Superconducting Coplanar Waveguide Resonators as a Diagnostic Tool for Quantum Circuits

Greg Calusine, Alex Melville, Wayne Woods, Danna Rosenberg, David Kim, Jovi Miloshi, Evan Golden, Arjan Sevi, Jonilyn Yoder, Eric Dauler, William D. Oliver

Quantum Information and Integrated Nanosystems Group

Boulder, CO

February 8, 2018

Noise and Loss in Superconducting Quantum Circuits

Sources of Noise and Loss

Wanted:
Diagnostic tools
for studying
sources of noise
and loss

Oliver and Welander, MRS Bulletin 38, 816 (2013)

<u>Challenge</u>	<u>Requirement</u>
Fab, measurement time + resources	Need surrogate device/probe
Device-to-device variability	Statistical measurement and analysis
Low T, vacuum, "quiet" EM environment	Realistic operating conditions
Competing signals/behavior	Model or mitigate other mechanisms

Goal: Use statistical device testing of superconducting CPW resonators to perform quantitative analysis of TLS losses at interfaces

Outline

A/B Testing

Characterizing 3D integration

Surface Loss Extraction (SLE)

Sources of device-to-device variability

High-throughput Fabrication and Testing

Fabrication

- 8-inch toolset
- In-house process characterization and analysis

Measurement

- Automated device characterization and statistical analysis
- 2 banks x 6 chips x 5 resonators
 → 60 per DR cooldown
- Best process: mean Q_i ~2.2 million

Established, highly reproducible high-Q TiN process
& high-throughput statistical device characterization

Trenched CPW Cross-section

Frequency-multiplexed λ/4 resonators

Packaging

High-throughput measurement

Boulder Resonator Workshop- 4 Calusine 8 Nov 2019

A/B Testing, or "The Canary in the Coal Mine"

How do we decide if two sampling distributions are different?

Statistical hypothesis testing: Welch's t-test

p-value: the statistical probability that the measured sample originate from the <u>same</u> parent distribution

Standard threshold for significance: p=.05

Example: Sputtered TiN films

TiN Sputtering Tool #1 ~ 50 resonators	TiN Sputtering Tool #2 ~ 50 resonators	
Mean Qi = 1.66 x10 ⁶	Mean Qi = 1.43 x10 ⁶	
p < .0057 → statistically significant		

Outline

A/B Testing

Characterizing 3D integration

Surface Loss Extraction (SLE)

Sources of device-to-device variability

Electrical Properties of Bump Path

Schematic of test structure for DC resistance

Confocal image of indium bumps on underbump metallization

- 2,704 indium bumps in series
- Base metal Al
- TiPtAu underbump metal

Schematic of quarter wave resonators with bump interconnects

Fabricated resonator with bump interconnects

- Bump-interrupted resonators with ~50-100k internal Q
- Effective microwave loss of 100's of μohm

Resonators with TSV interconnects

Resonator measurements indicate high-bandwidth, low-loss TSV transitions

Outline

A/B Testing

Characterizing 3D integration

Surface Loss Extraction (SLE)

Sources of device-to-device variability

Surface Participation Model

SEM Cross-section

COMSOL: FEM Mesh

TLS-containing interfaces:

- MS: metal-to-silicon
- SA: substrate-to-air
- MA: metal-to-air/vacuum
- Si: silicon substrate

Matrix Representation

Loss-factors (tangents) can be extracted directly from TLS-limited Q_i

Device Loss Modeling

 Monte Carlo analysis estimates uncertainty in extracted losses Uncertainty contributions: singularity of participation matric, variation in measured Q, inaccuracy of model assumptions....

Limits of Anisotropic Trenching

Participation ratios proportional across all geometries, (some) predictive power still possible

Improving Matrix Condition Number

Ideal [P]

Anisotropic Trenching Example [P]

$$P = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad P = \left(\frac{1}{100}\right) \begin{bmatrix} 0.1694 & 0.1607 & 0.0048 & 90.8956 \\ 0.3069 & 0.4136 & 0.0272 & 69.8413 \\ 0.2488 & 0.2841 & 0.0109 & 82.7197 \\ 0.1001 & 0.1066 & 0.0029 & 87.6096 \end{bmatrix}$$

condition(P) = 1

$$\frac{\sigma(X)}{\mu(X)} \approx \frac{\sigma\left(\frac{1}{Q}\right)}{\mu\left(\frac{1}{Q}\right)}$$

$$condition(P) = 61937$$

$$\frac{\sigma(X)}{\mu(X)} \gg \frac{\sigma\left(\frac{1}{\overline{Q}}\right)}{\mu\left(\frac{1}{\overline{Q}}\right)}$$

Condition number of [P]: how sensitive is [X] to changes in [1/Q]

Planar, anisotropic trenching \rightarrow large condition # \rightarrow large uncertainty

Isotropic trenching \rightarrow reduced condition # (\sim 30x)

Resonators: normalized (MS,SA,MA) participation vectors:

Targeting Dielectric Loss

- Isotropic etched resonators
- COMSOL estimated participation vectors
- Four optimal resonators identified
 - Over a range of geometries considered
 - Produced participation matrix with lowest condition number

MA MA d SA 1 μm Silicon

TLS-containing interfaces:

MS: metal-to-silicon

- SA: substrate-to-air

MA: metal-to-air/vacuum

Si: silicon substrate

SEM Cross-sections of Optimal 4 Cross-Sections

Surface Loss Extraction

Isotropic

tanδ assumes:

$$\begin{split} t_{\text{MS}} &= 2 \text{ nm, } \epsilon_{\text{MS}} = 11.35\epsilon_0 \\ t_{\text{SA}} &= 2 \text{ nm, } \epsilon_{\text{SA}} = 4\epsilon_0 \\ t_{\text{MA}} &= 2 \text{ nm, } \epsilon_{\text{MA}} = 10\epsilon_0 \end{split}$$

Isotropically trenched geometries: unique estimation of X_{MS} , X_{SA} , $X_{MA,}$, X_{si}

Verification and Loss Contributions

- Model verification:
 "Training set" predicts Q_{TLS}'s for range of participations
- Can now determine loss for each interface
- Question: What is the 'bad' interface?
- Answer: For most 'typical' device (#12), SA is largest contribution

Anisotropic vs. Isotropic Trenching

Boulder Resonator Workshop- 24 Calusine 8 Nov 2019

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Application/Verification: Surface Modification

Examples of Deliberate Process Changes

Dielectric Region	High Q TiN (before)	Modified MA TiN (after)
Si	High resistivity	High resistivity
MS	Pre-deposition clean Sputtered TiN	Pre-deposition clean Sputtered TiN
MA	Plasma etch	Additional O ₂ -based plasma ash Plasma etch
MA, SA	Plasma etch Plasma ash/PR strip Wet PR strip	Plasma etch Plasma ash/PR strip Wet PR strip

Introduce deliberate fabrication change to ONE region to observe effect on loss factor

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Application/Verification: Surface Modification

Outline

- A/B Testing
- Characterizing 3D integration
- Surface Loss Extraction (SLE)

Resonator Background Losses

Properties of Background Losses

Clue #1: Frequency dependence

Strong frequency dependence→ package mode?

...none visible in transmission spectrum

What mechanism explains "background" losses?

$$1/Q_{TLS} = 1/Q_{LP} + 1/Q_{HP}$$

Clue #2: Geometric dependence

...too small of a contribution

Boulder Resonated Calusine 8 Nov

Coupling to Device Packaging

Resistive Metal Losses

Purcell Decay ħωσ, $\hbar\omega_0 \hat{a}^+ \hat{a}$ $\hbar g \left(\hat{\sigma}_{+} \hat{a} + \hat{\sigma}_{-} \hat{a}^{+} \right)$ ----Multimode, Output Qubit ---- Multimode, Input Qubit —Single-mode Model T (ns) ---Radiation to Continuum Relaxation Time 10 12 Frequency (GHz)

EM Package Modeling

- Goals: identify...
 - Package mode spectrum
 - Package mode field profile
 - Resistive metallic losses
 - Dielectric losses
- COMSOL: include <u>"everything"</u>
 - Resonators, wirebonds, interposer dielectrics,
 vias, silicon chip, resistive metals,
- Match simulation and measurement
 - Broadband transmission spectrum
 - Fit narrowband resonator Q_i

Packaging-induced Losses

Culprit: far away (~ 1-5 mm) lossy adhesives

Increasing frequency, increasing resistive losses at interposer **AND** side resonator is shorted (high current)

Low-Loss Resonator Packaging

- Solution: Remove as much lossy material as possible (no matter how far from chip!)
- Confirm: Use wide trace resonators (largest mode volume → most sensitive to package losses)

- 22 μm high-power Q_i improved from 1-3M to ~ 10M
- No frequency dependence
- High-power Q_i similar to small mode volume devices
- Outlook: High single photon Q_i, less variation (better SLE!)

Outline

- A/B Testing
- Characterizing 3D integration
- Surface Loss Extraction (SLE)
- Sources of device-to-device variability

So...how useful are resonators?

Pros:

- Easy/Easier to fabrication
- Easy/Easier to measure/automate
- Easy/Easier to simulate (2D, classical)
- Some analytic results exist
- High Q → high sensitivity

Optimist's outlook: Resonators are useful tool for characterizing the properties of the enabling technologies for superconducting quantum circuits.

Cons:

- Not many 'knobs'
- May not address specific questions
- Extra fab steps for qubit caps
- Variability/fluctuations
- Too reductionist/worth the effort?

Pessimist's outlook: Resonators are too blunt and unwieldy of a tool to meaningfully assess the properties of the enabling technologies for superconducting quantum circuits.

Acknowledgments

Experiment

- Jeff Birenbaum
- Greg Calusine
- John Cummings
- Cyrus Hirjibehedin
- David Hover (CalTech)
- Evan Golden
- Mollie Kimchi-Schwartz
- Jovi Miloshi
- Danna Rosenberg
- Gabriel Samach
- Arjan Sevi
- Steve Weber

Theory & simulation

- Andrew Kerman
- Kevin Obenland
- Mike O'Keeffe
- Wayne Woods

3D integration

- Rabindra Das
- Mike Hellstrom
- Karen Magoon
- Justin Mallek
- Peter Murphy
- Corey Stull
- Chris Thoummaraj
- Donna-Ruth Yost

Materials & fabrication

- Peter Baldo
- Vlad Bolkhovsky
- Alexandra Day
- David Kim
- Eric Holihan
- Bethany Niedzielski Huffman
- John Liddell
- Alex Melville
- Brenda Osadchy
- Jason Plant
- Jonilyn Yoder

Technical & engineering support

- Mike Augeri
- Rick Slattery
- George Fitch
- David Volfson
- Gerry Holland
- Terry Weir
- Lee Mailhiot

MIT Engineering Quantum Systems (EQuS)

- William D. Oliver
- Simon Gustavsson
- Terry Orlando
- Mirabella Pulido

Post doctoral associates

- Daniel Campbell
- Morten Kjaergaard
- Philip Krantz
- Joel Wang
- Roni Winik

Undergraduate students

- Luke Eure
- Brian Mills
- George Stefanakis
- Megan Yamoah

Graduate students

- Charlotte Bøttcher
- Ami Greene
- Bharath Kannan
- Benjamin Lienhard
- Tim Menke
- Yanjie Qiu
- Youngkyu Sung

Visiting students

- Andreas Bengtsson
- Uwe Luepke
- Niels Jakob Søe Loft

Technical direction: William D. Oliver, Andrew Kerman

MIT-LL program management and support: Eric Dauler, John Rokosz, Michelle Sibiga, Erin Jones-Ravgiala, RaeAnn Rolla

Backup

Estimating Measurement Accuracy

"Simulated Experiment": estimation of extraction accuracy