Finite Automata

ian.mcloughlin@gmit.ie

Try running the automaton on the following strings. $1101,\ 1,\ 01,\ 11,\ 01010101010,\ 100,\ 0100,$ $110000,\ 0101000000,\ 0,\ 10,\ 101000$

Try running the automaton on the following strings. aaaa, ababa, bababb, abaa

Try running the automaton on the following strings. aaaa, ababa, bababb, abaa

Describe the strings that the automaton recognises.

Try running the automaton on the following strings. $aaaa,\ ababa,\ bababb,\ abaa$

Try running the automaton on the following strings. aaaa, ababa, bababb, abaa

Describe the strings that the automaton recognises.

What are the essential concepts?

Set of states: $Q = \{q_0, q_1, q_2\}$

Initial state: $q_0 \in Q$

Set of final states: $F = \{q_1\} \subseteq Q$

Alphabet:
$$\Sigma = \{0,1\}$$

Transition function: $\delta = \{((q_0, 0), q_0), ((q_0, 1), q_1), ((q_1, 0), q_2), \ldots\}$

Deterministic Finite Automaton (DFA) definition

A DFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states,
- Σ is a finite set called the *alphabet*,
- δ is the transition function $(Q \times \Sigma \to Q)$,
- q_0 is the start state $(\in Q)$, and
- F is the set of accept states ($\subseteq Q$).

Example 1 definition

```
Q = \{q_0, q_1, q_2\}
\Sigma = \{0, 1\}
\delta = \{((q_0, 0), q_0), ((q_0, 1), q_1), ((q_1, 0), q_2), ((q_1, 1), q_1), ((q_2, 0), q_1), ((q_2, 1), q_1)\}
q_0 = q_0
F = \{q_1\}
```

Example 2 definition

$$Q = \{b_0, b_1, b_2\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \{((b_0, a), b_0), ((b_0, b), b_1), ((b_1, a), b_1), ((b_1, b), b_2), ((b_2, a), b_2), ((b_2, b), b_2)\}$$

$$q_0 = b_0$$

$$F = \{b_2\}$$

Example 3 definition

```
Q = \{a_0, a_1, a_2, a_3\}
\Sigma = \{a, b\}
\delta = \{((a_0, a), a_1), ((a_0, b), a_0), ((a_1, a), a_2), ((a_1, b), a_1), ((a_2, a), a_3), ((a_2, b), a_2)\}, ((a_3, a), a_3), ((a_3, b), a_3)\}
q_0 = a_0
F = \{a_3\}
```