The Normal Curve

EDP 613

Week 5

Prepping a New R Script

- 1. Open up a blank R script using the menu path File > New File > R Script.
- 2. Save this script as whatever. R (replacing the term whatever) in your R folder. Remember to note where the file is!
- 3. After you have saved this file as whatever. R, go to the menu and this week try running running this shortcut to **Session > Set**Working Directory > To Source File Location at the top of your script

setwd(dirname(rstudioapi::getActiveDocumentContext()\$path))

Getting ready for this session

Get the files

- Box Office.csv
- teampolview.csv

and save it in the same location as this script.

- Install the packages viridis and patchwork.
- Load up tidyverse and viridis

This week try using pacman to do it

Last week's R activity

Load up data

boxoffice <- read_csv("Box Office.csv")</pre>

Before we go on

Thes solutions are just one of **many** ways to get to the actual answer. Your work may and will likely vary.

[1] 205.2

[1] 33.2


```
boxoffice %>%
  group_by(year) %>%
  count(name = "number of movies") %>%
  ungroup()
```

#	Α	tibb	le:	55	×	2		
		year	`nı	ımbe	er	of	mov.	ies`
	<	<dbl></dbl>					<	int>
1		1937						1
2	2	1939						1
3	3	1940						2
4	ļ	1942						1
5	5	1950						1
6	5	1953						1
7	7	1955						1
8	3	1956						1
9)	1961						1
10)	1964						1
#	•••	with	45	mor	-e	rov	vs.	

Save as a variable

```
boxoffice_annualnum <-
  boxoffice %>%
  group_by(year) %>%
  count(name = "number of movies") %>%
  ungroup()
```


[1] 6

[1] 13.05455


```
boxoffice %>%
  group_by(year) %>%
  filter(Rank == max(Rank)) %>%
  select(Rank, Movie, year)%>%
  arrange(-year) %>%
  ungroup()
```

```
# A tibble: 55 × 3
   Rank Movie
                                                      year
  <dbl> <chr>
                                                      <dbl>
 1 658 Wrath of the Titans (Warner Bros.)
                                                      2012
2 705 Zookeeper (Sony / Columbia)
                                                       2011
3 716 Dear John (Sony / Screen Gems)
                                                       2010
    656 Up in the Air (Paramount)
                                                       2009
    714 Cloverfield (Paramount)
                                                       2008
    711 Disturbia (Paramount / DreamWorks)
                                                       2007
 7 712 Nacho Libre (Paramount)
                                                       2006
   708 The Dukes of Hazzard (Warner Bros.)
                                                       2005
    706 Alien Vs. Predator (Fox)
                                                       2004
10 704 The Texas Chainsaw Massacre (2003) (New Line) 2003
# ... with 45 more rows
```



```
top_movie_year <-
  boxoffice %>%
  group_by(year) %>%
  filter(Rank == max(Rank)) %>%
  select(Rank, Movie, year)%>%
  arrange(-year) %>%
  ungroup()
```


Ok now on to the normal curve!

Load up data

nfl_pol <- read_csv("teampolview.csv")</pre>

```
nfl_pol %>%
  select(Team, `Total Respondents`, `Total Democrats
  rowwise(Team) %>%
  mutate(`Total Republicans` = sum(c(Republican, `Other
  select(-c(Republican, `Other Republican`)) %>%
  mutate(percent_dem = round(`Total Democrats`/`Total
  mutate(percent_rep = round(`Total Republicans`/`Total
```

#	Rowwise: Team				Statistical Methods I
	Team	`Total Responde…	`Total Democrat…	`Total Republic…	perc
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	Arizona Cardinals	148	39	32	
2	Atlanta Falcons	188	59	44	0.
3	Baltimore Ravens	150	56	27	0.37
4	Buffalo Bills	92	22	16	0.24
5	Carolina Panthers	164	51	45	0.31
6	Chicago Bears	285	94	55	0.33
7	Cincinnati Bengals	106	37	32	0.35
8	Cleveland Browns	105	34	28	0.32
9	Dallas Cowboys	438	128	129	0.29
10	Denver Broncos	313	100	87	0.32

^{# ...} with 23 more rows, and 1 more variable: percent_rep <dbl>

A tibble: 33 × 6

Give it a variable


```
nfl_percentages <-
   nfl_pol %>%
   select(Team, `Total Respondents`, `Total Democrats`, Republican, `Other Republican`) %>%
   rowwise(Team) %>%
   mutate(`Total Republicans` = sum(c(Republican, `Other Republican`))) %>%
   select(-c(Republican, `Other Republican`)) %>%
   mutate(percent_dem = round(`Total Democrats`/`Total Respondents`,2)) %>%
   mutate(percent_rep = round(`Total Republicans`/`Total Respondents`,2))
```


Let's compare them!

But first we need to assign variables

Patch it together using Patchwork

p1 + p2

A better way

Statistical Methods 1

That's not really a comparison...at least not teamwise! Let's try something different

More Data Wrangling: Going from wide to long using pivot_longer

wide format

id	thing1	thing2	thing3

long format

id	key	value	
	thing1		
	thing1		
	thing1		
	thing2		
	thing2		
	thing2		
	thing3		
	thing3		
	thing3		

# A tibble: 66 × 6						
		Team	`Total Responden…	`Total Democrats`	`Total Republic…	tyr Statistical Methods I
		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<cł< td=""></cł<>
	1	Arizona Cardinals	148	39	32	per
	2	Arizona Cardinals	148	39	32	per
	3	Atlanta Falcons	188	59	44	perce
	4	Atlanta Falcons	188	59	44	perce
	5	Baltimore Ravens	150	56	27	perce…
	6	Baltimore Ravens	150	56	27	perce…
	7	Buffalo Bills	92	22	16	perce…
	8	Buffalo Bills	92	22	16	perce…
	9	Carolina Panthers	164	51	45	perce…
	10	Carolina Panthers	164	51	45	perce…

^{# ...} with 56 more rows, and 1 more variable: political_percentages <dbl>

Give it a variable

Your turn

Try these on your own

- 1. Compare how the different ethnicities within each political party differ.
- 2. Compare how each specific ethnicity between each political party differ.
- 3. Which ethnicity in each political party is the most conservative? the most liberal?

That's it for today!

