Task 2

\mathbf{a}

Consider an image of 224x224 and a patch size of 16x16.

We can easily calculate the number of patches along the width and height of the image doing $\frac{224}{16} = 14$. So, the total number of patches is 14x14 = 196

b

Let's consider these token vectors: $\mathbf{p_0} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. $\mathbf{p_1} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. $\mathbf{p_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. $\mathbf{p_3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. And the projection matrices $\mathbf{W_q} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\mathbf{W_k} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\mathbf{W_v} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ First of all, we need to calculate query, key and values. We can do this doing the following: $(q_i, k_i, v_i) = (W_q \cdot p_i, W_k \cdot p_i, W_v \cdot p_i)$. Doing this, we get that:

$$(q_1, k_1, v_1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$
$$(q_2, k_2, v_2) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$(q_3, k_3, v_3) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$(q_4, k_4, v_4) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Now we need to calculate the attention score. This is calculated as $q_{i,0} \cdot k_{j,0} + q_{i,1} \cdot k_{j,1}$. In this case, all k has 0 as second component so every score would be just $q_{i,0} \cdot k_{j,0}$.

$$i = 0$$
 scores to $j \to [1 \cdot 1, 1 \cdot 2, 1 \cdot 0, 1 \cdot 1]$
 $i = 1$ scores to $j \to [2 \cdot 1, 2 \cdot 2, 2 \cdot 0, 2 \cdot 1]$
 $i = 2$ scores to $j \to [0 \cdot 1, 0 \cdot 2, 0 \cdot 0, 0 \cdot 1]$
 $i = 3$ scores to $j \to [1 \cdot 1, 1 \cdot 2, 1 \cdot 0, 1 \cdot 1]$

So, the confusion matrix is:

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$

Now we need to apply softmax. The formula for softmax is: $\frac{e^{s_j}}{\sum_l e^{s_l}}$. For row 1 and 4, we have:

Exponential: $[e, e^2, 1, e]$. If we sum them we get circa 13.8256.

$$w_{1,1} = e/13.8256 = 0.1967$$

$$w_{1,2} = e^2/13.8256 = 0.5343$$

 $w_{1,3} = 1/13.8256 = 0.0723$
 $w_{1,4} = e/13.8256 = 0.1967$

For row 2:

Exponential: $[e^2, e^4, 1, e^2]$. If we sum them we get circa 70.3763.

$$w_{2,1} = e^2/70.3763 = 0.1050$$

 $w_{2,2} = e^4/70.3763 = 0.7757$
 $w_{2,3} = 1/70.3763 = 0,0142$
 $w_{2,4} = e^2/70.3763 = 0,1050$

For row 3:

$$w_{3,j} = 0.25$$

.

Finally, we can compute the output for each v vector. Since they have 0 as first component, the first component of the output will be 0. We can compute the second as $out_i = \sum_j w_{i,j} \cdot v_j$. I will show the steps only for the first output.

$$out_1 = 0.1967 \cdot 2 + 0.5343 \cdot 0 + 0.0723 \cdot 1 + 0.1967 \cdot 1 = \begin{bmatrix} 0 \\ 0.6624 \end{bmatrix}$$

Similarly:

$$out_2 = \begin{bmatrix} 0\\0.3292 \end{bmatrix}$$

$$out_3 = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$out_4 = \begin{bmatrix} 0\\0.6624 \end{bmatrix}$$

 \mathbf{c}

Property	CNNs	RNNs	Transformers
Parallelization	High (across	Low (sequential	High (full paral-
	spatial dims)	processing)	lel attention)
Long-range Dependencies	Limited (by re-	Difficult (van-	Excellent (di-
	ceptive field)	ishing gradi-	rect connec-
		ents)	tions)
Computational Complexity	$O(k^2 \cdot d \cdot n)$ for	$O(n \cdot d^2)$ for se-	$O(n^2 \cdot d)$ for self-
	convolution	quence	attention
Inductive Bias	Strong (local-	Moderate (tem-	Weak (requires
	ity, translation	poral order)	more data)
	equivariance)		
Best Use Cases	Image process-	Time series,	NLP, long se-
	ing, spatial data	sequential tasks	quences, multi-
		with short con-	modal tasks
		text	

Table 1: Comparison of CNNs, RNNs, and Transformers. Here n is sequence/spatial length, d is feature dimension, and k is kernel size.