

Gurobi - LP solver

evaluate solution create custom output

Presolve

```
Optimize a model with 1500 rows,
   2250000 columns and 4497000 nonzeros

Coefficient statistics:
   Matrix range [le+00, le+00]
   Objective range [le+00, le+02]
   Bounds range [0e+00, 0e+00]
   RHS range [le+00, 2e+01]

Presolve removed 0 rows and 1611 columns

Presolve time: 4.37s

Presolved: 1500 rows, 2248389 columns, 4496778 nonzeros
```


Presolve - Example

$$x_1 + x_2 + x_3 \ge 15$$

$$x_1 \le 7$$

$$x_2 \le 3$$

$$x_3 \le 5$$

Presolve - Example

$$x_1 + x_2 + x_3 \ge 15$$

 $x_1 \le 7$
 $x_2 \le 3$
 $x_3 \le 5$

delete constraint and variables in order to reduce the problem

LP methods

- ▶ 3 different methods
 - primal/dual simplex
 - robust
 - easy to restart after model modification
 - barrier
 - ► can be run on multiple cores
- concurrent optimization

Concurrent Optimization

- run simplex and barrier at the same time
- ▶ first one to finish reports solution
- use multiple cores
- fastest choice for general model

Ite	ration	Objective	Primal Inf.	Dual Inf.	Time
	0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s
	3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s
	4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s
	7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s
	9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s
	10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s
	12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s
	13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s
	15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s
	17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s
	17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s
Solved in 17419 iterations and 90 82 seconds					

Solved in 17419 iterations and 90.82 seconds Optimal objective 2.110826998e+04

Iteration	Objective	Primal Inf.	Dual Inf.	Time	
0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s	
3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s	
4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s	
7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s	
9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s	
10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s	
12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s	
13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s	
15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s	
17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s	
17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s	
Solved in 17419 iterations and 90.82 seconds					
Optimal objective 2.110826998e+04					

Optimal objective 2.110826998e+04

Iteration	Objective	Primal Inf.	Dual Inf.	Time
0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s
3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s
4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s
7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s
9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s
10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s
12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s
13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s
15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s
17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s
17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s
Solved in 17419 iterations and 90.82 seconds				

Optimal objective 2.110826998e+04

Ite	ration	Objective	Primal Inf.	Dual Inf.	Time
	0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s
	3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s
	4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s
	7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s
	9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s
	10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s
	12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s
	13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s
	15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s
	17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s
	17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s
Solved in 17419 iterations and 90.82 seconds					

Iteration	Objective	Primal Inf.	Dual Inf.	Time	
0	-1.2573140e+02	2.968000e+03	5.593346e+11	7s	
3297	1.2166285e+05	0.000000e+00	6.532640e+07	10s	
4619	8.3232592e+04	0.000000e+00	1.162234e+08	15s	
7000	5.2154173e+04	0.000000e+00	4.234078e+06	25s	
9189	3.7601369e+04	0.000000e+00	1.177763e+07	35s	
10706	3.0986489e+04	0.000000e+00	2.645246e+06	45s	
12019	2.7488411e+04	0.000000e+00	4.758955e+06	56s	
13844	2.3646778e+04	0.000000e+00	3.840044e+05	65s	
15403	2.1713789e+04	0.000000e+00	3.055039e+04	75s	
17347	2.1105977e+04	0.000000e+00	1.777696e+01	85s	
17419	2.1108270e+04	0.000000e+00	0.000000e+00	91s	
Solved in 17419 iterations and 90.82 seconds					
Optimal objective 2.110826998e+04					

Primal: Dual:

$$\min c^{\top}x$$
 s.t.

$$Ax \leq b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\top}y = c$$

$$y \ge 0$$

Primal:

$$\min c^{\top}x \quad \text{s.t.}$$

$$Ax \leq b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\top}y = c$$

$$y \ge 0$$

Primal:

$$\min c^{\top}x \quad \text{s.t.}$$

$$Ax \leq b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\top}y = c$$

$$y \ge 0$$

Primal:

$$\min c^{\top} x \quad \text{s.t.}$$

$$Ax \le b$$

$$\max b^{\top} y \quad \text{s.t.}$$

$$A^{\top} y = c$$

$$y \ge 0$$

Primal:

$$\min c^{\top}x \quad \text{s.t.}$$

$$Ax \leq b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\top}y = c$$

$$y \ge 0$$

Primal:

$$\min c^{\top} x \quad \text{s.t.}$$

$$Ax \le b$$

$$\max b^{\top} y$$
 s.t.

$$A^{\top}y = c$$

$$y \ge 0$$

Primal: Dual:

$$\min c^{\top}x$$
 s.t. $\max b^{\top}y$ s.t. $A^{\top}y=c$ $y\geq 0$

$$c^{\top}\bar{x} = \bar{y}^{\top}A\bar{x} = (*) \bar{y}^{\top}b$$

Dual Simplex

- simplex on dual problem
- obtain primal solution as discussed before
- dominant algorithm used in MIP solving

Idea:

$$\min c^{\top} x \quad \text{s.t.}$$

$$Ax \le b$$

Idea:

$$\min f(x)$$
 s.t.

$$c_i(x) \leq 0$$

with f and c_i linear

Idea:

$$\min f(x)$$
 s.t. $c_i(x) \le 0$

with f and c_i linear

$$\Downarrow$$

$$\min f(x) - \mu \sum_{i} log(c_{i}(x))$$

$$\min f(x) - \mu \sum_{i} log(c_{i}(x))$$

- $lackbox{lack}\mu
 ightarrow 0$ and solve as nonlinear optimization problem
- also known as Interior Point Method
- ► few, but expensive calculations
- ▶ not clear whether warm start is doable

Advanced Input

Reading Data from Files

Advantages:

- separation between data and code
- ► faster replacement and sharing of data
- more flexible code
- clearer code

File Formats

- excel (pandas, xlrd)
- csv (csv)
- ▶ json (json)
- basically any text-file of some custom format (write parser)

The JSON File Format

```
{
    " oil_types":[
        " heavy"," medium"," light"
],
    "processes":[0,1],
    "production":{
        " heavy":[2,1]," medium":[2,2]," light":[1,4]
},
    "demand":{
        " heavy":3," medium":5," light":4
},
    "process_cost":[3,5]
}
```


Data Types

- ► Boolean
- Number (integer or floating point)
- String
- ► Array [] (ordered list of elements of arbitrary type)
- ► Object {} (unordered collection of name-value pairs)

Data Types

- ► Boolean
- Number (integer or floating point)
- String
- ► Array [] (ordered list of elements of arbitrary type)
- ▶ Object {} (unordered collection of name-value pairs)

Translates straight-forward to Python!

Reading JSON files in Python

```
import json
with open("data.json") as json_file:
data = json.load(json_file)
```


Read text files

- generally, input files not given as json or csv or xslx
- any custom format
- solution: read file line by line according to its syntax and create list/dictionary/object

Reading general textfiles in Python

```
filename = 'data.txt'
with open(filename, "r") as file:
    line = file.readline()
    while line:
        print(line.split("separator"))
```


Write text files

- generate different datasets to have stable collection of example data
- straightforward in python (very similar to print())

Writing textfiles in Python

```
filename = 'data.txt'
with open(filename, "w") as file:
    file.write("sometext\n")
    file.close()
```