Верхняя оценка на интеграл кривизны

А. М. Петрунин

Аннотация

Для интеграла скалярной кривизны замкнутого риманова многообразия получена врхняя оценка на интеграл кривизны в зависимости от размерности, диаметра и нижней грани секционных кривизн.

1 Введение.

Наш главный результат:

1.1. Теорема. Для любой точки p-m-мерного риманова многообразия M c секционными кривизнами $K_M\geqslant -1$ выполняется неравенство

$$\int_{B_1(p)} \operatorname{Sc} \leqslant \operatorname{Const}(m),$$

где $B_1(p) - e$ диничный шар c центром $p \in M$, а $\operatorname{Sc} - c$ калярная кривизна.

Следующий пример показывает, что результат в некотором смысле оптимален: рассмотрим выпуклый многогранник $P \subset \mathbb{R}^{m+1}$, обозначим через ∂P_{ε} поверхность его ε -окрестности (при желании ∂P_{ε} можно C^{∞} -сгладить). Поверхности ∂P_{ε} являются римановыми многообразиями неотрицательной кривизны. Интеграл $\int_{\partial P_{\varepsilon}}$ Sc почти постоянен при малых ε . При этом для произвольного $\theta>0$

$$\int_{\partial P_{\varepsilon}} |\operatorname{Sc}|^{1+\theta} \to \infty \text{ при } \varepsilon \to 0.$$

Отметим, что если P — вырожденный многогранник коразмерности 2 или 3, то это построение даёт пример коллапса римановых многообразий ∂P_{ε} с $\int_{\partial P_{\varepsilon}} \mathrm{Sc} \geqslant \mathrm{Const} > 0$. Из Следствия 1.3, в частности, вытекает: если при коллапсе размерность падает на 3 и более, то интеграл скалярной кривизны идет к нулю.

1.2. Вариации и обобщения. Из неравенства Бишопа — Громова следует, что шар радиуса R в полном m-мерном римановом многообразии M с кривизнами $K_M\geqslant -1$ может быть покрыт $\exp(4mR)$ единичными шарами. Отсюда следует, что в условиях теоремы верна оценка

$$\int_{B_R(p)} \operatorname{Sc} \leqslant \operatorname{Const}(m) \exp(4mR).$$

С другой стороны, применяя теорему к раздутию $M\,,$ получаем, что при R<1

$$\int_{B_R(p)} \operatorname{Sc} \leqslant \operatorname{Const}(m) R^{m-2}.$$

Эти два неравенства дают

1.3. Следствие. Пусть M есть m-мерное риманово многообразие c секционной кривизной $K_M\geqslant -1$ и $p\in M$. Тогда

$$\int_{B_R(p)} \operatorname{Sc} \leqslant \operatorname{Const}(m) R^{m-2} \exp(4mR).$$

Легко видеть, что если секционные кривизны $\geqslant -1$, то для нормы тензора кривизны Rm верно неравенство

$$|\operatorname{Rm}| \leq \operatorname{Sc} + m^2$$
.

Таким образом, следствие влечет также оценку

$$\int_{B_R(p)} |\operatorname{Rm}| \leq \operatorname{Const}'(m) R^{m-2} \exp(4mR).$$

1.4. Мне кажется, что вопрос можно ли оценить интеграл скалярной кривизны через диаметр и нижнюю грань секционной кривизны был задан мне М. Л. Громовым в 1996-ом году, но через 10 лет я не могу быть уверен, что тогда он спросил именно это.

Мое доказательство похоже на доказательство Γ . Я. Перельмана непрерывности функционала интеграла скалярной кривизны

$$\mathcal{F}(M) = \int_M \operatorname{Sc}$$

на множестве m-мерных римановых многообразий ограниченной снизу кривизны. Его доказательство основано на исчерпывании многообразия выпуклыми гиперповерхностями и применении формулы Гаусса (это доказательство содержится в Дополнении к [P-2003]). С помощью его идеи легко доказать основную теорему в случае отсутствия коллапса, т.е. при следующем дополнительном ограничении на объём шара:

$$vol(B_1(p)) \geqslant v_0 > 0.$$

Я привлекаю к доказательству формулу Бохнера (см. 2.2); похожая идея использовалась С. В. Буяло для нижней оценки на интеграл скалярной кривизны [Буяло]. Эта формула даёт возможность оценивать кривизну не только в касательном, но и в ортогональном направлении к поверхностям (это нужно для того, что бы доказательство работало в случае коллапса). Мне также приходится применять исчерпывание с помощью почти вогнутых гиперповерхностей, что влечет дополнительные технические трудности.

Остальная часть доказательства — это обычная в геометрии Александрова комбинация раздутий и перехода к пределу по Громову — Хаусдорфу. **1.5. Схема доказательства.** Рассуждая от противного, мы предполагаем, что существует такая последовательность m-мерных многообразий (M_n, p_n) с $K_{M_n} \geqslant -1$, что

$$\int_{B_1(p_n)} \mathrm{Sc} \to \infty.$$

Ввиду теоремы Громова о компактности мы можем предположить, что последовательность (M_n, p_n) сходится по Громову — Хаусдорфу к пространству Александрова (A, p). Далее, используя индукционное предположение (то, что некоторое более общее утверждение верно в низших размерностях) мы доказываем, что скалярная кривизна M_n слабо сходится к некоторой мере на A; последняя везде конечна за исключением конечного числа точек. Далее, выбираем одну из таких точек $s \in A$ и раздуваем M_n с аккуратно выбранными близкими к s отмеченными точками $s_n \in M_n$ так, чтобы сделать распределение кривизны вокруг s_n видимым. Переходим к новому предельному пространству (A',p'). Повторяем для (A',p') ту же процедуру, что для (A,p) и т. д. Теорема следует из того, что может быть не более, чем конечное число таких повторений. Последнее следует из того, что (A',p') в некотором определённом смысле на фиксированную величину больше, чем (A,p); однако оно не может быть больше, чем $(\mathbb{R}^m,0)$.

1.6. Я хотел бы поблагодарить Ю. Д. Бураго и Н. Д. Лебедеву за их комментарии к предварительной версии этой статьи и указания на ошибки.

2 Формула Бохнера.

Здесь мы доказываем вариант формулы Бохнера, связывающий скалярную кривизну семейства гиперповерхностей с интегралом кривизны Риччи в нормальном направлении.

- **2.1.** Обозначения. Пусть M^{m+1} есть (m+1)-мерное риманово многообразие и $f: M^{m+1} \to \mathbb{R}$ гладкая функция без критических значений на интервале $[a,b] \subset \mathbb{R}$, линии уровня $L_t = f^{-1}(t)$ которой компактны для всех $t \in [a,b]$. Пусть
 - (i) $u = \nabla f/|\nabla f|$, поле ортов к L_t ;
- (ii) $\{e_0,e_1,e_2,\ldots,e_m\}$ ортонормированный репер, такой что $e_0=u$ и e_i для i>0 идёт в главном направлении $L_{f(x)}$ в x так, что соответствующие главные кривизны $\kappa_i=\langle \nabla_{e_i}u,e_i\rangle$ подмногообразия L_t образуют неубывающую последовательность

$$\kappa_1(x) \leqslant \kappa_2(x) \leqslant \ldots \leqslant \kappa_m(x).$$

(iii) $H(x)=\kappa_1(x)+\kappa_2(x)+\cdots+\kappa_m(x)$ — средняя кривизна $L_{f(x)}$ в $x\in L_{f(x)}$,

(iv) $G(x) = 2\sum_{i < j} \kappa_i(x) \kappa_j(x)$ — внешнее слагаемое в формуле Гаусса для скалярной кривизны L_t , т.е.

$$Sc_{L_t} = 2\sum_{i < j} \langle R_M(e_i, e_j)e_j, e_i \rangle + G = Sc_M - 2\operatorname{Ric}_M(u, u) + G.$$

2.2. Формула Бохнера. Используя приведённые обозначения, формулу Бохнера можно переписать следующим образом:

$$\int_{f^{-1}([a,b])} \operatorname{Ric}_{M}(u,u) = \int_{f^{-1}([a,b])} G + \int_{L_{a}} H - \int_{L_{b}} H \qquad (*)$$

Доказательство. Напишем относительную формулу Бохнера для векторного поля $u = \nabla f/|\nabla f|$ в области $f^{-1}([a,b])$:

$$\int_{f^{-1}([a,b])} \langle Du, Du \rangle - \langle \nabla u, \nabla u \rangle = \int_{f^{-1}([a,b])} \operatorname{Ric}_M(u,u) - \int_{L_a} H + \int_{L_b} H.$$

Поскольку $e_0 = u$ и $\langle \nabla_u u, u \rangle = 0$, то

$$Du = \sum_{i=0}^{m} e_i \cdot \nabla_{e_i} u = \sum_{i=1}^{m} \kappa_i e_i \cdot e_i + u \cdot \nabla_u u = \sum_{i=1}^{m} \kappa_i + u \wedge \nabla_u u.$$

Здесь через « · » обозначено умножение Клиффорда. Учитывая снова, что $\langle \nabla_u u, u \rangle = 0$, получаем

$$\langle Du, Du \rangle = \left(\sum_{i=1}^{m} \kappa_i\right)^2 + |\nabla_u u|^2.$$

С другой стороны,

$$\nabla u = \sum_{i=1}^{m} \kappa_i e_i \otimes e_i + \nabla_u u \otimes u$$

и, значит,

$$\langle \nabla u, \nabla u \rangle = \sum_{i=1}^{m} \kappa_i^2 + |\nabla_u u|^2.$$

Таким образом,

$$\langle Du, Du \rangle - \langle \nabla u, \nabla u \rangle = 2 \sum_{i < j} \kappa_i \kappa_j = G.$$

Отсюда следует (*).

3 Построения в геометрии Александрова.

В этой части мы заготавливаем технические результаты в геометрии Александрова, в основном связанные с так называемыми «угловыми поверхностями». Эти «угловые поверхности» являются обобщением почти выпуклых поверхностей на все коразмерности. Грубо говоря, они определяются как пересечение почти выпуклых поверхностей под острыми углами друг к другу.

Эти поверхности используются так же, как выпуклые поверхности в доказательстве Перельмана.

На протяжении всей этой части мы используем обозначения и соглашения из [Р-2007].

Формальное определение похоже на определение распертых точек [БГП], но я применяю его для подмногообразий и добавляю параметр ℓ , который характеризует, как широко расставлены распорки.

3.1. Определение. Подмножество M пространства Александрова N является (k,δ,ℓ) -угловой поверхностью, если существует набор $1/\ell$ -вогнутых функций $f_i,g_i:N\to\mathbb{R},\ i\in\{1,..,k\}$ (называемых распорками M), определённых в ℓ -окрестности M и таких, что

u, кроме того, набор $f_i, g_i: N \to \mathbb{R}$ является δ -распертым, т.е.

- (i) все f_i , g_i 1-липшицевы,
- (ii) для любых $i \neq j$

$$|df_i(\nabla g_j)|, |dg_i(\nabla f_j)|, |dg_i(\nabla g_j)|, |df_i(\nabla f_j)| \leq \delta,$$

- (iii) $df_i(\nabla g_i)$, $dg_i(\nabla f_i) \leqslant -1 + 2\delta$ и набор $f_i: N \to \mathbb{R}$ тугой, т.е.
- (iv) для любой $x \in M$ и произвольных $i \neq j$,

$$df_i(\nabla f_i) \leq 0.$$

Если N является римановым многообразием и все функции $\{f_i\}$ гладкие, то M называется гладкой (k, δ, ℓ) -угловой поверхностью.

Замечания. В этом определении допускается k=0, в этом случае M=N. Условия (i) — (iv) гарантируют, что функции f_i не имеют критических точек, и их линии уровня пересекаются под острыми углами близкими к прямым.

Отметим, что если раздуть метрику пространства N с коэффициентом λ , то (k, δ, ℓ) -угловая поверхность M становится $(k, \delta, \lambda \ell)$ -угловой в λN с распорками $\{\lambda f_i, \lambda g_i\}$.

3.2. Пределы угловых поверхностей. Пусть (N_n, p_n) — последовательность q-мерных римановых многообразий с кривизнами $K_{N_n} \geqslant -1$, а $M_n \subset N_n$ — последовательность (k, δ, ℓ) -угловых поверхностей с распорами

$$\{f_{i,n}, g_{i,n}\}, i \in \{1, \dots, k\}, f_{i,n}, g_{i,n}: N_n \to \mathbb{R}.$$

Переходя к подпоследовательности индексов n, можно предположить следующие сходимости:

- (i) $(N_n, p_n) \xrightarrow{\mathrm{GH}} (N, p)$,
- (ii) $M_n \xrightarrow{\mathrm{GH}} M \subset N$,
- (iii) для каждого $i \in \{1, \dots, k\}, f_{i,n} \to f_i : N \to \mathbb{R}$ и $g_{i,n} \to g_i : N \to \mathbb{R}$.

Очевидно, N есть пространство Александрова размерности $\leqslant q$ и кривизной $\geqslant -1$, а $M-(k,\delta,\ell)$ -угловая поверхность с распорками $f_i,g_i:N\to\mathbb{R}$. Более того, если M — компактно и m=q-k, то

$$\operatorname{vol}_m M = \lim_{n \to \infty} \operatorname{vol}_m M_n.$$

Это утверждение может быть доказано аналогично теореме [Б $\Gamma\Pi$, 10.8].

3.3. Инвариант, похожий на размерность. Здесь мы определяем инвариант пространства Александрова, похожий на размерность, но более чувствительный.

Пусть A — пространство Александрова размерности $\leqslant q$. Для $\theta>0$ определим $\dim_{\theta}A$ равенством

$$\operatorname{dir}_{\theta} A = \min_{x \in A} \operatorname{pack}_{\theta} \Sigma_x A,$$

где $\Sigma_x A$ есть пространство направлений в точке $x \in A$, а раск $_{\theta} \Sigma_x A$ обозначает максимальное число точек в $\Sigma_x A$ на расстоянии $\geq \theta$ друг от друга. Очевидно, $\dim_{\theta} A$ — целое число и

$$\operatorname{dir}_{\theta} A \leqslant \operatorname{Const}(\theta, \operatorname{dim} A) \leqslant \operatorname{pack}_{\theta} S^q$$
.

3.4. Подъём точек. Здесь мы вводим способ поднятия точек из пространства Александрова в близкое риманово многообразие. Более точно: поднятие вершины (см. ниже) (k,δ,ℓ) -угловой поверхности из пространства Александрова в близкую (k,δ,ℓ) -угловую поверхность в близком римановом многообразии.

Этот способ поднятия точек будет использован только раз, в самом конце доказательства импликации $B_m \Rightarrow A_m'$ (пункт 4.6 доказательства леммымонстра 4.3).

Пусть $N_n \xrightarrow{\text{GH}} N$ есть последовательность q-мерных римановых многообразий с кривизной $\geqslant -1$, сходящаяся к пространству Александрова N,

а $\delta > 0$ достаточно мало. Пусть, далее, $M_n \subset N_n$ есть последовательность (k, δ, ℓ) -угловых поверхностей, сходящаяся к $M \subset N$ (см. 3.2).

Рассмотрим функцию $b:M\to\mathbb{R}$, принимающую максимальное значение b(x) такое, что

$$|\nabla_y \operatorname{dist}_x| > 1 - \delta$$
 для любого $y \in B_{2b(x)}(x) \setminus \{x\}$ и $2b(x) \leqslant \max\{1, \delta\ell\}$.

Очевидно, что $b:M\to\mathbb{R}$ — положительна.

3.5. Определение. Точка x на (k, δ, ℓ) -угловой поверхности называется вершиной, если для любой точки $y \in M$, $y \neq x$, имеем $b(y) \leqslant |xy|$.

Покажем что если $x \in M$ есть вершина M, то существует последовательность $x_n \in M_n$, сходящаяся к $x \in M$ и обладающая следующим свойством:

3.6. Свойство. Пусть a_n — такое минимальное число, что

$$|\nabla_y \operatorname{dist}_{x_n}| > 1 - \delta$$
 для всех таких точек $y \in N_n$, что $a_n < |x_n y| \leqslant b$.

Тогда или $a_n=0$ для произвольно больших n, или, если (N',x') есть частный предел последовательности $(\frac{1}{a_n}N_n,x_n)$, то

$$\operatorname{dir}_{\delta} N' > \operatorname{dir}_{\delta} N \quad \text{(cm. 3.3)}.$$

3.7. Построение. Для любой точки $\tilde{x}_n \in N_n$ определим $a(\tilde{x}_n) = a_{\delta,b}(\tilde{x}_n)$ как такое наименьшее число, что

$$|\nabla_y \operatorname{dist}_{\tilde{x}_n}| > 1 - \delta$$
 если $a(\tilde{x}_n) < |\tilde{x}_n y| \leqslant b$.

Заметим, что для любой последовательности $M_n\ni \bar x_n\to x$ и $M_n\ni y_n\to y$, где $y\ne x$, мы имеем

$$\underline{\lim}_{n \to \infty} |\nabla_{y_n} \operatorname{dist}_{\bar{x}_n}| \geqslant |\nabla_y \operatorname{dist}_x|.$$

Таким образом, $a(\bar{x}_n) \to 0$ при $n \to \infty$.

Зафиксируем одну такую последовательность $\bar{x}_n \to x$ и достаточно малый радиус r>0. Пусть $x_n\in M_n\cap B_r(\bar{x}_n)\subset N_n$ — точка с минимально возможной $a(x_n)$.

Поскольку x — вершина, получаем $x_n \to x$, и в частности, $(N_n, x_n) \to (N, x)$.

Остаётся показать, что построенная последовательность удовлетворяет условию 3.6.

Предположим, что $a_n=a(x_n)>0$ при всех больших n. Перейдём к такой подпоследовательности, что $(\frac{1}{a_n}N_n,x_n)\stackrel{\mathrm{GH}}{\longrightarrow} (N',x')$. Для любого $\theta>0$

$$\operatorname{dir}_{\theta} N' \geqslant \operatorname{pack}_{\theta} \Sigma_{x} N \geqslant \operatorname{dir}_{\theta} N.$$

Значит, достаточно показать, что при $\theta = \delta$ первое из неравенств строгое.

Если неравенство обращается в равенство, то существует такая точка $p \in N'$, что раск $_{\delta} \Sigma_p N' = \operatorname{pack}_{\delta} \Sigma_x N = s$. Мы покажем, что если $p_n \in \frac{1}{a_n} N_n$ есть последовательность, сходящаяся к p, то $\frac{1}{a_n} a(p_n) \to 0$. В частности, при больших n имеем $a(p_n) < a(x_n)$, что противоречит выбору x_n (здесь мы обозначаем через p_n как точку в $\frac{1}{a_n} N_n$, так и соответствующую точку в N_n).

Выберем точки $q_1,q_2,...,q_s\in N$ так, что $\angle q_ixq_j>\delta$ при $i\neq j$. Для каждого $i\in\{1,2,...,s\}$ выберем последовательность $q_{i,n}\in N_n$, сходящуюся к $q_i\in N$. Пусть $y_n\in N$ — такая точка, что $|p_ny_n|_N\to 0$ и $|\nabla_{y_n}\operatorname{dist}_{p_n}|\leqslant 1-\delta$. Тогда, как легко видеть, $\angle y_np_nq_n\geqslant 2\delta$ при больших n. Переходя к пределу при $n\to\infty$, получаем раск $_\delta\Sigma_xN>s$. Противоречие.

4 Доказательство теоремы.

Теорема 1.1 следует из теоремы 4.2 для k=0.

4.1. Обозначение. Для произвольной вещественнозначной функции f введём обозначение

$$f^{\pm} = \max\{0, \pm f\}.$$

Пусть X — риманово многообразие. Для $x \in X$ и — двумерного направления σ в касательном пространстве в точке x через $K_X(\sigma)$ обозначим секционную кривизну многообразия X в направлении σ . Введём обозначение

$$K_X^\pm(x) = \max\{0, \max_\sigma\{\pm K(\sigma)\}\},$$

где σ пробегает все двумерные направления в x.

4.2. Теорема. Существует такое $\delta = \delta(q,k) > 0$, что если N есть q-мерное риманово многообразие c секционными кривизнами $K_N \geqslant -1$ и $M \subset N$ — полная гладкая (k,δ,ℓ) -угловая поверхность, то

$$\int_{M \cap B_1(x)} \operatorname{Sc}_M^+ \leqslant \operatorname{Const}(q, k, \ell) \left[1 + \int_{M \cap B_2(x)} K_M^- \right]$$

для любого $x \in N$.

Если $\dim M\geqslant 3$, то теорема 4.2 следует из A_k' леммы-монстра 4.3; в случае $\dim M=2$ теорема следует из трёхмерного случая для $M\times S^1\subset N\times S^1$.

4.3. Лемма-монстр. Существуют такие постоянные $A_k = A(q, k, \ell)$, $A'_k = A'(q, k, \ell)$, $B_k = B(q, k, \ell)$ и такая последовательность $\delta_k > 0$, $k \in \{0, 1, ..., q-3\}$, что если

N есть q-мерное риманово многообразие c кривизной $\geqslant -1$,

 $M \subset N$ полная гладкая (k, δ_k, ℓ) -угловая поверхность,

то для любого $k \in \{0, 1, ..., q-3\}$ верны следующие утверждения:

 A_k . Если diam $M \leqslant 1$, то

$$\int_{M} \operatorname{Sc}_{M}^{+} \leqslant \mathcal{A}_{k} \left[1 + \int_{M} K_{M}^{-} \right].$$

 A_k' . Для любого $x \in N$

$$\int_{M \cap B_1(x)} \operatorname{Sc}_M^+ \leqslant \mathcal{A}_k' \left[1 + \int_{M \cap B_2(x)} K_M^- \right].$$

 B_k . Предположим, что для некоторого $x \in M$ выполняется $|\nabla_y \operatorname{dist}_x| > 1 - \delta_k$ для всех таких $y \in N$, что $a < |xy| < 2b < \max\{1, \delta\ell\}$. Тогда

$$\int_{\operatorname{dist}_{x}^{-1}([2a,b])\cap M} \operatorname{Sc}_{M}^{+} \leqslant \mathcal{B}_{k} \left[1 + \int_{\operatorname{dist}_{x}^{-1}([a,2b])\cap M} K_{M}^{-} \right].$$

Доказательство. Очевидно, $A_k' \Rightarrow A_k$. Таким образом, достаточно доказать утверждение A_{q-2} и импликации $A_k \Rightarrow B_{k-1}$, $B_k \Rightarrow A_k'$ для каждого k.

4.4. $\mathbf{A_{q-2}}$. В этом случае $\dim M=2$, таким образом $\mathrm{Sc}_M^\pm=2K_M^\pm,$ и утверждение следует из формулы Гаусса — Бонне:

$$\int_{M} K_{M}^{+} = \int_{M} K_{M} + \int_{M} K_{M}^{-} \leqslant 4\pi \left(1 + \int_{M} K_{M}^{-} \right).$$

Т.е. можно взять $A_{q-2} = 8\pi$.

4.5. $\mathbf{A_k}\Rightarrow \mathbf{B_{k-1}}$. Пусть $\{f_i,g_i\},\ i=\{1,\dots,k-1\}$ суть распорки M. Рассмотрим функцию $f:M\to\mathbb{R},$

$$f(y) = (1 - \delta_k)\widetilde{\text{dist}}_x(y) + \frac{\delta_k}{k} \sum_{i=1}^{k-1} (g_i(y) - g_i(x)),$$

где через ${\rm dist}_x$ обозначена сглаженная функция расстояния до x. Очевидно, на множестве ${\rm dist}^{-1}([a,2b])\cap M$ выполняется

$$1 - 2\delta_k \leqslant \frac{f(y)}{\operatorname{dist}_{x} y} < 1.$$

Таким образом, нам достаточно доказать существование постоянной $\mathcal{B}(q,k,\ell)$, для которой

$$\int_{f^{-1}([a,b])} \operatorname{Sc}_{M}^{+} \leq \mathcal{B}(q,k,\ell) \left[1 + \int_{f^{-1}([a,\frac{3}{2}b])} K_{M}^{-} \right]$$
 (**)

На множестве $\operatorname{dist}^{-1}([a,2b])\cap M$ функция f ведёт себя похоже на dist_x , но она ещё и гладкая, и её поверхности уровня образуют угловые поверхности в N (т.е. мы можем применить к ним A_k). Более того, верно следующее (сравни с [БГП, 11.8]):

Функция f почти вогнута в окрестности $f^{-1}([a,\frac{3}{2}b])$ и для некоторого $\alpha=\alpha(q,k,\ell)>0$ имеем

- (i) $1 \geqslant |\nabla f| > 1/\alpha$ везде в $f^{-1}([a, \frac{3}{2}b])$ на M. В частности $f: M \to \mathbb{R}$ не имеет критических значений в $[a, \frac{3}{2}b]$.
- (ii) Для любого $t \in [a, \frac{3}{2}b]$ множество уровня $L_t = f^{-1}(t)$ образует компактную гладкую $(k, \delta_k, t/\alpha)$ -угловую поверхность в N, и если $m = \dim L_t = q k$, то имеем
 - a) $A(t) \stackrel{\text{def}}{=} \operatorname{vol}_m L_t \leqslant \alpha t^m$.
 - b) diam $L_t \leq \alpha t$,
 - с) главные кривизны L_t в M не превосходят α/t . Более точно: если $u = \nabla f/|\nabla f| \in TM$, то для любого касательного к L_t единичного вектора v имеем $\langle \nabla_v u, v \rangle \leqslant \alpha/t$, где через ∇ обозначена связность Леви-Чивита на M.

Чтобы доказать, что $L_t=f^{-1}(t)$ образует $(k,\delta_k,t/\alpha)$ -угловую поверхность в N, достаточно дополнить набор распоров M, взяв $f_k=f$ и $g_k={\rm dist}_{L_{(1+\varepsilon)t}}$ для достаточно малой постоянной $\varepsilon>0$. Среди остальных условий не вполне очевидна лишь оценка на объём. Её можно получить, рассуждая от противного, используя свойство объёма угловых поверхностей при переходе к пределу, см. 3.2. Проверку деталей я щедро предоставляю читателю.

Обозначения.

- (i) $\kappa_1(y) \leqslant \kappa_2(y) \leqslant ... \leqslant \kappa_m(y)$ главные кривизны $L_t \subset M$ в точке $y \in L_t$ относительно нормали u;
- (ii) $\beta:[a,b]\to\mathbb{R}_+$ верхняя грань главных кривизн поверхности L_t , т.е. $\kappa_m(y)\leqslant\beta_t$ для всех $y\in L_t$ (по условию (ii) можно взять $\beta(t)=\alpha/t$, но для упрощения формул мы сделаем эту подстановку только в самом конце);
- (iii) $H(y)=\kappa_1(y)+\kappa_2(y)+\ldots+\kappa_m(y)$ средняя кривизна L_t в $y\in L_t$ и через

$$H^{\pm}(y) = \max\{0, \pm H(y)\}\$$

обозначены положительная и отрицательная части H(y).

Отметим, что знаки κ_i выбраны так, что выполняется равенство

$$A'(t) = \int_{L_t} H/|\nabla f|.$$

(iv) $G(y)=2\sum_{i< j}\kappa_i\kappa_j$ — внешнее слагаемое в формуле Гаусса для скалярной кривизны L_t , т.е.

$$Sc_L = 2\sum_{i < j} \langle R_M(e_i, e_j)e_j, e_i \rangle + G = Sc_M - 2\operatorname{Ric}_M(u, u) + G$$

для ортонормированного репера $\{e_i\}$ касательного пространства уровня L .

Тривиальные неравенства.

(i) Пусть $L \subset M$ — гиперповерхность. По формуле Гаусса

$$Sc_L = Sc_M - 2 Ric_M(u, u) + G.$$

Таким образом,

$$\operatorname{Sc}_{M}^{+} \leq \operatorname{Sc}_{L}^{+} + m(m-1)K_{M}^{-} + 2\operatorname{Ric}_{M}(u,u) - G \leq$$

$$\leq \operatorname{Sc}_{L}^{+} + m^{2}K_{M}^{-} + 2\operatorname{Ric}_{M}(u,u) - G.$$

Также получаем

$$G \leqslant \operatorname{Sc}_{L}^{+} + (m-1)(m-2)K_{M}^{-} \leqslant$$
$$\leqslant \operatorname{Sc}_{L}^{+} + m^{2}K_{M}^{-}.$$

(іі) Снова по формуле Гаусса

$$K_L^- \leqslant K_M^- + (H^- + m\beta)\beta.$$

(iii) Очевидно, $H^+(y) \leqslant m\beta_t$ для любого $y \in L_t$, значит

$$\int_{L_t} H^+ \leqslant m\beta_t A(t).$$

Таким образом,

$$\int_{L_t} H^- \leqslant \int_{L_t} H^- / |\nabla f| = \int_{L_t} H^+ / |\nabla f| - \int_{L_t} H / |\nabla f| \leqslant$$
$$\leqslant m\alpha \beta_t A(t) - A'(t).$$

Промежуточное неравенство. Докажем, что

$$\int_{f^{-1}([a,b])} \operatorname{Sc}_{L}^{+} \leqslant \operatorname{Const}(q,k,\ell) \left[1 + \int_{f^{-1}([a,b])} K_{M}^{-} \right]. \quad (\diamondsuit)$$

Действительно, поскольку $|\nabla f| \geqslant 1/\alpha$,

$$\int_{f^{-1}([a,b])} \operatorname{Sc}_L^+ \leqslant \alpha \int_a^b dt \int_{L_t} \operatorname{Sc}_L^+ \leqslant$$

(применяем A_k для L_t)

$$\leqslant \mathcal{A}(q,k,\ell)\alpha \int_{a}^{b} dt \left(1 + \int_{L_{t}} K_{L_{t}}^{-}\right) \leqslant$$

(применяем тривиальные неравенства)

$$\begin{split} &\leqslant \mathcal{A}(q,k,\ell)\alpha \int_a^b dt \left(1 + \int_{L_t} [K_M^- + (H^- + m\beta_t)\beta_t] \right) \leqslant \\ &\leqslant \mathcal{A}(q,k,\ell)\alpha \left[(b-a) + \int_{f^{-1}([a,b])} K_M^- + m(1+\alpha) \int_a^b A(t)\beta_t^2 - \int_a^b A'(t)\beta_t \right]. \end{split}$$

Отсюда и из того, что $0 < a < b \leqslant 1$, $\alpha = \alpha(q,k,\ell)$, $\beta_t = \alpha/t$ и $A(t) \leqslant \alpha t^m$, получаем (\diamondsuit) .

Основное неравенство.

$$\int_{f^{-1}([a,b])} \operatorname{Sc}_M^+ \leqslant$$

$$\leqslant \int_{f^{-1}([a,b])} \operatorname{Sc}_L^+ + m^2 \int_{f^{-1}([a,b])} K_M^- + 2 \int_{f^{-1}([a,b])} \operatorname{Ric}(u,u) - \int_{f^{-1}([a,b])} G \leqslant$$
 (по формуле Бохнера)

$$\leq \int_{f^{-1}([a,b])} \operatorname{Sc}_{L}^{+} + m^{2} \int_{f^{-1}([a,b])} K_{M}^{-} + \int_{f^{-1}([a,b])} G + 2 \int_{L_{a}} H - 2 \int_{L_{b}} H \leq \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{a}} H - 2 \int_{L_{b}} H \leq \int_{f^{-1}([a,b])} \operatorname{Sc}_{L}^{+} + m^{2} \int_{f^{-1}([a,b])} K_{M}^{-} + \int_{f^{-1}([a,b])} G + 2 \int_{L_{a}} H - 2 \int_{L_{b}} H \leq \int_{f^{-1}([a,b])} G + 2 \int_{L_{a}} H - 2 \int_{L_{b}} H \leq \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H \leq \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{L_{b}} H - 2 \int_{L_{b}} H + \int_{f^{-1}([a,b])} G + 2 \int_{f^{-1}([a,b])} H + \int_{f^{-1}([a$$

(применяем тривиальное неравенство (i))

$$\leq 2 \int_{f^{-1}([a,b])} \operatorname{Sc}_{L}^{+} + 2m^{2} \int_{f^{-1}([a,b])} K_{M}^{-} + 2 \int_{L_{a}} H^{+} + 2 \int_{L_{b}} H^{-} \leq$$

применяем промежуточное неравенство (\Diamond) и оценки на H^{\pm})

$$\leqslant \operatorname{Const}(q, k, \ell) \left[1 + \int_{f^{-1}([a,b])} K_M^{-} \right] + m\beta_a A(a) + m\alpha\beta_b A(b) - A'(b) \leqslant \\
\leqslant \operatorname{Const}(q, k, \ell) \left[1 + \int_{f^{-1}([a,b])} K_M^{-} \right] - A'(b).$$

В частности, для любого $\tau \in [b, \frac{3}{2}b]$ имеем

$$\int_{f^{-1}([a,b])} \operatorname{Sc}_{M}^{+} \leqslant \operatorname{Const}(q,k,\ell) \left[1 + \int_{f^{-1}([a,\frac{3}{2}b])} K_{M}^{-} \right] - A'(\tau).$$

Поскольку $0\leqslant A(t)\leqslant \alpha t^m$ (см. стр. 10), получаем, что для некоторого $\tau\in[b,\frac{3}{2}b]$ выполняется $(-A'(\tau))\leqslant 2\alpha b^{m-1}$. Отсюда получаем (**).

4.6. $\mathbf{B}_{k} \Rightarrow \mathbf{A}'_{k}$. Предположим, \mathbf{A}'_{k} не верно. Тогда можно найти последовательность q-мерных римановых многообразий с отмеченными точками (N_{n}, x_{n}) , с кривизной $K_{N_{n}} \geqslant -1$ и с такими (k, δ_{k}, ℓ) -угловыми поверхностями $M_{n} \subset N_{n}$, что

$$\frac{\int_{M_n \cap B_1(x_n)} \operatorname{Sc}_{M_n}^+}{1 + \int_{M_n \cap B_2(x_n)} K_{M_n}^-} \to \infty \quad \text{при} \quad n \to \infty. \tag{\bigstar}$$

Обозначим через $\{f_{n,i},g_{n,i}\}$ распорки M_n . Перейдём к подпоследовательности N_n , чтобы иметь следующие сходимости (см. 3.2):

- (i) $(N_n,x_n) \xrightarrow{\mathrm{GH}} (N,x)$, где N есть пространство Александрова размерности $\leqslant q$ с кривизнами $\geqslant -1$;
- (ii) $f_{i,n} \to f_i: N \to \mathbb{R}$ и $g_{i,n} \to g_i: N \to \mathbb{R}$ для каждого $i \in \{1, \cdots, k\}$;
- (ііі) $M_n \to M \subset N$, где M есть (k, δ_k, ℓ) -угловая поверхность с распорками $f_i, g_i: N \to \mathbb{R}$.

Случай без вершин. Предположим, что M не имеет вершин (см. 3.5). Поскольку множество $M\cap \bar{B}_1(x)\subset N$ компактно, его можно покрыть конечным числом «колец»

$$Ann_{x_i} = \{ y \in M | 0 < |x_i y| < b(x_i) \}, \ i = \{1, 2, ..., s\}.$$

Для каждого $i \in \{1,2,..,s\}$ выберем последовательность $x_{i,n} \in M_n$ сходящуюся к $x_i \in M$. Введем краткие обозначения: $b_i = b(x_i)$ и $a_{i,n} = a_{\delta_k,b_i}(x_{i,n})$ (см. 3.7). Как было показано в 3.7, $a_{i,n} \to 0$ при $n \to \infty$. Отсюда, если n достаточно велико, применив B_k для каждого $x_{i,n}$ с парой $(a_{i,n},b_i)$, получаем

$$\int_{M_n \cap B_1(x_n)} \operatorname{Sc}_{M_n}^+ \leqslant
\leqslant \sum_{i=1}^s \int_{\{y \in M_n | 2a_{i,n} < |x_{i,n}y| < b_i\}} \operatorname{Sc}_{M_n}^+ \leqslant
\leqslant \sum_{i=1}^s \mathcal{B}_k \left[1 + \int_{\{y \in M_n | a_{i,n} < |x_{i,n}y| < 2b_i\}} K_{M_n}^- \right] \leqslant
\leqslant \mathcal{B}_k s \left[1 + \int_{M_n \cap B_2(x_n)} K_{M_n}^- \right].$$

Таким образом, приходим к противоречию с (★).

Случай с вершинами. Заметим, что из $M \cap \bar{B}_1(x)$ можно вырезать конечное число вершин (см. 3.4) так, что оставшуюся часть можно покрыть конечным числом колец:

$$(M\setminus\{x_1,x_2,\ldots,x_s\})\cap \bar{B}_1(x)\subset \bigcup_{i=1}^S \mathrm{Ann}_{x_i},\ S\geqslant s.$$

Здесь центры x_i при $i\leqslant s$ — вершины, а при i>s — нет. Применяя ту же оценку, что раньше, получаем

$$\int_{M_{n} \cap B_{1}(x_{n})} \operatorname{Sc}_{M_{n}}^{+} - \sum_{i=1}^{s} \int_{\{y \in M_{n}: |\tilde{x}_{i,n}y| < 2a_{i,n}\}} \operatorname{Sc}_{M_{n}}^{+} \leq \\
\leq \sum_{i=1}^{s} \int_{\{y \in M_{n}: 2a_{i,n} < |\tilde{x}_{i,n}y| < b_{i}\}} \operatorname{Sc}_{M_{n}}^{+} \leq \\
\leq \sum_{i=1}^{s} \mathcal{B}_{k} \left[1 + \int_{\{y \in M_{n}: a_{i,n} < |\tilde{x}_{i,n}y| < b_{i}\}} K_{M_{n}}^{-} \right] \leq \\
\leq \mathcal{B}_{k} S \left[1 + \int_{M_{n} \cap B_{2}(x_{n})} K_{M_{n}}^{-} \right].$$

Из (\bigstar) следует, что найдётся $i \leqslant s$ такое, что

$$\frac{\int_{M_n \cap B_{2a_{i,n}(\tilde{x}_{i,n})}} \mathrm{Sc}_{M_n}^+}{1 + \int_{M_n \cap B_{4a_{i,n}(\tilde{x}_{i,n})}} K_{M_n}^-} \to \infty.$$

В этом случае $a_{i,n}>0$ для всех больших n и $a_{i,n}\to 0$ при $n\to\infty$. Выберем такое i и введем более короткие обозначения:

$$x := x_i, \ b := b_i, \ x_n := x_{i,n}, \ a_n := a_{i,n}$$
 и т. д..

Рассмотрим раздутия $N_n' = \frac{1}{2a_n}N_n$. Обозначим через M_n' образ M_n при естественном отображении $N_n \to N_n'$, в остальном будем использовать те же обозначения как для объектов в N_n , так и для их образов в N_n' . Отметим, что

$$\int_{M'_n \cap B_1(x_n)} \operatorname{Sc}_{M'_n}^+ = \frac{1}{(2a_n)^{n-2}} \int_{M_n \cap B_{2a_n}(x_n)} \operatorname{Sc}_{M_n}^+,$$

$$\int_{M'_n \cap B_2(x_n)} K_{M'_n}^- = \frac{1}{(2a_n)^{n-2}} \int_{M_n \cap B_{4a_n}(x_n)} K_{M_n}^-.$$

Поскольку $a_n \to 0$, получаем, что

$$\frac{\int_{M_n \cap B_{2a_n}(\tilde{x}_n)} \operatorname{Sc}_{M_n}^+}{1 + \int_{M_n \cap B_{4a_n}(\tilde{x}_n)} K_{M_n}^-} \to \infty \quad \text{при} \quad n \to \infty.$$

Таким образом

$$\frac{\int_{M'_n\cap B_1(\tilde{x}_n)}\operatorname{Sc}^+_{M'_n}}{1+\int_{M'_n\cap B_2(\tilde{x}_n)}K^-_{M'_n}}\to\infty \quad \text{as} \quad n\to\infty.$$

Перейдя к подпоследовательности, можно предположить что

$$(N'_n, x'_n) \xrightarrow{\mathrm{GH}} (N', x').$$

Повторим для N^\prime то же рассуждение, что для N . Остаётся только показать следующее

4.7. Предложение. Таких шагов может быть только конечное число. Другими словами, после конечного числа повторений мы приходим к случаю без вершин.

Это предложение следует из того, что $\operatorname{dir}_{\delta_k} N' > \operatorname{dir}_{\delta_k} N$ (см. свойство 3.6) плюс то, что $\operatorname{dir}_{\delta_k} N -$ целое и $\operatorname{dir}_{\delta_k} N \leqslant \operatorname{dir}_{\delta_k}(\mathbb{R}^q) < \infty$, см. 3.3.

Список литературы

- [БГП] Ю. Д. Бураго, М. Л. Громов, Г. Я. Перельман, *Пространства А. Д. Александрова с ограниченными снизу кривизнами*, УМН, 47 (1992), №2, 3—51; английский перевод в Russian Math. Surveys 47 (1992), №2, 1–58.
- [Буяло] С. В. Буяло, *Некоторые аналитические свойства выпуклых множеств в римановых пространствах*, Мат. Сб. (H.C.) 107(149) (1978), №1, 37—55.
- [P-2003] A. Petrunin, Polyhedral approximations of Riemannian manifolds, Turkish J. Math., 27, (2003), №1, 173–187.
- [P-2007] A. Petrunin, Semiconcave functions in Alexandrov's geometry, Surveys in Differential Geometry, 11 (2007) pp. 135–202.