!pip install jupyter-dash

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/r Requirement already satisfied: jupyter-dash in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: dash in /usr/local/lib/python3.7/dist-packages (from j Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: nest-asyncio in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: flask in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: ipykernel in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: retrying in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: ipython in /usr/local/lib/python3.7/dist-packages (fro Requirement already satisfied: ansi2html in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-pa Requirement already satisfied: plotly>=5.0.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: dash-core-components==2.0.0 in /usr/local/lib/python3. Requirement already satisfied: dash-table==5.0.0 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: flask-compress in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: dash-html-components==2.0.0 in /usr/local/lib/python3. Requirement already satisfied: Jinja2<3.0,>=2.10.1 in /usr/local/lib/python3.7/dist-r Requirement already satisfied: itsdangerous<2.0,>=0.24 in /usr/local/lib/python3.7/di Requirement already satisfied: Werkzeug<2.0,>=0.15 in /usr/local/lib/python3.7/dist-r Requirement already satisfied: click<8.0,>=5.1 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from pl Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: brotli in /usr/local/lib/python3.7/dist-packages (from Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/c Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packag Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-pack Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (frc Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3 Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (frc Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.7/dist-packages (f Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-Requirement already satisfied: jupyter-core>=4.6.0 in /usr/local/lib/python3.7/dist-r Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/ Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-pa

```
import plotly.express as px
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
```

Os completed at 2:14 AM

• ×

webpage

Google Drive

```
# Connectiong to the Google Drive for the permanent storage
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m
# Checking if the correct version of tensorflow in installed or not
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
     TensorFlow version: 2.8.2
from numpy.random import seed
seed(786)
# Tensor flow for the fast calculation or computation
import tensorflow
tensorflow.random.set_seed(786)
# Other imports like os for directory management and numpy for mathematical operation on a
import os
# Numpy for performing mathematical operations on arrays
import numpy as np
# Importing pandas for data visualization in the forms of tables or data frames
import pandas as pd
# Time for dealing with real time and the pillow for dealing with the image for prediction:
from time import strftime
# Pillow for the image used for prediction
from PIL import Image
# Loading all the files from the directory into variables
```

```
X_TRAINING_PATH = '/content/drive/MyDrive/MNIST/digit_xtrain.csv'
X_TESTING_PATH =
                   '/content/drive/MyDrive/MNIST/digit_xtest.csv'
Y_TRAINING_PATH = '/content/drive/MyDrive/MNIST/digit_ytrain.csv'
Y_TESTING_PATH =
                  '/content/drive/MyDrive/MNIST/digit_ytest.csv'
%%time
# Geting the wall time required for reading the y-training csv file
y_training_all = np.loadtxt(Y_TRAINING_PATH, delimiter=',', dtype=int)
     CPU times: user 271 ms, sys: 12 ms, total: 283 ms
    Wall time: 324 ms
y_training_all.shape
     (60000,)
%%time
y_testing = np.loadtxt(Y_TESTING_PATH, delimiter=',', dtype=int)
    CPU times: user 39.6 ms, sys: 1.98 ms, total: 41.6 ms
    Wall time: 44 ms
%%time
x_training_all = np.loadtxt(X_TRAINING_PATH, delimiter=',', dtype=int)
    CPU times: user 35.5 s, sys: 4.48 s, total: 40 s
    Wall time: 48.4 s
%%time
x_testing = np.loadtxt(X_TESTING_PATH, delimiter=',', dtype=int)
    CPU times: user 4.22 s, sys: 218 ms, total: 4.43 s
    Wall time: 4.44 s
```

Visualizing the Dataset

array([0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,	ø,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	3,	18,	18,	18,
126,	136,	175,	26,	166,	255,	247,	127,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	30,	36,	94,	154,	170,	253,
253,	253,	253,	253,	225,	172,	253,	242,	195,	64,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	49,	238,	253,	253,	253,
253,	253,	253,	253,	253,	251,	93,	82,	82,	56,	39,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	18,	219,	253,
253,	253,	253,	253,	198,	182,	-	-	0,	0,	0,	0,	0,
0,	0,	0,	0,		0,		0,			0,	0,	0,
80,	156,	107,	253,	-	-	-	0,	43,	154,	0,	0,	0,
0,	0,	0,	0,		-		0,	0,	0,	0,	0,	0,
0,	0,	0,	14,	1,	154,	253,	90,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,		0,		0,	0,	0,
0,	0,	0,	0,	0,	0,	-	139,		-	2,	0,	0,
0,	0,	0,	0,	0,	0,	0,		0,		0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,		-	253,	70,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	35,
-	225,	-	-	1,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
0,	0,	-	240,	-	-		-	0,	0,	0,	0,	0,
0,	0,	0,	0,	-		0,		0,	-	0,	0,	0,
0,	0,	0,	0,	0,		-	253,	-	-	-	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,			0,
0,	0,	0,	0,	0,	0,	0,	0,	-	-	-	253,	-
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	-	0,	0,
0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	-	249,
-	249,	64,	0,	0,	0,	0,	0,	0,	0,	0,	0,	-
0,	-	-	0,	0,	0,	0,	0,	0,	0,	0,	-	130,
	253,			2,	0,	0,	0,	0,	0,	0,	0,	0, 148,
0,	0,	0,	0, 253,	0,	0,	0,	0,	0,	0,	0,	99, 0,	-
-	-	-	-	-	_	0, 0,	0, 0,	0,	0, 0,	0,		0, 114,
0, 221	-		0, 253,		0, 201	78,	0,	0, 0,	0, 0,	0, 0,	24, 0,	
0,			233, 0,		0,	70, 0,	0,	0,	0,	0,	23,	66,
	-		253,			81,	2,	0,	0,	0,	23, 0,	00,
0,	233, 0,	2 <i>)</i>	-	2 <i>)</i>	0,	01,	2, 0,	0,	0,	0,		171,
-	-	-	253,	-	-	80,	9,	0,	0, 0,	0, 0,	0,	0,
21 <i>)</i> , 0,			233, 0,			0,	0,	0,	0,	0,		172,
=			253,				11,	0,	0,	0,	0,	0,
0,	-	233, 0,	-	2 <i>)</i>		0,	0,	0,	0,	0,	0,	0,
			253,				16,	0,	0,	0,	0,	0,
0,	233, 0,	233, 0,		0,	0,	0,	0,	0,	0,	0,	0,	0,
0, 0,	0,	0,	0,	-	0,	0,	0,	0,	0,	0,	0,	0,
0,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,	٠,

```
0,
               0,
                    0,
                         0,
                               0,
                                    0,
                                         0,
                                               0,
                                                    0,
                                                          0,
                                                                    0,
                                                                          0,
                                                                               0,
               0,
                          0,
                               0,
                                    0,
                                          0,
                                               0,
                                                    0,
                                                          0,
                                                                    0,
                                                                          0,
                                                                               0,
                    0,
                                                               0,
                                    0,
                                                          0,
                         0,
                               0,
                                          0,
                                               0,
                                                    0,
                                                               0,
                                                                    0,
                                                                          0,
y_training_all.shape
     (60000,)
x_testing.shape
     (10000, 784)
# First 10 labels from training dataset
y_training_all[:10]
     array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4])
# Our Features are between 0 and 255 which is a large range. So, we have to rescale our tra
# After rescaling our data is between 0 and 1
x_training_all = x_training_all / 255.0
x_testing
               = x_{testing} / 255.0
x_training_all[0]
     array([0.
                       , 0.
                                    , 0.
                                                 , 0.
                                    , 0.
             0.
                       , 0.
                                                 , 0.
             0.
                       , 0.
                                    , 0.
                                                 , 0.
                                    , 0.
             0.
                       , 0.
                                                 , 0.
            0.
                       , 0.
                                                 , 0.
                                    , 0.
                       , 0.
                                    , 0.
            0.
                                                 , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                       , 0.
                                                 , 0.
            0.
                                    , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
                       , 0.
                                    , 0.
            0.
                                                 , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
                       , 0.
                                    , 0.
                                                 , 0.
            0.
                                                              , 0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
                                    , 0.
                                                 , 0.
            0.
                       , 0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
            0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
                       , 0.
                                    , 0.
                                                 , 0.
            0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                    , 0.
             0.
                       , 0.
                                                 , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
                       , 0.
                                    , 0.
                                                 , 0.
                                                              , 0.
            0.
             0.
                       , 0.
                                    , 0.
                                                 , 0.
```

, v.

```
, 0.
                          , 0.
                                    , 0.
                                              , 0.
                          , 0.
                                    , 0.
                 , 0.
                                               , 0.
                 , 0.
                          , 0. , 0.
         0. , 0. , 0.01176471, 0.07058824, 0.07058824,
         0.07058824, 0.49411765, 0.53333333, 0.68627451, 0.10196078,
         0.65098039, 1. , 0.96862745, 0.49803922, 0.
                          , 0.
              , 0.
                                , 0.
                                          , 0.
                 , 0. , 0. , 0. , 0.
         0.
                 , 0.11764706, 0.14117647, 0.36862745, 0.60392157,
         0.66666667, 0.99215686, 0.99215686, 0.99215686, 0.99215686,
         0.99215686, 0.88235294, 0.6745098 , 0.99215686, 0.94901961,
         0.76470588, 0.25098039, 0. , 0.
                       , 0.
         0.
         0.99215686, 0.99215686, 0.99215686, 0.99215686,
         0.99215686, 0.99215686, 0.99215686, 0.98431373, 0.36470588,
         0.32156863, 0.32156863, 0.21960784, 0.15294118, 0.
               , 0. , 0. , 0.
                           , 0.
                                     , 0.
         0.
                 , 0.
                  , 0.07058824, 0.85882353, 0.99215686, 0.99215686,
         0.99215686, 0.99215686, 0.99215686, 0.77647059, 0.71372549,
         0.96862745, 0.94509804, 0. , 0. , 0.
                                   , 0.
                                              , 0.
               , 0.
                      , 0.
                                    , 0.
                          , 0.
         0.
                  , 0.
                                              , 0.
         0. , 0. , 0. , 0. , 0.
         0.31372549, 0.61176471, 0.41960784, 0.99215686, 0.99215686,
         0.80392157, 0.04313725, 0. , 0.16862745, 0.60392157,
                        , 0. , 0.
         0.
                 , 0.
                 , 0.
         0.
                 , 0.
# Our labels are 10 in total from 0 to 9
NR\_CLASSES = 10
y_training_all = np.eye(NR_CLASSES)[y_training_all]
y_training_all.shape
    (60000, 10)
y_testing = np.eye(NR_CLASSES)[y_testing]
y_testing.shape
    (10000, 10)
LOGGING_PATH = '/content/sample_data/MNISTtensorboard_mnist_digit_logs/'
VALIDATION_SIZE = 10000
IMAGE WIDTH = 28
```

```
IMAGE\_HEIGHT = 28
CHANNELS = 1
# Total number of features
TOTAL_INPUTS = IMAGE_WIDTH*IMAGE_HEIGHT*CHANNELS
# Now we have to divide our training dataset into smaller training and validation dataset
# Training dataset contains 50000 and avalidation contains 10000
# From start to the validation size
x_val = x_training_all[:VALIDATION_SIZE]
y_val = y_training_all[:VALIDATION_SIZE]
x_val.shape
     (10000, 784)
# From validation size till the end
x_training = x_training_all[VALIDATION_SIZE:]
y_training = y_training_all[VALIDATION_SIZE:]
x_training.shape
     (50000, 784)
# Creating tensors
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
# tf.placeholder is used for creating tensors 2 parameters (datatype, shape of tensor)
X = tf.placeholder(tf.float32, shape=[None, TOTAL_INPUTS], name='X')
Y = tf.placeholder(tf.float32, shape=[None, NR_CLASSES], name='labels')
# Hyperparameters
\# nr_{epochs} = 25
# learning_rate = 1e-3
nr epochs = 50
learning_rate = 1e-3
n_hidden1 = 512
n_hidden2 = 64
1e-3
     0.001
```

```
def setup_layer(input, weight_dim, bias_dim, name):
   with tf.name_scope(name):
      Iniatializing the weights
      tf.truncated_normal generates random values execpt for extreme values
      Shape = no of inputs and neurons in the layer
      Standard Deviation tells how far appart weights should from each others
      initial_w = tf.truncated_normal(shape=weight_dim, stddev=0.1, seed=42)
      # Calculations for weights
      w = tf.Variable(initial_value=initial_w, name='W')
      Initializing the biases
      All biases start from same value that is 0
      Shape is no of neurons in layer
      initial_b = tf.constant(value=0.0, shape=bias_dim)
      # Calculation of the biases
      b = tf.Variable(initial_value=initial_b, name='B')
      Input layer of next hidden layer
      MatrixMultiplication
      layer_in = tf.matmul(input, w) + b
      # Checking for the the last hidden layer to apply activation accordingly
      if name=='out':
        # Apply softmax for the last layer
        layer_out = tf.nn.softmax(layer_in)
      else:
        # Apply relu for the remaining layers
        layer_out = tf.nn.relu(layer_in)
      tf.summary.histogram('weights', w)
      tf.summary.histogram('biases', b)
      return layer_out
layer_1 = setup_layer(X, weight_dim=[TOTAL_INPUTS, n_hidden1],
                      bias_dim=[n_hidden1], name='layer_1')
layer_drop = tf.nn.dropout(layer_1, keep_prob=0.8, name='dropout_layer')
layer_2 = setup_layer(layer_drop, weight_dim=[n_hidden1, n_hidden2],
                      bias_dim=[n_hidden2], name='layer_2')
output = setup laver(laver 2. weight dim=[n hidden2. NR CLASSFS].
```

```
bias_dim=[NR_CLASSES], name='out')

model_name = f'{n_hidden1}-DO-{n_hidden2} LR{learning_rate} E{nr_epochs}'

# Folder for Tensorboard

folder_name = f'{model_name} at {strftime("%H:%M")}'
directory = os.path.join(LOGGING_PATH, folder_name)

try:
    os.makedirs(directory)
except OSError as exception:
    print(exception.strerror)
else:
    print('Successfully created directories!')

Successfully created directories!
```

Defining Loss Function

```
with tf.name_scope('loss_calc'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=outpu
```

Defining Optimizer

```
with tf.name_scope('optimizer'):
    optimizer = tf.train.AdamOptimizer(learning_rate)
    train_step = optimizer.minimize(loss)
```

Accuracy Metric

```
with tf.name_scope('accuracy_calc'):
    correct_pred = tf.equal(tf.argmax(output, axis=1), tf.argmax(Y, axis=1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

with tf.name_scope('performance'):
    tf.summary.scalar('accuracy', accuracy)
    tf.summary.scalar('cost', loss)
```

Check Input Images in Tensorboard

```
with tf.name_scope('show_image'):
    x_image = tf.reshape(X, [-1, 28, 28, 1])
    tf.summary.image('image_input', x_image, max_outputs=4)
```

Run Session

```
sess = tf.Session()
```

Setup Filewriter and Merge Summaries

```
merged_summary = tf.summary.merge_all()

train_writer = tf.summary.FileWriter(directory + '/train')
train_writer.add_graph(sess.graph)

validation_writer = tf.summary.FileWriter(directory + '/validation')
```

Initialise all the variables

```
init = tf.global_variables_initializer()
sess.run(init)
```

Batching the Data

```
size_of_batch = 1000
# size_of_batch = 500
# size_of_batch = 2000

num_examples = y_training.shape[0]
nr_iterations = int(num_examples/size_of_batch)
index_in_epoch = 0
```

this function is to go to the next batch

```
def next_batch(batch_size, data, labels):
    global num_examples
    global index_in_epoch
    start = index_in_epoch
    index_in_epoch += batch_size

if index_in_epoch > num_examples:
        start = 0
        index_in_epoch = batch_size

end = index_in_epoch

return data[start:end], labels[start:end]
```

Training Loop

```
import array as arr
accuracy_array = []
%%time
for epoch in range(nr_epochs):
   # ======= Training Dataset =======
   for i in range(nr_iterations):
       batch_x, batch_y = next_batch(batch_size=size_of_batch, data=x_training, labels=y_1
       feed_dictionary = {X:batch_x, Y:batch_y}
       sess.run(train_step, feed_dict=feed_dictionary)
   s, batch_accuracy = sess.run(fetches=[merged_summary, accuracy], feed_dict=feed_diction
   train_writer.add_summary(s, epoch)
   print(f'Epoch {epoch} \t| Training Accuracy = {batch_accuracy}')
   # ======== Validation ===========
    summary = sess.run(fetches=merged_summary, feed_dict={X:x_val, Y:y_val})
   validation_writer.add_summary(summary, epoch)
    accuracy array.append(batch accuracy)
```

print('Done training!')

F	Tarabata
Epoch 0	Training Accuracy = 0.8450000286102295
Epoch 1	Training Accuracy = 0.859000027179718
Epoch 2	Training Accuracy = 0.8659999966621399
Epoch 3	Training Accuracy = 0.8730000257492065
Epoch 4	Training Accuracy = 0.9739999771118164
Epoch 5	Training Accuracy = 0.9769999980926514
Epoch 6	Training Accuracy = 0.9810000061988831
Epoch 7	Training Accuracy = 0.9819999933242798
Epoch 8	Training Accuracy = 0.9819999933242798
Epoch 9	Training Accuracy = 0.9860000014305115
•	
Epoch 10	Training Accuracy = 0.9850000143051147
Epoch 11	Training Accuracy = 0.9829999804496765
Epoch 12	Training Accuracy = 0.9829999804496765
Epoch 13	Training Accuracy = 0.9890000224113464
Epoch 14	Training Accuracy = 0.9900000095367432
Epoch 15	Training Accuracy = 0.990999966621399
Epoch 16	Training Accuracy = 0.9879999756813049
Epoch 17	Training Accuracy = 0.990999966621399
Epoch 18	Training Accuracy = 0.9890000224113464
Epoch 19	Training Accuracy = 0.9879999756813049
Epoch 20	Training Accuracy = 0.9900000095367432
Epoch 21	Training Accuracy = 0.9879999756813049
Epoch 22	Training Accuracy = 0.9909999966621399
Epoch 23	Training Accuracy = 0.9900000095367432
Epoch 24	Training Accuracy = 0.9919999837875366
Epoch 25	Training Accuracy = 0.9919999837875366
Epoch 26	Training Accuracy = 0.9909999966621399
•	
Epoch 27	Training Accuracy = 0.9890000224113464
Epoch 28	Training Accuracy = 0.990999966621399
Epoch 29	Training Accuracy = 0.9919999837875366
Epoch 30	Training Accuracy = 0.9919999837875366
Epoch 31	Training Accuracy = 0.9919999837875366
Epoch 32	Training Accuracy = 0.9919999837875366
Epoch 33	Training Accuracy = 0.9919999837875366
Epoch 34	Training Accuracy = 0.9919999837875366
Epoch 35	Training Accuracy = 0.9900000095367432
Epoch 36	Training Accuracy = 0.990999966621399
Epoch 37	Training Accuracy = 0.9900000095367432
Epoch 38	Training Accuracy = 0.990999966621399
Epoch 39	Training Accuracy = 0.9909999966621399
Epoch 40	Training Accuracy = 0.9919999837875366
Epoch 41	Training Accuracy = 0.9909999966621399
Epoch 42	Training Accuracy = 0.9919999837875366
Epoch 43	Training Accuracy = 0.9919999837875366
•	
Epoch 44	Training Accuracy = 0.9919999837875366
Epoch 45	Training Accuracy = 0.9919999837875366
Epoch 46	Training Accuracy = 0.9919999837875366
Epoch 47	Training Accuracy = 0.9919999837875366
Epoch 48	Training Accuracy = 0.9919999837875366
Epoch 49	Training Accuracy = 0.9919999837875366
Done training!	
CPU times: user	3min 20s, sys: 4.59 s, total: 3min 24s

Make a Prediction

```
im = Image.open('/content/drive/MyDrive/MNIST/2.png')
im
```


img_array

array([[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
[0, 0,	0] _; 0,	, 0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
L	0,	0,	-	0,	-	-	0,	0,	0,	0,	-	-	-
	0,	0]						•	•	•	•		
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
г	0, 0,	0] _: 0,	, 0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
[0, 0,	0, 0,	-	0, 0,	-	-	-	0, 0,		-	-	-	-
	0,	0] _.		•,	•,	٠,	•,	٠,	٠,	٠,	٠,	٠,	٠,
[0,	0,	0,	0,	0,	0,	0,	0,	38,	111,	160,	170,
=		-		0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
-	0,	0]		•	•	•	•	_	454	400	426		
L	0,	0,		0,		-	-	-	134,	-	-	-	-
	95, 0,	180, [0]		39,	0,	0,	0,	0,	0,	0,	0,	0,	0,
Γ	0,	0,	, 0,	0,	0,	0,	2,	157,	174,	19,	0,	0,	0,
-	ø,	ø,		208,				ø,		-	ø,	0,	0,
	0,	0]	,										
[0,	0,	-	-	-		111,		6,	0,	-	0,	-
	0,	0,		143,	142,	0,	0,	0,	0,	0,	0,	0,	0,
[0, 0,	0] _: 0,		0,	0,	10	206,	40,	0,	0,	0,	0,	0,
L	0,	0,		-	206,	-	0,	9,	0,	0,	0,	0,	0,
	0,	0]		,		- ,	- ,	-,	-,	-,	- ,	- ,	
[0,	0,	0,	0,	0,	-	186,	0,	0,	0,	0,	0,	0,
	0,	0,		0,	186,	61,	0,	0,	0,	0,	0,	0,	0,
г	0,	0]		0	0	152	100	•	•	•	0	•	0
[0, 0,	0, 0,	0, 0,	-	0, 157,		-		0, 0,	0, 0,	0, 0,	0, 0,	0, 0,
	0,	0, 0],		0,	137,	20,	0,	0,	0,	0,	0,	0,	0,
[0,		0,	3,	199,	53,	0,	0,	0,	0,	0,	0,
	0,	0,	0,		154,	98,	0,	0,	0,	0,	0,	0,	0,
-	0,	0]		•	_	4-4		_	_	_	_	_	_
[0,	0,	0,		4,			-	0,	0,	0,	0,	0,
	0, 0,	0, 0]		⊥,	189,	50,	0,	0,	0,	0,	0,	0,	0,
]	0,	0,	, 0,	0,	0,	1,	0,	0,	0,	0,	0,	0,	0,
-	0,	0,	-		204,		0,	0,	0,	0,	0,	0,	0,
	0,	0]											
[0,	0,	0,			0,	0,	0,	0,	0,	0,	0,	
	0,	0,		142,	139,	0,	0,	0,	0,	0,	0,	0,	0,
]	0, 0,	0] _. 0,	, 0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
L	0,	0,		209,		0,	0,	0,	0,	0,	0,	0,	0,
	0,	0]				•		•	•	•		•	•
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,
	0,		216,	55,	0,	0,	0,	0,	0,	0,	0,	0,	0,
г	0, a	0], a	, a	a	a	a	a	а	а	а	a	а	a
•	νı	И	<i>7</i> 1	<i>ν</i> ι	<i>ν</i> ι	<i>ν</i> 1	<i>ν</i> ι	<i>ν</i> ι	<i>ν</i> ι	<i>ν</i> ι	<i>ν</i> 1	<i>ν</i> 1	И

```
[ 0, 0, 0, 0, 0,
                                    ر ∪
                                        ر ∪
                                            ر ∪
                                               ر ∪
                                                        ر ∪
                                                            ر ∪
           14, 199, 97,
                       0, 0, 0, 0,
                                       0,
                                            0,
                                                       0,
                                                            0,
           0, 0],
         [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30,
          189, 134, 0, 0, 0, 0, 0, 0, 0, 0,
                                                       0, 0,
              0],
            0,
                               0, 0, 0,
                                            0,
         [ 0,
                0, 0,
                                               0,
                                                   0, 63, 211,
prediction = sess.run(fetches=tf.argmax(output, axis=1), feed_dict={X:[test_img]})
print(f'Prediction for test image is {prediction}')
    Prediction for test image is [2]
```

Testing and Evaluation

```
test_accuracy = sess.run(fetches=accuracy, feed_dict={X:x_testing, Y:y_testing})
print(f'Accuracy on test set is {test_accuracy:0.2%}')
     Accuracy on test set is 97.66%
def predict_test_image(Img_url):
  im = Image.open(Img_url)
  img = im.resize((28, 28))
  bw = img.convert('L')
  img_array = np.invert(bw)
 test_img = img_array.ravel()
  prediction = sess.run(fetches=tf.argmax(output, axis=1), feed_dict={X:[test_img]})
  print(f'Prediction for test image is {prediction}')
def predict_test_image1(Img_url):
  im = Image.open(Img_url)
  img = im.resize((28, 28))
 bw = img.convert('L')
  img_array = np.invert(bw)
 test_img = img_array.ravel()
  prediction = sess.run(fetches=tf.argmax(output, axis=1), feed_dict={X:[test_img]})
  print(f'Prediction for test image is {prediction}')
```

Prediction 1

```
img = Image.open('/content/drive/MyDrive/MNIST/1.png')
display(img)
predict test image('/content/drive/MyDrive/MNIST/1.png');
```


Prediction for test image is [1]

Prediction 2

```
img = Image.open('/content/drive/MyDrive/MNIST/2.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/2.png');
```


Prediction for test image is [2]

Prediction 3

```
img = Image.open('/content/drive/MyDrive/MNIST/3.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/3.png');
```


Prediction for test image is [3]

Prediction 4

```
img = Image.open('/content/drive/MyDrive/MNIST/4.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/4.png');
```


Prediction for test image is [4]

```
img = Image.open('/content/drive/MyDrive/MNIST/ii_4.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/ii_4.png');
```


Prediction for test image is [4]

```
img = Image.open('/content/drive/MyDrive/MNIST/8.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/8.png');
```


Prediction for test image is [8]

```
img = Image.open('/content/drive/MyDrive/MNIST/7777.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/7777.png');
```


Prediction for test image is [7]

```
img = Image.open('/content/drive/MyDrive/MNIST/22222.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/22222.png');
```


Prediction for test image is [2]

```
img = Image.open('/content/drive/MyDrive/MNIST/55555.png')
display(img)
predict_test_image('/content/drive/MyDrive/MNIST/555555.png');
```


Prediction for test image is [8]

Webpage

```
temp = test_accuracy*100
model_accuracy = round(temp,2)
df = px.data.tips()# Build App
app = JupyterDash(__name___)
app.layout = html.Div([
    html.H1("ML SEMESTER PROJECT"),
    html.H1("DIGIT RECOGNITION"),
    html.H2("Model Accuracy: {}%".format(model_accuracy)),
    html.H2("Img:"),
    #html.Img(src = "https://drive.google.com/uc?export=view&id=1UcMUe3ifP9ijRuQtHWavWsvVnF
    html.Img(src = "https://drive.google.com/uc?export=view&id=1_L1CCgQ-x1c5FCeExEPmXoXmBpr
    html.H2("Prediction: {}".format(prediction)),
])
# app.run_server(mode='external')
app.run_server(host="127.0.0.1", port="8000")
     Dash app running on:
     http://127.0.0.1:8000/
```

Reset for the Next Run

```
train_writer.close()
validation_writer.close()
sess.close()
tf.reset_default_graph()
```

21 of 21