Yield Per Recruit

Reading:

See Jennings et al. 2001, section 7.7 Haddon et al. 2011, section 2.8

Yield Per Recruit (YPR) models

Main questions:

- How hard should we fish to optimize harvest?
- What is the optimum age (or size) at first capture?
 - Lots of small fish or fewer big fish?

YPR is called a "dynamic pool model"

What are Dynamic Pool Models?

- Simple age-structured models
- Deterministic models
- Include mortality and growth models
- Widely used to develop reference points used to manage fisheries
- Common Types :
 - Yield per recruit (YPR) → TODAY
 - Spawning Stock Biomass per Recruit (SSB/R, S/R)
 - Egg per recruit

YPR – In class exercise

- See hand out
- Explanation of exercise
- Preliminary questions
 - If your goal is to maximize your yield, what fishing strategy do you think will be best: u=80%, 50%, 40%, 30%, 20%, 10%?
- Break up into groups and calculate the values. Then, fill in the summary table on the board.

Example

*values rounded to 1 decimal place

		Exploitation rate of 80% (u=0.8)			
Age (a)	Weight (W, in kg)	Stock Size (N)	Catch (C)	Catch Wt (kg)	
1		1000			
2	1	200 ((1-u)*N _{a-1})	800 (u*N _{a-1})	800 (C*W _a)	
3	1.5	40.0	160.0	240.0	
4	2	8.0	32.0	64.0	
5	2.5	1.6	6.4	16.0	
6	3	0.3	1.3	3.8	
		TOTAL	1000	1124	
			YPR	1.124	

Write your YPR Results on the board

				Yield
Fishing	Total Catch	Total Catch	Initial	per
Scenario	(# of fish)	(kg)	Recruits	recruit
u=0.8			1000	
u=0.5			1000	
u=0.4			1000	
u=0.3			1000	
u=0.2			1000	
u=0.1			1000	

- What do the results mean?
- Did the results match your prediction? Why or why not?
- What were the tradeoffs with the different strategies?
- What would happen if we introduced natural mortality?

YPR Results

				Yield
Fishing	Total Catch	Total Catch	Initial	per
Scenario	(# of fish)	(kg)	Recruits	recruit
u=0.1	410	776	1000	0.776
u=0.2	672	1198	1000	1.198
u = 0.3	832	1382	1000	1.382
u=0.4	922	1420	1000	1.420
u=0.5	969	1375	1000	1.375
u=0.8	1000	1124	1000	1.124

Yield Per Recruit (YPR)

Fishing yield affected by a tradeoff between growth and mortality

- Basic Idea
 - Assume constant R
 - Simulate declines in N by age
 - Account for increases in W at age
 - Calculate Biomass at age
 - Estimate yield
 - given F and age at capture
 - Repeat for different fishing scenarios to find the optimum yield

YPR

		Exploitation rate of 80% (u=0.8)		
Λαο (a)	Weight (W, in kg)	Stock Size (N)	Catch (C)	Catch Wt
Age (a)	(vv, iii kg)	Stock Size (IV)	Catch (C)	(kg)
1		1000		
2	1	200 ((1-u)*N _{a-1})	800 (u*N _{a-1})	800 (C*W _a)
3	1.5	40.0	160.0	240.0
4	2	8.0	32.0	64.0
5	2.5	1.6	6.4	16.0
6	3	0.3	1.3	3.8
		TOTAL	1000	1124
			YPR	1.124

How do we express this as an equation?

Yield Per Recruit (YPR)

 Model biomass and yield of a cohort over time, accounting for growth and mortality:

$$Y = \sum_{t=t_c}^{t_{max}} \frac{F_t}{Z_t} (1 - e^{-Z_t}) N_t W_t \qquad Y = \sum_{t=t_c}^{t_{max}} u_t N_t W_t$$

- Y = yield (in biomass) per fish recruited to fishery
- t_c = age at first capture
- t_{max} = max age that is captured
- F_t = instantaneous fishing mortality rate at age t
- Z_t = instantaneous total mortality rate
- u_t = exploitation rate at age t (proportion harvested)
- N_t = abundance at age t
- W_t = weight at age t

How do we model Nt and Wt?

Yield (per recruit) vs. F

- Yield per recruit curve
 - Model is run for different values of F (e.g. our 6 scenarios)
- What do the different parts of this curve represent?

Yield (per recruit) vs. F

Yield declines due to low fishing (not fishing hard enough)

*Change in Y-axis scale for viewing

<u>Growth overfishing</u> – when fishing rates are too high, preventing the maximum yield being caught (b/c fish are prevented from growing to larger sizes)

<u>F_{max}</u> = Fishing mortality rate that maximizes the yield per recruit
Use optimization function to find Fmax

15

 $F_{0.1}$

- F_{0.1} = F where slope of YPR curve is 10% of slope at the origin
- Conservative alternative to Fmax

Comments on F_{max} and $F_{0.1}$

- Biological reference points quantitative, biologically-based metric for a stock to inform management
- F_{0.1}
 - Ad hoc with no theoretical justification
 - More conservative
 - Greater stock stability with slightly lower yields
- Fmax ≠ Fmsy (don't confuse the two...)
- Usage
 - Still used somewhat in Europe and Canada
 - In US: Spawning Stock Biomass per Recruit favored

Yield per recruit models

- 2 main control variables:
 - Age at first capture, t_c (ie, selectivity pattern)
 - Fishing Mortality, F
- Try different combinations of t_c and F to maximize yield

Age at first capture (t_c)

- Assume constant M, but F only starts at t_c
- But we can change how abruptly F increases by changing the "selectivity"

FIGURE 2.14

A diagram of the assumptions made in simple yield-per-recruit analysis. Here t_r is the age at recruitment, t_c is the age at first possible capture, and t_{max} is the age at which fish cease to be vulnerable to fishing. The model does not consider the dynamics of individuals younger than t_r years of age but simply assumes that there are R recruits of this age entering the stock each breeding period. M and F are the constant instantaneous rates of natural and fishing mortality, respectively. Knife-edge selection is shown by the vertical rise in mortality at t_c .

Fishing mortality by age

- Age-specific selectivity (s_t) = the probability of being vulnerable to fishing at age t (or some size)
 - This is known as "partial recruitment" for the ypr() function in R
- Simple model assumes knife-edge selectivity (but can have different shapes):

20

YPR Surface

Side: Beverton & Holt with cardboard cutout for YPR surface

YPR contour plot

Assumptions of YPR Models

 Constant recruitment (ie age-structure is at equilibrium or steady state)

Constant mortality schedule

Constant growth schedule

"I'm afarid we need someone with a little more backbone for this position."

Uses of YPR Models

- Develop reference points $(F_{max}, F_{0.1})$ for fisheries management (constant fishing rate harvest strategy)
 - Prevent growth overfishing
 - Evaluates things we can control (F, t_c)
- Determine optimal age at first capture
 - Gear regulations (e.g., mesh sizes, hook sizes, escapement holes, minimum sizes)
 - Season start date

Limitations of YPR Models

In what setting may some of these be more appropriate?

- Constant assumptions
 - Assumes steady state (e.g., constant R & age structure)
 - Constant mortality, selection, size at age schedules
 - This means no density dependence
- Used as a relative measure
 - does not estimate total yield which is of greater interest to fishers. (Total yield requires info on amount of R)
- Ignores effects of harvest on recruitment (no SR model)
 - No indication of whether F_{max} or $F_{0.1}$ is sustainable!
 - E.g., Some could predict t_c for juveniles; some predict infinite Fmax

YPR example – Atlantic croaker

• Effect of region and M assumption?

Chesapeake Bay

M = 0.20Yield per recruit (g) 200 100 0.0 (a)

CB

- Tc=age-2
- Z~0.6
- 1988-91 data
- NC
 - Tc=age-1
 - Z~1.3
 - 1979-81 data

I Johninge Kajeer Downolde

Summary - YPR

$$Y = \sum_{t=t_c}^{t_{max}} \frac{F_t}{Z_t} (1 - e^{-Z_t}) N_t W_t$$

$$or (u_t N_t W_t)$$

Yield per Recruit (YPR)

- **YPR** = estimate of the weight that each recruit contributes to fishery harvest over its lifetime (on average)
- Goal of YPR models: evaluate fishing rates & age at capture (t_c) to maximize YPR
- YPR models account for:
 - age-structure
 - growth and mortality
- YPR models don't account for:
 - Recruitment, changes in growth or mortality schedules, or density dependence
- Provide info and reference points for management
 - Deals with growth overfishing
 - \mathbf{F}_{max} and $\mathbf{F}_{0.1}$ (or \mathbf{u}_{max} and $\mathbf{u}_{0.1}$)

know definitions & graphical representation

Provides info on optimal age at first capture