

Aritmetica dei calcolatori

Rappresentazione dei numeri naturali e relativi Addizione e sommatori: a propagazione di riporto, veloce, con segno Moltiplicazione e moltiplicatori: senza segno, con segno e algoritmo di Booth Rappresentazione in virgola mobile e operazioni

La rappresentazione dei numeri

- Rappresentazione dei numeri: binaria
- Un numero binario è costituito da un vettore di bit

$$B = b_{n-1}...b_1b_0$$
 $b_i = \{0, 1\}$

$$b_i = \{0, 1\}$$

□ Il valore di *B* e' dato da:

$$V(B) = b_{n-1} \times 2^{n-1} + ... + b_1 \times 2^1 + b_0 \times 2^0$$

- Un vettore di n bit consente di rappresentare i numeri naturali nell'intervallo da 0 a 2ⁿ-1.
- Per rappresentare i numeri positivi e negativi si usano diverse codifiche

- 2 -

La rappresentazione dei numeri

- Codifiche per numeri relativi
 - Modulo e segno
 - Complemento a 1
 - Complemento a 2

В	V(B)		
$b_2b_1b_0$	Modulo e segno	Complemento a 1	Complemento a 2
000	+0	+0	+0
001	+1	+1	+1
010	+2	+2	+2
011	+3	+3	+3
100	-0	-3	-4
101	-1	-2	-3
110	-2	-1	-2
111	-3	-0	-1

La rappresentazione dei numeri

Modulo e segno:

- rappresentazione con *n* bit: il bit di segno è 1 per i numeri negativi e 0 per i
- campo rappresentabile $-2^{n-1}-1 \le N \le +2^{n-1}-1$ (due rappresentazioni per lo 0)
- è molto simile alla rappresentazione dei numeri decimali

Complemento a 1

- rappresentazione con *n* bit: i numeri negativi sono ottenuti invertendo bit a bit il corrispondente numero positivo
- campo rappresentabile -2 $^{n-1}$ -1 \leq N \leq +2 $^{n-1}$ -1 (due rappresentazioni per lo 0)
- è semplice

Complemento a 2

- rappresentazione con *n* bit: i numeri negativi sono ottenuti invertendo bit a bit il numero positivo corrispondente, quindi sommando il valore 1
- campo rappresentabile $-2^{n-1} \le N \le +2^{n-1} -1$ (una rappresentazioni per lo 0)
- consente di realizzare circuiti di addizione e sottrazione più semplici
- è quella utilizzata nei dispositivi digitali per rappresentare numeri relativi

- 3 -

- 4 -

ADDIZIONE e ARCHITETTURE DI SOMMATORI

- Addizione e sommatore a propagazione di riporto
- Addizione e sommatore ad anticipazione di riporto
- Addizione di più valori e sommatori Carry Save
- Addizione/sottrazione con segno

Addizione senza segno

- La somma di numeri positivi si esegue sommando coppie di bit parallele, partendo da destra.
- Si ha riporto, diverso da 0, quando si deve eseguire la somma 1+1 (half hadder).
- Regole per la somma:

- Utilizzando queste regole in modo diretto è possibile
 - Realizzare sommatori modulari
 - Composti da blocchi elementari identici
 - Circuiti aritmetici di questo tipo sono detti bit-slice

- 6 -

Addizione senza segno a propagazione di riporto

- Un sommatore bit-slice ripple carry è strutturato in modo che il modulo in posizione i-esima:
 - Riceve in ingresso i bit x_i e y_i degli operandi
 - Riceve in ingresso il riporto c_i del modulo precedente
 - Produce la somma $s_i = x_j' y_i' c_i + x_i' y_i c_i' + x_j y_i' c_i' + x_j y_i c_i$ $\cdot = (x_i, xor y_i)' c_i + (x_i, xor y_i) c_i' = x_i, xor y_i, xor c_i$
 - Produce il riporto $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$ $x_i y_i + (x_i \text{ xor } y_i) c_i$
- II modulo in posizione 0 ha il bit di riporto $c_0=0$
- Il riporto c_o può essere sfruttato per sommare il valore 1
 - Necessario per il calcolo del complemento a 2
- La somma di numero ad n bit richiede un tempo pari ad n volte circa quello richiesto da un modulo di somma

1 1

Sommatore per il generico stadio: Full Adder

Addizione senza segno - *Ripple-Carry a n bit Struttura e prestazioni*

- Il calcolo esatto del ritardo si effettua basandosi sulla seguente architettura
- Siano T_s e T_r i ritardi per il calcolo della somma e del riporto *i-mi* rispettivamente

Prestazioni: il ritardo totale per ottenere tutti i bit della somma è dato dall'espressione:

$$T_{tot} = (n-1)T_r + T_s$$

Il percorso critico è quindi quello del riporto

- 9 -

Ripple Carry: architettura a blocchi

Addizione veloce (ad anticipazione di riporto)

Funzioni di generazione e di propagazione del riporto

Motivazioni: ottenere un sommatore con prestazioni migliori

Si basa sulle seguenti considerazioni

Le espressioni di somma e riporto per lo stadio i sono:

$$S_{i} = X_{i}' y_{i}' C_{i} + X_{i}' y_{i} C_{i}' + X_{i} y_{i}' C_{i}' + X_{i} y_{i} C_{i}$$

$$C_{i+1} = X_{i} y_{i} + X_{i} C_{i} + Y_{i} C_{i}$$

L'espressione del riporto in uscita può essere riscritta come:

$$c_{i+1} = G_i + P_i c_i$$
 con $G_i = x_i y_i$ e $P_i = x_i + y_i$ (o anche $P_i = x_i \oplus y_i$)

- Le funzioni G_i e P_i
 - Sono dette funzioni di generazione e propagazione
 - G_i : se $x_i = y_i = 1$, allora il riporto in uscita deve essere generato
 - P_i: se x_i o y_i=1 e c_i =1, allora il riporto in ingresso deve essere propagato in uscita
 - Possono essere calcolate in parallelo, per tutti gli stadi, rispetto alle rispettive somme.

Addizione veloce - calcolo dei riporti in parallelo

- L'espressione per il riporto $c_{i+1} = G_i + P_i c_i$ può essere calcolata in modo iterativo.
- Sostituendo $c_i = G_{i-1} + P_{i-1}c_{i-1}$ nell'espressione di c i+1 si ha:

$$c_{i+1} = G_i + P_i(G_{i-1} + P_{i-1}c_{i-1}) = G_i + P_iG_{i-1} + P_iP_{i-1}c_{i-1}$$

Continuando con l'espansione fino a c₀ si ottiene:

- I riporti in uscita di ogni singolo stadio possono essere calcolati tutti in parallelo e con ritardo identico (realizzazione SOP) tramite:
 - le *i* funzioni di generazione G_i e le *i* funzioni di propagazione P_i
 - il riporto in ingresso allo stadio 0, c_0
- I sommatori che sfruttano il meccanismo della generazione dei riporti in anticipo sono detti Carry-Look-Ahead Adders o CLA Adders

- 11 -

Addizione veloce - Struttura e prestazioni di un CLA a 4 bit

GO THE NO.

Addizione veloce - Struttura generale CLA logic

- 14 -

Sommatori Carry Look-Ahead

Carry Look-Ahead Logic

- 15 -

Addizione veloce: calcolo delle prestazioni

- ull ritardo totale per ottenere tutte le somme ed il riporto più a sinistra c_{i+1} è dato dalla somma di:
 - Un ritardo di porta per il calcolo delle funzioni di generazione e di propagazione $(G_i = x_i y_i)$ e $P_i = x_i + y_i$
 - Due ritardi di porta logica per calcolare il riporto *i*-esimo (SOP)
 - Due ritardi di porta logica per calcolare la somma i-esima (SOP)
- Totale:
 - 5 ritardi di porta logica
- Il ritardo è costante e indipendente dalla lunghezza degli operandi
- Problema:
 - La realizzazione circuitale dei moduli che calcolano i riporti per operandi lunghi (ad esempio 32 bit) fa uso di porte con un fan-in molto elevato: non praticabile!!
 - Soluzione: addizionatore veloce a blocchi

- 16 -

Addizione veloce a blocchi

- Il sommatore completo a n bit è ottenuto utilizzando un insieme di blocchi costituiti da CLA a m bit e della logica CLA
- Esempio: blocco è costituito da un sommatore CLA a 4 bit (ragionevole)
- Struttura del blocco di un CLA a 4 bit
 - Il riporto finale di questo sommatore ha la seguente espressione:

$$c_4 = \boxed{G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0} + \boxed{P_3 P_2 P_1 P_0} c_0$$

- che può essere riscritta come

$$c_{uscita} = G + Pc_0$$

- con il tempo di ritardo per il calcolo di P e G:
 - P = attraversamento di 2 porte logiche (1 per calcolare P_3 , P_2 , P_1 e P_0 , 1 per calcolare il prodotto)
 - G = attraversamento di 3 porte logiche (calcolo di P_i e G_i , calcolo dei prodotti, calcolo della somma)

- 17 -

Esempio - sommatore a 16 bit con CLA a 4 bit

- □ Prestazioni: in questo caso circa n/2
- Che cosa succede se devo sommare due numeri da 32 o da 64 bit?
 - Le prestazioni di un CLA adder a n bit costituito da blocchi da m bit sono espresse come $log_m n$, a meno del fattore costante dato dal ritardo di un CLA a m bit.

Esempio - sommatore a 8 bit con CLA a 2 bit

- 19 -

Somma di più valori: sommatori carry save

Calcolo della somma di 3 (o più) valori: W = X + Y + Z

Soluzione 1:

- Calcolare una somma intermedia: T = X + Y
- E quindi calcolare il risultato finale: W = T + Z
- Le somme possono essere realizzate mediante
 - Due sommatori ripple-carry (o due sommatori carry look-ahead) connessi in cascata
 - Ricorda: la somma di N addendi da n bit richiede $n + \lceil log_2 N \rceil$ bit per il risultato

Soluzione 2:

 Modifica dell'algoritmo di somma e uso di sommatori carry save per migliorare le prestazioni

- 21 -

Somma di tre addendi - architettura con sommatori ripple-carry

- 22 -

Somma di tre addendi - Prestazioni con sommatori ripple-carry

Somma di tre addendi con Sommatori Carry Save

- Il primo stadio calcola le somme S (parziali e senza propagazione di riporto) e i riporti CS (Carry Save Adder)
- Il secondo stadio somma (con propagazione di riporto) i valori provenienti dal primo stadio

- 23 -

- 24 -

Somma di tre addendi - Prestazioni Carry Save

- 25 -

OUTECHO O

Sommatore Carry Save come blocco

- Sommatore Carry Save composto da due unità
 - Blocco Carry Save:
 - Produce i due vettori S e CS
 - Ritardo: R_{CS} = 1
 - Sommatore Ripple-Carry:
 - · Produce il risultato finale
 - Ritardo: $R_{RC} = n + 1$

- 26 -

OUTECNO O

Sommatore Carry Save come blocco

Istanti di generazione dei bit di uscita

Esempio sommatore a 6 addendi con blocchi Carry Save da 3 addendi

- 27 -

Esempio sommatore a 9 addendi con blocchi Carry Save da 3 addendi

Vantaggi più evidenti al crescere del numero degli operandi

- 29 -

STEEN CO.

Addizione e sottrazione per valori rappresentati in complemento a 2

- Regole per la somma e sottrazione di due numeri in complemento a 2 su n bit
 - Per calcolare x+y
 - · Fornire in ingresso ad un sommatore binario naturale le codifiche binarie
 - · Ignorare il bit di riporto in uscita
 - · Il risultato è in complemento a due
 - Per calcolare x-y
 - Ricavare la rappresentazione dell'opposto di y (complemento a due)
 - · Sommare i valori così ottenuti come nella regola precedente
 - · Il risultato è in complemento a due
- I risultati sono corretti se e solo se, disponendo di un sommatore binario senza segno ad n bit, il risultato sta nell'intervallo:

$$-2^{n-1} \le x \pm y \le 2^{n-1}-1$$

In caso contrario si verifica overflow (o underflow) aritmetico

- 30 -

Addizione e sottrazione per valori rappresentati in complemento a 2

 Condizioni di overflow e di underflow per somme e sottrazioni in complemento a 2 su n bit

A+B			
A	В	Segno somma	Ov/Un
> 0	> 0	0	Si-Ov
> 0	< 0		no
< 0	> 0		no
< 0	< 0	1	Si-Un

A-B=A+((-B)			
А	A B		Segno somma	Ov/Un
> 0	> 0	< 0		no
> 0	< 0	>0	0	Si-Ov
< 0	> 0	< 0	1	Si-Un
< 0	< 0	> 0		no

overflow per somma = 0 0 1 (segno addendi e segno somma)

underflow per somma = 1 1 0 overflow per sottrazione = 0 1 1

underflow per sottrazione = 1 0 0

Sommatori Add/Subtract: operazioni in complemento a 2

- 31 -

MOLTIPLICAZIONE e ARCHITETTURE DI MOLTIPLICATORI

- Moltiplicazione senza segno e moltiplicatori per righe e diagonali
- Moltiplicazione con segno con 2 sottomatrici di prodotti parziali
- Moltiplicazione con l'algoritmo di Booth
- Moltiplicazione per colonne e moltiplicatore di Wallace
- Moltiplicatori sequenziali

Moltiplicazione interi senza segno

- La moltiplicazione di numeri senza segno si esegue con lo stesso metodo usato per la moltiplicazione decimale
- Il prodotto di due numeri binari di n e k bit è un numero binario di n+k bit
- Ogni prodotto parziale deve essere esteso a n+k bit tramite 0
- Ad esempio:

- 34 -

Moltiplicatori combinatori

Prodotto di due numeri positivi di 3 bit (n bit - 2n bit prodotto)

- 35 -

Мо	Itipli	cazione	e bit a l	oit			
				\mathbf{x}_{2}	\mathbf{x}_1	\mathbf{x}_0	\times
l _				У2	У1	У0	=
				y_0x_2	y_0x_1	y_0x_0	
			y_1x_2	y_1x_1	y_1x_0		
		y_2x_2	y_2x_1	y_2x_0			
				PP ₀₂	PP ₀₁	PP ₀₀	
			\mathtt{PP}_{12}	\mathtt{PP}_{11}	PP_{10}		
		\mathtt{PP}_{22}	\mathtt{PP}_{21}	\mathtt{PP}_{20}			
	p ₅	P ₄	p ₃	p_2	p ₁	P ₀	
_	p ₅	p_4	p ₃	p_2	p ₁	P ₀	

Matrice di prodotti parziali costituita da *n* righe

Architetture di moltiplicatori

- Le architetture sono definite a seconda del "meccanismo" di somma e propagazione dei riporti delle righe della matrice di prodotti parziali
- Somma per righe: i riporti si propagano per righe
- Somma per diagonali: i riporti si propagano per diagonali
- Somma per colonne: i riporti si propagano per colonne
- Le architetture risultanti sono caratterizzate comunque da strutture regolari

- 36 -

Moltiplicatori combinatori: somma per righe

Somma per righe

Ogni cella del moltiplicatore calcola

- •il prodotto parziale corrispondente e
- ·una somma parziale

Il riporto delle somme parziali si propaga lungo la riga

Le somme si propagano in verticale

Per il calcolo del prodotto parziale, X si propaga in diagonale e Y in verticale

Sono necessari n sommatori a n bit (con eventuale calcolo del prodotto parziale). Il primo non genera riporti

La struttura è regolare

Prestazioni: dipendono dai sommatori, con sommatori non veloci ordine di 2n

- 37 -

Moltiplicatori combinatori: somma per righe

- 38 -

Moltiplicatori combinatori: somma per diagonali

Somma per diagonali

- Ogni cella del moltiplicatore (tranne quelle dell'ultima riga) calcola il prodotto parziale corrispondente e una somma parziale
- Il riporto delle somme parziali si propaga lungo le diagonali
- Le somme si propagano in verticale
- Per il calcolo del prodotto parziale, X si propaga in diagonale e Y in verticale
- Sono necessari *n* sommatori a *n* bit (di cui il primo non genera riporti)
- La struttura è regolare
- Prestazioni: dipendono dai sommatori, con sommatori non veloci ordine di 2n

- 39 -

Moltiplicatori combinatori: somma per diagonali

Circuito per la somma per diagonali

- 40 -

Moltiplicazione con segno: sottomatrici

Altro modo di definire il complemento a 2: il valore della cifra associata al bit più significativo ha segno negativo.

$$+5 = 0.101$$

$$-5 = 1011$$

$$-5 = -2^3 + 2^1 + 2^0 = -8 + 2 + 1$$

Considerando ad esempio 4 bit, i valori di un moltiplicando M negativo e di un moltiplicatore Q negativo possono essere rappresentati come

- Moltiplicando M =
$$(-m_3)2^3+m_22^2+m_12^1+m_0$$

- Moltiplicatore Q =
$$(-q_3)2^3+q_2^2+q_1^2+q_0^2$$

. Dove $m_3,..., m_0$ e $q_3,..., q_0$ sono i bit del moltiplicando e del moltiplicatore

Nota: questa rappresentazione viene usata, ed è corretta, sia per valori positivi che negativi.

- 41 -

Moltiplicazione con segno (cont.)

- Costruzione dei prodotti parziali (matrice diagonale)
 - Cambia per tener conto del segno dei due fattori (caso M e Q negativi)

- 42 -

Estensione a n+k bit tramite 0

Moltiplicazione con segno (cont.)

 Scomposizione della matrice iniziale in due sottomatrici, una con i soli termini negativi, l'altra con solo quelli positivi. Il risultato è dato dalla differenza dei due risultati parziali

a.m.

a_om_o

0

				- 0 2	-U I	-0 0
		0	$q_1 m_2$	$\mathtt{q_1m_1}$	$q_1 m_0$	
	0	$q_2 m_2$	$q_2 m_1$	$q_2 m_0$		
q_3m_3	0	0	0			
Somma	parziale	termir	ni posi	Ltivi		
			$q_0 m_3$	0	0	0
		$q_1 m_3$	0	0	0	
	$q_2 m_3$	0	0	0		
0	$q_3 m_2$	q_3m_1	q_3m_0			
Somma parziale termini negativi						

Esempio 1

□ Si calcoli il prodotto 13 x -9

- 43 -

Esempio 2

□ Si calcoli il prodotto -13 x -9

- 45 -

Moltiplicazione con segno - Algoritmo di Booth

- Se il moltiplicatore contiene sequenze di 1, l'algoritmo di Booth è più efficiente del metodo visto in precedenza (cioè devono essere generati molti meno prodotti parziali)
- □ Si consideri ad esempio la moltiplicazione per *Q*=30:

$$M \times 30 = M \times (32 - 2) = M \times 32 - M \times 2$$

In rappresentazione binaria:

$$M \times 0011110 = M \times 0100000 - M \times 0000010$$

= $M \times 0100000 + M_{(\cdot)} \times 0000010$

- I moltiplicatori così ottenuti
 - Sono potenze del due
 - Sono sequenze di bit con un solo uno

- 46 -

Algoritmo di Booth: codifica del moltiplicatore

- L'algoritmo si basa sulla scomposizione appena vista
- Tale scomposizione è rappresentata come una codifica del moltiplicatore basata sulle sequenti regole
- Si consideri un moltiplicatore Q di lunghezza n
 - Si scorre il moltiplicatore da sinistra verso destra
 - Il moltiplicatore codificato Q_B si ottiene:
 - · Scrivendo il simbolo +1 quando si passa da 0 ad 1
 - · Scrivendo il simbolo -1 quando si passa da 1 a 0
 - · Scrivendo il simbolo 0 quando due bit successivi sono uguali
 - Se Q termina con 0 aggiungo 0 a Q_R altrimenti aggiungo -1

Algoritmo di Booth: esempio di codifica

□ Ad esempio Q = 30 è codificato come $Q_R = 0+1000-10$

- Utilizzando tale codifica, i prodotti parziali saranno:
 - 0 con estensione del segno, quando $q_{Bi} = 0$
 - $q_{B,i} = -1$ con estensione del segno, quando
 - M con estensione del segno, quando $q_{Ri} = +1$

Algoritmo di Booth: codifica del moltiplicatore

Le regole esposte per l'algoritmo di Booth possono essere riassunte nella tabella seguente:

Moltipl	icatore	Codifica	DD.	
q_i	q _{i-1}	Codifica	PP_i	
0	0	0	$0 \times M = 0$	
0	1	+1	$+1\times M=M$	
1	0	-1	$-1\times M=M_{(-)}$	
1	1	0	0×M = 0	

- E inoltre, se:
 - $q_0 = 0$, la codifica del bit aggiunto è 0 e quindi il prodotto parziale è 0
 - q_0 = 1, la codifica del bit aggiunto è -1 e quindi il prodotto parziale è $M_{(\cdot)}$

- 49 -

Esempio

- □ Moltiplicare 13 x -9, usando l'algoritmo di Booth su 5 bit
- I valori binari da usare sono:

$$-13 = 01101$$

$$-9_B = -1 + 100 - 1$$

Il prodotto si esegue quindi nel modo seguente:

- 49

- 50 -

Moltiplicatori combinatori: somma per colonne

- Il metodo è simile a quello utilizzato a mano per effettuare la moltiplicazione
- Si utilizza la matrice dei prodotti parziali (matrice di AND) e un insieme di contatori paralleli
- Il generico contatore parallelo riceve in ingresso una colonna di prodotti parziali (e gli eventuali riporti dagli stadi precedenti) e genera il conteggio degli 1 della colonna
- Il conteggio generato in ogni stadio produce il bit del prodotto per lo stadio considerato e eventuali riporti per gli stadi successivi
- Irregolare (contatori diversi)
- Prestazioni: paragonabili a quelle per somma per righe, infatti si ha propagazione di riporti in tutte le colonne

Moltiplicatori combinatori: somma per colonne

- Moltiplicando e moltiplicatore da 6 bit
- In nero la matrice di AND, in rosso i riporti generati dai contatori
- ogni contatore genera 1 bit del prodotto e riporti per le colonne successive

il contatore di colonna 1 genera 1 riporto per colonna

- 2

 il contatore di colonna 2 genera 2 riporti per colonna
- 3 e 4
- $\tt u = il$ contatore di colonna 3 genera 2 riporti per colonna 4 e 5
- e così via.....

- 51 -

Moltiplicatori combinatori:

somma per colonne con riduzione della matrice dei termini prodotto

- Riduzione successiva della matrice dei prodotti parziali
 - La matrice dei prodotti parziali M0 viene ridotta, in termini di righe, tramite contatori paralleli per colonna che non propagano i riporti, ma li usano (insieme ai bit di somma) per costruire la matrice ridotta
 - Il risultato generato dai contatori crea una matrice successiva M1, costituita da un numero inferiore di righe. In questo modo non c'è propagazione dei riporti all'interno della stessa matrice
 - Il procedimento viene iterato fino a quando non si ottiene una matrice di sole due righe
 - Le due righe costituiscono l'ingresso ad un sommatore
- La riduzione è rapida
- La struttura è irregolare
- Le prestazioni aumentano
 - ipotesi: il tempo di un contatore è identico a quello di un Full-Adder
 - domina il tempo del sommatore finale

- 53 -

- 54 -

Moltiplicatori combinatori: moltiplicatore di Wallace

- E' basato sulla riduzione successiva della matrice M0
- Prevede l'utilizzo di soli contatori a 2 o 3 ingressi, che sono equivalenti rispettivamente ad un Half-Adder e a un Full-Adder
- Il procedimento di riduzione della matrice a 2 sole righe è più lento rispetto al caso di contatori a ingressi qualsiasi, ma comunque rapido (log 3/2 n passi)
 - M0 di n righe
 - M1 di (2/3)n righe
 - M2 di (2/3)²n righe
 -
 - · Mh di (2/3)hn righe: se il n° di righe è uguale a 2 la riduzione termina
- La struttura è "regolare"
- Le prestazioni sono dominate dal sommatore finale (veloce)

Moltiplicatori combinatori: moltiplicatore di Wallace

- 55 - - 56 -

Moltiplicatori sequenziali

Moltiplicatori sequenziali

[2]

- Moltiplicazione sequenziale tra due numeri di *n*
- I passi da eseguire sono:
 - 1. Inizializza a zero un registro accumulatore A
 - 2. Inizializza a zero un bistabile C per il riporto
 - 3. Salva nei registri Q ed M moltiplicatore e moltiplicando

[1]

- 4. Se il bit meno significativo di Q vale 1
 - · Somma A ed M
 - · Memorizza il risultato in A
- 6. Ripeti dal punto 4 per *n* volte

5. Shift a destra del registro [C; A; Q] di una posizione

7. Preleva il risultato della moltiplicazione dai registro [A; Q]

- 57 -

- 58 -

ARITMETICA in VIRGOLA MOBILE

- Confronto con aritmetica in virgola fissa
- Rappresentazione dei valori
- Operazioni
- Struttura di un sommatore/sottrattore

Numeri in virgola fissa

- Fino a questo punto abbiamo assunto che
 - Un vettore di bit rappresentasse sempre un numero intero
 - Eventualmente con segno
- Tutte le considerazioni fatte fino ad ora e tutti i metodi esposti continuano a valere se si attribuisce ai vettori di bit il significato di numeri in virgola fissa
- un sistema di numerazione in virgola fissa è quello in cui:
 - La posizione della virgola decimale è implicita
 - La posizione della virgola decimale uguale in tutti i numeri
- La posizione della virgola equivale alla interpretazione del valore intero moltiplicato per un fattore di scala

Numeri in virgola fissa: fattore di scala

 Si consideri ad esempio il vettore di k+n bit (k bit per rappresentare la parte intera e n bit per rappresentare la parte frazionaria):

$$B = b_{k-1} \dots b_{0}, b_{-1} \dots B_{-n}$$

Il suo valore è dato da

$$V(B) = b_{k-1}x2^{k-1} + \dots + b_0x2^0 + b_{-1}x2^{-1} + \dots + b_{-n}x2^{-n}$$

parte frazionaria

 Il fattore di scala che consente di passare dalla rappresentazione intera a quella a virgola fissa è pari a

$$S_n = 2^{-n} = 1 / 2^n$$

Detti V_I il valore intero e V_{VF} il valore in virgola fissa di B:

$$V_{VF}(B) = V_{I}(B) \times S_{n} = V_{I}(B) \times 2^{-n}$$

- 61 -

Esempio

Si consideri il vettore binario:

$$B = 010.10110$$

Il suo valore in virgola fissa è:

$$V_{VF}(B) = 2^{1} + 2^{1} + 2^{1} + 2^{1} + 2^{1} + 2^{1} = 2 + 1/2 + 1/8 + 1/16$$

= $4^{3}/16 = 2.6875$

Il fattore di scala da utilizzare per la conversione è:

$$S_5 = 2^{-5} = \frac{1}{32} = 0.03125$$

□ Il valore di *B*, considerandolo intero è:

$$V_1(B) = 2^6 + 2^4 + 2^2 + 2^1 = 64 + 16 + 4 + 2 = 86$$

Da cui, moltiplicando per il fattore di scala, si ha:

$$V_{VF}(B) = V_1(B) \times S_5 = 86 \times 0.03125 = 2.6875$$

- 62 -

Virgola fissa vs. virgola mobile

Intervallo di variazione di un numero binario di 32 bit

- Codifica intera
 - $0 \le |V_1(B)| \le +2^{31} \approx 2.15 \times 10^9$
- Codifica in virgola fissa
 - $+4.65 \times 10^{-10} \approx +2^{-31} \le |V_{VF}(B)| \le +1$
- Codifica in virgola mobile
 - $\approx +10^{-45} \le |V_{VM}(B)| \le \approx +10^{+38}$
- A pari numero di bit disponibili
 - con la rappresentazione intera o in virgola fissa, i valori rappresentati sono distribuiti uniformemente nel campo di rappresentabilità
 - con la rappresentazione in virgola mobile, i valori rappresentati sono distribuiti non uniformemente nel campo di rappresentabilità
 - · sono "più fitti" vicino allo 0 e "più radi" per valori assoluti grandi
- Nella rappresentazione in virgola mobile (floating point) la posizione della virgola è mobile ed è indicata dal valore di un fattore moltiplicativo

(± Mantissa x Base Esponente)

Errore di quantizzazione: virgola fissa vs. virgola mobile

- Virgola fissa (con n bit per la parte frazionaria)
- $E_{Ass} = VaI_{Vero} VaI_{Rappr} = costante$ $con (-1/2)2^{-n} < E_{Ass} < (+1/2)2^{-n}$
- $E_{Rel} = E_{Ass} / Val_{Vero}$ (e cioè E_{Rel} Val_{Vero}= costante)
- tanto più piccolo è il valore vero da rappresentare tanto maggiore è l'errore relativo che si commette nel rappresentarlo
- a tanto più grande è il valore vero da rappresentare tanto minore è l'errore relativo che si commette nel rappresentarlo

- Virgola mobile
- □ E_{Rel} = costante (= 2-#bit della M)
- E_{Ass} = aumenta all'aumentare del valore valore vero da rappresentare

Errore di quantizzazione: virgola fissa vs. virgola mobile

- 65 -

Esempio

- Numeri in virgola fissa
 - Dato 0.001 ed il suo successivo 0.002
 Errore percentuale:
 (0.002-0.001)/0.001*100 = 100%
 - Dato 100.001 ed il suo successivo 100.002
 Errore percentuale: (100.002-100.001)/100.001*100 = 0.001%
- Numeri in virgola mobile
 - Dato 0.128e-100 ed il suo successivo 0.129e-100
 Errore percentuale: ((0.129e-100-0.128e-100)/0.128e-100)*100 = 0.78125 %
 - Dato 0.128e+100 ed il suo successivo 0.129e+100
 Errore percentuale: ((0.129e+100-0.128e+100)/0.128e+100)*100 = 0.78125 %

- 66 -

Numeri in virgola mobile

Codifica in virgola mobile per i numeri in base 10

Si dice normalizzato un numero in cui $1 \le M < 10$

Codifica in virgola mobile per i numeri in base 2

- In un numero binario in virgola mobile e normalizzato
 - La prima cifra della mantissa è sempre 1 $(1 \le M < 2)$
 - Tale cifra non viene rappresentata esplicitamente

Numeri in virgola mobile - Valori rappresentabili

IEEE standard: Numeri floating-point in singola precisione

S	Е	M
1 bit	8 bit	23 bit
Segno	Esponente	Mantissa

 L'esponente utilizza la codifica in eccesso 127, e cioè il valore effettivo dell'esponente è pari a (E-127)

-	E = 0	e <i>M = 0</i>	Rappresenta lo zero (pos/neg)
-	E = 255	e M = 0	Rappresenta infinito (pos/neg)
-	E = 255	e <i>M !=0</i>	NotANumber
-	0 <e<255< td=""><td></td><td>(-1)^s x 2^(E-127) x (1,M) (127≤E≤254 esp.positivi, 126≤E≤1esp.negativi)</td></e<255<>		(-1) ^s x 2 ^(E-127) x (1,M) (127≤E≤254 esp.positivi, 126≤E≤1esp.negativi)
-	E = 0	e <i>M !=0</i>	(-1)s x 2 ⁻¹²⁶ x (0,M) non normalizzati

- □ Standard IEEE 32 bit: intervallo rappresentato $-1.M \times 10^{-38} \le x \le +1.M \times 10^{38}$
- La precisione consentita è di circa 7 cifre decimali

- 67 -

Numeri in virgola mobile - Valori rappresentabili

Motivazione della rappresentazione non normalizzata

e *M* !=0

(-1)s x 2⁻¹²⁶ x (0,M) non normalizzati

Il valore più piccolo rappresentabile normalizzato è

 $\pm 2^{1-127} \times 1,00...00 = \pm 2^{-126}$

□ che espresso in virgola mobile da E=1 e M = 0

rappresentazione non normalizzata E=0 e M!= 0

Interpretata nel modo seguente:

Valore numerico = $\pm 2^{-126} \times 0$,.....

Il più piccolo valore rappresentabile è

$$\pm 2^{-126} \times 0.00...01 = \pm 2^{-126} \times 2^{-23} = \pm 2^{-149}$$

Operazioni in virgola mobile

- Le operazioni che si possono compiere su numeri in virgola mobile sono:
 - Somma
 - Sottrazione
 - Moltiplicazione
 - Divisione
 - Elevamento a potenza
 - Estrazione di radice
- Inoltre sono definite le operazioni di:
 - Normalizzazione
 - Troncamento

- 70 -

Operazioni in virgola mobile

- L'esecuzione di una operazione in virgola mobile può provocare una eccezione
- Una eccezione è il risultato di una operazione anomala, quale, ad esempio:
 - Divisione per zero
 - Estrazione della radice quadrata di un numero negativo
- Le eccezioni che vengono generate dalle unità aritmetiche in virgola mobile sono:
 - Operazione non valida
 - Divisione per zero
 - Overflow
 - Underflow

Operazioni in virgola mobile: normalizzazione

- Tutte le operazioni descritte nel seguito operano su numeri normalizzati (1 implicito prima della virgola)
- □ Se l'1 implicito manca, la normalizzazione di un numero con mantissa M ed esponente n_i si esegue come segue:
 - Si fa scorrere verso sinistra la mantissa *M* fino al primo uno, compreso; sia k il numero di posizioni di tale scorrimento
 - Si sottrae k all'esponente n

Ad esempio:

 $9_{127} - 3 = 6_{127}$

0 10001000 00101100...

Scorrimento di 3 posizioni 0 10000101 01100...

Ricorda

Scorrimento a sx equivale a moltiplicazione

Scorrimento a dx equivale a divisione

Operazioni in virgola mobile: somma e sottrazione

- La somma o sottrazione tra numeri in virgola mobile viene eseguita secondo i seguenti passi:
 - Si sceglie il numero con esponente minore
 - Si fa scorrere la sua mantissa a destra un numero di bit pari alla differenza dei due esponenti
 - Si assegna all'esponente del risultato il maggiore tra gli esponenti degli
 - Si esegue l'operazione di somma (algebrica) tra le mantisse per determinare il valore ed il segno del risultato
 - Si normalizza il risultato così ottenuto
 - · Non sempre quest'ultima operazione è necessaria
 - · Attenzione!!! Il riporto si può propagare anche dopo la posizione della virgola

- 73 -

Operazioni in virgola mobile: moltiplicazione

- La moltiplicazione tra numeri in virgola mobile viene eseguita secondo i seguenti passi:
 - Si sommano gli esponenti e si sottrae 127
 - Si calcola il risultato della moltiplicazione delle mantisse
 - Si determina il segno del risultato
 - Si normalizza il risultato così ottenuto
 - · Non sempre quest'ultima operazione è necessaria
- La sottrazione di 127 dalla somma degli esponenti è necessaria in quanto sono rappresentati in eccesso 127

$$E_{a,127} = E_a + 127$$

 $E_{b,127} = E_b + 127$
 $E_{axb,127} = E_{axb} + 127 = (E_a + 127) + (E_b + 127) - 127$

- 74 -

Operazioni in virgola mobile : divisione

- La divisione tra numeri in virgola mobile viene eseguita secondo i seguenti passi:
 - Si sottraggono gli esponenti e si somma 127
 - Si calcola il risultato della divisione delle mantisse
 - Si determina il segno del risultato
 - Si normalizza il risultato così ottenuto
 - · Non sempre quest'ultima operazione è necessaria
- La somma di 127 alla differenza degli esponenti è necessaria in quanto sono rappresentati in eccesso 127

$$E_{a,127} = E_a + 127$$

 $E_{b,127} = E_b + 127$
 $E_{a/b,127} = E_{a/b} + 127 = (E_a + 127) - (E_b + 127) + 127$

Operazioni in virgola mobile: troncamento

- Spesso accade di rappresentare i risultati intermedi di una operazione con una precisione maggiore di quella degli operandi e del risultato
- Al termine dell'operazione è necessario effettuare una operazione di troncamento
- Il troncamento serve a rimuovere un certo numero di bit per ottenere una rappresentazione approssimata del risultato
- Si consideri il valore numerico rappresentato dal vettore:

$$B = 0.b_{-1} \dots b_{-(k-1)}b_{-k}b_{-(k+1)} \dots b_{-n}$$

Si voglia effettuare troncamento al bit k-esimo

Operazioni in virgola mobile: troncamento

Chopping

- Consiste nell'ignorare i bit dal *k*-esimo all'*n*-esimo
- Questo metodo è polarizzato o biased
- L'errore è sempre positivo e varia nell'intervallo:

$$0 < \varepsilon < +(2^{-k+1} - 2^{-n})$$

Rounding

- Se il bit k-esimo vale 0, lasciare invariato il bit in posizione (k-1) e ignorare i bit dal k-esimo all'n-esimo
- Se il bit k-esimo vale 1, sommare 1 in posizione (k-1) e ignorare i bit dal k-esimo all'n-esimo
- Questo metodo è simmetrico o unbiased
- L'errore è centrato sullo zero e vale:

$$-(2^{-k+1}-2^{-n})<\varepsilon<+(2^{-k+1}-2^{-n})$$

- 77 -

Architetture per aritmetica in virgola mobile: sommatore

- I circuiti per la realizzazione delle operazioni in virgola mobile sono molto complessi
- Si consideri l'algoritmo per la somma secondo lo standard IEEE Single Precision:
 - Si sceglie il numero con esponente minore e si fa scorrere la sua mantissa a destra un numero di bit pari alla differenza dei due esponenti
 - Si assegna all'esponente del risultato il maggiore tra gli esponenti degli operandi
 - Si esegue l'operazione di somma tra le mantisse per determinare il valore ed il segno del risultato
 - Si normalizza il risultato cosi' ottenuto
 - · Non sempre quest'ultima operazione è necessaria

Nota:

- se A o B = $\pm \infty$
- se $A \circ B = 0$
- se la differenza tra gli esponenti è maggiore o uguale al numero di bit a disposizione per le mantisse
- è inutile fare la somma

- 78 -

Sommatore in virgola mobile [1]

- Nel seguito viene sviluppato un sommatore floating point
- I numeri A e B sono rappresentati
 - Su 32 bit
 - Secondo lo standard IEEE Single Precision
- Gli operandi A e B sono composti come segue:

$$A = \{ S_A, E_A, M_A \}$$

$$B = \{ S_B, E_B, M_B \}$$

- In cui:
 - S_{A} , S_{B} Segno, 1 bit
 - E_A , E_B Esponente in eccesso 127, 8 bit
 - M_A , M_B Mantissa, 23 bit

Sommatore in virgola mobile [2]

Passo 1

- Si sceglie il numero con esponente minore e si fa scorrere la sua mantissa a destra un numero di bit pari alla differenza dei due esponenti
- Richiede le seguenti operazioni:
 - Individuazione dell'esponente minore E_{min}
 - Calcolo della differenza tra gli esponenti $d = |E_A E_B|$
 - Selezione della mantissa dell'operando con esponente M_{Emin}
 - Scorrimento della mantissa M_{Emin} di d posizioni a dx (tenendo conto dell'1 implicito)
- \Box Il calcolo della differenza tra gli esponenti consente allo stesso tempo (analizzandone il segno S_F) di individuare l'esponente minore

Sommatore in virgola mobile [3

- Questa prima sezione del sommatore calcola:
 - M_1 La mantissa del numero con esponente minore, opportunamente shiftata
 - M₂ La mantissa del numero con esponente maggiore

- 81 -

Sommatore in virgola mobile [4]

- Passo 2
 - Si assegna all'esponente del risultato il maggiore tra gli esponenti degli operandi
- Richiede le seguenti operazioni:
 - Selezione dell'esponente minore E_{max} in base a S_E .
 - Si riutilizza il segno S_F della differenza tra gli esponenti

- 82 -

Sommatore in virgola mobile [5]

- Passo 3
 - Si esegue l'operazione di somma tra le mantisse per determinare il valore ed il segno del risultato
- Richiede le seguenti operazioni:
 - Calcolo della somma algebrica M_{12} delle mantisse M_1 ed M_2 ottenute al primo passo, e relativo segno
 - Si utilizza un sommatore/sottrattore su 24 bit con riporto

Sommatore in virgola mobile [6]

- Se C_{out} = 0 e M_{12} normalizzata $E = E_{max}$
- Passo 4
 - Si normalizza il risultato così ottenuto
- Richiede le seguenti operazioni
 - Se C_{out} = 1, Shdx M_{12} e $E = E_{max} + 1$, eventuale troncamento
- □ Altrimenti (C_{out} = 0 e M_{12} non normalizzata)
 - Individuazione del numero z degli zeri nei bit più significativi della mantissa M_{12}
 - Shift sx della mantissa M₁₂
 - Calcolo del nuovo esponente $E = E_{max}$ z
 - A tale scopo sono necessari:
 - · Un circuito per il calcolo dei leading zeroes
 - · Un sottrattore su 8 bit
 - · Uno *shifter* per l'allineamento della mantissa

Sommatore in virgola mobile [7]

THE NAME OF THE PARTY OF THE PA

Sommatore in virgola mobile [8]

- 86