

軸計算 (手算)

參考料來源:中央大學 機械設計實驗室 自編講義

設計問題

圖為減速機之中間軸,請根據所附的軸承與負載數據,求出軸承C與D之受力。

- 1. y座標正方向為自紙面朝向觀者。
- 2. ② 表示齒輪負載施加位置
- 3. P.C.D為節圓直徑
- 4. 轉速 500 rpm
- 5. 齒輪齒面間作用負載如右所示

$$F_{Ax} = -50 \text{ kN}; F_{Bx} = -20 \text{ kN};$$

 $F_{Ay} = -160 \text{ kN}; F_{By} = 50 \text{ kN};$
 $F_{Az} = 20 \text{ kN}; F_{Bz} = -8 \text{ kN}$

作業檢討

· 將設計問題X型配置改成O型配置

 $F_{Ax} = -55 \text{ kN}; F_{Ay} = -148 \text{ kN}; F_{Az} = 26 \text{ kN}$

 $F_{Bx} = -19 \text{ kN}; F_{By} = 52 \text{ kN}; F_{Bz} = -6.4 \text{ kN}$

 $L_A = 220 \text{ mm}$; $L_G = 340 \text{ mm}$; $L_B = 160 \text{ mm}$

P.C.D. = 650

X-Z平面

_		_	_	_		_		_	_		_				
I	_	3	9	()	+	7	2 () →	- 1	6	()	=	7 ~	7 N	
				`		_	\sim	, ,		()	`		, ,	, ,,	

	FAx	FBx	FAz	FBz	合力
FDx	$55 \cdot \frac{550}{770}$	$19 \cdot \frac{160}{770}$	$-26 \cdot \frac{114}{770}$	$6.4 \cdot \frac{325}{770}$	42.1
FCx	$55 \cdot \frac{220}{770}$	$19 \cdot \frac{610}{770}$	$26 \cdot \frac{114}{770}$	$-6.4 \cdot \frac{325}{770}$	31.9

Y-Z平面

	FAy	FBy	合力
FDy	$148 \cdot \frac{550}{770}$	$-52 \cdot \frac{160}{770}$	94.9
FCy	$148 \cdot \frac{220}{770}$	$-55 \cdot \frac{610}{770}$	-1.3

軸承受力分析

• 合成受力

$$F_D = \sqrt{F_{Dx}^2 + F_{Dy}^2} = \sqrt{(42.1)^2 + (94.9)^2} = 103.82 \quad [kN]$$

$$F_C = \sqrt{F_{Cx}^2 + F_{Cy}^2} = \sqrt{(31.9)^2 + (-1.3)^2} = 31.9 \quad [kN]$$

· 軸向受力Ka

$$Z$$
方向為正 = 26-6.4 = 19.6 $[kN]$

∴ Ka為由左至右作用在軸上的力19.6[kN]

錐形滾柱軸承組合之軸向負荷

 $F_a = 1.26 \cdot F_r \cdot tan\alpha$

	Load Condition	Axial Load for equive Bearing A	ivalent dynamic load Bearing B			
$\frac{F_{rA}}{Y_A} \geqslant \frac{F_{rB}}{Y_B}$	K _a ≥ 0	$F_{aA} = \frac{F_{rA}}{2 Y_A}$	$F_{aB} = \frac{F_{rA}}{2 Y_A} + K_a$			
$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$	$K_a \ge 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right)$	$F_{aA} = \frac{F_{rA}}{2 Y_A}$	$F_{aB} = \frac{F_{rA}}{2 Y_A} + K_a$			
$\overline{Y_A} \setminus \overline{Y_B}$	$K_a < 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A}\right)$	$F_{aA} = \frac{F_{rB}}{2 Y_B} - K_a$	$F_{aB} = \frac{F_{rB}}{2 Y_B}$			

			Single Row				Double Row			
			$F_a/F_r > e$		F _a / F _r ≦ e		F _a /F _r >e		F _a /F _r ≦e	
Type of Bea	aring	е	X	Υ	X	Υ	X	Υ	X	Υ
Deep groove bal	l bearing						Let !	Marie Co.		
$F_a / C_0 = 0.025$		0.22		2.0			34	2.0		
= 0.04	100	0.24		1.8			50	1.8		
= 0.07		0.27	0.56	1.6	1.00	0	0.56	1.6	1.00	0
= 0.13	- 1 (F)	0.31		1.4	1			1.4	4.8	
= 0.25		0.37		1.2				1.2		
= 0.5		0.44		1.0		E		1.0		
Angular contact	α = 40 °	1.14	0.35	0.57	1.00	0		Arst.	14	
ball bearing	α = 32 °	0.86					0.62	1.17	1.00	0.73
Self-aligning ball	1.5 $tan\alpha$					0.65	0.975/e	1	0.63/e	
Spherical roller b	1.5 $tan\alpha$					0.67	1/e	1	0.675/e	
Taper roller bear	1.5 $tan\alpha$	0.4	0.6/e	$\lceil 1 \rceil$	0					

計算軸承軸向受力

 $F_D = 103.82 F_C = 31.9$

Y:軸承止推係數=1.74

$$\frac{F_{rB}}{Y_B} \frac{F_{rB}}{Y_B} = \frac{F_D}{Y} = \frac{103.82}{1.74} = 60$$

$$\frac{F_{rA}}{Y_A} \frac{F_{rA}}{Y_A} = \frac{F_C}{Y} = \frac{31.9}{1.74} = 18.33$$

$$\therefore \frac{F_D}{Y} > \frac{F_C}{Y} \quad \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \implies K_a < 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right) \implies$$

$$Ka = 19.6 < 0.5(60 - 18.33) = 20.835$$

$$F_{aA} = \frac{F_{rB}}{2 Y_B} - K_a$$

$$F_{aB} = \frac{F_{rB}}{2 Y_B}$$

計算軸承軸向受力

■ 軸承軸向受力

$$F_{aB} = \frac{F_{rB}}{2 Y_B}$$

$$F_{aA} = \frac{F_{rB}}{2 Y_B} - K_a$$

$$F_{aB} = \frac{F_{rB}}{2 Y_B} \qquad \therefore F_{aD} = \frac{F_D}{2Y} = 30 \quad [kN]$$

$$F_{aA} = \frac{F_{rB}}{2 Y_{B}} - K_{a}$$
 $F_{aC} = \frac{F_{D}}{2Y} - Ka = 10.4$ [kN]

計算軸承D的壽命

Bearing(D)

$$\frac{F_{aD}}{F_D} = \frac{30}{103.82} = 0.289 < e = 0.35$$

$$\therefore X = 1$$
 , $Y = 0$

$$P = X \cdot F_D + Y \cdot F_{aD}$$
= 1.103.82 + 0.30
= 103.82 [kN]

$$\therefore L_{10h_{1}} = \frac{10^{6}}{60.500} \left(\frac{800}{103.82}\right)^{10/3}$$
$$= 30123.72 \quad [hr]$$

基本額定壽命

$$L_{10h} = \frac{10^6}{60 \cdot n} \left(\frac{C}{P}\right)^p [hr]$$

L10h 基本額定壽命 (小時)

基本額定負動負荷

軸承轉速 (rpm)

軸承支撐點的位置

· 注意軸承作用力線與軸線相交,兩交點之間跨距才為軸承 在軸上的跨距(P.C.D為齒輪節圓直徑)。

列出所有受力情形

 $F_{Ax} = -50 \text{ kN}; F_{Ay} = -160 \text{ kN}; F_{Az} = 20 \text{ kN}$

 $F_{Bx} = -20 \text{ kN}; F_{By} = 50 \text{ kN}; F_{Bz} = -8 \text{ kN}$

 $L_A = 160 \text{ mm}$; $L_G = 340 \text{ mm}$; $L_B = 100 \text{ mm}$

X-Z平面FBD與彎曲應力分佈

Y-Z平面FBD與彎曲應力分佈

軸受力

• 合成受力

$$F_D = \sqrt{F_{Dx}^2 + F_{Dy}^2} = \sqrt{(41)^2 + (109)^2} = 116.456 [kN]$$

$$F_C = \sqrt{F_{Cx}^2 + F_{Cy}^2} = \sqrt{(29)^2 + (1)^2} = 29.02 [kN]$$