## LAB #02 Capacitive Reactance



# Fall 2022

CSE-203L CS 2 LAB

Submitted by: MUHAMMAD SADEEQ

Registration No.: 21PWCSE2028

Section: C

"On my honor, as a student of the University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work"

Submitted to:

Engr. Faiz Ullah (19 Oct 2022)

Department of Computer systems engineering University of Engineering and Technology, Peshawar

#### **Objective:**

Capacitive reactance will be examined in this exercise. In particular, its relationship to capacitance and frequency will be investigated, including a plot of capacitive reactance versus frequency.

#### **Theory Overview:**

The current – voltage characteristic of a capacitor is unlike that of typical resistors. While resistors show a constant resistance value over a wide range of frequencies, the equivalent ohmic value for a capacitor, known as capacitive reactance, is inversely proportional to frequency. The capacitive reactance may be computed via the formula:

$$X_c = \frac{1}{2\pi fC}$$

The magnitude of capacitive reactance may be determined experimentally by feeding a capacitor a known current, measuring the resulting voltage, and dividing the two, following Ohm's Law. This process may be repeated across a range of frequencies in order to obtain a plot of capacitive reactance versus frequency. An AC current source may be approximated by placing a large resistance in series with an AC voltage, the resistance being considerably larger than the maximum reactance expected.

### **Equipment:**

AC Function Generator Oscilloscope

#### **Components:**

 $\begin{array}{c} 1~\mu F \\ 2.2~\mu F \\ 10~k\Omega \end{array}$ 





#### **Procedure:**

#### **Current Source**

1. Using Figure 1 with Vin=10Vp-p and R=10k $\Omega$ , and assuming that the reactance of the capacitor is much smaller than 10k and can be ignored, determine the circulating current using measured component values and record in Table 1.

#### **Measuring Reactance**

- 2. Build the circuit of Figure 1 using  $R=10k\Omega$ , and  $C=1~\mu F$ . Place one probe across the generator and another across the capacitor. Set the generator to a 200 Hz sine wave and 10Vp-p. Make sure that the Bandwidth Limit of the oscilloscope is engaged for both channels. This will reduce the signal noise and make for more accurate readings.
- 3. Calculate the theoretical value of Xc using the measured capacitor value and record in Table 2.
- 4. Record the peak-to-peak capacitor voltage and record in Table 2.
- 5. Using the source current from Table 1 and the measured capacitor voltage, determine the experimental reactance and record it in Table 2. Also compute and record the deviation.
- 6. Repeat steps three through five for the remaining frequencies of Table 2.
- 7. Replace the 1  $\mu F$  capacitor with the 2.2  $\mu F$  unit and repeat steps two through six, recording results in Table 3.

8. Using the data of Tables 2 and 3, create plots of capacitive reactance versus frequency.

| i <sub>source</sub> (p-p) | 0.001 Ampere |
|---------------------------|--------------|
|                           |              |

Table 1

| Frequency | X <sub>c</sub> theory | V <sub>c</sub> (p-p) Exp | X <sub>c</sub> Exp | % div    |
|-----------|-----------------------|--------------------------|--------------------|----------|
| 200       | 796.17 Ω              | 0.8 V                    | 800 Ω              | -0.481 % |
| 400       | 398.08 Ω              | 0.4 V                    | 400 Ω              | -0.482%  |
| 600       | 265.39 Ω              | 0.25 V                   | 250 Ω              | -5.79%   |
| 800       | 199.04 Ω              | 0.2 V                    | 200 Ω              | -0.482%  |
| 1k        | 159.23 Ω              | 0.15 V                   | 150 Ω              | 5.79%    |
| 1.2k      | 132.69 Ω              | 125mV                    | 125 Ω              | 5.795%   |
| 1.4k      | 113.73 Ω              | 110mV                    | 110 Ω              | 3.279%   |
| 2.0k      | 79.61 Ω               | 80mV                     | 80 Ω               | -0.489%  |

Table 2

| Frequency | X <sub>c</sub> theory | V <sub>c</sub> (p-p) Exp | X <sub>c</sub> Exp | % div   |
|-----------|-----------------------|--------------------------|--------------------|---------|
| 200       | 361.89 Ω              | 0.35 V                   | 350 Ω              | 3.04 %  |
| 400       | 180.85 Ω              | 0.18 V                   | 180 Ω              | 0.47 %  |
| 600       | 120.57 Ω              | 120 mV                   | 120 Ω              | 0.47 %  |
| 800       | 90.42 Ω               | 90 mV                    | 90 Ω               | 046 %   |
| 1k        | 72.34 Ω               | 70 mV                    | 73 Ω               | -0.90 % |
| 1.2k      | 60.28 Ω               | 60 mV                    | 60 Ω               | 0.46 %  |
| 1.6k      | 51.67 Ω               | 50.5 mV                  | 50.5 Ω             | 2.27 %  |
| 2.0k      | 36.17 Ω               | 36 mV                    | 36 Ω               | 0.472 % |

## **Questions:**

- What is the relationship between capacitive reactance and frequency? **Answer:** Capacitive reactance is inversely proportional to frequency.
- What is the relationship between capacitive reactance and capacitance? **Answer:** Capacitive reactance is said to be inversely proportional to the capacitance and the signal frequency.

• If the experiment had been repeated with frequencies 10 times higher than those in Table 2, what would the resulting plots look like?

**Answer:** Same (because it will decrease Reactive Capacitance 10 times)

• If the experiment had been repeated with frequencies, 10 times lower than that in Table 2, what effect would that have on the experiment?

**Answer:** Same (because it will decrease Reactive Capacitance 10 times)

### **Conclusion:**

In this Lab task, we understand how to measure the reactance of a Capacitor connected in series with a resistor and voltage source in Proteus 8 software.