Лабораторна робота №2

Побудова матриці бінарного відношення

Мета: навчитись будувати матриці бінарного відношення

Хід роботи

1. Чи є вірною рівність

$$A \times (B \cap C \cup D) = (A \times B) \cap (A \times C) \cup (A \times D)?$$

Розв'язання: Так, ϵ

2. Знайти матрицю відношення
$$R \subset 2^A \times 2^B$$
: $R = \{(x, y) | x \subset A \& y \subset B \& |y| > |x| \}$, де $A = \{1, 3\}$, $B = \{2, 4\}$.

Розв'язання:

Згідно з означенням матриці відношення, розв'язок має вигляд:

	Ø	{2}	{4}	{2, 4}
Ø	0	1	1	1
{1}	0	0	0	1
{3}	0	0	0	1
{1, 3}	0	0	0	0

3. Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& |6 - 3y| = x\},$$
 де \mathbb{R} - множина дійсних чисел.

Розв'язок:

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехніка»24.121.14.000 — Лр				
Розр	0 δ.	Нагорний Т. Г.				Літ. Арк. Аркушів		Аркушів	
Перевір.		Кушнір Н. О.			Звіт з		1	5	
Керіє	зник					ФІКТ Гр. ВТ-23-1[1]			
Н. ко	нтр.				лабораторної роботи			T-23-1[1]	
Зав.	каф.								

$$\begin{vmatrix}
 6 - 3y & = x \\
 6 - 3y & = -x \\
 3y & = 6 - x \\
 3y & = 6 + x \\
 y & = 2 - \frac{x}{3} \\
 Thru x & = 6$$

$$Thru x & = 6$$

Рис. 1. Графік функції |6 - 3y| = x

OBΦ: $[0;+\infty)$

O3Φ: $(-\infty;+\infty)$

		Нагорний Т. Г.		
		Кушнір Н. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

4. Маємо бінарне відношення $R \subset A \times A$, де $A = \{a, b, c, d, e\}$, яке задане своєю матрицею:

$$A(R) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
. Перевірити чи є дане відношення

рефлексивним, симетричним, транзитивним, антисиметричним?

Розв'язок:

- Відношення рефлексивне, бо на головній діагоналі розміщені одиниці
- Відношення симетричне, адже кожна пара (x, y) = (y, x)
- Не транзитивне, тому що (2, 4) = 1, (4, 5) = 1, але A(2, 5) = 0
- He антисиметричне, тому що (2, 4) = 1 i (4, 2) = 1, але 2 ≠ 4
- **5.** Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& |x| + |y| = 4 \}.$$

Розв'язок:

Набір точок, що задовільняють рівняння: $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

Список точок:

•
$$P1 = (4, 0)$$

•
$$P2 = (0, 4)$$

•
$$P3 = (-4, 0)$$

•
$$P4 = (0, -4)$$

•
$$P6 = (1, 3)$$

•
$$P7 = (-3, 1)$$

•
$$P8 = (-1, 3)$$

•
$$P9 = (3, -1)$$

		Нагорний Т. Г.		
		Кушнір Н. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

- P10 = (1, -3)
- P11 = (-3, -1)
- P12 = (-1, -3)

Бінарна матриця відношення точок:

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
P1	0	0	1	0	1	0	1	0	1	0	1	0
P2	0	0	0	1	0	1	0	1	0	1	0	1
P3	1	0	0	0	1	0	1	0	1	0	1	0
P4	0	1	0	0	0	1	0	1	0	1	0	1
P5	1	0	1	0	0	0	0	0	0	0	0	0
P6	0	1	0	1	0	0	0	0	0	0	0	0
P7	1	0	1	0	0	0	0	0	0	0	0	0
P8	0	1	0	1	0	0	0	0	0	0	0	0
P9	1	0	1	0	0	0	0	0	0	0	0	0
P10	0	1	0	1	0	0	0	0	0	0	0	0
P11	1	0	1	0	0	0	0	0	0	0	0	0
P12	0	1	0	1	0	0	0	0	0	0	0	0

Перевірка на функціональність

Розглянемо точки, які задовольняють рівнянню |x| + |y| = 4

- Для x = 0:
 - \circ |0| + |y| = 4 дає y = 4 або y = -4
 - \circ Точки: (0,4) та (0,-4)
- Для x = 2:
 - \circ |2| + |y| = 4 дає y = 2 або y = -2
 - \circ Точки: (2, 2) та (2, -2).

		Нагорний Т. Г.		
		Кушнір Н. О.		
Змн.	Арк.	№ докум.	Підпис	Дата

Для одного й того ж значення x (x=0 або x=2) існує два різні значення у, тому відношення не ε функцією.

Перевірка на бієктивність

- Для y = 4: (0, 4) та (0, -4)
- Для y = 2: (2, 2) та (2, -2)

Не всі значення у можуть бути досягнуті (наприклад у = 3), тому відношення не ϵ бієктивним.

Висновок: навчивсь будувати матриці бінарного відношення

		Нагорний Т. Г.		
		Кушнір Н. О.		
Змн.	Арк.	№ докум.	Підпис	Дата