AGH, WIET	Alternatywne Źródła Energii	Kierunek: EiT
Nr ćwiczenia:	Pomiary sprawności ogniw słonecznych w zmiennym oświetleniu oraz przy zmiennej temperaturze – praca z urządzeniem I-V Curve Tracer For Solar Cells Qualification.	Ocena:
Data wykonania: 16.10.2018	Imię i nazwisko:	

1. Cele ćwiczenia

Celem wykonanego ćwiczenia było zmierzenie charakterystyk prądowo-napięciowych oraz najważniejszych parametrów dla ogniwa słonecznego. Zostało ono podzielone na dwa etapy: pomiar parametrów przy zmiennym oświetleniu oraz pomiar przy zmiennej temperaturze. W pierwszym etapie pomiary zostały dokonane dla ogniwa słonecznego nie zacienionego, po czym zakryta została 1/6 jego powierzchni. W drugim etapie zostały zbadane parametry ogniwa słonecznego w zależności od jego temperatury. Uzyskano wówczas zmiany temperatury w zakresie od 19,2 °C do 52,5 °C.

Pomiary zostały wykonane za pomocą urządzenia *I-V Curve Traser for Solar Cells Qualification*, v. 4.1.1.

2. Parametry ogniwa przed i po zacienieniu (o temp: 26,9 °C)

	Pełne oświetlenie	Po zacienieniu
I _{SC} [A]	8,059	6,927
U _{oc} [V]	0,612	0,614
$I_{M}[A]$	7,577	6,485
$\mathbf{U}_{\mathbf{M}}\left[\mathbf{V}\right]$	0,500	0,502
Pmax [W]	3,788	3,255
FF [-]	0,768	0,765
Eff [%]	14,14	12,16

Oznaczenia:

I_{sc} - Prąd zwarcia

Uoc - Napięcie obwodu otwartego

 $egin{array}{ll} {\bf I_M} & - \mbox{Prad przy P}_{\mbox{MAX}} \ {\bf U_M} & - \mbox{Napięcie przy P}_{\mbox{MAX}} \ {\bf P}_{\mbox{MAX}} \ - \mbox{Moc maksymalna} \end{array}$

 E_{ff} - Sprawność ogniwa ($\eta = P_{max} / P(hv) * 100\%$)

FF - Współczynnik wypełnienia

3. Charakterystyka I-V ogniwa przed i po zacienieniu

Pomiary charakterystyk zostały dokonane dla temperatury modułu równej 26,9°C oraz przy natężeniu promieniowania świetlnego na poziomie ponad 1000 W/m².

Rysunek 1 Charakterystyka prądowo - napięciowa ogniwa przed i po zacienieniu

4. Straty względne (pod wpływem zmiany oświetlenia)

	Straty względne [%]
I_{SC}	14,05
$\mathbf{P}_{\mathbf{MAX}}$	14,07
FF	14,07

Przy zacienieniu 1/6 powierzchni ogniwa, wartości parametrów I_{SC}, P_{MAX} i FF spadły o około 14%. (1/7) Oznacza to, że zaciemnienie ma istotny wpływ na działanie ogniwa. Dodatkowym problemem jest szeregowy sposób połączenia ogniw, przez co jeden zacieniony segment może być obciążeniem dla pozostałych. W takim przypadku wiąże się to z dodatkowym zmniejszeniem sprawności modułu. W celu zapobiegania dodatkowym stratom, do ogniw montuje się równolegle diody bypass. Są to elementy, które w momencie zwykłej pracy modułu są spolaryzowane zaporowo i nie przewodzą. Zaczynają przewodzić dopiero w momencie, gdy któreś ogniwo staje się obciążeniem dla pozostałych. Wówczas dioda bocznikuje segment, dzięki czemu zostaje on odłączony.

5. Wykresy:

Rysunek 2 Charakterystyka napięcia obwodu otwartego od temperatury Uoc(T)

Rysunek 3 Charakterystyka sprawności badanego ogniwa w funkcji temperatury $\eta(T)$

6. Parametry ogniwa dla jego minimalnej i maksymalnej temperatury (19,5 °C oraz 52,3 °C – etap chłodzenia)

	Temperatura 19,5 °C	Temperatura 52,3 °C
Isc [A]	8,028	8,183
Uoc [V]	0,630	0,564
Im [A]	7,410	7,431
Um [V]	0,513	0,453
Pmax [W]	3,798	3,365
FF [-]	0,751	0,729
Eff[%]	14,16	12,67

7. Charakterystyka prądowo-napięciową (I-V) ogniwa dla najniższej i najwyższej temperatury pracy (19,5 °C oraz 52,3 °C)

Rysunek 4 Charakterystyka prądowo - napięciowa ogniwa dla dwóch skrajnych temperatur

8. Straty względne (pod wpływem zmiany temperatury)

	Straty względne [%]
Uoc	10,51
Pm	11,40
FF	10,52

Zmiana temperatury otoczenia sprawia, że zmianie ulega również temperatura samego ogniwa fotowoltaicznego. Następstwem tego są zmiany właściwości fizycznych materiału półprzewodnikowego (krzemu), z którego ogniwa zostały wykonane:

- współczynnik absorbcji promieniowania
- ruchliwość ładunków
- szerokość przerwy energetycznej
- samoistna koncentracja nośników ładunku
- rezystywność półprzewodnika

Niestety, ale nie ma skutecznej ochronny pasywnej przed temperaturą. Jednak duże znaczenie w szybkości nagrzewnia sie modułów ma ich jakość. Należy tu zaznaczyć, że nie tylko bardzo ważna w tym przypadku będzie jakość zastosowanego krzemu, ale również jakość wykonania obudowy, szyb hartowanych oraz foli.

Do najczęściej stosowanych metod jest zaliczane są również:

- montaż modułów w odpowiedniej odległości od powierzchni dachu, aby zapewnić odpowiednią, swobodną cyrkulację powietrza z tyłu paneli
- montaż paneli w miejscach podatnych na ruchy powietrza (wiatr), które zapewnią ich naturalne chłodzenie

9. Sugerując się zmianami napięcia w pełnym przedziale temperatur dla zakresu chłodzenia, oszacować można następujące zależności:

- * Wraz ze wzrostem temperatury pracy modułu o 1 °C, napięcie obwodu otwartego maleje o około 1,944 mV.
- * Wraz ze spadkiem temperatury pracy modułu o 1 °C, napięcie obwodu otwartego wzrasta o około 1,944 mV

10. Wnioski końcowe:

Na podstawie przeprowadzonych pomiarów, można stwierdzić, iż bardziej niekorzystnym parametrem wpływającym na sprawność ogniw, a zarazem całych modułów fotowoltaicznych jest zacienienie. Powoduje ono znaczny spadek energii otrzymywanej z ogniwa fotowoltaicznego.

Jeśli chodzi o przeciwdziałanie zmian temperatury nie istnieją żadne pasywne metody chroniące przed nimi. Zabezpieczyć się można jedynie poprzez zwiększenie jakości wykonania paneli oraz odpowiednie ich ulokowanie na dachu.

W kwestii zacienienia, parametr ten ma również duży wpływ na sprawność pracy modułów (w badaniach laboratoryjnych czynniki zostały dobrane w taki sposób, iż efekt ich

działania jest identyczny). Aczkolwiek skuteczną metodą niwelującą go jest stosowanie diod bypass'owych lub pokrywanie ogniw materiałami, które pod wpływem np. deszczu mogą zostać oczyszczone z zabrudzeń. Jednak może to mieć wpływ na zabrudzenie jednego lub kilku modułów połączonych szeregowo. Natomiast jeśli cała powierzchnia panelu jest zacieniona - cały panel nie

Dodatkowo należy wspomnieć, że oba czynniki niezależnie wpływają na ogniwo fotowoltaiczne. W związku z tym istnieją dwa skrajne scenariusze:

- ogniwo jest zabrudzone, a temperatura jest duża (pesymistyczny)
- ogniwo jest czyste, a temperatura jest niska (optymistyczny)

W rzeczywistości wraz z zachmurzeniem obniża się temperatura (więcej chmur, mniej słońca, a w przypadku deszczu znaczne obniżenie temperatury). Przykładowy scenariusz: temperatura po zachmurzeniu spada z 52 °C do 20 °C (moc wzrasta z 3,4 W do 3,8 W), natomiast zachmurzenie powoduje zacienienie, a moc spada 10 - krotnie [1], co oznacza moc 0.38 W.

Jak widać z tego prostego przykładu, można rekompensować wysoką temperaturę ogniw stosując chłodzenie aktywne (czy jest sens tracić energię, aby ją potem odzyskać?), natomiast walka z zachmurzeniem jest praktycznie niemożliwa.

Bibliografia:

[1] http://solaris18.blogspot.com/2010/02/moc-ogniw-fotowoltaicznych-w-pochmurny.html