Információs rendszerek biztonságtechnikája

Kriptográfia Szimmetrikus kódú algoritmusok

Vakulya Gergely

A kriprográfia négy célja

Titkosság (secrecy, confidentality)

Annak biztosítása, hogy az üzenetet harmadik fél **ne tudja elolvasni**.

Hitelesség (authentication)

Annak bizonyíthatósága, hogy az üzenet valóban a **feladótól** származik.

Letagadhatatlanság (nonrepudiation)

Annak bizonyíthatósága, hogy az üzenetet a **feladó valóban elküldte**.

Sértetlenség (integrity)

Annak biztosítása, hogy az üzenetet harmadik személy **ne tudja megváltoztatni**.

A kriptográfia modellje

Jelölések

- Nyílt szöveg (plaintext), P
- Kulcs (key), K
- Titkosított szöveg (cyphertext), C

$$C = E_K(P)$$

$$P = D_K(C)$$

$$D_K(E_K(P))=P$$

Kerchoff elve

Minden algoritmusnak nyilvánosnak kell lennie; csak a kulcsok titkosak (1883)

Kriptoanalízis

Csak titkosított szöveg alapú támadás

A kódtöréshez csak egy, vagy több titkosított szöveget ismerünk. A legnehezebb szituáció.

Ismert nyílt szöveg alapú támadás

Nyílt szöveg - titkosított szöveg párokat ismerünk. Talán ez a leggyakoribb eset.

Választott nyílt szöveg alapú támadás

Lehetőségünk van tetszőleges nyílt szöveget titkosítani (tehát a nyílt szövegekhez előállítani azok titkosított szöveg párját), de magát a kulcsot nem ismerjük. Ez az eset nyilvános kulcsú algoritmusok, illetve "blackbox" titkosítók esetében fordul elő.

Az ismeretlenség biztonsága (security by obscurity)

A rendszer (nem feltétlenül titkosítási eljárás) működésével kapcsolatban bizonyos gyengeségeket szándékosan nem hoznak nyilvánosságra azt remélve, hogy azokat nem fedezik fel / használják ki. Napellenzőbe "rejtett" forgalmi engedély, lábtörlő alá "rejtett" kulcs esete.

- Zárt forráskódú firmware-ek.
- A fájlrendszer mélyére "jól elrejtett" fájlokban tárolt érzékeny adatok.
- Beépített kiskapuk (például pótjelszavak).

Rossz gyakorlat. Kerülendő!

A feltörhetetlen kód (one-time pad)

A kizáró vagy (XOR) művelet

- $K \oplus K = O$
- $C = P \oplus K$
- $P = C \oplus K = P \oplus K \oplus K$
- Egy kulcs csak egyszer használható fel!

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

A titkosítás menete

- Alice és Bob megállapodnak egy közös kulcsban.
- A kódolás akkor működőképes, ha a kulcs véletlenszerű bitekből áll és legalább akkora, mint a kódolandó adat.
- Például Alice generál egy DVD-nyi véletlenszerű bitet és a lemezt eljuttatja Bobnak.
- Ezt követően bármelyikük titkos kommunikációt tud folytatni a másikkal a kulcs (a DVD) méretéig bezárólag.

A feltörhetetlen kód (one-time pad)

Hátrányok

- A kulcs elkészítése problematikus.
 - A számítógép általában pszeudorandom szekvenciákat tud gyorsan generálni.
 - Ténylegesen véletlen számok előállítása nehéz / lassú.
- A kulcs megosztása, tárolása problematikus.
 - Elzárva kell tartani.
 - Könnyen lemásolhatják.

Szimmetrikus kulcsú titkosítások

- A szimmetrikus kulcsú algoritmusok mind a kódoláshoz, mind a dekódoláshoz ugyanazt a kulcsot használják.
- A blokk kódolók n bites blokkokra bontják a bemenetet és a kódolást / dekódolást ilyen egységenként végzik.
- Kívánatos, hogy egy k bites nyílt szöveg egy szintén k bites titkosított szöveget eredményezzen, viszont k nem mindig egész számú többszöröse n-nek. Megoldás: Az utolsó blokk feltöltése, padding.
- A vevő oldalnak tudnia kell, hogy a használt kulcs helyes-e.
 Megoldás: redundancia alkalmazása (pl. ellenőrző összeg).

P-doboz

- P: Permutate
- A bemenet bitjein keverést végez

S-doboz

- S: Substitution
- Minden bitmintát egy másik bitmintára cserél

Data Encryption Standard (DES)

Tripe-DES (3DES)

Az AES története

Az AES főbb paraméterei

Egyéb szimmetrikus kódú titkosító algoritmusok

Elektronikus kódkönyv (ECB) mód

Titkosított blokkok láncolása (CBC)

Kimenet visszacsatolása (OFB)

Számláló mód

