Today: More topology (But I have to leave extre early to give an exam.) 1:45

Ramade:

X and Y are homeomorphic if

there's a confinious f:X->> with confinious

inverse g: /->X.

("Can Stretch one into the other with no shuny/ 11pping").

How to know/prove two things are homeomorphic Just find fog.

How to prove two things are not homeomorphic:

Use a "topokgical invariant": a proporty/measure of X that's unattented by homeomorphism.

· X is simply connected it every loop in X can be Shrunk to point

annulus: not simply connected

disk: Simply Connected

mot homeomorphic.

· X is connected it It's just one "pried".

not connected

Connected

- the	number of edg	ges is a	topul	wild in	variant
	(needs defined				
50	cylinder and	Mibius	Strip	are not	howeomaphic
	7	9			
	2 edges	1 edge			

- contractibility is a topological invariant as set is contractible if any loop the set on be shrunt to a point.

Contractible not contractible

R anything annulus

convex Mibbius Airp

The sphere S²

- number of edges	is a top	pological i	nvariont	
("boundary")	·			
- Convex not	a topological	mut		
convex	not	But-	they are p	homoomerphi(
- number of hole	•			
(but had	d to desim	2)		M
	Cube with holes m h	horitontal		holes

annulus.

,

, I

Homotopy
Homotopy

Two functions $f:X \rightarrow Y$ $g:X \rightarrow Y$

are homotopic it you can smoothly turn one into the other.

This means you can find a family of functions

 $F_{+}:X \rightarrow Y$ (0<+<1)

Where Fo=f and Fi=9

You can also think of f as being a single function condered pair (X,+)

 $F: X \times [0,1] \rightarrow Y$

Ex let
$$X = [0, \pi]$$

 $Y = \mathbb{R}^2$

$$f(x)=(x, sin x)$$

$$g(x)=(x,-\sin x)$$

$$F_{+}(x)=(x,(1-2+)\sin x)$$

$$F_1(x)=(x_1-\sin x)$$

you could think of this a

$$F(X,+)=(X,(1-2+) smx)$$

$$X=[0,\pi]$$

$$Y=[^2 \setminus \{(\frac{\pi}{2},0)\}$$

Carit we same F+ anymore!

Still homotopic (just more away from hole and do as bossine)

but finding eqn is hard.

$$ex$$
 $f: (-7/2, 7/2) \rightarrow \mathbb{R}$
 $f(x) = tan(x)$
 $g: (-7/2, 7/2) \rightarrow \mathbb{R}$

homotopic!

9(X)=X

$$F_{+}: (-\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow \mathbb{R}$$

$$F_{+}(x) = (1-t) \tan(x) + tx$$

Can two things not be homotopic??

$$f: S' \longrightarrow \mathbb{R}^2 \setminus D$$
(incle plane minus unit dish

$$g: S' \rightarrow \mathbb{R}^2 \setminus D$$

hard to prove!