МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Севастопольский государственный университет» Институт информационных технологий и управления в технических системах

ИССЛЕДОВАНИЕ АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ И ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Методические указания к лабораторным работам №6-7 по дисциплине «Специальные главы математики» для студентов специальности 09.04.02 - Информационные системы и технологии

Севастополь 2015 Исследование алгоритмов решения задач вариационного исчисления и оптимального управления/Сост. А.Е. Безуглая. — Севастополь: Изд-во СевГУ, 2015. — 13 с.

Целью методических указаний является углубление и закрепление полученных теоретических знаний по дисциплине «Специальные главы математики» в части изучения основ вариационного исчисления и оптимального управления; закрепление умений и навыков работы со специализированными математическими пакетами.

Методические указания предназначены для студентов специальности 09.04.02 - Информационные системы и технологии, институт информационных технологий и управления в технических системах Севастопольского государственного университета.

Методические указания рассмотрены и утверждены	на научно-методиче-
ском совете института информационных технологий и у	правления в техниче-
ских системах СевГУ (протокол № от «»	2015 г.)

Рецензент:

СОДЕЖАНИЕ

Лабораторная работа №1 «Исследование алгоритма решения простейшей	
задачи вариационного исчисления»	4
лабораторная работа №2 «Исследование алгоритма решения задачи	
оптимального управления»	9

ЛАБОРАТОРНАЯ РАБОТА №1 «ИССЛЕДОВАНИЕ АЛГОРИТМА РЕШЕНИЯ ПРОСТЕЙШЕЙ ЗАДАЧИ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ»

Цели лабораторной работы. Исследовать алгоритм решения простейшей задачи вариационного исчисления. Ознакомиться с теоретическими сведениями, освоить технологию программной реализации простейшей вариационной задачи, решаемой на основе уравнения Эйлера, в пакете математического программирования.

Трудоемкость лабораторной работы: 6 ч (4 ч – аудиторных, 2 ч – самостоятельная работа студента).

Компетенции студента, формируемые в результате выполнения лабораторной работы.

- ОПК-1: способность воспринимать математические, естественнонаучные, социально-экономические и профессиональные знания, умением самостоятельно приобретать, развивать и применять их для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте;
- ПК-9: умение проводить разработку и исследование методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования информационных систем и технологий.

Краткие теоретические сведения.

Постановка простейшей задачи вариационного исчисления

Пусть **M** – некоторое пространство функций. Отображение $J: \mathbf{M} \to \mathbb{R}^1$ называется функционалом.

Ниже будем рассматривать следующие пространства функций:

 $C[t_1,t_2]$ – непрерывные на отрезке $[t_1,t_2]$ функции, с нормой, определенной следующим образом: $\|x(t)\|_0 = \max\{|x(t)|, t \in [t_1,t_2]\};$

 $C^1[t_1,t_2]$ — непрерывно-дифференцируемые на отрезке $[t_1, t_2]$ функции, с нормой $\|x(t)\|_1 = \max\{\|x(t)\|_0, \|x'(t)\|_0\}$.

Простейшая задача вариационного исчисления формулируется следующим образом: найти экстремум функционала вида:

$$J(x) = \int_{t_1}^{t_2} F(t, x, x') dt$$
 (1)

$$x(t_1) = x_1; x(t_2) = x_2$$
 (2)

на кусочно-гладких функциях x(t), соединяющих точки (t_1, x_1) и (t_2, x_2) , т.е. удовлетворяющих краевым условиям (2). Функции x(t), удовлетворяющие ограничениям задачи (в данном случае граничным условиям), называются *допустимыми*.

Определение. Говорят, что x^* доставляет слабый локальный максимум функционалу J, если $\exists \varepsilon > 0$: для любой допустимой кривой x такой, что $||x^* - x||_1 < \varepsilon$, выполнено: $J(x) \le J(x^*)$.

Говорят, что x^* доставляет *сильный локальный максимум* функционалу J, если $\exists \varepsilon > 0$ для любой допустимой кривой x, такой, что $\|x^* - x\|_0 < \varepsilon$, выполнено: $J(x) \leq J(x^*)$.

Необходимое условие слабого экстремума функционала (1) дается *уравнением* Эйлера:

$$F_{x}' - \frac{d}{dt}F_{x'}' = 0 (3)$$

В уравнении (3) и далее используются следующие обозначения:

 $\frac{d}{dt}$ – полная производная по времени t;

 F_x' - частная производная от функционала F по x, т.е. $\frac{\partial F}{\partial x}$;

 $F'_{x'}$ - частная производная от функционала F по x', т.е. $\frac{\partial F}{\partial x'}$;

 $F_{xx'}^{\prime\prime}$ - вторая частная производная от функционала F по x и x', т.е. $\frac{\partial}{\partial x'} \frac{\partial F}{\partial x}$ и т.д.

Функции, являющиеся решениями уравнения Эйлера, называются экстремалями функционала J. Экстремали, удовлетворяющие краевым условиям (2), называются допустимыми экстремалями.

Говорят, что на x выполнено *условие Лежандра*, если

$$F_{\chi'\chi'}^{\prime\prime} \ge 0, \forall t \in [t_1, t_2] \tag{4}$$

и усиленное условие Лежандра, если

$$F_{x'x'}^{"} > 0, \forall t \in [t_1, t_2]$$
 (5)

Уравнение относительно функции h(t)

$$-\frac{d}{dt}(F_{x'x'}^{"}\cdot\frac{dh}{dt}+F_{x'x}^{"}\cdot h)+(F_{xx'}^{"}\cdot\frac{dh}{dt}+F_{xx}^{"}\cdot h)=0,$$
(6)

называют *уравнением Якоби* для исходной задачи на экстремали x^* .

Точка τ называется сопряженной с точкой t_l , если для решения уравнения Якоби h(t) с начальными условиями $h(t_1)=0$, $\frac{d}{dt}h(t_1)=1$, имеет место равенство $h(\tau)=0$.

Говорят, что на x^* выполнено условие Якоби, если в *интервале* (t_1, t_2) нет точек, сопряженных с t_1 , и усиленное условие Якоби, если в *полуинтервале* $(t_1, t_2]$ нет точек, сопряженных с t_1 .

Функция

$$\varepsilon(t, x, x', u) = F(t, x, u) - F(t, x, x') - F'_{x'}(t, x, x')(u - x') \tag{7}$$

называется функцией Вейеритрасса интегранта F.

Говорят, что на x^* выполнено условие Вейерштрасса, если

$$\varepsilon(t, x^*, x^{*\prime}, u) \ge 0, \forall u \in R, \forall t \in [t_1, t_2]. \tag{8}$$

Алгоритм решения

Для определенности будем исследовать задачу (1), (2) на минимум.

1. Найти допустимые экстремали. С этой целью выписать необходимое условие экстремума первого порядка – уравнение Эйлера (3). Найти решения

уравнения Эйлера x^* , удовлетворяющие заданным условиям на концах (2) — эти решения будут "допустимыми экстремалями".

- 2. Для каждой допустимой экстремали проверить необходимые и достаточные условия локального минимума второго порядка.
 - 1) Проверить выполнение условия Лежандра:
- если условие Лежандра не выполнено, т.е. функция $F_{x'x'}^{"}$ знакопеременна на отрезке [t0, t1], то не выполнено необходимое условие слабого (a, следовательно, и сильного) экстремума.
- если выполнено условие Лежандра (4), то x^* можно подозревать на точку слабого (сильного) локального минимума.
- если выполнено усиленное условие Лежандра (5), то переходим к проверке условия Якоби.
- 2) Записать уравнение Якоби (6) на экстремали х* и решить его с начальными данными $h(t_1)=0$, $\frac{d}{dt}h(t_1)=1$.
- 3) Найти сопряженные с t1 точки τ, т.е. нули найденного решения h(t) уравнения Якоби при t>t1 и проверить выполнение условия Якоби.

Если при выполнении усиленного условия Лежандра условие Якоби не выполнено, то не выполняется необходимое условие. Следовательно, x^* не доставляет локального минимума.

Если при выполнении усиленного условия Лежандра выполнено усиленное условие Якоби, то выполнено достаточное условие слабого минимума, и x^* – слабый локальный минимум.

- 4) Проверка на сильный минимум.
- если интегрант F является выпуклым по x' при всех фиксированных t и x, рассматриваемых в качестве параметра, то x^* доставляет сильный минимум в задаче.
- если интегрант F не является ни выпуклым, ни вогнутым, то следует проверить выполнение необходимого условия сильного экстремума условия Вейерштрасса (8). Если не выполнено условие Вейерштрасса, то в этом случае найденная допустимая экстремаль не доставляет сильного минимума.

Замечание. При исследовании задачи на максимум необходимо следовать этому же алгоритму, учитывая, что условие Лежандра выполнено, если

$$F_{\chi'\chi'}^{"} \le 0, \forall t \in [t_1, t_2] \tag{9}$$

и усиленное условие Лежандра, если

$$F_{x'x'}^{"} < 0, \forall t \in [t_1, t_2] \tag{10}$$

Условие Вейерштрасса означает, что

$$\varepsilon(t, x^*, x^{*'}, u) \le 0, \forall u \in R, \forall t \in [t_1, t_2]. \tag{8}$$

а для сильного максимума функция F должна быть вогнутой по x'.

Программа и методика выполнения работы.

1. В соответствии с вариантом задания, приведенным в таблице 1, и алгоритмом решения простейшей задачи вариационного исчисления, приведенным в

разделе «Краткие теоретические сведения», для указанного функционала определить все экстремали, удовлетворяющие краевым условиям и проверить, доставляют ли они слабый или сильный минимум.

2. Оформить отчет по работе.

Таблица 1 – Варианты заданий

Вариант	– рарианты задании Функционал	Краевые условия		
1	$J = \int_{-1}^{1} t^2 \cdot (x')^2 dt$	x(-1) = -1; x(1) = 1		
2	$J = \int_0^1 x \cdot (x')^2 dt$	x(0) = 0; x(1) = 1		
3	$J = \int_0^1 (1+t) \cdot (x')^2 dt$	x(0) = 0; x(1) = 1		
4	$J = \int_0^1 x^2 \cdot (x')^2 dt$	x(0) = 0; x(1) = 1		
5	$J = \int_0^{3\pi/2} [(x')^2 - x^2] dt$	$x(0) = 0; x(3\pi/2) = 0$		
6	$J = \int_0^1 [(x')^2 + x^2] dt$	x(0) = 0; x(1) = 1		
7	$J = \int_0^1 [(x')^2 + 4x^2] dt$	$x(0) = e^2; x(1) = 1$		
8	$J = \int_a^b \sqrt{1 + (x')^2} dt$	x(a) = 0; x(b) = 1		
9	$J = \int_{a}^{b} \sqrt{\frac{1 + (x')^{2}}{2gx}} dt; g = 9.8 \frac{M}{c^{2}}$	x(a) = 10; x(b) = 0;		
10	$J = \int_a^b [2tx + (t^2 + e^x) \cdot x']dt$	x(a) = 10; x(b) = 0;		

Описание лабораторной установки.

Для выполнения лабораторной работы используются ручные расчеты. Для вычисления частных производных и построения графиков функций может также использоваться компьютер с установленным пакетом математического программирования Maple, Matlab или Mathcad.

Результаты экспериментальных исследований.

Полученную в результате исследования функционала на минимум функцию построить в виде графика на интервале $[t_1,t_2]$. Сделать вывод о том, какой минимум доставляет найденная экстремаль в рассматриваемой задаче.

Содержание отчета.

Отчет по выполняемой лабораторной работе выполняется каждым студентом индивидуально на листах формата A4 в рукописном или машинном варианте исполнения и должен содержать:

- название работы;
- цель и задачи исследований;
- расчеты в соответствии с алгоритмом решения задачи;
- график полученной функции;
- выводы по работе.

Контрольные вопросы

- Почему метод называется вариационным?
- Каковы ограничения метода?
- Что будет, если исходные функции не гладкие?
- Что будет, если на переменные наложены ограничения?
- Когда существуют уравнения Эйлера-Лагранжа?

Библиографический список рекомендуемой литературы

- 1. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах [Электронный ресурс]/ А.Б. Васильева [и др.].— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2005.— 430 с.— Режим доступа: http://www.iprbookshop.ru/17226.— ЭБС «IPRbooks», по паролю,с.355-364.
- 2. Моклячук М.П. Вариационное исчисление. Экстремальные задачи [Электронный ресурс]: учебник/ Моклячук М.П.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, 2006.— 428 с.— Режим доступа: http://www.iprbookshop.ru/16495.— ЭБС «IPRbooks», по паролю, с.100-107.
- 3. Алексеев В.М. Оптимальное управление [Электронный ресурс]: учебное пособие/ Алексеев В.М., Тихомиров В.М., Фомин С.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2007.— 408 с.— Режим доступа: http://www.iprbookshop.ru/12964.— ЭБС «IPRbooks», по паролю, с.50-68

ЛАБОРАТОРНАЯ РАБОТА №2 «ИССЛЕДОВАНИЕ АЛГОРИТМА РЕШЕНИЯ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ»

Цели лабораторной работы. Исследовать алгоритм решения задачи оптимального управления. Ознакомиться с теоретическими сведениями, освоить технологию программной реализации задачи оптимального управления, решаемой на основе принципа максимума Понтрягина, в пакете математического программирования.

Трудоемкость лабораторной работы: 6 ч (4 ч – аудиторных, 2 ч – самостоятельная работа студента).

Компетенции студента, формируемые в результате выполнения лабораторной работы.

- ОПК-1: способность воспринимать математические, естественнонаучные, социально-экономические и профессиональные знания, умением самостоятельно приобретать, развивать и применять их для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте;
- ПК-9: умение проводить разработку и исследование методик анализа, синтеза, оптимизации и прогнозирования качества процессов функционирования информационных систем и технологий.

Краткие теоретические сведения.

Постановка задачи оптимального управления.

Пусть имеется некоторая динамическая система, *состояние* которой в каждый момент времени t описывается вектор-функцией $x(t) \in R^n$. На состояние системы можно воздействовать, изменяя управляемые параметры $u(t) \in R^r$. Будем рассматривать класс кусочно-непрерывных управлений u(t).

При заданном *управлении* u(t) состояние системы изменяется во времени согласно закону:

$$\dot{x}(t) = f(t, x(t), u(t)). \tag{1}$$

Рассмотрим *задачу оптимального управления* данной системой: определить управление $u^*(t)$, доставляющее экстремум *критерию качества* вида:

$$J(x,u) = \int_{t_0}^{t_1} F(t,x,u)dt + \Phi_0(t_0,t_1,x(t_0),x(t_1)) \to max$$
 (2)

При этом первое слагаемое (*интегральная часть* критерия) характеризует качество функционирования системы на всем промежутке управления [t_0 , t_1], тогда как второе слагаемое (*терминальный член*) — только конечный результат воздействия управления, определяемый начальным $x(t_0)$ и конечным $x(t_1)$ состояниями и, возможно, моментами начала и окончания управления t_0 и t_1 . В зависимости от физического смысла задачи интегральная или терминальная часть критерия может быть равна нулю.

На процесс функционирования системы могут накладываться дополнительные ограничения в форме краевых условий:

$$\Phi i(t_0, t_1, x(t_0), x(t_1)) = 0, \ i = 1..m, \tag{3}$$

задающие множества допустимых начальных и конечных состояний системы и моментов начала и окончания управления.

Важным частным случаем (2.3) являются условия вида:

$$x(t_0) - x_0 = 0; \ x(t_1) - x_1 = 0,$$
 (4)

соответствующие закрепленному левому или правому концу фазовой траектории.

Моменты времени начала и окончания управления, t_0 и t_1 , могут полагаться как известными, тогда говорят о задаче с фиксированным временем управления, или неизвестными (задача с нефиксированным моментом начала или окончания управления).

Необходимые условия оптимальности в данной задаче, точнее, необходимые условия сильного локального максимума даются *принципом максимума Понтрягина*.

Принцип максимума Понтрягина

Пусть $(x^*(t), u^*(t), t_0^*, t_1^*)$ – оптимальный процесс в задаче (1) – (3). Тогда найдутся одновременно не равные нулю множители λ и ψ :

$$\lambda = (\lambda_0, \dots, \lambda_m) \in R^{m+1}, \lambda_0 \ge 0,$$

$$\psi = (\psi_1, \dots, \psi_n) \in R^n, \lambda_0 \ge 0,$$

такие, что выполнены следующие условия:

а) Функция Понтрягина задачи

$$H(t, x, u, \psi, \lambda_0) = \lambda_0 F(t, x, u) + (\psi, f(t, x, u))$$
(5)

при каждом $t \in [t_0, t_1]$ достигает максимума по u в т. $u^*(t)$, когда $x = x^*(t), \psi = \psi(t)$.

б) Вектор-функция $\psi(t)$ удовлетворяет *сопряженной системе* дифференциальных уравнений:

$$\dot{\psi}_i(t) = -\frac{\partial H(t, x^*(t), u^*(t), \psi(t), \lambda_0)}{\partial x_i}; \ i = 1, \dots, n$$
 (6)

с краевыми условиями (условиями трансверсальности)

$$\psi_{i}(t_{0}^{*}) = -\left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial x_{i}(t_{0})}\right);$$

$$\psi_{i}(t_{1}^{*}) = -\left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial x_{i}(t_{1})}\right).$$
(7)

в) Выполнены условия на подвижные концы:

$$H(t, x^{*}(t), u^{*}(t), \psi(t), \lambda_{0})|_{t=t_{0}} = -\left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial t_{0}}\right);$$

$$H(t, x^{*}(t), u^{*}(t), \psi(t), \lambda_{0})|_{t=t_{1}} = -\left(\lambda, \frac{\partial \Phi(t_{0}^{*}, t_{1}^{*}, x^{*}(t_{0}), x^{*}(t_{1}))}{\partial t_{1}}\right);$$
(8)

Замечания

1. Множитель Лагранжа λ_0 определяет чувствительность оптимального решения задачи к виду интегральной части функционала. В вырожденном случае совокупность ограничений задачи такова, что оптимальное управление $u^*(t)$ не зависит от вида интегранта F(t,x(t),u(t)). При этом из условий принципа максимума следует, что $\lambda_0=0$. В невырожденном случае $\lambda_0>0$, поэтому ее можно положить равной 1 (разделив функцию H на λ_0). При этом условия принципа максимума не изменятся.

Как правило, из физического смысла задачи понятно, допускаются ли в ней вырожденные решения. При исследовании таких решений необходимо обращать внимание на выполнение условия теоремы о том, что множители λ и $\psi(t)$ не могут одновременно быть равными 0.

2. Для задачи с закрепленными концами (4) сопряженная функция $\psi(t)$ имеет свободные концы, т.е. соответствующие условия трансверсальности отсутствуют.

Обратно, для задачи со свободными концами, не содержащей ограничений (3), сопряженная функция имеет закрепленные концы, определяемые соотношениями:

$$\psi_{i}(t_{0}) = -\frac{\partial \Phi(t_{0}, t_{1}, x(t_{0}), x(t_{1}))}{\partial x_{i}(t_{0})};$$

$$\psi_{i}(t_{1}) = -\frac{\partial \Phi(t_{0}, t_{1}, x(t_{0}), x(t_{1}))}{\partial x_{i}(t_{1})}.$$
(9)

Программа и методика выполнения работы.

- 1. В соответствии с вариантом задания, приведенным в таблице 1, и алгоритмом решения задачи оптимального управления, приведенным в разделе «Краткие теоретические сведения», найти оптимальное управление в задаче.
 - 2. Оформить отчет по работе.

Таблица 1 – Варианты заданий

Вариант	Функционал	Ограничения	Краевые условия
1	$J = \int_{-\pi}^{\pi} x \cdot \sin t dt \to extr$	$ x' \le 1$	$x(-\pi) = 0;$ $x(\pi) = 0$
2	$J = \int_0^{7\pi/4} x \cdot \sin t dt \to extr$	$ x' \le 1$	x(0) = 0
3	$J = \int_0^4 ((x')^2 + x)dt \to extr$	$ x' \le 1$	x(4) = 0
4	$J = \int_0^4 ((x')^2 + x)dt \to extr$	$ x' \le 1$	x(0)=0

Вариант	Функционал	Ограничения	Краевые условия
5	$J = \int_0^4 ((x')^2 + x)dt \to extr$	$ x' \le 1$	x(0) = 0.5
6	$J = \int_0^4 ((x')^2 + x)dt \to extr$	$ x' \le 1$	x(4) = 2
7	$J = \int_0^1 x dt \to extr$	$ x'' \le 2$	x(0) = 0; x(1) = 0
8	$J = \int_0^2 x dt \to extr$	$ x'' \le 2$	x(0) = 0; x'(0) = 0; x'(2) = 0
9	$J = \int_0^1 (x'')^2 dt \to extr$	$x'' \le 24$	x(0) = 11; x(1) = 0; x'(1) = 0
10	$J = \int_0^2 (x'')^2 dt \to extr$	$x'' \ge 6$	x(0) = 0; x(2) = 17; x'(0) = 0

Описание лабораторной установки.

Для выполнения лабораторной работы используются ручные расчеты. Для вычисления частных производных и построения графиков функций может также использоваться компьютер с установленным пакетом математического программирования Maple, Matlab или Mathcad.

Результаты экспериментальных исследований.

Полученные в результате решения задачи функции оптимального управляемого процесса $x^*(t), u^*(t)$ построить в виде графиков на интервале $[t_0, t_1]$. Сделать вывод по найденным соотношениям для оптимального управления.

Содержание отчета.

Отчет по выполняемой лабораторной работе выполняется каждым студентом индивидуально на листах формата A4 в рукописном или машинном варианте исполнения и должен содержать:

- название работы;
- цель и задачи исследований;
- расчеты в соответствии с алгоритмом решения задачи;
- графики полученных процессов;
- выводы по работе.

Контрольные вопросы

- В чем физический смысл принципа максимума?
- Является ли принцип максимума вариационным методом?

- Формулировка принципа максимума.
- Что такое сопряженная функция?
- К чему сводится задача оптимизации в принципе максимума?
- Как решать двухточечную граничную задачу?
- Как влияет на ход решения задачи добавление ограничений на переменные управления и состояния?
 - Каково главное свойство гамильтониана?
 - Кто разработал принцип максимума?
- Из чего получается дифференциальное уравнение для вектора сопряженного состояния?

Библиографический список рекомендуемой литературы

- 1. Моклячук М.П. Вариационное исчисление. Экстремальные задачи [Электронный ресурс]: учебник/ Моклячук М.П.— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, 2006.— 428 с.— Режим доступа: http://www.iprbookshop.ru/16495.— ЭБС «IPRbooks», по паролю, с.312-340.
- 2. Алексеев В.М. Оптимальное управление [Электронный ресурс]: учебное пособие/ Алексеев В.М., Тихомиров В.М., Фомин С.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2007.— 408 с.— Режим доступа: http://www.iprbookshop.ru/12964.— ЭБС «IPRbooks», по паролю, с.73-90