TRIBHUVAN UNIVERSITY

KHWOPA COLLEGE OF ENGINEERING

An undertaking of Bhaktapur Municipality

Libali-2, Bhaktapur

Nepal

A

REPORT ON

"INDUSTRILA ILLUMINATION & POWER DISTRIBUTION"

SUBMITTED BY

SUBMITTED TO

Bidhan Poudel Er. Rakesh Gwachha (Lecturer)

Roll no.: 074BEL013 Head of Department

Department of Electrical

Date of Submission: -2077/11/16

Acknowledgement

First of all, I would like to thank **Er. Rakesh Gwachha** sir, Department Head of Electrical Engineering for helping us build a strong background of both theoretical and practical methods on Industrial Power Distribution and Illumination. I believe that knowledge of Power Distribution and Illumination is a basic skill that every electrical engineer must possess and I am very thankful that I got learn from the experienced instructors.

I am also highly thankful towards **Er. Nakul Gyawamaru** sir for helping us to understand the underlying concepts and techniques used in power distribution and illumination and providing proper guidelines and methods on computer Aided Design (AUTOCAD) for drafting our design. His work experience on illumination design was a great help for our learning.

Finally, I would like to express my sincere thanks to all my friends and those who are directly or indirectly involved in making this report a success.

TABLE OF CONTENT

Acknowledgement

1. Intr	oduction	5
2.Desc	cription of the Building	5
3. Met	thods of lighting Calculation	6
3.1	Watts per square meter method	6
3.2	Lumen or light flux Method	6
3.3	Point to point or inverse square method:	7
3.4	Selection of Conductor Size	7
3.5.	. Transformer Rating	8
4.Туре	es of Luminaries Used	8
4.1	legends	9
5.Elec	trical System Design	10
5.1 Ba	ssement :	10
i.	Lighting Sub Circuit:	10
ii.	Power Sub Circuit:	11
iii.	Calculation of TPMCCB 1 Rating	11
iv.	Calculation of Area of Conductor	11
5.2 Gr	ound floor:	12
i.	lighting Sub Circuit:	12
ii.	Power Sub Circuit :	13
iii.	Calculation of TPMCCB 2 Rating	14
iv.	Calculation of Area of Conductor	14
5.3 Fir	rst floor:	14
٧.	Lighting Sub circuit	15
vi.	Power Sub Circuit:	16
vii.	Calculation of TPMCCB 3 Rating	16
viii.	Calculation of Area of Conductor	16
5.4 Se	econd floor:	17

i.	Lighting sub circuit	17
	Power Sub Circuit:	
iii.	Calculation of TPMCCB 4 Rating	18
	Calculation of Area of Conductor	
	sformer selection	
	lusion:	
	ndix:	

1. Introduction

Power system distribution and illumination is a very basic skill for every electrical engineer. Power illumination is necessary for every building and business complex. Improper installation of luminaries and electrical equipment may cause serious disaster when a fault occurs. Improper lighting may cause discomfort to the people and the customers of the commercial complex. Proper study and planning of power distribution and illumination helps to save power and ultimately minimize the electricity bill. Protection devices would act efficiently on occurrence of fault and prevent accidents. Thus, proper lighting design, placement of generators, transformer, power socket distribution and reliable three phase power supply, protection schemes are to be well studied beforehand.

2.Description of the Building

The building taken in this report is hospital. It has 4 floor and a roof top terrace. In the report the illumination of all floors is designed with lighting sub circuit and power sub circuit design.

The various floors of the hospital are:

- i. **Basement:** It is the lowest floor of the building and it has 3 general wards and other store rooms.
- ii. **Ground Floor:** This floor contains operation theaters, opd room and staffs rooms.
- iii. **First Floor**: In this floors, there are different room for patient and there is living room and a kitchen.
- iv. **Second Floor:** This is the topmost floor of the building and this floor contains meeting hall, waiting room and a terrace.

3. Methods of lighting Calculation

A number of methods have been employed for lighting calculations, among which may have mentioned:

- I. Watts per square meter method
- II. Lumen or light flux Method
- III. Point to point or Inverse square Method

3.1 Watts per square meter method

This is principally a "rule of thumb" method, very handy for rough calculations or checking. It consists in making an allowance of watts per square meter of area to be illuminated according to the illuminations desired on the assumptions of an average figure of overall efficiency of the system.

3.2 Lumen or light flux Method

This method is applicable to those cases where the sources of light area such to produce an approximate uniform illuminations over the working plane or where an average value is required.

Total no. of lamp or fixture in any room are calculated by following formula

No of lamp or fixture =
$$\frac{E * A}{\emptyset * U.F * M.F}$$

where,

E= illumination level required in room (Lumen/m² or Lux)

A= total area of desired room (m²)

Ø= total flux output from the lamp or fixture (Lumen)

U.F= utilization factor

M.F = maintenance factor

Utilization Factor

It is defined as the ratio of total lumens reaching the working plane to the total lumens given out by lamp.

$$i.e.\ utilization\ factor = \frac{Total\ lumens\ reaching\ the\ the\ working\ plane}{Total\ lumen\ given\ out\ by\ the\ lamp}$$

Maintenance factor

It is the ratio of illumination under normal working conditions to the illumination when the things are perfectly clean is known as maintenance factor.

i.e. maintenance factor =
$$\frac{Illumination under normal working conditions}{Illumination when every thing is perfectly clean}$$

Depreciation Factor

It is the inverse of the maintenance factor.

3.3 Point to point or inverse square method:

This method is applicable where the illumination at a point is due to one or more sources light is required, the candle power of the sources in the particular direction under consideration being known.

Here we prefer Lumen or light flux method.

3.4 Selection of Conductor Size

Area of conductor is calculated by using the following formula

Area of conductor (A) =
$$\frac{I*K*L*1.5}{Permissible \text{ voltage drop}}$$

Where,

I= Ampere Rating of TPMCCB

L=length of conductor, generally (10 to 20)% greater length is taken

A= Size or Area of conductor

K= Resistivity

= 0.02Ω sqmm/m for copper

= 0.032Ω sqmm/m for Aluminum

Permissible voltage drop = 2% of V

3.5. Transformer Rating

3- phase KVA power = $3 \times Vph \times Iph$

4. Types of Luminaries Used

In our design , we have used different lights of the Philip company and different product used are listed below:

SN	Product no.	Wattage (W)	Output Lumen
1	42719-5	22.5	2500
2	43221-1	19	1780
3	42875-5	15	1180
4	42935-7	4	320

LEGEND

Symbol	Description	Remarks
0	4 Watt LED	Ceiling
	15 Watt LED	Ceiling
0	19 Watt LED	Ceiling
0	22.5 Watt LED	Ceiling
Ф	15 Watt Wall Lamp	Wall
6	1 gang 1 way switch	1.5m from floor
6	2 gang 1 way switch	1.5m from floor
<i>⟨⟨⟩</i>	1 gang 2 way switch	1.5m from floor
X	16A power socket	11" from floor

5.Electrical System Design

5.1 Basement:

The detailed calculation of number of luminaries, along with their wattage, product no. and lumens used in ground floor is shown in the table below.

i. Lighting Sub Circuit:

S.N	Room Description	Area (Sq m)	Req Lux(E)	U.F	M.F	watt(w)	Lumen	No of fixture	Actual no of	
									bulbs	
1	Toilet	2.32128568	100	0.8	0.8	4	320	1.133440273		2
2	Ward1	60.28891168	150	0.8	0.8	22.5	2500	5.65208547		6
3	Electrical Room	5.51031156	200	0.6	0.8	15	1180	1.945731483		2
4	Duty Room	12.4548138	300	0.7	0.8	19	1780	3.748439145		4
5	Ward 2	50.23602856	150	0.8	0.8	22.5	2500	4.709627678		6
6	Varandah	24.17995164	150	0.7	0.8	15	1180	5.488790475		6
7	corrider1	15.18190512	150	0.7	0.8	15	1180	3.446255702		4
8	corrider2	23.57866252	150	0.7	0.8	15	1180	5.352299301		6

Calculation of Lighting Loads for SDB 1

LSC	Watt	Voltage(V)	Current(A)
1L	151	220	0.49534
2L	90	220	0.295236
3L	151	220	0.49534
4L	151	220	0.49534
5L	60	220	0.196824
6L	60	220	0.196824
7L	76	220	0.24931
8L	30	220	0.098412
9L	30	220	0.098412

ii. Power Sub Circuit:

power sub circuits scheme in Basement is shown in following:

Number of power circuits used = 12 (10+2 SPARE)

iii. Calculation of TPMCCB 1 Rating

The number of lighting lines in one phase =3

No. of power lines in one phase =4

Rating of TPMCCB =
$$(3\times6) + (4\times16\times2/3) A = 66 A$$

The nearest rating available = 80A

iv. Calculation of Area of Conductor

Lighting Circuit

PVC insulated copper conductor of area 1.5 mm²(3/22), can carry 11A current safely.

Power Circuit

PVC insulated copper conductor of area 4 mm².

For MDB to SDB1:

Main Distribution Board is placed at basement.

Area of conductor
$$(A) = \frac{1.5*k*I*L}{V \ permissible}$$

$$k = 0.02$$

$$I = 66 A$$

Permissible voltage = 2% of 220 = 4.4 V

Hence, A≥6.93mm²

From table, nearest conductor size is $10 \ \text{mm}^2$. Therefore the cable of $10 \ \text{mm}^2$ is used.

5.2 Ground floor:

The detailed calculation of number of luminaries, along with their wattage, product no. and lumens used in FIRST floor is shown in the table below :

i. lighting Sub Circuit:

S.N	Room Description	Area (Sq m)	Req Lux(E)	U.F	M.F	watt(w)	Lumen	No of fixture	Actual no of	
									bulbs	
1	OPD	11.02320376	200	0.8	0.7	15	1180	3.336320751		4
2	Office	16.1419032	200	0.8	0.7	15	1180	4.885563923		6
3	Attached toilet	2.17031824	150	0.6	0.8	15	1180	0.574766483		1
4	Staff	9.41481988	150	0.8	0.7	15	1180	2.137141317		4
5	Sterlize	9.23159444	250	0.7	0.8	15	1180	3.492582642		4
6	ОТ	21.1870544	300	0.7	0.8	22.5	2500	4.540083086		6
7	Anesteria	14.76061564	300	0.7	0.7	19	1780	5.077028998		6
8	Small OT	11.68320244	300	0.7	0.8	19	1780	3.516212612		4
9	Dark Room	5.30708616	50	0.8	0.7	4	320	1.480771808		2
10	Register Room	5.49740836	150	0.8	0.7	15	1180	1.247898387		2
11	Store	2.68257528	100	0.6	0.6	15	1180	0.631491356		2
12	Male and Female	3.03612296	150	0.7	0.8	15	1180	0.689192561		2
13	Waiting	13.67481136	150	0.8	0.7	15	1180	3.104149068		4
14	Pharmacy Room	12.53932976	200	0.8	0.7	19	1780	2.515916886		4
15	Varandah	19.84447644	150	0.7	0.6	15	1180	6.00619747		6
16	A1	11.65675088	150	0.8	0.7	15	1180	2.646054225		4
17	A2	18.91802668	150	0.8	0.7	15	1180	4.29434625		6
18	A3	14.86577672	150	0.8	0.7	15	1180	3.374495321		4
19	A4	14.17997164	150	0.8	0.7	15	1180	3.218819228		4
20	A5	2.85676848	150	0.8	0.7	15	1180	0.648479528		2
21	A6	4.81418392	150	0.8	0.7	15	1180	1.092808093		2
22	A7	2.14064088	150	0.8	0.7	15	1180	0.485920297		2
23	A8	3.42967056	150	0.8	0.7	15	1180	0.778526913		2
24	A9	3.07547772	150	0.8	0.7	15	1180	0.698125996		2
25	A10	4.07934668	150	0.8	0.7	15	1180	0.926001819		2
26	MD1	6.39289044	150	0.8	0.7	15	1180	1.451170651		2

27	MD	8.8257888	150	0.8	0.7	15	1180	2.003432688	2
28	SRD	4.2290238	150	0.8	0.7	15	1180	0.959978163	2
29	Store	2.48902728	150	0.8	0.7	15	1180	0.565003166	2

Calculation of Lighting Loads for SDB 2:

LSC	Watt	Voltage	Current
1L	45	220	0.147618
2L	60	220	0.196824
3L	60	220	0.196824
4L	60	220	0.196824
5L	60	220	0.196824
6L	30	220	0.098412
7L	60	220	0.196824
8L	30	220	0.098412
9L	45	220	0.147618
10L	90	220	0.295236
11L	76	220	0.24931
12L	30	220	0.098412
13L	135	220	0.442854
14L	135	220	0.442854
15L	105	220	0.344442
16L	8	220	0.026243
17L	75	220	0.24603
18L	135	220	0.442854
19L	60	220	0.196824
20L	114	220	0.373966
21L	76	220	0.24931
22L	60	220	0.196824
23L	60	220	0.196824
24L	135	220	0.442854

ii. Power Sub Circuit:

power sub circuits scheme in Ground Floor is shown in following:

Number of power circuits used = 18

Rating of MCB =16A

iii. Calculation of TPMCCB 2 Rating

The number of lighting lines in one phase =8

No. of power lines in one phase =6

Rating of TPMCCB =
$$(8\times6) + (6\times16\times2/3) A = 112A$$

The nearest rating available = 125A

iv. Calculation of Area of Conductor

Lighting Circuit

PVC insulated copper conductor of area 1.5 mm²(3/22), can carry 11A current safely.

Power Circuit

PVC insulated copper conductor of area 4 mm².

For MDB to SDB2:

Main Distribution Board is placed at Basement floor.

Area of conductor
$$(A) = \frac{1.5*k*I*L}{V \ permissible}$$

L= 12+10% of 12 =13.2m

k = 0.02

I = 112 A

Permissible voltage = 2% of 220 = 4.4 V

Hence, A≥10.08mm²

From table, nearest conductor size is 10 mm². Therefore the cable of 10 mm² is used.

5.3 First floor:

The detailed calculation of number of luminaries, along with their wattage, product no. and lumens used in second floor is shown in the table below:

v. Lighting Sub circuit

S.N	Room Description	Area (Sq m)	Req Lux(E)	U.F	M.F	watt(w)	Lumen	No of fixture	Actual no of bulbs
1	Living	29.43800564	150	0.8	0.7	15	1180	6.682356002	8
2	Room 1,2,3	27.23478424	150	0.8	0.7	15	1180	6.182230079	8
3	room 4	18.64447884	150	0.8	0.7	15	1180	4.232251553	6
4	room 5	21.49737636	150	0.8	0.7	15	1180	4.879852382	6
5	room 6	22.67350304	150	0.8	0.7	15	1180	5.146830291	6
6	Attached toilet 1	4.43612016	150	0.8	0.7	15	1180	1.006988535	2
7	Attached toilet 2	2.9774134	150	0.8	0.7	15	1180	0.675865633	2
8	Attached toilet 3	3.03483264	150	0.8	0.7	15	1180	0.688899661	2
9	Attached toilet 4	2.6709624	150	0.7	0.7	15	1180	0.692916569	2
10	Kitchen Din	20.44253976	150	0.8	0.6	15	1180	5.413808199	6
11	Passage	25.91994816	250	0.6	0.7	22.5	2500	6.171416229	8
12	Terrace4	22.73801904	250	0.7	0.9	22.5	2500	3.609209371	4
13	Terrace5	20.9741516	250	0.7	0.9	22.5	2500	3.329230413	4
14	Terrace6	20.72511984	250	0.7	0.9	22.5	2500	3.289701562	4

Calculation of Lighting Loads for SDB 3:

LSC	Watt	Voltage	current
1L	45	220	0.147618
2L	30	220	0.098412
3L	30	220	0.098412
4L	150	220	0.49206
5L	180	220	0.590472
6L	150	220	0.49206
7L	135	220	0.442854
8L	150	220	0.49206
9L	60	220	0.196824
10L	30	220	0.098412
11L	120	220	0.393648
12L	120	220	0.393648
13L	105	220	0.344442
14L	90	220	0.295236
15L	90	220	0.295236
16L	90	220	0.295236

vi. Power Sub Circuit:

Number of power circuits used = 15

Rating of MCB = 16A

vii. Calculation of TPMCCB 3 Rating

The number of lighting lines in one phase = 6

No. of power lines in one phase = 5

Rating of TPMCCB = $(6 \times 6) + (5 \times 16 \times 2/3) A$ = 96 A

The nearest rating available = 100A

viii. Calculation of Area of Conductor

Lighting Circuit

PVC insulated copper conductor of area 1.5 mm²(3/22), can carry 11A current safely.

Power Circuit

PVC insulated copper conductor of area 4 mm².

For MDB to SDB3:

Main Distribution Board is placed at Basement floor.

Area of conductor
$$(A) = \frac{1.5*k*I*L}{V \ permissible}$$

L= 19+10% of 19 = 20.9m

k = 0.02

I = 96 A

Permissible voltage = 2% of 220 = 4.4 V

Hence, A≥13.68mm²

From table, nearest conductor size is 16 mm². Therefore the cable of 16 mm² is used.

5.4 Second floor:

The detailed calculation of number of luminaries, along with their wattage, product no. and lumens used in second floor is shown in the table below.

i. Lighting sub circuit

S.N	Room Description	Area (Sq m)	Req Lux(E)	U.F	M.F	watt(w)	Lumen	No of fixture	Actual no of	
									bulbs	
1	Waiting	22.74253516	200	0.6	0.6	15	1180	10.70740827		10
2	Meeting hall	89.61465948	300	0.6	0.7	22.5	2500	25.60418842		28
3	Meeting	22.42705192	300	0.7	0.7	22.5	2500	5.492339246		6
4	Kitchen Din	20.8418938	150	0.7	0.7	15	1180	5.406925061		6
5	Toilet	8.01546784	250	0.7	0.9	15	1180	2.695543395		4
6	Upper Terrace	90.68885088	250	0.7	0.9	22.5	2500	14.3950557		16
7	Lower Terrace	60.73923336	250	0.7	0.9	22.5	2500	9.641148152		10

Calculation of Lighting Loads for SDB 4:

LSC	Watt	Voltage	Current
1L	45	220	0.147618
2L	30	220	0.098412
3L	150	220	0.49206
4L	60	220	0.196824
5L	60	220	0.196824
6L	135	220	0.442854
7L	157.5	220	0.516663
8L	157.5	220	0.516663
9L	157.5	220	0.516663
10L	157.5	220	0.516663
11L	180	220	0.590472
12L	180	220	0.590472
13L	225	220	0.73809
14L	90	220	0.295236

ii. Power Sub Circuit:

Number of power circuits used = 12

Rating of MCB =16A

iii. Calculation of TPMCCB 4 Rating

The number of lighting lines in one phase = 5

No. of power lines in one phase = 4

Rating of TPMCCB = $(5\times6) + (4\times16\times2/3) A$ = 78A

The nearest rating available = 80A

ix. Calculation of Area of Conductor

Lighting Circuit

PVC insulated copper conductor of area 1.5 mm²(3/22), can carry 11A current safely.

Power Circuit

PVC insulated copper conductor of area 4 mm².

For MDB to SDB4:

Main Distribution Board is placed at Basement floor.

Area of conductor
$$(A) = \frac{1.5*k*I*L}{V \ permissible}$$

L= 24+10% of 24 = 26.4m

k = 0.02

I = 78 A

Permissible voltage = 2% of 220 = 4.4 V

Hence, A≥14.04mm²

From table, nearest conductor size is 16 mm². Therefore the cable of 16 mm² is used.

5. Transformer selection

Current through MDB = (66+112+96+78)*3/4= 264 A

The three phase KVA power = 3×Vph×lph = 3×220×264 =174.24 KVA

Standard value of transformer for this power is 200 KVA.

Thus, 3 phase transformer of 160 KVA is to be installed for the building.

6.Conclusion:

Hence, design of lighting sub circuits and power sub circuits along with the ratings of protection scheme and distribution boards were done in the design of Dhangadi Hospital.

7.Appendix:

LED Lamps LED A-Type and Candle Lamps

Watts	Bulb Type	Base		Symbols, Footnotes	Ordering Code	Volts	Description		Rated Avg Life (Hrs.) (501,502)				Approx. Lumens (503)		Energy Cost (445)	Color Temp. (K)
LED A	-Type	Lamp	s										FTC	REQL	JIREM	ENTS
7	А-Туре	Med	42348-3		8A19/END/2700 DIM 6/1	120	A19 Dim*	6	25,000	_	81	4	470	22.8	\$0.84	2700
Ш	А-Туре	Med	42349-1		11A19/END/2700 DIM 6/1	120	A19 Dim*	6	25,000	_	81	4	830	22.8	\$1.32	2700
10.5	А-Туре	Med	43051-2		10.5A19/COREPRO/3000 6/1	120	A19 Dim*	6	25,000	_	81	4	800	22.8	\$1.26	2700
15	А-Туре	Med	42875-5		15A21/2700 DIM 6/1	120	A21 Dim*	6	25,000	_	80	4%	1180	22.8	\$1.81	2700
	A-Type	Med	43218-7		15A21/2700-WHT DIM 6/1	120	A21 Dim*	6	25,000	_	80	41/2	1180	22.8	\$1.81	2700
19	А-Туре	Med	43221-1		19A21/2700-WHT DIM 6/1	120	A21 Dim*	6	25,000	_	80	41/2	1780	22.8	\$2.65	2700
22	А-Туре	Med	42352-5		22A21/END/2700 DIM	120	A21 Dim*	6	25,000	_	80	41/5	1780	22.8	\$2.65	2700
LED Ca	andle L	amps	1													
3.5	BAII	Cand.	42778-1		3.5BA11/END/2700-E12 DIM 8/	1 120	BATI Clear Candle Dim*	8	25,000	_	80	4	180	22.8	\$0.42	2700
	BII	Cand.	42779-9		3.5B11/END/2700-E12 DIM 8/	1 120	B11 Candle Dim*	8	25,000	_	80	4	180	22.8	\$0.42	2700
	BI2	Cand.	42781-5		3.5B12/END/2700-E12 DIM 8/	1 120	B12 Candle Dim*	8	25,000	_	80	41/10	180	22.8	\$0.42	2700
	FI5	Med.	42780-7		3.5F15/END/2700-E12 DIM 8/1	1 120	F15 Clear Postlight Dim*	8	25,000	_	80	4¾	180	22.8	\$0.42	2700
4	FI5	Med.	42935-7		45F15/END/2700-150 E26 DIM 10/1	120	F15 Frosted Postlight Dim ⁴	• 8	25,000	_	80	4%	320	22.8	\$0.54	2700

For the most current product information, go to the e-catalog on **www.philips.com** LED symbols and footnotes located on page 13

225 symbols and loodifices located on page 1

								Rated Avg.	Nom.	Approx.	Life	Energy	Color
Bulb		Product	Symbols,	Ordering			Pkg.	Life (Hrs.)	Length	Lumens	(Yrs.)	Cost	Temp.
Watts Type	Base	Number	Footnotes	Code	Volts	Description	Qty. C	RI (501,502)	(ln.)	(504)	(446)	(445)	(K)

LED T	8 Spec	ifier Se	ries Lar	mp*								FTC REQUIREMENTS			
10	T8	GI3	42182-6	U	10T8/END/24-3500	100-277	Linear LED T8 Tube, 3500K	10	85	40,000	24	825	36.5		3500
					UNV 10/1										
			42186-7	U	10T8/END/24-4000	100-277	Linear LED T8 Tube, 4000K	10	85	40,000	24	825	36.5		4000
					UNV 10/1										
19	T8	GI3	42183-4	U	19T8/END/48-3500	100-277	Linear LED T8 Tube, 3500K	10	85	40,000	48	1650	36.5		3500
					UNV 10/1										
			42187-5	U	19T8/END/48-4000	100-277	Linear LED T8 Tube, 4000K	10	85	40,000	48	1650	36.5		4000
					UNV 10/1										

LED T8 Specifier Series T8 External Driver

22.5	T8	42719-5	U	22T8/EXT/48-3500K	100-277	10	85	50,000	24	2500	XX	3500
				UNV								
		42720-3	U	22T8/EXT/48-4000K	100-277	10	85	50,000	24	2500	XX	4000
				UNV								
		42721-1	U	22T8/EXT/48-6500K	100-277	10	85	50,000	24	2500	XX	6500
				UNV								

Minietur Circuit 5200

S200U-K, 240 VAC Branch circuit protection UL 489, CSA 22.2 No. 5

No. of poles	Rated current	Catalog number	No. of poles	Rated current	Catalog number
1	0.2 0.3 0.5 0.75 1 1.6 2 3 4 5 6 8 10 15 16 20 25 30 32 40	\$201U-K0.2 \$201U-K0.3 \$201U-K0.5 \$201U-K0.75 \$201U-K1.6 \$201U-K1.6 \$201U-K2 \$201U-K3 \$201U-K4 \$201U-K4 \$201U-K5 \$201U-K6 \$201U-K16 \$201U-K16 \$201U-K16 \$201U-K16 \$201U-K16 \$201U-K16 \$201U-K16 \$201U-K20 \$201U-K20 \$201U-K30 \$201U-K30 \$201U-K30 \$201U-K30 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40 \$201U-K40	3	0.2 0.3 0.5 0.75 1 1.6 2 3 4 5 6 8 10 15 16 20 25 30 32 40 50	\$203U-K0.2 \$203U-K0.3 \$203U-K0.5 \$203U-K0.75 \$203U-K1.6 \$203U-K1.6 \$203U-K2 \$203U-K3 \$203U-K4 \$203U-K5 \$203U-K6 \$203U-K6 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K16 \$203U-K20 \$203U-K20 \$203U-K20 \$203U-K30 \$203U-K30 \$203U-K30 \$203U-K30 \$203U-K40 \$203U-K40

A1 - 100A Frame TMF, thermal magnetic fixed - fixed mount (F), front terminals (F)

Breaker	IC at 240VAC	Rating (A)			2 pole catalog number	3 pole catalog number	
		15	400	A1A015TW-1	A1A015TW-2	A1A015TW	
		20	400	A1A020TW-1	A1A020TW-2	A1A020TW	
		25	400	A1A025TW-1	A1A025TW-2	A1A025TW	
	10kA	30	400	A1A030TW-1	A1A030TW-2	A1A030TW	
			40	400	A1A040TW-1	A1A040TW-2	A1A040TW
A1A		50	500	A1A050TW-1	A1A050TW-2	A1A050TW	
		60	600	A1A060TW-1	A1A060TW-2	A1A060TW	
		70	700	A1A070TW-1	A1A070TW-2	A1A070TW	
		80	800	A1A080TW-1	A1A080TW-2	A1A080TW	
		90	900	A1A090TW-1	A1A090TW-2	A1A090TW	
		100	1000	A1A100TW-1	A1A100TW-2	A1A100TW	

A2 - 250A Frame TMF, thermal magnetic fixed - fixed mount (F), front terminals (F)

/ 12 200/11/10/11/0	, aronna mag	mono mono mono				
Breaker	IC at 240VAC	Rating (A)	Magnetic trip	1 pole catalog number	2 pole catalog number	3 pole catalog number
		125	1250	A2A125TW-1	A2A125TW-2	A2A125TW
		150	1500	A2A150TW-1	A2A150TW-2	A2A150TW
A2A	401-4	175	1750	A2A175TW-1	A2A175TW-2	A2A175TW
AZA	10kA	200	2000	A2A200TW-1	A2A200TW-2	A2A200TW
		225	2250	A2A225TW-1	A2A225TW-2	A2A225TW
		250	2500	A2A250TW-1	A2A250TW-2	A2A250TW
		125	1250	A2N125TW-1	A2N125TW-2	A2N125TW
	1 pole	150	1500	A2N150TW-1	A2N150TW-2	A2N150TW
4481	18kA	175	1750	A2N175TW-1	A2N175TW-2	A2N175TW
A1N	2-3 pole	200	2000	A2N200TW-1	A2N200TW-2	A2N200TW
	25kA	225	2250	A2N225TW-1	A2N225TW-2	A2N225TW