Naive Bayesian Classifier

AW

Lecture Overview

Assumptions of Bayesian Classifier

2 Estimating Feature Probabilities

Bayes Predictor

- Approach so far was distribution free learning: no assumptions on the underlying distribution over the data
 - As a consequence discriminative approach in which our goal is not to learn the underlying distribution but rather to learn an accurate predictor
- Change of strategy: generative approach, in which it is assumed that the underlying distribution over the data has a specific parametric form and our goal is to estimate the parameters of the model
 - This task is called parametric density estimation.
- If we succeed in learning the underlying distribution $\mathscr D$ over $X \times \{0,1\}$ accurately, then we can predict by using the Bayes optimal classifier:

$$f_{\mathscr{D}}(x) = \left\{ \begin{array}{l} 1 \text{ if } \Pr_{\mathscr{D}}(y=1|x) \geq 1/2 \\ 0 \text{ otherwise} \end{array} \right. = \left\{ \begin{array}{l} 1 \text{ if } \frac{\Pr_{\mathscr{D}}(y=1|x)}{\Pr_{\mathscr{D}}(y=0|x)} \geq 1 \\ 0 \text{ otherwise} \end{array} \right.$$

for proof of optimality see materials section

• Another way to describe Bayes predictor for a data point $\overline{x} \in X$ is $h_{Bayes} = \arg\max_{y \in \{0,1\}} \Pr_{\mathscr{D}}(Y = y | X = \overline{x})$

Conditional Independence of Features

• Let X have n features with respective finite domains $\mathbb{D}_1, \dots, \mathbb{D}_n$

$$\Pr_{\mathscr{D}}(Y=y|X=\overline{x}) = \Pr_{\mathscr{D}}(Y=y|x_1=a_1,\dots,x_n=a_n) \\
= \frac{\Pr_{\mathscr{D}}(x_1=a_1,\dots,x_n=a_n|Y=y)\Pr_{\mathscr{D}}(Y=y)}{\Pr_{\mathscr{D}}(x_1=a_1,\dots,x_n=a_n)} .$$

- Bayes predictor $h_{Bayes} = \arg\max_{y \in \{0,1\}} \Pr_{\mathscr{D}}(Y = y | X = \overline{x})$ would need to be optimized with respect to $d = |\mathbb{D}_1| \times \cdots \times |\mathbb{D}_n|$ parameters $\Pr_{\mathscr{D}}(x_1 = a_1, \dots, x_n = a_n | Y = y)$
 - For example if all features are Boolean then $d=2^n$. So the number of parameters grows exponentially with the number of features a bit too much!
- The Naive Bayes approach makes the assumption about distribution (aka generative assumption) that given a class, all features are independent of each other given class y, i.e.

$$\Pr_{\mathscr{D}}(x_1 = a_1, \dots, x_n = a_n | Y = y) = \prod_{i=1}^n \Pr(x_i = a_i | Y = y)$$

• For 2 class predictor under these assumptions we have

$$f_{\mathscr{D}}(x) = \left\{ \begin{array}{l} 1 \text{ if } \frac{\Pr_{\mathscr{D}}(y=1|x)}{\Pr_{\mathscr{D}}(y=0|x)} = \frac{\Pr(Y=1) \prod_{i=1}^n \Pr(x_i=a_i|Y=1)}{\Pr(Y=0) \prod_{i=1}^n \Pr(x_i=a_i|Y=0)} \geq 1 \\ 0 \text{ otherwise} \end{array} \right.$$

Lecture Overview

Assumptions of Bayesian Classifier

Estimating Feature Probabilities

Likelihood of a Parameter

We need to estimate $\Pr(x_i=a_i|Y=y)$ and $\Pr(Y=y)$. From our training data for feature x_i we have a sample S_i^0 of pairs $(s_{i_1},0),\ldots,(s_{i_k},0)$ of class 0 and a sample S_i^1 of pairs $(s_{i_{k+1}},1),\ldots(s_{i_m},1)$ of class 1. We make more assumptions:

- Our samples are coming from unknown pdf (or pmf) $f_0(\cdot) = \mathscr{D}|_{X_i \times Y}$ (where $\mathscr{D} \sim X \times Y$) that belongs to a certain family of distributions $\{f(\cdot|\theta), \theta \in \Theta\}$, so $f_0(\cdot)$ is in fact $f_0(\cdot|\theta_0)$ for some parameter θ_0 that we need to estimate
- $S_i^0 = \{s_{i_1}, \dots, s_{i_k}\}$ (resp. S_i^1) is drawn independently from $\mathscr{D}|_{X,0}$

Let $f(s_{i_1}, s_{i_2}, \dots, s_{i_k} \mid \theta) = f(s_{i_1} \mid \theta) \times f(s_{i_2} \mid \theta) \times \dots \times f(s_{i_k} \mid \theta)$. In this joint pdf (pmf)

- Observed values s_{i_1}, \ldots, s_{i_k} are considered fixed "parameters"
- \bullet θ is the function's free variable

Define log likelihood (or when more convenient ln-likelihood)

$$\mathcal{L}(\theta|s_{i_1}, \dots, s_{i_k}) = \log(f(s_{i_1}, s_{i_2}, \dots, s_{i_n} \mid \theta))$$

=
$$\log(\prod_{i=1}^k f(s_{i_i} \mid \theta)) = \sum_{i=1}^k \log(f(s_{i_i} \mid \theta))$$

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta|S)$$

For our purposes:

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg \max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate Pr(Y = y).

- We assume Bernoulli distribution with unknown probability θ of 1. Given sample $S=\{y_1,\ldots,y_m\}$
- $\bullet \ \, \text{Then} \, f(y_i|\theta) = \left\{ \begin{array}{l} 1-\theta \, \, \text{if} \, \, y_i = 0 \\ \theta \, \, \text{otherwise} \end{array} \right.$
- $\bullet \ \ \tfrac{d}{d\theta}(\mathscr{L}(\theta|S)) = \tfrac{\sum_{i=1}^m y_i}{\theta \ln 2} \tfrac{\sum_{i=1}^m (1-y_i)}{(1-\theta) \ln 2} = 0 \text{ so } \theta = \tfrac{1}{m} \sum_{i=1}^m y_i$

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg\max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has finite domain $[d]=\{0,1,\ldots,d\}$ and the sample $S=S_0\cup S_1$ where $S_0=\{(z_1,0)\ldots,(z_k,0)\}$ and $S_1=\{(z_{k+1},1)\ldots,(z_m,1)\}$.

- Let our subsample S_0 consists of x_0 occurrences of $X=0, x_1$ occurrences of $X=1, \ldots, x_d$ occurrences of X=d
- By law of total probability $\Pr(Y=0) = \sum_{i=0}^d \Pr(X=i \land Y=0) = \sum_{i=0}^d \Pr(X=i \mid Y=0) \Pr(Y=0)$ so $\sum_{i=0}^d \Pr(X=i \mid Y=0) = 1$. Let $\theta_i = \Pr(X=i \mid Y=0)$. So $\sum_i \theta_i = 1$.
- Then $f(S \mid \theta_1, \dots, \theta_d) = f(\{z_1, \dots, z_k\}) \mid \theta_1, \dots, \theta_d) = \prod_{i=0}^d (\theta_i \cdot \Pr(Y = 0))^{x_i}$
- The likelihood of our sample S then is

$$\mathcal{L}(\theta|S) = \log \left(\prod_{i=0}^{d} (\theta_i \cdot \Pr(Y=0))^{x_i} \right)$$

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has finite domain $[d]=\{0,1,\ldots,d\}$ and the sample $S=S_0\cup S_1$ where $S_0=\{(z_1,0)\ldots,(z_k,0)\}$ and $S_1=\{(z_{k+1},1)\ldots,(z_m,1)\}$.

- Sample S_0 consists of x_i occurrences of X=i. Denote $\theta_i=\Pr(X=i\mid Y=0).$ So $\sum_i\theta_i=1.$
- ullet The likelihood of our sample S then is

$$\mathcal{L}(\theta|S) = \log \left(\prod_{i=0}^{d} (\theta_i \cdot \Pr(Y=0))^{x_i} \right)$$

= $k \log(\Pr(Y=0)) + \sum_{i=0}^{d} x_i \log(\theta_i)$

• Thus maximize $\mathcal{L}(\theta|S)$ is to maximize $\sum_{i=0}^d x_i \log(\theta_i)$ since first term doesn't depend on parameters. Equivalently this means to minimize $-\sum_{i=0}^d x_i \log(\theta_i)$.

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg \max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has finite domain $[d]=\{0,1,\ldots,d\}$ and the sample $S=S_0\cup S_1$ where $S_0=\{(z_1,0)\ldots,(z_k,0)\}$ and $S_1=\{(z_{k+1},1)\ldots,(z_m,1)\}$. Let sample S_0 consists of x_i occurrences of X=i and $\theta_i=\Pr(X=i\mid Y=0)$. So $\sum_i \theta_i=1$.

To maximize $\mathscr{L}(\theta|S)$ we must solve the optimization problem:

minimize
$$-\sum_{i=0}^d x_i \log(\theta_i)$$
 subject to
$$\sum_{i=0}^d \theta_i - 1 = 0$$

We use Lagrangian method: introduce a new variables λ_i , one per constraint, called a Lagrange multipliers and study a Lagrangian function $\mathcal{L}(x_1,\ldots x_n,\lambda_1,\ldots,\lambda_k)=f(x_1,\ldots,x_n)\pm\sum_{i=1}^k\lambda_i\cdot g_i(x_1,\ldots,x_n)$ where $f(x_1,\ldots,x_n)$ is the goal and $g_i(x_1,\ldots,x_n)$ are constraint functions

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg\max_{\theta} \mathcal{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has finite domain $[d]=\{0,1,\ldots,d\}$ and the sample $S=S_0\cup S_1$ where $S_0=\{(z_1,0)\ldots,(z_k,0)\}$ and $S_1=\{(z_{k+1},1)\ldots,(z_m,1)\}$. Let sample S_0 consists of x_i occurrences of X=i and $\theta_i=\Pr(X=i\mid Y=0)$. So $\sum_i \theta_i=1$.

To maximize $\mathcal{L}(\theta|S)$ we must solve the optimization problem:

minimize
$$-\sum_{i=0}^{d} x_i \log(\theta_i)$$
 subject to
$$\sum_{i=0}^{d} \theta_i - 1 = 0$$

In our case
$$\mathcal{L}(\theta_0,\ldots,\theta_d,\lambda) = -\sum_{i=0}^d x_i \log(\theta_i) + \lambda \left(\sum_{i=0}^d \theta_i - 1\right)$$

Stationary point of \mathcal{L} is a point where the partial derivatives of \mathcal{L} are zero. If $f(x_1^*,\ldots,x_n^*)$ is a minimum (resp. maximum) of the goal for the original constrained problem, then there exists $\lambda_1^*,\ldots,\lambda_k^*$ such that $(x_1^*,\ldots,x_n^*,\lambda_1^*,\ldots,\lambda_k^*)$ is a stationary point for the Lagrangian.

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg\max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has finite domain $[d]=\{0,1,\ldots,d\}$ and the sample $S=S_0\cup S_1$ where $S_0=\{(z_1,0)\ldots,(z_k,0)\}$ and $S_1=\{(z_{k+1},1)\ldots,(z_m,1)\}$. Let sample S_0 consists of x_i occurrences of X=i and $\theta_i=\Pr(X=i\mid Y=0)$. So $\sum_i \theta_i=1$.

To maximize $\mathcal{L}(\theta|S)$ we must solve the optimization problem:

minimize
$$-\sum_{i=0}^{d} x_i \log(\theta_i)$$
 subject to $\sum_{i=0}^{d} \theta_i - 1 = 0$

So $\max_{\lambda} \min_{\theta_1, \dots, \theta_d} \left[-\sum_{i=0}^d x_i \log(\theta_i) + \lambda \left(\sum_{i=0}^d \theta_i - 1 \right) \right]$. Partial derivatives for θ_i is $\frac{x_i}{\theta_i} - \lambda = 0$ for all i, or $\theta_i = \frac{x_i}{\lambda}$. Partial derivative for λ is $\sum_{i=0}^d \theta_i - 1 = 0$ which yields $\lambda = \sum_{i=0}^d x_i = \begin{cases} k \text{ if } Y = 0 \\ m - k \text{ if } Y = 1 \end{cases}$, so e.g. for Y = 0 we get $\theta_i = \frac{x_i}{k}$.

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg \max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X=x\mid Y=0)$ (or resp. $\Pr(X=x\mid Y=1)$) when feature X has continuous domain, assume that $\Pr(X=x\mid Y=0)$ is normally distributed and the sample is $S_0=\{(z_1,0)\dots,(z_k,0)\}$. In other words we know pdf $p(X=x\mid Y=0)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ where parameter $\overline{\theta}$ is $(\mu,\sigma)^T$. Then $f(\{z_1,\dots,z_k\}\mid \overline{\theta})=\prod_{i=1}^k\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{(z_i-\mu)^2}{2\sigma^2}\right)$ and

$$\mathcal{L}(\overline{\theta}|S) = \log\left(\prod_{i=1}^{k} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)\right)$$
$$= -\frac{\sum_{i=1}^{k} (z_i - \mu)^2}{2\sigma^2} - k\log\left(\sigma\sqrt{2\pi}\right)$$

So obtaining $\hat{\theta}$ involves solving $\frac{\partial}{\partial \mu}\left(\mathscr{L}(\overline{\theta}|S)\right)=0$ and $\frac{\partial}{\partial \sigma}\left(\mathscr{L}(\overline{\theta}|S)\right)=0,$

Given a sample S maximum likelihood estimator of parameter θ is

$$\hat{\theta} = \arg \max_{\theta} \mathscr{L}(\theta|S)$$

For our purposes:

Estimate $\Pr(X = x \mid Y = 0)$ (or resp. $\Pr(X = x \mid Y = 1)$) when feature X has continuous domain, assume that $\Pr(X = x \mid Y = 0)$ is normally distributed and the sample is $S_0 = \{(z_1, 0), \ldots, (z_k, 0)\}$.

$$\mathcal{L}(\overline{\theta}|S) = \log\left(\prod_{i=1}^{k} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(z_i - \mu)^2}{2\sigma^2}\right)\right)$$
$$= -\frac{\sum_{i=1}^{k} (z_i - \mu)^2}{2\sigma^2} - k\log\left(\sigma\sqrt{2\pi}\right)$$

So obtaining $\hat{\theta}$ involves solving $\frac{\partial}{\partial \mu}\left(\mathscr{L}(\overline{\theta}|S)\right)=0$ and $\frac{\partial}{\partial \sigma}\left(\mathscr{L}(\overline{\theta}|S)\right)=0,$