Proiect Electronică Analogică

Ştefan Jugănaru 322AA

1. Simularea circuitului.

Valori personalizate: R1 = 910 Ω . R2 = R3 = 22 k Ω . R8 = R9 = 47 k Ω .

2. Simulare de tip DC Sweep.

2.1. Caracteristica de transfer a schemei.

2.2. Domeniul tensiunii de intrare pentru care schema funcționează liniar este: [-66.74 mV , 67.11 mV]

2.3. Amplificarea de tensiune a schemei.

Din simulare, această amplificare este -73.94.

D r	1.raw ×
Cursor 1 V(vout)	
Horz: -66.738962mV	Vert: 4.9369386V
Cursor 2	
V(vout)	
Horz: 67.110767mV	Vert: -4.959998V
Diff (Cursor2 - Cursor1)	
Horz: 133.84973mV	Vert: -9.8969366V
	Slope: -73.9407

Calculând teorectic, rezultă A = -74.025. Comparând cele două rezultate, observăm că sunt similare, diferența fiind infimă.

$$A = \frac{\Delta V_0}{\Delta V_1} = \left(1 + \frac{R_2 + R_3}{R_1}\right) \cdot \left(-\frac{R_5}{R_4}\right) \cdot \left(1 + \frac{R_{11}}{R_{10}}\right)$$

$$= \left(1 + \frac{22 + 22}{910} \cdot 10^3\right) \cdot \left(-\frac{10^4}{10^4}\right) \cdot \left(1 + \frac{10}{20}\right)$$

$$= 49,35 \cdot (-1) \cdot 1,5$$

$$= -74,025$$

3. Simulare de tip AC.

3.1. Caracteristica de frecvență a schemei la scară logaritmică.

3.2. Banda de trecere a schemei.

Se observă că banda de trecere a schemei se află în intervalul [19.07 Hz , 34.66 Hz], iar frecvența de 3 dB este de 15.59 Hz.

4. Simulare de tip Transient

4.1. Răspunsul la semnalul de tip treaptă

Aplicând o intrare de tip treaptă, se observă că semnalul de ieșire se stabilizează la -74.17 mV. 90% din această valoare reprezintă 66.75, fiind atinsă în 12.58 ms, după cum se poate vedea pe grafic.

4.2. Timpul de creștere

5. Proiectare

Valori personalizate: $V_{im}=100~mV$, $V_{om}=4.5~V$, $f_{-3dB}=500~Hz$.

Cu aceste date se va calcula noua amplificare. Apoi se va calcula valoarea rezistenței R1 pentru care A = -45 este corespunzătoare, urmând ca rezultatele să fie verificate printr-o simulare de tip DC Sweep.

$$A = \frac{\Delta N_0}{\Delta N_i} = \frac{2 \cdot 4,5}{2 \cdot 10 \cdot 10^{-3}} = 45$$

$$dox A = \left(1 + \frac{R_2 + R_3}{R_1}\right) \cdot \left(-\frac{R_5}{R_4}\right) \left(1 + \frac{R_1}{R_{10}}\right)$$

$$A = \left(1 + \frac{22 + 22}{R_1} \cdot 10^3\right) \cdot \left(\frac{10^4}{10^4}\right) \cdot \left(1 + \frac{10}{20}\right)$$

$$A = \left(1 + \frac{44 \cdot 10^3}{R_1}\right) \left(-\frac{3}{2}\right) = 45$$

$$\frac{R_1 + 44 \cdot 10^3}{R_1} = 30$$

$$29R_1 = 44 \cdot 10^3 = R_1 = 1517, 24 \cdot \Omega$$

Se observă ca cele două valori sunt foarte apropiate, deci tragem concluzia că acestea corespund. În continuare, vom calcula rezistențele R8 și R9, apoi vom verifica banda de trecere a noii scheme printr-o simulare de tip AC.

Se observă că valorile, egale de altfel, ale rezistențelor R8 și R9 și frecvența de -3 dB corespund calculului teoretic si valorii date de enunț. În concluzie, schema este modificată corespunzător cerințelor problemei.