Q60. Discuss about the two-dimensional Hadamard transform.

(or)

Determine the kernel coefficients of 2D Hadamard transforms for N = 8.

Ans:

One-dimensional kernel for Hadamard Transforms is,

$$g(x,u) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u)} \dots (1)$$

Where,

$$N = 2^n$$

Then, two-dimensional kernel for Hadamard Transform is given as,

$$g(x, y, u, v) = \frac{1}{N} (-1)^{\sum_{i=0}^{n-1} b_i(x)b_i(u) + b_i(y)b_i(u)} \dots (2)$$

Above equation can be written as,

$$g(x, y, u, v) = \frac{1}{N} (-1)^{\frac{n-1}{\sum b_i(x)b_i(u)}} \cdot \frac{1}{N} (-1)^{\frac{n-1}{\sum b_i(y)b_i(v)}} \dots (3)$$

From equation (3) it can be observed that g(x, y, u, v) is separable and symmetric. Then equation (3) can be written as.

$$g(x, y, u, v) = g(x, u). g(y, v)$$
 ... (4)

: Hadamard kernel for two dimensions is the product of two one-dimensional kernel hadamard transformation as shown in table below,

X	0	1	2	3	4	5	6	7
0	+	+	+	+	+	+	+	+
1	+	-	+	-	+	-	+	-
2	+	+	-	-	+	+	-	-
3	+	-	-	+	+	-	-	+
4	+	+	+	+	-	-	-	-
5	+	-	+	-	-	+	-	+
6	+	+	-	-	-	-	+	+
7	+	-	-	+	-	+	+	-

$\sqrt{\mathbf{v}}$	0	1	2	3	4	5	6	7
0	+	+	+	+	+	+	+	+
1	+	-	+	-	+		+	-
2	+	+	-	-	+	+	-	-
3	+	-	-	+	+	1 10	-	+
4	+	+	+	+	-	-	-	-
5	+	-	+	4	1	+	8 74	+
6	+	+	_	-	-	-	+	+
7	+	-	-	+	-	+	+	-

Table (2): Hadamard Kernel Matrix for N=8

Here +, - represent + 1 and -1 and the term $\frac{1}{N}$ is omitted here for simplicity.

Note: Hadamard transforms can be applied for images with values of N other than integer power of 2, and maximum limit of N is 200 (N = 200).