Number Theory - II

Q1: Let p, N be integers with p|N. Prove that for any integer x, $[[x \mod N] \mod p] = [x \mod p]$. Show that, in contrast, $[[x \mod p] \mod N]$ need not equal $[x \mod N]$.

A1: If p|N then $p \leq N$ and $\mathbb{Z}_p \subseteq \mathbb{Z}_N$. We can suppose that x is positive without loss of generality. For a positive x with respect to N and p there are 3 cases:

- $0 \le x < p$, then $x \in \mathbb{Z}_p$ and so $[x \mod N] = [x \mod p]$, then $[[x \mod N] \mod p] = [x \mod p]$ is true.
- $p \leq x < N$ then $\exists x' \in \mathbb{Z}_N$ s.t. x = pk + x' for some $k \in \mathbb{N}$. If $x' \in \mathbb{Z}_N$ and x' > p then $\exists x'' \in \mathbb{Z}_p$ s.t. x' = pk' + x'' for some $k' \in \mathbb{N}$. If x' = p then x'' = 0 and k' := k' + 1 instead. If x' < p then x'' = x' where $x'' \in \mathbb{Z}_p$ and k' := 0. As a result, x = pk + pk' + x'' = p(k + k') + x''.
- $N \leq x$ then $\exists x' \in \mathbb{Z}_N$ s.t. x = Nk + x' for some $k \in \mathbb{N}$. Since p|N we can say $\exists k_p \in \mathbb{N}$ where $N = pk_p$. By following a similar logic to what we did above, x = Nk + pk' + x''. So, $x = pk_pk + pk' + x'' = p(k_pk + k') + x''$.

As the 3 cases demonstrate, the claim $[[x \mod N] \mod p] = [x \mod p]$ is true, both sides eventually reduce to x''.

However, it is not always true that $[[x \mod p] \mod N] = [x \mod N]$. We can prove this just by giving a counter-example. Take any p, N = pk for some $k \in \mathbb{N}$ and x = pk + r where p < r < N. Then $[x \mod N] = r > p$, but on the left hand-side since we do $[x \mod p]$ first, nothing after that will never be equal to r as $r \notin \mathbb{Z}_p$.

- **Q2:** ¹ Let ρ be a polynomial-time algorithm that, on input 1^n , outputs a (description of a) cyclic group G, its order q (with ||q|| = n), and a generator g. If the discrete-logarithm problem is hard relative to ρ , then prove that the following hash function family (Gen, H) is a fixed-length collision-resistant hash function family.
 - Gen: on input 1^n , run $\rho(1^n)$ to obtain (G, q, g), and then select $h \leftarrow G$. Output $s := \langle G, q, g, h \rangle$ as the key.
 - H: given a key $s = \langle G, q, g, h \rangle$ and input $(x_1, x_2) \in Z_q \times Z_q$, output $H^s(x_1, x_2) := g^{x_1} \times h^{x_2} \in G$.

A2: I am following a proof similar to what is shown in section 8.4.2. of KL Book $2^{\rm nd}$ edition. To prove that if discrete-logarithm problem is hard relative to ρ then the hash function family (Gen, H) is secure, we take the contrapositive and assume that there exists an algorithm \mathcal{A} than can break the hash function family, and construct an algorithm B that easily solves the discrete-logarithm problem. We see our constructed game in algorithm 1: for a security parameter n, Chal and B plays discrete-logarithm game, B and A plays hash-collision game. A breaks the hash-collision with probability $\epsilon(n)$.

Algorithm 1 The mixed game.

```
Chal runs \rho(n) and obtains (G, q, g).
h \leftarrow G.
(G, q, g, h) is given to B.
At B, s = \langle G, q, g, h \rangle is constructed.
B gives s to \mathcal{A}.
\mathcal{A} returns x, x' to B.
if x \neq x' and H^s(x) = H^s(x') then
  if h = 1 then
      Return 0.
  else
     Parse x as (x_1, x_2) and x' as (x_1', x_2') where x_1, x_2, x_1', x_2' \in \mathbb{Z}_q.
     Return [(x_1 - x_1')(x_2 - x_2')^{-1} \mod q].
  end if
else
  Return 0.
end if
```

What does it mean to have $H^s(x_1, x_2) = H^s(x_1', x_2')$? It means:

$$H^{s}(x_{1}, x_{2}) = g^{x_{1}}h^{x_{2}} = g^{x'_{1}}h^{x'_{2}} = H^{s}(x'_{1}, x'_{2})$$

¹"Intractable Problems" segment of Dan Boneh's Coursera course discusses this. Also see KL Book ed.2 section 8.4.2

Now if $g^{x_1}h^{x_2} = g^{x_1'}h^{x_2'}$ we can't have $x_1 = x_1'$ in \mathbb{Z}_q because that would imply $x_2 = x_2'$ in \mathbb{Z}_q and then inadvertnetly x = x', which is not a collision. So indeed $x_2 \neq x_2'$ in \mathbb{Z}_q and $x_1 \neq x_1'$ in \mathbb{Z}_q . Leaving g's and h's alone we get:

$$q^{x_1}q^{-x_1'} = h^{x_2'}h^{-x_2}$$

Since q is a prime order, the inverse $[(x'_2 - x_2)^{-1} \mod q]$ exists. Show this inverse as i_2 (2 to indicate x_2 and x'_2). If we raise the expression above to this power:

$$g^{(x_1-x_1')\times i_2} = h^{(x_2'-x_2)\times i_2} = h^1 = h$$

We see that $g^{(x_1-x_1')^{i_2}} = h$, which solves the discrete logarithm of $log_g h$ to be $[(x_1 - x_1') \times i_2 \mod q] = [(x_1 - x_1')(x_2 - x_2')^{-1} \mod q]$, which is what our algorithm returned. This tells us that if \mathcal{A} find a collision with $\epsilon(n)$ probability then B solves discrete-logarithm with $\epsilon(n)$ probability. Since we assumed it is hard to break the discrete-logarithm probability, this $\epsilon(n)$ must be negligible, therefore the hash function is secure!