INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 4.5-4.7] PROBABILITY I (VENN DIAGRAMS – TABLES)

Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 18] [without GDC]

The following Venn diagram shows the sample space U and the event A and B together with the numbers of elements in the corresponding regions.

(a) Complete the following table.

n(A)	n(B)	$n(A \cap B)$	
n(A')	n(B')	$n(A \cup B)$	
$n(A' \cap B)$	$n(A \cap B')$	$n(A' \cap B')$	
$n(A' \cup B)$	$n(A \cup B')$	$n(A' \cup B')$	

[6]

[6]

[6]

(b) Write down the following probabilities

P(A)	P(A')	$P(A \cup B)$	
$P(A' \cap B)$	$P(A' \cup B)$	$P(B' \cup A)$	

(c) Write down the following conditional probabilities

P(A B)	P(A' B)	P(B' A)	
P(B A)	P(A B')	P(A' B')	

2. [Maximum mark: 12] [without GDC]

The following Venn diagram shows the sample space U and the events A and B together with their probabilities in the corresponding regions.

(a) Write down the following probabilities

P(A)	P(A')	$P(A \cap B)$	
$P(A \cup B)$	$P(A' \cap B)$	$P(A' \cup B)$	

[6]

[6]

[4]

[4]

(b) Write down the following **conditional** probabilities

P(A B)	P(A' B)	P(B' A)	
$P(B \mid A)$	P(A B')	P(A' B')	

3. [Maximum mark: 8] *[without GDC]*

The following table shows the distribution of a population according to two criteria, gender and group. We select a person at random.

	Group A	Group B	Group C	Total
Boys	5	15	10	30
Girls	20	25	5	50
Total	25	40	15	80

(a) Write down the following probabilities

P(Boy)	P(Group C)	
P(Boy AND Group C)	P(Boy OR Group C)	

(b) Write down the following **conditional** probabilities

P(Boy Group C)	P(Group C Boy)	
P(Boy NOT Group C)	$P(NOT\ Group\ C\ \ Boy)$	

Page 2

4. [Maximum mark: 20] [without GDC]

The following Venn diagram shows the universal set U and the sets A and B together with the probabilities of the corresponding regions.

where a + b + c + d = 1.

(a) Express in terms of a, b, c, d the following probabilities:

P(A)	a+c	$P(A' \cap B)$	
P(A')		$P(A' \cup B)$	
$P(A \cap B)$		$P(A' \cap B')$	
$P(A \cup B)$		$P(A' \cup B')$	

[7]

(b) Express in terms of a, b, c, d the following probabilities:

P(A B)	P(B' A)	
P(B A)	P(B A')	
P(A' B)	P(A' B')	
P(A B')	P(B' A')	

(c) Given that the events A and B are independent and a=b=c, find the values of a,b,c and d [5]

5. [Maximum mark: 12] [with GDC]

The following Venn diagram shows the universal set U and the sets A and B together with the probabilities of the corresponding regions.

Write down the values of P(A) and $P(A \cup B)$ [2] (a) Write down the value of x given that A and B are mutually exclusive. (b) [1] Find the value of x given that A and B are independent. (c) [3] Find the value of x given that P(A | B) = 0.5. (d) [3] Find the value of x given that $P(B \mid A) = 0.25$. (e) [3]

A. Exam style questions (SHORT)

6. [Maximum mark: 4] [without GDC]

The following Venn diagram shows the universal set U and the sets A and B.

$$n(U) = 100$$

 $n(A) = 30, \ n(B) = 50$
 $n(A \cup B) = 65.$

- (a) Find $n(B \cap A')$ [2]
- (b) An element is selected at random from U . What is the probability that this element is in $P(B\cap A')$?

7. [Maximum mark: 4] [without GDC]

(b)

The following Venn diagram shows a sample space U and events A and B.

Explain why events *A* and *B* are not mutually exclusive.

$$n(U) = 36$$

 $n(A) = 11, \ n(B) = 6$
 $n(A \cup B)' = 21.$

[2]

- (a) Find (i) $n(A \cap B)$; (ii) $P(A \cap B)$ [2]

8. [Maximum mark: 6] *[without GDC]*

The Venn diagram below shows events A and B where P(A) = 0.3, $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.1$. The values m, n, p and q are probabilities.

(a) (i) Write down the value of n.

(ii) Find the value of m, of p, and of q. [4]

- (b) Find P(B'). [2]
- **9.** [Maximum mark: 6] [without GDC]

Consider the events A and B, where P(A) = 0.5, P(B) = 0.7 and $P(A \cap B) = 0.3$.

The Venn diagram below shows the events A and B, and the probabilities p, q, r.

- (a) Write down the value of (i) p; (ii) q; (iii) r. [3]
- (b) Find the value of P(A|B'). [2]
- (c) Hence, or otherwise, show that the events A and B are **not** independent. [1]

10.	_	kimum mark: 4] [without GDC] The events A and B , $P(A) = 0.6$, $P(B) = 0.8$ and $P(A \cup B) = 1$.	
	(a) (b)	Find $P(A \cap B)$; Find $P(A' \cup B')$	[2] [2]
11.	The	vimum mark: 6] [with GDC] Venn diagram below shows information about 120 students in a school. Of these, tudy Chinese (<i>C</i>), 35 study Japanese (<i>J</i>), and 30 study Spanish (<i>S</i>).	
		C $\begin{pmatrix} 8 \\ 4 \\ 5 \\ 7 \end{pmatrix}$ S	
	A st	udent is chosen at random from the group. Find the probability that the student	
	(a)	studies exactly two of these languages;	[1]
	(b)	studies only Japanese;	[2]
	(c)	does not study any of these languages.	[3]
	(6)	does not study any or triese languages.	Į3

12.	In a			-	take physics	only, 20 take both	
	 (a) Find the probability (i) that a student takes physics given that the student takes chemistry. (ii) that a student takes physics given that the student does not take chemistry. 						
(b) State whether the events "taking chemistry" and "taking physics" are n exclusive, independent, or neither. Justify your answer.							tually [2]
13.	-	 kimum mark survev. 100		ut GDC]	prefer to watc	h television or pla	v sport?"
		•		_	•	rls made this choi	
				Boys	Girls	Total	
			Television				
			Sport	33	29		
			Total	46		100	
	By c (a) (b)	a student	selected at rand	erwise, find the dom prefers to n television, giv	watch televisio	n;	[2] [2]

14.	[Maximum mark: 4]	[without GDC	<u>`1</u>
17.	liviaxiillulli Illaik. 4 j		/

In a survey of 200 people, 90 of whom were female, it was found that 60 people were unemployed, including 20 males.

(a) Using this information, complete the table below.

[2]

	Males	Females	Totals
Unemployed			
Employed			
Totals			200

(b)	If a person is selected at random from this group of 200, find the probability that
	this person is

	(i)	an i	ınemı	alov	ad f	emal	Δ.
۱	u.	ı anı	лпени	יעטוכ	euı	emai	е.

((ii)	a male, given that the person is employed.
١	,	a maio, given mat me percent le empleyed.

[2]

15. [Maximum mark: 6] [without GDC]

The eye colour of 97 students is recorded in the chart below.

	Brown	Blue	Green
Male	21	16	9
Female	19	19	13

One	student is selected at random. Write down	
(a)	the probability that the student is a male.	[2]
(b)	the probability that the student has green eyes, given that the student is a female	[2]
(c)	Find the probability that the student has green eyes or is male.	[2]

16. [Maximum mark: 7] **[with GDC]**

There are 20 students in a classroom. Each student plays only one sport. The table below gives their sport and gender.

	Football	Tennis	Hockey
Female	5	3	3
Male	4	2	3

	(-)	0	04114004	:_	aalaatad	-+	
ı	(a)	One	student	ıs	selected	ลเ	random.

- (i) Calculate the probability that the student is a male or is a tennis player.
- (ii) Given that the student selected is female, calculate the probability that the student does not play football.

[4]

[3]

(b) Two students are selected at random. Calculate the probability that neither

student plays football.	

17. [Maximum mark: 6] [without GDC]

Consider events A, B such that $P(A) \neq 0$, $P(A) \neq 1$, $P(B) \neq 0$, and $P(B) \neq 1$.

In each of the situations (i), (ii), (iii) below state whether A and B are mutually exclusive (M); independent (I); neither (N).

(i)
$$P(A|B) = P(A)$$
 (ii) $P(A \cap B) = 0$ (iii) $P(A \cap B) = P(A)$

18.	[Maximum	mark: 61	[without	GDC1
10.	liviaxiiiiaiii	mank. Oj	[without	ODO

In a bilingual school there is a class of 21 pupils. In this class, 15 of the pupils speak Spanish as their first language and 12 of these 15 pupils are Argentine. The other 6 pupils in the class speak English as their first language and 3 of these 6 pupils are Argentine. A pupil is selected at random from the class and is found to be Argentine. Find the probability that the pupil speaks Spanish as his/her first language.

19. [Maximum mark: 6] [without GDC]

Let A and B be events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{3}{4}$ and $P(A \cup B) = \frac{7}{8}$.

- (a) Calculate $P(A \cap B)$. [2]
- (b) Calculate P(A|B). [2]
- (c) Are the events A and B independent? Give a reason for your answer. [2]

(a)
$$P(A \cap B) = \frac{1}{2}(\frac{3}{4}) = \frac{3}{8}$$

(b) $P(A \mid B) = \frac{3}{2}(\frac{3}{4}) = \frac{3}{8}$

0*.	[Maximum mark: 6] [without GDC]
	Given that $(A \cup B)' = \emptyset$, $P(A' B) = \frac{1}{3}$ and $P(A) = \frac{6}{7}$, find $P(B)$.
	[Maximum mark: 6] [without GDC]
	The letters of the word PROBABILITY are written on 11 cards as shown below.
	P R O B A B I L I T Y
	Two cards are drawn at random without replacement.
	Let A be the event the first card drawn is the letter A.
	Let B be the event the second card drawn is the letter B.
	(a) Find $P(A)$.
	(b) Find $P(B A)$.
	(c) Find $P(A \cap B)$.
	$(\alpha) P(A) = \frac{1}{1}$
	(b) $P(B A) = \frac{1}{10} = \frac{1}{5}$
	$(c) P(A_n B) = \frac{1}{110} = \frac{1}{10} = \frac{1}{55}$

[MAA 4.5-4.7] PROBABILITY I (VENN DIAGRAMS - TABLES)

Let	A and B be independent events such that $P(A) = 0.3$ and $P(B) = 0.8$.	
(a)	Find $P(A \cap B)$.	
(b)	Find $P(A \cup B)$.	
(c)	Are A and B mutually exclusive? Justify your answer.	
` ,		
[Max	cimum mark: 6] <i>[without GDC]</i>	
	timum mark: 6] <i>[without GDC]</i> and E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate $P(F)$;	
Ever	Into E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate	
Ever (a)	Into E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate $P(F)$;	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	
Ever (a)	Into E and F are independent, with $P(E) = \frac{2}{3}$ and $P(E \cap F) = \frac{1}{3}$. Calculate $P(F)$;	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	
Ever (a)	ants E and F are independent, with $\mathrm{P}(E)=\frac{2}{3}$ and $\mathrm{P}(E\cap F)=\frac{1}{3}$. Calculate $\mathrm{P}(F)$; $\mathrm{P}(E\cup F)$.	

[Max	kimum mark: 6] [with GDC]
Cons	sider the events A and B , where $P(A) = \frac{2}{5}$, $P(B') = \frac{1}{4}$ and $P(A \cup B) = \frac{7}{8}$.
(a)	Write down $P(B)$.
(b)	Find $P(A \cap B)$.
(c)	Find $P(A B)$.
_	simum mark: 6] <i>[without GDC]</i> A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$.
Let	A and B be independent events, where $P(A)=0.6$ and $P(B)=x$. Write down an expression for $P(A\cap B)$. Given that $P(A\cup B)=0.8$,
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$.
Let (a)	A and B be independent events, where $P(A)=0.6$ and $P(B)=x$. Write down an expression for $P(A\cap B)$. Given that $P(A\cup B)=0.8$,
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.
Let (a) (b)	A and B be independent events, where $P(A) = 0.6$ and $P(B) = x$. Write down an expression for $P(A \cap B)$. Given that $P(A \cup B) = 0.8$, (i) find x ; (ii) find $P(A \cap B)$. Hence, explain why A and B are not mutually exclusive.

	[ivia/	kimum mark: 6]	
	The	events A and B are independent such that $P(B) = 3P(A)$ and $P(A \cup B) = 0.68$.	
	Find	P(B).	
27.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	For	events A and B, the probabilities are $P(A) = \frac{3}{11}$, $P(B) = \frac{4}{11}$.	
		11, 5 (-) 11	
	Calc	sulate the value of $P(A \cap B)$	
		sulate the value of $P(A \cap B)$ if $P(A \cup B) = \frac{6}{}$.	[3]
	(a)	if $P(A \cup B) = \frac{6}{11}$;	[3]
	(a)	if $P(A \cup B) = \frac{6}{11}$;	[3] [3]
	(a)	if $P(A \cup B) = \frac{6}{11}$;	
	(a)	if $P(A \cup B) = \frac{6}{11}$;	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	
	(a)	if $P(A \cup B) = \frac{6}{11}$; if events A and B are independent.	

28.	[Max	kimum mark: 6] [without GDC]	
	The	events A and B are such that $P(A) = 0.5$, $P(B) = 0.3$, $P(A \cup B) = 0.6$.	
	(a)	(i) Find the value of $P(A \cap B)$	
		(ii) Hence show that A and are not independent.	[3]
	(b)	Find the value of $P(B \mid A)$.	[3]
29*.	_	ximum mark: 6] [without GDC]	
		A and B be events such that $P(A) = 0.6$, $P(A \cup B) = 0.8$ and $P(B \mid A) = 0.6$. $P(B)$.	
	Tillu	$\Omega \cap \Omega \cap \Omega \cap \Omega$	
		$\frac{O.8 = 0.6 + P(B) - P(A \cap B)}{P(B) = 0.6 + P(B) - P(A \cap B)}$	
		$P(B)=0.2+P(A\cap B)$	
		$0.6 = P(A \cap B)$	
		P(B)	
		O / b(a b)	
		$O_{1}O_{2}O_{3}O_{4}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5$	
		0.2+P(AnB)	
		0.03 + 0.06P(AAB) = P(AAB)	
		Q03=0.94p(Ang)	
		$D(\Delta_A B) > 0$	
		Page 16	
		$oldsymbol{arphi}$	

30*.	[Max	imum mark: 6]
	Let A	A and B be events such that $P(A) = \frac{1}{5}$, $P(B \mid A) = \frac{1}{4}$ and $P(A \cup B) = \frac{7}{10}$.
	(a)	Find $P(A \cap B)$.
	(b)	Find $P(B)$
	(c)	Show that A and B are not independent.
31.		imum mark: 5] [without GDC]
		In that events A and B are independent with $P(A \cap B) = 0.3$, $P(A \cap B') = 0.3$, $P(A \cup B)$.
	IIIIu 1	$r(A \cup B)$.

32*.	[Max	imum mark: 6]	
	The i	independent events A and B are such that $P(A)=0.4$ and $P(A\cup B)=0.88$. Find	
	(a)	P(B).	[3]
	(b)	the probability that either A occurs or B occurs, but $\operatorname{\mathbf{not}}$ both.	[3]
33*.	[Max	imum mark: 7] <i>[with GDC]</i>	
	_	sider the independent events A and B .	
		n that $P(B) = 2P(A)$ and $P(A \cup B) = 0.52$, find $P(B)$.	

34.	[Max	rimum mark: 6]	
	Two	unbiased 6-sided dice are rolled, a red one and a black one. Let $\it E \it $ and $\it F \it $ be the	
	ever	ats	
		E: the same number appears on both dice;	
		F: the sum of the numbers is 10.	
	(a)	Find $P(E)$.	[2]
	(b)	Find $P(F)$.	[1]
	(c)	Find $P(E \cup F)$.	[3]
35.	[Max	kimum mark: 7] <i>[without GDC]</i>	
	Two	fair dice are thrown and the number showing on each is noted. The sum of these	
	two	numbers is <i>S</i> . Find the probability that	
	(a)	S is less than 8;	[2]
	(b)	at least one die shows a 3;	[2]
	(c)	at least one die shows a 3, given that S is less than 8.	[3]

B. Paper 2 questions (LONG)

36.	In a Fou	simum mark: 10] <i>[without GDC]</i> survey of 50 people it is found that 40 own a television and 21 own a computer. If do not own either a computer or a television. A person is chosen at random from group. Find the probability	
			[0]
	(a)	that this person owns both a television and a computer.	[2]
	(b)	that this person owns a television, given that he also owns a computer.	[2]
	(c)	that this person owns both a television or a computer.	[2]
	(d)	that this person owns a television, given that he does not own a computer.	[2]
	(e)	that this person owns a computer, given that he does not own a television.	[2]

37. [Maximum mark: 12] *[with GDC]*

In a school of 88 boys, 32 study economics (E), 28 study history (H) and 39 do not study either subject. This information is represented in the following Venn diagram.

- (a) Calculate the values a,b,c.
- (b) A student is selected at random.
 - (i) Calculate the probability that he studies **both** economics and history.
 - (ii) Given that he studies economics, calculate the probability that he does not study history.

[4]

[3]

- (c) A group of three students is selected at random from the school.
 - (i) Calculate the probability that none of these students studies economics.
 - (ii) Calculate the probability that at least one of these students studies economics. [5]

38.	[Max	imum mark: 16] <i>[with GDC]</i>	
	Two	restaurants, Center and New, sell fish rolls and salads.	
		Let F be the event a customer chooses a fish roll.	
		Let S be the event a customer chooses a salad.	
		Let N be the event a customer chooses neither a fish roll nor a salad.	
	In th	e <i>Center</i> restaurant $P(F) = 0.31$, $P(S) = 0.62$, $P(N) = 0.14$.	
	(a)	Show that $P(F \cap S) = 0.07$.	[3]
	(b)	Given that a customer chooses a salad, find the probability the customer also	
		chooses a fish roll.	[3]
	(c)	Are F and S independent events? Justify your answer.	[3]
	At N	ew restaurant, $P(N) = 0.14$. Twice as many customers choose a salad as choose	
	a fis	n roll. Choosing a fish roll is independent of choosing a salad.	
	(d)	Find the probability that a fish roll is chosen.	[7]

39. [Maximum mark: 12] [with GDC]

The table below shows the subjects studied by 210 students at a college.

	Year 1	Year 2	Totals
History	50	35	85
Science	15	30	45
Art	45	35	80
Totals	110	100	210

	Totals	110	100	210		
As	tudent from	the college is sele	ected at random.			
	Let	A be the event the	ne student studies	Art.		
	Let	B be the event the	he student is in Ye	ear 2.		
(i)	Find P(A	1).				
(ii)	Find the	probability that the	e student is a Year	² 2 Art student.		
(iii)	Are the e	events A and B in	ndependent? Justi	fy your answer.		[6]
	en that a H student is i	istory student is se n Year 1.	elected at random,	calculate the prol	pability that	[2]
Two	o students a	are selected at ran	dom from the coll	ege Calculate the	probability	
		nt is in Year 1, and		_	probability	[4]

40.	In a	[Maximum mark: 12] <i>[with GDC]</i> In a class of 100 boys, 55 boys play football and 75 boys play rugby. Each boy must play at least one sport from football and rugby.						
	(a)	(i) (ii)	Find the number of boys who play both sports. Write down the number of boys who play only rugby.	[3]				
	(b)	One (i) (ii)	boy is selected at random. Find the probability that he plays only one sport. Given that the boy selected plays only one sport, find the probability that he plays rugby.	[4]				
	Let 2	A be t	the event that a boy plays football and $\it B$ be the event that a boy plays rugby.					
	(c)	-		[2]				
	(d)	Shov	w that A and B are not independent.	[3]				

41. [Maximum mark: 13] *[with GDC]*

In a group of 16 students, 12 take art and 8 take music. One student takes neither art nor music. The Venn diagram below shows the events art and music. The values $\,p$, $\,q$, $\,r$ and $\,s$ represent numbers of students.

Write down the value of s. (a) (i) (ii) Find the value of q. Write down the value of p and of r. (iii) [5] A student is selected at random. Given that the student takes music, write (b) (i) down the probability the student takes art. **Hence**, show that taking music and taking art are **not** independent events. [4] Two students are selected at random, one after the other. Find the probability that (c) the first student takes only music and the second student takes only art. [4]

42.** [Maximum mark: 14] [with GDC]

An integer is chosen at random from the first **one thousand** positive integers.

Let $A = \{\text{multiples of 4}\}$ and $B = \{\text{multiples of 6}\}\$.

Then $A \cap B = \{\text{multiples of 12}\}\$ (since the least common multiple of 4 and 6 is 12)

- (a) Find the number of multiples 350
 - of 4 (ii) of 6
- (iii) of 12

[4]

[1]

[2]

[2]

[2]

- (b) Find the probability that the integer chosen is a multiple of 4.
- Find the probability that the integer chosen is a multiple of 6. (c) [1]
- Find the probability that the integer chosen is a multiple of **both** 4 and 6. (d)
- Find the probability that the integer chosen is a multiple of 4 but not of 6. (e) [2]
- (f) Find the probability that the integer chosen is a multiple of 4 or 6.
- Find the probability that the integer chosen is a multiple of 4 or 6 but not both. (g)

(i)
$$\frac{1000}{9} = 950$$
 (ii) $\frac{1000}{6} = 166$ (iii) $\frac{1000}{12} = 83$
(b) $\frac{250}{1000} = \frac{1}{4}$ (c) $\frac{166}{1000} = 0.166$ (d) $\frac{83}{1000}$

(e)
$$\frac{150-83}{1000} = \frac{107}{1000}$$

$$\frac{(f) 250 + 166 - 63}{1000} = \frac{333}{1000}$$

$$(9)250+166-83(7)=\frac{250}{1000}=\frac{1}{4}$$