3.1 Linear Algebra Review

3.2 Systems of two ODEs

3.3 Real Eigenvalues

3.4 Complex Eigenvalues
3.5 Repeated Eigenvalues

Consider the same problem but with k = 4.

$$\vec{x}' = \begin{bmatrix} 0 & 1 \\ -4 & -\gamma \end{bmatrix} \vec{x}$$

- Find the eigenvalues of this matrix.
- **2** What happens for $\gamma <$ 4?
- **3** What happens for $\gamma > 4$?
- 4 What happens for $\gamma = 4$?

Consider the same problem but with k = 4.

$$\vec{x}' = \begin{bmatrix} 0 & 1 \\ -4 & -\gamma \end{bmatrix} \vec{x}$$

- Find the eigenvalues of this matrix.
- 2 What happens for γ < 4?
- **3** What happens for $\gamma > 4$?
- 4 What happens for $\gamma = 4$?

This is called a **critically damped** spring-mass system.

Consider the critically damped problem: $\gamma = 4$:

$$\vec{x}' = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix} \vec{x}$$

5 Find one solution $\vec{x}_1(t)$.

There are no more eigenvalues, so how do we find a second solution $\vec{x}_2(t)$?

$$\vec{x}(t) = A \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{-2t} + B \left(\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \end{bmatrix} t \right) e^{-2t}$$

- **7** Sketch the solutions for $A=\pm 1$ and B=0 in the phase plane.
- 8 Sketch the solutions for A=0 and $B=\pm 1$ in the phase plane.

Improper Node

Asymptotically Stable

${\sf Spring\text{-}Mass\text{-}Dashpot}$

Preparation for next lecture

Section 3.4

- How to solve a system of linear ODEs with repeated eigenvalues https://youtu.be/hCShTLmeZN4
- How to sketch a phase portrait for such systems. https://youtu.be/dpbRUQ-5YWc