Suites - Cours

1. Généralités : rappels 1^{ère}

1.1. Exemples

Rappel : $\mathbb{N} = \{0; 1; 2; 3; 4; \ldots\}$ est l'ensemble des nombres entiers naturels.

Exemple 1 :

- Nombres pairs: 0; 2; 4; 6; 8; ...
- Alternée 1; -1; 1; -1; 1; -1; ...
- QI:3;5;7;?;...
- de Conway (audiodescriptive): 1; 11; 21; 1211; 111221; 312211; ...

Remarque 1 : Intuitivement, une suite numérique est une liste infinie et ordonnée de nSi la suite est notée (u), son terme de rang n est noté u_n (n est placé en indice).

Remarque 2 : Il est parfois commode de commencer la numérotation de la suite par $0 : u_0$ est alors le terme initial (terme de rang 0) de la suite (u_n) .

Éviter de parler du premier/deuxième et préférer «terme de rang ...» si le contexte n'est pas parfaitement clair.

1.2. Définition, notations

Définition 1 :

- Une suite est une fonction de \mathbb{N} vers \mathbb{R} . En effet, à chaque rang (nombre entier), elle associe un nombre (réel). Notation: On note (u_n) (avec des parenthèses) la suite u_0 ; u_1 ; u_2 ; u_3 ; ...
- Le nombre u_n est appelé **terme de rang** n.
- ullet Dans certains cas, il peut être préférable de commencer la suite à partir d'un rang $n_0>0$

Exemple 2:

On pose $u_n=3^n$. On définit ainsi une suite (u_n) dont les premiers termes sont :

$$u_0=3^0=1$$
 ; $u_1=3^1=3$; $u_2=3^2=9$; $u_3=3^3=27$; $u_4=3^4=81$; ...

Cette suite peut être représentée comme-ci :

$$(3^n)_{n\in\mathbb{N}}$$
 sur un axe :

 $(3^n)_{n\in\mathbb{N}}$ dans le plan :

Exemple 3 : La suite (v_n) définie pour tout entier n>0 par $v_n=\frac{1}{n}$, c'est à dire : $v_1=\frac{1}{1}=1$; $v_2=\frac{1}{2}$; $v_3=\frac{1}{3}$; $v_4=\frac{1}{4}$ débute au rang n=1. On pourra la noter $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$, \mathbb{N}^* désignant l'ensemble des entiers naturels privé de 0.

1.3. Sens de variation

Définition 2 :

- La suite (u_n) est dite **strictement croissante** lorsque pour tout entier naturel n, on a $u_n < u_{n+1}$.
- La suite (u_n) est dite **croissante** lorsque pour tout entier naturel n, on a $u_n \leqslant u_{n+1}$.
- La suite (u_n) est dite **strictement décroissante** lorsque pour tout entier naturel n, on a $u_n > u_{n+1}$.
- La suite (u_n) est dite **décroissante** lorsque pour tout entier naturel n, on $a:u_n\geqslant u_{n+1}$.
- Une suite croissante ou décroissante est appelée suite monotone.

Exemple 4 : Pour un réel x, on note E(x) la partie entière de x, c'est à dire le plus grand entier naturel inférieur ou égal à x (ainsi E(3,7)=3, par exemple).

La suite (u_n) définie pour tout entier naturel n par $u_n=E\left(\frac{x}{2}\right)$ (premiers termes : $u_0=0$; $u_1=0$; $u_2=1$; $u_3=1$; $u_4=2$; ...) est croissante mais pas strictement croissante.

- **Exemple 5 :** La suite $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est strictement décroissante (donc a fortiori décroissante).
- **Méthode 1 :** Pour déterminer le sens de variation d'une suite (u_n) , **on peut** examiner le signe de la différence $u_{n+1} u_n$.
- **Exemple 6 :** On considère la suite (u_n) définie par $u_n=1-5n$: On a $u_0=1$; $u_1=-4$; $u_2=-9$; ... Montrons que cette suite est strictement décroissante :

$$u_{n+1} - u_n = 1 - 5(n+1) - (1-5n) = -5$$

-5 < 0, donc (u_n) décroît strictement.

$oxed{u_{n+1}-u_n}$	variation de (u_n)		
st. positif	st. croissante		
positif	croissante		
négatif	décroissante		
st. négatif	st. décroissante		

Méthode 2 : Si la suite est **directement** donnée en fonction de n, c'est à dire du type $u_n = f(n)$ où f est une fonction, on peut étudier les variations de f pour en déduire celles de (u_n) .

- **Exercice 1 :** Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n=2n^2-n$ est strictement croissante en utilisant deux méthodes :
 - 1. En étudiant le signe de $u_{n+1} u_n$.
 - 2. En étudiant les variations de la fonction $f(x) = 2x^2 x$.
 - 3. En général, si $u_n=f(n)$, a-t-on : f croissante $\Rightarrow (u_n)$ croissante ? La réciproque est-elle vraie ?

1.4. Suites bornées

m et M sont deux réels fixés.

- **D**éfinition 3 :
 - On dit que (u_n) est **minorée** (par m, dit «**minorant**») si pour tout entier n on $a:m\leqslant u_n$.
 - On dit que (u_n) est **majorée** (par M, dit «**majorant**») si pour tout entier n on $a:u_n\leqslant M$.
 - Une suite majorée et minorée est dite bornée.
- $igspace \mathbf{Exemple 7}: (\sin n)_{n\in\mathbb{N}}$ est bornée ; $\left(n^2\right)_{n\in\mathbb{N}}$ est minorée (par 0).

- 1. Démontrer que la suite (u_n) définie par $u_n=100+20n-n^2$ est majorée.
- 2. Démontrer que la suite (v_n) définie par $v_n=rac{1}{n+20}$ est bornée.

1.5. Générer une suite

Si u_n est donné directement en fonction de n :

 \square Exemple 8 : Formule explicite : $u_n = \cos(\pi n) - 2n$

On peut alors calculer tous les termes de la suite directement : c'est l'idéal.

Mais ce n'est pas toujours le cas.

 $\mathbf{Si}\ (u_n)$ est définie par récurrence : On dispose d'un moyen (formule, algorithme) permettant de passer d'un terme au suivant : u_{n+1} est donné en fonction de u_n (ou bien u_n est donné en fonction de u_{n-1}) ;

on dispose donc d'**une relation de récurrence** ; certains termes doivent être connus car des suites distinctes peuvent admettre la même relation de récurrence !

Exemple 9 : Formule de récurrence :

$$\begin{cases} u_{n+1} = u_n + \frac{1}{n} \\ u_1 = 1 \end{cases}$$

Définition 4 : Lorsque u_{n+1} est défini à partir de u_n à l'aide d'une relation de récurrence ne faisant intervenir que des constantes, on définit une **fonction associée à la suite :** c'est la fonction telle que $u_{n+1} = f(u_n)$, ou $u_n = f(u_{n-1})$.

Exemple 10:

- ullet Pour $u_{n+1}=2u_n$, la fonction associée est f(x)=2x
- $\bullet \ \operatorname{Pour} v_n = v_{n-1}^2 + 1 \text{, c'est } g(x) = x^2 + 1. \\$

Ainsi, on a : $u_{n+1} = f\left(u_n
ight)$ et $v_n = g\left(v_{n-1}
ight)$.

Attention : ne pas confondre cette fonction avec la fonction qui donne directement u_n en fonction de n, si celle-ci existe (ou que l'on cherche à la découvrir).

2. Suites arithmétiques et géométriques : rappels 1^{ère}

	Suites arithmétiques	Suites géométriques			
Relation de récurrence	Une suite (u_n) est arithmétique s'il existe un réel r (indépendant de n) tel que pour tout n , $u_{n+1}=u_n+r$. Le réel r s'appelle la raison de la suite.	Une suite (u_n) est géométrique s'il existe un réel q (indépendant de n) tel que pour tout n , $u_{n+1}=q imes u_n.$ Le réel q s'appelle la raison de la suite.			
Interprétation	On passe d'un terme de la suite au suivant en ajoutant un même nombre $m{r}$.	On passe d'un terme de la suite au suivant en $oldsymbol{multipliant}$ par un même nombre $oldsymbol{q}$.			
Caractérisation	$u_{n+1}-u_n$ est constante, égale à r .	$rac{u_{n+1}}{u_n}$ est constante, égale à q .			
Fonction associée (récurrence)	$u_{n+1}=f\left(u_{n} ight)$ avec $f(x)=x+r$	$u_{n+1}=f\left(u_{n} ight)$ avec $f(x)=qx$			
Exemples	r>0	[q<1] [q<1] [q>1] [0 <q<1]< th=""></q<1]<>			
Formules	$ullet$ terme général (rang 0) : $u_n=u_0+nr$ $ullet$ terme général (rang 1) : $u_n=u_1+(n-1)r$	• terme général (rang 0) : $u_n=u_0q^n$ • terme général (rang 0) : $u_n=u_1q^{n-1}$			
Limites	$ullet r>0 \Rightarrow \lim_{n o +\infty} u_n = +\infty \ ullet r=0 \Rightarrow \lim_{n o +\infty} u_n = u_0 ext{ (suite constante)} \ ullet r<0 \Rightarrow \lim_{n o +\infty} u_n = -\infty$	$egin{aligned} ullet & q>1 \Rightarrow \lim_{n o +\infty} u_n = \pm \infty \ & ullet & -1 < q < 1 \Rightarrow \lim_{n o +\infty} u_n = 0 \ & ullet & r\leqslant -1 \Rightarrow ext{pas de limite}. \end{aligned}$			

3. Principe de récurrence

3.1. Énoncé dépendant d'un entier n

Définition 5 : Un énoncé mathématique dépendant d'un entier $n \in \mathbb{N}$ peut, selon la valeur de n, être vrai ou bien faux (on parle de **valeur de vérité** ou bien de **valeur booléenne** de l'énoncé).

Exemple 11: $n^2 \ge 4$ est faux pour n=0 et pour n=1, et est vrai pour tous les entiers suivants.

3.2. But du principe de récurrence

Parmi les énoncés mathématiques dépendant d'un entier naturel n, certains sont vrais pour n'importe quelle valeur de n.

Exemple 12 : Pour toute valeur de $n \in \mathbb{N}$, (on peut écrire « $\forall n \in \mathbb{N}$ » ; \forall signifiant « pour tout »), on a :

$$H_n:\sum_{k=0}^n k^2=rac{n(n+1)(2n+1)}{6}$$

Remarque 3:

- ullet On rappelle que par définition du symbole \sum , on a $\sum_{k=0}^n k^2 = 1 + 2^2 + 3^2 + \cdots + n^2$.
- L'égalité présentée dans cet exemple résume le calcul d'une somme longue à un calcul simple.
- Il n'est pas évident, a priori, que cette égalité soit vérifiée pour tout entier n.
- Le **but** du principe de récurrence est démontrer des relations pour une infinité de «rangs».

3.3. Méthode du principe de récurrence

- lacktriangle **Méthode 3 :** Démontrer une propriété H_n par récurrence suit toujours le même schéma :
 - 1. **Initialisation :** On vérifie que H_0 est vraie.
 - 2. **Hérédité**: On considère la propriété H_n vraie (pour un rang n fixé) et on démontre que dans ce cas, H_{n+1} l'est aussi.
 - 3. **Conclusion :** S'il y a initialisation et hérédité, alors $\forall n \in \mathbb{N}$, H_n est vraie.
- **Remarque 4 :** On compare souvent le principe de récurrence à une chute de dominos placés en ligne : si le premier domino tombe (initialisation) et si chaque domino entraîne le suivant dans sa chute (hérédité), alors toute la file va tomber.

$$igspace{1}{2}$$
 Exemple 13 : $H_n: \sum_{k=0}^n k^2 = rac{n(n+1)(2n+1)}{6}$

1. **Initialisation**: On vérifie que H_0 est vraie (on remplace n par 0 et on vérifie l'égalité):

$$\sum_{k=0}^{0}k^2=0$$
 et $\frac{0(0+1)(0n+1)}{6}=0$, donc $\sum_{k=0}^{n}k^2=rac{0(0+1)(0n+1)}{6}$, donc H_0 est vraie.

2. **Hérédité** : Considérons H_n vraie pour un rang n fixé et démontrons H_{n+1} :

$$\begin{split} &\sum_{k=0}^{n+1} k^2 = \sum_{k=0}^n k^2 + (n+1)^2 - \text{on utilise I'} \text{ hypothèse de récurrence} \text{, et on développe}: \\ &= \left[\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{2n^3 + 3n^2 + n}{6} + n^2 + 2n + 1 = \frac{1}{3}n^3 + \frac{3}{2}n^2 + \frac{13}{6}n + 1 \right] \\ &\text{d'autre part :} \\ &\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6} = \frac{(n+1)(n+2)(2n+3)}{6} \text{, et on développe}: \\ &= \frac{(n^2 + 3n + 2)(2n+3)}{6} = \frac{2n^3 + 9n^2 + 13n + 6}{6} = \frac{1}{3}n^3 + \frac{3}{2}n^2 + \frac{13}{2}n + 1 \end{split}$$

$$= \frac{1}{6} = \frac{1}{6} = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{2}n + \frac{1}{$$

alors
$$\sum_{k=0}^{n+1} k^2 = rac{(n+1)[(n+1)+1][2(n+1)+1]}{6}$$
, et ainsi H_{n+1} est vraie.

3. **Conclusion :** Il y a initialisation et hérédité, alors $\forall n \in \mathbb{N}$, H_n est vraie.

Remarque 5:

- Il est possible qu'un énoncé soit faux pour quelques termes initiaux puis vrai à partir d'un rang donné (faux pour n=0 et vrai à partir de n=1, ou bien n=10...); il est alors tout à fait possible d'initialiser la récurrence à partir de ce rang-là (on vérifie H_1 ou bien H_{10} dans la partie initialisation) pour démontrer que l'énoncé est vrai à partir de ce rang.
- L'initialisation est importante et l'hérédité seule ne suffit pas !

Exemple 14 : On définit la suite (u_n) par la relation $u_{n+1}=2+u_n$, valable pour tout $n\in\mathbb{N}$. On note H_n l'énoncé « u_n est pair». On peut alors voir que H_n est héréditaire, mais si H_0 est fausse (quand u_0 est impair), H_n sera toujours fausse.

📏 Exercice 4 :

On définit la suite (q_n) par la relation $egin{cases} q_{n+1}=2+2n+q_n \ q_0=-1 \end{cases}$. Démontrer que pour tout entier n, on a $q_n=n^2+n-1$.

Exercice 5:

- 1. Calculer d_2 , d_3 et d_4 .
- 2. Démontrer par récurrence que $d_n = \sqrt{4n-3}$.

3.4. Sommes des termes d'une suite

>_

	Sommes arithmétiques	sommes géométriques	
Formules de base	$\sum_{k=0}^{k=n} k = 0+1+2+\ldots+n = rac{n(n+1)}{2}$	$\sum_{k=0}^{k=n} q^k = 1 + q + q^2 + \ldots + q^n = rac{q^{n+1}-1}{q-1}$	
Applications	$egin{aligned} \sum_{k=0}^{k=n} u_k &= (n+1)u_0 + rac{n(n+1)}{2} r \ \sum_{k=1}^{k=n} u_k &= nu_1 + rac{(n-1)n}{2} r \end{aligned}$	$\sum_{k=0}^{k=n}u_k=u_0rac{q^{n+1}-1}{q-1} \ \sum_{k=1}^{k=n}u_k=u_1rac{q^n-1}{q-1}$	

📏 **Exercice 6 :** Démontrer, par récurrence, les deux formules de base du tableau précédent.

Y a-t-il d'autres démonstrations?

Exercice 7 : Un collègue affirme qu'en prenant $n \in \mathbb{R}$ assez grand, il peut rendre la suite définie par $u_n = \frac{1}{n^2} + \frac{2}{n^2} + \cdots + \frac{n}{n^2}$ aussi proche de 1 qu'il veut. A-t-il raison ?

4. Limite d'une suite

4.1. Définitions

Définition 6 : l est un réel donné et $(u_n)_{n\in\mathbb{N}}$ une suite.

On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers l et on note $\lim_{n\to+\infty}u_n=l$ lorsque tout intervalle ouvert contenant l contient toutes les valeurs u_n à partir d'un certain rang.

Remarque 6 : Dans ce cas, pour chaque intervalle ouvert I contenant l, il existe un rang n_0 (dépendant donc de I) tel que pour tout $n \ge n_0$, on ait $u_n \in I$.

Rappel : Intervalle ouvert :]...;...[.

Définition 7 : Une suite qui admet une limite finie $l \in \mathbb{R}$ est appelée **suite convergente**.

Définition 8 :

- On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$ et on note $\lim_{n\to+\infty}u_n=+\infty$ lorsque tout intervalle de la forme $]A;+\infty[$ contient toutes les valeurs u_n à partir d'un certain rang.
- On dit que $(u_n)_{n\in\mathbb{N}}$ tend vers $-\infty$ et on note $\lim_{n\to+\infty}u_n=-\infty$ lorsque tout intervalle de la forme $]-\infty;A[$ contient toutes les valeurs u_n à partir d'un certain rang.
- **Remarque 7 :** Attention : Certaines suites n'ont pas de limite, par exemple $((-1)^n)$ ou tout autre suite périodique (non constante) à partir d'un certain rang ; on a aussi $((-2)^n)$, non bornée.
- **Définition 9 :** Une suite tendant vers $\pm\infty$ ou qui n'a pas de limite est dite **divergente**.
- **\ Exercice 8 :** En utilisant la définition, démontrer que (\sqrt{n}) tend vers $+\infty$.

Exercice 9 : On définit la suite (u_n) par $\begin{cases} u_{n+1} = \frac{\sqrt{3}u_n-1}{u_n+\sqrt{3}} \\ u_0 = 2 \end{cases}$. En utilisant le tableur ou la calculatrice, calculer les 6

premiers termes de cette suite. Une suite bornée peut-elle être divergente ?

Nation la limite Sercice 10 : Unicité de la limite

Démontrer que si une suite (u_n) converge vers l, alors cette limite l est unique.

On raisonnera par l'absurde en supposant qu' (u_n) converge aussi vers $l' \neq l$; on pourra comparer les valeurs de la suite, à partir d'un certain rang, au nombre $\dfrac{l+l'}{2}$ pour dégager une contradiction.

$extstyle \setminus$ Exercice 11 : La suite $(q^n)_{n\in\mathbb{N}}$

- 1. Démontrer, par récurrence sur n, que pour tout a>0 et pour tout entier naturel n on a : $(1+a)^n\geq 1+na$ (inégalité de Bernoulli).
- 2. En déduire la limite de la suite (q^n) lorsque q > 1.
- 3. Discuter de la convergence de la suite (q^n) selon les autres valeurs possibles de q.
- **Propriété 1 :** Toute suite croissante non majorée tend vers $+\infty$.
- **Exercice 12 :** Le démontrer (utiliser les définitions).

Propriété 2 :

- Toute suite croissante majorée converge vers un certain $l \in \mathbb{R}$.
- Toute suite décroissante minorée converge vers un certain $l \in \mathbb{R}$.

Démonstration : admise (relative à la construction de l'ensemble \mathbb{R}).

- 1. Justifier que (u_n) tend vers un certain $l \in \mathbb{R}$.
- 2. Démontrer que tous les termes de (u_n) sont inférieurs à l.

📏 Exercice 14 : En entrant n'importe quel nombre strictement positif dans une calculatrice et en appuyant rapidement, comme un malade, sur la touche «racine carrée» on finit par tomber sur 1. Le diagramme ci-contre, partant du nombre 3,2, semble en accord avec cette observation.

On étudie donc la suite définie par $u_{n+1} = \sqrt{u_n}$.

On se rappelle que pour $0 \leqslant x \leqslant 1$, on a $\sqrt{x} \geqslant x$ et que pour $x \geqslant 1$, on a $\sqrt{x} \leqslant x$.

- 1. Dans cette partie, on considère que $u_0 \in [0;1]$
 - a. Démontrer que pour tout entier n, on a $0 \leqslant u_n \leqslant u_{n+1} \leqslant 1$
 - b. En déduire que (u_n) converge.
- 2. Dans cette partie, on considère que $u_0 \in [1; +\infty]$. En utilisant un raisonnement analogue, démontrer que (u_n) converge.
- 3. Est-ce suffisant pour dire que (u_n) converge vers 1?
- 4. Écrire un algorithme ou un programme Python permettant de déterminer la plus petite valeur de ntelle que u_n est proche de 1 à 0,001 près.

Nexercice 16 :

- Trouver deux suites divergentes dont le produit converge.
- Trouver deux suites divergentes dont le quotient converge.

4.2. Limites et opérations

Dans cette partie, l et l' sont deux réels et désignent des limites finies.

Propriété 3 : Limites d'une somme

$\lim u_n$	l	l	l	$+\infty$	$-\infty$	$-\infty$
$\lim v_n$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$
$oxed{\lim u_n + v_n}$	+					FI

Définition 10 : FI signifie «forme indéterminée» : on ne peut pas conclure directement.

Exercice 17 : Compléter le tableau.

Exercice 18: Donner des exemples pour lesquels FI vaut $+\infty$, $-\infty$ ou une limite finie.

🦲 Propriété 4 : Limites d'un produit

$\lim u_n$	l	l eq 0	$\pm \infty$	0
$\lim v_n$	l'	$\pm \infty$	$\pm \infty$	$\pm \infty$
$oxed{\lim u_n imes v_n}$	l imes l'	*∞	*∞	FI

Remarque 8: $*\infty$: pour trouver si * est + ou -, on applique la règle des signes.

📒 Propriété 5 : Limites d'un quotient

$oxed{\lim u_n}$	l	l	l	$\pm \infty$	$\pm \infty$	0
$\lim v_n$	l' eq 0	$\pm \infty$	0	l'	$\pm \infty$	0
$\lim rac{u_n}{v_n}$	$\frac{l}{l'}$	0	*∞	*∞	FI	FI

Exercice 19 : Donner des exemples pour lesquels FI vaut $+\infty$, $-\infty$ ou une limite finie.

Exercice 20 : Calculer les limites en
$$+\infty$$
 des suites définies par les expressions suivantes : $u_n=n^2+8n-\frac{1}{n}$; $v_n=\frac{8}{5-3n}$; $a_n=\frac{2}{-3\sqrt{n}}$; $b_n=1-0.95^n$; $c_n=4\times\left(\frac{2}{3}\right)^n$; $d_n=\frac{3+3^n}{0.2^n-10}$;

Exercice 21 : On considère la suite
$$(u_n)$$
 définie pour $n\geqslant 2$ par $\begin{cases} u_{n+1}=\left(1-rac{1}{n^2}
ight)u_n \ u_2=1 \end{cases}$

- 1. Montrer que pour tout $n \ge 2$, on a $0 \le u_n \le 1$.
- 2. Étudier le sens de variation de la suite (u_n) .
- 3. En déduire que (u_n) converge vers un réel l.
- 4. Montrer que pour tout $n\geqslant 2$, on a $u_n=rac{n}{2(n-1)}$.
- 5. En déduire la limite l de (u_n) .

📏 **Exercice 22 :** Le 1er janvier 2020, il y a 200 poissons dans un aquarium. Chaque année, 15% des poissons meurent et on ajoute 45 nouveaux poissons en fin d'année. On note u_n le nombre de poissons dans l'aquarium au 1er janvier 2020 + n.

- 1. Déterminer le nombre de poissons dans l'aquarium le 1^{er} janvier 2021.
- 2. Justifier que, pour tout entier $n \in \mathbb{N}$, on a $u_{n+1} = 0.85u_n + 45$.
- 3. Montrer par récurrence que, pour tout entier $n \in \mathbb{N}$, on a $u_n \leqslant u_{n+1} \leqslant 300$. Que peut-on en déduire sur la suite (u_n) ?
- 4. Soit (v_n) la suite définie pour tout entier $n\in\mathbb{N}$, par : $v_n=u_n-300$
 - a. Montrer que la suite (v_n) est géométrique, on précisera sa raison et son premier terme.
 - b. En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n.
 - c. Déterminer la limite de la suite (u_n) .
- 5. Interpréter les résultats des questions 3 et 4 dans le contexte du phénomène observé.

 $m{ ilde p}$ **Définition 11 :** Une suite $(u_n)_{n\in\mathbb N}$ est dite **arithmético-géométrique** s'il existe deux réels a
eq 1 et b tels que la suite vérifie la relation de récurrence suivante pour tout $n \in \mathbb{N}$: $u_{n+1} = au_n + b$

📏 Exercice 23 : Suite arithmético-géométrique

- 1. Pourquoi dit-on $a \neq 1$?
- 2. On note r la solution de l'équation ax + b = x. Démontrer par récurrence sur n que pour tout entier naturel $n \in \mathbb{N}$, on a : $u_n - r = a^n(u_0 - r)$
- 3. Discuter, selon les valeurs des paramètres a et b et de u_0 , de la convergence de la suite (u_n) .

Méthode 4 : Si (u_n) est arithmético-géométrique $(u_{n+1}=au_n+b)$ alors (u_n-r) est géométrique de raison a (avec r solution de ax + b = x).

Nexercice 24 : Crédit (avec LibreOffice Calc)

Les crédits à la consommation ou immobiliers indiquent un taux effectif global (ou TAEG) : lors d'un tel crédit, chaque année, la banque applique ce taux à la somme totale restante dûe par l'emprunteur pour calculer ses intérêts qui s'ajoutent à la somme dûe.

- 1. En utilisant et en complétant ce tableau, déterminer en combien d'années sera remboursé un crédit de 10 000€ dont le TAEG est de 3%.
- 2. Modéliser cette situation par une suite arithmético-géométrique. Interpréter la situation lorsque sa limite est $\pm \infty$. On pourra utiliser ce script python.

📏 Exercice 25 : Une infinité (dénombrable, c'est à dire autant que d'entiers naturels) de mathématiciens entrent dans un bar. Le premier commande une pinte. Le deuxième un demi ; le troisième un quart, le quatrième un huitième ...etc... Le barman dit « je connais vos limites » et pose deux pintes sur le comptoir.Le barman a-t-il raison ? Expliquer. Combien de pintes ont bu les mathématiciens de rang pair ?

4.3. Limites et comparaisons

$\overline{m{ extbf{|}}}$ Propriété 6 : Comparaison en $\pm\infty$

 (u_n) et (v_n) sont deux suites telles qu'à partir d'un certain rang n_0 , on a, pour tout entier $n\geq n_0$: $u_n\leq v_n$;

- Si (u_n) tend vers $+\infty$, alors (v_n) tend vers $+\infty$
- Si (v_n) tend vers $-\infty$, alors (u_n) tend vers $-\infty$

Propriété 7 : Théorème de comparaison (dit « des gendarmes »)

Si l est un réel et (u_n) , (v_n) et (w_n) sont trois suites telles que :

- à partir d'un certain rang n_0 , on a, pour tout entier $n\geqslant n_0$: $u_n\leqslant v_n\leqslant w_n$;
- (u_n) et (w_n) tendent vers l;

Alors (v_n) tend vers l (démonstration admise).

Exercice 27 : Déterminer les limites suivantes (encadrer !) :

$$u_n = \frac{\sin(n)}{n}$$

$$v_n=rac{n+(-1)^n}{n+1}$$

$$w_n = \sin(n) - 2n$$

$$z_n = n imes \sin(n) - 2n^2$$

Méthode 5 : Pour «lever» une forme indéterminée (FI), on essaie de factoriser puis simplifier par le terme qui représente la plus grosse quantité, soit ici la plus grosse puissance de n.

Exercice 28: Déterminer les limites suivantes (encadrer, minorer, majorer, factoriser par les termes dominants...):

$$u_n = n^2 - 200n$$

$$v_n = rac{2n^2 + 3n}{10n^2 - 4}$$

$$w_n = \frac{2n^4 + 3n}{10n^7 - 4}$$

$$v_n = rac{2n^2 + 3n}{10n^2 - 4} \qquad \qquad w_n = rac{2n^4 + 3n}{10n^7 - 4} \qquad \qquad z_n = n^2 - 200n + rac{1 - n}{1 - rac{1}{n + 2}}$$

Définition 12 : Approfondissement :

Deux suites : (a_n) croissante et (b_n) décroissante vérifiant $\lim_{n \to +\infty} (b_n - a_n) = 0$ sont dites **adjacentes**.

Propriété 8 : On a alors $a_n\leqslant b_n$, et ces deux suites convergent vers une même limite.

Exercice 29 : Dur : Démontrer la propriété précédente.

Montrer que toute suite bornée possède une sous-suite convergente (on pourra utiliser la dichotomie pour construire des suites adjacentes).