Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

February 26, 2024

Contents

1	<mark>简介</mark>	
2	统计决策理论	

1 简介

- 机器学习的主要任务: 生成、预测、决策. 生成: $X_1, \dots, X_n \sim F$, 推断分析 F, 无监督学习, GAN, GPT, \dots 预测: 数据对 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}), X^{(i)} \in \mathbb{R}^d$ 输入变量, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, 归因, 有监督学习. 决策: 强化学习, Agent←action, state, reward \to 环境.
- 求解问题的途径: 参数/非参数, 频率 (MLE)/贝叶斯.
- 误差模型:有监督: $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, 回归: $Y \in \mathbb{R}$; 分类: $Y \in \{0, 1\}(\{-1, 1\}, \{1, \dots, M\}, \{0, 1\}^M)$; X 随机, Random design(生成模型), $Y = g(X) + \epsilon \stackrel{\text{or}}{=} g(X, Z), Y^{(i)} = g(X^{(i)}, Z^{(i)})$; X 固定 X = x, Fixed design(判别模型), $Y^{(i)} = g(x^{(i)}, Z^{(i)})$. 无监督: X = g(Z)(因子模型: $X = AZ + \epsilon, Z \in \mathcal{N}(0, 1), \epsilon \sim \mathcal{N}(0, \Sigma)$).

2 统计决策理论

- Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L} : \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta : \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta : \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathbb{E}_{a} \mathcal{L}(\theta, A|X) = \iint \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.
- Example [参数估计]: $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta a\|_2^2 \stackrel{\text{or}}{=} \|\theta a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x) (KL).$ $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a).$ Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) \phi(\theta) (\phi a)^T \nabla \phi(a).$
- Example [Testing]: $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta,a) = I\{a=1,\theta \in \Omega_0\} + I\{a=0,\theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta,\delta) = \mathbb{P}_{\theta}(A=1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A=0)1_{\theta \in \Omega_1}$.
- A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.
- The maximum risk $\bar{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta) = \int \mathcal{L}(\theta, \delta) d\mathbb{P}(x, \theta)$ ($\Lambda(\theta)$ is a prior). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.
- If risk functions for all decision rules are continuous in θ , if δ is Bayesian for Λ and has finite integrated risk $r(\Lambda, \delta) < \infty$, and if the support of Λ is the whole state space Ω , then δ is admissible.
- $p(\theta|x) = \frac{p_{\theta}(x)\lambda(\theta)}{\int p_{\theta}(x)\lambda(\theta)d\theta} := \frac{p_{\theta}(x)\lambda(\theta)}{m(x)}$. Define the posterior risk of δ : $r(\delta|X=x) = \int \mathcal{L}(\theta,\delta(x))d\mathbb{P}(\theta|x)$. The Bayes risk $r(\Lambda,\delta)$ satisfies that $r(\Lambda,\delta) = \int r(\delta|x)dM(x)$. Let $\hat{\delta}(x)$ be the value of δ that minimizes $r(\delta|x)$. Then $\hat{\delta}$ is the Bayes rule.
- Application to supervised learning. Case 1: Regression. $(X,Y) \in \mathcal{X} \times \mathcal{Y}, f: \mathcal{X} \to \mathcal{Y}, \mathscr{A} = \Omega = \mathcal{Y}, \mathcal{D} = \mathcal{X}, \delta = f, \mathcal{L}(Y, f(X)) = \|Y f(X)\|_p^p, p \ge 1$, risk $R_f = \iint \mathcal{L}(y, f(x)) d\mathbb{P}(x, y) = \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))|X]$. When p = 2, $r(f|X = x) = \int \mathcal{L}(y, f(x)) d\mathbb{P}(y|x) = \int |y f(x)|^2 d\mathbb{P}(y|x)$. 回归函数 $g(x) := \int y d\mathbb{P}(y|x) \Rightarrow R_f = \mathbb{E}|Y f(X)|^2 = \mathbb{E}|Y g(X) + g(X) f(X)|^2 = \mathbb{E}|Y g(X)|^2 + \mathbb{E}|g(X) f(X)|^2 \ge \mathbb{E}|Y g(X)|^2$.
- Case 2: Pattern classification. $Y \in \{0,1\}, p_0 = P(Y=0), p_1 = \mathbb{P}(Y=1) = 1 p_0, \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{P}(Y \neq f(X)).$ The Bayesian rule (predictor) is given by $f(x) = 1\{\mathbb{P}(Y=1|X=x) \geq \frac{\mathcal{L}(1,0) \mathcal{L}(0,0)}{\mathcal{L}(0,1) \mathcal{L}(1,1)}\mathbb{P}(Y=0|X=x)\}.$ (Proof: $\mathbb{E}[\mathcal{L}(Y,f(X))|X=x] = \begin{cases} \mathbb{E}[\mathcal{L}(Y,0)|X=x] = \mathcal{L}(0,0)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,0)\mathbb{P}(Y=1|X=x) \\ \mathbb{E}[\mathcal{L}(Y,1)|X=x] = \mathcal{L}(0,1)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,1)\mathbb{P}(Y=1|X=x) \end{cases}, \quad \forall \text{ \mathbb{X} \mathbb
- 联系: $\mathbb{P}(Y = 1 | X = x) = \mathbb{E}(Y | X = x) := g(x)(\Box \Box), f(x) = 1\{g(x) \ge \frac{1}{2}\}.$ Then $0 \le \mathbb{P}(\hat{f}(X) \ne Y) \mathbb{P}(f(X) \ne Y) \le 2 \int_{\mathcal{X}} |\hat{g}(x) g(x)| \mu(\mathrm{d}x) \le 2(\int_{\mathcal{X}} |\hat{g}(x) g(x)|^2 \mu(\mathrm{d}x))^{\frac{1}{2}}.$

- 回到 Case 2. $f(x) = 1\{\frac{p(x|y=1)}{p(x|y=0)} \ge \frac{p_0(\mathcal{L}(0,1) \mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0) \mathcal{L}(1,1))}\}$, 这与似然比检验 (LRT) 相同: Likelihood $L(X) := \frac{p(X|Y=1)}{p(X|Y=0)}$, 形式为 $f(x) = 1\{L(x) \ge \eta\}$.
- Confusion table:

$$Y=0$$
 $Y=1$
 $\hat{Y}=0$ true negative false negative $\hat{Y}=1$ false positive true positive

Ture Positive Rate: TPR = $\mathbb{P}(\hat{Y} = 1|Y = 1)$; False Negative Rate: FNR = 1 - TPR, type II error; False Positive Rate: FPR = $\mathbb{P}(\hat{Y} = 1|Y = 0)$, type I error; True Negative Rate: TNR = 1 - FPR.

• Optimization: maximize TPR subject to FPR $\leq \alpha, \alpha \in [0,1]$. Randomized rule: Q return 1 with probability Q(x) and 0 with probability 1 - Q(x). Maximize $\mathbb{E}[Q(x)|Y=1]$ subject to $\mathbb{E}[Q(x)|Y=0] \leq \alpha$. Suppose the likelihood functions p(x|y) are continuous. Then the optimal predictor is a deterministic LRT (N-P lemma).