DICIONÁRIO DE DEMONSTRAÇÕES

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Teoria da Computação Prof. Esdras Lins Bispo Jr.

1 Livro de Referência

• SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

1.1 Abreviaturas

AFD: Autômato Finito Determinístico;

AFN: Autômato Finito Não-Determinístico.

2 Definições e Demonstrações

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação da união.

Prova: Sejam A e B duas linguagens regulares. A classe de linguagens regulares é fechada sob a operação de união se $A \cup B$ é regular. $A \cup B$ é regular se for possível construir um AFD M que a reconheça (Definição 1.16).

Seja $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ e $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ os dois AFDs que reconhecem as linguagens A e B, respectivamente (Definição 1.16). Iremos construir o AFD $M = (Q, \Sigma, \delta, q_0, F)$ a partir de M_A e M_B . M pode ser construído como se segue:

- 1. $Q = Q_A \times Q_B$;
- 2. Σ (o mesmo alfabeto para ambas as máquinas)¹;
- 3. δ , a função de transição, é definida da seguinte maneira. Para cada estado $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, faça

$$\delta((r_1, r_2), a) = (\delta(r_1, a), \delta(r_2, a));$$

- 4. q_0 é o par (q_A, q_B) ;
- 5. $F = \{(r_1, r_2) \mid r_1 \in F_A \lor r_2 \in F_B\}.$

Como é possível construir M, então $A \cup B$ é regular. Logo, a classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Prova: Seja $N = (Q, \Sigma, \delta, q_0, F)$ o AFN que reconhece alguma linguagem A. Construiremos o AFD $M = (Q', \Sigma, \delta', q'_0, F')$ que reconhece A. Consideraremos, provisoriamente, o caso em que N não tem setas ϵ . Retornaremos a este caso mais adiante. M pode ser construído como se segue:

- 1. $Q' = \mathcal{P}(A)$;
- 2. Σ (o mesmo alfabeto de N);
- 3. δ' , a função de transição, é definida da seguinte maneira. Para $R \in Q'$ e $a \in \Sigma$, faça

$$\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$$

4.
$$q'_0 = \{q_0\}$$

 $^{^1{\}rm Embora}$ seja admitido aqui que tanto M_1 quanto M_2 tem alfabetos iguais, o teorema ainda permanece verdadeiro caso contrário.

5. $F' = \{R \in Q' \mid R \text{ contém um estado de aceitação de } N\}.$

Consideraremos agora o caso envolvendo as setas ϵ . Para qualquer estado R de M, definimos E(R) como a coleção de estados que podem ser atingidos a partir de R indo somente ao longo de suas setas ϵ , incluindo os próprios membros de R. Formalmente, para $R\subseteq Q$ seja

 $E(R) = \{q \mid q \text{ pode ser atingido a partir de } R \text{ viajando-se ao longo de 0 ou mais setas } \epsilon\}$

Basta substituir na função de transição os termos $\delta(r,a)$ por $E(\delta(r,a))$. Temos

$$\delta'(R,a) = \bigcup_{r \in R} E(\delta(r,a))$$

Também necessitamos modificar o estado inicial de $\{q_0\}$ para $E(\{q_0\})$. Assim, conseguimos construir M que simula N.