A Machine-Learning Based Approach to Chart Image Recognition

Tan Song Kai

Background

- By 2050, the Vision Loss Expert Group (VLEG)¹ predicts approximately 61 million people to be blind
- Visual impairment limits access to educational materials
- Braille helps to address the difficulty of reading conventional print
- Resource intensive to transform educational visuals such as graphs

^{1:} Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study

Problem Statement

 As only a small fraction of educational materials are available for people with visual impairment, we aim to develop a machine learning model to extract chart information to help bridge the gap in learning resources.

Dataset

Kaggle images (https://www.kaggle.com/competitions/benetech-making-graphs-accessible/data)

- Chart type: Scatter, Bar, Line
- Ground truth provided and images verified manually

- Trend: Increasing, Decreasing, Invariant
- Ground truth not provided and images classified manually

Convolutional Neural Network (CNN)

CNN architecture:

- Input
- Convolutional layer
- Pooling layer
- Fully Connected (FC) layer
- Activation Function

An image can be visualized as a Numpy array


```
asarray(img).shape
(281, 466, 3)
```

```
asarrav(img)
array([[[39, 39, 39],
        [39, 39, 39],
        [39, 39, 39],
        [40, 40, 40],
        [39, 39, 39],
        [39, 39, 39]],
       [[39, 39, 39],
        [39, 39, 39],
        [39, 39, 39],
        [40, 40, 40],
        [39, 39, 39],
       [39, 39, 39]],
      [[39, 39, 39],
        [39, 39, 39],
        [39, 39, 39],
        [40, 40, 40],
        [39, 39, 39],
       [39, 39, 39]],
       [[40, 40, 40],
        [40, 40, 40],
        [40, 40, 40],
        [40, 40, 40],
        [38, 38, 38],
       [38, 38, 38]],
      [[40, 40, 40],
        [40, 40, 40],
        [40, 40, 40],
        [40, 40, 40],
        [38, 38, 38],
        [38, 38, 38]],
       [[38, 38, 38],
        [38, 38, 38],
        [38, 38, 38],
        [40, 40, 40],
        [39, 39, 39],
        [39, 39, 39]]], dtype=uint8)
```

Modelling Process

- ImageDataGenerator
 - Batch Generation
 - Boilerplate Code
 - Data Augmentation

- Data Augmentation
 - Transforming original images to produce different copies for training
 - Target class not changed
 - Transformation examples: Translation, Rotation, Zoom, Flipping, Brightness, Cropping

Modelling Process

e of cereals allocated to animal feed (FAO, 2020) in Hungary

Image Data Generator

Rotation Zoom Flipping

Translation

Brightness

Cropping

Output

- Chart type
- Trend

...

Modelling Results

Baseline: 33.3%

Model	Train Accuracy	Test Accuracy
AlexNet	82.15%	73.80%
ResNet50	88.71%	95.87%
VGG16	98.31%	99.67%

Modelling Results

Increasing

Invariant

({'decreasing': 0, 'increasing': 1, 'invariant': 2}, array([[0.04016925, 0.05962279, 0.900208]]], dtype=float32))

Decreasing

({'decrea<u>sing': 0,</u> 'increasing': 1, 'invariant': 2}, array([<mark>0.91463304</mark> 0.04081934, 0.04454762]], dtype=float32))

Limitations

- Manually labelling chart trends can differ between individuals
- Chart trends may not be entirely conclusive
- Hard to extract text using Pytesseract or OpenCV

Conclusion & Recommendations

- Feasible to classify chart types using CNN
- Transfer learning from VGG16/ResNet50 is more effective than training network from scratch

Moving forward

- Classification of different chart images (pie charts, area charts, Venn diagrams etc)
- To extract more features from plots (axis names/values, legend etc)
- Chart value interpolation → curve fitting
- OCR to create captions for charts

Thank you for your attention! Q&A