Deep Learning

Giri Iyengar

Cornell University

gi43@cornell.edu

Feb 12, 2018

Overview

Deep Learning

Deep Learning vs ML

3 / 24

Logistic Regression is just a simple Neuron Computational Unit

Training the Neuron

Multi Layer Perceptron

Multi Layer Perceptron

Why was this not done before?

- Too many model parameters
- Difficult to train
- Slow to train
- Prone to overfitting
- Beyond one hidden-layer, wasn't practical to fit
- Other algorithms such as SVMs had superior performance to MLP

What changed?

- Data set sizes grew exponentially
- New techniques for training were invented
 - Stochastic Gradient Descent
 - 4 HogWild
 - Stochastic L-BFGS
 - Fast hyper-parameter search techniques
- Computational Capacity grew making training times manageable
- New algorithms together with techniques for managing model complexity (regularization) demonstrated superior performance – shot past all other models in terms of performance
- Finally delivering on universal function approximator promise

What Technologies make it work?

- Stochastic Gradient Descent
 - With SGD, training times of Deep Learning networks were dramatically reduced
 - Other techniques such as unsupervised initialization dramatically improved generalization ability of these networks to novel tasks
- Automatic Differentiation
 - Advances in algorithmic differentiation (not numerical differentiation or symbolic differentiation) greatly simplified writing gradient descent code for such models
- GPU
 - Availability of programmable Graphics Processing Units and compilers (CUDA) further sped up training times

What Technologies make it work?

- Regularization
 - Advances in the understanding of regularization techniques to handle model complexity reduced overfitting issues
- Dataset sizes
 - Exponential Growth in dataset sizes further reduced overfitting issues and enabled these networks to show significantly better performance than traditional models
- Compute Capabilities
 - Improved compute capabilities make it feasible to deploy such models in production where they are able to score billions of rows a day

Some successes of Deep Learning

- Image/Object Recognition
- Speech Recognition
- Natural Language Processing
- Machine Translation

Object Recognition

Object Recognition

MS-COCO Dataset

Common Objects in Context - a new Captionining and Detection challenge

- a woman is playing a frisbee with a dog.
- a woman is playing frisbee with her large dog.
- a girl holding a frisbee with a dog coming at her.
- a woman kneeling down holding a frisbee in front of a white dog.
 - a young lady is playing frisbee with her dog.

Object Recognition

MS-COCO 2015

Some sample captions from 2015 challenge

The man at bat readies to swing at the pitch while the umpire looks on.

A large bus sitting next to a very tall building.

Speech Recognition, Translation, and Synthesis

Microsoft Research Speech Breakthrough

Named Entity Recognition

Tutorial on NER

Natural Language Processing

NLP for Smart Email Replies

Some criticisms

- Theoretical Guarantees
- Models that are not well-understood

