

Rapid Development of Improved Data-Dependent Acquisition Strategies

• Joe Wandy, Vinny Davies, Stefan Weidt, Justin J.J. van der Hooft, Alice Miller, Rónán Daly and Simon Rogers

Data-dependent Acquisition (DDA)

- In a duty cycle:
 - A survey (MS1) scan is performed.
 - A set of N ions (usually the most intense ones) is selected.
 - The chosen ions are isolated and fragmented in a series of MS2 scans.
- MS2 spectra produced from DDA are ready to use.
 - Each fragmentation spectrum is generated by fragmenting a small m/z isolation window to target particular chemical species.

Improving DDA strategies

- One of the main criticisms of the performance of DDA (with respect to DIA) is its lower coverage, particularly for standard TopN method.
- Not much work has been done to improve DDA performance for single injections in metabolomics.
- Why?
 - Costly access to instruments
 - No common framework to develop fragmentation strategies

SmartROI: Real-time Tracking of ROIs

- Many MS2 scans produced by TopN target ions that were not subsequently picked as peaks.
- Creation of ROIs is the first step in many peak-picking methods,
- Fragmentation events outside ROIs are almost certainly wasted.
- SmartROI keeps track of regions of interest (ROIs) in real time and only fragments peaks within ROIs.

A comparison of SmartROI fragmentation strategy to conventional Top-N strategy. Keeping track of an ROI in real-time allows for fewer, more targeted MS2 events

WeightedDEW

- TopN DDA uses the intensity of the ion in the survey scan for fragmentation
- Standard dynamic exclusion window (DEW): peaks are excluded from repeated fragmentation as long as their m/z and RT values are still within the dynamic exclusion window of previously fragmented ions.
- This is a binary window:
 - 0: excluded

prioritization.

• 1: included

Fragmenting with Weighted Dynamic Exclusion Scheme

$$w = \begin{cases} 0 & \text{if } t_f < t < t_f + t_0 \\ \frac{t - (t_f + t_0)}{t_1 - t_0} & \text{if } t_f + t_0 \le t \le t_f + t_1 \\ 1 & \text{otherwise,} \end{cases}$$

How about non-binary weights?

Non-linear weights in WeightedDEW

Validation on real instruments

Validation on real instruments

- Validate using beer and serum samples.
- For each beer and serum extract, we ran six injections:
 - one full-scan (for evaluating coverage and efficiency),
 - one TopN (using the controller optimized as part of the development of ViMMS(10))
 - four injections for the new fragmentation strategies.
- IAPI bridge was used to let the SmartROI and WeightedDEW controllers communicate with Thermo Orbitrap instruments.

Evaluation metrics

Coverage: the number of picked peaks that contain a fragmentation event.

Efficiency: the ratio of the number of picked peaks that are fragmented to the number of MS2 scans.

Coverage Results

• **Coverage**: the number of picked peaks that contain a fragmentation event.

	Beer (4592 p	eaks)	Serum (3032 peaks)		
Method	Iteration 1	Iteration 2	Iteration 1	Iteration 2	
TopN	1046		656		
WeightedDEW	<mark>1859</mark>	<mark>1768</mark>	<mark>1105</mark>	<mark>1226</mark>	
SmartROI	1660	1546	991	1015	
Optimal (using TopN scan timings)	2955		1542		

Efficiency Results

• **Efficiency**: the number of picked peaks that are fragmented divided by the number of MS2 scans.

		Beer (4592 peaks)				Serum (3032 peaks)			
Iter	method	total	MS1	MS2	Eff	total	MS1	MS2	Eff
	TopN	6404	583	5821	0.18	6317	575	5742	0.11
1	WeightedDEW	6282	572	5710	0.33	6235	567	5668	0.19
	SmartROI	4948	1050	3898	0.43	4271	1268	3003	0.33
2	WeightedDEW	6294	573	5721	0.31	6205	566	5639	0.22
	SmartROI	5078	1032	4046	0.38	4572	1237	3335	0.30

Conclusions

- Developing new acquisition methods typically requires extensive experimentation on the MS: expensive & time consuming.
- We introduce a framework to develop new methods by extending the capability of ViMMS
- Easily run fragmentation strategies (controllers) in the simulator and also on real MS equipment with minimal changes.

Conclusions

- We presented two new DDA strategies that outperform conventional TopN strategy
- SmartROI uses an ROI detection algorithm to only fragment molecules within ROIs and are likely to be picked as peaks.
- WeightedDEW generalizes the dynamic exclusion window approach to a real-valued weighting scheme.
- An optimal limit of DDA performance for a particular mixture can be computed via a bipartite graph matching scheme.
- Still far from reaching theoretical optima!

Future Works

- Predict which ROI contains a peak or not.
- Multi-sample methods
- Correcting RT drift in realtime

Priorities

We want to prioritise peaks that haven't been fragmented before

Acknowledgements

- Vinny Davies
- Ronan Daly
- Simon Rogers
- Stefan Weidt
- J.J.J. van der Hooft
- Alice Miller
- Funding bodies
 - EPSRC
 - eScience Center

