CONIC SECTIONS

EE24BTECH11030 - J.KEDARANANDA

- 14. If a > 2b > 0 then the positive value of m for which $y = mx b\sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x a)^2 + y^2 = b^2$ is (2002S)
 - a) $\frac{2b}{a^2-4b^2}$
 - b) $\frac{\sqrt{a^2-4b^2}}{2b}$
 - c) $\frac{2b}{a-2b}$
 - d) $\frac{b}{a-2b}$
- 15. The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^2 = 4ax$ is another parabola with directrix (2002S)
 - a) x = -a
 - b) x = -a/2
 - c) x = a
 - d) x = a/2
- 16. The equation of the common tangent to the curves $y^2 = 8x$ and xy = -1 is (2002S)
 - a) 3y = 9x + 2
 - b) y = 2x + 1
 - c) 2y = x + 8
 - d) y = x + 2
- 17. The area of the quadrilateral formed by the tangents at the end points of the latus rectum to the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$, is (2003S)
 - a) 27/4sq.units
 - b) 9sq.units
 - c) 27/2sq.units

- d) 27sq.units
- 18. The focal chord to $y^2 = 16x$ is tangent to $(x 6)^2 + y^2 = 2$, then the possible values of the slope of this chord, are (2003S)

1

- a) -1, 1
- b) -2, 2
- c) -2, -1/2
- d) 2, -1/2
- 19. For hyperbola $\frac{x^2}{\cos^2 \alpha} \frac{y^2}{\sin^2 \alpha} = 1$ which of the following remains constant with change in '\alpha' (2003S)
 - a) abscissae of vertices
 - b) abscissae of foci
 - c) eccentricity
 - d) directrix
- 20. If tangents are drawn to ellipse $x^2+2y^2=2$, then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is (2004S)
 - a) $\frac{1}{2x^2} + \frac{1}{4y^2}$
 - b) $\frac{1}{4x^2} + \frac{1}{2x^2}$
 - c) $\frac{x^2}{2} + \frac{y^2}{4} = 1$
 - d) $\frac{x^2}{4} + \frac{y^2}{2} = 1$
- 21. The angle between the tangents drawn from the point (1,4) to the parabola $y^2 = 4x$ is (2004S)
 - a) $\pi/6$

- b) $\pi/4$
- c) $\pi/3$
- d) $\pi/2$
- 22. If the line $2x + \sqrt{6}y = 2$ touches the hyperbola $x^2 2y^2 = 4$, then the point of contact is (2004S)
 - a) $(-2, \sqrt{6})$
 - b) $(-5, 2\sqrt{6})$
 - c) $(\frac{1}{2}, \frac{1}{\sqrt{6}})$
 - d) $(4, -\sqrt{6})$
- 23. The minimum area of the triangle formed by the tangent to the $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ & coordinate axes is (2005S)
 - a) ab sq. units
 - b) $\frac{a^2+b^2}{2}$ sq. units
 - c) $\frac{(a+b)^2}{2}$ sq. units
 - d) $\frac{a^2+ab+b^2}{3}$ sq. units
- 24. Tangent to the curve $y = x^2 + 6$ at a point (1,7) touches the circle $x^2 + y^2 + 16x + 12y + c = 0$ at a point Q.Then the coordinates of Q are (2005S)
 - a) (-6,-11)
 - b) (-9,-13)
 - c) (-10,-15)
 - d) (-6,-7)
- 25. The axis of the parabola is along the line y=x and the distance of its vertex and focus from origin are $\sqrt{2}$ and $2\sqrt{2}$ respectively. If the vertex and focus both lie in the first quadrant, then the equation of the parabola is (2006-3M,-1)
 - a) $(x + y)^2 = (x y 2)$
 - b) $(x y)^2 = (x + y 2)$

c)
$$(x - y)^2 = 4(x + y - 2)$$

d)
$$(x - y)^2 = 8(x + y - 2)$$

- 26. A hyperbola, having the transverse axis of length $2 \sin \theta$, is confocal with the ellipse $3x^2 + 4y^2 = 12$. Then its equation is (2007-3 marks)
 - a) $x^2 \csc^2 \theta y^2 \sec^2 \theta = 1$
 - b) $x^2 \sec^2 \theta y^2 \csc^2 \theta = 1$
 - c) $x^2 \sin^2 \theta y^2 \cos^2 \theta = 1$
 - d) $x^2 \cos^2 \theta y^2 \sin^2 \theta = 1$
- 27. Let a and b be non-zero real numbers. Then, the equation $(ax^2 + by^2 + c)(x^2 5xy + 6y^2 = 0)$ represents (2008)
 - a) four straight lines, when c=0 and a,b are of the same sign.
 - b) two straight lines and a circle, when a=b, and c is of sign opposite to that of a
 - c) two straight lines and a hyperbola, when a and b are of the same sign and c is of opposite to that of a
 - d) a circle and a ellipse, when a and b are of the same sign and c is of sign opposite to that of a
- 28. Consider a branch of the hyperbola $x^2 2y^2 2\sqrt{2}x 4\sqrt{2}y 6 = 0$ with vertex at a point A.Let B be one of the end points of its latusrectum. If C is the focus of the hyperbola nearest to the point A,then the area of the triangle ABC is (2008)
 - a) $1 \sqrt{\frac{2}{3}}$
 - b) $\sqrt{\frac{3}{2}} 1$
 - c) $1 + \sqrt{\frac{2}{3}}$
 - d) $\sqrt{\frac{3}{2}} + 1$
- 29. The line passing through the extremity A of the major axis and extremity B of the minor

axis of the ellipse $x^2 + 9y^2 = 9$

meets its auxillary circle at the point M. Then the area of the triangle with the vertices at A,M and the origin O is (2009)

- a) $\frac{31}{10}$
- b) $\frac{29}{10}$
- c) $\frac{21}{10}$
- d) $\frac{27}{10}$