

Aula 10 – Conversor Analógico/Digital

Leandro Schwarz

SUMÁRIO

- Teoria de Funcionamento;
- Conversor A/D;
- Registradores
- Bibliotecas LS/R2R;
- Exemplo;
- Exercício;
- Leituras Obrigatória e Recomendada.

Conversor A/D

- Sinal analógico contínuo é um sinal no qual existe um valor associado à variável dependente (tensão elétrica) para qualquer valor da variável independente (tempo);
 - Existe um valor de tensão elétrica para qualquer instante de tempo t tomado.

Conversor A/D

- A amostragem consiste em tomar amostras de um sinal contínuo regularmente espaçadas no tempo;
 - O sinal amostrado é representado por uma sequência de valores cujas amplitudes correspondem às amplitudes instantâneas do sinal original no momento da realização da amostragem;
 - O processo de amostragem introduz um erro na representação, pois variações que ocorrem entre as amostras não são percebidas.

Conversor A/D

- Quanto maior for o número de amostras em determinado intervalo, melhor será a representação discreta do sinal;
- Teorema da amostragem de Shannon:
 - A taxa de amostragem para um sinal cuja componente de maior frequência tem frequência f₀ deve ser de, pelo menos, 2f₀.

sinal analógico contínuo Amostrador Quantizador sinal quantizado

- Quantificação é o processo de representação de dados analógicos num conjunto finito de níveis.
 - O processo introduz uma distorção e perda de informação.
 - Pode ser uniforme (em que o passo de quantificação é constante) ou não uniforme.
 - Nos conversores A/D a quantificação é uniforme e o número de níveis está diretamente relacionado ao número de bits do conversor;

- O codificador é um circuito que converte os valores de tensão amostrados em valores correspondentes à escala disponível no conversor A/D;
 - Irá gerar o sinal digital em sua saída.

Conversor A/D por Aproximação Sucessivas

Inicialmente o circuito de controle coloca na entrada do conversor D/A um valor correspondente à metade do fundo de escala. Por exemplo: 1000.

A tensão gerada pelo DAC é, então, comparada com a tensão de entrada: se for maior, o valor binário é reduzido; se for menor, o valor é aumentado.

O aumento e a redução do valor binário é sempre tal que a mudança em volts corresponde à metade da mudança anterior.

Com esta estratégia, um conversor de *n* bits leva apenas *n* ciclos de relógio para realizar uma conversão completa.

- O ATmega328P possui um conversor A/D de aproximações sucessivas:
 - Resolução de 10 bits 1.024 níveis de quantização;
 - Precisão: +/- 2 LSB;
 - Taxa de amostragem máxima de 15 ksamples;
 - Conversão de temperatura interna;
 - Referência de tensão interna de 1,1 V selecionável;
 - 6 (DIP) ou 8 (QUAD) canais multiplexados;
 - Tensão de entrada de 0 a V_{cc};
 - Modo de conversão simples ou contínua;
 - Conversão em modo sleep para redução de ruído;
 - Interrupção por fim de conversão.

O ATmega328 possui um conversor A/D de aproximação sucessivas de 10 bits.

O mínimo valor representa o GND e o máximo representa a tensão no pino AREF menos 1 LSB.

Oito canais analógicos multiplexados permitem a conversão de sinais em referência ao 0 V (GND).

ONV

m

S

刀

O conversor possui um amostrador e retentor (sample and hold) que mantém a tensão constante durante a conversão.

A alimentação do conversor é realizada por um pino de alimentação especifico AVCC. A tensão não pode diferir mais que ±0.3 V de VCC.

O circuito do conversor A/D requer um sinal de relógio de entrada entre 50 kHz e 200 kHz para atuar em máxima resolução. Se a resolução necessário é menor que 10 bits, a frequência de entrada do sinal de relógio do conversor pode ser maior.

Sete divisões do relógio principal do sistema estão disponíveis para garantir a obtenção da frequência de funcionamento ideal do conversor A/D.

Uma conversão normal demora 13 ciclos de relógio do conversor para ser finalizada. A primeira conversão após a habilitação do conversor demora 25 ciclos pois é necessária uma rotina de inicialização.

Quando a conversão é finalziada, os resultado é escrito nos registradores de dados ADCH e ADCL e a flag do conversor é setada. Em modo conversão simples, o bit ADSC é limpo simultaneamente.

RESCALER

Os circuitos digitais dentro e fora do dispositivo geram interferência eletromagnética que pode afetar a precisão da conversão. Algumas técnicas de redução de interferência podem ser aplicadas.

1 – Faças as trilhas analógicas o mais curtas possível. Garanta que as trilhas analógicas corram ao longo do plano analógico e mantenha-as afastadas de trilhas digitais de alta frequência.

2 – O pino AVcc deve ser conectado ao pino Vcc através de um filtro LC.

LIMENTAÇÃ

- 3 Utilize o cancelador de ruídos do conversor A/D.
- 4 Se qualquer um dos pinos ADC[3:0] for utilizado como saída digital, eles não devem alterar de valor durante uma conversão. O uso da comunicação l²C durante a conversão não irá afetar os outros pinos (além de ADC[4:5].

REGISTRADORES

ADC MULTIPLEXER SELECTION REGISTER – ADMUX

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- Bits 7:6 REFS[1:0]: Reference Selection Bits;
 - Seleção da tensão de referência do conversor A/D. A referência interna não deve ser utilizada caso uma tensão externa esteja sendo aplicada no pino AREF.

REFS1	REFS0	Voltage Reference Selection
0	0	AREF, Internal V _{ref} turned off
0	1	AV _{CC} with external capacitor at AREF pin
1	0	Reserved
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin

- Bit 5 ADLAR: ADC Left Adjust Result;
 - Afeta a apresentação do resultado da conversão A/D nos registradores ADCH e ADCL. Quando setado, o resultado estará ajustado à esquerda. Mais informações serão apresentadas nos registradores ADCH e ADCL.

ADC MULTIPLEXER SELECTION REGISTER – ADMUX

Bit	7	6	5	4	3	2	1	0	_
(0x7C)	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

- Bits 3:0 MUX[3:0]: Analog Channel Selection Bits;
 - Seleção do canal analógico conectado ao ADC.

MUX30	Single Ended Input
0000	ADC0
0001	ADC1
0010	ADC2
0011	ADC3
0100	ADC4
0101	ADC5
0110	ADC6
0111	ADC7
1000	ADC8 ⁽¹⁾
1001	(reserved)
1010	(reserved)
1011	(reserved)
1100	(reserved)
1101	(reserved)
1110	1.1V (V _{BG})
1111	ov (GND)

ADC CONTROL AND STATUS REGISTER A – ADCSRA

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bits 7 ADEN: ADC Enable;
 - Energiza o conversor A/D. Desligar o conversor A/D durante uma conversão irá cancelar a conversão.
- Bit 6 ADSC: ADC Start Conversion;
 - No modo conversão simples, este bit deve ser setado para dar início a cada conversão. No modo automático, este bit deve ser setado para dar início a primeira conversão. O bit permanecerá em alto durante todo o período da conversão.
- Bit 5 ADATE: ADC Auto Trigger Enable;
 - Quando setado, configura o ADC para conversão em modo automático. Neste modo, o ADC irá iniciar uma conversão a cada borda da fonte de disparo (selecionável através do registrador ADCSRB).

ADC CONTROL AND STATUS REGISTER A – ADCSRA

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bits 4 ADIF: ADC Interrupt Flag;
 - A flag é setada automaticamente após cada conversão. A flag é limpa por hardware quando a interrupção é executada ou por software setando-a.
- Bit 3 ADIE: ADC Interrupt Enable;
 - o Habilita a interrupção de término de conversão.
- Bits 2:0 ADPS[2:0]: ADC Prescaler Select Bits;
 - Quando setado, configura o ADC para conversão em modo automático. Neste modo, o ADC irá iniciar uma conversão a cada borda da fonte de disparo (selecionável através do registrador ADCSRB).

ADC CONTROL AND STATUS REGISTER A – ADCSRA

Bit	7	6	5	4	3	2	1	0	_
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bits 2:0 – ADPS[2:0]: ADC Prescaler Select Bits;

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

ADC CONTROL AND STATUS REGISTER A – ADCSRB

Bit	7	6	5	4	3	2	1	0	_
(0x7B)	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	R/W	R	R	R	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bits 2:0 ADTS[2:0]: ADC Auto Trigger Source;
 - Se ADATE estiver setado em ADCSRA, o conversor irá iniciar uma conversão a cada borda de subida da *flag* de interrupção selecionada, conforme a tabela a seguir.

ADTS2	ADTS1	ADTS0	Trigger Source
0	0	0	Free Running mode
0	0	1	Analog Comparator
0	1	0	External Interrupt Request 0
0	1	1	Timer/Counter0 Compare Match A
1	0	0	Timer/Counter0 Overflow
1	0	1	Timer/Counter1 Compare Match B
1	1	0	Timer/Counter1 Overflow
1	1	1	Timer/Counter1 Capture Event

DIGITAL INPUT DISABLE REGISTER 0 – DIDR0

Bit	7	6	5	4	3	2	1	0	_
(0x7E)	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	DIDR0
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

- Bits 5:0 ADC[5:0]D: Digital Input Disable;
 - Quando o pino estiver configurado como entrada analógica, o circuito de buffer digital não é necessário e pode ser desligado para economizar energia. Quando o bit estiver setado, o registrador PIN estará desligado e será sempre lido como 0.

- As bibliotecas LS são formadas por três camadas de arquivos:
 - Arquivo de configurações do projeto;
 - Arquivo LS_defines.h, que deve ser modificado de acordo com as configurações de hardware do projeto em questão. Linhas devem ser comentadas e valores modificados, porém nada pode ser excluído do arquivo.
 - Arquivos de configuração de microcontrolador;
 - Arquivos H e C do microcontrolador. Contém as configurações dos registradores e dos periféricos do microcontrolador. Não deve ser alterado pelo usuário.
 - Arquivos de módulos externos;
 - Arquivos H e C de módulos específicos (LCD, teclado, etc.).
 Não deve ser alterado pelo usuário.

• Licença:

- As bibliotecas LS fazem parte de um projeto mantido pela R2R Tecnologia – Empresa Júnior. Empresa júnior do Departamento Acadêmico de Eletrônica do campus Florianópolis do IFSC.
- As bibliotecas LS podem ser utilizadas em projetos acadêmicos ou comerciais, contanto que não sejam modificadas. Se houver a necessidade de alteração das bibliotecas, entrar em contato com a R2R Tecnologia. Se utilizadas em projetos acadêmicos, devem ser citados e referenciados em relatórios, TCCs, monografias, dissertações, teses, artigos e outros documentos técnico-científicos.

LS_ATmega328.h / LS_ATmega328.c

- Download:
 - http://pastebin.com/GYE107Yc
 - http://pastebin.com/VcqvrBkw
- Definições de canais;

o ADC0 ADC1 ADC2

o ADC3 ADC4 ADC5

ADC6
 ADC7
 ADC_TEMPERATURE

ADC_INTERNAL
 ADC_GND

- Definições para a referência do ADC
 - ADC_INTERNAL_REFERENCE_VALUE_V
 - ADC_INTERNAL_REFERENCE_VALUE_MV

- Seleção de referência;
 - adcReferenceAref()
 - adcReferenceAvcc()
 - adcReferenceInternal()
- Seleção do prescaler;
 - adcClockPrescaler2()
 - adcClockPrescaler4()
 - adcClockPrescaler8()
 - adcClockPrescaler16()
 - adcClockPrescaler32()
 - adcClockPrescaler64()
 - adcClockPrescaler128()

- Modo automático;
 - adcEnableAutomaticMode()
 - adcDisableAutomaticMode()
- Fonte de trigger para o modo automático;
 - adcTriggerContinuous()
 - adcTriggerAnalogComparator()
 - adcTriggerInt0()
 - adcTriggerTimer0CompareMatchA()
 - adcTriggerTimer0Overflow()
 - adcTriggerTimer1CompareMatchB()
 - adcTriggerTimer1Overflow()
 - adcTriggerTimer1CaptureEvent()

- Apresentação do resultado;
 - adcResultLeftAdjust()
 - adcResultRightAdjust()
- Seleção do canal;
 - adcSelectChannel(adcChannel)
 - adcDisableDigitalInput0()
 - adcEnableDigitalInput0()
 - adcDisableDigitalInput1()
 - adcEnableDigitalInput1()
 - adcDisableDigitalInput2()
 - adcEnableDigitalInput2()
 - adcDisableDigitalInput3()
 - adcEnableDigitalInput3()

- adcDisableDigitalInput4()
- adcEnableDigitalInput4()
- adcDisableDigitalInput5()
- adcEnableDigitalInput5()
- Ativação;
 - o adcEnable()
 - adcDisable()
 - adcActivateInterrupt()
 - adcDeactivateInterrupt()
 - adcStartConversion()
 - adcClearInterruptRequest()

- Macrofunções;
 - adcWaitConversionFinish()
- Funções para mudança de contexto;
 - adcConfiguration_t adcGetConfiguration(void)
 - void adcLoadConfiguration(adcConfiguration_t config)

EXEMPLO

EXEMPLO

O hardware é formado pelo ATmega328P, por um LCD 16x2 (LM016L), um sensor de temperatura (LM35) e um botão (BUTTON).

O sistema inicia com uma splash screen do projeto. Na sequência a cada 15ms o conversor A/D inicia uma conversão. A temperatura deve ser mostrada no display com uma casa decimal, na escala Celsius ou na escala Fahrenheight.

Utilizar três pinos para teste da temporização do sistema.

Levantar:

- Duração da conversão;
- Tempo de escrita no LCD:
- 3. Tempo ocioso.

EXEMPLO

EXERCÍCIO

EXERCÍCIO

O hardware é formado pelo ATmega328P, por um LCD 16x2 (LM016L), um servomotor com encoder analógico acoplado (MOTOR-SERVO) e um potenciômetro (POT-HG).

O sistema inicia com uma *splash screen* do projeto. Na sequência o motor se move para acompanhar o movimento do potenciômetro. No LCD é apresentado o valor do ângulo do motor.

LEITURA RECOMENDADA

LEITURA RECOMENDADA

- Leitura obrigatória:
 - LIMA, VILLAÇA Cap 19;
- Leitura recomendada;
 - Datasheet Cap 24.

Aula 10 – Conversor Analógico/Digital

Leandro Schwarz