

RVPC

User Manual

Document v1.3 Nov 2024

www.olimex.com

Table of Contents

What is RVPC?	3
Order codes for RVPC and accessories:	
HARDWARE	5
RVPC layout:	5
RVPC schematic:	
RPVC assembly cheat sheet:	7
Necessary tools:	8
General tips for soldering:	
SOFTWARE:	
Install – packages	
Install – Visual Studio Code	
Install – Platform IO	9
Install – CH32V-Platform	9
Prepare the CH32V003 programmer	10
Create project:	
RVPC monitor demo RVMON (default)	
Towers of Hanoi demo	
Towers of Hanoi Interactive demo	
TETRIS demo	
Revision History	

What is RVPC?

RVPC is an attempt to produce a very low-cost EURO 1.00 educational computer with RISC-V processor which has everything one complete computer has: keyboard input, VGA display output, and audio output.

The idea of RVPC was born from this TuxCon 2024 talk https://youtu.be/YlYE9a7zsqY.

The goal set was:

- 1. Easy to solder DIY kit;
- 2. Complete all in one RISC-V computer with bare minimum Woz like monitor which will allow you to learn the RISC-V instructions by poking, peeking and disassembling the memory
- 3. Price of EUR 1.00!

Here is the result:

CH32V003 in SO8 package – for easy soldering was chosen. It has just 6 GPIOs:

- PS2 takes two GPIOs
- VGA takes three GPIOs Vsync, Hsync and RGB
- Audio buzzer is connected to the last GPIO

All done using beginner-friendly PTH components!

Order codes for RVPC and accessories:

<u>RVPC</u> Do It Yourself soldering kit

<u>SY0605E</u> 5V power supply adapter

PS2-KEYBOARD PS2 keyboard

ESP32-S2-DevKitLiPo-USB ESP32-S2 development board which can be used as CH32V003

programmer

<u>USB-CABLE-A-MICRO-1.8M</u> USB cable for the programmer

HARDWARE

RVPC layout:

RVPC schematic:

RPVC assembly cheat sheet:

Soldering Order	Quantity	Reference	Value	Description
1	1	U1	CH32V003J4M6(SOP8)	Microcontroller point to silk point
2	1	R7	100R/1/8W	BROWN-BLACK-BROWN-GOLD
3	3	R2, R3, R4	470R/1/8W	YELLOW-PURPLE-BROWN
4	4	R1, R5, R6, R8	2k/1/8W	RED-BLACK-RED-GOLD
5	1	D1	1N4148/DO35	The black line mark to K(square pad)
6	1	C1	100nF/25V/2010	104
7	1	T1	2N3904	N-P-N transistor
8	1	PWR_LED1	LED/PTH/5MM/RED	Longest pin to A(round pad)
9	1	SPK1	QMB-09B-03(1.5-5.0V_2.7kHz)	Speaker
10	1	PGM/DBG1	HN1x2	2 pin header
11	1	PS2_KBD1	MDR6_MINI-DIN	PS2 connector
12	1	VGA1	HDR15-3.08-14.5T/VGA15	VGA connector
13	1	PWR_JACK1	PWRJ-2mm(YDJ-1134)	Power Jack

After assembly remember to close jumper GRN1 (solder together the pads of GRN1) to enable the green LED.

Necessary tools:

Wire Cutters: we recommend <u>PGC-TR25</u> these are sharp and light

Tweezers: we recommend <u>PGC-00SA</u>

Soldering iron: <u>CHN-SLD802</u> is budged solution, <u>SLD-FAST-75W</u> is professional solution

Soldering wire: we recommend <u>Solder-Wire-SAC0307-0-8</u>

General tips for soldering:

1. Switch on the soldering iron, setup the working temperature to 350 C. Wait until the soldering iron reaches the temperature – there is a LED indicator which will pulse when the temperature is reached;

- 2. Before soldering, clean the soldering tip with wet sponge from the black residues;
- 3. Never touch the heated soldering tip or body with bare hands;
- 4. Be careful to not touch surrounding objects with the soldering iron heated body or tip (cables, table, cloths, etc);
- 5. Do not leave the soldering iron unattended;
- 6. Place the electronic component on its place, watch out if there is polarity or orientation;
- 7. Touch the component pad with the soldering tip which you want to solder and wait 3-4 seconds to heat up;
- 8. Feed a little from the soldering wire between the soldering tip and the pad until the component lead is flooded with tin and it's shinny and glossy;
- 9. If the soldering is not shinny but dull please re-solder with colophon.

SOFTWARE:

Below is our setup under Linux:

Install - packages

\$ apt-get install build-essential libnewlib-dev gcc-riscv64-unknown-elf libusb-1.0-0-dev libudev-dev gdb-multiarch

Install - Visual Studio Code

Described here: https://code.visualstudio.com/docs/setup/linux

Install - Platform IO

Described here: https://platformio.org/install/ide?install=vscode

Install – CH32V-Platform

https://github.com/Community-PIO-CH32V/ch32-pio-projects? tab=readme-ov-file#installing-the-ch32v-platform

by default the platformio generates only .elf file, to build firmware.bin and firmware.elf select

> PlatformIO > PROJECT TASKS > Default > Advanced > Verbose build

Sample Beeper project is in RVPC repository.

Prepare the CH32V003 programmer

ESP32-S2-DevKitLiPo-USB can be used as programmer.

The repo with all files required to prepare the ESP32-S2 board as programmer is <u>here</u> – after you have the resources the algorithm to prepare the programmer is:

1. Press and hold the Boot button and connect the USB cable, the yellow LED will stay ON check with

\$ ls /dev/ttyA*

which is the ttyACM it's usually 0 or 1

execute this command:

\$ python3 ./rvpc/esptool/esptool.py -p /dev/ttyACM0 -b 460800 --before=no_reset --after=no_reset write_flash --flash_mode dio --flash_freq 80m --flash_size 4MB 0x1000 ./rvpc/esp32s2/bootloader.bin 0x10000 ./rvpc/esp32s2/usb_sandbox.bin 0x8000 ./rvpc/esp32s2/partition-table.bin

check if the programmer is already OK with

\$ dmesg

you have to see this message:

hid-generic 0003:303A:4004.0015: input,hidraw5: USB HID v1.11 Gamepad [CNLohr ESP32-S2 CH32V003Programmer] on usb-0000:00:14.0-2/input0

which means the ESP32-S2-DevKitLipo-USB now acts as a programmer and can be used with the demo project above from PlatformIO, but first you have to enable it with:

\$ sudo cp ./rvpc/tools/ch32v003fun/minichlink/99-minichlink.rules /etc/udev/rules.d/

\$ sudo udevadm control --reload-rules && sudo udevadm trigger

Now you can use GPIO6 and GND to connect to RVPC programming connector PGM-GND

Now CH32V003 flashing will work directly from PlatformIO.

If you want to use command line this is the command:

./rvpc/tools/ch32v003fun/minichlink/minichlink -w ./firmware.bin 0x08000000

Notice that if you wish to use the command line programming you'd need to build the minichlink, install these libraries:

sudo apt-get install libudev-dev libusb-1.0-0-dev

then naigate to:

\rvpc\tools\ch32v003fun\minichlink and type make

Create project:

If you create a new project to enable the ESP32-S2 programmer you should edit platformio.ini and add this line

upload_protocol = minichlink

This is not needed for demo projects, since it's already added to the demo projects at our GitHub.

RVPC monitor demo RVMON (default)

The chip of RVPC comes programmed with this RVPC monitor demo. All demos can be found here:

https://github.com/OLIMEX/RVPC/tree/main/SOFTWARE

This is WOZ-like monitor which allow you to display memory, write to memory and execute code. The list of all commands are displayed with "?"

Towers of Hanoi demo

This is original game created by Curtis Whitley who wrote the VGA display code for RVPC.

Towers of Hanoi Interactive demo

This is modified version which uses the keyboard so user can tell which disk to which tower go.

TETRIS demo

This is the very popular game made for RVPC.

Revision History

Revision 1.0 June 2024

Revision 1.1 September 2024

Revision 1.2 October 2024 add assembly instructions

Revision 1.3 November 2024 improved instructions