Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

1.

The function

$$eta(\mathbf{x},\mathbf{y}) = \mathbf{x}^Tegin{bmatrix} 2 & -1 \ -1 & 1 \end{bmatrix}\mathbf{y}$$

is

positive definite

Correct

Yes, the matrix has only positive eigenvalues and $\beta(\mathbf{x},\mathbf{x})>0$ for all $\mathbf{x}\neq\mathbf{0}$ and $\beta(\mathbf{x},\mathbf{x})=0\iff \mathbf{x}=\mathbf{0}$

bilinear

Correct

Yes:

- β is symmetric. Therefore, we only need to show linearity in one argument.
- For any $\lambda \in \mathbb{R}$ it holds that $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.

symmetric

Correct

Yes:
$$\beta(\mathbf{x}, \mathbf{y}) = \beta(\mathbf{y}, \mathbf{x})$$

Quiz, 5 questions

an inner product

It's symmetric, bilinear and positive definite. Therefore, it is a valid inner product.

not bilinear

Un-selected is correct

not symmetric

Un-selected is correct

not positive definite

1/1 point

2.

The function

$$eta(\mathbf{x},\mathbf{y}) = \mathbf{x}^Tegin{bmatrix} 1 & -1 \ -1 & 1 \end{bmatrix}\mathbf{y}$$

is

an inner product

Un-selected is correct

not an inner product

Correct

Correct: Since β is not positive definite, it cannot be an inner product.

Quiz, 5 questions

Correct

Correct:

- ullet eta is symmetric. Therefore, we only need to show linearity in one argument.
- $\beta(\mathbf{x} + \lambda \mathbf{z}, \mathbf{y}) = \beta(\mathbf{x}, \mathbf{y}) + \lambda \beta(\mathbf{z}, \mathbf{y})$. This holds because of the rules for vector-matrix multiplication and addition.

Correct

With $x = [1,1]^T$ we get $\beta(\mathbf{x},\mathbf{x}) = 0$. Therefore β is not positive definite.

positive definite

Un-selected is correct

not symmetric

Un-selected is correct

not bilinear

Un-selected is correct

symmetric

Correct

Correct: $eta(\mathbf{x},\mathbf{y}) = eta(\mathbf{y},\mathbf{x})$

Quiz, 5 questions
$$\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{y}$$

is

Un-selected is correct

Correct

Correct: If we take $\mathbf{x} = [1,1]^T$ and $\mathbf{y} = [2,-1]^T$ then $\beta(\mathbf{x},\mathbf{y}) = 0$ but $\beta(\mathbf{y},\mathbf{x}) = 6$. Therefore, β is not symmetric.

Correct

Correct.

not bilinear

Un-selected is correct

Un-selected is correct

Correct

Correct: Symmetry is violated.

Quiz, 5 questions $\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{y}$

is

not positive definite

Un-selected is correct

positive definite

Correct

It is the dot product, which we know already. Therefore, it is positive definite.

not symmetric

Un-selected is correct

symmetric

Correct

It is the dot product, which we know already. Therefore, it is symmetric.

not an inner product

Un-selected is correct

an inner product

Correct

It is the dot product, which we know already. Therefore, it is also an inner product.

not bilinear

Un-selected is correct

Properties of inner products

Quiz, 5 questions dot product, which we know already. Therefore, it is positive bilinear.

1/1 point

5.

For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$ write a short piece of code that defines a valid inner product.

```
import numpy as np
 1
 2
 3
   def dot(a, b):
      """Compute dot product between a and b.
 4
 5
      Args:
        a, b: (2,) ndarray as R^2 vectors
 6
 7
 8
      Returns:
      a number which is the dot product between a, b """
9
10
11
      dot_product = np.dot(a, b)
12
13
     return dot_product
14
15
16 # Test your code before you submit.
                                                                                                    Run
17 a = np.array([1,0])
18 b = np.array([0,1])
                                                                                                   Reset
19 print(dot(a,b))
```

Correct Response

Good job!

