[3b]

- 1. Definujte prenosovú funkciu systému.
- Načrtnite prechodovú charakteristiku statického systému prvého rádu. [3b]
- 3. Vyšetrite stabilitu dynamického systému daného prenosovou funkciou: [4b]

$$G_1(s) = \frac{6}{s^2 + 5s + 6}$$

- 4. Určte ustálenú hodnotu (konečnú hodnotu), na ktorej sa ustáli výstup systému daného prenosovou funkciou $G_1(s)$ (v predchádzajúcej úlohe) keď vstupom systému je jednotkový skok. Komentujte Váš postup. [3b]
- 5. Majme lineárny dynamický systém daný blokovou schémou prenosových funkcií:

Odvoďte prenosovú funkciu $G_E(s) = \frac{E(s)}{W(s)}$ [5b]

6. Majme lineárny uzavretý regulačný obvod s uvažovaním poruchovej veličiny D(s) ako je znázornené na obr.:

Odvoďte prenosovú funkciu definovanú pomerom L-obrazov signálov $\frac{Y(s)}{D(s)}$ pri W(s)=0. [5b]

- 7. Napíšte prenosovú funkciu PID regulátora. [3b]
- 8. Uvažujte klasický lineárny URO (bez poruchového signálu), kde $G_R(s)=r_0$ a $G_S(s)=\frac{K}{Ts+1}$.
 - (a) Odvoďte prenosovú funkciu URO. [4b]
 - (b) Určte veľkosť trvalej regulačnej odchýlky ak $w(t) = 1. \eqno(6b)$
- 9. Vysvetlite pojem doba regulácie a pojem preregulovanie. [4b]
- X. Majme L-obraz signálu: $Y(s) = \frac{K}{Ts+1} \cdot \frac{1}{s}$ Nájdite originál v časovej oblasti, teda y(t)=? [5b]

Tabuľka Laplaceových obrazov:

$f(t)$ $\mathcal{L}\{f(t)\}$	f(t)	$\mathcal{L}\{f(t)\}$
$\frac{d^n f(t)}{dt^n} \qquad s^n F(s) - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0)$	1	$\frac{1}{s}$
e^{at} $\frac{1}{s-a}$	$\delta(t)$	1