Soit r un entier strictement positif. Notons \mathbb{S}_r l'ensemble des matrices de transition de taille $r \times r$, i.e. l'ensemble des matrices de taille $r \times r$ de réels positifs telles que la somme de chaque ligne soit égale à 1. Considérons un paramètre $\theta = \{P, \mu_1, \dots, \mu_r, v_1, \dots, v_r\} \in \Theta$, où $\Theta = \mathbb{S}_r \times \mathbb{R}^r \times (\mathbb{R}_+^*)^r$ et le modèle suivant paramétré par θ .

Soit $(X_k)_{0 \le k \le n}$ une chaîne de Markov discrète à valeurs dans $\{1,\ldots,r\}$, de matrice de transition P et de loi initiale ν . Cela signifie que pour tout $1 \le j \le r$, $\mathbb{P}_{\theta}(X_0 = j) = \nu_j$ et pour tout $0 \le k \le n-1$ et tout $1 \le i, j \le r$, $\mathbb{P}_{\theta}(X_{k+1} = j | X_k = i) = P_{i,j}$. On considère que cette chaîne est uniquement observée au travers des variables $(Y_k)_{0 \le k \le n}$, indépendantes conditionnellement à $(X_k)_{0 \le k \le n}$ et telles que pour tout $0 \le \ell \le n$, la loi de Y_ℓ sachant $(X_k)_{0 \le k \le n}$ est une gaussienne de moyenne μ_{X_ℓ} et de variance v_{X_ℓ} .

1. Écrire la logyraisemblance jointe de $(X_{0:n}, Y_{0:n})$: $\theta \mapsto \log p_{\theta}(X_{0:n}, Y_{0:n})$.

Notons φ_{μ,σ^2} la densité de la loi gaussienne de moyenne μ et de variance σ^2 . Nous avons, pour tout θ ,

$$\begin{split} \log p_{\theta}(X_{0:n}, Y_{0:n}) &= \log p_{\theta}(X_{0:n}) + \log p_{\theta}(Y_{0:n}|X_{0:n}) \,, \\ &= \log p_{\theta}(X_{0}) + \sum_{k=1}^{n} \log p_{\theta}(X_{k}|X_{k-1}) + \sum_{k=0}^{n} \log p_{\theta}(Y_{k}|X_{k}) \,, \\ &= \sum_{i=1}^{r} \mathbbm{1}_{X_{0}=i} \log \nu_{i} + \sum_{k=1}^{n} \sum_{i,j=1}^{r} \mathbbm{1}_{X_{k-1}=i,X_{k}=j} \log P_{i,j} \\ &\quad + \sum_{k=0}^{n} \sum_{i=1}^{r} \mathbbm{1}_{X_{k}=i} \log \varphi_{\mu_{i},\nu_{i}}(Y_{k}) \,. \end{split}$$

2. Écrire la quantité intermédiaire de l'EM $Q(\theta, \theta')$ pour tout θ, θ' :

$$Q(\theta, \theta') = \mathbb{E}_{\theta'} \left[\log p_{\theta}(X_{0:n}, Y_{0:n}) | Y_{0:n} \right].$$

Par la question précédente,

$$\begin{split} Q(\theta, \theta') &= \mathbb{E}_{\theta'} \left[\log p_{\theta}(X_{0:n}, Y_{0:n}) | Y_{0:n} \right] \,, \\ &= \sum_{i=1}^{r} \mathbb{E}_{\theta'} \left[\mathbb{1}_{X_0 = i} | Y_{0:n} \right] \log \nu_i + \sum_{k=1}^{n} \sum_{i,j=1}^{r} \mathbb{E}_{\theta'} \left[\mathbb{1}_{X_{k-1} = i, X_k = j} | Y_{0:n} \right] \log P_{i,j} \\ &+ \sum_{k=0}^{n} \sum_{i=1}^{r} \mathbb{E}_{\theta'} \left[\mathbb{1}_{X_k = i} | Y_{0:n} \right] \log \varphi_{\mu_i, \nu_i}(Y_k) \,. \end{split}$$

3. Écrire cette quantité en faisant apparaître les probabilités

$$\omega_{k-1}^{\theta}(i,j) = \mathbb{P}_{\theta}(X_{k-1} = i, X_k = j|Y_{0:n}),$$

pour $1 \le k \le n$ et

$$\tilde{\omega}_k^{\theta}(i) = \mathbb{P}_{\theta} \left(X_k = i | Y_{0:n} \right) ,$$

pour $0 \le k \le n$.

Il suffit d'appliquer la question précédente :

$$Q(\theta, \theta') = \sum_{i=1}^{r} \tilde{\omega}_{0}^{\theta'}(i) \log \nu_{i} + \sum_{k=1}^{n} \sum_{i=1}^{r} \omega_{k-1,k}^{\theta'}(i,j) \log P_{i,j} + \sum_{k=0}^{n} \sum_{i=1}^{r} \tilde{\omega}_{k}^{\theta'}(i) \log \varphi_{\mu_{i},\nu_{i}}(Y_{k}).$$

4. À l'itération $p \geq 0$, on dispose de l'estimation $\hat{\theta}^{(p)}$. Écrire l'estimateur $\hat{\theta}^{(p+1)}$ en maximisant $\theta \mapsto Q(\theta, \hat{\theta}^p)$.

On peut montrer que la fonction $\theta \mapsto Q(\theta, \theta^{(p)})$ admet un maximum unique obtenu en résolvant l'équation $\nabla_{\theta}Q(\theta, \theta^{(p)}) = 0$.

• Pour tout $1 \le i \le r$ et tout $1 \le j \le r-1$, en remarquant que $P_{i,r} = 1 - \sum_{\ell=1}^{r-1} P_{i,\ell}$,

$$\partial_{P_{i,j}}Q(\theta,\theta^{(p)}) = \sum_{k=1}^{n} \frac{\omega_{k-1,k}^{\theta^{(p)}}(i,j)}{P_{i,j}} - \sum_{k=1}^{n} \frac{\omega_{k-1,k}^{\theta^{(p)}}(i,r)}{P_{i,r}}.$$

On obtient donc que pour tout $1 \le i \le r$ et tout $1 \le j \le r - 1$,

$$\sum_{k=1}^{n} \frac{\omega_{k-1,k}^{\theta^{(p)}}(i,j)}{P_{i,j}} = \sum_{k=1}^{n} \frac{\omega_{k-1,k}^{\theta^{(p)}}(i,r)}{P_{i,r}},$$

puis que

$$P_{i,j}^{(p+1)} = \frac{\sum_{k=1}^{n} \omega_{k-1,k}^{\theta^{(p)}}(i,j)}{\sum_{k=1}^{n} \widetilde{\omega}_{k-1}^{\theta^{(p)}}(i,j)}.$$

• Pour tout $1 \le i \le r$,

$$\partial_{\mu_i} Q(\theta, \theta^{(p)}) = \frac{1}{v_i} \sum_{k=0}^n \tilde{\omega}_k^{\theta^{(p)}}(i) (Y_k - \mu_i) .$$

Ainsi,

$$\mu_i^{(p+1)} = \frac{\sum_{k=1}^n \tilde{\omega}_k^{\theta^{(p)}}(i) Y_k}{\sum_{k=0}^n \tilde{\omega}_k^{\theta^{(p)}}(i)} \,.$$

• Pour tout $1 \le i \le r$,

$$\partial_{v_i} Q(\theta, \theta^{(p)}) = \sum_{k=0}^n \tilde{\omega}_k^{\theta^{(p)}}(i) \left(-\frac{1}{2v_i} + \frac{1}{2v_i^2} (Y_k - \mu_i)^2 \right).$$

Ainsi,

$$v_i^{(p+1)} = \frac{\sum_{k=0}^n \tilde{\omega}_k^{\theta^{(p)}}(i)(Y_k - \mu_i^{(p+1)})^2}{\sum_{k=1}^n \tilde{\omega}_k^{\theta^{(p)}}(i)}.$$

5. Dans le cas où on souhaite également apprendre la loi initiale de la chaîne de Markov et que $\theta = \{P, \mu_1, \dots, \mu_r, v_1, \dots, v_r, \nu_1, \dots, \nu_r\}$, donner les équations de mise à jour de ν .

En utilisant la question 4, on obtient, pour tout $1 \le i \le r-1$,

$$\partial_{\nu_i} Q(\theta, \theta^{(p)}) = \frac{\tilde{\omega}_0^{\theta^{(p)}}(i)}{\nu_i} - \frac{\tilde{\omega}_0^{\theta^{(p)}}(r)}{\nu_r},$$

et

$$\nu_i^{(p+1)} = \tilde{\omega}_0^{\theta^{(p)}}(i).$$

6. Calculer le gradient de la logvraisemblance des observations : $\theta \mapsto \nabla_{\theta} \log p_{\theta}(Y_{0:n})$.

On remarque que pour tout θ, θ' et en notant $X = \{1, ..., r\}$,

$$\begin{split} \log p_{\theta}(Y_{0:n}) &= \sum_{x_{0:n} \in \mathsf{X}^{n+1}} \log p_{\theta}(Y_{0:n}) \mathbb{P}_{\theta'}(X_{0:n} = x_{0:n} | Y_{0:n}) \\ &= \sum_{x_{0:n} \in \mathsf{X}^{n+1}} \log \frac{p_{\theta}(x_{0:n}, Y_{0:n})}{\mathbb{P}_{\theta}(X_{0:n} = x_{0:n} | Y_{0:n})} \mathbb{P}_{\theta'}(X_{0:n} = x_{0:n} | Y_{0:n}) \,, \\ &= \sum_{x_{0:n} \in \mathsf{X}^{n+1}} \log p_{\theta}(x_{0:n}, Y_{0:n}) \mathbb{P}_{\theta'}(X_{0:n} = x_{0:n} | Y_{0:n}) \\ &\qquad \qquad - \sum_{x_{0:n} \in \mathsf{X}^{n+1}} \log \mathbb{P}_{\theta}(x_{0:n} | Y_{0:n}) \mathbb{P}_{\theta'}(X_{0:n} = x_{0:n} | Y_{0:n}) \,, \end{split}$$

Ainsi,

$$\nabla_{\theta=\theta'} \log p_{\theta}(Y_{0:n}) = \mathbb{E}_{\theta'} \left[\nabla_{\theta=\theta'} \log p_{\theta}(X_{0:n}, Y_{0:n}) | Y_{0:n} \right],$$

car

$$\nabla_{\theta=\theta'} \sum_{i=1}^{n} \log \mathbb{P}_{\theta}(X_{0:n} = x_{0:n} | Y_{0:n}) \mathbb{P}_{\theta'}(X_{0:n} = x_{0:n} | Y_{0:n})$$

$$= \nabla_{\theta=\theta'} \left(\sum_{x_{0:n} \in \mathsf{X}^{n+1}} \mathbb{P}_{\theta}(X_{0:n} = x_{0:n} | Y_{0:n}) \right) = 0.$$

Le score (gradient de la logvraisemblance) se calcule à l'aide d'une espérance conditionnelle du même type que la quantité intermédiaire de l'EM.

7. En déduire un algorithme de mise à jour des paramètres de type "descente de gradient".

Si l'on souhaite utiliser une méthode du premier ordre on peut écrire, pour $p \geq 0$,

$$\tilde{\theta}^{(p+1)} = \tilde{\theta}^{(p)} + \gamma_p \mathbb{E}_{\theta^{(p)}} \left[\nabla_{\theta = \theta^{(p)}} \log p_{\theta}(X_{0:n}, Y_{0:n}) | Y_{0:n} \right],$$

où les $\{\gamma_p\}_{p>0}$ sont des pas positifs.

- 8. Bonus: Calcul des $\omega_{k-1,k}^{\theta}(i,j)$, $1 \leq k \leq n$, $1 \leq i,j \leq r$.
 - (a) Montrer que l'on peut calculer récursivement $\mathbb{P}_{\theta}(X_k = i | Y_{0:k}), 0 \le k \le n, 1 \le i, j \le r.$
 - (b) Montrer que l'on peut calculer récursivement, de k=n à k=0, $\mathbb{P}_{\theta}(X_k=i|Y_{0:n}),$ $0\leq k\leq n,$ $1\leq i\leq r.$
 - (c) Conclure.