Hunter Browning-Smith

Electrical Grid Stability: A Regression Analysis

Background

The world is transitioning at an accelerating rate to renewable energies — most of which is derived from solar and wind

The Problem

Renewable energies are "intermittent"

Intermittent
energy sources
put stress on
the grid

The Solution

Decentralized Smart

Grid Control (DSGC)

Who benefits?

Energy providers
Energy policy makers
Energy consumers

How it works

Logistic Regression utilizes selected inputs to evaluate grid stability

Result is a model which quantifies impacts (like accurate pricing) of variable energy production sources (like solar and wind)

DSGC manages electrical grid and optimizes grid stability while minimizing blackouts and inefficient distribution practices

The Data

Independent Variables of Decentralized Smart Grid Control

P_{x}	Mechanical power produced/consumed
τ_{x}	Reaction time, the delay between a price change and adaptation to it
γ_{x}	Coefficient, proportional to price elasticity

See the following paper for more detail about the variables used:

Arzamasov, Vadim, Klemens Böhm, and Patrick Jochem. 'Towards Concise Models of Grid Stability.' Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018 IEEE International Conference on. IEEE, 2018 (Section V-A)

EDA

Results

Top 10 Logistic Regression Models and Accuracy Scores				
Independent Variables	Accuracy Score			
[tau1, tau2, tau3, tau4, p2, p3, p4, g1, g2, g3, g4]	0.815915			
[tau1, tau2, tau3, tau4, p3, p4, g1, g2, g3, g4]	0.81583			
[tau1, tau2, tau3, tau4, p2, p3, g1, g2, g3, g4]	0.815275			
[tau1, tau2, tau3, tau4, p4, g1, g2, g3, g4]	0.814865			
[tau1, tau2, tau3, tau4, p2, p4, g1, g2, g3, g4]	0.81472			
[tau1, tau2, tau3, tau4, p2, g1, g2, g3, g4]	0.81429			
[tau1, tau2, tau3, tau4, g1, g2, g3, g4]	0.81289			
[tau1, tau2, tau3, tau4, p2, p4, g2, g3, g4]	0.798405			
[tau1, tau2, tau3, tau4, p2, p3, g1, g2, g3]	0.794655			
[tau1, tau3, tau4, g1, g2, g3, g4]	0.79453			

Top 5 Linear Regression Models Based on OLS R-Squared, OLS F-Statistic, and OLS AIC					
Independent Variables	OLS R-Squared Value	OLS F-statistic	OLS AIC		
[tau1, tau2, tau3, tau4, p2, p3, p4, g1, g2, g3, g4]	0.46396	785.981	-42147.8		
[tau1, tau2, tau3, tau4, p2, p3, p4, g1, g2, g3]	0.44653	805.974	-41829.8		
[tau1, tau2, tau3, p2, p3, p4, g1, g2, g3, g4]	0.446041	804.383	-41821		
[tau2, tau3, tau4, p2, p3, p4, g1, g2, g3, g4]	0.445351	802.141	-41808.5		
[tau1, tau3, tau4, p2, p3, p4, g1, g2, g3, g4]	0.445242	801.786	-41806.6		

Conclusions

Logistic regression technique is superior to linear regression techniques given the dataset

Logistic regression model accurately predicts grid stability greater than 80% of the time