

- 1. Os custos de inscrição dos trabalhadores da empresa, em cada prova, foram:
 - prova K100: $60 + 90 = 150 \in$;
 - prova K100/2 + transporte: $2 \times 40 + 2 \times 4 = 88 \in$;
 - prova K50 + transporte: $4 \times 35 + 4 \times 3 = 152 \in$.

Assim o valor total das inscrições dos trabalhadores da empresa foi $150 + 88 + 152 = 394 \in$.

Pelo que a empresa comparticipou o valor de $394 \times 0.6 = 234 \in$.

Exame - 2025, 2.a Fase

2. Calculando o valor total que o António pagaria se tivesse feito a reserva no Hotel Camélia, para 2 quartos duplos por 4 noites, temos:

$$2 \times 134,55 \times 4 = 1076,40 \in$$

Calculando o valor total que o António pagaria sem desconto no Hotel Azálea, para 2 quartos duplos por 4 noites, temos:

- Valor das duas primeiras noites: $2 \times 150,20 \times 2 = 600,80 \in$
- Valor das restantes duas noites: $2 \times 142,30 \times 2 = 569,20 \in$
- Valor total das quatro noites: $600,80 + 569,20 = 1170 \in$

Assim, a diferença de valores, ou seja, o valor do desconto é:

$$1170 - 1076,40 = 93,60 \in$$

Logo, a percentagem p do desconto, calculada sobre o total do valor a pagar no Hotel Azálea, é:

$$\frac{1170}{93.60} = \frac{100}{p} \iff p = \frac{100 \times 93,60}{1170} \iff p = 8\%$$

Exame – 2024, Ép. especial

- 3. Identificando os valores de que depende o valor a pagar, V, considerando um consumo de 450 kWh durante 31 dias, temos:
 - IEC: $0.001 \times 450 = 0.45$ €, sem IVA, e $0.45 \times 1.23 = 0.5535$ €, com IVA;
 - PC: $0.1263 \times 31 = 3.9153$ €, sem IVA, e $3.9153 \times 1.23 \approx 4.8158$ €, com IVA;
 - AR: $0.0299 \times 31 = 0.9269 \in$, sem IVA, e $0.9269 \times 1.06 \approx 0.9825 \in$, com IVA;
 - CA: 3,02 €;
 - TE: 0,09 €;

Assim, usando a fórmula de cálculo apresentada, podemos determinar o valor parcela relativa ao consumo C, para o valor a pagar de 79,87 €:

$$79,87 = C + 0,5535 + 4,8158 + 0,9825 + 3,02 + 0,09 \Leftrightarrow 79,87 = C + 9,4618 \Leftrightarrow 79,87 - 9,4618 = C \Leftrightarrow 70,4082 = C + 10,5135 + 10,51$$

Assim, temos que o valor do consumo relativo a 450 kWh, foi de:

- 70,4082 €, com IVA;
- $0.1476 \times 450 = 66.42 \in$, sem IVA.

Logo o valor do IVA relativo à parcela do consumo foi $70,4082-66,42=3,9882 \in$, pelo que, estabelecendo a proporção adequada podemos calcular a taxa de IVA (T_C) aplicada ao consumo:

$$\frac{T_C}{100} = \frac{3{,}9882}{66{,}42} \iff T_C = \frac{3{,}9882 \times 100}{66{,}42} \iff T_C \approx 6\%$$

Exame - 2024, 2.ª Fase

- 4. De acordo com os dados, temos que:
 - como foram percorridos um total de 3125 km, com um gasto médio de 4,8 litros de por cada 100 km, temos que o total de litros de gasolina consumidos, G_T , é:

$$\frac{G_T}{3125} = \frac{4.8}{100} \Leftrightarrow G_T = \frac{4.8 \times 3125}{100} \Leftrightarrow G_T = 150 \text{ litros}$$

• como se admite que toda a gasolina necessária para a viagem foi adquirida com o preço de venda de cada litro de 1,77 \in , o montante total pago pela gasolina, M_T foi:

$$M_T = 1.77 \times G_T = 1.77 \times 150 = 265.5$$
 euros

- pela análise da figura, podemos verificar que a percentagem do valor pago, que corresponde ao valor:
 - do IVA cobrado sobre a margem líquida de comercialização, IVA_{MC} é:

$$IVA_{MC} = 0.023 \times M_T = 0.023 \times 265.5 = 6.1065$$
 euros

- do IVA cobrado sobre o preço de referência, IVA_{PR} é:

$$IVA_{PR} = 0.164 \times M_T = 0.164 \times 265.5 = 43.5420$$
 euros

− do ISP, ISP é:

$$ISP = 0.367 \times M_T = 0.367 \times 265.5 = 97.4385$$
 euros

Assim, o valor, em euros, da parte do valor total gasto em gasolina pela família Silva, destinada a impostos, com arredondamento às centésimas, é:

$$IVA_{MC} + IVA_{PR} + ISP = 6,1065 + 43,5420 + 97,4385 \approx 147,09 \text{ euros}$$

Exame - 2024, 1.a Fase

5. De acordo com os dados das duas primeiras tabelas, podemos determinar o valor total anual (sem desconto) a pagar pelos elementos do agregado familiar do Tiago:

Elemento do agregado familiar	Idade (em anos)	Prémios totais anuais (em euros)
Tiago	50 (Dos 46 aos 50)	531,08
Alice	44 (Dos 41 aos 45)	466,18
Beatriz	14 (Dos 11 aos 20)	241,48
Nuno	12 (Dos 11 aos 20)	241,48
	Soma:	1480,22

De acordo com a última tabela, o desconto a aplicar para um conjunto de 4 pessoas seguradas é 11%, pelo que o valor do desconto, é:

$$1480,22 \times 0,11 = 162,8242$$

E assim, temos que o valor anual, em euros, que o mediador de seguros terá apresentado para o seguro de saúde de todo o agregado familiar do Tiago, com arredondamento às centésimas, é:

$$1480,22 - 162,8242 \approx 1317,40$$

Exame -2023, 2.^a Fase

- 6. Identificando os valores de que depende o cálculo do salário líquido, SL, temos:
 - SB = 1500
 - $SR = 5.2 \times 22 = 144.4$, correspondente a 22 dias de trabalho;
 - $SS = 1500 \times 0.11 = 165$ correspondente a 11%; do salário bruto;
 - \bullet 1500 × 0,146 = 219 correspondente á taxa de 14,6% indicada na tabela para um salário bruto compreendido entre 1437 e 1577 e a 2 dependentes.

Assim, temos que o valor do salário líquido, de acordo com a fórmula de cálculo, é:

$$SL = SB + SR - SS - RF = 1500 + 14444 - 165 - 219 = 12304$$
 euros

Exame – 2023, $1.^a$ Fase

7. De acordo com as condições do empréstimo, a atleta terá que pagar o valor financiado acrescido de 16%, ou seja, um valor total de

$$1200 + 1200 \times 0.16 = 1200 \times 1.16 = 1392 \in$$

Como o prazo de pagamento é de dois anos (24 meses) e as prestações são constantes, o valor de cada prestação mensal é:

$$\frac{1392}{24} = 58 \in$$

Exame - 2022, Ép. especial

8. Como os *bungalows* foram usados na sua capacidade máxima, o número de pessoas que ficou em tendas, ou seja, que não ficou em *bungalows*, foi de:

$$140 - 8 \times 4 - 10 \times 6 = 48$$

Assim, o valor faturado à empresa pelo aluguer dos espaços é a soma de três parcelas:

- 8 bungalows M: $8 \times 80 = 64 \in$
- 10 bungalows G: $10 \times 100 = 1000 \in$
- 12 tendas com 48 pessoas: $12 \times 6.5 + 48 \times 5.5 = 904 \in$

Ou seja, o valor faturado foi de: $64 + 1000 + 904 = 1982 \in$

Como o lucro foi de 25% do valor faturado temos que o lucro, em euros, obtido com o evento foi de:

$$1718 \times 0.25 = 495.5 \in$$

Exame - 2022, 2.a Fase

9. Como o Manuel pediu emprestados 1530 euros e acordou que o pagamento seria feito em 18 parcelas iguais, cada uma dessas parcelas tem o valor de $\frac{1530}{18}=85$ \in

O montante total pago pelo Manuel (1644,75 €) pode ser entendido como a soma de três parcelas:

Valor total pago = Empréstimo + Juros dos primeiros 12 meses + Juros dos últimos 6 meses Ou seja:

Juros dos últimos 6 meses = Valor total pago $\,-\,$ Empréstimo $\,-\,$ Juros dos primeiros 12 meses E assim vem que:

Juros dos últimos 6 meses =
$$1644,75 - 1530 - 85 \times 0,07 \times 12 = 43,35$$
 €

Como este montante foi pago em seis prestações, o juro correspondente a cada uma das prestações foi $\frac{43,35}{6}=7,225$ \in

Como cada parcela tem o valor de $85 \in$, a taxa de juro (t), em percentagem, correspondente a cada uma das seis últimas prestações, é:

$$\frac{85}{7,225} = \frac{100}{t} \iff t = \frac{100 \times 7,225}{85} \iff t = 8,5\%$$

Exame - 2022, 1.a Fase

10. Calculado o custo de aquisição para cada uma das alternativas, temos:

Alternativa 1	Alternativa 2
Valor do equipamento: 4500 €	Valor do equipamento: 4000 €
Preço dos portes: $(73 \text{ kg} = 10 + 6 \times 10 + 3)$ $5 + 6 \times 3 + 3 = 26 \in$	Preço dos portes: $20\times 1{,}03^{73}\approx 173{,}040 \in$
Custo total: $4500 + 26 = 4525 \in$	Custo total: $4000 + 173,040 = 4173,04 \in$

Assim, de acordo com os cálculos anteriores, podemos verificar que a alternativa monetariamente mais vantajosa, ou seja com um custo total inferior, é a alternativa 2.

Exame – 2021, Ép. especial

11. Podemos verificar que em cada período de 24 meses, o valor a pagar será de $280 \times 24 = 6720$ euros e analisando cada um dos períodos, relativamente à percentagem e valor dos juros, temos:

Período	Montante a pagar	Percentagem de juros	Valor dos juros
Primeiros 24 meses	6720	60%	$6720 \times 0,6 = 4032$
Segundos 24 meses	6720	25%	$6720 \times 0,25 = 1680$

Assim, temos que:

• Valor total a pagar: $280 \times 60 = 16\,800$ euros. (Correspondente ao pagamento de 280 euros por mês durante 60 meses)

Valor total dos juros: 16 800 − 10 500 = 6300 euros.
 (Correspondente à diferença entre o montante total pago e o valor do empréstimo)

Valor dos juros a pagar após 48 prestações: 6300 - (4032 + 1680) = 588 euros.
 (Correspondente à diferença entre o valor dos juros e o valor dos juros correspondentes aos primeiros e segundos 24 meses)

Exame - 2021, 2.a Fase

- 12. Identificando os valores de que depende o cálculo de P, temos:
 - VF = 500
 - i = 0.03
 - n entre 2 e 12

Assim, temos que o valor de P, para cada valor de n, é dado por $P = \frac{500 \times 0.03 \times (1 + 0.03)^n}{(1 + 0.03)^n - 1}$

Desta forma, determinando os valores de P, ou seja, da prestação mensal para cada valor de n, e verificando qual é o menor valor de n a que corresponde um valor de P inferior a 75, temos:

n	2	 7	8
P	$\frac{500 \times 0.03 \times (1 + 0.03)^2}{(1 + 0.03)^2 - 1} \approx 261$	 $\frac{500 \times 0.03 \times (1+0.03)^7}{(1+0.03)^8 - 1} \approx 80$	$\frac{500 \times 0.03 \times (1 + 0.03)^8}{(1 + 0.03)^8 - 1} \approx 71$

Assim concluímos que n=8, ou seja, o Tiago deve optar por fracionar o pagamento em 8 prestações mensais de 71 euros, e assim o valor total a pagar pelo telemóvel, é:

$$8 \times 71 = 568 \text{ euros}$$

Exame – 2021, $1.^a$ Fase

13. Como a distância entre a escola e a casa do Xavier é 6,5 quilómetros e ele pretende usar a bicicleta para ir e voltar para a escola, a distância diária a percorrer é de:

$$6.5 \times 2 = 13 \text{ km}$$

Como a previsão é a de que faça o trajeto em 22 dias, a distância total é:

$$13 \times 22 = 286 \text{ km}$$

Assim, o pagamento será calculado em três parcelas:

- Primeiros 100 km: $5 \times 100 = 500$ cêntimos, ou seja, 5 euros
- Entre os 100 e os 200 km (pagos a 80%, correspondente a um desconto de 20%): $5 \times 100 \times 0.8 = 400$ cêntimos, ou seja, 4 euros
- \bullet 86 km acima dos 100 km (com dois descontos de 20%): $5\times86\times0.8\times0.8=2.752$ cêntimos, ou seja, 2.75 euros

Assim, o valor total a pagar pelo Xavier é:

$$5 + 4 + 2{,}75 = 11{,}75$$
 euros

Exame - 2020, Ép. especial

14. Calculado as despesas totais previstas para cada um dos hotéis, temos:

Hotel 1	Hotel 2
Plataforma D: Custos totais de alojamento (2 noites e 5 pessoas): $215 \times 2 = 430 \in$	Plataforma A: Custos totais de alojamento (2 noites e 5 pessoas): $155 \times 2 = 310 \in$
Plataforma B: Custos totais de alojamento (2 noites e 5 pessoas, com 10% de desconto, ou seja, 90% do valor): 0,9 × 225 × 2 = 405 € Custos de transporte: 0 €	Custos de transporte (3 dias em zonas de 1 a 3 para 5 pessoas): $47,25 \times 5 = 236,26 \in$
Custos de transporte: 0 €	
Custo total: 405 €	Custo total: $310 + 236,26 = 546,26 \in$

Assim, de acordo com os cálculos anteriores, podemos verificar que, de acordo com os planos dos 5 amigos, a opção mais económica é o Hotel 1 reservado na plataforma B.

Exame – 2020, $2.^a$ Fase

15. Como o valor final da poupança foi o dobro do depósito inicial, sabemos que o valor depositado inicialmente foi metade da poupança, ou seja, $\frac{240}{2}=120$ \in

Como foram feitos 16 depósitos de uma quantia fixa, e o conjunto desses depósitos totalizaram também 120 \in , pelo que, cada um deles tinha o valor de $\frac{120}{16} = 7,5 \in$

Assim, temos que a percentagem (p) do depósito inicial (120) corresponde a quantia fixa depositada em cada mês (7,5) é:

$$\frac{p}{7,5} = \frac{100}{120} \iff p = \frac{100 \times 7,5}{120} \iff p = 6,25$$

Ou seja, em cada mês o Filipe depositou um montante correspondente a 6,25% do depósito inicial.

Exame - 2020, 1.a Fase

16. Calculando o valor do arrendamento anual, de acordo com cada uma das propostas, em função do número de pagamentos, temos:

N.º de pagamentos	Proposta do CCF	Proposta do lojista	Proposta mais vantajosa
1	$R(1) = 8000 + 100\left(1 + \frac{2}{1}\right)^{1} = 8300$	$8350 + 1 \times 30 = 8380$	CCF
2	$R(2) = 8000 + 100\left(1 + \frac{2}{2}\right)^2 = 8400$	$8350 + 2 \times 30 = 8410$	CCF
3	$R(3) = 8000 + 100\left(1 + \frac{2}{3}\right)^3 \approx 8462,96$	$8350 + 3 \times 30 = 8440$	Lojista
4	$R(4) = 8000 + 100\left(1 + \frac{2}{4}\right)^4 = 8502,25$	$8350 + 4 \times 30 = 8470$	Lojista
5	$R(5) = 8000 + 100\left(1 + \frac{2}{5}\right)^5 \approx 8537,82$	$8350 + 5 \times 30 = 8500$	Lojista
6	$R(6) = 8000 + 100\left(1 + \frac{2}{6}\right)^6 \approx 8561,87$	$8350 + 6 \times 30 = 8530$	Lojista
7	$R(7) = 8000 + 100\left(1 + \frac{2}{7}\right)^7 \approx 8580,78$	$8350 + 7 \times 30 = 8560$	Lojista
8	$R(8) = 8000 + 100\left(1 + \frac{2}{8}\right)^8 \approx 8596,05$	$8350 + 8 \times 30 = 8590$	Lojista
9	$R(9) = 8000 + 100\left(1 + \frac{2}{9}\right)^9 \approx 8608,63$	$8350 + 9 \times 30 = 8620$	CCF

Assim, como a tendência de crescimento mais lento da proposta da administração do CCF, se o número de fracionamentos do pagamento do arrendamento anual for superior a 2 ou inferior a 9, a contraproposta do lojista é mais vantajosa do que a proposta apresentada pela administração do CCF.

Exame – 2019, Ép. especial

17.

17.1. Sabendo que todas as carteiras tinham um vale de oferta, podemos analisar as diferentes hipóteses:

N.º de carteiras com vales de 1 carteira	10	9	8	7	
N.º de carteiras com vales de 5 carteiras	0	1	2	3	
Total de carteiras grátis	$10 \times 1 + 0 \times 5 =$ $= 10$	$9 \times 1 + 1 \times 5 =$ $= 14$	$8 \times 1 + 2 \times 5 =$ $= 18$	$7 \times 1 + 3 \times 5 =$ $= 22$	

Assim, podemos verificar que, de entre os valores apresentados, o único que pode pode representar o número de carteiras grátis que o Daniel obteve graças a estes vales de oferta é 18.

Resposta: Opção D

17.2. Como o Daniel reuniu 750 cromos, e 46% eram cromos repetidos, todos não dourados, então o número de cromos repetidos é:

$$750 \times 0.46 = 345$$

E o número de cromos não repetidos, obtidos pela compra de carteiras, é:

$$485 - 345$$

Como as trocas foram feitas em grupos de 5, temos que o número de cromos dourados que o Daniel obteve nas trocas é:

$$\frac{345}{5} = 69$$

Assim, o número de cromos em falta, após as trocas, é:

$$485 - 405 - 69 = 11$$

Desta forma, o gasto total é dado pela soma dos valores da compra das 131 carteiras, da encomenda dos 11 cromos em falta e dos portes de envio, ou seja:

$$131 \times 0.90 + 11 \times 0.25 + 2 = 122.65$$
 euros

Exame – 2019, $2.^a$ Fase

18.

- 18.1. Calculando o custo total de duas encomendas separadas, uma dos dois artigos mais leves e outra do artigo mais pesado, temos:
 - Massa dos dois artigos mais leves: 1.9 + 1.5 = 3.4 kg
 - Custo associado a duas encomendas de 3,4 kg e 3,8 kg: $10.80 + 10.80 = 21.16 \in$

Calculando o custo total de duas encomendas separadas, uma dos dois artigos mais pesados e outra do artigo mais leve, vem:

- Massa dos dois artigos mais pesados: 3.8 + 1.9 = 5.7 kg
- Custo associado a duas encomendas de 1,5 kg e 5,7 kg: 5,70 + 14,60 = 20,30

Resposta: Opção C

18.2. Calculado os custos totais em cada uma das lojas, para uma entrega até 48 horas, temos:

Loja «Paga Menos»	Loja «Sempre a Poupar»
Equipamento + IVA: $258,22 \times 1,23 \approx 317,61 \in$	Equipamento + IVA: 347,88 €
Portes de envio (3,4 kg): 10,80 €	Portes de envio : 12 €
Tarifa expresso (48 h): 25 €	Desconto (40 pontos - 4×10 pontos): $4 \times 2 = 8 \in$
Custo total: $317,61 + 10,80 + 25 = 353,41 \in$	Custo total: $347,88 + 12 - 8 = 351,88 \in$

Assim, de acordo com os cálculos anteriores, podemos verificar que a proposta da loja «Sempre a Poupar» é a mais vantajosa para o Nuno.

Exame – 2019, 1.ª Fase

19. Como a família Silva é composta por cinco pessoas e os automóveis do tipo 1, têm capacidade para apenas quatro passageiros, será necessário alugar dois automóveis deste tipo (o que não é um problema porque duas pessoas possuem carta de condução).

Assim, calculando os custos associados a cada uma das propostas, temos:

Automóvel	Consumo total (litros)	Consumo - custo (euros)	Aluguer por dia (euros)	Custo total (euros)
Tipo 1 (1 unidade)	$4.7 \times \frac{1300}{100} = $ $= 4.7 \times 13 = $ $= 61.1$	$61,1 \times 1,3 = 79,43$	$40 \times 6 = 240$	79,43 + 240 = = 319,43
Tipo 1 (2 unidades)	_	_	_	$319,43 \times 2 =$ $= 638,46$
Tipo 2 (1 unidade)	$6.8 \times \frac{1300}{100} = = 6.8 \times 13 = = 88.4$	$88,4 \times 1,3 = 114,92$	$85 \times 6 = 510$	114,92 + 510 = = 624,92

Assim, como se sabe que a família Silva optou pela proposta mais económica, podemos concluir que alugou um automóvel do tipo 2.

Exame – 2018, Ép. especial

20. Calculado as despesas totais previstas para cada uma das propostas, temos:

Proposta A	Proposta B
Custos totais de aluguer (10 dias): $10 \times 420 = 4200 \in$	Valor do aluguer (10 dias): $V = 3000 \times 1{,}14^{10} - 3000 \approx 8122 \in$
Custo acrescido (valor fixo): 4800 €	Despesas com água e eletricidade (10 dias): $10 \times 71 = 710 \in$
Despesas com água e eletricidade: 0 €	
Custo total: $4200 + 4800 + 0 = 9000 \in$	Custo total: $8122 + 710 = 8832 \in$

Assim, de acordo com os cálculos anteriores, podemos verificar que a opção do diretor da companhia, pela proposta B, foi a decisão mais económica.

Exame - 2018, 2.a Fase

- 21. Calculando o valor do capital final que Mariana obteve com o depósito bancário, com arredondamento às unidades, temos:
 - C capital investido: 2800 \in
 - i taxa de juro anual: 0,04
 - $\bullet\,$ k número de capitalizações por ano: 2 (juros pagos semestralmente)
 - n número de anos: 2016 2010 = 6

Pelo que o capital final é:

$$C_6 = 2800 \times \left(1 + \frac{0.04}{2}\right)^{2 \times 6} \approx 3551 \in$$

Calculando o valor do capital final que Mariana teria obtido se tivesse adquirido UP, vem que:

- Valor de cada UP no início de 2010: 14 \in
- Número de UP que teria comprado: $\frac{2800}{14} = 200$
- Valor de cada UP no início de 2016: 17 €
- Valor da venda de 200 UP por $17 \in \text{cada: } 200 \times 17 = 3400 \in$

Assim, podemos concluir que a Mariana optou pela alternativa mais rentável.

Exame – 2018, 1.ª Fase

22. Relativamente ao jovem que pretende comprar bilhetes para 4 dias úteis e o passe para o fim de semana, temos que o gasto total desta opção é:

$$4 \times 12 + 24 = 48 + 24 = 72 \in$$

Ou seja, neste caso, a opção de comprar o passe válido para todos os dias não é mais vantajosa.

Em relação ao jovem que pretende comprar bilhetes para os 5 dias úteis e para o sábado, temos que o gasto total desta opção é:

$$5 \times 12 + 16 = 60 + 16 = 76 \in$$

Assim, neste caso, a opção de comprar o passe válido para todos os dias é mais vantajosa.

Exame – 2017, Ép. especial

23. Determinando, em euros, o valor da primeira prestação e o valor da segunda prestação, podemos verificar que, como a taxa de juro a 360 dias é de 10%, então a taxa de juro a $\frac{360}{4} = 90$ dias é de $\frac{10}{4} = 2.5\%$

Assim, temos que:

- \bullet C custo da viagem: 600 euros
- n-1 (1^a prestação) e 2 (2^a prestação)
- j taxa de juro a 90 dias: 2,5%, ou seja, 0,025

E desta forma, os valores das duas primeiras prestações é:

- 1ª prestação: $P_1 = 600 \times [0.25 + 0.025 \times (1.25 0.25 \times 1)] = 165$ euros
- 2^{a} prestação: $P_2 = 600 \times [0.25 + 0.025 \times (1.25 0.25 \times 2)] = 161.25$ euros

Exame - 2017, 2.a Fase

- 24. Calculando o valor dos bilhetes que o Manuel pretende comprar, de acordo com cada uma das promoções, temos:
 - Promoção 1:
 - Custos dos bilhetes para adultos (2 adultos integrados no bilhete familiar e um de acordo com o precário, porque o bilhete familiar é aplicável apenas a dois adultos): $25 \times 2 + 27 = 77$ euros
 - Custos dos bilhetes para crianças (3 crianças integradas no bilhete familiar): $16 \times 3 = 48$ euros
 - Custo total: 77 + 48 = 125 euros
 - Promoção 2:
 - Custos dos bilhetes para adultos (sem desconto): $27 \times 3 = 81$ euros
 - Custos dos bilhetes para crianças (sem desconto): $19 \times 3 = 57$ euros
 - Custo total (sem desconto): 81 + 57 = 138 euros
 - Custo final (com desconto): $138 138 \times 0.15 = 117.3$ euros

Assim, podemos verificar que a promoção 2 permite obter um valor mais baixo para a compra dos bilhetes, pelo que é a opção mais vantajosa.

Exame – 2017, 1.^a Fase

- 25. Determinando o valor debitado na conta da Eduarda, temos:
 - \bullet O valor de 1200 PRC em euros: $1200 \times 0.8 = 960$ euros
 - \bullet O valor da taxa de 0,96%: 960 × 0,0096 = 9,216 euros

Assim, como o valor debitado é a soma do valor em euros e das duas taxas aplicadas, o valor total, em euros, arredondado às centésimas, é:

$$960 + 9.216 + 3.52 \approx 972.74$$
 euros

Exame – 2016, $2.^a$ Fase

- 26. Determinando o custo total, em euros, do aluguer do palco principal, temos:
 - custo da taxa diária de utilização para 6 dias: $U = 1250 \times 6 = 7500 \in$
 - deslocação do equipamento para uma distância de 50 km:
 - 30 km pagos a 25 €: $D_1 = 30 \times 25 = 750$ €
 - 20 km pagos a 27,5 €: $D_2 = 20 \times 27,5 = 550$ €

custos totais com a deslocação: $D = 750 + 550 = 1300 \in$

• custos com a montagem e a desmontagem do palco (8 funcionários num total de 5 horas, ou seja, de acordo com a tabela o valor de cada hora é $150 \in$): $M = 8 \times 5 \times 150 = 6000 \in$

Assim, a soma das três parcelas anteriores, ou seja, o custo total, em euros, do aluguer do palco principal, é:

Custo total =
$$U + D + M = 7500 + 1300 + 6000 = 14800 \in$$

Exame – 2016, $1.^{a}$ Fase

27. Calculando o PVP do automóvel nos dois países, temos:

	Portugal	País onde vive o Ivo
Preço base	18 000 €	18 000 €
ISV	9251 €	$9251 \times 1,28 = 11841,28 \in$
IVA	23%	18%
PVP	$(18000 + 9251) \times 1,23 = 33518,73 \in$	$18000 \times 1,18 + 11841,28 = 33081,28 \in$

Assim, podemos concluir que o preço final (PVP) do automóvel que interessa ao Ivo é mais barato no país onde reside do que em Portugal.

Exame - 2015, 1.a Fase

28. Calculando o valor patrimonial tributário do imóvel do Francisco, de acordo com a avaliação do perito, e fazendo o arredondamento para a dezena superior, temos:

$$Vt = A \times Ca \times Cl \times Cq \times Cv \times Vc = 312,\!32 \times 1 \times 1,\!4 \times 1,\!1 \times 0,\!85 \times 603 \approx 246\,530 \in$$

Assim, o valor do IMI que o Francisco deverá pagar em 2014, ou seja, 0.6% do valor patrimonial tributário arredondado, é:

$$IMI = 246530 \times 0.006 = 1479.18 \in$$

Exame - 2014, 1.a Fase

29. Calculando o prémio monetário para cada vencimento, e para cada uma das alternativas, temos:

Empresa X				
Vencimento mensal (em euros)	Número de trabalhadores	Prémio monetário da alternativa 1	Prémio monetário da alternativa 2	
500	4	$500 \times 0,025 = 12,5 \in$	Total dos vencimentos: $500 \times 4 + 512 \times 6 + 752 \times 3 +$	
512	6	$512 \times 0.025 = 12.8 \in$	$840 + 1520 + 3850 = 13538 \in$	
752	3	$752 \times 0.025 = 18.8 \in$	2,5% do total dos vencimentos:	
840	1	$840 \times 0.025 = 21$ €	$13538 \times 0,025 = 338,45 \in$	
1520	1	$1520 \times 0.025 = 38 \in$	Parte de cada trabalhador:	
3850	1	$3850 \times 0.025 = 96.25 \in$	$\frac{338,54}{16} \approx 21,15 \in$	

Assim, podemos verificar que:

- a alternativa 1 é mais vantajosa para os trabalhadores que ganham 840, 1520 e 3580 euros, ou seja, para 3 trabalhadores
- \bullet a alternativa 2 é mais vantajosa para os trabalhadores que ganham 500, 512 e 752 euros, ou seja, para 4+6+3=13 trabalhadores

Desta forma podemos concluir que a alternativa 2 é a mais vantajosa para o maior número de trabalhadores.

Exame – 2013, Ép. especial

30. De acordo com as garantias oferecidas pela instituição PIPA, temos que:

• Capital final: $C_n = 1680 \in$

• Capital inicial: $C_n = 1500 \in$

• Número de períodos de capitalização: $n = \frac{6}{3} = 2$, ou seja 2 trimestres relativos a 6 meses

ullet i - Taxa de juro referente ao período de capitalização

Desta forma, como o capital final é dado pela expressão $C_n = C + C \times n \times i$, temos que:

$$1680 = 1500 + 1500 \times 2 \times i$$

E assim, resolvendo a equação, determinamos o valor da taxa de juro trimestral (i):

$$1680 = 1500 + 1500 \times 2 \times i \iff 1680 - 1500 = 3000 \times i \iff 180 = 3000 \times i \iff \frac{180}{3000} = i \iff 0.06 =$$

Logo, a taxa de juro trimestral, na forma de percentagem, é 6%

Exame – 2013, 1.^a Fase

31. Determinando o preço de venda ao público em 2011 e o preço de venda ao público em 2010 do veiculo indicado, temos:

		Em 2010	Em 2011
Preço base do	veículo (1) (em euros)	18 014,40	18 014,40
Imposto sobre cilindrada do veículo(2) (em euros)	1598 сс	1934	$1598 \times 4,34 - 4964,37 = = 1970,95$
Imposto sobre emissões CO_2 Combustível: gasóleo (3) (em euros)	119 g/km	1372	$119 \times 49,16 - 4450,15 = = 1399,89$
Total ISV: $(4) = (2) + (3)$		1934 + 1372 = $= 3306$	1970,95 + 1399,89 = = 3370,84
Soma $(1) + (4)$		18014,40 + 3306 = = 21320,40	18014,40 + 3370,84 = = 21385,24
Taxa de IVA a aplicar sobre a soma		21%	23%
Total de IVA (5)		$21320,40 \times 0,21 \approx $ $\approx 4477,28$	$21385,24 \times 0,23 \approx $ $\approx 4918,61$
Preço de venda ao público (1)	+(4) + (5) (em euros)	$21320,40 + 4477,28 = \\ = 25797,68$	$21385,24+4918,61 = \\ = 26303,85$

Assim, a diferença entre o preço de venda ao público em 2011 e em 2010 do veículo indicado, é:

$$26303,85 - 25797,68 = 506,17$$

Ou seja, em 2011 o veículo era 506,17 euros mais caro do que em 2010.

Exame - 2012, 2.ª Fase

32. Averiguando a hipótese do depósito ter sido remunerado com uma taxa de juro fixa, calculamos a taxa de juro (j) correspondente ao acréscimo de capital do final de 2004 para o final de 2005: Como $25\,625-25\,000=625$, temos que:

$$25\,000 \times j = 625 \iff j = \frac{625}{25\,000} \iff j = 0.025$$

Podemos agora verificar que a taxa de juro de 2.5% é compatível com a evolução do depósito do senhor Jerónimo, e calcular o capital acumulado nos três anos seguintes:

Evolução do depósito do senhor Jerónimo (instituição A)	A_n	Cálculo
A_0 : Capital depositado no final de 2004	€25 000,00	_
A_1 : Capital acumulado no final de 2005	€25 625,00	$25000,00 \times 1,025 = \\ = 25625,00$
A_2 : Capital acumulado no final de 2006	€26 265,63	$25625,00 \times 1,025 \approx $ $\approx 26265,63$
A_3 : Capital acumulado no final de 2007	€26 922,27	$26\ 265,63 \times 1,025 \approx $ $\approx 26922,27$
A_4 : Capital acumulado no final de 2008	€27 595,32	$26922,27 \times 1,025 \approx $ $\approx 27595,32$
A_5 : Capital acumulado no final de 2009	€28 285,20	$27595,32 \times 1,025 \approx $ $\approx 28285,20$
A_6 : Capital acumulado no final de 2010	€28 992,33	$28285,20 \times 1,025 \approx $ $\approx 28992,33$
A_7 : Capital acumulado no final de 2011	€29 717,14	$28992,33 \times 1,025 \approx 29717,14$

Assim, o capital acumulado no final de 2011, no depósito bancário do senhor Jerónimo, arredondado às unidades, é 29 717 euros.

 $Exame-2011,\ 2.^a\ Fase$

33.

33.1. Determinando o valor de aluguer que o António paga, nas quatro semanas, em cada uma das modalidades, temos:

	Modalidade A	Modalidade B
1.a semana:	€125	€5
2.ª semana:	$125 + 20 = 145 \in$	$2 \times 5 = 10 \in$
3. ^a semana:	$145 + 20 = 165 \in$	$2\times 10=20 \in$
4.ª semana:	$165 + 20 = 185 \in$	$2 \times 20 = 40 \in$

Assim, consultando a tabela anterior podemos verificar que o valor de aluguer que o António paga, na quarta semana, em cada uma das modalidades, é:

- Modalidade A: €185
- Modalidade B: €40

33.2. Da mesma forma, calculando o valor de aluguer que o António paga, nas oito semanas, em cada uma das modalidades, e a soma das rendas, temos:

	Modalidade A	Modalidade B
1. ^a semana:	€125	€5
2.ª semana:	€145	€10
3. ^a semana:	€165	€20
4.ª semana:	€185	€40
5. ^a semana:	$185 + 20 = 205 \in$	$2 \times 40 = 80 \in$
6.ª semana:	$205 + 20 = 225 \in$	$2 \times 80 = 160 \in$
7.ª semana:	$225 + 20 = 245 \in$	$2\times160=320 \in$
8.a semana:	$245 + 20 = 265 \in$	$2 \times 320 = 640 \in$
Soma:	€1560	€1275

Desta forma podemos concluir que a modalidade B é a que permite ao António pagar menos no somatório dos valores de aluguer pagos em 8 semanas.

Exame – 2010, 2.a Fase

34.

34.1. Completando a tabela apresentada, relativamente à situação A e à situação B, temos:

	Vencimento na situação A (€)	Vencimento na situação B (€)
1.º mês	1280,00	450,00
2.º mês	1280,00	$450 \times 1,1 = $ $= 495$
3.º mês	1280,00	$495 \times 1,1 = = 544,50$
4.º mês	1280,00	$544,50 \times 1,1 =$ = $598,95$

34.2. O valor do vencimento nos primeiros 12 meses, para a situação C, e o montante total para o primeiro ano, é:

Vencimento na situação C $(\ensuremath{\mathfrak{E}})$

```
V_1 = 800 \times 1,05^{1-1} = 800

V_2 = 800 \times 1,05^{2-1} = 840
1.^{\rm o}mês
2.^{\rm o} mês
                      V_3 = 800 \times 1,05^{3-1} = 882
3.º mês
4.º mês
                      V_4 = 800 \times 1,05^{4-1} = 962,1
                     V_5 = 800 \times 1,05^{5-1} \approx 972,41
5.^{\rm o}mês
                      V_6 = 800 \times 1,05^{6-1} \approx 1021,03
6.^{\rm o}mês
                      V_7 = 800 \times 1,05^{7-1} \approx 1072,08
7.^{\rm o}mês
                      V_8 = 800 \times 1,05^{8-1} \approx 1125,68

V_9 = 800 \times 1,05^{9-1} \approx 1181,96
8.^{\rm o}mês
9.^{\rm o}mês
                     V_{10} = 800 \times 1,05^{10-1} \approx 1241,06

V_{11} = 800 \times 1,05^{11-1} \approx 1303,12

V_{12} = 800 \times 1,05^{12-1} \approx 1368,27
10.^{\rm o}mês
11.^{\rm o} mês
12.^{\rm o} mês
```

Total 12 733,70 €

Assim, temos que a situação relativa aos vencimentos nas duas situações seriam:

	Situação A	Situação C
Vencimento no 12.º mês	1280€	1368,27€
Soma dos vencimentos nos primeiros 12 meses	1280 × 12 = = 15 360€	12 733,70€
Soma dos vencimentos nos 5 anos	1280 × 12 × 5 = = 76 800€	$12733,70 + 1368,27 \times 12 \times 4 = = 78410,66 \in$

Pelo que se concluí que se o contrato tiver uma duração de cinco anos, a situação C é mais vantajosa que a A para o Manuel.

34.3. Calculando o valor do IRS relativo ao vencimento, temos:

$$1280 \times 0.17 = 217.60 \in$$

Pelo que o valor que o Manuel efetivamente recebeu, foi:

$$1280 - 217,60 = 1062,40 \in$$

Exame - 2009, 1.a Fase

35.1. Utilizando o procedimento simplificado apresentado, o valor de IRS que o Rui e a Luísa pagaram, relativo ao ano de 2005, admitindo que não houve quaisquer deduções a fazer à coleta, é:

Cálculo do rendimento global do casal:

- Contribuinte A (marido), com um rendimento total de € 10 950.
- Contribuinte B (mulher), com um rendimento total de € 10 000.
- O rendimento global deste casal é \in 20 950 (\in 10 950 + \in 10 000).

Cálculo do rendimento coletável:

• O rendimento coletável é \in 10 475 (20 950 : 2).

Cálculo da coleta do casal:

- Consultar a tabela dada e identificar que o rendimento coletável do casal se encontra no 3.º escalão
 - (taxa a aplicar: 23,5%; parcela a abater: $\in 799,78$);
- Aplicar a taxa de imposto ao rendimento coletável do casal:
 €10 475 × 0,235 ≈ €2461,63;
- Subtrair, do valor anteriormente obtido, a parcela a abater: €2461,63 €799,78 = €1661,85
- A coleta do casal obtém-se multiplicando por 2 o valor anterior: €1661,85 × 2 = €3323,70.

Cálculo do IRS:

- IRS = coleta deduções = € 3323,70.
 Neste caso simplificado, como não existem deduções a fazer, a coleta coincide com o valor do IRS.
- 35.2. Fazendo o cálculo do IRS com a prestação do serviço, e sem a prestação do serviço, temos;

	IRS	IRS
	com a prestação do serviço	sem a prestação do serviço
Rendimento global (€)	12500 + 500 + 1000 =	12500 + 500 =
	= 14000	= 13000
Rendimento coletável (€)	14000:2=	13000:2=
Rendimento coletavei (e)	= 7000	=6500
Escalão	3	2
Taxa a aplicar (%)	23,5	13
Parcela a abater (€)	799,78	108,78
Taxa sobre o	$7000 \times 0,235 =$	$6500 \times 0.13 =$
rendimento coletável (€)	= 1645	= 845
Dedução da	1645 - 799,78 =	845 - 108,78 =
parcela a abater (€)	= 845,22	=736,22
Coleta do casal (€)	$845,22 \times 2 =$	$736,22 \times 2 =$
	= 1690,44	= 1472,44
Rendimento antes da	14,000	12,000
aplicação do imposto (€)	14000	13 000
Rendimento após da	14000 - 1690,44 =	13000 - 1472,44 =
aplicação do imposto (€)	= 12309,56	=11527,56

Assim, podemos concluir que o Manuel não tem razão, pois apesar do rendimento relativo ao serviço a prestar no Natal implicar a passagem para o 3.º escalão de IRS, e consequentemente o aumento da taxa de IRS, também aumenta a parcela a abater ao rendimento coletável, o que faz com que, após o dedução do imposto, o rendimento seja maior no caso de haver a prestação do serviço $(12\,309,56\, \in)$, do que se não existir o rendimento relativo a este serviço $(11\,527,56\, \in)$.

Exame – 2007, 1.^a Fase

