1

(2). Y の開被覆 $\{U_{\lambda}\}$ をとる.

$$X = f^{-1}(\bigcup_{\lambda} U_{\lambda}) = \bigcup_{\lambda} f^{-1}(U_{\lambda})$$

が成り立つ, f は連続なので, 各 λ に対して $f^{-1}(U_{\lambda})$ は開集合であるため, $\left\{f^{-1}(U_{\lambda})\right\}$ は X の開被覆である. X はコンパクトであるので, 有限部分被覆 $\left\{f^{-1}(U_{1}), f^{-1}(U_{2}), \ldots, f^{-1}(U_{N})\right\}$ がとれる.

$$X = f^{-1}(U_1) \cup f^{-1}(U_2) \cup \cdots f^{-1}(U_N)$$

より,

$$Y = f(X) = U_1 \cup U_2 \cup \cdots \cup U_N$$

が成り立つ. 従って, 有限部分被覆がとれるので, Y はコンパクトである.

- (3). 多分この命題は成り立たない. X として 2 点からなる部分集合 $\{p,q\} \subset \mathbb{R}^n$ をとると, $\{p\}, \{q\}, \{p,q\}$ は \mathbb{R}^n のコンパクト集合なので, $\{p\}, \{q\}, \{p,q\}$ は閉集合である. 従って $\{p,q\}$ には離散位相が入るのでハウスドルフである.
- (4). \Rightarrow . $A \cap B \neq \emptyset$ と仮定する (背理法). $c \in A \cap B$ ととると, $d(A,B) \leq d(c,c) = 0$ となるので矛盾する. \Leftarrow . 任意の $a,a' \in A$ に対して,

$$d(B, a) = \inf\{d(b, a) \mid b \in A\} \le \inf\{d(b, a) + d(a, a') \mid b \in A\}$$

が成り立つので,

$$|d(B,a) - d(B,a')| < d(a,a')$$

 $d(B,\cdot)$ は A 上の連続関数である. A はコンパクト集合であるので, $d(B,\cdot)$ の最小値を実現する点 $a\in A$ が とれる.

$$d(B,a) = 0$$

であるので, $a\in \overline{B}$ である. B が閉集合であることから $\overline{B}=B$ であるので, $a\in B$ である. 従って $A\cap B\neq\varnothing$ が成り立つ. また, $\tanh:\mathbb{R}\to\mathbb{R}$ は連続関数なので, $A\coloneqq\left\{(x,f(x))\in\mathbb{R}^2\mid x\in\mathbb{R}\right\}$ は (\mathbb{R}^2,d) の閉集合である. 閉集合 $B\coloneqq\left\{(x,y)\in\mathbb{R}^2\mid y=1\right\}$ との共通部分を考えると, $\tanh x<1$ $(x\in\mathbb{R})$ であるので,

$$A \cap B = \emptyset$$

である一方で, $\lim_{x\to\infty} \tanh(x) = 1$ であるので,

$$d(A,B) = 0$$

が成り立つ.

(6)

A,B どちらかが連結でないと仮定する. A の相対位相における開かつ閉集合 $S_1,S_2\subset A$ で, $S_1\cap S_2=\varnothing$ かつ, $S_i\neq\varnothing$, A (i=1,2) かつ $A=S_1\sqcup S_2$ をみたすものがとれる. 開集合 $\tilde{S}_1,\tilde{S}_2\subset X$ で, $\tilde{S}_1\cap A=S_1,\tilde{S}_2\cap A=S_2$ を満たすものがとれる. $\tilde{S}_1\cap (A\cap B)\neq\varnothing$, $\tilde{S}_2\cap (A\cap B)\neq\varnothing$ とすると, $\tilde{S}_1\cap (A\cap B)\cap \tilde{S}_2\cap (A\cap B)=\varnothing$ であるので, $A\cap B$ が連結であることに矛盾してしまうので, $\tilde{S}_1\cap (A\cap B)\neq\varnothing$, $\tilde{S}_2\cap (A\cap B)\neq\varnothing$ ではない. $A\cap B\subset \tilde{S}_1$, $A\cap B\subset \tilde{S}_2$ のいずれかが成り立つ. $A\cap B\subset \tilde{S}_1$ とすると,

$$X = (\tilde{S}_2 \cap B^c) \sqcup (\tilde{S}_1 \cup A^c)$$

が成り立つことを考えると、X が連結であることに矛盾する.