Lukion matematiikkakilpailu 1.2.2013

Tehtävien ratkaisuhahmotelmia

1. Olkoon $g(x) = f(x) - x^3 = ax^2 + bx + c$. Tiedetään, että g(a) = g(b) = 0. Siis g(x) = a(x-a)(x-b). Kokonaisluvut a, b ja c toteuttavat yhtälöt b = -a(a+b) ja $c = a^2b$. Edellisestä yhtälöstä seuraa

$$b = -\frac{a^2}{a+1} = -\frac{a^2 - 1 + 1}{a+1} = 1 - a - \frac{1}{a+1}.$$

Jotta b olisi kokonaisluku, on välttämättä oltava $a+1=\pm 1$. Koska $a\neq 0$, vain a=-2 on mahdollinen. Siis välttämättä b=4 ja c=16.

- 2. Oletetaan, että Aina ostaa m seitsemän päivän lippua ja n 30 päivän lippua. Jotta liput riittäisivät, on oltava $7m+30n \geq 1096$. Lippujen hinta on $m \cdot 7,03+n \cdot 30=0,03 \cdot m+7m+30n \geq 0,03m+1096$. Tutkitaan, milloin 7m+30n=1096. Lukujen 7 ja 30 suurin yhteinen tekijä on 1. Diofantoksen yhtälön 7m+30n=1 ratkaisu saadaan Eukleideen algoritmista: koska $30=4\cdot 7+2$ ja $7=3\cdot 2+1$, niin $1=7-3\cdot 2=7-3\cdot (30-4\cdot 7)=13\cdot 7-3\cdot 30$. Siis $13\cdot 1096\cdot 7-3\cdot 1096\cdot 30=1096$ ja $(13\cdot 1096-30t)\cdot 7-(3\cdot 1096-7t)\cdot 30=1096$ kaikilla t. Pienin m saadaan, kun t on suurin sellainen kokonaisluku, jolle $13\cdot 1096-30t\geq 0$ ja $-(3\cdot 1096-7t)\geq 0$. Suurin t, jolle $13\cdot 1096\geq 30t$ on 474; silloin m=28. Helposti nähdään, että $3\cdot 1096-7\cdot 474=-30<0$. Jos ostetaan 28 viikkolippua ja 30 kuukausilippua, hinnaksi tulee $1096+28\cdot 0,03=1096,84$. Kaikilla muilla m:n ja n:n valinnoilla $0,03m+7m+30n\geq 0,03m+1097\geq 1097$. 28 viikkolippua ja 30 kuukausilippua on edullisin vaihtoehto.
- 3. Koska AB on yksikköympyrän halkaisija, AB=2. Laskennon mukavoittamiseksi tarkastellaan ympyrää, jonka halkaisija A'B'=15 (Merkitään pilkuilla alkuperäistä tehtävänantoa vastaavia pisteitä tässä "suurennoksessa"). Koska A'B' on ympyrän halkaisija, $\angle A'C'B'=90^\circ$. Suorakulmaisen kolmion A'B'C' kateettien suhde on 3:4. Kolmio on siis tuttu (3:4:5)-suorakulmainen kolmio, ja A'C'=9, B'C'=12. Kulman puolittaja jakaa vastaisen sivun viereisten sivujen suhteessa. Jos B'D' leikkaa A'C':n pisteessä E', niin A'E'=5 ja E'C'=4. Kolmio E'B'C' on suorakulmainen, joten Pythagoraan lauseen perusteella $B'E'^2$

= $12^2 + 4^2 = 160$ ja $B'E' = 4\sqrt{10}$. Kehäkulmalauseen perusteella $\angle D'A'C' = \angle D'B'C'$. Kolmiot A'E'D' ja B'E'C' ovat yhdenmuotoisia (kk). Siis

$$\frac{A'D'}{A'E'} = \frac{B'C'}{B'E'}$$

eli

$$A'D' = 5 \cdot \frac{12}{4\sqrt{10}} = \frac{15}{\sqrt{10}}.$$

Kun palataan ympyrään, jonka halkaisija on 2, A'D' on kerrottava luvulla $\frac{2}{15}$; tehtävän vastaus on siis $AD = \frac{2}{\sqrt{10}} = \frac{\sqrt{10}}{5}$.

4. Erikoisessa joukossa ei saa olla kahta peräkkäistä alkiota joukoista $E_1 = \{1, 3, 9, 27\}$, $E_2 = \{2, 6, 18\}$, $E_3 = \{4, 12, 36\}$, $E_4 = \{5, 15, 45\}$, $E_5 = \{7, 21\}$, $E_6 = \{8, 24\}$, $E_7 = \{10, 30\}$, $E_8 = \{11, 33\}$, $E_9 = \{13, 39\}$, $E_{10} = \{14, 42\}$, $E_{11} = \{16, 48\}$, $E_{12} = \{17\}$, $E_{13} = \{19\}$, $E_{14} = \{20\}$, ..., $E_{34} = \{50\}$ (välissä ovat kaikki joukot $\{k\}$, missä $22 \le k \le 49$ ja k ei ole kolmen monikerta). Nyt supererikoiseen joukkoon on otettava kaksi alkiota joukoista $E_1, \ldots E_4$ ja yksi alkio jokaisesta joukosta E_5, \ldots, E_{34} . Supererikoisessa joukossa on siis 8+30=38 alkiota. Joukosta E_1 voi valita alkiot supererikoiseen joukkoon kolmella tavalla, joukoista E_2, E_3, E_4 yhdellä tavalla, mutta joukoista E_5, \ldots, E_{11} voi valinnan tehdä kahdella eri tavalla. Eri tapoja valita supererikoinen joukko on siis $3 \cdot 2^7 = 384$.

5. Tehtävän ehdot toteuttaville luvuille pätee

$$2^{m}p^{2} = (q-1)(q^{4} + q^{3} + q^{2} + q + 1).$$

Koska oikean puolen jälkimmäinen tekijä on pariton ja > 1, on oltava $q-1=2^m$ tai $q-1=2^mp$. Jos olisi $q-1=2^mp$, olisi $2^mp^2+1=(2^mp+1)^5>2^{5m}p^5$, mikä selvästi on mahdotonta. Siis $q=2^m+1$. Mutta nyt $2^mp^2+1=(2^m+1)^5=2^{5m}+5\cdot 2^{4m}+10\cdot 2^{3m}+10\cdot 2^{2m}+5\cdot 2^m+1$ eli

$$p^2 = 2^{4m} + 5 \cdot 2^{3m} + 10 \cdot 2^{2m} + 10 \cdot 2^m + 5.$$

Jos $m \ge 2$, saadaan $p^2 = 8k + 5$. Mutta neliöluvut antavat 8:lla jaettuna jakojäännökseksi joko 0:n, 1:n tai 4:n. Siis m < 2 eli m = 1. Silloin q = 3 ja $2p^2 = 3^5 - 1 = 242$. Siis $p^2 = 121$ ja p = 11.