

Минская городская олимпиада по физике (2003 год)

11 класс.

1. «Фототок» . Длинная плоская пластинка длиной l и шириной a, сопротивление которой равно R_0 , включена последовательно в электрическую цепь, содержащую источник постоянного напряжения U_0 и два одинаковых резистора сопротивлениями R. Пластинка освещается параллельным монохроматическим

световым потоком с длиной волны λ , интенсивность которого равна I_0 . Под действием этого излучения происходит фотоэффект, квантовая эффективность которого равна η . Найдите силы токов через каждый резистор. Внутренним сопротивлением источника пренебречь; считать, что плотность фототока постоянна на всей пластине, и вылетевшие электроны на пластину не возвращаются. Емкость источника можно считать бесконечно большой.

Примечания: - под **интенсивностью света** в данном случае понимается энергия, переносимая световым потоком в единицы времени через площадку единичной площади, расположенную перпендикулярно световому потоку; **квантовая эффективность фотоэффекта** - отношение числа электронов, вылетевших из пластины, к числу фотонов, попавших на пластину.

2. «Застой». Хорошо известно, что для большинства трущихся поверхностей коэффициент трения покоя превышает коэффициент трения скольжения. Увеличение силы трения покоя по сравнению с силой терния скольжения носит название «явление застоя». Это явление приводит к ряду интересных последствий, например, его наличием объясняется скрип дверных петель, звучание струны скрипки и др.

Для изучения явления застоя создана следующая установка. На движущуюся с постоянной скоростью горизонтальную ленту транспортера помещен брусок, прикрепленный с помощью лекгорастяжимой пружины к неподвижному упору. При этом брусок совершает незатухающие колебания.

- А). Объясните механизм возникновения незатухающих колебаний.
- Б). Найдите максимальную и минимальную деформации пружины в процессе движения бруска.
- В). Определите период колебаний бруска.
- Γ). Найдите закон движения бруска x(t) и постройте его график (в качестве координаты x используйте деформацию пружины).

<u>Параметры установки:</u> масса бруска $m = 100 \, \varepsilon$; коэффициент жесткости

пружины
$$k=10\frac{H}{_M}$$
; скорость движения ленты транспортера $v_0=5.0\frac{c_M}{c}$;

коэффициент трения скольжения бруска о ленту $\mu = 0.25$; коэффициент трения покоя бруска о ленту $\mu_0 = 0.30$.

3. «Пыль». Плоский конденсатор образован двумя параллельными металлическими пластинами. Расстояние между пластинами h значительно меньше размеров пластин. Площадь каждой пластины равна S . Конденсатор подключен к источнику постоянного напряжения, величина которого равна U . Между

пластинами находится мелкая металлическая пыль. Каждую пылинка представляет собой металлический шарик радиуса r и массы m, средняя концентрация пылинок между пластинами равна n.

- А) Найдите значение силы тока в цепи.
- Б) Оцените время, в течение которого напряжение между пластинами уменьшится на $\eta = 1\%$ после размыкания цепи.

Действием силы тяжести пренебречь, воздух между пластинами отсутствует. Удары пылинок о пластины считать абсолютно неупругими.

4. «Двойная интерференция»

Плоская монохроматическая световая волна с длиной волны λ падает нормально на непрозрачный экран в котором проделаны две узкие параллельные щели, находящиеся на расстоянии $2h_1$. На расстоянии l_1 от первого экрана расположен второй непрозрачный экран, в котором также проделаны две параллельных щели, находящиеся на расстоянии $2h_2$ друг от друга, причем эти щели параллельны щелям в первом экране. На расстоянии l_2 от второго экрана расположен экран, на котором наблюдают интерференционную картину. Все экраны параллельны друг другу, щели расположены симметрично относительно оси системы.

- А) Найдите распределение освещенности на света на последнем экране, как функцию координаты x расстояния от оси системы.
- Б) Допустим, что оптическая система используется для измерения длины волны падающего света, для чего проводится измерение зависимости света на последнем экране в фиксированной точке x в зависимости от расстояния $2h_2$ между щелями во втором экране. В какой точке x вы бы рекомендовали проводить такие измерения, чтобы, с одной стороны, погрешность определения длины волны была минимальна, а с другой, интерпретация результатов была не слишком сложна?

При расчетах учитывайте, что расстояния между щелями составляют доли миллиметра, а расстояния между экранами - несколько метров.