Appendix A

1 SRDB data exchange software libraries

1.1 EDS processing libraries

In order to export and import TMTC data in and from EDS files, SRDBs could rely on software libraries that we summarized in Table 1.

1.2 XTCE Libraries and supporting software

[1] referred to the wide availability of low-cost and open-source XTCE implementations which contribute in adopting XTCE more easily. However, the authors did not review these implementations. We have identified the list of XTCE libraries in Table 2.

1.3 MIB Libraries and supporting software

Table 3 summarizes libraries and software applications related to MIB data exchange format.

1.4 EGS-CC Libraries and supporting software

As EGS-CC CDM is community sourced, we could not find publicly available implementations of CDM libraries. We summarized the implementations that have been mentioned in the literature in Table 4.

References

- [1] Irvin D. et al. "Reducing the Cost of Small Satellite Ground System Development Using XTCE". In: Annual AIAA/USU Small Satellite Conference 2016. GSFC-E-DAA-TN44423. 2016.
- [2] AURIS. https://github.com/oswald2/AURIS. Accessed: 3/4/2023. 2023.
- [3] Julien et al. Baclet. "TeePee4Space: a practical application of Information Sharing in Extended Entreprise to the space industry". In: MBSE 2021 Model Based Space Systems and Software Engineering (The European Space Agency). 2021.

Library	Reference	Summary
CCSDS EDS Reference Tooling	[8]	Library to parse, verify and vali-
		date SEDS data sheets.
	[9] as an implementation of [7, 26, 6]	This is a set of libraries that aim
		to parse EDS files in order to
		generate C files that will be part
		of the OBSW to command and
CCSDS SEDS tool and library		control on-board systems. This
		is why the authors state that this
		library is not intended to be used
		alone. It should be considered in
		the global workflow of developing the OBSW
SEDS compiler	[14]	XXX
SEDS compiler SEDS Editor	[22]	Generate a SEDS editor from
		EMF(XXX)
0.000.0000	[7]	Capturing the DoT of SEDS in
SOIS OWL tools		OWL ontology files
SECT (SAVOIR EDS Common	[01 00 17]	SEDS library to parse, verify and
Tooling)	[21, 23, 17]	validate SEDS data sheets
TASTE SedsConverter	[10, 21, 28]	Tool that provides SEDS im-
		port/export capabilities to
		TASTE. Link to TASTE is
		https://taste.tuxfamily.
		org/wiki/index.php?title=
		Main_Page#TASTE XXX
OSRAD, TDEFSTSA, STBSW	[21]	Activities on SEDS for different
ostato, ibbi otori, otbo		purposes: OBSW, Simulator
OCDT, Teepee and MOISE	https://ocdt.	Platforms to exchange EDS files
,	esa.int/ and [3]	

Table 1: Works on EDS libraries

- [4] Christian et al. Bracco. "SCOPE product: the Thales Alenia Space Unified Operations Preparation Environment". In: 2018 SpaceOps Conference. 2018, p. 2313.
- [5] Armin Braun et al. "XTCE at GSOC-First experiences adopting a new standard". In: SpaceOps 2010 Conference by AIAA. 2010, p. 2015.
- [6] CCSDS. Spacecraft onboard interface services Informational Report Green Book. https://shorturl.at/brzNP. Accessed: 3/4/2023. 2013.
- [7] CCSDS. Spacecraft onboard interface services XML specification for electronic data sheets blue book. https://public.ccsds.org/Pubs/876x0b1.pdf. Accessed: 3/4/2023. 2019.

Library	Reference	Summary
XTCE tools	[30]	An Application Programming Interface (API) to parse, verify and validate XTCE files
XTCE generator	[5, 29]	A tool to generate XTCE files from SQLite database that can be used with YAMCS[18, 24]
XTCE Space Packet Parser	[25]	A library to encode and decode TMTC data defined in XTCE
XTCE modeling	[13]	Graphical definition of TMTC data in XTCE

Table 2: Works on XTCE libraries

Library	Reference	Summary
TMPropagator	[20]	Display the measurements re-
		ported by TM packets defines in
		MIB files
SpacePyLibrary	[27]	Encode and decode TMTC data
		defined in MIB files
AURIS-Postgres	[2]	MIB-based MCS
SCOPUS	[16]	Parse PUS-type packets flows in
		raw format and interpret them
		using an MIB data files
PySCOS2000	[15]	Parse and check MIB data files
		with Python

Table 3: Works on MIB libraries

- [8] CCSDS EDS Reference Tooling tools. https://essr.esa.int/project/ccsds-eds-reference-tooling. Accessed: 3/4/2023. 2021.
- [9] CCSDS SOIS Electronic Data Sheet Tool and Library. https://github.com/nasa/EdsLib. Accessed: 3/4/2023. 2023.
- [10] Julien Delange, Felice Torelli, and Jean-Loup Terraillon. "Implementation of sois in TASTE". In: DASIA 2012-DAta Systems In Aerospace 701 (2012), p. 19.
- [11] $EGS-CC\ CDM$. https://github.com/ASofterSpace/cdm. Accessed: 3/4/2023. 2023.
- [12] Harald et al. Eisenmann. "RangeDB the product to meet the challenges of nowadays system database". In: 9th ESA Workshop on Simulation for European Space Programmes. 2015.
- [13] Jerome Ferreira et al. "OASIS, the first XTCE-compliant modeling tool". In: *SpaceOps 2008 Conference*. 2008, p. 3453.

Library	Reference	Summary
Accepto along with RangeDB	[19, 12]	Proprietary implementation of
		EGS-CC-CDM
SCOPE	[4]	A framework that accepts EGS-
		CDM as an exchange format
ASeofterSpace	[11]	Modify EGS-CC CDM with a
		command line

Table 4: Works on EGS-CC-CDM libraries

- [14] Matthias Holm. "SOIS EDS Compiler". In: ESA: The Software Systems Division (TEC-SW) and Data Systems Division (TEC-ED) 2020. 2020. URL: https://shorturl.at/mrvZ9.
- [15] Robert Labudda. *PySCOS2000*. https://gitlab.irf.se/irf/pyscos2000. Accessed: 3/4/2023. 2023.
- [16] Robert Labudda. SCOPUS. https://gitlab.irf.se/irf/scospus. Accessed: 3/4/2023. 2023.
- [17] Deredempt Marie-Helene et al. "SAVOIR EDS: A Digital Capability for Avionics Architecture Co-Design". In: *DASIA 2019-Data Systems In Aerospace*. Vol. 736. 2019.
- [18] Nicolae Mihalache and Leif Steinicke. "YAMCS-A Lightweight Open-Source Mission Control Systems Used In Columbus Payloads Operations". In: DASIA 2011-Data Systems In Aerospace 694 (2011), p. 12.
- [19] Pascal Parmentier. "ACCEPTO Airbus DS Command Control EGS-CC based Product line for Tests and Operations". In: *The Workshop on Simulation for European Space Programmes (SESP) 2015*. 2015.
- [20] C Peat. TM Propagator. https://bit.ly/3J51sxM. Accessed: 3/4/2023. 2021.
- [21] David Perillo. "Electronic Datasheets". In: The 16th ESA Workshop on Avionics, Data, Control and Software Systems (ADCSS). 2021.
- [22] L Petersson. "Leveraging the Eclipse Modeling Framework to work with Electronic Datasheets". In: MBSE 2021 Model Based Space Systems and Software Engineering (The European Space Agency). 2021.
- [23] Marek Prochazka. "SAVOIR Electronic Data Sheet Definition: Overview and Status". In: *The 14th ESA Workshop on Avionics, Data, Control and Software Systems (ADCSS)*. 2020.
- [24] Mathieu Schmitt, Fabian Diet, and Nicolae Mihalache. "Yamcs for lean Commercial Control Centres: The ICE Cubes Control Centre". In: 2018 SpaceOps Conference. 2018, p. 2682.
- [25] Space Packet Parser. https://github.com/medley56/space_packet_parser. Accessed: 3/4/2023. 2023.

- [26] Spacecraft onboard interface services—specification for dictionary of terms for electronic data sheets. https://shorturl.at/lmwQW. Accessed: 3/4/2023. 2022.
- [27] SpacePyLibrary. https://github.com/Stefan-Korner/SpacePyLibrary/tree/6a9f0827005c03cbc59557def78bbc035a97bbea/Tutorial. Accessed: 3/4/2023. 2019.
- [28] Felice Torelli et al. "Overview on CCSDS SOIS and Electronic Data Sheets". In: (2014).
- [29] XTCE Generator. https://pypi.org/project/xtce-generator/. Accessed: 3/4/2023. 2023.
- [30] $XTCE\ tools$. https://gitlab.com/philipbrack/xtcetools. Accessed: 3/4/2023. 2023.