Совершенные графы

Григорьев Михаил Александрович

Пусть есть граф G и мы хотим правильно раскрасить его вершины (т.е. так, что концы каждого ребра разных цветов). Назовём $\chi(G)$ — минимальное число цветов для такой раскраски, $\omega(G)$ — кликовое число (т.е. размер максимальной клики), $\alpha(G)$ — число независимости (размер максимальной антиклики). Очевидно, что $\chi(G) \geq \omega(G)$. Кроме того, для многих графов тут равенство, но не для всех (например, для нечётного цикла $\chi(G) = 2, \omega(G) = 3$).

Жадный алгоритм раскраски. Красим вершины по порядку, на каждом шаге красим вершину в минимальный возможный цвет. Этот алгоритм не оптимальный и зависит от порядка. Однако если упорядочить вершины по номеру, получится оптимальная раскраска. Кроме того, вне зависимости от порядка получится раскраска в $\Delta(G)+1$ цвет, где $\Delta(G)$ — максимальная степень вершины.

Лемма 1. Пусть G связен, $\Delta(G) = k$ и есть вершина u степени не больше k-1. Тогда $\chi(G) \leq k$.

Доказательство. Удалим u. Тогда $\Delta(G) \leq k$ и есть новые вершины степени не больше k-1 (соседи u). Если граф после этого разбился на компоненты, то такие вершины есть в каждой компоненте, значит, каждая компонента красится в k цветов. Потом покрасим u в цвет, которого нет у её соседей.

Лемма 2. Пусть u — мост между несколькими компонентами, каждая из которых красится в n цветов. Тогда G можно покрасить в n+1 цвет.

Доказательство. Покрасим каждую из компонент в одни и те же n цветов, а u в цвет n+1.

Определение 1. Критическое число G — такое k, что в любом $H \subset G$ есть $v : \deg v \le k$.

Лемма 3. k-критический граф красится в k+1 цвет.

Доказательство. Пусть G k-критический. Тогда удалим любую вершину u и получаем другой k-критический граф. Он красится в k+1 цвет, у u есть максимум k запретов.

№1. Граф, как конечное число ладей бьют друг друга, 2-критический.

Решение. Возьмём у подграфа самую верхнюю линию и в ней самую левую ладью.

№2. Пусть на плоскости есть несколько кругов, и проведено ребро между ними, если два круга касаются. Этот граф 6-критический.

Решение. Возьмём самый маленький круг любого подграфа, для него каждый угол минимум 60°, значит, его касается максимум 6 кругов. ■

Рис. 1: Круги на плоскости и углы между их центрами

Лемма 4. Каждый планарный граф 5-критический.

Определение 2. Индуцированный подграф — такой подграф H графа G, что $\forall v_1, v_2 \in V(H): (v_1, v_2) \in E(G) \iff (v_1, v_2) \in E(H)$.

Определение 3. Совершенный граф G — такой граф G, что для каждого его индуцированного подграфа H выполняется $\chi(H)=\omega(H)$. Например, полные и двудольные графы совершенные.

Теорема 5. Интервальный граф (т.е. граф пересечения отрезков на прямой) критический. Доказательство теоремы 5 #1. Индуцированные подграфы интервального графа тоже интервальные. Докажем, что для интервального графа $\chi(G) = \omega(G)$. Пусть $\omega(G) = n$. Посмотрим на отрезок, у которого правый конец самый левый из возможных. Тогда любой отрезок, который пересекает выбранный, пересекает его в том числе по его последней точке (иначе мы выбрали не самый левый). В этой точке не больше n-1 отрезков, значит, у нашего отрезка степень не больше n-1. Мы доказывали для подграфов, значит, он (n-1)-критический.

Доказательство теоремы 5 #2. Жадный алгоритм красит граф, у которого $\omega(G)=n,$ в n-1 цвет.

№3. Дополнение интервального графа совершенное.

Теорема 6. Дополнение совершенного графа совершенное.

Теорема 7 (Гипотеза Бержа). G совершенный тогда и только тогда, когда в G и в \overline{G} нет нечётных циклов длины больше 3 без других рёбер.

«Математика — это когда вы смотрите на разные вещи и думаете, что это круто. Пока вы так думаете, это и правда круто.» — Григорьев

Теорема 8 (Кёниг). Пусть есть набор клеток и мы хотим расставить туда максимальное количество ладей. Это количество равно минимальному количеству полосок, которые накрывают этот набор клеток.

Другая формулировка. Максимальное паросочетание двудольного графа (т.е. размер максимального набора попарно несмежных рёбер) равно его минимальному вершинному покрытию (т.е. размеру минимального множества вершин, что вне них нет рёбер).

Третья формулировка. Заметим, что $\alpha(G) + \beta(G) = n$. Тогда теорема говорит, что в двудольном графе $\alpha(G)$ + паросочетание = n.

Определение 4. Рёберный граф H — граф G, у которого вершины — рёбра H, а ребро проведено между двумя вершинами, если в H они были соединены ребром.

Четвёртая формулировка 8. Дополнение рёберного графа двуд. графа совершенно.

Лемма 9 (Холл). Пусть G — двудольный граф, A и B — его доли. Тогда инъекция $f:A\to B$, такая, что $x\sim f(x)$, существует тогда и только тогда, когда $\forall X\subset A:|N(X)|\geq |X|$, где $N(X)=\bigcup_{x\in X}f(x)$.

Доказательство. В сторону «только тогда» это очевидно. Пусть G = (A, B) — минимальный граф, для которого утверждение неверно (A минимальная из возможных, B минимальная из возможных с таким размером A). Тогда рассмотрим два случая:

- Пусть $\forall X \neq A : |N(X)| > |X|$. Тогда можно удалить любую вершину в A, любую смежную ей вершину и получить контрпример меньший, чем G.
- Иначе $\exists X \neq A : |N(X)| = |X|$. Заметим, что по лемме Холла для G' = (X, N(X)) их можно разбить на пары. Допустим, что для $H = (A \setminus X, B \setminus N(X))$ не выполнено условие леммы Холла. Пусть оно не выполнено для $Y \subset A \setminus X$. Тогда очевидно, что оно не выполнено и для $Y \cup X$.

Другая формулировка 9. Пусть есть n множеств. Тогда можно выбрать из них по различному элементу тогда и только тогда, когда в объединении любых k множеств есть хотя бы k элементов.

Третья формулировка 9. То же самое, но на языке табличек и ладей.

Доказательство теоремы 8. Пусть $G = (A \cup C, B \cup D)$ двудольный и $A \cup B$ — вершинное покрытие. Тогда рёбра лежат внутри AB, BC, AD. Заметим, что в $G_1 = (A, D)$ и $G_2 = (B, C)$ выполняется условие леммы Холла, потому что иначе можно уменьшить это вершинное покрытие. Значит, в (A, D) и (B, C) есть максимальное паросочетание размера $\pi(G_1) + \pi(G_2) = |A| + |B| = \beta(G)$. С другой стороны, очевидно, что $\beta(G) \geq \pi(G)$, значит, они равны.

ЧАСТИЧНО УПОРЯДОЧЕННЫЕ МНОЖЕСТВА

Определение 5. Частично упорядоченное множество — пара (M,\leqslant) (где \leqslant — операция $M\times M\to\{0,1\}$) такая, что:

- 1. $x \leqslant x$ (рефлексивность);
- 2. $x \leq y, y \leq z \implies x \leq z$ (транзитивность);
- 3. $x \leqslant y, y \leqslant x \implies x = y$ (антисимметричность).

Примеры

- (\mathbb{R}, \leq) .
- Множества по операции вложения.
- $(\mathbb{N}, a \leqslant b \iff a \mid b)$.

Определение 6. Наибольший элемент — такое $x \in M$, что $\forall y \in M : y \leqslant x$.

Определение 7. Максимальный элемент — такое $x \in M$, что $\forall y \in M : x \leqslant y \implies x = y$.

Определение 8. Цепь — набор попарно сравнимых элементов.

Определение 9. Антицепь — набор попарно несравнимых элементов.

Теорема 10 (Мирский). Пусть максимальный размер цепи в M равен k. Тогда M можно разбить на k антицепей.

Доказательство. Доказываем по индукции. База для k=1 очевидна. Для шага уберём все максимальные элементы, тогда все цепи уменьшились на 1.

Следствие. Рассмотрим граф, у которого вершины — элементы, а рёбра — сравнимые элементы. Этот граф совершенный. Действительно, его хроматическое число k, а кликовое тоже k.

Теорема 11 (Шпернер). Пусть |A| = m. Тогда максимальное количество подмножеств, которые можно выбрать из A, чтобы никакое не лежало в никаком другом, равно $\binom{m}{\lfloor \frac{m}{2} \rfloor}$.

Доказательство. Пусть $B_i \subset A, |B_i| = k_i$. Рассмотрим все цепи в A длиной m+1. Таких цепей m!. В каждой из цепей может лежать максимум одно из B_i , и каждое B_i лежит в $(m-k_i)!k_i!$ цепей. Это выражение минимально, когда $k_i = m-k_i$ или отличается на 1. В этом случае получается искомая оценка. Пример на такое число — все подмножества размера $\lfloor \frac{m}{2} \rfloor$.

Совершенство

Лемма 12. Следующие утверждения эквивалентны:

- 1. G совершенный.
- 2. В любом индуцированном $H \subset G$ существует антиклика, которая пересекает все клики максимального размера.
- 3. То же, что и 2, но эта антиклика содержит фиксированную вершину v.

Доказательство. Очевидно, что из 3 следует 2. Докажем, что из 1 следует 3. Заметим, что нужно доказывать только для H=G, т.к. индуцированные подграфы G совершенны. Покрасим G в $k=\omega(G)$ цветов. Каждая клика размера k теперь покрашена в k цветов, и можно взять антиклику — цвет с вершиной v.

Теперь выведем 1 из 2. Пусть $\omega(G) = k$. Возьмём антиклику и покрасим её в 1-й цвет, затем уберём её. Получим подграф, для которого условие также выполняется. Индукция по k.

Рассмотрим операцию «дублирования» вершины v: создадим вершину v', а потом соединим её с v и всеми её соседями.

Лемма 13. После дублирования совершенный граф останется совершенным.

Доказательство. Пусть мы дублировали v. Если v входила в максимальную клику в G, то $\omega(G)$ увеличилось на 1 и можно покрасить v' в новый цвет. Пусть это не так. Проверим условие 2. Если в H нет v и v' одновременно, то это условие верно. Пусть в H есть v и v'. Размер максимальной клики не увеличился. Значит, сейчас максимальные клики либо размера k, либо размера k-2 и содержат обе вершины v и v'. В обоих случаях всё получается.

Доказательство теоремы 6. Пусть G — индуцированный подграф совершенного графа, $\alpha(G)=x$. Возьмём каждую вершину v и продублируем её α_v-1 раз, где α_v — количество антиклик с v размера x (если $\alpha_v=0$, то стираем v). Получим граф H. Разрежем H на антиклики таким образом. У нас α_v антиклик с вершиной v и столько же копий v, и можно произвольно провести биекцию между ними. Теперь у нас H разбился на несколько антиклик размером k. Заметим, что это его оптимальная раскраска, т.к. $\alpha(H)=k$. Пусть в ней t цветов, тогда $\chi(H)=t$. Т.к. H совершенный (наши операции этого не ломали), то $\omega(H)=t$. Посмотрим на X — прообраз клики размера t. Мы получим клику, но возможно, меньше t. Посмотрим на любую антиклику в G размера k. Она пересекается с X, а это условие на совершенство \overline{G} .

Теорема 14 (Дилуорс). Пусть максимальный размер антицепи в M равен k. Тогда M можно разбить на k цепей.

Доказательство. Воспользуемся 10. Получим, что граф частично упорядоченного множества совершенный. Тогда по 6 и его дополнение совершенно. Отсюда и следует теорема.

ХОРДАЛЬНЫЕ ГРАФЫ

Определение 10. Хордальный граф — такой граф, что в любом цикле длины хотя бы 4 есть хорда.

Теорема 15. Хордальные графы совершенные.