

LU Factorization: Computing the Determinants

Yixuan Liu Laura Vetter Josh Cohen Jae Yoon Chun

Questions to be answered...

- What is LU Factorization?
- How do we compute determinants from LU Factorization?
- Does LU Factorization always work for square matrices?
- Is it a more efficient way to calculate determinants compared to other methods?

LU Factorization

Definition:

If **A** is an $n \times n$ matrix over a field $F(A \in M_n(F))$, then A is said to "have a LU factorization" if there exists a lower-triangular matrix $L \in M_n(F)$ and an upper triangular matrix $U \in M_n(F)$ such that **A=LU**.

This process is a by-product of Gaussian Elimination.

Finding LU factorization via Gaussian Elimination

Assuming row swaps are not required, then the Gaussian Elimination takes n-1 steps in total.

Let

 $A^{(k)}$: the k-th step of the Gaussian Elimination of A. U: the reduced row echelon form of A (i.e. $U=A^{(n-1)}$). $M_1, M_2, ..., M_{n-1}$: the elimination matrices.

Then we have

$$A^{(1)} = M_{1} * A$$

$$A^{(2)} = M_{2} * A^{(1)} = M_{2} * M_{1} * A$$

$$\vdots$$

$$U = A^{(n-1)} = M_{n-1} * M_{n-2} * ... * M_{1} * A$$

Thus

L= $(M_{n-1}M_{n-2}...M_1)^{-1} = M_1^{-1}M_2^{-1}...M_{n-2}^{-1}M_{n-1}^{-1}$ (i.e. the inverse of all elimination processes)

Permutation Matrix

Definition:

A permutation matrix, P, is obtained by permuting the rows of an $n \times n$ identity matrix according to some permutation of the number 1 to n.

Not all matrices can be written as LU, because it is sometimes necessary to swap rows during Gaussian Elimination. However, taking accounts of these swaps, we can find a permutation matrix P so that **A=PLU**.

Example of a decomposition:

https://www.student.cs.uwaterloo.ca/~cs370/notes/LUExample2.pdf

Calculating Determinants using PLU Factorization

Suppose A has a PLU factorization, A = PLU. Then

Since det(L) = 1,

$$det (A) = (-1)^r det(U)$$

where r is the number of row swaps

Finding LU factorization via Gaussian Elimination

Assuming row swaps are not required, then the Gaussian Elimination takes n-1 steps in total.

Let

 $A^{(k)}$: the k-th step of the Gaussian Elimination of A.

U: the reduced row echelon form of A (i.e. $U=A^{(n-1)}$).

 $M_1, M_2, ..., M_{n-1}$: the elimination matrices.

Then we have

$$A^{(1)} = M_{1} * A$$

$$A^{(2)} = M_{2} * A^{(1)} = M_{2} * M_{1} * A$$

$$\vdots$$

$$U = A^{(n-1)} = M_{n-1} * M_{n-2} * ... * M_{1} * A$$

Thus

L= $(M_{n-1}M_{n-2}...M_1)^{-1} = M_1^{-1}M_2^{-1}...M_{n-2}^{-1}M_{n-1}^{-1}$ (i.e. the inverse of all elimination processes)

Existence and Uniqueness

- The PLU factorisation always exists
- This factorisation is not unique

- However, for a fixed P, L and U are unique
- Sometimes, a particular choice of P is required to avoid serious rounding errors...

Why

Pivot?

Gaussian elimination

$$\begin{bmatrix} 2 & 1 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 4 \\ 0 & 3 & 2 \\ 0 & 3 & 2 \end{bmatrix}$$

$$= \mathcal{R}3 - \frac{\mathcal{U}_{31}}{2} \mathcal{R}1$$

$$= \mathcal{R}3 - \frac{1}{2} \mathcal{R}1$$

Roundoff errors

200 / 2.01 = 99.502487562189054726368159203980 99502487562189054726

Pioneers

1948 - Alan TuringRounding of errors in matrix processes

1961 - James WilkinsonError analysis of direct methods of matrix inversion

Solving linear systems Ax = b

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Roundoff errors

200 / 2.01 = 99.502487562189054726368159203980 99502487562189054726

Condition numbers

The **condition number** (coined by turing) of a function with respect to an argument measures how much the output value of the function can change for a small change in the input argument

A problem with a low condition number is said to be **well-conditioned**, while a problem with a high condition number is said to be **ill-conditioned**

Pivoting

Partial Pivoting

Choose largest element in the column LU = PA

Complete Pivoting

Choose largest element in remaining portion of matrix LU = PAQ

Running Time Analysis

ourDet VS fastDet:
Computing the Determinant of a random 6 ×6 matrix

fastDet VS Maple:
Computing the Determinant of a random 70 × 70 matrix

Running Time

- A flop is a single (floating-point) operation x@y where @ is any one of addition, subtraction, multiplication and division.
- Computation time increases because more calculations are required.
- The number of flops required by an algorithm to solve a problem is frequently a polynomial in the dimension(s) of the problem.
- Only the leading term of the polynomial is of interest, and generally only its degree

PA = LU: Costs and benefits

In general, considering terms in row i of LU = PA,

$$l_{ij} = ([PA]_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}) / u_{jj} \quad j = 1, \dots, i-1 \quad \sum_{j=1}^{i-1} 2(j-1) + 1 \text{ flops}$$
 $u_{ij} = [PA]_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj} \qquad j = i, \dots, n \quad \sum_{j=i}^{n} 2(i-1) \text{ flops}$

- Our method: flops = $2n^3/3$
- The method in lab 3: flops = $2n^3$

Running Time Analysis

ourDet VS fastDet:
Computing the Determinant of a random 6 ×6 matrix

fastDet VS Maple:
Computing the Determinant of a random 70 × 70 matrix

Example: Matrix-vector product

• Form y = Ax for

$$A \in \mathbb{R}^{m \times n}$$

• "Algorithm" is

For
$$i = 1, \dots, m$$
 $y_i = \sum_{j=1}^n a_{ij} x_j$

- Analysis:
 - 2 flops for each term in the summation
 - *n* terms in the summation: total 2*n* flops per summation
 - m summations: total 2mn flops
- The flop count of 2mn
 - Double either dimension and the count doubles
 - Each entry in A is used exactly once
- If m = n then the flop count is $2n^2$.

Example: Matrix-Matrix product

- Form C = AB for $A \in \mathbb{R}^{m \times r}$ and $B \in \mathbb{R}^{r \times n}$
- "Algorithm" is

For
$$i = 1, \dots, m$$

 $j = 1, \dots, n$ $c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}$

- Analysis:
 - 2 flops for each term in the summation
 - r terms in the summation: total 2r flops per summation
 - mn summations: total 2mnr flops
- The flop count of 2*mnr* is *mnr*
- If r = m = n then the flop count is $2n^3$.

Cholesky decomposition: Computational cost

• Cholesky decomposition general form $A = LL^T$

$$\begin{bmatrix} I_{11} & & & & \\ I_{21} & I_{22} & & & \\ \vdots & \ddots & \ddots & & \\ I_{n1} & \dots & I_{n,n-1} & I_{nn} \end{bmatrix} \begin{bmatrix} I_{11} & I_{21} & \dots & I_{n1} \\ & I_{22} & \dots & I_{n2} \\ & & \ddots & \vdots \\ & & & I_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{21} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

- n(n+1)/2 nonlinear equations in n(n+1)/2 unknowns
- Total Cost: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^3 + O(n^2)$
- Cholesky decomposition is half the cost of Gaussian elimination for general A

Running Time Analysis

ourDet VS fastDet:
Computing the Determinant of a random 6 ×6 matrix

fastDet VS Maple:
Computing the Determinant of a random 70 × 70 matrix

References

https://vismor.com/documents/network analysis/matrix algorithms/S4.php

http://math.stackexchange.com/questions/186972/how-can-lu-factorization-be-use d-in-non-square-matrix

http://arxiv.org/pdf/math/0506382v1.pdf

http://mathforcollege.com/nm/simulations/nbm/04sle/nbm_sle_sim_inversecompti me.pdf

http://math.stackexchange.com/questions/160784/what-is-the-importance-of-dete rminants-in-linear-algebra

http://gauss.uc3m.es/web/personal_web/fdopico/papers/arbor-2011-turing.pdf