Introducción a las teorías lineales de circulación oceánica forzada por el viento

Leandro B. Díaz, Daniela B. Risaro, Fernando Becker Segundo cuatrimestre 2020

Teorías de circulación

• Esfuerzo superficial del viento

- Esfuerzo superficial del viento
- Flujos superficiales de calor y agua dulce

- Esfuerzo superficial del viento
- Flujos superficiales de calor y agua dulce
- Acción de la marea

- Esfuerzo superficial del viento
- Flujos superficiales de calor y agua dulce
- Acción de la marea
- Interacción con los contornos y el fondo

- Esfuerzo superficial del viento
- Flujos superficiales de calor y agua dulce
- Acción de la marea
- Interacción con los contornos y el fondo
- Planeta que rota bajo el efecto de la gravedad

- Esfuerzo superficial del viento
- Flujos superficiales de calor y agua dulce
- Acción de la marea
- Interacción con los contornos y el fondo
- Planeta que rota bajo el efecto de la gravedad

Viento en superficie

Viento en superficie

• Vientos oestes en latitudes medias

Viento en superficie

- Vientos oestes en latitudes medias
- Vientos alisios (estes) en latitudes bajas cercanas al Ecuador

ullet Giros subpolares \Rightarrow ciclónicos

- Giros subpolares ⇒ ciclónicos
- $\bullet \ \ \mathsf{Giros} \ \mathsf{subtropicales} \ \Rightarrow \ \mathsf{anticicl\'onicos}$

- Giros subpolares ⇒ ciclónicos
- Giros subtropicales ⇒ anticiclónicos
- \bullet Corriente circumpolar antártica \Rightarrow inducida por la banda de oestes en el HS

Teorías lineales de circulación

Historia

• Sverdrup (1947)

Historia

- Sverdrup (1947)
- Stommel (1948)

Historia

- Sverdrup (1947)
- Stommel (1948)
- Munk (1950)

"Wind-driven currents in a baroclinic ocean, with application to the Equatorial Currents of the Eastern Pacific" Sverdrup, 1947

"Wind-driven currents in a baroclinic ocean, with application to the Equatorial Currents of the Eastern Pacific" Sverdrup, 1947

 Los gradientes horizontales de presión son balanceados por la fuerza de Coriolis

"Wind-driven currents in a baroclinic ocean, with application to the Equatorial Currents of the Eastern Pacific" Sverdrup, 1947

- Los gradientes horizontales de presión son balanceados por la fuerza de Coriolis
- Tanto las velocidades horizontales como los gradientes horizontales de presión se anulan a una cierta profundidad debajo de la superficie

"Wind-driven currents in a baroclinic ocean, with application to the Equatorial Currents of the Eastern Pacific" Sverdrup, 1947

- Los gradientes horizontales de presión son balanceados por la fuerza de Coriolis
- Tanto las velocidades horizontales como los gradientes horizontales de presión se anulan a una cierta profundidad debajo de la superficie
- La fuente de energía del sistema es el rotor de la tensión del viento

Ecuaciones de movimiento

$$-\rho f v = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z}$$
$$\rho f u = -\frac{\partial P}{\partial y}$$

Ecuaciones de movimiento

$$-\rho f v = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z}$$
$$\rho f u = -\frac{\partial P}{\partial y}$$

Integración en z

$$fM_y = -\frac{\partial P}{\partial x} + \tau_x$$
$$fM_x = -\frac{\partial P}{\partial y}$$

8

Ecuaciones de movimiento

$$-\rho f v = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z}$$
$$\rho f u = -\frac{\partial P}{\partial y}$$

Integración en z

$$fM_y = -\frac{\partial P}{\partial x} + \tau_x$$
$$fM_x = -\frac{\partial P}{\partial y}$$

Descomposición del transporte

$$M = M_E + M_G$$

$$M_{Ex} = 0$$

$$-M_{Ey} = \frac{1}{f}\tau_x$$

$$M_{Gx} = -\frac{1}{f}\frac{\partial P}{\partial y}$$

$$-M_{Gy} = -\frac{1}{f}\frac{\partial P}{\partial x}$$

Ecuaciones de movimiento

$$-\rho f v = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z}$$
$$\rho f u = -\frac{\partial P}{\partial y}$$

Integración en z

$$fM_y = -\frac{\partial P}{\partial x} + \tau_x$$
$$fM_x = -\frac{\partial P}{\partial y}$$

Descomposición del transporte

$$M = M_E + M_G$$

$$M_{Ex} = 0$$

$$-M_{Ey} = \frac{1}{f}\tau_x$$

$$M_{Gx} = -\frac{1}{f}\frac{\partial P}{\partial y}$$

$$-M_{Gy} = -\frac{1}{f}\frac{\partial P}{\partial x}$$

Continuidad

$$\frac{\partial M}{\partial x} + \frac{\partial M}{\partial y} = 0 \Rightarrow$$

8

Ecuaciones de movimiento

$$-\rho f v = -\frac{\partial P}{\partial x} + \frac{\partial \tau_x}{\partial z}$$
$$\rho f u = -\frac{\partial P}{\partial y}$$

Integración en z

$$fM_y = -\frac{\partial P}{\partial x} + \tau_x$$
$$fM_x = -\frac{\partial P}{\partial y}$$

Descomposición del transporte

$$M = M_E + M_G$$

$$M_{Ex} = 0$$

$$-M_{Ey} = \frac{1}{f}\tau_x$$

$$M_{Gx} = -\frac{1}{f}\frac{\partial P}{\partial y}$$

$$-M_{Gy} = -\frac{1}{f}\frac{\partial P}{\partial x}$$

Continuidad

$$\frac{\partial M}{\partial x} + \frac{\partial M}{\partial y} = 0 \Rightarrow \beta M_y = -\frac{\partial \tau_x}{\partial y}$$

8

Circulación del balance de Sverdrup en el ${\sf HN}$

Circulación del balance de Sverdrup en el HN

 Los vientos del oeste y los alisios fuerzan convergencia en la capa de Ekman ⇒ Ekman downwelling en latitudes medias

Circulación del balance de Sverdrup en el HN

- Los vientos del oeste y los alisios fuerzan convergencia en la capa de Ekman ⇒ Ekman downwelling en latitudes medias
- Ekman upwelling en latitudes bajas y altas

Circulación del balance de Sverdrup en el HN

- Los vientos del oeste y los alisios fuerzan convergencia en la capa de Ekman ⇒ Ekman downwelling en latitudes medias
- Ekman upwelling en latitudes bajas y altas
- Transporte de Sverdrup meridional hacia el Ecuador

Stommel (1948)

"The westward intensification of Wind-driven ocean currents" Stommel, 1948

"The westward intensification of Wind-driven ocean currents" Stommel, 1948

• Cuenca oceánica rectangular bajo la influencia del esfuerzo del viento

"The westward intensification of Wind-driven ocean currents" Stommel, 1948

- Cuenca oceánica rectangular bajo la influencia del esfuerzo del viento
- Fricción de fondo proporcional a la velocidad del fluido ⇒ cambio de vorticidad planetaria balanceado por la friccin de fondo.

"The westward intensification of Wind-driven ocean currents" Stommel, 1948

- Cuenca oceánica rectangular bajo la influencia del esfuerzo del viento
- Fricción de fondo proporcional a la velocidad del fluido ⇒ cambio de vorticidad planetaria balanceado por la friccin de fondo.
- Gradientes horizontales de presión causados por cambios en la superficie libre y la fuerza de Coriolis

Solución de Stommel para el HN con plano f (Izquierda) y plano β (Derecha)

Solución de Stommel para el HN con plano f (Izquierda) y plano β (Derecha)

 \bullet El cambio de f con la latitud genera una CBO a partir de la generación vorticidad planetaria

Solución de Stommel para el HN con plano f (Izquierda) y plano β (Derecha)

- ullet El cambio de f con la latitud genera una CBO a partir de la generación vorticidad planetaria
- En el BO el input de vorticidad del viento y la vorticidad planetaria es balanceada con fricción

Solución de Stommel para el HN con plano f (Izquierda) y plano β (Derecha)

- ullet El cambio de f con la latitud genera una CBO a partir de la generación vorticidad planetaria
- En el BO el input de vorticidad del viento y la vorticidad planetaria es balanceada con fricción
- En el interior de la cuenca el balance es entre el viento y el término de vorticidad planetaria

Solución de Stommel para el HN con plano f (Izquierda) y plano β (Derecha)

- El cambio de f con la latitud genera una CBO a partir de la generación vorticidad planetaria
- En el BO el input de vorticidad del viento y la vorticidad planetaria es balanceada con fricción
- En el interior de la cuenca el balance es entre el viento y el término de vorticidad planetaria

$$\beta v - (\nabla \times \tau_s) + K\xi + = 0$$

$$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$
; K coeficiente de fricción

"On the wind-driven ocean circulation" Munk, 1950

"On the wind-driven ocean circulation" Munk, 1950

• Se basa en los modelos de Sverdrup y Stommel

"On the wind-driven ocean circulation" Munk, 1950

- Se basa en los modelos de Sverdrup y Stommel
- Agrega coeficientes constantes de fricción lateral eddy

"On the wind-driven ocean circulation" Munk, 1950

- Se basa en los modelos de Sverdrup y Stommel
- Agrega coeficientes constantes de fricción lateral eddy
- Integra las ecuaciones de movimiento hasta una profundidad de no movimiento y reescribe los términos utilizando función corriente

Solución de Munk

Solución de Munk

 $\bullet\,$ En el BO se genera una CCBO, producto del coeficiente de fricción lateral

Solución de Munk

- En el BO se genera una CCBO, producto del coeficiente de fricción lateral
- En el interior de la cuenca el balance es entre el viento y el término de vorticidad planetaria

Solución de Munk

- En el BO se genera una CCBO, producto del coeficiente de fricción lateral
- En el interior de la cuenca el balance es entre el viento y el término de vorticidad planetaria

$$\beta \frac{\partial \psi}{\partial x} - (\nabla \times \tau_s) - A_H \nabla^4 \psi = 0$$

 $\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$; A_H coeficiente de fricción lateral

Modelo homogéneo de circulación

- Este modelo fue desarrollado para resolver la ecuación de vorticidad barotrópica (integrada en la vertical) para el océano en su forma adimensional. Usa diferencias finitas
- Al definir escalas características del problema *, la ecuación en cuestión es

$$\frac{\partial \xi'}{\partial t} + R_0 J'(\psi', \xi') + \frac{\partial \psi'}{\partial x'} = \frac{\nabla' \times \tau'_s}{D} - \epsilon_s \xi' + \epsilon_m \nabla'^2 \xi'$$
$$J'(\psi', \xi') = \frac{\partial \psi}{\partial x} \frac{\partial \xi}{\partial x} - \frac{\partial \xi}{\partial x} \frac{\partial \psi}{\partial x}$$

 $R_0 = \frac{V}{\beta_0 L^2}$ número de Rossby $\epsilon_s = \frac{K}{\beta_0 L}$ número de Stommel $\epsilon_m = \frac{A}{\beta_0 L^3}$ número de Munk

- * (x,y) = L(x',y'); (u,v) = U(u',v'); t = Tt'
- $U = \frac{2\pi\tau_s}{\rho D\beta^2 L^2}$; $T = \frac{1}{\beta L}$

Magnitudes y números en el modelo

Magnitudes típicas - gran escala

Magnitud del viento $ au$	$0.1 - 0.5 \ N m^{-2}$
Longitud de la cuenca ${\cal L}$	4000 km
Profundidad D	1000 - 5000 m
Coeficiente de fricción de fondo ${\cal K}$	$1.16 \ 10^{-7} s^{-1}$
Coeficiente de fricción lateral ${\cal A}_H$	10 - 500 $m^2 s^{-1}$

Números adimensionales en el modelo

Número de Rossby	$R = \frac{2\pi\tau}{\rho D\beta^2 L^3}$	R_0
Número de Ekman vertical	$E_f = \frac{K}{\beta L}$	eps
Número de Ekman horizontal armónico	$E_{v1} = \frac{A}{\beta L^3}$	Ah
Número de Ekman horizontal bi-armónico	$E_{v2} = \frac{\overline{A_4}}{\beta L^5}$	Bh

Ancho CBO

- La caracterización de la CBO viene dada por el parmetro $\delta \Rightarrow$ fracción de la longitud de la cuenca que la CBO abarca
- Parámetro $W \Rightarrow$ ancho de la CBO
- ullet W depende de los efectos a los que está asociado
 - 1. Efectos inerciales $\Rightarrow \delta_i = R^{(1/2)} \Rightarrow W_i = \delta_i L$
 - 2. Fricción de fondo $\Rightarrow \delta_f = E_f \Rightarrow W_f = \delta_f L$
 - 3. Fricción lateral \Rightarrow $\delta_{v1} = E_{v1}^{(1/3)} \Rightarrow W_{v1} = \delta_{v1}L$
 - 4. Fricción bi-armónica $\Rightarrow \delta_{v2} = E_{v2}^{(1/5)} \Rightarrow W_{v2} = \delta_{v2} L$

Preguntas?