Power Series

LaurenceWarne

September 2, 2019

Contents

1	Definition	1
	1.1 Proof	6

1 Definition

Let $(a_n)_n$ be some sequence, then a series of the form:

$$\sum_{n=1}^{\infty} a_n x^n$$

Is called a power series (in x), where $x \in \mathbb{R}$.

We make the statement that one of the following must be true:

$$S = \sum_{n=1}^{\infty} a_n x^n$$

Converges:

- 1. $\forall x \in \mathbb{R}$
- 2. Only for x = 0
- 3. $\forall |x| \leq R$, and diverges $\forall |x| > R$ where R is some real. We this R The Radius of Convergence of the power series

1.1 Proof

Suppose S converges for some x = r, then we know that the sequence $(a_n r^n)_n$ is null and hence that $\exists M \ s.t. \ |a_n r^n| \leq M \ \forall n$. Now consider some |u| < |r|, and let $t = \frac{|u|}{|r|}$. So that 0 < t < 1 and

$$|a_n u^n| = |a_n r^n| t^n \le M t^n \ \forall n$$

Summing over infinity:

$$\implies 0 \le \sum_{n=1}^{\infty} |a_n u^n| \le M \sum_{n=1}^{\infty} t^n$$

Then the series on the right is a convergent geometric series by the predicate on t, and hence we can conclude by the sandwich rule that S converges absolutely for x=u.