Chapter 1. Preliminaries: Set theory and categories

3 Categories

Problem 3.1. \triangleright Let C be a category. Consider a structure C^{op} with

- 1. $Obj(C^{op}) := Obj(C)$
- 2. for A, B objects of C^{op} (hence objects of C), $\operatorname{Hom}_{C^{op}}(A, B) := \operatorname{Hom}_{C}(B, A)$.

Show how to make this into a category (that is, define composition of morphisms in C^{op} and verify the properties listed in §3.1). Intuitively, the 'opposite' category C^{op} is simply obtained by 'reversing all the arrows' in C.

Solution. Remember that by definition, a category must have i) a composition morphism that satisfies associativity for any pairs of morphisms and ii) an identity morphism that is unital for all objects in the category (e.g. for $f: X \to Y$, $f1_X = 1_Y f = f$).

i) Composition morphism: Let's define composition of morphisms as follows: for $f \in \operatorname{Hom}_{\mathsf{C}^{op}}(A,B)$ and $g \in \operatorname{Hom}_{\mathsf{C}^{op}}(B,C)$, define $f \circ 'g \in \operatorname{Hom}_{\mathsf{C}^{op}}(A,C)$ such that $f \circ 'g = g \circ f \in \operatorname{Hom}_{\mathsf{C}}(C,A)$. We know $g \circ f$ exists because C is a category and thus satisfies the condition of having a composition morphism for all pairs of morphisms.

To show that the composition morphism is associative, let $f \in \operatorname{Hom}_{\mathsf{C}^{op}}(A,B), g \in \operatorname{Hom}_{\mathsf{C}^{op}}(B,C)$, and $h \in \operatorname{Hom}_{\mathsf{C}^{op}}(C,D)$. Then $(f \circ 'g) \circ 'h = (g \circ f) \circ 'h = h \circ (g \circ f) = (h \circ g) \circ f = (g \circ 'h) \circ f = f \circ '(g \circ 'h)$. Where the 1st, 2nd, 4th, and 5th equalities are due to the definition we chose for the composition of morphisms, and the 3rd equality is true because C is a category and thus its morphisms are associative.

ii) Identity morphism: If A is an object in C^{op} , it also exists in C (by definition of $Obj(C^{op})$). Since C is a category, it satisfies the property of having an identity morphism for each object. Let's define 1_A for any A in C^{op} to be the same as 1_A for the same A in C.

To show that the identity morphism is unital, let $f \in \text{Hom}_{\mathsf{C}^{op}}(A, B)$, then:

- 1. $f \circ '1_A = 1_A \circ f = f$
- 2. $1_B \circ f = f \circ 1_B = f$

Where for both statements, the first equality is due to our definition of composition and the second equality is true because C is a category and thus its identity morphisms are unital.

Problem 3.2. If A is a finite set, how large is $End_{Set}(A)$?

Solution. By definition $\operatorname{End}_{\operatorname{Set}}(A) = \operatorname{Hom}_{\operatorname{Set}}(A, A)$, and since we are working with the category of sets, we can think of morphisms as set-functions (§3.2). In other words, $\operatorname{End}_{\operatorname{Set}}(A)$ is the set of all functions $f: A \to A$, otherwise denoted as A^A (§2.1, 3.2), and we are asked to find the count of all possible functions $f: A \to A$.

Since A is finite, the count of all possible functions $|\operatorname{End}_{\operatorname{Set}}(A)| = |A|^{|A|}$ (where |A| is the number of elements in A).

Problem 3.3. \triangleright Formulate precisely what it means to say that 1_a is an identity with respect to composition in Example 3.3, and prove this assertion. [§3.2]

Solution. 1_a is an identity if for any three objects $z, a, b \in S$, where $e \in \text{Hom}(z, a)$ and $f \in \text{Hom}(a, b)$, $1_a e = e$ and $f 1_a = f$.

As described in Example 3.3, we only have one choice for $1_a \in \text{Hom}(a, a)$ where $1_a = (a, a)$. By our definition of morphism, we also have e = (z, a) and f = (a, b). Using our definition of composition, $1_a e \in \text{Hom}(z, a)$ and $f 1_a \in \text{Hom}(a, b)$. It follows that $1_a e = (z, a) = e$ and $f 1_a = (a, b) = f$.

Problem 3.4. Can we define a category in the style of Example 3.3 using the relation < on the set **Z**?

Solution. No, since < is not reflexive, if follows that the set Hom(A, A) is empty, and therefore we cannot define an identity morphism.

Problem 3.5. \triangleright Explain in what sense Example 3.4 is an instance of the categories considered in Example 3.3. [§3.2]

Solution. For the sake of clarity, let S' represent the set in Example 3.3 and S represent the set in Example 3.4. We can think of $S' = \mathscr{P}(S)$ where each element $a, b \in S'$ represents $A, B \subseteq S$. Both \sim and \subseteq are reflexive and transitive. For both categories, a morphism between objects is either a pair, (a, b) if $a \sim b$ or (A, B) if $A \subseteq B$, or \varnothing otherwise.

Problem 3.6. \triangleright (Assuming some familiarity with linear algebra.) Define a category V by taking $\mathrm{Obj}(\mathsf{V}) = \mathbf{N}$ and letting $\mathrm{Hom}_{\mathsf{V}}(n,m) = \mathrm{the}$ set of $m \times n$ matrices with real entries, for all $n,m \in \mathbf{N}$. (We will leave the reader the task of making sense of a matrix with 0 rows or columns.) Use product of matrices to define composition. Does this category 'feel' familiar? [§VI.2.1, §VIII.1.3]

Solution. Reminder: Remember that if V is n-dimensional and W is m-dimensional, then $\mathcal{L}(V,W)$ and $\mathbf{F}^{m,n}$ are isomorphic [LADR 3.60], where $\mathcal{L}(V,W)$ is the set of all linear maps from V to W [LADR 3.3] and $\mathbf{F}^{m,n}$ is the set of all matrices with m rows and n columns [LADR 3.39]. Additionally, two finite-dimensional vector spaces over \mathbf{F} (and in this case \mathbf{R} which is a subset of \mathbf{F}) are isomorphic if and only if they have the same dimension [LADR 3.59].

The question gives us a category theoretic way of describing linear maps. In linear algebra we deal exclusively with finite-dimensional vector spaces. Since every linear map $T \in \mathcal{L}(V, W)$, where V is n-dimensional and W is m-dimensional, can be represented as an m-by-n matrix, it follows that we can represent every linear map as a morphism from n to m where $n, m \in \mathrm{Obj}(V)$.

If a matrix has 0 columns, we can try to interpret it as a linear map from a zerodimensional vector space to a non-zero dimensional vector space. However this contradicts the definition of linear maps which must satisfy additivity [LADR 3.11]. Thus, we can say that if $m \neq 0$, then $\text{Hom}_{V}(m, 0) = \emptyset$.

If a matrix has 0 rows, we can interpret it as a linear map to a zero-dimensional vector space. In other words, for all $v \in V$, Tv = 0v = 0. We can represent this as any m-by-n matrix with every element in the matrix = 0.

Problem 3.7. \triangleright Define carefully objects and morphisms in Example 3.7, and draw the diagram corresponding to composition [§3.2].

Solution. Let C be a category and A be an object in C. We define the category $\overline{\mathsf{C}}_A$ as follows:

1. $\operatorname{Obj}(\overline{\mathsf{C}}_A) := \operatorname{Hom}_{\mathsf{C}}(A, X)$ where X is any object in C. Pictorially, an object of $\overline{\mathsf{C}}_A$ is an arrow:

2. Morphisms in $\overline{\mathsf{C}}_A$ can defined as commutative diagrams. Let f_1 and f_2 be objects of $\overline{\mathsf{C}}_A$, that is two arrows:

$$\begin{array}{ccc} A & & A \\ \downarrow_{f_1} & & \downarrow_{f_2} \\ X_1 & & X_2 \end{array}$$

The morphism $f_1 \to f_2$ can be defined as the following commutative diagram:

$$A \xrightarrow{1_A} A$$

$$\downarrow f_1 \qquad \qquad \downarrow f_2$$

$$X_1 \xrightarrow{\sigma} X_2$$

However, since we are always dealing with A as the domain, we can simplify as follows:

$$X_1 \xrightarrow{f_1} \xrightarrow{\sigma} X_2$$

3. We define composition of morphisms as putting two commutative diagrams sideby-side:

$$X_1 \xrightarrow{\sigma} X_2 \xrightarrow{\tau} X_3$$

Because C is commutative and $f_1, f_2, f_3, \sigma, \tau$ are morphisms in C, we can remove the central arrow:

4. We define the identity morphism using the identities in C. For $f_1: A \to X$ in $\overline{\mathsf{C}}_A$, the identity 1_f corresponds to:

Given our choice of composition and identities, we need to now check whether the morphisms are associative and unital.

a) Associativity: Let $f_1, f_2, f_3, f_4 \in \overline{\mathsf{C}}_A$ such that:

Since C is commutative, we can remove either of the two central arrows to get the following diagrams:

Since C is commutative, both diagrams are equivalent. Thus $(\rho \tau)\sigma = \rho(\tau \sigma)$.

b) Unital: Let $f_0, f_1, f_2 \in \overline{\mathsf{C}}_A$ such that:

Then given our definition of identity and composition, we get:

And by removing the central arrows, we get:

It is clear from the diagrams that $\phi = 1_{f_1} \phi$ and $\sigma = \sigma 1_{f_1}$, thus proving that our identity morphisms are unital.

Problem 3.8. \triangleright A subcategory C' of a category C consists of a collection of objects of C, with morphisms $\operatorname{Hom}_{\mathsf{C}'}(A,B) \subseteq \operatorname{Hom}_{\mathsf{C}}(A,B)$ for all objects A,B in $\operatorname{Obj}(\mathsf{C}')$, such that identities and compositions in C make C' into a category. A subcategory C' is full if $\operatorname{Hom}_{\mathsf{C}'}(A,B) = \operatorname{Hom}_{\mathsf{C}}(A,B)$ for all A,B in $\operatorname{Obj}(\mathsf{C}')$. Construct a category of infinite sets and explain how it may be viewed as a full subcategory of Set. [4.4, §VI.1.1, §VIII.1.3]

Solution. Let $\mathsf{Set}_{\mathsf{inf}}$ be the category whose objects are the infinite sets in Set and whose morphisms are all the set-functions between infinite sets in Set . In other words, if A, B are infinite sets, $\mathsf{Hom}_{\mathsf{Set}_{\mathsf{inf}}}(A, B) = \mathsf{Hom}_{\mathsf{Set}}(A, B)$. We also inherit composition and identity from Set . It suffices to show that $\mathsf{Set}_{\mathsf{inf}}$ satisfies associativity and unity (i.e. is a category), which is a trivial exercise (since we inherited composition, identity, set-functions, and sets from Set which is a category).

Problem 3.9.

Problem 3.10.

Problem 3.11. \triangleright Draw the relevant diagrams and define composition and identities for the category $\mathsf{C}^{A,B}$ mentioned in Example 3.9. Do the same for the category $\mathsf{C}^{\alpha,\beta}$ mentioned in Example 3.10 [§5.5, 5.12].

Solution. [Example 3.9] Given two objects A,B of $\mathsf{C},$ we define a new category $\mathsf{C}^{A,B}$ as follows

1. $Obj(C_{A,B}) = diagrams in C$, where $Z \in Obj(C)$;

 $2. \ \ morphisms \ correspond \ {\it commutative} \ \ diagrams;$

3. compositions are obtained by placing commutative diagrams side-by-side;

we can then remove the center diagram;

4. identity morphisms are inherited from identities in C;

Since C is commutative, associative, and unital, $\mathsf{C}^{A,B}$ is also commutative, associate, and unital.

[Example 3.10] To define $\mathsf{C}^{\alpha,\beta}$, we choose two fixed morphisms $\alpha:C\to A,\beta:C\to B$ in C . We then consider the data of $\mathsf{C}^{\alpha,\beta}$ as follows:

1. $Obj(C^{\alpha,\beta}) = commutative diagrams in C, where <math>Z \in Obj(C)$;

2. morphisms correspond to commutative diagrams;

3. composition correspond to placing commutative diagrams side-by-side;

after which one can remove the center diagram, resulting in a diagram that also commutes;

4. identity morphisms are inherited from C, resulting in the following diagram;

Since C is commutative, associative, and unital, $C^{\alpha,\beta}$ is also commutative, associate, and unital.

4 Morphisms

Problem 4.1.

Problem 4.2.

Problem 4.3. Let A, B be objects of a category C, and let $f \in \text{Hom}_{C}(A, B)$ be a morphisms.

- 1. Prove that if f has a right-inverse, then f is an epimorphism.
- 2. Show that the converse does not hold, by giving an explicit example of a category and an epimorphisms without a right-inverse.

Solution. Let $f': B \to A$ be a right-inverse of f and let $B', B'' \in \text{Hom}_{\mathsf{C}}(B, A)$. If $B'f = B''f \Longrightarrow B'ff' = B''ff' \Longrightarrow B'1_B = B''1_B \Longrightarrow B' = B''$.

To show the converse doesn't hold, we use Example 4.5 (and Example 3.3), where the objects of C are the integers and $\operatorname{Hom}_{\mathsf{C}}(a,b) = \operatorname{the pair}(a,b)$ if $a \leq b$ or \emptyset otherwise, where $a,b \in \operatorname{Obj}(\mathsf{C})$. Because there is at most one morphism between two objects, the fact that each morphism is epimorphic is vacuously true. Moreover, the pair (a,b) generally does not have a right-inverse unless a = b.

5 Morphisms

Problem 5.1.

Problem 5.2.

Problem 5.3.

Problem 5.4.

Problem 5.5.

Problem 5.6.

Problem 5.7.

Problem 5.8. Show that in every category C the products $A \times B$ and $B \times A$ are isomorphic, if they exist. (Hint: Observe that they both satisfy the universal property for the product of A and B; then use Proposition 5.4.)

Solution. We use a similar proof to the one provided in §I.5.4. But first, we define $B \times A$ as the product of sets such that $B \times A = \{(b,a)|b \in B, a \in A\}$ and the natural projections $\pi'_A((b,a)) := a$ and $\pi'_B((b,a)) := b$. If $A \times B$ exists, then $B \times A$ also exists and vice versa. Let Z be an object in C.

$$au(z) = (f_B(z), f_A(z))$$
 where $\pi'_B \tau(z) = \pi'_B (f_B(z), f_A(z)) = f_B(z)$ $\pi'_A \tau(z) = \pi'_A (f_B(z), f_A(z)) = f_A(z),$

showing that the diagram commutes. Since τ is defined by the object [?? since f_B, f_A are unique ??], it is thus a unique morphism from that object to $B \times A$, thereby proving that $B \times A$ is a terminal object.

Now that we've proved that $B \times A$ is also a terminal object, we use Proposition 5.4 to show that is it isomorphic to $A \times B$ which is also a terminal object, thereby completing the proof

Problem 5.9. Let C be a category of products. Find a reasonable candidate for the universal property that the product $A \times B \times C$ of *three* objects of C ought to satisfy, and prove that both $(A \times B) \times C$ and $A \times (B \times C)$ satisfy this universal property. Deduce that $(A \times B) \times C$ and $A \times (B \times C)$ are necessarily isomorphic.

Solution. It is a terminal object for any object Z