Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Stanford ONLINE

DeepLearning.AI

Classification

Motivations

Classification

Question

Is this email spam?

Is the transaction fraudulent?

Is the tumor malignant?

Answer "y"

no yes

no yes

y can only be one of two values

"binary classification"

"negative class"

"bad"

absence

false

true

useful for classification

"positive class"

"good"

presence

DeepLearning.AI

Classification

Logistic Regression

Want outputs between 0 and 1

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

Want outputs between 0 and 1

sigmoid function

logistic function

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
 $0 < g(z) < 1$

"logistic regression"

Interpretation of logistic regression output

$$f_{\overrightarrow{\mathbf{w}},b}(\overset{\mathbf{x}}{)} = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}}\cdot\overrightarrow{\mathbf{x}}+b)}}$$

"probability" that class is 1

Example:

x is "tumor size" y is 0 (not malignant) or 1 (malignant)

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = 0.7$$

70% chance that y is 1

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = P(y = 1 | \overrightarrow{\mathbf{x}}; \overrightarrow{\mathbf{w}},b)$$

Probability that y is 1, given input \vec{x} , parameters \vec{w} , b

$$P(y = 0) + P(y = 1) = 1$$

DeepLearning.AI

Classification

Decision Boundary

$$f_{\overrightarrow{\mathbf{w}},b} (\overrightarrow{\mathbf{X}})$$

$$s = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$y$$

$$\mathbf{z}$$

$$y$$

$$\mathbf{g}(s) = \frac{1}{1 + e^{-s}}$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(\overrightarrow{w} \bullet \overrightarrow{x} + \overline{b}) \frac{1}{1 + e^{-(\overrightarrow{w} \bullet \overrightarrow{x} + b)}}$$

$$= P(y = 1 | x; \overrightarrow{w},b) \quad 0.7 \quad 0.3$$

$$O \text{ or } 1? \quad \text{threshold}$$

$$\text{Is } f_{\overrightarrow{w},b}(\overrightarrow{x}) \geq 0.5?$$

$$\text{Yes: } \hat{y} = 1 \qquad \text{No: } \hat{y} = 0$$

$$\text{When is }$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) \geq 0.5$$

$$s \geq 0 \qquad < 0$$

$$\overrightarrow{w} \bullet \overrightarrow{x} + b \geq 0 \qquad \overrightarrow{w} \bullet \overrightarrow{x} + b < 0$$

 $\hat{v} = 1$

 $\hat{v} = 0$

Decision boundary

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$

Non-linear decision boundaries

Non-linear decision boundaries

$$f_{\vec{w},b}(\vec{x}) = g(s) = g(r_1x_1 + r_2x_2 + r_3x_1^2 + r_4x_1x_2 + r_5x_2^2 + r_6x_1^3 + \dots + b)$$

Stanford ONLINE

DeepLearning.AI

Cost Function

Cost Function for Logistic Regression

Training set

	tumor size (cm)	 patient's age	malignant?	i=1,,m training examples
	X <u>1</u>	Χn	У	j=1,,n features
i=1	10	52	1	target y is 0 or 1
:	2	73	0	target y 15 0 01 1
•	5	55	0	$f_{\overrightarrow{x}} \cdot (\overrightarrow{y}) = \frac{1}{1}$
	12	49	1	$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$
i=m				

How to choose $\vec{w} = [w_1 \ w_2 \ \cdots \ w_n]$ and b?

Squared error cost

$$J(\overrightarrow{\mathbf{w}}, b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}) - y^{(i)})^{2}$$

$$L(f_{\overrightarrow{\mathbf{w}}, b}(\overrightarrow{\mathbf{x}}^{(i)}), y^{(i)})$$

average of training set

linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

Logistic loss function

Logistic loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}),y^{(i)}) = \begin{cases} -\log\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})\right) & \text{if } y^{(i)} = 1\\ -\log\left(1-f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})\right) & \text{if } y^{(i)} = 0 \end{cases}$$

$$As \ f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \rightarrow 0 \text{ then } loss \rightarrow 0 \text{ l.}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}),y^{(i)}) \\ \text{if } y^{(i)} = 0 \\ \text{not malignate} \end{cases}$$

$$The further prediction f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \text{ is from target } y^{(i)}, \text{ the higher the loss.}$$

Cost

$$J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m} L(f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)})$$

$$= \begin{cases} \bullet & -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1 \\ -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases} \text{ global minimum}$$

$$find w, b \text{ that minimize cost } J$$

Stanford ONLINE

DeepLearning.Al

Cost Function

Simplified Cost Function for Logistic Regression

Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

$$\text{if } y^{(i)} = 0:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

Simplified cost function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$

Stanford ONLINE

DeepLearning.AI

Gradient Descent

Gradient Descent Implementation

Training logistic regression

Find $\vec{\mathbf{w}}$, b

Given new
$$\vec{x}$$
, output $f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}\cdot\vec{x}+b)}}$
$$P(y=1|\vec{x};\vec{w},b)$$

Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} (\overrightarrow{w},b) = \frac{1}{m} \underbrace{ \begin{bmatrix} w \\ \overrightarrow{w},b(\overrightarrow{x}^{(i)}) - y^{(i)} \end{bmatrix} x_j^{(i)}}_{\overrightarrow{w},b}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \underbrace{ \begin{bmatrix} w \\ \overrightarrow{w},b(\overrightarrow{x}^{(i)}) - y^{(i)} \end{bmatrix} x_j^{(i)}}_{(f_{w,bi=1})}$$
} simultaneous updates

Gradient descent for logistic regression

} simultaneous updates

Linear regression
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Logistic regression
$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{(-\vec{w} \cdot \vec{x} + b)}}$$

- (learning curve)
- Vectorized implementation
- Feature scaling

Stanford ONLINE

DeepLearning.AI

Regularization to Reduce Overfitting

The Problem of Overfitting

Regression example

 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

Classification

DeepLearning.AI

Regularization to Reduce Overfitting

Addressing Overfitting

Collect more training examples

Select features to include/exclude

size	bedrooms X2	floors X ₃	age	avg income		distance to coffee shop	price Y	_
	all feature insufficient over fit				size edroum age ust ri featur		uset coul	dvantage ful features d be lost

Regularization

Reduce the size of parameters w_j

$$f(x) = 13x - 0.23x^{2} + 0.000014x^{3} - 0.00011x^{4} + 10$$
Small values for Wij

Addressing overfitting

Options

- 1. Collect more data
- 2. Select features
 - Feature selection in course 2
- 3. Reduce size of parameters
 - "Regularization" next videos!

Stanford ONLINE

DeepLearning.AI

Regularization to Reduce Overfitting

Cost Function with Regularization

Intuition

make w_3 , w_4 really small (≈ 0)

$$\min_{\overrightarrow{w},b} \frac{1}{2n_{t}} \stackrel{m}{\text{?}} \left(\overrightarrow{w}_{,b} (\overrightarrow{x}^{(i)}) - y^{(i)} \right)^{2} + 1000 \stackrel{3}{\text{0.002}} + 1000 \stackrel{3}{\text{0.002}}$$

Regularization

small values w_1, w_2, \dots, w_n, b

simpler model $W_3 \stackrel{>}{\sim} O$ less likely to overfit $W_4 \stackrel{>}{\sim} O$

size X ₁	bedrooms X ₂	floors X ₃	age ४ _५	avg income ^X 5		distance to coffee shop	price Y
	W1.W1.W	o <i>W</i> 10	n featur	es	v = 100		

Regularization

regularization mean squarederror

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left[\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{n} w_i^2 \right]$$
fit data

**Keep w; small*

halances both goals

choose
$$\lambda = 10^{10}$$
 $f_{\overrightarrow{w},b}(\overrightarrow{x}) = \underbrace{w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b}_{\approx 0}$
 $f(x) = b$

term

Stanford ONLINE

DeepLearning.AI

Regularization to Reduce Overfitting

Regularized Linear Regression

Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left[\frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right]$$

Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$
don't have to regularize b

Implementing gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
} simultaneous update $j = land$

Implementing gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$
} simultaneous update $j = loon$

$$w_{j} = 1 w_{j} - \alpha \frac{\lambda}{m} w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{w,b}(\overrightarrow{X}^{(i)}) - y^{(i)} \right) \chi_{j}^{(i)}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

$$w_{j} \left(1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

How we get the derivative term (optional)

$$\frac{\partial}{\partial w_{j}}J(\vec{w},b) = \frac{\partial}{\partial w_{j}} \left(\frac{1}{2m} \sum_{i=1}^{m} \left(f(\vec{x}^{(i)}) - y^{(i)}\right)^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} w_{j}^{2}\right)$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) \chi_{j}^{(i)} + \frac{\lambda}{2m} \chi_{j}^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) \chi_{j}^{(i)} + \frac{\lambda}{m} w_{j}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}\right) \chi_{j}^{(i)}\right] + \frac{\lambda}{m} w_{j}$$

Stanford ONLINE

DeepLearning.AI

Regularization to Reduce Overfitting

Regularized Logistic Regression

Regularized logistic regression

$$z = w_1 x_1 + w_2 x_2
+ w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2
+ w_5 x_1^2 x_2^3 + \dots + b$$

$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-z}}$$

Cost function

$$J(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m} \left[\sum_{i=1}^{m} \left[y^{(i)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) + (1 - y^{(i)}) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=1}^{m} \left[y^{(j)} \log \left(\overrightarrow{\mathbf{x}}^{(i)} \right) \right] + \sum_{j=$$

Regularized logistic regression

$$J(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m} \left[y \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[y^2 \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[y^2 \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[y^2 \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[y^2 \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[y^2 \log \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2m} \left[g_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right] + \frac{\lambda}{2m} \left[g_{\overrightarrow{\mathbf{w},b}}(\overrightarrow{\mathbf{x}}^{(i)}) \right] + \frac{\lambda}{2m} \left[g_{\overrightarrow{\mathbf{w},b}}(\overrightarrow{\mathbf{x}}^{(i)}) \right] + \frac{\lambda}{2m} \left[g_{\overrightarrow{\mathbf{w},b}}(\overrightarrow{\mathbf{x}}^{(i)}) \right] + \frac{\lambda}{2m} \left[$$

