Machine-learning Based Heuristics for Propositional SAT Solving

Ezequiel Orbe

Grupo de Procesamiento de Lenguaje Natural Fa.M.A.F., Universidad Nacional de Córdoba

06/12/10

Introducing Myself...

Info

- Me: Alejandro Ezequiel Orbe
- Supervisors: Gabriel Infante Lopez & Carlos Areces
- Research Area: Propositional Logic ∩ Machine Learning.

Research Topic

Machine-learning based Heuristics for Propositional SAT.

Outline of the Talk

Machine-learning based heuristics for Propositional SAT

2 Exploiting Symmetry in Propositional SAT Solving

Background

Facts about SAT Solving

- Propositional satisfiability (SAT) \Rightarrow well-known \mathcal{NP} -complete problem.
- Relevance \Rightarrow Many \mathcal{NP} -problems mapped into a SAT problem.
- Two types of solvers ⇒ Complete & Incomplete.
- Complete Solvers ⇒ Conflict-driven (CDCL) & Look-ahead.
- General purpose heuristics.

Background

Previous Work

- Understanding Random SAT: Beyond the Clauses-to-Variables Ratio. Nudelman et al. 2007.
- Hierarchical hardness models for SAT. Lin Xu et al. 2007.
- Restart Strategy Selection using Machine Learning Techniques. Toby Walsh et al. 2009.
- Problem-Sensitive Restart Heuristics for the DPLL
 Procedure. Carsten Sinz et al. 2009.

Our Research...

Goals

- Automatically find structure in problems from an specific domain.
- Exploit the structure to guide the search.

Setup

- Problem Generator ⇒ Training Material.
- Features Set ⇒ Captures structural properties.
- Oracle ⇒ Branching Heuristic ⇒ Decision & Direction
- Oracle ⇒ Probability Distribution ⇒ Mixture-of-experts.

Setup

Informal Definition

- In general ⇒ The symmetry of a discrete object is a permutation of its components that leaves the object intact.
- In SAT-solving ⇒ mapping of a problem into itself that preserves its structure and solutions.

Example

- $\mathcal{T} = (\neg A \lor B \lor C) \land (A \lor \neg B \lor C).$
- $\bullet \ \theta_1 = \{A \mapsto B, B \mapsto A\}$

$$\theta_1(\mathcal{T}) = (\neg B \lor A \lor C) \land (B \lor \neg A \lor C)$$

 $\bullet \ \theta_2 = \{A \mapsto \neg A, B \mapsto \neg B\}$

$$\theta_2(\mathcal{T}) = (\neg \neg A \lor \neg B \lor C) \land (\neg A \lor \neg \neg B \lor C)$$

Example

How can we use it?

- Symmetries creates a partition in the assignment set.
- In search problems, if there are several points of the search space that are symmetric ⇒ just explore one of them.

Example

$$\bullet \quad \mathcal{T} = (\neg A \lor B \lor C) \land (A \lor \neg B \lor C).$$

$$\bullet \ \theta_1 = \{A \mapsto B, B \mapsto A\}$$

Α	В	C	$\mid \mathcal{T} \mid$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$\begin{array}{l} \theta_1(000) = 000 \\ \theta_1(001) = 001 \\ \theta_1(010) = 100 \\ \theta_1(011) = 101 \\ \theta_1(100) = 010 \\ \theta_1(101) = 011 \\ \theta_1(110) = 110 \\ \theta_1(111) = 111 \end{array}$$

$$C_0 = \{000\}$$

$$C_1 = \{001\}$$

$$C_2 = \{010, 100\}$$

$$C_3 = \{011, 101\}$$

$$C_4 = \{110\}$$

$$C_5 = \{111\}$$

Notation & Definitions

- Let $V = \{x_1, x_2, \dots, x_n\}$ be a set of boolean variables.
- Lets assume a total order of the variables in V: $x_1 < x_2 < \ldots < x_n$
- Let $L = \{x_1, \neg x_1, x_2, \neg x_2, \dots, x_n, \neg x_n\}$ be the set of literals of variables in V.
- ullet Let Sym(L) be the symmetric group of the set L of literals.
- If $v \in L$ and $\theta \in Sym(L)$, the image of v under θ is denoted by v^{θ} .

Definition

- Let T be a theory over L and let $\theta \in Sym(L)$.
- The permutation θ is a **symmetry**, or **automorphism**, of T iff $T^{\theta} = T$.
- The set of symmetries of T is a subgroup of Sym(L) and is denoted by Aut(T).

Definition

- A truth assignment for a set of variables V is a function $A: V \to \{0, 1\}$.
- A truth assignment A of V is called a **model** of theory T if A(T)=1.
- The set of models of T is denoted $\mathcal{M}(T)$.

Some facts...

- Symmetries can be viewed as acting on assignments.
- If $\theta \in Sym(L)$ then θ acts on the set of truth assignments by mapping $A \mapsto {}^{\theta}A$ where ${}^{\theta}A(v) = A(v^{\theta})$ for $v \in L$.
- Hence, if T is a theory over L, $A(T^{\theta}) = {}^{\theta}A(T)$.
- ullet Any symmetry of T maps models of T to models of T, and non-models of T to non-models

Proposition

Let T be a theory over V, $\theta \in Aut(T)$, and A a truth assignment of V. Then $A \in \mathcal{M}(T)$ iff $\theta A \in \mathcal{M}(T)$

More facts...

- Aut(T) induces an equivalences relation on the set of truth assignments of L, wherein $A \sim B$ if $B = {}^{\theta} A$ for some $\theta \in Aut(T)$
- The equivalence classes are the *orbits* of Aut(T) in the set of assignments.
- Any equivalence class contains only models of T or contains no models of T.
- This indicates why symmetries can be used to reduce search: we can determine whether T has a model by visiting each equivalence class rather than visiting each truth assignment.

Symmetry Detection

How can we do it?

- The problem of extracting symmetries of a CNF formula is reduced to the colored graph automorphism problem.
- Main idea: Find a colored graph whose symmetry group is isomorphic to the symmetry group of the CNF formula.
- Available Tool ⇒ Saucy
- Generates a graph with 2V + C vertices.

Pre-processing Approach

- Complete Symmetry Breaking:
 - Augment the original formula with Symmetry Breaking Predicates (SBP).
 - Pros:
 - Each predicate select exactly on representative assignment from each equivalence class.
 - Cons:
 - The size of the predicate can exceed significantly the size of the original formula.

$$egin{aligned} \operatorname{PP}\left(\pi;X
ight) &= \operatorname{leq}\left(X,X^{\pi}
ight) \ &= igwedge_{i \in [0,n-1]} \left[igwedge_{j \in [i+1,n-1]} \left(x_{j} = x_{j}^{\pi}
ight)
ight]
ightarrow \left(x_{i} \leqslant x_{i}^{\pi}
ight) \end{aligned}$$

Pre-processing Approach

- Partial Symmetry Breaking
 - Full symmetry breaking is unfeasible.
 - Pros:
 - Only breaks symmetries for the set of irredundant generators of the symmetry group.
 - Cons:
 - A partial SBP selects the least assignment in each orbit of the symmetry group but may include other assignments as well.

In-processing Approach

- Dynamic Symmetry Breaking
 - Breaks symmetries during the search.
 - There is little mention to this approach in the literature.
 - Pros:
 - Identify local symmetries.
 - Avoid the creation of SBPs.
 - Boost the performance of conflict-driven learning.
 - Cons:
 - Difficult to integrate with current solvers.

Our approach to Symmetry-Breaking

- Dynamic Partial Symmetry Breaking.
- Use the set of irredundant generators.
- Integration of symmetry detection in the search process.
- Symmetry breaking as component of a complex heuristic (Symmetry Expert).

Results

Thank you!