Наиболее вероятное значение Бинома

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Теория Вероятностей (/Subjects/Details?id=1)

Тема

Классические дискретные распределения (/Topics/Details?id=39)

Раздел

Биномиальное распределение и распределение Бернулли (/SubTopics/Details?id=135)

Дата публикации

16.09.2018

Дата последней правки

05.10.2019

Последний вносивший правки

sobody

Рейтинг

**

Условие

Найдите наиболее вероятное значение (может быть несколько), которое принимает случайная величина $X \sim B(n,p)$. То есть следует найти такое значение k, что $P(X=k) \geq P(X=t), \forall t \in \{1,\dots,n\}$. Найдите наиболее вероятное значение для $X \sim B(10,0.8)$.

Решение

Обозначим через k^* наиболее вероятное значение, принимаемое случайной величиной X. Рассмотрим следующие равенства:

$$rac{P(X=k^*+1)}{P(X=k^*)} = rac{C_n^{k^*+1}p^{k^*+1}(1-p)^{n-k^*-1}}{C_n^{k^*}p^{k^*}(1-p)^{n-k^*}} = rac{n-k^*}{k^*+1}rac{p}{1-p}$$

$$\frac{P(X=k^*-1)}{P(X=k^*)} = \frac{C_n^{k^*-1}p^{k^*-1}(1-p)^{n-k^*+1}}{C_n^{k^*}p^{k^*}(1-p)^{n-k^*}} = \frac{k^*(1-p)}{p(n-k^*+1)}$$

Нетрудно показать, что при $n \geq k$ первое из этих равенств не возрастает по k, а второе - не убывает по k. Следовательно, вероятность может достигать максимума лишь в точках, принадлежащих одному непрерывному интервалу. Каждое из входящих в этот интервал значений k^* должно быть целым числом и

удовлетворять неравенствам следующей системы (так как значения на 1 больше и на 1 меньше чем k^* не должны быть более вероятными чем k^*):

$$\begin{cases} \frac{n-k^*}{k^*+1} \frac{p}{1-p} \le 1\\ \frac{k^*(1-p)}{p(n-k^*+1)} \le 1 \end{cases}$$

Решая получаем ответ $np+p-1 \le k^* \le np+p$. В соответствии с чем можно обозначить множество наиболее вероятных значений $K^* = \{k^* \in N: np+p-1 \le k^* \le np+p\}$.

Теперь найдем наиболее вероятное значение для $X\sim (10,0.8)$. Получаем неравенство $10*0.8+0.8\geq k^*\geq 10*0.8+0.8-1$, откуда $k^*=8$.

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 - 2022 Sobopedia