Colles - Semaine 4

I. Série 1

Exercice 1

Démontrer : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} k! \leq (n+1)!$

Exercice 2

Soit $n \in \mathbb{N}^*$. On note $S_n = \sum_{k=1}^n \frac{1}{k}$ et $u_n = \sum_{k=1}^n S_k$.

Montrer: $\forall n \in \mathbb{N}^*, u_n = (n+1) \times S_n - n$

II. Série 2

Exercice 1

a. Démontrer par récurrence : $\forall n \in \mathbb{N}, \sum_{k=1}^{n} (2k-1) = n^2$

b. Retrouver ce résultat de manière directe.

Exercice 2

Soit $n \ge 1$. Calculer $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right)$.

III. Série 3

Exercice 1

Soit (u_n) la suite définie par : $\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{4 + u_n^2} \end{cases}$ Démontrer que pour tout entier naturel $n, \ u_{n+1} \ > \ u_n$.

Exercice 2

Parmi les formules suivantes, lesquelles sont vraies?

a.
$$\sum_{i=1}^{n} (\alpha + a_i) = \alpha + \sum_{i=1}^{n} a_i$$

d.
$$\sum_{i=1}^{n} (a_i b_i) = \left(\sum_{i=1}^{n} a_i\right) \times \left(\sum_{i=1}^{n} b_i\right)$$

b.
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

e.
$$\sum_{i=1}^{n} a_i^{\alpha} = \left(\sum_{i=1}^{n} a_i\right)^{\alpha}$$

c.
$$\sum_{i=1}^{n} (\alpha a_i) = \alpha \sum_{i=1}^{n} a_i$$

f.
$$\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i,j} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}$$