RyzhkinMA 20122024-155803

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Источник колебаний с доступной мощностью 4.7 дБм и частотой 2490 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 136 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2489.99994 МГц, если спектральная плотность мощности его собственных шумов равна минус 132 дБм/Гц, а полоса пропускания ПЧ установлена в положение 1 Гц?

- 1)-121.8 дБм
- 2) -123.5 дБм
- 3)-125.2 дБм
- 4)-126.9 дБм
- 5)-128.6 дБм
- 6)-130.3 дБм
- 7) -132 дБм
- 8) -133.7 дБм
- 9) -135.4 дБм

Источник колебаний и частотой 6340 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 174 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1170 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 200 Гц, если с доступная мощность на выходе источника равна 0.3 дБм? Варианты ОТВЕТА:

- 1)-167.4 дБн/Гц
- 2)-167.9 дБн/Гц
- 3)-168.4 дБн/Гц
- 4)-168.9 дБн/ Γ ц
- 5)-169.4 дБн/Гц
- 6) -169.9 дБн/ Γ ц
- 7) -170.4 дБн/ Γ ц
- 8)-170.9 дБн/Гц
- 9) -171.4 дБн/ Γ ц

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 4580 МГц и спектральную плотность мощности фазового шума на отстройке 100 кГц минус 137 дБрад 2 /Гц . Спектральная плотность мощности фазового шума на отстройке 100 кГц синтезированного колебания равна минус 132 дБн/Гц, а частота его равна 11500 МГц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 кГц при описанном выше некогерентном синтезе?

- 1)-139.4 дБн/Гц
- 2) -136.4 дБн/ Γ ц
- 3)-135.8 дБн/Гц
- 4)-134.4 дБн/Гц
- 5)-133.4 дБн/Гц
- 6) -132.7 дБн/Гц
- 7) -132.1 дБн/Гц
- 8)-131.4 дБн/Гц
- 9)-129.7 дБн/Гц

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 3.615 к Γ ц на 6.8 дB больше, чем вклад Γ УН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад О Γ на 3.6 дB больше, чем вклад Γ УН. Известно, что C=31.6 н Φ , а $R_1=1434$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- $1)1491 \, \text{Om}$
- $2)1514 \, \text{Om}$
- $3)1537 \, \text{OM}$
- $4)1560 \, O_{\rm M}$
- 5) 1583 O_M
- 6) 1606 O_M
- $7)1629 \, O_{\rm M}$
- 8) $1652 \, \text{Om}$
- 9) $1675 \, \text{Om}$

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 90 МГц. Частота колебаний ГУН 4570 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 137.4 дБн/Гц для ОГ и плюс 3 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=2.4529,\ \tau=65.3698$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.8 MГц/В. Крутизна характеристики фазового детектора 0.8 B/рад.

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дБ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 764 кГц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза? Варианты ОТВЕТА:

- 1) на плюс 13.2 дБ
- 2) на плюс 12.8 дБ
- 3) на плюс 12.4 дБ
- 4) на плюс 12 дБ
- 5) на плюс 11.6 дБ
- на плюс 11.2 дБ
- 7) на плюс 10.8 дБ
- 8) на плюс 10.4 дБ
- 9) на плюс 10 дБ

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10^0 , а крутизна характеристики управления частотой ГУН равна 1.9 МГц/В. Частота колебаний опорного генератора (ОГ) 230 МГц. Частота колебаний ГУН 2040 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 2.7 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус $10~{\rm д}$ Б/декада, а фазовых шумов ГУН минус $30~{\rm d}$ Б/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки $580~{\rm k}$ Гц на $6.3~{\rm d}$ Б больше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, $\Phi Д$ - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 0.91 В/рад
- 2) 1.20 В/рад
- 3) 1.49 В/рад
- 4) 1.78 В/рад
- 5) 2.07 В/рад
- 6) 2.36 В/рад
- 7) 2.65 B/рад
- 8) 2.94 В/рад
- 9) 3.23 В/рад