UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 4

Date	27th October 2022
Team ID	PNT2022TMID27839
Student Name	Prem B (311519104047)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.)IMPORT THE REQUIRED LIBRARIES

```
1.)IMPORT THE REQUIRED LIBRARIES

In [1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns
```

2.)DOWNLOAD AND UPLOAD THE DATASET

	2.)DOWNLOAD AND UPLOAD THE DATASET INTO THE TOOL										
In [2]:	<pre>[2]: df = pd.read_csv('Mall_Customers.csv') df = df.drop(columns=["CustomerID"]) df.head()</pre>										
Out[2]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)						
	0	Male	10	15	39						
		IVIAIG	19	15	39						
	1	Male		15	81						
	1		21								
		Male	21 20	15	81						

3.) CHECK FOR MISSING VALUES AND DEAL WITH THEM

```
3.)CHECK FOR MISSING VALUES AND DEAL WITH THEM

In [3]: df.isnull().sum()

Out[3]: Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) BI - VARIANTE ANALYSIS

c.) MULTI - VARIANTE ANALYSIS

6.) FIND AND REPLACE THE OUTLIERS

6.) FIND THE OUTLIERS AND REPLACE THE OUTLIERS

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(


```
In [13]: for i in df.columns.drop('Gender'):
    Q1 = df[i].quantile(0.25)
    Q3 = df[i].quantile(0.25)
    Q4 = df[i].quantile(0.25)
    Q5 = df[i].quantile(0.25)
    Q6 = df[i].quantile(0.25)
    Q7 = df[i].quantile(0.25)
    Q8 = df[i].quantile(0.25)
    Q9 = df[i].quantile(0.25)
    df[i] = qp.where(df[i]).quantile(0.25)
    df[i] = qp.where(df[i]).quant
```


C:\Users\Prem\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

[15] 4	rom skl	earn n	reprocessing imp	ort LabelEncoder	
	le = Lab			or c cabelelicodei	
			.fit_transform(d	f.Gender)	
t[16]:	Gende	er Age	Annual Income (k\$)	Spending Score (1-100)	-
		er Age	Annual Income (k\$)	Spending Score (1-100) 39.0	_
	0				
Ī	0	1 19.0	15.0	39.0	
Ī	0 1 2	1 19.0 1 21.0	15.0 15.0	39.0 81.0	

8.) SCALE THE DATA

9.) PERFORM ANY OF THE CLUSTERING ALGORITHMS

10.) ADDING THE CLUSTER WITH THE PRIMARY DATASET

	10.)ADD THE CLUSTER DATA WITH THE PRIMARY DATASET											
In [20]:		["Categor .head()	y"] = pd.	Series(Category))							
Out[20]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Category						
	0	1.128152	-1.424569	-1.745429	-0.434801	5						
	1	1.128152	-1.281035	-1.745429	1.195704	5						
	2	-0.886405	-1.352802	-1.707083	-1.715913	7						
	3	-0.886405	-1.137502	-1.707083	1.040418	7						
	4	-0.886405	-0.563369	-1.668737	-0.395980	7						

11.) SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

In [21]: X = df.drop(columns=["Category"])
Y = df.Category

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

In [22]: from sklearn.model_selection import train_test_split
x_train , x_test , y_train , y_test = train_test_split(X,Y,test_size=0.2,random_state=0)

13.) BUILD THE MODEL

13.)BUILD THE MODEL

In [23]: from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier()

14.) TRAIN THE MODEL

14.)TRAIN THE MODEL

In [24]: model.fit(x_train,y_train)
Out[24]: RandomForestClassifier()

15.) TEST THE MODEL

```
15.)TEST THE MODEL
In [25]: y_predict = model.predict(x_test)
In [26]: pd.DataFrame({"Actual":y_test,"Predicted":y_predict.round(0)})
Out[26]:
      18 4 4
      170
      107 4 4
      98
      182
      5 7 7
      146
      12 0 0
      152
      61 5 5
      125 1 1
180 6 6
      154
      33 5 5
      37 7 7
      74
      183 1 1
      145 2 2
45 7 7
      159
      60 4 4
      179 2 2
      185
      122 1 0
      44
      55
```

16.) MEASURE THE PERFORMANCE USING METRICS

