Universidade Estadual de Campinas Instituto de Matemática, Estatística e Computação Científica Departamento de Estatística

ME 607 SÉRIES TEMPORAIS Prova 1

Professor: Mauricio Zevallos

Segundo Semestre 2013

1. Interessa analisar a série de precipitações mensais de chuva em Lavras. Para isto serão ajustados modelos de séries temporais com base nas observações do periodo Janeiro 1966 a Dezembro 1996, isto é n=372 observações. Na Tabela 1 são mostrados os dados correspondentes aos anos 1995 e 1996 e na Figura 1 é mostrado o gráfico da série.

Tabela 1:

		Fev		Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
1995	200.0	339.5	124.8	64.6	65.6	1.2	1.0	0.0	38.6	116.0	192.0	442.1
1996	174.0	310.3	129.1	54.1	84.6	17.0	0.2	(18.1)	149.0	90.5	192.0 363.2	252.7

- (a) (0,5 ptos) Baseado na Figura 1 um pesquisador considera que não há tendência na série e calcula o periodograma da série (sem a média). O gráfico do periodograma é mostrado na Figura 2. O ponto máximo ocorre na frequência 32/372 = 0,0860215. Temos evidência de sazonalidade? de que tipo? Há evidência de outro tipo de periodicidade?
- (b) $(0.5 \ ptos)$ A série temporal é denotada por y_1, \ldots, y_n . O pesquisador sugere ajustar o seguinte modelo, chamado de Modelo-I,

$$y_t = \beta_0 + \beta_1 \sin(2\pi t/12) + \beta_2 \cos(2\pi t/12) + \varepsilon_t, \qquad t = 1, \dots, n$$
 (1)

onde ε_t é uma sequência IID, $N(0, \sigma^2)$. Os estimadores de quadrados minimos assim como as respectivos erros padrões (entre paréntesis) são: $\hat{\beta}_0 = 127.944(4.138), \quad \hat{\beta}_1 = 43.280(5.852), \quad \hat{\beta}_2 = 124.082(5.852)$. Discuta acerca da significância dos coeficientes estimados.

(e) (0,8 ptos) Com base nas estimativas de (b), na Figura 3 é mostrado o ajuste (linha tracejada) para os últimos 10 anos da série (linha cheia). O ajuste é satisfatório?

- (d) (1,0 pto) Usando o Modelo-I encontre as previsões de precipitação para janeiro, fevereiro e março de 1997. Se os valores observados das precipitações nesses meses são: 383.3 (janeiro), 114.5 (fevereiro) e 96.5 (março), comente o desempenho do Modelo-I em termos de previsão.
- (e) (1,2 ptos) Fazendo uso do método de médias móveis, calcule as estimativas de precipitação para Julho e Agosto de 1996. Compare estes valores com os obtidos através do *Modelo-I*. Qual método fornece melhores resultados?

2. Seja o processo

$$Y_t = 0.5Y_{t-1} + \varepsilon_t - 2.4\varepsilon_{t-1} + 0.8\varepsilon_{t-2}, \quad \varepsilon_t \sim RB(0, \sigma^2)$$

(a) $(1,5 \ pts.)$ $\{Y_t\}$ é estacionário? Se for, encontre a função de autocorrelação.

(b) (1 pto.) $\{Y_t\}$ possui representação MA(∞)? Se for o caso, encontre-a.

(c) (0,5 pts.) $\{Y_t\}$ possui representação AR(∞)? Se for o caso, encontre-a.

3. (2 pts.) Considere que a série temporal y_1, \ldots, y_n foi gerada pelo processo

$$Y_t = \beta_0 + \beta_1 x_t + z_t \tag{2}$$

$$z_t = \varepsilon_t + \theta \varepsilon_{t-1}, \quad \varepsilon_t \sim RB(0,1)$$
 (3)

onde os x_i são constantes conhecidas com $\bar{x}=0$. Encontre a variância do estimador de quadrados minimos de β_1 .

A. (1 pto.) Suponha que $\{X_t\}$ é uma sequência de variáveis aleatórias IID com

$$P(X_t = -1) = P(X_t = 0) = P(X_t = 1) = 1/3$$

para $t=\ldots,-1,0,1,\ldots$ O processo $Y_t=X_1+X_2\cos^2(t)-X_3\sin^2(t)$ é estacionário? Justifique.

Equação em Diferenças de 2do grau

Sejam a e b constantes. As soluções da equação em diferenças de 2do grau,

$$\tau(k) = a\tau(k-1) + b\tau(k-2), \quad k \ge l$$

dependem da natureza das raizes de $bz^2 + az - 1 = 0$. Sejam m_1 e m_2 estas raizes. Então,

(a) Se as raizes são reais e diferentes

$$\tau(k) = c_1 \left(\frac{1}{m_1}\right)^k + c_2 \left(\frac{1}{m_2}\right)^k$$

(b) Se as raizes são reais e iguais, $m_1 = m_2 = m$

$$\tau(k) = (c_1 + c_2 k) \left(\frac{1}{m}\right)^k$$

(c) Se as raizes são complexas, $\alpha - i\beta$, $\alpha + i\beta$

$$\tau(k) = c_1 \left(\frac{1}{r}\right)^k \cos(\theta k + c_2)$$

$$\tau = \sqrt{\alpha^2 + \beta^2}$$

$$\theta = arcCos\left(\frac{\alpha}{r}\right) = arcSen\left(\frac{\beta}{r}\right)$$

onde as constantes são determinadas a partir das condições inicias $\tau(l), \tau(l+1)$

Formulas Trigonométricas

$$\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$$

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

Figura 1: Precipitações em Lavras

Figura 2: Periodograma

Figura 3: Ajuste