Lec. 33. Problem Solving Session

SIIED9 Let a, b & R such that a < b.

$$L: C'[a,b] \rightarrow \mathbb{R}$$

$$L(f) = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx = \begin{cases} \text{the length of} \\ \text{the curve } y = \text{fow} \end{cases}$$

$$deferent value on [a,b]$$
over [a,b]

1) Show L(f)>, b-a for all fec'[a,b].

Pf. Let $f \in C[[a,b]]$. Then for any $x \in [a,b]$, $f'(x) \in \mathbb{R}$ and so $[f'(x)]^2 > 0$, so $1 + [f'(x)]^2 > 1$, so $\sqrt{1 + [f'(x)]^2} > 1$.

It follows that

$$L(f) = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} dx > \int_{a}^{b} 1 dx = b - a.$$

M

Q het $m \in [0, \infty)$ and let f(x) = m(x-a) for all $x \in [a, b]$. Compute L(f).

Seln Since f'(x) = m, $L(f) = \int_a^b \sqrt{1+m^2} dx = \sqrt{1+m^2} \int_a^b 1 dx = \sqrt{1+m^2} (b-a).$

3 Rng (L) = $\Gamma b - \alpha$, ∞). PE. Will show Rng (L) $\subseteq \Gamma b - \alpha$, ∞) and $\Gamma b - \alpha$, ∞) $\subseteq Rng (L)$.

The first set inclusion was shown in Ω , so it remains to show $\Gamma(b-a,\infty) \subseteq Rng(L)$. Let $\gamma \in \Gamma(b-a,\infty)$, i.e., $\gamma > b-a$.

NTS: y E Rng (L), which means we need to find of GC [a,b] s.t. L(f)=y.

We propose that $f(x) = [y^2 - 1 (x-a)]$ Will do. First, $f \in C^1[a,b]$ because it is linear. Furthermore, We note that

$$L(f) = \int_{a}^{b} \sqrt{1 + \left(\frac{y}{b-a}\right)^{2}} dx$$

$$= \int_{a}^{b} \frac{y}{b-a} dx = \frac{y}{b-a} \int_{a}^{b} dx dx$$

$$= \frac{y}{b-a} (b-a) = y$$

$$y = \sqrt{1+m^2(b-\alpha)}$$

$$1 + m^2 = \left(\frac{y}{b-a}\right)^2$$

$$m = \sqrt{\frac{y}{b-a}} - 1$$

SIIE12814 (Tips on how to prove / disprove surjection/injection.) Let A and B be sets and let $f: A \rightarrow B$. Of To prove that f is a surjection from A to B: $(\forall y \in B) (\exists x \in A) (f \in A) = y)$. So to disprove that f is a surjection from A to B:

 $(\exists y \in B)(\forall x \in A) (fox) \neq y) \qquad \neg (P \Rightarrow Q) \equiv P \land \neg Q$ $\textcircled{3} To prove that f is an injection:}$

 $(\forall x_1, x_2 \in A) [f(x_1) = f(x_2) \Rightarrow x_1 = x_2]$ or $(\forall x_1, x_2 \in A) [x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)]$

To disprove that fis an injection: $(\exists \lambda_1, \lambda_2 \in A) [f(\lambda_1) = f(\lambda_2) \land \lambda_1 \neq \lambda_2]$ or $(\exists \lambda_1, \lambda_2 \in A) [\lambda_1 \neq \lambda_2 \land f(\lambda_1) = f(\lambda_2)]$ SII E15 Let S and T be sets. Define

 $f: p(S) \times p(T) \longrightarrow p(SUT)$ by f(A,B) = AUB for all $A \subseteq S$ and all $B \subseteq T$.

(a) Show f is a surjection.

PF [WTS: for any Y \in P(SUT), there exists (A,B) \in P(S) \times P(T) Such that f(A,B) = AUB = Y.

Let YEP(SUT), i.e., YESUT.

Suggestion

Consider:

Show:

ASS and BST and Y=AUB.