ENP- Dpt.de Génie Electrique 4^e année Electrotechnique M. Hauze

mai 2008

3ème EMD d'Electronique de puissance

Exercice 1:

Soit l'alimentation à découpage de type Cuk débitant dans une résistance pure R de la figure cidessous. Le transistor T_p est commandé dans l'intervalle $[0,\alpha T]$ où T_p est la période de découpage et α est le rapport cyclique.

- 1) Donner les montages correspondant au fonctionnement de $[0,\alpha T]$ et de $[\alpha T,T]$. Indiquer le sens de u_s ,
- 2) Tracer sur la période T les ondes de l_e , i_I , i_c , v_c et i_{DRL}
- 3) Exprimer les valeurs moyennes de u_s , i_l et i_e en fonction de α , r_1/R et r_2/R .
- 4) Pour (τ̄2) négligeable et r₁/R=ε, Déterminer la valeur maximale (U_s)_{moy}.
- 5) En négligeant les résistances r_1 et r_2 , comment dimensionner C_f et l_2 pour que les ondulations maximales de u_s et i_l soient de 10% de leur valeur moyenne. (On donne E_s =24 V; f=1/T=100 kHz).

Exercice 2:

Soit le montage d'un gradateur triphasé à thyristors débitant dans une résistance de chauffage couplée en triangle.

- 1- Donner le montage.
- 2- Donner la table séquentielle des tensions de sortie V_{sa}, V_{sb}, V_{sc} correspondant à la conduction des thyristors.
- 3- Tracer la forme de la tension de sortie V_{sa} pour un angle d'allumage $\alpha=\pi/2$.

Le condensateur C₁ joue le rôle d'une source auxiliaire de tension. Pendant la charge de C₁, on <mark>a un générateur de courant débitant dans un récepteur de tension, comme dans un hacheur parallèle. Quand C₁ se décharge, elle constitue un générateur de tension débitant sur un récepteur de courant, comme dans un hacheur série, le montage est équivalent à une cascade hacheur parallèle -hacheur série, d'où son appellation de Rocat-Buck Conventes.</mark>

En fonctionnement normal, la tension u_1 aux bornes de C_1 reste constamment positive, ce qui empêche la conduction simultanée du transistor Q et de la diode D. Le transistor est saturé de t=0 à $t=\alpha$ T, bloqué de $t=\alpha T$ à t=T; la diode conduit pendant ce second intervalle. La figure 6-17 donne l'allure des variations des divers courants et des diverses tensions.

2.4.1.- Valeurs moyennes de tensions u' et u1, des courants i et i2

Les tensions u' et ui, les courants i et i2 sont liés par :

.
$$U = r_1 i + \ell_1 \frac{di}{dt}$$
 , pour $0 < t < \alpha T$,
$$= r_1 i + \ell_1 \frac{di}{dt} + u_1$$
 , pour $\alpha T < t < T$
$$i_2 = C \frac{du'}{dt} + \frac{u'}{R}$$
 , pour $0 < t < T$.

$$i_2 = C \frac{du'}{dt} + \frac{u'}{R}$$
, pour $0 < t < T$.

$$r_2i_2 + \ell_2 \, \frac{\text{d}i_2}{\text{d}t} + u^* = u_1 \; , \; \; \text{pour} \; \; 0 < t < \alpha T \; , \label{eq:r2i2}$$

=
$$0$$
 , pour $\alpha T < t < T$

En désignant par U', U_1 , I et I_2 les valeurs moyennes de u', u_1 , i et i_2 , en intégrant sur une période et en prenant les valeurs moyennes, on obtient :

$$U = r_1 I + \ell_1 \left(\frac{di}{dt}\right)_{moy} + \frac{1}{T} \int_{\alpha T}^{T} u_1 dt$$

$$I_2 = C \left(\frac{du'}{dt}\right)_{moy} + \frac{U'}{R}$$

$$r_2 I_2 + \ell_2 \left(\frac{di}{dt}^2\right)_{moy} + U' = \frac{1}{T} \int_0^{\alpha T} u_1 dt$$

$$C_1 \left(\frac{du_1}{dt} \right)_{moy} = \frac{1}{T} \int\limits_{0}^{\alpha T} - i_2 \; dt \; + \frac{1}{T} \int\limits_{\alpha T}^{T} \; i \; dt$$

3 evil EMD 200 8 mai

Pigure 6-17

UNIVDOCS.COM

admettant que les valeurs moyennes de u_1 , de i_2 et de 1 pendant l_θ conduction du transistor ou de l_θ díode sont les mêmes que pour l'ensamble de l_θ période, l_θ vient :

$$U = r I + (1 - \alpha)U_1$$

$$0 = - \alpha I_{2} + (1 - \alpha)I$$

On en déduit :

$$U' = \frac{ij}{\frac{\Gamma_1}{R}} \frac{\alpha}{1-\alpha} \cdot \frac{1-\alpha}{\alpha} \left(1 + \frac{\Gamma_2}{R}\right) = R I_2$$
 (6.24)

$$U_1 = \frac{U}{\alpha} \left(1 + \frac{r_2}{R} \right) = \frac{U}{\frac{r_1}{R} + \frac{\alpha^2}{2} + \frac{1}{2} + \alpha}$$
 (6.25)

$$U_{1} = \frac{U}{\alpha} \left(1 + \frac{\Gamma^{2}}{R} \right) = \frac{U}{\frac{\Gamma_{1}}{R + \Gamma_{2}} + \frac{\alpha^{2}}{1 - \alpha} + 1 - \alpha}$$

$$I = \frac{\alpha}{1 - \alpha} I_{2} = \frac{\alpha}{1 - \alpha} I' = \frac{U}{\Gamma_{1} + (R + \Gamma_{2}) \frac{(1 - \alpha)^{2}}{\alpha^{2}}}$$
(6.26)

Si on avait négligé les résistances \mathbf{r}_1 et \mathbf{r}_2 , on aurait obtenu :

$$U' = U \frac{\alpha}{1-\alpha} = R I_2$$
 (6.24')

$$U_1 = \frac{U}{\alpha} = \frac{U}{1-\alpha} \tag{6.25'}$$

$$U_{1} = \frac{U}{\alpha}' = \frac{U}{1-\alpha}$$

$$I = \frac{\alpha}{1-\alpha} I_{2} = \frac{\alpha}{1-\alpha} I' = \frac{\alpha^{2}}{(1-\alpha)^{2}} \frac{U}{R}$$

$$(6.25')$$

• In tension de sortie moyenne U' est nulle pour α nul, croit d'abord avec α , passe par un maximum, puis diminue et s'annule quand $\alpha=1$. U' est maximum pour α_{max} tel que : dU'/ d $\alpha=0$. $\alpha_{max}=\frac{1}{1 \cdot \sqrt{\frac{\Gamma I}{R \cdot \Gamma_2}}}$

$$\alpha_{\text{max}} = \frac{1}{1 + \sqrt{\frac{\text{FI}}{\text{R} + \text{F2}}}}$$

et le maximum de U' est égal à :

$$U'_{\text{max}} = U = \frac{R}{2\sqrt{r_1(R + r_2)}}$$

La résistance r_2 est normalement très faible devant R ; si on confond r_2+R $\mbox{ avec R }$, il vient :

$$U^{\bullet} = \frac{U}{\frac{\Gamma_{1}}{R} \frac{\alpha}{1 - \alpha} + \frac{1 - \alpha}{\alpha}} \quad \text{i.} \quad \alpha_{\text{max}} = \frac{1}{1 \cdot \sqrt{\frac{\Gamma_{1}}{R}}} \quad \text{i.} \quad U^{\bullet}_{\text{max}} = \frac{U}{2} \sqrt{\frac{R}{\Gamma_{1}}}$$

A partir de cette expression simplifiée, on a tracé sur la figure 6-18 les courbes montrant les variations de II en faction de 2 cours services de la course de l

Figure 6-19

Figure 0-20

UNIVDOCS.COM

 r_1 egai a u,uı k et r_1 egai a u,uɔ k. Un trouve les mêmes valeurs de U'max que pour le hacheur parallèle, mais U' part de zéro comme pour le hacheur à stockage inductif.

• La tension moyenne U₁ aux bornes du condensateur est égale à U pour α nul. Quand α croît, elle augmente, passe par un maximum, puis diminue. Elle est nulle pour α égal à 1.

Sa dérivée par rapport à α montre que son maximum est obtenu pour :

$$\alpha = 1 - \sqrt{\frac{r_1}{R + r_2 + r_1}}$$

et a pour valeur

$$U_{1_{max}} = \frac{U}{2} \frac{R + r_2}{\sqrt{r_1(R + r_2 + r_1)} - r_1}$$

Si, en première approximation, on confond R +r2 avec R. 11 vient :

$$U_{1} = \frac{U}{\frac{\Gamma_{1}}{R} \cdot \frac{\alpha^{2}}{1-\alpha} + 1-\alpha} : U_{\max} = \frac{U}{2} \frac{R}{\sqrt{r_{1}(R+r_{1})} - r_{1}} \quad \text{pour } \alpha = 1 - \sqrt{\frac{r_{1}}{R+r_{1}}}$$

A l'aide de ces dernières relations, on a tracé (figure~6-19) les variations de U_I en fonction de α pour r_1 successivement nul, égal à 0,01 R puis égal à 0,05 R.

L'élévation de la tension de sortie entraîne celle de la tension aux bornes du condensatour.

• Le courant moyen I débité par la source de tension U et traversant l'inductance ℓ_1 croît sans cesse quand α va de zéro à 1. Nul pour α nul, il égale U/ r_1 quand α égale 1.

Les courbes de la figure 6-20 ont été tracées pour r_1 = 0 ; r_1 = 0.01 R r_1 = 0.05 R, en négligeant r_2 devant R.

Le courant moyen I $_2$ dans $\hat{\textbf{L}}_2$ peut être lu sur les courbes donnant U'puisque R I $_2$ égale U'.

2.4.2.- Ondulations des courants i et i_2 , des tensions u^{ι} et u_1

· Ondulation des courants i et iz

Figure 6-21

comme des sources de tension parfaites, l'une de tension U', l'autre de tension U₁. Les schémas équivalents correspondant aux deux intervalles de fonctionnement sont alors ceux tracés sur *la figure 6-21*.

De t = 0 à t =
$$\alpha T$$
, $r_1 i + \ell_1 \frac{di}{dt} = U$; i croît de I_m à I_M ,

$$r_2i_2+$$
 ℓ_2 $\frac{di_2}{dt}$ = $U_1 U^*$, i_2 crost de I_{2m} à I_{2M} .

De t =
$$\alpha T$$
 à t = T, $r_1 i$ + $\hat{k}_1 \frac{di}{dt}$ = U - U1, i décroît de I_{pl} à I_{m} ;

$$r_2i_2+$$
 $\hat{\imath}_2$ $\frac{di_2}{dt}$ = - U', i_2 décroît de I_{2M} à I_{2m} .

- Si on néglige les résistances ${\bf r}_1$ et ${\bf r}_2$, les courants sont des fonctions linéaires du temps. Leurs ondulations sont données :

$$\Delta i = \frac{U}{\ell_1} \alpha T ; \Delta i_2 = \frac{U_1 - U'}{\ell_2} \alpha T = \frac{U}{\ell_2} \alpha T$$
 (6.27)

- Si on tient compte des résistances r_1 et r_2 , on obtient :

$$\Delta i = \frac{U_1}{r_1} \frac{1 - \exp\left[-(1-\alpha)Tr_1/\ell_1\right]}{1 - \exp\left[-Tr_1/\ell_1\right]} \left[1 - \exp\left(-\alpha Tr_1/\ell_1\right)\right]$$

$$\Delta i_2 = \frac{U_1}{r_2} \left(1 - \frac{\exp(\alpha \operatorname{Tr}_2/\ell_2) - 1}{\exp(\operatorname{Tr}_2/\ell_2) - 1} \right) \left[1 - \exp(-\alpha \operatorname{Tr}_2/\ell_2) \right]$$

Si ℓ_1/r_1 et ℓ_2/r_2 sont grands devant la période T, l'écart entre Δi et Δi_2 donnés par ces relations et ceux donnés par les relations (6.27) est négligeable. Ces dernières indiquent des ondulations proportionnelles à α .

• Ondulation des tensions u' et u1

 \star La sortie du montage est la même que celle du hacheur série. On peut déduire l'ondulation $\Delta u'$ de la tension u' aux bornes de l'ensemble RC de l'ondulation Δi_2 du courant qui le traverse (voir § 2.1.2.).

$$\Delta u^* = \frac{1}{C} \Delta i_2 \frac{T}{\theta}$$

donc, compte-tenu de (6.27);

$$\Delta u' = U \frac{\alpha^2 T}{8 \cdot 8 \cdot 2}$$
 (6.28)

 Δu^* crost proportionnellement à α^2 .

- On peut calculer l'ondulation Δu_1 de la tension u_1 aux bornes du condensateur C_1 à partir de son courant i_1 de charge ou de décharge.

De t = 0 à t = αT , i_1 égal à $-i_2$ est négatif. La variation de u_1 est :