Machine Learning

Erick Cuenca

Research professor at Yachay Tech University

https://erickedu85.github.io

Introduction

Overview

- Introduction to Artificial Intelligence AI
 - Common questions of Al
 - Characteristic of Al
 - Problems
 - Implications
- Introduction to Machine Learning ML
 - ML types
 - Supervised learning
 - Unsupervised learning
 - Reinforced learning

Common questions about Al

Will a robot take my job?

- chatbot
- Virtual assistance
- ...

Supporting transactions 2017: https://www.youtube.com/watch?v=fAjbPdoQjVk

Al assistant calls businesses 2018: https://www.youtube.com/watch?v=D5VN56jQMWM

The rise of robots 2023: https://www.youtube.com/watch?v=I1w6xzBN7mA

Common questions about Al

How is AI changing our lives?

- Quality of living: health care, ...
- Time-saving: automate processes, ...
- Entertained: Spotify, Netflix, games, ...
- Transportation: autonomous vehicles

https://www.youtube.com/watch?v=Cc4KZ8KUxCE

What is Al?

- It is a scientific discipline: concepts + problems + methods
- Al definition is constantly redefined when some topics emerge
- What seems easy (for humans) is actually hard (for machines)?
 - Grabbing objects: Look around and pick up and object
 - 1. Use your eyes to scan your sourrounding
 - 2. Figured ou where are some suitable objects for picking up
 - 3. Chose one of them and planned a trajectory for your hand reach the object
 - 4. Move your hand by contractic many muscles
 - 5. Squeeze the object with just the enough force to hold it
 - **Grabbing objects** is easy for humans (childhood practice)

Robots grabbing objects 2016: https://www.youtube.com/watch?v=V05SuCSRAtg Google's AI robot 2023: https://www.youtube.com/watch?v=j60_uePUKKI

What is Al?

- What seems hard (for humans) is actually easy (for machines)
 - Playing chess and solving mathematical exercises can seem very difficult
 - Computers follow rules and compute many alternative move sequences at a rate of billions of computations a second.
 - In 1997, Deep Blue beat the reining human champions in chess Kasparov (https://en.wikipedia.org/wiki/Deep Blue versus Garry Kasparov)

What is Al?

Artificial *live*-forms that can surpass human intelligence through their ability to process data

Al characteristics

- Is a chess-playing algorithm more intelligent than a spam filter?
- Is a recommendation system more intelligent than a self-driving car?

Autonomy

The ability to perfom tasks in complex environments without constant guidance by a user

Adaptivity

The ability to improve performance by learning from experience

"Intellligence"

- Al systems cannot be compared on a single dimension of intelligence
- Al is narrow: solving one problem tells us nothing about the ability to solve a different one

Al subfields

Deep Learning | Machine Learning | Artificial Intelligence | Data Science | Computer Science | Math & Statistics

Al subfields

Deep Learning | Machine Learning | Artificial Intelligence | Data Science | Computer Science | Math & Statistics

Al subfields

Artificial Intelligence Al

Machine Learning ML is a subfield of Al

ML systems improve their performance on a given task through experience or data

Deep Learning DL is a subfield of ML

It involves complex mathematical models and leverages the increased computing power of modern hardware

Data Science

Statistic + mathematics + computer Science:

 algorithms, data storage, processing, web application development, etc.

It is a practical discipline: business or science

Al and games

The first two plies of the game tree for tic-tac-toe

Game tree

- Nodes are positions in a game
- Edges are moves
- Combining with heuristics
 - Minimax algorithm: a recursive algorithm for choosing the optimal move in a two-player game (tic tac toe, chess, Go)

Al and games

The first two plies of the game tree for tic-tac-toe

Deterministic games

- There is not randomness in the game
 - E.g., Tic-Tac-Toe, Chess, Go
- Based on the assumption that both players always choose the best mover for themselves, and what is best for one is worst for the other

https://www.google.com/search?q=tic+tac+toe

Machine Learning ML

"Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort"

Arthur Samuel (1959), Computer Scientist

Classical programming

Machine Learning

Machine Learning ML

ML = Statistics + Probability Theory + Mathematics + Computer Science

Roles of sciences:

- Statistics & Mathematics: ML uses statistical theory to building mathematical model
- Computer science:
 - Data:
 - Acquire large volumes of data
 - Store and process large-scale datasets
 - Algorithms:
 - In training:
 - Efficient algorithms for solving optimization problems
 - Once a model is learned:
 - Efficient inference algorithms (with focus on time complexity)
 - Compute:
 - GPUs, high-performance processing units, hardware acceleration, and parallelization

The core task of the ML is to make inferences from a sample of data

Business/ML Problem	Description
Ranking	Helping users find the most relevant thing
Recommendation	Giving users the thing they may be most interested in
Classification	Figuring out what kind of thing something is
Clustering	Putting similar things together
Pattern recognition	Automated recognition of patterns and regularities in data

■ All Today's Deals Customer Service Registry Gift Cards Sell 1-24 of over 60,000 results Results Clarate Piedge Friendly Department Clacturinis Hierardinol Shipping Bietronics Bietronics Accessories & Supplies Camera & Photh Accessories Call Phone Accessories Coll Phone Accessories Coll Phone Accessories Coll Phone Accessories Department College College Supplied College College College Supplied College Sup Climate Pledge Friendly IMAXTOP Selfie Light, RGB Video 6-in-1 Wireless Charging Stand Screen Protector Compatible with Customer Reviews Light with 78 LEDs, Portable Camera Light Panel 0-360 Full Color, 2500-2022 2023 Civic, HD Tempered Glass Anti Scratch, EVTGFILM, 9 inch for iPhone 15 Pro Max [Case Friendly] \$1699 9000K CRI 95+ LED DSLR Lighting f... Delivery Fri, Oct 13 Multimedia Display 4.7 ★★★★☆ ~ (17.9K+) \$2899 \$16⁹⁹ \$3299 Save 5% with coupon Delivery Fri, Oct 13 Ships to Ecuador Featured Brands Amazon Basics Brother PopSockets Save \$7.00 with coupon Delivery Fri, Oct 13 Ships to Ecuador Delivery Fri, Oct 13 Ships to Ecuador Options: 2 sizes

Examples

Business/ML Problem	Description	
Ranking	Helping users find the most relevant thing	
Recommendation	Giving users the thing they may be most interested in	
Classification	Figuring out what kind of thing something is	
Clustering	Putting similar things together	
Pattern recognition	Automated recognition of patterns and regularities in data	

Examples

Based on their past history, recommend movies that customers are likely to enjoy

People who bought this product also bought ...

Determine who you "may know"

Business/ML Problem	Description	Examples	
Ranking	Helping users find the most relevant thing	SPAM	E-mail spam filtering: an
Recommendation	Giving users the thing they may be most interested in		email is spam or ham
Classification	Figuring out what kind of thing something is		
Regression	Predicting a numerical value of a thing	Medium Risk Tigy Risk	Credit scoring: low-risk, medium-risk, an
		V	high-risk customers
Pattern recognition	Automated recognition of patterns and regularities in data	"I love this movie. I've seen it many times and it's still awesome." "This movie is bad. I don't like it it all. It's terrible."	Sentiment classification: Positive, negative, neutra

Description
Helping users find the most relevant thing
Giving users the thing they may be most interested in
Figuring out what kind of thing something is
Predicting a numerical value of a thing
Putting similar things together
Automated recognition of patterns and regularities in data

Examples

We want to predict the price of a used car.

Input: the car attributes: brand, year, engine capacity, mileage, ...

Output: the price of the car (numeric value)

Business/ML Problem

Pattern recognition	Automated recognition of patterns and regularities in data
Clustering	Putting similar things together
Regression	Predicting a numerical value of a thing
Classification	Figuring out what kind of thing something is
Recommendation	Giving users the thing they may be most interested in
Ranking	Helping users find the most relevant thing

Description

Examples

Business/ML Problem	Description	
Ranking	Helping users find the most relevant thing	
Recommendation	Giving users the thing they may be most interested in	
Classification	Figuring out what kind of thing something is	
Clustering	Putting similar things together	
Pattern recognition	Automated recognition of patterns and regularities in data	

Examples

Character recognition: recognize characters codes from their images

- Multiple classes, as many as there are characters we would like to recognize
 - · Handwritten recognition
 - · Read zip-codes on envelopes

Face recognition: recognize people from images

• More complex than character recognition since there are more classes and a face is three-dimensional, so differences in pose and light.

Speech recognition: recognize words from acoustic signal (ES, EN, FR, ...)

Complex task because different people pronouns the same word differently

Natural Language Processing domain:

Erick Cuenca - twitter: @erickedu85

- Trending topics in social media: improve advertise
- Sentiment prediction: customer is happy or not with the product

Why this example? Digit recognizer

Handwritten digits

MNIST dataset. Modified National Institute of Standards and Technology

What problems to solve?

- Each image belongs to one class (0-9), but some digits are difficult to distinguish
- Build an AI model that can take an image as input and predict the correct digit label automatically

Machine learning process

Erick Cuenca - twitter: @erickedu85

Machine learning process

ML terms

ML	Statistics/Math	Example
Target/label/y	Dependent/response/output variable	The thing you're trying to predict
Feature/x	Independent/explanatory/input variable	Data that help us to make predictions
Feature Engineering	Transformation	Reshaping data to get more value
1D, 2D, nD	Dimensionality	Number of features
Model weights	Parameters of the model	A set of numbers embedded in a model that can predict the label

Supervised & unsupervised learning

Business/ML Problem	Description	
Ranking	Helping users find the most relevant thing	Data is provide
Recommendation	Giving users the thing they may be most interested in	Supervised learning with correct labels
Classification	Figuring out what kind of thing something is	
Regression	Predicting a numerical value of a thing	
Clustering	Putting similar things together	Unsupervised learning Without labels
Pattern recognition	Automated recognition of patterns and regularities in data	without labels

Machine learning tasks

Erick Cuenca - twitter: @erickedu85

Supervised learning: dataset

Input: labeled/tagged dataset

Task: predict/classify the correct label

You have the correct label for every instance/observation you give the system

	_		Sample				
	_	Label	Feature 1	Feature 2	Feature 3	Feature 4	
		yes					
nces		no					
instances		yes					
		no					

Instance: observation (row of a tabular structure)

Label: answer (target, label, y, ground truth, output, response, the desired output of the model)

Features: field values (column of a tabular structure, something we know about the observation)

Sample: collection of features

Erick Cuenca - twitter: @erickedu85

Supervised learning: classification

Label

Star	Points	Edges	Size
0	5	10<	750
1	2	>9	150
	:		

Supervised learning: regression

Features Label

Price	Bedrooms	SqFootage	Age
280000	3	3292	14
210000	2	2465	6
	:	::	

Unsupervised learning: clustering

Input: No labeled dataset

Task: discover the structure of the dataset

How:

• grouping similar items to form 'clusters', or associating them

• Reducing dimensions of data

Features	5
----------	---

Age	Music	Books
21	Classical	Practical Magic
40	Jazz	Harry Potter
		•••

Input samples are grouped into clusters based on the underlying patterns.

Unsupervised learning: clustering

The search for patterns. You do not have any labels

Erick Cuenca - twitter: @erickedu85

Semi-supervised learning

A blend of supervised and unsupervised learning. Some of the data are labeled, some not

Semi-supervised learning

A blend of supervised and unsupervised learning. Some of the data are labeled, some not

The clusters formed by a large amount of unlabeled data are used to classify a limited amount of labeled data.