証明と反証、全称と存在

大村伸一

平成31年5月2日

1 概要

反証で証明を作る時、∃と∀はどのように証明プロセスに影響するか。 前にも書いたような気がするが、再整理。

- 1.1 定義
- 2 単純な例
- 2.1 いくつかの変数に依存して値の決まる場合

例 1)

 $\mathbf{conj}: \, \forall x \exists y \Phi(x,y)$

 \neg **conj** : $\exists x \forall y \neg \Phi(x, y)$

 conj の場合は、 $\mathcal H$ の任意の要素 e について、ある値 y が存在して $\Phi(e,y)$ が成り立つ。これを反証で証明する場合、 conj の形になる。 clause に変換すると、変数 x は定数 e_x に置き換わるので、

$$\neg \Phi(c_x, y)$$

で反証を行うことになる。

 conj の証明のためには、 c_x の選択方法にしたがって、すべての $c_x \in \mathcal{H}$ について、反証を行う必要がある。

 \mathcal{H} を記号的にいくつかの集合に分け、それを表す論理式を用いて、有限の場合分けにできれば、証明操作は完了できるだろう。

 $\{\forall c_x \in \mathcal{H}\}\mathcal{A}, \forall y \neg \Phi(c_x) \vdash \Box$

 $\mathcal{A} \cup \{\neg \Phi(c_x, y)\} \vdash \square$

ここで

 $\mathcal{A} \to \Phi(x, f(x))$ と $\neg \Phi(c_x, y)$ を refute し

 $(x,y) \leftarrow (c_x, f(c_x))$ という形の f の存在を示すか、証明する必要がある。

2.2 特定の変数に対して、すべての値で真になる場合

例 2)

 $\operatorname{\mathbf{conj}}: \exists x \forall y \Phi(x,y)$

 \neg **conj** : $\forall x \exists y \neg \Phi(x, y)$

 conj は、ある $c_x \in \mathcal{H}$ が存在して、すべての y について $\Phi(c_x,y)$ が成立すると主張している。このタイプの証明では、 \mathcal{H} の全要素について反証を試みて、ひとつも反例がないことを示さなくてはならないので、反証法は適さない。たとえば、この例を反証するには、どのような c_x を選んでも、すべての y について $\neg\Phi(c_x,y)$ であるというのだから、 \mathbf{x},\mathbf{y} の両方に \mathcal{H} の要素をあてはめて反証ができないことを言うしかない。

反証の中に $\exists y$ があるということは、 \mathcal{H} の全要素について調べなくてはならないということ。

3 どのような論理式なら反証法で証明できるのか

まず、 $\{something\}$ は、意味論に基づくメタな操作を示すことにする。例えば、 $\forall c \in \mathcal{H}$ で、エルブラン宇宙のすべての要素について何かを行うとかを示す。

3.1 その1

Conjecure の場合 (A), $\neg P(x) \vdash \Box$ が証明できればこれが反証になり、 $\Box x \leftarrow c$ という mgu が得られた時 $c \in H$ で $A \vdash P(c)$ しか言えない。

すべてのHの要素については何も証明できていない。

Neg Conjecture の場合 反証から

$$\{\forall c \in \mathcal{H}\}\mathcal{A} \vdash P(c)$$

が言えるので、 $\forall x P(x)$ が証明できる。

3.2 その2

Conjecture が $\exists x P(x)$ の場合、

- Conjecture の中で $\exists x P(x)$ を skolemize すると $\{selectc \in \mathcal{H}\}$ として要素 c を選び、それの否定 を $\neg P(c)$ として neg conj を作り、 $\mathcal{A}, \neg P(c) \vdash \Box$ をすべての c について実行する必要があり、手続きとして成り立たない。
- Negate では $\forall x \neg P(x)$ を反証するので skolemize は発生せず、 $\mathcal{A}, \neg P(x) \vdash \Box$ の証明をして $\{x \leftarrow a\}$ が得られたとすると、x として a の存在がいえるので、Conjecture の証明ができる。このときは \mathcal{H} を用いた、意味論にもとづく操作は必要ない。

その1とその2から、Conjecture Φ をそのまま否定するのは、手続きとして成り立たない。