Making Circuits of Boolean Algebra Properties

Objective

Develop an intuitive sense of the Boolean algebra properties. Further familiarize yourself with Logisim. Get extra practice using logic gates. Have an early introduction to constants.

Instructions

Create a physical representation of each Boolean algebra property using Logisim with the following wiring components and logic gates.

1. Idempotence

Use one input pin, two output pins, one OR gate, and one AND gate. (Hint: The input will connect both equations.)

The solution for this circuit is provided below as an example:

Note:

Notice how toggling input 'a' sends a current through the logic gates.
The upper output 'a' and lower output 'a' are both equal to whatever value input 'a' has.

2. Complementation

Use one input pin, two output pins, two NOT gates, one OR gate, and one AND gate.

3. Identity

$$a + 0 = a$$

 $a * 1 = a$

Use one input pin, one 0 constant, one 1 constant, two output pins, one OR gate, and one AND gate. (Hint: Constants are found in the wiring folder.)

4. Annihilator

$$a + 1 = 1$$

 $a * 0 = 0$

Use one input pin, one 0 constant, one 1 constant, two output pins, one OR gate, and one AND gate.

5. Double Negation

$$(a')' = a$$

Use one input pin, two NOT gates, and one output pin.

6. Associativity

$$a + (b + c) = (a + b) + c$$

 $a * (b * c) = (a * b) * c$

Use three input pins, four output pins, four OR gates, and four AND gates. (Hint: Both sides of the equations are an output.)

7. Distributivity

$$a * (b + c) = (a * b) + (a * c)$$

 $a + (b * c) = (a + b) * (a + c)$

Use three input pins, four output pins, five OR gates, five AND gates. (Hint: Both sides of the equations are an output.)

8. Commutativity

$$a + b = b + a$$

 $a * b = b * a$

Use two input pins, four output pins, two OR gates, and two AND gates. (Hint: Both sides of the equations are an output.)

9. Absorption

$$a * (a + b) = a$$

 $a + (a * b) = a$

Use two input pins, two output pins, two OR gates, and two AND gates.

10. De Morgan

$$a' * b' = (a + b)'$$

 $a' + b' = (a * b)'$

Use two input pins, four output pins, six NOT gates, two OR gates, and two AND gates. (Hint: Both sides of the equations are an output.)