

- ★ Super Low Gate Charge
- ★ Green Device Available
- ★ Excellent Cdv/dt effect decline
- ★ Advanced high cell density Trench technology

Product Summary

BVDSS	RDSON	ID	
100V	85mΩ	10A	

Description

The XR10N10 is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR10N10 meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

TO252-3L Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _G S	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	10	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	6	А
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	4.4	А
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.8	Α
І _{DМ}	Pulsed Drain Current ²	40	А
EAS	Single Pulse Avalanche Energy ³	6.1	mJ
las	Avalanche Current	10	Α
P _D @T _C =25°C	Total Power Dissipation ³	34.7	W
P _D @T _A =25°C	Total Power Dissipation ³	2	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter		Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient ¹		62	°C/W
R ₀ JC	Thermal Resistance Junction-Case ¹		3.6	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	100			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C , I _D =1mA		0.098		V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =10A		125	150	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance-	V _{GS} =4.5V , I _D =8A		138	180	mΩ
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ -250\	1.0		2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.57		mV/°C
	Drain Course Leakers Current	V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	uA
IDSS	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =55°C			5	
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			±100	nA
gfs	Forward Transconductance V _{DS} =5V , I _D =10A			13		S
R _g	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz			2		Ω
Qg	Total Gate Charge (10V)			26.2		
Q _{gs}	Gate-Source Charge	V _{DS} =80V , V _{GS} =10V , I _D =10A		4.6		nC
Q _{gd}	Gate-Drain Charge			5.1		
T _{d(on)}	Turn-On Delay Time			4.2		
Tr	Rise Time	V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω		8.2		
T _{d(off)}	Turn-Off Delay Time	off Delay Time I _D =10A		35.6		ns
T _f	Fall Time			9.6		
Ciss	Input Capacitance			1023		
Coss	Output Capacitance V _{DS} =15V , V _{GS} =0V , f=1MHz			40		pF
Crss	Reverse Transfer Capacitance			25		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}				10	Α
I _{SM}	Pulsed Source Current ^{2,5}	V _G =V _D =0V , Force Current			40	Α
V _{SD}	Diode Forward Voltage ² V _{GS} =0V , I _S =1A , T _J =25°C				1.2	V
t _{rr}	Reverse Recovery Time			37		nS
Qrr	Reverse Recovery Charge	IF=10A , dI/dt=100A/μs , T _J =25°C		27.3		nC

Note

- 1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH, I_{AS} =11A
- 4. The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} vs. T_J

Fig.2 On-Resistance vs. Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs. T_J

Fig.7 Capacitance

Fig.8 Safe Operating Area

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-TO252-3L

	Dimensions							
	Dimensions							
Ref.	Millimeters				Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	2.10		2.50	0.083		0.098		
A2	0		0.10	0		0.004		
В	0.66		0.86	0.026		0.034		
B2	5.18		5.48	0.202		0.216		
С	0.40		0.60	0.016		0.024		
C2	0.44		0.58	0.017		0.023		
D	5.90		6.30	0.232		0.248		
D1		5.30REF			0.209REF			
E	6.40		6.80	0.252		0.268		
E1	4.63			0.182				
G	4.47		4.67	0.176		0.184		
Н	9.50		10.70	0.374		0.421		
L	1.09		1.21	0.043		0.048		
L2	1.35		1.65	0.053		0.065		
V1		7°			7°			
V2	0°		6°	0°		6°		

Reel Spectification-TO252-3L

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
W	15.90	16.00	16.10	0.626	0.630	0.634
E	1.65	1.75	1.85	0.065	0.069	0.073
F	7.40	7.50	7.60	0.291	0.295	0.299
D0	1.40	1.50	1.60	0.055	0.059	0.063
D1	1.40	1.50	1.60	0.055	0.059	0.063
P0	3.90	4.00	4.10	0.154	0.157	0.161
P1	7.90	8.00	8.10	0.311	0.315	0.319
P2	1.90	2.00	2.10	0.075	0.079	0.083
A0	6.85	6.90	7.00	0.270	0.271	0.276
В0	10.45	10.50	10.60	0.411	0.413	0.417
K0	2.68	2.78	2.88	0.105	0.109	0.113
Т	0.24		0.27	0.009		0.011
t1	0.10			0.004		
10P0	39.80	40.00	40.20	1.567	1.575	1.583