario completo
 - Secundario incompleto
 - Secundario completo
 - Universitario/Terciario incompleto
 - Universitario/Terciario completo
 - Posgrado o superior
 - Sin Estudios

Cronograma

Actividad	Tiempo	Responsable
Formación de grupos y distribución de roles	5 minutos	Equipo
Diseño de la pregunta	5 minutos	Equipo
Resumen y visualizaciones de la información	10 minutos	Analistas, Presentadores
Presentación de resultados	10 minutos	Presentadores

Al final del curso, ustedes serán capaces de:

- Extraer, consultar, limpiar y agregar datos para su análisis.
- Realizar análisis visuales y estadísticos de datos, usando Python y sus bibliotecas asociadas.
 - Construir, implementar y evaluar problemas de Data Science usando los algoritmos apropiados de machine learning.
- Usar las herramientas de visualización adecuadas para comunicar sus conclusiones.

Investigar, modelar y validar procesos de resolución de

Crear reportes claros y reproducibles para los stakeholders.

problemas aplicados a datasets provenientes de diversas industrias para proveer experiencias en distintos tipos de problemas y soluciones del mundo real.