MTH113TC Introduction to Probability and Statistics

Tutorial 4

Year: 2020/21 Week: 3

Based on Chapter 4

1. If S^2 is the variance of a random sample of size n, show that it can be written as

$$S^{2} = \frac{1}{n(n-1)} \left[n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right].$$

Let x_i be the number of fish caught by the i^{th} fisherman in a random sample of six fisherman. Using the fact that $\sum x_i^2 = 171$ and $\sum x_i = 31$, find the variance of the data.

Answer: $\frac{13}{6}$

- 2. Suppose X_1, X_2, \cdots, X_n are independent and identically distributed random variables from a normal population with mean μ and variance σ^2 . The mean and variance of the random sample are respectively \bar{X} and S^2 . Show that
 - (i) $\mathrm{E}\left(\bar{X}\right) = \mu$,
 - (ii) $\operatorname{Var}\left(\bar{X}\right) = \frac{\sigma^2}{n}$, and
 - (iii) $E(S^2) = \sigma^2$.

Given the random variables $Z \sim N\left(0,1^2\right)$, $V \sim \chi_n^2$ are such that Z and V are independent, then the random variable T defined as

$$T = \frac{Z}{\sqrt{V/n}}$$

is t-distributed with n degrees of freedom, i.e. $T \sim t_n$. Use this fact to prove that

(iv)
$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$$
.

- 3. With the use of appropriate definitions, show that
 - (i) If $X \sim F_{n,m}$, then $X^{-1} \sim F_{m,n}$.
 - (ii) If $T \sim t_n$, then $T^2 \sim F_{1,n}$.
- 4. Traveling between two campuses of a university via shuttle bus takes, on average, 28 minutes with a standard deviation of 5 minutes. In a given week, a bus transported passengers 40 times. What is the probability that the average transport time was more than 30 minutes?

Answer: 0.0057

5. Suppose X is a random variable with mean μ and variance $\sigma^2=1.0$. Suppose also that a random sample of size n is to be taken and \bar{x} is to be used as an *estimate* of μ . When the data are taken and the sample mean is measured, we wish it to be within 0.05 unit of the true mean with probability of at least 0.99, i.e.

$$P(|\bar{X} - \mu| < 0.05) \ge 0.99.$$

What is the minimum sample size required?

6. The computer of manufacturer A have a mean lifetime of 6.5 years and a standard deviation of 0.9 year, while those of manufacturer B have a mean lifetime of 6.0 years and a standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a sample of 49 tubes from manufacturer B?

Answer: 0.0040

- 7. In a factory, a filling machine is used to fill cartons with a liquid product. The filling machine is required to operate under the specification of 9 ± 1.5 oz. If any carton is produced with weight outside these bounds, it is considered to be defective. It is hoped that at least 99% of cartons will meet these specifications.
 - (i) With the conditions $\mu=9$ and $\sigma=1$, what proportion of cartons from the process is defective?
 - (ii) If changes are made to reduce variability, what must σ be reduced to in order to meet the specifications with probability 0.99?

Assume a normal distribution for the weight.

Answer: (i) 0.1336 (ii) 0.5825

8. Find k such that $P\left(k < T < -1.761\right) = 0.045$ for a random sample of size 15 and random variable $T = \frac{\bar{X} - \mu}{s/\sqrt{n}}$.

Answer: -2.977

9. If S_1^2 and S_2^2 represent the variances of independent random samples of size $n_1=25$ and $n_2=31$, taken from normal populations with variances $\sigma_1^2=10$ and $\sigma_2^2=15$ respectively, find

$$P\left(S_1^2/S_2^2 > 1.26\right)$$
.

Answer: 0.05

10. Consider the following data:

17	62	15	65
28	51	24	65
39	41	35	15
39	32	36	37
40	21	44	37
59	13	44	56
12	54	64	59

- (a) Construct a frequency distribution of 6 classes with class width 10.
- (b) Construct a histogram.
- (c) Construct an ogive.
- (d) Construct a stem-and-leaf plot.

11. Consider the following frequency distribution:

Class	Frequency	
0 < 10	8	
10 < 20	10	
20 < 30	13	
30 < 40	12	
40 < 50	6	

- (a) Construct a relative frequency distribution.
- (b) Construct a cumulative frequency distribution.
- (c) Construct a cumulative relative frequency distribution.
- 12. A sample of 20 financial analysts was asked to provide forecasts of earnings per share of a corporation for next year. The results are summarized in the following table:

Forecast (\$ per share)	Number of Analysts	
9.95 < 10.45	2	
10.45 < 10.95	8	
10.95 < 11.45	6	
11.45 < 11.95	3	
11.95 < 12.45	1	

- (a) Construct the histogram.
- (b) Determine the relative frequencies.
- (c) Determine the cumulative frequencies.
- (d) Determine and interpret the relative cumulative frequencies.
- 13. Regulatory agencies and the U.S. Congress are recognizing both the values and emerging issues for small firms as the Sarbanes-Oxley Act of 2002 (SOX) has been implemented. On April 23, 2006, the Advisory Committee on Smaller Public Companies issued a final report to the Security and Exchange Commission assessing the impact of SOX on smaller public companies (Final Report 2006). A random sample of CEOs, CFOs, and board members of small, medium, and large firms were surveyed and their opinions of the overall impact of SOX on their firm were:

Impact of Sox	Small Firms	Medium Firms	Large Firms
Little or no impact	17	13	6
Moderate to very	13	41	22
major impact			

Construct a cluster bar chart of these findings.

MTH113TC Tutorial 4

14. Four types of checking accounts are offered by one bank. Suppose that recently a random sample of 300 bank customers was surveyed and asked several questions. It was found that 60% of the respondents preferred Easy Checking; 12%, Intelligent Checking; 18%, Super Checking; and the remainder, Ultimate Checking. Of those who selected Easy Checking, 100 were females; one-third of the respondents who selected Intelligent Checking were males; half of the respondents who selected Super Checking were males; and 80% of respondents who selected Ultimate Checking were males.

- (a) Describe the data with a cross table.
- (b) Describe the data graphically with a stacked bar chart.

September 20, 2020