

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE	ÉCRITE
Mathématiques 2	C, D	Durée de l'épreuve :	3h05
		Date de l'épreuve :	18/09/2020

Numéro du candidat : _	

Instructions

- L'élève répond à toutes les questions de la partie obligatoire
- L'élève répond à exactement 4 questions de la partie au choix. Il indique obligatoirement ses choix en marquant d'une croix les cases appropriées cidessous.

Seules les réponses correspondant aux questions choisies par l'élève seront évaluées. Toute réponse à une question non choisie par l'élève est cotée à 0 point. En l'absence de choix clairement renseigné sur la page de garde la partie au choix est cotée à 0 point.

Partie obligatoire (20 points)

Question 1 : Théorie	4 points
Question 2 : Étude de fonction	16 points
Partie au choix (40 points)	
Question 3 : Problème de tangente	10 points
Question 4 : Comportement asymptotique et position relative	10 points
Question 5 : Équations et inéquations exponentielles et logarithmiques	10 points
Question 6 : Limites et dérivées de fonctions exponentielles et logarithmiques	10 points
Question 7 : Intégrales indéfinies et primitives	10 points
Question 8 : Intégrales définies	10 points
Question 9 : Calcul d'aires et de volumes	10 points

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
MATHÉMATIQUES II	C,D	Durée de l'épreuve :
	C,D	Date de l'épreuve :

Partie obligatoire (20 points)

Question 1 (2 + 2 = 4 points)

Démontrer que :

- 1) Pour tous réels x et y strictement positifs, $\log_a \frac{x}{y} = \log_a x \log_a y$
- 2) Pour tout réel x strictement positif et pour tout réel r, $\log_a x^r = r \log_a x$

Question 2 (5+3+2+3+3=16 points)

Soit f la fonction définie par $f(x) = x \left(\ln \frac{x}{2} - 1 \right)^2$

- 1) Déterminer le domaine de définition et étudier le comportement asymptotique.
- 2) Montrer que $f'(x) = \ln^2 \frac{x}{2} 1$ et déterminer les abscisses des extrema éventuels.
- 3) Calculer la dérivée seconde et détermine les abscisses du(des) point(s) d'inflexion éventuel(s).
- 4) Dresser le tableau récapitulatif complet (sens de variation et concavité).
- 5) Représenter graphiquement la fonction dans un repère orthonormé d'unité 1 cm.

Partie au choix (40 points)

Question 3 (8 + 2 = 10 points)

Soit f la fonction définie par $f(x) = \frac{e^{x^2 + x}}{(2 - x)^2}$ et C_f sa représentation graphique.

- 1) Déterminer le(s) abscisse(s) du(des) point(s) en lesquels C_f admet une tangente passant par A(2;0)
- 2) Déterminer l'équation réduite de la tangente au point d'abscisse 0.

Question 4 (8 + 2 = 10 points)

Soit f la fonction définie par $f(x) = -x + \frac{2e^x}{1 - 4e^{2x}}$ et C_f sa représentation graphique.

- 1) Déterminer le domaine de définition de f et étudier le comportement asymptotique de f.
- 2) Déterminer la position de C_f par rapport à ses asymptotes obliques/horizontales éventuelles.

Question 5 (4 + 6 = 10 points)

Résoudre dans \mathbb{R} :

1)
$$3^{2(x+1)} - \frac{4}{3^{2x}} = 35$$

2)
$$\log_{\sqrt{2}} (3x - 2) + \log_{\frac{1}{2}} (4 - x) \le \log_2 (5x + 6) - 1$$

Question 6 ((4 + 3) + 3 = 10 points)

1) Déterminer les limites suivantes :

a)
$$\lim_{x \to -\infty} \left(\frac{4-x}{1-x} \right)^{2x-3}$$

b)
$$\lim_{x \to +\infty} \left[5^{1-2x} \cdot \log_{\frac{1}{3}} (2x+1) \right]$$

2) Soit f la fonction définie par $f(x) = (x^2 - 4)^{2-x}$

Déterminer le domaine de définition, le domaine de dérivabilité et l'expression de la dérivée de la fonction f.

Question 7 (2 + (4 + 4) = 10 points)

1) Calculer l'intégrale suivante:

$$\int \frac{6-3x}{\sqrt{x^2-4x}} \, dx$$

- 2) On considère la fonction définie sur $\mathbb{R} \setminus \left\{ \frac{1}{3} \right\}$ par $f(x) = \frac{14x^2 7x + 19}{(x^2 + 9)(3x 1)}$
 - a) Déterminer les réels a,b et c tels que pour tout $x \in \mathbb{R} \setminus \left\{\frac{1}{3}\right\}$,

$$f(x) = \frac{ax+b}{x^2+9} + \frac{c}{3x-1}$$

b) Déterminer la primitive de f sur un intervalle à préciser qui prend la valeur $5 \ln 3$ pour x = 0.

Question 8 (2 + 4 + 4 = 10 points)

Calculer les intégrales suivantes :

1)
$$\int_{-1}^{2} (3x^2 - 4x)(x^3 - 2x^2 + 1)dx$$

$$2) \int_0^\pi \sin^2 x (1 + \sin x) dx$$

$$3) \int_{1}^{e} \frac{1 - \ln x}{x^3} dx$$

Question 9 (6 + 4 = 10 points)

Dans cet exercice, vous pouvez vous servir des informations sur les figures.

1) Voici la représentation graphique de la fonction f définie par $f(x) = (x^2 - 3x + 2)e^{2-x}$.

Calculer l'aire de la partie du plan limité par C_f , l'axe (Ox) et par les droites d'équations x = 1 et x = 3.

2) Calculer le volume V du solide engendré par la rotation autour de l'axe des abscisses de la surface délimitée par les graphes des fonctions f et g définies par $f(x) = \frac{3}{2}x - 4$ et $g(x) = 2^x - 5$.

