Informatyka II Sprawozdanie z laboratorium II

Krzysztof Janczuk

Temat zajęć: Całkowanie numeryczne

1 Metody całkowania numerycznego wykorzystane podczas laboratorium

1.1 Metoda trapezów

Jest to jedna z najprostszych metod przybliżonego obliczania całki oznaczonej. Całkowana funkcja jest aproksymowana funkcją liniową, którą całkuje się analitycznie. W wyrażeniu na błąd całkowania metody trapezów pojawia sią wartość drugiej pochodnej funkcji całkowanej w pewnym punkcie wewnętrznym. Oznacza to, że metoda daje ścisły wynik dla wielomianów stopnia nie większego niż 1. Innymi słowy metoda trapezów jest metodą pierwszego rzędu.

1.2 Metoda Simpsona

W tej metodzie wprowadza się punkt środkowy leżący pomiędzy krańcami przedziału całkowania. Umożliwia to aproksymację funkcji całkowanej wielomianem drugiego stopnia. Metoda jest ścisła dla wielomianów nie większych niż trzeciego stopnia.

1.3 Metoda Gaussa

Metoda wykorzystuje spostrzeżenie, które mówi, że całka w przedziale [a,b] może być transformowana do całki w przedziale [-1,1] drogą liniowej zamiany zmiennych. Wartość całki w przedziale [-1,1] zamienionej funkcji F(t) może zostać obliczona przy wykorzystaniu węzłów oraz współczynników wagowych. Odpowiednio wybierając ich wartości można uzyskać największy możliwy rząd dokładności metody. W ćwiczeniu zostały podane wartości pięciu węzłów i odpowiadające im wagi. Metoda cechuje się dużą wydajnością obliczeniową oraz dużą dokładnością przy niewielkiej liczbie punktów, w których obliczana jest funkcja podcałkowa.

2 Opis programu

Napisany program oblicza a nastęnie zapisuje do pliku wartości całki obliczonej analitycznie oraz trzema sposobami numerycznymi. Obliczone zostały także błędy całkowania każdej metody. Funkcjami poddanymi całkowaniu są funkcje przedstawione w instrukcji : $f_1 = \frac{1}{x^2}$ oraz $f_2 = \frac{1}{x}$ Metoda trapezów oraz metoda Simpsona zostały zastosowane przy większającej się liczbie punktów, które dzielą przedział całkowania. Do pliku nagłówkowego kwad.h dodano prototyp funkcji gauss, która oblicza całkę z funkcji metodą Gaussa. W pliku źródłowym kwad.cpp został napisany kod tej metody.

3 Wyniki

Wyniki przedstawiono na wykresach z osiami o skali logarytmicznej, dla błędu o podstawie 10, dla liczby punktów o podstawie 2.

Rysunek 1: Błąd metody tapezów i Simpsona dla funkcji $\frac{1}{x^2}$ w przedziale $[0.1,\!5]$

Rysunek 2: Błąd metody tapezów i Simpsona dla funkcji $\frac{1}{x}$ w przedziale [1,5]

Dla pierwszej funkcji metoda Gaussa dała błąd równy 3,373. W drugim przypadku błąd wyniósł 0,00015.

Wykresy jasno wskazują, że metoda Simpsona wykorzystująca taką samą liczbę punktów, w których jest liczona całka, daje bardziej dokładne wyniki od obliczeń metodą trapezów. Wraz ze wzrostem liczby punktów przewaga metody Simpsona nad metodą trapezów zwiększa się.

Na Rysunku 1 można zauważyć, że w szerzym przedziale całkowania, obejmującym zakres, gdzie funkcja posiada wysoką wartość pochodnej (co jest spowodowane asympotycznym zbieganiem funkcji do nieskończoności w zerze), metody całkowania nie dają dokładnych wyników dla niewielkiej liczby punktów.

Po porównaniu wyników metody Gaussa i Simpsona dla obu funkcji można zauważyć, że metoda Simpsona potrzebuje od 8 do 16 punktów, aby uzyskać porównywale błędy, jakie daje metoda Gaussa, opierająca się na pięciu węzłach. Pomimo tego samego rzędu obu metod, metoda Gaussa generuje o wiele mniejsze błędy, przy większej wydajności obliczeniowej.