Bioinformatyka dla studiów podyplomowych

Adrian Kania¹

¹Zakład Biofizyki Obliczeniowej i Bioinformatyki

2024/2025

Czym jest bioinformatyka?

- The science of information and information flow in biological systems, especially of the use of computational methods in genetics and genomics. (Oxford English Dictionary)
- The mathematical, statistical and computing methods that aim to solve biological problems using DNA and amino acid sequences and related information. (Fred J. Tekaia)
- "I do not think all biological computing is bioinformatics, e.g. mathematical modelling is not bioinformatics, even when connected with biology-related problems. In my opinion, bioinformatics has to do with management and the subsequent use of biological information, particular genetic information." (Richard Durbin)

Terminy pokrewne: Biologia obliczeniowa, Biometria, Biologia matematyczna, Biologia systemów.

Umiejętności

Dlaczego bioinformatyka jest ważna?

- Najnowsze techniki eksperymentalne wytwarzają ogromne ilości danych.
- Zaawansowane analizy są konieczne do zrozumienia danych.
- Typowe dane są często wybrakowane (missing values).

Co powinien umieć bioinformatyk?

- statystyka, metody analizy danych,
- programowanie,
- obsługa baz danych,
- modelowanie.
- korzystanie z pakietów obliczeniowych,
- umiejętności komunikacji ;).

Bioinformatycy używają baz danych! Pierwszorzędowych, drugorzędowych czy trzeciorzędowych.

GenBank/DDJB/EMBL	www.ncbi.nlm.nih.gov
Ensembl	www.ensembl.org
PubMed	www.ncbi.nlm.nih.gov
NR	www.ncbi.nlm.nih.gov
UniProt	www.expasy.org
InterPro	www.ebi.ac.uk
OMIM	www.ncbi.nlm.nih.gov
Enzymes	www.expasy.org
PDB	www.rcsb.org/pdb/
KEGG	www.genome.ad.jp

Nucleotide sequences Human/mouse genome Literature references Protein sequences Protein sequences Protein domains Genetic diseases Enzymes Protein structures Metabolic pathways

Homologia i podobieństwo

Homologi - dwie sekwencje które wyewoluowały od tego samego genu przodka. Oczekujemy, że homologi są do siebie podobne. Jednak, podobieństwo sekwencji nie jest tym samym co homologia.

#mutations	#mutations
O agtgtccgttaagtgcgttc	64 acagtccgttcgggctattg
1 agtgtccgttatagtgcgttc	128 cagagcactaccgc
2 agtgtccgcttatagtgcgttc	256 cacgagtaagatatagct
4 agtgtccgcttaagggcgttc	512 taatcgtgata
8 agtgtccgcttcaaggggcgt	1024 accettatetaetteetggagtt
16 gggccgttcatgggggt	2048 agcgacctgcccaa
32 gcagggcgtcactgagggct	4096 caaac

Wyróżniamy tutaj Orotologi (powstały wskutek specjacji) oraz Paralogi (powstały wskutek duplikacji).

Dopasowanie sekwencji

Dopasowanie pomiędzy sekwencjami określa które pozycje odpowiadają sobie.

2 matches 5 mismatches	5 matches 2 mismatches	7 matches 0 mismatches
actctag-	-actctag	ac-tctag
acgtetag	acgtctag	acgtetag

1 not aligned

Takie porównania mogą być użyte to:

- szukania relacji ewolucyjnych,
- zidentyfikowania konserwatywnych miejsc,
- zidentyfikowania odpowiadających sobie genów pomiędzy różnmi modelami (np ludzkimi czy mysimi).

Indel: insertion or deletion of a base with respect to the ancestor sequence

1 not aligned

Mismatch: substitution (point mutation) of a single base

1 not aligned

Które dopasowanie jest najlepsze?

Na początku trzeba ustalić punktację za match/mismatch i gap. Poniżej przykładowe punkty. Łączny wynik dopasowania to suma punktów za każdą pozycję.

acgtctag	acgtctag	acgtctag
actctag-	-actctag	ac-tctag
2 matches	5 matches	7 matches
5 mismatches	2 mismatches	0 mismatches
1 not aligned	1 not aligned	1 not aligned
S = 2*1 + 5*(-1) + 1*(-2) = -5	S = 5*1 + 2*(-1) + 1*(-2) = 1	S = 7*1 + 0*(-1) + 1*(-2) =

Sekwencje aminokwasowe

Do porównywania sekwencji aminokwasowych używamy odpowiednich macierzy podobieństwa (np BLOSUM)

г		-																			
\vdash	Α	4	_											1	AAI	3CI	DΑ		BE	3CI	A
\vdash	R	-1	5																		
L	N	-2	0	6	_										DAI	BC1	DA	. A.	. BE	3CE	B
L	D	-2	-2		6									19	ם חו	201	771	7 7	D.	707	70
L	С	0	-3	-3	-3	9									BBI	301	JAI	BA.	BC	-CF	M
	Q	-1	1	0	0	-3	5							7	AA	ACI	DAC	C.I	CE	BCI	B
	Е	-1	0	0	2	-4	2	5													
Г	G	0	-2	0	-1	-3	-2	-2	6					(CCI	3A.I	DAI	3.I	DBE	3DC	C
	н	-2	0	1	-1	-3	0	0	-2	8					7 7 7	10	7 7		DI	000	10
Г	I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4			1	HAZ	401	77		DI.		
Г	L	-1	-2	-3	-4	-1	-2	-3	-4	-3		4									
	Κ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5								
Г	М	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5							
	F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6						
Г	Р	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7					
	s	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4				
	Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5			
	w	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11		
	Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	
	٧	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
_		Α	R	N	D	С	0	Е	G	н	I	L	к	м	F	Р	s	т	w	Υ	v

Jak zmierzyć poziom ekspresji genów w komórce?

- Reakcja łańcuchowa polimerazy w czasie rzeczywistym (real time PCR),
- Hybrydyzacja northern (RNA blot),
- Sekwencjonowanie (Sanger, Maxam-Gilbert),
- Mikromacierze.
- Sekwencjonowanie nowej generacji (NGS/RNA-Seq).

Zastosowanie mikromacierzy

Wybrane zastosowania mikromacierzy

- Wyznaczanie profili ekspresji genów (w różnych tkankach, stanach chorobowych...).
- Badanie polimorfizmu/detekcja SNP.
- Badanie oddziaływania DNA-białko.
- Badanie nowych leków.
- Identyfikacja procesów komórkowych w które zaangażowane są geny.

Czy ktoś jeszcze korzysta z mikromacierzy?

Eksperyment mikromacierzowy

Eksperyment mikromacierzowy

Wyznaczamy stosunek intensywności czerwonej i zielonej fluorescencji (czyli $x_i = R_i/G_i$) dla każdego genu.

- Jeżeli $x_i = 1$, to oznacza to, że poziom *i*-tego genu był taki sam w próbie kontrolnej i badanej.
- ullet Jeżeli $x_i > 1$, to oznacza to, że poziom i-tego genu był wyższy w próbie badanej w porównaniu do próby kontrolnej.
- Jeżeli $x_i < 1$, to oznacza to, że poziom i-tego genu był niższy w próbie badanej w porównaniu do próby kontrolnej.

Eksperyment mikromacierzowy

Niech N oznacza liczbę eksperymentów mikromacierzowych. Każda mikromacierz dostarcza informacje ilościowe o ekspresji P genów. Formalnie możemy więc rozważane dane przedstawić w postaci zbiorczej macierzy $X = [x_1, x_2, ..., x_N] \in \mathbb{R}^{P \times N}$.

Transformacja logarytmiczna

Stosujemy transformację $x_l = \log(x)$ aby wykres intensywności przybrał bardziej symetryczną (Gaussowską) postać.

Normalizacja

Po co stosujemy normalizację?

- różna ilość materiału w kolejnych eksperymentach
- różna wydajność: ekstracji RNA, odwrotnej transkrypcji, znakowania, fotodetekcji

Rodzaje normalizacji

- globalna wszystkie geny biorą udział w normalizacji
- lokalna używamy niewielkiej puli genów (np. housekeeping genes)

Gdzie można znaleźć dane z eksperymentów mikromacierzowych?

Specyfika danych z mikromacierzy

Przy analizie danych mikromacierzowych należy zwrócić szczególną uwagę na następujące zagadnienia:

- Zasadniczy problem: P >> N (liczba genów znacznie większa niż liczba mikromacierzy).
- Duży zakres zmienności ekspresji genów (1% genów odpowiada za połowe masy mRNA w komórce).
- Możliwość braku danych spowodowana m.in. lokalnymi defektami mikromacierzy.
- Duża podatność na zakłócenia i błędy w obróbce laboratoryjnej.

Analiza korealcji

Jednym z celów przeprowadzenia analizy macierzowej może być wytypowanie genów o podobnym profilu ekspresji w kolejnych grupach (ta sama monotoniczność). Do oceny zależności liniowej między dwoma zmiennymi (tutaj: profilami genów) służy współczynnik korealcji. Najczętsze stosowane to:

- współczynnik korealcji r Pearsona,
- współczynnik korelacji rang Spearmana.

Kwartet Anscombe'a

Problem testowania wielu hipotez

Załóżmy, że badamy poziom ekspresji 9000 genów aby sprawdzić skuteczność działania nowego leku. Mamy do dyspozycji grupę kontrolną i grupę badaną oraz wykonujemy test statystyczny dla każdego genu. Niech

- H₀: gen nie uległ zróżnicowanej ekspresji
- H_1 : różnica w ekspresji genu jest znacząca

Przyjmijmy $p_{value} = 0.01$ (jest 1% szansy na zaobserwowanie zróżnicownej ekspresji przez przypadek). W przypadku badania 9000 genów, nawet gdyby lek nie miał żadnego wpływu, to spodziewamy się że dla 90 genów ich p_{value} będzie mniejsze niż 0.01.

Problem testowania wielu hipotez

Przyjmijmy $p_{value} = 0.01$ (jest 1% szansy na zaobserwowanie zróżnicownej ekspresji przez przypadek). W przypadku badania 9000 genów, nawet gdyby lek nie miał żadnego wpływu, to spodziewamy się że dla 90 genów ich p_{value} będzie mniejsze niż 0.01.

Poprawka Bonferroniego

- wyznaczamy wartości p_i dla każdego genu, i = 1, 2, ..., n.
- wyznaczamy $p_i^{'} = \min(np_i, 1)$
- wybieramy te geny, dla których $p_i' < \alpha$, gdzie α założony poziom istotności.

Testy statystyczne

- Testy parametryczne (dla danych z rozkładem normalnym) t test dla dwóch prób
- Testy nieparametryczne (mają mniej założeń) test Wilcoxona dla par obserwacji, test Manna-Whitneya.
- Metoda Bootstrap pozwala ominąć założenie o rozkładzie normalnym.
- eBayes gdy mamy mało powtórzeń i nie można wyliczyć wariancji.
- Test Anova gdy mamy więcej niż dwa warunki

t-test

Etapy:

- Dla każdej grupy i dla każdego genu wyznaczamy średnią i odchylenie standardowe.
- ullet Wyznaczamy parametr t.

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}$$

• Odczytujemy wartość parametru *p* z tablic (o rozkładzie t-studenta).

Co dalej z wytypowanym zbiorem genów?

Analiza funkcjonalna - nadanie interpretacji biologicznej uzyskanym wynikom. W kotekście mikromacierzy takim wynikiem jest zbiór genów różnicujących. Przydatne w tym celu mogą być klasyczne bazy danych jak GenBank czy DDBj czy te bardziej specjalistyczne (Gene Ontology, KEGG PATHWAY) zawierające informacje o wznajemnych powiązaniach między obiektami.

Badanie nadreprezentacji grupy genów

Pytanie: Czy w wytypowanym przez nas zbiorze genów występuje większa grupa powiązana np z tym samym procesem biologicznym?

Porównujemy oczekiwane prawdopodobieństwo wystąpienia interesującej nas grupy genów z obserwowanym.

$$P(x = M_t) = \frac{\binom{N_t}{M_t}\binom{N - N_t}{M - M_t}}{\binom{N}{M}}$$

