BIG DATA COURSE

80 HOURS

- 1) Introduction to Big Data & Hadoop 1 Hrs.
- 2) Importance of Data & Data Analysis
 - What is Big Data?
 - Big Data & its hype
 - Big Data Users & Scenarios
 - Structured vs Unstructured Data
 - Challenges of Big Data
 - How to overcome the challenges?
 - Divide & Conquer philosophy
 - Overview of Hadoop
- 3) Hadoop and its file system HDFS 3 hrs.
 - History of Hadoop
 - Hadoop Ecosystem
 - Hadoop Animal Planet
 - What is Hadoop?
 - Key Distinctions of Hadoop
 - Hadoop Components
 - HDFS
 - Map Reduce
 - Why Distributed File System?
 - The Design of HDFS
 - Hadoop Distributed File System
 - What is a HDFS block?
 - Why HDFS block is so large in HDFS?
 - Name Node
 - Data Node
 - Secondary Name Node
 - A file in HDFS
 - Hadoop Components/Architecture
 - Name Node, Job Tracker, Data Node, TaskTracker & Secondary Namenode
 - Understanding Storage components(NameNode, DataNode & Secondary Namenode)

- Understanding Processing components(JobTracker & TaskTracker)
- How Secondary Namenode overcomes the failure of the primary Namenode
- Anatomy of a File Read
- Anatomy of a File Write
- 4) Understanding Hadoop Cluster 1hr
 - Walkthrough of CDH VM setup
 - Hadoop Cluster modes
 - Standalone Mode
 - Pseudo-Distributed Mode
 - Distributed Mode
 - Hadoop Configuration files
 - core-site.xml
 - mapred-site.xml
 - hdfs-site.xml
 - yarn-site.xml
 - Understanding Cluster configuration
- 5) MapReduce 5 hrs.
 - Meet MapReduce
 - Word Count algorithm Traditional approach
 - Traditional approach on a Distributed system& it's drawbacks
 - MapReduce approach
 - Input & Output Forms of a MR program
 - Hadoop Data types
 - Map, Shuffle & Sort, Reduce Phases
 - Workflow & Transformation of Data
 - Word Count Code walkthrough
 - Input Split & HDFS Block
 - Relation between Split & Block
 - MR Flow with Single Reduce Task
 - MR flow with multiple Reducers
 - Data locality Optimization
 - Speculative Execution
 - Combiner
 - Partitioner
- 6) Pig 10 hrs.
 - What is Pig?
 - Why Pig?
 - Pig vs Sql
 - Execution Types or Modes

- Running Pig
- Pig Data types
- Pig Latin relational Operators
- Multi Query execution
- Pig Latin Diagnostic Operators
- Pig Latin Macro & UDF statements
- Pig Latin Commands
- Pig Latin Expressions
- Schemas
- Pig Functions
- Pig Latin File Loaders
- Pig UDF & executing a Pig UDF
- Pig Use cases
- 7) Hive 10hrs
 - Introduction to Hive
 - Pig vs. Hive
 - Hive Limitations & Possibilities
 - Hive Architecture
 - Metastore
 - Hive Data Organization
 - Hive QL
 - Sql vs. Hive QL
 - Hive Data types
 - Data Storage
 - Managed & External Tables
 - Partitions & Buckets
 - Static Partitioning & Dynamic Partitioning
 - Storage Formats
 - File Formats Sequence File & RC File
 - Using Compression in Hive
 - Built-in Serdes
 - Importing Data (Using Load Data & Insert Into)
 - Alter & Drop Commands
 - Data Querying
 - Using MR Scripts
 - Hive Joins
 - Sub Queries
 - Views

- 8) HBase -5 hrs.
 - Introduction to NoSql & HBase
 - HBase vs. RDBMS
 - HBase Use cases
 - Row & Column oriented storage
 - Characteristics of a huge DB
 - What is HBase?
 - HBase Data-Model
 - HBase logical model & physical storage
 - HBase architecture
 - HBase in operation (put, get, scan & delete)
 - Loading Data into HBase
 - HBase shell commands
 - HBase operations through Java
 - HBase operations through MR
- 9) ZooKeeper & Oozie 10hrs
 - Introduction to Zookeeper
 - Distributed Coordination
 - Zookeeper Data Model
 - Zookeeper Service
 - Introduction to Zookeeper
 - Distributed Coordination
 - Zookeeper Data Model
 - Zookeeper Service
- 10) Sqoop 5hrs
 - Introduction to Sqoop
 - Sqoop design
 - Sqoop basic Commands
 - Sqoop Table Import flow of execution
 - Sqoop Import Commands to HDFS, Hive & HBase tables
 - Sqoop Incremental Import
 - Incremental Append
 - Incremental Last Modified
 - Sqoop export flow of execution
 - Sqoop Export Command

- 11) Flume 5 hrs.
 - Flume Architecture
 - Flume Components
 - Streaming live Twitter data with Flume

12) Spark – 25 hrs.

Module 1

- Introduction & Overview
- Architecture
- Installation of Spark-- Options
- Starting the Spark--- possibilities
- Amazon EMR
- EC2
- Maven
- Standalone mode
- With mesos
- With YARN
- HDinsight
- Spark context & Spark Session

Module 2

- Basics & Spark Shell Applications
- Various possibilities
- Eclipse with Maven
- Eclipse with SBT
- Zeppelin Notebook
- IntelliJ
- Spark Jobs & API's.
- Spark Core
- RDD's
- Transformations
- Actions
- Data Frame

Module 3

- Spark with External Data Sources
- From Local file system
- From HDFS
- From Amazon S3
- From Cassandra Spark SQL
- Schema
- Case Classes
- Joins
- Catalyst Optimizer

Module 4

- Spark Streaming
- Spark MLlib
- Spark GraphX
- PySpark

INNOVATION - EDUCATION - INCUBATION