UNIVESIDAD NACIONAL DE INGENIERÍA FACULTAD DE CIENCIAS ESCUELA PROFESIONAL DE FÍSICA

CF-034 25.06.2020

Métodos Numéricos Práctica 1

1. (5 puntos) Considere el siguiente circuito donde todas las ressitencias R son idénticas

- Determine el sistema lineal de ecuaciones para los potenciales V_1 , V_2 , V_3 y V_4 . (2 puntos)
- Considerando $R = 1\Omega$ y $V_+ = 5V$, resuelva el sistema lineal con el método de eliminación de Gauss, descomposición LU y descomposición de Cholesky.
- 2. (5 puntos) Considere el sistema de masas y resortes mostrado en la figura

Mostrar que las ecuaciones del sitema son

$$\begin{aligned} \ddot{x}_1 + \left(\frac{k_1 + k_2}{m_1}\right) x_1 - \left(\frac{k_2}{m_1}\right) x_2 &= 0\\ \ddot{x}_2 - \left(\frac{k_2}{m_2}\right) x_1 + \left(\frac{k_2 + k_3}{m_2}\right) x_2 - \left(\frac{k_3}{m_2}\right) x_3 &= 0\\ \ddot{x}_3 - \left(\frac{k_3}{m_3}\right) x_2 + \left(\frac{k_3 + k_4}{m_3}\right) x_3 &= 0 \end{aligned}$$

donde x_i son los deplazamientos con respecto a las posiciones de equilibrio de cada masa. (2 puntos)

■ Determine los desplazamientos x_i cuando $\ddot{x}_1 = 1m/s^2, \ddot{x}_2 = -1, 2m/s^2, \ddot{x}_3 = -1, 3m/s^2$. Use los métodos de eliminación de Gauss, descomposición LU y descomposición de Cholesky

Considere $m_1 = 2kg$, $m_2 = 0.5kg$, $m_3 = 0.3kg$ y $k_1 = k_2 = k_3 = k_4 = 0.5N/m$.

- 3. (5 puntos) Considere un anillo de radio a con distribución de carga $Q = Q_0 sen(\theta^2)$ y una carga q localizada a una distancia x del centro del anillo.
 - \blacksquare Encontar las componentes de la fuerza eléctrica F_x y F_y que actúan sobre la carga q. (2 puntos)

- Gráficar las componentes F_x , F_y ($x \in [-10, 10]$) y la magnitud de la fuerza eléctrica F ($x \in [0, 10]$)
- Encontrar la distancia x a la cual $F_x = 1,56N$. Use tres métodos distintos mostrando el error aproximado en cada interación.
- Encontrar la distancia x a la cual $F_y = -2{,}17N$. Use tres métodos distintos mostrando el error aproximado en cada interación.

Para la gráfica y parte numérica considerar : a = 2m, $q = 1 \times 10^{-4}C$, $Q_0 = 2 \times 10^{-5}C$,

4. (5 puntos) De acuerdo con el principio de Arquímedes, la fuerza de flotación es igual al peso del fluido desplazado por la porción del objeto sumergido.

Muestre que

$$V = \frac{\pi h^2}{3} (3r - h)$$

es el volumen de la porción de la esfera por encima del agua. (2 puntos)

lacktriangle Para la esfera mostrada, determine la altura h de la parte que se encuentra sobre el agua. Use dos métodos distintos mostrando el error aproximado en cada interación.

Use los siguientes valores para el calculo: r=1m, densidad de la esfera $\rho_s=200kg/m^3$, densidad del agua $\rho_{H2O}=1000kg/m^3$

Total: 20 puntos.