Лекция 8: Рекурентни уравнения

Минко Марков

minkom@fmi.uni-sofia.bg

Факултет по Математика и Информатика Софийски Университет "Свети Климент Охридски"

14 ноември 2023 г.

Примерна задача (1)

На колко района най-много можем да разделим равнината с n прави?

n = 1 2 района

n = 24 района

n = 3 7 района

Броят на районите се максимизира т.с.т.к. всеки две прави се пресичат в точно една точка и никои три прави не се пресичат в една точка.

Примерна задача (2)

Нека търсеното количество е L(n) за всяко $n\geqslant 0$. Видяхме, че $L(0)=1,\ L(1)=2,\ L(2)=4$ и L(3)=7.

 T ърсим $\mathsf{L}(n)$ за произволно n. Ще изразим $\mathsf{L}(n)$ чрез $\mathsf{L}(n-1)$.

Примерна задача (3)

За всяко $n\geqslant 1$ разглеждаме n-1 прави $\ell_1,\ldots,\,\ell_{n-1},$ максимизиращи броя на районите, и слагаме още една права ℓ_n . Новата права ℓ_n пресича всяка от $\ell_1,\ldots,\,\ell_{n-1}$ в точно една точка; това са n-1 точки общо. Броят на районите нараства с едно повече от броя на точките; това значи (n-1)+1=n района в повече.

L(n) е с n повече от L(n-1). Тогава

$$L(n) = L(n-1) + n$$

Примерна задача (4) правите $\ell_1, \ell_2, ..., \ell_{n-1}$.

Примерна задача (5) Правите $\ell_1, \ell_2, ..., \ell_{n-1}$ плюс ℓ_n .

 ℓ_n минава през (n-1)+1=n стари района, "срязвайки" всеки на две. Това дава n района в повече.

Примерна задача (6)

Можем ли да използваме L(n) = L(n-1) + n за пресмятане.

Да пресметнем L(5) чрез L(n) = L(n-1) + n:

$$L(5) = L(4) + 5$$

$$= L(3) + 4 + 5$$

$$= L(2) + 3 + 4 + 5$$

$$= L(1) + 2 + 3 + 4 + 5$$

$$= L(0) + 1 + 2 + 3 + 4 + 5$$

$$= L(0) + 1 + 2 + 3 + 4 + 5$$

$$= L(-1) + 0 + 1 + 2 + 3 + 4 + 5$$
ПРОБЛЕМ! $L(-1)$??

Примерна задача (7) Рекурентно уравнение.

Изчислителното правило L(n)=L(n-1)+n е непълно. Трябва да са добави, за поне една стойност на аргумента, второ правило, което дава решение за точно тази стойност.

Примерно, L(1)=2. Или L(0)=1 (това е по-добре – защо?). Съвкупността от двете правила е рекурентно уравнение. В примера:

$$L(n) = egin{cases} L(n-1) + n, & ext{ako } n \in \mathbb{N}^+ \ 1, & ext{ako } n = 0 \end{cases}$$

L(0)=1 е *начално условие*. В някои рекурентни уравнения има повече от едно начални условия.

Рекурентно уравнение и неговата функция (1)

Рекурентно уравнение от този вид задава някаква функция от естествените в естествените числа. Функция с домейн естествените числа е *числена редица*. В този пример, редицата е:

Тази редица, или функция, е семантиката на уравнението.

Рекурентно уравнение и неговата функция (2)

Да не се бърка уравнението, което е обект от синтактичното ниво, с редицата (функцията), която обект е от семантичното ниво! Всяко рекурентно уравнение има точно една съответна редица, която е неговата семантика, но всяка такава редица има безброй синтактично различни рекурентни уравнения, на които е семантика. Числената редица от примера е редицата и на това уравнение:

$$M(n)=egin{cases} M(n-2)+2n-1, & ext{ ако } n\in\mathbb{N}ackslash\{0,1\} \ 2, & ext{ ако } n=1, \ 1, & ext{ ако } n=0 \end{cases}$$

Двете уравнения са синтактично различни, но семантично равни (еквивалентни).

Решение на рекурентно уравнение (1)

Да решим рекурентно уравнение е да намерим формула за дясната страна, която дава същата числова редица. Пример

$$L(n)=L(n-1)+n$$
 // нека n е достатъчно голямо $L(n)=L(n-2)+(n-1)+n$ $L(n)=L(n-3)+(n-2)+(n-1)+n$ \dots $L(n)=L(0)+1+2+\dots+(n-2)+(n-1)+n$ $L(n)=1+1+2+\dots+(n-2)+(n-1)+n$ $L(n)=1+\frac{n(n+1)}{2}$ (1)

Какво е "формула"? Очевидно $\boxed{L(n-1)+n}$ не е.

Решение на рекурентно уравнение (2)

Такова решение се нарича *решение чрез развиване* (unfolding). То не е формално, защото редът $\boxed{\cdots}$ е "скок на въображението". Можем да го докажем по индукция.

Доказателство, че $\forall n \in \mathbb{N} : L(n) = 1 + \frac{n(n+1)}{2}$. Базата е за n=0. От една страна, $1 + \frac{n(n+1)}{2} = 1$, от друга страна, знаем, че L(0) = 1. \checkmark

Допускаме, че твърдението е вярно за стойност на аргумента n, и разглеждаме твърдението за стойност на аргумента n+1. Дясната страна е

$$1 + \frac{(n+1)(n+2)}{2} = 1 + \frac{n^2 + 3n + 2}{2} = 1 + \frac{(n^2 + n) + (2n+2)}{2} = 1 + \frac{n(n+1)}{2} + (n+1)$$

Но от индуктивното предположение знаем, че $1 + \frac{n(n+1)}{2} = L(n)$, така че последното е равно на L(n) + (n+1).

Решение на рекурентно уравнение (3) Предимствата на решението

Предимствата на $\left[1+\frac{n(n+1)}{2}\right]$ пред $\left[L(n-1)+n\right]$ като дясна страна са поне две:

- ullet Формулата $1 + rac{n(n+1)}{2}$ е **много** по-бърз алгоритъм.
- От нея веднага се вижда, че решението е квадратична функция (а не линейна, или експоненциална).

Друг пример: Ханойските кули (1)

От статията в уикипедия:

Друг пример: Ханойските кули (2)

Какъв е необходимият и достатъчен брой ходове H(n) за преместване на n диска? Очевидно H(1)=1. За n>1, H(n)=H(n-1)+1+H(n-1). Аргументацията е, че в даден момент трябва да преместим най-големия диск от началния върху крайния прът с точно един ход и това дава +1; за целта първо останалите n-1 диска трябва да бъдат сложени върху помощния прът (ползвайки крайния като помощен), а след преместването на най-големия диск, останалите трябва да се преместят от помощния върху крайния, ползвайки началния като помощен. Накратко,

$$H(n) = egin{cases} 2H(n-1)+1, & ext{ ako } n \geqslant 2, \ 1, & ext{ ako } n=1 \end{cases}$$

Решение на H(n) = 2H(n-1) + 1, H(1) = 1

 $H(1)=1,\ H(2)=3,\ H(3)=7,\ H(4)=15$ и така нататък. Изглежда, че

$$H(n) = 2^n - 1 \tag{2}$$

Може да го докажем по индукция, но може и така (полуформално, ad hoc). Да мислим за числата вдясно в двоична позиционна бройна система: $H(1)=1,\ H(2)=11,\ H(3)=111,\ H(4)=1111$ и така нататък. Следващата стойност вдясно ще е 1111, умножено по две, което в двоична система е 11110, плюс едно, което става 11111. На всяка итерация изместваме наляво с една позиция и вмъкваме единица вдясно. Получаваме редица от числа, записани само с единици. Това са точно числата от вида $2^m-1,\ m\in\mathbb{N}$.

Алгоритъм за решаване на рек. у-ния от определен вид Общ вид на уравнението

Дадено е рекурентно уравнение

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
 (3)

където c_1, \ldots, c_k са (целочислени) константи, като $c_k \neq 0$, и k е константа. Това е линейно рекурентно уравнение от k-ти ред c константни коефициенти и крайна история.

Началните условия са $a_1=q_1,\ldots,\,a_k=q_k$, където q_i са цели числа. Или $a_0=q_0,\ldots,\,a_{k-1}=q_{k-1}.$ Същественото е да са k на брой.

Алгоритъм за решаване на рек. у-ния от определен вид Не всички рекурентни уравнения са от вида (3).

Уравнението

$$T_n = \begin{cases} nT_{n-1}, & \text{ako } n \geqslant 1, \\ 1, & \text{ako } n = 0 \end{cases}$$

не е с константни коефициенти.

Уравнението

$$S_n = egin{cases} S_{n-1} + S_{n-2} + \cdots + S_1 + S_0, & ext{ ako } n \geqslant 1, \ 1, & ext{ ako } n = 0 \end{cases}$$

не е с крайна история.

Такива уравнения не може да бъдат решени с алгоритъма, който ще разгледаме.

Алгоритъм за решаване на рек. у-ния от определен вид Конструираме характеристичното уравнение

Първата стъпка от решаването на (3) е да конструираме характеристичното уравнение. Заместваме a_n с x^n , a_{n-1} с x^{n-1} и така нататък и получаваме

$$x^{n} = c_{1}x^{n-1} + c_{2}x^{n-2} + \dots + c_{k-1}x^{n-k+1} + c_{k}x^{n-k}$$
 (4)

Делим на x^{n-k} и получаваме

$$x^{k} = c_{1}x^{k-1} + c_{2}x^{k-2} + \dots + c_{k-1}x + c_{k}$$
 (5)

Алтернативен запис е

$$x^{k} - c_{1}x^{k-1} - c_{2}x^{k-2} - \dots - c_{k-1}x - c_{k} = 0$$
 (6)

Това е характеристичното уравнение.

Алгоритъм за решаване на рек. у-ния от определен вид Решаване на характеристичното уравнение

Съгласно *основната теорема на алгебрата*, характеристичното уравнение има k на брой, не непременно различни, комплексни корени.

Нека $\{\alpha_1, \alpha_2, \dots, \alpha_k\}_M$ е мултимножеството от корените.

Алгоритъм за решаване на рек. у-ния от определен вид Конструиране на решение при кратности единица

Теорията казва, че ако корените са два по два различни, общото решение е

$$a_n = A_1 \alpha_1^n + A_2 \alpha_2^n + \dots + A_k \alpha_k^n \tag{7}$$

където A_1, \ldots, A_k са неизвестни константи. Ако началните условия не са дадени, не можем да намерим тези константи и най-доброто решение е именно (7).

Ако обаче началните условия, k на брой, са дадени, можем да намерим A_1, \ldots, A_k , замествайки n със стойностите на аргумента в началните условия. Ще получим система от k линейни (алгебрични) уравнения с k неизвестни (а именно, k, k, k. Решавайки системата, ще намерим k, k, а оттам и точното решение на рекурентното уравнение.

Алгоритъм за решаване на рек. у-ния от определен вид Конструиране на решение в общия случай

Нека различните корени са β_1, \ldots, β_t , където $t \leqslant k$. Нека β_i има кратност r_i , за $1 \leqslant i \leqslant t$. Очевидно, $r_1 + \cdots + r_t = k$. Общото решение тогава е

$$a_{n} = A_{1,1}\beta_{1}^{n} + A_{1,2}n\beta_{1}^{n} + \dots + A_{1,r_{1}}n^{r_{1}-1}\beta_{1}^{n} + A_{2,1}\beta_{2}^{n} + A_{2,2}n\beta_{2}^{n} + \dots + A_{2,r_{2}}n^{r_{2}-1}\beta_{2}^{n} + \dots + A_{t,1}\beta_{t}^{n} + A_{t,2}n\beta_{t}^{n} + \dots + A_{t,r_{t}}n^{r_{t}-1}\beta_{t}^{n}$$
(8)

Двойно индексираните константи $A_{i,j}$ са точно k на брой и може да бъдат намерени от началните условия по начина, който вече разгледахме.

Алгоритъм за решаване на рек. у-ния от определен вид Пример (1)

Нека

$$a_n = 12a_{n-1} - 51a_{n-2} + 92a_{n-3} - 60a_{n-4}$$

с начални условия $a_1 = 1$, $a_2 = 2$, $a_3 = 4$, $a_4 = 6$.

Характеристичното уравнение е

$$x^4 - 12x^3 + 51x^2 - 92x + 60 = 0 \iff (x - 2)^2(x - 3)(x - 5) = 0$$

Мултимножеството от корените му е $\{2, 2, 3, 5\}_M$.

Общото решение е

$$a_n = A2^n + Bn2^n + C3^n + D5^n (9)$$

за някакви константи A, B, C и D.

Алгоритъм за решаване на рек. у-ния от определен вид Пример (2)

Константите определяме от началните условия. Замествайки в (9) n с 1, 2, 3 и 4, получаваме

$$a_1 = A2^1 + B \cdot 1 \cdot 2^1 + C3^1 + D5^1$$

$$a_2 = A2^2 + B \cdot 2 \cdot 2^2 + C3^2 + D5^2$$

$$a_3 = A2^3 + B \cdot 3 \cdot 2^3 + C3^3 + D5^3$$

$$a_4 = A2^4 + B \cdot 4 \cdot 2^4 + C3^4 + D5^4$$

Алгоритъм за решаване на рек. у-ния от определен вид Пример (3)

Знаем, че
$$a_1=1$$
, $a_2=2$, $a_3=4$, $a_4=6$, така че
$$1=2A+2B+3C+5D$$

$$2=4A+8B+9C+25D$$

$$4=8A+24B+27C+125D$$
 $6=16A+64B+81C+625D$

Решението е $A=\frac{2}{9}$, $B=-\frac{1}{6}$, $C=\frac{1}{3}$, $D=-\frac{1}{45}$. Заместваме в (9) и получаваме

$$a_n = \frac{2^{n+1}}{9} - \frac{n2^n}{6} + 3^{n-1} - \frac{5^n}{45}$$

Алгоритъм за решаване на рек. у-ния от определен вид Друг пример: числата на Fibonacci (1)

Числата на Fibonacci се дефинират с рекурентното уравнение

$$F_n=egin{cases} F_{n-1}+F_{n-2}, & ext{ako } n\geqslant 2, \ 1, & ext{ako } n=1, \ 0, & ext{ako } n=0 \end{cases}$$

Да решим рекурентното уравнение. Характеристичното уравнение е $x^2-x-1=0$ с корени $\frac{1\pm\sqrt{5}}{2}$. Общото решение е $F_n=A\left(\frac{1+\sqrt{5}}{2}\right)^n+B\left(\frac{1-\sqrt{5}}{2}\right)^n$. A и B намираме от началните условия

$$0 = A \left(\frac{1+\sqrt{5}}{2}\right)^{0} + B \left(\frac{1-\sqrt{5}}{2}\right)^{0} = A + B$$

$$1 = A \left(\frac{1+\sqrt{5}}{2}\right)^{1} + B \left(\frac{1-\sqrt{5}}{2}\right)^{1} = A \left(\frac{1+\sqrt{5}}{2}\right) + B \left(\frac{1-\sqrt{5}}{2}\right)$$

Алгоритъм за решаване на рек. у-ния от определен вид Друг пример: числата на Fibonacci (2)

Намираме
$$A=rac{1}{\sqrt{5}}$$
, $B=-rac{1}{\sqrt{5}}$. Тогава

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Решаване на нехомогенни рекурентни уравнения (1)

Дадено е рекурентно уравнение

$$a_n = \underbrace{c_1 a_{n-1} + \dots + c_k a_{n-k}}_{\text{хомогенна част}} + \underbrace{\rho_1(n) \cdot b_1^n + \dots + \rho_\ell(n) \cdot b_\ell^n}_{\text{нехомогенна част}} \tag{10}$$

където k и ℓ са константи, c_1 , ..., c_k са константи, b_1 , ..., b_ℓ са две по две различни константи, а $p_1(n)$, ..., $p_\ell(n)$ са полиноми на n.

Съставя се характеристично уравнение само от хомогенната част—за момент забравяме за нехомогенната част—и се намира мултимножеството X от корените, точно както преди.

Решаване на нехомогенни рекурентни уравнения (2)

Нека Y мултимножеството от числата b_1, \ldots, b_ℓ , всяко от които има кратност колкото е степента на съответния полином плюс едно. Обединяваме мултимножествата X и Y и съставяме общото решение спрямо това обединение по същия начин, както преди. Неизвестните константи се намират чрез началните условия. Има една особеност: дадените начални условия са k, докато обединението на X и Y има кардиналност $k+\ell$, така че неизвестните константи са $k+\ell$ на брой. За да ги намерим си правим още ℓ начални условия от (10).

Обединението на мултимножества е мултимножеството, в което кратността на всеки елемент е сумата от кратностите му в дадените мултимножества.

Решаване на нехомогенни рекурентни уравнения (3) Първи пример (1)

Ще решим

$$L(n) = egin{cases} L(n-1) + n, & ext{ako } n \in \mathbb{N}^+ \ 1, & ext{ako } n = 0 \end{cases}$$

чрез метода с характеристичното уравнение. Първо да се убедим, че фо́рмата на рекурентното уравнение е подходяща. Преписваме го така

$$L(n) = \underbrace{L(n-1)}_{\text{хомогенна част}} + \underbrace{n^1 \cdot 1^n}_{\text{нехомогенна част}}$$

Характеристичното уравнение е x-1=0 с мултимножество от корените $X=\{1\}_M.$

Решаване на нехомогенни рекурентни уравнения (4) Първи пример (2)

От нехомогенната част образуваме мултимножеството $Y=\{1,1\}_M$. То съдържа единици, защото основата на експонентата е единица, а броят им е две, защото степента на полинома е едно. Обединението на X и Y е $\{1,1,1\}_M$. Общото решение е $L(n)=A1^n+Bn1^n+Cn^21^n=A+Bn+Cn^2$.

За да намерим A, B и C не е достатъчно даденото начално условие L(0)=1. Правим още две начални условия: L(1)=2 и L(2)=4 и съставяме системата

$$1 = A + B \cdot 0 + C \cdot 0^{2} = A$$
$$2 = A + B \cdot 1 + C \cdot 1^{2} = A + B + C$$
$$4 = A + B \cdot 2 + C \cdot 4$$

Решаване на нехомогенни рекурентни уравнения (5) Първи пример (3)

Намираме A=1, $B=C=rac{1}{2}$, откъдето

$$L(n)=1+\frac{n+n^2}{2}$$

То е практически същото като (1).

Решаваме

$$H(n) = egin{cases} 2H(n-1) + n^0 \cdot 1^n, & ext{ ako } n \geqslant 2, \ 1, & ext{ ako } n = 1 \end{cases}$$

Характеристичното уравнение е x-2=0 с мултимножество от корените $\{2\}_M$. От нехомогенната част генерираме мултимножеството $\{1\}_M$: степенната основа е единица, а степента на полинома е нулева. Обединението им е $\{1,2\}_M$, откъдето общото решение е $H(n)=A1^n+B2^n=A+B2^n$. $H(1)=1,\ H(2)=3$ и оттук $1=A+2B,\ 3=A+4B,$ откъдето $A=-1,\ B=1$ и $H(n)=2^n-1,$ точно като (2).

Решаване на нехомогенни рекурентни уравнения (7)

Намерете сумата $1^4 + 2^4 + \cdots + n^4$.

Нека
$$S(n)=1^4+2^4+\cdots+(n-1)^4+n^4.$$
 Тогава $S(n-1)=1^4+2^4+\cdots+(n-1)^4$ и

$$S(n) - S(n-1) = n^4 \leftrightarrow S(n) = S(n-1) + n^4$$

с начално условие S(1) = 1.

Вече знаем как се решава такова рекурентно уравнение. Има и още един начин за решаване: с Maple(tm). Кодът е

$$rsolve({S(1) = 1, S(n) = S(n-1)+n^4}, {S});$$

Решението на Maple(tm) е $S(n) = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$.

"Подводни камъни"

Уравнения като $T(n)=2T(n-1)+\lceil \sqrt{n} \rceil$ или $S(n)=S(n-1)+\frac{1}{n}$ не може да бъдат решени чрез показания алгоритъм, понеже нехомогенната част няма фо́рмата, която се иска в (10).

Уравнението $A(n)=2A(n-1)+2^{2n+3}n$ може да бъде решено с показания алгоритъм, но първо нехомогенната част трябва да бъде приведена в правилна форма: $A(n)=2A(n-1)+(8n)\cdot 4^n$. Основата на експонентата в нехомогенната част е 4, а не 2. Степента на полинома е 1, с или без множителя 8.

Аналогично, $B(n)=2B(n-1)+2^{\frac{n}{2}}$ трябва да бъде преписано като $B(n)=2B(n-1)+(n^0)\cdot\sqrt{2}^n$, за да е ясно, че основата на експонентата е $\sqrt{2}$, а не 2, а степента на полинома е 0.

КРАЙ