

Jun 30, 2021

© Copy of NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina®) (NEB #E7650S/L) Express Protocol without PCR Bead Cleanup

Isabel Gautreau¹

¹New England Biolabs Works for me Share dx.doi.org/10.17504/protocols.io.bv7nn9me New England Biolabs (NEB) Coronavirus Method Development Community Isabel Gautreau **New England Biolabs** ABSTRACT This protocol details methods for the NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina®), NEB #E7650S/L 24/96 reactions, express protocol. This protocol does not include a cleanup step for each sample after cDNA synthesis and ligation. Performing the cleanup step creates libraries with higher yields and less likelihood for adaptor dimer. Skipping these steps reduces hands on time, but may require an extra cleanup at the end of library prep of the pooled sample and we have added an extra PCR cycle. DOI dx.doi.org/10.17504/protocols.io.bv7nn9me **EXTERNAL LINK** https://www.neb.com/-/media/nebus/files/manuals/manuale7650.pdf? rev=f37be6e42b4f486f888f204b83907d3f&hash=69F40067B46B925A7D45F5A6D418095F

PROTOCOL CITATION

Isabel Gautreau 2021. Copy of NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina®) (NEB #E7650S/L) Express Protocol without PCR Bead Cleanup. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bv7nn9me

KEYWORDS

SARS-CoV-2, Library Prep, NEB

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jun 30, 2021

LAST MODIFIED

Jun 30, 2021

PROTOCOL INTEGER ID

51150

GUIDELINES

 $\textbf{Citation:} \ \ \text{Isabel Gautreau} \ \ (06/30/2021). \ \ \text{Copy of NEBNext} \\ \hat{\mathbb{A}} \\ \text{@ ARTIC SARS-CoV-2 Library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \text{@)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{Express Protocol without PCR Bead Cleanup.} \\ \underline{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \\ \hat$

Overview

The NEBNext SARS-CoV-2 Library Prep Kit (Illumina) contains the enzymes, buffers and oligos required to convert a broad range of total RNA input amounts into targeted, high quality libraries for next-generation sequencing on the Illumina platform. Primers targeting the human EDF1 (NEBNext ARTIC Human Primer Mix 1) and NEDD8 (NEBNext ARTIC Human Primer Mix 2) genes are supplied as optional internal controls. The fast, user-friendly workflow also has minimal hands-on time.

Each kit component must pass rigorous quality control standards, and for each new lot the entire set of reagents is functionally validated together by construction and sequencing of an indexed library on the Illumina sequencing platform.

For larger volume requirements, customized and bulk packaging is available by purchasing through the OEM/Bulks department at NEB. Please contact OEM@neb.com for further information.

Figure 1. Workflow demonstrating the use of NEBNext SARS-CoV-2 Library Prep Kit for Illumina

NEBNext ARTIC Human Primers

Α	В	С	D
PRIMER MIX	GENE	POSITION	PRIMERS
NEBNext ARTIC Human Primer Mix 1	EDF1	113 bp - 501 bp	GGCCAAATCCAAGCAGGCTA
			GTGTTCATTTCGCCCTAGGC
NEBNext ARTIC Human Primer Mix 2	NEDD8	110 bp - 489 bp	AAAGTGAAGACGCTGACCGG
			GGGATCCTCACAGTCTCCCA

NEBNext ARTIC SARS-CoV-2 Primer Mix 1 and 2

NEBNext ARTIC SARS-CoV-2 Mix 1 and 2 for SARS-CoV-2 genome amplification are based on hCoV-2019/nCoV-2019 Version 3 (v3) sequences with balanced primer concentrations. Sequence information can be found at:

https://github.com/joshquick/artic-ncov2019/blob/master/primer_schemes/nCoV-2019/V3/nCoV-2019.tsv

MATERIALS TEXT

Kit:

NEBNext® ARTIC SARS-CoV-2 Library Prep Kit (Illumina®)

NEB #E7650S/L (24/96 reactions)

The Library Kit Includes:

The volumes provided are sufficient for preparation of up to 24 reactions (NEB #E7650S) and 96 reactions (NEB #E7650L). Colored bullets represent the color of the cap of the tube containing the reagent.

Package 1: Store at 8 -20 °C

(lilac) LunaScript® RT SuperMix

(lilac) Q5® Hot Start High-Fidelity 2X Master Mix

(lilac) NEBNext ARTIC SARS-CoV-2 Primer Mix 1

(lilac) NEBNext ARTIC SARS-CoV-2 Primer Mix 2

(lilac) NEBNext ARTIC Human Primer Mix 1

(lilac) NEBNext ARTIC Human Primer Mix 2

(green) NEBNext Ultra II End Prep Enzyme Mix

(green) NEBNext Ultra II End Prep Reaction Buffer

(red) NEBNext Ultra II Ligation Master Mix

(blue) NEBNext Library PCR Master Mix

(white) 0.1X TE Buffer

(white) Nuclease-free Water

Package 2: Store at § Room temperature . Do not freeze.

NEBNext Sample Purification Beads

Required Materials Not Included:

- NEBNext Singleplex or Multiplex Oligos for Illumina www.neb.com/oligos
- 80% Ethanol (freshly prepared)
- Nuclease-free Water
- DNA LoBind Tubes (Eppendorf #022431021)
- Magnetic rack/stand (NEB #S1515, Alpaqua®, cat. #A001322 or equivalent)
- Thermocycler
- Vortex Mixer
- Microcentrifuge
- Agilent® Bioanalyzer® or similar fragment analyzer and associated consumables
- DNase RNase free PCR strip tubes (USA Scientific 1402-1708)

Kit Components

NEB #E7650S Table of Components

3

Α	В	С
NEB #	PRODUCT	VOLUME
E7651A	LunaScript RT SuperMix	0.048 ml
E7652A	Q5 Hot Start High-Fidelity 2X Master Mix	0.30 ml
E7725A	NEBNext ARTIC SARS-CoV-2 Primer Mix 1	0.042 ml
E7726A	NEBNext ARTIC SARS-CoV-2 Primer Mix 2	0.042 ml
E7727A	NEBNext ARTIC Human Primer mix 1	0.010 ml
E7728A	NEBNext ARTIC Human Primer mix 2	0.010 ml
E7653A	NEBNext Ultra II End Prep Enzyme Mix	0.046 ml
E7654A	NEBNext Ultra II End Prep Reaction Buffer	0.084 ml
E7655A	NEBNext Ultra II Ligation Master Mix	0.36 ml
E7656A	NEBNext Library PCR Master Mix	0.3 ml
E7657A	0.1X TE Buffer	1.3 ml
E7667A	Nuclease-free Water	1.5 ml
E7104S	NEBNext Sample Purification Beads	2.1 ml

NEB #E7650L Table of Components

Α	В	С
NEB #	PRODUCT	VOLUME
E7651AA	LunaScript RT SuperMix	0.192 ml
E7652AA	Q5 Hot Start High-Fidelity 2X Master Mix	1.20 ml
E7725AA	NEBNext ARTIC SARS-CoV-2 Primer Mix 1	0.168 ml
E7726AA	NEBNext ARTIC SARS-CoV-2 Primer Mix 2	0.168 ml
E7727AA	NEBNext ARTIC Human Primer mix 1	0.034 ml
E7728AA	NEBNext ARTIC Human Primer mix 2	0.034 ml
E7653AA	NEBNext Ultra II End Prep Enzyme Mix	0.144 ml
E7654AA	NEBNext Ultra II End Prep Reaction Buffer	0.336 ml
E7655AA	NEBNext Ultra II Ligation Master Mix	0.72 ml
E7656AA	NEBNext Library PCR Master Mix	1.20 ml
E7657AA	0.1X TE Buffer	5.20 ml
E7667AA	Nuclease-free Water	1.50 ml
E7104L	NEBNext Sample Purification Beads	8 ml

NEBNext ARTIC Human Primers

Α	В	С	D
PRIMER MIX	GENE	POSITION	PRIMERS
NEBNext ARTIC Human Primer Mix 1	EDF1	113 bp - 501 bp	GGCCAAATCCAAGCAGGCTA
			GTGTTCATTTCGCCCTAGGC
NEBNext ARTIC Human Primer Mix 2	NEDD8	110 bp - 489 bp	AAAGTGAAGACGCTGACCGG
			GGGATCCTCACAGTCTCCCA

Detailed information for the ARTIC Human control primers can be found at: https://doi.org/10.5281/zenodo.4495958

NEBNext ARTIC SARS-CoV-2 Primer Mix 1 and 2

NEBNext ARTIC SARS-CoV-2 Mix 1 and 2 for SARS-CoV-2 genome amplification are based on hCoV-2019/nCoV-2019 Version 3 (v3) sequences with balanced primer concentrations. Sequence information can be found at: https://github.com/joshquick/artic-ncov2019/blob/master/primer_schemes/nCoV-2019/V3/nCoV-2019.tsv

SAFETY WARNINGS

Please refer to the Safety Data Sheets (SDS) for health and environmental hazards.

BEFORE STARTING

⋈ protocols.io 4 06/30/2021

 $\textbf{Citation:} \ \, \text{Isabel Gautreau} \ \, \text{(06/30/2021). Copy of NEBNext} \hat{\mathbb{A}} \\ \text{@ ARTIC SARS-CoV-2 Library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \text{@}) \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \, \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \, \text{Express Protocol without PCR Bead Cleanup.} \\ \underline{\text{https://dx.doi.org/10.17504/protocols.io.bv7nn9me}} \\ \text{Results of the protocol without PCR Bead Cleanup.} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \, \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \, \text{Express Protocol without PCR Bead Cleanup.} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \, \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat$

Note: We recommend using the *express protocol* for inputs of \geq 100 copies of the (SARS-CoV-2) viral genome. The use of lower input amounts may result in significant levels of adaptor dimer. In addition, we recommend setting up a no template control reaction. It is advisable to set up your reactions *in the hood*.

The presence of carry-over products can interfere with sequencing accuracy, particularly for low copy targets. Therefore, it is important to carry out the appropriate no template control (NTC) reactions to demonstrate that positive reactions are meaningful.

cDNA Synthesis

1

Gently mix and spin down the LunaScript RT SuperMix reagent. Prepare the cDNA synthesis reaction as described below:

A	В
COMPONENT	VOLUME
RNA Sample	8 μΙ
(lilac) LunaScript RT SuperMix	2 μΙ
Total Volume	10 µl

For no template controls, mix the following components:

A	В
COMPONENT	VOLUME
(white) Nuclease-free Water	8 μΙ
(lilac) LunaScript RT SuperMix	2 μΙ
Total Volume	10 μΙ

2

Incubate reactions in a thermocycler* with the following steps:

Α	В	С	D
CYCLE STEP	TEMP	TIME	CYCLES
Primer Annealing	25°C	2 minutes	1
cDNA Synthesis	55°C	20 minutes	
Heat Inactivation	95°C	1 minute	
Hold	4°C	∞	

^{*}Set heated lid to 105°C

Samples can be stored at 8-20 °C for up to a week.

Targeted cDNA Amplification

3

protocols.io 5

 $\textbf{Citation:} \ \ \text{Isabel Gautreau} \ \ (06/30/2021). \ \ \text{Copy of NEBNext} \\ \hat{\mathbb{A}} \\ \text{@ ARTIC SARS-CoV-2 Library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \text{@)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{Express Protocol without PCR Bead Cleanup.} \\ \underline{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\$

06/30/2021

4.5 µI CUNA INPUL IS recommended. II using less than 4.5 µI OI CUNA, add nuclease-iree water to a final volume of 4.5 μl. We recommend setting up the cDNA synthesis and cDNA amplification reactions in different rooms to minimize cross-contamination of future reactions.

Use of the NEBNext ARTIC Human Primer Mix 1 and 2 are optional. If used, the appropriate ARTIC Human Primer Mix and ARTIC SARS-CoV-2 Primer Mix should be combined prior to use. More specifically, ARTIC Human Primer Mix 1 should be combined with ARTIC SARS-CoV-2 Primer Mix 1 and ARTIC Human Primer Mix 2 with ARTIC SARS-CoV-2 Primer Mix 2. Mixing directions are listed below.

Gently mix and spin down reagents. Prepare the split pool cDNA amplification reactions as described below:

For Pool Set A:

If using the NEBNext ARTIC Human Primer Mix and a 24 reaction kit, combine

□0.7 µl NEBNext ARTIC Human Primer Mix 1 with □42 µl NEBNext ARTIC SARS-CoV-2 Primer Mix 1 in a new tube, vortex and spin down reagents. If using a 96 reaction kit, combine

■2.8 µl NEBNext ARTIC Primer Mix 1 with ■168 µl NEBNext ARTIC SARS-CoV-2 Primer Mix 1 in a new tube, vortex and spin down reagents. Use **□1.75** µl of the combined mix for each Pool Set A reaction.

Α	В
COMPONENT	VOLUME
cDNA (Step 2)	4.5 µl
(lilac) Q5 Hot Start High-Fidelity 2X Master Mix	6.25 µl
NEBNext ARTIC SARS-Cov-2 Primer Mix 1 *	1.75 µl
Total Volume	12.5 µl

^{*} If using NEBNext ARTIC Human Primer Mix 1, add 1.75 µl of the combined NEBNext ARTIC SARS-CoV-2 Primer Mix 1 and NEBNext ARTIC Human Primer Mix 1.

For Pool Set B:

If using the NEBNext ARTIC Human Primer Mix and a 24 reaction kit, combine

□0.7 µl NEBNext ARTIC Human Primer Mix 2 with □42 µl NEBNext ARTIC SARS-CoV-2 Primer Mix 2 in a new tube, vortex and spin down reagents. If using a 96 reaction kit, combine

■2.8 µl NEBNext ARTIC Human Primer Mix 2 with

□ 168 μI NEBNext ARTIC SARS-CoV-2 Primer Mix 2 in a new tube, vortex and spin down reagents. Use

■1.75 µl of the combined mix for each Pool Set B reaction.

Α	В
COMPONENT	VOLUME
cDNA (Step 2)	4.5 µl
(lilac) Q5 Hot Start High-Fidelity 2X Master Mix	6.25 µl
NEBNext ARTIC nCoV-2019 Primer Pool 2*	1.75 µl
Total Volume	12.5 µl

^{*} If using NEBNext ARTIC Human Primer Mix 2, add 1.75 µl of the combined NEBNext ARTIC SARS-CoV-2 Primer Mix 2 and ARTIC Human Primer Mix 2.

protocols.io 06/30/2021 Incubate reactions in a thermocycler* with the following steps:

Α	В	С	D
CYCLE STEP	TEMP	TIME	CYCLES
Initial Denaturation	98°C	30 seconds	1
Denature	95°C	15 seconds	35
Annealing/Extension	63°C	5 minutes	
Hold	4°C	∞	1

^{*}Set heated lid to 105°C

6

Combine the Pool A and Pool B PCR reactions for each sample.

Samples can be stored at ₹ -20 °C for up to a week.

Pooling of cDNA Amplicons.

7

Note: When cleanup of the pooled cDNA amplicons is skipped, the amplicons must be diluted prior to library prep.

Transfer 2.5 μ l of the pooled cDNA amplicons to a fresh tube.

8 Add 22.5 μl of low TE for a final volume of 25 μl.

Note: The pooled cDNA amplicons may be run on a TapeStation[®] to confirm 400 bp size of amplicons without cleaning up. To run on a TapeStation, dilute an aliquot of the pooled amplicons 10-fold with 0.1X TE Buffer and run 2 μ l on a DNA High Sensitivity ScreenTape. (See Figure 8 below for example of amplicon size profile on a Bioanalyzer)

 $\label{prop:constraints} \mbox{Figure 8: Example of cDNA amplicons generated from 1000 genome copies of SARS CoV-2} \; .$

NEBNext End Prep

9

Add the following components to a sterile nuclease-free tube:

Α	В
COMPONENT	VOLUME
(green) NEBNext Ultra II End Prep Enzyme Mix	1.5 µl
(green) NEBNext Ultra II End Prep Reaction Buffer	3.5 µl
Targeted cDNA Amplicons (Step 8)	25 µl
Total Volume	30 µl

10

Set a 100 μ l or 200 μ l pipette to 25 μ l and then pipette the entire volume up and down at least 10 times to mix thoroughly. Perform a quick spin to collect all liquid from the sides of the tube.

It is important to mix well. The presence of a small amount of bubbles will not interfere with performance

11

Place in a thermocycler* and run the following program:

Α	В
TEMP	TIME
20°C	30 minutes
65°C	30 minutes
4°C	∞

^{*}Set heated lid to 75°C

If necessary, samples can be stored at 8-20 °C; however, a slight loss in yield (~20%) may be observed. We recommend continuing with adaptor ligation before stopping.

Adaptor Ligation

Add the following components directly to the End Prep Reaction Mixture:

Α	В
COMPONENT	VOLUME
End Prep Reaction Mixture (previous step)	30 µl
(red) NEBNext Adaptor for Illumina**	1.25 µl
(red) NEBNext Ultra II Ligation Master Mix*	15 µl
Total Volume	46.25 µl

Do not premix adaptor with the Ligation Master Mix.

13

Set a 100 µl or 200 µl pipette to 40 µl and then pipette the entire volume up and down at least 10 times to mix thoroughly. Perform a quick spin to collect all liquid from the sides of the tube.

Caution: The NEBNext Ultra II Ligation Master Mix is very viscous. Care should be taken to ensure adequate mixing of the ligation reaction, as incomplete mixing will result in reduced ligation efficiency. The presence of a small amount of bubbles will not interfere with performance.

Incubate at § 20 °C for © 00:15:00 in a thermocycler with the heated lid off.

Add 1.5 µl (red or blue) USER® Enzyme to the ligation mixture from the previous step.

Steps 15 and 16 are only required for use with NEBNext Adaptors. USER enzyme can be found in the NEBNext Multiplex Oligos (www.neb.com/oligos).

mprotocols.io

06/30/2021

15m

 $\textbf{Citation:} \ \ \text{Isabel Gautreau (06/30/2021)}. \ \ \text{Copy of NEBNext} \\ \tilde{\mathbb{A}} \\ \hat{\mathbb{B}} \ \ \text{ARTIC SARS-CoV-2 Library Prep Kit (Illumina} \\ \tilde{\mathbb{A}} \\ \hat{\mathbb{B}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \tilde{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{Express Protocol without library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{B}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{Express Protocol without library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{B}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{(NEB \#E7650S/L)} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \text{Express Protocol without library Prep Kit (Illumina} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{B}} \\ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \ \ \hat{\mathbb{A}} \\ \hat{\mathbb{A}} \\$ PCR Bead Cleanup. https://dx.doi.org/10.17504/protocols.io.bv7nn9me

^{*} Mix the Ultra II Ligation Master Mix by pipetting up and down several times prior to adding to the reaction.
** The NEBNext adaptor is provided in NEBNext Oligo kits. NEB has several oligo options which are supplied separately from the library prep kit. Please see www.neb.com/oligos for additional information.

15m

Samples can be stored overnight at 8-20 °C.

Only a portion of the ligation reaction (7.5 µl) will move forward to PCR enrichment.

PCR Enrichment of Adaptor-ligated DNA

17

Follow step-case A. if you are using the following oligos (10 µM primer):

Use option A for any NEBNext Oligo kit where index primers are supplied in tubes. These kits have the forward and reverse primers supplied in separate tubes. Primers are supplied at 10 μ M.

Follow step-case B. if you are using the following oligos (10 μ M primers):

Use Option B for any NEBNext Oligo kit where index primers are supplied in a 96-well plate format. These kits have the forward and reverse (i7 and i5) primers combined. Primers are supplied at 10

Step 17 includes a Step case.

- A. Forward and Reverse Primers Separate
- **B.** Forward and Reverse Primers Combined

step case

A. Forward and Reverse Primers Separate

Index primers are supplied in tubes. These kits have the forward and reverse primers supplied in separate tubes.

18

Add the following components to a sterile strip tube:

Α	В
COMPONENT	VOLUME
Adaptor Ligated DNA Fragments (Step 42)	7.5 µl
(blue) NEBNext Library PCR Master Mix	12.5 μΙ
(blue) Universal PCR Primer/i5 Primer *,**	2.5 μΙ
(blue) Index (X) Primer/i7 Primer *,**	2.5 μΙ
Total Volume	25 μΙ

^{*} NEBNext Oligos must be purchased separately from the library prep kit. Refer to the corresponding NEBNext Oligo kit manual for

determining valid barcode combinations.

** Use only one i7/primer/index primer per sample. Use only one i5 primer (or the universal primer for single index kits) per sample.

19

Set a 100 µl pipette to 20 µl and then pipette the entire volume up and down at least 10 times to mix thoroughly. Perform a quick spin to collect all liquid from the sides of the tube.

mprotocols.io 10 06/30/2021

20

Place the tube on a thermocycler and perform PCR amplification using the following PCR cycling conditions:

Α	В	С	D
CYCLE STEP	TEMP	TIME	CYCLES
Initial Denaturation	98°C	30 seconds	1
Denaturation	98°C	10 seconds	6*
Annealing/Extension	65°C	75 seconds	
Final Extension	65°C	5 minutes	1
Hold	4°C	∞	

Set heated lid to 105°C.

* The number of PCR cycles recommended should be viewed as a starting point and may need to be optimized for particular sample types.

Cleanup of PCR Reaction

8m

21

The amount of NEBNext Sample Purification Beads provided here are for use with the sample contained in the exact buffer at this step. These volumes may not work properly for a cleanup at a different step in the workflow. For cleanups of samples contained in different buffer conditions, the volumes may need to be experimentally determined.

- 77 Vortex NEBNext Sample Purification Beads to resuspend.
- 23

Add \Box 17.5 μ I (0.7X) resuspended beads to the PCR reaction. Mix well by pipetting up and down at least 10 times. Be careful to expel all of the liquid out of the tip during the last mix. Vortexing for 3-5 seconds on high can also be used. If centrifuging samples after mixing, be sure to stop the centrifugation before the beads start to settle out.

24

Incubate samples on bench top for at least \bigcirc 00:05:00 at ~ 8 Room temperature .

- Place the tube/plate on an appropriate magnetic stand to separate the beads from the supernatant. If necessary, quickly spin the sample to collect the liquid from the sides of the tube or plate wells before placing on the magnetic stand.
- After 5 minutes (or when the solution is clear), carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets.

Caution: do not discard the beads.

mprotocols.io

06/30/2021

5m

Citation: Isabel Gautreau (06/30/2021). Copy of NEBNextÃâ® ARTIC SARS-CoV-2 Library Prep Kit (Illuminaî)ÃÂ (NEB #E7650S/L)ÃÂ Express Protocol without PCR Bead Cleanup. https://dx.doi.org/10.17504/protocols.io.bv7nn9me

11

Add 200 µl 80% freshly prepared ethanol to the tube/plate while in the magnetic stand. Incubate at

& **Room temperature** for & **00:00:30**, and then carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets.

30s

Repeat the previous step once for a total of two washes:

Add $200 \, \mu l$ 80% freshly prepared ethanol to the tube/plate while in the magnetic stand. Incubate at 8 Room temperature for 00:00:30, and then carefully remove and discard the supernatant. Be careful not to disturb the beads that contain DNA targets.

Be sure to remove all visible liquid after the second wash. If necessary, briefly spin the tube/plate, place back on the magnet and remove traces of ethanol with a p10 pipette tip.

29 Air dry the beads for up to 5 minutes while the tube/plate is on the magnetic stand with the lid open.

Caution: Do not over-dry the beads. This may result in lower recovery of DNA. Elute the samples when the beads are still dark brown and glossy looking, but when all visible liquid has evaporated. When the beads turn lighter brown and start to crack, they are too dry.

When the beads are ready to elute visible droplets are gone and the beads are still dark brown and look a little matte

Remove the tube/plate from the magnetic stand. Elute the DNA target from the beads by adding 17 µl 0.1X TE.

31

2m

Mix well by pipetting up and down 10 times, or on a vortex mixer. Incubate for at least © 00:02:00 at

& Room temperature. If necessary, quickly spin the sample to collect the liquid from the sides of the tube or plate

mprotocols.io

06/30/2021

wells before placing back on the magnetic stand.

32

Place the tube/plate on the magnetic stand. After 5 minutes (or when the solution is clear), transfer $\Box 15 \ \mu l$ to a new PCR tube and store at $\& -20 \ ^{\circ}C$.

33

Check the size distribution on an Agilent Bioanalyzer or TapeStation. The sample may need to be diluted before loading. A peak size of \sim 520 bp is expected (Figure 3).

Figure 33: Example of final library pool size distributions on a TapeStation. ARTIC SARS-CoV-2 libraries were generated from 10 -10,000 viral copies.

Samples can be stored at -20°C.

If excess adaptor dimer peak is observed at 150-180 bp, a second 0.7X bead cleanup can be performed. The second 0.7X cleanup will result in slightly larger libraries which will not affect sequencing results.