

DDG(X): Fuel-Efficient Destroyer

Presented by: LCDR Douglas Jonart

LT Aaron Dobson

LT Adam Jones

30 April 2014

Key Takeaways

- By optimizing a hullform for efficiency, fuel consumption was reduced 14%
- Using improved engine selection technique and optimizing loading reduced fuel consumption by more than 30%

Without sacrificing capability

Hullform Optimization

Engine Configuration Selection

- <u>Problem</u>: Select combination of engines to minimize fuel consumption across a given discretized powertime spectrum
- MATLAB code created
- Inputs:
 - 130+ engines from expansion and update of ASSET engine database
 - Over 10¹⁶ possible combinations!
- Goal: to minimize fuel by matching engines to <u>power-time profile</u> and SFC curve

Engine Selection

- Implemented IBM's CPLEX Optimizer (or in this case, minimizer)
- Code logic:
 - Chose given set of engines (vice computationally prohibitive comprehensive set) and allowed results to dictate next set of chosen engines in a genetic algorithm. i.e., are GT/GT combos best? GT/diesels?
 - Spectrum fuel minimization
 - For each power "bin", all possible power combinations were analyzed for net fuel consumption.
 - Each bin's lowest possible fuel consumption that met the power requirement was recorded and then eventually summed with the lowest fuel consumption from other bins to determine net power consumption summed across the spectrum
 - Process was iterated until results converged to a fuel consumption minimum...

Sample of Code Results

Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Engine Selection Results

Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

- Results pushed team to diesel engines
- Credit was given to fewer types and fewer total engines based on:
 - Maintenance
 - Weight
 - Size
 - Manpower
 - Supply chain
 - Training
- Engine selection plus optimal loading yields:

More than 30% fuel savings

The Ship

Principal Characteristics

Property	DDG51, Flt. IIA	DDG(X)	DDG 1000
LOA [ft]	510	580	610
Beam [ft]	66	66	81
Draft [ft]	26	25.5	27.6
Δ[MT]	9,000	12,900	15,000
V _{max} [kts]	30+	27	30+
Propulsion	Conventional	IPS	IPS
Engines	4 x GE LM2500 GTs, 3 x Allison 501 GTs	5 x Wärtsilä 16V38 Diesel Engines	2 x RR MT-30 GTs, 2 x RR-4500 GTs
Fuel Efficiency [MT/operational hour]	5.50*	3.90	5.37*

DDG(X) Capabilities

Major upgrades and changes:

- VLS upgraded to 96-cell Mk 57
- 5" gun upgraded to railgun
- Laser added
- Primary radar upgraded to AMDR
- Surface Electronic Warfare Improvement Program block 3
- Maximum speed reduced to 27 knots
- No hull-mounted sonar

Major impacts:

- Increased weight
- Significant power demand increase
- Seakeeping affected in high seas

Summary

- By optimizing a hullform for efficiency, fuel consumption was reduced 14%
 - Even over smaller DDG-51
 - Believe next iteration can improve seakeeping
- Using improved engine selection technique and optimizing loading reduced fuel consumption by more than 30%
- Capability significantly improved
 - At or above desires of operational Navy
 - IPS is the future even without railgun and laser

Questions and Wrap-Up

Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

