PUB-NO: EP000098518A2

DOCUMENT-IDENTIFIER: EP 98518 A2

TITLE: Porous corrosion-resistant

separators consisting of

metallic screens coated by ceramic

oxides.

PUBN-DATE: January 18, 1984

INVENTOR-INFORMATION:

NAME COUNTRY WENDT, HARTMUT PROF DR N/A HOFMANN, HANS DR N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

HOECHST AG DE

APPL-NO: EP83106334

APPL-DATE: June 29, 1983

PRIORITY-DATA: DE03224556A (July 1, 1982)

INT-CL (IPC): C25B013/04, B01D039/20, B01D039/10

EUR-CL (EPC): B01D013/04; C25B013/04, C25C007/04,

B01D039/20 , B01D039/20

ABSTRACT:

CHG DATE=19990617 STATUS=O>1. Porous, corrosion-proof, non-conductive partitions consisting of metal nets coated with oxide ceramics, wherein the oxide ceramics layer contains metal particles in amounts of from 15 to 75 weight %, relative to the weight of the oxide ceramics.

1 Veröffentlichungsnummer:

0 098 518 A2

12	EUROPÄISCHE PATENTANMELDUNG				
Ø Ø	Anmeldenummer: 83106334.2 Anmeldetag: 29.06.83	(9)	Int. Cl. ³ : C 25 B B 01 D	13/04, B 01 D 39/20, 39/10	
30	Priorităt: 01.07.82 DE 3224556	Ø	Anmelder: HOECH Postfach 80 03 20,	IST AKTIENGESELLSCHAFT, D-6230 Frankfurt am Main 80 (DE)	
43	Veröffentlichungstag der Anmeldung: 18.01.84 Patentblatt 84/3				
ω ₀	Renannte Vertragsstaaten: BE DE FR GB IT LU NL	@	Forethausstrasse	Hartmut, Prof., Dr., 33, D-6110 Dieburg (DE) n, Hans, Dr., Brentanostrasse 4, (DE)	

- Poröse, korrosionsstabile Zwischenwände aus mit Oxidkeramik beschichteten Metalinetzen.
- Bei den Zwischenwänden, die aus mit Oxidkeramik beschichteten Metallnetzen bestehen, enthält die Schicht aus Oxidkeramik Metallteilchen in Mengen von 15-75 Gew.-% bezogen auf das Gewicht der Oxidkeramik.

Benannte Vertragsstaaten: BE DE FR GB IT LU NL

ЕР

ACTORUM AG

5

10

15

20

Poröse, korrosionsstabile Zwischenwände aus mit Oxidkeramik beschichteten Metallnetzen

Die Erfindung betrifft poröse, korrosionsstabile, elektrischen Strom nicht leitende Zwischenwände, die aus mit Oxidkeramik beschichteten Metallnetzen bestehen, die insbesondere als Diaphragmen und Filter zum Betrieb von Elektrolysen sowie zur Stofftrennung - und - filtration in sauren, neutralen und alkalischen Lösungen, geeignet sind.

Korrosionsstabile Diaphragmen und Filter aus mit Oxidkeramik beschichteten Metallnetzen sind aus

Ing. Technik 52 (1980) Nr. 5, Seiten 438 bis 439 bekannt.

Die Oxidkeramik besteht aus Mischoxiden von zweiwertigen

Metallen der Erdalkalien und Übergangsmetallen sowie

Metallen der 4. und 5. Nebengruppe des Periodensystems.

Nachteilig bei diesen Diaphragmen und Filter ist das

schlechte Haften der Oxidkeramik auf dem Metallnetz. Ist

die Keramikschicht beschädigt, bröckelt sie leicht

vom Metallnetz ab.

Es stellte sich demnach die Aufgabe, Metallnetz unterstützte Diaphragmen und Filter zu schaffen, die einen innigen Verbund zwischen Keramik und Metallnetz und damit verbesserte mechanische Stabilität aufweisen.

Die Aufgabe wird dadurch gelöst, daß die Schicht aus Oxidkeramik Metallteilchen in Mengen von 15- 75 Gew.-% bezogen auf das Gewicht der Oxidkeramik enthält. Der mittlere Porendurchmesser der Oxidkeramik kann 5 - 50 μm betragen. Die Oxidkeramik kann Mischoxide bestehend aus Oxiden der Erdalkalimetalle und amphoterer Oxide der Metalle der 4., 5. oder 6. Nebengruppe des Periodensystems enthalten. Die Mischoxide bestehen vorzugsweise aus Erdalkalititanat. Die Metallteilchen können aus

Metallen der 4. oder 8. Nebengruppe des Periodensystems bestehen.

Unter dem Ausdruck Mischoxid werden hier Gemische mehrerer Oxide sowie Verbindungen aus mehreren Oxiden z.B. Doppel-oxide oder Tripeloxide verstanden.

Für die oxidkeramische Komponente der Keramik eignen sich insbesondere Verbindungen einerseits von Oxiden des

10 Calciums, Strontiums, Bariums und andererseits von amphoteren Oxiden des Titans, Zirkons, Hafniums, Niobs, Tantals, Molybdäns und/oder Wolframs. Als metallische Komponente der Keramik sowie für das Metallnetz eignen sich insbesondere Nickel, Titan oder Zirkon.

. 15

20

25

30

Für die Herstellung der porösen Zwischenwände wird eine Vormischung aus für die Keramik nötigen Metalloxiden und Metallteilchen auf ein Metallnetz aufgetragen. Statt der reinen Metallteilchen kann auch das entsprechende Oxid verwendet werden, vorausgesetzt, es läßt sich unter den Herstellungsbedingungen für die Zwischenwände zu Metall reduzieren. Um den gewünschten Porendurchmesser zu erzielen, können die Komponenten für die Vormischung, d.h. die Oxide und Metalle gemeinsam oder getrennt gemahlen und in gesiebten Fraktionen zusammengestellt werden. Die Vormischung kann als binderhaltige Paste auf das Metallnetz aufgemalt, aufgedruckt oder in anderer geeigneter Weise mit dem gewünschten Beschichtungsgewicht aufgebracht werden. Anschließend wird der Binder ausgeheizt und die Zwischenwände bei Temperaturen unterhalb des Schmelzpunktes der metallischen Komponente

unter reduzierender oder inerter Atmosphäre (CO, H2 oder N2) gesintert.

Beispiel 1

Eine Mischung enthaltend 50 Gew.-% Nickelpulver und 50 Gew.-% Nickeltitanat mit einer mittleren Korngröße von 5 μm wurde bei 1100°C 4 Stunden lang gesintert. Der so gesinterte Scherben wurde zerkleinert und in einer Kugelmühle gemahlen. Das Mahlgut wurde durch Sieben in verschiedene Fraktionen getrennt, und zwar in Fraktionen mit Korngrößen = 5 μm, = 20 μm und = 50 μm. Aus diesen drei Fraktionen wurden die folgenden Mischungen für die Proben a), b), c) hergestellt:

10

Aus der Probe a) wurde durch Mischen mit einer 5 Gew.-%
Carboxymethylcellulose enthaltenden Lösung eine druckfähige
Paste hergestellt und damit nach dem Siebdruckverfahren ein
Nickelnetz mit 0,34 mm Maschenweite und 0,25 mm Drahtstärke
beidseitig in je drei Arbeitsgängen bedruckt.

20

Die "grüne" Zwischenwand wurde getrocknet und nach thermischem Zersetzen des organischen Binders bei 1100°C für 45 Minuten unter einer H₂/N₂ Atmosphäre, bei der das Verhältnis H₂/N₂ gleich 30:70 war, in einem Kammerofen gesintert. Aus den Proben b) und c) wurde durch Mischen mit einem Gemisch aus 80 Gew.-% Leinöl und 20 Gew.-% Butanol jeweils eine Paste hergestellt, die jeweils auf ein Nickelnetz wie bei Probe a) verwendet, aufgemalt wurde. Die "grünen" Zwischenwände wurden getrocknet und nach thermischem Zersetzen des Binders in einem Kammerofen gesintert, und zwar Probe b) zwei Stunden bei 1100°C unter H₂/N₂ Atmosphäre, bei der das Verhältnis H₂:N₂ gleich 40:60 war und Probe c) zwei Stunden bei 1200°C unter H₂/N₂ Atmosphäre, bei der das Verhältnis H₂:N₂ gleich 50:50 war.

35

Der Flächenwiderstand der so hergestellten Zwischenwände beträgt bei 25°C in 50 gew.-%iger KOH ca. 400 m Ω cm²; die

dynamische Durchlässigkeit ca. 0,5 cm³ poise/bar cm². Die Zwischenwände sind kurzschlußsicher bei Anlegen einer Spannung von 120 Volt.

. 5 Beispiel 2

Eine Mischung aus 35 Gew.-% Nickeloxid und 65 Gew.-%

Bariumtitanat wurde wie in Beispiel 1 gesintert, zerkleinert,

gemahlen und gesichtet. Die Pulvermischung, deren maximale

Korngröße ≤ 50 μm war, wurde mit einer 2%igen Rohrzucker
10 lösung angeteigt und die Paste auf ein Nickelnetz mit

0,52 mm Maschenweite und 0,3 mm Drahtdurchmesser aufgetra
gen. Das beschichtete Netz wurde durch langsames Aufheizen

in einem Kammerofen unter Luftatmosphäre vorverfestigt und

der Rohrzucker verkohlt. Danach wurde unter H₂-Atmosphäre

75 Minuten bei ca. 1400°C gesintert und sodann im Laufe von

2 Stunden auf 600°C abgekühlt. Der flächenspezifische

Widerstand der so hergestellten Zwischenwand beträgt bei

25°C ca. 300 m Ω cm², die hydrodynamische Durchlässigkeit

0,55 cm³ poise/bar cm². Die Oxidkeramik haftet gut auf dem

20 Trägernetz. Sie bröckelt bei mechanischer Beschädigung nicht ab. Die Zwischenwand ist kurzschlußsicher bei Anlegen einer Spannung von 100 Volt.

PATENTANSPRÜCHE

5

15

20

- Poröse, korrosionsstabile, elektrischen Strom nicht leitende Zwischenwände aus mit Oxidkeramik beschichteten Metallnetzen, dadurch gekennzeichnet, daß die Schicht aus Oxidkeramik Metallteilchen in Mengen von 15 - 75 Gew.-% bezogen auf das Gewicht der Oxidkeramik enthält.
- Zwischenwände nach Anspruch 1, dadurch gekennzeichnet, daß die Schicht aus Oxidkeramik einen mittleren Porendurchmesser von 5 bis 50 μm aufweist.
 - 3. Zwischenwände nach Anspruch 1, dadurch gekennzeichnet, daß die Oxidkeramik Mischoxide enthält, die bestehen aus Oxiden der Erdalkalimetalle und amphoterer Oxide der Metalle der 4., 5. oder 6. Nebengruppe des periodischen Systems.
 - 4. Zwischenwände nach Anspruch 3, dadurch gekennzeichnet, daß die Mischoxide aus Erdalkalititanat bestehen.
 - 5. Zwischenwände nach Anspruch 1, dadurch gekennzeichnet, daß die Metallteilchen aus Metallen der 4. oder 8. Nebengruppe des Periodensystems bestehen.