- 1. Генератриса та її властивості
- 2. Означення випадкової величини.
- 3. Визначення функції розподілу. Її властивості.
- 4. Т. Про характеристичні властивості функції розподілу.
- 5. Вибірковий ймовірнісний простір (статистичний простір)
- 6. Абсолютніо неперервні випадкові величини. Щільність, її властивості.
- 7. Рівномірний розподіл. М.сподівання та дисперсія для нього.
- 8. Нормальний розподіл. Властивості.
- 9. Показниковий розподіл. Задача про час безвідмовної роботи.
- 10. Властивості відсутності післядії.
- 11. Гамма розподіл.
- 12. Теорема про функцію від випадкових величин.
- 13. Багатовимірні функції розподілу. Властивості.
- 14. Маргінальні функції розподілу та щільності.
- 15. Незалежні випадкові величини. Теорема про спадковість незалежності.
- 16. Теорема про суму незалежних випадкових величин.
- 17. Загальне визначення математичного сподівання. Інтеграли Лебега, Лебега-Стілтьєса, Рімана-Стілтьєса, Рімана.
- 18. Різні види збіжності. Показати, що із збіжності в середньому квадратичному випливає збіжність за ймовірнісю.
- 19. Характеристична функція. Теорема про основні властивості.
- 20. Теорема про властвості характеристичної функції.
- 21. Обчислення характеристичної функції для константи та для розподілу Пуассона.
- 22. Характеристична функція для нормального розподілу.
- 23. Критерій Леві. Формула обертання для характеристичної функції.
- 24. Закон великих чисел у формі Чебишева.
- 25. Закон великих чисел у формі Хінчина.
- 26. Метод Монте-Карло.
- 27. Центральна гранична теорема.
- 28. Інтегральна теорема Муавра-Лапласа.
- 29. Вибірка. Варіаційний ряд. Порядкові статистики.
- 30. Емпірична функція розподілу. ЇЇ властивості. Т. Колмогорова.
- 31. Вибіркові та теоретичні моменти.
- 32. Незміщені оцінки. Конзистентні оцінки. Достатні умови конзистентності.
- 33. Теорема про функцію впливу кратної вибірки.
- 34. Теорема про центрованість функції впливу.
- 35. Кількість інформації за Фішером. Теорема про її обчислення.
- 36. Критерій Крамера-Рао. Ефективні оцінки.
- 37. Вибіркові та теоретичні моменти.
- 38. Метод моментів знаходження оцінок.
- 39. Метод максимальної вірогідності.
- 40. Довірчі інтервали для середнього значення і для дисперсії.
- 41. Критерії перевірки стат. гіпотез. Помилки 1-го та 2-го роду.
- 42. Критерії перевірки для параметрів нормального розподілу.
- 43. Xi-2 критерії.

Під час дослідження цілочисельних невід'ємних в.в. корисними є генератриси (твірні функції), які визначають наступним чином.

Нехай ξ — цілочисельна невід'ємна в.в. з розподілом імовірностей

$$P(\xi = k) = p_k, \quad k = 0, 1, 2, ...$$

Означення

Генератрисою $G_{\xi}(t)$ розподілу в.в. ξ (чи послідовності $\{p_k, k=0,1,\dots\}$) називають ряд

$$G_{\xi}(t) = Mt^{\xi} = \sum_{k=0}^{\infty} p_k t^k, \quad |t| \leq 1.$$

Виконуються такі власт.:

- $G_{\varepsilon}(1) = p_0 + p_1 + \cdots = 1$
- Розподіл імовірностей р_k відновлюють за генератрисою, беручи похідну відповідного порядку у точці нуль:

Зокрема, $G_{\xi}(0) = \mathbf{P}(X = 0)$.

• Генератрису $G_{\xi}(t)$ можна використовувати для простого знаходження моментів різних порядків.

 Подальше диференціювання дає формули, які можна використати для визначення моментів інших порядків.

$$M(\xi(\xi-1)\cdots(\xi-k+1))=G_{\xi}^{(k)}(1).$$

У частковому випадку при k=2

$$M(\xi(\xi-1)) = G''_{\xi}(1) \Rightarrow$$

$$\Rightarrow M\xi^2 = G_{\varepsilon}''(1) + M\xi = G_{\varepsilon}''(1) + G_{\varepsilon}'(1).$$

Тому дисперсію за допомогою генератриси можна знайти як

$$\mathbf{D}\xi = M\xi^2 - (M\xi)^2 = G''_{\xi}(1) + G'_{\xi}(1) - (G'_{\xi}(1))^2.$$

2. Означення випадкової величини.

Нехай $\mathcal{B}(\mathbf{R})$ — борелівська σ -алгебра, задана на \mathbf{R} .

Означення

Якщо $\xi^{-1}(A) \in \mathcal{F}$ для довільної борелівської множини A, то функцію $\xi(\omega)$ називають вимірною.

Означення

Скінченну дійснозначну вимірну функцію називають випадковою величиною (в.в.).

Означення (Еквівалентне визначення в.в.)

Дійсна скін. функція $\xi:\Omega \to \mathbf{R}$ називається випадковою величиною, якщо

$$\forall x \in \mathbf{R} \quad \{\omega : \xi(\omega) \le x\} \in F.$$

Приклад

Простим прикладом в.в. ϵ індикаторна функція події $B \in \mathcal{F}$:

$$I_B(\omega) = \begin{cases} 1, & \text{коли } \omega \in B; \\ 0, & \text{коли } \omega \notin B. \end{cases}$$

3. Визначення функції розподілу. Її властивості.

Означення

Функцією розподілу (ф.р.) в.в. ξ називається

$$F_{\xi}(x) = F(x) = P(\{\omega : \xi(\omega) \le x\}) = P\{\xi \le x\}, \quad x \in \mathbb{R}.$$

Приклад

Для в.в. ξ з прикладу про підкидання монети 2р. знайдемо ф.р. F(x):

$$\{\omega:\xi(\omega)\leq x\}=\left\{\begin{array}{ll}\emptyset,&\text{коли }x<0;\\\{\omega_1\},&\text{коли }x\in[0,1)\\\{\omega_1,\omega_2,\omega_3\},&\text{коли }x\in[1,2)\\\Omega,&\text{коли }x\geq2.\end{array}\right.$$

Лема

Функція розподілу $F(x) = P\{\xi \le x\}$ в.в. ξ задовольняє власт.:

для x₁ < x₂

$$P\{x_1 < \xi \le x_2\} = F(x_2) - F(x_1);$$

٠

$$P\{\xi < x\} = F(x-) = F(x-0);$$

Наслідок

Якщо F(x) — функція розподілу для в.в. ξ , то

0

$$P\{\xi = x\} = F(x) - F(x-);$$

0

$$P\{x_1 \le \xi \le x_2\} = F(x_2) - F(x_1-);$$

6

$$P\{x_1 < \xi < x_2\} = F(x_2 -) - F(x_1);$$

0

$$P\{x_1 \le \xi < x_2\} = F(x_2-) - F(x_1-).$$

4. Т. про характеристичні властивості функції розподілу.

Теорема (про характеристичні власт. ф.р.)

Для ф.р. $F(x)P\{\xi \le x\}$ виконуються характеристичні властивості:

- (монотон.) F(x) неспадна;
- (неперер.) F(x) неперервна праворуч;
- (нормов.) $F(-\infty) = 0$, $F(+\infty) = 1$

Лема

Довільна функція розподілу F(x) має не більш як зліченне число точок розриву першого роду.

5. Вибірковий ймовірнісний простір

Статистичний простір

Статистичним простором називають трійку

$$(\Omega, \mathcal{F}, (\mathbf{P}_{\theta} : \theta \in \Theta)),$$

що складається з таких елементів:

- Ω простір елементарних подій деякого стохастичного експерименту,
- ullet $\mathcal{F}\subset 2^\Omega$ сигма-алгебра випадкових подій підмножин $\Omega,$
- ullet ($\mathbf{P}_{ heta}\colon heta\in\Theta$) деяка параметрична сім'я ймовірностей на \mathcal{F} ,
- Θ параметричний простір множина довільної природи.

6. Абсолютніо неперервні випадкові величини. Щільність, її властивості.

В.в. ξ та її функцію розподілу F_{ξ} називають *абсолютно* неперервними, якщо існує невід'ємна функція $f_{\xi}(x)$ така, що

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(u) du$$

для будь-якого $x \in \mathbf{R}$. Тут інтеграл треба розуміти як інтеграл Рімана-Стілтьєса у разі кусково-неперервної функції $f_{\xi}(x)$ та як інтеграл Лебега-Стілтьєса у разі вимірної функції $f_{\xi}(x)$. Функцію $f_{\xi}(x)$ називають *щільністю розподілу* в.в. ξ та функції розподілу F_{ξ} .

Із властивостей функції розподілу випливають такі властивості щільності:

- невід'ємність: $f_{\xi}(x) > 0$; ($\Leftarrow F(x) \uparrow$)
- ullet нормованість: $\int_{-\infty}^{\infty} f_{\xi}(y) \, \mathrm{d}y = 1$ ($\ensuremath{\Leftarrow} F(+\infty) = 1$).

Будь-яка невід'ємна інтегровна нормована функція є щільністю деякої функції розподілу, оскільки з властивостей інтегралу (Рімана чи Лебега) випливають характеристичні властивості функції розподілу. Якщо функція розподілу диференційовна, то щільність (майже всюди) збігається з похідною функції розподілу:

$$f_{\xi}(x) = F'_{\xi}(x) = \frac{\mathrm{d}F_{\xi}(x)}{\mathrm{d}x}.$$

$$P\{a < \xi \le b\} = \int_a^b f_{\xi}(x) dx, \quad \forall a < b, a, b \in R$$

7. Рівномірний розподіл. М.сподівання та дисперсія для нього.

Означення

В.в. ξ має рівномірний розподіл на відрізку [a,b], що позначається $\xi \sim \mathcal{U}[a,b]$, якщо її щільність є сталою всередині цього відрізку та дорівнює нулю поза ним, тобто

$$f_{\xi}(x) = \frac{1}{b-a} I_{x \in [a,b]}.$$
 (1)

Це означає, що ймовірність попадання величини в якусь множину всередині відрізка пропорційна довжині цієї множини (як інтеграл від щільності) і не залежить від її положення. Таким чином, виконується умова рівноймовірності значень.

Моменти:

$$M\xi = \int_{-\infty}^{\infty} x f_X(x) \, \mathrm{d}x = \int_a^b x \frac{1}{b-a} \, \mathrm{d}x = \frac{a+b}{2};$$

$$M\xi^2 = \int_a^b x^2 \frac{1}{b-a} \, \mathrm{d}x = \frac{a^2+ab+b^2}{3};$$

$$D\xi = M\xi^2 - (M\xi)^2 = \frac{(b-a)^2}{12}.$$

8. Нормальний розподіл. Властивості.

Цей розподіл, відомий за своєю симетричною дзвоноподібною формою, відіграє фундаментальну роль у теорії та практиці статистики, оскільки, по-перше, є гарною моделлю для розподілу вимірювань, які проводять на практиці у різного роду ситуаціях та, по-друге, гарним наближенням для різних інших розподілів, зокрема, є граничним для біноміального. Нормальний розподіл використовують для побудови багатьох інших розподілів (логнормальний, хі-квадрат, Фішера, Стьюдента тощо), на ньому ґрунтується велика кількість статистичних висновків.

Нормальний розподіл $\mathcal{N}(\mu, \sigma^2)$ має два параметри, які зручним чином безпосередньо виражаються через середнє μ та стандартний відхил σ . Розподіл симетричний відносно μ . Щільність нормального розподілу

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad -\infty < x < \infty.$$

- $\xi \sim N(m, \sigma^2) \Rightarrow M\xi = m, D\xi = \sigma^2$.
- Якщо $\xi \sim N(m, \sigma^2)$, то $\xi a + b \sim N(ma + b, a^2 \sigma^2)$.

Зауваження

Ця властивість дозволяє будь-яку нормально розподілену в.в. звести до стандартного гауссівського розподілу, а саме до N(0,1). Якщо $\xi \sim N(m,\sigma^2)$, то $z=\frac{\xi-m}{\sigma} \sim N(0,1)$.

• Якщо ξ_i — незалежні в.в. з $\xi_i \sim N(m_i, \sigma_i^2)$, $i = \overline{1, n}$, то

$$\sum_{i=1}^n \xi_i \sim N(\sum_{i=1}^n m_i, \sum_{i=1}^n \sigma_i^2).$$

• Якщо $\xi \sim N(m, \sigma^2)$, то

$$P\{a < \xi < b\} = P\{\frac{a-m}{\sigma} < \frac{\xi-m}{\sigma} < \frac{b-m}{\sigma}\} =$$
$$= \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right),$$

де $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2}} dt$ — функція розподілу для стандартної гауссівської в.в. Її значення знаходять зі статистичних таблиць.

9. Показниковий розподіл. Задача про час безвідмовної роботи.

Означення

В.в. ξ має показниковий розподіл з параметром $\lambda, \, \lambda > 0,$, якщо її щільність має вигляд

$$f_{\xi}(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

Функція розподілу експоненційного розподілу:

$$F_{\xi}(x) = \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, \quad x > 0;$$

Експоненційний розподіл часто використовують як просту модель тривалості життя певних типів обладнання.

10. Властивості відсутності післядії.

Властивість відсутності післядії характеризується тим, що ймовірність появи к подій на будь-якому проміжку часу не залежить від того, з'являлися або не з'являлися події в моменти часу, що передували початку даного проміжку. Іншими словами, умовна ймовірність появи к подій на будь-якому проміжку часу, обчислена при будь-яких припущеннях про те, що відбувалося до початку даного проміжку (скільки подій з'явилося, в якій послідовності), дорівнює безумовній ймовірності. Таким чином, передісторія потоку не позначається на ймовірності появи подій в найближчому майбутньому.

Отже, якщо потік володіє властивістю відсутності післядії, то має місце взаємна незалежність появ того або іншого числа подій в непересічні проміжки часу.

11. Гамма розподіл.

Нагадаємо спершу, що гамма-функцію $\Gamma(\alpha)$ визначають для $\alpha>0$ таким чином:

$$\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy.$$

Зокрема.

$$\Gamma(1) = 1$$
, $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$

для $\alpha > 1$ (тобто коли n – ціле число, то $\Gamma(n) = (n-1)!$) та $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Сім'я гамма-розподілів має два додатних параметри і є дуже гнучкою. Щільність може набувати різної форми залежно від значень параметрів і визначена на додатній півосі $\{x: x > 0\}$.

Означення

Щільність гамма-розподілу з параметрами α та λ має вигляд

$$f_{\xi}(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \quad x > 0.$$

Зауваження

Експоненційний (показниковий) розподіл – це гамма розподіл з параметром $\alpha=1$.

Зауваження

Хі-квадрат (χ^2) розподіл з параметром ν "ступеней вільності" – це гамма розподіл з параметрами $\alpha=\frac{\nu}{2}$, де ν – натуральне число, та $\lambda=\frac{1}{2}$. Щільність хі-квадрат розподілу з ν ступеней вільності:

$$f_X(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}, \quad x > 0.$$

12. Теорема про функцію від випадкових величин.

Нехай g(x) – борелівська функція, т.б. дійсна функція, визначена на R так, що для будь-якого $a \in R$ множина $\{x \colon g(x) < a\}$ є борелівською. Тоді

$$Mg(\xi) = \int_{-\infty}^{+\infty} g(x) dF_X(x) = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

13. Багатовимірні функції розподілу. Властивості.

Hехай X_1, \ldots, X_n – довільні в.в.

Означення

Сумісною функцією розподілу випадкового вектора $\mathbf{X} = (X_1, X_2, \dots, X_n)$ називають функцію $F_{\mathbf{X}}(x) : \mathbf{R}^n \to \mathbf{R}$, яка в точці $\mathbf{x} = (x_1, \dots, x_n)$ дорівнює

$$F_{\mathbf{X}}(\mathbf{x}) \equiv F_{\mathbf{X}}(x_1, x_2, \dots, x_n) \equiv F_{X_1, \dots, X_n}(x_1, x_2, \dots, x_n) =$$

= $\mathbf{P}(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$

Як і в одновимірному випадку, багатовимірна функція розподілу має подібні властивості:

- F_X(x₁,...,x_n) неспадна функція за будь-яким аргументом;
- (2) неперервна праворуч за будь-яким аргументом;
- (3) задовольняє співвідношення

$$F_X(+\infty,\ldots,+\infty)=1, \quad \lim_{x_k\to-\infty}F_X(x_1,\ldots,x_n)=0 \quad (1\leq k\leq n)$$

для довільних значень інших аргументів.

Означення

Випадковий вектор $\mathbf{X}=(X_1,X_2,\ldots,X_n)$ та його сумісну функцію розподілу $F_{\mathbf{X}}$ називають абсолютно неперервними, якщо існує невід'ємна вимірна функція $f_{\mathbf{X}}(\mathbf{x})\equiv f_{\mathbf{X}}(x_1,\ldots,x_n)$ така, що

$$F_{\mathbf{X}}(\mathbf{x}) = \int_{(-\infty,\mathbf{x})} f_{\mathbf{X}}(\mathbf{y}) d\mathbf{y} = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_n} f_{\mathbf{X}}(y_1,\dots,y_n) dy_1 \dots dy_n$$

для будь-якого $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$. Функцію $f_{\mathbf{X}}(\mathbf{x})$ називають сумісною щільністю випадкового вектора та сумісної функції розподілу $F_{\mathbf{X}}$.

14. Маргінальні функції розподілу та щільності.

Нехай випадковий вектор $\mathbf{X} = (X_1, X_2, \dots, X_n)$ має сумісну функцію розподілу $F_{\mathbf{X}}$. Маргінальну функцію розподілу в.в. X_k визначають так:

$$F_{X_k}(x_k) = P(X_k < x_k) = F_{\mathbf{X}}(\infty, \dots, \infty, x_k, \infty, \dots, \infty),$$

де $x_k - k$ -ий аргумент функції F_X .

Якщо випадковий вектор $\mathbf{X} = (X_1, X_2, \dots, X_n)$ має сумісну щільність $f_{\mathbf{X}}$, то його координати мають маргінальні щільності

$$f_{X_k}(x) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f_{\mathbf{X}}(y_1, \dots, y_{k-1}, x, y_{k+1}, y_n) dy_1 \dots dy_{k-1} dy_{k+1}$$

15. Незалежні випадкові величини. Теорема про спадковість незалежності.

Кожна в.в. породжує випадкові події, які є прообразами борелівських множин. Незалежність в.в. означає, що всі такі породжені події незалежні.

Означення

Отже, в.в. X_1, \dots, X_n незалежні в сукупності, якщо всі породжені ними випадкові події незалежні в сукупності, тобто для довільних $B_k \in \mathcal{B}(\mathsf{R})$

$$\mathsf{P}(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{k=1}^n \mathsf{P}(X_k \in B_k).$$

Зокрема, в.в. X_1, \ldots, X_n незалежні в сукупності тоді й лише тоді, коли відповідна сумісна функція розподілу для всіх $(x_1, \ldots, x_n) \in \mathbb{R}^n$ розкладається у добуток

$$F_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n) =$$

$$= \prod_{k=1}^n P(X_k \le x_k) = \prod_{k=1}^n F_{X_k}(x_k).$$

Коли випадковий вектор $\mathbf{X}=(X_1,\ldots,X_n)$ має сумісну щільність $f_{\mathbf{X}}(x_1,\ldots,x_n)$, то абсолютно неперервні в.в. X_1,\ldots,X_n незалежні в сукупності тоді й лише тоді, коли

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=\prod_{k=1}^n f_{X_k}(x_k).$$

Теорема

Нехай в.в. X_1, \ldots, X_n незалежні в сукупності, а $g_1(x), \ldots, g_n(x)$ – борелівські функції. Тоді в.в.

$$g(X_1), \ldots, g(X_n)$$

незалежні в сукупності.

16. Теорема про суму незалежних випадкових величин.

Теорема

Якщо X та Y – незалежні в.в. із щільностями $f_X(x)$ і $f_Y(x)$, то сума X+Y має функцію розподілу

$$F_{X+Y}(x) = \int_{-\infty}^{\infty} F_X(x-y) dF_Y(y) = \int_{-\infty}^{\infty} F_Y(x-y) dF_X(y),$$

яку називають згорткою функцій розподілу $F_X(x)$ і $F_Y(x)$ і позначають $F_X * F_Y(x) = F_{X+Y}(x)$; та щільність, яка дорівнює згортці щільностей $f_X(x)$ і $f_Y(x)$, тобто

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) \, \mathrm{d}y = \int_{-\infty}^{\infty} f_Y(a-y) f_X(y) \, \mathrm{d}y.$$

17. Загальне визначення математичного сподівання. Інтеграли Лебега, Лебега-Стілтьєса, Рімана-Стілтьєса, Рімана.

Для в.в. $\xi(\omega)$, заданих на ймовірнісному просторі (Ω, F, P) , загальне визначення математичного сподівання вводиться послідовно для дискретних в.в., далі для невід'ємних та знакозмінних інтегровних в.в..

Фактично, *математичним сподіванням М* ξ в.в. ξ є її інтеграл Лебега:

$$M\xi = \int_{\Omega} \xi \, \mathrm{d}\mathbf{P}.$$

Зауважимо, що $M\xi$ існує тоді і лише тоді, коли існує $M|\xi|$. Тоді в.в. ξ називають *інтегровною*.

Має місце рівність

$$M\xi = \int_{-\infty}^{+\infty} x \, \mathrm{d}F_{\xi}(x),$$

у правій частині якого стоїть інтеграл Стілтьєса. Якщо в.в. ξ абсолютно неперервна і має щільність $f_{\xi}(x)$, то

$$M\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) \, \mathrm{d}x.$$

Якщо X – дискретна в.в. з розподілом $\{(x_i, p_i)\}_{i \geq 1}$, то

$$M\xi = \sum_{i\geq 1} p_i x_i \quad \left(= \sum_{i\geq 1} x_i P(\xi = x_i) = \sum_{\omega \in \Omega} X(\omega) P(\omega) \right).$$

Нехай g(x) — борелівська функція, т.б. дійсна функція, визначена на \mathbf{R} так, що для будь-якого $a \in \mathbf{R}$ множина $\{x \colon g(x) < a\}$ є борелівською. Тоді

$$Mg(\xi) = \int_{-\infty}^{+\infty} g(x) dF_X(x) = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

Інтеграл Лебега — це узагальнення інтегралу Рімана на більш широкий клас функцій. Всі функції, визначені на скінченному відрізку числової прямої і інтегровні за Ріманом, є також інтегровні за Лебегом, причому в такому випадку обидва інтеграли збігаються. Однак, існує великий клас функцій, визначених на відрізку і інтегровних за Лебегом, але не інтегровних за Ріманом. Також інтеграл Лебега може застосовуватися до функцій, заданих на довільних множинах.

Ідея побудови інтеграла Лебега полягає в тому, що замість розбиття області визначення підінтегральної функції на частини і написання потім інтегральної суми із значень функції на цих частинах, на інтервали розбивають її область значень, а потім сумують з відповідними мірами міри прообразів цих інтервалів.

ПРИКЛАД

По Лебегу-Стилтьесу не нашёл.

Інтеграл Стілтьєса (або інтеграл Рімана–Стілтьєса) — узагальнення визначеного <u>інтеграла,</u> дане в <u>1894</u> році голландським математиком Томасом Стілтьєсом.

Нехай маємо дві <u>дійсні функції</u> $f, \, g: \mathbb{R} o \mathbb{R}, \, P$ — множину розбиттів відрізка $[a,b] \ \ a=x_0 < x_1 < x_2 < \ldots < x_i < \ldots < x_n = b$ | Введемо позначення для довільних

точок відрізків розбиття $c_i \in [x_i, x_{i+1}]$

Величиною розбиття називатимемо довжину найдовшого відрізка розбиття:

$$\delta(P) = \max_{x_i \in P} |x_{i+1} - x_i|.$$

Інтеграл Стілтьєса позначається так:

$$\int_a^b f(x) \mathrm{d}g(x)$$
 і за означенням він рівний границі:

$$\lim_{\delta(P) o 0}\sum_{x_i\in P}f(c_i)(g(x_{i+1})-g(x_i))$$

Застосування у теорії ймовірностей

Приклад

Означення (інтеграла Рімана). Нехай функція $f: [a, b] \rightarrow R \ (a < b)$ та

- для довільного розбиття λ відрізка [a, b] та відповідного йому набору точок $\{c_i \mid \lambda\}$ існує скінченна границя інтегральних сум $S(f, \lambda, \{c_i \mid \lambda\})$ при $|\lambda| \to 0$,
- границя інтегральних сум $S(f, \lambda, \{c_i | \lambda\})$ не залежить від розбиття λ і вибору точок c_i .

Тоді таку границю називають інтегралом Рімана функції f по відрізку [a, b] і позначають

$$\int_a^b f(x) \, dx.$$

У цьому випадку функція f(x) називається *інтегровною (за Ріманом)* на [a, b]; в протилежному випадку f(x) є неінтегровною (за Ріманом) на відрізку [a, b].

18. Різні види збіжності. Показати, що із збіжності в середньому квадратичному випливає збіжність за ймовірнісю.

Види збіжностей [ред. | ред. | ред. код]

- Збіжність за розподілом
- Збіжність за ймовірністю (за мірою)
- Збіжність майже напевно (майже всюди)
- Збіжність у середньому

Кажуть, що послідовність в.в. X_1, X_2, \dots збігається за

<u>ймовірністю</u> до числа b (а в загальному випадку замість b може бути

в.в.), якщо при $n \to \infty$ $\forall \varepsilon > 0$ має місце

$$P\{|X_n - b| < \varepsilon\} \rightarrow 1$$

і для скорочення ця збіжність позначається так: $X_n \xrightarrow{P} b$.

Означення. Послідовність випадкових величин ($\xi_n, n \ge 1$) збігається з імовірністю 1 до величини ξ або ж збігається майже напевне (позначення $\xi_n \to^{P1} \xi$), якщо

$$P(\{\omega : \exists \lim_{n\to\infty} \xi_n(\omega) = \xi(\omega)\}) = 1.$$

Означення. Послідовність випадкових величин (ξ_n , $n \geq 1$) збігається до величини ξ у середньому порядку q (позначення $\xi_n \to^{Lq} \xi$), якщо $M |\xi_n - \xi|^q \to 0$ при $n \to \infty$. Збіжність у середньому порядку 2 називається також збіжністю у середньому квадратичному

ullet Із збіжності в L^p виплива ullet збіжність за мірою (за ймовірністю). Якщо $f_n \overset{L^p}{\longrightarrow} f$, то $f_n \overset{\mu}{\longrightarrow} f$.

L^p - збіжність в середньому квадратичному

19. Характеристична функція. Теорема про основні властивості

Характеристична функція випадкової величини ξ :

$$\varphi_{\varepsilon}(t) = Me^{it\xi} = M\left(\cos\xi t + i\sin\xi t\right) = M\cos\xi t + iM\sin\xi t. \quad (1)$$

Якщо $F(x) - \phi.р.в.в. \xi$, то:

$$\varphi_{\xi}(t) = \int_{R} e^{itx} dF_{\xi}(x). \tag{2}$$

Х.ф. дискретної випадкової величини:

$$\varphi_{\xi}(t) = Me^{it\xi} = \sum_{x_k} e^{itx_k} P\{\xi = x_k\},$$
(3)

а х.ф. абсолютно неперервної випадкової величини:

$$\varphi_{\xi}(t) = \int_{R} e^{ixx} f_{\xi}(x) dx \tag{4}$$

(перетворення Φ ур'є),

$$f_{\xi}(x) = \frac{1}{2\pi} \int_{R} e^{-itx} \varphi_{\xi}(t) dt.$$
 (5)

Властивості х.ф.

1) $\forall t \in \mathbb{R} \mid \varphi(t) \mid \le 1, \ \varphi(0) = 1.$

<u>Доведення</u>: \Box Оскільки $|M\eta| \le M |\eta|$, то

$$|\varphi(t)| = |Me^{it\xi}| \le M |e^{it\xi}| = M1 = 1.$$

- 2) $\varphi(t)$ рівномірно **неперервна** по t .
- 3) Якщо $\eta = a\xi + b$, де a і b константи, то $\varphi_n(t) = e^{itb}\varphi_{\varepsilon}(at)$.

<u>Доведення</u>: \square $\varphi_{\eta}(t) = Me^{it\eta} = Me^{it(a\xi+b)} = e^{itb}Me^{i(ta)\xi} = e^{itb}\varphi_{\xi}(at)$

4) Якщо $\xi_1,...,\xi_n$ незалежні, то $\varphi_{\xi_1+...+\xi_n}(t)=\prod_{k=1}\varphi_{\xi_k}(t)$.

Доведення:

5)
$$\varphi_{\xi}(-t)=\varphi_{-\xi}(t)=\overline{\varphi}_{\xi}(t)$$
 . Випливає з властивості 3 і того, що $\overline{e^{ix}}=e^{-ix}$.

6) Якщо
$$m_n = M \xi^n$$
 скінченне, то існують всі $\varphi^{(k)}(t)$ $(k \le n)$ і

$$\varphi^{(k)}(0) = i^k M \xi^k = i^k m_k.$$

Крім того,

$$\varphi(t) = \sum_{k=0}^{n} \frac{(it)^{k}}{k!} m_{k} + R_{n}(t), \quad R_{n}(t) = o(|t^{n}|), t \to 0.$$

- 7) Х.ф. однозначно визначає розподіл в.в. (доведення теореми див. далі).
- 8) $F_n(x) \Rightarrow F(x) \Leftrightarrow \varphi_n(t) \to \varphi(t) \ \forall t \in R$, де $\varphi_n(t) x$.ф. розподілу $F_n(x)$, а $\varphi(t) x$.ф. розподілу F(x).

Теорема 2.2.1 (про основні властивості характеристичної функції).

Нехай ф – характеристична функція. Тоді виконуються такі властивості:

(а -нормованість)
$$\varphi(0) = 1i \varphi(t) \le 1$$
, $\square t \square R$,

(б –антисиметрія)
$$\varphi(-t) = \overline{\varphi(t)}$$
,

(в –неперервність) $\varphi(t)$ неперервна в нулі та рівномірно неперервна,

(г –невід'ємна визначеність) для довільних дійсних t_1,\dots,t_n та комплексних c_1,\dots,c_n справедлива нерівність

$$\sum_{k=1}^{n} c_k \overline{c_j} \varphi (t_k - t_j) \ge 0.$$

20. Теорема про властвості характеристичної функції.

Теорема 2.2.2 (про властивості характеристичної функції).

- a) $\varphi_{a \cdot b\xi}(t) = \exp(ita) \varphi_{\xi}(bt)$.
- б) Якщо ξ , η незалежні, то $\varphi_{\xi \cdot \eta}(t) = \varphi_{\xi}(t) \varphi_{\eta}(t)$.
- в) Якщо ξ інтегровна, то $\varphi_{\xi}(t) = 1 + it M \xi + o(t), t \to 0$.
- г) Якщо ξ квадратично інтегровна, то

$$\varphi_{\xi}(t) = 1 + it M\xi - \frac{1}{2}t^2M \xi^2 + o(t^2), t \to 0.$$

д) За умови інтегровності або квадратичної інтегровності відповідно

$$M\xi = -i \varphi_{\mathcal{E}}'(0), M \xi^2 = \varphi_{\mathcal{E}}''(0).$$

е) Якщо $\xi \square N(\mu, \sigma^2)$ нормальна випадкова величина, то

$$\varphi_{\xi}(t) = \exp\left(\frac{it\mu - \sigma^2 t^2}{2}\right).$$

ж) Якщо $\ \xi \ \square \ \square \$ має розподіл Пуассона з параметром $\ \square \$ то

$$\varphi_{\varepsilon}(t) = \exp \left(\mathbb{D}(\exp(it) - 1) \right)$$

21. Обчислення характеристичної функції для константи та для розподілу Пуассона.

(Х.ф. Пуассонівського розподілу)

$$P\{\xi = n\} = \frac{\lambda^n}{n!} e^{-\lambda}, \quad n = 0, 1, \dots$$

$$\varphi(t) = Me^{it\xi} = \sum_{n=0}^{\infty} e^{itn} \frac{\lambda^n}{n!} e^{-\lambda} = \exp\left\{\lambda \left(e^{it} - 1\right)\right\},\,$$

$$M\xi = i^{-1}\varphi'(0) = \lambda$$
, $M\xi^2 = i^{-2}\varphi''(0) = \lambda + \lambda^2 \implies D\xi = \lambda$.

<u>Приклад 1</u> (X.ф. константи) Якщо $P\left\{\xi=c\right\}=1$, то $\varphi_{\xi}(t)=e^{itc}$.

$$M\xi = i^{-1}\varphi'(0) = c$$
, $M\xi^2 = i^{-2}\varphi''(0) = c^2 \implies D\xi = 0$.

22. Характеристична функція для нормального розподілу.

$$egin{align*} extbf{Xapaктe} ристична функція \ & \exp\{i\mu t - rac{1}{2}\sigma^2 t^2\} \ & \end{aligned}$$

23. Критерій Леві. Формула обертання для характеристичної функції.

. (Теорема обернення, — формула Леві) Якщо $\varphi(t)$ та F(x) — х.ф. та ф.р. в.в. ξ , x_1 та x_2 — точки неперервності F(x) , то

$$F(x_2) - F(x_1) = \frac{1}{2\pi} \lim_{c \to \infty} \int_{-c}^{c} \frac{e^{-itx_1} - e^{-itx_2}}{it} \varphi(t) dt.$$
 (6)

Нехай ξ — цілочислеьна в.в. і $p_k = P\{\xi = k\}$, тоді

$$\varphi_{\xi}(t) = Me^{it\xi} = \sum_{k=-\infty}^{+\infty} e^{ikt} p_k.$$

Домноживши останнє співвідношення на e^{-imt} :

$$\varphi_{\xi}(t)e^{-imt} = \sum_{k=-\infty}^{+\infty} e^{ikt-imt} p_k$$

і інтегруючи ряд почленно на $[-\pi;\pi]$, отримаємо:

$$p_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi_{\xi}(t) e^{-imt} dt.$$

Отже, розподіл цілочисельної в.в. визначається поведінкою х.ф. на $[-\pi;\pi]$.

24. Закон великих чисел у формі Чебишева.

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} M X_i \right| < \varepsilon \right\} = 1 \tag{1}$$

🗁 Теорема Чебишова

Теорема 1 (ЗВЧ у формі Чебишова) Нехай $X_1, X_2, ...$ – послідовність незалежних в.в., $DX_i \le C \ \forall i \ge 1$. Тоді має місце (1).

25. Закон великих чисел у формі Хінчина.

Теорема 3 (ЗВЧ у формі Хінчина) Якщо $X_1, X_2 \dots$ — послідовність незалежних однаково розподілених в.в. із скінченним мат. сподіванням $MX_i = a$, то при $n \to \infty$ має місце ЗВЧ (2).

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - a \right| < \varepsilon \right\} = 1$$
 (2)

26. Метод Монте-Карло.

Якщо випадковий процес, що протікає в системі, відбувається під дією довільного потоку подій, то його математичну модель побудувати важко. У цьому випадку можна використовувати метод статистичного моделювання (метод Монте-Карло)

$$\lim P\left(\left|\frac{\sum x_i}{N} - M(x)\right| < \varepsilon\right) \to 1,$$

27. Центральна гранична теорема.

Теорема 1 Якщо X_1, X_2, \ldots – н.о.р.в.в., які мають скінченні мат. сподівання $MX_i = a$ та дисперсії $DX_i = \sigma^2$, то

$$\lim_{n\to\infty} P\left\{\frac{X_1 + \dots + X_n - na}{\sigma\sqrt{n}} \le x\right\} = \Phi(x). \tag{1}$$

Тобто
$$F_{V_n}(x) \to \Phi(x)$$
, де $V_n = \frac{S_n - MS_n}{\sqrt{DS_n}}$, $S_n = X_1 + \ldots + X_n$

Перша демонстрація застосування ЦГТ Похибки вимірювання.

a – вимірювана величина, ξ – її наближене значення, $\delta = \xi - a$ – похибка

$$\delta = (\xi - M\xi) + (M\xi - a)$$

 $\left(\xi-M\xi
ight)-$ випадкова похибка вимірювання,

 $(M\xi-a)$ – систематична похибка вимірювання.

Друга демонстрація застосування ЦГТ *Лог-нормальний розподіл*. Якщо в.в. η така, що $\xi = \ln \eta$ має нормальний розподіл, то кажуть, що η має **погарифмічно-нормальний розподіл**. Якщо $\eta = \eta_1 \eta_2 \dots \eta_n$, де всі множники — близькі до одиниці незалежні випадкові величини, то $\ln \eta = \sum_{i=1}^n \ln \eta_i$ і $\ln \eta$ в силу ЦГТ має асимптотично нормальний розподіл.

28. Інтегральна теорема Муавра-Лапласа.

(Інтегральна теорема Муавра-Лапласа) В СНВБ (з ймовірністю 0 та <math>q = 1 - p) нехай S_n — кількість успіхів в n дослідах. Тоді для a < b

$$\lim_{n \to \infty} P\left\{ a < \frac{S_n - np}{\sqrt{npq}} \le b \right\} = \Phi(b) - \Phi(a) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-u^2/2} du \, .$$

<u>Доведення:</u> \square $S_n = \sum_{k=1}^n X_k$, $X_k \sim Be(p)$, $MS_n = np$, $DS_n = npq$ і за <u>теор.1</u>

маємо доведення <u>теор.2</u>.

Умова Ліндеберга Якщо X_1, X_2, \ldots – незалежні в.в. з ф.р. $F_k(x)$,

$$M\!X_k = a_k$$
, $D\!X_k = \sigma_k^2 < \infty$, $B_n^2 = \sum_{k=1}^n \sigma_k^2$, то умовою Ліндеберга називають

виконання ($\forall \varepsilon > 0$) наступної рівності:

29. Вибірка. Варіаційний ряд. Порядкові статистики.

Статистична вибірка

Статистичною вибіркою називають довільну вимірну функцію $X: \Omega \to S$ зі значеннями у вимірному вибірковому просторі (S, Σ, λ) , де:

- S деяка множина (вибірковий простір),
- Σ сигма-алгебра підмножин S,
- λ деяка сигма-скінченна міра на Σ.

Статистична вибірка

Статистичною вибіркою називають довільну вимірну функцію $X: \Omega \to S$ зі значеннями у вимірному вибірковому просторі (S, Σ, λ) , де:

- S деяка множина (вибірковий простір),
- Σ сигма-алгебра підмножин S,
- λ деяка сигма-скінченна міра на Σ.

Вибірка (або вибіркова сукупність) — це множина об'єктів, за допомогою певної процедури вибраних із генеральної сукупності для участі в дослідженні.

Упорядкований розподіл одиниць сукупності на групи за кількісною ознакою називають **варіаційним рядом**. Побудувати варіаційний ряд - означає упорядкувати кількісний розподіл одиниць сукупності за значеннями ознаки, а потім підрахувати число одиниць сукупності з цими значеннями. Варіаційні ряди бувають: дискретними та інтервальними.

Хай маємо множину (масив) з п чисел.

і-та порядкова статистика, це елемент, який буде і-тим за рахунком в масиві, якщо його елементи відсортувати в порядку зростання.

Тоді наприклад **мінімум** — це перша порядкова статистика, а **максимум** — n-та порядкова статистика.

30. Емпірична функція розподілу. ЇЇ властивості. Т. Колмогорова.

Емпірична функція розподілу — це функція розподілу реалізації випадкової величини, яку будують за результатами вимірювань (спостережень).

Нехай маємо випадкову величину $\xi: x_1, x_2, \dots, x_n$, де n — загальна кількість спостережень. Через $v_k(x)$ позначимо випадкову величину, яка дорівнює кількості елементів вибірки ξ значення яких менше x. Тоді емпірична функція розподілу буде задаватись як $\hat{F}_k(x) = \frac{v_k(x)}{n}$.

- 1. Емпірична функція розподілу є не спадною функцією свого аргументу, тобто $F^*(x_2) \ge F^*(x_1)$, якщо $x_2 > x_1$.
- 2. Значення емпіричної функції розподілу належать одиничному проміжку: $0 \le F^*(x) \le 1$.

За даними статистичного розподілу визначають основні числові характеристики випадкової величини. До них належать вибіркова середня та середнє квадратичне відхилення.

Вибіркова середня \overline{x} визначає центр вибіркової сукупності. За варіаційним рядом вона обчислюється як середнє виважене варіант, кожна з яких береться з вагою, що відповідає її відносній частоті:

$$\frac{-}{x} = \frac{1}{n} \cdot \sum_{i=1}^{k} x_i m_i \,. \tag{10.2}$$

Нехай $X_1,...,X_n$ — нескінченна вибірка з розподілу, що задається безперервною функцією розподілу F. Нехай F' — вибіркова функція розподілу, побудована на перших n елементах вибірки. Тоді

$$\sqrt{n} \, \sup_{x \in \mathbb{R}} |F'(x) - F(x)| o K$$

з розподілу при n слідує до нескінченності, де K \sim K - випадкова величина, що має розподіл Колмогорова.

31. Вибіркові та теоретичні моменти.

Момент порядку к

Нехай ξ — випадкова величина. Її (нецентральним) теоретичним моментом порядку $k \in N$ називається число

$$\mu_k \equiv M\xi^k$$
,

за умови інтегрованості величини ξ^k .

Центральний момент порядку k

Центральним теоретичним моментом порядку k називається число

$$\mu_k^0 \equiv \mathsf{M}(\xi - \mu)^k,$$

де $\mu \equiv \mu_1$ – математичне сподівання, $\mu_2^0 = \sigma^2$ – дисперсія $\xi.$

Вибірковий момент порядку к

Нехай $X=(\xi_1,...,\xi_n)$ — вибірка. Її (нецентральним) вибірковим моментом порядку k називається статистика

$$\hat{\mu}_{kn} \equiv \frac{1}{n} \sum_{i=1}^{n} \xi_i^k.$$

Центральний вибірковий момент порядку к

Центральним вибірковим моментом порядку k називається статистика

$$\hat{\mu}_{kn}^0 \equiv \frac{1}{n} \sum_{i=1}^n (\xi_i - \hat{\mu}_n)^k,$$

де $\hat{\mu}_n \equiv \hat{\mu}_{1n}$ — вибіркове середнє, а, $\hat{\mu}_{2n}^0 = \hat{\sigma}_n^2$ — вибіркова дисперсія.

32. Незміщені оцінки. Конзистентні оцінки. Достатні умови конзистентності.

Незміщена оцінка

Оцінка $\hat{\theta}$ називається (незсунутою) незміщеною, якщо її математичне сподівання збігається з точним значенням θ :

$$\mathbf{M}_{\theta}\hat{\theta} = \theta, \quad \forall \theta \in \Theta.$$

Конзистентна оцінка

Оцінка $\hat{\theta}_n$ називається конзистентною (або слушною), якщо вона збігається за ймовірністю до істинного значення θ

$$\hat{\theta}_n \stackrel{\mathbf{P}_{\theta}}{\rightarrow} \theta, \quad n \rightarrow \infty, \ \forall \theta \in \Theta,$$

тобто

$$P_{\theta}(|\hat{\theta}_n - \theta| \ge \varepsilon) \to 0, \quad n \to \infty, \ \forall \varepsilon > 0, \ \forall \theta \in \Theta.$$

Теорема (Достатні умови конзистентності)

Нехай оцінка $\hat{\theta}_n$ є незміщеною (асимптотично незміщеною) оцінкою параметра θ і $\mathbf{D}\hat{\theta}_n \to 0$, $n \to \infty$. Тоді оцінка $\hat{\theta}_n$ буде конзистенною.

Асимптотично незміщена оцінка

Оцінка $\hat{\theta}_n$ називається асимптотично незміщеною (незсунутою), якщо якщо має місце асимптотична збіжність середніх

$$\label{eq:mapping_def} M_{\theta} \hat{\theta}_n \to \theta, \quad n \to \infty, \; \forall \theta \in \Theta.$$

Строго конзистентна оцінка

Оцінка $\hat{\theta}_n$ називається строго конзистентною, якщо вона збігається з імовірністю 1 до істинного значення θ

$$\hat{\theta}_{n} \overset{\mathbf{P}_{\theta} 1}{\rightarrow} \theta, \quad n \rightarrow \infty, \ \forall \theta \in \Theta,$$

тобто

$$P_{\theta}(\exists \lim_{n\to\infty} \hat{\theta}_n = \theta) = 1, \quad \forall \theta \in \Theta.$$

33. Теорема про функцію впливу кратної вибірки.

Функція впливу

Функцією впливу, або функцією внеску, вибірки X називається частинна похідна за параметром θ від логарифма вибіркової функції вірогідності :

$$U(X,\theta) \equiv \frac{\partial}{\partial \theta} \ln L(X,\theta).$$

У випадку кратної вибірки функцією впливу спостереження ξ називається похідна за θ від логарифма функції вірогідності спостереження:

$$u(\xi, \theta) \equiv \frac{\partial}{\partial \theta} \ln f(\xi, \theta).$$

Теорема (про функцію впливу кратної вибірки)

Для кратної вибірки $X=(\xi_1,\ldots,\xi_n)$ вибіркова функція впливу дорівнює сумі функцій впливу спостережень, які її утворюють:

$$U(X,\theta) = \sum_{k=1}^{n} u(\xi_k,\theta).$$

34. Теорема про центрованість функції впливу.

Теорема (про центрованість функції впливу)

За умов регулярності функція впливу центрована:

$$M_{\theta}U(X,\theta)=0, \forall \theta \in \Theta.$$

Доведення.

Оскільки функція вірогідності $L(x, \theta)$ — це сумісна щільність всієї вибірки, то

$$\int_{\mathbb{R}^n} L(x,\theta) dx = 1.$$

Візьмемо похідну від лівої і правої частин рівності за θ , міняючи диференціювання та інтегрування місцями:

$$0 = \int_{\mathbf{R}^n} \frac{\partial L(x,\theta)}{\partial \theta} dx = \int_{\mathbf{R}^n} \frac{\partial L(x,\theta)}{\partial \theta} \frac{L(x,\theta)}{L(x,\theta)} dx$$
$$\int_{\mathbf{R}^n} \frac{\partial \ln(L(x,\theta))}{\partial \theta} L(x,\theta) dx = \mathbf{M}_{\theta} \ln(L(X,\theta)) = \mathbf{M}_{\theta} U(X,\theta)$$

35. Кількість інформації за Фішером. Теорема про її обчислення.

Інформація за Фішером

Нехай параметр $\theta \in \Theta \subset R$ – скалярний. Інформацією за Фішером у вибірці X називається функція

$$I(\theta) \equiv \mathbf{D}_{\theta} U(X, \theta) = \mathbf{M}_{\theta} U^{2}(X, \theta).$$

Друга рівність в означенні випливає з теореми про центрованість функції впливу та з властивостей дисперсії.

Теорема (про обчислення інформації за Фішером)

За умов регулярності справедлива тотожність

$$I(\theta) = -\mathbf{M}_{\theta} \frac{\partial^2}{\partial \theta^2} \ln L(X, \theta)$$

$$=-\mathbf{M}_{\theta}\frac{\partial}{\partial \theta}U(X,\theta), \quad \forall \theta \in \Theta.$$

Доведення.

З теореми про центрованість функції впливу $\mathbf{M}_{ heta}U(X, heta)=0$ або

$$0 = \int_{\mathbb{R}^n} U(x,\theta) L(x,\theta) dx.$$

Продиференцюємо рівність за θ :

$$0 = \int_{\mathbf{R}^{n}} \left(\frac{\partial U(x,\theta)}{\partial \theta} L(x,\theta) + U(x,\theta) \frac{\partial L(x,\theta)}{\partial \theta} \right) dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \int_{\mathbf{R}^{n}} U(x,\theta) \frac{\partial L(x,\theta)}{\partial \theta} \frac{L(x,\theta)}{L(x,\theta)} dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \int_{\mathbf{R}^{n}} U(x,\theta) \frac{\partial \ln(L(x,\theta))}{\partial \theta} L(x,\theta) dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \mathbf{M}_{\theta} U^{2}(X,\theta)$$

36. Критерій Крамера-Рао. Ефективні оцінки.

Теорема (про нерівність та критерій Крамера – Рао)

Нехай параметр θ ϵ скалярним: $\theta \in \mathbb{R}$.

(a) Якщо $T = T(X) \in \Gamma_{\tau}$ – довільна незсунута оцінка $\tau(\theta)$, і виконуються умови регулярності, то $\forall \theta \in \Theta$ має місце нерівність Крамера – Рао

$$\mathsf{M}_{\theta}(T- au)^2 \equiv \mathsf{D}_{\theta} T \geq rac{ au_{\theta}^2(heta)}{I(heta)},$$

де

$$\tau_{\theta}(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \tau(\theta),$$

 $I(\theta)$ – інформація за Фішером у вибірці X.

(б) Рівність у нерівності (а) виконується тоді й тільки тоді, коли оцінка T є лінійною функцією від функції впливу вибірки:

$$T(X) - \tau(\theta) = c(\theta)U(X, \theta)$$
 M.H., $\forall \theta \in \Theta$,

для деякої дійсної $c(\theta)$. Ця стала дорівнює

$$c(\theta) = \frac{\tau_{\theta}(\theta)}{I(\theta)}.$$

Ефективна оцінка

Оцінка $T \in \Gamma_{\tau}$ називається ефективною оцінкою параметричної функції $\tau(\theta)$, якщо нерівність Крамера — Рао для неї є рівністю, тобто у випадку, коли ця оцінка має найменше можливе значення дисперсії у класі Γ_{τ} всіх незсунутих оцінок.

Твердження (б) дає критерій ефективності Крамера – Рао.

- 37. Вибіркові та теоретичні моменти. Повторення, таке ж питання під номером 32
 - 38. Метод моментів знаходження оцінок.

Метод моментів є спеціальним методом оцінювання невідомих параметрів, який спирається на асимптотичні властивості вибіркових моментів.

Припустимо, що параметричний простір ϵ *d*-вимірним:

$$\Theta \in \mathbb{R}^d$$
.

Оскільки розподіл вибірки $X=(\xi_1,\dots,\xi_n)$ відомий повністю при заданому значенні $\theta\in\Theta$, то повністю відомими є функції

$$\mu_k(\theta) \equiv \mathsf{M}_{\theta} \xi_1^k$$
.

Розглянемо векторну функцію

$$\mu^{(d)}(\theta) \equiv (\mu_k(\theta), k = \overline{1, d}) \colon \Theta \to \mathbb{R}^d.$$

Припустимо, що існує неперервне відображення

$$T_d(\mu) \colon \mathbf{R}^d \to \Theta$$
,

яке ϵ оберненим до $\mu^{(d)}(\theta)$, тобто

$$T_d(\mu^{(d)}(\theta)) = \theta, \quad \forall \theta \in \Theta.$$

Ця умова виконується, зокрема, за теоремою про обернене відображення з курсу математичного аналізу, якщо функція $\mu^{(d)}(\theta)$ неперервно диференційовна, якобіан

$$\det \left| \frac{\mathrm{d}}{\mathrm{d}\theta} \mu^{(d)}(\theta_0) \right| \neq 0$$

для деякого $\theta_0 \in \Theta$ і простір Θ звужено до деякого околу точки θ_0 .

Оцінка методу моментів

Оцінкою методу моментів параметра - називається така статистика від вектора вибіркових моментів $\hat{\mu}_n^{(d)} = (\hat{\mu}_{nk}, k = \overline{1, d})$, що містить значення перших d вибіркових моментів:

$$\hat{\theta}_n \equiv T_d(\hat{\mu}_n^{(d)}),$$

де $T_d: \mathbf{R} \to \Theta$ – обернена функція до вектора моментів $\mu^{(d)}(\theta)$.

39. Метод максимальної вірогідності.

Визначення оцінки максимальної вірогідності ґрунтується на принципі максимальної вірогідності:

"те, що спостерігається, є найбільш імовірним серед усіх можливих альтернатив".

Надалі будемо припускати, що вибірка X задовольняє умову підпорядкованості її розподілу деякій мірі у вибірковому просторі. За такої умови повністю визначена вибіркова функція вірогідності $L(X,\theta)$. Значення цієї функції і дають критерій "найбільшої вірогідності".

Оцінка максимальної вірогідності

Оцінкою максимальної вірогідності (ОМВ) параметра θ за вибіркою X називається статистика, що максимізує вибіркову функцію вірогідності $L(X, \theta)$:

$$\hat{\theta} = \hat{\theta}(X) \equiv \arg\max_{\theta \in \Theta} L(X, \theta),$$

тобто це така статистика $\hat{\theta} = \hat{\theta}(X)$, що задовольняє умову:

$$L(X, \theta) \leq L(X, \hat{\theta}), \forall \theta \in \Theta.$$

Для кратної вибірки ОМВ позначається як $\hat{\theta}_n$, де n – об'єм вибірки.

40. Довірчі інтервали для середнього значення і для дисперії

Довірчим інтервалом параметра θ розподілу випадкової величини X з рівнем довіри $p^{[\text{примітка 1}]}$, породжений вибіркою (x_1,\ldots,x_n) ,

називається інтервал з межами $l(x_1,\ldots,x_n)$ та $u(x_1,\ldots,x_n)$, які є реалізаціями випадкових величин $L(X_1,\ldots,X_n)$ та $U(X_1,\ldots,X_n)$, таких, що $\mathbb{P}(L\leqslant\theta\leqslant U)=p$.

41. Критерії перевірки стат. гіпотез. Помилки 1-го та 2-го роду.

Алгоритм перевірки статистичної гіпотези H_0 проти альтернативи H_1 за допомогою критерію $(\hat{\kappa}, D_1)$ виконується в два етапи:

(1) обчислюють значення

$$\hat{\kappa} = \hat{\kappa}(X),$$

перевіряють включення

$$\hat{\kappa} \in D_1$$
,

що еквівалентне $X \in W$,

- (2.1) якщо воно справджується, то нульова гіпотеза H_0 на підставі спостережень X відкидається і приймається альтернатива H_1 ,
- (2.0) якщо ж це включення не справджується, то нульова гіпотеза H₀ на підставі спостережень X не може бути відкинута, отже, приймається, а альтернатива H₁ відкидається.

Похибка першого роду

Похибкою першого роду статистичного критерію називається відхилення нульової гіпотези за умови, що вона справджується.

Похибкою другого роду

Похибкою другого роду називається прийняття нульової гіпотези за умови, коли справджується альтернатива.

Вказані помилкові рішення пов'язані з відповідними подіями. Їх імовірності називаються ймовірностями похибок першого та другого роду.

42. Критерії перевірки для параметрів нормального розподілу.

Критерій Стьюдента перевірки гіпотези H_0 : $m = m_0$

а) При альтернативі
$$H_1: m \neq m_0$$
 гіпотеза $H_0: m = m_0$ відхиляється при $S / \sqrt{n} > t_{1-\frac{\alpha}{2},n-1}$

 $t_{\frac{1-\alpha}{2},n-1}$ — квантиль рівня $1-\frac{\alpha}{2}$ розподілу Стьюдента з n-1 ступенем свободи. У протилежному випадку гіпотезу $H_0: m=m_0$ приймаємо. При цьому із імовірністю α (рівень значущості) гіпотеза H_0 буде відхилятися, коли вона справедлива.

б) При альтернативі $H_1: m > m_0$ гіпотеза $H_0: m = m_0$ відхиляється при

$$\frac{\overline{\xi} - m_0}{S / \sqrt{n}} > t_{1-\alpha, n-1}$$

У протилежному випадку гіпотезу $H_0: m=m_0$ приймаємо (рівень значущості α).

в) При альтернативі $H_1: m < m_0$ гіпотеза $H_0: m = m_0$ відхиляється при

$$\frac{\overline{\xi} - m_0}{S / \sqrt{n}} < t_{\alpha, n-1}$$

У протилежному випадку гіпотезу $H_0: m=m_0$ приймаємо (рівень значущості α).

Kриmерiй nерeвiр κ и eлinomesи $H_0: \sigma^2 = \sigma_0^2$

а) При альтернативі $H_1: \sigma^2 \neq \sigma_0^2$ гіпотеза $H_0: \sigma^2 = \sigma_0^2$ приймається при

$$S^{2} \in \left(\frac{\sigma_{0}^{2}}{n-1} \chi_{\frac{\alpha}{2}, n-1}^{2}; \frac{\sigma_{0}^{2}}{n-1} \chi_{1-\frac{\alpha}{2}, n-1}^{2}\right)$$

У протилежному випадку гіпотеза $H_0: \sigma^2 = \sigma_0^2$ відхиляється (рівень значущості α).

б) При альтернативі $H_1:\sigma^2>\sigma_0^2$ гіпотеза $H_0:\sigma^2=\sigma_0^2$ приймається при

$$S^{2} < \frac{\sigma_{0}^{2}}{n-1} \chi_{1-\alpha,n-1}^{2}$$

у протилежному випадку гіпотеза $H_0: \sigma^2 = \sigma_0^2$ відхиляється (рівень значущості α).

в) При альтернативі $H_1:\sigma^2<\sigma_0^2$ гіпотеза $H_0:\sigma^2=\sigma_0^2$ приймається при

$$S^{2} > \frac{\sigma_{0}^{2}}{n-1} \chi_{\alpha,n-1}^{2}$$

У протилежному випадку гіпотеза $H_0: \sigma^2 = \sigma_0^2$ відхиляється (рівень значущості α).

43. Хі-2 критерії.

4.2.2. Критерій χ^2 К. Пірсона

Нехай $\xi' = (\xi_1, \xi_2, ..., \xi_n)$ — вибірка з невідомою функцією розподілу $F_{\xi_0}(x)$, про яку висунута проста гіпотеза

$$H_0: F_{\xi_0}(x) = F(x)$$

Про властивості гіпотетичної F(x) в даному випадку нічого не відомо, тобто цей критерій можна використовувати як для неперервних, так і для дискретних розподілів.

Задамо E_1, E_2, \square , E_N — інтервали групування даних, що не перетинаються. Якщо спостерігається дискретна випадкова величина, то E_1, E_2, \square , E_N — це різні значення цієї величини. Нехай $v'=(v_1,v_2,\square$, $v_N)$ — вектор частот влучення елементів вибірки у відповідні інтервали групування. Позначимо $p_i=P\{\;\xi\in E_i\,/\,H_0\}\;$, $i=1,2,\square$, N . Очевидно, що $M(v_i\,/\,H_0)=np_i$.

Як міру відхилення емпіричних даних від їх гіпотетичних значень візьмемо статистику

$$\hat{\chi}_n^2 = \sum_{i=1}^N \frac{(\nu_i - np_i)^2}{np_i}$$
(4.2)

Критерій перевірки гіпотези H_0 будується таким чином. Обчисливши значення статистики $\hat{\chi}_n^2 = \sum_{i=1}^N \frac{(\nu_i - np_i)^2}{np_i}$ і вибравши рівень значущості α , по таблиці значень χ^2 - розподілу (таблиця 3 додатку) визначимо величину $\chi_{\alpha,N-1}^2$ таку, що $P\left\{\chi^2(N-1) \geq \chi_{\alpha,N-1}^2\right\} = \alpha$. Якщо $\mathbb{R}_n^2 \geq \chi_{\alpha,N-1}^2$ то гіпотеза H_0 відхиляється, якщо ж