WikipediA

Números de Catalan

En <u>combinatoria</u>, los **números de Catalan** forman una <u>secuencia</u> de <u>números naturales</u> que aparece en varios problemas de conteo que habitualmente son <u>recursivos</u>. Obtienen su nombre del matemático <u>belga</u> <u>Eugène Charles Catalan</u> (1814–1894).

El *n*-ésimo número de Catalan se obtiene, aplicando <u>coeficientes binomiales</u>, a partir de la siguiente fórmula:

$$C_n=rac{1}{n+1}inom{2n}{n}=rac{(2n)!}{(n+1)!\,n!}\qquad ext{ con } n\geq 0.$$

Propiedades

Una expresión alternativa para C_n es

$$C_n = inom{2n}{n} - inom{2n}{n-1} \quad ext{ con } n \geq 1.$$

Esta otra expresión muestra que C_n es un <u>número natural</u>, lo cual no resulta obvio *a priori* mirando la primera fórmula dada.

Una forma curiosa de generar C_n derivada de las fórmulas anteriores es a partir del factorial de cualquier número entero par (2n)!. Se dividen todos los términos situados a la izquierda del factor n+1, entre todos los términos situados a su derecha y el resultado será el n-ésimo número de Catalan.

Los números de Catalan satisfacen la siguiente relación de recurrencia:

$$C_0=1\quad ext{y}\quad C_{n+1}=\sum_{i=0}^n C_i\ C_{n-i}\quad ext{con } n\geq 0.$$

Y también satisfacen:

$$C_0 = 1 \quad ext{y} \quad C_{n+1} = rac{2(2n+1)}{n+2} C_n,$$

que puede ser una forma más eficiente de calcularlos.

La expresión en forma de recursión sería:

Números de Catalan

n	C_n
0	1
1	1
2	2
3	5
4	14
5	42
6	132
7	429
8	1.430
9	4.862
10	16.796
11	58.786
12	208.012
13	742.900
14	2.674.440
15	9.694.845
16	35.357.670
17	129.644.790
18	477.638.700
19	1.767.263.190
20	6.564.120.420
21	24.466.267.020
22	91.482.563.640
23	343.059.613.650
24	1.289.904.147.324
25	4.861.946.401.452

$$C_n = \left\{ egin{array}{ll} \sin n = 0 & \Rightarrow 1 \ & \sin n > 0 & \Rightarrow rac{2(2n-1)}{n+1} \, C_{n-1} \end{array}
ight.$$

Asintóticamente, los números de Catalan crecen como:

$$C_n \sim rac{4^n}{n^{3/2}\sqrt{\pi}}$$

considerando que el cociente entre el n-ésimo número de Catalan y la expresión de la derecha <u>tiende hacia</u> 1 cuando $n \to \infty$ (esto puede probarse usando la fórmula de Stirling).

Aplicaciones en combinatoria

Existen múltiples problemas de <u>combinatoria</u> cuya solución la dan los números de Catalan. El libro <u>Enumerative</u> <u>Combinatorics</u>: Volume 2, de <u>Richard P. Stanley</u> contiene un conjunto de ejercicios que describen 66 interpretaciones distintas de los números de Catalan. Aquí se muestran algunos ejemplos, con ilustraciones para el caso $C_3 = 5$.

• C_n es el número de <u>palabras de Dyck</u> de longitud 2*n*. Una palabra de Dyck es una <u>cadena de caracteres</u> que consiste en *n* X's y *n* Y's de forma que no haya ningún segmento inicial que tenga más Y's que X's. Por ejemplo, lo siguiente son las palabras de Dyck de longitud 6:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

■ Reinterpretando el símbolo X como un <u>paréntesis</u> abierto y la Y como un paréntesis cerrado, *C_n* cuenta el número de expresiones que contienen *n* pares de paréntesis correctamente colocados:

 $((())) \quad ((()) \quad (()) \quad ((())) \quad ((()))$

■ *C_n* es el número de formas distintas de agrupar *n* + 1 factores mediante paréntesis (o el número de formas de <u>asociar</u> *n* aplicaciones de un <u>operador binario</u>). Para *n* = 3 por ejemplo, tenemos las siguientes cinco formas distintas de agrupar los cuatro factores:

 $((ab)c)d \quad (a(bc))d \quad (ab)(cd) \quad a((bc)d) \quad a(b(cd))$

Las aplicaciones sucesivas de un operador binario pueden representarse con un <u>árbol binario</u>. En este caso, C_n es el número de árboles binarios de n + 1 hojas, en los que cada nodo tiene cero o dos hijos:

• C_n es el número de **caminos monótonos** que se pueden trazar a través de las líneas de una malla de $n \times n$ celdas cuadradas, de forma que nunca se cruce la diagonal. Un camino monótono es aquél que empieza en la esquina inferior izquierda y termina en la esquina superior derecha, y consiste únicamente en tramos que apuntan hacia arriba o hacia la derecha. El recuento de estos caminos es equivalente a contar palabras de Dyck: X significa "moverse a la derecha" e Y significa "moverse hacia arriba". Los siguientes diagramas muestran el caso n = 3:

• C_n es el número de formas distintas de <u>dividir un polígono convexo</u> de n + 2 lados en <u>triángulos</u> conectando vértices con <u>diagonales</u> sin que ninguna se corte. La siguiente figura ilustra el caso de las $c_4 = 14$ posibles triangulaciones para un polígono de 6 lados:

Enlaces externos

Invasores del espacio (de los números de Catalan) (http://oeis.org/A000108)

Obtenido de «https://es.wikipedia.org/w/index.php?title=Números_de_Catalan&oldid=106558508»

Se editó esta página por última vez el 28 mar 2018 a las 18:46.

El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros términos de uso y nuestra política de privacidad. Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.