Microprocessors & Interfacing

Review

Lecturer: Annie Guo

Lecture Overview

- Course review
- About the final exam

What have we learned?

- Basics of microprocessor systems
- AVR and AVR programming
- Interfacing
- Microcontroller application development

Basics of Microprocessors

- Microprocessors are digital systems
 - Can be programmed to perform varied functions on different information.
- Information can be encoded
 - Basically with binary digits
 - For example
 - Numbers in binary code, 2's complement code, ...
 - Characters in ASII code

Basics of Microprocessors

- Five basic components of hardware computer systems
 - Datapath, control unit, memory, input/output devices
- Microprocessor
 - Datapath + control unit → on one chip
- Microcontroller
 - Microprocessor + memory + peripherals → on one chip
- Computer application systems
 - Hardware + software
- ISA
 - Interface between hardware and software

ISA

- Instruction set architecture
 - Things that assembly programmers can use and should know
 - Including
 - Instruction set
 - Supported native data type
 - Registers
 - What kinds of registers are available?
 - How to use them?
 - Memory models
 - How are instructions or data stored?
 - How can memory be accessed?
 - Interrupts schemes
 - What kinds of interrupts are available?
 - How to use them?

AVR and AVR Programming

- Assembly programming
 - can be constructed of
 - Sequential operations, if-then-else, loops
 - Function implementation
 - Stack and stack frames
 - Functions and function calls
- Data and data structure implementation
 - Constants, variables
 - Integers, characters, arrays, ...
 - Bits
 - Control bits

Interfacing

- I/O devices
 - Input devices: switch, push button, keypad
 - Output devices: LED bar, LCD
- Basic interaction approaches
 - Polling and Interrupt
- Basic communication types
 - Parallel and serial input/output
- Handling analog input/outputs
 - ADC, DAC, PWM

Project Development

- You need to
 - Find out what resources are available
 - How to use available resources
 - Develop strategies and design for the project
 - Hardware and software
 - Test and debug

What can we do?

- Not only know what, but how, and more importantly why.
- For the practical problems encountered in the future work or re-learning process, you can
 - identify the basic knowledge needed and find the possible solutions.
- Maintain (existing) microprocessor application systems
 - Problem debugging
 - System enhancement
- Design a microprocessor application system
- Be able to proceed to extended/advanced areas for breath/in-depth study

Where can we go now?

Proceed to advanced computing courses

- Compiler

For large software development, automatic machine code generation

Computer architecture

How to improve the processor and computer hardware system?

Operating system

 How to make good and efficient use of the computer hardware system

Networking

 How to handle complicated communications and make communication efficient?

Embedded system design

- How to develop an efficient processor for a specific application
- How to design and implement an embedded system with microcontrollers, microprocessors and other specific designed hardware components.

About Final Exam

- Moodle Online
- Date: Wed., Dec. 9
- Exam open time: 13:00 (Sydney time)
- Exam close time: 16:00 (Sydney time)
- Duration: 2 hours
- Two types of questions
 - 15 multiple choice questions
 - For some questions, multiple answers are allowed.
 - 2 programing and design questions

About Final Exam (cont.)

- Materials will not be covered in the exam
 - Slides marked with *
 - Extended topic
 - AVR ADC
- Sample questions will be posted in Moodle
 - https://moodle.telt.unsw.edu.au/mod/quiz/view.php?id=3338423

Thank You!

myExperience (CATEI) Survey

- Please participate
- If you have some feedback not covered by the Survey, please send your comments to me.
- Your feedback is much appreciated and will be considered for future improvement.