

مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين مسلك التطيم الثانوي الإعدادي دورة أبريل 2024 الموضوع

المركز الوطني للتقويم والامتحاثات

أريع ساعات	مدة الإنجاز :	اختبار في مادة أو مواد التخصص	الاختبار
20	المعامل	الرياضيات	التخصص

Consignes et instructions importantes :

- 1. L'épreuve comporte 60 questions de la question Q1 à la question Q60.
- 2. Chaque question comporte 4 choix de réponses (A, B, C, D) dont une seule réponse est juste.
- Chaque candidat(e) n'a le droit d'utiliser qu'une seule feuille réponse. Il est impossible de remplacer la feuille réponse du candidat(e) par une autre.
- 4. Avec un stylo à bille (bleu ou noir) cochez <u>sur la feuille réponse</u> à l'intérieur de la case correspondante à chaque réponse juste de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou remplissez cette case de la manière suivante :

 ou rempl
- 5. La rature ou l'utilisation du Blanco sur <u>la feuille réponse</u> sont strictement INTERDITES.
- 6. L'usage de la calculatrice est strictement interdit.
- La possession des téléphones mobiles, de tout appareil électronique intelligent et des documents papiers est strictement INTERDITE dans la salle de passation.
- 8. Toute réponse ne respectant pas les règles citées ci-dessus sera rejetée.
- 9. Chaque question sera notée sur un point (1).
- 10. Chaque réponse incorrecte sera notée par zéro (0).

مباراة ولوج سلك اطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التطيم الثانوي الإعدادي - دورة أبريل 2024 الصفحة الموضوع الموضوع الاختبار : الحتبار في مادة أو مواد التخصص التخصص : الرياضيات

QI	La somme de la série numérique $\sum_{k\geq 0} \frac{(\ln 3)^k}{(k+1)!}$ est égale à :
A	ln(3)
Be	2 ln(3)
C	$\frac{1}{\ln 3}$
D	$\frac{\ln 3}{\ln 3}$

- On considère la fonction F définie sur $[e, +\infty[$ par : $F(x) = \int_1^{\ln x} \left(\frac{e^t 1}{t}\right) dt$.

 Alors la fonction F est dérivable sur $[e, +\infty[$ et F'(x) est égale à : $A^{\emptyset} \frac{x-1}{\ln x}$ $B \frac{x-1}{x \ln x}$ $C \frac{x^2-1}{\ln x}$ $D \frac{x-1}{x^2 \ln x}$
- Laquelle des parties suivantes est un sous-groupe de $(\mathbb{Z},+)$?

 A \otimes $\otimes \mathbb{Z} \cup 4\mathbb{Z}$ B $\otimes \mathbb{Z} \cup 4\mathbb{Z}$ C $\otimes \mathbb{Z} \cup 4\mathbb{Z}$ D $\otimes \mathbb{Z} \cup 4\mathbb{Z}$
- Soient f l'application définie de $\mathbb C$ vers $\mathbb C$ par $f(z) = (\sqrt{3} + i)z + \sqrt{3}$ et $E = \{i\sqrt{3} + 2e^u, t \in [0, 2\pi]\}$. Alors f(E) est un cercle de centre $\Omega(\omega)$ et de rayon R avec :

 A $\omega = 2i$ et R = 2B $\omega = -3i$ et R = 4C $\omega = 3i$ et R = 4D $\omega = -2i$ et R = 2

مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التطيم الثانوي الإعدادي - دورة أبريل 2024 الصفحة الموضوع الموضوع الاغتبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات

Q5	Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 = 4M - 2I_n$. Alors M est inversible et M^{-1} est égal à :
A	$\frac{1}{2}M + 2I_n$
В	$-2I_n - \frac{1}{2}M$
С	$2I_n - \frac{1}{2}M$
D	$\frac{1}{2}M - 2I_n$

Soient E un espace affine, h une homothétie de centre Ω et de rapport k $(k \neq 1)$ et f une transformation affine de E telle que $f(\Omega) \neq \Omega$.

Alors $f \circ h \circ f^{-1}$ est une homothétie

A de centre Ω et de rapport kB de centre $f(\Omega)$ et de rapport kC de centre $f^{-1}(\Omega)$ et de rapport $f^{-1}(\Omega)$ de centre $f^{-1}(\Omega)$ et de rapport $f^{-1}(\Omega)$

	Soient f et g deux applications définies de $]0,+\infty[$ vers $\mathbb R$ par :
Q7	$f(x) = x + \frac{1}{x}$ et $g(x) = x - \frac{1}{x}$. Alors:
A	g est bijective sur $]0,+\infty[$
В	f est bijective sur $]0,+\infty[$
C	f est injective et non surjective sur $]0,+\infty[$
D	g est injective et non surjective sur $]0,+\infty[$

	On pose $a = 3^{2023} + 3^{2024} + 3^{2025} + 3^{2025} + 3^{2026} + 3^{2027} + 3^{2028} + 3^{2029} + 3^{2030}$. Alors:
	$a \equiv 4[5]$
В	$a \equiv 2[5]$
_	$a \equiv 1[5]$
D	$a \equiv 0[5]$

مياراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مملك التعليم الثانوي الإعدادي - دورة أبريل 2024 الموضوع المختبار : المتبار في مادة أو مواد التخصص التغصص: الرياضيات On jette 20 fois la même pièce de monnaie parfaitement équilibrée. La probabilité que le nombre de piles soit compris entre 14 et 16 est : $\frac{C_{20}^1 + C_{20}^2 + C_{20}^3}{2^{20}}$ $\frac{C_{20}^2 + C_{20}^3 + C_{20}^4}{2^{20}}$ $\frac{C_{20}^3 + C_{20}^4 + C_{20}^5}{2^{20}}$ C $\frac{C_{20}^4 + C_{20}^5 + C_{20}^6}{2^{20}}$ Soit $\varphi: (\mathbb{Z}/12\mathbb{Z}, +) \to (\mathbb{Z}/12\mathbb{Z}, +)$ un morphisme de groupe définie par : Q10 $\varphi(\bar{x}) = \overline{4}\bar{x}$. Alors $Ker\varphi$ est le sous-groupe engendré par : 3 A 4 B 5 1 D 5x - 3v - z = 9Le système suivant $\begin{cases} -2x + 2y + 2z = b \end{cases}$ Q11 -3x + y - z = -4admet des solutions dans \mathbb{R}^3 pour une valeur de b égale à : -4 A -3B -5CX -6 D On pose $D = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, 3 < x^2 + y^2 < 4\}$. Q12 La valeur de l'intégrale $\iint_D \frac{2xy}{x^2 + y^2} dxdy \text{ est } :$ 2 A 1.5 В 1 4 C 0.5 D

مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثانوي الإعدادي - دورة أبريل 2024 الاغتبار: اختبار في مادة أو مواد التخصص التخصص: الرياضيات $\ln(\cos 2x)$ est égale à : $\lim_{x\to 0}\frac{\ln(\cos 3x)}{\ln(\cos 3x)}$ Q13 A 9 B $\frac{2}{3}$ CX 2 D où $a \in \mathbb{R}$. On considère dans $\mathcal{M}_2(\mathbb{R})$ la marrice suivante M = $\sin^2 a \cos^2 a$ Q14 La matrice M est diagonalisable sur $\mathcal{M}_2(\mathbb{R})$: uniquement pour a = 0A uniquement pour $a = \frac{\pi}{2}$ B uniquement pour $a = \frac{\pi}{3}$ C aucune des affirmations précédentes n'est correcte D Laquelle des parties suivantes est ouverte dans \mathbb{R}^2 ? Q15 $E = \left\{ (x, y) \in \mathbb{R}^2 / xy \ge 2 \right\}$ A $E = \left\{ (x, y) \in \mathbb{R}^2 / 2 \le y \le x \right\}$ $E = \{(x,y) \in \mathbb{R}^2 / 0 < |x-2| < 2\}$ $E = \left\{ (x, y) \in \mathbb{R}^2 / xy = 2 \right\}$ D Soient F et G deux ensembles bornés non vides de $\mathbb R$. Alors : Q16 $\sup(F \cup G) = \max(\sup(F), \sup(G))$ $\sup(F \cup G) = \sup(F) \times \sup(G)$ B $\sup(F \cup G) = \sup(F) + \sup(G)$ C $\sup(F \cup G) = \sup(F) + \sup(G) - \sup(F \cap G)$

Q20

مياراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثانوي الإعدادي - دورة أبريل 2024 الاختيار: اختبار في مادة أو مواد التخصص التخصص: الرياضيات

On considère la fonction $f: \left[0, \frac{3\pi}{2}\right] \to \mathbb{R}$ définie par $f(x) = \ln(1 + \sin x)$.

Alors pour tout $x \in \left[0, \frac{3\pi}{2}\right]$ on a :

 $\mathbf{A} \quad f(x) \ge \frac{\pi}{4} - x$

 $\mathbf{B} \qquad f(x) \le \frac{\pi}{3} - x$

 $\mathbf{C} \quad f(x) \ge \frac{\pi}{2} - x$

 $f(x) \le \pi - x$

On munit \mathbb{R}^2 de sa topologie usuelle.

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \frac{x^2 + y^2}{e^x - e^y}$. Q21

L'ensemble de définition de la fonction f est :

ouvert A

fermé B

borné C

compact D

Soit f une isomérie d'un espace euclidien. Alors : 022

f est surjective et non injective A

f est injective et non surjective B

la partie linéaire de f ne conserve pas le produit scalaire C

la partie linéaire de f conserve la norme. D

Soit φ l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $\varphi(x,y) = (x+y,xy)$. Q23

Alors $\varphi(\mathbb{R}^2)$ est égale à :

 $\{(x,y)\in\mathbb{R}^2: x^2-4y\geq 0\}$ A

 $\{(x,y) \in \mathbb{R}^2 : -1 \le x^2 - 4y < 0\}$ B

 $\{(x,y) \in \mathbb{R}^2 : -2 \le x^2 - 4y < -1\}$

 $\{(x,y) \in \mathbb{R}^2 : x^2 - 4y < -2\}$

مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثانوي الإعدادي - دورة أبريل 2024 الصفحة الموضوع الموضوع المختبار : الحتبار في مادة أو مواد التخصص التخصص : الرياضيات

Q24	On considère dans $\mathcal{M}_3(\mathbb{R})$ la matrice suivante $M = a \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$ où $a \in \mathbb{R}$. Si la matrice M est orthogonale alors a^2 est égal à :
A	$\frac{1}{4}$
В	$\frac{1}{9}$
С	$\frac{1}{16}$
D	$\frac{1}{25}$

Q25	La décomposition de la fraction $F(X) = \frac{4}{(X^2 - 1)^2}$ en éléments simples dans $\mathbb{R}[X]$ est de la forme : $F(X) = \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{X-1} + \frac{d}{(X-1)^2}$. Alors :
A	a = -c et $b = -d$
В	a = -c et $b = d$
C	a=c et $b=d$
D	a=c et $b=-d$

Q26		Classe	[3,5[[5,7[[7,9[[9,11[[11,13[
		Effectif	11	6	6	4	3
	La varia	nce de cette s	érie est ég	gale à :			
A	7.36						
В	7.40						
C	7.46						
D	7.50				15-14-16	halfra fa	

مبزاة ولوج ملك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مملك التعليم الثانوي الإعدادي - دورة أبريل 2024 الصفحة الموضوع المؤتبار : الحتبار في مادة أو مواد التخصص التخصص : الرياضيات $a \in \mathbb{R}$ Soit a une fonction définie sur a et deux fois dérivable en a avec $a \in \mathbb{R}$, alors

Q27	Soit f une fonction définie sur \mathbb{R} et deux fois dérivable en a avec $a \in \mathbb{R}$, alors $\lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}$ est égale à :
A	f'(a)
В	2f'(a)
C	f''(a)
D	2f"(a)

Soit P une probabilité sur un ensemble Ω . Soient A et B deux événements de Ω tels que : $P(B) = \frac{3}{4}$ et $P(A \cup \overline{B}) = \frac{4}{5}$. Alors $P_B(A)$ est égale à :

A $\frac{11}{12}$ B $\frac{7}{12}$ C $\frac{11}{15}$ D $\frac{7}{15}$

Q29	Soit $(u_n)_{n\geq 1}$ la suite définie par $u_n = \sum_{k=1}^n \frac{n}{3n^2 + k^2}$. Alors $\lim_{n \to +\infty} u_n$ est égale à :
A	$\frac{\pi}{3\sqrt{3}}$
В	$\frac{\pi}{3}$
С	$\frac{\pi}{6\sqrt{3}}$
D	$\frac{\pi}{6}$

مياراة ولوج سلك أطر التكريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك النطيم الثانوي الإعدادي - دورة أبريل 2024 الموضوع الاختبار : اختبار في مادة أو مواد التخصص التغصص : الرياضيات Soit $\mathcal{B} = (1, X, X^2, X^3)$ la base canonique de l'espace vectoriel $\mathbb{R}_3[X]$. Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ l'application linéaire définie par f(P) = (X+1)P'. **Q30** Alors dim Im f est égale à : A 3 B C 1 4 D Soit F une partie de l'espace vectoriel normé \mathbb{R}^2 . On considère les propositions suivantes: P: « F est une partie connexe de \mathbb{R}^2 » Q31 Q: « F est une partie connexe par arc de \mathbb{R}^2 » R: « F est une partie convexe de \mathbb{R}^2 » Alors on a les implications suivantes : $R \Rightarrow Q \Rightarrow P$ A $Q \Rightarrow R \Rightarrow P$ B $R \Rightarrow P \Rightarrow Q$ C $Q \Rightarrow P \Rightarrow R$ D Soient $M \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne et λ une valeur propre de M. Alors: Q32 $\bar{\lambda} = \lambda$ A $\bar{\lambda} = -\lambda$ B $\bar{\lambda} = -\lambda i$ C $\bar{\lambda} = \lambda i$ D On considère dans $\mathcal{M}_3(\mathbb{R})$ la matrice suivante $M = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ Q33 Le polynôme caractéristique de la matrice M est de la forme $(X-1)^2(X-\alpha)$ avec $\alpha \in \mathbb{R}$. Alors α est égal à : A B 3 2 C D 医多种性多种溶液 医甲基基酚 化邻苯基苯基甲基苯甲基

الصفحة	مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثانوي الإعدادي - دورة أبريل 2024
11/18	الموضوع المغتبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات
18	
	On considère dans le \mathbb{C} -espace vectoriel \mathbb{C}^3 muni du produit scalaire hermitien
Q34	canonique, le sous-espace vectoriel $F = \{(x, y, z) \in \mathbb{C}^{-1} x - 2iy + z = 0\}$.
	Donc F^{\perp} , l'orthogonal de F , est la droite engendrée par le vecteur :
A	(1,1,2i)
В	(1,2i,1)
C	(-2i,1,1)
D	(1,-2i,1)
	On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(t) = e^{- t }$.
Q35	La transformée de Fourier de f est égale à :
	1
A	$\overline{1+t}$
В	$\frac{2}{1}$
	1+2t
C	$\frac{2}{2+t^2}$
	$\frac{2+t^2}{2}$
D	$\frac{-1}{1+t^2}$
	(1 0 1)
	On considère dans $\mathcal{M}_3(\mathbb{R})$ la matrice suivante $M = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
Q36	on considere dails δu_3 (at) in matrice survante $M = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.
	Lequel des vecteurs suivants est un vecteur propre de M?
A	$(-1,1,\sqrt{2})$
	$(-1,1,\sqrt{2})$ $(1,1,0)$
B	(-1,1,0)
	$(1,-1,-\sqrt{2})$
D	
Q37	Lequel des polynômes à plusieurs indéterminées suivants est homogène ?
A	$3XZ + 3X^2Y + 3XY^2 + X^3 + Y^3$
В	$3X^2Y + 2X^2YZ + 5XY + X^4 + Y^4$
C	$3X^2Y^2 + 2X^2YZ + 5XY^3 + X^4 + Z^4$
D	$4XZ^4 + 4X^2Y^2 + 2XY + Y^2 + Z^2$
-	

مهاراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثاتوي الإعدادي - دورة أبريل 2024 الاختبار: اختبار في مادة أو مواد التخصص التخصص: الرياضيات Soit q la forme quadratique hermitienne définie sur \mathbb{C}^2 par : Q38 $q(x,y) = 2\overline{x_1}y_1 - 3i\overline{x_1}y_2 + 3i\overline{x_2}y_1 + 3\overline{x_2}y_2 \text{ avec } x = x_1 + iy_1 \text{ et } y = x_2 + iy_2.$ La matrice de q dans la base canonique est : 3iA -3i 3 2 3i B (3i -3)2 -3iC 3*i* 3 -2 3i D 3i3 Soient a et b deux réels non nuls tels que a+b=1 et f l'endomorphisme de \mathbb{R}^3 Q39 dont sa matrice dans la base canonique est $M = \begin{bmatrix} b & a & 0 \end{bmatrix}$. $\begin{bmatrix} 0 & b & a \end{bmatrix}$ $(x,y,z) \in \text{Ker}(f-Id)$ si et seulement si : x = y = -zA x = y = zB x = -y = zC x = -y = -zSoit X une variable aléatoire suivant la loi géométrique de paramètre $\frac{4}{7}$. Alors 040 P(X=1)+P(X=2) est égale à : 40 49 30 B 49 20 C 49 10 D 49

D

D

مياراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التطيم الثانوي الإعدادي - دورة أبريل 2024 الاختيار: اختيار في مادة أو مواد التخصص

التخصص: الرياضيات

Soit φ l'application de \mathbb{R} dans \mathbb{R} définie par : $\varphi(x) = x^2 + 1$. Alors l'image réciproque de l'intervalle [2,10] par φ est : 041

- $[-9,-1] \cup [1,9]$
- $[-3,-1] \cup [1,3]$
- $[-9,-1] \cup [1,3]$
- $[-3,-1] \cup [1,9]$ D

On pose $a = 2^3 \times 3^5 \times 5^8$ et $b = 2^5 \times 3^3 \times 7^2$. Alors $PGCD(a^{30}, b^{30})$ est égal à : Q42 A 690 B C

Soit X une variable aléatoire suivant la loi hypergéométrique de paramètres Q43 N=20, n=5 et m=12. Alors E(X) est égale à : 4.5 A 4 B 3.5 C

Q44

3

direct $(O, \vec{i}, \vec{j}, \vec{k})$ et $f: E \to E$ l'application affine dont sa forme analytique est $\int x' = -z - 2$ $\{y' = -x + 1 : Donc \ \vec{f} \ (la partie linéaire de f) est une rotation vectorielle autour$

Soient E un espace affine euclidien de dimension 3 muni d'un repère orthonormé

z' = y + 1de l'axe $vect(\vec{u})$ et d'angle θ tels que :

- $\vec{u} = (1,1,1) \text{ et } \theta = \frac{2\pi}{3}$ A
- $\vec{u} = (-1, -1, -1) \text{ et } \theta = \frac{2\pi}{3}$ $\vec{u} = (1, -1, 1) \text{ et } \theta = -\frac{2\pi}{3}$
- C
- $\vec{u} = (-1,1,1)$ et $\theta = -\frac{2\pi}{}$

医多种性多种 医多性 医肾经尿 医皮肤 医皮肤 医红斑 医红斑

ج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التطيم الثانوي الإعدادي - دورة أبريل 2024 الصفحة	مياراة ولو
الموضوع المختبار : اختبار في مادة أو مواد التخصص التخصص : الرياضيات المختبار على المدة أو مواد التخصص	
Q45 Soit $f:]0, +\infty[\to \mathbb{R}$ la fonction définie par $f(x) = \ln(x)$. Alors $\forall x \in]0, +\infty$	on a:
$\mathbf{A} \qquad \frac{1}{x+1} \le f\left(\frac{1+x}{x}\right) \le \frac{1}{x}$	
$\mathbf{B} \qquad 1 + \frac{1}{x+1} \le f\left(\frac{1+x}{x}\right) \le 1 + \frac{1}{x}$	
$\mathbf{C} \qquad \frac{1}{\left(x+1\right)^2} \le f\left(\frac{1+x}{x}\right) \le \frac{1}{x^2}$	
$\mathbf{D} \qquad 1 + \frac{1}{\left(x+1\right)^2} \le f\left(\frac{1+x}{x}\right) \le 1 + \frac{1}{x^2}$	
On considère la fonction f définie sur \mathbb{R}^2 par $f(x,y) = \ln(x^2 + y^2)$.	
Alors $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ est égale à :	
$\mathbf{A} = 0$	
B 1	
C 2	
D 3	
Soit f un endomorphisme de \mathbb{R}^3 dont sa matrice dans la base canonique est	
(3 -1 1)	
Q47 1 2 -2 Alors Ker f est égal à :	
$(2 \ 3 \ -3)$	
A $vect((1,0,-1))$	
$\mathbf{B} vect((0,-1,1))$	
\mathbf{C} $vect((0,1,1))$	
$\mathbf{D} vect((1,0,1))$	

الصفحة	مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التطيم الثانوي الإعدادي - دورة أبريل 2024 الموضوع	
15/18	الاختبار: اختبار في مادة أو مواد التخصص التخصص: الرياضيات	
	Soient E un espace hermitien et F un sous espace vectoriel de E tels que :	
48	dim (E) =12 et dim (F) =7, alors dim (F^{\perp}) est égale à :	
A	4	
Ba	5	
C	6	
D	7	
Q49	Soit $a \in \mathbb{R}^*$. L'intégrale $\int_a^{a\sqrt{3}} \frac{a}{a^2 + x^2} dx$ est égale à :	
A	11π	
A	12	
В	$\frac{7\pi}{12}$	
	5π	
C	$\frac{5\pi}{12}$	
D	$\frac{\pi}{12}$	
	12	
	On définit sur]1,+∞[une loi de composition interne * par :	
Q50	$\forall (x,y) \in (]1,+\infty[)^2, \ x * y = x \ln y.$	
	L'ensemble de solutions de l'équation $(x*x)*x=x$ dans $]1,+\infty[$ est :	
A∅	Ø	
В	$\{\exp(1)\}$	
C	$\{\exp(2)\}$	
D	{exp(3)}	
	Soit (X,d) un espace métrique tel que tout singleton de X est un ouvert.	
Q51	Si E une partie de X , alors	
A	E est ouvert non fermé	
В	E est fermé non ouvert	
C	E est à la fois ouvert et fermé	
D	aucune des affirmations précédentes n'est correcte	

مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - مسلك التعليم الثانوي الإعدادي - دورة أبريل 2024 الاختبار: اختبار في مادة أو مواد التخصص Dans un lycée, 5% d'élèves mesurent moins de 1.65 m. On suppose que la taille de ces élèves suit une loi normale d'écart-type σ . On prend F(1.64) = 0.95 avec F est 052 la fonction de répartition de la loi normale centrée réduite. Alors la taille moyenne de ces élèves est de la forme : $1.64\sigma - 1.65$ $1.64\sigma + 1.65$ B $1.65\sigma + 1.64$ C $1.65\sigma - 1.64$ D Soit E un K-espace vectoriel, muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. Q53 Les coordonnées de e_1 dans la base $\mathcal{B}_1 = (u_1, u_2, u_3)$ avec $u_1 = 3e_1 + e_2 - e_3$, $u_2 = e_1 - 2e_2 + e_3$ et $u_3 = e_2 - e_3$ sont: A $\left[\left(\frac{1}{3},0,\frac{1}{3}\right)\right]$ B $\left(-\frac{1}{3}, 0, -\frac{1}{3}\right)$ C \mathbf{D}^{\bullet} $\left(\frac{1}{3}, 0, -\frac{1}{3}\right)$ L'intégrale $\int_0^1 \ln^2(x) dx$ converge et sa valeur est égale à : Q54 A B 2 C D Q55 Soient a et b deux entiers naturels non nuls tels que a = b[5], alors : $a^5 \equiv b^5 \lceil 5^2$ $a^5 \equiv b^5 \left\lceil 5^3 \right\rceil$ $a^5 \equiv b^5 \lceil 5^4 \rceil$ $a^5 \equiv b^5 \lceil 5^5 \rceil$

History.	مسلك التعليم الثانوي الإعدادي والمراك المحادد	مباراة ولوج سلك أطر التدريس بالمراكز الجهوية لمهن التربية والتكوين - الموضوع الموضوع الاختبار : اختبار في مادة أو مواد التخصص
12	2024 300 - 330 - 4	الدوي الما الموضوع
18	التفصص: الرياشيات	الاحتيار: احتيار في ماده أو مواد التخصص

Q56	Parmi les séries suivantes laquelle converge absolument ?
A	$\sum_{n\geq 2} \frac{\left(-1\right)^n}{\ln n}$
В	$\sum_{n\geq 1} \frac{\left(-1\right)^n}{\sqrt{n}}$
С	$\sum_{n\geq 1} \frac{\left(-1\right)^n}{n}$
D	$\sum_{n\geq 1} \frac{\left(-1\right)^n}{n\sqrt{n}}$

	Soient N_1 et N_2 deux normes définies sur $\mathbb{R}[X]$ respectivement par
Q57	$N_1(P) = \sum_{k=0}^{+\infty} P^{(k)}(0) $ et $N_2(P) = \sup_{-1 \le t \le 1} P(t) $.
	Soit $D: \mathbb{R}[X] \to \mathbb{R}[X]$ l'application linéaire définie par $D(P) = P'$. Alors D
A	est continue pour les deux normes N_1 et N_2
В	n'est pas continue pour les deux normes N_1 et N_2
C	est continue pour la norme N_1
D	est continue pour la norme N_2

Q58	Soit F la fonction définie sur $]0,+\infty[$ par $F(x)=\int_0^{\frac{\pi}{2}}\frac{\sin 2t}{1+x\sin t}dt$. En effectuant le changement du variable $u=\sin t$, alors $F(x)$ est égale à :
A	$\frac{2}{x}\left(1-\frac{\ln\left(1+x\right)}{x}\right)$
В	$1-\frac{\ln(1+x)}{x}$
С	$\frac{2\ln(1+x)}{x}$
D	$\frac{\ln(1+x)}{x}$

Soit E un espace euclidien de dimension 3 et B une base orthonormée directe.

L'endomorphisme représenté dans la base B par la matrice $M = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}$ est la symétrie orthogonale par rapport au plan vectoriel suivant :

A $\{(x,y,z) \in E/2x+3y+z=0\}$ B $\{(x,y,z) \in E/3x+2y+z=0\}$ C $\{(x,y,z) \in E/2x-3y-z=0\}$ D $\{(x,y,z) \in E/3x-2y+z=0\}$

Soient E un espace compact, F un espace métrique complet et C(E,F) l'ensemble des fonctions continues sur E à valeurs dans F. Soit H une partie de C(E,F)telle que : 1. H est équicontinue ; 60 2. $\forall x \in E$, l'ensemble $H(x) = \{f(x) : f \in H\}$ est relativement compacte dans F. Alors H est relativement compacte dans C(E,F) muni de la topologie de la convergence uniforme, d'après le théorème de : Baire A Ascoli B Dini C Stone-Weierstrass D

AND REPORT OF THE PROPERTY OF