Programme de Khôlle Semaine 7

Kylian Boyet, George Ober

10 Novembre 2023

Aucune démo de ce document n'apparait au programme de Khôlle T_T

1 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

 $D\acute{e}monstration.$ Soit $m\in\mathbb{Z}$ fq. Calculons :

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt$$

Si $m \neq 0$:

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt &= \frac{1}{2\pi} \left[\frac{e^{mt}}{im} \right]_0^{2\pi} \\ &= \frac{1}{2\pi} \left(\frac{1}{im} - \frac{1}{im} \right) = 0 \end{split}$$

Si m=0:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \int_0^{2\pi} dt = \frac{2\pi}{2\pi} = 1$$

Donc

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \begin{cases} 1 \text{ si } m = 0\\ 0 \text{ si } m \neq 0 \end{cases}$$

Soient $(a_0,...,a_n) \in \mathbb{C}^{n+1}$ les coefficients de $P(z) = \sum_{k=0}^n a_k z^k$, et $s \in \mathbb{Z}$, et $r \in \mathbb{R}_+^*$ fq. tels que P soit nulle lorsqu'elle est évaluée sur $\mathscr{C}(0,r)$

$$\frac{1}{2\pi} \int_0^{2\pi} P(re^{it}) e^{-imt} dt = \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (re^{it})^k \right) e^{-imt} dt$$
$$= \sum_{k=0}^n a_k r^k \underbrace{\int_0^{2\pi} \frac{e^{it(k-s)}}{2\pi} dt}_{I_k}$$

On remarque que:

— Si
$$s \notin [[0, n]], \{k \in [[0, n]] \mid k = s\} = \emptyset$$
, Donc

$$\sum_{\substack{k \in [[0,n]]\\k=s}} a_k r^k I_k = 0$$

— Si $s \in [[0, n]], \{k \in [[0, n]] \mid k = s\} = s$, Donc

$$\sum_{k \in [[0,n]]} a_k s^k I_k = a_s r^s$$

Supposons maintenant que

2 Preuve de la Linéarité de la dérivation d'une fonction complexe

Démonstration. Définissons les fonctions f_r etc. comme les parties réelles et imaginaires de f Soient $(f,g) \in \mathcal{F}(I,\mathbb{C})^2$, $(\alpha,\beta) \in \mathbb{C}^2$ fixés quelconques.

$$f_r = \operatorname{Re}(f), f_i = \operatorname{Im}(f)$$
 $g_r = \operatorname{Re}(f), g_i = \operatorname{Im}(g)$
 $\alpha_r = \operatorname{Re}(\alpha), \alpha_i = \operatorname{Im}(f)$ $\beta_r = \operatorname{Re}(f), \beta_i = \operatorname{Im}(g)$

$$\operatorname{Re}(\alpha f + \beta g) = \operatorname{Re}((\alpha_r + i\alpha_i)(f_r + if_i) + (\beta_r + i\beta_i)(g_r + ig_i))$$

$$= \underbrace{\alpha_r f_r + \beta_r g_r - \alpha_i f_i - \beta_i g_i}_{\text{Combinaison linéaire de } \underbrace{(f_r, f_i, g_r, g_i) \in \mathcal{D}^1(I, \mathbb{R})^4}_{car(f, g) \in \mathcal{D}^1(I, \mathbb{R})^2}$$

Donc, selon le théorème de stabilité par combinaison linéaire des fonctions à valeurs réelles, $\operatorname{Re}(\alpha f + \beta g) \in \mathcal{D}^1(I, \mathbb{R})$ et $\left(\operatorname{Re}(\alpha f + \beta g)\right)' = \alpha_r f'_r + \beta_r g'_r - \alpha_i f'_i - \beta_i g'_i$

On montre de même que $\operatorname{Im}(\alpha f + \beta g) \in \mathcal{D}^1(I, \mathbb{R})$ et $(\alpha f + \beta g)' = \alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r'$ Ainsi,

$$(\alpha f + \beta g)' = (\alpha_r f_r' + \beta_r g_r' - \alpha_i f_i' - \beta_i g_i') + i(\alpha_r f_i' + \alpha f_r' + \beta_r g_i' + \beta_i g_r')$$

$$= \alpha_r (f_r' + i f_i') + \beta_r (g_r' + i g_i') + \alpha_i \underbrace{(-f_i' + i f_i')}_{i(f_r' + i f_i')} + \beta_i \underbrace{(-g_i' + i g_i')}_{i(g_r' + i g_i')}$$

$$= \alpha f' + \beta g'$$

3 Dérivée composée d'une fonction à valeurs complexes

 $D\acute{e}monstration$. Soient $f \in \mathcal{D}^1(J,\mathbb{C})$ et $h \in \mathcal{D}^1(I,J)$ (I et J sont deux intervalles réels) fixés quelconques. Notons f_r et f_i respectivement la partie réelle et imaginaire de f.

$$\left. \begin{array}{l} h \in \mathcal{D}^1(I,J) \\ f_r \in \mathcal{D}^1(J,\mathbb{R}), \ \mathrm{car} \ f \in \mathcal{D}^1(J,\mathbb{C}) \end{array} \right\} \implies f_r \circ h \in \mathcal{D}^1(I,\mathbb{R})$$

On montre de même que $f_i \circ h \in \mathcal{D}^1(I, \mathbb{R})$ donc $f \circ h \in \mathcal{D}^1(I, \mathbb{C})$. De plus,

$$(f \circ h)' = (f_r \circ h)' + i(f_i \circ h)'$$

$$= (f'_r \circ h) \times h' + i((f'_i \circ h) \times h')$$

$$= (f'_r \circ h + if'_i \circ h) \times h' = (f' \circ h) \times h'$$

4 Caractérisation des fonctions dérivables de dérivée nulle sur un intervalle

Démonstration. Soit $f \in \mathcal{D}^1(I,\mathbb{C})$ où I est un intervalle réel; Posons $f_r = \text{Re}(f)$ et $f_i = \text{Im}(f)$.

$$\forall t \in I, f'(t) = 0 \iff \forall t \in I, f'_r(t) + if'_i(t) = 0$$

$$\iff \begin{cases} \forall t \in I, f'_r(t) = 0 \\ \forall t \in I, f'_i(t) = 0 \end{cases}$$

$$\iff \begin{cases} \exists \lambda_r \in \mathbb{R} : \forall t \in I, f_r(t) = \lambda_r \\ \exists \lambda_i \in \mathbb{R} : \forall t \in I, f_i(t) = \lambda_i \end{cases}$$

$$\iff \exists \lambda \in \mathbb{C} : \forall t \in I, f(t) = \lambda$$

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}.$$
 (1)