Amendments to the Claims

1. (currently amended) A bicyclic cyclopropane derivative of the Formula (I)

in which R¹, R², X, Y, n, m and r, independently of one another, having the following meanings:

n+m = 0 to 8;

r = 1 to 4;

 R^1 = is absent, or a C_1 - C_{20} alkylene radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} arylene or C_7 - C_{20} alkylenearylene radical;

 R^2 is for r=1: a C_1 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl or C_7 - C_{20} alkylaryl radical, with the proviso that when m+n=3, $Y=CH_2$ -, R^1 is absent, and X is absent, then R^2 is a C_2 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl, or a C_7 - C_{20} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{20} radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, an aromatic C_6 - C_{14} radical or aliphaticaromatic C_7 - C_{20} radical;

X = is absent, -CO-O-, -CO-NH- or -O-CO-NH- and

 $Y = CH_2$, O or S.

2. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 1 to 5;

r = 1 to 3;

 R^1 = is absent, or a C_1 - C_{10} alkylene radical which can be interrupted by O, cyclohexylene, a bicyclic C_6 - C_9 radical, phenylene or a C_7 - C_{10} alkylenearylene radical;

 R^2 is for r = 1: a C_1 - C_6 alkyl radical which can be interrupted by O, a cycloaliphatic or bicyclic C_6 - C_8 radical, a C_6 - C_{10} aryl or C_7 - C_{10} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{12} radical which can be interrupted by O, a cycloaliphatic C_5 - C_7 radical, an aromatic C_6 - C_{10} radical or aliphatic-aromatic C_7 - C_{10} radical;

X = is absent, -CO-O- or -O-CO-NH- and

 $Y = CH_2 \text{ or } O.$

3. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein at least one variable of the Formula (I) has one of the following meanings:

n+m = 2 or 3;

r = 1 or 2;

 R^1 = is absent, a -(CH₂)₁₋₄- radical which can be interrupted by O, cyclohexylene or phenylene;

 R^2 is for r = 1: a C_1 - C_4 alkyl radical which can be interrupted by a O, cyclohexyl, bicyclo[2.2.1]heptyl or;

for r > 1: an r-times substituted aliphatic C_2 to C_6 radical, an r-valent cyclohexane radical or an r-valent benzene radical;

X = is absent or -CO-O- and

 $Y = CH_2.$

4. (previously presented) A bicyclic cyclopropane derivative according to claim 1, wherein r is equal to 1 and R^2 is unsubstituted or substituted by alkyl, halogen, OCH₃, OC₂H₅, vinyl, propenyl, (meth)acryl, COOR³, SiCl₃, Si(OR⁴)₃, or a mesogenic group, with $R^3 = H$, a C₁ to C₁₀ alkyl or a phenyl radical and $R^4 = H$ or a C₁ to C₁₀ alkyl radical.

5. (currently amended) A bicyclic cyclopropane derivative according to claim 1 of the Formula (I)

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\$$

in which R¹, R², X, Y, n, m and r, independently of one another, having the following meanings:

n+m = 0 to 8;

r = 1 to 4;

 R^1 = is absent, or a C_1 - C_{20} alkylene radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} arylene or C_7 - C_{20} alkylenearylene radical;

 R^2 is for r = 1: a C_1 - C_{20} alkyl radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, a bicyclic C_4 - C_{12} radical, a C_6 - C_{14} aryl or C_7 - C_{20} alkylaryl radical;

for r > 1: an r-times substituted aliphatic C_1 to C_{20} radical which can be interrupted by O or S, a cycloaliphatic C_4 - C_{12} radical, an aromatic C_6 - C_{14} radical or aliphaticaromatic C_7 - C_{20} radical;

X = is absent, -CO-O-, -CO-NH- or -O-CO-NH- and

 $\underline{Y} = \underline{CH_2}$, O or S, wherein r is greater than 1 and R² is unsubstituted or substituted by alkyl, halogen, OCH₃, OC₂H₅, vinyl, propenyl, (meth)acryl, CO-OR³ or a mesogenic group, with R³ = H or C₁ to C₁₀ alkyl or a phenyl radical.

- 6. (previously presented) A composition, containing a bicyclic cyclopropane derivative according to claim 1.
- 7. (previously presented) A composition according to claim 6, further containing an initiator for radical polymerization.

- 8. (previously presented) A composition according to claim 6, further containing a radically polymerizable monomer.
- 9. (previously presented) A composition according to claim 6, containing a monofunctional and/or a multifunctional radically polymerizable monomer.
- 10. (previously presented) A composition according to claim 9, wherein the monofunctional radically polymerizable monomer is a urethane from 2-(hydroxymethyl)acrylic acid ethyl ester and a diisocyanate such as 2,2,4-trimethylhexamethylene diisocyanate or isophorone diisocyanate, a crosslinking pyrrolidone such as 1,6-bis(3-vinyl-2-pyrrolidonyl)-hexane, a bisacrylamide such as methylene or ethylene bisacrylamide, a bis(meth)acrylamide such as N,N'-diethyl-1,3-bis(acrylamido)-propane, 1,3-bis(methacrylamido)-propane, 1,4-bis(acrylamido)-butane or N,N'-bis-(acryloyl)-piperazine, or a mixture of two or more of these monomers.
- 11. (previously presented) A composition according to claim 9, wherein the multifunctional radically polymerizable monomer is a bi- or multifunctional acrylate or methacrylate such as Bisphenol-A-di(meth)acrylate, bis-GMA (an addition product of methacrylic acid and Bisphenol-A-diglycidylether), UDMA (an addition product of hydroxyethyl methacrylate and 2,2,4-trimethylhexamethylene diisocyanate), di-, tri- or tetraethylene glycol di(meth)acrylate, decanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, butanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, 1,12-dodecandiol di(meth)acrylate or a mixture of two or more of these monomers.
- 12. (previously presented) A composition according to claim 6, further containing filler.
- 13. (previously presented) A composition according to claim 4, containing
 - a) 1 to 95 wt.-% bicyclic cylopropane derivative according to one of claims 1 to 5;
 - b) 0.01 to 5 wt.-% initiator for radical polymerization; and
 - c) 0 to 94 wt.-% radically polymerizable monomer.

- 14. (previously presented) A composition according to claim 13, containing
 - a) 1 to 80 wt.-% bicyclic cyclopropane derivative according to one of claims 1 to 5;
 - b) 0.01 to 5 wt.-% initiator for radical polymerization
 - c) 0 to 60 wt.-% radically polymerizable monomer;
 - d) 0 to 20 wt.-% filler;

and/or

- e) 0 to 40 wt.-% solvent.
- 15. (previously presented) Composition according to claim 13, containing
 - a) 1 to 60 wt.-% bicyclic cyclopropane derivative according to one of claims 1 to 5;
 - b) 0.01 to 5 wt.-% initiator for radical polymerization
 - c) 0 to 60 wt.-% radically polymerizable monomer; and/or
 - d) 20 to 60 wt.-% filler.
- 16. (previously presented) Composition according to claim 13, containing
 - a) 1 to 45 wt.-% bicyclic cyclopropane derivative according to one of claims 1 to 5;
 - b) 0.01 to 5 wt.-% initiator for radical polymerization
 - c) 0 to 50 wt.-% radically polymerizable monomer; and/or
 - d) 30 to 85 wt.-% filler.
- 17. (previously presented) Composition according to claim 13, containing
 - a) 1 to 95 wt.-% bicyclic cyclopropane derivative according to one of claims 1 to
 5;
 - b) 0.01 to 5 wt.-% initiator for radical polymerization
 - c) 0 to 60 wt.-% radically polymerizable monomer; and/or
 - d) 0 to 20 wt.-% filler.

Claims 18-20 (canceled).

- 21. (previously presented) A method of using the composition according to claim 15 as cement comprising placing the composition between two materials to be joined and curing the composition.
- 22. (previously presented) A method of filling a tooth comprising providing the composition according to claim 16, placing the composition in a tooth and curing the composition.
- 23. (previously presented) A method of coating a material comprising providing the composition according to claim 17, coating a material with the composition and curing the composition so as to adhere the composition to the material.