Sprawdzanie prawa Malusa

1 Wstęp teoretyczny

1.1 Fala elektromagnetyczna

Fala elektromagnetyczna to połączenie pola elektrycznego i magnetycznego. Pole elektromagnetyczne może się rozchodzić w przestrzeni z prędkością światła. Fala elektromagnetyczna to rozchodzące się w przestrzeni spreżone pole elektryczne. Wielkością charakteryzującą fale jest czestotliwość.

1.2 Polaryzacja fali

Polaryzacja to własność fali poprzecznej(np. światła). Fala spolaryzowana oscyluje(drga) tylko w wybranym kierunku. Dla fali mechanicznej jest to kierunek przesunięć

Polaryzacja fali elektromagnetycznej to kierunek wzajemnie prostopadłych pól: elektrycznego i magnetycznego

Polaryzacja liniowa drganie odbywa się wzdłuż linii prostej. Każde drganie można przedstawić jako sumę drgań wzdłóż osi X i Y.

Polaryzacja kołowa drganie to odpowiada ruchowi po okręgu. Można je rozłożyć na dwa drgania o jednakowych amplitudach, ale o fazach dokładnie przesunietych o $90^{\circ}C$ lub $270^{\circ}C$.

1.3 Prawo Malusa

Prawo Malusa określa natężenie światła spolaryzowanego po przejściu przez polaryzator w zależności od kąta ustawienia analizatora względem polaryzatora.

$$I = I_0 * \cos^2 \alpha$$

 I_0 - natężenie światła padającego

 α - kat miedzy płaszczyzną polaryzacji światła padającego i płaszczyzną polaryzacji polaryzatora

2 Przebieg i cel ćwiczenia

Celem naszego ćwiczenia było sprawdzenie prawa Malusa, poprzez obracanie analizatorem o 5° . Wyniki zapisywaliśmy z miliamperomierza. Obrót analizatora o 90° względem polaryzatora spowoduje wygaszenie wiązki.

2.1 Opracowanie pomiarów

Obracaliśmy analizatorem o 5° zaczynając od 0°, a kończąc na 360°. Wyniki zapisywaliśmy z miliamperomierza firmy METEX, model M-3650D. Dokładność amperomierza wynosi +-1% dla +-3 cyfr.

$\phi,^{\circ}$	i, mA						
0	0,0007	95	0,0125	185	0,0004	275	0,0117
5	0,0004	100	0,0130	190	0,0001	280	0,0120
10	0,0002	105	0,0133	195	0,0001	285	0,0120
15	0,0001	110	0,0133	200	0,0001	290	0,0120
20	0,0001	115	0,0131	205	0,0002	295	0,0119
25	0,0001	120	0,0126	210	0,0004	300	0,0115
30	0,0002	125	0,0120	215	0,0007	305	0,0109
35	0,0004	130	0,0112	220	0,0014	310	0,0101
40	0,0007	135	0,0102	225	0,0022	315	0,0092
45	0,0014	140	0,0089	230	0,0031	320	0,0082
50	0,0023	145	0,0077	235	0,0041	325	0,0071
55	0,0033	150	0,0064	240	0,0052	330	0,0059
60	0,0044	155	0,0052	245	0,0064	335	0,0048
65	0,0056	160	0,0040	250	0,0075	340	0,0037
70	0,0071	165	0,0028	255	0,0085	345	0,0027
75	0,0084	170	0,0020	260	0,0095	350	0,0019
80	0,0096	175	0,0014	265	0,0104	355	0,0012
85	0,0108	180	0,0007	270	0,0112	360	0,0007
90	0,0118						

3 Opracowanie wyników pomiarów

Sporządziliśmy wykres zależnośći wskazań miernika od kąta skręcenia analizatora względem polaryzatora

Obliczyliśmy według prawa Malusa teoretyczne wartości prądu płynącego przez fotoopornik:

$$i_T = i_{max} \cdot \cos^2(\phi)$$

 i_{\max} - maksymalne wskazanie amperomierza

Amperomierz wskazywał maksymalną wartość równą $0,0133~\mathrm{dla}~105^\circ$ i $110^\circ.$

Przykład obliczenia dla kata 0°

$$i_T = 0.0133 \cdot \cos^2(0^\circ) = 0.0133$$

Wyniki zapisaliśmy do tabeli z dokładnością do czterech miejsc po przecinku:

$\phi,^{\circ}$	i_T	$\phi,^{\circ}$	i_T	$\phi,^{\circ}$	i_T	$\phi,^{\circ}$	i_T
0	0,0133	95	0,0001	185	0,0131	275	0,0001
5	0,0131	100	0,0004	190	0,0128	280	0,0004
10	0,0128	105	0,0008	195	0,0124	285	0,0008
15	0,0124	110	0,0015	200	0,0117	290	0,0015
20	0,0117	115	0,0023	205	0,0109	295	0,0023
25	0,0109	120	0,0033	210	0,0099	300	0,0033
30	0,0099	125	0,0043	215	0,0089	305	0,0043
35	0,0089	130	0,0054	220	0,0078	310	0,0054
40	0,0078	135	0,0066	225	0,0065	315	0,0066
45	0,0065	140	0,0078	230	0,0054	320	0,0078
50	0,0054	145	0,0089	235	0,0043	325	0,0089
55	0,0043	150	0,0099	240	0,0033	330	0,0099
60	0,0033	155	0,0109	245	0,0023	335	0,0109
65	0,0023	160	0,0117	250	0,0015	340	0,0117
70	0,0015	165	0,0124	255	0,0008	345	0,0124
75	0,0008	170	0,0128	260	0,0004	350	0,0128
80	0,0004	175	0,0131	265	0,0001	355	0,0131
85	0,0001	180	0,0133	270	0,0000	360	0,0133
90	0,0000						

Na wykres radarowy nanieśliśmy wartości teoretyczne i_T

Wykresy względem siebie są obrócone. Znaleźliśmy błąd zera, czyli określiliśmy o jaki kąt α należy obrócić wykres pomiarowy, by oba wykresy pasowały do siebie. Korzystając ze wzoru:

$$\alpha + \phi = \phi_T$$

Obliczyliśmy błąd zera dla wartości 0,0131:

$$\alpha = \phi_T - \phi$$

$$\alpha = 5^{\circ} - 115^{\circ}$$

$$\alpha = -110^{\circ}$$

Błąd zera wynosi -110°

Następnie sporządziliśmy skorygowany wykres radarowy $i=f(phi_T)$

Sporządziliśmy wykres zależności wskazań amperomierza $i(\phi_T)=i_{max}\cdot\cos^2(\phi_T)$. Na wykresie umieściliśmy prostą teoretyczną i prostą dopasowaną do punktów pomiarowych.

3.1 Wniosek

Prawo Malusa zostało spełnione, ponieważ zmierzone natężenie było liniowo zależne od kwadratu cosinusa kąta położenia analizatora względem polaryzatora. Wyniki nie są dokładne ponieważ żarówka nie była stale przytwierdzona, przez co każdy ruch stanowiskiem badawczym powodował jej minimalne zmienianie położenia.

Źródła: https://pl.wikibooks.org/wiki/Fale/Polaryzacja_liniowa,_ko%C5%82owa,_eliptyczna_fal http://www.szkolnictwo.pl/szukaj,Prawo_Malusa http://fizyka.net.pl/ciekawostki/ciekawostki_wn3.html