

HCAI5TML01 – Mathematics of Learning. Week – 1: Lecture – 02

A Refresher on the Mathematics Behind Machine Learning. Linear Algebra – Towards Fundamental Theory of Linear Algebra.

Siman Giri

Exercise

Problem 1: Span

Determine whether the vector $\mathbf{v} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ is in the span of the vectors $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Problem 2: Basis

Do the vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$ form a basis of \mathbb{R}^3 ?

1. The Fundamental Subspace of a Matrix.

1.1 Matrix as a Function: Linear Transformation.

- For a matrix $\mathbf{A} \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$,
 - we can view this matrix as a function that maps vectors from \mathbb{R}^n to vectors in \mathbb{R}^m .
- This mapping is implemented by matrix vector multiplication i.e. Ax = b.
 - Here, A vector $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$ is mapped to vector $\mathbf{b} \in \mathbb{R}^{\mathbf{m}}$.
- Stated as Linear Transformation:
 - We can define a function $T: \mathbb{R}^n \to \mathbb{R}^m$ as:
 - T(x) := Ax

- What is the Range of a Matrix?
 - For matrix $A \in \mathbb{R}^{m \times n}$, The range of A (aka image of the linear transformation A),
 - is the set of all vectors in \mathbb{R}^m that can be written as Ax for some $x \in \mathbb{R}^n$.
 - Range(A) = $\{b \in \mathbb{R}^m | b = Ax \text{ for some } x \in \mathbb{R}^n \}$.

Fig: Solution of Ax {image: pablo (©catbug88)}.

1.1 Matrix subspaces

- Let's recall the definition of a subspace in the context of vectors:
 - Contains the zero vector, $0 \in S$
 - Closure under multiplication, $\forall \alpha \in \mathbb{R} \rightarrow \alpha \times s_i \in S$
 - Closure under addition, $\forall s_i \in S \rightarrow s_1 + s_2 \in S$
- Since matrices are collections of vectors (as rows or columns), we can explore all the subspaces formed by their structure.
 - Thus, now we can ask what are all possible subspaces that can be "covered" by a collection of vectors in a matrix.
- There are four fundamental subspaces that can be "covered" by a matrix of valid vectors, Hence called:
 - "The Four Fundamental Subspaces"

- What is the Range of a Matrix?
 - For matrix $A \in \mathbb{R}^{m \times n}$, The range of A (aka image of the linear transformation A),
 - is the set of all vectors in \mathbb{R}^m that can be written as Ax for some $x \in \mathbb{R}^n$.
 - Range (A) = $\{b \in \mathbb{R}^m | b = Ax \text{ for some } x \in \mathbb{R}^n \}$.

1.2 The Four Fundamental Subspaces.

Let $A \in \mathbb{R}^{m \times n}$. Then:				
Subspace	Symbol	Defined in:	Dimension	Description
Column Space	Col(A)	\mathbb{R}^{m}	rank(A)	All vectors b for which $\mathbf{A}\mathbf{x} = \mathbf{b}$ is solvable.
Null Space	Null(A)	\mathbb{R}^{n}	rank – rank(A)	All solutions to $\mathbf{A}\mathbf{x} = 0$.
Row Space	Row(A)	\mathbb{R}^{n}	rank(A)	The span of rows of \mathbf{A} (or columns of $\mathbf{A}^{\mathbf{T}}$).
Left Null Space	$Null(A^T)$	$\mathbb{R}^{ ext{m}}$	m – rank(A)	All $y \in \mathbb{R}^m$ such that $A^T y = 0$.

1.2.1 Column Spaces.

- The **column space** of a matrix $A \in \mathbb{R}^{m \times n}$, denoted as C(A),
 - is the set of all **linear combinations** of its **column vectors**.
 - For any Matrix A, the column space of A, is the vector space that spans the column vectors of A.
- Formal Definition:
 - Let $A \in \mathbb{R}^{m \times n}$. The column space of A is: $C(A) = \{b \in \mathbb{R}^m | b = Ax \text{ for some } x \in \mathbb{R}^n \}$
- Interpretation:
 - Each **column of A** is a vector in $\mathbb{R}^{\mathbf{m}}$.
 - The column space is the span of these vectors.
 - Any **output b** \in **C**(**A**) is formed by multiplying with some **vector** $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$.
 - Determines the **range** of the **linear transformation A.**
 - Range(A) = $\{b \in \mathbb{R}^m | b = Ax \text{ for some } x \in \mathbb{R}^n\} = C(A)$.

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

1.2.2 Row Spaces

- The row space of a matrix $A \in \mathbb{R}^{m \times n}$, denoted as $\mathcal{R}(A)$, is the set of all linear combinations of its row vectors.
- Formal Definition:
 - Let $A \in \mathbb{R}^{m \times n}$. Then the row space of A is:
 - $\mathcal{R}(A) = \{y \in \mathbb{R}^n | y = \alpha_1 r_1 + \alpha_2 r_2 + \dots + \alpha_m r_m \text{ for some } \alpha_i \in \mathbb{R} \}$ or can also be written as:
 - $\mathcal{R}(A) = \text{span of the row vectors of } A$.
- Interpretation:
 - Each row of A is a vector in \mathbb{R}^n
 - The row space is a subspace of \mathbb{R}^n
 - It contains all possible linear combinations of the rows.
- Key properties:
 - Dimension of **row space = rank(A)**.
 - The row space of A is the column space of $A^T: \mathcal{R}(A) = C(A^T)$
 - Row space **captures constraints** on the **input x** in solving Ax = b.

Fig: Matrix as a row vector.

Fig: Row space.

Constraint in Linear Algebra:

- A **constraint** is a rule or condition that a solution must satisfy.
 - In the context of solving a system of equations like: Ax = b
 - Each row of the matrix A represents a linear equation,
 - and each of these equation is constraint on the unknown vector x.
- Example:
 - Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $b = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$
 - This gives two constraints:
 - $\frac{x_1 + 2x_2 = 5}{3x_1 + x_2 = 7}$ so, vector x must satisfy both equations at same time,
 - each equation constraints what the value or solution of $\mathbf{x} \in \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \end{bmatrix}$ can be.
- Interpretation:
- The solution x must lie in space of inputs that satisfy all linear constraints defined by the rows.
 - Must lie in the subspace of Row vectors i.e. Row space.
- If multiple rows are linearly dependent some constraints are redundant i.e., they give the same constraint, just scaled not adding any new information.

1.2.3 Null Space.

- Let $A \in \mathbb{R}^{m \times n}$.
 - The null space of A, denotes as $\mathcal{N}(A)$, is the **set of all vectors** $\mathbf{x} \in \mathbb{R}^n$ that get **mapped to the zero** vector when multiplied by A:
 - $\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{A}\mathbf{x} = \mathbf{0}\}$
 - So, It is the set of all input vectors that get mapped to the zero vector in output.
 - The entire direction of x is lost or flattened by the transformation.

• Interpretation:

- Each vector in the null space is an input $x \in \mathbb{R}^n$ that gets sent to $0 \in \mathbb{R}^m$
- The null space lives in \mathbb{R}^n (input space)
- If A is full rank, **null space(0)**
- If A is rank deficient, null space contains infinitely many directions.
- The dimension of the null space is called the nullity: nullity(A) = n rank(A)
 - This tells you the **number of independent directions in input space** that are **flattened to zero** by A.
 - nullity tells you how many input dimensions are invisible in the output

1.2.4 Left Null Space – Null Space of Transpose.

- Let $\mathbf{A} \in \mathbb{R}^{\mathbf{m} \times \mathbf{n}}$.
 - The left null space of A, also known as the **null space of A^{T}** is:
 - $\mathcal{N}(\mathbf{A}^T) = \{ \mathbf{y} \in \mathbb{R}^n | \mathbf{A}^T \mathbf{y} = \mathbf{0} \}$
- Interpretation:
 - It is the set of all vectors in \mathbb{R}^m that are orthogonal to rows of A.
 - In layman terms:
 - What vectors, when dotted with each row of A, give zero?
 - So,
 - While $\mathcal{N}(A) \subset \mathbb{R}^n$ (input directions killed by A)
 - $\mathcal{N}(A^T) \subset \mathbb{R}^m$ (output directions orthogonal to the row space of A)

Fundamental Subspaces of Matrix.

{Example Walkthrough with a Matrix.}

Example.

Let's take:

•
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$$

- Compute all Four Subspaces:
 - 1. Step 1: Row reduced to Echelon Form:
 - Apply row operations:

$$\begin{array}{ccc}
R_2 \leftarrow R_2 - 2R_1 \\
R_3 \leftarrow R_3 - R_1
\end{array}
\Rightarrow
\begin{bmatrix}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 1 & -2
\end{bmatrix}$$

•
$$R_2 \leftarrow R_2 - 2R_1 \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

• $R_3 \leftarrow R_3 - R_1 \Rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$
• $R_3 \leftarrow -1 \cdot R_3$ and swap $\Rightarrow A_{ref} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

- Identify the rank of Matrix:
 - rank(A) = 2
 - As there are **two pivots** in **A**_{ref} matrix.
 - What are Pivots?

Understanding Pivot and Rank.

- **Pivots** are the first non-zero entries in each row of a matrix after it has been transformed into **row echelon form** (REF) or **reduced row echelon form** (RREF).
- Key Properties:
 - Location:
 - Each pivot must be the **leftmost non-zero element** in its row.
 - Pivots shift to the right as you move down the rows.
 - Structure:
 - In **REF**: Pivots can be any non-zero number (often normalized to 1).
 - In RREF: Pivots are 1, and all entries above/below them are 0.
 - Uniqueness:
 - Each row and column can contain at most one pivot.
 - The number of **pivots = rank of the matrix**.
 - In the example above: $2 \text{ pivots} \rightarrow \text{rank} = 2$.
 - Singular (Rank-Deficient) Matrix:
 - At least one row lacks a pivot

Good to Know: REF vs RREF

Property	REF	RREF
Leading Entry	First non-zero entry in a row (pivot) can be any non-zero number.	Pivots must be 1.
Pivot Columns	Entries below pivots are 0.	Entries above and below pivots are 0.
Uniqueness	Not unique (multiple REFs possible).	Unique for a given matrix.

$$A_{\text{ref}} = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

REF or RREF.

Compute Column and Row Space.

- Column Space:
 - Use original columns (1st and 2nd):

• Col(A) = span
$$\left\{\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\4\\1 \end{bmatrix}\right\} \subset \mathbb{R}^3$$

- $\dim(\operatorname{Col}(A)) = 2$
- "Pivot columns in RREF → corresponding columns in original A."
- Row space:
 - Take non zeros from row reduced form:
 - $\mathcal{R}(A) = \text{span}\{[1 \ 2 \ 3], [0 \ 1 \ 2]\} \subset \mathbb{R}^3$
 - "Non-zero rows in RREF (not original matrix!) define the row space."

Null and Left Null Space

- Null Space:
 - Solve Ax = 0
 - Form REF:

•
$$x_1 + 2x_2 + 3x_3 = 0$$

 $x_2 + 2x_3 = 0$ $\Rightarrow x_2 = -2x_3, x_1 = x_3$

• General Solution:

•
$$\mathbf{x} = \mathbf{x}_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \Rightarrow \text{Null}(\mathbf{A}) = \text{span} \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\} \subset \mathbb{R}^3$$

• Left Null Space:

$$\bullet \ \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 3 & 6 & 1 \end{bmatrix}$$

• Solve $\mathbf{A}^{\mathsf{T}}\mathbf{y} = \mathbf{0}$, i.e.,

$$\begin{array}{c} y_1 + 2y_2 + y_3 = 0 \\ \bullet \ \ 2y_1 + 4y_2 + y_3 = 0 \\ 3y_1 + 6y_2 + y_3 = 0 \end{array} \Rightarrow solution; y = y_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \Rightarrow Null(A^T) = span \begin{Bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{Bmatrix}$$

Summary

Subspace	Space it lies in	Dimension	Spanned by
Column Space	\mathbb{R}^3	2	First and Second Column of A.
Null Space	\mathbb{R}^3	1	$\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^{\mathrm{T}}$
Row Space	\mathbb{R}^3	2	Two non – zero rows from REF of A
Left Null Space	\mathbb{R}^3	1	$[-1 0 1]^{\mathrm{T}}$

What does it mean for Machine Learning?

Exercise.

Problem 3: Null Space

Find the null space of the matrix

$$A = egin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 6 \end{bmatrix}$$

1.3 Revisiting: Rank.

- The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as:
 - rank(A) = dimension of the column space of A.
 - That is, it is the maximum number of linearly independent columns (or rows) in the matrix.
- Equivalently:
 - rank(A) = number of pivot columns in row echelon form of A.
- **Column rank** = **Row rank**; Even though they come from different spaces.
 - Column space is in \mathbb{R}^m and
 - Row space is in \mathbb{R}^n
- The number of linearly independent columns = number of linearly independent rows, always.

1.3.1 Rank: Number of Useful Directions.

- In linear algebra and machine learning,
 - rank tells us how much of the input space survives after applying a linear transformation (represented by a matrix).
- Formal Statement:
 - The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the dimension of the column space (or row space).
 - It tells you how many linearly independent directions (basis vectors) are preserved or not collapsed into zero.
- Interpretation:
 - Think of a matrix as a **machine** that transforms input vectors $x \in \mathbb{R}^n$ into outputs $Ax \in \mathbb{R}^m$.
 - Some directions get **flattened** or **lost** in the process (they become zero or redundant).
 - The rank tells you how many directions don't get flattened i.e., the useful directions.

Example:

- Full Rank (rank = n):
 - No information lost.
 - Transformation is **invertible** (if square).
 - All directions in input space are useful.
 - E.g., Identity matrix.

- Rank 1 matrix in $\mathbb{R}^{3\times3}$:
 - All input vectors get mapped to a line.
 - Only **one direction** is preserved.
 - The rest collapse (projected onto that line).
 - So: only 1 "useful direction."

1.3.2 Rank and Machine Learning Example.

- Suppose you have a **feature matrix** $X \in \mathbb{R}^{n \times p}$, but many **features are linear combinations** of each other (collinearity).
 - The rank(X) < p, and you are not learning from p truly independent directions.
 - Techniques like PCA, regularization, and SVD help isolate these useful directions.

2. Col Space and Machine Learning.

2.1 What Fundamental Subspace tells about data?

- For a **feature matrix**:
 - $X \in \mathbb{R}^{n \times d}$ (with n samples, and d features),
 - the four fundamental subspaces reveal critical insights about your data and model.
- In upcoming slides, we will explore each subspace with a context of **linear regression problem**.

2.2 Linear Regression and the Col Space: A Geometric Intuition.

- Linear Regression as a Linear System:
 - In linear regression, we model the relationship: $y = X\beta + \epsilon$,
 - Where:

```
X \in \mathbb{R}^{n \times d} \to \text{ is the feature matrix (each row is a simple, each column feature)}
y \in \mathbb{R}^n \to \text{ is the target vector}
\beta \in \mathbb{R}^d \to \text{ is the coefficient vector to find,}
\epsilon \in \mathbb{R}^n \to \text{ is the error/residual}
```

• The goal is to solve: $X\beta \approx y$.

2.2 Linear Regression and the Col Space: A Geometric Intuition.

- Column Space: The "Reachable" Outputs:
 - The column space of X (Col(X)) is the span of the feature vectors (columns of X).
 - It contains all possible linear combinations of the features, i.e. all possible predictions Xβ.
- Key insights:
 - If $y \in Col(X)$, there exists a perfect solution β such that $X\beta = y$.
 - If $y \notin Col(X)$, not exact solution exists, and we seek the best approximation (least squares).
- Geometric Interpretations:
 - Perfect Fit (Rare):
 - If y lies exactly in Col(X), the regression line/passes through all data points.
 - This is almost impossible in real world scenario.
 - Approximate fit:
 - If y in not in Col(X), the best we can do is
 - project y onto Col(X), minimizing $||y X\beta||^2$ called residual.
 - The residual is orthogonal to Col(X) i.e. it lies in Left NULL(X).

Linear Regression Geometry- A Column Space View

Regression Plane

26

Residual

To summarize:

Subspace	Dimension (if $A \in \mathbb{R}^{m \times n}$)	ML meaning	
Column space	rank(A)	All reachable predictions (range of model).	
Null Space	n – rank(A)	Input directions that have no effect (feature redundancy)	
Row Space	rank(A)	What constraints are imposed on inputs (in dual space)	
Left Null Space	m - rank(A)	Residual errors in least squares, inconsistency.	

Exercise

Problem 4: Fundamental Subspaces

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 5 & 10 \end{bmatrix}$$
. Find the rank, nullity, and describe the fundamental subspaces.

{Eigen Value Problem aka eigen – value Decompositions.}

3.1 Eigen Vector and Eigen Value.

- An eigenvector of a square matrix **A** is a non-zero vector **v** that, when multiplied by **A**, results in a scalar multiple of itself.
 - In other words, it is a vector that does not change direction when the linear transformation represented by A is applied to it.
 - Instead, it only gets scaled by a certain factor, called the **eigenvalue**.
- Mathematically, for any **Matrix vector** pair if following holds:
 - $Av = \lambda v$
 - then the **vector** v is called eigen vector and the **scaling factor** λ is called eigen value.
- Key points about eigen vectors:
 - Non-zero: Eigenvectors are always non-zero vectors, i. e. $\mathbf{v} \neq \mathbf{0}$.
 - Scaling: The transformation A simply scales the eigenvector by the eigenvalue λ ;
 - it does not change the **vector's direction**.
 - **Multiple eigenvectors**: For each eigenvalue, there can be infinitely many eigenvectors, all scalar multiples of each other. They form a subspace (called the eigenspace) corresponding to that eigenvalue.

4.1.1 Identify the Eigen Vector.

- Consider a matrix
 - $A = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix}$ and
 - vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Which are Eigen vectors?
 - For $v \rightarrow we$ check if v is an eigenvector by calculating Av:

• Av =
$$\begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow 4v$$
.

- So, **v** is an eigen vector with eigenvalue $\lambda = 4$.
- What about w?

3.1.1 Identify the Eigen Vector.

- Consider a matrix
 - $A = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix}$ and
 - vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Which are Eigen vectors?
 - For $w \rightarrow we$ check if w is an eigenvector by calculating Aw:

• Aw =
$$\begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \neq \lambda w$$
.

- So, w is not an eigen vector there does not exist a
 - scalar λ under which $Aw = \lambda w$ holds true.

3.2 Eigen Value Problem.

- The **eigenvalue problem** is a fundamental concept in linear algebra and plays a critical role in various fields such as machine learning, physics, and computer science.
- It involves **finding scalar values** (called **eigenvalues**) and corresponding **non-zero vectors** (called **eigenvectors**) for a given **square matrix**.
 - Mathematically, Given a square matrix A, the eigenvalue problem is to find scalars λ and eigenvector v that satisfy the following equation.
 - $Av = \lambda v$.

3.3 Steps to solve the Eigenvalue Problem.

- Write the characteristic equation:
 - To find the eigenvalues, we rewrite the equation as:
 - $(A \lambda I)v = 0$ {called characteristic equation}
 - Where:
 - I is the identity matrix of the same size as A,
 - $\lambda \rightarrow$ eigen values.
 - $\mathbf{v} \rightarrow \mathbf{eigen} \ \mathbf{vector}$.
 - Cautions: the matrix $A \lambda I$ must be singular i.e. $det(A \lambda I) = 0$.
- Compute the characteristic polynomial:
 - Solve
 - $det(A \lambda I) = 0$,
 - which gives a **polynomial equation in** λ which is called characteristic polynomial.
- Solve the characteristic polynomial:
 - Solve the polynomial equation to find the eigenvalues λ_1 , λ_2 , ... λ_n .
- Find the eigen vectors:
 - For each eigen value λ_i ,
 - substitute it back into the equation $(A \lambda I)v = 0$ and solve for the **eigenvector** v.

4.3.1 Example Problem.

Eigenvalues of Matrix A

Consider a matrix A:

$$A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$$

The characteristic equation is:

$$\det(A - \lambda I) = \det\begin{pmatrix} 4 - \lambda & 2\\ 1 & 3 - \lambda \end{pmatrix} = 0$$

Expanding the determinant:

$$(4 - \lambda)(3 - \lambda) - 2 \times 1 = 0$$

Simplifying:

$$\lambda^2 - 7\lambda + 10 = 0$$

Solving this quadratic equation:

$$\lambda_1 = 5, \quad \lambda_2 = 2$$

4.3.1 Example Problem.

Eigenvectors of Matrix A

Next, we find the eigenvectors:

For $\lambda_1 = 5$, solve (A - 5I)v = 0:

$$(A - 5I) = \begin{pmatrix} -1 & 2\\ 1 & -2 \end{pmatrix}$$

Solving the system:

$$\begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

This gives the eigenvector:

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For $\lambda_2 = 2$, solve (A - 2I)v = 0:

$$(A - 2I) = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$$

Solving the system:

$$\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

This gives the eigenvector:

$$v_2 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

Conclusion: For the matrix A, the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 2$, with corresponding eigenvectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

and
$$v_2 = \begin{pmatrix} -1\\2 \end{pmatrix}$$
.

4.4 Eigenvalue Decomposition.

- Eigenvalue Decomposition is a process where a square matrix is factorized into
 - its eigenvalues and eigenvectors.
 - Specifically, for a matrix A, if it can be decomposed into a product of three matrices:
 - $A = V\Lambda V^{-1}$
 - where:
 - **A** is the original matrix.
 - **V** is the matrix whose columns are the eigenvectors of A.
 - Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A.
 - V^{-1} is the inverse of the matrix V.
- One of the application of Eigenvalue decomposition is **Principal Component Analysis** used for dimensionality reduction purposes.

Thank You.