Numerical Methods in Engineering

ORDINARY DIFFERENTIAL EQUATIONS-2 (ODEs)

Taylor Series Methods

Lecturer: Associate Professor Naila Allakhverdiyeva

Learning Objectives of Lesson 2

- Derive Euler formula using the Taylor series expansion.
- Solve the first order ODEs using Euler method.
- Assess the error level when using Euler method.
- Appreciate different types of errors in the numerical solution of ODEs.
- Improve Euler method using higher-order Taylor Series.

Taylor Series Method

The problem to be solved is a first order ODE:

$$\frac{dy(x)}{dx} = f(x, y), \quad y(x_0) = y_0$$

Estimates of the solution at different base points:

$$y(x_0 + h)$$
, $y(x_0 + 2h)$, $y(x_0 + 3h)$,

are computed using the truncated Taylor series expansions.

Taylor Series Expansion

Truncated Taylor Series Expansion

$$y(x_0 + h) \approx \sum_{k=0}^{n} \frac{h^k}{k!} \left(\frac{d^k y}{dx^k} \Big|_{x=x_0, y=y_0} \right)$$

$$\approx y(x_0) + h \left. \frac{dy}{dx} \Big|_{\substack{x=x_0, y=y_0 \\ y=y_0}} + \frac{h^2}{2!} \left. \frac{d^2 y}{dx^2} \Big|_{\substack{x=x_0, y=y_0 \\ y=y_0}} + \dots + \frac{h^n}{n!} \left. \frac{d^n y}{dx^n} \Big|_{\substack{x=x_0, y=y_0 \\ y=y_0}} \right.$$

The nth order Taylor series method uses the nth order Truncated Taylor series expansion.

Euler Method

- First order Taylor series method is known as Euler Method.
- Only the constant term and linear term are used in the Euler method.
- The error due to the use of the truncated Taylor series is of order O(h²).

First Order Taylor Series Method (Euler Method)

$$y(x_0 + h) = y(x_0) + h \left. \frac{dy}{dx} \right|_{\substack{x = x_0, \\ y = y_0}} + O(h^2)$$

Notation:

$$x_n = x_0 + nh, \qquad y_n = y(x_n),$$

$$\frac{dy}{dx}\bigg|_{\substack{x=x_i,\\y=y_i}} = f(x_i, y_i)$$

Euler Method

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Euler Method

Problem:

Given the first order ODE: $\dot{y}(x) = f(x, y)$

with the initial condition: $y_0 = y(x_0)$

Determine: $y_i = y(x_0 + ih)$ for i = 1, 2, ...

Euler Method:

$$y_0 = y(x_0)$$

 $y_{i+1} = y_i + h \ f(x_i, y_i)$ for $i = 1, 2, ...$

Interpretation of Euler Method

Interpretation of Euler Method

Interpretation of Euler Method

Use Euler method to solve the ODE:

$$\frac{dy}{dx}$$
 =1+ x^2 , $y(1)$ =- 4 to determine y(1.01), y(1.02) and y(1.03).

$$f(x,y) = 1 + x^2$$
, $x_0 = 1$, $y_0 = -4$, $h = 0.01$

Euler Method

$$y_{i+1} = y_i + h f(x_i, y_i)$$

Step1:
$$y_1 = y_0 + h f(x_0, y_0) = -4 + 0.01(1 + (1)^2) = -3.98$$

Step 2:
$$y_2 = y_1 + h f(x_1, y_1) = -3.98 + 0.01(1 + (1.01)^2) = -3.9598$$

Step3:
$$y_3 = y_2 + h f(x_2, y_2) = -3.9598 + 0.01 (1 + (1.02)^2) = -3.9394$$

$$f(x,y) = 1 + x^2$$
, $x_0 = 1$, $y_0 = -4$, $h = 0.01$

Summary of the result:

i	xi	yi
0	1.00	-4.00
1	1.01	-3.98
2	1.02	-3.9595
3	1.03	-3.9394

$$f(x,y) = 1 + x^2$$
, $x_0 = 1$, $y_0 = -4$, $h = 0.01$

Comparison with true value:

i	xi	yi	True value of y i
0	1.00	-4.00	-4.00
1	1.01	-3.98	-3.97990
2	1.02	-3.9595	-3.95959
3	1.03	-3.9394	-3.93909

$$f(x,y) = 1 + x^2$$
, $x_0 = 1$, $y_0 = -4$, $h = 0.01$

A graph of the solution of the ODE for 1<x<2

Types of Errors

- Local truncation error:
 - Error due to the use of truncated Taylor series to compute x(t+h) in one step.
- Global Truncation error:
 Accumulated truncation over many steps.
- Round off error:
 - Error due to finite number of bits used in representation of numbers. This error could be accumulated and magnified in succeeding steps.

Second Order Taylor Series Methods

Given
$$\frac{dy(x)}{dx} = f(y, x), \quad y(x_0) = y_0$$

Second order Taylor Series method

$$y_{i+1} = y_i + h \frac{dy}{dx} + \frac{h^2}{2!} \frac{d^2y}{dx^2} + O(h^3)$$

 $\frac{d^2y}{dx^2}$ needs to be derived analytically.

Third Order Taylor Series Methods

Given
$$\frac{dy(x)}{dx} = f(y, x), \quad y(x_0) = y_0$$

Third order Taylor Series method

$$y_{i+1} = y_i + h \frac{dy}{dx} + \frac{h^2}{2!} \frac{d^2y}{dx^2} + \frac{h^3}{3!} \frac{d^3y}{dx^3} + O(h^4)$$

$$\frac{d^2y}{dx^2}$$
 and $\frac{d^3y}{dx^3}$ need to be derived analytically.

High Order Taylor Series Methods

Given
$$\frac{dy(x)}{dx} = f(y, x), \quad y(x_0) = y_0$$

nth order Taylor Series method

$$y_{i+1} = y_i + h \frac{dy}{dx} + \frac{h^2}{2!} \frac{d^2y}{dx^2} + \dots + \frac{h^n}{n!} \frac{d^ny}{dx^n} + O(h^{n+1})$$

$$\frac{d^2y}{dx^2}$$
, $\frac{d^3y}{dx^3}$,...., $\frac{d^ny}{dx^n}$ need to be derived analytically.

Higher Order Taylor Series Methods

- High order Taylor series methods are more accurate than Euler method.
- But, the 2nd, 3rd, and higher order derivatives need to be derived analytically which may not be easy.

Second order Taylor Series Method

Use Second order Taylor Series method to solve:

$$\frac{dx}{dt} + 2x^2 + t = 1$$
, $x(0) = 1$, use $h = 0.01$

What is:
$$\frac{d^2x(t)}{dt^2}$$
?

Use Second order Taylor Series method to solve:

$$\frac{dx}{dt} + 2x^{2} + t = 1, x(0) = 1, \quad use \quad h = 0.01$$

$$\frac{dx}{dt} = 1 - 2x^{2} - t$$

$$\frac{d^{2}x(t)}{dt^{2}} = 0 - 4x \frac{dx}{dt} - 1 = -4x(1 - 2x^{2} - t) - 1$$

$$x_{i+1} = x_i + h(1 - 2x_i^2 - t_i) + \frac{h^2}{2}(-1 - 4x_i(1 - 2x_i^2 - t_i))$$

$$f(t,x) = 1 - 2x^2 - t$$
, $t_0 = 0$, $x_0 = 1$, $h = 0.01$

$$x_{i+1} = x_i + h(1 - 2x_i^2 - t_i) + \frac{h^2}{2}(-1 - 4x_i(1 - 2x_i^2 - t_i))$$

Step 1:

$$x_1 = 1 + 0.01(1 - 2(1)^2 - 0) + \frac{(0.01)^2}{2}(-1 - 4(1)(1 - 2 - 0)) = 0.9901$$

Step 2 :

$$x_2 = 0.9901 + 0.01(1 - 2(0.9901)^2 - 0.01) + \frac{(0.01)^2}{2}(-1 - 4(0.9901)(1 - 2(0.9901)^2 - 0.01)) = 0.9807$$

Step 3:

$$x_3 = 0.9716$$

$$f(t,x) = 1 - 2x^2 - t$$
, $t_0 = 0$, $x_0 = 1$, $h = 0.01$

Summary of the results:

i	t _i	X _i
0	0.00	1
1	0.01	0.9901
2	0.02	0.9807
3	0.03	0.9716

Programming Euler Method

Write a MATLAB program to implement Euler method to solve:

$$\frac{dv}{dt} = 1 - 2v^2 - t.$$
 $v(0) = 1$

for
$$t_i = 0.01i$$
, $i = 1, 2, ..., 100$

Programming Euler Method (Matlab)

```
f=inline('1-2*v^2-t','t','v')
h=0.01
t=0
v=1
T(1)=t;
V(1)=v;
for i=1:100
  v=v+h*f(t,v)
  t=t+h;
  T(i+1)=t;
  V(i+1)=v;
end
```

Programming Euler Method

Programming Euler Method

Plot of the solution

plot(T,V)

