Baire's Theorem Math 308, Real Analysis

Zhaoyang Li, Qinyu Xu

Duke Kunshan University

May 2, 2024

Outline

- Overview of Baire's Theorem
- Pre-knowledge of Baire's Theorem
- Proof of Baire's Theorem
- Interpretation of Baire's Theorem
- References

Baire's Theorem

Theorem 3.5.4 The set of real numbers \mathbb{R} cannot be written as the countable union of nowhere-dense sets.

? How to deal with the 'countable union' of sets?

? What does it mean for a set to be 'nowhere-dense'?

? Why cannot \mathbb{R} be made up of those kinds of sets?

F_{σ} Set and G_{δ} Set

Definition 3.5.1. A set $A \subseteq \mathbb{R}$ is called an F_{σ} set if it can be written as the countable union of closed sets. A set $B \subseteq \mathbb{R}$ is called a G_{δ} set if it can be written as the countable intersection of open sets.

Recall that,

- The union of a finite collection of closed sets is closed.
- The intersection of a finite collection of open sets is open.

F_{σ} Set and G_{δ} Set

Definition 3.5.1. A set $A\subseteq\mathbb{R}$ is called an F_{σ} set if it can be written as the countable union of closed sets. A set $B\subseteq\mathbb{R}$ is called a G_{δ} set if it can be written as the countable intersection of open sets.

Recall that,

- The union of a finite collection of closed sets is closed.
- The intersection of a finite collection of open sets is open.

 F_{σ} set and G_{δ} set are neither closed sets nor open sets.

Example 1

(a) A closed interval [a,b] is a G_{δ} set.

$$[a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b + \frac{1}{n})$$

Example 1

(a) A closed interval [a,b] is a G_{δ} set.

$$[a,b] = \bigcap_{n=1}^{\infty} (a - \frac{1}{n}, b + \frac{1}{n})$$

(b) The half-open interval (a,b] is both a G_{δ} and an F_{σ} set.

$$(a,b] = \bigcap_{n=1}^\infty (a,b+\frac{1}{n}) = \bigcup_{n=1}^\infty [a+\frac{1}{n},b]$$

Example 2

Exercise 3.5.1. Argue that a set A is a G_{δ} set if and only if its complement is an F_{σ} set.

Example 2

Exercise 3.5.1. Argue that a set A is a G_{δ} set if and only if its complement is an F_{σ} set.

 (\rightarrow) :

A set A is a G_{δ} set if $A = \bigcap_{n=1}^{\infty} O_n$, where each O_n is an open set.

By De Morgan's Law,

$$\left(\bigcap_{n=1}^{\infty} O_n\right)^c = \bigcup_{n=1}^{\infty} O_n^c$$

(←):

A set A^c is an F_σ set if $A^c = \bigcup_{n=1}^\infty C_n$, where each C_n is a closed set.

By De Morgan's Law,

$$\left(\bigcup_{n=1}^{\infty} C_n\right)^c = \bigcap_{n=1}^{\infty} C_n^c$$

Example 3

(a) \mathbb{Q} is an F_{σ} set.

Example 3

(a) \mathbb{Q} is an F_{σ} set.

Since \mathbb{Q} is countable, let r_n be an enumeration of \mathbb{Q} . We have

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} [r_n, r_n]$$

Example 3

(a) \mathbb{Q} is an F_{σ} set.

Since \mathbb{Q} is countable, let r_n be an enumeration of \mathbb{Q} . We have

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} [r_n, r_n]$$

(b) The set of irrationals I forms a G_{δ} set.

Example 3

(a) \mathbb{Q} is an F_{σ} set.

Since \mathbb{Q} is countable, let r_n be an enumeration of \mathbb{Q} . We have

$$\mathbb{Q} = \bigcup_{n=1}^{\infty} [r_n, r_n]$$

(b) The set of irrationals I forms a G_{δ} set.

By De Morgan's Law, we get

$$\mathbb{I} = \mathbb{Q}^c = \bigcap_{n=1}^{\infty} [r_n, r_n]^c$$

Example 4

(a) The countable union of F_{σ} sets is an F_{σ} set.

Example 4

(a) The countable union of F_{σ} sets is an F_{σ} set.

Each F_{σ} set can be expressed as:

$$F_{\sigma} = \bigcup_{n=1}^{\infty} C_n$$

where each C_n is a closed set.

A countable collection of F_{σ} sets can be written as:

$$F_{\sigma}^{m} = \bigcup_{n=1}^{\infty} C_{n}^{m} \quad \text{for each } m \in \mathbb{N}$$

The countable union of these F_{σ} sets is:

$$\bigcup_{m=1}^{\infty} F_{\sigma}^{m} = \bigcup_{m=1}^{\infty} \left(\bigcup_{n=1}^{\infty} C_{n}^{m} \right) = \bigcup_{(m,n) \in \mathbb{N} \times \mathbb{N}} C_{n}^{m}$$

We know $\mathbb{N} \times \mathbb{N}$ is countable.

Thus, it is a countable union of closed sets, which is an F_{σ} set.

(b) The finite intersection of F_{σ} sets is an F_{σ} set.

(b) The finite intersection of F_{σ} sets is an F_{σ} set.

Each F_{σ} set can be expressed as:

$$F_{\sigma} = \bigcup_{n=1}^{\infty} C_n$$

where each C_n is a closed set.

A finite number of F_{σ} sets can be written as:

$$F_{\sigma}^{i} = \bigcup_{n=1}^{\infty} C_{n}^{i}$$

for i = 1, 2, ..., k.

The intersection of these F_{σ} sets is:

$$\bigcap_{i=1}^{k} F_{\sigma}^{i} = \bigcap_{i=1}^{k} \left(\bigcup_{n=1}^{\infty} C_{n}^{i} \right)$$

$$= \bigcup_{n_{1}=1}^{\infty} \bigcup_{n_{2}=1}^{\infty} \dots \bigcup_{n_{k}=1}^{\infty} \left(C_{n_{1}}^{1} \cap C_{n_{2}}^{2} \cap \dots \cap C_{n_{k}}^{k} \right)$$

Since the intersection of an arbitrary collection of closed sets is closed, $C_{n_1}^1 \cap C_{n_2}^2 \cap \ldots \cap C_{n_k}^k$ is closed.

Therefore, we have a countable union of closed sets, which is an F_{σ} set.

Li, Xu Duke Kunshan University May 2, 2024 Li

Definition A set $G \subseteq \mathbb{R}$ is *dense* in \mathbb{R} if, given any two real numbers a < b, it is possible to find a point $x \in G$ with a < x < b.

Theorem 3.5.2. If $\{G_1, G_2, G_3, \ldots\}$ is a countable collection of dense, open sets, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Theorem 3.5.2. If $\{G_1, G_2, G_3, \ldots\}$ is a countable collection of dense, open sets, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Hint: Apply the Nested Interval Property

Theorem 3.5.2. If $\{G_1, G_2, G_3, \ldots\}$ is a countable collection of dense, open sets, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Hint: Apply the Nested Interval Property

Proof

Construct nested intervals

Since G_1 is open, there exists an open interval $(a_1,b_1) \subseteq G_1$. Let $I_1 = [c_1,d_1] \subseteq (a_1,b_1) \subseteq G_1$.

Theorem 3.5.2. If $\{G_1, G_2, G_3, \ldots\}$ is a countable collection of dense, open sets, then the intersection $\bigcap_{n=1}^{\infty} G_n$ is not empty.

Hint: Apply the Nested Interval Property

Proof

Construct nested intervals

Since
$$G_1$$
 is open, there exists an open interval $(a_1,b_1) \subseteq G_1$.
Let $I_1 = [c_1,d_1] \subseteq (a_1,b_1) \subseteq G_1$.

Now suppose $I_n \subseteq G_n$.

Since G_{n+1} is dense and $G_{n+1} \cap (c_n, d_n)$ is open, there exists an interval $(a_{n+1}, b_{n+1}) \subseteq G_{n+1} \cap (c_n, d_n)$.

Letting $I_{n+1} = [c_{n+1}, d_{n+1}] \subseteq (a_{n+1}, b_{n+1})$ gives us a new closed interval.

Duke Kunshan University

• This gives us a collection of sets with $I_{n+1} \subseteq I_n$, $I_n \subseteq G_n$, $I_n \neq \emptyset$. We can apply the Nested Interval Property to conclude

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset$$

and thus

$$\bigcap_{n=1}^{\infty} G_n \neq \emptyset$$

since each $I_n \subseteq G_n$.

Exercise 3.5.5. It is impossible to write $\mathbb{R} = \bigcup_{n=1}^{\infty} F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

"No nonempty open intervals"

F_n is a closed set containing no nonempty open intervals

 $= F_n$ is a closed set containing empty open intervals

$$\neq F_n$$
 is empty

 \rightarrow the elements in F_n might be isolated (For instance, \mathbb{Q})

It is impossible to write $\mathbb{R} = \bigcup_{n=1}^{\infty} F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

By De Morgan's Law, $\mathbb{R}=\bigcup_{n=1}^\infty F_n$ is equivalent to $\emptyset=\bigcap_{n=1}^\infty G_n$, where $G_n=F_n^c$.

Then, G_n must be open and dense.

It is impossible to write $\mathbb{R} = \bigcup_{n=1}^{\infty} F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

By De Morgan's Law, $\mathbb{R}=\bigcup_{n=1}^\infty F_n$ is equivalent to $\emptyset=\bigcap_{n=1}^\infty G_n$, where $G_n=F_n^c$.

Then, G_n must be open and dense.

- 1. Since $G_n = F_n^c$, F_n is closed, G_n is open.
- 2. Let $a,b \in \mathbb{R}$ and a < b, since F_n contains no nonempty open intervals, $(a,b) \nsubseteq F_n$, then $(a,b) \cap G_n \neq \emptyset$

There exists $c \in (a,b) \cap G_n \subseteq (a,b)$ such that $c \in G_n$, which means that G_n is dense.

It is impossible to write $\mathbb{R} = \bigcup_{n=1}^{\infty} F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

By De Morgan's Law, $\mathbb{R}=\bigcup_{n=1}^\infty F_n$ is equivalent to $\emptyset=\bigcap_{n=1}^\infty G_n$, where $G_n=F_n^c$.

Then, G_n must be open and dense.

- 1. Since $G_n = F_n^c$, F_n is closed, G_n is open.
- 2. Let $a,b \in \mathbb{R}$ and a < b, since F_n contains no nonempty open intervals, $(a,b) \nsubseteq F_n$, then $(a,b) \cap G_n \neq \emptyset$

There exists $c \in (a,b) \cap G_n \subseteq (a,b)$ such that $c \in G_n$, which means that G_n is dense.

According to Theorem 3.5.2 which tells that $\bigcap_{n=1}^{\infty}G_n\neq\emptyset$ for dense, open set G_n , contradicting with $\emptyset=\bigcap_{n=1}^{\infty}G_n$ Hence, it is impossible to write $\mathbb{R}=\bigcup_{n=1}^{\infty}F_n$

Exercise 3.5.6. Use the conclusion drawn from the previous theorem to show that **the set** \mathbb{I} **of irrationals cannot be an** F_{σ} **set**(can be written as the countable union of closed sets).

Exercise 3.5.6. Use the conclusion drawn from the previous theorem to show that **the set** \mathbb{I} **of irrationals cannot be an** F_{σ} **set**(can be written as the countable union of closed sets).

Recall \mathbb{Q} can be written as $\mathbb{Q} = \bigcup_{n=1}^{\infty} [r_n, r_n]$ where r_n is the enumeration of \mathbb{Q} . $\to \mathbb{Q}$ is a F_{σ} set

Exercise 3.5.6. Use the conclusion drawn from the previous theorem to show that **the set** \mathbb{I} **of irrationals cannot be an** F_{σ} **set**(can be written as the countable union of closed sets).

Recall $\mathbb Q$ can be written as $\mathbb Q = \bigcup_{n=1}^\infty [r_n, r_n]$ where r_n is the enumeration of $\mathbb Q$. $\to \mathbb Q$ is a F_σ set

By contradiction, assuming $\mathbb{I} = \bigcup_{n=1}^{\infty} F_n$ Then, \mathbb{Q} and \mathbb{I} must contain no nonempty intervals.

Exercise 3.5.6. Use the conclusion drawn from the previous theorem to show that **the set** \mathbb{I} **of irrationals cannot be an** F_{σ} **set**(can be written as the countable union of closed sets).

Recall $\mathbb Q$ can be written as $\mathbb Q = \bigcup_{n=1}^\infty [r_n, r_n]$ where r_n is the enumeration of $\mathbb Q$. $\to \mathbb Q$ is a F_σ set

By contradiction, assuming $\mathbb{I} = \bigcup_{n=1}^{\infty} F_n$ Then, \mathbb{Q} and \mathbb{I} must contain no nonempty intervals.

 \mathbb{Q} is the countable union of points

Between every two irrational numbers a < b, there must exist a rational number $c \in (a,b)$

Example related to the theorem

Assuming $\mathbb{R} = \mathbb{Q} \bigcup \mathbb{I} = \bigcup_{n=1}^{\infty} P_n$ (countable union of closed sets, containing no nonempty intervals)

Example related to the theorem

Assuming $\mathbb{R} = \mathbb{Q} \bigcup \mathbb{I} = \bigcup_{n=1}^{\infty} P_n$ (countable union of closed sets, containing no nonempty intervals)

In the previous theorem we have shown that $\mathbb{R} \neq \bigcup_{n=1}^{\infty} P_n(P_n)$ is the closed set containing no nonempty intervals), which is a contradiction.

Therefore, \mathbb{I} is not an F_{σ} set.

Baire's Theorem

Theorem 3.5.4 The set of real numbers \mathbb{R} cannot be written as the countable union of nowhere-dense sets.

? How to deal with the 'countable union' of sets?

? What does it mean for a set to be 'nowhere-dense'?

? Why cannot \mathbb{R} be made up of those kinds of sets?

The Property for a Dense Set

Definition: G is dense in \mathbb{R} if and only if every point of \mathbb{R} is a limit point of G.

 $ightarrow \mathsf{G}$ is dense in $\mathbb R$ if and only if $\overline{G} = \mathbb R$

The Property for a Dense Set

Definition: G is dense in \mathbb{R} if and only if every point of \mathbb{R} is a limit point of G.

 $ightarrow {\sf G}$ is dense in ${\Bbb R}$ if and only if $\overline{G}={\Bbb R}$

Example: $\mathbb Q$ is dense in $\mathbb R$

The Property for a Dense Set

Definition: G is dense in \mathbb{R} if and only if every point of \mathbb{R} is a limit point of G.

$$ightarrow {\sf G}$$
 is dense in ${\Bbb R}$ if and only if $\overline{G}={\Bbb R}$

Example: $\mathbb Q$ is dense in $\mathbb R$

Every real number a is the limit point of $\mathbb Q$

$$\rightarrow \overline{\mathbb{Q}} = \mathbb{R}$$

Examples for the dense set

1.
$$A = \mathbb{Q} \cap [0, 5]$$

A is dense in [0,5], but A is not dense in all of $\ensuremath{\mathbb{R}}.$

Examples for the dense set

1. $A = \mathbb{Q} \cap [0, 5]$

A is dense in [0,5], but A is not dense in all of \mathbb{R} .

2. $\mathbb{I} = \mathsf{The} \; \mathsf{set} \; \mathsf{of} \; \mathsf{irrationals}$

 \mathbb{I} is dense in \mathbb{R} since $\mathbb{I}=\mathbb{R}$

Nowhere-dense set

Definition: A set E is nowhere-dense if \overline{E} contains no nonempty open intervals.

Example:
$$B = \frac{1}{n} : n \in \mathbb{N}$$

B is nowhere-dense since $\overline{B} = B \bigcup \{0\}$, it contains no nonempty intervals since the elements in \overline{B} are isolated.

Nowhere-dense set

Definition: A set E is nowhere-dense if \overline{E} contains no nonempty open intervals.

Example:
$$B = \frac{1}{n} : n \in \mathbb{N}$$

B is nowhere-dense since $\overline{B} = B \bigcup \{0\}$, it contains no nonempty intervals since the elements in \overline{B} are isolated.

Property: A set E is nowhere-dense in $\mathbb R$ if and only if the complement of $\overline E$ is dense in $\mathbb R$.

Nowhere-dense set

A set E is nowhere-dense in $\mathbb R$ if and only if the complement of $\overline E$ is dense in $\mathbb R.$

Proof: First suppose E is nowhere-dense, want to show the complement of \overline{E} is dense in $\mathbb R$

Since E is nowhere-dense, according to the definition, \overline{E} contains no nonempty open intervals.

for
$$a,b \in \mathbb{R}$$
, $a < b$, $(a,b) \nsubseteq \overline{E}$, so $(a,b) \cap \overline{E}^c \neq \emptyset$

ightarrowWe can find a $c \in (a,b) \cap \overline{E}^c \subseteq (a,b)$ and $c \in \overline{E}^c$, meaning \overline{E}^c is dense.

Nowhere-dense det

A set E is nowhere-dense in R if and only if the complement of \overline{E} is dense in R.

Then, suppose the complement of \overline{E} is dense in \mathbb{R} , want to show E is nowhere-dense.

 \overline{E}^c is dense in \mathbb{R} , meaning for all a < b, there exists $c \in (a,b)$ such that $c \in \overline{E}^c$

Since $c \notin \overline{E}$ and $c \in (a,b)$, $(a,b) \nsubseteq \overline{E}$

Therefore, $\overline{\cal E}$ contains no nonempty open intervals, meaning E is nowhere-dense by definition.

Baire's Theorem

Theorem 3.5.4 The set of real numbers \mathbb{R} cannot be written as the countable union of nowhere-dense sets.

? How to deal with the 'countable union' of sets?

? What does it mean for a set to be 'nowhere-dense'?

? Why cannot \mathbb{R} be made up of those kinds of sets?

The set of real numbers $\ensuremath{\mathbb{R}}$ cannot be written as the countable union of nowhere-dense sets.

The set of real numbers $\mathbb R$ cannot be written as the countable union of nowhere-dense sets.

Proof: By contradiction, assuming $E_1, E_2, E_3...$ are each nowhere-dense sets and satisfy $\mathbb{R} = \bigcup_{n=1}^{\infty} E_n$.

Since E_n are nowhere-dense, by definition, $\overline{E_n}$ contains no nonempty open intervals ($\overline{E_n}$ is closed).

The set of real numbers $\mathbb R$ cannot be written as the countable union of nowhere-dense sets.

Proof: By contradiction, assuming $E_1, E_2, E_3...$ are each nowhere-dense sets and satisfy $\mathbb{R} = \bigcup_{n=1}^{\infty} E_n$.

Since E_n are nowhere-dense, by definition, $\overline{E_n}$ contains no nonempty open intervals ($\overline{E_n}$ is closed).

Recall from the Theorem mentioned before that it is impossible to write $\mathbb{R} = \bigcup_{n=1}^\infty F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

Therefore, $\bigcup_{n=1}^{\infty} \overline{E_n} \neq \mathbb{R}$.

The set of real numbers $\mathbb R$ cannot be written as the countable union of nowhere-dense sets.

Proof: By contradiction, assuming $E_1, E_2, E_3...$ are each nowhere-dense sets and satisfy $\mathbb{R} = \bigcup_{n=1}^{\infty} E_n$.

Since E_n are nowhere-dense, by definition, $\overline{E_n}$ contains no nonempty open intervals ($\overline{E_n}$ is closed).

Recall from the Theorem mentioned before that it is impossible to write $\mathbb{R} = \bigcup_{n=1}^{\infty} F_n$ where for each $n \in \mathbb{N}$, F_n is a closed set containing no nonempty open intervals.

Therefore, $\bigcup_{n=1}^{\infty} \overline{E_n} \neq \mathbb{R}$.

Since $E_n \subseteq \overline{E_n}$, $\bigcup_{n=1}^{\infty} E_n \neq \mathbb{R}$

Proof Done!

Interpretation of Baire's Theorem

The set of real numbers $\ensuremath{\mathbb{R}}$ cannot be written as the countable union of nowhere-dense sets.

Example of nowhere-dense set: $\{a\}$ or [a,a]

$$\mathbb{R} \neq \bigcup_{n=1}^{\infty} [a_n, a_n]$$

 \mathbb{R} is an uncountable set

References

Abbott, S. (2015). Understanding analysis. Springer.

