HOCHSCHULE LUZERN

Technik & Architektur

Mehrfach-Integrale - Übung I

Prof. Dr. Josef F. Bürgler

Semesterwoche 3

Alle Aufgaben sind zusammen mit dem Lösungweg in möglichst einfacher Form darzustellen. Numerische Resultate sind mit einer Genauigkeit von 4 Stellen anzugeben. Skizzen müssen qualitativ und quantitativ richtig sein. **Abgabetermin: Am Ende der Semesterwoche 4 (z.B. in meinen Briefkasten Nr. 16).**

Aufgabe 1: Rechteckgebiete

Skizzieren Sie die Integrationsgebiete und berechnen Sie die Doppelintegrale:

(a)
$$\int_0^2 \int_1^e \frac{x^2}{y} dy dx$$
 und (b) $\int_0^3 \int_1^{1-x} (2xy - x^2 - y^2) dy dx$

Zusatz zu (b): Welchen Integranden müsste man verwenden, um die Fläche des Integrationsgebietes zu erhalten und wie gross ist diese?

Lösungen: (a) 8/3, (b) 99/4; die Funktion $f(x, y) \equiv 1$.

Aufgabe 2: Nicht-Rechteckgebiet

Betrachten Sie das Doppelintegral

$$I = \int_{1/2}^{2} \int_{2/x}^{5-2x} \frac{x}{\sqrt{y}} \, dy \, dx$$

Skizzieren Sie das Intergrationsgebiet. Vertauschen Sie die Reihenfolge der Integration. Werten Sie das Integral aus.

Lösung: [4/5]

Aufgabe 3

Betrachten Sie das Doppelintegral

$$I = \int \int_{B} (x^{2} + y^{2}) dB = \int_{5}^{12} \int_{60/x}^{\sqrt{169 - x^{2}}} (x^{2} + y^{2}) dy dx$$

Skizzieren Sie das Intergrationsgebiet B. Schreiben Sie das Integral auf Polarkoordinaten um und werten Sie es aus. Kontrollieren Sie das Resultat mit Hilfe von MAPLE!

Lösung: $(13/2)^4\pi - 60^2 \approx 2008$.

Aufgabe 4

Gesucht ist die Fläche der Kugel $x^2 + y^2 + z^2 = 36$ die innerhalb des Zylinders $x^2 + y^2 = 6y$ und oberhalb der xy-Ebene liegt.

Lösung: $72(\pi/2 - 1)$.

Aufgabe 5

Gesucht ist die Fläche der Kugel $x^2 + y^2 + z^2 = 4z$ innerhalb des Paraboloids $z = x^2 + y^2$. Lösung: 4π .

Aufgabe 6

Das Trägheitsmoment eines Gebietes ${\cal R}$ in der Ebene bezüglich einer bestimmten Koordinatenachse ist definiert durch

$$I_x = \int \int_R y^2 dA \qquad I_y = \int \int_R x^2 dA. \tag{1}$$

definiert. Das polare Trägheitsmoment ist gegeben durch $I_O = I_x + I_y$.

Bestimmen Sie I_x , I_y und I_O für die Fläche, welche begrenzt wird duch 3x + 4y = 24, x = 0 und y = 0.

Lösung: $I_x = 6A$, $I_y = 32/3A$, $I_O = I_x + I_y$.

Viel Spass!