Ejemplos y ejercicios variables aleatorias discretas

Bioestadística 1

$Edimer\ David\ Jaramillo$

19 de abril de 2018

Contents

mplos
Ejemplo 1
Ejemplo 2
Ejemplo 3
Ejemplo 4
Ejemplo 5
Ejemplo 6
rcicios sugeridos
Ejercicio 1
Ejercicio 2
Eiercicio 3

Ejemplos

Ejemplo 1.

Suponga que la función f(x) representa una función de probabilidad dada por la siguiente expresión:

$$f(x) = \frac{2x+1}{25}, \ x = 0, 1, 2, 3, 4$$

Obtener las siguientes probabilidades:

- P(X = 4)
- $P(X \le 1)$
- $P(2 \le X < 4)$
- P(X > -10)

Ejemplo 2.

Con base en el siguiente gráfico de función de distribución acumulada, obtener las siguientes probabilidades:

X_i	50	200	350	
p_{i}	0.3	0.2	0.5	

- $P(X \le 170)$ $P(X \le 200)$ P(X = 200)• $P(X \ge 350)$

Ejemplo 3.

Considere la siguiente función de distribución acumulada para la variable aleatoria X:

Obtener las siguientes probabilidades:

- $P(X \le 1)$
- P(X < 1)
- P(X = 1)
- $P(X \le 0)$

Ejemplo 4.

Una ambulancia de voluntarios realiza de 0 a 5 servicios por día. A continuación se presenta la distribución de probabilidad de los servicios por día.

Número de servicios	Probabilidad	Número de servicios	Probabilidad
0	0.10	3	0.20
1	0.15	4	0.15
2	0.30	5	0.10

Obtener:

- El valor esperado o esperanza matemática E(X) del número de servicios
- La varianza Var(X) del número de servicios
- La desviación estándar del número de servicios

Ejemplo 5.

En un juego de azar una persona saca una sola carta de una baraja ordinaria de 52 cartas. A una persona le pagan 15 pesos por sacar una "sota" o una reina y 5 pesos por sacar un rey o un as. Alguien que saque cualquier otra carta paga 4 pesos. Si una persona participa en este juego:

- ¿Cuál es la ganancia esperada?
- ¿Cómo se interpreta este valor?

Ejemplo 6.

Cuatro personas apuestan $1 \in$ a que saldrá un número en un dado, cada uno a un número diferente. Entonces por cada euro apostado si se gana recibes 3 euros más. ¿Es conveniente apostar en este juego?

Ejercicios sugeridos

Ejercicio 1.

Se venden 5000 billetes para una rifa a 1 euro cada uno. Si el único premio del sorteo es de 1800 euros, calcular el resultado que debe esperar una persona que compra 3 billetes.

Ejercicio 2.

Una variable aleatoria discreta toma todos los valores enteros entre 0 y 4 con la siguiente función de densidad:

		1				
f(x)	0.3	0.25	0.25	0.1	0.1	

Obtener:

- La representación gráfica de la función masa de probabilidad y distribución de probabilidad acumulada
- El valor esperado
- La varianza
- La desviación estándar

Ejercicio 3.

Se arrojan dos dados no cargados (equiprobables) al aire, se define la variable aleatoria X como los números obtenidos en el dado 1 y en el dado 2.

Obtener:

- La representación gráfica de la función masa de probabilidad
- La representación gráfica de la función de distribución acumulada
- EL valor esperado
- La varianza
- La desviación estándar