Paper review

Ensembling and Knowledge Distilling of Large Sequence Taggers for Grammatical Error Correction (ACL 2022)

Presentation: **Jeiyoon Park** 6th Generation, TAVE

Outline

- 1. Contribution
- 2. Method
- 3. Experiments
- 4. Conclusion

Outline

- 1. Contribution
- 2. Method
- 3. Experiments
- 4. Conclusion

1. Grammatical Error Correction (GEC)

24. 다음 글의 밑줄 친 부분 중, 어법상 틀린 것은? [3점]

In some communities, music and performance have successfully transformed whole neighborhoods as ① profoundly as The Guggenheim Museum did in Bilbao. In Salvador, Brazil, musician Carlinhos Brown established several music and culture centers in formerly dangerous neighborhoods. In Candeal, 2 where Brown was born, local kids were encouraged to join drum groups, sing, and stage performances. The kids, energized by these activities, 3 began to turn away from dealing drugs. Being a young criminal was no longer their only life option. Being musicians and playing together in a group looked like more fun and was more @ satisfying. Little by little, the crime rate dropped in those neighborhoods; the hope returned. In another slum area, possibly inspired by Brown's example, a culture center began to encourage the local kids to stage musical events, some of 5 them dramatized the tragedy that they were still recovering from.

1. Grammatical Error Correction (GEC)

- 1) GEC is the task of fixing grammatical errors in text, such as typos, tense and article mistakes
- 2) Training a model for GEC requires a set of labeled (ungrammatical / grammatical) sentence pairs, which are expensive to obtain

Iteration #	Sentence's evolution	# corr.
Orig. sent	A ten years old boy go school	-
Iteration 1	A ten-years old boy goes school	2
Iteration 2	A ten-year-old boy goes to school	5
Iteration 3	A ten-year-old boy goes to school.	6

2. Challenges

- 1) Due to the unrestricted mutability of language, it is hard to design a model that is capable of correcting all possible errors made by non-native learners, especially when error patterns in new text are not observed in training data.
- 2) Unlike machine translation, a large amount of annotated ungrammatical texts and their corrected counterparts are not available.
- 3) The artificially generated data cannot precisely capture the error distribution in real erroneous data.
- e.g.) We don't use "a am I boy" ("I am a boy")

2. Challenges

1) Due to the unrestricted mutability of language, it is hard to design a model that is capable of correcting all possible errors made by non-native learners, especially when

error patterns in new text are not observed in training data.

- 2) Unlike machine translation, a large amount of annotated ungrammatical texts and their corrected counterparts are not available.
- 3) The artificially generated data cannot precisely capture the error distribution in real erroneous data.
 - e.g.) We don't use "a am I boy" ("I am a boy")

Contribution: Why This paper

- 1. Ensembling of recent cutting-edge transformer-based models
- 2. Knowledge distillation method to produce annotated data
- 3. When trained on the distilled data, GEC models show competitive performance
- 4. Code and datasets are available

Outline

- 1. Contribution
- 2. Method
- 3. Experiments
- 4. Conclusion

1. Overview

- (1) GECToR?: Sequence tagging model using transformer encoder
- GECToR approaches the GEC task as a sequence tagging problem
- (2) Model architecture
- Transformer-based encoder
- Two output linear layers
- A cross-entropy loss function
- Iterative postprocessing is performed

Iteration #	Sentence's evolution	# corr.
Orig. sent	A ten years old boy go school	-
Iteration 1	A ten-years old boy goes school	2
Iteration 2	A ten-year-old boy goes to school	5
Iteration 3	A ten-year-old boy goes to school.	6

2. Token-level transformations

- (1) Basic transformations
- \$KEEP
- \$DELETE
- \$APPEND
- \$REPLACE
- (2) g-transformations
- \$CASE: Change the case of the current token

id	Core transformation	Transformation suffix	Tag	Example
basic-1	KEEP	Ø	\$KEEP	many people want to travel during the summer
basic-2	DELETE	Ø	\$DELETE	not sure if you are $\{\mathbf{vou} \Rightarrow \varnothing\}$ gifting
basic-3	REPLACE	a	\$REPLACE_a	the bride wears $\{the \Rightarrow a\}$ white dress
basic-3804	REPLACE	cause	\$REPLACE_cause	hope it does not {make ⇒ cause} any trouble
basic-3805	APPEND	for	\$APPEND_for	he is {waiting ⇒ waiting for} your reply
basic-4971	APPEND	know	\$APPEND_know	I $\{don't \Rightarrow don't \ know\}$ which to choose
g-1	CASE	CAPITAL	\$CASE_CAPITAL	\dots surveillance is on the {internet \Rightarrow Internet} \dots
g-2	CASE	CAPITAL_1	\$CASE_CAPITAL_1	I want to buy an $\{iphone \Rightarrow iPhone\}$
g-3	CASE	LOWER	\$CASE_LOWER	\dots advancement in {Medical \Rightarrow medical} technology \dots
g-4	CASE	UPPER	\$CASE_UPPER	the $\{it \Rightarrow IT\}$ department is concerned that
g-5	MERGE	SPACE	\$MERGE_SPACE	insert a special kind of gene {in to ⇒ into} the cell
g-6	MERGE	HYPHEN	\$MERGE_HYPHEN	and needs $\{in \ depth \Rightarrow in \ depth\}$ search
g-7	SPLIT	HYPHEN	\$SPLIT_HYPHEN	\dots support us for a {long-run \Rightarrow long run} \dots
g-8	NOUN_NUMBER	SINGULAR	\$NOUN_NUMBER_SINGULAR	a place to live for their {citizen ⇒ citizens}
g-9	NOUN_NUMBER	PLURAL	\$NOUN_NUMBER_PLURAL	\dots carrier of this $\{diseases \Rightarrow disease\} \dots$
g-10	VERB FORM	VB_VBZ	\$VERB_FORM_VB_VBZ	going through this $\{make \Rightarrow makes\}$ me feel
g-11	VERB FORM	VB_VBN	\$VERB_FORM_VB_VBN	to discuss what $\{happen \Rightarrow happened\}$ in fall
g-12	VERB FORM	VB_VBD	\$VERB_FORM_VB_VBD	she sighed and $\{draw \Rightarrow drew\}$ her
g-13	VERB FORM	VB_VBG	\$VERB_FORM_VB_VBG	shown success in {prevent ⇒ preventing} such
g-14	VERB FORM	VB_VBZ	\$VERB_FORM_VB_VBZ	\ldots a small percentage of people $\{goes \Rightarrow go\}$ by bike \ldots
g-15	VERB FORM	VBZ_VBN	\$VERB_FORM_VBZ_VBN	development has {pushes ⇒ pushed} countries to
g-16	VERB FORM	VBZ_VBD	\$VERB_FORM_VBZ_VBD	he {drinks ⇒ drank} a lot of beer last night
g-17	VERB FORM	VBZ_VBG	\$VERB_FORM_VBZ_VBG	\dots couldn't stop {thinks \Rightarrow thinking} about it \dots
g-18	VERB FORM	VBN_VB	\$VERB_FORM_VBN_VB	\ldots going to {depended \Rightarrow depend} on who is hiring \ldots
g-19	VERB FORM	VBN_VBZ	\$VERB_FORM_VBN_VBZ	yet he goes and {eaten ⇒ eats} more melons
g-20	VERB FORM	VBN_VBD	\$VERB_FORM_VBN_VBD	he $\{driven \Rightarrow drove\}$ to the bus stop and
g-21	VERB FORM	VBN_VBG	\$VERB_FORM_VBN_VBG	\ldots don't want you fainting and $\{broken \Rightarrow breaking\} \ldots$
g-22	VERB FORM	VBD_VB	\$VERB_FORM_VBD_VB	each of these items will $\{fell \Rightarrow fall\}$ in price
g-23	VERB FORM	VBD_VBZ	\$VERB_FORM_VBD_VBZ	the lake $\{froze \Rightarrow freezes\}$ every year
g-24	VERB FORM	VBD_VBN	\$VERB_FORM_VBD_VBN	he has been went $\{\mathbf{went} \Rightarrow \mathbf{gone}\}\$ since last week
g-25	VERB FORM	VBD_VBG	\$VERB_FORM_VBD_VBG	talked her into $\{gave \Rightarrow giving\}$ me the whole day
g-26	VERB FORM	VBG_VB	\$VERB_FORM_VBG_VB	free time, I just $\{enjoying \Rightarrow enjoy\}$ being outdoors
g-27	VERB FORM	VBG_VBZ	\$VERB_FORM_VBG_VBZ	there still $\{existing \Rightarrow exists\}$ many inevitable factors
g-28	VERB FORM	VBG_VBN	\$VERB_FORM_VBG_VBN	people are afraid of being {tracking ⇒ tracked}
g-29	VERB FORM	VBG_VBD	\$VERB_FORM_VBG_VBD	there was no $\{$ mistook \Rightarrow mistaking $\}$ his sincerity

Table 9: List of token-level transformations (section 3). We denote a tag which defines a token-level transformation as concatenation of two parts: a *core transformation* and a *transformation suffix*.

- \$MERGE: Merge the current token and the next token into a single one
- \$SPLIT: Split the current token into two new tokens
- \$NOUN NUMBER
- \$VERB FORM

2. Token-level transformations

(3) Preprocessing

Step 1) Map each token from source sentence to subsequence of tokens from target sentence:

```
[A \mapsto A], [ten \mapsto ten, -], [years \mapsto year, -], [old \mapsto old], [go \mapsto goes, to], [school \mapsto school, .]
```


- GECToR searches for best-fitting subsequence by minimizing Levenshtein distance (e.g. "process" \rightarrow "profess" \rightarrow "professo" \rightarrow "professor": Three Levenshtein dist.)

2. Token-level transformations

(3) Preprocessing

Step 2) Find token-level transformations which convert source to target subsequence:


```
[A \mapsto A]: $KEEP, [ten \mapsto ten, -]: $KEEP, $MERGE_HYPHEN,

[years \mapsto year, -]: $NOUN_NUMBER_SINGULAR, $MERGE_HYPHEN],

[old \mapsto old]: $KEEP, [go \mapsto goes, to]: $VERB_FORM_VB_VBZ, $AP-PEND_to,

[school \mapsto school, .]: $KEEP, $AP-PEND_{.}].
```

2. Token-level transformations

(3) Preprocessing

Step 3) Leave only one transformation for each Source token:

```
A ⇔ $KEEP,

ten ⇔ $MERGE_HYPHEN,

years ⇔ $NOUN_NUMBER_SINGULAR,

old ⇔ $KEEP,

school ⇔ $APPEND_{{.}}.
```

- A single tag for each token
- In case of multiple transformations GECToR takes the first transformation, except \$KEEP.

Iteration #	Sentence's evolution	# corr.
Orig. sent	A ten years old boy go school	-
Iteration 1	A ten-years old boy goes school	2
Iteration 2	A ten-year-old boy goes to school	5
Iteration 3	A ten-year-old boy goes to school.	6

3. Tagging model architecture

- (1) An encoder made up of pretrained transformer
- (2) With two linear layers
- Error detection linear layer
- Error correction (a.k.a., error tagging) linear layer
- (3) Softmax layers

```
A ⇔ $KEEP,

ten ⇔ $MERGE_HYPHEN,

years ⇔ $NOUN_NUMBER_SINGULAR,

old ⇔ $KEEP,

school ⇔ $APPEND_{.}.
```


Outline

- 1. Contribution
- 2. Method
- 3. Experiments
- 4. Conclusion

1. Datasets

- Annotated data:
 - Lang-8
 - NUCLE
 - FCE
 - W&I
- Monolingual data, Distilled data:
 - 1BW
 - Blogs
 - starts with "Troy-"
- Synthetic data:
 - PIE (9M parallel sentences)

Dataset	Type	Part	# Sent.	# Tokens	% Edits
Lang-8*	Ann	Train*	1.04M	11.86M	42%
NUCLE*	Ann	Train*	57k	1.16M	62%
FCE*	Ann	Train*	28k	455k	62%
		Train*	34.3k	628.7k	67%
W&I*†	Ann	Dev	3.4k	63.9k	69%
		Test [†]	3.5k	62.5k	N/A
LOCNESS [†]	Ann	Dev	1k	23.1k	52%
		Test [†]	1k	23.1k	N/A
1BW [‡]	Mon	N/A	115M	0.8B	N/A
Blogs [‡]	Mon	N/A	13.5M	171M	N/A
Troy-1BW	Dis	Train	1.2M	30.88M	100%
Troy-Blogs	Dis	Train	1.2M	21.49M	100%
PIE [‡]	Syn	Train	1.2M	30.1M	100%

Table 1: Description and statistics of datasets used in this work. Dataset types: (Ann)otated, (Syn)thetic, (Mon)olingual, and (Dis)tilled. *Combined, these datasets form the *Joint Train Dataset*. †BEA-2019 dev/test parts are concatenations of W&I and LOCNESS dev/test parts. ‡Only parts of the original corpora from the cited sources are used in our work.

Dataset	# sentences	% errorful sentences	Training stage
PIE-synthetic	9,000,000	100.0%	I
Lang-8	947,344	52.5%	II
NUCLE	56,958	38.0%	II
FCE	34,490	62.4%	II
W&I+LOCNESS	34,304	67.3%	II, III

Table 1: Training datasets. Training stage I is pretraining on synthetic data. Training stages II and III are for fine-tuning.

2. Evaluation

- ERRANT
 - $F_{0.5}$, precision, recall
- On dev and test datasets from W&I + LOCNESS Corpus

3. Tokenization

- AllenNLP's → Too slow
- HuggingFace Transformers' → Not provide a BPE-to-words mapping
- SentencePiece

Dataset	# sentences	% errorful sentences	Training stage
PIE-synthetic	9,000,000	100.0%	I
Lang-8	947,344	52.5%	II
NUCLE	56,958	38.0%	II
FCE	34,490	62.4%	II
W&I+LOCNESS	34,304	67.3%	II, III

Table 1: Training datasets. Training stage I is pretraining on synthetic data. Training stages II and III are for fine-tuning.

- 4. Training stages
 - 1) Stage I (optional): The model is pretrained on synthetic datasets
 - 2) StageII: Carry out warm-up training on the Joint Train Dataset (Lang-8 + NUCLE +

FCE + W&I)

- 3) StageIII: Fine-tuning on the W&I dataset
- During the first two epochs they train only the linear layers (so-called "cold epochs"); later make all model's weights trainable
- Too many sentences without edits lead to reducing the appearance rate of the tagger
- StageII: Filter out edit-free sentences
- StageIII: Unfiltered version of W&I

Dataset	Type	Part	# Sent.	# Tokens	% Edits
Lang-8*	Ann	Train*	1.04M	11.86M	42%
NUCLE*	Ann	Train*	57k	1.16M	62%
FCE*	Ann	Train*	28k	455k	62%
		Train*	34.3k	628.7k	67%
W&I ^{⋆†}	Ann	Dev	3.4k	63.9k	69%
		Test [†]	3.5k	62.5k	N/A
LOCNESS [†]	Ann	Dev	1k	23.1k	52%
		Test [†]	1k	23.1k	N/A
1BW [‡]	Mon	N/A	115M	0.8B	N/A
Blogs [‡]	Mon	N/A	13.5M	171M	N/A
Troy-1BW	Dis	Train	1.2M	30.88M	100%
Troy-Blogs	Dis	Train	1.2M	21.49M	100%
PIE [‡]	Syn	Train	1.2M	30.1M	100%

Table 1: Description and statistics of datasets used in this work. Dataset types: (Ann)otated, (Syn)thetic, (Mon)olingual, and (Dis)tilled. *Combined, these datasets form the *Joint Train Dataset*. †BEA-2019 dev/test parts are concatenations of W&I and LOCNESS dev/test parts. ‡Only parts of the original corpora from the cited sources are used in our work.

4. Training stages

- 1) Stage I (optional): The model is pretrained on synthetic datasets
- 2) StageII: Carry out warm-up training on the *Joint Train Dataset* (Lang-8 + NUCLE + FCE + W&I)
- 3) StageIII: Fine-tuning on the W&I dataset
- Inference tweaks: Introducing additional hyperparameters for balancing between the precision and recall (Additional confidence to the probability for the \$KEEP tag and minimum error probability for correction tags)

Training	Base			Large		
stage #	P	R	$\mathbf{F_{0.5}}$	P	R	$\mathbf{F_{0.5}}$
Stage I.	N/A	N/A	N/A	N/A	N/A	N/A
Stage II.	50.12	34.04	45.79	52.11	37.34	48.29
Stage III.	53.77	39.23	50.06	54.85	42.54	51.85
Inf. tweaks	62.49	32.26	52.63	65.76	33.86	55.33

Table 2: Performance of our system with a RoBERTa encoder (in Base and Large configurations) after each training stage and inference tweaks on BEA-2019 (dev). Pre-training on synthetic data (Stage I) as was done in (Omelianchuk et al., 2020) is not performed.

5. Upgrading to Large encoders

- Most likely, Base configurations were chosen due to the better inference speed/quality ratio.
- XLNet, RoBERTa, and BERT show best performance

	Base			Large		
P	R	$\mathbf{F_{0.5}}$	P	R	$\mathbf{F_{0.5}}$	
57.21	29.93	48.39	61.18	31.26	51.35	
64.22	31.87	53.38	66.35	32.77	55.07	
62.49	32.26	52.63	65.76	33.86	55.33	
63.16	30.59	52.07	64.27	35.17	55.14	
	64.22 62.49	57.21 29.93 64.22 31.87 62.49 32.26	57.21 29.93 48.39 64.22 31.87 53.38 62.49 32.26 52.63	57.21 29.93 48.39 61.18 64.22 31.87 53.38 66.35 62.49 32.26 52.63 65.76	57.21 29.93 48.39 61.18 31.26 64.22 31.87 53.38 66.35 32.77 62.49 32.26 52.63 65.76 33.86	

Table 3: Performance of our single system on BEA-2019 (dev) for different encoders from pretrained Transformers in Base and Large configurations.

Encoder	Time (s	sec)	# Params		
Encoder	Base	Large	Base	Large	
BERT	19.28	49.17	120M	350M	
DeBERTa	23.75	58.32	150M	410M	
RoBERTa	19.05	45.66	129M	360M	
XLNet	30.46	71.19	120M	345M	

Table 4: Inference times and model sizes for our single tagging models. Inference time for NVIDIA Tesla P100 on BEA-2019 dev, single models, batch size=128, averaged over 5 inferences.

6. Exploring tag vocabulary sizes

- Most of the tag-encoded edits are token-specific (e.g., \$APPEND it, and \$REPLACE the)
- Thus, the tag vocabulary size matters

Encoder	P	\mathbf{R}	$\mathbf{F_{0.5}}$
$DeBERTa_{5K}^{(L)}$	66.35	32.77	55.07
$RoBERTa_{5K}^{(L)}$	65.76	33.86	55.33
$XLNet_{5K}^{(L)}$	64.27	35.17	55.14
$\mathrm{DeBERTa}_{10K}^{(L)}$	65.46	34.59	55.55
$RoBERTa_{10K}^{(L)}$	64.72	36.04	55.83
$XLNet_{10K}^{(L)}$	64.12	34.02	54.48

Encoder Base Large Base **BERT** 19.28 49.17 120M 23.75 58.32 150M **DeBERTa** RoBERTa 19.05 45.66 129M XLNet 30.46 71.19 120M

Time (sec)

Table 5: Performance on BEA-2019 (dev) for varied tag vocabulary sizes and encoders in their (L)arge configurations. Subscripts encode the models' tag vocabulary sizes from the set (5K, 10K).

Table 4: Inference times and model sizes for our single tagging models. Inference time for NVIDIA Tesla P100 on BEA-2019 dev, single models, batch size=128, averaged over 5 inferences.

Params

Large

350M

410M

360M

345M

7. Ensembling the GEC taggers

- (1) Averaging of output tag probabilities vs. (2) majority votes on output edit spans

Ensembling by averaging of output tag probabilities

Ensembling by majority votes on output edit spans

7. Ensembling the GEC taggers

- (1) Averaging of output tag probabilities vs. (2) majority votes on output edit spans

•	Ensemble	P	R	$\mathbf{F_{0.5}}$
	$RoBERTa^{(B)} + DeBERTa^{(B)}$	53.44	34.91	48.31
	$RoBERTa^{(B)} + XLNet^{(B)}$	53.45	34.3	48.08
(B)	$RoBERTa^{(B)} + DeBERTa^{(B)} + XLNet^{(B)}$	54.78	34.87	49.17
	$RoBERTa^{(B)} + BERT^{(B)} + DeBERTa^{(B)} +$			
	+ XLNet ^(B)	56.34	33.76	49.69
	$RoBERTa^{(B)}$	50.12	34.04	45.79
(B+L)	$RoBERTa^{(L)}$	52.11	37.34	48.29
,	$RoBERTa^{(B)} + RoBERTa^{(L)}$	54.83	35.93	49.61
	$RoBERTa^{(L)} + DeBERTa^{(L)}$	54.12	39.77	50.48
	$RoBERTa^{(L)} + XLNet^{(L)}$	53.83	38.65	49.91
(L)	$RoBERTa^{(L)} + BERT^{(L)} + DeBERTa^{(L)}$	57.31	37.41	51.8
(-/	$RoBERTa^{(L)} + DeBERTa^{(L)} + XLNet^{(L)}$	54.30	39.95	50.66
	$RoBERTa^{(L)} + BERT^{(L)} + DeBERTa^{(L)} +$			
	+ XLNet ^(L)	56.97	38.52	51.99

Table 6: Comparison of ensembles by averaging of output tag probabilities after Stage II for (B)ase and (L)arge encoders with a tag vocabulary size of 5K. Benchmark is BEA-2019 (dev).

Stage	Ensemble	P	\mathbf{R}	$\mathbf{F_{0.5}}$
St. I St. I	$\begin{array}{l} \operatorname{RoBERTa}^{(L)} + \operatorname{DeBERTa}^{(L)} + \operatorname{XLNet}^{(L)} \\ \operatorname{RoBERTa}^{(L)} \oplus \operatorname{DeBERTa}^{(L)} \oplus \operatorname{XLNet}^{(L)} \end{array}$	N/A N/A	N/A N/A	N/A N/A
St. II St. II	$\begin{array}{c} \operatorname{RoBERTa}^{(L)} + \operatorname{DeBERTa}^{(L)} + \operatorname{XLNet}^{(L)} \\ \operatorname{RoBERTa}^{(L)} \oplus \operatorname{DeBERTa}^{(L)} \oplus \operatorname{XLNet}^{(L)} \end{array}$	54.3 56.74	39.95 38.53	50.66 51.84
St. III St. III	$\begin{array}{l} \operatorname{RoBERTa}^{(L)} + \operatorname{DeBERTa}^{(L)} + \operatorname{XLNet}^{(L)} \\ \operatorname{RoBERTa}^{(L)} \oplus \operatorname{DeBERTa}^{(L)} \oplus \operatorname{XLNet}^{(L)} \end{array}$	58.08 60.58	43.17 41.92	54.33 55.63
In.tw. In.tw.	$\begin{array}{l} \operatorname{RoBERTa}^{(L)} + \operatorname{DeBERTa}^{(L)} + \operatorname{XLNet}^{(L)} \\ \operatorname{RoBERTa}^{(L)} \oplus \operatorname{DeBERTa}^{(L)} \oplus \operatorname{XLNet}^{(L)} \end{array}$	68.45 69.67	35.56 34.51	57.76 57.88

Table 7: Performance of selected ensemble for averaging of output tag probabilities ("+") and majority votes on output edit spans ("⊕") ensembling types. Ensembles are not pre-trained on synthetic data (Stage I), tag vocabulary size of 5K. Benchmark is BEA-2019 (dev).

7. Ensembling the GEC taggers

- Majority quorum: Minimum # of votes for triggering the edit
- Increasing N_{min} filters out more edits where single models disagree
- $-1 \le N_{min} \le N_{single_models}$
- Best performance when $N_{min} = N_{single_models} 1$

Ensemble	$N_{ m single_models}$	N_{\min}	P	\mathbf{R}	$\mathbf{F_{0.5}}$
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)}$	3	1	44.49	41.96	43.96
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)}$	3	2	57.96	41.79	53.79
$\begin{array}{l} \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \\ \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \\ \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \end{array}$	3	3	67.54	30.99	54.65
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)}$	4	1	40.21	41.68	40.50
$\begin{array}{l} \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{DeBERTa}_{10K}^{(L)} \\ \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{DeBERTa}_{10K}^{(L)} \end{array}$	4	2	55.02	43.14	52.15
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)}$	4	3	64.48	37.49	56.36
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)}$	4	4	71.71	27.89	54.57
$\begin{array}{l} \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{DeBERTa}_{10K}^{(L)} \oplus \operatorname{XLNet}_{10K}^{(L)} \\ \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{DeBERTa}_{10K}^{(L)} \oplus \operatorname{XLNet}_{10K}^{(L)} \\ \operatorname{RoBERTa}_{5K}^{(B)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{DeBERTa}_{10K}^{(L)} \oplus \operatorname{XLNet}_{10K}^{(L)} \end{array}$	5	1	37.20	40.88	37.88
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)} \oplus XLNet_{10K}^{(L)}$	5	2	51.77	43.65	49.92
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)} \oplus XLNet_{10K}^{(L)}$	5	3	61.89	41.43	56.33
$RoBERTa_{5K}^{(E)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)} \oplus XLNet_{10K}^{(L)}$	5	4	56.43	34.43	56.43
$RoBERTa_{5K}^{(B)} \oplus RoBERTa_{5K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus DeBERTa_{10K}^{(L)} \oplus XLNet_{10K}^{(L)}$	5	5	73.12	26.00	53.67

Table 8: Exploring the impact of N_{min} ("majority quorum"), a minumum number of votes to trigger the edit in majority votes ensembling. Benchmark is BEA-2019 (dev).

7. Ensembling the GEC taggers

Ensemble	P	R	$\mathbf{F_{0.5}}$
$\begin{array}{l} \operatorname{DeBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{5K}^{(L)} \oplus \operatorname{XLNet}_{5K}^{(L)} \\ \operatorname{DeBERTa}_{10K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{XLNet}_{10K}^{(L)} \\ \operatorname{DeBERTa}_{5K}^{(L)} \oplus \operatorname{RoBERTa}_{10K}^{(L)} \oplus \operatorname{XLNet}_{5K}^{(L)} \end{array}$	69.67	34.51	57.88
DeBERTa $_{10K}^{(L)} \oplus \text{RoBERTa}_{10K}^{(L)} \oplus \text{XLNet}_{10K}^{(L)}$	70.13	34.23	57.97
DeBERTa $_{10K}^{(L)} \oplus \text{RoBERTa}_{10K}^{(L)} \oplus \text{XLNet}_{5K}^{(L)}$	70.71	33.78	58.02
$DeBERTa_{10K}^{(\hat{L})} \oplus RoBERTa_{10K}^{(\hat{L})} \oplus XLNet_{5K}^{(\hat{L})}$	70.32	34.62	58.30

Table 9: Performance of the best single models ensembled by majority votes on output edit spans. Subscripts encode the models' tag vocabulary sizes from the set (5K, 10K). Benchmark is BEA-2019 (dev).

System	P	R	$\mathbf{F_{0.5}}$
Single models			
(Kiyono et al., 2019)	65.5	59.4	64.2
(Omelianchuk et al., 2020)	79.2	53.9	72.4
(Kaneko et al., 2020)	67.1	60.1	65.6
(Stahlberg and Kumar, 2021)	72.1	64.4	70.4
(Rothe et al., 2021)	N/A	N/A	75.88
RoBERTa $_{5K}^{(L)}$, multi-stage training (this work) RoBERTa $_{5K}^{(L)}$, one-stage training (this work)	80.70	53.39	73.21
RoBERTa $_{5K}^{(L)}$, one-stage training (this work)	80.55	52.27	72.69
Ensembles			
(Grundkiewicz et al., 2019)	72.3	60.1	69.5
(Kiyono et al., 2019)	74.7	56.7	70.2
(Omelianchuk et al., 2020)	79.4	57.2	73.7
(Kaneko et al., 2020)	72.3	61.4	69.8
(Stahlberg and Kumar, 2021)	77.7	65.4	74.9
$\begin{array}{c} DeBERTa_{10K}^{(L)} \oplus RoBERTa_{10K}^{(L)} \oplus XLNet_{5K}^{(L)} \\ (this\ work) \end{array}$	84.44	54.42	76.05

Table 10: Comparison of our best single tagging models and ensembles with related work on BEA-2019 (test).

8. Knowledge distillation

DeBERTa $_{10K}^{(L)} \oplus \text{RoBERTa}_{10K}^{(L)} \oplus \text{XLNet}_{5K}^{(L)}$ 84.44 54.42 76.05 (this work)

- Teacher: Best ensemble model
- Student: A single sequence tagger
- The ensemble receives erroneous texts and generates their corrected version
- These input-output pairs of sentences are used for training single models
- 5% of 1BW (Troy-1BW)
- 28% of Blogs (Troy-Blogs)

Outline

- 1. Contribution
- 2. Method
- 3. Experiments
- 4. Conclusion

Conclusion

1. Any drawbacks?

Thank you

https://jeiyoon.github.io/