CSCI 561 - Foundation for Artificial Intelligence

Discussion Section (Week 5) Midterm-1 Review

PROF WEI-MIN SHEN SHEN@ISI.EDU

Material covered by midterm1

- Covers everything studied in class up to and including CSP and RL (not include "logic")
- Lectures vs book: what to know?
 - If something is covered both in the book and the slides of lecture/discussion: use the slides.
 - If something is covered in the book only and was not covered at all in the lecture/discussions: you do not need to know it.
 - If something is covered in the book and in the slides of lecture/discussion but with additional details provided in the book: you need to know both, and use the slides for the overlapping parts.

Midterm 1 Instructions:

- Feb 19, 2020, 5-6:30PM, SGM123
- Maximum credits/points for this midterm: 100 points
- Credits/points for each question is indicated on the question
- Closed book
- No books or any other material are allowed
- Draw your number and go to your seat
- Leave your bags/phones in front of the room
- Write down your name and student ID
- No questions during the exam
- Be brief: a few words are often enough if they are precise and use the correct vocabulary studied in class
- Just bring pens/erasers and your seat number.
- Nothing else on table.

Sample exam Questions

- 1. General Al
- 2. Search Concepts
- 3. Comparing Strategies
- 4. Game Playing
- 5. CSP
- 6. RL (self-review examples in lecture)

Note: The sample questions posted on DEN may be different or harder/easier then the actual questions in Midterm1 exam (90 min)

- The Turing test defines the conditions under which a machine can be said to be "intelligent".
- ____^F A* is an admissible algorithm.
- DFS is faster than BFS.
- TDFS has lower asymptotic space complexity than BFS.
- When using the correct temperature decrease schedule, simulated annealing is guaranteed to find the global optimum in finite time.

- Alpha-beta pruning accelerates game playing at the cost of being an approximation to full minimax.
 - ______ Hill-climbing is an entirely deterministic algorithm.
- The exact evaluation function values do not affect minimax decision as long as the ordering of these values is maintained.
- _____ A perfectly rational backgammon-playing agent never loses
- Hill climbing search is best used for problem domains with densely packed goals

- A suitable representation for states: permutation of all cities in the tour
 <A, B, C, D, E>
- The initial state of the problem: random permutation of all cities
- A good goal test to use in this problem: minimize the distance travelled
- Good operators to use for search: permute 2 cities
- Which search algorithm would be the most appropriate to use here if we want to minimize the distance of the tour found?

Local Search - GA/SA/hill climbing, etc...

Suboptimal solution (long path)

Optimal solution

Minimax

The schedules of the customers are:

Company I: Webflix: 8:00-9:00am

Company 2: Anazon: 8:30-9:30am

Company 3: Pied Piper: 9:00-10:00am

Company 4: Hooli: 9:00-10:00am

Company 5: Gulu: 9:30-10:30am

The profiles of your engineers are:

- Albacore can maintain Pied Piper and Hooli.
- 2) Bosam can maintain all companies, but Webflix.
- 3) Coleslaw can maintain all companies.
- Using Company as variable, formulate this problem as a CSP problem with variables, domains, and constraints. Constraints should be specified formally and precisely, but may be implicit rather than explicit.
- \square Draw the constraint graph associated with your CSP.

Variable	Domain			
C1	С			
C2	ВС			
СЗ	ABC			
C4	ABC			
C5	BC			

Constraints:

 $C1 \neq C2$, $C2 \neq C3$, $C3 \neq C4$, $C4 \neq C5$, $C2 \neq C4$, $C3 \neq C5$.

Variable	Domain			
C1	С			
C2	ВС			
СЗ	ABC			
C4	ABC			
C 5	ВС			

Constraints:

 $C1 \neq C2$, $C2 \neq C3$, $C3 \neq C4$, $C4 \neq C5$, $C2 \neq C4$, $C3 \neq C5$.

- ☐ Show the domains of the variables after running arc-consistency on this initial graph (after having already enforced any unary constraints).
- Give one solution to this CSP.

$$C1 = C$$
, $C2 = B$, $C3 = C$, $C4 = A$, $C5 = B$.

Variable	Domain		
C1	С		
C2	В		
СЗ	AC		
C4	AC		
C5	ВС		

CSP Example: Map Coloring

- 7 variables {WA,NT,SA,Q,NSW,V,T}
- Each variable has the same domain {red, green, blue}
- No two adjacent variables have the same value:

WA≠NT, WA≠SA, NT≠SA, NT≠Q, SA≠Q, SA≠NSW, SA≠V,Q≠NSW, NSW≠V

Backtracking Search: Map Coloring

Map Coloring: Forward Checking

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
1: R	RGB	RGB	RGB	RGB	RGB	RGB

Map Coloring: Forward Checking

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
1: R	X GB	RGB	RGB	RGB	X GB	RGB

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	X GB	2: G	RGB	RGB	X GB	RGB

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	2: G	RXR	RGB	XX B	RGB

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	G	R ≱®	RGB	XX B	RGB
R	XX	G	RAR	3:B	X	RGB

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	G	RXB	RGB	XX B	RGB
R	XX	G	RASK	3:B	XXX	RGB

Other inconsistencies

Q

WA

NT

Impossible assignments that forward checking does not detect

				,		<u> </u>
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	XGB	RGB	RGB	RGB	XGB	RGB
R	XXX	G	RX	RGB	X B	RGB
R	XX	G	RAS	3:B	XXX	RGB

Map Coloring: Constraint Propagation

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	ЖGВ	RGB
R	XGB	2: G	RGB	RGB	X GB	RGB

Go back to assigning "GREEN" to Queensland

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	2: G	RXR	RGB	XX B	RGB

Immediate propagation removes GREEN for NSW, SA & NT

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	G	R ≱R	RGB	X B	RGB

Since possible values for NT changed, continue to check arc consistency from NT

WA	NT	Q	NSW	V	SA	Т
RGB	RGB	RGB	RGB	RGB	RGB	RGB
R	X GB	RGB	RGB	RGB	X GB	RGB
R	XX	G	RX	RGB	XXX	RGB

Constraint NT≠SA

Constraint violation with SA immediately detected