Отчет о выполнении лабораторной работы 3.2.6

Изучение гальванометра

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

В работе используются: зеркальный гальванометр с осветителем и шкалой, источник постоянного напряжения, делитель напряжения, магазин сопротивлений, эталонный конденсатор, вольтметр, переключатель, ключи, линейка.

2 Теоретические сведения

Баллистическим гальванометром называют электроизмерительный прибор магнитоэлектрической системы, отличающийся высокой чувствительностью к току и сравнительно большим периодом колебаний подвижной системы (рамки). (Рис. 1)

Рис. 1: Рамка

Баллистический гальванометр позволяет измерять как постоянный ток (стационарный режим), так и заряд, протекший через рамку за некоторое время (баллистический режим).

Уравнение движения рамки в магнитном поле

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = KI \tag{1}$$

Здесь параметры γ, ω_0 колебательной системы и коэффициент K связаны с параметрами гальванометра формулами

$$K = \frac{BNS}{J}, \quad 2\gamma = \beta_{\rm rp} + \frac{(BSN)^2}{JR_{\Sigma}} \approx \frac{(BSN)^2}{JR_{\Sigma}}, \quad \omega_0^2 = \frac{D}{J}$$

Режим измерения постоянного тока

Если через рамку пропускать постоянный ток I= const, то заменой переменой $\tilde{\varphi}=\varphi-KI/\omega_0^2$ уравнение (1) приводится к однородному уравнению, описывающему свободные затухающие колебания. Если подождать достаточно долго, чтобы собственные колебания затухли, в уравнении (9) можно положить $\dot{\varphi}=0$, $\ddot{\varphi}=0$, так что угол поворота рамки определится формулами

$$\varphi = \frac{K}{\omega_0^2} I = \frac{BSN}{D} I = S_I I = \frac{I}{C_I} \tag{2}$$

где величина $S_I = \varphi/I = BSN/D$ называется чувствительностью гальванометра к току, а обратная ей величина $C_I = 1/S_I = D/(BSN)$ — динамической постоянной гальванометра.

Свободные колебания рамки

Когда I=0 уравнение (1) для угла поворота рамки φ примет вид

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2 \varphi = 0 \tag{3}$$

Примем, что начальные условия таковы:

$$\varphi(0) = 0, \quad \dot{\varphi} = \dot{\varphi}_0$$

Возможные случаи движения рамки:

1. $\gamma < \omega_0$ (колебательный режим). Решение уравнения 3 имеет в этом случае вид

$$\varphi(t) = \frac{\dot{\varphi_0}}{\omega_1} e^{-\gamma t} \sin \omega_1 t, \quad \omega_1 = \sqrt{\omega_0^2 - \gamma^2}$$

 $2. \gamma = \omega_0$ (критический режим). Этот режим реализуется при сопротивлении внешнего участка цепи R, равном критическому сопротивлению:

$$R_{\rm kp} = R_{\Sigma \, \rm kp} - R_0 = \frac{(BSN)^2}{2\sqrt{DJ}} - R_0$$

Решение уравнения 3 в этом случае имеет вид

$$\varphi(t) = \dot{\varphi_0} t e^{-\gamma t}$$

Движение не имеет колебательного характера.

3. $\gamma > \omega_0$ (затухание велико. Решение уравнения 3 при этом имеет вид

$$\varphi(t) = \frac{\dot{\varphi}_0}{\alpha} e^{-\gamma t} \operatorname{sh} \alpha t, \quad \alpha = \sqrt{\gamma^2 - \omega_0^2}$$

Движение апериодическое, однако подвижная система приближается к равновесию медленнее, чем в критическом режиме.

Режим измерения заряда

Величина $C_q = q/\varphi_{\rm max}$ называется баллистической постоянной гальванометра. Величина $S_q = 1/C_q$ называется чувствительностью гальванометра к заряду.

Расчёт показывает, что максимальный отброс достигается при полном отсутствии затухания (тормозящий индукционный ток отсутствует при обрыве в цепи):

$$\varphi_{\max}^{\text{cB}} = \frac{\dot{\varphi}(\tau)}{\omega_0} = \frac{Kq}{\omega_0}$$

В этом случае, однако, возникшие в результате отброса колебания рамки не будут успокаиваться.

Как правило, удобнее всего работать в режиме, близком к критическому. В случае критического затухания

$$\varphi_{\max}^{Kp} = \frac{Kq}{\omega_0 e}$$

3 Ход работы

3.1 Постоянный ток

Рис. 2: Экспериментальная установка

При $R_1 \ll R, R_0, R_2$ сила тока, протекающего через гальванометр, может быть вычислена как

 $I = \frac{R_1}{R_2} \frac{U_0}{R + R_0}$

Таблица 1: Зависимость отклонения от сопротивления при постоянном токе

x, MM	244	215	179	173	166	160	155	136	122	76	48
R, кОм	8,9	10	12	12,5	13	13,5	14	16	18	30	50
I, нА	140,4	125,7	105,6	101,5	97,8	94,3	91,0	80,0	71,4	43,3	26,1
σ_I , нА	3	3	2	2	2	2	2	2	2	1	1

Рис. 3: Зависимость силы тока от отклонения

$$\begin{split} \frac{R_1}{R_2} &= \frac{1}{1000}, R_2 = 10 \text{ kOm}, R_0 = 0, 5 \text{ kOm} \\ \sigma_{\frac{I}{x}} &= \frac{1}{\sqrt{n}} \sqrt{\frac{< I^2 > - < I >^2}{< x^2 > - < x >^2}} = 0, 01 \frac{\text{mA}}{\text{mM}} \\ \sigma_{C_I} &= C_I \cdot \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_I}{\frac{I}{x}}\right)^2} = 0, 02 \frac{\text{mA}}{\text{mm/m}} \\ C_I &= 2a\frac{I}{x} = (1, 66 \pm 0, 02) \frac{\text{mA}}{\text{mm/m}} \\ S_I &= \frac{1}{C_I} = (0, 60 \pm 0, 006) \frac{\text{mm/m}}{\text{mA}} \end{split}$$

3.2 Баллистический режим

Рис. 4: Экспериментальная установка

Логарифмический декремент затухания разомкнутого гальванометра $\theta_0=\ln\frac{x_n}{x_n+1}=\ln\frac{172}{19}=2,20\pm0,05$

Таблица 2: Зависимость декремента затухания от сопротивления

θ	0,85	0,93	1,05	1,20	1,33	1,44	1,64	1,81
R, кОм	80	70	60	50	45	40	35	30
σ_{θ}	0,07	0,08	0,07	0,09	0,08	0,07	0,07	0,08
$R_{\rm \kappa p}(\theta)$,	10,3	9,8	9,5	9,0	8,9	8,5	8,4	7,9
кОм								

$$R_{\mathrm{kp}} = < R_{\mathrm{kp}}(\theta) > = (9, 0 \pm 0, 3) \; \mathrm{кOm}$$
 $\sigma_{R_{\mathrm{kp}}} = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (R_{\mathrm{kp}}^{i} - R_{\mathrm{kp}})^{2}}$

Таблица 3: Зависимость отклонения гальванометра от сопротивления

$x_max,$	174	175	172	164	156	130	111	83	40
MM									
R, кОм	50	45	40	30	20	15	10	5	2

Рис. 5: Зависимость отклонения от суммарного сопротивления

$$x_{max}^{\text{\tiny CB}} = x_0 e^{\theta_0/4}$$

$$x_{max}^{\text{Kp}} = x_{max}^{\text{CB}}/e = 110 \text{ MM}$$

$$x_{max}^{
m kp}=x_{max}^{
m cb}/e=110$$
 мм По графику $R_{
m kp}=9,5$ кОм

Значения критического сопротивления, полученные разными способами достаточно близки.

$$C_{max}^{\text{кр}}=2a\frac{R_1}{R_2}\frac{CU_0}{x_{max}^{\text{кp}}}=(2,3\pm0,03)\cdot10^{-9}\,\frac{\text{Кл}}{\text{мм/м}}$$
 Оценка периода свободных колебаний гальванометра: $T_0=7$ с

Время релаксации: $\tau = R_0 C = 1$ мс

Вывод 4

В ходе работы были вычислены важнейшие характеристики гальванометра: динамическая постоянная C_I , чувствительность к току S_I , баллистическая постоянная в критическом режиме $C_q^{\mathrm{kp}}.$

Тремя разными способами получены значения критического сопротивления $R_{\rm kp}$. Эти результаты совпадают с достаточно высокой точностью.