תרגיל בית 11

2025 ביוני 26

 $L_i(p)=p(t_i)$ ע"י $L_i:V o\mathbb{R}$ יהי שונים. נגדיר מספרים ממשיים $t_1,t_2,t_3\in\mathbb{R}$ ויהיו $V=\mathbb{R}_{\leq 2}$ יהי רגיל $V=\mathbb{R}_{\leq 2}$

 $.V^st$ הם בסיס מהווים לינאריים מונקציונלים בסיס ל L_1,L_2,L_3 א.

ב. מצאו בסיס של V עבורו הבסיס מסעיף א הוא הבסיס V

D ג. תהי $V \leftarrow D$ העתקת הנגזרת. מצאו את הייצוג של א בבסיס מסעיף א' ומצאו את הייצוג של בבסיס מסעיף ב'.

 $Tegin{pmatrix}x\\y\\z\end{pmatrix}=y-x+2z$ נסתכל על המרחב הוקטורי \mathbb{R}^3 עם הבסיס הסטנדרטי. נגדיר את ההעתקה הלינארית עם $v\in\mathbb{R}^3$ מתקיים ש $v\in\mathbb{R}^3$ מתקיים ש

$$T(u) = v^T u$$

עכשיו נעבור להסתכל על המרחב לפי הבסיס

$$B = \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\3 \end{pmatrix} \right\}$$

מעקיים ש $u\in\mathbb{R}^3$ עבורו לכל $w\in\mathbb{R}^3$ מתקיים ש

$$T(u) = w^T[u]_B$$

על ידי שנפרש שלו שנפרש על תת המרחב שלו שנפרש על ידי \mathbb{R}^4 ועל המרחב שלו שנפרש על ידי

$$V = span \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 3 \\ -1 \end{pmatrix} \right\}$$

 ${\it LV}$ מצאו בסיס למרחב המאפס של

תרגיל 4 נסתכל על הבסיס

$$B = \left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\2 \end{pmatrix} \right\}$$

באמצעות הוקטורים: B=(v1,v2,v3) נגדיר בסיס הדואלי ל B=(v1,v2,v3) נגדיר בסיס הדואלי ל

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}.$$

 B^* מצאו את הבסיס B^* הדואלי

 $C=(\phi_1,...,\phi_n)$ ויהי V ויהי של מ"ו $B=(v_1,...,v_n)$ תת קבוצה סדורה כלשהי של $B=(v_1,...,v_n)$ איז הרכרת בהכרח $A_{ij}=\phi_i(v_j)$ בסיס ביסיס לא בהכרח בהכרח בהכרח ביסיס לא

:כך שמתקיים ס $\phi_1,\phi_2\in V^*$ ויהיו ע" מ"ו היי לVיהי ל

$$\forall v \in V : \phi_1(v) \ge 0 \implies \phi_2(v) \ge 0.$$

הוכיחו ש ϕ_1,ϕ_2 תלויים לינארית.

 $\phi_1,...,\phi_n\in V^*$ הוכיחו שישנם W הוכיח בסיס סדור של נ"ס ויהי נ"ס ויהי נ"ס ויהי מרחבים ל $T:V\to W$ הוכיחו לבין שמתקיים:

$$\forall v \in V : T(v) = \sum_{i=1}^{n} \phi_i(v) w_i.$$

 $\phi(v)=\phi_1(v)\cdot\phi_2(v)$ מ"ו נ"ס מעל $\mathbb R$ ויהיו $\phi_1,\phi_2\in V^*$. הוכיחו שהפונקציה $\phi_1,\phi_2\in V^*$ המוגדרת לפי V מ"ו נ"ס מעל האפס. האם זה נכון מעל כל שדה?