PHYS 474 - Quantum Mechanics

Winter 2024

Homework #4

- 1. A particle is trapped in a harmonic oscillator potential. We know that at t=0, the particle can be represented by the wavefunction, $\Psi(x,0)=A\left[2\psi_0(x)+5\psi_2(x)\right]$, where ψ_0 and ψ_2 are the stationary-state solutions for n=0 and n=2, respectively.
 - (a) Normalize $\Psi(x,0)$.
 - (b) Construct $\Psi(x,t)$ and then determine $|\Psi(x,t)|^2$. Will $\langle x \rangle$ depend on time?
- 2. Consider the stationary states of the harmonic oscillator. As straightforwardly as possible, compute the following quantities for the n^{th} stationary state, $\psi_n(x)$:
 - (a) $\langle x \rangle$
 - (b) $\langle x^2 \rangle$
 - (c) $\langle p \rangle$
 - (d) $\langle p^2 \rangle$
 - (e) $\langle T \rangle$
 - (f) Is the Heisenberg uncertainty principle satisfied for all values of n?
- 3. A particle in a harmonic oscillator potential is described by the normalized wavefunction $|\Psi(x,0)\rangle = \frac{1}{\sqrt{5}}|1\rangle + \frac{2}{\sqrt{5}}|2\rangle$ where $|n\rangle$ represents the $n^{\rm th}$ stationary state.
 - (a) What is $|\Psi(x,t)\rangle$?
 - (b) What is the expectation value for energy?
 - (c) What is $\langle x(t) \rangle$?