

Mathématiques

Classe: 4^{ème} Mathématiques

Série: Révision-2-1°T

Nom du prof : Masmoudi Radhouane

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Exercice 1:

(5) 40 min

5 pts

Le plan est orienté. ABC est un triangle rectangle en A tel que $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{3} [2\pi]$, et O le milieu du segment [BC].

La médiatrice du segment [BC] coupe (AB) en I. (Voir figure 1 de l'annexe).

- 1 a Montrer qu'il existe un unique déplacement f tel que f(B) = C et f(O) = A.
 - b Justifier que f est la rotation de centre I et d'angle $\frac{2\pi}{3}$.
- 2 Soit *r* la rotation de centre *C* et d'angle $\frac{\pi}{3}$.
 - a Déterminer $f \circ r(A)$. Caractériser alors $f \circ r$.
 - **b** En déduire que le point A est le milieu du segment $\lceil CC' \rceil$.
 - Montrer que I est l'orthocentre du triangle BCC'.
- 3 On considère l'antidéplacement g qui envoie B sur C et O sur A.
 - ullet Montrer que g est une symétrie glissante dont on précisera l'axe et le vecteur.
 - b Montrer que g(C) = C'
 - © Construire le point A' = g(A). Montrer que le quadrilatère C'OCA' est un parallélogramme.
- Soit M un point du plan. On pose $f(M) = M_1$ et $g(M) = M_2$. Montrer que M_1 et M_2 sont symétriques par rapport à une droite fixe que l'on précisera.

Exercice 2:

(5) 30 min

4 pts

Soit f la fonction définie sur l'intervalle [0, 1[par $f(x) = \frac{x}{\sqrt{1-x^2}}$.

On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

- 1 a Vérifier que pour tout $x \in [0, 1[; f'(x)] = \frac{1}{(1-x^2)\sqrt{1-x^2}}$.
 - b Montrer que f réalise une bijection de [0, 1[sur un intervalle f que l'on précisera

- ${\tt C}$ Tracer les courbes ${\mathscr C}$ de f et ${\mathscr C}'$ de f^{-1} dans le même repère en précisant la demi tangente au point d'abscisse 0.
- d Expliciter $f^{-1}(x)$ pour $x \in J$.
- 2 Soit g la fonction définie sur l'intervalle $\left[0, \frac{\pi}{4}\right]$. par $g(x) = f(\sin 2x)$
 - a Montrer que pour tout $x \in \left[0, \frac{\pi}{4}\right]$; $g(x) = \tan(2x)$.
 - b Montrer que la fonction g est une bijection de $\left[0, \frac{\pi}{4}\right]$ sur $\left[0, +\infty\right[$.
 - C Montrer que g^{-1} est dérivable sur $[0, +\infty[$ et que pour tout $x \in [0, +\infty[$: $(g^{-1})'(x) = \frac{1}{2(1+x^2)}.$
- 3 Soit h la fonction définie sur $[0, +\infty[$ par : $\begin{cases} h(x) = g^{-1}\left(\frac{1}{x}\right) \text{ si } x > 0 \\ h(0) = \frac{\pi}{4} \end{cases}$
 - a Montrer que h est continue à droite en 0.
 - b Montrer que h est dérivable sur]0, $+\infty$ [et que $h'(x) = -(g^{-1})'(x)$
 - En déduire que pour tout $x \in]0, +\infty[: g^{-1}(x) + g^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{4}$, en déduire que la courbe de h est l'image de la courbe de g par une isométrie que l'on précisera.
 - d Montrer alors que h est dérivable à droite en 0 et préciser $h'_d(0)$.
- 4 On considère les suites (S_n) et (S'_n) définie sur \mathbb{N}^* par :

$$S_n = \frac{1}{n+1} \sum_{p=n}^{2n} g^{-1}(p) \text{ et } S'_n = \frac{1}{n+1} \sum_{p=n}^{2n} g^{-1}(\frac{1}{p})$$

- a Montrer que : $g^{-1}(n) \le S_n \le g^{-1}(2n)$. En déduire que (S_n) converge vers une limite que l'on précisera.
- b Déterminer alors $\lim_{n\to+\infty} S'_n$.
- 5 Pour tout entier naturel n non nul, on pose $U_n = g^{-1} \left(\frac{2}{n}\right) g^{-1} \left(\frac{1}{n}\right)$
 - a Montrer qu'il existe un réel $c_n \in \left[\frac{1}{n}, \frac{2}{n} \right]$ tel que $nU_n = \frac{1}{2\left(1 + c_n^2\right)}$
 - b Déterminer alors $\lim_{n \to +\infty} nU_n$.