CS & IT

ENGINEERING

Sequential Circuit

Lecture No. 1

By- CHANDAN SIR

TOPICS TO BE COVERED **01** LATCHES

02 PRACTICE

04 DISCUSSION

Logic GrATE

Minimization Boolean algebra

> K-MAP

Combinational circuit

Comparator, MUX, DE-MUX, Encoder, Decoder, HA
FA, H.S. F.S., Serial adder, parallel adder, LACA,
Multiplier

SEQUENTIAL CIRCUIT.

SEQUENTIAL CIRCUIT

- A circuit with feedback and memory are called sequential circuit.
- Output of the sequential circuit depends on previous output as well as present state of input.

Flip. Flops

Registers

(ounters

Lasic memory element.

Basic memory element /

- Latches are level triggered
- Latches has two output which is complement of each other

X	Y	Q	Q
0	0	1	1 Invalid
0	1	1	0
1	0	0	1
1	1	Q	Q (HOLD)

5-R Latch:→

SP La	tch
-------	-----

S	R	Q	Q
0	0	Q	Q (HOLD)
0	1	0.	1 (RESET)
1	0	1	O (SET)
1	1	1	1 (In/aliq)

Note: Whenever S = R = 1 is applied and invalid condition occurs than a NAND having lower propagation delay first change its output and other remain on its previous state are called racing problem or raising problem.

SR Latch by NOR CHATE

SR Latch

S	R	Q	Q
0	0	Q	ā (HOLD)
0	1	0	J (RESET)
1	0	1	o (set)
1	1	0	O (InValid)

X	Y	Q	Q
0	0	1	0
0	1	1	0
1	0	Q	ā
1	1	1	0

X	Y	Q	Q
0	0	Q	@ (HOLD)
0	1	Q	9 (InValid)
1	0	9	3 (InValid)
1	1	9	9 (Toggle)

$$901=9$$

X	Y	Q	Q
0	0	a	a (7099/e)
0	1	ā	9 (InValid)
1	0	Q	Q [InValid
1	1	Q	é CHOLD

$$Q \oplus Q = 0$$

$$Q \oplus \overline{Q} = 1$$

$$Q \oplus Q = 1$$

$$\varphi = 1 \oplus \varphi$$

X	Y	Q	Q
0	0		
0	1		
1	0		
1	1		

RIH Q Q 00010001X

Q.1

Consider a latch circuit shown in figure below. Which of the following set of input is invalid for circuit?

$$R = 1, H = 1 \times$$

$$R = 1, H = 0$$

Q.2

In the circuit shown below, initially A = 1 and B = 1. The input B is now replaced by a sequence 101010 the outputs X and Y will be

- A Fixed at 0 and 1, respectively
- B Fixed at 1 and 0, respectively
- X = 1010.... while Y = 1010....
- $X = 1010 \dots \text{ while } Y = 0101 \dots$

Which of the following will be correct for the given sequential circuit?

- The circuit would hold the previous state for S=0, R=0
- The circuit would hold the previous state for S=0, R=1
- The circuit would hold the previous state for S=1, R=1
- The circuit would never be able to hold the previous state under any condition

