Task 5

1)

Start by creating a distance matrix between each point

	a	b	С	d	е	f	g	h	į	j	k	I	m
а	0	0	0	0	0	2	2	1	4	4	2	5	9
b	0	0	0	0	0	2	1	1	3	4	0	3	7
С	0	0	0	0	0	2	1	3	1	4	2	1	5
d	0	0	0	0	0	2	2	4	2	2	5	2	2
е	0	0	0	0	0	2	2	4	4	0	7	4	0
f	2	2	2	2	2	0	0	2	2	2	8	6	2
g	2	1	1	2	2	0	0	2	2	2	1	2	6
h	1	1	3	4	4	2	2	0	0	0	1	4	6
į	4	3	1	2	4	2	2	0	0	0	3	0	4
j	4	4	4	2	0	2	2	0	0	0	6	4	0
k	2	0	2	5	7	8	1	1	3	6	0	3	0
1	5	3	1	2	4	6	2	4	0	4	3	0	3
m	9	7	5	2	0	2	6	6	4	0	0	3	0
Density	9	9	10	11	9	11	12	8	8	8	7	5	6

We can see that the density of all nodes is above minpts = 2, and all nodes are therefor core.

Core =
$$\{a, b, c, d, e, f, g, h, i, j, k, l, m\}$$

2)

j is density reachable from b. We can look at a path from j to b, where we first start by checking if j and b are neighbors. Looking at the matrix we see that the distance between j and b is 4. Larger then the Eps. Now we can look for shared neighbors.

We can see that the distance between b and e, and j and e is both 0. And this is the shared neighbor between b and j. Since e is a core point we can say that the path $b \rightarrow e \rightarrow j$ completes the path of cores and b and j are density reachable.

3)

Density reachability has to be symmetrical since it relies on the distance between points. If A is in reach of B, we know for a fact that B is in reach of A if the reach distance is the same for both points. Therefor if there exists a density reachable path A $D \rightarrow B$ there exists a path $B \rightarrow D \rightarrow A$

Task 5