

第1页 共 4 页

警示:实验报告如有雷同,雷同各方当次实验成绩均以 0 分计;在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按 0 分计;实验报告文件以 PDF 格式提交。

院系	数据科学与计 算机学院	班级	<u>周一 3-4</u> 节	学号	15331151	姓名	李佳
完成	日期: 2017年	11 月	20 日				

网络扫描实验

【实验目的】

- 1. 掌握网络扫描技术的原理。
- 2. 学会使用 Nmap 扫描工具。

【实验环境】

实验主机操作系统	i: <u>Win 10</u>	_ IP地址:	172.18.158.60	_
目标机操作系统:	Win 10	IP地址:	172.18.157.178	
网络环境:	中山大学校园网	o		

【实验工具】

Nmap (Network Mapper,网络映射器)是一款开放源代码的网络探测和安全审核的工具。其设计目标是快速地扫描大型网络,也可以扫描单个主机。Nmap 以新颖的方式使用原始 IP 报文来发现网络上的主机及其提供的服务,包括其应用程序名称和版本,这些服务运行的操作系统包括版本信息,它们使用什么类型的报文过滤器/防火墙,以及一些其它功能。虽然 Nmap 通常用于安全审核,也可以利用来做一些日常管理维护的工作,比如查看整个网络的信息,管理服务升级计划,以及监视主机和服务的运行。

【实验过程】(要有实验截图)

假设以下测试命令假设目标机 IP 是 172.16.1.101。

在实验过程中,可通过 Wireshark 捕获数据包,分析 Nmap 采用什么探测包。

1. 主机发现: 进行连通性监测, 判断目标主机。

假设本地目标 IP 地址为 172.16.1.101, 首先确定测试机与目标机物理连接是连通的。

① 关闭目标机的防火墙,分别命令行窗口用 Windows 命令

ping172.16.1.101

和 Nmap 命令

nmap -sP 172.16.1.101

进行测试, 记录测试情况。简要说明测试差别。

The American		
Microsoft Windows [版本 10.0.14393] (c) 2016 Microsoft Corporation。保留所有权利。		
C:\Users\lee>ping 172.18.157.178		
正在 Ping 172.18.157.178 具有 32 字节的数据: 来自 172.18.157.178 的回复: 字节=32 时间=1ms TTL=128 来自 172.18.157.178 的回复: 字节=32 时间=1ms TTL=128 来自 172.18.157.178 的回复: 字节=32 时间=1ms TTL=128 来自 172.18.157.178 的回复: 字节=32 时间<1ms TTL=128 来自 172.18.157.178 的回复: 字节=32 时间<1ms TTL=128		
172.18.157.178 的 Ping 统计信息: 数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失), 往返行程的估计时间(以毫秒为单位): 最短 = 0ms,最长 = 1ms,平均 = 0ms		

C:\Users\1ee>nmap -sP 172.18.157.178

Starting Nmap 7.60 (https://nmap.org) at 2017-11-20 18:45 ?D1ú±ê×?ê±??

Nmap scan report for 172.18.157.178

Host is up (0.00s latency).

MAC Address: F8:A9:63:B9:4D:03 (Compal Information (kunshan)) Nmap done: 1 IP address (1 host up) scanned in 8.82 seconds

ping 指令会向目标机发送报文,并且反馈每个报文是否送达并计算 RTT 时间,通过查看包是否顺利达到测试本机与目标机的连通性。 而 nmap 的反馈结果中显示了扫描目标机的 IP 地址,以及目标机的状态,同时有目标机的 MAC 地址及所使用的网卡以及扫描目标机所用的时间 8.82s。从时间上来说,nmap 扫描所需要的时间更多,但是 nmap 所显示的信息更加简洁。

<u> </u>	TOU, III		安的时间更多,但从	E 111	וומף לאן אה אלים וומ	日心文川刊(日)		
] *以太	M						- 0	Χ
文件(<u>F</u>)	编辑(<u>E</u>) 视图(<u>V</u>)	跳转(<u>G</u>) 捕获(<u>C</u>) 分析(<u>A</u>) 统计(<u>S</u>) 申	b话(Y) 无线(W) 工具(I) 帮助(H)					
11	1 0 X	⊙ ¶ • • • • • • • • • • • • • • • • • •	ય વ વ ⊞					
(ip.s	rc == 172.18.158.6	60 and ip.dst == 172.18.157.178)or	(ip. src == 172.18.157.178 and ip. dst == 172.1	8. 158. 60)			■ 表达式	+
No.	Tine	Source	Destination	Protocol	L Length Info			
	335 2.505664	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=17/4352, ttl=64 (no response found	J!)	
	336 2.505675	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=17/4352, ttl=64 (reply in 337)		
	337 2.506379	172.18.157.178	172.18.158.60	ICMP	74 Echo (ping) reply	id=0x0001, seq=17/4352, ttl=128 (request in 336)		
	442 3.518819	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=18/4608, ttl=64 (no response found	!!)	
	443 3.518848	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=18/4608, ttl=64 (reply in 444)		
	444 3.519652	172.18.157.178	172.18.158.60	ICMP	74 Echo (ping) reply	id=0x0001, seq=18/4608, ttl=128 (request in 443)		
	720 4.533930	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=19/4864, ttl=64 (no response found	!!)	
	721 4.533943	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=19/4864, ttl=64 (reply in 722)		
	722 4.534630	172.18.157.178	172.18.158.60	ICMP	74 Echo (ping) reply	id=0x0001, seq=19/4864, ttl=128 (request in 721)		
1	308 5.552664	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=20/5120, ttl=64 (no response found	1!)	
1	309 5.552687	172.18.158.60	172.18.157.178	ICMP	74 Echo (ping) request	id=0x0001, seq=20/5120, ttl=64 (reply in 1310)		
1	310 5.553573	172.18.157.178	172.18.158.60	ICMP	74 Echo (ping) reply	id=0x0001, seq=20/5120, ttl=128 (request in 1309))	

通过 wireshark 抓包结果看到可得: ping 指令会向目标机发送数据包,而 namp - sP 指令不会对目标机发送报文,只是列出主机的相关信息。有 12 个报文传输与源主机和目标主机之间。

② 开启目标机的防火墙,重复①,结果有什么不同?请说明原因。

```
C:\Users\lee>ping 172.18.157.178

正在 Ping 172.18.157.178 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。

172.18.157.178 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),
```


Starting Nmap 7.60 (https://nmap.org) at 2017-11-20 19:02 ?Dlú±ê×?ê±??
Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn
Nmap done: 1 IP address (0 hosts up) scanned in 5.99 seconds

C:\Users\lee>_

ping 命令显示请求超时,nmap -sP 命令显示主机 down 掉了。所有的传入都被目标主机防火墙阻止。

③ 测试结果不连通,但实际上是物理连通的,什么原因?

网络上的机器都会被分配到一个确定的 IP 地址,当我们用本机给目标 IP 地址发送一个数据包时,对方就要返回一个同样大小的数据包, 本机根据是否有返回的数据包来确定目标主机的存在以及在线状态,并且可以初步判断目标主机的操作系统等信息。

但是当开启防火墙后,目标主机拒绝接收源主机发送的数据包并且不做响应,从而造成不连通,但 是物理上,两台主机是有网络线缆相连的,所以物理连通。

- 2. 对目标主机进行 TCP 端口扫描
 - ① 使用常规扫描方式

Nmap -sT 172.16.1.101

请将扫描检测结果截图写入实验报告,包括所有的端口及开放情况。

```
C:\Users\lee>nmap -sT 172.18.157.178

Starting Nmap 7.60 ( https://nmap.org ) at 2017-11-20 19:04 ?D1ú±ê×?ê±??

Nmap scan report for 172.18.157.178

Host is up (1.0s latency).

Not shown: 995 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds
5357/tcp open wsdapi

5432/tcp open postgresql

MAC Address: F8:A9:63:B9:4D:03 (Compal Information (kunshan))

Nmap done: 1 IP address (1 host up) scanned in 236.15 seconds

C:\Users\lee>_
```

首先再次关闭防火墙。扫描用时 236.15s。

可以看到有 995 个关闭端口;目标机使用的端口有 5 个处于开放状态(135、139、445、5357、5432), 且扫描结果只有使用 TCP 协议的端口使用情况。开放的端口所提供的服务也可以在扫描结果中看出。

② 使用 SYN 半扫描方式

Nmap -sS 172.16.1.101

请将扫描检测结果截图写入实验报告,包括所有的端口及开放情况。

```
C:\WINDOWS\system32>nmap -sS 172.18.157.178

Starting Nmap 7.60 ( https://nmap.org ) at 2017-11-20 19:06 ?Dlú±ê×?ê±??

Nmap scan report for 172.18.157.178

Host is up (0.00096s latency).

Not shown: 995 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

5357/tcp open wsdapi

5432/tcp open postgresq1

MAC Address: F8:A9:63:B9:4D:03 (Compal Information (kunshan))

Nmap done: 1 IP address (1 host up) scanned in 9.57 seconds

C:\WINDOWS\system32>_
```

继续关闭防火墙。扫描用时 9.57s。

可以看到还是有 995 个关闭端口;目标机使用的端口有 5 个处于开放状态(135、139、445、5357、5432),且扫描结果只有使用 TCP 协议的端口使用情况。开放的端口所提供的服务也可以在扫描结果中看出。

③ 比较上述两次扫描结果差异、扫描所花费的时间。并进行解释。

Nmap - sT 扫描所花费的时间为 236.15s,而 namp - sS 扫描所花费的时间仅为 9.57s,半扫描的速度明显要高于完整的 TCP 扫描模式.经过查阅资料得知,这是由于半开扫描的原理导致的,半开扫描由本机发送一个 SYN 包到目标机,目标机若返回一个 SYN-ACK 的包,本机再发送一个 RST 包,在双方达成握手协议前,就断开连接,这就意味着双方并没有真正意义上建立起连接,而全开放 TCP 扫描则是在双方之间建立起了 TCP 链接,对于每一个端口,都要尝试三次握手。

【实验体会】

说实话到现在还不是很懂,为什么打开防火墙且选择阻止所有的时候,刚开始的 nmap -sP 指令依然可以得到和关闭防火墙时一样的结果,依然显示主机端口是开放的。我在网上查了一些资料,也不是很懂到底是为什么。

这次实验通过网络扫描过程以及自己的学习和老师的讲解,了解了一些网络安全基础方面的知识,也认识到了电脑上防火墙的作用,能阻止部分传入攻击,倘若不打开防火墙,对于黑客们来说,可以很轻松的扫描主机的不安全的端口,进而发现漏洞而入侵主机,造成我们的损失。也体会到了全扫描是真的慢,等了四分钟,而 SYN 半扫描相比之下就很快了,而且效果无很大差异(在一些资料看到有一些端口用半扫描无法显示,但是我们的实验两个结果一致)。总之收获还是很多的。