P-ClearPath

Multi-robot collision avoidance on a GPU

Why do we care?

Why do we care?

Constraints?

- Must be:
- Fast!
- Reliable!
- Safe!
- Actually get to goals!

P-ClearPath

http://gamma.cs.unc.edu/CA/

https://www.youtube.com/watch?
feature=player_detailpage&v=Hc6kng5A8IQ#t=145

- Developed at UNC
- Mostly satisfies our constraints (sometimes not guaranteed to be safe, but it tries very very very hard to be!)
- Parallelizeable at different layers, GPU!

How it works: select 1 robot of interest

Credit of these images: http://gamma.cs.unc.edu/CA/

Find velocities that might cause collisions with others

Repeat for all robots near the robot of interest

Compute bounding edges and use nearest intersection point as the velocity

A bit more complicated to avoid problem cases

Credit of these images: http://gamma.cs.unc.edu/CA/

Repeat for all the robots!

Parallelization possibilities:

- The repetition for all robots (we "freeze" at each time step, so no velocity updates affect each other)
- The computation of the boundary edges? (Do not think the paper does this, but uncertain, possibility for experimentation)

Not that simple though...

- Compute all edges
- Compute all intersections
- Compute edge segments that are outside of the "danger zone"
- Lots of ambiguities in the paper :(

What I've done

- Setup a test framework using the N-body simulation
- Solved for the FVO constraints
- Still need to actually compute resulting velocity (some ambiguities in equations)
- Reached out to author for clarification

Milestones

- 1. Complete basic implementation
 - a. Only parallelize per robot FVO computation
 - b. CPU implementation
 - c. Some simple debug views
- 2. Implement uniform grid optimization
 - a. Used to compute nearest neighbors (that might result in collisions, ignore far away bots)
- 3. Significant performance comparisons
 - a. CPU, GPU, spatial data structures, parallelization of different portions