MATH 262 - Homework 7.1

6. Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation:

Rotation through an angle of 180° in \mathbb{R}^2

Then find an eigenbasis if you can, and thus determine whether the given transformation is diagonalizable.

Below is a plot of two vectors in \mathbb{R}^2 and their transformed counterparts.

Notice both $T(\vec{u})$ and $T(\vec{v})$ go in the opposite directions of \vec{u} and \vec{v} , respectively, but otherwise remain the same. Therefore, each vector's eigenvalue is -1. Thus, the transformation is diagonalizable and the eigenbasis is the basis of \mathbb{R}^2 i.e. $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. All vectors in \mathbb{R}^2 are eigenvectors of this transformation.