

Introdução ao aprendizado de máquina

Gustavo Sutter @suttergustavo

Reinforcement learning

- Agentes que interagem com um ambiente realizando uma tarefa
- Bem diferente dos outros paradigmas
- Muito em alta ultimamente:
 - AlphaGo e AlphaZero (Deepmind)
 - OpenAI Five (OpenAI)

- Aprendizado supervisionado é aquele que se conhece a resposta esperada,
 tendo como objetivo aprender a mapear os atributos para essa resposta
- Essa resposta esperada é comumente chamada de *target*

- Existem dois principais tipos de aprendizado supervisionado:
 - Classificação
 - Target é um valor discreto ou categórico (e.g., doente ou saudável)
 - Regressão
 - Target é uma valor real ou numérico (e.g., o preço de uma casa)

Classificação vs Regressão

- Já o aprendizado não-supervisionado não possui o target, então ele aprende com a estrutura dos dados
- É utilizado principalmente nas seguintes tarefas:
 - Agrupamento (Clustering): Agrupar dados em diferentes conjuntos (e.g., separar clientes em diferentes conjuntos)
 - Redução de dimensionalidade: Reduzir o número de dimensões que um dado é representado
 (e.g., transformar dados 5D em dados 3D para uma visualização)
 - o **Outros**: detecção de anomalias, compressão de dados, ...

Clustering (exemplo algoritmo k-means)

Avaliação

- A princípio um problema de ML possui dois conjuntos de dados:
 - o O conjunto de treino (onde o *target* é conhecido)
 - o O conjunto de teste (onde não conhecemos o *target* e queremos descobri-lo)
- Mas então como vamos avaliar nosso funcionamento?
 - Para isso é comum dividir o conjunto de treino em um conjunto de validação (validation set) e o conjunto de treino que o modelo irá receber
 - Assim temos as respostas corretas e podemos compará-las com as produzidas pelo nosso modelo

Validation Set (conjunto de validação)

Métricas de avaliação

- Acurácia classificação
 - Quantas das classificações produzidas pelo modelo estão corretas dividido pelo total de classificações realizadas
 - Valor em [0,1] que indica porcentagem correta
- Mean Squared Error (Erro quadrático médio) regressão
 - A média do quadrado das diferenças entre o valor produzido pelo modelo e o valor esperado
 - Valor em $[0,+\infty)$ que depende da escala dos *targets*
- Existem muitas outras métricas que veremos mais tarde
 - Precision, Recall, AUC, F-Score, Mean Absolute Error...

Underfitting e Overfitting

Underfitting: A função não está bem ajustada aos dados do conjunto de treino

OK: A função está ajustada aos dados de treino na quantidade correta

Overfitting: A função está mais ajustada aos dados de treino do que deveria