SCOTT 拓扑与 D_{∞}

陈淇奥

1. Scott 拓扑

定义 1.1. 给定偏序集 $\langle D, \sqsubseteq \rangle$ 以及集合 $X \subseteq D$,

- (1) 用 \bot 表示D的最小元;
- (2) 用 | X 表示 X 的最小上界;
- (3) 若 X 非空且对任意 $a,b \in X$ 都存在 $c \in X$ 使得 $a \sqsubseteq c$ 且 $b \sqsubseteq c$, 则称 X 是 有向集;
- (4) 若 D 满足
 - (a) D有最小元;
 - (b) 每一个D的有向子集X都有最小上界。

则称 D 是 完全偏序 (complete partial order), 记作 c.p.o.。

定义 1.2. 给定任意 $\bot \notin \mathbb{N}$, 定义 $\mathbb{N}^+ = \mathbb{N} \cup \{\bot\}$, 并且对任意 $a,b \in \mathbb{N}^+$, 定义

$$a \sqsubseteq b \Leftrightarrow (a = \bot \land b \in \mathbb{N}) \lor a = b$$

我们用 N+ 表示 ⟨N+, ⊑⟩。

引理 1.3. № 是完全偏序。

证明. 注意到 \mathbb{N}^+ 的有向子集只包括单点集与 $\{\bot, n\}$, 其中 $n \in \mathbb{N}$

定义 1.4. 给定完全偏序 D, D',令 f 是从 D 到 D' 的函数,定义 f 是 单调的 当且仅当

$$a \sqsubseteq b \Rightarrow f(a) \sqsubseteq' f(b)$$

定义 1.5. 给定完全偏序 $\langle D, \sqsubseteq \rangle$,定义 D 上的 Scott 拓扑: $O \subseteq D$ 是开集当且 仅当

- (1) $x \in O \land x \sqsubseteq y \Rightarrow y \in O$;
- (2) 若 $X \subseteq D$ 有向且 $|X \in O, 则 X \cap O \neq \emptyset$ 。

Received by the editors 2022 年 6 月.

引理 1.6. 令 $U_x = \{z \in D \mid z \not\subseteq x\}$,则 U_x 是开集

证明. (1) 若 $y \in U_x$ 且 $y \subseteq z$, 若 $z \subseteq x$, 则 $y \subseteq x$ 矛盾。

(2) 若 $X \subseteq D$ 有向且 | $|X \in U_x$, 若 $X \cap U_x = \emptyset$, 则 | $|X \subseteq x$, 矛盾。

推论 1.7. $D \not\in T_0$ 空间

命题 1.8. 考虑函数 $f: D \to D'$, 则

f 连续当且仅当对任意有向集 $X\subseteq D,\ f(\bigsqcup X)=\bigsqcup f(X)$

其中 $f(X) = \{f(x) \mid x \in X\}$ 。

证明. ⇒: 若 f 连续,假设 $x \sqsubseteq y$ 且 $f(x) \not\sqsubseteq' f(y)$,则 $f(x) \in U_{f(y)}$, $x \in f^{-1}(U_{f(y)})$,由于 $f^{-1}(U_{f(y)})$ 是开集, $y \in f^{-1}(U_{f(y)})$, $f(y) \in U_{f(y)}$,矛盾。因此对于任意 $x \in X$, $f(\bigsqcup X) \supseteq f(x)$, $f(\bigsqcup X) \supseteq \bigsqcup f(X)$ 。若 $f(\bigsqcup X) \not\sqsubseteq \bigsqcup f(X)$,则 $f(\bigsqcup X) \in U_{\bigsqcup f(X)}$, 因此 $f(a) \in U_{\bigsqcup f(X)}$, 由定义, 存在 $a \in X$ 使得 $a \in X \cap f^{-1}(U_{\bigsqcup f(X)})$,因此 $f(a) \in U_{\bigsqcup f(X)}$, $f(a) \not\sqsubseteq \bigcup f(X)$,矛盾。

 \Leftarrow : 若 $x \sqsubseteq y$, 则 $y = x \sqcup y$, $f(y) = f(x) \sqcup f(y)$, 因此 $f(x) \sqsubseteq f(y)$ 。因此若 $O \subseteq D'$ 是开集,对于任意有向 $X \subseteq D$ 且 $\coprod X \in f^{-1}(O)$,有 $f(\coprod X) = \coprod f(X) \in O$,而f(X) 是有向,于是 $f(X) \cap O \neq \emptyset$,因此 $X \cap f^{-1}(O) \neq \emptyset$ 。 \square

命题 1.9. 给定完全偏序 D, D', 定义 $D \times D'$ 上的偏序为

$$(x,x')\sqsubseteq (y,y') \Leftrightarrow x\sqsubseteq y \wedge x'\sqsubseteq y'$$

则 $D \times D'$ 是完全偏序, 给定任意有向集 $X \subseteq D \times D'$, 它的最小上界是

$$\left| \begin{array}{c|c} X = (\left| \begin{array}{c|c} X_0, \left| \begin{array}{c|c} X_1 \end{array} \right) \end{array} \right| \right.$$

其中

$$X_0 = \{x \in D \mid \exists x' \in D'(x,x') \in X\}$$

$$X_1 = \{ x' \in D' \mid \exists x \in D(x, x') \in X \}$$

证明. 首先 (\bot,\bot') 是 $D\times D'$ 的最小元。对于任意有向集合 $X\subseteq D\times D'$, X_0,X_1 也是有向集合,因此 $\bigsqcup X_0,\bigsqcup X_1$ 存在,于是对于任意 X 的上界 (A,B),A 是 X_0 的上界,B 是 X_1 的上界,因此 $(\bigsqcup X_0,\bigsqcup X_1)\subseteq (A,B)$,因此 $\bigsqcup X=(\bigsqcup X_0,\bigsqcup X_1)$ 。

定义 1.10. 给定完全偏序 D, D', 定义

$$[D \rightarrow D'] = \{f : D \rightarrow D' \mid f 连续\}$$

并且定义 $[D \rightarrow D']$ 上的偏序为

$$f \sqsubseteq g \Leftrightarrow \forall x \in D(f(x) \sqsubseteq' g(x))$$

引理 1.11. 令 $\{f_i\}_i \subseteq [D \to D']$ 为有向的函数集合,定义

$$f(x) = \bigsqcup_{i} f_i(x)$$

则 f 是良定义的并且是连续的。

证明. 应为 $\{f_i\}_i$ 有向,因此对于任意 $x \in D$, $\{f_i(x)\}_i$ 有向,因此 f 存在且 f(x) 唯一。对于任意有向集合 $X \subseteq D$,

$$f(\bigsqcup X) = \bigsqcup_i \bigsqcup_{x \in X} f_i(x) = \bigsqcup_{x \in X} \bigsqcup_i f_i(x) = \bigsqcup f(X)$$

下面使用 $\mathbf{M}\,d\in D.\phi(a_1,\dots,a_n,d)$ 来表示函数 $f(d)=\phi(a_1,\dots,a_n,d)$,其中 $d\in D$ 。

命题 1.12. $[D \to D']$ 是完全偏序,并且对于任意有向 $F \subseteq [D \to D']$,它的最小上界为

$$(\mid F)(x) = \mid \{f(x) \mid f \in F\}$$

证明. $\lambda x. \perp'$ 是 $[D \to D']$ 的最小元,由引理1.11 , $\lambda x. \sqcup \{f(x) \mid f \in F\}$ 是连续的,因此属于 $[D \to D']$,显然它是最小上界。

命题 1.13. 给定完全偏序 D, D', D'',若 $f \in [D \to D']$, $g \in [D' \to D'']$, 定义 $g \circ f$ 为对任意 $d \in D$, $(g \circ f)(d) = g(f(d))$,则 $g \circ f \in [D \to D'']$ 。

证明. 任给有向集合 $X \subseteq D$, $f \in [D \to D']$, $g \in [D' \to D'']$, 则

$$g\circ f(\bigsqcup X)=g(f(\bigsqcup X))=g(\bigsqcup_{x\in X}f(x))=\bigsqcup_{x\in X}g(f(x))=\bigsqcup_{x\in X}g\circ f(x)$$

引理 1.14. 令 $f:D\times D'\to D''$,则 f 连续当且仅当它在 D 跟 D' 上连续,即对于任意 $x_0\in D, x_0'\in D'$,从 $x.f(x,x_0')$ 和 从 $x.f(x_0,x)$ 连续。

证明. \Rightarrow : 令 $g = \lambda x. f(x, x'_0)$,则对于有向集合 $X \subseteq D$

$$\begin{split} g(\bigsqcup X) &= f(\bigsqcup X, x_0') = f(\bigsqcup \{(x, x_0') \mid x \in X\}) \\ &= \bigsqcup \{f(x, x_0') \mid x \in X\} \\ &= \big| \quad \big| g(X) \end{split}$$

同理, $\lambda x.f(x_0,x)$ 连续。

4

 \Leftarrow : 给定有向集合 $X \subseteq D \times D'$,

$$\begin{split} f(\bigsqcup X) &= f(\bigsqcup X_0, \bigsqcup X_1) \\ &= \bigsqcup_{x \in X_0} f(x, \bigsqcup X_1) = \bigsqcup_{x \in X_0} \bigsqcup_{x' \in X_0'} f(x, x') \\ &= \bigsqcup_{(x, x') \in X} f(x, x') \\ &= \bigsqcup f(X) \end{split}$$

因此f连续。

命题 1.15. 给定完全偏序 D, D', 令

$$app: [D \to D'] \times D \to D'$$

为 app(f,x) = f(x), 则 app 连续。

证明. 给定有向集合 $F \subseteq [D \to D']$, 令 $h = \lambda f.f(x)$, 则

$$h(\bigsqcup F) = (\bigsqcup F)(x) = \bigsqcup \{f(x) \mid f \in F\}$$
$$= \bigsqcup \{h(f) \mid f \in F\} = \bigsqcup h(F)$$

因此 h 连续, 同时因为 $\lambda x.f(x) = f$ 连续, 由命题1.12 app 连续

命题 1.16. 给定 $f \in [D \times D' \to D'']$, 定义 $\hat{f}(x) = \lambda y \in D'(f(x,y))$, 则

- (1) \hat{f} 连续;
- (2) $\lambda f.\hat{f}: [D \times D' \to D''] \to [D \to [D' \to D'']]$ 连续。

证明. (1) 对于任意有向集 $X \subseteq D$,

$$\begin{split} \widehat{f}(\bigsqcup X) &= \mathop{\lambda\!\!\!\backslash} y. f(\bigsqcup X,y) = \mathop{\lambda\!\!\!\backslash} y. \bigsqcup_{x \in X} f(x,y) \\ &= \bigsqcup_{x \in X} (\mathop{\lambda\!\!\!\backslash} y. f(x,y)) \\ &= |\quad |\widehat{f}(X) \end{split}$$

(2) 令 $L = \lambda f \cdot \hat{f}$,对于任意有向集 $F \subseteq [D \times D' \to D'']$,

$$\begin{split} L(\bigsqcup F) &= \mathop{\lambda\!\!\!/} x. \mathop{\lambda\!\!\!/} y.(\bigsqcup F)(x,y) = \mathop{\lambda\!\!\!/} x \mathop{\lambda\!\!\!/} y. \bigsqcup_{f \in F} f(x,y) \\ &= \bigsqcup_{f \in F} \mathop{\lambda\!\!\!/} x. \mathop{\lambda\!\!\!/} y. f(x,y) = \bigsqcup L(F) \end{split}$$

定义 1.17. CPO 是以完全偏序为元素连续映射为态射的范畴。

定理 1.18. CPO 是笛卡儿闭范畴。

证明. $D \times D'$ 是 **CPO** 中的乘积,同时单元素完全偏序是终对象,而对于任意 $f: D \times D' \to D''$,由命题1.15 和1.16 ,都存在唯一的 $\hat{f}: D \to [D' \to D'']$ 使得

$$D \times D' \xrightarrow{f} D$$

$$\hat{f} \times \mathrm{id}_{D'} \downarrow \qquad \qquad D$$

$$[D' \to D''] \times D'$$

交换。 □

定义 1.19. 令 D_0, D_1, \dots 是可数的完全偏序序列,令 $f_i \in [D_{i+1} \to D_i]$,

- (1) 序列 (D_i, f_i) 称为完全偏序的 逆向系统 (inverse system)。
- (2) 系统 (D_i,f_i) 的 **逆向极限** (inverse limit) $\varprojlim (D_i,f_i)$ (或记作 $\varprojlim D_i$) 是偏序集 $(D_\infty,\sqsubseteq_\infty)$,其中

$$D_{\infty} = \{(x_0, x_1, \dots) \mid \forall i \in \mathbb{N} (x_i \in D_i \wedge \psi_i(x_{i+1}) = x_i)\}$$

并且

$$(x_0, x_1, \dots) \sqsubseteq_{\infty} (y_0, y_1, \dots) \Leftrightarrow \forall i \in \mathbb{N}(x_i \sqsubseteq y_i)$$

命题 1.20. 给定逆向系统 (D_i,f_i) ,则 $\varprojlim (D_i,f_j)$ 是完全偏序且对任意有向 $X\subseteq \varprojlim D_i$,

$$\mid \mid X = \lambda \! \mid i. \mid \mid \{x(i) \mid x \in X\}$$

证明. 对于任意有向 $X \subseteq D_{\infty}$,则对任意 $i \in \mathbb{N}$, $\{x(i) \mid x \in X\}$ 有向,令

$$y_i = \big| \ \big| \{x(i) \mid x \in X\}$$

则由 ψ_i 的连续性,

$$\psi_i(y_{i+1}) = \left| \ \left| f_i(\{x(i+1) \mid x \in X\}) = \right| \ \left| \{x(i) \mid x \in X\} = y_i \right| \right|$$

因此 $(y_0,y_1,\dots)\in \varprojlim D_i$ 。

因此在 CPO 中, 逆向极限存在。

2.
$$D_{\infty}$$

定义 2.1. 给定完全偏序 D 和 D',D 与 D' 同构 当且仅当存在 $\phi \in [D \to D']$ 与 $\psi \in [D' \to D]$ 使得

$$\psi \circ \phi = \mathrm{id}_D, \quad \phi \circ \psi = \mathrm{id}_{D'}$$

定义 2.2. 给定完全偏序 D 和 D'。函数的二元组 $\langle \varphi, \psi \rangle$ 是从 D' 到 D 的 投射 如果

- (1) $\varphi \in [D \to D'], \psi \in [D' \to D]$
- (2) $\psi \circ \varphi = \mathrm{id}_D$

6

(3) $\varphi \circ \psi \sqsubseteq \mathrm{id}_{D'}$

注意到 $D = \varphi \psi(D)$ 同构,因此在同构的意义下 $D \subseteq D'$ 。

定义 2.3. 定义 $D_0=\mathbb{N}^+,\ D_{n+1}=[D_n\to D_n],\ \mathrm{id}\ D_n$ 的最小元为 \bot_n

由1.12,对任意 $n \in \mathbb{N}$, D_n 是完全偏序。

引理 2.4. 给定 D' 到 D 的投射 (φ, ψ) , 存在从 $[D' \to D']$ 到 $[D \to D]$ 的投射 (φ^*, ψ^*) 满足: 对于任意 $f \in [D \to D]$, $g \in [D' \to D']$ 有

$$\varphi^*(f) = \varphi \circ f \circ \psi, \quad \psi^*(g) = \psi \circ g \circ \varphi$$

$$D \xleftarrow{\psi} D' \qquad D \xrightarrow{\varphi} D'$$

$$f \downarrow \qquad \downarrow \varphi^*(f) \qquad \psi^*(g) \downarrow \qquad \downarrow g$$

$$D \xrightarrow{\varphi} D' \qquad D \xleftarrow{\psi} D'$$

证明. 注意到

$$\begin{split} \varphi^*(f) &= \lambda \!\! \lambda \, x' \in D'. \varphi(f(\psi(x))) \\ &= \lambda \!\! \lambda \, x' \in D'. \varphi(app(f,\psi(x))) \end{split}$$

于是 φ^* 是连续的,类似的 ψ^* 是连续的。同时

$$\psi^*(\varphi^*(f)) = \psi \circ \varphi \circ f \circ \psi \circ \varphi = f$$
$$\varphi^*(\psi^*(f)) = \varphi \circ \psi \circ f \circ \varphi \circ \psi \sqsubseteq f$$

引理 2.5. 给定完全偏序 D, 定义 $\varphi_0: D \to [D \to D], \psi_0: [D \to D] \to D$ 为

$$\varphi_0(x) = \lambda y \in D.x$$

$$\psi_0(f) = f(\bot)$$

则 (φ_0, ψ_0) 是从 $[D \to D]$ 到 D 的投射。

证明. 首先证明 φ_0 连续, 给定有向集 $X \subseteq D$,

$$\begin{split} \varphi_0(\bigsqcup X) &= \mathop{\mathrm{ld}} y \in D. \bigsqcup X = \bigsqcup_{x \in X} \mathop{\mathrm{ld}} y \in D.x \\ &= \bigsqcup |\varphi_0(X)| \end{split}$$

同理, ψ_0 连续。同时

$$\begin{split} \varphi_0(\psi_0(f)) &= \varphi_0(f(\bot)) = \lambda \!\! \lambda \, x. f(\bot) \\ &\sqsubseteq \lambda \!\! \lambda \, x. f(x) = f \\ \psi_0 \circ \varphi_0(f) &= \varphi_0(f)(\bot) = f \end{split}$$

定义 2.6 (构造 D_{∞}). 给定完全偏序 D 与 (φ_0, ψ_0) 如上,定义

$$\begin{split} D_0 &= D \\ D_{n+1} &= [D_n \to D_n] \\ (\varphi_{n+1}, \psi_{n+1}) &= (\varphi_n^*, \psi_n^*) \end{split}$$

 $\label{eq:definition} \diamondsuit D_{\infty} = \varprojlim (D_n, \psi_n) \,, \quad \text{if } x \in D_{\infty} \not \supset (x_0, x_1, \dots)_{\circ}$

$$\begin{split} &\Phi_{nn} = \lambda x \in D_n.x \\ &\Phi_{n(m+1)} = \varphi_m \circ \Phi_{nm} \end{split}$$

若 $m \le n$, n = m + k, 递归定义 Φ_{nm} 为

$$\Phi_{(n+1)m}=\Phi_{nm}\circ\psi_n$$

- (2) 定义 $\Phi_{\infty n}:D_\infty\to D_n$ 为 $\Phi_{\infty n}(x)=x_n\,\circ$

引理 2.8. (1) 对于 $0 \le n \le m \le \infty$, (Φ_{nm}, Φ_{mn}) 是从 D_m 到 D_n 的投射

(2) 对于
$$0 \le n \le m \le l \le \infty$$
, $\Phi_{ml} \circ \Phi_{nm} = \Phi_{nl}$

证明. (1) 若
$$n < m < \infty$$
, 对于任意 $x \in D_m$,

$$\begin{split} \Phi_{nm} \circ \Phi_{mn} &= (\varphi_{m-1} \circ \ldots \circ \varphi_n \circ \mathrm{id}_{D_n}) \circ (\mathrm{id}_{D_n} \circ \psi_n \circ \ldots \circ \psi_{m-1}) \\ &\sqsubseteq \mathrm{id}_{D_m} \\ \Phi_{mn} \circ \Phi_{nm} &= (\mathrm{id}_{D_n} \circ \psi_1 \circ \ldots \circ \psi_{m-1}) \circ (\varphi_{m-1} \circ \ldots \circ \varphi_1 \circ \mathrm{id}_{D_n}) \\ &= \mathrm{id}_{D_n} \end{split}$$

 $n < m = \infty$ 和 $n = m = \infty$ 的情况类似。

(2) 根据定义类似可得。

注意到在同构的意义下,

$$D_0 \subseteq D_1 \subseteq \cdots \subseteq D_{\infty}$$

又有一个事实是在 CPO 中, D_{∞} 不仅是逆向极限,也是正向极限

$$D_\infty\cong \varinjlim(D_n,\varphi_n)$$

因此每个元素 $x \in D_n$ 也可被 $\Phi_{n\infty}(x) \in D_\infty$ 刻画。

引理 2.9. (1) 如果 $x \in D_n$,则 $(\Phi_{n\infty}(x))n = x$ 。

- (2) 如果 $x \in D_n$,则 $\Phi_{(n+1)\infty}\varphi_n(x) = \Phi_{n\infty}x$ 。
- (3) 如果 $x \in D_{n+1}$, 则 $\Phi_{n\infty}\psi_n(x) \sqsubseteq \Phi_{(n+1)\infty}x$ 。

证明. (1) 在 D_{∞} 中, x 为 $\Phi_{n\infty}(x)$, 因此 $x_n = x$ 。

- (2) $\varphi_n(x)$ 在 D_∞ 中为 $(\dots, \psi_n(\varphi_n(x)), \varphi_n(x), \varphi_{n+1}\varphi_n(x), \dots)$,因为 $\psi_n(\varphi_n(x)) = x$,因此 $\varphi_n(x) = x$ 。
- (3) $\varphi_n \psi_n(x) \sqsubseteq x_\circ$

引理 2.10. 在 D_{∞} 中,若 $x \in D_{\infty}$,则

- $(1) (\Phi_{n\infty} x_n)_m = x_{\min(n,m)}$
- (2) $n \leq m \Rightarrow \Phi_{n\infty}(x_n) \sqsubseteq \Phi_{m\infty}(x_m) \sqsubseteq x$
- (3) $x = \bigsqcup_{n \in \mathbb{N}} \Phi_{n\infty} x_n$
- (4) $\Phi_{n\infty}(\perp_n) = \perp$

证明. (1) 由 2.9 (2).

- (2) 由2.9 (3), $\Phi_{m\infty}(x_m) = \Phi_{m\infty}(\psi_m(x_{m+1})) \sqsubseteq \Phi_{(m+1)\infty}(x_{m+1})$,因此 $\Phi_{0\infty}(x_0) \sqsubseteq \Phi_{1\infty}(x_1) \sqsubseteq \cdots$ 。并且,由于对于任意 $i \in \mathbb{N}$, $(\Phi_{n\infty}x_n)_i = x_{\min(i,n)} \sqsubseteq x_i$,有 $x_n \sqsubseteq x$ 。
- (3) 由 (2), 集合 $X = \{\Phi_{n\infty}(x_n) \mid n \in \mathbb{N}\}$ 有向, 因此

$$\begin{split} \bigsqcup X &= (\bigsqcup_n (\Phi_{n\infty}(x_n))_i)_{i \in \mathbb{N}} \\ &= (\bigsqcup_n \Phi_{\min(n,i)\infty}(x_{\min(n,i)}))_{i \in \mathbb{N}} \\ &= (x_i)_{i \in \mathbb{N}} = x \end{split}$$

SCOTT 拓扑与
$$D_{\infty}$$

9

引理 2.11. 若 $x,y \in D_{\infty}$, 则对所有 $n,k \in \mathbb{N}$, $n \leq k$, 有

- $(1)\ \Phi_{n\infty}(x_{n+1}(y_n))\sqsubseteq \Phi_{(n+1)\infty}(x_{k+1}(y_k))$
- (2) $\Phi_{(k+1)\infty}((\Phi_{(n+1)\infty}(x_{n+1}))_{k+1}(y_k)) = \Phi_{n\infty}(x_{n+1}(y_n))$

证明. (1) 只需证明 k = n + 1 的情况:

$$\begin{split} \Phi_{n\infty}(x_{n+1}(y_n)) &= \Phi_{n\infty}((\psi_{n+1}(x_{n+2}))(\psi_n(y_{n+1}))) \\ &= \Phi_{n\infty}(\psi_n \circ x_{n+2} \circ \varphi_n(\psi_n(y_{n+1}))) \\ &\sqsubseteq \Phi_{n\infty}(\psi_n(x_{n+2}(y_{n+1}))) \\ &\sqsubseteq \Phi_{(n+1)\infty}(x_{n+2}(y_{n+1})) \end{split}$$

(2) 对 $k \ge n$ 归纳,考虑 k+1 的情况:

$$\begin{split} \Phi_{(k+1)\infty}((\Phi_{(n+1)\infty}(x_{n+1}))_{k+2}(y_{k+1})) &= \Phi_{(k+1)\infty}(\varphi_{k+1}(\Phi_{(n+1)\infty}(x_{n+1}))_{k+1}(y_{k+1})) \\ &= \Phi_{(k+1)\infty}(\varphi_k \circ (\Phi_{(n+1)\infty}(x_{n+1}))_{k+1} \circ \psi_k(y_{k+1})) \\ &= \Phi_{(k+1)\infty}(\varphi_k \circ (\Phi_{(n+1)\infty}(x_{n+1}))_{k+1}(y_k)) \\ &= \Phi_{k\infty}(\Phi_{(n+1)\infty}(x_{n+1})_{k+1}(y_k)) \\ &= \Phi_{n\infty}(x_{n+1}(y_n)) \end{split}$$

引理 2.12. 对于任意 $x, y \in D_{\infty}$,

$$\Phi_{n\infty}(x_{n+1}(y_n)) \sqsubseteq \Phi_{(n+1)\infty}(x_{n+2}(y_{n+1}))$$

证明. 首先

$$\begin{split} \phi_n(x_{n+1}(y_n)) &= \phi_n(\psi_{n+1}(x_{n+2})(\psi_n(y_{n+1}))) \\ &= \phi_n(\psi_n(x_{n+2}(\phi_n(\psi_n(y_{n+1}))))) \\ &\sqsubseteq \phi_n(\psi_n(x_{n+2}(y_{n+1}))) \\ &\sqsubseteq x_{n+2}(y_{n+1}) \end{split}$$

于是

$$\Phi_{(n+1)\infty}(\phi_n(x_{n+1}(y_n))) \sqsubseteq \Phi_{(n+1)\infty}(x_{n+2}(y_{n+1}))$$

注意到
$$\Phi_{(n+1)\infty}\phi_n=\Phi_{(n+1)\infty}\Phi_{n(n+1)}=\Phi_{n\infty}$$
,因此
$$\Phi_{n\infty}(x_{n+1}(y_n))\sqsubseteq\Phi_{(n+1)\infty}(x_{n+2}(y_{n+1}))$$

定义 2.13. 给定 $x,y\in D_\infty$,于是由引理2.12, $\{\Phi_{n\infty}(x_{n+1}(y_n)):n\geq 0\}$ 是一个 递增序列,因此有最小上界,定义

$$x\cdot y=\bigsqcup_{n>0}\Phi_{n\infty}(x_{n+1}(y_n))$$

即

$$x\cdot y = \bigsqcup_n \Phi_{n\infty}(app_n(\Phi_{\infty(n+1)}(x),\Phi_{\infty n}(y)))$$

其中 $app_n:[D_{n+1}\times D_n]\to D_n\,{\circ}$

命题 2.14. D_{∞} 上的·连续。

命题 2.15. 若 $x \in D_{n+1}, y \in D_n$,则

$$\Phi_{(n+1)\infty}(x)\cdot\Phi_{n\infty}(y)=\Phi_{n\infty}(x(y))$$

证明.

$$\begin{split} \Phi_{(n+1)\infty}(x) \cdot \Phi_{n\infty}(y) &= \bigsqcup_{k=0}^{\infty} \Phi_{k\infty}(\Phi_{(n+1)(k+1)}(x)(\Phi_{nk}(y))) \\ (2.10(1)) &= \bigsqcup_{k=0}^{n} \Phi_{k\infty}x_{i+1}(y_{i}) \\ (2.11) &= \Phi_{n\infty}(x_{n+1}(y_{n})) \end{split}$$

命题 2.16. 对于任意 $x,y \in D_{\infty}$ 以及 $n \in \mathbb{N}$

(1)
$$(\Phi_{(n+1)\infty}x_n)\cdot y=\Phi_{(n+1)\infty}(x)_{n+1}\cdot \Phi_{n\infty}(y)=\Phi_{n\infty}((x\cdot \Phi_{n\infty}(y))_n)$$

(2)
$$\Phi_{0\infty}(x_0) \cdot y = \Phi_{0\infty}(x_0) = \Phi_{0\infty}((x \cdot \bot)_0)$$

证明. (1)

$$\begin{split} \Phi_{(n+1)\infty}(x_{n+1}) \cdot y &= \bigsqcup_{i=0}^{\infty} \Phi_{i\infty}((\Phi_{(n+1)\infty}x_{n+1})_{i+1}(y_i)) \\ (2.11(1)) &= \bigsqcup_{i=n}^{\infty} \Phi_{i\infty}((\Phi_{(n+1)\infty}x_{n+1})_{i+1}(y_i)) \\ &= \bigsqcup_{i=n}^{\infty} \Phi_{n\infty}(x_{n+1}(y_n)) \end{split}$$

$$(2.15) = \Phi_{n\infty}(x_{n+1}(y_n))$$

另一方面,

$$\begin{split} \Phi_{n\infty}((x\cdot\Phi_{n\infty}(y))_n) &= \Phi_{n\infty}\left(\left(\bigsqcup_{i=0}^\infty \Phi_{i\infty}((x_{i+1}(\Phi_{n\infty}(y_n))_i))\right)_n\right) \\ &= \Phi_{n\infty}\left(\bigsqcup_{i=0}^\infty \left(\Phi_{i\infty}((x_{i+1}(\Phi_{n\infty}(y_n))_i))\right)_n\right) \\ &= \Phi_{n\infty}\left(\bigsqcup_{i=n}^\infty \left(\Phi_{i\infty}((x_{i+1}(\Phi_{n\infty}(y_n))_i))\right)_n\right) \\ &= \Phi_{n\infty}\left(\bigsqcup_{i=n}^\infty \Phi_{n\infty}((x_{i+1}(\Phi_{n\infty}(y_n))_i))\right)_n\right) \\ &= \Phi_{n\infty}\left(\bigsqcup_{i=n}^\infty \Phi_{n\infty}(x_{n+1}(y_n))\right) \\ &= \Phi_{(n+1)\infty}(x_{n+1})\cdot\Phi_{n\infty}(y_n) \end{split}$$

(2)

$$\begin{split} \Phi_{0\infty}(x_0) \cdot y &= \Phi_{1\infty}((\Phi_{0\infty}(x_0))_1) \cdot y \\ &= \Phi_{0\infty}((\Phi_{0\infty}(x_0))_1((\Phi_{1\infty})(y_0))) \\ &= \Phi_{0\infty}(\varphi_0(x_0)(y_0)) = \Phi_{0\infty}(x_0) \end{split}$$

定理 2.17 (外延性). 对于 $x, y \in D_{\infty}$

- $(1) \ x \sqsubseteq y \Leftrightarrow \forall z \in D_{\infty}(x \cdot z \sqsubseteq y \cdot z)$
- (2) $x = y \Leftrightarrow \forall z \in D_{\infty}(x \cdot z = y \cdot z)$

证明. (1) ⇒: 因为 · 是连续的,因此 $\lambda x.x \cdot z$ 是单调的。 \Leftarrow : 假设 $\forall z \in D_{\infty}(x \cdot z \sqsubseteq y \cdot z)$,于是 $x \cdot \bot \sqsubseteq y \cdot \bot$,由命题2.16(2)得

$$\Phi_{0\infty}(x_0) = \Phi_{0\infty}((x \cdot \bot)_0) \sqsubseteq \Phi_{0\infty}((y \cdot \bot)_0) = \Phi_{0\infty}(y_0)$$

由于 $x \cdot \Phi_{n\infty}(z_n) \sqsubseteq y \cdot \Phi_{n\infty}(z_n)$,由命题2.15 和2.16 得

$$\Phi_{n\infty}(x_{n+1}(z_n)) = \Phi_{n\infty}((x \cdot \Phi_{n\infty}(z_n))_n) \sqsubseteq \Phi_{n\infty}((y \cdot \Phi_{n\infty}(z_n))_n) = \Phi_{n\infty}(y_{n+1}(z_n))$$

因此

$$\forall n \in \mathbb{N} \forall z \in D_n(\Phi_{n\infty}(x_{n+1}(z)) \sqsubseteq \Phi_{n\infty}(y_{n+1}(z)))$$

$$\exists \mathbb{I} \Phi_{n+1}(x_{n+1}) \sqsubseteq \Phi_{n+1}(y_{n+1}), \ \exists \mathbb{I} x \sqsubseteq y_{\circ}$$

(2) 由 (1)。

推论 2.18. D_{∞} 是外延的 λ -模型。

定理 2.19 (完全性). 对于 $f \in [D_{\infty} \to D_{\infty}]$, 定义

$$\Box f = \bigsqcup_n \Phi_{(n+1)\infty}(\mathbf{A}\!\!\!/\, y \in D_n.(f(y))_n)$$

则

$$\forall y \in D_{\infty}(f(y)) = \Box f \cdot y$$

证明.

$$\begin{split} &\Box f \cdot y = \bigsqcup_m \Phi_{m\infty}((\Box f)_{m+1}(y_m)) = \bigsqcup_m \Phi_{m\infty}((\Box f \cdot \Phi_{m\infty}(y_m))_m) \\ &= \bigsqcup_m \Phi_{m\infty} \left(\left(\left(\bigsqcup_n \Phi_{(n+1)\infty}(\mathbbmss{N} y \in D_n.(f(y))_n) \right) \cdot \Phi_{m\infty}(y_m) \right)_m \right) \\ &= \bigsqcup_{m,n} \Phi_{m\infty} \left(\left(\Phi_{(n+1)\infty}(\mathbbmss{N} y \in D_n.(f(y))_n) \cdot \Phi_{m\infty}(y_m) \right)_m \right) \\ &= \bigsqcup_m \Phi_{m\infty} \left(((\mathbbmsss{N} y \in D_m.(f(y))_m)(y_m))_m \right) \\ &= \bigsqcup_m \Phi_{m\infty}(f(\Phi_{m\infty}(y_m))_m) = \bigsqcup_{k,l} \Phi_{l\infty}((f(\Phi_{k\infty}(y_k)))_l) \\ &= \bigsqcup_k f(\Phi_{k\infty}(y_k)) = f(y) \end{split}$$

定理 2.20. $D_{\infty}\cong [D_{\infty}\to D_{\infty}]$

证明. 对于 $x\in D_\infty$,令 $F(x)=\lambda y\in D_\infty.x\cdot y$,由定理 2.19 ,F 是满射,由定理 2.17 (2),F 是单射,由命题 2.14 F 连续,F 的逆是

$$G=\mathop{\lambda\!\!\!/} f. \bigsqcup_n \Phi_{(n+1)\infty}(\mathop{\lambda\!\!\!/} y \in D_n. \Phi_{\infty n}(f(\Phi_{n\infty}(y))))$$

由此可以看到

摘要.本篇文章介绍了 Dana Scott 构造的 lambda 演算的一种模型 D_{∞} 。