

АЗБУКА ХАЛТУРЩИКА-ARMAТУРЩИКА разработка встраиваемых систем

основы бытовой автоматики, систем управления и сбора данных

- © ruOpenWrt
- © HackSpace «Чебураторный завод»
- © Консорциум хоббитов России
- © Bill Collis (Part I)

Оглавление

Bı	Введение	
Ι	Введение в практическую электронику An Introduction to Practical Electronics, Microcontrollers and Software Design © Bill Collis	11 12
1	1 Введение в практическую электронику 13	13
2	2 Вводная электронная схема 15	14
3	3 Вводное конструирование печатной платы 26	15
4	4 Пайка, припой и паяльники 41	16
5	5 Введение в теорию электроники 49	17

ОГЛАВЛЕНИЕ	2
6 6 Введение в электронику микроконтроллера 63	18
7 7 Входные цепи микроконтроллера 91	19
8 8 Обзор программирования 104	20
9 9 Введение в поток выполнения программы 112	21
10 10 Вводное программирование — использование подпрограмм 126	22
11 11 Вводное программирование — использование переменных 134	23
12 12 Основные дисплеи 161	24
13 13 Проект портативного аудиоусилителя на TDA2822M 174	25
14 14 Основы логического программирования 187	26
15 15 Разработка алгоритма — система сигнализации 202	27
16 16 Основы теории цепей постоянного тока 215	28
17 17 Основы планирования проекта 236	29
18 18 Пример дизайна системы — таймер клеевого пистолета 268	30
19 19 Основные интерфейсы и их программирование 273	31

ОГЛАВЛЕНИЕ	3
20 20 Основы интерфейса аналого-цифрового преобразования 295	32
21 21 Основы проектирования системы 314	33
$22\ 22\ { m Ochoвы}\ { m проектирования}\ { m системы}\ -{ m тайм-трекер}\ 317$	34
23 23 Основы вычислений времени 330	35
24 24 Основы строковых переменных 340	36
25 25 Силовые интерфейсы 353	37
26 26 Теория источников питания 370	38
$27\ 27\ { m Типичные}$ вопросы тестирования $2011/12/13$ годов 395	39
28 28 Расширенное программирование — массивы 397	40
29 29 Подтягивающие резисторы AVR 402	41
30 30 Дополнительно: подключение клавиатуры 403	42
31 31 Тонкости циклов Do-Loop & While-Wend 417	43
32 32 Подключение двигателя постоянного тока 423	44
33 33 Пример расширенной системы — будильник 452	45

ОГЛАВЛЕНИЕ	4
34 34 Резистивный сенсорный экран 468	46
35 35 System Design Example – Temperature Controller 475	47
36 36 Advanced programming - state machines 478	48
37 37 Alarm clock project re-developed . 501	49
38 38 Advanced window controller student project 514	50
39 39 Alternative state machine coding techniques 524	51
40 40 Complex - serial communications . 526	52
41 41 Radio Data Communication 597	53
42 42 Introduction to I2C 617	54
43 43 Plant watering timer student project 631	55
44 44 Bike audio amplifier project 642	56
45 45 Graphics LCDs 648	57
46 46 GLCD Temperature Tracking Project 660	58
47 47 Interrupts 672	59

ОГЛАВЛЕНИЕ	5
48 48 Timer/Counters . 692	60
$49\ 49\ \mathrm{LED}$ dot matrix scrolling display project – arrays and timers . 698	61
50 50 Medical machine project – timer implementation 709	62
51 51 Multiple 7-segment clock project – dual timer action 715	63
$52\ 52\ \mathrm{The\ MAX}\ 7219/7221\ \mathrm{display\ driver\ IC's}\ 739$	64
53 53 Cellular Connectivity-ADH8066 744	65
54 54 Data transmission across the internet 778	66
55 55 Assignment – maths in the real world 816	67
$56~56~\mathrm{SSD1928}$ based colour graphics LCD . 825	68
57 57 Traffic Light help and solution 865	69
58 58 Computer programming – low level detail 869	70
59 59 USB programmer - USBASP . 876	71
60 60 USBTinyISP programmer 877	72
61 61 C-Programming and the AVR 881	73

ОГЛАВЛЕНИЕ	6
62 62 Object Oriented Programming (OOP) in CPP and the AVR 929	74
63 63 Current (2014) AVR development PCBS 953	75
64 64 Eagle - creating your own library 970	76
65 65 Practical Techniques . 979	77
66 66 CNC 990	78
67 67 Index . 1008	79
II Основы электроники	80
68 Линейные схемы на пассивных элементах, основы электротехники	82
69 Симуляция и расчет схем в ngSPICE	83
70 KiCAD 70.1 Отрисовка схем в KiCAD 70.2 Библиотеки элементов 70.3 Передача схемы в ngSPICE	84
71 Простейшие полупроводниковые элементы 71.1 Оптоэлектроника	

ОГЛАВЛЕНИЕ	,
71.3 Схемы на на полевых транзисорах	8
72 Операционные усилители	80
73 Источники питания	8 8
74 Цифровая электроника	88
75 Компьютерные интерфейсы 75.1 Поколение 90х: COM, LPT, ISA	90 90 90 90
76 ПЛИС	9
77 Датчики	9:

ОГЛАВЛЕНИЕ	8
78 Электропривод и исполнительные устройства	93
III Основы конструирования РЭС	94
79 Пакеты моделирования на основе OpenFOAM	95
80 Обеспечение теплового режима	96
81 Электромагнитная совместимость 81.1 Кондуктивные помехи 81.2 Компоновочные модели и оптимизация кабельной сети	
IV Технология РЭС	98
82 Инструменты и оборудование	99
82 Инструменты и оборудование 82.1 JTAG-адаптер	99 99
82 Инструменты и оборудование 82.1 JTAG-адаптер	99 99
82 Инструменты и оборудование 82.1 JTAG-адаптер 82.2 Отладочные платы 82.2.1 Arduino / Atmel Mega AVR8/	99 99 100
82 Инструменты и оборудование 82.1 ЈТАG-адаптер 82.2 Отладочные платы 82.2.1 Arduino / Atmel Mega AVR8/ 82.2.2 Cortex-Mx	99 99 90 100 100
82 Инструменты и оборудование 82.1 ЈТАG-адаптер 82.2 Отладочные платы 82.2.1 Arduino / Atmel Mega AVR8/ 82.2.2 Cortex-Mx 82.2.3 CubieBoard / Cortex-A8 AllWinner A10/	99 99 100 100
82 Инструменты и оборудование 82.1 ЈТАG-адаптер 82.2 Отладочные платы 82.2.1 Arduino / Atmel Mega AVR8/ 82.2.2 Cortex-Mx 82.2.3 CubieBoard / Cortex-A8 AllWinner A10/ 82.2.4 Raspberry Pi / ARM11 BCM3032/	99 99 100 101 101
82 Инструменты и оборудование 82.1 ЈТАG-адаптер 82.2 Отладочные платы 82.2.1 Arduino / Atmel Mega AVR8/ 82.2.2 Cortex-Mx 82.2.3 CubieBoard / Cortex-A8 AllWinner A10/	99 99 100 101 101

ОГЛАВЛЕНИЕ	9

82.4 Измерительное оборудование	101
82.4.1 Тестер	101
82.4.2 Осциллограф	101
82.4.3 Логический анализатор	101
82.4.4 Генератор сигналов	101
82.4.5 Рыльцеметр	101
82.5 Электроинструмент	102
82.5.1 Дрелъ	102
83 Трассировка плат и подготовка производства в КіСАД	103
83.1 Технология ЛУТ (Лазерный УТюг)	103
83.2 Технология фоторезиста	103
83.3 Формат Gerber и подготвка промышленного производства	103
84 FreeCAD	104
84.1 Установка под ШWindows	106
84.2 Чертеж	
84.3 Эскиз	107
84.4 Деталь	107
84.5 Сборка	107
84.6 Автогенерация конструкторской докуметации	107
84.7 Скрипты и пользовательские расширения	107
85 Эксплуатация станочного оборудования	108

ОГЛАВЛЕНИЕ	10
86 Основы ЧПУ и цифрового производства 86.1 САМ-пакеты для FreeCAD	109 109
V Основы теории систем автоматического управления	110
87 Математический аппарат 87.1 Передаточная функция 87.2 Устойчивость САУ 87.3 Сети Петри 87.4 Автоматы Маркова	111 111
88 Релейное управление	112
89 Пропорциональные САУ	113
90 ПИДп-регуляторы	114
VI Разработка ПО для встраиваемых систем	115
91 Вспомогательные скрипты на языке Python 91.1 Установка под ⊞Windows	119

ОГЛАВЛЕНИЕ	11
92 Make: управление сборкой проектов	125
93 VCS: системы контроля версий 93.1 CVS 93.2 Subversion 93.3 Git 93.3.1 GitHub	126 126
94 Основы Си и C_+^+ 94.0.2 Установка MinGW (win32)	127 127 127
95 LLVM и разработка собственных компиляторов 95.1 Лексический и синтаксический анализ 95.2 Применение flex/bison для разбора текстовых форматов данных 95.3 Компилятор Паскаля	128
96 Сборка кросс-компилятора GNU toolchain	129
VII Микроконтроллеры Cortex-Mx	130
97 Отладочные платы97.1 STM32DISCOVERY /Cortex-M3 STM32F103/	

ОГЛАВЛЕНИЕ	12
VIII Периферия	132
IX Встраиваемый emLinux	133
98 cross	134
99 BuildRoot	135
100Особенности OpenWrt	136
101Библиотека SDL 101.1Реализация microGUI	137 137
102Приложения для X Window	138
103Программирование сетевых приложений	139
104Cборка кросс-компиляторя GNU мальтийским крестом	140
X IDE	141
105⊜есырѕе 105.1Проверка орфографии	144 146
106Code::Blocks	149

ОГЛАВЛЕНИЕ	13
107(g)Vim	150
107.1Установка под ⊞Windows	. 152
107.2Выход из (g)Vim	
107.2.1 Выход с автосохранением	
107.3Переход в режим редактирования	. 155
107.4Переход в режим команд	. 155
107.5Запись редактируемого файла	. 156
107.6Π ерезагрузка файла	. 156
107.7Отмена последних изменений (undo)	. 156
XI Замечания для участников проекта 107.8Набор репозиториев на GitHub	
XII Подготовка публикаций в 14T _F X	159
107.10/становка MikTeX под ⊞Windows	. 162
107.1Структура документа	
107.11.Ваголовочный файл или блок	
107.11. Фтили документа	
107.11. Пакеты	. 162
107.11. Автор и название	. 162
107.11. Верстка титульных страниц	. 162
107.11. Оглавление	. 162

ОГЛАВЛЕНИЕ	14
107.1Верстка слайдов	162
107.18 писок литературы и цитирование	
107.1 Команды секционирования: часть, глава, раздел,	
107.1 Т аблицы	
107.1Формулы	165
107.1 Перекрестные ссылки и гипессылки	165
107.18Пистинги скриптов и текстовых данных	L65
107.1 Подготовка иллюстраций	165
107.19.Графики GNUPLOT	165
107.19. 2 хемы и графы в GraphViz	l65
XIII Kyча 1	66
Список литературы	67

 $O\Gamma \Lambda AB \Lambda EHUE$ 15

Введение

Первоначально этот материал задумывался как комплект документации к платам BlackSwift и VoCore, но постепенно превратился в толстенный учебник для студентов ВУЗов и научных работнков по специлизациям, связанным с применением цифровой электроники и компьютерной техники.

Большой упор был сделан на использование открытого некоммерческого программного обеспечения, с целью удешевления учебного процесса, уменьшения себестоимости ваших проектов 1 , и стимулирования вашего участия в развитии этих программных пакетов.

Лицензия на эту книгу пока не выбрана, так что она пока просто пишется в духе OpenSource: любой может использовать ее часть, изменять или дополнять, до тех пор, пока не накладываются какие-либо административные, финансовые или юридические ограничения на распространение и развитие оригинальной версии или ее открытых форков.

Приглашаем всех желающих участвовать в развитии этого учебного пособия на форум ruOpenWrt, нам нужна обратная связь по качеству материала, результаты тестирования на вас или ваших студентах, дополнения и замечания.

Мы признательны Bill Collis за разрешение использовать материалы его книги «An Introduction to Practical Electronics, Microcontrollers and Software Design» в русскоязычном варианте «Азбуки» (Часть I), и конечно он вполне заслуженно включен в основные соавторы этой книги.

¹ вряд ли ли у вас окажется лишняя пачка килобаксов на покупку пары коммерческих САПР, по крайней мере пока ваш стартап не взлетит в Top\$100K

Часть І

Введение в практическую электронику

Эта часть основана на книге:

An Introduction to Practical Electronics, Microcontrollers and Software Design

Second Edition, 01 May-2014

© Bill Collis

www.techideas.co.nz

Мы признательны автору за разрешение использовать материалы его книги в русскоязычном варианте «Азбуки», и конечно он вполне заслуженно включен в основные соавторы этой книги.

We are grateful to the author for permission to use materials of his book in the russian version of «Azbuka», and of course he was deservedly included in the main co-authors of this book.

From: Bill Collis <Bill.Collis@.....nz>

Date: 2014-11-24 0:53 GMT+04:00

Subject: Electronis Book

To: "dponyatov@gmail.com" <dponyatov@gmail.com>

Hi Dmitry

thanks for your email.

I am looking at the future of the book myself and thinking I will open source it. If you will only be in using it in Russian language then that is ok and you need to reference the original book.

Thanks Bill

1 Введение в практическую электронику 13

2 Вводная электронная схема 15

3 Вводное конструирование печатной платы 26

4 Пайка, припой и паяльники 41

5 Введение в теорию электроники 49

6 Введение в электронику микроконтроллера 63

7 Входные цепи микроконтроллера 91

8 Обзор программирования 104

9 Введение в поток выполнения программы 112

10 Вводное программирование — использование подпрограмм 126

11 Вводное программирование — использование переменных 134

12 Основные дисплеи 161

13 Проект портативного аудиоусилителя на TDA2822M 174

14 Основы логического программирования 187

15 Разработка алгоритма — система сигнализации 202

16 Основы теории цепей постоянного тока 215

17 Основы планирования проекта 236

18 Пример дизайна системы — таймер клеевого пистолета 268

19 Основные интерфейсы и их программирование 273

20 Основы интерфейса аналого-цифрового преобразования 295

21 Основы проектирования системы 314

22 Основы проектирования системы — тайм-трекер 317

23 Основы вычислений времени 330

24 Основы строковых переменных 340

25 Силовые интерфейсы 353

26 Теория источников питания 370

27 Типичные вопросы тестирования 2011/12/13 годов 395

28 Расширенное программирование — массивы 397

29 Подтягивающие резисторы AVR 402

30 Дополнительно: подключение клавиатуры 403

31 Тонкости циклов Do-Loop & While-Wend 417

32 Подключение двигателя постоянного тока 423

33 Пример расширенной системы будильник 452

34 Резистивный сенсорный экран 468

35 System Design Example – Temperature Controller 475

36 Advanced programming - state machines 478

37 Alarm clock project re-developed . 501

38 Advanced window controller student project 514

39 Alternative state machine coding techniques 524

40 Complex - serial communications . 526

41 Radio Data Communication 597

42 Introduction to I2C 617

43 Plant watering timer student project 631

44 Bike audio amplifier project 642

Γ лава 45

45 Graphics LCDs 648

46 GLCD Temperature Tracking Project 660

47 Interrupts 672

48 Timer/Counters . 692

49 LED dot matrix scrolling display project – arrays and timers . 698

50 Medical machine project – timer implementation 709

51 Multiple 7-segment clock project – dual timer action 715

52 The MAX 7219/7221 display driver IC's 739

53 Cellular Connectivity-ADH8066 744

54 Data transmission across the internet 778

55 Assignment – maths in the real world 816

56 SSD1928 based colour graphics LCD . 825

57 Traffic Light help and solution 865

58 Computer programming – low level detail 869

59 USB programmer - USBASP . 876

60 USBTinyISP programmer 877

61 C-Programming and the AVR 881

62 Object Oriented Programming (OOP) in CPP and the AVR 929

63 Current (2014) AVR development PCBS 953

64 Eagle - creating your own library 970

65 Practical Techniques . 979

66 CNC 990

67 Index . 1008

Часть II Основы электроники

Здесь идет список ссылок на онлайн лекции в edX, Coursera, и т.п.

Линейные схемы на пассивных элементах, основы электротехники

Симуляция и расчет схем в ngSPICE

KiCAD

- 70.1 Отрисовка схем в КіСАО
- 70.2 Библиотеки элементов
- 70.3 Передача схемы в ngSPICE

Простейшие полупроводниковые элементы

- 71.1 Оптоэлектроника
- 71.2 Схемы на биполярных транзисорах
- 71.3 Схемы на на полевых транзисорах

Операционные усилители

Источники питания

- 73.1 Батарейное питание
- 73.2 Линейные стабилизаторы
- 73.3 Импульсные преобразователи на ШИМ-контроллерах
- 73.4 Цепи защиты и гашения кондуктивных помех

Цифровая электроника

Компьютерные интерфейсы

- 75.1 Поколение 90х: COM, LPT, ISA
- 75.1.1 Резервный программатор AVR "пять проводков"
- **75.2** Сеть САN
- 75.3 Интерфейсные модули USB
- 75.3.1 Универсальный высокоскоростной конвертер FTDI FT2232H
- 75.3.2 JTAG-адаптер
- 75.3.3 Отладочный модуль САМ

ПЛИС

Датчики

Электропривод и исполнительные устройства

Часть III

Основы конструирования РЭС

Пакеты моделирования на основе OpenFOAM

Обеспечение теплового режима

Электромагнитная совместимость

- 81.1 Кондуктивные помехи
- 81.2 Компоновочные модели и оптимизация кабельной сети

Часть IV Технология РЭС

Инструменты и оборудование

82.1 JTAG-адаптер

82.2 Отладочные платы

Прежде чем начать работать с отдельными MK, устанавливая их на плату собственной разработки, для быстрого старта используют *отладочные платы*¹

¹ development board, demo board

- 82.2.1 Arduino /Atmel Mega AVR8/
- 82.2.2 Cortex-Mx

См. <mark>97</mark>

- 82.2.3 CubieBoard /Cortex-A8 AllWinner A10/
- 82.2.4 Raspberry Pi /ARM11 BCM3032/
- 82.2.5 BlackSwift /MIPS/
- 82.2.6 VoCore /MIPS/
- 82.3 Монтажный инструмент
- 82.4 Измерительное оборудование
- 82.4.1 Тестер

82.4.2

- Осциллограф
- 82.4.3 Логический анализатор
- 82.4.4 Генератор сигналов
- 82.4.5 Рыльцеметр

82.5 Электроинструмент

82.5.1 Дрелъ

Дрель ударная сетевая Praktyl-R PID13D01 400 Вт (!)395 р.

Дрель безударная сетевая Интерскол Д-11/530ЭР (с БЗП) $1120\,\mathrm{p}.$

Трассировка плат и подготовка производства в KiCAD

- 83.1 Технология ЛУТ (Лазерный УТюг)
- 83.2 Технология фоторезиста
- 83.3 Формат Gerber и подготвка промышленного производства

FreeCAD

В среде специалистов ряда отраслей известна проблема создания полноценной САПР в рамках OpenSource, и хотя FreeCAD ещё не является кандидатом на такую «полноценность», этот продукт может рассматриваться как одна из попыток создания базы для решения этой проблемы. Разработчик FreeCAD Юрген Ригель, работающий в корпорации DaimlerChrysler, позиционирует свою программу как первый бесплатный инструмент проектирования механики (сравнивая свой продукт с такими развитыми проприетарными системами как CATIA версий 4 и 5, SolidWorks), созданный на основе библиотеки **Open CASCADE**. Цель программы — предоставить базовый инструментарий этой библиотеки в интерактивном режиме.

Следует отметить, что имеет место ещё один программный продукт имеющий название freeCAD, его разработчик — Aik-Siong Koh, и он не связан с FreeCAD'ом Юргена Ригеля.

84.1 Установка под \(\pm \) Windows

 $\blacksquare + R \rangle http://www.freecadweb.org/ Download <math>\blacksquare Windows FreeCAD 0.14 \rangle \dots _setup.exe$

¹ копипаста https://ru.wikipedia.org/wiki/FreeCAD_(Juergen_Riegel%27s)

- 84.2 Чертеж
- 84.3 Эскиз
- 84.4 Деталь
- 84.5 Сборка
- 84.6 Автогенерация конструкторской докуметации
- 84.7 Скрипты и пользовательские расширения

Эксплуатация станочного оборудования

Основы ЧПУ и цифрового производства

86.1 CAM-пакеты для FreeCAD

Часть V

Основы теории систем автоматического управления

Математический аппарат

- 87.1 Передаточная функция
- 87.2 Устойчивость САУ
- 87.3 Сети Петри
- 87.4 Автоматы Маркова

Релейное управление

Пропорциональные САУ

ПИДп-регуляторы

Часть VI

Разработка ПО для встраиваемых систем

Вспомогательные скрипты на языке Python

Название языка произошло вовсе не от вида пресмыкающихся. Автор назвал язык в честь популярного британского комедийного телешоу 1970-х «Летающий цирк Монти Пайтона». Впрочем, всё равно название языка чаще ассоциируют именно со змеёй, нежели с передачей — пиктограммы файлов в KDE или в Microsoft Windows и даже эмблема на сайте http://www.python.org (до выхода версии 2.5) изображают змеиные головы.

 ${\rm Python^1-B}$ ысокоуровневый язык программирования общего назначения, ориентированный на повышение производительности разработчика и читаемости кода.

Руthon удобно применять для написания различных вспомогательных скриптов. Часто его используют при разработке сложных программных систем для написания первых версий. В процессе работы над большими программами часто перерабатываются большие объемы кода, поэтому для ускорения разработки требуется максимально высокоуровневый язык. После того как архитектура программы стабилизируется, узким местом становится производительность, и программу переписывают на более низкоуровневом компилируемом языке, чаще всего C_+^+ .

Написание программ упрощают:

- объектно-ориентированное программирование облегчает разработку программ, позволяет переопределить стандартные операторы для пользовательских типов данных, упрощая синтаксис
- динамическая типизация не требуется заранее упределять переменные, они создаются простым присваиванием
- обработка исключений для секции кода можно определить обработчик ошибок
- **высокоуровневые структуры данных** списки, словари (набор элементов ключ:значение), очереди
- богатая стандартная библиотека и множество дополнительных библиотек на все случаи

 $^{^{1}}$ в оригинале читается **па́йтон**, но давно русифицировался как **пито́н**

91.1 Установка под ⊞Windows

Customize Python Add python.exe to PATH Next Finish

91.2 Запуск

Из командной строки: 🖽 + R > cmd > python

```
X
C:\Windows\system32\cmd.exe - python
Microsoft Windows [Version 6.1.7601]
(c) Корпорация Майкрософт (Microsoft Corp.), 2009. Все права защищены.
C:\Users\dmitry>python
Python 2.7.8 (default, Jun 30 2014, 16:03:49) [MSC v.1500 32 bit (Intel)] on win
Type "help", "copyright", "credits" or "license" for more information.
 .5882352941176472
>>> _
```

Простейшая среда $IDLE^2$:

```
    □ DPOГРАММЫ Python 2.7 IDLE (Python GUI)
    Панель задач IDLE D Закрепить в панели задач
```

² на GUI-библиотеке Tkinter, идущей в комплекте

⊲⊲ по файлу скрипта:

```
+R notepad /tmp/py.py
```

```
/tmp/py.py

1 print "1+2/3.4="
2 print 1+2/3.4
3 4 raw_input('.')
```

```
H / R / /tmp/py.py
```


Открытием файла скрипта в IDLE:

91.3 Дополнительные материалы

[pyotkidach] Г. Россум, Ф.Л.Дж. Дрейк, Д.С. Откидач, Язык программирования Python [pythink] Аллен Дауни Думать на языке Python: Думать как компьютерный специалист

Make: управление сборкой проектов

VCS: системы контроля версий

- 93.1 CVS
- 93.2 Subversion
- 93.3 Git
- 93.3.1 GitHub

Основы Си и C_+^+

94.0.2 Установка MinGW (win32)

94.1 Особенности C_+^+ в embedded

LLVM и разработка собственных компиляторов

- 95.1 Лексический и синтаксический анализ
- 95.2 Применение flex/bison для разбора текстовых форматов данных
- 95.3 Компилятор Паскаля

Сборка кросс-компилятора GNU toolchain

Часть VII

Микроконтроллеры Cortex-Mx

Отладочные платы

97.1 STM32DISCOVERY /Cortex-M3 STM32F103/

97.2 STM32F4DISCOVERY /Cortex-M4 STM32F407/

Часть VIII

Периферия

Часть IX Встраиваемый emLinux

cross

BuildRoot

Особенности OpenWrt

Библиотека SDL

101.1 Реализация microGUI

Приложения для X Window

Глава 103

Программирование сетевых приложений

Глава 104

Сборка кросс-компиляторя GNU мальтийским крестом

Часть X IDE

IDE — Integrated Development Environment, интегрированная среда разработки. Программный пакет, включающий

- средства управления проектом,
- отслеживание зависимостей между файлами (в т.ч. с анализом исходного текста программ на конструкции типа #include, module, uses),
- автозапуском компиляторов для изменившихся файлов,
- GUI для отладчиков (gdb),
- специализированный редактор plain text¹ файлов с
 - цветовой и шрифтовой подстветкой синтаксиса,
 - *автодополнением*: дописываются имена объектов программ, синтаксические конструкции и параметры функций,
 - *автоформатированием*: фрагмент текста переформатируется в соответствии с синтаксисом языка редактируемого файла, проставляются отступы в зависимости от вложенности синтаксических конструкций типа циклов и условных блоков)
 - выделением строк, на которые указывают сообщения об ошибках компиляторов,
 - маркеры точек останова отладчика
- отображение структуры программ, например деревья классов и структур данных

¹ файлы не включающие непечатаемых символов и бинарных данных, которые можно причитать простым выводом на экран командами типа **type**, **cat**, **more**

- контекстные справочники по используемым языкам программирования, автоматический вывод списка параметров при вводе имени функции
- отображение дизассемблерных листингов для компилируемых языков
- отображение браузера как вкладки или МDI окна
- отображение вывода статических анализаторов программ с кликабельными ссылками
- вывод компиляторов и трансляторов с цветовым выделением и переход на ошибочную строку в редакторе при щелчке на ошибке

• ..

В этой книге рассмотрены три бесплатных мультиплатформенных OpenSource IDE, в порядке навороченности, универсальности, и требуемым ресурсам для работы самой среды:

- 1. ⊜ЕСLIPSE 105: самая навороченная и ресурсоемкая IDE, написана на Java, имеет десятки дополнительных модулей на все случаи, умеет работать со всеми распространенными языками программирования, жрет память, и требует современного компьютера минимум с 2+ Гб ОЗУ. Последний релиз ⊜ЕСLIPSE Luna работает заметно быстрее (особенно при запуске).
- 2. Code::Blocks 106: легкая среда для разработки на C/C_+^+ , для других языков модет потребоваться написать свои модули или файлы описания синтаксиса
- 3. (g)Vim 107: самый легкий и *портабельный* универсальный текстовый редактор с расширенными функциями, работает на всех существующих платформах (кроме совсем уж embedded), использует минимум ресурсов, но требует некоторого обучения даже чтобы выйти из vim ☺

Глава 105

105.1 Проверка орфографии

То, что проверка орфографии очень удобная вещь вряд ли нужно объяснять. Есть конечно люди, которые не обращают на неё внимание, но это чаще всего из-за экономии времени и отсутствия удобных средств проверки.

Действительно, удобная автоматическая проверка орфографии есть в офисных пакетах, но мне сложно представить разработчика, который будет переносить комментарии в Word и обратно ©.

Поэтому очень удобно иметь npoверку npaвописания npямо в IDE. И \bigoplus ECLIPSE в этом смысле полностью соответствует ожиданиям.

Долго объяснять что к чему нет смысла. Проверка орфографии встроена в
ВЕСLIPSE и если вы пишите только на английском, то может быть не захотите ничего менять.

Кроме того, есть статья Aaron'a (en) в которой автор рассказывает о подключении дополнительных словарей и плагине eSpell.

Но русских словарей в дистрибутиве нет, а при подключении внешних есть нюансы. Поэтому мы максимально подробно рассмотрим подготовку и добавление русских словарей.

Первый вопрос. В каком виде должны быть словари и где их взять?

Тут всё просто. Формат словаря — обычный текстовый файл, в котором каждое слово начинается с новой строки. И нам вполне подойдут свободно распространяемые словари **aSpell**.

Установка состоит из 4 шагов:

1. качаем aSpell и словари для нужных языков

+R http://aspell.net/win32/

¹ копипаста http://www.simplecoding.org/proverka-orfografii-v-eclipse.html

⊞ + R cmd

```
Binaries Full installer

Precompiled dictionaries English

Precompiled dictionaries Russian
```

2. устанавливаем сначала aSpell, потом отдельно каждый словарь

```
Aspell-0-50-3-3-Setup.exe Setup GNU Aspell Next License Next

Directory C:/GnuWin32/Aspell Next Next

Additional Next Install Next View manual Finish

Aspell-en-0.50-2-3.exe Aspell English Dictionary Next License Next

Directory C:/GnuWin32/Aspell Next Next Install Finish

Aspell-ru-0.50-2-3.exe Aspell Russian Dictionary Next License Next

Directory C:/GnuWin32/Aspell Next Next Install Finish
```

3. делаем дамп словарей, перекодируем из koi8r в utf8 и объединяем

```
1 cd \GnuWin32\Aspell
2 bin\aspell dump master en > en.dict
3 bin\aspell dump master ru > ru.koi8
4 iconv -f koi8-r -t utf-8 < ru.koi8 > ru.dict
5 copy en.dict + ru.dict enru.dict
```

4. настраиваем spell-checker \bigoplus ECLIPSE

□ ECLIPSE Window Preferences Editors Text editors Spelling
User defined dictionary C:/GnuWin32/Aspell/enru.dict

Encoding UTF-8

Apply OK

Глава 106

Code::Blocks

 Γ ЛАВА 107. (G)VIM 156

Глава 107

(g)Vim

107.1 Установка под ⊞Windows

```
⊞ + R cmd http://www.vim.org/ Download PC: MS-DOS and MS-Windows gvim74.exe

Vim 7.4 Setup This will install Да

License I'm Angry

Installation Options ⊠ Create .bat files Next

Installation Folder Install

Completed Close

Do you want to see README Да
```

Теперь можно настроить темную тему и выключение подстветки синтаксиса, по умолчанию после установки используется светлая тема и подстветка выключена:

```
меню 🔊 Правка 🔊 Настройка запуска
```

Переходим в конец файла и включаем режим вставки [Ctrl]+[Down] [Ins] [Enter] Enter]

```
1 syntax on
2 colorscheme pablo
```

Выходим в *режсим команд* и принудительно сохраняем Esc.: w ! Enter Enter

Выходим из (g)Vim

Esc]: q ! Enter

 Γ ЛАВА 107. (G)VIM 158

Если не получилось (под Windows 7):

+ R cmd / Program Files (x86)/Vim/

Копируем файл _vimrc в любой каталог, например в /tmp/, затем ▷▷ Edit with Vim, и повторяем редактирование еще раз.

Затем копируем _vimrc обратно в /Program Files (x86)/Vim/ с заменой.

 $\Gamma \Pi ABA 107. (G)VIM$ 159

Если теперь открыть на редактирование тот же файл, или любой другой текстовый, получим более удобный вид: для файлов известных типов будет работать подсветка синтаксиса.

```
vimrc = (C:\Program Files (x86)\Vim) - GVIM
Файл Правка Инструменты Синтаксис Буферы Окно Справка
🖰 🖫 🖺 🗐 ଓ | X 🗈 ta | 🍇 ዲ ዲ | 🕹 👌 | Υ 🛍 🚥 | ? 🦠
set nocompatible
source $VIMRUNTIME/vimrc example.vim
source $VIMRUNTIME/mswin_vim
behave mswin
set diffexpr=MyDiff()
function MyDiff()
 let opt = '-a --binary '
 if &diffopt =" 'icase' | let opt = opt . '-i ' | endif
 if &diffopt =" 'iwhite' | let opt = opt . '-b ' | endif
 let arg1 = v:fname in
 let arg2 = v:fname_new
 let arq3 = v:fname out
 let eq = ''
 if $VIMRUNTIME =~ ' '
  if &sh =~ '\<cmd'
    let eq = ''''
   else
    let cmd = substitute($VIMRUNTIME, ' ', '" ', '') . '\diff"'
   endif
Kes (x86)\Vim\ vimrc" [только для чтения] 33L, 933С
                                               24,1
                                                       Наверху
```

 $\Gamma \mathcal{A}ABA\ 107.\ (G)VIM$

107.2 Выход из (g)Vim

Esc : ! q Enter

107.2.1 Выход с автосохранением

[Esc] [Shift] + [Z] [Shift] + [Z]

107.3 Переход в режим редактирования

(g)Vim запускается в *командном режиме*, для перехода в режим редактирования используются следующие клавиатурные команды:

- Ins или i: включение *режима вставки* по текущему положению курсора
- Ins Ins или r: включение *режима перезаписи* поверх текста после курсора
- Shift]+ A : включение режима вставки в конец текущей строки

107.4 Переход в режим команд

Esc

 $\Gamma \mathcal{A}ABA \ 107. \ (G)VIM$

107.5 Запись редактируемого файла

Esc : w Enter

Если выводится предупреждение типа "файл защищен от записи" или подобное, может сработать принудительная запись:

Esc : ! w Enter

107.6 Перезагрузка файла

Для перезагрузки возможно изменененного извне файла или отмены всех несохраненных изменений

Esc : e Enter

107.7 Отмена последних изменений (undo)

[Esc] u [u]. . .

Часть XI

Замечания для участников проекта

107.8 Набор репозиториев на GitHub

```
https://github.com/ponyatov/Azbuka основная репа
https://github.com/ponyatov/bib библиографические базы данных
https://github.com/ponyatov/scratcher журнал, используются некоторые материлы
```

Для работы с проектом сделайте собственный форк основной репы, библиографическую базу и журнал можете клонироввать напрямую. Создайте каталог и склонируйте репы:

```
D:
2 cd \
3 mkdir w
4 cd \w\
5 git clone — depth=1 -o gh git@github.com:username/Azbuka.git
6
7 git clone — depth=1 -o gh git@github.com:ponyatov/bib.git
8 git clone — depth=1 -o gh git@github.com:ponyatov/scratcher.git
```

107.9 Верстка в №ТЕХ

Часть XII

Подготовка публикаций в ІАТЕХ

LaTeX (по-русски произносится **латéx**) — наиболее популярный набор макрорасширений (или макропакет) системы компьютерной вёрстки ТЕХ, который облегчает набор сложных документов. В типографском наборе форматируется как БТЕХ.

Главная идея I^ATEX состоит в том, что авторы должны думать о содержании, о том, что они пишут, не беспокоясь о конечном визуальном облике (печатный вариант, текст на экране монитора или что-то другое). Готовя свой документ, автор указывает логическую структуру текста (разбивая его на главы, разделы, таблицы, изображения), а I^ATEX решает вопросы его отображения. Так содержание отделяется от оформления. Оформление при этом или определяется заранее (стандартное), или разрабатывается для конкретного документа.

В практическом смысле использование РТГХ позволяет (в порядке уменьшения важности):

- с помощью макросов и ТеХ-программирования реализовывать любые стили и самую сложную верстку, существует множество готовых пакетов для верстки графических химических формул, разнообразных схем, транскрипционных знаков, внезапно электронных схем, цветных листингов и т.п.
- автоматизировать работу с документами: пересобирать выходные файлы через Make, генерировать части документов с помощью своих скриптов²
- получить выходой документ в .pdf .html .txt .PostScript .djvu ...с кликабельными ссылками, анимированными, а иногда и интерактивными элементами
- не использовать файлы документов в закрытом формате

¹ копипаста https://ru.wikipedia.org/wiki/LaTeX

 $^{^{2}}$ отчеты, стандартные формы, результаты работы любых программ

- легко держать набор файлов в VCS
- не покупать текстовый процессор

Особенно важен пункт про сложную верстку: она всегда нужна в крупных технических публикациях, особенно в учебной литературе, или отчетных работах. Вам обязательно понадобиться вставлять графики экспериментальных данных, тематически специфичные схемы, листинги, выходные данные работы ваших пограмм и т.п.

Традиционно L^AT_EX любим математиками, и всеми кто готовит публикации с большим количеством формул и перекрестных ссылок: после небольшого обучения формулы вводятся с листа со скоростью набора текста, особенно если ваш редактор умеет автодополнение, и никакой мышиной возьни.

Естественно всякие чисто автоматические вещи типа автонумерации ссылок и формул, сборки оглавлений и индексов, цветовая подсветка синтаксиса в листингах программ, размещение плавающих иллюстраций и т.п. выполняются автоматически ТеХ-процессором в пакетном режиме, и на выходе получается красивый печатный или электронный (.pdf) документ.

Единственная область, не удобная в L^AT_EX-верстке — создание сложных таблиц. Для этого были созданы визуальные редакторы, позволяющие отрисовать структуру таблицы мышью, а затем заполнить готовый шаблон данными.

107.10 Установк	а MikTeX под	⊞Windows
-----------------	--------------	----------

- 107.11 Структура документа
- 107.11.1 Заголовочный файл или блок
- 107.11.2 Стили документа
- 107.11.3 Пакеты
- 107.11.4 Автор и название
- 107.11.5 Верстка титульных страниц
- 107.11.6 Оглавление
- 107.12 Верстка слайдов

107.13 Список литературы и цитирование

IATEX умеет мощную подсистему управления цитированием и списками литературы. В простейшем случае, например при написании единственной статьи, раздел библиографии можно создать в том же документе, добавив в конец thebibliography:

\documentclass{article}

```
\input{header}
\author{Bacя Пупкин}
\title{Пример статьи с цитатами}
\begin{document}
\maketitle
В статье используются книги: \cite{A} и \cite{B}
\begin{thebibliography}{99}
\bibitem{A} Книга А
\bibitem{B} Книга В
\end{thebibliography}
\end{document}
```

Но если вы регулярно работаете с документацией, или часто пишете статьи, возникает естественное желание вынести весь список литературы в отдельную базу данных, прописать авторов, названия, издательства и т.п. Это делается с помощью программы biber и пакета biblatex.

Пример использования этой системы вы легко найдете в исходниках этой книги:

• файл header.tex содержит секцию подключения пакета и подгрузки библиофайлов:

```
% books bib management
\usepackage{biblatex}
\addbibresource{../bib/python.bib}
\addbibresource{../bib/eskd.bib}
...
```

- библиофайлы хранятся в **соседнем** репозитории ../bib, склонированном с https://github.com/ponyatov/bib.
- порядок вызова pdflatex и biber см. Makefile

107.14	Команды секционирования: часть, глава, раздел,
107.15	Таблицы
107.16	Формулы
107.17	Перекрестные ссылки и гипессылки
107.18	Листинги скриптов и текстовых данных
107.19	Подготовка иллюстраций
107.19.1	Графики GNUPLOT

107.19.2 Схемы и графы в GraphViz

Часть XIII

Куча

В этот раздел собраны все материалы, не вошедшие в основную часть потому что слишком сложны для начинающих, не попадают не в один раздел по тематике, или не вписались по каким-то другим параметрам.

Все новые материалы также сначала попадают сюда, а потом принимается решение об их переносе в основную часть.

Часто сюда пишут статьи те, кто принимает участие в создании книги эпизодически, или те, у кого нет достаточно времени заниматься их подготовкой.