Einführung in Matlab – learning by doing

1. Variablen, Vektoren, Matrizen (siehe auch 1.5 und 1.6¹)

a=7	a wird als Skalar definiert (oder 1x1 Matrix)
b=[1,2,3]	b ist ein Zeilenvektor (oder 1x3 Matrix); nach Komma: neues Spalte
c=[1 2 3]	Leerzeichen haben die gleiche Bedeutung wie Kommata
d=[1+2,a,4]	
f=[1;2;3]	f ist ein Spaltenvektor (oder 3x1 Matrix); nach Semikolon: neue Zeile
g=1:9	Doppelpunkt Operator: <i>Startwert</i> >: <i>Endwert</i> > (Schrittweite standardmäßig 1)
h=1:0.5:9	Doppelpunkt Operator: <startwert>:<schrittweite>:<endwert></endwert></schrittweite></startwert>
i=1:2:9	
j=i(2)	j wird als zweites Element von i gesetzt (Indizierung startet mit 1)
k=i([1 3 5])	k wird als Zeilenvektor (oder 1x3 Matrix) mit dem 1, 3 und 5 Eintrag von i definiert
l=i(1:2:5)	jetzt mit Kurzschreibweise (Doppelpunkt Operator)
m=-1.23e4	Exponentialdarstellung: $-1.23 \cdot 10^4$
A=[1 2 3; 4 5 6;7 8 9;10 11 12]	A wird als 4x3 Matrix definiert; Matlab unterscheidet Groß-/Kleinschreibung
disp(A)	Ausgabe von A
m=A(2,1)	m ist Skalar mit Wert des Eintrages von A in der zweiten Zeile, erste Spalte
B(3,4)=34	B wird als 3x4 Matrix interpretiert; alle nichtbenannten Elemente werde Null gesetzt
B(4,1)=41	B wird zur 4x4 Matrix erweitert
C=A(2,[1 3])	C ist 1x2 Matrix mit Einträgen aus 2. Zeile und der 1. und 3. Spalte von A
D=A(1:3,[1 3])	D ist 3x2 Matrix von Einträgen der 1. bis 3. Zeile und der 1. und 3. Spalte von A
size(A)	Anzahl der Zeilen und Spalten von A als Zeilenvektor
[n,m]=size(A)	Anzahl der Zeilen von A in n und Anzahl der Spalten von A in m
help size	Hilfe zur Funktion size
doc size	Hilfe zur Funktion size im Hilfebrowser
1j	Komplexe Einheit
z=-2+3j	Definition komplexe Zahl
X = [1j 2; z -1-j]	Definition komplexwertiger Matrix
who	Ausgabe der definierten Variablen
whos	Ausgabe der definierten Variablen mit Zusatzinformationen
clear	löscht alle Variablen
whos	

 $^{^{1}}$ Die Angabe bezieht sich auf das Tutorial "Matlab – Eine Einführung" von Christian Karpfinger und Boris von Loesch

2. Indizierung (siehe auch 1.6)

clear	
a=1:12	
a(5:end)	
a(5:2:end-3)	
A=[1 2 3; 4 5 6; 7 8 9]	
A(:,1)	gesamte erste Spalte
A(end,[1 3])	letzte Zeile, 1. und 3. Spalte
A(:)	Vektor aller Spalten der Matrix

3. Rechenoperationen (siehe auch 1.7)

clear	
a=[1 2 3]	1x3 Matrix
b=a'	Transponierte von a: 3x1 Matrix
c=[10 11 12]	1x3 Matrix
d=[4;5;6]	3x1 Matrix
e=[14 15 16]'	3x1 Matrix (durch Transponieren einer 1x3 Matrix)
a+c	
a-c	
a-d	Fehler: Dimensionen müssen übereinstimmen (R2017: führt auf 3x3 Matrix)
a-d'	
a*d	Matrixmultiplikation (entspricht hier Skalarprodukt)
d*a	3x1 Matrix mit 1x3 Matrix multipliziert ergibt 3x3 Matrix
a*a'	Quadratische Euklidsche Norm von a
a.*c	elementweise Multiplikation
a.*d	Fehler: Dimensionen müssen übereinstimmen (R2017: führt auf 3x3 Matrix)
clear	
A=[1 2;3 4]	
B=[5 6; 7 8]	
x=[2 4]'	
b=[3 10]'	
A*x	Matrix-Vektormultiplikation (entspricht 2x2 Matrix mit 2x1 Matrix multipliziert)
A\b	Lösen des Gleichungssystems A*x = b
A*B	Matrix-Multiplikation
A.*B	elementweise Multiplikation
A^2	entspricht A*A
A.^2	elementweise 2. Potenz

3. Elementare Funktionen (siehe auch 1.5 und 1.7.2)

clear	
x=pi/2	Konstante π
sin(x)	Analog: cos, tan, exp, log, log2, log10, asin, acos, sqrt
xx=0:0.1:1	Vektor von x-Werten
sin(xx)	Elementweise berechneter Vektor
help elfun	
A = eye(3)	3x3 Einheitsmatrix
B = zeros(4,3)	4x3 Matrix mit Einträgen 0
C = ones(2,3)	2x3 Matrix mit Einträgen 1

4. Graphiken/Ausgabe – Einführung (siehe auch 4.2)

y=2:12;	Semikolon am Schluss unterdückt die Ausgabe
plot(y)	Zeichne Werte von y über x-Werte von 1 bis Länge von y
x=0:0.1:4	
y=sin(x)	
plot(x,y)	Zeichne Werte von y über die Werte von x (beide Vektoren müssen gleich lang sein)
<pre>xlabel('Zeit [s]')</pre>	
<pre>ylabel('Position [m]')</pre>	
title('Schwingung')	
xlim([0 pi])	Legt den Bereich der x-Achse fest (analog: ylim)
plot(x,y,'x')	Verwende Kreuze zur Darstellung; weitere Optionen siehe doc plot (LineSpec)
z=cos(x)	
plot(x,y,'-r',x,z,'-b')	Darstellung zweier Kurven in einem Plot
<pre>legend('Sin','Cos');</pre>	Legende hinzufügen
xx=0:4, yy=2.^xx	
<pre>semilogy(xx, yy, 'x-')</pre>	Halblogarithmischer Plot (siehe auch semilogx und loglog)
a=1; x=10.2;	
<pre>fprintf('%3i\n',a)</pre>	Gib die Variable a als Ganzzahl (%i) mit Breite 3 aus und Zeilenvorschub (\n)
<pre>fprintf('%8.3f\n',x)</pre>	Gib die Variable x als Fixkommazahl (%f) mit Gesamtbreite 8 und 3 Nachkommastellen
fprintf('%10.3e\n',x)	Gib die Variable x in Exponentschreibweise (%e) mit Gesamtbreite 10 und 3 Nachkommastellen
<pre>fprintf('%3i %8.3f\n',a ,x)</pre>	

Siehe auch interaktives Plot Tool (Symbol im Plot Fenster)

5. Skripte und Funktionen (siehe auch 3.1 und 3.2)

Skripte

clear	
a=10	
whos	
edit mein_skript.m	Erstelle Datei mein_skript.m im aktuellen Verzeichnis; alternativ kann die Datei über die Benutzeroberfläche erstellt werden

Fügen Sie folgende Zeilen im Editor in mein_skript.m ein:

a=3

b=4

a2=a*a

b2=b*b

c2=a2+b2

Speichern Sie die Datei und führen Sie im Kommondozeilenfenster folgende Befehle aus:

mein_skript	Aufruf des Skriptes im aktuellen Verzeichnis ohne .m Endung;
a	Seiteneffekt
whos	

Funktionen

clear	
whos	
edit meine_funktion.m	Erstelle Datei meine_funktion.m im aktuellen Verzeichnis

Fügen Sie folgende Zeilen im Editor in meine_funktion.m ein:

function c2=meine_funktion(a,b)
a2=a*a
b2=b*b
c2=a2+b2

return

Speichern Sie die Datei und führen Sie im Kommondozeilenfenster folgende Befehle aus:

alpha=3	
beta=4	
t=meine_funktion(alpha,beta)	Aufruf der Funktion ohne .m Endung mit den Argumenten alpha und beta
whos	

Anonyme Funktionen

clear	
$f = @(x) 1+x.^2$	Anonymen Funktion mit einer Eingabe als Variable f (function handle)
whos	
f(10)	
f(1:5)	
g =@(x,y) x.^2 + y.^2	Anonyme Funktion g mit zwei Eingabewerten
g(2,-1)	
g(1:3,4:6)	

6. Schleifen (siehe 2.3)

clear	
whos	
edit meine_schleife.m	Erstelle Datei meine_schleife.m im aktuellen Verzeichnis

Fügen Sie folgende Zeilen im Editor in meine_schleife.m ein:

```
t = 0
for i=1:10
    t = t + i
end
```

Speichern Sie die Datei und führen Sie im Kommondozeilenfenster folgende Befehle aus:

meine_schleife	
whos	
t	

Für eine Schleife kann ebenfalls while verwendet werden.

7. if-Anweisung (siehe auch 2.1 und 2.3)

1==1	Vergleichsoperator; Rückgabewert 1 (wahr) oder 0 (falsch)
1~=1	Operator nicht gleich
1<=2	Weitere Operatoren < , > , >=
1<=2 && 3<=2	Logisches Und
1<=2 3<=2	Logisches Oder
clear	
whos	
edit mein_if.m	Erstelle Datei mein_if.m im aktuellen Verzeichnis

Fügen Sie folgende Zeilen im Editor in mein_if.m ein:

```
function mein_if(a)
if a>10
         disp('Argument ist größer als 10');
elseif a>=0
         disp('Argument ist größer oder gleich 0 aber kleiner gleich 10');
else
         disp('Argument ist kleiner als 0');
end
```

Speichern Sie die Datei und führen Sie im Kommondozeilenfenster folgende Befehle aus:

mein_if(8)	
mein_if(12)	
mein_if(-2)	

8. Symbolische Berechnungen

clear	
syms x	Erzeugt die symbolische Variable x
fs=x^2-2	Definition der Funktion $f(x) = x^2 - 2$ mit symbolischer Variable x
dfs = diff(fs)	Ableitung f' der Funktion f
fs(2)	Fehler: Keine direkte Auswertung von Funktionen mit symbolischen Variablen
subs(fs,x,2)	Auswertung
f=matlabFunction(fs)	Konvertierung in anonyme Funktion (analog für dfs)
f(2)	Auswertung von f