Correction S1B2 ARITH

Exercice 1: nombres premiers et pgcd

On se donne trois entiers naturels : a = 300, $b = 2^2 \times 3^3 \times 5 \times 11$ et $c = 2 \times 5^2 \times 9 \times 11$.

1. Donner la décomposition de a en produit de facteurs premiers.

$$a = 2^2 \times 3 \times 5^2.$$

2. Soit $d \in \mathbb{N}^*$ un diviseur de b. Quelle est la forme générale de la décomposition de d en facteurs premiers? En déduire, le nombre de diviseurs positifs distincts de b.

En utilisant la décomposition de b, on sait que tout diviseur de b est de la forme $d=2^i\times 3^j\times 5^k\times 11^r$ avec i=0,1 ou $2,\,j=0,1,2$ ou $3\,;\,k=0$ ou 1 et r=0 ou 1.

Ainsi, b a $3 \times 4 \times 2 \times 2$ diviseurs possibles (nombre de possibilités pour i, nombre de possibilités pour j etc). Donc b a 48 diviseurs positifs distincts.

3. Trouver $b \wedge c$. Vous détaillerez votre calcul.

 $c = 2 \times 3^2 \times 5^2 \times 11$. En prenant les plus petites puissances communes à b et c, on a $b \wedge c = 2 \times 3^2 \times 5 \times 11 = 990$.

Exercice 2: congruence

Les questions 1. et 2. sont indépendantes.

- 1. Soit n un entier naturel non nul **premier avec** 4, c'est-à-dire $n \wedge 4 = 1$.
 - (a) Quels sont les valeurs possibles du reste de la division euclidienne de n par 4 ? Justifier.

Par propriété du reste r de la division euclidienne de n par 4, on sait déjà que r = 0, 1, 2 ou 3.

Si r=0, n est un multiple de 4 donc n et 4 ne seraient pas premiers entre eux. Donc $r\neq 0$.

Si r=2, on a n=4q+2 où q est le quotient de la division. Ainsi, n=2(2q+1) et 2|n. 2 est donc un diviseur commun de n et 4. Cela contredit $n \wedge 4=1$. Donc, $r \neq 2$.

Ainsi, r = 1 ou 3.

- (b) En déduire que $n^2 1 \equiv 0[4]$.
 - Si r = 1, on a $n \equiv 1[4]$. D'où, $n^2 1 \equiv 1^2 1[4] \equiv 0[4]$.
 - Si r = 3, $n \equiv 3[4]$ d'où $n^2 \equiv 9[4] \equiv 1[4]$. Ainsi, $n^2 1 \equiv 1 1[4] \equiv 0[4]$.
- 2. Quel est le reste de la division euclidienne de $N=17^9-8^{2023}$ par 7 ? Justifier.
 - $8 \equiv 1[7] \text{ donc } 8^{2023} \equiv 1^{2023}[7] \equiv 1[7].$
 - $17 \equiv 3[7]$ ainsi, $17^9 \equiv 3^9[7]$. Or 7 est premier et $3 \land 7 = 1$, ainsi par le petit théorème de Fermat, $3^6 \equiv 1[7]$. D'où, $3^9 = 3^6 \times 3^3 \equiv 1 \times 27[7] \equiv 6[7]$.
 - En conclusion $N \equiv 6 1$ [7] $\equiv 5$ [7]. Comme $0 \le 5 < 7$, 5 est le reste de la division euclidienne de N par 7.

Exercice 3 : autour de Bézout et Gauss (9 points)

1. Théorème de Bézout. Soit $(a, b) \in \mathbb{Z}^2$.

Les questions (b) et (c) sont indépendantes.

(a) Énoncer rigoureusement les deux versions du théorème de Bézout (d'une part quand $a \wedge b$ est quelconque et, d'autre part quand $a \wedge b = 1$).

- Version $1: \exists (u, v) \in \mathbb{Z}^2$ tel que $au + bv = a \wedge b$.
- Version $2: a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 \text{ tel que } au + bv = 1.$
- (b) L'affirmation « Si a et b sont premiers entre eux alors $\exists (u, v) \in \mathbb{Z}^2$ tel que au + bv = 2 » est-elle vraie ou fausse? Justifier.

Supposons $a \wedge b = 1$. Par la version 2 de Bézout, $\exists (u_0, v_0) \in \mathbb{Z}^2$ tel que $au_0 + bv_0 = 1$. En multipliant la dernière égalité par 2, on a $a(2u_0) + b(2v_0) = 2$. On a bien trouvé un couple $(u, v) = (2u_0, 2v_0) \in \mathbb{Z}^2$ tel que au + bv = 2. L'affirmation est donc vraie.

(c) En utilisant obligatoirement l'algorithme d'Euclide, montrer que 39 et 47 sont premiers entre eux. Trouver alors $(u,v) \in \mathbb{Z}^2$ tel que 39u + 47v = 1

$$47 = 39 \times 1 + 8$$

$$39 = 8 \times 4 + 7$$

$$8 = 7 \times 1 + 1$$

$$7 = 1 \times 7 + 0$$

Ainsi, on a bien $47 \wedge 39 = 1$. De plus

$$1 = 8 - 7 = 8 - (39 - 8 \times 4) = 8 \times 5 - 39 = (47 - 39) \times 5 - 39 = 39 \times (-6) + 47 \times 5$$

Le couple (u, v) = (-6, 5) convient.

- 2. Lemme de Gauss. Soit $(a, b, c) \in \mathbb{Z}^3$
 - (a) Montrer que a | bc et $a \wedge b = 1 \Longrightarrow a \mid c$ (lemme de Gauss)

cf. pdf "Démonstrations à connaitre "

(b) On considère l'équation (E): 5(x-1) = 7y d'inconnues $(x,y) \in \mathbb{Z}^2$. À l'aide de la question précédente, montrer que si (x,y) est solution de (E) alors x = 1 + 7k et y = 5k avec $k \in \mathbb{Z}$.

Supposons que (x, y) est solution de (E). Ainsi, 5(x - 1) = 7y. Comme $x - 1 \in \mathbb{Z}$, on en déduit : $5 \mid 7y$. Comme $5 \land 7 = 1$, on a par le lemme de Gauss que $5 \mid y$ ce qui revient à dire : $\exists k \in \mathbb{Z}$ tel que y = 5k. En reportant dans l'équation, on a $5(x - 1) = 7 \times 5k$, ce qui équivaut à x - 1 = 7k. Donc x = 1 + 7k.

3. Soit $(a,b,c) \in \mathbb{Z}^3$. En utilisant soit le théorème de Bézout, soit le lemme de Gauss, montrer que si $a \mid c$, $b \mid c$ et $a \land b = 1$ alors $ab \mid c$.

Supposons que a|c, b|c et $a \wedge b = 1$.

On a alors : $\exists (k_1, k_2) \in \mathbb{Z}^2$ tel que $c = ak_1$ et $c = bk_2$. De plus, par le théorème de Bézout : $\exists (u, v) \in \mathbb{Z}^2$ tel que au + bv = 1. Ainsi,

$$c(au + bv) = c \iff cau + cbv = c \iff bk_2au + ak_1bv = c \iff ab(uk_2 + k_1v) = c$$

Comme $uk_2 + k_1v \in \mathbb{Z}$, on en déduit que ab|c.

Remarque : via Gauss, cela donne : a|c d'où $\exists k \in \mathbb{Z}$ tel que c = ak. Or b|c d'où b|ak. Comme $a \land b = 1$, on obtient par le lemme de Gauss : b|k c'est-à-dire : $\exists k' \in \mathbb{Z}$ tel que k = bk'. Ainsi, c = ak = abk'. Donc ab|c.