COMUNICAZIONI ELETTRICHE A

TRASDUTIORE CODIFICATORE SEGNALE MODULATORE converte il signile in signile elettrico A Commos from N H DELJOD. DECOD. TRAJO. UTENTE www.daddy88.com Davide Valeriani

$$\int (t) = \begin{cases} 1 & t = 0 \\ 0 & \text{otherw} \end{cases}$$

$$\int_{-\infty}^{+\infty} S(t) dt = 1$$

*
$$S(t) \cdot \delta(t-t_0) = S(t_0) \delta(t-t_0)$$

PROP. CAMPIONATRICE

TRASLAZIONE

$$\delta(t) \stackrel{\prime}{\longleftrightarrow}$$

INVILUPPO COMPLESSO X(t) $\tilde{\chi}(\ell)$ Data una frequents la solitistia, $\tilde{X}(t) = Z(t) e^{-j2\pi f_0 t}$ $\tilde{X}(t) = Z(t + f_0)$ -X(t) = Re { Z(t)} = Re{ x(t) . e 12 11 fot} Ezsendo X (t) complesso, si proi scrivere come a+jb X(t)=X:(t)]+j|Xq(t)] COMPONENTE IN GUADRATURA $\times_{LP}(t) \triangleq \frac{1}{2} \widehat{\times}(t)$ > x(t) = Re {(x;(t)+jxq(t)).(cos(21-4t)+jsin(21-4ot))} X(t) = X, (t) cos(27ft) _ X, sin(27ft)

www.daddy88.com

Davide Valeriani

4

illrama vista che X(t)= Z(t)e-) ztrotot illora: $X_{i}(t) + jX_{q}(t) = \left[X(t) + j\hat{X}(t)\right] \left[\cos 2\pi f_{o}t - j\sin 2\pi f_{o}t\right]$ Grolgends i colcoli ed iguspiondo parti redi e parti irrimaginarie, 41 others $X_{i}(t) = X(t) \cos 2\pi f_{s} t + \hat{X}(t) \sin 2\pi f_{s} t = 2 \operatorname{Re} (X_{LP}(t))$ Xa(t) = x(t) cos2nfot - x(t) sin2nfot = 2 Jm (XLP(E)) $\widetilde{X}(t) = X_i(t) + j X_q(t) = g(t) \cdot e^{j \phi(t)}$ Je però dimostrare che: P(t) = \Z(t)) = indipendente della frequenta $X_{i}(\ell) = \frac{\widetilde{X}(\ell) + \widetilde{X}(-\ell)}{2}$ $\widehat{X}(x) = X_i(x) + jX_q(x)$

www.daddy88.com

Davide Valeriani

SEGNALI PASSA - BANDA Si definisce regnele passa-bande intorno alla frequenza fo un segnele x(t) il cui spettro X(f) si estende al più tre -z fo e 2 fo X(1) \$0 \$ -2 to < 1 < 2 to -2 to -to 2 to PROPRIETÀ Se x(t) passo bands => x(t), x, (t), x; (t) passa basso di banda fo => posso brosse con loio, che sono gli Eaviva LENTI in BANDA BASE. Per ottenere $\tilde{\chi}(f) = 2 \times (f + f_0) u(t)$ mi basta fillrare con $H_{\rho}(f) = \prod \left(\frac{f}{f_0}\right)$ $\widetilde{X}(k) = 2 \times (k+k) \cdot H_p(k)$

6

x(t) -(h(t)) y(t)

Se
$$X(t)$$
 e/s $h(t)$ proper-bands \Rightarrow $y(t)$ parsa-bands $\tilde{Y}(t) = 2Y(t+f_0) \cdot H_P(t) - 2[\frac{1}{2} \cdot 2X(t+f_0) \cdot H(t+f_0) \cdot H_P(t)] - \frac{1}{2} \cdot H(t) \cdot \tilde{X}(t)$

YLP(4) = HLP(4) . XLP(4)

www.daddy88.com

Davide Valeriani

MODULAZIONE ANALOGICA

gi considers un signale x lt) passa-basso

- a media melle E(x)=0
- $|x(t)| \leq 1 \Rightarrow P_x \leq 1$
- · di bands B (ni missure per \$>0)

Une modulatione è simpre caratterizitate de:

- . segnele MODULANTE X(t)
- . regnete PORTANTE p(t) = A0 CDS(Wet+9.)

In generale, il segnale modulato sara nella forma

 \times (t) = A(t) cos (W.t + $\phi(t)$)

Vediens ers ver lipe di modulazione:

1 × (+)

-B B

IDFA!! Non to	smette le p	rienti		
X DSB-SC = A	e X(t) cos (wet)	Considerando M=	1	
	dulazione Double r la patenza din		ssed Carrier	
	A° 5x male		oppie (2B)	
non mi barta!	go che x(t) ER =	> X(f) = X*(-f) he l'allre: norsa	SIMMETRIA HERMITIANA, M - guindi Grosm	ettere una
sole bende	nispermiando	frequente.		
X WOD XPZB	H(1) - X 55B	P _{55B} = P _{5B} =	$\frac{1}{2}\rho_{0s} = \frac{A_{p}^{2} \cdot S_{x}}{4}$	_ (N=1)
	SIDEBAND FILTER	B ₅₅₈ = B		
www.daddy88.com		Davide Valeriani		10

Occupo quindi meno banda, me ho meno potende. SSB LB - Lower Band - mantings BANDA SUPERIORE

LB - Lower Band - mantings & BANDA INFERIORE Ricapitolendo: ST = Pc + 2PSB = A. + A. 1 Sx - Bands 2B - Gpreco di energie AM 5+ = 2 PsB = A.2 x DSB - Bende 2B Sr = PsB = A.2 Sx 4 - Benda B - Meno potents SSB

www.daddy88.com Davide Valeriani

Mi interesse questo pertonto dimensiono il BPF in modo de eliminare il resto: XAM (t) = Q1 (1+2 == x (t)) cos wet. Dimensionando a 1 = Ao e M = 2 2 ottergo XAM (t) Noto che, re a 1=0 ho una DSB. Questo però porterebbe ad evere Vour (t) = 21 Virlt) + 22 Vir (t) che è difficile de reslighteure. MODULATORE DSB: MODULATORE BILANCIATO 1 x(t) MOD, AM Ap (1+ 1x(t)) COSWet (I) A. x(t) COS WC ($-\frac{1}{2}x(t) - \frac{1}{MOD}AM - \frac{1}{2}x(t) \cos W_{c}$ I modulatori an devora essere identici. In restra non la sono mai -> peserena!!

MODULATORE DI WEAVER

La modulazione 55B è utile per trasmettere segneli della scarso contenuto alle trasse prequenze, che voglio trasmettere in canali delle bande molto strette.

www.daddy88.com

MODULATORE VSB (Vestigial Single Band) ×(t) DJB HOLF) XVSB(t) HOLF) = HX(-f) filtro $H(f) = H_{SSBLP}(f) + H_{D}(f)$ $Y_{LP}(f) = X_{LP}(f) \cdot H_{SSBLP}(f) + X_{LP}(f) \cdot H_{D}(f)$ $G_{x}(-\frac{1}{4}) = X_{LP}(-\frac{1}{4}) + H_{D}(-\frac{1}{4}) = -X_{LP}(\frac{1}{4}) + H_{D}(\frac{1}{4}) = -G(\frac{1}{4})$ SITMETRIA ANTIHERMITIA NA => g(t) è puramente immoginario, perciò influirce rolo sulla perte in quadrature. $x_{vso}(t) = A_0 \left[x(t) + j\hat{x}_0(t)\right] = \hat{x}(t) + g(t)$ $A_0 \left[x(t) + j\hat{x}_0(t)\right] = A_0 \left[x(t) + j\hat{x}_0(t)\right] + g(t)$ $A_0 \left[x(t) + j\hat{x}_0(t)\right] = A_0 \left[x(t) + j\hat{x}_0(t)\right] + g(t)$ $A_0 \left[x(t) + j\hat{x}_0(t)\right] = A_0 \left[x(t) + j\hat{x}_0(t)\right] + g(t)$ Il problema i fore un fittro a rimmetria erottomenti dispari

www.daddy88.co

Davide Valeriani

Quindi. $X_{c}(t)$ 1 XLP (t) A(E) $\frac{1}{2}\left[1+\mu_{x}(t)\right]$ AM A. 1+Mxlt) coswet A. 1+ Mx(t)] Pc +2P50 A. x(t) I A. X(E) DSB A. xlt) cos wet 55B 1 2 [Xle) coswet = xlle) sinwet] 1 Ao[x(t) + jx(t)] 1 Ao [x(t) + xll)2 10 X(t) + xq(t) PSB < ST < 2PSB Ao (xit) +jx (t) VJB 12 X(E) coswet = Xq(E) sinwet www.daddy88.com Davide Valeriani