DMA Přednáška – Indukce

Kroky při důkazu indukcí:

- 1. Zformulujeme přesně tvrzení a oznámíme, jak jej dokážeme.
- 2. Dokážeme základní krok.
- 3. Dokážeme indukční krok. Pro jisté (libovolné) $n \ge n_0$ předpokládáme, že platí "indukční předpoklad" V(n), pomocí něj pak dokážeme platnost V(n+1).
- 4. Uděláme závěr.

Slabý princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$.

Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0$ je pravdivá následující implikace: Jestliže platí V(n), pak platí i V(n+1). Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \ge n_0$.

Věta.

Princip indukce je ekvivalentní s principem dobrého uspořádání.

Silný princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$.

Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0$ je pravdivá následující implikace: Jestliže platí V(k) pro všechna $k = n_0, n_0 + 1, \ldots, n$, pak platí i V(n+1).

Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \geq n_0$.

Věta.

Slabý a silný princip matematické indukce jsou ekvivalentní.

Modifikovaný silný princip matematické indukce.

Nechť $n_0 \in \mathbb{Z}$, nechť V(n) je vlastnost celých čísel, která má smysl pro $n \geq n_0$. Nechť $m \in \mathbb{N}$. Předpokládejme, že následující předpoklady jsou splněny:

- (0) $V(n_0)$, $V(n_0 + 1)$, $V(n_0 + 2)$, ..., $V(n_0 + m 1)$ platí.
- (1) Pro každé $n \in \mathbb{Z}$, $n \ge n_0 + m 1$ je pravdivá následující implikace: Jestliže platí V(k) pro všechna $k = n m + 1, n m + 2, \ldots, n$, pak platí i V(n + 1).

Potom V(n) platí pro všechna $n \in \mathbb{Z}$, $n \geq n_0$.

Induktivní definice množin.

Při definici konkrétní množiny M uvažujme následující dva druhy specifikací:

- (0) **Základní pravidla** definují přímo, které prvky jsou v množině M.
- (1) **Induktivní pravidla** určují, jak lze pomocí prvků, které již v množině jsou (tzv. **předpoklady** pravidla), vytvářet další prvky z M (tzv. **závěr** pravidla).

Množina M se pak skládá ze všech prvků, které lze obdržet konečným počtem použití pravidel (0) a (1) (tedy prvky, které lze takto získat, leží v M, a ty, které takto získat nelze, pak v M neleží).

Princip strukturální indukce.

Uvažujme množinu M definovanou induktivně pomocí nějakých základních pravidel (0) a induktivních pravidel

(1). Uvažujme vlastnost V(m), která má smysl pro všechny $m \in M$.

Předpokládejme, že jsou splněny následující podmínky:

- (0) V je splněna pro všechny prvky, které jsou do M dodány základními pravidly.
- (1) Pro každé induktivní pravidlo platí: Jestliže je V splněna pro prvky z jeho předpokladů, pak je splněna i pro prvek z jeho závěru.

Pak je vlastnost V splněna pro všechny prvky $m \in M$.

Věta.

Platnost principu strukturální indukce je ekvivalentní platnosti principu matematické indukce.