Introdução à Computação II 5954006

5. Algoritmos de Ordenação

Prof. Renato Tinós

Local: Depto. de Computação e Matemática (FFCLRP/USP)

Principais Tópicos

- 5.1. Ordenação por Inserção
- 5.2. Ordenação por Seleção
- 5.3. Método da Bolha
- 5.4. Ordenação por Fusão
- 5.5. Heapsort
- 5.6. Quicksort
- 5.7. Considerações sobre o Problema de Ordenação
- 5.8. Ordenação em Tempo Linear

- É um dos algoritmos mais simples de ordenação
- O princípio de funcionamento é o seguinte
 - 1. Selecionar o elemento que apresenta a chave de menor valor;
 - 2. Trocá-lo com o primeiro elemento do vetor;
 - 3. Repetir estas operações, envolvendo agora apenas os *N*-1 elementos restantes, depois os *N*-2 elementos, etc., até restar um só elemento, o maior deles.

- 1. Selecionar o elemento que apresenta a chave de menor valor;
- 2. Trocá-lo com o primeiro elemento do vetor;
- 3. Repetir estas operações, envolvendo agora apenas os N-1 elementos restantes, depois os N-2 elementos, etc., até restar um só elemento, o maior deles.

Exemplo 5.2.1.

```
para i \leftarrow 1 até i \leftarrow N-1

indice\_menor \leftarrow (indice do menor elemento do vetor

\mathbf{a} = \{ a[i] \ a[i+1] \ a[i+2] \dots \ a[N] \} )

trocar \ a[i] \ com \ a[indice\_menor]

fim para

...
```

vetor inicial	45	56_	12	43	95	19	8	67	
i = 1	8	56	(12)	43	95	19	45	67	
i = 2	8	12	(56)	43	95	(19)	45	67	
i = 3	8	12	19	(43)	95	56	45	67	
i = 4	8	12	19	43	95	56	(45)	67	
i = 5	8	12	19	43	45	(56)	95	67	
i = 6	8	12	19	43	45	56	95	67	
i = 7	8	12	19	43	45	56	67	95	

```
para i \leftarrow 1 até i \leftarrow N - 1
              indice\_menor \leftarrow i
                                                                                      acha o índice do
              para j \leftarrow i + 1 até j \leftarrow N
                                                                                      menor elemento
                           se ( a[ j ] < a[ indice_menor ] )
                                                                                     entre a[i] e a[N-1]
                                         indice\_menor \leftarrow j
                           fim se
              fim para
              x \leftarrow a[i]
             a [i] \leftarrow a [indice\_menor]
                                                                   troca a[i] com
                                                                   a[indice_menor]
             a [ indice_menor ] \leftarrow x
fim para
```



```
...

para i \leftarrow 1 até i \leftarrow N - 1

indice\_menor \leftarrow i

para j \leftarrow i + 1 até j \leftarrow N

se (a[j] < a[indice\_menor])

indice\_menor \leftarrow j

fim se

fim para

x \leftarrow a[i]

a[i] \leftarrow a[indice\_menor]

a[indice\_menor] \leftarrow x

fim para

...
```

```
i
1 2 3 4 5 6 7 8
N = 8 8 56 12 43 95 19 45 67
```

```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```



```
...

para i \leftarrow 1 até i \leftarrow N - 1

indice\_menor \leftarrow i

para j \leftarrow i + 1 até j \leftarrow N

se (a[j] < a[indice\_menor])

indice\_menor \leftarrow j

fim se

fim para

x \leftarrow a[i]

a[i] \leftarrow a[indice\_menor]

a[indice\_menor] \leftarrow x

fim para

...
```



```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```

```
N = 8 a 8 12 56 43 95 19 45 67
```

```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```



```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```



```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```



```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```

```
N = 8 a 8 12 19 43 95 56 45 67
```

```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```

```
N = 8 a 8 12 19 43 45 56 95 67
```

```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```

N = 8 a 8 12 19 43 45 56 95 67

```
para i \leftarrow 1 até i \leftarrow N - 1
indice\_menor \leftarrow i
para j \leftarrow i + 1 até j \leftarrow N
se (a[j] < a[indice\_menor])
indice\_menor \leftarrow j
fim se
fim para
x \leftarrow a[i]
a[i] \leftarrow a[indice\_menor]
a[indice\_menor] \leftarrow x
fim para
...
```

N = 8 a 8 12 19 43 45 56 95 67

```
...

para i \leftarrow 1 até i \leftarrow N - 1

indice\_menor \leftarrow i

para j \leftarrow i + 1 até j \leftarrow N

se (a[j] < a[indice\_menor])

indice\_menor \leftarrow j

fim se

fim para

x \leftarrow a[i]

a[i] \leftarrow a[indice\_menor]

a[indice\_menor] \leftarrow x

fim para

...
```

```
N = 8 a 8 12 19 43 45 56 95 67
```

```
...

para i \leftarrow 1 até i \leftarrow N - 1

indice\_menor \leftarrow i

para j \leftarrow i + 1 até j \leftarrow N

se (a[j] < a[indice\_menor])

indice\_menor \leftarrow j

fim se

fim para

x \leftarrow a[i]

a[i] \leftarrow a[indice\_menor]

a[indice\_menor] \leftarrow x

fim para

...
```

```
N = 8 a 8 12 19 43 45 56 67 95
```

```
...

para i \leftarrow 1 até i \leftarrow N - 1

indice\_menor \leftarrow i

para j \leftarrow i + 1 até j \leftarrow N

se (a[j] < a[indice\_menor])

indice\_menor \leftarrow j

fim se

fim para

x \leftarrow a[i]

a[i] \leftarrow a[indice\_menor]

a[indice\_menor] \leftarrow x

fim para

...
```

Vetor ordenado

```
\begin{array}{c} \dots \\ \textbf{para } i \leftarrow 1 \textbf{ at\'e } i \leftarrow N - 1 \\ & indice\_menor \leftarrow i \\ & \textbf{para } j \leftarrow i + 1 \textbf{ at\'e } j \leftarrow N \\ & \textbf{se } (a[j] < a[indice\_menor]) \\ & indice\_menor \leftarrow j \\ & \textbf{fim para} \\ & x \leftarrow a[i] \\ & a[i] \leftarrow a[indice\_menor] \leftarrow x \\ & \textbf{fim para} \\ & \dots \end{array}
```

ANÁLISE

Os números de comparações e movimentações não dependem da ordem. Ou seja, os números são sempre iguais (não tem caso mínimo e máximo)

MOVIMENTAÇÕES
M=soma{i=1 até N-1}(M_i)
M=soma{i=1 até N-1}(3)
M=3*(N-1) movimentações

Análise

$$C = \sum_{i=1}^{N-1} \sum_{i=i+1}^{N} 1 = \sum_{i=1}^{N-1} (N-i) = \frac{N^2 - N}{2} = O(N^2)$$

$$M = \sum_{i=1}^{N-1} 3 = 3(N-1) = O(N)$$

- Os números C (comparações entre chaves) e M (movimentações de registros) independem da ordem do vetor
 - Assim, esse método apresenta comportamento menos natural que o da inserção direta
 - O método da inserção direta realiza mais operações para vetores "mais desordenados"
- A grande vantagem é o pequeno número de movimentações entre registros

Exercício 5.2.1. Utilizando ordenação por seleção, obtenha o número de comparações e movimentações em cada passo para os seguintes vetores

- a) [45 56 12 43 95 19 8 67]
- b) [8 12 19 43 45 56 67 95]
- c) [95 67 56 45 43 19 12 8]
- d) [19 12 8 45 43 56 67 95]

Exercício 5.2.1. Solução

i	C	111	4 5	56	12	43	Y 5	19	8	61
1	7	3	8	56	12	43	95	19	45	67
2	6	3	8	12	56	43	95	19	45	67
3	5	3	8	12	19	43	95	56	45	67
4	4	3	8	12	19	43	95	56	45	67
5	3	3	8	12	19	43	45	56	95	67
6	2	3	8	12	19	43	45	56	95	67
7	1	3	8	12	19	43	45	56	67	95
	28	21								
(1		L J			ر لا	L		X

i	Ci	Mi	8	12	19	43	45	56	67	95
1	7	3	8	12	19	43	45	56	67	95
2	6	3	8	12	19	43	45	56	67	95
3	5	3	8	12	19	43	45	56	67	95
4	4	3	8	12	19	43	45	56	67	95
5	3	3	8	12	19	43	45	56	67	95
6	2	3	8	12	19	43	45	56	67	95
7	1	3	8	12	19	43	45	56	67	95
	28	21								

i	Ci	Mi	95	67	56	45	43	19	12	8
1	7	3	8	67	56	45	43	19	12	95
2	6	3	8	12	56	45	43	19	67	95
3	5	3	8	12	19	45	43	56	67	95
4	4	3	8	12	19	43	45	56	67	95
5	3	3	8	12	19	43	45	56	67	95
6	2	3	8	12	19	43	45	56	67	95
7	1	3	8	12	19	43	45	56	67	95
	28	21								

i	Ci	Mi	19	12	8	45	43	56	67	95
1	7	3	8	12	19	45	43	56	67	95
2	6	3	8	12	19	45	43	56	67	95
3	5	3	8	12	19	45	43	56	67	95
4	4	3	8	12	19	43	45	56	67	95
5	3	3	8	12	19	43	45	56	67	95
6	2	3	8	12	19	43	45	56	67	95
7	1	3	8	12	19	43	45	56	67	95
	28	21			•	•				

Comentários

Agradecimentos

Parte do material desta apresentação foi obtida através de slides da disciplina de Introdução à Computação II ministrada pelo Prof. José Augusto Baranauskas