SET-1

St. Peter's Engineering College (Autonomous)							:	CSE (AIML)
Dullapally (P), Medchal, Hyderabad – 500100. I - Mid Term Examination- March 2024							ic Year -25	
Subject Code	:	AS22-66PC02	Subject	:	AUTOMATA THEORY	& COMPILER	DE:	SIGN
Class/Section	:	B. Tech. (A)	Year	:	II	Semester	:	II
Duration	:	120 Min	Max. Marks	:	30	Date:	:	

BLOOMS LEVEL							
Remember	L1	Understand	L2	Apply	L3		
Analyze	L4	Evaluate	L5	Create	L6		

PART - A (10x1M = 10M)

Note: Answer all Questions. Each Question carries equal marks.

Q. No	Question (s)	Marks	BL	CO					
	UNIT – I								
1	a) Define Finite Automata.	1M	L1	C222.1					
	b) Define Transition Function in FA.	1M	L1	C222.1					
	c) Define Computation.	1M	L1	C222.1					
	d) Define NFA-E.	1M	L1	C222.1					
	UNIT – II	·							
	e) Define Identity Rules for Regular Expressions.	1M	L1	C222.1					
	f) Define Regular sets.	1M	L1	C222.1					
	g) Define Derivation Tree.	1M	L1	C222.2					
	h) Define Context Free Language.	1M	L1	C222.2					
	UNIT – III								
	i) Define Push Down Automata (PDA).	1M	L1	C222.2					
	j) Define Empty Symbol in Stack in the perspective of PDA.	1M	L1	C222.2					

PART - B (20M)

O. No	Question (s)	Marks	RI.	CO

	UNIT – I										
2	a) Design a DFA which accepts set of all strings containing 1100 as a substring with in an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1							
	b) Design a DFA with Dead States.	4M	L6	C222.1							
	OR										
3	a) Design an NFA which accepts strings which ends with $00 11$ within an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1							
	b) Design an NFA which accepts strings with 1100 or 1010 as a substring with in an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1							
	UNIT – II										
4	a) State and Prove Arden's Theorem.	4M	L5	C222.1							
	b) Construct an NFA and NFA-E for the regular expression 11+00.	4 M	L6	C222.1							
	OR										
5	a) Discuss about regular grammar, right linear grammar and left linear with examples?	4M	L2	C222.1							
	b) Draw a Parse Tree for the Language $L=\{a^nb^n, n>=0\}$ and the CFG with Productions are S-> aSb, S-> ϵ .	4M	L6	C222.1							
	UNIT – III										
6	Design a PDA for Language $L = \{WCW^r \mid W \in (a + b)^*\}.$	4M	L4	C222.2							
	OR										
7	Explain about Instantaneous Description of PDA.	4M	L4	C222.2							

: CSE (AIML) St. Peter's Engineering College (Autonomous) Dept. **Academic Year** Dullapally (P), Medchal, Hyderabad – 500100. 2024-25 I - Mid Term Examination - March 2024 : AUTOMATA THEORY & COMPILER DESIGN **Subject Code** : | AS22-66PC02 Subject Class/Section B. Tech. (A) : Semester : Year Ш Max. Marks 30 **Duration** 120 Min Date:

BLOOMS LEVEL							
Remember	L1	Understand	L2	Apply	L3		
Analyze	L4	Evaluate	L5	Create	L6		

$PART - A \; (10x1M = 10M)$ Note: Answer all Questions. Each Question carries equal marks.

Q. No Question (s) Marks BL \mathbf{CO} UNIT – I C222.1 a) Define Deterministic Finite Automata. 1 **1M** L1 C222.1 b) Define Alphabet. **1M** L1 C222.1 L1 c) Define String. **1M** C222.1 **d**) Define Theory of Computation. **1M** L1 UNIT - IIC222.1 e) Define Regular Expression. **1M** L1 C222.1 L1 f) Define Empty Set. 1MC222.2 L1 g) Define Parse Tree. **1M** C222.2 h) Define Ambiguous Grammars. **1M** L1 UNIT – III C222.2 i) Define Instantaneous Description of PDA. **1M** L1 C222.2 j) Define NOOP operation in PDA. L1 **1M**

PART - B (20M)

Q. No	Question (s)	Marks	BL	CO						
	UNIT – I									
2	a) Design a DFA which accepts set of all strings containing even number 0's and 1's within an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1						
	b) Design an DFA which accepts strings which ends with $00 11$ within an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1						
	OR									

	Convert the following NFA-E in to NFA,			
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8M	L5	C222.1
	$\mathbf{UNIT} - \mathbf{II}$			
4	a) Construct an NFA-ε for the regular expression 110(0+1)*.	4M	L6	C222.1
	b) Construct an NFA-E for the regular expression (0+1)*11.	4M	L6	C222.1
	OR			
5	a) Explain in detail about Parse Trees, Left and Right Most Derivations.	4M	L4	C222.2
	b) Draw a Parse Tree for the Language $L=\{a^nb^{2n}, n>=0\}$ and the CFG with Productions are S-> aSbb, S-> ϵ .	4M	L6	C222.2
	UNIT – III			
6	Design a PDA for the Language $L = \{a^nb^{2n} n>0\}.$	4M	L4	C222.2
	OR			
7	Explain in detail about Universal Turing Machine.	4M	L4	C222.2

SET-3

St. Peter's Engineering College (Autonomous)							:	CSE (AIML)
Dullapally (P), Medchal, Hyderabad – 500100. I - Mid Term Examination – March 2024							iic Year I-25	
Subject Code	:	AS22-66PC02	Subject	:	AUTOMATA THEORY	& COMPILER	DE	SIGN
Class/Section	:	B. Tech. (A)	Year	:	11	Semester	:	ll .
Duration	:	120 Min	Max. Marks	:	30	Date:	:	

BLOOMS LEVEL							
Remember	L1	Understand	L2	Apply	L3		
Analyze	L4	Evaluate	L5	Create	L6		

PART - A (10x1M = 10M)

Note: Answer all Questions. Each Question carries equal marks.

Q. No	Question (s)	Marks	BL	CO
	UNIT – I			
1	a) Define Non-Deterministic Finite Automata.	1M	L1	C222.1
	b) Define an Automata Problem.	1M	L1	C222.1
	c) Define Dead State in FA.	1M	L1	C222.1
	d) Define Language.	1M	L1	C222.1
	UNIT – II			
	e) Define Null String.	1M	L1	C222.1
	f) Define Regular Language.	1M	L1	C222.1
	g) Define Arden's Equation.	1M	L1	C222.1
	h) Define Context Free Grammar.	1M	L1	C222.2
	UNIT – III			
	i) Define Γ in PDA.	1M	L2	C222.2
	j) Define Instantaneous Description of Turing Machine.	1M	L1	C222.2

PART – B (20M)

Q. No	Question (s)	Marks	BL	CO				
	UNIT – I							
2	a) Design a DFA which accepts set of all strings that starts with 1 and ends with 0 within an alphabet $\Sigma = \{0, 1\}$.	4M	L6	C222.1				
	b) Design an NFA with Dead States.	4M	L6	C222.1				
	OR							
3	Convert the following NFA in to DFA, a,b q0 a q1 b q2	8M	L5	C222.1				
	UNIT – II							
4	a) Construct a DFA, NFA and NFA-E for any regular expression.	4M	L2	C222.1				
	b) Derive the Regular Expression for the following DFA,	4M	L2	C222.1				
	OR							
5	State and Prove Pumping Lemma.	8M	L5	C222.1				
	UNIT – III		•	•				
6	Design a PDA for the Language $L = \{WW^r \mid W \in (a,b)^*\}.$	4M	L4	C222.2				
	OR							
7	Explain about Turing Machine as an Adder.	4M	L4	C222.2				
