

Indice:

Definizione

02

03

04

Funzionamento

Tecniche crittografiche

Tipologie di convalidazione

Indice:

Tipologie di Blockchain

Ob Mining

07 Halving

oa Burn

Indice:

Tipologie di Attacchi alla Blockchain

> Tipologie di attacco per Double spending

A simple Blockchain

Bibliografia

10

11

12

FUNZIONAMENTO

ANALISI DI UN BLOCCO

Composto da tre sezioni:

- Index
- Header
- Body

Index: codice univoco per
identificare il blocco

Header: contiene i metadati come timestamp, nonce, Merkle root, nonce

Body: contiene tutte le transazioni che compongono il blocco

Le blockchain in generale utilizzano diverse tecniche crittografighe

Di seguito sono riportate le tecniche più utilizzate con una descrizione del loro utilizzoı e l'importanza che hanno nella blockchain

Tecniche crittografiche

Public Kev

Corrisponde all'address del wallet di un Utente, derivate dalla Private Kev

SHAZSH

Utilizzato per hashare il blocco in se₁ il quale contiene: indice + header + transazione

Merkle Tree

Utilizzato per organizzare a struttura ad albero gli hash delle transazioni → Merkle Root

Private Key

Utilizzata per firmare digitalmente le transazionia create tramite Curve Fllittiche

Hashing Transazioni

Informazioni della transazione hashatia la minima modifica cambierà 1 hash

Nonce

Valore numerico che i miner devono trovare, se combinato con hash del blocco soddisfa condizioni dell'hash successivo

TIPOLOGIE DI CONVALIDAZIONE

Tipologie di Blockchain

Pubblica / Privata

Pubblica permette
accesso a chiunquen
sia come nodo che
utente.

Privata: consente
accesso solo a
nodi e utenti
autorizzatin usate
in ambito
aziendale

Ibrida

Unione di
blockchain
pubbliche e
private
utilizzate per
bilanciare la
privacy e
trasparenza

Consorziata

Anch'essa è un ibrido in quanto solo un gruppo selezionato partecipa al consenso ma non è completamente centralizzata

NFT

Consentono la
creazione di
token unicia
utilizzata
maggiormente
per
rappresentare
opera d'arte o
beni di
collezione

Smart Contract

Consentono la
creazione di
contratti
intelligenti
ovvero programmi
autoeseguibili per
l'esecuzione di
accordi tra parti

MINING

Ruolo

Ruolo di vitale importanza per il funzionamento della blockchain

Costi

Data la potenza di calcolo utilizzata ha un costo molto elevato

BLOCK

MemPool

Pool nella quale finiscono le transazioni prima di essere approvate

Processo a

Processo attraverso il quale nuovi blocchi vengono aggiunti alla blockchain

CHAIN

Ricompensa

Assegnata al primo miner in grado di risolvere il problem o che viene estratto

Sicurezza

Meccanismo che consente la decentralizzazione della rete

HALVING

Meccanismo economico per il controllo dell'offerta, nel caso di Bitcoin avviene circa ogni 4 anni, ovvero 210.000 blocchi minati, il primo avvenne nel 2012, successivamente 2016, 2020, il prossimo sarà nel 2024 e ridurrà la ricompensa dei miner da 6,25 BTC a 3,125 BTC per blocco minato

"

Regola di protocollo che influenza l'economia della criptovaluta

BURN

Atto di distruggere in modo irreversibile una certa quantità di criptovaluta o token. Questo processo è spesso utilizzato per controllare l'offerta e conferire un valore intrinseco ai token

La crittografia rende irreversibile il processo di distruzione delle monete o dei token. Algoritmi crittografici garantiscono che una volta bruciati, i token non possano essere recuperati o duplicati, conferendo un valore autentico agli NFT

L'halving e il burn sono
processi essenziali che
contribuiscono alla gestione e
alla sicurezza delle
criptovalute. La crittografia
è al centro di entrambi questi
meccanismi, garantendo
l'integrità della blockchain,
proteggendo le transazioni e
conferendo un valore autentico
agli asset digitali

TIPOLOGIE DI ATTACCHI ALLA BLOCKCHAIN

Attacchi all'utente

Atti a rubare le credenziali al fine di rubare I fondi dell'utente

Attacchi agli Smart Contract

Mirano a modificare il codice per sfruttare exploit o vulnerabilità del contratto per trarne profitto

Hanno l'obiettivo di prendere il controllo della rete per manipolarla a proprio piacimento

Attacchi al nodo

Maggiormente usati per isolare un nodo in modo tale da impedirgli di svolgere il suo funzionamento

TIPOLOGIE DI ATTACCO PER DOUBLE SPENDING

Race attack:

Corsa di 10 minuti, nel quale si inviano due transazioni in rapida successione cercando di invalidare la prima tramite la seconda

Finney attack:

Nodo prova ad effettuare il double spending na dovebbe essere sicuro di essere scelto per il mining del blocco successive na scoperto da Hal Finney

Obiettivo:

Sfruttare il breve periodo di tempo tra la conferma di una transazione e la sua registrazione permanente nella blockchain

Attacco al 51%:

Modifica delle transazioni hackerando almeno il 51% dei nodi che compongono l'Hash Rate di una blockchain

A SIMPLE BLOCKCHAIN

Linguaggio utilizzato -> Python e HTML

Carattteristiche: firma, genesis block

Funzionamento in localhost

Librerie principali: Flask, json, rsa

BIBLIOGRAFIA

Di seguito la lista di tutte le risorse consultate:

- Wikipedia
- Blockchair com
- Blockchain.com
- White Paper di Bitcoin
- Coindesk com
- ChatGPT
- Binance
- Coinbase
- BitPanda Academy
- Prof · Carnabuci
- Youtube

