- 2.) a.) gcd(2,10) = 2, lcm(2,10) = 10
 - b.) gcd(20, 8) = 4, lcm(20, 8) = 40
 - c.) gcd(12, 40) = 4, lcm(12, 40) = 120
 - d.) gcd(21, 50) = 1, lcm(21, 50) = 1050
 - e.) $gcd(p^2q^2, pq^3) = pq^2$, $lcm(p^2q^2, pq^3) = p^2q^3$
- 7.) **Question:** If a and b are integers and n is a positive integer, prove that $a \equiv b \pmod{n}$ $\iff n \mid a b$

Solution: Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. Assume $a \equiv b \pmod{n}$, thus a = b + kn for some $k \in \mathbb{Z}$. $a = b + kn \implies a - b = kn \implies n \mid a - b$, thus $a \equiv b \pmod{n} \implies n \mid a - b$.

Next, assume $n \mid a - b$, thus ln = a - b for some $l \in \mathbb{Z}$. $ln = a - b \implies a = b + ln \implies a \equiv b \pmod{n}$, thus $n \mid a - b \implies a \equiv b \pmod{n}$,

Thus $a \equiv b \pmod{n} \iff n \mid a - b$. Q.E.D.

18.) Question: Determine $8^{402} \pmod{5}$

reflexive.

Solution: $8^1 \equiv 3 \pmod{5}$, $8^2 \equiv 4 \pmod{5}$, $8^3 \equiv 2 \pmod{5}$, $8^4 \equiv 1 \pmod{5}$, and $8^5 \equiv 3 \pmod{5}$, thus $8^{402} \equiv (8^4)^{100} \times 8^2 \equiv 1^{100} \times 4 \equiv 4 \pmod{5}$.

58.) Question: Let S be the set of real numbers. If $a, b \in S$, define $a \sim b$ if $a - b \in \mathbb{Z}$. Show that \sim is an equivalence relation and determine the equivalence classes of S. Solution: Let $a \in S$. Since a - a = 0 and $0 \in \mathbb{Z}$, $a \sim a$ for all $a \in S$, thus \sim is

Let $a, b \in S$ and assume $a \sim b$, thus n = a - b, for some $n \in \mathbb{Z}$. $n = a - b \implies -n = -(a - b) = b - a$, thus $b - a \in \mathbb{Z}$, thus $b \sim a$, thus $\sim a$ is symmetric.

Let $a,b,c\in S$ and assume $a\sim b$ and $b\sim c$, thus m=a-b and n=b-c for some $m,n\in\mathbb{Z}$. We see that m+n=a-b+b-c=a-c, thus $a-c\in\mathbb{Z}$, thus $a\sim b\wedge b\sim c\implies a\sim c$, thus $\sim b\wedge b\sim c$ and thus an equivalence relation. Q.E.D.

Finally, the equivalence classes for \sim are [x] where $0 \le x < 1$.

60.) Question: Let S be the set of integers. If $a, b \in S$, define aRb if a + b is even. Show that R is an equivalence relation and determine the equivalence classes of S.

Solution: Let $a \in S$. Since a + a = 2a is even, aRa for all $a \in S$, thus R is reflexive.

Let $a, b \in S$ and assume $a \sim b$, thus a + b = 2n for some $n \in \mathbb{Z}$. Since integer addition is commutative, b + a = a + b = 2n, thus b + a is even, thus $a \sim b \implies b \sim a$, thus R is symmetric.

Let $a, b, c \in S$ and assume $a \sim b$ and $b \sim c$, thus a + b = 2m and b + c = 2n for some $m, n \in \mathbb{Z}$. We see that $2m + 2n = a + 2b + c \implies 2(m + n - b) = a + c$, thus a + c is even, thus $a \sim b \wedge b \sim c \implies a \sim c$, thus R is transitive, and thus an equivalence relation. Q.E.D.

Finally, the equivalence classes for R are [0] and [1].