Toky v sítích

Zdeněk Hanzálek a Přemysl Šůcha hanzalek@fel.cvut.cz

ČVUT FEL Katedra řídicí techniky

29. března 2011

- Toky
 - Problém maximálního toku
 - Ford-Fulkersonův Algoritmus
 - Problém minimálního řezu
 - Celočíselnost
 - Rozhodovací problém přípustného toku v síti
 - Nalezení počátečního přípustného toku pro Ford-Fulkersonův alg.
 - Nejlevnější tok v síti
- Párování
 - Maximální párování v bipartitním grafu
 - Přiřazovací úloha Nejlevnější perfektní párování v úplném bipart. gr.
 - Maďarský algoritmus
- Multikomoditní toky
 - Nejlevnější multikomoditní toky v síti
- Vyjadřovací schopnosti problému maximálního toku

Síť a tok

Co je síť

Jako síť bývá označována pětice (G,I,u,s,t) kde G je orientovaný graf s hranami o horním omezení $u:E(G)\to\mathbb{R}_0^+$ a dolním omezení $I:E(G)\to\mathbb{R}_0^+$ a dvěma vrcholy s (zdroj) a t (spotřebič).

Tok

Tok v síti G je takové ohodnocení hran $f: E(G) \to \mathbb{R}^+_0$, kde pro každý vrchol $v \in V(G) \setminus \{s,t\}$ platí Kirchhofův zákon $\sum_{e \in \delta^-(v)} f(e) = \sum_{e \in \delta^+(v)} f(e)$.

 $\delta^+(v)$ je množina hran opouštějících v $\delta^-(v)$ je množina hran vstupujících do v

Přípustný tok

Pro přípustný tok platí $f(e) \in \langle I(e), u(e) \rangle$.

Přípustný tok nemusí existovat, pokud I(e) > 0.

Problém maximálního toku

Maximální tok

Je dána usp. pětice (G,I,u,s,t). Úkolem je najít takový **přípustný tok** f od zdroje ke spotřebiči, že $\sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e)$ je maximální (tj. chceme transportovat co nejvíce jednotek z s do t.).

 $\delta^+(s)$ je množina hran opouštějících s $\delta^-(s)$ je množina hran vstupujících do s (ty často neuvažujeme).

Příklad - **dopravní úloha:** Maximální množství produktu má být dopraveno z s do t. Problém je popsán sítí (grafem) kde hrany grafu odpovídají dopravním linkám (úsekům potrubí, silnic, železnic, atd.) s příslušným horním a dolním omezením. Tok v hraně je ustálený a beze ztrát.

Příklad omezení:

- $u_i = 10$ linka i přepraví maximálně 10 jednotek
- ullet $I_j=3$ linka j přepraví minimálně 3 jednotky
- $l_k = u_k = 20$ linka k přepraví právě 20 jednotek

Př. - Rozvrhování na paralelních procesorech s pmtn, r_j , \widetilde{d}_j

Problém $P\left|\operatorname{pmtn}, r_j, \widetilde{d}_j\right| C_{max}$ - máme n úloh, které je potřeba přiřadit na R paralelních identických zdrojů (procesorů). Každá úloha má svoji dobu trvání p_j , termín dostupnosti r_j a termíny dokončení \widetilde{d}_j . Při přiřazování úloh na procesory je povoleno úlohy přerušovat (včetně jejich migrace z jednoho procesoru na druhý). Příklad pro 3 zdroje:

úloha	T_1	T_2	T_3	T_4
p_j	1.5	1.25	2.1	3.6
$r_j \approx$	3	1	3	5
\widetilde{d}_{j}	5	4	7	9

Cíl

Všechny úlohy přiřadit na procesory tak, aby každý zdroj vykonával v daný časový okamžik maximálně jednu úlohu a aby každá úloha byla v daný časový okamžik prováděna maximálně na jednom procesoru.

Formulujeme jako problém maximálního toku.

Př. - Rozvrhování na paralelních procesorech s preempcí, release date a deadline

pro 3 paralelní identické zdroje

T_j	1	2	3	4
p_j	1.5	1.25	2.1	3.6
r_j \widetilde{d}_i	3	1	3	5
\widetilde{d}_{j}	5	4	7	9

- 1) Vrcholy $I_{1,3}$, $I_{3,4}$, $I_{4,5}$, $I_{5,7}$ a $I_{7,9}$ odpovídají časovým intervalům uvnitř kterých může být vykonána jedna podmnožina úloh (intervaly jsou dány hodnotami r a \widetilde{d}). Například $T_{1,3}$ odpovídá intervalu $\langle 1, 3 \rangle$.
- 2) Horní omezení hrany $(T_j, I_{x,y})$ je dáno délkou intervalu (neboli y x) jelikož úlohy nejsou vnitřně paralelní.
- 3) Horní omezení hrany $(I_{x,y}, t)$ je dáno délkou intervalu a počtem zdrojů.

Formulace maximálního toku pomocí lineárního programování

 $f(e) \in \mathbb{R}_0^+$ je proměnná udávající tok hranou $e \in E(G)$.

$$\max \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e)$$
s.t.
$$\sum_{e \in \delta^-(v)} f(e) = \sum_{e \in \delta^+(v)} f(e)$$

$$I(e) \le f(e) \le u(e)$$

$$v \in V(G) \setminus \{s, t\}$$

$$e \in E(G)$$

Všimněme si, že pro libovolnou množinu A obsahující zdoj s a neobsahující spotřebič t platí:

$$\textstyle \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e) = \sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e).$$

Dú: jednoduše dokažte z platnosti Kirchhofova zákona.

Ford-Fulkersonův Algoritmus

Za průkopníky v oblasti toků v sítích jsou považováni L. R. Ford, Jr. a D. R. Fulkerson (na obrázku). Jejich jména nese neznámější **algoritmus na výpočet maximálního toku v síti**, který publikovali v roce 1956.

Ford-Fulkersonův Algoritmus

Princip: Algoritmus je založen na **postupném zvětšování (zlepšování) toku** při zachování jeho přípustnosti.

Hrany vpřed a vzad

Hranu nazveme *hranou vpřed*, je-li orientována ve směru průchodu cestou od zdroje ke spotřebiči. *Hrana vzad* je orientována proti směru průchodu.

Zlepšující cesta

Zlepšující cesta vzhledem k toku f je taková **neorientovaná** cesta ze zdroje s ke spotřebiči t, jejíž každá hrana splňuje:

- ullet je-li e hranou vpřed, pak $f(e) < u(e) \ldots$ tok můžeme zvětšit
- ullet je-li e hranou vzad, pak $f(e)>l(e)\ldots$ tok můžeme zmenšit

Kapacita zlepšující cesty

Kapacita zlepšující cesty je maximální hodnota γ , o kterou lze změnit tok na zlepšující cestě.

Ford-Fulkersonův Algoritmus

Vstup: Síť (G, I, u, s, t).

Výstup: Maximální přípustný tok f z s do t.

- **1** Najdi přípustný tok f(e) pro všechny $e \in E(G)$
- Najdi zlepšující cestu P. Pokud neexistuje, ukonči hledání.

Na hranách vpřed zvýšíme tok o γ a na hranách vzad snížíme tok o γ - přípustnost toku i Kirchhofův zákon tím zůstaly zachovány, ale celková velikost toku stoupla o γ .

Tuto cestu již nelze použít, jelikož v jedné hraně byl tok změně "nadoraz".

Tok z s do t je maximální právě tehdy, když neexistuje zlepšující cesta.

Hledání zlepšující cesty (značkovací procedura) pro Ford-Fulkersonův Algoritmus

Vstup: Síť (G, I, u, s, t), přípustný tok f.

Výstup: Zlepšující cesta *P*.

- $m_v = FALSE \ \forall v \in V(G), \ m_s = TRUE \ (označkuj vrchol \ s)$
- ② Existuje-li $e \in E(G)$ (přičemž v_i je počáteční a v_j je koncový vrchol hrany e) taková, že platí $m_i = TRUE$, $m_j = FALSE$ a f(e) < u(e), pak označkujeme $m_i = TRUE$.
- ③ Existuje-li $e \in E(G)$ (přičemž v_i je počáteční a v_j je koncový vrchol hrany e) taková, že platí $m_i = FALSE$, $m_j = TRUE$ a f(e) > I(e), pak označkujeme $m_i = TRUE$.
- Pokud byl označkován t, hledání končí (zlepšující cesta P byla nalezena). Pokud nelze označit další vrchol, P neexistuje. V ostatních případech pokračuj body 2 a 3.

značení hran: f(e), u(e)

množina $A=\{s,u,v\}$ charakterizuje **řez s minimální kapacitou**

Tento příklad zároveň ukazuje, že **značkování proti směru hran nelze v algoritmu vynechat**. Jinak by v tomto případě z výchozího toku (vlevo) nebylo možné dosáhnout maximálního toku (vpravo).

Značení hran: I(e), f(e), u(e). Kapacita zlepšující cesty je rovna 2. Výsledný tok je maximální nalezněte řez o minimální kapacitě.

Problém minimálního řezu

Řez

Řez v grafu G je množina hran $\delta^(A)$, kde $s \in A$ a $t \in V(G) \setminus A$ (neboli řez odděluje s a t). **Minimální řez** je řez s minimální kapacitou $C(A) = \sum_{e \in \delta^+(A)} u(e) - \sum_{e \in \delta^-(A)} I(e)$.

Ford-Fulkersonova věta [1956]

Hodnota maximálního toku z s do t v libovolné síti je rovna **kapacitě minimálního řezu**. Vyplývá z LP duality.

Po zastavení značkovací procedury, které se nepodařilo nalézt zlepšující cestu, je minimální řez charakterizován označkovanými vrcholy. Minimální řez je roven množině hran, které nedovolují další značkování. Pro všechny $e \in \delta^+(A)$ platí f(e) = u(e) a pro všechny $e \in \delta^-(A)$ platí f(e) = l(e).

Velikost maximálního toku je rovna kapacitě minimálního řezu:

$$\textstyle \sum_{e \in \delta^+(A)} f(e) - \sum_{e \in \delta^-(A)} f(e) = \sum_{e \in \delta^+(A)} u(e) - \sum_{e \in \delta^-(A)} I(e).$$

Celočíselnost

Integral Flow Theorem (Danzing and Fulkerson [1956])

Pokud jsou kapacity sítě celočíselné, potom **existuje celočíselný maximální tok**.

Vyplývá z totální unimodularity incidenční matice orientovaného grafu G, která je přímo maticí \mathbf{A} v LP formulaci $\mathbf{A} \cdot x \leq b$.

Lze též dokázat následovně:

Pokud jsou všechny kapacity celočíselné, pak je γ v kroku 3)

Ford-Fulkersonova algoritmu vždy celočíselná. Algoritmus se zastaví po konečném počtu kroků, jelikož maximální tok má celočíselnou hodnotu

Ford-Fulkersonův Algoritmus - Časová složitost

Pokud hledáme zlepšující cestu **nevhodným způsobem**, může se tok zvyšovat jen po jednotkových krocích. Pro neceločíselná omezení toku a neceločíselný tok se **algoritmus nemusí vůbec zastavit**.

Edmonds a Karp [1972])

Pokud vždy vybíráme zlepšující cesty s **nejmenším počtem hran**, je časová náročnost algoritmu $O(m^2 \cdot n)$.

Rozhodovací problém přípustného toku v síti

Polynomiální transformací lze převést na problém maximálního toku.

Přípustný tok v síti

- **Instance**: Uspořádaná trojice (G, u, b) kde G je orientovaný graf s hranami o horním omezení $u : E(G) \to \mathbb{R}_0^+$ a dále s:
 - bilancí (**zdrojů/spotřebičů**) vrcholů $b:V(G)\to\mathbb{R}$ kde $\sum_{v\in V(G)}b(v)=0.$
- **Cíl**: Rozhodnout, zda existuje přípustný tok f tak, aby platilo $\sum_{e \in \delta^+(v)} f(e) \sum_{e \in \delta^-(v)} f(e) = b(v)$ pro všechny $v \in G(V)$.

Příklad - dopravní úloha

Jeden produkt s danými **dodavateli** určitého množství (dodavatel reprezentován vrcholem s b(v)>0) a **odběrateli** určitého množství (odběratel reprezentován vrcholem s b(v)<0). Úkolem je rozhodnout, zda lze přepravit všechen produkt od dodavatelů k odběratelům v transportní síti s horním omezením linek u. Problém je popsán sítí (grafem) kde hrany grafu odpovídají úsekům potrubí, silnic, železnic, atd. s příslušnou kapacitou.

Cíl

Úkolem je rozhodnout, zda lze přepravit všechen produkt od dodavatelů A k odběratelům B v transportní síti s kapacitami linek u.

Rozhodovací problém přípustného toku v síti

Tento rozhodovací problém převedeme na **problém maximálního toku s nulovým dolním omezením**:

- **1** založíme zdroj s a přidáme hrany (s, v) s horním omezením $u_v = b(v)$ pro všechny vrcholy, pro které platí b(v) > 0
- $oldsymbol{2}$ založíme spotřebič t a přidáme hrany (v,t) s horním omezením $u_v=-b(v)$ pro všechny vrcholy, pro které platí b(v)<0
- vyřešíme problém maximálního toku s nulovým dolním omezením (jako počáteční přípustný tok vezmeme nulový tok)
- pokud maximální tok saturuje všechny hrany vycházející z s a/nebo vstupující do t, potom má problém přípustného toku v síti kladnou odpověď.

Nalezení počátečního přípustného toku pro Ford-Fulkersonův Algoritmus

Pro případ kdy $\forall e \in E(G)$; I(e) = 0 - triviální - lze vzít nulový tok, jelikož ten splňuje Kirchhofův zákon.

Pro případ kdy $\exists e \in E(G)$; I(e) > 0 převedeme hledání přípustného toku na **rozhodovací problém přípustného toku v síti** následujícím postupem:

- Problém maximálního toku (s nenulovým dolním omezením) převedeme na cirkulaci přidáním hrany z t do s o nekonečném horním omezení, tím platí Kirchhofův zákon pro všechny vrcholy v síti (včetně s a t).
- 4 Hledaná přípustná cirkulace s dolním a horním omezením toku musí vyhovět následujícím omezením:

$$\sum_{e \in \delta^{+}(v)} f(e) - \sum_{e \in \delta^{-}(v)} f(e) = 0 \qquad v \in V(G)$$

$$I(e) \le f(e) \le u(e) \qquad e \in E(G)$$

Nalezení počátečního přípustného toku pro Ford-Fulkersonův Algoritmus

Substitucí f(e) = f(e)' + I(e) obdržíme transformovaný problém:

$$\begin{array}{ll} \sum_{e \in \delta^+(v)} f(e)' - \sum_{e \in \delta^-(v)} f(e)' = b(v) & v \in V(G) \\ 0 \le f(e)' \le u(e) - l(e) & e \in E(G) \\ \text{kde } b(v) = \sum_{e \in \delta^-(v)} l(e) - \sum_{e \in \delta^+(v)} l(e) & v \in V(G) \end{array}$$

- **③** Toto je **rozhodovací problém přípustného toku v síti** jelikož $\sum_{v \in V(G)} b(v) = 0$ (povšimněte si, že I(e) se nachází dvakrát v tomto součtu, jednou s kladným a jednou se záporným znaménkem).
- ullet Vyřešením tohoto rozhodovacího problému (t.j. přidáním s', t' a řešením maximálního toku s nulovým dolním omezením) zjistíme počáteční přípustnou cirkulaci/tok nebo rozhodneme, že neexistuje.

Závěr: problém nalezení počátečního přípustného toku s nenulovým dolním omezením jsme převedli na rozhodovací problém přípustného toku v síti a ten umíme převést na problém maximálního toku s nulovým dolním omezením.

Problém nejlevnějšího toku v síti

Rozšíření úlohy maximálního toku o ceny hran a exaktní rozdíl vstupního a výstupního toku ve zdrojích/spotřebičích.

Nejlevnější tok v síti

- **Instance**: Uspořádaná pětice (G, I, u, c, b) kde G je orientovaný graf s hranami o horním omezení $u: E(G) \to \mathbb{R}_0^+$ a dolním omezení $I: E(G) \to \mathbb{R}_0^+$ a dále s:
 - **cenami** hran $c: E(G) \rightarrow \mathbb{R}$
 - ohodnocením (zdrojů/spotřebičů) vrcholů $b:V(G)\to\mathbb{R}$ kde $\sum_{v\in V(G)}b(v)=0.$
- **Cíl**: Nalézt přípustný tok f jehož cena $\sum_{e \in E(G)} f(e) \cdot c(e)$ je minimální (tj. chceme dopravit tok mezi uzly co nejlevněji) a zároveň platí $\sum_{e \in \delta^+(v)} f(e) \sum_{e \in \delta^-(v)} f(e) = b(v)$ pro všechny $v \in G(V)$. Nebo rozhodnout, že přípustný tok neexistuje.

Nejlevnější tok v síti - formulace LP

Proměnná $f(e) \in \mathbb{R}_0^+$ reprezentuje tok hranou $e \in E(G)$.

$$\min \sum_{e \in E(G)} c(e) \cdot f(e)$$
s.t.
$$\sum_{e \in \delta^{+}(v)} f(e) - \sum_{e \in \delta^{-}(v)} f(e) = b(v)$$

$$I(e) \le f(e) \le u(e)$$

$$v \in V(G)$$

$$e \in E(G)$$

Maximální tok lze převést na nejlevnější tok:

- ullet založ návratovou hranu z t do s s horním omezením ∞ a cenou -1
- ostatní hrany mají ceny rovny 0
- b(v) = 0 pro všechny vrcholy včetně s a t
- cirkulace s nejmenší (zápornou) cenou maximalizuje tok v návratové hraně

Párování - základní pojmy a problémy

Párování v grafu G je taková množina hran $P \subseteq E(G)$, že žádné dvě hrany z množiny P nemají společný vrchol.

Pokud všechny vrcholy G jsou incidentní s některou hranou P, potom P nazýváme **perfektním párováním**. Problémy:

- a) V daném grafu najít **maximální párování** (anglicky (Maximum) Cardinality Matching Problem), tj. párování které má největší počet hran.
 - b) Maximální párování v bipartitním grafu (spec. případ úlohy a).
- c) V ohodnoceném grafu najít **nejlevnější maximální párování**, tj. nejlevnější párování ze všech, která jsou maximální.
- d) V úplném ohodnoceném bipartitním grafu, jehož strany mají stejné počty vrcholů, najít **nejlevnější perfektní párování**. Tento problém se často nazývá **přiřazovací úloha** a je speciálním případem úlohy c) a speciálním případem **úlohy nejlevnějšího toku**.

Tyto problémy jsou polynomiální. My ukážeme algoritmy pro bipartitní grafy, které patří k jednodušším.

Maximální párování v bipartitním grafu

Lze řešit například pomocí úlohy Maximálního toku:

- založíme zdroj s a přidáme hrany (s, i) pro všechny $i \in X$
- založíme spotřebič t a přidáme hrany (j,t) pro všechny $j \in Y$
- orientaci hran zavedeme z s do X, z X do Y a z Y do t
- horní omezení všech hran jsou 1 a dolní omezení jsou 0
- vyřešíme problém maximálního toku z s do t a tím najdeme maximální párování

Příklad - Přiřazovací úloha

Máme n pracovníků a n úloh. Pro každou **dvojici pracovník-úloha** známe náklady na vykonání úlohy tímto pracovníkem.

Cíl

Každému pracovníkovi přiřadit jednu úlohu tak, aby celkové náklady byly minimální.

značení hran: u(e)náklady na vykonání úloh 1,2,3 pracovníky A,B,C

	Α	В	C
1	6	2	4
2	3	1	3
3	5	3	4

Vyřešíme buď jako problém **nejlevnějšího toku v síti** (viz. obrázek) nebo formulujeme jako problém **přiřazovací úlohy**.

Přiřazovací úloha - Nejlevnější perfektní párování v úplném bipartitním grafu, jehož strany mají stejné počty vrcholů

Popis:

- G úplný neorientovaný bipartitní graf se stranami X, Y takový, že |X| = |Y| = n.
- Ceny hran uspořádáme do matice, jejíž prvek $c_{ij} \in \mathbb{R}_0^+$ je cenou hrany $(i,j) \in X \times Y$.

Základní myšlenka Maďarského algoritmu:

- Libovolné **ohodnocení vrcholů** reálnými čísly p(v) pro $v \in V(G)$ definuje transformované ceny předpisem: $c_{ij}^p = c_{ij} p_i^x p_j^y$.
- Touto transformací se pro každé perfektní párování změní cena o
 tutéž hodnotu (každý vrchol se účastní právě jednou) a díky tomu je
 to nejlevnější stále dáno totožným výběrem hran.

Přiřazovací úloha - Maďarský algoritmus

Ohodnocení vrcholů p nazveme **přípustným ohodnocením**, jsou-li všechny transformované ceny nezáporné, tj. $c_{ii}^p \geq 0$.

Je-li p přípustným ohodnocením, pak **grafem rovnosti** G^p nazveme faktor grafu G, který obsahuje právě ty hrany, jejichž cena je nulová.

Věta

Jestliže graf rovnosti G^p obsahuje perfektní párování P, pak P je optimálním řešením přiřazovací úlohy

Párování P má v grafu rovnosti G^P nulovou cenu. Žádné jiné párování nemůže být levnější, protože jde o přípustné ohodnocení, kde $c_{ij}^P \geq 0$.

Maďarský algoritmus

Vstup: Úplný neorientovaný bipartitní graf G a váhy $c: E(G) \to \mathbb{R}_0^+$.

Výstup: Perfektní párování $P \subseteq E(G)$ jehož cena $\sum_{(i,j)\in P} c_{ij}$ je minimální.

- Pro všechna $i \in X$ spočítej $p_i^x := \min_{j \in Y} \{c_{ij}\}$ a pro všechna $j \in Y$ spočítej $p_j^y := \min_{i \in X} \{c_{ij} p_i^x\}$
- Sestroj gr. rovnosti G^p ; $E(G^p) = \left\{ (i,j) \in E(G); c_{i,j} p_i^x p_j^y = 0 \right\}$
- Nalezni maximální párování P v grafu G^p. Je-li toto párování perfektní, výpočet končí.
- Není-li P perfektní, nalezni množinu $A\subseteq X$ a k ní v G^p incidentní množinu $B\subseteq Y$ takovou, že |A|>|B|. Spočítej

$$d = min_{i \in A, j \in Y \setminus B} \left\{ c_{i,j} - p_i^{x} - p_j^{y} \right\}$$

a změň přípustné ohodnocení vrcholů takto:

$$p_i^{\mathsf{x}} := p_i^{\mathsf{x}} + d$$
 pro všechna $i \in A$ $p_j^{\mathsf{y}} := p_j^{\mathsf{y}} - d$ pro všechna $j \in B$ Pokračuj krokem 2.

Časová náročnost algoritmu je $O(n^4)$.

Matice cen (pozor nejde o adjugovanou ani incidenční matici):

• Nejdříve odečteme řádková minima od jednotlivých řádků - získáme ohodnocení vrcholů strany X.

Ve vzniklé matici odečteme od každého sloupce sloupcové minimum - získáme ohodnocení vrcholů strany Y.

- ② Vytvoříme matici transformovaných cen, ke každému řádku si poznamenáme hodnotu p_i^X a ke každému sloupci hodnotu p_j^Y . Sestrojíme graf rovnosti G^p .
- V G^p nalezneme maximální párování (hrany zvýrazněny tučně).
 - Nalezneme libovolné párování.
 - Nalezneme alternativní cestu (její hrany střídavě leží/neleží v párování) s neporkytými krajními vrcholy. Podél této cesty změníme (tj. zvětšíme) párování. Opakujeme dokud taková cesta existuje.

							p_i^x
	0	0	4	1	2	1	3
	5	8	7	4	5	0	3
	14	5	4	4	4	0	2
	3	11	1	0	8	7	1
	5	3	3	3	0	0	1
	1	7	0	2	6	3	1
p_i^y	2	0	0	0	0	0	

Jelikož výsledné párování není perfektní, nalezneme (modrou) množinu A a (zelenou) množinu B (začni značkovací proceduru z volného vrcholu v X). Z modrých prvků matice cen nalezneme minimum d=4.

							p_i^{x}
	0	0	4	1	2	1	3
	5	8	7	4	5	0	3
	14	5	4	4	4	0	2
	3	11	1	0	8	7	1
	5	3	3	3	0	0	1
	1	7	0	2	6	3	1
p_j^y	2	0	0	0	0	0	

Hodnoty p_i^x snížíme o d, hodnoty p_j^y zvýšíme o d, přepočítáme matici cen.

- V transformované matici přibylo několik nul a v G^p několik hran. Hrana (5,6) naopak ubyla.
- 3 Párování nelze zvětšit.
- Nalezneme množiny A (modře) a B (zeleně). Minimum d = 1.
- Nyní již v grafu existuje perfektní párování. Cena je rovna součtu ohodnocení vrcholů, 18.

							p_i^{x}	
	0	0	4	1	2	5	3	_(
	1	4	3	0	1	0	7	(
	10	1	0	0	0	0	6	
	3	11	1	0	8	11	1	
	5	3	3	3	0	4	1	
	1	7	0	2	6	7	1	(
p_i^y	2	0	0	0	0	-4		_

							p_i^{\times}
	0	0	5	2	3	6	3
	0	3	3	0	1	0	8
	9	0	0	0	0	0	7
	2	10	1	0	8	11	2
	4	2	3	3	0	4	2
	0	6	0	2	6	7	2
p_i^y	2	0	-1	-1	-1	-5	

Multikomoditní toky

Doposud jsme předpokládali pouze jednu komoditu.

Zavedeme **množinu komodit** *M* transportované v téže síti.

Každá komodita má několik zdrojů a několik spotřebičů.

Proměnná $f^m(e) \in \mathbb{R}_0^+$ reprezentuje tok komodity $m \in M$ hranou $e \in E(G)$.

Příklad: senzorová síť se dvěma komoditami a jedním spotřebičem pro každou z komodit:

- zdrojové vrcholy měří teplotu(zelená)
 a/nebo vlhkost(modrá) a zasílají je do
 jednoho koncentrátoru dat (spotřebiče)
 pro teplotu a jednoho pro vlhkost
- velikost toku (množství dat za čas)

Komunikační linky:

- kapacita (množství dat za čas)
- cena (energie na přenesení dat)

Nejlevnější multikomoditní toky v síti

Nejlevnější multikomoditní toky v síti

- Instance: Uspořádaná pětice $(G, I, u, c, b^1 \dots b^m \dots b^{|M|})$ kde G je orientovaný graf s hranami o horním omezení $u : E(G) \to \mathbb{R}_0^+$, dolním omezení $I : E(G) \to \mathbb{R}_0^+$ a ceně $c : E(G) \to \mathbb{R}$ a dále s:
 - ohodnocením (zdrojů/spotřebičů) vrcholů $b^m:V(G)\to\mathbb{R}$ kde $\sum_{v\in V(G)}b^m(v)=0$ pro všechny komodity $m\in M$.
- Cíl: Nalézt přípustný tok f jehož cena ∑_{e∈E(G)} ∑_{m∈M} f^m(e) · c(e) je minimální (tj. chceme dopravit tok mezi uzly co nejlevněji) nebo rozhodnout, že přípustný tok neexistuje.
 Pro přípustný tok platí ∑_{e∈δ+(v)} f^m(e) ∑_{e∈δ-(v)} f^m(e) = b^m(v) pro všechny v ∈ G(V) a všechny komodity m ∈ M.

Nejlevnější multikomoditní toky v síti - formulace LP

Proměnná $f^m(e) \in \mathbb{R}_0^+$ reprezentuje tok komodity $m \in M$ hranou $e \in E(G)$.

$$\min \sum_{e \in E(G)} \sum_{m \in M} f^m(e) \cdot c(e)$$
s.t.
$$\sum_{e \in \delta^+(v)} f^m(e) - \sum_{e \in \delta^-(v)} f^m(e) = b^m(v) \qquad v \in V(G), m \in M$$

$$I(e) \le \sum_{m \in M} f^m(e) \le u(e) \qquad e \in E(G)$$

- 1. Kirchhofův zákon platí v každém vrcholu pro každou komoditu
- Multikomoditní toky lze řešit pomocí LP polynomiální problém
- Celočíselnost však není zaručena, jelikož matice A v LP není totálně unimodulární
- (Praktická zkušenost) ILP formulace, zaručující celočíselnost, je řešitelná pro velké instance v přijatelném čase

Příklad Flow1: Dynamický tok

Dynamický tok je tok, který mění svou velikost v závislosti na čase. Ukážeme, jak lze úlohy o dynamickém toku převést na vhodnou úlohu o běžném (statickém) toku zavedením diskrétního času.

Například: **Ve městech** a_1, a_2, \ldots, a_n je k dispozici q_1, q_2, \ldots, q_n **automobilů**, které mají být dopraveny **do města** a_n během K hodin. Jsou-li města a_i, a_j spojena přímou silnicí, označme d_{ij} **dobu jízdy** mezi těmito městy a dále označme u_{ij} **kapacitu této silnice**, neboli maximální počet, která tudy mohou projet za hodinu. Konečně označme p_i **kapacitu parkovišť** ve městě a_i . Úkolem je zorganizovat pohyby aut tak, aby jich co největší počet dorazil do města a_n během K hodin.

Příklad Flow2: Výběr reprezentantů - existence spodního omezení

Přiřazovací úloha s dalšími omezeními.

- Každý z n lidí je členem jednoho nebo více profesních klubů k_1, \ldots, k_l a spadá do jedné věkové skupiny p_1, \ldots, p_r .
- Každý klub chce vybrat ze svých členů jednoho reprezentanta. Nikdo však nesmí reprezentovat více než jeden klub.
- Je potřeba dodržet zastoupení věkových skupin pro každou je stanoven minimální a maximální počet reprezentantů.

Úkolem je najít co největší sbor reprezentantů nebo dokázat, že neexistuje. Zformulujte jako úlohu maximálního (přípustného) toku.

Příklad Flow3: Zaokrouhlování v tabulce - existence spodního omezení

Mějme matici $p \times q$ reálných čísel s vektorem řádkových součtů a vektorem sloupcových součtů. Pro každé z těchto čísel a máme rozhodnout, zda dané číslo zaokrouhlíme nahoru a nebo dolů a. Rozhodnutí však musí splňovat dvě podmínky:

- zaokrouhlený řádkový součet je roven součtu zaokrouhlených čísel v řádku
- zaokrouhlený sloupcový součet je roven součtu zaokrouhlených čísel ve sloupci

Úkolem je maximalizovat součet prvků v tabulce (díky podmínkám je tento součet roven sumě řádkových součtů a zároveň roven sumě sloupcových součtů).

Literatura

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, 1993.

Jiří Demel. Grafy a jejich aplikace.

Academia, 2002.

B. H. Korte and Jens Vygen.

Combinatorial Optimization: Theory and Algorithms.

Springer, fourth edition, 2008.