HOMEWORK 5 MATH 4070, FALL 2025

Problems to type in T_EX

- 1. For each of the following, **prove or disprove** that the statement holds for any choice of square matrix *A*.
 - (a) The squares of the eigenvalues of A are eigenvalues of A^2 . Let λ be an eigenvalue of A. By definition, there exists a eigenvector v such that $Av = \lambda v$. We can find A^2 by multiplying both sides by A, $A(Av) = A(\lambda v) \implies A^2v = \lambda(Av) \implies A^2v = \lambda^2v$. We know v is non-zero, so we see the squares of the eigenvalues of A are the eigenvalues of A^2 . Thus, the statement is true.
 - (b) The squares of the singular values of A are singular values of A^2 .

We'll disprove this by counterexample. Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. We then find $A^*A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. This tells us the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = 0$. Then we can find the singular values $s_1 = \sqrt{1} = 1$ and $s_2 = \sqrt{0} = 0$. Then lets try find the singular values for A^2 . First, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. We can already see a problem: no matter what, the singular values will always be 0 even though we found a 1 for A. Thus, the statement can't be true.

(c) The product of the singular values is the absolute value of the determinant.

Let s_1, \ldots, s_n be the singular values of A and $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A^*A such that $\lambda_i = s_i^2$ for $1 \le i \le n$. The product of the eigenvalues of a matrix is its determinant, so $det(A^*A) = \prod_{i=1}^n s_i^2$. Then, by the properties of determinant, $det(A^*A) = \overline{det(A)}det(A) \Longrightarrow |det(A)|^2 = \prod_{i=1}^n s_i^2 \Longrightarrow |det(A)| = \prod_{i=1}^n s_i$. Thus, the statement is true.

(d) If A is Hermitian, then its singular values are the same as its eigenvalues.

We'll prove this by counter example. Let $A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$ be hermitian with eigenvalues $\lambda_1 = -1$ and $\lambda_2 = -2$. First, find the eigenvalues of $A^*A = A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$, which are $\lambda_1 = 1$ and $\lambda_2 = 4$. This gives the singular values $s_1 = \sqrt{1} = 1$ and $s_2 = \sqrt{4} = 2$. These singular values are obviously different from the eigenvalues of A. Thus, the statement is false.

Problems to do in MATLAB

2. Consider the linear system Ax = b where

$$A = \left[\begin{array}{ccc} 1 & 2 & 1 & -1 \\ 3 & -1 & 2 & -2 \end{array} \right] \qquad \text{and} \qquad b = \left[\begin{array}{c} 2 \\ 1 \end{array} \right].$$

- (a) Use the QR method to find a least-squares solution of small norm.
- (b) Use the SVD method to find the least-squares solution of minimum norm.
- (c) Use your SVD from (b) to find A^{\dagger} , and verify that $A^{\dagger}b$ agrees with your answer to (b).
- 3. As this problem demonstrates, you have to be careful solving equations when the coefficient matrix has small positive singular values. A linear transformation $A \in \mathbb{R}^{20 \times 10}$ and its output $b \in \mathbb{R}^{20}$ were observed under noisy conditions, and then saved in the file HW5_num3.mat. You can use load to get them in your workspace.
 - (a) Use lsqminnorm to find the least-squares solution \hat{x} of Ax = b. What are $||A\hat{x} b||$ and $||\hat{x}||$?
 - (b) What does MATLAB think the rank of A is, and what do singular values indicate it really is?
 - (c) Find the best approximation A_r of A whose rank is what you think it should be. Verify that A_r is very close to A.
 - (d) Find A_r^{\dagger} , and use it to find the least-squares solution \hat{x}_r of $A_r x = b$.
 - (e) What are $||A\hat{x}_r b||$ and $||\hat{x}_r||$?
 - (f) Which of \hat{x} and \hat{x}_r do you think is more believable as the least-squares solution of Ax = b? Why?