Search for Hyphenated Words in Probabilistic Indices: a Machine Learning Approach

José Andrés, Alejandro H. Toselli, Enrique Vidal

tranSkriptorium AI, Valencia, Spain

August 21st, 2023

Introduction

Introduction

Introduction: Definition

Hyphenated Word: word divided into two HwF's due to a line break.

Typically denoted by adding a special symbol at the end of the prefix.

Different hyphenation symbols.

Might not follow modern hyphenation rules.

Our aim is IR. We need to retrieve the HypWrd's, not the fragments

Our approach

Two offline phases:

- Optically predict hyphenated word fragments (HwF's).
- Join them to form hyphenated words.

Optical and language model

Optical modeling: Prefix and suffix fragments are tagged with ">"

by at ogander for

BY AT BONDEN JO>

han Justica co

>HAN JUSSILA

Language modeling: add constraints to n-gram model (hyphenation symbol only at beginning or end of sentence).

Offline merging of HwF's

$$P(R \mid x, b_r, b_s, r, s) \approx \min \left(P(r \mid x, b_r), P(s \mid x, b_s), P(R_h \mid x, b_r, b_s) \right)$$

Where probabilities in red are provided by the Prlx and the ones in blue can be estimated by different methods.

Estimating $P(R_h \mid x, b_r, b_s)$

Plain: Always set to 0.

All combinations: Always set to 1.

Heuristic: 1 iff hand-crafted geometric restrictions are fulfilled.

MLP: Estimate it through MLP.

Oracle: 1 *iff*, according to the GT, there are two consecutive textlines beginning and ending with prefix and suffix HwF's, respectively, to which b_r and b_s belong.

Hyphenation to generate HwF queries online

As a baseline, we consider the scenario of using hyphenation software to query hyphenated and not hyphenated words online.

Consider the query "Katarina":

 $\mathsf{Katarina} \lor (\mathsf{Ka} \mathbin{>} \land \mathbin{>} \mathsf{tarina}) \lor (\mathsf{Kata} \mathbin{>} \land \mathbin{>} \mathsf{rina}) \lor (\mathsf{Katari} \mathbin{>} \land \mathbin{>} \mathsf{na})$

Dataset statistics

Datasat mantitions	Datas	set	HwF's		
Dataset partition:	Train-Val	Test	Train-Val	Test	Overall %
Images	400	200	_	_	_
Lines	25 989	13 341	10 973	5 609	42%
Running words	147 118	73 849	13 081	6 589	9%
Lexicon size	20710	13 955	4 091	2677	20%
ALLWORDS query set	-	10 416	_	_	_
MAYBE H YPH query set	_	1 972	_	-	

Table: Basic statistics of the FCR-HYP dataset and their hyphenated word fragments (HwF's). All the text has been transliterated and the punctuation marks ignored.

Metrics

To assess IR: mAP and AP.

To assess storage usage: Prlx density.

Results: MAYBEHYP queryset

Input	Prlx F	Pruned	by 10 ⁻⁵	1	-best H	TR
Metric	mAP	AP	density	mAP	AP	density
Plain	0.43	0.80	10	0.35	0.72	1
Pyphen	0.65	0.87	10	0.43	0.74	1
All combin.	0.68	0.88	271	0.44	0.75	2
Heuristic	0.71	0.89	21	0.45	0.76	1
MLP (10 ⁻⁴)	0.71	0.89	33	0.46	0.77	1
MLP (0.04)	0.70	0.88	24	0.45	0.77	1
MLP (0.35)	0.69	0.88	19	0.45	0.76	1
Oracle	0.71	0.89	12	0.46	0.77	1

Table: mAP, AP and density with the $\operatorname{MAYBEHYP}$ queryset.

Results: ALLWORDS queryset

Input	Prlx F	Pruned	by 10^{-5}	1	-best H	TR
Metric	mAP	AP	density	mAP	AP	density
Plain	0.72	0.83	10	0.46	0.69	1
Pyphen	0.75	0.85	10	0.47	0.69	1
All combin.	0.75	0.85	271	0.47	0.69	2
Heuristic	0.77	0.86	21	0.48	0.71	1
MLP (10 ⁻⁴)	0.77	0.86	33	0.48	0.71	1
MLP (0.04)	0.76	0.86	24	0.48	0.71	1
MLP (0.35)	0.76	0.86	19	0.48	0.71	1
Oracle	0.77	0.86	12	0.48	0.71	1

Table: mAP, AP and density with the $\operatorname{ALLWORDS}$ queryset.

Illustrative retrieval examples

Demo available at:

http://prhlt-carabela.prhlt.upv.es/fcr-hyp-icdar23/

Illustrative retrieval examples

FN's made by the heuristic approach.

Illustrative retrieval examples

appros door Jakonden Karl Gutter Kerjola all kons kuftra cho hier Japa Flourdatter hickonda ach fromtido Blastiet,

FN made by the MLP approach and Pyphen.

Conclusions

- Methods relying on Prlx to allow hyphenated word searches have been developed.
- Heuristic and MLP are the best performing methods.
- There is still room of improvement for the density.

Future works

- Incorporate lexical information in the joining of HwF spots phase.
- Assess these methods using automatic lines.

Search for Hyphenated Words in Probabilistic Indices: a Machine Learning Approach

José Andrés, Alejandro H. Toselli, Enrique Vidal

tranSkriptorium AI, Valencia, Spain

August 21st, 2023

Probabilistic framework

$$P(R \mid x, v) \approx \max_{b \sqsubseteq x} P(R \mid x, v, b) \approx \max_{\substack{b_r, b_s, r, s:\\rs = v, b_r, b_s \sqsubseteq x}} P(R \mid x, b_r, b_s, r, s)$$

Adapting RP formula to deal with hyphenated instances.

Probabilistic framework

We consider R the conjunction of three boolean random variables: R_r , R_s , R_h .

$$\begin{split} & P(R_{r}, R_{s}, R_{h} \mid x, b_{r}, b_{s}, r, s) \\ & \approx \min \left(P(R_{r} \mid x, b_{r}, b_{s}, r, s), P(R_{s} \mid x, b_{r}, b_{s}, r, s), P(R_{h} \mid x, b_{r}, b_{s}, r, s) \right) \\ & \approx \min \left(P(R_{r} \mid x, b_{r}, r), P(R_{s} \mid x, b_{s}, s), P(R_{h} \mid x, b_{r}, b_{s}) \right) \\ & \approx \min \left(P(r \mid x, b_{r}), P(s \mid x, b_{s}), P(R_{h} \mid x, b_{r}, b_{s}) \right) \end{split}$$

HTR performance

	no LM	char 8-gram
All tokens	31.1	23.0
Only HwF's	44.0	39.3

Table: WER (in %) with and without LM.

Results

Figure: MAYBEHYP mAP (left) and density (right), as a function of the MLP threshold γ , for the different techniques using Prlx's pruned by 10^{-5} .