Φροντιστήριο 8/12/2014

Επικοινωνία CPU – I/O Devices (1)

- Απλές I/O Devices
 - Πληκτρολόγιο (Receiver)
 - Κονσόλα SPIM
- 2 ειδικές θέσεις στην μνήμη (Memory Mapped I/O)
 - Data
 - Control

Memory Mapped I/O

Διευθύνσεις Memory Mapped I/O

Control Register

- 32 bits width
 - Χρήσιμα: 2 least significant bits
- Ready bit
 - Είναι ενεργοποιημένο μόνο αν η συσκευή είναι έτοιμη να δεχτεί ή να διαβάσει έναν νέο χαρακτήρα

- Interrupt bit
 - Ενεργοποίηση των Interruptsγια την συγκεκριμένη συσκευή

Data Register

- 32 bits width
 - Χρήσιμα: 8 least significant bits
- 8 bits
 - Ο χαρακτήρας είτε που
 διαβάστηκε από το πληκτρολόγιο
 είτε που θα εμφανιστεί στην
 κονσόλα

Memory Mapped I/O Addresses

- Receiver > Πληκτρολόγιο
- Transmitter → Κονσόλα

Όνομα Καταχωρητή	Διεύθυνση
Receiver Control	0xffff0000
Receiver Data	0xffff0004
Transmitter Control	0xffff0008
Transmitter Data	0xffff000c

Τεχνική Polling

- Π.χ. Να γραφτεί ένας χαρακτήρας στην κονσόλα
 - Διαβάζω τα περιεχόμενα της θέσης μνήμης
 0xffff0008
 - Αν το Ready bit είναι 0 συνέχισε να διαβάζεις την παραπάνω θέση μνήμης
 - Αν το Ready bit είναι 1 αποθήκευσε τον χαρακτήρα (8 bits) στη θέση μνήμης 0xffff000c.
- Q1: Πώς κάνω ανάγνωση ενός χαρακτήρα από το πληκτρολόγιο?

1° Μέρος εργαστηρίου (1/2)

- Το πρόγραμμα σας θα διαβάζει μία συμβολοσειρά θα την μετατρέπει σε ΚΕΦΑΛΑΙΑ και θα την εκτυπώνει στην κονσόλα.
- Οι λέξεις χωρίζονται μόνο με ΚΕΝΑ!
- Μπορείτε να χρησιμοποιήσετε τις συναρτήσεις που μετατρέπουν μία συμβολοσειρά σε ΚΕΦΑΛΑΙΑ από το 3° Εργαστήριο.

1° Μέρος εργαστηρίου (2/2)

- 2 συναρτήσεις
 - Print_string
 - Εμφανίζει στην κονσόλα μία ολόκληρη συμβολοσειρά που είναι αποθηκευμένη στην μνήμη.
 - Read_string
 - Διαβάζει μία ολόκληρη συμβολοσειρά και θα την αποθηκεύει στην μνήμη.
- 2 συναρτήσεις
 - Write_ch
 - Εμφανίζει έναν χαρακτήρα στην κονσόλα
 - Read ch
 - Διαβάζει έναν χαρακτήρα από το πληκτρολόγιο
- OXI SYSCALL ΓΙΑ ΤΟ Ι/Ο

1° Μέρος εργαστηρίου: Flowchart

- 1) Εκτύπωσε ένα μήνυμα: "Give the string:" (Χρήση συνάρτησης Print_string)
- 2) Διάβασε μία συμβολοσειρά (Χρήση συνάρτησης Read_string)
- 3) Άλλαξε τα γράμματα σε ΚΕΦΑΛΑΙΑ
- 4) Εκτύπωση της νέας συμβολοσειράς (Χρήση συνάρτησης Print_string)

Συναρτήσεις Print_string και write_ch

- Print_string (String Address)
 - 1) Διάβασε έναν έναν τους χαρακτήρες του string μέχρι τον **'\0'**
 - 2) Για κάθε χαρακτήρα που διαβάζεις κάλεσε την συνάρτηση write_ch.
- Write_ch (Character)
 - 1) Έλεγξε αν η κονσόλα είναι έτοιμη να δεχτεί νέο χαρακτήρα (βλέπε διαφάνεια 7)
 - 2) Αν είναι έτοιμη, αποθήκευσε τον Character στην διεύθυνση transmitter data.

Συναρτήσεις Read_string και read_ch

- Read_string (Address to save string)
 - 1) Βάλε έναν καταχωρητή να δείχνει στην πρώτη διεύθυνση που θα αποθηκευθεί το string.
 - 2) Διάβασε έναν χαρακτήρα με την χρήση της συνάρτησης read_ch.
 - 3) Αποθήκευσε τον χαρακτήρα που σου επέστρεψε η read_ch στην μνήμη στη θέση που δείχνει ο καταχωρητής του βήματος 1.
 - 4) Κάλεσε την συνάρτηση write_ch με όρισμα τον παραπάνω χαρακτήρα
 - 5) Αν ο χαρακτήρας που μόλις αποθήκευσες είναι ο '\0' τότε το string τελείωσε και επέστρεψε.
 - 6) Διαφορετικά, συνέχισε στον βήμα 2.
- Read_ch
 - 1) Έλεγξε αν το πληκτρολόγιο διάβασε νέο χαρακτήρα
 - 2) Αν διάβασε, διάβασε την θέση μνήμης Receiver Data και επέστρεψε τον χαρακτήρα

Παρατηρήσεις

Παρατήρηση 1: Πριν τρέξετε τον κώδικά σας πρέπει να ενεργοποιήσετε τα «memory mapped IO» στον SPIM από το μενού Simulator->Settings και να ενεργοποιήσετε την επιλογή «Mapped I/O» εάν δεν είναι ήδη ενεργοποιημένη.

Παρατήρηση 2: Κατά την υλοποίηση του κομματιού εισόδου (read_ch, κλπ) για λόγους debugging μπορείτε να χρησιμοποιήσετε syscall για την εκτύπωση διαγνωστικών μηνυμάτων.

Μενού ρυθμίσεων SPIM για ενεργοποίηση Memory Mapped I/O και καθορισμό αρχείου interrupt handler.

Επικοινωνία CPU – I/O Devices (2)

- Interrupts/ Exceptions
 - I/O Device στέλνει "interrupt" σήμα στον CPU
 - CPU σταματάει "άμεσα" την εκτέλεση του προγράμματος και ξεκινάει τον interrupt handler
- Interrupt Handler
 - Κώδικας που εξυπηρετεί τα interrupts
 - Οι συμβάσεις κλήσεις υπορουτίνας δεν ισχύουν
 - 2 Καταχωρητές
 - \$k1, \$k2

Interrupts

- Ενεργοποίηση
 - \$12 Συνεπεξεργαστή
 - Διαβάζω την τιμή του \$12 από τον συνεπεξεργαστή (mfc0 \$t0, \$12)
 - Bit 11 → Διακοπές πληκτρολογίου
 - Bit 0 → Ενεργοποίηση διακοπών για τον επεξεργαστή
 - Αποθήκευση νέας τιμής στον \$12. (mtc0 \$t0, \$12).
 - Control registers
 - Bit 1 → Interrupt enable

2ο Μέρος Εργαστηρίου

 Ένα απλό μενού επιλογών που θα επικοινωνεί με το πληκτρολόγιο μέσω Interrupts

Flowchart προγράμματος (1/2)

- 1) Δεσμεύστε 2 ποσότητες των 4 Bytes, cflag και cdata.
- 2) Αρχικοποιήστε την cflag περιοχή με την τιμή 0.
 - Η cflag θέση μνήμης χρησιμοποιείται για την "επικοινωνία" μεταξύ του επεξεργαστή και Interrupt Handler.
 - cflag = 0 → κανένας νέος χαρακτήρας
 - cflag = 1 → ένας νέος χαρακτήρας στην θέση cdata
- 3) Ενεργοποιήστε τα interrupts του πληκτρολογίου (Διαφάνεια 15)
- 4) Εμφανίστε ένα απλό μενού επιλογών όπως στο εργαστήριο 3 **με την χρήση syscall**.
 - Επιλογή 1
 - Επιλογή 2
 - Έξοδος

Flowchart προγράμματος (2/2)

- 5) Στην συνέχεια το πρόγραμμα σας μπαίνει σε ένα loop στο οποίο θα ελέγχει τη θέση μνήμης cflag.
- 6) Αν η τιμή είναι 0, ξαναδιάβασε τη θέση μνήμης cflag.
- 7) Διαφορετικά αν είναι 1, διάβασε την περιοχή cdata.
 - Αν η τιμή του cdata είναι 1 ή 2 (ανάλογα το τι πληκτρολόγησε ο χρήστης) θα εμφανίζεται στην κονσόλα με syscall το μήνυμα «Ενεργοποιήθηκε η επιλογή Χ» (όπου Χ είναι 1 ή 2) και συνεχίστε την εκτέλεση του κώδικα.
 - Αν η τιμή είναι του cdata είναι space, με syscall θα τερματίζεται το πρόγραμμα.

7) ΜΗΔΕΝΙΖΩ ΤΗΝ ΘΕΣΗ ΜΝΗΜΗΣ CFLAG

8) Ο κώδικας επιστρέφει στο loop ανάγνωσης της θέσης μνήμης cflag.

Αλλαγές Exception File (1/2)

- Αρχείο exceptions.s
 - Σημείο εγκατάστασης του SPIM, π.χ. C:\Program Files\PCSpim
 - Δημιουργία αντιγράφου και αλλαγή ονόματος
 - Εισαγωγή του κώδικα Interrupt στο σωστό σημείο
 - #Interrupt-specific code goes here
 - Αλλαγές στον SPIM

Αλλαγές Exception File(2/2)

- Simulator → Settings → Browse
 - Επιλογή ως αρχείο exception το νέο αρχείο που έχετε δημιουργήσει

Μενού ρυθμίσεων SPIM για ενεργοποίηση Memory Mapped I/O και καθορισμό αρχείου interrupt handler.

Κώδικας Exception File

 Εφόσον έχουμε ενεργοποιήσει τα σωστά Interrupts, ο Interrupt Handler θα εκτελείται κάθε φορά που έχουμε ένα νέο Interrupt, δηλαδή στο συγκεκριμένο εργαστήριο κάθε φορά που έχουμε ένα νέο χαρακτήρα.

• Κώδικας exception file

- Ανάγνωση της διεύθυνσης Receiver Data (Διαφάνεια 3)
 - Κάθε φορά που έρχεται ένα νέο Interrupt από το πληκτρολόγιο τα δεδομένα θα μπαίνουν αμέσως στη θέση μνήμης Receiver Data
- Αποθήκευση του χαρακτήρα που διαβάστηκε στην θέση μνήμης cdata.
- Αποθήκευση της τιμής 1 στην θέση μνήμης cflag.