Zadanie 1.

H₀: $\mu = \mu_0$

H₁: $\mu < \mu_0$

gdzie $\mu_o=250$. Poziom istotności α = 0,01

W przypadku, gdy próba pochodzi z populacji, w której analizowana zmienna (cecha) ma rozkład normalny o nieznanym odchyleniu standardowym, do weryfikacji hipotezy zerowej wykorzystujemy statystykę testową obliczaną wg wzoru:

$$t = \frac{\bar{x} - \mu_0}{s} \cdot \sqrt{n}$$

Przy założeniu prawdziwości hipotezy H_0 statystyka ta ma rozkład t-Studenta o n-1 stopniach swobody.

U nas:

$$n = 16,$$
 $\bar{x} = 244,$ $s = 5$

Wobec tego:

$$t = \frac{244 - 250}{5} \cdot \sqrt{16} = -4.8$$

Zbiorem krytycznym, wobec postaci hipotezy alternatywnej jest

$$C = \{z : z \le -t_{1-\alpha;n-1}\} = (-\infty, -t_{1-\alpha;n-1}]$$

$$t_{1-\alpha, n-1} = t_{0.99,15} = 2,6025$$

Wobec tego:

$$C = (-\infty; -2,6025]$$

Jak widać $t \in C$

Na poziomie istotności 0,1 odrzucamy hipotezę zerową na korzyść alternatywnej. Wyniki uzyskane na podstawie próby pozwalają twierdzić, że automat produkuje tabliczki o zaniżonej wadze.

Zadanie 2.

$$\mu_0$$
: $\mu = \mu_0$

$$H_1: \mu \neq \mu_0$$

gdzie
$$\mu_0=230$$
. Poziom istotności $\alpha=0,1$

W tym przypadku rozkład cechy (zmiennej) w populacji generalnej jest zmienną losową o rozkładzie normalnym o znanym odchyleniu standardowym. W takiej sytuacji do weryfikacji hipotezy zerowej wykorzystujemy statystykę testową obliczaną wg wzoru:

$$Z = \frac{\overline{x} - \mu_0}{\sigma} \cdot \sqrt{n}$$

Przy założeniu prawdziwości hipotezy H₀ statystyka ta ma rozkład N(0; 1).

U nas:

$$n = 25, \quad \bar{x} = 250 \quad \sigma = 50$$

Zatem:

$$Z = \frac{250 - 230}{50} \cdot \sqrt{25} = 2$$

Zbiorem krytycznym, wobec postaci hipotezy alternatywnej jest

$$C = \left(-\infty; -z_{1-\frac{\alpha}{2}}\right] \cup \left[z_{1-\frac{\alpha}{2}}; +\infty\right]$$

$$z_{1-\alpha/2} = z_{0.95} = 1,6449$$

Wobec tego:

$$C = (-\infty; -1,6449] \cup [1,6449,+\infty)$$

Jak widać: $t \in C$

Zatem na poziomie istotności 0,05 odrzucamy hipotezę zerową. Uzyskane na podstawie próby wyniki pozwalają twierdzić, że średnie wydatki na żywność są istotnie różnie od 230 zł.

Zadanie 3.

$$H_0$$
: $\sigma = \sigma_0$

$$H_1: \sigma \neq \sigma_0$$

gdzie
$$\sigma_0 = 7.9$$

Poziom istotności $\alpha = 0.05$

Gdy próba pochodzi z populacji, w której analizowana cecha (zmienna) ma rozkład N(0;1) o nieznanych parametrach, do weryfikacji hipotezy o odchyleniu standardowym (wariancji) wykorzystujemy statystykę testową postaci:

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

statystyka ta, przy założeniu prawdziwości hipotezy H_0 ma rozkład χ^2 o n-1 stopniach swobody.

$$n = 20,$$
 $S = 8.4$

Wobec tego:
$$\chi^2 = \frac{19 \cdot (8,4)^2}{(7,9)^2} \approx 21.48$$

Zbiorem krytycznym, wobec przyjętej postaci hipotezy alternatywnej jest:

$$C = \left(0; \chi^2_{\alpha/2; n-1}\right) \cup \left(\chi^2_{1-\alpha/2; n-1}; +\infty\right)$$

$$\chi^2_{\alpha/2;\,n-1} = \chi^2_{0,025,19} = 8,9065$$
 $\chi^2_{1-\alpha/2;\,n-1} = \chi^2_{0,995,19} = 32,852$

Zbiór krytyczny ma zatem postać:

$$C = (0, 8,9065) \cup (32,852 + \infty)$$

Jak widać:

$$\chi^2 \notin C$$

Na poziomie istotności 0,05 stwierdzamy brak podstaw do odrzucenia hipotezy zerowej. Uzyskane na podstawie próby wyniki nie pozwalają stwierdzić, że odchylenie standardowe istotnie różni się od zakładanej przez normę wartości 7,9.

Zadanie 4.

H₀: $\mu = \mu_0$

H₁: $\mu \neq \mu_0$

gdzie $\mu_0 = 1$

Poziom istotności $\alpha = 0.05$

U nas:

$$n = 10$$

$$\bar{x} = 1,004$$

$$\sigma = 0.003$$

I robimy jak zadanie 2.