第十次习题课题目

习题 1. 构造一个三阶实对称矩阵,使得其特征值为 1,1,-1,属于特征值 1 的线性无关的特征 向量有 $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ 和 $\begin{pmatrix} 2 & 2 & 1 \end{pmatrix}^T$.

习题 2. 设 $A = (a_{ij})$ 是 n 阶实对称矩阵, 其特征值是 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

(1) 证明对于任意 n 维列向量 $\alpha \in \mathbb{R}^n$, 均有

$$\lambda_1 \alpha^T \alpha \leq \alpha^T A \alpha \leq \lambda_n \alpha^T \alpha$$
.

- (2) 展示 $\lambda_1 \leq a_{11} \leq \lambda_n$.
- (3) 假设 $A = (a_{ii})$ 是一个 2 阶实对称阵. 求 a_{12} 可能的最大值和最小值.

习题 3. 设 A,B 是 n 阶实对称矩阵, 其特征值分别是 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ 和 $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$. 求证: A+B 的特征值全部落在区间 $[\lambda_1 + \mu_1, \lambda_n + \mu_n]$.

习题 4 (♡). 若 $A = (a_{ii})$ 是 n 阶实方阵,且 A 的秩小于 n,则 A 的伴随矩阵的特征值包含至 $y_{n-1} \uparrow 0$, 若存在非零特征值, 则它是 $\sum_{i=1}^{n} C_{ii}$.

习题 5 (♥). 设 A 是一个 n 阶反对称矩阵, 即 $A^T = -A$ 且 A 是实矩阵. 证明:

- (1) $I_n + A$ 可逆且 $(I_n A)(I_n + A)^{-1}$ 是正交阵.
- (2) 假设 n=3,则存在正交阵 Q 和向量 $b \in \mathbb{R}$,使得 $Q^TAQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & b \\ 0 & -b & 0 \end{pmatrix}$.

- **习题** 6 (练习 6.1.16). 设实对称矩阵 $S = \begin{bmatrix} O & A \\ A^T & O \end{bmatrix}$. 1. 证明, $Sx = \lambda x$, 当且仅当 $x = \begin{bmatrix} y \\ z \end{bmatrix}$, 满足 $Az = \lambda y$, $A^Ty = \lambda z$.
 - 2. 证明, 如果 λ 是 S 的特征值, 则 $-\lambda$ 也是 S 的特征值.
 - 3. 证明, 如果 $\lambda \neq 0$ 是 S 的特征值, 则 λ^2 是 A^TA 的特征值, 也是 AA^T 的特征值.

4. 证明, AA^{T} 和 $A^{T}A$ 的非零特征值相同, 且有相同的重数.

5. 分别取
$$A = I_2$$
 或 $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, 求对应 S 的谱分解.

习题 7 (练习 6.1.17). 构造一个实方阵 A, 满足 $AA^{T} = A^{T}A$ 但 $A \neq A^{T}$, 并验证 A 和 A^{T} 具有相同的特征值和特征向量. 注意, 这里相同的特征向量不意味着对应的特征值相同.

注意: 事实上, 对实方阵 A, 如果 $AA^{T} = A^{T}A$, 则 A 和 A^{T} 具有相同的特征值和特征向量.

习题 8 (练习 6.2.7). (Hadamard 不等式) 给定对称正定矩阵 A, 求证:

1. 对任意
$$y$$
, $\det \left(\begin{bmatrix} A & y \\ y^T & 0 \end{bmatrix} \right) \leq 0$;

- 2. 记 $A = [a_{ij}]$, 则 $\det(A) \leq a_{nn}A_{n-1}$, 其中 A_{n-1} 是 A 的 n-1 阶顺序主子式;
- 3. $\det(A) \leq a_{11}a_{22}\cdots a_{nn}$

利用上述结论证明: 如果实矩阵 $T = [t_{ij}]$ 可逆, 那么 $\det(T)^2 \leqslant \prod_{i=1}^n (t_{1i}^2 + t_{2i}^2 + \dots + t_{ni}^2)$.

注意: 练习 4.2.27 用不同方法证明了相同结论.

习题 9 (练习 6.2.8). 证明
$$A = \left[\frac{1}{i+j}\right]_{n \times n}$$
 正定.

习题 10 (练习 6.2.19). 设 A,B 是 n 阶实对称矩阵, A 正定. 证明, 存在可逆矩阵 T, 使得 T^TAT 和 T^TBT 同时是对角矩阵.