15 (a) Two resistors of resistance R_1 and R_2 are connected in parallel in a circuit.

Derive a formula for the total resistance $R_{\rm T}$ of the combination.

(3)

(b) The diagram shows a combination of five resistors, M, N, O, P and Q. Each resistor has a resistance of $5.0\,\Omega$.

(i) Show that the resistance between points A and B is about 3Ω .

191	
(5)	
(シ)	

(ii)	A student is told to modify the combination of resistors so that the combined resistance between A and B is greater than 5.0Ω . She cannot change the arrangement of the resistors, but she can replace one of the 5.0Ω resistors with a 20.0Ω resistor.
	Explain, without further calculations, which of the five resistors should

be replaced.

(Total for Question 15 = 8 marks)