作业三

Noflowerzzk

2025.3.5

P60 T3

证明.

- (1) 取 $S(x) \equiv 0$. 有 $|S_n(x) S(x)| = \frac{x}{1 + n^2 x^2} \to 0$, $(n \to 0)$. 故 $S_n(x) \rightrightarrows S(x) \equiv 0$. $S_n(x)$ 在 \mathbb{R} 上一致收敛.
- \diamondsuit $T_n(x) = \frac{\mathrm{d}}{\mathrm{d}x} S_n(x) = \frac{1 n^2 x^2}{(1 + n^2 x^2)^2}$. $\mathbb{R} T(x) = \lim_{n \to \infty} T_n(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases} \mathbb{R} x = \frac{1}{2n}$, $T_n(x) T(x) = \frac{12}{25} \neq 0$. $\text{id} \pi$ —where $T_n(x) = \frac{1}{2n} T_n(x)$.
- (3) x = 0 时, $\frac{\mathrm{d}}{\mathrm{d}x} \lim_{n \to \infty} S_n(x) = 0$ 面 $\lim_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}x} S_n(x) = 1$.

P61 T4

$$S_n'(x) = \frac{x^{n-1}}{1+x^{2n}}, \lim_{n\to\infty} S_n'(x) = \frac{1}{2},$$
 但是 $S'(1) = 0$, 不成立.

P61 T5

$$(2) \int_{0}^{1} \lim_{n \to \infty} S_{n}(x) dx = \int_{0}^{1} S(x) dx = 0, \lim_{n \to \infty} \int_{0}^{1} S_{n}(x) dx = n^{\alpha - 2} - n^{\alpha - 1} (1 - nx), \ \overline{\text{m}} \lim_{n \to \infty} e^{-nx} (1 - nx) = \begin{cases} 0, & x \in (0, 1] \\ 1, & x = 0 \end{cases}$$
 故当 $\alpha < 0$ 时有上式成立.

P118 T3

证明. 由于 f(x,y) 是初等函数,故其连续.

而由于
$$d\left(\left(1-\frac{1}{n},1-\frac{1}{n}\right),\left(1-\frac{1}{2n},1-\frac{1}{2n}\right)\right)\to 0$$
,而

$$\lim_{n \to \infty} f\left(1 - \frac{1}{n}, 1 - \frac{1}{n}\right) - \lim_{n \to \infty} f\left(1 - \frac{1}{2n}, 1 - \frac{1}{2n}\right) = \lim_{n \to \infty} \frac{(4n - 3)n^2}{(4n - 1)(2n - 1)} = \infty$$

故
$$f(x,y)$$
 不一致连续.

作业三 2025.3.5

P118 T5

证明. (1) 任取 (x_0, y_0) . 由题意知,存在 R > 0, 任意 $x^2 + y^2 > R^2$ 有 $f(x, y) > f(x_0, y_0)$. 同时, f(x, y) 在 $\overline{B}((0, 0), R)$ 上有界且连续,有最小值. 故 f(x, y) 在 \mathbb{R}^2 上有最小值.

(2) 任取 (x_0, y_0) . 若 $f(x, y) \equiv 0$, 则显然成立. 否则取 (x_0, y_0) 使得 $f(x_0, y_0) \neq 0$. 若 $f(x_0, y_0) > 0$, 存在 R > 0, 任意 $x^2 + y^2 > R^2$, 有 $f(x, y) < f(x_0, y_0)$. 而 f(x, y) 在闭集 $\overline{B}((0, 0), R)$ 中必有最大值. 故 f(x, y) 在 \mathbb{R}^2 上有最大值. 若 $f(x_0, y_0) < 0$, 取 -f(x, y) 即可.

P118 T6

证明. 由于任意 $\|x\| = 1$ f(x) 有界,故 f(x) 有最大值和最小值,设为 a,b. 现任取 $x \in \mathbb{R}^n$ 有

$$f(\boldsymbol{x}) = f\left(\|\boldsymbol{x}\| \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) = \|\boldsymbol{x}\| f\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \le b |\boldsymbol{x}|$$
$$f(\boldsymbol{x}) = f\left(\|\boldsymbol{x}\| \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) = \|\boldsymbol{x}\| f\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \ge a |\boldsymbol{x}|$$

P118 T7

证明. $\forall \boldsymbol{x} \in \overline{A}$, 若 $\boldsymbol{x} \in A$, 则显然 $f(\boldsymbol{x}) \in f(A) \subseteq \overline{f(A)}$ 若 $\boldsymbol{x} \in \partial A$, 则 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\boldsymbol{x}_0 \in A$, $\|\boldsymbol{x} - \boldsymbol{x}_0\| < \delta$ 时, 有 $\|f(\boldsymbol{x}) - f(\boldsymbol{x}_0)\| < \varepsilon$. 故 $f(\boldsymbol{x}) \in \overline{f(A)}$ 故 $f(\overline{A}) \subseteq \overline{f(A)}$.

P118 T8

证明. (1) 任取 $\xi \in \partial D$, 存在一个点列 $\{x_n\}_{n=1}^{+\infty}$ 收敛到 ξ . 由于 f(x) 一致连续,故由于 $\{x_n\}$ 是 Cauchy 列,故 $\{f(x_n)\}$ 也是 Cauchy 列.故 $\{f(x_n)\}$ 收敛.设其收敛到 $g(\xi)$. 由于收敛的定义, $\forall \varepsilon > 0$, $\exists N > 0$, 当 n > N 时,有 $\|f(x_n) - g(\xi)\| < \frac{\varepsilon}{2}$. 对任意 $x \in D$, 可以取上述 Cauchy 列且存在 n > N $\|x - x_n\| < \frac{\varepsilon}{2}$. 故有

$$||f(x) - g(\xi)|| \le ||f(x) - f(x_n)|| + ||f(x_n) - g(\xi)|| < \varepsilon$$

故取
$$\tilde{f}(\boldsymbol{x}) = \begin{cases} f(\boldsymbol{x}), & \boldsymbol{x} \in D \\ g(\boldsymbol{x}), & \boldsymbol{x} \in \partial D \end{cases}$$
 在 \overline{D} 上连续.

(2) 易知 $\tilde{f}(x)$ 在 \overline{D} 上连续,故 $\tilde{f}(x)$ 在 \overline{D} 上有界. 设其界为 $\left|\tilde{f}(x)\right| \leq M$. 因此

$$|f(\boldsymbol{x})| \le \left|f(\boldsymbol{x}) - \tilde{f}(\boldsymbol{x})\right| + \left|\tilde{f}(\boldsymbol{x})\right| \le \varepsilon + M$$

故 f(x) 在 D 上有界.