Two-view geometry

16-385 Computer Vision Spring 2018, Lecture 10

http://www.cs.cmu.edu/~16385/

Course announcements

- Homework 2 is due on February 23rd.
 - Any questions about the homework?
 - How many of you have looked at/started/finished homework 2?
- Yannis' office hours on Friday are 1-3:30pm.
- Yannis has extra office hours on Wednesday 3-5pm.
- The Hartley-Zisserman book is available online for free from CMU's library.

Overview of today's lecture

- Triangulation.
- Epipolar geometry.
- Essential matrix.
- Fundamental matrix.
- 8-point algorithm.

Slide credits

Most of these slides were adapted from:

Kris Kitani (16-385, Spring 2017).

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Create two points on the ray:

find the camera center; and

2) apply the pseudo-inverse of **P** on **x**. Then connect the two points.

Given a set of (noisy) matched points

$$\{oldsymbol{x}_i,oldsymbol{x}_i'\}$$

and camera matrices

$$\mathbf{P}, \mathbf{P}'$$

Estimate the 3D point

known

known

Can we compute **X** from a single correspondence **x**?

$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from <u>two</u> correspondences **x** and **x**'?

Can we compute **X** from <u>two</u> correspondences **x** and **x**'?

yes if perfect measurements

$$\mathbf{x} = \mathbf{P} X$$

Can we compute **X** from <u>two</u> correspondences **x** and **x**'?

yes if perfect measurements

There will not be a point that satisfies both constraints because the measurements are usually noisy

$$\mathbf{x}' = \mathbf{P}' \mathbf{X} \quad \mathbf{x} = \mathbf{P} \mathbf{X}$$

Need to find the **best fit**

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} X$$
(homorogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} X$$
(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

$$\mathbf{x} = \mathbf{P} X$$

(homogeneous coordinate)

Also, this is a similarity relation because it involves homogeneous coordinates

$$\mathbf{x} = \alpha \mathbf{P} X$$
(inhomogeneous coordinate)

Same ray direction but differs by a scale factor

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

How do we solve for unknowns in a similarity relation?

Remove scale factor, convert to linear system and solve with SVD!

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$oldsymbol{a} imesoldsymbol{b}=\left[egin{array}{c} a_2b_3-a_3b_2\ a_3b_1-a_1b_3\ a_1b_2-a_2b_1 \end{array}
ight]$$

cross product of two vectors in the same direction is zero

$$\boldsymbol{a} \times \boldsymbol{a} = 0$$

remember this!!!

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\mathbf{c} \cdot \mathbf{b} = 0$$

$\mathbf{x} = \alpha \mathbf{P} \mathbf{X}$

Same direction but differs by a scale factor

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

Cross product of two vectors of same direction is zero (this equality removes the scale factor)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} --- & oldsymbol{p}_1^ op --- \ --- & oldsymbol{p}_2^ op --- \ --- & oldsymbol{p}_3^ op --- \end{array}
ight] \left[egin{array}{c} x \ X \ \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \alpha \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op --- \ --- & oldsymbol{p}_2^ op --- \ --- & oldsymbol{p}_3^ op --- \end{array}
ight] \left[egin{array}{c} X \ X \ \end{array}
ight]$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = lpha \left[egin{array}{c} oldsymbol{p}_1^ op oldsymbol{X} \ oldsymbol{p}_2^ op oldsymbol{X} \ oldsymbol{p}_3^ op oldsymbol{X} \end{array}
ight]$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

Using the fact that the cross product should be zero

$$\mathbf{x} \times \mathbf{P} X = \mathbf{0}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \times \begin{bmatrix} \boldsymbol{p}_1^{\top} \boldsymbol{X} \\ \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \\ x \boldsymbol{p}_2^{\top} \boldsymbol{X} - y \boldsymbol{p}_1^{\top} \boldsymbol{X} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Third line is a linear combination of the first and second lines. (x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations

$$\left[\begin{array}{c} y \boldsymbol{p}_3^{\top} \boldsymbol{X} - \boldsymbol{p}_2^{\top} \boldsymbol{X} \\ \boldsymbol{p}_1^{\top} \boldsymbol{X} - x \boldsymbol{p}_3^{\top} \boldsymbol{X} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

$$\left[egin{array}{c} y oldsymbol{p}_3^{ op} - oldsymbol{p}_2^{ op} \ oldsymbol{p}_1^{ op} - x oldsymbol{p}_3^{ op} \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

$$\mathbf{A}_i \mathbf{X} = \mathbf{0}$$

Now we can make a system of linear equations (two lines for each 2D point correspondence)

Concatenate the 2D points from both images

$$\left[egin{array}{c} yoldsymbol{p}_3^ op - oldsymbol{p}_2^ op \ oldsymbol{p}_1^ op - xoldsymbol{p}_3^ op \ y'oldsymbol{p}_3'^ op - oldsymbol{p}_2'^ op \ oldsymbol{p}_1'^ op - x'oldsymbol{p}_3'^ op \ oldsymbol{p}_3'^ op \end{array}
ight] oldsymbol{X} = \left[egin{array}{c} 0 \ 0 \ 0 \ \end{array}
ight]$$

sanity check! dimensions?

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

Concatenate the 2D points from both images

$$\begin{bmatrix} y\boldsymbol{p}_3^\top - \boldsymbol{p}_2^\top \\ \boldsymbol{p}_1^\top - x\boldsymbol{p}_3^\top \\ y'\boldsymbol{p}_3'^\top - \boldsymbol{p}_2'^\top \\ \boldsymbol{p}_1'^\top - x'\boldsymbol{p}_3'^\top \end{bmatrix} \boldsymbol{X} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{A}X = \mathbf{0}$$

How do we solve homogeneous linear system?

S V D!

Recall: Total least squares

(Warning: change of notation. x is a vector of parameters!)

$$E_{ ext{TLS}} = \sum_i (m{a}_i m{x})^2$$
 $= \|m{A}m{x}\|^2$ (matrix form) $\|m{x}\|^2 = 1$ constraint

minimize
$$\| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$ minimize $\frac{\| \mathbf{A} \boldsymbol{x} \|^2}{\| \boldsymbol{x} \|^2}$ (Rayleigh quotient)

Solution is the eigenvector corresponding to smallest eigenvalue of

$$\mathbf{A}^{ op}\mathbf{A}$$

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Pose Estimation	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D coorespondences
Reconstruction	estimate	estimate	2D to 2D coorespondences

Epipolar geometry

Tie tiny threads on HERB and pin them to your eyeball

What would it look like?

You see points on HERB

You see points on HERB

This is Epipolar Geometry

Epipolar constraint

Potential matches for $\,m{x}\,$ lie on the epipolar line $\,m{l}'$

Epipolar constraint

The point **x** (left image) maps to a ______ in the right image

The baseline connects the _____ and ____

An epipolar line (left image) maps to a _____ in the right image

An epipole **e** is a projection of the _____ on the image plane

All epipolar lines in an image intersect at the _____

Where is the epipole in this image?

Where is the epipole in this image?

It's not always in the image

Parallel cameras

Where is the epipole?

Parallel cameras

Forward moving camera

Forward moving camera

Where is the epipole?

What do the epipolar lines look like?

Epipole has same coordinates in both images. Points move along lines radiating from "Focus of expansion"

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

How would you do it?

Recall: Epipolar constraint

The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image

Right image

Want to avoid search over entire image Epipolar constraint reduces search to a single line

How do you compute the epipolar line?

The essential matrix

Recall: Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Motivation

The Essential Matrix is a 3 x 3 matrix that encodes **epipolar geometry**

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

Epipolar Line

$$ax+by+c=0$$
 in vector form

$$egin{array}{c} egin{array}{c} a \ b \ c \end{array}$$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l} = ?$$

Epipolar Line

$$ax + by + c = 0$$

in vector form

$$egin{array}{c|c} oldsymbol{l} & a \ b \ c \end{array}$$

If the point $oldsymbol{x}$ is on the epipolar line $oldsymbol{l}$ then

$$\boldsymbol{x}^{\top}\boldsymbol{l}=0$$

Recall: Dot Product

$$\mathbf{c} \cdot \mathbf{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

dot product of two orthogonal vectors is zero

So if $oldsymbol{x}^{ op}oldsymbol{l}=0$ and $oldsymbol{\mathbf{E}}oldsymbol{x}=oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = ?$$

So if $oldsymbol{x}^{ op}oldsymbol{l}=0$ and $oldsymbol{\mathbf{E}}oldsymbol{x}=oldsymbol{l}'$ then

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

Essential Matrix vs Homography

What's the difference between the essential matrix and a homography?

They are both 3 x 3 matrices but ...

$$oldsymbol{l}' = \mathbf{E} oldsymbol{x}$$

Essential matrix maps a **point** to a **line**

$$oldsymbol{x}' = \mathbf{H} oldsymbol{x}$$

Homography maps a **point** to a **point**

$$x' = \mathbf{R}(x - t)$$

$$x' = \mathbf{R}(x - t)$$

Does this look familiar?

$$x' = \mathbf{R}(x - t)$$

Camera-camera transform just like world-camera transform

These three vectors are coplanar

 $oldsymbol{x},oldsymbol{t},oldsymbol{x}'$

If these three vectors are coplanar $\,m{x},m{t},m{x}'$ then

$$\boldsymbol{x}^{\mathsf{T}}(\boldsymbol{t} \times \boldsymbol{x}) = ?$$

If these three vectors are coplanar $\,m{x},m{t},m{x}'$ then

$$\boldsymbol{x}^{\top}(\boldsymbol{t} \times \boldsymbol{x}) = 0$$

Recall: Cross Product

Vector (cross) product

takes two vectors and returns a vector perpendicular to both

$$\boldsymbol{c} \cdot \boldsymbol{a} = 0$$

$$\boldsymbol{c} \cdot \boldsymbol{b} = 0$$

If these three vectors are coplanar $\,m{x},m{t},m{x}'$ then

$$(\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = ?$$

If these three vectors are coplanar $\,m{x},m{t},m{x}'$ then

$$(\boldsymbol{x} - \boldsymbol{t})^{\top} (\boldsymbol{t} \times \boldsymbol{x}) = 0$$

rigid motion

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) (oldsymbol{t} imes oldsymbol{x}) &= 0 \end{aligned}$$

Cross product

$$m{a} imes m{b} = \left[egin{array}{c} a_2 b_3 - a_3 b_2 \ a_3 b_1 - a_1 b_3 \ a_1 b_2 - a_2 b_1 \end{array}
ight]$$

Can also be written as a matrix multiplication

$$m{a} imes m{b} = [m{a}]_{ imes} m{b} = \left[egin{array}{ccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight] \left[egin{array}{ccc} b_1 \ b_2 \ b_3 \end{array}
ight]$$

Skew symmetric

rigid motion

$$\mathbf{x}' = \mathbf{R}(\mathbf{x} - \mathbf{t}) \qquad (\mathbf{x} - \mathbf{t})^{\top}(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^{\top}\mathbf{R})(\mathbf{t} \times \mathbf{x}) = 0$$

$$(\mathbf{x}'^{\top}\mathbf{R})([\mathbf{t}_{\times}]\mathbf{x}) = 0$$

rigid motion

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x})^{ op} (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) ([\mathbf{t}_{ imes}] oldsymbol{x}) = 0 \ & oldsymbol{x}'^{ op} (\mathbf{R}[\mathbf{t}_{ imes}]) oldsymbol{x} = 0 \end{aligned}$$

rigid motion

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x})^{ op} (oldsymbol{t} imes oldsymbol{x}) (oldsymbol{t} imes oldsymbol{x}) (oldsymbol{t} imes oldsymbol{x}) (oldsymbol{t} imes oldsymbol{x}) = 0 \ oldsymbol{x}'^{ op} (oldsymbol{R}[oldsymbol{t}_{ imes}]) oldsymbol{x} = 0 \end{aligned}$$

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

rigid motion

coplanarity

$$egin{aligned} oldsymbol{x}' &= \mathbf{R}(oldsymbol{x} - oldsymbol{t}) & (oldsymbol{x} - oldsymbol{t})^{ op} (oldsymbol{t} imes oldsymbol{x})^{ op} (oldsymbol{t} imes oldsymbol{x}) &= 0 \ & (oldsymbol{x}'^{ op} \mathbf{R}) ([oldsymbol{t}_{ imes}] oldsymbol{x}) = 0 \ & oldsymbol{x}'^{ op} (oldsymbol{R}[oldsymbol{t}_{ imes}]) oldsymbol{x} = 0 \end{aligned}$$

 $\boldsymbol{x}'^{\top} \mathbf{E} \boldsymbol{x} = 0$

Essential Matrix[Longuet-Higgins 1981]

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

$$l' = \mathbf{E} x$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$\boldsymbol{l} = \mathbf{E}^T \boldsymbol{x}'$$

(points in normalized coordinates)

properties of the E matrix

Longuet-Higgins equation

$$\boldsymbol{x}'^{\top}\mathbf{E}\boldsymbol{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

$$l' = \mathbf{E} x$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$\boldsymbol{l} = \mathbf{E}^T \boldsymbol{x}'$$

Epipoles

$$e'^{ op}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

(points in normalized <u>camera</u> coordinates)

Recall: Epipolar constraint

Given a point in one image, multiplying by the **essential matrix** will tell us the **epipolar line** in the second view.

points aligned to camera coordinate axis (calibrated camera)

How do you generalize to uncalibrated cameras?

The fundamental matrix

The

Fundamental matrix

is a

generalization

of the

Essential matrix,

where the assumption of

calibrated cameras

is removed

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}}' = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

$$\hat{\boldsymbol{x}}'^{\top}\mathbf{E}\hat{\boldsymbol{x}} = 0$$

The Essential matrix operates on image points expressed in **normalized coordinates**

(points have been aligned (normalized) to camera coordinates)

$$\hat{m{x}}' = \mathbf{K}^{-1} m{x}'$$
 $\hat{m{x}} = \mathbf{K}^{-1} m{x}$

Writing out the epipolar constraint in terms of image coordinates

$$\mathbf{x}'^{\mathsf{T}}\mathbf{K}'^{-\mathsf{T}}\mathbf{E}\mathbf{K}^{-1}\mathbf{x} = 0$$
 $\mathbf{x}'^{\mathsf{T}}(\mathbf{K}'^{-\mathsf{T}}\mathbf{E}\mathbf{K}^{-1})\mathbf{x} = 0$
 $\mathbf{x}'^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$

Same equation works in image coordinates!

$$\boldsymbol{x}'^{\top}\mathbf{F}\boldsymbol{x} = 0$$

it maps pixels to epipolar lines

properties of the Fmatrix

Longuet-Higgins equation

$$\mathbf{x}'^{\top} \mathbf{E} \mathbf{x} = 0$$

Epipolar lines

$$\boldsymbol{x}^{\top}\boldsymbol{l} = 0$$

$$oldsymbol{l}' = oldsymbol{\mathbb{E}} oldsymbol{x}$$

$$\boldsymbol{x}'^{\top} \boldsymbol{l}' = 0$$

$$oldsymbol{l} = \mathbb{E}^T oldsymbol{x}'$$

Epipoles

$$e'^{\top}\mathbf{E} = \mathbf{0}$$

$$\mathbf{E}e=\mathbf{0}$$

(points in **image** coordinates)

Breaking down the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$$
 $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

Breaking down the fundamental matrix

$$\mathbf{F} = \mathbf{K}'^{-\top} \mathbf{E} \mathbf{K}^{-1}$$
 $\mathbf{F} = \mathbf{K}'^{-\top} [\mathbf{t}_{\times}] \mathbf{R} \mathbf{K}^{-1}$

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

The 8-point algorithm

Assume you have *M* matched *image* points

$$\{\boldsymbol{x}_{m},\boldsymbol{x}_{m}'\} \qquad m=1,\ldots,M$$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 F matrix?

Assume you have *M* matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x'_m}\}$$
 $m = 1, \ldots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 F matrix?

S V D

Assume you have *M* matched *image* points

$$\{\boldsymbol{x_m}, \boldsymbol{x'_m}\}$$
 $m = 1, \ldots, M$

Each correspondence should satisfy

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

How would you solve for the 3 x 3 F matrix?

Set up a homogeneous linear system with 9 unknowns

$$\boldsymbol{x}_m'^{\top} \mathbf{F} \boldsymbol{x}_m = 0$$

How many equation do you get from one correspondence?

ONE correspondence gives you ONE equation

$$x_m x'_m f_1 + x_m y'_m f_2 + x_m f_3 + y_m x'_m f_4 + y_m y'_m f_5 + y_m f_6 + x'_m f_7 + y'_m f_8 + f_9 = 0$$

$$\left[\begin{array}{ccccc} x'_m & y'_m & 1 \end{array}\right] \left[\begin{array}{ccccc} f_1 & f_2 & f_3 \\ f_4 & f_5 & f_6 \\ f_7 & f_8 & f_9 \end{array}\right] \left[\begin{array}{ccccc} x_m \\ y_m \\ 1 \end{array}\right] = 0$$

Set up a homogeneous linear system with 9 unknowns

Set up a nonlogeneous linear system with 9 unknowns
$$\begin{bmatrix} x_1x_1' & x_1y_1' & x_1 & y_1x_1' & y_1y_1' & y_1 & x_1' & y_1' & 1 \\ \vdots & \vdots \\ x_Mx_M' & x_My_M' & x_M & y_Mx_M' & y_My_M' & y_M & x_M' & y_M' & 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \\ f_8 \\ f_9 \end{bmatrix} = \mathbf{0}$$

How many equations do you need?

Each point pair (according to epipolar constraint) contributes only one <u>scalar</u> equation

$$\boldsymbol{x}_m^{\prime \top} \mathbf{F} \boldsymbol{x}_m = 0$$

Note: This is different from the Homography estimation where each point pair contributes 2 equations.

We need at least 8 points

Hence, the 8 point algorithm!

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

minimize $\|\mathbf{A}\boldsymbol{x}\|^2$

subject to $\|\boldsymbol{x}\|^2 = 1$

How do you solve a homogeneous linear system?

$$\mathbf{A}\mathbf{X} = \mathbf{0}$$

Total Least Squares

minimize $\|\mathbf{A}\boldsymbol{x}\|^2$

subject to $\|\boldsymbol{x}\|^2 = 1$

SVD!

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

See Hartley-Zisserman for why we do this

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

How do we do this?

SVD!

Enforcing rank constraints

Problem: Given a matrix **F**, find the matrix **F'** of rank k that is closest to **F**,

$$\min_{F'} ||F - F'||^2$$

$$\operatorname{rank}(F') = k$$

Solution: Compute the singular value decomposition of **F**,

$$F = U\Sigma V^T$$

Form a matrix Σ ' by replacing all but the k largest singular values in Σ with 0.

Then the problem solution is the matrix **F'** formed as,

$$F' = U\Sigma'V^T$$

- 0. (Normalize points)
- 1. Construct the M x 9 matrix A
- 2. Find the SVD of A
- 3. Entries of **F** are the elements of column of **V** corresponding to the least singular value
- 4. (Enforce rank 2 constraint on F)
- 5. (Un-normalize F)

Example

epipolar lines

$$\mathbf{F} = \begin{bmatrix} -0.00310695 & -0.0025646 & 2.96584 \\ -0.028094 & -0.00771621 & 56.3813 \\ 13.1905 & -29.2007 & -9999.79 \end{bmatrix}$$

$$x = \begin{bmatrix} 343.53 \\ 221.70 \\ 1.0 \end{bmatrix}$$

$$m{l}' = m{F} m{x}$$
 $= egin{bmatrix} 0.0295 \\ 0.9996 \\ -265.1531 \end{bmatrix}$

$$l' = Fx$$

$$=
 \begin{bmatrix}
 0.0295 \\
 0.9996 \\
 -265.1531
 \end{bmatrix}$$

Where is the epipole?

How would you compute it?

$$\mathbf{F}e=\mathbf{0}$$

The epipole is in the right null space of **F**

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

$$\mathbf{F}e = \mathbf{0}$$

The epipole is in the right null space of **F**

How would you solve for the epipole?

(hint: this is a homogeneous linear system)

SVD!

eigenvalue

eigenvalue

$$\gg$$
 [u,d] = eigs(F' * F)

eigenvectors

0.2586

eigenvalue

Eigenvector associated with smallest eigenvalue

>>
$$uu = u(:,3)$$

(-0.9660 -0.2586 $-0.0005)$

$$\gg$$
 [u,d] = eigs(F' * F)

eigenvectors

$$0.0013$$
 0.2586 0.0029 -0.9660

eigenvalue

$$d = 1.0e8*$$

$$-0.2586$$

$$-0.9660$$
 -0.2586 $-0.0005)$

References

Basic reading:

- Szeliski textbook, Sections 7.1, 7.2, 11.1.
- Hartley and Zisserman, Chapters 9, 11, 12.