Animation

Dr. V Masilamani

masila@iiitdm.ac.in

Department of Computer Science and Engineering IIITDM Kancheepuram Chennai-127

Overview

- What is Animation
- Steps of animation process
- Principles of Animation
- Factors to be Considered in Animation
- 6 Animation Techniques

What is Animation?

- ► The term **animation** has a Greek (animos) as well as roman (anima) root, meaning "to bring to life"

 Life: evolution over time
- Animation is a technique in which the **illusion of movement** is created by a sequence of individual drawings with the property that each frame(drawing) is the alteration of previous frame.
- Conventional Animation: Sequence of frames, where each frame is drawn manually
 - Example: "The Illusion of Life" by Thomas Johnson and Ollie Johnson (From Disney Animation)
- ► Computer Animation: Sequence of frames, where frames are drawn using computer

What is Animation? (cont.)

Conventional Animation

What is Animation? (cont.)

Restrictions in Conventional Animation

- As every frame is drawn by animators manually, the animation is not real time
- Mostly only 2D has been considered

The steps of animation process

- Story board
 - Sequence of drawings with descriptions
- Key frames
 - A few important frames as drawings
- Inbetweens
 - Draw the rest of the frames
- Painting
 - Redraw onto acetate Cels, color them

Principles of animation

- ➤ The flour sack principle: Stretch and Squash using half filled bag of flour
- ➤ The half-filled flour bag will squash out to the fullest shape when it's dropped on the floor, and
- It will stretch out to the longest shape when it's picked up by the corners.
- But it will never change its volume.
- Animation technique that mimics deformation of

half-filled flour bag is called as stretch and squash

Principles of animation (cont.)

- Anything composed of living flesh will be proportionally deformed (squashed or stretched) within its shape in processing through action.
- ► This rule could be also applied to still elements, like a ball or chair, to emphasize movement.

For instance, a ball should squash when touching the floor during a bouncing animation.

Principles of animation (cont.)

Conventional Animation using Stretch and Squash

► An attribute of animation: Exaggeration with believability to some extent

Factors to be Considered in Animation

Real Time vs. Image by Image

- ► Real Time: Compute Draw
- ► Image by Image: Compute Store Draw
- ▶ Display rate: 30 fps or 25 fps

Animation Characteristics

- Spatial (position, orientation, form)
- ► Temporal (velocity, acceleration)
- Visual (color, texture)

Animation Techniques

- Rotoscopy
- ► Key Framing
- ► Parametric
- ► Algorithmic

- Rotoscopy: The following process of creating animation is called as rotoscopy
 - Photographed images are projected onto a glass panel
 - Trace over the image with a drawing tool

- ▶ The device used for projection is called as rotoscope
- Now the device rotoscope has been replaced by computer
- ► Register (record) data for each frame
- Data intensive
- Useful for complex motion
- ► Realistic
- ► Brute-force (less creative)

Key Framing

- Frames with very high deviations are called as key frames
- Draw such key frames
- ▶ Draw the frames between two consecutive key frames using interpolation
- ► May give incorrect (inconsistent) results in some cases

Key Framing

- ► Interpolation
 - Let $P_1 = (x, y, t_{kF_1}), P_2 = (x, y, t_{kF_2})$
 - The corresponding point in frame i, $P_i = (x, y, i)$ is calculated as $P_i = (1 t)P_1 + tP_2$

Key Framing

- ► Issues with Linear Interpolation
 - May not be smooth
 - Unrealistic results: it will produce the same upward velocity downward velocity

► Solution : Splines may be used

Key Framing

► Linear Interpolation

Key Framing

► Spline Interpolation

Key Framing

- ► Interpolation
 - Using other functions (slow-in, slow-out)

 V_s : attribute at start frame

 V_e : attribute at end frame

 V_i : attribute at intermediate frame

$$V_i = (1 - f(t))V_s + f(t)V_e$$

Key Framing

- Suppose a square at t = 0 has become rotated square with 180 degree at time t = 1
- ▶ If linear interpolation is applied to find a frame at t = 0.5, what will be the shape of the object?

Key Framing

- ► The linear interpolation produces
 - Incorrect Results: Just a dot

Parametric

- ▶ Characteristic parameters for motion are specified and interpolated.
- ► Less data is required e.g for motion of an arm, the parameter could be rotation angle

Algorithmic

► Laws of motion: physical or procedural animation

Example

Spline Driven Animation

- ► Spline: Continuous piece-wise polynomial
- ► The spline is expected to be as smooth as possible at the joints(knots or boundary of the intervals)
- ► Splines are used to define/ represent curves

► Suppose the key frames are not equally spaced over time(parameter u), but we wish to to make uniform motion in the animation

$$s = A(u) = \int_{u_0}^u [(rac{dx}{du})^2 + (rac{dy}{du})^2 + (rac{dz}{du})^2]^{1/2} du$$

$$Q(u) = Q(A^{-1}(s))$$

Reparameterization

Find
$$u = A^{-1}(s)$$

Find
$$u = A^{-1}(s)$$

A: monotonically increasing i.e $u_1 < u_2$ and $A(u_1) < A(u_2)$

Bisection method to find u_a such that $A(u_a) = s_a$, given s_a

- ▶ Start with full interval($u_1...u_3$)
- ▶ Get u_2 in the middle, find s_2
- ▶ if $s_a < s_2 : u_a \in [u_1, u_2]$
- ▶ if $s_a > s_2 : u_a \in [u_2, u_3]$
- Continue till within a threshold

How to find arc length s

$$s = \int_{u_0}^{u} [(\frac{dx}{du})^2 + (\frac{dy}{du})^2 + (\frac{dz}{du})^2]^{1/2} du$$

Since

$$Q(u) = au^{3} + bu^{2} + cu + d$$

$$s = \int_{u}^{u} [Au^{4} + Bu^{3} + Cu^{2} + du + E]^{1/2} du - (2)$$

Apply Numerical method (numerical integration) to find s

Summary

- ▶ Using equation (2) find arc length for s = 1, 2, 3, 4...
- Using bisection method, find the value of u for each of those vlues of s
- Compute the frame at u using spline interpolation

Alternatively

Chord length parameterization

Morphing

Transformation of object shapes from one form to another

- ► Each form may be considered as a key frame
- ► Establish common topology for the Etc key frames
- ► Interpolate the intermediate frames

Morphing (cont.)

Transformation of one Image (source) to another Image (target)

- ► Normalization of both the images
- ► Feature correspondence
- Warping of the two images(spatial deformation)
- Colour blending

Morphing (cont.)

Issue with Interpolation without feature correspondence: the interpolated images have two noses and two eyes

Interpolation of features will result in one appearance of the feature Triangle Method

- Feature points are marked on source and target.
- ► These feature are given the correspondence
- ► Triangulate the points.
- ► Interpolate triangulation for intermediate frames.
- ► Warp the images, and blend colors.

Triangle Method

Interpolation in triangular domain

How is P related to P_1 , P_2 and P_3 ?

$$\mathsf{P} = uP_1 + vP_2 + wP_3$$

$$u = A1/A, v = A2/A, w=A3/A$$

u,v,w are Barycentric coordinates

Triangle method

Triangle method

Particle Systems

Williams T Reaves (1983) SIGGRAPH

Particle Systems "A Technique for Modeling a Class of Fuzzy Objects"

- ► An object is represented as cloud of particles
- ▶ Particles are not static; particle system evolves
- Non deterministic
- Particles are simple (computationally efficient) but can model complex amorphous objects and behaviors
- Dust, Water fall, Rain, Fire, Cloud, Stars, Grass, Fur, etc

In a typical particle system

- Generate new particles with initial attributes
- ▶ Particles have lifespan: Killott dead particles
- ► Modify particle attributes: color, position
- Render particles

Particle Generation

- ► Stochastic
- ightharpoonup N = average + rand()*var

Particle Attributes

- ▶ Determine motion status, appearance, and its life in the partcle system (position, color, opacity, size, speed, life-span etc.)
- ▶ Initialized at the time of creation

Particle Termination

- For each new frame, particle's life time is decremented by one
- ▶ When life time = zero, the particle is removed

Particle dynamics

- ► From force find accelerator, velocity, position
- ▶ Other attributes (color, opacity, etc.) may also change with time

Particle dynamics

Particle Rendering

- ▶ Particles can be rendered as light sources
- Particles do not intersect with objects
- May ignore shadows
- ► These assumptions simplify the rendering and computation

Wrath of Khan

- ► A grass clump is a particle system
- ► A particle is a blade of grass
- ► Draw parabolic streak over entire life time

Behavioral Animation

Flocking of birds

Deformable Objects

Mesh of springs: Cloth Lines of springs: Hair

Acknowledgements

► The slides have been adopted from NPTEL Lectures by Prof. Prem Kalra The due credits are acknowledged.

Thank You! :)