CSD3186 Machine Learning

Classification – Performance Measurement

TP FP FN TN

Actual Values

Positive (1) Negative (0)

TP FP

Negative (0)

Negative (1)

Negative (1)

Negative (1)

FN TN

True Positive

- You predicted positive and it's true(correct)
- False Positive
 - You predicted positive and it's false(wrong)
 - Type 1 Error: false alarm
- False Negative
 - You predicted negative and it's false(wrong)
 - Type 2 Error: miss
- True Negative
 - You predicted negative and it's true(correct)

Confusion Matrix

• Binary-class classification problem

у	y pred	output for threshold 0.6		
0	0.5	0		
1	0.9	1		
0	0.7	1		
1	0.7	1		
1	0.3	0		
0	0.4	0		
1	0.5	0		

TP 2	FP 1
FN 2	TN 2

Beyond Accuracy - Recall Precision

Binary-class classification problem

$$Accuracy = \frac{TP + TN}{Total}$$

- Imbalanced classification problem
 - Dataset: 100 samples, 1 positive, 99 negative
 - Model simply label any sample as negative
 - Accuracy is 99%, would you buy the model?
- Metrics

$$Precision = \frac{TP}{TP + FP}$$
 Sensitivity/Recall = $\frac{TP}{TP + FN}$

Imbalanced data

- Dataset: 100 samples, 1 positive, 99 negative
 - Model simply label any sample as negative
 - Accuracy is 99%
 - Precision is 0
 - Recall is 0

$$Precision = \frac{TP}{TP + FP}$$

- Model simply label any sample as positive
 - Accuracy is 1%
 - Precision is 1%
 - Recall is 1.0

Sensitivity/Recall =
$$\frac{TP}{TP + FN}$$

Combining Precision and Call

 F1 score is the harmonic mean of precision and recall taking both metrics into account

$$F1 = \frac{2 * Recall * Precision}{Recall + Precision}$$

- The use of the harmonic mean instead of a simple average because it punishes extreme values.
 - A classifier with a precision of 1.0 and a recall of 0.0 has a simple average of 0.5 but an F1 score of 0.

Confusion Matrix

Multi-class classification problem

Assuming a sample of 27 animals — 8 cats, 6 dogs, and 13 rabbits

		Actual class		
		Cat	Dog	Rabbit
ed	Cat	5	2	0
Predicted	Dog	3	3	2
Pre	Rabbit	0	1	11

Recall Precision

Multi-class classification problem

$$Precision(cat) = \frac{Tcat}{Tcat + Fcat} = \frac{5}{7}$$

$$Recall(cat) = \frac{Tcat}{\# actual \ cat} = \frac{5}{8}$$

		Α	Actual class	
		Cat	Dog	Rabbit
be	Cat	5	2	0
Predicted	Dog	3	3	2
Pre	Rabbit	0	1	11

TPR FPR TNR

Ture Positive Rate/ Recall / Sensitivity

$$TPR = \frac{TP}{TP + FN}$$

False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

True Negative Rate/ Specificity

$$TNR = \frac{TN}{FP + TN}$$

AUROC

- Receiver Operating Characteristic
- Area Under The Curve
- Area Under the Receiver Operating Characteristics

ROC Curve and AUC (Area Under the Curve)

- ROC Curve: Plots the True Positive Rate (Recall) against the False Positive Rate (FPR) at different thresholds.
- AUC: Measures the model's ability to differentiate between classes.
 - AUC = 1.0: Perfect classifier.
 - AUC = 0.5: Random guessing.

Example:

If AUC = 0.85, the model has an 85% chance of distinguishing between a positive and a negative instance.