Student Performance Analysis

Problem Statement

This Project understands how the student's performance is affected by other variables such Gender, Ethinicity, Parentel level of education, Lunch and Test preprations

Importing Libraries

Reading Data

```
In [3]: students = pd.read_csv('StudentsPerformance.csv')
In [4]: students.head()
```

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

Data Information

```
In [5]:
          students.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 8 columns):
         #
             Column
                                           Non-Null Count
                                                            Dtype
             ----
                                            -----
                                                            ____
         0
             gender
                                           1000 non-null
                                                            object
         1
             race/ethnicity
                                           1000 non-null
                                                            object
         2
             parental level of education
                                           1000 non-null
                                                            object
         3
             lunch
                                           1000 non-null
                                                            object
         4
             test preparation course
                                           1000 non-null
                                                            object
         5
             math score
                                           1000 non-null
                                                            int64
         6
             reading score
                                           1000 non-null
                                                            int64
         7
             writing score
                                           1000 non-null
                                                            int64
        dtypes: int64(3), object(5)
        memory usage: 62.6+ KB
In [6]:
          students.shape
Out[6]: (1000, 8)
          students.dtypes
In [7]:
Out[7]: gender
                                        object
        race/ethnicity
                                        object
        parental level of education
                                        object
                                        object
        lunch
        test preparation course
                                        object
                                         int64
        math score
        reading score
                                         int64
        writing score
                                         int64
        dtype: object
In [8]:
          students.nunique()
Out[8]: gender
                                         2
        race/ethnicity
                                         5
        parental level of education
                                         6
        lunch
                                         2
                                         2
        test preparation course
        math score
                                        81
        reading score
                                        72
        writing score
                                        77
        dtype: int64
          students['gender'].unique()
In [9]:
Out[9]: array(['female', 'male'], dtype=object)
```

```
In [10]:
            students['race/ethnicity'].unique()
Out[10]: array(['group B', 'group C', 'group A', 'group D', 'group E'],
                dtype=object)
In [11]:
            students['parental level of education'].unique()
Out[11]: array(["bachelor's degree", 'some college', "master's degree",
                  "associate's degree", 'high school', 'some high school'],
                dtype=object)
In [12]:
            students['lunch'].unique()
Out[12]: array(['standard', 'free/reduced'], dtype=object)
In [13]:
            students['test preparation course'].unique()
Out[13]: array(['none', 'completed'], dtype=object)
In [14]:
            students.describe().rename({'50%': 'median'})
Out[14]:
                  math score reading score writing score
                     1000.00
                                              1000.00
            count
                                  1000.00
                       66.09
                                    69.17
                                                68.05
            mean
                       15.16
                                    14.60
                                                15.20
              std
              min
                        0.00
                                    17.00
                                                10.00
             25%
                       57.00
                                    59.00
                                                57.75
                                    70.00
                                                69.00
           median
                       66.00
             75%
                       77.00
                                    79.00
                                                79.00
             max
                      100.00
                                   100.00
                                               100.00
In [15]:
            students[['math score', 'reading score', 'writing score']].skew()
Out[15]: math score
                           -0.28
          reading score
                           -0.26
          writing score
                           -0.29
          dtype: float64
In [16]:
            students.duplicated().sum()
Out[16]: 0
```

```
In [17]:
           students.isnull().sum()
Out[17]: gender
                                           0
          race/ethnicity
                                           0
          parental level of education
                                           0
                                           0
          lunch
          test preparation course
                                           0
                                           0
          math score
          reading score
                                           0
          writing score
          dtype: int64
```

• Data information:

- gender: sex of students ['male', 'felale']
- race/ethinicity: ethinicity of students -> [Group A,B,C,D,E]
- parental level of education : parent's education -> [bachelor's degree,some college,master's degree,associate's degree,high school]
- lunch : having lunch before test [standard, free/reduced]
- test preparation course : complete or not complete before test
- math score : marks scored in maths
- reading score : marks scored in reading
- writing score : marks scored in writing
- · No dupicated values in data
- · No null values in data
- No skewness in numerical data
- · All subjects' scores are close to each other

Data Visualization

Univariate Analysis

Adding column avg score

```
In [18]: students['avg_score'] = (students['math score'] + students['reading score']
```

```
In [19]:
              students.head()
Out[19]:
                                         parental
                                                                      test
                                                                             math
                                                                                   reading
                                                                                            writing
                gender race/ethnicity
                                         level of
                                                        lunch preparation
                                                                                                     avg_scor
                                                                                     score
                                                                                             score
                                                                            score
                                       education
                                                                    course
                                       bachelor's
                                                                               72
                                                                                        72
                                                                                                 74
                                                                                                         72.6
            0
                female
                              group B
                                                      standard
                                                                      none
                                          degree
                                            some
                                                                               69
                                                                                                         82.3
                female
                              group C
                                                      standard
                                                                 completed
                                                                                        90
                                                                                                 88
                                          college
                                         master's
                female
                              group B
                                                      standard
                                                                      none
                                                                               90
                                                                                        95
                                                                                                 93
                                                                                                         92.6
                                          degree
                                       associate's
            3
                  male
                              group A
                                                  free/reduced
                                                                               47
                                                                                        57
                                                                                                 44
                                                                                                          49.3
                                                                      none
                                          degree
                                           some
                                                                                                         76.3
                  male
                              group C
                                                      standard
                                                                      none
                                                                               76
                                                                                        78
                                                                                                 75
                                          college
In [20]:
              students['avg_score'].skew()
Out[20]: -0.29905711750168584
              students['avg score'].describe()
In [21]:
```

```
Out[21]: count
                    1000.00
          mean
                      67.77
          std
                      14.26
                       9.00
          min
          25%
                      58.33
          50%
                      68.33
          75%
                      77.67
                     100.00
          max
          Name: avg_score, dtype: float64
```

```
In [22]: gender_count = students['gender'].value_counts()
    gender_count
```

Out[22]: female 518 male 482

Name: gender, dtype: int64

```
In [23]: sns.set_palette('Blues')
  plt.pie(gender_count.values, labels=gender_count.index, autopct='%0.02f%%')
  plt.title('Gender Chart', fontsize=15, fontweight='bold')
```

Out[23]: Text(0.5, 1.0, 'Gender Chart')

Gender Chart


```
In [25]: plt.pie(ethnicity_count.values, labels=ethnicity_count.index, autopct='%0.2f
plt.title('Ethnicity Chart', fontsize=15, fontweight='bold')
```

Out[25]: Text(0.5, 1.0, 'Ethnicity Chart')

Ethnicity Chart


```
In [26]: education_count = students['parental level of education'].value_counts()
education_count
```

Out[26]: some college 226
associate's degree 222
high school 196
some high school 179
bachelor's degree 118
master's degree 59

Name: parental level of education, dtype: int64

```
In [27]:
    ax = sns.barplot(x=education_count.index, y=education_count.values)
    ax.set_xticklabels(ax.get_xticklabels(), rotation=60)
    for i, v in enumerate(education_count.values):
        ax.text(i, v, str(v), ha='center', va='bottom')
    plt.show()
```



```
In [28]: lunch_count = students['lunch'].value_counts()
lunch_count
```

Out[28]: standard 645 free/reduced 355

Name: lunch, dtype: int64

```
In [29]: plt.pie(lunch_count.values, labels=lunch_count.index, autopct='%0.2f%%')
plt.title('Lunch Chart', fontsize=15, fontweight='bold')
```

Out[29]: Text(0.5, 1.0, 'Lunch Chart')

Lunch Chart

In [30]: test_preparation_count = students['test preparation course'].value_counts()
test_preparation_count

Out[30]: none 642 completed 358

Name: test preparation course, dtype: int64

In [31]: plt.pie(test_preparation_count.values, labels=test_preparation_count.index,
 plt.title('Test Preparation Course Chart', fontsize=15, fontweight='bold')

Out[31]: Text(0.5, 1.0, 'Test Preparation Course Chart')

Test Preparation Course Chart


```
In [32]: sns.histplot(students['math score'], color='c', kde=True)
plt.title('Math Score Distribution', fontsize=15, fontweight='bold')
```

Out[32]: Text(0.5, 1.0, 'Math Score Distribution')

Math Score Distribution


```
In [33]: sns.histplot(students['reading score'], color='b', kde=True)
plt.title('Reading Score Distribution', fontsize=15, fontweight='bold')
```

Out[33]: Text(0.5, 1.0, 'Reading Score Distribution')


```
In [34]: sns.histplot(students['writing score'], color='y', kde=True)
plt.title('Writing Score Distribution', fontsize=15, fontweight='bold')
```

Out[34]: Text(0.5, 1.0, 'Writing Score Distribution')


```
In [35]: sns.histplot(students['avg_score'], color='g', kde=True)
plt.title('Avg Score Distribution', fontsize=15, fontweight='bold')
```

Out[35]: Text(0.5, 1.0, 'Avg Score Distribution')


```
In [36]: sns.set_palette('husl', 2)
  plt.title('Gender relation with average score', fontsize=15, fontweight='bol
  sns.histplot(data=students, x='avg_score', color='g', kde=True, hue='gender'
```


Females tend to perform well than males

```
In [37]: sns.boxplot(data=students, orient='h')
```

Out[37]: <AxesSubplot:>

There are several students have bad grades in exams

Multivariate Analysis

```
In [38]:
           plt.subplots(2, 2, figsize=(15, 10))
           sns.color_palette('flare', as_cmap=True)
           plt.subplot(2, 2, 1)
           sns.kdeplot(data=students, x='avg_score', hue='test preparation course', fil
           plt.title('Avg Score Distribution by test preparation course', fontsize=15,
           plt.subplot(2, 2, 2)
           sns.kdeplot(data=students, x='avg_score', hue='lunch', fill=True, alpha=0.5,
           plt.title('Avg Score Distribution by lunch', fontsize=15, fontweight='bold')
           plt.subplot(2, 2, 3)
           sns.kdeplot(data=students, x='avg score', hue='race/ethnicity', fill=False,
           plt.title('Avg Score Distribution by race/ethnicity', fontsize=15, fontweigh
           plt.subplot(2, 2, 4)
           sns.kdeplot(data=students, x='avg_score', hue='parental level of education',
           plt.title('Avg Score Distribution by parental level of education', fontsize=
           plt.tight layout(pad=1.5)
```



```
In [39]:
           plt.subplots(2, 2, figsize=(15, 10))
           sns.color_palette('rocket', as_cmap=True)
           plt.subplot(2, 2, 1)
           sns.barplot(data=students, x='avg_score', y='parental level of education')
           plt.title('parental level of education & avg score', fontsize=15, fontweight
           plt.subplot(2, 2, 2)
           sns.barplot(data=students, x='lunch', y='avg_score')
           plt.title('lunch & avg score', fontsize=15, fontweight='bold')
           plt.subplot(2, 2, 3)
           sns.barplot(data=students, x='test preparation course', y='avg_score', palet
           plt.title('test preparation course & avg score', fontsize=15, fontweight='bo
           plt.subplot(2, 2, 4)
           sns.barplot(data=students, x='avg_score', y='race/ethnicity', palette='flare
           plt.title('race/ethnicity & avg score', fontsize=15, fontweight='bold')
           plt.tight layout()
```



```
In [40]: sns.boxplot(data=students, x='avg_score', y='parental level of education')
```

Out[40]: <AxesSubplot:xlabel='avg_score', ylabel='parental level of education'>

- Standard lunch helps perform well in exams
- · Test preparation course helps perform well in exams
- · Race/ethnicity has an impact on students performance in exams
- Parental level of education has bad effects at lower levels and good effect at higher level

In [41]: sns.jointplot(x='reading score', y='writing score', hue='gender', data=stude
plt.title('Reading and writing score vs Gender', fontsize=15, fontweight='bo

Out[41]: Text(1.0, 1.2, 'Reading and writing score vs Gender')

Reading and writing score vs Gender

- · There is positive correlation between reading scores and writing scores
- · Females scores in reading and writing are better than males

In [42]: sns.jointplot(data=students, x='reading score', y='math score', hue='gender' plt.title('Reading and math score vs Gender', fontsize=15, fontweight='bold'

Out[42]: Text(1.0, 1.2, 'Reading and math score vs Gender')

Reading and math score vs Gender

- There is positive correlation between reading scores and maths scores
- · Males scores in maths are better than females

```
In [43]: sns.jointplot(data=students, x='writing score', y='math score', hue='gender' plt.title('writing and math score vs Gender', fontsize=15, fontweight='bold'
```

Out[43]: Text(1.0, 1.2, 'writing and math score vs Gender')

• There is positive correlation between reading scores and maths scores

```
In [44]: students.to_csv('updated_data.csv')
```