## 클라우드 시대 오픈소스 발전 방향

Five Open Source Trends in the Cloud Era

윤석찬 AWS 수석테크에반젤리스트

- 고지 사항: 발표자가 AWS에 근무하고 있으나, 본 발표 내용은 개인적인 의견이며 회사의 공식 입장이 아닙니다.
- Disclosure: I work for AWS, but the opinions stated here are my own, not those of my company.



# () 1 클라우드를 통한 오픈 소스 사용 증가

### 온-프레미스 vs. 클라우드 서비스



### 오픈 소스 기반 매니지드 서비스 수요 증가

"AWS는 고객 중심 기업이며, 전체 서비스의 95% 이상의 기능을 고객의 피드백을 기반으로 개발한다."



Amazon RDS MySQL, MariaDB. **PostgreSQL** 



Amazon Elasticache Redis, Apache **Cassandra** Memcached



Amazon MO RabbitMQ, **ActiveMO** 



**Amazon EMR** Hadoop, Spark



Amazon Managed Streaming for Kafka



Amazon OpenSearch Lucene



Amazon Managed Blockchain **Ethereum** 



**Amazon EKS Kubernetes** 



AWS AppMesh Envoy



Amazon

**Keyspaces** for

Amazon Managed Service for **Grafana** 



Amazon **Managed Service** for **Prometheus** 



**AWS OpsWorks** Chef



Amazon **FreeRTOS** 



Amazon FSx for **Lustre** 



**AWS** RoboMaker ROS

### 오픈 소스에 대한 클라우드 서비스 제공자의 역할



### AWS가 기여하고 있는 주요 오픈 소스 프로젝트







































































# © 02 클라우드 기반 오픈소스 생태계 발전

### Cloud Native Computing Foundation (CNCF)

CNCF는 Kubernetes, Prometheus, Envoy를 포함하여 빠르게 성장하는 클라우드 기반 오픈 소스 프로젝트 벤더 중립적인 역할



- •138K+ Contributors
- •7M+ Contributions
- •289.3M+ Lines of Code



















### Part of the community

- CNCF의 플래티넘 수준 후원
- AWS 개발자가 코드 공헌
- containerd의 창립 멤버

### 주요 공헌

- Kubernetes 및 Envoy와 같은 프로젝트에 대한 업스트림 기여
- cdk8s와 같은 인튜베이팅 프로젝트 제안
- etcd 클러스터 정상 여부 확인하는 기능 공헌

### 클라우드 기반 오픈소스 생태계 발전



### 컨테이너 및 서버리스 기반 오픈 소스 증가

### Bottlerocket



가상 머신 또는 베어메탈 호스트에서 컨테이너를 실행하기 Linux 기반 오픈 소스 운영 체제

- 필수 소프트웨어 기반 컨테이너 실행 가능
- 다양한 빌드(변형)를 쉽게 생성할 수 있음
- 장애 복구 시 강력한 폴백을 위한 업데이트 전환 가능





Amazon EKS 4



**AWS Fargate** 

aws.amazon.com/bottlerocket

### Firecracker



안전한 다중 테넌트 서버리스 기반 서비스를 만들고 관리하기 위한 오픈 소스 가상화 SW

- KVM 기반 가상화
- 125ms 속도로 초당 150개의 microVM 실행 가능
- microVM당 〈5MB 메모리 풋프린트







Qovery





firecracker-microvm.github.io

## 응 이 성 클라우드 기반 오픈소스 수익화 모델

### 최근 10년간 오픈 소스 라이선스의 분포 경향



### 공유 소스 소프트웨어의 대두



### 공유 소스 소프트웨어의 대두



### OSS 업체와 CSP의 협력 방향 (AWS 사례)

**Cloud Service Providers** 

오픈소스 개발 공동 협력



Apache Lucene 프로젝트에 아마존 검색팀과 몽고DB Atlas 검색팀의 개발 협력



매니지드 서비스 운영



AWS 클라우드 내에 Grafana 및 Promethus 완전 관리형 서비스 운영



Amazon Managed Service for **Grafana** 



Amazon Managed Service for **Prometheus**  유료 제품 매니지드 제공



Rstudio Workbench를 BYOL\* 형식으로 Amazon SageMaker에 통합 제공

\*Bring Your Own License



# 

### 오픈 소스 기계 학습 프레임워크의 진화

2015

2016

**2017**Apache 프로젝트 참여시작







**92%** AWS 기반 텐서플로 프로젝트 91% AWS 기반 파이토치 프로젝트

Sponsored by **AWS** 

### 오픈 소스 기계 학습 프레임워크의 진화



- 90% 기계 학습 실무자는 하나 이상의 프레임워크 사용
- 60%는 2개 이상 프레임워크 사용

- 출처: 기계 학습 과학 출판물에 사용되는 오픈소스 ML 프레임워크 종류 조사

### 오픈 소스 ML 프레임워크에 대한 공헌 (AWS 사례)

Jupyter



#### 개발 도구

Amazon SageMaker Studio와 같은 엔터프라이즈 Jupyter 사용 자를 위한 클라우드 IDE 통합 PyTorch



#### 프레임워크

TorchServe는 코드를 작성할 필요 없이 기-훈련된 PyTorch 모델을 규모에 맞게 쉽게 배포 **MXNet** 



#### API 인터페이스

Gluon은 개발자가 기계 학습 모델을 보다 쉽고 빠르게 구축할 수 있도록 하는 오픈 소스 딥 러닝 인터페이스

### 오픈 소스와 클라우드 기반 ML 서비스 결합

AWS Deep Learning Containers



모델 배포

딥 러닝 환경을 위한 최적화되고 사용자 지정 가능한 컨테이너

github.com/aws/deep-learning-containers

Amazon SageMaker Clarify



모델 훈련 데이터 준비

데이터 세트 및 모델에 대한 편향 감지에 사용되는 오픈 소스 프로젝트

github.com/aws/amazon-sagemaker-clarify

Amazon SageMaker Neo



모델 추론 성능 강화

Apache TVM을 기반으로 하는 오픈 소스 컴파일러 및 런타임 (실행 장비에 맞는 모델 최적화)

github.com/neo-ai

# 05 급격한 오픈 소스 기반 디지털 전환 수요

**Digital Transformations** 

### 오픈 소스 생태계의 지역별 역할 및 수요 변화



커뮤니티 참여 및 소스 코드 공헌은 중동/아프리카/남아시아/남미 등 제 3세계 국가 위주

지속적인 사용 및 비용 절감 등은 북미/유럽/ 호주 등 선진국 위주

### 팬데믹이 오픈 소스 생태계에 끼친 영향



디지털 전환 수요로 인해 기업들의 오픈 소스 도입 확대



Pull Request및 프로젝트 기여가 5%에서 최대 40% 증가



질병 연구 및 해결을 위한 다양한 오픈 소스 기반 협력 증가

## 오픈소스와 디지털 전환(Digital Transformations)



- 82%의 기업이 오픈 소스가 디지털 전환에 중요한 역할을 한다고 응답
- 오픈 소스의 역할에 대해



- 출처: Forrester Report of 2021,

### 전통 산업으로 오픈 소스 프로젝트 확대

자동차 (Automotive Grade Linux)



금융 (FinOS - Fintech Open Source Foundation)



농업 (Farm OS for Aquiculture)



에너지 (Linux Foundation - Energy)



## 마무리

### 클라우드 시대 오픈소스 발전 방향

- 01 클라우드를 통한 오픈 소스 사용 증가 ▶ 수요층이 전통적 엔터프라이즈로 확대
- 02 클라우드 기반 생태계 발전 ▶ 더 많은 클라우드용 오픈 소스 도구/프레임워크
- 03 클라우드 기반 수익화 모델 정립 ▶ CSP와 SaaS 업체간 상생 및 협력 모델
- 04 기계 학습용 프레임워크 확대 ▶ 클라우드 기반 ML 수요층 확대
- 05 급격한 디지털 전환 수요 ▶ 버티컬 영역의 특히, 금융/제조에 확산





## 감사합니다

클라우드 시대 오픈소스 발전 방향





