Поз. Обознач.	Наименование	Кол.	Примечание	
	V од падеотор I			
	<u>Конденсаторы</u>			
C1	Керамический 0603 -X7R- 50 В $0,1$ мк $\Phi \pm 10$ %	1	KEMET	
C2	Электролитический ST5x11 16 B 100 мк $\Phi \pm 20 \%$	1	CAPXON	
C3, C4	Керамический 0603 -X7R- 50 В $0,1$ мк $\Phi \pm 10$ %	2	KEMET	
C5C11	Керамический 0603-X7R-50 В 0,047 мк $\Phi \pm 10~\%$	7	KEMET	
C12	Электролитический ST5x11 16 B 100 мк Φ ± 20 %	1	CAPXON	
C13	Электролитический ST5x11 16 B 22 мк $\Phi \pm 20~\%$	1	CAPXON	
C14, C15	Керамический 0603 -X7R- 50 В $0,1$ мк $\Phi \pm 10$ %	2	KEMET	
C16	Керамический 0603-NPO-50 В 33 пк $\Phi \pm 10~\%$	1	KEMET	
C17	Электролитический ST5x11 16 B 22 мк $\Phi \pm 20~\%$	1	CAPXON	
C18	Керамический 0603-NPO-50 В 220 пк $\Phi \pm 10~\%$	1	KEMET	
C19C21	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	3	KEMET	
C22, C23	Керамический 0603-NPO-50 В 22 пк Φ ± 10 %	2	KEMET	
C24, C25	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	2	KEMET	
C26	Электролитический ST5x11 16 B 10 мк Φ ± 20 %	1	CAPXON	
C27	Керамический 0603-X7R-50 В 1 мк $\Phi \pm 10~\%$	1	KEMET	
C28	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	1	KEMET	
C2931	Электролитический ST5x11 16 B 22 мк Φ ± 20 %	3	CAPXON	
C3241	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	10	KEMET	
C42	Электролитический ST5x11 16 B 10 мк Φ ± 20 %	1	CAPXON	
C43	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	1	KEMET	
C44	Электролитический ST6.3x11 16 B 220 мк Φ ± 20 %	1	CAPXON	
C45	Керамический 0603-X7R-50 В 0,1 мк Φ ± 10 %	1	KEMET	
C4652	Керамический 0603-NPO-50 В 100 пк $\Phi \pm 10~\%$	7	KEMET	
		0.000	. поз	
Изм. Лист		<i>9.00</i> ∠	(1133	
Разраб.	Филипцов Д.А. — — — — — — — — — — — — — — — — — —	Лит	Лист Листов	
Пров.	Станкевич А.В. Контроллер ЖК-монитор	a y	1 4	
Т.контр. Н. Контр. Утв.	Перечень элементов		be∂pa ЭВС, гр. 850701	

Обозн.	Наименование	Кол.	Примечание
	<u>Резисторы</u>		
R1R3	0603 75 Ом ± 5 %	3	VISHAY
R1R3	0603 100 Om ± 5 %	1	VISHAY
			VISHAY
R5	0603 4,7 кОм ± 5 %	1	
R6R8	0603 100 Om ± 5 %	3	VISHAY
R9, R10	0603 56 Om ± 5 %	2	VISHAY
R11	0603 470 Ом ± 5 %	1	VISHAY
R12	$0603\ 56\ \mathrm{Om} \pm 5\ \%$	1	VISHAY
R13	$0603\ 2,2\ кОм \pm 5\ \%$	1	VISHAY
R14, R15	$0603\ 4,7\ кОм \pm 5\ \%$	2	VISHAY
R16R21	$0603\ 100\ \mathrm{Om} \pm 5\ \%$	6	VISHAY
R22	0603 2,2 кОм ± 5 %	1	VISHAY
R23, R24	0603 10 O _M ± 5 %	2	VISHAY
R25	0603 390 Ом ± 5 %	1	VISHAY
R26	$0603\ 10\ \mathrm{кОм} \pm 5\ \%$	1	VISHAY
R27, R28	0603 4,7 кОм ± 5 %	2	VISHAY
R29, R30	0603 0 Ом ± 5 %	2	VISHAY
R31, R32	0603 100 Ом ± 5 %	2	VISHAY
R33	0603 20 кОм ± 5 %	1	VISHAY
R34	0603 10 кОм ± 5 %	1	VISHAY
R35	0603 100 кОм ± 5 %	1	VISHAY
R36, R37	0603 10 кОм ± 5 %	2	VISHAY
R38R44	0603 4,7 кОм ± 5 %	7	VISHAY
R45R49	0603 1 кОм ± 5 %	5	VISHAY
R50, R51	$0603\ 100\ Om \pm 5\ \%$	2	VISHAY
R52	0603 4,7 кОм ± 5 %	1	VISHAY
R53, R54	$0603\ 100\ Om \pm 5\ \%$	2	VISHAY
R55	$0603~0~\text{Om} \pm 5~\%$	1	VISHAY
		1 1	Лист
	ГУИР.20371	9.002 I	
Изм. Лист	№ докум. Подп. Дата		2

Обозн.	Наименование	Кол.	Примечание
R56	0603 4,7 кОм ± 5 %	1	VISHAY
R57	$0603~0~\text{Om} \pm 5~\%$	1	VISHAY
R58	$0603\ 4,7\ кОм \pm 5\ \%$	1	VISHAY
R59	$0603\ 100\ \mathrm{Om} \pm 5\ \%$	1	VISHAY
R60	0603 220 Ом ± 5 %	1	VISHAY
	<u>Микросхемы</u>		
DA1DA4	BAV99 SOT23 70 B	4	IBS Electronics
DA5	BAV70 SOT23 85 B	1	Nexperia
DA6	AMS1117-3.3 SOT223 800 MA 3,3 B	1	AMS
DA7	AMS1117-1.8 SOT223 800 MA 1,8 B	1	AMS
DA8	8P4Rx4RP0612 10 кОм	1	LIKET
DD1	FM25CL64B-GTR SOIC8 FRAM 64 кБ 20 МГц	1	Ramtron
DD2	SST25VF010A-33-4C-SAE SOIC8 FLASH 1 Мбит 33 МГц	1	Microchip
DD3	TSUM16AL PQFP100	1	MSTAR
DD4	AT24C04N-10SU-2.7	1	Atmel
	<u>Катушки индуктивности</u>		
L1L3	GBK160808 SMD0603 60 Ом 600 мА	3	VISHAY
L4	SMD0805 120 Om 300 mA	1	VISHAY
L5L8	GBK201209T SMD0805 60 Om 800 mA	4	VISHAY
	Соединения контактные		
XS1	WFR 2.0mm 3P 180°	1	Connfly
XS2	SMD 1.0mm 30PINAL2309-A0G1Z	1	Connfly
XS3	WAFER 2x4P 2.0mm 200PHD-2*4ST	1	Connfly
1			T
Изм. Лист	ГУИР.203719.00 № докум. Подп. Дата	02 I	ПЭ3 <u>Лист</u> 3

Обозн.	Наименование	Кол.	Примечание
XS4	WAFER 5P 4500-05	1	Connfly
XS5	WFR8P 1.5mm R/A S8B-ZRJST	1	Connfly
	<u>Транзисторы</u>		
VT1	PMBT3904 NPN SOT23 200 MA 40 B	1	Philips Electronics
VT2	AP2305GN P-CH SOT23	1	APEC
VT3	2N7002N-CH FET SOT23	1	Philips Electronics
VT4	PMBT3904 NPN SOT23 200 MA 40 B	1	Philips Electronics
VT5, VT6	PMBT3904 PNP SOT23 200 MA 40 B	2	Philips Electronics
VD1VD5	Стабилитроны ZMM5232B-LF DO213AA 5,6 B	5	Frontier Electronics
ZQ1	Резонатор кварцевый HC-49US DIP 14.31818 МГц 16 пФ	1	Jameco
	ГУИРПЭ	2	Лисп