

Machine Learning Operations (MLOps) Clase 2

Leticia Rodríguez

Septiembre 2024 - 2do Cuatrimestre - 4to. Bimestre

Universidad de Buenos Aires - FCEyN - Departamento de Computación

Encuesta y Asistencia

Kahoot de respaso

El flujo de creación de un modelo de ML

Importante: las diferentes etapas tienen flechas que hace que se itere entre las etapas anteriores

Los estándares: Ambientes del desarrollo de Software

Actividad: Machine Learning Operations (MLOps)

En grupos analicen el paper, Machine Learning Operations (MLOps): Overview, Definition, and Architecture. 2022.

- 1. Lean el abstract, las conclusiones y el primer párrafo de la Introducción y expliquen: ¿por qué es necesario el MLOps?
- 2. Lean la sección: Foundation of DevOps. Discutan en el grupo que entienden por DevOps a partir de su propia experiencia y la lectura del paper.
- Lean los principios que describen los autores sobre MLOps en la sección 4.1 Principles.
- 4. Comparen los roles definidos en la sección 4.3 con los visto la clase pasada
- 5. Discutan la figura 4: End-to-end MLOps architecture and workflow with functional components and roles
- 6. Finalmente, lean la sección 6. Conceptualización
- 7. Por último, hagamos una puesta en común en el curso

Ref: https://arxiv.org/abs/2205.02302

MLOps

MLOps (Machine Learning Operations) es un paradigma que incluye aspectos como las mejores prácticas, conjuntos de conceptos y una cultura de desarrollo en lo que respecta a la conceptualización, implementación, monitoreo, despliegue y escalabilidad de extremo a extremo de productos de aprendizaje automático. Sobre todo, es una práctica de ingeniería que aprovecha tres disciplinas contribuyentes: aprendizaje automático, ingeniería de software (especialmente DevOps) e ingeniería de datos. MLOps tiene como objetivo producir sistemas de aprendizaje automático al cerrar la brecha entre el desarrollo (Dev) y las operaciones (Ops). Básicamente, MLOps tiene como objetivo facilitar la creación de productos de aprendizaje automático al aprovechar estos principios: automatización de CI/CD, orquestación de flujo de trabajo, reproducibilidad; control de versiones de datos, modelos y códigos; colaboración; capacitación y evaluación continuas de ML; seguimiento y registro de metadatos de ML; monitoreo continuo; y bucles de retroalimentación.

De la publicación

https://arxiv.org/pdf/2205.02302

Figure 4. End-to-end MLOps architecture and workflow with functional components and roles

Definición el proyecto de Machine Learning

Actividad: Creemos un recomendador de productos

Imaginemos que estamos trabajando en una compañia de comercio electrónico y se nos pide, como equipo de ciencia de datos, un recomendador de productos.

El CEO quedó fascinado con las recomendaciones de una páginas de películas. Se acercó al Product Manager y le pidió hacer algo similar en su compañía de comercio electrónico de electródomésticos:

- 1. ¿Qué preguntas le harian a los stakeholders sobre lo que quieren tener?
- 2. ¿Qué precisarían o como organizarían el trabajo alredor del requerimiento?
- 3. ¿Cuántas personas precisarían para el trabajo, tiempo y descripción de los recursos?
- 4. ¿Qué otras consideraciones deberían tener en cuenta?

Requerimientos para Sistemas de ML

- Confiable (Reliability): El sistema debe funcionar correctamente. El sistema no debe fallar y estar disponible. En Ingeniería del Software se pueden detectar errores o problemas de infraestructura que tiene el softwarea travéz de los logs o monitoreo. Dada la naturaliza del Machine Learning, un sistema que empieza a dar predicciones incorrectas es también un punto de fallo.
- Escalable (Scalability): Los sistemas pueden crecer en tráfico, cantidad de datos, en cantidad de modelos, en infraestructura y incluso en funcionalidades, nuevos requerimientos llegan día a día. El sistema tiene que tener la capacidad de soportar estos cambios sin afectar a los usuarios.
- Mantenible (Mainteinability): Tiene que haber, en la empresa o en el laboratorio, personal que pueda lidear con el día a día de los sistemas de ML y su integración con el resto del software. Esto significa garantizando el correcto funcionamiento y actualizando las versiones o nuevos modelos.
- Adaptable (Adaptability): Un tema importante es la producción de cambios en los datos o en el concepto propio que fundamentan el modelo. Esto se conoce como drifts. El sistema tiene que anticiparse al que ocurra y tener la posibilidad de adaptar el sistema a los cambios de esta u otra naturaleza.

IA Responsable

- Hace tiempo, los investigadores vienen debatiendo sobre la Éticas de la AI, lo que llamaron últimamente como Inteligencia Artificial Responsable.
- En esta intersección entre la Ingeniería y el AI, muchas veces se pierde dimensión del cuándo, cómo y dónde debemos usar estos algoritmos de AI siendo responsables sobre el impacto social y humano
- Tradicionalmente se definen 4 dimensiones en las cuales se puede evaluar estos sistemas de AI:
 - Equidad (Fairness)
 - Responsabilidad
 - Seguridad
 - Privacidad
- Es necesario durante la definición del proyecto de Machine Learning, hay que evaluar la propuesta y diseño del sistema en Al Responsable. Plantearse posibles escenarios donde dichos supuestos pueden no cumplirse y realizar mitigaciones, es decir, acciones que lleven a anular o mitigar daños.

Riesgos y Prueba de Concepto

- Primero: Definición del problema a resolver
- Con respecto a la funcionalidad en el sistema:
 - Nueva funcionalidad
 - Funcionalidad existente que no usa ML
 - Funcionalidad existente y ya usa ML
- Esto conlleve diferentes desafíos:
 - Funcionalidad existe:
 - ¿Por qué queremos un nuevo modelo?
 - ¿Qué metricas buscamos mejorar?
 - ¿Cómo vamos a comparar el modelo nuevo con el viejo?
 - ¿Cómo vamos a integrar el modelo nuevo y deprecar el viejo?
 - El impacto que podria tener el cambio en los usuarios finales
 - Funcionalidad no existe:
 - ¿Cómo garantizar que el modelo nuevo performa como esperamos?
 - ¿Dónde ubicaríamos el nuevo modelo y que otros desarrollo de software son necesarios para hacer que el modelo llegue al usuario?
 - ¿Qué metricas de negocio impactaría el nuevo desarrollo (a nivel sistema)?
 - ¿Podemos hacer pruebas de concepto para tomar la decisión de negocio?

Break 15 minutos y seguimos con MLOps

Prueba de Concepto en Machine Learning

- Pequeña prueba que busca demostar el funcionamientoy factibilidad de un sistema
- En la construcción de Sistemas de ML, significa demostrar que se puede armar un modelo o un sistema de ML para resolver a un problema
- La PoC puede incluir alguna especie de interfaz de usuario o API pero no necesariamente. La idea es
 demostrar cómo usando ML se puede resolver un problema y decidir a partir de ahí el tiempo,
 recursos e inversión requerida para hacer la funcionalidad completa (para desarrollar un sistema de
 ML completo que sea productivo y este disponible para ser usuado por los usuarios)
- Mucha veces, la PoC incluyen desarrollar algun pequeño modelo o usar API que llamen a modelos pre-entrenados pero con una precisión menor o sobre un conjunto acotado de datos
- El objetivo final es mostrar la idea a las personas que deciden sobre los proyectos o la dirección del negocio

Procesamiento de Datos

La importancia de los Datos: Mind vs. Data

¿Es más importante trabajar en mejorar los algoritmos de los modelos o incrementar la cantidad de datos?

¿Cómo son los modelos actuales en relación a los datos y capacidades de los modelos de aprender sobre pocos datos?

La importancia de los Datos: Mind vs. Data

- Sigue siendo un debate continuo en donde focalizar los esfuerzos de la comunidad científica respecto a la creación de nuevos algoritmos que utilicen menos datos.
- Areas de investigación como meta-learning, algoritmos zero-shot, few-shot se ocupan de esto.
- Actualmente, con el surgimiento de las LLMs y el impacto que estas parecen tener en la sociedad, se refuerza la teoría que, a día de hoy, muchos modelos de Machine Learning están fuertemente anclados en los datos, por los cual, cantidad y calidad de los datos son fundamentales para sacar el máximo provecho de las técnicas actuales.
- Estos debates atraviesan la comunidad científica.

Credit: Mónica Rogatti - "The Al Hierarchy of Needs"

Recolección y almacenamiento de datos

- Necesidades de datos
 - Entrenamiento del modelo, testeo del modelo y predicción/uso del modelos
- Consideraciones
 - Tipo de modelo a construir
 - Cantidad de datos
 - Pre-procesamiento
 - Formato de los datos y almacenamiento
 - Selección de features
 - Etiquetado
 - Metadata y trackeo de los datos usados para entrenamiento y testeo
 - Posibles necesidades de incrementar la cantidad de datos
 - o Diferencias de origen entre datos de entrenamiento, testeo y predicción
 - Por ejemplo, en caso que predicciones online estas podrían venir de data dinámica y generada por usuarios.
 - Costos almacenamiento, equipos, personal

Fuentes de Datos

- Estructurada
 - Base de datos relacionales: PosgreSQL, MySQL, DBs Cloud
 - NoSQL
 - Archivos de texto con formato: json, xml, csv
 - GraphSQL
- No estructurada
 - Imágenes
 - Archivos pdf
 - Audio
 - Video
- Muchas veces los datos no estructurados pueden estar acompañados por meta-datos: versionado, fechas, ubicación, tags.

Fuentes de Datos

Base de datos SQL

Relacional

id cliente	Nombre	Apell	ido			
1	Jose	Pepe				
2	Hernan	Perez				
3	Ana	Rodr	iguez			
4	Julia	Rodr	iguez			
5	Mar id venta		id product		cantidad	
		1		1001		10
		2		1001		1
		3		1002		1
		4		1008		1

Oracle, AlloyDB, MySQL, PosgreSQL, DB2

Base de datos NoSQL

Documental

MongoDB, DynamoDB

Grafos

Neo4j

Clave 1	Valor 1
Clave 2	Valor 2
Clave 3	Valor 3

Clave Valor

Redis - Cassandra

¿Cómo almacenar y compatir millones de datos?

- Infraestructura contratada propietaria: donde la empresa/laboratorio hace el mantenimientos de los equipos y del software específico necesario: por ejemplo, tenes un servidor en la red con bases de datos MySQL con distintos accesos y permisos.
- La nube: distintos proveedores de cloud que se ocupan del manteniemiento y seguridad de los datos. Estos proveen diferentes servicios para el almacenamiento y trackeo de data estructurada y no estructurada. También ofrecen integraciones con diferentes almacenamientos de datos: bases de datos de renombre, NoSQL, etc. Las nubes incluso ofrecen servicios de baja latencia para grandes datos.
- Esto refiere a dos modelos de negocios CapEx y OpEx. Estos modelos hablan sobre la inversión en capital de la infraestructura vs. el costo operacional de usar los servicios de la nube - modelo "pago por uso".

On-premises, SaaS, PaaS, IaaS en la nube

On-premises Aplicación Datos Runtime Middleware 0/S Virtualización **Servidores Almacenamiento** Red

Infrastructure as a Service laaS **Aplicación Datos** Runtime Middleware 0/S Virtualización Servidores **Almacenamiento** Red

Platform as a Service PaaS **Aplicación Datos** Runtime **Middleware** 0/\$ Virtualización **Servidores Almacenamiento** Red

Service as a Serice SaaS **Aplicación Datos Runtime Middleware** 0/S Virtualización **Servidores** Almacenamiento Red

Ejemplos - IaaS

Instance Type	CPU type	CPU GHz/ RAM/SSD	Price \$/Month	
Basic-2	Intel	2.3/4/80	24.00	
Premium-2	Intel Cascade L	2.5/4/80	28.00	
Premium-2-AMD	AMD Rome	2.0/4/80	28.00	
CPU-opt-2 (S)	Intel Skylake	2.7/4/25	42.00	
CPU-opt-2 (C)	Intel Cascade L	2.7/4/25	42.00	
CPU-opt-2 (I)	Intel Ice Lake	2.6/4/25	42.00	

Ejemplos - SaaS

- Servicios de streaming de películas , videos
- Redes sociales
- Servicios de mail
- Servicios de documentos, planillas de cálculo, suites de oficina

Costos y disponibilidad de los datos

Los datos en la nube pueden estar almacenados en diferentes tipos de almacenamiento con costos relativos a la frecuencia de acceso a los datos.

Definimos que los almacenamientos pueden ser:

ETL - Extract, Transform, Load

Almacenamiento unificado: **Datawarehouse Extraer y verificar Transformarlos Base de Datos** los datos desde **Feature store** varias fuentes Fuente para el Análisis

Business Intelligence (BI)
System

Business Intelligence - BI

Data Lakes

- Los Data Lakes proveen un único almacenamiento de un alto volumen datos crudos, estructurados y no estructurados.
- El objetivo es:
 - Reducir el coste total de propiedad.
 - Simplificar la gestión de los datos.
 - Preparar la incorporación de inteligencia artificial y aprendizaje automático.
 - Agilizar las analíticas.
 - Mejorar la seguridad y el gobierno.
- Constituyen una fuente de datos única para proyectos de Análisis de Datos y Aprendizaje Automático

Data Lake

Estrategias de sampleo de datos

- Los datos en producción pueden ser muchos más de los necesarios para crear el modelo.
- Pueden encontrarse distribuídos por toda la empresa y hasta replicados
- La elección de los datos para el armado de los datasets de entrenamiento, validación y testeo puede ser relizada con distintas técnicas de sampleo.
- Técnicas de sampleo:
 - Nonprobility Sampling: Convenience, Snowball, Judgement, Quota
 - Simple Random Sampling
 - Stratified Sampling
 - Weighted Sampling
 - Reservoir Sampling

EDA - Exploratory Data Análisis

- En simultáneo o luego de la obtención de datos, todo proyecto de Machine Learning arranca por el análisis exploratorio de los datos
- Es decir, buscamos entender la naturaleza de los datos respondiendo preguntas cómo:
 - Cantidad de clases o variables objeto de predicción
 - Correlación entre características (features)
 - Features candidatas que pueden ser relavantes para la predicción
 Valores máximos, mínimos, medianas, media, modo
 - Detección de variables no numéricas, categóricas
 - Detección de Outliers
 - Posible preprocesamiento de tokens y vocabulario necesario para NLP. Análisis de texto.
 - Características de los sets de imágenes, tamaños en píxeles, variabilidad
 - Detección de valores nulos
 - Cantidad de Datos
 - Distribución Desbalanceo

Pre-procesamiento de datos - Features Engineering

- Los datos son imperfectos. Los modelos de Machine Learning pueden requerir que los datos estén organizados de determinada manera para facilitar el aprendizaje del algoritmo.
- El objetivo del pre-procesamiento de datos funciona en dos etapas: predicción y entrenamiento. Puede variar según el algoritmo de ML a usar.
- Dependiendo de los datos y el algoritmo a utilizar precisaremos procesos:
 - o para la eliminación de outliers
 - para la normalización de features
 - compleción o eliminación de datos incompletos (imputation methods)
 - de combinación de features, de ser necesario
 - de conversión de features, one-hot encoding, categoricas, escalado, estandarización, transformaciones log, discretización
 - o de pre-procesamiento de imágenes: escalado, conversión a grises
 - o de pre-procesamiento de texto: tokenización, eliminación de stopwords, armado de vocabulario, encodeo
 - creación de embeddings

Privacidad - Información Personal

- Hay consideraciones importantes en cuento a la Privacidad y Seguridad de nuestros valores éticos en Inteligencia Artificial:
 - Propiedad de los datos Es importante tener en cuenta quien es el propietario de los datos, ya sea del dataset como de la información personal confiada a las empresas o laboratorio.
 - Manipulación de los datos Trabajar con datos personales o propietarios conlleva una responsabilidad. Así los datos de producción, son cuidados y su acceso es restrigido, contar con dichos accesos no significa estar habilidados a sacarlos del ambiente o distribuirlos. En cualquier caso, tener en cuenta situaciones en que los datos deben ser preprocesados para eliminar información:
 - personal (PII Personal Identifiable Information)
 - identificable médica (PHI Personal Health IInformation)

Actividad: Desafios Éticos en el trabajo con Datos

Como actividad, revisemos el código de Ética de la ACM:

<u>https://www.acm.org/code-of-ethics</u>. Este código es usado por algunas conferencias científicas para hacer sus revisiones éticas.

Vamos a leer las secciones 1 y 2.

- En grupo:
 - Lean 3 subsecciones elegidas al azar dentro de esas secciones
 - Compartan lo que entienden del texto y relacionénlo con lo visto hasta ahora en la materia.
 - Comenten experiencias propias, opiniones y criterios con respecto al texto.
- Hagamos una puesta en común sobre lo más interesante que ha surgido en los grupos.

Material Recomendado de esta semana

Andrew Ng: Bridging Al's Proof-of-Concept to Production Gap (2020)

Chip Huyen, Designing Machine Learning Systems, 2022 - Chapter 4: Training Data - Sampling - Pág. 82-87