Data Mining: Association Analysis

Laura Brown

Some slides adapted from G. Piatetsky-Shapiro; Han, Kamber, & Pei; Tan, Steinbach, & Kumar

Association Rule Mining

 Given a set of transaction, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} -> {Beer},
{Milk, Bread} -> {Eggs,Coke},
{Beer, Bread} -> {Milk},
```

Implication means co-occurrence, not causality!

Basic Definitions

- Itemset
 - collection of one or more items
 - Ex. {Milk, Bread, Diaper}
 - k-itemset
 - an itemset with k items
- Support count (σ), (absolute support)
 - frequency of occurrence of an itemset
 - Ex. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support, (relative support)
 - fraction of transactions that contain an itemset (prob. of transaction containing itemset)
 - Ex. s({Milk, Bread, Diaper}) = 2/5
- Frequent itemset
 - itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Basic Definitions

Association Rules

- implication expression of the form X
 -> Y, where X and Y are itemsets
- X and Y are disjoint
- Ex: {Milk, Diaper} -> {Beer}

Rule Evaluation Metrics

- Support (s)
 - fraction of transactions than contain items of X and Y combined
 - probability of transaction contains X U Y

Confidence (c)

- measures how often items in Y appear in transactions that contain X
- conditional probability that a transaction having X also contains Y

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$\{Milk, Diaper\} \Rightarrow Beer$$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Applications

- Market Basket Analysis
 - stores keep terabytes of information about what customers buy together
 - tells how typical customers navigate stores, lets them position tempting items
 - suggests tie-in "tricks", e.g., run sale on diapers and raise the price of beer
 - high support needed, or no \$\$'s

Applications

- Example 1 text mining
 - baskets = sentences
 - items = words in those sentences
 - find words that appear together unusually frequently, i.e., linked concepts
- Example 2 document mining
 - baskets = sentences
 - items = documents containing those sentences
 - items that appear together too often could represent plagiarism

Applications

- Example 3 healthcare mining
 - baskets = people
 - items = genes or blood-chemistry factors
 - detect combinations of genes that results in a disease
 - requires extension: absence of an item needs to be observed as well as presence

Example: Frequent Itemsets

- Items = { milk, coke, pepsi, beer, juice }
- MinSupport = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

Frequent itemsets:

Example: Frequent Itemsets

- Items = { milk, coke, pepsi, beer, juice }
- MinSupport = 3 baskets

$$B_1 = \{m, c, b\}$$
 $B_2 = \{m, p, j\}$
 $B_3 = \{m, b\}$ $B_4 = \{c, j\}$
 $B_5 = \{m, p, b\}$ $B_6 = \{m, c, b, j\}$
 $B_7 = \{c, b, j\}$ $B_8 = \{b, c\}$

- Frequent itemsets:
 - {m}, {c}, {b}, {j}, {m, b}, {b, c}, {c, j}

Subset Property

- Every subset of a frequent set is frequent!
 - If {A, B} is frequent. Each occurrence of A, B includes both A and B, then both A and B alone must also be frequent
- A long pattern (itemsets) contains a combinatorial number of sub-patterns (itemsets)
 - A frequent set with 100 items contains

$$\begin{pmatrix} 100 \\ 1 \end{pmatrix} + \begin{pmatrix} 100 \\ 2 \end{pmatrix} + \dots + \begin{pmatrix} 100 \\ 100 \end{pmatrix} = 2^{100} - 1$$

 Solution: look at closed patterns and maxpatterns

Closed Patterns and Max-Patterns

- An itemset X is closed if X is frequent and there exists no super-itemset $Y \supset X$, with the same support as X
- An itemset X is a max-itemset if X is frequent and there exists no frequent super-itemset Y such that Y ⊃ X and Y is frequent
 - An itemset is maximal if none of its immediate supersets are frequent
- Closed pattern is a lossless compression of freq. patterns
 - reducing the num. of patterns and rules

Closed Patterns and Max-Patterns

- DB = {<a₁, ..., a₁₀₀>, <a₁, ..., a₅₀>}
 - minsup = 1
- What is the set of closed itemset?
 - <a₁, ..., a₁₀₀> : 1
 - < $a_1, ..., a_{50}$ > : 2
- What is the set of max-pattern?
 - <a₁, ..., a₁₀₀> : 1
- What is the set of all patterns?
 - **=** !!!

Mining Association Rules

- Two-step approach
 - 1. Frequent Itemset Generation
 - generate all itemsets whose support ≥ minsup

2. Rule Generation

- generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is computationally expensive

From Frequent Itemsets to Association Rules

Given a frequent set {A, B, E}, what are possible association rules?

- {	A }	-> <	{B,	E}
------------	------------	------	-----	----

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

From Frequent Itemsets to Association Rules

Given a frequent set {A, B, E}, what are possible association rules?

$$\blacksquare$$
 {A} -> {B, E}, c = 2/6 = 0.33

$$\blacksquare$$
 {A, B} -> {E}, c = 2/4 = 0.50

$$\blacksquare$$
 {A, E} -> {B}, c = 2/2 = 1.00

$$\blacksquare$$
 {B} -> {A, E}, c = 2/7 = 0.28

•
$$\{B, E\} \rightarrow \{A\}, c = 2/2 = 1.00$$

$$\blacksquare$$
 {E} -> {A, B}, c = 2/2 = 1.00

TID	List of items
1	A, B, E
2	B, D
3	B, C
4	A, B, D
5	A, C
6	B, C
7	A, C
8	A, B, C, E
9	A, B, C

- Each rule is binary partition of same itemset
 - have identical support, but different confidence

Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - number is sensitive to the minsup threshold
 - when minsup is low, there exists potentially an exponential number of frequent itemsets

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~O(NMw) -> expensive M = 2^d

Computational Complexity

- Given d unique items
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[\binom{d}{k} \times \sum_{j=1}^{d-k} \binom{d-k}{j} \right]$$
= 3^d - 2^{d+1} + 1

If d=6, R = 602 rules

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - complete search: M=2^d
 - use pruning methods to reduce M
- Reduce the number of transactions (N)
 - reduce size of N as the size of itemset increases
 - used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - use efficient data structures to store candidates or transactions
 - no need to match every candidate against every transaction

Apriori

- Apriori principle:
 - if an itemset is frequent, then all of its subsets must also be frequent
 - if there is any itemset which is infrequent, its supersets should not be generated

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- support of an itemset never exceeds the support of its subsets
- the anti-monotone property of support

Illustrating Apriori Principle

Apriori Algorithm

- Method
 - let k=1
 - generate frequent itemsets of length 1
 - repeat until no new frequent itemsets identified
 - generate length (k +1) candidate itemsets from length k frequent itemsets
 - prune candidate itemsets containing subsets of length k
 that are infrequent
 - count support of each candidate by scanning the DB
 - eliminate candidates that are infrequent, leaving only those that are frequent

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Algorithm - Pseudocode

```
C<sub>k</sub>: Candidate itemset of size k
L_k: frequent itemset of size k
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k != emptyset; k++) do begin
   C_{k+1} = candidates generated from L_k;
   for each transaction t in database do
     increment the count of all candidates in C_{k+1} that are
      contained in t
   L_{k+1} = candidates in C_{k+1} with min_support
   end
return U_k L_k;
```

Apriori Algorithm - Example

Database TDB

TidItems10A, C, D20B, C, E30A, B, C, E40B, E

 $Sup_{min} = 2$

1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

2nd scan

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 C_3 **Itemset** {B, C, E}

 $3^{\text{rd}} \text{ scan}$

Itemset	sup		
{B, C, E}	2		

Apriori Algorithm Example: Details

- Consider DB of 9 transactions
- minsup = 2/9 = 0.28
- Let *minconf* = 0.70

TID	List of Items		
T100	11, 12, 15		
T100	12, 14		
T100	12, 13		
T100	11, 12, 14		
T100	I1, I3		
T100	12, 13		
T100	I1, I3		
T100	11, 12 ,13, 15		
T100	11, 12, 13		

Step 1: Generate 1-itemset patterns

0 0 0	Itemset	Sup.Count	Compare candidate support count with minimum support count	Itemset	Sup.Count
Scan D for count of each candidate	{I1}	6		{I1}	6
	{I2}	7		{I2}	7
•	{13}	6		{13}	6
	{14}	2		{14}	2
	{15}	2		{15}	2
C_1			-	L	- 1

- Set of frequent 1-itemset, L₁, consists of candidate 1-itemsets satisfying minimum support
- In first iteration, each item is a member of the set of candidates

Step 2: Generate 2-itemset patterns

Step 2: Generate 2-itemset patterns

- To discover the set of frequent 2-itemsets,
 L₂, the algorithm uses L₁ Join L₁ to
 generate a candidate set of 2-itemsets, C₂
- The transactions in D are scanned and the support count for each candidate itemset in C₂ is accumulated (middle table)
- Set of frequent 2-itemsets, L₂, is then determined, consisting of those candidate 2-itemsets in C2 having minimum support

Step 3: Generate 3-itemset patterns

- Generation of set of candidate 3-itemsets, C₃, involves use of Apriori property
- To find C₃, compute L₂ Join L₂
- $C_3 = \{ \{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\} \}$
- Join step complete, prune step used to reduce size of C₃

Step 3: Generate 3-itemset patterns

- Use Aprori property: all subsets of frequent itemsets must also be frequent
- Ex. {I1, I2, I3} has 2-itemsets of:
 - {I1, I2}, {I1, I3}, {I2, I3} are all in L₂,
 - keep {I1, I2, I3} in C₃
- Ex. {12, 13, 15}
 - **•** {I2, I3}, {I2, I5}, {I3, I5}
 - {I3, I5} not a member of L₂, thus {I2, I3, I5} not in C₃
- Therefore, $C_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}$

Step 4: Generate 4-itemset patterns

- Algorithm uses L₃ Join L₃ to generate 4itemsets, C₄.
 - Join results in { {I1, I2, I3, I5} }
 - itemset is pruned since { {I2, I3, I5} } is not frequent
- Algorithm terminates, having found all frequent items
- Still left to do
 - generate association rules from itemsets
 - improve efficiency

Implementation Details

- How to Count Supports of Candidates?
 - candidate itemsets are stored in hash-tree
 - leaf node of hash-tree contains a list of itemsets and counts
 - interior node contains a hash table
 - subset function: finds all the candidates contained in a transaction

Reducing Number of Comparisons

- Candidate counting
 - scan the database of transactions to determine the support of each candidate itemset
 - to reduce the number of comparisons, store the candidates in a hash structure
 - instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions Hash Structure TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke Buckets

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 6}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

- Hash function / subset function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

Hash Tree

Hash Tree

Hash Tree

Subset Operation

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

TID	A 1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

• Number of frequent itemsets
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

Need a compact representation

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same

support as the itemset

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	{A,B,C,D}

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
$\{A,B,C,D\}$	2

Maximal vs. Closed Itemsets

Maximal vs. Closed Frequent Itemsets

Maximal vs. Closed Itemsets

Maximal vs. Closed Itemsets

- Closed itemsets allow simpler computation of the support of their subsets than maximal itemsets
 - Ex. support of (AB) must be the same as one of its supersets: (ABC), (ABD), (ABE)
 - But,
 - s(AB) >= s(ABC),
 - s(AB) >= s(ABD), and
 - s(AB) >= s(ABE)
 - Implies,
 - s(AB) = max(s(ABC), s(ABD), s(ABE))

Alternative Method: Frequent Itemset Gen.

- Traversal of Itemset Lattice
 - general-to-specific vs. specific-to-general

Alternative Method: Frequent Itemset Gen.

- Traversal of Itemset Lattice
 - Equivalent Classes

Alternative Method: Frequent Itemset Gen.

- Traversal of Itemset Lattice
 - Breadth-first vs. Depth-first

(a) Breadth first

(b) Depth first

Alternative Methods: Frequent Itemset Gen.

- Representation of Database
 - horizontal vs. vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	C	D	Е
1	1	2	2	1
4	2	3	4	3 6
4 5 6	2 5	4	5 9	6
6	7	2 3 4 8 9	9	
7	8 10	9		
8	10			
9				

Mining Association Rules

- Two-step approach
 - 1. Frequent Itemset Generation
 - generate all itemsets whose support ≥ minsup

2. Rule Generation

- generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is computationally expensive

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f -> { L - f } satisfies the minimum confidence requirement
 - if {A, B, C, D} is a frequent itemset, candidate rules:

ABC -> D	ABD -> C	ACD -> B	BDC -> A
D -> ABC	C -> ABD	B -> ACD	A -> ABC
AB -> CD	AC -> BD	AD -> BC	BC -> AD
BD -> AC	CD -> AB		

If |L| = k, then there are 2^k – 2 candidate rules (ignoring, L -> Ø and Ø -> L)

Efficient Rule Generation

- How to efficiently generate rules from frequent analysis?
 - In general, confidence does not have an antimonotone property
 - c(ABC -> D) can be larger or smaller than c(AB -> D)
 - But confidence of rules generated from the same itemset has an anti-monotone property
 - e.g., L = {A, B, C, D} $c(ABC -> D) \ge c(AB -> CD) \ge c(A -> BCD)$
 - confidence is anti-monotone w.r.t. inclusion on the RHS of the rule

Rule Generation

Rule Generation

 A candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD -> AB, BD -> AC)
 would produce the candidate
 rule D -> ABC

 Prune rule D -> ABC if its subset AD -> BC does not have high confidence

Example: Rule Generation

- L = { {I1}, {I2}, {I3}, {I4}, {I5}, {I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}, {I1, I2, I3}, {I1, I2, I5} }
 - Look at {I1, I2, I5}
- minconf is 70%
 - R1: I1 ^ I2 -> I5

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I1,I2\})} = \frac{2}{4} = 50\%$$

■ R2: I1 ^ I5 -> I2

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I1,I5\})} = \frac{2}{2} = 100\%$$

■ R3: I2 ^ I5 -> I1

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I2,I5\})} = \frac{2}{2} = 100\%$$

TID	List of Items
T100	I1, I2, I5
T100	12, 14
T100	12, 13
T100	11, 12, 14
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	11, 12 ,13, 15
T100	11, 12, 13

Example: Rule Generation

■ R4: I1 -> I2 ^ I5

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I1\})} = \frac{2}{6} = 33\%$$

R5: I2 -> I1 ^ I5

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I2\})} = \frac{2}{7} = 29\%$$

R6: I5 -> I1 ^ I2

$$conf = \frac{s(\{I1,I2,I5\})}{s(\{I5\})} = \frac{2}{2} = 100\%$$

R2, R3, and R6 are selected

TID	List of Items
T100	I1, I2, I5
T100	12, 14
T100	12, 13
T100	11, 12, 14
T100	I1, I3
T100	12, 13
T100	I1, I3
T100	11, 12 ,13, 15
T100	I1, I2, I3

Extensions to Apriori: Improve Efficiency

- Partition DB, find local frequent patterns, consolidate to global patterns
 - Savasere, Omiecinski, and Navathe, VLDB, 1995
- Reduce number of candidates with DHP
 - Park, Chen, and Yu, SIGMOD, 1995
- Sampling for frequent patterns, verify pattern in db
 - Toivonen, VLDB, 1996.
- Dynamic Itemset counting (DIC)
 - Brin, Motwani, Ullman, Tsur, SIGMOD, 1997

Mining Frequent Patterns w/o Cand. Gen.

- Bottlenecks of Apriori
 - breadth-first (i.e., level-wise) search
 - candidate generation and test
 - may generate huge number of candidates
- FPGrowth Approach (Han, Pei, Yin SIGMOD, 2000)
 - depth-first search
 - avoid explicit candidate generation
- Main Idea grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - get all trans. with "abc", project DB on abc: DB | abc
 - "d" is local frequent item in DB | abc, then abcd is freq. pattern