Problem

Let $(x_k)_k$ be a sequence of strictly positive numbers such that

$$(kx_k)_k \to L > 0.$$

Show that $\sum_k x_k$ diverges.

Since $(kx_k)_k \to L$, every subsequence of $(kx_k)_k$ converges to L. Let $n_k = 2^k$. Then,

$$(2^k x_{2^k})_k \to L > 0$$
,

implying that

$$\sum_{k} 2^k x_{2^k} = \infty.$$

By the Cauchy Condensation test, this implies that $\sum_k x_k$ diverges.

Problem 2

Let $(x_k)_k$ be a sequence of strictly positive numbers. Show the following:

- (i) If $\limsup_{k \to \infty} \frac{x_{k+1}}{x_k} < 1$, then $\sum_k x_k$ converges.
- (ii) If $\liminf_{k \to \infty} \frac{x_{k+1}}{x_k} > 1$, then $\sum_k x_k$ diverges.

(a)

Let $\varepsilon > 0$.

$$\begin{split} \limsup_{k \to \infty} \frac{x_{k+1}}{x_k} &:= u < 1 \\ &= \inf_{n \ge 1} \left(\sup_{k \ge n} \frac{x_{k+1}}{x_k} \right) \end{split}$$

By the definition of inf, we have that $\exists N \in N$ large such that

$$\sup_{k\geq N}\frac{x_{k+1}}{x_k}< u+\varepsilon.$$

By the definition of sup, we have that $\forall k \geq N$,

$$\frac{x_{k+1}}{x_k} < u + \varepsilon$$

$$x_{k+1} < (u + \varepsilon)x_k$$

Inductively on x_k , we have that

$$x_{k+m} < (L + \varepsilon)^m x_k$$

and series-wise, we have

$$\sum_{k=N}^{\infty} x_k < x_N \sum_{m=1}^{\infty} (u + \varepsilon)^m.$$

For sufficiently small ε , the sum on the right-hand side converges, implying that the sum on the left-hand side must converge. Therefore,

$$\sum_{k=1}^{\infty} x_k = \sum_{k=1}^{N-1} x_k + \sum_{k=N}^{\infty} x_k < \sum_{k=1}^{N-1} x_k + x_n \sum_{m=1}^{\infty} (u + \varepsilon)^m,$$

meaning that $\sum_k x_k$ is bounded above by a convergent series, so it is convergent.

(b)

Let $\varepsilon > 0$.

$$\begin{split} \liminf_{k \to \infty} \frac{x_{k+1}}{x_k} &:= \ell > 1 \\ &= \sup_{n \ge 1} \left(\inf_{k \ge n} \frac{x_{k+1}}{x_k} \right) \end{split}$$

By the definition of sup, we have that for large $N \in \mathbb{N}$, and for $k \geq N$,

$$\inf_{k\geq n}\frac{x_{k+1}}{x_k}>\ell-\varepsilon.$$

By the definition of inf, we also have that

$$\frac{x_{k+1}}{x_k} > \ell - \varepsilon$$

$$x_{k+1} > (\ell - \varepsilon)x_k$$

Inductively, we have that

$$x_{k+m} > (\ell - \varepsilon)^m x_k$$

and via series, we have

$$\sum_{k=N}^{\infty} x_k > x_N \sum_{m=1}^{\infty} (\ell - \varepsilon)^m.$$

For sufficiently small arepsilon, the sum on the right-hand side diverges. Therefore,

$$\sum_{k=1}^{\infty} x_k = \sum_{k=1}^{N-1} x_k + \sum_{k=N}^{\infty} x_k$$

$$> x_N \sum_{k=1}^{\infty} (\ell - \varepsilon)^m + \sum_{k=1}^{N-1} x_k,$$

and since $\sum_k x_k$ is bounded below by a divergent series, the sum diverges.

Problem 3

Consider the sequence of functions

$$f_n: \mathbb{R} \to \mathbb{R};$$

$$f_n(x) = \arctan(nx)$$

- (i) Show that $(f_n)_n \to \frac{\pi}{2}$ sgn point-wise.
- (ii) Show that the convergence in (i) is nonuniform on $(0, \infty)$.
- (iii) Show that the convergence in (i) is uniform on $[a, \infty)$ for a fixed a > 0.

(i)

Let $\varepsilon > 0$. We know that, $\exists N \in N$ such that $\forall n \geq N$, $|\arctan(n) - \pi/2| < \varepsilon$.

Case 1: Let x = 0. Then,

$$arctan(nx) = 0$$

 $\forall n \geq 1$

Case 2: Let x > 0. Then, set $N' = \lceil N/x \rceil$. So, for $n' \ge N'$, we have

$$|\arctan(nx) - \pi/2| = |\arctan(n') - \pi/2|$$

 $< \varepsilon$

implying that $\arctan(nx) \to \pi/2$ when x > 0.

Case 3: Let x < 0. Then, set $x^* = -x$, and we have the same result as in Case 2, where $\arctan(nx^*) \to \pi/2$.

Since $\arctan(nx^*) = \arctan(n(-x)) = -\arctan(nx)$, we have that $\arctan(nx) \to -\pi/2$.

(ii)

Let $(x_k)_k = \frac{1}{k}$ and $n_k = k$. Set $\varepsilon_0 = \frac{\pi}{4}$. Then, we have that

$$|\arctan(n_k x_k) - \pi/2| = \left|\arctan\left(k\frac{1}{k}\right) - \frac{\pi}{2}\right|$$

$$= \left|\arctan(1) - \frac{\pi}{2}\right|$$

$$= \left|\frac{\pi}{4} - \frac{\pi}{2}\right|$$

$$= \frac{\pi}{4}$$

$$\geq \varepsilon_0.$$

(iii)

Let $x \in \Omega = [a, \infty)$, where a > 0, and let $\varepsilon > 0$. Then, since $\arctan(n) \to \frac{\pi}{2}$,

$$\left\| \arctan(nx) - \frac{\pi}{2} \right\|_{u} = \frac{\pi}{2} - \arctan(na)$$
 $< \varepsilon.$

for sufficiently large n

Therefore, $\arctan(nx)$ is uniformly convergent to $\frac{\pi}{2}$ on $[a, \infty)$.

Problem 4

Consider the sequence of functions

$$f_n: [0, \infty) \to \mathbb{R};$$

$$f_n(x) = \frac{\sin(nx)}{1 + nx}.$$

- (i) Show that $(f_n)_n \to 0$ pointwise.
- (ii) Show that the convergence in (i) is nonuniform on $[0, \infty)$.
- (iii) Show that the convergence in (i) is uniform on $[a, \infty)$ for a fixed a > 0.

(i)

We know that $f_n(0) = 0 \ \forall n \in \mathbb{N}$. For all x > 0, we have:

$$\left| \frac{\sin(nx)}{1+nx} - \mathbf{o}(x) \right| \le \frac{1}{1+nx}$$

$$< \frac{1}{nx}$$

$$\to 0$$

So,

 $f_n \xrightarrow{p.w.} \mathbf{o}$.

(ii)

Let $n_k=k$ and $x_k=\frac{\pi}{2k}$. Set $\varepsilon_0=1/4$. Then,

$$\begin{aligned} \left| f_{n_k}(x_k) - \mathbf{o}(x_k) \right| &= \frac{\sin\left(k\frac{\pi}{2k}\right)}{1 + k\frac{\pi}{2k}} \\ &= \frac{1}{1 + \frac{\pi}{2}} \\ &\geq \varepsilon_0 \end{aligned}$$

(iii

On $[a, \infty)$, we have

$$\left| \frac{\sin(nx)}{1 + nx} - \mathbf{o}(x) \right| \le \frac{1}{1 + nx}$$

$$\le \frac{1}{1 + na}$$

$$\le \frac{1}{na}$$

$$\sup \left| \frac{\sin(nx)}{1 + nx} - \mathbf{o}(x) \right| \le \frac{1}{na}$$

$$\to 0$$

So, $\frac{\sin(nx)}{1+nx} \to \mathbf{0}$ on $[a, \infty)$ uniformly.

Problem 5

Show that the sequence of functions

$$f_n: [0, \infty) \to \mathbb{R};$$

 $f_n(x) = x^2 e^{-nx}$

converges uniformly to 0.

We know that $\forall n \in \mathbb{N}$, $f_n(0) = 0$. Otherwise, we have that

$$\sup (x^2 e^{-nx}) \Rightarrow \frac{df_n}{dx} = 0$$

$$2xe^{-nx} - nx^2 e^{-nx} = 0$$

$$xe^{-nx} (2 - nx) = 0$$

$$x = \frac{2}{n}$$

$$f(x) = \frac{4}{n^2 e^2}.$$

Additionally, we have

$$n^{2} \ge n$$

$$\frac{e^{2}n^{2}}{4} \ge \frac{e^{2}n}{4}$$

$$\frac{4}{e^{2}n^{2}} \le \frac{4}{e^{2}n}$$

so,

$$\sup(x^2e^{-nx})\to 0.$$

Therefore, $f_n(x)$ converges to 0 uniformly.

Problem 6

Let $f_n = \mathbf{1}_{n,n+1}$. Show that $(f_n)_n \to \mathbf{0}$ pointwise on \mathbb{R} . Is the convergence uniform?

 $\forall x \in \mathbb{R}$, find $N \in \mathbb{N}$ so large such that x < N, which is always true by the Archimedean property. Then, $|f_n(x) - \mathbf{o}(x)| = 0 < \varepsilon$.

However, since $\sup(f_n) = 1 \ \forall n$, it must be the case that $(f_n)_n$ does not converge to \mathbf{o} uniformly.

Problem 7

Let $(f_n)_n$ and $(g_n)_n$ be sequences in $\ell_\infty(\Omega)$ with $(f_n)_n \to f$ and $(g_n)_n \to g$ uniformly on Ω . Prove that $(f_ng_n)_n \to fg$ uniformly on Ω .

$$\begin{split} \|f_n(x)g_n(x) - f(x)g(x)\|_u &= \|f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)\|_u \\ &= \|f_n(x)\left(g_n(x) - g(x)\right) + g(x)\left(f_n(x) - f(x)\right)\|_u \\ &\leq \|f_n(x)\|_u \cdot \|g_n(x) - g(x)\|_u + \|g(x)\|_u \|f_n(x) - f(x)\|_u \\ &\leq c \|f_n(x) - f(x)\|_u + d \|g_n(x) - g(x)\| \end{split} \qquad \text{Triangle Inequality}$$

$$0 \text{ Definition of Supremum}$$

Problem 8

Find a sequence of functions with $(f_n)_n$ defined on $[0,\infty)$ such that $|f_n|_u \ge n$, but $(f_n)_n \to 0$ pointwise.

Let f_n be defined as δ_n , where δ_n is defined as follows:

$$\delta_n(x) = \begin{cases} n & x = n \\ 0 & \text{otherwise} \end{cases}.$$

Then, $(f_n)_n \xrightarrow{\text{p.w.}} \mathbf{o}$, but $\sup(f_n) = n \ge n$.

Problem 9

Show that the series $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges absolutely and uniformly on any closed and bounded interval [a,b].

Let $s_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$, and $x \in [a, b]$. Then,

$$|s_m(x) - s_n(x)| = \left| \sum_{k=n+1}^m \frac{x^k}{k!} \right|$$
$$\leq \sum_{k=n+1}^m \frac{|x|^k}{k!}.$$

Triangle Inequality

Let $c = \max\{|a|, |b|\}$. Then,

$$|s_m(x)-s_n(x)|\leq \sum_{k=n+1}^m\frac{c^k}{k!},$$

We will show that $\sum_{k=0}^{\infty} \frac{c^k}{k!}$ converges:

$$\lim_{k \to \infty} \left| \frac{x_{k+1}}{x_k} \right| = \lim_{k \to \infty} \frac{c}{k+1}$$

$$\leq \lim_{k \to \infty} \frac{c}{k}$$

$$= 0 < 1.$$

Therefore, for $\varepsilon > 0$ and N large,

$$|s_m(x) - s_n(x)| \le \sum_{k=n+1}^m \frac{c^k}{k!}$$

 $< \varepsilon.$

 $m>n\geq N$

Taking $m \to \infty$, we have

$$|s(x)-s_n(x)|<\varepsilon$$
,

so,

$$\sup_{x\in[a,b]}|s(x)-s_n(x)|<\varepsilon.$$

So by the Weierstrass M-test, we can see that $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ converges uniformly and absolutely on [a,b].