Algebraic Number Theory - Assignment 1

Matteo Durante, 2303760, Leiden University

18th September 2018

Exercise 8

Let's define the norm on $\mathbb{Z}[\sqrt{3}]$ to be $N(a+b\sqrt{3})=|a^2-3b^2|.$ We notice that

$$\begin{split} N((a+b\sqrt{3})(c+d\sqrt{3})) &= N((ac+3bd) + (ad+bc)\sqrt{3}) \\ &= |((ac+3bd) - (ad+bc)\sqrt{3})((ac+3bd) + (ad+bc)\sqrt{3})| \\ &= |(a-b\sqrt{3})(c-d\sqrt{3})(a+b\sqrt{3})(c+d\sqrt{3})| \\ &= N(a+b\sqrt{3})N(c+d\sqrt{3}), \end{split}$$

i.e. it preserves the products.

Let $a, b \in \mathbb{Z}[\sqrt{3}]$ with $b \neq 0$ and suppose $a = c + d\sqrt{3}$, $b = e + f\sqrt{3}$. We can see that

$$\frac{a}{b} = \frac{c + d\sqrt{3}}{e + f\sqrt{3}} \frac{e - f\sqrt{3}}{e - f\sqrt{3}}$$
$$= \frac{ce - 3df}{e^2 - 3f^2} + \frac{-cf + de}{e^2 - 3f^2} \sqrt{3}$$
$$= p + q\sqrt{3}$$

where
$$p = \frac{ce - 3df}{e^2 - 3f^2}$$
 and $q = \frac{-cf + de}{e^2 - 3f^2}$

Let n be the closest integer to p and let m be the closest integer to q (if there is an ambiguity in the choice, pick any of them). Notice that $|n-p| \le 1/2$ and $|m-q| \le 1/2$.

We want to show that $a = (n + m\sqrt{3})b + \gamma$ for some $\gamma \in \mathbb{Z}[\sqrt{3}]$ such that either $\gamma = 0$ or $N(\gamma) < N(b)$.

Define $\theta := (n-p) + (m-q)\sqrt{3}$ and let $\gamma = b\theta \in \mathbb{Z}[\sqrt{3}]$; now, notice that

$$\begin{split} \gamma &= b\theta \\ &= b((n-p) + (m-q)\sqrt{3}) \\ &= b(n+m\sqrt{3}) - b(p+q\sqrt{3}) \\ &= b(n+m\sqrt{3}) - b\frac{a}{b} \\ &= b(n+m\sqrt{3}) - a \end{split}$$

From this, we get $a = b(n + m\sqrt{3}) + \gamma$. Observing that

$$\begin{split} N(\gamma) &= N(b\theta) \\ &= N(b)N(\theta) \\ &= N(b)|(n-p)^2 - 3(m-q)^2| \\ &\leq N(b)\max\{(n-p)^2, 3(m-q)^2\} \\ &= &\leq \frac{3}{4}N(b) \\ &< N(b) \end{split}$$

we can finally conclude that $\mathbb{Z}[\sqrt{3}]$ is an Euclidean Domain, and therefore a Principal Ideal Domain.

Exercise 17

Let $\alpha = a + bi$ and consider the chain of ideals $(a^2 + b^2) \subset (a + bi) \subset \mathbb{Z}[i]$.

For any positive integer n, we get that $[Z[i]:(n)]=n^2$ because $\mathbb{Z}[i]/(n)\cong\mathbb{Z}[x]/(x^2+1,n)\cong$ $(\mathbb{Z}/n\mathbb{Z})[x]/(x^2+1)$ (by [1, chap. 7, thm 8(2)] and [1, chap. 9, prop. 2]), whose elements are the classes of the following ones $\{a + bx \mid a, b \in \mathbb{Z}/n\mathbb{Z}\}$ since they can be represented by polinomials of degree < 2 and with natural coefficients lower than n; furthermore, the classes of the elements of the set are all distinct.

Thus, $[Z[i]:(a^2+b^2)]=(a^2+b^2)^2=N(\alpha)^2.$

As an additive group, $[\mathbb{Z}[i]:(a^2+b^2)]=[\mathbb{Z}[i]:(a+bi)][(a+bi):(a^2+b^2)].$ As a quotient group, $\mathbb{Z}[i]/(a-bi)\cong (a+bi)/(a^2+b^2)$ (we can see this by sending x+yi to (x+yi)(a+bi).

Noticing that $\mathbb{Z}[i]/(a+bi) \cong \mathbb{Z}[i]/(a-bi)$ as additive groups by using complex conjugation, we get that $N(\alpha) = [\mathbb{Z}[i] : (a+bi)] = |\mathbb{Z}[i]/(a+bi)|$, as stated.

References

[1] D.S. Dummit, R.M. Foote, Abstract Algebra, Whiley, Third edition, 2003.