Internal combustion engine

Patent Number:

DE3237337

Publication date:

1983-04-28

Inventor(s):

MELDE-TUCZAI HELMUT DIPL ING (AT); SKATSCHE OTHMAR DIPL ING (AT)

Applicant(s):

LIST HANS (AT)

Requested Patent:

DE3237337

Application Number: DE19823237337 19821008

Priority Number(s):

AT19810004412 19811014

IPC Classification:

F02B37/00

EC Classification:

F02D21/08

Equivalents:

Abstract

In the case of an internal combustion engine with turbocharger a controllable, partial return of the combustion exhaust gases into the fresh air intake is proposed, a throttle valve post-connected to the turbocharger being arranged in the exhaust gas and/or fresh air line in order to prevent power losses in certain operating ranges, which valve enables the pressure differential between exhaust gas line and fresh air intake determining the rate of return to be controlled by simple means.

Data supplied from the esp@cenet database - I2

® BUNDESREPUBLIK DEUTSCHLAND

OffenlegungsschriftDE 3237337 A1

⑤ Int. Cl. 3: F02B37/00

DEUTSCHES PATENTAMT

- ② Aktenzeichen:
- Anmeldetag:
- Offenlegungstag:

P 32 37 337.6-13

8. 10. 82

28. 4.83

30 Unionspriorität: 12 (3) (3)

14.10.81 AT A4412-81

Anmalder: List, Hans, Prof. Dipl. Ing. Dr.Dr.h.c., 8010 Graz, AT

Wertreter:

Katscher, H., Dipl.-Ing., Pat.-Anw., 6100 Darmstadt

@ Erfinder:

Skatsche, Othmar, Dipl.-Ing.; Melde-Tuczai, Helmut, Dipl.-Ing., Graz, AT

Prüfüngsantrag gem. § 44 PatG ist gestellt

M Brennkraftmaschine

Bei einer Brennkrattmaschine mit Turbolader ist eine regelbare, teilweise Rückführung der Verbrennungsabgase in die Frischluftzuführung vorgesehen, wobei zur Vermeidung von Leistungseinbußen in bestimmten Betriebsbereichen ein dem Turbolader nachgeschaltetes Drosselventil in der Abgas- und oder Frischlufteitung angeordnet ist, welches die die Rückführrate mitbestimmende Druckdifferenz zwischen Abgasleitung und Frischluftzuführung auf einfache Weise zu steuern erlaubt. (32 37 337)

JE 3237337 A 1

Professor Dipl.-Ing. Dr.Dr. h.c. Hans LIST Brennkraftmaschine

Patentansprüche:

- Brennkraftmaschine mit Turbolader, bei welcher die Ableitung der Verbrennungsgase über eine ein Steuerventil aufweisende Rückführleitung mit der Frischluftzuführung zu dem bzw. den Zylinder(n) verbunden ist, wobei die die Rückführrate mitbestimmende Druckdifferenz zwischen Abgasleitung und Frischluftzuführung über eine Steuereinrichtung regelbar ist, dad urch gekennzeichtung regelbar ist, dad urch gekennzeichtung dem Turbolader (1) nachgeschaltetes Drosselventil (11) in der Abgasleitung (6) und/oder Frischluftzuführung (3) aufweist.
 - 2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, daß das Drosselventil (11) zusammen mit dem
 Steuerventil (10) auf einer gemeinsamen Welle (16) in
 einem gemeinsamen Gehäuse (13) angeordnet und von
 einem für beide Ventile gemeinsamen Stellantrieb (12)
 betätigt ist.

Professor Dipl.-Ing. Dr.Dr. h.c. Hans LIST Brennkraftmaschine

5

10

15

20

Die Erfindung betrifft eine Brennkraftmaschine mit Turbolader, bei welcher die Ableitung der Verbrennungsgase über eine ein Steuerventil aufweisende Rückführleitung mit der Frischluftzuführung zu dem bzw. den Zylinder(n) verbunden ist, wobei die die Rückführrate mitbestimmende Druckdifferenz zwischen Abgasleitung und Frischluftzuführung über eine Steuerein-richtung regelbar ist.

Zur Verminderung des Gehaltes an Stickstoffoxyden $(\mathrm{NO}_{\mathbf{x}})$, welche vorzugsweise bei hohen Temperaturen und hohem Sauerstoffangebot bei der Verbrennung entstehen, im Abgas von Brennkraftmaschinen bieten sich die folgenden bekannten Maßnahmen an:

Verspäteter Zündzeitpunkt: Dadurch wird die Verbrennungsendtemperatur gesenkt, wobei jedoch gleichzeitig Erhöhungen im Rauchwert und in den HC- und CO-Emissionen sowie im Kraftstoffverbrauch der Brennkraftmaschine auftreten.

Zumischung eines Mittels zum Kraftstoff, welches sich in höherem Maße als Stickstoff zur Oxydation anbietet.

Ladeluftkühlung: Diese bei aufgeladenen Motoren in Betracht zu ziehende Möglichkeit senkt ebenfalls die Verbrennungsendtemperatur.

Wassereinspritzung: Durch die hohe Wärmekapazität des Wassers wird ebenfalls die Verbrennungstemperatur abgesenkt; der erhebliche Nachteil dieser Maßnahme liegt im notwendigen hohen Aufwand an Zusatzgeräten.

BAD ORIGINAL

10

15

20

25

30

35

- 3 -

Abgasrückführung: Dabei wird ein gewisser Prozentsatz des Abgases wieder der Ansaugluft der Brennkraftmaschine zugeführt; wegen der verzögerten Verbrennung, des geringeren Sauerstoffangebotes und wegen der höheren Wärmekapazität des Abgas- Luft-Gemisches sinkt das Temperaturniveau der Verbrennung und somit die NO_X-Emission. Außerdem wird ein Teil des Abgases samt seinen Emissionen wieder umgewälzt, sodaß sich die tatsächlich vom Auspuff abgegebene Emissionsrate nochmals um den Prozentsatz der Abgasrückführung reduziert.

Speziell bei Brennkraftmaschinen mit Turbolader tritt das Problem auf, daß der Druckunterschied zwischen Abgasleitung und Ladeluftleitung nur sehr gering ist und daß daher der Transport der rückzuführenden Abgasmenge nur ungenügend gewährleistet ist. In einer beispielsweise aus der DE-OS 28 28 923 bekannten Brennkraftmaschine der eingangs genannten Art ist zur Berücksichtigung dieses Problems eine Steuereinrichtung vorgesehen, welche eine Differenzdruckdose aufweist, die einerseits vom Abgasdruck und andererseits vom Ladeluftdruck beaufschlagt ist und die ein Ventil betätigt, welches eine von der vorhandenen Druckdifferenz sowie von äußeren Einstellgrößen bestimmte Menge von verdichteter Ladeluft aus der Frischluftzuführung ins Freie abströmen läßt. Auf diese Art wird bei der bekannten Einrichtung eine Absenkung des Druckes in der Ladeluftleitung vor der Einmündung der Abgasrückführleitung ermöglicht, wodurch, da die Rückführrate durch die Druckdifferenz zwischen Abgasableitung und Frischluftzuführung mitbestimmt ist, eine Verbesserung der Abgasrückführung erreicht ist.

Ein entscheidender Nachteil dieser bekannten Einrichtung liegt darin, daß insbesonders bei Betriebszuständen im mittleren und unteren Drehzahlbereich, wo eine relativ hohe Abgasrückführrate erwünscht ist, relativ viel an bereits verdichteter Ladefrischluft abgelassen werden muß, wodurch die an sich durch die Ladeluftverdichtung erreichbare Leistungssteigerung zu

einem großen Teil wieder rückgängig gemacht wird. Weiters ist die bekannte Einrichtung sehr kompliziert aufgebaut und bedingt damit eine nicht unerhebliche Verteuerung der Brennkraftmaschine.

Aufgabe der vorliegenden Erfindung ist es, die angeführten Nachteile der bekannten Brennkraftmaschine zu
vermeiden und eine Brennkraftmaschine der eingangs genannten Art so zu verbessern, daß bei einfachem konstruktiven Aufbau keine wesentliche Leistungseinbußen
durch die Abgasrückführung eintreten.

Dies wird gemäß der Erfindung dadurch erreicht, daß die Steuereinrichtung ein in Strömungsrichtung dem Turbolader nachgeschaltetes Drosselventil in der Abgasleitung und/oder Frischluftzuführung aufweist. Auf diese Weise kann also - neben einer Beeinflussung der rückgeführten Verbrennungsgase durch das Steuerventil in der Rückführleitung auf einfache Weise auch die die Rückführrate mitbestimmende Druckdifferenz zwischen Abgasleitung und Frischluftzuführung über ein einfaches Drosselventil, welches abhängig von verschiedenen Betriebsgrößen der Brennkraftmaschine wie z.B. Last und Drehzahl sowie abhängig von einstellbaren Parametern steuerbar ist, beeinflußt werden. Neben der Verringerung des konstruktiven Aufwandes ist also auch auf einfache Weise eine sehr gute Anpassung der Rückführrate an die im jeweiligen Motorbetriebszustand optimale Rückführrate möglich. Ebenfalls ein Vorteil ist, daß die Leistungsverluste, welche durch die Abgasrückführung sowie deren Regelung auftreten; nur unbedeutend sind.

In weiterer Ausbildung der Erfindung ist vorgesehen, daß das Drosselventil zusammen mit dem Steuerventil auf einer gemeinsamen Welle in einem gemeinsamen Gehäuse angeordnet und von einem für beide Ventile gemeinsamen Stellantrieb betätigt ist. Dies ist eine besonders einfache konstruktive Ausbildung der Erfindung, welche hinsichtlich Herstellung und Wartung sehr vorteilhaft ist.

lie Erfindung wird im folgenden annand der in der

BAD ORIGINAL

10

15

5

20

25

30

Zeichnung schematisch dargestellten Ausführungsbeispiele näher erläutert:

In den

Fig. 1 bis 4 sind verschiedene Ausführungsformen der erfindungsgemäßen Brennkraftmaschine dargestellt;

Fig. 5 zeigt einen Längsschnitt durch ein zusammen mit einem Drosselventil in einem gemeinsamen Gehäuse angeordnetes Steuerventil,

Fig. 6 einen Schnitt entlang der Linie VI-VI in Fig. 5,

Fig. 7 einen Schnitt entlang der Linie VII-VII in Fig. 6 und

Fig. 8 einen Schnitt entlang der Linie VIII-VIII in Fig. 6.

Die Brennkraftmaschine nach Fig. 1 weist einen Turbolader 1 auf, dessen Turbine 5 über einzelne Abgasleitungen 7 mit den jeweiligen Zylindern in Verbindung steht und der über einen Verdichter 2, der in nicht näher dargestellter Weise direkt von der Turbine 5 angetrieben wird, die über eine Frischluftzuführung 3 gelieferte Ladeluft in den zu den einzelnen Zylindern der Brennkraftmaschine führenden Einlaßsammler 4 verdichtet.

Parallel zu der mit dem Verdichter 2 verbundenen Frischluftzuleitung 3 ist eine Rückführleitung 8 vorgesehen, welche ebenfalls mit dem Einlaßsammler 4 in Verbindung steht, ein Steuerventil 10 aufweist, und in Strömungsrichtung der Auspuffgase gesehen, vor der Turbine 5 von den Abgasleitungen 7 abzweigt. Damit wäre bereits das Prinz der sogenannten Abgasrückführung zu verwirklichen, nach welchem abhängig vom jeweiligen Betriebszustand der Brennkraftmaschine, ein gewisser Teil der Verbrennungsabgase der Frischluft zugeführt wird, wodurch sich insbesonders Verbesserungen hinsichtlich der NO_X-Emissionsrate erzielen lassen.

BAD ORIGINAL

5

10

15

. 25

20

. 35

5

10

15

20

25

30

35

tung ist immer notwendig, da es Betriebszustände gibt, in denen keine Abgase rückgeführt werden dürfen (z.B. Vollast).

Da jedoch weiters durch die Dimensionierung der einzelnen Leitungszweige alleine nur eine sehr unvollkommene Anpassung der Rückführrate an den jeweiligen Betriebszustand der Brennkraftmaschine möglich wäre, ist außer dem Steuerventil 10 in der Rückführleitung 8 auch ein Drosselventil 11 in der Frischluftzuleitung 3 vorgesehen, womit einerseits der Ladeluftstrom und andererseits der Abgasstrom in der Rückführleitung 8 geregelt werden können. So kann beispielsweise durch eine Herabdrosselung des Frischluftstromes in der Leitung 3 eine größere Druckdifferenz zur Rückführleitung 8 erreicht werden, was unmittelbar eine größere Rückführrate mit sich bringt. Im dargestellten Ausführungsbeispiel ist das Drosselvertil 11 zusammen mit dem Steuerventil 10 in einem gemeir.samen Gehäuse angeordnet; Details zu einer derartigen Anordnung sind den Fig. 5 bis 8 sowie der zugehörigen Beschreibung zu entnehmen. Beide Ventile 10, 11 sind hier als Klappenventile ausgebildet und von einem gemeinsamen Stellantrieb 12, der beispielsweise von einem elektrischen Stellmotor, einem hydraulischen Zylinder oder ähnlichem gebildet sein kann und auf hier nicht darge: tellte Weise abhängig von verschiedenen Betriebsgrößen der Brennkraftmaschine, wie beispielsweise Last, Temperatur oder Drehzahl, gesteuert ist, betätigt.

Die in Fig. 2 dargestellte Ausführung unterscheidet sich von der nach Fig. 1 lediglich dadurch, daß hier das Steuerventil 10 und das Drosselventil 11 je für sich ausgebildet sind und auch jeweils einen eigenen Stellantrieb 12 aufweisen. Damit kann die Frischluftzuführung 3 unabhängig von der Rückführleitung 8 gesteuert werden, was eine Erweiterung der Möglichkeiten der Regelung der Rückführrate ergibt und damit den gegenüber der Ausführung nach Fig. 1 vorhandenen

BAD ORIGINAL

10

15

20

25

30

35

- 7 -

Nachteil der größeren konstruktiven Aufwendigkeit ausgleicht. Im übrigen gilt für die hier dargestellte Brennkraftmaschine das auch bereits zu Fig. 1 Ausgeführte.

Die Ausführung nach Fig. 3 entspricht im wesentlichen wiederum den zu den Fig. 1 und 2 besprochenen
Brennkraftmaschinen; in Unterschied zu den bereits besprochenen Ausführungen ist hier ein Drosselventil 11
in die Abgasleitung 6 nach der Turbine 5 des Turboladers 1 eingeschaltet und die Frischluftzuführung 3 vom
Einlaßsammler 4 bis zum Verdichter 2 ohne Drosselmöglichkeit ausgebildet. Das Steuerventil 10 in der Rückführleitung 6 ist nach wie vor vorhanden und wird,
ebenso wie das Drosselventil 11 von einem eigenen
Stellantrieb 12 betätigt. Auch durch diese Ausbildung
ist wiederum eine gezielte Beeinflussung des die Rückführrate mitbestimmenden Differenzdruckes zwischen der
Rückführleitung 8 und der Frischluftzuführung 3 möglich.

Die Ausführung nach Fig. 4 zeigt im wesentlichen eine Kombination der Ausführungen nach Fig. 3 und Fig. 1; es ist hier ein Prosselventil 11 sowohl in der Abgasleitung 6 als auch in der Frischluftzuführung 3 vorgesehen, wobei das in der Frischluftzuführung 3 zusammen mit dem Steuerventil 10 der Rückführleitung 8 in einem gemeinsamen Gehäuse angeordnet und von einem für diese beiden Ventile gemeinsamen Stellantrieb 12 betätigt ist. Auf diese Weise ist eine noch weitergehende Beeinflussung des Differenzdruckes zwischen Rückführleitung 8 und Frischluftzuführung 3 möglich, was eine noch genauere Anpassung der Rückführrate an den jeweiligen Betriebszustand der brennkraftmaschine ermöglicht.

In den Fig. 5 bis 8 ist die konstruktive Ausbildung eines gemeinsam mit dem Steuerventil 10 in einem Gehäuse 13 angeordneten Drosselventils 11 dargestellt. Die Klappen 14, 15 der Ventile 10, 11 sind auf einer

BAD ORIGINAL

- 8 -

gemeinsamen Achse 16 angeordnet, welche von einem am Gehäuse 13 angeflanschten Stellantrieb 12 verdrehbar ist. Bei einem Einbau der dargestellten Anordnung beispiclsweise gemäß Fig. 1 wäre das Steuerventil 10 in die Rückführleitung 8 und das Drosselventil 11 in die Frischluftzuführung 3 eingeschaltet. Es ist zu erkennen, daß das die Rückführleitung 8 steuernde Steuerventil 10 so ausgebildet ist, daß mit der Klappe 14 eine vollständige Abschließung des Durchflußquerschnittes möglich ist, wogegen mit der Klappe 15 des Drosselventiles 11 nur eine begrenzte Schließung des Dürchflußkanals möglich ist.

Durch die dargestellte gemeinsame Anordnung der beiden Ventile ist der Vorteil einer besonders einfachen konstruktiven Ausbildung sowie einer beispielsweise für Wartungszwecke notwendigen sehr leichten Ausbaubarkeit gegeben.

1982 09 16 Kr/Pi/Fr

5

Nummer: Int. Cl.³:

32 37 337 F02 B 37/00 8. Oktober 1982

Anmeldetag: Offenlegungstag: 28. April 1983

<u>|-</u>VI

