Distribución Normal

- La distribución Normal o Gaussiana es una distribución de probabilidad continua que se aproxima con mucha frecuencia en fenómenos reales, de ahí que sea la más estudiada.
- Su distribución (fd) sigue la campana de Gauss:

Ejemplos: peso de personas adultas; presión arterial en ancianos; colesterol; cociente intelectual; nivel de ruido en telecomunicaciones; expansión de un virus; etc.

Distribución Normal

• Una v.a. X tiene una distribución Normal $X \sim N(\mu, \sigma)$ de parámetros μ (media) y σ (desviación típica) si su función de densidad es:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty$$

- Parámetros:
 - f.g.m.: $\psi(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$
 - Media: $E(X) = \psi'(0) = \mu$
 - Varianza: $Var(X) = \psi''(0) \psi'(0)^2 = \mu^2 + \sigma^2 \mu^2 = \sigma^2$

Distribución Normal

Al ser continua, para cada par de parámetros μ y σ tenemos una curva de Gauss diferente, pero con una sencilla transformación cualquier distribución normal puede convertirse en la curva de Gauss estándar que llamamos tipificada. σ <1

Con una única tabla podemos calcular la probabilidad de cualquier distribución normal.

Estadística

Tabla Normal

Normal
$$N(0,1)$$
: $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$

							~~~			
$\mathbf{z}$	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.54				0'4			53
0.2	.5793	.5832	.58				84′	13%		41
0.3	.6179	.6217	.62			/	0'3	97 <b>'</b> 72	00/	17
0.4	.6554	.6591	.66:			/		3112		79
0.5	.6915	.6950	.69				0'2		99'87%	0 24
						/	UZ		- ≈1	L00%
0.6	.7257	.7291	.73:		/				İ	49
0.7	.7580	.7611	.76				0'1			52
0.8	.7881	.7910	.79:					1		33
0.9	.8159	.8186	.82							89
1.0	.8413	.8438	.84	-3	-2	-1	0 1	2	3	4 21
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
3.9	$.9^{4}52$	$.9^{4}54$	$.9^{4}56$	$.9^{4}58$	$.9^{4}59$	$.9^{4}61$	$.9^{4}63$	$.9^{4}64$	$.9^{4}66$	$.9^{4}67$
4.0	$.9^468$	$.9^470$	$.9^471$	$.9^472$	$.9^473$	$.9^474$	$.9^{4}75$	$.9^476$	$.9^477$	$.9^478$

Tema 5. Modelos de Distribución

Estadística Grado en Ingeniería Informática nto, de Ciencia de la Computación e Inteligencia Artificial

Dpto. de Ciencia de la Computación e Inteligencia Artificial Universidad de Alicante

#### Tabla Normal

- La tabla representa la función de distribución  $\Phi(z) = P(Z \le z)$  de una v.a. normal tipificada  $Z \sim N(0,1)$  (la fd se denota por  $\phi$ ).
- El valor de z abarca desde 0 hasta 4'09, ya que a partir de 4 tenemos que  $\Phi(4) \approx 1$ .
- Los valores negativos no son necesarios dada la simetría por la que  $\Phi(z) + \Phi(-z) = 1$ . Si se realiza una búsqueda inversa, una probabilidad menor que 0'5 indica que z es negativo.
- z se representa con 2 decimales, el primero en la  $1^a$  columna y el segundo en la  $1^a$  fila. Si z tiene mayor precisión, se puede usar interpolación lineal.
- La precisión es de 4 dígitos hasta z = 3'09, y mayor hasta 4'09 indicando con un exponente el nº de nueves.

Universidad de Alicante

- Sea  $X \sim N(15, 2)$ .
  - a) Calcular  $P(X \le 16)$ .
  - b) Calcular P(X > 20).
  - c) Calcular  $P(X \le 11)$ .

 El peso de los niños de dos años sigue una distribución normal de media 12 kg y varianza 4. Calcular la probabilidad de que un niño pese entre 13'5 y 14'5 kg.

Universidad de Alicante

#### Media muestral

- Una muestra aleatoria de tamaño n de una v.a. X consiste en un conjunto de n variables <u>independientes</u> X_i con la misma distribución que X (no necesariamente Normal).
- La media aritmética de una muestra se llama media muestral:
   V + V + ... + V

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Sea  $\mu$  la media de  $X_i$  y  $\sigma^2$  la varianza, entonces:

$$E(\overline{X}_n) = \mu \quad Var(\overline{X}_n) = \frac{\sigma^2}{n}$$
 (demo)

#### Media muestral de v.a. normales

• T^{ma}: Sea una muestra  $\{X_i\}_1^n$  de v.a. <u>normales</u> e <u>independientes</u>  $X_i \sim N(\mu, \sigma)$ , entonces la v.a. media muestral  $\overline{X}_n = \frac{\sum_i X_i}{n}$  sigue una distribución normal de media  $\mu$  y varianza  $\sigma^2/n$ :

$$\bar{X}_n \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

El peso de los niños de dos años sigue una distribución normal de media 12 kg y varianza 4. Se eligen al azar 9 niños. Calcular la probabilidad de que la media muestral esté entre 13'5 y 14'5 kg.

# Combinación lineal de v.a. normales

• T^{ma}: Sean n v.a.  $X_i$  normales, independientes y con diferentes distribuciones  $X_i \sim N(\mu_i, \sigma_i)$ , entonces la combinación lineal  $X = \sum_i a_i X_i + b$  sigue una distribución normal de media  $\sum_i a_i \mu_i + b$  y varianza  $\sum_i a_i^2 \sigma_i^2$ :

$$X \sim N \left( \sum_i a_i \mu_i + b , \sqrt{\sum_i a_i^2 \sigma_i^2} \right)$$

Deducir mediante las propiedades de la esperanza y la varianza.

 El peso de los niños de dos años sigue una distribución normal de media 12 kg y varianza 4. El peso de los adultos también es normal, de media 75 kg y desviación típica 10.

En un ascensor suben 2 niños de dos años, 3 adultos y una maleta de 20 kg.

¿Cuál es la probabilidad de que su peso supere la carga máxima del mismo que es de 300 kg?

## Teorema Central del Límite

• T^{ma} (TCL): Sean n v.a.  $X_i$  independientes y con la misma distribución, donde  $E(X_i) = \mu$  y  $Var(X_i) = \sigma^2$  finita, entonces:

$$\lim_{n\to\infty} P\left(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \le x\right) = \Phi(x)$$

- Básicamente nos dice que si tenemos un cjto. grande de v.a. (indep. y con la misma distribución) de cualquier tipo, discretas o continuas, la suma o la media muestral de las mismas se aproxima a la normal.
- En particular, tenemos (muestras grandes, n > 30):

$$\sum_{1}^{n} X_{i} \sim N(n\mu, \sigma\sqrt{n})$$

$$\bar{X}_{n} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

# Aproximaciones por la normal

- Como consecuencia del TCL, las distribuciones Binomial y Poisson se pueden aproximar por la Normal.
- Binomial:

$$X \sim B(n, p) \rightarrow X \sim N(np, \sqrt{npq})$$

- Ejemplo: si  $X \sim B(400, 0'2)$ , entonces  $X \sim N(80, 8)$ .
- Poisson:

$$X \sim P(\lambda) \to X \sim N(\lambda, \sqrt{\lambda})$$

• Ejemplo: si  $X \sim P(80)$ , entonces  $X \sim N(80, 8'94)$ .

# Corrección por continuidad

- Cuando se aproxima una v.a. discreta  $(B \circ P)$  por una continua (N) se comete un error ya que una probabilidad para un valor discreto pasa a ser una probabilidad para un intervalo.
- En particular tenemos que en continua  $P(X < a) = P(X \le a)$  y P(X = a) = 0, cosa que no ocurre con una v.a. discreta.



No sólo se utiliza al pasar de discreta a continua, también se usa cuando las medidas de partida están redondeadas.

 En un estudio se estima que la probabilidad de que, en una región, una persona sufra problemas coronarios es de 1/6. Calcula la probabilidad de que en un pueblo de esa región con 3000 habitantes haya más de 550 personas con problemas coronarios.

Universidad de Alicante