Space Power Synthesis-based Cooperative Jamming for Unknown Channel State Information

Xin Fan, Liang Huang, Yan Huo, Chunqiang Hu, Yuqi Tian, Jin Qian

Presenter:

Xin Fan Beijing Jiaotong university

Motivation Cryptographic approaches VS Physical layer(PHY) security schemes

- Defects in the cryptographic approaches:

 the PHY provides a reliable communication
 the threat of increasingly powerful computing capacity
- PHY security schemes:

 a complement technology
 - reduce the decoding ability of eavesdroppers

Motivation (cont'd)

• The existing works:

artificial noise

beamforming

Most of them based on kown Channel State Information (CSI)

Our work focus on:

Cooperative Jamming for Unknown CSI

System Model and Problem Formulation (cont'd)

Tx: Legitimate sender

Rx: Legitimate receiver

Jm_i: Cooperative Jammers

Ev: Eavesdroppers

System Model and Problem Formulation(cont'd)

According to the Poynting theorem, Maxwell equation, and the principle of antenna and electromagnetic wave:

synthetic electric field strength:

$$E = \sum_{i=1}^{n} \frac{15\pi I_i}{r_i} e^{j(\beta r_i + \varphi_i)} e^{j\omega t}$$

synthetic power density:

$$P_r = \frac{1}{2} \operatorname{Re}(E \times H^*) = \frac{E^2}{2\eta}$$

$$P_{\rm r} \propto |E|^2$$

Symbol	Meaning
n	The number of the jammers
l _i	The current of the antenna of the Jm _i
r _i	The distance from the Jm _i to the target
ϕ_{i}	The initial phase of transmitted signal
β	The parameter for the phase constant
η	The parameter for the wave impedance of the medium
ω	The frequency of transmitted signal
t	The parameter for the time

System Model and Problem Formulation(cont'd)

- The secrecy rate is defined as:
- $C_s = max(C_{Rx} C_{Ev}, 0)$
- = $\max(\log(1+SINR_{Rx})-\log(1+SINR_{Ev}),0)$
- Thus, our objective:
- optimize n, l_i, r_i, ϕ_i
- to minimize synthetic power of jamming signals at Rx

The Existence of Fundamental Solution

• **Lemma 1.** Considering a cooperative jamming system with two friendly jammers, the synthetic power density is proportional to the square of two signal superimposed amplitude, i.e.

$$P_{\rm r} \propto A_2 = A_1^2 + A_2^2 + 2A_1A_2\cos(\Delta\phi)$$

• where $A_i=\frac{15\pi I_i}{r_i}$, and $\Delta\phi=\ \varphi_2$ - $\varphi_1+\beta(r_2-r_1)$ is the corresponding phase difference.

- Phase condition: $\Delta \phi = (2k+1)\pi$, $k \in \mathbb{Z}$
- Amplitude condition: $\frac{\mathbf{I}_1}{\mathbf{r}_1} = \frac{\mathbf{I}_2}{r_2}$

The Uniqueness of Solution

$$\begin{cases} r_1 = \frac{(2k+1)\pi + \varphi_1 - \varphi_2}{\beta(I_2 - I_1)} I_1 \\ r_2 = \frac{(2k+1)\pi + \varphi_1 - \varphi_2}{\beta(I_2 - I_1)} I_2 \end{cases}, (k \in \mathbb{Z})$$

The Uniqueness of Solution (cont'd)

Rx is collinear with two jammers

• Lemma 2. When there exists a externally-tangent point of two jammers with r1 and r2 based on Phase condition, we cannot find other intersection points along with the increase of k, if and only if

$$\lambda > \lambda_{\text{ext}} = d_{\text{Jm1,Jm2}} + d_{\text{Rx,Jm1}} - d_{\text{Rx,Jm2}}$$

• where $d_{Rx,Jm2} > d_{Rx,Jm1}$.

The Uniqueness of Solution (cont'd)

Rx is collinear with two jammers

• Lemma 3. When there exists a internally-tangent point of two jammers with r1 and r2 based on Phase condition, we cannot find other intersection points

along with the decrease of k, if and only if
$$\lambda > \lambda_{\rm int} = d_{\rm Rx,Jm2} - d_{\rm Rx,Jm1} - \frac{I_2 - I_1}{I_1 + I_2} d_{\rm Jm1,Jm2}$$
 where decrease of k, if and only if

• where $d_{Rx,Jm2} > d_{Rx,Jm1}$.

The Uniqueness of Solution (cont'd) Rx is not collinear with two jammers

• **Lemma 4.** Under the premise of satisfying *Phase condition* and *Amplitude condition*, we can find two intersection points at most along with the changing k, if and only if

$$\lambda > \max(\lambda_{\text{ext}}, \lambda_{\text{int}})$$

Numerical Simulation Results

Fig. 3. The effect of different λ of jammers on the synthetic jamming power. The simulation parameters are set as follow. Rx, Jm_1 , Jm_2 are located at (0,0), (0,150), (0,-250), respectively. Besides, $I_1 = 3A$, $I_2 = 5A$.

Numerical Simulation Results (cont'd)

Fig. 4. The effect of different λ of jammers on the synthetic jamming power. The simulation parameters are set as follow. Rx, Jm_1 , Jm_2 are located at (0,450), (0,150), (0,-50), respectively. Besides, $I_1 = 3A$, $I_2 = 5A$.

Numerical Simulation Results (cont'd)

Four jammers

Fig. 5. Synthetic jamming power of four jammers distribution diagram. The simulation parameters are set as follow. Rx,Jm_1,Jm_2,Jm_3 , and Jm_4 are located at (0,0),(144,-192),(-256,-192),(-144,192),(256,192), respectively. Besides, $\lambda = 0.4m$, $I_1 = I_3 = 3A$, $I_2 = I_4 = 4A, \varphi_1 = \varphi_3 = 0, \varphi_2 = \varphi_4 = pi$.

Three jammers

Fig. 6. Synthetic jamming power of three jammers distribution diagram. The simulation parameters are set as follow. Rx, Jm_1 , Jm_2 , and Jm_3 are located at (0,0), (0,500), (0,-500), (300,0), respectively. Besides, $\lambda = 0.3m$, $I_1 = I_2 = 3A$, $\varphi_1 = \varphi_2 = 0$.

Conclusion and Future Work

- Conclusion:
- A novel approach to study jamming
- Based on the space power synthesis
- Without knowing the CSI of the eavesdroppers
- Future Work:
- MIMO system
- Power allocation algorithms

