# Final Model Report: Enhancing Chatbot with Hierarchical Indices for RAG and Summarization

## 1. Analytic Approach

#### Target Definition:

The primary goal of the project was to create a faithful financial but, by enhancing a baseline chatbot's ability to retrieve and generate relevant, accurate responses. This was achieved by integrating hierarchical indices into the RAG (Retrieval-Augmented Generation) framework and incorporating summarization capabilities.

#### • Inputs (Description):

- User queries (natural language inputs)
- Knowledge base documents (structured and unstructured text)
- Hierarchical indices for improved document retrieval

#### Model Built:

The solution consists of a fine-tuned LLM (Large Language Model) integrated with a hierarchical indexing mechanism to optimize retrieval processes, coupled with summarization modules to distill information effectively.

#### 2. Solution Description

## • Simple Solution Architecture:

## **Description and Implementation:**

The solution consists of changes and improvements to baseline functionality inside the streaming and inference pipeline:

#### Streaming Pipeline:

After extracting and preprocessing the documents as in the baseline, and before inserting them into Qdrant, we added the following:

- For each document, using the ChatGPT API, we classify it into:
  - **Sector:** The broad industry/field to which the document belongs (e.g., Healthcare, Technology).
  - Subject: The specific company/person/other subject mentioned in the document (e.g., Microsoft under the Technology sector).
  - Event Type: The type of event/activity described (e.g., for Microsoft under Technology, an event type might be a product launch).

- The classification is performed in separate steps:
  - Query to identify the Sector.
  - Query to identify the Subject within the sector.
  - Query to identify the Event Type within the subject and sector.
  - The resulting triplet (Sector-Subject-Event Type) is saved into the document's payload as the collection name.
  - The document is then inserted into Qdrant with its new collection name attribute.
  - While querying for documents, we maintain a tree-like structure inside a JSON file to store the hierarchy. For each document, we provide existing options for each level, asking GPT to choose the correct option if it exists or invent one otherwise.
  - Note: All documents are still saved inside the same Qdrant collection (like in the baseline). The collection name is only an attribute inside each document's payload.

#### Outcomes of Changes to the Streaming Pipeline:

- All documents are stored in Qdrant with a new field attached to their payload as the collection name.
- The fully-created hierarchy is stored inside our JSON file.

#### Inference Pipeline:

Our changes focus on the context-retrieval part:

- Similarly to the streaming pipeline, we classify the user query into Sector, Subject, and Event Type using GPT — this time ONLY allowing options that exist inside the JSON for each level. However, we allow several subjects and event types to capture broader context at most 3 subjects and at most 5 event types under each subject.
- For all resulting hierarchy triplets, we fetch documents from Qdrant and select the top 10 most similar results to the query.
- If a chosen document lacks the generated summary, we query GPT to create a concise summary.
- Finally, we concatenate all summaries and send them to the Falcon
   7B model as context for the user's query.

- Outcomes of Changes to the Inference Pipeline:
  - The chatbot retrieve and generate relevant, accurate responses
  - Less hallucinations and answers are more grounded to truth

#### 3. Data

Source:

Alpaca News API for batch and online learning datasets for fine-tuning, user query logs for evaluation.

Data Schema:

{

- In the streaming pipeline:
  - Alpaca news Document:

```
"type": "object",

"properties": {

"T": { "type": "string" },

"id": { "type": "integer" },

"headline": { "type": "string" },

"summary": { "type": "string" },

"author": { "type": "string" },

"created_at": { "type": "string", "format": "date-time" },

"updated_at": { "type": "string", "format": "date-time" },

"url": { "type": "string", "format": "uri" },

"content": { "type": "string" },

"symbols": {

"type": "array",

"items": { "type": "string" }

},
```

Data in the training pipeline:

```
Q&A object:
{
    "type": "object",
    "properties": {
        "about_me": { "type": "string" },
        "context": { "type": "string" },
        "response": { "type": "string" }
    },
    "required": ["about_me", "context", "response"]
}
```

# Data in the inference pipeline:

- User Query:
  - " Query Text":{ "type": "string" }
- Selection (Dates, Segments):
- Streaming pipeline:

when running the streaming pipeline using command: "run batch" it takes data from alpaca from the past 8 days, and when working with "run batch dev" it takes from the last 2 days

- Training pipeline:
- The model was trained on data from 01.01.2023-05.01.2023.

#### 4. Features

## List of Raw and Derived Features:

- Raw: Document text, document summary, query text, metadata
- Derived: TF-IDF vectors, embeddings from pre-trained models, hierarchical index scores, sector-subject-event type classification

# Importance Ranking:

- Hierarchical index scores
- Embedding similarity
- Query-document relevance scores
- Sector-Subject-Event Type classification

# 5. Algorithm



Inference pipeline

Get context



# Learners Used:

 Falcon 7B - Pre-trained LLM from hugging face, after finetuning on financial data questions.

## 6. Results

## Performance Metrics:

• **Answer similarity:** 0.52 -> 0.64 (+0.12)

• **Faithfulness**: 0.2932 -> 0.5392 (+0.2459)