PHIMECA

... solutions for robust engineering

Uncertainty treatment in dispersion modelling of accidental releases

OpenTURNS Users Day #8. June 12, 2015

Felipe Aguirre Martinez

Sommaire

- Dispersion modeling in the presence of uncertainty
- Risk assessment methodology for urgent situations
- First results
- Second study Some lessons learned so far
- Conclusions

First study : École Centrale de Lyon

Vincent Dubourg, Patrick Armand, David Poulet, Florian Vendel, Sébastien Argence, Thierry Yalamas, Fabien Brocheton and Perrine Volta

ca Engineering

First study : École Central de Lyon

Migh fidelity atmospheric dispersion modelling...

- increasingly depends on our knowledge of the exact environmental conditions.
- Such conditions are unknown to some extent, especially in the case of accidental releases.

We propose a risk assessment framework that accounts for such uncertainty in the form of probability distributions.

O Phimeca Engineering

First study : École Central de Lyon

Dispersion modelling

- The exact source location is supposedly known.
- The release *lasts* 5:00 minutes
- Meteorological conditions (wind speed, direction, etc. ...) are uncertain (imprecise).
- A Lagrangian model (SLAM) is used for simulating the dispersion of the pollutant (assuming a light gas behaviour).
- A pre-computed CFD database enables the calculation of the perturbed wind field in the constructed area in the vicinity of the source for a large variety of incident winds (using multi-linear interpolation).

First study : École Central de Lyon

Dispersion modelling

First study : École Central de Lyon

Uncertainty modelling

- The *lack of knowledge* about some parameters describing the release conditions is modelled as a probability distribution.
- These variables are assumed independent.

Parameter	Probability distribution				
Wind speed	Gaussian with mean 2 m.s ⁻¹ and standard deviation 0.17 m.s ⁻¹				
Wind direction	Truncated Gaussian with mean 225° and standard deviation 22.15°, over [215°; 234°]				
Cloud	Truncated Gaussian with mean 6 octas and standard deviation 1 octa, over [1 octa; 9 octas]				
Temperature	Uniform over [14°C; 16°C]				
Emitted quantity	Uniform over [70 kg.s ⁻¹ ; 130 kg.s ⁻¹]				
Source height	Uniform over [1.75 m; 2,25 m]				

himeca Engineering

Dispersion & uncertainty modelling

Quantity of interest for risk assessment

 We consider the cumulated dose causing irreversible effects on human health according to INERIS recommandations for phosphine:

$$D(\mathbf{X}, \mathbf{p}, t) = \int_0^t C_{\mathrm{PH}_3}(X, \mathbf{p}, \tau)^n d\tau$$

where:

- X denotes the random vector of uncertain release conditions
- p and t are the position and exposure time respectively
- C_{PH3} is the *instant phosphine concentration* calculated by SLAM
- n = 0.53 according to INERIS
- The subject is assumed not to move during exposure.
- The risk analysis consists in estimating:

$$p = \text{Prob}[D(X, p, t) > D_0]$$

where $D_0 = 20.10$ according to INERIS.

Sommaire

- Dispersion modeling in the presence of uncertainty
- Risk assessment methodology for urgent situations
- First results
- Second study Some lessons learned so far
- Conclusions

Phimeca Engineering

Risk assessment methodology

Brute-force approach

 The spatio-temporal field of exceedance probabilities can be estimated using Monte Carlo sampling :

$$\widehat{P}(\boldsymbol{p},t) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(D(\boldsymbol{X}^{(i)}, \boldsymbol{p}, t) > D_0)$$

- This estimator converges as the number of samples (the number of SLAM runs) increases.
- A minimum of 10 000 samples is required in order to achieve a reasonable coefficient of variation of 32% on a probability of 10⁻³.
- With 10 minutes per simulation, this would take two months!

Such a large number of SLAM runs is incompatible with the urgency associated to accidental releases scenarii.

Risk assessment methodology

We propose to replace SLAM by a surrogate model that is much faster to evaluate.

Elements of surrogate modelling

DOE

- · Run the model \mathcal{M} on a well-chosen set of input (gathered in an experimental design).
- \cdot The purpose is to capture the largest amount of information about the functional relationship between its input x and output y.

fit

- · Choose a family of surrogate models amongst artificial neural networks (ANN), support vector machine (SVM), Gaussian processes (GP), generalized linear models (LM).
- · Compute the surrogate model parameters from the dataset $\mathcal{D} = ((x^{(i)}, y^{(i)}), i = 1, ..., m)$.

validate

- · Compute summary statistics about the relative error between the original model and its approximation.
- \cdot The purpose is to qualify the surrogate model on a bounded domain of the input space.

predict

· Use the surrogate model instead of the original model to speed up uncertainty quantification or optimization post-processings.

O Phimeca Engineering

Risk assessment methodology

- Dimension reduction using principal component analysis (PCA)
 - We could apply kriging for all **p** and t over a spatio-temporal grid in order to surrogate the whole output of SLAM.
 - But this would be *heavy/long for dense grids* $(N_x \times N_y \times N_t = 50 \times 50 \times 71$, for the present application)!
 - It is proposed to exploit the significant spatio-temporal correlation
 (coherence) that exists in the output of SLAM for reducing its dimension
 to a minimal vector of principal components.
 - Kriging is then applied to each component of the reduced vector z instead of the original one (the inverse transform is used at predict time).

Sommaire

- Dispersion modeling in the presence of uncertainty
- Risk assessment methodology for urgent situations
- First results
- Second study Some lessons learned so far
- Conclusions

Design of experiments

- Monte Carlo experiment used for validation of the surrogate-based approach (N = 1,000)
- Simulations where distributed on Hyperion (CICT)
 - OpenTURNS Python wrapper
 - PBS scheduler
 - 512 CPUs with 4Go RAM per CPU
 - 1000 simulations finished in ~40 minutes

Phimeca Engineering

Design of experiments

- Design of experiments used for the surrogate modelling
- K-means clustering
 - Subset selection in the previous Monte Carlo experiment, m = 100

Résultats sur la grille plane

Validation of the surrogate models

- One surrogate model per time step (PCA over the space)
- Indicators indicate the average over the 10⁴ points on the field.

Pas de	r<< d	Q ²	R ²	Pas de	r<< d	Q ²	R ²
temps	(d = 2500)		(test)	temps	(d = 2500)		(test)
1	79	0.92	0.90	37	93	0.68	0.56
2	79	0.92	0.90	38	93	0.68	0.59
3	79	0.92	0.90	39	93	0.69	0.60
4	88	0.81	0.76	40	93	0.68	0.59
5	88	0.82	0.76	41	93	0.68	0.59
6	89	0.82	0.77	42	93	0.68	0.59
7	89	0.72	0.57	43	93	0.67	0.58
8	90	0.73	0.64	44	93	0.67	0.58
9	91	0.74	0.65	45	93	0.67	0.58
10	91	0.65	0.57	46	93	0.66	0.57
11	91	0.67	0.59	47	93	0.65	0.57
12	92	0.68	0.60	48	93	0.65	0.56
13	92	0.64	0.54	49	93	0.64	0.54
14	92	0.66	0.60	50	93	0.63	0.55
15	92	0.67	0.61	51	93	0.62	0.55
16	93	0.65	0.58	52	93	0.61	0.54
17	93	0.67	0.60	53	93	0.60	0.54
18	93	0.68	0.61	54	93	0.59	0.53
19	93	0.67	0.55	55	93	0.58	0.53
20	93	0.68	0.60	56	93	0.58	0.52
21	93	0.68	0.61	57	93	0.57	0.52
22	93	0.67	0.51	58	93	0.56	0.50
23	93	0.68	0.60	59	93	0.55	0.50
24	93	0.69	0.60	60	93	0.54	0.49
25	93	0.67	0.57	61	93	0.53	0.49
26	93	0.68	0.60	62	93	0.53	0.49
27	93	0.68	0.60	63	92	0.52	0.48
28	93	0.68	0.55	64	92	0.51	0.48
29	93	0.68	0.59	65	92	0.50	0.47
30	93	0.69	0.60	66	92	0.49	0.47
31	94	0.68	0.57	67	92	0.48	0.46
32	94	0.68	0.59	68	92	0.47	0.45
33	94	0.68	0.59	69	92	0.47	0.45
34	94	0.68	0.58	70	92	0.46	0.44
35	93	0.68	0.59	71	92	0.45	0.44
36	93	0.68	0.60				

Results

Probability of exceeding the threshold dose of irreversible effects

Brute-force approach (N = 1,000)

Surrogate-based approach (N = 10,000)

 The surrogate-based approach accounts for the uncertainty in the kriging predictor (Gaussian):

$$\widehat{P}(\boldsymbol{p},t) = \frac{1}{N} \sum_{i=1}^{N} 1 - \Phi\left(\frac{D_0 - \mu_{\widehat{Y}}(\boldsymbol{x}^{(i)}, \boldsymbol{p}, t)}{\sigma_{\widehat{Y}}(\boldsymbol{x}^{(i)}, \boldsymbol{p}, t)}\right)$$

Results

Risk map

Brute-force approach (N = 1,000)

Surrogate-based approach (N = 10,000)

- The probability of exceeding the threshold dose of irreversible effects is:
 - less than 2.5 % in the green zone;
 - between 2.5 % and 97.5 % in the orange zone;
 - larger than 97.5 % in the red zone.

18

Results

Risk map (with different emitted quantity distributions)

- An arbitrarily large emitted quantity distribution was first used for reaching the threshold of irreversible effects in the far field.
- A smaller emitted quantity distribution eventually augments the spread of the uncertain (orange) zone.

Sommaire

- First study : École Central de Lyon
- Risk assessment methodology for urgent situations
- First results
- Second study Some lessons learned so far
- Conclusions

Second study on a larger scale

- Objective : Apply the same methodology on a city scale
- Specifications:
 - Computational chain with more than one code to run (~200 different calls)
 - Runtime: ~90 minutes over 64 cores...
 - Spatio-temporal grid with :
 - 60 time steps
 - Spatial grid of :
 - ➤ One tile 360 x 440 for a simplified test model
 - > 63 tiles of size 430 x 430 each for the real model
 - Number of output variables :60 x 63 x 430 x 430 ~= 70 millions !
 - Test model: 60 text files of 7MB each
 - Real model: 1360 text files of 7MB each
 - Distribution of simulations on TGCC through submission scripts
- The big challenge here lays on the complexity of the model.

Parsing big text files

- Each simulation produces :
 - Test model: 60 text files of 7MB each
 - Real model: 1360 text files of 7MB each
- Pandas parses files much faster than any other solution

```
In [4]: %timeit np.atleast_2d(np.loadtxt(conc_file, skiprows=1, usecols=[4]))
1 loops, best of 3: 981 ms per loop
In [5]: %timeit np.atleast_2d(pd.read_csv(conc_file, sep='\s+', usecols=['C[ppmV]'])).T
10 loops, best of 3: 59.1 ms per loop
```

- 16 times faster!
- But it introduces a dependency.... < </p>
- Distributing file parsinig

```
from sklearn.externals.joblib import Parallel, delayed

Results = Parallel(n_jobs=30) (delayed(func)(thing) for thing in iterator)
```


22

Engineering

Handling and logging errors

- When submitting jobs through submission scripts, you loose track of the execution!
- Protect your wrapper with a try/except structure!

- Or use a decorator ②!
 - More details af the end if need be

Handling output

- It is impossible to keep a numerical sample per simulation due to memory limits!
 - Primarily due to the fact that each run is an independent job submission
- Dump results to disk at the end for later post treatment.
- But one run represents ~300 mb per text files → ~1.8Gb....
 - Use gzip for compression and pickle.dump(array, file, protocol=2) for speed

```
def dump_array(array, filename):
    with gzip.open(filename, 'wb') as fh:
        pickle.dump(array, fh, protocol=2)
```

HDF5 and netCDF to be tested!

nimeca Engineering

Using argsparse

- Usually we run our simulations from an Ipython interpreter...
- But on clusters you often need to go through submission scripts!
- © Create a command line interfase of the wrapper using argparse!
 - python wrapper.py -X 170 3 0.05
 - python wrapper.py -MonteCarlo -N 1000

```
if __name__ == '__main__':
    import argparse

parser = argparse.ArgumentParser(description="Python wrapper example.")

parser.add_argument('-X', nargs=3, metavar=('X1', 'X2', 'X3'),
        help='Vector on which the model will be evaluated')

args = parser.parse_args()

X = ot.NumericalPoint([float(x) for x in args.X])

Y = model(X)

dump_array(X, 'InputSample.pkl')

dump_array(Y, 'OutputSample.pkl')
```


Conclusion

- Probabilistic modelling is used to describe uncertain release conditions.
- Risk is assessed as the probability of exceeding a critical dose.
- Surrogate modelling enables a drastic speed-up in the production of risk maps:
 - provided the CFD database is already computed (for industrial sites at risk);
 - 20 minutes per SLAM run in the DOE (× 100 runs, but $\times \frac{1}{N_{CPUs}}$ using HPC);
 - about 12 seconds per time step for fitting the kriging predictors;
 - about 25 seconds per time step to predict the 10,000 configurations required for the final probability estimation.
- Mriging is a convenient surrogate for incorporating the uncertainty about the surrogate model in the final risk maps.
- Risk can be represented as time-varying maps of dose exceedance probabilities.

The killer wrapper!

- It is able to run on different environments:
 - Workstation
 - Office made heterogenous clusters (e.g., IPython parallel with SSH),
 - HPC through submission scripts (e.g., TGCC, Hyperion ou Poincare)
 - Cloud solutions (e.g. Simulagora ou DominoUp)
- It catches and logs errors for easy debugging
- It can either run or simply prepare runs
 - Usefull when using clusters
- You can use it as a script (argsparse module):
 - python wrapper.py -X 170 3 0.05
- It is by default an ot.NumericalMathFunction! (decorators!)
- It might seem complex, but wrappers are repetitive. A good cookbook might be enough to spread this to the community!

Handling and logging errors

```
from functools import wraps
def debug(func, logger):
    @wraps (func)
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception, e:
            logger.error(e, exc info=True)
            raise e
    return wrapper
class Wrapper(ot.OpenTURNSPythonFunction):
    @debug(logger)
    def exec(self, X):
        #Do stuff
        return Y
```

Take a look at David Beazley's tutorial for PyCon'2013

