事前課題

北川梨津*

2022年5月11日

- 答えだけではなく、結果に至るまでの過程も示すこと.
- 手書きの答案は不可1).
- 締め切り: 2022 年 4 月 10 日 22:00

問1

以下の各文の正誤を理由も合わせて答えよ.

- 1. 2 つの事象 A と B を考える. これらの事象は独立であるとする. さらに, $\Pr(A) = 0.4$ であり, かつ, $\Pr(A \cap B) = 0.2$ であるとする. このとき, $\Pr(B) = 0.2$ である.
- 2. 2つの事象 C と D は、排反事象である(i.e., $\Pr(C \cap D) = 0$)とする.このとき C と D は独立な事象である.
- 3. 2つの事象 C と D は、独立な事象である(i.e., $\Pr(C \mid D) = \Pr(C)$) とする.このとき C と D は排反事象である.
- 4. 2 つの離散型確率変数 X と Y を考える. これらの同時確率が $p_{X,Y}(x,y)$ として与えられる. ただし, $X \perp\!\!\!\perp Y$ とする $^{2)}$. このとき, $p_{X,Y}(x,y) = p_X(x)p_Y(y)$ である.

^{*} 早稲田大学:ritsu.kitagawa@fuji.waseda.jp

¹⁾ Word の数式モードや I^ATEX を使うこと. 前者の使い方については、例えば「word で簡単に数式を書く」という 記事 (https://note.com/keisemi/n/na12bfeb77469) を参考にするとよい. 後者については、Cloud LaTeX という サービス (https://cloudlatex.io/ja) を使うのが最も簡便である.

^{2) 2}つの確率変数 X と Y が独立であることを, $X \perp \!\!\! \perp Y$ と書く.

問 2

以下を計算せよ. ただし, $x_1, x_2, x_3, \dots, x_{10} = 1, 2, 3, \dots, 10$ とする.

- 1. $\sum_{i=1}^{10} x_i$.
- 2. $\sum_{i=3}^{6} x_i$.
- 3. $\frac{1}{3} \sum_{i=1}^{10} 3x_i$.
- 4. $\sum_{i=1}^{10} 2$.
- 5. $\left(\sum_{i=1}^{10} x_i\right) \left(\sum_{i=1}^{10} x_i\right)$.
- 6. $\sum_{i=1}^{10} x_i^2$.
- 7. $\left(\sum_{i=1}^{10} x_i\right)^2$.
- 8. $\sum_{i=1}^{10} x_{11-i}$.
- 9. $\left(\sum_{i=1}^{10} x_i\right) / \left(\sum_{i=1}^{10} x_{11-i}\right)$.
- 10. $\left(\sum_{i=1}^{10} x_i / x_{11-i}\right)$.

問 3

- 1. 同様に確からしいコインを 1 枚トスして表が出れば 1 , 裏が出れば 0 となるような確率変数 X を考える. その期待値 $\mathbf{E}[X]$ を求めよ.
- 2. 同様に確からしいコインを 2 枚トスして 1 枚でも表が出れば 1, そうでなければ 0 となるような確率変数 X を考える. その期待値 $\mathbf{E}[X]$ を求めよ.
- 3. 確率変数 X を考える. その期待値が $\mathbf{E}[X] = 5$ であるとき, Y = 5X + 2 というふうに X を変換してできる確率変数 Y の期待値を求めよ.
- 4. 確率変数 X を考える. その期待値が $\mathbf{E}[X] = -3$ であり, Y = X + b とする. このとき, $\mathbf{E}[Y] = 0$ となるような b の値を求めよ.
- 5. 2 つの確率変数 X_1 と X_2 を考える. それぞれの期待値が, $\mathbf{E}[X_1]=4$, $\mathbf{E}[X_2]=9$ であるとき, $Y=X_1+X_2$ と定義される確率 変数 Y の期待値 $\mathbf{E}[Y]$ を求めよ. ただし,このとき $X_1 \perp \!\!\! \perp X_2$ とは 限らない.
- 6. 確率変数とその期待値の差の期待値が必ずゼロになることを示せ. つまり, $\mathbf{E}[X \mathbf{E}[X]] = 0$ であることを示せ.
- 7. 分散がゼロになるのはどのようなときか述べよ.
- 8. 確率変数 X を考える. その分散が $\mathbf{Var}[X] = 1$ であるとき, Y = 5X + 2 というふうに X を変換してできる確率変数 Y の分散を求めよ.
- 9. 2 つの確率変数 Y と D を考える. 次を示せ.

$$Y \perp \!\!\!\perp D \Rightarrow \mathbf{E}[Y \mid D] = \mathbf{E}[Y].$$

証明が難しければ、代わりに直観的な説明を与えよ.

10. 2つの確率変数 Y と D を考える. 次の等式が正しいことを示せ.

$$\mathbf{E}[\mathbf{E}[Y\mid D]] = \mathbf{E}[Y].$$

以上