Bull. Austral. Math. Soc. Vol. 38 (1988) [433-439]

FARTHEST POINTS IN W^* -COMPACT SETS

R. DEVILLE AND V.E. ZIZLER

We show that while farthest points always exist in w^* -compact sets in duals to Radon-Nikodym spaces, this is generally not the case in dual Radon-Nikodym spaces. We also show how to characterise weak compactness in terms of farthest points.

The purpose of this note is to find under what conditions the Edelstein-Asplund-Lau results on the existence of farthest points in weakly compact sets can be extended to w^* -compact sets.

To fix our notation, let C be a norm closed bounded subset of a real Banach space X and x be an element of X. We define

$$r(x) = r(x, C) = \sup\{||x - z|| \mid z \in C\}$$

and call r(x) the farthest distance from x to C. Equivalently, r(x) is the radius of the smallest ball of centre x, containing C. The function r is convex as supremum of such functions, and continuous since $|r(x)-r(y)| \leq ||x-y||$, for all x, $y \in X$. A point $z \in C$ is called a farthest point of C if there exists $x \in X$ such that ||x-z|| = r(x). The existence of a farthest point of C is equivalent to the fact that the set

$$D = \{x \in X | (\exists z \in C)(\|x - z\| = r(x))\}\$$

is non-empty. Since it follows that any farthest point of a convex set C in a locally uniformly rotund space is a strongly exposed point of C, the notion of a farthest point is widely used in the study of the extreme structure of sets. In fact, it was the first discovered method of obtaining exposed points in sets [10]. We refer the reader to [3] and [5] for unexplained notions.

Extending the results of [6] and [1], Lau showed [9] that if C is a weakly compact set in a Banach space X, then the set D defined above is dense in X and thus, in particular, C has farthest points. Other extensions of the results of [6] and [1] may be found in [11]. The connection between farthest points and strongly exposed points in

Received 19 February, 1987

Research completed while Dr Deville was a visitor at the University of Alberta. Research paritally supported by NSERC (Canada)

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

mentioned above led Edelstein and Lewis [7] to ask the following question: Does the existence of (strongly) exposed points in C imply the existence of farthest points in C?

Proposition 1 gives a negative answer to this question. Moreover, it shows that Lau's result on weakly compact sets does not always extend to w^* -compact sets in a dual space X^* . However, our Proposition 3 shows that if X has the Radon-Nikodym property then any w^* -compact set in X^* contains a farthest point, thus extending Proposition 1 of [11]. Finally, we point out in Proposition 4 that Lau's result actually characterises weakly compact sets.

PROPOSITION 1. Let $\ell^1(N)$ be the Banach space of all real summable sequences $x = (x_n)$, equipped with its usual norm $||x|| = \sum_{n=1}^{\infty} |x_n|$. Let

$$C = \{(a_n) \in \ell^1(\mathsf{N}) \colon \sum_{n=1}^{\infty} (|a_n| + |a_n|^2) \leqslant 1\}.$$

Then C is a weak*-compact convex of $\ell^1(N)$ and C has no farthest points.

PROOF OF PROPOSITION 1: To prove that C has no farthest points, it is enough to show that, given $x \in \ell^1(\mathbb{N})$:

- i) r(x) = 1 + ||x|| and
- ii) ||x-z|| < 1 + ||x|| for all $z \in C$.

To do so, first notice that if $z \in C$ then ||z|| < 1. Therefore, ||x - z|| < ||x|| + ||z|| < 1 + ||x|| and ii) is proved. This also shows that $r(x) \le 1 + ||x||$. Hence, to prove i), it is enough to construct a sequence (u_n) of elements of C such that

$$\lim_{n\to\infty}||x-u_n||=1+||x||.$$

For each $n \in \mathbb{N}$, let $\delta_n > 0$ be such that $n(\delta_n + \delta_n^2) = 1$. Note that $0 < \delta_n < \frac{1}{n}$ and $\lim_{n \to \infty} n\delta_n = 1$. Let $u_n = (\delta_n, \dots, \delta_n, 0, 0, \dots)$ where δ_n is repeated n times. By our choice of δ_n , $u_n \in C$.

Now given $x \in \ell^1(\mathbb{N})$ and $\varepsilon > 0$, let $p \in \mathbb{N}$ be such that $\sum_{n=p+1}^{\infty} |x_i| < \frac{\varepsilon}{3}$. We have for n > p

$$||x - u_n|| = \sum_{i=1}^{p} |x_i - \delta_n| + \sum_{i=p+1}^{n} |x_i - \delta_n| + \sum_{i=n+1}^{\infty} |x_i|$$

$$\geqslant \sum_{i=1}^{p} |x_i| - p\delta_n - \sum_{i=p+1}^{n} |x_i| + (n-p)\delta_n$$

$$\geqslant ||x|| - \frac{\epsilon}{3} - p\delta_n - \frac{\epsilon}{3} + (n-p)\delta_n.$$

Choose $n_0 > p$ big enough so that $(n-2p)\delta_n > 1 - \frac{\epsilon}{3}$ for $n \ge n_0$. We have that for all $n \ge n_0$:

$$||x-u_n||\geqslant 1+||x||-\varepsilon.$$

Therefore,

$$\lim_{n\to\infty}||x-u_n||=1+||x||.$$

Remarks. (a) Since $\ell^1(N)$ has the Radon-Nikodym property, C is the norm closed convex hull of its strongly exposed points [3]. Hence, Proposition 1 gives a negative answer to the question of Edelstein and Lewis mentioned above.

(b) The proof of Proposition 1 shows that the intersection of all the balls containing C is the unit ball of $\ell^1(N)$. Note also that the sequence $\{u_n\}$ in the proof does not depend on x.

Before proceeding, let us recall that the subdifferential of a convex function f defined on a Banach space X is defined by

$$\partial f(x) = \{x^{\star} \in X^{\star} | (\forall y \in X) (\langle x^{\star}, y - x \rangle \leqslant f(y) - f(x)) \}.$$

It was shown in [9] that if C is a closed bounded subset of a Banach space X and r(x) is the farthest distance function for C, then for any $x \in X$ and $x^* \in \partial r(x)$, we have that $||x^*|| \le 1$ and thus $\sup\{\langle x^*, x-z\rangle \colon z \in C\} \le ||x^*|| r(x) \le r(x)$. Moreover, Lau showed that the set

$$G = \{x \in X | (\forall x^* \in \partial r(x))(\sup\{\langle x^*, x - z \rangle : z \in C\} = r(x))\},\$$

is dense G_{δ} in X.

We shall need the following.

LEMMA 2. Let C be a closed bounded subset of a Banach space X and r the farthest distance function on X associated with C. Assume that r is Fréchet differentiable at $x_0 \in X$. Then

$$r(x_0) = \sup\{\langle x_0^\star, x_0 - z \rangle \mid z \in C\}, \qquad ext{where } \partial r(x_0) = \{x_0^\star\}.$$

PROOF: According to Lau's result mentioned before the statement of Lemma 2 it is enough to show that, under our assumptions, the following implication holds:

If $r(x_0) - \sup\{\langle x_0^\star, x_0 - z \rangle | z \in C\} = \alpha > 0$, then there is a neighbourhood U of x_0 such that

$$r(y) - \sup\{\langle y^{\star}, y - z \rangle | z \in C\} > 0,$$

whenever $y \in U$ and $y^* \in \partial r(y)$.

To prove that the implication holds, take $y \in X$, $y^* \in \partial r(y)$ and $z \in C$. We have:

$$\begin{aligned} |\langle y^{\star}, y - z \rangle - \langle x_{0}^{\star}, x_{0} - z \rangle| &\leq |\langle y^{\star}, y - z \rangle - \langle y^{\star}, x_{0} - z \rangle| + |\langle y^{\star}, x_{0} - z \rangle - \langle x_{0}^{\star}, x_{0} - z \rangle| \\ &\leq ||y^{\star}|| ||y - x_{0}|| + ||y^{\star} - x_{0}^{\star}|| ||x_{0} - z||. \end{aligned}$$

Therefore,

$$|\sup\{\langle y^\star,y-z\rangle|z\in C\}-\sup\{\langle x_0^\star,x_0-z\rangle|z\in C\}|\leqslant \|y-x_0\|+r(x_0)\|y^\star-x_0^\star\|.$$

Now choose a neighbourhood U of x_0 such that

$$2\|y-x_0\|+r(x_0)\|y^{\star}-x_0^{\star}\|<\alpha$$

whenever $y \in U$ and $y^* \in \partial r(y)$. This is possible due to the Fréchet differentiability of r at x_0 [2, Lemma 5]. If $y \in U$ and $y^* \in \partial r(y)$, then

$$\begin{aligned} &(r(x_0) - \sup\{\langle x_0^\star, x_0 - z \rangle | z \in C\}) - (r(y) - \sup\{\langle y^\star, y - z \rangle | z \in C\}) \\ &\leq |r(x_0) - r(y)| + |\sup\{\langle y^\star, y - z \rangle | z \in C\} - \sup\{\langle x_0^\star, x_0 - z | z \in C\}| \\ &\leq ||x_0 - y|| + ||y - x_0|| + r(x_0)||y^\star - x_0^\star|| < \alpha \end{aligned}$$

and this implies, by the definition of α , that

$$r(y) - \sup\{\langle y^*, y - z \rangle z \in C\} > 0$$

whenever $y \in U$ and $y^* \in \partial r(y)$. Our implication is proven and the proof of Lemma 2 is finished.

PROPOSITION 3. Let X be a Banach space with the Radon-Nikodym property, let X^* be its dual space in its usual dual norm and C be a w^* -compact subset of X^* . Then the set D of all points in X^* which have farthest points in C contains a subset D_1 dense and G_δ in X^* .

PROOF: First notice that the farthest distance function r associated with C is w^* -lower semicontinuous as supremum of such functions. Since X has the Radon-Nikodym property it follows from [4] that r is Fréchet differentiable on a dense G_δ subset D_1 in X^* . So, to finish the proof of Proposition 3 we show that if r is Fréchet-differentiable at x, then x admits a farthest point in C. If $x \in D_1$, denote by x^* the only element of $\partial r(x)$. Since r is w^* -lower semicontinuous and Fréchet differentiable at x, $x^* \in X$ [2, Corollary 1]. Since C is w^* -compact, there is a $z_0 \in C$ such that $\langle x^*, x - z_0 \rangle = \sup\{\langle x^*, x - z \rangle | z \in C\}$. Using Lemma 2 we have $r(x) = \langle x^*, x - z_0 \rangle \leqslant \|x^*\| \cdot \|x - z_0\| \leqslant \|x - z_0\| \leqslant r(x)$. Thus $\|x - z_0\| = r(x)$ and the proof is finished.

PROPOSITION 4. Let X be a Banach space and C be a closed convex bounded subset of X. The following are equivalent:

- C is weakly compact;
- (ii) for every equivalent norm $\| \|_1$ on X, $D = \{x \in X | r(x) = \|x z\|_1$ for some $z \in C\}$ is dense in X, where $r(x) = \sup\{\|x z\|_1 | z \in C\}$.

PROOF: (i) \Rightarrow (ii) was proved by Lau in [9]. Conversely, let $\|\cdot\|$ be the norm of X and let B(x,r) denote the $\|\cdot\|$ -ball centred at x and radius r. Assume without loss of generality that $C \subset B(0,1)$. By James' theorem [5] there is a functional $f \in X^*$, $\|f\| = 1$ which does not attain its supremum on C. Let $B_1 = B(0,6) \cap \{x \in X|_{-1} \le f(x) \le 1\}$ and $\|\cdot\|_1$ be the Minkowski functional of B_1 . Note that if $B_1(x,r)$ is the ball cenetred at x with radius δ with respect to the norm $\|\cdot\|_1$, then

$$B_1(x,\delta) = 6B(x,\delta) \cap \{y \in X \mid -\delta \leqslant f(x) - f(y) \leqslant \delta\}.$$

Pick $x_0 \in B(0,4) \cap \{x \in X | f(x) < -3\}$. We claim that if $x \in B(x_0,1)$, then x has no farthest point in C when X is equipped with the new norm $\| \cdot \|_1$, hence D is not dense in X.

To see it, we first show that $r(x) = \alpha$, where $\alpha = \sup\{f(z)|z \in C\} - f(x)$. Indeed, let $y \in C$; we have $|f(y) - f(x)| \le \sup\{f(z)|z \in C\} - f(x)$ and $||y - x|| \le ||y|| + ||x_0|| + ||x_0 - x|| \le 6 \le 6\alpha$ (note that for any $y \in C$ and $x \in B(x_0, 1)$ we have $f(y) \ge -1$ and $f(x) \le f(x_0) + f(x - x_0) < -2$ and thus $\alpha > 1$). Thus $y \in B(x, \alpha)$. Therefore $C \subset B_1(x, \alpha)$ and this shows that $r(x) \le \alpha$. Conversely if $\delta < \alpha$, there exists $y \in C$ such that $f(y) - f(x) > \delta$ and so $y \notin B_1(x, \delta)$. This shows that $r(x) \ge \alpha$.

Now for $y \in C$, we have $||y - x|| \le 6 < 6\alpha$ and $|f(y) - f(x)| < \sup\{f(z)|z \in C\} - f(x) = \alpha$, hence $||x - y||_1 < \alpha = r(x)$ and so y is not a farthest point from x in C.

Remark. We would like to point out that, while differentiability properties can be used to show that the set D of points which have at least one farthest point in a w^* -compact C of a dual Banach space X is dense in X, convexity properties can be used to show the uniqueness of farthest points. More precisely, using standard rotundity arguments, we have

PROPOSITION 5. Let X be a strictly convex Banach space, and C be a norm closed bounded subset of X such that the corresponding set D is dense in X.

Then the set

$$U = \{y \in X | y \text{ has a unique farthest point in } C\}$$

is also dense in X.

PROOF: First the strict convexity of X implies that for all $x \in X$ and $\lambda > 1$,

$$B(x,||x||) \cap S(\lambda x,||\lambda x||) = \{0\}$$

where B(x,r) (respectively, S(x,r)) denotes the ball (respectively, the sphere) of centre x and radius r.

Now let $x \in D$ and let z be a farthest point from x in C. By translation, there is no loss of generality in assuming z = 0. It is enough to show that for any $\lambda > 1$, $y = \lambda x$ has a unique farthest point in C, namely 0. We have

$$B(\lambda x, ||\lambda x||) \supseteq B(x, ||x||) \supseteq C$$

and hence $r(\lambda x) \leq ||\lambda x||$. On the other hand,

$$\{0\} \subset C \cap S(\lambda x, \|\lambda x\|) \subset B(x, \|x\|) \cap S(\lambda x, \|\lambda x\|) = \{0\}.$$

Therefore $r(\lambda x) = ||\lambda x||$ and the only farthest point from y in C is 0.

Note that if X is not strictly convex, the set U of points which admit unique farthest points can be empty. Indeed, let $X = c_0(N)$ and

$$C = \{(z_n) \in c_0(\mathbb{N}) | 0 \leqslant z_n \leqslant \frac{1}{n} \text{ for all } n\}.$$

C is a norm compact convex subset of $c_0(N)$, and therefore $D = c_0(N)$. On the other hand, if $x = (x_n) \in c_0(N)$, we have

$$r(x) = \max\{\max\{|x_n|, |x_n - \frac{1}{n}|\}|n \in \mathbb{N}\}\$$

so $r(x)=|x_{n_0}|$ or $r(x)=|x_{n_0}-\frac{1}{n_0}|$, for some $n_0\in \mathbb{N}$. Define:

$$C_1 = \{(z_n) \in C | z_{n_0} = 0\}$$

$$C_2 = \{(z_n) \in C | z_{n_0} = \frac{1}{n_0}\}.$$

If $r(x) = |x_{n_0}|$ (respectively, $r(x) = |x_{n_0} - \frac{1}{n_0}|$), C_1 (respectively, C_2) is included in the set of farthest points from x in C. In both cases $x \notin U$.

REFERENCES

- E. Asplund, 'Farthest points in reflexive locally uniformly rotund Banach spaces', Isreal J. Math. 4 (1966), 213-216.
- [2] E. Asplund, 'Fréchet differentiability of convex functions', Acta Math. 121 (1968), 31-47.

- [3] J. Bourgin, 'Geometric aspects of convex sets with the Radon-Nikodym property', in Lecture Notes in Mathematics: 993 (Springer-Verlag, New York, 1983).
- [4] J.B. Collier, 'The dual of a space with the Radon-Nikodym property', Pacific J. Math. 64 (1976), 103-106.
- [5] J. Diestel, 'Geometry of Banach spaces—selected topics', in Lecture Notes in Mathematics 485 (Springer-Verlag, New York, 1975).
- [6] M. Edelstein, 'Farthest points of sets in uniformly convex Banach spaces', Israel J. Mat. 4 (1966), 171-176.
- [7] M. Edelstein and J.E. Lewis, 'On exposed and farthest points in normed linear spaces', J. Austral. Math. Soc. 12 (1971), 301-308.
- [8] G. Godefroy and N. Kalton, 'The ball topology' (to appear).
- [9] K.S. Lau, 'Farthest points in weakly compact sets', Israel J. Math. 22 (1975), 168-174.
- [10] S. Straszewicz, 'Uber exponierte Punkte abgeschlossener Puntmengen', Fund. Math. 24 (1935), 139-143.
- [11] V. Zizler, 'On some extremal problems in Banach spaces', Math. Scand. 32 (1973), 214-224.

Professor V.E. Zizler,
Department of Mathematics,
Faculty of Science,
University of Alberta,
Edmonton,
Canada. T6G 2G1

Dr R. Deville, Equipe d'Analyse Fonctionelle, Université Paris VI, Paris, France.