You can't get the staff - an electronic alternative...

(an introduction to xia2)

Graeme Winter

Diamond Light Source

CCP4 Study Weekend 2012

Overview

- Background
- What is xia2?
- What does it do and how do I use it?
- What decisions does it make?
- Conclusions

Before we start...

- No MOSFLM¹, XDS², SCALA³, CCP4⁴
- \blacksquare \rightarrow no xia2
- No LABELIT⁵, CCTBX⁶, POINTLESS⁷, etc.
- $lue{}$ \rightarrow harder to write xia2, less reliable

⁷P. Evans, Acta Cryst. (2006) D62, 72-82

¹A.G.W. Leslie, Acta Cryst. (2006) D62, 48-57

²W. Kabsch, Acta Cryst. (2010) D66, 125-132

³P. Evans, Acta Cryst. (2006) D62, 72-82

⁴CCP4, Acta Cryst. (1994) D50, 760-763

⁵N.K. Sauter et al. J. Appl. Cryst. (2004) 37, 399-409

⁶R.W. Grosse-Kunstleve et al. J. Appl. Cryst. (2002) 35, 126-136 diamond

Acknowledgements

- Andrew Leslie, Harry Powell, Phil Evans, Wolfgang Kabsch, Kay Diederichs, Nick Sauter, Ralf Grosse-Kunstleve
- Alun Ashton, Dave Stuart, Diamond beamline staff, Miroslav Papiz, Steve Prince, Colin Nave, xia2 users, providers of test data (esp. JCSG)
- Funding from Diamond Light Source, BBSRC e-Science e-HTPX project, BioXHit

Background (2005)

- Comprehensive, trusted software available
- Background of strong publications (esp. CCP4 study weekends)
- Massive advances in computing
- New synchrotron for UK

Background (2005)

- Comprehensive, trusted software available
- Background of strong publications (esp. CCP4 study weekends)
- Massive advances in computing
- New synchrotron for UK
- lacksquare ightarrow a great time to develop automated data reduction

Background (2005)

- Comprehensive, trusted software available
- Background of strong publications (esp. CCP4 study weekends)
- Massive advances in computing
- New synchrotron for UK
- lacksquare ightarrow a great time to develop automated data reduction
- Also told that this is impossible and a waste of time

ightarrow HKLI σ_I

■ An *expert* system to perform diffraction data processing and analysis on *your* behalf using *your* software

- An *expert* system to perform diffraction data processing and analysis on *your* behalf using *your* software
- A system which can correctly handle multi-pass, multi-wavelength data sets

- An *expert* system to perform diffraction data processing and analysis on *your* behalf using *your* software
- A system which can correctly handle multi-pass, multi-wavelength data sets
- Not a data processing package

Why "you can't get the staff?"

- 12 datasets / hour possible
- Limited help
- Human endurance
- Intended xia2 as tool to delegate data processing to

Why "you can't get the staff?"

- 12 datasets / hour possible
- Limited help
- Human endurance
- Intended xia2 as tool to delegate data processing to

Why is this useful?

- Second opinion
- Allows you to focus on problem cases
- Help busy / novice users
- Provides access to other tools
- Reproducible processing

Using xia2

xia2 -2d /here/are/my/data - or -

xia2 - 3d /here/are/my/data

Command line

Command line


```
File Edit View Bookmarks Settings Help

# 02 22

Int call

# 12 28

Int call

# 22 20

Int call

Int ca
```


Not GUI

Options (1)

- -atom X tell xia2 to separate anomalous pairs i.e. $I(+) \neq I(-)$ in scaling
- -2d tell xia2 to use MOSFLM and SCALA
- -3d tell xia2 to use XDS and XSCALE
- -3dii tell xia2 to use XDS and XSCALE, indexing with peaks found from all images

■ Read all of the image headers then

- Read all of the image headers then
- Organise these into sweeps then

- Read all of the image headers then
- Organise these into sweeps then
- Organise these into wavelengths then

- Read all of the image headers then
- Organise these into sweeps then
- Organise these into wavelengths then
- Assign all of these wavelengths to a crystal

Understanding the experiment

- SWEEP: one "scan" basic unit of indexing / integration
- WAVELENGTH: container of SWEEPs
- WAVELENGTH: all H K L observations merged
- WAVELENGTH: CCP4 MTZ dataset
- CRYSTAL: contains WAVELENGTHs
- CRYSTAL: all data basic unit of scaling

What the program sees (automatic.xinfo)

BEGIN PROJECT AUTOMATIC BEGIN CRYSTAL DEFAULT BEGIN HA_INFO ATOM Ba END HA INFO BEGIN WAVELENGTH SAD WAVELENGTH 0.979500 END WAVELENGTH SAD BEGIN SWEEP SWEEP1 WAVELENGTH SAD DIRECTORY /dls/i02/data/2011/mx1234-5 IMAGE K5_M1S3_3_001.img START_END 1 450 END SWEEP SWEEP1 END CRYSTAL DEFAULT END PROJECT AUTOMATIC

Example: 3QRN⁸

- Data recorded at Diamond I02
- DNA / ligand complex
- Demonstrates:
 - Radiation damage
 - Heavy atom
 - Resolution limits
- Better sample used for deposition

Example: data

Example command line

xia2 -3d -atom Ba /dls/i02/data/...

Example results

High resolution limit	1.25	6.45	1.25
Low resolution limit	18.85	18.85	1.27
Completeness	95.2	60.1	70.2
Multiplicity	12.2	8.4	4.8
I/sigma	12.3	18.5	2.6
Rmerge	0.113	0.096	0.564
Rmeas(I)	0.129	0.118	0.633
Rmeas(I+/-)	0.121	0.105	0.679
Rpim(I)	0.034	0.038	0.267
Rpim(I+/-)	0.043	0.041	0.368
Wilson B factor	12.131		
Anomalous completeness	93.3	52.6	58.0
Anomalous multiplicity	6.4	5.0	2.0
Anomalous correlation	0.544	0.791	-0.297
Anomalous slope	1.085	0.000	0.000
Total observations	118588	529	1634
Total unique	9749	63	337

Development option - using AIMLESS

xia2 -3da ...

LogFiles/*aimless.log

What to do next?

- Edit automatic.xinfo
- Only process first 200 frames

Modify automatic.xinfo → modified.xinfo

BEGIN PROJECT AUTOMATIC BEGIN CRYSTAL DEFAULT BEGIN HA_INFO ATOM Ba END HA INFO BEGIN WAVELENGTH SAD WAVELENGTH 0.979500 END WAVELENGTH SAD BEGIN SWEEP SWEEP1 WAVELENGTH SAD DIRECTORY /dls/i02/data/2011/mx1234-5 IMAGE K5_M1S3_3_001.img START_END 1 200 ! THIS WAS 450 END SWEEP SWEEP1 END CRYSTAL DEFAULT END PROJECT AUTOMATIC

Running again

xia2 -3d -xinfo modified.xinfo

Example results II

High resolution limit	1.22	6.34	1.22
Low resolution limit	19.62	19.62	1.24
Completeness	86.9	49.1	37.8
Multiplicity	5.3	4.9	1.7
I/sigma	20.1	37.0	2.3
Rmerge	0.036	0.020	0.355
Rmeas(I)	0.060	0.038	0.448
Rmeas(I+/-)	0.043	0.023	0.491
Rpim(I)	0.023	0.014	0.297
Rpim(I+/-)	0.022	0.011	0.339
Wilson B factor	10.70		
Anomalous completeness	77.7	41.0	18.3
Anomalous multiplicity	2.7	3.5	0.5
Anomalous correlation	0.779	0.931	0.000
Anomalous slope	1.553	0.000	0.000
Total observations	50875	272	342
Total unique	9552	55	199

Resolution: much more in Lunchtime Bytes

- Data incomplete at high resolution
- Add RESOLUTION to xinfo file (in either SWEEP or WAVELENGTH
- Add -resolution to the command line

Output

- xia2.txt: everything you should read including program citations
- xia2-debug.txt: everything you probably shouldn't
- LogFiles: you should look at these
- DataFiles: MTZ + erzatz scalepack

Output

```
Autoindexing SWEEP1
All possible indexing solutions:
   57.60 57.60 149.51 90.00 90.00
                                    90.00
tΡ
   81.45 81.46 149.51 90.00 90.00
                                     90.00
oС
   57.59 57.60 149.50 90.00 90.00
                                     90.00
oΡ
mC
   81.46 81.45 149.50 90.00 89.95
                                    90.00
mΡ
   57.60 57.59 149.53 90.00
                             89.93
                                    90.00
   57.59 57.61 149.52 89.93
aР
                              89.99
                                     89.99
Indexing solution:
tP 57.60 57.60 149.51
                       90.00
                              90.00
                                     90.00
```


Output

----- Integrating SWEEP1 -----

Processed batches 1 to 450 Weighted RMSD: 0.26 (0.09)

Integration status per image (60/record):

"@" => abandoned

Mosaic spread: 0.140 < 0.189 < 0.290

Options (2)

- -xinfo modified.xinfo use specific input file
- -image /path/to/an/image.img process specific scan
- -spacegroup spacegroup_name set the spacegroup, e.g. P21
- \blacksquare -cell a,b,c, α , β , γ set the cell constants
- -small_molecule don't run things like TRUNCATE

What did it do? and why?

- Initial indexing with LABELIT from 3 images⁹
- Refine results with XDS indexing
- Use data based on general analysis @ 0, 45, 90 degrees

Integration

- Integrate with lattice constraints applied
- Integrate to corners of detector
- If good reason, repeat integration e.g. with results of postrefinement
- Perform postrefinement in P1, assumed lattice may reject lattice, feed back to indexing
- At the end of this we have LATTICE
- If XDS, includes iterative elimination of outliers in CORRECT step

Scaling

- Compare results of pointless with remaining allowed lattices:
 - If agree, proceed
 - If lattice not allowed, consider next solution
 - If solution lower symmetry than lattice, reject and return to indexing
- Ensure conclusions consistent
- Now have corrrect LAUE GROUP
- Ensure consistent setting / origin choice
- Place data into data collection order
- Analyse absences to decide likely SPACE GROUPs
- Decide scaling model¹⁰

¹⁰For XDS use not corrections in CORRECT, apply all corrections in XSCALE 500

Merging and analysis

- If using XDS for integration and XSCALE for scaling, data still merged with SCALA / AIMLESS
- Resolution limits calculated from the intensities, not program output
- "Downstream" analysis (e.g. TRUNCATE and SFCHECK) identical

Merging and analysis

- If using XDS for integration and XSCALE for scaling, data still merged with SCALA / AIMLESS
- Resolution limits calculated from the intensities, not program output
- "Downstream" analysis (e.g. TRUNCATE and SFCHECK) identical
- Working on scaling data direct from XDS with AIMLESS

Decision making

Decisions: Indexing - LABELIT

Sol	ution	Metric fit	rmsd	#spots	crystal_syst	tem	unit_c	ell
:)	9	0.2097 dg 0	.327	533	tetragonal	tΡ	42.32	42.3
:)	8	0.2097 dg 0	.364	541	${\tt orthorhombic}$	οP	39.29	42.2
:)	7	0.2097 dg 0	.300	519	monoclinic	mP	39.26	42.3
:)	6	0.1950 dg 0	.299	523	monoclinic	mP	39.26	42.3
:)	5	0.1307 dg 0	.411	523	${\tt orthorhombic}$	oC	59.71	59.9
:)	4	0.1307 dg 0	.412	524	monoclinic	mC	59.91	59.7
:)	3	0.0937 dg 0	.429	524	monoclinic	mC	59.71	59.9
:)	2	0.1010 dg 0	.298	512	monoclinic	mP	42.27	39.3
:)	1	0.0000 dg 0	.291	509	triclinic	аP	39.31	42.2

Decisions: Indexing - IDXREF

*	31	aP	0.0	39.1	42.1	42.1	90.0	90.
*	44	aP	0.1	39.1	42.1	42.1	90.0	90.
*	34	mP	0.7	39.1	42.1	42.1	90.0	90.
*	20	mC	0.7	59.6	59.6	39.1	90.1	90.
*	33	mP	0.8	39.1	42.1	42.1	90.0	90.
*	25	mC	0.9	59.6	59.6	39.1	89.9	90.
*	35	mP	1.7	42.1	39.1	42.1	90.0	90.
*	23	oC	1.7	59.6	59.6	39.1	89.9	90.
*	32	oP	1.8	39.1	42.1	42.1	90.0	90.
*	21	tP	1.9	42.1	42.1	39.1	90.0	90.
	10	mC	79.5	57.5	57.4	42.1	90.0	90.
	13	oC	79.9	57.4	57.5	42.1	90.0	90.
	14	mC	79.9	57.4	57.5	42.1	90.0	90.
	14	шС	19.9	51.4	51.5	42.1	90.0	

Decisions: Testing lattice choice

- Perform postrefinement (MOSFLM and XDS) in P1 and putative lattice
- Compare R.M.S. deviation of observed / predicted centres
- lue Results comparable ightarrow lattice probably OK
- Results worse with lattice constraints → lattice probably wrong

Decisions: Testing lattice choice 1

```
REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS
USING 27389 INDEXED SPOTS
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.28
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.23
```

. . .

UNIT CELL PARAMETERS 42.180 42.183 39.236 90.002 89 E.S.D. OF CELL PARAMETERS 1.8E-02 4.3E-02 1.5E-02 1.4E-02 1.0E SPACE GROUP NUMBER 1

Decisions: Testing lattice choice 2

```
REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS USING 27378 INDEXED SPOTS
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.29
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.23
```

. . .

UNIT CELL PARAMETERS 42.187 42.187 39.242 90.000 90 E.S.D. OF CELL PARAMETERS 1.6E-02 1.6E-02 1.2E-02 0.0E+00 0.0E SPACE GROUP NUMBER 75

Decisions: Lattice observations

- Selecting lattice from indexing safe, as tested and challenged
- However strong argument for performing all processing in P1:
 - Processing only performed once
 - Incorrect constraints cannot break things
 - Results generally comparable
- This is on the to-do list...

Resolution limits - default criteria

- Merged $\frac{I}{\sigma_I} > 2$
- Unmerged $\frac{I}{\sigma_I} > 1$
- Control with -misigma, -isigma

Resolution limits - why unmerged $\frac{I}{\sigma_I} > 1$?

Following talks yesterday, this needs revising perhaps?

Which options work best?

- It depends ...
- ... try for yourself!

Which options work best?

- It depends ...
- ... try for yourself!
- Sometimes -2d (MOSFLM / SCALA) works better, sometimes -3d (XDS etc.)

Which options work best?

- It depends ...
- ... try for yourself!
- Sometimes -2d (MOSFLM / SCALA) works better, sometimes -3d (XDS etc.)
- Run both compare results, make up your own mind

Which options work best?

- It depends ...
- ... try for yourself!
- Sometimes -2d (MOSFLM / SCALA) works better, sometimes -3d (XDS etc.)
- Run both compare results, make up your own mind
- Hint for small molecule: -3dii -small_molecule

Which options work best?

- It depends ...
- ... try for yourself!
- Sometimes -2d (MOSFLM / SCALA) works better, sometimes -3d (XDS etc.)
- Run both compare results, make up your own mind
- Hint for small molecule: -3dii -small_molecule
- $lue{}$ -3d often works better for very fine ϕ sliced Pilatus data

Conclusions

- System available which can reduce your data on your behalf
- Relies on your software: MOSFLM / LABELIT / CCP4 / XDS
- Handles complex strategies so use them
- Works on Windows / OS X / Linux / laptop / workstation / cluster

Conclusions

- Best way to learn data reduction is to teach it
- Computer is very dim but diligent pupil
- Have a go yourself, or feel free to contribute to xia2

Getting xia2

■ Blog: xia2.blogspot.com

■ Code: xia2.sf.net

■ List: xia2-list@lists.sourceforge.net

Thank you for your attention

Spare slides

Indexing

Indexing

Indexing

Scaling

Scaling

Scaling

