A language is said to be decidable if and only if some Turing machine decides it. The Turing machine is a decider if all braches halts on all inputs.

a.

Let L_1 and L_2 be two decidable Languages. M_1 and M_2 be the Turing machines that decides L_1 and L_2 respectively.

There exists a Turing machine M' such that, decides $L_1 \cup L_2$ i.e. $L(M') = L_1 \cup L_2$

The description of M' is as follows:

M' = on input w:

- 1. Run M_1 on w. if M_1 accepts, then **accept**.
- 2. Else Run $\,M_2^{}\,$ on w. If $\,M_2^{}\,$ accepts, then $\it accept$
- 3. Else *reject*

M' Accepts w if either M_1 or M_2 accepts it. If both rejects, M' rejects.

Therefore, $L(M') = L_1 \cup L_2$. The decidable languages are closed under union.

b.

Let $L_{\rm l}$ and $L_{\rm 2}$ be two decidable Languages. $M_{\rm l}$ and $M_{\rm 2}$ be the Turing machines that decides $L_{\rm l}$ and $L_{\rm 2}$ respectively.

There is a Turing machine M' such that, it decides concatenation of L_1 and L_2 i.e., $L(M') = L_1$ o L_2 .

The description of M' is as follows:

M' =on input w:

- 1. Split w into two parts w_1, w_2 such that $w = w_1 w_2$
- 2. Run M_1 on w_1 . If M_1 rejected then **reject**.
- 3. Else run M_2 on w_2 . If M_2 rejected then \emph{reject} .
- 4. Else accept

Try each possible cut of w. If first part is accepted by M_1 and the second part is accepted by M_2 then w is accepted by M'. Else, w does not belong to the concatenation of languages and is rejected.

Therefore, $L(M') = L_1 o L_2$. The decidable languages are closed under concatenation.

C.

Let L be a Turing decidable Language and M be the Turing machine that decides L.

There is a Turing machine M' such that, it decides star of L i.e., $L(M')=L^*$.

The description of M is as follows:

M' = On input w:

1. Split w into n parts such that

 $w = w_1 w_2 ... w_n$ in different ways.

2. Run *M* on w_i for i = 1, 2, ...n.

If M accepts each of these strings w_i , accept.

浙ICP备16034203号-2

3. All cuts have been tried without success then *reject*.

When w is cut into different substrings such that every string is accepted by M, then w belongs to the star of L and thus M' accepts w after finite number of steps, else w will be rejected. Since, there are finitely many possible cuts of w, M' will halt after finitely many steps.

Therefore, $L(M') = L^*$. The decidable languages are closed under star.

d.

For a Turing decidable language L, Turing machine decides language M then the complement is M' on input w.

The description of M' is as follows:

M' =on input w:

1. Accepts if M rejects

2. Else accept.

Since M' does the opposite of what ever M does, it decides the complement of L.

Therefore, decidable languages are closed under complementation.

e.

Let L_1 and L_2 be two Turing decidable Languages. M_1 and M_2 be the Turing machines that decides L_1 and L_2 respectively.

There is a Turing machine M' such that, it decides intersection of L_1 and L_2 i.e., $L(M') = L_1 \cap L_2$.

The description of M' is as follows:

M' =on input w:

1. Run M_1 on w. if M_1 rejects then **reject**.

2. Else run $\,M_2^{}$ on $w_{}$ if $\,M_2^{}$ rejects then \it{reject} .

3. Else *accept*.

 ${\it M'}$ Accepts ${\it w}$ if both ${\it M}_1$ and ${\it M}_2$ accept it. If either of them rejects then ${\it M'}$ rejects ${\it w}$.

Therefore, $L(M') = L_1 \cap L_2$. The decidable languages are closed under intersection.