Training

May 16, 2022

```
[1]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     from sklearn.metrics import confusion_matrix,accuracy_score,_
      Glassification_report, multilabel_confusion_matrix
     import tensorflow as tf
     from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout,
      →BatchNormalization
     import seaborn as sns
     import warnings
     warnings.filterwarnings('ignore')
[2]: train = pd.read_csv('./sign_mnist_train.csv')
     test = pd.read_csv('./sign_mnist_test.csv')
[3]:
    train.head()
[3]:
               pixel1 pixel2 pixel3 pixel4 pixel5 pixel6
                                                                 pixel7
                                                                          pixel8 \
     0
            3
                   107
                           118
                                   127
                                            134
                                                    139
                                                             143
                                                                     146
                                                                              150
            6
                  155
     1
                           157
                                   156
                                            156
                                                    156
                                                             157
                                                                     156
                                                                              158
     2
            2
                  187
                           188
                                   188
                                            187
                                                    187
                                                             186
                                                                     187
                                                                              188
     3
            2
                   211
                                            212
                           211
                                   212
                                                    211
                                                             210
                                                                     211
                                                                              210
           13
                   164
                           167
                                   170
                                            172
                                                    176
                                                             179
                                                                     180
                                                                              184
                   pixel775 pixel776 pixel777
                                                  pixel778 pixel779 pixel780
        pixel9
     0
           153
                                                        207
                                                                              206
                         207
                                   207
                                              207
                                                                   206
           158
                                   149
                                              128
                                                         87
                                                                    94
     1
                          69
                                                                              163
     2
           187
                         202
                                   201
                                              200
                                                        199
                                                                   198
                                                                              199
     3
           210
                         235
                                   234
                                              233
                                                        231
                                                                   230
                                                                              226
     4
           185
                          92
                                   105
                                              105
                                                        108
                                                                   133
                                                                              163
        pixel781 pixel782 pixel783 pixel784
     0
             206
                        204
                                  203
                                             202
     1
             175
                        103
                                  135
                                             149
     2
             198
                        195
                                  194
                                             195
```

3	225	222	229	163	
4	157	163	164	179	

[5 rows x 785 columns]

ГΔТ	train.isnull()
L±.	l orain.ionuit ()

547											
[4]:	•		-	-	-	pixel4	_	_	_	-	\
	0	False	False	False				False		False	
	1	False	False	False				False		False	
	2	False	False	False				False		False	
	3	False	False	False				False		False	
	4	False	False	False	False	False	False	False	False	False	
	•••			•••	•••		•••	•••			
		False		False		False	False	False			
	27451	False		False		False		False			
		False		False		False		False		False	
	27453	False	False	False	False	False	False	False	False	False	
	27454	False	False	False	False	False	False	False	False	False	
		-	-	-		pixel777	-	-			
	0			False				lse	False		
	1	False		False		False			False		
	2	False		False		False		lse	False		
	3	False	•••	False	False	False	Fa.	lse	False		
	4	False	•••	False	False	False	Fa.	lse	False		
	•••		•••	•••			•••				
	27450	False		False	False	False	Fa.	lse	False		
	27451	False	•••	False	False	False	Fa	lse	False		
	27452	False	•••	False	False	False	Fa	lse	False		
	27453	False	•••	False	False	False	Fa.	lse	False		
	27454	False	•••	False	False	False	Fa.	lse	False		
		-	-	-		pixel783	-				
	0			alse			Fal				
	1	Fal		alse	False		Fal				
	2	Fal		alse	False		Fal				
	3	Fal	se F	alse	False	False	Fal	se			
	4	Fal	se F	alse	False	False	Fal	se			
	•••	•••	•••	•••	•••	•••					
	27450	Fal	se F	alse	False	False	Fal	se			
	27451	Fal	se F	alse	False	False	Fal	se			
	27452	Fal	se F	alse	False	False	Fal	se			
	27453	Fal	se F	alse	False	False	Fal	se			
	27454	Fal		alse	False	False	Fal	se			

[27455 rows x 785 columns]

```
[5]: train.isna().sum()
[5]: label
                 0
    pixel1
                 0
                 0
    pixel2
    pixel3
                 0
    pixel4
    pixel780
                 0
    pixel781
                 0
                 0
    pixel782
                 0
    pixel783
    pixel784
                 0
    Length: 785, dtype: int64
[6]: train_df_original = train.copy()
     # Split into training, test and validation sets
     val_index = int(train.shape[0]*0.2)
     train_df = train_df_original.iloc[val_index:]
     val_df = train_df_original.iloc[:val_index]
[7]: y = np.array(train_df['label'])
     X = np.array(train_df.drop(columns='label'))
[8]: X.shape, y.shape
[8]: ((21964, 784), (21964,))
[9]: import random
     r = random.randint(0,(21964-1))
     def show_img():
         arr = np.array(X)
         some value = arr[r]
         some_img = some_value.reshape(28,28)
         plt.imshow(some_img, cmap="gray")
         plt.axis("off")
         plt.show()
     show_img()
     print(y[r])
```



```
[10]: y_train = pd.get_dummies(y)
y_train.head(5)
```

```
[10]:
              1
                  2
                       3
                           4
                               5
                                    6
                                        7
                                             8
                                                 10
                                                         15
                                                             16
                                                                 17
                                                                      18
                                                                          19
                                                                               20
                                                                                   21 \
                                              0
      0
          0
               0
                   0
                       0
                            0
                                0
                                     0
                                         0
                                                  0
                                                          0
                                                              0
                                                                   1
                                                                       0
                                                                           0
                                                                                0
                                                                                    0
      1
          0
               0
                   0
                       0
                          0
                                0
                                    0
                                             1
                                                  0
                                                          0
                                                              0
                                                                   0
                                                                                0
                                                                                    0
      2
          0
               0
                   0
                       0
                            0
                                0
                                     0
                                         0
                                             0
                                                  0
                                                          0
                                                              0
                                                                   0
                                                                           0
                                                                               1
                                                                                    0
      3
                   0
                        0
                            0
                                0
                                     0
                                         0
                                              0
                                                  0
                                                          0
                                                                   0
                                                                           0
                                                                                0
                                                                                    0
          0
               0
          0
               0
                   0
                            0
                                0
                                     0
                                         0
                                                  0
                                                          1
                                                                   0
                                                                                0
                                                                                    0
```

[5 rows x 24 columns]

```
[11]: y_val = val_df['label']
X_val = val_df.drop(columns="label",axis=1)
```

```
[12]: y_val = pd.get_dummies(y_val)
```

[13]: y_train.shape

```
[13]: (21964, 24)
[14]: X_val = pd.DataFrame(X_val).values.reshape(X_val.shape[0],28, 28, 1)
[15]: | X_train = pd.DataFrame(X).values.reshape(X.shape[0], 28, 28, 1)
[16]: X_train.shape,y_train.shape
[16]: ((21964, 28, 28, 1), (21964, 24))
[17]: generator = tf.keras.preprocessing.image.ImageDataGenerator(
          rescale=1./255,
          rotation_range=10,
          zoom_range=0.10,
          width_shift_range=0.1,
          height_shift_range=0.1,
          shear_range=0.1,
          horizontal_flip=False,
          fill_mode="nearest"
      X_train_flow = generator.flow(X_train, y_train, batch_size=32)
      X_val_flow = generator.flow(X_val, y_val, batch_size=32)
[18]: model = Sequential()
      model.add(Conv2D(filters=32, kernel_size=(3,3), activation="relu", ___
       →input_shape=(28,28,1)))
      model.add(MaxPool2D((2,2),padding='SAME'))
      model.add(Dropout(rate=0.2))
      model.add(Conv2D(filters=64, kernel_size=(3,3), activation="relu", u
       →input_shape=(28,28,1)))
      model.add(MaxPool2D((2,2),padding='SAME'))
      model.add(Dropout(rate=0.2))
      model.add(Conv2D(filters=521, kernel_size=(3,3), activation="relu", u

input_shape=(28,28,1)))
      model.add(MaxPool2D((2,2),padding='SAME'))
      model.add(Dropout(rate=0.2))
      model.add(Flatten())
```

[19]: model.summary()

Model: "sequential"

Layer (type)	1 1	Param #
conv2d (Conv2D)	(None, 26, 26, 32)	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 13, 13, 32)	0
dropout (Dropout)	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 6, 6, 64)	0
<pre>dropout_1 (Dropout)</pre>	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 521)	300617
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 2, 2, 521)	0
dropout_2 (Dropout)	(None, 2, 2, 521)	0
flatten (Flatten)	(None, 2084)	0
dense (Dense)	(None, 521)	1086285
dense_1 (Dense)	(None, 256)	133632
dropout_3 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 24)	6168

Total params: 1,545,518 Trainable params: 1,545,518 Non-trainable params: 0

[28]: dot_img_file = './SignLanguageRecognitionModel.png'
tf.keras.utils.plot_model(model, to_file=dot_img_file, show_shapes=True)

[28]:


```
[20]: | learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(
        monitor='val_accuracy', patience = 2, verbose=1,factor=0.5, min_lr=0.00001
     )
[21]: history = model.fit(
        X_train_flow,
        validation data=X val flow,
        epochs=100,
        callbacks=[
                  tf.keras.callbacks.EarlyStopping(
                      monitor='val_loss',
                      patience=5,
                      restore_best_weights=True
                      ),
          learning_rate_reduction
        1)
    Epoch 1/100
    accuracy: 0.2132 - val_loss: 0.9107 - val_accuracy: 0.6933 - lr: 0.0010
    Epoch 2/100
    687/687 [============ ] - 29s 42ms/step - loss: 0.7890 -
    accuracy: 0.7263 - val_loss: 0.3336 - val_accuracy: 0.8907 - lr: 0.0010
    Epoch 3/100
    687/687 [============] - 30s 43ms/step - loss: 0.3902 -
    accuracy: 0.8669 - val_loss: 0.1397 - val_accuracy: 0.9579 - lr: 0.0010
    Epoch 4/100
    687/687 [========== ] - 28s 41ms/step - loss: 0.2517 -
    accuracy: 0.9152 - val_loss: 0.0814 - val_accuracy: 0.9745 - lr: 0.0010
    Epoch 5/100
    687/687 [============ ] - 26s 38ms/step - loss: 0.1832 -
    accuracy: 0.9403 - val_loss: 0.0561 - val_accuracy: 0.9825 - lr: 0.0010
    Epoch 6/100
    687/687 [============ ] - 26s 38ms/step - loss: 0.1482 -
    accuracy: 0.9509 - val_loss: 0.0297 - val_accuracy: 0.9922 - lr: 0.0010
    Epoch 7/100
    687/687 [============ ] - 26s 38ms/step - loss: 0.1325 -
    accuracy: 0.9576 - val_loss: 0.0240 - val_accuracy: 0.9938 - lr: 0.0010
    Epoch 8/100
    687/687 [============ ] - 26s 38ms/step - loss: 0.1058 -
    accuracy: 0.9667 - val_loss: 0.0168 - val_accuracy: 0.9951 - lr: 0.0010
    Epoch 9/100
    687/687 [=========== ] - 26s 38ms/step - loss: 0.1039 -
    accuracy: 0.9677 - val_loss: 0.0112 - val_accuracy: 0.9975 - lr: 0.0010
    Epoch 10/100
```

```
687/687 [============ ] - 26s 38ms/step - loss: 0.0850 -
accuracy: 0.9734 - val_loss: 0.0145 - val_accuracy: 0.9954 - lr: 0.0010
Epoch 11/100
687/687 [============ ] - 26s 38ms/step - loss: 0.0796 -
accuracy: 0.9749 - val loss: 0.0072 - val accuracy: 0.9980 - lr: 0.0010
Epoch 12/100
687/687 [===========] - 26s 38ms/step - loss: 0.0803 -
accuracy: 0.9761 - val_loss: 0.0180 - val_accuracy: 0.9949 - lr: 0.0010
Epoch 13/100
0.9783
Epoch 13: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.
687/687 [=========== ] - 26s 38ms/step - loss: 0.0741 -
accuracy: 0.9782 - val_loss: 0.0247 - val_accuracy: 0.9925 - lr: 0.0010
Epoch 14/100
accuracy: 0.9883 - val_loss: 0.0026 - val_accuracy: 0.9987 - lr: 5.0000e-04
Epoch 15/100
687/687 [============ ] - 26s 38ms/step - loss: 0.0381 -
accuracy: 0.9888 - val_loss: 0.0036 - val_accuracy: 0.9987 - lr: 5.0000e-04
Epoch 16/100
687/687 [============ ] - 26s 38ms/step - loss: 0.0348 -
accuracy: 0.9886 - val_loss: 0.0048 - val_accuracy: 0.9989 - lr: 5.0000e-04
Epoch 17/100
687/687 [============= ] - 26s 38ms/step - loss: 0.0351 -
accuracy: 0.9897 - val_loss: 0.0019 - val_accuracy: 0.9995 - lr: 5.0000e-04
Epoch 18/100
687/687 [============ ] - 26s 38ms/step - loss: 0.0349 -
accuracy: 0.9900 - val_loss: 0.0046 - val_accuracy: 0.9989 - lr: 5.0000e-04
Epoch 19/100
687/687 [=========== ] - 31s 45ms/step - loss: 0.0310 -
accuracy: 0.9911 - val_loss: 0.0015 - val_accuracy: 0.9998 - lr: 5.0000e-04
Epoch 20/100
accuracy: 0.9919 - val loss: 0.0028 - val accuracy: 0.9996 - lr: 5.0000e-04
Epoch 21/100
687/687 [============= ] - ETA: Os - loss: 0.0268 - accuracy:
0.9920
Epoch 21: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
687/687 [============ ] - 27s 39ms/step - loss: 0.0268 -
accuracy: 0.9920 - val_loss: 0.0092 - val_accuracy: 0.9971 - lr: 5.0000e-04
Epoch 22/100
687/687 [=========== ] - 27s 39ms/step - loss: 0.0190 -
accuracy: 0.9942 - val_loss: 0.0010 - val_accuracy: 0.9998 - lr: 2.5000e-04
Epoch 23/100
687/687 [============== ] - ETA: Os - loss: 0.0147 - accuracy:
0.9953
Epoch 23: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.
```

```
687/687 [============ ] - 27s 39ms/step - loss: 0.0147 -
accuracy: 0.9953 - val_loss: 0.0034 - val_accuracy: 0.9987 - lr: 2.5000e-04
Epoch 24/100
687/687 [========== ] - 27s 39ms/step - loss: 0.0141 -
accuracy: 0.9958 - val_loss: 6.4741e-04 - val_accuracy: 0.9998 - lr: 1.2500e-04
Epoch 25/100
0.9959
Epoch 25: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
687/687 [============ ] - 27s 39ms/step - loss: 0.0132 -
accuracy: 0.9959 - val_loss: 0.0011 - val_accuracy: 0.9995 - lr: 1.2500e-04
Epoch 26/100
687/687 [============ ] - 27s 39ms/step - loss: 0.0115 -
accuracy: 0.9969 - val_loss: 2.8248e-04 - val_accuracy: 1.0000 - lr: 6.2500e-05
Epoch 27/100
687/687 [============= ] - 26s 37ms/step - loss: 0.0114 -
accuracy: 0.9965 - val_loss: 4.3466e-04 - val_accuracy: 0.9998 - lr: 6.2500e-05
Epoch 28/100
0.9971
Epoch 28: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.
accuracy: 0.9971 - val_loss: 3.3614e-04 - val_accuracy: 0.9998 - lr: 6.2500e-05
Epoch 29/100
687/687 [============ ] - 27s 39ms/step - loss: 0.0123 -
accuracy: 0.9963 - val_loss: 1.6902e-04 - val_accuracy: 1.0000 - lr: 3.1250e-05
Epoch 30/100
687/687 [============= ] - ETA: Os - loss: 0.0099 - accuracy:
0.9973
Epoch 30: ReduceLROnPlateau reducing learning rate to 1.5625000742147677e-05.
687/687 [============ ] - 27s 39ms/step - loss: 0.0099 -
accuracy: 0.9973 - val_loss: 2.1925e-04 - val_accuracy: 0.9998 - lr: 3.1250e-05
Epoch 31/100
687/687 [============ ] - 27s 39ms/step - loss: 0.0103 -
accuracy: 0.9965 - val loss: 1.2029e-04 - val accuracy: 1.0000 - lr: 1.5625e-05
Epoch 32/100
Epoch 32: ReduceLROnPlateau reducing learning rate to 1e-05.
687/687 [============ ] - 27s 39ms/step - loss: 0.0089 -
accuracy: 0.9975 - val_loss: 8.1509e-05 - val_accuracy: 1.0000 - lr: 1.5625e-05
Epoch 33/100
687/687 [=========== ] - 27s 39ms/step - loss: 0.0087 -
accuracy: 0.9974 - val_loss: 1.1326e-04 - val_accuracy: 1.0000 - lr: 1.0000e-05
Epoch 34/100
687/687 [============ ] - 27s 39ms/step - loss: 0.0079 -
accuracy: 0.9971 - val_loss: 1.4355e-04 - val_accuracy: 1.0000 - lr: 1.0000e-05
Epoch 35/100
```

```
687/687 [========== ] - 28s 41ms/step - loss: 0.0097 -
    accuracy: 0.9970 - val_loss: 0.0013 - val_accuracy: 0.9995 - lr: 1.0000e-05
    Epoch 36/100
    accuracy: 0.9976 - val_loss: 7.3692e-04 - val_accuracy: 0.9996 - lr: 1.0000e-05
    Epoch 37/100
    687/687 [========== ] - 27s 39ms/step - loss: 0.0091 -
    accuracy: 0.9973 - val_loss: 2.8997e-04 - val_accuracy: 1.0000 - lr: 1.0000e-05
[22]: fig, axes = plt.subplots(2, 1, figsize=(15, 10))
     ax = axes.flat
     pd.DataFrame(history.history)[['accuracy','val_accuracy']].plot(ax=ax[0])
     ax[0].set_title("Accuracy", fontsize = 15)
     ax[0].set_ylim(0,1.1)
     pd.DataFrame(history.history)[['loss','val_loss']].plot(ax=ax[1])
     ax[1].set_title("Loss", fontsize = 15)
     plt.show()
```



```
[23]: y_test = np.array(test['label'])
X_test = np.array(test.drop(columns='label'))
```

```
y_test = pd.get_dummies(y_test)
      X_test = pd.DataFrame(X_test).values.reshape(X_test.shape[0] ,28, 28, 1)
      # X_test_flow = generator.flow(X_test, y_test, batch_size=32)
      # X_test.shape,X_train.shape
      y_test = pd.get_dummies(y_test)
[24]: from sklearn.metrics import classification_report
      # predictions
      pred = model.predict(X_test)
      y_pred = np.argmax(pred,axis=1)
      y_test = np.argmax(y_test.values,axis=1)
[25]: | acc = accuracy_score(y_test,y_pred)
      # # Display the results
      print(f'## {acc*100:.2f}% accuracy on the test set')
     ## 99.51% accuracy on the test set
[32]: fer_json = model.to_json()
      with open("./SavedModel/SignLanguageRecognitionModel.json", "w") as json_file:
          json_file.write(fer_json)
      model.save('./SavedModel/SignLanguageRecognitionModel_tf',save_format='tf')
      model.save("./SavedModel/SignLanguageRecognitionModel.h5")
      model.save_weights("./SavedModel/SignLanguageRecognitionModel.h5")
     INFO:tensorflow:Assets written to:
     ./SavedModel/SignLanguageRecognitionModel_tf\assets
```