Optimal Inference in Large-Scale Problems

Daniel Yekutieli and Asaf Weinstein

Statistical Learning Seminars April 2021

Yekutieli & Weinstein 1 / 23

Plan

- 1. High-dimensional logistic regression example
- 2. Background
- 3. Oracle-based optimal inference
 - Bayesian perspective
 - Frequentist perspective
- 4. Implementation by hierarchical Bayes modelling
- 5. Simulation results
- 6. Discussion

Yekutieli & Weinstein 2/23

Illustrative example

High dimensional logistic regression example

- Fixed parameter vetor, $\vec{\beta} = (\beta_1, \dots, \beta_m)$
- Fixed X matrix, $X_{n \times m}$ generated by sampling iid N(0, 1/n) entries
- Response vector, $\vec{Y} = (Y_1, \dots, Y_n)$ with $Y_i \sim Bernoulli(q_i)$ for $q_i = \exp(\mu_i)/(1 + \exp(\mu_i))$ and $\vec{\mu} = \mathbf{X}\vec{\beta}$
- Candes and Sur (2019): m = 800 and n = 4000

Background

- Regularized estimation methods that correspond to eliciting a shrinkage prior distribution to model parameters (Ridge Regression; LASSO; Spike and Slab; ABSLOPE)
- Empirical Bayes (Robbins, 1956; James and Stein, 1961; Brown, 1966; Efron et al., 2001; Sun and Cai, 2007; Brown and Greenshtein, 2009; Efron, 2011)
- Compound decision approach (Robbins, 1951; Zhang, 2003; Weinstein et al., 2018): for sequence model likelihood and compound loss, Bayes rules with respect to the empirical distribution of the parameter vector minimize Risk for any fixed parameter vector.
- Our hierarchical Bayes modelling uses a finite Polya tree on dyadic partitions to define random distributions as shown in Ferguson (1974).

Bayesian perspective

- Prior distribution $\vec{\beta} \sim \pi(\vec{\beta})$
- Conditioning on $\vec{Y} = \vec{y}$ yields the posterior distribution

$$\pi(\vec{\beta}|\vec{y}) \propto \pi(\vec{\theta}) f(\vec{y}|\vec{\theta})$$

• For loss function $L(\hat{\beta}, \vec{\beta})$ the Bayes rule is given by

$$\hat{\beta}^{\textit{Bayes}}(\vec{\mathbf{y}}) = \operatorname*{argmin}_{\hat{\beta}(\vec{\mathbf{y}})} E_{\vec{\beta} \sim \pi(\vec{\beta}|\vec{\mathbf{y}})} L(\hat{\beta}(\vec{\mathbf{y}}), \vec{\beta}).$$

Per definition, $\hat{\beta}^{Bayes}(\vec{y})$ minimizes the average risk

$$r(\hat{\beta}) = E_{\vec{y} \sim f(\vec{y})} E_{\vec{\beta} \sim \pi(\vec{\beta}|\vec{y})} L(\hat{\beta}(\vec{y}), \vec{\beta})$$
 (1)

Oracle inferential framework

Suppose we have extra information – the parameter order statistic:

$$\vec{\beta}^{ord} = (\beta_{(1)} \le \dots \le \beta_{(m)}) \iff \text{knowing empirical dist. of } \vec{\beta}$$

- \Rightarrow Conditioning on $\vec{Y} = \vec{y}$ and on $\vec{\beta}^{ord}$ yields better Bayes rules
 - Given \vec{y} and $\vec{\beta}^{ord}$ we may derive $\pi(\vec{\beta}|\vec{y}, \vec{\beta}^{ord})$
 - A Bayes rule may now be derived

$$\hat{\beta}^{\textit{Bayes}}(\vec{\mathbf{y}}; \vec{\beta}^{\textit{ord}}) = \operatorname*{argmin}_{\hat{\beta}(\vec{\mathbf{y}}, \vec{\beta}^{\textit{ord}})} E_{\vec{\beta} \sim \pi(\vec{\beta}|\vec{\mathbf{y}}, \vec{\beta}^{\textit{ord}})} L(\hat{\beta}(\vec{\mathbf{y}}, \vec{\beta}^{\textit{ord}}), \vec{\beta})$$

And expressing the average risk in (1)

$$E_{ec{\mathbf{y}},ec{eta}^{ord}\sim f(ec{\mathbf{y}},ec{eta}^{ord})}\ E_{ec{eta}\sim\pi(ec{eta}|ec{\mathbf{y}},ec{eta}^{ord})}L(\hat{eta}(ec{\mathbf{y}},ec{eta}^{ord}),ec{eta})$$

reveals that $\hat{\beta}^{Bayes}(\vec{y}; \vec{\beta}^{ord})$ yields smaller average risk then $\hat{\beta}^{Bayes}(\vec{y})$

Yekutieli & Weinstein 6/23

Oracle inferential framework (cont.)

- Let \mathcal{P}_m denote set of permutations on $\{1 \cdots m\}$. Then $\forall \vec{\beta}, \exists \tau' \in \mathcal{P}_m$ for which $\tau'(\vec{\beta}^{ord}) = \vec{\beta}$.
- Thus, π specifies distribution for $\vec{\beta}^{ord}$ and on \mathcal{P}_m

$$\pi(\vec{\beta}^{ord}) = \sum_{\tau \in \mathcal{P}_m} \pi(\tau(\vec{\beta}^{ord})) \,, \quad \tilde{\pi}(\tau|\vec{\beta}^{ord}) = \frac{\pi(\tau(\vec{\beta}^{ord}))}{\pi(\vec{\beta}^{ord})}$$

• We may then express

$$\begin{split} \pi(\vec{\beta}|\vec{y}, \vec{\beta}^{ord}) &= \frac{f(\vec{\beta}, \vec{y}, \vec{\beta}^{ord})}{f(\vec{y}, \vec{\beta}^{ord})} = \frac{f(\tau'(\vec{\beta}^{ord}), \vec{y})}{\sum_{\tau \in \mathcal{P}_m} f(\tau(\vec{\beta}^{ord}), \vec{y})} \\ &= \frac{f(\vec{y}|\tau'(\vec{\beta}^{ord}))\pi(\tau'|\vec{\beta}^{ord})}{\sum_{\tau \in \mathcal{P}_m} f(\vec{y}|\tau(\vec{\beta}^{ord}))\pi(\tau|\vec{\beta}^{ord}))} \end{split}$$

Oracle inferential framework – symmetric priors

• For cases in which all ordering $\vec{\beta}^{ord}$ are apriori equally probable (in shrinkage priors components of $\vec{\beta}$ iid; MLE = flat prior)

$$\tilde{\pi}(\tau'|\vec{\beta}^{ord}) = \frac{\pi(\tau'(\vec{\beta}^{ord}))}{\sum_{\tau \in \mathcal{P}_m} \pi(\tau(\vec{\beta}^{ord}))} = \frac{1}{m!}$$

for which we get

$$\pi(\vec{\beta}|\vec{y}, \vec{\beta}^{ord}) = \frac{f(\vec{y}|\tau'(\vec{\beta}^{ord}))}{\sum_{\tau \in \mathcal{P}_m} f(\vec{y}|\tau(\vec{\beta}^{ord}))}$$
(2)

• e.g. Bayes rule for $L(\hat{\beta}, \vec{\beta}) = ||\hat{\beta} - \vec{\beta}||^2$ is

$$\hat{\beta}^{\textit{Bayes}}(\vec{\mathbf{y}}; \vec{\beta}^{\textit{ord}}) = \frac{\sum_{\tau \in \mathcal{P}_m} \tau(\vec{\beta}^{\textit{ord}}) f(\vec{\mathbf{y}} | \tau(\vec{\beta}^{\textit{ord}}))}{\sum_{\tau \in \mathcal{P}_m} f(\vec{\mathbf{y}} | \tau(\vec{\beta}^{\textit{ord}}))}$$

Frequentist perspective on oracle inferential framework

• Fixed unknown $\vec{\beta}$ the goal is to find $\hat{\beta}$ minimizing the Risk

$$R(\hat{\beta}; \vec{\beta}) = E_{\vec{Y} \sim f(\vec{y}|\vec{\beta})} L(\hat{\beta}(\vec{Y}), \vec{\beta})$$

- To show that $\hat{\beta}^{Bayes}(\vec{v}; \vec{\beta}^{ord})$ yields small Risk we consider (T, \vec{W}) :
 - ▶ $T \in \mathcal{P}_m$ is the parameter with $\Pr(T = \tau) = 1/m!$, \vec{W} is the data with

$$\vec{W}|T = \tau \sim f(\vec{y}|\tau(\vec{\beta}^{ord})).$$

It is easy to see that

$$\Pr(T = \tau' | \vec{W} = \vec{y}) = \frac{f(\vec{y} | \tau'(\vec{\beta}^{ord}))}{\sum_{\tau \in \mathcal{P}_m} f(\vec{y} | \tau(\vec{\beta}^{ord}))}$$

As this is same posterior distribution as (2), then also for (T, \vec{W}) $\hat{\beta}^{Bayes}(\vec{y}; \vec{\beta}^{ord})$ is Bayes rule for $L(\hat{\beta}(\vec{W}), T(\vec{\beta}^{ord}))$.

Yekutieli & Weinstein

Frequentist perspective (cont.)

• Per construction, $\hat{\beta}^{Bayes}(\vec{y}; \vec{\beta}^{ord})$ minimizes the average risk for (T, \vec{W})

$$\begin{split} E_{T,\vec{W}} \; L(\hat{\beta}(\vec{W}), T(\vec{\beta}^{ord})) &= E_T E_{\vec{W}|T} \; L(\hat{\beta}(\vec{W}), T(\vec{\beta}^{ord})) \\ &= \sum_{\tau \in \mathcal{P}_m} \frac{1}{m!} \; E_{\vec{W} \sim f(\vec{y}|\tau(\vec{\beta}^{ord}))} \; L(\hat{\beta}(\vec{W}), \tau(\vec{\beta}^{ord})) \\ &= \sum_{\tau \in \mathcal{P}_m} \frac{1}{m!} \; R(\hat{\beta}; \tau(\vec{\beta}^{ord})) \end{split} \tag{3}$$

- Expression (3) implies that $\hat{\beta}^{Bayes}(\vec{y}; \vec{\beta}^{ord})$ minimizes the mean Risk over all permutations of $\vec{\beta}^{ord}$ (VERY different than average risk $r(\hat{\beta})$ in (1)).
- In particular, as in our example the $R(\hat{\beta}; \tau(\vec{\beta}^{ord}))$ is approximately the same for all $\tau \in \mathcal{P}_m$, then $\hat{\beta}^{Bayes}(\vec{y}; \vec{\beta}^{ord})$ has small Risk for each $\tau(\vec{\beta}^{ord})$.

Hierarchical Bayes modeling for Large-Scale Inference

Implement hierarchical Bayes model that approximates $\pi(\vec{\beta}|\vec{y}, \vec{\beta}^{ord})$ in (2) and derives Bayes rules that approximate the oracle Bayes rules.

- a. We imbed likelihood in (made up) generative model for the data:
 - 1. Generate $f(\beta; \vec{a}, \vec{\pi})$ from hBeta model
 - 2. For $i = 1 \cdots m$ generate iid $\beta_i \sim f(\beta; \vec{a}, \vec{\pi})$
 - 3. Generate $\vec{Y} \sim f(\vec{y}|\vec{\beta})$
- b. We use a Gibbs sampler to derive the posterior distribution of the hBeta model given $\vec{Y} = \vec{y}$, in which the Gibbs samples of $f(\beta; \vec{a}, \vec{\pi})$ are deconvolution estimates for distribution of $\vec{\beta}^{ord}$ and Gibbs samples of $\vec{\beta}$ approximate posterior samples from $\pi(\vec{\beta}|\vec{y}, \vec{\beta}^{ord})$ in (2)
- c. Our inferences are Bayes rules for Gibbs sampling distribution of $\vec{\beta}$.

4 □ > 4 ⓓ > 4 夛 > 4 夛 > 4 夛 > 9

L level hierarchical Beta model

Finite Polya trees on dyadic partition of $\vec{a} = (a_0, \dots, a_{2L})$ that models random distributions with step function PDF's

- Model parameters: independent random variables $\phi_{l,i} \sim Beta(\alpha_{l,i}, \beta_{l,i})$ that specify the conditional subinterval probabilities for the dyadic partitions. In the generative model for the data $\phi_{l,i} \sim Beta(1,1)$
- $\pi_{1,1} \cdots \pi_{L,2^L}$ the probabilities of the subintervals in the dyadic partitions are products of the Beta random variables
- Step function PDF

$$f(\beta; \vec{a}, \vec{\pi}) = \pi_{L,1} \cdot \frac{I_{[a_0, a_1]}(\beta)}{a_1 - a_0} + \dots + \pi_{L,2^L} \cdot \frac{I_{[a_{2L-1}, a_{2L}]}(\beta)}{a_{2L} - a_{2L-1}}$$

Yekutieli & Weinstein 12 / 23

3 level hBeta model – highly regularized 7 parameter model

13 / 23

Yekutieli & Weinstein

Candes and Sur (2019) simulation study

• Simulate High dimensional logistic regression example

a.
$$\vec{\beta} = (-10, \dots, -10, 10, \dots, 10, 0, \dots, 0)$$

- b. $\beta_i \sim N(3, 4^2)$
- c. $\beta_i = 0$ or $\beta_i \sim N(3, 4^2)$ with probability 0.5
- We compare five estimates: MLE; "corrected" MLE of Candes and Sur (2019); LASSO and Ridge penalized likelihood estimates (R GLMNET); hBeta posterior means.
- Implement hBeta model with L = 6; \vec{a} is a regular 65 point grid on [-20, 20]; in each simulated example we run 400 Gibbs sample iterations.

◆□ > ◆□ > ◆ = > ◆ = > ● の Q G

Gibbs sampler disribution of the coefficient distribution CDF

Coefficients estimation plot

Gibbs sampler disribution of Cofficient distribution CDF

Summary of results

		adj.MLE	LASSO	Ridge	hBeta
Example a	$\vec{\beta}$	0.33	0.19	0.19	0.10
	$ \vec{\mu} $	0.31	0.21	0.20	0.11
	\vec{p}	0.75	0.49	0.61	0.34
Example b	$\vec{\beta}$	0.34	0.38	0.26	0.17
	$\vec{\mu}$	0.32	0.38	0.27	0.17
	\vec{p}	0.75	0.80	0.64	0.32
Example c	$\vec{\beta}$	0.36	0.27	0.25	0.18
	$ \vec{\mu} $	0.34	0.26	0.26	0.19
	\vec{p}	0.76	0.67	0.63	0.48

Table: MSE for single realization displayed as fractions of the MSE for the MLE.

Discussion

- Propose GENERAL comprehensive eBayes approach for Large-Scale inference with explicit estimation target the empirical distribution of $\vec{\beta}$.
- Scope of application is cases in which there is no previous information on problem (prior exchangeability in $\vec{\beta}$ excludes information from previous studies).
- Blessing of dimensionality: (1) distribution of $\vec{\beta}$ is easy to estimate in Large-Scale problems; (2) as the Risk tends to be similar for permutations of $\vec{\beta}$ our methods have good frequentist properties.
- Our methodology may also be used for diagnostics, specifying the difficulty of inferential problems and comparing and evaluating estimation methods.

Thank You!

23 / 23

Yekutieli & Weinstein