

ME2115/ME2115E/TME2115 - Mechanics of Machines

Review of free-body diagram

Dr. SHEN Lei (Part I)

Email: shenlei@nus.edu.sg

Tel: 66013813; Office: EA-05-09

Free body vs. constrained body

Constrained body

Free body No constraint

In a 3D space, a free body has 6 degrees of freedom: translation along x, y, z; rotation about x, y, z.

However, in a 2D plane, a free body only has 3 degrees of freedom: translation along x, y; rotation about z. WHY?

Reactions at Supports and Connections for a two-dimensional structure

Must remember!

The first step in the solution of any mechanical problem concerning the equilibrium of a rigid body is to construct an appropriate free-body diagram of the body.

Without a proper F.B.D, one will construct wrong equations accordingly and then wrong answers.

	Support or Connection	Reaction	Number of Unknowns
5	Rollers Rocker Frictionless surface	Force with known line of action	1
	Short cable Short link	Force with known line of action	1
	Collar on frictionless rod Frictionless pin in slot	Force with known line of action	1
	Frictionless pin Rough surface or hinge	or a Force of unknown direction	2
	Fixed support	or or and couple	3

Reactions at Supports and Connections for a three-dimensional structure

Must remember!

It is necessary to show on the diagram the reactions through which the ground and other bodies oppose a possible motion of the body.

In summary, if a support prevents translation of a body in a particular direction, then the support exerts a constrained force on the body in that direction. If a rotation is prevented, then the support exerts a moment on the body.

Typical supports and connections

Surface support

Constrained force, F_R
Direction normal to the surface at the contact point

Pin/pin and bracket/roller supports

2D structure

Sign convention of pin (bracket) support: positive along $\underline{i,j,k}$

Collar-rod and pin-slot supports

2D structure
$$j \uparrow \downarrow j$$

Only one reaction (unknown force) perpendicular to the rod or slot

How to find all constrained forces/couples (named reactions) of a support ?

Tip: find the degree of freedom of the body!

2D free body has 3 degrees of freedom

- 1) Can translate along *i*?
- 2) Can translate along *j*?
- 3) Can rotate in the 2D plane?

If answer is no, there is a constrained force

3D free body has 6 degrees of freedom

- 1) Can translate along *i*?
- 2) Can translate along *j*?
- 3) Can translate along <u>k</u>?
- 4) Can rotate about *i*?
- 5) Can rotate about *j*?
- 6) Can rotate about k?

Constraint of rope, cable, chain, link...

The point of action is the connection point between the studied object and the rope/cable/chain.

Direction is always along the rope/cable/chain away the point of action.

Three dimensional (3D) constrains

Can freely rotate about and translate along axial x

Hinge and bearing supporting radial load only

Two force components (and two couples; see page 191)

Free-body diagram (very important !!!)

A free-body diagram is a sketch of an object or a connected group of objects, modeled as a single particle/rigid body that is completely isolated from its environment or surrounding bodies and represents the interactions of its environment by appropriate external forces.

Drawing a free-body diagram is an art, and can be learned **only by practice**. If a correct free-body diagram is constructed, then the balance of the forces can be carried out in a very systematic manner.

Steps of drawing F. B. D:

- 1) Isolate the body of interest (to be free body).
- 2) Draw your axis system (2D or 3D? Cartesian, polar...).
- 3) Draw all non-constrained applied forces first, such as weight, friction, wind forces.
- 4) Identify all supports/connections, then draw reactions for each one based on the **F.B.D. Tables**.
- 5) Draw appropriate dimensions (angles and distances).
- 6) Remove the internal forces of two free bodies if have.

FBD for the ball:

FBD for the rod:

FBD for the ball, slim rod (massless), and whole structure:

Two smooth pipes, each weighing W, are supported by the forks of a tractor as shown in the figure. Draw free body diagrams for each pipe and for both pipes.

The weight of a body is an external force and its effect is shown as a single resultant force acting vertically down through the body's centre of gravity.

FBD of pipe A

FBD for movable pulleys:

Tips:

- 1. Isolate movable pulleys as one rigid body.
- 2. Each cable carries equal load.

Summary

- Drawing F.B.D is the **first** step for solving almost all mechanical problems.
- Drawing a free-body diagram is an art, and can be learned only by practice.
- □ Do the F.B.D test on Quiz/LumiNUS for self-evaluation. To improve your learning of this important concept in this module, personalized practice problems will be provided to you later based on your test results.

A rod AB has mass m. It is the pin support at the end A. An external force P is applied on point C. Draw the F.B.D of the rod (a) if the roller support of B is on a frictionless surface or (b) on a rough surface.

Steps of drawing F. B. D:

- Isolate the body of interest (to be free body).
- 2) Draw your axis system (2D or 3D? Cartesian, polar...).
- 3) Draw all non-constrained applied forces first, such as weight, friction, wind forces.
- 4) Identify all supports/connections, then draw reactions for each one based on the F.B.D. Tables.
- 5) Draw appropriate dimensions (angles and distances).
- 6) Remove the internal forces of two free bodies if have.

A rod AB has mass m. It is the pin support at the end A. An external force P is applied on point C. Draw the F.B.D of the rod (a) if the roller support of B is on a frictionless surface or (b) on a rough surface.

Steps of drawing F. B. D:

- Isolate the body of interest (to be free body).
- 2) Draw your axis system (2D or 3D? Cartesian, polar...).
- 3) Draw all non-constrained applied forces first, such as weight, friction, wind forces.
- 4) Identify all supports/connections, then draw reactions for each one based on the F.B.D. Tables.
- 5) Draw appropriate dimensions (angles and distances).
- 6) Remove the internal forces of two free bodies if have.

To demonstrate the importance of the step - Isolate the body of interest (to be a free body) from its supports

Recall the reaction of a soft non-stretchable rope/string/cable/chain... connection.

- 1. Point of action of the reaction (tension): connecting point
- 2. Line of action of tension: the line of cable.
- 3. Sense of tension: away the point of action

Draw the tension force on the frame. C is a pin and D is a pulley. Mass of the frame and cable is negligible.

