Demystifying Structural Disparity in Graph Neural Networks: Can One Size Fit All?

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, Jiliang Tang

When do Graph Neural Networks work and when not?

Toy example with mixed patterns

Aggregation

- > If graph with only single pattern, **GNN** can work well
- > If graph with mixed patterns, GNNs may fail

Homophily:

nodes tend to connect with similar ones

$$\mathbf{h}_i = \frac{|\{u \in \mathcal{N}(v_i): y_u = y_v\}|}{|\mathcal{N}(v_i)|}$$

$$h_i = \frac{|\{u \in \mathcal{N}(v_i): y_u = y_v\}|}{|\mathcal{N}(v_i)|}$$

PubMed (homophily) 050, 040, 060, 08, 70

Homophily Ratio Range

Theoretical understanding

class 1 in red

$$\mathcal{L}_{m}^{0}(\tilde{h}) \leq \widehat{\mathcal{L}}_{tr}^{\gamma}(\tilde{h}) + O\left(\underbrace{\frac{K\rho}{\sqrt{2\pi}\sigma}}_{\text{(a)}} \underbrace{\epsilon_{m}}_{\text{(b)}} + \underbrace{\|h_{tr} - h_{m}\| \cdot \rho}_{\text{(a)}}) + \underbrace{\frac{b\sum_{l=1}^{L} \|\widetilde{W}_{l}\|_{F}^{2}}{(\gamma/8)^{2/L}N_{tr}^{\alpha}}(\epsilon_{m})^{2/L}}_{\text{(b)}} + \mathbf{R}\right)$$
Loss gap between

train and test set

class 0 in blue 0

Heterophily:

 $\epsilon_m = |f_i - f_j|_F^2$ is the aggregated feature feature disparity distance between train and test subgroup(s).

disparity

Aggregated

 $|h_{tr} - h_m|$ is the homophily ratio difference between train and test subgroup(s).

Large aggregation feature distance and structural disparity lead to large generalization gap

class 0 and 1 in both blue and red

New OOD scenario

Implications

Effectiveness of ES Deeper GNNs

Paper

PubMed (homophily) Squirrel (heterophily) Performance on new OOD split

	Pubmed	Ogbn-Arxiv	Squirrel
GCN(i.i.d)	89.18±0.15	72.99±0.14	58.09±0.71
GCN	51.04±0.16	34.94±0.07	32.13±4.93
MLP	68.38±0.43	33.17 ± 0.37	24.57±0.77
GCNII	67.76±0.36	36.81±0.14	37.15±1.39
SRGNN	57.91±0.10	40.37 ± 1.65	37.62±1.74
EERM	65.37±1.35	34.23±0.46	40.93±0.57

