SEQUENCE LISTING

```
<110> Duke University
     Arcasoy, Murat O.
     Haroon, Zishan A.
<120> Use of Novel Cytokine Receptors as Biomarkers and Therapeutic
Targets in Human Cancer
<130> 5405-275PR
<160> 21
<170> PatentIn version 3.1
<210> 1
<211> 8647
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1916)..(2030)
<223> exon 1
<220>
<221> CDS
<222> (2887)..(3022)
<223> exon 2
<220>
<221> CDS
<222> (4010)..(4185)
<223> exon 3
<220>
<221> CDS
<222> (4266)..(4423)
<223> exon 4
<220>
<221> CDS
<222> (4907)..(5060)
<223> exon 5
<220>
<221> CDS
<222> (5145)..(5232)
<223> exon 6
<220>
<221> CDS
<222> (7334)..(7421)
<223> exon 7
<220>
<221> CDS
<222> (7517)..(8125)
<223> exon 8
```

<400> 1 60 ggatccaccc acctcggcct cccaaagtgc tgggattaca ggcatgagca ctgtgcatgg actatttatt tatttttttg aaacagagtt tcaatcttgt tgcacagcct ggagtgcaat 120 180 ggtgtgatct cagctcactg caacctctgc cttctggttt caagcaattc tcctgcctca gcctcctgag tagctgggat tacaggcacc caccaccacg ctcgaatata tatatatt 240 ttttgagacg gagtccgctc tgtcaccagg ctggagtgca gtggccaaat atcggctcac 300 tgaaacetee ggeteetggg tteaagegat teteetgeag ceteecaagt agetgggatt 360 acaggcatgc agcaccacgc ccatctaatt tttgtatttt tggtagagat ggggttttac 420 480 catgttggcc aggatggtct tgatctcttg acctcgtgat ctgcccacct cggcctccca aagtgetggg attacaggeg tgaegaeege geeeggeeta egeetggeta atttttgtat 540 600 ttttagtaga gacgtggttt cgccatgttg cccaggctgg tctcgaactc ctgacctcat gateegeetg teteggeete eeaaagtgtt gggattacaa gtatgageea eegegeeaet 660 720 agccaatttt ttttattttt tgagatgcag tctcactctg ttgcccaggc tggagttgca gtggcatgat cttggctcac tgcaatcttc atctcccaga ctgaagcagt tctcatgcct 780 cagectectg agtagetggg attacageae aegecaeeae aeetggetaa tttttgtatt 840 tttagtagag atgggatttc accatgttgg ccaggctggt ctcaaactcc tgacctcaag 900 tgatttgccc acgtcggcct cccaaagtgc tgggattata ggcgtgagcc accgcccagc 960 ccaagagaat aaaaatgtgg gtggtaaaaa tttttttccc aaaaattcgt aaatgaaaat 1020 ctcacatatt atgcatactg cccaggagca tggcctagca ctgtgcaaac actcaactgc 1080 tggtcgttgc aaggattatt attggccggc ttcagtggct tgctggtatt cccagcacat 1140 tgggagatgg aggctggagg attgcttaag tccgggattt caagaccagc ctggacaaca 1200 1260 tagtgggatc ccatctctac aaagaatttt aaaaattagc caggtgcagt gggaagattg 1320 cttcagtcca gaggctgcag tgagctatga ttgtgccact gcactccagc ctgggtgaca 1380 gagcaacacc ctgagacaga gagagagagg gggaaggagg gaaggaggga aggaaggaag gaaggaagga aggaaggaag gaaggaagga aggaaggaaa ggagagagag agagagagag 1440 agagagagag agagagaaaa taatttttat ttatttccag gctgggaaga gatgctgatt 1500 tctgcgataa aatcagtagg tacatttttt ggaatgttcg ctatgtgcca ggctagattt 1560 tacagatgag aagtetgaag etcaggtaag gtaagteace tgtecaggge cacaaagaaa 1620 aaaaaaacgt gtgtctgaag ccagaacggg agctgttgcg cccaactccc tcccctgccc 1680 ccaageggee tetgggeteg ggaagggeee etgeeteete eegeeaggea ettateteta 1740 cccaggctga gtgctggccc cgccctcgg ggatctgcca cttagaggcg cctggtcggg 1800

aagggeetgg teagetgegt eeggeggagg eagetgetga eeeagetgtg gaetgtgeeg	1860
ggggtggggg acggagggc aggagccctg ggctccccgt ggcgggggct gtatc atg Met 1	1918
gac cac ctc ggg gcg tcc ctc tgg ccc cag gtc ggc tcc ctt tgt ctc Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys Leu 5 10 15	1966
ctg ctc gct ggg gcc gcc tgg gcg ccc ccg cct aac ctc ccg gac ccc Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp Pro 20 25 30	2014
aag ttc gag agc aaa g gtaaggatga gctgcgtgtg gacccctacg ctggagcctg Lys Phe Glu Ser Lys 35	2070
caggaccatg ctggggcctg aactcccagc ctaggtcctg ggggccatgc tgtttctgga	2130
cttcctgacc gggtcctggg ggccaagctg gcatctgaac ccttagactg ggtcctggat	2190
gggtgggggg cggggtgggg tatgttagga tccaagactc ctgatcgcgt cccgggcaag	2250
agctagagtg ggcttaacat tecegtttta eetttteagg gagtetggga catgetaaat	2310
cctaaggggg ctgacttggt gctaaggtcc ctggggggtg gggaccaagc cgatccctag	2370
gggagggagg gtaaagcccg ggtccgagtt agagggccaa gccacaggct actgtaaaca	2430
cggtttgtgt gagggcgcca gatcacttgc ccggcccggt ggagggaggg aggcgggggg	2490
cacggttggc gctatcggtt ggcggggagc ctgccggggc cgataggggg cccgcctctc	2550
cgcacacacc cccagccgcg cgcgtgtcct aggctgggc ggggctggca gtcccgagct	2610
cgaggtettg aacgeegege ecageteage tggeegetgg gtgggeaggt gtgegeeagt	2670
ggtgcacggc gggggacagt aaggcgagaa acttgcccct gggaattagg ggggcaccac	2730
ctctgcggac ccctccaagg gacccgcttg ggaagatggc agggcggggc ttttttctta	2790
tegggteege ceaggetgeg ggagggaaga ggaggggget gteteeegag gatagagete	2850
agacccccat gcccttcctt tgtcgcccct ccccag cg gcc ttg ctg gcg gcc Ala Ala Leu Leu Ala Ala 40	2903
cgg ggg ccc gaa gag ctt ctg tgc ttc acc gag cgg ttg gag gac ttg Arg Gly Pro Glu Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu 45 50 55 60	2951
gtg tgt ttc tgg gag gaa gcg gcg agc gct ggg gtg ggc ccg ggc aac Val Cys Phe Trp Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn 65 70 75	2999
tac agc ttc tcc tac cag ctc ga gtgagtccga tccggcgggt gcctccaagg Tyr Ser Phe Ser Tyr Gln Leu Glu 80	3052

	gcggagggag ggggtggggc agagctccct ggaggtcgta gcctcgtatg tcccctgctg 3112
	tttgaggccc gacggcgcct ccagtcgtgg tcactggagg gaaacctgcg ggtccagggc 3172
,	tggcacgcct ctatgggccg gggcgcgaac actcccgcga tcaccgctgg aacgcgaccc 3232
	caaacatcag gctgggataa caacgcctcc aaatcgaggg taaggcgtta ctacgtcggg 3292
	gctgggacgc cttctcgagg tagtatccaa aaggaggcca gcagtgctca tgcctgtaat 3352
	cccaactctt tggaaggtcg agcggaagaa ccgcttgagc ccaggtgttc aagaccagcc 3412
	tgggcaacac agcgagatcc ccgtctctta aaaaaaaatt agactgggcg cggctgcacg 3472
	cctgtaatcc cagcactttg ggaggctgag gcgggcggat cacctgaggt cgggagtttg 3532
	agagccagcc tggccaacat ggagaaactc tatctctact aaaaatacaa aattagccgg 3592
	gcgtggtggc gcatgcctgt gatcccagct actcgggagg ctgaggcagg agaatcgctt 3652
	gaacccggga ggcggaggtt gcggtgagcc gaggtagcgc cattgcactc cagcctgggc 3712
	aacaagagcg aaactccgtc tcaaaaaaaa aaaaaataaa agccaggcgt ggcgcgtgcc 3772
•	tgtggtctca actacttggg aagctgaggt gggaggatcc cttaagcccc agaatttgag 3832
	gctgcagtga gccatgatcg cgccactgca ctccagcctg ggcgacgaag gaacaccttg 3892
	tcacacacac acacaaggct agaccttgtg tcacacatac acactgcccc ccacaggccg 3952
	ggcaatgcca actccccggt ccccctccc aacctgctcc cttccctggg cgcatag g 4010
	gat gag cca tgg aag ctg tgt cgc ctg cac cag gct ccc acg gct cgt 4058 Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala Pro Thr Ala Arg 85 90 95 100
	ggt gcg gtg cgc ttc tgg tgt tcg ctg cct aca gcc gac acg tcg agc 4106 Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala Asp Thr Ser Ser 105 110 115
	ttc gtg ccc cta gag ttg cgc gtc aca gca gcc tcc ggc gct ccg cga 4154 Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser Gly Ala Pro Arg 120 125 130
	tat cac cgt gtc atc cac atc aat gaa gta g gtaagtgctc tgggaatgga 4205 Tyr His Arg Val Ile His Ile Asn Glu Val 135 140
	ggagtggtcg gaggagaggg tctcagtcct cgcccacctg accaaccccc atgcctgcag 4265
	tg ctc cta gac gcc ccc gtg ggg ctg gtg gcg cgg ttg gct gac gag 4312 Val Leu Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu 145 150 155
	agc ggc cac gta gtg ttg cgc tgg ctc ccg ccg cct gag aca ccc atg Ser Gly His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met 160 165 170
	acg tct cac atc cgc tac gag gtg gac gtc tcg gcc ggc aac ggc gca 4408 Thr Ser His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala 175 180 185 190

ggg agc gta cag agg gtgaggccag cccctacggc ccagccccca aagctccact Gly Ser Val Gln Arg 195	4463
gactacggcc cagccacgcc tetegaggtc gegeceggtg cegettteag ggeeggteeg	4523
taacatccca catcccatta ccctggtgct gaagaccgtt ccacgcccac agacacagcc	4583
ccetttecta atgtectege aageetgttg aaceecaact tetteteet eeggeeegta	4643
accetagace cetttagege eegggteeet etacgagtge tageecagat attaaattge	4703
ccgggtcccg ccctttcgta ccagagactc tctctctgat tggccctgag ctttcttggg	4763
ctcctcccc tactcttatt ggtcccattg caattctagg gcaccgtttt cctttcccct	4823
gattggctca gttccaccag ggcccgccc cacgtcatct atttttgtct gctacgcgtc	4883
cctcgccctg attccgcccc cag gtg gag atc ctg gag ggc cgc acc gag tgt Val Glu Ile Leu Glu Gly Arg Thr Glu Cys 200 205	4936
gtg ctg agc aac ctg cgg ggc cgg acg cgc tac acc ttc gcc gtc cgc Val Leu Ser Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg 210 215 220	4984
gcg cgt atg gct gag ccg agc ttc ggc ggc ttc tgg agc gcc tgg tcg Ala Arg Met Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser 225 230 235	5032
gag cct gtg tcg ctg ctg acg cct agc g gtgaggcccc aggcgggggt Glu Pro Val Ser Leu Leu Thr Pro Ser 240 245	5080
gtaggaggag ccagggcgaa tcacggggca agcccaccgc cctgacctcc tccccgcctc	5140
ttag ac ctg gac ccc ctc atc ctg acg ctc tcc ctc atc ctc gtg gtc. Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser Leu Ile Leu Val Val 250 255 260	5188
atc ctg gtg ctg ctg acc gtg ctc gcg ctg ctc tcc cac cgc cg Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu Ser His Arg Arg 265 270 275	5232
gtgagetece catttgggeg etgggeecag acteetece gecaaeggte etettteaet	5292
atggaaacct aggctcagag agagacacgc acttgcccaa ggtcacgcag taaggattca	5352
catcagtggc agggctggga tgcatgccag actagaccca gactcttcgt taacattttc	5412
tgctcttggg gactttcacc tgattttcct tctacatcag gggctgccat ttcttgggtc	5472
cctttgttag ttcctttccc cagtgtcatc acctttgtaa aatcaactag atggatttag	5532
tgaaagaatt taagaccctg aatgcctccg cacccctgcg gtcaagcttc tcagacacta	5592
tgatcagact agccgttctg aggtatttgt aattccaagc acacactagg tggtttcaca	5652
cccccaaget tttgcccatg ctgttccctc tgcctggaat gcccttcctg ccttgtctgc	5712

taagcaatct	tctagtcgtc	tttcatggcc	ctgttcattt	acttggttgg	aaaatacaaa	5772
cagagtgcca	aacatgtgcc	aggcactgga	gagagaatgg	agaacaagct	agaccctgac	5832
cacaagtccc	tgaccttgtg	gatctcaagt	caacaaacaa	gggacccaag	aaatatttga	5892
tgacaaattg	taatgagtga	tatcacagaa	acaaacagaa	tgtggtgaca	tgacaggatg	5952
gtcagggaag	gctccaggag	gaggtgacat	cagagtggaa	acctgaagat	tggaaggaag	6012
cageegettg	aaaagtgggg	agaagaaaca	gcaagtgcaa	aggccctgag	gtgggaatga	6072
gattggaacg	ttcagccagc	ttcaagaatt	gccacatgca	tggcctggca	tggtggctca	6132
cgcctgtaat	cccagcactt	tgggatgccg	aggcaggcag	atcacctgag	gttgggagtt	6192
cgcgaccagc	ctgaccaaca	tggagaaacc	ccacctctac	taaaaataca	aaactagcca	6252
agcgtggtgg	cacatgcctg	taatccccgc	tactcgggag	gctgaggcag	gagaatcact	6312
tgaacctggg	aggtggaggt	tgcgggtgag	ccgagatcgt	gccatcgcat	tccagcctgg	6372
gcaataagag (tgaaactccg	tctcaaaaaa	aaaaaaaaa	ttgccacatg	gctagagtgg	6432
tatgtaaggg	ggtgtggcag	atattgagat	gagggaggtg	acaggggtca	tataacgcag	6492
ggccttctgc	agggtggtgg	ggaggagttt	ggaattttt	tttttttga	gacagagtca	6552
ctcttgtcgc	ccaagctgta	gtgcagtgca	gcagtcttgg	ctcactgcaa	ctctgcctcc	6612
caggttcaag	tgattctcct	gcctcaaccg	cctgagtagc	tgagattaca	ggcgtgcatg	6672
cccggctaat	tttgtagttt	tagtagagac	ggggttccac	catgttggcc	aggctggtct	6732
caaactcctg	acctcaggtg	atctgctcac	atcagcctct	caaagtgctg	ggattatagg	6792
catgagccac	cgtgcctggc	ttggatttta	tcctaaatgc	ctctctcatt	accccagaag	6852
gtaacataat	atttatctat	gaagtgacat	catggacctc	ctggaaaaat	ctgggccagg	6912
gttttgggtt	ttttaattta	ttttatttta	tttttttag	agatgggggt	ctcactatgt	6972
ttcctaggct	ggtcttgaac	tcctgggttc	aaatgatcct	cccacctcag	cctcccaaag	7032
tactgggatt	atagtgctgg	tgtaaaccac	tgcacctggc	catggccagg	attaaaggga	7092
gaatgaccaa	ggtatattga	actcctatgc	acccttcaat	accctgttcc	atttaccctt	7152
ttgtagggcc	ttgctgatgc	ttcagccaaa	acccctgtcc	cctggccctg	atgtactcct	7212
ctgcctccat	tgtgatcaca	gggaccaagt	gtatctgtgc	ctctatgact	gggagtggag	7272
ggggaattgg	tgagtattca	atgagtcata	tctatgtaac	tatttatatt	ggcttcaaca	7332
			ect ggc atc Pro Gly Ile 285			7379
		ne Thr Thr H	cac aag ggt His Lys Gly 300		1	7421

gtaggtggcc tggttgtccc ctcagtgcct gggcttccct gcttcttgca gccaaactgc	7481
aggcctctct gagcaggttg gtgctatttc ttcag ctg tgg ctg tac cag aat Leu Trp Leu Tyr Gln Asn 310	7534
gat ggc tgc ctg tgg tgg agc ccc tgc acc ccc ttc acg gag gac cca Asp Gly Cys Leu Trp Trp Ser Pro Cys Thr Pro Phe Thr Glu Asp Pro 315 320 325	7582
cct gct tcc ctg gaa gtc ctc tca gag cgc tgc tgg ggg acg atg cag Pro Ala Ser Leu Glu Val Leu Ser Glu Arg Cys Trp Gly Thr Met Gln 330 335 340	7630
gca gtg gag ccg ggg aca gat gat gag ggc ccc ctg ctg gag cca gtg Ala Val Glu Pro Gly Thr Asp Asp Glu Gly Pro Leu Leu Glu Pro Val 345 350 355	7678
ggc agt gag cat gcc cag gat acc tat ctg gtg ctg gac aaa tgg ttg Gly Ser Glu His Ala Gln Asp Thr Tyr Leu Val Leu Asp Lys Trp Leu 360 365 370 375	7726
ctg ccc cgg aac ccg ccc agt gag gac ctc cca ggg cct ggt ggc agt Leu Pro Arg Asn Pro Pro Ser Glu Asp Leu Pro Gly Pro Gly Gly Ser 380 385 390	7774
gtg gac ata gtg gcc atg gat gaa ggc tca gaa gca tcc tcc tgc tca Val Asp Ile Val Ala Met Asp Glu Gly Ser Glu Ala Ser Ser Cys Ser 395 400 405	7822
tct gct ttg gcc tcg aag ccc agc cca gag gga gcc tct gct gcc agc Ser Ala Leu Ala Ser Lys Pro Ser Pro Glu Gly Ala Ser Ala Ala Ser 410 415 420	7870
ttt gag tac act atc ctg gac ccc agc tcc cag ctc ttg cgt cca tgg Phe Glu Tyr Thr Ile Leu Asp Pro Ser Ser Gln Leu Leu Arg Pro Trp 425 430 435	7918
aca ctg tgc cct gag ctg ccc cct acc cca ccc cac cta aag tac ctg Thr Leu Cys Pro Glu Leu Pro Pro Thr Pro Pro His Leu Lys Tyr Leu 440 445 450 450	7966
tac ctt gtg gta tct gac tct ggc atc tca act gac tac agc tca ggg Tyr Leu Val Val Ser Asp Ser Gly Ile Ser Thr Asp Tyr Ser Ser Gly 460 465 470	8014
gac tcc cag gga gcc caa ggg ggc tta tcc gat ggc ccc tac tcc aac Asp Ser Gln Gly Ala Gln Gly Gly Leu Ser Asp Gly Pro Tyr Ser Asn 475 480 485	8062
cct tat gag aac agc ctt atc cca gcc gct gag cct ctg ccc ccc agc Pro Tyr Glu Asn Ser Leu Ile Pro Ala Ala Glu Pro Leu Pro Pro Ser 490 495 500	8110
tat gtg gct tgc tct taggacacca ggctgcagat gatcagggat ccaatatgac Tyr Val Ala Cys Ser 505	8165
tcagagaacc agtgcagact caagacttat ggaacaggga tggcgaggcc tctctcagga	8225

qcaqqqqcat tqctqatttt qtctqcccaa tccatcctqc tcaqqaaacc acaaccttqc 8285 agtattttta aatatgtata gttttttttt gtatctatat atatatatac acatatgtat 8345 qtaaqttttt ctaccatqat ttctacaaac accetttaaq teccatette eeetgggeat 8405 aggccatagg gatagaagtt aaagttcttg agcttattca gaagctggat ctgcaatctg 8465 aatgctactc ataacataac aaaatagtat gttaaacagc tcttaaatct tactggctta 8525 ccacattaaa tgatttctct ctcctaactc agctcaaatg ggcagccatc catggatgag 8585 tcagaggttc agactettcc agtetgtage tctacettet ettagggtac ttagatggat 8645 8647 CC

<210> 2

<211> 508

<212> PRT

<213> Homo sapiens

<400> 2

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys
1 10 15

Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp
20 25 30

Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu 35 40 45

Glu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp 50 60

Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser 65 70 75 80

Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala 85 90 95

Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala 100 105 110

Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser 115 120 125

Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 130 135 140

Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly

145 150 155 160

His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser 165 170 175

His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser 180 185 190

Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser 195 200 205

Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met 210 215 220

Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val 225 230 235 240

Ser Leu Leu Thr Pro Ser Asp Leu Asp Pro Leu Ile Leu Thr Leu Ser 245 250 255

Leu Ile Leu Val Val Ile Leu Val Leu Leu Thr Val Leu Ala Leu Leu 260 265 270

Ser His Arg Arg Ala Leu Lys Gln Lys Ile Trp Pro Gly Ile Pro Ser 275 280 285

Pro Glu Ser Glu Phe Glu Gly Leu Phe Thr Thr His Lys Gly Asn Phe 290 295 300

Gln Leu Trp Leu Tyr Gln Asn Asp Gly Cys Leu Trp Trp Ser Pro Cys 305 310 315

Thr Pro Phe Thr Glu Asp Pro Pro Ala Ser Leu Glu Val Leu Ser Glu 325 330 335

Arg Cys Trp Gly Thr Met Gln Ala Val Glu Pro Gly Thr Asp Asp Glu 340 345 350

Gly Pro Leu Leu Glu Pro Val Gly Ser Glu His Ala Gln Asp Thr Tyr 355 360 365

Leu Val Leu Asp Lys Trp Leu Leu Pro Arg Asn Pro Pro Ser Glu Asp 370 375 380

Leu Pro Gly Pro Gly Gly Ser Val Asp Ile Val Ala Met Asp Glu Gly 385 390 395 400

Ser Glu Ala Ser Ser Cys Ser Ser Ala Leu Ala Ser Lys Pro Ser Pro 405 410 Glu Gly Ala Ser Ala Ala Ser Phe Glu Tyr Thr Ile Leu Asp Pro Ser 420 425 430 Ser Gln Leu Leu Arg Pro Trp Thr Leu Cys Pro Glu Leu Pro Pro Thr 435 440 Pro Pro His Leu Lys Tyr Leu Tyr Leu Val Val Ser Asp Ser Gly Ile 450 455 460 Ser Thr Asp Tyr Ser Ser Gly Asp Ser Gln Gly Ala Gln Gly Leu 465 470 475 Ser Asp Gly Pro Tyr Ser Asn Pro Tyr Glu Asn Ser Leu Ile Pro Ala 490 485 Ala Glu Pro Leu Pro Pro Ser Tyr Val Ala Cys Ser 500 505 <210> 3 <211> 1865 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)..(1865) <223> Mature full-length EpoR mRNA <220> <221> misc_feature <222> (137)..(1660) <223> Full-length EpoR ORF <400> 3 acttagagge geetggtegg gaagggeetg gteagetgeg teeggeggag geagetgetg 60 acceagetgt ggaetgtgee gggggtgggg gaeggagggg eaggageeet gggeteeeeg 120 tggcgggggc tgtatcatgg accacctcgg ggcgtccctc tggccccagg tcggctccct 180 ttgtctcctg ctcgctgggg ccgcctgggc gccccgcct aacctcccgg accccaagtt 240 cgagagcaaa gcggccttgc tggcggcccg ggggcccgaa gagcttctgt gcttcaccga 300 geggttggag gaettggtgt gtttetggga ggaageggeg agegetgggg tgggeeeggg 360 caactacage ttetectace agetegagga tgagecatgg aagetgtgte geetgeacea 420

```
ggctcccacg gctcgtggtg cggtgcgctt ctggtgttcg ctgcctacag ccgacacgtc
                                                                   480
gagettegtg cecetagagt tgegegteae ageageetee ggegeteege gatateaeeg
                                                                   540
tgtcatccac atcaatgaag tagtgctcct agacgccccc gtggggctgg tggcgcggtt
                                                                   600
ggctgacgag agcggccacg tagtgttgcg ctggctcccg ccgcctgaga cacccatgac
                                                                   660
gtctcacatc cgctacgagg tggacgtctc ggccggcaac ggcgcaggga gcgtacagag
                                                                   720
ggtggagatc ctggagggcc gcaccgagtg tgtgctgagc aacctgcggg gccggacgcg
                                                                   780
ctacaccttc gccgtccgcg cgcgtatggc tgagccgagc ttcggcggct tctggagcgc
                                                                   840
ctggtcggag cctgtgtcgc tgctgacgcc tagcgacctg gaccccctca tcctgacgct
                                                                   900
ctccctcatc ctcgtggtca tcctggtgct gctgaccgtg ctcgcgctgc tctcccaccg
                                                                   960
ccgggctctg aagcagaaga tctggcctgg catcccgagc ccagagagcg agtttgaagg
                                                                  1020
cctcttcacc acccacaagg gtaacttcca gctgtggctg taccagaatg atggctgcct
                                                                  1080
gtggtggagc ccctgcaccc ccttcacgga ggacccacct gcttccctgg aagtcctctc
                                                                  1140
agagegetge tgggggaega tgeaggeagt ggageegggg acagatgatg agggeeecet
                                                                  1200
gctggagcca gtgggcagtg agcatgccca ggatacctat ctggtgctgg acaaatggtt
                                                                  1260
gctgccccgg aacccgccca gtgaggacct cccagggcct ggtggcagtg tggacatagt
                                                                  1320
ggccatggat gaaggctcag aagcatcctc ctgctcatct gctttggcct cgaagcccag
                                                                  1380
cccagaggga gcctctgctg ccagctttga gtacactatc ctggacccca gctcccagct
                                                                  1440
1500
gtaccttgtg gtatctgact ctggcatctc aactgactac agctcagggg actcccaggg
                                                                  1560
agcccaaggg ggcttatccg atggccccta ctccaaccct tatgagaaca gccttatccc
                                                                  1620
agcogctgag cototgcccc coagetatgt ggottgctct taggacacca ggotgcagat
                                                                  1680
gatcagggat ccaatatgac tcagagaacc agtgcagact caagacttat ggaacaggga
                                                                  1740
tggcgaggcc tctctcagga gcaggggcat tgctgatttt gtctgcccaa tccatcctgc
                                                                  1800
tcaggaaacc acaaccttgc agtattttta aatatgtata gtttttttat atgtatagtt
                                                                  1860
ttttt
                                                                  1865
```

```
<210> 4
<211> 858
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(855)
```

<223> EpoR Isoform 1, intron 6 insert

< 40	0 > 4	1													
atg	gac Asp	cac		 					_	_				_	48
	ctg Leu														96
	aag Lys														144
	ctt Leu 50						_		_	_		_			192
	gaa Glu			_				_				_			240
	cag Gln														288
	acg Thr			 		_			_	_	_			_	336
	acg Thr		_				_	_	_	-		_	_		384
	gct Ala 130	_	_		_	_					_	_			432
	gac Asp	-		 	_				_	_	_		_		480
	gta Val														528 ·
	atc Ile														576
	cag Gln														624
	ctg Leu 210			 _	_				_	_	_		_	_	672
	gag Glu														720

225					230					235					240	
_	_	_	_		_	_	_					_	_	ctc Leu 255		768
														ctg Leu		816
		_		-	_	agg Arg	_						tga			858
<210 <211 <212 <213	L> 2 2> E	285 PRT	sapi	ens				•								
< 400)> 5	5														
Met 1	Asp	His	Leu	Gly 5	Ala	Ser	Leu	Trp	Pro 10	Gln	Val	Gly	Ser	Leu 15	Cys	
Leu	Leu	Leu	Ala 20	Gly	Ala	Ala	Trp	Ala 25	Pro	Pro	Pro	Asn	Leu 30	Pro	Asp	
Pro	Lys	Phe 35	Glu	Ser	Lys	Ala	Ala 40	Leu	Leu	Ala	Ala	Arg 45	Gly	Pro	Glu	
Glu	Leu 50	Leu	Cys	Phe	Thr	Glu 55	Arg	Leu	Glu	Asp	Leu 60	Val	Cys	Phe	Trp	
Glu 65	Glu	Ala	Ala	Ser	Ala 70	Gly	Val	Gly	Pro	Gly 75	Asn	туг	Ser	Phe	Ser 80	
Tyr	Gln	Leu	Glu	Asp 85	Glu	Pro	Trp	Lys	Leu 90	Cys	Arg	Leu	His	Gln 95	Ala	
Pro	Thr	Ala	Arg 100	Gly	Ala	Val	Arg	Phe 105	Trp	Cys	Ser	Leu	Pro 110	Thr	Ala	
Asp	Thr	Ser 115	Ser	Phe	Val	Pro	Leu 120	Glu	Leu	Arg	Val	Thr 125	Ala	Ala	Ser	
Gly	Ala 130	Pro	Arg	Tyr	His	Arg 135	Val	Ile	His	Ile	Asn 140	Glu	Val	Val	Leu	
Leu 145	Asp	Ala	Pro	Val	Gly 150	Leu	Val	Ala	Arg	Leu 155	Ala	Asp	Glu	Ser	Gly 160	

His Val Val	Leu Arg 1	Trp Leu Pı	ro Pro	Pro Glu 170	Thr Pro	Met Thr	
His Ile Arg	Tyr Glu V 180	Val Asp Va	al Ser 185	Ala Gly	Asn Gly	Ala Gly 190	/ Ser
Val Gln Arg 195		Ile Leu Gl 20	_	Arg Thr	Glu Cys 205	Val Lei	ı Ser
Asn Leu Arg 210	Gly Arg	Thr Arg Ty 215	r Thr	Phe Ala	Val Arg 220	Ala Arg	g Met
Ala Glu Pro 225		Gly Gly Ph 230	ne Trp	Ser Ala 235	Trp Ser	Glu Pro	Val 240
Ser Leu Leu	Thr Pro S	Ser Asp Le	eu Asp	Pro Leu 250	Ile Leu	Thr Let	
Leu Ile Leu	Val Val 1 260	Ile Leu Va	al Leu 265	Leu Thr	Val Leu	Ala Leu 270	ı Leu
Ser His Arg 275		Val Arg Gl 28	_	Ser Arg	Arg Arg 285		
<210> 6 <211> 954 <212> DNA <213> Homo	sapiens						
	.(951) Isoform 2	2, intron	7 inse	∍rt			
<400> 6 atg gac cac Met Asp His 1				_			_
ctc ctg ctc Leu Leu Leu							
ccc aag ttc Pro Lys Phe 35			la Leu				
gag ctt ctg Glu Leu Leu 50							

													agc Ser			240
													cac His			288
													cct Pro 110			336
_		_	_						_	_	_		gca Ala	_		384
	_	_	_			_	_					_	gta Val			432
										_	_	_	gag Glu	_		480
	_	-	_	_			_	_					atg Met	_		528
													gca Ala 190			576
													gtg Val			624
													gcg Ala			672
													gag Glu			720
													acg Thr			768
			-	-		_		_	_				gcg Ala 270	_		816
													atc Ile			864
													ggt Gly			912
cag	gtt	ggt	gct	att	tct	tca	gct	gtg	gct	gta	cca	gaa	tga			954

Gln Val Gly Ala Ile Ser Ser Ala Val Ala Val Pro Glu <210> 7 <211> 317 <212> PRT <213> Homo sapiens <400> 7 Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys 1 5 10 Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp 25 2.0 Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu 40 Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp 55 Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser 70 75 · Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala 85 90 Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala 100 105 Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser 1.20 Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 135 Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly

Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser 195 200 205

210 215	Ala Val Arg Ala Arg Met 220
Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser A	Ala Trp Ser Glu Pro Val . 235 240
Ser Leu Leu Thr Pro Ser Asp Leu Asp Pro I 245 250	Leu Ile Leu Thr Leu Ser 255
Leu Ile Leu Val Val Ile Leu Val Leu Leu 260 265	Thr Val Leu Ala Leu Leu 270
Ser His Arg Arg Ala Leu Lys Gln Lys Ile 3 275 280	Trp Pro Gly Ile Pro Ser 285
Pro Glu Ser Glu Phe Glu Gly Leu Phe Thr 3	Thr His Lys Gly Asn Phe 300
Gln Val Gly Ala Ile Ser Ser Ala Val Ala V 305 310	Val Pro Glu 315
<210> 8	
<220> <221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced	đ
<pre><221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced <400> 8</pre>	
<221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced <400> 8 atg gac cac ctc ggg gcg tcc ctc tgg ccc c Met Asp His Leu Gly Ala Ser Leu Trp Pro C1 5 10	cag gtc ggc tcc ctt tgt 48 Gln Val Gly Ser Leu Cys 15
<221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced <400> 8 atg gac cac ctc ggg gcg tcc ctc tgg ccc c Met Asp His Leu Gly Ala Ser Leu Trp Pro C	cag gtc ggc tcc ctt tgt 48 Gln Val Gly Ser Leu Cys 15 ccg cct aac ctc ccg gac 96
<pre><221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced <400> 8 atg gac cac ctc ggg gcg tcc ctc tgg ccc c Met Asp His Leu Gly Ala Ser Leu Trp Pro G 1</pre>	cag gtc ggc tcc ctt tgt 48 Gln Val Gly Ser Leu Cys 15 ccg cct aac ctc ccg gac 96 Pro Pro Asn Leu Pro Asp 30 gcg gcc cgg ggg ccc gaa 144
<pre><221> CDS <222> (1)(984) <223> EpoR Isoform 3, intron 7 unspliced <400> 8 atg gac cac ctc ggg gcg tcc ctc tgg ccc c Met Asp His Leu Gly Ala Ser Leu Trp Pro G 1</pre>	cag gtc ggc tcc ctt tgt 48 Gln Val Gly Ser Leu Cys 15 ccg cct aac ctc ccg gac 96 Pro Pro Asn Leu Pro Asp 30 gcg gcc cgg ggg ccc gaa 144 Ala Ala Arg Gly Pro Glu 45 gac ttg gtg tgt ttc tgg 192

	_			_	gag Glu			_	_	_	_	_		_	_	288
	_	_	_		gcg Ala		_			_	_	_			_	336
					gtg Val											384
	_	_			cac His	_	_					_	_			432
					999 Gly 150											480
					tgg Trp											528
					gtg Val											576
_	_			_	atc Ile	-	_		_			_		_	_	624
	_				acg Thr	_				_	_	_		_	_	672
_	_	_	_		ggc Gly 230				_	_		_				720
					agc Ser											768
				_	atc Ile	_		_	_					_		816
		_		_	ctg Leu	_	_	_						_	_	864
		_			gaa Glu							_				912
-	_			_	gtt Val 310	-								_		960

ttg cag cca aac tgc agg cct ctc tga Leu Gln Pro Asn Cys Arg Pro Leu 325

<210> 9

<211> 328

<212> PRT

<213> Homo sapiens

<400> 9

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys

1 10 15

Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp
20 25 30

Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu 35 40 45

Glu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp 50 60

Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser 65 70 75 80

Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala 85 90 95

Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala 100 105 110

Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser 115 120 125

Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 130 135 140

Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly 145 150 155 160

His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser 165 170 175

His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser 180 185 190

Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser

ASII	210	Arg	GIY	Arg	rnr	215	TYL	Inr	Pne	АІА	220	Arg	Ala	Arg	мес	
Ala 225	Glu	Pro	Ser	Phe	Gly 230	Gly	Phe	Trp	Ser	Ala 235	Trp	Ser	Glu	Pro	Val 240	
Ser	Leu	Leu	Thr	Pro 245	Ser	Asp	Leu	Asp	Pro 250	Leu	Ile	Leu	Thr	Leu 255	Ser	
Leu	Ile	Leu	Val 260	Val	Ile	Leu	Val	Leu 265	Leu	Thr	Val	Leu	Ala 270	Leu	Leu	
Ser	His	Arg 275	Arg	Ala	Leu	Lys	Gln 280	Lys	Ile	Trp	Pro	Gly 285	Ile	Pro	Ser	
Pro	Glu 290	Ser	Glu	Phe	Glu	Gly 295	Leu	Phe	Thr	Thr	His 300	Lys	Gly	Asn	Phe	
Gln 305	Val	Gly	Gly	Leu	Val 310	Val	Pro	Ser	Val	Pro 315	Gly	Leu	Pro	Cys	Phe 320	
Leu	Gln	Pro	Asn	Cys 325	Arg	Pro	Leu						,			
<210 <211 <211 <211	L> 8 2> I	10 304 DNA Homo	sapi	iens												
<220 <220 <220 <220	l > (2 >		. (801 Isof		4, 3	intro	on 5	unsţ	olice	ed						
<400		10			•											
-	_				gcg Ala					_	_				_	48
					gcc Ala											96
					aaa Lys											144
					acc Thr											192

50			55			60

							ggc Gly								240
							aag Lys								288
	_	_	_		 	_	ttc Phe 105		_	_	_			_	336
_	_	_	_				gag Glu	_	_	_		_	_		384
	_	_	_		_	_	atc Ile				_	_	-		432
	_	_			 _		gcg Ala		_	_	_		_		480
	_		_	_		-	ccg Pro					_	_		528 ⁻
		-			 _	_	tcg Ser 185	_				_		_	576
							ggc Gly								624
							acc Thr								672
							tgg Trp								720
_	_	_	_		 		gcc Ala					_			768
_					 -	_	cca Pro 265	_		tga					804

<210> 11

<211> 267

<212> PRT

<213> Homo sapiens

<400> 11

Met Asp His Leu Gly Ala Ser Leu Trp Pro Gln Val Gly Ser Leu Cys 1.0 Leu Leu Leu Ala Gly Ala Ala Trp Ala Pro Pro Pro Asn Leu Pro Asp 25 Pro Lys Phe Glu Ser Lys Ala Ala Leu Leu Ala Ala Arg Gly Pro Glu Glu Leu Leu Cys Phe Thr Glu Arg Leu Glu Asp Leu Val Cys Phe Trp Glu Glu Ala Ala Ser Ala Gly Val Gly Pro Gly Asn Tyr Ser Phe Ser Tyr Gln Leu Glu Asp Glu Pro Trp Lys Leu Cys Arg Leu His Gln Ala Pro Thr Ala Arg Gly Ala Val Arg Phe Trp Cys Ser Leu Pro Thr Ala 105 Asp Thr Ser Ser Phe Val Pro Leu Glu Leu Arg Val Thr Ala Ala Ser 120 Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 135 Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly 150 155 His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser 170 165 His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser 180 185 Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser 200 195 Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met 220 215 Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val 230 235

Ser Leu Leu Thr Pro Ser Gly Glu Ala Pro Gly Gly Gly Val Gly Gly 245 250 255

Ala Arg Ala Asn His Gly Ala Ser Pro Pro Pro 260 265

<210 <211 <212 <213	-> ?>	12 747 DNA Homo	sap:	iens												
<220 <221 <222 <223	-> ?>	CDS (1). EpoR			5, €	exon	6 s}	<ippe< td=""><td>ed</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ippe<>	ed							
	gac	12 cac His														48
	_	ctc Leu	_		_	_				_				_	_	96
	_	ttc Phe 35		_			_	_	_		_				_	144
		ctg Leu														192
		gcg Ala														240
		ctc Leu												_	-	288
		gct Ala														336
		tcg Ser 115														384
		ccg Pro														432
		gcc Ala														480
cac	gta	gtg	ttg	cgc	tgg	ctc	ccg	ccg	cct	gag	aca	ccc	atg	acg	tct	528

	Leu Arg 165	Trp Leu	Pro Pr	ro Pro 170	Glu Th	r Pro	Met	Thr 175	Ser	
cac atc cgc His Ile Arg			Val Se				_		_	576
gta cag agg Val Gln Arg 195	Val Glu									624
aac ctg cgg Asn Leu Arg 210			Tyr Th		-	l Arg			_	672
gct gag ccg Ala Glu Pro 225	_		_							720
tcg ctg ctg Ser Leu Leu	_		_	ga						747
<210 > 13 <211 > 248 <212 > PRT <213 > Homo	sapiens									
<400> 13										
Met Asp His 1	Leu Gly 5	Ala Ser	Leu Tr	rp Pro 10	Gln Va	l Gly	Ser	Leu 15	Cys	
-	5	٠.		10		-		15		
1	5 Ala Gly	Ala Ala	Trp Al	10 la Pro 5	Pro Pro	o Asn	Leu 30	15 Pro	Asp	
1 Leu Leu Leu Pro Lys Phe	Ala Gly 20 Glu Ser	Ala Ala	Trp Al 25 Ala Le	10 la Pro 5 eu Leu	Pro Pro	o Asn a Arg 45	Leu 30 Gly	15 Pro	Asp Glu	
Leu Leu Leu Pro Lys Phe 35	Ala Gly 20 Glu Ser Cys Phe	Ala Ala Lys Ala Thr Glu	Trp Al 25 Ala Le 40 Arg Le	la Pro 5 eu Leu eu Glu	Pro Pro Ala Ala Asp Leo	a Arg 45	Leu 30 Gly Cys	Pro Pro	Asp Glu Trp	
Leu Leu Leu Pro Lys Phe 35 Glu Leu Leu 50 Glu Glu Ala	Ala Gly 20 Glu Ser Cys Phe	Ala Ala Thr Glu 55	Trp Al 25 Ala Le 40 Arg Le	la Pro teu Leu eu Glu	Pro Pro Ala Ala Asp Len 60 Gly Ass	a Arg 45 u Val	Leu 30 Gly Cys	Pro Pro Phe	Asp Glu Trp Ser 80	
Leu Leu Leu Pro Lys Phe 35 Glu Leu Leu 50 Glu Glu Ala 65	Ala Gly 20 Glu Ser Cys Phe Ala Ser Glu Asp 85	Ala Ala Thr Glu 55 Ala Gly 70 Glu Pro	Trp Al 25 Ala Le 40 Arg Le Val Gl	la Pro teu Leu eu Glu ly Pro ys Leu 90	Pro Pro Ala Ala Asp Lei 60 Gly Asi 75 Cys Arg	Asn Arg 45 Ual Tyr	Leu 30 Gly Cys Ser	Pro Phe Phe Gln 95	Asp Glu Trp Ser 80	

Gly Ala Pro Arg Tyr His Arg Val Ile His Ile Asn Glu Val Val Leu 130 135 Leu Asp Ala Pro Val Gly Leu Val Ala Arg Leu Ala Asp Glu Ser Gly 150 155 His Val Val Leu Arg Trp Leu Pro Pro Pro Glu Thr Pro Met Thr Ser 165 170 His Ile Arg Tyr Glu Val Asp Val Ser Ala Gly Asn Gly Ala Gly Ser 180 185 190 Val Gln Arg Val Glu Ile Leu Glu Gly Arg Thr Glu Cys Val Leu Ser 195 200 Asn Leu Arg Gly Arg Thr Arg Tyr Thr Phe Ala Val Arg Ala Arg Met 210 215 Ala Glu Pro Ser Phe Gly Gly Phe Trp Ser Ala Trp Ser Glu Pro Val 225 230 Ser Leu Leu Thr Pro Ser Gly Leu 245 <210> 14 22 <211> <212> DNA <213> Artificial sequence <223> Synthetic oligonucleotide <400> 14 tcaagcggct gcttccttcc aa 22 <210> 15 24 <211> <212> DNA <213> Artificial sequence <223> Synthetic oligonucleotide <400> 15 gcagggagcg tacagagggt ggag 24 <210> 16 <211> 24

<212> DNA

<213>	Artificial sequence	
<220>	•	
<223>	Synthetic oligonucleotide	
<400>	16	
gaagaaa	atag caccaacctg gaag	24
<210>	17	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	17	
ctgacgo	ccta gcgacctgga cc	22
<210>	18	
<211>	21	
	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
400	10	
<400>	18 Eggc tgcaagaagc a	21
300300	-550 0500050050 0	21
<210>	19	
<211> <212>	20 DNA	
	Artificial sequence	
	•	
<220>		
<223>	Synthetic oligonucleotide	
<400>	19	
	aggg cgaatcacgg	20
<210>	20	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
-220		
<220> <223>	Synthetic oligonucleotide	
~4437	Synenceic Offgondereotide	
<400>	20	
gccttca	aaac tegetetetg	20
<210>	21	
<211>	21	
222	DATA	

<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 21
gcttcagagc ccgctaggcg t