EJERCICIOS TEMA 1

HERRAMIENTAS MATEMATICAS DE LOCALIZACION

- 1. Los números complejos pueden utilizarse para realizar rotaciones en 2D.
 - a. Indique por qué número complejo tenemos que multiplicar al número 3+2i para rotarlo 45° a la izquierda, sin modificar su módulo.
 - b. Calcule el resultado de la rotación anterior.
 - c. ¿Qué operación tenemos que hacer para que en vez de rotarlo hacia la izquierda lo rotemos hacia la derecha?
- 2. Considere los sistemas de coordenadas OXY y OUV de la figura.

La matriz de rotación del sistema de coordenadas OXY al sistema de coordenadas OUV es:

$$\mathbf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

- Calcule el punto p_{UV} sabiendo que el punto equivalente en el sistema OXY es p_{XY} =(2,4)
- Calcule el punto p_{XY} sabiendo que el punto equivalente en el sistema OUV es p_{UV} =(1,3)
- 3. Calcular la matriz de rotación 2D necesaria para que el punto p_{UV} =[1,2] en el sistema OUV, sea el punto p_{XY} =[-1,2] en el sistema OXY
- 4. ¿Existe alguna matriz de rotación 2D que rote el punto p_{UV} =[1,2] en el sistema OUV al punto p_{XY} =[-2,-2]? Demuéstrelo
- 5. Obtener la matriz de rotación de un sistema fijo {A} que gira 3 veces hasta convertirse en el sistema {B}:
 - Rotación de un ángulo θ sobre el eje OZ stma rojo
 - Rotación de un ángulo φ sobre el eje OY stma verde
 - 3 Rotación de un ángulo α sobre el eje OX stma azul

CURSO 20-21

- 6. Obtener la matriz de rotación de un sistema fijo $\{A\}$ que gira 3 veces hasta convertirse en el sistema $\{C\}$:
 - 1 Rotación de un ángulo θ sobre el eje OW

 - 3 Rotación de un ángulo α sobre el eje OX

7. La caja de la figura se mueve desde la posición inicial 1 a la 2 y finalmente a la 3. Determinar cual es la matriz de rotación que coloca la pieza desde la posición 1 a la 3.

8. Obtener la matriz de transformación homogénea que relaciona el sistema móvil $\{S'\}$ con respecto el fijo $\{S\}$ si los cambios son los siguientes

- ▶ 1 giro 90° en el eje X respecto al stma fijo
- ▶ 2 giro 90° en el eje Z respecto del stma móvil
- 3 traslado el vector (4,5,-3) respecto del stma fijo
- 4 giro 90° en el eje Y respecto del stma movil.

$$_{S'}^{S}T = ?$$

9.

Calcular la MTH del sistema {A} respecto de {S} ${}^s_{A}T$.

10.

Según la figura el sistema $\{S'\}$ O'UVW está trasladado un vector $\mathbf{P}(6,-3,8)$ con respecto del sistema fijo $\{S\}$ OXYZ. Calcular las coordenadas del vector \mathbf{r} en el sistema OXYZ $({}^{s}r)$, sabiendo que las coordenadas del vector \mathbf{r} en el sistema O'UVW son ${}^{s'}r$ =(-2,7,3).

Grado en Ingeniería Electrónica y Automática

Curso 20-21

11.

Se quiere obtener la matriz de transformación que representa al sistema {B} obtenido a partir del sistema {A} mediante un giro ángulo -90° alrededor del eje \mathbf{OX} , seguido de una trasladación de vector $\mathbf{p}_{xyz}(5,5,10)$ y posteriormente un giro de un ángulo 90° alrededor del eje \mathbf{OZ} .

- 1) Realizar los gráficos del movimiento del eje
- 2) Calcular la matriz de transformación AB
- 3) Calcular las coordenadas r_{xyz} del vector r con coordenadas $r_{uvw}(-3,3,3)$
- 4) Calcular las coordenadas r_{uvw} del vector r con coordenadas $r_{xyz}(5,5,10)$
- 12. Calcular la posición del pato respecto de la mano y la MTH que localiza el sistema asociado al pato con respecto de la Mano. Considere que {0} es el sistema fijo.

