

PART 4. STATISTICAL ANALYSIS

Part 4 Topics

- Basic statistical methods
 - descriptive statistics
 - frequency tables
 - correlation
 - t-tests
- ANOVA
- multiple linear regression

DESCRIPTIVE STATISTICS

summary(Salaries)

```
rank
            discipline yrs.since.phd
                                    yrs.service
                       Min. : 1.0
AsstProf: 67
            A:181
                                     Min. : 0.0
                                     1st Qu.: 7.0
AssocProf: 64 B:216
                        1st Qu.:12.0
                        Median :21.0
                                     Median:16.0
Prof
       :266
                        Mean :22.3 Mean :17.6
                        3rd Qu.:32.0 3rd Qu.:27.0
                        Max. :56.0
                                     Max. :60.0
```

sex salary

Female: 39 Min. : 57800
Male :358 1st Qu.: 91000
Median :107300
Mean :113706
3rd Qu.:134185
Max. :231545

library(psych) describe (Salaries[c(3,4,6)])

-0.81

-0.34

0.18 1520.16

yrs.since.phd

yrs.service

salary

	vars	n	mean	S	sd medi	lan	
<pre>yrs.since.phd</pre>	1	397	22.31	12.8	39	21	
<pre>yrs.service</pre>	2	397	17.61	13.0	1	16	
salary	3	397	113706.46	30289.0	04 1073	300	
	tri	mmed	mad	min	max	range	skew
<pre>yrs.since.phd</pre>	2	1.83	14.83	1	56	55	0.30
<pre>yrs.service</pre>	1	6.51	14.83	0	60	60	0.65
salary	11140	1.61	29355.48	57800 2	231545	173745	0.71
	kurto	sis	se				

0.65

0.65

FREQUENCY TABLES

Frequency Tables

xtabs(~ rank, data=Salaries)

```
rank
```

```
AsstProf AssocProf Prof 67 64 266
```

xtabs(~ rank + sex, data=Salaries)

```
rank Female Male
AsstProf 11 56
AssocProf 10 54
Prof 18 248
```

Frequency Tables (proportions)

tbl <- xtabs(~ rank + sex, data=Salaries)

```
rank Female Male
AsstProf 11 56
AssocProf 10 54
Prof 18 248
```

prop.table(tbl)

```
rank Female Male
AsstProf 0.028 0.141 cells add up to 1
AssocProf 0.025 0.136
Prof 0.045 0.625
```

Frequency Tables (proportions)

prop.table(tbl, 1)

prop.table(tbl, 2)

```
        sex
        Female Male
        Columns add up to 1

        AsstProf
        0.28 0.16

        AssocProf
        0.26 0.15

        Prof
        0.46 0.69
```

Chi-square test

chisq.test(tbl)

```
Pearson's Chi-squared test
```

```
data: tbl
X-squared = 8.5, df = 2, p-value = 0.01408
```


CORRELATION

Correlation

cor(x, use= , method=)

Option	Description
X	Matrix or data frame
use	Specifies the handling of missing data.
	everything (any correlation involving a case with missing
	values will be set to missing)
	complete.obs (listwise deletion)
	pairwise.complete.obs (pairwise deletion)
method	Specifies the type of correlation.
	The options are pearson, spearman, or kendall.

Correlation Matrix

cor(mtcars)

```
cyl disp
                        hp
                             drat
                                    wt
                                         qsec
      mpg
                                                 vs
                                                           qear
                                                                  carb
     1.00 -0.85 -0.85 -0.78  0.681 -0.87  0.419
                                               0.66 0.600
                                                           0.48 - 0.551
mpg
cyl
    -0.85 1.00 0.90 0.83 -0.700 0.78 -0.591 -0.81 -0.523 -0.49 0.527
disp -0.85 0.90 1.00 0.79 -0.710 0.89 -0.434 -0.71 -0.591 -0.56
                                                                0.395
    -0.78 0.83 0.79 1.00 -0.449 0.66 -0.708 -0.72 -0.243 -0.13
hp
                                                                 0.750
drat 0.68 -0.70 -0.71 -0.45 1.000 -0.71 0.091 0.44 0.713
                                                           0.70 - 0.091
    -0.87 0.78 0.89 0.66 -0.712 1.00 -0.175 -0.55 -0.692 -0.58
wt
                                                                 0.428
gsec 0.42 -0.59 -0.43 -0.71 0.091 -0.17 1.000 0.74 -0.230 -0.21 -0.656
vs 0.66 -0.81 -0.71 -0.72 0.440 -0.55 0.745
                                               1.00 0.168 0.21 -0.570
    0.60 -0.52 -0.59 -0.24 0.713 -0.69 -0.230 0.17 1.000 0.79 0.058
am
gear 0.48 -0.49 -0.56 -0.13 0.700 -0.58 -0.213 0.21 0.794
                                                           1.00 0.274
carb -0.55 0.53 0.39 0.75 -0.091 0.43 -0.656 -0.57 0.058
                                                           0.27 1.000
```

be careful if categorical factors coded numerically have not been converted to factors

see corrplot package for methods of graphing correlation matricies

T TEST AND ANOVA

t-test

t.test(salary ~ sex, data=Salaries)

```
Welch Two Sample t-test

data: salary by sex

t = -3.2, df = 50, p-value = 0.002664

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-23038 -5138

sample estimates:

mean in group Female mean in group Male

101002 115090
```

ANOVA

fit <- aov(salary ~ rank, data=Salaries) summary(fit)

```
Df Sum Sq Mean Sq F value Pr(>F)
rank 2 1.43e+11 7.16e+10 128 <2e-16 ***
Residuals 394 2.20e+11 5.59e+08
---
Signif. codes: 0 \***' 0.001 \**' 0.05 \.' 0.1 \' 1
```

Factorial ANCOVA

fit <- aov(salary ~ yrs.since.phd +
 rank + sex + rank*sex, data=Salaries)
summary(fit)</pre>

```
Df Sum Sq Mean Sq F value Pr(>F)
yrs.since.phd 1 6.39e+10 6.39e+10 113.76 <2e-16 ***
rank 2 7.96e+10 3.98e+10 70.91 <2e-16 ***
sex 1 9.07e+08 9.07e+08 1.62 0.20
rank:sex 2 5.06e+07 2.53e+07 0.05 0.96
Residuals 390 2.19e+11 5.61e+08
---
Signif. codes: 0 \***/ 0.001 \**/ 0.01 \*/ 0.05 \./ 0.1 \/ 1
```

Type I Sums of Squares

Factorial ANCOVA

library(car) Anova(fit, type="III")

```
Response: salary

Sum Sq Df F value Pr(>F)

(Intercept) 6.72e+10 1 119.74 < 2e-16 ***

yrs.since.phd 2.89e+08 1 0.51 0.47

rank 1.54e+10 2 13.70 1.8e-06 ***

sex 9.43e+07 1 0.17 0.68

rank:sex 5.06e+07 2 0.05 0.96

Residuals 2.19e+11 390

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
```

Type III Sums of Squares

library(effects) plot(effect("rank*sex"), fit)

rank*sex effect plot

REGRESSION

Regression

Fit a model:

fit <- $lm(y \sim x1 + x2 + x3, data=mydata)$

Evaluate the model:

plot(fit) or use the many functions available in the car package

Use the model:

predict(fit, newdata)

Estimate Std. Error t value Pr(>|t|) (Intercept) -6.794334 3.239089 -2.10 0.039 * education 4.186637 0.388701 10.77 < 2e-16 *** income 0.001314 0.000278 4.73 7.6e-06 *** women -0.008905 0.030407 -0.29 0.770 --Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 Residual standard error: 7.8 on 98 degrees of freedom Multiple R-squared: 0.798, Adjusted R-squared: 0.792 F-statistic: 129 on 3 and 98 DF, p-value: <2e-16

