Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	-	
1.	$5-3 \cdot \left(1 + \frac{1}{3}\right) = 5 - 3 \cdot \frac{4}{3} =$ $= 5 - 4 = 1$	3p 2p
		-2p
2.	f(a) = a - 4	2 p
	a-4=2, de unde obținem $a=6$	3p
3.	4+2x=4	3p
	x = 0, care convine	2p
4.	$\frac{10}{100} \cdot 90 = 9 \text{ lei}$	3р
	Prețul după scumpire este 90 + 9 = 99 de lei	2p
5.	$a = \frac{1+5}{2}, b = \frac{4+0}{2}$	3p
	a=3, b=2	2p
6.	$\sin C = \frac{AB}{BC}$	2p
	$\frac{1}{2} = \frac{3}{BC}$, de unde obținem $BC = 6$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 4 =$	3p
	=6-4=2	2p
b)	$2B = \begin{pmatrix} 4 & -4 \\ 2 & 6 \end{pmatrix} \Rightarrow A + 2B = \begin{pmatrix} 6 & -3 \\ 6 & 9 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} 2 & -1 \\ 2 & 3 \end{pmatrix} = 3C$	2 p
c)	$B \cdot C + x(A - C) = \begin{pmatrix} 0 & -8 + 2x \\ 8 + 2x & 8 \end{pmatrix}, \text{ deci } \det(B \cdot C + x(A - C)) = (8 + 2x)(8 - 2x), \text{ pentru orice}$	3 p
	număr real x	
	(8+2x)(8-2x)=0, de unde obținem $x=-4$ sau $x=4$	2p
2.a)	$1*1 = (1+2\cdot1)(1+2\cdot1) + 2 =$	3 p
	$=3\cdot 3 + 2 = 11$	2p
b)	$x*0=2x^2+2$, pentru orice număr real x, deci $2x^2+2=4$	3 p
	$x^2 - 1 = 0$, de unde obținem $x = -1$ sau $x = 1$	2p

Probă scrisă la matematică *M_tehnologic*

Varianta 1

Barem de evaluare și de notare

c)
$$x * \frac{1}{x} = \left(x + \frac{2}{x}\right)\left(\frac{1}{x} + 2x\right) + 2 = 1 + 2x^2 + \frac{2}{x^2} + 4 + 2 =$$

$$= 2\left(x^2 + \frac{1}{x^2}\right) + 7 > 7, \text{ pentru orice număr real nenul } x$$
2p

3p 2p		1 0)
2p	1.a) $f'(x) = 2 \cdot 5x^4 + 5 \cdot 4x^3 - 10 \cdot 3x^2 =$	1.a)
	$=10x^4 + 20x^3 - 30x^2 = 10x^2(x^2 + 2x - 3), x \in \mathbb{R}$	
2p	b) $f(0)=1, f'(0)=0$	b)
3 p	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = 1$	
	c) $f'(x) = 0 \Leftrightarrow x = -3$ sau $x = 0$ sau $x = 1$; $f'(x) \le 0$, pentru orice $x \in [-3,1] \Rightarrow f$ es	c)
3р	descrescătoare pe $[-3,1]$ și $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $[1,+\infty)$	
	deci $f(x) \ge f(1)$, pentru orice $x \in [-3, +\infty)$	
•	$f(1) = -2$, de unde obținem $2x^5 + 5x^4 - 10x^3 + 1 \ge -2$, deci $2x^5 + 5x^4 - 10x^3 + 3 \ge 0$, pentr	
2p	orice $x \in [-3, +\infty)$	
	2.a) $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{x^2}{2}$	2.a)
3 p	$ \int_{0}^{2} \left(f(x) - \frac{2}{x+1} \right) dx = \int_{0}^{2} 6x dx = 6 \cdot \frac{x^{2}}{2} \Big _{0}^{2} = $	
2p	=12-0=12	
	b) $\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \end{bmatrix}$	b)
3 p	$\int_{0}^{\pi} (f(x) - 6x) dx = \int_{0}^{\pi} \frac{1}{x+1} dx = 2 \ln(x+1) = 0$	
2p	$=2\ln 2 - 2\ln 1 = 2\ln 2$	
	$\begin{vmatrix} \mathbf{c} \\ \mathbf{c} \end{vmatrix} = \begin{vmatrix} e \\ f(x) \end{vmatrix} + \begin{vmatrix}$	c)
	$\int_{1}^{\infty} \left(\int_{1}^{\infty} (x) - \frac{1}{x+1} \right) \cdot \ln x dx = \int_{1}^{\infty} 0x \ln x dx = \int_{1}^{\infty} 0$	
3 p	$ e_{3} ^{2} e_{3}(e^{2}-1)$	
1	$3(e^2-1)$ $a(e^2-1)$	
2p	$\frac{1}{2} = \frac{1}{2}$, de unde obţinem $a = 3$	
2 _I	$\int_{0}^{\pi} (f(x) - 6x) dx = \int_{0}^{\pi} \frac{2}{x+1} dx = 2\ln(x+1) \Big _{0}^{\pi} =$	

Matematică M_tehnologic

Varianta 1

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $5-3 \cdot \left(1+\frac{1}{3}\right)=1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 4. Determinați numărul real a pentru care f(a) = 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{4+2x}=2$.
- **5p 4.** Un produs costă 90 de lei. Determinați prețul produsului după o scumpire cu 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(1,4), B(5,0) și M(a,b), unde a și b sunt numere reale. Determinați numerele reale a și b, știind că punctul M este mijlocul segmentului AB.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, în care măsura unghiului C este egală cu 30° și AB = 3. Arătați că BC = 6.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix}$ și $C = \begin{pmatrix} 2 & -1 \\ 2 & 3 \end{pmatrix}$.
- **5p a**) Arătați că det A = 2.
- **5p b**) Arătați că A + 2B = 3C.
- **5p** c) Determinați numerele reale x pentru care $\det(B \cdot C + x(A C)) = 0$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = (x + 2y)(y + 2x) + 2.
- **5p a**) Arătați că 1*1=11.
- **5p b**) Determinati numerele reale x pentru care x*0=4.
- **5p** c) Demonstrați că $x*\frac{1}{x}>7$, pentru orice număr real nenul x.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^5 + 5x^4 10x^3 + 1$.
- **5p** a) Arătați că $f'(x) = 10x^2(x^2 + 2x 3), x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că $2x^5 + 5x^4 10x^3 + 3 \ge 0$, pentru orice $x \in [-3, +\infty)$.
 - **2.** Se consideră funcția $f:(-1,+\infty) \to \mathbb{R}$, $f(x) = 6x + \frac{2}{x+1}$.
- **5p a)** Arătați că $\int_{0}^{2} \left(f(x) \frac{2}{x+1} \right) dx = 12$.
- **5p b)** Arătați că $\int_{0}^{1} (f(x) 6x) dx = 2 \ln 2$.
- **5p** c) Determinați numărul real a pentru care $\int_{1}^{e} \left(f(x) \frac{2}{x+1} \right) \cdot \ln^2 x dx = \frac{a(e^2 1)}{2}.$

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1+6\cdot\left(\frac{1}{2}+\frac{1}{3}\right)=1+6\cdot\frac{5}{6}=$	3 p
	=1+5=6	2p
2.	f(3)=1	2p
	f(2)=0, de unde obţinem $f(3)-f(2)=1-0=1$	3 p
3.	3x+1=4	3 p
	x = 1, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $10-n$ este par sunt 2, 4, 6 și 8, de	
	unde obținem 4 cazuri favorabile, deci $p = \frac{4}{9}$	3 p
5.	Pentru orice număr real a , $AB = \sqrt{(a-a)^2 + (6-0)^2} =$	3 p
	$=\sqrt{6^2}=6$	2p
6.	AC = 10	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{5 \cdot 10}{2} = 25$	3 p

1.a)	$\det A = \begin{vmatrix} 7 & 3 \\ 3 & 1 \end{vmatrix} = 7 \cdot 1 - 3 \cdot 3 =$	3p
	=7-9=-2	2p
b)	$A - 4I_2 = \begin{pmatrix} 7 & 3 \\ 3 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & -3 \end{pmatrix} =$	3p
	$=3\begin{pmatrix}1&1\\1&-1\end{pmatrix}=3B$	2p
c)	$X \cdot (I_2 + B) = A$ și, cum $I_2 + B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$ și $\det(I_2 + B) \neq 0$, obținem $X = A \cdot (I_2 + B)^{-1}$	2p
	$(I_2 + B)^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}$, de unde obținem $X = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$	3p
2.a)	$2*3=2\cdot3(2+3-4)=$	3p
	$= 6 \cdot 1 = 6$	2p

b)	$1*x = x^2 - 3x$, pentru orice număr real x	2p
	$x^2-3x-4=0$, de unde obținem $x=-1$ sau $x=4$	3 p
c)	$2^x * 2^x = 2^{2x} (2^x + 2^x - 4)$, pentru orice număr real x	2p
	$2^{2x}\left(2^x+2^x-4\right)=2^{3x} \Leftrightarrow 2^x+2^x-4=2^x \Leftrightarrow 2^x=4, \text{ de unde obținem } x=2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 3x^2 - 9 \cdot 2x =$	3p
	$=3x^2-18x=3x(x-6), x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Rightarrow x = 0 \text{ sau } x = 6$	2p
	Pentru orice $x \in (-\infty,0]$, $f'(x) \ge 0 \Rightarrow f$ este crescătoare pe $(-\infty,0]$, pentru orice $x \in [0,6]$,	
	$f'(x) \le 0 \Rightarrow f$ este descrescătoare pe $[0,6]$ și pentru orice $x \in [6,+\infty)$, $f'(x) \ge 0 \Rightarrow f$ este	3 p
	crescătoare pe $[6,+\infty)$	
c)	$\lim_{x \to 1} \frac{f'(x) - f'(1)}{3f(x) - x f'(x)} = \lim_{x \to 1} \frac{3(x^2 - 6x + 5)}{9(1 - x^2)} =$	2p
	$= \lim_{x \to 1} \frac{3(x-1)(x-5)}{-9(x-1)(x+1)} = \lim_{x \to 1} \frac{x-5}{-3(x+1)} = \frac{2}{3}$	3р
	$\int_{0}^{2} \frac{f(x)}{e^{x}} dx = \int_{0}^{2} (x-1) dx = \left(\frac{x^{2}}{2} - x\right) \Big _{0}^{2} =$	3p
	=2-2=0	2p
b)		3р
	=1-(e-1)=2-e	2 p
c)	$\int_{2}^{n} \frac{x}{f(x) \cdot f(-x)} dx = \int_{2}^{n} \frac{x}{1 - x^{2}} dx = -\frac{1}{2} \int_{2}^{n} \frac{(x^{2} - 1)'}{x^{2} - 1} dx = -\frac{1}{2} \ln x^{2} - 1 \Big _{2}^{n} = \frac{1}{2} \ln \frac{3}{n^{2} - 1}$	3p
	$\frac{1}{2}\ln\frac{3}{n^2-1} = \frac{1}{2}\ln\frac{3}{8}$ și, cum <i>n</i> este număr natural, $n > 2$, obținem $n = 3$	2p

Matematică *M_tehnologic*

Varianta 7

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $1+6\cdot\left(\frac{1}{2}+\frac{1}{3}\right)=6$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = x 2. Arătați că f(3) f(2) = 1.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x+1} = 2$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, numărul 10 n să fie par.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(a,0) și B(a,6), unde a este număr real. Arătați că AB = 6, pentru orice număr real a.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu AB = 5 și AC = 2AB. Arătați că aria triunghiului ABC este egală cu 25.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 7 & 3 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ și $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** a) Arătați că det A = -2.
- **5p** | **b**) Arătați că $A 4I_2 = 3B$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$ pentru care $X + X \cdot B = A$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție x * y = xy(x + y 4).
- **5p a)** Arătați că 2*3=6.
- **5p b**) Determinați numerele reale x pentru care 1 * x = 4.
- **5p** c) Determinați numărul real x pentru care $2^x * 2^x = 2^{3x}$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 9x^2 + 3$.
- **5p** a) Arătați că f'(x) = 3x(x-6), $x \in \mathbb{R}$.
- **5p b**) Determinați intervalele de monotonie a funcției f.
- **5p** c) Arătați că $\lim_{x \to 1} \frac{f'(x) f'(1)}{3f(x) xf'(x)} = \frac{2}{3}$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x$.
- **5p** a) Arătați că $\int_{0}^{2} \frac{f(x)}{e^{x}} dx = 0.$
- **5p b**) Arătați că $\int_{0}^{1} f(x) dx = 2 e$.
- **5p** c) Determinați numărul natural n, n > 2, pentru care $\int_{2}^{n} \frac{x}{f(x) \cdot f(-x)} dx = \frac{1}{2} \ln \frac{3}{8}.$

Matematică *M_tehnologic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{8}+1)\cdot(2\sqrt{2}-1)-\sqrt{36}=(2\sqrt{2})^2-1-6=$	3 p
	= 8 - 7 = 1	2p
2.	$f(x) = g(x) \Leftrightarrow 5x - 1 = 5 + 2x$	2p
	Coordonatele punctului de intersecție a graficelor funcțiilor f și g sunt $x = 2$ și $y = 9$	3 p
3.	$x^2 + 6x = x^2$	3р
	x = 0, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care numărul $4 \cdot n$ este element al mulțimii A sunt 0 ,	2p
	1 și 2, deci sunt 3 cazuri favorabile	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{10}$	1p
	nr. cazuri posibile 10	-P
5.	$2 = \frac{3 + x_C}{2}$ și $1 = \frac{4 + y_C}{2}$, deci punctul C are coordonatele $x_C = 1$ și $y_C = -2$	2p
	$OA = \sqrt{5}$, $OC = \sqrt{5}$ și $AC = \sqrt{10}$, deci $OA^2 + OC^2 = AC^2$, de unde obținem că triunghiul	2
	AOC este dreptunghic isoscel	3р
6.	$\sin 30^\circ = \frac{1}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\frac{1}{2} \cdot \sin A = \frac{1}{2} \cdot \cos A$, deci sin $A = \cos A$, de unde obținem tg $A = 1$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & -6 \\ 2 & -3 \end{vmatrix} = 3 \cdot (-3) - (-6) \cdot 2 =$	3 p
	=-9+12=3	2p
b)	$A \cdot A = \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix} \Rightarrow A \cdot A + A = \begin{pmatrix} 0 & -6 \\ 2 & -6 \end{pmatrix}$	2p
	$A \cdot A + A = 2 \begin{pmatrix} 0 & -3 \\ 1 & -3 \end{pmatrix} = 2B(-1)$, de unde obţinem $x = -1$	3 p
c)	$B(a) \cdot A = \begin{pmatrix} 2a - 4 & -3a + 6 \\ 3 + 6a & -6 - 9a \end{pmatrix}, \ B(3a) = \begin{pmatrix} 0 & 3a - 2 \\ 1 & 9a \end{pmatrix}, \ \operatorname{deci} \ B(a) \cdot A + B(3a) = \begin{pmatrix} 2a - 4 & 4 \\ 4 + 6a & -6 \end{pmatrix},$ pentru orice număr real a	3 p
	$\det(B(a) \cdot A + B(3a)) = -36a + 8$, pentru orice număr real a , deci $-36a + 8 = 4 \Rightarrow a = \frac{1}{9}$	2p

Probă scrisă la matematică $M_tehnologic$

Barem de evaluare și de notare

Model

2.a)	$1*2 = (1 \cdot 2 + 1)(1 + 2) =$ $= 3 \cdot 3 = 9$	3 p
	$=3\cdot3=9$	2p
b)	$x * 0 = (x \cdot 0 + 1)(x + 0) = 1 \cdot x = x$, pentru orice număr real x	2p
	$0*x = (0\cdot x + 1)(0+x) = 1\cdot x = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție ,,*"	3 p
c)	$N = 2\left(n + \frac{1}{n}\right) = 2n + \frac{2}{n}$, pentru orice număr natural nenul n	2p
	N este număr întreg, deci $\frac{2}{n}$ este număr întreg și, cum n este număr natural nenul, obținem	3 p
	n=1 sau $n=2$	

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = e^x + (x-1)e^x - \frac{2x}{2} =$	3p
	$= xe^x - x = x(e^x - 1), \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to 0} \frac{f(x) - f(0)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{(x^2)'} =$	2p
	$= \lim_{x \to 0} \frac{x(e^x - 1)}{2x} = \lim_{x \to 0} \frac{e^x - 1}{2} = 0$	3p
c)	$f'(x) \ge 0$, pentru orice $x \in \mathbb{R} \Rightarrow f$ este crescătoare pe \mathbb{R}	2p
	Cum $x \le 0 \le x^2$, pentru orice $x \in (-\infty, 0]$, obținem $f(x) \le f(x^2)$, pentru orice $x \in (-\infty, 0]$	3 p
2.a)	$\int_{1}^{2} (x+4) f(x) dx = \int_{1}^{2} 4x dx = 2x^{2} \Big _{1}^{2} =$	3p
	=8-2=6	2p
b)	$\left \int_{1}^{4} \frac{1}{x} \cdot f(x^{2}) dx = 2 \int_{1}^{4} \frac{2x}{x^{2} + 4} dx = 2 \int_{1}^{4} (x^{2} + 4)' \cdot \frac{1}{x^{2} + 4} dx = 2 \ln(x^{2} + 4) \right _{1}^{4} =$	3 p
	$= 2 \ln 20 - 2 \ln 5 = 4 \ln 2$	2p
c)	Dacă $F:(-4,+\infty)\to\mathbb{R}$ este o primitivă a funcției f , atunci $F'(x)=f(x)$, pentru orice	2n
	$x \in (-4, +\infty)$	2p
	$F''(x) = f'(x) = \frac{16}{(x+4)^2} > 0$, pentru orice $x \in (-4, +\infty)$, deci orice primitivă a funcției f	3 p
	este convexă	

Matematică M tehnologic

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(\sqrt{8}+1)\cdot(2\sqrt{2}-1)-\sqrt{36}=1$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x 1 și $g: \mathbb{R} \to \mathbb{R}$, g(x) = 5 + 2x. Determinați coordonatele punctului de intersecție a graficelor funcțiilor f și g.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 6x} = x$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, numărul $4 \cdot n$ să fie element al mulțimii A.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,1), B(3,4) și C, astfel încât punctul A este mijlocul segmentului BC. Arătați că triunghiul AOC este dreptunghic isoscel.
- **5p** | **6.** Se consideră triunghiul ascuțitunghic ABC în care $\sin 30^{\circ} \cdot \sin A = \cos 60^{\circ} \cdot \cos A$. Calculați tg A.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & -6 \\ 2 & -3 \end{pmatrix}$, $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $B(a) = \begin{pmatrix} 0 & a-2 \\ 1 & 3a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că det A = 3.
- **5p b)** Determinați numărul real x pentru care $A \cdot A + A = 2B(x)$.
- **5p** c) Determinați numărul real a pentru care $\det(B(a) \cdot A + B(3a)) = 4$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = (xy + 1)(x + y).
- **5p a)** Arătați că 1*2=9.
- **5p b)** Arătați că e = 0 este elementul neutru al legii de compoziție ",*".
- **5p** c) Determinați numerele naturale nenule *n* pentru care numărul $N = n * \frac{1}{n}$ este întreg.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x-1)e^x \frac{x^2}{2}$.
- **5p a)** Arătați că $f'(x) = x(e^x 1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x\to 0} \frac{f(x)-f(0)}{x^2} = 0$.
- **5p** c) Arătați că $f(x) \le f(x^2)$, pentru orice $x \in (-\infty, 0]$.
 - 2. Se consideră funcția $f:(-4,+\infty) \to \mathbb{R}$, $f(x) = \frac{4x}{x+4}$.
- **5p** a) Arătați că $\int_{1}^{2} (x+4) f(x) dx = 6$.
- **5p b)** Arătați că $\int_{1}^{4} \frac{1}{x} \cdot f(x^2) dx = 4 \ln 2$.
- **5p** c) Demonstrați că orice primitivă a funcției f este convexă.

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_4 - a_3 = 3$, unde r este rația progresiei aritmetice $(a_n)_{n>1}$	2p
	·	_
	$a_3 = a_1 + 2r \Rightarrow a_1 = 6 - 2 \cdot 3 = 0$	3р
2.	$f(a) = g(a) \Leftrightarrow a^2 + 2a - 3 = a - 3 \Leftrightarrow a^2 + a = 0$	3p
	a = -1 sau $a = 0$	2p
3.	$x+3=3^2 \Leftrightarrow x+3=9$	3 p
	x = 6, care convine	2p
4.	$\frac{30}{100} \cdot x = 60$, unde x este prețul înainte de scumpire, deci $x = 200$ de lei	3p
	După scumpire, prețul produsului este 200 + 60 = 260 de lei	2p
5.	M(-1,2), unde M este mijlocul segmentului AB	2p
	$2 = 2 \cdot (-1) + a$, de unde obținem $a = 4$	3 p
6.	Triunghiul ABC este dreptunghic isoscel, de unde obținem $AB = AC = 6\sqrt{2}$	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{6\sqrt{2} \cdot 6\sqrt{2}}{2} = 36$	2p

1.a)	$A(0) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} =$	3p
	$=0\cdot 1-0\cdot 1=0$	2p
b)	$2A(4) + A(-2) = 2\begin{pmatrix} 4 & 4 \\ 1 & 9 \end{pmatrix} + \begin{pmatrix} -2 & -2 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 6 & 6 \\ 3 & 15 \end{pmatrix} =$	3 p
	$=3\begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix} = 3A(2)$, de unde obținem $a=3$	2p
c)	$A(1) = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = 2 \text{si} (A(1))^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$	2p
	$A(m) = \begin{pmatrix} m & m \\ 1 & 2m+1 \end{pmatrix}$ și, cum $X = A(m) \cdot (A(1))^{-1}$, obținem $X = \begin{pmatrix} m & 0 \\ -m+1 & m \end{pmatrix}$, unde m este număr întreg, deci matricea X are toate elementele numere întregi	3 p
2.a)	2*1=(2+1)(2-1)(1-1)+1=	3p
	$= 3 \cdot 1 \cdot 0 + 1 = 1$	2p

b)	x * y = (x + y)(x - 1)(y - 1) + 1 =	2p
	=(y+x)(y-1)(x-1)+1=y*x, pentru orice numere reale x și y , deci legea de compoziție ,, *" este comutativă	3 p
c)	$n*(1-n) = -n^2 + n + 1$, pentru orice număr natural n	2p
	$-n^2 + n + 1 \ge n^2 \Leftrightarrow 2n^2 - n - 1 \le 0$ şi, cum n este număr natural, obținem $n = 0$ sau $n = 1$	3p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \frac{x^2 - (x+3) \cdot 2x}{x^4} + \frac{1}{x} =$	3 p
	$= \frac{-x-6}{x^3} + \frac{1}{x} = \frac{x^2 - x - 6}{x^3}, \ x \in (0, +\infty)$	2p
b)	f(1)=4, $f'(1)=-6$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -6x + 10$	3 p
c)	$f'(x) = 0 \Rightarrow x = 3$; $f'(x) \le 0$, pentru orice $x \in (0,3] \Rightarrow f$ este descrescătoare pe $(0,3]$,	
	$f'(x) \ge 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este crescătoare pe $[3, +\infty)$, deci $f(x) \ge f(3)$,	3 p
	pentru orice $x \in (0, +\infty)$	
	$\frac{x+3}{x^2} + \ln x \ge \frac{2}{3} + \ln 3 \Rightarrow \ln \frac{x}{3} \ge \frac{2}{3} - \frac{x+3}{x^2} \Rightarrow \ln \frac{x}{3} \ge \frac{2}{3} - \frac{1}{x} - \frac{3}{x^2}, \text{ pentru orice } x \in (0, +\infty)$	2p
2.a)	$\int_{0}^{2} \left(f(x) - \frac{e^{x}}{2} \right) dx = \int_{0}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x \right) \Big _{0}^{2} =$	3 p
	$=\frac{2^2}{2} + 2 = 4$	2p
b)	$\int_{0}^{1} 2x (f(x) - 1) dx = \int_{0}^{1} (2x^{2} + xe^{x}) dx = \frac{2x^{3}}{3} \Big _{0}^{1} + (x - 1)e^{x} \Big _{0}^{1} =$	3p
	$=\frac{2}{3}+1=\frac{5}{3}$	2p
c)	Cum $f'(x) = 1 + \frac{e^x}{2} = f(x) - x$, $x \in \mathbb{R}$, obtinem $\int_{-1}^{0} (f(x) - x) \cdot f(x) dx = \int_{-1}^{0} f'(x) dx = \int_$	3 p
	$\frac{9e^2 - 1}{8e^2} = \frac{(3e+1)(3e+a)}{8e^2}, \text{ de unde obținem } a = -1$	2p

Examenul național de bacalaureat 2022

Proba E. c)

Matematică M tehnologic

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați termenul a_1 al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_3=6$ și $a_4=9$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 3$ și $g: \mathbb{R} \to \mathbb{R}$, g(x) = x 3. Determinați numerele reale a pentru care f(a) = g(a).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x+3)=2$.
- **5p 4.** În urma unei scumpiri cu 30%, prețul unui produs a crescut cu 60 de lei. Determinați prețul produsului după scumpire.
- 5p 5. În reperul cartezian xOy se consideră punctele A(-4,1), B(2,3) și dreapta d de ecuație y = 2x + a, unde a este număr real. Determinați numărul real a, știind că mijlocul segmentului AB apartine dreptei d.
- **5p 6.** Se consideră triunghiul ABC, cu AB = AC, BC = 12 și măsura unghiului B egală cu 45° . Arătați că aria triunghiului ABC este egală cu 36.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricea $A(x) = \begin{pmatrix} x & x \\ 1 & 2x+1 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = 0$.
- **5p b)** Determinați numărul real a pentru care 2A(4) + A(-2) = aA(2).
- **5p** c) Arătați că, dacă $X \in \mathcal{M}_2(\mathbb{R})$ astfel încât $X \cdot A(1) = A(m)$, unde m este număr întreg, atunci matricea X are toate elementele numere întregi.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție x * y = (x + y)(x 1)(y 1) + 1.
- **5p a)** Arătați că 2*1=1.
- **5p b)** Arătați că legea de compoziție "*" este comutativă.
- **5p** c) Determinați numerele naturale *n* pentru care $n*(1-n) \ge n^2$.

- 1. Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+3}{x^2} + \ln x$.
- **5p** a) Arătați că $f'(x) = \frac{x^2 x 6}{x^3}, x \in (0, +\infty).$
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $\ln \frac{x}{3} \ge \frac{2}{3} \frac{1}{x} \frac{3}{x^2}$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \frac{e^x}{2} + 1$.
- **5p** a) Arătați că $\int_{0}^{2} \left(f(x) \frac{e^{x}}{2} \right) dx = 4.$

5p b) Arătați că
$$\int_{0}^{1} 2x(f(x)-1)dx = \frac{5}{3}$$
.

5p c) Determinați numărul real
$$a$$
 pentru care
$$\int_{-1}^{0} (f(x) - x) \cdot f(x) dx = \frac{(3e+1)(3e+a)}{8e^2}.$$

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic* BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(1,5-0,5)\cdot 3-2\cdot 0,5=1\cdot 3-1=$	3р
	=3-1=2	2p
2.	f(a) = 2a - 3	2p
	2a-3=9, de unde obținem $a=6$	3р
3.	3x-1=5	3p
	x = 2, care convine	2p
4.	Mulțimea A are 10 elemente, deci sunt 10 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $5n \le 22$ sunt $0, 1, 2, 3$ și 4 , deci sunt 5 cazuri	
	favorabile, de unde obținem $p = \frac{5}{10} = \frac{1}{2}$	3 p
5.	$x_M = \frac{-2+6}{2}$, $y_M = \frac{1+3}{2}$, unde M este mijlocul segmentului AB	3p
	$x_M = 2, \ y_M = 2$	2p
6.	AB = 3	2p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{3 \cdot 4}{2} = 6$	3 p

1.a)	$\det A = \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot 1 =$	3 p
	=6-1=5	2p
b)	$2A - B(2) = \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix} - \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} =$	3 p
	$=2\begin{pmatrix}2&0\\0&2\end{pmatrix}=2B(0)$	2p
c)	$B(1) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow B(x) \cdot B(1) - (x+1)A = \begin{pmatrix} 2 & x+2 \\ x+2 & x+4 \end{pmatrix} - \begin{pmatrix} 2x+2 & x+1 \\ x+1 & 3x+3 \end{pmatrix} = \begin{pmatrix} -2x & 1 \\ 1 & 1-2x \end{pmatrix}$	3 p
	și $\det(B(x) \cdot B(1) - (x+1)A) = 4x^2 - 2x - 1$, pentru orice număr real x	
	$4x^2 - 2x - 1 = 1 \Leftrightarrow 2x^2 - x - 1 = 0$, de unde obţinem $x = -\frac{1}{2}$ sau $x = 1$	2p
2.a)	$1 \circ 1 = 1 + 1 - 6 \cdot 1 \cdot 1 =$	3 p
	=2-6=-4	2p
b)	$0 \circ x = 0 + x - 6 \cdot 0 \cdot x = 0 + x - 0 = x$, pentru orice număr real x	2p
	$x \circ 0 = x + 0 - 6 \cdot x \cdot 0 = x + 0 - 0 = x$, pentru orice număr real x , deci $e = 0$ este elementul neutru al legii de compoziție " \circ "	3 p

Ministerul Educației Centrul Național de Politici și Evaluare în Educație

c)	$m \circ (3-m) = 3-6m(3-m)$, pentru orice număr întreg m	2p	l
	$3-6m(3-m)<3 \Leftrightarrow m(m-3)<0$ şi, cum m este număr întreg, obținem $m=1$ şi $m=2$	3 p	

1.a)	$f'(x) = 2 \cdot 3x^2 - 3 \cdot 4x^3 =$	3 p
	$=6x^2-12x^3=6x^2(1-2x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{f(x) + 3x^4}{x^3 + 4} = \lim_{x \to +\infty} \frac{2x^3 + 2}{x^3 + 4} = \lim_{x \to +\infty} \frac{x^3 \left(2 + \frac{2}{x^3}\right)}{x^3 \left(1 + \frac{4}{x^3}\right)} =$	2p
	$= \lim_{x \to +\infty} \frac{2 + \frac{2}{x^3}}{1 + \frac{4}{x^3}} = 2$	3 p
c)	$f'(x) = 0 \Rightarrow x = 0$ sau $x = \frac{1}{2}$; $f'(x) \ge 0$, pentru orice $x \in \left[0, \frac{1}{2}\right] \Rightarrow f$ este crescătoare pe $\left[0, \frac{1}{2}\right]$ și $f'(x) \le 0$, pentru orice $x \in \left[\frac{1}{2}, 2\right] \Rightarrow f$ este descrescătoare pe $\left[\frac{1}{2}, 2\right]$	2 p
	$f(0) = 2$, $f(\frac{1}{2}) = \frac{33}{16}$ și $f(2) = -30$, deci $-30 \le f(x) \le \frac{33}{16}$, pentru orice $x \in [0,2]$, de unde obținem $-32 \le 2x^3 - 3x^4 \le \frac{1}{16}$, pentru orice $x \in [0,2]$	3 p
	$\int_{2}^{\sqrt{y(x)}} \int_{2}^{\sqrt{y(x)}} \int_{2}^{y(x$	3p 2p
b)	$\int_{0}^{1} x(f(x)-2x)dx = \int_{0}^{1} 3xe^{x}dx = 3xe^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 3e - 0 - 3e + 3 = 3$	3p 2p
c)	$= 3e - 0 - 3e + 3 = 3$ $\int_{0}^{1} \frac{f'(x) - x}{2f(x) - x^{2}} dx = \frac{1}{2} \int_{0}^{1} \frac{\left(2f(x) - x^{2}\right)'}{2f(x) - x^{2}} dx = \frac{1}{2} \ln\left 2f(x) - x^{2}\right \left _{0}^{1} = \frac{1}{2} \ln\left(e + \frac{1}{2}\right)$	3p
	$\frac{1}{2}\ln\left(e+\frac{1}{2}\right) = a\ln\left(e+\frac{1}{2}\right), \text{ de unde obținem } a = \frac{1}{2}$	2p

Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic*

Varianta 3

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $(1,5-0,5) \cdot 3 2 \cdot 0,5 = 2$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 3. Determinați numărul real a pentru care f(a) = 9.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\log_4(3x-1) = \log_4 5$.
- **5p 4.** Determinați probabilitatea ca, alegând un număr n din mulțimea $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să verifice inegalitatea $5n \le 22$.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-2,1) și B(6,3). Determinați coordonatele mijlocului segmentului AB.
- **5p 6.** Se consideră triunghiul ABC, dreptunghic în A, cu AC = 4 și BC = 5. Arătați că aria triunghiului ABC este egală cu 6.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$ și $B(x) = \begin{pmatrix} 2 x & x \\ x & 2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = 5.
- **5p** | **b**) Arătați că 2A B(2) = 2B(0).
- **5p** c) Determinați numerele reale x pentru care $\det(B(x) \cdot B(1) (x+1)A) = 1$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = x + y 6xy$.
- **5p** a) Arătați că $1 \circ 1 = -4$.
- **5p b**) Arătați că e = 0 este elementul neutru al legii de compoziție " \circ ".
- **5p** c) Determinați numerele întregi m pentru care $m \circ (3-m) < 3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^3 3x^4 + 2$.
- **5p** a) Arătați că $f'(x) = 6x^2(1-2x), x \in \mathbb{R}$.
- **5p b**) Arătați că $\lim_{x \to +\infty} \frac{f(x) + 3x^4}{x^3 + 4} = 2$.
- **5p** c) Demonstrați că $-32 \le 2x^3 3x^4 \le \frac{1}{16}$, pentru orice $x \in [0,2]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x + 3e^x$.
- **5p** a) Arătați că $\int_{2}^{3} \left(f(x) 3e^{x} \right) dx = 5$.
- **5p b**) Arătați că $\int_{0}^{1} x(f(x)-2x) dx = 3$.
- **5p** c) Determinați numărul real a, știind că $\int_{0}^{1} \frac{f'(x) x}{2f(x) x^2} dx = a \ln\left(e + \frac{1}{2}\right)$.