기초통계학II

- 1. 통계적 추론의 기본
 - (1) 추정
 - (2) 가설검정

■ 통계적 추론(Statistical Inference)

표본(자료)으로부터의 정보를 이용하여 모집단(미지의 모수)에 관한 추측이나 결론을 이끌어 내는 과정

○ 주요관심 문제

(수학, 물리학 법칙 등으로 설명이 안 되는 세상의 모든 관심사)

- 통계학 관련 학과의 취업률은 어느 정도 될까?
- 남녀 간에 급여수준에 차이가 있을까?
- 선거에 입후보할 후보자가 자신의 지지율이 얼마나 되는지 알고 싶을 때 몇 명을 어떻게 조사해야 할까?
- 남녀출생성비는 같을까?
- <u>3</u>가지 사료에 따라 닭의 성장량에 차이가 있을까? ₩₩₩
- 2020년 올림픽 육상 100m 우승기록은 얼마나 될까? 회사방식
- 남녀 간에 스마트폰 선호 모델에 차이가 있을까?

好似

(i) <mark>모집단에 대해 특정분포 가정여부에 따라</mark> 통계적 추론 분류 = 모수적 추론(parametric inference), 비모수적 추론(nonparametric inference)

□ 통계적 추론(Statistical Inference)

모집단(분포) 모평균, 모분산, 모비율... 👉 (추론)

⇒ (추출)

표본 (확률표본)

• 목적과 방법에 따라 추정과 가설검정으로 나뉨 裁判到到

- 추정(estimation)
 - 점추정(point estimation): 모수의 값이 얼마인지를 알아봄
 구간추정(interval estimation): 모수를 포함할 것으로 기대되는
 구간을 확률적으로 구함
- **가설검정(testing hypotheses)**: 모수에 대한 가설을 세우고 그 가설의 옳고 그름을 확률적으로 판정하는 방법론
- 통계적 추론의 기본원칙
 - (1) 정확성 (2) 효율성(비용, 표본의 크기) (3) 객관성(확률)

> 地址生产和空叫人格生气和

○ 점추정

型组料学品的

- 미지의 모수를 표본의 어떤 함수(통계량)를 이용하여 추정
- 직관적인 추정량

모수		추정량
모평균(μ)	\leftarrow	표본평균 (\overline{X})
모비율(0)	\leftarrow	표본비율(P)
모분산 (σ^2)	\Box	표본분산(S^2)
모표준편차 (σ)	\leftarrow	표본표준편차 (S)

是们似壮诚的好程什.

- 추정량(estimator)은 확률변수, 추정값(estimate)는 실제 계산된 값
 - 추정값(추정치): \bar{x}, p, s^2, s (소문자)

- ◆ 점추정량의 선택 기준 (추정량의 성질)● 행사와 Φ
- (1) 불편성(Unbiasedness) 만해하다
- 어떤 추정량 $\hat{\phi}$ 가 $E(\hat{\phi}) = \phi$ 를 만족하면, $\hat{\phi}$ 을 ϕ 의 **불편추정량** (unbiased estimator)이라 한다.
- <mark>추정량의 기대값이 모수와 같지 않을 때 <u>편의(bias)가 있다</u>고 표현 한다.</mark>
- ※ 편의란 '추정량이 모수에 근접하지 않고 한쪽으로 기울어져 치우 친 상태'를 의미한다.

예제) {1,2,3,4,5}에서 표본크기가 3인 표본을 비복원으로 추출한다.

$$\mu = \frac{1+2+3+4+5}{5} + 3 \sigma^2 = \frac{1}{5} \{ (1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2 \} = 2$$

(1) 세 통계량 \bar{X} , \tilde{X} , $X_{(1)}$ 값 중 어떤 것이 불편추정량인가?

107/21

		<u>₹</u> 6	42	
표본	\overline{X}	\widetilde{X}	$X_{(1)}$	
{1,2,3}	2	2	1	$r(\overline{x}) = 2 + 2.33 + \dots + 4$
{1,2,4}	2.33	2	1	$E(X) = \frac{2 + 2.33 + 11 + 4}{10} = 3$
$\{1,2,5\}$	2.67	2	1	
{1,3,4}	2.67	3	1	~ 2+2++4
{1,3,5}	3	3	1	$E(\widetilde{X}) = \frac{2+2+\dots+4}{10} = 3$
{1,4,5}	3.33	4	1	10
{2,3,4}	3	3	2	1+1++3
{2,3,5}	3.33	3	2	$E(X_{(1)}) = \frac{1+1+\dots+3}{10} = 1.5$
{2,4,5}	3.67	4	2	10
${3,4,5}$	4	4	3	

) 基则的 收益

女对生: Into be 4340日本

(2) 효율성(Efficiency): 추정량의 표준오차(표준편차)가 작은 것

추정량 $\hat{\phi}$ 의 표준오차(standard error)를 $SE(\hat{\phi})$ 라 하면, 모수 ϕ 의 불

편추정량 $\hat{\phi_1}$, $\hat{\phi_2}$ 에 대하여

$$S.E.(\widehat{\phi_1}) < S.E.(\widehat{\phi_2})$$

 $S.E.(\hat{\phi_1}) < S.E.(\hat{\phi_2})$ $\int \mathsf{E}((\hat{\phi} - \phi)^2)$

가 성립할 때, $\hat{\phi_1}$ 은 $\hat{\phi_2}$ 보다 더 $\hat{\mathbf{a}}$ $\hat{\mathbf{b}}$ 성 $\hat{\mathbf{b}}$ 이라 한다. $\hat{\mathbf{c}}$ $\hat{\mathbf{b}}$ 행사, 원사

표본	\overline{X}	\widetilde{X}	
{1,2,3}	2	2	
{1,2,4}	2.33	2	$S_{\overline{X}}^2 = 0.37038,$
{1,2,5}	2.67	2	Λ
{1,3,4}	2.67	3	$S_{\overline{X}} = 0.60859$
{1,3,5}	3	3	
{1,4,5}	3.33	4	
{2,3,4}	3	3	$S_{\tilde{X}}^2 = 0.6667,$
{2,3,5}	3.33	3	21
{2,4,5}	3.67	4	$S_{\widetilde{X}} = 0.81652$
{3,4,5}	4	4	

M=3可量用以与次可能

(3) <mark>일치성</mark>(Consistency)

० हेरीसम गमनिष्ट

- 표본 크기 n이 증가함에 따라 통계량이 점차 모수에 접근하게 될때 그 통계량을 **일치추정량**이라 한다.
- 크기가 n인 표본에서 구한 통계량을 $\widehat{\phi_n}$ 이라 할 때,

$$\lim_{n\to\infty} E(\widehat{\phi_n} - \phi) = 0$$

- ※일치성이란 표본 크기가 클수록 추정량이 보다 신뢰성이 있음을 의미!!
- <mark>점추정값</mark>이 정확히 모수와 일치할 가능성은 거의 없음 => 표준오차 같이 표현 (귀)성)
- 추정량은 구간추정과 가설검정에서의 기준 통계량으로 사용

○ 구간추정

- 미지의 모수가 포함될 것으로 기대되는 범위를 확률적으로 구함
- 관심모수가 ϕ 일 때, $100(1-\alpha)$ % 신뢰구간(confidence interval): 아래의 식을 만족하는 [L,U]

$$P(L \le \phi \le U) = 1 - \alpha$$

(100(1-lpha)%를 구간의 신뢰수준(confidence level)이라함

 \circ L과 U를 유도하는데 점추정량이 중심적 역할을 함 특히 점추정량의 표준화 => 중심축량(pivotal quantity)

예)
$$Z_{\mu} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

业为经验的证据 →经验证

- \odot 모평균 μ 에 대한 95% 신뢰구간
 - \circ 모집단 가정: $N(\mu, \sigma^2)$ 이고 σ^2 을 알고 있는 경우
 - \circ 표본추출: $X_1, X_2, ..., X_n$ $\overset{i.i.d}{\sim}$ $N(\mu, \sigma^2)$ (확률표본)
 - \circ μ 의 점추정량 : $\overline{X} = \widehat{h}$
 - \circ \overline{X} 의 통계적 성질 $E(\overline{X}) = \mu$, $Var(\overline{X}) = \sigma^2/n$ $\overline{X} \sim N(\mu, \sigma^2/n) \rightarrow Z_{\mu} = \frac{\overline{X} \mu}{\sigma^2/\sqrt{n}} \sim N(0, 1)$

1272 P(L< M< U) = 1-0

○ 표준정규분포로부터

Ly M의 造是 经加工设计划告: 对于内部的

$$0.95 = P(-1.96 < Z_{\mu} < 1.96) = P(-1.96 < \frac{X - \mu}{\sigma / \sqrt{n}} < 1.96)$$
 l- d

$$= P(-1.96 \frac{1}{50} \leq X - M \leq 1.96 \frac{1}{50})$$

$$= P(-X - 1.96 \frac{1}{50} \leq -M \leq -X + 1.96 \frac{1}{50})$$

$$= P(\overline{X} - 1.96\sigma/\sqrt{n} < \mu < \overline{X} + 1.96\sigma/\sqrt{n})$$

 \circ 95% 신뢰 구간 = $[\overline{X}-1.96\sigma/\sqrt{n}, \overline{X}+1.96\sigma/\sqrt{n}]$

$$\circ$$
 100(1- α)% 신뢰구간 = $[\overline{X} - z_{\alpha/2}\sigma/\sqrt{n}, \overline{X} + z_{\alpha/2}\sigma/\sqrt{n}]$

e.g.
$$z_{0.05}=1.645\Rightarrow 90\%$$
 신뢰구간
$$z_{0.005}=2.575\Rightarrow 99\%$$
 신뢰구간 부분되다 = 등의

※ 여기서 구간의 너비는 구간추정의 정확성을 의미하며 (쏴·▽/) lpha를 작게 하면 (신뢰도를 높이면) 넓어지고, 신화된 lpha를 크게 하면 (신뢰도를 낮추면) 좁아진다. 신화된 lpha

$$\frac{d}{2}$$

$$\frac{d}{2}$$

$$\frac{d}{2}$$

$$-\frac{d}{2}$$

$$0$$

$$\frac{d}{2}$$

$$\frac{d}{2}$$

$$\frac{d}{2}$$

$$\frac{d}{2}$$

12172012017 St. 2727 3271014

Q? 주어진 α 에서 구간의 너비를 줄이는 방법? 표본 크기 $n \uparrow$ Q? 95% 신뢰구간에서 $-1.96(-z_{0.025})$ 과 $1.96(z_{0.025})$ 대신 확률을 만족시키는 다른 값을 사용할 수 있는가? 예를 들어 $(-1.751(-z_{0.04}),\ 2.326(z_{0.01}))$ 또는 $(-\infty,\ 1.645(z_{0.05}))$?

超级特色。如此时间等一条行为多叶。

- ◉【파이】파이에 포함된 칼로리의 모평균의 95% 신뢰구간
 - 16개의 파이를 무작위로 조사 N=16
- 4=8
- 파이의 칼로리는 표준편차가 8인 정규분포를 따른다고 가정
- \circ 16개 파이의 표본평균(kcal)이 \overline{x} =162.7

$$(62.7 - 1.96 \times \frac{8}{\sqrt{16}}, 162.7 + 1.96 \times \frac{8}{\sqrt{16}}) = (158.78, 166.62)$$

- Q? 위의 구간 (158.78, 166.62) 사이에 모평균이 있을 확률은 0.95? => 아니다
 - ※ 95% 신뢰구간에서 신뢰도 95%의 의미 (객관성) 95% 신뢰구간을 표본을 바꾸어가며 반복하여 만들어 갈 때, 20번중 1번꼴로 μ 를 포함하지 않는 잘못된 구간이 만들어진다.

예) $\mu = 160$ 일 때 모의실험

【그림 8.1】 신뢰구간의 이해(실선: 모수를 포함, 점선: 모수를 포함하지 않음)

○ 가설 검정

- 모집단의 모수 또는 분포에 대한 추측이나 주장을 설정하고 이것의 응고 그름을 표본으로부터 얻어진 정보를 이용하여 확률적으로 판정하는 과정
- ① 가설(hypothesis)

 ϕ 귀무가설 (H_0) : 검정의 대상이 되는 가설 (기존의 가설)

대립가설 (H_1) : 표본으로부터 얻은 정보를 이용하여

입증하고자 하는 가설 (새로운 주장)

=> 우리가 보이고자 하는 대립가설이 옳다는 것을 직접적으로 보이지 않고, 자료로부터 <u>귀무가설이 잘못되었다는 충분한 근거를 찾으면 대립가설이 타당하다고 주장하는 것.</u>

【표 8.1】 귀무가설과 대립가설의 형태

상황	귀무가설 H₀	대립가설 M
1	$H_0: \phi \leq \phi_0$	$H_1: \phi > \phi_0$
2	$H_0: \phi \geq \phi_0$	$H_1: \phi < \phi_0$
3	$H_0: \phi = \phi_0$	$H_1: \phi \neq \phi_0$ + %

상황 ①과 ②: 단측검정(one-sided test) 상황 ③: 양측검정(two-sided test)

● 【파이】기존 파이의 평균 칼로리는 165kcal이었다고 하자. 가설 검정을 통해 새로운 파이는 기존의 파이보다 칼로리가 낮다는 것 을 보이고자 한다면

$$\Rightarrow$$
 $H_0: \mu \geq 165$ vs $H_1: \mu < 165$

① 【출생성비】 남녀의 출생성비가 다르다는 것을 보이고 싶은 경우, θ 를 딸이 출생할 확률이라고 하면

$$\Rightarrow H_0: \theta = 0.5 \text{ vs } H_1: \theta \neq 0.5$$

● 【취업률비교】A 전공 졸업생의 취업률이 B전공 졸업생 취업률보다 높다는 것을 보이고 싶은 경우

$$\Rightarrow H_0: \theta_A \leq \theta_B \text{ vs } H_1: \theta_A > \theta_B$$

$$(\Leftrightarrow H_0: \theta_A - \theta_B \le 0 \text{ vs } H_1: \theta_A - \theta_B > 0)$$

• 가설검정의 원리

주장	$H_{\!\scriptscriptstyle 1}$ 이 참인 것을 보이고 싶음				
방법론	<i>H</i> ₀ 참	\Rightarrow	【비정상적인】표본 나오기 힘든 표본	⇒	<i>H</i> ₀ 기각
	가정		나오기 힘든 표본		H_1 채택

- Q. 비정상적인 표본임을 무엇으로 요약해 보일 것인가?
 - ⇒ 검정통계량과 유의수준

水路路湖州州北部

※ 유의수준(significant level): H_0 가 사실일 때, 비정상적인 표본 (검정통계치)이 나올 확률(즉, H_0 를 기각할 확률)

② 검정통계량(test statistic)

- 귀무가설을 기각시킬 것인가, 채택할 것인가를 결정하기 위해
 사용되는 통계량
- 검정통계량을 유도하는 방법(⇒수리통계학): 더개선시방지으고
 - Most Powerful test, Likelihood Ratio test 등
- 귀무가설 하에서 검정통계량의 확률분포를 이용하여 표본 (검정통계치)의 정상/비정상을 판정
 - (기각역(rejection region): 비정상 영역 \Rightarrow H_0 기각(reject) 채택역(acceptance region): 정상 영역 \Rightarrow H_0 유지(retain)
 - 정상/비정상의 기준(기각역/채택역)은 유의수준(significant level)
 - 으로 결정 (e.g. $\alpha = 0.05$, $\alpha = 0.01$, $\alpha = 0.1$ 등)

- - \Rightarrow 표본평균 \overline{X} 가 작으면 작을수록 비정상적인 자료 $(H_1$ 채택)
- ① 【출생성비】 $H_0: \theta = 0.5$ vs $H_1: \theta \neq 0.5$
 - \Rightarrow 표본비율 P가 0.5에서 멀어질수록 즉 0 또는 1에 가까울수록 비정상적인 자료
- ullet 【취업률비교】 $H_0: heta_A heta_B \leq 0$ vs $H_1: heta_A heta_B > 0$
 - \Rightarrow 표본비율의 차 $P_A B_B$ 가 크면 클수록 비정상적인 자료

● 유의수준과 오류 일반학과정(일박→전체)에서 발생 ○ 오류의 종류

실제 H_0 참		H_1 참
H_0 채택	Ο	제2종의 오류 (Type II Error)
H_1 채택	제1종의 오류 (Type I Error)	O

- \circ $\alpha = P(\text{제1종의 오류}) = P(H_0 \text{가 참일 때, } H_1 \text{을 채택}) = P(H_0 \text{세 Ho λ})$
- \circ $\beta = P(M2종의 오류)=P(H_1 이 참일 때, H_0를 채택)=P(H_3 제 H_4 참)$
- ※ 검정력(power, $1-\beta$) : $1-\beta$ = $P(H_0$ 기각 $\mid H_1$ 사실) : 개성성성이입에서 등세 판단했다지 유의수준(significance level : α) 결정 : 제1종 오류의 최대값

- ullet $X_1,X_2,\;...,X_{16}\sim \; {\sf iid}\;\; N(\mu,4)$ ১৯৮০ শূমুন্ত শূম্যুন্ত
 - $\Phi : \mu = 0 \text{ vs } H_1 : \mu = 1$
 - \circ 검정원칙: $\overline{X} \ge 0.5$ (기각역)이면 H_0 기각, 여기서 0.5 임계값 (critical value)
 - \circ 귀무가설 하에서 $\overline{X} \sim N(0,4/16)$

$$\alpha = P_{\underline{H_0}}(\overline{X} \ge 0.5) = P\left(\frac{\overline{X} - 0}{2/\sqrt{16}} \ge \frac{0.5 - 0}{2/\sqrt{16}}\right)$$
$$= P(Z \ge 1) = 0.1587$$

 \circ 대립가설 하에서 $\overline{X}\sim N(1,4/16)$

$$\beta = P_{\underline{H_1}}(\overline{X} < 0.5) = P\left(\frac{\overline{X} - 1}{2/\sqrt{16}} < \frac{0.5 - 1}{2/\sqrt{16}}\right)$$

$$= P(Z < -1) = 0.1587$$

- \circ 검정원칙: $\overline{X} \ge 0.75$ (기각역)이면 H_0 기각 (α 작아짐)
 - \circ 귀무가설 하에서 $\overline{X} \sim N(0,4/16)$

$$\alpha = P_{H_0}(\overline{X} \ge 0.75) = P\left(\frac{\overline{X} - 0}{2/\sqrt{16}} \ge \frac{0.75 - 0}{2/\sqrt{16}}\right)$$
$$= P(Z \ge 1.5) = 0.0668$$

 \circ 대립가설 하에서 $\overline{X} \sim N(1,4/16)$

$$\beta = P_{H_1}(\overline{X} < 0.75) = P\left(\frac{\overline{X} - 1}{2/\sqrt{16}} < \frac{0.75 - 1}{2/\sqrt{16}}\right)$$
$$= P(Z < -0.5) = 0.3085$$

검정력 : $1-\beta=1-0.3085=0.6915$

=> 일반적인 가설검정에서는 기각기준인 임계값을 먼저 정하지 않고 유의수준에 따라 임계값 결정

又=P(H:从时)Ho柱), B=P(Ho科时)Hi社)

• $H_0: \mu = 45$ vs $H_1: \mu = 42$

 \circ $\overline{X} \leq k$ 이면 귀무가설 기각(k = 43, 41, 40)

Maximum

- k의 조정으로 α , β 를 줄일 수 없음 [시소(seesaw) 효과]
- \circ 좋은 검정방법을 찾는 기준(\Rightarrow 수리통계): 특정 α 하에서 β 를 가장 작게 $(1-\beta$ 를 크게) 만드는 검정방법 선택

ग्रेभा तम हर्पमिय यम्याम, त्या पाठी 0.05 भ देश किर्मा अग्रेभ 우물 회산한으로 바드는 경쟁 방법을 선택한다.

Nolth지면 와카올아듦

ullet 표본크기 n로 lpha와 eta를 동시에 조절 가능 $(n \uparrow \Rightarrow lpha \downarrow, eta \downarrow)$

● 【파이】 표본평균이 158이하이면 귀무가설 기각

 $\circ \ H_0: \mu = 165 \text{ vs } H_1: \mu = 155$

【그림 8.3】 n=16 때와 25일 때의 α 와 β 의 비교

=> p.212 (예제8.7) 참고

त (आशिमभर्दे)

○ 유의수준 결정

【표 8.1】 귀무가설과 대립가설의 형태

상황	귀무가설		대립가설
1	$H_0: \phi \leq \phi_0$	र्यन्त्रप्रथूच्या महरूपम्हर १५० चित्रा स्वर्धिया महरूपम्हर	$H_1: \phi > \phi_0$
2	$H_0: \phi \geq \phi_0$	$H_0:\phi=\phi_0$	$H_1: \phi < \phi_0$
3	$H_0: \phi = \phi_0$		$H_1: \phi \neq \phi_0$

- 양측검정의 경우 유의수준은 $\phi = \phi_0$ 일 때 귀무가설을 기각 시킬 확률
- 단측검정의 경우 귀무가설에서의 모수는 $\phi \geq \phi_0$, $\phi \leq \phi_0$ 와 같이
- 7 구간으로 표시 되기 때문에 모수 값에 따라 제1종 오류 확률이 달라진다. → Φ = ♠ 일때 ແ값이가감거친나

मिथिनिय max ग्रेटि श्रिके भिरामित

예) 가설 :
$$H_0: \mu \leq 0$$
 vs $H_1: \mu > 0$

기각역:
$$\overline{X} \geq 0.75$$

$$\alpha = P_{H_0}(\overline{X} \ge 0.75) = P\left(\frac{\overline{X} - 0}{2/\sqrt{16}} \ge \frac{0.75 - 0}{2/\sqrt{16}}\right)$$
$$= P(Z \ge 1.5) = 0.0668$$

$$\alpha = P_{H_0}(\overline{X} \ge 0.75) = P\left(\frac{\overline{X} - 0}{2/\sqrt{16}} \ge \frac{0.75 + 0.5}{2/\sqrt{16}}\right)$$

$$= P(Z \ge 2.5) = 0.0062$$

=> 0에 가까울수록 제1종 오류의 확률은 가장 큰 값을 가진다.

귀무가설하에서의 모든 경우에 적용할 수 있으려면 제 1종 오류 확률의 최대값을 유의수준으로 정하는 것이 타당하다.

 $\alpha = \max P(M1$ 종오류) = $\max P(H_0$ 기각 | H_0 사실)

- 가설검정의 순서
 - 귀무가설과 대립가설의 설정
 - 검정통계량 결정
 - 유의수준 결정
 - 기각역 계산
 - 판정

◉ 모평균의 검정

二对形型吐

 \circ 가정: $X_1, X_2, ..., X_n \sim \mathsf{iid}\ N(\mu, \sigma^2)$ 이고 σ^2 가 알려진 경우

$$\begin{cases} a. \ \mu > \mu_0 \\ b. \ \mu < \mu_0 \\ c. \ \mu \neq \mu_0 \end{cases}$$

$$\circ$$
 H_0 가 사실이라면, 검정통계량: $Z = rac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

 \circ H_0 가 기각되는 검정통계치 z의 범위를 기각역이라 한다.

이 유의수준을
$$\alpha$$
라고 하면, 기각역은 $\begin{cases} a.\ z \geq z_{\alpha} & \text{Ho-Hieff, Identifold} \\ b.\ z \leq -z_{\alpha} & \text{UNHELLENS Hobbit} \\ c.\ |z| \geq z_{\alpha/2} & \text{UNHELLENS HOBBIT} \end{cases}$

lpha 기각역은 유의수준 lpha가 작아(커)질수록 좁아(넓어)진다.

- 【파이】기존 칼로리보다 낮음
 - \circ 가정: 칼로리 분포는 $N(\mu, 20^2)$
 - $\circ \ H_0: \mu = 165 \text{ vs } H_1: \mu < 165$
 - n = 25 ⇒ 귀무가설 하에서

সুসুদ্ধাদ
$$Z=rac{\overline{X}-165}{20/\sqrt{25}}\sim N(0,1)$$

- 20.05 = -1.645

$$\circ$$
 5% 유의수준 \Rightarrow $P(Z \le -1.645) = 0.05$

$$\downarrow$$
 기각역 : $z \le -1.645$

$$\circ$$
 \overline{x} = 156 \Rightarrow $z = \frac{156 - 165}{20/\sqrt{25}} = -2.25 < -1.645$ (Ho기각)

○ 결론: 5% 유의수준에서 새로운 파이의 평균칼로리는 기존 파이의 칼로리 보다 낮다고 할 수 있음 (Hi새택) 나ઇ옷 대답하였의 입장에서서나당 ● 유의확률(significance probability: p-값) → 자연자발생 Ho기항. ५ मान्ये प्राह्मान्या गार्धिन म गार्थिय ग्रा महे अहे

내가찬 【그림 8.6】 유의수준과 유의확률 비교

관측값에 의해 귀무가설을 기각시킬 수 있는 최소 유의수준 귀무가설하에서 계산된 검정통계량의 값보다 비정상적인 경우의 확률 게임하는 기가시킬수 있는 회원의 유의 부가

$$p$$
-값 $\leq \alpha \Rightarrow$ 귀무가설 기각 p -값 $> \alpha \Rightarrow$ 귀무가설 기각 못시킴

- 【파이】기존 칼로리보다 낮음
 - \circ 가정: 칼로리 분포는 $N(\mu,20^2)$
 - $\circ H_0: \mu = 165 \text{ vs } H_1: \mu < 165$
 - n = 25 ⇒ 귀무가설 하에서

$$\circ$$
 $\overline{x} = 156 \implies z = \frac{156 - 165}{20/\sqrt{25}} = -2.25 < -1.645$

 \circ 위 예제에서 p-값은 $P(Z \le -2.25) = 0.0122 \le 0.05$

워 상 양측검정인 경우: p-값= $2P(Z \ge |z|)$

