

Fig 1

FIG. 2B

Fig. 3A

Figure 4A

Firs. 6

Tune Resonator to Critical Coupling Point when
Electromagnetically Coupled to the Reference Sample

2710

Obtain Resonator's $f_{\text{res},1}$ and Q_1 Parameters when Electromagnetically coupled to the First Calibration Sample

-7-17

Obtain Resonator's $f_{res,2}$ and Q_2 Parameters when Electromagnetically coupled to the Second Calibration Sample

12714

Calculate the Difference between $f_{res,2}$ and $f_{res,1}$ to obtain $\Delta f_{res,cal}$

2720

Calculate the Difference between Q_2 and Q_1 to obtain ΔQ_{cal}

2722

Calculate C' by taking the ratio of $\Delta\epsilon'_{\text{cal}}$ to $\Delta f_{\text{res,cal}}$

2729

Calculate C" by taking the ratio of $\Delta\epsilon^{\prime\prime}_{cal}$ to ΔQ_{cal}

2726

Fis 7A

Fig 7B

Fig. 8A

Fig. 8B

Obtain Detector's I ₁ and Q ₁ Parameterswhen the Detector is Electromagnetically coupled to the First Calibration Sample 2912
Obtain Detector's I_2 and Q_2 Parameterswhen the Detector is Electromagnetically coupled to the Second Calibration Sample
Compute $\{\Delta I_{cal}\}$ and $\{\Delta Q_{cal}\}$
Calculate {C'} by taking the ratio of $\{\Delta\epsilon'_{cal}\}$ to $\{\Delta I_{cal}\}$
Calculate {C"} by taking the ratio of $\{\Delta \epsilon^{"}_{cal}\}$ to $\{\Delta Q_{cal}\}$
F.3.9A
V 500, 550
Obtain I _{ref} and Q _{ref} when the Detector is Electromagnetically coupled to the Reference Sample
Obtain I _{sam} and Q _{sam} when the Detector is Electromagnetically coupled to the Test Sample
Compute $\{\Delta I_{sam-ref}\}$ and $\{\Delta Q_{sam-ref}\}$ 2 9 3 6
Compute Change in Permittivity between Test & Ref Samples: $ \{\Delta \epsilon'_{sam-ref}\} = \{C'\} \times \{\Delta I_{sam-ref}\} $ $ \{\Delta \epsilon''_{sam-ref}\} = \{C''\} \times \{\Delta Q_{sam-ref}\} $
Fig. 9B

measure output favameter as 3 colbration Samples Denive 3 Coefficent Bilinean measure reflection Coefficient of rest Sample Apply the measured Restruction coefficient to the 3 Bilincan calibrator coefficients 51050

Fig. 10

Fig 12A

