

HW 2 - Binary Search Trees

CS 202 Section # 2

Ghulam Ahmed (22101001)

Question 1

d) Write a recursive pseudocode implementation for finding the minimum element in a binary search tree.

```
function findMin(node)

if node is null

return null

else if node.left is null

return node.item

else

return findMin(node.left)
```

e) What is the maximum and minimum height of a binary search tree that contains n items?

Minimum height: The height of the tree is the minimum, in best case, and it is equal to log 2 (n)

Maximum height: The height of the tree is maximum, in worst case, and it is equal to n

Question 3

• Interpret and compare your empirical results with the theoretical ones. Explain any differences between the empirical and theoretical results, if any.

The time complexity of insertion and deletion into a binary search tree is O(log(n)) in the average case (i.e. Inserting random items). The empirical results prove this in the above chart where the theoretical line closely follows the

empirical result lines. The theoretical line is obtained by taking the logarithm of the number of elements in the tree.

• How would the time complexity of your program change if you inserted sorted numbers into it instead of randomly generated numbers?

Part e - Time Anal	ysis of 1	Binary	Search	Tree -	part	
Tree Size	Time el	apsed				
1500	10.631	 ms				
3000	42.719	ms				
4500	99.766	ms				
6000	174.586	ms				
7500	275.337	ms				
9000	410.266	ms				
10500	556.764	ms				
12000	718.657	ms				
13500	921.932	ms				
15000	1133.34	ms				
Part e - Time Anal			Search	Tree -	part 	2
Part e - Time Anal Tree Size	ysis of 1		Search	Tree -	part 	
		 apsed 	Search	Tree -	part 	2
Tree Size	Time el	 apsed ms	Search	Tree -	part 	
Tree Size	Time el	apsed ms ms	Search	Tree -	part 	
Tree Size 1500 3000	Time el	apsed ms ms ms	Search	Tree -	part 	
Tree Size 1500 3000 4500	Time el 97.152 194.19 274.144	apsed ms ms ms ms	Search	Tree -	part 	
Tree Size 1500 3000 4500 6000	Time el 97.152 194.19 274.144 348.639	apsed ms ms ms ms ms ms	Search	Tree -	part 	
Tree Size 1500 3000 4500 6000 7500	Time el, 97.152 194.19 274.144 348.639 415.436	apsed ms ms ms ms ms ms ms	Search 	Tree -	part 	
Tree Size 1500 3000 4500 6000 7500 9000	Time el. 97.152 194.19 274.144 348.639 415.436 468.923	apsed ms ms ms ms ms ms ms	Search	Tree -	part 	
Tree Size 1500 3000 4500 6000 7500 9000 10500	Time el- 97.152 194.19 274.144 348.639 415.436 468.923 512.076	apsed ms ms ms ms ms ms ms ms ms	Search	Tree -	part	

If we insert sorted numbers into the tree instead of randomly generated numbers, the worst-case time complexity will change from O(log n) to O(n) for both insertion and deletion operations. This is because the tree becomes unbalanced and starts acting like a linked list. The height of the tree will be equal to the number of elements, and the time complexity for insertion and deletion will become linear.