Introduction au machine learning

L. Rouvière

laurent.rouviere@univ-rennes2.fr

Juin 2021

Présentation

- Objectifs: comprendre les aspects théoriques et pratiques des algorithmes machine learning de référence.
- *Pré-requis* : théorie des probabilités, modélisation statistique, régression (linéaire et logistique). R, niveau avancé.
- Enseignant: Laurent Rouvière laurent.rouviere@univ-rennes2.fr
 - Recherche: statistique non paramétrique, apprentissage statistique
 - Enseignements : statistique et probabilités (Université, école d'ingénieur et de commerce, formation continue).
 - Consulting : energie, finance, marketing, sport.

Programme

- Matériel :
 - slides:https://lrouviere.github.io/machine_learning/
 - Tutoriel long: https://lrouviere.github.io/TUTO_ML/
 - Tutoriel court: https://lrouviere.github.io/machine_learning/tuto_court_intro_ml.html
- 3 parties:
 - 1. Machine Learning : cadre, objectif, risque...
 - 2. Algorithmes linéaires: MCO, régularisation (ridge, lasso)
 - 3. Algorithmes non linéaires : arbres et forêts aléatoires

Objectifs/questions

- Buzzword: machine learning, big data, data mining, intelligence artificielle...
- Machine learning versus statistique (traditionnelle)
- *Risque* ⇒ calcul ou estimation : ré-échantillonnage, validation croisée...
- Algorithmes versus estimateurs...
- *Classification* des algorithmes. Tous équivalents? Cadre propice...
- ...

Première partie

Machine learning

1 Motivations

Apprentissage statistique?

Plusieurs "définitions"

- 1. "... explores way of estimating functional dependency from a given collection of data" [Vapnik, 2000].
- 2. "...vast set of tools for modelling and understanding complex data" [James et al., 2015]

Wikipedia

L'apprentissage automatique (en anglais : machine learning), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches *mathématiques et statistiques* pour donner aux ordinateurs la capacité d'apprendre à partir de donnée...

⇒ *Interface* : Mathématiques-statistique/informatique.

Constat

- Le développement des moyens informatiques fait que l'on est confronté à des données de plus en plus complexes.
- Les méthodes *traditionnelles* se révèlent souvent *peu efficaces* face à ce type de données.
- Nécessité de proposer des algorithmes/modèles statistiques qui apprennent directement à partir des données.

Un peu d'histoire - voir [Besse, 2018]

Période	Mémoire	Ordre de grandeur
1940-70	Octet	$n = 30, p \le 10$
1970	kO	$n = 500, p \le 10$
1980	MO	Machine Learning
1990	GO	Data-Mining
2000	ТО	p > n, apprentissage statistique
2010	PO	n explose, cloud, cluster
2013	serveurs	Big data
2017	??	Intelligence artificielle

Conclusion

Capacités informatiques \Longrightarrow Data Mining \Longrightarrow Apprentissage statistique \Longrightarrow Big Data \Longrightarrow Intelligence artificielle...

Approche statistique

$Objectif \Longrightarrow expliquer$

- notion de modèle;
- retrouver des lois de probabilités;
- décisions prises à l'aide de tests statistiques, intervalles de confiance.

Exemples

- Tests indépendance/adéquation...
- Modèle linéaire : estimation, sélection de variables, analyse des résidus...
- Régression logistique...
- Séries temporelles...

Approche machine learning

$Objectif \Longrightarrow pr\'edire$

- notion d'algorithmes de prévision;
- critères d'erreur de prévision;
- calibration de paramètres (tuning).

Exemples

- Algorithmes linéaires (moindres carrés, régularisation, "SVM");
- Arbres, réseaux de neurones;
- Agrégation : boosting, bagging (forêts aléatoires);
- Deep learning (apprentissage profond).

Statistique vs apprentissage

- Les objectifs *diffèrent*:
 - recherche de complexité minimale en statistique ⇒ le modèle doit être interprétable!
 - complexité moins importante en machine learning ⇒ on veut "juste bien prédire".
- Approches néanmoins complémentaires :
 - bien expliquer ⇒ bien prédire;
 - "récentes" évolutions d'aide à l'interprétation des algorithmes $ML \implies$ scores d'importance des variables...
 - un bon algorithme doit posséder des bonnes propriétés statistiques (convergence, biais, variance...).

Conclusion

Ne pas dissocier les deux approches.

Problématiques associées à l'apprentissage

- Apprentissage supervisé : prédire une sortie $y \in \mathcal{Y}$ à partir d'entrées $x \in \mathcal{X}$;
- Apprentissage non supervisé : établir une typologie des observations;
- Règles d'association : identifier des liens entre différents produits ;
- Systèmes de recommendation : identifier les produits susceptibles d'intéresser des consommateurs.

Nombreuses applications

finance, économie, marketing, biologie, médecine...

Théorie de l'apprentissage statistique

Approche mathématique

- Ouvrage fondateur : [Vapnik, 2000]
- voir aussi [Bousquet et al., 2003].

The Elements of Statistical Learning [Hastie et al., 2009, James et al., 2015]

— Disponibles (avec jeux de données, codes...) aux url :

https://web.stanford.edu/~hastie/ElemStatLearn/ http://www-bcf.usc.edu/~gareth/ISL/

Wikistat

- Page de cours et tutoriels très bien faits sur la statistique classique et moderne.
- On pourra notamment regarder les *vignettes* sur la partie apprentissage :
 - [Wikistat, 2020a]
 - [Wikistat, 2020b]
 - ...
- Plusieurs parties de ce cours sont *inspirées de ces vignettes*.

2 Quelques exemples

Reconnaissance de l'écriture

$Apprentissage\ statistique$

Comprendre et apprendre un comportement à partir d'exemples.

Qu'est-ce qui est écrit? 0, 1, 2...?

Reconnaissance de la parole

Apprentissage sur les réseaux

Prévision de pics d'ozone

- On a mesuré pendant 366 jours la concentration maximale en ozone (V4);
- On dispose également d'autres variables météorologiques (température, nébulosité, vent...).

```
> head(Ozone)
     V1 V2 V3 V4
                   V5 V6 V7 V8
                                  V9 V10 V11
                                                 V12 V13
               3 5480
                                  NA 5000 -15 30.56 200
                       8 20 NA
               3 5660
                       6 NA 38
                                  NA
                                       NA -14
               3 5710
                         28 40
                                  NA 2693 -25 47.66 250
               5 5700
                       3 37 45
                                  NA 590 -24 55.04 100
               5 5760
                      3 51 54 45.32 1450 25 57.02
               6 5720
                       4 69 35 49.64 1568
                                           15 53.78
```

Question

Peut-on prédire la concentration maximale en ozone du lendemain à partir des prévisions météorologiques?

Détection de spam

— Sur 4601 mails, on a pu identifier 1813 spams.

— On a également mesuré sur chacun de ces mails la présence ou absence de 57 mots.

```
> spam %>% select(c(1:8,58)) %>% head()
    make address all num3d our over remove internet type
## 1 0.00
           0.64 0.64
                        0 0.32 0.00 0.00
                                               0.00 spam
## 2 0.21
           0.28 0.50
                         0 0.14 0.28
                                       0.21
                                                0.07 spam
                                                0.12 spam
## 3 0.06
            0.00 0.71
                         0 1.23 0.19
                                       0.19
## 4 0.00
          0.00 0.00
                         0 0.63 0.00
                                       0.31
                                                0.63 spam
## 5 0.00
            0.00 0.00
                          0 0.63 0.00
                                       0.31
                                                0.63 spam
```

Question

Peut-on construire à partir de ces données une méthode de détection automatique de spam?

3 Cadre statistique pour l'apprentissage supervisé

Régression vs classification

— Données de type entrée-sortie: $d_n = (x_1, y_1), \dots, (x_n, y_n)$ où $x_i \in \mathcal{X}$ représente l'entrée et $y_i \in \mathcal{Y}$ la sortie.

Objectifs

- 1. Expliquer le(s) méchanisme(s) liant les entrée x_i aux sorties y_i ;
- 2. Prédire « au mieux » la sortie y associée à une nouvelle entrée $x \in \mathcal{X}$.

Vocabulaire

- Lorsque la variable à expliquer est quantitative $(\mathcal{Y} \subseteq \mathbb{R})$, on parle de régression.
- Lorsqu'elle est qualitative ($Card(\mathcal{Y})$ fini), on parle de *classification (supervisée)*.

Exemples

— La plupart des problèmes présentés précédemment peuvent être appréhendés dans un contexte d'apprentissage supervisé: on cherche à expliquer une sortie y par des entrées x:

y_i	x_i	
Chiffre	image	Classification
Mot	courbe	Classification
Spam	présence/absence de mots	Classification
C. en O_3	données météo.	Régression

Remarque

La nature des variables associées aux entrées x_i est variée (quanti, quali, fonctionnelle...).

Un début de formalisation mathématique

- Etant données des observations $d_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ on cherche à expliquer/prédire les sorties $y_i \in \mathcal{Y}$ à partir des entrées $x_i \in \mathcal{X}$.
- Il s'agit donc de trouver une fonction de prévision $f: \mathcal{X} \to \mathcal{Y}$ telle que

$$f(x_i) \approx y_i, i = 1, \dots, n.$$

- Nécessité de se donner un critère qui permette de mesurer la qualité des fonctions de prévision f.
- Le plus souvent, on utilise une fonction de perte $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$ telle que

$$\left\{ \begin{array}{ll} \ell(y,y') = 0 & \text{si } y = y' \\ \ell(y,y') > 0 & \text{si } y \neq y'. \end{array} \right.$$

Approche statistique

- Données $d_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$ i.i.d. de loi inconnue **P**.
- Pr'edicteur: une fonction $f: \mathcal{X} \to \mathcal{Y}$.
- Coût: $\ell(Y, f(X)) \Longrightarrow$ ensemble des erreurs de prévision.
- Risque: $\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))] \Longrightarrow \text{coût "moyen"}.$

Oracle

 f^* qui vérifie $\mathcal{R}(f^*) \leq \mathcal{R}(f)$ pour tout $f: \mathcal{X} \to \mathcal{Y} \Longrightarrow$ dépend de \mathbf{P} , donc inconnu.

Objectif

Construire une algorithme de prévision $f_n(.) = f_n(., d_n)$ tel que $\mathcal{R}(f_n) \approx \mathcal{R}(f^*)$.

Choix de la fonction de perte

- Le cadre mathématique développé précédemment sous-entend qu'une fonction est *performante* (voire *optimale*) vis-à-vis d'un critère (représenté par la *fonction de perte* ℓ)).
- Un algorithme de prévision performant pour un critère ne sera pas forcément performant pour un autre.

Conséquence pratique

Avant de s'attacher à construire un algorithme de prévision, il est capital de savoir mesurer la performance d'un algorithme de prévision.

Régression versus classification

$extit{R\'egression} \Longrightarrow \mathcal{Y} = \mathbb{R}$

- Perte: $\ell(y, y') = (y y')^2$;
- Risque: $\mathcal{R}(m) = \mathbf{E}[(Y m(X))^2].$
- Champion : $m^*(x) = \mathbf{E}[Y|X=x]$ (fonction de régression).

Classification $\Longrightarrow \mathcal{Y} = \{1, \dots, K\}$

- Perte : $\ell(y, y') = \mathbf{1}_{y \neq y'}$;
- Risque : $\mathcal{R}(g) = \mathbf{P}(g(X) \neq Y)$.
- Champion : $g^*(x) = \operatorname{argmax}_k \mathbf{P}(Y = k | X = x)$ (règle de Bayes).

Démarche

- 1. Restreindre la classe des candidats à \mathcal{F} (modèle);
- 2. Choisir (à partir des données) le meilleur candidat dans $\mathcal{F} \Longrightarrow f_n$.

Deux types d'erreur

$$\mathcal{R}(f_n) - \mathcal{R}(f^*) = \mathcal{R}(f_n) - \inf_{f \in \mathcal{F}} \mathcal{R}(f) + \inf_{f \in \mathcal{F}} \mathcal{R}(f) - \mathcal{R}(f^*).$$

- Erreur d'approximation ou terme de biais.
- Erreur d'estimation ou terme de variance.
- ⇒ ces deux termes varient en *sens inverse* et dépendent de la complexité du modèle.

$Complexit\'e \Longrightarrow compromis\ biais/variance$

- \mathcal{F} de complexité faible \Longrightarrow modèle peu flexible \Longrightarrow mauvaise adéquation sur les données \Longrightarrow biais \nearrow , variance \searrow .
- $-\mathcal{F}$ de complexité élevée \Longrightarrow modèle trop flexible \Longrightarrow sur-ajustement \Longrightarrow biais \searrow , variance \nearrow .

Overfitting

Sur-ajuster signifie que le modèle va (trop) bien ajuster les données d'apprentissage, il aura du mal à s'adapter à de nouveaux individus.

Conclusion

Nécessaire de savoir *calculer* (ou plutôt *estimer*) le risque de prévision.

4 Estimation du risque

Rappels

— n observations $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d à valeurs dans $\mathcal{X} \times \mathcal{Y}$.

Objectif

Etant donnée une fonction de perte $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$, on cherche un algorithme de prévision $f_n(x) = f_n(x, \mathcal{D}_n)$ qui soit "proche" de l'oracle f^* défini par

$$f^\star \in \operatorname*{argmin}_f \mathcal{R}(f)$$

où
$$\mathcal{R}(f) = \mathbf{E}[\ell(Y, f(X))].$$

Question

Etant donné un algorithme f_n , que vaut son risque $\mathcal{R}(f_n)$?

Risque empirique

- La loi de (X,Y) étant inconnue en pratique, il est impossible de calculer $\mathcal{R}(f_n) = \mathbf{E}[\ell(Y,f_n(X))]$.
- Première approche : $\mathcal{R}(f_n)$ étant une espérance, on peut l'estimer (LGN) par sa version empirique

$$\mathcal{R}_n(f_n) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_n(X_i)).$$

Problème

- L'échantillon \mathcal{D}_n a déjà été utilisé pour construire l'algorithme de prévision $f_n \Longrightarrow \text{La LGN}$ ne peut donc s'appliquer!
- Conséquence : $\mathcal{R}_n(f_n)$ conduit souvent à une sous-estimation de $\mathcal{R}(f_n)$.

$Une\ solution$

Utiliser des méthodes de type validation croisée ou bootstrap.

Apprentissage - Validation ou Validation hold out

- Elle consiste à séparer l'échantillon \mathcal{D}_n en :
 - 1. un échantillon d'apprentissage $\mathcal{D}_{n,app}$ pour construire f_n ;
 - 2. un échantillon de validation $\mathcal{D}_{n,test}$ utilisé pour estimer le risque de f_n .

Algorithme

Entrée: $\{A, \mathcal{T}\}$ une partition de $\{1, \ldots, n\}$ en deux parties.

- 1. Ajuster l'algorithme de prévision en utilisant uniquement les données d'apprentissage $\mathcal{D}_{app} = \{(x_i, y_i) : i \in \mathcal{A}\}$. On désigne par $f_{app}(., \mathcal{D}_{app})$ l'algorithme obtenu.
- 2. Calculer les valeurs prédites $f_{\text{app}}(x_i, \mathcal{D}_{\text{app}})$ par l'algorithme pour chaque observation de l'échantillon test $\mathcal{D}_{\text{test}} = \{(x_i, y_i) : i \in \mathcal{T}\}$

Retourner:

$$\frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \ell(y_i, f_{\text{app}}(x_i, \mathcal{D}_{\text{app}})).$$

Commentaires

Nécessite d'avoir un nombre suffisant d'observations dans

- 1. \mathcal{D}_{app} pour bien ajuster l'algorithme de prévision;
- 2. $\mathcal{D}_{\text{test}}$ pour bien estimer l'erreur de l'algorithme.

Validation croisée K-blocs

— **Principe** : répéter la hold out sur *différentes partitions*.

Algorithme - CV

Entrée : $\{B_1, \ldots, B_K\}$ une partition de $\{1, \ldots, n\}$ en K blocs. Pour $k = 1, \ldots, K$:

- 1. Ajuster l'algorithme de prévision en utilisant l'ensemble des données privé du k^e bloc, c'est-à-dire $\mathcal{B}_k = \{(x_i, y_i) : i \in \{1, \dots, n\} \setminus B_k\}$. On désigne par $f_k(.) = f_k(., \mathcal{B}_k)$ l'algorithme obtenu.
- 2. Calculer la valeur prédite par l'algorithme pour chaque observation du bloc $k: f_k(x_i), i \in B_k$ et en déduire le risque sur le bloc k:

$$\widehat{\mathcal{R}}(f_k) = \frac{1}{|B_k|} \sum_{i \in B_k} \ell(y_i, f_k(x_i)).$$

Retourner: $\frac{1}{K} \sum_{k=1}^{K} \widehat{\mathcal{R}}(f_k)$.

Commentaires

- Le *choix de K* doit être fait par l'utilisateur (souvent K = 10).
- *Avantage* : plus adapté que la technique apprentissage/validation ⇒ plus stable et précis.
- ${\it Inconv\'enient}$: plus couteux en temps de calcul.

Leave one out

- Lorsque K = n, on parle de validation croisée *leave one out*;
- Le risque est alors estimé par

$$\widehat{\mathcal{R}}_n(f_n) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, f_n^i(X_i))$$

où f_n^i désigne l'algorithme de prévision construit sur \mathcal{D}_n amputé de la i-ème observation. \implies recommandé uniquement lorsque n est petit.

Autres approches

- Estimation par pénalisation : critère ajustement/complexité, C_p de Mallows, AIC-BIC...
- Validation croisée Monte-Carlo: répéter plusieurs fois la validation hold out;
- *Bootstrap*: notamment Out Of Bag;
- voir [Wikistat, 2020b].

5 Annexe 1 : le package tidymodels

Présentation du package

- Successeur de caret pour conduire des projets machine learning sur R.
- Meta package qui inclut
 - rsample : pour ré-échantilloner
 - yardstick : pour les fonctions de perte
 - recipe : pour les recettes de préparation... des données
 - tune : pour calibrer les algorithme
 - ...
- Tutoriel: https://www.tidymodels.org

Calibrer des paramètres

- Tous les algorithmes dépendent de paramètres θ que l'utilisateur doit sélectionner.
- Le procédé est toujours le même et peut se résumer dans l'algorithme suivant.

Choix de paramètres par minimisation du risque (grid search) Entrées :

- Une grille grille.theta de valeurs pour θ ;
- Un risque de prévision \mathcal{R} ;
- un algorithme d'estimation du risque.

Pour chaque θ dans grille.theta:

• Estimer $\mathcal{R}(f_{n,\theta})$ par l'algorithme choisi $\Longrightarrow \widehat{\mathcal{R}}(f_{n,\theta})$

Retourner: $\widehat{\theta}$ une valeur de θ qui minimise $\widehat{\mathcal{R}}(f_{n,\theta})$.

- Ce procédé est *automatisé* dans tidymodels.
- Il faut spécifier les différents paramètres :
 - la méthode (logistique, ppv, arbre, randomForest...)
 - Une grille pour les paramètres (nombre de ppv...)
 - Le critère de performance (erreur de classification, AUC, risque quadratique...)
 - La méthode d'estimation du critère (apprentissage validation, validation croisée, bootstrap...)
- Nous l'illustrons à travers le *choix du nombre de voisins* de l'algorithme des *k*-ppv.

Les données

— Une variable binaire à expliquer par 2 variables continues

Le workflow

— On commence par renseigner l'algorithme et la manière dont on va choisir les paramètres.

```
> library(tidymodels)
> tune_spec <-
+ nearest_neighbor(neighbors=tune(),weight_func="rectangular") %>%
+ set_mode("classification") %>%
+ set_engine("kknn")
```

— On créé ensuite la *workflow* :

```
> ppv_wf <- workflow() %>%
+ add_model(tune_spec) %>%
+ add_formula(Y ~ .)
```

Ré-échantillonnage et grille de paramètres

— On spécifie ensuite la *méthode de ré-échantillonnage*, ici une validation croisée 10 blocs

```
> set.seed(12345)
> re_ech_cv <- vfold_cv(don.2D.500,v=10)
> re_ech_cv %>% head()
## # A tibble: 6 x 2
## splits id
## <list> <chr>
## 1 <split [450/50]> Fold01
## 2 <split [450/50]> Fold02
## 3 <split [450/50]> Fold03
## 4 <split [450/50]> Fold04
## 5 <split [450/50]> Fold05
## 6 <split [450/50]> Fold06
```

— Puis vient la grille de paramètres

```
> grille_k <- tibble(neighbors=1:100)</pre>
```

⇒ consulter https://www.tidymodels.org/find/parsnip/ pour trouver les identifiants des algorithmes et de leurs paramètres.

Estimation du risque

— Fonction tune grid

```
> tune_grid(...,resamples=...,grid=...,metrics=...)
```

— Calcul du *risque* pour chaque valeur de la grille :

```
> ppv.cv <- ppv_wf %>%
+ tune_grid(
+ resamples = re_ech_cv,
+ grid = grille_k,
+ metrics=metric_set(accuracy))
```

— On lit les résultats avec **collect metrics** :

```
> ppv.cv %>% collect_metrics() %>% select(1:5) %>% head()
## # A tibble: 6 x 5
##
     neighbors .metric .estimator mean
                                               n
         <int> <chr>
##
                         <chr>
                                    \langle dbl \rangle \langle int \rangle
## 1
            1 accuracy binary
                                     0.618
                                             10
             2 accuracy binary
## 2.
                                     0.618
                                               10
## 3
             3 accuracy binary
                                     0.672
                                               10
## 4
             4 accuracy binary
                                     0.672
                                               10
## 5
             5 accuracy binary
                                     0.69
                                               10
## 6
             6 accuracy binary
```

Visualisation des erreurs

```
> tbl <- ppv.cv %>% collect_metrics()
> ggplot(tbl)+aes(x=neighbors,y=mean)+geom_line()+ylab("Accuracy")
```


Sélection du meilleur paramètre

— On visualise les *meilleures* valeurs de paramètres :

```
> ppv.cv %>% show_best() %>% select(1:6)
## # A tibble: 5 x 6
## neighbors .metric .estimator mean
                                                             n std_err
##
          <int> <chr>
                                 \langle chr \rangle \langle dbl \rangle \langle int \rangle \langle dbl \rangle
## 1
                                               0.72 10 0.0255
              13 accuracy binary

    0.72
    10
    0.0255

    0.72
    10
    0.0207

    0.72
    10
    0.0207

    0.72
    10
    0.0207

## 2
               14 accuracy binary 0.72
               35 accuracy binary
36 accuracy binary
## 3
## 4
## 5
          39 accuracy binary 0.718 10 0.0199
```

— et on choisit celle qui *maximise l'accuracy* :

```
> best_k <- ppv.cv %>% select_best()
> best_k
## # A tibble: 1 x 2
## neighbors .config
## <int> <chr>
## 1 13 Preprocessor1_Model013
```

Algorithme final et prévision

— L'algorithme final s'obtient en entrainant la méthode sur toutes les données pour la valeur de paramètre sélectionné :

— On peut maintenant prédire de nouveaux individus :

```
> newx <- tibble(X1=0.3,X2=0.8)
> predict(final_ppv,new_data=newx)
## # A tibble: 1 x 1
## .pred_class
## <fct>
## 1 0
```

Conclusion

- Les *choix* de l'utilisateur sont des paramètres de la procédure.
- \implies facilement *personnalisable*.
- Aisé de changer le critère, la méthode de ré-échantillonnage...

6 Annexe 2: le package caret

Le package caret

- Il permet d'évaluer la performance de plus de 230 méthodes : http://topepo.github.io/caret/index.html
- Il suffit d'indiquer :
 - la *méthode* (logistique, ppv, arbre, randomForest...)
 - Une grille pour les *paramètres* (nombre de ppv...)
 - Le critère de performance (erreur de classification, AUC, risque quadratique...)
 - La méthode d'estimation du critère (apprentissage validation, validation croisée, bootstrap...)

Apprentissage-validation

```
> library(caret)
> K_cand <- data.frame(k=seq(1,500,by=20))
> library(caret)
> ctrl1 <- trainControl(method="LGOCV",number=1,index=list(1:1500))
> e1 <- train(Y~.,data=donnees,method="knn",trControl=ctrl1,tuneGrid=K_cand)
> e1
## k-Nearest Neighbors
##
## 2000 samples
##
     2 predictor
      2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
## Summary of sample sizes: 1500
## Resampling results across tuning parameters:
##
##
       Accuracy Kappa
                   0.2382571
##
      1 0.620
##
      21 0.718
                   0.4342076
     41 0.722
                 0.4418388
##
##
      61 0.718 0.4344073
     81 0.720
##
                   0.4383195
##
     101 0.714
                   0.4263847
    121 0.716
                   0.4304965
##
##
    141 0.718
                   0.4348063
                   0.4348063
##
    161 0.718
    181 0.718
                  0.4348063
##
##
    201 0.720
                   0.4387158
##
    221 0.718
                   0.4350056
   241 0.718
                  0.4350056
##
## 261 0.722
                0.4428232
    281 0.714
                   0.4267894
##
##
    301 0.714
                   0.4269915
##
   321 0.710
                  0.4183621
                  0.3893130
##
    341 0.696
##
    361 0.696
                  0.3893130
##
   381 0.688
                  0.3727988
##
    401 0.684
                   0.3645329
##
    421 0.686
                   0.3686666
   441 0.686
                   0.3679956
##
##
    461 0.684
                   0.3638574
##
    481 0.680
                   0.3558050
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 261.
```

Validation croisée

```
> library(doMC)
> registerDoMC(cores = 3)
> ctrl2 <- trainControl(method="cv",number=10)</pre>
> e2 <- train(Y~.,data=dapp,method="knn",trControl=ctrl2,tuneGrid=K_cand)
> e2
## k-Nearest Neighbors
##
## 1500 samples
##
    2 predictor
      2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
## Resampling results across tuning parameters:
##
##
          Accuracy
                     Kappa
      1 0.6240000 0.2446251
##
##
    21 0.7393333 0.4745290
      41 0.7306667 0.4570024
##
      61 0.7340000 0.4636743
##
```

```
81 0.7333333 0.4632875
##
##
     101 0.7313333 0.4593480
##
     121 0.7326667 0.4624249
     141 0.7333333 0.4640787
##
     161 0.7366667 0.4708178
##
     181 0.7313333 0.4602309
##
     201 0.7326667 0.4626618
     221 0.7293333 0.4559741
##
     241 0.7306667 0.4585960
##
##
     261 0.7353333 0.4676751
##
     281 0.7286667 0.4537842
##
     301 0.7253333 0.4463516
##
     321 0.7173333 0.4294524
##
     341 0.7113333 0.4168003
##
     361 0.7080000 0.4099303
##
     381 0.7140000 0.4213569
     401 0.7073333 0.4073761
##
##
     421 0.7100000 0.4126434
    441 0.7066667 0.4054984
461 0.6966667 0.3844183
##
##
     481 0.6860000 0.3612515
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 21.
```

Validation croisée répétée

```
> ctrl3 <- trainControl(method="repeatedcv",repeats=5,number=10)
> e3 <- train(Y~.,data=dapp,method="knn",trControl=ctrl3,tuneGrid=K_cand)
> e3
## k-Nearest Neighbors
##
## 1500 samples
## 2 predictor
##
     2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 1350, 1350, 1350, 1350, 1350, 1350, ...
## Resampling results across tuning parameters:
##
##
         Accuracy
                    Kappa
##
     1 0.6232000 0.2438066
##
     21 0.7354667 0.4665640
##
      41 0.7314667 0.4585144
##
     61 0.7317333 0.4592608
##
     81 0.7302667 0.4568784
    101 0.7310667 0.4589567
##
     121 0.7320000 0.4609326
   141 0.7322667 0.4616077
##
##
     161 0.7336000 0.4643374
##
     181 0.7340000 0.4649895
     201 0.7332000 0.4632905
##
##
     221 0.7325333 0.4620114
##
     241 0.7316000 0.4600484
     261 0.7305333 0.4578098
##
##
     281 0.7286667 0.4536040
##
     301 0.7238667 0.4434101
     321 0.7189333 0.4330787
##
     341 0.7136000 0.4215865
##
     361 0.7122667 0.4183400
##
     381 0.7098667 0.4131761
     401 0.7090667 0.4112403
##
     421 0.7058667 0.4043164
##
##
     441 0.7001333 0.3920207
    461 0.6952000 0.3811374
##
##
     481 0.6872000 0.3636126
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 21.
```

Critère AUC

```
> donnees1 <- donnees
> names(donnees1)[3] <- c("Class")</pre>
> levels(donnees1$Class) <- c("GO","G1")</pre>
> ctrl11 <- trainControl(method="LGOCV",number=1,index=list(1:1500),</pre>
                         classProbs=TRUE, summary=twoClassSummary)
> e4 <- train(Class~.,data=donnees1,method="knn",trControl=ctrl11;
              metric="ROC",tuneGrid=K_cand)
> e4
## k-Nearest Neighbors
##
## 2000 samples
##
     2 predictor
##
      2 classes: 'GO', 'G1'
##
## No pre-processing
## Resampling: Repeated Train/Test Splits Estimated (1 reps, 75%)
## Summary of sample sizes: 1500
## Resampling results across tuning parameters:
##
```

```
##
    k
         ROC
                    Sens
                              Spec
      1 0.6190866 0.5983264 0.6398467
##
##
     21 0.7171484 0.6903766 0.7432950
##
     41 0.7229757 0.6861925 0.7547893
##
     61
         0.7200500 0.6945607
                              0.7394636
     81 0.7255567 0.6945607 0.7432950
##
##
    101 0.7319450 0.6903766 0.7356322
##
    121 0.7382452 0.6945607
                              0.7356322
    141 0.7353757 0.7029289 0.7318008
##
##
    161 0.7308549 0.7029289 0.7318008
##
    181 0.7351272 0.7029289 0.7318008
##
    201 0.7340050 0.7029289 0.7356322
    221 0.7324099 0.7071130 0.7279693
##
##
    241 0.7349028 0.7071130 0.7279693
##
    261 0.7365780 0.7071130 0.7356322
    281 0.7349749 0.6987448 0.7279693
    301 0.7356963 0.7029289 0.7241379
##
##
    321 0.7341493 0.6861925 0.7318008
    341 0.7343898 0.6527197 0.7356322
##
##
    361 0.7306385 0.6527197 0.7356322
##
    381 0.7301816 0.6359833 0.7394636
    401 0.7270957 0.6276151 0.7356322
##
##
    421 0.7255487 0.6317992 0.7356322
    441 0.7258933 0.6192469 0.7471264
##
##
         0.7220619
                    0.6150628 0.7471264
    481 0.7236330 0.6108787 0.7432950
##
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 121
```

7 Bibliographie

Références

Biblio1

[Besse, 2018] Besse, P. (2018). Science des données - Apprentissage Statistique. INSA - Toulouse. http://www.math.univ-toulouse.fr/~besse/pub/Appren_stat.pdf.

[Bousquet et al., 2003] Bousquet, O., Boucheron, S., and Lugosi, G. (2003). *Introduction to Statistical Learning Theory*, chapter Advanced Lectures on Machine Learning. Springer.

[Clémençon et al., 2008] Clémençon, S., Lugosi, G., and Vayatis, N. (2008). Ranking and empirical minimization of u-statistics. *The Annals of Statistics*, 36(2):844–874.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, second edition.

[James et al., 2015] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2015). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.

[Vapnik, 2000] Vapnik, V. (2000). The Nature of Statistical Learning Theory. Springer, second edition.

[Wikistat, 2020a] Wikistat (2020a). Apprentissage machine — introduction. http://wikistat.fr/pdf/st-m-Intro-ApprentStat.pdf.

[Wikistat, 2020b] Wikistat (2020b). Qualité de prévision et risque. http://wikistat.fr/pdf/st-m-app-risque.pdf.

Deuxième partie

Algorithmes linéaires

— Rappel: une fonction de prévision $f: \mathbb{R}^d \to \mathbb{R}$.

Fonction de prévision linéaire

Une fonction de prévision est dite *linéaire* si elle se met sous la forme

$$f(x) = f_{\beta}(x) = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

Remarque

— Possibilité d'inclure des effets non linéaires :

$$f_{\beta}(x) = \beta_0 + \beta_{11}x_1 + \beta_{12}x_1^2 + \beta_{21}x_2 + \beta_{22}x_2^2 + \beta_{12}x_1x_2 + \beta_{31}x_3 + \beta_{32}\exp(x_3)\dots$$

— Variables qualitatives codées en indicatrices :

$$f_{\beta}(x) = \beta_0 + \beta_1 \mathbf{1}_{x_1 = A} + \beta_2 \mathbf{1}_{x_1 = B} + \beta_3 \mathbf{1}_{x_1 = C} + \dots$$

muni d'une contrainte identifiante, par exemple $\beta_1 = 0$.

Régression

- Y à valeurs dans \mathbb{R} .
- On utilise souvent le terme modèle linéaire :

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_d x_{id} + \varepsilon_i$$

où les ε_i sont i.i.d tels que $\mathbf{E}[\varepsilon_i] = 0$ et $\mathbf{V}[\varepsilon_i] = \sigma^2$.

— Fonction de prévision :

$$m_{\beta}(x) = \mathbf{E}[Y|X = x] = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

Classification binaire

- Y à valeurs dans $\{0,1\}$.
- La classification s'effectue à partir de la probabilité

$$p(x) = \mathbf{P}(Y = 1|X = x).$$

— Frontière entre les deux classes :

$${x: p(x) = 1 - p(x)} = {x: log \frac{p(x)}{1 - p(x)} = 0}.$$

— La frontière est linéaire si

$$\log \frac{p(x)}{1 - p(x)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

 $-\Longrightarrow Mod\`ele\ logistique.$

Questions

- 1. Comment *calculer* (ou plutôt *estimer*) les β_j ?
 - MCO-vraisemblance
 - Approches régularisées \Longrightarrow ridge-lasso...
 - Machines à support vecteur (SVM).
- 2. Comment *choisir* la combinaison linéaire?
 - Sélection de variables
 - Régression sur composantes \Longrightarrow PCR-PLS...
 - Transformation de variables \Longrightarrow résidus partiels, modèle additifs...

Bibliographie

[Cornillon et al., 2019]: https://regression-avec-r.github.io

1 Le modèle de régression linéaire

1.1 Estimateurs des moindres carrés

Minimiser les erreurs

- Les données: $(x_1, y_1), \ldots, (x_n, y_n)$ à valeurs dans $\mathbb{R}^d \times \mathbb{R}$.
- Le modèle

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_d x_{id} + \varepsilon_i$$

— ε_i représente l'écart (ou l'erreur) entre la prévision du modèle β et la valeur observée.

Tdéa

Choisir β de manière à minimiser ces erreurs.

Estimateurs des moindres carrés

Définition

On appelle critère des moindres carrés ordinaires ou somme des carrés résiduelles la fonction de β :

$$SCR(\beta) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_d x_{id}))^2 = \|\mathbb{Y} - \mathbb{X}\beta\|^2$$

avec

$$\mathbb{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \text{et} \quad \mathbb{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1d} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{nd} \end{pmatrix}.$$

Propriété

Si \mathbb{X} est de plein rang alors l'estimateur des MCO $\widehat{\beta} = (\mathbb{X}^t \mathbb{X})^{-1} \mathbb{X}^t \mathbb{Y}$ minimise $SCR(\beta)$.

Exemple

— *Données* Hitters, 263 individus, 20 variables

- *Problème* : Expliquer/prédire le salaire (Salary) par les autres variables.
- Calcul des estimateurs MCO avec lm :

Prévision du salaire de nouveaux individus

```
> xnew %>% select(1:5)

## AtBat Hits HmRun Runs RBI

## 1 585 139 31 93 94

avec predict:
```

```
> predict(mod,newdata=xnew)
## 1
## 1129.376
```

Modèle gaussien

— En supposant de plus que les erreurs ε_i suivent une loi Gaussienne, on obtient la loi des estimateurs

$$\frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}_{\widehat{\beta}_j}} \sim \mathcal{T}_{n-(d+1)}.$$

— On en déduit des *procédures de test* :

```
> broom::tidy(mod) %>% head()
## # A tibble: 6 x 5
##
    term
               estimate std.error statistic p.value
## <chr>
                                    <dbl>
                  <dbl>
                           <dbl>
## 1 (Intercept)
                           90.8
                                    1.80 0.0736
                163.
## 2 AtBat
                           0.634
                  -1.98
                                   -3.12 0.00201
## 3 Hits
                   7.50
                            2.38
                                     3.15 0.00181
                                    0.698 0.486
## 4 HmRun
                   4.33
                           6.20
                            2.98
                                    -0.797 0.426
## 5 Runs
                   -2.38
## 6 RBI
                   -1.04
                            2.60
                                     -0.402 0.688
```

— Ainsi que des *intervalles de confiance* pour les paramètres :

```
> confint(mod) %>% head()
##
                   2.5 %
                              97.5 %
## (Intercept) -15.709647 341.9168228
## AtBat
               -3.228667 -0.7310792
## Hits
                2.817562 12.1839734
## HmRun
                -7.884569 16.5463352
## Runs
                -8.247625 3.4952055
                -6.168102
                           4.0781779
## RBI
```

— ou pour les prévisions :

```
> predict(mod, newdata=xnew, interval="confidence")
## fit lwr upr
## 1 1129.376 889.2244 1369.528
```

1.2 Résidus

Résidus et variance

Les résidus mesurent l'ajustement du modèle aux données. Ils sont définis par

$$\widehat{\varepsilon} = \mathbb{Y} - \widehat{\mathbb{Y}} = (I - P_{\mathbb{X}})\mathbb{Y} = P_{\mathbb{X}^{\perp}}\mathbb{Y} = P_{\mathbb{X}^{\perp}}\varepsilon$$

et vérifient

$$\mathbf{E}[\hat{\varepsilon}] = 0 \quad \mathbf{V}[\hat{\varepsilon}] = P_{\mathbb{X}^{\perp}} \sigma^2.$$

- $-\varepsilon_i$ (non observés) homoscédastiques (même variance) et non corrélés
- $\hat{\varepsilon}_i$ (observés) hétéroscédastiques et corrélés.

Estimation de la variance

$$\hat{\sigma}^2 = \frac{1}{n-d+1} \|\hat{\varepsilon}\|^2, \quad \mathbf{E}[\hat{\sigma}^2] = \sigma^2.$$

Définitions

- résidus $\hat{\varepsilon}_i = y_i \hat{y}_i$.
- résidus *normalisés* $r_i = \hat{\varepsilon}_i/(\sigma\sqrt{1-h_{ii}})$
- résidus standardisés (rstandard) $t_i = \hat{\varepsilon}_i/(\hat{\sigma}\sqrt{1-h_{ii}})$
- résidus *studentisés* par Validation Croisée (**rstudent**)

$$t_i^{\star} = \frac{\hat{\varepsilon}_i}{\hat{\sigma}_{(i)}\sqrt{1 - h_{ii}}},$$

Propriété

Sous l'hypothèse de normalité des résidus,

$$t_i^{\star} \sim \mathcal{T}(n-d)$$
.

Analyse des résidus

Définition

Une donnée aberrante est un point (x_i, y_i) pour lequel la valeur associée à t_i^* est élevée (comparée au seuil donné par la loi du Student) : $|t_i^*| > t_{n-p-1}(1-\alpha/2)$.

Diagnostic

- 1. Visualiser les résidus sur un graphe.
- 2. Identifier les données avec des résidus élevés.
- 3. Les éliminer de façon séquentielle.

```
> res <- rstudent(mod)
> tbl <- tibble(index=1:nrow(Hitters),res=res)
> seuil <- qt(0.975,nrow(Hitters)-(ncol(Hitters)-1))
> ggplot(tbl)+aes(x=index,y=res)+geom_point()+
+ geom_hline(yintercept = c(-seuil,seuil),color="blue")
```


2 Le modèle logistique

- Variable à expliquer binaire $\Longrightarrow y_i \in \{0,1\}$.
- Nombreuses applications : malade/pas malade, bon/mauvais payeur...
- Quantité d'intérêt : $p(x) = \mathbf{P}(Y = 1|X = x)$.

Approche linéaire

$$p(x) = p_{\beta}(x)$$
 avec

$$\log \frac{p_{\beta}(x)}{1 - p_{\beta}(x)} = \beta_0 + \beta_1 x_1 + \ldots + \beta_d x_d.$$

 \Longrightarrow modèle logistique.

Estimation

- Comme précédemment les β sont *inconnus*.
- Le critère des MCO est remplacé par la *log-vraisemblance* (à maximiser) :

$$\mathcal{L}(y_1, \dots, y_n; \beta) = \sum_{i=1}^n [y_i x_i^t \beta - \log(1 + \exp(x_i^t \beta))].$$

— Pas de solution explicite mais de (bons) algorithmes qui convergent vers le max.

Propriétés

Pour n assez grand, la loi des estimateurs peut être approchée par une loi gaussienne :

$$\mathcal{L}(\widehat{\beta}) \approx \mathcal{N}(\beta, \Sigma_{\widehat{\beta}}).$$

⇒ procédures de test, intervalles de confiance...

Exemple

— On considère les données SAheart :

```
> head(SAheart)
## sbp tobacco ldl adiposity famhist typea obesity alcohol age chd
## 1 160 12.00 5.73 23.11 Present 49 25.30 97.20 52 1
          0.01 4.41
                       28.61 Absent
                                      55
                                           28.87
                                                   2.06 63
## 2 144
                                       52 29.14
## 3 118
          0.08 3.48
                       32.28 Present
                                                   3.81 46
## 4 170
         7.50 6.41
                       38.03 Present
                                           31.99
                                                  24.26 58 1
## 5 134
         13.60 3.50
                       27.78 Present
                                           25.99
                                      60
                                                  57.34 49
                                                             1
## 6 132
          6.20 6.47
                       36.21 Present
                                      62
                                           30.77
```

- *Problème* : expliquer/prédire la variable binaire chd par les autres variables.
- On obtient les estimateurs avec glm

```
> logit <- glm(chd~.,data=SAheart,family="binomial")</pre>
> broom::tidy(logit)
## # A tibble: 10 x 5
##
     term
                    estimate std.error statistic
##
     <chr>
                     <dbl> <dbl> <dbl>
                                       -4.70 0.00000258
                             1.31
## 1 (Intercept) -6.15
  2 sbp
                   0.00650
                             0.00573
                                      1.14
                                     2.98 0.00285
## 3 tobacco
                   0.0794 0.0266
## 4 ldl
                  0.174
                             0.0597
                                       2.92 0.00355
## 5 adiposity
                   0.0186
                             0.0293
                                       0.635 0.526
## 6 famhistPresent 0.925
                              0.228
                                       4.06 0.0000490
## 7 typea
                   0.0396
                              0.0123
                                       3.21
                                              0.00131
  8 obesity
                   -0.0629
                              0.0442
                                              0.155
                                       -1.42
## 9 alcohol
                    0.000122
                              0.00448
                                       0.0271 0.978
## 10 age
                                        3.73 0.000193
                    0.0452
```

Prévision

- Nouvel individu $x \in \mathbb{R}^d$.
- *Question* : que prédire?

2 possibilités

- 1. La probabilité $p(x) = \mathbf{P}(Y = 1|X = x)$.
- 2. La classe de x (0 ou 1).
- ⇒ la classe se déduisant souvent de la probabilité, il est souvent préférable de prédire cette dernière.

Critère de prévision

Ils dépendent de la quantité prédite, par exemple

- courbe ROC pour des probabilités.
- erreur de classification pour des classes.
- Les prévisions de la probabilité de l'évènement {chd=1} pour de nouveaux individus

— s'obtiennent avec **predict**:

```
> predict(logit,newdata=xnew,type="response")
## 1
## 0.4719671
```

Conclusion

Remarque

La qualité de ces modèles (et donc des prévisions) reposent sur deux postulats :

- 1. le *modèle est bon* : Y s'explique bien par une combinaison linéaire des X ;
- 2. les estimateurs sont bons : ils possèdent de bonnes propriétés statistiques.
- La qualité du modèle est toujours difficile à vérifier \Longrightarrow ajouter d'autres effets dans la combinaison linéaire (quadratique, interactions...).
- On en sait plus sur la *performance des estimateurs* :
 - 1. Trop de variables \implies \nearrow de la variance (sur-ajustement).
 - 2. Colinéarités $\implies \nearrow$ de la variance (sur-ajustement).

3 Sélection de variables

— Une approche naturelle pour répondre aux 2 problèmes évoqués précédemment est de sélectionner des variables explicatives parmi $\{X_1, \ldots, X_d\}$.

$Id\acute{e}e$

Supprimer les variables

- qui n'expliquent pas Y.
- dont l'effet est déjà expliqué par d'autres variables
- \implies ce n'est pas parce qu'une variable n'est pas sélectionnée qu'elle n'est pas liée à Y!

Best subset selection

- d variables explicatives $\Longrightarrow 2^d$ modèles concurrents.
- $Id\acute{e}$: construire les 2^d modèles et les comparer.

Algorithme BSS

Entrée: un critère de choix de modèle (AIC, BIC...).

Pour j = 0, ..., d:

- 1. Construire les $\binom{d}{j}$ modèles linéaires à j variables;
- 2. Choisir parmi ces modèles celui qui a la plus petite SCR. On note \mathcal{M}_j le modèle sélectionné.

Retourner: le meilleur modèle parmi $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_d$ au sens du critère de choix de modèle.

Exemples de critères (voir [Cornillon et al., 2019])

— AIC: Akaike Information Criterion

$$-2\mathcal{L}_n(\hat{\beta}) + 2d.$$

— BIC: Bayesian Information Criterion

$$-2\mathcal{L}_n(\hat{\beta}) + \log(n)d.$$

 $-R^2$ ajusté :

$$R_a^2 = 1 - \frac{n-1}{n-d+1}(1-R^2) \quad \text{où} \quad R^2 = \frac{SSR}{SST} = \frac{\|\hat{\mathbb{Y}} - \bar{\mathbb{Y}}\mathbf{1}\|^2}{\|\mathbb{Y} - \bar{\mathbb{Y}}\mathbf{1}\|^2}.$$

— C_p de Mallow :

$$C_p = \frac{1}{n} \left(\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + 2d\hat{\sigma}^2 \right).$$

Ajustement/complexité

- Ces critères sont constitués de deux parties :
 - 1. une qui mesure la *qualité d'ajustement* du modèle;
 - 2. une autre qui mesure sa complexité.

Exemple AIC

- $-2\mathcal{L}_n(\hat{\beta})$ mesure l'ajustement;
- 2p mesure la complexité.
- ⇒ l'idée est de choisir un modèle de complexité minimale qui ajuste bien les données.

Le coin R

- On peut utiliser les packages leaps et bestglm.
- On propose de présenter bestglm qui fait appel à leaps pour la régression et fonctionne également pour le modèle logistique.

```
> Hitters1 <- Hitters[,c(1:18,20,19)]
> sel.var <- bestglm(Hitters1)</pre>
> sel.var$Subsets %>% select(c(1:5,22)) %>% head()
      (Intercept) AtBat Hits HmRun Runs
##
## 0
            TRUE FALSE FALSE FALSE FALSE 3213.768
## 1
            TRUE FALSE FALSE FALSE FALSE 3117.350
## 2
             TRUE FALSE TRUE FALSE FALSE 3079.270
            TRUE FALSE TRUE FALSE FALSE 3072.569
## 3
            TRUE FALSE TRUE FALSE FALSE 3066.387
## 4
             TRUE TRUE TRUE FALSE FALSE 3064.125
```

— On obtient le *modèle sélectionné* avec :

```
> sel.var$BestModel %>% broom::tidy()
## # A tibble: 7 x 5
              estimate std.error statistic p.value
## term
   <chr>
                ##
## 1 (Intercept) 91.5
                       65.0
                                  1.41 1.60e- 1
                              -3.54 4.70e- 4
4.57 7.46e- 6
               -1.87 0.527
## 2 AtBat
                7.60
## 3 Hits
                      1.66
                                  3.06 2.49e- 3
## 4 Walks
                3.70
                        1.21
                0.643 0.0644
## 5 CRBI
                                  9.98 5.05e-20
## 6 DivisionW -123.
                       39.8
                                  -3.09 2.24e- 3
## 7 PutOuts
                 0.264
                        0.0748
```

Remarque

- L'approche *exhaustive* peut se révéler coûteuse en temps de calcul lorsque d > 50.
- On utilise généralement des méthodes pas à pas dans ce cas.

Pas à pas ascendant

Algorithme forward

Entrée: un critère de choix de modèle (AIC, BIC...)

- 1. Construire \mathcal{M}_0 le modèle linéaire qui contient uniquement la constante ;
- 2. Pour j = 0, ..., d 1:
 - (a) Construire les d-j modèles linéaires en ajoutant une variable, parmi les variables non utilisées, à \mathcal{M}_i ;
 - (b) Choisir, parmi ces d-j modèles, celui qui minimise la SCR $\to \mathcal{M}_{j+1}$.

Retourner: le meilleur modèle parmi $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_d$ au sens du critère de choix de modèle.

Le coin R

Utiliser method=forward dans bestglm.

Pas à pas descendant

Algorithme backward

Entrée : un critère de choix de modèle (AIC, BIC...)

- 1. Construire \mathcal{M}_d le modèle linéaire complet (avec toutes les variables explicatives);
- 2. Pour j = d, ..., 1:
 - (a) Construire les j modèles linéaires en supprimant une variable, parmi les variables non utilisées, à \mathcal{M}_j ;
 - (b) Choisir, parmi ces j modèles, celui qui minimise la SCR $\to \mathcal{M}_{j-1}$.

Retourner : le meilleur modèle parmi $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_d$ au sens du critère de choix de modèle.

Le coin R

Utiliser method=backward dans bestglm.

4 Régularisation

Complexité linéaire

Le nombre de variables est une mesure de la complexité des algorithmes linéaires.

Illustration numérique

— On génère des données $(x_i, y_i), i = 1, \dots, 500$ selon le modèle

$$y_i = 1x_{i1} + 0x_{i2} + \ldots + 0x_{iq} + \varepsilon_i$$

où $x_1, \ldots, x_q, \varepsilon$ sont i.i.d. de loi $\mathcal{N}(0,1)$.

- Seule X_1 est *explicative*, les q-1 autres variables peuvent être vues comme du *bruit*.
- On calcule l'*estimateur de MCO de* β_1 sur 1000 répétitions. On trace les boxplot de ces estimateurs pour q = 0 et q = 400.

Conclusion

Plus de variance (donc moins de précision) lorsque le nombre de variables inutiles augmente.

— Lorsque le nombre de variables des est grand, les estimateurs des moindres carrés du modèle linéaire

$$Y = \beta_1 X_1 + \ldots + \beta_d X_d + \varepsilon$$

possèdent généralement une grande variance.

Idée des méthodes pénalisés

— Contraindre la valeur des estimateurs des moindres carrés de manière à réduire la variance (quitte à augmenter un peu le biais).

— Comment? En imposant une contrainte sur la valeur des estimateurs des moindres carrés :

$$\hat{\beta}^{pen} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} x_{ij} \beta_j \right)^2$$

sous la contrainte $\|\beta\|_{?} \leq t$.

Questions

- Quelle *norme* utiliser pour la contrainte?
- Existence/unicité des estimateurs? Solutions explicites du problème d'optimisation?
- Comment *choisir t*?
 - $t \text{ petit} \Longrightarrow \text{ estimateurs contraints (proche de 0)};$
 - -t grand \Longrightarrow estimateurs des moindres carrés (non pénalisés).

4.1 Régression ridge

— La régression ridge consiste à minimiser le critère des moindres carrés pénalisé par la norme 2 des coefficients.

Définition

1. Les estimateurs ridge $\hat{\beta}^R$ s'obtiennent en minimisant

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{d} x_{ij} \beta_j \right)^2 \quad \text{sous la contrainte} \quad \sum_{j=1}^{d} \beta_j^2 \le t$$
 (1)

2. ou de façon équivalente

$$\hat{\beta}^{R} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{d} x_{ij} \beta_{j} \right)^{2} + \lambda \sum_{j=1}^{d} \beta_{j}^{2} \right\}.$$
 (2)

Quelques remarques

- Les définitions (1) et (2) sont équivalentes dans le sens où pour tout t il existe un unique λ tels que les solutions aux deux problèmes d'optimisation coïncident.
- La constante β_0 n'entre généralement pas dans la pénalité.
- L'estimateur <u>dépend</u> bien entendu du paramètre t (ou λ) : $\hat{\beta}^R = \hat{\beta}^R(t) = \hat{\beta}^R(\lambda)$.
- Les variables explicatives sont le plus souvent réduites pour éviter les problèmes d'échelle dans la pénalité.

Exemple avec les données Hitters

- Il existe *plusieurs fonctions et packages* qui permettent de faire de la régression pénalisée sur R. Nous présentons ici glmnet.
- glmnet n'accepte pas d'objet formule. Il faut spécifier la matrice des X et le vecteur des Y :
 - > Hitters.X <- model.matrix(Salary~.,data=Hitters)[,-1]</pre>

Ridge avec glmnet

```
> library(glmnet)
> reg.ridge <- glmnet(Hitters.X, Hitters$Salary, alpha=0)
> par(mfrow=c(1,2))
> plot(reg.ridge, lwd=2)
> plot(reg.ridge, lwd=2, xvar="lambda")
```


Propriétés des estimateurs ridge

Propriétés

1. Lorsque les variables explicatives sont centrée-réduites, l'estimateur Ridge solution de (2) s'écrit

$$\hat{\beta}^R = \hat{\beta}^R(\lambda) = (\mathbb{X}^t \mathbb{X} + \lambda \mathbb{I})^{-1} \mathbb{X}^t \mathbb{Y}.$$

2. On déduit

$$\operatorname{biais}(\hat{\beta}^R) = -\frac{\lambda}{\lambda} (\mathbb{X}^t \mathbb{X} + \frac{\lambda}{\lambda} \mathbb{I})^{-1} \beta$$

 et

$$\mathbf{V}(\hat{\beta}^R) = \sigma^2 (\mathbb{X}^t \mathbb{X} + \lambda \mathbb{I})^{-1} \mathbb{X}^t \mathbb{X} (\mathbb{X}^t \mathbb{X} + \lambda \mathbb{I})^{-1}.$$

Commentaires

- Si $\lambda = 0$, on retrouve le biais et la variance de l'estimateur des MCO.
- $-\lambda\nearrow\Longrightarrow$ biais \nearrow et variance \searrow et réciproquement lorsque $\lambda\searrow$.

Choix de λ

- Il est *crucial*: si $\lambda \approx 0$ alors $\hat{\beta}^R \approx \hat{\beta}^{MCO}$, si λ "grand" alors $\hat{\beta}^R \approx 0$.
- Le choix de λ se fait le plus souvent de façon "classique" :
 - 1. Estimation d'un critère de choix de modèle pour toutes les valeurs de λ ;
 - 2. Choix du λ qui minimise le critère estimé.
- Exemple : la fonction cv.glmnet choisit la valeur de λ qui minimise l'erreur quadratique moyenne

$$\mathbf{E}[(Y - m_{\hat{\beta}^R(\lambda)}(X))^2]$$

estimée par validation croisée.

4.2 Régression Lasso

— La régression lasso consiste à minimiser le critère des moindres carrés pénalisé par la norme 1 des coefficients.

Définition [Tibshirani, 1996]

1. Les estimateurs lasso $\hat{\beta}^L$ s'obtiennent en minimisant

$$\sum_{i=1}^{n} \left(Y_i - \beta_0 - \sum_{j=1}^{d} X_{ij} \beta_j \right)^2 \quad \text{sous la contrainte} \quad \sum_{j=1}^{d} |\beta_j| \le t$$
 (3)

2. ou de façon équivalente

$$\hat{\beta}^{L} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \left(Y_i - \beta_0 - \sum_{j=1}^{d} X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{d} |\beta_j| \right\}. \tag{4}$$

Comparaison Ridge-Lasso

— Dans le cas où la matrice X est orthonormée, on a une écriture explicite pour les estimateurs ridge et lasso.

Propriété

Si la matrice de design X est orthonormée, alors

$$\hat{\beta}_j^R = \frac{\hat{\beta}_j}{1+\lambda}$$
 et $\hat{\beta}_j^L = \text{signe}(\hat{\beta}_j)(|\hat{\beta}_j| - \lambda)_+$

où $\hat{\beta}_j$ est l'estimateur MCO de β_j .

Commentaires

- Ridge "diminue" l'estimateur MCO de façon proportionnelle;
- Lasso translate et tronque l'estimateur MCO (lorsque ce dernier est petit).

Conclusion

Le lasso va avoir tendance à "mettre" des coefficients à 0 et donc à faire de la sélection de variables.

Remarque

Ces approches reviennent (d'une certaine façon) à projeter l'estimateur des MCO sur les boules unités associées à

- 1. la norme 2 pour la régression *ridge*;
- 2. la norme 1 pour le *lasso*.

Quelques remarques

- Comme pour la régression ridge :
 - on préfère souvent *réduire la matrice de design* avant d'effectuer la régression lasso;
 - Le choix de λ est *crucial* (il est le plus souvent sélectionné en minimisant un critère empirique).
 - λ /> \Longrightarrow biais /> et variance \(\sqrt{e} \) et réciproquement lorsque λ \(\sqrt{.} \).
- MAIS, contrairement à ridge: $\lambda \nearrow \Longrightarrow le \ nombre \ de \ coefficients \ nuls \ augmente ([B\"uhlmann and van de Geer, 2011]).$

Le coin R

```
> reg.lasso <- glmnet(Hitters.X,Hitters$Salary,alpha=1)
> par(mfrow=c(1,2))
> plot(reg.lasso,lwd=2)
> plot(reg.lasso,lwd=2,xvar="lambda")
```


Sélection de λ

```
> set.seed(321)
> reg.cvlasso <- cv.glmnet(Hitters.X,Hitters$Salary,alpha=1)
> bestlam <- reg.cvlasso$lambda.min
> bestlam
## [1] 17.19108
> plot(reg.cvlasso)
```


Résolution numérique

- Il existe plusieurs façons de *résoudre le problème numérique* d'optimisation lasso (ou ridge).
- Un des plus utilisé est l'algorithme de descente de coordonnées [Hastie et al., 2015].
- On considère le problème *lasso*

$$\hat{\beta}^L = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^n \left(Y_i - \beta_0 - \sum_{j=1}^d X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^d |\beta_j| \right\}$$

avec les variables explicatives centrées-réduites (pour simplifier).

Descente de coordonnées

- 1. *Initialisation*: $\hat{\beta}_0 = \bar{y}$, $\hat{\beta}_j = ..., j = 1, ..., d$.
- 2. Répéter jusqu'à convergence : Pour $j=1,\ldots,d$:
 - (a) Calculer les résidus partiels $r_i^{(j)} = y_i \sum_{k \neq j} x_{ik} \hat{\beta}_k$;
 - (b) Faire la régression simple des y_i contre $r_i^{(j)} \Longrightarrow \tilde{\beta}_i$;
 - (c) Mettre à jour $\hat{\beta}_j = \text{signe}(\tilde{\beta}_j)(|\tilde{\beta}_j| \lambda)_+$
- 3. Retourner: $\hat{\beta}_j, j = 1, \ldots, d$.

4.3 Variantes de ridge/lasso

Différentes pénalités

- Les approches *ridge* et *lasso* diffèrent uniquement au niveau de la pénalité ajoutée au critère des moindres carrés.
- Norme 2 pour ridge et norme 1 pour le lasso.
- Il existe tout un tas d'autres stratégies de pénalisations.
- Nous en présentons quelques unes dans cette partie.
- On pourra consulter [Hastie et al., 2015] pour plus de détails.

Elastic net

— [Zou and Hastie, 2005] ont proposé de *combiner les approches ridge et lasso* en proposant une pénalité (appelée elastic net) de la forme

$$\lambda \sum_{j=1}^{d} ((1 - \alpha)\beta_j^2 + \alpha |\beta_j|)$$

où $\alpha \in [0,1]$.

- Le paramètre α définit le compromis ridge/lasso :
 - $-\alpha = 1 \Longrightarrow Lasso;$
 - $-\alpha = 0 \Longrightarrow \text{Ridge};$
 - Ce paramètre correspond (évidemment) à l'argument alpha de la fonction glmnet.
- *Avantage* : on a plus de flexibilité car la pénalité elastic net propose une gamme de modèles beaucoup plus large que lasso et ridge ;
- *Inconvénient* : en plus du λ il faut aussi sélectionner le α !

Group Lasso

- Dans certaines applications, les variables *explicatives* appartiennent à des *groupes de variables* prédéfinis.
- Nécessité de "shrinker" ou sélectionner les variables par groupe.

Exemple: variables qualitatives

- 2 variables explicatives qualitatives X_1 et X_2 et une variable explicative continue X_3 .
- Le *modèle* s'écrit

$$Y = \beta_0 + \beta_1 \mathbf{1}_{X_1 = A} + \beta_2 \mathbf{1}_{X_1 = B} + \beta_3 \mathbf{1}_{X_1 = C}$$

+ $\beta_4 \mathbf{1}_{X_2 = D} + \beta_5 \mathbf{1}_{X_2 = E} + \beta_6 \mathbf{1}_{X_2 = F} + \beta_7 \mathbf{1}_{X_2 = G} + \beta_8 X_3 + \varepsilon$

muni des contraintes $\beta_1 = \beta_4 = 0$.

- 3 groupes: $\mathbf{X}_1 = (\mathbf{1}_{X_1=B}, \mathbf{1}_{X_1=C}), \ \mathbf{X}_2 = (\mathbf{1}_{X_2=E}, \mathbf{1}_{X_2=F}, \mathbf{1}_{X_2=G}) \text{ et } \mathbf{X}_3 = X_3.$

Définition

En présence de d variables réparties en L groupes $\mathbf{X}_1, \dots, \mathbf{X}_L$ de cardinal d_1, \dots, d_L . On note $\beta_\ell, \ell = 1, \dots, L$ le vecteur des coefficients associé au groupe \mathbf{X}_ℓ . Les *estimateurs group-lasso* s'obtiennent en minimisant le critère

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{\ell=1}^{L} \mathbf{X}_{i\ell} \beta_{\ell} \right)^2 + \lambda \sum_{\ell=1}^{L} \sqrt{d_{\ell}} \|\beta_{\ell}\|_2$$

Remarque

Puisque $\|\beta_{\ell}\|_2 = 0$ ssi $\beta_{\ell 1} = \ldots = \beta_{\ell d_{\ell}} = 0$, cette procédure encourage la mise à zéro des coefficients d'un même groupe.

Le coin R

— La fonction **gglasso** du package **gglasso** permet de faire du *groupe lasso* sur R.

```
> summary(donnees)
##
        X 1
                            X2
                                          Min. :0.009496
## Length:200
                       Length:200
                                                           1st Qu.:-0.50404
   Class: character Class: character
                                         1st Qu.:0.237935
    Mode :character Mode :character
                                         Median :0.485563
                                                            Median : 0.16759
##
                                          Mean :0.483286
                                                             Mean : 0.09792
                                          3rd Qu.:0.734949
##
                                                             3rd Qu.: 0.66918
                                          Max. :0.998741
> D <- model.matrix(Y~.,data=donnees)[,-1]
> model <- glmnet(D,Y,alpha=1)</pre>
> groupe <- c(1,1,2,2,2,3)
> library(gglasso)
> model1 <- gglasso(D,Y,group=groupe)</pre>
> plot(model1)
```


Remarque

Les coefficients s'annulent par groupe lorsque λ augmente (graphe de droite).

Sparse group lasso

- La *norme 2* de la pénalité group-lasso implique que, généralement, tous les coefficients d'un groupe sont tous nuls ou tous non nuls.
- Dans certains cas, il peut être intéressant de mettre de la *sparsité* dans les groupes aussi. Comment?
- En ajoutant *la norme 1* dans la pénalité.

Pénalité sparse group lasso

$$\lambda \sum_{\ell=1}^{L} [(1-\alpha) \|\beta_{\ell}\|_{2} + \alpha \|\beta_{\ell}\|_{1}].$$

— Sur R: package SGL.

Fused lasso

- Utile pour prendre en compte la spatialité des données.
- Idée : deux coefficients successifs doivent être proches.

Pénalité fused lasso

$$\lambda_1 \sum_{j=1}^{d} |\beta_j| + \lambda_2 \sum_{j=2}^{d} |\beta_{j+1} - \beta_j|$$

qui peut se re-paramétrer en

$$\lambda \sum_{j=2}^{d} |\beta_{j+1} - \beta_j|.$$

— Sur R : package genlasso.

4.4 Discrimination binaire

Discrimination binaire

- Les méthodes *ridge et lasso* ont été présentées dans un cadre de régression linéaire.
- Ces techniques d'adaptent directement à la régression logistique $\mathcal{Y} = \{-1, 1\}$.
- Les *pénalités* sont *identiques*.
- Seul changement : le critère moindre carré est remplacé par la déviance ⇒ ce qui revient à *minimiser l'opposé* de la vraisemblance plus la pénalité.

Lasso et Ridge pour la logistique

Définition

On note $\tilde{y}_i = (y_i + 1)/2$.

— On appelle *estimateur ridge* en régression logistique l'estimateur

$$\hat{\beta}^R = \underset{\beta}{\operatorname{argmin}} \left\{ -\sum_{i=1}^n (\tilde{y}_i x_i^t \beta - \log(1 + \exp(x_i^t \beta))) + \lambda \sum_{j=1}^d \beta_j^2 \right\}.$$

— On appelle estimateur lasso en régression logistique l'estimateur

$$\hat{\beta}^L = \underset{\beta}{\operatorname{argmin}} \left\{ -\sum_{i=1}^n (\tilde{y}_i x_i^t \beta - \log(1 + \exp(x_i^t \beta))) + \lambda \sum_{j=1}^d |\beta_j| \right\}.$$

Le coin R

- Pour faire du ridge ou lasso en logistique, il suffit d'ajouter l'argument family=binomial dans glmnet.
- Tout reste identique pour le reste (tracé du chemin des coefficients, choix du λ ...).
- *Exemple* : données SAheart

```
> head(SAheart)
     sbp tobacco ldl adiposity famhist typea obesity alcohol age chd
                                            49
## 1 160
           12.00 5.73
                                                 25.30
                                                         97.20 52
                          23.11 Present
## 2 144
            0.01 4.41
                          28.61 Absent
                                            55
                                                 28.87
                                                          2.06
                                                                63
## 3 118
            0.08 3.48
                          32.28 Present
                                            52
                                                 29.14
                                                          3.81
                                                                46
                          38.03 Present
## 4 170
            7.50 6.41
                                            51
                                                 31.99
                                                         24.26
                                                                58
                                                                     1
## 5 134
           13.60 3.50
                          27.78 Present
## 6 132
            6.20 6.47
                          36.21 Present
```

— On obtient les *chemins de régularisation* ridge et lasso avec les commandes suivantes :

```
> SAheart.X <- model.matrix(chd~.,data=SAheart)
> log.ridge <- glmnet(SAheart.X,SAheart$chd,family="binomial",alpha=0)
> log.lasso <- glmnet(SAheart.X,SAheart$chd,family="binomial",alpha=1)
> plot(log.ridge,xvar="lambda")
```


5 Bibliographie

Références

Biblio2

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337–404.

[Bühlmann and van de Geer, 2011] Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data. Springer.

[Cornillon et al., 2019] Cornillon, P., Hengartner, N., Matzner-Løber, E., and Rouvière, L. (2019). *Régression avec R.* EDP Sciences.

[Fromont, 2015] Fromont, M. (2015). Apprentissage statistique. Université Rennes 2, diapos de cours.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, second edition.

[Hastie et al., 2015] Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The Lasso and Generalizations. CRC Press. https://web.stanford.edu/~hastie/StatLearnSparsity_files/SLS.pdf.

[Karatzoglou et al., 2004] Karatzoglou, A., Smola, A., Hornik, K., and Zeileis, A. (2004). kernlab – an s4 package for kernel methods in r. *Journal of Statistical Software*, 11(9).

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society, Series B*, 58:267–288.

[Zou and Hastie, 2005] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, 67:301–320.

Troisième partie

Algorithmes non linéaires

— Algorithmes *linéaires* :

$$f(x) = f_{\beta}(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d.$$

- *Problème* : tous les problèmes ne sont pas linéaires.
- Possible d'ajouter de la non linéarité dans les algorithmes linéaires : effets quadratiques, interaction...
- *Difficile pour l'utilisateur* de trouver quels effets ajouter! Surtout lorsque d est grand.

Dans cette partie

Présentation de quelques algorithmes non linéaires :

- Méthodes par arbres.
- Réseaux de neurones.

1 Arbres

Présentation

- Les arbres sont des algorithmes de prédiction qui fonctionnent en régression et en discrimination.
- Il existe différentes variantes permettant de construire des prédicteurs par arbres.
- Nous nous focalisons dans cette partie sur la méthode CART [Breiman et al., 1984] qui est la plus utilisée.

1.1 Arbres binaires

Notations

- On cherche à expliquer une variable Y par d variables explicatives X_1, \ldots, X_d .
- Y peut admettre un nombre quelconque de modalités et les variables X_1, \ldots, X_d peuvent être qualitatives et/ou quantitatives.
- Néanmoins, pour simplifier on se place dans un premier temps en *discrimination binaire*: Y admet 2 modalités (-1 ou 1). On suppose de plus que l'on a simplement 2 variables explicatives quantitatives.

Représentation des données

— On dispose de *n* observations $(x_1, y_1), \ldots, (x_n, y_n)$ où $x_i \in \mathbb{R}^2$ et $y_i \in \{0, 1\}$.

Approche par arbres

Trouver une partition des observations qui sépare "au mieux" les points rouges des points bleus.

Arbres binaires

- La *méthode CART* propose de construire une partition basée sur des divisions *successives parallèles aux axes*.
- 2 exemples de partition :

— A chaque étape, la méthode cherche une *nouvelle division* : une variable et un seuil de coupure.

Représentation de l'arbre

Remarque

Visuel de *droite* plus pertinent :

- Plus d'information.
- Généralisation à plus de deux dimensions.

Vocabulaire

- Chaque coupure divise une partie de \mathbb{R}^d en deux parties appelées nœuds.
- Le premier nœud, qui contient toutes les observations, est le nœud racine.
- Une coupure divise en noeud en deux nœuds fils:

— Les nœuds qui ne sont pas découpés (en bas de l'arbre) sont les nœuds terminaux ou feuilles de l'arbre.

Arbre et algorithme de prévision

- L'arbre construit, les *prévisions* se déduisent à partir de moyennes faites dans les feuilles.
- On note $\mathcal{N}(x)$ la feuille de l'arbre qui contient $x \in \mathbb{R}^d$, les prévisions s'obtiennent selon :
 - 1. $Régression \implies$ moyenne des y_i de la feuille

$$m_n(x) = \frac{1}{|\mathcal{N}(x)|} \sum_{i: x_i \in \mathcal{N}(x)} y_i$$

2. Classification (classe) \Longrightarrow vote à la majorité :

$$g_n(x) = \underset{k}{\operatorname{argmax}} \sum_{i: x_i \in \mathcal{N}(x)} \mathbf{1}_{y_i = k}$$

3. Classification (proba) \Longrightarrow proportion d'obs. du groupe k:

$$S_{k,n}(x) = \frac{1}{|\mathcal{N}(x)|} \sum_{i:x_i \in \mathcal{N}(x)} \mathbf{1}_{y_i = k}.$$

Questions

- 1. Comment *découper* un nœud?
 - \implies si on dispose d'un algorithme pour découper un nœud, il suffira de le répéter.
- 2. Comment choisir la profondeur de l'arbre?
 - Profondeur maximale? (on découpe jusqu'à ne plus pouvoir) sur-ajustement?
 - Critère d'arrêt?
 - Élagage? (on construit un arbre profond et on enlève des branches "inutiles"...).

1.2 Choix des coupures

- *Une coupure* = un couple $(j, s) \in \{1, ..., d\} \times \mathbb{R}$.
- *Idée* : définir un critère mesure la performance d'une coupure et choisir celle qui optimise le critère.
- Coupure performante \implies les deux nœuds fils sont homogènes vis-à-vis de Y.

Fonction d'impureté

- Objectif : mesurer l'homogénéité d'un nœud.
- Intérêt : choisir la coupure qui maximise la pureté des nœuds fils.

Critère de découpe

- L' $impuret\acute{e}$ $\mathcal I$ d'un nœud doit être :
 - 1. faible lorsque un nœud est homogène : les valeurs de Y dans le nœud sont proches.
 - 2. élevée lorsque un nœud est hétérogène : les valeurs de Y dans le nœud sont dispersées.

L'idée

Une fois $\mathcal I$ définie, on choisira le couple (j,s) qui maximise le gain d'impureté :

$$\Delta(j,s) = p(\mathcal{N})\mathcal{I}(\mathcal{N}) - (p(\mathcal{N}_1(j,s))\mathcal{I}(\mathcal{N}_1(j,s)) + p(\mathcal{N}_2(j,s))\mathcal{I}(\mathcal{N}_2(j,s)))$$

où $p(\mathcal{N})$ représente la proportion d'observations dans le nœud \mathcal{N} .

1.2.1 Cas de la régression

— Une mesure naturelle de l' $impuret\acute{e}$ d'un nœud $\mathcal N$ en $r\acute{e}gression$ est la variance du nœud :

$$\mathcal{I}(\mathcal{N}) = \frac{1}{|\mathcal{N}|} \sum_{i: x_i \in \mathcal{N}} (y_i - \bar{y}_{\mathcal{N}})^2,$$

où $\bar{y}_{\mathcal{N}}$ désigne la moyenne des Y_i dans \mathcal{N} .

 \implies coupure de *droite* plus performante.

Exemple

	$\mathcal{I}(\mathcal{N})$	$\mathcal{I}(\mathcal{N}_1)$	$\mathcal{I}(\mathcal{N}_2)$	Δ
Gauche	1.05	0.01	0.94	0.34
Droite	1.05	0.04	0.01	1.02

Pour aller plus vite

1.2.2 Cas de la classification supervisée

- Les Y_i , i = 1, ..., n sont à valeurs dans $\{1, ..., K\}$.
- On cherche une fonction \mathcal{I} telle que $\mathcal{I}(\mathcal{N})$ soit
 - petite si un label majoritaire se distingue clairement dans \mathcal{N} ;
 - grande sinon.

Impuret'e

L'impureté d'un nœud $\mathcal N$ en classification se mesure selon

$$\mathcal{I}(\mathcal{N}) = \sum_{j=1}^{K} f(p_j(\mathcal{N}))$$

οù

- $p_j(\mathcal{N})$ représente la proportion d'observations de la classe j dans le nœud \mathcal{N} .
- f est une fonction (concave) $[0,1] \to \mathbb{R}^+$ telle que f(0) = f(1) = 0.

Exemples de fonctions f

- Si \mathcal{N} est pur, on veut $\mathcal{I}(\mathcal{N}) = 0 \Longrightarrow$ c'est pourquoi f doit vérifier f(0) = f(1) = 0.
- Les 2 mesures d'impureté les plus classiques sont :
 - 1. Gini: f(p) = p(1-p);
 - 2. Information: $f(p) = -p \log(p)$.

$Cas\ binaire$

Dans ce cas on a

- 1. $\mathcal{I}(\mathcal{N}) = 2p(1-p)$ pour Gini
- 2. $\mathcal{I}(\mathcal{N}) = -p \log p (1-p) \log(1-p)$ pour Information

où p désigne la proportion de 1 (ou 0) dans \mathcal{N} .

Impureté dans le cas binaire

Exemple 1

 \implies coupure de $\frac{droite}{dro}$ plus performante.

Exemple 2

1.3 Elagage

Pourquoi élaguer?

- Les coupures permettent de séparer les données selon $Y \Longrightarrow$ plus on coupe mieux on ajuste!
- Risque de *sur-ajustement* si on coupe trop!

Complexit'e d'un arbre

Représentée par son nombre de coupures ou sa profondeur.

Comment faire?

- Tester tous les arbres ? ⇒ possible uniquement sur de petits échantillons!
- *Critère d'arrêt* : ne plus découper si une certaine condition est vérifiée. ⇒ possible mais... une coupure peut ne pas être pertinente alors que des coupures plus basses le seront!

Élaguer

- 1. Considérer un arbre (trop) profond ⇒ qui sur-ajuste;
- 2. Supprimer les branches peu utiles.

Élagage CART

- Tester tous les sous-arbres d'un arbre très profond se révèlent souvent trop couteux en temps de calcul.
- [Breiman et al., 1984] propose une stratégie d'élagage qui permet de se ramener à une suite d'arbres emboités

$$\mathcal{T}_{max} = \mathcal{T}_0 \supset \mathcal{T}_1 \supset \ldots \supset \mathcal{T}_K.$$

de taille raisonnable (plus petite que n).

- Il est ensuite possible de *choisir un arbre dans cette suite* par des méthodes traditionnelles :
 - 1. choix d'un risque;
 - 2. optimisation de ce risque (par validation croisée par exemple).

Pour aller plus vite

Construction de la suite de sous arbres

- Soit T un arbre à |T| nœuds terminaux $\mathcal{N}_1, \ldots, \mathcal{N}_{|T|}$.
- Soit $R(\mathcal{N})$ un risque (d'ajustement) dans le nœud \mathcal{N} :
 - Régression :

$$R_m(T) = \frac{1}{N_m} \sum_{i:x_i \in \mathcal{N}_m} (y_i - \bar{y}_{\mathcal{N}_m})^2$$

— Classification:

$$R_m(T) = \frac{1}{N_m} \sum_{i: x_i \in \mathcal{N}_m} \mathbf{1}_{y_i \neq y_{\mathcal{N}_m}}$$

Définition

Soit $\alpha \geq 0$, le critère $co\hat{u}t/complexit\acute{e}$ est défini par :

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_m R_m(T) + \alpha |T|.$$

Idée

- $-C_{\alpha}(T)$ est un critère qui prend en compte l'adéquation d'un arbre et sa complexité.
- L'idée est de chercher un arbre T_{α} qui minimise $C_{\alpha}(T)$ pour une valeur de α bien choisie.

Remarque

- $-\alpha = 0 \Longrightarrow T_{\alpha} = T_0 = T_{\text{max}}.$
- $-\alpha = +\infty \Longrightarrow T_{\alpha} = T_{+\infty} = T_{\text{root}}$ arbre sans coupure.

Question (a priori difficile)

Comment calculer T_{α} qui minimise $C_{\alpha}(T)$?

Deux lemmes

Lemme 1

Si T_1 et T_2 sont deux sous-arbres de T_{\max} avec $R_{\alpha}(T_1) = R_{\alpha}(T_2)$. Alors $T_1 \subset T_2$ ou $T_2 \subset T_1$

 \implies garantit une unique solution de *taille minimale*.

Lemme 2

Si $\alpha > \alpha'$ alors $T_{\alpha} = T_{\alpha'}$ ou $T_{\alpha} \subset T_{\alpha'}$.

 \implies garantit une *stabilité des solutions* lorsque α parcourt \mathbb{R}^+ \implies elles vont être *emboîtées* les unes dans les autres.

Théorème [Breiman et al., 1984]

Il existe une suite finie $\alpha_0 = 0 < \alpha_1 < \dots < \alpha_M$ avec $M \leq |T_{\text{max}}|$ et une suite associée d'arbres emboîtés $(T_{\alpha_m})_m$

$$T_{\max} = T_{\alpha_0} \supset T_{\alpha_1} \supset \cdots \supset T_{\alpha_M} = T_{\text{root}}$$

telle que $\forall \alpha \in [\alpha_m, \alpha_{m+1}]$

$$T_m \in \operatorname*{argmin}_{T \subset T_{\max}} C_{\alpha}(T).$$

Commentaires

- Nombre de minimiseurs de $C_{\alpha}(T)$ est "petit".
- Ils s'obtiennent en élaguant : en supprimant des branches.

Exemple

— On visualise la *suite de sous-arbres* avec la fonction **printcp** ou dans l'objet rpart :

```
> library(rpart)
> set.seed(123)
> arbre <- rpart(Y~.,data=don.2D.arbre,cp=0.0001,minsplit=2)</pre>
> arbre$cptable
                 CP nsplit rel error
                                              xerror
                      0 1.00000000 1.0000000 0.09336996
## 1 0.353846154
## 2 0.230769231
                           1 0.64615385 0.7076923 0.08688336
                      2 0.41538462 0.5076923 0.07805324
4 0.13846154 0.2153846 0.05481185
5 0.07692308 0.1846154 0.05111769
6 0.06153846 0.2461538 0.05816388
## 3 0.138461538
## 4 0.061538462
## 5 0.015384615
## 6 0.007692308
## 7 0.000100000
                          14 0.00000000 0.2153846 0.05481185
```

Sorties printcp

- Suite de 7 arbres emboités.
- CP: complexity parameter, il mesure la complexité de l'arbre : $CP \searrow \Longrightarrow$ complexité \nearrow .
- -- nsplit: nombre de coupures de l'arbre.
- rel. error : erreur (normalisée) calculée sur les données d'apprentissage \implies erreur d'ajustement.
- xerror: erreur (normalisée) calculée par validation croisée 10 blocs \implies erreur de prévision (voir diapos suivantes).
- *xstd* : écart-type associé à l'erreur de validation croisée.

Visualisation

— On peut les visualiser en combinant **prune** (extraction) et **rpart.plot** (tracé) :

```
> arbre1 <- prune(arbre,cp=0.01)
> arbre2 <- prune(arbre,cp=0.1)
> library(rpart.plot)
> rpart.plot(arbre1);rpart.plot(arbre2)
```


Choix de l'arbre final

- Choisir un arbre dans la suite revient à choisir une valeur de α .
- Ce choix s'effectue généralement de façon classique :
 - 1. Choix d'un risque.
 - 2. Estimation du risque par ré-échantillonnage (CV par exemple) pour tous les α_m .
 - 3. Sélection du α_m qui minimise le risque estimé.

Remarque

La fonction rpart effectue par défaut une validation croisée 10 blocs en prenant :

- le *risque quadratique* en régression.
- l'erreur de classification en classification.

Validation croisée rpart

- 1. Calculer $\beta_0 = 0$, $\beta_1 = \sqrt{\alpha_1 \alpha_2}$, ... $\beta_{M-1} = \sqrt{\alpha_{M-1} \alpha_M}$, $\beta_M = +\infty$.
- 2. Pour k = 1, ..., K
 - (a) Construire l'arbre maximal sur l'ensemble des données privé du k^e bloc, c'est-à-dire $\mathcal{B}^{-k} = \{(x_i, y_i) : i \in \{1, \dots, n\} \setminus B_k\}.$
 - (b) Appliquer l'algorithme d'élagage à cet arbre maximal, puis extraire les arbres qui correspondent aux valeurs $\beta_m, m = 0, \dots, M \Longrightarrow T_{\beta_m}(., \mathcal{B}^{-k})$.
 - (c) Calculer les valeurs prédites par chaque arbre sur le bloc $k: T_{\beta_m}(x_i, \mathcal{B}^{-k}), i \in B_k$.
- 3. En déduire les erreurs pour chaque β_m :

$$\widehat{\mathcal{R}}(\beta_m) = \frac{1}{n} \sum_{k=1}^K \sum_{i \in B_k} \ell(y_i, T_{\beta_m}(x_i, \mathcal{B}^{-k})).$$

Retourner: une valeur α_m telle que $\widehat{\mathcal{R}}(\beta_m)$ est minimum.

- Les erreurs de validation croisée se trouvent dans la colonne xerror de l'élément cptable.
- On peut les visualiser avec **plotcp** :
 - > plotcp(arbre)

— Il reste à choisir l'arbre qui *minimise l'erreur de prévision* :

```
> cp_opt <- as_tibble(arbre$cptable) %>% arrange(xerror) %>%
+ slice(1) %>% select(CP) %>% as.numeric()
> cp_opt
## [1] 0.01538462
```

— et à le visualiser :

```
> arbre_final <- prune(arbre,cp=cp_opt)
> rpart.plot(arbre_final)
```


- 2 variables explicatives \Longrightarrow on peut visualiser l'arbre final
- en coloriant le carré $[0,1]^2$ en fonction des valeurs prédites.

Prévision

— Nouvel individu :

```
> xnew <- tibble(X1=0.4,X2=0.5)</pre>
```

— Prévision de la *classe* :

```
> predict(arbre_final,newdata=xnew,type="class")
## 1
## 1
## Levels: 0 1
```

— Prévision des *probabilités* :

```
> predict(arbre_final,newdata=xnew,type="prob")
## 0 1
## 1 0.046875 0.953125
```

1.4 Importance des variables

- La visualisation de l'arbre peut donner une idée sur l'importance des variables dans l'algorithme.
- *Pas suffisant!* Il se peut en effet que des variables possèdent une grande importance sans pour autant apparaitre explicitement dans l'arbre!
 - Difficile de quantifier l'importance juste en regardant l'arbre!
 - Il se peut en effet que des variables possèdent une grande importance sans pour autant apparaître en haut de l'arbre!

Mesure d'importance d'un arbre

Basée sur le gain d'impureté des nœuds internes.

- Nœuds internes $\Longrightarrow N_t, t = 1, ..., J 1$;
- Variables de coupure $\Longrightarrow X_{j_t}$;
- Gain d'impureté $\Longrightarrow i_{j_t}^2$.

Mesure d'impureté de la variable ℓ

$$\mathcal{I}_{\ell}(T) = \sum_{t=1}^{|T|-1} \Delta_t \mathbf{1}_{j_t = \ell}.$$

Exemple

— Visualisation des importance à l'aide de vip:

Bilan

- 1. Avantages:
 - Méthode « simple » relativement facile à mettre en œuvre.
 - Fonctionne en régression et en classification.
 - Résultats interprétables (à condition que l'arbre ne soit pas trop profond).
- 2. Inconvénients:
 - Performances prédictives limitées.
 - méthode connue pour être instable, sensible à de légères perturbations de l'échantillon. \Longrightarrow Cet inconvénient sera un avantage pour des agrégations bootstrap \Longrightarrow forêts aléatoires.
- *Idée* : construire un grand nombre d'algorithmes "simples" et les agréger pour obtenir une seule prévision. Par exemple

Questions

- 1. Comment choisir les échantillons $\mathcal{D}_{n,b}$?
- 2. Comment choisir les algorithmes?
- 3. ...

2 Bagging et forêts aléatoires

Cadre

— Idem que précédemment, on cherche à expliquer une variable Y par d variables explicatives X_1, \ldots, X_d .

		1 2	2 3	4	5	6	7	8	9	10	
	_		·								
3	4	6	10	3	6)	10	7	7	1	T_1
2	8	6	2	10	1	0	2	9	5	6	$\mid \mid T_2 \mid$
2	9	4	4	7	7	7	2	3	6	7	$\parallel T_3 \parallel$
6	1	3	3	9	3	3	8	10	10	1	$\mid \mid T_4 \mid$
3	7	10	3	2	8	3	6	9	10	2	$\mid \mid T_5 \mid$
	:									:	
7	10	3	4	9	1	0	10	8	6	1	$\parallel T_B \parallel$

- Pour simplifier on se place en $r\'{e}gression$: Y est à valeurs dans $\mathbb R$ mais tout ce qui va être fait s'étant directement à la classification binaire ou multiclasses.
- Notations:
 - (X,Y) un couple aléatoire à valeurs dans $\mathbb{R}^d \times \mathbb{R}$.
 - $\mathcal{D}_n = (X_1, Y_1), \dots, (X_n, Y_n)$ un *n*-échantillon i.i.d. de même loi que (X, Y).
- Un algorithme de la forme :

$$f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$$

— Hypothèse: les T_1, \ldots, T_b sont identiquement distribuées.

Propriété

$$\mathbf{E}[f_n(x)] = \mathbf{E}[T_1(x)]$$
 et $\mathbf{V}[f_n(x)] = \rho(x)\mathbf{V}[T_1(x)] + \frac{1 - \rho(x)}{B}\mathbf{V}[T_1(x)]$

où $\rho(x) = \text{corr}(T_1(x), T_2(x)).$

Cons'equence

- Biais non modifié.
- Variance \searrow si $B \nearrow$ et $\rho(x) \searrow$.
- Ajuster le *même algorithme* sur les mêmes données n'est d'aucun intérêt.
- Ajuster le *même algorithme* sur des sous-échantillons disjoints est d'un intérêt limité.
- Utiliser un grand nombre d'algorithmes différents est compliqué...

$Id\acute{e}e$

Ajuster le même algorithme sur des échantillons bootstraps.

2.1 Bagging

- Le bagging désigne un ensemble de méthodes introduit par Léo Breiman [Breiman, 1996].
- Bagging: vient de la contraction de Bootstrap Aggregating.
- *Idée* : plutôt que de constuire un seul estimateur, en construire un grand nombre (sur des échantillons bootstrap) et les agréger.

Idée: échantillons bootstrap

- Echantillon *initial*:
- Echantillons bootstrap: tirage de taille n avec remise
- A la fin, on agrège:

$$f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T_b(x)$$

Algorithme bagging

Entrées:

- B un entier positif;
- T un algorithme de prévision.

Pour b entre 1 et B:

- 1. Faire un tirage aléatoire avec remise de taille n dans $\{1, \ldots, n\}$. On note θ_b l'ensemble des indices sélectionnés et $\mathcal{D}_{n,b}^{\star} = \{(x_i, y_i), i \in \theta_b\}$ l'échantillon bootstrap associé.
- 2. Entraı̂ner l'algorithme T sur $\mathcal{D}_{n,b}^{\star} \Longrightarrow T(.,\theta_b,\mathcal{D}_n)$.

Retourner: $f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n)$.

Un algorithme pas forcément aléatoire

— L'aléa bootstrap implique que l'algorithme "change" lorsqu'on l'exécute plusieurs fois mais...

$$\lim_{B \to +\infty} \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n) = \mathbf{E}_{\theta}[T(x, \theta, \mathcal{D}_n)] = \bar{f}_n(x, \mathcal{D}_n)$$

Conséquence

- L'algorithme se stabilise (converge) lorsque $B \nearrow$.
- Recommandation : choisir B le plus grand possible.

Choix de T

$$\mathbf{E}[f_n(x)] = \mathbf{E}[T_1(x)] \quad \text{et} \quad \mathbf{V}[f_n(x)] = \rho(x)\mathbf{V}[T_1(x)] + \frac{1 - \rho(x)}{B}\mathbf{V}[T_1(x)].$$

Conclusion

- Bagger ne modifie pas le biais.
- B grand $\Longrightarrow \mathbf{V}[f_n(x)] \approx \rho(x)\mathbf{V}[T_1(x)] \Longrightarrow$ la variance diminue d'autant plus que la corrélation entre les prédicteurs diminue.
- Il est donc nécessaire d'agréger des estimateurs sensibles à de légères perturbations de l'échantillon.
- Les arbres sont connus pour posséder de telles propriétés.

2.2 Forêts aléatoires

Rappels sur les arbres

Complexité

Profondeur

- petite : biais ≯, variance ↘
- grande : biais \searrow , variance \nearrow (sur-apprentissage).

Définition

— Comme son nom l'indique, une *forêt aléatoire* est définie à partir d'un ensemble d'arbres.

Définition

Soit $T_k(x), k = 1, ..., B$ des prédicteurs par arbre $(T_k : \mathbb{R}^d \to \mathbb{R})$. Le prédicteur des *forêts aléatoires* est obtenu par agrégation de cette collection d'arbres :

$$f_n(x) = \frac{1}{B} \sum_{k=1}^{B} T_k(x).$$

Forêts aléatoires

- Forêts aléatoires = $collection\ d'abres$.
- Les forêts aléatoires les plus utilisées sont (de loin) celles proposées par *Léo Breiman* (au début des années 2000).
- Elles consistent à agréger des arbres construits sur des échantillons bootstrap.
- On pourra trouver de la doc à l'url

http://www.stat.berkeley.edu/~breiman/RandomForests/

et consulter la thèse de Robin Genuer [Genuer, 2010].

2.2.1 Algorithme

Coupures "aléatoires"

Arbres pour forêt

- Breiman propose de sélectionner la "meilleure" variable dans un ensemble composé uniquement de $\operatorname{\mathtt{mtry}}$ variables choisies aléatoirement parmi les d variables initiales.
- *Objectif*: diminuer la corrélation entre les arbres que l'on agrège.

Algorithme forêts aléatoires

Entrées :

- B un entier positif;
- mtry un entier entre 1 et d;
- min.node.size un entier plus petit que n.

Pour b entre 1 et B:

- 1. Faire un tirage aléatoire avec remise de taille n dans $\{1,\ldots,n\}$. On note \mathcal{I}_b l'ensemble des indices sélectionnés et $\mathcal{D}_{n,b}^{\star}=\{(x_i,y_i),i\in\mathcal{I}_b\}$ l'échantillon bootstrap associé.
- 2. Construire un arbre CART à partir de $\mathcal{D}_{n,b}^{\star}$ en découpant chaque nœud de la façon suivante :
 - (a) Choisir ${\tt mtry}$ variables au has ard parmi les d variables explicatives;
 - (b) Sélectionner la meilleure coupure $X_j \leq s$ en ne considérant que les mtry variables sélectionnées;
 - (c) Ne pas découper un nœud s'il contient moins de min.node.size observations.
- 3. On note $T(., \theta_b, \mathcal{D}_n)$ l'arbre obtenu.

Retourner: $f_n(x) = \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n)$.

Type de prévision

La prévision dépend de la nature de Y et de ce que l'on souhaite estimer

— Régression: $T(x, \theta_b, \mathcal{D}_n) \in \mathbb{R}$ et

$$m_n(x) = \frac{1}{B} \sum_{b=1}^{B} T(x, \theta_b, \mathcal{D}_n).$$

— Classification (classe) : $T(x, \theta_b, \mathcal{D}_n) \in \{1, \dots, K\}$ et

$$g_n(x) \in \underset{k \in \{1,...,K\}}{\operatorname{argmax}} \sum_{b=1}^{B} \mathbf{1}_{T(x,\theta_b,\mathcal{D}_n)=k}, \quad k = 1,...,K.$$

— Classification (proba) : $T_k(x, \theta_b, \mathcal{D}_n) \in [0, 1]$ et

$$S_{n,k}(x) = \frac{1}{B} \sum_{b=1}^{B} T_k(x, \theta_b, \mathcal{D}_n), \quad k = 1, \dots, K.$$

Le coin R

- Notamment 2 packages avec à peu près la même syntaxe.
- randomforest : le plus ancien et probablement encore le plus utilisé.
- ranger [Wright and Ziegler, 2017]: plus efficace au niveau temps de calcul (codé en C++).

```
> library(ranger)
> set.seed(12345)
> foret <- ranger(type~.,data=spam)</pre>
> foret
## ranger(type ~ ., data = spam)
## Type:
                                      Classification
## Number of trees:
## Sample size:
## Number of independent variables: 57
## Target node size:
## Variable importance mode:
                                      none
## Splitrule:
## 00B prediction error:
                                      4.59 %
```

2.2.2 Choix des paramètres

- B réglé \Longrightarrow le plus grand possible. En pratique on pourra s'assurer que le courbe d'erreur en fonction du nombre d'arbres est stabilisée.
- Pour les autres paramètres on étudie à nouveau :

$$\mathbf{E}[f_n(x)] = \mathbf{E}[T_1(x)] \text{ et } \mathbf{V}[f_n(x)] = \rho(x)\mathbf{V}[T_1(x)] + \frac{1 - \rho(x)}{B}\mathbf{V}[T_1(x)].$$

Conséquence

- Le biais n'étant pas amélioré par "l'agrégation bagging", il est recommandé d'agréger des estimateurs qui possèdent un *biais faible* (contrairement au boosting).
- Arbres "profonds", peu d'observations dans les nœuds terminaux.
- Par défaut dans randomForest, min.node.size = 5 en régression et 1 en classification.

Choix de mtry

- Il est en relation avec la corrélation entre les arbres $\rho(x)$.
- Ce paramètre a une influence sur le *compromis biais/variance* de la forêt.
- mtry \

- 1. tendance à se rapprocher d'un *choix "aléatoire"* des variables de découpe des arbres \Longrightarrow les arbres sont de plus en plus différents $\Longrightarrow \rho(x) \searrow \Longrightarrow$ la variance de la forêt diminue.
- 2. mais... le biais des arbres $\nearrow \Longrightarrow$ le biais de la forêt \nearrow .
- Inversement lorsque mtry ∠ (risque de sur-ajustement).

Conclusion

- Il est recommandé de comparer les performances de la forêt pour plusieurs valeurs de mtry.
- Par défaut mtry = d/3 en régression et \sqrt{d} en classification.
- Visualisation d'erreur en fonction de min.node.size et mtry

Commentaires

min.node.size petit et mtry à calibrer.

En pratique

- On peut bien entendu calibrer ces paramètres avec les approches traditionnelles mais...
- les valeurs par défaut sont souvent performantes!
- On pourra quand même faire quelques essais, notamment pour mtry.

Un exemple avec tidymodels

1. Initialisation du workflow:

```
> tune_spec <- rand_forest(mtry = tune(),min_n= tune()) %>%
+ set_engine("ranger") %>%
+ set_mode("classification")
> rf_wf <- workflow() %>% add_model(tune_spec) %>% add_formula(type ~ .)
```

2. Ré-échantillonnage et grille de paramètres :

```
> blocs <- vfold_cv(spam, v = 10,repeats = 5)
> rf_grid <- expand.grid(mtry=c(seq(1,55,by=5),57),
+ min_n=c(1,5,15,50,100,500))</pre>
```

3. Calcul des erreurs :

```
> rf_res <- rf_wf %>% tune_grid(resamples = blocs,grid = rf_grid)
```

4. Visualisation des résultats (AUC et accuracy) :

```
> rf_res %>% show_best("roc_auc") %>% select(-8)
## # A tibble: 5 x 7
##
     mtry min_n .metric .estimator mean
##
     <dbl> <dbl> <chr> <chr>
                                     \langle dbl \rangle \langle int \rangle
                                                    <dbl>
                                     0.988 50 0.000614
## 1
             1 roc_auc binary
## 2
         5
              1 roc_auc binary
                                     0.988
                                               50 0.000623
## 3
                                     0.988
                                               50 0.000617
         6
               1 roc_auc binary
## 4
         5
               5 roc_auc binary
                                     0.988
                                               50 0.000621
               1 roc_auc binary
                                    0.988
                                              50 0.000645
```

3	4	6	10	3	9	10	7	7	1	T_1
2	8	6	2	10	10	2	9	5	6	T_2
2	9	4	4	7	7	2	3	6	7	T_3
6	1	3	3	9	3	8	10	10	1	T_4
3	7	10	3	2	8	6	9	10	2	T_5
7	10	3	4	9	10	10	8	6	1	T_6

```
> rf_res %>% show_best("accuracy") %>% select(-8)
## # A tibble: 5 x 7
      mtry min_n .metric .estimator mean
     \langle dbl \rangle \langle dbl \rangle \langle chr \rangle \langle chr \rangle
##
                                                 \langle dbl \rangle \langle int \rangle \langle dbl \rangle
                1 accuracy binary
1 accuracy binary
## 1
                                                  0.954
                                                            50 0.00159
                                                  0.954
                                                              50 0.00141
                                                  0.954
                  1 accuracy binary
                                                              50 0.00149
                    1 accuracy binary
                                                  0.954
                     1 accuracy binary
```

Remarque

On retrouve bien min.node.size petit et mtry proche de la valeur par défaut (7).

5. Ajustement de l'algorithme final :

```
> foret_finale <- rf_wf %>%
+ finalize_workflow(list(mtry=7,min_n=1)) %>%
+ fit(data=spam)
```

2.2.3 Erreur OOB et importance des variables

- Comme pour tous les algorithmes de prévision on peut évaluer la *performance des forêts aléatoires* en estimant un risque par ré-échantillonnage.
- Les tirages bootstraps permettent de définir une alternative, souvent *moins couteuse en temps de calcul*, au ré-échantillonnage.
- <u>Idée/astuce</u>: utiliser les observations non sélectionnées dans les échantillons bootstraps pour estimer le risque.

OOB illustration

— Les échantillons 2, 3 et 5 ne contiennent pas la première observation, donc

$$\hat{y}_1 = \frac{1}{3}(T_2(x_1) + T_3(x_1) + T_5(x_1)).$$

- On fait de même pour toutes les observations $\implies \hat{y}_2, \dots, \hat{y}_n$.
- On calcule l'erreur selon

$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$
 ou $\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\hat{y}_i \neq y_i}$.

OOB définition

— Pour $i = 1, \ldots, n$ on note

$$OOB(i) = \{b \le B : i \notin \mathcal{I}_b\}$$

l'ensemble des tirages bootstrap qui ne contiennent pas i et

$$f_{n,OOB(i)}(x_i) = \frac{1}{|OOB(i)|} \sum_{b \in OOB(i)} T(x_i, \theta_b, \mathcal{D}_n)$$

la prévision de la forêt en ne considérant que les arbres pour lesquels i n'est pas dans le tirage bootstrap.

— L'erreur OOB s'obtient en confrontant ces prévisions au valeurs observées, par exemple

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f_{n,OOB(i)}(x_i))^2 \quad \text{ou} \quad \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{f_{n,OOB(i)}(x_i) \neq y_i}.$$

⇒ erreur renvoyée par défaut dans ranger et randomforest.

Importance des variables

Deux mesures sont généralement utilisées.

— Score d'impureté: simplement la moyenne des importances de X_j dans chaque arbre de la forêt:

$$\mathcal{I}_j^{\text{imp}} = \frac{1}{B} \sum_{b=1}^B \mathcal{I}_j(T_b),$$

voir chapitre sur les arbres pour la définition de $\mathcal{I}_{j}(T_{b})$.

- Importance par permutation : comparer les erreurs de chaque arbre sur l'échantillon
 - 1. OOB de l'arbre;
 - 2. OOB en permutant les valeurs de la variables j.
 - \Longrightarrow Idée : Si X_j est importante ces erreurs doivent êtres très différentes.

Importance par permutation

- On présente ce score en régression mais rien ne change pour la classification.
- On note

$$\operatorname{Err}(OOB_b) = \frac{1}{|OOB_b|} \sum_{i \in OOB_b} (y_i - T(x_i, \theta_b, \mathcal{D}_n))^2,$$

avec

$$OOB_b = \{ i \le n : i \notin \mathcal{I}_b \}.$$

- \implies Erreur de l'arbre b calculée sur les données OOB.
- On recalcule cette erreur mais sur OOB_b où on permute les valeurs de la j^e colonne.

$$\begin{bmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1d} \\ x_{21} & \dots & x_{2j} & \dots & x_{2d} \\ x_{51} & \dots & x_{3j} & \dots & x_{3d} \\ x_{41} & \dots & x_{4j} & \dots & x_{4d} \\ x_{51} & \dots & x_{5j} & \dots & x_{5d} \end{bmatrix} \Longrightarrow \begin{bmatrix} x_{11} & \dots & x_{3j} & \dots & x_{1d} \\ x_{21} & \dots & x_{5j} & \dots & x_{2d} \\ x_{51} & \dots & x_{1j} & \dots & x_{3d} \\ x_{41} & \dots & x_{2j} & \dots & x_{4d} \\ x_{51} & \dots & x_{4j} & \dots & x_{5d} \end{bmatrix}$$

— On note \tilde{x}_i^j les individus de l'échantillon OOB_b permuté et on calcule

$$\operatorname{Err}(\operatorname{OOB}_b^j) = \frac{1}{|\operatorname{OOB}_b|} \sum_{i \in \operatorname{OOB}_b} (y_i - T(\tilde{x}_i^j, \theta_b, \mathcal{D}_n))^2.$$

Importance par permutation

$$\mathcal{I}_{j}^{\text{perm}} = \frac{1}{B} \sum_{b=1}^{B} (\text{Err}(\text{OOB}_{b}^{j}) - \text{Err}(\text{OOB}_{b})).$$

Le coin R

— On peut *calculer et visualiser* facilement ces importances avec ranger :

```
> set.seed(1234)
> foret.imp <- ranger(type~.,data=spam,importance="impurity")
> foret.perm <- ranger(type~.,data=spam,importance="permutation")
> vip(foret.imp);vip(foret.perm)
```


Conclusion

Beaucoup d'avantages

- Bonnes performances prédictives \implies souvent parmi les algorithmes de tête dans les compétitions [Fernández-Delgado et al., 2014].
- Facile à calibrer.

Assez peu d'inconvénients

Coté boîte noire (mais guère plus que les autres méthodes...)

3 Bibliographie

Références

Biblio4

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning, 26(2):123-140.

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and regression trees. Wadsworth & Brooks.

[Fernández-Delgado et al., 2014] Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? *Journal of Machine Learning Research*, 15:3133–3181.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. (1996). Experiments with a new boosting algorithm. In *Proceedings of the Thirteenth International Conference on Machine Learning*.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. *Annals of Statistics*, 29:1189–1232.

[Friedman, 2002] Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 28:367–378.

[Genuer, 2010] Genuer, R. (2010). Forêts aléatoires : aspects théoriques, sélection de variables et applications. PhD thesis, Université Paris XI.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, second edition.

[McCulloch and Pitts, 1943] McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–408.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and R. J. Williams, R. J. (1986). Learning representations by back-propagating errors. *Nature*, pages 533–536.

[Wright and Ziegler, 2017] Wright, M. and Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in c++ and r. *Journal of Statistical Software*, 17(1).

Discussion/comparaison des algorithmes

	Linéaire	SVM	Réseau	Arbre	Forêt	Boosting
Performance				▼	A	<u> </u>
Calibration	▼	V	▼	A	A	A
Coût calc.	_	V	▼	A	A	A
Interprétation	A	▼	▼		▼	▼

Commentaires

- Résultats pour données tabulaires.
- Différent pour données structurées (image, texte..) \Longrightarrow performance \nearrow réseaux pré-entrainés \Longrightarrow apprentissage profond/deep learning.