⊳ Size-adaptive math

	(x)	parantheses
	[x]	brackets
	x	absolute value
	$ x ^2$	absolute value squared
{}	[x, y]	commutator
	$\langle x \rangle$	mean value

▶ Braket notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator
{}{}	$\langle x y z\rangle$	matrix element
$\sl \$	$\langle x y z\rangle$	small matrix element

> Special functions

	$\delta(x)$	delta function
	$\theta(x)$	theta function
	$\exp(x)$	exponential function
	e^x	exponential function
	Re(x)	real part, function form
	Im(x)	imaginary part, function form
\Re	Re	real part
\Im	Im	imaginary part

Named states

\ketPsi $|\Psi
angle$

\ketpsi	$ \psi angle$	
\ketphi	arphi angle	
\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdn	$ \!\downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	g angle	ground state
\kete	e angle	excited state
\vac	$ { m vac} angle$	vacuum
> Vectors		
\vecr	${f r}$	
\vecrone	$\mathbf{r_1}$	
\vecrtwo	${f r_2}$	
\vecrn	$\mathbf{r_{N}}$	
\vecri	${f r_i}$	
\vecrj	${f r_j}$	
\vecR	${f R}$	
\vecx	\mathbf{x}	
\vecy	\mathbf{y}	
\vecz	${f z}$	
\vecxi	$\mathbf{x_i}$	
\vecxj	$\mathbf{x_{j}}$	
\veck	${f k}$	
\vecq	\mathbf{q}	
\vecp	${f p}$	

Differentiation

	$\frac{\partial}{\partial x}$	partial differentiation
\laplace	$ abla^2$	laplace operator

▷ Integration

	$\int dx$	integral
{}	$\int_{x}^{y} dz$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int \! \mathrm{d}^3 r$	integral over r space
\intvolp	$\int \! \mathrm{d}^3 r'$	integral over r' space
\intvold	$\int \! \mathrm{d}^3 r \int \! \mathrm{d}^3 r'$	double integral over space
\intk	$\int \! \mathrm{d}^3 k$	integral over k space
\intkp	$\int \! \mathrm{d}^3 k'$	integral over k' space
\intkn	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k' space

⊳ Special symbols

\hc	h.c.	hermitian conjugate
\hamil	Ĥ	Hamilton operator
\hastobe	<u>!</u>	has to be
\eqhat	^	corresponds to, is equivalent
\id	1	identity matrix
\const	const.	hermitian conjugate

> Second quantization

\aop	a	annihilation operator
\aopd	a^{\dagger}	creation operator
\bop	b	annihilation operator
\bopd	b^{\dagger}	creation operator

\cop	c	annihilation operator
\copd	c^{\dagger}	creation operator
\nop	n	number operator
\psiop	$\hat{\psi}$	field operator
\psiopd	$\hat{\psi}^{\dagger}$	
\PsiOp	$\hat{\Psi}$	
\PsiOpd	$\hat{\Psi}^{\dagger}$	
Differences		
\Dx	Δx	
\Dy	Δy	
\Dt	Δt	
> Trigonometry		
\asin	asin	
\acos	acos	
\atan	atan	
⊳ Figures		
\igopt(2 arguments)	options, file	name
\ig(2 arguments)	width in un	its of textwidth, filename
\figopt(4 arguments)	width, filena	ame, caption, placement (h, t, ht)
\fig(3 arguments)	width, filena	ame, caption
\doublefigopt(8 arguments)	w1, f1, c1, v	v2, f2, c2, main caption, placement
\doublefig(7 arguments)		v2, f2, c2, main caption
		·