Coinductive First-order Horn Clauses

Yue Li

PhD candidate supervised by Dr. Ekaterina Komendantskaya School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

April 2018

A bit history of Yue: from amazing China to bonnie Dundee

- Bachelor in Hunan University, China.
- Master in University of Dundee, United Kingdom.

Overview

1 Introduction: What is coinduction, in logic programming?

Our Key Observation: Inadequacy of Horn clause logic to prove coinductive invariants of first-order Horn clause logic programs

The concept of "coinduction"

The concept of "coinduction"

• Coinduction refers to non-terminating computation.

The concept of "coinduction"

- Coinduction refers to non-terminating computation.
- It is common in logic programming and type inference (eg. Haskell type class resolution) due to recursive definitions.

An example of coinduction in logic programming

An example of coinduction in logic programming

Consider a program P_1 :

Clause (1)
$$\forall X \ (r(X) \supset r(X))$$
 In Prolog, $r(X) := r(X)$

We use \supset for implication, read as "implies". :- is read as "be implied by".

An example of coinduction in logic programming

Consider a program P_1 :

Clause (1)
$$\forall X \ (r(X) \supset r(X))$$
 In Prolog, $r(X) := r(X)$

We use \supset for implication, read as "implies". :- is read as "be implied by". The goal ?-r(a) gives rise to an infinite SLD-derivation

$$\texttt{r(a)} \overset{\mathsf{apply} \ \mathsf{clause} \ (1)}{\longrightarrow} \, \texttt{r(a)} \overset{\mathsf{apply} \ \mathsf{clause} \ (1)}{\longrightarrow} \, \texttt{r(a)} \overset{\mathsf{apply} \ \mathsf{clause} \ (1)}{\longrightarrow} \cdots$$

where we look for sufficient conditions for r(a) to hold using clause (1).

Overview

1 Introduction: What is coinduction, in logic programming?

Our Key Observation: Inadequacy of Horn clause logic to prove coinductive invariants of first-order Horn clause logic programs

We try to:

• Identify phenomena of coinduction,

- Identify phenomena of coinduction,
- Find coinductive invariants for logic programs,

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite *coinductive proof* instead of an equivalent, infinite SLD-derivation. (Details explained later)

For program P_1 : Clause (1) $\forall X \ (r(X) \supset r(X)), r(a)$ is a coinductive invariant,

For program P_1 : Clause (1) $\forall X \ (r(X) \supset r(X))$, r(a) is a coinductive invariant, in the sense that if we assume r(a) is true, we can then prove r(a) using the extended program $P_1' = P_1 \cup \{r(a)\}$ given as follows.

Clause (1) $\forall X \ (r(X) \supset r(X))$ Clause (2) r(a)

For program P_1 : Clause (1) $\forall X \ (r(X) \supset r(X))$, r(a) is a coinductive invariant, in the sense that if we assume r(a) is true, we can then prove r(a) using the extended program $P_1' = P_1 \cup \{r(a)\}$ given as follows.

Clause (1)
$$\forall X \ (r(X) \supset r(X))$$

Clause (2) $r(a)$

The finite coinductive proof is:

$$r(a) \xrightarrow{apply clause (1)} r(a) \xrightarrow{apply clause (2)} Success$$

For program P_1 : Clause (1) $\forall X \ (r(X) \supset r(X))$, r(a) is a coinductive invariant, in the sense that if we assume r(a) is true, we can then prove r(a) using the extended program $P_1' = P_1 \cup \{r(a)\}$ given as follows.

Clause (1)
$$\forall X \ (r(X) \supset r(X))$$

Clause (2) $r(a)$

The finite coinductive proof is:

$$r(a) \xrightarrow{apply clause (1)} r(a) \xrightarrow{apply clause (2)} Success$$

The coinductive proof above, as well as the corresponding infinite derivation, are both sound, with respect to the greatest fixed point model of P_1 .

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SLD-derivation.

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SLD-derivation.
- Deal with "unusual" coinductive invariants.

Example of an "unusual" coinductive invariant

Example of an "unusual" coinductive invariant

Consider program P_2 :

Clause (3)
$$\forall X (p(s(X)) \supset p(X))$$
 In Prolog, $p(X) := p(s(X))$

Example of an "unusual" coinductive invariant

Consider program P_2 :

Clause (3)
$$\forall X (p(s(X)) \supset p(X))$$
 In Prolog, $p(X) := p(s(X))$

The goal ?-p(a) gives rise to an infinite SLD-derivation

$$p(a) \xrightarrow{\text{apply clause (3)}} p(s(a)) \xrightarrow{\text{apply clause (3)}} p(s(s(a))) \xrightarrow{\text{apply clause (3)}} \cdots$$

For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$,

For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, in the sense that if we assume $\forall X \ p(X)$ is true, then we can prove $\forall X \ p(X)$ from the extended program $P_2' = P_2 \cup \{\forall X \ p(X)\}$:

Clause (3) $\forall X \ (p(s(X)) \supset p(X))$ Clause (4) $\forall X \ p(X)$

For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, in the sense that if we assume $\forall X \ p(X)$ is true, then we can prove $\forall X \ p(X)$ from the extended program $P_2' = P_2 \cup \{\forall X \ p(X)\}$:

Clause (3)
$$\forall X \ (p(s(X)) \supset p(X))$$

Clause (4) $\forall X \ p(X)$

The finite coinductive proof is:

$$\forall X \ p(X) \stackrel{\text{eigenvariable } c}{\longrightarrow} p(c) \stackrel{\text{apply clause } (3)}{\longrightarrow} p(s(c)) \stackrel{\text{apply clause } (4)}{\longrightarrow} \text{Success}$$

which is sound wrt. the greatest fixed point model of P_2 .

For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, in the sense that if we assume $\forall X \ p(X)$ is true, then we can prove $\forall X \ p(X)$ from the extended program $P_2' = P_2 \cup \{\forall X \ p(X)\}$:

Clause (3)
$$\forall X \ (p(s(X)) \supset p(X))$$

Clause (4) $\forall X \ p(X)$

The finite coinductive proof is:

$$\forall X \ p(X) \stackrel{\text{eigenvariable } c}{\longrightarrow} p(c) \stackrel{\text{apply clause } (3)}{\longrightarrow} p(s(c)) \stackrel{\text{apply clause } (4)}{\longrightarrow} \text{Success}$$

which is sound wrt. the greatest fixed point model of P_2 . We can then derive p(a) as a corollary (recall that p(a) has an infinite SLD-derivation wrt. P_2).

For P_2 : Clause (3) $\forall X \ (p(s(X)) \supset p(X))$, the coinductive invariant is $\forall X \ p(X)$, in the sense that if we assume $\forall X \ p(X)$ is true, then we can prove $\forall X \ p(X)$ from the extended program $P_2' = P_2 \cup \{\forall X \ p(X)\}$:

Clause (3)
$$\forall X \ (p(s(X)) \supset p(X))$$

Clause (4) $\forall X \ p(X)$

The finite coinductive proof is:

$$\forall X \ p(X) \stackrel{\text{eigenvariable } c}{\longrightarrow} p(c) \stackrel{\text{apply clause (3)}}{\longrightarrow} p(s(c)) \stackrel{\text{apply clause (4)}}{\longrightarrow} \text{Success}$$

which is sound wrt. the greatest fixed point model of P_2 . We can then derive p(a) as a corollary (recall that p(a) has an infinite SLD-derivation wrt. P_2).

The catch:

 $\forall X \ p(X)$ is not a goal formula allowable by the syntax of Horn clause logic.

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SI D-derivation.
- Deal with "unusual" coinductive invariants

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SI D-derivation.
- Deal with "unusual" coinductive invariants which are not provable within Horn clause logic.

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SI D-derivation.
- Deal with "unusual" coinductive invariants which are not provable within Horn clause logic.
- Search for a logic (which must be richer than Horn clause logic) capable to prove both "usual" and "unusual" coinductive invariants involved in first-order Horn clause logic programming.

We try to:

- Identify phenomena of coinduction,
- Find <u>coinductive invariants</u> for logic programs, so that we can have a finite <u>coinductive proof</u> instead of an equivalent, infinite SI D-derivation.
- Deal with "unusual" coinductive invariants which are not provable within Horn clause logic.
- Search for a logic (which must be richer than Horn clause logic) capable to prove both "usual" and "unusual" coinductive invariants involved in first-order Horn clause logic programming.

Thanks!

