Assignment-1

Jarpula Bhanu Prasad - AI21BTECH11015

August 17, 2022

- 1. Consider a random experiment whose outcome is discrete and can take values from 1 to N (For example, the outcome of a roll of a 6-faced die is from the set $\{1, 2, ..., 6\}$).Let \vec{x}/\mathbf{x} denote the list of possible outcomes of the random experiment. Let \vec{w}/\mathbf{w} indicate the number of times an outcome x_i is observed when the random experiment is repeated M times.
 - (a) What is the length of \mathbf{x} and \mathbf{w} ?

Solution: Let the random experiment be rolling a 6-faced die. Hence

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\5\\6 \end{pmatrix} \quad \text{and} \quad \mathbf{w} = \begin{pmatrix} w_1\\w_2\\w_3\\w_4\\w_5\\w_6 \end{pmatrix} \tag{1}$$

Where w_i indicates the number of times an outcome x_i is observed when the random experiment is repeated M times.

Length of \mathbf{x} is 6 and length of \mathbf{w} is also 6.

For general case that random experiment takes values from 1 to N

$$\mathbf{x} = \begin{pmatrix} 1\\2\\\vdots\\N \end{pmatrix} \quad \text{and} \quad \mathbf{w} = \begin{pmatrix} w_1\\w_2\\\vdots\\w_N \end{pmatrix} \tag{2}$$

Length of \mathbf{x} is N and length of \mathbf{w} is also N.

(b) One simple way to define te expected value/mean of a random experiment (denoted by μ) is

$$\mu = \sum_{i} x_i P_x(x_i) \tag{3}$$

where $P_x(x_i)$ is the probability that the outcome of an experiment takes the value x_i , $P_x(x_i)$ can be computed (from the M independent experiments) as

the ratio of number of times the experiment results in an outcome of x_i to the total number of experiments. Write down a simple expression (in terms of \mathbf{x} and \mathbf{w}) to compute the expected value of an experiment?

Solution: Let

$$\mathbf{p} = \begin{pmatrix} P_x(x_1) \\ P_x(x_2) \\ \vdots \\ P_x(x_n) \end{pmatrix} \quad \text{Where } P_x(x_i) = \frac{w_i}{M} \quad \text{and n is length of } \mathbf{x}$$

 $\therefore \text{ we can write } \mathbf{p} = \frac{1}{M} \mathbf{w}$ (5)

Now,

$$\mu = \sum_{i} x_i P_x(x_i) \tag{6}$$

(4)

$$= \mathbf{x} \cdot \mathbf{p} \tag{7}$$

$$= \mathbf{x} \cdot \left(\frac{1}{M}\mathbf{w}\right) \qquad \text{from (5)}$$

$$=\frac{1}{M}\left(\mathbf{x}\cdot\mathbf{w}\right)\tag{9}$$

∴ expected value/mean is given by

$$\mu = \frac{1}{M} \left(\mathbf{x} \cdot \mathbf{w} \right) \tag{10}$$

(c) What is the L_1 norm of vector \mathbf{w} .

Solution: L_1 norm of vector \mathbf{w}

i.e., $\|\mathbf{w}\|_1 = |w_1| + |w_2| + \cdots + |w_n|$ {where n denotes the length of \mathbf{x} }.

Since, w_i is the number of times an outcome x_i is observed when random experiment is repeated M times

hence sum of individual w_i gives M i.e., total number of times experiment is conducted.

i.e.,
$$\|\mathbf{w}\|_1 = M$$

(d) Let \vec{y}/\mathbf{y} be a vector whose entries/elements are given by $y_i = (x_i - \mu)$. Express \vec{y} in terms of \vec{x} and \vec{w} .(Hint: Ones vector $\vec{1} \in \mathcal{R}^N$ may be useful).

Solution:

$$\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 - \mu \\ x_2 - \mu \\ \vdots \\ x_n - \mu \end{pmatrix} \tag{11}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \begin{pmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{pmatrix} \tag{12}$$

$$= \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} - \mu \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \tag{13}$$

$$= \vec{x} - \mu \vec{1} \tag{14}$$

$$= \vec{x} - \frac{1}{M} (\vec{x} \cdot \vec{w}) \vec{1} \qquad \text{from (10)}$$

 \vec{y} in terms of \vec{x} and \vec{w} is given by

$$\vec{x} \cdot \vec{y} = \vec{x} - \frac{1}{M} (\vec{x} \cdot \vec{w}) \vec{1}$$

(e) Let \vec{v}/\mathbf{v} be a vector whose entries/elements are given by $v_i = (x_i - \mu)^2$. The varience (denoted by σ^2) observed in the outcome of a random experiment is defined as

$$\sigma^{2} = \sum_{i} v_{i} P_{x}(x_{i}) = \sum_{i} (x_{i} - \mu)^{2} P_{x}(x_{i})$$
(16)

Express the variance in terms of \vec{v} and \vec{w} .

Solution:

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} (x_1 - \mu)^2 \\ (x_2 - \mu)^2 \\ \vdots \\ (x_n - \mu)^2 \end{pmatrix} \quad \text{and} \quad \vec{p} = \frac{1}{M} \vec{w} \quad (\text{form}(5))$$
 (17)

Now,

$$\sigma^2 = \sum_{i} (x_i - \mu)^2 P_x(x_i) \tag{18}$$

$$= \sum_{i} v_i P_x(x_i) \tag{19}$$

$$= \vec{v} \cdot \vec{p} \tag{20}$$

$$= \vec{v} \cdot \left(\frac{1}{M}\vec{w}\right) \quad \text{(form(5))} \tag{21}$$

$$=\frac{1}{M}\left(\vec{v}\cdot\vec{w}\right)\tag{22}$$

 \therefore variance in terms of \vec{v} and \vec{w} is given by

$$\sigma^2 = \frac{1}{M} \left(\vec{v} \cdot \vec{w} \right)$$

(f) What is the expected value of the random experiment when $P_x(x_i) = \frac{1}{N} \ \forall \ x_i$. Solution: Given $P_x(x_i) = \frac{1}{N} \ \forall \ x_i$ this implies that $\vec{p} = \frac{1}{N} \vec{1}$

$$\mu = \sum_{i} x_i P_x(x_i) \qquad \text{(from(3))}$$

$$= \vec{x} \cdot \vec{p} \tag{24}$$

$$= \vec{x} \cdot \left(\frac{1}{N}\vec{1}\right) \tag{25}$$

$$=\frac{1}{N}\left(\vec{x}\cdot\vec{1}\right)\tag{26}$$

Expected value is given by

$$\mu = \frac{1}{N} \left(\vec{x} \cdot \vec{1} \right)$$

$$= \frac{1}{N} \sum_{i} x_{i}$$

$$= \frac{1}{N} \times \frac{N(N+1)}{2}$$

$$\therefore \mu = \frac{N+1}{2} \tag{27}$$

(g) Let L_p denote a norm of order p applied to vector \vec{v} . Compute the order to norm that relates to variance σ^2 when $P_x(x_i) = \frac{1}{N} \ \forall \ x_i$. What is the resulting relation?

Solution: Given $P_x(x_i) = \frac{1}{N} \ \forall \ x_i$ this implies that $\vec{p} = \frac{1}{N} \vec{1}$

$$\sigma^2 = \vec{v} \cdot \vec{p} \qquad \text{from (20)} \tag{28}$$

$$= \vec{v} \cdot \left(\frac{1}{N}\vec{1}\right) \tag{29}$$

$$=\frac{1}{N}\left(\vec{v}\cdot\vec{1}\right)\tag{30}$$

$$= \frac{1}{N} \sum_{i} v_i = \frac{1}{N} \|\vec{v}\|_1 \tag{31}$$

Order of norm that relates to variance σ^2 is "1" and the resulting relation is $\sigma^2 = \frac{1}{N} ||\vec{v}||_1 = \frac{1}{N} L_1$

2. A norm of order p operating on $\vec{x} \in \mathcal{R}^N$ is defined as

$$\|\vec{x}\|_{p} = \sqrt[p]{\sum_{i} |x_{i}|^{p}} \tag{32}$$

Show that the infinity norm (i.e., $p = \infty$) is given by

$$\|\vec{x}\|_{\infty} = \max|x_i| \tag{33}$$

Solution: Let \vec{x} be a N diamensional vector

i.e., \vec{x} contains elements $\{x_1, x_2, x_3, \dots, x_N\}$

let x_j be he maximum element of $\{x_1, x_2, x_3, \dots, x_N\}$ Now, infinty norm is given by

$$\|\vec{x}\|_{\infty} = \lim_{p \to \infty} \|\vec{x}\|_p \tag{34}$$

$$= \lim_{p \to \infty} \left(\sum_{i} |x_{i}|^{p} \right)^{\frac{1}{p}} \tag{35}$$

$$= \lim_{p \to \infty} (|x_1|^p + |x_2|^p + \dots + |x_N|^p)^{\frac{1}{p}}$$
(36)

$$= |x_j| \lim_{p \to \infty} \left(\left| \frac{x_1}{x_j} \right|^p + \left| \frac{x_2}{x_j} \right|^p + \dots + \left| \frac{x_j}{x_j} \right|^p + \dots + \left| \frac{x_N}{x_j} \right|^p \right)^{\frac{1}{p}}$$
(37)

$$= |x_j| \lim_{p \to \infty} (0 + 0 + \dots + 1 + \dots + 0)^{\frac{1}{p}}$$
(38)

Since x_j is the maximum element hence $\frac{x_i}{x_j} < 1 \quad \forall i \neq j$

$$\|\vec{x}\|_{\infty} = |x_j| \lim_{n \to \infty} 1^{\frac{1}{p}}$$
 (39)

$$=|x_i|$$
 maximum element of \vec{x} (40)

From above we have showed that

$$\|\vec{x}\|_{\infty} = \max|x_i| \tag{41}$$

hence proved.

3. Show that the infinity norm of a vector $(\|\vec{x}\|_{\infty}: \mathcal{R}^N \to \mathcal{R})$ defined as

$$\|\vec{x}\|_{\infty} = \max|x_i| \tag{42}$$

satisfies all the conditions needed for the norm (i.e., non-negativity, scaling and triangular inequality).

Solution: We show that three conditions are met:

Let $\vec{x}, \vec{y} \in \mathbb{R}^N$ and $\alpha \in \mathbb{R}$ be arbitarily choosen. Then

(a) $\vec{x} \neq \vec{0} \implies \|\vec{x}\|_{\infty} > 0$ ($\|.\|_{\infty}$ is positive definite i.e., non-negative): Notice that $\vec{x} \neq \vec{0}$ means that at least one of its components is non-zero. Let's assume that $x_j \neq 0$. Then

$$\|\vec{x}\|_{\infty} = \max_{i} |x_i| \ge |x_j| > 0$$
 (43)

(b) $\|\alpha \vec{x}\|_{\infty} = |\alpha| \|\vec{x}\|_{\infty} (\|.\|_{\infty})$ is homogenous i.e., scalable.):

$$\|\alpha \vec{x}\|_{\infty} = \max_{i} |\alpha x_{i}| \tag{44}$$

$$= \max_{i} |\alpha| |x_{i}| \tag{45}$$

$$= |\alpha| \max_{i} |x_i| \tag{46}$$

$$= |\alpha| \, \|\vec{x}\|_{\infty} \tag{47}$$

(c) $\|\vec{x} + \vec{y}\|_{\infty} \leq \|\vec{x}\|_{\infty} + \|\vec{y}\|_{\infty} (\|.\|_{\infty} \text{ obeys the triangular inequality.})$:

$$\|\vec{x} + \vec{y}\|_{\infty} = \max_{i} |x_i + y_i| \tag{48}$$

$$\leq \max_{i} \left(|x_i| + |y_i| \right) \tag{49}$$

$$\leq \max_{i} \left(|x_i| + \max_{j} |y_j| \right) \tag{50}$$

$$\leq \max_{i} |x_i| + \max_{j} |y_j| \tag{51}$$

$$\leq \|\vec{x}\|_{\infty} + \|\vec{y}\|_{\infty} \tag{52}$$

We have showed that infinity norm satisfies all the conditions needed for the norm. Hence proved.

4. State the conditions under which

$$|\mathbf{a} \cdot \mathbf{b}| = ||\mathbf{a}|| \, ||\mathbf{b}|| \quad \text{where } \mathbf{a}, \mathbf{b} \in \mathcal{R}^N.$$
 (53)

Alternatively, state the conditions under which we have the equality in Cauchy-Schwarz inequality.

Solution: In Cauchy-Schwarz inequality equality sign holds if and only if **a** and **b** are linearly dependent. i.e., $\mathbf{a} = \lambda \mathbf{b}$

Now, let θ be the angle between the vector **a** and **b**

$$\cos \theta = \frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\| \|\mathbf{b}\|} \tag{54}$$

$$= \frac{|(\lambda \mathbf{b}) \cdot \mathbf{b}|}{\|\lambda \mathbf{b}\| \|\mathbf{b}\|} \tag{55}$$

$$=1 \tag{56}$$

Now, from Law of cosines

$$|\mathbf{a} \cdot \mathbf{b}| = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta \tag{57}$$

$$= \|\mathbf{a}\| \|\mathbf{b}\| \qquad \text{from (56)} \tag{58}$$

Hence the cindition under which we have the equality in Cauchy-Schwarz inequality is the vectors are linearly dependent.

5. Consider $\vec{x} \in \mathcal{R}^N$. Prove the following identities.

(a) $\|\mathbf{x}\|_{2} \leq \|\mathbf{x}\|_{1}$ (Hint: Start by expanding the product $\|\mathbf{x}\|_{1} \|\mathbf{x}\|_{1}$) Solution:

$$\|\mathbf{x}\|_{1} = |x_{1}| + |x_{2}| + |x_{3}| + \dots + |x_{N}| \tag{59}$$

$$\|\mathbf{x}\|_{2} = (|x_{1}|^{2} + |x_{2}|^{2} + |x_{3}|^{2} + \dots + |x_{N}|^{2})^{\frac{1}{2}}$$
 (60)

Now, let us expand $\|\mathbf{x}\|_1 \|\mathbf{x}\|_1$

$$\|\mathbf{x}\|_{1} \|\mathbf{x}\|_{1} = (|x_{1}| + |x_{2}| + \dots + |x_{N}|) \times (|x_{1}| + |x_{2}| + \dots + |x_{N}|)$$
 (61)

$$\|\mathbf{x}\|_{1}^{2} = |x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{N}|^{2} + |x_{1}x_{2}| + \dots + |x_{N-1}x_{N}|$$
 (62)

$$> |x_1|^2 + |x_2|^2 + \dots + |x_N|^2$$
 (63)

$$\geq \|\mathbf{x}\|_2^2 \tag{64}$$

from above we got $\|\mathbf{x}\|_2^2 \le \|\mathbf{x}\|_1^2$ taking square root on both sides we can say

$$\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1$$

Hence proved.

(b) $\|\mathbf{x}\|_1 \leq \sqrt{N} \|\mathbf{x}\|_2$ (Hint: Use Cauchy-Schwarz inequality) **Solution:** From Cauchy-Schwarz inequality *length of ones vector = length of $\vec{x} = N$

$$\left| \vec{1} \cdot \vec{x} \right| \le \left\| \vec{1} \right\|_2 \left\| \vec{x} \right\|_2 \tag{65}$$

$$\sum_{i} |x_{i}| \leq \|^{1} \|_{2} \|^{2} \|^{2}$$

$$\sum_{i} |x_{i}| \leq \sqrt{(1^{2} + 1^{2} + \dots + 1^{2})} \|\vec{x}\|_{2}$$
(66)

from (59)
$$\|\vec{x}\|_1 \le \sqrt{N} \|\vec{x}\|_2$$
 (67)

Hence proved.