Определение 1. Многочленом степени n от одной переменной x называется любое выражение вида $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, где $n \in \mathbb{N} \cup \{0\}$, а коэффициенты a_n, \ldots, a_0 — любые числа, причём $a_n \neq 0$. Краткое обозначение: A(x) или A. Коэффициент a_n называют старшим, a_0 — свободным.

Число 0 называют *нулевым* многочленом, его степень не определена. Степень ненулевого многочлена A обозначают deg A. Множества всех многочленов с целыми, рациональными, действительными коэффициентами обозначаются соответственно $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{R}[x]$. Многочлен разрешается записывать в виде суммы и/или произведения нескольких многочленов: выражение $x-2x+(x-1)^5$ мы тоже считаем многочленом (чтобы его найти, надо раскрыть скобки и привести подобные).

Задача 1. Определите сумму и произведение многочленов.

Задача 2[©]. **a)** Пусть $\deg A = 10$, $\deg B = \deg C = 7$. Какими могут быть $\deg(A + B)$ и $\deg(B + C)$?

б) Докажите, что $\deg AB = \deg A + \deg B$. **в)** Докажите, что $\deg A(B(x)) = \deg A \cdot \deg B$.

Задача 3. Может ли произведение нескольких ненулевых многочленов быть нулевым многочленом?

Определение 2. Многочлен A(x) задаёт функцию, которая сопоставляет каждому числу s число A(s) (результат подстановки в выражение A(x) числа s вместо переменной x).

Задача 4 . Найдите сумму всех коэффициентов многочлена: а) $(x-1)^n$; б) $(x+1)^n$; в) $(x-2)^n$; г) $(x+2)^n$; д) $(1-x+x^4)^{1000}$. е) Найдите сумму коэффициентов при нечётных степенях в пункте д).

Число корней многочлена

Определение 3. Число s называется *корнем* многочлена A, если A(s) = 0.

Задача 5. Докажите, что если многочлен A делится на многочлен B, то есть существует такой многочлен C, что A = BC, то все корни B являются корнями A. Верно ли обратное утверждение?

Задача 6. Делится ли многочлен x^9-1 на многочлен x? А на многочлен x^2-1 ?

Задача 7. Произвольный многочлен A(x) домножили на (x-1). Могут ли у получившегося многочлена все коэффициенты быть положительными?

Задача 8 $^{\varnothing}$. Докажите, что s — корень многочлена A(x) если и только если A(x) делится на x-s.

Задача 9 $^{\varnothing}$. Пусть A(1)=A(2)=0. Докажите, что A(x) делится на (x-1)(x-2).

Задача 10° . Докажите, что число различных корней многочлена A не больше $\deg A$.

Задача 11. Могут ли разные многочлены задавать одну и ту же функцию?

Задача 12 Пусть многочлен A(x) таков, что A(x) = A(-x) при любом x. Докажите, что существует такой многочлен P(x), что $A(x) = P(x^2)$ при любом x.

Задача 13. Пусть значения многочленов A и B совпадают при n различных значениях переменной, и степени этих многочленов меньше n. Докажите, что тогда A=B.

Задача 14. В скольких точках прямая может пересекать параболу?

Задача 15. а) Докажите, что любой многочлен степени 3 представляется в виде

$$a + bx + cx(x - 1) + dx(x - 1)(x - 2).$$

б) Найдите такой многочлен P(x) степени 3, что P(0) = -8, P(1) = 5, P(2) = 6, P(3) = 1.

Задача 16 $^{\varnothing}$. Даны различные числа a_1, a_2, \dots, a_n и любые числа b_1, b_2, \dots, b_n .

- а) Найдите многочлен степени n-1, который равен b_1 при $x=a_1$ и равен 0 при $x\in\{a_2,\ldots,a_n\}$.
- **б)** Докажите, что существует единственный многочлен P(x) степени меньше n такой, что $P(a_1) = b_1$, ..., $P(a_n) = b_n$.

Корни многочленов с целыми коэффициентами

Задача 17. Докажите, что если многочлен A(x) с целыми коэффициентами принимает при x=0 и x=1 нечётные значения, то уравнение A(x)=0 не имеет целых решений.

Задача 18 $^{\varnothing}$. а) Ненулевая несократимая дробь p/q — корень многочлена $A(x)=a_nx^n+\cdots+a_0$ с целыми коэффициентами. Докажите, что тогда a_n делится на q и a_0 делится на p.

б) Пусть в пункте а) дано $a_n = 1$. Докажите, что все рациональные корни A — целые числа.

Задача 19 $^{\circ}$. Найдите все рациональные корни у **a)** $x^3-6x^2+15x-14$; **б)** $6x^4+19x^3-7x^2-26x+12$.

Задача 20°. Пусть $A(x) \in \mathbb{Q}[x], A(\sqrt{2}) = 0$. Докажите, что $A(-\sqrt{2}) = 0$.

Задача 21 $^{\varnothing}$. a) Найдите ненулевой многочлен P с целыми коэффициентами и корнем $\sqrt{2} + \sqrt{3}$.

б) Найдите все корни многочлена P из пункта а).

1	2 a	2 6	2 B	3	4 a	4 6	4 B	4 Г	4 д	4 e	5	6	7	8	9	10	11	12	13	14	15 a	15 6	16 a	16 6	17	18 a	18 6	19 a	19 6	20	21 a	21 б