Действие групп

prerequisite knowledge: <u>Теория групп</u>.

Мотивация

Применим теорию групп на реальном примере (сколько имеется различных ожерелий из n бусин, окрашенных в k цветов?) и докажем легендарную теорему о гомоморфизме.

Определение и примеры

G - группа, X - множество.

Говорят, что задано **действие** G **на** X, если задано отображение точка (действие):

- ullet : G imes X o X, и выполнено два условия:
 - 1. $\forall g,h \in G: g(h \cdot x) = (gh) \cdot x$
 - $2.\ orall x\in X:1_G\cdot x=x$, где 1_G нейтральный G.

Обычно знак умножения (действия) опускается.

≡ Примеры действия групп:

1. $G=S_n$ - <u>группа перестановок</u>, $X=\{1,\ldots,n\}$ Действие будет таким: $\sigma\cdot i=\sigma(i),\ \sigma\in S_n,\ i\in X.$

Оно ассоциативно: $(\sigma \tau) \cdot i = \sigma \big(\tau(i) \big)$ Нейтральный: $1_{S_n} = id$, и для каджого $i \in X: \ id \cdot i = id(i) = i$, т.е. выполняются оба свойства действия.

2. K - поле. $G=GL_n(K)$ - множество всех обратимых матриц размера $n imes n = \{g \in M_n(K) \mid \det g \neq 0\}.$ $X=K^n$ - вектор-столбцы.

Действие обратимой матрицы на столбец:

 $mv\mapsto m\cdot v,\; m\in G;\; v\in X.$ (просто умножаем матрицу на столбец)

Первое свойство действия следует из ассоциативности матричного умножения. Второе свойство: нейтральный G - I - единичная матрица. $I \cdot v = v \quad \forall v \in X.$

- Группа симметрий куба действует на множестве вершин, или на множестве рёбер, или на множестве граней куба.
- 4.~G,~X=G. (действие на себе) *:G imes X o G $g*h\mapsto ghg^{-1}$ сопряжение G на себе.

1.
$$(g_1g_2)*h=g_1g_2h(g_1g_2)^{-1}=g_1g_2hg_2^{-1}g_1^{-1} = g_1(g_2*h)g_1^{-1}=g_1*(g_2*h).$$

2.
$$1_G * h = 1_G h 1_G^{-1} = h$$
.

$$egin{aligned} 5. \ G &= GL_n(K) = \{g \in M_n(K) \mid \deg g
eq 0\}. \ X &= M_n(K) \ G imes X & o X \ (g,m) &\mapsto gmg^{-1} \end{aligned}$$

6.
$$G$$
 - группа, $X=G$. $G imes G o G$

$$gx \mapsto gx$$

7.
$$G, H \leq G$$
.

$$x=\{wH\}$$
 - множество левых смежных классов.

$$G \times X o X$$

$$(g, wH) \mapsto gwH$$
.

A если $H = \{1\}$, по получится пример 6.

2. Орбиты и стабилизаторы

#todo картинки

G - группа, X - множество.

Задано действие $G imes X o X, \ x \in X.$

 $St_x = \{g \in G : gx = x\}$ - <u>стабилизатор</u> x - такие элементы группы, которые оставляют x на месте.

x - <u>неподвижная точка</u>.

Предложение. $St_x \leq G$.

∄ D:

$$1 \cdot x = x \implies 1 \in St_x \implies St_x \neq \varnothing$$
.

$$g,h\in St_x$$
.

$$(gh)\cdot x=g(h\cdot x)=g\cdot x=x\implies gh\in St_x$$
 (замкнутость относительно действия группы).

$$g \in St_x, \ g^{-1} \in G.$$

$$g\cdot x=x=(g^{-1}g)\cdot x=g^{-1}\cdot x\implies g^{-1}\in St_x$$
 (замкнутость относительно взятия обратного).

 \implies по <u>критерию подгруппы</u> $St_x \leq G$.

Введём отношение \sim на X:

$$x \sim y \iff \exists g \in G : gx = y$$

Предложение. Отношение выше - отношение эквивалентности.

□ D:

 $1x=x \implies x \sim x$ - рефлексивность. $x \sim y$. $x=1x=g^{-1}gx=g^{-1}(gx)=g^{-1}y$. $g^{-1}y=x \implies y \sim x$ - симметричность. $\exists g,h \in G: gx=y,\ hy=z.$ $(hg)x=h(gx)=hy=z \implies x \sim z$ - транзитивность. $\implies \sim$ - отношение эквивалентности.

Каждый класс эквивалентности по отношению \sim , введённого выше, называется <u>орбитой</u>. (один элемент может быть получен действием на другой элемент орбиты)

≡ Примеры орбит:

1. $x=\mathbb{R}^2,\ G$ - группа поворотов плоскости вокруг начала координат. Орбиты - окружности с центром в начале координат. Два элемента лежат на одной орбите, если они одинаково удалены от центра.

$$x\in X$$
, орбита $x=\{gx:g\in G\}$

 $2. \ K$ - алгебраически замкнутое поле.

 $G = GL_n(K)$ - обратимые матрицы.

$$X=M_n(K).$$

$$(g,m)\mapsto gmg^{-1}$$

Инвариант орбиты - ЖНФ матриц. Если две ЖНФ сопряжены, то они могут отличаться только порядком клеток.

3. $G = S_n, \ X = G, G$ действует на себе с сопряжением. Орбиты для этого действия - классы сопряжённости:

$$x\sim y\iff \exists y\in S_n: gxg^{-1}=y.$$

 $x \sim y \iff \underline{\mathsf{ЦИКЛОВЫЕ\ TИПЫ}}$ совпадают.

Транзитивное действие

 $G imes X o X, \ A$ - орбита.

G imes A o A - **сужение действия** G на X, на G imes A оно задаёт действие G на A.

У суженного на A действия одна орбита - сама A.

Действие <u>транзитивно</u>, если у него одна орбита:

$$orall x,y\in X \ \exists g\in G: gx=y.$$

Предложение. G действует на $X,\ x\in X,\ A$ - орбита, содержащая x. Тогда имеется естественная биекция между A и множеством левых классов смежности по St_x - подгруппе G

Сначала докажем, что $gx = hx \iff g^{-1}h \in St_x, \; h,g \in G.$

$$\Longrightarrow gx = hx. \; x = 1x = g^{-1}gx = g^{-1}hx \implies g^{-1}h \in St_x$$

$$gg^{-1}hx=gx\implies hx=gx.$$

Теперь доказываем предложение. Фиксируем $x \in A$, а $y \in A$ - пробегаем.

$$B_y=\{g\in G: gx=y\},\ g,h\in B_y\Rightarrow y=gx=hx.$$

Так как $g^-1h\in St_x$, то по построению левого класса смежности $g\sim h\implies gSt_x=hSt_x$).

Докажем $B_y = gSt_x$:

$$w \in St_x: \quad gwx = g(wx) = gx = y \implies gw \in B_y$$

Так как gx=hx, то $g^{-1}h\in St_x.$

$$h \in B_y: \quad (g^{-1}h)x = g^{-1}hx = g^{-1}y = x =$$

$$g^{-1}y=wx \implies y=gwx \implies hx=gwx \implies h=gw \in gSt_x.$$

Это справедливо для всех элементов из обоих множеств, значит равенство выполняется.

Мы доказали, что отображение задано корректно - оно не зависит от выбора g :

$$y = gx \implies y \in A$$
.

$$A o \{gSt_x\}$$

 $gx\mapsto gSt_x$ - биекция.

Теорема об орбитах и стабилизаторах. G действует на X, $|G|<\infty.\ x\in X,\ A$ - орбита X.

Тогда

$$|G| = |St_x| \cdot |A|$$

∄ D:

По последнему предложению есть биекция между A и $\{gSt_x\}_{g\in G}$.

Значит, они равномощны $|A|=|\{gSt_x\}|=[G:St_x]$ - <u>индекс</u> A в G.

По теореме Лагранжа $|G| = |St_x| \cdot [G:St_x] = |St_x| \cdot |A|$

≡ Пример:

G - группа самосовмещений куба. H - группа самосовмещений куба, сохраняющих ориентацию. Две смежные вершины должны переходить в две смежные вершины. G и H действуют на множестве вершин транзитивно

1 поворотом вокруг вертикальной оси

1 поворотом на $\pi/2$. Далее аналогично.

Одна орбита длины 8 $|G| = St_1^G = 8 \quad |H| = St_1^H = 8$

Если **#TODO** (не записал нормально плюс щас не могу понять)

3. Лемма Бернсайда

G действует на X.

 θ - множество всех <u>орбит</u>.

 $x \in X$ $St_x = \{g \in G : gx = x\}$ - <u>стабилизатор</u> x.

 $g\in G$ $X^g=\{x\in X:gx=x\}$ - неподвижные под действием g элементы X.

Теорема (лемма Бернсайда) $|G|<\infty,\ |X|<\infty.$ Тогда

$$| heta| = rac{1}{|G|} \sum_{g \in G} |X^g|$$

$$\begin{split} & \sum_{g \in G} |X^g| = \sum_{g \in G} \left| \{x \in X : gx = x\} \right| = \sum_{g \in G} \sum_{x \in X : gx = x} 1 = \\ & \sum_{(g,x):gx = x} 1 = \sum_{x \in X} \sum_{g \in G : gx = x} 1 = \sum_{x \in X} |St_x| = \sum_{x \in X} \frac{|G|}{|Gx|} \\ & Gx = \{gx : g \in G\} \text{ - орбита } x. \\ & \sum_{x \in X} \frac{|G|}{|Gx|} = |G| \sum_{x \in X} \frac{1}{|G|} = |G| \sum_{A \in \theta} \sum_{x \in A} \frac{1}{|Gx|} = \\ & |G| \sum_{A \in \theta} \sum_{x \in A} \frac{1}{|A|} = |G| \sum_{A \in \theta} 1 = \boxed{|G| \cdot |\theta|} \\ & \Longrightarrow |\theta| = \frac{1}{|G|} \sum_{g \in G} |X^g| \end{split}$$

4. Пример применения леммы Бернсайда

Сколько имеется различных ожерелий из n бусин, окрашенных в k цветов?

Для решения этой задачи построим следующую математическую модель:

Пронумеруем бусинки от 1 до n.

X - множество всех раскрасок n вершин в k цветов. $|X|=k^n$ (каждая бусинка окрашивается независимо от других, всего вариантов $\underbrace{k\cdot k\cdot\ldots\cdot k}$)

G - <u>группа</u> самосовмещений правильного n-угольника.

 $G=D_n$ - диэдральная группа.

|G|=2n - n поворотов и n отражений. Проверим это утверждение:

По лемме Бернсайда:

$$heta = \{1, \dots, n\}$$
 - множество всех орбит $|St_i| = 2 \ orall i \in heta \implies |G| = 2n$

Интуитивно:

Повороты на $2\pi l/n,\ l=0,\ldots,n-1$

Получили n штук поворотов.

Отражения: если n чётно, то отражаем по

противоположным сторонам и вершинам: n/2 + n/2 = n.

Если n нечётно, то отражаем через вершину и

противолежащую сторону - n отражений.

Итого 2n действий, сохраняющих n-угольник.

 D_n действует на X. Каждое ожерелье отождествляем с орбитами действия диэдральной группы на X.

Разберём наглядно для $n=8,\; k=4$:

 $\left|Fixg
ight|$ - количество ожерелий, не меняющих раскраску под действием g.

Итого число ожерелий по лемме Бернсайда:

$$\sum_{g \in G} |X^g|/|G| = (4^8 + 4*2 + 4*2 + 4^2*2 + 4^4 + 4^5 + 4^6)/16 = 4435$$

5. Нормальные подгруппы

G - группа, $H \leq G$ - подгруппа.

Рассмотрим множества левых и правых <u>классов смежности</u>: $\{xH\}, \{Hx\}.$

Всегда ли они совпадают?

Для $G=S_3,\ H=\langle (1,2)\rangle$ левые не совпадают с правыми. $S_3=\{id,\ (1,2),\ (1,3),\ (2,3),\ (1,2,3),(1,3,2)\}$

$$\{(2,3)\cdot H\} = \{(2,3),\ (1,3,2)\}$$

 $\{H\cdot (2,3)\} = \{(2,3),\ (1,2,3)\}$

А когда они совпадают? Оказывается, есть специальный класс подгрупп - нормальные подгруппы. Мы определяем её как подгруппу, удовлетворяющая хотя бы одному (а значит и всем) из пяти условий теоремы:

Теорема. $H \leq G$. Следующие условия равносильны:

- 1. $\forall g \in G, \ \forall h \in H: gh^{-1}h \in H.$
- $2. \ \forall g \in G: gHg^{-1} \subseteq H.$
- 3. $\forall g \in G : gHg^{-1} = H$.
- $4. \forall g \in G : gH = Hg.$
- 5. Всякий левый класс смежности по H есть правый класс смежности по H.

 $H \lhd G$ - пишут так.

□ D:

$$\underline{2}$$
 - переформулировка $\underline{1}$: $gHg^{-1}=\{ghg^{-1}\mid h\in H\}.$

 $\underline{3} \implies \underline{2}$ очевидно.

$$\underline{2} \implies \underline{3}$$
: $g \in G, \ gHg^{-1} \subseteq H$. Можем переписать так:

$$orall g^{-1} \in G, \ g^{-1}Hg \subseteq H.$$

$$H=g(g^{-1}Hg)g^{-1}\subseteq gHg^{-1} \implies H=gHg^{-1}.$$

Чтобы понять последний переход, представьте, что $g^{-1}Hg=H$. Тогда $g(g^{-1}Hg)g^{-1}=gHg^{-1}$. Но у нас не равенство, а включение, значит тут тоже включение.

 $2 \implies 4: gHg^{-1} = H \quad | \cdot g$ gH = Hg $4 \implies 3: gH = Hg$ $gHg^{-1} = Hgg^{-1} = H$ $4 \implies 5$ очевидно. 4 условие более сильное. $5 \implies 4: gH = Hf$ $g = g \cdot 1 \in gH$ (т.к. $1 \in H$) $g \in Hf$ (т.к. gH = Hf). $g = 1 \cdot g \in Hg$. g лежит в двух классах смежности: Hf, Hg. $g \in Hg \cap Hf \neq \varnothing \implies Hg = Hf$ так как классы смежности как классы эквивалентности либо не пересекаются, либо совпадают. (тут совпали) Получили gH = Hf = Hg.

≔ Примеры нормальных подгрупп:

- 1. $G \triangleleft G$
- 2. $\{1\} \le G \quad g1g^{-1} = 1$

G - **простая группа**, если у неё нет нормальных подгрупп, кроме G и $\{1\}$.

(продолжение примеров)

- $3. \ G$ абелева. Всякая её подгруппа нормальна. $ghg^{-1} = hgg^{-1} = h$
- 4. $A_n \leq S_n$ множество <u>чётных перестановок</u> нормальная подгруппа группы перестановок. Если τ чётная, то $\sigma\tau\sigma^{-1}$ чётная. (обратная к чётной чётна, обратная к нечётной нечётна.) Факт: $A_n, \ n > 5$ простая.

 A_4 - не простая: $\{id, (12)(34), (1324), (14)(23)\} ext{ } ext{\leq } A_4$

5. $H \leq G, \ [G:H] = 2$ - индекс подгруппы. $H \trianglelefteq G.$ Левых класса смежности два. Классы смежности, как классы эквивалентности, либо совпадают, либо не пересекаются. Совпадать они не могут, значит не пересекаются и разбивают изначальное множество G на два равномощных множества. (т. Лагранжа) Положим $g \in H$, тогда gH = H = Hg и всё доказано. Положим $g \notin H$, тогда есть два непересекающихся левых класса: H, gH. Мощности gH и H совпадают и равны |G|/2. Отсюда $gH = G \setminus H$. Но два правых класса H, Hg тоже не пересекаются. Значит $Hg = G \setminus H$. Отсюда Hg = gH.

6. Нормальные подгруппы и гомоморфизмы

G, K - группы.

Вспомним определение гомоморфизма групп:

f:G o K гомоморфизм групп, если $orall a,b\in G:f(ab)=f(a)f(b).$

f - изоморфизм, если f гомоморфно и биективно.

Факты

- 1. композиция гомоморфизмов гомоморфизм
- 2. композиция изоморфизм изоморфизм
- 3. обратный к изоморфизму изоморфизм
- 4. f гомоморфизм. $f(1_G) = 1_K, \ f(a^{-1}) = f(a)^{-1}$

 $f^{-1}(\ldots)$ - полный прообраз. $f(\ldots)^{-1}$ - обратный.

 $f^{-1}ig(\{1_K\}ig)=\{a\in G: f(a)=1_K\}=\ker f$ - ядро гомоморфизма - все элементы G, которые под действием гомоморфизма отправляются в нейтральный K.

Теорема. $\ker f \le G$ - ядро гомоморфизма - <u>нормальная</u> подгруппа.

□ D:

Сначала докажем, что ядро - подгруппа.

$$1_G \in \ker f \implies \ker f \neq \varnothing.$$

 $a,b\in\ker f$.

$$f(ab) = f(a)f(b) = 1_K.$$

 $ab \in \ker f$ - замкнутость относительно операции.

$$f(a^{-1}) = f(a)^{-1} = 1_K^{-1} = 1_K.$$

 $a^{-1} \in \ker f$ - замкнутость относительно взятия обратного.

По критерию подгруппы $\ker f \leq G$.

Теперь покажем нормальность.

 $a \in \ker f, \ b \in G.$

Хотим доказать $bab^{-1} \in \ker f$. $f(bab^{-1} = f(b)f(a)f(b^{-1}) = f(b)f(b^{-1}) = f(bb^{-1}) = f(1_G) = 1_K.$ $bab^{-1} \in \ker f \ \ orall b \in G \implies \ker f ext{ } G.$

7. Факторгруппа по нормальной подгруппе

G - группа, $N ext{ } ex$

$$\{gN\}=\{Ng\},\;g\in G.$$

 $G/N = \{gN \mid g \in G\}$ - множество всех левых классов по N.

Введём на G/N структуру группы.

Определим умножение двух множеств:

$$A, B \subseteq G$$
.

 $A\cdot B=\{ab\mid a\in A,\ b\in B\}$ - произведение по Минковскому.

Теперь рассмотрим произвдение двух элементов G/N:

$$egin{aligned} gN\cdot hN &= \{gn_1\cdot hn_2\mid n_1,n_2\in N\} = \ (g(n_1h)n_2\mid n_1,n_2\in N\} = g(Nh)N \overset{N riangledown}{=} g(hN)N = \{ghn_1n_2\mid n_1,n_2\in N\} \ ghN. \end{aligned}$$

Получили, что произведение классов смежности - класс смежности:

$$G/N imes G/N o G/N$$
 .

 $(G/n,\cdot)$ - группа?

Предложение. Да, $(G/N, \cdot)$ - группа.

$$g,h,w\in G.$$
 $(gNhN)wN=ghNwN=ghwN$ $gN(hNwN)=gNhwN=ghwN$ - умножение по Минковскому ассоциативно. $N=1_G\cdot N$ $N\cdot hN=1\cdot hN=hN$ $1_{G/N}=N$ - нейтральный.

$$gNg^{-1}N=gg^{-1}N=N=1_{G/N}$$
 $g^{-1}NgN=g^{-1}gN=N=1_{G/N}$ - обратные есть. $\Longrightarrow (G/N,\cdot)$ - группа.

Эта группа - ϕ акторгруппа G по нормальной подгруппе N.

Рассмотрим отображение $\varphi:G o G/N,\ g\mapsto gN.$

$$\varphi(g)=gN.$$

$$\varphi(g)\varphi(h)=gNhN=ghN=\varphi(gh).$$

Отображение из группы в левый класс по её нормальной подгруппе - гомоморфизм.

$$egin{aligned} &\ker arphi = \{g \in G: gN = N = 1 \cdot N\} \ &gN = 1 \cdot N \ &g \sim 1 \iff g \in N \ &\ker arphi = \{g \mid g \in N\}. \end{aligned}$$

Обобщим полученный результат:

Множество нормальных подгрупп G - в точности множество ядер гомоморфизмов из G (в какие-то группы).

Мы ранее доказали что ядро всякого гомоморфизма в любую группу - нормальная подгруппа. Значит, множество ядер всяких гомоморфизмов - подмножество множества всех

нормальных групп.

Сейчас мы доказали, что ядра отображений во все нормальные подгруппы - нормальные подгруппы. Значит, множество всех нормальных подгрупп - подмножество ядер всяких гомоморфизмов.

Включение в обе стороны, значит равенство.

8. Теорема о гомоморфизме

Докажем легендарную теорему.

 $\psi:G o H$ - гомоморфизм групп.

 $\psi(G) \leq H$ - гомоморфный образ группы. Интересно узнать, как устроена эта подгруппа.

 $N=\ker\psi,\ N\unlhd G$ - доказали в конце прошлого параграфа.

Теорема. $\psi:G o H$ - гомоморфизм. $N=\ker\psi.$ Тогда $\psi(G)\cong G/N,$

и существует изоморфизм $\theta:G/N o H$ между G/N и $\psi(G)$ такой, что $\psi=\theta\circ\varphi.$

(гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма)

Определим и построим heta:G/N o H.

$$orall g \in G: \quad heta(gN) = \psi(g).$$

Проверим независимость от выбора $g \in G$:

$$g_1N=g_2N$$
. Будут ли равны $heta(g_1N),\ heta(g_2N)$?

$$g_2^{-1}g_1N=N \implies g_2^{-1}g_1\in N=\ker \psi.$$

$$\psi(g_2^{-1}g_1)=1_H.$$

$$\underline{\psi(g_1)} = \psi(g_2g_2^{-1}g_1) = \psi(g_2)\psi(g_2^{-1}g_1) = \underline{\psi(g_2)}$$

Проверим гомоморфность θ :

$$heta(gNhN) = heta(ghN) = \psi(gh) = \psi(g)\psi(h) = heta(gN) heta(gH).$$

Проверим инъективность θ (т.е. $\ker \theta = 1_{G/N}$):

$$\theta(gN) = 1_H \implies$$

$$\psi(g)=1_H.$$

$$g\in \ker \psi = N$$

$$\implies gN = N = 1_{G/N} \implies \ker \theta = N.$$

Из инъективности θ :

$$\theta(G/N) \subseteq \psi(G)$$
.

Докажем обратное включение:

$$\theta(gN) = \psi(g)$$
.

Рассмотрим $h \in \psi(G)$. Для каждого h

 $\exists g \in G: h=\psi(g)$. Это равносильно $h=\theta(gN) \quad \forall h \in \psi(G)$. То есть у каджого h есть прообраз в $\theta(G/N)$. Отсюда $\psi(G) \subseteq \theta(G/N)$.

Включение в обе стороны $\implies \psi(G) = \theta(G/N)$.

Таким образом heta - изоморфизм между G/N и $\psi(G)$.

(неточность т.к. мы строили отображение в H, а не $\psi(G)$, но мы их отождествим.)

$$orall g \in G: (heta \circ arphi)(g) = heta(gN) = \psi(g).$$

≔ Пример:

$$1.~\mathbb{R},+$$
 $(\mathbb{Z},+),~\mathbb{Z} riangleq \mathbb{R}.$ \mathbb{R}/\mathbb{Z} - дробные части. $S=\left(\{z\in\mathbb{C}:|z|=1\},~\cdot~
ight)$ $\mathbb{R}/\mathbb{Z}\cong S$ Строим гомоморфизм $\varphi:\mathbb{R}\to S.$ $\ker \varphi=\mathbb{Z}.$ $S=\varphi(\mathbb{R})\cong \mathbb{R}/\mathbb{Z}$ по т. о гомоморфизме. $\varphi(x)=\cos 2\pi x+i\sin 2\pi x=e^{2\pi ix}.$ $\varphi(x+y)=\varphi(x)\varphi(y)$ (при перемножении комплексных чисел аргументы складываются).

arphi - гомоморфизм.

$$1=arphi(x) \iff egin{cases} cos2\pi x=1 \ \sin2\pi x=0 \end{cases} \;\; x\in\mathbb{Z}, \; \kerarphi=\mathbb{Z}.$$

9. Действие группы на множестве и гомоморфизмы

Как связано действие группы и гомоморфизмы? Оказывается, что всякое действие задаёт гомоморфизм, и наоборот.

G - группа, X - множество. Задано д<u>ействие</u> на $G \times X o X$. Зафиксируем $g \in G$.

Придумаем отображение $\varphi_g: X \to X$, которое бы сопостовляло элементу из X его образ под действием элемента g:

$$\varphi_g(x) = g \cdot x.$$

По свойству действия:

$$arphi_{gh}(x) = gh \cdot x = garphi_h(x) = arphi_gig(arphi_h(x)ig) \implies$$

$$arphi_{gh}=arphi_g\circarphi_h.$$

 $arphi_1=id_x$ - по свойству действия нейтрального. Комбинируем два свойства:

$$arphi_g\circarphi_{g^{-1}}=arphi_1=id_x$$

$$arphi_{q^{-1}}\circarphi_g=arphi_1=id_x$$

 $arphi_g$ и $arphi_{g^{-1}}$ - пара взаимно обратных отображений. В частности, $arphi_g$ - биекция на X.

Действие G на X задало биекции на X.

Теперь рассмотрим S(X) - множество всех биекций на X.

$$(S(x), \circ)$$
 - симметрическая группа.

Зададим на G отображение $\Phi:G o S(x),\ g\mapsto arphi_g.$

$$\Phi(g) = \varphi_q$$

$$\Phi(gh) = arphi_{gh} = \Phi(g) \circ \Phi(h)$$

 Φ - гомоморфизм групп G и S(x).

Получили, что всякое действие задаёт гомоморфизм

$$\Phi:G o S(x)$$
.

Покажем, что верно и обратное.

 $\Phi:G o S(x)$. Зададим действие на $G imes X o X:gx=\Phi(g)(x).$

Проверим аксиомы действия:

1.
$$(gh)x = \Phi(gx)(x) = (\Phi(g) \circ \Phi(h))(x) = \Phi(g)(\Phi(h)(x)) = g(hx).$$

2.
$$1_G \cdot x = \Phi(1_G)x = id_x(x) = x$$
.

Итого, действие группы на множестве и гомоморфизм в биекции на множестве - одно и тоже.

Точное действие

G действует на X. Действие называется ${\bf точным}$, если $\forall x \in X \ gx = x \implies g = 1_G$. По доказанному выше факту, действие точно, если $\Phi(g) = 1_{S(x)} \implies g = 1_G \iff \ker \Phi = \{1_G\}$. Если $\ker \Phi = \{1\}$, то по ${\bf теореме}$ о гомоморфизме $\Phi(G) \cong G/\ker \Phi = G/\{1\} = G$. (группа изоморфна своему гомоморфному образу)

Теорема (Кэли). Всякая конечная группа изоморфна некой подгруппе перестановок.

∄ D:

Зададим действие на себе: $G \times G \to G, \ |G| = n.$ $(g,h) \mapsto gh$ (действие на себе умножением слева) Это действие точно: $\forall h \in G \ gh = h \implies g = 1.$ Рассмотрим $\Phi: G \to S(X)$. Так как действие точно, то $\ker \Phi = \{1\} \implies G \cong \Phi(G).$ (каждому элементу сопоставляем какую-то перестановку) Занумеруем элементы G. $G = \{g_1, \ldots, g_n\}, \ S(G) \cong S_n.$ $\sigma(g_i) = g_{\sigma(i)}$

≡ Пример:

 $G\stackrel{\Phi}{ o} S(G)\cong S_n.$

Теорема Кэли даёт изоморфное вложение S_m в $S_{m!}$.

10. Центр группы. Центр p -группы.

G - группа.

 $Z(G) = \{x \in G : \forall g \in G \ gx = xg\}$ - <u>центр группы</u>. (множество элементов, коммутирующих со всеми элементами группы) $1 \in Z(G).$

Лемма. $Z(G) \subseteq G$.

□ D:

$$1 \in Z(G) \neq \varnothing$$
.

Рассмотрим $x,y\in Z(G)$.

$$xyg=xgy=gxy\implies xy\in Z(G).$$

$$x^{-1} \cdot \mid \quad xg = gx \quad \mid \cdot x^{-1}$$

$$gx^{-1}=x^{-1}g \implies x^{-1}\in Z(G).$$

По критерию подгруппы $Z(G) \leq G$.

$$x \in Z(G), g \in G.$$

$$gxg^{-1}=xgg^{-1}=x\in Z(G)\implies Z(G) riangleq G.$$

Группа абелева, если она совпадает со своим центром.

≔ Примеры:

1.
$$n \geq 3$$
, $Z(S_n) = \{1\}$.

$$egin{aligned} 2. \ G &= GL_n(K) = \{g \in M_n(K): \det g
eq 0\}. \ Z(G) &= \{\lambda I: \lambda \in K^*\} \end{aligned}$$

р-группа

p - простое число.

G - p-группа, если её порядок $= p^n$.

≔ Примеры:

1. $|D_4|=8=2^3$ - 2-группа.

 $2.\ i,j,k$ $i^2=j^2=k^2=-1$ $ij=k,\ ji=-k,\ ki=j,\ ij=-j,jk=i,\ kj=-i$ $Q_8=\{\pm 1,\pm i,\pm j,\pm k\}$ - группа из 8 элементов - 2-группа.

3. p - простое. $G=\Big\{egin{pmatrix}1&*&*\0&1&*\\0&0&1\end{smallmatrix}\Big\}\in M_n(\mathbb{Z}/p\mathbb{Z})\Big\}.\ |G|=p^3.$

Теорема. G - p-группа. |Z(G)| > 1.

□ D:

G действует на себе с сопряжением.

Орбиты - классы сопряжённости:

$$\{gxg^{-1}\mid g\in G\}$$

 Z_x - стабилизатор x в этом действии.

$$Z_x = \{g: gxg^{-1} = x\} = \{g \in G: gx = xg\}$$

 $Z_x = G \iff x \in Z(G) \iff$ класс сопряжённости x одноэлементен.

Если $x \notin Z(G)$, то мощность его класса сопряжённости делится на p.

 $|\{gxg^{-1}\}|=|G|/|Z_x|$ - теорема об орбитах и стабилизаторах. $|G|=p^n.$

 $\{Z_x\}$ - подгруппа $G \implies$ по т. Лагранжа делит

$$|G| \implies |Z_x| = p^k$$
.

Так как x не из центра, то $k < n \implies$

$$|\{gxg^{-1}\}| = p^{n-k}$$
 делится на $p.$

G - объединение классов сопряжённости

$$|G| = \sum_{x \in Z(G)} 1 + \sum_{x
otin Z(G)}$$
 порядки неодноэлементных классов сопр.

Порядок G делится на p, сумма справа делится на p. Отсюда количество элементов в центре делится на $p \implies |Z(G)| \ge p > 1.$

Конец алгебры.