THÉORIE DES RÉSEAUX – 2018 (2)

1 – Qu'est ce qu'un réseau?

C' est un ensemble d' entités interconnectés entre eux qui consiste à faire circuler des éléments matériels ou immatériels en respectant des règles bien définies.

2 – Donnez 3 exemples de matériel réseau?

HUB (concentrateur) => Hub permet de connecter les appareils entre eux pour créer un réseau LAN.

SWITCH (commutateur) => Le Switch permet de n'envoyer les données qu'au poste de destination. Le trafic du réseau est réduit et la sécurité meilleure.

ROUTEUR => Un Routeur permet de configurer très finement un réseau LAN et le connecter à un autre réseau (internet tout simplement).

3 – Dessinez le modèle OSI

4 – Quel est le rôle de la couche physique ?

- → Elle convertit les signaux électriques en bits de données et inversement, selon qu'elle transmet ou reçoit les informations a la couche liaison.
- => Cette couche correspond a la connexion physique sur le réseau pour l'émission et la réception de bits.

5 – Sur quelle couche trouve-t-on les datagrammes ?

Contrairement à l'UDP, le TCP est orienté "connexion" . Lorsqu'une machine A envoie des données
vers une machine B, la machine B est prévenue de l'arrivée des données, et témoigne de la bonne
réception de ces données par un accusé de réception. Ici, intervient le contrôle CRC des données.

6 – Pourquoi dit-on que le protocole TCP est en mode connecté ?

réception de ces données par un accusé de réception. Ici, intervient le contrôle CRC des données. Celui-ci repose sur une équation mathématique, permettant de vérifier l'intégrité des données transmises. Ainsi, si les données reçues sont corrompues, le protocole TCP permet aux destinataires de demander à l'émetteur de renvoyer les données corrompues.

7 – En comparant le modèle OSI et TCP/IP	donnez le rôle de la couche 4 du modèle TCP/IP
--	--

9 – Combien y a-t-il de classe dans une adresse IP?

Il existe 3 classes dans une adresse IP:

Classe A	1-127
Classe B	128-191
Classe C	192-223

10 – Donnez un exemple de chaque classe avec leur adresse IP, masque réseau et leur adresse broadcast