AE 308: Control Theory AE 775: System Modelling, Dynamics & Control

Dr. Arnab Maity
Department of Aerospace Engineering
Indian Institute of Technology Bombay
Powai, Mumbai 400076, India

Introduction

- Simplest possible control strategy
- P controller impacts closed loop behavior on two counts
 - Modify overall loop gain and hence steady state behavior
 - Change dominant pole location, and thereby both relative and transient response
- It is quite restrictive as it only provides one design degree of freedom.
 Thus it is not possible to achieve a wide range of performance in the closed loop

Root locus design steps

- Convert specifications into the desired dominant poles
- \bullet Draw root locus of G(s), for K from 0 to ∞ and establish the existing pole location
- Superimpose closed loop performance parameters onto the root locus
- Use graphical technique to determine the total gain

Example 1

ullet Design a P controller using the root locus to achieve the following performance parameters in closed loop

Ramp error constant ≥ 2.5

Peak overshoot < 20%

Settling time ≤ 3.0 Seconds

$$G(S) = \frac{40}{s(s+4)(s+10)}$$

Ramp error constant is given by

$$K_V = \lim_{s \to 0} sG(s)C_{controller}(s)$$

Example 1 - solution

• Convert the specifications into poles

$$\begin{split} M_p &= e^{\dfrac{-\zeta\pi}{\sqrt{1-\zeta^2}}} \leq 0.20 \rightarrow \zeta \geq 0.456 \\ T_s &\approx \dfrac{4}{\sigma} \leq 3.0 \rightarrow \sigma \geq 1.33 \\ \omega_n &= \dfrac{\sigma}{\zeta} = 2.92 \quad \omega_d = \omega_n \sqrt{1-\zeta^2} = 2.59 \\ \text{pole better than: } &-1.33 \pm j2.59 \end{split}$$

 There are no requirements on steady-state response, which indicates that we are required to maintain existing tracking performance, as far as possible

Example 1 - solution

• Step response of uncompensated system

Example 1 - solution

- \bullet Basic system has no overshoot and a settling time of much less than 3 \sec
- ullet However, K_V is 1.0, as against the requirement of 2.5
- Therefore, a higher gain is feasible, if the desired time response is achieved

Example 1 - solution

Root locus of given system

Example 1 - solution

• Design verification - step response

Example 1 - Analysis

- We find that by satisfying a single specification of ramp error constant, it is possible to also meet specifications on transient response
- \bullet Further, while root locus predicts a 19.8% overshoot, step response shows only 19% overshoot, indicating that we could increase gain marginally

Example 2

Consider the following plant

$$G(s) = \frac{1}{(s+1)^3}$$

- Design a P gain to achieve a peak time of around $3.4~\mathrm{s}$, and 2% settling time of around $7\mathrm{s}$
- In case the design is not feasible, give the best possible solution

Example 2 - Solution

Convert specifications

$$T_spprox rac{4}{\sigma}
ightarrow\sigmapprox 0.571$$

$$T_p=rac{\pi}{\omega_d}pprox 3.4
ightarrow\omega_d=0.924$$
 Pole: $-0.571\pm j0.924$

Example 2 - Solution

Root locus design domain

Example 2 - Solution

• Design visualization - Step response

Example 2 - Analysis

- ullet We find that P-control is unable to meet the requirements as stated
- In this context, a compromise is necessary, which can be arrived at, by bringing in additional information
- If settling time is treated as a soft requirement, we can use a higher gain to improve tracking
- Similarly, if settling time is a hard requirement, we can reduce gain to also improve the peak overshoot

Example 3

ullet Design a P-controller using bode plot to achieve the following performance for the compensated plant

Phase margin $\geq 45.6^0$ Bandwidth ≥ 3.00

$$G(S) = \frac{40}{s(s+4)(s+10)}$$

Also comment on change in gain margin

Example 3 - Solution

Bode plot of uncompensated plant

Example 3 - Solution

- \bullet PM of uncompensated plant is 70.9^0 and can be reduced by 25.3^0
- ullet This is possible if new GCO is 2.36
- Thus, we can increase gain by $9~{\rm dB}~(2.82)$ to change GCO, which will also increase BW from current 1.47

Example 3 - Solution

Bode plot of compensated plant

Example 3 - Solution

• Step response of compensated plant

Example 3 - Analysis

- $\omega_b = 3.04$
- $K_V = 2.82$
- \bullet Design gives slightly higher M_p but gives much better $\omega_b,$ and $K_V,$ along with better T_s

Example 4

Consider the following plant

$$G(s) = \frac{1}{s(s+1)(s+5)}$$

• Determine maximum increase possible in ramp error constant to maintain a GM > 6 dB and PM $> 30^0$, and give the dominant pole and closed loop damping ratio

Example 4 - Solution

Bode plot of uncompensated plant

Example 4 - Solution

- For maximum ramp error constant, gain should be maximum
- ullet If we increase gain by more than $18.5~{
 m dB}$ PM will be less than 30^0
- ullet Thus, we can add gain by $18.5~\mathrm{dB}$
- Thus, open loop TF will become

$$KG = \frac{8.2}{s(s+1)(s+5)}$$

• Maximum possible ramp error constant will be 1.64

Example 4 - Solution

• Bode plot of compensated plant

PI Control - Configuration

Introduction

ullet Given below is the basic form of the PI controller

$$G_{PI} = K_p + \frac{K_I}{s} = K\left(1 + \frac{1}{T_i s}\right) = \frac{K(s + z_1)}{s}$$

- \bullet PI controller adds a pole at the origin and a zero at $s=-z_1(1/T_i)$, where T_i is the integrator time constant
- When $T_i \to 0$, PI controller becomes a pure integrator. If it is assumed that pure integral controller adds a zero at infinity, it is same as $T_i \to 0$
- As we can see, with PI control, system type increases by 1, so that tracking performance improves significantly.

Effect on root locus

Effect of integral gain on root locus

Effect on bode plot

Effect of integral gain on bode plot

Effect on nyquist plot

Effect of integral gain on nyquist plot

Design problem description

- \bullet Problem of PI control design is generally posed in terms of achieving a specified K_V
- This is usually stated along with required stability margins and/or dominant system behaviour
- ullet PI controller is used mainly for improving the tracking of step and ramp inputs

Root locus design steps

- ullet Root locus is quite convenient for the design of PI control as dominant poles are explicitly visualized
- This is done by generating uncompensated root locus and noting existing dominant poles and step error constant
- As system type automatically increases, we decide the location of zero on the guideline that the negative phase added at existing dominant poles is $\approx 3-5^0$
- ullet Lastly, proportional gain is decided by the amount of increase desired in the K_V .

Example 5

• Consider the following open loop transfer function

$$G(s) = \frac{8}{(s+1)(s+5)}$$

- ullet Design a PI controller to achieve a K_v of 8.0, while maintaining the existing dominant closed loop poles and also determine changes, if any
- Existing dominant poles:

$$s^2 + 6s + 13 = 0 \rightarrow s_{1,2} = -3 \pm 2j$$

Example 5 - Solution

ullet In actual practice, it is more convenient to fix K/Ti first, by imposing the KV requirement, as follows.

$$G_{PI} = \frac{K}{T_i s} (T_i s + 1)$$

$$\lim_{s \to 0} (s G_{PI} G(s)) = K_V$$

$$1.6 \frac{K}{T_i} = 8 \to \frac{K}{T_i} = 5$$

$$G_{PI}(s) = \frac{5}{s} (T_i s + 1)$$

ullet Thus, we see that T_i now fixes the zero location, while leaving K_V unaffected

Example 5 - Solution

 \bullet T_i is obtained from angle condition, as follows

$$\angle G_{PI} = \angle (T_i s + 1)|_{s = -3 \pm 2j} - \angle s|_{s = -3 \pm 2j} = -5^0$$

$$\tan^{-1} \left(\frac{2T_i}{1 - 3T_i}\right) = \tan^{-1} \left(\frac{2}{-3}\right) - 5^0 = 146.3^0$$

$$\frac{2T_i}{1 - 3T_i} = -8.01 \to T_i \approx 2 \to G_{PI}(s) = \frac{5}{s}(2s + 1)$$

Example 5 - Solution

• Design visualization - step response

Example 5 - Analysis

- \bullet We find that, as expected, compensated system response is significantly affected, even though only -5^0 angle is added to pole
- ullet We find that PI designed using root locus, while ensuring the K_V , significantly increases gain at higher frequencies, and, adversely affects transient response
- ullet Therefore, PI should be employed when the plant has sufficient stability margins

Basics

- ullet PI Controllers can also be designed in frequency domain using GM, PM as the specifications, along with ramp error constant requirement
- Similar to root locus, design of PI with bode aims to ensure that uncompensated margins are maintained
- This results in the need to increase low frequency gain, without affecting the high frequency behaviour
- In that sense, it aims to achieve a better control, but also becomes a bit more complex than the root locus method.

PI design methodology using Bode

- \bullet Design of PI in frequency domain is primarily governed by the requirements on low frequency gain, that is to be achieved for compensated system, and is driven by K_V
- \bullet In addition, PM is required to be nearly unchanged so that existing transient response is ensured
- However, as increase in K changes GCO, we first compensate for K, and later choose (1/Ti) such that GM is available at ω_{PCO} (1 decade lower than GCO)

Example 6

• Consider the following open loop transfer function

$$G(s) = \frac{8}{(s+1)(s+5)}$$

• Design a PI controller to achieve a K_V of 8.0 and Phase margin of at least 45^0

Example 6 - Solution

ullet Let us increase overall gain by a factor of 7 and assume the PI controller of the following form

$$G_{PI}(s) = \frac{7(s+z)}{s}$$

Example 6 - Solution

Bode plot of assumed system

Example 6 - Solution

- ullet Existing PM is 116.6^0 which reduces to 46^0 , when K_p is 7 (pprox 17)dB
- Next, we choose a suitable value of corner frequency, which turns out to be 0.7 (1 decade lower than GCO, where $GCO \approx 6.65$)
- ullet The resulting PI controller is as follows

$$G_{PI}(s) = \frac{7(s+0.7)}{s}$$

• It should be noted that the above PI controller changes both the ω_{GCO} and PM, as shown next

Example 6 - Solution

Bode plot of compensated system

Example 6 - Solution

- PM reduces to 39^{0} , while K_{V} is 7.84
- ullet There is now a need to reduce the gain to recover the PM, which can be done in two ways
- \bullet Reduce K to 6 or reduce 1/Ti to 0.6, resulting in the following controller options

$$G_{PI}(s) = \frac{6(s+0.7)}{s}$$
 $G_{PI}(s) = \frac{7(s+0.6)}{s}$

• In both these cases, the ramp error constant reduces to 6.72, so that PM can be maintained

Example 6 - Solution

Bode plot of compensated system

Example 6 - Solution

• Design visualization - step response

Lag Compensator - Introduction

Concept of Lag compensator

- ullet PI controller increases system type, which may not be desired for systems that are already type 1 or higher
- ullet Lag compensator is counterpart of PI, which improves the ramp error constant, without changing system type
- The basic structure of lag compensator is as follows

$$G_{Lag}(s) = K_c \frac{\beta(Ts+1)}{(\beta Ts+1)} = K_c \frac{\left(s + \frac{1}{T}\right)}{\left(s + \frac{1}{\beta T}\right)}$$

Lag Compensator - Introduction

Lag compensator structure

- Here, K_c is compensator gain, T is the compensator time constant and β is a parameter that decides the amount of improvement in ramp error constant
- Lag compensator adds a zero at s=-1/T and a pole at $s=-1/(\beta T)$, to the plant, so that system type is preserved
- Further, as a bonus, we also get additional design degrees of freedom, to better achieve the specifications

Lag Compensator - Introduction

Lag compensator features

- ullet Further, pole is closer to the origin than zero, as eta>1, so that lag compensator adds a net negative angle at the dominant poles
- \bullet We also see that in the limit when $\beta\to\infty$, pole lies at the origin, which results in PI controller
- Similarly, when $T \to 0$ and $\beta \to \infty$, pole lies at origin, while zero lies at infinity, resulting in a pure integral control
- Lastly, lag compensator has one more design variable, in comparison to PI, which is expected to help in better management of performance specifications
- It should be noted here that increase in error constant is $K_c\beta$, so that we can get same tracking performance, while ensuring different transient response

Effect of β on step response

Let us consider the following plant, augmented with the lag compensator

$$G = \frac{1}{(s+2.5)(s+4)}$$
$$G_c = \frac{\beta(s+1)}{(\beta s+1)}$$
$$\beta = 1, 2, 5, 8, 10$$

Effect of β on step response

• Effect of β on step response

Effect of T on step response

Let us consider the following plant, augmented with the lag compensator

$$G = \frac{1}{(s+2.5)(s+4)}$$
$$G_c = \frac{10(Ts+1)}{(10Ts+1)}$$
$$T = 1, 2, 5, 8, 10$$

Effect of T on step response

ullet Effect of T on step response

Generic bode plot of lag compensator

Consider a lag compensator

$$G_{Lag}(s) = \frac{\left(s + \frac{1}{2}\right)}{\left(s + \frac{1}{20}\right)}$$

Generic bode plot of lag compensator

• Generic bode plot of lag compensator

References 1

- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- Norman S. Nise: "Control Systems Engineering", John Wiley & Sons, Inc., New Jersey, Sixth Edition, 2011.
- Ashok Joshi: "System Modeling Dynamics and Control", Lecture Notes, IIT Bombay, Mumbai, 2019.