$\S 1 \ \sigma$ -Algebren und Maße

In diesem Paragraphen sei $\emptyset \neq X$ eine Menge.

Definition

Sei $\mathfrak{A} \subseteq \mathcal{P}(X)$, \mathfrak{A} heißt eine σ -Algebra auf X, wenn gilt:

- $(\sigma_1) \ X \in \mathfrak{A}$
- (σ_2) Ist $A \in \mathfrak{A}$, so ist auch $A^c \in \mathfrak{A}$.
- (σ_3) Ist (A_j) eine Folge in \mathfrak{A} , so ist $\bigcup A_j \in \mathfrak{A}$.

Beispiel

- (1) $\{X,\emptyset\}$ und $\mathcal{P}(X)$ sind σ -Algebra auf X.
- (2) Sei $A \subseteq X$, dann ist $\{X, \emptyset, A, A^c\}$ eine σ -Algebra auf X.
- (3) $\mathfrak{A} := \{A \subseteq X : A \text{ abz\"{a}hlbar oder } A^c \text{ abz\"{a}hlbar}\}$ ist eine σ -Algebra auf X.

Lemma 1.1

Sei \mathfrak{A} eine σ -Algebra auf X, dann:

- $(1) \varnothing \in \mathfrak{A}$
- (2) Ist (A_i) eine Folge in \mathfrak{A} , so ist $\bigcap A_i \in \mathfrak{A}$.
- (3) Sind $A_1, \ldots, A_n \in \mathfrak{A}$, so gilt:
 - (i) $A_1 \cup \cdots \cup A_n \in \mathfrak{A}$
 - (ii) $A_1 \cap \cdots \cap A_n \in \mathfrak{A}$
 - (iii) $A_1 \setminus A_2 \in \mathfrak{A}$

Beweis

- (1) $\varnothing = X^c \in \mathfrak{A} \text{ (nach } (\sigma_2)).$
- (2) $D := \bigcap A_j$. $D^c = \bigcup A_j^c \in \mathfrak{A}$ (nach (σ_2) und (σ_3)), also gilt auch $D = (D^c)^c \in \mathfrak{A}$.
- (3) (i) $A_1 \cup \cdots \cup A_n \in \mathfrak{A}$ folgt aus (σ_3) mit $A_{n+j} := \emptyset$ $(j \ge 1)$.
 - (ii) $A_1 \cap \cdots \cap A_n \in \mathfrak{A}$ folgt aus (2) mit $A_{n+j} := X \ (j \ge 1)$.
 - (iii) $A_1 \setminus A_2 = A_1 \cap A_2^c \in \mathfrak{A}$

Lemma 1.2

Sei $\emptyset \neq \mathcal{F}$ eine Menge von σ -Algebren auf X. Dann ist

$$\mathfrak{A}_0:=\bigcap_{\mathfrak{A}\in\mathcal{F}}\mathfrak{A}$$

eine σ -Algebra auf X.

Beweis

- $(\sigma_1) \ \forall \mathfrak{A} \in \mathcal{F} : X \in \mathfrak{A} \implies X \in \mathfrak{A}_0.$
- (σ_2) Sei $A \in \mathfrak{A}_0$, dann gilt:

$$\forall \mathfrak{A} \in \mathcal{F} : A \in \mathfrak{A} \implies \forall \mathfrak{A} \in \mathcal{F} : A^c \in \mathfrak{A}$$
$$\implies A^c \in \mathfrak{A}_0$$

 (σ_3) Sei (A_i) eine Folge in \mathfrak{A}_0 , dann ist (A_i) Folge in \mathfrak{A} für alle $\mathfrak{A} \in \mathcal{F}$, dann gilt:

$$\forall \mathfrak{A} \in \mathcal{F} : \bigcap A_j \in \mathfrak{A} \implies \bigcap A_j \in \mathfrak{A}_0$$

Definition

Sei $\emptyset \neq \mathcal{E} \subseteq \mathcal{P}(X)$ und $\mathcal{F} := \{\mathfrak{A} : \mathfrak{A} \text{ ist } \sigma\text{-Algebra auf } X \text{ mit } \mathcal{E} \subseteq \mathfrak{A}\}$. Definiere

$$\sigma(\mathcal{E}) := \bigcap_{\mathfrak{A} \in \mathcal{F}} \mathfrak{A}$$

Dann ist wegen 1.2 $\sigma(\mathcal{E})$ eine σ -Algebra auf X. $\sigma(\mathcal{E})$ heißt die **von** \mathcal{E} **erzeugte** σ -Algebra. \mathcal{E} heißt ein **Erzeuger** von $\sigma(\mathcal{E})$.

Lemma 1.3

Sei $\emptyset \neq \mathcal{E} \subseteq \mathcal{P}(X)$.

- (1) $\mathcal{E} \subseteq \sigma(\mathcal{E})$. $\sigma(\mathcal{E})$ ist die "kleinste" σ -Algebra auf X, die \mathcal{E} enthält.
- (2) Ist \mathcal{E} eine σ -Algebra, so ist $\sigma(\mathcal{E}) = \mathcal{E}$.
- (3) Ist $\mathcal{E} \subseteq \mathcal{E}'$, so ist $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{E}')$.

Beweis

- (1) Klar nach Definition.
- (2) $\mathfrak{A} := \mathcal{E}$, dann gilt $\mathfrak{A} \subseteq \sigma(\mathcal{E}) \subseteq \mathfrak{A}$.
- (3) $\mathcal{E} \subseteq \mathcal{E}' \subseteq \sigma(\mathcal{E}')$, also folgt nach Definition $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{E}')$.

Beispiel

- (1) Sei $A \subseteq X$ und $\mathcal{E} := \{A\}$. Dann ist $\sigma(\mathcal{E}) = \{X, \emptyset, A, A^c\}$.
- (2) $X := \{1, 2, 3, 4, 5\}, \mathcal{E} := \{\{1\}, \{1, 2\}\}.$ Dann gilt:

$$\sigma(\mathcal{E}) := \{X, \emptyset, \{1\}, \{2\}, \{1, 2\}, \{3, 4, 5\}, \{1, 3, 4, 5\}, \{2, 3, 4, 5\}\}\$$

Erinnerung: Sei $d \in \mathbb{N}, X \subseteq \mathbb{R}^d$. $A \subseteq X$ heißt **offen** (**abgeschlossen**) in X, genau dann wenn ein offenes (abgeschlossenes) $G \subseteq \mathbb{R}^d$ existiert mit $A = X \cap G$. Beachte: A abgeschlossen in $X \iff X \setminus A$ offen in X.

Definition

Sei $X \subseteq \mathbb{R}^d$.

- (1) $\mathcal{O}(X) := \{ A \subseteq X : A \text{ ist offen in } X \}$
- (2) $\mathfrak{B}(X) := \sigma(\mathcal{O}(X))$ heißt Borelsche σ -Algebra auf X.
- (3) $\mathfrak{B}_d:=\mathfrak{B}(\mathbb{R}^d)$. Die Elemente von \mathfrak{B}_d heißen Borelsche Mengen oder Borel-Mengen.

Beispiel

- (1) Sei $X \subseteq \mathbb{R}^d$. Ist $A \subseteq$ offen (abgeschlossen) in X, so ist $A \in \mathfrak{B}(X)$.
- (2) Ist $A \subseteq \mathbb{R}^d$ offen (abgeschlossen) so ist $A \in \mathfrak{B}_d$.
- (3) Sei $d = 1, A = \mathbb{Q}$. \mathbb{Q} ist abzählbar, also $\mathbb{Q} = \{r_1, r_2, \ldots\}$ (mit $r_i \neq r_j$ für $i \neq j$). Also ist $\mathbb{Q} = \bigcup \{r_j\}$. Sei nun $r \in \mathbb{Q}$, dann ist $B := (-\infty, r) \cup (r, \infty) \in \mathfrak{B}_1$. Daraus folgt $\{r_j\} \in \mathfrak{B}_1$, also auch $\mathbb{Q} \in \mathfrak{B}_1$.

Allgemeiner lässt sich zeigen: $\mathbb{Q}^d := \{(x_1, \dots, x_d) : x_j \in \mathbb{Q} (j = 1, \dots, d)\} \in \mathfrak{B}_d$.

Definition

- (1) Seien I_1, \ldots, I_d Intervalle in \mathbb{R} . $I_1 \times \cdots \times I_d$ heißt ein **Intervall** in \mathbb{R}^d .
- (2) Seien $a = (a_1, \dots, a_d), b = (b_1, \dots, b_d) \in \mathbb{R}^d$.

$$a \le b :\iff a_j \le b_j \quad (j = 1, \dots, d)$$

(3) Seien $a, b \in \mathbb{R}^d$ und $a \leq b$.

$$(a,b) := (a_1,b_1) \times \cdots \times (a_d,b_d)$$

$$(a,b] := (a_1,b_1] \times \cdots \times (a_d,b_d]$$

$$[a,b) := [a_1,b_1) \times \cdots \times [a_d,b_d]$$

$$[a,b] := [a_1,b_1] \times \cdots \times [a_d,b_d]$$

mit der Festlegung $(a,b) := (a,b] := [a,b) := \emptyset$, falls $a_j = b_j$ für ein $j \in \{1,\ldots,d\}$.

(4) Für $k \in \{1, ..., d\}$ und $\alpha \in \mathbb{R}$ definiere die folgenden **Halbräume**:

$$H_k^-(\alpha) := \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k \le \alpha\}$$

 $H_k^+(\alpha) := \{(x_1, \dots, x_d) \in \mathbb{R}^d : x_k \ge \alpha\}$

Satz 1.4 (Erzeuger der Borelschen σ -Algebra auf \mathbb{R}^d)

Es seien $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3$ wie folgt definiert:

$$\mathcal{E}_1 := \{(a, b) : a, b \in \mathbb{Q}^d, a \le b\}$$

$$\mathcal{E}_2 := \{(a, b] : a, b \in \mathbb{Q}^d, a \le b\}$$

$$\mathcal{E}_3 := \{H_k^-(\alpha) : \alpha \in \mathbb{Q}, k = 1, \dots, d\}$$

Dann gilt:

$$\mathfrak{B}_d = \sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_2) = \sigma(\mathcal{E}_3)$$

Entsprechendes gilt für die anderen Typen von Intervallen und Halbräumen.

Beweis

(1) Sei $G \in \mathcal{O}(\mathbb{R}^d)$, $\mathfrak{M} := \{(a,b) : a,b \in \mathbb{Q}^d, a \leq b, (a,b) \subseteq G\}$. Dann ist \mathfrak{M} abzählbar und $G = \bigcup_{I \in \mathfrak{M}} I$. also gilt:

$$G \in \sigma(\mathcal{E}_1) \implies \mathfrak{B}_d = \sigma(\mathcal{O}(\mathbb{R}^d)) \subseteq \sigma(\mathcal{E}_1)$$

(2) Sei $(a,b) \in \mathcal{E}_1$.

Fall 1: $(a,b) = \emptyset \in \mathcal{E}_2 \subseteq \sigma(\mathcal{E}_2)$

Fall 2: $(a,b) \neq \emptyset$, $a = (a_1 \dots, a_d)$, $b = (b_1 \dots, b_d)$. Dann gilt für alle $j \in \{1, \dots, d\} : a_j < b_j$, also gilt auch:

$$\exists N \in \mathbb{N} : \forall n \geq N : \forall j \in \{1, \dots, d\} : a_j < b_j - \frac{1}{n}$$

Definiere $c_n := (\frac{1}{n}, \dots, \frac{1}{n}) \in \mathbb{Q}^d$. Dann gilt:

$$(a,b) = \bigcup_{n \ge N} (a,b-c_n] \in \sigma(\mathcal{E}_2)$$

Also auch $\mathcal{E}_1 \subseteq \sigma(\mathcal{E}_2)$ und damit $\sigma(\mathcal{E}_1) \subseteq \sigma(\mathcal{E}_2)$.

(3) Seien $a = (a_1, \ldots, a_d), b = (b_1, \ldots, b_d) \in \mathbb{Q}^d$ mit $a \leq b$. Nachrechnen:

$$(a,b] = \bigcap_{k=1}^{d} (H_k^-(b_k) \cap H_k^-(a_k)^c) \in \sigma(\mathcal{E}_3).$$

Das heißt $\mathcal{E}_2 \subseteq \sigma(\mathcal{E}_3)$ und damit auch $\sigma(\mathcal{E}_2) \subseteq \sigma(\mathcal{E}_3)$.

(4) $H_k^-(\alpha)$ ist abgeschlossen, somit ist $H_k^-(\alpha)^c$ offen und damit $H_k^-(\alpha)^c \in \mathfrak{B}_d$, also auch $H_k^-(\alpha) \in \mathfrak{B}_d$. Damit ist $\mathcal{E}_3 \subseteq \mathfrak{B}_d \implies \sigma(\mathcal{E}_3) \subseteq \mathfrak{B}_d$.

Definition

Sei $\emptyset \neq \mathfrak{M} \subseteq \mathcal{P}(X)$ und $\emptyset \neq Y \subseteq X$.

$$\mathfrak{M}_Y := \{A \cap Y : A \in \mathfrak{M}\}\$$

heißt die Spur von \mathfrak{M} in Y.

Satz 1.5 (Spuren und σ -Algebren)

Sei $\emptyset \neq Y \subseteq X$ und \mathfrak{A} eine σ -Algebra auf X.

- (1) \mathfrak{A}_Y ist eine σ -Algebra auf Y.
- (2) $\mathfrak{A}_{Y} \subseteq \mathfrak{A} \iff Y \in \mathfrak{A}$
- (3) Ist $\emptyset \neq \mathcal{E} \subseteq \mathcal{P}(X)$, so ist $\sigma(\mathcal{E}_Y) = \sigma(\mathcal{E})_Y$.

Beweis

- (1) (σ_1) Es ist $Y = Y \cap X \in \mathfrak{A}_Y$, da $X \in \mathfrak{A}$.
 - (σ_2) Sei $B \in \mathfrak{A}_Y$, dann existiert ein $A \in \mathfrak{A}$ mit $B = A \cap Y$. Also ist $Y \setminus B = (X \setminus A) \cap Y \in \mathfrak{A}_Y$, da $X \setminus A \in \mathfrak{A}$ ist.
 - (σ_3) Sei (B_j) eine Folge in \mathfrak{A}_Y , dann existiert eine Folge $(A_j) \in \mathfrak{A}^{\mathbb{N}}$ mit $B_j = A_j \cap Y$. Es gilt:

$$\bigcup B_j = \bigcup (A_j \cap Y) = (\bigcup A_j) \cap Y \in \mathfrak{A}_Y$$

(2) Der Beweis erfolgt durch Implikation in beiden Richtungen:

$$, \Longrightarrow$$
 " Es gilt $Y \in \mathfrak{A}_Y \subseteq \mathfrak{A}$.

 $,, \longleftarrow$ "Sei $B \in \mathfrak{A}_Y$, dann existiert ein $A \in \mathfrak{A}$ mit $B = A \cap Y \in \mathfrak{A}$.

(3) Es gilt:

$$\mathcal{E} \subseteq \sigma(\mathcal{E}) \implies \mathcal{E}_Y \subseteq \sigma(\mathcal{E})_Y$$
$$\implies \sigma(\mathcal{E}_Y) \subseteq \sigma(\mathcal{E})_Y$$

Sei nun:

$$\mathcal{D} := \{ A \subseteq X : A \cap Y \in \sigma(\mathcal{E}_Y) \}$$

Übung: \mathcal{D} ist eine σ -Algebra auf X.

Sei $E \in \mathcal{E}$ dann ist $E \cap Y \in \mathcal{E}_Y \subseteq \sigma(\mathcal{E}_Y)$ also $E \in \mathcal{D}$ und damit $\mathcal{E} \subseteq \mathcal{D}$. Daraus folgt:

$$\sigma(\mathcal{E})_Y \subseteq \sigma(\mathcal{D})_Y = \mathcal{D}_Y = \{A \cap Y : A \in \mathcal{D}\}$$

$$\subseteq \sigma(\mathcal{E}_Y)$$

Folgerungen 1.6

Sei $X \subseteq \mathbb{R}^d$. Dann gilt:

- (1) $\mathfrak{B}(X) = (\mathfrak{B}_d)_X$
- (2) Ist $X \in \mathfrak{B}_d$, so ist $\mathfrak{B}(X) = \{A \in \mathfrak{B}_d : A \subseteq X\} \subseteq \mathfrak{B}_d$.

Definition

Wir fügen \mathbb{R} das Symbol $+\infty$ hinzu. Es soll gelten:

(1) $\forall a \in \mathbb{R} : a < +\infty$

1. σ -Algebren und Maße

(2) $\pm a + (+\infty) := +\infty =: (+\infty) \pm a$

$$(3) \ (+\infty) + (+\infty) := +\infty$$

Sei etwa $[0, +\infty] := [0, \infty) \cup \{+\infty\}.$

(1) Sei (x_n) eine Folge in $[0, +\infty]$. Es gilt:

$$x_n \overset{n \to \infty}{\to} \infty : \iff \forall c > 0 \exists n_c \in \mathbb{N} : \forall n \ge n_c : x_n > c$$

(2) Sei (a_n) eine Folge in $[0, +\infty]$. Es gilt

$$\sum_{n=1}^{\infty} a_n = \sum a_n = +\infty$$

genau dann wenn $a_j = +\infty$ für ein $j \in \mathbb{N}$ oder, falls alle $a_j < +\infty$, wenn $\sum a_n$ divergiert.

Wegen 13.1 Ana I können Reihen der obigen Form beliebig umgeordnet werden, ohne dass sich ihr Wert verändert.

Definition

Sei $\mathfrak A$ eine σ -Algebra auf X und $\mu:\mathfrak A\to [0,+\infty]$ eine Abbildung. μ heißt ein **Maß** auf $\mathfrak A$, genau dann wenn gilt:

- (M_1) $\mu(\varnothing) = 0$
- (M_2) Ist (A_j) eine disjunkte Folge in \mathfrak{A} , so ist $\mu(\bigcup A_j) = \sum \mu(A_j)$. Diese Eigenschaft heißt σ -Additivität.

Ist μ ein Maß auf \mathfrak{A} , so heißt (X, \mathfrak{A}, μ) ein **Maßraum**.

Ein Maß μ heißt endlich, genau dann wenn $\mu(X) < \infty$. Ein Maß μ heißt ein Wahrscheinlichkeitsmaß, genau dann wenn $\mu(X) = 1$ ist.

Beispiel

(1) Sei $\mathfrak{A} = \mathcal{P}(X)$ und $x_0 \in X$. $\delta_{x_0} : \mathfrak{A} \to [0, +\infty]$ sei definiert durch:

$$\delta_{x_0}(A) := \begin{cases} 1, & x_0 \in A \\ 0, & x_0 \notin A \end{cases}$$

Klar ist, dass $\delta_{x_0}(\emptyset) = 0$ ist.

Sei (A_i) eine disjunkte Folge in \mathfrak{A} .

$$\delta_{x_0}(\bigcup A_j) = \begin{cases} 1, & x_0 \in \bigcup A_j \\ 0, & x_0 \notin \bigcup A_j \end{cases} = \sum \delta_{x_0}(A_j)$$

 δ_{x_0} ist ein Maß auf $\mathcal{P}(X)$ und heißt **Punktmaß** oder **Dirac-Maß**.

(2) Sei $X := \mathbb{N}$, $\mathfrak{A} := \mathcal{P}(X)$ und (p_j) eine Folge in $[0, +\infty]$. Definiere $\mu : \mathfrak{A} \to [0, +\infty]$ durch:

$$\mu(A) := \begin{cases} 0 & , A = \emptyset \\ \sum_{j \in A} p_j & , A \neq \emptyset \end{cases}$$

Übung: μ ist ein Maß auf $\mathfrak{A} = \mathcal{P}(\mathbb{N})$ und heißt ein **Zählmaß**. Sind alle $p_j = 1$, so ist $\mu(A)$ gerade die Anzahl der Elemente von A.

(3) Sei (X, \mathfrak{A}, μ) ein Maßraum, $\emptyset \neq Y \subseteq X$ und $\mathfrak{A}_0 \subseteq \mathfrak{A}$ eine σ -Algebra auf Y. Definiere $\mu_0 : \mathfrak{A}_0 \to [0, +\infty]$ durch $\mu_0(A) := \mu(A)$ $(A \in \mathfrak{A}_0)$. Dann ist $(Y, \mathfrak{A}_0, \mu_0)$ ein Maßraum. Ist spezieller $Y \in \mathfrak{A}$, so ist $\mathfrak{A}_0 := \mathfrak{A}_Y \subseteq \mathfrak{A}$ und man definiert $\mu_{|Y} : \mathfrak{A}_Y \to [0, +\infty]$ durch $\mu_{|Y}(A) := \mu(A)$.

Satz 1.7

 (X,\mathfrak{A},μ) sei ein Maßraum, es seien $A,B\in\mathfrak{A}$ und (A_i) sei eine Folge in \mathfrak{A} . Dann:

- (1) $A \subseteq B \implies \mu(A) \le \mu(B)$
- (2) Ist $\mu(A) < \infty$ und $A \subseteq B$, $\Longrightarrow \mu(B \setminus A) = \mu(B) \mu(A)$
- (3) Ist μ endlich, dann ist $\mu(A) < \infty$ und $\mu(A^c) = \mu(X) \mu(A)$
- (4) $\mu(\bigcup A_j) \leq \sum \mu(A_j)$ (σ -Subadditivität)
- (5) Ist $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$, so ist $\mu(\bigcup A_j) = \lim_{n \to \infty} \mu(A_n)$
- (6) Ist $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$ und $\mu(A) < \infty$, so ist $\mu(\bigcap A_j) = \lim_{n \to \infty} \mu(A_n)$

Beweis

(1)-(3)
$$B = (B \setminus A) \cup A$$
. Dann: $\mu(B) = \underbrace{\mu(B \setminus A)}_{\geq 0} + \mu(A) \geq \mu(A)$

(4)
$$B_1 = A_1, B_k := A_k \setminus \bigcup_{j=1}^{k-1} A_j \quad (k \ge 2)$$

Dann: $B_j \in \mathfrak{A}, \ B_j \subseteq A_j \ (j \in \mathbb{N}); \ (B_j)$ disjunkt und $\bigcup A_j = \bigcup B_j$. Dann:

$$\mu\left(\bigcup A_j\right) = \mu\left(\bigcup B_j\right) = \sum \underbrace{\mu(B_j)}_{\leq \mu(A_j)} \leq \sum \mu(A_j)$$

(5)
$$B_1 = A_1, B_k = A_k \setminus A_{k-1} (k \ge 2)$$

Dann: $B_j \subseteq \mathfrak{A}$; $B_j \subseteq A_j (j \in \mathbb{N})$; $\bigcup A_j = \bigcup B_j \text{ und } A_n = \bigcup_{j=1}^n B_j$

Dann:
$$\mu(\bigcup A_j) = \mu(\bigcup B_j) = \sum \mu(B_j) = \lim_{n \to \infty} \sum_{j=1}^n \mu(B_j)$$

$$= \mu(\bigcup_{i=1}^n B_i) = \mu(A_n)$$

(6) Übung