¹CONCEPTION D'UN AMPLIFICATEUR SIMPLE A GAIN VARIABLE

On considère le montage amplificateur donné en figure 1. Ce montage utilise un transistor NPN T_1 au silicium à $T = 25^{\circ}C$, alimenté sous une tension continue V_{CC} de 15 V. Le transistor possède un gain en courant β de 250 et sa résistance r_{CC} est considérée comme infinie.

Dans l'émetteur de T_i , on a disposé un potentiomètre tel que seule la portion (α R_E , telle que : $0 \le \alpha \le 1$) de sa résistance totale R_E , soit découplée à la masse par le condensateur C_d de valeur suffisante.

Figure 1

- 1. Dessiner le schéma du montage en régime continu. Sachant que le courant de repos de collecteur est tel que : $I_{\rm C1\,repos}$ = 5 mA, déterminer :
 - a. La tension par rapport à la masse de tous les nœuds.
 - b. La valeur à donner à la résistance de polarisation R₁.
- Dessiner le schéma équivalent aux petites variations et aux fréquences moyennes du montage complet sachant que toutes les capacités ont alors une impédance faible. Choisir une représentation en « β.i, » pour le transistor.
- Déterminer l'expression de la résistance d'entrée R_{e1} du montage vue par le générateur d'excitation (e_e,R_e). Tracer le graphe R_{e1} = g (α). Commenter.
- 4. Déterminer l'expression du gain en tension $A_1 = v_{s1}/v_s$ et tracer le graphe $|A_1| = f(\alpha)$.
- 5. On veut que le gain évolue de la valeur minimale à -40. Donner la solution technique.
- 6. Montrer, en utilisant la « méthode de l'ohmmètre », que la résistance de sortie $R_{\rm sl}$ du montage vue entre le collecteur $C_{\rm l}$ de $T_{\rm l}$ et la masse est égale à $R_{\rm Cl}$.

Le concepteur considère que cette résistance de sortie est trop élevée. Il décide d'ajouter un étage en utilisant un transistor T_2 identique à T_1 comme indiqué en figure 2. La base de T_2 est reliée au collecteur de T_1 . Aussi le courant de base de T_2 est prélevé sur le courant qui circule dans la résistance $R_{\rm CL}$.

- Sachant que R_{E2} = 1 kΩ, en déduire la valeur du courant de repos I_{C2} de T₂.
- 8. Monter que le gain en tension du premier étage est peu affecté par la présence du deuxième.
- 9. Que devient le gain en tension A du montage complet ?
- 10. On choisit une position du potentiomètre telle que : A₁ = -40. Sachant que la sortie v_{s1} du premier étage est représentée sous la forme de Thévenin (e_{g1}, R_{g1}), on se propose de calculer la résistance de sortie R_s du montage complet vue entre E₂ et la masse.
 - a. Donner la valeur de eglet Rgl.
 - b. Calculer R_s et faire l'application numérique.

CORRECTION

Q1a Q1b : En régime continu, les condensateurs sont des circuits ouverts : $i_C = C \frac{dV_{cons}}{dt} = 0$.

$$I_{B1} = I_{C1}/\beta = 20 \mu A$$

$$R_1 = 730 \text{ k}\Omega$$

Q2 : schéma équivalent aux petites variations et aux fréquences moyennes du montage.

Q3 : Résistance d'entrée $R_{e1} = v_e/i_e$.

Q3: Resistance \mathbf{q} entree $\mathbf{R}_{e1} = \mathbf{r}_{e'}\mathbf{r}_{g}$. Ecrire l'équation au nœud \mathbf{B}_{1} : $i_{g} = \frac{\mathbf{v}_{e}}{R_{1}} + i_{b1}$ Soit: $\frac{i_{g}}{\mathbf{v}_{e}} = \frac{1}{R_{e1}} = \frac{1}{R_{1}} + \frac{1}{\frac{\mathbf{v}e}{i_{e}}}$

Soit:
$$\frac{i_g}{v_e} = \frac{1}{R_{el}} = \frac{1}{R_1} + \frac{1}{ve}$$

c'est à dire :

$$R_{e1} = R_1 / \frac{v_e}{i_{b1}}$$

Sachant que : $v_e = r_{bel}i_{bl} + [(1-\alpha)R_{El}](\beta+1)i_{bl}$, il vient :

$$R_{e1} = R_1 / \{ r_{be1} + [(1 - \alpha)R_{E1}](\beta + 1) \} \approx r_{be1} + [(1 - \alpha)R_{E1}](\beta + 1)$$

$$r_{bel} = \beta \frac{U_T}{I_{Cl}} = 1,25k\Omega.$$

La résistance d'entrée varie de 48 k Ω (α = 0) à 1,25 k Ω (α = 1). Elle est sensiblement proportionnelle à la résistance placée dans l'émetteur du transistor soit : $(1-\alpha)R_{EI}(\beta+1)$.

Evolution de Rel en fonction de ac.

Q4 : $v_{si} = -\beta R_{Cl} i_{bl}$. Compte tenu de la question précédente (relation entre v_c et i_{bl}), il vient :

$$A_{\rm l} = \frac{v_{\rm d}}{v_{\rm e}} = -\frac{\beta R_{\rm Cl}}{r_{\rm bel} + [(1-\alpha)R_{\rm El}](\beta+1)}$$

Evolution du gain en fonction de a.

Le gain en tension varie de -360 ($\alpha = 1$) à -8.75 ($\alpha = 0$).

La solution technique consiste à placer dans l'émetteur une résistance fixe R de 40 Ω (A₁ = -40) en série avec un potentiomètre R_{E1} de 160 Ω monté en résistance variable dont le curseur est découplé à la masse par un condensateur Ca.

En effet pour la valeur : R+REI, le gain est minimum soit - 8,75.

Q6 : Méthode de l'ohmmètre : annuler e, et placer à la sortie un générateur (u,i).

La maille B_1 , E_1 , masse donne la relation : $0 = (R_1 / / r_{be1})i_{b1} + (\beta + 1)(1 - \alpha)R_{E1}i_{b1}$ dont la solution est $i_{b1} = 0$ avec comme conséquence : $\beta.i_{b1} = 0$. La résistance de sortie R_{s1} est alors :

$$R_{i1} = \frac{u}{i} = R_{C1}$$

Q7 : La liaison entre T1 et T2 est directe.

La tension V_{CIM} étant de 6V, $V_{EZM} = V_{CIM} - V_{BE2} = 5.4 \text{ V}$. Alors : $I_{C2} = 5.4 \text{ mA}$.

Q8 : Aux variations le premier étage est chargé par la résistance d'entrée R_{e2} du deuxième étage dont le schéma aux variations est le suivant :

$$R_{c2} = rb_{c2} + (\beta + 1)R_{E2} = 252k\Omega$$

Le gain du premier étage devient alors : $A_1 = \frac{1}{2}$

$$A_{\rm t} = \frac{v_{st}}{v_e} = -\frac{\beta . (R_{C1} / / R_{e2})}{r_{bel} + [(1 - \alpha) R_{E1}](\beta + 1)}$$

Avec: R_{e2} >> R_{C1}, le gain A₁ n'est pas modifié.

Q9 : Gain du montage complet : $A = A_1 . A_2$.

$$A_2 = \frac{v_{x2}}{v_{x1}} = \frac{\beta.(R_{E2})}{r_{be2} + R_{E2}(\beta + 1)} = 0,99$$

Donc A est sensiblement égal à A₁.

Q10a : Le générateur de Thévenin e_{gl} équivalent à la sortie du premier étage est égal à la tension de sortie à vide de cet étage à savoir $(e_{gl} = -40.v_e)$. Sa résistance interne R_{gl} est la résistance de sortie de cet étage soit R_{Cl} .

Q10b : Pour obtenir la résistance de sortie du montage complet on utilise la méthode de l'ohmmètre qui consiste d'une part à annuler e_g (ce qui annule le générateur lié e_{g1}) et d'autre part de placer en sortie du 2° étage un générateur (u, i).

Le schéma du montage est alors le suivant :

En écrivant l'équation au nœud C_2 : $R_s = R_{E2} / \frac{R_{C1} + r_{be2}}{\beta + 1} = 11,600$

On remarquera que cette résistance de sortie faible, est indépendante du gain du premier étage.