Name: Key

_____/ 25

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

- 1. [11 points] Let P(2,2) be a point on the graph of $f(x) = \frac{6x-6}{x+1}$.
 - a. Find the slope of the secant line passing through P and the point Q(1, f(1)).

$$m = \frac{0-2}{1-2} = 2$$

b. Find the slope of the secant line passing through P and the point Q(3, f(3)).

$$m = \frac{3(-2)}{3-2} = (1)$$

c. The table below lists the slope of the secant line passing through the point P and the point Q(x, f(x)) for several values of x.

x	1.9	1.99	1.999	2.001	2.01	2.1
f(x)	1.8621	1.9866	1.9987	2.0013	2.0133	2.1290
m _{sec}	1.8621 1.3793	1.3378	1.3338	1.3328	1.3289	1.2903

Use the information in the table to estimate the slope of the tangent line to f(x) at the point P(2,2).

$$m \approx \frac{4}{3}$$
 or 1.33

d. Use the slope from part (c) above to write an equation of the tangent line at point P.

$$y-2=\frac{4}{3}(x-2) \Rightarrow y=\frac{4}{3}x-\frac{2}{3}$$

e. Below is a sketch of the graph of $f(x) = \frac{6x-6}{x+1}$. Sketch the tangent line to the graph at the point P.

2. [9 points] Use the graph of the function of f(x) to answer the following questions. Give the most complete answer; if the limit is infinite, indicate that with ∞ or $-\infty$. If a value does not exist, write DNE.

a.
$$f(-2) = \underline{-2}$$

b.
$$f(1) = -1$$

c.
$$f(4) = 0$$

d.
$$\lim_{x \to -3} f(x) = \underline{\text{DNE}}$$
 e. $\lim_{x \to -2} f(x) = \underline{\text{-2}}$ **f.** $\lim_{x \to 1} f(x) = \underline{\text{-3}}$

e.
$$\lim_{x \to 0} f(x) = \frac{-2}{1 + 2}$$

f.
$$\lim_{x \to 1} f(x) = \frac{-3}{}$$

g.
$$\lim_{x \to 4^{+}} f(x) = \underline{1}$$
 h. $\lim_{x \to 4^{-}} f(x) = \underline{0}$ i. $\lim_{x \to 4} f(x) = \underline{DNE}$

$$h. \lim_{x \to a} f(x) = \underline{0}$$

$$\lim_{x\to 4} f(x) = \underline{DNE}$$

3. [5 points] On the axes below, sketch a graph satisfying all of the properties listed below.

$$\lim_{x \to 1^{-}} f(x) = 2, \quad \lim_{x \to 1^{+}} f(x) = 3, \quad f(1) = 5, \quad \lim_{x \to 4} f(x) = 5, \quad f(4) = 0$$

