The Monte-Carlo Revolution in Go

Rémi Coulom

December, 2015

Game Complexity

Game	Complexity*	Status
Tic-tac-toe	10 ³	Solved manually
Connect 4	10 ¹⁴	Solved in 1988
Checkers	10^{20}	Solved in 2007
Chess	10^{50}	Programs > best humans
Go	10 ¹⁷¹	Programs \ll best humans

^{*}Complexity: number of board configurations

Dealing with Huge Trees

Dealing with Huge Trees

Classical approach = depth limit + pos. evaluation (E) (chess, shogi, ...)

Dealing with Huge Trees

Classical approach = depth limit + pos. evaluation (E) (chess, shogi, . . .)

Monte-Carlo approach = random playouts

A Random Playout

Principle of Monte-Carlo Evaluation

Basic Monte-Carlo Move Selection

Algorithm

- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19x19

Basic Monte-Carlo Move Selection

Algorithm

- N playouts for every move
- Pick the best winning rate
- 5,000 playouts/s on 19x19

Problems

- Evaluation may be wrong
- For instance, if all moves lose immediately, except one that wins immediately.

Monte-Carlo Tree Search

Principle

- More playouts to best moves
- Apply recursively
- Under some simple conditions: proven convergence to optimal move when #playouts→ ∞
- UCT: $UCB_i = \frac{W_i}{N_i} + c\sqrt{\frac{\log t}{N_i}}$

Supervised Learning of Stone Patterns

 \bigcirc to move

Patterns

- Library of local shapes
- Automatically generated
- Used for playouts
- Cut branches in the tree

Deep Convolutional Neural Networks

Google and Facebook play Go

- Christopher Clark, Amos Storkey, 2014
- Chris J. Maddison et al., ICLR 2015
- Yuandong Tian and Yan Zhu, ICLR 2016. KGS 3 dan!

History (1/2)

Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

History (1/2)

Pioneers

- 1993: Brügmann: first MC program, not taken seriously
- 2000: The Paris School: Bouzy, Cazenave, Helmstetter

Victories against classical programs

- ullet 2006: Crazy Stone (Coulom) wins 9×9 Computer Olympiad
- 2007: MoGo (Wang, Gelly, Munos, ...) wins 19×19

History (2/2)

Games Against Strong Professionals

• 2008-08: MoGo beats Myungwan Kim (9p), H9

• 2012-03: Zen beats Masaki Takemiya (9p), H4

• 2013-03: CrazyStone beats Yoshio Ishida (9p), H4

• 2014-03: CrazyStone beats Norimoto Yoda (9p), H4

• 2015-03: CrazyStone loses to Chikun Cho (9p), H3

Limits of the Current MC Programs

Limits of the Current MC Programs

Difficulties

- Tree search can't handle all the threats.
- Must decompose into local problems.
- Patterns help, but are sometimes wrong

A Promising Approach

Policy Gradient (Tobias Graf, Abakus)

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works for similar games (Hex, Amazons) and automated planning

Conclusion

Summary of Monte-Carlo Tree Search

- A major breakthrough for computer Go
- Works for similar games (Hex, Amazons) and automated planning

Perspectives

- Deep convolutional neural networks for clever patterns
- Policy gradient for adaptive playouts