Graphen und biologische Netze $(WS\ 2016/17)$

Inhaltsverzeichnis

1	Vor	lesung 14.10.2016	1
	1.1	Grundlagen der Graphen und biologische Netze	1
	1.2	Gleichheit von Graphen	2
	1.3	Eigenschaften von Graphen	3
	1.4	Graph-Invarianten	3
	1.5	Pfade und Zusammenhänge	4

1 Vorlesung 14.10.2016

1.1 Grundlagen der Graphen und biologische Netze

Graph: Knoten, Kanten (binäre Relationen)

<u>Transitivität:</u> implizite Verbindung (abhängig vom Kontext) Labeled Graphs:

- Graph: (V, E)
- Labels: L_V (Knotenlabel), L_E (Kantenlabel)

 $e \in E \Rightarrow \exists x, y \in V : x \text{ und y sind die Endpunkte von e}$

```
Knoten-Labelfunktion \alpha: \alpha: V \to L_V: v \mapsto \alpha(v)
Kanten-Labelfunktion \beta: \beta: E \to L_E: e \mapsto \beta(e)
```

ungerichtete Graphen

- Kante ist eine Menge von 2 (verschiedenen) Knoten
- $e = \{x, y\} = \{y, x\} \rightarrow \text{Reihenfolge egal}$
- $E \subseteq V^{(2)} \to$ Kante ist Teilmenge von 2 Knoten

gerichtete Graphen

- Kante ist ein geordnetes Paar von 2 (verschiedenen) Knoten
- e = (x, y) entspricht $x \to y$, (y, x) entspricht $y \to x$
- $E \subseteq V \times V$
- gerichtete Kante besteht aus head (in Pfeilrichtung) und tail

Funktionen gerichteter Graphen:

```
h: E \to V: e \mapsto head(e)
t: E \to V: e \mapsto tail(e)
```

Graphen in denen Kanten zwei verschiedenen Endpunkte haben **UND** zu jeden Paar von Kanten höchstens eine Kante gehört hießen <u>EINFACH</u> oder <u>SIMPLE</u> im gerichteten Fall:

trotzdem einfach!

```
erst ...
ist Multigraph
Loops:
```

 \Rightarrow einfacher Graph mit Loops

Durch Unterteilung der Kanten in Multigraphen kann eine Transformation in Graphen erzeugt werden:

- ungerichtet: zweifache Unterteilung mittels zweier Knoten
- gerichtet: einfache Unterteilung mittels Knoten

1.2 Gleichheit von Graphen

. . .

als labeled graphs: $G_1=G_2=G_4\neq G_3$

 \Rightarrow 2 Graphen $G_1=(V_1, E_1)$ und $G_2=(V_2, E_2)$ sind isomorph wenn es einen bijektive Abbildung¹ $\pi: V_1 \to V_2$ gibt, sodass $\{x,y\} \in E_1 \Leftrightarrow \{\pi(x), \pi(y)\} \in E_1$ bijektive Abbildung: jedes Element von 1. wird zu genau einem Element von 2. zugeordnet

 $\pi(a)=w,\pi(b)=u,\pi(c)=x,\pi(d)=v$ \rightarrow hier ergibt bijektive Abbildung keinen Isomorpismus, da Bild(d) und Bild(c) Kante haben, jedoch v und x keine Kante haben

Durch folgende bijektive Abbildung wird aber Isomorphie erreicht: $\pi(a) = w, \pi(b) = x, \pi(c) = u, \pi(d) = v$

Bezogen auf die Labels kann es mehrere mögliche Isomorphien geben.

Schreibweise: $G \simeq H$ (G ist isomorph zu H) mit $G \to^{\pi} H, G \leftarrow^{-\pi} H$ sodass π isomorph ist

Reflexivität: Ein Graph ist zu sich selbst immer isomorph: $G \simeq G$ Symmetrie: $G \simeq H \Leftrightarrow H \simeq G$ Transitivität: $G \simeq H, H \simeq K \Rightarrow G \simeq K$

 \simeq ist eine Äquivalenz
relation \to Isomorphie teilt Graphen in Klassen ein (Isomorphie
klassen)

Nebenbemerkung: Labeled Graphen?

Zusätliche Bedingung benötigt: $\lambda(\pi(x)) = \lambda(x) \to \text{Labels müssen erhalten bleiben!}$

Testen auf Gleichheit

Gegeben: $G_1=(V_1, E_1), G_2=(V_2, E_2)$ Frage: Sind die Graphen isomorph?

¹https://de.wikipedia.org/wiki/Bijektive_Funktion

Grundbedingungen:

- 1. $|V_1| = |V_2| \rightarrow$ gleiche Anzahl von Knoten
- 2. $|E_1| = |E_2| \rightarrow$ gleiche Anzahl von Kanten

Eigenschaften von Graphen 1.3

Nachbarknoten von v: $N(v) := \{y \in V | \{v, y\} \in E\}$ deg(v) := |N(v)|

$$\delta(G) := \min_{v \in V} deg(v)$$

$$\begin{split} \delta(G) &:= \min_{v \in V} deg(v) \\ \Delta(G) &:= \max_{v \in V} deg(v) \end{split}$$

Def: Ein Graph heißt **REGULÄR** wenn $\Delta(G) = \delta(G)$ (wenn alle Knoten gleichen Grad haben)

Gradfolge von G:

$$\mathcal{F} = (n_0, n_1, n_2, \dots, n_{|V|-1}) \text{ mit } n_k := |\{x \in V | deg(x) = k\}|$$

$$\delta(G) \ge 0$$

$$\Delta(G) \le |V| - 1$$

Beispiel:

bei Isomorphie: $\mathcal{F}_1 = \mathcal{F}_2 \to$ Isomorphismus π erhält Grad der Knoten!

1.4 Graph-Invarianten

Eigenschaften, die unter Isomorphie erhalten bleiben

 \mathcal{G} ... Menge aller Graphen

F...ist ein Graph invariant wenn

$$F: \mathcal{G} \to X \tag{1}$$

die Eigenschaft hat, dass

$$G \simeq H \Rightarrow F(G) = F(H)$$
 (2)

Invarianten bis jetzt: |V|, |E|, Gradfolge \mathcal{F}

Wenn $F(G) \neq F(H)$ für irgendeine Grapheninvariante $\Rightarrow G \neg \simeq H$

1.5 Pfade und Zusammenhänge

<u>Kantenzug:</u> Folge von Kanten in G'' $\overline{x_o, e_1, x_1, e_2}, x_2, \dots, e_l, x_l \text{ sodass } e_i := \{x_{i-1}, x_i\}$

Weg: Kantenzug sodass $e_i \neq e_j$ für $i \neq j$ (keine Kante doppelt verwenden)

<u>Pfad:</u> Kantenzug sodass $x_i \neq x_j$ für $(i, j) \neq (0, l)$ mit 0=Startknoten und l=Endknoten des Pfades (keinen Knoten mehrfach bis auf x_0, x_l)

- offen: $x_o \neq x_e$
- \bullet geschlossen: $x_0=x_e$ (nur hier 1 Knoten doppelt benutzt!)

 $\underline{\mathrm{Def:}}$ G ist zusammenhängend wenn es zwischen je zwei Knoten x,y \in V einen Kantenzug gibt

Frage:

- 1. Ist Zusammenhang eine Grapheninvariante?
- 2. Kann man in der Definition Kantenzug durch Weg, Pfad oder Kreis ersetzt?