Additional Rule	$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Binomial Coefficient	$\binom{n}{x} = \frac{n!}{(n-x)!x!}$
Binomial Probability	$P(x) = C_{n,x} p^{x} q^{n-x} = \frac{n!}{(n-x)! x!} p^{x} q^{n-x}$
Central Limit Theorem	$\mu_{\overline{x}} = \mu$
Central Limit Theorem (Standard Error)	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$
Chebyshev's Theorem: At least	$1-\frac{1}{k^2}$
Combination	$C(n,r) = \frac{n!}{(n-r)!r!}$
Complement Rule	$P(not A) = P(\overline{A}) = 1 - P(A)$
Confidence Interval for estimate for proportional, p	$\hat{p} \pm Z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}} \hat{p} = \frac{x}{n}$
Confidence Interval for mean, μ (σ known)	$\overline{X} \pm Z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right)$ $\overline{x} - E < \mu < \overline{x} + E where E = Z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
Confidence Interval for mean, μ (σ unknown)	$\overline{X} \pm t \left(df, \frac{\alpha}{2} \right) \cdot \left(\frac{s}{\sqrt{n}} \right) \text{ with } df = n - 1$ $\overline{x} - E < \mu < \overline{x} + E \text{ where } E = t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
Correlation	$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}}$ $r = \frac{\sum (z_x z_y)}{n - 1}$
Covariance of x and y	$covar(x, y) = \sum \frac{(x - \overline{x})(y - \overline{y})}{n - 1}$
Degrees of freedom for error	df(error) = n - c
Degrees of freedom for factor	df(factor) = c - 1
Degrees of freedom for total	df(total) = n - 1

Depth of sample median	$d\left(\tilde{x}\right) = \frac{n+1}{2}$
Empirical Probability	$P'(A) = \frac{n(A)}{n}$
Equation for line of best fit	$\hat{y} = b_0 + b_1 x$
Estimated for variance of slope	$s_{b_1}^2 = \frac{s_t^2}{SS(x)} = \frac{s_t^2}{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}$
Estimated variance of error	$s_{t}^{2} = \sum \frac{(y - \hat{y})^{2}}{n - 2}$ $s_{t}^{2} = \frac{\sum y^{2} - b_{0} \sum y - b_{1} \sum xy}{n - 2}$
Experimental error	$e = y - \hat{y}$
Factorial	$n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$
Mann-Whitney U test	$U_a = n_a \cdot n_b + \frac{1}{2}n_b \cdot (n_b + 1) - R_b$ $U_b = n_a \cdot n_b + \frac{1}{2}n_a \cdot (n_a + 1) - R_a$
Margin Error	$E = Z_{\alpha/2} \sqrt{\frac{\hat{p}\hat{q}}{v}}$
Mathematical model	$x_{c,k} = \mu + F_c + \varepsilon_{k(c)}$
Mean	$\overline{x} = \frac{\sum x}{n}$
Mean (binomial)	$\mu = n \cdot p$
Mean (frequency table)	$\overline{x} = \frac{\sum f \cdot x}{\sum f}$
Mean of Discrete random variable	$\mu = \sum [x \cdot P(x)]$
Mean square for error	$MS(error) = \frac{SS(error)}{df(error)}$
Mean square for factor	$MS(factor) = \frac{SS(factor)}{df(factor)}$
Multiplication Rule	$P(A \text{ and } B) = P(A) \cdot P(B A)$
Mutually exclusive	P(A or B) = P(A) + P(B)

Paired differences	$d = x_1 - x_2$
Pearson's Correlation Coefficient	$r = \frac{SS(xy)}{\sqrt{SS(x) \cdot SS(y)}} = \frac{covar(x, y)}{S_x \cdot S_y}$
Permutation	$P(n,r) = \frac{n!}{(n-r)!}$
Probability	$P(A) = \frac{n(A)}{n(S)}$
Range	H-L
Sample mean of paired differences	$\overline{d} = \frac{\sum d}{n}$
Sample size for $1-\alpha$ confidence estimate for μ	$n = \left[Z_{\alpha/2} \cdot \frac{\sigma}{E} \right]^2 = \left[Z_{\alpha/2} \cdot \frac{\sigma}{\mu} \right]^2$
Sample standard deviation of paired differences	$s_d = \sqrt{\frac{\sum d^2 - \frac{\left(\sum d\right)^2}{n}}{n-1}}$
Slope for line of best fit	$b_{1} = \frac{SS(xy)}{SS(x)}$ $b_{1} = \frac{n\sum xy - (\sum x)(\sum y)}{n(\sum x^{2}) - (\sum x)^{2}}$
Spearman's rank correlation coefficient	$r_s = 1 - \frac{6\sum x^2}{n(n^2 - 1)}$
Standard deviation	$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$
Standard deviation about line best fit	$s_t = \sqrt{s_t^2}$
Standard deviation (binomial)	$\sigma = \sqrt{n \cdot p \cdot q}$
Standard deviation (frequency table)	$s = \sqrt{\frac{n\left[\sum(f \cdot x^2)\right] - \left[\sum(f \cdot x)\right]^2}{n(n-1)}}$
Standard deviation (prob. Dist)	$\sigma = \sqrt{\sum \left[x^2 \cdot P(x) \right] - \mu^2}$
Standard Score	$z = \frac{x - \overline{x}}{s} or \frac{x - \mu}{\sigma}$

Sum of squares due to factor	$SS(error) = \left[\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \dots\right] - \frac{\left(\sum x\right)^2}{n}$
Sum of squares of x	$SS(x) = \sum x^2 - \frac{\left(\sum x\right)^2}{n}$
Sum of squares of xy	$SS(xy) = \sum xy - \frac{\sum x \cdot \sum y}{n}$
Total variation	$\sum (y-\overline{y})^2$
Variance (shortcut)	$s^2 = \frac{\sum x^2 - \frac{\left(\sum x\right)^2}{n}}{n-1}$
Variance (binomial)	$\sigma^2 = n \cdot p \cdot q$
Variance for a probability distribution (easier computations)	$\sigma^2 = \sum \left[x^2 \cdot P(x) \right] - \mu^2$
Variance for a probability distribution (easier to understand)	$\sigma^2 = \sum \left[(x - \mu)^2 \cdot P(x) \right]$
Variance of discrete random variable	$\sigma^{2} = \sum \left[x^{2} P(x) \right] - \left(\sum \left[x P(x) \right] \right)^{2}$
y-intercept for line of best fit	$b_0 = \frac{\sum y - b_1 \cdot \sum x}{n}$