Functional programming, Seminar No. 6

Daniel Rogozin Institute for Information Transmission Problems, RAS Serokell OÜ Higher School of Economics The Department of Computer Science

Today

We will study

Monads

Motivation

We are going to extend pure functions a -> b, we would like to extend them to computations with effects:

- A computation with a possible failure: a -> Maybe b
- A many-valued computation: a -> [b]
- A computation either succeeds or yields an error: a -> Either
 e b
- A computation with logs: a -> (s, b)
- A computation with reading from an external environment a ->
 (e -> b)
- A computation with a mutable state: a -> (State s) b
- An input/output computation: a -> IO b

Motivation

If one needs to provide a uniform interface to deal with Kreisli functions, then this interface should satisfy the following two requirements.

- One needs to have an opportunity inject a pure value into the computational context
- 2. Kleisli maps should be composable:

$$(>=>)$$
 :: $(a -> m b) -> (b -> m c) -> a -> m c$

3. Generally, we cannot extract a from m a

The definition of the Monad class

Let us take a look the full definition of the Monad class

```
class Applicative m => Monad m where
  -- | Sequentially compose two actions,
  -- | passing any value produced
  -- | by the first as an argument to the second.
  (>>=) :: m a -> (a -> m b) -> m b
  -- | Sequentially compose two actions,
  -- | discarding any value produced by the first
  (>>) :: m a -> m b -> m b
  m \gg k = m \gg k
  -- | Inject a value into the monadic type.
  return :: a -> m a
  return = pure
```

The definition of the Monad class

The Monad class has the equivalent definition, the following one:

```
class Applicative m => Monad m where
join :: m (m a) -> m a
```

The definition of the Monad class

The Monad class has the equivalent definition, the following one:

```
class Applicative m => Monad m where
join :: m (m a) -> m a
```

Moreover, such a definition is closer to the original categorical definition of a monad. But we do not care about categories here.

The return function

One may convert any pure function into a Kleisli one:

```
toKleisli :: Monad m \Rightarrow (a \rightarrow b) \rightarrow a \rightarrow m b
toKleisli f = return . f
cosM :: (Monad m, Floating b) => b -> m b
cosM = toKleisli cos
It is clear that \cos \pi = -1, but \cos M pi has the type
(Monad m, Floating b) => m b and we have several variants:
> cosM pi :: Maybe Double
Just (-1.0)
> cosM pi :: [Double]
[-1.0]
> cosM pi :: IO (Double)
-1.0
> cosM pi :: Either String Double
Right (-1.0)
```

The monadic bind operator

Take a look at the monadic type signature closer:

$$(>>=)$$
 :: Monad m => m a -> (a -> m b) -> m b

In some sense, it is quite close to the reverse application operator.

(&) ::
$$a \rightarrow (a \rightarrow b) \rightarrow b$$

x & f = f x

The monadic bind operator

Let's have a look at this analogy closely:

```
fmap :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
flip (>>=) :: Monad m => (a -> m b) -> m a -> m b
```

Flipped fmap, flipped (<*>) and (>>=):

```
flip fmap :: Functor f => f a -> (a -> b) -> f b

flip (<*>) :: Applicative f => f a -> f (a -> b) -> f b

(>>=) :: Monad m => m a -> (a -> m b) -> m b
```

The very first (trivial) monad. The Identity type

Let us define the following new type

```
{-# LANGUAGE DeriveFunctor #-}
newtype Identity a = Identity { runIdentity :: a }
  deriving (Show, Functor)
instance Applicative Identity where
  pure = Identity
  Identity f <*> Identity x = Identity (f x)
instance Monad Identity where
  Identity x >>= k = k x
```

This is a trivial monad.

Playing with the Identity monad

Let us consider a quite trivial example of a Kleisli function

```
cosId, acosId, sinM
    :: Double -> Identity Double
cosId = Identity . cos
acosId = Identity . acos
sinM = Identity . sin
```

An example:

```
> runIdentity $ cosId pi >>= acosId
-1.0
> runIdentity $ cosId pi >>= acosId
3.141592653589793
> runIdentity $ cosId (pi/2) >>= acosId >>= sinM
1.0
```

In fact, >>= works similarly to (&) in this example.

Some of useful monadic functions

Let us take a look at some widely used monadic operations:

```
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \x -> f x >>= g

join :: Monad m => m (m a) -> m a
join x = x >>= id

forever :: Applicative f => f a -> f b
forever a = let a' = a *> a' in a'
```

Monadic laws

Any monad satisfies the following law:

1. The left identity law:

2. The right identity law:

3. The monadic bind operation is associative:

$$m >>= (\x -> k x >>= h) = (m >>= k) >>= h$$

- 4. There is the strong connection between the notions of monad and monoid, but we drop this connection.
- 5. Let us illustrate these laws with the Identity monad

The identity laws

According to the identity laws:

```
return a >>= k = k a
m >>= return = m
```

the return function is a sort of a neutral element:

- > runIdentity \$ cosId (pi / 4)
- 0.7071067811865476
- > runIdentity \$ return (pi / 4) >>= cosId
- 0.7071067811865476
- > runIdentity \$ cosId (pi / 4) >>= return
- 0.7071067811865476

The associativity law

The associative law:

$$m >>= (\x -> k x >>= h) = (m >>= k) >>= h$$

claims that the monadic bind is associative as follows:

> runIdentity \$ cosId (pi/2) >>= acosId >>= sinM
1.0
> runIdentity \$ cosId (pi/2) >>= (\x -> acosId x >>= sinM)
1.0

The associativity law

Let us take a look at these equivalent pipelines:

```
go = cosId (pi/2) >>=
    acosId >>=
    sinM

go2 = cosId (pi/2) >>= (\x ->
    acosId x >>= (\y ->
    sinM y >>= \z ->
    return z))
```

Monads and pseudo-imperative programming

Wow, we have recently invented imperative programming!

Monads and pseudoimperative programming

We may ignore one of the results:

do-Notation

In Haskell, one has a quite useful syntax sugar to write code within a monad in the "imperative" fashion.

do-expression

do-expression

do-expression

Unsugared version

Unsugared version

$$e1 >>= \p -> e2$$

Unsugared version

let
$$v = e1$$
 in do $e2$

do-Notation. Example

The example above:

One may rewrite this example using do-notation:

```
go2 = do
  let alpha = pi/2
  x <- cosId alpha
  y <- acosId x
  z <- sinM y
  return (alpha, x, y)</pre>
```

do-Notation. Example

Let us consider an example of a monadic function:

```
prodM :: Monad m => (a -> m b) -> (c -> m d)
    -> m (a, c) -> m (b, d)
prodM f g mp =
    mp >>= \((a,b) -> f a >>= \(c -> g b >>= \(d -> return (c, d))
```

The function above can be implemented as follows:

The Maybe monad

The Maybe monad

The Maybe data type is one of the simplest non-trivial monads.

```
instance Monad Maybe where
  return = Just

Nothing >>= _ = Nothing
  (Just x) >>= f = f x

  (Just _) >> a = a
  Nothing >> _ = Nothing
```

The Maybe monad. Example

```
type Author = String
type Book = String
type Library = [(Author, Book)]
books :: [Book]
books = ["Faust", "Alice in Wonderland", "The Idiot"]
authors :: [Author]
authors = ["Goethe", "Carroll", "Dostoevsky"]
library :: Library
library = zip authors books
```

The Maybe monad. Example

```
library' :: Library
library' = ("Dostoevsky", "Demons") :
  ("Dostoevsky", "White Nights") : library
getBook :: Author -> Library -> Maybe Book
getBook author library = lookup author library
getSecondbook, getLastBook :: Author -> Maybe Book
getFirstbook author = do
 let lib' = filter (\p -> fst p == author) library'
  book <- getBook author lib'
 return book
getLastBook author = do
  let lib' = filter (\p -> fst p == author) library'
  book <- getBook author (reverse lib')</pre>
  return book
```

The list monad

The list instance

The Monad instance is the following one:

```
instance Monad [] where
  return x = [x]
  xs >>= k = concat (map k xs)
```

List compeherension once more

The following functions are equivalent:

```
cartesianProduct :: [a] -> [b] -> [(a, b)]
cartesianProduct xs ys =
  xs >>= \langle x -> ys >>= \langle y -> return (x, y)
cartesianProduct' :: [a] -> [b] -> [(a. b)]
cartesianProduct' xs ys = do
  x <- xs
  y <- ys
  return (x, y)
cartesianProduct'' :: [a] -> [b] -> [(a, b)]
cartesianProduct'' xs ys = [(x, y) | x < -xs, y < -ys]
```