Заняття №13

Інтервальне оцінювання невідомих параметрів розподілів

При малих об'ємах вибірки точкові оцінки невідомого параметру розподілу приводять до значних відхилень від істинного значення цього параметра і це унеможливлює їх подальше використання. Тому при малих об'ємах вибірки використовують інтервальні оцінки, які визначаються випадковими кінцями інтервалу $\hat{\theta}_1$ та $\hat{\theta}_2$.

Означення 1. Надійним інтервалом для параметра θ з рівнем надійності $1-\alpha$ $(0<\alpha<1)$ будемо називати інтервал $(\hat{\theta}_1,\hat{\theta}_2)$, який задовольняє умовам:

- а) його межі $\hat{\theta}_1 = g_1(\xi_1,...,\xi_n)$, $\hat{\theta}_2 = g_2(\xi_1,...,\xi_n)$ є функціями від вибірки і не залежать від параметра θ ;
- б) ймовірність покриття цим інтервалом невідомого параметра heta ϵ не меншою ніж $1\!-\!lpha$, тобто

$$P(\hat{\theta}_1 < \theta < \hat{\theta}_2) \ge 1 - \alpha. \tag{1}$$

На практиці, в якості α , вибирають мале число і найчастіше одне з наступних: 0,1; 0,05; 0,01; 0,005; 0,001.

Вочевидь, ϵ слушним прагнути до того, щоб інтервал, який покрива ϵ істинне значення невідомого параметра, був як найменшої довжини, і тому умова

$$\hat{\theta}_2 - \hat{\theta}_1 \rightarrow \min$$

завжди буде братися до уваги при побудові надійного інтервалу.

З центральної граничної теореми маємо такий результат

$$P\left(\sqrt{I(\hat{\theta}_n)}|\hat{\theta}_n - \theta| < C_{\alpha}\right) \to \Phi(C_{\alpha}) - \Phi(-C_{\alpha}), \quad n \to \infty,$$
 (2)

де $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ - функція розподілу стандартного нормального закону.

Запишемо співвідношення (2) через функцію Лапласа

$$P\left(\sqrt{I(\hat{\theta}_n)}|\hat{\theta}_n - \theta| < C_{\alpha}\right) \to 2\Phi_1(C_{\alpha}), \ n \to \infty, \tag{3}$$

де $\Phi_1(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$ - функція Лапласа.

Якщо прирівняти співвідношення (1) і (3), то будемо мати

$$2\Phi_1(C_\alpha) = 1 - \alpha, \Rightarrow C_\alpha = \Phi_1^{-1} \left(\frac{1 - \alpha}{2}\right).$$

 $\mathit{Таблиця}\ 1$ для критичних величин стандартного нормального розподілу C_{α} :

$1-\alpha$					
C_{α}	1,28	1,64	1,96	2,57	3,29

Цієї таблиці буде достатньо для задач на побудову надійних інтервалів, але в загальному випалку, треба вміти користуватися таблицею значень функції Лапласа

	Таблиц	и 1. Знач	ения ф	ункції	Лапла	са Фі (л	$(1) = \frac{1}{\sqrt{2\pi}}$	- Sx e	12 dt.			$= \alpha i$ que:	ия 2. Значен а ступенна в	иня уд., вы волі А.	
	x 0	111	2	3	4	5	4	7	1 0			Щілы	ість розпод	úny z² (k)	
	0,0 0,000	0 00399	00798	01197		01991	02302	02790	102100	02506			121,	42	
	0,1 0398	3 04380	04776	05172	05567	05962	06356	06710	03100	07535		P 2 (k) (.	$v) = \frac{x^{k_2}}{\Gamma(k/2)} \frac{1}{2}$	1 X > 0.	
	0,2 0792	6 08317	08706	09095	09183	09971	10257	10612	11026	11100			1 (*/2) 2		
	0,3 1179	1 12172	12552	12930	13307	13683	14058	14431	1.1803	15173					
	0,4 1554	2 15910	16276	16640	17003	17361	17721	18087	18130	18793		(L	0,99	0,95	
	0,5 1914											1 1:			
	0,6 2257											5 1	0,00016	0,0039	
		4 26115										2	0,020	0,103	
-		4 29103										3	0,115	0,352	
		4 31859										1 4	0,30	0,71	
				0 20	-	5200	33	50.0				5	0,55	1,14	
	1.0 3413	4 34375	34614	34850	35083	35314	35543	35769	35993	36214		6	1,187	1.63	
		3 36650										7	1,24	2.17	
		3 38686										8	1,65	2,73	
		20 40490										9	2,09	3,32	
		24 42073										10	2,56	3,94	
	1,5 433	19 43448	43574	43699	43822	43943	44062	44179	144295	44408		11	3,1	4.6	
6	1,6 445	20 44630	44738	44845	44950	45053	45154	45254	45352	45449		12	3,6	5,2	
1	1,7 455	43 45637	45728	45818	45907	45994	46080	46164	46246	46327		13	4.1	5,9	
	1,8 4640	07 46485	46562	46638	46712	46784	46856	46926	46995	47062		14	4.7 5,2	7,3	
	1,9 471	28 47193	47257	47320	47381	47441	47500	47558	47615	47670		15	5,8	8,0	
				100							13.45	17	6,4	8,7	
	2,0 477	25 47778	47831	47882	47932	47982	48030	48077	48124	48169		18	7,0	9,4	
	2,1 482	14 48257	48300	48341	48382	48422	48461	48500	18537	48374		19	7,6	10,1	
	2,2 486	10 48645	48679	48713	48745	48778	48809	48840	10121	10159		20	8,3	10,9	
	2,3 489	28 48956	48983	49010	49036	19061	19086	10321	103.13	19361		21	8,9	11,6	
	2,4 491	80 49202	49224	149245	49266	19286	10.177	10 102	10506	19520		22	9,5	12,3	
	2,5 493	79 49396	49413	49430	49446	10509	10600	10621	19632	19643		23	10,2	13,1	
	2,6 495	34 49547 53 49664	49560	495/3	49383	19702	19711	19720	49728	49736		24	10,9	13,8	
	2,7 496	44 49752	490/4	49003	10774	19781	19788	49795	49801	49807		25	11,5	14,6	
	2,8 497	13 49819	10925	10931	10836	19811	49846	49851	49856	49861		26	12,2	15,4	
						10021	3.3	49952	3,4	49966		27	12,9	16.2	
	3,0	0,49865	3,1	49903		49931	3,8	49993		49995		28 29	13,6	17,7	
	3,5	49977	3,6	49984	3,1	499.69	3,0	47733	1			30	15,0	18,5	
	4,0	499968	1		100				-				Anna Anis Vinine	1010	
	4,5	499997 49999997			1	1000		-			I BO				

У цій таблиці, в порядку зростання, записані значення функції Лапласа. Причому, мається на увазі, що перед кожним числом стоїть нуль цілих і кома. У стовпчику $\mathcal X$ записані аргументи функції Лапласа, а у рядку $\mathcal X$ записаний ще один розряд після коми для значення аргументу функції Лапласа.

Приклад 1.

Нехай рівень надійності
$$1-\alpha=0,9$$
. Тоді $C_{\alpha}=\Phi_{1}^{-1}\bigg(\frac{1-\alpha}{2}\bigg)=\Phi_{1}^{-1}\big(0,45\big)$. Далі в

таблиці шукаємо число, яке першим перевищить 0,45. Таким числом буде 45053. А нас буде цікавити число, яке передує 45053. Таким числом буде 44950. Тепер шукаємо аргумент, при якому функція Лапласа дорівнює 0,44950. По стовпчику x це буде 1,6, а по рядку x це буде 4. Таким чином, шуканим аргументом функції Лапласа буде $C_{\alpha}=1,64$.

Тепер з співвідношення (3) запишемо загальний вигляд надійного інтервалу рівня $1-\alpha$ для параметра θ

$$\hat{\theta}_n - \frac{C_{\alpha}}{\sqrt{I(\hat{\theta}_n)}} < \theta < \hat{\theta}_n + \frac{C_{\alpha}}{\sqrt{I(\hat{\theta}_n)}},$$

де $\hat{\theta}_n$ - оцінка параметра θ , знайдена за методом максимальної вірогідності;

 $I\Big(\hat{ heta}_{\!\scriptscriptstyle n}\Big)$ - кількість інформації по Фішеру в точці $\,\hat{ heta}_{\!\scriptscriptstyle n}^{}.$

Приклад 2.

На телефонній станції проводились спостереження за числом невірних з'єднань за хвилину. Результати спостережень наведено у таблиці

X_i	0	1	2	3	4	5	7
m_{i}	8	17	16	10	6	2	1

Відомо, що число невірних з'єднань має розподіл Пуассона з параметром θ $P(\xi=k)=rac{ heta^k}{k!}e^{- heta},\, heta>0,\, k=0,1,\dots$. Потрібно знайти надійний інтервал рівня 1-lpha=0.99 для параметра heta .

Розв'язання.

Шукаємо об'єм вибірки

$$n = \sum m_i = 60.$$

Шукаємо функцію вірогідності

$$L(x,\theta) = \prod_{k=1}^{n} P(\xi = x_k) = \prod_{k=1}^{n} \frac{\theta^{x_k}}{x_k!} e^{-\theta} = \frac{e^{\sum_{k=1}^{n} x_k}}{\prod_{k=1}^{n} x_k!} e^{-n\theta}.$$

$$\ln L(x,\theta) = \sum_{k=1}^{n} x_k \ln \theta - n\theta - \sum_{k=1}^{n} \ln x_k !$$

$$\frac{\partial}{\partial \theta} \ln L(x, \theta) = \frac{\sum_{k=1}^{n} x_k - n\theta}{\theta} = 0.$$

Звідси маємо
$$\hat{\theta} = \frac{\sum\limits_{i=1}^{n} x_i}{n} = \frac{\sum\limits_{i=1}^{s} x_i m_i}{n} = \frac{120}{60} = 2$$
.

Далі шукаємо кількість інформації по Фішеру

$$I(\theta) = -M \frac{\partial^2}{\partial \theta^2} \ln L(\xi, \theta) = M \frac{\sum_{k=1}^n \xi_k}{\theta^2} = \frac{n\theta}{\theta^2} = \frac{n}{\theta} = \frac{60}{2} = 30.$$

3 таблиці для критичних величин беремо $\,C_{\alpha}=2,57\,$ і будуємо надійний інтервал

$$2 - \frac{2,57}{\sqrt{30}} < \theta < 2 + \frac{2,57}{\sqrt{30}}$$
 and $1,53 < \theta < 2,57$.

Інтервальне оцінювання параметрів нормального розподілу $N(a,\sigma^2)$

При побудові надійних інтервалів для параметрів нормального розподілу, виділяють чотири випадки.

1) Надійний інтервал для математичного сподівання a , коли дисперсія σ^2 - відома

$$\overline{x} - C_{\gamma} \frac{\sigma}{\sqrt{n}} < a < \overline{x} + C_{\gamma} \frac{\sigma}{\sqrt{n}}$$

де
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^{n} x_i}{n}$$
 - вибіркове середнє,

 C_{γ} - критична величина стандартного нормального розподілу, яка залежить від рівня надійності та береться з наступної таблиці

Таблиця 1

$1-\gamma$	0,8	0,9	0,95	0,99	0,999
C_{γ}	1,28	1,64	1,96	2,57	3,29

2) Надійний інтервал для дисперсії σ^2 , коли математичне сподівання a - відоме

$$\frac{nS^2}{\chi_2^2} < \sigma^2 < \frac{nS^2}{\chi_1^2} ,$$

де $S^2 = \frac{1}{n} \sum_{i=1}^n (x_i - a)^2$ - вибіркова дисперсія, покращена відомим математичним

сподіванням a, χ_1^2 та χ_2^2 - критичні величини χ^2 - розподілу з n ступенями свободи.

Ці величини беруться з таблиці критичних величин для χ^2 - розподілу, в яку потрібно зайти з такими параметрами

$$P(\chi^2(n) > \chi_1^2) = \frac{2-\gamma}{2}, \ P(\chi^2(n) > \chi_2^2) = \frac{\gamma}{2}.$$

Таблиця 2. Значення $\chi^2_{k,\alpha}$ в залежності від ймовірності $P(\chi^2(n) > \chi^2_{k,\alpha}) = \alpha$ і числа ступенів свободи k .

	k.	0,99	0,95	0,90	0,10	0,05	0,01	
	1	0,00016	0,0039	0,016	2,7	3.8	6,6	
	2	0,020	0,103	0,211	4.6	6,0	9,2	
	3	0,115	0,352	0,584	6,3	7.8	11,3	
	4	0,30	0,71	1,06	7,8	9,5	13,3	
	5	0,55	1,14	1,61	9,2	11.1	15,1	
	6	1,187	1,63	2,20	10,6	12,6	15.8	
	7	1,24	2,17	2,83	12,0	14.1	18.5	
	8	1,65	2,73	3,49	13,4	15.5	20,1	
	9	2,09	3,32	4.17	14.7	16.9	21,7	
	10	2,56	3,94	4,86	16,0	18,3	23,2	
	11	3,1	4.6	5,6	17,3	19,7	24,7	
	12	3,6	5.2	6,3	18,5	21,0	26,2	
	13	4.1	5,9	7,0	19,8	22,4	27,7	
	14	4,7	6,6	7,8	21,1	23,7	29,1	
	15	5,2	7,3	8,5	22,3	25,0	30,6	
	16	5,8	8,0	9,3	23,5	26,3	32,0	
	17	6,4	8,7	10,1	24,8	27,6	33,4	
	18	7,0	9,4	10,9	26,0	28,9	34,8	
	19	7,6	10,1	11,7	27,2	30,4	36,2	
	20	8,3	10,9	12,4	28,4	31,4	37,6	
	21	8,9	11,6	13,2	29,6	32,7	38,9	
	22	9,5	12,3	14,0	30,8	33,9	40,3	
	23	10,2	13,1	14,8	32.0	35,2	41,6	
	24	10,9	13,8	15,7	33,2	36,4	43.0	
	25	11,5	14,6	16,5	34,4	37,7	44,3 45,6	
	26	12,2	15,4	17,3	35,6	38,9	47,0	
	27	12,9	16,2	18,1	36,7	40,1	48,3	
	28	13,6	16,9	18,9	37,9 39,1	42,6	49,6	
	29	14,3	17,7	19,8	40,3	43,8	50,9	
12	30	15,0	18,5	20,6	40,5	70,0	1	

Приклад 3.

Задано вибірку з 10 елементів з відомим математичним сподіванням, для якої підраховано вибіркову дисперсію S^2 =3. Побудувати надійний інтервал для дисперсії σ^2 , якщо рівень надійності $1-\gamma=0,9$.

Розв'язання.

Щоб знайти χ_1^2 з таблиці 2, нам потрібно визначити таку ймовірність $\frac{2-\gamma}{2}$. З умови прикладу відомо, що $\gamma=0,1$. Тоді $\frac{2-\gamma}{2}=\frac{2-0,1}{2}=0,95$. Кількість ступенів свободи k дорівнює об'єму вибірки k=n=10. Тепер, щоб зайти в таблицю ми беремо k=10 та $\alpha=0,95$. Перетин відповідних рядка і стовпця дають $\chi_1^2=3,94$.

Аналогічно шукаємо χ_2^2 . Тепер нам потрібно визначити ймовірність $\frac{\gamma}{2}$, виходячи з того, що рівень надійності $1-\gamma=0,9$. Тоді $\frac{\gamma}{2}=\frac{0,1}{2}=0,05$. В таблицю ми заходимо з k=10 та $\alpha=0,05$. Отже, $\chi_2^2=18,3$.

Можемо будувати надійний інтервал

$$\frac{10 \cdot 3}{18,3} < \sigma^2 < \frac{10 \cdot 3}{3,94}$$
 and $1,64 < \sigma^2 < 7,61$.

3) Надійний інтервал для математичного сподівання a , коли дисперсія σ^2 - невідома

$$\overline{x} - t_{\gamma} \frac{\hat{S}}{\sqrt{n}} < a < \overline{x} + t_{\gamma} \frac{\hat{S}}{\sqrt{n}},$$

де
$$\overline{x} = \frac{\displaystyle\sum_{i=1}^{n} x_i}{n}$$
 - вибіркове середнє,

$$\hat{S} = \sqrt{\hat{S}^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}},$$

 t_{γ} - критична величина розподілу Стьюдента з n-1 ступенем свободи, яка береться з таблиці 3, в яку входимо з кількістю ступенів свободи n-1.

4) Надійний інтервал для дисперсії σ^2 , коли математичне сподівання a - невідоме

$$\frac{(n-1)\hat{S}^2}{\chi_2^2} < \sigma^2 < \frac{(n-1)\hat{S}^2}{\chi_1^2},$$

де
$$\hat{S}^2 = \frac{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$$
, χ_1^2 та χ_2^2 - критичні величини χ^2 - розподілу з $n-1$

ступенем свободи. Ці величини беруться з таблиці 2 критичних величин для χ^2 - розподілу, в яку потрібно зайти з такими параметрами

$$P(\chi^2(n-1) > \chi_1^2) = \frac{2-\gamma}{2}, \ P(\chi^2(n-1) > \chi_2^2) = \frac{\gamma}{2}.$$

Потрібно звернути увагу, що в цьому випадку, на відміну від випадку з відомим математичним сподіванням, кількість ступенів свободи береться n-1.

Таблиця 3. Значення t_{α} для розподілу Стьюдента в залежності від ймовірності $P(\left|t_{k}\right| < t_{\alpha}) = 1 - \alpha$ і числа ступенів свободи k .

	(2)					
r	0,90	0.05	0,99	1		
$1-\alpha$	0,70	0,95	0,99			
l k	3,417 7	+	Ling	11: "		
	6,31	12,71	63,7	4.		
2	2,92	4,30	9,92.			
3	2,35	3,18	5,84		4	
4 .	2,13	2,77	4,60	1 12		
5	2,02	2,57	4,03			
6	1,943	2,45	3,71			
7	1,895	2,36	3,50			
8	1,860	2,31	3,36			No.
9	1,833	2,26	3,25		4	
10	1,812	2,23	3,17			
11	1,796	2,20	3,11			
12	1,782	2,18	3,06			
13	1,771	2,16	- 3,01			
14	1,761	2,14	2,98		71	
15	1,753	2,13	2,95			
16	1,733	, 2,12	2,92			
17	1,746		2,90			
	1,740	2,11	2,88			
18	1,734	2,10				
19	1,729	2,09	2,86	Maria Caracana		
20	1,725	2,09	2,84	W.:		
25	1,708	2,06	2,79			
30	1,697	2,04	2,46			
80	1,659	1,991	2,640	And the same		
100	1,651	1,984	2,627			
00	1,645	1,960	2,576			

Приклад 4.

Побудувати надійний інтервал для параметрів a і σ^2 нормального розподілу по вибірці: 0,2; 0,5; 1,0; 1,5; 0,8; 1,0; 2,0. Рівень надійності складає 0,9.

Розв'язання.

Об'єм вибірки n=7 . Шукаємо вибіркове середнє

$$\overline{x} = \frac{0,2+0,5+1+1,5+0,8+1+2}{7} = \frac{7}{7} = 1.$$

Шукаємо вибіркову дисперсію

$$\hat{S}^2 = \frac{1}{6} \Big((0, 2 - 1)^2 + (0, 5 - 1)^2 + (0)^2 + (1, 5 - 1)^2 + (0, 8 - 1)^2 + (0)^2 + (1)^2 \Big) = 0,36.$$

3 таблиці 3 шукаємо t_γ . Беремо кількість ступенів свободи k=n-1=6 та беремо рівень надійності 0,9. 3 таблиці 3 маємо, що t_γ =1,943. Далі будуємо інтервал для a

$$1 - 1,943 \frac{\sqrt{0,36}}{\sqrt{7}} < a < 1 + 1,943 \frac{\sqrt{0,36}}{\sqrt{7}} \text{ ago } 0,55 < a < 1,45.$$

Щоб побудувати інтервал для дисперсії, виконуємо дії аналогічні описаним у прикладі 1. Але враховуємо, що кількість ступенів свободи буде k=n-1=6. Ймовірності, з якими

ми заходимо у таблицю 2, будуть
$$\frac{2-\gamma}{2} = \frac{2-0.1}{2} = 0.95$$
, $\frac{\gamma}{2} = \frac{0.1}{2} = 0.05$. Тоді

відповідні критичні величини дорівнюють $\chi_1^2 = 1,63$, $\chi_2^2 = 12,6$. Надійний інтервал для дисперсії буде мати вигляд

$$\frac{6 \cdot 0.36}{12.6} < \sigma^2 < \frac{6 \cdot 0.36}{1.63}$$
 and $0.17 < \sigma^2 < 1.33$.

Розподіл χ^2 (Розподіл Пірсона).

Нехай задано n незалежних однаково розподілених випадкових величин $\xi_1,\xi_2,...,\xi_n$, таких, що кожна $\xi_i,i=\overline{1,n}$ розподілена за стандартним нормальним законом. Тоді $\chi^2(n)=\sum_{i=1}^n \xi_i^2$ буде розподілена за χ^2 -розподілом з n ступенями свободи.

Розподіл Стьюдента (*t*-розподіл).

Нехай задано n+1 незалежних однаково розподілених випадкових величин $\xi_0, \xi_1, \xi_2, ..., \xi_n$, таких, що кожна $\xi_i, i=\overline{0,n}$ розподілена за стандартним нормальним законом. Тоді $t(n)=\frac{\xi_0}{\sqrt{\frac{1}{n}\sum_{i=1}^n \xi_i^2}}=\frac{\xi_0}{\sqrt{\frac{1}{n}\chi^2(n)}}$ буде мати розподіл Стьюдента з n

ступенями свободи.

ЗАДАЧІ

1) Побудувати надійний інтервал для параметрів a і σ^2 нормального розподілу по вибірці: 0,6; 2,4; 2,1; 1,4; 1,2; 4,8; 0,9; 1,1; 3,5; 3,0. Рівень надійності складає 0,9.