Date: 23 May 2016

OMEN-SED 1.0: A new, numerically efficient sediment module for the coupling to Earth System Models

Dominik Hülse¹, Sandra Arndt¹, Stuart Daines², and Andy Ridgwell^{1, 3}

Correspondence to: Sandra Arndt (s.arndt@bristol.ac.uk)

Abstract. Here we describe the first version of the OrganicMatter ENabled SEDiment model (OMEN-SED 1.0).

1 Introduction

Role of marine sediments for climate and global biogeochemical cycles

- 5 Represent the biggest, climate-relevant carbon pool in the surficial carbon cycle. Diagenetic processes represent an important link between carbon stored in more climate-relevant reservoirs like the oceans and the atmosphere, and carbon sequestered for much longer, geological timescales in sedimentary rock (Burdige, 2006). Highlight especially importance of OM burial (see e.g. Burdige, 2007; Kriest and Oschlies, 2011; Arndt et al., 2013).
- 10 Diagenetic Models

See e.g. (Soetaert et al., 2000; Mackenzie et al., 2004).

How are sediment resolved in Earth System models

See e.g. (Soetaert et al., 2000)

Problem with that:

The spatial variability in e.g. benthic particulate organic carbon (POC) mineralization kinetics throughout the ocean is currently unknown. This creates considerable uncertainties when diagenetic models are used to couple benthic and pelagic biogeochemical cycles in global models. (Kriest and Oschlies, 2011)

¹School of Geographical Sciences, University of Bristol, Clifton, Bristol BS8 1SS, UK

²Earth System Science, University of Exeter, North Park Road, Exeter EX4 4QE, UK

³Department of Earth Sciences, University of California, Riverside, CA 92521, USA

Alternative Model approaches, e.g. from coastal research

Solution presented here

20

See Van Cappellen and Wang (1996): "Metal cycling in surface sediments: Modeling the interplay or transport and reaction" for some good basic info!

2 Model Description

This section describes the formulation and solution of the model (see Table 1 for the implemented processes). A glossary of parameters along with their respective units is provided in Tables 6 and 7.

2.1 General Model Approach

The calculation of benthic return/uptake and burial fluxes is based on the vertically resolved conservation equation for solid and dissolved species in porous media is given by (e.g. Berner, 1980; Boudreau, 1997):

30

50

$$\frac{\partial \xi C_i}{\partial t} = -\frac{\partial F}{\partial z} + \xi \sum_j R_i^j \tag{1}$$

where C_i is the concentration of the biogeochemical species i, ξ equals the porosity ϕ for solute species and $(1-\phi)$ for solid species, hence represents the partitioning of species i into the solute and dissolved phase. The term z is the sediment depth, t denotes the time, F summarises the transport fluxes and $\sum_j R_i^j$ represents the sum of production/consumption rates j that affect species i. The reaction network has to account for the most important primary and secondary redox reactions, equilibrium reactions, mineral dissolution and precipitation, as well as adsorption and desorption processes.

State-of-the-art reaction-transport models generally solve the ordinary differential equation (ODE) (1) numerically and thus allow to account for transient conditions, depth-varying parameters or a high degree of coupling between different chemical species. Yet, numerical models are computational expensive, thus rendering their application in an Earth System Model framework prohibitive. An analytical solution of Eq. (1) provides an alternative and computational more efficient approach. Analytical models enjoyed great popularity in the early days of diagenetic modelling due to the low computing power. However, early analytical models were often very problem-specific and only considered one or two coupled species (e.g. Lehrman, Berner) ?? which pubs?. A number of more complex analytical models describing the coupled dynamics ofwere developed (e.g. Billen, 1982; Goloway and Bender, 1982; Jahnke et al., 1982).

Finding an analytical solution to Eq. (1), especially when complex reaction networks are to be considered is not straightforward and generally requires the assumption of steady state. Because the

Figure 1. Schematic of the different modelled species and layers in our sediment model. Here showing the case $z_{\rm ox} < z_{\rm bio} < z_{\rm NO_3} < z_{\rm SO_4}$.

Earth system model relevant variability in boundary conditions and fluxes is generally longer than the characteristic timescales of the reaction-transport processes, the sediment can be described by a series of pseudo steady-states. In addition, the complexity of the reaction network can be reduced by dividing the sediment into distinct zones and accounting for the most pertinent biogeochemical processes within each zone, thus increasing the likelihood of finding an analytical solution to Eq. (1). The model divides the sediment into a bioturbated and a non-bioturbated zone defined by the constant bioturbation depth $z_{\rm bio}$. In addition, it accounts for the dynamic redox zonation of marine sediments by dividing the sediment into: 2) an oxic zone situated between the SWI and a dynamically calculated penetration depth of oxygen $z_{\rm ox}$, 3) a denitrification zone situated between $z_{\rm ox}$ and a dynamically calculated penetration depth of nitrate $z_{\rm NO_3}$, 4) a sulfate reduction zone situated between $z_{\rm NO_3}$ and a dynamically calculated penetration depth of sulfate $z_{\rm SO_4}$ and 5) a methanic zone situated below $z_{\rm SO_4}$ (Figure 1). Each zone is characterised by a set of diagenetic equations that encapsulate the most pertinent reaction and transport processes in the respective zone (see section 2.2 and 2.3 for more details).

65 2.2 Transport

The model accounts for both advection and diffusion of dissolved and solid species, assuming that sediment compaction is negligible ($\frac{\partial \phi}{\partial z}$ =0). The diffusion of dissolved species is described via an apparent diffusion coefficient, D_{i0} . In addition, the activity of infaunal organisms in the bioturbated

zone of the sediment ($z < z_{\rm bio}$) causes random displacements of sediments and porewaters and is simulated using a diffusive term (e.g. Boudreau,1986), with a constant bioturbation coefficient $D_{\rm bio}$ in the bioturbated zone. The pumping activity by burrow-dwelling animals and the resulting ventilation of tubes, the so-called bioirrigation, is encapsulated in a factor, f_{ir} that enhances the molecular diffusion coefficient, $D_{{\rm mol},i}$ (hence, $D_{i,0} = D_{{\rm mol},i} \cdot f_{ir}$, Soetaert et al., 1996a). The divergence of the flux is thus given by:

$$\frac{\partial F}{\partial z} = -\frac{\partial}{\partial z} \left(-\xi D_i \frac{\partial C_i}{\partial z} + \xi w C_i \right) \tag{2}$$

where D_i is the diffusion coefficient of species i ($D_i = D_{i,0} + D_{\mathrm{bio}} = D_{\mathrm{mol},i} \cdot f_{ir} + D_{\mathrm{bio}}$ for dissolved species and $D_i = D_{\mathrm{bio}}$ for solid species) and w is the burial rate. The bioturbation coefficient D_{bio} is set to zero below z_{bio} . In addition, infaunnal activity ceases ($D_{\mathrm{bio}} = 0$) once bottom waters become anoxic ($O_2 = 0.0 \text{ mol cm}^{-3}$). add if-query in code!!

80 2.3 Reaction Network

70

Earth System models generally track the evolution of the global biogeochemical cycles of organic and inorganic carbon, the essential nutrients (nitrogen, phosphorus) and oxygen with the aim of investigating the evolution of the ocean's redox structure and carbonate system and its feedbacks on global climate. This general aim thus defines a minimum set of state variables and reaction processes that need to be resolved for an efficient representation of the benthic-pelagic coupling in Earth System Models. The sediment model has to provide robust quantifications of organic and inorganic carbon burial fluxes, growth-limiting nutrient, equilibrium invariant and reduced species return fluxes, and oxygen uptake fluxes. As a consequence, the reaction network must explicitly or implicitly account for the most important primary and secondary redox reactions, equilibrium reactions, mineral precipitation/dissolution and adsorption/desorption, resulting in a complex set of coupled reaction-transport equations. The following subsections provide a short discussion of the reaction processes included in the model and give an overview of the vertically resolved conservation equations and boundary conditions for solid and dissolved species in each layer. Table 1 states the reactions and variables considered in the reaction network.

5 2.3.1 Organic matter

100

In marine sediments, organic matter (OM) is degraded by heterotrophic activity coupled to the sequential utilisation of terminal electron acceptors (TEAs), typically in the order of O_2 , NO_3^- , Mn(VI), Fe(III) and SO_4^{2-} followed by methanogenesis and/or fermentation. Organic matter degradation is described via a multi-G model approach (Arndt et al., 2013, and references therein), assuming that the bulk OM is divided into discrete compound classes C_i characterised by specific degradation rate constants k_i . Such a multi-G approach allows for selective preservation of compound classes according to their degradability, k_i and, thus, accounts for the change in organic matter

Table 1. Reactions and variables implemented in the Reaction Network of OMEN-SED (1.0). The primary and secondary redox reactions are listed in the sequence they occur with increasing sediment depth.

	Description	
Primary redox reactions	Degradation of organic matter via aerobic respiration, denitrification,	
	sulfate reduction, methanogenesis (implicit)	
Secondary redox reactions	Oxidation of ammonium and sulfide by oxygen, anaerobic oxidation	
	of methane by sulfate	
Adsorption/Desorption	Ad-/Desorption of P on/from $Fe(OH)_3$, NH_4 adsorption, PO_4 adsorption	
Mineral precipitation	Formation of authigenic P	
Variables	Organic matter, oxygen, nitrate, ammonium, sulfate, sulfide (hydrogen sulfide),	
	phosphate, Fe-bound P, DIC, ALK	

Table 2. Boundary conditions for organic matter and oxygen.

Boundary	Condition		
z = 0	known concentration	1)	$C_i(0) = C_{i0}$
$z = z_{\rm bio}$	continuity	2)	$C_i(z_{\mathrm{bio}}^-) = C_i(z_{\mathrm{bio}}^+)$
		3)	$-D_{\mathrm{bio}} \cdot \frac{\partial C_i}{\partial z} _{z_{\mathrm{bio}}} = 0$
z = 0	known concentration	1)	$O_2(0) = O_{20}$
$z = z_{\rm bio}$	continuity	2)	$O_2(z_{\text{bio}}^-) = O_2(z_{\text{bio}}^+)$
		3)	$-\left(D_{\mathrm{O}_{2},0}+D_{\mathrm{bio}}\right)\cdot\frac{\partial_{\mathrm{O}_{2}}}{\partial z}\big _{z_{\mathrm{bio}}^{-}}=-D_{\mathrm{O}_{2},0}\cdot\frac{\partial_{\mathrm{O}_{2}}}{\partial z}\big _{z_{\mathrm{bio}}^{+}}$
$z = z_{\rm ox}$	O ₂ consumption	4)	$\mathbf{IF} \left(\mathcal{O}_2(z_\infty) > 0 \right)$
	$(z_{\rm ox} = z_{\infty})$		$\frac{\partial \mathcal{O}_2}{\partial z} _{z_{\text{ox}}} = 0$
			ELSE
	$(z_{ m ox} < z_{\infty})$		$O_2(z_{ox}) = 0$ and $-D_{O_2} \cdot \frac{\partial O_2}{\partial z} _{z_{ox}} = F_{red}(z_{ox})$
	with flux from below		$F_{red}(z_{ox}) = \frac{1-\phi}{\phi} \cdot \int_{z_{ox}}^{\infty} \sum_{i} (2\gamma_{NH_4} NC_i + \gamma_{H_2S} SO_4 C) k_i C_i dz$

degradability with burial. Each compound class is degraded according to first-order kinetics. Organic matter dynamics are thus described by:

$$\frac{\partial C_i}{\partial t} = 0 = D_{C_i} \frac{\partial^2 C_i}{\partial z^2} - w \frac{\partial C_i}{\partial z} - k_i \cdot C_i \tag{3}$$

The solution of Eq. 3 (see section ?? for details) requires the definition of boundary conditions. The model assumes a known concentration/flux at the sediment-water interface and continuity across the bottom of the bioturbated zone, $z_{\rm bio}$ (Table 2).

110 2.3.2 Oxygen

105

Oxygen serves as the most powerful terminal electron acceptor for the heterotrophic degradation of organic carbon. In addition, the oxidation of reduced species produced through microbial activ-

ity throughout the sediment column further contributes to the consumption of oxygen. The model explicitly accounts for the consumption of oxygen by heterotrophic degradation and nitrification of ammonium in the oxic layer of the sediment. The nitrification of 1 mol of ammonium in the oxic layer consumes 2 mol of oxygen. In addition, the oxygen consumption through the oxidation of reduced species (Fe²⁺, Mn²⁺, NH₄, H₂S) produced in the suboxic and anoxic layers of the sediment is implicitly taken into account through the flux boundary condition at the dynamic oxygen penetration depth z_{ox} . This simplification can be justified as it has been shown that these secondary redox reactions mainly occur at the oxic/suboxic interface (Soetaert et al., 1996b). Oxygen is described in mol cm⁻³ liquid and conversion from the solid phase of mineralized organic matter (expressed in mol cm⁻³ bulk sediment) to consumption of dissolved oxygen (or later nutrients) introduce a factor of $\frac{1-\phi}{\phi}$, where ϕ is the sediment porosity. Oxygen dynamics are thus described by:

$$\frac{\partial \mathcal{O}_2}{\partial t} = 0 = D_{\mathcal{O}_2} \frac{\partial^2 \mathcal{O}_2}{\partial z^2} - w \frac{\partial \mathcal{O}_2}{\partial z} - \frac{1 - \phi}{\phi} \sum_i k_i \cdot [OC + 2\gamma_{\mathrm{NH}_4} \mathrm{NC_i}] \cdot C_i(z) \tag{4}$$

To solve Eq. 4 analytically (see section $\ref{eq:conditions}$) boundary conditions at three depths are defined (Table 2). The model assumes a known bottom water concentration and the complete consumption of oxygen at the oxygen penetration depth (or zero flux if $z_{\rm ox}=z_{\infty}$). It considers equal oxygen concentration and diffusive flux above ($z_{\rm bio}^-$) and below ($z_{\rm bio}^+$) the bioturbation boundary. In addition, the model imposes a flux of reduced species through the bottom of the oxic zone that is calculated as the reduced substances produced through anoxic mineralization of organic matter below $z_{\rm ox}$. Thus, assuming that fractions ($\gamma_{\rm NH_4}$ and δ) of these reduced species are oxidised at the oxic/suboxic interface.

2.3.3 Nitrate and Ammonium

115

120

125

130

140

145

To model nitrate and ammonium dynamics the sediment is partitioned into two geochemical layers (oxic and suboxic), where different equations describe the biogeochemical processes. Above the oxygen penetration depth organic matter mineralization produces ammonium, which is partly nitrified to nitrate (the fraction $\gamma_{\rm NH_4}$). In the suboxic zone ($z>z_{\rm ox}$), oxygen concentration is zero and nitrate serves as the electron acceptor to respire organic matter, thus nitrate is consumed by denitrification and ammonium is produced. Below the nitrate penetration depth $z_{\rm NO_3}$, ammonium is still produced through OM mineralization. Therefore the diagenetic equations for nitrate and ammonium are given by:

1. Layer $(z \le z_{ox})$

$$\frac{\partial NO_3^I}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^I}{\partial z^2} - w \frac{\partial NO_3^I}{\partial z} + \gamma_{\rm NH_4} \frac{1 - \phi}{\phi} \cdot \sum_i NC_i \cdot k_i \cdot C_i(z)$$
 (5)

$$\frac{\partial \mathrm{NH_4}^I}{\partial t} = 0 = \frac{D_{\mathrm{NH_4}}}{1 + K_{\mathrm{NH_4}}} \frac{\partial^2 \mathrm{NH_4}^I}{\partial z^2} - w \frac{\partial \mathrm{NH_4}^I}{\partial z} + \frac{1 - \gamma_{\mathrm{NH_4}}}{1 + K_{\mathrm{NH_4}}} \cdot \frac{1 - \phi}{\phi} \cdot \sum_i \mathrm{NC}_i \cdot k_i \cdot C_i(z) \tag{6}$$

2. Layer
$$(z_{\text{ox}} < z \le z_{\text{NO}_3})$$

 $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial t} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z^2} - w \frac{\partial NO_3^{II}}{\partial z} - \frac{1 - \phi}{\phi} NO_3 C \cdot \sum_i k_i \cdot C_i(z)$ $\frac{\partial NO_3^{II}}{\partial z} = 0 = D_{NO_3} \frac{\partial^2 NO_3^{II}}{\partial z} - w \frac{\partial NO_3^{II}}{\partial z} - w$

$$\frac{\partial \mathrm{NH_4}^{II}}{\partial t} = 0 = \frac{D_{\mathrm{NH_4}}}{1 + K_{\mathrm{NH_4}}} \frac{\partial^2 \mathrm{NH_4}^{II}}{\partial z^2} - w \frac{\partial \mathrm{NH_4}^{II}}{\partial z} \tag{8}$$

3. Layer $(z_{NO_3} < z \le z_{\infty})$

150

$$\frac{\partial \text{NH}_4^{III}}{\partial t} = 0 = \frac{D_{\text{NH}_4}}{1 + K_{\text{NH}_4}} \frac{\partial^2 \text{NH}_4^{III}}{\partial z^2} - w \frac{\partial \text{NH}_4^{III}}{\partial z} + \frac{1}{1 + K_{\text{NH}_4}} \cdot \frac{1 - \phi}{\phi} \cdot \sum_i \text{NC}_i \cdot k_i \cdot C_i(z)$$
(9)

The boundary conditions to solve Equations 5 - 9 are summarized in Table 3. The model assumes known bottom water concentrations for both species, the complete consumption of nitrate at the nitrate penetration depth (or zero flux if $z_{\rm NO_3}=z_{\infty}$) and no change in ammonium flux at z_{∞} . It considers equal concentrations and diffusive fluxes at $z_{\rm bio}$ and $z_{\rm ox}$. In addition, the re-oxidation of upward-diffusing reduced ammonium is considered in the oxic-suboxic boundary condition for nitrate and ammonium.

160 2.3.4 Sulfate and Sulfide

When nitrate is depleted, sulfate reduction is the pathway to mineralize organic matter, thus consuming sulfate (SO₄) and producing hydrogen sulfide (H₂S) until the sulfate penetration depth (z_{SO_4}). Sulfate and sulfide dynamics are thus described by:

165 1. Layer ($z \le z_{NO_3}$)

$$\frac{\partial SO_4^I}{\partial t} = 0 = D_{SO_4} \frac{\partial^2 SO_4^I}{\partial z^2} - w \frac{\partial SO_4^I}{\partial z}$$
 (10)

$$\frac{\partial \mathbf{H}_2 \mathbf{S}^I}{\partial t} = 0 = D_{\mathbf{H}_2 \mathbf{S}} \frac{\partial^2 \mathbf{H}_2 \mathbf{S}^I}{\partial z^2} - w \frac{\partial \mathbf{H}_2 \mathbf{S}^I}{\partial z}$$
(11)

2. Layer $(z_{NO_3} < z \le z_{SO_4})$

$$\frac{\partial SO_4^{II}}{\partial t} = 0 = D_{SO_4} \frac{\partial^2 SO_4^{II}}{\partial z^2} - w \frac{\partial SO_4^{II}}{\partial z} - \frac{1 - \phi}{\phi} \cdot \sum_i SO_4 C \cdot k_i \cdot C_i(z)$$
(12)

$$\frac{\partial \mathbf{H}_2 \mathbf{S}^{II}}{\partial t} = 0 = D_{\mathbf{H}_2 \mathbf{S}} \frac{\partial^2 \mathbf{H}_2 \mathbf{S}^{II}}{\partial z^2} - w \frac{\partial \mathbf{H}_2 \mathbf{S}^{II}}{\partial z} + \frac{1 - \phi}{\phi} \cdot \sum_{i} \mathbf{SO}_4 \mathbf{C} \cdot k_i \cdot C_i(z)$$
(13)

3. Layer $(z_{SO_4} < z \le z_{\infty})$

$$\frac{\partial H_2 S^{III}}{\partial t} = 0 = D_{H_2 S} \frac{\partial^2 H_2 S^{III}}{\partial z^2} - w \frac{\partial H_2 S^{III}}{\partial z}$$
(14)

To solve equations 10 - 14 the model assumes known concentrations at the sediment-water interface and continuity across the bioturbation depth and the nitrate penetration depth (see Table 4).

Table 3. Boundary conditions for nitrate and ammonium.

Boundary	Condition			
z = 0	known concentration	1)	$NO_3(0) = NO_{30}$	
$z = z_{\rm bio}$	continuity	2)	$NO_3(z_{ m bio}^-) = NO_3(z_{ m bio}^+)$	
		ł	$-\left(D_{NO_3,0} + D_{\text{bio}}\right) \cdot \frac{\partial NO_3}{\partial z}\big _{z_{\text{bio}}^-} = -D_{NO_3,0} \cdot \frac{\partial NO_3}{\partial z}\big _{z_{\text{bio}}^+}$	
$z = z_{\rm ox}$	continuity		$NO_3(z_{\text{ox}}^-) = NO_3(z_{\text{ox}}^+)$	
		5)	$-D_{NO_3} \cdot \frac{\partial NO_3}{\partial z} _{z_{\text{ox}}^-} + \gamma_{\text{NH}_4} \cdot F_{\text{NH}_4}(z_{\text{ox}}) = -D_{NO_3} \cdot \frac{\partial NO_3}{\partial z} _{z_{\text{ox}}^+}$	
	where:		$F_{\mathrm{NH_4}}(z_{\mathrm{ox}}) = \frac{1}{1 + K_{\mathrm{NH_4}}} \cdot \frac{1 - \phi}{\phi} \cdot \int_{z_{\mathrm{NO_3}}}^{\infty} \sum_{i} k_i \cdot \mathrm{NC_i} \cdot C_i dz$	
$z = z_{NO_3}$	NO ₃ consumption	6)	$\mathbf{IF} \left(\mathrm{NO}_3(z_{\infty}) > 0 \right)$	
	$(z_{ m NO_3}=z_{\infty})$		$\frac{\partial NO_3}{\partial z} _{z_{\rm NO_3}} = 0$	
			ELSE	
	$(z_{ m NO_3} < z_{\infty})$		$NO_3(z_{\rm NO_3}) = 0$	
z = 0	known concentration	1)	$NH_4(0) = NH_{40}$	PH : added $K_{\mathrm{NH}_{4}}$ here.
$z = z_{\rm bio}$	continuity	2)	$NH_{\star}(z^{-})-NH_{\star}(z^{+})$	not in Gypens)
		3)	$-\frac{D_{\mathrm{NH_4,0}} + D_{\mathrm{bio}}}{1 + K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z}\big _{z_{\mathrm{bio}}^-} = -\frac{D_{\mathrm{NH_4,0}}}{1 + K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z}\big _{z_{\mathrm{bio}}^+}$	of in Cypensy
$z = z_{\rm ox}$	continuity		$NH_4(z_{ox}^-) = NH_4(z_{ox}^+)$	
		5)	$-\frac{D_{\mathrm{NH_4}}}{1+K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z}\big _{z_{\mathrm{ox}}} - \gamma_{\mathrm{NH_4}} \cdot F_{\mathrm{NH_4}}(z_{\mathrm{ox}}) = -\frac{D_{\mathrm{NH_4}}}{1+K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z}\big _{z_{\mathrm{ox}}^+}$	
	where:		$F_{\mathrm{NH_4}}(z_{\mathrm{ox}}) = \frac{1}{1+K_{\mathrm{NH_4}}} \cdot \frac{1-\phi}{\phi} \cdot \int_{z_{\mathrm{NO}_2}}^{\infty} \sum_i k_i \cdot \mathrm{NC_i} \cdot C_i dz$	
$z = z_{NO_3}$	continuity	6)	$NH_4(z_{NO_3}^-)=NH_4(z_{NO_3}^+)$	H : BC 5) for NH ₄ should
	flux		$-\frac{D_{\mathrm{NH_4}}}{1+K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z} \Big _{z_{\mathrm{NO_2}}} = -\frac{D_{\mathrm{NH_4}}}{1+K_{\mathrm{NH_4}}} \cdot \frac{\partial \mathrm{NH_4}}{\partial z} \Big _{z_{\mathrm{NO_2}}}$	nis not be
$z=z_{\infty}$	zero NH ₄ flux	ŀ	$ \frac{1+K_{\text{NH}_4}}{\partial z} \frac{\partial z}{\partial z} _{z_{\text{NO}_3}} \qquad 1+K_{\text{NH}_4} \qquad \frac{\partial z}{\partial z} _{z_{\text{NO}_3}} \qquad + \frac{\partial \text{NH}_4}{\partial z} _{z_{\infty}} = 0 $	$-(1-\gamma_{\mathrm{NH}_4}) \cdot F_{\mathrm{NH}_4}??$

The re-oxidation of reduced H_2S to SO_4 is considered in the oxic-suboxic boundary condition for both species, here including the methanic zone, as H_2S is also produced during anaerobic oxidation of methane (AOM). Furthermore, sulfate is used at z_{SO_4} to oxidize methane from below and thus producing H_2S . In case $z_{SO_4} < z_{\infty}$, sulfate concentration is zero at z_{SO_4} and its diffusive flux must equal the amount of methane produced below; or, in case $z_{SO_4} = z_{\infty}$, a zero flux condition for sulfate is considered. At lower boundary (z_{∞}) zero flux of H_2S is considered. correct??

185 **2.3.5 Phosphate**

180

190

To model phosphorus (P) in the sediments the model takes into account the change with depth of phosphate (PO₄) and iron-bound P, thereby mainly following the description of Slomp et al. (1996) and Gypens et al. (2008). Throughout the sediment column organic matter is mineralized resulting in a release of phosphate to the pore water. In the oxic part of the sediment, this PO₄ either diffuses upward to the water column or is adsorped to Fe oxides forming Fe-bound P (or M)(Slomp et al.,

Table 4. Boundary conditions for sulfate and sulfide.

Boundary	Condition			
z = 0	known concentration	1)	SO ₄ (0)=SO ₄₀	
$z = z_{\rm bio}$	continuity	2)	$\mathrm{SO_4}(z_\mathrm{bio}^-) = \mathrm{SO_4}(z_\mathrm{bio}^+)$	
	flux	3)	$-\left(D_{\mathrm{SO}_{4},0}+D_{\mathrm{bio}}\right)\cdot\frac{\partial \mathrm{SO}_{4}}{\partial z}\big _{z_{\mathrm{bio}}^{-}}=-D_{\mathrm{SO}_{4},0}\cdot\frac{\partial \mathrm{SO}_{4}}{\partial z}\big _{z_{\mathrm{bio}}^{+}}$	DH : BC 5) don't delete
$z = z_{\rm ox}$	continuity	4)	$SO_4(z_{ox}^-) = SO_4(z_{ox}^+)$	$\int_{z_{SO}}^{\infty}$ here profile would
	flux	5)	$-D_{\mathrm{SO}_4} \cdot \frac{\partial \mathrm{SO}_4}{\partial z} _{z_{\mathrm{ox}}^-} + \gamma_{\mathrm{H}_2\mathrm{S}} \cdot F_{\mathrm{H}_2\mathrm{S}}(z_{\mathrm{ox}}) = -D_{\mathrm{SO}_4} \cdot \frac{\partial \mathrm{SO}_4}{\partial z} _{z_{\mathrm{ox}}^+}$	decreases then above zox
	where:		$F_{\rm H_2S}(z_{\rm ox}) = \frac{1-\phi}{\phi} \cdot \left(\int_{z_{\rm NO_2}}^{\rm SO_4} \sum_i {\rm SO_4C} \cdot k_i \cdot C_i dz + \gamma_{\rm CH_4} \cdot \int_{z_{\rm NO_2}} {\rm Constant} \right)$	$\sum_{z_{\text{SO}_4}}^{\infty} \sum_{i} \text{MC} \cdot k_i \cdot C_i \ dz$
$z = z_{NO_3}$	continuity	6)	$SO_4(z_{NO_3}^-) = SO_4(z_{NO_3}^+)$,
	flux	7)	$-D_{\mathrm{SO}_4} \cdot \frac{\partial \mathrm{SO}_4}{\partial z} \big _{z_{\mathrm{NO}_2}^-} = -D_{\mathrm{SO}_4} \cdot \frac{\partial \mathrm{SO}_4}{\partial z} \big _{z_{\mathrm{NO}_2}^+}$	DH : think correct, because
$z = z_{SO_4}$	SO ₄ consumption	8)	$\mathbf{IF} \left(\mathrm{SO}_4(z_{\infty}) > 0 \right)$	at 8) CH ₄ from $\int_{z_{SO_4}}^{\infty}$ is
4	$(z_{\mathrm{SO}_4} = z_{\infty})$		$\frac{\partial SO_4}{\partial z} _{z_{SO_4}} = 0$	oxidised to H_2S ; at 5) this
			ELSE	$ m H_2S$ to $ m SO_4$
	$(z_{\rm SO_4} < z_{\infty})$		$SO_4(z_{SO_4}) = 0$ and $-D_{SO_4} \cdot \frac{\partial SO_4}{\partial z} _{z_{SO_4}} = \gamma_{CH_4} \cdot F_{CH_4}$	$I_4(z_{{ m SO}_4})$
	with flux from below:		$F_{\text{CH}_4}(z_{\text{SO}_4}) = \frac{1-\phi}{\phi} \cdot \int_{z_{\text{SO}_4}}^{\infty} \sum_i \text{MC} \cdot k_i \cdot C_i dz$	
z = 0	known concentration	1)	$H_2S(0) = H_2S_0$	
$z = z_{\rm bio}$	continuity	2)	$H_2S(z_{\rm bio}^-) = H_2S(z_{\rm bio}^+)$	
	flux	3)	$-\left(D_{\rm H_2S,0} + D_{\rm bio}\right) \cdot \frac{\partial \rm H_2S}{\partial z}\big _{z,-} = -D_{\rm H_2S,0} \cdot \frac{\partial \rm H_2S}{\partial z}\big _{z,+}$	
$z = z_{\rm ox}$	continuity	4)	$H_2S(z_{ox}^-)=H_2S(z_{ox}^+)$	
	flux	5)	$-D_{\text{H}_2\text{S}} \cdot \frac{\partial \text{H}_2\text{S}}{\partial z} _{z_{\text{out}}} - \gamma_{\text{H}_2\text{S}} F_{\text{H}_2\text{S}}(z_{\text{ox}}) = -D_{\text{H}_2\text{S}} \cdot \frac{\partial \text{H}_2\text{S}}{\partial z} _{z_{\text{out}}}$	
	where:		$F_{\rm H_2S}(z_{\rm ox}) = \frac{1-\phi}{\phi} \cdot \left(\int_{z_{\rm NO_2}}^{\rm SO_4} \sum_i {\rm SO_4C} \cdot k_i \cdot C_i dz + \gamma_{\rm CH_4} \cdot \int_{z_{\rm NO_2}} {\rm Constant} \right)$	$\sum_{z=C_4}^{\infty} \sum_i MC \cdot k_i \cdot C_i \ dz$
$z = z_{\text{NO}_3}$	continuity	6)	$H_2S(z_{NO_3}^-)=H_2S(z_{NO_3}^+)$	DH : BC 5) for H ₂ S should
	flux	7)	$-D_{\rm H_2S} \cdot \frac{\partial \rm H_2S}{\partial z} _{z_{\rm NO2}^-} = -D_{\rm H_2S} \cdot \frac{\partial \rm H_2S}{\partial z} _{z_{\rm NO2}^+}$	this not be
$z = z_{SO_4}$	continuity	8)	$H_2S(z_{SO_4}^-)=H_2S(z_{SO_4}^+)$	$+(1-\gamma_{\rm H_2S})\cdot F_{\rm H_2S}??$
	flux (with AOM)	9)	$-D_{\text{H}_2\text{S}} \cdot \frac{\partial \text{H}_2\text{S}}{\partial z} _{z_{\text{SO}_4}^-} + \gamma_{\text{CH}_4} \cdot F_{\text{CH}_4}(z_{\text{SO}_4}) = -D_{\text{H}_2\text{S}} \cdot \frac{\partial \text{H}_2\text{S}}{\partial z} _z$	+
	where:		$F_{\text{CH}_4}(z_{\text{SO}_4}) = \frac{1-\phi}{\phi} \cdot \int_{z_{\text{SO}_4}}^{\infty} \sum_i \text{MC} \cdot k_i \cdot C_i dz$	504
$z = z_{\infty}$	zero H ₂ S flux	10)	$\frac{\partial \mathbf{H}_2 \mathbf{S}}{\partial z} _{z_{\infty}} = 0$	

Figure 2. A schematic of the sedimentary P cycle in OMEN-SED (1.0). Red numbers represent kinetic rate constants for phosphorus dynamics (compare Table 7; p_i represents uptake rate of PO₄ via primary production in shallow environments). Adapted from Slomp et al. (1996).

1998). In the suboxic/anoxic zone, PO_4 is not only produced through organic matter degradation but is also released from the Fe-bound P pool due to the reduction of Fe oxides. Furthermore, phosphate concentrations can become high enough in this layer for authigenic mineral formation to occur (Cappellen and Berner, 1988). This phosphorus bound in authigenic minerals represents a permanent sink for reactive phosphorus (Slomp et al., 1996). See Figure 2 for a schematic overview of the sedimentary P cycle. Therefore the diagenetic equations for phosphorus are written:

1. Layer $(z \le z_{\text{ox}})$

195

200

$$\frac{\partial PO_{4}^{I}}{\partial t} = \frac{D_{PO_{4}}}{1 + K_{PO_{4}}^{I}} \frac{\partial^{2} PO_{4}^{I}}{\partial z^{2}} - w \frac{\partial PO_{4}^{I}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_{4}}^{I})} \sum_{i} (PC_{i} \cdot k_{i} \cdot C_{i}(z)) - \frac{k_{s}}{1 + K_{PO_{4}}^{I}} (PO_{4}^{I} - PO_{4}^{s})$$
(15)

 $\frac{\partial M^{I}}{\partial t} = D_{M} \frac{\partial^{2} M^{I}}{\partial z^{2}} - w \frac{\partial M^{I}}{\partial z} + k_{s} \frac{\phi}{1 - \phi} (PO_{4}^{I} - PO_{4}^{s})$ (16)

Table 5. Boundary conditions for phosphate and Fe-bound P (M).

Boundary	Condition	
z = 0	known concentration	1) PO ₄ (0)=PO ₄₀
$z = z_{\rm bio}$	continuity	2) $PO_4(z_{bio}^-) = PO_4(z_{bio}^+)$
	flux	3) $(D_{\text{PO}_4,0} + D_{\text{bio}}) \cdot \frac{\partial \text{PO}_4}{\partial z} _{z_{\text{bio}}^-} = D_{\text{PO}_4,0} \cdot \frac{\partial \text{PO}_4}{\partial z} _{z_{\text{bio}}^+}$
$z = z_{\rm ox}$	continuity	4) $PO_4(z_{ox}^-) = PO_4(z_{ox}^+)$
	flux	$ 5) - \frac{D_{\text{PO}_4}}{1 + K_{\text{PO}_4}^I} \cdot \frac{\partial \text{PO}_4}{\partial z} \big _{z_{\text{ox}}} = -\frac{D_{\text{PO}_4}}{1 + K_{\text{PO}_4}^{II}} \cdot \frac{\partial \text{PO}_4}{\partial z} \big _{z_{\text{ox}}^+} $
$z=z_{\infty}$	flux	$10) \frac{\partial PO_4}{\partial z} _{z_{\infty}} = 0$
z = 0	known concentration	1) $M(0) = M_0$
$z = z_{\rm bio}$	continuity	2) $M(z_{\rm bio}^-) = M(z_{\rm bio}^+)$
correct???	flux	3) $\frac{\partial M}{\partial z} _{z_{\text{bio}}^-} = \frac{\partial M}{\partial z} _{z_{\text{bio}}^+}$
$z = z_{\rm ox}$	continuity	4) $M(z_{ox}^{-})=M(z_{ox}^{+})$
correct???	flux	5) $\frac{\partial M}{\partial z} _{z_{\text{ox}}} = \frac{\partial M}{\partial z} _{z_{\text{ox}}}$
$z=z_{\infty}$	assymptotic concentration	$10) M(z_{\infty}) = M_{\infty}$

2. Layer $(z_{ox} < z)$

$$\frac{\partial M^{II}}{\partial t} = D_M \frac{\partial^2 M^{II}}{\partial z^2} - w \frac{\partial M^{II}}{\partial z} - k_m (M^{II} - M^{\infty}) \tag{17} \quad \textbf{DH: Added } K_{PO_4} \text{ in code. Why higher PO4}$$

$$\frac{\partial PO_4^{II}}{\partial t} = \frac{D_{PO_4}^1}{1 + K_{PO_4}^{II}} \frac{\partial^2 PO_4^{II}}{\partial z^2} - w \frac{\partial PO_4^{II}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_4}^{II})} \sum_i (PC_i \cdot k_i \cdot C_i(z))$$

$$- \frac{k_a}{1 + K_{PO_4}^{II}} (PO_4^{II} - PO_4^a) + \frac{(1 - \phi)k_m}{\phi (1 + K_{PO_4}^{II})} (M^{II} - M^{\infty}) \tag{18}$$

$$\frac{\partial M^{II}}{\partial t} = D_M \frac{\partial^2 M^{II}}{\partial z^2} - w \frac{\partial M^{II}}{\partial z} - k_m (M^{II} - M^{\infty})$$

$$\frac{\partial PO_4^{II}}{\partial t} = \frac{D_{PO_4}^1}{1 + K_{PO_4}^{II}} \frac{\partial^2 PO_4^{II}}{\partial z^2} - w \frac{\partial PO_4^{II}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_4}^{II})} \sum_i (PC_i \cdot k_i \cdot C_i(z))$$

$$\frac{\partial PO_4^{II}}{\partial t} = \frac{D_{PO_4}^1}{1 + K_{PO_4}^{II}} \frac{\partial^2 PO_4^{II}}{\partial z^2} - w \frac{\partial PO_4^{II}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_4}^{II})} \sum_i (PC_i \cdot k_i \cdot C_i(z))$$

$$\frac{\partial PO_4^{II}}{\partial t} = \frac{D_{PO_4}^1}{1 + K_{PO_4}^{II}} \frac{\partial^2 PO_4^{II}}{\partial z^2} - w \frac{\partial PO_4^{II}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_4}^{II})} \sum_i (PC_i \cdot k_i \cdot C_i(z))$$

$$\frac{\partial PO_4^{II}}{\partial t} = \frac{D_{PO_4}^1}{1 + K_{PO_4}^{II}} \frac{\partial^2 PO_4^{II}}{\partial z^2} - w \frac{\partial PO_4^{II}}{\partial z} + \frac{1 - \phi}{\phi \cdot (1 + K_{PO_4}^{II})} \sum_i (PC_i \cdot k_i \cdot C_i(z))$$

(19)

The boundary conditions to solve Equations 15 - 18 are summarized in Table 5. The model assumes 210 known bottom water concentrations and equal concentrations and diffusive fluxes at $z_{\rm bio}$ and $z_{\rm ox}$ for both species. Additionally it considers no change in phosphate flux and an assymptotic Fe-bound P concentration at z_{∞} .

2.3.6 Dissolved Inorganic Carbon (DIC)

2.3.7 Alkalinity

215 2.4 Model Parameters

This section describes the parameters used in OMEN-SED (1.0) to describe sediment transport and biogeochemical reactions related to the burial and mineralization of organic matter under a wide range of environmental conditions. Table 6 states the parameters for sediment characteristics and Table 7 summarizes the stoichiometric factors and secondary reaction parameters used in the model.

220 2.4.1 Transport Parameters

225

230

235

Advection is the bulk flow of sediments and can be directly related to the accumulation of new material on the seafloor (i.e. sedimentation, Burdige, 2006). This results in a downward flux of older sediment material and porewater in relation to the sediment-water interface. OMEN-SED (1.0) uses the empirical global relationship between sediment accumulation rate (cm yr^{-1}) and seafloor depth (m) of Middelburg et al. (1997):

$$w = 3.3 \cdot 10^{-0.87478367 - 0.00043512 \cdot \text{depth}} \tag{20}$$

As discussed before (Sec. 2.2), the diffusion coefficient of species i is calculated as $D_i = D_{i,0} + D_{\text{bio}} = D_{\text{mol},i} \cdot f_{ir} + D_{\text{bio}}$ for dissolved species and $D_i = D_{\text{bio}}$ for solid species. The bioturbation coefficient D_{bio} (cm² yr⁻1) is constant in the bioturbated zone and also follows the empirical relationship by Middelburg et al. (1997):

$$D_{\text{bio}} = 5.2 \cdot 10^{0.76241122 - 0.00039724 \cdot \text{depth}} \tag{21}$$

Studies showed that bioturbational effects on a global scale are largely restricted to the upper 10 cm of the sediments and are only marginally related to seafloor depth (e.g. Boudreau, 1998; Teal et al., 2010). Therefore, OMEN-SED (1.0) imposes a globally invariant bioturbation depth of 10cm. Bioirrigation can enhance the molecular diffusion coefficient $D_{i,0} = D_{\mathrm{mol},i} \cdot f_{ir}$ (Soetaert et al., 1996a). However, here we do not consider this effect and set f_{ir} to a constant value of 1. The specific molecular diffusion coefficients $D_{\mathrm{mol},i}$ are corrected for sediment porosity ϕ , tortuosity F and are linearly interpolated for an ambient temperature T using zero-degree coefficients D_i^0 and temperature dependent diffusion coefficients D_i^T (compare Gypens et al., 2008):

$$D_{\text{mol},i} = (D_i^0 + D_i^T \cdot T) \cdot \frac{1}{\phi \cdot F}$$

Tortuosity can be expressed in terms of porosity as $F = \frac{1}{\phi^m}$ (Ullman and Aller, 1982) with the exponent m varying according to the type of sediment (here we use m=3). Values for D_i^T and D_i^0 are summarized in Table 6 and are adapted from Li and Gregory (1974) and Gypens et al. (2008).

2.4.2 Reaction Parameters

The applied multi-G approach for organic matter degradation considers specific degradation rate constants k_i (yr⁻¹) for each compound class. The degradation constants are generally taken from the coupled Earth System model and are assumed invariant along the sediment column, therefore independent of the nature of the terminal electron acceptor. The stoichiometry of organic matter is represented by the factors NC_i and PC_i denoting the molecular nitrogen to carbon and phosphorus to carbon ratio. In the sulfidic and methanic zone the reduction of 1 mol organic matter additionally produces 0.5 mol of hydrogen sulfide (SO₄C) and 0.5 mol of methane (MC). In the total sediment

 Table 6. Fixed sediment characteristics and transport parameters. TODO: Update table!

Parameter	Unit	Value	Description/Source
$ ho_{ m sed}$	${\rm gcm^{-3}}$	2.5	Sediment density
w	${\rm cm}{\rm yr}^{-1}$	Fct. of seafloor	Advection/Sediment accumulation rate
		depth	Middelburg et al. (1997)
$z_{ m bio}$	cm	10	Bioturbation depth
			Boudreau (1998); Teal et al. (2010)
$D_{ m bio}$	${\rm cm}^2{\rm yr}^{-1}$	Fct. of seafloor	Bioturbation coefficient
		depth	Middelburg et al. (1997)
ϕ	-	0.8	Porosity
F	-	$\frac{1}{\phi^m}$	Tortuosity, here m=3
f_{ir}	-	1	Irrigation factor
$\mathrm{PO_4}^s$	${\rm molcm^{-3}}$	$1 \cdot 10^{-9}$	equilibrium conc. for P sorption
			Slomp et al. (1996)
$PO_4{}^a$	${\rm molcm^{-3}}$	$3.7\cdot10^{-9}$	equilibrium conc. for authigenic P precipitation
			Slomp et al. (1996)
M^{∞}	${\rm molcm^{-3}}$	$1.99\cdot10^{-9}$	asymptotic concentration for Fe-bound P
			Slomp et al. (1996)
Diffusion o	coefficients (Li and	Gregory, 1974; G	ypens et al., 2008)
$D_{\mathcal{O}_2}^0$	$\mathrm{cm^2yr^{-1}}$	348.62172	Molecular diffusion coefficient of oxygen at 0° C
$D_{\mathrm{O}_2}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}{}^{\circ}\mathrm{C}^{-1}$	14.08608	Diffusion coefficient for linear temp. dependence of oxygen
$D_{\mathrm{NO_{3}}}^{0}$	${\rm cm}^2{\rm yr}^{-1}$	308.42208	Molecular diffusion coefficient of nitrate at 0°C
$D_{\mathrm{NO_3}}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}^{\circ}\mathrm{C}^{-1}$	12.2640	Diffusion coefficient for linear temp. dependence of nitrate
$D_{\rm NH_4}^0$	$\mathrm{cm}^2\mathrm{yr}^{-1}$	308.42208	Molecular diffusion coefficient of ammonium at $0^{\circ}\mathrm{C}$
$D_{\mathrm{NH_4}}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}{}^{\circ}\mathrm{C}^{-1}$	12.2640	Diffusion coefficient for linear temp. dependence of ammonium
$D^0_{\mathrm{SO}_4}$	$\mathrm{cm}^2\mathrm{yr}^{-1}$	157.68	Molecular diffusion coefficient of sulfate at $0^{\circ}\mathrm{C}$
$D_{\mathrm{SO}_4}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}{}^{\circ}\mathrm{C}^{-1}$	7.884	Diffusion coefficient for linear temp. dependence of sulfate
$D_{\rm H_2S}^0$	${\rm cm}^2{\rm yr}^{-1}$	307.476	Molecular diffusion coefficient of sulfide at $0^{\circ}\mathrm{C}$
$D_{\rm H_2S}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}{}^{\circ}\mathrm{C}^{-1}$	9.636	Diffusion coefficient for linear temp. dependence of sulfide
$D^0_{\mathrm{PO}_4}$	${\rm cm}^2{\rm yr}^{-1}$	112.90764	Molecular diffusion coefficient of phosphate at $0^{\circ}\mathrm{C}$
$D_{\mathrm{PO}_4}^T$	$\mathrm{cm}^2\mathrm{yr}^{-1}{}^{\circ}\mathrm{C}^{-1}$	5.586252	Diffusion coefficient for linear temp. dependence of phosphate

Table 7. Values for biogeochemical parameters used in OMEN-SED (1.0).

Parameter/Variable	Unit	Value	Description			
Stoichiometric factors and molecular ratios						
NC_1	mol/mol	0.1509	nitrogen to carbon ratio			
			refractory fraction, two different ones? why these values?			
NC_2	mol/mol	0.13333	nitrogen to carbon ratio			
			labile fraction			
PC_i	mol/mol	0.0094	phosphorus to carbon ratio			
MC	mol/mol	0.5	methane to carbon ratio			
			produced during methanogenesis			
OC	mol/mol	1.0	oxygen to carbon ratio			
NO_3C	mol/mol	94.4/106	nitrate to carbon ratio			
$\mathrm{SO_4C}$	mol/mol	0.5	sulfate to carbon ratio			
Secondary reaction parameters						
$\gamma_{ m NH_4}$	-	1.0	fraction of NH ₄ that is oxidised			
			in oxic layer			
$\gamma_{ m H_2S}$	-	0.8	fraction of H ₂ S that is oxidised			
			in oxic layer			
$\gamma_{ m CH_4}$	-	1.0	fraction of CH ₄ that is oxidised			
			at $z_{\mathrm{SO_4}}$			
Rate constants						
k_i	yr^{-1}	from Earth System Model	OM degradation rate constants			
k_s	yr^{-1}	???	rate constant for P sorption			
k_m	yr^{-1}	???	rate constant for Fe-bound P release			
k_a	yr^{-1}	???	rate constant for authigenic P formation			

column organic matter mineralization consumes the specific terminal electron acceptor with a fixed ratio (OC, NO_3C and SO_4C respectively). See Table 7 for a complete summary of the parameters and their values.

255 2.5 Module Structure

260

TODO: An analytical steady-state solution is found for the reaction-transport equation of each chemical species in each layer. At each boundary (i.e. $z_{\rm ox}, z_{\rm bio}, z_{\rm NO_3}$ and $z_{\rm SO_4}$) the model has to match continuity and flux for different ODE solutions of the layer above and below the specific boundary. In particular the bioturbation boundary is problematic as it can theoretically occur in any geochemical layer. In order to simplify this recurring boundary matching problem it is implemented in an independent algorithm which is described in Section 2.5.1. Instructions and requirements for coupling OMEN-SED (1.0) to a global Earth Sytem Model are given in Section 2.5.2.

2.5.1 Generic boundary condition matching (GBCM)

A general steady-state advection-diffusion-reaction (ADR) diagenetic equation looks like:

$$\frac{\partial C}{\partial t} = 0 = D \frac{\partial^2 C}{\partial z^2} - w \frac{\partial C}{\partial z} - \sum_i \alpha_i \exp(-\beta_i z) - k \cdot C + Q. \tag{22}$$

where z is the sediment depth, t the time, D is the diffusion coefficient and w is the advection rate. The ODE solution is of the general form:

$$C(z) = A\exp(az) + B\exp(bz) + \sum_{i} \frac{\alpha_i}{D\beta_i^2 - w\beta_i - k} \cdot \exp(-\beta_i z) + \frac{Q}{k}$$
(23)

and can therefore be expressed as:

$$C(z) = A \cdot E(z) + B \cdot F(z) + G(z) \tag{24}$$

where E(z), F(z) are the homogeneous solutions of the ODE, G(z) the particular integral, and A, B are the integration constants.

Each boundary matching problem involves matching continuity and flux for the two solutions $C_U(z)$ (= 'upper') and $C_L(z)$ (= 'lower') across a boundary at $z=z_b$. Therefore, we get two ODE solutions of the genral form:

$$C_U(z) = A_U \cdot E_U(z) + B_U \cdot F_U(z) + G_U(z) \tag{25}$$

280
$$C_L(z) = A_L \cdot E_L(z) + B_L \cdot F_L(z) + G_L(z).$$
 (26)

The two boundary conditions are: for continuity (where for generality we allow a discontinuity V_b)

$$C_U(z_b) = C_L(z_b) + V_b \tag{27}$$

285 and for flux

270

275

$$D_U C_U'(z_b) + w C_U(z_b) = D_L C_L'(z_b) + w C_L(z_b) + F_b$$
(28)

where w is advection, D are the diffusion coefficients and F_b is any flux discontinuity.

In terms of the ODE solutions (25), (26), the boundary conditions represent two equations connecting the four integration constants:

$$\begin{pmatrix} E_{U} & F_{U} \\ D_{U}E'_{U} & D_{U}F'_{U} \end{pmatrix} \begin{pmatrix} A_{U} \\ B_{U} \end{pmatrix} = \begin{pmatrix} E_{L} & F_{L} \\ D_{L}E'_{L} & D_{L}F'_{L} \end{pmatrix} \begin{pmatrix} A_{L} \\ B_{L} \end{pmatrix} + \begin{pmatrix} G_{L} - G_{U} + V_{b} \\ D_{L}G'_{L} - D_{U}G'_{U} + F_{b} - wV_{b} \end{pmatrix}$$

$$(29)$$

where the ODE solutions E, F, G are all evaluated at z_b .

Equation (29) can be solved to give A_U and B_U as a function of the integration constants from the layer below (A_L and B_L), thereby constructing a piecewise solution for the whole region, with now just two integration constants A_L and B_L .

In the code the function **benthic_utils.matchsoln** provides this solution in the form:

$$\begin{pmatrix} A_U \\ B_U \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} \begin{pmatrix} A_L \\ B_L \end{pmatrix} + \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}. \tag{30}$$

Using (30) we can now rewrite $C_U(z)$ in (25) as a function of A_L and B_L :

300
$$C_U(z) = (c_1A_L + c_2B_L + d_1) \cdot E_U(z) + (c_3A_L + c_4B_L + d_2) \cdot F_U(z) + G_U(z)$$

and hence define the "transformed" basis functions $E_U^*(z)$, $F_U^*(z)$, $G_U^*(z)$ such that:

$$C_U(z) = A_L \cdot E_U^*(z) + B_L \cdot F_U^*(z) + G_U^*(z)$$
(31)

where

315

320

$$E_{U}^{*}(z) = c_{1}E_{U}(z) + c_{3}F_{U}(z)$$
305
$$F_{U}^{*}(z) = c_{2}E_{U}(z) + c_{4}F_{U}(z)$$

$$G_{U}^{*}(z) = G_{U}(z) + d_{1}E_{U}(z) + d_{2}F_{U}(z)$$
(32)

(in the code this is done by **benthic_utils.xformsoln**).

Solving the sediment layer stack

Equations (30), (31) and (32) can now be applied for each layer boundary, working up from the bottom of the sediments. The net result is to construct a piecewise solution with just two integration constants (coming from the lowest layer), which can then be solved for by applying one boundary condition for the sediment-water interface and one for the bottom of the sediments (e.g. a concentration condition at the bottom of the sediments, and a flux condition at the SWI).

TODO: Add figure, illustrating this e.g. for nitrate...

Abstracting out the bioturbation boundary

The bioturbation boundary affects the diffusion coefficient of the modelled solutes and the conservation equation of organic matter which is available for mineralization. The boundary is particularly inconvenient as it can in principle occur in the middle of any "geochemical" layer and therefore generates multiple cases. To simplify this for solutes, the "piecewise solution construction" above is used to abstract out the bioturbation boundary. An initial test for each layer is made to identify its "bioturbation-status" (fully bioturbated, fully non-bioturbated or crossing the bioturbation boundary) and (if needed) a piecewise solution is constructed by matching boundary conditions across the

bioturbation boundary. The "outside" code therefore never needs to know whether it is dealing with

a piecewise solution (i.e. matched across a bioturbation boundary) or a "simple" solution (i.e. the

layer is fully bioturbated or fully non-bioturbated).

In the code, this is performed by **zTOC.prepfg_I12** which hands back a structure Is containing the

"bioturbation-status" for each layer and (if needed) the description of the piecewise solution (coef-

fcients $c_1, c_2, c_3, c_4, d_1, d_2$ as above). So e.g. for sulfate, **zTOC.prepfg_I12** is called three times at

the beginning of **zSO4.calcbc** (one for each "geochemical" layer: oxic, suboxic, sulfidic) handing

back three structures Is describing the layer's "bioturbation-status", abstracting away the bioturba-

tion boundary and all associated conditional logic. When calculating the solutions for the different

layers, the pre-calculated structure is is passed to the function **zTOC.calcfg** 112 which sorts out the

correct solution type to use.

335 2.5.2 Coupling to an Earth System Model

3 Test Cases

325

330

3.1 Benthic fluxes on a global scale

Application to Seitert, 2004 OM, burwiczk see rate data and evaluation based on global data (Archer)

3.2 HILDA-like test

340 3.3 GENIE-Cretaceous test?

4 Scope of applicability and model limitations

5 Conclusions

TEXT

6 Code Availability

345 Appendix A

A1

Acknowledgements. TEXT

17

References

360

370

- Arndt, S., Jørgensen, B., LaRowe, D., Middelburg, J., Pancost, R., and Regnier, P. (2013). Quantifying the degradation of organic matter in marine sediments: A review and synthesis. *Earth-Science Reviews*, 123:53–86.
 - Berner, R. A. (1980). Early Diagenesis: A Theoretical Approach. Princeton University Press.
 - Billen, G. (1982). Modelling the processes of organic matter degradation and nutrients recycling in sedimentary systems. *Sediment microbiology*, pages 15–52.
- 355 Boudreau, B. P. (1997). Diagenetic models and their implementation, volume 505. Springer Berlin.
 - Boudreau, B. P. (1998). Mean mixed depth of sediments: The wherefore and the why. *Limnology and Oceanog-raphy*, 43(3):524–526.
 - Burdige, D. J. (2006). Geochemistry of marine sediments, volume 398. Princeton University Press Princeton.
 - Burdige, D. J. (2007). Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? *Chemical Reviews*, 107(2):467–485.
 - Cappellen, P. V. and Berner, R. A. (1988). A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments; apatite precipitation. *American Journal of Science*, 288(4):289–333.
 - Goloway, F. and Bender, M. (1982). Diagenetic models of interstitial nitrate profiles in deep sea suboxic sediments. *Limnol. Oceanogr*, 27(4):624–638.
- Gypens, N., Lancelot, C., and Soetaert, K. (2008). Simple parameterisations for describing n and p diagenetic processes: Application in the north sea. *Progress in Oceanography*, 76(1):89–110.
 - Jahnke, R. A., Emerson, S. R., and Murray, J. W. (1982). A model of oxygen reduction, denitrification, and organic matter mineralization in marine sediments. *Limnol. Oceanogr*, 27(4):6–10.
 - Kriest, I. and Oschlies, A. (2011). Numerical effects on organic-matter sedimentation and remineralization in biogeochemical ocean models. *Ocean Modelling*, 39(3–4):275–283.
 - Li, Y.-H. and Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. *Geochimica et Cosmochimica Acta*, 38(5):703–714.
 - Mackenzie, F. T., Lerman, A., and Andersson, A. J. (2004). Past and present of sediment and carbon biogeochemical cycling models. *Biogeosciences*, 1(1):11–32.
- 375 Middelburg, J. J., Soetaert, K., and Herman, P. M. (1997). Empirical relationships for use in global diagenetic models. Deep Sea Research Part I: Oceanographic Research Papers, 44(2):327–344.
 - Slomp, C., Malschaert, J., and Van Raaphorst, W. (1998). The role of adsorption in sediment-water exchange of phosphate in north sea continental margin sediments. *Limnology and Oceanography*, 43(5):832–846.
- Slomp, C. P., Epping, E. H., Helder, W., and Van Raaphorst, W. (1996). A key role for iron-bound phosphorus in authigenic apatite formation in north atlantic continental platform sediments. *Journal of Marine Research*, 54(6):1179–1205.
 - Soetaert, K., Herman, P. M., and Middelburg, J. J. (1996a). Dynamic response of deep-sea sediments to seasonal variations: a model. *Limnology and Oceanography*, 41(8):1651–1668.
- Soetaert, K., Herman, P. M. J., and Middelburg, J. J. (1996b). A model of early diagenetic processes from the shelf to abyssal depths. *Geochimica et Cosmochimica Acta*, 60(6):1019–1040.
 - Soetaert, K., Middelburg, J. J., Herman, P. M. J., and Buis, K. (2000). On the coupling of benthic and pelagic biogeochemical models. *Earth-Science Reviews*, 51(1–4):173–201.

- Teal, L., Bulling, M., Parker, E., and Solan, M. (2010). Global patterns of bioturbation intensity and mixed depth of marine soft sediments. *Aquatic Biology*, 2(3):207–218.
- 390 Ullman, W. J. and Aller, R. C. (1982). Diffusion coefficients in nearshore marine sediments. *Limnology and Oceanography*, 27(3):552–556.