Automaton Models Inspired by Peptide Computing

M. Sakthi Balan

Department of Computer Science University of Western Ontario London, Ontario Canada

Contents

- **1** Introduction
- Peptide Computing
- 3 Automaton Models
- Conclusion

About the paper

- String Binding-Blocking automata and Rewriting Binding-Blocking Automata.
- Blocking of string of symbols
 - to read them later, or
 - to store some information.
- Analyze the power and study their hierarchical structure.

Objective

- Imparting ideas from peptide computing into a finite state automata and study its behavior.
 - Blocking,
 - Unblocking.
- How a sequential machine behaves when ideas from peptide computing are added to it.

Motivation

Automaton Models

- Peptide computing.
- Interaction between peptides and antibodies.
- Binding of antibodies to specific regions in peptides.
- Affinity power associated with binding.
- Permanent or temporary elimination of part of peptide sequences by attaching antibodies having higher affinity.

Peptide Computing

- Proposed by H. Hug and R. Schuler [Hug, Schuler 2001].
- Solve some difficult combinatorial problems.
 - Satisfiability problem.
 - Hamiltonian path problem.
- Theoretical model peptide computer defined in [Balan, Jurgensen 2007].

Introduction

Peptide sequence with antibodies

Generic Automaton Model

- Finite State Automata with
 - Blocking function,
 - Unblocking function, and
 - Affinity function.
- Blocking of symbols: Binding-Blocking Automata.
- Blocking of strings: String Binding-Blocking Automata.

Variations in the Automaton Model

- Position of the head, after unblocking occurs:
 - Leftmost transition moves to leftmost unmarked, unblocked symbol.
 - Locally leftmost transition no change in the position.

String Binding-Blocking Automaton

- $\mathcal{P} = (Q, V, E, \delta, q_0, R, \beta_b, \beta_{ub}, Q_{accept})$ where
 - $Q = Q_{block} \cup Q_{unblock} \cup Q_{general}$ is the set of states (pairwise disjoint),
 - $q_0 \in Q$ is the start state,
 - V is a finite set of symbols,
 - E is the finite subset of V*,
 - δ is the transition function from $Q \times (E \cup \{\epsilon\}) \longrightarrow 2^{Q}$,
 - R is the partial order relation (called affinity/priority relation) on E, i.e., R ⊆ E × E;
 - β_b is the blocking function from $Q_{block} \longrightarrow \mathcal{L}$;
 - ullet eta_{ub} is the unblocking function from $Q_{unblock} \longrightarrow \mathcal{L}'$
 - \mathcal{L} and \mathcal{L}' are finite set of family of languages over V, i.e., $\mathcal{L} = \{L_1, L_2, \cdots, L_k\}$, and $\mathcal{L}' = \{L'_1, L'_2, \cdots L'_r\}$; and $Q_{accept} \subseteq Q$ where Q_{accept} is the set of accepting states.
 - $L_i \in \mathcal{L}$ is said to be a blocking language.
 - ullet L is called as the family of blocking.
 - ullet L' is called as the family of unblocking languages.

Transitions

- In reading state, reads a (higher priority) string and the strings are marked.
 - Head can read a string only when all symbols are neither marked nor blocked.
- In blocking state, blocks the maximal L-string starting from the position of the head.
- In unblocking state, unblocks all *L*-strings.

Instantaneous Description

- Transition starts in the state q_0 from the first symbol.
- At any point of time system will be in any one of the state: reading, blocking, or unblocking.
- String is accepted if all symbols are marked and the state of the system is in Q_{accept}.

State Set

$$egin{array}{ll} Q_{general} &= \{q_0,q_{a_1},q_{a_2},q_f\} \ Q_{block} &= \{q^{block_a}\} \ Q_{unblock} &= \{q^{unblock_a}\} \ Q_{accept} &= \{q_f\} \end{array}$$

(Un)blocking functions

$$eta_b(q^{block_a}) = \{a^n b \mid n \ge 0\}$$

 $eta_{ub}(q^{unblock_a}) = \{a^n b \mid n \ge 0\}$

Transitions

$$\begin{array}{ll} \delta(q_0,a) &= \{q^{block_a}\} \\ \delta(q^{block_a},\epsilon) &= \{q_{a_1}\} \\ \delta(q_{a_1},a) &= \{q_{a_2}\} \\ \delta(q_{a_2},\epsilon) &= \{q_{unblock_a}\} \\ \delta(q^{unblock_a},\epsilon) &= \{q_0\} \\ \delta(q_0,b) &= \{q_f\} \end{array}$$

$$L_1 = \{a^n b a^n \mid n > 1\}$$

State Set

$$egin{array}{ll} Q_{general} &= \{q_0,q_{a_1},q_{a_2},q_f\} \ Q_{block} &= \{q^{block_a}\} \ Q_{unblock} &= \{q^{unblock_a}\} \ Q_{accept} &= \{q_f\} \end{array}$$

(Un)blocking functions

$$eta_b(q^{block_a}) = \{a^n b \mid n \ge 0\}$$

 $eta_{ub}(q^{unblock_a}) = \{a^n b \mid n \ge 0\}$

Transitions

$$egin{array}{ll} \delta(q_{0},a) &= \{q^{block_{a}}\} \ \delta(q^{block_{a}},\epsilon) &= \{q_{a_{1}}\} \ \delta(q_{a_{1}},a) &= \{q_{a_{2}}\} \ \delta(q_{a_{2}},\epsilon) &= \{q_{unblock_{a}}\} \ \delta(q^{unblock_{a}},\epsilon) &= \{q_{0}\} \ \delta(q_{0},b) &= \{q_{f}\} \end{array}$$

$$L_1 = \{a^n b a^n \mid n \ge 1\}$$

State Set

$$egin{array}{ll} Q_{general} &= \{q_0,q_{a_1},q_{a_2},q_f\} \ Q_{block} &= \{q^{block_a}\} \ Q_{unblock} &= \{q^{unblock_a}\} \ Q_{accept} &= \{q_f\} \end{array}$$

(Un)blocking functions

$$\beta_b(q^{block_a}) = \{a^n b \mid n \ge 0\}$$

$$\beta_{ub}(q^{unblock_a}) = \{a^n b \mid n \ge 0\}$$

Transitions

$$egin{array}{ll} \delta(q_{0},a) &= \{q^{block_{a}}\} \ \delta(q^{block_{a}},\epsilon) &= \{q_{a_{1}}\} \ \delta(q_{a_{1}},a) &= \{q_{a_{2}}\} \ \delta(q_{a_{2}},\epsilon) &= \{q_{unblock_{a}}\} \ \delta(q^{unblock_{a}},\epsilon) &= \{q_{0}\} \ \delta(q_{0},b) &= \{q_{f}\} \end{array}$$

$$L_1 = \{a^n b a^n \mid n \ge 1\}$$

State Set

$$egin{array}{ll} Q_{general} &= \{q_0,q_{a_1},q_{a_2},q_f\} \ Q_{block} &= \{q^{block_a}\} \ Q_{unblock} &= \{q^{unblock_a}\} \ Q_{accept} &= \{q_f\} \end{array}$$

(Un)blocking functions

$$\beta_b(q^{block_a}) = \{a^nb \mid n \ge 0\}$$

$$\beta_{ub}(q^{unblock_a}) = \{a^nb \mid n \ge 0\}$$

Transitions

$$\delta(q_{0}, a) = \{q^{block_{a}}\}\$$
 $\delta(q^{block_{a}}, \epsilon) = \{q_{a_{1}}\}\$
 $\delta(q_{a_{1}}, a) = \{q_{a_{2}}\}\$
 $\delta(q_{a_{2}}, \epsilon) = \{q_{unblock_{a}}\}\$
 $\delta(q^{unblock_{a}}, \epsilon) = \{q_{0}\}\$
 $\delta(q_{0}, b) = \{q_{f}\}\$

$$L_1 = \{a^nba^n \mid n \ge 1\}$$

4 a a a b a q^{a_2} a a # \$ \$ \$ # \uparrow - -

3

a a a b q^{a_1} a a a # \$ \$ \$ \uparrow - - -

6 a q₀ a a b a a a # ↑ - - - # - -

```
7

a a a b a q<sup>block</sup>a a a

# # $ $ # ↑ - -
```

```
10 a \ a \ q^{unblock_a} \ a \ b \ a \ a \ a \ \# \ \# \ \uparrow \ - \ - \ \# \ \# \ -
```



```
12
a a a b a a q<sup>block</sup>a a
# # # $ # # ↑ -
```

```
13
```

```
#
```

14

 q_{a_2}

15

а а а # 16

а а # # # #

17

а # # #

Results

- L₁ accepted by StrBBA is not accepted by any BBA_I.
- In order to equate the number of a's on either side of b
 - BBA system has to first block the symbol a.
 - blocking a's will block both the strings of a.
 - if the system unblocks to equate the second string with the first string then the head comes to the first string of a, since the transition is leftmost.
- Shows StrBBA accept languages not accepted by BBA_l.

Results

- $L_2 = \{a^{2n}(aca)^n \mid n \ge 1\}.$
- L_2 is accepted by $StrBBA_{\parallel}$ whereas, it is not accepted by BBA_{\parallel} .
 - to match a with a aca, the system has to know from where the substring (aca)ⁿ starts.
 - in order to equate each a with the substring aca the system has to block all a's then look for aca.
 - blocking of a will block all a's in the substring aca.
 - This shows the system can neither equate a with aca nor it knows the position where the string aca starts.

StrBBA is more powerful than BBA

- In BBA, symbols are blocked; in StrBBA strings are blocked.
- The proof idea is:
 - Use states of the form q^X where X denotes symbols which are blocked.
 - For each reading transition we have two transitions one that blocks a string over X and the other, the normal reading transition.

Conjecture: StrBBA is simulated by Random-context grammars

- Random-context grammars without forbidden context.
- We assume that the system StrBBA has no iterative blocking.
- The main idea:
 - Have one non-terminal to generate symbols when no blocking is present.
 - When blocking occurs transfer the control to a new non-terminal which generates symbols.
 - Likewise when unblocking occurs transfer the control the first non-terminal.

Rewriting Binding-Blocking Automaton

Definition

 $\Gamma = (Q, \Sigma, V, \delta, M, \mathcal{R}, \mathcal{P}, q_0, F)$ where

- Q is the finite set of states and q₀ ∈ Q is the start state,
- Σ is the finite set of tape alphabet,
- $V \subseteq \Sigma$ is a finite set of symbols called input alphabet,
- δ is the transition function from $Q \times \bigvee_{V}^{\Sigma} \longrightarrow 2^{Q \times \{L,R\}}$,
- $M \subseteq V$ is called the set of markers;
- \mathcal{R} is the set of posets over M called as affinity set (i.e, each $R \in \mathcal{R}$ is a subset of $M \times M$),
- $\mathcal{P}: \mathbf{Q} \longrightarrow \mathcal{R}$ called as state-affinity function, and
- $F \subseteq Q$ where F is the set of accepting states.

Instantaneous Description

$$a_1$$
 a_2 \cdots a_{i-1} q a_i a_{i+1} \cdots a_n $\not b$ $\not b$ \cdots $\not b$ \cdots

Result

For any Turing machine *TM* there is an equivalent *RBBA* system which accepts the same language as *TM*.

Conclusion

String BBA

- Blocking of strings.
- Defined two transitions / and //.
- StrBBA more powerful than BBA.
- Bounded by RC without forbidden context.

Rewriting BBA

- Blocking symbols are more than one called markers.
- Equivalent to Turing machine

Conclusion Introduction **Peptide Computing Automaton Models**

Conclusion

String BBA

- Blocking of strings.
- Defined two transitions / and II.
- StrBBA more powerful than BBA.
- Bounded by RC without forbidden context.

Rewriting BBA

- Blocking symbols are more than one called markers.
- Equivalent to Turing machine.

Conclusion

- Is // more powerful than /?
- Is the power of Random-context grammars a tighter bound for the power of StrBBA?
- Is StrBBA with finite blocking languages strictly contained in StrBBA?
- Does affinity play an important role?

Thank You

