Discriminant (HKMO Classified Questions by topics)

1986 FI2.1

若方程 $3x^2 - 4x + \frac{h}{3} = 0$ 有等根,求 h 的值。

If the equation $3x^2 - 4x + \frac{h}{3} = 0$ has equal roots, find the value of h.

1987 FI4.1

若曲線 $y = 2x^2 - 8x + a$ 與 x-軸相切,求 a 的值。

If the curve $y = 2x^2 - 8x + a$ touches the x-axis, find the value of a.

1989 FI4.4

已知曲線 $y = 3x^2 + 12x + c$ 與x-軸相切,求c的值。

If the curve $y = 3x^2 + 12x + c$ touches the x-axis, find the value of c.

1989 FSG.1

已知 $2at^2 + 12t + 9 = 0$ 有等根,求 a 的值。

If $2at^2 + 12t + 9 = 0$ has equal roots, find the value of a.

1990 FI3.4

若 $64t^2 + 16t + d$ 是完全平方,求 d 的值。

If $64t^2 + 16t + d$ is a perfect square, find the value of d.

1991 FG7.2

某方程 $x^2 + 2x + c = 0$ 無實根,且c為小於3之整數,求c的值。

If the equation $x^2 + 2x + c = 0$ has no real root and c is an integer less than 3, find the value of c.

1992 FI1.2

若 $x^2 - 10x + a = 0$ 有兩等根,求 a 的值。

If $x^2 - 10x + a = 0$ has 2 equal roots, find the value of a.

1992 FG10.4

下圖為 $y = -2x^2 + 5x + 3$ 的圖形。

若 y = x + d 為 $y = -2x^2 + 5x + 3$.的切線, 求 d 的值。

The following shows the graph of $y = -2x^2 + 5x + 3$.

If y = x + d is tangent to $y = -2x^2 + 5x + 3$,

find the value of d.

1994 FI1.1

方程式 $x^2 - ax + (a+3) = 0$ 有等根。若a為一正整數,求a的值。

The equation $x^2 - ax + (a + 3) = 0$ has equal roots.

Find the value of a, if a is a positive integer.

1994 FG7.3

若 $c=2-x+2\sqrt{x-1}$ 且 x>1, 求 c 之最大值。

Find the largest value of c, if $c = 2 - x + 2\sqrt{x-1}$ and x > 1.

1996 FG9.2

若 $(x^2+y^2)^2 \le b(x^4+y^4)$ 對任意實數 x 和 y 都成立,求 b 的最小可能整數值。 If the expression $(x^2+y^2)^2 \le b(x^4+y^4)$ holds for all real values of x and y, find the least possible integral value of b.

1997 FI2.3

若對於所有實數 x, $x^2 + cx + 36$ 不小於 0, 求 c 的最大值。 If the value of $x^2 + cx + 36$ is not less than 0 for all real number x, find the maximum value of c.

1999 FI4.3

設 c 為一正實數,若 $x^2 + 2\sqrt{c}x + 2 = 0$ 僅有一實數解,求 c 之值。

Let c be a positive real number.

If $x^2 + 2\sqrt{c}x + 2 = 0$ has one real root only, find the value of c.

1999 FI5.3

若方程 $x^2-x+1=0$ 有c個實數解,求c之值。

If the number of real roots of the equation $x^2 - x + 1 = 0$ is c, find the value of c.

1999 FG5.2 2013 HG6

已知方程式 $x^2 + ax + 2b = 0$ 及 $x^2 + 2bx + a = 0$ 的根為實數,且 a, b > 0。 若 a + b 的最小值為 O,求 O 之值。

Given that the roots of $x^2 + ax + 2b = 0$ and $x^2 + 2bx + a = 0$ are both real and a, b > 0. If the minimum value of a + b is Q, find the value of Q.

2000 FI5.2

如果 (x-2)(x-2Q)-1=0 有兩個整數根,求Q的值。

If (x-2)(x-2Q)-1=0 has two integral roots, find the value of Q.

2000 FG2.4

設 $f(x) = 41x^2 - 4x + 4$, $g(x) = -2x^2 + x$ 。 如果 f(x) + kg(x) = 0 只有一個根, 求 k 的最小值 d。

Let $f(x) = 41x^2 - 4x + 4$ and $g(x) = -2x^2 + x$. If d is the smallest value of k such that f(x) + kg(x) = 0 has a single root, find the value of d.

2001 FI2.1

若 P 為整數,及 5 < P < 20。

若方程 $x^2 - 2(2P-3)x + 4P^2 - 14P + 8 = 0$ 的兩個根皆為整數,求 P 的值。 Suppose P is an integer and 5 < P < 20. If the roots of the equation $x^2 - 2(2P-3)x + 4P^2 - 14P + 8 = 0$ are integers, find the value of P.

Discriminant (HKMO Classified Questions by topics)

2002 FI2.3

已知
$$x$$
及 R 為實數。若對所有 x , $\frac{2x^2+2Rx+R}{4x^2+6x+3} \le 1$,求 R 的最大值。

Given that x and R are real numbers and $\frac{2x^2 + 2Rx + R}{4x^2 + 6x + 3} \le 1$ for all x,

find the maximum value of R.

2002 FG1.1

假設曲綫
$$x^2 + 3y^2 = 12$$
 及直綫 $mx + y = 16$ 只相交於一點。 若 $a = m^2$, 求 a 的值。

Assume that the curve $x^2 + 3y^2 = 12$ and the straight line mx + y = 16 intersect at only one point. If $a = m^2$, find the value of a.

2002 FG3.2

已知
$$x$$
和 y 為兩實數且滿足關係 $y = \frac{x}{2x-1}$ 。

若
$$\frac{1}{x^2} + \frac{1}{y^2}$$
 的最小值為 b ,求 b 的值。

It is given that the real numbers x and y satisfy the relation $y = \frac{x}{2x-1}$.

If the minimum value of $\frac{1}{x^2} + \frac{1}{y^2}$ is b, find the value of b.

2003 HG5

對任意實數 a ,方程 $x^2 + ax + 3b - a + 2 = 0$ 都有實數解,求 b 的最大值。 If the equation $x^2 + ax + 3b - a + 2 = 0$ has real root(s) for any real number a, find the maximum value of b.

2009 FI4.4

設
$$x$$
 及 y 為實數並滿足方程 $(x-3)^2 + (y-3)^2 = 1$ 。

Let x and y be real numbers satisfying the equation $(x-3)^2 + (y-3)^2 = 1$.

If $k = \frac{y}{x-3}$ and q is the least possible values of k^2 , find the value of q.

2010 HG9

若
$$\log_4(x+2y) + \log_4(x-2y) = 1$$
, 求 $|x| - |y|$ 的最小值。

If
$$\log_4(x+2y) + \log_4(x-2y) = 1$$
, find the minimum value of $|x| - |y|$.

2010 FI2.2

若 b 及 h 為正整數,且滿足 b < h 及 $b^2 + h^2 = b(2+h) + 2h$,求 b 的值。 If b and h are positive integers with b < h and $b^2 + h^2 = b(2+h) + 2h$, find the value of b. **2010 FIS.3**

已知
$$c \triangleq f(x) = \frac{x^2 - 2x - 3}{2x^2 + 2x + 1}$$
 的最小值。求 c 的值。

Given that *c* is the minimum value of $f(x) = \frac{x^2 - 2x - 3}{2x^2 + 2x + 1}$. Find the value of *c*.

2011 FI3.1

若 P 為一質數,而且方程 $x^2+2(P+1)x+P^2-P-14=0$ 的根為整數,求 P 的最小值。 If P is a prime number and the roots of the equation $x^2+2(P+1)x+P^2-P-14=0$ are integers, find the least value of P.

2013 HG1

已知一個直角三角形三邊的長度皆為整數,且其中兩邊的長度為方程 $x^2-(m+2)x+4m=0$ 的根。求第三邊長度的最大值。

Given that the length of the sides of a right-angled triangle are integers, and two of them are the roots of the equation $x^2 - (m+2)x + 4m = 0$.

Find the maximum length of the third side of the triangle.

2013 FI3.4

若
$$x$$
 為實數及 d 為函數 $y = \frac{3x^2 + 3x + 4}{x^2 + x + 1}$ 的最大值,求 d 的值。

If x is a real number and d is the maximum value of the function $y = \frac{3x^2 + 3x + 4}{x^2 + x + 1}$,

find the value of d.

2013 FG2.3

設
$$f(x) = \frac{x+a}{x^2 + \frac{1}{2}}$$
 , x 為實數且 $f(x)$ 的最大值和最小值分別是 $\frac{1}{2}$ 和 -1 。

若
$$t = f(0)$$
, 求 t 的值。

Let
$$f(x) = \frac{x+a}{x^2 + \frac{1}{2}}$$
, where x is a real number and the maximum value of $f(x)$ is $\frac{1}{2}$

and the minimum value of f(x) is -1. If t = f(0), find the value of t.

2016 FG3.4

若
$$a \cdot b$$
 及 y 為實數 , 並滿足
$$\begin{cases} a+b+y=5\\ ab+by+ay=3 \end{cases}$$
 , 求 y 的最大值。 If a,b and y are real numbers and satisfy
$$\begin{cases} a+b+y=5\\ ab+by+ay=3 \end{cases}$$

If a, b and y are real numbers and satisfy
$$\begin{cases} a+b+y=5\\ ab+by+ay=3 \end{cases}$$
,

determine the greatest possible value of y.

2017 FI4.1

若 a 為正整數,求 a 的最大值使得 $ax^2-(a-3)x+(a-2)=0$ 有實根。 If a is a positive integer, determine the greatest value of a such that $ax^2 - (a-3)x + (a-2) = 0$ has real root(s).

2023 HI3 設 *m* 為一個整數常數,其中 4<*m*<40。若方程 $x^2 - 2(2m - 3)x + 4m^2 - 14m + 8 = 0$ 有兩個整數根,求 x 的最大可能值。 Let *m* be an integral constant, where 4 < m < 40. If the equation $x^2 - 2(2m - 3)x + 4m^2 - 14m + 8 = 0$ has two integral roots, find the largest possible value of x.

Answers

Allsweis				
1986 FI2.1	1987 FI4.1	1989 FI4.4	1989 FSG.1	1990 FI3.4
4	8	12	2	1
1991 FG7.2	1992 FI1.2	1992 FG10.4	1994 FI1.1	1994 FG7.3
2	25	5	6	2
1996 FG9.2	1997 FI2.3	1999 FI4.3	1999 FI5.3	1999 FG5.2 2013 HG6
2	12	2	0	6
2000 FI5.2	2000 FG2.4	2001 FI2.1	2002 FI2.3	2002 FG1.1
1	-40	12	3	21
2002 FG3.2	2003 HG5	2009 FI4.4	2010 HG9	2010 FI2.2
2	-1	8	$\sqrt{3}$	2
2010 FIG 2	2011 FI2 1	2012 HC1	2013 FI3.4	2013 FG2.3
2010 FIS.3	2011 FI3.1	2013 HG1	13	1
_4	/	13	3	$-\frac{1}{2}$
2016 FG3.4	2017 FI4.1	2022 1112		
13	2017 F14.1	2023 HI3		
3	2	52		
L	1	1	1	"