

INTRODUÇÃO

PRINCÍPIOS DE FUNCIONAMENTO

Dispersão de Rayleigh

- Causa a reflexão de energia
- Ocorre quando os comprimentos de onda > diâmetro das partículas

BANDAS DE FREQUÊNCIAS

Banda S

- Comprimento de onda: 8 a
 15 cm;
- Capacidade para detetar chuvas até 300 km;
- Consegue detetar gotas de grande dimensão;
- Comprimentos de onda não são facilmente atenuados pela precipitação.

Banda C

- Comprimento de onda: 4 a 8 cm;
- Tem uma boa relação entre o custo e a capacidade de deteção:
- Comprimentos de onda são mais facilmente atenuados pela precipitação.

Banda X

- Comprimento de onda:2,5 a 4 cm;
- Utilizada para a deteção de partículas de menor dimensão;
- Os alvos têm de estar a uma distância curta;
- O sinal desta gama de comprimento de ondas é muito atenuado.

COMPONENTES DOS RADARES METEOROLÓGICOS

Processador do radar

Recetor

Sistema de exibição

Tempo de retorno

- Registo tempo total que o pulso leva para ir até o alvo e voltar
- Sabe-se a velocidade da onda emitida

Permite determinar a que distância se encontra os hidrometeoros

Efeito Doppler

- É o deslocamento da frequência das ondas refletidas devido ao movimento da partícula
- Se a partícula se está a aproximar do radar, a frequência do sinal refletido aumenta

Permite determinar a velocidade das partículas em direção ao radar ou pra longe dele

RADARES CONVENCIONAIS

Baseiam-se nos princípios básicos dos radares:

 Envio de onda e recepção da reflexão

RADARES DOPPLER

Mede as Velocidades a partir do efeito Doppler, permitindo saber a direção e velocidade das particulas alvo em movimento. Permite detetar ventos fortes, tempestades e ciclones

RADARES DE POLARIZAÇÃO DUPLA

Emitem pulsos nas direções horizontal e vertical.

Permite melhor qualidade de dados, diferenciando entre chuva, neve ou granizo.

Podem ser usados com os principios dos radares Doppler.

RADARES MÓVEIS

Montados em veículos ou estruturas móveis, permitindo análises rápidas e localizadas em fenómenos como tempestades, tornados, furacões.

RADARES DE BORDO

Podem ser usados em missões de reconhecimento de furacões.

Também usados em pesquisas científicas em zonas de maior interesse mas dificil acesso.

RADARES DE BORDO

Usados nas aeronáves comerciais como forma de evitar navegar por zonas de condições adversas, que podem causar lesões ou danos à aeronave.

RADARES DE BORDO

A equipa de bordo deve usar várias técnicas para fazer melhor uso do equipamento:

- Ajustar a direção do radar;
- · Ajustar a sensibilidade;
- Uso de modos de turbulência

APLICAÇÕES NA INDÚSTRIA AERONÁUTICA

Alguns problemas que podem existir durante o voo:

- Turbulência
- Trovoadas
- Formação de gelo
- Baixa visibilidade
- Chuvas fortes
- Granizo

São os radares que permitem os pilotos se guiarem quando se é encontrado áreas com esses riscos

RADARES NAS AERONAVES

Nem todos as aeronaves contém um radar meteorológico a bordo. Normalmente os

aviões recebem informação meteorológica através de sistemas externos como

sistemas meteorológicos colocados em satélites ou baseados na Terra.

Contudo algumas aeronaves contêm um pequeno radar para complementar.

RADARES NAS AERONAVES

Para se visualizar o clima dentro do

cockpit, existe os EFB, que são

computadores tablet que permitem

mostrar os dados meteorológicos

recebidos dos radares.

Informação prévia Inclinação da antena e do alcance

Alterar o ganho do sistema

Estar atento a sinais

- Conhecer as especificações do radar
- Obter informação sobre as previsões meteorológicas na rota a percorrer
- Ir variando a inclinação da antenna como modo padrão de deteção e avaliação do clima
- Obter uma
 melhor perceção
 do que os radares
 podem estar a ler
- Durante o voo, estar atento a sinais visuais e auditivos emitidos pelo o Sistema de avaliação de ameaças e perigos

Informaçã prévia

- Conhecer as especificaçõe radar
- Obter informa sobre as previs meteorológica rota a percorre

Overscanning

ar atento a sinais

rante o voo,
car atento a
ais visuais e
ais emitidos
lo o Sistema de
aliação de
neaças e
rigos

Correct storm display

The visible top of the storm is an area of minimum reflectivity. Infc to a As the storm gets closer, the radar must be tilted down to paint the area of maximum reflectivity. 20 Miles 100 Miles Level Cruise @ 30,000 ft Radar Tilt Down 59 Visible Top Conh 00, Area of Minimum o a espec Reflectivity radar -- Figure 4-1: is e Most Reflective Reflectivity - Obter los Wet Hall Rain sobre ma de Wet Snow Area of meter Dry Hail 9 Maximum Ice Crystals rota a Refectivity Dry Snow Least Reflective 10,000 ft 10,000 ft

Informação prévia Inclinação da antena e do alcance

Alterar o ganho do sistema

Estar atento a sinais

- Conhecer as especificações do radar
- Obter informação sobre as previsões meteorológicas na rota a percorrer
- Ir variando a inclinação da antenna como modo padrão de deteção e avaliação do clima
- Obter uma
 melhor perceção
 do que os radares
 podem estar a ler
- Durante o voo, estar atento a sinais visuais e auditivos emitidos pelo o Sistema de avaliação de ameaças e perigos

Inform pré

- Conhece especific radar
- Obter inf sobre as meteoro rota a pe

tento a lais

e o voo, tento a 'isuais e mitidos Sistema de ão de as e

Informação prévia Inclinação da antena e do alcance

Alterar o ganho do sistema

Estar atento a sinais

- Conhecer as especificações do radar
- Obter informação sobre as previsões meteorológicas na rota a percorrer
- Ir variando a inclinação da antenna como modo padrão de deteção e avaliação do clima
- Obter uma
 melhor perceção
 do que os radares
 podem estar a ler
- Durante o voo, estar atento a sinais visuais e auditivos emitidos pelo o Sistema de avaliação de ameaças e perigos

EXEMPLOS DE SISTEMAS

Cloud Top Height (CTH)

- -Sistema na aeronave
- -Utiliza dados de satélites para fornecer
- informações sobre tempesteados e condições
- adversas em áreas remotas
- -Complementa radares convencionais
- garantindo maior segurança

EXEMPLOS DE SISTEMAS

Terminal Doppler Weather Radar(TDWR)

- -Sistema na terra
- -Utilizado para detetar condições perigosas de

precipitação e ventos próximos a grandes

aeroportos com atividade frequente de

tempestades

CASO PRÁTICO

Avião encontra-se perto de áreas de risco para voar

Pode escolher estas 4 rotas (desde a A até à D) Qua será a melhor?

O FUTURO DE RADARES METEOROLÓGICOS

Áreas com cristais de gelo, ainda não são detetadas

QUESTÕES?

