目录

目录

1	1 实验内容说明	2
	1.1 实验题目	 2
	1.2 实验说明	 2
2	2 实验环境	2
3	3 停等机制与滑动窗口对比	3
	3.1 不同丢包率下性能变化对比	 3
	3.2 不同延迟下性能变化对比	 3
4	4 滑动窗口机制不同窗口大小对比	4
	4.1 不同丢包率下性能变化对比	 4
	4.2 不同延迟下性能变化对比	 4
5	5 有无拥塞控制对比	5
	5.1 不同丢包率下性能变化对比	 5
	5.2 不同延迟下性能变化对比	 5

实验内容说明 2

1 实验内容说明

1.1 实验题目

实验 3: 基于 UDP 服务设计可靠传输协议并编程实现

1.2 实验说明

实验 3-4: 基于给定的实验测试环境,通过改变延迟时间和丢包率,完成下面 3 组性能对比实验: (1) 停等机制与滑动窗口机制性能对比; (2) 滑动窗口机制中不同窗口大小对性能的影响; (3) 有拥塞控制和无拥塞控制的性能比较。

2 实验环境

使用规定路由器程序和规定传输文件进行性能对比实验。规定路由器可调节延时和丢包率; 规定传输文件数据较大,不会造成过大的测量误差。

但是规定路由器对于延迟的设定并不准确,并且在设置丢包率后会极大影响路由器性能,因此不同延迟下的性能对比实验参考意义不大。在 MSS 较大时这一现象不明显,在 MSS 小于 1KB 时较为明显。

在实验 3-3 中实现了 RTT 采样和 RTT 估计, 测量了路由器实际延迟(回环网卡延迟可以忽略), 如表1所示。

RTT/ms	无拥塞控制	NEW RENO
0% 丢包	39	88
1% 丢包	307	948

表 1: 路由器 0ms 延迟时的程序采样 RTT, MSS 为 1024B, 滑动窗口 32KB。

此外使用路由器后,即便设置 0ms、0% 丢包,性能也比不使用路由器慢了一个数量级。

3 停等机制与滑动窗口对比

3.1 不同丢包率下性能变化对比

不同丢包率下,停等机制与滑动窗口各自程序吞吐率大小如图1所示。

图 1: 不同丢包率下,停等机制与滑动窗口各自程序吞吐率大小。MSS 为 10240B,路由器延迟设为 0ms,滑动窗口 32KB

总体趋势是,丢包率越大,传输吞吐率越小,符合预期。但是,停等机制传输速率却高于滑动窗口机制,可能的原因有,MSS 较大,滑动窗口较小,路由器固有延迟较大等。

3.2 不同延迟下性能变化对比

不同延迟下,停等机制与滑动窗口各自程序吞吐率大小如图2所示。

图 2: 不同延迟下,停等机制与滑动窗口各自程序吞吐率大小。MSS 为 10240B,路由器丢包率 1%。

总体趋势是,延迟越大,传输速率越小。但是,同样是滑动窗口性能较好。此外,注意到 1ms 至 5ms 性能下降较多,而 5ms、10ms、20ms 性能相差不多。这是由估计 RTO 的实现方式造成的,此时还未实现 RTT 采样和自适应估计,RTO 的设定采用 10ms,20ms,40ms,80ms……的阶梯式实现,因此 1ms 至 5ms 跨越较大,而 5ms、10ms、20ms 由于路由器固有延迟的存在,性能差距不大。

4 滑动窗口机制不同窗口大小对比

4.1 不同丢包率下性能变化对比

不同丢包率下,滑动窗口不同窗口大小各自程序吞吐率大小如图3所示。

图 3: 不同丢包率下,滑动窗口不同窗口大小各自程序吞吐率大小。MSS 为 1024,路由器延迟 0ms。

总体上,滑动窗口增大,程序的吞吐率更大。同时丢包率的增大会降低传输的速度,滑动窗口越大,这一影响越明显,原因可能是累积确认在滑动窗口大时,造成了更大的重传量。

无丢包下,滑动窗口不同窗口大小各自程序吞吐率大小如图4所示。

图 4: 无丢包下,滑动窗口不同窗口大小各自程序吞吐率大小。

在无丢包的情况下,出现了反常现象,即滑动窗口的增大导致传输性能的下降,应该与停等 机制快于滑动窗口机制有类似原因。

4.2 不同延迟下性能变化对比

不同延迟下,滑动窗口不同窗口大小各自程序吞吐率大小如图5所示。 总体上,延迟越大,性能越低。而32KB窗口相对于更小的窗口,有着更高的性能。 有无拥塞控制对比 5

图 5: 不同延迟下,滑动窗口不同窗口大小各自程序吞吐率大小。MSS 为 10240B,路由器丢包率 1%。

5 有无拥塞控制对比

5.1 不同丢包率下性能变化对比

不同丢包率下,无拥塞控制与使用 NEW 拥塞控制各自程序吞吐率大小如图6所示。

图 6: 不同丢包率下,无拥塞控制与使用 NEW 拥塞控制各自程序吞吐率大小。MSS 为 1024,滑动窗口 32KB,路 由器延迟 0ms。

在无丢包率时,无拥塞控制的性能更高。而丢包率越高,new reno 性能越接近无拥塞控制的性能。

5.2 不同延迟下性能变化对比

不同延迟下,无拥塞控制与使用 NEW 拥塞控制各自程序吞吐率大小如图7所示。 可以看出,延迟的增大,造成传输性能的下降。无拥塞控制的性能要略高于使用 new reno 控

图 7: 不同延迟下,无拥塞控制与使用 NEW 拥塞控制各自程序吞吐率大小。MSS 为 1024,滑动窗口 32KB,路由器丢包率 1%。

制算法的情况,而延迟对二者性能差距看不明显的影响。