Ph.D. Comprehensive Examination Design and Analysis of Algorithms

Spring 06

Short Questions

Answer 3 of 4 questions.

[S1] Calculate
$$\sum_{i=1}^{n} \frac{1}{i(i+1)(i+2)(i+3)(i+4)}$$

[S2] Given the recurrence relation

$$T(n) = 2T(\sqrt{n}) + \log_2 n,$$

$$T(2) = 1$$
,

obtain a closed-form formula for T(n) and determine its growth rate (Θ) . (Hint: let $n = 2^{2^i}$).

[S3] Construct

[a] a finite automaton or a regular expression for the language

{ $x \in \{0,1\}^*$: x includes substring "000" but not "111" }.

[b] a context free grammar or pushdown automaton for the language

$$\{a^{3n}b^n: n>0\}$$

[S4]

- [a] Briefly define the following four classes of sets: decidable (recursive), semi-decidable (recursive), P, and NP.
- [b] What is known about the relationships of these four classes? What is not known, but believed to be true? Use a diagram if appropriate.

Long Questions

Answer 3 of 4 questions.

[L1]

- [a] Write the definition of binary search tree.
- [b] Consider 5 keys and their respective frequences:

keys A, B, C, D, and E, having frequencies (respectively) 7, 10, 5, 8, and 4,

where A < B < C < D < E. Using dynamic programming algorithm, find the optimal binary search tree.

- [L2] Consider the use of branch and bound method to solve the traveling salesman problem.
- [a] Given a cost matrix M, how to calculate the value V = V(M) of the matrix M?
- [b] Consider a graph on 4 vertices corresponding to the following cost matrix M:

$$\begin{bmatrix} \infty & 8 & 6 & 7 \\ 8 & \infty & 7 & 4 \\ 6 & 7 & \infty & 6 \\ 7 & 4 & 6 & \infty \end{bmatrix}$$

Using a branch-and-bound method, find the minimum-cost Hamiltonian circuit.

(Hint: Suppose we have a partial solution $\mathbf{X} = (x_1, ..., x_{lev}, -, ..., -)$ $(0 \le lev \le n-1)$, which represents the path $[1, x_1, \cdots, x_{lev}]$. A completion of \mathbf{X} to a Hamiltonian circuit is a path from x_{lev} to x_1 , having as intermediate vertices all elements in the set $\{2, ..., n\}$ - $\{x_1, ..., x_{lev}\}$. Perform the following operations on the cost matrix \mathbf{M} : 1) if lev < n-1, define $\mathbf{M}[x_{lev}, 1] = \infty$; 2) delete rows 1, $x_1, ..., x_{lev-1}$ of \mathbf{M} ; 3) delete columns $x_1, ..., x_{lev}$ of \mathbf{M} . Let this resulting matrix be $\mathbf{M}'(\mathbf{X})$. Then the bounding function is $B(\mathbf{X}) = V(\mathbf{M}'(\mathbf{X})) + \mathbf{M}[1, x_1] + \cdots + \mathbf{M}[x_{lev-1}, x_{lev}]$.

- [L3] Briefly prove each of the following about nondeterministic machines or programs:
 - [a] Any language accepted by a nondeterministic finite automaton is also accepted by a deterministic finite automaton.
 - [b] Any language accepted by a nondeterministic Turing machine is also accepted by a deterministic Turing Machine.
 - [c] The union of two languages in NP is also in NP.
- [L4] Classify each of the following languages as regular, context free but not regular, or decidable but not context free. Prove your answers.

[a]
$$\{a^n b^m c^m d^n : n, m \ge 0\}$$

[b] {
$$a^n b^m c^n d^m : n, m \ge 0$$
 }

[c] {
$$a^{2n}b^{2m}: n, m \ge 0$$
 }

Long Questions 2

Answer 3 of 4 questions

[L1] Assume that the 3-dimensional matching problem (3-DM) has been proved NP-complete. Prove that the sub-set sum problem is NP-complete.

[L2] Consider the use of branch and bound method to solve the traveling salesman problem.

(L2a) Given a cost matrix M, how to calculate the value V = V(M) of the matrix M?

(L2b) Consider a graph on 4 vertices corresponding to the following cost matrix M

$$\mathbf{M} = \begin{bmatrix} \infty & 8 & 6 & 7 \\ 8 & \infty & 7 & 4 \\ 6 & 7 & \infty & 6 \\ 7 & 4 & 6 & \infty \end{bmatrix}.$$

Using a branch-and-bound method, find the minimum-cost Hamiltonian circuit.

[L3] Let A and B be in NP, and A be polynomial-time reducible to B. Briefly prove:

(L3a) If B is in P, then A is in P.

(L3b) If A is NP-complete, then B is NP-complete.

(L3c) If A is NP-complete and B is in P, then P = NP.

[L4] Classify each of the following languages as regular, context free but not regular, or decidable but not context free. Prove your answers.

(L4a) $\{a^n b^m c^m : n, m \ge 0\};$

(L4b) $\{a^{n^2} : n \ge 0\};$

(L4c) $\{a^{2n+1} : n \ge 0\}$