Unit 11

IEEE 802.11 Wireless LANs

Shyam Parekh

IEEE 802.11 Wireless LANs

- References
- Standards
- Basics
- Physical Layer
 - □ 802.11b
 - □ 802.11a
- MAC
- Framing Details
- Management
- PCF
- QoS (802.11e)
- Security
- Take Away Points

References

- 802.11 Wireless Networks: The Definitive Guide, M. Gast, O'Reilly, 2002*
- ANSI/IEEE Std 802.11, 1999 Edition
- ANSI/IEEE Std 802.11b-1999
- ANSI/IEEE Std 802.11a-1999

*Most drawings used in the lectures are from this book

IEEE 802 Standards & OSI Model

- Observe 802.11 MAC is common to all 802.11 Physical Layer (PHY) standards
- 802.11 PHY is split into Physical Layer Convergence Procedure (PLCP) and Physical Medium Dependent (PMD) sublayers

Related Standards

- Bluetooth
 - Originally intended for interconnecting computing and communication devices
- HIPERLAN
 - European standard for Wireless LANs
- IEEE 802.16 Broadband Wireless
 - Addresses needs of fixed and mobile broadband wireless access replacing fibers, cables, etc.

802.11 Standards and Spectrum

Key Standards	Max Rate	Spectrum (U.S.)	Year
802.11	2 Mbps	2.4 GHz	1997
802.11a	54 Mbps	5 GHz	1999
802.11b	11 Mbps	2.4 GHz	1999
802.11g	54 Mbps	2.4 GHz	2003

- 2.4 2.5 GHz for all above except 802.11a (referred to as C-Band Industrial, Scientific, and Medical (ISM))
 - Microwave ovens and some cordless phones operate in the same band
- 802.11a uses Unlicensed National Information Infrastructure bands
 - □ 5.15 5.25 GHz
 - □ 5.25 5.35 GHz
 - □ 5.725 5.825 GHz

Basic Service Sets (BSSs)

- Independent BSSs are also referred to as Ad Hoc BSSs
- Observe that the AP in an Infrastructure BSS is the centralized coordinator and could be a bottleneck

Extended Service Set (ESS)

- BSSs in an ESS communicate via Distribution System
- A DS has to keep track of stations within an ESS
- Inter Access Point protocol (IAPP) is not yet fully standardized

Network Services

- Distribution
- Integration
- Association
- Reassociation
- Disassociation
- Authentication
- Deauthentication
- Privacy
- MAC Service Data Unit (MSDU) delivery

Seamless Transition

- Seamless transition between two BSSs within an ESS
- Between ESSs, transitions are not supported

802.11b: HR/DSSS* PHY

- Use Complementary Code Keying (CCK) instead of Differential Quadrature Phase Shift Keying (DQPSK) used at lower rates
 - Provides good performance in presence of interference and multipath fading
- 4-bit (for 5.5 Mbps) or 8-bit (for 11 Mbps) symbols form MAC layer arrive at 1.375 million symbols per second
- Each symbol is encoded using CCK code word
 - $\begin{array}{ll} & \{e^{j(\phi1+\phi2+\phi3+\phi4)},\,e^{j(\phi1+\phi3+\phi4)},\,e^{j(\phi1+\phi2+\phi4)},\,-e^{j(\phi1+\phi4)},\,e^{j(\phi1+\phi2+\phi3)},\\ & e^{j(\phi1+\phi3)},\,-e^{j(\phi1+\phi2)},\,e^{j\phi1}\} \end{array}$
 - □ \$1, \$2, \$3, and \$4 are decided by symbol bits

^{*}High Rate Direct-Sequence Spread Spectrum

802.11b: HR/DSSS PHY - 2

- Uses same channels as by the low rate DS
- In US, channels 1-11 (with center frequencies at 2.412 2.462 GHz and 5 MHz distance) are available
- For 11 Mbps, Channels 1, 6, and 11 give maximum number of channels with minimum interference

802.11b: HR/DSSS PHY - 3

Long PLCP format

Optional Short PLCP format is offered for better efficiency

- Fundamental Orthogonal Frequency Division Multiplexing (OFDM) work was done in 1960s, and a patent was issued in 1970
- Basic idea is to use number of subchannels in parallel for higher throughput
- Issues with 802.11a
 - Denser Access Point deployment needed due to higher path loss
 - Higher power need

- OFDM is similar to Frequency Division Multiplexing except it does not need guard bands
 - But need guard times to minimize inter-symbol and inter-carrier interference
- Relies on "orthogonality" in frequency domain

In U.S., there are 12 channels, each 20 MHz wide

Regulatory domain	Band (GHz)	Operating channel numbers	Channel center frequencies (MHz)
United States	U-NII lower band (5.15–5.25)	36 40 44 48	5180 5200 5220 5240
United States	U-NII middle band (5.25–5.35)	52 56 60 64	5260 5280 5300 5320
United States	U-NII upper band (5.725–5.825)	149 153 157 161	5745 5765 5785 5805

Spectrum layout

- Each channel is divided into 52 subcarriers: 48 are used for data
- PLCP Protocol Data Unit (PPDU) format

- PHY uses rate of 250K symbols per second
- Each symbol uses all 48 subcarriers
- Convolution code is used by all subcarriers

Modulation and Coding

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

MAC: Access Modes

- MAC Access Modes:
 - Distributed Coordination Function (DCF)
 - Based on Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
 - Point Coordination Function (PCF)
 - Restricted to Infrastructure BSSs
 - Not widely implemented
 - Access Point polls stations for medium access

Main Ideas of MAC: CSMA/CA

- Interframe Spacing (IFS)
 - Short IFS: For atomic exchanges
 - PCF IFS: For prioritized PCF access
 - DCF IFS: For Normal DCF access
 - Extended IFS: For access after error
- Medium Access

Main Ideas of MAC: CSMA/CA - 2

- If medium is idle for DIFS interval after a correctly received frame and backoff time has expired, transmission can begin immediately
- If previous frame contained errors, medium must be free for EIFS
- If medium is busy, access is deferred until medium is idle for DIFS and exponential backoff
- Backoff counter is decremented by one if a time slot is determined to be idle
- Unicast data must be acknowledged as part of an atomic exchange

Interframe Spacing

- Interframe Spacing values are physical layer dependent
- SIFS and Slot_Time are explicitly specified, and the others are derived
 - PIFS = SIFS + Slot_Time
 - □ DIFS = SIFS + 2 Slot_Time
 - □ EIFS = SIFS + DIFS + (Ack_Time @ 1 Mbps)
- For 802.11a and 802.11b
 - SIFS is 16 μs and 10 μs, respectively
 - Slot_Time is 9 μs and 20 μs, respectively

Contention Window

- Backoff is performed for R slots: R is randomly chosen integer in the interval [0, CW]
- CWmin ≤ CW ≤ CWmax
 - \square CW_{min} = 31 slots and CW_{max} = 1023 slots (for 802.11b)
 - □ Up to CW_{max} , $CW = (CW_{min} + 1) \cdot 2^n 1$, where n = 0, 1, 2, ... is (re)transmission number

Error Recovery

- Each frame is associated with a retry counter based on frame size as compared to RTS/CTS threshold
 - Short retry counter
 - Long retry counter
- Fragments are given a maximum lifetime by MAC before discarding them

WLAN Problems

Hidden Terminal and Exposed Terminal problems

RTS/CTS Clearing

- RTS/CTS Clearing
- Used for frames larger than RTS/CTS threshold
- Tradeoff between overhead and retransmission costs

Virtual Carrier Sensing

 Virtual Carrier Sensing using Network Allocation Vector (NAV)

Fragmentation Burst

 Fragmentation and RTS/CTS thresholds are typically set to the same value

Framing Details: Format

Generic 802.11 MAC

Frame

FrameControl Field

Sequence Control Field

Framing Details: Frame Types

- Type and Subtype Identifiers
 - Management Frames
 - Control Frames
 - Data Frames

Subtype value	Subtype name	
Management frames (type=00)a		
0000	Association request	
0001	Association response	
0010	Reassociation request	
0011	Reassociation response	
0100	Probe request	
0101	Probe response	
1000	Beacon	
1001	Announcement traffic indication message (ATIM	
1010	Disassociation	
1011	Authentication	
1100	Deauthentication	
Control frames (type=01)b		
1010	Power Save (PS)-Poll	
1011	RTS	
1100	CTS	
1101	Acknowledgment (ACK)	
1110	Contention-Free (CF)-End	
1111	CF-End+CF-Ack	
Data frames (type=10) ^c		
0000	Data	
0001	Data+CF-Ack	
0010	Data+CF-Poll	
0101	CF-Ack (no data transmitted)	
0110	CF-Poll (no data transmitted)	
0111	Data+CF-Ack+CF-Poll	
(Frame type 11 is reserved)		

Broadcast/Multicast

No Acknowledgements for Broadcast or Multicast frames

NAV for Fragmentation

- Fragmentation threshold provides tradeoff between overhead and retransmission costs
- Chaining of NAV to maintain control of the medium

NAV for RTS/CTS and Power Save (PS)-Poll

RTS/CTS Lockout

Immediate PS-Poll Response

Deferred PS-Poll Response

Data Frames and Addresses

Generic Data Frames

- Addressing and DS Bits
 - BSSID is MAC address of AP WLAN interface

Function	ToDS	FromDS	Address 1 (receiver)	Address 2 (transmitter)	Address 3	Address 4
IBSS	0	0	DA	SA	BSSID	not used
To AP (infra.)	1	0	BSSID	SA	DA	not used
From AP (infra.)	0	1	DA	BSSID	SA	not used
WDS (bridge)	1	1	RA	TA	DA	SA

Illustrations of use of Addresses

- Frames to Distribution System
- Frames from Distribution System
- Wireless Distribution System

RTS/CTS Control Frames

RTS Frame

CTS Frame

Ack and PS-Poll Control Frames

Acknowledgement Frame

Power-Save Poll (PS-Poll) Frame

Management Frames

Generic Management Frames

Fixed-Length Management Fields

- Beacon Interval Field
 - In 1024 μs Time Units (TUs)
 - □ Typically 100 TUs or about 0.1 Seconds

- Capability Information
 - Used in Beacon, Probe request and Probe Response Frames

Fixed-Length Management Fields - 2

- Listen Interval
 - Number of Beacon Intervals a station waits before listening to Beacon frames

- Timestamp
 - Allows synchronization
 - Number of microseconds timekeeper has been active

Management Information Elements

Generic Management Frame Information Element

Service Set Identity (ASCII Identifier)

- DS Parameter Set
- Contention Free Parameter Set

Main Management Frames

Beacon Frame

Probe Request Frame

Probe Response Frame

Main Management Frames - 2

Authentication Frames

Association Request

(Re)Association Response

Management Operations: Scanning

Passive Scanning

Active Scanning

Management Operations: Authentication and Association

- Shared key Authentication Exchange
 - Makes use of WEP

Association Procedure

Management Operations: Buffered Frame Retrieval

Unicast Buffered Frames

Broadcast and Multicast Buffered Frames

PCF: Mechanism

- AP polls stations on its list, and maintains control of the medium
 - Announces CFPMaxDuration in Beacon
 - Transmissions are separated by PIFS
 - Each CF-Poll is a license for one frame

Basic PCF exchanges and timing

 Foreshortening of Contention Free Period

PCF Frames

- Data, Ack, and Poll can be combined in one frame
 - Data and Poll must be for the same station

Usage of Data + CF-Ack +

CF-Poll

CF-Poll Usage

PCF Frames - 2

CF-Ack + CF-Poll Usage

CF End

QoS: Shortcomings of PCF

- PCF falls short of guaranteeing desired QoS due to
 - Beacon frame delays beyond Target Beacon Transition Time (TBTT)
 - Unpredictable demand from the polled station
- 802.11e proposes an enhanced MAC protocol

Enhanced DCF of 802.11e

- Introduces Traffic Categories (TCs)
- Following attributes are functions of TC
 - AIFS (arbitration IFS)
 - CW_{min} and CW_{max}
 - □ PF (Persistence Factor)
 - □ TXOP (Transmission Opportunity) Start Time & Duration

Intra-station Virtual Backoff (802.11e)

 Intra-Station backoff to differentiate QoS across TCs

Hybrid Coordination Function of 802.11e

- Hybrid Coordination (HC) can initiate polling during contention period using PIFS
- HC can learn desired TXOPs by mobile stations
- HC uses own scheduling algorithms

Security Goals

- Security solution should provide
 - Confidentiality
 - Authentication
 - Integrity
- Maintain processing required to "reasonable" levels

Security: States of Mobile Stations

- Authentication and Association States
 - Allowed frames depend on the state

Class 1 Frames

Class 2 Frames

Control	Management	Data	
None	Association Request/Response	None	
	Reassociation Request/Response		
	Disassociation		

Class 3 Frames

Control	Management	Data
PS-Poll	Deauthentication	Any frames, including those with either the ToDS or FromDS bits set

Wired Equivalent Privacy (WEP)

- Based on Symmetric Secret Key
- A Keystream is created using the Secret Key
- Generic Stream Cipher Operation

WEP Encipherment

- WEP uses 40 bit RC4 secret key and 24 bit Initialization Vector (IV)
- Crucial aspect is how to create Keystream using Pseudorandom Number Generator

- WEP Frame Extensions
- Frame body and ICV are encrypted

WEP Decipherment

WEP Decipherment using Symmetric Secret Key

WEP based Authentication

WEP based authentication using Secret Key

WEP Flaws

- Secret key distribution
- Cipher Stream creation needs to be based true random generator
- ICV collision allows attacker to decipher
- A weak class of keys and known first byte of payload

802.1x Authentication

- 802.1x provides strong authentication
- Based on IETF's Extensible Authentication Protocol (EAP)

EAP Packet Format

802.1x Architecture

802.1x Architecture

Typical EAP Exchange

 EAP can also be used for Dynamic exchange

Flaws of 802.1x

Session Hijacking

- Man-in-the-middle attacks
- Denial of service attacks ...

Take Away Points

- Hidden and exposed terminals
- MAC based on a CSMA/CA strategy
 - Medium access scheme
 - RTS/CTS
 - NAV
- Differences with Ethernet
- Access prioritization with different IFSs
 - RTS/CTS/Data/Ack atomic exchange
- Don't need to remember
 - Frame formats
 - Physical layer details (modulation, etc.)
 - 802.11e details
 - Parameter values (will be provided if required for a problem)
- See Wi-Fi Study Guide on the class syllabus page for more information