```
// A validator to check and verify something has a factored form...
   function factorCheck(f,g) {
        // This validator is designed to check that a student is submitting a factored polynomia
           Checking that there are the correct number of non-numeric and non-inverse factors as
        // Checking that the submitted answer and the expected answer are the same via real Xro
        // Checking that the outer most (last to be computed when following order of operations
       var operCheck = f.tree[0];// Check to see if the root operation is multiplication at end
       var studentFactors = f.tree.length;// Temporary number of student-provided factors (+1)
10
        // Now we adjust the length to remove any numeric factors, or division factors, etc to
11
       for (var i = 0; i < f.tree.length; i++) {</pre>
12
            if ((typeof f.tree[i] === 'number')||(f.tree[i][0] == '-')||(f.tree[i][0] == '/')) .
13
                studentFactors = studentFactors - 1;
14
            }
        }
16
       // Now we do the same with the provided answer, in case sage or something provides a we:
       var answerFactors = g.tree.length;
20
        // Adjust length in the same way, so that it will match the students if it should.
       for (var i = 0; i < g.tree.length; i++) {</pre>
22
            if (typeof g.tree[i] === 'number') {
                answerFactors = answerFactors - 1;
24
            }
25
       }
27
        // Note: An especially dedicated student could pad with weird factors that are happen to
28
       // For example, a student could enter sin^2(x)+cos^2(x) as a multiplicative factor to page 1.
29
       // This would be somewhat difficult to think of, even on purpose.
        // Until I can reliably evaluate the factors themselves as functions though, there isn't
31
32
       return ((f.equals(g))&&(studentFactors==answerFactors)&&(operCheck=='*'))
33
       }
```

Note: Make sure to **fully** factor each of the below. Remember that, factor by grouping is just **one** step in the factoring process, you should check any resulting factors you get after factor by grouping (or any other factoring method) to see if they are still factorable.

JavaScript

Problem 1 Factor the following polynomial:

$$3x^3 + x^2 - 3x - 1 = (3x + 1)(x + 1)(x - 1)$$

Feedback(attempt): You want to factor by grouping, so you want to group up terms into pairs and then factor out any common terms from each pair. For example, if you had $9x^3 + 8x^2 - 144x - 128$ then you could group it as $(9x^3 + 8x^2) + (-144x - 128)$, then factor out any common factors in each group; $x^2(9x + 8) + -16(9x + 8)$, then pull out the common term in the parentheses (only works if they are the same!) to get $(9x + 8)(x^2 - 16)$. This isn't the end though; you need to fully factor, so you need to check both terms to see if either is factorable, in this case $(x^2 - 16)$ is factorable to (x - 4)(x + 4) which gets you (9x + 8)(x - 4)(x + 4) as your final factoring.

Problem 2 Factor the following polynomial:

$$3x^3 - 5x^2 - 12x + 20 = (3x - 5)(x + 2)(x - 2)$$

Feedback(attempt): You want to factor by grouping, so you want to group up terms into pairs and then factor out any common terms from each pair. For example, if you had $9x^3 + 8x^2 - 144x - 128$ then you could group it as $(9x^3 + 8x^2) + (-144x - 128)$, then factor out any common factors in each group; $x^2(9x + 8) + -16(9x + 8)$, then pull out the common term in the parentheses (only works if they are the same!) to get $(9x + 8)(x^2 - 16)$. This isn't the end though; you need to fully factor, so you need to check both terms to see if either is factorable, in this case $(x^2 - 16)$ is factorable to (x - 4)(x + 4) which gets you (9x + 8)(x - 4)(x + 4) as your final factoring.

Problem 3 Factor the following polynomial:

$$2x^{3} + 5x^{2} - 128x - 320 = (2x + 5)(x + 8)(x - 8)$$

Feedback(attempt): You want to factor by grouping, so you want to group up terms into pairs and then factor out any common terms from each pair. For example, if you had $9x^3+8x^2-144x-128$ then you could group it as $(9x^3+8x^2)+(-144x-128)$, then factor out any common factors in each group; $x^2(9x+8)+-16(9x+8)$, then pull out the common term in the parentheses (only works if they are the same!) to get $(9x+8)(x^2-16)$. This isn't the end though; you need to fully factor, so you need to check both terms to see if either is factorable, in this case (x^2-16) is factorable to (x-4)(x+4) which gets you (9x+8)(x-4)(x+4) as your final factoring.

Problem 4 Factor the following polynomial:

$$4x^3 + 2x^2 - 196x - 98 = \sqrt{(4x+2)(x+7)(x-7)}$$

Feedback(attempt): You want to factor by grouping, so you want to group up terms into pairs and then factor out any common terms from each pair. For example, if you had $9x^3 + 8x^2 - 144x - 128$ then you could group it as $(9x^3 + 8x^2) + (-144x - 128)$, then factor out any common factors in each group; $x^2(9x + 8) + -16(9x + 8)$, then pull out the common term in the parentheses (only works if they are the same!) to get $(9x + 8)(x^2 - 16)$. This isn't the end though; you need to fully factor, so you need to check both terms to see if either is factorable, in this case $(x^2 - 16)$ is factorable to (x - 4)(x + 4) which gets you (9x + 8)(x - 4)(x + 4) as your final factoring.

Problem 5 Factor the following polynomial:

$$x^{5} + 4x^{4} - 29x^{3} - 116x^{2} + 100x + 400 = (x+5)(x+4)(x+2)(x-2)(x-5)$$

Feedback(attempt): You want to factor by grouping, so you want to group up terms into pairs and then factor out any common terms from each pair. For example, if you had $9x^3 + 8x^2 - 144x - 128$ then you could group it as $(9x^3 + 8x^2) + (-144x - 128)$, then factor out any common factors in each group; $x^2(9x + 8) + -16(9x + 8)$, then pull out the common term in the parentheses (only works if they are the same!) to get $(9x + 8)(x^2 - 16)$. This isn't the end though; you need to fully factor, so you need to check both terms to see if either is factorable, in this case $(x^2 - 16)$ is factorable to (x - 4)(x + 4) which gets you (9x + 8)(x - 4)(x + 4) as your final factoring.