

Técnicas Metaheurísticas

Máster en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital (DSIC-UPV)

Tema 1. Técnicas de IA. Búsqueda de soluciones

El problema de la búsqueda de soluciones

Satisfactibilidad vs. Optimalidad. Explosión combinatoria

Tipología de la Búsqueda

Búsqueda Global (sistemática). Búsqueda Local

Métodos Constructivos, Métodos de Mejora y Métodos Poblacionales

Búsqueda Heurística

Tipos. Algoritmos A y A*. Variantes

Metaheurísticas

Tipología de Metaheurísticas. Exploración vs. Explotación

Elección de una metaheurística. No free lunch

Bibliografía

- Monografía: Metaheurísticas. Inteligencia Artificial, Vol 7, No 19 (journal.iberamia.org) (2003).
- Handbook of Metaheuristics, Springer 2^a ed. M. Gendreau, J.Y.Potvin, 2010
- Essentials of Metaheuristics. Sean Luke. 2013. (Online)
- Metaheuristics Network Website

- Inteligencia Artificial. Técnicas, métodos y aplicaciones. Palma, Marín. McGraw Hill (2008)
- Inteligencia Artificial. Un enfoque moderno. S. Russell, P. Norvig. Prentice Hall 4º ed
- Computational Intelligence. A. Engelbrecht. Wiley & Sons. 2ªed. (2007)
- How to Solve It: Modern Heuristics. Z. Michalewicz, D. Fogel. 2ed. 2004 (Springer)

Diversos Artículos

Journal of Heuristics, Int. Journal of Metaheuristics,

Int. Journal of Applied Metaheuristic Computing, Applied Intelligence, etc.

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Artículos en Poliformat

A survey on optimization metaheuristics

Ilhem Boussaïd a, Julien Lepagnot b, Patrick Siarry b,*

*Université des sciences et de la technologie Houari Boumediene, Electrical Engineering and Computer Science 16111 Algiers, Algeria

b Université Paris Est Crêteil, LiSSi, 61 avenue du Général de Gaulle 94010 Crêteil, France

Artificial Intelligence Review (2020) 53:753–810 https://doi.org/10.1007/s10462-018-09676-2 Artif Intell Rev (2019) 52:2191–2233 https://doi.org/10.1007/s10462-017-9605-z

Metaheuristic research: a comprehensive survey

mathematics

Remer

Review of Metaheuristics Inspired from the Animal Kingdom

From ants to whales: metaheuristics for all tastes

Artificial Intelligence Review (2020) 53:501–593 https://doi.org/10.1007/s10462-018-9667-6

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 1, APRIL 1997

A state of the art review of intelligent scheduling

No Free Lunch Theorems for Optimization

David H. Wolpert and William G. Macready

El problema de la búsqueda de soluciones

La búsqueda de soluciones es un método típico para la resolución de problemas en IA:

Toma de decisiones, Planificación (y robótica), Diseño y configuración, Respuestas a preguntas, Sistemas de recomendación, Juegos, Aprendizaje inductivo (en base a ejemplos), Generación de rutas, N-recubrimiento, Scheduling y asignación de recursos, etc.

La solución debe ser obtenida (generada y/o mejorada) mediante un proceso de búsqueda en un amplio

El problema de la búsqueda de soluciones

Distintos enfoques de resolución

- Métodos exactos (matemáticos, de investigación operativa o algorítmicos): capaces de solucionar problemas complejos (de optimización) en tiempos computacionales bajos. Ej. algoritmo símplex, programación lineal (entera), ramificación y poda, programación dinámica, algoritmo A/A*, etc.
 Pero hay problemas para los que no existe o no es viable un método exacto
- Métodos aproximados (o de IA): métodos que utilizan heurísticas para tratar de resolver el problema de forma más eficiente, aunque igual no siempre encuentran la solución exacta. Ej. búsqueda local, metaheurísticas, etc.

Satisfactibilidad vs. Optimalidad

Problemas de optimización sujetos a restricciones. Obtención de soluciones que:

- Cumplan los criterios de factibilidad (satisfagan las restricciones/condiciones del problema)
- Optimicen una determinada función objetivo (maximizar/minimizar)

8-puzzle. SATISFACTIBILIDAD

Difícil encontrar una solución (problema de satisfactibilidad), aunque también existen soluciones mejores que otras (problema de optimalidad)

Complejidad factorial

Problema del viajante de comercio (TSP). OPTIMALIDAD

Es trivial encontrar soluciones factibles. El problema es encontrar soluciones optimizadas (problema de optimalidad)

Explosión combinatoria en la búsqueda

La explosión combinatoria depende del factor de ramificación (b) y los niveles de decisión/profundidad (n)

En dominios finitos (optimización combinatoria), el conjunto de soluciones es finito y numerable (pero muy grande)

Una fina hoja de papel (0.1 mm), doblada 50 veces, alcanza un espesor de...

Múltiples clasificaciones de resolución en Al

Tipología de la búsqueda

Estrategias de Búsqueda

(Global / Local)

Búsqueda Sistemática o Global:

busca en **todas** las alternativas posibles (tentativa, backtracking, algoritmos A/A*...)

Búsqueda Local:

busca solo en el *entorno local actual* (*irrevocable, escalada...*)

Métodos Constructivos: construyen una solución paso a paso

Búsqueda heurística iterativa elaborando la solución Espacio de búsqueda ⇒espacio de soluciones parciales

Métodos (procesos)

(Búsqueda en un Espacio de Estados / Soluciones)

Métodos de Mejora: mejora iterativa de soluciones

Búsqueda heurística iterativa seleccionando soluciones cercanas Espacio de búsqueda ⇒ espacio de soluciones

Métodos Evolutivos/Enjambre: parten de soluciones previas

Generación de nuevas soluciones utilizando información implícita en la sociedad/población de soluciones previas

Estrategias de búsqueda. Criterio para seleccionar el siguiente estado

Estrategias de Búsqueda Global (global search)

Búsqueda sistemática del espacio de búsqueda: por cualquier nodo (frontera) del espacio de búsqueda

- ⇒ Alto coste en memoria (explosión combinatoria)
- Puede ser completa y admisible (garantizar solución óptima)
- Típicamente se usan para generar soluciones

Estrategias de Búsqueda Local (local search)

En cada iteración se busca solo en el entorno del estado actual

- Retienen solo el estado actual (≈ esquema irrevocable)
 - ⇒ Eficientes en memoria
- Pueden utilizarse para generar una solución o mejorar una solución previa
- Requieren definición de vecindario de una solución
- Inconvenientes: pueden quedar atrapadas en soluciones que no admiten mejoras en su entorno (óptimos locales, valles, mesetas), problemas de incompletitud, ciclos, etc.

BÚSQUEDA EN EL ENTORNO, VECINDARIO

Métodos de búsqueda. Criterio para obtener una solución

Métodos Constructivos

- Construyen iterativamente una solución al problema
- En cada paso se añade (heurísticamente) un elemento a la solución parcial
- No se requiere solución inicial: de aplicación en problemas en donde lo difícil es obtener una solución (problemas con muchas restricciones)
- Puede aplicarse con una búsqueda local o búsqueda global Desventaja, se puede parar y a lo mejor no puede ofrecer una solución si no tiene todos los componentes

Métodos de Mejora (habitualmente llamados Búsqueda Local)

- Requieren una solución inicial (constructiva / aleatoria)
- Cada iteración modifica solución actual (eligiendo heurísticamente en su entorno) intentando mejorarla
- Ramificación muy alta ⇒ búsqueda local
- Ventaja any-time
 Se puede parar en cualquier momento y siempre
 te devuelve una solución

Métodos Poblacionales / Evolutivos / Enjambre

- Parten de un conjunto (población/enjambre) de soluciones, que se seleccionan, recombinan, modifican o colaboran para obtener un nuevo conjunto de soluciones
- Ventaja any-time

Nodo: Solución parcial

Ejemplo. Problema del viajante

Búsqueda heurística en IA (heuriskein / ευρισκειν: encontrar o descubrir)

Criterios aplicados a la resolución de problemas complejos, esperando que obtengan una buena solución (no necesariamente óptima) de un modo sencillo y rápido

Métodos aproximados, contrapuestos a los exactos. No son resultado de un riguroso análisis formal, sino de **conocimiento intuitivo**, experimental, práctico, de experto, etc. sobre el problema

Pueden ser generales o dependientes del problema (más eficientes, menos generalizables)

- Relajación (relajación de condiciones/restricciones del problema)
- ✓ Inductivas (generalización de soluciones a versiones sencillas del problema)
- Descomposición (descomposición en subproblemas más sencillos de resolver)
- Reducción (identificar propiedades que se cumplen mayoritariamente en las buenas soluciones e introducirlas como restricciones del problema)
- Abstracción (abstracción de estados distintos del problema en un único estado)
- ✓ Landmarks (identificación de estados intermedios que deben ser alcanzados)

Búsqueda heurística en IA

Búsqueda Heurística

Se usa una función **f(n)**, que mide la bondad del nodo (estado) y tiene una componente **heurística** *h(n)*:

h(n)= estimación del coste al objetivo \forall n, h(n) \geq 0, h(meta) = 0

Según las Estrategias:

- > Búsqueda Local (Escalada, Haz...):
 - Requieren muy poca memoria
 - Pero tiene problemas de valles, ciclos, etc. y no garantiza la óptima
- Búsqueda Global (en grafo/arbol)
 - Primero el mejor (Best First Search): expande el mejor nodo frontera
 - Permite soluciones óptimas, pero suele requerir mucha memoria

Búsqueda local (no sistemática)

Función de Escalada (hill-climbing), Descenso por gradiente, Voraz local, etc.

- Selección de un sucesor (vecino) que mejore f(n) respecto al padre: escalada por máximos locales
- Local: no mantiene un árbol de búsqueda, sino solo el estado actual (y sucesores inmediatos)
- Realiza unos bucles de búsqueda dirigido hacia el crecimiento de f(n) (colina arriba, máximo gradiente). El proceso acaba cuando no hay mejora posible en el conjunto de soluciones vecinas (valles, llanuras, ciclos, etc.).

Ventaja: memoria limitada (≅ constante), no necesita mantener caminos alternativos

Estructura de Vecinos

Inconvenientes: óptimos locales (no garantiza óptimo global, valles, mesetas, ciclos, etc.

Ejemplo búsqueda local. 8-puzzle

Ejemplo búsqueda local. Viajante de comercio

Vecinos implica una permutación en el orden de los nodos (intercambio de pareja)

Ningún intercambio mejora:

Parada Máximo Local

Inconvenientes:

- No hay memoria en la búsqueda, no hay visión global
- Búsqueda puede quedar atascada (pararse) en óptimo local (todos los vecinos son peores), llanuras (todos los vecinos son iguales), bucles (debido a no almacenar en memoria los nodos visitados)
- Se obtienen soluciones localmente óptimas, pero pueden estar muy lejos del óptimo global

Después de escalar una gran colina, uno se encuentra solo con que hay muchas más colinas que escalar. Nelson Mandela

Búsqueda global (sistemática)

Mantienen abierta la frontera de búsqueda: árbol/grafo de búsqueda

Búsqueda Voraz, A y A* son 'Búsquedas Primero el Mejor', Sistemáticas

Búsqueda Voraz (Greedy)

- Caso típico de "búsqueda el primero mejor", donde no importa g(n):
 f(n) = h(n)
- No siempre encuentran solución o acaban, no son completos ni son admisibles

HEURÍSTICOS heurística: f(n) Best-First Search BÚSQUEDA GLOBAL (sistemática) Voraz A* IDA* SMA*

Algoritmo A

 Combinación de búsqueda voraz (reduce coste de búsqueda, pero no óptima ni completa) y coste uniforme (completa y óptima, pero ineficiente)

$$f(n)=g(n)+h(n)$$

- Algoritmo A*: \forall n, h(n) \leq h*(n)
- Completa y admisible. $(h(n)=0 \cong Dijsktra, coste uniforme)$
- Pero requiere mucha memoria (un algoritmo que expanda menos nodos que A* no garantizará la admisibilidad)

Variantes del algoritmo A para ahorrar memoria

Iterative-Deepening A* (IDA*)

- Adapta la Búsqueda en Profundidad Iterativa (BPI) a A*
- El criterio de corte no es el nivel (profundidad), sino el valor de f(n) = g(n) + h(n)
- Cada interacción se reinicia desde la raíz, con un valor de corte: coste (g+h) más pequeño de los nodos que fueron cortados en la iteración anterior

En cada iteración, cuando el valor f(n) de un nodo supera el valor de corte, se aplica backtracking

- Si h(n) ≤h*(n) IDA* es admisible
- Útil para problemas de costes g(n) unitarios
- IDA* es completo y óptimo y necesita menos memoria que A* (es un iterativo en profundidad), aunque puede generar más nodos en total.
- Complejidad Temporal: O(b^{2d})
- Complejidad Espacial: O(b.d)

Variantes del algoritmo A para ahorrar memoria. Simplified Memory-Bounded A* (SMA*)

Búsqueda con memoria acotada: determina un **máximo número de nodos a almacenar** (Nmax)

Modificación del algoritmo A*, de forma que cuando no puede almacenar más nodos, se elimina de la frontera del grafo (lista open) el nodo que tiene el mayor valor de f(n): 'nodo olvidado'

- En cada nodo se recuerda el hijo 'olvidado' con mejor f(n)
- El algoritmo puede 'recuperar' los nodos olvidados si resultan más prometedores conforme avance la búsqueda (el resto de nodos tiene mayor f(n))

Características

- Es capaz de adaptarse a la memoria disponible
- Es completo, si la memoria disponible es suficiente para almacenar la senda más corta
- Mejor para costes g(n) no unitarios
- Es admisible, si la memoria disponible es suficiente para un camino óptimo
- En otro caso, devuelve la mejor solución que puede alcanzar con la memoria disponible

En resumen:

Métodos exactos (no heurísticos)	Inviables en problemas complejos		
Búsqueda heurística local	No Admisibles, Poca memoria Problemas de ciclos, etc.		
Búsqueda Heurística Global: Algoritmo A, A	Búsqueda Global, sistemática Admisibles y Completos. Alto coste memoria / tiempo		
Incrementar potencia heurística h(n) > h*(n) o Variantes Algoritmo A*	¿Pierden Admisibilidad? Bajan / Acotan coste memoria Siguen requiriendo mucha memoria		
Metaheurísticos: Diseño y estrategias heurísticas	Soluciones Optimizadas Bajo coste temporal		

Metaheurísticas

Introducidos en "Future paths for integer programming and links to artificial intelligence". F. Glover, 1986

La idea básica es mejorar la búsqueda local

- se sitúan "por encima" de los algoritmos heurísticos: procedimientos iterativos, que modifican (modulan) las decisiones durante el proceso de búsqueda para producir eficientemente soluciones de alta calidad
- modulan la aplicación de la heurística mediante componentes de decisión estocásticos y/o métodos bio-inspirados
- incorporan simultáneamente ventajas de la búsqueda global, minimizando la probabilidad de quedar atrapados en óptimos locales
- proporcionan un marco general para crear nuevos algoritmos híbridos combinando diferentes conceptos derivados de la IA, ej. comportamientos sociales la evolución biológica y mecanismos estadísticos
- ✓ Utilizan poca memoria. Suelen ser fácilmente paralelizables
- √ Rápidas respuestas iniciales, que se continúan optimizando (any time)
- ✓ Mejoran la búsqueda local, sin la complejidad espacial/temporal de una búsqueda global
- ✓ Implementación sencilla. Dificultad: procesos no determinísticos que requieren muchos ajustes

Metaheurísticas. Orígenes

- Enfriamiento simulado: Kirkpatrick, S.; Gelatt Jr., C.D.; Vecchi, M.P. (1983). "Optimization by Simulated Annealing". Science 220 (4598):671–680. DOI 10.1126/science.220.4598.671
- **Búsqueda tabú:** Fred Glover and C. McMillan (1986): "The general employee scheduling problem: an integration of MS and AI". Computers and Operations Research, 1986.
- **Búsqueda por Haz Local (Beam Search)**: Reddy, D. Raj, (1977): "Speech Understanding Systems: A Summary of Results of the Five-Year Research Effort. Dept. Comp. Science", Carnegie Mellon Univ. 1977.
- Algoritmos genéticos: John H. Holland (1975): "Adaptation in Natural and Artificial Systems". University of Michigan Press, 1975
- Algoritmos Mémeticos: Moscato P., (1989) "On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms". Caltech Concurrent Computation Program (report 826).
- Scatter search: Fred Glover (1977): "Heuristics for Integer programming Using Surrogate Constraints". Decision Sciences 8 (1): 156–166, 1977.
- **GRASP:** T.A. Feo and M.G.C. Resende (1989): "A probabilistic heuristic for a computationally difficult set covering problem". Operations Research Letters, 8:67–71, 1989.
- Inteligencia de Enjambre: Beni, G., Wang, J. (1989): Swarm Intelligence in Cellular Robotic Systems, Proceed. NATO Advanced Workshop on Robots and Biological Systems, Tuscany, Italy, June 26–30 (1989)
- Colonias de hormigas: Marco Dorigo (1992): "Optimization, Learning and Natural Algorithms" PhD thesis, Politecnico di Milano, 1992.
- Colonia de Abejas: Karaboga, D, (2005). An idea based on honey bee swarm for numerical optimization.
 Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
- Enjambre de partículas: J. Kennedy & R. Eberhart (1995): "Particle Swarm Optimization". Proceedings of IEEE International Conference on Neural Networks, 1995.

Metaheurísticas. Tipología

Metaheurísticas. Clasificación (no existe una única clasificación)

Metaheurísticas de Trayectorias:

- Búsqueda tabú
- Búsqueda local guiada
- Enfriamiento simulado, etc..

Metaheurísticas Poblacionales:

- Búsqueda dispersa
- Algoritmos evolutivos, genéticos
- Algoritmos meméticos
- Sistemas de hormigas
- Inteligencia de enjambre, etc.

Multi-arranque / Constructivos

GRASP

Aleatorias vs. Determinísticas

- Aleatorias: Genéticos, ES, etc.
- Deterministas: Tabú, Búsqueda Dispersa, etc.

Inspiradas o no en la Naturaleza

- Inspiradas: Genéticos Hormigas, Enfr. Simulado, etc.
- No Inspiradas: Búsqueda dispersa, GRASP...

Exploración vs. explotación de soluciones

En el proceso de búsqueda, se debe hacer continuamente una elección fundamental: exploración vs. explotación

Exploración de alternativas en el espacio de soluciones

- La exploración busca alternativas un amplio espacio de estados ≈ Búsqueda global
- Evita convergencia prematura

Tiende a obtener más información

Explotación de alternativas vecinas de una buena solución

 Permite focalizar sobre el entorno de buenas soluciones (alto fitness)
 ≈ Búsqueda local en la vecindad

Tiende a tomar la mejor decisión, dada la información actual

Las metaheurísticas tienden a combinar y/o alternar, con mayor o menor éxito, ambas opciones (exploración vs. explotación)

Exploración vs. explotación. Ejemplo típico (Falkenauer)

Tenemos dos tragaperras. Una de las dos da premios con mayor frecuencia que la otra. Por ejemplo, una da premio un 60% de las veces y la otra un 40%. Pero no se sabe cuál es cada una. Lo ideal es jugar solo a la máquina buena, pero ¿cómo saberlo?

La cuestión es:

¿cómo se debe jugar para maximizar las ganancias?

Estrategia posible:

- Exploración 1) Jugar *n* veces la izquierda y *n* veces la derecha
- 2) Comparar resultados y determinar mejor palanca
- 3) Jugar solo a la máquina buena _{Explotación}

¿Cuántas (n+n) veces probar al principio? Pero ¿Cabe volver a probar ambas máquinas?

- La división entre las etapas de exploración/explotación es artificiosa
- Parece mejor integrar ambas etapas y seguir jugando ambas palancas (aunque cada vez se juegue más veces la palanca ganadora). ¿Cómo distribuir n1 vs. n2?
- Por ejemplo, (Holland Alg. Geneticos) propone la estrategia de que el nº de ensayos con la palanca ganadora (o probabilidad de jugarla) crezca exponencialmente respecto a la mala

¿Y si tenemos k máquinas tragaperras?

Entornos de metaheurísticas. Más info en prácticas

Opt4J. Entorno libre

A Modular Framework for Meta-heuristic Optimization

Disponible (ejecutable y fuente) en: https://sdarg.github.io/opt4j/

Formulación sencilla de problemas utilizando librerías implementadas en Java

Existe un boletín que explica su instalación, uso e integración en ECLIPSE (java).

Entornos libres:

HeuristicLab http://dev.heuristiclab.com/

Entorno generalista en C#

PARADISEO https://nojhan.github.io/paradiseo/

API de programación en C++

jMetal https://jmetal.sourceforge.net/

Framework de optimización multi-objetivo en Java

Entornos comerciales:

MATLAB & Global Optimization Toolbox. Sistema Comercial MATLAB

http://es.mathworks.com/products/global-optimization/

http://es.mathworks.com/help/gads/index.html

Elección de una metaheurística

Elegir una metaheurística no es fácil y no siempre existe una única y mejor elección

Aspectos a tener en cuenta:

- 1. Estudiar el problema. ¿Es un problema de **satisfactibilidad** o de **optimalidad**? ¿Hay que optimizar una única métrica o tenemos varias métricas (multi-objetivo)?
- 2. ¿Qué información heurística sobre el dominio se conoce y cómo se puede representar?
- 3. ¿Podemos **generar** fácilmente soluciones sub-óptimas? ¿Generamos estas soluciones de forma cuidadosa (**inteligentemente**) o utilizamos un método **aleatorio**? ¿Cómo generaremos los vecinos (búsqueda local)?
- 4. ¿Podemos **estimar** el valor de la solución óptima (<u>problema del viajante de comercio</u> *vs.* <u>problema del cartero chino</u>?
- 5. ¿Una solución tiene que cumplir muchas restricciones? ¿Qué pasa si se viola alguna restricción? ¿Qué hacemos ante esa situación?
- 6. ¿Se puede prever el comportamiento esperado en la mejora de las soluciones?
- 7. ¿Existe alguna metaheurística que se adapta mejor al problema?

Evaluaciones empíricas de metaheurísticas. Artículos en Poliformat

Instance	GA		ACO		SA	
	Best Distance	Time (s)	Best Distance	Time (s)	Best Distance	Time (s)
bier127	419224	~3	124651.524	~27	265289	~0.3
berlin52	11551	~1	7721.432	74	10586	~0.2
ali535	9466	^5	1510,637	~62	6471	~0.3

Figure 12. Evolution of GA, ACO and SA results over best distance for bier127, berlin52, and ali535

Figure 13. Evolution of GA, ACO and SA results over time(s) for bier127, berlin52 and ali535

In: Performance Comparison of Simulated Annealing, GA and ACO Applied to TSP. Int J of Intelligent Computing Research 6, 4, Dec2015

Teorema de "no free lunch"

(No free lunch theorems for optimization, Wolpert, D.H.; Macready, W.G.; IEEE Transactions on Evolutionary Computation, 1, 1997)

"The computational cost of finding a solution, averaged over all problems in the class, is the same for any solution method" "For any algorithm, any elevated performance over one class of problems is exactly paid for in performance over another class"

• "Todos los algoritmos (de búsqueda o de optimización) tienen la misma evaluación cuando se promedia su aplicación sobre el conjunto de problemas"

"Para cada algoritmo de búsqueda/optimización, cualquier superioridad que pudiera tener sobre una clase de problemas es exactamente penalizada sobre las otras clases de problemas"

• "En un método de búsqueda, todas las funciones heurísticas (de búsqueda u optimización) tienen la misma evaluación cuando se promedian sus aplicaciones sobre el conjunto de funciones de coste"

"La superioridad de una heurística, definida sobre una función de coste, es exactamente penalizada cuando se aplica sobre las otras funciones de coste"

Por lo tanto, para cualquier algoritmo de búsqueda/optimización, su alto rendimiento sobre una clase concreta de problemas, es exactamente penalizado sobre otra clase de problemas

Diversas discusiones relacionadas: http://www.no-free-lunch.org/

Conclusiones (by ChatGPT)

La elección entre búsqueda heurística y metaheurística depende del problema específico y de los objetivos de optimización

Búsqueda Heurística

Las heurísticas son reglas generales o métodos aproximados que suelen funcionar bien para ciertos tipos de problemas. Estas reglas pueden derivarse de la experiencia o el conocimiento experto. Las búsquedas heurísticas son más simples y directas en comparación con las metaheurísticas, y a menudo son efectivas para problemas relativamente pequeños o donde existe un conocimiento previo específico

Ventajas

- Más rápidas de implementar (AÑADIDO: depende)
- Efectivas en problemas con estructuras y restricciones conocidas
- Son más eficientes en problemas pequeños y bien definidos

Desventajas

- Pueden quedar atrapadas en óptimos locales (AÑADIDO: no si son completas)
- No son tan eficaces en problemas complejos o de alta dimensionalidad
- Pueden no encontrar soluciones óptimas en problemas difíciles (AÑADIDO: por un problema de tiempo o incompletitud)

Conclusiones (by ChatGPT)

Búsqueda metaheurística

Las metaheurísticas son enfoques más generales y flexibles para la optimización. Se diseñan para explorar soluciones en un espacio de búsqueda más amplio, lo que las hace adecuadas para problemas complejos y difíciles. Las metaheurísticas son más capaces de escapar de óptimos locales (AÑADIDO: ¡no siempre!) y pueden utilizarse para una variedad de problemas, independientemente de la estructura específica del problema

Ventajas

- Más efectivas en problemas difíciles y complejos
- Pueden evitar óptimos locales y explorar soluciones más ampliamente (AÑADIDO: exploración vs. explotación)
- Adecuadas para problemas donde la estructura no es bien conocida (AÑADIDO: y no es fácil encontrar una buena heurística)

Desventajas

- Pueden requerir más tiempo de implementación y ajuste (AÑADIDO: sobre todo de ajuste)
- No garantizan encontrar soluciones óptimas
- Pueden ser más intensivas en términos computacionales (AÑADIDO: pero pueden encontrar buenas soluciones en tiempos más razonables)