

NULL SPACES

$$\Theta \quad A \stackrel{?}{\times} = \stackrel{?}{b}$$

what vector takes matrix A to Zero.

of xmu = [8] but maté trivial.

But suppose $\times \text{nm} = \begin{bmatrix} \frac{1}{5} \\ \frac{7}{3} \end{bmatrix}$. Then $C.\overline{\times}$ mu will also take $A \rightarrow 0$, where C is any constant.

The space of exmul is the mult space

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \Rightarrow C(A) = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 4 \\$$

Say
$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
; Then $N(A) = C \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

perspective of columns.

Now cosider vow space [] But to talk about will space let's make them columns

Num space (A) =
$$C(A^T)$$
 = $N(A^T) = C\begin{bmatrix} x_1 \\ x_2 \\ y_3 \end{bmatrix}$

of course $N(A) \neq N(AT)$ However, observe that columns of A, e.g., $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ because $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = 0$ and we know $x^Ty = 0$ implies $x \perp y$. implies x LY.

Thus
$$N(AT)$$
 is $\bot C(A)$
Similarly $N(A)$ $\bot C(AT)$
because $\begin{bmatrix} 1 \\ 4 \end{bmatrix}^T \begin{bmatrix} 21 \\ 22 \end{bmatrix} = 0$, $\begin{bmatrix} 2 \\ 5 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \end{bmatrix} = 0$, $\begin{bmatrix} 3 \\ 6 \end{bmatrix} \begin{bmatrix} 21 \\ 21 \end{bmatrix} = 0$

Now what does N(AT) I C(A) mean? If A is a thin matrix, then there must be los of unu spaces for AT.

i.e., [] means 10 3D vectors are very redundant, so not of will space for the vow space of A.

This N(AT) is \perp C(A).

Thus N(AT) files up the gap between IRM and C(A).

i.e., [RM = C(A) + N(AT)]

If rank of A = r possess which is also dim(A)

then dim(N(AT)) = m-r

Similarly $IR^n = C(AT) + N(A)$ Now door (C(AT)) = rank(A) even though $C(A) \neq C(A^T)$

20 plane 20 plane

dim (N(A)) = n - r

Matrix A $m \times n$, rank = γ R $\dim(c(A^T)) = \gamma$ Space $c(A^T)$ N(A) N(A) $dim(N(A^T)) = m$ $dim(N(A^T)) = m$

3	Rank
4	L> wo. of linearly indep. cols/vows.
14	vectors in A are dep. then some
c	ombination of columns were
	Catch the other columns.
	Say $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
	Suy W14 + W2C2 = W3C3
	Then [Wi] is a vector in the way mule space.
	LW2
N(A)=	The full mull space is $K \begin{bmatrix} W_1 \\ W_2 \\ W_3 \end{bmatrix}$
3	Rank = W = n 3 3 3D Full vank Soll possible
	N/A) - DEDO
1	Full col. rank P vectors P vectors P

l i	Remk = m < m } 4 30 Full row rank Null space won-zero
1	Full row rank
M	Num space non-zero
	oo soln. possible
-	Date Cha Dank Ca
	Ranke 2 m, Ranke 2n O or of Gol?s.
	0 % 50 600.5.
	Dank & many Sm n2
H	Rank < min & m, n3
3	312AE
0	
	Indep. vectors that span a space.
-	
(a)	DIMENSION = BASIS
(9)	
	Given a space, every basis has
	Given a space, every basis has equal # of vectors called
	Dimension.
6	buz: Q. dim(c(A)) = ?
	A. = rank
	4. = rank.

3 Orthogonal Vectors: x'y = 0Dot prod. X.y = Proj of x on y. Quiz. Q. wow and floor ortho? A. No. u^Tv => test for ortho (9) uu

(3) UTU => L2 morm of u square matrix symm.

Projection When
$$\vec{b}$$
 wor in $C(A)$, $Ax = b$ wor solvable.

 $\vec{p} + \vec{e} = b$
 $\vec{c} = (\vec{b} - x\vec{a})$
 $\vec{a} \cdot \vec{e} = 0$
 $\vec{e} \cdot \vec{e} = 0$

ATA (ATA)

3 Osthonormal vectors 8 = [] 92 ... 9n @ d/syllo 9i9i = 50 When $i \neq j$ 9i9i = 5 When i = jIf Q is square matrix $Q^{T}Q = I, i.e., Q^{T} = Q^{-1}$

3 Projection becomes simple.

$$\hat{x} = \frac{g^Tb}{(g^Tg)} = \frac{g^Tb}{}$$

3) Gram - Schmidt: Make any matrix orthonormat