

Learning Stage 2: Basic Analysis Tools

- ▶ Chapter 5
 - Present Worth Analysis
- ▶ Chapter 6
 - Annual Worth Analysis
- ▶ Chapter 7
 - ▶ Rate of Return Analysis: One Project
- ▶ Chapter 8
 - ▶ Rate of Return Analysis: Multiple Alternatives
- ▶ Chapter 9
 - ▶ Benefit/Cost Analysis and Public Sector Economics

١

LEARNING OUTCOMES

- Purpose:
 - Select the best alternative on the basis of incremental rate of return analysis.
 - 1. Why incremental analysis is required in ROR
- 2. Incremental cash flow (CF) calculation
- 3. Interpretation of ROR on incremental CF
- 4. Select alternative by ROR based on PW relation
- 5. Select alternative by ROR based on AW relation
- 6. Select best from several alternatives using ROR method

۲

Engineering Economics

Why Incremental Analysis is Necessary (1)

- Selecting the alternative with highest ROR may not
 - yield highest return on available capital
- Must consider weighted average of total capital available
 - ▶ Capital not invested in a project is assumed to earn at MARR
- Example: Assume \$90,000 is available for investment and MARR = 16% per year.
 - ▶ If alternative A would earn 35% per year on investment of \$50,000, and B would earn 29% per year on investment of \$85,000, the weighted averages are:

```
Overall ROR_A = [50,000(0.35) + 40,000(0.16)]/90,000 = 26.6\%
Overall ROR_B = [85,000(0.29) + 5,000(0.16)]/90,000 = 28.3\%
```

Which investment is better, economically?

Why Incremental Analysis is Necessary (2)

- ▶ Example cont'd
 - ▶ If selection basis is higher ROR:
 - ▶ Select alternative A (wrong answer)
 - ▶ If selection basis is higher overall ROR:
 - ▶ Select alternative B
 - ▶ Conclusion:
 - Must use an incremental ROR analysis to make a consistently correct selection
- Unlike PW, AW, and FW values, if not analyzed correctly,
 - ▶ ROR values can lead to an incorrect alternative selection.
 - This is called the ranking inconsistency problem (to be discussed later)

_ _

Engineering Economics

Calculation of Incremental CF

- ▶ Incremental cash flow = cash flow_B − cash flow_A
 - where larger initial investment is Alternative B
- **Example:** Either of the cost alternatives shown below can be used in a grinding process.
 - ▶ Tabulate the incremental cash flows.

	A	В	B-A
First cost, \$	-40,000	-60,000	-20,000
Annual cost, \$/year	-25,000	-19,000	+6000
Salvage value, \$	8,000	10,000	+ 2000

The incremental CF is shown in the (B - A) column

▶ The ROR on the extra \$20,000 investment in B determines which alternative to select (as discussed later)

Engineering Economics

٣

Interpretation of ROR on Extra Investment

- ▶ Based on concept that any avoidable investment
 - that does not yield at least the MARR should not be made.
- Once a lower-cost alternative has been economically justified,
 - ▶ the ROR on the extra investment must also yield a ROR \geq MARR
 - because the extra investment is avoidable by selecting the economically-justified lower-cost alternative.
- ▶ This incremental ROR is identified as ∆i*

For independent projects, select all that have ROR ≥ MARR i.e., no incremental analysis is necessary

٧

Engineering Economics

ROR Evaluation for Two ME Alternatives

- (1) Order alternatives by increasing initial investment cost
- (2) Develop incremental CF series using LCM of years
- (3) Draw incremental cash flow diagram, if needed
- (4) Count sign changes to see if multiple Δi^* values exist
- (5) Set up PW, AW, or FW = 0 relation and find Δi*_{B-A}

 Note: Incremental ROR analysis requires equal-service comparison.

 The LCM of lives must be used in the relation
- (6) If $\Delta i^*_{B-A} < MARR$, select A; otherwise, select B

If multiple Δi* values exist, find EROR using either MIRR or ROIC approach.

Example: Incremental ROR Evaluation

- **Example:** Either of the cost alternatives shown below can be used in a chemical refining process.
 - ▶ If the company's MARR is 15% per year, determine which should be selected on the basis of ROR analysis?

	A	В
First cost ,\$	-40,000	-60,000
Annual cost, \$/year	-25,000	-19,000
Salvage value, \$	8,000	10,000
Life, years	5	5

▶ Initial observations: ME, cost alternatives with equal life estimates and no multiple ROR values indicated

٩

Engineering Economics

Example: ROR Evaluation of Two Alternatives

▶ Solution, using the procedure:

	A	В	B-A
First cost, \$	-40,000	-60,000	-20,000
Annual cost, \$/year	-25,000	-19,000	+6000
Salvage value, \$	8,000	10,000	+2000
Life, years	5	5	

Order by first cost and find incremental cash flow B - A

Write ROR equation (in terms of PW, AW, or FW) on incremental CF

 $0 = -20,000 + 6000(P/A, \Delta i^*, 5) + 2000(P/F, \Delta i^*, 5)$ Solve for Δi^* and compare to MARR

 $\Delta i^*_{B-A} = 17.2\% > MARR \text{ of } 15\%$

ROR on \$20,000 extra investment is acceptable: Select B

1

ROR Analysis – Multiple Alternatives

- ▶ Six-Step Procedure for Mutually Exclusive Alternatives
 - ▶ 1) Order alternatives from smallest to largest initial investment
 - 2) For revenue alts, calculate i* (vs. DN) and eliminate all with i*
 MARR; remaining alternative with lowest cost is defender.
 - ▶ For cost alternatives, go to step 3
 - ▶ 3) Determine incremental CF between defender and next lowest-cost alternative (known as the challenger). Set up ROR relation
 - ▶ 4) Calculate Δi* on incremental CF between two alternatives from step 3
 - 5) If ∆i* ≥ MARR, eliminate defender and challenger becomes new defender against next alternative on list
 - ▶ 6) Repeat steps 3 5 until only one alternative remains then Select it.
- ▶ For Independent Projects
 - Compare each alternative vs. DN and select all with ROR ≥ MARR

Example: ROR for Multiple Alternatives

- Five mutually exclusive alternatives are under consideration for improving visitor safety and access to additional areas of a national park.
 - If all alternatives are considered to last indefinitely, determine which should be selected on the basis of a ROR analysis using an interest rate of 10%.

```
A B C D E
First cost, $ millions -20 -40 -35 -90 -70
Annual M&O cost, $ millions -2 -1.5 -1.9 -1.1 -1.3
```

Solution: Rank on the basis of initial cost: A, C, B, E, D; calculate CC values

```
C vs. A: 0 = -15 + 0.1/0.1 \Delta i^* = 6.7\% eliminate C
B vs. A: 0 = -20 + 0.5/0.1 \Delta i^* = 25\% eliminate A
E vs. B: 0 = -30 + 0.2/0.1 \Delta i^* = 6.7\% eliminate E
D vs. B: 0 = -50 + 0.4/0.1 \Delta i^* = 8\% eliminate D So, Select alternative B
```

15

Engineering Economics

Multiple Alternatives with unknown MARR

- Using Network
 - ▶ Compare ME alternatives with/without DN
- How to draw Network
 - Nodes: alternatives
 - Edges: ΔROR of pairs of origin/destination Alternatives
- Objective
 - ▶ Find conditions for selecting of the alternatives
 - ▶ Start from the least Initial Cost & go to the most Initial Cost Alt.
 - ▶ In case of having more than one route, select one with the largest $\triangle ROR$
- **Evaluation:**
 - ▶ If MARR \geq an edge \triangle ROR then the origin alt. is justified
 - ▶ If MARR < an edge \triangle ROR then the destination alt. is justified

1 1 2

Multiple Alternatives with unknown MARR

- **Example:**
 - Consider the following infinite alternatives with unknown MARR. Derive the conditions for selection of the Alts with/without DN.

A

C

Initial cost

2000

3000

4000

Annual revenue

-100

150

 \mathbf{B}

320

Solution: without DN

 \triangle AROR_{B-A} = 1000/250 = 25%

 $\triangle ROR_{C-A} = 2000/420 = 21\%$

 $\triangle ROR_{C-B} = 1000/170 \ 17\%$

10

Engineering Economics

Multiple Alternatives with unknown MARR

- ▶ Solution: without DN
 - MARR > 25%, then Select A
 - ▶ If $25\% \ge MARR > 17\%$, then select B
 - ▶ If 17% ≥ MARR , then Select C
- ▶ Solution: with DN

► NPW_A = 0
$$\rightarrow$$
 2000 = -100/i \rightarrow i= -0.05

► NPW_B =
$$0 \rightarrow 3000 = 150/i \rightarrow i = 0.05$$

▶ NPW_C = 0 →
$$4000 = 320/i$$
 → $i = 0.08$

- Now write the conditions
 - ▶ If MARR > 8%, then Select DN
 - ▶ If MARR \leq 8%, then Select C

٨

Engineering Economics

Α

25%

В

8%

21%

Summary of Important Points

- Must consider incremental cash flows for mutually exclusive alternatives
 - Incremental cash flow = cash flow_B cash flow_A
 - ▶ where alternative with larger initial investment is Alternative B
 - ▶ Eliminate B if incremental ROR $\Delta i^* < MARR$; otherwise, eliminate A
- Breakeven ROR is i* between project cash flows of two alternatives, or Δi* between incremental cash flows of two alternatives
- ▶ For multiple mutually exclusive alternatives,
 - compare two at a time and eliminate alternatives until only one remains
- ▶ For independent alternatives,
 - ▶ compare each against DN and select all that have ROR ≥ MARR

1 1 1