EF Trigonométrie — Corrigé

Calculs de valeurs exactes - Sans calculatrice Correction détaillée des 10 questions

1. Longueur d'un arc de rayon 8 cm, angle de 45°:

$$45^{\circ}=rac{\pi}{4}$$
 donc $L=r heta=8 imesrac{\pi}{4}=\boxed{2\pi ext{ cm}}$

2. Aire d'un secteur circulaire, rayon 6 cm, angle 120°:

$$120^\circ = rac{2\pi}{3}$$
 donc $A = rac{1}{2} imes 6^2 imes rac{2\pi}{3} = 12\pi \Rightarrow \boxed{12\pi ext{ cm}^2}$

3. $\tan\left(\frac{19\pi}{4}\right)$:

Réduction mod π pour tangente (période = π) : $\frac{19\pi}{4} = \frac{3\pi}{4}$ (car même angle modulo π)

Donc
$$\left| an \left(rac{19\pi}{4}
ight) = -1
ight|$$

4. $\sin\left(\frac{7\pi}{3}\right)$:

Réduction modulo $2\pi:rac{7\pi}{3}=rac{7\pi}{3}-2\pi=rac{\pi}{3}$

Donc
$$\left|\sin\left(\frac{7\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\right|$$

5. $\cos\left(\frac{\pi}{2}+\frac{2\pi}{3}\right)$ Identité : $\cos\left(\frac{\pi}{2}+\alpha\right)=-\sin(\alpha)$

Donc
$$\left|-\sin\left(\frac{2\pi}{3}\right) = -\frac{\sqrt{3}}{2}\right|$$

6. Simplifier $\sin\left(\frac{3\pi}{2}-x\right)$

Identité : $\sin\left(\frac{3\pi}{2} - x\right) = -\cos(x)$ Donc $\left[-\cos(x)\right]$

Donc
$$-\cos(x)$$

7. Longueur de l'arc : 5π cm, rayon : 10 cm

Formule : $heta=rac{L}{r}=rac{5\pi}{10}=rac{\pi}{2}$ En degrés : $\left\lceilrac{\pi}{2}=90^\circ
ight
ceil$

8.
$$\cos\left(-\frac{5\pi}{6}\right)$$

Identité paire :
$$\cos(-x) = \cos(x)$$

Donc
$$\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

$$\boxed{-\frac{\sqrt{3}}{2}}$$

9. Aire =
$$12\pi$$
 cm², rayon = 6 cm

Formule :
$$A=rac{1}{2}r^2 heta \Rightarrow 12\pi=rac{1}{2} imes 36 imes heta$$

$$12\pi=18 heta\Rightarrow heta=\boxed{rac{2\pi}{3}}$$

10.
$$\tan \left(\frac{11\pi}{6} \right)$$

Angle de référence :
$$2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$$

Tangente négative en quadrant IV
$$ightarrow \left| -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3} \right|$$