自動機與形式語言 Homework 5

Class 02 B03902086 李鈺昇

(1)

First, recall the computable function that appears in the solution to HW4:

Function-All-or-Nothing

Input: A TM description $|\mathcal{M}|$ and a word w

Task: Output another TM description $\lfloor \mathcal{M}_w \rfloor$ such that:

- If \mathcal{M} accepts w, \mathcal{M}_w accepts every word.
- If \mathcal{M} does not accept w, \mathcal{M}_w does not accept any word.

Let Accept-Epsilon = $\{\lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts } \epsilon\}$. Now I show HALT = $\{\lfloor \mathcal{M} \rfloor \$ w \mid \mathcal{M} \text{ accepts } w\} \leq_T \text{Accept-Epsilon}$ by giving the following algorithm:

On input $|\mathcal{M}|$ \$w of HALT,

- Compute $\lfloor \mathcal{M}_w \rfloor$ with Function-All-or-Nothing($\lfloor \mathcal{M} \rfloor, w$).
- Suppose \mathcal{N} decides Accept-Epsilon. Check whether $\lfloor \mathcal{M}_w \rfloor \in$ Accept-Epsilon by running \mathcal{N} on $\lfloor \mathcal{M}_w \rfloor$. Output True if so, otherwise output False.

The correctness of this reduction is clear as follows:

- If $|\mathcal{M}| \$ w \in \mathsf{HALT}$, \mathcal{M} accepts w. Thus $|\mathcal{M}_w|$ accepts every word, including ϵ . So $|\mathcal{M}_w| \in \mathsf{Accept-Epsilon}$.
- If $\lfloor \mathcal{M} \rfloor \$w \notin \mathsf{HALT}$, \mathcal{M} does not accept w. Thus $\lfloor \mathcal{M}_w \rfloor$ does not accept any word, which means it does not accept ϵ . So $|\mathcal{M}_w| \notin \mathsf{Accept-Epsilon}$.

Since HALT is undecidable and HALT \leq_T Accept-Epsilon, we know Accept-Epsilon is undecidable.

(2)

Suppose $L_1, L_2 \in \mathbf{NP}$. By definition, there are NTMs $\mathcal{M}_1, \mathcal{M}_2$ such that \mathcal{M}_1 decides L_1 in $O(n^{k_1})$ time, and \mathcal{M}_2 decides L_2 in $O(n^{k_2})$ time. Construct NTMs $\mathcal{M}_{\cup}, \mathcal{M}_{\cap}$ as follows:

- \mathcal{M}_{\cup} = "On input w, run \mathcal{M}_1 on w and \mathcal{M}_2 on w. If at least one of them accept, accept; otherwise, reject."
- \mathcal{M}_{\cap} = "On input w, run \mathcal{M}_1 on w and \mathcal{M}_2 on w. If both of them accept, accept; otherwise, reject."

It's obvious that \mathcal{M}_{\cup} decides $L_1 \cup L_2$ and \mathcal{M}_{\cap} decides $L_1 \cap L_2$.

Since \mathcal{M}_{\cup} and \mathcal{M}_{\cap} both call \mathcal{M}_1 and \mathcal{M}_2 exactly once, we know \mathcal{M}_{\cup} and \mathcal{M}_{\cap} both run in $O(n^{k_1}) + O(n^{k_2}) = O(n^k)$ time, where $k = \max(k_1, k_2)$.

It then follows that $L_1 \cup L_2, L_1 \cap L_2 \in \mathbf{NP}$.

(3)

By definition of $\mathbf{coNP} = \{L \mid \Sigma^* - L \in \mathbf{NP}\}$, if $\Sigma^* - L \in \mathbf{coNP}$, then $L = \Sigma^* - (\Sigma^* - L) \in \mathbf{NP}$. The second argument (if $L \in \mathbf{coNP}$ then $\Sigma^* - L \in \mathbf{NP}$) is immediate by definition.

(4)

Suppose $NP \subseteq coNP$.

Now for any $L \in \mathbf{coNP}$, we have $\Sigma^* - L \in \mathbf{NP} \subseteq \mathbf{coNP}$, which implies $L = \Sigma^* - (\Sigma^* - L) \in \mathbf{NP}$. So $\mathbf{coNP} \subseteq \mathbf{NP}$, hence $\mathbf{NP} = \mathbf{coNP}$.

(5)

Suppose $\mathsf{SAT} \in \mathbf{coNP}$. Then $\Sigma^* - \mathsf{SAT} \in \mathbf{NP}$.

Let \mathcal{M} be the polynomial-time NTM that decides $\Sigma^* - \mathsf{SAT}$.

Now for any $L \in \mathbf{NP}$, we have $L \leq_p \mathsf{SAT}$, since SAT is \mathbf{NP} -hard. So there is a polynomial-time computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in L \Leftrightarrow f(w) \in \mathsf{SAT}.$$
 (1)

Clearly (1) equivalent to

$$w \in \Sigma^* - L \Leftrightarrow f(w) \in \Sigma^* - \mathsf{SAT},$$
 (2)

which implies $\Sigma^* - L \leq_p \Sigma^* - \mathsf{SAT}$.

Now construct the NTM $\mathcal{N}=$ "On input w, output the result of \mathcal{M} on f(w)," which decides Σ^*-L by (2). We see that \mathcal{N} runs in polynomial time since \mathcal{M} and f both run in polynomial time. Therefore $\Sigma^*-L\in\mathbf{NP}$, or $L\in\mathbf{coNP}$.

The above shows $\mathbf{NP} \subseteq \mathbf{coNP}$, and hence $\mathbf{NP} = \mathbf{coNP}$ by Problem (4).