

Contents

Abstracted/Indexed in/Cited in: API Abstracts; Chemical Engineering and Biotechnology Abstracts; Catalysts & Catalysis; Chem Inform; Chemical Abstracts; Current Contents: Engineering; Current Contents: Engineering Index; Current Contents: Physical, Chemical & Earth Sciences; Engineering, Technology & Applied Sciences; Metals Abstracts; Research Alert; SCISEARCH; Science Citation Index; Theoretical Chemical Engineering Abstracts. Also covered in the abstract and citation database Scopus®. Full text available on ScienceDirect®

Highly photocatalytic active thiomolybdate $[Mo_3S_{13}]^{2-}$ clusters/BiOBr nanocomposite with enhanced sulfur tolerance D. Yue, T. Zhang, M. Kan, X. Qian and Y. Zhao (China)	1
Cooperative In–Sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars K. Nemoto, Y. Hirano, K.-i. Hirata, T. Takahashi, H. Tsuneki, K.-i. Tominaga and K. Sato (Japan)	8
Acetone and ethanol vapor oxidation via negative atmospheric corona discharge over titania-based catalysts M.N. Lyulyukin, A.S. Besov and A.V. Vorontsov (Russia)	18
Visualizing the mobility of silver during catalytic soot oxidation D. Gardini, J.M. Christensen, C.D. Damsgaard, A.D. Jensen and J.B. Wagner (Denmark)	28
Effect of GO phase in $Zn(OH)_2$ /GO composite on the extent of photocatalytic reactive adsorption of mustard gas surrogate D.A. Giannakoudakis, J.A. Arcibar-Orozco and T.J. Bandosz (USA)	37
Self-assembly of CPO-27-Mg/TiO ₂ nanocomposite with enhanced performance for photocatalytic CO ₂ reduction M. Wang, D. Wang and Z. Li (PR China)	47
Promotion of oxygen reduction and water oxidation at Pt-based electrocatalysts by titanium carbonitride M. Roca-Ayats, E. Herreros, G. García, M.A. Peña and M.V. Martínez-Huerta (Spain)	53
Degradation and debromination of bromophenols using a free-base porphyrin and metalloporphyrins as photosensitizers under conditions of visible light irradiation in the absence and presence of humic substances Q. Zhu, M. Igarashi, M. Sasaki, T. Miyamoto, R. Kodama and M. Fukushima (Japan)	61
Pd–MgNi _x nanospheres/black-TiO ₂ porous films with highly efficient hydrogen production by near-complete suppression of surface recombination J. Zheng, S. Bao, X. Zhang, H. Wu, R. Chen and P. Jin (China, Japan)	69
Photoelectrocatalytic oxidation of bisphenol A over mesh of TiO ₂ /graphene/Cu ₂ O L. Yang, Z. Li, H. Jiang, W. Jiang, R. Su, S. Luo and Y. Luo (PR China)	75
Disinfection capability of Ag/g-C ₃ N ₄ composite photocatalysts under UV and visible light illumination M.J. Muñoz-Batista, O. Fontelles-Carceller, M. Ferrer, M. Fernández-García and A. Kubacka (Spain)	86
Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide–TiO ₂ composites P. Calza, C. Hadjicostas, V.A. Sakas, M. Sarro, C. Minero, C. Medana and T.A. Albanis (Italy, Greece)	96
Mild ultrasound-assisted synthesis of TiO ₂ supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol J.C. Colmenares, W. Ouyang, M. Ojeda, E. Kuna, O. Chernyyayeva, D. Lisovytksiy, S. De, R. Luque and A.M. Balu (Poland, Spain)	107
Construction of SnNb ₂ O ₆ nanosheet/g-C ₃ N ₄ nanosheet two-dimensional heterostructures with improved photocatalytic activity: Synergistic effect and mechanism insight Z. Zhang, D. Jiang, D. Li, M. He and M. Chen (China)	113
Post-plasma catalytic removal of methanol over Mn–Ce catalysts in an atmospheric dielectric barrier discharge X. Zhu, S. Liu, Y. Cai, X. Gao, J. Zhou, C. Zheng and X. Tu (China, UK)	124
A stable Ag ₃ PO ₄ @g-C ₃ N ₄ hybrid core@shell composite with enhanced visible light photocatalytic degradation L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang and W. Cui (PR China)	133

(Contents continued on bm I)

ScienceDirect

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com

0926-3373 (201604) 183; 1-R