## Imitation Learning

#### Introduction

- Imitation Learning
  - Also known as learning by demonstration, apprenticeship learning
- An expert demonstrates how to solve the task
  - Machine can also interact with the environment, but cannot explicitly obtain reward.
  - It is hard to define reward in some tasks.
  - Hand-crafted rewards can lead to uncontrolled behavior
- Three approaches:
  - Behavior Cloning
  - Inverse Reinforcement Learning
  - Generative Adversarial Network

Yes, this is supervised learning.

Self-driving cars as example

observation



Expert (Human driver): 向前

Machine: 向前

Training data:

$$(o_1, \hat{a}_1)$$
  
 $(o_2, \hat{a}_2)$   
 $(o_3, \hat{a}_3)$ 

Λct



Actor

NN

#### Problem

Expert only samples limited observation (states)

Let the expert in the states seem by machine

**Dataset Aggregation** 



Dataset Aggregation

Get actor  $\pi_1$  by behavior cloning

Using  $\pi_1$  to interact with the environment

Ask the expert to label the observation of  $\pi_1$ 

Using new data to train  $\pi_2$ 



The agent will copy every behavior, even irrelevant actions.



https://www.youtube.com/watch?v=j2FSB3bseek

 Major problem: if machine has limited capacity, it may choose the wrong behavior to copy.



- Some behavior must copy, but some can be ignored.
  - Supervised learning takes all errors equally

#### Mismatch



- In supervised learning, we expect training and testing data have the same distribution.
- In behavior cloning:
  - Training:  $(o, a) \sim \hat{\pi}$  (expert)
    - Action a taken by actor influences the distribution of o
  - Testing:  $(o', a') \sim \pi^*$  (actor cloning expert)
    - If  $\hat{\pi} = \pi^*$ , (o, a) and (o', a') from the same distribution
    - If  $\hat{\pi}$  and  $\pi^*$  have difference, the distribution of o and o' can be very different.

## Inverse Reinforcement Learning (IRL)

Also known as inverse optimal control, inverse optimal planning

### Inverse Reinforcement Learning



- $\blacktriangleright$  Using the reward function to find a policy  $\pi^*$
- Modeling reward can be easier. Simple reward function can lead to complex policy.

### Inverse Reinforcement Learning

#### Original RL:

- given a reward function  $R(\tau)$ ,  $R(\tau) = \sum_{t=1}^{T} r(s_t, a_t)$
- Initialize an actor  $\pi$
- In each iteration
  - using  $\pi$  to interact with the environment N times, obtain  $\{\tau^1, \tau^2, \cdots, \tau^N\}$

$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_T, a_T, r_T\}$$

$$\bar{R}_{\pi} = \sum_{\tau} R(\tau) P(\tau | \pi) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

$$R(\tau) = \sum_{t=1}^{T} r_t$$

- Update  $\pi$  to maximize  $\bar{R}_{\pi}$
- The actor  $\pi$  is the optimal actor  $\hat{\pi}$

## Inverse Reinforcement Learning

#### Inverse RL:

- $R(\tau)$  or r(s,a) is to be found
- Given expert policy  $\hat{\pi}$  (Given the trajectories  $\{\hat{\tau}_1, \hat{\tau}_2, \cdots, \hat{\tau}_N\}$ )
- The expert policy  $\hat{\pi}$  is the actor that can obtain maximum expected reward
- Find <u>reward function</u> that fulfills the above statements (explaining expert behavior)

$$ar{R}_{\widehat{\pi}} > ar{R}_{\pi}$$
 For all other actors  $\pi$ 

## Ring a bell in your mind?

#### Inverse Reinforcement Learning

#### Find reward function:

$$\bar{R}_{\widehat{\pi}} > \bar{R}_{\pi}$$

For all other actors  $\pi$ 

#### Find policy:

$$\pi^* = \arg\max_{\pi} \bar{R}_{\pi}$$

#### Structured Learning

#### Training:

$$F(x,\hat{y}) > F(x,y)$$

For all x, for all  $y \neq \hat{y}$ 

#### Testing (Inference):

$$y^* = arg \max_{y} F(x, y)$$

### Review: Structured Perceptron

- **Input**: training data set  $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^r, \hat{y}^r), ...\}$
- Output: weight vector w
- Algorithm: Initialize w = 0

$$F(x,y) = w \cdot \phi(x,y)$$

- do
  - For each pair of training example  $(x^r, \hat{y}^r)$ 
    - Find the label  $\tilde{y}^r$  maximizing  $w \cdot \phi(x^r, y)$   $\tilde{y}^r = \arg\max_{y \in Y} w \cdot \phi(x^r, y)$  Can be an issue
    - If  $\tilde{y}^r \neq \hat{y}^r$ , update w  $w \leftarrow w + \phi(x^r, \hat{y}^r) \phi(x^r, \tilde{y}^r) \text{ decrease } F(x^r, \tilde{y}^r), \text{ decrease } F(x^r, \tilde{y}^r)$
- until w is not updated
   We are done!

## IRL v.s. Structured Perceptron

$$F(x,y) = w \cdot \phi(x,y)$$

$$\overline{R}_{\pi} = w \cdot \phi(\pi)$$

$$\tau = \{s_1, a_1, \quad s_2, a_2, \quad \cdots, s_T, a_T, \quad \phi(\pi)$$

$$\overline{R}_{\theta} \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} r_t = w \cdot \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T} f(s_t, a_t)$$

$$r_t = w \cdot f(s_t, a_t) \quad \text{w: Parameters} \quad f(s_t, a_t) \text{: feature vector}$$

$$\widetilde{y} = \arg \max_{y \in Y} F(x, y)$$

$$\pi^* = \arg \max_{\pi} \overline{R}_{\pi}$$



$$\pi^* = \arg\max_{\pi} \bar{R}_{\pi}$$

This is reinforcement learning.

#### Framework of IRL

$$\phi(\pi) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{I} f(s_t, a_t)$$

$$w \to w + \phi(\hat{\pi}) - \phi(\pi)$$



Self driving: record human drivers Robot: grab the

#### **Assume**

arm of robot

$$\overline{R}_{\pi} = w \cdot \phi(\pi)$$

$$r_t = w \cdot f(s_t, a_t)$$

 $\{\hat{\tau}_1, \hat{\tau}_2, \cdots, \hat{\tau}_N\}$  Update reward function such that:

 $\bar{R}_{\widehat{\pi}} > \bar{R}_{\pi}$ 

random

reward

function

 $\{\tau_1, \tau_2, \cdots, \tau_N\}$ 

Actor  $\pi$ 

**Update actor:** 

 $\pi^* = \arg\max_{\pi} \bar{R}_{\pi}$ 

By Reinforcement learning

## GAN v.s. Imitation Learning





Discriminator



$$\tau = \{s_1, a_1, s_2, a_2, \cdots, s_T, a_T\}$$

$$D(\tau)$$

$$S \rightarrow \text{Local}$$

$$A \rightarrow \text{Discriminator d}$$

$$S \rightarrow \text{Local}$$

$$A \rightarrow \text{Discriminator d}$$

$$S \rightarrow \text{Local}$$

$$S \rightarrow \text{Discriminator d}$$

$$S \rightarrow \text{Local}$$

$$S \rightarrow \text{Discriminator d}$$

$$S \rightarrow \text{Cocal}$$

$$S \rightarrow \text{Cocal}$$

$$S \rightarrow \text{Cocal}$$

$$S \rightarrow \text{Cocal}$$

$$S \rightarrow \text{Discriminator d}$$

$$S \rightarrow \text{Cocal}$$

$$S \rightarrow \text{C$$

Generator

$$\tau = \{s_1, a_1, s_2, a_2, \dots, s_T, a_T\}$$

$$D(\tau) = \frac{1}{T} \sum_{t=0}^{T} d(s_t, a_t)$$

Find actor π such that

$$D(\tau_i)$$



$$\theta^{\pi} \leftarrow \theta^{\pi} + \eta \nabla_{\theta^{\pi}} E_{\pi}[D(\tau)] \qquad \theta^{\pi} \leftarrow \theta^{\pi} + \eta \sum_{i=1}^{N} D(\tau_{i}) \nabla_{\theta^{\pi}} log P(\tau_{i} | \pi)$$
policy gradient

Given discriminator D

Each step in the same trajectory can have different values.

Using  $\pi$  to interact with the environment to obtain $\{\tau_1, \tau_2, \dots, \tau_N\}$ If  $D(\tau_i)$  is large, increase  $P(\tau_i|\pi)$ ; otherwise, decrease  $P(\tau_i|\pi)$ 

## Algorithm

- Input: expert trajectories  $\{\hat{\tau}_1, \hat{\tau}_2, \cdots, \hat{\tau}_N\}$
- Initialize discriminator D and actor  $\pi$
- In each iteration:
  - Using actor to obtain trajectories  $\{\tau_1, \tau_2, \cdots, \tau_N\}$
  - Update discriminator parameters: Increase  $D(\hat{\tau}_i)$ , decrease  $D(\tau_i)$

$$D(\tau) = \frac{1}{T} \sum_{t=1}^{T} \frac{\text{reward}}{d(s_t, a_t)}$$

 $D(\tau) = \frac{1}{T} \sum_{t=0}^{T} \frac{\text{reward}}{d(s_t, a_t)}$  Find the reward function that expert has larger reward.

• Update actor parameters: Increase  $D(\tau_i)$ 

$$\theta^{\pi} \leftarrow \theta^{\pi} + \eta \sum_{i=1}^{N} D(\tau_i) \nabla_{\theta^{\pi}} log P(\tau_i | \pi)$$
 Find the actor maximizing reward by reinforcement learning

Find the actor maximizing

# Recap: Sentence Generation & Chat-bot

#### **Sentence Generation**

Expert trajectory:

床前明月光

$$(o_1, a_1)$$
: ("","床")

(o<sub>2</sub>, a<sub>2</sub>): ("床","前")

(o<sub>3</sub>, a<sub>3</sub>): ("床前","明")

#### **Chat-bot**

Expert trajectory:

input: how are you

Output: I am fine

$$(o_1, a_1)$$
: ("input, ","I")

$$(o_2, a_2)$$
: ("input, I", "am")

$$(o_3, a_3)$$
: ("input, I am", "fine")

Maximum likelihood is behavior cloning. Now we have better approach like SeqGAN.

# Examples of Recent Study

#### Robot

Chelsea Finn, Sergey Levine, Pieter Abbeel, " Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization", ICML, 2016 http://rll.berkeley.edu/gcl/

## Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn, Sergey Levine, Pieter Abbeel
UC Berkeley

## Parking Lot Navigation



- Reward function:
  - Forward vs. reverse driving
  - Amount of switching between forward and reverse
  - Lane keeping
  - On-road vs. off-road
  - Curvature of paths



## Path Planning













## Third Person Imitation Learning

• Ref: Bradly C. Stadie, Pieter Abbeel, Ilya Sutskever, "Third-Person Imitation Learning", arXiv preprint, 2017

#### First Person



http://lasa.epfl.ch/research\_new/ML/index.php

#### Third Person



https://kknews.cc/sports/q5kbb8.html

http://sc.chinaz.com/Files/pic/icons/1913/%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%9B%BE%E6%A0%87%E4%B8%8B%E8%BD%BD34.png

## Third Person Imitation Learning



## Third Person Imitation Learning



#### Point Experiment Third-Person vs. Baselines



#### Reacher Experiment Third-Person vs. Baselines



## One-shot Imitation Learning

• How to teach robots? https://www.youtube.com/watch?v=DEGbtjTOIB0



## One-shot Imitation Learning



#### Unstructured Demonstration

Review: InfoGAN

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph Lim, Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets, arXiv preprint, 2017



#### Unstructured Demonstration

The solution is similar to info GAN



#### Unstructured Demonstration

Multi-modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets









CommitStrip.com

http://www.commitstrip.com/en/2017/06/07/ai-inside/?