

Chương 1. Khái niệm về mạch điện phi tuyến

- 1.1. Mạch điện phi tuyến và các phần tử mạch phi tuyến
- 1.2. Các đặc tính của phần tử phi tuyến
- 1.3. Tính chất của mạch điện phi tuyến
- 1.4. Các phương pháp phân tích mạch điện phi tuyến

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.1. Mạch điện phi tuyến

- + Mạch điện chứa ít nhất 1 phần tử R, L, C phi tuyến
- + Phương trình mô tả: các phương trình vi phân thường trong miền thời gian, dạng phi tuyến, viết theo 2 định luật Kirchhoff
- + Biến trạng thái: điện áp u, dòng điện i, từ thông Ψ , điện tích q, cùng các quan hệ u-i, Ψ -i, q-u phi tuyến

Quan hệ *u-i* phi tuyến

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.2. Phần tử và phương trình trạng thái của phần tử

- + Phần tử mạch: một bộ phân của mạch mà quá trình đo bởi một bộ biến liên hệ nhau trong một PT hoặc HPT không liên quan tới bộ phận khác
- + PT (HPT) trạng thái của phần tử: PT (HPT) liên hệ giữa các biến đặc trưng riêng cho quá trình điện từ của phần tử, không liên quan tới các phần tử khác
- + Dạng PTĐT thường gặp trong lý thuyết mạch điện:

$$y = k(x)\frac{dx}{dt}$$

 $y = k(x) \frac{dx}{dt}$ k(x) – hệ số đặc trưng, quyết định tính chất của PT

+ Ví dụ:

dòng điện:

Cuộn dây dẫn mang
$$u = \frac{d\psi}{dt}$$
 $\psi = \psi(i)$ $u = \frac{\partial \psi}{\partial i} \frac{di}{dt} = L(i) \frac{di}{dt}$

L(i) – hệ số đặc trưng, quyết định tính chất của PT điện cảm

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.2. Phần tử và phương trình trạng thái của phần tử

- + Phần tử mạch: một bộ phân của mạch mà quá trình đo bởi một bộ biến liên hệ nhau trong một PT hoặc HPT không liên quan tới bộ phận khác
- + PT (HPT) trạng thái của phần tử: PT (HPT) liên hệ giữa các biến đặc trưng riêng cho quá trình điện từ của phần tử, không liên quan tới các phần tử khác
- + Dạng PTĐT thường gặp trong lý thuyết mạch điện:

$$y = k(x)\frac{dx}{dt}$$

 $y = k(x) \frac{dx}{dt}$ k(x) – hệ số đặc trưng, quyết định tính chất của PT

+ Ví dụ:

$$i = \frac{dq}{dt}$$
 $q = q(u)$ $i = \frac{\partial q}{\partial u} \frac{du}{dt} = C(u) \frac{du}{dt}$

C(u) – hệ số đặc trưng, quyết định tính chất của PT điện dung

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.2. Phần tử và phương trình trạng thái của phần tử

- + Phần tử mạch: một bộ phân của mạch mà quá trình đo bởi một bộ biến liên hệ nhau trong một PT hoặc HPT không liên quan tới bộ phận khác
- + PT (HPT) trạng thái của phần tử: PT (HPT) liên hệ giữa các biến đặc trưng riêng cho quá trình điện từ của phần tử, không liên quan tới các phần tử khác
- + Dạng PTĐT thường gặp trong lý thuyết mạch điện:

$$y = k(x)\frac{dx}{dt}$$

k(x) – hệ số đặc trưng, quyết định tính chất của PT

+ Ví dụ:

Điện trở:
$$u = u(i) = R(i)i$$

R(i) – hệ số đặc trưng, quyết định tính chất của PT điện trở

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.2. Phần tử và phương trình trạng thái của phần tử

- + Phần tử mạch: một bộ phân của mạch mà quá trình đo bởi một bộ biến liên hệ nhau trong một PT hoặc HPT không liên quan tới bộ phận khác
- + PT (HPT) trạng thái của phần tử: PT (HPT) liên hệ giữa các biến đặc trưng riêng cho quá trình điện từ của phần tử, không liên quan tới các phần tử khác
- + Dạng PTĐT thường gặp trong lý thuyết mạch điện:

$$y = k(x)\frac{dx}{dt}$$

k(x) – hệ số đặc trưng, quyết định tính chất của PT

+ Ví dụ:

Đèn 3 cực: Với u_a cố định, dòng ia biến thiên theo điện áp lưới ug $i_a(u_g)$ - phi tuyến $i_a(u_g) = \frac{\partial i_a}{\partial u_g} u_g = S(u_g) u_g$ Cung Thành Long

1

MẠCH ĐIỆN PHI TUYẾN

Khái niệm về mạch điện phi tuyến

1.1. Mạch điện phi tuyến và các phần tử của mạch điện phi tuyến

1.1.3. Kí hiệu các phần tử R, L, C phi tuyến

Điện trở phi tuyến

Điện cảm phi tuyến

Điện dung phi tuyến

→ Các phẩn tử vật lý: được mô hình hóa dưới dạng ghép nối các phần tử cơ bản theo quy luật nào đó

→ Cho các phần tử phi tuyến: đồ thị [u(i), q(u), Ψ(i)]; bảng số hoặc phương trình gần đúng

> Ví dụ: Một điện trở phi tuyến có thể cho dưới dạng

$$u = ai^3 + bi$$

U(V)	0	10	20	30
I(A)	0	0,2	0,25	0,4

1.2. Các đặc tính của phần tử phi tuyến

1.2.1. Đặc tính hệ số động $k_d(x)$

+ Định nghĩa: đạo hàm riêng của biến y theo x đo trên một phần tử, thể hiện độ dốc của đặc tính trạng thái y(x)

$$k_d(x) = \frac{\partial y}{\partial x}$$

$$y(x) = y(x_0) + \int_{x_0}^x k_d(x) dx$$

+ Điện trở động, điện cảm động, điện dung động:
$$R_d = \frac{\partial u(i)}{\partial i} \qquad L_d = \frac{\partial \psi(i)}{\partial i} \qquad C_d = \frac{\partial q(u)}{\partial u}$$

$$u(i) = u(i_0) + \int\limits_{i_0}^i R_d(i) di \qquad \psi(i) = \psi(i_0) + \int\limits_{i_0}^i L_d(i) di \qquad q(u) = q(u_0) + \int\limits_{u_0}^u C_d(u) du$$

+ Xấp xỉ tuyến tính:

$$u(i) = u(i_0) + R_d(i)(i - i_0)$$
 $\psi(i) = \psi(i_0) + L_d(i)(i - i_0)$

1.2. Các đặc tính của phần tử phi tuyến

1.2.2. Đặc tính hệ số tĩnh $k_t(x)$

+ Định nghĩa: tỉ số của biến y theo x đo trên một phần tử

$$k_{t}(x) = \frac{y(x)}{x}$$

+ Đặc điểm: → không thể hiện xu thế biến thiên của đường cong y(x)

→ Là các giá trị rời rạc của mối quan hệ phi tuyến trên các phẩn tử R, L, C

+ Ví dụ:

U(V)	0	10	20	30
I(A)	0	0,2	0,25	0,4
kt	0	50	80	75

1.2. Các đặc tính của phần tử phi tuyến

- 1.2.3. Tuyến tính hóa và quán tính hóa phần tử phi tuyến
 - + Tuyến tính hóa đoạn đặc tính phi tuyến: -> giải bài toán mạch tuyến tính
 - + Với mạch hoạt động ở chế độ xác lập chu kỳ:

 dùng phương pháp tuyến tính hóa hoặc quán tính hóa với các giá trị tức thời
 - Coi phần tử phi tuyến có tính quán tính, nó phi tuyến với các giá trị hiệu dụng
 - Với các giá trị tức thời, coi R(i), L(i), C(u) là hằng → có thể mô tả bằng hệ phương trình tuyến tính

1.3. Các tính chất của mạch điện phi tuyến

1.3.1. Tính chất tạo tần

+ Kích thích vào mạch bằng tín hiệu điều hòa tần số $\omega \rightarrow \dot{\sigma}$ chế độ xác lập, đáp ứng chứa các tần số bội của tần số cơ bản k ω (k=1,2,...)

→ Không sử dụng được phương pháp phức hóa sơ đồ mạch để phân tích mạch một cách trực tiếp

1.3.2. Các tính chất đặc trưng khác

- → Không thỏa mãn nguyên lý xếp chồng
- → Không có tính chất truyền đạt tương hỗ
- → Xuất hiện các hiện tượng không tồn tại trong mạch tuyến tính: ổn áp, ổn dòng,...

1.4. Các phương pháp phân tích mạch điện phi tuyến

1.4.1. Phương pháp đồ thị

- + Tìm đáp ứng của mạch dựa trên các phép cộng, trừ đồ thị (Với mạch Kirchhoff: giải tích đồ thị; với các mạch điều khiển: phương pháp mặt phẳng pha,...)
- + Áp dụng phân tích các mạch đơn giản, thường không quá cấp 2

1.4.2. Các phương pháp giải tích

- + Biểu diễn các đặc tính phi tuyến dưới dạng hàm giải tích
- + Tìm nghiệm gần đúng dưới dạng chuỗi hàm $\sum a_k x_k(t)$
 - → Có thể phân tích nhiều chế độ khác nhau ở mạch phi tuyến
 - → Khó áp dụng các phần mềm hỗ trợ tính toán, độ chính xác không cao
 - → Một số phương pháp: pp cân bằng điều hòa, pp tham số bé,...

1.4. Các phương pháp phân tích mạch điện phi tuyến

1.4.3. Các phương pháp số

- + Sử dụng các kĩ thuật xấp xỉ, rời rạc hóa các quá trình liên tục
- + Tìm nghiệm dưới dạng đại số, tập các giá trị rời rạc
 - → Khối lượng tính toán lớn
 - → Dễ áp dụng các phần mềm hỗ trợ tính toán, độ chính xác cao theo yêu cầu
 - → Một số phương pháp: pp dò, pp lặp, pp sai phân,...

1.4.4. Các phương pháp gần đúng khác

- + Đưa về phân tích các bài toán tuyến tính trên từng đoạn đặc tính phi tuyến với sai số tuyến tính hóa chấp nhận được (tuyến tính hóa từng đoạn)
- + Quán tính hóa các đặc tính phi tuyến (điều hòa tương đương, tuyến tính hóa quanh điểm làm việc,...)