Automatic Non-rigid Histological Image Registration based on SIFT and RegSnet

Name: HAO BAI

ID: 180223545

Supervisor. Qianni Zhang

Outline

- Introduction
- Develop process
- Main Method overview
- Result
- Limitation
- Conclusion

Introduction

- The importance
- The main task
- Requirement Elastic(non-rigid)
- Challenge
- Traditional method

Introduction: Dataset

Name	Tissue	Availability	Resolution [µm/pixel]	Ground truth
lung-lesion_	Lung lesion	Public	0.174	landmarks
lung-lobes_	Whole mice lung lobes	Public	1.274	landmarks
mammary-glands_	Mammary glands	Public	2.294	landmarks
mice-kidney_	Mice kidney	Public	0.227	landmarks
COAD_	COlon ADenocarcinoma (colon cancer)	Public	0.468	landmarks
gastric_	Gastric mucosa and gastric adenocarcinoma tissue fragments	Public	0.2528	landmarks
breast_	Human breast	Public	0.2528	landmarks
kidney_	Human kidney	Public	0.2528	landmarks

Introduction: Dataset

Introduction: Evaluate function

- relative Target Registration Error (rTRE): $rTRE = \frac{TRE}{\sqrt{w^2 + h^2}}$
 - Each image: Mean(rTRE)
 - Whole dataset: Mean(each image rTRE)
- Time: $MeanTime = \frac{1}{N} \sum_{i=1}^{N} Time(RegistrationApproach(i))$

Develop process: 1st Fully convolutional networks

Loss function Mean Square Error:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Develop process: 2nd Generative adversarial network (GANs)

•
$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{z \sim P_{data}(z)}[\log D(z)] + \mathbb{E}_{x \sim P_{data}(x)}[\log(1 - D(G(x)))]$$

Limitation and optimize

- The GANs generator and FCN is unstable SIFT
- The SIFT need to filter out meaningless landmarks Deep learning
- The dataset too small use small image region instead of whole images
- Deep learning good at classification
- Final method combined SIFT and deep learning classification network

Main Method: Registration

Registration Algorithms: Get N pairs of images from the dataset

Main Method: RegSnet

Main Method: Training

	The true training pairs emarge		
Training Algorithms: Get N pairs of images from the dataset	about 70 times.		
for $i = 0 \dots N-1$ do	The false pairs enlarge about		
Get M paired corresponding ground truth landmarks	70 * 70 times.		
Expend the landmarks to 16×16 small image regions	So, our training dataset is		
for $j = 0 \dots M-1$ do			
for $q = 0 \dots M-1$ do	1068550 pairs small image		
Pair the j th image in the source image patches and q th image in the target image patches	regions		

Put the pairs image into the RegSnet and get result

Train both false and true pairs

The true training pairs enlarge

```
If j == q then

Desired output is 1

else

Desired output is 0
```

End if

Calculate Cross-Entropy loss (network output, Desired output)

Optimized the network

End for

End for

End for

Return and save model

Result

method	Minimum rTRE	Maximum rTRE	rTRE	Average Time
SIFT base line	0.5105	0.6922	0.6205	0.0521
GANs	> 1.0	> 1.0	> 1.0	0.07291
FCN (100 times training)	0.4916	0.9137	0.7814	0.0432
RegSnet	0.003954	0.00816	0.0057252	0.058767

Some compare images - robustness

Limitation

- Using local interest point detector may lose meaningful points
- The amount of the generated landmarks is fixed.
- The local interest point detector large influence the performance.
- There might exits a better architecture of RegSnet network
- Due to the complex stages many local minimums, hard to optimize

Conclusion

- Our SIFT and RegSnet based non-rigid registration approach achieved super accuracy, robustness and speed.
- Overcome the small dataset, histological image issues and nonrigid registration challenges.
- Able to change the inner components to suit for other kinds of registration tasks.

Acknowledgement

• I would like to express my special thanks of gratitude to my supervisors Dr. Qianni Zhang and Yaqi Wang. My supervisors kindly advise and guide me during this research. I came to know about many state-of-art knowledge, technique and skills from my supervisors. I am really thankful to them.

Thanks for listening to my presentation!

Reference list

- [1] D. Lowe, "Object recognition from local scale-invariant features," *International Conference on Computer Vision (ICCV)*, 1999.
- [2] H. Li and Y. Fan, "Non-rigid image registration using self-supervised fully convolutional networks without training data," 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1075-1078, 2018.
- [3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bengio, "Generative Adversarial Network," *Neural Information Processing Systems* (NIPS), p. 2672–2680, 2014.
- [4] M. J. Fitzpatrick and J. B. West, "The distribution of target registration error in rigid-body point-based registration," *IEEE Transactions on Medical Imaging*, pp. 917 927, 2001.
- [5] W. R. Crum, T. Hartkens and D. Hill, "Non-rigid image registration: theory and practice," *The British Journal of Radiology*, 2004.
- [6] N. S. Altman, "An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression," in *The American Statistician*, Taylor & Francis, Ltd, 1992, pp. 175-185.
- [7] H. Bay, T. Tuytelaars and L. Van Gool, "SURF: Speeded up robust features," *European Conference on Computer Vision (ECCV)*, 2006.
- [8] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," *International Conference on Computer Vision (ICCV)*, 2011.
- [9] E. Karami, S. Prasad and M. Shehata, "Image Matching Using SIFT, SURF, BRIEF and ORB: Performance Comparison for Distorted Images," 2017.
- [10] X. Han, T. Leung, Y. Jia, R. Sukthankar and A. C. Berg, "MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching," *Computer Vision and Pattern Recognition (CVPR)*, pp. pp. 3279-3286, 2015.
- [11] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," Computer Vision and Pattern Recognition (CVPR), 2014.
- J. Brownlee, "machinelearningmastery," 2019. [Online]. Available: https://machinelearningmastery.com/introduction-to-deep-learning-for-face-recognition/. [Accessed 6 2019].
- [13] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring and I. I'sgum, "End-to-End Unsupervised Deformable Image," *Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA)*, pp. 204-212, 2017.
- D. Mahapatra, B. Antony, S. Sedai and R. Garnavi, "DEFORMABLMEDICAL IMAGE REGISTRATION USING GENERATIVE ADVERSARIAL," 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018.