

Generated Sigma Algebra

1 Why

A simple way to obtain a sigma algebra, is to ask it to obtain some sets, and then to ask it to contain all the sets it needs to fulfill the properties.

2 Definition

The **generated sigma algebra** for a set of subsets is the smallest sigma algebra containing the set of subsets.

Proposition 1. The intersection of a non-empty set of sigma algebras is a sigma algebra.

On the other hand, the union of a set of sigma algebras can fail to be a sigma algebra.

Proposition 2. Let A be and A a set of subsets.

There is a smallest sigma algebra containing A.

2.1 Notation

Let A be a set and $A \subset 2^A$. We denote the subset algebra of A and A by (A, A), read aloud as "A, script A."

3 Examples

Example 3. For any set A, 2^A is a sigma algebra.

Example 4. For any set A, $\{A, \emptyset\}$ is a sigma algebra.

Example 5. Let A be an infinite set. Let A the collection of finite subsets of A. A is not a sigma algebra.

Example 6. Let A be an infinite set. Let A be the collection subsets of A such that the set or its complement is finite. A is not a sigma algebra.

Proposition 7. The intersection of a family of sigma algebras is a sigma algebra.

Example 8. For any infinite set A, let A be the set

$$\{B \subset A \mid |B| \le \aleph_0 \lor |C_A(B)| \le \aleph_0\}.$$

A is an algebra; the countable/co-countable algebra.

4 Generation

Proposition 9. Let A a set and \mathcal{B} a set of subsets. There is a unique smallest sigma algebra (A, \mathcal{A}) with $\mathcal{B} \subset \mathcal{A}$.

We call the unique smallest sigma algebra containing B the **generated sigma algebra** of B.