Math 3310H: Assignment I

Jeremy Favro (0805980) Trent University, Peterborough, ON, Canada

September 25, 2025

Problem 1. Define a relation $\mathbb{R} \times \mathbb{R}$ by $(a,b) \sim (c,d)$ if 2(a-c)-3(b-d)=0

- (a) Show that \sim is an equivalence relation on \mathbb{R} .
- (b) Give an example of two pairs $(a, b), (c, d) \in \mathbb{R} \times \mathbb{R}$, which lie in the same equivalence class, and two pairs that don't.
- (c) This equivalence relation partitions the 2D plane $\mathbb{R} \times \mathbb{R}$ into subregions. What does the equivalence class (a, b) look like as a region of the plane?

Solution 1.

- (a) For \sim to be an equivalence relation it must satisfy the following properties for a set S (proofs included)
 - (i) Reflexivity: $x \sim x \, \forall x \in S$.

Proof. Let $(a,b) \in \mathbb{R} \times \mathbb{R}$, then

$$(a,b) \stackrel{?}{\sim} (a,b)$$

$$\implies 2(a-a) - 3(b-b) = 0$$

Which satisfies our relation as defined. Therefore the relation is reflexive.

(ii) Symmetry: $x \sim y \implies y \sim x \, \forall x, y \in S$

Proof. Let $(a,b), (c,d) \in \mathbb{R} \times \mathbb{R}$, then

$$(a,b) \sim (c,d)$$

$$\implies 2(a-c) - 3(b-d) = 0$$

$$\implies 2(a-c) = 3(b-d)$$

$$\implies -2(a-c) = -3(b-d)$$

$$\implies 2(c-a) = 3(d-b)$$

$$\implies 2(c-a) - 3(d-b) = 0$$

$$\implies (c,d) \sim (a,b)$$

(iii) Transitivity: $x \sim y \sim z \implies x \sim z \, \forall x, y, z \in S$

Proof. Let $(a,b),(c,d),(e,f) \in \mathbb{R} \times \mathbb{R}$, then

$$(a,b) \sim (c,d)$$

 $\implies 2(a-c) - 3(b-d) = 0$

and

$$(c,d) \sim (e,f)$$

 $\implies 2(c-e) - 3(d-f) = 0$

so

$$2(a-c) - 3(c-d) + 2(c-e) - 3(d-f) = 0$$

$$\Rightarrow 2(a-c+c-e) - 3(b-d+d-f) = 0$$

$$\Rightarrow 2(a-e) - 3(b-f) = 0$$

$$\Rightarrow (a,b) \sim (e,f)$$

Therefore \sim is an equivalence relation on $\mathbb{R} \times \mathbb{R}$.

(b) For representative element (1,1) we get that for an element $(a,b) \in \mathbb{R} \times \mathbb{R}$ to belong to the associated equivalence class we must have

$$2(1-a) - 3(1-b) = 0$$

which can be rearranged to obtain

$$a = -\frac{1 - 3b}{2}$$

so for $b=\pm 1$ we get two members of the equivalence class represented by (1,1) under \sim , (1,1) and (-2,1). The elements (π,e) and (ϕ,i^i) where π,e take on their usual definitions, ϕ is the golden ratio and i^i is, interestingly, both transcendental and real!

(c) The equivalence class with representative (a,b) is the set $E=\{(x,y)\in\mathbb{R}\times\mathbb{R}|x\sim(a,b)\}$. This gives the equation

$$2(a-x) - 3(b-y) = 0 \implies y = \frac{2(a-x) - 3b}{-3}$$

so the class looks like a line with slope 2/3 and y-intercept b - 2a/3

Problem 2. For each of the following sets S, determine whether S is closed under addition modulo n, or multiplication modulo n, or both or neither. (Addition and multiplication modulo n are defined in Exercise Set 2).

(a)
$$S = \{0, 4, 8, 12\}, n = 16.$$

(b)
$$S = \{0, 3, 6, 9, 12\}, n = 15.$$

(c)
$$S = \{1, 2, 3, 4\}, n = 5.$$

(d)
$$S = \{0, 2, 3, 4, 6, 8, 9, 10\}, n = 12.$$

(e)
$$S = \{1, 5, 7, 11\}, n = 12.$$

Solution 2.

(a)

$+_{16}$	0	4	8	12	.16	0	4	8	12
0	0 4 8	4	8	12	0	0	0	0	0
4	4	8	12	0	4	0	0	0	0
8	8	12	0	4				0	
12	12	0	4	8	12	0	0	0	0

That these tables, being every possible combination of elements on each set with their respective operations contain no elements not members of S means that both are closed under $+_{16}$ and \cdot_{16} .

(b)

$+_{15}$	0	3	6	9	12		.15	0	3	6	9	12
0	0	3	6	9	12	-	0	0	0	0	0	0
3	3	6	9	12	0					3		
6	6	9 12	12	0	3		6	0	3	6	9	12
							9	0	12	9	6	3
12	12	0	3	6	9		12	0	6	12	3	9

Again because these tables contain only elements of S is closed under both of their respective operations.

(c)

$+_{5}$	1	2	3	4	.5	1	2	3	4
1	2	3	4	0	1	1	2	3	4
2 3	3	4	0	1	2	2	4	1	3
3	4	0	1	2	3	3	1	4	2
4	0	1	2	3	4	4	3	2	1

Here because $0 \notin S \implies S$ is not closed under $+_5$ but is closed under \cdot_5 for the same reasons as previously.

(d)

$+_{12}$	0	2	3	4	6	8	9	10	.12	0	2	3	4	6	8	9	10
0	0	2	3	4	6	8	9	10	0	0	0	0	0	0	0	0	0
2	2	4	5	6	8	10	11	0	2	0	4	6	8	0	4	6	8
3	3	5	6	7	9	11	0	1	3	0	6	9	0	6	0	3	6
4	4	6	7	8	10	0	1	2	4	0	8	0	4	0	8	0	4
6	6	8	9	10	0	2	3	4	6	0	0	6	0	0	0	6	0
8	8	10	11	0	2	4	5	6	8	0	4	0	8	0	4	0	8
9	9	11	0	1	3	5	6	7	9	0	6	3	0	6	0	9	6
10	10	0	1	2	4	6	7	8	10	0	8	6	4	0	8	6	4

Here because $1, 5, 7, 11 \notin S$ is not closed under $+_{12}$ but is closed under \cdot_{12} for the same reasons as previously.

(e)

$+_{12}$	1	5	7	11	.12	1	5	7	11
1	2	6	8	0	1	1	5	7	11
5	6	10 0	0	4	5	5	1	11	7
7	8	0	2	6	7	7	11	1	5
11	0	4	6	10	11	11	7	5	1

Here because $0, 2, 4, 6, 8, 10 \notin S$ is not closed under $+_{12}$ but is closed under $+_{12}$ for the same reasons as previously.

Figure 1: Space Filling Cat Picture

Problem 3. Determine whether the given binary operation * is commutative, associative, both or neither. Justify your answers with proof.

- (a) The operation * on \mathbb{Z} given by a*b=a+b+ab
- (b) The operation * on \mathbb{R} given by a*b=a+b-ab
- (c) The operation * on \mathbb{R} given by a*b=a+2ab
- (d) The operation * on $\mathbb{Z} \times \mathbb{Z}$ given by (a, b) * (c, d) = (ad + bc, bd)
- (e) The operation * on $\mathbb{Z} \times \mathbb{Z}$ given by (a, b) * (c, d) = (ad, bc)

Solution 3.

(a) For commutativity,

Proof. Let $a, b \in \mathbb{Z}$, then

$$a*b=a+b+ab$$

$$=b+a+ba$$
 Commutativity of $+$ and $-$ on $\mathbb Z$
$$=b*a$$
 Definition of $*$

Therefore * is commutative.

For associativity,

Proof. Let $a, b, c \in \mathbb{Z}$, then

$$a*(b*c) = a*(b+c+bc)$$

$$= a+b+c+bc+a(b+c+bc)$$

$$= a+b+c+bc+ab+ac+abc$$
 · distributive on $\mathbb Z$

and

$$(a*b)*c = (a+b+ab)*c$$

$$= a+b+ab+c+(a+b+ab)c$$

$$= a+b+ab+c+ac+bc+abc \qquad \qquad \cdot \text{ distributive on } \mathbb{Z}$$

$$= a+b+c+bc+ab+ac+abc \qquad \qquad + \text{ commutative on } \mathbb{Z}$$

Because the two are equal we have associativity.

(b) For commutativity,

Proof. Let $a, b \in \mathbb{Z}$, then

$$a*b=a+b-ab$$

$$=b+a-ba$$
 Commutativity of $+$ and $-$ on $\mathbb Z$
$$=b*a$$
 Definition of $*$

Therefore * is commutative.

For associativity,

Proof. Let $a, b, c \in \mathbb{Z}$, then

$$a*(b*c) = a*(b+c-bc)$$

$$= a+b+c-bc+a(b+c-bc)$$

$$= a+b+c-bc+ab+ac-abc$$
 · distributive on \mathbb{Z}

and

$$(a*b)*c = (a+b-ab)*c$$

$$= a+b-ab+c+(a+b-ab)c$$

$$= a+b-ab+c+ac+bc-abc$$
 · distributive on $\mathbb Z$

Because of the difference in sign on the ab terms these two cannot be made to be equal, therefore * is not associative.

(c) For commutativity,

Proof. Let $a, b \in \mathbb{Z}$, then

$$a * b = a + 2ab \neq b * a = b + 2ba$$

Therefore * is not commutative here.

For associativity,

Proof. Let $a, b, c \in \mathbb{Z}$, then

$$a*(b*c) = a*(b+2bc)$$

= $a + 2a(b+2bc)$
= $a + 2ab + 4abc$

 \cdot distributive on $\mathbb Z$

and

$$(a*b)*c = (a+2ab)*c$$

$$= c + 2c(a+2ab)$$

$$= c + 2ca + 4cab$$
 · distributive on \mathbb{Z}

Which cannot be manipulated to be equal, therefore * is not associative here.

(d) For commutativity,

Proof. Let $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}$, then

$$(a,b)*(c,d) = (ad+bc,bd)$$

= $(cb+da,db)$ Associativity of $+$ and \cdot on \mathbb{Z}
= $(c,d)*(a,b)$ Definition of $*$ in reverse

Therefore * is commutative.

For associativity,

Proof. Let $(a,b),(c,d),(e,f) \in \mathbb{Z} \times \mathbb{Z}$, then

$$(a,b)*((c,d)*(e,f)) = (a,b)*(cf+de,df)$$

$$= (adf+b(cf+de),bdf)$$

$$= (adf+bcf+bde,bdf)$$
 · distributive on \mathbb{Z}

and

$$((a,b)*(c,d))*(e,f) = (ad+bc,bd)*(e,f)$$

$$= ((ad+bc)f+bde,bdf)$$

$$= (fad+fbc+bde,bdf) \cdot \text{distributive on } \mathbb{Z}$$

$$= (adf+bcf+bde,bdf) \cdot \text{commutative on } \mathbb{Z}$$

As these two are equal, * is associative.

(e) For commutativity,

Proof. Let $(a,b),(c,d)\in\mathbb{Z}\times\mathbb{Z}$, then

$$(a,b)*(c,d) = (ad,bc) \neq (c,d)*(a,b) = (cb,da).$$

Therefore * is not commutative. For associativity,

Proof. Let $(a,b),(c,d),(e,f) \in \mathbb{Z} \times \mathbb{Z}$, then

$$(a,b) * ((c,d) * (e,f)) = (a,b) * (cf,de)$$

= (ade,bcf)

and

$$((a,b)*(c,d))*(e,f) = (ad,bc)*(e,f)$$

= (adf,bce)

As these two cannot be made equal * is not associative.

Problem 4. Let S be a nonempty set. A binary algebraic structure (S, *) is called a semigroup if * is associative.

(a) Let S be the set of positive rational numbers. Show that (S,*) is a commutative semigroup if

$$a * b = \frac{ab}{a+b}$$

(the usual operations on the right) for all $a, b \in S$

(b) Let S be a set containing more than one element. Define

$$a * b = b$$

for all $a, b \in S$. Show that (S, *) is a noncommutative semigroup with no identity element.

Solution 4.

(a) For associativity (semigroupness)

Proof. Let $a, b, c \in S$, then

$$a*(b*c) = a*\left(\frac{bc}{b+c}\right)$$
$$= \frac{a(bc)}{a+(b+c)}$$
$$= \frac{abc}{a+(b+c)}$$

Associativity of + and \cdot on $\mathbb{Q}^{\geq 0}$

and

$$(a*b)*c = \left(\frac{ab}{a+b}\right)*c$$
$$= \frac{(ab)c}{(a+b)+c}$$
$$= \frac{abc}{a+b+c}$$

Associativity of + and \cdot on $\mathbb{Q}^{\geq 0}$

 $\therefore (S, *)$ is a semigroup

For commutativity

Proof. Let $a, b \in S$, then

$$a * b = \frac{ab}{a+b}$$
$$= \frac{ba}{b+a}$$

Commutativity of + and \cdot on $\mathbb{Q}^{\geq 0}$

= b * a

Definition of * in reverse

 \therefore (S,*) is commutative

(b) For associativity (semigroupness)

Proof. Let $a, b, c \in S$, then

$$a * (b * c) = a * c$$
$$= c$$

and

$$(a*b)*c = b*c$$
$$= c$$

 $\therefore (S,*)$ is a semigroup

For commutativity

Proof. Let $a, b \in S$, then

$$a*b=b\neq b*a=a$$

 \therefore (S,*) is not commutative

For the identity element if we assume, by way of contradiction, that such an element, e, exists then it must satisfy

$$a * e = e * a = a \forall a \in S.$$

We can note however that by our definition of * we have

$$a*e = e \neq e*a = a$$

which is only satisfied by e = a which would not satisfy any other such equation where we swap out a for some other element of S unless we also swap out e which would violate the uniqueness requirement imposed by the definition of e as an identity element meaning that it must be the same for all expressions and therefore cannot exist in S.