Divide and Conquer: Closest Pair of Points

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 8

- Several objects on screen
- Basic step: find closest pair of objects

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes time $n \log n$

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes time $n \log n$
- Use divide and conquer

Points p in 2D — p = (x, y)

- Points p in 2D p = (x, y)
- Usual Euclidean distance between $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$

$$d(p_1, p_2) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

- Points p in 2D p = (x, y)
- Usual Euclidean distance between $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$

$$d(p_1, p_2) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

- Given *n* points p_1, p_2, \ldots, p_n , find the closest pair
 - Assume no two points have same x or y coordinate
 - Can always rotate points slightly to ensure this

- Points p in 2D p = (x, y)
- Usual Euclidean distance between $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$

$$d(p_1, p_2) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

- Given *n* points p_1, p_2, \ldots, p_n , find the closest pair
 - Assume no two points have same x or y coordinate
 - Can always rotate points slightly to ensure this
 - ...or modify the algorithm slightly!

- Points p in 2D p = (x, y)
- Usual Euclidean distance between $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$

$$d(p_1, p_2) = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

- Given *n* points p_1, p_2, \ldots, p_n , find the closest pair
 - Assume no two points have same x or y coordinate
 - Can always rotate points slightly to ensure this
 - ...or modify the algorithm slightly!
- Brute force
 - Compute $d(p_i, p_i)$ for every pair of points
 - $O(n^2)$

- Given n 1D points x_1, x_2, \dots, x_n , find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$

- Given n 1D points $x_1, x_2, ..., x_n$, find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$
- Sort the points $O(n \log n)$

- Given n 1D points $x_1, x_2, ..., x_n$, find the closest pair
 - $d(p_i, p_i) = |x_i x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

In 1 dimension

- Given n 1D points x_1, x_2, \dots, x_n , find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

In 2 dimensions

In 1 dimension

- Given n 1D points $x_1, x_2, ..., x_n$, find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

- Divide and conquer
- Split the points into two halves by vertical line

In 1 dimension

- Given n 1D points x_1, x_2, \dots, x_n , find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

- Divide and conquer
- Split the points into two halves by vertical line
- Recursively compute closest pair in each half

In 1 dimension

- Given n 1D points x_1, x_2, \dots, x_n , find the closest pair
 - $d(p_i, p_j) = |x_j x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

- Divide and conquer
- Split the points into two halves by vertical line
- Recursively compute closest pair in each half
- Compare shortest distance in each half to shortest distance across the dividing line

In 1 dimension

- Given n 1D points x_1, x_2, \dots, x_n , find the closest pair
 - $d(p_i, p_i) = |x_i x_i|$
- Sort the points $O(n \log n)$
- In sorted order, nearest points to p are its neighbours
 - O(n) scan to find minimum separation between adjacent points

- Divide and conquer
- Split the points into two halves by vertical line
- Recursively compute closest pair in each half
- Compare shortest distance in each half to shortest distance across the dividing line
- How to do this efficiently?

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , P sorted by x-coordinate
 - P_y , P sorted by y-coordinate

F

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , *P* sorted by *x*-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , *P* sorted by *x*-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R
- How to compute Q_x , Q_y , R_x , R_y efficiently?

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , *P* sorted by *x*-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R
- How to compute Q_x , Q_y , R_x , R_y efficiently?
- Q_{\times} is first half of P_{\times} , R_{\times} is second half of P_{\times}

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , *P* sorted by *x*-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R
- How to compute Q_x , Q_y , R_x , R_y efficiently?
- lacksquare Q_x is first half of P_x , R_x is second half of P_x
- Let x_R be smallest x coordinate in R

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , P sorted by x-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R
- How to compute Q_x , Q_y , R_x , R_y efficiently?
- lacksquare Q_x is first half of P_x , R_x is second half of P_x
- Let x_R be smallest x coordinate in R
- For $p \in P_y$, if x coordinate of p less than x_R , move p to Q_y , else R_y

- Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, compute
 - P_x , P sorted by x-coordinate
 - P_y , P sorted by y-coordinate
- Divide P by vertical line into equal size Q, R
- How to compute Q_x , Q_y , R_x , R_y efficiently?
- lacksquare Q_x is first half of P_x , R_x is second half of P_x
- Let x_R be smallest x coordinate in R
- For $p \in P_y$, if x coordinate of p less than x_R , move p to Q_y , else R_y
- All of this can be done in O(n)

■ Want to compute $ClosestPair(P_x, P_y)$

- Want to compute $ClosestPair(P_x, P_y)$
- Split (P_x, P_y) as (Q_x, Q_y) , (R_x, R_y)

- Want to compute ClosestPair(P_x , P_y)
- Split (P_x, P_y) as (Q_x, Q_y) , (R_x, R_y)
- Recursively compute ClosestPair(Q_x , Q_y) and ClosestPair(R_x , R_y)

- Want to compute ClosestPair (P_x, P_y)
- Split (P_x, P_y) as (Q_x, Q_y) , (R_x, R_y)
- Recursively compute ClosestPair(Q_x , Q_y) and ClosestPair(R_x , R_y)
- How to combine these recursive solutions?

■ Let d_Q , d_R be closest distances in Q, R, respectively

- Let d_Q , d_R be closest distances in Q, R, respectively
- $\blacksquare \mathsf{Set} \ \delta = \min(d_Q, d_R)$

- Let d_Q, d_R be closest distances in Q, R, respectively
- Set $\delta = \min(d_Q, d_R)$
- lacksquare Only need to consider points within distance δ on either side of the separator

- Let d_Q, d_R be closest distances in Q, R, respectively
- Set $\delta = \min(d_Q, d_R)$
- Only need to consider points within distance δ on either side of the separator
- lacksquare No pair outside this band can be closer than δ

■ Divide the distance δ band into boxes of side $\delta/2$

- Divide the distance δ band into boxes of side $\delta/2$
- Cannot have two points inside the same box
 - Box diagonal is $\delta/\sqrt{2}$

- Divide the distance δ band into boxes of side $\delta/2$
- Cannot have two points inside the same box
 - Box diagonal is $\delta/\sqrt{2}$
- Any point within distance δ must lie in a 4 × 4 neighbourhood of boxes
 - Check each point against 15 others

- Divide the distance δ band into boxes of side $\delta/2$
- Cannot have two points inside the same box
 - Box diagonal is $\delta/\sqrt{2}$
- Any point within distance δ must lie in a 4 × 4 neighbourhood of boxes
 - Check each point against 15 others
- From Q_y , R_y , extract S_y , points in δ band sorted by y

- Divide the distance δ band into boxes of side $\delta/2$
- Cannot have two points inside the same box
 - Box diagonal is $\delta/\sqrt{2}$
- Any point within distance δ must lie in a 4 × 4 neighbourhood of boxes
 - Check each point against 15 others
- From Q_y , R_y , extract S_y , points in δ band sorted by y
- Scan S_y from bottom to top, comparing each p with next 15 points in S_y

- Divide the distance δ band into boxes of side $\delta/2$
- Cannot have two points inside the same box
 - Box diagonal is $\delta/\sqrt{2}$
- Any point within distance δ must lie in a 4 × 4 neighbourhood of boxes
 - Check each point against 15 others
- From Q_y , R_y , extract S_y , points in δ band sorted by y
- Scan S_y from bottom to top, comparing each p with next 15 points in S_y
- Linear scan

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qy)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qy)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qy)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

Analysis

■ Sort P to get P_x , $P_y - O(n \log n)$

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qv)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

- Sort P to get P_x , $P_y O(n \log n)$
- Recursive algorithm
 - Construct (Q_x, Q_y) , $(R_x, R_y) O(n)$
 - Construct S_y from Q_y , $R_y O(n)$
 - Scan $S_y O(n)$

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qy)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

- Sort P to get P_x , $P_y O(n \log n)$
- Recursive algorithm
 - Construct (Q_x, Q_y) , $(R_x, R_y) O(n)$
 - Construct S_y from Q_y , $R_y O(n)$
 - \blacksquare Scan $S_y \longrightarrow O(n)$
- Recurrence: T(n) = 2T(n/2) + O(n), like merge sort

Pseudocode

```
def ClosestPair(Px,Py):
  if len(Px) \le 3:
    compute pairwise distances
    return closest pair and distance
  Construct (Qx,Qy), (Rx,Ry)
  (q1,q2,dQ) = ClosestPair(Qx,Qy)
  (r1,r2,dR) = ClosestPair(Rx,Ry)
  Construct Sy from Qy, Ry
  Scan Sy, find (s1,s2,dS)
  return (q1,q2,dQ), (r1,r2,QR), (s1,s2,dS)
  depending on which of dQ, dR, dS is minimum
```

- Sort P to get P_x , $P_y O(n \log n)$
- Recursive algorithm
 - Construct (Q_x, Q_y) , $(R_x, R_y) O(n)$
 - Construct S_y from Q_y , $R_y O(n)$
 - \blacksquare Scan $S_y \longrightarrow O(n)$
- Recurrence: T(n) = 2T(n/2) + O(n), like merge sort
- Overall, $O(n \log n)$