Engineering Secure Software Systems

January 5, 2021: ProVerif: Background and First Examples (Lockdown & Power Outage Edition)

Henning Schnoor

Institut für Informatik, Christian-Albrechts-Universität zu Kiel

Part I: Crypto Protocols

Overview

Part I: Crypto Protocols

Foundations

Cryptography

An Example and an Attack

More Examples

Formal Protocol Model

Automatic Analysis: Theoretical Foundations

Automatic Analysis: Undecidability

Incomplete Algorithms

Automatic Analysis in Practice: ProVerif

Hello World and simple Examples

Equational Theories

Overview

Part I: Crypto Protocols

Foundations

Cryptography

An Example and an Attack

More Examples

Formal Protocol Model

Automatic Analysis: Theoretical Foundations

Automatic Analysis: Undecidability

Incomplete Algorithms

Automatic Analysis in Practice: ProVerif

Hello World and simple Examples

Equational Theories

Logic Modeling Outline

facts

- $d(\hat{k}_C)$
- d({0,1})
 - ...

DY deductions

- $d(\mathsf{enc}_{k_{\mathsf{C}}}^{\mathsf{a}}(x)) \wedge d(\hat{k}_{\mathsf{C}}) \rightarrow d(x)$
- $d(x) \wedge d(y) \rightarrow d([x,y])$
- $d(x) \rightarrow d(\text{hash}(x))$
- ...

Horn clauses

$$(x_1 \wedge x_2 \wedge \cdots \wedge x_n \to y) \ \leftrightarrow \ (\overline{x_1} \vee \overline{x_2} \vee \cdots \vee \overline{x_n} \vee y)$$

target clause

$$\neg d(\mathsf{FAIL})$$

protocol deductions

- $d(\mathsf{enc}^\mathtt{a}_{k_B}\left([A,x]\right)) o d(\mathsf{enc}^\mathtt{a}_{k_A}\left([B,x]\right))$
- $d(\mathsf{enc}^{\mathsf{a}}_{k_{\mathsf{A}}}\left([B,x,y]
 ight))
 ightarrow \left(\mathsf{enc}^{\mathsf{a}}_{k_{\mathsf{B}}}\left(y
 ight)
 ight)$
- ...

Exercise

Task (Needham-Schroeder as Horn clauses)

Model the Needham-Schroeder protocol as Horn clauses and use this formalism to show that the protocol is insecure. To do this, first list the facts, Dolev-Yao deductions, protocol deductions and the target clause. Then, use logical inference to show that the protocol is in fact insecure. Do you see any limits or imprecisions in this approach?

Overview

Part I: Crypto Protocols

Foundations

Cryptography

An Example and an Attack

More Examples

Formal Protocol Model

Automatic Analysis: Theoretical Foundations

Automatic Analysis: Undecidability

Automatic Analysis in Practice: ProVerif

Hello World and simple Examples

Equational Theories

Applying the Theory: Analysis in Practice

so far in lecture

- formal model
- formal security properties
- decidability and complexity results
- Horn modeling
- abstraction

now: application of the theory

different analysis tools

- ProVerif (Bruno Blanchet, Vincent Cheval)
- CryptoVerif (Bruno Blanchet, David Cadé)
- FDR (Formal Systems Europe)

ProVerif in Lecture I

outline

- ProVerif introduction (syntax, semantics, examples)
- generalized cryptographic primitives in ProVerif
- extended security properties in ProVerif

no detailed theory (literature references)

kev references

paper Bruno Blanchet. "Using Horn Clauses for Analyzing Security Protocols". In: Cryptology and Information Security Series 5 (2011), pp. 86–111

update Vincent Cheval, Véronique Cortier, and Mathieu Turuani. "A Little More Conversation, a Little Less Action, a Lot More Satisfaction: Global States in ProVerif". In: 31st IEEE Computer Security Foundations Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer Society, 2018, pp. 344–358. ISBN: 978-1-5386-6680-7. DOI: 10.1109/CSF.2018.00032. URL: https://doi.org/10.1109/CSF.2018.00032

ProVerif in Lecture II

learning goals

practice analyzing protocols with ProVerif

security properties study of complex properties (without detailed formal model)

conceptual undecidable problems in real life

consequences for tool application

not a learning goal

complete introduction to ProVerif (see reading exercise on Needham-Schroeder modeling)

ProVerif Applications

non-trivial examples

- certified email protocol, including ssh layer, JFK protocol (candidate for IKE replacement), secure filesystem Plutus, web service verification
- e-voting protocols, authenticated routing, zero knowledge protocols
- TLS (F# implementation for .NET), 5G EAP-TLS
- Telegram, Bitcoin Smart Contracts, Healthcare protocols
- ...(see Google Scholar, ProVerif since 2020)

original reference

Bruno Blanchet. "Using Horn Clauses for Analyzing Security Protocols". In: Cryptology and Information Security Series 5 (2011), pp. 86–111

ProVerif

features

- analysis of protocols in symbolic model
- can handle an unbounded number of protocol sessions (necessarily incomplete)
- user-provided specification of cryptographic primitives and security properties

example security properties

- secrecy
- strong secrecy
- authentication
- correspondence
- observational equivalence

incompleteness consequences

- "don't know"
- · non-termination

Overview

Part I: Crypto Protocols

Foundations

Cryptography

An Example and an Attack

More Examples

Formal Protocol Model

Automatic Analysis: Theoretical Foundations

Automatic Analysis: Undecidability

Incomplete Algorithms

Automatic Analysis in Practice: ProVerif

Hello World and simple Examples

Equational Theories

ProVerif "Hello, World"

```
hello.pv (from PV doc) free c:channel.
```

free Plain:bitstring [private]. free RSA:bitstring [private].

```
query attacker(RSA).
query attacker(Plain).
```

```
process
out(c,RSA);
o
```

```
elements
free free algebraic variables
channel communication channel
bitstring data type
private A cannot (directly) access
```

query security property

out send on channel

execution

- send "private" value RSA on public channel
- query: secrecy for
 - RSA
 - Plain

ProVerif usage

command line tool

- \$ proverif 2021_01_05_lecture_08/01_hello.pv
- \$ proverif -graph targetDir 2021_01_05_lecture_08/01_hello.pv
- \$ proverif -html targetDir 2021_01_05_lecture_08/01_hello.pv

live demo

ProVerif Analysis Result: Hello, World

A trace has been found.

The Handshake Protocol

example: handshake (from ProVerif tutorial)

$$A \rightarrow B \quad k_A$$

$$B \rightarrow A \quad \mathsf{enc}_{k_A}^{\mathsf{a}} \left(\mathsf{sig}_{k_B} \left([k_B, k] \right) \right)$$

$$A \rightarrow B$$
 enc_k (FAIL)

attack

$$\mathcal{A}
ightarrow \mathsf{B} \quad \mathsf{k}_{A}$$

$$B
ightarrow \mathcal{A} \quad \mathsf{enc}^{\mathsf{a}}_{k_{\mathcal{A}}} \left(\mathsf{sig}_{k_{\mathcal{B}}} \left(\left[k_{\mathcal{B}}, k
ight]
ight)
ight)$$

$$A \rightarrow B$$
 k_A

$$A \rightarrow A \quad \mathsf{enc}_{k_A}^{\mathsf{a}} \left(\mathsf{sig}_{k_B} \left([k_B, k] \right) \right)$$

$$A \rightarrow B$$
 enc^s_k (FAIL)

properties?

- intended security properties?
- protocol secure?

fix

add receiver to message

Analyzing the Handshake Protocol in ProVerif

steps

- 1. specify cryptographic primitives
- 2. specify communication infrastructure
- 3. specify adversary goal
- 4. specify Alice & Bob
- 5. specify "main process"

ProVerif: Modeling Protocols With Crypto

lecture so far behavior of crypto primitives

- asymmetric encryption
- symmetric encryption
- signatures
- hash functions

ProVerif: flexible modeling of primitives technique: equational theories, more general than DY-like specification isee example scripts

Overview

Part I: Crypto Protocols

Foundations

Cryptography

An Example and an Attack

More Examples

Formal Protocol Model

Automatic Analysis: Theoretical Foundations

Automatic Analysis: Undecidability

Incomplete Algorithms

Automatic Analysis in Practice: ProVerif

Hello World and simple Examples

Equational Theories

Crypto Primitives: Generalizing Dolev-Yao

definition

- equation: pair (l, r) of terms, also written l = r
 - left: "complex" term
- right: "simple" termequational theory: set E of equations

caveat: choose term signature matching to E (implicit)

rewrite relation

- $t_1 \rightarrow E t_2$: t_2 obtained from t_1 by applying rule from E
- \rightarrow_{E}^{*} : closure of \rightarrow_{E} under transitivity, reflexivity, application of function symbols
- $\equiv_{\mathbf{E}}$: closure of $\twoheadrightarrow_{\mathbf{E}}^*$ under symmetry and transitivity

Equational Theories: Examples

primitives

- asym. encryption $\operatorname{dec}_{\hat{k}_{A}}^{a}\left(\operatorname{enc}_{k_{a}}^{a}\left(x\right)\right)=x$
- sym. encryption $\operatorname{dec}_{k}^{s}(\operatorname{enc}_{k}^{s}(x)) = x$
- signature
 - $\operatorname{check}(k_A, \operatorname{sig}_{k_A}(x)) = \operatorname{ok}$
 - $\operatorname{extr} \operatorname{key}(\operatorname{sig}_{k_A}(x)) = k_A$
 - $\operatorname{extr} \operatorname{msg}(\operatorname{sig}_{k_{\Delta}}(x)) = x$
- · hash function
- bit commitment open (bc(k, b), k) = b
- · trapdoor commitments
 - open $(\operatorname{tdc}(m, r, t_d), r) = m$
 - $\mathsf{tdc}\left(m_2, f(m_1, r, t_d, m_2), t_d\right) = \mathsf{tdc}\left(m_1, r, t_d\right)$

"Simple" Equational Theories

definition

```
\rightarrow_E is
```

- confluent, if for all t, t_1 , t_2 with $t \rightarrow_E^* t_1$ and $t \rightarrow_E^* t_2$ there is some t' with $t_1 \rightarrow_E^* t'$ and $t_2 \rightarrow_E^* t'$.
- terminating, if there is no infinite sequence t_1, t_2, \dots with $t_i \neq t_{i+1}$ and $t_i \rightarrow E t_{i+1}$ for all i.
- E is convergent, if \rightarrow_E is confluent and terminating
- E is convergent subterm theory, if
 - E is convergent, and
 - for all $(l,r) \in E$: r is subterm of l or constant

Convergent Theories

definition

A term t is in E-normal-form if t = t' for all $t \rightarrow_E t'$.

lemma & definition

If $\emph{\textbf{E}}$ is convergent, then for every term $\emph{\textbf{t}}$, there is a unique term $[\emph{\textbf{t}}]$ with

- [t] is in E-normal-form,
- $t \equiv_E [t]$.

lemma

$$t \equiv_{\text{\it E}} t' \text{ iff } [t] = [t'].$$

computation of normal form

How do we compute [t] from t? for a convergent theory?

Equational Theories: Examples Revisited

primitives

- asym. encryption $\operatorname{dec}_{\hat{k}_{A}}^{\mathrm{a}}\left(\operatorname{enc}_{k_{a}}^{\mathrm{a}}\left(x\right)\right)=x$
- sym. encryption $\operatorname{dec}_{k}^{s}(\operatorname{enc}_{k}^{s}(x)) = x$
- signature
 - $\operatorname{check}(k_A, \operatorname{sig}_{k_A}(x)) = \operatorname{ok}$
 - $\operatorname{extr} \operatorname{key}(\operatorname{sig}_{k_A}(x)) = k_A$
 - $\operatorname{extr} \operatorname{msg}(\operatorname{sig}_{k_{\Delta}}(x)) = x$
- · hash function
- bit commitment open (bc(k, b), k) = b
- trapdoor commitments
 - open $(tdc(m, r, t_d), r) = m$
 - $tdc(m_2, f(m_1, r, t_d, m_2), t_d) = tdc(m_1, r, t_d)$

discussion

- · complexity?
- · observations?

remember

modeling primitives at this level of abstraction loses details

algorithms

algorithms discussed so far do not cover all of these

Exercise

Task (Missing Proof)

Prove the following lemma that was stated in the lecture without proof:

If **E** is a convergent equational theory, then:

- 1. For every term t, there is a unique term [t] with
 - [t] is in E-normal-form,
 - $t \equiv_E [t]$.
- **2.** For terms t and t', we have that $t \equiv_E t'$ if and only if [t] = [t'].

Exercise

Task ("Badly-Behaved" Equational Theories)

Define equational theories for which the resulting rewrite relation \rightarrow_E is not a convergent subterm theory, i.e., one that is not confluent, not terminating, or not a subterm theory.

Algorithms for Convergent Subterm Theories

Theorem

For convergent subterm theories, the following problems are polynomial-time decidable:

- given E, t, t', does $t \rightarrow_E t'$ hold?
- given E, t, t', is $t \equiv_E t'$?

Theorem

Also computable in polynomial time: given E, t, compute [t] (DAG representation)

reference

Martın Abadi and Véronique Cortier. "Deciding knowledge in security protocols under equational theories". In: Theoretical Computer Science 367.1-2 (2006), pp. 2–32

Protocol Notation with Equational Theories

Needham Schroeder

Alice
$$\epsilon$$
 \rightarrow $\operatorname{enc}_{k_B}^{\operatorname{a}}(N_A, N_A)$ \rightarrow $\operatorname{enc}_{k_B}^{\operatorname{a}}(y)$

Bob
$$\operatorname{\mathsf{enc}}^{\mathsf{a}}_{k_B}(A,x) \longrightarrow \operatorname{\mathsf{enc}}^{\mathsf{a}}_{k_A}(x,N_B)$$

equational theory

$$\operatorname{dec}_{\hat{k}_{A}}^{a}\left(\operatorname{enc}_{k_{a}}^{a}\left(x\right)\right)=x$$

"simplification"

- new notation for protocols?
- advantage?

additional equations for pairing

- split1 (pair (x, y)) = x
- split2 (pair (x, y)) = y

Alice

$$egin{array}{lll} \epsilon &
ightarrow & \mathsf{enc}^{\mathsf{a}}_{k_{B}}\left(A, N_{\mathsf{A}}
ight) \ x &
ightarrow & \mathsf{enc}^{\mathsf{a}}_{k_{B}}\left(\mathsf{split2}\left(\mathsf{dec}^{\mathsf{a}}_{\hat{k}_{\mathtt{A}}}\left(x
ight)
ight)
ight) \end{array}$$

Bob

$$y \quad o \quad \mathsf{enc}^{\mathsf{a}}_{\mathit{R}_{\mathsf{A}}}\left(\mathsf{pair}\left(\mathsf{split2}\left(\mathsf{dec}^{\mathsf{a}}_{\mathit{\hat{R}}_{\mathsf{B}}}\left(y\right)\right),\mathsf{N}_{\mathsf{B}}\right)\right)$$

Handshake-Protocol in ProVerif: Primitives

```
symmetric encryption
     tvpe kev
     fun senc(bitstring, key): bitstring
     reduc forall m:bitstring, k:kev: sdec(senc(m,k),k) = m
asymmetric encryption
     type skey
     type pkey
     fun pk(skey): pkey
     fun aenc(bitstring, pkey): bitstring
     reduc forall m:bitstring, sk:skey; adec(aenc(m,pk(sk)),sk) = m
signatures
     tvpe sskev
     type pskey
     fun spk(sskey): spkey
     fun sign(bitstring, sskey): bitstring
     reduc forall m:bitstring, ssk:sskey; getmess(sign(m,ssk)) = m
     reduc forall m:bitstring, ssk:sskev; checksign(sign(m.ssk),spk(ssk)) = m
```

Handshake-Protocol in ProVerif: Communication and Adversary Goal

channel, values, attacker goal free c:channel free FAIL:bitstring [private] query attacker (FAIL)

models

- c is public channel
- FAIL: bitstring, private (not in initial ${\cal A}$ knowledge)
- security property: ${\cal A}$ cannot derive FAIL

Handshake-Protocol in ProVerif: Alice Process

protocol

```
egin{array}{ll} \mathsf{A} 
ightarrow \mathsf{B} & \mathsf{A} & \mathsf{k}_\mathsf{A} \ \mathsf{B} 
ightarrow \mathsf{A} & \mathsf{enc}^\mathtt{a}_{k_\mathsf{A}} \left( \mathsf{sig}_{k_\mathsf{B}} \left( [k_\mathsf{B}, k] 
ight) 
ight) \ \mathsf{A} 
ightarrow \mathsf{B} & \mathsf{enc}^\mathtt{s}_\mathtt{b} \left( \mathsf{FAIL} 
ight) \end{array}
```

client (Alice)

```
let clientA(pkA:pkey,skA:skey,pkB:spkey)=
  out (c,pkA)
  in (c,x:bitstring)
  let y=adec(x,skA) in
    let (=pkB,k:key)=checksign(y,pkB) in
    out (c,senc(FAIL,k))
```

features

- keys as arguments
- FAIL global value
- decryptions explicit (pattern matching in formal model)

Handshake-Protocol in ProVerif: Bob Process

protocol

$$egin{aligned} A &
ightarrow B & k_A \ B &
ightarrow A & \mathsf{enc}_{k_A}^{\mathtt{a}} \left(\mathsf{sig}_{k_B} \left([k_B, k]
ight)
ight) \ A &
ightarrow B & \mathsf{enc}_{b}^{\mathtt{b}} \left(\mathsf{FAIL}
ight) \end{aligned}$$

server (Bob)

```
let serverB(pkB:spkey,skB:sskey)=
  in (c,pkX:pkey)
  new k:key
  out (c,aenc(sign((pkB,k),skB),pkX))
  in c,x:bitstring
  let z=sdec(x,k) in o
```

features

- type checking on message receive
- last line: "no match" if decryption fails

Handshake-Protocol in ProVerif: Main Process

previous processes

- clientA(pkA:pkey,skA:skey,pkB:spkey)
- serverB(pkB:spkey,skB:sskey)

main process

```
new skA:skey
new skB:sskey
let pkA=pk(skA) in out(c,pkA)
let pkB=spk(skB) in out(c,pkB)
( (!clientA(pkA,skA,pkB) | (!serverB(pkB,skB))) )
```

features

- key generation, sending of pkA, pkB on public channel
- call of Alice and Bob with matching parameters
- !: "replication operator"

ProVerif Script: Handshake Protocol

command line tool

- \$ proverif 2021_01_05_lecture_08/02_handshake.pv
- \$ proverif -graph targetDir 2021_01_05_lecture_08/02_handshake.pv
- \$ proverif -html targetDir 2021_01_05_lecture_08/02_handshake.pv

live demo

ProVerif Analysis Result: Handshake

