Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3211	К работе допущен	
Студент	Болорболд Аригуун	Работа выполнена	04.10.2023
Преподаватель	Коробков Максим Петров	<u>ич</u> Отчет принят	

Рабочий протокол и отчет по

Physics лабораторной работе №1.01

1. Цель работы.

- 1. Провести многократные измерения определенного интервала времени.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

2. Задачи, решаемые при выполнении работы.

Исследование закона распределения случайной величины.

3. Объект исследования.

Распределение случайной величины при измерении.

4. Метод экспериментального исследования.

Замер времени отдыха потока при помощи встроенной компьютерной функции измерения времени.

5. Рабочие формулы и исходные данные.

$$\langle t \rangle_{N} = \frac{1}{N} (t_{1} + t_{2} + \dots + t_{N}) = \frac{1}{N} \sum_{i=1}^{N} t_{i} \qquad \sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}}$$

$$\rho_{\max} = \frac{1}{\sigma \sqrt{2\pi}} \qquad \rho(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(t - \langle t \rangle)^{2}}{2\sigma^{2}}\right)$$

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}}$$

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$$

6. Измерительные приборы.

Nº ⊓/⊓	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1.	Цифровой секундомер	Цифровой	0 – 1 мс	10 ⁻⁹ мс

7. Результаты прямых измерений

Nº	t_i	$t_i - \langle t_N \rangle$	$t_i - \langle t_N \rangle^2$, c^2	
1	0,020676	-0,477	0,228	

2	0,033713	-0,464	0,216
3	0,048305	-0,450	0,202
4	0,050068	-0,448	0,201
10000	0,964906	0,467	0,218
	t_i	$\sum_{i=1}^{10000} t_i - \langle t_N \rangle$	$ ho_{max}$
	0,4982	-0,004374	2,396729317

Далее считаем величины для заполнения нижней строки таблицы.

$$\langle t
angle_N = rac{1}{N} \sum_{i=1}^N t_i pprox 0,4982 \ \mathrm{MC}$$

$$\sum_{i=1}^N (t_i - \langle t
angle_N) pprox -0,004374 \; ext{mc}$$

$$\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} \approx 0,1665 \text{ MC}$$

$$\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}} \approx 2,3968~\mathrm{Mc^{-1}}$$

$$t_{max} - t_{min} = 0.94423 \text{ MC}$$

Разобьём $t_{max}-t_{min}$ на 100 равных промежутков с шагом Δt =0,009442мс

8. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Здесь должна быть таблица №2 из методички (данные для построения гистограммы)

Найдём значения функции ho(t) при различных значениях t при помощи функции Гаусса:

границы интервалов, мс	ΔΝ	ΔN/(N*Δt), 1/мс	t, MC	ρ0, 1/мс
0,020676	1	0,01	0,025397	0,042
0,030118	1			0,042
0,030118	1 /	0,01	0,034839	0,05
0,039561	-			
0,039561		0,01	0,044282	0.058
0,049003	1			0,058
0,049003	2	0.02	0.052724	0.060
0,058445	Z	0,02	0,053724	0,068
0,058445	5	0.05	0,063166	0.070
0,067888	5	0,05	0,003100	0,079
0,067888	15	0,16	0,072609	0,091

0,077330				
	•••	•••	•••	
0,946021	2	0,02	0,950743	0,059
0,955464	2	0,02	0,930743	0,059
0,955464	1	0.01	0.060195	0.051
0,964906	1	0,01	0,960185	0,051

^{9.} Расчет погрешностей косвенных измерений.

Проверим, насколько точно выполняется в опытах соотношение между вероятностями и долями:

Dlarasia	Интервал, число		dN	dN/N	D
Physics	ОТ	до	un	unin	٢
$\langle t \rangle N \pm \sigma N$	0,33	0,66	6620	0,662	0,683
$(t)N \pm 2\sigma N$	0,17	0,83	9567	0,9567	0,954
$\langle t \rangle N \pm 3\sigma N$	0,00	1,00	10000	1	0,997

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2} = 0,001664611 \, \mathrm{MC}$$

$$\Delta t = t_{\alpha, N} \sigma_{\langle t \rangle} = 0.003329222 \text{ MC}$$

- 10. Графики (перечень графиков, которые составляют Приложение 2).
- 11. Окончательные результаты.

$$\Delta t = (0.4982 \pm 0.0033) \,\mathrm{Mc}$$

12. Выводы и анализ результатов работы.

Вывод: В данной работе я измерял время отдыха потока и анализировал его характеристики. Используя случайные данные (время отдыха потока), я построил гистограмму распределения времени и оценил его среднее значение и среднеквадратичное отклонение. Также я определил погрешность измерений. Результаты показали, что время отдыха потока, как и ожидалось, имеет нормальное распределение.

13. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение 2

