

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sieci komputerowe

Media

dr inż. Andrzej Opaliński andrzej.opalinski@agh.edu.pl

Plan wykładu

- Okablowanie strukturalne
- Skrętka
- Kable koncentryczne
- Światłowody
- Podstawy fizyczne
- Modulacja

Okablowanie strukturalne

- "zestaw standardów określających sposoby realizacji połączeń przewodowych służących do budowy sieci teleinformatycznych"
- "system uniwersalnego okablowania telekomunikacyjnego przewidziany do szerokiej gamy zastosowań. Umożliwia on tworzenie sieci komputerowych lub dołączanie telefonów i innych urządzeń pracujących w sieci"
- obejmują pojedyncze budynki i połączenia między nimi
- Określają:
 - zasady projektowania i budowania systemów transmisji
 - parametry fizyczne i mechaniczne:
 - kabli,
 - złączy,
 - paneli krosowniczych.

Okablowanie strukturalne

- Podział dużych systemów okablowania strukturalnego (budynki/biura)
 - część dostępowa 100Mb/s 10Gb/s
 - część dystrybucyjna 1Gb/s 10Gb/s
 - część szkieletowa 1Gb/s 40Gb/s
- rodzaj okablowania
 - homogeniczny
 - heterogeniczny
- Zastosowanie
 - Sieci komputerowe
 - Sieci telefoniczne
 - Telewizja przemysłowa
 - Instalacje alarmowe
 - Inteligentne budynki (sterowanie)

Okablowanie strukturalne

- Budowane w topologii gwiazdy rozszerzonej
- Elementy okablowania strukturalnego
 - okablowanie pionowe
 - punkty dystrybucyjne
 - okablowanie poziome
 - gniazda dystrybucyjne
 - połączenia systemowe i telekomunikacyjne

Ogólne zalecenia

- Umieszczanie kabli w rynnach, korytkach, mocowanie co 1,5m
- Minimalna odległość od źródeł zakłóceń:
 - Oświetlenie wysokonapięciowe 30cm
 - Przewody elektryczne >5kVA 90cm
 - Transformatory i silniki 100cm
- Rozploty na złączach kabla (kat 5) max 12,5mm
- Rozkład elementów w szafach punktów rozdzielczych
- Masksymalne promienie zgięcia kabli
 - 4 x Ø dla UTP
 - 6 x Ø dla FTP i STP
 - 10 x Ø dla FO
- Kable ekranowane STP/FTP należy uziemiać do dedykowanej szczeliny uziemiającej
- Umieszczenie panelu z wieszakiem/patchpanelu co każde 48 portów dystrybucyjnych

Maksymalne długości odcinków kablowych

Odcinek kablowy	Długość
Kabel pionowy :: 100 Ω UTP/STP	90 m
Kabel pionowy :: 150 Ω STP	90 m
Światłowód w okablowaniu pionowym :: MM	2000 m
Światłowód w okablowaniu pionowym :: SM	3000 m
Kabel poziomy (pomiędzy panelem a gniazdem) – dotyczy także światłowodu	90 m
Kabel przyłączeniowy (pomiędzy gniazdem a stacją roboczą)	nie więcej niż 3 m
Kabel krosowy i kabel przyłączeniowy (łącznie)	10 m

Rodzaje okablowania

- Kable koncentryczne
- Skrętka
- Światłowody

Skrętka

Rodzaje skrętki:

- UTP (U/UTP) skrętka nieekranowana (unshielded twisted pair)
 4 pary skręconych, zaizolowanych przewodów we wspólnej izolacji
- FTP (F/UTP) skrętka foliowana (foiled twisted pair) dodatkowo ekranowana foliowym płaszczem z przewodem uziemiającym
- STP (S/UTP) skrętka ekranowana (shielded twisted pair) ekran wykonany w postaci oplotu i zewnętrznej koszulki ochronnej
- SFTP (S/FTP) skrętka foliowana ekranowana (shielded foiled twisted pair)
 każda para przewodów otoczona osobnym ekranem z folii, cały kabel pokryty oplotem

Parametry skrętki:

- Maksymalna długość kabla 100m, minimalna 0,5m;
- Maksymalna średnica sieci (zasięg):
 - dla 100Mb/s 205m,
 - dla 10Mb/s ok. 2000m
- Maksymalna całkowita długość segmentu 100m

Klasy i kategorie skrętki

- Klasa parametry/przydatność transmisji
- Kategoria przydatność do aplikacji
- Normy
 - Amerykańskie EIA /TIA
 - Europejskie CENE-LEC
 - Międzynarodowe ISO, IEC
- Klasa C (kategoria 3) do 16 MHz, max 4 Mb/s, (10BaseT, RS 232)
- Klasa D (kat. 5 / 5e) do 100 MHz max 1Gb/s, (100BaseT, ATM 155)
- Klasa E (kategoria 6) do 250 MHz max 10Gb/s, (10GBASE-T do 55m)
- Klasa EA(kategoria 6a) do 500 MHz (zdef. 2009r) max 10Gb/s, (10GBASE-T do 100m)
- Klasa F (kategoria 7) do 600 MHz max 10Gb/s, (1000BASE-TX, 10GBASE-T)
- Klasa FA (kategoria 7A) do 1000 MHz, max 40Gb/s(100m), 100Gb/s (15m)
- Klasa I (kategoria 8.1) i klasa II (kategoria 8.2)
 1600-2000MHz, >40Gb/s, do 30m (centra danych)

UTP

- Skrętka nieekranowana (Unshielded twisted pair)
 - Dwa przewody ze zmiennym splotem (1 zwój na 6-10mm)
 Ochrona przed oddziaływaniem otoczenia
 - Sieci telefoniczne -1,2,4 pary
 - Sieci komputerowe 4 pary
 - Odmienny skręt poszczególnych par (minimalizacja przesłuchów NEXT, FEXT)

- Skrętka foliowana (Folied twisted pair)
 - Przewody miedziane
 - Ekranowana za pomocą folii
 - Przewód uziemiający

- Skrętka ekranowana (Shielded twisted pair)
 - Miedziane przewody
 - Skręcone pary (4)
 - Ekran w postaci oplotu
- Ekran
 - Odporność na zakłócenia impulsowe
 - Odporność na przesłuchy

Wariacje odmian podstawowych

The following are the types of cable recognised in the ISO/IEC 11801 standard.

X/Y

- X całość
- Y para
- U unshielded
- S shielded
- F folied

Przesłuchy (Crosstalks)

- Parametry służące określaniu jakości okablowania
- NEXT (Near End Crosstalk) przesłuch zbliżny
 - Stosunek mocy podawanej na jednej parze kabla UTP, do mocy mierzonej (zaindukowanej) w sąsiedniej parze tego kabla (pomiar po tej samej stronie)
- FEXT (Far End Crosstalk) przesłuch na odległym końcu
 - Zakłócenie NEXT mierzone na przeciwległym końcu niż sygnał podawany

Złącze 8P8C (alias RJ45)

- Poprawna nazwa standardu: 8P8C (8 position 8 contact)
- Zakończenie 8 żyłowej skrętki
- Kolory żył
 - Biało-pomarańczow
 - Pomarańczowy
 - Biało-zielony
 - Niebieski
 - Biało-niebieski
 - Zielony
 - Biało-brązowy
 - Brązowy

Keyed 8P8C True RJ45

Typy połączeń przewodów

- Wg EIA/TIA 568B
- 10Base-T i 100Base-Tx
- Połączenie proste,
 - PC do switcha/huba
 - PC do modemu
 - Router do modemu
- Połączenie krosowe (crossover)
 - Bezpośrednio 2 komputery PC
 - Port LAN routera do swicha/huba
 - 2 switche (zwykłe porty)
 - Dwa porty tego samego typu (WAN-WAN, LAN-LAN, uplikn-uplink)
- Autorozpoznawanie interfejsów sieciowych
- Standard 568A (kolorowanie)
- Film_1

away from you.

Zaciskanie wtyczki RJ45

Sieci oparte na skrętce

- Najczęściej stosowane medium transmisji
 - Modularna budowa
 - Niska awaryjność
 - Korzystny współczynnik możliwości do ceny
- Zalety
 - Przepustowość do 1Gb/s
 - Łatwa diagnoza usterki
 - Modularna budowa
 - Topologia gwiazdy
 - Awaria nie unieruchamia całej sieci
- Wady
 - Zakłócenia (nie dot. STP/FTP)
 - Niska odporność na uszk. Mech.
 - Maksymalna odległość od koncentratora 100m
- Przepustowość zależna od kategorii okablowania

Elementy montażowe

- Pasywne elementy sieci komputerowych
- Patchcord
 - Kabel służący do przesyłania sygnałów
 - Wg schematu prostego
 - Używany do łączenia elementów aktywnych i pasywnych
- Panel krosowniczy (patch panel)
 - Montowany w szafach krosowniczych
 - Z tyłu przewody skrętki
 - Z przodu gniazda RJ45
 - przez patchcord podłączanie urządzeń znajdujących się na drugim końcu kabla do innych urządzeń sieciowych
 - Ułatwia/porządkuje zarządzanie infrastrukturą

Kable koncentryczne

 Dwa przewody, koncentrycznie umieszczone jeden wewnątrz drugiego

(wyższa odporność na zakłócenia / jakość transmisji)

- w osi kabla drut lub linka miedziana
- ekran oplot
- Cieńki Ethernet (Thin Ethernet) (10Base-2)
 - Średnica ~1/4 cala (5mm), RG-58/U
 - Max długość segmentu 185m
 - Rzadko stosowany (dł. segm. > 100m)
- Gruby Ethernet (Thick Ethernet) (10Base-5)
 - Średnica kabla ~1/2 cala (10mm), RG-8U
 - Max długość segmentu 500m
 - Spotykany w bardzo starych sieciach
- Impedancja falowa
 - 50 Ohm sieci komputerowe
 - 75 Ohm kable antenowe

Kable koncentryczne

- Topologia magistrali
- Zalety
 - Duża odporność na zakłócenia i szumy
 - Tańszy niż ekranowana skrętka
 - Duża odporność na uszkodzenia fizyczne
- Wady
 - Niewygodny sposób instalacji złączy BNC
 - Ograniczenie przepustowości do 10 Mbit/s
 - Duża awaryjność połączeń
 - Problemy z lokalizacją usterki

Światłowody

Światłowód

- Falowód służący do przesyłania promieniowania świetlnego
- W formie włókien dielektrycznych (najczęściej szklanych) z otuliną
 z tworzywa sztucznego (z mniejszym współcz. załamania światła)
- Rozchodzenie światła w oparciu o odbicia całkowite

Budowa

- Włókno optyczne
 - Rdzeń szkło kwarcowe (SiO2)
 + dwutlenek germanu (GeO2)
 - Płaszcz zewnętrzny
- Tuba warstwa akrylowa izolacja
- Oplot kewlarowy / włókna aramidowe
- Izolacja zewnętrzna

Światłowody – zasada działania

film

Światłowody - charakterystyka

Zalety:

- Duża przepustowość
- Małe straty (duże odległości)
- Nie generują zakłóceń elektrycznych
- Niewrażliwość na zakłócenia i przesłuchy (bezpieczeństwo)
- Mała masa i wymiary
- Duża niezawodność

Wady

- Możliwość zaszumienia sygnału poprzez wibracje przewodu
- Stosunkowo mało odporne na uszkodzenia (zgięcia)
- Bardziej skomplikowany proces łączenia
- Stosunkowo wysoka cena

Światłowody - rodzaje

Jednomodowy

- Średnica włókna 9 μm,
- Źródło światła laser. Długość fali 1310nm, 1550nm
- LAN o średnicy większej niż 500 m (do 100km bez wzmacniacza)
- Większe pasmo przenoszenia (laser)
- Odległość między regeneratorami od 10km do tys. km (sieci rozległe)

Światłowód jednomodowy

Światłowód wielomodowy

Wielomodowy

- Średnica włókna 50 μm lub 62,5 μm,
- Źródło światła dioda LED (light emiting diode). Długość fali 850nm, 1310nm
- LAN o średnicy do 550m (odl. między regeneratorami do 10km)
- Promień światła (źródło LED) może być wprowadzany pod różnymi kątami
- Wiele modów światła w ramach włókna
- Niższy koszt, łatwiejsze prace konserwacyjne

Złącza światłowodowe

- FC/PC (ferrule connector, physical contact)
 - Skręcane, gwintowane zakończenie
 - Kontakt fizyczny, bez przerwy powietrznej (zmniejszone odbicie wsteczne)
- ST
 - Bagnetowy zatrzask obrotowy
 - Ferrula o średnicy 2,5mm
 - najstarsze
- SC
 - Najpopularniejsze
 - Zatrzaskowe, z ferrulą samocentrującą o średr
 - Minimalizują odbicie wsteczne
 - Zalecane do łączy jednomodowych
- SC mini
 - Ferrula 1,25mm

Złącza światłowodowe c.d.

- MTP
 - Mały rozmiar
 - Wielowłóknowe
 - Połączenia wewnątrz budynków
- MTRJ (mechanical transfer registered jack)
 - Mały rozmiar
 - Podwójne zagęszczenie portów (w por. do SC)
 - Mechanizm zatrzaskowy typu RJ45
- Escon
 - 2,5 mm ferrula
 - Stosowany w serwerach IBM

Światłowody - przepustowości

- Standardowa przepustowość włókna światłowodowego jednomodowego
 - Długość fali 1310nm lub 1500nm
 - Częstotliwość 20 GHz
 - Przepustowość 10 Gbps
- WDM (wawelength division multiplexing)
 - Dense 80 kanałów 80 x 10 Gbps
- Modulacje QPSK, 4QAM, 16QAM

Year	Organization	Effective speed	WDM channels	Per channel speed	Distance
2009	Alcatel-Lucent	15.5 Tbit/s	155	100 Gbit/s	7000 km
2010	NTT 2	69.1 Tbit/s	432	171 Gbit/s	240 km
2011	NEC	101.7 Tbit/s	370	273 Gbit/s	165 km
2011	KIT	26 Tbit/s	>300		50 km
2016	BT & Huawei	5.6 Tbit/s	28	200Gb/s	140 km
2016	Nokia Bell Labs, Deutsche Telekom T-Labs & Technical University of Munich	1 Tbit/s	1	1Tb/s	
2016	Nokia-Alcatel-Lucent	65 Tbit/s			6600 Km
2017	BT & Huawei	11.2 Tbit/s	28	400 Gb/s	250 Km

Techniki połączeń światłowodów

Złącza mechaniczne

- Niski koszt narzędzi
- większa tłumienność połączenia ok. 0,2-1 dB na złącze

Techniki połączeń światłowodów

Spawanie światłowodów

- Łuk elektryczny
- mała tłumienność połączeń 0,01-0,1 dB na złącze
- Drogi sprzęt
- Wymaga wprawy

Światłowody międzykontynentalne

Światłowody oceaniczne

Pierwszy podwodny kabel telegraficzny – 1850r (LaManche) (1858 transAtlantic)
 (kilkanaście słów na minutę, brak wzmacniaczy, duże napięcia)

- Pierwszy podwodny światłowód – TAT-8 – 1988r – USA-W.Brytania

(Dwie pary kabli, 280Mb/s, Regeneratory co 40km)

 Standardowy rozmiar kabli głębinowych – około 1 cal średnicy (1,5 tony/km)

- W płytszych wodach kable do 4 cali
- Wykorzystanie półprzewodnikowych wzmacniaczy optycznych (zasilane z kabla) (do 100km)
- Opóźnienie transatlantyckie poniżej 60ms

Światłowody międzykontynentalne

Transmisja elektryczna vs światłowody

Kable elektryczne

- Niższe koszty okablowania przy stosunkowo małych odległościach
- Znacznie niższe koszty nadajników i odbiorników
- Możliwość dodatkowego przenoszenia zasilania w kablu z danymi (np. PoE)
- Łatwiejsze działanie przetworników w trybie liniowym
- Łatwiejszy proces łączenia okablowania

Światłowody

- Dużo większa przepustowość
- Dużo większy zasięg
- Mniejsze straty dużo większe odległości między wzmacniaczami
- Brak problemów napięciowych (zakłócenia zewnętrzne, równoległewłasne)
- Mniejsze rozmiary

Podsumowanie:

- Światłowody: do instalacji o dużym zasięgu i dużych przepustowościach
- Transmisja elektryczna: tańsze instalacje o ograniczonym zasięgu i "średnich" przepustowościach

Komunikacja bezprzewodowa

- Medium transmisyjne
 - Próżnia
 - Atmosfera
- Nośnik informacji
 - Fale dźwiękowe
 - Fale świetlne
 - Fale elektromagnetyczne
- Osobny wykład

Fizyczne podstawy przesyłania informacji

- Sygnaly
- Rodzaje transmisji
- Kierunki transmisji
- Pasmo przenoszenia
- Przepływowość
- Przepustowość
- Modulacja
- Kanały fizyczne

Sygnały

- Sygnał
 - Proces zmian pewnej wielkości fizycznej w czasie lub przestrzeni
 - Jest nośnikiem informacji
 - Może być syntetyzowany do celów komunikacji
- Modele matematyczne sygnałów
 - Funkcje rzeczywiste jedno lub wielowymiarowe
 - Funkcje zespolone
 - Dystrybucje

Rodzaje transmisji danych

- Transmisja cyfrowa
 - Przesyłany jest ciąg sygnałów dwustanowych
 - 0/1, tak/nie
- Transmisja analogowa
 - Przesyłane są sygnały o widmie ciągłym, np:
 - dźwięk
 - światło

Kierunki transmisji

- Simpleks [Simplex (SX)]
 - Transmisja jednokierunkowa
 - Odbiornik nie przesyła odpowiedzi ani potwierdzenia
- Półdupleks [Half duplex (HDX)]
 - Transmisja dwukierunkowa, niejednoczesna
 - Naprzemienna (w danym momencie jeden kierunek)
 - System sygnalizacji zmiany kierunku
- Dupleks [Full duplex (FDX)]
 - Jednoczesna transmisja w obydwu kierunkach
 - Sieci cyfrowe dwie pary przewodów
 - Sieci analogowe
 - Jedna para przewodów
 - Podział pasma transmisji na dwie części

Transmisja cyfrowa

- Transmisja asynchroniczna
 - Znak ciąg bitów ograniczony bitem startu i stopu
 - Nie ma mechanizmu odmierzania czasu (synchronizacji zdarzeń wys/odb)
- Transmisja synchroniczna
 - Zegary w nadajniku i odbiorniku
 - Dodatkowy przewód do przesyłu sygnału synchronizującego pracę wszystkich stacji w sieci
 - Specjalny sposób kodowania

Pasmo przenoszenia

- Zakres częstotliwości, w którym sygnał ma akceptowalne parametry
- Szerokość pasma (częstotliwości) [Hz]
 - W = f2 f1
- Dla filtru dolnoprzepustowego:
 - Zakres częstotliwości, w którym tłumienie sygnału jest nie większe niż 3dB
 - Amplituda osiąga wartość min. 70% wartości nominalnej

Przepływowość

- Ilość jednostek informacji przenoszonej w jednostce czasu
- Miara natężenia strumienia danych
- Przykładowe jednostki: bity na sekundę [b/s] lub [bps]
- Przepływowość stała constant bit rate
- Przepływowość zmienna variable bit rate

$$K = V \log_2(n)$$

- Gdzie:
 - V szybkość generowania znaków w baudach (bodach)
 - n wartościowość sygnału (2 binarny, 10 dziesiętny, itp.)
- Bod (ang. Baud) miara prędkości transmisji sygnału (liczby zmian medium transmisyjnego na sekundę) w zmodulowanym sygnale
- Gdy jedna zmiana sygnału niesie informację o jednym bicie to prędkość transmisji sygnału jest równa przepustowości kanału

Przepustowość

- Przepustowość (pojemność kanału) ang. Channel capacity C
- Cecha kanału/toru telekomunikacyjnego
- Maksymalna ilość jednostek informacji przenoszonej w jednostce czasu
- Jednostki bity na sekundę [b/s] lub [bps] (jak w przepływowości)
- Moc sygnału (wzmocnienie/tłumienie) wyrażana jest w decybelach [dB]
- Jakość łącza (Signal/Noise S/N) stosunek sygnału użytecznego do szumu [dB]
- Przepustowość łącza związana jest z szerokością pasma oraz jakością łącza
- adzie
 - $C = W \log_2(1 + S/N)$ W – szerokość pasma
 - S/N (Signal/Noise)

Modulacja

- Konwersja (przekształcanie)
 - wykorzystywana do przesyłania sygnałów cyfrowych za pomocą analogowych mediów transmisyjnych (sieć telefoniczna)
- Modemy przekształcają sygnał z postaci analogowej na cyfrową i odwrotnie
- Techniki modulacji
 - Klasyczne
 - Modulacja amplitudy (AM)
 - Modulacja częstotliwości (FM)
 - Modulacja fazy
 - Szybkie
 - Modulacja kwadraturowa (QAM)
 - Modulacja kratowo-kodowa (TCM)
 - Modulacja Delta
- Szybkość modulacji (R)
 - Dla transmisji asynchronicznej
 - Ilość jednostek informacji transmitowanej w jednostce czasu

Klasyczne metody modulacji

- Modulacja amplitudy (AM)
- Modulacja częstotliwości (FM)
- Modulacja fazy (PM)

Fizyczne kanały transmisji

- Klasyczny kanał telefoniczny
 - Maksymalne osiągi 20kb/s
- Specjalny kanał telefoniczny
 - Podwyższona jakość okablowania
 - Szersze pasmo (70-80 kHz /4km)
 - Do 5x wyższe przepustowości
- Kanał radioliniowy
 - Częstotliwości 20,30,40 MHz
 - Modulacje wielowartościowe
 - Przepustowości do 280 Mb/s
 - Wysokie koszty
- Kanał satelitarny
 - Satelitarna stacja retransmitująca
 - 35 800 km nad równikiem
 - Odbiornik 4GHz, nadajnik 6 Ghz
 - Szeroki obszar pokrycia bez infrastruktury naziemnej
- Radiowy kanał łączności ruchomej
 - Sieci telefonii komórkowej

Literatura i bibliografia

V.Amato, W.Lewis "Akademia sieci CISCO", Mikom, Warszawa 2001

D.E.Comer, "Sieci i intersieci", WNT, Warszawa 2001

Studia Informatyczne, Sieci Komputerowe,

J.Durak – Wprowadzenie do sieci komputerowych – ZIP 2008.

Mark Sportack, Sieci komputerowe, Księga Eksperta, Helion, Warszawa 1999

L.L.Peterson, B.S.Davie – Sieci komputerowe – podejście systemowe", Nakom, Poznań 2000

M.Kalewski, "Okablowanie strukturalne", v1.3 2004/09/16,

T. P. Zieliński "Cyfrowe przetwarzanie sygnałów. Od teorii do zastosowań", WKŁ, 2009

A. Leśniak, "Teoria Sygnałów", Dep.ofG&ACS, AGH

R. G. Lyons, "Wprowadzenie do cyfrowego przetwarzania sygnałów" WKŁ, 2010 (wyd. 2 rozszerzone)

A. Simmonds, Wprowadzenie do transmisji danych, WKŁ, Warszawa 1999.

W. Lipiński, Modulacja, kodowanie i transmisja w systemach telekomunikacyjnych, Seria Tempus, Szczecin, 2001

M.Lipiński, "Wprowadzenie do transmisji cyfrowej", KT, AGH

M.Żak, A.Kidacki, "Charakterystyka przewodowych mediów transmisyjnych". IV FDS Pol.Rzesz.

TeleGeography - The Submarine Cable Map- https://www.submarinecablemap.com/