Propositional Logic Homework

Mohibullah Meer

November 13, 2023

9.1. Write formulas that are logically equivalent to:

9.1a:
$$p \wedge q$$

$$\neg(\neg p \vee \neg q)$$

9.1b:
$$p \oplus q$$

$$\neg(\neg(p\vee q)\vee\neg(\neg p\vee\neg q))$$

9.1c:
$$p \Leftrightarrow q$$

$$\neg (p \lor q) \lor \neg (\neg p \lor \neg q)$$

9.3. Prove the associative laws by comparing truth tables for the two expressions asserted to be equivalent:

9.3a:
$$(\alpha \lor \beta) \lor \gamma \equiv \alpha \lor (\beta \lor \gamma)$$

α	β	γ	$\alpha \vee \beta$	$\beta \vee \gamma$	$(\alpha \lor \beta) \lor \gamma$	$\alpha \vee (\beta \vee \gamma)$
F	F	F	F	F	F	F
F	F	T	F	T	T	T
F	Т	F	T	Т	T	T
F	Т	Т	T	Т	T	T
Т	F	F	T	F	T	T
Т	F	Т	T	Т	T	T
Т	Т	F	T	T	T	T
Т	Т	Т	Т	Т	T	T

9.3b: $(\alpha \wedge \beta) \wedge \gamma \equiv \alpha \wedge (\beta \wedge \gamma)$

α	β	γ	$\alpha \wedge \beta$	$\beta \wedge \gamma$	$(\alpha \wedge \beta) \wedge \gamma$	$\alpha \wedge (\beta \wedge \gamma)$
F	F	F	F	F	F	F
F	F	Т	F	F	F	F
F	Т	F	F	F	F	F
F	Т	Т	F	Т	F	F
T	F	F	F	F	F	F
T	F	Т	F	F	F	F
T	Т	F	T	F	F	F
Т	Т	Т	Т	T	T	T

9.5. Using a truth table, determine whether each of the following compound propositions is satisfiable, a tautology, or unsatisfiable:

9.5a:
$$p \Rightarrow (p \lor q)$$

This proposition is a tautology.

p	q	$p \lor q$	$p \Rightarrow (p \lor q)$
F	F	F	T
F	Т	T	T
T	F	T	T
Т	Т	Т	T

9.5b:
$$\neg(p \Rightarrow (p \lor q))$$

Being the negation of a tautology, this proposition is never true—it is unsatisfiable.

p	q	$p \Rightarrow (p \lor q)$	$\neg(p \Rightarrow (p \lor q))$
F	F	T	F
F	Т	T	F
T	F	T	F
T	Т	T	F

9.5c:
$$p \Rightarrow (p \Rightarrow q)$$

This proposition is satisfiable.

p	q	$p \Rightarrow q$	$p \Rightarrow (p \Rightarrow q)$
F	F	T	T
F	Т	T	T
T	F	F	F
Т	Т	T	Т

9.7. Prove that $\alpha \equiv \beta$ if and only if $\alpha \Leftrightarrow \beta$ is a tautology.

α	β	$\alpha \Leftrightarrow \beta$	$\alpha \equiv \beta$
F	F	T	T
F	Т	F	F
Т	F	F	F
T	Т	T	T

Since these propositions are the same, then the tautology of $\alpha \Leftrightarrow \beta$ asserts the tautology of $\alpha \equiv \beta$.

9.9. Give real world interpretations of p, q, and r such that $(p \land q) \Rightarrow r$ and $p \land (q \Rightarrow r)$ mean quite different things, and one is true while the other is false.

p	q	r	$p \wedge q$	$q \Rightarrow r$	$(p \land q) \Rightarrow r$	$p \wedge (q \Rightarrow r)$
F	F	F	T	F	T	F
F	F	T	T	F	T	F
F	T	F	Т	T	T	F
F	Т	Т	T	F	T	F
T	F	F	T	F	T	T
Т	F	Т	T	F	T	T
Т	Т	F	F	Т	F	F
T	Т	Т	F	F	T	T

- p—cold or not cold
- q—schoolday or not schoolday
- $\bullet \ r$ —brown coat or no brown coat
- $(F \land F) \Rightarrow T \equiv T$ —I'm wearing my brown coat, even if it's not a cold schoolday.
- $\mathbf{F} \wedge (\mathbf{F} \Rightarrow \mathbf{T}) \equiv \mathbf{F}$ —Although I could wear my brown coat outside of school, it would never happen on a day that wasn't cold.

9.11.:

9.11a: Write $p \Leftrightarrow q$ using \oplus and the constant T.

$$(p \oplus q) \oplus \mathsf{T}$$

p	q	$p \oplus q$	$(p\oplus q)\oplus \mathtt{T}$	$p \Leftrightarrow q$
F	F	F	T	T
F	Т	T	F	F
Т	F	T	F	F
Т	Т	F	T	T

9.11b: Show that \oplus and \Leftrightarrow are associative.

$$(p\oplus q)\oplus r\equiv p\oplus (q\oplus r)$$

p	q	r	$p\oplus q$	$q \oplus r$	$(p\oplus q)\oplus r$	$p\oplus (q\oplus r)$
F	F	F	F	F	F	F
F	F	Т	F	T	T	T
F	Т	F	T	T	T	T
F	Т	Т	T	F	F	F
Т	F	F	T	F	T	T
Т	F	Т	T	T	F	F
Т	Т	F	F	T	F	F
Т	Т	Т	F	F	T	T

$$(p \Leftrightarrow q) \Leftrightarrow r \equiv p \Leftrightarrow (q \Leftrightarrow r)$$

p	q	r	$p \Leftrightarrow q$	$q \Leftrightarrow r$	$(p \Leftrightarrow q) \Leftrightarrow r$	$p \Leftrightarrow (q \Leftrightarrow r)$
F	F	F	T	T	F	F
F	F	Т	Т	F	T	T
F	Т	F	F	F	T	T
F	Т	Т	F	T	F	F
Т	F	F	F	T	T	T
Т	F	Т	F	F	F	F
Т	Т	F	T	F	F	F
T	Т	Т	Т	Т	T	T

9.11c: Prove that $\{\oplus, \Leftrightarrow, \neg, T, F\}$ is not a complete set.

 \oplus and \Leftrightarrow return 2 true and 2 false values. As a result, they cannot be altered into \land , which, alongside \neg , can represent any function, because \land has 3 false values and 1 true value.