Zadanie 2.

Paweł Jasiak – 308313 12 czerwca 2020

1 Zadanie

Ułóż algorytm rozwiązujący problem znajdowania najbliżej położonej pary punktów na płaszczyźnie oparty na następującej idei. Niech d będzie odległością pomiędzy parą najbliżej położonych punktów spośród punktów $p_1, p_2, \ldots, p_{i-1}$. Sprawdzamy, czy p_i leży w odległości mniejszej niż d, od któregoś z poprzednich punktów. W tym celu dzielimy płaszczyznę na odpowiednio małe kwadraty, tak by w każdym z nich znajdował się nie więcej niż jeden punkt. Te "zajęte" kwadraty pamiętamy w słowniku.

Twój algorytm powinien działać w oczekiwanym czasie liniowym. Jeśli nie potrafisz zbudować algorytmu opartego na powyższej idei, możesz opracować algorytm oparty na innej (ale spełniający te same wymagania czasowe).

2 Idea

Załóżmy, że dla każdej pary (p_i, p_j) prawdopodobieństwo, że jest ona parą o najmniejszej odległości jest takie samo. W przypadku złośliwego adwersarza możemy losowo przepermutować ciąg punktów.

Idea jest taka, że w każdym kroku mamy wyznaczone d będące aktualnie najmniejszą odległością pomiędzy parą punktów oraz płaszczyznę podzieloną na kwadraty o boku długości $\frac{d}{2}$. W każdym kwadracie będzie znajdował się najwyżej jeden punkt. Kwadrat będzie istotny, tylko jeśli znajduje się w nim punkt. Wszystkie istotne kwadraty będziemy pamiętać w tablicy haszującej, pamiętając jakie punkty są z nimi skojarzone. Kiedy będziemy rozpatrywać kolejny punkt sprawdzimy wszystkie kwadraty, które znajdują się dookoła kwadratu w którym znajduje się nowy punkt. Jeśli ten punkt stworzy krótszy odcinek, to będzie on krótszy niż d. W takim razie drugi punkt musi znajdować się w sąsiedztwie pierwszej lub drugiej warstwy kwadratów okalających ten kwadrat. Aby uniknąć niejasności załączam obrazek, 0 oznacza kwadrat z nowym punktem, 1 pierwsza warstwę, a 2 drugą warstwę.

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Kwadratów tych jest zaledwie 25. Będziemy mieli dwa przypadki

- nie znaleźliśmy krótszego odcinka, wtedy nie dzieje się nic ciekawego, jedynie umieszczamy nasz punkt w odpowiednim kwadracie
- \bullet znaleźliśmy nowy odcinek, a więc mamy nową wartość dzgodnie z którą przehaszowujemy płaszczyznę

3 Algorytm

Niech d oznacza nasz wynik, p_i i-ty punkt, a H tablicę haszującą.

Algorithm 1 Najkrótszy Odcinek

```
\begin{aligned} d &\leftarrow distance(p_0, p_1) \\ rehash(H, d) \\ insert(H, p_0) \\ insert(H, p_1) \\ \textbf{for } i \text{ from 2 to } n-1 \textbf{ do} \\ tmp &\leftarrow d \\ \textbf{for } x \text{ in } neighbors(H, p_i) \textbf{ do} \\ d &= min(distance(x, p_i), d) \\ \textbf{end for} \\ \textbf{if } tmp &\neq d \textbf{ then} \\ rehash(H, d) \\ \textbf{end if} \\ insert(H, p_i) \\ \textbf{end for} \end{aligned}
```

Na koniec działania, nasz wynik będzie znajdował się w d.

4 Poprawność

Chcemy utrzymywać niezmiennik, że po i-tym kroku mamy poprawnie policzoną wartość d dla zbioru punktów do p_i . Dla pierwszych dwóch punktów jest to oczywiste. Zastanówmy się nad (i+1)-krokiem. Jeśli punkt p_{i+1} tworzy mniejszą odległość z jakimś p_j , gdzie j < i+1 to taki punkt musi być w odległości mniejszej niż d (stare) od p_{i+1} , ale wszystkie takie punkty muszą znajdować się we wskazanym sąsiedztwie.

5 Złożoność

Zastanówmy się jaki jest czas przetworzenia w i-tym kroku. Mamy i(i-1) wszystkich par, z czego i-1 to nowe pary, po przyjściu i-tego punktu. Skoro założyliśmy równe prawdopodobieństwa, to szansa na to, że otrzymamy nowe d wynosi $\frac{i-1}{i(i-1)}=\frac{1}{i}$. Operacja rehash jest liniowa względem rozmiaru tablicy haszującej. Operacja insert wykonywana w oczekiwanym czasie stałym. W obu przypadkach dodamy nowy element do tablicy oraz porównać go ze wszystkimi potencjalnymi sąsiadami (jest ich 25), co jest wykonywalne w czasie stałym. Otrzymamy więc oczekiwany czas $O(1)+\frac{1}{i}O(i)$ w i-tym kroku. Ostatecznie mamy $\sum_i(O(1)+\frac{1}{i}O(i))=O(n)$.