Scrum Process Optimization Model

Gemini

September 5, 2025

Contents

1	Sets (Entities)	2
2	Indices	2
3	Decision Variables	3
4	Goals (Objective Function)	3
5	Conditions (Constraints)	3

1 Sets (Entities)

Derived from Entities.csv, the following sets represent the core components of the Scrum domain model.

- P: The set of all projects (E_0)
- T: The set of all teams (E_1)
- W: The set of all workers (E_2)
- F: The set of all features (E_3)
- S: The set of all skills (E_4)
- R: The set of all roles (E_5)
- PO: The set of all product owners (E_6)
- SM: The set of all scrum masters (E_7)
- PB: The set of all product backlogs (E_8)
- SP: The set of all sprints (E_9)
- SBL: The set of all sprint backlogs (E_{14})
- SG: The set of all sprint goals (E_{15})
- E: The set of all epics (E_{16})
- US: The set of all user stories (E_{17})
- TSK: The set of all tasks (E_{18})
- BL: The set of all blockers (E_{20})
- SH: The set of all stakeholders (E_{21})
- VEL: The set of all velocity measurements (E_{22})
- REP: The set of all release plans (E_{23})

2 Indices

The following indices are used to iterate over the sets defined above.

- $p \in P$: Index for a project
- $t \in T$: Index for a team
- $w \in W$: Index for a worker
- $f \in F$: Index for a feature
- $sp \in SP$: Index for a sprint
- $us \in US$: Index for a user story
- $tsk \in TSK$: Index for a task
- $bl \in BL$: Index for a blocker
- $rep \in REP$: Index for a release plan

3 Decision Variables

These variables represent the decisions to be made by the optimization model.

- $A_{w,tsk} \in \{0,1\}$: 1 if worker w is assigned to task tsk, 0 otherwise (DV0)
- $B_{us,sp} \in \{0,1\}$: 1 if user story us is assigned to sprint sp, 0 otherwise (DV1)
- $C_{f,rep} \in \{0,1\}$: 1 if feature f is assigned to release plan rep, 0 otherwise (DV2)
- $D_{t,p} \in \{0,1\}$: 1 if team t is assigned to project p, 0 otherwise (DV3)
- $P_f \in \mathbb{Z}^+$: Priority assigned to feature f (DV4)
- $SP_{us} \in Z^+$: Story points assigned to user story us (DV5)
- $S_{tsk} \in \{\text{todo, progress, done}\}$: Status of task tsk (DV9)

4 Goals (Objective Function)

The primary objective is to maximize a weighted sum of individual goals while minimizing penalties. Let W_q be the weight for goal g. The multi-objective function is:

$$\operatorname{Maximize} \sum_{g \in \operatorname{Goals}} W_g \cdot \operatorname{Obj}_g - \sum_{g' \in \operatorname{Goals}} W_{g'} \cdot \operatorname{Obj}_{g'}$$

where the first term is for 'max' goals and the second for 'min' goals.

• G0: maximize_completed_story_points

$$\text{Maximize } \sum_{us \in US} SP_{us} \cdot I(us)$$

where I(us) = 1 if user story us is completed.

• G1: minimize_open_blockers

$$Minimize \sum_{bl \in BL} O_{bl}$$

where $O_{bl} = 1$ if blocker bl has status 'open'.

• G2: maximize_feature_priority

Maximize
$$\sum_{f \in F} P_f \cdot J(f)$$

where J(f) = 1 if feature f is implemented.

• G4: minimize_task_effort

$$Minimize \sum_{tsk \in TSK} effort_{tsk}$$

5 Conditions (Constraints)

These are the constraints that the solution must satisfy.

• C0: team_size_limit The size of any given team must be within a specific range.

$$3 \leq \text{team_size}_t \leq 9 \quad \forall t \in T$$

• C2: sprint_load_le_velocity The sum of story points for all user stories in a sprint must not exceed the team's velocity. Let v_t be the velocity for team t.

$$\sum_{us \in US} SP_{us} \cdot B_{us,sp} \le v_{t(sp)} \quad \forall sp \in SP$$

where t(sp) is the team assigned to sprint sp.

• C3: budget_not_exceeded The total cost derived from tasks cannot exceed the project budget. Let c_{tsk} be the cost of a task.

$$\sum_{tsk \in \text{TSK}_p} c_{tsk} \le \text{budget}_p \quad \forall p \in P$$

where TSK_p is the set of tasks for project p.

• C4: worker_is_available A worker can only be assigned to a task if their availability is greater than zero.

$$A_{w,tsk} \leq \text{availability}_w \cdot M \quad \forall w \in W, \forall tsk \in TSK$$

where M is a large number (Big-M notation) and availability is scaled to be > 0 for assignment.

• C9: sprint_start_before_end The start date of a sprint must be earlier than its end date.

$$start_date_{sp} < end_date_{sp} \quad \forall sp \in SP$$