(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 22 May 2003 (22.05.2003)

PCT

(10) International Publication Number WO 03/041707 A1

(51) International Patent Classification⁷: A61K 31/44, C07D 211/00 // C07C 53/138, 57/28

(21) International Application Number: PCT/SE02/02057

(22) International Filing Date:

12 November 2002 (12.11.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

0103836-3 16 November 2001 (16.11.2001) SE

(71) Applicant (for all designated States except US): ASTRAZENECA AB [SE/SE]; S-151 85 Södertälje (SE).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): ALCARAZ, Lilian [FR/GB]; Astrazeneca R & D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH (GB). JOHNSON, Timothy [GB/GB]; Astrazeneca R & D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH (GB). STOCKS, Micheal [GB/GB]; Astrazeneca R & D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH (GB).
- (74) Agent: GLOBAL INTELLECTUAL PROPERTY; AstraZeneca AB, S-151 85 Södertälje (SE).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)
- of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: N-ADAMANTYLMETHYL DERIVATES AND INTERMEDIATES AS PHARMACEUTICAL COMPOSITIONS AND PROCESSES FOR THEIR PREPARATION

(57) Abstract: The invention provides compounds of general formula (I) in which m, A, R¹ and Ar have the meanings defined in the specification; a process for, and intermediates used in, their preparation; pharmaceutical compositions containing them; a process for preparing the pharmaceutical compositions; and their use in therapy.

N-ADAMANTYLMETHYL DERIVATES-AND INTERMEDIATES AS PHARMACEUTICAL COMPOSITIONS AND PROCESSES FOR THEIR PREPARATION

The present invention relates to adamantane derivatives, processes for their preparation, pharmaceutical compositions containing them, a process for preparing the pharmaceutical compositions, and their use in therapy.

The P2X₇ receptor (previously known as P2Z receptor), which is a ligand-gated ion channel, is present on a variety of cell types, largely those known to be involved in the inflammatory/immune process, specifically, macrophages, mast cells and lymphocytes (T and B). Activation of the P2X₇ receptor by extracellular nucleotides, in particular adenosine triphosphate, leads to the release of interleukin-1β (IL-1β) and giant cell formation (macrophages/microglial cells), degranulation (mast cells) and proliferation (T cells), apoptosis and L-selectin shedding (lymphocytes). P2X7 receptors are also located on antigen-presenting cells (APC), keratinocytes, salivary acinar cells (parotid cells), hepatocytes and mesangial cells.

It would be desirable to make compounds effective as P2X₇ receptor antagonists for use in the treatment of inflammatory, immune or cardiovascular diseases, in the aetiologies of which the P2X₇ receptor may play a role.

20

25

10

15

In accordance with the present invention, there is therefore provided a compound of formula

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}

wherein m represents 1, 2 or 3, preferably 1 or 2;

each R¹ independently represents a hydrogen or halogen (e.g. fluorine, chlorine, bromine or iodine) atom, preferably a hydrogen atom;

A represents C(O)NH or, preferably, NHC(O);

Ar represents a group

$$R^3$$
 R^4
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^2
 R^2
 R^2
 R^2
 R^2
 R^2
 R^3
 R^4
 R^4
 R^4
 R^2
 R^2
 R^2
 R^3
 R^4
 R^4
 R^4
 R^2
 R^3

one of R^2 and R^3 represents halogen, nitro, amino, hydroxyl, or a group selected from (i) C_1 - C_6 alkyl optionally substituted by at least one halogen atom, (ii) C_3 - C_8 cycloalkyl, (iii) C_1 - C_6 alkoxy optionally substituted by at least one halogen atom, and (iv) C_3 - C_8 cycloalkyloxy, and the other of R^2 and R^3 represents a hydrogen or halogen atom;

R⁴ represents a group

X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

5

10

15

20

 R^5 represents a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy;

 R^6 and R^7 each independently represent a hydrogen atom, C_1 - C_6 alkyl (optionally substituted by at least one substituent selected from hydroxyl, halogen, C_1 - C_6 alkoxy, and (di)- C_1 - C_4 alkylamino (itself optionally substituted by at least one hydroxyl group)), or C_3 - C_8 cycloalkyl (optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy); and

 R^8 represents a hydrogen atom or a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy;

with the provisos that:

5

10

20

- (a) when n is 0, then A is NHC(O), and
- (b) when n is 1, X represents oxygen and A is C(O)NH, then R^6 and R^7 do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C_1 - C_6 alkyl, or when one of R^6 and R^7 represents a hydrogen atom, then the other of R^6 and R^7 does not represent an unsubstituted C_1 - C_6 alkyl; and
- (c) when n is 1, X is oxygen, sulphur or >NH and A is NHC(O), then R⁶ and R⁷ do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C₁-C₆ alkyl, or when one of R⁶ and R⁷ represents a hydrogen atom, then the other of R⁶ and R⁷ does not represent an unsubstituted C₁-C₆ alkyl or -CH₂CH₂OH;

or a pharmaceutically acceptable salt or solvate thereof.

In one embodiment of the invention, there is provided a compound of formula

wherein m represents 1, 2 or 3, preferably 1 or 2; each R¹ independently represents a hydrogen or halogen (e.g. fluorine, chlorine, bromine

or iodine) atom, preferably a hydrogen atom;

A represents C(O)NH or, preferably, NHC(O);

Ar represents a group

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2

one of R^2 and R^3 represents halogen, nitro, amino, hydroxyl, or a group selected from (i) C_1 - C_6 alkyl optionally substituted by at least one halogen atom, (ii) C_3 - C_8 cycloalkyl, (iii) C_1 - C_6 alkoxy optionally substituted by at least one halogen atom, and (iv) C_3 - C_8 cycloalkyloxy, and the other of R^2 and R^3 represents a hydrogen or halogen atom;

R⁴ represents a group

$$\begin{bmatrix}
X \\
n
\end{bmatrix}_{n} R^{5}
\xrightarrow{N}_{R^{7}}$$
(V)

10 X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

15

20

 R^5 represents a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy; and R^6 , R^7 and R^8 each independently represent a hydrogen atom or a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy;

with the provisos that:

- (d) when n is 0, then A is NHC(O), and
- (e) when n is 1, X represents oxygen and A is C(O)NH, then R⁶ and R⁷ do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C₁-C₅ alkyl, or when one of R⁶ and R⁷ represents a hydrogen atom, then the other of R⁶ and R⁷ does not represent an unsubstituted C₁-C₅ alkyl, and

10

15

20

25

(f) when n is 1, X is oxygen, sulphur or >NH and A is NHC(O), then R^6 and R^7 do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C_1 - C_5 alkyl, or when one of R^6 and R^7 represents a hydrogen atom, then the other of R^6 and R^7 does not represent an unsubstituted C_1 - C_5 alkyl or -CH₂CH₂OH;

or a pharmaceutically acceptable salt or solvate thereof.

In the context of the present specification, unless otherwise indicated, an alkyl substituent or alkyl moiety in a substituent group may be linear or branched. Examples of alkyl groups/moieties containing up to 6 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl and combinations of any two or more thereof. The alkyl groups in a di- C_1 - C_4 alkylamino substituent group may be the same or different. Further, it should be appreciated that in the definition of R^5 , if the at least one optional substituent is a hydroxyl or alkoxy group, it will not be attached to a carbon atom adjacent either to -X- or to $-NR^6R^7$. Similarly, in the definitions of R^6 , R^7 and R^8 , a hydroxyl or alkoxy moiety should not be attached to a carbon atom which is adjacent to a nitrogen atom.

In an embodiment of the invention, Ar represents a group of formula (II) or (III).

In another embodiment of the invention, Ar represents a group of formula (II).

One of R^2 and R^3 represents a halogen (e.g. fluorine, chlorine, bromine or iodine), nitro, amino (-NH₂), hydroxyl, or a group selected from (i) C_1 - C_6 alkyl, preferably C_1 - C_4 alkyl, optionally substituted by at least one (e.g. one, two, three or four) halogen atom(s) as defined above, (ii) C_3 - C_8 cycloalkyl (e.g. cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl), (iii) C_1 - C_6 alkoxy, preferably C_1 - C_4 alkoxy, optionally substituted by at least one (e.g. one, two, three or four) halogen atom(s) as defined above, and (iv) C_3 - C_8 cycloalkyloxy (e.g. cyclopropyloxy, cyclobutyloxy, cyclopentyloxy or

cyclohexyloxy), and the other of R² and R³ represents a hydrogen or halogen atom as defined above.

In one embodiment of the invention, one of R² and R³ represents a halogen (such as a chlorine or bromine) atom and the other of R² and R³ represents a hydrogen atom.

In an embodiment of the invention, n is 0.

 R^5 represents a C_1 - C_5 (e.g. C_1 - C_3) alkyl group which may be optionally substituted by at least one substituent (e.g. one, two, three or four substituents independently) selected from hydroxyl, halogen (e.g. fluorine, chlorine, bromine or iodine) and C_1 - C_6 , preferably C_1 - C_4 , alkoxy (e.g. methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy and combinations of any two or more thereof).

In an embodiment of the invention, R^5 represents $-CH_2$ -, $-(CH_2)_2$ -, $-(CH_2)_3$ - or $-CH_2CH(OH)CH_2$ -.

R⁶ and R⁷ each independently represent:

- (i) a hydrogen atom,
- (ii) C_1 - C_6 , preferably C_1 - C_5 , alkyl optionally substituted by at least one substituent (e.g. one, two, three or four substituents independently) selected from hydroxyl, halogen (e.g. fluorine, chlorine, bromine or iodine), C_1 - C_6 , preferably C_1 - C_4 , alkoxy (e.g. methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy and combinations of any two or more thereof), and (di)- C_1 - C_4 , preferably C_1 - C_2 , alkylamino (itself optionally substituted by at least one, e.g. one or two, hydroxyl group(s)), or
 - (iii) C_3 - C_8 cycloalkyl optionally substituted by at least one substituent (e.g. one, two, three or four substituents independently) selected from hydroxyl, halogen (e.g. fluorine, chlorine, bromine or iodine) and C_1 - C_6 , preferably C_1 - C_4 , alkoxy (e.g. methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy and combinations of any two or more thereof).

5

10

15

20

25

In an embodiment of the invention, R⁶ and R⁷ each independently represent:

(i) a hydrogen atom,

15

20

25

- (ii) C_1 - C_5 alkyl optionally substituted by at least one substituent (e.g. one, two or three substituents independently) selected from hydroxyl and (di)- C_1 - C_4 , preferably C_1 - C_2 , alkylamino (itself optionally substituted by at least one, e.g. one or two, hydroxyl group(s)), or
- (iii) C_5 - C_6 cycloalkyl optionally substituted by at least one, e.g. one or two, hydroxyl group(s).
- R⁸ represents a hydrogen atom or a C₁-C₅, preferably C₁-C₃, alkyl group which may be optionally substituted by at least one substituent (e.g. one, two, three or four substituents independently) selected from hydroxyl, halogen (e.g. fluorine, chlorine, bromine or iodine) and C₁-C₆, preferably C₁-C₄, alkoxy (e.g. methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy and combinations of any two or more thereof).

In an embodiment of the invention, R⁸ represents a hydrogen atom or a C₁-C₃ alkyl group which may be optionally substituted by at least one, e.g. one or two, hydroxyl group(s).

In another embodiment of the invention, R^6 , R^7 and R^8 each independently represent a hydrogen atom or a C_1 - C_5 (e.g. C_1 - C_3) alkyl group which may be optionally substituted by at least one substituent (e.g. one, two, three or four substituents independently) selected from hydroxyl, halogen (e.g. fluorine, chlorine, bromine or iodine) and C_1 - C_6 alkoxy (e.g. methoxy, ethoxy, n-propoxy, n-butoxy, n-pentoxy, n-hexoxy and combinations of any two or more thereof).

In a further embodiment of the invention, R^6 , R^7 and R^8 each independently represent a hydrogen atom or a C_1 - C_5 (e.g. C_1 - C_3) alkyl group optionally substituted by at least one, e.g. one, two or three, hydroxyl group (s) such as -CH₃, -C₂H₅, -CH(CH₃)₂, -CH₂OH, -(CH₂)₂OH, -(CH₂)₃OH, -CH(CH₃)CH₂OH, -CH₂CH(CH₃)OH, -CH₂CH(OH)CH₃,

-CH₂CH(OH)CH₂OH, -CH₂C(CH₃)₂OH, -CH(isopropyl)CH₂OH, -CH(CH₂OH)₂, or -CH₂C(CH₃)₂CH₂OH.

In an embodiment of the invention, there is provided a subset of compounds of formula (I), and pharmaceutically acceptable salts and solvates thereof, in which:

m represents 1;

each R¹ represents a hydrogen atom;

A represents NHC(O);

Ar represents a group

10

one of R^2 and R^3 represents a halogen atom, and the other of R^2 and R^3 represents a hydrogen atom;

R⁴ represents a group

15

20

X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

 R^5 represents a C_1 - C_3 alkyl group optionally substituted by at least one hydroxyl group; R^6 and R^7 each independently represent a hydrogen atom, C_1 - C_5 alkyl (optionally substituted by one or two substituents independently selected from hydroxyl and (di)- C_1 - C_2 alkylamino (itself optionally substituted by at least one hydroxyl group)), or C_6 cycloalkyl (substituted by at least one hydroxyl group); R^8 represents a hydrogen atom or a C_2 alkyl group substituted by at least one hydroxyl

group; and

subject to the provisos (a), (b) and (c) mentioned above.

In another embodiment of the invention, there is provided a further subset of compounds of formula (I), and pharmaceutically acceptable salts and solvates thereof, in which:

m represents 1;

each R¹ represents a hydrogen atom;

A represents NHC(O);

Ar represents a group

$$R^3$$
 R^4
 R^4
 R^3
 R^4
 R^4

10

5

one of R^2 and R^3 represents a halogen atom, and the other of R^2 and R^3 represents a hydrogen atom;

R⁴ represents a group

15

20

X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

 R^5 represents a C_2 - C_3 alkyl group optionally substituted by at least one hydroxyl group; R^6 and R^7 each independently represent a hydrogen atom or a C_1 - C_5 alkyl group optionally substituted by one or two hydroxyl groups;

 R^8 represents a hydrogen atom or a C_2 alkyl group substituted by at least one hydroxyl group; and

subject to the provisos (d), (e) and (f) mentioned above.

10

15

20

25

Examples of compounds of the invention include:

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)-amino]propyl}isonicotinamide,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)amino]propyl}-isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-2-chloro-5-{3-[(3-

hydroxypropyl)amino]propyl}nicotinamide,

N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1S)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide,

N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1R)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide,

N-(1-Adamantylmethyl)-2-(3-aminopropyl)-5-chloroisonicotinamide hydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-[3-(ethylamino)propyl]isonicotinamide hydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-({2-[(3-hydroxypropyl)amino]-ethyl}thio)isonicotinamide hydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1*S*)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxyethyl)amino]propyl}-isonicotinamide hydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{2-[(3-

hydroxypropyl)amino]ethoxy}isonicotinamide, hydrochloride

N-(1-Adamantylmethyl)-5-chloro-2-({2-[(2-hydroxyethyl)amino]ethyl}-amino)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-[3-(isopropylamino)propyl]isonicotinamide dihydrochloride,

10

15

20

25

30

 \tilde{N} -(1-Adamantylmethyl)-5-chloro-2-(3-{[(2S)-2-

hydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2R)-2,3-

dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2S)-2,3-

dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(4-

methylcyclohexyl)amino]propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxy-2-

methylpropyl)amino]propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-1-(hydroxymethyl)-2-

methylpropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(methylamino)ethyl]amino)propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[3-

(methylamino)propyl]amino}propyl)isonicotinamide bis(trifluoroacetate),

N-(1-Adamantylmethyl)-5-chloro-2-[3-({2-[(2-

hydroxyethyl)amino]ethyl}amino)propyl]isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(diethylamino)ethyllamino)propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-hydroxy-1-

(hydroxymethyl)ethyl]amino}propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)(methyl)amino|propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxy-2,2-

dimethylpropyl)amino]propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3- $\{[(2R)-2-$

hydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-({[3-

(methylamino)propyl]amino}methyl)isonicotinamide dihydrochloride,

10

15

20

N-(1-Adamantylmethyl)-5-chloro-2-[({2-[(2-

hydroxyethyl)amino]ethyl}amino)methyl]isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-({[2-

(methylamino)ethyl]amino}methyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)amino]ethyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-

hydroxypropyl)amino]ethyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-[3-(methylamino)propyl]isonicotinamide hydrochloride,

N-(1-Adamantylmethyl)-5-bromo-2-{[(2S)-2-hydroxy-3-(methylamino)propyl]oxy}isonicotinamide,

N-(1-Adamantylmethyl)-2-({3-[bis(3-hydroxypropyl)amino]propyl}amino)-3-chloroisonicotinamide dihydrochloride,

and all pharmaceutically acceptable salts and solvates of any one thereof.

The present invention further provides a process for the preparation of a compound of formula (I) as defined above, or a pharmaceutically acceptable salt or solvate thereof, which comprises:

(i) when n is 0 and R⁵ represents CH₂, reacting a compound of formula

$$R^{1}$$
 R^{10}
 $R^$

wherein R^{10} represents -C(O)H or $-CH_2L^1$, L^1 represents a leaving group (e.g. halogen, paratoluene sulphonate or methane sulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I), or

a compound of formula

5

10

15

$$R^{3}$$
 R^{11}
 R^{3}
 R^{11}
 R^{2}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 $R^$

wherein R^{11} represents -C(O)H or $-CH_2L^2$, L^2 represents a leaving group (e.g. halogen, paratoluene sulphonate or methane sulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I), or

a compound of formula

$$R^{1}$$
 R^{1}
 R^{1}

wherein R^{12} represents -C(O)H or $-CH_2L^3$, L^3 represents a leaving group (e.g. halogen, paratoluene sulphonate or methane sulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I),

with a compound of formula (XIII), HNR^6R^7 , wherein R^6 and R^7 are as defined in formula (I), under reductive amination conditions when R^{10} , R^{11} or R^{12} represents -C(O)H or in the presence of a suitable base when R^{10} , R^{11} or R^{12} represents -CH₂L¹, -CH₂L² or -CH₂L³; or

(ii) when n is 0, R⁵ is (CH₂)₂ and R⁶ and R⁷ are both hydrogen, reacting a compound of formula (X) as defined in (i) above in which R¹⁰ represents -CH₂L¹, or a compound of formula (XI) as defined in (i) above in which R¹¹ represents -CH₂L², or a compound of formula (XII) as defined in (i) above in which R¹² represents -CH₂L³, with an alkali metal cyanide, followed by a hydrogenation reaction; or

5

10

15

20

- (iii) when n is 0, R^5 is $(CH_2)_2$ and at least one of R^6 and R^7 is other than hydrogen, reacting a compound as prepared in (ii) above with at least one compound of formula (XIV), $R^{13}C(O)H$, wherein R^{13} represents an optionally substituted C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl group as defined for R^6 and R^7 in formula (I), under reductive amination conditions; or
- (iv) when n is 0 and R⁵ represents a C₃-C₅ alkyl group optionally substituted as defined in formula (I), reacting a compound of formula

 R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{1} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{4

wherein R^{14} represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I), or a compound of formula

WO 03/041707 PCT/SE02/02057

15

$$R^{1}$$
 R^{15}
 R^{15}
 R^{1}
 R^{1}

wherein R^{15} represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I), or a compound of formula

$$R^{1}$$
 R^{1}
 R^{1}

wherein R^{16} represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, R^1 , R^2 and R^3 are as defined in formula (I), with a compound of formula

5

10

15

$$\mathbb{R}^{5'}$$
 \mathbb{R}^{6} \mathbb{R}^{7} (XVIII)

wherein R^5 ' represents a C_1 - C_3 alkyl group optionally substituted as defined for R^5 in formula (I) and R^6 and R^7 are as defined in formula (I), followed by a hydrogenation reaction; or

(v) when n is 0 and R^5 represents a C_3 - C_5 alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above, with a compound of formula

$$R^{5}$$
OH (XIX)

wherein R⁵ is as defined in formula (XVIII) in (iv) above, followed by a hydrogenation reaction and then an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions; or

(vi) when n is 1 and X is oxygen or >N-R⁸, reacting a compound of formula

$$R^3$$
 R^{17}
 R^3
 R^1
 R^2
 R^1
 R^1
 R^1
 R^2
 R^2
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

wherein R¹⁷ represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, A, R¹, R² and R³ are as defined in formula (I), or a compound of formula

$$R^{3}$$
 R^{18}
 R^{18}
 R^{1}
 $R^$

wherein R¹⁸ represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, A, R¹, R² and R³ are as defined in formula (I), or a compound of formula

10

15

$$R^3$$
 R^{19}
 R^1
 R^1
 R^1
 R^1
 R^2
 R^1
 R^2
 R^3
 R^{19}
 R^2

wherein R¹⁹ represents a leaving group (e.g. halogen or trifluoromethanesulphonate) and m, A, R¹, R² and R³ are as defined in formula (I), with a compound of formula

$$\begin{array}{ccc}
R^6 \\
N \\
R^5
\end{array}$$
(XXIII)

wherein X' represents oxygen or >N-R⁸ and R⁵, R⁶, R⁷ and R⁸ are as defined in formula (I); or

(vii) when A is NHC(O), n is 1 and X is sulphur, reacting a compound of formula

wherein, in each of formulae (XXIV), (XXV) and (XXVI), L⁴ represents a leaving group (e.g. halogen or hydroxyl) and R², R³, R⁵, R⁶ and R⁷ are as defined in formula (I), with a compound of formula

10

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}

wherein m and R¹ are as defined in formula (I); or

(viii) when A is C(O)NH, n is 1 and X is sulphur, reacting a compound of formula

wherein, in each of formulae (XXVIII), (XXIX) and (XXX), R², R³, R⁵, R⁶ and R⁷ are as defined in formula (I), with a compound of formula

$$R^{1}$$
 R^{1}
 R^{1

wherein L^5 represents a leaving group (e.g. halogen or hydroxyl) and m and R^1 are as defined in formula (I); or

15 (ix) when n is 0 and R⁵ represents a C₂-C₅ alkyl group substituted as defined in formula

(I), reacting a compound of formula

$$R^3$$
 R^3
 R^3
 R^2
 R^1
 R^1
 R^1
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

or a compound of formula

$$R^3$$
 $(CH_2)_m$
 NH
 O
 R^2
 R^1
 $(XXXIII)$

5 or a compound of formula

10

$$R^3$$
 $(CH_2)_{\overline{m}}$
 NH
 O
 R^2
 $(XXXIV)$

wherein, in each of formulae (XXXII), (XXXIII) and (XXXIV), Y represents a bond or a C_1 - C_3 alkyl and m, R^1 , R^2 and R^3 are as defined in formula (I),

with a compound of formula (XIII) as defined in (i) above, and optionally thereafter reacting with a C_1 - C_6 alkylating agent or with a halogenating agent; or

10

15

20

25

(x) when n is 0 and R^5 represents a C_3 - C_5 alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above, with a pre-treated compound of formula

in which L^6 represents a hydrogen atom and R^5 ' represents a C_1 - C_3 alkyl group optionally substituted as defined for R^5 in formula (I) and R^6 and R^7 are as defined in formula (I), wherein the compound of formula (XXXV) is pre-treated with a hydroborating agent; or

(xi) when n is 0 and R⁵ represents a C₃-C₅ alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above in the presence of a suitable catalyst such as tetrakis(triphenylphosphine)palladium, with a pre-treated compound of formula

$$R^{5'}$$
OP (XXXVIII)

in which L⁷ represents a hydrogen atom and R⁵ represents a C₁-C₃ alkyl group optionally substituted as defined for R⁵ in formula (I) and P is a suitable protecting group such as *tert*-butyldimethylsilyl, wherein the compound of formula (XXXVIII) is pre-treated with a hydroborating agent, followed by removal of the protecting group, P, in a deprotection reaction, then by an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions; or

(xii) when n is 0 and R^5 is $(CH_2)_2$, reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above with a compound of formula

$$R^{20}$$
 (XXXIX)

- wherein R²⁰ represents a suitable leaving group such as trialkyltin, dialkylboron or zinc, in the presence of a suitable catalyst such as dichlorobis(triphenylphosphine)palladium, followed by reaction with a compound of formula (XIII) as defined in (i) above; or
- (xiii) when n is 0 and R⁵ is CH₂, reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above with a compound of formula (XXXIX) as defined in (xii) above, followed by an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions;
- and optionally after (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii) or (xiii) carrying out one or more of the following:
 - converting the compound obtained to a further compound of formula (I)
 - forming a pharmaceutically acceptable salt or solvate of the compound.
- In (i) above, the reductive amination is conveniently carried out in the presence of a reducing agent such as sodium cyanoborohydride, triacetoxyborohydride or sodium borohydride and in a polar solvent such as methanol, ethanol or dichloromethane either alone or in combination with acetic acid.
- The base mentioned in (i) is conveniently potassium carbonate and the reaction employing it may be carried out in a polar solvent such as ethanol or dimethylformamide.
 - In process (ii), the alkali metal cyanide used may be sodium or potassium cyanide. The hydrogenation reaction is conveniently carried out using hydrogen gas and a hydrogenation catalyst such as Raney nickel.
 - In process (iii), the reductive amination conditions may be the same as described for (i) above.

WO 03/041707 PCT/SE02/02057

22

In process (iv), the reaction with the acetylenic compound of formula (XVIII) may be carried out in the presence of catalytic bistriphenylphospine dichloride palladium (0), copper (I) iodide and a base (e.g. triethylamine) and in a solvent such as acetonitrile at ambient temperature (20°C). The subsequent hydrogenation reaction may use hydrogen gas with a catalyst such as 5% rhodium on carbon in a solvent, for example, ethyl acetate or ethanol, and at a pressure of 3 barr.

5

10

15

20

25

30

In process (v), the reaction with the acetylenic compound of formula (XIX) and then the hydrogenation reaction can be performed by procedures analogous to those described in the previous paragraph for process (iv). The oxidation reaction can be carried out using standard oxidants (e.g. Dess-Martin periodinane or pyridinium dichromate), in a solvent such as dichloromethane. Reaction with the compound of formula (XIII) is carried out under reductive amination conditions, for example, in the presence of a reducing agent such as sodium cyanoborohydride, triacetoxyborohydride or sodium borohydride and in a polar solvent such as methanol, ethanol or dichloromethane either alone or in combination with acetic acid.

Process (vi) may be performed in a solvent such as dimethyl formamide or *N*-methyl-2-pyrrolidinone, using a base such as caesium carbonate, potassium carbonate or sodium hydride and at elevated temperature, e.g., $\geq 30^{\circ}$ C, more particularly at a temperature in the range from 30 to 150°C, especially 100 to 150°C. A temperature of about 120°C was found to be very effective.

Processes (vii) and (viii) are conveniently carried out in a solvent such as dichloromethane or dimethyl formamide and in the presence of carbonyl diimidazole or a coupling agent such as dicyclohexyl carbodiimide.

In process (ix), reaction with the compound of formula (XIII) may conveniently be carried out in a solvent such as *N*-methyl-2-pyrrolidinone using a base such as potassium carbonate at a temperature in the range from, for example, 0°C or 20°C to 100°C.

10

15

20

25

Subsequent reaction of the alcohol formed with a C_1 - C_6 alkylating agent (e.g. a C_1 - C_6 alkyl halide) may be carried out in the same solvent and in the presence of a base such as sodium hydride. Alternatively, subsequent reaction of the alcohol formed with a halogenating agent (e.g. N-bromosuccinimide or N-chlorosuccinimide with triphenylphosphine) may be carried out in a solvent such as tetrahydrofuran.

In process (x), the compound of formula (XXXV) is pre-treated by reaction with a hydroborating reagent (such as 9-borabicyclo[3.3.1]nonane or catecholborane) in a solvent (such as diethyl ether or tetrahydrofuran) at a temperature in the range from 0°C to 80°C (in particular from 60°C to 70°C) for about 2 to 3 hours, then cooling the reaction mixture to room temperature and adding a solution of a base (such as sodium hydroxide in water or tri-potassium orthophosphate in water) followed by a solution of the compound of formula (XV), (XVI) or (XVII) in a solvent (such as dimethylformamide) and a palladium catalyst (such as dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (II) dichloromethane adduct). The resulting reaction mixture is stirred at a temperature in the range from 25°C to 90°C (particularly from 60°C to 70°C) for about 2 to 24 hours to yield the desired compounds of formula (I).

In process (xi), the reaction with the vinyl compound of formula (XXXVIII) can be performed by procedures analogous to those outlined in the paragraph for process (x). With a suitable protecting group, such as *tert*-butyldimethylsilyl, deprotection can be carried out using standard conditions (eg *tetra*-butylammonium fluoride, hydrofluoric acid) in a solvent such as tetrahydrofuran or water. The subsequent oxidation and reductive amination reactions may be carried out in processes analogous to those outlined in the paragraph for process (v).

In process (xii), the reaction with the vinyl compound of formula (XXXIX) may be carried out in the presence of catalytic dichloro*bis*(triphenylphosphine) palladium, in a solvent such as *N,N*-dimethylformamide at an elevated temperature such as 70°C. The subsequent

10

15

addition reaction may be performed under acidic or basic conditions for example in acetic acid in a solvent such as methanol or *iso* propanol at an elevated temperature such as 100°C.

In process (xiii), the reaction with the vinyl compound of formula (XXXIX) can be performed by procedures analogous to those outlined in the paragraph for process (xii). The subsequent oxidation can be performed under standard conditions such as by reaction with ozone followed by treatment with dimethylsulfide or triphenylphosphine in a suitable solvent such as dichloromethane or by treatment with osmium tetroxide and sodium periodate in a suitable solvent such as 1,4-dioxane and water. The resulting aldehyde can be derivatised by a reductive amination reaction which may be carried out in a process analogous to that outlined in the paragraph for process (v).

Compounds of formula (X) in which R^{10} represents -C(O)H may be prepared according to the following reaction schemes.

(A) is then further reacted as follows.

Compounds of formulae (XI) and (XII) in which R¹¹ and R¹² represent –C(O)H may be prepared in a similar manner to the compounds of formula (X).

Compounds of formula (X) in which R¹⁰ represents -CH₂L¹ and L¹ represents, for example, a chlorine atom may be prepared as shown below:

10

OH

$$R^3$$
 R^3
 R^3

It will be appreciated that compounds of formulae (XI) and (XII) in which R^{11} represents $-CH_2L^2$ and R^{12} represents $-CH_2L^3$ may be prepared in an analogous manner.

Compounds of formulae (XV), (XVI) and (XVII) may be prepared as described for compound (A) above. Similarly, compounds of formula (XX), (XXI) and (XXII) in which A is NHC(O) may be prepared as described for compound (A) above. Compounds of formula (XX) in which A is C(O)NH may be prepared in the following manner:

$$C(O)CI$$
 $CH_2)m$
 $C(O)NH$
 R^3
 $C(O)NH$
 R^3
 $C(O)NH$
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

Compounds of formula (XXI) and (XXII) in which A is C(O)NH may be prepared by analogous processes.

Compounds of formula (XXIV) can be prepared by reacting a compound of formula

10

15

wherein L^7 represents a suitable leaving group such as a halogen atom and R^2 , R^3 and L^4 are as defined in formula (XXIV), with a thiol of formula

$$R^{6}$$
 N
 R^{7}
 R^{5}
 R^{5}
 R^{5}

in which R⁵, R⁶ and R⁷ are as defined in formula (I), in a solvent such as dimethyl formamide, *N*-methyl-2-pyrrolidinone or ethanol, in the presence of a base such as caesium carbonate, potassium carbonate or sodium hydride and at elevated temperature (e.g. 120°C).

Compounds of formulae (XXV), (XXVI), (XXVIII), (XXIX) and (XXX) may be prepared in a like manner to the compounds of formula (XXIV).

Compounds of formula (XXXII) (and by analogy compounds of formula (XXXIII) and (XXXIV)) can be prepared by the following route:

WO 03/041707

Compounds of formulae (XIII), (XIV), (XVIII), (XIX), (XXIII), (XXVII), (XXXII), (XXXVII), (XXXVII), (XXXVII) and (XXXIX) are either commercially available, are well known in the literature or may be prepared easily using known techniques.

Compounds of formula (I) can be converted into further compounds of formula (I) using standard procedures. For example, compounds of formula (I) in which one of \mathbb{R}^2 and \mathbb{R}^3 represents a halogen atom may be converted to a corresponding compound of formula (I) in which one of \mathbb{R}^2 and \mathbb{R}^3 represents a C_1 - C_6 alkyl group by reaction with an alkyl Grignard reagent (e.g. methyl magnesium bromide) in the presence of a catalyst such as [1,3-bis(diphenylphosphino)propane]dichloronickel (II) in a solvent such as tetrahydrofuran.

15

20

10

It will be appreciated by those skilled in the art that in the processes of the present invention certain functional groups such as hydroxyl or amino groups in the starting reagents or intermediate compounds may need to be protected by protecting groups. Thus, the preparation of the compounds of formula (I) may involve, at various stages, the addition and removal of one or more protecting groups.

The protection and deprotection of functional groups is described in 'Protective Groups in Organic Chemistry', edited by J.W.F. McOmie, Plenum Press (1973) and 'Protective

Groups in Organic Synthesis', 2nd edition, T.W. Greene and P.G.M. Wuts, Wiley-Interscience (1991).

The compounds of formula (I) above may be converted to a pharmaceutically acceptable salt or solvate thereof, preferably an acid addition salt such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, oxalate, methanesulphonate or *p*-toluenesulphonate, or an alkali metal salt such as a sodium or potassium salt.

- 10 Certain compounds of formula (I) are capable of existing in stereoisomeric forms. It will be understood that the invention encompasses all geometric and optical isomers of the compounds of formula (I) and mixtures thereof including racemates. Tautomers and mixtures thereof also form an aspect of the present invention.
- The present invention also provides novel intermediates, in particular, intermediates of formula

$$R^{30}$$
 R^{30}
 R^{30}

wherein T represents $-C \equiv C$ - or $-CH_2CH_2$ -; R^{30} represents $-CH_2OP^1$ or a group of formula

20

- P¹ represents a hydrogen atom or a suitable protecting group (e.g. *t*-butyldimethylsilyl);
 P² represents a suitable protecting group (e.g. *t*-butylcarbamate);
 P³ represents a suitable protecting group (e.g. *t*-butyldimethylsilyl or tetrahydro-2*H*-pyran-2-yl);
- R^{31} represents a C_1 - C_5 alkyl group; and m, A, R^1 , R^2 and R^3 are as defined in formula (I).

In an embodiment of the invention, in formula (IA), m represents 1;

A represents NHC(O); each R¹ represents a hydrogen atom; R² represents a halogen atom; and R³ represents a hydrogen atom.

30

The compounds of the present invention are advantageous in that they possess pharmacological activity. They are therefore indicated as pharmaceuticals for use in the treatment of rheumatoid arthritis, osteoarthritis, psoriasis, allergic dermatitis, asthma, chronic obstructive pulmonary disease (COPD), hyperresponsiveness of the airway, septic shock, glomerulonephritis, inflammatory bowel disease, Crohn's disease, ulcerative colitis, atherosclerosis, growth and metastases of malignant cells, myoblastic leukaemia, diabetes, Alzheimer's disease, meningitis, osteoporosis, burn injury, ischaemic heart disease, stroke, varicose veins, sarcoidosis, rhinitis, acute and chronic pain, multiple sclerosis, myeloma, bone loss associated with malignancy and inflammatory and neurodegenerative diseases of the eye such as scleritis, episcleritis, uveitis, Sjogrens syndrome-keratoconjuctivitis, sclerokeratitis, optic neuritis, diabetic retinopathy, retinitis pigmentosa, antimalarial induced retinopathy.

Accordingly, the present invention provides a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined for use in therapy.

In another aspect, the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined in the manufacture of a medicament for use in therapy.

WO 03/041707 PCT/SE02/02057

In the context of the present specification, the term "therapy" also includes "prophylaxis" unless there are specific indications to the contrary. The terms "therapeutic" and "therapeutically" should be construed accordingly.

The invention further provides a method of effecting immunosuppression (e.g. in the treatment of rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, atherosclerosis or psoriasis) which comprises administering a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined to a patient.

10

15

20

25

30

The invention also provides a method of treating an obstructive airways disease (e.g. asthma or COPD) which comprises administering to a patient a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined to a patient.

For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated. The daily dosage of the compound of formula (I)/salt/solvate (active ingredient) may be in the range from 0.001 mg/kg to 30 mg/kg.

The compounds of formula (I) and pharmaceutically acceptable salts and solvates thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the formula (I) compound/salt/solvate (active ingredient) is in association with a pharmaceutically acceptable adjuvant, diluent or carrier. Depending on the mode of administration, the pharmaceutical composition will preferably comprise from 0.05 to 99 %w (per cent by weight), more preferably from 0.10 to 70 %w, of active ingredient, and, from 1 to 99.95 %w, more preferably from 30 to 99.90 %w, of a pharmaceutically acceptable adjuvant, diluent or carrier, all percentages by weight being based on total composition.

WO 03/041707 PCT/SE02/02057

32

Thus, the present invention also provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined in association with a pharmaceutically acceptable adjuvant, diluent or carrier.

The invention further provides a process for the preparation of a pharmaceutical composition of the invention which comprises mixing a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as hereinbefore defined with a pharmaceutically acceptable adjuvant, diluent or carrier.

The pharmaceutical composition of the invention may be administered topically (e.g. to the lung and/or airways or to the skin) in the form of solutions, suspensions, heptafluoroalkane aerosols and dry powder formulations; or systemically, e.g. by oral administration in the form of tablets, capsules, syrups, powders or granules, or by parenteral administration in the form of solutions or suspensions, or by subcutaneous administration or by rectal administration in the form of suppositories or transdermally.

The present invention will now be further explained by reference to the following illustrative examples. In the examples the NMR spectra were measured on a Varian Unity spectrometer at a proton frequency of either 300 or 400MHz. The MS spectra were measured on either a Agilent 1100 MSD G1946D spectrometer or a Hewlett Packard HP1100 MSD G1946A spectrometer. Preparative HPLC separations were performed using a Waters Symmetry® or Xterra® column using 0.1% aqueous trifluoroacetic acid: acetonitrile or 0.1% aqueous ammonia: acetonitrile as the eluant.

Example 1

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)-amino|propyl}isonicotinamide

5

.10

15

20

25

WO 03/041707

5

10

15

20

PCT/SE02/02057

(i) 2-Bromo-5-chloro isonicotinic acid

To a stirred solution of di-isopropylamine (16 ml) in anhydrous tetrahydrofuran (300 ml) at -5°C was added, dropwise a solution of n-butyl lithium in hexane (2.5 molar, 44 ml) and the resulting solution was stirred for 30 minutes and was then cooled to -70°C. To the cooled solution was added a solution of 2-bromo-5-chloropyridine (19.2 g) in anhydrous tetrahydrofuran (50 ml) maintaining the internal temperature of the reaction below -65°C. The reaction was maintained at -70°C for 15 minutes and then a steady stream of dried carbon dioxide was passed through the reaction mixture for 30 minutes. The reaction was allowed to warm to room temperature and was poured into a mixture of water (300 ml) and aqueous sodium hydroxide solution (2M, 30 ml). The mixture was extracted with ether and (2x100 ml) and the combined ethereal extracts were back extracted with aqueous sodium hydroxide solution (1M, 2 x 100ml). The combined aqueous extracts were acidified to pH 1 with concentrated hydrochloric acid and the resulting solid filtered and dried under vacuum at 50°C to afford the sub-titled compound as a white solid (14.1 g).

¹H NMR (300MHz, DMSO-d₆) δ 8.63 (1H, s); 7.98 (1H, s) MP: 246-247°C (dec.)

(ii) N-(1-Adamantylmethyl)-2-bromo-5-chloroisonicotinamide

To a stirred suspension of 2-bromo-5-chloro isonicotinic acid (5.0 g) in anhydrous dichloromethane (30 ml) was added dimethylformamide (1 drop) followed by oxalyl chloride (3.7 ml). The reaction was stirred at room temperature for 2 hours and was then evaporated to dryness, azeotroping with toluene. The residue was suspended in ethyl

acetate (100 ml) and was cooled to 5°C where a solution of 1-adamantylmethylamine (3.47g) and triethylamine (7.0 ml) in ethyl acetate (10 ml) was added dropwise. The mixture was stirred for 2 hours and was then poured into water and the resulting solid filtered and dried under vacuum at 40°C to afford the titled compound as a white solid (8.05 g).

¹H NMR (400MHz, CDCl₃) δ 8.42 (1H, s); 7.77 (1H, s); 6.24 (1H, t); 3.16 (2H, dd); 2.05-2.02 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MP: 153-155°C (dec.)

5

10

15

20

25

30

(iii)

MS: APCI(+ve) 383/385 (M+1)

A mixture of N-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 1(ii)) (0.96 g), propargyl alcohol (0.16 g), copper (I) iodide, bis-triphenylphosphine palladium dichloride (0.035 g) and diethylamine (10 ml) was stirred together at room temperature for 20 hours. The mixture was concentrated and the residue partitioned between ethyl acetate and 1M aqueous hydrochloric acid solution (2x25 ml) and the mixture was extracted into ethyl acetate (3x25 ml). The combined extracts were dried over anhydrous magnesium

N-(1-Adamantylmethyl)-5-chloro-2-(3-hydroxy-1-propynyl)isonicotinamide

sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate: *iso*-hexane (1:4 to 1:1) and then ethyl acetate to afford the sub-titled compound (0.48 g) as an oil.

¹H NMR (400MHz, CDCl₃) δ 8.59 (1H, s); 7.69 (1H, s); 6.30 (1H, t); 4.52 (2H, d); 3.18 (2H, d); 2.05-2.02 (3H, m); 1.87 (1H, t); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 359/361 (M+1)

(iv) N-(1-Adamantylmethyl)-5-chloro-2-(3-hydroxypropyl)isonicotinamide

A stirred suspension of N-(1-adamantylmethyl)-5-chloro-2-(3-hydroxy-1propynyl)isonicotinamide (Example 1(iii)) (0.48 g) and 5% rhodium on carbon (0.020 g)

was stirred under a positive pressure (3 barr) of hydrogen until no further uptake was observed. The mixture was filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate to afford the sub-titled compound (0.305 g) as an oil.

5

¹H NMR (300MHz, CDCl₃) δ 8.54 (1H, s); 7.50 (1H, s); 6.34 (1H, t); 3.69 (2H, dd); 3.18 (2H, d); 2.96 (2H, t); 2.62 (1H, t); 2.05-2.02 (5H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 363/365 (M+1)

10

15

20

25

30

(v) N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)-amino|propyl}isonicotinamide

To a stirred solution of N-(1-adamantylmethyl)-5-chloro-2-(3-

hydroxypropyl)isonicotinamide (Example 1(iv)) (0.30 g) in dry dichloromethane (20 ml) was added Dess-Martin periodinane (0.42 g) and the resulting suspension stirred at room temperature for 30 minutes. The reaction was poured into a mixture of saturated sodium bicarbonate solution containing sodium thiosulfate (10% w/v, 20 ml) and the mixture was extracted into ethyl acetate (3x25 ml). The combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The crude aldehyde was dissolved in methanol (2 ml) and 3-aminopropan-1-ol (0.15 g) added along with acetic acid (0.1 ml). The mixture was stirred for 2 hours at ambient temperature and then sodium triacetoxy borohydride (0.424 g) was added and the reaction stirred for 20 hours, concentrated and the residue was partitioned between 2M aqueous hydrochloric acid solution (10 ml) and ethyl acetate (10 ml). The layers were separated and the organic phase re-extracted with 2N hydrochloric acid (2 x 10 ml). The combined aqueous extracts were basified with 5M aqueous ammonium hydroxide solution, extracted into ethyl acetate (2 x 25 ml) and the combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with 0.7N anhydrous ammonia in methanol:dichloromethane (1:4) to afford the titled compound (0.116 g) as a white solid.

¹H NMR (400MHz, CDCl₃) δ 8.54 (1H, s); 7.34 (1H, s); 6.97 (1H, t); 3.74 (2H, t); 3.15 (2H, d); 2.87-2.81 (4H, m); 2.66 (2H, t); 2.05-1.96 (5H, m); 1.76-1.73 (3H, m); 1.66-1.63 (5H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 420/422 (M+1)

MP: 84-85°C

Example 2

10

15

20

 $N-(1-A damantyl methyl)-5-chloro-2-\{3-[(3-hydroxypropyl)amino]propyl\}-1-(3-hydroxypropyl)amino]propyl\}-1-(3-hydroxypropyl)amino]propyl\}-1-(3-hydroxypropyl)amino]propyl]-1-(3-hydroxypropyl)amino]propyl[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino]propyl[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino]propyl[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino]propyl[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hydroxypropyl]-1-(3-hydroxypropyl)amino[-1-hyd$

isonicotinamide dihydrochloride

Preparative Route 1

(i) N-(1-Adamantylmethyl)-2-bromo-5-chloroisonicotinamide

To a stirred solution of di-isopropylamine (2.1 ml) in anhydrous tetrahydrofuran (15 ml) at -5°C was added, dropwise a solution of n-butyl lithium in hexane (2.5 molar, 4.8 ml) and the resulting solution was stirred for 30 minutes and was then cooled to -70°C. To the cooled solution was added a solution of 2-bromo-5-chloropyridine (2.39 g) in anhydrous tetrahydrofuran (10 ml) maintaining the internal temperature of the reaction below -65°C. The reaction was maintained at -70°C for 15 minutes and then a solution of 1-adamantylmethyl isocyanate (1.91 g) in anhydrous tetrahydrofuran (5 ml) was dropwise added (care exotherm). The mixture was stirred for 10 minutes and was then poured into a solution of 1M aqueous hydrochloric acid solution (50 ml) and the mixture extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica

WO 03/041707 PCT/SE02/02057

37

gel eluting with ethyl acetate: *iso*-hexane (1:9 to 1:4 to 1:1) to afford the sub-titled compound (2.70 g) as a white solid.

¹H NMR (400MHz, CDCl₃) δ 8.41 (1H, s); 7.98 (1H, s); 6.21 (1H, t); 3.16 (2H, d); 2.05-2.02 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MP: 193-194°C

(ii) tert-Butyl prop-2-ynyl[3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]carbamate
A solution of tert-butyl prop-2-ynylcarbamate (1.2g) in anhydrous *N*, *N*dimethylformamide (5 ml) was treated with 60% sodium hydride (0.245g) in one portion.
After evolution of hydrogen had ceased 2-(3-bromopropoxy)tetrahydro-2*H*-pyran (1.36g) was added. The reaction mixture was stirred under nitrogen for 48 hours then diluted with water (50 ml) and extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated to afford the sub-titled compound (1.61g) as a colourless oil.

¹H NMR (400MHz, CDCl₃) δ 4.60 (2H, m); 4.05 (2H, broad); 3.90-3.70 (4H, m); 3.60-3.41 (7H, m); 2.22-2.09 (3H, m); 1.91-1.82 (4H, m); 1.47 (9H, s).

(iii) tert-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl[3-(tetrahydro-2H-pyran-2-yloxy)propyl]carbamate
A suspension of N-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 2(i)) (0.43 g) and tert-butyl prop-2-ynyl[3-(tetrahydro-2H-pyran-2-yloxy)propyl]carbamate (Example 2(ii)) (0.60 g) in anhydrous acetonitrile (6 ml) and triethylamine (6 ml) was purged with nitrogen for 5 minutes and then copper (I) iodide (0.004g) and bistriphenyphosphine palladium dichloride (0.014 g) were added. The mixture was stirred under nitrogen for 2 hours. The mixture was concentrated and the residue was purified by chromatography on silica gel eluting with iso-hexane: ethyl acetate (19:1 to 7:3) to afford the sub-titled compound (0.39 g) as a yellow gum.

WO 03/041707

¹H NMR (400MHz, CDCl₃) δ 8.58 (1H, s); 7.67 (1H, s); 6.25 (1H, broad); 4.57 (1H, t); 4.33 (2H, broad); 3.9-3.77 (2H, m); 3.5-3.41 (4H, m); 3.18 (2H, d); 2.02 (3H, broad); 1.92-1.85 (2H, t); 1.80-1.60 (7H, m); 1.58 (12H, s); 1.48 (9H, s).

MS: APCI(+ve) 516/518

5

(iv) tert-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl[3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]carbamate

A stirred suspension of *tert*-butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl[3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]carbamate (Example 2(iii)) (0.35 g) and 5% rhodium on carbon (0.020 g) was stirred under a positive pressure (2 barr) of hydrogen until no further uptake was observed. The mixture was filtered and concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: acetone (19:1 to 9:1) to afford the sub-titled compound (0.24 g) as a colourless gum.

15

10

¹H NMR (300MHz, CDCl₃) δ 8.54 (1H, s); 7.44 (1H, s); 6.42 (1H, broad); 4.54 (1H, t); 3.83 (1H, t of d); 3.73 (1H, m); 3.50 (1H, m); 3.38 (1H, m); 3.25 (4H, t); 3.19 (2H, d); 2.78 (2H, t); 2.01-1.9 (5H, m); 1.80 (2H, t); 1.78-1.62 (4H, d of d); 1.60 (10H, d); 1.44 (9H, s). MS: APCI(+ve) 604/606 (M+1)

20

25

30

(v) N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)amino]propyl}-isonicotinamide dihydrochloride

tert-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl[3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]carbamate (Example 2(iv)) (0.24g) was dissolved in a mixture of methanol (10 ml) and 2M aqueous hydrochloric acid solution (10 ml); the solution was left to stand for 0.5 hours. The mixture was concentrated and the residue diluted with 2M aqueous sodium hydroxide solution (25 ml). The mixture was extracted into dichloromethane (3 x 25 ml) and the combined extracts were concentrated. The residue was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and left to stand for 0.5 hours. The solution was concentrated and the residue

WO 03/041707 PCT/SE02/02057

39

suspended in 2M aqueous sodium hydroxide solution (25 ml), extracted into dichloromethane (3 x 25 ml) and the combined extracts were concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: methanol: 0.88 aqueous ammonia (89:10:1). The isolated material was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated; the resultant solid was recrystallised from ethyl acetate / methanol to afford the titled compound (0.115 g) as a colourless solid.

¹H NMR (400MHz, DMSO-d₆) δ 8.78 (2H, broad); 8.60 (1H, s); 8.54 (1H, t); 7.36 (1H, s);
3.46 (2H, t); 2.95-2.83 (8H, m); 2.08-1.99 (2H, q); 1.95 (3H, s); 1.81-1.74 (2H, t); 1.691.58 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 420/422 (M+1)

MP: decomposed at 210°C

15 Preparative Route 2

(vi) tert-Butyl [3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl](3-{[tert-butyl(dimethyl)silyl]oxy}propyl)carbamate

A solution of *tert*-butyl allyl(3-{[*tert*-butyl(dimethyl)silyl]oxy} propyl)carbamate (0.50g) in 9-boroabicyclo[3.3.1]nonane (6.0ml of a 0.5M solution in tetrahydrofuran) was heated at reflux under nitrogen for 4 hours. The solution was cooled to 0°C and potassium phosphate (2ml of a 3M solution in water) was added. The mixture was stirred for 15 minutes and a solution of *N*-(1-adamantylmethyl)-2,5-dichloroisonicotinamide (0.50g) (prepared as described in WO 01/94338) and tetrakis(triphenylphosphine)palladium (0) (0.045g) in anhydrous *N*,*N*-dimethylformamide (3ml) was added. The mixture was heated at 70°C under nitrogen for 4 hours, diluted with saturated brine (25 ml) and extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with *iso*-hexane: ethyl acetate (9:1 to 4:1) to afford the sub-titled compound (0.46g).

20

MS: APCI(+ve) 636/634 (M+1)

(vii) N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)amino]propyl} isonicotinamide dihydrochloride

tert-Butyl [3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl](3-{[tert-butyl(dimethyl)silyl]oxy}propyl)carbamate (Example 2(vi)) (0.46g) was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated; the resultant solid was recrystallised from 1,4-dioxane/methanol and the solid collected by filtration to afford the titled compound (0.24g) as a colourless powder.

10

15

¹H NMR (400MHz, DMSO-d₆) δ 8.78 (2H, broad); 8.60 (1H, s); 8.54 (1H, t); 7.36 (1H, s); 3.46 (2H, t); 2.95-2.83 (8H, m); 2.08-1.99 (2H, q); 1.95 (3H, s); 1.81-1.74 (2H, t); 1.69-1.58 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 420/422 (M+1)

MP: decomposed at 210°C

Example 3

N-(1-Adamantylmethyl)-2-chloro-5-{3-[(3-hydroxypropyl)amino]propyl}nicotinamide

20

(i) N-(1-Adamantylmethyl)-5-iodo-2-chloronicotinamide

2-Hydroxy-5-iodo-nicotinic acid (2.65 g) was added to thionyl chloride (10 ml) followed by anhydrous *N*, *N*-dimethylformamide (1 drop) and the resulting suspension heated to 100°C for 3 hours. The mixture was cooled and concentrated, azeotroping with toluene.

The residue was dissolved in dry dichloromethane (70 ml), cooled to 0°C and a mixture of 1-adamantylmethylamine (1.65 g) and triethylamine (2.81 ml) in dry dichloromethane (30 ml) added dropwise. The reaction mixture was stirred for 1 hour, was washed with 0.5M aqueous hydrochloric acid, dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate:dichloromethane (1:9) to afford the sub-titled compound as a solid.

 1 H NMR (300MHz, CDCl₃) δ 8.65 (1H, d); 8.42 (1H, d); 6.50 (1H, t); 3.19 (2H, dd); 2.05-2.02 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

10 MS: APCI(+ve) 430/432 (M+1)

MP: 163-164°C

5

15

20

25

(ii) N-(1-Adamantylmethyl)-2-chloro-5-(3-oxopropyl)nicotinamide

A mixture of *N*-(1-adamantylmethyl)-5-iodo-2-chloronicotinamide (Example 3(i)) (2.15 g), allyl alcohol (0.58 g), palladium (II) acetate (0.015 g), sodium bicarbonate (1.05 g) and tetra-butyl ammonium chloride (1.39 g) were stirred together in anhydrous *N*, *N*-dimethylformamide (20 ml) for 20 hours. The reaction mixture was poured into water (100 ml) and extracted into ethyl acetate (3x25 ml). The combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate:*iso*-hexane (1:1) to afford the subtitled compound (0.65 g).

¹H NMR (300MHz, CDCl₃) δ 9.82 (1H, s); 8.33 (1H, d); 8.01 (1H, d); 6.50 (1H, t); 3.19 (2H, d); 2.98 (2H, dd); 2.86 (2H, dd); 2.05-2.02 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 361, 363 (M+1)

(iii) N-(1-Adamantylmethyl)-2-chloro-5-{3-[(3-hydroxypropyl)amino]propyl}-nicotinamide

WO 03/041707 PCT/SE02/02057

To a stirred solution of N-(1-adamantylmethyl)-2-chloro-5-(3-oxopropyl)nicotinamide (Example 3(ii)) (0.10 g) in methanol (3 ml) and acetic acid (0.1 ml) was added 3-aminopropanol (0.042 g) and the resulting solution was stirred for 2 hours and then sodium cyanoborohydride (0.020 g) was added and the reaction mixture stirred for 20 hours. The mixture was concentrated and the residue partitioned between 2M aqueous hydrochloric acid solution and ethyl acetate (2x10 ml). The layers were separated and the organic phase re-extracted with 2M aqueous hydrochloric acid solution (2 x 10 ml). The combined aqueous extracts were basified with 5M aqueous ammonium hydroxide solution, extracted into ethyl acetate (2 x 25 ml) and the combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated to afford the titled compound (0.075 g) as a white solid.

¹H NMR (400MHz, CDCl₃) δ 8.28 (1H, s); 7.93 (1H, s); 6.79 (1H, t); 3.79 (2H, t); 3.17 (2H, d); 2.86 (2H, t); 2.71 (2H, t); 2.65 (2H, t); 2.66 (2H, t); 2.05-1.96 (5H, m); 1.87-1.80 (2H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 420/422 (M+1)

MP: 105-107°C

Example 4

15

20 N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1S)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide

The titled compound was prepared from N-(1-adamantylmethyl)-2-chloro-5-(3-oxopropyl)nicotinamide (Example 3(ii) (0.10 g), (S)-2-aminopropanol (0.046 g) and

WO 03/041707 PCT/SE02/02057

sodium cyanoborohydride 0.020 g) in methanol (3 ml) and acetic acid (0.1 ml) by the method of Example 3(iii). The crude product was purified by chromatography on silica gel eluting with 0.7N anhydrous ammonia in methanol:ethyl acetate (1:5) to afford the titled compound as an oil (0.082 g).

5

¹H NMR (300MHz, CDCl₃) δ 8.28 (1H, s); 7.99 (1H, s); 6.64 (1H, t); 3.56 (2H, dd); 3.23 (2H, dd); 3.19 (2H, d); 2.80-2.70 (3H, m); 2.58-2.50 (1H, m); 2.05-1.96 (3H, m); 1.87-1.80 (2H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m); 1.04 (3H, d). MS: APCI(+ve) 420/422 (M+1)

10

Example 5

N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1R)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide

15

The titled compound was prepared from N-(1-adamantylmethyl)-2-chloro-5-(3-oxopropyl)nicotinamide (Example 3(ii)) (0.10 g), (R)-2-aminopropanol (0.046 g) and sodium cyanoborohydride (0.020 g) in methanol (3 ml) and acetic acid (0.1 ml) by the method of Example 3(iii). The product was purified by chromatography on silica gel eluting with 0.7M anhydrous ammonia in methanol:ethyl acetate (1:5) to afford the titled compound as an oil (0.085 g).

20

¹H NMR (300MHz, CDCl₃) δ 8.28 (1H, s); 7.99 (1H, s); 6.64 (1H, t); 3.56 (2H, dd); 3.23 (2H, dd); 3.19 (2H, d); 2.80-2.70 (3H, m); 2.58-2.50 (1H, m); 2.05-1.96 (3H, m); 1.87-1.80 (2H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m); 1.04 (3H, d).

MS: APCI(+ve) 420/422 (M+1)

Example 6

5

10

15

20

N-(1-Adamantylmethyl)-2-(3-aminopropyl)-5-chloroisonicotinamide hydrochloride

tert-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-(i) yl)prop-2-ynylcarbamate

A suspension of N-(1-adamantylmethyl)-5-chloro-2-iodoisonicotinamide (Example 2(i)) (0.43 g) and tert-butyl prop-2-ynylcarbamate (0.31 g) in anhydrous acetonitrile (5 ml) and triethylamine (5 ml) was purged with nitrogen for 5 minutes and then copper (I) iodide (0.004g) and bis-triphenyphosphine palladium dichloride (0.014 g) were added. The mixture was stirred under nitrogen for 0.75 hours. The mixture was concentrated and the residue was purified by chromatography on silica gel eluting with acetone:

dichloromethane (1:19) to afford the sub-titled compound (0.34 g) as a yellow foam.

¹H NMR (400MHz, CDCl₃) δ 8.58 (1H, s); 7.67 (1H, s); 6.25 (1H, t); 4.82 (1H, broad); 4.18 (2H, d); 3.18 (2H, d); 2.02 (3H, s); 1.76-1.64 (4H, d of d); 1.60-1.57 (10H, d); 1.46 (9H, s).

MS: APCI(+ve) 458/460 (M+1)

N-(1-Adamantylmethyl)-2-(3-aminopropyl)-5-chloroisonicotinamide (ii) hydrochloride

A stirred suspension of *tert*-butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynylcarbamate (Example 6(i)) (0.34 g) and 5% rhodium on carbon was stirred under a positive pressure (2 barr) of hydrogen until no further uptake was observed. The mixture was filtered and concentrated. The residue was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and left to stand for 0.5 hours. The solution was concentrated and the residue triturated with ethyl acetate to afford the titled compound (0.174 g) as a beige powder.

¹H NMR (300MHz, DMSO-d₆) δ 8.60 (1H, s); 8.54 (1H, t); 8.02 (3H, broad); 7.34 (1H, s); 2.94 (2H, d); 2.85 (4H, m); 1.97 (5H, m); 1.7-1.58 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 362/364 (M+1)

MP: 150°C (dec.)

Example 7

10

20

N-(1-Adamantylmethyl)-5-chloro-2-[3-(ethylamino)propyl]isonicotinamide hydrochloride

Preparative Route 1

(i) tert-Butyl ethyl(prop-2-ynyl)carbamate

The sub-titled compound was prepared from *tert*-butyl prop-2-ynylcarbamate (0.6g), 60% sodium hydride (0.186g), ethyl iodide (1.55 ml) and anhydrous N-methyl-2-pyrrolidinone (4 ml) by the method of Example 2(ii). The crude product was purified by chromatography

WO 03/041707 PCT/SE02/02057

46

on silica gel eluting with *iso*-hexane:ethyl acetate (19:1) to afford (0.34 g) of a colourless oil.

¹H NMR (400MHz, CDCl₃) δ 4.04 (2H, broad); 3.36 (2H, q); 2.18 (1H, t); 1.14 (3H, t); 1.47 (9H, s).

(ii) *tert*-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl(ethyl)carbamate

The sub-titled compound was prepared from *N*-(1 adamantylmethyl)-5-chloro-2-iodoisonicotinamide (Example 2(i)) (0.40g), *tert*-butyl ethyl(prop-2-ynyl)carbamate (Example 7(i)) (0.34g), copper (I) iodide (0.004g), *bis*-triphenyphosphine palladium dichloride (0.014 g), triethylamine (5 ml) and anhydrous acetonitrile (5 ml) by the method of Example 2(iii). The crude product was purified by chromatography on silica gel eluting with *iso*-hexane:ethyl acetate (9:1 to 7:3) to afford the sub-titled compound (0.30 g).

15

5

10

¹H NMR (400MHz, CDCl₃) δ 8.58 (1H, s); 7.67 (1H, s); 6.22 (1H, broad); 4.31 (2H, broad); 3.42 (2H, q); 3.18 (2H, d); 2.02 (3H, broad); 1.80-1.60 (6H, d of d); 1.57 (6H, s); 1.48 (9H, s); 1.18 (3H, t).

MS: APCI(+ve) 486/488 (M+1)

20

25

30

(iii) N-(1-Adamantylmethyl)-5-chloro-2-[3-(ethylamino)propyl]isonicotinamide hydrochloride

The titled compound was prepared from *tert*-butyl 3-(4-{[(1-adamantylmethyl)amino]-carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl(ethyl)carbamate (Example 7(ii)) (0.30g) by the method of Example 6(ii). The crude hydrochloride salt was suspended in 2M aqueous sodium hydroxide solution (25 ml), extracted into ethyl acetate (3 x 25 ml) and the combined extracts were concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: methanol: 0.88 aqueous ammonia (89: 10: 1). The isolated material was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated; the resultant solid was triturated with ethyl acetate

WO 03/041707 PCT/SE02/02057

47

and the solid collected by filtration. Final purification was by preparative reverse phase HPLC to afford the titled compound (0.025g) as a colourless powder.

¹H NMR (300MHz, DMSO-d₆) δ 8.84 (2H, broad); 8.61 (1H, s); 8.54 (1H, t); 7.36 (1H, s); 3.0-2.80 (8H, m); 2.04 (2H, q); 1.95 (3H, s); 1.7-1.58 (6H, q); 1.52 (6H, s); 1.19 (3H, t). MS: APCI(+ve) 390/392 (M+1)

MP: 206-208°C (dec.)

Preparative Route 2

10

15

20

25

30

(iv) tert-Butyl allyl(ethyl)carbamate.

The sub-titled compound was prepared from *tert*-butyl allylcarbamate (1.0g), 60% sodium hydride (0.254g), ethyl iodide (1.55 ml) and anhydrous *N*-methyl-2-pyrrolidinone (4 ml) by the method of Example 2(ii). The crude product was purified by chromatography on silica gel eluting with *iso*-hexane:ethyl acetate (19:1) to afford (0.53 g) of a colourless oil.

 1 H NMR (400MHz, CDCl₃) δ 5.78 (1H, m); 5.12 (2H, m); 3.80 (2H, s); 3.22 (2H, d); 1.46 (9H, s); 1.08 (3H, t).

$(v) \qquad N\hbox{-}(1\hbox{-}Adamantylmethyl)\hbox{-}5\hbox{-}chloro\hbox{-}2\hbox{-}[3\hbox{-}(ethylamino)propyl] is onicotina mide} \\ \ hydrochloride$

A solution of *tert*-butyl allylcarbamate (Example 7(iv)) (0.23g) in 9-boroabicyclo[3.3.1]nonane (5ml of a 0.5M solution in tetrahydrofuran) was heated at reflux under nitrogen for 6 hours. The solution was cooled to room temperature and potassium phosphate (1ml of a 3M solution in water) was added. The mixture was stirred for 15 minutes and a solution of *N*-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 1(ii)) (0.383g) and dichloro[1,1'-bis(diphenylphosphino)ferrocenyl]palladium (II) (0.045g) in anhydrous *N*,*N*-dimethylformamide (8ml) was added. The mixture was stirred for 6 hours, diluted with saturated brine (25 ml) and extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with *iso*-

hexane: ethyl acetate (4:1 to 2:1). The isolated material (0.30g) was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated; the resultant solid was triturated with ethyl acetate and the solid collected by filtration to afford the titled compound (0.245g) as a colourless powder.

Example 8

5

N-(1-Adamantylmethyl)-5-chloro-2-({2-[(3-hydroxypropyl)amino]-ethyl}thio)isonicotinamide hydrochloride

10

15

20

(i) 2-({2-[(tert-Butoxycarbonyl)amino]ethyl}thio)-5-chloroisonicotinic acid
To a solution of 2,5-dichloroisonicotinic acid (1.82g) in anhydrous N,Ndimethylformamide (10 ml) was added 60% sodium hydride (0.455g) in small portions.
After gas evolution had ceased tert-butyl 2-mercaptoethylcarbamate (1.60 ml) was added.
The reaction mixture was then heated at 60°C under nitrogen for 10 hours. Further
amounts of 60% sodium hydride (0.225g) and tert-butyl 2-mercaptoethylcarbamate (1.60 ml) were then added and heating was continued for 2 hours. The reaction mixture was
concentrated and the residue suspended in 2M aqueous hydrochloric acid (25 ml) and
extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous
sodium sulphate, filtered and concentrated. The residue was purified by chromatography

10

15

20

30

on silica gel eluting with *iso*-hexane: ethyl acetate: acetic acid (6:4:0.1) to afford the subtitled compound (1.0g) as a colourless powder.

¹H NMR (300MHz, DMSO-d₆) δ 8.59 (1H, s); 7.60(1H, s); 7.02 (1H, s); 3.20 (4H, s); 1.37 (9H, s).

(ii) *tert*-Butyl 2-[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)thio|ethyl[3-(tetrahydro-2*H*-pyran-2-yloxy)propyl]carbamate

To a solution of 2-({2-[(tert-butoxycarbonyl)amino]ethyl}thio)-5-chloroisonicotinic acid (Example 8(i)) (0.332g) in anhydrous *N*-methyl-2-pyrrolidinone (5 ml) was added 60% sodium hydride (0.084g). After 0.5 hours 2-(3-bromopropoxy)tetrahydro-2*H*-pyran (0.244g) was added and the mixture was stirred for 16 hours under nitrogen. The reaction mixture was diluted with water (50 ml) and ethyl acetate (50 ml) followed by 2M aqueous hydrochloric acid solution (50 ml). The mixture was extracted into ethyl acetate (3 x 25 ml) and the combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was dissolved in anhydrous *N*,*N*-dimethylformamide (5 ml) and 1,1'-carbonyldiimidazole (0.162g) was added. After 3 hours the mixture was treated with 1-adamantylmethylamine (0.163g) in one portion and the whole was stirred for 72 hours. The reaction mixture was diluted with water (50 ml) and extracted into ethyl acetate (3 x 25 ml); the combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: ethyl acetate (9:1) to afford the sub-titled compound (0.15g) as a colourless oil.

25 MS: APCI(+ve) 622/624 (M+1).

(iii) N-(1-Adamantylmethyl)-5-chloro-2-($\{2-[(3-hydroxypropyl)amino]ethyl\}$ -thio)isonicotinamide hydrochloride

The titled compound was prepared from tert-butyl 2-[(4-{[(1-

adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)thio]ethyl[3-(tetrahydro-2H-

pyran-2-yloxy)propyl]carbamate (Example 8(ii)) (0.15g) by the method of Example 2(v). The crude hydrochloride salt was triturated with ethyl acetate to afford the titled compound (0.084g) as a colourless foam.

¹H NMR (300MHz, DMSO-d₆) δ 8.81 (1H, broad); 8.57 (1H, s); 8.54 (1H, t); 7.44 (1H, s); 3.50-3.42 (4H, m); 3.19 (2H, t); 3.01 (2H, t); 2.93 (2H, d); 1.94 (3H, s); 1.76 (2H, quintet); 1.69-1.57 (6H, q); 1.51 (6H, s).

MS: APCI(+ve) 438/440 (M+1).

10 Example 9

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 1(v) and using (R)-2-amino-1-propanol, the compound *N*-(1-adamantylmethyl)-5-chloro-2-(3-{[(1*R*)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide was afforded as an oil.

¹H NMR (300MHz, CDCl₃) δ 8.55 (1H, s); 7.45 (1H, s); 6.47 (1H, t); 3.53 (1H, dd); 3.21-3.16 (3H, m); 2.88 (2H, t); 2.81-2.69 (2H, m); 2.56-2.48 (1H, m); 2.05-1.96 (3H, m); 1.96-1.88 (2H, m); 1.76-1.63 (6H, m); 1.57-1.55 (6H, m); 1.03 (3H, d). MS: APCI(+ve) 420/422 (M+1) The compound from above (0.100 g) was dissolved in dry hydrogen chloride in 1,4-dioxane (4N, 2 ml) and was concentrated. The residue was recrystallised from methanol: ethyl acetate to afford the titled compound (0.095 g) as a solid.

¹H NMR (300MHz, DMSO-d₆) δ 8.62 (2H, br); 8.60 (1H, s); 8.53 (1H, t); 7.35 (1H, s); 3.65 (1H, dd); 3.47 (1H, dd); 3.22 (1H, br); 2.94 (2H, d); 2.85 (2H, t); 2.04 (2H, p); 1.98-1.96 (3H, m); 1.76-1.63 (6H, m); 1.57-1.55 (6H, m); 1.18 (3H, d).

MS: APCI(+ve) 420/422 (M+1)

MP: 205-208°C

10

Example 10

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1S)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide, dihydrochloride

15

By the method outlined for Example 1(v) and using (S)-2-amino-1-propanol, the compound N-(1-adamantylmethyl)-5-chloro-2-(3-{[(1S)-2-hydroxy-1-methylethyl]amino}propyl)isonicotinamide was afforded as an oil.

20 ¹H N

¹H NMR (300MHz, CDCl₃) δ 8.55 (1H, s); 7.45 (1H, s); 6.47 (1H, t); 3.53 (1H, dd); 3.21-3.16 (3H, m); 2.88 (2H, t); 2.81-2.69 (2H, m); 2.56-2.48 (1H, m); 2.05-1.96 (3H, m); 1.96-1.88 (2H, m); 1.76-1.63 (6H, m); 1.57-1.55 (6H, m); 1.03 (3H, d).

MS: APCI(+ve) 420/422 (M+1)

The compound from above (0.060 g) was dissolved in dry hydrogen chloride in 1,4-dioxane (4N, 2 ml) and was concentrated. The residue was recrystallised from methanol: ethyl acetate to afford the titled compound (0.045 g) as a solid.

¹H NMR (300MHz, DMSO-d₆) δ 8.62 (2H, br); 8.60 (1H, s); 8.53 (1H, t); 7.35 (1H, s); 3.65 (1H, dd); 3.47 (1H, dd); 3.22 (1H, br); 2.94 (2H, d); 2.85 (2H, t); 2.04 (2H, p); 1.98-1.96 (3H, m); 1.76-1.63 (6H, m); 1.57-1.55 (6H, m); 1.18 (3H, d).

MS: APCI(+ve) 420/422 (M+1)

MP: 205-208°C

10

Example 11

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxyethyl)amino]propyl}-isonicotinamide hydrochloride

15 (i) tert-Butyl (2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)prop-2-yn-1-ylcarbamate
The sub-titled compound was prepared from tert-butyl prop-2-yn-1-ylcarbamate (0.8g),
60% sodium hydride (0.227g), (2-bromoethoxy)-tert-butyldimethylsilane (1 ml) and
anhydrous N-methyl-2-pyrrolidinone (4 ml) by the method of Example 2(ii). The crude
product was purified by chromatography on silica gel eluting with iso-hexane:ethyl acetate
(25:1) to afford (0.8g).

10

25

¹H NMR (300MHz, CDCl₃) δ 4.13 (2H, broad); 3.75 (2H, broad t); 3.42 (2H, t); 2.18 (1H, t); 1.47 (9H, s); 0.89 (9H, s); 0.04 (6H, s).

(ii) tert-Butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl(2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)carbamate

The sub-titled compound was prepared from N-(1 adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 2(i)) (0.37g), tert-butyl (2-{[tert-butyl(dimethyl)silyl]oxy}ethyl)prop-2-yn-1-ylcarbamate (Example 11(i)) (0.54g), copper (I) iodide (0.004g), bis-triphenyphosphine palladium dichloride (0.014 g), triethylamine (6 ml) and anhydrous acetonitrile (6 ml) by the method of Example 2(iii). The crude product was purified by chromatography on silica gel eluting with iso-hexane:ethyl acetate (8:1 to 4:1) to afford the sub-titled compound (0.28 g) as a yellow gum.

¹H NMR (300MHz, CDCl₃) δ 8.58 (1H, s); 7.67 (1H, s); 6.23 (1H, broad); 4.40 (2H, m); 3.77 (2H, broad); 3.47 (2H, t); 3.18 (2H, d); 2.03 (3H, broad); 1.80-1.55 (12H, m); 1.48 (9H, s); 0.88 (9H, s); 0.05 (6H, s).

- (iii) N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxyethyl)amino]propyl}-isonicotinamide hydrochloride
- The titled compound was prepared from *tert*-butyl 3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)prop-2-ynyl(2-{[*tert*-butyl(dimethyl)silyl]oxy}ethyl)carbamate (Example 11(ii)) (0.28g) by the method of Example 6(ii). The crude hydrochloride salt was triturated with ethyl acetate to afford the titled compound (0.176g) as a beige powder.

¹H NMR (300MHz, DMSO-d₆) δ 8.75 (2H, broad); 8.60 (1H, s); 8.53 (1H, t); 7.35 (1H, s); 3.65 (2H, t); 3.05-2.90 (6H, m); 2.84 (2H, t); 2.04 (2H, quintet); 1.95 (3H, s); 1.64 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 406/408 (M+1).

30 MP: 204-205°C (dec.)

Example 12

5

10

15

N-(1-Adamantylmethyl)-5-chloro-2-{2-[(3-

hydroxypropyl)amino]ethoxy}isonicotinamide, hydrochloride

OH N OCI

(i) N-(1-Adamantylmethyl)-5-chloro-2-(2-hydroxyethoxy) isonicotinamide

Sodium hydride (60%, 0.080 g) was added to ethylene glycol (3 ml) and the resulting suspension stirred under an atmosphere of nitrogen for 30 minutes. To this mixture was added a solution of *N*-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 1(ii)) (0.192 g) in anhydrous *N*-methyl-2-pyrrolidinone (1 ml). The stirring bar was removed and the resulting solution heated in a MARS microwave for 15 minutes (300 Watts, 150°C). The mixture was cooled and poured into water (50 ml) and extracted into ethyl acetate (3x10 ml). The combined organic extracts were washed with brine (2x10 ml), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate:*iso*hexane (1:1) to afford the sub-titled compound (0.092 g) as a white solid.

¹H NMR (300MHz, CDCl₃) δ 8.16 (1H, s); 7.09 (1H, s); 6.20 (1H, br); 4.45 (2H, dd); 3.96 (2H, ddd); 3.17 (2H, d); 2.54 (1H, t); 2.05-1.96 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 364/366 (M+1)

MP: 154-155°C

10

15

20

25

30

(ii) N-(1-Adamantylmethyl)-5-chloro-2-{2-[(3-hydroxypropyl)amino]ethoxy}isonicotinamide, hydrochloride

To a stirred solution of N-(1-adamantylmethyl)-5-chloro-2-(2-

hydroxyethoxy)isonicotinamide (Example 12(i)) (0.10 g) in dry dichloromethane (5 ml) was added Dess-Martin periodinane (0.212 g) and the resulting suspension stirred at room temperature for 30 minutes. The reaction was poured into a mixture of saturated sodium bicarbonate solution containing sodium thiosulfate (10% w/v, 20 ml) and the mixture was extracted into ethyl acetate (3x25 ml). The combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The crude aldehyde was dissolved in methanol (2 ml) and 3-aminopropan-1-ol (0.075 g) added along with acetic acid (0.1 ml). The mixture was stirred for 2 hours at ambient temperature and then sodium triacetoxy borohydride (0.159 g) added and the reaction stirred for 20 hours, concentrated and the residue was partitioned between 2M aqueous hydrochloric acid solution and ethyl acetate (2x10 ml). The layers were separated and the organic phase re-extracted with 2N hydrochloric acid (2 x 10 ml). The combined aqueous extracts were basified with 5M aqueous ammonium hydroxide solution, extracted into ethyl acetate (2 x 25 ml) and the combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated to afford the compound, *N*-(1-adamantylmethyl)-5-chloro-2-{2-[(3-

hydroxypropyl)amino]ethoxy}isonicotinamide (0.05 g), as a foam.

¹H NMR (400MHz, CDCl₃) δ 8.15 (1H, s); 7.01 (1H, s); 6.31 (1H, br); 4.41 (2H, t); 3.80 (2H, d); 3.16 (2H, d); 3.00 (2H, t); 2.94 (3H, t); 2.05-1.96 (3H, m); 1.76-1.73 (5H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 421/423 (M+1)

The compound from above (0.050 g) was dissolved in dry hydrogen chloride in 1,4-dioxane (4N, 2 ml) and was concentrated. The residue was triturated with dry ether and filtered to afford N-(1-adamantylmethyl)-5-chloro-2-{2-[(3-

hydroxypropyl)amino]ethoxy}isonicotinamide hydrochloride (0.024 g) as a white solid.

¹H NMR (300MHz, DMSO-d₆) δ 8.85 (2H, broad); 8.57 (1H, s); 8.54 (1H, t); 8.34 (1H, s); 6.86 (1H, s); 4.53 (2H, t); 3.54 (2H, t); 3.38-3.32 (2H, m); 3.06-3.02 (2H, m); 2.94 (2H, d); 1.94 (3H, s); 1.88-1.82 (2H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m). MS: APCI(+ve) 421/423 (M+1)

Example 13

5

10

15

20

N-(1-Adamantylmethyl)-5-chloro-2-({2-[(2-hydroxyethyl)amino]ethyl}-amino)isonicotinamide dihydrochloride

(i) tert-Butyl 2-[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)(2-hydroxyethyl)amino]ethylcarbamate

N-(2-Hydroxyethyl)-ethylenediamine (0.208 g) was added to a mixture of N-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (0.192 g, Example 1(ii)) and potassium carbonate (0.14 g) in anhydrous N-methyl-2-pyrrolidinone (3 ml). The resulting solution heated in a MARS microwave for 10 minutes (300 Watts, 150°C). The mixture was cooled and poured into water (50 ml) and extracted into ethyl acetate (3x10 ml). The combined organic extracts were washed with brine (2x10 ml), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was dissolved into ethyl acetate 30 ml and di-tert-butylcarbonate (0.218 g) added. The resulting mixture was left to stand at room temperature for 2 hours and was then concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with ethyl acetate to afford

tert-butyl 2-[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)(2-hydroxyethyl)amino]ethylcarbamate (0.013 g).

¹H NMR (300MHz, CDCl₃) δ 8.08 (1H, s); 6.96 (1H, s); 6.43 (1H, br); 4.95 (1H, br); 3.83 (2H, t); 3.70-3.62 (4H, m); 3.67 (2H, q); 3.17 (2H, d); 2.05-1.96 (3H, m); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m); 1.37 (9H, s).

MS: APCI(+ve) 507, 509 (M+1)

(ii) N-(1-Adamantylmethyl)-5-chloro-2-({2-[(2-hydroxyethyl)amino]ethyl}-amino)isonicotinamide dihydrochloride

tert-Butyl 2-[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)(2-hydroxyethyl)amino]ethylcarbamate (Example 13(i)) (0.013 g) was dissolved in anhydrous hydrogen chloride in 1,4-dioxane (4M, 2 ml) and the resulting mixture was allowed to stand at room temperature for 30 minutes. The mixture was concentrated under reduced pressure to afford the titled product (0.020 g).

¹H NMR (300MHz, DMSO-d₆) δ 8.39 (1H, t); 8.11 (1H, s); 7.85 (2H, br); 6.69 (1H, s); 3.74 (2H, t); 3.07-3.96 (4H, br); 2.92 (2H, d); 1.94 (3H, s); 1.76-1.73 (3H, m); 1.66-1.63 (3H, m); 1.57-1.55 (6H, m).

MS: APCI(+ve) 407, 409 (M+1)

Example 14

10

15

20

 $\label{eq:N-(1-Adamantylmethyl)-5-chloro-2-[3-(isopropylamino)propyl]} is onicotina mide dihydrochloride$

10

15

20

(i) N-(1-Adamantylmethyl)-2-(3-{[tert-butyl(dimethyl)silyl]oxy}propyl)-5-chloroisonicotinamide

A solution of 9-borabicyclo[3.3.1]nonane at 0.5 M in tetrahydrofuran (2.78 mL, 1.39 mmol) was added to neat (allyloxy)(tert-butyl)dimethylsilane (0.15mL, 0.69 mmole). The mixture was heated to 60°C for 2 hours under nitrogen. The reaction was subsequently cooled to room temperature and a solution of potassium phosphate (0.37 g) in water (1 mL) was added slowly. A solution of N-(1-adamantylmethyl)-2,5-dichloroisonicotinamide (0.20 g, 0.59 mmol; prepared as described in WO 01/94338) in dimethylformamide (3 mL) was added followed by tetrakis(triphenyphosphine) palladium (0) (7 mg). The solution was heated to 70°C for 2 hours, allowed to cool to room temperature then partitioned between ethyl acetate (20 mL) and brine (10 mL). The aqueous phase was further extracted with ethyl acetate (2x20 mL) and the combined organics were washed with brine (20 mL); dried over magnesium sulphate; filtered and evaporated under vacuum to give the crude product (0.70 g) as a yellow oil, which was used, as such, without any further purification.

(ii) N-(1-Adamantylmethyl)-5-chloro-2-(3-hydroxypropyl)isonicotinamide

The residue from above was dissolved in tetrahydrofuran (10 mL) and cooled to 0°C. To this a solution of tetra-n-butyl ammonium fluoride (0.75 mL of a 1M solution) was added and the mixture warmed to room temperature for 2 hours. After this time the solution was cooled to 0°C and treated with 0.6 mL of tetra-n-butyl ammonium fluoride and stirring continued for an additional hour at room temperature. The reaction mixture was subsequently diluted with diethyl ether (30mL); washed with water (2x10mL); brine (20mL); dried over magnesium sulphate; filtered and evaporated under vacuum. The

10

15

20

25

residue was purified by chromatography on silica gel eluting with dichloromethane: ethyl acetate: methanol (15:4:1) to afford the sub-titled compound (0.21 g) as a clear oil.

¹H NMR (400MHz, CDCl₃) δ 8.55 (1H, s); 7.51 (1H, s); 6.32 (1H, bs); 3.69 (2H, t); 3.19 (2H, d); 2.96 (2H, t); 1.96-2.05 (5H, m); 1.70 (6H, q); 1.58 (6H, s) MS: APCI(+ve) 363, 365 (M+1).

(iii) N-(1-Adamantylmethyl)-5-chloro-2-(3-oxopropyl)isonicotinamide

To a stirred solution of N-(1-adamantylmethyl)-5-chloro-2-(3-

hydroxypropyl)isonicotinamide (0.12 g, 0.33mmol) (Example 14 (ii)) in dry dichloromethane (10 mL) Dess-Martin periodinane (0.14 g, 0.33mmol) was added. The resulting mixture was stirred at room temperature for 4 hours. The reaction was treated with diethyl ether (20mL) and a saturated sodium bicarbonate solution containing sodium thiosulfate (0.37 g, in 4 mL). The mixture was stirred for 10 minutes and the organics separated; washed with brine (10 mL); dried over anhydrous magnesium sulfate; filtered; treated with acetic acid (0.30 mL) and concentrated.

MS: APCI(+ve) 361, 363 (M+1).

(iv) N-(1-Adamantylmethyl)-5-chloro-2-[3-(isopropylamino)propyl]isonicotinamide dihydrochloride

The crude aldehyde from above was dissolved in methanol (2 mL) and treated with isopropylamine (0.084 mL, 0.99mmol) along with acetic acid (0.10 mL). The mixture was stirred for 10 minutes at ambient temperature and then sodium triacetoxy borohydride (0.14 g, 0.66mmol) was added. The reaction was stirred for 20 hours, concentrated and the residue dissolved in ethyl acetate (20 mL). The organics were washed with a saturated solution of sodium bicarbonate (10mL); brine (10mL); dried over anhydrous magnesium sulfate; filtered and concentrated to afford an oil (0.118g). The crude compound was dissolved in dichloromethane (5 mL); treated with dry hydrogen chloride in 1,4-dioxane

(4N, 0.4 mL) and was concentrated after 10 minutes. The residue was filtered from dichloromethane (20 mL) to afford the titled compound (0.098 g) as a white solid.

¹H NMR (400MHz, DMSO-d₆) δ 8.61-8.51 (3H, m); 3.32-3.26 (1H, m); 2.95-2.84 (6H, m); 2.05-2.00 (2H, m); 1.98 (3H, s); 1.68 (6H, q); 1.59 (6H, s); 1.22 (6H, d). MS: APCI(+ve) 404, 406 (M+1).

Example 15

15

20

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2S)-2-

10 hydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 14(iv) and using (2S)-1-aminopropan-2-ol, the compound, N-(1-adamantylmethyl)-5-chloro-2-(3-{[(2S)-2-

hydroxypropyl]amino}propyl)isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.081 g) was dissolved in a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.091 g).

¹H NMR (400MHz, DMSO-d₆) δ 8.91 (1H, bs); 8.71(1H, bs); 8.60 (1H, s); 8.56 (1H, t); 3.99-3.94 (1H, m); 2.95-2.94 (5H, m); 2.85 (2H, t); 2.76-2.70 (1H, m); 2.10-2.02 (2H, m); 1.95 (3H, s); 1.64 (6H, q); 1.52 (6H, s); 1.10 (3H, d). MS: APCI(+ve) 420, 422 (M+1).

Example 16

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2R)-2,3-

dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 14(iv) and using (2R)-3-aminopropane-1,2-diol, the compound, N-(1-adamantylmethyl)-5-chloro-2-(3-{[(2R)-2,3-dihydroxypropyl]amino}propyl)isonicotinamide, was afforded as an oil. The residue was purified by chromatography on silica gel eluting with dichloromethane: methanol: ammonia (10:1:1). The isolated material was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.098 g).

¹H NMR (400MHz, CD₃OD) δ 8.65-8.62 (2H, m); 7.44 (1H, s); 3.90-3.87 (1H, m); 3.55 (2H, dq); 3.20-2.97 (8H, m); 2.18-2.11 (2H, m); 1.99 (3H, s); 1.73 (6H, q); 1.62 (6H, s).

MS: APCI(+ve) 436, 438 (M+1).

MP: 217-219°C.

Example 17

15

N-(1-Adamantylmethyl)-5-chloro-2-(3- $\{[(2S)-2,3-$

20 dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 14(iv) and using (2S)-3-aminopropane-1,2-diol, the compound, N-(1-adamantylmethyl)-5-chloro-2-(3-{[(2S)-2,3-dihydroxypropyl]amino}propyl)isonicotinamide, was afforded as an oil. The residue was purified by chromatography on silica gel eluting with dichloromethane: methanol: ammonia (10:1:1). The isolated material was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.057 g).

¹H NMR (400MHz, CD₃OD) δ 8.64 (2H, s); 7.45 (1H, s); 3.92-3.89 (1H, m); 3.55 (2H, dq); 3.20-2.97 (8H, m); 2.18-2.11 (2H, m); 1.99 (3H, s); 1.73 (6H, q); 1.62 (6H, s). MS: APCI(+ve) 436, 438 (M+1).

Example 18

 $N-(1-Adamantylmethyl)-5-chloro-2-{3-[(4-$

 $methyl cyclohexyl) a mino] propyl\} is onic otinamide\ dihydrochloride$

By the method outlined for Example 14(iv) and using 4-aminocyclohexanol, the titled compound, *N*-(1-adamantylmethyl)-5-chloro-2-{3-[(4-methylcyclohexyl)amino]propyl}isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.022 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.025 g).

¹H NMR (300MHz, CD₃OD) δ 8.63 (1H, s); 7.39 (1H, s); 3.61-3.58 (1H, m); 3.10-3.01 (5H, m); 2.96 (2H, t); 2.19-2.00 (5H, m); 1.70 (6H, q); 1.64 (6H, s); 1.47-1.30 (8H, m). MS: APCI(+ve) 460, 462 (M+1).

MP: 242-244°C.

Example 19

5

20

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxy-2-methylpropyl)amino]propyl}isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using 1-amino-2-methylpropan-2-ol, the titled compound, N-(1-adamantylmethyl)-5-chloro-2-{3-[(2-hydroxy-2-methylpropan-2-ol)]}

methylpropyl)amino]propyl}isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.015 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a

4M solution) and concentrated to afford the titled compound as a colorless powder (0.019 g).

¹H NMR (300MHz, CD₃OD) δ 8.65 (1H, s); 7.44 (1H, s); 3.16-3.09 (4H, m); 3.01 (4H, t); 2.21-2.16 (2H, m); 2.00 (3H, s); 1.75 (6H, q); 1.64 (6H, d); 1.33 (6H, s).

MS: APCI(+ve) 434, 436 (M+1).

MP: 236-238°C.

Example 20

5

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-1-(hydroxymethyl)-2-methylpropyl]amino}propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 14(iv) and using (2*R*)-2-amino-3-methylbutan-1-ol, the compound, *N*-(1-adamantylmethyl)-5-chloro-2-(3-{[(1*R*)-1-(hydroxymethyl)-2-methylpropyl]amino}propyl)isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.065 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.071 g).

20

15

¹H NMR (400MHz, DMSO-d₆) δ 8.60 (1H, s); 8.54 (1H, bt); 8.36 (1H, bs); 7.36 (1H, s); 3.72-3.68 (1H, m); 3.63-3.57 (2H, m); 3.16-3.04 (2H, bm); 2.94 (2H, d); 2.87 (2H, t); 2.11-2.02 (4H, m); 1.95 (3H, s); 1.64 (6H, q); 1.52 (6H, s); 0.98 (3H, d); 0.94 (3H, d). MS: APCI(+ve) 448, 450 (M+1).

Example 21

5

10

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(methylamino)ethyl]amino}propyl)isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using *tert*-butyl 2-aminoethyl(methyl)carbamate, *tert*-butyl 2-{[3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl]amino} ethyl(methyl)carbamate was afforded as an oil. The latter (0.118 g) was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 2 hours to give the deprotected material. The residue was recrystallised from dichloromethane (3ml) to afford the titled compound (0.035 g) as a white solid.

¹H NMR (300MHz, CD₃OD) δ 8.71 (1H, s); 7.54 (1H, s); 3.43 (4H, s); 3.22-3.17 (4H, m); 3.09-3.02 (4H, m); 2.81 (3H, s); 2.24-2.19 (2H, m); 2.01 (3H, s); 1.75 (6H, q); 1.64 (6H, s). MS: APCI(+ve) 419, 421 (M+1).

MP: 216-219°C.

Example 22

20 N-(1-Adamantylmethyl)-5-chloro-2-(3-{[3-(methylamino)propyl]amino}propyl)isonicotinamide bis(trifluoroacetate)

By the method outlined for Example 14(iv) and using *tert*-butyl 3-aminopropyl(methyl)carbamate, *tert*-butyl 3-{[3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-

yl)propyl]amino}propyl(methyl)carbamate was afforded as an oil.

The latter (0.121 g) was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 2 hours to give the deprotected material. The residue was purified by preparative reverse phase HPLC to afford the titled compound (0.028 g) as a white solid.

10

¹H NMR (400MHz, CD₃OD) δ 8.57 (1H, s); 7.33 (1H, s); 3.13-3.06 (8H, m); 2.93 (2H, t); 2.72 (3H, s); 2.16-2.05 (4H, m); 1.98 (3H, s); 1.75 (6H, q); 1.62 (6H, s). MS: APCI(+ve) 433, 435 (M+1).

15

Example 23

MP: 210-212°C.

 $N\hbox{-}(1\hbox{-}Adamantylmethyl)\hbox{-}5\hbox{-}chloro\hbox{-}2\hbox{-}[3\hbox{-}(\{2\hbox{-}[(2\hbox{-}hydroxyethyl)amino]ethyl}\}amino)propyl] isonicotinamide dihydrochloride$

By the method outlined for Example 14(iv) and using *tert*-butyl 2-aminoethyl(2-hydroxyethyl)carbamate, *tert*-butyl 2-{[3-(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)propyl]amino}ethyl(2-hydroxyethyl)carbamate was afforded as an oil. The latter (0.062 g) was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 2 hours to give the deprotected material. The residue was recrystallised from dichloromethane (3mL) to afford the titled compound (0.006 g) as a white solid.

¹H NMR (300MHz, CD₃OD) δ 8.61 (1H, s); 7.39 (1H, s); 3.86 (2H, t); 3.47 (4H, t); 3.27-3.16 (4H, m); 3.10-3.08 (2H, m); 2.99 (2H, t); 2.22-2.17 (2H, m); 2.01 (3H, s); 1.75 (6H, q); 1.64 (6H, d).

MS: APCI(+ve) 449, 451 (M+1).

MP: 231-233°C.

Example 24

15

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(diethylamino)ethyl]amino}propyl)isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using N,N-diethylethane-1,2-diamine, the titled compound, N-(1-adamantylmethyl)-5-chloro-2-(3-{[2-

(diethylamino)ethyl]amino}propyl)isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.057 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.062 g).

¹H NMR (400MHz, CD₃OD) δ 8.62 (1H, s); 7.43 (1H, s); 3.51 (4H, s); 3.35-3.31 (2H, m); 3.18 (2H, t); 3.08 (2H, s); 2.99 (2H, t); 2.21-2.17 (2H, m); 1.99 (3H, s); 1.74 (6H, q); 1.63 (6H, s).

MS: APCI(+ve) 461, 463 (M+1).

15 Example 25

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-hydroxy-1-(hydroxymethyl)ethyl]amino}propyl)isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using 2-aminopropane-1,3-diol, the titled compound, *N*-(1-adamantylmethyl)-5-chloro-2-(3-{[2-hydroxy-1-

(hydroxymethyl)ethyl]amino} propyl)isonicotinamide, was afforded as an oil. Purification was by preparative reverse phase HPLC. The isolated material (0.072 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.080 g).

¹H NMR (400MHz, CD₃OD) δ 8.61 (1H, s); 7.40 (1H, s); 3.80 (2H, dd); 3.73 (2H, dd); 3.19 (2H, t); 3.07 (2H, s); 2.99 (2H, t); 2.19-2.11 (2H, m); 1.98 (3H, s); 1.73 (6H, q); 1.61 (6H, s).

MS: APCI(+ve) 436, 438 (M+1).

MP: 201-203°C.

Example 26

5

15

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)(methyl)amino]propyl}isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using 2-(methylamino)ethanol, the titled compound, N-(1-adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)(methyl)amino]propyl}isonicotinamide, was afforded as an oil.

Purification was by preparative reverse phase HPLC. The isolated material (0.061 g) was dissolved in dichloromethane, treated with a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a white powder (0.069 g).

¹H NMR (400MHz, CD₃OD) δ 8.64 (2H, bs); 7.46 (1H, s); 3.87-3.84 (2H, m); 3.39-3.16 (4H, m); 3.07 (2H, s); 2.99 (2H, t); 2.91 (3H, s); 2.24-2.16 (2H, m); 1.98 (3H, s); 1.73 (6H, q); 1.61 (6H, s).

MS: APCI(+ve) 420, 422 (M+1).

MP: 206-208°C.

Example 27

15

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxy-2,2-4)]}

dimethylpropyl)amino]propyl}isonicotinamide dihydrochloride

By the method outlined for Example 14(iv) and using 3-amino-2,2-dimethylpropan-1-ol, the titled compound, *N*-(1-adamantylmethyl)-5-chloro-2-{3-[(3-hydroxy-2,2-dimethylpropyl)amino]propyl}isonicotinamide, was afforded as an oil.

- The compound from above (0.122 g) was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 0.4 mL) and was concentrated after 10 minutes. The residue was filtered from dichloromethane (20mL) to afford the titled compound (0.091 g) as a solid.
- ¹H NMR (300MHz, CD₃OD) δ 8.66 (1H, s); 7.44 (1H, s); 3.49 (2H, s); 3.13-3.08 (4H, m); 3.01-2.96 (4H, m); 2.23-2.12 (2H, m); 2.00 (3H, s); 1.75 (6H, q); 1.64 (6H, d); 1.05 (6H, s).

 MS: APCI(+ve) 448, 450 (M+1).

15 Example 28

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2R)-2-

hydroxypropyl]amino{propyl)isonicotinamide, dihydrochloride

By the method outlined for Example 14(iv) and using (2R)-1-aminopropan-2-ol, the compound, N-(1-adamantylmethyl)-5-chloro-2-(3- $\{[(2R)$ -2-hydroxypropyl]amino}propyl)isonicotinamide, was afforded as an oil.

- The compound from above (0.062 g) was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 0.4 mL) and was concentrated after 10 minutes. The residue was filtered from dichloromethane (10mL) to afford the titled compound (0.033 g) as a solid.
- ¹H NMR (400MHz, CD₃OD) δ 8.57 (2H, bs); 7.35 (1H, s); 4.04-3.96 (1H, m); 3.10-3.06 (4H, m); 2.95 (2H, t); 2.85 (2H, t); 2.16-2.10 (2H, m); 1.98 (3H, s); 1.73 (6H, q); 1.62 (6H, s); 1.21 (3H, d).

MS: APCI(+ve) 420, 422 (M+1).

MP: 224-226°C.

Example 29

15

N-(1-Adamantylmethyl)-5-chloro-2-({[3-

(methylamino)propyl]amino}methyl)isonicotinamide dihydrochloride

10

15

20

(i) N-(1-Adamantylmethyl)-5-chloro-2-vinylisonicotinamide

N-(1-Adamantylmethyl)-2,5-dichloroisonicotinamide (2.32 g) and tributyl(vinyl)stannane (2.61 g) were stirred together in dry N,N-dimethylformamide (50mL) at room temperature under nitrogen. The latter was treated with a few crystals of 2,6-di*tert*-butyl-4-methylphenol and dichloro[bis(triphenylphosphine)]palladium(II) (0.24 g). The reaction mixture was warmed to 80°C for 4 hours and subsequently cooled to room temperature. The mixture was poured into ethyl acetate (50mL) and washed with water (2x25mL) then brine (30mL). The organics were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with ethyl acetate: dichloromethane (1:20) to afford the sub-titled compound (2.21 g).

¹H NMR (300MHz, CDCl₃) δ 8.58 (1H, s); 7.62 (1H, s); 6.79 (1H, dd); 6.36 (1H, bs); 6.25 (1H, dd); 5.56 (1H, dd); 3.19 (2H, d); 1.98 (3H, s); 1.70 (6H, q); 1.59 (6H, s). MS: APCI(+ve) 331, 333 (M+1).

(ii) N-(1-Adamantylmethyl)-5-chloro-2-formylisonicotinamide

N-(1-Adamantylmethyl)-5-chloro-2-vinylisonicotinamide (Example 29(i)) (1.70 g) was dissolved in dichloromethane (50mL), treated with acetic acid (1mL) and cooled to -78°C under nitrogen. Ozone was bubbled through the resulting solution for 2 hours while maintaining the temperature. Nitrogen was subsequently bubbled through the solution for 10 minutes and dimethylsulfide (2mL) was added. The solution was warmed to room temperature washed with sodium bicarbonate (2x10mL) and brine (30mL); the organics were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was

10

15

20

purified by chromatography on silica gel eluting with ethyl acetate: dichloromethane (1:20) to afford the sub-titled compound (1.13 g).

¹H NMR (300MHz, CDCl₃) δ 10.06 (1H, s); 8.81 (1H, s); 8.15 (1H, s); 6.20 (1H, bs); 3.17 (2H, d); 2.02 (3H, s); 1.70 (6H, q); 1.58 (6H, s).

MS: APCI(+ve) 333, 335 (M+1).

(iii) N-(1-Adamantylmethyl)-5-chloro-2-({[3-(methylamino)propyl]amino}methyl)isonicotinamide dihydrochloride

N-(1-Adamantylmethyl)-5-chloro-2-formylisonicotinamide (Example 29(ii)) (0.2 g) was dissolved in methanol (10 mL) and tert-butyl 3-aminopropyl(methyl)carbamate, (0.39 g) added along with acetic acid (0.2 mL). The mixture was stirred for 15 minutes at ambient temperature and then sodium triacetoxyborohydride (0.25 g) was added and the reaction stirred for 20 hours, concentrated and the residue partitioned between 2M aqueous hydrochloric acid solution (10 mL) and ethyl acetate (10 mL). The layers were separated and the organic phase re-extracted with 2N hydrochloric acid (2 x 10 mL). The combined aqueous extracts were basified with 5M aqueous ammonium hydroxide solution, extracted into ethyl acetate (2 x 25 mL) and the combined extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 2 hours to give the deprotected material. The residue was recrystallised from dichloromethane (10mL) to afford the titled compound (0.110 g).

¹H NMR (300MHz, CD₃OD) δ 8.75 (1H, s); 8.67 (1H, bt); 7.56 (1H, s); 4.48 (2H, s); 3.27 (2H, t); 3.18-3.09 (4H, m); 2.75 (3H, s); 2.25-2.15 (2H, m); 2.01 (3H, s); 1.76 (6H, q); 1.65 (6H, s).

MS: APCI(+ve) 405, 407 (M+1).

MP: 285-287°C

Example 30

N-(1-Adamantylmethyl)-5-chloro-2-[({2-[(2-

hydroxyethyl)amino]ethyl}amino)methyl]isonicotinamide dihydrochloride

- By the method outlined for Example 29 (iii) and using *tert*-butyl 2-aminoethyl(2-hydroxyethyl)carbamate, *tert*-butyl 2-{[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-chloropyridin-2-yl)methyl]amino}ethyl(2-hydroxyethyl)carbamate was afforded as an oil. The latter was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 2 hours to give the deprotected material.
- The residue was recrystallised from dichloromethane (5mL) to afford the titled compound (0.118 g) as a white solid.

¹H NMR (400MHz, CD₃OD) δ 8.76 (1H, s); 8.64 (1H, t); 7.55 (1H, s); 4.51 (2H, s); 3.85-3.83 (2H, m); 3.57-3.32 (4H, m); 3.23-3.21 (2H, m); 3.08 (2H, d); 1.99 (3H, s); 1.74 (6H, q); 1.62 (6H, s).

MS: APCI(+ve) 421, 423 (M+1).

MP: 289-292°C.

Example 31

15

N-(1-Adamantylmethyl)-5-chloro-2-({[2-(methylamino)ethyl]amino}methyl)isonicotinamide dihydrochloride

By the method outlined for Example 29 (iii) and using *tert*-butyl 2-aminoethyl(methyl)carbamate, *tert*-butyl 2-{[(4-{[(1-adamantylmethyl)amino]carbonyl}-5-.chloropyridin-2-yl)methyl]amino}ethyl(methyl)carbamate was afforded as an oil.

The latter was dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 1 mL) and was concentrated after 3 hours to give the deprotected material. Purification was by preparative reverse phase HPLC. The compound (0.058 g) was subsequently dissolved in dichloromethane and treated with dry hydrogen chloride in 1,4-dioxane (4N, 0.4 mL) and was concentrated after 10 minutes to give the desired compound as a white solid (0.062 g).

¹H NMR (400MHz, CD₃OD) δ 8.73 (1H, s); 8.66 (1H, t); 7.55 (1H, s); 4.54 (2H, s); 3.58-3.55 (2H, m); 3.50-3.47 (2H, m); 3.08 (2H, d); 2.81 (3H, s); 1.99 (3H, s); 1.74 (6H, q); 1.63 (6H, s).

MS: APCI(+ve) 391, 393 (M+1).

MP: 259-262°C.

Example 32

15

20

 $N\hbox{-}(1\hbox{-}Adamantylmethyl)\hbox{-}5\hbox{-}chloro\hbox{-}2\hbox{-}\{3\hbox{-}[(2\hbox{-}hydroxyethyl)amino]ethyl}\} is onic otinamide dihydrochloride$

N-(1-Adamantylmethyl)-5-chloro-2-vinylisonicotinamide (0.37mmolar, 125 mg) (Example 29(i)) was dissolved in a mixture of methanol (1mL), isopropanol (1mL) and acetic acid (1mL). The resulting solution was treated with 2-aminoethanol (1mL) and heated to 100°C for 18h. The solution was allowed to cool to room temperature, poured into saturated sodium bicarbonate solution (20mL) and extracted with dichloromethane (2x20mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with methanol:dichloromethane:ammonia (10:30:0.1). The isolated material was dissolved in a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.027 g).

¹H NMR (400MHz, DMSO-d₆) δ 8.95 (2H, m); 8.62 (1H, s); 8.55 (1H, t); 7.41 (1H, s); 3.68 (2H, t); 3.32 (2H, m); 3.20 (2H, m); 3.04 (2H, m); 2.95 (2H, d); 1.95 (3H, m); 1.71-1.57 (6H, m); 1.53 (6H, m).

MS: APCI(+ve) 392, 394 (M+1).

MP: 242-244°C.

Example 33

10

15

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3hydroxypropyl)amino]ethyl}isonicotinamide dihydrochloride

N-(1-Adamantylmethyl)-5-chloro-2-vinylisonicotinamide (0.37mmolar, 125 mg) (Example 29(i)) was dissolved in a mixture of methanol (1mL), isopropanol (1mL) and acetic acid (1mL). The resulting solution was treated with 3-aminopropanol (1mL) and heated to 100°C for 18h. The solution was allowed to cool to room temperature, poured into saturated sodium bicarbonate solution (20mL) and extracted with dichloromethane (2x20mL). The combined organic extracts were dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with methanol:dichloromethane:ammonia (10:30:0.1). The isolated material was dissolved in a solution of hydrogen chloride in 1,4-dioxane (1 mL of a 4M solution) and concentrated to afford the titled compound as a colorless powder (0.025 g).

¹H NMR (400MHz, DMSO-d₆) δ 8.82 (2H, m); 8.62 (1H, s); 8.54 (1H, t); 7.43 (1H, s); 3.50 (2H, t); 3.30 (2H, m); 3.17 (2H, m); 3.02 (2H, m); 2.95 (2H, d); 1.95 (3H, m); 1.78 (2H, quintet); 1.71-1.57 (6H, m); 1.53 (6H, m).

MS: APCI(+ve) 406, 408 (M+1).

MP: 240-242°C.

Example 34

10

15

20

N-(1-Adamantylmethyl)-5-chloro-2-[3-(methylamino)propyl]isonicotinamide hydrochloride

A solution of tert-butyl allyl(methyl)carbamate (0.27g) in 9-boroabicyclo[3.3.1]nonane (6.24ml of a 0.5M solution in tetrahydrofuran) was heated at reflux under nitrogen for 4 hours. The solution was cooled to 0°C and potassium phosphate (1.5ml of a 3M solution in water) was added. The mixture was stirred for 15 minutes and a solution of *N*-(1-adamantylmethyl)-2-bromo-5-chloroisonicotinamide (Example 1(ii)) (0.50g) and dichloro[1,1'-bis(diphenylphosphino)ferrocenyl]palladium (II) (0.045g) in anhydrous *N,N*-dimethylformamide (4ml) was added. The mixture was heated at 60°C under nitrogen for 3 hours, diluted with saturated brine (25 ml) and extracted into ethyl acetate (3 x 25 ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with isohexane: ethyl acetate (6:1 to 1.5:1). The isolated material (0.50g) was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated; the resultant solid was recrystallised from 1,4-dioxane/methanol and the solid collected by filtration to afford the titled compound (0.19g) as a colourless powder.

¹H NMR (400MHz, DMSO-d₆) δ 8.84 (2H, broad); 8.60 (1H, s); 8.53 (1H, t); 7.35 (1H, s); 2.95-2.82 (6H, m); 2.02 (2H, q); 1.95 (3H, s); 1.64 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 378/376 (M+1)

MP: 210-212°C

5

10

15

20

Example 35

N-(1-Adamantylmethyl)-5-bromo-2-{[(2S)-2-hydroxy-3-(methylamino)propyl]oxy}isonicotinamide

(i) N-(1-Adamantylmethyl)-5-bromo-2-methoxyisonicotinamide

n-Butyllithium (2.51ml of a 2.5M solution in hexanes) was added to diisopropylamine (0.88ml) in dry tetrahydrofuran (15ml) at –65°C. To this solution was added a solution of 5-bromo-2-methoxypyridine (0.82ml) in dry tetrahydofuran (10ml) dropwise over 30 minutes at –65°C. A solution of 1-adamantylmethylisocyanate (1g) in dry tetrahydrofuran (10ml) was then added in small portions over 30 minutes at –65°C. The reaction mixture was allowed to warm to 0°C, diluted with saturated brine (20ml) and extracted into ethyl acetate (3x20ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: acetone (19:1 to 2.5:1) to afford the sub-titled compound (1.1g) as a colourless powder.

MS: APCI(+ve) 381/379 (M+1)

5

10

15

20

(ii) N-(1-Adamantylmethyl)-5-bromo-2-hydroxyisonicotinamide

Sodium iodide (0.48g) was added to a solution of trimethylsilylchloride (0.41ml) in acetonitrile (30ml) and the mixture was stirred for 1 hour. *N*-(1-Adamantylmethyl)-5-bromo-2-methoxyisonicotinamide (0.94g) (Example 35(i)) was then added and the reaction mixture was heated at 60°C under nitrogen for 3 hours. The reaction mixture was diluted with water (150ml) and the resultant solid was collected by filtration and dried by means of ethanol/toluene azeotrope. The solid was triturated with diethyl ether and collected by filtration to afford the sub-titled compound (0.70g).

(iii) N-(1-Adamantylmethyl)-5-bromo-2-[(2S)-oxiran-2-ylmethoxy]isonicotinamide A suspension of (S)-glycidyl nosylate (0.29g), caesium carbonate (1.82g) and N-(1-adamantylmethyl)-5-bromo-2-hydroxyisonicotinamide (0.41g) (Example 35(ii)) in anhydrous N,N-dimethylformamide (6ml) was heated at 60°C under nitrogen for 2 hours. The reaction mixture was allowed to cool to room temperature, diluted with water (50ml) and extracted into ethyl acetate (3x20ml). The combined extracts were dried over anhydrous sodium sulphate, filtered and concentrated. The residue was purified by chromatography on silica gel eluting with dichloromethane: ethyl acetate (4:1 to 0:1) to afford the sub-titled compound (0.12g).

MS: APCI(+ve) 423/421 (M+1)

5

10

15

20

25

30

(iv) N-(1-Adamantylmethyl)-5-bromo-2-{[(2S)-2-hydroxy-3-(methylamino)propyl]oxy}isonicotinamide

A mixture of *N*-(1-adamantylmethyl)-5-bromo-2-[(2*S*)-oxiran-2-ylmethoxy]isonicotinamide (0.12g) (Example 35(iii)), 40% aqueous methylamine (4ml) and 1,4-dioxane (4ml) was stirred for 4 hours. The reaction mixture was concentrated and the residue was purified by chromatography on silica gel eluting with ethyl acetate: ethanol: 0.880 ammonia solution (4:1:0.1 to 1.5:1:0.1). The isolated material was dissolved in a solution of hydrogen chloride in 1,4-dioxane (10 ml of a 4M solution) and concentrated to afford the titled compound (0.039g).

¹H NMR (400MHz, DMSO-d₆) δ 8.80 (1H, broad); 8.60 (1H, broad); 8.49 (1H, t); 8.36 (1H,s); 6.83 (1H, s); 5.87 (1H,d); 4.3-4.1 (3H, m); 2.92 (2H, d); 2.57 (3H, broad triplet); 1.94 (3H, s); 1.64 (6H, q); 1.52 (6H, s).

MS: APCI(+ve) 454/452 (M+1)

Example 36

N-(1-Adamantylmethyl)-2-({3-[bis(3-hydroxypropyl)amino]propyl}amino)-3-chloroisonicotinamide dihydrochloride

(i) tert-Butyl 3-[(4-{[(1-adamantylmethyl)amino]carbonyl}-3-chloropyridin-2-yl)amino]propylcarbamate

N-(1-Adamantylmethyl)-2,3-dichloroisonicotinamide (0.4g) and tert-butyl 3-aminopropylcarbamate (0.4g) in DMSO (4ml) were heated in a sealed tube at 160C for 5hrs. Ethyl acetate was added and the solution was washed with NaHCO₃ solution, water, KHSO₄ solution and water. The solution was dried and the solvent was evaporated. The resulting oil was subjected to flash chromatography, using ethyl acetate/hexane as eluant, to give the title compound as a colourless oil (0.41g).

MS (ES+) 477, 479

5

10

15

20

25

$\label{eq:continuous} \emph{N-} (1-Adamantylmethyl)-2-[(3-aminopropyl)amino]-3-chloroisonicotinamide dihydrochloride$

tert-Butyl 3-[(4-{[(1-adamantylmethyl)amino]carbonyl}-3-chloropyridin-2-yl)amino]propylcarbamate (0.41g) (Example 36(i)) in methanol (15ml) was treated with a solution of HCl in 1,4-dioxane (4ml) and the mixture was stirred at room temperature for 18hrs. The solution was evaporated. Methanol was added and the solution was evaporated to give the title compound as a pale yellow solid.

MS (ES+) 377, 379

(iii) N-(1-Adamantylmethyl)-2-({3-[bis(3-{[tert-butyl(dimethyl)silyl]oxy}propyl)amino]propyl}amino)-3-chloroisonicotinamide

To N-(1-adamantylmethyl)-2-[(3-aminopropyl)amino]-3-chloroisonicotinamide (0.32g)

(Example 36(ii)) and 3-{[tert-butyl(dimethyl)silyl]oxy}propanal (0.16g) in

dichloromethane (15ml) was added sodium triacetoxyborohydride (0.18g). The mixture was stirred for 18hrs at room temperature. NaHCO₃ solution was added and the product was extracted into dichloromethane. The solution was dried and the solvent was evaporated. Flash chromatography, using NH₃/MeOH/CH₂Cl₂ as eluent, gave the title compound as a colourless oil.

(iv) N-(1-Adamantylmethyl)-2-({3-[bis(3-hydroxypropyl)amino]propyl}amino)-3-chloroisonicotinamide dihydrochloride

N-(1-adamantylmethyl)-2-({3-[bis(3-{[tert-butyl(dimethyl)silyl]oxy}propyl)amino]-propyl}amino)3-chloroisonicotinamide (Example 36(iii)) in methanol (5ml) was treated with HCl in 1,4-dioxane (3ml). The mixture was stirred at room temperature for 3hrs. The solvent was evaporated. The product was purified by reverse phase HPLC, using NH₃/H₂O/CH₃CN as eluant. The resulting oil in methanol was treated with ethereal HCl and the solvent was evaporated to yield the title compound as a white solid (0.14g).

15

10

5

¹H NMR (400MHz, DMSO-d₆) δ 8.68 (1H, t), 8.10 (1H, d), 6.86 (1H, d), 3.65-3.74 (6H, m), 3.30-3.36 (6H, m), 3.075 (2H, d), 2.12-2.22 (2H, m), 1.93-2.02 (7H, m), 1.77 (3H, d), 1.69 (3H, d), 1.62 (6H, s).

MS (APCI+) 493, 495 [M+H]⁺

20

25

Pharmacological Analysis

Certain compounds such as benzoylbenzoyl adenosine triphosphate (bbATP) are known to be agonists of the $P2X_7$ receptor, effecting the formation of pores in the plasma membrane (Drug Development Research (1996), 37(3), p.126). Consequently, when the receptor is activated using bbATP in the presence of ethidium bromide (a fluorescent DNA probe), an increase in the fluorescence of intracellular DNA-bound ethidium bromide is observed. The increase in fluorescence can be used as a measure of $P2X_7$ receptor activation and therefore to quantify the effect of a compound on the $P2X_7$ receptor.

WO 03/041707

10

15

84

PCT/SE02/02057

In this manner, each of the title compounds of the Examples was tested for antagonist activity at the $P2X_7$ receptor. Thus, the test was performed in 96-well flat bottomed microtitre plates, the wells being filled with 250 μ l of test solution comprising 200 μ l of a suspension of THP-1 cells (2.5 x 10^6 cells/ml) containing 10^{-4} M ethidium bromide, 25 μ l of a high potassium buffer solution containing 10^{-5} M bbATP, and 25 μ l of the high potassium buffer solution containing 3 x 10^{-5} M test compound. The plate was covered with a plastics sheet and incubated at 37 °C for one hour. The plate was then read in a Perkin-Elmer fluorescent plate reader, excitation 520 nm, emission 595 nm, slit widths: Ex 15 nm, Em 20 nm. For the purposes of comparison, bbATP (a P2X7 receptor agonist) and pyridoxal 5-phosphate (a P2X7 receptor antagonist) were used separately in the test as controls. From the readings obtained, a pIC $_{50}$ figure was calculated for each test compound, this figure being the negative logarithm of the concentration of test compound necessary to reduce the bbATP agonist activity by 50%. Each of the compounds of the Examples demonstrated antagonist activity, having a pIC $_{50}$ figure > 4.50. For example, the compounds of Example 12 and Example 26 had pIC $_{50}$ values of 7.1 and 7.8 respectively.

CLAIMS

1. A compound of formula

$$(CH_2)_m$$
 A - Ar
$$R^1$$

$$R^1$$
(I)

wherein m represents 1, 2 or 3; each R¹ independently represents a hydrogen or halogen atom; A represents C(O)NH or NHC(O);

Ar represents a group

$$R^3$$
 R^4
 R^3
 R^4
 R^4
 R^4
 R^2
 R^2
 R^2
 R^2
 R^2
 R^3
 R^4
 R^4
 R^2
 R^3
 R^4
 R^4
 R^2
 R^3
 R^4
 R^4
 R^2
 R^3
 R^4

10

15

one of R^2 and R^3 represents halogen, nitro, amino, hydroxyl, or a group selected from (i) C_1 - C_6 alkyl optionally substituted by at least one halogen atom, (ii) C_3 - C_8 cycloalkyl, (iii) C_1 - C_6 alkoxy optionally substituted by at least one halogen atom, and (iv) C_3 - C_8 cycloalkyloxy, and the other of R^2 and R^3 represents a hydrogen or halogen atom;

R⁴ represents a group

X represents an oxygen or sulphur atom or a group >N-R⁸; n is 0 or 1;

15

20

 R^5 represents a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy; R^6 and R^7 each independently represent a hydrogen atom, C_1 - C_6 alkyl (optionally substituted by at least one substituent selected from hydroxyl, halogen, C_1 - C_6 alkoxy, and (di)- C_1 - C_4 alkylamino (itself optionally substituted by at least one hydroxyl group)), or C_3 - C_8 cycloalkyl (optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy); and R^8 represents a hydrogen atom or a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy; with the provisos that:

- (a) when n is 0, then A is NHC(O), and
- (b) when n is 1, X represents oxygen and A is C(O)NH, then R^6 and R^7 do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C_1 - C_6 alkyl, or when one of R^6 and R^7 represents a hydrogen atom, then the other of R^6 and R^7 does not represent an unsubstituted C_1 - C_6 alkyl; and
- (c) when n is 1, X is oxygen, sulphur or >NH and A is NHC(O), then R⁶ and R⁷ do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C₁-C₆ alkyl, or when one of R⁶ and R⁷ represents a hydrogen atom, then the other of R⁶ and R⁷ does not represent an unsubstituted C₁-C₆ alkyl or -CH₂CH₂OH;

or a pharmaceutically acceptable salt or solvate thereof.

A compound of formula (I) according to claim 1, wherein
 m represents 1, 2 or 3;
 each R¹ independently represents a hydrogen or halogen atom;
 A represents C(O)NH or NHC(O);
 Ar represents a group

$$R^3$$
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4
 R^2
 R^2
 R^2
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^2
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^2
 R^3
 R^4
 R^4

one of R^2 and R^3 represents halogen, nitro, amino, hydroxyl, or a group selected from (i) C_1 - C_6 alkyl optionally substituted by at least one halogen atom,

(ii) C_3 - C_8 cycloalkyl, (iii) C_1 - C_6 alkoxy optionally substituted by at least one halogen atom, and (iv) C_3 - C_8 cycloalkyloxy, and the other of R^2 and R^3 represents a hydrogen or halogen atom;

R⁴ represents a group

$$\begin{array}{c|c}
X \\
n \\
R^5
\end{array}$$

$$\begin{array}{c}
R^6 \\
1 \\
N \\
R^7
\end{array}$$

$$(V);$$

10 X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

15

20

 R^5 represents a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy; and R^6 , R^7 and R^8 each independently represent a hydrogen atom or a C_1 - C_5 alkyl group which may be optionally substituted by at least one substituent selected from hydroxyl, halogen and C_1 - C_6 alkoxy;

with the provisos that:

- (d) when n is 0, then A is NHC(O), and
- (e) when n is 1, X represents oxygen and A is C(O)NH, then R⁶ and R⁷ do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C₁-C₅ alkyl, or when one of R⁶ and R⁷ represents a hydrogen atom, then the other of R⁶ and R⁷ does not represent an unsubstituted C₁-C₅ alkyl, and

(f) when n is 1, X is oxygen, sulphur or >NH and A is NHC(O), then R^6 and R^7 do not both simultaneously represent a hydrogen atom or do not both simultaneously represent an unsubstituted C_1 - C_5 alkyl, or when one of R^6 and R^7 represents a hydrogen atom, then the other of R^6 and R^7 does not represent an unsubstituted C_1 - C_5 alkyl or -CH₂CH₂OH;

or a pharmaceutically acceptable salt or solvate thereof.

- 3. A compound according to claim 1 or claim 2, wherein m is 1.
- 4. A compound according to any one of claims 1 to 3, wherein A represents NHC(O).
 - 5. A compound according to any one of claims 1 to 4, wherein Ar represents a group of formula (II) or (III).
- 6. A compound according to claim 5, wherein Ar represents a group of formula (II).
 - 7. A compound according to any one of claims 1 to 6, wherein one of R^2 and R^3 represents a halogen atom and the other of R^2 and R^3 represents a hydrogen atom.
- 8. A compound according to any one of claims 1 to 7, wherein n is 0.
 - 9. A compound according to claim 1, wherein m represents 1;
 each R¹ represents a hydrogen atom;
- 25 A represents NHC(O);

 Ar represents a group

$$R^3$$
 R^4
 R^4
 R^3
 R^4
 R^4

one of R^2 and R^3 represents a halogen atom, and the other of R^2 and R^3 represents a hydrogen atom;

R⁴ represents a group

$$\begin{array}{c|c}
X \\
n \\
R^5
\end{array}$$

$$\begin{array}{c}
R^6 \\
1 \\
N \\
R^7
\end{array}$$

$$(V);$$

X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

10

15

 R^5 represents a C_1 - C_3 alkyl group optionally substituted by at least one hydroxyl group; R^6 and R^7 each independently represent a hydrogen atom, C_1 - C_5 alkyl (optionally substituted by one or two substituents independently selected from hydroxyl and (di)- C_1 - C_2 alkylamino (itself optionally substituted by at least one hydroxyl group)), or C_6 cycloalkyl (substituted by at least one hydroxyl group); R^8 represents a hydrogen atom or a C_2 alkyl group substituted by at least one hydroxyl group.

10. A compound according to claim 1 or claim 2, wherein m represents 1; each R¹ represents a hydrogen atom;

20 A represents NHC(O);

Ar represents a group

$$R^3$$
 R^4
 R^4
 R^3
 R^4
 R^4

one of R^2 and R^3 represents a halogen atom, and the other of R^2 and R^3 represents a hydrogen atom;

R⁴ represents a group

$$\begin{array}{c|c}
X \\
n \\
R^5
\end{array}$$

$$\begin{array}{c}
R^6 \\
1 \\
N \\
R^7
\end{array}$$

$$(V):$$

X represents an oxygen or sulphur atom or a group >N-R⁸;

n is 0 or 1;

15

20

 R^5 represents a C_2 - C_3 alkyl group optionally substituted by at least one hydroxyl group; R^6 and R^7 each independently represent a hydrogen atom or a C_1 - C_5 alkyl group optionally substituted by one or two hydroxyl groups; R^8 represents a hydrogen atom or a C_2 alkyl group substituted by at least one hydroxyl group.

11. A compound being selected from any one of:

 $\label{eq:N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)-amino]propyl} is onicotina mide,} \\$

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxypropyl)amino]propyl}-isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-2-chloro-5-{3-[(3-hydroxypropyl)amino]propyl}nicotinamide,

N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1S)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide,

10

15

25

- N-(1-Adamantylmethyl)-2-chloro-5-(3-{[(1R)-2-hydroxy-1-methylethyl]amino}propyl)nicotinamide,
- *N*-(1-Adamantylmethyl)-2-(3-aminopropyl)-5-chloroisonicotinamide hydrochloride,
- *N*-(1-Adamantylmethyl)-5-chloro-2-[3-(ethylamino)propyl]isonicotinamide hydrochloride,
- N-(1-Adamantylmethyl)-5-chloro-2-({2-[(3-hydroxypropyl)amino]-ethyl}thio)isonicotinamide hydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-2-hydroxy-1-
- methylethyl]amino}propyl)isonicotinamide, dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1S)-2-hydroxy-1-
 - methylethyl]amino}propyl)isonicotinamide, dihydrochloride,
 - *N*-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxyethyl)amino]propyl}-isonicotinamide hydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-{2-[(3-
 - hydroxypropyl)amino]ethoxy}isonicotinamide, hydrochloride
 - N-(1-Adamantylmethyl)-5-chloro-2-({2-[(2-hydroxyethyl)amino]ethyl}-amino)isonicotinamide dihydrochloride,
- N-(1-Adamantylmethyl)-5-chloro-2-[3-(isopropylamino)propyl]isonicotinamide dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-(3- $\{[(2S)-2-$
 - hydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-(3- $\{[(2R)$ -2,3-
 - dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(2S)-2,3-
 - dihydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-{3-[(4-
 - methylcyclohexyl)amino|propyl}isonicotinamide dihydrochloride,
 - N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-hydroxy-2-
- methylpropyl)amino]propyl}isonicotinamide dihydrochloride,

10

15

20

25

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[(1R)-1-(hydroxymethyl)-2-

methylpropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(methylamino)ethyl]amino)propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[3-

(methylamino)propyl]amino}propyl)isonicotinamide bis(trifluoroacetate),

N-(1-Adamantylmethyl)-5-chloro-2-[3-({2-[(2-

hydroxyethyl)amino]ethyl}amino)propyl]isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-

(diethylamino)ethyl]amino}propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3-{[2-hydroxy-1-

(hydroxymethyl)ethyl]amino}propyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)(methyl)amino]propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-hydroxy-2,2-

dimethylpropyl)amino|propyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-(3- $\{[(2R)$ -2-

hydroxypropyl]amino}propyl)isonicotinamide, dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-({[3-

(methylamino)propyl]amino}methyl)isonicotinamide dihydrochloride,

 $N-(1-Adamantylmethyl)-5-chloro-2-[({2-[(2-$

hydroxyethyl)amino]ethyl}amino)methyl]isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-({[2-

(methylamino)ethyl]amino}methyl)isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(2-

hydroxyethyl)amino]ethyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-{3-[(3-

hydroxypropyl)amino]ethyl}isonicotinamide dihydrochloride,

N-(1-Adamantylmethyl)-5-chloro-2-[3-(methylamino)propyl]isonicotinamide

30 hydrochloride,

N-(1-Adamantylmethyl)-5-bromo-2-{[(2S)-2-hydroxy-3-(methylamino)propyl]oxy}isonicotinamide,

N-(1-Adamantylmethyl)-2-({3-[bis(3-hydroxypropyl)amino]propyl}amino)-3-chloroisonicotinamide dihydrochloride,

- 5 and all pharmaceutically acceptable salts and solvates thereof.
 - 12. A process for the preparation of a compound according to claim 1, which comprises:
 - (i) when n is 0 and R⁵ represents CH₂, reacting a compound of formula

 R^3 R^{10} R^3 R^{10} R^3 R^4 R^4

wherein R^{10} represents -C(O)H or $-CH_2L^1$, L^1 represents a leaving group and m, R^1 , R^2 and R^3 are as defined in formula (I), or a compound of formula

15

10

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{4}
 R^{4

wherein R^{11} represents -C(O)H or $-CH_2L^2$, L^2 represents a leaving group and m, R^1 , R^2 and R^3 are as defined in formula (I), or

20

a compound of formula

$$R^{1}$$
 R^{1}
 R^{1

wherein R¹² represents -C(O)H or -CH₂L³, L³ represents a leaving group and m, R¹, R² and R³ are as defined in formula (I),

- with a compound of formula (XIII), HNR⁶R⁷, wherein R⁶ and R⁷ are as defined in formula (I), under reductive amination conditions when R¹⁰, R¹¹ or R¹² represents -C(O)H or in the presence of a suitable base when R¹⁰, R¹¹ or R¹² represents -CH₂L¹, -CH₂L² or -CH₂L³; or
- (ii) when n is 0, R⁵ is (CH₂)₂ and R⁶ and R⁷ are both hydrogen, reacting a compound of formula (X) as defined in (i) above in which R¹⁰ represents -CH₂L¹, or a compound of formula (XI) as defined in (i) above in which R¹¹ represents -CH₂L², or a compound of formula (XII) as defined in (i) above in which R¹² represents -CH₂L³, with an alkali metal cyanide, followed by a hydrogenation reaction; or
 - (iii) when n is 0, R^5 is $(CH_2)_2$ and at least one of R^6 and R^7 is other than hydrogen, reacting a compound as prepared in (ii) above with at least one compound of formula (XIV), $R^{13}C(O)H$, wherein R^{13} represents an optionally substituted C_1 - C_6 alkyl or C_3 - C_8 cycloalkyl group as defined for R^6 and R^7 in formula (I), under reductive amination conditions; or
 - (iv) when n is 0 and R⁵ represents a C₃-C₅ alkyl group optionally substituted as defined in formula (I), reacting a compound of formula

PCT/SE02/02057

$$R^{1}$$
 R^{1}
 R^{1}

wherein R¹⁴ represents a leaving group and m, R¹, R² and R³ are as defined in formula (I), or

a compound of formula

5

10

$$R^{1}$$
 R^{15}
 R^{15}
 R^{1}
 R^{1}

wherein R^{15} represents a leaving group and m, A, R^1 , R^2 and R^3 are as defined in formula (I), or

a compound of formula

$$R^{3}$$
 R^{16}
 R^{16}
 R^{1}
 $R^$

wherein R¹⁶ represents a leaving group and m, R¹, R² and R³ are as defined in formula (I), with a compound of formula

15

$$R^{5'}$$
 R^6 R^7 (XVIII)

wherein R^5 represents a C_1 - C_3 alkyl group optionally substituted as defined for R^5 in formula (I) and R^6 and R^7 are as defined in formula (I), followed by a hydrogenation reaction; or

(v) when n is 0 and R⁵ represents a C₃-C₅ alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above, with a compound of formula

wherein R⁵ is as defined in formula (XVIII) in (iv) above, followed by a hydrogenation reaction and then an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions; or

(vi) when n is 1 and X is oxygen or >N-R⁸, reacting a compound of formula

$$R^{3}$$
 R^{17}
 R^{17}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 $R^$

wherein R¹⁷ represents a leaving group and m, A, R¹, R² and R³ are as defined in formula

20 (I), or
a compound of formula

$$R^3$$
 R^{18}
 R^1
 R^2
 R^1
 R^1
 R^2
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

wherein R^{18} represents a leaving group and m, A, R^1 , R^2 and R^3 are as defined in formula (I), or

a compound of formula

10

15

$$R^{3}$$
 R^{19}
 R^{19}
 R^{1}
 $R^$

wherein R^{19} represents a leaving group and m, A, R^1 , R^2 and R^3 are as defined in formula (I), with a compound of formula

wherein X' represents oxygen or $>N-R^8$ and R^5 , R^6 , R^7 and R^8 are as defined in formula (I); or

(vii) when A is NHC(O), n is 1 and X is sulphur, reacting a compound of formula

10

wherein, in each of formulae (XXIV), (XXV) and (XXVI), L^4 represents a leaving group and R^2 , R^3 , R^5 , R^6 and R^7 are as defined in formula (I), with a compound of formula

$$R^{1}$$
 R^{1}
 R^{1

wherein m and R1 are as defined in formula (I); or

(viii) when A is C(O)NH, n is 1 and X is sulphur, reacting a compound of formula

wherein, in each of formulae (XXVIII), (XXIX) and (XXX), R², R³, R⁵, R⁶ and R⁷ are as defined in formula (I), with a compound of formula

$$R^{1}$$
 R^{1}
 R^{1}

- wherein L⁵ represents a leaving group and m and R¹ are as defined in formula (I); or
 - (ix) when n is 0 and R^5 represents a C_2 - C_5 alkyl group substituted as defined in formula (I), reacting a compound of formula

$$R^3$$
 R^3
 R^3
 R^2
 R^1
 R^1
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

or a compound of formula

10

$$R^{3}$$
 $(CH_{2})_{m}$
 NH
 O
 R^{2}
 R^{1}
 $(XXXIII)$

15

20

or a compound of formula

$$R^{1}$$
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}

wherein, in each of formulae (XXXII), (XXXIII) and (XXXIV), Y represents a bond or a C_1 - C_3 alkyl and m, R^1 , R^2 and R^3 are as defined in formula (I),

- with a compound of formula (XIII) as defined in (i) above, and optionally thereafter reacting with a C₁-C₆ alkylating agent or with a halogenating agent; or
 - (x) when n is 0 and R^5 represents a C_3 - C_5 alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above, with a pre-treated compound of formula

$$\begin{array}{ccc}
 & R^{5'} & R^6 \\
 & R^7 & (XXXV)
\end{array}$$

in which L^6 represents a hydrogen atom and R^5 ' represents a C_1 - C_3 alkyl group optionally substituted as defined for R^5 in formula (I) and R^6 and R^7 are as defined in formula (I), wherein the compound of formula (XXXV) is pre-treated with a hydroborating agent; or

(xi) when n is 0 and R^5 represents a C_3 - C_5 alkyl group optionally substituted as defined in formula (I), reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above in the presence of a suitable catalyst, with a pre-treated compound of formula

$$R^{5'}_{L^7}O^{P}$$
 (XXXVIII)

10

15

20

in which L^7 represents a hydrogen atom and R^5 ' represents a C_1 - C_3 alkyl group optionally substituted as defined for R^5 in formula (I) and P is a suitable protecting group, wherein the compound of formula (XXXVIII) is pre-treated with a hydroborating agent, followed by removal of the protecting group, P, in a deprotection reaction, then by an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions; or

(xii) when n is 0 and R^5 is $(CH_2)_2$, reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above with a compound of formula

$$\mathbb{R}^{20}$$
 (XXXIX)

wherein R²⁰ represents a suitable leaving group, in the presence of a suitable catalyst, followed by reaction with a compound of formula (XIII) as defined in (i) above; or

(xiii) when n is 0 and R⁵ is CH₂, reacting a compound of formula (XV), (XVI) or (XVII) as defined in (iv) above with a compound of formula (XXXIX) as defined in (xii) above, followed by an oxidation reaction and then by reaction with a compound of formula (XIII) as defined in (i) above under reductive amination conditions;

and optionally after (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix), (x), (xi), (xii) or (xiii) carrying out one or more of the following:

- converting the compound obtained to a further compound according to claim 1
- forming a pharmaceutically acceptable salt or solvate of the compound.
- 13. An intermediate compound of formula

$$R^{30}$$
 R^{30}
 R

wherein T represents $-C \equiv C$ - or $-CH_2CH_2$ -; R³⁰ represents -CHO, $-CH_2OP^1$ or a group of formula

$$-CH_2 \underset{P^2}{\searrow} R^{31} \underset{O}{\nearrow} P^3$$

P¹ represents a hydrogen atom or a suitable protecting group;

P² represents a suitable protecting group;

P³ represents a suitable protecting group;

R³¹ represents a C₁-C₅ alkyl group; and

m, A, R^1 , R^2 and R^3 are as defined in any one of claims 1 to 10.

14. An intermediate compound according to claim 13, wherein:

m represents 1;

10

15

20

A represents NHC(O);

each R¹ represents a hydrogen atom;

R² represents a halogen atom; and

R³ represents a hydrogen atom.

15. A pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11 in association with a pharmaceutically acceptable adjuvant, diluent or carrier.

WO 03/041707

5

20

- 16. A process for the preparation of a pharmaceutical composition as claimed in claim 15 which comprises mixing a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as defined in any one of claims 1 to 11 with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 17. A compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11 for use in therapy.
- 18. Use of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11 in the manufacture of a medicament for use in the treatment of rheumatoid arthritis.
- 19. Use of a compound of formula (I) or a pharmaceutically acceptable salt or solvate
 thereof as claimed in any one of claims 1 to 11 in the manufacture of a medicament for use
 in the treatment of an obstructive airways disease.
 - 20. Use according to claim 19, wherein the obstructive airways disease is asthma or chronic obstructive pulmonary disease.
 - 21. Use of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11 in the manufacture of a medicament for use in the treatment of osteoarthritis.
- 22. A method of treating rheumatoid arthritis or osteoarthritis which comprises administering to a patient a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11.

WO 03/041707 PCT/SE02/02057

104

23. A method of treating an obstructive airways disease which comprises administering to a patient a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt or solvate thereof as claimed in any one of claims 1 to 11.

5

International application No. PCT/SE 02/02057

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: A61K 31/44, C07D 211/00 // C07C 53/138, C07C 57/28 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C07C, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No		
X	DE 1943404 A (LILLY INDUSTRIES LTD.), 17 December 1970 (17.12.70), claims 1-11	1-21		
				
A	US 4751292 A (FOX), 14 June 1988 (14.06.88), structure 1	1-21		
A	EP 0867436 A1 (ADIR ET COMPAGNIE), 30 Sept 1998 (30.09.98), page 14, claim 1	1-21		
	it			
A	EP 0002065 A1 (TEVA PHARMACEUTICAL INDUSTRIES LIMITED), 30 May 1979 (30.05.79), claims 1-42	1-21		
	· •••			
X Furthe	er documents are listed in the continuation of Box C. X See patent family annex	x.		

"E" "L"	filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means		document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
l			document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family		
Date	Date of the actual completion of the international search		Date of mailing of the international search report		
4 1	March 2003		0 5 -03- 2003		
	e and mailing address of the ISA/ dish Patent Office	Authorized officer			
Box	5055, S-102 42 STOCKHOLM imile No. + 46 8 666 02 86	FERNADO FARIETA/BS Telephone No. +46 8 782 25 00			
Form 1	PCT/ISAMIN (second sheet) (Inly 1998)				

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.
PCT/SE 02/02057

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No	
A	US 3471491 A (VENKATACHALA L. ET AL), 7 October 1969 (07.10.69)	1-21	
A	BE 650919 A (E.I. DU PONT DE NEMOURS AND COMPANY), 23 July 1964 (23.07.64), claims 1-30	1-21	
1			
	¥		
	·		

Internal d'application No. PCT/SE02/02057

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inter	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: 22-23 because they relate to subject matter not required to be searched by this Authority, namely:
	see next sheet
.2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	•••
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
K	No protest accompanied the payment of additional search fees.

Internat application No. PCT/SE02/02057

Claims 22-23 relate to methods of treatment of the human or animal body by surgery or by therapy/diagnostic methods practised on the human or animal body/Rule. 39.1.(iv)). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.

Form PCT/ISA/210 (extra sheet) (July1998)

International application No.,

PCT/SE 02/02057

Patent document cited in search report			Publication date	Pa	tent family member(s)	Publication date
DE	1943404	A	17/12/70	AT BE CH CH CH DK FR GB IE JP JP JP NL SE US	307380 B 737975 A 538442 A 551365 A 553149 A 131721 B,C 2016468 A,B 1274652 A 33929 B,L 32892 A 49039256 B 49039257 B 50010856 B 6913046 A 364037 B 3929888 A 4027035 A	25/05/73 26/02/70 30/06/73 15/07/74 30/08/74 25/08/75 08/05/70 17/05/72 11/12/74 25/04/75 24/10/74 24/10/74 24/04/75 03/03/70 11/02/74 30/12/75 31/05/77
US	4751292	Α	14/06/88	NONE		
EP	0867436	A1	30/ 0 9/98	AU AU BR CA CN FR JP NO NZ PL US ZA	731018 B 5967798 A 9803295 A 2232116 A 1090628 B 1197072 A 2761358 A,B 10279578 A 981415 A 330041 A 325575 A 5965575 A 9802607 A	22/03/01 01/10/98 21/03/00 27/09/98 11/09/02 28/10/98 02/10/98 20/10/98 28/09/98 28/01/99 28/09/98 12/10/99 30/09/98
EP	0002065	A1	30/05/79	AU CA IL IT IT JP US ZA	4184278 A 1120471 A 53441 D 1101424 B 7830075 D 54081254 A 4202892 A 7806548 A	31/05/79 23/03/82 00/00/00 28/09/85 00/00/00 28/06/79 13/05/80 31/10/79
US	3471491	Α	07/10/69	NONE		

International application No.

PCT/SE 02/02057

Patent document cited in search report			Publication date	Patent family Publication member(s) date		
BE	650919	Α	23/07/64	AT	272301 B	10/07/69
				ΤA	279581 B	10/03/70
				BR	6460975 D	00/00/00
				CH	476673 A	15/08/69
				CH	479535 A	15/10/69
				DE	1468769 A,B	29/06 /72
				DE	1792295 A	27/05/71
				DE	1793207 A	30/03/72
				DE	1793208 A	06/04/72
				DK	112027 B	04/11/68
				DK	114199 B	09/06/69
				DK	114769 B	04/08/69
				FI.	42211 B	02/03/70
				FI	42322 B	31/03/70
				FI	42548 B	01/06/70
				FR	1572956 A	04/07/69
				GB	1069563 A	17/05/67
				IL	21753 A	25/01/68
				NL	6408505 A	25/01/65
			•	NL	7102097 A	25/05/71
				SE	320363 B	09/02/70
				SE	321924 B	23/03/70
				SE	330693 B	30/11/70
				US	3352912 A	14/11/67
			4	ΑT	269835 B	10/04/69
				AT	269836 B	10/04/69