Automates à piles & grammaires

Feuille de travaux dirigés nº9

1. Donnez une grammaire algébrique pour engendrer le langage accepté par l'automate à pile M:

$$M = [Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma = \{X, Z\}, q_0, \emptyset, Z, \delta]$$

dont la fonction de transition est donnée par la table :

état	lecture	pile	nouvel état	empiler
q_0	1	Z	q_0	XZ
q_0	1	X	q_0	XX
q_0	0	X	q_1	X
q_0	arepsilon	Z	q_0	arepsilon
q_1	1	X	q_1	arepsilon
q_1	0	Z	q_0	Z

2. Sur l'alphabet $\Sigma = \{1, 2, +, =\}$, on considère l'ensemble des mots représentant une égalité numérique (vraie!). Par exemple :

- 1+1=2
- 1+2=1+2
- 1+2+1=2+2

Dans le TD précédent, on a construit un automate à pile qui accepte ce langage. Retrouvez la grammaire à partir de cet l'automate à pile suivant : $M = [\{q_0, q_1, q_2, q_3\}, \{1, 2, +, =\}, \{Z, X, Y\}, q_0, \emptyset, Z, \delta]$

				[(10/1	11 12 / 10	,,,,,	/ · / J /	(/	/ J /10/-/	/]
état	lecture	pile	nouvel état	empiler		état	lecture	pile	nouvel état	empiler
$\overline{q_0}$	1	Z	q_0	YZ		q_1	1	X	q_3	_
q_0	2	Z	q_0	YXZ		q_3	arepsilon	X	q_1	Y
q_0	+	Y	q_0	X		q_1	2	X	q_2	_
q_0	1	X	q_0	YX		q_2	arepsilon	X	q_3	_
q_0	2	X	q_0	YXX		q_1	+	Y	q_1	X
q_0	=	Y	q_1	X		q_3	ε	Z	q_3	_

3. Sur l'alphabet $\Sigma = \{1, 2, +, =\}$, on considère encore l'ensemble des mots représentant une égalité numérique (vraie!).

Dans le TD précédent, on a construit un deuxième automate à pile qui accepte ce langage. Retrouvez la grammaire à partir de ce deuxième automate à pile suivant : $M = [\{q_0, q_1, q_2\}, \{1, 2, +, =\}, \{Z, X, Y\}, q_0, \emptyset, Z, \delta]$

<u> </u>				-					, , , , , ,
état	lecture	pile	nouvel état	empiler	état	lecture	pile	nouvel état	empiler
q_0	1	Z	q_0	YZ	q_0	=	Y	q_1	_
q_0	2	Z	q_0	YXZ	q_1	1	X	q_2	X
q_0	+	Y	q_0	X	q_1	2	X	q_2	_
q_0	1	X	q_0	YX	q_2	+	X	q_1	_
q_0	2	X	q_0	YXX	q_2	ε	Z	q_2	_

- **4.** Optionnel Dans ce qui suit nous utiliserons l'alphabet ternaire $\Sigma = \{0, 1, 2\}$. Le but de cet exercice est de trouver une grammaire et un automate à pile simple pour le langage des écritures en base 3 des nombres pairs et dont les écritures en base 3 contiennent autant de 0 que de 1 (pour éviter tout malentendu, on considère qu'il n'y a pas de 0 en tête).
- a) Construire un automate à pile ayant deux états qui reconnaît le langage

$$L = \{ w \in \Sigma^* t.q. |w|_0 = |w|_1 \text{ et } w \notin 0\Sigma^* \}$$

par état final.

- b) Construire un automate fini, qui reconnaît les mots ternaires représentant des nombres pairs.
- c) Construire l'automate, produit de l'automate à pile et de l'automate fini.
- d) Transformer l'automate obtenu en un automate qui accepte par pile vide.
- e) En utilisant l'algorithme du cours, construire la grammaire qui engendre le langage reconnu par l'automate à pile obtenu.
- f) Nettoyer la grammaire ainsi obtenue.