Graph Terminology and Special Types of Graphs

Section 10.2

Basic Terminology

Undirected Graphs G=(V, E)

- Two vertices, u and v in an undirected graph G are called adjacent (or neighbors) in G, if {u, v} is an edge of G.
- An edge e connecting u and v is called incident with vertices u and v, or is said to connect u and v.
- The vertices u and v are called endpoints of edge {u, v}.
- Loop: an edge connects a vertex to itself.
- The neighborhood of v (N(v)): the set of all neighbors of a vertex v
- The degree of a vertex in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex

Notation: deg(v)

- > If deg(v) = 0, v is called isolated.
- If deg(v) = 1, v is called pendant.

Find the degree of all the vertices.

$$deg(a) = 3 deg(6) = 3 deg(c) = 4 deg(d) = 5$$

$$deg(f) = 1 deg(g) = 0$$

TOTAL of degrees =
$$3 + 3 + 4 + 5 + 1 + 0 = 16$$

TOTAL NUMBER OF EDGES = 8

[Theorem 1] The Handshaking Theorem

Let G = (V, E) be an undirected graph G with e edges. Then

 $\sum_{v \in V} \deg(v) = 2e$

The sum of the degrees over all the vertices equals twice the number of edges.

Proof:

Each edge represents contributes twice to the degree count of all vertices.

Note:

This applies even if multiple edges and loops are present.

Questions:

- 1. The sum, over the set of people at a party, of the number of people a person has shaken hands with, is even?
- 2. How many edges are there in a graph with 10 vertices each of degree 6?
- 3. If a graph has 5 vertices, can each vertex have degree 3? 4?
 - The sum is 3.5 = 15 which is an odd number.
 Not possible.
 - The sum is 20 = 2 | E | and 20/2 = 10.
 May be possible.

[Theorem 2] An undirected graph has an even number of vertices of odd degree.

Proof:

Let V_1, V_2 be the set of vertices of even degree and the set of vertices of odd degree, respectively.

$$\sum_{v \in V_1} d(v) + \sum_{v \in V_2} d(v) = 2m$$

Questions:

- 1. Is it possible to have a graph with 3 vertices each of which has degree 3?
- 2. Is it possible that a graph has a sequence of degrees (3,3,2,3) or (5,2,3,1,4)?
- 3. Show that among 9 factories,
 - It is impossible that each factory has business relation only with other three factories.
 - It is impossible that only four factories have business relation with factories with even number.
- 4. G is an nonempty simple graph, then there must exist vertices with same degrees.

Directed Graphs G=(V, E)

Let (u, v) be an edge in G. Then u is an initial vertex and is adjacent to v and v is a terminal vertex and is adjacent from u.

The in degree of a vertex v, denoted $deg^-(v)$ is the number of edges which terminate at v.

Similarly, the out degree of v, denoted $deg^+(v)$, is the number of edges which initiate at v.

underlying undirected graph

[Theorem 3] Let G = (V, E) be a graph with direct edges. Then

$$\sum_{v \in V} d^{+}(v) = \sum_{v \in V} d^{-}(v) = |E|$$

Some Special Simple Graphs

- (1) Complete Graphs K_n: the simple graph with
 - n vertices
 - exactly one edge between every pair of distinct vertices.
 - The graphs K_n for n=1,2,3,4,5.

Qusetion: The number of edges in K_n ?

(2) Cycles C_n (n>2)

$$C_n=(V,E)$$
, where $V=\{v_1,v_2,...,v_n\}$,
$$E=\{(v_1,v_2),(v_2,v_3),...,(v_{n-1},v_n),(v_n,v_1)\}, n \ge 3$$

• The cycles C_n for n=3,4,5,6.

(3) Wheels W_n (n>2)

Add one additional vertex to the cycle C_n and add an edge from each vertex to the new vertex to produce W_n .

• The Wheels W_n for n=3,4,5,6.

 W_5

 W_6

(4) n-Cubes Q_n (n>0)

 $Q_n = \langle V, E \rangle$ is the graph with 2^n vertices representing bit strings of length n, where

$$V=\{v \mid v=a_1a_2...a_n, a_i=0,1, i=1,2,...,n\}$$

 $E=\{(u,v) \mid u,v \in V \land u \text{ and } v \text{ differ by one bit position}\}.$

• The n-Cubes Q_n for n=1,2,3

Construct Q_{n+1} from Q_n :

- making two copies of $Q_{\rm n}$, prefacing the labels on the vertices with a 0 in one copy and with a 1 in the other copy
- adding edges connecting two vertices that have labels differing only in the first bit

 Q_4

Bipartite Graphs

- ◆ A simple graph G is bipartite if V can be partitioned into two disjoint subsets V₁ and V₂ such that every edge connects a vertex in V₁ and a vertex in V₂.
- igoplus the pair $\{V_{1,}, V_{2}\}$ is called a bipartition of the vertex V of G.

 C_3 is not bipartite

Bipartite Graphs

♦ The complete bipartite graph is the simple graph that has its vertex set partitioned into two subsets V_1 and V_2 with m and n vertices, respectively, and every vertex in V_1 is connected to every vertex in V_2 , denoted by $K_{m,n}$, where $m = |V_1|$ and $n = |V_2|$.

[Theorem 4] A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof:

- (1) Suppose that G=(V,E) is a bipartite simple graph. Then $V=V_1\cup V_2$, where V_1,V_2 are disjoint sets and every edge in E connects a vertex in V_1 and a vertex in V_2 .
- (2) Suppose that it is possible to assign colors to the vertices of the graph using just two colors so that no two adjacent vertices are assigned the same color.

Regular graph

- ◆ A simply graph is called regular if every vertex of this graph has the same degree.
- ◆ A regular graph is called n-regular if every vertex in this graph has degree n.

- (1) k_n is a (n-1)-regular.
- (2) For which values of m and n is $K_{m,n}$ regular?

Some applications of special types of graphs

Local Area Networks.

Star topology

Ring topology

Hybrid topology

New Graphs From Old

♦Subgraph

$$G=(V, E), H=(W, F)$$

- H is a *subgraph* of G if $W \subseteq V, F \subseteq E$.
- subgraph H is a proper subgraph of G if $H \neq G$.
- H is a spanning subgraph of G if $W = V, F \subseteq E$.

 K_5

 C_5 is subgraph of K_5

Question:

How many subgraphs with at least one vertex does W_3 have?

$$C(4,1) + C(4,2) \times 2 + C(4,3) \times 2^3 + C(4,4) \times 2^6$$

Subgraph induced by a subset of V

Let G=(V,E) be a simple graph. The subgraph induced by a subset W of the vertex set V is the graph (W,F), where the edge set F contains an edge in E iff both endpoints of this edge are in W.

◆ Removing edges of a graph

$$G-e = (V, E-\{e\})$$

Adding edges to a graph

$$G+e = (V,E \cup \{e\})$$

◆ Edge contration

Remove an edge e with endpoints u and v, merge u and v into a new single vertex w, and for each edge with u or v as an endpoint replaces the edge with one with w as endpoint in place of u and v and with the same second endpoint.

Removing vertices from a graph

G-v = (V-v, E'), where E' is the set of edges of G not incident to v

• Graph Union

The union of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V = V_1 \cup V_2$ and edge set $E = E_1 \cup E_2$.

Notation: $G_1 \cup G_2$

$$G_1 \cup G_2 = K_5$$

Homework:

Seventh Edition:

P. 665 5,21-25,41,53,60

