8051 Microcontroller: Organization

Virendra Singh

Associate Professor

Computer Architecture and Dependable Systems Lab

Department of Electrical Engineering

Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

FE-309: Microprocessors

8051 Basic Component

- 4K bytes internal ROM
- 128 bytes internal RAM
- Four 8-bit I/O ports (P0 P3).
- Two 16-bit timers/counters
- One serial interface

CPU	RAM	ROM	
I/O Port	Timer	Serial COM Port	

A single chipMicrocontroller

Block Diagram

Other 8051 features

- only 1 On chip oscillator (external crystal)
- 6 interrupt sources (2 external, 3 internal, Reset)
- 64K external code (program) memory(only read)PSEN
- 64K external data memory(can be read and write) by RD,WR
- Code memory is selectable by EA (internal or external)
- We may have External memory as data and code

Embedded System

(8051 Application)

- An embedded system is closely integrated with the main system
- It may not interact directly with the environment
- For example A microcomputer in a car ignition control

ENVIRONMENT

- ❖ An embedded product uses a microprocessor or microcontroller to do one task only
- There is only one application software that is typically burned into ROM

Criteria for Choosing a Microcontroller

- meeting the computing needs of the task efficiently and cost effectively
 - speed, the amount of ROM and RAM, the number of I/O ports and timers, size, packaging, power consumption
 - easy to upgrade
 - cost per unit
- availability of software development tools
 - assemblers, debuggers, C compilers, emulator, simulator, technical support
- wide availability and reliable sources of the microcontrollers

Comparison of the 8051 Family Members

- ROM type
 - 8031 no ROM
 - 80xx mask ROM
 - 87xx EPROM
 - 89xx Flash EEPROM
- 89xx
 - 8951
 - 8952
 - 8953
 - 8955
 - 898252
 - 891051
 - 892051
- Example (AT89C51,AT89LV51,AT89S51)
 - AT= ATMEL(Manufacture)
 - C = CMOS technology
 - LV= Low Power(3.0v)

Comparison of the 8051 Family Members

89XX	ROM	RAM	Timer	Int Source	IO pin	Other
8951	4k	128	2	6	32	-
8952	8k	256	3	8	32	-
8953	12k	256	3	9	32	WD
8955	20k	256	3	8	32	WD
898252	8k	256	3	9	32	ISP
891051	1k	64	1	3	16	AC
892051	2k	128	2	6	16	AC

WD: Watch Dog Timer

AC: Analog Comparator

ISP: In System Programable

8051 Internal Block Diagram

Intel 8085 CPU Block Diagram

10

8051 Schematic Pin out

CADSL

Important Pins (IO Ports)

- One of the most useful features of the 8051 is that it contains four I/O ports (P0 - P3)
- Port 0 (pins 32-39) : P0 (P0.0~P0.7)
 - 8-bit R/W General Purpose I/O
 - Or acts as a multiplexed low byte address and data bus for external memory design
- Port 1 (pins 1-8) : P1 (P1.0~P1.7)
 - Only 8-bit R/W General Purpose I/O
- Port 2 (pins 21-28) : P2 (P2.0~P2.7)
 - 8-bit R/W General Purpose I/O
 - Or high byte of the address bus for external memory design
- Port 3 (pins 10-17) : P3 (P3.0~P3.7)
 - General Purpose I/O
 - if not using any of the internal peripherals (timers) or external interrupts.
- Each port can be used as input or output (bi-direction)

Port 3 Alternate Functions

Port Pin	Alternate Function
P3.0	RXD (serial input port)
P3.1	TXD (serial output port)
P3.2	INT0 (external interrupt 0)
P3.3	INT1 (external interrupt 1)
P3.4	T0 (Timer 0 external input)
P3.5	T1 (Timer 1 external input)
P3.6	WR (external data memory write strobe)
P3.7	RD (external data memory read strobe)

Pins of 8051

- RST(pin 9) : reset
 - input pin and active high (normally low)
 - The high pulse must be high at least 2 machine cycles.
 - power-on reset
 - Upon applying a high pulse to RST, the microcontroller will reset and all values in registers will be lost.
 - Reset values of some 8051 registers
 - power-on reset circuit

Power-On RESET

RESET Value of Some 8051 Registers

Register	Reset Value
PC	0000
ACC	0000
В	0000
PSW	0000
SP	0007
DPTR	0000

RAM are all zero

Pins of 8051

- /EA (pin 31): external access
 - There is no on-chip ROM in 8031 and 8032.
 - The /EA pin is connected to GND to indicate the code is stored externally.
 - /PSEN & ALE are used for external ROM.
 - For 8051, /EA pin is connected to Vcc.
 - "/" means active low.
- /PSEN (pin 29) : program store enable
 - This is an output pin and is connected to the OE pin of the ROM.

Address Multiplexing for External Memory

Accessing external code memory

CADSL 20

Overlapping External Code and Data Spaces

- ☐ Allows the RAM to be
 - written as data memory, and
 - read as data memory as well as **code memory**.
- ☐ This allows a program to be
 - downloaded from outside into the RAM as data, and
 - executed from RAM as code.

Figure 2. MCS®-51 Memory Structure

On-Chip Memory Internal RAM

23

Registers

24

Register Banks

- Active bank selected by PSW [RS1,RS0] bit
- Permits fast "context switching" in interrupt service routines (ISR).

Bit Addressable Memory

20h – 2Fh (16 locations X 8-bits = 128 bits)

mov C, 23h.2

Bit addressing: mov C, 1Ah or

Special Function Registers

- DATA registers
- ☐ CONTROL registers
 - Timers
 - Serial ports
 - Interrupt system
 - **Etc.**

Addresses 80h – FFh

Direct Addressing used to access SPRs

27

On-chip RAM

RAM

Byte address			F	3it a	ıddr	ess			
27	3F	3E	3D	3C	3В	3A	39	38	7
26	37	36	35	34	33	32	31	30	
25	2F	2E	2D	2C	2B	2A	29	28	
24	27	26	25	24	23	22	21	20	
23	1F	1E	1D	1C	1B	1A	19	18	
22	17	16	15	14	13	12	11	10	
21	0F	0E	0D	0C	0B	0A	09	08	
20	07	06	05	04	03	02	01	00	
lF				Bar	ν 3				
18				Dai	IK 3				
17				Bar	ık 2				
10	Bank 2								
0F				Bar	ık I				
08									
07	Default register								
00		t	oank	cfor	R0	⊢R7			

Bit-addressable locations

Ryte

	address			E	Bit a	ddr	ess		
	7F								
				(Gene	eral			
		purpose							
					RA	M			
	30								
S	2F	7F	7E	7D	7C	7В	7A	79	78
tion	2E	77	76	75	74	73	72	71	70
000	2D	6F	6E	6D	6C	6B	6A	69	68
ple	2C	0	66	65	64	63	62	61	60
SSa	2B	5F	5E	5D	5C	5B	5A	59	58
ddre	2A	57	56	55	54	53	52	51	50
Bit-addressable locations	29	4F	4E	4D	4C	4B	4A	49	48
В	28	47	46	45	44	43	42	41	40
	_								

28

Special Function Registers

Byte			Byte		
address	Bit address		address	Bit address	
98	9F 9E 9D 9C 9B 9A 99 98	SCON	FF	,	
			F0	F7 F6 F5 F4 F3 F2 F1 F0	В
90	97 96 95 94 93 92 91 90	P1			
			EO	E7 E6 E5 E4 E3 E2 E1 E0	ACC
8D	not bit addressable	THI			
8C	not bit addressable	TH0	D0	D7 D6 D5 D4 D3 D2 - D0	PSW
8B	not bit addressable	TL1			
8A	not bit addressable	TL0	B8	BCBBBAB9B8	IP
89	not bit addressable	TMOD			
88	8F 8E 8D 8C 8B 8A 89 88	TCON	B0	B7 B6 B5 B4 B3 B2 B1 B0	P3
87	not bit addressable	PCON			
			A8	AF ACABAAA9A8	ΙE
83	not bit addressable	DPH			
82	not bit addressable	DPL	A0	A7 A6 A5 A4 A3 A2 A1 A0	P2
81	not bit addressable	SP			
80	87 86 85 84 83 82 81 80	P0	99	not bit addressable	SBUF

SPF: Prog. Status Word

PSW: PROGRAM STATUS WORD. BIT ADDRESSABLE.

CY	AC	F0	RS1	RS0	ov	_	Р			
CY	PSW.7	Carry Fla	ıg.							
AC	PSW.6	Auxiliary	Carry Flag	ζ.						
F0	PSW.5	Flag 0 av	ailable to th	ne user for g	eneral pur	oose.				
RS1	PSW.4	Register :	Register Bank selector bit 1 (SEE NOTE 1).							
RS0	PSW.3	Register :	Bank selecte	or bit 0 (SEI	NOTE 1).				
ov	PSW.2	Overflow	Flag.							
_	PSW.1	User defi	nable flag.							
P	PSW.0		g. Set/clear the accum	ed by hardw ulator.	are each in	struction o	cycle to			

NOTE:

1. The value presented by RS0 and RS1 selects the corresponding register bank.

RS1	RS0	Register Bank	Address
0	0	0	00H-07H
0	1	1	08H-0FH
1	0	2	10H-17H
1	1	3	18H-1FH

8051 CPU Registers

- → A (Accumulator)
- \Box B
- □PSW (Program Status Word)
- □SP (Stack Pointer)
- PC (Program Counter)

31

□ DPTR (Data Pointer)

Used in assembler instructions

Thank You

