Circuit Analysis Techniques

Lecture 12 Phasor Relationship for R, L and C Elements

Lecture delivered by:

Topics

- Phasor Relationship for R, L and C Elements
- Resistor Phasor
- Inductor Phasor
- Capacitor Phasor
- Phasor voltage-current relations
- Angular Frequency (ω)

Objectives

At the end of this lecture, student will be able to:

- Analyze phasor Relationship for R, L, and C Elements
- Define phasor voltage-current relations
- Define angular Frequency (ω)

Phasor Relationship for R, L and C Elements Resistor phasor

Time domain

$$v = Ri$$

Frequency domain

$$\mathbf{V} = R\mathbf{I}$$
 or $\mathbf{I} = \frac{\mathbf{V}}{R}$

Inductor Phasor

Time domain

Frequency domain

$$v = L \frac{di}{dt}$$

$$\mathbf{V} = j\omega L\mathbf{I} \quad or \quad \mathbf{I} = \frac{\mathbf{V}}{j\omega L}$$

Voltage *leads* current by 90°

Capacitor Phasor

Time domain

Frequency domain

$$i = C \frac{dv}{dt}$$
 $\mathbf{I} = j\omega C \mathbf{V}$ or $\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$

Voltage *lags* current by 90°

Phasor Voltage-Current Relations of Resistor

Phasor Voltage-current Relations Of Inductor

Phasor voltage-current relations of capacitor

Circuit Element Phasor Relations

Element	V/I Relation	Phasor Relation	Phase
			T1 1 T
Capacitor	I = C dV/dt	$I = j \omega C V$	I leads V
		$= \omega \text{CV} \angle 90^{\circ}$	by 90°
Inductor	V = L dI/dt	$\mathbf{V} = \mathbf{j} \omega \mathbf{L} \mathbf{I}$	V leads I
		$= \omega LI \angle 90^{\circ}$	by 90°
Resistor	V = I R	V = R I	In-phase
		$= R I \angle 0^{\circ}$	

Series RLC Resonance

- Series RLC circuit there becomes a frequency point were the inductive reactance of the inductor becomes equal in value to the capacitive reactance of the capacitor
- In other words, $X_L = X_C$ The point at which this occurs is called the **Resonant Frequency** point, (f_r) of the circuit

Series RLC Resonance

Resonant Frequency

$$F_r = \frac{1}{2\pi\sqrt{LC}}$$
 Hz

• Lower cut-off Frequency $F_1 = F_r - \frac{R}{4\pi L}$

$$F_1 = F_r - \frac{R}{4\pi L} \qquad \text{Hz}$$

• Upper cut-off Frequency
$$F_2 = F_r + \frac{R}{4\pi L}$$
 Hz

Band-width

$$BW = F_2 - F_1$$
 Hz

Quality Factor

$$Q = \frac{F_r}{F_2 - F_1}$$

13

Parallel RLC Resonance

- In many ways a parallel resonance circuit is exactly the same as the series resonance circuit
- Both are 3-element networks that contain two reactive components making them a second-order circuit
- Both are influenced by variations in the supply frequency and have a frequency point where their two reactive components cancel each other

Parallel RLC Resonance

 Parallel resonance circuit is influenced by the currents flowing through each parallel branch within the parallel LC tank circuit

Parallel RLC Resonance

Resonant Frequency

$$F_r = \frac{1}{2\pi\sqrt{LC}}$$

• Lower cut-off Frequency $F_1 = F_r - \frac{1}{2\pi[(\frac{-1}{2RC}) + \sqrt{(\frac{1}{2RC})^2} + (\frac{1}{LC})]}$ Hz

• Upper cut-off Frequency $F_2 = F_r + \frac{1}{2\pi[(\frac{1}{2RC}) + \sqrt{(\frac{1}{2RC})^2 + (\frac{1}{LC})}]}$ Hz

• Band-width

$$BW = F_2 - F_1$$
 Hz

Quality Factor

$$Q = \frac{F_r}{F_2 - F_1}$$

Hz

Angular Frequency(ω)

 Angular Frequency is the number of orbits an object makes around another object is a certain time

 This formula represents angular frequency for an oscillation with period equal T, in this case we deal with one revolution which is equal to 2 Pi radians

Summary

- Phasor Relationship for R, L and C Elements is been discussed
- Phasor voltage-current relations
 - ✓ Voltage and current are in phase for resistive circuit
 - ✓ Voltage leads current by 90° for inductive circuit
 - √ Voltage lags current by 90° for capacitive circuit
- Angular Frequency is the number of orbits an object makes around another object is a certain time

