10. Permutări

Definiție:

Fie $A = \{1, 2, ..., n\}, n \in \mathbb{N}^*$. Orice funcție bijectivă $f: A \to A$ se numește permutare de grad n.

Exemplu: Permutările de gradul doi: $e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ permutarea identică;

$$\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Definiție: Fie σ , $\tau \in Sn$ (mulțimea permutărilor de grad n). $\sigma = \tau \Leftrightarrow \sigma$ (i) = τ (i), $(\forall) i = \overline{1,n}$

Teoremă: Numărul permutărilor de grad $n, n \in \mathbb{N}^*$, este $P_n = n! = 1 \cdot 2 \cdot ... \cdot n$.

Compunerea permutărilor

Fie
$$\sigma$$
, $\tau \in S_n$,

$$\sigma \circ \tau = \sigma \tau \in S_n$$

$$\sigma \circ \tau = \sigma \tau \in S_n$$
 $\sigma \tau(i) = \sigma(\tau(i)), \ (\forall) \ i = \overline{1, n}$

 $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}; \ \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix};$

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; \ \tau\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix};$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$\sigma(1) = 3 \Rightarrow \sigma^{-1}(3) = 1;$$

$$\sigma(2) = 1 \Rightarrow \sigma^{-1}(1) = 2;$$

$$\sigma(3) = 2 \Rightarrow \sigma^{-1}(2) = 3;$$

Se numește transpoziție de grad n:

$$\tau_{ij} = \begin{pmatrix} 1 & 2 & \dots & i-1 & i & \dots & j-1 & j & \dots & n \\ 1 & 2 & \dots & i-1 & j & \dots & j-1 & i & \dots & n \end{pmatrix}$$

Exemple:
$$(12) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$
; $(34) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$

Teoremă:
$$(ij) \in S_n$$
, atunci

- 1) (ij) = (ji);
- 2) $(ij)^2 = e$;
- 3) $(ij)^{-1} = (ij)$.

Teoremă: Orice permutare de grad n se poate scrie ca un produs de transpoziții din S_n .

Inversiuni. Semnul unei permutări

 $\sigma \in S_n$, $i, j \in \{1, 2, ..., n\}$, i < j. Dacă $\sigma(i) > \sigma(j)$, atunci perechea (i, j) se numește inversiune a permutării σ .

- $m(\sigma)$ = numărul tuturor inversiunilor permutării σ ;
- $\Sigma(\sigma) = (-1)^{m(\sigma)}$ signatura (sau semnul) permutării σ .
- $\Sigma(\sigma) = \begin{cases} 1, \text{dacă } \sigma \text{ permutare pară} \\ -1, \text{dacă } \sigma \text{ permutare impară} \end{cases}$

•
$$\sigma \in S_n \Rightarrow \Sigma(\sigma) = \prod_{1 \le i < j \le n} \frac{\sigma(j) - \sigma(i)}{j - i};$$

- $\Sigma(\sigma\tau) = \Sigma(\sigma) \cdot \Sigma(\tau), (\forall) \sigma, \tau \in S_n;$
- $\bullet \quad \Sigma (\sigma^{-1}) = \Sigma (\sigma).$
- $\sigma \in S_n$,
- 1) σ , τ au acelaşi semn $\Rightarrow \sigma \tau$ este pară;
- 2) σ , τ au semne contrare $\Rightarrow \sigma \tau$ este impară.
- Numărul permutărilor pare de grad n este egal cu numărul permutărilor impare de grad n, adică $\frac{n!}{2}$.