Hamiltonian Monte Carlo

Tin Huynh and Romain Drai

April 24, 2019

Introduction

Outline

- 1 Introduction
 - Review
 - MCMC
 - MH
- 2 What is Hamiltonian Monte Carlo?
- 3 Hamiltonian Monte Carlo Algorithm
- 4 STAN
- **5** Example: Rats Data

Review

- Markov Chain Monte Carlo (MCMC) is a method for approximately sampling from a distribution p by defining a Markov chain which has p as a stationary distribution.
- Metropolis Hastings: is a very general recipe for finding such a Markov chain
 - Choose a proposal distribution.
 - Correct for the bias by stochastically accepting or rejecting the proposal.

Shorthcomings of Gibbs and MH

- Due to its random walk behavior, MH can't fully explore complex and high-dimensional distributions
 - It will get stuck to a small region
 - It might not even converge
- Example:
 - Exploring Complex distribution: MH v. Hamiltonian MC

Hamiltonian Monte Carlo

What is Hamiltonian Monte Carlo?

Hamiltonian Monte Carlo (HMC):

- MCMC algorithm which makes use of gradient information in order to avoid random walks and move more quickly toward regions of high probability.
- HMC based on a discretization of Hamiltonian dynamics, with a Metropolis-Hastings accept/reject step to ensure that it has the right stationary distribution.
- Hamiltion Monte Carlo is also called hybrid Monte Carlo because it combines MCMC and deterministic simulation methods

HMC

- borrows an idea from physics to suppress the local random walk behavior in the Metropolis algorithm
- Allowing HMC to move much more rapidly through the target distribution.
- For θ_i in target space, HMC adds momentum variable ϕ_i .
- \blacksquare Both θ and ϕ are updated together in a new Metropolis algorithm, in which the jumping distribution for θ is determined largely by ϕ

HMC: Kinetic and Potential Energy

Example: Hamiltonian Monte Carlo (HMC)

Tin Huynh and Romain Drai

Notation

 $p(\theta|y)$: posterior density

 $p(\phi)$: Auxiliary momentum distribution

$$p(\theta, \phi|y) = p(\phi)p(\theta|y)$$

$$\phi \sim \mathsf{MVN}(0, \Sigma)$$

$$\phi_i \sim N(0, \Sigma_{ii})$$

 Σ : Usually set to be identity matrix(unit diagonal)

$$\frac{\partial \log p(\theta|y)}{\partial \theta} = \left(\frac{\partial \log p(\theta|y)}{\partial \theta_1}, ..., \frac{\partial \log p(\theta|y)}{\partial \theta_p}\right) \text{ (gradient)}$$

Notation

$$p(\phi, \theta)$$
 : defined a Hamiltonian $H(\phi, \theta) = -log(p(\theta))$ $= -log(\phi|\theta) - log(p(\theta))$ $= T(\phi|\theta) + V(\theta)$ $T(\phi|\theta) = -log(\phi|\theta)$ ("Kinetic energy" term) $V(\theta) = -log(p(\theta))$ ("potential energy" term)

- Properties of Hamiltonian Dynamics
 - Reversibility
 - Invariant
 - Volume preservation in (θ, ϕ) space
 - Symplecticness

Those properties are crucial to use in constructing MCMC updates

Generating transitions

Start at current θ

First draw ϕ where: $\phi \sim MVN(0, \Sigma)$

Second update (θ, ϕ) via Hamilton's equation:

$$\begin{split} \frac{d\theta}{dt} &= \frac{dH}{d\theta} = \frac{dT}{d\phi} \\ \frac{d\phi}{dt} &= -\frac{dH}{d\theta} = -\frac{dT}{d\theta} - \frac{dV}{d\theta} \end{split}$$

Generating transitions

Since ϕ is independent to $p(\theta|y)$ so $p(\phi|\theta) = p(\phi)$, then:

$$\frac{d\theta}{dt} = \frac{dT}{d\theta}$$
$$\frac{d\phi}{dt} = -\frac{dV}{d\theta}$$

Discretizing Hamilton equation:

Euler's rule:

$$\phi_{t+\epsilon} = \phi_t + \epsilon \frac{d\phi}{dt}(t) = \phi_t - \epsilon \frac{dV}{d\theta}(\theta_t)$$
$$\theta_{t+\epsilon} = \theta_t + \epsilon \frac{d\theta}{dt}(t) = \theta_t + \epsilon \frac{\theta_t}{\sigma_{ii}}$$

Modification of Euler's rule:

$$\phi_{t+\epsilon} = \phi_t - \epsilon \frac{dV}{d\theta} (\theta_t)$$
$$\theta_{t+\epsilon} = \theta_t + \epsilon \frac{\theta_{t+\epsilon}}{\sigma_{ii}}$$

HMC iteration (leapfrog step)

Step 1: updated ϕ with random draw from p(ϕ). Which is the same as prior distribution $\phi \sim N(0,\Sigma)$

Step 2: simultaneous update (θ, ϕ) . This updated involved L (leapfrog steps)

(a)
$$\phi = \phi + \frac{1}{2} \epsilon \frac{\partial \log p(\theta|y)}{\partial \theta}$$

$$\bullet (b) \theta = \theta + \epsilon \overline{\Sigma}^{-1} \phi$$

$$\bullet (c) \phi = \phi + \frac{1}{2} \epsilon \frac{\partial \log p(\theta|y)}{\partial \theta}$$

HMC iteration (leapfrog step)

Step 3:

Compute

$$r = \frac{p(\theta^*|y)p(\phi^*)}{p(\theta^{t-1}|y)p(\phi^{t-1})}$$

Then θ equals:

$$\theta^t = \theta^*$$
 with probability min(r,1) $\theta^t = \theta^{t-1}$ o.w.

HMC Algorithm Parameters

- HMC has 3 parameter:
 - **Discretization** time ϵ :
 - lacktriangle is large: Leapfrog interator will be inaccurate
 - lacksquare ϵ is small: long simulation times
 - number of step taken L:
 - L is large: Algorithm will work too much for each iteration
 - L is small: the trajectory traced out in each iteration will be too short and sampling will devolve to a random walk
 - lacksquare Σ is poorly suited to the covariance:
 - lacksquare step size ϵ will have to decrease
 - number of step L will have to increase

Parameter Tuning

STAN

What is STAN?

- STAN is probabilistic progamming language used for Bayesian inference
 - Modeling
 - High Performance Computation
- Algorithms:
 - MCMC sampler
 - NUTS, HMC
 - Variational inference
 - ADVI
 - Optimization
 - L-BFGS

STAN file

A STAN file is composed of 7 programming blocks:

- data
- tranformed data
- parameters (required)
- transformed parameters
- functions
- model (required)
- generated quantities

How STAN implements HMC - Automation

Even a simplistic implementation of HMC requires extensise user input:

- Tuning the parameters:
 - Discretization time ϵ :
 - number of step taken L:
 - Σ
- Computing gradients:
 - $\frac{dV}{dt}$

STAN automates all those tasks

How STAN implements **HMC** - Locally adaptive

- Riemannian adaption:
 - allows sampler to explore the distribution more efficiently
 - lacktriangle mass matrix M adapts to the local curvature of V(heta)
- NUTS No U-Turn Sampler
 - increases computing efficiency
 - L is no longer fixed
 - Run trajectory until it turns around

NUTS

NUTS

Tin Huynh and Romain Drai Hamiltonian Monte Carlo

Data example

Rats data

Figure 2: Rats

Rats Data

The data consists of:

- 30 rats
- weighted weekly for 5 weeks

Notation:

- x_j age (in days)
- Y_{ij} : weight of i^{th} rat at time x_j

day8	day15	day22	day29	day36
151	199	246	283	320
145	199	249	293	354
147	214	263	312	328
155	200	237	272	297
135	188	230	280	323

Visualizing Data

Normal Hierarchical Model

- The model:
 - $Y_{ij} \sim N(\alpha_i + \beta_i(x_i \bar{x}), \sigma^2)$
 - Priors:
 - $\alpha_i \sim N(\mu_\alpha, \sigma_\alpha^2)$
 - lacksquare $eta_i \sim N(\mu_\beta, \sigma_\beta^2)$
 - Hyperpriors:
 - \blacksquare μ_{α} , μ_{β} , σ_{α}^2 , σ_{β}^2 and σ^2 : independent 'non-informative' priors
 - $\bar{x} = 22$
- Variable of interest α_0
 - intercept when $x_j = 0$ (i.e birth)

STAN: data block

The data block reads external information

STAN: parameter block

The parameters block defines the sampling space

```
parameters {
  real alpha[N];
  real beta[N];
  real mu_alpha; // Prior
  real mu_beta;
  real<lower=0> sigmasq_y;
  real<lower=0> sigmasq_alpha;
  real<lower=0> sigmasq beta;
```

STAN: transformed parameter block

Allows for parameter processing before the posterior is computed

```
transformed parameters {
  real<lower=0> sigma_y;
  real<lower=0> sigma_alpha;
  real<lower=0> sigma_beta;

  sigma_y = sqrt(sigmasq_y);
  sigma_alpha = sqrt(sigmasq_alpha);
  sigma_beta = sqrt(sigmasq_beta);
}
```

STAN: Model block

```
model {
  mu alpha ~ normal(0, 100);
  mu_beta ~ normal(0, 100);
  sigmasq_y \sim inv_gamma(0.001, 0.001);
  sigmasq_alpha ~ inv_gamma(0.001, 0.001);
  sigmasq_beta ~ inv_gamma(0.001, 0.001);
  alpha ~ normal(mu_alpha, sigma_alpha); // vectorized
  beta ~ normal(mu_beta, sigma_beta); // vectorized
  for (n in 1:N)
    for (t in 1:T)
      y[n,t] \sim normal(alpha[n] + beta[n] * (x[t] - xbar),
```

STAN: Generated Quantities block

The generated quantity block allows for postprocessing
generated quantities {
 real alpha0;
 real y1_pred[T];

 alpha0 = mu_alpha - xbar * mu_beta;
 for (t in 1:T)
 y1_pred[t] = normal_rng(alpha[1] + beta[1] * (x[t] -)

R file

```
# Input data
y <- as.matrix(read.table('https://raw.github.com/wiki/stan
x \leftarrow c(8, 15, 22, 29, 36)
rats_dat = list(y = y, x = x, xbar = mean(x), N <- nrow(y)
# Fit model using STAN
library(rstan)
options(mc.cores = parallel::detectCores())
rstan options(auto write = TRUE)
rats fit <- stan('rats.stan', data = rats dat,
                 chains = 4,
                 iter = 2000,
                 warmup = 1000,
                 thin = 1
```

HMC speed

```
print(get_elapsed_time(rats_fit))

## warmup sample
## chain:1 1.000 1.067
## chain:2 16.234 12.202
## chain:3 2.144 0.513
## chain:4 1.439 0.398
```

Summary Statistics

```
## Inference for Stan model: rats.
## 4 chains, each with iter=2000; warmup=1000; thin=1;
## post-warmup draws per chain=1000, total post-warmup draws=4000.
##
##
                mean se_mean
                               sd
                                      10%
                                             50%
                                                    90% n_eff Rhat
## mu alpha
               242.46
                        0 04 2 59 239 07 242 42 245 75
                                                        3799 1 00
## mu beta
                6.19 0.00 0.11
                                     6.05
                                            6.18
                                                   6.34
                                                        882 1.00
## sigmasq_v
              55.55
                       20.37 61.60 30.90
                                           37.47 51.77
                                                        9 1.66
                      19.86 82.65 121.97 200.95 291.15 17 1.24
## sigmasq_alpha 198.32
## sigmasq_beta
                0.25
                      0.03 0.13
                                   0.11 0.25
                                                0.40 24 1.16
                6.92
                        0.92 2.78 5.56 6.12 7.20
                                                        9 1.66
## sigma_v
## sigma_alpha
               13.39 1.32 4.36 11.04 14.18 17.06 11 1.47
## sigma beta
                0.48
                        0.04 0.16 0.34 0.50 0.64 13 1.36
## alpha0
               106.35
                        0.10 3.61 101.63 106.44 110.87 1230 1.00
             154.90
## v1_pred[1]
                        0.14 8.37 144.89 154.75 164.62 3772 1.00
## y1_pred[2] 197.52
                        0.14 8.17 188.15 197.46 206.90
                                                        3482 1.00
## y1_pred[3] 240.05
                        0.13 7.95 230.89 239.91 249.26
                                                        3528 1.00
## y1_pred[4] 282.57
                        0.13 7.86 273.17 282.48 291.73
                                                        3710 1.00
## y1_pred[5]
                        0 17 8 65 314 79 325 00 335 25
              325.05
                                                        2578 1.00
## lp
               -433.37
                        5.96 19.71 -447.32 -437.62 -425.17
                                                        11 1 46
##
## Samples were drawn using NUTS(diag_e) at Wed Apr 24 16:29:49 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).
```

Alpha estimates

Tin Huynh and Romain Drai

Hamiltonian Monte Carlo

Beta estimates

Tin Huynh and Romain Drai

One trace plots among many

Tin Huynh and Romain Drai

Weight at Birth

Posterior Dentity of Alpha0

Model Checking: Predictive Sample

Predicted Growth of Rat 1

Conclusion

Why run Multiple Chains?

- Improve speed
 - Using multiple cores leads linear speed-up
- Add Robustness
 - Check for bad mixing or bad convergence

Multimodality

A sampler might get 'stuck' at one mode

Figure 3. Multimodal distribution

Conclusion

- Compared to MH, Hamiltonian MC is better at:
 - **Exploring** complex and high-dimensional distributions
 - momentum function v. random walk
 - Computating efficiently:
 - less iterations
 - single iteration is more expensive
- HMC still has difficulties with:
 - distribution with isolated modes
 - distribution with very short or long tails
- HMC is an active research area
 - STAN is looking for developers!

THANK YOU!

Questions?