Overview Of Complexity Theory

Classes Of Problems Based On Their Best Algorithms' Complexities

classify problems: solvable problems can be solved / can't be solved N-Queue

Tractable/Intractable Problems

- Informally speaking, a problem is called "tractable":
 - If there exists an algorithm that solves it (of course).
 - And its worst case running time is $O(n^k)$ for some constant k on inputs of size n.
- Almost all algorithms we learned so far are polynomial time, so those corresponding problems are tractable.
- Not all problems are solvable in polynomial time!
 - Many problems are even unsolvable. E.g., the halting problem.
 - Also, for many problems, there are no known polynomial algorithms.
 - Worst case running times of all known algorithms to such a problem are $\omega(n^k)$ for **any** constant k.

Complexity Class P polynomial matrix_multi belongs to P

- Informally, it is the set of all problems each of which can be solved by some algorithm in the worst case running time of $O(n^k)$ for some constant k on inputs of size n.
- This corresponds to the class of "tractable" problems.
- There are many other complexity classes, based on the complexity measure's characteristics:
 - For the class P, the complexity measure is "the worst case running time of any algorithm that solves the problem" and the characteristics is that its asymptotic notation is $O(n^k)$ for some constant k on inputs of size n.
 - We'll see other complexity classes based on other complexity measures and/or different characteristics.

Simplifying Different Types Of Problems

- There are many different types of problems.
- Some problem asks if there exists a solution and what it is if any.
 - E.g., the path finding problem given a graph and two vertices
 - We drop the part of finding "what it is", focusing on the "if there exists a solution" part.
 - The answer to the existence question becomes yes/no, making it a "decision"
- Some problem asks to find an optimal solution (many optimization problems we've seen).
 - E.g., the shortest-path finding problem given a graph and two vertices
 - We want to simplify these problems to "decision" problems as well.

Simplifying Optimization Problems To Decision Problems

- Add an additional piece of information to the problem instance and convert it to a decision problem.
- E.g., for the shortest-path finding problem,
 - Add to the problem instance (a graph and two vertices) the maximum length of any path (call it k).
 - And the problem is now to decide whether there exists a path of length at most k in the graph between the two vertices.
- This may seem to simplify the given problem too much.
- However, complexity class-wise, such a simplified decision problem is no easier than the original optimization problem.
- Therefore, we'll only consider decision problems in discussing complexity classes.

Formal Language Theory

Mathematically Precise Description Of Decision Problems

Brief Intro To Formal Language Theory

- By focusing on decision problems, we can utilize the machinery of formal-language theory. Here's some brief intro of the theory.
- An alphabet Σ is a finite set of symbols. E.g., $\Sigma = \{0,1\}$
- A $language\ L$ over Σ is any set of strings made up of symbols from Σ .
 - E.g., $L = \{1,01,10,001,010,010,111,\dots\}$ is the language of all binary strings containing odd number of 1s.
- A few more definitions: L = {e}, L =∅
 - The *empty string* is denoted by ε and the empty language by \emptyset .
 - The language of all strings over Σ (sometimes called *universe*) is denoted by Σ^* .
 - E.g., if $\Sigma=\{0,1\}$, then $\Sigma^*=\{\varepsilon,0,1,00,01,10,11,000,\dots\}$, the set of all binary strings.
- Every language L over Σ is a subset of Σ^* .

Encoding Instances of a Decision Problem

- Formally specifying every instance of a decision problem as a string encoding
- E.g., for the problem of deciding whether there is a path of at most length k between two vertices v_1 and v_2 in a given graph G = (V, E),
 - If G is as shown below, v_1 is u, v_2 is y, and k is 2, then this instance of the problem will be encoded as follows:
 - " $((\{u, v, w, x, y\}, \{\{u, v\}, \{u, w\}, \{v, x\}, \{v, y\}, \{w, x\}, \{w, y\}, \{x, y\}\}), u, y, 2)$ "
 - ullet The answer to this specific instance is true, since there's a path of length 2 from u to y.
 - For the same G, but if v_1 is v, v_2 is w, and k is 1, then the encoding will be:
 - " $((\{u, v, w, x, y\}, \{\{u, v\}, \{u, w\}, \{v, x\}, \{v, y\}, \{w, x\}, \{w, y\}, \{x, y\}\}), v, w, 1)$ "
 - The answer to this specific instance is false, since there's no path of length 1 from v to w.

Decision Problems and Formal Languages

- Note that the example problem instances given in the previous slide are just *strings* of symbols.
- Using any valid encoding of symbols (e.g., ASCII), those strings are ultimately encoded as binary strings.
- In the reverse direction, any binary string can be checked if it's a valid encoding of any given problem in the given syntax (parsing).
- We can think of the set of all strings that are valid encodings of all *true* instances of a decision problem.

• In fact, we can view any decision problem Q as a language L_Q over $\Sigma = \{0,1\}$, where

$$L_Q = \{x \in \Sigma^* \colon Q(x) = 1\}$$

ullet For example, the problem of deciding whether there exists a path of length at most k for a given graph and two vertices has the corresponding language:

PATH =
$$\{(G, u, v, k) : G = (V, E) \text{ is an undirected graph,}$$

 $u, v \in V,$
 $k \ge 0 \text{ is an integer, and}$
there exists a path from u to v in G
consisting of at most k edges $\}$.

- For the two examples we've seen earlier,
 - " $((\{u, v, w, x, y\}, \{\{u, v\}, \{u, w\}, \{v, x\}, \{v, y\}, \{w, x\}, \{w, y\}, \{x, y\}\}), u, y, 2)$ " \in PATH
 - "(($\{u,v,w,x,y\},\{\{u,v\},\{u,w\},\{v,x\},\{v,y\},\{w,x\},\{w,y\},\{x,y\}\}$),v,w,1)" \notin PATH

Languages and Algorithms

- A string (problem instance) and an algorithm
 - An algorithm A accepts a string $x \in \Sigma^*$ if, given input x, the algorithm's output A(x) is 1.
 - An algorithm A rejects a string $x \in \Sigma^*$ if the algorithm's output A(x) is 0.
- A language (problem) and an algorithm
 - A language (problem) L is *decided* (solved) by an algorithm A if A accepts every string $x \in L$ and A rejects every string $x \notin L$.
 - A language (problem) L is *decided* (solved) *in polynomial time* by an algorithm A if there exists a constant k such that for any length-n string $x \in \Sigma^*$, the algorithm correctly decides (accepts or rejects) whether $x \in L$ or not in time $O(n^k)$.

A decides L (for every string belongs to Language, A(X L) 1, for those not belong, A(not X L) = 0)

Complexity Classes In Formal Language Theory

Back To Complexity Classes Using Formal Language Theory

Complexity Class

- E.g., the language PATH is decided (solved) in polynomial time!
 - Just use BFS to compute a shortest path from u to v, then compare the number of edges on the shortest path obtained with k.
 - BFS algorithm runs in polynomial time w.r.t. # vertices (n).
 - Any valid encoding of PATH is $\mathcal{O}(n^2)$. Thus BFS decides PATH in polynomial time!
- Complexity class: "A set of languages, membership in which is determined by a complexity measure, such as running time, of an algorithm that determines whether a given string x belongs to language L."

Complexity Class P

• Language-theoretic definition of the complexity class *P*:

 $P = \{L \subseteq \{0,1\}^* : \text{there exists an algorithm } A \text{ that decides } L \text{ in polynomial time} \}.$

- In other words, *P* is the class of all decision problems each of which can be solved (decided) by some polynomial-time algorithm.
- Formally stating,

 $P = \{L: L \text{ is decided by a polynomial-time algorithm}\}.$

• PATH $\in P$, all the decision problems we've learned so far are in P!

Complexity Class NP

Non-deterministic? Or Polynomial-Time Verifiable?

Some Hard Decision Problems

- For some problems (languages), decision algorithms don't seem so obvious.
 - E.g., HAM-CYCLE= $\{\langle G \rangle: G \text{ has a Hamiltonian cycle}\}$
 - A possible decision algorithm would enumerate all permutations of the vertices of *G* and the check each permutation to see if it's a Hamiltonian cycle.
 - There are m! possible permutations if $|V(G)| = m = \Omega(\sqrt{n})$. $(n = |\langle G \rangle|)$
 - Checking all permutations will take $\Omega(m!) = \Omega(\sqrt{n}!) = \Omega(2^{\sqrt{n}})$.
 - This is not $O(n^k)$ for any constant k, thus doesn't run in polynomial time.
- Turns out there's no known polynomial-time algorithm for HAM-CYCLE.
- We are characterizing such decision problems as another complexity class called NP.

Polynomial-Time Verification

- Even though it might be difficult to *decide* whether a given problem instance (encoding) is a member (a true instance) of the language (a problem), it might be easier to *verify* if so *with aid of* an evidence (*certificate*).
 - E.g., for HAM-CYCLE, it's not easy to check if for any given $G,\langle G\rangle\in \mathsf{HAM-CYCLE}$
 - However, if given an ordered list $C=(v_1,v_2,\ldots,v_p)$ of vertices of G, it's easy to verify if C is a Hamiltonian cycle of G,
 - which will confirm that $\langle G \rangle \in \mathsf{HAM}\text{-CYCLE}$.
 - C is called a certificate in that case.

Language Verified By Verification Algorithm

- A verification algorithm A for a decision problem (language)
 - Takes two arguments:
 - A problem instance (candidate member string of the language) x
 - A certificate y
 - Returns true (that is, A(x, y) = 1) iff the certificate really proves that the problem instance is a member of the language.
 - By performing algorithmic operations to show that.
- The language verified by a verification algorithm A is: $L = \{x \in \{0,1\}^* : \text{there exists } y \in \{0,1\}^* \text{ such that } A(x,y) = 1\}.$

Complexity Class NP

- The class of languages that can be verified by a polynomial-time verification algorithm.
- More precisely, a language L belongs to NP ($L \in NP$) if and only if:
 - \bullet There exist a two-input polynomial-time verification algorithm A and a constant c such that:
 - $L = \{x \in \{0,1\}^*: \text{ there exists a certificate } y \text{ with } |y| = O(|x|^c) \text{ such that } A(x,y) = 1\}.$
- E.g., HAM-CYCLE $\in NP$.
 - We can build a simple verification algorithm that given $\langle G \rangle$ and $(v_1, v_2, ..., v_p)$, returns 1 iff $(v_1, v_2, ..., v_p)$ is a Hamiltonian cycle of G.
 - Just check if every (v_i,v_{i+1}) is an edge of G, if $v_p=v_1$, if all v_i 's are distinct, and if p=|V|+1.

NP: Nondeterministic Polynomial

- Then why named "NP", which means "Nondeterministic Polynomial"?
 - Deterministic: Only one path of computation
 - Non-deterministic: Arbitrarily branching paths of computations
 - Arbitrarily high degree of parallelism allowed (which is impossible in real world)

polynomial

time generation

of all possible certificates

polynomial time verification

of all possible

certificates

in parallel

P vs NP

- We know for sure that $P \subseteq NP$.
 - That is, if $L \in P$, then $L \in NP$.
 - Why? Just convert the polynomial-time decision algorithm for ${\cal L}$ to a polynomial-time verification algorithm, which will just do the following:
 - Ignore the certificate input y and run the poly-time decision algorithm with x.
 - And accept (x, y) iff x is accepted by the decision algorithm!
- Then, is P = NP or $P \neq NP$ ($P \subseteq NP$)?
 - That is, is there a language (problem) L such that $L \in NP$, but $L \notin P$?
 - In other words, is there a problem that can be solved in non-deterministic polynomial time, but not in deterministic polynomial-time?
 - Surprisingly, we don't have a proof of this either way.
 - Even though most people believe that $P \neq NP$ ($P \subseteq NP$).
 - Proving this (either way) will earn you a million dollar prize. See http://www.claymath.org/millennium-problems/p-vs-np-problem!