Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri și m>n muchii. Să se afișeze punctele critice în care **nu** sunt incidente muchii critice. Pentru fiecare astfel de punct se va afișa numărul de componente biconexe care îl conțin, fără a memora componentele biconexe ale grafului și fără a memora muchiile critice. O(**m**)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt cate 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran (nu neaparat in aceasta ordine)
11 14	Puncte critice cerute:
12	1 – continut in 3 componente biconexe
13	4 - continut in 2 componente biconexe
2 3	
14	
15	
45	
5 6	
17	
78	
18	
4 9	
9 10	
10 4	
9 11	

Subjectul 2

Se citesc informații despre un graf **orientat fără circuite** G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, m>=n
- Pe următoarele m linii sunt câte 3 numere întregi reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf (costul unui arc poate fi și **negativ**).
- Pe ultima linie sunt două noduri sursa s₁ și s₂
 - a) Să se determine dacă există un vârf din graf v egal depărtat de s_1 și s_2 : $d(s_1,v)=d(s_2,v)$. Dacă există mai multe astfel de vârfuri se va afișa cel mai apropiat de cele două surse (cel cu $d(s_1,v)$ cea mai mică). **Complexitate O(m)**
 - b) Pentru vârful v determinat la a) (dacă există) să se determine dacă există mai multe drumuri minime de la s_1 la v. Daca exista doar unul, se va afișa acest drum, dacă nu se vor afișa două dintre drumurile minime de la s la v_1 Complexitate O(m)

graf.in	lesire pe ecran
8 11	a)
1 2 10	v=4
2 3 -3	b)
137	1234
382	134
3 4 1	
481	Explicații:
511	d(1,4) = d(5,4) = 8
5 3 9	
563	
671	
744	
15	

Subjectul 3

- a) Se dau un număr natural n și două șiruri de n numere naturale s_in și s_out. Folosind algoritmul de determinare a unui flux maxim într-o rețea de transport, să se determine, dacă există, un graf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s out. Se vor afișa arcele grafului dacă acesta există, și un mesaj corespunzător altfel.
- b) În cazul în care graful cerut la G nu există, să determine dacă există doua numere i, j cuprinse între 1 și n (nu neparat distincte) astfel încât se poate construi un graf G' cu secvența gradelor de intrare egală cu șirul obținut din s_in scăzând 1 din elementul i, și cu secvența gradelor de ieșire obținută din s_out scăzând 1 din elementul j. Se vor afișa arcele grafului G' dacă acesta există, și un mesaj corespunzător altfel.
- c) În cazul în care graful cerut la G nu există, determinați dacă există un multigraf orientat G cu secvența gradelor de intrare s_in și cu secvența gradelor de ieșire s_out fără bucle (arce cu extremitățile egale).

Secvențele s_in și s_out se vor citi din fișierul secvente.in cu următoarea structură: pe prima linie este n, pe a doua linie elementele lui s_in separate prin spațiu, iar pe a treia linie elementele lui s_out separate prin spațiu.

Complexitate $O(mn^2)$, unde m este suma numerelor din s_in

secvente.in	lesire pe ecran (solutia nu este unica)
3	a)
103	nu exista
220	b)
	13
	21
	2 3
	(i=3,j=1)
	c)
	13
	13
	21
	23