Chapter A

General Questions

The boxed fraction shows how many questions need to be answered correctly to achieve mastery.

A1 Using and Rearranging Equations

⁹/₁₂

Use the following equations:

$$s = ut$$
 $a = \frac{(v - u)}{t}$ $F = ma$ $v = f\lambda$
 $V = IR$ $P = IV$ $E = Pt$ $Q = It$

where the letters have the following meanings:

$$s = \text{distance}$$
 $u, v = \text{velocity}$ $t = \text{time}$ $m = \text{mass}$ $V = \text{voltage}$ $I = \text{current}$ $F = \text{force}$ $a = \text{acceleration}$ $Q = \text{charge}$ $E = \text{energy}$ $P = \text{power}$ $f = \text{frequency}$ $A = \text{wavelength}$ $R = \text{resistance}$

- A1.1 a) F = 3.0 N, m = 2.0 kg, what is a?
 - b) I = 0.20 A, t = 200 s, what is Q?
- A1.2 Calculate the resistance needed if you want 0.030 A to flow through a component when a 9.0 V battery is connected to it.
- A1.3 Calculate the distance travelled by a car going at $30 \,\mathrm{m\,s^{-1}}$ in 2.0 minutes.
- A1.4 Calculate the wavelength of a wave that travels at 3.0×10^8 m s⁻¹ if its frequency is 2.0 GHz (2.0×10^9 Hz).
- A1.5 a) Calculate the power of a 0.25 A, 240 V light bulb.

- b) Calculate the power if 5.0 A flows through a 2.0 Ω resistor.
- A1.6 A Corsa accelerates from 15 m s⁻¹ to 25 m s⁻¹ in 8.0 s. Calculate the acceleration.
- A1.7 If a jet has a maximum acceleration of 20 m s⁻², what is the time it would take to get from 0 m s^{-1} to 100 m s^{-1} ?
- A1.8 My kettle needs to be able to give 672 000 J of heat energy to water in 240 s. Assuming that it is connected to the 240 V mains, what current is needed?
- A1.9 Calculate the force needed if my 750 kg car needs to accelerate from rest to 13 m s^{-1} in 5.0 s.
- A1.10 Calculate the electrical energy used by a 240 V light bulb with a resistance of 60 Q in 600 s.