- Si le graphe est fini, A* termine toujours
- Si un chemin vers le but existe, A* va en trouver un
- Si la fonction heuristique h retourne toujours un estimé inférieur ou égal au coût réel à venir, on dit que h est admissible :
 - dans ce cas, A* retourne toujours un chemin optimal
- Parfois, on entend par A* la version de l'algorithme avec la condition additionnelle que h soit admissible
 - ♦ A* est alors un Best-First-Search où f(n) = g(n) + h(n) et h(n) est admissible

Propriétés de A* : recherche en largeur

- En utilisant des coûts des arcs uniformément égaux et strictement positifs (par exemple, tous égaux à 1) et h(n) retournant toujours 0 quelque soit le nœud n, A* devient une recherche en largeur
- Open devient une queue LILO (last in, last out), en d'autre termes « dernier entré, dernier sorti »

Propriétés de A* : Dijkstra

- En utilisant une heuristique h(n) retournant toujours, A* est équivalent à l'algorithme de Dijkstra
 - cependant, A* s'arrête lorsque le chemin optimal vers le but a été trouvé
 - Dijkstra continuerait jusqu'à avoir trouvé le chemin optimal vers tous les nœuds

- Soit f*(n) le coût exact (pas un estimé) du chemin optimal du nœud initial au nœud but, passant par n
- Soit $g^*(n)$ le coût exact du **chemin optimal du nœud initial au nœud n**
- Soit $h^*(n)$ le coût exact du **chemin optimal du nœud n au nœud but**
- On a donc que $f^*(n) = g^*(n) + h^*(n)$
- Si l'heuristique est admissible, pour chaque nœud n exploré par A*, on peut montrer que l'on a toujours f(n) ≤ f*(n)

• Si quelque soit un nœud n_1 et son successeur n_2 , nous avons toujours

$$h(n_1) \le c(n_1, n_2) + h(n_2)$$

où $c(n_1, n_2)$ est le coût de l'arc (n_1, n_2) .

On dit alors que h est **cohérente** (on dit aussi parfois **monotone** — mais c'est en réalité f qui devient monotone). Dans ce cas :

- h est aussi admissible
- chaque fois que A* choisit un nœud au début de open,
 A* a alors trouvé le chemin optimal vers ce nœud
 - » le nœud ne sera plus jamais revisité!

- Si on a deux heuristiques admissibles h_1 et h_2 , tel que $h_1(n) < h_2(n)$, alors $h_2(n)$ conduit plus vite au but
 - \bullet avec h_2 , A* explore moins ou autant de nœuds avant d'arriver au but qu'avec h_1
- Si h n'est pas admissible, soit b la borne supérieure sur la surestimation du coût, c-à-d. on a toujours h(n) ≤ h*(n) + b :
 - ◆ A* retournera une solution dont le coût est au plus b de plus que le coût optimal, c-à-d., A* ne se trompe pas plus que b sur l'optimalité.

- Si $h(n) = h^*(n)$, pour tout état n, l'optimalité de A^* est garantie
- Étant donné une fonction heuristique non admissible, l'algorithme A* donne toujours une solution lorsqu'elle existe, mais il n'y a pas de certitude qu'elle soit optimale

Définition générique de f

 Selon le poids que l'on veut donner à l'une ou l'autre partie, on définie f comme suit :

$$f(n) = (1-w)*g(n) + w*h(n)$$

où w est un nombre réel supérieur ou égal à 0 et inférieur ou égal à 1

- Selon les valeurs qu'on donne à w, on obtient des algorithmes de recherche classique :
 - ightharpoonup Dijkstra: w = 0 (f(n) = g(n))
 - Greedy best-first search : w = 1 (f(n) = h(n))
 - $A^*: w = 0.5 \quad (f(n) = g(n) + h(n))$