Proposition: Concerning the Fibonacci sequence,

$$S_n: \sum_{i=1}^n F_i^2 = F_n F_{n+1}.$$

Proof. (Induction).

Basis step. Suppose n = 1. Observe that $\sum_{i=1}^{1} F_i^2 = F_1^2 = 1^2 = 1 * 1 = F_1 F_{1+1}$, thus S_1 .

Inductive step. Suppose S_k for some $k \in \mathbb{N}$.

We now show S_k implies S_{k+1} . Observe that

$$\sum_{i=1}^{k+1} F_i^2 = F_{k+1}^2 + \sum_{i=1}^k \tag{1}$$

$$= F_{k+1}^2 + F_k F_{k+1}$$
 (Inductive hypothesis) (2)

$$= F_{k+1}(F_{k+1} + F_k) \tag{3}$$

$$= F_{k+1}F_{k+2} \tag{4}$$

$$=F_{k+1}F_{(k+1)+1}. (5)$$

Thus F_{k+1} .

It follows by mathematical induction that S_n for all $n \in \mathbb{N}$.