Home Work #3

Ali BaniAsad 401209244

May 31, 2023

1 Question 1

In this equation we discuse about perturbation in classical orbital element. Formulas for the Gaussian form of the VOP equations using the disturbing force with specific force components resolved in the RSW system:

$$\frac{da}{dt} = \frac{2}{n\sqrt{1 - e^2}} \left(e \sin(\theta) F_R + \frac{p}{r} F_S \right)$$

$$\frac{de}{dt} = \frac{\sqrt{1 - e^2}}{na} \left(\sin(\theta) F_R + \left(\cos(\theta) + \frac{e + \cos(\theta)}{1 + e \cos(\theta)} \right) F_S \right)$$

$$\frac{di}{dt} = \frac{r \cos(u)}{na^2 \sqrt{1 - e^2}} F_W$$

$$\frac{d\Omega}{dt} = \frac{r \sin(\theta)}{na^2 \sqrt{1 - e^2} \sin(i)} F_W$$

$$\frac{d\omega}{dt} = \frac{\sqrt{1 - e^2}}{nae} \left(-\cos(\theta) F_R + \sin(\omega) \left(1 + \frac{1}{p} \right) F_S \right) - \frac{r \cot(i) \sin(u)}{h} F_W$$

$$\frac{M_0}{dt} = \frac{1}{na^2 e} \left((p \cos(\theta) - 2er) F_R - (p + r) \sin(\theta) F_S \right) - \frac{dn}{dt} (t - t_0)$$

1.1 part a

If we want to change a, we need to have force in R or S direction. If there is a force in R and S direction other parameters like eccentricity, ω , and M_0 will change and others will be constant. If we can solve the below equations and find the answer (if exist), we can change parameter "a" without the change of other parameters.

$$\sin(\theta)F_R = -\left(\cos(\theta) + \frac{e + \cos(\theta)}{1 + e\cos(\theta)}\right)F_S$$

$$\cos(\theta)F_R = \sin(\omega)\left(1 + \frac{1}{p}\right)F_S$$

$$(p\cos(\theta) - 2er)F_R = (p + r)\sin(\theta)F_S$$
(2)

1.2 part b

If we want to change inclination, we need to have force in W direction. If there is a force in W direction other parameters like ω , and Ω will change and others will be constant. If we can solve the below equations and

Ali BaniAsad 401209244 1.3 part c

find the answer (if exist), we can change parameter "eccentricity" without the change of other parameters.

$$\frac{r\cos(u)}{na^2\sqrt{1-e^2}} = 0$$

$$\frac{r\cot(i)\sin(u)}{h} = 0$$
(3)

1.3 part c

From the below equation, we can find the most efficient θ is in $\theta = 90^{\circ}$ because $\sin(90^{\circ}) = 1$, and to find the best direction it depends on with of parameters e and $\frac{p}{r}$ is bigger.

$$\frac{da}{dt} = \frac{2}{n\sqrt{1 - e^2}} \left(e \sin(\theta) F_R + \frac{p}{r} F_S \right) \tag{4}$$

1.4 part d

From below equation we can find most efficient u is when $u = 0^{\circ}$ because $\cos(0^{\circ}) = 1$.

$$\frac{di}{dt} = \frac{r\cos(u)}{na^2\sqrt{1-e^2}}F_W \tag{5}$$

so:

$$u = 0 \rightarrow \theta + \omega = 0^{\circ} \rightarrow \theta = -\omega$$

and for Ω , from below equation we can find most efficient θ is when $\theta = 90^{\circ}$ because $\sin(90^{\circ}) = 1$.

$$\frac{d\Omega}{dt} = \frac{r\sin(\theta)}{na^2\sqrt{1 - e^2}\sin(i)}F_W$$

2 Question 2

In this question, we investigate the effect of perturbation forces on the orbital elements.

2.1 J_2 perturbation

Forces in RSW system:

$$F_R = -\frac{3\mu J_2 R^2}{2r^4} \left(1 - 3\sin^2(i)\sin^2(u_0) \right)$$

$$F_S = -\frac{3\mu J_2 R^2}{2r^4} \sin^2(i)\sin(u_0)\cos(u_0)$$

$$F_W = -\frac{3\mu J_2 R^2}{2r^4} \sin(i)\cos(i)\sin(u_0)$$
(6)

From (1) we know the effect of other forces on orbital elements. Here is the result of perturbation forces on orbital elements. The simulation has been in the Jupyter notebook. the results are presented here.

Ali Bani Asad 401209244 2.1 J_2 perturbation

Figure 1: Variation of Parameter due to J_2 perturbation for 100 seconds

Ali BaniAsad 401209244 2.1 J_2 perturbation

Figure 2: Variation of Parameter due to J_2 perturbation for 5000 seconds

Ali Bani Asad 401209244 2.1 J_2 perturbation

Figure 3: Variation of Parameter due to J_2 perturbation for 10000 seconds

2.2 Drag perturbation

In this section, there is simplifying the assumption that drag force is in the S direction.

$$\begin{split} F_{drag} &= \frac{1}{2} \rho v^2 s C_D \rightarrow \mathbf{F_{drag}} = -\frac{1}{2} \rho v^2 s C_D \vec{S} \\ \mathbf{a_{drag}} &= -\frac{1}{2m_s} \rho v^2 s C_D \vec{S} \end{split}$$

From (1) we know the effect of other forces on orbital elements. Here is the result of perturbation forces on orbital elements. The simulation has been in the Jupyter notebook. the results are presented here.

Figure 4: Variation of Parameter due to drag perturbation for 100 seconds

Figure 5: Variation of Parameter due to drag perturbation for 5000 seconds

Figure 6: Variation of Parameter due to drag perturbation for 10000 seconds

2.3 Moon gravity perturbation

In this section, we investigate the effect of the moon's third body on satellite orbital elements. In this problem we calculate forces of moon and earth, then, integrate from differential equation for several time to see effects in short, long period and secular.

$$\sum F_{satellite} = \frac{-Gm_{earth}}{r_{e2s}^3} \mathbf{r_{e2s}} + \frac{-Gm_{moon}}{r_{m2s}^3} \mathbf{r_{m2s}}$$

Here is the result of perturbation forces on orbital elements. The simulation has been in the Jupyter notebook. the results are presented here.

Figure 7: Variation of Parameter due to moon gravity perturbation for 100 seconds

Figure 8: Variation of Parameter due to moon gravity perturbation for 5000 seconds

Figure 9: Variation of Parameter due to moon gravity perturbation for 10000 seconds

Figure 10: Variation of Parameter due to moon gravity perturbation for 100000 seconds

2.4 Sun gravity perturbation

In this section, we investigate the effect of the sun's third body on satellite orbital elements. In this problem we calculate forces of sun and earth, then, integrate from differential equation for several time to see effects in short, long period and secular.

$$\sum F_{satellite} = \frac{-Gm_{earth}}{r_{e2s}^3} \mathbf{r_{e2s}} + \frac{-Gm_{sun}}{r_{s2s}^3} \mathbf{r_{s2s}}$$

Here is the result of perturbation forces on orbital elements. The simulation has been in the Jupyter notebook. the results are presented here.

Figure 11: Variation of Parameter due to sun gravity perturbation for 100 seconds

Figure 12: Variation of Parameter due to sun gravity perturbation for 5000 seconds

Figure 13: Variation of Parameter due to sun gravity perturbation for 10000 seconds

Figure 14: Variation of Parameter due to sun gravity perturbation for 100000 seconds

2.5 Solar radiation perturbation

The below equation shows the force of solar radiation.

$$P_{SRP} = \nu \frac{S}{c} C_R \frac{A_s}{m}$$

where ν calculates if the satellite is in the earth's shadow or not. Then used the below equations for rate changes.

Figure 15: Variation of Parameter due to solar radiation perturbation for 100 seconds

Figure 16: Variation of Parameter due to solar radiation perturbation for 5000 seconds

Figure 17: Variation of Parameter due to solar radiation perturbation for 100000 seconds

3 Question 3

ISS spacecraft observation orbital elements and Ground Station Location location is provided in 3, and ??, respectively. The orbital elements are used to calculate the position of the ISS spacecraft at the time of observation. The position is then used to calculate the line of sight vector from the ground station to the ISS spacecraft. The line of sight vector is then used to calculate the elevation and azimuth angles of the ISS spacecraft. The elevation and azimuth angles are then used to calculate spacecraft visibility.

Orbital Element	Value
Eccentricity	0.0005771
Inclination	51.6409°
Perigee Height	$415 \mathrm{km}$
Apogee Height	$423 \mathrm{km}$
RAAN	88.8414°
Argument of Perigee	75.2083°
True Anomaly	0

Table 1: ISS Observation

Figure 18: ISS spacecraft orbit.

Ali Bani Asad 401209244 3.1 J_2 perturbation

Figure 19: ISS spacecraft orbit trajectory without perturbation

3.1 J_2 perturbation

In this section we add J_2 perturbation to the orbit of the ISS spacecraft. The J_2 perturbation is added to the ISS spacecraft orbit by adding the J_2 perturbation to the mean motion of the ISS spacecraft. The J_2

perturbation is calculated using the following equation:

$$\ddot{x} = -\frac{\mu}{r^3}x + \frac{3}{2}\frac{J_2\mu R^2}{r^4} \left(1 - 5\frac{z^2}{r^2}\right)x$$

$$\ddot{y} = -\frac{\mu}{r^3}y + \frac{3}{2}\frac{J_2\mu R^2}{r^4} \left(1 - 5\frac{z^2}{r^2}\right)y$$

$$\ddot{z} = -\frac{\mu}{r^3}z + \frac{3}{2}\frac{J_2\mu R^2}{r^4} \left(3 - 5\frac{z^2}{r^2}\right)z$$
(7)

ISS trajectory is shown in below figure.

Figure 20: ISS spacecraft orbit trajectory with J_2 perturbation

3.2 Study difference J_2 perturbation orbital

In this section, we study J_2 perturbation in trajectory and error that make with ideal trajectory.

Figure 21: J_2 perturbation effect on ISS spacecraft orbit trajectory

Below figures show error vector with function of time.

Figure 22: J_2 perturbation error vector with ideal trajectory

Ali BaniAsad 401209244 3.3 Allowable error

Figure 23: J_2 perturbation error with ideal trajectory

3.3 Allowable error

In the previous part, we see the error but its magnitude is larger than 180 m and we can't see when the error is 180 meters. The below figure shows less time for simulation and finding when the error is 180 meters, and it's about 140 seconds.

Ali BaniAsad 401209244 3.3 Allowable error

Figure 24: J_2 perturbation error with ideal trajectory till 200 seconds

Ali BaniAsad 401209244 CONTENTS

Contents

1	Que	estion 1	1
	1.1	part a	1
	1.2	part b	1
	1.3	part c	2
	1.4	part d	2
2	Que	estion 2	2
	2.1	J_2 perturbation	2
	2.2	Drag perturbation	6
	2.3	Moon gravity perturbation	0
	2.4	Sun gravity perturbation	
	2.5	Solar radiation perturbation	
3	Que	estion 3	22
	3.1	J_2 perturbation	24
	3.2	Study difference J_2 perturbation orbital	
	3.3	•	9

Ali BaniAsad 401209244 LIST OF FIGURES

List of Figures

1	Variation of Parameter due to J_2 perturbation for 100 seconds	3
2	Variation of Parameter due to J_2 perturbation for 5000 seconds	4
3	Variation of Parameter due to J_2 perturbation for 10000 seconds	5
4	Variation of Parameter due to drag perturbation for 100 seconds	7
5	Variation of Parameter due to drag perturbation for 5000 seconds	8
6	Variation of Parameter due to drag perturbation for 10000 seconds	9
7	Variation of Parameter due to moon gravity perturbation for 100 seconds	11
8	Variation of Parameter due to moon gravity perturbation for 5000 seconds	12
9	Variation of Parameter due to moon gravity perturbation for 10000 seconds	13
10	Variation of Parameter due to moon gravity perturbation for 100000 seconds	14
11	Variation of Parameter due to sun gravity perturbation for 100 seconds	16
12	Variation of Parameter due to sun gravity perturbation for 5000 seconds	17
13	Variation of Parameter due to sun gravity perturbation for 10000 seconds	18
14	Variation of Parameter due to sun gravity perturbation for 100000 seconds	19
15	Variation of Parameter due to solar radiation perturbation for 100 seconds	20
16	Variation of Parameter due to solar radiation perturbation for 5000 seconds	21
17	Variation of Parameter due to solar radiation perturbation for 100000 seconds	22
18	ISS spacecraft orbit	23
19	ISS spacecraft orbit trajectory without perturbation	24
20	ISS spacecraft orbit trajectory with J_2 perturbation	26
21	J_2 perturbation effect on ISS spacecraft orbit trajectory	27
22	J_2 perturbation error vector with ideal trajectory	28
23	J_2 perturbation error with ideal trajectory	29
24	J_2 perturbation error with ideal trajectory till 200 seconds	30