

第六章 同步时序逻辑电路(二)

秦磊华 计算机学院

本节主要内容

- 6.5 时序电路的描述工具
- 6.6 同步时序电路分析
- 6.7 同步时序电路设计基础

- ■逻辑函数表达式
- ■状态转移表
- ■状态转换图
- ■时间图

1.逻辑函数表达式

- x₁,···, x_n: (外)输入信号;
- Z₁,···, Z_m: (外)输出信号;
- y₁,··· , y_s: (内输入)电路的"状态"-现态yⁿ 或y;
- Y₁,···, Y_r: (内输出)"次态"(yⁿ⁺¹)-电路的激励信号;

1.逻辑函数表达式

- **(外)**输出函数: Z = y₂ y₁
- (内输入)电路的"状态"-现态: У2 У1
- (内输出)"次态"(yⁿ⁺¹): yⁿ⁺¹ = D
- (触发器的输入函数)激励函数:

$$D_2 = \overline{xy_1}$$

$$D_1 = x + \overline{y_2}y_1$$

1.逻辑函数表达式

Mealy型电路

- (外)输出函数: $Z = xy_2y_1$
- (内输入)电路的"状态"-现态: Y2 Y1
- (内输出)"次态"(yⁿ⁺¹): y_{n+1} = y_n⊕T
- ■(触发器的输入函数)激励函数:

$$T_{2} = \overline{y_{2}} \overline{y_{1}} \cdot \overline{(y_{2} \oplus y_{1})x}$$

$$= \overline{y_{2}} \overline{y_{1}} + (y_{2} \oplus y_{1})x$$

$$T_{1} = x \oplus y_{1}$$

2.状态转移表

反映同步电路输出Z、次态yⁿ⁺¹与电路输入x、现态y之间关系的表 (分析与设计同步时序电路的必备工具)

现态 v		Z	
J		输入 x	
y		y^{n+1}/Z	

现态	次态 $y_2^{n+1} y_1^{n+1}/输出Z$					
y ₂ y ₁	X=0	x=1				
0 0 0 1 1 0 1 1	0 1 /0 1 0 /0 1 1 /0 0 0 /1	1 1 /1 0 0 /0 0 1 /0 1 0 /0				

Mealy型

2.状态转移表

反映同步电路输出Z、次态yⁿ⁺¹与电路输入x、现态y之间关系的表 (分析与设计同步时序电路的必备工具)

现态 y	次态y ⁿ⁺¹	输出 Z
	输入 x	
y	\mathbf{y}^{n+1}	Z

现态	次态	$y_{2}^{n+1} y_{1}^{n+1}$	输出
$y_2 y_1$	x=0	x=1	Z
0 0 0 1 1 0 1 1	0 0 1 0 0 0 1 0	0 1 0 1 1 1 0 1	0 0 0 1

Moore型

2.状态转移图

1.分析方法概述

目标:找出电路状态和输出随输入变化而变化的规律

常用的方法:表格法、代数法

计算机组成原理

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

电路结构

- 2个J-K触发器
- 1个异或门
- 外输入:X
- 状态: y₂、y₁
- 输出: ? **y**₂**y**₁
- 电路类型: ? Moore型

12`

学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

1)写出输出函数和激励函数表达式

$$J_2 = K_2 = x \oplus y_1 \qquad \qquad J_1 = K_1 = 1$$

2)列出电路次态真值表

输入	现态	激励函数	次 态
x	Y ₂ Y ₁	$J_2K_2J_1K_1$	y ₂ ^{n+l} y ₁ ^{n+l}
0	0 0	0 0 1 1	0 1
0	0 1	1 1 1 1	1 0
0	1 0	0 0 1 1	1 1
0	1 1	1 1 1 1	0 0
1	0 0	1 1 1 1	1 1
1	0 1	0 0 1 1	0 0
1	1 0	1 1 1 1	0 1
1	1 1	0 0 1 1	1 0

学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

3)作出状态表和状态图

14

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

4)功能评述

由状态图可知,该电路是一个2位二进制数可逆计数器。

当输入x=0时,可逆计数器进行加1计数,其计数序列为:

当输入x=1时,可逆计数器进行减1计数,其计数序列为

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

5)画典型时间图

设电路初始状态 $y_2y_1=00$, 典型输入序列为111100000,电路状态响应序列如下:

CP	1	2	3	4	5	6	7	8	9
X	1	1	1	1	0	0	0	0	0
y ₂	0								
y ₁	0						-		
У ₂ n+1 У ₁ n+1									
y ₁ n+1									

2.表格法分析举例

例1 分析下图所示同步时序逻辑电路。

5)画典型时间图

设电路初始状态 $y_2y_1=00$, 典型输入序列为111100000,电路状态响应序列如下:

СР	1	2	3	4	5	6	7	8	9
X	1	1	1	1	0	0	0	0	0
Y ₂	0	1	1	0	0	0	1	1	0
Y ₁	0	1	0	1	0	1	0	1	0
Y ₂ n+1	1	1	0	0	0	1	1	0	0
Y ₁ n+1	1	0	1	0	1	0	1	0	1

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

3.代数分析法举例

例2 分析下图所示同步时序逻辑电路。

1)写出输出函数和激励函数表达式

$$J_2 = K_2 = x \oplus y_1 \qquad \qquad J_1 = K_1 = 1$$

2)把激励函数代入触发器次态方程

$$y^{n+1} = J_y^- + Ky$$
 得到电路次态方程组

$$y_{2}^{n+1} = J_{2}\overline{y_{2}} + \overline{K_{2}}y_{2}$$

$$= (x \oplus y_{1})\overline{y_{2}} + (\overline{x \oplus y_{1}})y_{2}$$

$$= x\overline{y_{1}}\overline{y_{2}} + x\overline{y_{1}}\overline{y_{2}} + x\overline{y_{1}}y_{2} + x\overline{y_{1}}y_{2}$$

$$y_{1}^{n+1} = J_{1}\overline{y_{1}} + \overline{K_{1}}y_{1}$$

$$= \overline{y_{1}}$$

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

3.代数分析法举例

例2 分析下图所示同步时序逻辑电路。

3)作出状态表和状态图

现态		次态	<u> </u>	V_2^{n+1} y	y_1^{n+1} y_1^{n+1}		
y_2	y_1	X=	=0	X=	x=1		
0	0	0	1	1	1		
0	1	1	0	0	0		
1	0	1	1	0	1		
1	1	0	0	1	0		

3.代数分析法举例

例3 分析下图所示同步时序逻辑电路。

解 有外输出Z与外输入x

Z与状态和X直接相关,属于Mealy型电路。

1)写出输出函数和激励函数表达式

$$Z = xy_{2}\overline{y_{1}}$$

$$D_{2} = \overline{x + y_{2} + \overline{y_{1}}} = \overline{x}\overline{y_{2}}y_{1}$$

$$D_{1} = x$$

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

3.代数分析法举例

例3 分析下图所示同步时序逻辑电路。

2)列出电路次态真值表

$$Z = xy_{2}\overline{y_{1}}$$

$$D_{2} = \overline{x + y_{2} + y_{1}} = \overline{xy_{2}y_{1}}$$

$$D_{1} = x$$

次态真值表

输入	现	态	激励	函数		态	
X	y_2	\mathbf{y}_1	D_2	D_1	y_2 (n+	y_1	(n+1)
0	0	0	0	0	0	0	_
0	0	1	1	0	1	0	
0	1	0	0	0	0	0	
0	1	1	0	0	0	0	
1	0	0	0	1	0	1	
1	0	1	0	1	0	1	
1	1	0	0	1	0	1	
1	1	1	0	1	0	1	

3.代数分析法举例

例3 分析下图所示同步时序逻辑电路。

3)由次态真值表得到状态 (转换)表和状态(转换)图

次态真值表

输入	现态	激励函数	次 态
X	y_2 y_1	D_2 D_1	$y_2^{(n+1)} y_1^{(n+1)}$
0	0 0	0 0	0 0
0	0 1	1 0	1 0
0	1 0	0 0	0 0
0	1 1	0 0	0 0
1	0 0	0 1	0 1
1	0 1	0 1	0 1
1	1 0	0 1	0 1
1	1 1	0 1	0 1

		•
现态	次态/输出	$(y_2^{n+1}y_1^{n+1}/Z)$
$y_2 y_1$	X=0	X=1
00	00/0	01/0
01	10/0	01/0
10	00/0	01/1
11	00/0	01/0

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

3.代数分析法举例

例3 分析下图所示同步时序逻辑电路。

4)分析电路功能

分析各状态的意义及状态转换的意义

从典型输入、输出序列中去找

СР	1	2	3	4	5	6	7	8	9
Χ	0	1	0	1	1	0	1	0	0
Y_2	0	0	0	1	0	0	1	0	1
Y_1	0	0	1	0	1	1	0	1	0
Y_2^{n+1}	0	0	1	0	0	1	0	1	0
Y_1^{n+1}	0	1	0	1	1	0	1	0	0
Ζ	0	0	0	1	0	0	1	0	0

ĺ	СР	1	2	3	4	5	6	7	8
	X	0	1	0	1	0	1	0	0
ľ	Y ₂	0	0	0	1	0	1	0	1
	Y_1	0	0	1	0	1	0	1	0
	Y_2^{n+1}	0	0	1	0	1	0	1	0
	Y_1^{n+1}	0	1	0	1	0	1	0	0
	Z	0	0	0	1	0	1	0	0

存在局限性!

1.设计步骤概述(对应于分析步骤)

1)逻辑抽象,得出电路的状态转换图或状态转换表

(1)进行逻辑定义

确定输入、输出变量及电路状态数;

- (2)定义输入、输出逻辑状态和每个电路状态的含义,并将电路状态顺序编号;
- (3)列出电路的状态转换表或画出电路的状态转换图;

正确? 完备? 最简?

2)状态化简

电路的状态数越少,对应的电路也越简单。

1.设计步骤概述(对应于分析步骤)

3)状态分配及编码

- (1)确定触发器数目n = 「log₂м]
- (2)状态编码

给每个电路状态分配二进制编码(触发器状态组合)。编码方案得当有利于简化电路。 存在编码总状态数大于电路状态数的情况,如电路有3个状态,用2个触发器时有 00、01、10、11等四个状态编码,用其中的任何3种即可。

4)选定触发器的类型设计电路

结合选用触发器,求出电路的状态方程、激励函数和输出函数并设计对应的电路。

5)电路分析检查

2. 完全确定状态表的化简

1)几个概念

◆ 等效对的概念

现态	次态/输出		
	X=0	X=1	
A	B/0	C/1	
В	B/0	D/1	
C	D/0	A/0	
D	C/0	B/0	

状态 S_i 和 S_j 是完全确定状态表中的两个状态,若对于所有可能的输入序列,分别从状态 S_i 和状态 S_j 出发,所得到的输出响应序列完全相同,则状态 S_i 和 S_i 等效,记作(S_i , S_i),称为等效对。

2. 完全确定状态表的化简

1)几个概念

◆ 等效判断方法

第一,输出相同;

第二,次态属于下列情况之一:

- a. 次态相同;
- b. 次态交错或为各自的现态;
- c. 次态循环或为等效对。

次态/输出 现 X=0X=1Ā (C/1)B/0В D/1 B/0A/0 D/0B/0C/0AB CD 次态循环

次态交错

2. 完全确定状态表的化简

◆等效对具有传递性

$$(S_1, S_2), (S_2, S_3) \rightarrow (S_1, S_3)$$

2)等效类 - 等效状态的集合

$$(S_1, S_2), (S_2, S_3) \rightarrow (S_1, S_3)$$

$$\{S_1, S_2, S_3\}$$

$$\{S_1, S_2, S_3\}$$

等效类是广义概念,两个状态或多个状态均可以组成一个等效类,甚至一个状态也可以构成等效类。

2. 完全确定状态表的化简

3)最大等效类

不被任何其它等效类包含的等效类。

---(不是指状态最多, 而是指其独立性)

原始状态表的化简过程,就是寻找所有最大等效类的过程,每个最大等效类中的状态合并为一个新的状态。

简化后的状态数等于最大等效类的个数!

2. 完全确定状态表的化简

4)化简过程

原始状态表

现态	次态/输出		
坝 征	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

◆按等效对判断规则,对原始状态表任意两原态逐一检查比较,将结果标注在隐含表中相应方格:

等效: "V";

不等效: "×";

无法判断: 填相关的状态对

计算机组成原理

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
地心	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
С	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

31`

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
地部	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
С	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
-7/L 7ET	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

33`

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
光 芯	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

34

学中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
- 7亿 元	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
Е	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出		
地心	x=0	x=1	
A	C/0	B/1	
В	F/0	A/1	
C	F/0	G/0	
D	D/1	E/0	
E	C/0	E/1	
F	C/0	G/0	
G	C/1	D/0	

華中科技大学 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态/输出	
地心	x=0	x=1
A	C/0	B/1
В	F/0	A/1
C D	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

拳中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表中共有四个等效对

(A, B), (A, E), (B, E), (C, F)

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态 /	′输出
火 恋	x=0	x=1
A	C/0	B/1
В	F/0	A/1
C	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

$$(A, B), (A, E), (B, E) \Longrightarrow \{A, B, E\}$$

$$(C, F) \Longrightarrow \{C, F\}$$

$$(D) \Longrightarrow \{D\}$$

$$(G) \Longrightarrow \{G\}$$

作隐含表

→

寻找等效对

→

找出所有最大等效类

状态合并, 作出最小化状态表

華中科技大學 计算机科学与技术学院 School of Computer Science & Technology, HUST

2. 完全确定状态表的化简

4)化简过程

例1 化简下表所示原始状态表

原始状态表

现态	次态 /	′输出
37E 7EF	x=0	x=1
A	C/0	B/1
В	F/0	A/1
C	F/0	G/0
D	D/1	E/0
E	C/0	E/1
F	C/0	G/0
G	C/1	D/0

作隐含表	
Ţ	
寻找等效对	
Į.	
找出所有最大等效类	
Û	
状态合并,作出最小化状态表	長

现态	次态/输出	
770.101	X=0	X=1
a	b/0	a/1
b	b/0	d/0
c	c/1	a/0
d	b/1	c/0

3. 完全确定状态表的编码

1)确定二进制代码的位数/寄存器个数

$$m = \lceil \log_2^N \rceil$$

2)确定状态分配方案(相邻分配法)

尽可能使激励函数和输出函数在卡 诺图上的"1" 方格处在相邻位置。

(1)次态相同,现态相邻。

相同输入条件下,次态相同的现态分配相邻二进制代码;

(2)同一现态,次态相邻。

同一现态在相邻输入条件下的次态分配相邻二进制代码;

初态分配"0"

(3)输出相同,现态相邻。

所有输入均具有相同输出的现态分配相邻二进制代码。

3. 完全确定状态表的编码

例2 对如下状态表进行状态编码(设A为初始状态)

现	次态/输出	
态	x=0	x=1
Α	C/1	B/0
В	A/0	A/1
С	A/1	D/1
D	D/1	C/0

原则(1): BC相邻;

⇒ 原则②: BC、AD、CD相邻; ⇒

原则③: AD相邻。

A: 00 B: 01 C: 11 D: 10

3. 完全确定状态表的编码

例2 对如下状态表进行状态编码(设A为初始状态)

现	次态/输出	
态	x=0	x=1
Α	C/1	B/0
В	A/0	A/1
С	A/1	D/1
D	D/1	C/0

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出	
y ₂ y ₁	x=0	x=1
00	11/0	01/0
01	00/0	00/1
11	00/1	10/1
10	10/0	11/0

$$y_1$$
 0 1 0 A D 1 B C

A: 00 B: 01 C: 11 D: 10

4. 确定激励函数和输出函数并画出逻辑电路图

根据二进制状态表和触发器激励表,求激励函数和输出函数最简表达式:

- ■列出激励函数和输出函数真值表;
- ■用卡诺图化简后写出最简表达式。

熟练时可直接根据作出激励函数和输出函数卡诺图化简。

4. 确定激励函数和输出函数并画出逻辑电路图

四种时钟控制触发器的激励表如下:

R-S 触发器激励表		
$Q \rightarrow Q^{n+1}$	R S	
0 0	d 0	
0 1	0 1	
1 0	1 0	
1 1	0 d	

J-K 触发器激励表		
$Q \rightarrow Q^{n+1}$	J K	
0 0	0 d	
0 1	1 d	
1 0	d 1	
1 1	d 0	

D触发器激励表		
$Q \rightarrow Q^{n+1}$ D		
0 0	0	
0 1	1	
1 0	0	
1 1	1	

T触发器激励表		
$Q \rightarrow Q^{n+1}$ T		
0 0	0	
0 1	1	
1 0	1	
1 1	0	

4. 确定激励函数和输出函数并画出逻辑电路图

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出					
y ₂ y ₁	x=0	x=1				
00	11/0	01/0				
01	00/0	00/1				
11	00/1	10/1				
10	10/0	11/0				

1	V	触	4	ᆣ	训	Eh	莱
J-	· /\	州玉	刀	TO	/万义	ΙЛЛ	X

$Q \to Q^{n+1}$	J K
0 0	0 d
0 1	1 d
1 0	d 1
1 1	d 0

输入	现态	次 态	□ 激励函数 輸出
X	y ₂ y ₁	$y_2^{(n+1)}y_1^{(n+1)}$	J_2 K_2 J_1 K_1 Z
0	0 0	1 1	1 d 1 d 0
0	0 1	0 0	0 d d 1 0
0	1 0	0 1	d 1 1 d 0
0	1 1	0 0	d 1 d 1 1
1	0 0	0 1	0 d 1 d 0
1	0 1	0 0	0 d d 1 1
1	1 0	1 1	d 0 1 d 0
1	1 1	1 0	d 0 d 1 1

I

6.7 同步时序逻辑电路设计基础

4. 确定激励函数和输出函数并画出逻辑电路图

输入 X	现	× 1	次 y ₂ ^{(n +}			激厉 K ₂	力函 J ₁	数 K ₁	输出 Z
0	0	0	1	1	1	d	1	d	0
0	0	1	0	0	0	d	d	1	0
0	1	0	0	1	d	1	1	d	0
0	1	1	0	0	d	1	d	1	1
1	0	0	0	1	0	d	1	d	0
1	0	1	0	0	0	d	d	1	1
1	1	0	1	1	d	0	1	d	0
1	1	1	1	0	d	0	d	1	1

	y ₂	y ₁				
	X	00	01	11	10	•
J_1	0	1	d	d	1	J₁=1
• 1	1	1	D.	p	1	
	y ₂ y	/ 1				
	X	00	01	11	10	1
K ₁	0	d	1	1	Ъ	K₁=1
	1	d	1	1	d	

4. 确定激励函数和输出函数并画出逻辑电路图

输入	现态	次	态	激励函数	輸出
Χ	y ₂ y ₁	y ₂ (n ·	$^{+1)}y_1^{(n+1)}$	$J_2 K_2 J_1 K_1$	Ζ
0	0 0	1	1	1 d 1 d (0
0	0 1	. 0	0	0 d d 1 (0
0	1 (0	1	d 1 1 d (0
0	1 1	. 0	0	d 1 d 1	1
1	0 0	0	1	0 d 1 d	0
1	0 1	. 0	0	0 d d 1	1
1	1 () 1	1	d 0 1 d	0
1	1 1	- 1	0	d 0 d 1	1

$$Z = y_2y_1 + xy_1 = (y_2 + x)y_1$$

$$J_2 = \overline{x} \overline{y}_1$$

$$K_2 = x$$

Ш

6.7 同步时序逻辑电路设计基础

4. 确定激励函数和输出函数并画出逻辑电路图

输入	现る	态	次	态)	敫厉	办逐	数	输出
Χ	y ₂ ১	/ 1	y ₂ (n +	$^{1)}y_1^{(n+1)}$	J_2	K_2	J_1	K_1	Z
0	0	0	1	1	1	d	1	d	0
0	0	1	0	0	0	d	d	1	0
0	1	0	0	1	d	1	1	d	0
0	1	1	0	0	d	1	d	1	1
1	0	0	0	1	0	d	1	d	0
1	0	1	0	0	0	d	d	1	1
1	1	0	1	1	d	0	1	d	0
1	1	1	1	0	d	0	d	1	1

$$J_1=1$$
 $K_1=1$ $J_2=\overline{xy_1}$ $K_2=\overline{x}$
 $Z = y_2y_1 + xy_1 = (y_2 + x)y_1$

4. 确定激励函数和输出函数并画出逻辑电路图

例3 用D触发器和逻辑门设计同步时序逻辑电路,实现下表对应的功能。

现态	次态y ₂ ⁿ⁺¹ y ₁ ⁿ⁺¹ /输出					
y ₂ y ₁	x=0	x=1				
00	11/0	01/0				
01	00/0	00/1				
11	00/1	10/1				
10	10/0	11/0				

D触发器激励表							
$Q \rightarrow Q^{n+1}$	D						
0 0	0						
0 1	1						
1 0	0						
1 1	1						

输入 X	现 Y ₂	态 Y ₁		态 ¹⁾ Y ₁ ^(n + 1)	激励 D ₂	函数 D ₁	输出 Z
0	0	0	1	1	1	1	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	1	0
0	1	1	0	0	0	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1
1	1	0	1	1	1	1	0
1	1	1	1	0	1	0	1

50

4. 确定激励函数和输出函数并画出逻辑电路图

输 入 X	现 Y ₂	态 y ₁	次 y ₂ ^{(n +}	态 ¹⁾ y ₁ ⁽ⁿ⁺¹⁾	激励 D ₂	函数 D ₁	输出 Z
0	0	0	1	1	1	1	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	1	0
0	1	1	0	0	0	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1
1	1	0	1	1	1	1	0
1	1	1	1	0	1	0	1

$$D_{2} = \overline{x \cdot y_{2} y_{1}} + xy_{2}$$
$$= \overline{x + y_{2} + y_{1}} + xy_{2}$$

$$D_1 = \overline{y_1}$$

4. 确定激励函数和输出函数并画出逻辑电路图

输入 X	现 y 2	态 y ₁	次 y ₂ ^{(n +}	态 ¹⁾ y ₁ ⁽ⁿ⁺¹⁾	激励 D ₂	5	输出 Z
0	0	0	1	1	1	1	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	1	0
0	1	1	0	0	0	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1
1	1	0	1	1	1	1	0
1	1	1	1	0	1	0	1

$$D_{2} = \overline{x \cdot y_{2} y_{1}} + xy_{2} = \overline{x + y_{2} + y_{1}} + xy_{2}$$

$$D_{1} = \overline{y_{1}}$$

$$Z = y_2y_1 + xy_1 = (y_2 + x)y_1$$

输入 X	现 Y ₂	态 y ₁	次 y ₂ ^{(n +}	态 ¹⁾ y ₁ ⁽ⁿ⁺¹⁾	激励 D ₂	函数 D ₁	输出 Z
0	0	0	1	1	1	1	0
0	0	1	0	0	0	0	0
0	1	0	0	1	0	1	0
0	1	1	0	0	0	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	1
1	1	0	1	1	1	1	0
1	1	1	1	0	1	0	1

53

第二部分完

54