In [48]: import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns

species

In [2]: data=pd.read_csv('IRIS.csv')

data In [3]:

sepal length sepal width petal length petal width Out[3]:

	sepai_iengtii	sepai_watii	petal_iengtii	petal_watii	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
•••					
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

5.0

data.head() In [4]:

Out[4]: sepal_width petal_length petal_width sepal_length species 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa

3.6

1.4

0.2 Iris-setosa

In [5]: data.head(10)

4

Out[5]: sepal_length sepal_width petal_length petal_width species 0 5.1 3.5 1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 1.4 5.0 3.6 0.2 Iris-setosa 5 5.4 3.9 1.7 0.4 Iris-setosa 6 4.6 3.4 1.4 0.3 Iris-setosa 5.0 7 3.4 1.5 0.2 Iris-setosa 8 4.4 2.9 1.4 0.2 Iris-setosa 4.9 3.1 1.5 0.1 Iris-setosa

In [6]: data.tail()

Ou+[6].		conal lawath	conal width	motal lamenth	مادا المناطقات	anasias
Out[6]:		sepal_length	sepal_width	petal_length	petal_width	species
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

In [7]: data.tail(10)

Out[7]:		sepal_length	sepal_width	petal_length	petal_width	species
	140	6.7	3.1	5.6	2.4	Iris-virginica
	141	6.9	3.1	5.1	2.3	Iris-virginica
	142	5.8	2.7	5.1	1.9	Iris-virginica
	143	6.8	3.2	5.9	2.3	Iris-virginica
	144	6.7	3.3	5.7	2.5	Iris-virginica
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

In [9]: data.shape

Out[9]: (150, 5)

In [10]: data.isnull()

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
•••			•••		•••
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns

```
In [11]:
         data.isnull().sum()
         sepal_length
Out[11]:
         sepal width
                          0
         petal_length
                          0
         petal_width
                          0
         species
                          0
         dtype: int64
         x=data.iloc[:,[0,1,2,3,]].values
In [12]:
         y=data.iloc[:,-1].values
         print(x)
In [14]:
```

[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.1] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.1 1.5 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1.] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4]

ſc	2	3.5	1 1
[5. [5.9	2. 3.	4.2	1.] 1.5]
[6.	2.2	4.	1.]
[6.1	2.9	4.7	1.4]
[5.6 [6.7	2.9 3.1	3.6 4.4	1.3] 1.4]
[5.6	3.	4.5	1.5]
[5.8	2.7	4.1	1.]
[6.2	2.2	4.5 3.9	1.5]
[5.6 [5.9	3.2	4.8	1.1] 1.8]
[6.1	2.8	4.	1.3]
[6.3	2.5	4.9	1.5]
[6.1 [6.4	2.8	4.7 4.3	1.2] 1.3]
[6.6	3.	4.4	1.4]
[6.8	2.8	4.8	1.4]
[6.7	3. 2.9	5.	1.7]
[6. [5.7	2.9	4.5 3.5	1.5] 1.]
[5.5	2.4	3.5 3.8 3.7	1.1]
[5.5 [5.8	2.4	3.7	1.]
[5.8 [6.	2.7 2.7	3.9 5.1	1.2] 1.6]
[5.4	3.	4.5	1.5]
[6.	3.4	4.5	1.6]
[6.7	3.1	4.7	1.5]
[6.3 [5.6	2.3	4.4 4.1	1.3] 1.3]
[5.5	2.5	4.	1.3]
[5.5	2.6	4.4	1.2]
[6.1	3.2.6	4.6	
[5.8 [5.	2.3	4.3.3	1.2] 1.]
[5. [5.6	2.7	4.2	
[5.7	3.	4.2	1.2]
[5.7 [6.2	2.9	4.2 4.3	1.3] 1.3]
[5.1]	2.5	3.	1.1]
[5.7	2.8	4.1	1.3]
[6.3	3.3	6.	2.5]
[5.8 [7.1	2.7	5.1 5.9	1.9] 2.1]
[6.3	2.9	5.6	1.8]
[6.5	3. 3. 2.5 2.9	5.8	2.2]
[7.6	3.	6.6	2.1]
[4.9 [7.3	2.5	4.5 6.3	1.7] 1.8]
[6.7	2.5	5.8	1.8]
[7.2	3.6	6.1	2.5]
[6.5 [6.4	3.2 2.7	5.1	2.]
[6.8	3.	5.3 5.5	1.9] 2.1]
[5.7	2.5	5.	2.]
[5.8	2.8	5.1	2.4]
[6.4 [6.5	3.2 3.	5.3 5.5	2.3] 1.8]
[7.7	3.8	6.7	2.2]
[7.7	2.6	6.9	2.3]
[6.	2.2	5.	1.5]

```
[6.9 3.2 5.7 2.3]
          [5.6 2.8 4.9 2. ]
          [7.7 2.8 6.7 2. ]
          [6.3 2.7 4.9 1.8]
           [6.7 3.3 5.7 2.1]
          [7.2 3.2 6. 1.8]
          [6.2 2.8 4.8 1.8]
          [6.1 3. 4.9 1.8]
          [6.4 2.8 5.6 2.1]
          [7.2 3. 5.8 1.6]
          [7.4 2.8 6.1 1.9]
          [7.9 3.8 6.4 2. ]
          [6.4 2.8 5.6 2.2]
          [6.3 2.8 5.1 1.5]
          [6.1 2.6 5.6 1.4]
          [7.7 3. 6.1 2.3]
          [6.3 3.4 5.6 2.4]
          [6.4 3.1 5.5 1.8]
          [6. 3. 4.8 1.8]
          [6.9 3.1 5.4 2.1]
          [6.7 3.1 5.6 2.4]
          [6.9 3.1 5.1 2.3]
          [5.8 2.7 5.1 1.9]
          [6.8 3.2 5.9 2.3]
          [6.7 3.3 5.7 2.5]
          [6.7 3. 5.2 2.3]
          [6.3 2.5 5. 1.9]
          [6.5 3. 5.2 2. ]
          [6.2 3.4 5.4 2.3]
          [5.9 3. 5.1 1.8]]
          x.shape
In [15]:
         (150, 4)
Out[15]:
         y.shape
In [16]:
         (150,)
Out[16]:
          sns.pairplot(data)
In [17]:
         <seaborn.axisgrid.PairGrid at 0x1b81296db80>
Out[17]:
```



```
#train our model
In [25]:
          dt.fit(x_train,y_train)
         DecisionTreeClassifier()
Out[25]:
In [26]:
         #training score
          dt.score(x_train,y_train)
Out[26]:
          pred=dt.predict(x_test)
In [27]:
In [28]:
          print(pred)
         [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0]
          c=pd.DataFrame({"Actual":y_test,"predicted":pred})
In [29]:
          print(c)
In [30]:
              Actual predicted
         0
                   2
                               2
         1
                   1
                               1
          2
                   0
                               0
          3
                   2
                               2
         4
                   0
                               0
         5
                   2
                               2
                   0
                               0
         6
         7
                   1
                               1
         8
                   1
                               1
         9
                   1
                               1
         10
                   2
                               2
         11
                   1
                               1
         12
                   1
                               1
         13
                   1
                               1
         14
                   1
                               1
         15
                   0
                               0
         16
                   1
                               1
         17
                   1
                               1
         18
                   0
                               0
         19
                   0
                               0
          20
                   2
                               2
         21
                   1
                               1
         22
                   0
                               0
         23
                   0
                               0
         24
                   2
                               2
         25
                   0
                               0
         26
                               0
                   0
         27
                   1
                               1
         28
                   1
                               1
         29
In [31]: from sklearn.metrics import accuracy_score
          print("The score on test data {}".format(accuracy_score(y_test,pred)))
In [34]:
         The score on test data 1.0
```

```
In [37]: !pip install pydotplus
          !apt-get install graphviz -y
         Collecting pydotplus
           Downloading pydotplus-2.0.2.tar.gz (278 kB)
         Requirement already satisfied: pyparsing>=2.0.1 in c:\users\navee\anaconda3\lib\site-
         packages (from pydotplus) (3.0.4)
         Building wheels for collected packages: pydotplus
           Building wheel for pydotplus (setup.py): started
           Building wheel for pydotplus (setup.py): finished with status 'done'
           Created wheel for pydotplus: filename=pydotplus-2.0.2-py3-none-any.whl size=24575 s
         ha256=994c43b53f37dccf944e809f059b888ad4f5596dafd7b6a8924921b5043d7fff
           Stored in directory: c:\users\navee\appdata\local\pip\cache\wheels\89\e5\de\6966007
         cf223872eedfbebbe0e074534e72e9128c8fd4b55eb
         Successfully built pydotplus
         Installing collected packages: pydotplus
         Successfully installed pydotplus-2.0.2
          'apt-get' is not recognized as an internal or external command,
         operable program or batch file.
In [38]: from six import StringIO
         from IPython.display import Image
          from sklearn.tree import export graphviz
          import pydotplus
         treestr=DecisionTreeClassifier()
In [40]:
         treestr.fit(x,y)
         DecisionTreeClassifier()
Out[40]:
In [41]: fig,ax=plt.subplots(figsize=(10,10))
         tree.plot tree(treestr)
          plt.show()
```


In [43]:	#predicting of new entry
In [44]:	x_new=np.array([2,4,2,0]).reshape(1,-1)
In [45]:	<pre>pred=dt.predict(x_new)</pre>
In [46]:	print(pred)
	[0]
In [47]:	<pre>print("the new entry belong to {}".format(pred))</pre>
	the new entry belong to [0]
In []:	the new entry belong to [0]
	the new entry belong to [0]
In []:	the new entry belong to [0]
In []: In []:	the new entry belong to [0]

7/28/22, 12:36 AM decisiontree

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []: