

CIFF Trustees:

Business Intelligence & Data Mining

Objetivos

 Sesión 1A: Business Intelligence ■ Business Intelligence ■ BI, BA y Big Data: Contexto ☐ Pentaho BA Sesión 1B: ETL y Adquisición de Datos □ Pentaho Data Integration □ Data Integration y Data Mining: Realimentación Sesión 2A: Data Mining – Machine Learning Algoritmos Ejemplos Sesión 2B: Pentaho Data Scientist (PDS) □ PDS (Weka) □ DW→ETL→ PDS \square PDS \rightarrow ETL \rightarrow DW

ETL y Adquisición de Datos

- 1.- ETL
- 2.- Pentaho Data Integration
- 3.- Ejemplo Data Integration y Data Mart.
- 4.- Data Integration y Data Mining: Realimentación

•Llamamos **business intelligence** (BI) al conjunto de estrategias y herramientas enfocadas a la administración y creación de conocimiento mediante el análisis de datos existentes en una organización.

Características:

- Accesibilidad a la información. Los datos son la fuente principal de este concepto. Lo primero que deben garantizar este tipo de herramientas y técnicas será el acceso de los usuarios a los datos con independencia de la procedencia de estos.
- Apoyo en la toma de decisiones. Se busca ir más allá en la presentación de la información, de manera que los usuarios tengan acceso a herramientas de análisis que les permitan seleccionar y manipulas sólo aquellos datos que les interesen.
- **Orientación al usuario final.** Se busca independencia entre los conocimientos técnicos de los usuarios y su capacidad para utilizar estas herramientas.

Estructura de una solución BI

- Proyecto Real Business Intelligence: Fleet Mangement

Evolving Big Data Architectures

ETL

-¿Qué es ETL?

- Extraer, Transformar y Cargar (Load)
- ¿Que realmente hace una ETL?(The Data Warehouse ETL Toolkit 2004):
 - Removes mistakes and corrects missing data.
 - Provides documented measures of confidence in data.
 - Captures the flow of transactional data for safekeeping.
 - Adjusts data from multiple sources to be used together.
 - Structures data to be usable by end-user tools.
- En definitiva:
 - Extraer datos de múltiples fuentes
 - Aplicar calidad y consistencia (limpiar) a los datos
 - Conformar (unificar) los datos
 - Cargar los datos en un DW
- Actividad inicial y con ejecución periódica/programable.

ECCD (extract, clean, conform, deliver)

- Flujos de un Proyecto ETL

Flujo del proyecto

Flujo de los datos

Flujo de Proyecto. Requerimientos

- 1) Identificar las fuentes
- 2) Data profiling
- Calidad de los datos para evaluar la fase de limpieza.
- Master Data Management.
- 3) Requerimientos legales (en entornos muy especificos)
- Algoritmos.
- Almacenamientos secundarios / Copias para auditoria, legislación (Sarbanes Oxley, etc...)

4) Requerimientos de seguridad

- Accesos a fuentes, roles.
- Políticas.
- Permisos.
- Plataformas Fuente.

5) Requerimientos de conformado

- Evaluar la fase de conformado.
- Descubrir heterogeneidad en las fuentes.

6) Latencia del dato

- Describe la velocidad en la que los datos serán "entregados" al usuario final.
- Ventanas de etl.
- Evaluar rendimientos.
- Decidir entre lotes o stream

🛂 Flujo de Proyecto. Arquitectura

Decisión crítica: ETL Tool?

Ventajas del ETL Tool

- 1. Desarrollo del ETL mas simple, rápido y (posiblemente) barato.
- 2. Técnicos con conocimiento de negocio (no programadores) pueden participar en el desarrollo.
- 3. Generación de metadata automático
- 4. Manejo de errores construido
- 5. Conectores con (casi) cualquier fuente
- 6. Análisis de impacto
- 7. Se pueden aumentar con módulos de código
- 8. Prácticamente auto documentado

Ventajas del ETL programado

- 1. POO puede hacerlo muy estándar y reusable
- 2. Control mas granular de todas las actividades.
- 3. Utilizar programadores ya formados con poco conocimiento del negocio
- 4. Independencia de proveedor.
- 5. Flexibilidad

Flujo de Proyecto. Arquitectura

Metadatos de Flujo de ejecución:

- Programación de las ETL
 - Manuales (históricos (carga 0), cargar segmentos, rollbacks...)
 - Automáticas
 - Diarias
 - Ante eventos (fallos, umbrales, alarmas..)
- Manejo de excepciones
- Manejo de informes de calidad
- Generar informes de accesos y seguridad

- Flujo de Proyecto. Implementación

- DW y ETL están intimamente ligados.
 - Se han detectado las fuentes, y el equipo de DW ha definido los modelos y tablas.
 - Se planifica, diseña e implementa en cada paso.
- Responsabilidades del equipo ETL
 - Extraer los datos de las fuentes
 - Limpiar y asegurar la calidad de los datos
 - Conformar los datos para conseguir consistencia y aplicar las reglas de negocio.
 - Entregar los datos en el formado físico determinado.

- 🎄 How do we properly design an ETL system?
- How do we extract data from sources systems?
- How do we enforce data quality?
- How do we enforce consistency standards?
- How do we conform data?
- How do we make sure that data from separate sources can be used together?
- How do we make the data presentation-ready?

- Flujo de Proyecto. Implementación

- Data Stage:
 - Escribir a disco los datos (fichero o base de datos)
 - La otra opción es procesar en memoria (reduciendo así I/O)
- Ventajas de la Staging Area
 - Recuperación
 - Se hace stage tras cada fase mayor. (extracción !!!)
 - Back-up
 - Antes del delivery (comprimir, guardar, prevé catastrofes)
 - Auditar el proceso
 - Fácil detectar en que fase se produjo el error
 - Evitar sobrecarga del operacional.

- La Staging Area es un sitio de trabajo !!!!!
 - Los usuarios no acceden
 - No se lanzan informes finales
 - Solo los ETL acceden

Flujo de Proyecto. Implementación

Flujo de datos. Extracción

- 1. Profundizar en la lógica de las fuentes
 - 1. Identificar PK
 - 2. Comprobar los tipos de datos y tipos de fuente
 - 3. Comprobar relaciones
 - 4. Comprobar cardinalidades (tanto en relaciones como en columnas)
- 2. Profundizar en el contenido de las fuentes
 - 1. NULL y Formatos de fecha.
 - 2. Volumen de datos.
- 3. Comprender las reglas (técnicas) de negocio con los administradores de datos
 - Ej: El código del árticulo en esta fuente es de 3 dígitos, pero en la otra fuente es de 6, completando con 0 a la izquierda..., los clientes sólo se extraen de esta fuente,...
- 4. Profundizar en el modelo en estrella
- 5. Validar los cálculos (KPIs, columnas derivadas, implícitos...)

- Flujo de Proyecto. Implementación

Flujo de datos. Extracción

- Identificación de fuentes:
 - Tablas de datos
 - Excel
 - Ficheros planos
 - Delimitados
 - Longitud determinada
 - XML
 - Logs (como ficheros planos)
 - ERP (tablas)

- Flujo de Proyecto. Implementación

Flujo de datos. Limpieza y Conformado

Son los pasos que mas valor aportan

(requiere un trabajo previo muy fuerte para definir las reglas)

- Forzado de columnas:
 - Nulos donde no debe
 - Valores que se salen de los rangos
 - Tamaños de columna
 - Columnas con valores diferentes a los set discretos
- Forzado de estructuras:
 - Relaciones entre tablas
- Forzado de datos y reglas de valor:
 - ej.: si un cliente es VIP, su saldo asociado ha de ser XXXX.

Flujo de Proyecto. Implementación Flujo de datos. Extracción

- Conformado:
 - ¿Qué es?
 - Un departamento llama al sexo de las personas (H,M), otro (1,2), etc...
 - <u>Importante</u>: Una dimensión, en todas las estrellas tiene el mismo significado y atributos, y viene de las mismas fuentes.
 - A nivel de ETL, el objetivo es, recibiendo las definiciones, implementar los procesos, no definir la dimensión.
 - Importante: Un hecho esta conformado cuando significa lo mismo para todos, se calcula igual en todas las estrellas que interviene, y puede intervenir directamente en comparaciones y cálculos.
 - Ej.: Ingresos, ventas directas lo calcula al mes, suscripciones al año, etc... ¿Cómo los comparo?

Dimensions

- Flujo de Proyecto. Implementación

Flujo de datos. Entrega. Dimensiones

- Tantas combinaciones de acciones a tomar que es muy difícil generalizar:
 - Tipo de dimensión en cuanto a distribución
 - Tipo de dimensión en cuanto a cambio
- Recomendaciones generales:
 - Generar las claves surrogadas con secuencias
 - Utilizar estrategias Insert/Update
 - Seleccionar que campos hacen diferente a una elemento de dimensión de otro
 - Para las SCD, si la herramienta lo permite, dejar en sus manos el control de versiones.

- Flujo de Proyecto. Implementación

Flujo de datos. Entrega. Hechos

- A considerar:
 - Tipo de tabla de hechos
- Recomendación general:
 - Mantener la integridad referencial en el etl (lookup)
 - Tabla Lookup vs Dimension lookup (in memory solutions)
 - O con apoyo a una tabla del DataStage mediante Joins.
- Hechos:
 - Aditivos, Semi aditivos, No Aditivos. (Junk Dimensions)
 - Tipo de Agregación.
 - Hecho calculado en la ETL o al Vuelo.

- Flujo de Proyecto. Implementación

Flujo de datos. Consideraciones de la Limpieza de Datos

- Filtrar las filas/columnas lo antes posible (no extraer filas/columnas inútiles)
- Particionar y **paralelizar** la ETL
- Reducir el tráfico de red (distribución de máquinas)
- Prepara la carga como BULK, algunos gestores lo permiten.
- Tunning de base de datos destino, elección del motor de almacenamiento.
- •Programar la ETL, mediante la herramienta, o comandos (crontab -e)

Flujo de Proyecto. Pruebas y Entregaas

Operaciones de la ETL son:

- •Planificaciones (actuar ante eventos)
- •Recibir las notificaciones del ETL y actuar en consecuencia
- Parametrizar las ETL (paso entre entornos, cambios)
 - Servidores, bases de datos, esquemas, directorios, emails, informes
- Monitorizar y minimizar fallos "físicos"
 - Red, memoria, base de datos, disco
- Monitorizar el rendimiento
 - Duración, filas leídas, escritas y procesadas por segundo, Throughput

Metadatos

- Orígenes
 - Tablas, campos, reglas, modelos, relaciones, etc...
- <u>Trabajos</u>
 - Nombre, propósito, fuentes, destinos, tabla de rechazos, pre-procesos y post-procesos
- <u>Transformaciones</u>
 - Fuentes, lookups, filtros, rutas, agregaciones, uniones, etc...

Proceso:

- Resultados de la ejecución
- Tablas de auditoria
- Manejo de excepciones

- Pentaho Data Integration

- ¿Qué es Pentaho Data Integration?
- Características y beneficios
- Trabajando con PDI
 - Pestañas
 - Menú de Iconos
 - Componentes de PDI
 - Pasos de las transformaciones
 - Variables de Entorno
 - Ejemplos

- ¿Qué es Pentaho Data Integration?

- PDI es un set de herramientas, que permite diseñar ETLs, mediante transformaciones y trabajos que pueden ser ejecutadas por las herramientas de Spoon, Pan y Kitchen. Antes se le conocía con el nombre de Kettle.
 - Spoon interfaz gráfica para diseño de trasformaciones y trabajos ETL.
 - Pan es un motor capaz de ejecutar múltiples transformaciones de datos como leer, manipular y escribir desde y en distintos orígenes de datos.
 - Kitchen es un programa que ejecuta los trabajos diseñados por Spoon. Normalmente estos trabajos son planificados en modo batch para ejecutar automáticamente a periodos regulares (crontab -e).

Características y Beneficios

- Permite trabajar con un repositorio en Base de Datos o en Ficheros.
- Su interfaz gráfica te permitirá crear de transformaciones y trabajos de manera intuitiva mediante pasos modulares ya creados, conexiones con múltiples fuentes, etc...
- Distribución y combinación de diferentes fuentes, en diferentes hosts.
- •Interfaz SQL y generador de código automático.
- Crear cálculos de una manera muy sencilla.
- Define que quieres hacer, no como quieres hacerlo.
- · Genera código XML y Java.
- Instalación sencilla sólo extraer los ficheros, aplicación Java. (ojo con la versión java -version)
- Fácil de mantener, con alto rendimiento y escalabilidad.
- Es posible parametrizar bastantes configuraciones (directorios, conexiones, mail).
- Posee una arquitectura de Plug-in que te permitirá expandir sus funcionalidades.

- Menú principal (rojo)
- Pestaña vista (verde)
- Pestaña design (azul)
- Menú iconos (amarillo)
- Zona de Trabajo

Pestañas

- Pestaña Vista (View):
 - Orígenes de Datos.
 - Pasos
 - Saltos
 - Esquemas
 - Servidores Esclavos
 - Esquemas en Cluster.
- Pestaña Diseño (Design):
 - Entrada
 - Salida
 - Búsqueda
 - Transformar
 - Uniones
 - Scripting
 - Data Warehouse
 - Mapeado
 - Trabajo
 - Embebido
 - Experimental

Icono	Descripción
	Crear un nuevo trabajo o transformación o CNTRL - N
Ê	Abrir un trabajo/transformación de un fichero o del repositorio si estas conectado a él.
	Guardar el trabajo/transformación a un fichero o al repositorio
	Guardar el trabajo/transformación con un nombre distinto.
4	Abrir la ventana de impresora.
	Ejecutar el trabajo/transformación: ejecuta la transformación actual desde el fichero XML o el repositorio.
	Previsualizar la transformación: ejecuta la transformación actual desde memoria. Puedes previsualizar las filas producidas por el paso seleccionado
*	Ejecutar la transformación en modo de pruebas permitiéndote la solución de errores de ejecución.
>	Repetir el proceso de una transformación para una cierta fecha y hora. Esto causará que ciertos pasos (TextFile Input
	y Excel Input) sólo procesarán las filas que fallaron para ser interpretadas correctamente a esa fecha y hora particular.
6	Ejecutar un análisis de impacto: que impacto tiene la transformación en la base de datos usada.
4	Generar el SQL que es necesario para ejecutar la transformación.
2	Lanza el explorador de la base de datos permitiéndote previsualizar los datos, ejecutar consultas SQL, generar DDL y más.

- Componentes de PDI (I)
- Los procesos ETL se dividen en dos componentes principales:
 - Transformaciones (.ktr): es el conjunto de pasos básicos que componen el nivel más bajo de una ETL.
 - Trabajos (.kjb): es un conjunto de pasos, trabajos y transformaciones.

- Componentes de PDI (II)
- Transformaciones:
 - Paso: son los elementos atómicos de PDI y cada uno realiza una transformación en el flujo de datos. (Leer datos, escribir en BBDD, crear cálculos, añadir constantes,)
 - Salto: es la representación gráfica del flujo de datos entre 2 pasos.

- -- Componentes de PDI (III)
- Trabajos:
 - Paso: son los elementos atómicos de PDI y cada uno realiza una trabajo. (No modifican el flujo de datos)
 - Salto: representa el orden de ejecución de transformaciones y trabajos.
 - Trabajo y Transformación: dentro de un trabajo podemos incluir llamadas a otras transformaciones y/o trabajos para que sean ejecutadas.
 - Un trabajo procesa todos los registros antes de continuar, en cambio, una transformación es un flujo de datos continuo de manera que los registros avanzan por los pasos según llegan.

