Einführung in die Beschleunigerphysik

Mitschrift zur Vorlesung von Prof. Ratzinger

Jonathan Pieper

15. Oktober 2013

Inhaltsverzeichnis

1	Vorbesprechung	2
2	Einführung 2.1 Teilchenstrahlen in der Grundlagenforschung	2
3	Teilchenstrahlung in der Angewandten Forschung	2

1 Vorbesprechung

Übung: 8:45 - 9:30 Uhr

Vorlesung: 9:45 - 11:15 Uhr

2 Einführung - Wozu dienen Teilchenstrahlen?

2.1 Teilchenstrahlen in der Grundlagenforschung

Aktuelle Fragen:

- Wie werden Quarks und Gluonen frei (deconfinement)?
- Wie entsteht die Hadronenmasse sowie der Hadronenspin aus den Konstituenten?
- Warum haben wir einen Überschuss an Materie gegenüber Antimaterie (das was wir heute sehen)?

2.2 Teilchenstrahlung in der Angewandten Forschung

Synchrotronstrahlungsquellen, Free Electron Laser(FEL)

Energieversorgung

- Transmutation von radioaktivem Abfall aus Spaltungsreaktionen (MYRRHA, Belgien)
- Teststrahlen für die deuterium Fusionsforschung (IFMIF, 250 mA Deuteronen auf Lithium erzeugen eine intensive 13 MeV Neutronenstrahlung)
- Trägheitsfusion mittels Schwerionentreiberstrahl (zur Zeit nicht realistisch aufgrund kurzer Strahllebensdauern)

$$d + t \rightarrow {}^{4}He + r_{i} + 17 MeV$$

Medizin Produktion radioaktiver Isotope als **Tracer** (Tc⁹⁹ als γ - Emitter nach Andocken an ein interessierendes Molekül)

Positronen-Emissions-Tomographie $\operatorname{\bf PET}$ mit kurzlebigen Isotopen wie F^{18} , **innere Radio-nuklidtherapie**

Krebstherapie mittels Elektronen-, Protonen- und leichten Ionenstrahlen Vorteil des Bragg-Peaks bei Protonen und leichten Ionenstrahlen (bis hinauf zum Kohlenstoff)

Industrie Röntgenstrahlung (2-dim Projektion, Litographie (Chip - Miniaturisierung))
 Lebensmittelbehandlung (Sterilisierung)
 Ionenmanipulation (Dotierung von Halbleitern)