Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Sean U un conjunto no vacío y $A, B \in \mathcal{P}(U)$. Demuestre las siguientes equivalencias

i)
$$A \subset B \iff \overline{A} \cup B = U$$

ii)
$$A \subset B \iff A \cap \overline{B} = \emptyset$$

siendo \overline{A} y \overline{B} los conjuntos complementarios de A y B en U.

Solución:

i) Observemos en primer lugar que se tiene:

$$A \subset B \iff \forall x (x \in A \Rightarrow x \in B) \iff \forall x (x \notin B \Rightarrow x \notin A)$$
 (1)

Veamos primero que $A \subset B \Rightarrow \overline{A} \cup B = U$. Supongamos que $A \subset B$. Como $U = B \cup \overline{B}$,

$$x \in U \implies (x \in B) \lor (x \notin B)$$
, y aplicando (1),
 $\Rightarrow (x \in B) \lor (x \notin A) \Rightarrow x \in \overline{A} \cup B$

En consecuencia $U \subset \overline{A} \cup B$, y como la inclusión inversa es obvia, resulta que $\overline{A} \cup B = U$.

Supongamos ahora que $\overline{A} \cup B = U$. Veamos que $A \subset B$.

Sea $x \in A$. Como $x \in U = \overline{A} \cup B$ tenemos que $x \in A \land (x \notin A \lor x \in B)$, esto es, $(x \in A \land x \notin A) \lor (x \in A \land x \in B)$. En consecuencia, $x \in A \land x \in B$, y por tanto $x \in B$.

ii) Utilizando el apartado anterior se tiene:

$$\begin{array}{cccc} A \subset B & \iff & \overline{A} \cup B = U \iff & \overline{\overline{A} \cup B} = \overline{U} \\ & \iff & \overline{\overline{A}} \cap \overline{B} = \emptyset \iff & A \cap \overline{B} = \emptyset \end{array}$$

Pregunta 2 (2,5 puntos)

Sean un conjunto A y * una operación interna conmutativa y asociativa en A tal que a * a = a para todo $a \in A$. Se define en A una relación S tal que para todo $a, b \in A$,

$$a \mathcal{S} b \iff a * b = b$$
.

- i) Demuestre que S es una relación de orden.
- ii) Demuestre que para todo $a, b \in A$ se tiene que a * b es el supremo en A de $\{a, b\}$ para la relación S.

Solución:

i) Veamos que S es una relación de orden:

Reflexiva: Para todo $a \in E$ $a \, S \, a$ pues se satisface la igualdad a * a = a.

Antisimétrica: Para todo $a, b \in E$, si $a \otimes b$ y $b \otimes a$, entonces a * b = b y b * a = a. Pero * es conmutativa y en consecuencia, a * b = b * a. Por tanto, a = b.

Transitiva: Para todo $a, b, c \in E$, si $a \otimes b \otimes c$, entonces $a*b = b \otimes b*c = c$. Pero * es asociativa y en consecuencia, a*c = a*(b*c) = (a*b)*c = b*c = c. Por tanto, $a \otimes c$.

ii) Veamos en primer lugar, que a*b es cota superior de a y b para la relación S. En efecto, aplicando que * es una operación commutativa y asociativa en A tal que x*x=x para todo $x \in A$, se obtiene:

$$a \, S(a * b)$$
 pues $a * (a * b) = (a * a) * b = a * b$.

 $b \, S \, (a * b)$ pues b * (a * b) = b * (b * a) = (b * b) * a = b * a = a * b.

Para terminar, veamos que a*b es la menor, para la relación S, de las cotas superiores de a y b. En efecto si $c \in A$ es una cota superior de a y b, es decir, si a S c y b S c, entonces (a*b) S c ya que

$$(a*b)*c = a*(b*c)$$
 asociativa
= $a*c$ pues $b \& c$
= c pues $a \& c$.

Pregunta 3 (2,5 puntos)

- i) Defina la estructura de anillo y de anillo íntegro.
- ii) Se definen en \mathbb{Z}^2 las operaciones

$$(a,b) + (a',b') = (a+a',b+b')$$
 y $(a,b) \cdot (a',b') = (aa',0)$

para todo $(a,b),(a',b')\in\mathbb{Z}^2$. Demuestre las propiedades del producto que hacen que $(\mathbb{Z}^2,+,\cdot)$ sea un anillo conmutativo.

- a) ¿Es unitario?
- b) ¿Es íntegro?

Solución:

ii) El producto es conmutativo pues $(a,b)\cdot(a',b')=(aa',0)=(a'a,0)=(a',b')\cdot(a,b)$ para todo $(a,b),(a',b')\in\mathbb{Z}^2$. El producto es asociativo pues

$$(a,b) \cdot [(a',b') \cdot (a'',b'')] = (a,b) \cdot (a'a'',0) = (a(a'a''),0) = ((aa')a'',0) = (aa',0) \cdot (a'',b'')$$
$$= [(a,b) \cdot (a',b')] \cdot (a'',b'') \text{ para todo } (a,b), (a',b'), (a'',b'') \in \mathbb{Z}^2.$$

El producto es distributivo sobre la suma pues

$$(a,b) \cdot \left[(a',b') + (a'',b'') \right] = (a,b) \cdot (a'+a'',b'+b'') = \left(a(a'+a''),0 \right) = (aa',0) + (aa'',0)$$
$$= (a,b) \cdot (a',b') + (a,b) \cdot (a'',b'') \text{ para todo } (a,b), (a',b'), (a'',b'') \in \mathbb{Z}^2$$

y por la propiedad conmutativa del producto también se cumple que

$$\left[(a',b') + (a'',b'') \right] \cdot (a,b) = (a',b') \cdot (a,b) \, + \, (a'',b'') \cdot (a,b).$$

- a) El anillo no es unitario. No existe $(e,f) \in \mathbb{Z}^2$ tal que $(e,f) \cdot (a,b) = (a,b)$ para todo (a,b) pues $(e,f) \cdot (a,b) = (ea,0) \neq (a,b)$ si $b \neq 0$.
- b) El anillo no es íntegro. En particular, $(1,5) \cdot (0,7) = (0,0)$ con $(1,5) \neq (0,0)$ y $(0,7) \neq (0,0)$.

Pregunta 4 (2,5 puntos)

- i) Resuelva en \mathbb{C} la ecuación $\omega^n = 1$ para todo $n \in \mathbb{N}^*$.
- ii) Resuelva en $\mathbb C$ la ecuación $(z+1)^n-(z-1)^n=0$ para todo $n\in\mathbb N^*.$
- iii) Exprese las soluciones de la ecuación de ii) en forma binómica.

Solución:

i) Expresando la ecuación en forma exponencial para $\omega = re^{i\beta}$, se obtiene

$$r^n e^{in\beta} = e^{i \cdot 0}$$

cuyas soluciones son $\begin{cases} r^n = 1 \text{ (ecuación en } \mathbb{R}_+) \\ n\beta = 0 \text{ [mod } 2\pi \text{]} \end{cases}.$

Obtenemos n soluciones distintas $\omega_0, \omega_1, \ldots, \omega_{n-1}$

$$\omega_k = e^{i\frac{2k\pi}{n}}$$
 para $k = 0, 1, \dots, n-1$

ii) Observemos en primer lugar que la ecuación $(z+1)^n - (z-1)^n = 0$ es en realidad una ecuación de grado n-1. Para n=1 se obtiene 2=0 que no tiene solución. Supondremos pues que n>1. Teniendo en cuenta que z=1 no es solución de la ecuación, dividimos por $(z-1)^n$ y se obtiene

$$\left(\frac{z+1}{z-1}\right)^n = 1.$$

Efectuando el cambio de variable $\omega=\frac{z+1}{z-1}$ se obtiene la ecuación $\omega^n=1$ resuelta en el apartado anterior. Deshaciendo el cambio de variable, $\omega(z-1)=z+1$, esto es, $z(\omega-1)=\omega+1$. Y por tanto,

$$z = \frac{\omega + 1}{\omega - 1}$$

siempre que $\omega \neq 1$. En consecuencia como para k=0, se obtiene $\omega=1$, las soluciones de la ecuación propuesta son

$$z_k = \frac{e^{i\frac{2k\pi}{n}} + 1}{e^{i\frac{2k\pi}{n}} - 1}$$
 para $k = 1, 2, \dots, n - 1$

iii) Expresemos en forma binómica el número complejo $z=\frac{e^{i\alpha}+1}{e^{i\alpha}-1}$. Multiplicando y dividiendo por el conjugado del denominador, se obtiene:

$$z = \frac{e^{i\alpha} + 1}{e^{i\alpha} - 1} = \left(\frac{e^{i\alpha} + 1}{e^{i\alpha} - 1}\right) \left(\frac{e^{-i\alpha} - 1}{e^{-i\alpha} - 1}\right) = \frac{e^0 + e^{-i\alpha} - e^{i\alpha} - 1}{e^0 - e^{-i\alpha} - e^{i\alpha} + 1}$$

$$= \frac{e^{-i\alpha} - e^{i\alpha}}{2 - (e^{-i\alpha} + e^{i\alpha})} = \frac{(-2 \operatorname{sen} \alpha)i}{2 - 2 \operatorname{cos} \alpha} = \frac{-\operatorname{sen} \alpha}{1 - \operatorname{cos} \alpha}i = \frac{-2 \operatorname{sen}(\alpha/2) \operatorname{cos}(\alpha/2)}{2 \operatorname{sen}^2(\alpha/2)}i$$

$$= -\operatorname{cotg}(\alpha/2)i$$

Sustituyendo α por $\frac{2k\pi}{n}$ para $k=1,2,\ldots,n-1$, las soluciones de la ecuación en forma binómica son:

$$z_k = -i \cot(k\pi/n)$$
 para $k = 1, 2, ..., n - 1$