Пример реализации сумматора в системе моделирования

Первое устройство, которое мы будем моделировать - это одноразрядный сумматор. Одноразрядный сумматор (рис. 1) имеет три входа (A – первое слагаемое, B – второе слагаемое, P_i – перенос из младшего разряда) и два выхода (S – сумма разряда, P_{i+1} -перенос в старший разряд).

Рисунок 1 — Смоделированная схема сумматора в системе моделирования Таблица 1 — Все возможные состояния одноразрядного сумматора

A	В	Pi	S	P_{i+1}	Рисунок, соответствующего состояния
0	0	0	0	0	Рисунок 1
1	0	0	1	0	Рисунок 2.а
0	1	0	1	0	Рисунок 2.6
0	0	1	1	0	Рисунок 2.в
1	1	0	0	1	Рисунок 3.а
1	0	1	0	1	Рисунок 3.б
0	1	1	0	1	Рисунок 3.в
1	1	1	1	1	Рисунок 2.г, 3.г

Рисунок 2 — Схема сумматора, когда на выходе S значение равно логической "1"

Рисунок 3 — Схема сумматора, когда на выходе P_{i+1} значение равно логической "1"

Пример реализации шифратора в системе моделирования

Следующее устройство, которую мы будем моделировать, это шифратор. В качестве примера смоделируем схему шифратора 8 на 3 (рис. 4), что означает 8 входных и 3 выходных значения.

Проверим правильность работы шифратора на нескольких значениях. Возьмем в качестве демонстрации кнопки 1, 3, 5, 6 и посмотрим на результаты.

Рисунок 4 — Смоделированная схема шифратора в системе моделирования

Рисунок 5 – Результат шифратора для значения 1 (рис. 5.а) и 3 (рис. 5.б)

Рисунок 6 – Результат шифратора для значения 5 (рис. 6.а) и 6 (рис. 6.б)

Можно составить таблицу для сравнение полученных результатов с ожидаемые:

Таблица 2 – Сравнение полученных результатов с ожидаемыми

Кнопка	Ожидаемый	Полученный	Рисунок, соответствующего	
Кнопка	двоичный код	двоичный код	состояния	
1	001	001	Рисунок 5.а	
3	011	011	Рисунок 5.б	
5	101	101	Рисунок 6.а	
6 110		110	Рисунок 6.б	

Пример реализации дешифратора в системе моделирования

Также для достоверности работы системы моделирования можно смоделировать дешифратор (рис. 7). В качестве примера возьмем дешифратор 3 на 8, что означает 3 входных значение и 8 выходных. На вход поступает двоичный код, на выходе мы получает сигнал в один из 8 портов.

Рисунок 7 — Смоделированная схема дешифратора в системе моделирования Проверим правильность работы шифратора на нескольких значениях.

Возьмем в качестве демонстрации кнопки 010, 100, 101, 110 и посмотрим на результаты.

Рисунок 8 — Результат работы дешифратора для входных значений 010 (a) и $100~(\mathrm{б})$

Рисунок 9 — Результат работы дешифратора для входных значений 101 (а) и $110~(\mathrm{б})$

Таблица 3 – Сравнение полученных результатов с ожидаемыми

Кнопки	Ожидаемый результат	Полученный результат	Рисунок, соответствующего состояния
010	2	2	Рисунок 58.а
100	4	4	Рисунок 58.б
101	5	5	Рисунок 59.а
110	6	6	Рисунок 59.6

Пример реализации D-Триггера в системе моделирования

Последний устройство, который мы смоделируем в нашей системы моделирования будет D-Триггер (рис. 10). D-Триггер имеет два входа, вход D – информационный вход (вход данных) и вход С – вход синхронизации. D-Триггер после переключения выдает сигнал на выходе равное сигналу на входе до переключения.

Рисунок 10 — Смоделированная схема D-Триггера в системе моделирования Таблица 4 — Все возможные состояния D-Триггера

D	С	Q	~Q	Рисунок, соответствующего состояния
0	0	Q_{i-1}	~Q _{i-1}	Рисунок 10
0	1	Q_{i-1}	~Q _{i-1}	Рисунок 11.а
1	0	0	1	Рисунок 11.б
1	1	1	0	Рисунок 11.в

Рисунок 11 – Результат работы D-Триггера