Chapitre 14

Espaces vectoriels

Objectifs

- Rappeler la définition d'espace vectoriel et les exemples de référence.
- Définir la notion d'application linéaire, le vocabulaire lié à cette notion et les propriétés.
- Définir la notion de sous-espace vectoriel, la notion d'équation linéaire, la notion de sous-espace engendré par une famille de vecteurs.
- Définir et étudier la somme de deux sous-espaces vectoriels.
- Étudier deux exemples d'endomorphismes particulièrement importants : les projections et les symétries.

Sommaire

I)	Rappels	
	1) Définition	
	2) Exemples de référence	
	3) Règles de calculs	
II)	Applications linéaires	
	1) Définition	
	2) Propriétés	
III)	Sous-espaces vectoriels	
	1) Définition	
	2) Équations linéaires	
	3) Sous-espace engendré	
	4) Somme de deux sous-espaces vectoriels 6	
IV)	Projections, symétries	
	1) Projecteurs	
	2) Symétries	
V)	Exercices	

Dans ce chapitre, \mathbb{K} désigne un sous-corps de \mathbb{C} .

I) Rappels

1) Définition

DÉFINITION 14.1

Soit E un ensemble non vide, on dit que E est un \mathbb{K} - espace vectoriel (ou \mathbb{K} -e.v.) lorsque E possède une addition et un produit par les scalaires (loi de composition externe, notée « . », c'est une application : $\frac{\mathbb{K} \times E \to E}{(\lambda, x) \mapsto \lambda.x}$), avec les propriétés suivantes :

- -(E,+) est un groupe abélien (l'élément neutre est noté 0_E ou $\overrightarrow{0_E}$ et appelé **vecteur nul** de E).
- La loi . (ou produit par les scalaires) doit vérifier : $\forall \lambda, \mu \in \mathbb{K}, \forall x, y \in E$:
 - -1.x = x

$$-\lambda.(x+y) = \lambda.x + \lambda.y$$

$$-(\lambda + \mu).x = \lambda.x + \mu.x$$

$$-\lambda.(\mu.x) = (\lambda \mu).x$$

Si ces propriétés sont vérifiées, on dit que (E,+,.) est un \mathbb{K} - e.v., les éléments de \mathbb{K} sont appelés les scalaires et les éléments de E sont appelés vecteurs (parfois notés avec une flèche).

2) Exemples de référence

Exemples:

- ℝ est un ℚ-e.v., ℂ est un ℚ-e.v., ℂ est un ℝ-e.v. Plus généralement si Ҝ est corps inclus dans un autre corps L, alors \mathbb{L} est un \mathbb{K} -e.v..
- L'ensemble \mathbb{K}^n muni des opérations suivantes :

$$(x_1,...,x_n)+(y_1,...,y_n)=(x_1+y_1,...,x_n+y_n) \text{ et } \lambda.(x_1,...,x_n)=(\lambda x_1,...,\lambda x_n),$$

est un \mathbb{K} -e.v., le vecteur nul est le n-uplet : $(0, \dots, 0)$.

- Si I est un ensemble non vide, alors l'ensemble des applications de I vers $\mathbb{K}: \mathscr{F}(I,\mathbb{K})$, pour les opérations usuelles (addition de deux fonctions et produit par un scalaire) est un \mathbb{K} -e.v., le vecteur nul étant l'application nulle. En particulier ($\mathscr{C}^n(I,\mathbb{K}),+,.$) sont des \mathbb{K} -e.v., ainsi que l'espace des suites à valeurs dans \mathbb{K} . Plus généralement, si E est un \mathbb{K} -e.v., l'ensemble des applications de I vers $E: \mathcal{F}(I,E)$, pour les opérations usuelles sur les fonctions, est un \mathbb{K} -e.v..
- Espace produit : Soient E et F deux K-e.v., on définit sur $E \times F$ l'addition : (x, y) + (x', y') = (x + x', y + y'), et un produit par les scalaires : $\lambda(x,y) = (\lambda x, \lambda y)$. On peut vérifier alors que $(E \times F, +, .)$ est un \mathbb{K} -e.v., le vecteur nul étant $(0_E, 0_F)$.

Règles de calculs

Soit E un \mathbb{K} -e.v.

- $\forall \overrightarrow{x} \in E, 0.\overrightarrow{x} = \overrightarrow{0}, \text{ et } \forall \lambda \in \mathbb{K}, \lambda.\overrightarrow{0} = \overrightarrow{0}.$ $\forall \overrightarrow{x} \in E, \forall \lambda \in \mathbb{K}, -(\lambda.\overrightarrow{x}) = (-\lambda).\overrightarrow{x} = \lambda.(-\overrightarrow{x}).$ $\forall \overrightarrow{x} \in E, \forall \lambda \in \mathbb{K}, \lambda.\overrightarrow{x} = \overrightarrow{0} \Longrightarrow \lambda = 0 \text{ ou } \overrightarrow{x} = \overrightarrow{0}.$
- **Applications linéaires** II)

1) Définition

DÉFINITION 14.2

Soient E et F deux \mathbb{K} -e.v. et soit $f: E \to F$ une application, on dit que f est une application linéaire (ou morphisme de K-espaces vectoriels), lorsque :

$$\forall x, y \in E, \forall \lambda \in \mathbb{K}, f(x+y) = f(x) + f(y) \text{ et } f(\lambda \cdot x) = \lambda \cdot f(x).$$

Si de plus, f est bijective, alors on dit que f est un isomorphisme (d'espaces vectoriels). L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E,F)$.

Une application linéaire est en particulier un morphisme de groupes additifs, donc si $f \in \mathcal{L}(E,F)$ alors : $f(0_F) = 0_F$ et $\forall x \in E, f(-x) = -f(x)$. De plus on peut parler du noyau de $f: \ker(f) = \{x \in E \mid f(x) = 0\}$ 0_F }, et f est injective si et seulement si $\ker(f) = \{0_F\}$.

Exemples:

- L'application nulle (notée 0) de *E* vers *F* est linéaire.
- L'application identité de E : id_E : E → E définie par $id_E(x) = x$, est linéaire bijective (et $(id_E)^{-1} = id_E$).
- Soit λ ∈ \mathbb{K}^* , l'homothétie de rapport λ : h_{λ} : E → E, définie par $h_{\lambda}(x) = \lambda.x$, est linéaire et bijective. Sa réciproque est l'homothétie de rapport $1/\lambda$. L'ensemble des homothéties de E est un groupe pour la loi \circ car c'est un sous-groupe du groupe des permuations de E.

- L'application $f: \mathbb{K}^2 \to \mathbb{K}^2$ définie par f(x, y) = (x; -y) est un isomorphisme de \mathbb{K}^2 sur lui-même.

DÉFINITION 14.3 (vocabulaire)

- Une application linéaire de E vers E est appelée un endomorphisme de E. L'ensemble des endomorphismes de E est noté $\mathcal{L}(E)$ (on a donc $\mathcal{L}(E) = \mathcal{L}(E, E)$).
- Un isomorphisme de E vers E est appelé un automorphisme de E. L'ensemble des automorphismes de E est noté GL(E) et appelé groupe linéaire de E.
- formes linéaires sur E est noté E^* et appelé dual de E (on a donc $E^* = \mathcal{L}(E, \mathbb{K})$).

Exemples:

- id_E ∈ GL(E), \forall λ ∈ \mathbb{K}^* , h_{λ} ∈ GL(E).
- Soit $E = \mathscr{C}^0([0;1],\mathbb{R})$ et $\phi: E \to \mathbb{R}$ définie par $\phi(f) = \int_0^1 f(t) dt$, alors ϕ est une forme linéaire sur E. Soit $E = \{u \in \mathscr{F}(\mathbb{N},\mathbb{C}) / (u_n) \text{ converge}\}$ est un \mathbb{C} -e.v. et l'application $\phi: E \to \mathbb{C}$ définie par $\phi(u) = \lim u_n$, est
- une forme linéaire sur E.
- Soient $a, b, c \in \mathbb{K}$, l'application $\phi : \mathbb{K}^3 \to \mathbb{K}$ définie par $\phi(x, y, z) = ax + by + cz$, est une forme linéaire sur \mathbb{K}^3 . En exercice, montrer la réciproque, c'est à dire que toutes les formes linéaires sur \mathbb{K}^3 sont de ce type.

2) Propriétés

Il est facile de vérifier les propriétés suivantes :

- La composée de deux applications linéaires est linéaire. On en déduit que GL(E) est stable pour la loi
- Si $f \in \mathcal{L}(E,F)$ est un isomorphisme, alors $f^{-1} \in \mathcal{L}(F,E)$. On en déduit que GL(E) est stable par symétrisation, i.e. si $f \in GL(E)$, alors $f^{-1} \in GL(E)$.
- (GL(E), \circ) est un groupe (non abélien en général), c'est en fait un sous-groupe du groupe des permutations de $E:(S_E,\circ)$.
- f ∈ $\mathcal{L}(E,F)$ est injective si et seulement si ker(f) = {0 $_E$ }.
- Si $f, g ∈ \mathcal{L}(E, F)$ et si $λ ∈ \mathbb{K}$, alors f + g et λ.f sont linéaires. On en déduit que $(\mathcal{L}(E, F), +, ...)$ est un \mathbb{K} -e.v. (s.e.v. dans $\mathscr{F}(E,F)$).
- $-(\mathcal{L}(E),+,\circ)$ est un anneau, la loi \circ jouant le rôle d'une multiplication.

Remarques:

- En général, l'anneau $\mathcal{L}(E)$ n'est pas commutatif. Le groupe des inversibles de cet anneau est GL(E).
- La loi ∘ jouant le rôle d'une multiplication, on adopte les notations usuelles des anneaux pour les puissances, i.e. si $u \in \mathcal{L}(E)$ et si n est entier, alors :

$$u^{n} = \begin{cases} id_{E} & \text{si } n = 0\\ u \circ \cdots \circ u & n \text{ fois si } n > 0\\ u^{-1} \circ \cdots \circ u^{-1} & -n \text{ fois si } u \text{ est inversible et } n < 0 \end{cases},$$

de plus si $u, v \in \mathcal{L}(E)$ commutent (i.e. $u \circ v = v \circ u$), alors on peut utiliser le binôme de Newton :

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^k \circ v^{n-k}$$

- Soit $E = \mathbb{K}^2$ et $f: (x; y) \mapsto (y; 0)$, on vérifie facilement que $f \in \mathcal{L}(E)$ et que $f^2 = 0$ (application nulle), pourtant $f \neq 0$. Cet exemple montre qu'en général $\mathcal{L}(E)$ n'est pas un anneau intègre.

Sous-espaces vectoriels III)

1) Définition

🚜 Définition 14.4

Soit E un K-e.v. et soit H un ensemble, on dit que H est un sous-espace vectoriel de E (ou s.e.v de E) lorsque:

- $-H\subset E, H\neq \emptyset.$
- \forall x, y ∈ H, x + y ∈ H (H est stable pour l'addition).
- $\forall x \in H, \forall \lambda \in \mathbb{K}, \lambda.x \in H$ (H est stable pour la loi .).

Si c'est le cas, alors il est facile de vérifier que (H, +, .) est lui-même un \mathbb{K} -e.v.

Exemples:

- $-\mathcal{L}(E,F)$ est un s.e.v. de $\mathcal{F}(E,F)$.
- L'ensembles des fonctions paires (respectivement impaires) définies sur \mathbb{R} est un s.e.v. de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- L'ensemble des suites complexes de limite nulle et un s.e.v de l'espace des suites complexes convergentes, qui est lui-même un s.e.v de l'espace de suites complexes bornées, qui est lui-même un s.e.v de l'espace des suites complexes.
- \forall *n* ∈ \mathbb{N} , $\mathscr{C}^{n+1}(I,\mathbb{C})$ est un s.e.v de $\mathscr{C}^{n}(I,\mathbb{C})$.
- Soient $a, b, c \in \mathbb{K}$, $F = \{(x, y, z) \in \mathbb{K}^3 \mid ax + by + cz = 0\}$ est un s.e.v de \mathbb{K}^3 .

- THÉORÈME 14.1 (noyau et image d'une application linéaire)

 $Si f \in \mathcal{L}(E, F)$ alors ker(f) est un s.e.v de E et Im(f) est un s.e.v de F.

Preuve: Celle-ci est simple et laissée en exercice.

Remarque: Soit $f \in \mathcal{L}(E, F)$ alors f est un isomorphisme si et seulement si $\ker(f) = \{0_F\}$ et $\operatorname{Im}(f) = F$.

- THÉORÈME 14.2 (image d'un s.e.v par une application linéaire)

Soit H un s.e.v de E et $f \in \mathcal{L}(E,F)$, alors f < H > (ensemble des images par f des éléments de H) est un s.e.v de F.

Preuve: Il suffit de considérer la restriction de f à H : $g: H \to F$ définie par $\forall x \in H, g(x) = f(x)$, il est clair que gest linéaire et que f < H > = Im(g), on peut appliquer alors le théorème précédent.

THÉORÈME 14.3 (image réciproque d'un s.e.v par une application linéaire)

Soit H un s.e.v de F et soit $f \in \mathcal{L}(E,F)$ alors $f^{-1} < H >$ (ensemble des antécédents des éléments de H par f) est un s.e.v de E.

Preuve: Celle-ci est simple et laissée en exercice.

THÉORÈME 14.4 (intersection de sous-espaces vectoriels)

Soit $(H_i)_{i \in I}$ une famille de s.e.v de E (I est un ensemble d'indices), alors $\bigcap_{i \in I} H_i$ est un s.e.v de E.

Preuve: Celle-ci est simple et laissée en exercice.

Exemples:

- $-H = \{f \in \mathscr{C}^0([a;b],\mathbb{R}) / \int_0^b f = 0\}$ est un s.e.v de $\mathscr{C}^0([a;b],\mathbb{R})$, car c'est le noyau de la forme linéaire
- $-H = \{(x, y, z) \in \mathbb{K}^3 \mid ax + by + cz = 0\}$ est un s.e.v de \mathbb{K}^3 car c'est le noyau de la forme linéaire $\phi: (x, y, z) \mapsto$
- $-H = \{(x, y, z) \in \mathbb{K}^3 / 2x + y z = 0 \text{ et } 3x 2z = 0\}$ est un s.e.v de \mathbb{K}^3 car c'est l'intersection des noyaux des deux formes linéaires : $\phi_1:(x,y,z)\mapsto 2x+y-z$ et $\phi_2:(x,y,z)\mapsto 3x-2z$.

DÉFINITION 14.5 (hyperplan)

Soit H un s.e.v de E, on dit que H est un hyperplan de E lorsqu'il existe une forme linéaire ϕ sur E, non identiquement nulle, telle que $H = \ker(\phi)$.

2) Équations linéaires

DÉFINITION 14.6

Une équation linéaire est une équation du type : u(x) = b avec $u \in \mathcal{L}(E,F), b \in F$ et $x \in E$ (inconnue). L'équation $u(x) = 0_F$ est appelée équation homogène associée.

Exemples:

- Tout système linéaire est une équation linéaire, par exemple, le système $\begin{cases} 2x y = 1 \\ x + 2y = 3 \\ 3x + 5y = -1 \end{cases}$, peut
 - se mettre sous la forme u(X) = b avec $u : \mathbb{R}^2 \to \mathbb{R}^3$ définie par u(x, y) = (2x y, x + 2y, 3x + 5y), avec $b = (1, 3, -1) \in \mathbb{R}^3$ et $X = (x, y) \in \mathbb{R}^2$, il est facile de vérifier que $u \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.
- Une équation différentielle linéaire est une équation linéaire, par exemple l'équation différentielle : y' + y = 1peut se mettre sous la forme u(y) = b avec $u : \mathscr{C}^1(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ définie par u(y) = y' + y (u est linéaire), et $b \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ la fonction constante 1.

- THÉORÈME 14.5 (structure des solutions d'une équation linéaire)

Soit $u \in \mathcal{L}(E, F)$ et soit $b \in F$, l'équation linéaire u(x) = b avec $x \in E$ a des solutions si et seulement si $b \in \text{Im}(u)$. Si c'est le cas, et si $x_0 \in E$ désigne une solution particulière (i.e. $u(x_0) = b$), alors l'ensemble de toutes les solutions est :

$$S = \{y + x_0 / y \in \ker(u)\} = x_0 + \ker(u).$$

Preuve: Il est clair qu'il y a des solutions si et seulement si $b \in \text{Im}(u)$. Si on a $u(x_0) = b$, alors l'équation u(x) = béquivaut à $u(x) = u(x_0)$, ou encore à $u(x - x_0) = 0_F$ (u est linéaire), ce qui équivaut encore à $\exists y \in \ker(u), x = y + x_0$.

Exemples:

Le système linéaire équivaut à (méthode de Gauss ¹) :

$$\begin{cases} -y + 2x = 1 \\ 5x = 5(L_2 \leftarrow L_2 + 2L_1) \\ 13x = 4(L_3 \leftarrow L_3 + 5L_1) \end{cases} \iff \begin{cases} -y + 2x = 1 \\ x = 1 \\ 0 = -9(L_3 \leftarrow L_3 - 13L_2) \end{cases}$$

La dernière équation montre que ce système n'a pas de solution (i.e. $b \notin \text{Im}(u)$).

- Pour l'équation différentielle, il y a une solution particulière : $y_0: t \mapsto 1$. L'équation homogène associée est y' + y = 0 dont les solutions sont les fonctions $y = \lambda \phi$ où $\phi : t \mapsto e^{-t}$. L'ensemble des solutions est donc $S = \{1 + \lambda \phi / \lambda \in \mathbb{R}\}.$

Sous-espace engendré

DÉFINITION 14.7 (combinaisons linéaires)

Soit E un \mathbb{K} -e.v et soit x_1, \ldots, x_n des vecteurs de E. On appelle combinaison linéaire de la famille $(x_i)_{1\leqslant i\leqslant n}$, tout vecteur x de E pour lequel il existe des scalaires $\lambda_1,\ldots,\lambda_n$ tels que :

$$x = \sum_{i=1}^{n} \lambda_i x_i.$$

L'ensemble des combinaisons linéaires de la famille $(x_i)_{1 \le i \le n}$ est noté $\text{Vect}[x_1, \dots, x_n]$.

Deux vecteurs x et y de E sont dits colinéaires lorsque l'un des deux est combinaison linéaire de *l'autre*, i.e. $\exists \lambda \in \mathbb{K}, x = \lambda y \text{ ou } y = \lambda x$.

1. Carl Friedrich (1777 - 1855): mathématicien allemand de génie, sans doute l'un des plus grands de tous les temps.

Exemples:

- $\operatorname{Vect} \left[0_E \right] = \{ 0_E \}.$
- Si $x \in E \setminus \{0_E\}$, alors Vect $[x] = \{\lambda x \mid \lambda \in \mathbb{K}\}$, c'est un s.e.v de E appelé droite vectorielle engendrée par x. On dit que x est un vecteur directeur de cette droite. Les autres vecteurs directeurs sont les vecteurs de la forme λx avec $\lambda \neq 0$.
- Soient $x, y \in E$ deux vecteurs non nuls, si les deux vecteurs sont colinéaires, alors Vect[x, y] = Vect[x] =Vect [y] (droite vectorielle). Si ces deux vecteurs sont non colinéaires, alors :

$$Vect [x, y] = \{ \alpha x + \beta y / \alpha, \beta \in \mathbb{K} \}$$

c'est un s.e.v de E, on l'appelle plan vectoriel engendré par x et y, il contient (strictement) les deux droites engendrées par x et y.

Dans \mathbb{K}^3 déterminer une équation cartésienne du plan vectoriel engendré par les vecteurs x=(1,1,1) et y = (0, -1, 1).

💡 THÉORÈME 14.6 (image d'une combinaison linéaire par une application linéaire)

Soit E un \mathbb{K} -e.v et soit $(x_i)_{1 \le i \le n}$ une famille de vecteurs de E. Soit $f \in \mathcal{L}(E,F)$, alors l'image par f d'une combinaison linéaire de la famille $(x_i)_{1 \le i \le n}$ et une combinaison linéaire de la famille $(f(x_i))_{1 \le i \le n}$ (dans F) avec les mêmes coefficients.

Preuve: Par récurrence sur n: pour n = 1 il n'y a rien à démontrer. Supposons le théorème vrai au rang n, et soit $x = \lambda_1 x_1 + \dots + \lambda_{n+1} x_{n+1}$, f étant linéaire, on peut écrire $f(x) = f(\lambda_1 x_1 + \dots + \lambda_n x_n) + \lambda_{n+1} f(x_{n+1})$, on applique alors l'hypothèse de récurrence pour conclure.

🎧 THÉORÈME 14.7 (sous-espace engendré)

 $Soit(x_1,\ldots,x_n)$ une famille de vecteurs de E, l'ensemble des combinaisons linéaires de cette famille : Vect $[x_1,...,x_n]$ est un s.e.v de E. C'est même le plus petit (pour l'inclusion) s.e.v de E qui contient tous les vecteurs de cette famille. On l'appelle s.e.v engendré par $(x_1, ..., x_n)$.

Preuve: Celle-ci est simple et laissée en exercice.

Exemples:

- Soit $E = \mathbb{K}^n$ pour $i \in [1..n]$ on pose $e_i = (\delta_{i,1}, \dots, \delta_{i,n})$, on a alors $E = \text{Vect}[e_1, \dots, e_n]$.
- Soit $H = \{u \in \mathbb{K}^3 / \exists \alpha, \beta, \gamma \in \mathbb{K}, u = (\alpha \beta, 2\alpha 2\beta + \gamma, -\alpha + \beta + 2\gamma)\}$. Posons $e_1 = (1, 2, -1), e_2 = (-1, -2, 1)$ et $e_3 = (0, 1, 2)$, on a alors $H = \text{Vect}[e_1, e_2, e_3]$, ce qui prouve que H est un s.e.v de \mathbb{K}^3 . On remarque que $e_2 = -e_1$, donc finalement $H = \text{Vect} [e_1, e_3]$, et comme e_1 et e_3 ne sont pas colinéaires, H est un plan vectoriel.
- Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$, les deux fonctions id_ℝ et 1 sont non colinéaires, donc elles engendrent un plan vectoriel dans $E: P = \text{Vect} [id_{\mathbb{R}}, 1]. f \in P$ équivaut à $\exists a, b \in \mathbb{R}, f = a.id_{\mathbb{R}} + b.1$, et donc $f: x \mapsto ax + b$, P est donc l'ensemble des applications affines.

4) Somme de deux sous-espaces vectoriels

DÉFINITION 14.8 (somme de deux s.e.v)

Soient F et G deux s.e.v de E, on appelle somme de F et G l'ensemble noté F+G et défini par :

$$F + G = \{x \in E \mid \exists u \in F, v \in G, x = u + v\}.$$

√ THÉORÈME 14.8

La somme de deux s.e.v de E est un s.e.v de E.

Preuve: F et G sont deux s.e.v de E, donc ce sont en particulier des \mathbb{K} -e.v, par conséquent le produit cartésien $F \times G$ est lui-même un \mathbb{K} -e.v. On considère alors l'application $f: F \times G \to E$ définie par f(u, v) = u + v. On vérifie facilement que f est linéaire, il est clair d'après la définition que F + G = Im(f), et donc F + G est un s.e.v de E

Exemples:

- Dans \mathbb{K}^2 , posons $i = (1,0), j = (0,1), e_1 = (1,1), e_2 = (1,-1),$ on peut vérifier que $\mathbb{K}^2 = \text{Vect}[i] + \text{Vect}[j] =$ $Vect [e_1] + Vect [e_2].$
- Soient $x, y \in E$ deux vecteurs, on a Vect [x] + Vect [y] = Vect [x, y]. Plus généralement, on peut remplacer xet y par deux familles de vecteurs de E.

DÉFINITION 14.9 (somme directe)

Soient F et G deux s.e.v de E, on dit que la somme F + G est directe lorsque $F \cap G = \{0_E\}$. Si c'est le cas on note $F \oplus G$ au lieu de F + G.

Exemples:

- Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$ le s.e.v des fonctions paires et le s.e.v des fonctions impaires sont en somme directe.
- Dans \mathbb{K}^3 le plan *P* d'équation x + y + z = 0 et la droite engendrée par le vecteur i = (1, 1, 1) sont en somme directe, mais P n'est pas en somme directe avec le plan P' engendré par i et j = (1, -1, 1).

THÉORÈME 14.9 (caractérisation des sommes directes)

Soient F et G deux s.e.v de E, les assertions suivantes sont équivalentes :

- a) F et G sont en somme directe.
- b) $\forall z \in F + G, \exists x \in F, y \in G$, uniques, z = x + y (i.e. tout vecteur de F + G s'écrit de manière unique comme somme d'un vecteur de F et d'un vecteur de G).
- c) $\forall x, \in F, y \in G$, $si x + y = 0_F$ alors $x = y = 0_F$.
- d) L'application linéaire $\phi: F \times G \to E$ définie par $\phi(x,y) = x + y$ est injective.

Preuve: Montrons $a) \Longrightarrow b$): soient $x, x' \in F, y, y' \in G$ tels que x + y = x' + y', alors on a x - x' = y' - y, or $x - x' \in F$ et $y' - y \in G$, on a donc un élément commun à F et G, la somme étant directe, cet élément est nul, d'où x = x' et y = y'.

Montrons que $b) \Longrightarrow c$): soient $x \in F$ et $y \in G$ tels que $x + y = 0_E$, on a alors $x + y = 0_E + 0_E$ avec $0_E \in F$ et $0_E \in G$, d'après l'hypothèse b), on a $x = 0_E$ et $y = 0_E$.

Montrons $c \implies d$: l'hypothèse c) signifie exactement que $\ker(\phi) = \{(0_F, 0_E)\}$, donc ϕ est injective.

Montrons que $d \implies a$: soit $x \in F \cap G$, on a donc $x \in F$ et $-x \in G$, on peut alors considérer $\phi(x, -x)$, ce qui donne 0_E , mais d'après l'hypothèse d), ϕ est injective, donc $(x, -x) = (0_E, 0_E)$, d'où $x = 0_E$, donc la somme F + G est directe

DÉFINITION 14.10 (s.e.v supplémentaires)

Soient F et G deux s.e.v de E, on dit que F et G sont supplémentaires lorsque $F \oplus G = E$. Ce qui signifie que E = F + G et la somme F + G est directe, ou encore : tout vecteur de E s'écrit de manière unique comme somme d'un vecteur de F et d'un vecteur de G.

Exemples:

- Dans $\mathscr{F}(\mathbb{R},\mathbb{R})$ le s.e.v des fonctions paires et le s.e.v des fonctions impaires sont supplémentaires.
- Dans $E = \mathcal{C}^0([a;b],\mathbb{R})$ le s.e.v $H = \{f \in E \ / \ \int_a^b f = 0\}$ et le s.e.v $G = \text{Vect} [id_{\mathbb{R}}]$ sont supplémentaires.

THÉORÈME 14.10 (caractérisations des hyperplans)

Soit H un s.e.v de E, les assertions suivantes sont équivalentes :

- a) H est un hyperplan de E (i.e. le noyau d'une forme linéaire sur E non nulle).
- *b*) $\exists x_0 \in E \setminus H \text{ tel que } H \oplus \text{Vect } [x_0] = E.$
- c) $\forall x_0 \in E \setminus H, H \oplus \text{Vect} [x_0] = E$.

Preuve: Montrons que $a \implies c$): soit $x_0 \in E \setminus H$, comme x_0 n'est pas dans H, il est facile de voir que H et Vect $[x_0]$ sont en somme directe. Soit ϕ une forme linéaire (non nulle) telle que $\ker(\phi) = H$, on a $\phi(x_0) = \alpha \neq 0$, soit $x \in E$ et $\lambda = \phi(x)$, posons $y = x - \frac{\lambda}{a}x_0$, on a $\phi(y) = 0$, donc $y \in H$ et de plus $x = y + \frac{\lambda}{a}x_0$, ce qui prouve que $E = H + \text{Vect} [x_0].$

Montrons que $c) \Longrightarrow b$) : rien à faire.

Montrons que $b \implies a$: Pour $x \in E$, il existe $y \in H$ et $\lambda \in \mathbb{K}$, uniques tels que $x = y + \lambda x_0$. Posons $\phi(x) = \lambda$. On définit ainsi une application non nulle de E vers \mathbb{K} , on peut vérifier ensuite que ϕ est bien linéaire (laissé en exercice), $x \in \ker(\phi) \iff \lambda = 0 \iff x = y \iff x \in H$, donc $\ker(\phi) = H$, ce qui prouve que H est un hyperplan.

Projections, symétries IV)

1) Projecteurs

Définition 14.11

Soit E un K-e.v, une projection dans E (ou un projecteur de E) est un endomorphisme p de E tel que

Exemples:

- $-E = \mathbb{K}^2 \text{ et } p(x, y) = (x, 0).$
- $-E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ et p qui à $f \in E$ associe $p(f): x \mapsto \frac{f(x) + f(-x)}{2}$.

Remarque: invariants d'un endomorphisme. Si $f \in \mathcal{L}(E)$, alors $x \in E$ est invariant par f (ou un point fixe de f) si et seulement si f(x) = x, ce qui équivaut à $(f - id_F)(x) = 0_F$, ou encore $x \in \ker(f - id_F)$. L'ensemble des points fixes de f est donc le s.e.v $ker(f - id_F)$.

- THÉORÈME 14.11 (caractérisation des projections)

 $p \in \mathcal{L}(E)$ est un projecteur \iff $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$. Si c'est le cas, alors $\mathrm{Im}(p) = \ker(p - \mathrm{id}_E)$ et on dit que p est la projection sur Im(p) parallèlement à ker(p). Tout vecteur x de E se décompose de la manière suivante : x = (x - p(x)) + p(x), avec $x - p(x) \in \ker(p)$ et $p(x) \in \ker(p - \mathrm{id}_E)$.

Preuve: Si p est un projecteur, soit $x \in \ker(p) \cap \ker(p - \mathrm{id}_E)$, alors $p(x) = 0_E = x$, donc la somme est directe. Soit $x \in E$, alors $p(x - p(x)) = p(x) - p^2(x) = 0_E$, donc $x - p(x) \in \ker(p)$, on a alors x = (x - p(x)) + p(x) et $p(x) \in \ker(p - \mathrm{id}_E)$, donc $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$. De la définition, il découle que $\mathrm{Im}(p) \subset \ker(p - \mathrm{id}_E)$, l'inclusion étant évidente, on a $Im(p) = ker(p - id_E)$.

Réciproque : si $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$, soit $x \in E$, alors x = y + z avec $y \in \ker(p)$ et $z \in \ker(p - \mathrm{id}_E)$, d'où p(x) = p(y) + p(z) = p(z) = z, et donc $p^2(x) = p(z) = z = p(x)$, ce qui prouve que p est un projecteur.

Exemples:

- Dans le premier exemple, p est la projection sur la droite Vect [(1,0)] et parallèlement à la droite Vect [(0,1)].
- Dans le deuxième exemple, p est la projection sur le s.e.v des fonctions paires, parallèlement au s.e.v des fonctions impaires.

Si F et G sont deux s.e.v de E supplémentaires $(E = F \oplus G)$, alors il existe une unique projection p telle que Im(p) = F et ker(p) = G, i.e. qui soit la projection sur F parallèlement à G.

Preuve: Pour $x \in E$, il existe $x_F \in F$ et $x_G \in G$, uniques tels que $x = x_F + x_G$, on pose alors $p(x) = x_F$, ce qui définit une application de E dans E. On vérifie facilement que p est linéaire, et comme $x_F \in F$, on a par définition même de p, que $p^2(x) = x_F = p(x)$, donc p est bien un projecteur. On a $p(x) = 0_E \iff x_F = 0_E \iff x = x_G \iff x \in G$, donc $\ker(p) = G$, d'autre part, $p(x) = x \iff x = x_F \iff x \in F$, donc $\ker(p - \mathrm{id}_E) = F$, ce qui termine la preuve. \square

Exemples:

- Soit $E = \mathbb{K}^3$, $F = \{(x, y, z) \in E \mid z = 0\}$ et G = Vect[(1, 1, 1)]. Montrer que F et G sont supplémentaires, et déterminer l'expression analytique de la projection sur F parallèlement à G.
- Soit p un projecteur de E, montrer que $q = \mathrm{id}_E p$ est un projecteur, préciser ses éléments caractéristiques.

2) **Symétries**

Définition 14.12

Soit E un \mathbb{K} -e.v, une symétrie de E est un endomorphisme s tel que $s^2 = \mathrm{id}_E$ (involution linéaire).

Exemples:

- Dans $E = \mathbb{K}^2$, l'application s définie par s(x, y) = (y, x) est une symétrie.
- Dans $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ l'application s définie par s(f) est la fonction qui à s(f): $x \mapsto f(-x)$, est une symétrie.

THÉORÈME 14.13 (caractérisation des symétries)

Soit $s \in \mathcal{L}(E)$, s est une symétrie $\iff E = \ker(s - \mathrm{id}_E) \oplus \ker(s + \mathrm{id}_E)$. Ce qui revient à dire que l'application $p = \frac{1}{2}(id_E + s)$ est une projection. Si c'est le cas, on dit que s est la symétrie par rapport à $\ker(s - \mathrm{id}_E)$ (ensemble des invariants) et parallèlement à $\ker(s + \mathrm{id}_E)$, et on dit que p est la projection associée à s. Tout vecteur x de E se décompose de la manière suivante :

$$x = \frac{1}{2}(x + s(x)) + \frac{1}{2}(x - s(x))$$

 $avec \frac{1}{2}(x+s(x)) \in ker(s-id_E) et \frac{1}{2}(x-s(x)) \in ker(s+id_E).$

Preuve: Posons $p = \frac{1}{2}(id_E + s)$, s est une symétrie équivaut à $s^2 = id_E$, c'est à dire $(2p - id_E)^2 = id_E$, ou encore $p^2 = p$, ce qui équivaut à dire que $E = \ker(p) \oplus \ker(p - \mathrm{id}_E)$, et donc $E = \ker(s + \mathrm{id}_E) \oplus \ker(s - \mathrm{id}_E)$.

THÉORÈME 14.14 (symétrie associée à une décomposition)

Si F et G sont deux s.e.v de E supplémentaires $(E = F \oplus G)$, alors il existe une unique symétrie s telle que $ker(s - id_F) = F$ et $ker(s + id_F) = G$, i.e. qui soit la symétrie par rapport à F et parallèlement

Preuve: Soit p la projection sur F parallèlement à G, posons $s = 2p - \mathrm{id}_E$, on sait alors que s est une symétrie et $\ker(s - \mathrm{id}_E) = \ker(p - \mathrm{id}_E) = F$ et $\ker(s + \mathrm{id}_E) = \ker(p) = G$, donc s existe. Réciproquement, si s existe, alors la projection associée est nécessairement la projection sur F parallèlement à G, or celle-ci est unique, c'est p, donc s est unique.

Exemples:

- Dans le premier exemple ci-dessus, s est la symétrie par rapport à la droite Vect [(1,1)] et parallèlement à la droite Vect [(1,-1)].
- Dans le deuxième exemple, s est la symétrie par rapport au s.e.v des fonctions paires, et parallèlement au s.e.v des fonctions impaires.

V) **Exercices**

★Exercice 14.1

Dans les cas suivants, dire si F est un s.e.v de E:

a) $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ (T > 0 est fixé) :

i)
$$F = \{ f \in E \ / \ f(1) - f(0) = 0 \}$$
 ii) $F = \{ f \in E \ / \ f(1) = 2f(0) \}$ iii) $F = \{ f \in E \ / \ \forall \ x \in \mathbb{R}, f(x+T) = f(x) \}$ iv) $F = \{ f \in E \ / \ \lim_{t \to \infty} f = 0 \}$

v) $F = \{ f \in E / f \text{ est croissante} \}.$

b)
$$E = \mathbb{K}^n, \overrightarrow{x} = (x_1, \dots, x_n)$$
:
i) $F = \{\overrightarrow{x} \in E \mid x_1 = x_2 = 0\}$. ii) $F = \{\overrightarrow{x} \in E \mid x_1 + x_2 = 0\}$.
iii) $F = \{\overrightarrow{x} \in E \mid x_1 \neq 0\}$. iv) $F = \{\overrightarrow{x} \in E \mid x_1 = 0 \text{ ou } x_2 = 0\}$.
v) $F = \{\overrightarrow{x} \in E \mid x_1 = x_2\}$. vi) $F = \{\overrightarrow{x} \in E \mid x_1^2 + x_2^3 = 0\}$.

c) $E = \mathscr{F}(\mathbb{N}, \mathbb{R})$:

i)
$$F = \{u \in E \mid \lim u_n = 0\}$$
. ii) $F = \{u \in E \mid (u_n) \text{ est convergente}\}$. iii) $F = \{u \in E \mid (u_n) \text{ est bornée}\}$. iv) $F = \{u \in E \mid (u_n) \text{ est périodique}\}$.

★Exercice 14.2

Pour les opérations usuelles sur les fonctions, étudier la structure des ensembles suivants :

- a) $\mathcal{B}(I,\mathbb{C})$: ensemble des fonctions bornées sur l'intervalle I.
- b) $\mathscr{P}_T(I,\mathbb{C})$: ensemble des fonctions T-périodiques sur I ($T \in \mathbb{R}^*$).
- c) L'ensemble des fonctions paires (respectivement impaires) sur *I* et à valeurs complexes.
- d) $\mathcal{L}(I,\mathbb{R})$: ensemble des fonctions lipschitziennes sur I.

★Exercice 14.3

Soit
$$f : \mathbb{K}^2 \to \mathbb{K}^2$$
 définie par $f(x, y) = (-x + y, -y)$.

- a) Montrer que $f \in \mathcal{L}(\mathbb{K}^2)$, déterminer $\ker(f)$ et $\operatorname{Im}(f)$.
- b) Montrer que $f + \mathrm{id}_E$ est nilpotente, en déduire f^n pour $n \in \mathbb{N}$, puis pour $n \in \mathbb{Z}$.
- c) Soient (x_n) et (y_n) deux suites vérifiant pour tout $n \in \mathbb{N}$: $\begin{cases} x_{n+1} & = -x_n + y_n \\ y_{n+1} & = -y_n \end{cases}$. Expliciter x_n et y_n en fonction de n, x_0 et y_0 .

★Exercice 14.4

Soit
$$f: \mathbb{K}^3 \to \mathbb{K}^3$$
 définie par $f(x, y, z) = (y, z, 0)$.

- a) Montrer que $f \in \mathcal{L}(\mathbb{K}^3)$. Déterminer $\ker(f)$ et $\operatorname{Im}(f)$.
- b) Vérifier que f est nilpotente. En déduire $id_E f \in GL(E)$ et expliciter (id_E

c) Soient
$$(x_n), (y_n), (z_n)$$
 trois suites telles que $\forall n \in \mathbb{N}$:
$$\begin{cases} x_{n+1} &= x_n - y_n \\ y_{n+1} &= y_n - z_n \end{cases}$$
 Expliciter x_n, y_n et z_n en fonction de n et des premiers termes z_n, y_n, z_n

 z_n en fonction de n et des premiers termes x_0, y_0, z_0

★Exercice 14.5

Soit E un \mathbb{K} -e.v et soit $f \in \mathcal{L}(E)$. Montrer que f est une homothétie si et seulement si :

$$\forall \overrightarrow{x} \in E, f(\overrightarrow{x}) \in \text{Vect} \left[\overrightarrow{x} \right]$$

★Exercice 14.6

Soient $u, v \in \mathcal{L}(E)$:

- a) Montrer que $\ker(u) \subset \ker(v \circ u)$.
- b) Montrer que $\operatorname{Im}(v \circ u) \subset \operatorname{Im}(v)$.
- c) Montrer que $\text{Im}(u) \subset \text{ker}(v) \iff v \circ u = 0$.

★Exercice 14.7

Soient F et G deux s.e.v supplémentaires dans E. Soit $u \in \mathcal{L}(F)$ et $v \in \mathcal{L}(G)$, montrer qu'il existe un unique endomorphisme f de E tel que : $\forall x \in F, f(x) = u(x)$ et $\forall x \in G, f(x) = v(x)$.

★Exercice 14.8

Soit E un \mathbb{K} -e.v et soit $f \in \mathcal{L}(E)$, montrer que :

- a) $\ker(f) = \ker(f^2) \iff \text{la somme } \ker(f) + \operatorname{Im}(f) \text{ est directe.}$
- b) $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff E = \operatorname{Im}(f) + \ker(f)$.
- c) En déduire une condition nécessaire et suffisante pour que ker(f) et Im(f) soient supplémentaires dans E. Donner un exemple pour f qui vérifie cette condition, mais qui ne soit pas un projecteur.

★Exercice 14.9

Soient $u, v \in \mathcal{L}(E)$, montrer que $\begin{cases} u \circ v &= u \\ v \circ u &= v \end{cases} \iff u \text{ et } v \text{ sont deux projecteurs de même noyau.}$

★Exercice 14.10

Soient $p \in \mathcal{L}(E)$ un projecteur, et soit $u \in \mathcal{L}(E)$. Montrer que u et p commutent si et seulement si $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par u.

★Exercice 14.11

Soit $E = \mathbb{K}^3$, $F = \{(x, y, z) \in E \mid z = 0\}$, et G = Vect[(1, 1, 1)]. Montrer que F et G sont supplémentaires. Déterminer l'expression analytique de la projection sur F parallèlement à G, puis celle de la symétrie par rapport à F parallèlement à G.

★Exercice 14.12

Soit \mathbb{K} un sous-corps de \mathbb{C} .

- a) Montrer que $\mathbb{Q} \subset \mathbb{K}$, on peut donc considérer \mathbb{K} comme un \mathbb{Q} -e.v.
- b) Soit $\sigma : \mathbb{K} \to \mathbb{K}$ un morphisme de corps. Montrer que σ est \mathbb{Q} -linéaire. Soit $P \in \mathbb{Q}[X]$, et soit $\alpha \in \mathbb{K}$ une racine de P, montrer que $\sigma(\alpha)$ est également racine de P.
- c) Exemple : Soit $\mathbb{K} = \mathbb{Q}[j] = \{a + bj \mid a, b \in \mathbb{Q}\}$. Vérifier que \mathbb{K} est un sous-corps de \mathbb{C} , et déterminer tous les morphismes de corps de \mathbb{K} dans \mathbb{K} .