

MODEL

- 01 Logistic Regression
- 02 Random Forest
- 03 Gradient Boosting Model

01 INDEX

02 Logistic Definition

▶ Logistic 회귀분석의 정의

: 분석하고자 하는 대상들이 종속변수가 범주형 데이터를 대상으로 하고 있을 때, 관측치들이 어느 집단에 분류 되는가를 분석하고 이를 예측하는 모형을 개발하는데 사용되는 사용기법

▶ 선형회귀분석

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_q x_q$$

▶ Logistic 회귀분석

$$y = \frac{1}{1 + e^{-z}} ,$$

$$z = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_q x_q$$

03 Logistic

01 데이터 탐색

-입력변수를 확인하고 구별 -예측 할 목표를 설정

02 데이터 전처리

- 알 수 없는 열 삭제 - 데이터를 class 및 테스트 데이터로 나눔

03 Logistic 회귀모델 적용

- 테스트 집합 결과 예측 및 컨퓨젼 매트릭스
- 생성

%

satisfaction

- 정확도 추출

04 시각화

04 Logistic Regression

Accuracy of logistic regression classifier on test set: 0.59

IDEA 각각의 변수가 A~L까지의 Class에 들어갈 확률이 어떻게 될까?

- 1) Class와 그 외 변수를 비교하여 둘의 관계를 행렬로 나타냄.
- 2) 행렬 성분을 확률로 변환시킨 후 주대각 성분들의 합이 최종 확률.

RESULT 59%

어떤 요인을 고려해서 모형을 설계할까?

Model Parameter

최적의 Parameter 찾기

Feature Engineering

1) 상품 분류 군집화 2) 유의미한 feature 생성

PCA

(Principal Component Analysis) 주성분 분석

06 Model Parameter

IDEA c값을 고정 or 시행횟수 값을 고정

▶ c값을 100으로 잡고 시행착오를 1~10번까지의 값

Definition

랜덤 실험 또는 환경의 결과를 나타내는 수

- 1) c값 고정 (c:100) 시행횟수 값을 1~10까지(1단위)
 - $\rightarrow 0.58531$
- 2) 시행횟수 값 고정 (시행횟수:5) c값을 10~100까지 (10단위)
 - → 58%

RESULT 58%

▶ c값을 10~100으로 잡은 값

07 Random Forest Definition

▶ Random Forest정의

: 여러 개의 조금씩 다른 decision tree를 만든 뒤 다수결 투표 결과로 데이터 분류

▶ Random Forest

Random Forest Simplified

08 Random Forest

IDEA 같은 알고리즘을 사용하는 서로 독립인 예측 모델들을 평균/다수결로 합치면 정확도가 상승 한다?

Decision Tree 의 개수와 max_depth를 조정

RESULT 61.94%

09 Gradient Boosting Model

Accuracy of the GBM on test set: 0.646

PIDEA

max_depth값을 변화시키며 모형의 정확도를 계산

 \rightarrow max_depth: 10 result: 0.646

10 전체 데이터 비교

