第一章 随机事件和概率

$$\begin{bmatrix} \text{古典概型} \\ \Pi \text{ 大图} \end{bmatrix}$$
 D $\{ A \}$ D

(1)排列 组合公式	$P_m^n = \frac{m!}{(m-n)!}$ 从 m 个人中挑出 n 个人进行排列的可能数。 $C_m^n = \frac{m!}{n!(m-n)!}$ 从 m 个人中挑出 n 个人进行组合的可能数。			
(2)加法 和乘法原 理	加法原理(两种方法均能完成此事): m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事): m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。			
(3)一些 常见排列	重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题			
(4)随机 试验和随 机事件	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。			
(5)基本 事件、样本 空间和事 件	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ω来表示。 基本事件的全体,称为试验的样本空间,用 Ω表示。			

	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母 A , B , C , ····表示事件,它们是 Ω 的子集。
	Ω 为必然事件, 0 为不可能事件。
	不可能事件(\emptyset)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
	①关系:
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
	$A \subset B$ 如果同时有 $A \subset B$, $B \supset A$,则称事件 A 与事件 B 等价,或称 A 等于 B :
	A=B _o
	A 、 B 中至少有一个发生的事件: $A \cup B$,或者 $A+B$ 。
	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可
	表示为 $A-AB$ 或者 \overline{AB} ,它表示 A 发生而 B 不发生的事件。
(6) 事件	$A \setminus B$ 同时发生: $A \cap B$,或者 AB 。 $A \cap B=\emptyset$,则表示 $A \subseteq B$ 不可能同时发生,
的关系与运算	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
291	_
	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
	的事件。互斥未必对立。 ②运算:
	结合率: A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
	分配率: (AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
	德摩根率: $\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} A_i $ 德摩根率: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \ \overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满足下列三个条件:
	た下列三十家件: $1^{\circ} 0 \leq P(A) \leq 1,$
(7)概率	2° P(Ω) =1
的公理化	3° 对于两两互不相容的事件 A_1 , A_2 , …有
定义	$P\!\!\left(igcup_{i=1}^{\infty}A_i ight) = \sum_{i=1}^{\infty}P(A_i)$
	常称为可列(完全)可加性。
	则称 $P(A)$ 为事件 A 的概率。
	$1^{\circ} \Omega = \left\{ \omega_1, \omega_2 \cdots \omega_n \right\},$
(8) 古典 概型	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n} .$
	设任一事件 A ,它是由 $\omega_1, \omega_2 \cdots \omega_m$ 组成的,则有
	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	$=\frac{m}{m}=\frac{A \text{ mol } 2 mol $
	= — = ————————————————————————————————
<u> </u>	

(9) 几何	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,
概型	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
(10) 加法	P(A+B) = P(A) + P(B) - P(AB)
公式	当 P(AB) = 0 时, P(A+B) = P(A) + P(B)
(11) 减法	P(A-B)=P(A)-P(AB) 当 B⊂A 时,P(A-B)=P(A)-P(B)
公式	
	当 A=Ω时, P(B)=1- P(B)
	定义 设 A、B 是两个事件,且 $P(A)>0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
(12) 条件 概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	条件概率是概率的一种,所有概率的性质都适合于条件概率。
	例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
(10) 委法	乘法公式: $P(AB) = P(A)P(B/A)$ 更一般地,对事件 A_1 , A_2 , ···· A_n , 若 $P(A_1A_2 \cdot \cdot \cdot \cdot A_{n-1}) > 0$, 则有
(13) 乘法 公式	$P(A_1A_2A_n) = P(A_1)P(A_2 A_1)P(A_3 A_1A_2)P(A_n A_1A_2$
	A_{n-1}
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$, 则称事件 $A \setminus B$ 是相互独立的。
	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	P(A) = P(A) = P(A)
(14) 独立	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独立。
性	必然事件 Ω 和不可能事件 0 与任何事件都相互独立。 0 与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); P(BC) = P(B) P(C); P(CA) = P(C) P(A)
	并且同时满足 P(ABC)=P(A) P(B) P(C)
	那么 A、B、C 相互独立。 对于 n 个事件类似。
	$ _{ $
(15) 全概	1° B_1, B_2, \dots, B_n 两两互不相容, $P(B_i) > 0 (i = 1, 2, \dots, n)$,
公式	$A \subset {^n}B_i$
	2° $\underset{i=1}{\overset{\smile}{=}}$,
	则有

	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \cdots + P(B_n)P(A \mid B_n)$
	设事件 B ₁ , B ₂ ,, B _n 及 A 满足
	1° B_1 , B_2 ,, B_n 两两互不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A\subset \bigcup_{i=1}^n B_i$, $P(A)>0$,
(16) 贝叶 斯公式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_j)P(A/B_j)}, i=1, 2, \dots, $
	$\sum_{j=1}^{} P(B_j)P(A/B_j)$
	此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
	我们作了 n 次试验,且满足
	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
	ightharpoonup n 次试验是重复进行的,即 A 发生的概率每次均一样;
	◆ 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与 否是互不影响的。
(17) 伯努	这种试验称为伯努利概型,或称为 n 重伯努利试验。
利概型	用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 $1-p=q$,用 $P_n(k)$ 表
	示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,
	$P_n(k) = C_n^k p^k q^{n-k}, k = 0,1,2,\dots,n$

第二章 随机变量及其分布

$$\left\{ \begin{array}{c} 基本事件\omega \\ 随机变量X(\omega) \end{array} \right\} \rightarrow \left\{ \begin{array}{c} \text{随机事件A} \\ a < X \le b \end{array} \right\} \rightarrow \left\{ \begin{array}{c} P(A) \\ F(b) - F(a) \end{array} \right\}$$

(1) 离散型随机变量的分布律	设离散型随机变量 X 的可能取值为 X_k (k=1, 2, ···) 且取各个值的概率,即事件 (X=X_k) 的概率为 $P(X=x_k)=p_k, \ k=1,2,\cdots,$ 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出: $\frac{X}{P(X=x_k)} \left \frac{x_1, x_2,\cdots, x_k,\cdots}{p_1, p_2,\cdots, p_k,\cdots} \right $ 显然分布律应满足下列条件: $(1) p_k \geq 0 k=1,2,\cdots, \qquad (2) \sum_{k=1}^{\infty} p_k = 1$
(2)连续 型随机变 量的分布 密度	设 $F(x)$ 是随机变量 X 的分布函数,若存在非负函数 $f(x)$,对任意实数 x ,有 $F(x) = \int_{-\infty}^{x} f(x) dx$,则称 X 为连续型随机变量。 $f(x)$ 称为 X 的概率密度函数或密度函数,简称概率密度。 密度函数具有下面 4 个性质: $1^{\circ} \qquad f(x) \geq 0$ 。 $2^{\circ} \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$ 。
(3)离散 与连续型 随机变量 的关系	$P(X=x) \approx P(x < X \le x + dx) \approx f(x) dx$ 积分元 $f(x) dx$ 在连续型随机变量理论中所起的作用与 $P(X=x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。

	设 <i>X</i> 为随	机变量, x 是任意实数,则函数			
	F(x) = F	$P(X \le x)$			
	称为随机变量	X的分布函数,本质上是一个累积函数。			
		$\leq b$) = $F(b) - F(a)$ 可以得到 X 落入区间 $(a,b]$ 的概率。分布			
	函数 $F(x)$ 表示随机变量落入区间(- ∞ , x] 内的概率。				
	分布函数具有如下性质:				
	1° 0≤	$F(x) \le 1, -\infty < x < +\infty;$			
(4)分布 函数	2° F(2	(x) 是单调不减的函数,即 $x_1 < x_2$ 时,有 $F(x_1) \le F(x_2)$;			
	3° F(-	$F(x) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;			
	4° $F(x+0) = F(x)$, 即 $F(x)$ 是右连续的;				
	$5^{\circ} \qquad P(X=x) = F(x) - F(x-0) \ .$				
	对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;				
	对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x) dx$ 。				
	0-1 分布	P(X=1)=p, P(X=0)=q			
		在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生			
		的次数是随机变量,设为 X ,则 X 可能取值为 $0,1,2,\cdots,n$ 。			
		$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , \qquad \sharp \qquad \uparrow$			
(5) 八大 分布	二项分布	$q = 1 - p, 0 ,$			
		则称随机变量 X 服从参数为 n , p 的二项分布。记为			
		$X \sim B(n, p)$			
		当 $n=1$ 时, $P(X=k)=p^kq^{1-k}$, $k=0.1$,这就是(0-1)分			
		布,所以(0-1)分布是二项分布的特例。			

		设随机变量 X 的分布律为		
	泊松分布	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$		
	THIA / J	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或		
		者 $P(\lambda)$ 。 泊松分布为二项分布的极限分布($np=\lambda$, $n→∞$)。		
	超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2\dots, l$ $l = \min(M, n)$		
		随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。		
	 几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$,其中 p \geqslant 0,q=1-p。		
		随机变量 X 服从参数为 p 的几何分布,记为 G(p)。		
	均匀分布	设随机变量 X 的值只落在 $[a, b]$ 内,其密度函数 $f(x)$ 在 $[a, b]$ 上为常数 $\frac{1}{b-a}$,即 $f(x) = \begin{cases} \frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, & \text{其他}, \end{cases}$		
		则称随机变量 X 在 $[a, b]$ 上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为		
		$ \begin{pmatrix} 0, & x < a, \\ \frac{x - a}{b}, & x < a, \end{pmatrix} $		
		$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} \overline{b-a}, & a \leq x \leq b \\ 1, & x > b. \end{cases}$		
		当 $a \le x_1 \le x_2 \le b$ 时, X 落在区间(x_1, x_2)内的概率为 $P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$ 。		

	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$
指数分布	其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X 的分布函数为
	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$
	记住积分公式: $\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$

	正态分布	设随机变量 X 的密度函数为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$ 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ 的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。 $f(x)$ 具有如下性质: $1^{\circ} f(x)$ 的图形是关于 $x = \mu$ 对称的: $2^{\circ} $
(6) 分位	下分位数: P	$P(x_1 < X \le x_2) = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right).$ $P(X \le \mu_{\alpha}) = \alpha;$
数		$P(X > \mu_{\alpha}) = \alpha$
	上刀型数: 「	
(7)函数 分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \left \frac{x_1, x_2, \cdots, x_n, \cdots}{p_1, p_2, \cdots, p_n, \cdots}, \frac{x_n, \cdots}{p_n, p_n, \cdots}, \frac{x_n, x_n, \cdots}{p_n, p_n, \cdots}, \frac{x_n, x_n, x_n, \cdots}{p_n, p_n, p_n, p_n, p_n, \cdots}, x_n, x_n, x_n, x_n, x_n, x_n, x_n, x_n, $

第三章 二维随机变量及其分布

		如果二维	随机向量	<u>ξ</u> (χ,	Y) 的所	有可能取	值为至多	可列
		个有序对(x,	y),则称	京ξ 为离	散型随机	星。		
		设 ξ = (X, Y) 的所有可能取值为 $(x_i, y_j)(i, j = 1, 2, \cdots)$,						
		且事件{ξ=(;				· J		
			·		$\rho_{ij}(i, j=1)$.,2,)		
		为 <i>ξ</i> = (X, Y)的分布	律或称为	为 X 和 Y	的联合分	布律。联	合分
		布有时也用下	面的概率	区分布表	来表示:			_
	离散型	Y	<i>y</i> 1	y_2	•••	y_j	•••	
		X_{I}	p_{II}	p_{12}	•••	p_{lj}	•••	
		<i>X</i> 2	p_{21}	<i>p</i> 22	•••	p_{2j}	•••	
		:	÷	÷		:	:	
(1) 联合		X_i	p_{i1}		•••	p_{ij}		
分布		÷	÷	÷		i	÷	
		这里 <i>pij</i> 具有下面两个性质:						
		$(1) p_{ij} \geqslant 0 $ $(2) \sum_{i} \sum_{j}$,···);				
		对于二维网	在非负i	函数				
	连续型	$f(x,y)$ ($-\infty < x < +\infty, -\infty < y < +\infty$),使对任意一个其邻边						
		分别平行于坐标轴的矩形区域 D, 即 D={(X, Y) a <x<b, c<y<d}<br="">有</x<b,>						
		$P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy,$						
		则称 ξ 为连续型随机向量;并称 $f(x,y)$ 为 $\xi=(X,Y)$ 的分布						
		密度或称为 X 和 Y 的联合分布密度。 分布密度 f(x,y)具有下面两个性质:						
		$(1) f(x, y)$ $(2) \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} $		dxdy = 1				
<u>.</u>		J J						

(2) 二维	$\xi(X = x, Y = y) = \xi(X = x \cap Y = y)$				
随机变量的本质					
	设 (X, Y) 为	7二维随机变量,对于任意实数 x, y, 二元函数			
		$F(x, y) = P\{X \le x, Y \le y\}$			
	称为二维随机 数。	.向量(X, Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函			
	分布图	函数是一个以全平面为其定义域, 以事件			
	$\{(\omega_1,\omega_2) $	$\infty < X(\omega_1) \le x, -\infty < Y(\omega_2) \le y$ } 的概率为函数值的一个实值函			
	数。分布函数	[F(x,y)具有以下的基本性质:			
(3) 联合	$(1) \ \ 0 \le F(.$	$(x, y) \le 1;$			
分布函数	 (2) F(x,y) 分别对 x 和 y 是非减的,即 当 x₂>x₁时,有 F(x₂,y) ≥F(x₁,y); 当 y₂>y₁时,有 F(x,y₂) ≥F(x,y₁); (3) F(x,y) 分别对 x 和 y 是右连续的,即 				
		F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);			
	(4) $F(-\infty, -\infty) = F(-\infty, y) = F(x, -\infty) = 0, F(+\infty, +\infty) = 1.$				
	(5) 对于 $x_1 < x_2$, $y_1 < y_2$,				
	$F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$				
(4) 离散 型 与 连 续 型的关系	$P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$				
王明八木		X的边缘分布为			
	离散型	$P_{i\bullet} = P(X = x_i) = \sum_{i} p_{ij}(i, j = 1, 2, \dots);$			
		Y的边缘分布为			
(5)边缘		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij} (i, j = 1, 2, \dots)$			
分布	连续型	X的边缘分布密度为			
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$			
		Y的边缘分布密度为			
		$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$			

		+ 1 h v 4 h h l v 1 h h h h h h h h h
		在已知 X=x _i 的条件下, Y 取值的条件分布为
		$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
	离散型	在已知 Y=y,的条件下, X 取值的条件分布为
(6)条件		$P(X = x_i Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
分布		在已知 Y=y 的条件下, X 的条件分布密度为
		$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
	连续型	在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
	一般型	$F(X, Y) = F_X(x) F_Y(y)$
	离散型	$p_{ij} = p_{i \bullet} p_{\bullet j}$ 有零不独立
	连续型	$f(x, y) = f_X(x) f_Y(y)$
		直接判断,充要条件:
		①可分离变量
(7) 独立		②正概率密度区间为矩形
性	二维正态分	②正概率密度区间为矩形 $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
	布	$\rho = 0$
		<i>p</i> - 0
	随机变量的 函数	h (X ₁ , X ₂ , ···X _m) 和 g (X _{m+1} , ···X _n) 相互独立。
		特例: 若 X 与 Y 独立,则: h (X) 和 g (Y) 独立。
		例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。
	<u> </u>	

设随机向量(X, Y)的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

(8) 二维 均匀分布

图 3.1

图 3.2

	设随机向量(X,Y)的分布密度函数为		
	$f(x,y) = \frac{1}{2\pi}$	$\frac{1}{\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{1}}{\sigma_{1}}\right)^{2}-\frac{2\rho(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\left(\frac{y-\mu_{2}}{\sigma_{2}}\right)^{2}\right]},$	
	其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, \rho < 1$ 是 5 个参数,则称(X,Y)服从二维正态分		
(9) 二维	布,		
正态分布	记为 (X, Y)	\sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$).	
	由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,		
	即 $X \sim N (\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$		
	但是若 $X \sim N$ (μ_1, σ_1^2), $Y \sim N(\mu_2, \sigma_2^2)$, (X , Y)未必是二维正态分布。		
(10)函数	Z=X+Y	根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$	
		对于连续型, $f_z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$	
		两个独立的正态分布的和仍为正态分布($\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2$)。	
		n 个相互独立的正态分布的线性组合,仍服从正态分布。 $\mu = \sum_i C_i \mu_i \;, \qquad \sigma^2 = \sum_i C_i^2 \sigma_i^2$	
分布 	Z=max,min($X_1,X_2,\cdots X_n$)	若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为	
		$F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 $Z=\max,\min(X_1,X_2,\cdots X_n)$ 的分布	
		函数为:	
		$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$	
		$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$	

	设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分	
	布,可以证明它们的平方和	
	$W = \sum_{i=1}^{n} X_i^2$	
	的分布密度为	
	$f(u) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} u^{\frac{n}{2} - 1} e^{-\frac{u}{2}} & u \ge 0, \\ 0, & u < 0. \end{cases}$	
	我们称随机变量 W 服从自由度为 χ^2 分布, 记为 W $\sim \chi^2(n)$,	
χ^2 分布	其中	
	$\Gamma\left(\frac{n}{2}\right) = \int_0^{+\infty} x^{\frac{n}{2}-1} e^{-x} dx.$	
	所谓自由度是指独立正态随机变量的个数,它是随机变量 分布中的一个重要参数。	
	χ^2 分布满足可加性:设	
	$Y_i - \chi^2(n_i),$	
	则	
	$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$	
	设 X, Y 是两个相互独立的随机变量,且	
	$X \sim N(0,1), Y \sim \chi^2(n),$	
	可以证明函数	
	$T = \frac{X}{\sqrt{Y/n}}$	
t 分布	的概率密度为	
	$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$	

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}} \qquad (-\infty < t < +\infty).$$

我们称随机变量 T 服从自由度为 t 分布,记为 $T\sim t(n)$ 。

$$t_{1-\alpha}(n) = -t_{\alpha}(n)$$

F 分布 $f(y) = \begin{cases} \frac{\Gamma\left(\frac{n_1 + n_2}{Y/n_2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \left(1 + \frac{n_1}{n_2}y\right)^{-\frac{n_1+n_2}{2}}, y \ge 0 \\ 0, y < 0 \end{cases}$ 我们称随机变量 F 服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布,记为 $F \sim f(n_1, n_2)$. $F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$

第四章 随机变量的数字特征

(1) 连续型 离散型 连续型

一随变的字征	期望就是平均值	设 X 是离散型随机变量,其分布律为 $P(X=x_k)=p_k,$ $k=1,2,\cdots,n,$ $E(X)=\sum_{k=1}^n x_k P_k$ (要求绝对收敛)	设 X 是连续型随机变量,其概率密度为 $f(x)$, $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$ (要求绝对收敛)
	函数的期望 $ eta $ $ e$	$Y = g(X)$ $E(Y) = \sum_{k=1}^{n} g(x_k) p_k$ $D(X) = \sum_{k=1}^{n} [x_k - E(X)]^2 p_k$	$Y = g(X)$ $E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$ $D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x)dx$

	Ι	T	T
	矩	①对于正整数 k ,称随机变量	①对于正整数 k ,称随机变量
		X的k次幂的数学期望为X	X 的 k 次幂的数学期望为
		的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k) = \sum_i x_i^k p_i$, $k = 1, 2, \cdots$ 。 ②对于正整数 k ,称随机变量 $X = E(X) = \sum_i x_i^k p_i$, 这为 k 次幂的数学期望为 k 的 k 阶中心矩,记为 $^{\mu_k}$,即 $^{\mu_k} = E(X - E(X))^k = \sum_i (x_i - E(X))^k p_i$ $k = 1, 2, \cdots$ 。	X 的 k 阶原点矩,记为 v_k ,即 $v_k = E(X^k)$ $= \int_{-\infty}^{+\infty} x^k f(x) dx$, $k = 1, 2, \cdots$ 。 ②对于正整数 k ,称随机变量 X 与 $E(X)$ 差的 k 次幂的数 学期望为 X 的 k 阶中心矩,记为 μ_k ,即 $\mu_k = E(X - E(X))^k$ $= \int_{-\infty}^{+\infty} (x - E(X))^k f(x) dx$, $k = 1, 2, \cdots$ 。
	切比雪夫不等式	设随机变量 X 具有数学期望 $E(X)$ 于任意正数 ε ,有下列切比雪夫不能	,
		$P(X - \mu \ge \varepsilon) \le$	$\leq \frac{\sigma^2}{\varepsilon^2}$
		切比雪夫不等式给出了在未知 X 的	
		$P(X - \mu \ge \varepsilon)$ 的一种估计,它在	E理论上有重要意义。
(2) 期 望 的 性 质	(1) E(C) = C;	(2) E(CX) = CE(X)	
	(3) $E(X+Y) = E(X) + E(Y), E\left(\sum_{i=1}^{n} C_{i} X_{i}\right) = \sum_{i=1}^{n} C_{i} E(X_{i})$		
	(4) E(XY) = E(X	E(Y),充分条件: X 和 Y 独立	江 ; 充要条件: <i>X</i> 和 <i>Y</i> 不相关。

(3) (1) D(C) = 0; E(C) = C方 差 的 性 (2) $D(aX) = a^2 D(X)$; E(aX) = aE(X)质 (3) $D(aX + b) = a^2 D(X)$; E(aX + b) = aE(X) + b(4) $D(X) = E(X^2) - E^2(X)$ (5) $D(X \pm Y) = D(X) + D(Y)$, 充分条件: X 和 Y 独立; 充要条件: X和Y不相关。 $D(X \pm Y) = D(X) + D(Y) \pm 2E[(X - E(X))(Y - E(Y))]$, 无条件成立。 而 E(X+Y)=E(X)+E(Y), 无条件成立。 (4) 方差 常见 p(1-p)0-1分布 B(1, p)p 分 布 的 期 np(1-p)二项分布 B(n, p)пp 望 和 方 差 泊松分布 $P(\lambda)$ λ λ 几何分布G(p)超几何分布 $\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$ пM H(n,M,N)N $\frac{\left(b-a\right)^2}{12}$ $\frac{a+b}{2}$ 均匀分布U(a,b) $\frac{1}{\lambda}$ 指数分布 $e(\lambda)$ 正态分布 σ^2 μ $N(\mu,\sigma^2)$ x^2 分布 n2n $\frac{n}{n-2}(n>2)$ t 分布 0

(5)	期望		
二维	州 至	$E(X) = \sum_{i=1}^{n} x_i p_i.$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$
変 的 字 特		$E(Y) = \sum_{j=1}^{n} y_{j} p_{\cdot j}$	$E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
征	函数的期望	E[G(X,Y)] =	E[G(X,Y)] =
		$\sum_{i} \sum_{j} G(x_{i}, y_{j}) P_{ij}$	$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y) f(x,y) dx dy$
	方差		D(X) =
		$D(X) = \sum_{i} [x_i - E(X)]^2 p_i.$	$\int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$
		$D(Y) = \sum_{j} [x_{j} - E(Y)]^{2} p_{.j}$	D(Y) =
			$\int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协	
		方差或相关矩,记为 $\sigma_{ extit{ extit{XY}}}$ 或 $\cot(extit{ extit{Z}})$	(X,Y), RP
		$\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(X))]$	Y-E(Y).
		与记号 $\sigma_{\scriptscriptstyle XY}$ 相对应, X 与 Y 的方	f差 $D(X)$ 与 $D(Y)$ 也可分别记为
		$\sigma_{{\scriptscriptstyle X\!X}}$ 与 $\sigma_{{\scriptscriptstyle Y\!Y}}$ 。	

	相关系数	对于随机变量 X 与 Y ,如果 $D(X) > 0$, $D(Y) > 0$,则称
		$\sigma_{ ext{\tiny VV}}$
		$rac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
		为 X 与 Y 的相关系数,记作 $ ho_{\scriptscriptstyle XY}$ (有时可简记为 $ ho$)。
	$\left ho ight \leq 1$,当 $\left ho ight =1$ 时,称 X 与 Y 完全相关:	
	P(X = aY + b) = 1	
		完全相关 $\left\{ egin{aligned} \mathbb{E} & \Xi \in \mathbb{E} \\ \mathbb{E} $
	而当 $ ho=0$ 时,称 X 与 Y 不相关。	
	以下五个命题是等价的:	
	$\bigcirc \rho_{XY} = 0:$	
	$ \exists E(XY) = E(X)E(Y); $	
	协方差矩阵	$egin{pmatrix} \sigma_{_{XX}} & \sigma_{_{XY}} \ \sigma_{_{YX}} & \sigma_{_{YY}} \end{pmatrix}$
	混合矩	对于随机变量 X 与 Y ,如果有 $E\left(X^{k}Y^{l}\right)$ 存在,则称之为 X 与 Y 的
		$k+1$ 阶混合原点矩,记为 v_{kl} ; $k+1$ 阶混合中心矩记为:
		$u_{kl} = E[(X - E(X))^k (Y - E(Y))^l]$
(6) 协 方差的	(i) $\operatorname{cov}(X,Y) = \operatorname{cov}(Y,X)$;	
性质	(ii) $\operatorname{cov}(aX,bY) = ab\operatorname{cov}(X,Y);$	
	(iii) $cov(X_1 + X_2, Y) = cov(X_1, Y) + cov(X_2, Y);$	
	(iv) $\operatorname{cov}(X,Y) = E(XY) - E(X)E(Y)$.	

(7)独 立和不 相关

(i) 若随机变量 X 与 Y 相互独立,则 $\rho_{xy}=0$; 反之不真。

(ii) 若
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$
,

则 X 与 Y 相互独立的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

大数定律→ {切比雪夫大数定律 伯努利大数定律 辛钦大数定律

中心极限定理→ { 列维一林德伯格定理 } { 棣莫弗—拉普拉斯定理}

二项定理

泊松定理

		设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一
	切比雪 夫大数 定律	常数 C 所界: D (X_i) \langle C(i=1, 2, ···),则对于任意的正数 ε ,有
		$\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$
		特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E\left(X_1\right)=\mu$, 则上式成为
(1) 大数定律		$\left \lim_{n \to \infty} P \left(\left \frac{1}{n} \sum_{i=1}^{n} X_{i} - \mu \right < \varepsilon \right) = 1.$
$\overline{X} \to \mu$		设 μ 是 n 次独立试验中事件 A 发生的次数, p 是事件 A 在 每次试验中发生的概率,则对于任意的正数 ϵ ,有
	伯努利 大数定 律	$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$
		伯努利大数定律说明,当试验次数 n 很大时,事件 A 发生
		的频率与概率有较大判别的可能性很小,即
		$\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$
		这就以严格的数学形式描述了频率的稳定性。

		设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,且 E	
	辛钦大	(X _n) = μ,则对于任意的正数 ε 有	
	数定律	$\left \lim_{n \to \infty} P \left(\left \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right < \varepsilon \right) = 1.$	
		设随机变量 X ₁ , X ₂ , …相互独立,服从同一分布,且具有相 同 的 数 学 期 望 和 方 差 :	
		$E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \dots)$,则随机变量	
(2) 中心极限定		$Y_n = \frac{\displaystyle\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma}$ 的分布函数 $F_n(x)$ 对任意的实数 x ,有	
理 $\overline{X} \to N(\mu, \frac{\sigma^2}{n})$		$\lim_{n\to\infty} F_n(x) = \lim_{n\to\infty} P\left\{\frac{\sum_{k=1}^n X_k - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$	
		此定理也称为 独立同分布 的中心极限定理。	
	 	设随机变量 X_n 为具有参数 n, p(0 $<$ p $<$ 1)的二项分布,则对于	
		任意实数 x, 有	
		$= \lim_{n \to \infty} P \left\{ \frac{X_n - np}{\sqrt{np(1-p)}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt.$	
	若当 $N \to \infty$ 时, $\frac{M}{N} \to p(n, k$ 不变),则		
(3) 二项定理 $\frac{C_M^k C_{N-M}^{n-k}}{C_N^M} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$		$\frac{C_M^k C_{N-M}^{n-k}}{C_N^M} \to C_n^k p^k (1-p)^{n-k} \qquad (N \to \infty).$	
	超几何分布的极限分布为二项分布。		
	若当 $n \to \infty$ 时, $np \to \lambda > 0$,则		
(4)泊松定理	$C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda} \qquad (n \to \infty).$		
), 1, 2, ···, n, ···。 同的极限分布为泊松分布。	