"Devoir" Maison

Exercice 1.

- 1. Trouver une solution particulière $\ell \in \mathbb{Z}$ de $10\ell \equiv 1[19]$.
- 2. Montrer que pour tout entier $N \in \mathbb{Z}$, on a $N \equiv 10(D+2c_0)[19]$, où c_0 est le chiffre des unités de N en base 10 et D est le nombres de dizaines de N
- 3. Justifier que N est divisible par 19 si et seulement si $D + 2c_0$ est divisible par 19.
- 4. Utiliser le critère de la question précédente pour montrer que 84721 est divisible par 19.
- 5. Soit $m \in \mathbb{N}^*$. Donner une condition sur m pour qu'il existe $\ell \in \mathbb{Z}$ tel que $10\ell \equiv 1[m]$. On supposera dans la suite cette condition satisfaite.
- 6. Montrer que pour tout entier $N \in \mathbb{Z}$, on a $N \equiv 10(D + \ell c_0)[m]$, où c_0 est le chiffre des unités de N en base 10 et D est le nombre de dizaines de N.
- 7. En déduire un critère de divisibilité par m.

Exercice 2. Pompon est un chat fugueur : il ne revient à sa maison que tous les 23 jours. D'un autre côté, son maître Aurélien travaille beaucoup : il ne passe qu'un jour chez lui par semaine : le mardi. Sachant qu'aujourd'hui nous somme mercredi et que Pompon viendra à sa maison mercredi prochain, déterminer à quel moment Pompon et Aurélien passerons la journée ensemble.

Exercice 3. (Frobenius)

Soit p un nombre premier

- 1. Montrer que p divise $\binom{p}{k}$ pour tout k tel que 0 < k < p.
- 2. Soit A un anneau (commutatif unitaire) de caractéristique p. Montrer que l'application $\phi: x \mapsto x^p$ est un morphisme d'anneaux $A \to A$. C'est le **morphisme de Frobenius**. Montrer que $\phi: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ est en fait l'identité.
- 3. En déduire que deux polynômes différents dans $\mathbb{Z}/p\mathbb{Z}[X]$ peuvent induire la même fonction polynomiale de $\mathbb{Z}/p\mathbb{Z}$ dans lui-même.

Exercice 4.

- 1. Donner les fractions continues des nombres rationnels suivants : $\frac{119}{32}$ et $-\frac{46}{39}$.
- 2. Trouver les nombres représentés par [3,1,1,4,1,3], [-5,1,3,2,4].
- 3. Justifier que [3,1,4,1,5,9,2,6,5,3] n'est pas égal à $\pi.$
- 4. Soit n un entier naturel, et a la partie entière de \sqrt{n} . En posant $a+x=\sqrt{n}$, montrer que $x=\frac{n-a^2}{2a+x}$. En déduire que

$$\sqrt{n} = a + \frac{n - a^2}{2a + \frac{n - a^2}{2a + \frac{n - a^2}{2a + \cdots}}}$$

5. Calculer le développement en fraction continue de $\sqrt{27}$