Exploiting Multiple Symmetry-Broken SCF Solutions to Describe Ground and Excited States of Transition-Metal Complexes

Bang C. Huynh¹ Alex J. W. Thom¹
¹Department of Chemistry, University of Cambridge, United Kingdom

Low-Lying UHF Solutions and NOCI Wavefunctions of Model Octahedral [VF₆]³⁻

Figure 1. Energy and symmetry of low-lying UHF solutions and NOCI wavefunctions constructed from them in octahedral $[VF_6]^{3-}$. $[S_{M_S}]$: symmetry-conserved UHF set S with \hat{S}_z eigenvalue M_S . $[S_{M_S}]$: spatial or spin symmetry-broken UHF set S with \hat{S}_z eigenvalue M_S .

 $\Gamma[A \oplus B \oplus C]$: a specific NOCI set of symmetry Γ constructed from all of A, B, and C. $\Gamma[A, B, C]$: multiple NOCI sets of symmetry Γ constructed from all non-trivial combinations of A, B, and C.

Introduction

Transition-metal complexes are strongly correlated as they have many low-energy electronic states that exhibit high degrees of degeneracy by virtue of d electrons. Figure 2 gives such states for octahedral d^2 as an example.

Figure 2. All electronic terms of a true d^2 system in an octahedral field.

The non-linear HF equations for these complexes are therefore expected to admit multiple low-lying and degenerate or nearly degenerate solutions that are physically significant.

We have located these solutions using SCF metadynamics¹ and investigated their symmetry properties in a model octahedral $[VF_6]^{3-}$ system (Figure 1).

Symmetry Breaking in HF

Each degenerate set of exact solutions to the spinless electronic Schröndinger equation must transform as a single irreducible representation (irrep) of the underlying point group \mathcal{B} , the spin rotation group SU(2), and the time reversal group \mathcal{T} .

The approximated nature of HF does not guarantee this, however. Specifically, UHF wavefunctions are not necessarily eigenfunctions of \hat{S}^2 nor do they and their degenerate partners have to transform as a single irreducible representation of \mathcal{B} .

Thus, consider a degenerate set $S = \{ ^w \Psi \mid w = 1, 2, \ldots \}$ and a particular group \mathcal{G} :

- if S spans a single irrep in G, then S is symmetry-conserved in G;
- if S spans a representation that can be reduced to multiple irreps in \mathcal{G} , then S is symmetry-broken in \mathcal{G} .

HF solutions break symmetry to become lower in energy and possibly recover some electron correlation. Restoring symmetry of symmetry-broken HF solutions allows us to form physically meaningful wavefunctions while incorporating said correlation.

Non-Orthogonal Configuration Interaction (NOCI)

For a symmetry-broken set $S=\{^w\Psi\mid w=1,2,\ldots\}$, solving the generalised eigenvalue equation

$$m{H}m{A} = m{S}m{A}m{E}$$
 where $(m{H})_{wx} = \langle ^w\Psi | \hat{\mathscr{H}} | ^x\Psi \rangle$ and $(m{S})_{wx} = \langle ^w\Psi | ^x\Psi \rangle$

gives coefficients A_{wm} such that the NOCI wavefunctions

$${}^{m}\Phi = \sum_{w} {}^{w}\Psi A_{wm}$$

can be segregated into symmetry-conserved sets. These can then be used to approximate actual electronic terms of the corresponding symmetry.

UHF vs. NOCI: Jahn-Teller Distortion

Figure 3. Correlation diagram (not to scale)

References

1. Thom, A. J. W. & Head-Gordon, M. *Physical Review Letters* **101**, 193001 (November 2008).