Conceptos matemáticos preliminares

Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz sax@tec.mx

Tabla de contenidos

Conjuntos

Relaciones y Funciones

3 Lógica

Definición de conjunto

Conjuntos

Definición 1

Un conjunto es una colección de elementos. Usamos letras mayúsculas A,B,C,\ldots para representarlos, y letras minúsculas a,b,c,\ldots para representar sus elementos.

$$A = \{a, b, c, d\}$$

Describiendo un conjunto Conjuntos

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Describiendo un conjunto

Conjuntos

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Describiendo un conjunto

Conjuntos

Podemos definirlos por enumeración o por descripción.

 ${\cal A}$ es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Describiendo un conjunto

Conjuntos

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{a \in \mathbb{N} : a < 6\}$$

Notación de conjuntos Conjuntos

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

Notación de conjuntos Conjuntos

- Pertenencia: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: ∅ o {} para representar un conjunto sin elementos.

1
$$\{a\} \subseteq \{\{a\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a, b, c\}$$

$$a \in \{a, b, c\}$$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- **5** $a \in \{a, b, c\}$

- $\{c\} \subset \{\{a\}, c, \{b\}\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- **5** $a \in \{a, b, c\}$

- $b \in \{b\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- **6** $\{b\} \in \{a, c, \{b\}\}$
- **8** $\{b\} \subseteq \{\{b,c\}\}$
- $\{c\} \subset \{\{a\}, c, \{b\}\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- **②** $b ∈ \{b\}$
- **8** $\{b\} \subseteq \{\{b,c\}\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- **5** $a \in \{a, b, c\}$

- $b \in \{b\}$
- **8** $\{b\} \subseteq \{\{b,c\}\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- **6** $a \in \{a, b, c\}$

- $b \in \{b\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- **5** $a \in \{a, b, c\}$

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- **②** $b ∈ \{b\}$
- **3** $\{b\} \subseteq \{\{b,c\}\}$

- $\emptyset \varnothing \in \{\varnothing\}$
- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bigcirc $\varnothing \subset \varnothing$

- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bigcirc $\varnothing \subset \varnothing$

- $\emptyset \varnothing \in \{\varnothing\}$
- $0=\varnothing$
- \emptyset $\emptyset \subseteq \emptyset$
- \bigcirc $\emptyset \subset \emptyset$

- $\emptyset \varnothing \in \{\varnothing\}$
- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bigcirc $\varnothing \subset \varnothing$

- $\emptyset \varnothing \in \{\varnothing\}$
- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bullet $\varnothing \subset \varnothing$

- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bullet $\varnothing \subset \varnothing$

- \bullet $B \cup C$

- **4** $A (B \cup C)$
- \bullet $A^{[}$
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $C \cup (A \cap B)$
- $C (A \cap B)$
- \bullet A^{\complement}
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- \bigcirc $C \cup (A \cap B)$
- **3** $C (A \cap B)$
- \bullet A^{\square}
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $2 C \cup (A \cap B)$
- $A (B \cup C)$
- \bullet A^{0}
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $2 C \cup (A \cap B)$
- **4** $A (B \cup C)$
- \bullet A^{0}
- **6** $B (A \cup C)$

- \bullet $B \cup C$
- \bigcirc $C \cup (A \cap B)$

- \bullet A^{\square}
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

Operaciones de conjuntos

Conjuntos

- \bullet $B \cup C$

- \bullet $A^{[}$
- **6** $B (A \cup C)$
- \bullet $(B-A)^{\complement}$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$A = \{1, 2, 3\} \quad B = \{1, 2\}$$
$$A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$A = \{1, 2, 3\} \quad B = \{1, 2\}$$

$$4 \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$A = \{1,2,3\} \quad B = \{1,2\}$$

$$A \times B = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

$$A = \{1, 2, 3\} \quad B = \{1, 2\}$$

$$A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A\cap B=B\cap A$$

Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A\cap B)\cap C=A\cap (B\cap C)$$

Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$

Relaciones

Relaciones y Funciones

Definición 4

Sean A y B dos conjuntos cualesquiera. Una relación binaria R de A a B se define como cualquier subconjunto del producto Cartesiano $A \times B$. Es decir, cualquier conjunto de pares ordenados de la forma (a,b) tal que $a \in A$ y $b \in B$. También se dice que una relación R puede ser sobre $A \times B$.

Ejemplo

Menor o igual (\leq) es una **relación** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (1,2), (1,3), \dots, (2,2), (2,3), \dots, (3,4), \dots\}$$

Relaciones

Relaciones y Funciones

Definición 4

Sean A y B dos conjuntos cualesquiera. Una relación binaria R de A a B se define como cualquier subconjunto del producto Cartesiano $A \times B$. Es decir, cualquier conjunto de pares ordenados de la forma (a,b) tal que $a \in A$ y $b \in B$. También se dice que una relación R puede ser sobre $A \times B$.

Ejemplo

Menor o igual (\leq) es una **relación** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (1,2), (1,3), \dots, (2,2), (2,3), \dots, (3,4), \dots\}$$

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A si y solo si $(a,a)\in R$ para todo $a\in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

¿Es la relación *menor que* (<) reflexiva sobre los naturales?

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A si y solo si $(a,a)\in R$ para todo $a\in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

¿Es la relación *menor que* (<) reflexiva sobre los naturales?

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A si y solo si $(a,a)\in R$ para todo $a\in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

¿Es la relación menor que (<) reflexiva sobre los naturales?

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

¿Es la relación menor que (<) transitiva sobre los naturales?

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

¿Es la relación *menor que* (<) transitiva sobre los naturales?

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

¿Es la relación menor que (<) transitiva sobre los naturales?

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es **simétrica**: si Juan es hermano de Pedro, entonces Pedro es hermano de Juan.

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es **simétrica**: si Juan es hermano de Pedro, entonces Pedro es hermano de Juan.

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es **simétrica**: si Juan es hermano de Pedro, entonces Pedro es hermano de Juan.

Relaciones y Funciones

¿Cualquier relación es una función?

¿Cualquier función es una relación?

Relaciones y Funciones

¿Cualquier relación es una función?

¿Cualquier función es una relación?

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria R de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f:A\to B$

Ejemplo

La relación sucesor es una **función** de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$suc(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria B de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f: A \rightarrow B$.

Ejemplo

La relación sucesor es una **función** de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$suc(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria R de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f: A \rightarrow B$.

Ejemplo

La relación $\mathit{sucesor}$ es una $\mathit{función}$ de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$suc(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Dominio

Funciones y Relaciones

Definición 9

El dominio de una función f puede definirse como

$$\mathtt{dom}(f) = \{a \in A : \exists b \in B, f(a) = b\}$$

En una función de forma $f: A \to B$, el **dominio** es simplemente A.

Dominio

Funciones y Relaciones

Definición 9

El dominio de una función f puede definirse como

$$\mathtt{dom}(f) = \{a \in A : \exists b \in B, f(a) = b\}$$

En una función de forma $f:A\to B$, el **dominio** es simplemente A.

Codominio o Rango

Funciones y Relaciones

Definición 10

El codominio (también conocido como rango) de una función f puede definirse como

$$\mathtt{codom}(f) = \{ b \in B : \exists a \in A, f(a) = b \}$$

En una función de forma $f: A \to B$, el **codominio** es simplemente B.

Codominio o Rango

Funciones y Relaciones

Definición 10

El $\frac{\text{codominio}}{\text{como}}$ (también conocido como $\frac{\text{rango}}{\text{rango}}$) de una función f puede definirse como

$$\mathtt{codom}(f) = \{b \in B : \exists a \in A, f(a) = b\}$$

En una función de forma $f: A \rightarrow B$, el **codominio** es simplemente B.

Funciones totales y parciales

Relaciones y Funciones

Definición 11

Una función parcial de un conjunto A a un conjunto B es una relación binaria R de A a B tal que para toda $a \in A$, hay a lo mucho un $b \in B$ con $(a,b) \in R$.

Es decir que puede haber elementos en A que no tengan la relación R a ningún elemento de B; o en otras palabras, que no se usen.

A las funciones donde se utilizan todos los elementos de A les llamamos funciones totales, y son usualmente a las que nos referimos al simplemente decir "funciones".

Funciones totales y parciales

Relaciones y Funciones

Definición 11

Una función parcial de un conjunto A a un conjunto B es una relación binaria R de A a B tal que para toda $a \in A$, hay a lo mucho un $b \in B$ con $(a,b) \in R$.

Es decir que puede haber elementos en A que no tengan la relación R a ningún elemento de B; o en otras palabras, que no se usen.

A las funciones donde se utilizan todos los elementos de A les llamamos funciones totales, y son usualmente a las que nos referimos al simplemente decir "funciones".

Funciones totales y parciales

Relaciones y Funciones

Definición 11

Una función parcial de un conjunto A a un conjunto B es una relación binaria R de A a B tal que para toda $a \in A$, hay a lo mucho un $b \in B$ con $(a,b) \in R$.

Es decir que puede haber elementos en A que no tengan la relación R a ningún elemento de B; o en otras palabras, que no se usen.

A las funciones donde se utilizan todos los elementos de A les llamamos funciones totales, y son usualmente a las que nos referimos al simplemente decir "funciones".

Funciones Parciales

Imagen

Relaciones y Funciones

Definición 12

Sean $f:A\to B$ y $X\subseteq A$. La imagen bajo f de $X\subseteq A$ es el conjunto $\{b\in B:\exists a\in X,b=f(a)\}$, o bien $\{f(a):a\in A\}$.

En otras palabras, la **imagen** de una función es el conjunto de todos los valores de B que utiliza. Puede haber elementos de B fuera de la función.

Todo B es el **codominio** de la función, y sólo aquellos $b \in B$ que son usados representan la **imagen** de la función.

Imagen

Relaciones y Funciones

Definición 12

Sean $f:A\to B$ y $X\subseteq A$. La imagen bajo f de $X\subseteq A$ es el conjunto $\{b\in B:\exists a\in X,b=f(a)\}$, o bien $\{f(a):a\in A\}$.

En otras palabras, la **imagen** de una función es el conjunto de todos los valores de B que utiliza. Puede haber elementos de B fuera de la función.

Todo B es el **codominio** de la función, y sólo aquellos $b \in B$ que son usados representan la **imagen** de la función.

Relaciones y Funciones

Definición 13

Sea $f:A\to B$. Se dice que f es inyectiva (o uno a uno) si y sólo si cuando $a\neq a'$, entonces $f(a)\neq f(a')$.

En otras palabras, si y sólo si para cada $b \in B$, hay a lo mucho un $a \in A$ con f(a) = b. Es decir, sólo si distintos *inputs* generan *outputs* diferentes.

Relaciones y Funciones

Definición 13

Sea $f: A \to B$. Se dice que f es inyectiva (o uno a uno) si y sólo si cuando $a \neq a'$, entonces $f(a) \neq f(a')$.

En otras palabras, si y sólo si para cada $b \in B$, hay a lo mucho un $a \in A$ con f(a) = b. Es decir, sólo si distintos *inputs* generan *outputs* diferentes.

Funciones sobreyectivas

Relaciones y Funciones

Definición 14

Sea $f:A\to B$. Decimos que f es una función sobre B (o sobreyectiva con respecto a B) si y sólo si para todo $b\in B$ hay algún $a\in A$ con f(a)=b.

Una manera mucho más sencilla de verlo: si y sólo si imagen(f) = B.

Funciones sobreyectivas

Relaciones y Funciones

Definición 14

Sea $f:A\to B$. Decimos que f es una función sobre B (o sobreyectiva con respecto a B) si y sólo si para todo $b\in B$ hay algún $a\in A$ con f(a)=b.

Una manera mucho más sencilla de verlo: si y sólo si imagen(f) = B.

Funciones sobreyectivas

Relaciones y Funciones

Definición 15

Se dice que una función es biyectiva si y sólo si es inyectiva y sobre.

- Los números naturales $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ son infinitos. Algunos autores consideran que $0 \in \mathbb{N}$, otros no. \mathbb{N} es un conjunto infinito **contable**.
- Los números enteros $\mathbb Z$ y los números racionales $\mathbb Q$ son también infinitos contables porque existe una biyección que los empareja uno a uno con cada $n \in \mathbb N$.
- Los números irracionales $\mathbb Q'$ y los reales $\mathbb R$ en cambio, son infinitos no contables porque no existe biyección que empareje uno a uno sus elementos con todo $n \in \mathbb N$.
- $|\mathscr{P}(A)|\gg |A|$ —no existe biyección que pueda emparejar uno a uno los elementos de ambos conjuntos, por lo que $|\mathscr{P}(\mathbb{N})|\gg |\mathbb{N}|$. El conjunto potencia de los naturales es **infinito no contable**.

- Los números naturales $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ son infinitos. Algunos autores consideran que $0 \in \mathbb{N}$, otros no. \mathbb{N} es un conjunto infinito **contable**.
- Los números enteros $\mathbb Z$ y los números racionales $\mathbb Q$ son también infinitos contables porque existe una biyección que los empareja uno a uno con cada $n \in \mathbb N$.
- Los números irracionales $\mathbb Q'$ y los reales $\mathbb R$ en cambio, son infinitos no contables porque no existe biyección que empareje uno a uno sus elementos con todo $n \in \mathbb N$.
- $|\mathscr{P}(A)|\gg |A|$ —no existe biyección que pueda emparejar uno a uno los elementos de ambos conjuntos, por lo que $|\mathscr{P}(\mathbb{N})|\gg |\mathbb{N}|$. El conjunto potencia de los naturales es **infinito no contable**.

- Los números naturales $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ son infinitos. Algunos autores consideran que $0 \in \mathbb{N}$, otros no. \mathbb{N} es un conjunto infinito **contable**.
- Los números enteros $\mathbb Z$ y los números racionales $\mathbb Q$ son también infinitos contables porque existe una biyección que los empareja uno a uno con cada $n \in \mathbb N$.
- Los números irracionales $\mathbb Q'$ y los reales $\mathbb R$ en cambio, son infinitos no contables porque no existe biyección que empareje uno a uno sus elementos con todo $n \in \mathbb N$.
- $|\mathscr{P}(A)|\gg |A|$ —no existe biyección que pueda emparejar uno a uno los elementos de ambos conjuntos, por lo que $|\mathscr{P}(\mathbb{N})|\gg |\mathbb{N}|$. El conjunto potencia de los naturales es **infinito no contable**.

- Los números naturales $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ son infinitos. Algunos autores consideran que $0 \in \mathbb{N}$, otros no. \mathbb{N} es un conjunto infinito **contable**.
- Los números enteros $\mathbb Z$ y los números racionales $\mathbb Q$ son también infinitos contables porque existe una biyección que los empareja uno a uno con cada $n \in \mathbb N$.
- Los números irracionales $\mathbb Q'$ y los reales $\mathbb R$ en cambio, son infinitos no contables porque no existe biyección que empareje uno a uno sus elementos con todo $n \in \mathbb N$.
- $|\mathscr{P}(A)|\gg |A|$ —no existe biyección que pueda emparejar uno a uno los elementos de ambos conjuntos, por lo que $|\mathscr{P}(\mathbb{N})|\gg |\mathbb{N}|$. El conjunto potencia de los naturales es **infinito no contable**.

Conectivos lógicos Lógica

- La disyunción (∨) funciona de manera similar a la unión en los conjuntos. Le corresponde la compuerta lógica OR.
- La conjunción (∧) funciona de manera similar a la intersección en los conjuntos. Le corresponde la compuerta lógica AND.
- La negación (¬) funciona de manera similar al complemento. Su compuerta lógica es el NOT.

¿Puedes describir la implicación y la doble implicación? ¿Cuáles de las leyes de conjuntos aplican también para lógica? • Slide de Equivalencias

Conectivos lógicos Lógica

- La disyunción (∨) funciona de manera similar a la unión en los conjuntos. Le corresponde la compuerta lógica OR.
- La conjunción (∧) funciona de manera similar a la intersección en los conjuntos. Le corresponde la compuerta lógica AND.
- La negación (¬) funciona de manera similar al complemento. Su compuerta lógica es el NOT.

¿Puedes describir la implicación y la doble implicación? ¿Cuáles de las leyes de conjuntos aplican también para lógica? Slide de Equivalencias

Conectivos lógicos Lógica

- La disyunción (∨) funciona de manera similar a la unión en los conjuntos. Le corresponde la compuerta lógica OR.
- La conjunción (∧) funciona de manera similar a la intersección en los conjuntos. Le corresponde la compuerta lógica AND.
- La negación (¬) funciona de manera similar al complemento. Su compuerta lógica es el NOT.

¿Puedes describir la implicación y la doble implicación? ¿Cuáles de las leyes de conjuntos aplican también para lógica? Slide de Equivalencias

Conectivos lógicos Lógica

- La disyunción (∨) funciona de manera similar a la unión en los conjuntos. Le corresponde la compuerta lógica OR.
- La conjunción (∧) funciona de manera similar a la intersección en los conjuntos. Le corresponde la compuerta lógica AND.
- La negación (¬) funciona de manera similar al complemento. Su compuerta lógica es el NOT.

¿Puedes describir la implicación y la doble implicación? ¿Cuáles de las leyes de conjuntos aplican también para lógica? • Slide de Equivalencias

La conjunción y la disyunción son conmutativas.

$$p \vee q = q \vee p$$

$$p \wedge q = q \wedge p$$

La conjunción y la disyunción son conmutativas.

$$p\vee q=q\vee p$$

$$p \wedge q = q \wedge p$$

La conjunción y la disyunción son conmutativas.

$$p \vee q = q \vee p$$

$$p \wedge q = q \wedge p$$

La conjunción y la disyunción son asociativas.

$$p \lor (q \lor r) = (p \lor q) \lor r$$

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r$$

La conjunción y la disyunción son asociativas.

$$p \vee (q \vee r) = (p \vee q) \vee r$$

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r$$

La conjunción y la disyunción son asociativas.

$$p \vee (q \vee r) = (p \vee q) \vee r$$

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r$$

La conjunción y la disyunción son distributivas entre ellas.

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$

La conjunción y la disyunción son distributivas entre ellas.

$$p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$$

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

La conjunción y la disyunción son distributivas entre ellas.

$$p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$$

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

Leyes de De Morgan:

$$\neg(p \lor q) = \neg p \land \neg q$$

$$\neg(p \land q) = \neg p \lor \neg q$$

Leyes de De Morgan:

$$\neg(p \lor q) = \neg p \land \neg q$$

$$\neg(p \land q) = \neg p \lor \neg q$$

Leyes de De Morgan:

$$\neg(p \lor q) = \neg p \land \neg q$$

$$\neg(p \land q) = \neg p \lor \neg q$$