Trabajando con un sistema telescópico

Rodolfo Rodríguez y Masegosa

Borja Martínez Ramírez/A01234311

Arif Morán Velázquez/A01234442

Luis Felipe Marino Palafox / A07106565

Jueves 12 de octubre de 2023

A lo largo de esta práctica, se estará trabajando con un sistema telescópico sencillo de dos lentes, a fin de familiarizarnos y poner en práctica los conceptos necesarios para el reto.

Para la práctica se implementó un sistema telescópico, colocando correctamente el objetivo y el ocular a una distancia de 21.5 cm. Además, se trabajó con una lente objetivo con una distancia focal de 150 mm y la lente ocular con una de 75 mm.

Distancia entre lentes: 21.5 cm

Lente objetivo: 150 mm distancia focal Lente ocular: 75 mm lente objetivo

Una vez que se identificó la distancia entre lentes para el sistema, se colocó la retícula en medio de ambas lentes a fin de medir y realizar la calibración del sistema.

Calibración

Antes de realizar las mediciones, de otros objetos, definimos las proporciones con las que estaríamos trabajando. Para ello primero se midió, el tamaño real del objeto y se pasó a medir el mismo objeto a cierta distancia sin usar los lentes y usando los lentes utilizando la retícula a una misma distancia(el sistema telescópico se midió usando la retícula sin magnificar).

Objeto: Bote de jarabe Tamaño Real: 18.5 cm

Tamaño Ojo retícula:0.8 cm

Tamaño telescopio con retícula magnificada:0.8 cm

Tamaño con telescopio con retícula: $1.6~\mathrm{cm}$

Magnificación: $M = \frac{y_i}{y_o} = \frac{1.6cm}{0.8cm} = 2$

Figura 1. Mediciones para calibración.

Para medir otro objeto podemos utilizar el tamaño real del objeto de calibración que fue de 18.5 cm y la imagen de 1.6 cm en el sistema telescopio.

Tamaño con telescopio con retícula magnificada: 0.45 cm.

Tamaño real: 10.4 cm

$$Estimacin = y_o \frac{Y_{real}}{valor_{reticula}} = 0.45cm \frac{18.5cm}{0.8cm} = 10.4062$$

Estimación: 10.4062 cm

Estimación del Error (Error relativo Porcentual)

$$Error = \left| \frac{y_{real} - y_{estimado}}{y_{real}} \right| * 100 = 0.0596$$

Figura 2. Mediciones para calibración.

Luego de haber realizado las mediciones y observaciones, se colocó una diafragma en el sistema para comparar los resultados de la imagen. A lo cual se obtuvo una imagen más nítida en la presencia del diafragma debido a una especie de filtro de luz en los bordes de la imagen.

Figura 3. Comparación mediciones con y sin diafragma

Conclusiones

A pesar de ser un experimento simple, capaz únicamente de llegar a una magnificación de aproximadamente un 200%, estamos sumamente satisfechos con los resultados obtenidos, pues nuestras mediciones llegaron a ser extremadamente precisas, una incluso llegando a tener un error porcentual del 0.0596%. Si en el futuro quisiéramos reproducir este experimento, buscando quizá mayor precisión, o la posibilidad de hacer mediciones a mayores distancias, podríamos buscar mejorar la resolución de la cámara, la finura de los lentes, y la precisión de la retícula, además de fijar los elementos de una forma más precisa, lo que facilitaría la manipulación del telescopio, y haría más fácil el centrar a los objetivos, incluso sin la necesidad de colocarlos manualmente previo al experimento.