1 Question 1

[10 marks] Suppose you have a splay tree with keys $1 \dots n$ and you access the keys sequentially, i.e. you search for $1, 2, \dots, n$, in that order, performing a splay on each one.

a) [2 marks] What is the structure of the final splay tree? Justify your answer.

Answer: We will define potential to be the number of elements in the array. Thus, when the array has k elements, $\Phi = k$. This guarantees that $\Phi_i \geq 0$ for all i, confirming that it is a valid potential. Furthermore, we see that this allows the initial potential to be $\Phi_0 = 0$ as initially, we start off with an empty array.

b) Prove that the final potential is \geq initial potential.

Answer: Initially, we start off with an empty array - there are 0 elements in the array. Thus, the initial potential is 0. The number of elements stored in the array can only ever be a non-negative number. Thus, the final array contains at least 0 elements, and so the final potential is at least 0, which means it's at least the initial potential.

c) Conclude that the amortized cost of each operation is O(1).

Answer: In class, we were given the following theorem:

Theorem 1 If final potential \geq initial potential, then amortized cost \leq max charge.

From part b), we know that final potential \geq initial potential. Thus, we can apply this theorem to the two operations.

For the add operation, we are given the constant charge = 2. Thus, by the theorem, we know that amortized cost ≤ 2 . Since 2 is a constant, we know that amortized cost $\in O(1)$.

For the empty operation, we are given the constant charge = 1. Thus, by the theorem, we know that amortized cost ≤ 1 . Since 1 is a constant, we know that amortized cost $\in O(1)$.