Competitive Programming Library

Too bad to be Accepted 2023/2024

Contents					A	Algorithms	11
					4	4.1 FFT	11
					4	4.2 MO	12
1	Ten	nplate	3	3	4	1.3 Intervals	12
	1.1	Setup		3		4.3.1 Prefix Sum (L, R) intervals	12
		1.1.1	IO Manipulation	3		4.3.2 Find subarrays intervals that sum to K Using Map $$.	13
		1.1.2	GCC Compiler Optimization (Vectorization)	3	4	4.4 Ad-hoc	13
	1.2	MOD	Template	3		4.4.1 Find duplicate	13
	1.3	Macro	os	3	4	1.5 Sorting Algorithms	14
	1.4	Grid I	Navigation	4		4.5.1 Radix Sort	14
	1.5	Intege	or 128	4		4.5.2 Counting Sort	14
	1.6	Matri	x Expo	4	4	4.6 Apply permutation k times	15
2	Dyı	Oynamic Programming 5 5 Da			Data Structures	15	
	2.1	Some	dp patterns	5	5	5.1 Strings	15
	2.2		lutions	6		5.1.1 Trie (Prefix Tree)	15
		2.2.1	Max Subarray sum (Kadane's Algorithm)	6	5	5.2 Range Queries	16
		2.2.2	Maximum Subarray Alternating Sum	7		5.2.1 Segment Tree	16
		2.2.3	Count number of DISTINCT ordered ways to produce			5.2.2 Lazy Propegation	17
			coins sums to x	7		5.2.3 Fenwick Tree	18
		2.2.4	Min absolute difference between 2 elements from (L,			5.2.4 Fenwick UpdateRange	18
			R) (DP Ranges)	7		5.2.5 2D BIT	19
		2.2.5	Longest common subsequence between 2 Strings	8		5.2.6 Sparse Table	19
		2.2.6	Longest common subsequence $\mathcal{O}(n^2)$	8	5	5.3 Ordered Set	20
		2.2.7	Longest common subsequence Binary Search $\mathcal{O}(n +$		5	6.4 Custom Compare Functions	20
			$\log N)$	9			
	D.	3.5		6			21
3		-	oulation	9	6	3.1 nCr	
	3.1	Subse	t Operations	9		6.1.1 Fast nCr	21

		6.1.2	Method 1: Pascal's Triangle (Dynamic Programming)	01	9.9	Lagrange's four-square theorem
		619	$-\mathcal{O}(n^2)$	21	10 Geo:	metry
		6.1.3	Method 2: Factorial Definition (Modular Inverses) -	22		Linearity
			$\mathcal{O}(n + \log MOD)$	22	10.1	10.1.1 co-linear points
7	Gra	ph Th	eory	22	10.2	Polygons
•	7.1	_	est Path algorithms	22		10.2.1 Polygon formation
		7.1.1	Dijkstra Algorithm	22		10.2.2 Polygon Area
		7.1.2	Floyd Warshal Algorithm	23	10.3	Intersections
		7.1.3	Bellman Ford Algorithm	23		10.3.1 Rectangle
	7.2		Detection			10.3.2 Circle
	-	7.2.1	DFS Implementation			10.3.3 Triangle
		7.2.2	Another way for undirected graphs	24		10.3.4 Rectangle & Circle
		7.2.3	General Way	24		10.3.5 Line & Circle
		7.2.4	DSU Implementation	25		
	7.3	Algori	thms	25		cellaneous
		7.3.1	Heavy Light Decomposition	25	11.1	Faster implementations
		7.3.2	Heavy Light Decomposition with lazy SegTree	27		11.1.1 hashes
		7.3.3	LCA functions using Binary Lifting	29		11.1.2 Binary Search the value
		7.3.4	Topological Sort	30		
8	Tec	hnique		31		
	8.1		inate Compression	31		
	8.2	-	y to decimal			
	8.3	Decim	al to binary	31		
9	Nur	umber Theory				
	9.1	Diviso	rs	32		
		9.1.1	formulas	32		
	9.2	Prime	s	32		
	9.3	Math		34		
		9.3.1	Vieta's Formula for a Polynomial of Degree $n \ldots \ldots$	34		
	9.4		unction	35		
	9.5	Euler'	s Totient Numbers	35		
	9.6	Möbiu	s Function	35		
	9.7	Möbiu	s and Inclusion Exclusion	36		
	9.8	Totien	at and Möbius Connection	36		

36 36

1 Templates

1.1 Setup

1.1.1 IO Manipulation

Input/Output

```
#include <bits/stdc++.h>
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);

#define fastI0  \
   ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
```

1.1.2 GCC Compiler Optimization (Vectorization)

GCC Opt

```
// Ref: USACO guide
// will make GCC auto-vectorize for loops and optimizes floating points
   better (assumes associativity and turns off denormals).
#pragma GCC optimize ("Ofast")
// can double performance of vectorized code, but causes crashes on old
   machines.
#pragma GCC target ("avx,avx2,fma")

// slows down run time but throws a Runtime Error if an overflow occured
#pragma GCC optimize("trapv")
```

1.2 MOD Template

```
constexpr int MOD = 1e9+7; // must be a prime number
int add(int a, int b) {
   int res = a+b;
   if(res >= MOD) return res -= MOD;
}
```

```
int sub(int a, int b) {
    int res = a-b;
    if(res < 0) return res += MOD;
}
int power(int a, int e) {
    int res = 1;
    while(e) {if(e & 1) res = res * a % MOD; a = a * a % MOD;
    e >>= 1;}
    return res;
}
int inverse(int a) {
    return power(a, MOD-2);
}
int div(int a, int b) {
    return a * inverse(b) % MOD;
}
```

MOD Template

1.3 Macros

Macros

```
#define getBit(n, k) (n >> k) // & 1
#define ON(n, idx) (n | (111 << idx))
#define OFF(n, idx) (n & ~(111 << idx))
#define toggle(n, idx) ((n) ^ (111 << (idx)))
#define gray(n) (n ^ (n >> 1))
#define bitCount(x) (__builtin_popcountll(x))
#define clz(x) (__builtin_clzll(x))
#define ctz(x) (__builtin_ctzll(x))
#define uniq(x) x.resize(unique(x.begin(), x.end())-x.begin());

#define angle(a) (atan2((a).imag(), (a).real()))
//#define vec(a, b) ((b)-(a))
#define same(v1, v2) (dp(vec(v1,v2),vec(v1,v2)) < EPS)
#define dotProduct(a, b) ((conj(a)*(b)).real()) // a*b cos(T), if zero -> prep
```

```
#define crossProduct(a, b) ((conj(a)*(b)).imag()) // a*b sin(T), if zero
    -> parallel
//#define length(a) (hypot((a).imag(), (a).real()))
#define normalize(a) ((a)/length(a))
#define rotateO(v, ang) ((v)*exp(point(0,ang)))
#define rotateA(p, ang, about) (rotateO(vec(about,p),ang)+about)
#define reflectO(v, m) (conj((v)/(m))*(m))
#define ceil_i(a, b) (((ll)(a)+(ll)(b-1))/(ll)(b))
#define floor_i(a, b) (a/b)
#define round_i(a, b) ((a+(b/2))/b) // if a>0
#define round_m(a, b) ((a-(b/2))/b) // if a<0
#define round_multiple(n, m) round_i(n,m)*m // round to multiple if
    specified element

const double PI = acos(-1.0);</pre>
```

1.4 Grid Navigation

Grid Nav

```
// knight moves on a chess board
int dx[] = { -2, -1, 1, 2, -2, -1, 1, 2 };
int dy[] = { -1, -2, -2, -1, 1, 2, 2, 1 };

// Grid up, down, right, left (Moves for Chess Rook)
int dx[4] = {1, -1, 0, 0};
int dy[4] = {0, 0, 1, -1};

// Grid cell all neighbours
const int dx[8] = {1, 0, -1, 0, 1, 1, -1, -1}
const int dy[8] = {0, 1, 0, -1, -1, 1, -1, 1};

// Grid Diagonal (Moves for Chess Bishop)
int dx[] = {1, 1, -1, -1};
int dy[] = {1, -1, 1, -1};
```

1.5 Integer 128

```
i128
typedef __int128 i128;
__int128 read() {
   \_int128 x = 0, f = 1;
   char ch = getchar();
   while (ch < '0' || ch > '9') {
       if (ch == '-') f = -1;
       ch = getchar();
   }
   while (ch >= '0' && ch <= '9') {
       x = x * 10 + ch - '0';
       ch = getchar();
   }
   return x * f;
void print(__int128 x) {
   if (x < 0) {
       putchar('-');
       x = -x;
   if (x > 9) print(x / 10);
   putchar(x % 10 + '0');
bool cmp(__int128 x, __int128 y) { return x > y; }
```

1.6 Matrix Expo

MExpo

```
for (int k = 0; k < MAX_N; ++k) {
           if (a.mat[i][k] == 0) continue; // optimization
           for (int j = 0; j < MAX_N; ++j) {</pre>
               ans.mat[i][j] += mod(a.mat[i][k], MOD) * mod(b.mat[k][j],
               ans.mat[i][j] = mod(ans.mat[i][j], MOD);
           }
       }
   return ans;
Matrix matPow(Matrix base, int p) { // normally O(n^3 log p)
   Matrix ans{}; // but O(\log p) as n = 2
   for (int i = 0; i < MAX_N; ++i)</pre>
       for (int j = 0; j < MAX_N; ++j)</pre>
           ans.mat[i][j] = (i == j); // prepare identity matrix
   while (p) { // iterative D&C version
       if (p&1) // check if p is odd
           ans = matMul(ans, base); // update ans
       base = matMul(base, base); // square the base
       p >>= 1; // divide p by 2
   return ans;
Matrix matMul(Matrix a, Matrix b, int p, int q, int r) { // O(pqr)
   Matrix c{};
   for (int i = 0; i < p; ++i)
       for (int j = 0; j < r; ++j) {
           c.mat[i][j] = 0;
           for (int k = 0; k < q; ++k)
              c.mat[i][j] += a.mat[i][k] + b.mat[k][j];
       }
   return c;
```

2 Dynamic Programming

2.1 Some dp patterns

Maximumu/Minimum path cost

```
const int MAX = 21;
int grid[MAX][MAX];
int mem[MAX][MAX];
int n = 20;
bool valid(int r, int c){
 return r >= 0 \&\& r < n \&\& c >= 0 \&\& c < n:
int maxPathSum(int r, int c){
   if(!valid(r,c)){
       return 0;
   }
   if(r == n-1 \&\& c == n-1){
       return mem[r][c] = grid[r][c];
   }
   // available moves
   int path1 = maxPathSum(r+1,c);
   int path2 = maxPathSum(r,c+1);
   return grid[r][c] + max(path1,path2);
```

add operators between numbers to get max prod/sum

```
// put +, -, between sequence of numbers such that the sum is divisible by
    k, and maximum as possible
const int MAX = 21;
long long mem[MAX][MAX];
const int n = 20;
int k = 4; // example
int v[20];
int fix(int a){
 return (a % k + k) % k;
long long tryAll(int pos, int mod){
   long long &ret = mem[pos][mod];
   if(ret != -1){
       return ret;
   }
   if(pos == n){
       return ret = mod == 0;
   }
```

```
if(tryAll(pos+1,fix(mod + v[pos])) || tryAll(pos+1,fix(mod-v[pos]))){
    return ret = 1;
}
return ret = 0;
}
```

pick choices with no two similar consecutive choices

```
// pick minimum of choinces costs with no two similar consecutive choices
const int choices = 4:
const int n = 20;
int MAX = n;
int mem[MAX][choices];
const int 00 = 1e6+1;
int minCost(int pos, int lastChoice){
   if(pos == n){
       return 0; // invalid move
   }
   int &ret = mem[pos][lastChoice];
   if(ret != -1){
       return ret;
   }
   ret = 00; // want to minimze
   // let choices are 0, 1, 2
   if(lastChoice != 0){
       ret = min(ret, minCost(pos+1,0));
   }
   if(lastChoice != 1){
       ret = min(ret, minCost(pos+1,1));
   if(lastChoice != 2){
      ret = min(ret, minCost(pos+1,2));
   }
   return ret;
```

```
2.2.1 Max Subarray sum (Kadane's Algorithm)
```

DP solutions

ll mem[21][101]; // k, and s

possible. Return their product.

a1, a2, ..., ak

11 maxProd(int k, int rem)

if(rem == 0) // invalid case

for (int i = 1; i <= rem; ++i) {</pre>

ll sol = maxProd(k+1, rem - i) * i;

11 &ret = mem[k][rem];

ret = max(ret, sol);

 $if(k == maxK){$

// base case

if(rem == 0)

return 1;

return 0;

return 0;

if(ret != -1)

return ret:

ret = 0:

return ret;

// You are given an integer s and an integer k. Find k positive integers

// such that their sum is equal to s and their product is the maximal

Max Subarray sum int maxSubarraySum(vector<int>& arr, int len) {

```
sum S and max/min Product
```

int maxK;

```
int ans = INT_MIN, cur = 0;

for (int i = 0; i < len; i++) {
    cur = cur + arr[i];
    if (ans < cur)
        ans = cur;

    if (cur < 0)
        cur = 0;
}

return ans;</pre>
```

2.2.2 Maximum Subarray Alternating Sum

Maximum Subarray Alternating Sum

```
/* REF: GeeksForGeeks
Input: arr[] = \{-4, -10, 3, 5\}
Explanation: Subarray \{arr[0], arr[2]\} = \{-4, -10, 3\}. Therefore, the sum
     of this subarray is 9.
*/
int maxSubarraySumALT(vector<int>& a, int len) {
   int ans = INT_MIN, cur = 0;
   for (int i = 0; i < len; i++) {</pre>
       if (i % 2 == 0)
           cur = max(cur + a[i], a[i]);
       else
           cur = max(cur - a[i], -a[i]);
       ans = max(ans, cur);
   }
   cur = 0;
   for (int i = 0; i < len; i++) {</pre>
       if (i % 2 == 1)
           cur = max(cur + a[i], a[i]);
       else
           cur = max(cur - a[i], -a[i]);
```

```
ans = max(ans, cur);
}
return ans;
}
```

2.2.3 Count number of DISTINCT ordered ways to produce coins sums to x

Count distinct

```
For example, if the coins are \{2,3,5\} and the desired sum is 9, there
    are 3 ways:
2+2+5
3+3+3
2+2+2+3
*/
int n, x;
cin >> n >> x;
vector<int> coins(n);
read(coins);
vector dp(x + 1, 0);
dp[0] = 1;
for (int i = 0; i < n; ++i) {</pre>
for (int j = coins[i]; j <= x; ++j) {</pre>
 dp[j] = add(dp[j], dp[j - coins[i]]);
cout << dp[x] << el;</pre>
```

2.2.4 Min absolute difference between 2 elements from (L, R) (DP Ranges)

Min absolute difference

```
const int N = 1e4 + 1;
```

```
int dp[N][N];
int n;
cin >> n;
vector<int> a(n);
read(a);
for (int i = 0; i < n; ++i) dp[i][i] = 1e6; // INF, you can't take the
    element with it self
for (int i = 1; i < n; ++i) dp[i - 1][i] = abs(a[i] - a[i - 1]);
for (int len = 3; len <= n; ++len) {</pre>
 for (int l = 0, r = len - 1; r < n; ++1, ++r) {
 dp[l][r] = min(dp[l][r - 1], dp[l + 1][r]);
 dp[l][r] = min(dp[l][r], abs(a[l] - a[r]));
}
}
int q;
cin >> q;
while (q--) {
int 1, r;
cin >> 1 >> r;
 --1, --r;
 cout << dp[l][r] << el;
}
```

2.2.5 Longest common subsequence between 2 Strings

$$dp[i][j] = \begin{cases} \max(dp[i-1][j], dp[i][j-1]) & \text{if } A_i \neq B_j \\ dp[i-1][j-1] + 1 & \text{if } A_i = B_j \end{cases}$$

LIS 2 Strings

```
// REF: USACO guide
int longestCommonSubsequence(string a, string b) {
  int dp[a.size()][b.size()];
  for (int i = 0; i < a.size(); i++) { fill(dp[i], dp[i] + b.size(), 0); }
  for (int i = 0; i < a.size(); i++) {
    if (a[i] == b[0]) dp[i][0] = 1;</pre>
```

```
if (i != 0) dp[i][0] = max(dp[i][0], dp[i - 1][0]);
}
for (int i = 0; i < b.size(); i++) {
   if (a[0] == b[i]) dp[0][i] = 1;
   if (i != 0) dp[0][i] = max(dp[0][i], dp[0][i - 1]);
}
for (int i = 1; i < a.size(); i++) {
   for (int j = 1; j < b.size(); j++) {
     if (a[i] == b[j]) {
       dp[i][j] = dp[i - 1][j - 1] + 1;
     } else {
       dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
   }
}
return dp[a.size() - 1][b.size() - 1];
}</pre>
```

2.2.6 Longest common subsequence $\mathcal{O}(n^2)$

LIS

```
// REF: cp-algorithms
int lis(vector<int> const& a) {
    int n = a.size();
   vector<int> d(n, 1);
   for (int i = 0; i < n; i++) {</pre>
       for (int j = 0; j < i; j++) {
           if (a[i] < a[i])</pre>
               d[i] = max(d[i], d[j] + 1);
   }
   int ans = d[0];
   for (int i = 1; i < n; i++) {</pre>
       ans = max(ans, d[i]);
   }
    return ans;
// Restoring
vector<int> lis(vector<int> const& a) {
    int n = a.size();
```

```
vector\langle int \rangle d(n, 1), p(n, -1);
for (int i = 0; i < n; i++) {</pre>
    for (int j = 0; j < i; j++) {
        if (a[i] < a[i] && d[i] < d[j] + 1) {</pre>
            d[i] = d[j] + 1;
           p[i] = j;
        }
    }
}
int ans = d[0], pos = 0;
for (int i = 1; i < n; i++) {</pre>
    if (d[i] > ans) {
        ans = d[i];
        pos = i;
}
vector<int> subseq;
while (pos != -1) {
    subseq.push_back(a[pos]);
    pos = p[pos];
reverse(subseq.begin(), subseq.end());
return subseq;
```

2.2.7 Longest common subsequence Binary Search $\mathcal{O}(n + \log N)$

LIS

```
int lisBS(vector<int> const& a) {
   int n = a.size();
   const int INF = 1e9;
   vector<int> d(n+1, INF);
   d[0] = -INF;

for (int i = 0; i < n; i++) {
    int l = upper_bound(d.begin(), d.end(), a[i]) - d.begin();
    if (d[1-1] < a[i] && a[i] < d[1])
        d[1] = a[i];
}</pre>
```

```
int ans = 0;
for (int 1 = 0; 1 <= n; 1++) {
    if (d[1] < INF)
        ans = 1;
}
return ans;
}</pre>
```

3 Bit Manipulation

3.1 Subset Operations

count subsets with give sum

```
int countDistinctSubsetsWithSum(vector<int>& arr, int n, int k) {
    // Count distinct subsets of array arr that sum up to k
    vector<int> dp(k + 1, 0);
    dp[0] = 1;
    for (int i = 0; i < n; ++i) {
        for (int j = k; j >= arr[i]; --j) {
            dp[j] += dp[j - arr[i]];
        }
    }
    return dp[k]; // Number of distinct subsets with sum k
}
```

max xor of any subset of elements in the array

```
int maximalSubsetXOR(vector<int>& arr, int n) {
    // Find the maximum XOR of any subset of elements in array arr
    int maxXor = 0;
    for (int mask = 0; mask < (1 << n); ++mask) {
        int xorSum = 0;
        for (int i = 0; i < n; ++i) {
            if (mask & (1 << i)) {
                  xorSum ^= arr[i];
            }
        }
        maxXor = max(maxXor, xorSum);
    }
}</pre>
```

```
return maxXor;
}
```

min xor of any subset

```
int minimumSubsetXOR(vector<int>& arr, int n) {
    // Find the minimum XOR of any pair of elements in array arr
    int minSubsetXor = INT_MAX;
    for (int mask = 0; mask < (1 << n); ++mask) {
        int xorSum = 0;
        for (int i = 0; i < n; ++i) {
            if (mask & (1 << i)) {
                xorSum ^= arr[i];
            }
        }
        minSubsetXor = min(minSubsetXor, xorSum);
    }
    return minSubsetXor;
}</pre>
```

$subset\ generation$

```
void subsetGeneration(int x, int n) {
    // Generate all non-empty subsets of a set represented by an integer x
    for (int subset = x; subset > 0; subset = (subset - 1) & x) {
        // Process subset
        cout << subset << endl;
    }
}</pre>
```

check if subset of elements in the array sum up to k

```
void subsetSumCheck(vector<int>& arr, int n, int k) {
    // Check if a subset of elements in array arr sums up to k
    for (int subset = 0; subset < (1 << n); ++subset) {
        int sum = 0;
        for (int i = 0; i < n; ++i) {
            if (subset & (1 << i)) {
                 sum += arr[i];
        }
}</pre>
```

```
if (sum == k) {
      // Found subset with sum k
      cout << "Subset with sum " << k << ": " << subset << endl;
}
}
</pre>
```

max subset sum mod m

iterate over all supersets represented by x

```
void iterateOverSupersets(int x, int n) {
    // Iterate over all supersets of a set represented by x
    int subset = x;
    do {
        // Process subset
        cout << subset << endl;
        subset = (subset + 1) | x;
    } while (subset <= (1 << n) - 1);
}</pre>
```

4 Algorithms

4.1 FFT

FFT Algorithm

```
constexpr 11 mod = 998244353, root = 3;
ll modpow(ll b, ll e, ll m) {
   ll ans = 1;
   for (; e; b = b * b % m, e /= 2)
       if (e & 1) ans = ans * b % m:
   return ans:
}
// Primitive Root of the mod of form 2^a * b + 1
int generator () {
   vector<int> fact;
   int phi = mod-1, n = phi;
   for (int i=2; i*i<=n; ++i)</pre>
       if (n % i == 0) {
           fact.push_back (i);
           while (n \% i == 0)
              n /= i:
       }
   if (n > 1)
       fact.push_back (n);
   for (int res=2; res<=mod; ++res) {</pre>
       bool ok = true;
       for (size_t i=0; i<fact.size() && ok; ++i)</pre>
           ok &= modpow(res, phi / fact[i], mod) != 1;
       if (ok) return res;
   }
   return -1;
}
void ntt(vector<ll> &a) {
   int n = a.size(), L = 31 - __builtin_clz(n);
   static vector<11> rt(2, 1); // erase the static if you want to use two
        moduli;
   for (static int k = 2, s = 2; k < n; k *= 2, s++) { // erase the
       static if you want to use two moduli;
       rt.resize(n);
```

```
ll z[] = \{1, modpow(root, mod >> s, mod)\};
       for (int i = k; i < 2*k; ++i) rt[i] = rt[i / 2] * z[i & 1] % mod;
   vector<int> rev(n);
   for (int i = 0; i < n; ++i) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
   for (int i = 0; i < n; ++i) if (i < rev[i]) swap(a[i], a[rev[i]]);
   for (int k = 1: k < n: k *= 2) {
       for (int i = 0; i < n; i += 2 * k) {
          for (int j = 0; j < k; ++j) {
              ll z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
              a[i + j + k] = ai - z + (z > ai ? mod : 0);
              ai += (ai + z >= mod ? z - mod : z);
          }
      }
   }
vector<ll> multi(const vector<ll> &a, const vector<ll> &b) {
   if (a.empty() || b.empty()) return {};
   int s = static_cast<ll>(a.size()) + static_cast<ll>(b.size()) - 1, B =
        32 - \_builtin\_clz(s), n = 1 << B;
   int inv = modpow(n, mod - 2, mod);
   vector<ll> L(a), R(b), out(n);
   L.resize(n), R.resize(n);
   ntt(L), ntt(R);
   for (int i = 0; i < n; ++i) out[-i & (n - 1)] = L[i] * R[i] % mod *
       inv % mod;
   ntt(out);
   return {out.begin(), out.begin() + s};
vector<int> poly_pow(vector<int> poly, int p, int limit = 1e9) {
   vector<int> ans{1};
   while (p) {
       if(p&1) ans = multi(ans, poly);
       poly = multi(poly, poly);
       ans.resize(limit + 1);
      poly.resize(limit + 1);
      p >>= 1;
   }
   return ans:
```

4.2 MO

MO Algorithm

```
// MO
           -> O(N+Q SQRT(N)) <= 10^5
const int N = 1e5+5, M = 1e5+5;
int n, m;
int nums[N], q_ans[M];
struct query {
   int idx, block_idx, l, r;
   query() = default;
   query(int _1, int _r, int _idx) {
       idx = _idx;
       r = _r - 1;
       1 = _1 - 1;
       block_idx = _l / sqrt(n);
   }
   bool operator <(const query & y) const {</pre>
       if(y.block_idx == block_idx) return r < y.r;</pre>
       return block_idx < y.block_idx;</pre>
   }
};
int freq[N], ans;
void add(int idx) {
   freq[nums[idx]]++;
   if (freq[nums[idx]] == 2) ans++;
}
void remove(int idx) {
   freq[nums[idx]]--;
   if (freq[nums[idx]] == 1) ans--;
}
cin >> n >> m;
for (int i = 0; i < n; ++i) cin >> nums[i];
vector<query> Query(m);
for (int i = 0; i < m; ++i) {</pre>
   int 1, r; cin >> 1 >> r;
```

```
Query[i] = query(1, r, i);
}

sort(Query.begin(), Query.end());
int 10 = 1, r0 = 0;
for (int i = 0; i < m; ++i) {
   while (10 < Query[i].1) remove(10++);
   while (10 > Query[i].1) add(--10);
   while (r0 < Query[i].r) add(++r0);
   while (r0 > Query[i].r) remove(r0--);
   q_ans[Query[i].idx] = ans;
}
for (int i = 0; i < m; ++i) {
   cout << q_ans[i] << '\n';
}</pre>
```

4.3 Intervals

4.3.1 Prefix Sum (L, R) intervals

Prefix Sum (L, R) intervals

}

```
++1;
    while (1 \le r \&\& a[1] == 0) {
        if (sum != k)
           break;
       rangesPrefix[r][1]++;
       ++1;
    if (sum == k) {
       rangesPrefix[r][l]++;
    ++r;
// prefix sum the columns
for (int i = 1; i <= n; ++i) {</pre>
    for (int j = n - 1; j \ge 0; --j) {
       rangesPrefix[i][j] += rangesPrefix[i][j + 1];
    }
}
// prefix sum the rows
for (int i = 0; i <= n; ++i) {</pre>
   for (int j = 1; j <= n; ++j) {</pre>
       rangesPrefix[j][i] += rangesPrefix[j - 1][i];
    }
}
int q; cin >> q;
while (q--) {
    cin >> 1 >> r;
    // answer the number of intervals (X, Y) X <= Y that are included
        between L, R
    cout << rangesPrefix[r][l] - rangesPrefix[l - 1][l] << el;</pre>
```

4.3.2 Find subarrays intervals that sum to K Using Map

Find subarray intervals that sum to K Using Map

```
int n, k;
cin >> n >> k;
vector<int> a(n + 1);
vector<pair<int, int>> rng;
for (int i = 1; i <= n; ++i)</pre>
   cin >> a[i];
map<int, set<int>> prev;
int currSum = 0;
for (int i = 1; i <= n; ++i) {
   currSum += a[i];
   if (currSum == k) {
       rng.push_back({1, i});
   if (prev.find(currSum - k) != prev.end()) {
       for (auto &j : prev[currSum - k]) {
           rng.push_back(\{j + 1, i\});
   }
   prev[currSum].insert(i);
}
```

4.4 Ad-hoc

4.4.1 Find duplicate

Find duplicate using XOR

```
int findDuplicate(int arr[] , int n)
{
   int answer=0;
    //XOR all the elements with 0
   for(int i=0; i<n; i++){
      answer=answer^arr[i];
   }
   //XOR all the elements with no from 1 to n
   // i.e answer^0 = answer</pre>
```

```
for(int i=1; i<n; i++){
    answer=answer^i;
}
return answer;
}</pre>
```

4.5 Sorting Algorithms

4.5.1 Radix Sort

Radix Sort

```
// O(n + b), where n is the number of elements and b is the base of the
    number system
// A function to do counting sort of arr[] according to the digit
    represented by exp.
void countingSort(vector<int>& arr, int exp) {
    int n = arr.size();
   vector<int> output(n); // output array
   int count[10] = {0};
   // Store count of occurrences in count[]
   for (int i = 0; i < n; i++)</pre>
       count[(arr[i] / exp) % 10]++;
   // Change count[i] so that count[i] now contains the actual
   // position of this digit in output[]
   for (int i = 1; i < 10; i++)</pre>
       count[i] += count[i - 1];
   // Build the output array
   for (int i = n - 1; i \ge 0; i--) {
       output[count[(arr[i] / exp) % 10] - 1] = arr[i];
       count[(arr[i] / exp) % 10]--;
   }
   // Copy the output array to arr[], so that arr now
   // contains sorted numbers according to the current digit
   for (int i = 0; i < n; i++)</pre>
       arr[i] = output[i];
}
```

4.5.2 Counting Sort

Counting Sort

```
// O(N+M), where N and M are the size of inputArray[] and countArray[]
// The main function that sorts arr[] of size n using Counting Sort
void countingSort(vector<int>& arr) {
   int maxElement = *max_element(arr.begin(), arr.end());
   int minElement = *min_element(arr.begin(), arr.end());
   int range = maxElement - minElement + 1;
   vector<int> count(range), output(arr.size());
   for (int i = 0; i < arr.size(); i++)</pre>
       count[arr[i] - minElement]++;
   for (int i = 1; i < count.size(); i++)</pre>
       count[i] += count[i - 1];
   for (int i = arr.size() - 1; i >= 0; i--) {
       output[count[arr[i] - minElement] - 1] = arr[i];
       count[arr[i] - minElement]--;
   }
   for (int i = 0; i < arr.size(); i++)</pre>
       arr[i] = output[i];
```

4.6 Apply permutation k times

$permutation \ k \ times$

```
// Applying a permutation k times
// n log k
vector<int> applyPermutation(vector<int> sequence, vector<int> permutation
   ) {
   vector<int> newSequence(sequence.size());
   for(int i = 0; i < sequence.size(); i++) {</pre>
       newSequence[i] = sequence[permutation[i]];
   }
   return newSequence;
}
vector<int> permute(vector<int> sequence, vector<int> permutation, long
   long k) {
   while (k > 0) {
       if (k & 1) {
           sequence = applyPermutation(sequence, permutation);
       permutation = applyPermutation(permutation, permutation);
       k >>= 1;
   }
   return sequence;
}
```

5 Data Structures

5.1 Strings

5.1.1 Trie (Prefix Tree)

Basic Implementation

```
#define MAX_CHAR 26
struct TrieNode {
    TrieNode *pTrieNode[MAX_CHAR]{};
    bool isWord;
```

```
TrieNode() {
       isWord = false;
       fill(pTrieNode, pTrieNode + 26, (TrieNode *) NULL);
   }
   virtual ~TrieNode() = default;
class Trie {
private:
   TrieNode *root;
public:
   Trie() {
       root = new TrieNode();
   }
   virtual ~Trie() = default;
   TrieNode *getTrieNode() {
       return this->root;
   }
   void insert(const string &word) {
       TrieNode *current = root:
       for (char c: word) {
           int i = c - 'a':
           if (current->pTrieNode[i] == nullptr)
              current->pTrieNode[i] = new TrieNode();
           current = current->pTrieNode[i];
       }
       current->isWord = true;
   }
   bool search(const string &word) {
       TrieNode *current = root;
       int ch = 0;
       for (char c: word) {
           ch = c - 'a':
           if (current->pTrieNode[ch] == nullptr)
              return false;
           current = current->pTrieNode[ch];
       return current->isWord:
   }
```

```
bool startsWith(const string &prefix) {
    TrieNode *current = root;
    int ch = 0;
    for (char c: prefix) {
        ch = c - 'a';
        if (current->pTrieNode[ch] == nullptr)
            return false;
        current = current->pTrieNode[ch];
    }
    return true;
}
```

5.2 Range Queries

5.2.1 Segment Tree

Basic Implementation

```
struct Node {
   long long val;
};
struct SegTree {
private:
   const Node NEUTRAL = {INT_MIN};
   static Node merge(const Node& x1, const Node& x2) {
       return {x1.val + x2.val};
   }
   void set(const int& idx, const int& val, int x, int lx, int rx) {
       if (rx - lx == 1) return void(values[x].val = val);
       int mid = (rx + lx) / 2;
       if (idx < mid)</pre>
           set(idx, val, 2 * x + 1, lx, mid);
       else
           set(idx, val, 2 * x + 2, mid, rx);
```

```
values[x] = merge(values[2 * x + 1], values[2 * x + 2]);
}
Node query(const int& 1, const int& r, int x, int lx, int rx) {
   if (lx >= r || l >= rx) return NEUTRAL;
   if (lx >= 1 && rx <= r) return values[x];</pre>
   int mid = (rx + lx) / 2;
   return merge(query(1, r, 2 * x + 1, lx, mid), query(1, r, 2 * x +
        2, mid, rx));
}
void build(vector<int> &a, int x, int lx, int rx) {
   if (rx - lx == 1) {
       if (lx < a.size()) {</pre>
           values[x].val = a[lx];
       return;
   int m = (1x + rx) / 2:
   build(a, 2 * x + 1, 1x, m);
   build(a, 2 * x + 2, m, rx);
   values[x] = merge(values[2 * x + 1], values[2 * x + 2]);
}
 void assign_range(int 1, int r, int node, int lx, int rx, int time,
     int val) {
   if (lx > r || l > rx) return;
   if (lx >= 1 && rx <= r) {
       lazy[node] = {time, val};
       return;
   int mid = (lx+rx) / 2;
   assign_range(l, r, 2*node+1, lx, mid, time, val);
   assign_range(l, r, 2*node+2, mid+1, rx, time, val);
}
pair<int, int> point_query(int lx, int rx, int node, int idx) {
   if(rx == lx) return lazy[node];
   int mid = (1x+rx) / 2;
   if(idx <= mid) {</pre>
       auto x = point_query(lx, mid, 2*node+1, idx);
```

```
if(x.first > lazy[node].first) return x;
           return lazy[node];
       auto x = point_query(mid+1, rx, 2*node+2, idx);
       if(x.first > lazy[node].first) return x;
       return lazy[node];
   }
public:
   int size{};
   vector<Node> values;
   void build(vector<int> &a) {
       build(a, 0, 0, size);
   }
   void init(int _size) {
       size = 1;
       while (size < _size) size *= 2;</pre>
       values.assign(2 * size, NEUTRAL);
   }
   void set(int idx, int val) {
       set(idx, val, 0, 0, size);
   }
   Node query(const int& 1, const int& r) {
       return query(1, r, 0, 0, size);
   }
};
```

5.2.2 Lazy Propegation

Lazy Propegation

```
struct SegTree {
private:
    void propegate(int lx, int rx, int node) {
        if(!lazy[node]) return;

        if(lx != rx) {
            lazy[2*node+1] = lazy[node];
            lazy[2*node+2] = lazy[node];
```

```
values[node] = lazy[node] * (rx - lx + 1);
       lazy[node] = 0;
   }
   // assign val in range [1, r]
   void update_range(int 1, int r, int node, int lx, int rx, int val,
       bool f) {
       propegate(lx, rx, node);
       if (1x > r \mid | 1 > rx) return;
       if (lx >= 1 && rx <= r) {</pre>
           lazy[node] = val;
           propegate(lx, rx, node);
           return;
       int mid = (lx+rx) / 2;
       update_range(1, r, 2*node+1, lx, mid, val, f);
       update_range(l, r, 2*node+2, mid+1, rx, val, f);
       values[node] = values[2*node+1] + values[2*node+2];
   }
   // get sum in range [1, r]
   int range_query(int 1, int r, int lx, int rx, int node) {
       propegate(lx, rx, node);
       if (lx > r \mid | l > rx) return 0;
       if (lx >= 1 && rx <= r) return values[node];</pre>
       int mid = (lx+rx) / 2;
       return range_query(1, r, lx, mid, 2*node+1) + range_query(1, r, mid
           +1, rx, 2*node+2);
   }
public:
   int size{};
   vector<int> values, lazy;
   void init(int _size) {
       size = 1:
       while (size < _size) size *= 2;</pre>
       values.assign(2 * size, 0);
       lazy.assign(2 * size, 0);
   }
```

```
void update_range(int 1, int r, int v, bool f) {
    update_range(1, r, 0, 0, size-1, v, f);
}
int range_query(int 1, int r) {
    return range_query(1, r, 0, size-1, 0);
}
```

5.2.3 Fenwick Tree

Fenwick Tree

```
struct Fenwick {
   // One Based
   vector<int> tree;
   explicit Fenwick(int n) {tree.assign(n + 5, {});}
   // Computes the prefix sum from [1, i], O(log(n))
   int query(int i) {
       int res = 0;
       while (i > 0) {
          res += tree[i];
          i &= ~(i & -i);
       return res;
   }
   int query(int 1, int r) {
       return query(r) - query(1-1);
   }
   // Get the value at index i
   int get(int i) {
       return query(i, i);
   }
   // Add 'v' to index 'i', O(log(n))
   void update(int i, int v) {
       while (i < tree.size()) {</pre>
          tree[i] += v;
          i += (i \& -i);
```

```
}
}

// Update range, Point query
// To get(k) do prefix sum [1, k] and in insert update_range(i, i, a[i ])

void update_range(int 1, int r, int v) {
    update(1, v);
    update(r+1, -v);
}
};
```

5.2.4 Fenwick UpdateRange

$BIT\ UpdateRange$

```
struct BITUpdateRange {
private:
   int n;
   vector<int> B1, B2;
   void add(vector<int> &b, int idx, int x) {
       while (idx <= n) {</pre>
           b[idx] += x;
           idx += idx & -idx;
       }
   }
   int sum(vector<int> &b, int idx) {
       int total = 0;
       while (idx > 0) {
           total += b[idx];
           idx &= (idx & -idx);
       return total;
   }
   int prefix(int idx) {
       return sum(B1, idx) * idx - sum(B2, idx);
   }
public:
   explicit BITUpdateRange(int n) : n(n) {
```

```
B1.assign(n + 1, {});
       B2.assign(n + 1, \{\});
   }
   void update(int 1, int r, int x) {
       add(B1, 1, x);
       add(B1, r + 1, -x);
       add(B2, 1, x * (1 - 1));
       add(B2, r + 1, -x * r);
   }
   int query(int i) {
       return prefix(i) - prefix(i - 1);
   }
   int query(int 1, int r) {
       return prefix(r) - prefix(l - 1);
   }
};
```

5.2.5 2D BIT

2D BIT

```
struct BIT2D {
   int n, m;
   vector<vector<int>> bit;

BIT2D(int n, int m) : n(n), m(m) {
      bit.assign(n + 2, vector<int>(m + 2));
   }

void update(int x, int y, int val) {
      for (; x <= n; x += x & -x) {
         for (int i = y; i <= m; i += i & -i) {
            bit[x][i] += val;
         }
    }
   }
}

int prefix(int x, int y) {
   int res = 0;
   for (; x > 0; x &= ~(x & -x)) {
```

```
for (int i = y; i > 0; i &= ~(i & -i)) {
          res += bit[x][i];
     }
     return res;
}

int query(int sx, int sy, int ex, int ey) {
    int ans = 0;
    ans += prefix(ex, ey);
    ans -= prefix(ex, sy - 1);
    ans -= prefix(sx - 1, ey);
    ans += prefix(sx - 1, sy - 1);
    return ans;
}
```

5.2.6 Sparse Table

Impl with the index

```
// storing the index also
struct SNode {
   int val;
   int index;
};
class SparseTable {
private:
   vector<vector<SNode>> table;
   function<SNode(const SNode&, const SNode&)> merge;
   static SNode StaticMerge(const SNode& a, const SNode& b) {
       return a.val < b.val ? a : b;</pre>
   }
public:
   explicit SparseTable(const vector<int>& arr, const function<SNode(</pre>
       const SNode&, const SNode&)>& mergeFunc = StaticMerge) {
       int n = static_cast<int>(arr.size());
       int log_n = static_cast<int>(log2(n)) + 1;
       this->merge = mergeFunc;
```

```
table.resize(n, vector < SNode > (log_n));
       for (int i = 0; i < n; i++) {</pre>
           table[i][0] = {arr[i], i};
       }
       for (int j = 1; (1 << j) <= n; j++) {
           for (int i = 0; i + (1 << j) <= n; i++) {
               table[i][j] = mergeFunc(table[i][j - 1], table[i + (1 << (j</pre>
                    - 1))][j - 1]);
           }
   }
   SNode query(int left, int right) {
       int j = static_cast<int>(log2(right - left + 1));
       return merge(table[left][j], table[right - (1 << j) + 1][j]);</pre>
   }
   // query in O(log(n)) if its could't apply to Sparse Table directly
   T query_log(int 1, int r){
     int len = r - 1 + 1;
     T ans:
     for(int i = 0; 1 <= r; i++){</pre>
         if (len & (1 << i)){</pre>
             ans = merge(ans, table[i][1]);
             1+= (1 << i);
         }
     }
};
int main(void) {
   int n;
   cin >> n;
   vector<int> arr(n):
   for (auto& element : arr) cin >> element;
   SparseTable minSt(arr, [](const SNode& a, const SNode& b) -> SNode {
       return a.val < b.val ? a : b;</pre>
   }):
```

```
SparseTable maxSt(arr, [](const SNode& a, const SNode& b) -> SNode {
    return a.val > b.val ? a : b;
});
}
```

5.3 Ordered Set

Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template<typename T>
using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
   tree_order_statistics_node_update>;
template <class T>
using ordered_multiset = tree<T, null_type, CUSTUM_COMPARE, rb_tree_tag,
   tree_order_statistics_node_update>;
void erase_set(ordered_set &os, int v) {
   // Number of elements less than v
   int rank = os.order_of_key(v);
   auto it = os.find_by_order(rank);
   os.erase(it);
// Returns iterator to 0-th
// largest element in the set
cout << *S.find_by_order(0) << " ";</pre>
// Returns iterator to 2-nd
// largest element in the set
cout << *S.find_by_order(2);</pre>
```

5.4 Custom Compare Functions

Custom Compare functions

```
template<class T>
struct custom_compare {
   bool operator()(const T& a, const T& b) const {
       if (a == b) return true; // Keep duplicates
       return a > b;
   }
};
//REF: GFG
class CustomComparator {
public:
   CustomComparator(int baseValue) : baseValue_(baseValue) {}
   bool operator()(int a, int b) const {
       // Custom comparison logic involving state
       return (a % baseValue_) < (b % baseValue_);</pre>
   }
private:
   int baseValue_;
};
// OR through capture by reference (capture clauses)
auto compare = [&](char a, char b) { return localStructure[a] >
   localStructure[b]; };
```

6 Counting Principles

6.1 nCr

$$C(n,k) = \frac{n!}{(n-k)!k!} = \frac{n*(n-1)*(n-2)*...*(n-k+1)}{k!}$$

6.1.1 Fast nCr

```
C(n,k) = \frac{n*(n-1)*(n-2)*\dots*(n-k+1)}{1*2*3*\dots*k} = \prod_{i=0}^{k-1} \frac{n-i}{i+1} = \prod_{i=0}^{k-1} (n-i)(i+1)^{-1} \frac{1}{dp[i][j]} = \frac{1}{dp[i-1][j-1]} + \frac{1}{dp[i-1][j]} % p;
```

$Fast\ nCr$

```
int nCr(const int& n, const int& r) {
    double res = 1;
    for (int i = 1; i <= r; ++i)
        res = res * (n - r + i) / i;
    return (int)(res + 0.01);
}</pre>
```

6.1.2 Method 1: Pascal's Triangle (Dynamic Programming) - $\mathcal{O}(n^2)$

nCk using dp

```
// REF: USACO guide
/** Oreturn nCk mod p using dynamic programming */
int binomial(int n, int k, int p) {
// dp[i][j] stores iCj
vector<vector<int>> dp(n + 1, vector<int>(k + 1, 0));
// base cases described above
for (int i = 0; i <= n; i++) {</pre>
  * i choose 0 is always 1 since there is exactly one way
  * to choose O elements from a set of i elements
  * (don't choose anything)
  */
 dp[i][0] = 1;
  * i choose i is always 1 since there is exactly one way
  * to choose i elements from a set of i elements
  * (choose every element in the set)
 if (i <= k) { dp[i][i] = 1; }</pre>
for (int i = 0; i <= n; i++) {
 for (int j = 1; j <= min(i, k); j++) {</pre>
  if (i != j) { // skips over the base cases
  // uses the recurrence relation above
```

```
}
}
return dp[n][k]; // returns nCk modulo p
6.1.3 Method 2: Factorial Definition (Modular Inverses) - O(n +
       \log MOD
                    nCk using Modular Inverses
// REF: USACO guide
const int MAXN = 1e6;
long long fac[MAXN + 1];
long long inv[MAXN + 1];
/** @return x^n modulo m in O(log p) time. */
long long exp(long long x, long long n, long long m) {
x \% = m; // note: m * m must be less than 2^63 to avoid 11 overflow
long long res = 1;
while (n > 0) {
 if (n % 2 == 1) { res = res * x % m; }
 x = x * x % m:
 n /= 2:
}
return res;
/** Precomputes n! from 0 to MAXN. */
void factorial(long long p) {
fac[0] = 1;
for (int i = 1; i <= MAXN; i++) { fac[i] = fac[i - 1] * i % p; }</pre>
* Precomputes all modular inverse factorials
* from 0 to MAXN in O(n + log p) time
void inverses(long long p) {
inv[MAXN] = exp(fac[MAXN], p - 2, p);
```

```
for (int i = MAXN; i >= 1; i--) { inv[i - 1] = inv[i] * i % p; }

/** @return nCr mod p */
long long choose(long long n, long long r, long long p) {
  return fac[n] * inv[r] % p * inv[n - r] % p;
}

int main() {
  factorial();
  inverses();
  int n;
    cin >> n;
  for (int i = 0; i < n; i++) {
    int a, b;
    cin >> a >> b;
    cout << choose(a, b) << '\n';
  }
}</pre>
```

7 Graph Theory

7.1 Shortest Path algorithms

7.1.1 Dijkstra Algorithm

$Dijkstra\ Implementation$

```
#define INF (1e18) // for int defined as ll
int n, m;
vector<vector<pair<int, int>>> adj;
vector<int> cost;
vector<int> parent;

void dijkstra(int startNode = 1) {
    priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<>>> pq;
    cost[startNode] = 0;
    pq.emplace(0, startNode);
```

```
while (!pq.empty()) {
       int u = pq.top().second;
       11 d = pq.top().first;
       pq.pop();
       if (d > cost[u]) continue;
       for (auto &p: adj[u]) {
           int v = p.first;
           int w = p.second;
           if (cost[v] > cost[u] + w) {
              cost[v] = cost[u] + w;
              parent[v] = u;
              pq.emplace(cost[v], v);
          }
       }
}
void run_test_case(int testNum) {
   cin >> n >> m;
   adj.assign(n + 1, {});
   cost.assign(n + 1, INF);
   parent.assign(n + 1, -1);
   while (m--) {
       // Read Edges
   dijkstra();
   if (cost[n] == INF) {
       cout << -1 << el; // not connected {Depends on you use case}</pre>
       return;
   }
   stack<int> ans:
   for (int v = n; v != -1; v = parent[v]) ans.push(v);
   while (!ans.empty()) { // printing the path
       cout << ans.top() << ' ';</pre>
       ans.pop();
   }
```

```
cout << el;
}</pre>
```

7.1.2 Floyd Warshal Algorithm

FloydWarshal Implementation

```
int main() {
   int n, m; cin >> n >> m;
   vector <vector <int>> adj(n + 1, vector <int> (n + 1, 2e9));
   for (int i = 0; i < n; i++) adj[i][i] = 0;
   while(m--) {
       int u, v, w;
 cin >> u >> v >> w;
       adj[u][v] = min(adj[u][v], w);
       adj[v][u] = min(adj[v][u], w);
   for (int mid = 1; mid <= n; mid++) {</pre>
       for (int start = 1; start <= n; start++) {</pre>
           for (int end = 1; end <= n; end++) {</pre>
              adj[start][end] = min(adj[start][end], adj[start][mid] +
                  adj[mid][end]);
       }
   }
return 0;
```

7.1.3 Bellman Ford Algorithm

BellmanFord Implementation

```
vector <vector <pair<int, int>>> &adj

vector <long long> BellmanFord(int src) {
   int n = (int)adj.size();
   vector <long long> dist(n, 2e18);
```

```
dist[src] = 0;
for (int it = 0; it < n-1; it++) {</pre>
    bool in = false;
   for (int i = 0; i < n; i++) { // iterate on the edges</pre>
       for (auto &[j, w] : adj[i]) {
           if (dist[j] > dist[i] + w) {
               in = true;
               dist[j] = dist[i] + w;
       }
    if (!in) return dist;
for (int i = 0; i < n; i++) {</pre>
    for (auto &[j, w] : adj[i]) {
        if (dist[j] > dist[i] + w) { //negative cycle
           return vector <long long> (n, -1); // or any flag
       }
}
return dist;
```

7.2 Cycle Detection

}

7.2.1 DFS Implementation

DFS Implementation

```
if(dfs(graph, v, source, vis, c)) return true;
}
return false;
```

7.2.2 Another way for undirected graphs

Another way for undirected graphs

```
// this is true only for undirected graphs
bool dfs1(int cur, int par) {
   bool ret = false;
   vis[cur] = true;
   for (auto &i : adj[cur]) {
      if (!vis[i]) ret|=dfs1(i, cur);
      else if (par != i) ret = true;
   }
   return ret;
}
```

7.2.3 General Way

General Way

```
// general algorithm
vector <bool> cyc;
bool dfs(int cur, int par) {
   bool ret = false;
   vis[cur] = cyc[cur] = true;
   for (auto &i : adj[cur]) {
      if (par == i) continue;
      if (!vis[i]) ret|=dfs(i, cur);
      else if (cyc[i]) ret = true;
   }
   cyc[cur] = false;
   return ret;
}
```

7.2.4 DSU Implementation

$DSU\ Implementation$

```
#include <iostream>
#include <vector>
class UnionFind {
public:
   UnionFind(int n) {
       parent.resize(n);
       rank.resize(n, 0);
       for (int i = 0; i < n; ++i) {</pre>
           parent[i] = i;
   }
   int find(int u) {
       if (parent[u] != u) {
           parent[u] = find(parent[u]);
       return parent[u];
   }
   void unionSets(int u, int v) {
       int rootU = find(u);
       int rootV = find(v);
       if (rootU != rootV) {
           if (rank[rootU] > rank[rootV]) {
              parent[rootV] = rootU;
           } else if (rank[rootU] < rank[rootV]) {</pre>
              parent[rootU] = rootV;
           } else {
              parent[rootV] = rootU;
               ++rank[rootU];
           }
   }
private:
    std::vector<int> parent;
   std::vector<int> rank;
};
```

```
bool detectCycle(const std::vector<std::pair<int, int>>& edges, int n) {
   UnionFind uf(n);
   for (const auto& edge : edges) {
       int u = edge.first;
       int v = edge.second;
       if (uf.find(u) == uf.find(v)) {
           return true;
       }
       uf.unionSets(u, v);
   }
   return false;
int main() {
   std::vector<std::pair<int, int>> edges = { {0, 1}, {1, 2}, {2, 3}, {3,
        0} };
   int n = 4; // Number of vertices
   if (detectCycle(edges, n)) {
       std::cout << "Cycle detected" << std::endl;</pre>
   } else {
       std::cout << "No cycle detected" << std::endl;</pre>
   }
   return 0;
```

7.3 Algorithms

7.3.1 Heavy Light Decomposition

Basic HLD Impl

```
struct Node {
    int val;
};
const Node nullNode = {0};
```

```
const int N = 2e5 + 5, S = 1 << 19;
int n, q;
int val[N];
int sz[N], par[N], dep[N], id[N], top[N];
vector<int> adj[N];
Node st[S];
Node merge(const Node& a, const Node& b) {
   return {a.val + b.val};
}
void update(int idx, Node val) {
    st[idx += n] = val;
   for (idx /= 2; idx; idx /= 2) st[idx] = merge(st[idx * 2], st[idx * 2])
       + 1]);
}
Node query(int lo, int hi) {
   Node ra = nullNode, rb = nullNode;
   for (lo += n, hi += n + 1; lo < hi; lo /= 2, hi /= 2) {
       if (lo & 1) ra = merge(ra, st[lo++]);
       if (hi & 1) rb = merge(st[--hi], rb);
   }
   return merge(ra, rb);
}
int dfs_size(const int& node, const int& parent) {
    sz[node] = 1;
   par[node] = parent;
   for (const int& ch : adj[node]) {
       if (ch == parent) continue;
       dep[ch] = dep[node] + 1;
       par[ch] = node;
       sz[node] += dfs_size(ch, node);
   }
   return sz[node];
}
int curId = 0;
void dfs_hld(const int& cur, const int& parent, const int& curTop) {
```

```
id[cur] = curId++;
   top[cur] = curTop;
   update(id[cur], {val[cur]});
   int heavyChild = -1, heavyMax = -1;
   for (const int& ch : adj[cur]) {
       if (ch == parent) continue;
       if (sz[ch] > heavyMax) {
           heavyMax = sz[ch];
           heavyChild = ch;
       }
   }
   if (heavyChild == -1) return;
   dfs_hld(heavyChild, cur, curTop);
   for (int ch : adj[cur]) {
       if (ch == parent || ch == heavyChild) continue;
       dfs_hld(ch, cur, ch);
   }
Node path(int u, int v) {
   Node ans = nullNode;
   while (top[u] != top[v]) {
       if (dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
       ans = merge(ans, query(id[top[u]], id[u]));
       u = par[top[u]];
   }
   if (dep[u] > dep[v]) swap(u, v);
   ans = merge(ans, query(id[u], id[v]));
   return ans;
void init() {
   for (int i = 0; i < S; i++) st[i] = nullNode;</pre>
   dfs_size(1, 1);
   dfs_hld(1, 1, 1);
int main() {
   cin >> n >> q;
   for (int i = 1; i <= n; i++) cin >> val[i];
```

```
int a, b;
   for (int i = 2; i <= n; i++) {
       cin >> a >> b;
       adj[a].pb(b);
       adj[b].pb(a);
   }
   init(); // <----- DON'T FORGET TO CALL THIS FUNCTION
   int type;
   while (q--) {
       cin >> type;
       if (type == 1) {
          cin >> a >> b;
          val[a] = b;
          update(id[a], {val[a]});
       }
       else {
           cin >> a;
           cout << path(1, a).val << el;</pre>
       }
}
```

7.3.2 Heavy Light Decomposition with lazy SegTree

Basic HLD Impl

```
struct Node {
    int val;
};

const Node nullNode = {0};

const int N = 2e5 + 5, S = 1 << 19;
int n, q;
int val[N];
int sz[N], par[N], dep[N], id[N], top[N];
vector<int> adj[N];

Node st[S];
int lazy[S];
```

```
Node merge(const Node& a, const Node& b) {
   return {a.val + b.val};
void push(int idx, int 1, int r) {
   if (lazy[idx] != 0) {
       st[idx].val += lazy[idx] * (r - l + 1);
       if (1 != r) {
           lazy[idx * 2] += lazy[idx];
           lazy[idx * 2 + 1] += lazy[idx];
       lazy[idx] = 0;
   }
void update_range(int lo, int hi, int l, int r, int idx, int value) {
   push(idx, l, r);
   if (lo > r || hi < 1) return;</pre>
   if (lo <= 1 && r <= hi) {</pre>
       lazy[idx] += value;
       push(idx, l, r);
       return;
   int mid = (1 + r) / 2;
   update_range(lo, hi, l, mid, idx * 2, value);
   update_range(lo, hi, mid + 1, r, idx * 2 + 1, value);
   st[idx] = merge(st[idx * 2], st[idx * 2 + 1]);
void update(int idx, Node val) {
   update_range(idx, idx, 0, n - 1, 1, val.val);
void update_range(int lo, int hi, int value) {
   update_range(lo, hi, 0, n - 1, 1, value);
Node query(int lo, int hi, int l, int r, int idx) {
   push(idx, l, r);
   if (lo > r || hi < 1) return nullNode;</pre>
   if (lo <= 1 && r <= hi) return st[idx];</pre>
   int mid = (1 + r) / 2;
```

```
return merge(query(lo, hi, l, mid, idx * 2), query(lo, hi, mid + 1, r, int get(int u) {
        idx * 2 + 1));
}
Node query(int lo, int hi) {
   return query(lo, hi, 0, n - 1, 1);
}
int dfs_size(const int& node, const int& parent) {
   sz[node] = 1;
   par[node] = parent;
   for (const int& ch : adj[node]) {
       if (ch == parent) continue;
       dep[ch] = dep[node] + 1;
       par[ch] = node;
       sz[node] += dfs_size(ch, node);
   return sz[node];
}
int curId = 0;
void dfs_hld(const int& cur, const int& parent, const int& curTop) {
   id[cur] = curId++:
   top[cur] = curTop;
   update(id[cur], {val[cur]});
   int heavyChild = -1, heavyMax = -1;
   for (const int& ch : adj[cur]) {
       if (ch == parent) continue;
       if (sz[ch] > heavyMax) {
          heavyMax = sz[ch];
          heavyChild = ch;
       }
   }
   if (heavyChild == -1) return;
   dfs_hld(heavyChild, cur, curTop);
   for (int ch : adj[cur]) {
       if (ch == parent || ch == heavyChild) continue;
       dfs_hld(ch, cur, ch);
   }
}
```

```
return query(id[u], id[u]).val;
void path(int u, int v, int val) {
   // Node ans = nullNode;
   while (top[u] != top[v]) {
       if (dep[top[u]] < dep[top[v]]) swap(u, v);</pre>
       // ans = merge(ans, query(id[top[u]], id[u]));
       update_range(id[top[u]], id[u], val);
       u = par[top[u]];
   }
   if (dep[u] > dep[v]) swap(u, v);
   // ans = merge(ans, query(id[u], id[v]));
   update_range(id[u], id[v], val);
   // return ans;
void init() {
   for (int i = 0; i < S; i++) st[i] = nullNode;</pre>
   memset(lazy, 0, sizeof(lazy));
   dfs_size(1, 1);
   dfs_hld(1, 1, 1);
int main(void) {
   cin >> n >> q;
   for (int i = 1; i <= n; i++) val[i] = 0;
   int a, b;
   for (int i = 2; i <= n; i++) {
       cin >> a >> b;
       adj[a].push_back(b);
       adj[b].push_back(a);
   }
   init(); // <----- DON'T FORGET TO CALL THIS FUNCTION
   int v:
   while (q--) {
       cin >> a >> b >> v;
       path(a, b, v);
   }
```

```
for (int i = 1; i <= n; i++) {
    cout << get(i) << " ";
}
cout << el;
}</pre>
```

7.3.3 LCA functions using Binary Lifting

LCA functions using Binary Lifting

```
const int N = 2e5 + 15, M = 23;
int ancestors[N][M], depth[N], parent[N], val[N];
vector<vector<int>> adj;
//int tin[N], tout[N], timer;
void dfs_LCA(const int &node, const int &par) {
// tin[node] = timer++;
   parent[node] = par;
   ancestors[node][0] = par;
   depth[node] = depth[par] + 1;
   for (int i = 1; i < M; i++) {</pre>
       int p = ancestors[node][i - 1];
       ancestors[node][i] = ancestors[p][i - 1];
   }
   for (const int &v: adj[node]) {
       if (v == par) continue;
       dfs_LCA(v, node);
     tout[node] = timer++;
//bool is_ancestor(int u, int v) {
     return tin[u] <= tin[v] && tout[u] >= tout[v];
//}
int findKth(int u, int k) {
   if (depth[u] <= k) return -1;</pre>
   for (int i = M - 1; i >= 0; i--) {
       if (k & (1 << i)) {
           u = ancestors[u][i];
       }
```

```
}
   return u:
int getLCA(int u, int v) {
   if (depth[u] < depth[v])</pre>
       swap(u, v);
   u = findKth(u, depth[u] - depth[v]);
   if (u == v) return u;
   for (int i = M - 1; i >= 0; i--) {
       if (ancestors[u][i] == ancestors[v][i]) continue;
       u = ancestors[u][i];
       v = ancestors[v][i];
   }
   return ancestors[u][0];
int getDistance(int u, int v) {
   int lca = getLCA(u, v);
   return (depth[u] + depth[v]) - (2 * depth[lca]);
int dfs_accumulate(const int &node, const int &par) {
   for (const int& ch: adj[node]) {
       if (ch == par) continue;
       val[node] += dfs_accumulate(ch, node);
   }
   return val[node];
void applyOpOnPath(const int a, const int b, const int w) {
   // adding w to each node on the path a to b
   val[a] += w;
   val[b] += w;
   int lca = getLCA(a, b);
   val[lca] -= w;
   val[parent[lca]] -= w;
int main(void) {
   int n, q;
```

```
cin >> n >> q;
    adj.resize(n + 1);
   int u, v;
   for (int i = 2; i <= n; ++i) {</pre>
       cin >> u >> v;
       adj[u].push_back(v);
       adj[v].push_back(u);
   }
   dfs_LCA(1, 1);
   parent[1] = -1;
   int w;
   for (int i = 0; i < q; ++i) {</pre>
       cin >> u >> v;
       cout << getDistance(u, v) << el;</pre>
   }
//
     dfs_accumulate(1, 0);
//
     for (int i = 1; i <= n; i++) {
         cout << val[i] << " ";
     }
     cout << el;</pre>
```

7.3.4 Topological Sort

Topological Sort Using DFS

```
//REF: USACO Guide
vector<int> top_sort;
vector<vector<int>> graph;
vector<bool> visited;

void dfs(int node) {
  for (int next : graph[node]) {
    if (!visited[next]) {
     visited[next] = true;
     dfs(next);
    }
}
```

```
top_sort.push_back(node);
int main() {
int n, m; // The number of nodes and edges respectively
std::cin >> n >> m;
graph = vector<vector<int>>(n);
for (int i = 0; i < m; i++) {</pre>
int a, b;
 std::cin >> a >> b;
 graph[a - 1].push_back(b - 1);
visited = vector<bool>(n);
for (int i = 0; i < n; i++) {</pre>
 if (!visited[i]) {
 visited[i] = true;
  dfs(i);
 }
std::reverse(top_sort.begin(), top_sort.end());
vector<int> ind(n):
for (int i = 0; i < n; i++) { ind[top_sort[i]] = i; }</pre>
// Check if the topological sort is valid
bool valid = true;
for (int i = 0; i < n; i++) {</pre>
 for (int j : graph[i]) {
  if (ind[j] <= ind[i]) {</pre>
   valid = false;
   goto answer;
answer:;
if (valid) {
for (int i = 0; i < n - 1; i++) { cout << top_sort[i] + 1 << ', '; }</pre>
 cout << top_sort.back() + 1 << endl;</pre>
} else {
 cout << "IMPOSSIBLE" << endl;</pre>
```

}

8 Techniques

8.1 Coordinate Compression

```
void coordinate_compress(vector<int> &x, int start=0, int
    step=1) {
    set unique(x.begin(), x.end());
    map<int, int> valPos;

    int idx=0;
    for (auto i: unique) {
       valPos[i] = start + idx * step;
       ++idx;
    }
    for(auto &i: x) i = valPos[i];
}
```

Coordinate Compression

8.2 Binary to decimal

Binary to decimal

```
// Function to convert binary to decimal
// 0(32)
int binaryToDecimal(string str)
{
   int dec_num = 0;
   int power = 0;
   int n = str.length();

   for(int i = n-1; i>=0; i--){
    if(str[i] == '1'){
      dec_num += (1<<power);
   }
   power++;</pre>
```

```
}
return dec_num;
}
```

8.3 Decimal to binary

Decimal to bianry

```
// Function that convert Decimal to binary
// 0(32)
void decToBinary(int n)
   // Size of an integer is assumed to be 32 bits
   for (int i = 31; i >= 0; i--) {
       int k = n >> i;
       if (k & 1)
           cout << "1";
       else
           cout << "0";
   }
// O(logn)
string DecimalToBinary(int num)
   string str;
     while(num){
     if(num & 1) // 1
       str+='1':
     else // 0
       str+='0';
     num>>=1; // Right Shift by 1
     return str;
```

9 Number Theory

9.1 Divisors

9.1.1 formulas

number of divisors

```
int d(int n){
   unordered_map<int, int> factors = pf(n);
   for(const auto& factor: factors){
       c *= (factor.second+1);
   }
   return c;
}
// range Count Divisors backward thinking MAXN = 2e6
 for(int i=1; i <= n; ++i) {</pre>
   for(int j = i; j <= n; j += i) {</pre>
     numFactors[j]++;
   }
 }
int countDivisors(int n) {
 int count = 0;
 for (int i = 1; i * i <= n; ++i) {
   if (n % i == 0) {
       if (i == n / i) {
            count++; // Perfect square
       } else {
             count += 2; // Pair of divisors
   }
   return count;
}
```

sum of divisors

```
int s(int n){
```

```
unordered_map<int,int> factors = pf(n);
int sum = 1;
for(const auto& factor: factors){
   int p = factor.first;
   int exp = factor.second;
   sum *= (pow(p,exp+1)-1)/p-1;
}
return sum;
}
```

9.2 Primes

prime factorization

number of co-primes with n

```
int eulerTotient(int n){
   int result = n;

for(int i = 2; SQ(i) <= n; i++){
   if(n%i == 0){
      while(n%i == 0){
            n/=i;
      }
      result -= result/i;
}</pre>
```

```
}
   if(n > 1) result -= result/n;
   return result;
}
//Phi(n) = n * (1 - 1/P1) * (1 - 1/P2) * ...
//NOTE: summation of Euler function over divisors of n is equal to n
// using seive
void phi_generator() {
    const int MAX = 1000000;
    char primes[MAX];
   int phi[MAX];
   memset(primes, 1, sizeof(primes));
   for (int k = 0; k < MAX; ++k)
       phi[k] = 1;
   for (int i = 2; i <= MAX; ++i) {</pre>
       if (primes[i]) {
           phi[i] = i - 1; // phi(prime) = p-1
           for (int j = i * 2; j <= MAX; j += i) {</pre>
               primes[j] = 0;
               int n = j, pow = 1;
               while (n % i == 0) {
                   pow *= i;
                   n /= i;
              phi[j] *= (pow / i) * (i - 1);
          }
       }
}
// \text{ phi}(N!) = (N \text{ is prime } ? N-1 : N) * \text{phi}((N-1)!)
ll phi_factn(int n) {
   ll ret = 1;
   for (int i = 2; i <= n; ++i)
       ret = ret * (isprime(i) ? i - 1 : i);
```

```
return ret;
}
```

```
Prime Check
vector<bool> isPrime(MAXN, true);
void sieve() {
 isPrime[0] = isPrime[1] = false;
 for (int i=2; i * i <= isPrime.size(); ++i) {</pre>
   if(isPrime[i]) {
     for (int j = 2 * i; i <= isPrime.size(); j += i)</pre>
       prime[j] = false;
   }
bool Prime(int n) {
 if(n == 2) return true;
 if(n < 2 || n % 2 == 0) return false;</pre>
 for(int i=3; i * i <= n; i += 2) {
   if(n % i == 0) return false;
 return true;
// Generate Primes
const int sz = sqrt(MAXN);
vector<int> prime;
vector<bool> vis(sz);
void pre() {
   prime.push_back(2);
   for (int j = 4; j < sz; j += 2) vis[j] = true;</pre>
   for (int i = 3; i < sz; i += 2) {
       if (vis[i]) continue;
       prime.push_back(i);
       for (int j = i * i; j < sz; j += i) vis[j] = true;</pre>
   }
```

Too bad to be Accepted (Alexandria University)

```
// Preprocessing Prime Factorization of range numbers
constexpr int N = 5e6+1;
int a[N];
for(int i=2; i < N; ++i) {</pre>
   if(!a[i]) {
       for(int j=1; i*j < N; ++j) {
           for(int k=i*j; k%i==0; k/=i) a[i*j]++;
   a[i] += a[i-1];
```

Math 9.3

Vieta's Formula for a Polynomial of Degree n

Problem: Given a polynomial of degree n:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with roots r_1, r_2, \ldots, r_n , express the sums and products of its roots using Vieta's formulas.

Solution: Using Vieta's formulas, we can relate the coefficients of the polynomial to sums and products of its roots:

• Sum of the roots taken one at a time:

$$r_1 + r_2 + \dots + r_n = -\frac{a_{n-1}}{a_n}$$

• Sum of the products of the roots taken two at a time:

$$r_1r_2 + r_1r_3 + \dots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}$$

• Sum of the products of the roots taken three at a time:

$$r_1 r_2 r_3 + r_1 r_2 r_4 + \dots + r_{n-2} r_{n-1} r_n = -\frac{a_{n-3}}{a_n}$$

- Continue this pattern until:
- Product of the roots (for even n):

$$r_1 r_2 \cdots r_n = (-1)^n \frac{a_0}{a_n}$$

Example Problem Using Vieta's Formula

Problem: Given a quadratic equation $x^2 + bx + c = 0$ with roots r_1 and r_2 , find $r_1 + r_2$ and $r_1 r_2$.

Solution: Using Vieta's formulas for a quadratic equation $ax^2 + bx + c = 0$:

• Sum of the roots:

$$r_1 + r_2 = -\frac{b}{a}$$

• Product of the roots:

$$r_1 r_2 = \frac{c}{a}$$

For the given quadratic $x^2 + bx + c = 0$ (where a = 1):

Also: To find the roots of the quadratic equation, we can use the discriminant formula, $D = b^2 - 4ac$. The roots will then be $x_1 = \frac{b-\sqrt{D}}{2}$ and $x_2 = \frac{b + \sqrt{D}}{2}$.

Example Vieta's Formula for Cubic Equation

When considering a cubic equation in the form of $f(x) = ax^3 + bx^2 + cx + d$, Vieta's formula states that if the equation f(x) = 0 has roots r_1, r_2 , and r_3 ,

$$r_1 + r_2 + r_3 = -\frac{b}{a}$$

•
$$r_1 + r_2 + r_3 = -\frac{b}{a}$$

• $r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{c}{a}$
• $r_1 r_2 r_3 = -\frac{d}{a}$

•
$$r_1 r_2 r_3 = -\frac{d}{a}$$

Phi Function

- Count integers i < n such that gcd(i, n) = 1
- $gcd(a, b) = 1 \Rightarrow$ then coprimes: gcd(5, 7), gcd(4, 9)
- gcd(prime, i) = 1 for i < prime
- $\varphi(10) = 4 \Rightarrow 1, 3, 7, 9$
- $\varphi(5) = 4 \Rightarrow 1, 2, 3, 4 \dots \varphi(\text{prime}) = \text{prime} 1$
- If a, b, c are pairwise coprimes, then

$$\varphi(a \cdot b \cdot c) = \varphi(a) \cdot \varphi(b) \cdot \varphi(c)$$

• If k > 1

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k \left(1 - \frac{1}{p}\right)$$

Euler's Totient Numbers

Online Sequence

- $\varphi(1) = \varphi(2) = 1, \ \varphi(5) = 4$
- $\varphi(n)$ is even for n>2
- $\sqrt{n} < \varphi(n) < n \sqrt{n}$: Except 2, 6
- $\varphi(n^k) = n^{k-1} \cdot \varphi(n)$
- $n = \sum \varphi(d_i)$ where d are the divisors of n

Möbius Function

Möbius Function

```
int mobius(int n) {
                                                                                                                                                                                                                                                                                                                                                                       int p = 0;
                                                                                                                                                                                                                                                                                                                                                                      // Handling 2 separately
                                                                                                                                                                                                                                                                                                                                                                       if (n\%2 == 0){
                                                                                                                                                                                                                                                                                                                                                                                      n = n/2;
                                                                                                                                                                                                                                                                                                                                                                                      p++;
                                                                                                                                                                                                                                                                                                                                                                                       // If 2^2 also divides N
                                                                                                                                                                                                                                                                                                                                                                                      if (n % 2 == 0)
                                                                                                                                                                                                                                                                                                                                                                                                   return 0;
                                                                                                                                                                                                                                                                                                                                                                      }
                                                                                                                                                                                                                                                                                                                                                                      // Check for all other prime factors
                                                                                                                                                                                                                                                                                                                                                                      for (int i = 3; i <= sqrt(n); i = i+2) {</pre>
                                                                                                                                                                                                                                                                                                                                                                                       if (n\%i == 0){
                                                                                                                                                                                                                                                                                                                                                                                                       n = n/i;
                                                                                                                                                                                                                                                                                                                                                                                                       p++;
                                                                                                                                                                                                                                                                                                                                                                                                        if (n % i == 0) return 0;
                                                                                                                                                                                                                                                                                                                                                                      }
                                                                                                                                                                                                                                                                                                                                                                      return (p % 2 == 0)? -1 : 1;
                                                                                                                                                                                                                                                                                                                                                       void mobius_generator() const {
\varphi(n) = 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12 \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 100000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000; \\ \text{max} = 10000000
                                                                                                                                                                                                                                                                                                                                                               char prime[MAX + 1];
                                                                                                                                                                                                                                                                                                                                                              for (11 i = 2; i <= MAX; i++)</pre>
                                                                                                                                                                                                                                                                                                                                                                       moebius[i] = -1, prime[i] = 1;
                                                                                                                                                                                                                                                                                                                                                              for (ll i = 2; i <= MAX; ++i)</pre>
                                                                                                                                                                                                                                                                                                                                                                      if (prime[i]) {
                                                                                                                                                                                                                                                                                                                                                                               moebius[i] = 1;
                                                                                                                                                                                                                                                                                                                                                                              for (11 j = 2 * i; j <= MAX; j += i)
                                                                                                                                                                                                                                                                                                                                                                                      prime[j] = 0, moebius[j] = j % (i * i) == 0 ? -moebius[j] : 1;
```

Too bad to be Accepted (Alexandria University)

```
// Mobius Inclusion Exclusion
// Count triples gcd(a, b, c) = 1
int n = 4;
ll sum = n * n * n;
for (ll i = 2; i <= n; ++i)
    sum -= moebius[i] * (n / i) * (n / i) * (n / i);
</pre>
```

9.7 Möbius and Inclusion Exclusion

Count the triples (a, b, c) such that $a, b, c \le n$, and gcd(a, b, c) = 1

- Reverse thinking, total (# triples gcd > 1)
- How many triples with gcd multiple of 2: $(n/2)^3$
- How many triples with gcd multiple of 3: $(n/3)^3$
- and 4? Ignore any numbers of internal duplicate primes
- and 6? already computed in 2, 3. Remove it: $-(n/6)^3$

9.8 Totient and Möbius Connection

Sum over divisors d of n

$$\sum_{d} d\mu \left(\frac{n}{d}\right) = \varphi(n)$$

9.9 Lagrange's four-square theorem

Lagrange's four-square theorem states that, every positive integer can be expressed as the sum of the squares of four integers.

Lagrange's four-square theorem

```
#include <cmath>
bool isPerfectSquare(int n) {
   int rt = sqrt(n);
```

```
return rt * rt == n:
// Function to compute the minimum number of perfect squares
int numSquares(int n) {
   // Case 1:
   if (isPerfectSquare(n)) return 1;
   // Case 2: Check if n can be expressed as the sum of two perfect
       squares
   for (int i = 1; i * i <= n; i++) {
       int d = n - i * i;
       if (isPerfectSquare(d)) return 2;
   }
   // If n can be reduced to the form 4^a * (8b + 7), then it requires 4
   int m = n;
   while (m \% 4 == 0) m /= 4;
   if (m % 8 == 7) return 4;
   // Case 4:
   return 3:
```

10 Geometry

10.1 Linearity

10.1.1 co-linear points

check if two points are co-linear

```
bool co_linear(int x1, int y1, int x2, int y2, int x3, int y3){
  int area = x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2);
  return area == 0;
}
```

10.2 Polygons

10.2.1 Polygon formation

check if can form polygon with given angle

```
bool possible(double angle){
  if(angle <= 0 || angle >= 180) return false;

double sides = 360.0/(180.0-angle);

return (sides == static_cast<int>(sides) && sides >= 3);
}
```

10.2.2 Polygon Area

area of any polygon with x vertices

```
double shoelace(vector<pair<double, double>>> points) {
  double leftSum = 0.0;
  double rightSum = 0.0;

for (int i = 0; i < points.size(); ++i) {
  int j = (i + 1) % points.size();
  leftSum += points[i].first * points[j].second;
  rightSum += points[j].first * points[i].second;
}

return 0.5 * abs(leftSum - rightSum);
}</pre>
```

10.3 Intersections

10.3.1 Rectangle

intersection area between 2 rectangles

```
struct Rectangle {
   int x1, y1; // Bottom-left corner
   int x2, y2; // Top-right corner
};
```

```
int intersectionArea(const Rectangle& rect1, const Rectangle& rect2){
   int x_left = max(rect1.x1, rect2.x1);
   int y_bottom = max(rect1.y1, rect2.y1);
   int x_right = min(rect1.x2, rect2.x2);
   int y_top = min(rect1.y2, rect2.y2);

   int intersection_width = x_right - x_left;
   int intersection_height = y_top - y_bottom;

   if (intersection_width > 0 && intersection_height > 0) {
      return intersection_width * intersection_height;
   }

   return 0;
}
```

10.3.2 Circle

intersection area between 2 circles

```
double area(int x0, int y0, int r0, int x1, int y1, int r1){
   const double PI = 3.14159265358979323846;
   double rr0 = r0 * r0;
   double rr1 = r1 * r1;
   double d = sqrt((x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0));
   if(d >= r0 + r1){
      return 0;
   }
   double phiAngle = (rr0 + (d * d) - rr1) / (2 * r0 * d);
   double phi = acos(phiAngle) * 2;
   double thetaAngle = (rr1 + (d * d) - rr0) / (2 * r1 * d);
   double theta = acos(thetaAngle) * 2;
   double area1 = 0.5 * theta * rr1 - 0.5 * rr1 * sin(theta);
   double area2 = 0.5 * phi * rr0 - 0.5 * rr0 * sin(phi);
   return area1+area2;
}
```

10.3.3 Triangle

struct Point {

intersection area between 2 triangles

```
double x, y;
};
typedef vector<Point> Polygon;
bool inside(const Point &p, const pair<Point, Point> &edge) {
   Point a = edge.first, b = edge.second;
   return (b.x - a.x) * (p.y - a.y) - (b.y - a.y) * (p.x - a.x) >= 0;
Point compute_intersection(const Point &p1, const Point &p2, const pair<
    Point, Point> &edge) {
   Point a = edge.first, b = edge.second;
   double A1 = b.y - a.y, B1 = a.x - b.x, C1 = b.x * a.y - a.x * b.y;
   double A2 = p2.y - p1.y, B2 = p1.x - p2.x, C2 = p2.x * p1.y - p1.x *
       p2.y;
   double det = A1 * B2 - A2 * B1;
   if (det == 0) return {numeric_limits<double>::quiet_NaN(),
       numeric_limits<double>::quiet_NaN()}; // parallel
   double x = (B1 * C2 - B2 * C1) / det;
   double y = (A2 * C1 - A1 * C2) / det;
   return {x, y};
}
Polygon HodgmanClip(const Polygon &subjectPolygon, const Polygon &
    clipPolygon) {
   Polygon outputList = subjectPolygon;
   for (size_t i = 0; i < clipPolygon.size(); ++i) {</pre>
       Point a = clipPolygon[i];
       Point b = clipPolygon[(i + 1) % clipPolygon.size()];
       Polygon inputList = outputList;
       outputList.clear();
       if (inputList.empty()) break;
       Point s = inputList.back();
       for (const auto &e : inputList) {
           if (inside(e, {a, b})) {
              if (!inside(s, {a, b})) {
                  Point intersection = compute_intersection(s, e, {a, b});
                  if (!std::isnan(intersection.x)) {
                      outputList.push_back(intersection);
                  }
              outputList.push_back(e);
```

```
} else if (inside(s, {a, b})) {
              Point intersection = compute_intersection(s, e, {a, b});
              if (!std::isnan(intersection.x)) {
                  outputList.push_back(intersection);
              }
           }
           s = e;
       }
   }
   return outputList;
// area of polygon
double shoelace(const Polygon &vertices) {
   double area = 0;
   for (size_t i = 0; i < vertices.size(); ++i) {</pre>
       Point p1 = vertices[i];
       Point p2 = vertices[(i + 1) % vertices.size()];
       area += p1.x * p2.y - p2.x * p1.y;
   }
   return fabs(area) / 2.0;
```

10.3.4 Rectangle & Circle

intersection area between Rectangle and Circle

```
struct Point {
    double x, y;
};

struct Circle {
    Point center;
    double radius;
};

struct Rectangle {
    Point bottomLeft, topRight;
};

const double PI = acos(-1.0);

bool point_inside_circle(const Point &p, const Circle &c) {
```

```
double dx = p.x - c.center.x;
   double dy = p.y - c.center.y;
   return (dx * dx + dy * dy) <= (c.radius * c.radius);</pre>
}
double rect_area(const Rectangle &rect) {
   return (rect.topRight.x - rect.bottomLeft.x) * (rect.topRight.y - rect
       .bottomLeft.v);
}
bool rect_in_circle(const Circle &circle, const Rectangle &rect) {
   vector<Point> corners = {
       rect.bottomLeft,
       {rect.topRight.x, rect.bottomLeft.y},
       rect.topRight,
       {rect.bottomLeft.x, rect.topRight.y}
   };
   for (const auto &corner : corners) {
       if (!isPointInsideCircle(corner, circle)) {
          return false;
       }
   }
   return true;
}
bool circle_in_rect(const Circle &circle, const Rectangle &rect) {
return circle.center.x - circle.radius >= rect.bottomLeft.x &&
          circle.center.x + circle.radius <= rect.topRight.x &&</pre>
          circle.center.y - circle.radius >= rect.bottomLeft.y &&
          circle.center.y + circle.radius <= rect.topRight.y;</pre>
}
double intersection(const Circle &circle, const Rectangle &rect) {
   if (rect_in_circle(circle, rect)) {
       return rect_area(rect);
   }
   if (circle_in_rect(circle, rect)) {
       return PI * circle.radius * circle.radius;
   }
```

```
double intersectionArea = 0.0;
double dx1 = max(rect.bottomLeft.x, circle.center.x - circle.radius);
double dx2 = min(rect.topRight.x, circle.center.x + circle.radius);
double dy1 = max(rect.bottomLeft.y, circle.center.y - circle.radius);
double dy2 = min(rect.topRight.y, circle.center.y + circle.radius);

for (double x = dx1; x < dx2; x += 0.001) {
    for (double y = dy1; y < dy2; y += 0.001) {
        Point p = {x, y};
        if (point_inside_circle(p, circle)) {
            intersectionArea += 0.001 * 0.001;
        }
    }
}</pre>
```

10.3.5 Line & Circle

intersection points between Line and Circle

```
struct Point {
   double x, y;
};
struct Circle {
   Point center:
   double radius;
};
struct Line {
   double slope;
   double intercept;
};
vector<Point> intersect_points(const Circle &circle, const Line &line) {
   vector<Point> intersections;
   // solve y = mx + b with (x - h)^2 + (y - k)^2 = r^2
   double h = circle.center.x;
   double k = circle.center.y;
   double r = circle.radius:
```

```
double m = line.slope;
double b = line.intercept;
// Quadratic coefficients
double A = 1 + m * m:
double B = 2 * (m * b - m * k - h);
double C = k * k - r * r + h * h - 2 * b * k + b * b:
// Discriminant
double discriminant = B * B - 4 * A * C;
if (discriminant < 0) {</pre>
   // No intersection
   return intersections:
} else if (discriminant == 0) {
   // One intersection (tangent line)
   double x = -B / (2 * A);
   double y = m * x + b;
   intersections.push_back({x, y});
} else {
   // Two intersections
   double sqrtDiscriminant = sqrt(discriminant);
   double x1 = (-B + sqrtDiscriminant) / (2 * A);
   double y1 = m * x1 + b;
   double x2 = (-B - sqrtDiscriminant) / (2 * A);
   double y2 = m * x2 + b;
   intersections.push_back({x1, y1});
   intersections.push_back({x2, y2});
}
return intersections;
```

11 Miscellaneous

11.1 Faster implementations

11.1.1 hashes

}

$custom\ hash$

gb hash table

```
//policy based ds (faster hash table)
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
gp_hash_table<int, int> table;
```

11.1.2 Binary Search the value

$nearest\ sqrt$

```
long long my_sqrt(long long a)
{
    long long l=0,r=5000000001;
    while(r-1>1)
    {
        long long mid=(l+r)/2;
        if(111*mid*mid<=a)1=mid;
        else r=mid;
    }
    return l;
}</pre>
```

