Automata Theory CS411-2015F-05

Deterministic Finite Automata vs. Non-Deterministic Finite Automata

David Galles

Department of Computer Science University of San Francisco

05-0: YANFAE¹

All strings over {a,b} that begin or end with aa

05-1: **YANFAE**¹

All strings over {a,b} that begin or end with aa

05-2: NFA \rightarrow DFA

- Can we create a DFA for the same langauge?
- All strings over {a,b} that begin or end with aa

05-3: NFA \rightarrow DFA

- Can we create a DFA for the same langauge?
- All strings over {a,b} that begin or end with aa

05-4: L_{NFA} vs L_{DFA}

- What is the relationship between L_{NFA} and L_{DFA} ?
 - $L_{DFA} \subseteq L_{NFA}$
 - Why?

05-5: L_{NFA} VS L_{DFA}

- What is the relationship between L_{NFA} and L_{DFA} ?
 - $L_{DFA} \subseteq L_{NFA}$
 - Every DFA is also an NFA

05-6: L_{NFA} vs L_{DFA}

- What is the relationship between L_{NFA} and L_{DFA} ?
 - $L_{DFA} \subset L_{NFA}$?
 - $L_{DFA} \subseteq L_{NFA} \wedge L_{NFA} \subseteq L_{NFA}(L_{NFA} = L_{DFA})$?
- Given any NFA M, can we create a DFA M' such that L[M] = L[M']?

05-7: L_{NFA} vs L_{DFA}

- What is the relationship between L_{NFA} and L_{DFA} ?
 - $L_{DFA} \subseteq L_{NFA} \wedge L_{NFA} \subseteq L_{NFA}(L_{NFA} = L_{DFA})$
- Given any NFA M, we ${\it can}$ create a DFA M' such that L[M] = L[M']

05-8: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

05-9: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

q0, abab
$$\rightarrow$$
 q0, bab \rightarrow q0, ab \rightarrow q0, b \rightarrow q0; Reject q1, bab \rightarrow q2, ab q1, b \rightarrow q2, ϵ Reject q3, b \rightarrow q3 ϵ Accept

05-10: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

$$q0$$
 \xrightarrow{a} $q0$ \xrightarrow{b} $q0$ \xrightarrow{a} $q0$ \xrightarrow{b} $q0$ Reject $q1$ \xrightarrow{b} $q2$ Reject $q3$ \xrightarrow{b} $q3$ Accept

05-11: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

05-12: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

05-13: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

Build Equivalent DFA

05-14: $NFA \rightarrow DFA$

NFA for all strings over {a,b} containing aba

Build Equivalent DFA

05-15: $NFA \rightarrow DFA$

• What about ϵ -transitions?

05-16: $NFA \rightarrow DFA$

• What about ϵ -transitions?

05-17: $NFA \rightarrow DFA$

- Example ≠ Proof!
- Need to show, given any NFA M, we can create a DFA M^\prime such that $L[M] = L[M^\prime]$
 - Constructive Proof

05-18: Proof: $L_{NFA} \subseteq L_{DFA}$

- Given NFA $M = (K, \Sigma, \Delta, s, F)$
- Create DFA $M' = (K', \Sigma', \delta', s', F')$
 - Such that L[M'] = L[M]

o5-19: Proof: $L_{NFA} \subseteq L_{DFA}$

- NFA $M=(K,\Sigma,\Delta,s,F)$
- DFA $M'=(K',\Sigma',\delta',s',F')$
 - \bullet K' =
 - ullet $\Sigma' =$
 - \bullet $\delta' =$
 - \bullet s' =
 - \bullet F' =

05-20: Proof: $L_{NFA} \subseteq L_{DFA}$

- NFA $M=(K,\Sigma,\Delta,s,F)$
- DFA $M' = (K', \Sigma', \delta', s', F')$
 - $K' = 2^K$
 - $\Sigma' = \Sigma$
 - $\delta' = \{((q_1, a), q_2) : q_1 \in K', a \in \Sigma,$ $q_2 = \epsilon\text{-closure} \ (\{q : (q_3 \in q_1) \land ((q_3, a), q) \in \Delta\})$
 - $s' = \epsilon$ -closure(s)
 - $F' = \{Q : Q \in 2^K \land Q \cap F \neq \emptyset\}$

o5-21: Example: $L_{NFA}\subseteq L_{DFA}$

- $K = \{q_0, q_1, q_2\}$
- \bullet $\Sigma = \{a, b\}$
- $\Delta = ((q_0, a), q_0), ((q_0, a), q_1), ((q_0, b), q_0), ((q_1, a), q_2)$
- \bullet $s = q_0$
- ullet $F = \{q_2\}$

05-22: Example: $L_{NFA} \subseteq L_{DFA}$

- K' = $\{\{\}, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}\}$ $\Sigma' = \{a, b\}$ $\delta' = \{((\{\}, a), \{\}), ((\{\}, b), \{\}), ((\{q_0\}, a), \{q_0, q_1\}),$
- $\delta' = \{((\{\}, a), \{\}), ((\{\}, b), \{\}), ((\{q_0\}, a), \{q_0, q_1\}), ((\{q_0\}, b), \{q_0\}), ((\{q_1\}, a), \{q_2\}), ((\{q_1\}, b), \{\}), ((\{q_2\}, a), \{\}), ((\{q_2\}, b), \{\}), ((\{q_0, q_1\}, a), \{q_0, q_1, q_2\}), ((\{q_0, q_1\}, b), \{q_0\}), ((\{q_0, q_2\}, a), \{q_0, q_1\}), ((\{q_0, q_2\}, b), \{q_0\}), ((\{q_1, q_2\}, a), \{q_2\}), ((\{q_1, q_2\}, b), \{\}), ((\{q_0, q_1, q_2\}, a), \{q_0, q_1, q_2\}), ((\{q_0, q_1, q_2\}, b), \{q_0\}))$
- $\bullet \ s' = \{q_0\}$
- $F' = \{\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}$

o5-23: Example: $L_{NFA} \subseteq L_{DFA}$

