曲面有限元及其应用

刘江刚 龚欣

September 25, 2018

基础知识

梯度

首先给出梯度的概念,它是由数量函数 u(x,y,z) 所定义的向量函数

$$\mathbf{grad}\ u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$$

而且 grad u 的方向就是使 $\frac{\partial u}{\partial l}$ 达到最大值的方向,它的大小就是 u 在这个方向上的方向导数.

引进符号向量

$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

当把它作为运算符号来看待时,梯度可写作

grad
$$u = \nabla u$$

关于梯度, 有以下一些基本性质:

1. 若 u,v 是数量函数,则

$$\nabla(u+v) = \nabla u + \nabla v$$

2. 若 u,v 是数量函数,则

$$\nabla(uv) = u(\nabla v) + v(\nabla u)$$

3. 若 u(x,y,z) 是数量函数,则 $\nabla^2 u(x) \in \mathbb{R}^{3\times 3}$ 为 u(x) 的 Hessian 矩阵

$$\nabla^2 u(x) = \begin{pmatrix} \frac{\partial^2 u}{\partial x^2} & \frac{\partial^2 u}{\partial x \partial y} & \frac{\partial^2 u}{\partial x \partial z} \\ \frac{\partial^2 u}{\partial y \partial x} & \frac{\partial^2 u}{\partial y^2} & \frac{\partial^2 u}{\partial y \partial z} \\ \frac{\partial^2 u}{\partial z \partial x} & \frac{\partial^2 u}{\partial z \partial y} & \frac{\partial^2 u}{\partial z^2} \end{pmatrix}$$

散度

设

$$A(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z))$$

为空间区域 V 上的向量函数, 对 V 上每一点 (x,y,z), 定义数量函数

$$D(x, y, z) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

称它为向量函数 A 在 (x,y,z) 处的散度, 记作

$$D(x, y, z) = \operatorname{div} \mathbf{A}(x, y, z)$$

由前面引进的算符 ∇ , A 的散度的向量形式是

$$\operatorname{div} \boldsymbol{A} = \nabla \cdot \boldsymbol{A}$$

关于散度,有以下一些基本性质:

1. 若 u, v 是向量函数, 则

$$abla \cdot (\boldsymbol{u} + \boldsymbol{v}) =
abla \cdot \boldsymbol{u} +
abla \cdot \boldsymbol{v}$$

2. 若 φ 是数量函数, F 是向量函数, 则

$$\nabla \cdot (\varphi \mathbf{F}) = \varphi \nabla \cdot \mathbf{F} + F \cdot \nabla \varphi$$

3. 若 $\varphi = \varphi(x, y, z)$ 是一数量函数, 则

$$\nabla \cdot \nabla \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}$$

算符 ∇ 的内积 $\nabla \cdot \nabla$ 常记作 Δ , 于是有

$$\nabla \cdot \nabla \varphi = \Delta \varphi$$

预备知识

连续的曲面 S

设 S 是一个闭曲面, 所以 $\partial S = \emptyset$, 所以 S 把 \mathbb{R}^3 分成三个不同的集合: 曲面内部的点、曲面上的点和曲面外部的点, 分别表示为 Ω_- 、 Ω_0 和 Ω_+ . 对于任意的 $x \in \mathbb{R}^3$, 记 $\operatorname{dist}(x,S) = \min_{y \in S} |x-y|$ 为 x 和 S 之间的距离, 其中 $|\cdot|$ 为标准的欧氏距离. 我们可以定义一个带状区域: $U := \{x \in \mathbb{R}^3 | \operatorname{dist}(x,S) < \delta\}$, 其中

 $\delta > 0$ 且要足够小, 使得可以定义一个唯一的符号距离函数 $d: U \to \mathbb{R}$, 满足如下性质:

$$\begin{cases}
d \in C^{3}(U), \\
|d(x)| = \operatorname{dist}(x, S), \quad \forall x \in U, \\
d(x) < 0, \quad \forall x \in \Omega_{-} \cap U, \\
d(x) = 0, \quad \forall x \in \Omega_{0} \cap U, \\
d(x) > 0, \quad \forall x \in \Omega_{+} \cap U,
\end{cases}$$
(1)

对于任意的 $x \in U$, 可视 S 为符号距离函数的零水平集.

记 ∇ 为 \mathbb{R}^3 中通常意义下的梯度算子, $\nabla d(x) \in \mathbb{R}^3$ 为 d(x) 的梯度, $\mathbf{H}(x) := \nabla^2 d(x) \in \mathbb{R}^{3 \times 3}$ 为 d(x) 的 Hessian 矩阵. 对于任意的 $x \in U$, 记 y 为 S 上离 x 最近的点, 也即 |d(x)| = |x - y|. 因为 d(x) 是符号距离函数,且 S 是它的零水平集,易知 $\nabla d(x)$ 是 S 在 y 处的单位外法向向量,即 $|\nabla d(x)| = 1$. 对于任意的 $x \in U$,记 $\mathbf{n}(x) = \nabla d(x)$,我们可以定义如下唯一的投影 $\mathcal{P}_0: U \to S$:

$$\mathcal{P}_0(x) := x - d(x)\boldsymbol{n}(x)$$
 (1)

对于 $v \in C^1(S)$, 因为 $S \neq C^3$ 的, 我们可以把 v 扩展到 $C^1(U)$, 且仍记为 v. 定义 v 在 S 上的切向梯度为

$$\nabla_S v = \nabla v - (\nabla v \cdot \boldsymbol{n}) \boldsymbol{n} = (I - \boldsymbol{n} \boldsymbol{n}^t) \nabla v = \boldsymbol{P} \nabla v \in \mathbb{R}^3$$

其中 $P(x) = (I - nn^t)(x)$ 是到点 $x \in S$ 切平面上的投影算子, 因此有 $P^2 = P$. 注意到这里我们用 v 的扩展来定义曲面梯度. 然而, 可以证明 $\nabla_S v$ 的定义只依赖 v 的 S 上的值而不是 v 的扩展, 也即 ∇_S 是一个内蕴算子.

类似地,对于一个向量场 $\mathbf{v} \in (C^1(S))^3$, 我们也可以把它扩展到 $(C^1(U))^3$ 上去, 并定义 \mathbf{v} 在 S 上的切向散度为

$$abla_S \cdot oldsymbol{v} =
abla \cdot oldsymbol{v} - oldsymbol{n}^t
abla oldsymbol{v} oldsymbol{n} \in \mathbb{R}$$

曲面 S 上的 Laplace-Beltrami 算子定义如下:

$$\Delta_S v = \nabla_S \cdot (\nabla_S v) = \Delta v - (\nabla v \cdot \boldsymbol{n})(\nabla \cdot \boldsymbol{n}) - \boldsymbol{n}^t \nabla^2 v \boldsymbol{n} \in \mathbb{R}$$

其中 $v \in C^2(S)$, $\nabla^2 v$ 是 v 的 Hessian 矩阵 (扩展为 $C^2(U)$ 函数)

离散的曲面 S_h 和网格 T_h

图 1

记 $S_h \subset U$ 是由三角形单元 τ_h 组成的多面体面, 即 S_h 逼近曲面 S, 我们假设 S_h 的这些三角形单元是正则的, 单元尺寸是拟一致的, 且它们的顶点都在曲面 S 上. 其中 $N_h = \{x_i\}$ 为 S_h 所有顶点的集合, $T_h = \{\tau_h\}$ 为所有三角形单元的集合, $\mathcal{E}_h = \{E\}$ 为所有边的集合. 对于任意的 $\tau_h \in T_h$, 记 n_h 为 S_h 在 τ_h 上的单位外法向向量. 对于 $v_h \in C(S_h)$ 和 $v_h|_{\tau_h}$, 我们有

$$abla_{S_h}v_h|_{ au_h} :=
abla v_h - (
abla v_h \cdot oldsymbol{n}_h)oldsymbol{n}_h = (oldsymbol{I} - oldsymbol{n}_holdsymbol{n}_h^t)
abla v_h = oldsymbol{P}_h \nabla v_h \in \mathbb{R}^3$$
其中 $oldsymbol{P}_h = oldsymbol{I} - oldsymbol{n}_holdsymbol{n}_h^t \in \mathbb{R}^{3 imes 3}$. 显然 $abla_{S_h}v_h \in (L^2(S_h))^3$

如果限制投影 $\mathcal{P}_0: U \to S$ 到 S_h 上, 就得到一个从 S_h 到 S 的连续可微的双射, 仍记为 \mathcal{P}_0 . 对于任意的 $\tau_h \in \mathcal{T}_h$, 我们可以得到一个曲面三角形 $\tau := \mathcal{P}_0(\tau_h)$, 并记所有的曲面三角形集合为 \mathcal{T}_S .

下面我们建立定义在 S 和 S_h 函数之间的关系. 借助双射投影 \mathcal{P}_0 , 可以由函数 $v:S\to\mathbb{R}$ 唯一地引入另一个函数 $\bar{v}:S_h\to\mathbb{R}$. 对于所有的 $x\in S_h$, 有 $\bar{v}(x)=v(\mathcal{P}_0(x))$. 对于任意的 $\tau_h\in\mathcal{T}_h$ 和函数 $v\in C^1(\mathcal{P}_0(\tau_h))$, 我们有

$$\nabla_{S_h} \bar{v}(x) = (\boldsymbol{P}_h(\boldsymbol{I} - d\boldsymbol{H})\boldsymbol{P})(x) \nabla_S v(\mathcal{P}_0(x)) \quad \forall x \in \tau_h.$$

反过来,一个函数 $v_h: S_h \to \mathbb{R}$ 也可以唯一的引入一个函数 $\tilde{v}_h: S \to \mathbb{R}$, 对于所有的 $x \in S$, 有 $\tilde{v}_h(x) = v_h(\mathcal{P}_0^{-1}(x))$. 对于任意的 $\tau_h \in \mathcal{T}_h$ 和函数 $v_h \in C^1(\tau_h)$ 让 $\tau = \mathcal{P}_0(\tau_h)$, 可得

$$\nabla_{S} \tilde{v}_{h}(x) = (\boldsymbol{I} - d\boldsymbol{H})^{-1} \left(\boldsymbol{I} - \frac{\boldsymbol{n}_{h} \boldsymbol{n}^{t}}{\boldsymbol{n}^{t} \boldsymbol{n}_{h}} \right) \nabla_{S_{h}} v_{h} (\mathcal{P}_{0}^{-1}(x)) \quad \forall x \in \tau.$$

曲面线性有限元

对于三角形 $\tau_h \in T_h$, 记 $\{\lambda_i\}$ 为 τ_h 的重心坐标. 记 V_h 为 S_h 上的连续分片 线性有限元空间, 也即对于任意的 $v_h \in V_h$ 和 $\tau_h \in T_h$, v_h 在 S_h 上连续, 且有 $v_h|_{\tau_h} \in \operatorname{span}\{\lambda_1, \lambda_2, \lambda_3\}$. 我们可定义 S 上的提升空间

$$\tilde{V}_h = \{\tilde{v}_h \mid \tilde{v}_h := v_h \circ \mathcal{P}_0^{-1}, \ \not \perp \ \forall v_h \in \mathcal{V}_h\},$$

其中 $\mathcal{P}_0: S_h \to S$ 为定义在 (1) 中的双射. 对于 $f \in L^2(S)$, 记

$$f_h(x) = \bar{f}(x) - \frac{1}{|S_h|} \int_{S_h} \bar{f} \, \mathbf{d}\sigma_h, \tag{2}$$

其中 $|S_h|$ 为 S_h 的总面积. 那么有 $\int_{S_h} f_h(x) \, \mathbf{d}\sigma_h = 0$, 且下列方程存在唯一的有限元解 $u_h \in \mathcal{V}_h$, 满足 $\int_{S_h} u_h \, \mathbf{d}\sigma_h = 0$

$$\int_{S_h} \nabla_{S_h} u_h \cdot \nabla_{S_h} v_h \mathbf{d}\sigma_h = \int_{S_h} f_h v_h \mathbf{d}\sigma_h \quad \forall v_h \in \mathcal{V}_h$$

曲面高次元

符号说明

S	\mathbb{R}^3 空间中的曲面
$K \subset \mathbb{R}^2$	二维空间中的标准单元
$\mathbf{u} = (u, v)^T$	二维空间中的坐标系
$ au_h \subset R^3$	三维空间中的尺寸为 h 的平面三角形
$\mathbf{x} = (x, y, z)^T \in \tau_h$	Th 上的一个点
\mathcal{P}_0	S 邻近区域到 S 的投影
$\mathbf{x}_i, i=1,\cdots,n_{dof}$	$ au_h$ 上 p 次 Lagrangian 基函数对应的自由度坐标点
$\tau_p \subset \mathbb{R}^3$	定义在 τ_h 上的 p 次多项式曲面三角形
$\mathbf{x}_p = (x_p, y_p, z_p)^T \in \tau_p$	τρ 上一个点的三维坐标
$ au_S \subset \mathbb{R}^3$	把 Th 投影到曲面 S 上的曲面三角形
$\mathbf{x}_S = (x_S, y_S, z_S)^T \in \tau_S$	TS 上一个点的三维坐标
$arphi_i(\mathbf{x})$	定义在 $ au_h$ 上第 i 个 Lagrangian 基函数

τ_h τ_p 和 τ_s 之间关系

对于 τ_p 上的任意一点 \mathbf{x}_p , 存在一点 $\mathbf{x} \in \tau_h$, 使得

$$\mathbf{x}_p = \sum_{i=1}^{n_{dof}} \mathbf{x}_i arphi_i(\mathbf{x})$$

进一步,存在标准参考单元 K 中存在一点 $\mathbf{u}=(u,v)$,可得

$$\mathbf{x}(u,v) = \lambda_0 \mathbf{x}_0 + \lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2$$

其中 \mathbf{X}_0 , \mathbf{X}_1 和 \mathbf{X}_2 为 τ_h 的三个顶点,

$$\lambda_0 = 1 - u - v, \quad \lambda_1 = u, \quad \lambda_2 = v$$

对于 τ_S 上的任意一点 \mathbf{X}_S , 存在 τ_p 上的一点 \mathbf{X}_p , 使得

$$\mathbf{x}_S = \mathcal{P}_0(\mathbf{x}_p)$$

x 关于 (u,v) 的 Jacobi 矩阵为

$$rac{\partial \mathbf{x}}{\partial \mathbf{u}} = [\mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0]$$

 \mathbf{x}_p 关于 \mathbf{x} 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}_p}{\partial \mathbf{x}} = \sum_{i=1}^{n_{dof}} \begin{bmatrix} x_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \\ y_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \\ z_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \end{bmatrix}$$

则 \mathbf{x}_p 关于 \mathbf{u} 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} = \left[\frac{\partial \mathbf{x}_{p}}{\partial u}, \frac{\partial \mathbf{x}_{p}}{\partial v}\right] = \sum_{i=1}^{n_{dof}} \begin{bmatrix} x_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \\ y_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \\ z_{i} \nabla_{\mathbf{x}} \varphi_{i}(\mathbf{x})^{T} \end{bmatrix} [\mathbf{x}_{1} - \mathbf{x}_{0}, \mathbf{x}_{2} - \mathbf{x}_{0}]$$
(2)

记

$$\mathbf{d}\mathbf{x}_p = \frac{\partial \mathbf{x}_p}{\partial \mathbf{u}} \mathbf{d}\mathbf{u} = \frac{\partial \mathbf{x}_p}{\partial u} \mathbf{d}u + \frac{\partial \mathbf{x}_p}{\partial v} \mathbf{d}v,$$

其中 $\mathbf{du} = [\mathbf{d}u, \mathbf{d}v]^T$. 进一步可得曲面三角形 τ_p 上的第一基本形式

$$I = \langle \, \mathbf{d}\mathbf{x}_p, \mathbf{d}\mathbf{x}_p
angle = \mathbf{d}\mathbf{u}^T egin{bmatrix} g_{11} & g_{12} \ g_{12} & g_{22} \end{bmatrix} \mathbf{d}\mathbf{u}$$

其中

$$g_{11} = <\frac{\partial \mathbf{x}_p}{\partial u}, \frac{\partial \mathbf{x}_p}{\partial u}>, g_{12} = <\frac{\partial \mathbf{x}_p}{\partial u}, \frac{\partial \mathbf{x}_p}{\partial v}>, g_{22} = <\frac{\partial \mathbf{x}_p}{\partial v}, \frac{\partial \mathbf{x}_p}{\partial v}>,$$

定义 τ_p 上的基函数如下

$$\varphi_{p,i}(\mathbf{x}_p) = \varphi_i(\mathbf{x})$$

其中

$$\mathbf{x}_p = \sum_{i=1}^{n_{dof}} \mathbf{x}_i \varphi_i(\mathbf{x})$$

则 $\varphi_{p,i}(\mathbf{X}_p)$ 在 τ_p 上的切向导数定义如下:

$$abla_{S_p} arphi_{p,i} = rac{\partial \mathbf{x}_p}{\partial \mathbf{u}} egin{bmatrix} g_{11} & g_{12} \ g_{12} & g_{22} \end{bmatrix}^{-1} (rac{\partial \mathbf{x}}{\partial \mathbf{u}})^T
abla_{S_h} arphi_i(\mathbf{x})$$

S 上曲面三角形的面积计算公式

$$\mathcal{P}_0(\mathbf{x}) := \mathbf{x} - d(\mathbf{x})\mathbf{n}(\mathbf{x})$$

对于 $\mathbf{X}_p \in \tau_p$, 存在 $\mathbf{X}_S \in S$, 有

$$\mathbf{x}_{S} = \mathcal{P}_{0}(\mathbf{x}_{p}) = \mathbf{x}_{p} - d(\mathbf{x}_{p})\mathbf{n}(\mathbf{x}_{p})$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} = I - d(\mathbf{x}_{p})H(\mathbf{x}_{p}) - \mathbf{n}(\mathbf{x}_{p})\mathbf{n}(\mathbf{x}_{p})^{T}$$

$$\frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}}$$

S 上的导数计算

考虑 T_S 和 T_p 的关系

则 \mathbf{x}_S 关于 \mathbf{u} 的 Jacobi 矩阵为

$$\frac{\partial \mathbf{x}_S}{\partial \mathbf{u}} = \frac{\partial \mathbf{x}_S}{\partial \mathbf{x}_p} \frac{\partial \mathbf{x}_p}{\partial \mathbf{u}}$$
$$\frac{\partial \mathbf{x}_S}{\partial \mathbf{x}_p} = I - d(\mathbf{x}_p) H(\mathbf{x}_p) - \mathbf{n}(\mathbf{x}_p) \mathbf{n}(\mathbf{x}_p)^T$$

由于

$$\frac{\partial \mathbf{x}_p}{\partial \mathbf{u}} = \left[\frac{\partial \mathbf{x}_p}{\partial u}, \frac{\partial \mathbf{x}_p}{\partial v}\right] = \sum_{i=1}^{n_{dof}} \begin{bmatrix} x_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \\ y_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \\ z_i \nabla_{\mathbf{x}} \varphi_i(\mathbf{x})^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_0, \mathbf{x}_2 - \mathbf{x}_0 \end{bmatrix}$$

即,很容易计算

$$\frac{\partial \mathbf{x}_S}{\partial \mathbf{u}}$$

进一步可得到曲面 TS 上的第一基本形式记

$$\mathbf{dx}_{S} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} \mathbf{du} = \frac{\partial \mathbf{x}_{S}}{\partial u} \mathbf{du} + \frac{\partial \mathbf{x}_{S}}{\partial v} \mathbf{dv},$$

其中

$$\mathbf{dx}_{S} = \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{u}} \mathbf{du}$$

$$= \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial \mathbf{u}} \mathbf{du}$$

$$= \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial u} \mathbf{du} + \frac{\partial \mathbf{x}_{S}}{\partial \mathbf{x}_{p}} \frac{\partial \mathbf{x}_{p}}{\partial v} \mathbf{dv}$$

故

$$\frac{\partial \mathbf{x}_S}{\partial u} = \frac{\partial \mathbf{x}_S}{\partial \mathbf{x}_p} \frac{\partial \mathbf{x}_p}{\partial u}$$
$$\frac{\partial \mathbf{x}_S}{\partial v} = \frac{\partial \mathbf{x}_S}{\partial \mathbf{x}_p} \frac{\partial \mathbf{x}_p}{\partial v}$$

$$I = <\mathbf{dx}_S, \mathbf{dx}_S> =\mathbf{du}^T egin{bmatrix} g'_{11} & g'_{12} \ g'_{12} & g'_{22} \end{bmatrix} \mathbf{du}$$

其中

$$g_{11}' = <\frac{\partial \mathbf{x}_S}{\partial u}, \frac{\partial \mathbf{x}_S}{\partial u}>, g_{12}' = <\frac{\partial \mathbf{x}_S}{\partial u}, \frac{\partial \mathbf{x}_S}{\partial v}>, g_{22}' = <\frac{\partial \mathbf{x}_S}{\partial v}, \frac{\partial \mathbf{x}_S}{\partial v}>,$$

定义TS上的基函数如下

$$\varphi_{S,i}(\mathbf{x}_S) = \varphi_i(\mathbf{x})$$

其中

$$\mathbf{x}_S = \sum_{i=1}^{n_{dof}} \mathbf{x}_i arphi_i(\mathbf{x})$$

则 $\varphi_{S,i}(\mathbf{X}_S)$ 在 τ_S 上的导数定义如下:

$$\nabla_{S_S} \varphi_{S,i} = \frac{\partial \mathbf{x}_S}{\partial \mathbf{u}} \begin{bmatrix} g'_{11} & g'_{12} \\ g'_{12} & g'_{22} \end{bmatrix}^{-1} (\frac{\partial \mathbf{x}}{\partial \mathbf{u}})^T \nabla_{S_h} \varphi_i(\mathbf{x})$$

设 $w(\mathbf{x}_S)$ 是定义在S上的函数,利用投影可以定义 S_p 上函数

$$\hat{w}(\mathbf{x}_p) = w(\mathcal{P}_0(x_p))$$

下面讨论如何计算 $\nabla_{S_p}w$.

$$\nabla_{S_p} \hat{w}(\mathbf{x}_p) = \frac{\partial \mathbf{x}_p}{\partial \mathbf{u}} \begin{bmatrix} g_{11} & g_{12} \\ g_{12} & g_{22} \end{bmatrix}^{-1} \begin{pmatrix} \hat{w}_u \\ \hat{w}_v \end{pmatrix}$$
$$\begin{pmatrix} \hat{w}_u \\ \hat{w}_v \end{pmatrix} = (\frac{\partial \mathbf{x}_S}{\partial \mathbf{u}})^T \nabla_{\mathbf{x}_S} w(x_S)$$