Ph.D. Qualifying Examination In Algebra January 2010

PROBLEM 1.

Prove that no finite field is algebraically closed.

PROBLEM 2.

Prove that $\ln u$ and $\sin u$ are transcendental over the field of rational numbers, whenever u is a positive algebraic real number.

PROBLEM 3.

Let **R** be a commutative ring and let I be a nontrivial ideal of **R**. Prove that $I = \langle a \rangle$ where a is not a zero divisor if and only if I, considered as a unitary left **R**-module, is free.

PROBLEM 4.

Let **G** and **H** be finite Abelian groups such that $\mathbf{G} \times \mathbf{G} \times \mathbf{H} \cong \mathbf{G} \times \mathbf{H} \times \mathbf{H}$. Prove that $\mathbf{G} \cong \mathbf{H}$.

PROBLEM 5.

Let G be a finite group such that any two elements that have prime power orders commute. Prove that G is Abelian.

PROBLEM 6.

Prove that every group of order $3^4 \cdot 7^3$ is solvable.

PROBLEM 7.

Let \mathbf{F} be a field and let \mathbf{R} be the subring of $\mathbf{F}[t]$ consisting of those polynomials with t-coefficient 0. Prove that \mathbf{R} has elements which are irreducible but not prime and that the ideal of \mathbf{R} consisting of those members of \mathbf{R} with constant term 0 is not a principal ideal. Prove that \mathbf{R} is a Noetherian ring. [Hint: Consider a connection between $\mathbf{F}[x,y]$ and \mathbf{R} .]

PROBLEM 8.

Is the polynomial $x^5 - 80x + 2$ solvable by radicals over \mathbb{Q} ? Be sure to justify your answer with a proof.

PROBLEM 9.

Find all the prime ideals of $\mathbb{Z}[x]$ that are minimal with respect to containing the polynomial

$$f(x) = 6(x-1)(x^3 + 3x - 2).$$

Also describe explicitly three distinct maximal ideals of $\mathbb{Z}[x]$, each containing at least two of the minimal prime ideals containing f(x).

PROBLEM 10.

Consider $\mathbb Q$ and $\mathbb Z$, under addition, as $\mathbb Z$ -modules. Then $\mathbb Q/\mathbb Z$ is also a $\mathbb Z$ -module. Suppose that $\mathbb N \leq \mathbb M$ are $\mathbb Z$ -modules and that $f:\mathbb N \to \mathbb Q/\mathbb Z$ is a homomorphism. Prove that f can be extended to a homomorphism $g:\mathbb M \to \mathbb Q/\mathbb Z$.

PROBLEM 11.

Let F, K, and L be fields so that K is a finite separable extension of F and L is a finite separable extension K. Prove that L is a finite separable extension of F.