Teoremi di rigidità per funzioni olomorfe nel disco

19 Aprile 2021

Scuola Normale Superiore di Pisa

Candidato: Marco Vergamini Relatore: Prof. Marco Abate

Lemma di Schwarz come risultato di rigidità

Lemma di Schwarz

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che f(0) = 0. Allora per ogni $z \in \mathbb{D}$ si ha $|f(z)| \leq |z|$ e $|f'(0)| \leq 1$; inoltre, se vale l'uguaglianza nella prima per $z_0 \in \mathbb{D} \setminus \{0\}$ oppure nella seconda allora $f(z) = e^{i\theta}z$ per qualche $\theta \in \mathbb{R}$.

Lemma di Schwarz come risultato di rigidità

Lemma di Schwarz

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che f(0) = 0. Allora per ogni $z \in \mathbb{D}$ si ha $|f(z)| \leq |z|$ e $|f'(0)| \leq 1$; inoltre, se vale l'uguaglianza nella prima per $z_0 \in \mathbb{D} \setminus \{0\}$ oppure nella seconda allora $f(z) = e^{i\theta}z$ per qualche $\theta \in \mathbb{R}$.

Osservazione

Dai casi di uguaglianza seguono i seguenti risultati di rigidità: se |f'(z)| = 1 + o(1) per z che tende a 0, allora $f \in \text{Aut}(\mathbb{D})$; se $f(z) = z + o(z - z_0)$ per z che tende a $z_0 \in \mathbb{D}$, allora f è proprio l'identità.

Teorema

(Burns-Krantz, 1994) Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
 (1)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Definizione

Dati
$$\sigma \in \partial \mathbb{D}$$
 e $M > 1$, chiamiamo regione di Stolz $K(\sigma, M)$ l'insieme $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$.

Definizione

Dati $\sigma \in \partial \mathbb{D}$ e M > 1, chiamiamo regione di Stolz $K(\sigma, M)$ l'insieme $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$.

La regione di Stolz K(1,2).

Definizione

Dati $\sigma \in \partial \mathbb{D}$ e M > 1, chiamiamo regione di Stolz $K(\sigma, M)$ l'insieme $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$.

Definizione

Diciamo che una funzione $f: \mathbb{D} \longrightarrow \mathbb{C}$ ha limite non-tangenziale $L \in \mathbb{C}$ in $\sigma \in \partial \mathbb{D}$ e scriviamo

$$\lim_{z \longrightarrow \sigma} f(z) = L$$

se per ogniM>1si ha $\underset{z\in K(\sigma,M)}{\underset{z\to\sigma,}{\lim}}f(z)=L.$

Definizione

Dati $\sigma \in \partial \mathbb{D}$ e M > 1, chiamiamo regione di Stolz $K(\sigma, M)$ l'insieme $\left\{z \in \mathbb{D} \mid \frac{|\sigma - z|}{1 - |z|} < M\right\}$.

Definizione

Diciamo che una funzione $f: \mathbb{D} \longrightarrow \mathbb{C}$ ha limite non-tangenziale $L \in \mathbb{C}$ in $\sigma \in \partial \mathbb{D}$ e scriviamo

$$\lim_{z \to \sigma} f(z) = L$$

se per ogni
$$M>1$$
si ha $\mathop {\lim }\limits_{z \longrightarrow \sigma ,\atop z \in K(\sigma ,M)} f(z) = L.$

Notiamo che la definizione di limite non tangenziale è più debole di quella di limite classico; nel nostro caso rende il risultato più forte.

Teorema

(Burns-Krantz, 1994) Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
 (1)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Teorema

(Burns-Krantz, 1994) Siano $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
(1)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Esempio

Se $f(z) = \frac{1+3z^2}{3+z^2}$, si ha $\lim_{z \to 1} \frac{f(z)-z}{(z-1)^3} = -\frac{1}{4}$; dunque il termine $o((z-\sigma)^3)$ nel teorema di Burns-Krantz non è migliorabile.

Lemma di Schwarz-Pick e derivata iperbolica

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

Lemma di Schwarz-Pick e derivata iperbolica

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in \operatorname{Aut}(\mathbb{D})$ e vale sempre l'uguaglianza.

Definizione

Data $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$, la derivata iperbolica è definita come

$$f^{h}(w) := \lim_{z \longrightarrow w} \frac{\frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)}}{\frac{z - w}{1 - \overline{w}z}} = \frac{f'(w)(1 - |w|^{2})}{1 - |f(w)|^{2}}.$$

Lemma di Schwarz-Pick e derivata iperbolica

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in \operatorname{Aut}(\mathbb{D})$ e vale sempre l'uguaglianza.

Osservazione

Il lemma di Schwarz-Pick può essere visto come un risultato di rigidità per la derivata iperbolica: se $|f^h(z)| = 1 + o(1)$ per z che tende a $z_0 \in \mathbb{D}$, allora $f \in \operatorname{Aut}(\mathbb{D})$.

Teorema di Bracci-Kraus-Roth

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^h(z_n)| = 1 + o((|z_n| - 1)^2)$$
 (2)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\ con\ |z_n|\longrightarrow 1.\ Allora\ f\in \operatorname{Aut}(\mathbb{D}).$

Teorema di Bracci-Kraus-Roth

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^h(z_n)| = 1 + o((|z_n| - 1)^2)$$
 (2)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\ con\ |z_n|\longrightarrow 1.\ Allora\ f\in \operatorname{Aut}(\mathbb{D}).$

Esempio

Prendiamo di nuovo
$$f(z) = \frac{1+3z^2}{3+z^2}$$
. Si ha $|f^h(z)| = \frac{2|z|}{1+|z|^2}$, perciò

$$\lim_{|z| \to 1} \frac{|f^h(z)| - 1}{(|z| - 1)^2} = -\frac{1}{2}.$$

Risultato sui limiti non tangenziali

Proposizione

Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora

$$|f^h(z)| = 1 + o((z - \sigma)^2)$$

 $per z \longrightarrow \sigma \ non \ tangenzialmente.$

Risultato sui limiti non tangenziali

Proposizione

Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora

$$|f^h(z)| = 1 + o((z - \sigma)^2)$$

 $per z \longrightarrow \sigma \ non \ tangenzialmente.$

Traccia della dimostrazione: il punto è riuscire a stimare f'. Senza perdita di generalità $\sigma = 1$. Dalla formula di Cauchy troviamo

$$f'(z) = 1 + \frac{1}{2\pi i} \int_{C(z)} \frac{f(w) - w}{(w - z)^2} dw =: 1 + I(z).$$

Risultato sui limiti non tangenziali

Proposizione

Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora

$$|f^h(z)| = 1 + o((z - \sigma)^2)$$

 $per z \longrightarrow \sigma \ non \ tangenzialmente.$

All'interno delle regioni di Stolz, con ragionamenti geometrici si possono fare stime per dire che $I(z) = o((z-1)^2)$.

Teorema

(Burns-Krantz, 1994) Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
(3)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Teorema

(Burns-Krantz, 1994) Siano $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
(3)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Traccia della dimostrazione: senza perdita di generalità $\sigma=1$. Dalla Proposizione sui limiti non tangenziali segue che

$$|f^h(z)| = 1 + o((z-1)^2)$$

per $z \longrightarrow 1$ non tangenzialmente.

Teorema

(Burns-Krantz, 1994) Siano $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ e $\sigma \in \partial \mathbb{D}$ tali che

$$f(z) = \sigma + (z - \sigma) + o((z - \sigma)^3)$$
(3)

 $per z \longrightarrow \sigma$ non tangenzialmente. Allora f è l'identità del disco.

Traccia della dimostrazione: senza perdita di generalità $\sigma=1$. Dalla Proposizione sui limiti non tangenziali segue che

$$|f^h(z)| = 1 + o((z-1)^2)$$

per $z \longrightarrow 1$ non tangenzialmente.

Per il teorema di Bracci-Kraus-Roth, $f \in \operatorname{Aut}(\mathbb{D})$; per ipotesi dev'essere f(1) = 1 e f''(1) = 0, perciò f(z) = z.

Strada per la dimostrazione del teorema di BKR

• Useremo il lemma di Schwarz-Pick per derivarne due versioni multipunto dimostrate da Beardon e Minda.

Strada per la dimostrazione del teorema di BKR

- Useremo il lemma di Schwarz-Pick per derivarne due versioni multipunto dimostrate da Beardon e Minda.
- Dalla versione a quattro punti otterremo un Corollario riguardante la derivata iperbolica; esso avrà a sua volta, come caso particolare, una disuguaglianza dovuta a Golusin.

Strada per la dimostrazione del teorema di BKR

- Useremo il lemma di Schwarz-Pick per derivarne due versioni multipunto dimostrate da Beardon e Minda.
- Dalla versione a quattro punti otterremo un Corollario riguardante la derivata iperbolica; esso avrà a sua volta, come caso particolare, una disuguaglianza dovuta a Golusin.
- Dalla disuguaglianza di Golusin, scritta in forma opportuna, il teorema di Bracci-Kraus-Roth seguirà con una semplice dimostrazione per assurdo.

L'idea di Beardon-Minda

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

L'idea di Beardon-Minda

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

Definizione

Data $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$, il rapporto iperbolico è definito come

$$f^*(z,w) := \begin{cases} \frac{\frac{f(z) - f(w)}{1 - \overline{f(w)}f(z)}}{\frac{z - w}{1 - \overline{w}z}} & \text{per } z \neq w \\ f^h(w) & \text{per } z = w. \end{cases}$$

L'idea di Beardon-Minda

Lemma di Schwarz-Pick

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ si ha

$$\left| \frac{f(z) - f(w)}{1 - \overline{f(w)} f(z)} \right| \le \left| \frac{z - w}{1 - \overline{w}z} \right| e \frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}.$$

Inoltre se vale l'uguaglianza nella prima per z_0, w_0 con $z_0 \neq w_0$ o nella seconda per z_0 allora $f \in Aut(\mathbb{D})$ e vale sempre l'uguaglianza.

Osservazione

Fissato $w \in \mathbb{D}$, si ha che $f^*(z, w)$ è olomorfa in z. Dal lemma di Schwarz-Pick abbiamo che, se $f \notin \operatorname{Aut}(\mathbb{D})$, allora $f^*(\cdot, w) \in \operatorname{Hol}(\mathbb{D}, \mathbb{D})$.

La distanza di Poincaré

Sia
$$p(z, w) = \left| \frac{z - w}{1 - \bar{w}z} \right|$$
; ricordiamo la distanza iperbolica.

La distanza di Poincaré

Sia
$$p(z, w) = \left| \frac{z - w}{1 - \bar{w}z} \right|$$
; ricordiamo la distanza iperbolica.

Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione $\omega: \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$ data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left(\frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

La distanza di Poincaré

Sia
$$p(z, w) = \left| \frac{z - w}{1 - \bar{w}z} \right|$$
; ricordiamo la distanza iperbolica.

Definizione

La distanza di Poincaré (o iperbolica) sul disco è la funzione $\omega: \mathbb{D} \times \mathbb{D} \longrightarrow [0, +\infty)$ data da

$$\omega(z, w) := \operatorname{arctanh}(p(z, w)) = \frac{1}{2} \log \left(\frac{1 + p(z, w)}{1 - p(z, w)} \right).$$

Per stretta crescenza della tangente iperbolica, in termini di ω il lemma di Schwarz-Pick si riscrive come

$$\omega(f(z), f(w)) \le \omega(z, w).$$

Lemma di Schwarz-Pick a tre punti

Teorema

(Beardon-Minda, 2004) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v \in \mathbb{D}$ vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{4}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$.

Lemma di Schwarz-Pick a tre punti

Teorema

(Beardon-Minda, 2004) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v \in \mathbb{D}$ vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{4}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$.

Traccia della dimostrazione: basta applicare il lemma di Schwarz-Pick alla funzione $f^*(\cdot, v)$.

Lemma di Schwarz-Pick a tre punti

Teorema

(Beardon-Minda, 2004) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v \in \mathbb{D}$ vale

$$\omega(f^*(z,v), f^*(w,v)) \le \omega(z,w). \tag{4}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$.

Traccia della dimostrazione: basta applicare il lemma di Schwarz-Pick alla funzione $f^*(\cdot, v)$.

Osservazione

Se f(0) = 0 troviamo $\omega(f(z)/z, f'(0)) \le \omega(z, 0)$. Il disco iperbolico di centro f'(0) e raggio $\omega(z, 0)$ è, in generale, strettamente contenuto in \mathbb{D} .

Prodotti di Blaschke

Definizione

Dati $a_1, \ldots, a_n \in \mathbb{D}$ e $\theta \in \mathbb{R}$, chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con \mathcal{B}_n i prodotti di Blaschke di grado n.

Prodotti di Blaschke

Definizione

Dati $a_1, \ldots, a_n \in \mathbb{D}$ e $\theta \in \mathbb{R}$, chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con \mathcal{B}_n i prodotti di Blaschke di grado n.

Notiamo che $\mathcal{B}_1 = \operatorname{Aut}(\mathbb{D})$.

Prodotti di Blaschke

Definizione

Dati $a_1, \ldots, a_n \in \mathbb{D}$ e $\theta \in \mathbb{R}$, chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con \mathcal{B}_n i prodotti di Blaschke di grado n.

Notiamo che $\mathcal{B}_1 = \operatorname{Aut}(\mathbb{D})$.

Proposizione

Valgono le sequenti:

- (i) si ha che $f \in \mathcal{B}_{n+1}$ se e solo se $f^*(\cdot, w) \in \mathcal{B}_n$, con $w \in \mathbb{D}$ fissato;
- (ii) se $f \in \mathcal{B}_2$ allora esiste un unico punto $c \in \mathbb{D}$ in cui f ha molteplicità doppia.

Prodotti di Blaschke

Definizione

Dati $a_1, \ldots, a_n \in \mathbb{D}$ e $\theta \in \mathbb{R}$, chiamiamo prodotto di Blaschke di grado n la funzione

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - a_j}{1 - \bar{a}_j z}.$$

Indichiamo con \mathcal{B}_n i prodotti di Blaschke di grado n.

Notiamo che $\mathcal{B}_1 = \operatorname{Aut}(\mathbb{D})$.

Proposizione

Valgono le sequenti:

- (i) so ha che $f \in \mathcal{B}_{n+1}$ se e solo se $f^*(\cdot, w) \in \mathcal{B}_n$, con $w \in \mathbb{D}$ fissato;
- (ii) se $f \in \mathcal{B}_2$ allora esiste un unico punto $c \in \mathbb{D}$ in cui f ha molteplicità doppia.

Data f, indichiamo con R_f la rotazione iperbolica attorno a c.

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa geodetica, in quest'ordine.

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega\big(0,f^*(z,v)\big) \leq \omega\big(0,f^*(w,v)\big) + \omega\big(f^*(w,v),f^*(z,v)\big)$$

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa qeodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$

$$\le \omega(0, f^*(w, v)) + \omega(w, z)$$

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$

$$\le \omega(0, f^*(w, v)) + \omega(w, z)$$

$$= \omega(0, f^*(v, w)) + \omega(w, z)$$

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa geodetica, in quest'ordine.

$$\omega(0, f^*(z, v)) \leq \omega(0, f^*(w, v)) + \omega(f^*(w, v), f^*(z, v))$$

$$\leq \omega(0, f^*(w, v)) + \omega(w, z)$$

$$= \omega(0, f^*(v, w)) + \omega(w, z)$$

$$\leq \omega(0, f^*(u, w)) + \omega(u, v) + \omega(w, z).$$

Teorema

Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z, w, v, u \in \mathbb{D}$ vale

$$\omega(0, f^*(z, v)) \le \omega(0, f^*(u, w)) + \omega(z, w) + \omega(v, u). \tag{5}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e $R_f(v), R_f(u), w$ e z giacciono sulla stessa geodetica, in quest'ordine.

Prendendo v = z e u = w otteniamo

$$\omega(0, f^h(z)) \le \omega(0, f^h(w)) + 2\omega(z, w)$$

Corollario

 $Sia\ f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \setminus \operatorname{Aut}(\mathbb{D}). \ Allora\ per\ ogni\ z, w \in \mathbb{D}\ vale$

$$\omega(|f^h(z)|, |f^h(w)|) \le 2\omega(z, w). \tag{6}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e z e w giacciono sulla stessa geodetica, passante per il centro di rotazione di R_f .

Corollario

Sia $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \setminus \operatorname{Aut}(\mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ vale

$$\omega(|f^h(z)|, |f^h(w)|) \le 2\omega(z, w). \tag{6}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e z e w giacciono sulla stessa geodetica, passante per il centro di rotazione di R_f .

$$\omega(|f^h(z)|, |f^h(w)|) = \frac{1}{2} \log \left(\frac{1 + \frac{|f^h(z)| - |f^h(w)|}{1 - |f^h(w)||f^h(z)|}}{1 - \frac{|f^h(z)| - |f^h(w)|}{1 - |f^h(w)||f^h(z)|}} \right)$$

Corollario

Sia $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \setminus \operatorname{Aut}(\mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ vale

$$\omega(|f^h(z)|, |f^h(w)|) \le 2\omega(z, w). \tag{6}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e z e w giacciono sulla stessa geodetica, passante per il centro di rotazione di R_f .

$$\omega(|f^{h}(z)|, |f^{h}(w)|) = \frac{1}{2} \log \left(\frac{1 + \frac{|f^{h}(z)| - |f^{h}(w)|}{1 - |f^{h}(w)||f^{h}(z)|}}{1 - \frac{|f^{h}(z)| - |f^{h}(w)|}{1 - |f^{h}(w)||f^{h}(z)|}} \right)$$

$$= \frac{1}{2} \log \left(\frac{1 + |f^{h}(z)|}{1 - |f^{h}(z)|} \right) - \frac{1}{2} \log \left(\frac{1 + |f^{h}(w)|}{1 - |f^{h}(w)|} \right)$$

Corollario

Sia $f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \setminus \operatorname{Aut}(\mathbb{D})$. Allora per ogni $z, w \in \mathbb{D}$ vale

$$\omega(|f^h(z)|, |f^h(w)|) \le 2\omega(z, w). \tag{6}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e z e w giacciono sulla stessa geodetica, passante per il centro di rotazione di R_f .

$$\omega(|f^{h}(z)|, |f^{h}(w)|) = \frac{1}{2} \log \left(\frac{1 + \frac{|f^{h}(z)| - |f^{h}(w)|}{1 - |f^{h}(w)||f^{h}(z)|}}{1 - \frac{|f^{h}(z)| - |f^{h}(w)|}{1 - |f^{h}(w)||f^{h}(z)|}} \right)$$

$$= \frac{1}{2} \log \left(\frac{1 + |f^{h}(z)|}{1 - |f^{h}(z)|} \right) - \frac{1}{2} \log \left(\frac{1 + |f^{h}(w)|}{1 - |f^{h}(w)|} \right)$$

$$= \omega(0, f^{h}(z)) - \omega(0, f^{h}(w)) \le 2\omega(z, w).$$

Corollario

 $Sia\ f \in \operatorname{Hol}(\mathbb{D}, \mathbb{D}) \setminus \operatorname{Aut}(\mathbb{D}). \ Allora\ per\ ogni\ z, w \in \mathbb{D}\ vale$

$$\omega(|f^h(z)|, |f^h(w)|) \le 2\omega(z, w). \tag{6}$$

Si ha l'uguaglianza se e solo se $f \in \mathcal{B}_2$ e z e w giacciono sulla stessa geodetica, passante per il centro di rotazione di R_f .

Prendendo w=0 e raccogliendo i logaritmi otteniamo

$$\frac{1}{2}\log\left(\frac{1+|f^h(z)|}{1-|f^h(z)|}\cdot\frac{1-|f^h(0)|}{1+|f^h(0)|}\right) \le 2\omega(0,z)$$

Disuguaglianza di Golusin

Teorema

(disuguaglianza di Golusin, 1945) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z \in \mathbb{D}$ vale

$$|f^{h}(z)| \le \frac{|f^{h}(0)| + \frac{2|z|}{1+|z|^{2}}}{1+|f^{h}(0)|\frac{2|z|}{1+|z|^{2}}}.$$
(7)

Disuguaglianza di Golusin

Teorema

(disuguaglianza di Golusin, 1945) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z \in \mathbb{D}$ vale

$$|f^{h}(z)| \le \frac{|f^{h}(0)| + \frac{2|z|}{1+|z|^{2}}}{1+|f^{h}(0)|\frac{2|z|}{1+|z|^{2}}}.$$
(7)

$$\frac{1}{2}\log\left(\frac{1+|f^h(z)|}{1-|f^h(z)|}\cdot\frac{1-|f^h(0)|}{1+|f^h(0)|}\right) \le \log\left(\frac{1+|z|}{1-|z|}\right),$$

Disuguaglianza di Golusin

Teorema

(disuguaglianza di Golusin, 1945) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D}) \setminus \text{Aut}(\mathbb{D})$. Allora per ogni $z \in \mathbb{D}$ vale

$$|f^{h}(z)| \le \frac{|f^{h}(0)| + \frac{2|z|}{1+|z|^{2}}}{1+|f^{h}(0)|\frac{2|z|}{1+|z|^{2}}}.$$
(7)

Traccia della dimostrazione:

$$\frac{1}{2}\log\left(\frac{1+|f^h(z)|}{1-|f^h(z)|}\cdot\frac{1-|f^h(0)|}{1+|f^h(0)|}\right) \le \log\left(\frac{1+|z|}{1-|z|}\right),$$

da cui

$$\frac{1+|f^h(z)|}{1-|f^h(z)|} \le \frac{1+|f^h(0)|}{1-|f^h(0)|} \left(\frac{1+|z|}{1-|z|}\right)^2.$$

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^h(z_n)| = 1 + o((|z_n| - 1)^2)$$
 (8)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\ con\ |z_n|\longrightarrow 1.\ Allora\ f\in \operatorname{Aut}(\mathbb{D}).$

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^{h}(z_{n})| = 1 + o((|z_{n}| - 1)^{2})$$
(8)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\ con\ |z_n|\longrightarrow 1.\ Allora\ f\in \operatorname{Aut}(\mathbb{D}).$

Traccia della dimostrazione: per assurdo $f \notin \operatorname{Aut}(\mathbb{D})$. La disuguaglianza di Golusin si riscrive come

$$\frac{\left(1+|f^h(0)|\right)(1+|z_n|)^2}{\left(1-|f^h(0)|\right)\left(1+|f^h(z_n)|\right)}\left(1-|f^h(z_n)|\right) \ge (1-|z_n|)^2.$$

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^{h}(z_{n})| = 1 + o((|z_{n}| - 1)^{2})$$
(8)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}$ con $|z_n|\longrightarrow 1$. Allora $f\in\mathrm{Aut}(\mathbb{D})$.

Traccia della dimostrazione: per assurdo $f \notin \operatorname{Aut}(\mathbb{D})$. La disuguaglianza di Golusin si riscrive come

$$\frac{\left(1+|f^h(0)|\right)(1+|z_n|)^2}{\left(1-|f^h(0)|\right)\left(1+|f^h(z_n)|\right)}\left(1-|f^h(z_n)|\right) \ge (1-|z_n|)^2.$$

Poiché $f \not\in \operatorname{Aut}(\mathbb{D})$, per Schwarz-Pick $|f^h(0)| < 1$ e dunque

Teorema

(Bracci-Kraus-Roth, 2020) Sia $f \in \text{Hol}(\mathbb{D}, \mathbb{D})$ tale che

$$|f^{h}(z_{n})| = 1 + o((|z_{n}| - 1)^{2})$$
(8)

per qualche successione $\{z_n\}_{n\in\mathbb{N}}\subset\mathbb{D}\ con\ |z_n|\longrightarrow 1.\ Allora\ f\in \operatorname{Aut}(\mathbb{D}).$

Traccia della dimostrazione: per assurdo $f \notin \operatorname{Aut}(\mathbb{D})$. La disuguaglianza di Golusin si riscrive come

$$\frac{\left(1+|f^h(0)|\right)(1+|z_n|)^2}{\left(1-|f^h(0)|\right)\left(1+|f^h(z_n)|\right)}\left(1-|f^h(z_n)|\right) \ge (1-|z_n|)^2.$$

Poiché $f \notin \operatorname{Aut}(\mathbb{D})$, per Schwarz-Pick $|f^h(0)| < 1$ e dunque

$$\lim_{n \to +\infty} \frac{\left(1 + |f^h(0)|\right)(1 + |z_n|)^2}{\left(1 - |f^h(0)|\right)\left(1 + |f^h(z_n)|\right)} = \frac{2\left(1 + |f^h(0)|\right)}{1 - |f^h(0)|} < +\infty. \quad \Box$$