Construction 13

Given three segments, construct a fourth segment so that the four segments are in proportion.

Given: Segments with lengths a, b, and c

Construct: A segment of length x such that $\frac{a}{b} = \frac{c}{x}$

Procedure:

- 1. Draw an ∠HIJ.
- 2. On \overrightarrow{IJ} , mark off IR = a and RS = b.
- 3. On \overrightarrow{IH} , mark off IT = c.
- 4. Draw \overline{RT} .
- 5. At S, construct a parallel to \overline{RT} , intersecting \overrightarrow{IH} in a point U.

 \overline{TU} has length x such that $\frac{a}{b} = \frac{c}{x}$.

Justification: Because \overline{RT} is parallel to side \overline{SU} of $\triangle SIU$, \overline{RT} divides the other two sides of the triangle proportionally. Therefore, $\frac{a}{b} = \frac{c}{x}$.

Construction 14

Given two segments, construct their geometric mean.

Given: Segments with lengths a and b

Construct: A segment of length x such that $\frac{a}{x} = \frac{x}{b}$ (or $x = \sqrt{ab}$)

Procedure:

- 1. Draw a line and mark off RS = a and ST = b.
- 2. Locate the midpoint O of \overline{RT} by constructing the perpendicular bisector of \overline{RT} .
- 3. Using O as center draw a semicircle with a radius equal to OR.
- 4. At S, construct a perpendicular to \overline{RT} . The perpendicular intersects the semicircle at a point Z.

ZS, or x, is the geometric mean between a and b.

Justification: \widehat{RZT} is a semicircle. If you draw \overline{RZ} and \overline{ZT} , then $\triangle RZT$ is a right triangle. Since \overline{ZS} is the altitude to the hypotenuse of rt. $\triangle RZT$, $\frac{a}{x} = \frac{x}{b}$.

