

(Q) which of the following overlapping is not possible if x is internuclear axis. Also write the

type of bond from whether sigma or pi.

(a) PX+PX

head on

H.W

(Q) which of the following overlapping is not possible. Also write the type of bond from whether internuclear sigma or pi.

si Bond. (a) PX+PX

not possible (b) PX +PY

TiBmd. (G)PY+PY

6 Bmd. (d)PZ+PZ

not possible (e)PX+PZ

7768 10 551616 (f)Py+Pz

not possi 110 (g) S+PX

mot possible.

Explain bonding in (a) 02 (b) N2

Oxygen molecule: The electronic configuration of oxygen atom is $(1s)^2 (2s)^2 (2p_x)^2 (2p_y)^1 (2p_z)^1$. There are two 2p atomic orbital, each containing one electron. Thus it can form two bonds — σ and π bonds.

Nitrogen molecule: The electronic configuration of nitrogen atom is $(1s)^2(2s)^2(2p_x)^1(2p_y)^1(2p_z)^1$. There are three 2p orbitals, each containing one electron. Thus it can form three bonds—one σ and two π -bonds.

THE DASA APS

AN [He]
$$as^2$$
 ap^3

AN [He] as^2 ap^3

N $= N$ $= N$ $= N$ $= N$ $= N$

Side wise overlapping (dTI - PTI Overlapping)

	overlapping	Inter nuclear axis.	Type of bond.	Example
5.	Pz +dz2	Z axís.	Sígma	p_z d_z^2
6.	Px + dxy Py + dxy	Y axís X axís	Pí	x y π P_{ν}

	overlapping	Inter nuclear axís.	Type of bond.	Example
	Py + dyz	Z axís.	Pí	X T
	Pz+ dyz.	Y axís.	Pí	$\hat{\mathbf{x}}$
				yX
8.	Px + dxz	Z axís	Pí	d_{xv} P_x
	Pz + dxz.	x axís	Pí	

Side-wise dr - dr overlapping

Inter nuclear axís

Combination of orbitals	Type of bond	INA
$d_{xy} + d_{xy}$	π	X/Y
$d_{yz} + d_{yz}$	π	Y/Z
$d_{xz} + d_{xz}$	π	X/Z

Explain bonding in So3 using VBT

35²

$$3P\Pi - 2P\Pi = 1$$

 $3d\Pi - 2P\Pi = 2$

(Q)
$$P\Pi - P\Pi = 1$$

 $A\pi - P\Pi = 2$

Strength of pi bond:

Compare bond strength

(a)
$$2P_{\Pi} - 2P_{\Pi} >$$
 (b) $2P_{\Pi} - 3d_{\Pi} >$ C) $2P_{\Pi} - 3P_{\Pi} >$ (d) $3P_{\Pi} - 3P_{\Pi} >$ Strongest. Very weak too weak t

(b)
$$2P_{\Pi} - 3d_{\Pi}$$

Stable.

too weak to be formed

Size increases strength of pi bond decreases

(Q) 02., N2 exist at room temperature but S2, P2 doesn't.?

Solution:
$$0.000$$
; 0.000 ;

(n=3) :
$$S = S$$
:

 $P = P$
 $S = S$:

 $S = S$:

