Bookmark

Show all steps: (

A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 4ED

Problem Prove the following for an integers *a*, *b*, *c* and all positive integers *m* and *n*: If $a \equiv b \pmod{n}$, then $a^m \equiv b^m \pmod{n}$ for every positive integer m. Step-by-step solution Step 1 of 4 Consider the congruence equation $a \equiv b \pmod{n}$ Object of the problem is to prove that if $a \equiv b \pmod{n}$ then $a^m \equiv b^m \pmod{n}$ for every positive integer m. Prove the result using mathematical induction on m. Comment **Step 2** of 4

Let the statement be $p(m): a^m \equiv b^m \pmod{n}$

For m=1,

$$p(1): a \equiv b \pmod{n}$$

By the hypothesis, the statement p(1) is true.

Comment

Step 3 of 4

For m = 2, then show that $p(2): a^2 = b^2 \pmod{n}$

Use the result, $a \equiv b \pmod{n}$ iff n divides a - b to prove the result.

So there is an integer p such that a-b=np

$$a^{2}-b^{2} = (a-b)(a+b)$$

$$= np(a+b)$$

$$= ns put s = p(a+b)$$

By the result of congruence equation, $a^2 \equiv b^2 \pmod{n}$

Comment

Step 4 of 4

Assume that the statement p(m) is true for m = k > 2 and show that the statement p(m+1) is true.

$$a^{m+1} - b^{m+1} = a^{m+1} - ab^m + ab^m - b^{m+1}$$
$$= a(a^m - b^m) + b^m(a - b)$$

By the induction hypothesis, $a^m - b^m = np$ and a - b = np

$$a^{m+1} - b^{m+1} = anp' - npb^m$$

= $n(ap' - pb^m)$
= nr' take $ap' - pb^m = r'$

Thus,
$$a^{m+1} \equiv b^{m+1} \pmod{n}$$

Hence, by the induction, the statement $a^m \equiv b^m \pmod{n}$ is true for positive integer m

Comment