#### Analiză complexă

**Exercițiul 1** Rezolvați ecuația  $z^2 + 2\sqrt{3}iz - 2 - i = 0$ .

**Exercițiul 2** Fie  $\Omega \subset \mathbb{C}$  deschis conex și  $f:\Omega \to \mathbb{C}$  olomorfă. Demonstrați că dacă una dintre următoarele condiții este îndeplinită, atunci f este constantă.

- 1. Re(f) este constantă
- 2. Im(f) este constantă
- 3. |f| este constantă
- 4.  $\overline{f}$  este olomorfă.

**Exercițiul 3** Considerăm operatorul Laplace  $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}$ .

- Arătați că  $\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \overline{z}} = 4 \frac{\partial}{\partial \overline{z}} \frac{\partial}{\partial z}$ .
- Demonstrați că dacă  $f = u + iv : \Omega \to \mathbb{C}$  este olomorfă (și de clasă  $\mathcal{C}^2$ ), atunci u și v sunt funcții armonice, adică  $\Delta u = \Delta v = 0$ .

**Exercițiul 4** Considerăm f și g olomorfe pe un deschis conex  $\Omega \subset \mathbb{C}$ . Să se arate că:

- 1. dacă  $f(z) + \overline{g}(z) \in \mathbb{R}$  pentru orice  $z \in \Omega$ , atunci f(z) = c + g(z) pentru orice  $z \in \Omega$ , cu  $c \in \mathbb{R}$ .
- 2. dacă  $g(z) \neq 0$  și  $f(z)\overline{g}(z) \in \mathbb{R}$  pentru orice  $z \in \Omega$ , atunci f(z) = cg(z) pentru orice  $z \in \Omega$ , cu  $c \in \mathbb{R}$ .

**Exercițiul 5** Presupunem  $f_1, f_2, \ldots, f_n$  olomorfe (și de clasă  $\mathcal{C}^2$ ) pe un deschis conex  $\Omega$ . Să se arate că dacă  $\sum_{k=1}^{n} |f_k|^2$  este constantă pe  $\Omega$ , atunci toate funcțiile  $f_1, f_2, \ldots, f_n$  sunt constante.

**Exercițiul 6** Să se determine toate funcțiile olomorfe  $f=u+iv:\Omega\to\mathbb{C}$  (și cu derivata f' olomorfă pe  $\Omega$ ), cu proprietatea  $\frac{\partial u}{\partial y}=0$  pe  $\Omega$ .

**Exercițiul 7** Să se determine toate funcțiile olomorfe  $f = u + iv : \Omega \to \mathbb{C}$  (și cu derivata f' continuă pe  $\Omega$ ) și cu proprietatea că funcția  $g = u^2 + iv^2$  este de asemenea olomorfă.

**Exercițiul 8** Un cuplu de funcții armonice (u,v) se numesc conjugate dacă funcția f=u+iv este olomorfă. Considerăm (u,v) un cuplu de funcții armonice și f=u+iv. Să se arate că și cuplurile (U,V) de mai jos sunt cupluri de funcții armonice conjugate și să se indice, în funcție de f, căror funcții olomorfe corespund.

- 1.  $U = au bv, V = bu + av, (a, b \in \mathbb{R}).$
- 2.  $U = \exp(u)\cos(v)$ ,  $V = \exp(u)\sin(v)$ .
- 3.  $U = u^2 v^2$ , V = 2uv.

**Exercițiul 9** Găsiți toate funcțiile olomorfe  $f: \mathbb{C} \to \mathbb{C}$ , cu  $\text{Re}(f) = x^3 - 3xy^2 - x$ .

#### Analiză complexă

**Exercițiul 1** Determinați toate polinoamele  $P \in \mathbb{C}[X,Y]$  de forma

$$P(x,y) = a_n x^n + a_{n-1} x^{n-1} y + a_{n-2} x^{n-2} y^2 + \dots + a_1 x y^{n-1} + a_0 y^n,$$

astfel încât  $z=x+iy\mapsto P(x,y)$  este funcție olomorfă.

**Exercițiul 2** Demonstrați că în coordonate polare  $(r, \theta)$ , ecuațiile Cauchy-Riemann au forma

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 şi  $\frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}$ .

**Exercițiul 3** Demonstrați că funcția  $f: \mathbb{R} \to \mathbb{R}$  definită prin

$$f(x) = \begin{cases} 0 & x = 0\\ e^{-\frac{1}{x}} & x \neq 0 \end{cases}$$

este de clasă  $\mathcal{C}^{\infty}$ , dar nu este (real) analitică.

Exercițiul 4 Demonstrați că

- 1.  $\sum_{n=0}^{\infty} nz^n$  nu converge în niciun punct de pe cercul  $C_1(0)$ .
- 2.  $\sum_{n=0}^{\infty} \frac{z^n}{n^2}$  converge peste tot pe cercul  $C_1(0)$ .
- 3.  $\sum_{n=0}^{\infty} \frac{z^n}{n}$  converge peste tot pe cercul  $C_1(0) \setminus \{1\}$  și este divergentă în 1.

**Exercițiul 5** Demonstrați că funcția  $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$  verifică

- 1.  $\exp(z) \exp(w) = \exp(z + w)$ .
- $2. \exp'(z) = \exp(z).$
- 3.  $\exp(z) \neq 0$  și  $\exp(z)^{-1} = \exp(-z)$ .
- 4.  $|\exp(z)| = \exp(\text{Re}(z))$  şi  $|\exp(z)| = 1 \Leftrightarrow z \in i\mathbb{R}$ .
- 5.  $\exp(z) = 1 \Leftrightarrow z = 2\pi i k$ , unde  $k \in \mathbb{Z}$ .

**Exercițiul 6** Demonstrați că funcțiile  $\sin z$  și  $\cos z$  sunt nemărginite pe  $\mathbb{C}$ .

#### Analiză complexă

Exercițiul 1. Calculați următoarele integrale:

- 1.  $\int_{C_r(0)} z^n dz$ , unde  $n \in \mathbb{Z}$ , iar  $C_r(0)$  este pozitiv orientat.
- 2.  $\int_C z^n dz$ , unde  $n \in \mathbb{Z}$ , iar C este un cerc pozitiv orientat, ce nu trece prin 0.
- 3.  $\int_{C_r(0)} \frac{1}{(z-a)(z-b)} dz$ , unde |a| < r < |b| si  $C_r(0)$  are orientarea pozitivă.

Exercițiul 2. Demonstrați că

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$$

Hint: Integrăm funcția  $f(z)=e^{-z^2}$  pe conturul  $\Gamma_R=\gamma_1\vee\gamma_2\vee\gamma_3$  din desenul de mai jos:



**Exercițiul 3.** Demonstrați că pentru orice  $\xi \in \mathbb{R}$ , avem  $e^{-\pi\xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{-2\pi i x \xi}$ .

Hint: Integrăm funcția  $f(z)=e^{-\pi z^2}$  pe dreptunghiul cu vârfurile -R, R,  $R+i\xi$ ,  $-R+i\xi$ , orientat in sens trigonometric.

**Exercițiul 4.** Demonstrați că  $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$ .

Hint: Integrăm funcția  $f(z) = \frac{e^{iz}-1}{z}$  pe conturul  $\gamma_R$  din desenul de mai jos:



**Exercițiul 5.** Calculați integralele  $I_1 = \int_0^\infty e^{-ax} \cos(bx) dx$  și  $I_2 = \int_0^\infty e^{-ax} \sin(bx) dx$ , unde a, b > 0.

Hint: Integrăm funcția  $f(z)=e^{-Az}$ , unde  $A=\sqrt{a^2+b^2}$ , pe conturul unui sector de disc de unghi  $\omega$  a.î.  $\cos\omega=\frac{a}{A}$ .

#### Analiză complexă

**Exercițiul 1.** Arătați că 
$$\int_{0}^{\infty} \frac{1-\cos x}{x^2} dx = \frac{\pi}{2}$$
.

Hint: Considerăm funcția  $f(z) = \frac{1-e^{iz}}{z^2}$  și integrăm f pe conturul  $\mu_R$  din desenul de mai jos:



**Exercițiul 2.** Poate fi aproximată uniform orice funcție continuă  $f: \overline{\mathbb{D}} \to \mathbb{C}$  cu polinoame în variabila z?

**Exercițiul 3.** Dacă  $f: \mathbb{D} \to \mathbb{C}$  este olomorfă și se prelungește continuu la  $\overline{\mathbb{D}}$ , iar  $C = \partial \mathbb{D}$ , este adevărată egalitatea

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta,$$

pentru orice  $z \in \mathbb{D}$ ?

**Exercițiul 4.** Putem extinde orice funcție continuă definită pe cercul unitate C, la o funcție care este olomorfă pe discul unitate  $\mathbb{D}$  și continuă pe  $\overline{\mathbb{D}}$ ?

#### Analiză complexă

**Exercițiul 1.** Considerăm  $f: \mathbb{C} \to \mathbb{C}$  olomorfă și neconstantă. Demonstrați că Re(f) și Im(f) sunt nemărginite.

**Exercițiul 2.** Demonstrați că dacă  $f: \mathbb{C} \to \mathbb{C}$  este olomorfă și există w, w' numere complexe liniar independente peste  $\mathbb{R}$  astfel încât f(z+w)=f(z)=f(z+w') pentru orice  $z\in\mathbb{C}$ , atunci f este constantă.

**Exercițiul 3.** Decideți dacă există funcții olomorfe  $f: \mathbb{C} \to \mathbb{C}$  pentru care:

- $f(\frac{1}{n}) = \frac{1}{n^2}$  pentru orice  $n \ge 1$ .
- $f(\frac{1}{n}) = \frac{(-1)^n}{n}$  pentru orice  $n \ge 1$ .
- $f(\frac{1}{n}) = e^{-n}$  pentru orice  $n \ge 1$ .

**Exercițiul 4.** Fie f o funcție întreagă astfel încât  $|f(z)| \le \ln(|z|+1)$  pentru orice  $z \in \mathbb{C}$ . Demonstrați că f este constantă.

**Exercițiul 5.** Fie f o funcție întreagă astfel încât  $|f(z)| \leq |z|^2$  pentru orice  $z \in \mathbb{C}$ . Demonstrați că există  $a \in \mathbb{C}$  cu  $|a| \leq 1$ , astfel încât  $f(z) = az^2$  pentru orice  $z \in \mathbb{C}$ .

**Exercițiul 6.** Fie f o funcție întreagă ce verifică  $|f(z_1 + z_2)| \le |f(z_1)| + |f(z_2)|$  pentru orice  $z_1, z_2 \in \mathbb{C}$ . Demonstrați că f este polinomială de grad cel mult 1.

**Exercițiul 7.** Fie f o funcție întreagă astfel încât pentru orice  $z_0 \in \mathbb{C}$ , dacă scriem seria Taylor

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

atunci cel puțin un coeficient  $a_n$  este zero. Demonstrați că f este polinomială.

Hint: Folosim egalitatea  $a_n n! = f^{(n)}(z_0)$  și un argument de numărabilitate.

**Exercițiul 8.** Fie  $\Omega$  o mulțime deschisă și L o dreaptă din plan. Demonstrați că dacă  $f: \Omega \to \mathbb{C}$  este olomorfă pe  $\Omega \setminus L$  și continuă pe  $\Omega$ , atunci f este olomorfă pe  $\Omega$ .

Hint: Teorema Morera.

#### Analiză complexă

**Exercițiul 1.** Dați exemplu de funcție  $f:\Omega\to\mathbb{C}$  olomorfă și  $z_1,z_2\in\Omega$  astfel încât

$$\frac{f(z_2) - f(z_1)}{z_2 - z_1} \neq f'(c),$$

pentru orice  $c \in I = \{(1 - t)z_1 + tz_2 \mid t \in [0, 1]\} \subset \Omega$ .

Hint: Alegem un interval I convenabil pentru funcția  $f: \Omega = \mathbb{C} \to \mathbb{C}, f(z) = e^z$ .

**Exercițiul 2.** Considerăm  $f,g:\mathbb{C}\to\mathbb{C}$  olomorfe astfel încât  $|f(z)|\leq |g(z)|$  pentru orice  $z\in\mathbb{C}$ . Demonstrați că f(z)=ag(z) pentru orice  $z\in\mathbb{C}$ , unde  $|a|\leq 1$ . Rămâne adevărată concluzia dacă în loc de funcții întregi, avem funcțiile olomorfe  $f,g:\mathbb{C}\setminus\overline{\mathbb{D}}\to\mathbb{C}$ ?

**Exercițiul 3.** Determinați o funcție olomorfă  $f = u + iv : \mathbb{C} \to \mathbb{C}$  astfel încât partea ei reală este dată de formula  $u(x,y) = x \cosh x \cos y - y \sinh x \sin y$  pentru orice  $x,y \in \mathbb{R}$ .

**Exercițiul 4.** Fie  $\Omega \subset \mathbb{C}$  simplu conex și  $f = u + iv : \Omega \to \mathbb{C}$  de clasă  $\mathcal{C}^1$ , olomorfă. Deduceți teorema Cauchy folosind formula Green și ecuațiile Cauchy-Riemann.

Formula Green: 
$$\int_{\partial D} (Pdx + Qdy) = \int_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Remarcă: Definiția initială pentru funcțiile olomorfe era doar pentru funcții de clasă  $\mathcal{C}^1$ , iar teorema Cauchy a fost prima dată demonstrată folosind formula Green. Goursat a arătat mai târziu că nu este necesară ipoteza ca funcția să fie  $\mathcal{C}^1$  (așa cum am făcut și noi la curs).

**Exercițiul 5.** Fie  $\Omega \subset \mathbb{C}$  un domeniu simplu conex și  $u : \Omega \to \mathbb{R}$  o funcție armonică. Demonstrați că există  $f : \Omega \to \mathbb{C}$  olomorfă, astfel încât Re(f) = u.

Hint: Dacă ar exista f=u+iv olomorfă, atunci  $g=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}$  ar fi olomorfă și f'=g. Fixăm  $z_0\in\Omega$  și considerăm  $f(z)=u(z_0)+\int_{\gamma_{z_0,z}}g(z)dz$ , unde  $\gamma_{z_0,z}\subset\Omega$  este o curbă care unește  $z_0$  cu z. Funcția f astfel definită verifică cerințele din enunț.

**Exercițiul 6.** Fie  $u:\Omega\to\mathbb{R}$  armonică și  $\overline{D}_R(z_0)\subset\Omega$ . Arătați că este verificată următoarea formulă de medie:

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + Re^{it}) dt.$$

#### Analiză complexă

**Exercițiul 1.** Care dintre următoarele funcții are o singularitate eliminabilă în  $z_0 = 0$ ?

- $\bullet$   $\frac{e^z}{z^4}$
- $\bullet \quad \frac{(e^z-1)^2}{z^2}$
- $\bullet \ \frac{\cos(z)-1}{z^2}.$

Exercițiul 2. Determinați polii și ordinele lor pentru funcțiile

- $\bullet \sum_{n=1}^{\infty} \frac{1}{z^2 + n^2}$
- $\bullet \sum_{n=1}^{\infty} \frac{1}{(z+n)^2}$
- $\bullet \sum_{n=1}^{\infty} \frac{\sin nz}{n!(z^2+n^2)}$

**Exercițiul 3.** Considerăm funcția  $f(z) = \frac{(z-1)^2(z+3)}{1-\sin(\frac{\pi z}{2})}$ . Determinați toate singularitățile lui f și decideți de ce tip este fiecare.

**Exercițiul 4.** Considerăm funcția  $f(z) = \sum_{n=1}^{\infty} \frac{z^2}{n^2 z^2 + 8}$ . Arătați că funcția f este bine definită și continuă pe  $\mathbb{R}$ . Determinați domeniul maximal pe care f este olomorfă. Determinați polii lui f.

**Exercițiul 5.** Studiați tipul singularității în 0 a funcției  $f(z) = \frac{\sin z}{\cos z^3 - 1}$ .

**Exercițiul 6.** Dacă singularitatea izolată  $a \in \mathbb{C}$  a funcției olomorfe f nu este eliminabilă, atunci  $e^f$  are o singularitate esențială în a.

**Exercițiul 7.** Dacă f are pol de ordin m în  $z_0$ , iar P este un polinom de ordin n, atunci  $g = P \circ f$  are pol de ordin mn în  $z_0$ .

**Exercițiul 8.** Scrieți seria Laurent asociată funcției  $f(z) = \frac{z}{z^2+1}$  în coroana circulară  $\mathcal{A} = \{z \in \mathbb{C} : 0 < |z-i| < 2\}.$ 

**Exercițiul 9.** Scrieți seria Laurent a funcției  $f(z) = \frac{1}{(z-1)(z-2)}$  în coroana circulară  $\mathcal{A} = \{z \in \mathbb{C} : 0 < |z-2| < 1\}.$ 

#### Exercițiul 10. Demonstrați că

$$\frac{1}{1 - z - z^2} = \sum_{n=0}^{\infty} a_n z^n,$$

unde  $\{a_n\}_{n\geq 0}$  verifică  $a_0=a_1=1$  și  $a_n=a_{n-1}+a_{n-2}$  pentru orice  $n\geq 2$ . Calculați raza de convergență a seriei.

#### Analiză complexă

**Exercițiul 1.** Dacă  $z_0$  este singularitate (izolată) pentru o funcție olomorfă f, atunci  $res(f', z_0) = 0$ .

**Exercițiul 2.** Calculați reziduurile în punctele singulare pentru fiecare din următoarele funcții:

**Exercițiul 3.** Calculați  $\int_0^\infty \frac{\cos x}{x^2 + 1} dx$ .

Hint: Folosim conturul de integrare  $\gamma_R$  descris în desenul de mai jos:



**Exercițiul 4.** Calculați  $\int_0^\infty \frac{x \sin x}{x^2 + 4} dx$ .

**Exercițiul 5.** Calculați  $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta.$ 

Hint: Dacă  $z = e^{i\theta}$ , cu  $\theta \in \mathbb{R}$ , atunci  $\frac{1}{2} \left( z + \frac{1}{z} \right) = \cos \theta$ .

**Exercițiul 6.** Demonstrați că pentru orice număr întreg  $n \geq 2$ , are loc egalitatea:

$$\int_0^\infty \frac{1}{1+x^n} = \frac{\frac{\pi}{n}}{\sin\frac{\pi}{n}}.$$

Hint: Folosim funcția  $f(z) = \frac{1}{1+z^n}$  și conturul de integrare  $\Gamma_R$  descris în desenul de mai jos:



#### Analiză complexă

**Exercițiul 1.** Considerăm f și g olomorfe, cu singularitate izolată in 0. Justificați ce putem spune despre fg, în fiecare dintre următoarele cazuri:

- f și g au pol în 0.
- $\bullet \ f$  și g au singularitate esențială în 0.
- f are pol în 0, iar g are singularitate esențială în 0.

**Exercițiul 2.** Justificați, printr-un exemplu, că există o funcție f olomorfă pe un domeniu (nemărginit)  $\Omega \subset \mathbb{C}$ ,  $\Omega \neq \mathbb{C}$ , care se prelungește continuu la  $\overline{\Omega}$ , și care nu își atinge maximumul modulului pe  $\partial\Omega$ .

**Exercițiul 3.** Fie  $w_1, w_2, \ldots, w_n$  puncte pe cercul unitate. Demonstrați că există un punct w pe cercul unitate astfel încât produsul distanțelor de la w la  $w_j$ ,  $1 \le j \le n$ , este exact 1.

**Exercițiul 4.** Folosind principiul argumentului, demonstrați că orice polinom  $P \in \mathbb{C}[X]$  de grad  $n \geq 1$  are exact n rădăcini.

**Exercițiul 5.** Folosind *teorema lui Rouché*, demonstrați că orice polinom  $P \in \mathbb{C}[X]$  de grad  $n \geq 1$  are exact n rădăcini.

**Exercițiul 6.** Considerăm  $f: \Omega \to \mathbb{C}$  olomorfă astfel încât  $\mathbb{D} \subset \Omega$  și |f(z)| < 1 pentru orice |z| = 1. Demonstrați că  $f(z) = z^3$  are exact 3 soluții în  $D_1(0)$ .

**Exercițiul 7.** Arătați că polinomul  $f(z) = 1 + 2z + 7z^2 + 3z^5$  are exact 2 rădăcini în discul  $D_1(0)$ .

**Exercițiul 8.** Demonstrați că polinomul  $P(z) = z^5 + 14z + 2$  are 4 rădăcini în coroana circulară  $\mathcal{A} = \left\{\frac{3}{2} < |z| < 2\right\}$ .

Exercițiul 9. Calculați integrala

$$\int_{|z|=1} \frac{10z + e^z + \cos z}{5z^2 + e^z + \sin z} dz.$$

**Exercițiul 10.** Considerăm  $\Omega \subset \mathbb{C}, \Omega \neq \mathbb{C}$  și  $f : \overline{\Omega} \to \mathbb{C}$  continuă pe  $\overline{\Omega}$  și olomorfă pe  $\Omega$ . Dacă există  $M_1, M_2 > 0$  astfel încât  $|f(z)| \leq M_1$  pentru orice  $z \in \partial \Omega$  și  $|f(z)| \leq M_2$  pentru orice  $z \in \Omega$ , atunci  $|f(z)| \leq M_1$  pentru orice  $z \in \overline{\Omega}$ .

Hint: W.L.O.G.,  $M_1=1$  şi  $M_2=M$ . Alegem  $z_0\in\Omega$  pentru care  $f'(z_0)\neq 0$  şi considerăm  $g(z)=\frac{f(z)-f(z_0)}{z-z_0}\to 0$  pentru  $z\to\infty$ . Pentru N întreg pozitiv, considerăm  $h_N(z)=f^N(z)g(z)$ . Aplicăm princ. max. mod. pentru  $h_N$  pe  $\Omega\cap D_R(0)$  şi apoi facem  $R\to\infty$  pentru a deduce că există o constantă k>0 astfel încât  $|h_N(z)|\leq k$  pe  $\Omega$ . Apoi, facem  $z=z_0$  şi  $N\to\infty$ , şi deducem  $|f(z_0)|\leq 1$ .

**Exercițiul 11.** Fie  $f: \mathbb{C} \to \mathbb{C}$  olomorfă, neconstantă. Demonstrați că există o curbă  $\gamma: [0,\infty) \to \mathbb{C}$  cu  $\lim_{t \to \infty} |\gamma(t)| \to \infty$ , pentru care  $\lim_{t \to \infty} |f(\gamma(t))| \to \infty$ .

Hint: Folosim Exercițiul 10.

#### Analiză complexă

**Exercițiul 1.** Demonstrați direct (fără a folosi principiul maximului modulului) că  $e^z$  își atinge minimul și maximul pe frontiera oricărui compact.

**Exercițiul 2.** Demonstrați că dacă  $f: \Omega \to \mathbb{C}$  este olomorfă,  $f(z) \neq 0$  pe  $\Omega$ , iar  $K \subset \Omega$  este compact, atunci |f| își atinge minimul pe  $\partial K$ . Folosind acest rezultat, demonstrați că orice polinom  $P \in \mathbb{C}[X]$ , deg  $P \geq 1$ , are cel puțin o rădăcină în  $\mathbb{C}$ .

**Exercițiul 3.** Fie  $f, g: \Omega \to \mathbb{C}$  olomorfe și  $K \subset \Omega$  compact. Demonstrați că |f(z)| + |g(z)| își atinge maximul pe  $\partial K$ .

Exercițiul 4. Demonstrați principiul de maxim/minim pentru funcții armonice, adică:

- 1. Dacă  $\Omega \subset \mathbb{C}$  este un deschis conex şi  $u:\Omega \to \mathbb{R}$  este armonică şi neconstantă, atunci u nu își poate atinge maximumul şi nici minimul pe  $\Omega$ .
- 2. Dacă  $\overline{\Omega}$  compactă, iar u are prelungire continuă pe  $\overline{\Omega}$ , atunci  $\max_{z \in \overline{\Omega}} |u(z)|$  și  $\min_{z \in \overline{\Omega}} |u(z)|$  se ating pe  $\partial \Omega$ .

**Exercițiul 5.** Fie f olomorfă pe o vecinătate a discului unitate  $\mathbb{D}$ , astfel încât  $f(\partial \mathbb{D}) = \partial \mathbb{D}$ . Demonstrați că  $f(\mathbb{D}) = \mathbb{D}$ .

**Exercițiul 6.** Fie f olomorfă pe o vecinătate a coroanei circulare  $\mathcal{A} = \{1 \leq |z| \leq 2\}$ , astfel încât  $|f(z)| \leq 1$  pentru |z| = 1 și  $|f(z)| \leq 4$  pentru |z| = 2. Demonstrați că  $|f(z)| \leq |z|^2$  pe  $\mathcal{A}$ .

**Exercițiul 7.** Fie f o funcție olomorfă pe o vecinătate a discului unitate  $\mathbb{D}$ , astfel încât  $|f(z)| \leq 2$  pentru |z| = 1,  $\operatorname{Im}(z) \geq 0$  și  $|f(z)| \leq 3$  pentru |z| = 1,  $\operatorname{Im}(z) \leq 0$ . Demonstrați că  $|f(0)| \leq \sqrt{6}$ .

Hint: Considerăm g(z) = f(z)f(-z).

**Exercițiul 8.** Fie f o funcție întreagă ce verifică  $|f(z)| \ge |z|^N$  pentru orice  $|z| \ge R > 0$ . Demonstrați că f este polinom de grad cel puțin N.

Hint: f nu poate avea singularitate esențială la  $\infty$ .

#### Analiză complexă

**Exercițiul 1.** Calculați  $i^i$  și  $(1+i)^{1-i}$ , folosind  $\log(z) = \ln|z| + i \arg(z)$ , unde  $\arg(z) \in (-\pi, \pi)$ .

**Exercițiul 2.** Demonstrați că dacă 0 < a < 1, atunci

$$\int_0^\infty \frac{v^{a-1}}{1+v} dv = \frac{\pi}{\sin(\pi a)}.$$

Hint:  $f(z) = \frac{e^{az}}{1 + e^z}$ 



**Exercițiul 3.** Fie a > 0. Atunci,  $\int_0^\infty \frac{\ln x}{x^2 + a^2} dx = \frac{\pi \ln a}{2a}$ .

**Exercițiul 4.** Demonstrați că dacă f este meromorfă pe  $\mathbb{C}$ , atunci există g și h olomorfe pe  $\mathbb{C}$ , astfel încât  $f=\frac{g}{h}$ .

#### Analiză complexă

**Exercițiul 1.** Determinați imaginea prin funcția  $f(z) = e^z$  a următoarelor mulțimi:

- $d_1 = \{ \text{Re}(z) = a \}.$
- $d_2 = {\operatorname{Im}(z) = b}.$
- $d_3 = \{z = x + ix \mid x \in \mathbb{R}\}.$
- $D_1 = \{z = x + iy \mid 0 < x < 1\}.$
- $D_2 = \{z = x + iy \mid 0 < y < 1\}.$

**Exercițiul 2.** f se numește transformare omografică (sau transformare M"obius) dacă  $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$  este definită prin

$$f(z) = \frac{az+b}{cz+d},$$

unde  $a,b,c,d\in\mathbb{C},\,ad-bc\neq0$ . În acest caz, f este meromorfă pe  $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ , și avem  $f(\infty)=\frac{a}{c},\,f(-\frac{d}{c})=\infty$ .

Demonstrați că dacă  $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$  este o transformare omografică ce are 3 puncte fixe, atunci  $f=\mathrm{id}_{\widehat{\mathbb{C}}}.$ 

Exercițiul 3. Găsiți o funcție olomorfă și bijectivă între domeniile:

- $\Omega_1 = \{z = x + iy \mid x < 0 \text{ si } 0 < y < 1\} \text{ si } \Omega_2 = \mathbb{D} \cap \{\operatorname{Im}(z) > 0\}.$
- $\Omega_1 = \mathbb{D} \cap \{ \text{Im}(z) > 0 \}$  şi  $\Omega_2 = \mathbb{D} \cap \{ \text{Im}(z) < 0 \} \cap \{ \text{Re}(z) > 0 \}.$
- $\Omega_1 = \{z = e^{it} \mid t \in (0, \frac{3\pi}{2})\}\ \text{si}\ \Omega_2 = \{z = e^{it} \mid t \in (0, \pi)\}.$
- $\mathbb{D}$  şi  $\mathbb{H} = \{ \operatorname{Im}(z) > 0 \}.$
- $\Omega = D_2(0) \setminus D_1(1)$  și  $\mathbb{H} = \{ \text{Im}(z) > 0 \}.$

**Exercițiul 4.** Determinați transformările omografice pentru care  $f(\mathbb{H}) = \mathbb{H}$ .

**Exercitiul 5.** Sunt  $\mathbb{D}$  și  $\mathbb{C}$  biolomorfe?

**Exercițiul 6.** Există  $f: \mathbb{D} \to \mathbb{C}$  olomorfă și surjectivă?

#### Analiză complexă

Exercițiul 1. [lema Schwarz-Pick] Fie  $f: \mathbb{D} \to \mathbb{D}$  olomorfă. Atunci,

1. pentru orice  $a, b \in \mathbb{D}$ ,

$$\left| \frac{f(a) - f(b)}{1 - \overline{f(a)}f(b)} \right| \le \left| \frac{a - b}{1 - \overline{ab}} \right|.$$

2. pentru orice  $a \in \mathbb{D}$ ,

$$\frac{|f'(a)|}{1 - |f(a)|^2} \le \frac{1}{1 - |a|^2}.$$

**Exercițiul 2.** Dacă  $f: \mathbb{D} \to \mathbb{D}$  este olomorfă și  $z_0 = 0$  este zero de ordin n, atunci  $|f(z)| \leq |z|^n$  pentru orice  $z \in \mathbb{D}$ .

**Exercitial 3.** Are orice  $f \in Aut(\mathbb{D})$  cel puţin un punct fix?

**Exercițiul 4.** Găsiți o transformare conformă și bijectivă  $f: \Omega \to \mathbb{H}$ , unde

$$\Omega = \left\{ z \in \mathbb{C} : \operatorname{Re}(z) > 0, \left| z - \frac{1}{2} \right| > \frac{1}{2} \right\}.$$

**Exercițiul 5.** Găsiți o transformare conformă și bijectivă  $f:\Omega\to\mathbb{D}$ , unde

$$\Omega = D_1(1) \setminus \overline{D_1(0)}.$$

**Exercițiul 6.** Considerăm  $f(z) = \frac{1}{2} \left(z + \frac{1}{z}\right)$  și mulțimea deschisă

$$\Omega = \{ z \in \mathbb{C} : \text{Im}(z) > 0, |z| > 1 \}.$$

Demonstrați că  $f(\Omega) = \mathbb{H}$  și arătați apoi că  $f: \Omega \to \mathbb{H}$  este conformă și bijectivă.