

Scalable Data Science

Lecture 10: Frequent Elements: SpaceSaving and CountMin

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or (id, frequency update) tuple

Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in one pass

- Given input stream, length m, want a sketch that can answer frequency queries at the end
 - For give item x, return an estimate of the frequency
- Deterministic algorithm by Misra and Gries
 - $-f_{x}$ = original frequency of item x . Return $\widehat{f_{x}}$ such that

$$f_{\chi} - \epsilon m \le \widehat{f_{\chi}} \le f_{\chi}$$

- Space =
$$O(\frac{1}{\epsilon}\log n)$$

Space Saving Algorithm

Keep k counters and items in hand

Initialize:

Set all counters to 0

Process(x)

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else replace item with smallest counter by x, increment counter

Query(q)

If q is in hand return its counter, else 0

Example

Analysis

- Smallest counter value, min, is at most ϵm
 - Counters sum to m, by induction
 - $-1/\epsilon$ counters, so average is ϵm , hence smallest is less

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

- Smallest counter value, min, is at most ϵm
 - Counters sum to m, by induction
 - $-1/\epsilon$ counters, so average is ϵm , hence smallest is less
- True count of an uncounted item is between 0 and min
 - Proof by induction, true initially, min increases monotonically
 - Consider last time the item was dropped

Counter based vs "sketch" based

- Counter based methods
 - Misra-Gries, Space-Saving,
 - Work for arrival only streams
 - In practice somewhat more efficient: space, and especially update time
- Sketch based methods
 - "Sketch" is informally defined as a "compact" data structure that allows both inserts and deletes
 - Use hash functions to compute a linear transform of the input
 - Work naturally for arrivals + departure

Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$

Count Min Sketch

<u>Initialize</u>

- Choose $h_1, ..., h_w$, A[w, d] ← 0

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c$

Query(q):

- Return $\min_{i} A[i, h_i(x)]$

Example

	h1	h2
	2	1
0	1	2
	1	3
	3	2

Space =
$$O(wd)$$

Update time = $O(w)$

Each item is mapped to one bucket per row

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_x always satisfies $\widehat{f}_x \ge f_x$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

Applying Markov's inequality,

$$\Pr[Y_i - f_x > \epsilon m] \le \frac{\epsilon(m - f_x)}{2\epsilon m} \le \frac{1}{2}$$

• Since we are taking minimum of $\log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr[\widehat{f}_x > f_x + \epsilon m] \le 2^{-\log(\frac{1}{\delta})} \le \delta$$

• Since we are taking minimum of $\log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr[\widehat{f}_x > f_x + \epsilon m] \le 2^{-\log(\frac{1}{\delta})} \le \delta$$

• Hence, with probability $1 - \delta$, for any query x

$$f_{\mathcal{X}} \le \widehat{f_{\mathcal{X}}} \le f_{\mathcal{X}} + \epsilon m$$

Summary

- Two algorithms for frequency estimation
 - Counter based: Space Saving
 - Sketch based: Count-Min
- Guiding principle: use error bounds as design parameters of the data structure
- More to come...

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

Scalable Data Science

Lecture 10: Frequent Elements: CountSketch

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or (id, frequency update) tuple

Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in one pass

- Given input stream, length m, want a sketch that can answer frequency queries at the end
 - For give item x, return an estimate of the frequency
- Algorithms seen
 - Deterministic counter based algorithms: Misra-Gries, SpaceSaving
 - Count-Min sketch

Recall: Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$

Count-sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_i: U \to [1, d]$
- w sign hash function, each maps $g_i: U \to \{-1, +1\}$

Count Min Sketch

<u>Initialize</u>

- Choose $h_1, ..., h_w$, A[w, d] ← 0

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c \times g_i(x)$

Query(q):

- Return median $\{g_i(x)A[i,h_i(x)]\}$

Example

	h1,g1	h2,g2
	2,+	1,+
0	3,-	2,+
	1,+	3,-
	2,-	3,+

Space =
$$O(wd)$$

Update time = $O(w)$

Each item is mapped to one bucket per row

•
$$w = \frac{2}{\epsilon^2}$$
 $d = \log\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the w estimates, i.e. $Y_i = g_i(x)A[i,h_i(x)], \quad \widehat{f}_x = \underset{i}{\text{median }} Y_i$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E\left[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)\right]$$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)]$$

Notice that for $x \neq y$, $E[g_i(x) g_i(y)] = 0$!

$$E[Y_i] = g_i(x)^2 f_x = f_x$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

Variance analysis

$$|f|_2^2 = \sum_{x} f_x^2$$

Using simple algebra, as well as independence of hash functions,

$$var(Y_i) = \frac{\left(\sum_{y} f_y^2 - f_x^2\right)}{d} \le \frac{|f|_2^2}{d}$$

Using Chebyshev's inequality

$$\Pr[|Y_i - f_{\mathcal{X}}| > \epsilon |f|_2] \le \frac{1}{d\epsilon^2} \le \frac{1}{3} \qquad d = \frac{3}{\epsilon^2}$$

Finally, use analysis of median-trick with $w = \log\left(\frac{1}{\delta}\right)$

Final Guarantees

• Using space $O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\log(n)\right)$, for any query x, we get an estimate, with prob $1-\delta$

$$|f_x| - \epsilon |f|_2 \le \widehat{f_x} \le f_x + \epsilon |f|_2$$

Comparisons

Algorithm	$\widehat{f_x} - f_x$	$Space \times log(n)$	Error prob	Model
Misra-Gries	$[-\epsilon f _1,0]$	$1/\epsilon$	0	Insert Only
SpaceSaving	$[0,\epsilon f _1]$	$1/\epsilon$	0	Insert Only
CountMin	$[0,\epsilon f _1]$	$\log\left(\frac{1}{\delta}\right)/\epsilon$	δ	Insert
CountSketch	$[-\epsilon f _2,\epsilon f _2]$	$\log\left(\frac{1}{\delta}\right)/\epsilon^2$	δ	Insert+Delete

Summary

- CM and Count Sketch to answer point queries about frequencies
 - two user-defined parameters, ϵ and δ
 - Linear sketch, hence can be combined across distributed streams
- Count Sketch handle departures naturally
 - As long as –ve frequencies are not present
 - For CM, we need to consider median instead of minm
- Extensions to handle range queries and others...
- Actual performance much better than theoretical bound

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

Scalable Data Science

Lecture 11: Near Neighbors

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Finding Near Neighbors

Given a set of data points and a query

Can we find what is the nearest datapoint to the query?

- K-nearest neighbors
- d(p, query) < r

Applications

Numerous

- Finding near duplicate webpages / articles
- Finding similar images in search
- Clustering
- Nearest neighbour classifier
- Variants
 - all pairs near neighbors

Naïve solution?

- Naïve scan
 - -O(nd) time for each query

- Can we calculate and store the Voronoi partition of the pointset?
 - Will give the exact answer if possible
 - needs $n^{d/2}$ storage for n points in d dimensions

Space Partitioning trees

- Basic idea
 - Recursively partition the space
 - Given the query, prune the dataset using the created partition tree
 - All depends on how to partition

Kd-trees

- Works "well" for "low to medium" dimensions
- Initially proposed by Bentley 1970
- Originally, k was #dimensions
- Idea: each level of the tree uses a single dimension to partition

Algorithm

- Each level has a cutting dimension
- Cycle through the dimensions
- At every step, choose the point which is the median along that dimension, create an axis-aligned partition

Example

Complexity

- Space taken = O(n)
- Nearest neighbour search:
 - Defeatist search: only search the child that contain the query point
 - Descending search: maintain the current near neighbour and distance to it.
 Visit one or both children depending on whether there is intersection
 - Priority search: Maintain a priority queue of the regions depending on distance.
 - Can potentially take O(n)

Variants

- Several variants of space partitioning trees possible
 - Random Projection tree chooses a unit direction at random for every node
 - PD tree uses the principal eigenvector of the covariance matrix
 - 2-Mean tree: partition the data into 2 clusters, find the hyperplane that bisects the line connecting them

Possible intuition to analyze

- Does the partitioning algorithm adapt to "intrinsic dimension"?
 - i.e. if the data has some low-dimensional structure
 - E.g. if the data has "intrinsic dimension" d, then all cells O(d) levels below a cell C
 has at most ½ the diameter of C

Possible intuition to analyze

- Does the partitioning algorithm adapt to "intrinsic dimension"?
 - i.e. if the data has some low-dimensional structure
 - E.g. if the data has "intrinsic dimension" d, then all cells O(d) levels below a cell C
 has at most ½ the diameter of C
- Definition of "intrinsic dimension" is not obvious
 - Ex: covariance dimension is d if the d largest eigenvalues of covariance matrix account for $1-\epsilon$ fraction of trace

Possible way to analyze

- Does the partitioning algorithm adapt to "intrinsic dimension"?
 - i.e. if the data has some low-dimensional structure
 - E.g. if the data has "intrinsic dimension" d, then all cells O(d) levels below a cell C has at most ½ the diameter of C
- Definition of "intrinsic dimension" is not obvious
 - Ex: covariance dimension is d if the d largest eigenvalues of covariance matrix account for $1-\epsilon$ fraction of trace
- Can be shown that RP, PD trees adapt to this dimension, but k-D tree does not

Summary

- Nearest neighbour question
- Number of algorithms for low dimensional data based on space partitioning trees
 - Some of the adapt to the intrinsic dimensionality of data

References:

- Primary references for this lecture
 - Foundations of multidimensional and metric data structures, H. Samet. Morgan Kaufman 2006.
 - "Which space partitioning trees adapt to Intrinsic Dimension", Verma, Kpotfe, Dasgupta UAI 2009.

Thank You!!

Scalable Data Science

Lecture 12: Locality Sensitive Hashing

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Finding Near Neighbors

Given a set of data points and a query

Can we find what is the nearest datapoint to the query?

- K-nearest neighbors
- d(p, query) < r

Defining representation

- We need to define the object representation and distance functions first
 - e.g. is a document just a (multi-)set of characters, or a word X position matrix?
- Mainly a few standard ways of representing
 - documents as sets
 - images / other objects as vectors

Documents as sets

- Shingle: a set of k consecutive characters that appear in the document
- Document = set of shingles
 - Often are hashed to 64bit numbers for each of storage

A sly fox jumped over the lazy hen

a sly sly f ly fo

••••

Distance function for sets

• Jaccard similarity
$$JS(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

• Distance JD(A, B) = 1 - JS(A, B)

Vectors

- Images
 - Vectors over 64x64 or 128x128
- Documents
 - Sets → vectors, possibly with TF-IDF or other weighting
- Distance functions

$$- \ell_2(x, y) = (\sum_i (x_i - y_i)^2)^{1/2}$$

- **—** ...
- angle between vectors

Hash Tables

- For exact search we used hashing
- Can we adapt hashing to search for "near"?

Hash Tables

- For exact search we used hashing
- Can we adapt hashing to search for "near"?
- Repurpose "collision"
 - Instead of trying to avoid collisions, now we try to make collisions happen if the data points are nearby

Hash Tables

- Want the following
 - Nearby points should fall in "same" bucket, points further away should fall in different buckets

Locality Sensitive Hashing

[Indyk Motwani]

Hash family H is locality sensitive if

$$Pr[h(x) = h(y)]$$
 is high if x is close to y

$$Pr[h(x) = h(y)]$$
 is low if x is far from y

Not clear such functions exist for all distance functions

Locality sensitive hashing

Originally defined in terms of a similarity function [C'02]

• Given universe U and a similarity $s: U \times U \to [0,1]$, does there exist a prob distribution over some hash family H such that

$$\Pr_{h \in H}[h(x) = h(y)] = s(x,y) \qquad s(x,y) = 1 \to x = y \\ s(x,y) = s(y,x)$$

Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$

Hamming distance

Points are bit strings of length d

•
$$H(x,y) = |\{i, x_i \neq y_i\}|$$
 $S_H(x,y) = 1 - \frac{H(x,y)}{d}$
 $-x = 1011010001, y = 0111010101$
 $-H(x,y) = 3$ $S_H(x,y) = 1 - \frac{3}{10} = 0.7$

Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$ $S_H(x,y) = 1 \frac{H(x,y)}{d}$
- Define a hash function h by sampling a set of positions

$$-x = 1011010001, y = 0111010101$$

$$-S = \{1,5,7\}$$

$$-h(x) = 100, h(y) = 100$$

Existence of LSH

• The above hash family is locality sensitive, k = |S|

$$\Pr[h(x) = h(y)] = \left(1 - \frac{H(x, y)}{d}\right)^k$$

LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$

LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$

- Choose direction v uniformly at random
 - $-h_v(x) = sign(v \cdot x)$
 - $-\Pr[h_v(x) = h_v(y)] = 1 \theta/\pi$

Aside: picking a direction u.a.r.

• How to sample a vector $x \in \mathbb{R}^d$, $|x|_2 = 1$ and the direction is uniform among all possible directions

- Generate $x = (x_1, ..., x_d), x_i \sim N(0, 1)$ iid
- Normalize $\frac{x}{|x|_2}$
 - By writing the pdf of the d-dimensional Gaussian in polar form, easy to see that this is uniform direction on unit sphere

Jaccard distance: minhashing

- Pick a uniform permutation of the element universe U
- For any set S,

$$-h(S) = \min_{x \in S} h(x)$$

• Often easier to visualize if we think of the collection of sets as a $\{0,1\}$ matrix

Example

	S ₁	S ₂	S ₃	S ₄		1			S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0	Α	^	1	Α	1	0	1	0
В	1	0	0	1	С	. </th <th>2</th> <th>С</th> <th>0</th> <th>1</th> <th>0</th> <th>1</th>	2	С	0	1	0	1
С	0	1	0	1	G		3	G	1	0	1	0
D	0	1	0	1	5		4	F	1	0	1	0
Е	0	1	0	1	В		5	В	1	0	0	1
F	1	0	1	0	Е		6	Ε	0	1	0	1
G	1	0	1	0	D		7	D	0	1	0	1

[Slide from Evimaria Terzi]

Example

	S ₁	S ₂	S ₃	S ₄	ſ]			S ₁	S ₂	S ₃	S
Α	1	0	1	0		D		1	D	0	1	0	1
В	1	0	0	1		В		2	В	1	0	0	1
С	0	1	0	1		Α		3	Α	1	0	1	0
D	0	1	0	1		С		4	С	0	1	0	1
E	0	1	0	1		F		5	F	1	0	1	0
F	1	0	1	0		G		6	G	1	0	1	0
G	1	0	1	0		E		7	E	0	1	0	1
							1			2	1	2	

Why is this LSH?

- For sets S and T,
 - The first row where one of the two has a 1 belong to $S \cup T$
 - We have equality h(S) = h(T), only if both the rows contain 1
 - This means that this row belongs to $S \cap T$
- Hence, the event h(S) = h(T) is same as the event that a row in $S \cap T$ appears first among all rows in $S \cup T$

$$\Pr[h(S) = h(T)] = \frac{|S \cap T|}{|S \cup T|}$$

Aside: How to choose random permutations

- Picking a uniform at random permutation is expensive
- In theory, need to choose from a family of min-wise independent permutations

 In practice, can use standard hash functions, hash all the values and then sort

Which similarities admit LSH?

- There are various similarities and distance that are used in scientific literature
 - Encyclopedia of distances DL'11
- Will there be an LSH for each one of them?
 - Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A,B) = [h(A) \neq h(B)]$$

LSHable similarities

<u>Thm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

Also

$$\Delta_h(A,B) + \Delta_h(B,C) \ge \Delta_h(A,C)$$

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$
 - Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}$
 - s(A,B) = 0, s(B,C) = s(A,C) = 2/3

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$
 - Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}$
 - $s(A,B) = 0, s(B,C) = s(A,C) = \frac{2}{3}$
- Overlap: $s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$
 - s(A, B) = 0, s(A, C) = 1 = s(B, C)

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}_{\text{these similarities are not LSHable}$ s(A, B) = 0 s(B, C)• Sorenson-Dice : $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$

- Ex:
$$A = \{a\}, B = \{b\}, C = \{a, b\}$$

$$- s(A,B) = 0, s(B,C) = s(A,C) = \frac{2}{3}$$

• Overlap:
$$s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$$

$$- s(A,B) = 0, s(A,C) = 1 = s(B,C)$$

Gap Definition of LSH

IMRS'97, IM'98, GIM'99

• A family is (r, R, p, P) LSH if

$$\Pr_{h \in H}[h(x) = h(y)] \ge p \ if \ d(x, y) \le r$$

$$\Pr_{h \in H}[h(x) = h(y)] \le P \text{ if } d(x, y) \ge R$$

Gap LSH

All the previous constructions satisfy the gap definition

- Ex: for
$$JS(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

$$JD(S,T) \le r \to JS(S,T) \ge 1 - r \to \Pr[h(S) = h(T)] = JS(S,T) \ge 1 - r$$
$$JD(S,T) \ge R \to JS(S,T) \le 1 - R \to \Pr[h(S) = h(T)] = JS(S,T) \le 1 - R$$

Hence is a (r, R, 1 - r, 1 - R) LSH

L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$

•
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$

L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$
- $h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$
- If $|x y|_2 < \frac{w}{2}$, $\Pr[h(x) = h(y)] \ge \frac{1}{3}$
- If $|x y|_2 > 4w$, $\Pr[h(x) = h(y)] \le \frac{1}{4}$

Solving the near neighbour

- (r,c) —near neighbour problem
 - Given query point q, return all points p such that d(p,q) < r and none such that d(p,q) > cr
 - Solving this gives a subroutine to solve the "nearest neighbour", by building a data-structure for each r , in powers of $(1+\epsilon)$

How to actually use it?

Need to amplify the probability of collisions for "near" points

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $Pr[H(x) = H(y)] = \prod_{i} Pr[h_i(x) = h_i(y)] = Pr[h_1(x) = h_1(y)]^k$

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$
- OR-ing
 - Create L independent hash-tables for $H_1, H_2, ... H_L$
 - Given query q, search in $\bigcup_i H_i(q)$

Example

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

	S1	S2	S3	S3
h1	1	2	1	2
h2	2	1	3	1

	S1	S2	S3	S3
h3	3	1	2	1
h4	1	3	2	2

Why is this better?

• Consider q, y with Pr[h(q) = h(y)] = 1 - d(x, y)

Probability of not finding y as one of the candidates in

 $\bigcup_j H_j(q)$

$$1 - (1 - (1 - d)^k)^L$$

Creating an LSH

- If we have a (r, cr, p, q) LSH
- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 (1 p^k)^L$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \le q^k$
 - Expected number of such $z \leq Lq^k$

Creating an LSH

• If we have a (r, cr, p, q) LSH

 $\rho = \frac{\log(p)}{\log(q)}$ $L = n^{\rho} k = \log(n) / \log\left(\frac{1}{q}\right)$

- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 \left(1 p^k\right)^L \ge 1 \frac{1}{e}$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \le q^k$
 - Expected number of such $z \le Lq^k \le L = n^\rho$

Runtime

- Space used = $n^{1+\rho}$
- Query time = n^{ρ}

- We can show that for Hamming, angle etc, $\rho \approx \frac{1}{c}$
 - Can get 2-approx near neighbors in $O(\sqrt{n})$ query time

LSH: theory vs practice

- In order to design LSH in practice, the theoretical parameter values are only a guidance
 - Typically need to search over the parameter space to find a good operating point
 - Data statistics can provide some guidance (will see in next class)

Summary

- Locality sensitive hashing is a powerful tool for near neighbour problems
- Trades off space with query time
- Practical for medium to large datasets with fairly large number of dimensions
 - However, doesn't really work very well for sparse, very very high dimensional datasets
- LSH and extensions are an area of active research and practice

References:

- Primary references for this lecture
 - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
 - Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

Thank You!!

