Agenda

- What Is Deep Learning?
- · How Deep Learning Works?
- Single Layer Perceptron (Early Deep Learning Models)
- · Single Layer Perceptron Examples
- · Limitations Of Single Layer Perceptron
- Multi Layer Perceptron
- Multi Layer Perceptron Examples

How Deep Learning Works?

Deep learning is a form of machine learning that uses a model of computing that's very much inspired by the structure of the brain, so lets understand that first.

Perceptron Learning Algorithm

Perceptron Learning Algorithm

Note: Perceptron can be used to classify the data which is linearly separable.

Activation Function

What Is Tensorflow?

- ☐ Tensors are the standard way of representing data in deep learning.
- □ Tensors are just multidimensional arrays, an extension of two-dimensional tables (matrices) to data with higher dimension.

TensorFlow Code Basics

A Computational graph is a series of Tensorflow operations arranged into a graph of nodes.

To actually evaluate the nodes, we must run the computational graph within a session.

A **session** encapsulates the control and state of the Tensorflow runtime.

Constant: It takes no input and it outputs values it stores internally.

A graph can be parameterized to accept external inputs, known as placeholders.

Placeholder is a promise to provide a value later.

To make the model trainable, we need to able to modify the graph to get new outputs with the same input. **Variables** allow us to add trainable parameters to a graph.

A loss function measures how apart the current model is from the provided data.

Tensorflow provides optimizers that slowly change each variable in order to minimize the loss function.

Reducing The Loss

Optimizer modifies each variable according to the magnitude of the derivative of loss with respect to that variable. Here we will use Gradient Descent Optimizer

Batch Gradient Descent

Implementation Of The Use-Case

Limitations Of Single Layer Perceptron

Let us understand this with an example: How can I implement an XOR gate using Single Layer Perceptron?

Limitations Of Single Layer Perceptron

Multilayer Perceptron

A Multi-layer Perceptron has the same structure of a single layer perceptron but with one or more hidden layers and is thus considered a deep neural network.

Note:Backpropogation skipped