CSE505 HW2

Tim Zhang

October 14, 2016

1 Interpretations and Models

For each of the solutions provided below assume that D = N, $zero_{\mathscr{I}} = 0$, and $s_{\mathscr{I}} :=$ the successor function over N.

1.1 Part A

- 1. $p_{\mathscr{I}} = \{ n \in N \mid n \text{ is even} \}.$
- 2. $p_{\mathscr{I}} = N$.

1.2 Part B

- 1. $q_{\mathscr{I}} = \{ n \in N \mid n \text{ is odd} \}.$
- 2. $q_{\mathscr{I}} = N$.

1.3 Part C

- 1. $p_{\mathscr{I}} = N$ and $q_{\mathscr{I}} = N$.
- 2. $p_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\}\ \text{and}\ q_{\mathscr{I}} = \{n \in N \mid n \text{ is odd}\}.$
- 3. $p_{\mathscr{I}} = \{n \in N \mid n \text{ is odd}\} \text{ and } q_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\}.$
- 4. $p_{\mathscr{I}} = \emptyset$ and $q_{\mathscr{I}} = \emptyset$

1.4 Part D

- 1. $p_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\}\ \text{and } q_{\mathscr{I}} = \{n \in N \mid n \text{ is odd}\}.$
- 2. $p_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\} \text{ and } q_{\mathscr{I}} = N.$
- 3. $p_{\mathscr{I}} = N$ and $q_{\mathscr{I}} = \{n \in N \mid n \text{ is odd}\}.$
- 4. $p_{\mathscr{I}} = N$ and $q_{\mathscr{I}} = N$.

1.5 Part E

Let $p_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\}$ and $q_{\mathscr{I}} = N \text{ then } q(s(s(zero)))$ is true but p(s(zero)) is false so the interpretation is a model of $F_1 \wedge F_2$ but not of F_3 .

1.6 Part F

Since there is some model of $F_1 \wedge F_2$ which is not a model of F_3 , F_3 is not a logical consequence of $F_1 \wedge F_2$.

1.7 Part G

The only interpretations of p/1 and q/1 which model $F_1 \wedge F_3$ are:

- 1. $p_{\mathscr{I}} = N$ and $q_{\mathscr{I}} = N$.
- 2. $p_{\mathscr{I}} = \{n \in N \mid n \text{ is even}\}\ \text{and } q_{\mathscr{I}} = \{n \in N \mid n \text{ is odd}\}.$

These interpretations for q/1 also model F_2 , so any interpretation which models $F_1 \wedge F_3$ will also model F_2 .

1.8 Part H

 F_2 is a logical consequence of $F_1 \wedge F_3$ by definition of logical consequence.

2 Definite Programs

2.1 Part A

$$p_{\mathscr{I}} = \{(a, a)\}\$$
and $q_{\mathscr{I}} = \{(a, a)\}.$

2.2 Part B

```
1. p_{\mathscr{I}} = \{(a,b), (b,c), (b,d)\} and q_{\mathscr{I}} = \{(a,a), (b,b), (c,c), (d,d), (a,b), (b,c), (b,d), (a,c), (a,d)\}.

2. p_{\mathscr{I}} = \{(a,b), (b,c), (b,d)\} and q_{\mathscr{I}} = \{(a,a), (b,b), (c,c), (d,d), (a,b), (b,c), (b,d), (a,c), (a,d), (c,d)\}.
```

2.3 Part C

1.
$$p_{\mathscr{I}} = \{(a,b), (b,c), (b,d)\}\ \text{and}\ q_{\mathscr{I}} = \{(a,a), (b,b), (c,c), (d,d), (a,b), (b,c), (b,d), (a,c), (a,d)\}.$$

2.4 Part D

Let P be a definite program, it will be shown that there exists some interpretation \mathscr{I} which is a model of P. More specifically, it will be shown that there exists a Herbrand model of P. The Herbrand base of P contains all ground atomic formulas over P and as such the entire set B_P will be a Herbrand model of P.

Assume that B_P is not a Herbrand model of P. Then there exists some clause $A_0 \leftarrow A_1, ..., A_n$ in P such that all of the atoms $A_1, ..., A_n$ are true but A_0 is false under interpretation $\mathscr{I} = B_P$. Then there is some ground instance of A_0 which is not true under \mathscr{I} . But this implies that B_P does not contain this ground instance of A_0 which contradicts the definition of a Herbrand base.

 \therefore B_P is a Herband interpretation of P and P has an interpretation \blacksquare