MIMF Lecture Week 2, Day 3: Orthonormality, Types of Matrices, Linear Functionals, Riesz Representation Theorem

Fall Semester 2025

Nicholas Harsell

James Madison University Department of Mathematics

Orthonormality

Definition: A set of vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_m\} \subset \mathbb{R}^n$ is *orthonormal* if

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Example: Check whether $\{(1,0,1), (1,1,0), (0,1,1)\}$ is orthonormal.

$$\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \underline{\hspace{1cm}}.$$

$$\langle \mathbf{v}_1, \mathbf{v}_3 \rangle = \underline{\hspace{1cm}}.$$

$$\|\mathbf{v}_1\| = \underline{\hspace{1cm}}.$$

So the set (is / is not) orthonormal.

Applications:

• Quant finance: Principal component analysis (PCA) of covariance matrices uses orthonormal eigenvectors to identify uncorrelated risk factors.

• Physics: Quantum states form orthonormal bases in Hilbert spaces.

• CS / ML: Feature orthogonalization improves model interpretability.

Types of Matrices

Definitions:

• A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ is symmetric if _____.

• A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is Hermitian/self-adjoint if _____.

• A matrix $A \in M_{m \times n}(\mathbb{R})$ is orthogonal if ______.

• A matrix $U \in \mathcal{M}_{m \times n}(\mathbb{F})$ is unitary if ______.

• A matrix $U \in M_{m \times n}(\mathbb{F})$ is normal if ______.

• A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is positive semi-definite if:

1) _____ for all $\mathbf{x} \in \mathbb{F}^n$; and,

2) A is Hermitian/self-adjoint.

What we care about: A positive semi-definite matrix has all _____eigenvalues.

• A matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is positive definite if:

1) _____ for all $\mathbf{x} \in \mathbb{F}^n$; and,

2) A is Hermitian/self-adjoint.

A positive definite matrix has all ______ eigenvalues.

Examples:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

 \bullet A is Hermitian: _____

ullet A has non-negative eigenvalues:
ullet A is Positive semi-definite:
\bullet B is hermitian:
ullet B is Positive semi-definite:
\bullet C: Left as an exercise to the reader :)
Applications:
• Quant finance: Covariance matrices (symmetric, PSD) underpin portfolio risk modeling.
• Physics: Hermitian operators correspond to observables with real eigenvalues.
• CS: Orthogonal/unitary matrices are used in QR decomposition and FFTs.
Linear Functionals and Riesz Representation
Definition: A linear functional is a linear map $L: ___$

\mathbf{L}^{2}

 \mathbf{D} In English: A linear functional takes in something from a vector space and outputs a scalar in its underlying field.

Applications:

- Quant finance: Portfolio valuation and risk measures are linear functionals of asset payoffs. They take in vectors of information and output scalar risk measures.
- Physics: Fourier expansions use Riesz to represent functionals.
- CS: Duality in optimization and kernel methods rely on linear functionals.

Riesz Representation Theorem (RRT): Every linear functional L on \mathbb{F}^n can be written as

$$L(\mathbf{x}) = \underline{\qquad}$$
 for a unique $\mathbf{y} \in \mathbb{F}^n$.

In english: there exists a vector $\mathbf{y} \in \mathbb{F}^n$ such that the linear functional on \mathbf{x} , $L(\mathbf{x})$, can be written as the inner product of \mathbf{x} with \mathbf{y} .

Example:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad L(\mathbf{x}) = 2x_1 - 3x_2 + 5x_3$$

Answer: $\mathbf{y} = \underline{\hspace{1cm}}$

Test:

$$\mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 7 \end{bmatrix} \qquad L(\mathbf{x}) = \underline{\qquad}.$$

$$\mathbf{y} = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix} \qquad \langle \mathbf{x}, \mathbf{y} \rangle = \underline{\qquad}.$$

What vector space does L pull from? _____