

Winning Space Race with Data Science

Hanim Basarudin
December 4th 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data collection with API & Web Scraping
- Data wrangling
- Exploratory data analysis (EDA)
- o Interactive visual analytics & dashboard
- Predictive analysis

Summary of all results

- EDA results
- Interactive analytics screenshots
- Prediction results

Introduction

Commercial space age

- Emergence of companies making space travel accessible
- Key players: Virgin Galactic, Rocket Lab, Blue Origin & SpaceX

Problem statement

- Not all first stages are successfully recovered
- Influencing factors: payload weight, desired orbit, & customer requirements

SpaceX achievements

- Delivering cargo to the ISS
- Launching Starlink satellite constellation
- Conducting crewed missions to space
- Competitive pricing: Falcon 9 at \$62mil vs.
 \$165mil by other providers

As a data scientist for SpaceY

- Goal: predict first-stage reuse of Falcon 9 using machine learning
- Analyze first-stage recovery factors leading to launch prediction outcomes

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API & web scrapping with BeautifulSoup
- Perform data wrangling
 - Attributes processing & binary classification launches (1: success, 0: failure)
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Data splitting, model development, & model performance evaluation, i.e. prediction accuracy

Data Collection

• Data collection is accessing & gathering useful information from various sources to be used for analysis. In this project, there are 2 ways for collecting data:

1

SpaceX REST API

Using endpoints, perform a
GET request, parse API
response (list of JSON
objects), and normalize JSON
data into a table.

2

Web scraping

Using Python's BeautifulSoup package, scrape HTML tables from relevant sites, parse, and convert scraped data into Pandas DataFrames.

Data Collection – SpaceX API

https://github.com/KisMyS/Data-Science-Capstone-IBM-Coursera/blob/main/Ex-1-jupyter-labs-spacex-data-collection-api-v2.ipynb

Data Collection - Scraping

Use Python's BeautifulSoup package to scrape HTML tables from relevant Wiki pages:
https://en.wikipedia.org/wiki/List_of_Falcon_9_and_Falcon_Heavy_launches

Perform GET HTTP request using requests library

Parse and convert scraped data, including

columns & variables names into dataframes.

Data Wrangling

• Data wrangling is cleaning, transforming, & preparing raw data for EDA. In this project, we:

Identify and calculate the percentage of the missing values in each attribute

Identify which columns are numerical and categorical

Calculate the number of launches on each site

Calculate the number & occurrence of each orbit, & respective mission outcomes

Create a landing outcome label, where:

Success = Class 1

Failure = Class 0

EDA with Data Visualization

• To better understand the correlation among attributes, data visualization is performed:

Flight Number vs. Payload Flight Number vs. Launch Site Payload vs. Launch Site Payload vs. Orbit Type Flight Number vs. Orbit Type

Yearly launch success trend

Success rate by orbit type

EDA with SQL

- To get better understanding of the data set, SQL queries are performed:
 - Display names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List date of the first successful landing outcome in ground pad.
 - List booster names having success in drone ship with payload mass between 4000kg & 6000kg
 - List total number of successful & failure mission outcomes
 - List names of booster versions carrying maximum payload mass using subquery
 - List records on month names, failed outcomes in drone ship, booster versions, launch site for 2015.
 - Rank the count of landing outcomes between 2010-06-04 & 2017-03-20, in descending order.

Build an Interactive Map with Folium

• With interactive map, users can visualize & explore geographical data to better understand the analysis.

Mark all launch sites on a map using coordinates

Mark the success & failed launches for each site on the map green & red, respectively

Calculate the distances between a launch site to its proximities using Haversine formula

Build a Dashboard with Plotly Dash

• Users can manipulate & explore summarized data with dashboards.

Add launch site drop-down component

Add callback function to render pie chart for success/failed launches based on a site/all sites

Add range slider to select payload

Add callback function to render scatter plot for success/failed launches based on payload range & booster versions

Predictive Analysis (Classification)

• Lastly, machine learning is used to predict if the first stage lands successfully or not.

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- CCAFS SLC 40 has the most frequent flights among the 3 sites.
- Generally, for each site, the higher the flight number, the higher the success rate.

Payload vs. Launch Site

- For all sites, smaller payload mass frequents the launch.
- For VAFB SLC 4E, there are no rockets launched for large payload mass
- There is no clear correlation between success rate & payload mass

Success Rate vs. Orbit Type

- Orbits with 100% success rate are ES-L1, GEO, HEO & SSO, while SO has 0% success rate
- However, with the exception for SSO, these orbits have only 1 flight recorded
- Other orbit types have the success rate ranging between 50% to about 80%.

Flight Number vs. Orbit Type

- The 3 most frequent flight are to orbits ISS, GTO & VLEO
- Apart from LEO, PO & MEO, there is no indication that orbit type influences landing success
- There is also no correlation between flight number & success rate with orbit's distance from Earth

Payload vs. Orbit Type

- Heavy payloads have more probability of successful landings for LEO, ISS & PO
- Payload for GTO is in limited range of 2000kg-7000kg
- Payload for ES-L1, SSO & HEO is on the lower range of Okg to 4000kg, & with 100% success rate
- Not enough information to determine payload influence for MEO, VLEO, SO & GEO

Launch Success Yearly Trend

 Trend shows increase in success rate over the years, with a drop in 2018 & back in trend the next year

All Launch Site Names

%sql SELECT DISTINCT "Launch_Site" FROM SPACEXTBL;

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

- Use DISTINCT to get unique launch site names from SPACEXTBL
- Here, we obtained 4 launch sites

Launch Site Names Begin with 'CCA'

%sql SELECT * FROM SPACEXTBL WHERE "Launch_Site" LIKE 'CCA%' LIMIT 5;

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

• Display 5 records of launch site starting with "CCA"

Total Payload Mass

```
%sql SELECT SUM("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "Customer" =
'NASA (CRS)';
```

```
SUM(PAYLOAD_MASS_KG_)
45596
```

- Calculate the total payload carried by boosters from NASA using SUM()
- The total payload mass is 45,596kg

Average Payload Mass by F9 v1.1

```
%sql SELECT AVG("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE
"Booster_Version" = 'F9 v1.1';
```

AVG(PAYLOAD_MASS_KG_)

2928.4

- Calculate the average payload mass carried by booster version F9 v1.1 using AVG()
- The average payload mass is 2,928.4kg

First Successful Ground Landing Date

```
%sql SELECT MIN("Date") FROM SPACEXTBL WHERE "Landing_Outcome" LIKE
'Success (ground pad)';
```

MIN(Date)

2015-12-22

- Find the dates of the first successful landing outcome on ground pad using MIN(), as minimum date intuitively means the first or earliest date
- The date is 22nd of December 2015

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%sql SELECT DISTINCT "Booster_Version" FROM SPACEXTBL WHERE
"Landing_Outcome" = 'Success (drone ship)' AND "PAYLOAD_MASS__KG_" >
4000 AND "PAYLOAD_MASS__KG_" < 6000;</pre>
```

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

- List the names of boosters which have successfully landed on drone ship & had payload mass between 4000 & 6000 using operators AND, <, & >
- There are 4 booster versions displayed

Total Number of Successful and Failure Mission Outcomes

```
%sql SELECT "Landing_Outcome", COUNT(*) AS "Total_Count" FROM
SPACEXTBL GROUP BY "Landing_Outcome";
```

Landing_Outcome	Total_Count
Controlled (ocean)	5
Failure	3
Failure (drone ship)	5
Failure (parachute)	2
No attempt	21
No attempt	1
Precluded (drone ship)	1
Success	38
Success (drone ship)	14
Success (ground pad)	9
Uncontrolled (ocean)	2

- Calculate the total number of successful & failed mission outcomes using COUNT() on the Landing_Outcome group
- The landing outcomes & respective total counts are as listed

Boosters Carried Maximum Payload

%sql SELECT "Booster_Version" FROM SPACEXTBL WHERE "PAYLOAD_MASS__KG_"
= (SELECT MAX("PAYLOAD_MASS__KG_") FROM SPACEXTBL);

F9 B5 B1048.4 F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

- List the names of the booster which have carried the maximum payload mass using MAX()
- The booster versions are as listed

2015 Launch Records

```
%sql SELECT strftime('%m', "Date") AS "Month", "Landing_Outcome",
"Booster_Version", "Launch_Site" FROM SPACEXTBL WHERE
"Landing_Outcome" = 'Failure (drone ship)' AND substr("Date", 1, 4) =
'2015';
```

Month	Landing_Outcome	Booster_Version	Launch_Site
01	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
04	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

- List the failed landing outcomes in drone ship, their booster versions, & launch site names for 2015 using strftime(), AS, & substr()
- There are 2 of such flights recorded, occuring in January & April 2015

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

%sql SELECT "Landing_Outcome", COUNT("Landing_Outcome") AS
"Outcome_Count" FROM SPACEXTBL WHERE "Date" BETWEEN '2010-06-04' AND
'2017-03-20' GROUP BY "Landing_Outcome" ORDER BY "Outcome_Count" DESC;

Landing_Outcome	Outcome_Count
No attempt	10
Success (drone ship)	5
Failure (drone ship)	5
Success (ground pad)	3
Controlled (ocean)	3
Uncontrolled (ocean)	2
Failure (parachute)	2
Precluded (drone ship)	1

- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between 2010-06-04 & 2017-03-20, in descending order using COUNT(), BETWEEN, & ORDER BY ... DESC
- The landing outcome counts during the period are as listed

Launch Sites Locations Across the States

- 1 site is in the East Coast & 3 are in the West Coast
- All launch sites are in proximity to the Equator line

Markers showing success/failed launches

Florida launch sites

California launch site

- Green marker indicates successful launch, red marker indicates failed launch
- CCAFS LC-40 has the most launches
- KSC LC-39A has the highest success rate

Launch site distance to its proximities

Florida launch sites

Florida East Coast Railway: 21.97 km

Samuel C Phillips Parkway: 0.62 km

Cape Canaveral: 19.26 km

California launch site

Union Pacific Railroad: 1.27 km

CA State Route: 12.61 km

Lompoc: 14.01 km

• Launch site may be close to either railway or highway, depending on a site's geographical condition & regional economic activities

Launch Success Count for All Sites

 KSC LC-39A has the highest success count, followed by CCAFS LC-40, VAFB SLC 4E, & CCAFS SLC-40

Highest launch success ratio: KSC LC-39A

• KSC LC-39A has the success rate of 76.9% & failure rate of 23.1%

Payload vs Launch Outcome for All Sites

- High success rate sits somewhere for a payload range of 2000kg to 5000kg
- FT booster has the highest success rate with payload range around 2000kg & 3000kg

Classification Accuracy

Model Accuracies:

Logistic Regression: 0.8464 Support Vector Machine: 0.8482

Decision Tree: 0.8750

K-Nearest Neighbors: 0.8482

 Decision tree has the highest accuracy of 0.875

Confusion Matrix

- True positive: 12
 - Model correctly predicted that the rocket landed
- True negative: 3
 - Model correctly predicted that the rocket did not land
- False positive: 3
 - Model predicted that the rocket landed but it did not land
- False negative: 0
 - Model predicted that the rocket did not land but it landed

Conclusions

- Data collection: data is accessed via REST API & webscraping
- Data wrangling: cleaning & appropriately structuring data ensures better analytical experience onwards
- SQL & data visualization helps in understanding the trends in data
- Interactive analysis elevates the exploration experience through maps & dashboard
- Machine learning is used to perform classification with many model selections to choose from, with the aim of achieving appropriately high accuracy

Appendix

 Python code & results are accessible in https://github.com/KisMyS/
 Data-Science-Capstone-IBM-Coursera

KisMyS Add files via upload	
Ex-1-jupyter-labs-spacex-data-collection-api-v	Add files via upload
Ex-2-jupyter-labs-webscraping.ipynb	Add files via upload
Ex-3-labs-jupyter-spacex-Data wrangling-v2.ip	Add files via upload
Ex-4-jupyter-labs-eda-sql-coursera_sqllite.ipynb	Add files via upload
Ex-5-jupyter-labs-eda-dataviz-v2.ipynb	Add files via upload
Ex-6-lab-jupyter-launch-site-location-v2.ipynb	Add files via upload
Ex-7-spacex_dash_app.py	Add files via upload
Ex-8-SpaceX_Machine Learning Prediction_Part	Add files via upload

