Deep Generative Models Lecture 11

Roman Isachenko

Ozon Masters

Spring, 2021

Recap of previous lecture

Vanilla GAN

$$\min_{G} \max_{D} V(G, D) = \min_{G} \max_{D} \left[\mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{p(\mathbf{z})} \log (1 - D(G(\mathbf{z}))) \right]$$

Main problems

- Vanishing gradients (non-saturating GAN does not suffer of it);
- Mode collapse (caused by behaviour of Jensen-Shannon divergence).

Informal theoretical results

Distribution of real images $\pi(\mathbf{x})$ and distribution of generated images $p(\mathbf{x}|\theta)$ are low-dimensional and have disjoint supports. In this case

$$KL(\pi||p) = KL(p||\pi) = \infty$$
, $JSD(\pi||p) = \log 2$

Goodfellow I. J. et al. Generative Adversarial Networks, 2014 Arjovsky M., Bottou L. Towards Principled Methods for Training Generative Adversarial Networks, 2017

Recap of previous lecture

Wasserstein distance

$$W(\pi, p) = \inf_{\gamma \in \Gamma(\pi, p)} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \gamma} \|\mathbf{x} - \mathbf{y}\| = \inf_{\gamma \in \Gamma(\pi, p)} \int \|\mathbf{x} - \mathbf{y}\| \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y}$$

- ► $\Gamma(\pi, p)$ the set of all joint distributions $\Gamma(\mathbf{x}, \mathbf{y})$ with marginals π and p ($\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{x} = p(\mathbf{y})$, $\int \gamma(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \pi(\mathbf{x})$)
- $\gamma(\mathbf{x}, \mathbf{y})$ transportation plan (the amount of "dirt" that should be transported from point \mathbf{x} to point \mathbf{y}).
- $ightharpoonup \gamma(\mathbf{x}, \mathbf{y})$ the amount, $\|\mathbf{x} \mathbf{y}\|$ the distance.

Kantorovich-Rubinstein duality

$$W(\pi||p) = rac{1}{K} \max_{\|f\|_{\mathbf{x} \leq K}} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right],$$

where $||f||_L \leq K$ are K-Lipschitz continuous functions $(f: \mathcal{X} \to \mathbb{R})$.

Recap of previous lecture

Vanilla GAN objective

$$\min_{G} \max_{D} \mathbb{E}_{\pi(\mathbf{x})} \log D(\mathbf{x}) + \mathbb{E}_{\rho(\mathbf{z})} \log (1 - D(G(\mathbf{z})))$$

WGAN objective

$$\min_{G} W(\pi||p) = \min_{G} \max_{\phi \in \mathbf{\Phi}} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}, \phi) - \mathbb{E}_{p(\mathbf{z})} f(G(\mathbf{z}), \phi) \right].$$

- ▶ Discriminator D is similar to the function f, but not the same (it is not a classifier anymore). In the WGAN model, function f is usually called *critic*.
- "Weight clipping is a clearly terrible way to enforce a Lipschitz constraint". If the clipping parameter is large, it is hard to train the critic till optimality. If the clipping parameter is too small, it could lead to vanishing gradients.

Weight clipping analysis

- The critic ignores higher moments of the data distribution.
- The gradients either grow or decay exponentially.

Gradient penalty makes the gradients more stable.

Theorem

Let $\pi(\mathbf{x})$ and $p(\mathbf{x})$ be two distribution in \mathcal{X} , a compact metric space. Then, there is 1-Lipschitz function f^* which is the optimal solution of

$$\max_{\|f\|_L \leq 1} \left[\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x}) \right].$$

Let γ be the optimal transportation plan between $\pi(\mathbf{x})$ and $p(\mathbf{x})$. Then, if f^* is differentiable, $\gamma(\mathbf{x}=\mathbf{y})=0$ and $\hat{\mathbf{x}}_t=t\mathbf{x}+(1-t)\mathbf{y}$ with $\mathbf{x}\sim\pi(\mathbf{x})$, $\mathbf{y}\sim p(\mathbf{x}|\boldsymbol{\theta})$, $t\in[0,1]$ it holds that

$$\mathbb{P}_{(\mathbf{x},\mathbf{y})\sim\gamma}\left[\nabla f^*(\hat{\mathbf{x}}_t) = \frac{\mathbf{y} - \hat{\mathbf{x}}_t}{\|\mathbf{y} - \hat{\mathbf{x}}_t\|}\right] = 1.$$

Corollary

 f^* has gradient norm 1 almost everywhere under $\pi(\mathbf{x})$ and $p(\mathbf{x})$.

A differentiable function is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere.

Gradient penalty

$$W(\pi||p) = \underbrace{\mathbb{E}_{\pi(\mathbf{x})} f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x})} f(\mathbf{x})}_{\text{original critic loss}} + \lambda \underbrace{\mathbb{E}_{U[0,1]} \left[(\|\nabla_{\hat{\mathbf{x}}} f(\hat{\mathbf{x}})\|_2 - 1)^2 \right]}_{\text{gradient penalty}},$$

- Samples $\hat{\mathbf{x}}_t = t\mathbf{x} + (1-t)\mathbf{y}$ with $t \in [0,1]$ are uniformly sampled along straight lines between pairs of points: \mathbf{x} from the data distribution $\pi(\mathbf{x})$ and \mathbf{y} from the generator distribution $p(\mathbf{x}|\boldsymbol{\theta})$.
- ► Enforcing the unit gradient norm constraint everywhere is intractable, it turns out to be sifficient to enforce it only along these straight lines.

Algorithm 1 WGAN with gradient penalty. We use default values of $\lambda=10,\,n_{\rm critic}=5,\,\alpha=0.0001,\,\beta_1=0,\,\beta_2=0.9.$

Require: The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α , β_1 , β_2 .

Require: initial critic parameters w_0 , initial generator parameters θ_0 .

```
1: while \theta has not converged do
 2:
             for t = 1, ..., n_{\text{critic}} do
                    for i = 1, ..., m do
 3:
                           Sample real data x \sim \mathbb{P}_r, latent variable z \sim p(z), a random number \epsilon \sim U[0,1].
 4:
 5:
                           \tilde{\boldsymbol{x}} \leftarrow G_{\theta}(\boldsymbol{z})
                           \hat{\boldsymbol{x}} \leftarrow \epsilon \boldsymbol{x} + (1 - \epsilon)\tilde{\boldsymbol{x}}
 6:
                           L^{(i)} \leftarrow D_w(\tilde{x}) - D_w(x) + \lambda(\|\nabla_{\hat{x}}D_w(\hat{x})\|_2 - 1)^2
 7:
 8:
                    end for
                    w \leftarrow \operatorname{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
 9:
10:
             end for
              Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
11:
              \theta \leftarrow \operatorname{Adam}(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{w}(G_{\theta}(z)), \theta, \alpha, \beta_{1}, \beta_{2})
12:
13: end while
```


WGAN-GP convergence

Min. score	Only GAN	Only WGAN-GP	Both succeeded	Both failed
1.0	0	8	192	0
3.0	1	88	110	1
5.0	0	147	42	11
7.0	1	104	5	90
9.0	0	0	0	200

How else could we enforce Lipschitzness?

Fact 1

Let denote by $\sigma(\mathbf{A})$ a spectral norm of matrix \mathbf{A} .

$$\sigma(\mathbf{A}) = \max_{\mathbf{h} \neq 0} \frac{\|\mathbf{A}\mathbf{h}\|_2}{\|\mathbf{h}\|_2} = \max_{\|\mathbf{h}\|_2 \leq 1} \|\mathbf{A}\mathbf{h}\|_2 = \lambda_{\max}(\mathbf{A}),$$

where $\lambda_{\text{max}}(\mathbf{A})$ is the largest singular value of \mathbf{A} . By definition, Lipschitz norm is

$$\|\mathbf{g}\|_{L} = \sup_{\mathbf{x}} \sigma(\nabla \mathbf{g}(\mathbf{x}))$$

Fact 2

Lipschitz norm of superposition is bounded above by product of Lipschitz norms

$$\|\mathbf{g}_1 \circ \mathbf{g}_2\|_L \le \|\mathbf{g}_1\|_L \cdot \|\mathbf{g}_2\|_L$$

Let consider the critic $f(\mathbf{x}, \phi)$ of the following form:

$$f(\mathbf{x}, \phi) = \mathbf{W}_{K+1} a_K (\mathbf{W}_K a_{K-1} (\dots a_1 (\mathbf{W}_1 \mathbf{x}) \dots)).$$

This feedforward network is a superposition of simple functions.

- ▶ a_k is a pointwise nonlinearities. We assume that $||a_k||_L = 1$ (it holds for ReLU).
- ▶ $\mathbf{g}(\mathbf{x}) = \mathbf{W}\mathbf{x}$ is a linear transformation $(\nabla \mathbf{g}(\mathbf{x}) = \mathbf{W})$.

$$\|\mathbf{g}\|_{L} = \sup_{\mathbf{x}} \sigma(\nabla \mathbf{g}(\mathbf{x})) = \sigma(\mathbf{W}).$$

Critic spectral norm

$$||f||_{L} \le ||\mathbf{W}_{K+1}|| \cdot \prod_{k=1}^{K} ||a_{k}||_{L} \cdot ||\mathbf{W}_{k}|| = \prod_{k=1}^{K+1} \sigma(\mathbf{W}_{k}).$$

If we replace the weights in the critic $f(\mathbf{x}, \phi)$ by $\mathbf{W}_{L}^{SN} = \mathbf{W}_{L}/\sigma(\mathbf{W}_{L})$, we will get $||f||_{L} < 1$.

How to compute $\sigma(\mathbf{W})$?

If we apply singular value decomposition to compute the $\sigma(\mathbf{W})$ at each round of the algorithm, the algorithm becomes intractable.

Power iteration

- \triangleright **u**₀ random vector.
- ▶ for k = 0, ..., n 1: (n is a large enough number of steps)

$$\mathbf{v}_{k+1} = \frac{\mathbf{W}^T \mathbf{u}_k}{\|\mathbf{W}^T \mathbf{u}_k\|}, \quad \mathbf{u}_{k+1} = \frac{\mathbf{W} \mathbf{v}_{k+1}}{\|\mathbf{W} \mathbf{v}_{k+1}\|}.$$

approximate the spectral norm

$$\sigma(\mathbf{W}) \approx \mathbf{u}_n^T \mathbf{W} \mathbf{v}_n.$$

Algorithm 1 SGD with spectral normalization

- Initialize $\tilde{u}_l \in \mathcal{R}^{d_l}$ for $l=1,\ldots,L$ with a random vector (sampled from isotropic distribution).
- For each update and each layer l:
 - 1. Apply power iteration method to a unnormalized weight W^l :

$$\tilde{\boldsymbol{v}}_l \leftarrow (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l / \| (W^l)^{\mathrm{T}} \tilde{\boldsymbol{u}}_l \|_2 \tag{20}$$

$$\tilde{\boldsymbol{u}}_l \leftarrow W^l \tilde{\boldsymbol{v}}_l / \|W^l \tilde{\boldsymbol{v}}_l\|_2 \tag{21}$$

2. Calculate $\bar{W}_{\rm SN}$ with the spectral norm:

$$\bar{W}_{\mathrm{SN}}^{l}(W^{l}) = W^{l}/\sigma(W^{l}), \text{ where } \sigma(W^{l}) = \tilde{\boldsymbol{u}}_{l}^{\mathrm{T}}W^{l}\tilde{\boldsymbol{v}}_{l}$$
 (22)

3. Update W^l with SGD on mini-batch dataset \mathcal{D}_M with a learning rate α :

$$W^{l} \leftarrow W^{l} - \alpha \nabla_{W^{l}} \ell(\bar{W}_{SN}^{l}(W^{l}), \mathcal{D}_{M})$$
 (23)

Divergences

What do we have?

- Forward KL divergence in maximum likelihood estimation
- ► Reverse KL in variational inference
- ▶ JS divergence in vanilla gan
- Wasserstein distance in WGAN

What is a divergence?

Let \mathcal{S} be the set of all possible probability distributions. Then $D: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ is a divergence if

- ▶ $D(\pi||p) \ge 0$ for all $\pi, p \in \mathcal{S}$;
- ▶ $D(\pi||p) = 0$ if and only if $\pi \equiv p$.

General divergence minimization task

$$\min_{p} D(\pi||p)$$

f-divergence

$$D_f(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x}.$$

Here $f: \mathbb{R}_+ \to \mathbb{R}$ is a convex, lower semicontinuous function satisfying f(1) = 0.

Name	$D_f(P\ Q)$	Generator $f(u)$
Kullback-Leibler	$\int p(x) \log rac{p(x)}{q(x)} \mathrm{d}x \ \int q(x) \log rac{q(x)}{p(x)} \mathrm{d}x$	$u \log u$
Reverse KL	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$	$-\log u$
Pearson χ^2	$\int rac{(q(x)-p(x))^2}{p(x)} \mathrm{d}x$	$(u-1)^2$
Squared Hellinger	$\int \left(\sqrt{p(x)}-\sqrt{q(x)} ight)^2\mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x) \log \frac{2q(x)}{p(x) + q(x)} dx - \log(4)$	$u\log u - (u+1)\log(u+1)$

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization, 2016

Fenchel conjugate

$$f^*(t) = \sup_{u \in dom_f} (ut - f(u)), \quad f(u) = \sup_{t \in dom_{f^*}} (ut - f^*(t))$$

Important property: $f^{**} = f$ for convex f.

f-divergence

$$D_{f}(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x} =$$

$$= \int p(\mathbf{x}) \sup_{t \in \text{dom}_{f^{*}}} \left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})} t - f^{*}(t)\right) d\mathbf{x} =$$

$$= \int \sup_{t \in \text{dom}_{G^{*}}} (\pi(\mathbf{x}) t - p(\mathbf{x}) f^{*}(t)) d\mathbf{x}.$$

Here we seek value of t, which gives us maximum value of $\pi(\mathbf{x})t - p(\mathbf{x})f^*(t)$, for each data point \mathbf{x} .

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization, 2016

f-divergence

$$D_f(\pi||p) = \mathbb{E}_{p(\mathbf{x})} f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) = \int p(\mathbf{x}) f\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x}.$$

Variational f-divergence estimation

$$\begin{split} D_f(\pi||p) &= \int \sup_{t \in \mathsf{dom}_{f^*}} \left(\pi(\mathbf{x})t - p(\mathbf{x})f^*(t)\right) d\mathbf{x} \geq \\ &\geq \sup_{T \in \mathcal{T}} \int \left(\pi(\mathbf{x})T(\mathbf{x}) - p(\mathbf{x})f^*(T(\mathbf{x}))\right) d\mathbf{x} = \\ &= \sup_{T \in \mathcal{T}} \left[\mathbb{E}_{\pi}T(\mathbf{x}) - \mathbb{E}_{p}f^*(T(\mathbf{x}))\right] \end{split}$$

This is a lower bound because of Jensen-Shannon inequality and restricted class of functions $\mathcal{T}: \mathcal{X} \to \mathbb{R}$.

Note: To evaluate lower bound we only need samples from $\pi(\mathbf{x})$ and $p(\mathbf{x})$. Hence, we could fit implicit generative model.

Nowozin S., Cseke B., Tomioka R. f-GAN: Training Generative Neural Samplers using

Variational divergence estimation

$$D_f(\pi||
ho) \geq \sup_{T \in \mathcal{T}} \left[\mathbb{E}_{\pi} T(\mathbf{x}) - \mathbb{E}_{
ho} f^*(T(\mathbf{x})) \right]$$

The lower bound is tight for $T^*(\mathbf{x}) = f'\left(\frac{\pi(\mathbf{x})}{p(\mathbf{x})}\right)$.

How to evaluate generative models?

Likelihood-based models

- Split data to train/val/test.
- Fit model on the train part.
- Tune hyperparameters on the validation part.
- Evaluate generalization by reporting likelihoods on the test set.

Not all models have tractable likelihoods

- ▶ VAE: compare ELBO values.
- ► GAN: ???

Let take some pretrained image classification model to get the conditional label distribution $p(y|\mathbf{x})$ (e.g. ImageNet classifier).

What do we want from samples?

Sharpness

The conditional distribution $p(y|\mathbf{x})$ should have low entropy (each image \mathbf{x} should have distinctly recognizable object).

Diversity

The marginal distribution $p(y) = \int p(y|\mathbf{x})p(\mathbf{x})d\mathbf{x}$ should have high entropy (there should be as many classes generated as possible).

What do we want from samples?

- **Sharpness.** The conditional distribution $p(y|\mathbf{x})$ should have low entropy (each image \mathbf{x} should have distinctly recognizable object).
- ▶ **Diversity.** The marginal distribution $p(y) = \int p(y|\mathbf{x})p(\mathbf{x})d\mathbf{x}$ should have high entropy (there should be as many classes generated as possible).

image credit: https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

What do we want from samples?

- ► Sharpness \Rightarrow low $H(y|\mathbf{x}) = -\sum_{\mathbf{y}} \int_{\mathbf{x}} p(y,\mathbf{x}) \log p(y|\mathbf{x}) d\mathbf{x}$.
- ▶ Diversity \Rightarrow high $H(y) = -\sum_{y} p(y) \log p(y)$.

Inception Score

$$IS = \exp(H(y) - H(y|\mathbf{x}))$$

$$= \exp\left(-\sum_{y} p(y) \log p(y) + \sum_{y} \int_{\mathbf{x}} p(y,\mathbf{x}) \log p(y|\mathbf{x}) d\mathbf{x}\right)$$

$$= \exp\left(\sum_{y} \int_{\mathbf{x}} p(y,\mathbf{x}) \log \frac{p(y|\mathbf{x})}{p(y)} d\mathbf{x}\right)$$

$$= \exp\left(\mathbb{E}_{\mathbf{x}} \sum_{y} p(y|\mathbf{x}) \log \frac{p(y|\mathbf{x})}{p(y)}\right) = \exp\left(\mathbb{E}_{\mathbf{x}} KL(p(y|\mathbf{x})||p(y))\right)$$

Inception Score

$$IS = \exp\left(\mathbb{E}_{\mathbf{x}} KL(p(y|\mathbf{x})||p(y))\right)$$

IS limitations

- Inception score depends on the quality of the pretrained classifier $p(y|\mathbf{x})$.
- ► If generator produces images with a different set of labels from the classifier training set, IS will be low.
- ▶ If the generator produces one image per class, the IS will be perfect (there is no measure of intra-class diversity).
- ▶ IS only require samples from the generator and do not take into account the desired data distribution $\pi(\mathbf{x})$ directly (only implicitly via a classifier).

Theorem (informal)

If $\pi(\mathbf{x})$ and $p(\mathbf{x}|\theta)$ has moment generation functions then

$$\pi(\mathbf{x}) = p(\mathbf{x}|\boldsymbol{\theta}) \Leftrightarrow \mathbb{E}_{\pi}\mathbf{x}^k = \mathbb{E}_{p}\mathbf{x}^k, \quad \forall k \geq 1.$$

This is intractable to calculate all moments.

Frechet Inception Distance

$$D^2(\pi, p) = \|\mathbf{m}_{\pi} - \mathbf{m}_{p}\|_2^2 + \operatorname{Tr}\left(\mathbf{C}_{\pi} + \mathbf{C}_{p} - 2\sqrt{\mathbf{C}_{\pi}\mathbf{C}_{p}}\right)$$

- Representations are outputs of intermediate layer from pretrained classification model.
- ▶ \mathbf{m}_{π} , \mathbf{C}_{π} are mean vector and covariance matrix of feature representations for real samples from $\pi(\mathbf{x})$
- ▶ \mathbf{m}_p , \mathbf{C}_p are mean vector and covariance matrix of feature representations for generated samples from $p(\mathbf{x}|\theta)$.

Heusel M. et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Heusel M. et al. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, 2017

Frechet Inception Distance

$$D^2(\pi, p) = \|\mathbf{m}_{\pi} - \mathbf{m}_{p}\|_2^2 + \operatorname{Tr}\left(\mathbf{C}_{\pi} + \mathbf{C}_{p} - 2\sqrt{\mathbf{C}_{\pi}\mathbf{C}_{p}}\right)$$

FID limitations

- ► FID depends on the pretrained classification model.
- FID needs a large samples size for evaluation.
- Calculation of FID is slow.
- FID estimates only two sample moments.

Summary

- Weight clipping is a terrible way to enforce Lipschitzness. Gradient Penalty works better.
- Spectral normalization is a weight normalization technique to enforce Lipshitzness, which is helpful for generator and discriminator.
- f-divergence family is a unified framework for divergence minimization, which uses variational approximation.
- Inception Score and Frechet Inception Distance are the common metrics for GAN evaluation, but both of them have drawbacks.