Other Bias Methods

Muhammad Adeel

M.Sc. Electronics (KU)

M.Phil. ISPA (KU)

Other Bias Methods

Emitter Bias

Emitter bias provides excellent bias stability in spite of changes in β or temperatures.

Muhammad Adeel 04-Oct-17

$$V_{\rm EE} + V_{R_{\rm B}} + V_{\rm BE} + V_{R_{\rm E}} = 0$$

Substituting, using Ohm's law,

$$V_{\rm EE} + I_{\rm B}R_{\rm B} + V_{\rm BE} + I_{\rm E}R_{\rm E} = 0$$

Substituting for $I_B \cong I_E/\beta_{DC}$ and transposing V_{EE} ,

$$\left(\frac{I_{\rm E}}{\beta_{\rm DC}}\right)R_{\rm B} + I_{\rm E}R_{\rm E} + V_{\rm BE} = -V_{\rm EE}$$

Factoring out I_E and solving for I_E ,

$$I_{\rm E} = \frac{-V_{\rm EE} - V_{\rm BE}}{R_{\rm E} + R_{\rm B}/\beta_{\rm DC}}$$

Voltages with respect to ground are indicated by a single subscript. The emitter voltage with respect to ground is

$$V_{\rm E} = V_{\rm EE} + I_{\rm E} R_{\rm E}$$

The base voltage with respect to ground is

$$V_{\rm B} = V_{\rm E} + V_{\rm BE}$$

The collector voltage with respect to ground is

$$V_{\rm C} = V_{\rm CC} - I_{\rm C}R_{\rm C}$$

Base Bias

$$V_{\rm CC}-V_{R_{\rm B}}-V_{\rm BE}=0$$

Substituting I_BR_B for V_{R_B} , you get

$$V_{\rm CC} - I_{\rm B}R_{\rm B} - V_{\rm BE} = 0$$

Then solving for I_B ,

$$I_{\rm B} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B}}$$

$$V_{\rm CC} - I_{\rm C}R_{\rm C} - V_{\rm CE} = 0$$

Solving for V_{CE} ,

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C}R_{\rm C}$$

Substituting the expression for I_B into the formula $I_C = \beta_{DC}I_B$ yields

$$I_{\rm C} = \beta_{\rm DC} \left(\frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B}} \right)$$

Q-Point Stability of Base Bias Notice that Equation 5–11 shows that I_C is dependent on β_{DC} . The disadvantage of this is that a variation in β_{DC} causes I_C and, as a result, V_{CE} to change, thus changing the Q-point of the transistor. This makes the base bias circuit extremely beta-dependent and unpredictable.

Recall that β_{DC} varies with temperature and collector current. In addition, there is a large spread of β_{DC} values from one transistor to another of the same type due to manufacturing variations. For these reasons, base bias is rarely used in linear circuits but is discussed here so you will be familiar with it.

Muhammad Adeel 04-Oct-17

Emitter Feedback Bias

$$-V_{\rm CC} + I_{\rm B}R_{\rm B} + V_{\rm BE} + I_{\rm E}R_{\rm E} = 0$$

Substituting $I_{\rm E}/\beta_{\rm DC}$ for $I_{\rm B}$, you can see that $I_{\rm E}$ is still dependent on $\beta_{\rm DC}$.

$$I_{\rm E} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm E} + R_{\rm B}/\beta_{\rm DC}}$$

Collector Feedback Bias

Analysis of a Collector-Feedback Bias Circuit By Ohm's law, the base current can be expressed as

$$I_{\rm B} = \frac{V_{\rm C} - V_{\rm BE}}{R_{\rm B}}$$

Let's assume that $I_C \gg I_B$. The collector voltage is

$$V_C \cong V_{CC} - I_C R_C$$

Also,

$$I_{\rm B} = \frac{I_{\rm C}}{\beta_{\rm DC}}$$

Substituting for V_C in the equation $I_B = (V_C - V_{BE})/R_B$,

$$\frac{I_{\rm C}}{\beta_{\rm DC}} = \frac{V_{\rm CC} - I_{\rm C}R_{\rm C} - V_{\rm BE}}{R_{\rm B}}$$

The terms can be arranged so that

$$\frac{I_{\rm C}R_{\rm B}}{\beta_{\rm DC}} + I_{\rm C}R_{\rm C} = V_{\rm CC} - V_{\rm BE}$$

Then you can solve for I_C as follows:

$$I_{\rm C}\left(R_{\rm C} + \frac{R_B}{\beta_{\rm DC}}\right) = V_{\rm CC} - V_{\rm BE}$$

$$I_{\rm C} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm C} + R_{\rm B}/\beta_{\rm DC}}$$

Since the emitter is ground, $V_{CE} = V_{C}$.

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C} R_{\rm C}$$

Q-Point Stability Over Temperature Equation 5–13 shows that the collector current is dependent to some extent on β_{DC} and V_{BE} . This dependency, of course, can be minimized by making $R_C \gg R_B/\beta_{DC}$ and $V_{CC} \gg V_{BE}$. An important feature of collector-feedback bias is that it essentially eliminates the β_{DC} and V_{BE} dependency even if the stated conditions are met.

8

Muhammad Adeel