1-1401:
Proof: Suppose a 6 B 1 C, then a 6 B and a & C. Since a 6 B,
acaus. Since atc, atcnD. Thus, acBIC implies
ac(AUB)(CCUD)
1-14-02:
It is false.
Proof: To get a sunterexample, we could let n=7,
which is a prime number, so n3+n+7=(7+1+1)×7=9×7,
which is not a prime number. Thus, the argument
is false. []
H4Q3:
Proof: To prove that if x = 1, then y = 2. We could assume
that y=2. then the equation would be 4x=2x+2.
and x=1. So if y=2 then x=1, which is the
contrapositive of "if x = 1, then y = 2". Thus,
$-xy^2=2x+y$ implies that if $x\neq 1$, then $y\neq 2$.