Enhanced Inventory Management

Arjit Verma
Hangyang Shen
Roberto Reyes
Rosie Wang
Sesha Jonnavithula

About the dataset - Spirits LLC

- A liquor retailer with 79 stores across 67 cities in England.
- Inventory data as of 1st January and as of 31st December.
- Sales data for the month of January.
- Purchase data from 1st January to 31st December.
- 116 vendors and their invoice data over the year.

Methodology

Process of Data Extraction and Analysis

- Cleaning up data and creating coherent data frames from the several csv files.
- Proposing hypotheses for correlations and checking if the data supported them.
- Understanding the economic factors involved in efficient inventory management.
- Understanding and analyzing the data, and plotting any correlations.

Primary Insights

Stock Quantity and Average Price

Observations from Stock Data as of 1st January

- Stores do not hold a uniform quantity of stock.
- Average price per bottle also differs from store to store.
- Stores that held more stock, also had a higher average price per bottle.

Observed Correlation

88% correlation found

- The stock quantity held in each store, is correlated with the average price per bottle held.
- Stores holding higher quantities might cater to wider markets.
- The larger stores might be more popular with the wealthier drinkers.

Discrepancy between held stock and profitable stock

- Only 1 of the top 5 most profitable products was held in the top 5 quantities.
- This highlights the need to better manage inventory to optimize profits.
 - The profitable products may be running out of stock.
 - The non-profitable/stagnant products may be held in unnecessary quantities.

Categorization of Products held in stock

Stock Movement Analysis

- Analysed stock movement data from inventory data and purchase data.
- Observed that of the products held:
 - 56% of them are ~75% stagnant.
 - 35% of them are slow moving, or are ~30-75% stagnant.
 - 7% are nearing re-order levels with < 30% stock stagnated.
 - o 2% have run out of stock.

Economic Order Quantity Analysis

- Used sales, purchase and inventory data to perform EOQ analysis.
- Limited sales data only covered a subset of all products.
- For the products covered, we observed:
 - Select few products were held in insufficient amount.
 - Majority of products were held in excess.

Sales Insights

Categorization of Cities by Sales Volume

6% of the cities contributed to 29.9% of the total sales.

5x its weight factor

6% of the cities contributed to 18% of the total sales.

3x its weight factor

88% of the cities contributed to 52% of the total sales.

0.6x its weight factor

UC San Diego

Sales Distribution across Cities

- City populations and drinking cultures are major reasons for the uneven distribution.
- https://www.teamdoncaster.org.uk/Documents/DocumentView/Stream/Media/Tena nt2/Data%20Observatory/Drugs%20Alcohol%20HNA.pdf

UC San Diego

Sales Pattern

- Over the month of January, sales followed a very regular pattern.
- The last Friday of the month had higher sales, possibly due to salary credits.
- This pattern repeated on a weekly basis.
 - Fridays and Saturdays had significantly higher alcohol sales.
 - Mondays had the least alcohol sales (no surprises there).

Purchase Insights

Trade Credit Time for the Vendors

Most vendors seem to extend around **36 days** of trade credit.

Delivery Lead Time for the Vendors

Most vendors seem to take about **7-8 days** to deliver the products after a purchase order was placed.

Demand Forecasting

Experiments with various models

Model	MAE	MSE
Linear Regression	3.41	54.56
Ridge Regression	3.41	54.56
Random Forest	2.56	29.25
KNN	2.7	33.86

Demand Forecasting

Observations

