

ЛЕКЦИИ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ

МГТУ им. Н.Э. Баумана Москва

ЛЕКЦИЯ 3

Устойчивость вычислительной задачи по входным данным

X – множество допустимых входных данных Y – множество допустимых решений

Корректность вычислительной задачи по Адамару. Вычислительная задача называется **корректной (по Адамару)**, если выполнены следующие 3-и условия.

- \bullet Решение вычислительной задачи $y \in Y$ существует при любых входных данных $x \in X.$
 - Решение вычислительной задачи единственно.
- Решение устойчиво по отношению к малым возмущениям входных данных (непрерывно зависит от входных данных).

Если хотя бы одно из условий не выполнено, то вычислительная задача называется **некорректной**.

Определение. Решение y вычислительной задачи называется устойчивым по входным данным (абсолютно устойчивым) x, если

$$\forall \varepsilon > 0, \quad \exists \delta(\varepsilon) > 0: \quad \forall x^* (\Delta(x^*) < \delta(\varepsilon) \implies \Delta(y^*) < \varepsilon).$$

Определение. Решение y вычислительной задачи называется **неустойчивым** x, если

$$\exists \varepsilon > 0, \quad \forall \delta > 0: \quad \exists x^* (\Delta(x^*) < \delta(\varepsilon) \implies \Delta(y^*) \geqslant \varepsilon).$$

Определение. Решение называется относительно устойчивым, если

$$\forall \varepsilon > 0, \quad \exists \delta(\varepsilon) > 0: \quad \forall x^* (\delta(x^*) < \delta(\varepsilon) \implies \delta(y^*) < \varepsilon).$$

Устойчивость задачи вычисления

определенного интеграла
$$I = \int_{a}^{b} f(x) \ dx$$

 $f^*(x)$ – приближенно заданная интегрируемая функция.

$$I^* = \int_a^b f^*(x) \ dx$$

 $\Delta\left(f^{*}\right)=\sup_{x\in\left[a,b\right]}\left|f(x)-f^{*}(x)\right|$ - абсолютная погрешность функции $f^{*}(x).$

$$\Delta(I^*) = |I - I^*| = \left| \int_a^b (f(x) - f^*(x)) \, dx \right| \le (b - a) \Delta(f^*).$$

Если потребовать: $\delta(\varepsilon) = \frac{\varepsilon}{b-a}$, тогда

$$\forall \varepsilon > 0, \quad \exists \delta(\varepsilon) > 0: \quad \forall f^*(x) \Big(\Delta \left(f^* \right) < \delta(\varepsilon) \quad \Longrightarrow \quad \Delta \left(I^* \right) < \varepsilon \Big).$$

Следовательно, задача вычисления определенного интеграла является устойчивой.

Устойчивость задачи вычисления производной

 $f^*(x)$ — приближенно заданная на отрезке [a,b] непрерывно дифференцируемая функция.

$$u^*(x) = f^{*'}(x)$$

Зададим абсолютные погрешности:

$$\Delta(f^*) = \max_{x \in [a,b]} |f(x) - f^*(x)|, \quad \Delta(u^*) = \max_{x \in [a,b]} |u(x) - u^*(x)|$$

Возьмем, например, функцию $f^*(x) = f(x) + \alpha^2 \cos\left(\frac{x}{\alpha^5}\right)$, где $0 < \alpha \ll 1$.

Тогда
$$u^*(x) = u(x) - \alpha^{-3} \sin\left(\frac{x}{\alpha^5}\right)$$
 и $\Delta(f^*) = \alpha^2$, $\Delta(u^*) = \alpha^{-3}$.

Таким образом, сколь угодно малой погрешности функции f отвечает сколь угодно большая погрешность производной f'.

Задача вычисления производной приближенно заданной функции не является устойчивой.

Замечание. Одна и таже задача может оказаться как устойчивой, так и неустойчивой в зависимости от выбора способа вычисления абсолютных погрешностей $\Delta(x^*)$ и $\Delta(y^*)$.

Обусловленность вычислительной задачи. Абсолютное и относительное число обусловленности.

На практике: точность входных данных ограничена.

Вопрос: как повлияют малые, но конечные погрешности входных данных на решение?

Определение. Чувствительность решения вычислительной задачи к малым погрешностям входных данных — обусловленность вычислительной задачи.

Определение. Задача называется **хорошо обусловленной**, если малым погрешностям входных данных отвечают малые погрешности решения и **плохо обусловленной**, если происходят сильные изменения решения.

Определение. Число обусловленности (количественная мера степени обусловленности вычислительной задачи) — коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных.

Пусть:

$$\Delta(y^*) \leqslant \nu_{\Delta} \Delta(x^*), \qquad \delta(y^*) \leqslant \nu_{\delta} \delta(x^*).$$

Определение. величина ν_{Δ} — абсолютное число обусловленности, а ν_{δ} — относительное число обусловленности.

Замечание. В неравенства вместо Δ и δ могут быть и их границы $\overline{\Delta}$ и $\overline{\delta}$.

Для плохо обусловленнной задачи $\nu \gg 1$.

Обусловленность задачи вычисления значения функции одной переменной. Используя формулы для вычисления погрешности функции одной переменной получаем:

$$\nu_{\Delta} \approx |f'(x)|, \qquad \nu_{\delta} \approx \frac{|f'(x)| |x|}{|f(x)|}.$$

Обусловленность задачи вычисления интеграла. Из выше приведенного примера следует, что $\nu_{\Delta} = b - a$.

Положим

$$\delta(f^*) = rac{\sup\limits_{x \in [a,b]} |f^*(x) - f(x)|}{|f(x)|},$$
 где $f(x)
eq 0.$

Следовательно,

$$\Delta(I^*) \leqslant \int\limits_a^b |f^*(x) - f(x)| dx \leqslant \int\limits_a^b |f(x)| dx \, \delta(f^*).$$

Получили оценку

$$\delta(I^*) \leqslant \nu_\delta \delta(f^*),$$
 где $\nu_\delta = \frac{\int\limits_a^b |f(x)| dx}{\int\limits_a^b |f(x)| dx}.$

Вывод. Если подынтегральная функция знакопостоянна, то $\nu_{\delta} = 1$ и задача хорошо обусловлена, если же функция f(x) на [a,b] принимает значения разных знаков, то $\nu_{\delta} > 1$.

ЛЕКЦИЯ 4

Численное решение задач линейной алгебры

В линейной алгебре выделяют 4-ре основные задачи:

- решение систем линейных алгебраических уравнений;
- вычисление определителей;
- нахождение обратных матриц;
- нахождение собственных значений и собственных векторов. Рассмотрим СЛАУ

$$Ax = f$$

где A — матрица $m \times m$, $x = (x_1, x_2, x_3, \dots x_m)^T$ — искомый вектор, $f = (f_1, f_2, f_3, \dots f_m)^T$ — заданный вектор.

Некоторые сведения из линейной алгебры.

Определение. Функцию, заданную в линейном пространстве H, которая для $\forall x \in H$ ставит в соответствие число ||x||, называют **нормой**, если она удовлетворяет следующим **аксиомам нормы**:

- $\bullet ||x|| \geqslant 0, \quad \forall x \in H \text{ if } ||x|| = 0 \implies x = 0;$
- ig|ullet||lpha x||=|lpha|||x||, где $lpha\in\mathbb{R}$
- $|\bullet||x+y|| \le ||x|| + ||y||.$

Наиболее часто применяемые нормы:

$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}, \quad ||x||_\infty = \max_{1 \le i \le m} |x_i|,$$

где частными случаями нормы $||x||_p$ являются нормы:

$$||x||_1 = \sum_{i=1}^m |x_i|$$
 — октаэдрическая норма;
$$||x||_2 = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2}$$
 — евклидова (или сферическая) норма.

Абсолютная и относительная погрешности векторов

В качестве меры степени близости векторов ||x|| и $||x^*||$ введем абсолютную и относительную погрешности вектора $||x^*||$

$$\Delta(x^*) = ||x - x^*||, \quad \delta(x^*) = \frac{||x - x^*||}{||x||}.$$

Пусть
$$\{x^{(n)}\}_{n=1}^{\infty}$$
 - последовательность векторов $x^{(n)} = (x_1^{(n)}, x_2^{(n)}, \dots, x_m^{(n)})$.

Говорят, что последовательность векторов $x^{(n)}$ сходится в вектору x при $n \to \infty$, если

$$\Delta\left(x^{(n)}\right) = \left| \left| x^{(n)} - x \right| \right| \to 0, \quad \text{при} \quad n \to \infty$$

Методы численного решения задач линейной алгебры

 \bullet **Прямые методы**. Решение системы x находится за конечное число арифметических операций.

В следствии погрешностей округления при решении задач на ЭВМ, прямые методы не приводят к точному решению. Сопоставление различных прямых методов производится по числу арифметических действий, необходимых для получения решения.

• Итерационные методы (методы последовательных приближений). Решение x СЛАУ находится как предел последовательных приближений $x^{(n)}$ при $n \to \infty$.

Как правило, за конечное число итераций этот предел не достигается и вычисления производятся до тех пор, пока не будет выполнена оценка

$$\left| \left| x^{(n)} - x \right| \right| < \varepsilon,$$

где $\varepsilon>0$ — точность. Качество различных итерационных процессов сравнивают по необходимому числу итераций $n(\varepsilon)$, которое необходимо провести для получения заданной точности.

Норма матрицы

Определение. Пусть в линейном арифметическом пространстве \mathbb{R}^m задана норма $||\cdot||_*$. Норму $||\cdot||_k$ в линейном пространстве $M_m(\mathbb{R})$ называют **согласованной** с нормой $||\cdot||_*$, если для $\forall A \in M_m(\mathbb{R})$ и $\forall x \in \mathbb{R}^m$ выполняется соотношение:

$$||Ax||_* \le ||A||_k ||x||_*.$$

Определение. Определение. Число $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$ называется нормой матрицы A подчиненной данной норме ||x||.

Для подчиненной нормы матрицы A выполняются все аксиомы нормы:

- $\bullet ||\alpha A|| = |\alpha|||x||;$
- $||A + B|| \le ||A|| + ||B||$ для $\forall A, B$;

Дополнительно

- $||AB|| \le ||A|| ||B||$ для $\forall A, B$;
- $\bullet ||Ax|| \leqslant ||A||||x||.$

Примеры подчиненных норм матриц

Норма $||A||_1=\max_{1\leqslant j\leqslant m}\sum_{i=1}^m|a_{ij}|$ – максимальная столбцевая или октаэдрическая норма, подчинена норме $||x||_1$.

Норма
$$||A||_s = \left(\max_{1\leqslant j\leqslant m}\mu_j\right)^{1/2}$$
 — спектральная норма матрицы A , подчиненная норме $||x||_2$, где μ_j — собственные числа оператора A^TA .

Норма $||A||_{\infty}=\max_{1\leqslant i\leqslant m}\sum_{j=1}^m|a_{ij}|$ — максимальная строчная или кубическая норма подчинена норме $||x||_{\infty}.$

Исключение. Евклидова норма
$$||A||_2 = \left(\sum_{i=1}^m \sum_{j=1}^m a_{ij}^2\right)^{1/2}$$
.

Она является согласованной с $||x||_2$, но не является подчиненной.

Причем: $||A||_s \leqslant ||A||_2$.

Обусловленность СЛАУ.

Рассмотрим СЛАУ

$$Ax = f, \quad A \in M_m(\mathbb{R}).$$

Рассмотрим два типа устойчивости:

- \bullet устой чивость по правой части, когда возмущается только правая часть f, а матрица A остается неизменной,
- ullet коэффициентная устойчивость, когда возмущается только матрица A, а правая часть f остается неизменной.

Вместо вектора f задается близкий ему вектор \tilde{f} (например, из-за погрешностей округления). Рассмотрим «возмущенную систему»

$$A\tilde{x} = \tilde{f},$$
 где $\Delta x = \tilde{x} - x,$ $\Delta f = \tilde{f} - f.$

Определение. Говорят, что система Ax=f устойчива по правой части, если при $\forall f, \tilde{f}$ справедлива оценка

$$||\Delta x|| \leqslant M_1 ||\Delta f||,$$

тде $M_1>0$ – постоянная, не зависящая от правых частей $f, ilde{f}.$

Пусть $\det A \neq 0$. Покажем, что система устойчива по правой части.

$$A(\Delta x) = \Delta f \quad \Rightarrow \quad \Delta x = A^{-1}(\Delta f).$$

Используя аксиомы нормы, получаем

$$||\Delta x|| \leqslant ||A^{-1}|| \, ||\Delta f||.$$

Следовательно $M_1 = ||A^{-1}||$.

Исключение. Чем ближе к нулю определитель матрицы A, тем больше постоянная M_1 , тем сильнее погрешность правой части может исказить искомое решение.

Рассмотрим относительные погрещности δx и δf . Использую аксиомы нормы получаем $||f|| \leqslant ||A|| \, ||x||$. Тогда

$$\frac{||\Delta x||}{||x||} \leqslant \text{cond}(A) \frac{||\Delta f||}{||f||},$$

где $\operatorname{cond}(A) = ||A^{-1}|| \, ||A||.$

Определение. Число $\operatorname{cond}(A)$, входящее в оценку, называется **числом** обусловленности матрицы A и характеризует степень зависимости относительной погрешности решения от относительной погрешности правой части. Матрицы с большим числом обусловленности называют плохо обусловленными матрицами.

Замечание. Число обусловленности матрицы всегда положительно и зависит от заданной нормы матрицы.

Свойства числа обусловленности матрицы.

- $\operatorname{cond}(A) = \operatorname{cond}(A^{-1}).$
- $\operatorname{cond}(AB) \leq \operatorname{cond}(A)\operatorname{cond}(B)$.
- $\operatorname{cond}(A) \geqslant 1$.
- cond(A) $\geqslant \frac{|\lambda_{\max}|}{|\lambda_{\min}|}$,

где λ_{\max} , λ_{\min} — наибольшее и наименьшее по абсолютной величине собственные значения.

Метод Гаусса.

Прямой ход метода Гаусса.

Запишем систему Ax = f в развернутом виде

Идея метода: Последовательное исключении неизвестных $x_1, x_2, ..., x_m$ из системы.

Пусть $a_{11} \neq 0$.

Тогда a_{11} называется главным или ведущим элементом первого шага.

Поделим первое уравнение системы на a_{11} , получим

$$x_1 + c_{12}x_2 + \ldots + c_{1m}x_m = y_1,$$

где
$$c_{1j}=rac{a_{1j}}{a_{11}},\,j=2,\ldots,m,\,y_1=rac{f_1}{a_{11}}.$$

Тогда

Вычтем первое уравнение полученной системы умноженное на a_{i1} из i-го уравнения системы, $i=2,3,\ldots,m$:

где $a_{ij}^{(1)} = a_{ij} - c_{1j}a_{i1}, f_i^{(1)} = f_i - y_1a_{i1}$, где $i, j = 2, 3, \dots, m$

Структура матрицы полученной системы:

$$\begin{pmatrix}
1 & \times & \dots & \times \\
0 & \times & \dots & \times \\
\vdots & \vdots & \ddots & \vdots \\
0 & \times & \dots & \times
\end{pmatrix}$$

Если $a_{22}^{(1)} \neq 0$ (главный элемент второго шага), то из системы аналогично можно исключить неизвестное x_2 и перейти к системе, матрица которой имеет следующую структуру:

$$\begin{pmatrix}
1 & \times & \times & \dots & \times \\
0 & 1 & \times & \dots & \times \\
0 & 0 & \times & \dots & \times \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \times & \dots & \times
\end{pmatrix}$$

Исключая аналогично неизвестные $x_3, x_4, ..., x_m$ придем к окончательной системе уравнений вида:

Обратный ход метода Гаусса заключается в нахождении неизвестных x_1 , $x_2, ..., x_m$.

$$x_m = y_m, \quad x_{m-1} = y_{m-1} - c_{m-1,m} x_m.$$

В общем виде формулы обратного хода имеют вид:

$$x_i = y_i - \sum_{j=i+1}^m c_{ij} x_j, \quad i = (m-1), \dots 1, \quad x_m = y_m.$$
 (1)

Подсчет числа действий.

Ограничимся вычислением количества операций умножения и деления.

• Для вычисления коэффициентов c_{ij} требуется делений:

$$(m-1)+(m-2)+\ldots+2+1=\frac{m(m-1)}{2}.$$

• Для вычисления коэффициентов $a_{ij}^{(k)}$, требуется умножений:

$$(m-1)^2 + (m-2)^2 + \ldots + 2^2 + 1^2 = \frac{(m-1)m(2m-1)}{6}.$$

ullet Вычисление правых частей y_k требует m делений, а вычисление коэффициентов $f_i^{(k)}$ требует умножений:

$$(m-1) + (m-2) + \ldots + 2 + 1 = \frac{m(m-1)}{2}.$$

Осуществление прямого хода требует действий:

$$\frac{m(m-1)}{2} + \frac{(m-1)m(2m-1)}{6} + m + \frac{m(m-1)}{2} = \frac{2m^3 + 3m^2 + 2}{6};$$

Для реализации обратного хода требуется умножений:

$$1+2+3+\ldots+(m-1)=\frac{m(m-1)}{2}$$

Итого, для реализации метода Гаусса требуется действий:

$$\frac{2m^3 + 3m^2 + 2}{6} + \frac{m(m-1)}{2} = \frac{m^3 + 3m^2 - m}{3}.$$

Метод Гаусса с выбором главного элемента.

Может оказаться так, что система имеет единственное решение, даже если какой-либо из угловых миноров матрицы A равен нулю. В этом случае обычный метод Гаусса может оказаться непригодным и применяют метод Гаусса с выбором главного элемента.

Основная идея: на очередном шаге исключают не следующее по номеру неизвестное, а неизвестное, коэффициент при котором по модулю наибольший. Т.е. в качестве ведущего элемента выбирается наибольший по модулю элемент.

Проиллюстрируем на примере СЛАУ из 2-х уравнений.

$$a_{11}x_1 + a_{12}x_2 = f_1;$$

 $a_{21}x_1 + a_{22}x_2 = f_2.$

Метод Гаусса с выбором главного элемента по строке. Пусть $|a_{12}| > |a_{11}|$. Тогда на первом шаге исключается переменное x_2

$$a_{12}x_2 + a_{11}x_1 = f_1;$$

 $a_{22}x_2 + a_{21}x_1 = f_2,$

и к данной системе применяется первый шаг обычного метода Гаусса.

Метод Гаусса с выбором главного элемента по столбцу. Пусть $|a_{21}| > |a_{11}|$.

$$a_{21}x_1 + a_{22}x_2 = f_2;$$

 $a_{11}x_1 + a_{12}x_2 = f_1,$

и к новой системе применяют первый шаг обычного метода Гаусса.

Иногда применяют метод Гаусса с выбором главного элемента по всей матрице, когда в качестве ведущего элемента выбирают наибольший по модулю элемент матрицы системы.

LU-разложение матрицы.

Метод Гаусса преобразует систему в эквивалентную систему

$$Cx = y,$$

где C – верхняя треугольная матрица с единицами на главной диагонали. Векторы правых частей f и y связаны соотношениями.

где B - нижняя треугольная матрица с элементами $b_{ii} \neq 0$.

Так как
$$y = B^{-1}f \implies Cx = B^{-1}f \implies BCx = f$$
.

Следовательно, получено разложение A=BC, где B - нижняя треугольная матрица с ненулевыми элементами на главной диагонали, а C - верхняя треугольная матрица с единицами на главной диагонали.

В этом случае, метод Гаусса можно трактовать так:

- производиться разложение матрицы A = BC,
- последовательно решаются две системы уравнений:

$$By = f$$
, $Cx = y$.

Теорема об LU-разложении. Пусть

$$\Delta_1 = a_{11}, \quad \Delta_2 = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \dots, \Delta_m = \det A.$$

Теорема. Пусть все угловые миноры матрицы A отличны от нуля, $\Delta_i \neq 0$, $i=1,2,\ldots,m$. Тогда матрицу A можно представить, причем единственным образом, в виде произведения

$$A = LU, (2)$$

где L - нижняя треугольная матрица с ненулевыми диагональными элементами и U - верхняя треугольная матрица с единичной диагональю.

◄ Доказательство проводим методом математической индукции.

Пусть m=2

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right].$$

Будем искать разложение матрицы A в виде:

$$A = \left[\begin{array}{cc} l_{11} & 0 \\ l_{21} & l_{22} \end{array} \right] \left[\begin{array}{cc} 1 & u_{12} \\ 0 & 1 \end{array} \right],$$

где $l_{11}, l_{21}, l_{22}, u_{12}$ -неизвестные числа. Для их нахождения приходим к системе уравнений

$$l_{11} = a_{11}, \quad l_{11}u_{12} = a_{12}, \quad l_{21} = a_{21},$$

 $l_{21}u_{12} + l_{22} = a_{22}.$

Данная система имеет единственное решение:

$$l_{11} = a_{11} \neq 0, \quad u_{12} = a_{12}/a_{11}, \quad l_{21} = a_{21},$$

$$l_{22} = \frac{a_{11}a_{22} - a_{21}a_{12}}{a_{11}} \neq 0.$$

Пусть утверждение теоремы справедливо для матриц порядка (k-1). Докажем, что оно справедливо для матриц порядка k.

Представим матрицу A порядка k в виде

$$A = \begin{pmatrix} a_{11} & \dots & a_{1,k-1} & a_{1k} \\ \dots & \dots & \dots & \dots \\ a_{k-1,1} & \dots & a_{k-1,k-1} & a_{k-1,k} \\ ---- & --- & --- & --- & --- \\ a_{k1} & \dots & a_{k,k-1} & a_{kk} \end{pmatrix}$$
(3)

и обозначим

$$A_{k-1} = \begin{pmatrix} a_{11} & \dots & a_{1,k-1} \\ \dots & \dots & \dots \\ a_{k-1,1} & \dots & a_{k-1,k-1} \end{pmatrix}, \quad a_{k-1} = \begin{pmatrix} a_{1k} \\ \dots \\ a_{k-1,k} \end{pmatrix},$$

$$b_{k-1} = (a_{k1}, \dots, a_{k,k-1})$$

Согласно предположению индукции существует разложение матрицы

$$A_{k-1} = L_{k-1}U_{k-1}.$$

Будем искать разложение матрицы (3) в виде

$$A = \begin{bmatrix} L_{k-1} & 0 \\ l_{k-1} & l_{kk} \end{bmatrix} \begin{bmatrix} U_{k-1} & u_{k-1} \\ 0 & 1 \end{bmatrix}, \tag{4}$$

где $l_{k-1}=(l_{k1},l_{k2}\ldots,l_{k,k-1})$ и $u_{k-1}=(u_{1k},u_{2k}\ldots,u_{k-1,k})^T$ - неизвестные векторы.

Перемножая матрицы в правой части уравнения (4) и учитывая (3), приходим к системе уравнений

$$L_{k-1}u_{k-1} = a_{k-1}, (5)$$

$$l_{k-1}U_{k-1} = b_{k-1}, (6)$$

$$l_{k-1}u_{k-1} + l_{kk} = a_{kk}. (7)$$

Из предположения индукции следует существование матриц L_{k-1}^{-1} и U_{k-1}^{-1} . Следовательно из (5)-(7) получаем

$$u_{k-1} = L_{k-1}^{-1} a_{k-1}, \quad l_{k-1} = b_{k-1} U_{k-1}^{-1}, \quad l_{kk} = a_{kk} - l_{k-1} u_{k-1}.$$

Докажем, что $l_{kk} \neq 0$. Запишем

$$\det A = (\det L_{k-1})l_{kk}(\det U_{k-1}) = (\det L_{k-1})l_{kk}.$$

По условию теоремы $\det A \neq 0$, следовательно $l_{kk} \neq 0$.

Таким образом, LU-разложение матрицы A порядка k существует.

Докажем единственность такого разложения.

Предположим противное, пусть матрицу A можно разложить двумя способами:

$$A = L_1 U_1 = L_2 U_2.$$

Тогда $U_1U_2^{-1}=L_1^{-1}L_2$. Матрица в левой части указанного равенства является верхней треугольной, а в правой - нижней треугольной. Такое равенство возможно, когда обе матрицы $U_1U_2^{-1}$ и $L_1^{-1}L_2$ являются диагональными.

Но на диагонали матрицы $U_1U_2^{-1}$ стоят единицы, следовательно и на диагонали $L_1^{-1}L_2$ также стоят единицы. Таким образом эти матрицы являются единичными:

$$U_1 U_2^{-1} = L_1^{-1} L_2 = E.$$

Следовательно, $U_1 = U_2$ и $L_1 = L_2$, т.е. разложение единственно. \blacktriangleright