Feuille d'exercices n°2 — Limites

On rappelle les r§gles de croissance comparées en $+\infty$:

Avec tous les coefficients > 0,

$$(\exp(\varepsilon x))^{\alpha} >> x^{\beta} >> (\ln(x)^{\gamma}) >>> (\ln(x)^{-\gamma'}) >> x^{-\beta'} >> (\exp(\epsilon' x))^{-\alpha'}$$

On ordonne les termes et c'est celui qui croit le plus vite vers l'infini qui l'emporte.

Exercice 1 - Étudier les limites suivantes :

$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) \,, \qquad \lim_{x \to 0} \left(\frac{\sqrt{1 + x} - 1}{x} \right) \,, \qquad \lim_{x \to -1} \left(\frac{x^3 + 1}{x^2 - 1} \right) \,.$$

Exercice 2 - On rappelle (ou l'on suppose connu) que $\frac{\sin x}{x}$ tend vers 1 quand x tend vers 0. Déterminer les limites suivantes :

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}, \qquad \lim_{x \to 0} \frac{\tan 3x}{x}, \qquad \lim_{x \to 0} \frac{\cos x - 1}{x^2}.$$

Exercice 3 -

Déterminer les limites des fonctions données ci-dessous aux points indiqués.

- 1. $\sin(\arctan x)$ en $+\infty$.
- 2. $\cos(x^3)$ en $+\infty$.
- 3. $\frac{\sin(e^x)}{1+x^2}$ en $+\infty$.
- **4.** $\frac{1}{x}$ en 0.
- 5. $x \sin x$ en $+\infty$.
- 6. $\frac{\ln(\ln x)}{\ln x}$ en $+\infty$.
- 7. $e^{\frac{1}{x}}$ en 0, à droite et à gauche.
- 8. $\frac{2x^3-3x^2+1}{-4x^3+3x+1}$ en $+\infty$ puis en 1.
- **9.** $(3x^4 2x^2)e^{-x}$ en $+\infty$.
- **10.** $(3x^2 2x)e^{-\sqrt{x}}$ en $+\infty$.
- **11.** $(3x^2 2x)e^{-2\ln x}$ en $+\infty$.
- 12. $\frac{2x+3}{3x^4+2}e^x$ en $+\infty$.
- 13. $\sqrt{x}\ln(x^2+2x)$ en 0 puis en $+\infty$.

Exercice 4 - Déterminer les limites des fonctions données en $+\infty$.

1.
$$f(x) = e^x - 3x$$
?

2.
$$f(x) = 2xe^{3x} - e^x$$

3.
$$f(x) = e^{2x} - 2xe^x$$

4.
$$f(x) = 2e^x + \frac{1}{x+325}$$

5.
$$f(x) = 4e^{2x} + \frac{1}{e^x(x+1)}$$

6.
$$f(x) = \frac{3x}{2e^x + 17}$$

Exercice 5 - Soit f une fonction bornée définie sur \mathbb{R} . Déterminer les limites des fonctions suivantes en $+\infty$ lorsque cela est possible.

1.
$$f(x) + x$$

2.
$$xf(x)$$

3.
$$\frac{f(x)}{x}$$

4.
$$\frac{f(x)+x}{x^2f(x)}$$