MITSUBISHI IGBT MODULES

CM400HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

Outline Drawing and Circuit Diagram

Dimensions	s Inches	Millimeters
Α	4.21	107.0
В	3.661±0.01	93.0±0.25
С	2.44	62.0
D	1.89±0.01	48.0±0.25
E	1.42+0.04/-0.02	36.0+1.0/-0.5
F	1.14	29.0
G	1.02+0.04/-0.2	25.8+1.0/-0.5
Н	0.94	24.0

Inches	Millimeters
0.79	20.0
0.69	17.5
0.63	16.0
0.35	9.0
0.28	7.0
0.26 Dia.	Dia. 6.5
M6 Metric	M6
M4 Metric	M4
	0.79 0.69 0.63 0.35 0.28 0.26 Dia. M6 Metric

Description:

Mitsubishi IGBT Modules are designed for use in switching applications. Each module consists of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- □ Low Drive Power
- ☐ Low V_{CE(sat)}
- ☐ Discrete Super-Fast Recovery Free-Wheel Diode
- ☐ High Frequency Operation
- ☐ Isolated Baseplate for Easy Heat Sinking

Applications:

- ☐ AC Motor Control
- ☐ Motion/Servo Control
- □ UPS
- □ Welding Power Supplies

Ordering Information:

Example: Select the complete part module number you desire from the table below -i.e. CM400HA-24H is a 1200V (V_{CES}), 400 Ampere Single IGBT Module.

Туре	Current Rating Amperes	V _{CES} Volts (x 50)			
CM	400	24			

CM400HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

Absolute Maximum Ratings, T_j = 25 $^{\circ}$ C unless otherwise specified

Ratings	Symbol	CM600HU-12H	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Collector-Emitter Voltage (G-E SHORT)	V _{CES}	1200	Volts
Gate-Emitter Voltage (C-E SHORT)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	IC	400	Amperes
Peak Collector Current ($T_j \le 150$ °C)	I _{CM}	800*	Amperes
Emitter Current** (T _C = 25°C)	ΙΕ	400	Amperes
Peak Emitter Current**	I _{EM}	800*	Amperes
Maximum Collector Dissipation (T _c = 25°C)	P _c	2800	Watts
Mounting Torque, M6 Main Terminal	-	1.96~2.94	N⋅m
Mounting Torque, M6 Mounting	_	1.96~2.94	N · m
Mounting Torque, M4 Terminal	_	0.98~1.47	N⋅m
Weight	-	400	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{iso}	2500	Vrms
Pode width and anothing arts should be such that the decise investigation for any art way.		<u> </u>	•

^{*} Pulse width and repetition rate should be such that the device junction temperature (T_j) does not exceed $T_{j(max)}$ rating. **Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).s not exceed $T_{j(max)}$ rating.

Static Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutoff Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0V$	_	_	2.0	mA
Gate Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0V	-	_	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 40mA, V _{CE} = 10V	4.5	6.0	7.5	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 400A, V _{GE} = 15V	-	2.5	3.4**	Volts
		$I_C = 400A$, $V_{GE} = 15V$, $T_j = 150$ °C	-	2.25	-	Volts
Total Gate Charge	Q _G	V _{CC} = 600V, I _C = 400A, V _{GE} = 15V	_	2000	_	nC
Emitter-Collector Voltage	V _{EC}	I _E = 400A, V _{GE} = 0V	_	_	3.4	Volts

^{**} Pulse width and repetition rate should be such that device junction temperature rise is negligible.

Dynamic Electrical Characteristics, $T_i = 25$ °C unless otherwise specified

Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitan	ice	C _{ies}		_	-	80	nF
Output Capacita	ance	C _{oes}	$V_{GE} = 0V, V_{CE} = 10V$	_	_	28	nF
Reverse Transfe	er Capacitance	C _{res}		-	-	16	nF
Resistive	Turn-on Delay Time	t _{d(on)}		-	-	300	ns
Load	Rise Time	t _r	$V_{CC} = 600V, I_C = 400A$	-	-	500	ns
Switching	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V, R_G = 0.78\Omega$	-	-	350	ns
Times	Fall Time	t _f		-	-	350	ns
Diode Reverse	Recovery Time	t _{rr}	$I_E = 400A$, $di_E/dt = -800A/\mu s$	-	-	250	ns
Diode Reverse	Recovery Charge	Q _{rr}	$I_E = 400A$, $di_E/dt = -800A/\mu s$	-	2.97	-	μС

Thermal and Mechanical Characteristics, T_j = 25 $^{\circ}$ C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per IGBT	-	_	0.045	°C/W
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per FWDi	-	-	0.09	°C/W
Contact Thermal Resistance	R _{th(c-f)}	Per Module, Thermal Grease Applied	-	-	0.040	°C/W

CM400HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

CM400HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

