Potentiometric-based Smart Transducer for Roll Angle Estimation

ELEN4006 Project Presentation

M. van Rooyen J. Ping

School of Electrical and Information Engineering, University of the Witwatersrand

26 April 2018

Table of Contents

- System Overview
- Sensing
- Signal Conditioning
- 4 Signal Processing
- 6 Error Analysis
- 6 Conclusion

Problem Statement

- Active safety control system prevents unwanted driver conditions
- Angular displacement measured at the wheel base
- Control system must have accurate readings of the roll angle.
- A number of environmental conditions affect this:
 - Road vibrations
 - Tyre pressure
 - Motor vibrations.

Block Diagram

Sensing

Conditioning

Processing

Data Presentation

Angular Potentiometer

Element	Material	
Resistor	Conductive	
	Plastic Paste	
Terminals	Thick film	
	conductor	
Contact	Multiple-	
	fingered	
	equidistant	
	wiper	
Actuator	Rotary Shaft	

Angular Potentiometer Circuit Diagram

Roll	R _{pot}	V_{out}
Angle	$egin{array}{c} \mathrm{R}_{\mathrm{pot}} \ (k\Omega) \end{array}$	(V)
(°)		
-15	1	0
15	12	5

Resistive Element

- Carbon black inert filler
- Strong with long lifespan
- Very high resolution
- $\begin{tabular}{ll} \bullet & Positive Temperature \\ & Coefficient $\pm 100 \ \rm ppm/^{\circ}C$ \end{tabular}$
- ullet non-linearity of \sim 0.4 %

Wheatstone Bridge Signal Conditioning Element

- i_{max} at $V_{\text{out}} = 1.3 \text{ mA}$
- $P_{max} = 16.9 \text{ mW}$
- Resistor tolerances = 0.5 %
- Bandwidth $\approx 1~\mathrm{GHz}$
- Power Supply (PSU): Output Voltage 51 V ± 1 %, output resistance of 50 Ω

Instrumentation Amplifier

Signal Conditioning Element

Texas Instruments INA188

- 3 Op-amp IC
- G = 1
- BW = 600 kHz
- \bullet $E_{\mathrm{G}}=\pm0.025$ % (worst case)
- Input Bias Current: 2.5 pA
- Input Offset Current: 2.5 pA
- ullet Input Impedance: 100 $G\Omega$
- ullet Operating Temperature Range: $-55~^{\circ}\mathrm{C}$ $150~^{\circ}\mathrm{C}$
- Supply Voltage Range: 4 V 36 V

Anti-aliasing Filter Signal Conditioning Element

Element	Value
R_1	$10 \mathrm{k}\Omega$
R_2	$10 \mathrm{k}\Omega$
C_1	$3.60\mathrm{nF}$
C_2	$7.21\mathrm{nF}$

$$Q = \frac{\sqrt{R_1 R_2 C_1 C_2}}{C_2 (R_1 + R_2)} \approxeq 0.707$$

$$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = 3.12 \text{ kHz}$$

Anti-aliasing Filter Signal Conditioning Element

 $f_c \sim 19.6 \, \mathrm{kRad.s^{-1}} = 3.12 \, \mathrm{kHz}, \quad f_{0.1\%} \sim 619 \, \mathrm{kRad.s^{-1}} = 98.5 \, \mathrm{kHz}$

10/18

Anti-aliasing Filter Signal Conditioning Element

Texas Instruments - LMC6022 Operational Amplifier

• Input Bias Current: 200 pA

 \bullet Input Offset Current: 100 pA

• Input Impedance: $1~\mathrm{T}\Omega$

• Operating Temperature Range: $-40^{\circ}\mathrm{C}$ - $85^{\circ}\mathrm{C}$

ullet Supply Voltage Range: 4.5 V - 15.5 V

Resistor tolerances: 0.5 %

Capacitor tolerances: 0.5 %

$$H(s) = \frac{1}{1 + 14.4 \times 10^{-6} s + 25.96 \times 10^{-12} s^2}$$

Analog to Digital Converter Signal Processing Element

- $f_{0.1\%} = 98.5 \text{ kHz}$
- \bullet .. sample at minimum $\rm f_s = 200~kHz$ to satisfy Nyquist sampling theorem
- $\therefore 0.1\%$ aliasing error
- 10 bit resolution
- $\therefore \frac{1}{2^{10}} \times 100\% = \frac{1}{1024} \times 100\% = 0.098\%$ quantization error

Microprocessor Signal Processing Element

Microchip - dsPIC30F2010

- 7.37 MHz internal oscillator
- 6 × 10 bit, 1000 ksps ADC
- 20 I/O pins
- Operating Temperature Range: −40°C 125°C
- ullet Operating Voltage Range: 2.5 V 5.5 V

Error Analysis

Source	Value %
Conductive plastic non-linearity	0.4 %
Potentiometer contact resistance variation (CRV)	0.075 %
Wheatstone bridge non-linearity	2.33 %
Instrumentation amplifier gain error	0.025%
Aliasing error	0.1 %
Resistor tolerance	0.5 %
Capacitor tolerance	0.5 %
Quantization error	0.098 %
Total error	4.028 %

Bentley's Model

$$O = KI + a + N(I) + K_M I_M I + K_I I_I$$

$$O = 0.1I + 2.1 + 33.6 \times 10^{-3} + 0.1 \cdot 0.26I + 0.2 \times 10^{-6} I_I$$
(1)

- $\begin{array}{c} \bullet \ O = \mathsf{Steady}\text{-state output} \\ 0 V \ to \ 5 V \end{array}$
- $K = sensitivity (V/^{\circ})$
- I = Input: -15° to 15°
- a = Zero bias (V)
- $N(I)_{\text{max}} = 33.6 \text{mV}$
- K_M = Change in sensitivity for modifying input

- $I_M = \pm 1\%$ error in PSU output
- K_I = Sensitivity change due to I_I (V/°C)
- I_I = Difference between operating temperature and $25^{\circ}\mathrm{C}$

Smart Transducer Requirements

Core functionality:

- Transduction
- Signal Conditioning
- Signal Processing
- Communication
- Memory

Added functionality:

- Averaging of multiple devices
- Self calibration differential between each wheel base
- Self diagnosing

Further Work

- Digital Filtering
- Costing
- Finalise all components
- Power Supply

Conclusion

Any questions?