

## CSC380: Principles of Data Science

Clustering

Xinchen Yu

Fill out SCS (<a href="https://scsonline.oia.arizona.edu/">https://scsonline.oia.arizona.edu/</a>) – if 80% responses, will add 5 points to the homework with lowest grade (33% right now).

• The final project due date is Friday, Dec 8.

No lecture next Thursday, Dec 7

#### **Announcements**

- Final exam
  - Time: Dec 13, 3:30 5:30pm
  - Location: C E Chavez Bldg, Rm 111 (same room)
  - - one letter size cheat sheet, you can use double sides
    - calculator (not necessary)

#### **Announcements**

- ~20 questions and 50% questions will be before midterm.
- Office hours next week will be announced this Thursday.
- Practice questions will be out by next Monday Dec 4.
- No coding questions.
- How to prepare
  - Slides
  - Practice problems (helpful but do not only rely on it!)
  - HW questions



**Supervised Learning** 

**Unsupervised Learning** 



# Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5: Covid, Health, Doctor



# Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 2: Machine Learning, Computer

Doc 3: Environment, Planet

Doc 4 : Pollution, Climate Crisis

Doc 5: Covid, Health, Doctor



# Task 1: Group These Set of Document into 3 Groups based on meaning

Doc1: Health, Medicine, Doctor

Doc 5: Covid, Health, Doctor

Doc 3: Environment,

**Planet** 

Doc 4: Pollution, Climate

Crisis

Doc 2 : Machine Learning, Computer



## Task 2: Topic modeling

- Provides a summary of a corpus.
- Collected n tweets containing the keyword "bullying", "bullied", etc.
- Extracts k topics: each topic is a list of words with importance weights.
  - A set of words that co-occurs frequently throughout.





"physical bullying"



"verbal bullying"

## What is unsupervised learning?

- Learning with unlabeled data
- What can we expect to learn?
  - **Clustering**: obtain partition of the data that are well-separated.
    - a preliminary classification without predefined class labels.
  - **Components**: extract common components
    - e.g., topic modeling given a set of articles: each article talks about a few topics => extract the topics that appear frequently.
- How can we use?
  - As a summary of the data
    - Exploratory data analysis: what are the patterns even without labels?
  - As a 'preprocessing techniques'
    - e.g., extract useful **features** using soft clustering assignments

## Clustering

• Input: *k*: the number of clusters (hyperparameter)

$$S = \{x_1, \dots, x_n\}$$

- Output
  - partition  $\{G_i\}_{i=1}^k$  s.t.  $S = \bigcup_i G_i$  (disjoint union).
  - · often, we also obtain 'centroids'



## Centroid-based Clustering





## **Hierarchical Clustering**





## Distribution-based Clustering



(probabilistic treatment)





## Clustering

• Input: k: the number of clusters (hyperparameter)

$$S = \{x_1, ..., x_n\}$$

- Output
  - partition  $\{G_i\}_{i=1}^k$  s.t.  $S = \bigcup_i G_i$  (disjoint union).
  - often, we also obtain 'centroids'



- Q: if we are given the groups, what would be a reasonable definition of centroids?
  - The <u>point</u> that has the minimum average <u>distance</u> to the datapoints?
  - The <u>datapoint</u> that has the minimum average <u>distance</u> to the datapoints?
  - The <u>point</u> that has the minimum average <u>squared distance</u> to the datapoints?

=> Turns out, the last one corresponds to the average point!

## k-means Clustering

**Lloyd's algorithm**: solve it approximately (heuristic)



**Observation**: The chicken-and-egg problem.

- If you knew the cluster assignments... just find the centroids as the average
- If you knew the centroids... make cluster assignments by the closest centroid.

Why not: start from some centroids and then alternate between the two?



Arbitrary/random initialization of  $c_1$  and  $c_2$ 



(A) update the cluster assignments.



(B) Update the centroids  $\{c_j\}$ 



(A) update the cluster assignments.



(B) Update the centroids  $\{c_j\}$ 



(A) update the cluster assignments.



(B) Update the centroids  $\{c_j\}$ 



(A) update the cluster assignments.



(B) Update the centroids  $\{c_j\}$ 

## Iterating until Convergence





## k-means clustering

**Input**: k: num. of clusters,  $S = \{x_1, ..., x_n\}$ 

**[Initialize]** Pick  $c_1, ..., c_k$  as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max\_iter

- [Assignments]  $\forall x \in S$ ,  $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If  $t \neq 1$  AND  $a_t(x) = a_{t-1}(x), \forall x \in S$ 
  - break



**Input**: k: num. of clusters,  $S = \{x_1, ..., x_n\}$ 

**[Initialize]** Pick  $c_1, ..., c_k$  as randomly selected points from S (see next slides for alternatives)

For t=1,2,...,max\_iter

- [Assignments]  $\forall x \in S$ ,  $a_t(x) = \arg\min_{j \in [k]} ||x c_j||_2^2$
- If  $t \neq 1$  AND  $a_t(x) = a_{t-1}(x), \forall x \in S$ 
  - break
- [Centroids]  $\forall j \in [k], c_j \leftarrow \text{average}(\{x \in S: a_t(x) = j\})$

**Output**:  $c_1, ..., c_k$  and  $\{a_t(x_i)\}_{i \in [n]}$ 

## But,

It may converge to a local rather than global minimum.









#### Issue 1: Unreliable solution

- You usually get suboptimal solutions
- You usually get different solutions every time you run.
- Standard practice: Run it 50 times and take the one that achieves the smallest objective function
  - Recall:  $\min_{c_1,...,c_k} \sum_{i=1}^n \min_{j \in [k]} \|x_i c_j\|_2^2$  Each run of algorithm outputs  $c_1,...,c_k$ . Compute this to evaluate the quality!
- And/or, change the initialization (next slide)
  - Idea: ensure that we pick a widespread  $c_1, ..., c_k$

#### • k-means++

- Pick  $c_1 \in \{x_1, ..., x_n\}$  uniformly at random
- For j = 2, ..., k
  - Define a distribution  $\forall i \in [n], \ \mathbb{P} \big( c_j = x_i \big) \propto \min_{j'=1,\dots,j-1} \|x_i c_{j'}\|_2^2$
  - Draw  $c_i$  from the distribution above.

More likely to choose  $x_i$  that is farthest from already-chosen centroids.

=> has a mathematical guarantee that it will be better than an arbitrary starting point!

Suppose we have the small dataset

(7,4),(8,3),(5,9),(3,3),(1,3),(10,1) to which we wish to assign 3 clusters.

We begin by randomly selecting (7,4) to be a cluster center.

| X      | $\min(d(x,z_i)^2)$ |
|--------|--------------------|
| (7,4)  |                    |
| (8,3)  |                    |
| (5,9)  |                    |
| (3,3)  |                    |
| (1,3)  |                    |
| (10,1) |                    |





We begin by randomly selecting (7,4) to be a cluster center.

| X      | $\min(d(x,z_i)^2)$ |
|--------|--------------------|
| (7,4)  | -                  |
| (8,3)  | 2                  |
| (5,9)  | 29                 |
| (3,3)  | 17                 |
| (1,3)  | 37                 |
| (10,1) | 18                 |





We begin by randomly selecting (7,4) to be a cluster center.

| X      | prob   | 9          |
|--------|--------|------------|
| (7,4)  | -      | 7-         |
| (8,3)  | 2/103  | 6-         |
| (5,9)  | 297103 | 5.         |
| (3,3)  | 17/103 | 3          |
| (1,3)  | 37/103 | 1          |
| (10,1) | 18/103 | 2 4 6 8 10 |



We add (1,3) to the list of cluster centers.

| X      | $\min(d(x,z_i)^2)$ | 9   | _ |
|--------|--------------------|-----|---|
| (7.4)  | -                  | 8 - |   |
| (8,3)  |                    | 6-  |   |
| (5,9)  |                    | 5   |   |
| (3,3)  |                    | 3   |   |
| (1,3)  | -                  | 2-  | - |
| (10,1) |                    | ż   |   |





We add (1,3) to the list of cluster centers.

| X      | $\min(d(x,z_i)^2)$ |
|--------|--------------------|
| (7,4)  | -                  |
| (8,3)  | 2                  |
| (5,9)  | 29                 |
| (3,3)  | 4 42               |
| (1,3)  | -                  |
| (10,1) | 18                 |





We add (1,3) to the list of cluster centers.

| X      | prob  |
|--------|-------|
| (7,4)  | -     |
| (8,3)  | 2/53  |
| (5,9)  | 29/53 |
| (3,3)  | 4/53  |
| (1,3)  | -     |
| (10,1) | 18/53 |





We add (5,9) to the list of cluster centers.

| X      | prob |
|--------|------|
| (7,4)  | -    |
| (8,3)  |      |
| (5,9)  | -    |
| (3,3)  |      |
| (1,3)  | -    |
| (10,1) |      |





- No principled way.
- •Elbow method: see where you get saturation.

Objective function



https://medium.com/analytics-vidhya/how-to-determine-the-optimal-k-for-k-means-708505d204eb