

树莓派 wiringPi 引脚

TEN ACT par				· 1						
(1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	ВСМ	WP	I I I	功能名	in PR	物理引脚 BOARD编码		功能名	WPI	BCM
	DIS	PLAY =		3V	1	65	2	5V		
	2	8	U2(SDA.1	3		4	5V		
	3	9		SCL.1	5		6	GND		
PWR IN _ = 5 July 5	4	7	$i \times i$	GPIO.7	7	II	8	TXD	[15	14
C C162 C7 ₹	1.10			GND	9		10	RXD	[16	15)
R5 1 2 1 R55 R1	17	0		GPIO.0	11		12	GPIO.1	1	18
IIII O	27	2	20	GPIO.2	13		14	GND		
I STATE	22	3	6>	GPIO.3	15		16	GPIO.4	4	23
1 s s s	6 . 2	- B	18	3V	17		18	GPIO.5	(5	24
2ABCB-AP 953-AP13 953-AP13	10	12	8	MOSI	19		20	GND		
3-20 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	9	13		MISO	21		22	GPIO.6	6	25
137 137 137 137 137 137 137 137 137 137	11	14	នក្ត	SCLK	23		24	CEO	[10	8
HDMI RIE CAMERA	2	<u> </u>	ij	GND	25		26	CE1	11	7
7777777777711113	0	30	V17.	SDA.0	27		28	SCL.0	31	1
	5	21		GPIO.21	29		30	GND		
A/V C52 _{FB4} D4	6	22	in it	GPIO.22	31		32	GPIO.26	26	12
A/V C52 _{FB4} 104 C5	13	23	2 2	GPIO.23	33		34	GND		
31: 3 cs7	19	24	,	GPIO.24	35		36	GPIO.27	27	16
D:	26	25	9 02	GPIO.25	37		38	GPIO.28	28	20)
5 C58 = 1	R35 1 H			GND	39		40	GPIO.29	(29	21)
= C60 860 = 322G	R3311 21	Tale of the same o		1 5			Т			
R36 & 6 6 6 7	R461 × FB770 03	• 11111								
				2 R	2					
					~//	C97				
		1								
			- 10							
			1							
	4									

树莓派 wiringPi 库详解

wiringPi 是一个很棒的树莓派 IO 控制库,使用 C 语言开发,提供了丰富的接口: GPIO 控制,中断,多线程,等等。java 的 pi4j 项目也是基于 wiringPi 的,我最近也在看源代码,到时候整理好了会放出来的。

下面开始 wiringPi 之旅吧!

安装

进入 wiringPi 的 github (https://git.drogon.net/?p=wiringPi;a=summary) 下载安装包。点击页面的第一个链接的右边的 snapshot,下载安装压缩包。

然后进入安装包所在的目录执行以下命令:

>tar xfz wiringPi-98bcb20.tar.gz //98bcb20为版本标号,可能不同>cd wiringPi-98bcb20

>./build

验证 wiringPi 的是否安装成功,输入 gpio -v,会在终端中输出相关 wiringPi 的信息。否则安装失败。

编译 和运行

假如你写了一个 LEDtest.c 的项目,则如下。

编译:

g++ -Wall -o LEDtest LEDtest.cpp -lwiringPi //使用 C++编程 , -Wall 是为了

使能所有警告,以便发现程序中的问题

gcc -Wall -o LEDtest LEDtest.c -lwiringPi //使用 C语言编程

运行:

sudo ./LEDtest

查看引脚编号表格

使用如下控制台下命令

> gpio readall

也可以查看下面的图。

注意: 查看时,将树莓派的 USB 接口面对自己,这样看才是正确的。

树莓派 40Pin 引脚对照表

wiringPi	всм		物理	引脚		всм	wiringPi
编码	编码	功能名		RD编码	功能名	编码	编码
		3.3V	1	2	5V	CETT	ans.
8	2	SDA.1	3	4	5V	-13P	To and
9	3	SCL.1	5	6	GND	Con	
7	4	GPIO.7	7	8	TXD	14	15
		GND	9	10	RXD	15	16
0	17	GPIO.0	11	12	GPIO.1	18	1
2	27	GPIO.2	13	14	GND		
3	22	GPIO.3	15	16	GPIO.4	23	4
		3.3V	17	18	GPIO.5	24	5
12	10	MOSI	19	20	GND		
13	9	MISO	21	22	GPIO.6	25	6
14	11	SCLK	23	24	CE0	8	10
		GND	25	26	CE1	7	11
30	0	SDA.0	27	28	SCL.0	1	31
21	5	GPIO.21	29	30	GND		
22	6	GPIO.22	31	32	GPIO.26	12	26
23	13	GPIO.23	33	34	GND		
24	19	GPIO.24	35	36	GPIO.27	16	27
25	26	GPIO.25	37	38	GPIO.28	20	28
		GND	39	40	GPIO.29	21	29
1	表格由	树莓派实验	室绘制	http://sh	umeipai.nxe	z.com	

wiringPi 库 API 大全

在使用 wiringPi 库时,你需要包含头文件 #include<wiringPi.h>。凡是写 wiringPi 的程序,都包含这个头文件。

硬件初始化函数

使用 wiringPi 时,你必须在执行任何操作前初始化树莓派,否则程序不能正常工作。

可以调用下表函数之一进行初始化,它们都会返回一个 int , 返回 -1 表示初始化失败。

int wiringPiSetup (void)	返回:执行状态,-1 表示失败	当使用这个函数初始化树莓派引脚时,程序使用的是wiringPi 引脚编号表。引脚的编号为 0~16 需要 root 权限
<pre>int wiringPiSetupGpio (void)</pre>	返回执行状态,-1 表示失败	当使用这个函数初始化树莓派引脚时,程序中使用的是 BCM GPIO 引脚编号表。 需要 root 权限
wiringPiSetupPhys(void)	不常用,不做介 绍	/
wiringPiSetupSys (void) ;	不常用,不做介 绍	/

通用 GPIO 控制函数

100 100		2. (5) , 3,
<pre>void pinMode (int pin, int mode)</pre>	pin: 配置的引脚 mode:指定引脚的 IO 模式 可取的值: INPUT、OUTPUT、 PWM_OUTPUT,GPIO_CLOCK	作用: 配置引脚的 IO 模式注意: 只有 wiringPi 引脚编号下的 1 脚(BCM 下的 18 脚) 支持 PWM 输出 只有 wiringPi 编号下的 7(BCM 下的 4 号) 支持 GPIO_CLOCK 输出
void digitalWrite (int pin, int value)	pin:控制的引脚 value:引脚输出的电平值。 可取的值: HIGH, LOW 分别代表高低电平	让对一个已近配置为输出模式的 引 脚 输出指定的电平信号
int digitalRead (int pin)	pin:读取的引脚返回:引脚上的电平,可以是LOWHIGH之一	读取一个引脚的电平值 LOW HIGH, 返回
<pre>void analogWrite(int pin, int value)</pre>	pin:引脚 value:输出的模拟量	模拟量输出 树莓派的引脚本身是不支持 AD 转换的, 也就是不能使用模拟量的 API, 需要增加另外的模块
int analogRead (int pin)	pin: 引脚 返回: 引脚上读取的模拟量	模拟量输入 树莓派的引脚本身是不支持 AD 转换的, 也就是不能使用模拟量的 API, 需要增加另外的模块
<pre>void pwmWrite (int pin, int value)</pre>	pin: 引脚 value: 写入到 PWM 寄存器的值,范 围在 0~1024 之间。	输出一个值到PWM寄存器,控制PWM输出。 pin 只能是 wiringPi 引脚编号下的 1 脚 (BCM 下的 18 脚)
void pullUpDnControl (int pin, int pud)	pin: 引脚	对一个设置 IO 模式为 INPUT 的输入引脚设置拉电阻模式。

pud: 拉电阻模式 与 Arduing

可取的值: PUD-OFF 关闭拉电

阻

PUD_DOWN 引脚电平拉到

3.3v

PUD_UP 引脚电平拉到

0v 接地

与 Arduino 不同的是,树莓派支持的拉电阻模式更丰富。

树莓派内部的拉电阻达 50K 欧姆

LED 闪烁程序

```
#include<iostream>
#include<cstdlib>
#include<wiringPi.h>
const int LEDpin = 1;
int main()
     if(-1==wiringPiSetup())
           cerr<<"setup error\n";</pre>
           exit(-1);
     pinMode(LEDpin,OUTPUT);
     for(size_t i=0;i<10;++i)</pre>
              digitalWrite(LEDpin,HIGH);
              delay(600);
              digitalWrite(LEDpin,LOW);
              delay(600);
```



```
cout<<"----bye-----"<<endl;
return 0;
}</pre>
```

III III III

" III MARKET

PWM 输出控制 LED 呼吸灯的例子

```
#include<iostream>
#include<wiringPi.h>
#include<cstdlib>
using namespace std;
const int PWMpin = 1; //只有 wiringPi 编号下的 1 脚 (BCM 标号下的 18 脚) 支持
void setup();
int main()
  setup();
  int val = 0;
  int step = 2;
   while(true)
      if(val>1024)
        step = -step;
        val = 1024;
      else if(val<0)</pre>
```



```
step = -step;
val = 0;
}

pwmWrite(PWMpin,val);
val+=step;
delay(10);
}

return 0;
}

void setup()
{
   if(-1==wiringPiSetup())
   {
      cerr<<"setup error\n";
      exit(-1);
   }
   pinMode(PWMpin,PWM_OUTPUT);
}</pre>
```

时间控制函数

unsigned int millis (void)	这个函数返回 一个 从你的程序执行 wiringPiSetup 初始化函数 (或者 wiringPiSetupGpio) 到 当前时间 经过的 毫秒数。 返回类型是 unsigned int,最大可记录 大约 49 天的毫秒时长。
unsigned int micros (void)	这个函数返回 一个 从你的程序执行 wiringPiSetup 初始化函数 (或者 wiringPiSetupGpio) 到 当前时间 经过的 微秒数。 返回类型是 unsigned int,最大可记录 大约 71 分钟的时长。
void delay (unsigned int	将当前执行流暂停 指定的毫秒数。因为 Linux 本身是多线程的,所以实

howLong)	际暂停时间可能会长一些。参数是 unsigned int 类型,最大延时时间可达 49 天
void delayMicroseconds (unsigned int howLong)	将执行流暂停 指定的微秒数(1000 微秒 = 1 毫秒 = 0.001 秒)。 因为 Linux 本身是多线程的,所以实际暂停时间可能会长一些。参数是 unsigned int 类型,最大延时时间可达 71 分钟

" III PARTE

" III III III

中断

wiringPi 提供了一个中断处理注册函数,它只是一个注册函数,并不处理中断。他无需 root 权限。

OFFIT OFFIT

<pre>int wiringPiISR (int pin, int edgeType, void (*function)(void))</pre>	返回值:返回负数则代表注册失败 pin:接受中断信号的引脚edgeType:触发的方式。 INT_EDGE_FALLING:下降沿触发 INT_EDGE_RISING:上升沿触发 INT_EDGE_BOTH:上下降都会触发 INT_EDGE_SETUP:编程时用不到。 function:中断处理函数的指针,它是一个无返回值,无参数的函数。	注册的函数会在中断发生时执行 和 51 单片机不同的是: 这个注册的中断处理函数会和 main 函数并发执行(同时执行,谁也不耽误谁) 当本次中断函数还未执行完毕,这个时候树莓派又触发了一个中断,那么这个后来的中断不会被丢弃,它仍然可以被执行。但是wiringPi 最多可以跟踪并记录后来的仅仅1个中断,如果不止1个,则他们会被忽略,得不到执行。

通过 1 脚检测 因为按键按下引发的 下降沿,触发中断,反转 11 控制的 LED

```
#include<iostream>
#include<wiringPi.h>
#include<cstdlib>
using namespace std;
void ButtonPressed(void);
void setup();
/**********
const int LEDPin = 11;
const int ButtonPin = 1;
/**********/
int main()
   setup();
  //注册中断处理函数
  if(0>wiringPiISR(ButtonPin,INT_EDGE_FALLING,ButtonPressed))
     cerr<<"interrupt function register failure"<<endl;</pre>
      exit(-1);
   }
   while(1)
```



```
return 0;
void setup()
  if(-1==wiringPiSetup())
     cerr<<"wiringPi setup error"<<endl;</pre>
     exit(-1);
  }
  pinMode (LEDPin, OUTPUT); //配置 11 脚为控制 LED 的输出模式
  digitalWrite(LEDPin,LOW); //初始化为低电平
  pinMode(ButtonPin,INPUT); //配置1脚为输入
  pullUpDnControl(ButtonPin,PUD_UP); //将1脚上拉到3.3v
//中断处理函数: 反转 LED 的电平
void ButtonPressed(void)
 digitalWrite(LEDPin, (HIGH==digitalRead(LEDPin))?LOW:HIGH);
```


多线程

wiringPi 提供了简单的 Linux 系统下的通用的 Posix threads 线程库接口来支持并发。

		包装一个用 PI_THEEAD 定义的函数为一个线程,
返回: 启动, 源代码 int g int g (voice pthreadCreate(name)	<pre>coiThreadCreate d *(*fn)(void *)) aread_t myThread; curn ead_create Thread, NULL, fn,</pre>	并启动这个线程。 首先你需要通过以下方式创建一个特特殊的函数,这个函数中的代码就是在新的线程中将执行的代码。,myTread是你自己线程的名字,可自定义。 PI_THREAD (myThread) { //在这里面写上的代码会和主线程并发执行。 } 在 wiringPi.h 中,我发现这样一个宏定义: #define PI_THREAD(X) void *X (void *dummy) 那么,被预处理后我们写的线程函数会变成下面这个样子,请注意返回值,难怪我每次写都会警告,因为没有返回一个指针,那么,以后注意返回 NULL,或者(void*)0 void *myThread (void *dummy) { //在这里面写上的代码会和主线程并发
		`
piLock(int keyNum) keyNum 一把锁	:0-3 的值,每一个值代表	使能同步锁。wiringPi 只提供了 4 把锁,也就是keyNum 只能取 0~3 的值,官方认为有这 4 把锁就够了。keyNum: 0,1,2,3 每一个数字就代表一把锁。

		源代码: void piLock (int keyNum) { pthread_mutex_lock (&piMutexes [keyNum]); }
piUnlock(int keyNum)	keyNum:0-3 的值,每一个值代表 一把锁	解锁,或者说让出锁。 源代码: void piUnlock (int key) { pthread_mutex_unlock (&piMutexes [key]); }
int piHiPri (int priority)	priority: 优先级指数,0~99 返回值: 0,成功 -1:,失败	设定线程的优先级,设定线程的优先级变高,不会使程序运行加快,但会使这个线程获得相当更多的时间片。priority 是相对的。比如你的程序只用到了主线程,和另一个线程 A, 主线程设定优先级为 1, A 线程设定为 2, 那也代表 A 比 main 线程优先级高。

凡是涉及到多线程编程,就会涉及到线程安全的问题,多线程访问同一个数据,需要使用同步锁来保障数据操作正确性和符合预期。

当A线程锁上 锁S后,其他共用这个锁的竞争线程,只能等到锁被释放,才能继续执行。

成功执行了 piLock 函数的线程将拥有这把锁。其他线程想要拥有这把锁必须等到这个线程释放锁,也就是这个线程执行 piUnlock 后。

同时要扩展的知识是: volatile 这个 C/C++中的关键字,它请求编译器不缓存这个变量的数据,而是每次都从内存中读取。特别是在多线程下共享放变量,必须使用 volatile 关键字声明才是保险的。

In Internation

III RIPITE

III PARTE

III. IIII

A IIIR IIIR

" III THE WIFE

softPwm,软件实现 PWM

树莓派硬件上支持的 PWM 输出的引脚有限,为了突破这个限制,wiringPi 提供了软件实现的 PWM 输出 API。

需要包含头文件: #include <softPwm.h>

编译时需要添 pthread 库链接 -lpthread

int softPwmCreate (int pin, int initialValue, int pwmRange)	pin: 用来作为软件 PWM 输出的引脚 initalValue: 引脚输出的初始值 pwmRange: PWM 值的范围上限 建议使用 100. 返回: 0表示成功。	使用一个指定的 pin 引脚创建一个模拟的 PWM 输出引脚
void softPwmWrite (int pin, int value)	pin: 通过 softPwmCreate 创建的引脚 value: PWM 引脚输出的值	更新引脚输出的 PWM 值

串口通信

使用时需要包含头文件: #include <wiringSerial.h>

int serialOpen (char *device, int baud)	device:串口的地址,在 Linux 中就是设备所在的目录。 默认一般是"/dev/ttyAMAO",我的是这样的。 baud: 波特率 返回: 正常返回文件描述符,否则返回-1 失败。	打开并初始串口
void serialClose (int fd)	fd: 文件描述符	关闭 fd 关联的串口
void serialPutchar (int fd, unsigned char c)	fd:文件描述符 c:要发送的数据	发送一个字节的数据到串口
<pre>void serialPuts (int fd, char *s)</pre>	fd: 文件描述符 s: 发送的字符串,字符串要以 '\0'结尾	发送一个字符串到串口
void serialPrintf (int fd, char *message, …)	fd: 文件描述符 message: 格式化的字符串	像使用 C 语言中的 printf 一样发送数据到串口
int serialDataAvail (int fd)	fd: 文件描述符 返回: 串口缓存中已经接收的,可读取的字节数,-1 代表错误	获取串口缓存中可用的字节数。
int serialGetchar (int fd)	fd: 文件描述符 返回: 读取到的字符	从串口读取一个字节数据返回。 如果串口缓存中没有可用的数据,则会等待 10 秒,如果 10 后还有没,返回-1 所以,在读取前,做好通过

		serialDataAvail 判断下。
void serialFlush (int fd)	fd: 文件描述符	刷新,清空串口缓冲中的所有可用的数据。
*size_t write (int fd, const void * buf, size_t count)	fd: 文件描述符 buf: 需要发送的数据缓存数组 count:发送 buf 中的前 count 个字节数据 返回: 实际写入的字符数,错误 返回-1	这个是 Linux 下的标准 IO 库函数,需要包含头文件#include <unistd.h> 当要发送到的数据量过大时, wiringPi 建议使用这个函数。</unistd.h>
<pre>*size_t read(int fd, void * buf , size_t count);</pre>	fd: 文件描述符 buf: 接受的数据缓存的数组 count:接收的字节数. 返回: 实际读取的字符数。	这个是 Linux 下的标准 IO 库函数,需要包含头文件#include <unistd.h> 当要接收的数据量过大时, wiringPi 建议使用这个函数。</unistd.h>

初次使用树莓派串口编程,需要配置。

/* 修改 cmdline.txt 文件 */

>cd /boot/

>sudo vim cmdline.txt

删除【】之间的部分

/*修改 inittab 文件 */

>cd /etc/

>sudo vim inittab

注释掉最后一行内容:, 在前面加上 # 号

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

sudo reboot 重启

下面是双机通信的一个例子


```
serial_write(0); //发送数据 0 给树莓派
            delay(10);
        }
       else if(isOpenPressed()) //如果打开按钮按下
             serial_write(1); //发送数据 1 给树莓派
            delay(10);
       }
}
bit isOpenPressed(void)
    bit press =0;
     if(0==openButton)
     {
           delay(5);
         if(0==openButton)
            while(!openButton)
            press = 1;
         }
     }
    return press;
bit isClosePressed(void)
{
    bit press =0;
     if(0==closeButton)
```



```
delay(5);
         if(0==closeButton)
          {
             while(!closeButton)
             press = 1;
     }
     return press;
}
void delay(unsigned int t)
  unsigned int i ;
  unsigned char j;
  for(i = t; i>0; i--)
      for(j=120;j>0;j--)
}
```

树莓派代码,作为串口通信的接收方

```
#include<iostream>
#include<cstdlib>
#include<wiringPi.h>
#include<wiringSerial.h>
using namespace std;

void setup();
const int LEDPin = 11;
```



```
int main()
  setup();
  int fd; //Linux 的思想是:将一切 IO 设备,都看做 文件,fd 就是代表串口抽象出来的文件
  if((fd = serialOpen("/dev/ttyAMAO",9600))==-1) //初始化串口,波特率 9600
     cerr<<"serial open error"<<endl;</pre>
     exit(-1);
  }
  while(true)
      if(serialDataAvail(fd) >= 1) //如果串口缓存中有数据
         int data = serialGetchar(fd);
        if(data==0) //接受到 51 发送的 数据 0
           // close led
           digitalWrite(LEDPin,LOW);
         }
         else if(data==1) //接受到51发送的数据1
           //open led
           digitalWrite(LEDPin,HIGH);
         }
      }
```



```
return 0;

void setup()

{
   if(-1==wiringPiSetup())
   {
      cerr<<"set up error"<<endl;
      exit(-1);
   }

pinMode(LEDPin,OUTPUT);
   digitalWrite(LEDPin,HIGH);
}</pre>
```


Shift 移位寄存器 API

需要包含头文件 #include <wiringShift.h>

<pre>void shiftOut (uint8_t dPin, uint8_t cPin, uint8_t order, uint8_t val)</pre>	dPin: 移位芯片的串行数据入口引脚,比如 74HC595 的 SER 脚cPin: 移位芯片的时钟引脚。如74HC595 的 11 脚order: LSBFIRST 先发送数据的低位MSBFIRST 先发送数据的高位val: 要发送的 8 位数据	将 val 串化,通过芯片转 化为并行输出 如常见的 74HC595
uint8_t shiftIn (uint8_t dPin, uint8_t cPin, uint8_t order)	同上。	将并行数据,通过芯片转 化为串行输出。

用过 595 的都知道还有一个引脚: 12 脚,Rpin,用于把移位寄存器中的数据更新到存储寄存器中,然后 wiringPi 的 API 中没有使用这个引脚。我建议使用的时候自己加上。


```
void setup();
/*********
int main()
  setup();
  for (int i=0; i<8; ++i)
      digitalWrite(RCKpin,LOW);
            shiftOut(SERpin,SCKpin,LSBFIRST,1<<i);</pre>
     digitalWrite(RCKpin,HIGH);
          delay(800);
  return 0;
void setup()
   if(-1==wiringPiSetup())
     cerr<<"setup error\n";</pre>
     exit(-1);
  }
  pinMode(SERpin,OUTPUT);
   pinMode(RCKpin,OUTPUT);
   pinMode(SCKpin,OUTPUT);
```


}

树莓派硬件平台特有的 API

并没有列全,我只是列出了相对来说有用的,其他的,都基本不会用到。

pwmSetMode (int mode)	mode: PWM 运行 模式	设置 PWM 的运行模式。 pwm 发生器可以运行在 2 种模式下,通过参数指定: PWM_MODE_BAL : 树莓派默认的 PWM 模式 PWM_MODE_MS : 传统的 pwm 模式,
<pre>pwmSetRange (unsigned int range)</pre>	range,范围的最 大值 0~range	设置 pwm 发生器的数值范围,默认是 1024
<pre>pwmSetClock (int divisor)</pre>		This sets the divisor for the PWM clock. To understand more about the PWM system, you'll need to read the Broadcom ARM peripherals manual.
piBoardRev (void)	返回: 树莓派板子 的版本编号 1或者 2	/

