LINEÆR REGRESSION

(Matematik grundforløb)

JACOB DEBEL

Created: 2019-09-05 Thu 11:38

PUNKTER OG RETTE LINJER

HVAD VED I FORVEJEN

 Hvor mange punkter skal man kende, for at kunne tegne en ret linje?

HVAD VED I FORVEJEN

 Hvor mange punkter skal man kende, for at kunne tegne en ret linje?

• 2

HVAD VED I FORVEJEN

 Hvor mange punkter skal man kende, for at kunne tegne en ret linje?

• 2

HVAD HVIS DER ER FLERE END TO PUNKTER?

Antal oddere i Danmark

Årstal, x	1984 (0)			2004 (20)	
Observationer, y	67	95	132	251	293

Antal oddere i Danmark

Årstal, x	1984 (0)		1996 (12)		2012 (28)
Observationer, y	67	95	132	251	293

Indtegn datasættet på tegnet papir i hånden.

Antal oddere i Danmark

Årstal, x			1996 (12)		
Observationer, y	67	95	132	251	293

- Indtegn datasættet på tegnet papir i hånden.
- Indtegn selv den bedst mulige rette linje.

KONKLUSION

KONKLUSION

 Grafen går måske ikke igennem nogen af punkterne.

KONKLUSION

- Grafen går måske ikke igennem nogen af punkterne.
- Grafen skal være så tæt på alle punkterne som muligt.

INTERAKTIV ØVELSE

https://matbhtx.systime.dk/?id=c12359

MINDSTE KVADRATERS METODE

 Undersøger den lodrette afstand mellem de kendte punkter og en given ret linje.

- Undersøger den lodrette afstand mellem de kendte punkter og en given ret linje.
- Residualer

- Undersøger den lodrette afstand mellem de kendte punkter og en given ret linje.
- Residualer
- Kvadratiske afvigelser

- Undersøger den lodrette afstand mellem de kendte punkter og en given ret linje.
- Residualer
- Kvadratiske afvigelser
- Summen af alle de kvadratiske afvigelser, skal være så lille som muligt.

$$D = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2$$

PRØV DET SELV

Mindste_kvadraters_metode.ggb på lectio

- Flyt på P_1 og P_2 .
- ullet Få DD til at blive så lille som muligt.

FÅ GEOGEBRA TIL AT GØRE DET

Indtast følgende i *input*-feltet:

- liste1={A,B,C,D,E} (Opret en liste med punkter)
- FitLinje(liste1) (Finder den bedste rette linje)

HVOR GODT PASSER DET SÅ?

KORRELATIONSKOEFFIECENTEN, r

Kommando i geogebra: PMCC(<liste med punkter>) (say what!?)

FORKLARINGSGRADEN, r^2

- $0 < r^2 < 1$
- $r^2=1$ Perfekt fit .
- $r^2=0$ Det dårligste fit overhovedet.
- $r^2 > 0.99$ Godt lineært fit.
- ullet $0.95 < r^2 < 0.99$ Rimeligt lineært fit.
- Kommando i geogebra:

Rkvadreret(<liste med punkter>,
<funktion>)

OPGAVE

- Indsæt punkter i geoge ((2,3.3) i inputfeltet
- Opret liste med punkte (liste1={A,B} og alle andre punkter også)
- Fit en ret linje (fitlinje(liste1))
- Find forklaringsgraden (Rkvadreret(liste1

FLERE OPGAVER

https://matbhtx.systime.dk/index.php?id=1295

OPGAVE 0.38 🗈

Bestem regressionslinjen for følgende talpar.

х	1	2	3	4	5	6
у	8	9	11	11	12	13

OPGAVE 0.39 D

Bestem regressionslinjen for følgende talpar.

х	10	20	30	40	50	60
у	8	9	11	11	12	13

OPGAVE 0.40 D

Bestem regressionslinjen for følgende talpar.

х	-1	7	9	22	77	100
у	-4	2	11	33	81	113

OPGAVE 0.41 D

Bestem regressionslinjen for følgende talpar.

х	1	2	3	4	5	6
у	-1	-2	-11	-5	-17	-22

FLERE OPGAVER

BACKUP SLIDES

HVIS MAN SKAL REGNE DET HELE I HÅNDEN

2.2.1 Bestemmelse af forskrift

Den bedst mulige rette linje, \hat{y} , bestemmes på følgende måde:

$$\hat{y} = \hat{a} \cdot x + \hat{b} \,. \tag{2.1}$$

 \hat{a} og \hat{b} er henholdsvis det estimerede hældningstal og skæring med y-aksen.

 \hat{a} og \hat{b} bestemmes via følgende formler:

$$\hat{a} = \frac{\sum_{i=1}^{n} (y_i - \bar{y}) \cdot (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} ,$$
 (2.2)

(2.3)

n er antallet af datapunkter, \bar{x} er gennemsnittet af de målte x-værdier og \bar{y} er gennemsnittet af de målte y-værdier.

$$\hat{b}=ar{y}-\hat{a}\cdotar{x}$$
 ,

HVIS MAN SKAL REGNE DET HELE I HÅNDEN

2.2.2 Forklaringsgrad

Til at vurdere, hvor godt den estimerede rette linje passer med datapunkterne, benyttes *korrelationskoefficienten*, r, og den nært beslægtede *forklaringsgrad*, r^2 . r^2 bestemmes på følgende måde:

$$r^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{\hat{y}})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(2.4)

Hvis $r^2 = 1$ går den bedste rette linje igennem *alle* punkterne. Hvis $r^2 = 0$ er der absolut ingen tendens til, at punkterne danner en ret linje.