Universidade Federal Fluminense - UFF

Instituto De Computação - IC

Disciplina: BANCO DE DADOS II (TCC00288 - X1 - 2024.2)

Professor(a): DANIEL DE OLIVEIRA
Aluno: PEDRO CAMPOS CAMARGOS

Avaliação Continuada #2 - Particionamento de Tabelas

Particionamento

Predicados simples

p1: Idade < 14 (Pessoa)

p2: Idade > 18 (Pessoa)

p3: UF = 'RJ' (Pessoa)

p4: UF = 'SP' (Pessoa)

n = 4

FHP de Pessoa

Número de mintermos: $2^n = 2^4 = 16$ mintermos.

Implicações:

i1: $p1 \rightarrow \neg p2$

```
i2: p2 → ¬p1
```

i3:
$$p3 \rightarrow \neg p4$$

i4: p4
$$\rightarrow \neg p3$$

Mintermos:

m1: idade < 14 \land idade > 18 \land UF = 'RJ' \land UF = 'SP' (contraditório por i1, i2, i3, i4)

m2: idade < 14 ∧ idade > 18 ∧ UF = 'RJ' ∧ E ¬UF = 'SP' (contraditório por i1, i2)

m3: idade < 14 Λ idade > 18 Λ E ¬UF = 'RJ' Λ UF = 'SP'(contraditório por i1, i2)

m4: idade < 14 Λ idade > 18 Λ ¬UF = 'RJ' Λ ¬UF = 'SP' (contraditório por i1, i2)

m5: idade < 14 Λ ¬idade > 18 Λ UF = 'RJ' Λ UF = 'SP' (contraditório por i3, i4)

m6: idade < 14 \wedge ¬idade > 18 \wedge UF = 'RJ' \wedge ¬UF = 'SP'

m7: idade < 14 \land ¬idade > 18 \land ¬UF = 'RJ' \land UF = 'SP'

m8: idade < 14 \wedge ¬idade > 18 \wedge ¬UF = 'RJ' \wedge ¬UF = 'SP'

m9: ¬idade < 14 ∧ idade > 18 ∧ UF = 'RJ' ∧ UF = 'SP' (contraditório por i3, i4)

m10: $\neg idade < 14 \land idade > 18 \land UF = 'RJ' \land \neg UF = 'SP'$

m11: $\neg idade < 14 \land idade > 18 \land \neg UF = 'RJ' \land UF = 'SP'$

m12: ¬idade < 14 ∧ idade > 18 ∧ ¬UF = 'RJ' ∧ ¬UF = 'SP'

m13: ¬idade < 14 \(\triangle \) \(\t

m14: $\neg idade < 14 \land \neg idade > 18 \land UF = 'RJ' \land \neg UF = 'SP'$

m15: $\neg idade < 14 \land \neg idade > 18 \land \neg UF = 'RJ' \land UF = 'SP'$

m16: $\neg idade < 14 \land \neg idade > 18 \land \neg UF = 'RJ' \land \neg UF = 'SP'$

Simplificação:

m6: idade < 14 \wedge UF = 'RJ'

m7: idade < 14 \wedge UF = 'SP'.

m8: idade < 14 \wedge UF \neq 'RJ' \wedge UF \neq 'SP'.

m10: idade > $18 \land UF = 'RJ'$.

m11: idade > $18 \land UF = 'SP'$.

m12: idade > 18 \wedge UF \neq 'RJ' \wedge UF \neq 'SP'.

m14: idade > 14 \wedge idade < 18 \wedge UF = 'RJ'.

m13: idade > 14 \wedge idade < 18 \wedge UF = 'SP'.

m15: idade > 14 \wedge idade < 18 \wedge UF \neq 'RJ' \wedge UF \neq 'SP'

Fragmentos:

Pessoa1 = **O** idade < 14 \(\text{UF} = 'RJ' \) (Pessoa)

Pessoa2 = \mathbf{O} idade < 14 \wedge UF = 'SP' (Pessoa)

Pessoa3 = σ idade < 14 \wedge UF \neq 'RJ' \wedge UF \neq 'SP' (Pessoa)

Pessoa4 = \mathbf{O} idade > 18 \wedge UF = 'RJ' (Pessoa)

Pessoa5 = σ idade > 18 \wedge UF = 'SP' (Pessoa)

Pessoa6 = \mathbf{O} idade > 18 \wedge UF \neq 'RJ' \wedge UF \neq 'SP' (Pessoa)

Pessoa7 = \mathbf{O} idade > 14 \wedge idade < 18 \wedge UF = 'RJ' (Pessoa)

Pessoa8 = σ idade > 14 \wedge idade < 18 \wedge UF = 'SP' (Pessoa)

Pessoa9 = \mathbf{O} idade > 14 \wedge idade < 18 \wedge UF \neq 'RJ' \wedge UF \neq 'SP' (Pessoa)

FHD de Receita

Receita1 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa1)

Receita2 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa2)

Receita3 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa3)

Receita4 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa4)

Receita5 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa5)

Receita6 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa6)

Receita7 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa7)

Receita8 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa8)

Receita9 = TCodReceita, DataPostagem, Título, ModoPreparo, CodPessoa (Receita ⋉ Pessoa9)