Designing a real-time system

July 10

2023

This document is mainly a design for a simple system based on free RTOS.

Presented by:

Mustafa Mohammed

<u>Table of Content</u>:

System description	2
Detailed system description	
System flow chart	
Tasks in details	
System manual calculations	
Simso figures	
JIII JO 11501 C3	

System description:

Designing a healthcare system using free RTOS, The system mainly consists of set of components (tasks) each one will be described individually below:

Task 1: Periodically read commands from the touch LCD via UART which configured to baud rate (speed) of 9600 bps, the execution time 2 ms.

Task 2: Periodically read blood pressure sensor which has refresh rate every 25ms, the execution time 3 ms.

Task 3: Periodically read heart beat sensor which has new data every 100ms, the execution time 1.5 ms.

Task 4: Periodically receive data from the temperature sensor which has new data every 10ms, the execution time 2.5 ms.

Task 5: Based on the readings from other tasks the system will decide to activate or deactivate the alert siren, execution time is 1 ms.

System flow chart:

Tasks in details:

Task	Туре	Periodicity	Execution time	Deadline	priority
Touch LCD	Periodic	100	2	100	1
Blood pressure	Periodic	10	3	10	2
Heart beat	Periodic	50	1.5	50	3
Temp. sensor	Periodic	5	2.5	5	4
Alert siren	Event based		1	100	5

System calculations:

- 1- Hyper period (LCM) = 100 msec.
- 2- CPU load = [(2*1) + (3*10) + (1.5*2) + (2.5*20)] / 100 = 0.85 (85%)

Comment: 1- The CPU load is suitable as it's 85% with the ability to add the event based task (alert siren) without failures.

2- The periodicities of each task follows Nequest equation (sampling rate $\geq 2*F$).

SimSO Figures:

1- Adding tasks

2- CPU load

3- Time line

Comment: Simso shows that tasks are schedulable and also the calculated CPU_load is similar to the manual calculated CPU_load.