TD 2

Nombres premiers, Relations d'équivalence

Esercizio 1. Soit $n \ge 2$ un entier. Montrer que n est premier si et seulement si n n'admet aucun diviseur premier inférieur ou égal à \sqrt{n} .

Esercizio 2. Démontrer le théorème d'Euclide :

Il existe une infinité de nombres premiers.

Indice: Supposer par l'absurde qu'il existe un nombre fini de nombres premiers, p_1, \ldots, p_k , et considérer le produit $p_1 \cdots p_k + 1$.

Esercizio 3.

- 1) Montrer que $\sqrt{2}$ n'est pas un nombre rationnel. Indice : Supposer par l'absurde que $\sqrt{2} = \frac{a}{b}$ avec $a, b \in \mathbb{Z}$ tels que pgcd(a, b) = 1.
- 2) Montrer avec un argument similaire que, pour tout nombre premier p, le nombre \sqrt{p} n'est pas rationnel.

Esercizio 4. On considère sur \mathbb{Z} la relation suivante : soient $a, b \in \mathbb{Z}$

$$a \sim b \Leftrightarrow |a - b| \le 2$$
.

Est-ce que \sim est une relation d'équivalence? Si oui, décrire pour tout $a \in \mathbb{Z}$ la classe d'équivalence [a] de a et l'ensemble \mathbb{Z}/\sim .

Esercizio 5. On considère sur \mathbb{R} la relation suivante : soient $x, y \in \mathbb{R}$

$$x \sim y \Leftrightarrow x^2 = y^2$$
.

Est-ce que \sim est une relation d'équivalence? Si oui, décrire pour tout $x \in \mathbb{R}$ la classe d'équivalence [x] de x et l'ensemble \mathbb{R}/\sim .

Esercizio 6. Soit $n \in \mathbb{Z}_{>0}$. On considère sur \mathbb{Z} la relation suivante : soient $a, b \in \mathbb{Z}$

$$a \sim_n b \Leftrightarrow n \mid (a - b).$$

- 1) Montrer que \sim_n est une relation d'équivalence.
- 2) Décrire les classes d'équivalences de 0, 1 et n, c'est-à-dire :

$$[0]_n := \{ a \in \mathbb{Z} : a \sim_n 0 \},$$

$$[1]_n := \{ a \in \mathbb{Z} : a \sim_n 1 \},$$

$$[n]_n := \{ a \in \mathbb{Z} : a \sim_n n \}.$$