UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANN, TACNA FACULTAD DE INGENIERÍA

Escuela Académico Profesional de Ingeniería en Informática y Sistemas

SILABO

I. DATOS GENERALES

1. Nombre de la asignatura : Métodos Numéricos

2. Código del curso : 19.03118

3. Año de estudios : Segundo Año – I Semestre

4. Créditos : 5

5. Total de horas semestrales : 102 horas

6. No. total de horas por semana : 06 (Teoría 04; Laboratorio 02)

7. Fecha de inicio : 1 de Abril del 2016
8. Fecha de término : Agosto del 2016
9. Duración : 17 semanas

10. Profesor responsable : MSc. Luis Andrés Amaya Cedrón

lamayaster@gmail.com

11. N° de alumnos : 30 (Turno mañana)

II. SUMILLA

errores.

Análisis de error, raíces de ecuaciones, sistemas de ecuaciones algebraicas lineales, Optimización, sistemas de ecuaciones lineales con métodos directos, con métodos iterativos, aproximación polinomial e interpolación, Integración Numérica. Ajuste de curvas, diferenciación e integración numérica, métodos numéricos para Ecuaciones diferenciales Ordinarias, métodos numéricos para Ecuaciones diferenciales. Métodos numéricos y algoritmos computacionales.

LOGRO DE LA ASIGNATURA

Al finalizar el desarrollo del curso, el estudiante estará en condiciones de:

Desarrollar e implementar algoritmos matemáticos y computacionales de modelos matemáticos que se aplican usualmente en Ciencias e Ingeniería. Analizar programas de computadora usando un lenguaje de Programación de Propósito General y/o Sistema de Computación Científica.

III. UNIDADES DE APRENDIZAJE.

PRIMERA UNIDAD DIDÁCTICA:	ERRORES;	SOLUCIÓN DE	F(X)=0 Y SISTEMAS	DE ECUACIONES	POR MÉTODOS
NUMÉRICOS					

LOGRO: Al finalizar la primera unidad didáctica, el estudiante analiza errores de truncamiento, e implementa procesos computacionales, para métodos iterativos de los modelos matemáticos tratados.

Semana	Contenidos
1	TEORÍA Errores. Errores de truncamiento, Polinomio y Teorema de de Taylor. Análisis de la precisión utilizando el error de Taylor.
	PRÁCTICA: Aplicaciones del teorema de Taylor.
2	TEORÍA: Raíces de ecuaciones- Algoritmo matemático de Newton Raphson
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el
	Modelo Matemático Iterativo de Newton Raphson
3	TEORÍA: . Sistemas de ecuaciones algebraicas lineales. Algoritmo del Método iterativo de <i>Jacobi</i> .
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmos diseñado para el
	Modelos Matemáticos Iterativo de Jacobi.
4	Aplicaciones de los métodos iterativos
	EVALUACIÓN. La presente unidad representa el 20% del promedio final de la asignatura.

CRITERIOS Halla la aproximación de Utiliza el teorema de Taylor para determinar la precisión de los INDICADORES Mide la aproximación con respecto al error permitido.. Identifica el orden los errores y conoce como determinarlo según su orden

RÚBRICA DE EVALUACIÓN DE LA PRIMERA UNIDAD

Determina aproximaciones de raíces de una ecuación f(x)=0 y de sistemas de ecuaciones.	Halla la solución de raíces de ecuaciones y sistemas de ecuaciones algebraicas lineales, mediante los modelos iterativos de Newton-Raphson y Jacobi	Aplica el algoritmo matemático de Newton-Raphson y Jacobi, a la Ciencia e ingeniería.	Identifica el problema acerca de de encontrar raíces y solucionar un sistema de Ecuaciones lineales
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.

SEGUNDA UNIDAD	SEGUNDA UNIDAD DIDÁCTICA: OPTIMIZACIÓN DE FUNCIONES, INTERPOLACIÓN; DIFERENCIACIÓN E INTEGRACIÓN			
NUMÉRICA.				
LOGRO: Al finaliza	r la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos			
iterativos de los m	iterativos de los modelos matemáticos tratados.			
5 y 6	TEORÍA: . Métodos numéricos para optimización (mínimo) de una función. Interpolación y el polinomio			
	de Lagrange			
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el			
	Modelo Matemático Iterativo de optimización e interpolación.			
7 y 8	TEORÍA: Diferenciación Numérica e Integración numérica. Método de Simpson			
	PRÁCTICA: : Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el			
	Modelo Matemático Iterativo de Diferenciación e Integración numérica			
9	EVALUACIÓN. La presente unidad representa el 20% del promedio final de la asignatura.			
	DÚDDICA DE EVALUACIÓN DE LA CECUNDA LINUDAD			

RUBRICA DE EVALUACION DE LA SEGUNDA UNIDAD				
CRITERIOS	INDICADORES			
Determina aproximaciones de optimización de funciones e interpolación	Halla la aproximación de un mínimo para funciones y de interpolación	Mide la aproximación con respecto al error permitido.	Identifica el problema para aplicar el método para determinar el mínimo y para aplicar interpolación.	
Determina aproximaciones de Diferenciación Numérica e Integración numérica.	Halla la aproximación de Diferenciación Numérica e Integración numérica por simpson	Aplica el algoritmo matemático Diferenciación Numérica e Integración numérica por Simpson	Identifica el problema acerca de de encontrar aproximaciones de diferenciación e integración numérica	
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.	

TERCERA UNIDAD DIDÁCTICA: ECUACIONES Y SISTEMAS DE ECUACIONES DIFERENCIALES			
LOGRO: Al finalizar	LOGRO : Al finalizar la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos		
iterativos de los mo	iterativos de los modelos matemáticos tratados.		
10 y 11	TEORÍA: Método de Euler. Método de Euler-Mejorado (HEUM)		
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el		
	Modelo Matemático Iterativo de Euler y de Euler-Mejorado		
12 y 13	TEORÍA: Método de Runge Kutta. Sistemas de Ecuaciones Diferenciales Ordinaria		
	PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el		
	Modelo Matemático Iterativo de Runge Kutta y de S. E. D.O		
14	EVALUACION . La presente unidad representa el 30% del promedio final de la asignatura.		

RÚBRICA DE EVALUACIÓN DE LA TERCERA UNIDAD				
CRITERIOS	INDICADORES			
Determina aproximaciones de ecuaciones diferenciales	Halla la aproximación de ecuaciones diferenciales	Mide la aproximación con respecto al error permitido.	Identifica el problema para aplicar los métodos de Euler, Heum.	
Determina aproximaciones sistemas de ecuaciones diferenciales.	Halla la aproximación de sistemas de ecuaciones diferenciales	Aplica el algoritmo matemático de sistemas de ecuaciones diferenciales	Identifica el problema acerca de de encontrar aproximaciones para la solución de un sistemas de ecuaciones diferenciales	
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.	

CUARTA UNIDAD DIDÁCTICA: ECUACIONES DIFERNCIALES PARCIALES Y TRATO DE METDOS ADICIONALES			
LOGRO: Al finalizar la segunda unidad didáctica, el estudiante implementa procesos computacionales, para métodos			
iterativos de los modelos matemáticos tratados			
15	TEORÍA: Planteamiento general del problema. Métodos numéricos para aproximar las soluciones de ecuaciones diferenciales Parciales: Método Explicito. PRÁCTICA: Programación en el lenguaje de programación Matlab, del algoritmo diseñados para el Modelo Matemático Iterativo de Método Explicito		
16	TEORÍA: Trabajo y Sustentación de un tema dado por el docente .		
17	EVALUACION . La presente unidad representa el 30% del promedio final de la asignatura		
	DÚBDICA DE EVALUACIÓN DE LA TEDCEDA LINIDAD		

RÚBRICA DE EVALUACIÓN DE LA TERCERA UNIDAD				
CRITERIOS	INDICADORES			
Determina aproximaciones de ecuaciones diferenciales parciales	Halla la aproximación de ecuaciones diferenciales parciales	Mide la aproximación con respecto al error permitido.	Identifica el problema para aplicar el método Explicito.	
Explica un método numérico propuesto.	Sustenta el método	Aplica el algoritmo matemático del método	Identifica el problema para aplicar el método	
Valida en el ordenador los algoritmos computacionales para cada modelo iterativo	Implementa el algoritmo computacional para cada método Iterativo	Verifica la validez de los algoritmos computacionales para cada modelo iterativo, usando problemas	Aplica los algoritmos implementados para casos reales.	

IV. METODOLOGÍA

El desarrollo del curso tiene lugar a través de actividades teórico-prácticas que conforman su contenido. En las sesiones teóricas el profesor trabaja activamente con los estudiantes en el aula en forma dinámica, y participativa promoviendo la reflexión y el pensamiento crítico a través de preguntas, exposiciones y trabajo en equipo, utilizando material impreso y audiovisual. En las prácticas de laboratorio los alumnos interactúan a través de un conjunto de actividades (tareas y aplicaciones) especialmente diseñadas para propiciar la habilidad de la obtención de aproximaciones por métodos numéricos.

V. MATERIALES EDUCATIVOS

Los materiales a utilizar para el desarrollo de la asignatura son los siguientes:

a. Materiales educativos interactivos

Materiales impresos: Libros, textos impresos, módulos de aprendizaje, manual de prácticas. Direcciones electrónicas para recabar información especializada sobre los contenidos planteados.

b. Materiales educativos para la exposición.

Se contará con pizarras, plumones, acrílicos, mota, proyector multimedia, diapositivas.

c. Materiales de laboratorio, computadoras, equipos de comunicación de datos.

VI. EVALUACIÓN

EVALUACION TEÓRICA:

UNIDADES DIDACTICAS	PRODUCTOS FINALES	INSTRUMENTOS	PORCENTAJE
ERRORES; SOLUCIÓN DE F(X)=0 Y SISTEMAS DE ECUACIONES POR MÉTODOS NUMÉRICOS	Implementa algoritmos matemáticos y computacionales de la serie de Taylor y métodos numéricos iterativos de Newton Raphson y Jacobi.	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	20%
OPTIMIZACIÓN DE FUNCIONES, INTERPOLACIÓN; DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA.	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para optimización de funciones, interpolación, diferenciación e integración numérica.	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	20%
ECUACIONES DIFERENCIALES ORDINARIAS	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para Ec. Diferenciales ordinarias	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	30%
ECUACIONES DIFERENCIALES. PARCIALES	Implementa algoritmos matemáticos y computacionales de y métodos numéricos iterativos para Ec. Diferenciales parciales	 Rúbrica (teórica - practica) (70%) Guía de observación de aptitudes (programa) (30%) 	30%

VII. BIBLIOGRAFÍA

Bibliografía general

- ✓ BURDEN R. y Faires D. (1992). Análisis Numérico. México, D.F.: Iberoamérica
- ✓ BURDEN R. y Faires D. (2007). Análisis Numérico. México, D.F.: Iberoamérica
- ✓ NIEVES H. y Domínguez F. (1997). *Métodos Numéricos*. (2º edic.). México, D.F.: Continental
- ✓ CURTIS G. (1992). Análisis Numérico. México, D.F.: Ediciones Alfa y Omega
- ✓ CHAPRA S. (2007). Métodos numéricos. (2º edic.). Mexico: Mc Graw Hill
- ✓ INFANTE J. y Rey J. (2007). Métodos Numéricos/Numerical Methods: Teoría, problemas y prácticas con Matlab/Theory, Problems and Matlab Practices.
- ✓ INFANTE J. Y REY J. (2004). Métodos Numéricos: Teoría, problemas y prácticas con Matlab (Ciencia y Técnica).

Fuentes de consulta complementaria:

- ✓ Hanselman D. y Littlefield B. (1995) *MatLab*. España: Prentice Hall.
- ✓ www.uhu.es/cristobal.garcia/descargas/AnalisiNumericoITema3.pdf