lmg2Mesh

Estevam Fernandes Arantes 9763105 João Victor Almeida de Aguiar 8503986

Goal

Regression

 \vec{X}

 $\hat{f}(\vec{X})$

Naïve Solution

Naïve Solution (Training)

Problem 1: Dataset

Too biased dataset

Problem 2: Loss Metric

Problem 3: Encoding

Solution 1: ModelNet Dataset

Each object is rendered with fixed cameras

Solution 1: ModelNet Dataset

Models are downsampled for faster training

Solution 2: Chamfer Loss

- Vertices order independent
- Compares != number of vertices

Solution 2: Chamfer Loss (Pred)

Solution 2: Chamfer Loss (Real)

Solution 2: Chamfer Loss

$$loss(p,r) = 0.5 \cdot \frac{1}{N_p} \cdot \sum_{i=1}^{N_p} \min_{j} |\overrightarrow{p_i} - \overrightarrow{q_j}|$$

$$+0.5 \cdot \frac{1}{N_q} \cdot \sum_{j=1}^{N_q} \min_i |\overrightarrow{p_i} - \overrightarrow{q_j}|$$

$$\overline{y_{pred}}$$
 vs $\overline{y_{real 1}}$

Solution 3: Deep Learning

- PCA Linear
- Most articles CNNs [1, 2, 3]

VGG Architecture (insipired)

VGG Architecture: Filtering

Most articles : render with lighthing => power spectrum in many frequencies

VGG Architecture: Filtering

Our solution: silhouette => high frequency information Less CNN / MaxPool layers may give a better result

Silhouette Architecture

Mesh?

 $\overrightarrow{y_{pred}}$: (64,3) \rightarrow {vertices, faces}

Mapping!

Normal Loss

 $q_i = \arg\min_i |p_i, r_j|_2^2$

- Normal loss as defined may give a non-convex loss

chamfer

chamfer + normal

Questions?

Bibliography

- [1] Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W. and Jiang, Y.G., 2018. Pixel2mesh: Generating 3d mesh models from single rgb images. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 52-67).
- [2] Dibra, E., Jain, H., Öztireli, C., Ziegler, R. and Gross, M., 2016, October. Hs-nets: Estimating human body shape from silhouettes with convolutional neural networks. In *2016 Fourth International Conference on 3D Vision (3DV)* (pp. 108-117). IEEE.
- [3] Fan, H., Su, H. and Guibas, L.J., 2017. A point set generation network for 3d object reconstruction from a single image. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 605-613).