

Practice of AI

特征值&特征向量

Jim Xie

线性变换

普通矩阵
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\vec{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

普通矩阵
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\vec{X} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$
 (1,1)

镜像矩阵
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

镜像矩阵
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\vec{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

单位矩阵
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\vec{X} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

定义&几何意义

设
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 , $\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

若存在 λ ,使得 $A\vec{X} = \lambda \vec{X}$,则 λ 为特征值(eigenvalue), \vec{X} 为特征向量 (eigenvector)

即:
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A\vec{X} = \lambda \vec{X}$$

$$A\vec{X} - \lambda\vec{X} = 0$$

$$A\vec{X} = \lambda \vec{X} \qquad \longrightarrow \qquad (A - \lambda I)\vec{X} = 0$$

$$\vec{X}$$
为 $(A-\lambda I)\vec{X}$ 的非0解

求解方程
$$(a - \lambda) * (d - \lambda) - bc = 0$$

可得到多个\(\lambda\), 再分别带入解出对应的\(\bar{X}\)

性质

行列式为0的方阵, 称为奇异矩阵

1 (A-λI)为系数矩阵,同时也是奇异方阵

2 A行列式等于特征值积 $det(A) = \lambda_1 * \lambda_2 * \lambda_3 * * * * \lambda_n$

3 A对角线和等于特征值和 $a_{11} + a_{22} + a_{33} *** + a_{nn} = \lambda_1 + \lambda_2 + \lambda_3 *** + \lambda_n$

4 实对称方阵的不同特征值对应的特征向量是正交的

应用

x1	x2	x3
x1 1 2 3 4 5	5	2
2	3	3
3	4 3 3	3 2 7 8
4	3	7
5	3	8
3	7	3
1	7 9	6
8	1	3 6 9
1 8 9	0	
9	1	8

 $B = A^T A$ B = (3, 3) 的对称方阵

- *计算B的特征值* λ_i 和特征向量 \vec{x}_i $(\lambda_i$ 是实数, \vec{x}_i 是正交的)