Fonctions: dérivation.

- I. Dérivée de la composée de deux fonctions.
 - 1. Composée de deux fonctions.

Définition : Soient u une fonction définie sur un intervalle I à valeurs dans un intervalle J et v une fonction définie sur l'intervalle J.

La composée de u par v est la fonction, notée $v_{\circ}u$, définie sur I par $(v_{\circ}u)(x)=v(u(x))$

Exemple 4 : Déterminer le domaine de définition v_0u ainsi l'expression de $v_0u(x)$ dans les cas suivants :

a.
$$u(x)=x+2$$
 et $v(x)=x^3$.

b.
$$u(x) = 3x - 4$$
 et $v(x) = \sqrt{x}$

c.
$$u(x)=x^2$$
 et $v(x)=e^x$

d.
$$u(x)=e^x$$
 et $v(x)=x^2$

b. Expression de la dérivée.

Propriété : Soient u une fonction définie et dérivable sur un intervalle I à valeurs dans un intervalle J et v une fonction définie et dérivable sur l'intervalle J.

Alors la fonction $v_{\circ}u$ est dérivable sur I et pour tout $x \in I$, $(v_{\circ}u)'(x)=u'(x)\times v'(u(x))$

Démonstration : Soit x_0 un réel appartenant à I.

Nous voulons montrer que $v_{\circ}u$ est dérivable en x_0 .

Soit x un réel appartenant à I, nous voulons donc montrer que la limite de

 $\frac{v_{\circ}u(x)-v_{\circ}u(x_{0})}{x-x_{\circ}} \text{ lorsque } x \text{ tend vers } x_{0} \text{ existe et est finie.}$

$$\frac{x - x_0}{v_{\circ} u(x) - v_{\circ} u(x_0)} = \frac{u(x) - u(x_0)}{x - x_0} \times \frac{v_{\circ} u(x) - v_{\circ} u(x_0)}{u(x) - u(x_0)}$$

Or la fonction u étant dérivable sur I, on a que $\lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0} = u'(x_0)$.

De plus, nous admettrons que $\lim_{x\to x_0} u(x) = u(x_0)$ (cela vient du fait que les fonctions

dérivables sont nécessairement continues....mais comme nous n'avons pas encore vu ce qu'était une fonction continue....).

Si $x_0 \in I$, $u(x_0) \in J$, et comme v est dérivable sur J, alors v est dérivable en x_0 et donc, $\lim_{x \to x_0} \frac{v(u(x)) - v(u(x_0))}{u(x) - u(x_0)} = v'(u(x_0))$

Par conséquent,
$$\lim_{x \to x_0} \frac{v_{\circ}u(x) - v_{\circ}u(x_0)}{x - x_0} = u'(x_0) \times v'(u(x_0))$$

Ainsi, pour tout $x_0 \in I$, la fonction $v_0 u$ est dérivable en x_0 et donc la fonction $v_0 u$ est dérivable sur J et pour tout $x \in I$, $(v_0 u)'(x) = u'(x) \times v'(u(x))$.

Exemples : Déterminer la dérivée de la fonction v_0u dans les cas suivants:4

a.
$$u(x)=x^2$$
, $v(x)=e^x$ pour tout $x \in \mathbb{R}$

b.
$$u(x) = 3x - 2$$
, $v(x) = \sqrt{x}$ pour tout $x \in [2/3; +\infty[$

c.
$$u(x) = 3x^2 + 2x - 1$$
, $v(x) = x^9$, pour tout $x \in \mathbb{R}$

Des cas particuliers que nous pouvons retenir....

Soit *u* une fonction définie et dérivable sur un intervalle I.

1.
$$u(ax+b)'=au'(ax+b)$$
 pour tout $x \in I$

2.
$$(e^u) = u'e^u$$

3. Pour tout entier naturel
$$n$$
, $(u^n)'=nu'u^{n-1}$

4. Si *u* est strictement positive,
$$\sqrt{(u)'} = \frac{u'}{2\sqrt{u}}$$

IV. Convexité.

Soit f une fonction dérivable sur un intervalle I.

1. Définition.

Définition:

- La fonction f est dite convexe sur l'intervalle I lorsque sa représentation graphique est située entièrement au dessus de chacune de ses tangentes.
- La fonction f est dite concave sur l'intervalle I lorsque sa représentation graphique est située entièrement en dessous de chacune de des tangentes.

Exemples:

• La courbe de la fonction carré est située entièrement au-dessus de chacune de ses tangentes. La fonction carré est donc convexe sur ℝ

• La courbe de la fonction racinée carrée est située entièrement en-dessous de chacune de ses tangentes. La fonction racine carrée est donc concave sur [0 ; +∞[.

2. point d'inflexion.

La courbe de la fonction cube traverse sa tangente au point d'abscisse 0. La fonction cube est concave sur $]-\infty$; 0] et convexe sur $[0;+\infty[$.

L'origine du repère est un point d'inflexion de la courbe représentative de la fonction cube.

Définition : Le point A de la courbe représentative C_f de la fonction f est un point d'inflexion de C_f si au point A, la courbe C_f traverse sa tangente en A.

Remarque : La courbe $\,C_f\,$ d'une fonction f admet un point d'inflexion en A d'abscisse $\,a\,$ quand la fonction $\,f\,$ passe de concave à convexe ou de convexe à concave en $\,a\,$.

3. Lien avec la dérivée.

On admettra la propriété suivante (illustration graphique avec géogébra au préalable):

Propriété : Soit f une fonction dérivable sur un intervalle I.

- f est convexe sur I si et seulement si f' est croissante sur I.
- f est concave sur I si et seulement si f' est décroissante sur I.

Remarque : L'étude de la convexité apporte des indications sur la façon de croître ou de décroître d'une fonction.

Ainsi, une fonction croissante convexe croît « de plus en plus », comme la fonction carré sur $[0; +\infty[$. Au contraire, une fonction croissante concave croît « de moins en moins », comme la fonction racine carrée sur $[0; +\infty[$.

La propriété suivante est la conséquence de la propriété précédente.

Nous noterons f'' la dérivée de la fonction f', on parle de la dérivée seconde de la fonction f.

Propriété:

- f est convexe sur I si et seulement si f'' est positive sur I.
- f est concave sur I si et seulement si f'' est négative sur I.
- La courbe représentative de f admet un point d'inflexion au point d'abscisse a si et seulement si f'' s'annule et change de signe en a.

Exemple: Soit la fonction f définie sur [0;18] par $f(x)=x^3-24x^2+217x+200$.

- 1. Déterminer le sens de variation de f.
- 2. Étudier la convexité de f et montrer que la courbe C_f admet un point d'inflexion dont vous préciserez les coordonnées.
- 3. Interpréter les résultats du 2. en terme de rythme de croissance.

4. Et la fonction exponentielle?

Comme $\exp'(x) = \exp(x)$, on peut dire que la fonction dérivée de la fonction exponentielle est croissante et donc que la fonction exponentielle est convexe.

Propriété : La fonction exponentielle est convexe sur IR

Conséquence : Soit f la fonction exponentielle. Soit C la courbe représentative de la fonction exponentielle. La tangente T à la courbe C en sont point d'abscisse 0 a pour équation y=f'(x)(x-0)+f(0) donc y=x+1.

Comme la fonction f est convexe, la courbe C est au dessus de toutes ses tangentes.

On a donc que pour tout $x \in \mathbb{R}$, $e^x \ge x+1$.

Or, x+1>x donc, pour tout $x \in \mathbb{R}$ $e^x>x$.