BANK MARKETING CASE STUDY

☐ PROBLEM STATEMENT

- A Portuguese banking institution wants to predict whether a client will subscribe a term deposit after their direct marketing campaigns(phone calls)
- We need to build a ML Classification model which reduces the resource and time loss of the company and correctly predict a customer who will subscribe for a term deposit.

□ STRATEGY

- Import data
- Clean and prepare the acquired data for further analysis
- Exploratory data analysis for figuring out most helpful attributes for subscribing
- Scaling features
- Prepare the data for model building
- Build a Logistic Regression, Random Forest and Decision Tree based models
- Handling Imbalanced data using Random Oversampling, Random Under-sampling, SMOTE and SMOTE+TOMEK approach
- Hyper-parameter tuning of the model
- Choosing the best approach among all data imbalance techniques from the Evaluation metrics obtained
- Fine tuning the model on the chosen approach
- Finalising the model with best performance metrics

☐ EXPLORATORY DATA ANALYSIS

Job vs TargetVariable

We see that clients from management, blue collar, technician, admin, retired background are more likely to subscribe to a term deposit.

Marital Status Vs Target Variable

 We see that married clients are more likely to take a term deposit

Loan Vs Target Variable

 Clients who have not taken any loan might take a term deposit than the ones who have taken loan

Housing Loan Vs Target Variable

 Similarly, if a client has not taken any housing loan are more likely to subscribe for a term deposit

Age Vs Target Variable

 We see that people having slightly more median age is likely to subscribe for term deposit

Balance Vs Target Variable

 Minimum balance and upper quartile is also more for people who opt for term deposit

■ MODEL BUILDING

- Splitting into train and test set
- Scale variables in train set
- Build Logistics Regression, Random Forest and Decision Tree Based model without resampling the data
- Further with hyper parameter tuning built Logistic Regression and Random Forest model after resampling the data using random oversampling, random under- sampling, SMOTE, SMOTE+TOMEK
- As we want the precision to be high, we will be taking random oversampling in the final model
- Fine tuned the model with random oversampled data
- Metrics such as accuracy, precision, recall, F1 score and AUC was used to determine the model performance

□ PERFORMANCE METRICS

Without applying hyper parameter tuning and sampling techniques :

- Logistic Regression Performance :
 - Accuracy 0.89
 - FI Score 0.22
 - Recall 0.13
 - Precision 0.68
 - AUC 0.70

- Random Forest Performance :
 - Accuracy 0.89
 - FI Score 0.2
 - Recall 0.12
 - Precision 0.63
 - AUC 0.71

- Decision Tree Performance :
 - Accuracy 0.81
 - F1 Score 0.21
 - Recall 0.21
 - Precision 0.20
 - AUC 0.55

PERFORMANCE METRICS

After applying hyper parameter tuning and sampling techniques:

- We applied different sampling techniques and found random over sampling to give highest precision and with highest AUC as 0.71
 - Accuracy 0.88
 - FI Score 0.31
 - Recall 0.24
 - Precision 0.43
 - AUC 0.71

PERFORMANCE METRICS

Further we checked performance of each parameters and did the fine tuning of the model

- Accuracy 0.88
- FI Score 0.27
- Recall 0.19
- Precision 0.475
- AUC 0.72

We see that the Area under curve(AUC) increased by 1%.

LIMITATIONS AND FUTURE SCOPE

- Further in the next campaign we should target married clients
- Clients with jobs in management, blue collar, admin
- Clients who do not have high loans taken
- The top 3 features in prediction balance, age, month
- In future we need more samples of clients who have taken a term deposit so model can be trained in different patterns of client behavior who will subscribe for a term deposit