Leçon 122 : Anneaux principaux. Exemples et applications.

Développements :

Théorème des deux carrés, $\mathbb{C}[X,Y]/(XY-1)$ est principal

Bibliographie:

Perrin (P), Combes
(C), Tauvel Algèbre (T), Objectif Agreg (OA), Goblot Algèbre commutative

Notes

Merci à Jeremy Leborgne et Matthieu Romagny pour leurs conseils.

Plan

Dans la suite, A est un anneau commutatif, unitaire et intègre.

Définition 1 (P p.46 ou C p.241 ou T p.225). a divise b

Proposition 2 (P p.46 ou C p.241 ou T p.225). $a|b \Leftrightarrow (a) \subset (b)$

Proposition 3 (P p.46 ou T p.226). (a) = (b) ssi il existe $u \in A^*$ tel que a = bu.

Définition 4 (P p.46 ou T p.226). associés

1 Notion de principalité

1.1 Idéaux

Définition 5 (P p.42 ou C p.237 ou T p.225). idéal principal

Exemple 6. Les $n\mathbb{Z}$ sont des idéaux principaux de \mathbb{Z} : tous les idéaux sont principaux dans \mathbb{Z} . Mais $(2,X)\subset \mathbb{Z}[X]$ n'est pas principal

Définition 7 (P p.43). idéal premier

Proposition 8 (P p.43). I premier ssi A/I intègre

Exemple 9 (P p.43). les $p\mathbb{Z}$ sont premiers dans \mathbb{Z} pour p premier.

Définition 10. élément premier

Proposition 11. a premier ssi (a) premier

Définition 12 (P p.43). idéal maximal

Proposition 13 (P p.43). I maximal ssi A/I corps

Exemple 14 (P p.43). les $p\mathbb{Z}$ sont maximaux dans \mathbb{Z} pour p premier.

Remarque 15 (P p.43). Un idéal maximal est premier

Contre-exemple 16 (P p.43). dans k[X,Y], (X) est un idéal premier non maximal

Définition 17 (P p.46 ou C p.241 ou T p.226). Elément irréductible

Proposition 18 (T p.226). Un élément premier est irréductible

1.2 Anneaux principaux

Définition 19 (C p.237 ou T p.231). Anneau principal

Dans la suite du paragraphe, on supposera A principal

Exemple 20 (T p.231). \mathbb{Z} est principal mais pas $\mathbb{Z}[X]$.

Proposition 21 (C p.250 ou T p.231). a premier ssi a irréductible (a) maximal ssi a irréductible.

Proposition 22 (P p.51 ou T p.231). $si\ K[X]$ est principal alors K est un corps

Exemple 23 (C p.252). K[X,Y] n'est pas principal.

Définition 24 (T p.227). définir un pgcd et un ppcm dans un anneau quelconque : définition alternative d est un pgcd de (a_i) si d divise tous les a_i et si tout diviseur commun des a_i est un diviseur de d. Pareil pour ppcm.

Proposition 25 (C p.242 et ou(T p.232)+Gob p.24). pgcd et ppcm existent + la donnée avec les idéaux.

Contre-exemple 26 (P p.61). On n'a pas forcément existence si on n'est pas dans un anneau principal : dans $\mathbb{Z}[i\sqrt{5}]$, 3 et $2+i\sqrt{5}$ sont sans ppcm et 9 et $6+3i\sqrt{5}$ sans pgcd.

Corollaire 27 (T p.232 ou Gob p.26). Bezout pour d=1 et d quelconque

Exemple 28. $X^2 + 2X + 1$ et X + 2 sont premiers entre eux (relation de Bezout)

Application 29 (OA p.163). Lemme des noyaux pour les polynômes (!!sous hypothèse que A[X] est principal!!)

Corollaire 30 (C p.243 ou T p.229 ou Gob p. 26). Lemme de Gauss

Définition 31 (Gob p100 ou 152 ou C p.249). Idéaux étrangers

Proposition 32 (C p.249). a et b premiers entre eux ssi (a) et (b) sont étrangers. (le sens réciproque est tjrs vrai)

Contre-exemple 33. 2 et X sont premiers entre eux mais pas étrangers 2.2.1 Anneaux factoriels dans $\mathbb{Z}[X]$

Théorème 34 (C p.249). Théorème chinois

Exemple 35 (C p.249). Résolution d'un système de congruences dans \mathbb{Z}

Anneaux euclidiens et factorialité

Un exemple d'anneaux principaux : les anneaux euclidiens

Définition 36 (P p.50 ou C p.238 ou T p.232). Anneau euclidien

Proposition 37 (Pp.50 ou Cp.239 ou Tp.232). Euclidien implique principal

Contre-exemple 38 (P p.53 ou T p.232). $\mathbb{Z}[\frac{1+i\sqrt{19}}{2}]$ est principal non euclidien (admis)

Proposition 39 (P p.50). Division euclidienne dans A[X] où A est un an-

Exemple 40 (P p.50 ou T p.232). $(\mathbb{K}[X], deq)$ où \mathbb{K} est un corps, est un anneau euclidien.

Proposition 41. \mathbb{K} est un corps ssi $\mathbb{K}[X]$ est euclidien ssi $\mathbb{K}[X]$ est principal

Application 42 (OA p.161). Existence du polynôme minimal d'un endomorphisme

Application 43 (P p.66 ou C p.239). Polynôme minimal d'un élément dans un corps

Exemple 44. $\mathbb{R}[X]$ est euclidien.

Application 45 (C p.251). $X^2 + 1$ est irréductible dans $\mathbb{R}[X]$, on définit ainsi le corps $\mathbb{C} \cong \mathbb{R}[X]/(X^2+1)$.

Exemple 46 (P p.50). (à voir...) L'anneau des séries formelle $\mathbb{K}[[X]]$ est euclidien. Ses idéaux sont de la forme (X^p) avec $p \in \mathbb{N}$. Ses inversibles sont les éléments tels que $a_0 \neq 0$.

Application 47 (C p.243). Obtention d'une relation de Bézout grâce à la division euclidienne

Factorialité dans les anneaux principaux 2.2

[T]

On suppose A principal. (pour le développement on a besoin de définir anneau factoriel)

Lemme 48 (T p. 231). Toute suite croissante d'idéaux est stationnaire (i.e. anneau noetherien)

Définition 49 (SZ p. 511 ou P p.47 ou C p.245 ou T p.228). Système de représentants

Définition 50 (SZ p. 511 ou P p.47 ou C p.244 ou T p.231). Anneau factoriel

Exemple 51 (SZ p. 511 ou P p.47 ou T p.228). Décomposition en nombres premiers positifs dans \mathbb{Z} , et en polynômes irréductibles unitaires dans $\mathbb{K}[X]$, avec K un corps.

Contre-exemple 52 (P p.48 ou T p.229). $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel car $9 = 3 * 3 = (2 + i\sqrt{5})(2 - i\sqrt{5}).$

Proposition 53 (P p.48 ou T p.229). Equivalence entre unicité, lemme d'Euclide, p irréductible ssi (p) premier, et thm de Gauss

Théorème 54 (T p. 231). Principal implique factoriel

Proposition 55 (P p.48 ou C p.245 ou T p.230). Ecriture du pgcd et du ppcm avec le système de représentants

2.2.2 A factoriel implique A[X] factoriel

Définition 56 (T p. 234). Contenu d'un polynôme, polynôme primitif

Proposition 57 (T p. 234). Contenu d'un produit de polynômes

Proposition 58 (T p. 235). Irrécuctibles de A[X]

Théorème 59 (T p. 235). A factoriel implique A[X] factoriel

(pour le dylpt on a besoin de savoir que $\mathbb{C}[X,Y]$ est factoriel)

Application 60. $\mathbb{C}[X,Y]/(XY-1)$ est principal

3 L'anneau $\mathbb{Z}[i]$ des entiers de Gauss

Définition 61 (P p.56 ou T p.232). anneau des entiers de Gauss

Proposition 62 (P p.57 ou T p.233). $\mathbb{Z}[i]$ est euclidien avec le stathme N

Application 63. Résolution de $x^2 + y^2 = 15$ grâce à la factorialité

Proposition 64 (P p.56 et 58 ou C p.247 ou T p.233-234). Les inversibles et les irréductibles de $\mathbb{Z}[i]$.

Application 65 (C p.252). Détermination d'un pgcd dans $\mathbb{Z}[i]$

Proposition 66 (P p.57 ou C p.247 ou T p.233). Thm des deux carrés pour un nombre premier

Théorème 67 (P p.57 ou C p.247 ou T p.233). Thm des deux carrés général

Exemple 68 (P p.58 ou C p.248 ou T p.233). Décomposer de certains nombres en somme de deux carrés.