

Reconocimiento de Patrones

Version 2022-2

Clustering: K-means

[Capítulo 6]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Algorithm:

- 1. Input Data $X = \{x_1, x_2, ..., x_N\}$ and number of clusters K
- 2. Centroids $\{c_1, c_2, ... c_K\}$ = random K points of X
- 3. For each data point x_i
- 4. Compute distance $d_{ij} = d(x_i,c_j)$ i=1,...,N, j=1,...K
- 5. Assign x_i to the nearest centroid: $y_i = \operatorname{argmin}_{j} \{d_{ij}\}$
- 6. Compute the new centroids of each cluster $c_i^* = mean(x_i)$ for $y_i = j$
- 7. if $c_j^* \neq c_j$ then $c_j = c_j^*$ go to step 3
- 8. Output: $\{c_1^*, c_2^*, ..., c_K^*\}$ and y_i for i=1,...,N

Choose random K=2 points (centroids)

Assign to the nearest centroid

10

11

Repeat until convergence

Algorithm:

- 1. Input Data $X = \{x_1, x_2, ..., x_N\}$ and number of clusters K
- 2. Centroids $\{c_1, c_2, ... c_K\}$ = random K points of X
- 3. For each data point x_i
- 4. Compute distance $d_{ij} = d(x_i, c_i)$ i=1,...,N, j=1,...K
- 5. Assign x_i to the nearest centroid: $y_i = \operatorname{argmin}_{j} \{d_{ij}\}$
- 6. Compute the new centroids of each cluster $c_j^* = mean(x_i)$ for $y_i = j$
- 7. if $c_i^* \neq c_i$ then $c_i = c_i^*$ go to step 3
- 8. Output: $\{c_1^*, c_2^*, ..., c_K^*\}$ and y_i for i=1,...,N

Example: Two Clouds of Points

Input Data

Iteration 0:

Iteration 1:

Iteration 1:

Iteration 2:

Iteration 3:

Iteration 4:

Iteration 5:

Found Clusters

Input Data

Example: Color Segmentation

Segmentación por Clustering

Segmentación por Clustering

Segmentación por Clustering

Algoritmo

Clustering usando k-means

