

一、计算题(共 3 小题,每小题 5 分,共 15 分)

某人共买了11个水果,其中有3个是二级品,8个是一级品,随机地将水果分给A、

- B、C三个人,各人分得4个、6个、1个
 - (1) 求C未拿到二级品的概率。
 - (2) 已知C未拿到二级品,求A,B均拿到二级品的概率。
 - (3) 求A, B均拿到二级品而C未拿到二级品的概率。

解:以 A,B,C 分别表示事件" A,B,C 取到二级品",则 \bar{A},\bar{B},\bar{C} 分别表示事 件"A, B,C 末取到二级品".

(1)
$$P(\bar{C}) = \frac{8}{11}$$
.

(2) 就是需要求 $P(AB \mid \bar{C})$. 已知 C 末取到二级品, 这时 A,B 将 7 个一级品 和 3 个二级品全部 分掉. 而 A,B 均取到二级品, 只需 A 取到 1 个至 2 个二级品, 其他的为一级品. 于是

$$P(AB \mid \bar{C}) = \frac{\binom{3}{1}\binom{7}{3}}{\binom{10}{4}} + \frac{\binom{3}{2}\binom{7}{2}}{\binom{10}{4}} = \frac{4}{5}$$

(3) $P(AB\bar{C}) = P(AB \mid \bar{C})P(\bar{C}) = \frac{32}{55}$.

二、计算题(共 2 小题,每小题 5 分,共 10 分)

一批鸡蛋,优良品种占三分之二,一般品种占三分之一,优良品种蛋重(单位:

- 克) $X_1 \sim N(55,5^2)$, 一般品种蛋重 $X_2 \sim N(45,5^2)$ 。
 - (1) 从中任取一个, 求其重量大于50克的概率。
 - (2) 从中任取两个, 求它们的重量都小于50克的概率。

解:

(1) 设 A: 任取一蛋其重量大于 50 克;

 B_1 : 任取一蛋为优良品种; B_2 : 任取一蛋为一般品种则

$$B_1, B_2 \subseteq \mathbb{R}$$
, $B_1 \cup B_2 = S, P(B_1) = \frac{2}{3}, P(B_2) = \frac{1}{3}$

$$P(A \mid B_1) = P(X_1 > 50) = 1 - \Phi\left(\frac{50 - 55}{5}\right) = 0.8413$$

 $P(A \mid B_2) = P(X_2 > 50) = 1 - \Phi\left(\frac{50 - 45}{5}\right) = 0.1587$
由全概率公式得

$$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2)$$
$$= \frac{2}{3} \times 0.8413 + \frac{1}{3} \times 0.1587 = 0.6138$$

(2) 从中任取 2 个,每个蛋重大于 50 克的概率 p = 0.6138 小于 50 克的概率 q = 1 - p = 1 - 0.6138

设任取 2 个, 有Y个大于 50 克, 则 $Y \sim B(2,p)$ 于是所求概率为

$$P(Y = 0) = C_2^0 p^0 q^2 = (1 - 0.6138)^2 = 0.1492$$

三、计算题(共 3 小题,每小题 5 分,共 15 分)

设随机变量X,Y的概率密度为

$$f(x,y) = \begin{cases} be^{-(x+y)}, 0 < x < 1, 0 < y < +\infty \\ 0, \cancel{\sharp} \not = \end{cases}$$

- (1) 试确定常数b.
- (2) 求两边缘概率密度.
- (3) 求函数 $U = \max\{X,Y\}$ 的分布函数.

解: (1) 由

$$1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{1} b e^{-(x+y)} dy dx$$
$$= b \left[\int_{0}^{\infty} e^{-y} dy \right] \left[\int_{0}^{1} e^{-x} dx \right] = b(1 - e^{-1})$$

得

$$b = \frac{1}{1 - e^{-1}}$$

(2)
$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \begin{cases} \frac{1}{1 - e^{-1}} \int_{0}^{\infty} e^{-x} e^{-y} dy = \frac{e^{-x}}{1 - e^{-1}}, & 0 < x < 1, \\ 0, & \text{ i.e.} \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx = \begin{cases} \frac{1}{1 - e^{-1}} \int_0^1 e^{-x} e^{-y} dx = e^{-y}, & y > 0, \\ 0, & \text{ 其他.} \end{cases}$$

(3) 由 (2) 知 $f(x,y) = f_X(x)f_Y(y)$, 故 X,Y 相互独立. 分别记 $U = \max\{X,Y\},X$ 和 Y 的分布函数为 $F_U(u),F_X(x)$ 和 $F_Y(y)$,则有

$$F_U(u) = F_X(u)F_Y(u)$$

由 (2) 知

$$F_X(u) = \int_{-\infty}^{u} f_X(x) dx = \begin{cases} 0, & u < 0, \\ \int_{0}^{u} \frac{e^{-x}}{1 - e^{-1}} dx, & 0 \le u < 1, \\ 1, & u \ge 1 \end{cases}$$

$$= \begin{cases} 0, & u < 0, \\ \frac{1 - e^{-u}}{1 - e^{-1}}, & 0 \le u < 1, \\ 1, & u \ge 1. \end{cases}$$

$$F_{Y}(u) = \int_{-\infty}^{u} f_{Y}(y) dy = \begin{cases} 0, & u < 0, \\ \int_{0}^{u} e^{-y} dy, & u \ge 0 \end{cases}$$
$$= \begin{cases} 0, & u < 0, \\ 1 - e^{-u}, & u \ge 0 \end{cases}$$

将 $F_{\mathbf{Y}}(u)$, $F_{\mathbf{Y}}(u)$ 的表达式代人 (A) 式, 得到 $U = \max\{X,Y\}$ 的分布函数为

$$F_{U}(u) = \begin{cases} 0, & u < 0, \\ \frac{(1 - e^{-u})^{2}}{1 - e^{-1}}, & 0 \le u < 1, \\ 1 - e^{-u}, & u \ge 1. \end{cases}$$

四、证明题(共1小题,共10分)

连续型随机变量X具有数学期望 $E(X) = \mu$,方差 $D(X) = \delta^2$,则对于任意正数 ε ,证明

$$P\{|X - \mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$

证: 设 X 的概率密度为 f(x),则有:

$$P\{|X - \mu| \ge \varepsilon\} = \int_{|x - \mu| \ge \varepsilon} f(x) dx \le \int_{|x - \mu| \ge \varepsilon} \frac{|x - \mu|^2}{\varepsilon^2} f(x) dx$$
$$\le \frac{1}{\varepsilon^2} \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \frac{\sigma^2}{\varepsilon^2}.$$

五、计算题(共2小题,每小题5分,共10分)

某校区共有8000名学生,每名学生在周六早上独立地选择出门或者不出门,出门的概率为0.1。学生出门时,会优先选择共享单车出行。

- (1) 假设每次使用共享单车花费1.5元, 求该校区学生周六早上在共享单车上的总花费超过1300元概率
- (2) 该校区需要部署多少台共享单车,能以 90% 的概率保证所有出门学生都可以找到 共享单车?

解:

X: 出门学生数

 $X \sim b(8000, 0.1)$

n = 8000

p = 0.1

中心极限定理
$$\frac{X-np}{\sqrt{nP(1-P)}} \sim N(0.1)$$

(1)

$$= P(X > \frac{1300}{1.5})$$

$$=1-\phi(\frac{\frac{1300}{1.5}-800}{\frac{\sqrt{800\times0.9}}{}})$$

$$= 1 - \phi(2.48) = 0.0066$$

(2) 求N, 使得

$$P(X \le N) \ge 90\%$$

$$P(0 \le \frac{X - nP}{\sqrt{nP(1 - P)}} \le \frac{N - nP}{\sqrt{nP(1 - P)}})$$
$$= \phi\left(\frac{N - 800}{\sqrt{800 \times 0.9}}\right) - \phi\left(\frac{-800}{\sqrt{720}}\right)$$

$$\approx \phi \left(\frac{N - 800}{\sqrt{800 \times 0.9}} \right)$$

查表得
$$\phi(1.29) > 0.90$$

 $\phi(1.28) < 0.90$
 $\frac{N - 800}{\sqrt{800 \times 0.9}} > 1.29$
 $N > 800 + 1.29\sqrt{800 \times 0.9} = 834.6$
 $\therefore N = 835$

六、计算题(共3小题,每小题5分,共15分)

在总体 N(12,4) 中随机抽一容量为5的样本X1, X2, X3, X4, X5.

- (1) 求样本均值 \overline{X} 落在11.2到13.2之间的概率.
- (2) 求概率 $P(\max\{X_1, X_2, X_3, X_4, X_5\} > 14)$ 和 $P(\min\{X_1, X_2, X_3, X_4, X_5\} < 9)$.
- (3) 求 X_1 与样本均值之差的绝对值的期望 $E(|X_1-\overline{X}|)$ 和方差 $D(|X_1-\overline{X}|)$ 解:

(1)
$$X \sim N(12,2^2)$$
 $\bar{X} \sim N(12,0.8)$ $P(11.2 < \bar{X} < 13.2)$ $= P(-\frac{0.8}{\sqrt{0.8}} < \frac{\bar{X} - 12}{\sqrt{0.8}} < \frac{1.2}{\sqrt{0.8}})$ $= P(-0.89 < Z < 1.34)$ …① 其中 $Z \sim N(0,1)$. 查表得

(2)
$$P(\max\{X_1, ..., X_5\} > 14)$$

 $= 1 - P(\max\{X_1, ..., X_5\} < 14)$
 $= 1 - P(X_1 < 14, ..., X_5 < 14)$
 $= 1 - P^5 \left(\frac{X_1 - 12}{2} < 1\right)$
 $= 1 - 0.8413^5 = 0.5785$
 $P(\min\{X_1, ..., X_5\} < 9)$
 $= 1 - P(\min\{X_1, ..., X_5\} > 9)$
 $= 1 - \left(1 - P(X_1 < 9)\right)^5$
 $= 1 - \left(1 - P\left(\frac{X_1 - 12}{2} < -1.5\right)\right)^5$

$$\begin{aligned}
&= 1 - \left(1 - (1 - 0.9332)\right)^5 = 0.2923 \\
&(3) \ X_1 - \bar{X} \\
&= X_1 - \left(\frac{X_1 + \dots + X_5}{5}\right) \\
&= \frac{4}{5} X_1 - \frac{1}{5} X_2 - \dots - \frac{1}{5} X_5 \sim N\left(0, \frac{16}{25} \times 4 + \frac{1}{25} \times 4 + \dots + \frac{1}{25} \times 4\right) \\
&\sim N(0, \frac{16}{5}) \\
&\therefore E|X_1 - \bar{X}| \\
&= \int_{-\infty}^{+\infty} |x| \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} dx \\
&= 2 \int_{0}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}} dx \\
&\rightleftharpoons z = \frac{x^2}{2\sigma^2} \quad , \quad dz = \frac{x}{\sigma^2} dx \\
&\Longrightarrow |X_1 - \bar{X}| \\
&= 2\sigma \int_{0}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-z} dz \\
&= 2 \times \sqrt{\frac{16}{5}} \times \frac{1}{\sqrt{2\pi}} = \frac{8}{\sqrt{10\pi}} = 1.43 \\
&\rightleftharpoons Z = X_1 - \bar{X} \sim N\left(0, \frac{16}{5}\right) \\
&\Longrightarrow |D|Z| = E(|Z|^2) - (E|Z|)^2 \\
&= E(Z^2) - 1.43^2 \\
&= D(Z) + (EZ)^2 - 1.43^2 \\
&= \frac{16}{5} + 0 - 1.43^2 = 1.16
\end{aligned}$$

七、计算题(共3小题,每小题5分,共15分)

设 $X_1, X_2, ..., X_n$ 为总体的一个样本, $x_1, x_2, ..., x_n$ 为相应的样本值. 总体的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}, \quad 0 < \theta < \infty,$$

其中 θ 为待估参数.

- (1) 求 θ 的矩估计量
- (2) 求 θ 的最大似然估计量
- (3) 判别(2)得到的估计量是否为无偏估计量。

解:

1)
$$EX = \int_0^1 \frac{1}{\theta} x \cdot x^{\frac{1-\theta}{\theta}} dx$$
$$= \int_0^1 \frac{1}{\theta} x^{\frac{1}{\theta}} dx$$
$$= \frac{1}{\theta} \frac{1}{1 + \frac{1}{\theta}} x^{1 + \frac{1}{\theta}} \Big|_0^1$$
$$= \frac{1}{\theta + 1} = \bar{X}$$
$$\therefore \theta = \frac{1}{\bar{X}} - 1$$

2)似然函数为
$$L(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n x_i^{\frac{1-\theta}{\theta}}, lnL(\theta) = -nln\theta + \frac{1-\theta}{\theta} ln \prod_{i=1}^n x_i$$

令 $\frac{d}{d\theta} lnL(\theta) = -\frac{n}{\theta} + (\sum_{i=1}^n lnx_i) \left(\frac{-1}{\theta^2}\right) = 0$,得到 $-n\theta = \sum_{i=1}^n lnx_i$
得到 θ 的最大似然估计量为 $\hat{\theta} = \frac{-1}{n} \sum_{i=1}^n lnX_i$

3) 因
$$E[-lnX] = \int_0^1 (-lnx) \cdot \frac{1}{\theta} x^{\frac{1}{\theta}-1} dx = -x^{\frac{1}{\theta}} lnx \Big|_0^1 + \int_0^1 \frac{1}{x} x^{\frac{1}{\theta}} dx = \theta$$
所以 $E(\hat{\theta}) = \frac{1}{n} \sum_{i=1}^n E(-lnX_i) = \frac{1}{n} \cdot n\theta = \theta$, $\hat{\theta}$ 为 θ 的无偏估计。

八、计算题(共2小题,每小题5分,共10分)

某项产品的重量 X (以 kg 计) 服从正态分布 $N(\mu, \sigma^2)$ 。现测得 16 件产品的重量依

次如下:

222	362	168	250	149	260	485	170
159	280	101	212	224	379	179	264

问在下列两种情况下,是否有理由认为该产品的平均重量大于200kg? (取 $\alpha=0.05$)

- 1) μ 未知, $\sigma^2 = 10000$
- 2) μ , σ^2 均未知

解:

1. 按题意需检验

$$H_0$$
: $\mu \le \mu_0 = 200$, H_1 : $\mu > 200$

拒绝域为
$$z = \frac{\bar{x} - \mu_0}{100/\sqrt{n}} \ge z_\alpha$$
 代入 $n = 16, \bar{x} = 241.5$ 得 $z = 1.66$

又因 $z_{0.05} = 1.645 < z$,z落入拒绝域中,故拒绝 H_0 ,即认为产品的平均重量大于200kg。

2. 按题意需检验

$$H_0$$
: $\mu \le \mu_0 = 200$, H_1 : $\mu > 200$

拒绝域为
$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \ge t_{\alpha}(n-1)$$
,代入 $n = 16, \bar{x} = 241.5, s = 98.7259$ 得 $t = 1.6814$

又因 $t_{0.05}(15) = 1.7531 > t$,t未落入拒绝域中,故接受 H_0 ,即认为产品的平均重量不大于200kg。

Table 1: Standard Normal Curve Areas

$$p(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx, \quad z \ge 0$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.0222	0.0245	0.0257	0.0270	0.0202	0.0204	0.0406	0.0410	0.0420	0.0441
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.0772	0.0779	0.9783	0.9788	0.0702	0.9798	0.9803	0.0000	0.9812	0.9817
	0.9772	0.9778		0.9788	0.9793			0.9808	0.9812	0.9817
2.1 2.2	0.9821 0.9861	0.9826 0.9864	0.9830 0.9868	0.9834	0.9838 0.9874	0.9842 0.9878	0.9846 0.9881	0.9850 0.9884	0.9834	0.9837
2.3	0.9893	0.9896	0.9898	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9890	0.9898	0.9901	0.9904	0.9900	0.9909	0.9911	0.9913	0.9916
2. 4	0.9910	0.9920	0.9922	0.9923	0.9927	0.9929	0.9931	0.9932	0.9934	0.9930
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
		,	,							
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
			1		1			1		

Table 2: *t* distribution

