TRIGONOMÉTRIE1

Leçon: TRIGONOMÉTRIE Présentation globale

I) L'ordre dans : $\mathbb R$

II) L'ordre et les opérations dans $\mathbb R$

III)La valeur absolue et propriétés

IV)Intervalles dans l'ensemble des nombres réels

IV)L'encadrement et la valeur approché

I) Le radian et le cercle trigonométrique :

1) Le radian

Définition :

Soit un cercle C de centre O et de rayon 1.

On appelle <u>radian</u>, noté *rad*, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.

Remarque1: On peut étendre cette définition à tout cercle de rayon R, en appelant radian la mesure d'un angle interceptant un arc dont la longueur est R.

Remarque2:

Le radian est aussi une unité de mesure permettant de mesurer la longueur des arcs sur le cercle trigonométrique

2) Cercle trigonométrique

Définition1:

Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre.

Définition2: on appelle cercle trigonométrique tout cercle centre O et de rayon 1 muni d'un point d'origine *I* et d'un sens de parcours appelé direct (sens contraire au sens des aiguilles d'une montre)

3) La relation entre le degré et le radian Proposition :

- Les mesures en radian et en degré d'un même angle sont proportionnelles
- Si x est la mesure d'un angle en radian et y sa mesure

en degré alors :
$$\frac{x}{\pi} = \frac{y}{180}$$

Exemples:

1)Un angle plein (tour complet) mesure 2π radians.

En effet on a $v = 360^{\circ}$

Et on a :
$$\frac{x}{\pi} = \frac{y}{180}$$
 donc $\frac{x}{\pi} = \frac{360}{180}$ donc $\frac{x}{\pi} = 2$ donc $x = 2\pi$ rad

2)on a :
$$\frac{1rad}{\pi} = \frac{y}{180}$$
 donc $\pi y = 180 rad$ donc $y = \frac{180}{\pi} \approx \frac{180}{3,14} \approx 57,3^{\circ}$

Donc: $1rad \approx 57.3^{\circ}$

3) Correspondance degrés et radians

Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360°.

Par proportionnalité, on obtient les correspondances suivantes :

Mesure en radians x rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π
Mesure en degrés y [©]	0	30°	45°	60°	90°	180°	360°

APPLICATION:

- 1) Donner la mesure en radians de l'angle de mesure 33°.
- 2) Donner la mesure en degrés de l'angle de mesure $\frac{3\pi}{6}$ rad.

π	?	$\frac{3\pi}{8}$
180°	33°	?

1)
$$x = 33 \times \frac{\pi}{180} = \frac{11\pi}{60}$$
 2) $y = \frac{3\pi}{8} \times \frac{\pi}{180} = 67,5^{\circ}$

2)
$$y = \frac{3\pi}{8} \times \frac{\pi}{180} = 67,5^{\circ}$$

II) Les abscisse curviligne d'un point sur le cercle trigonométrique et l'angle orienté de deux demi- droites (ou de deux vecteurs):

- 1)Les abscisse curviligne d'un point sur le cercle trigonométrique
- a) Enroulement d'une droite autour du cercle trigonométrique

si le zéro de droite numérique coïncide avec l'origine I cercle trigonométrique ; et on enroule la demi- droite des réels positifs sur le cercle trigonométrique Dans le sens direct et on enroule la demi-droite des réels négatifs sur le cercle trigonométrique Dans le sens inverse chaque point M du cercle est ainsi recouvert par une infinité de nombres réels qui s'appellent : abscisses curvilignes de M

b) Définition : soit M un point du cercle trigonométrique d'origine I

Et soit α la longueur de l'arc IM l(on allant de I vers M dans le sens direct) en radian

Tout réel qui s'écrit sous la forme : $\alpha+2k\pi$ avec $k\in\mathbb{Z}$ s'appelle abscisse curviligne de M

Proposition: si x et x' deux abscisses curvilignes du même point M dans le cercle trigonométrique alors il existe un $k \in \mathbb{Z}$ tel que : $x - x' = 2k\pi$ on écrit : $x = x' \lceil 2\pi \rceil$ "

Et on lit : x est congrue a x' modulo 2π

Exemples:

- **1)** si M=I alors II=0 donc les abscisses curvilignes de I sont de la forme : $0+2k\pi$ avec $k\in\mathbb{Z}$ par ex : 0 , 2π , -2π , 4π , -4π
- 2) si M=J alors $IJ=\frac{\pi}{2}$ donc les abscisses curvilignes de J sont de la forme :

$$\frac{\pi}{2} + 2k\pi$$
 avec $k \in \mathbb{Z}$ par ex: $\frac{\pi}{2}$, $-\frac{3\pi}{2}$, $\frac{5\pi}{2}$, $-\frac{7\pi}{2}$, $\frac{9\pi}{2}$

- **3)** si M=I' alors $II'=\pi$ donc les abscisses curvilignes de I' sont de la forme : $\pi+2k\pi$ avec $k\in\mathbb{Z}$ par ex : π , $-\pi$, 3π , -3π , 5π
- 4) si M=J' alors $IJ'=\frac{3\pi}{2}$ donc les abscisses curvilignes de J' sont de la forme :

$$\frac{3\pi}{2} + 2k\pi \quad \text{avec } k \in \mathbb{Z} \quad \text{ par ex} : \frac{3\pi}{2} \quad , \, -\frac{\pi}{2} \; , \, -\frac{5\pi}{2} \; , \, \frac{7\pi}{2} \; , \, \frac{11\pi}{2} \ldots \ldots$$

5)
$$\frac{49\pi}{6} = \frac{48\pi}{6} + \frac{\pi}{6} = 8\pi + \frac{\pi}{6} = \frac{\pi}{6} + 4 \times 2\pi$$
. Par conséquent les réels $\frac{49\pi}{6}$ et $\frac{\pi}{6}$ sont représentés par un même point sur le cercle trigonométrique.

c) abscisse curviligne principale

Proposition et définition :

<u>Définition</u>: parmi les abscisses curvilignes d'un point M du cercle trigonométrique Une seule se situe dans l'intervalle $]-\pi;\pi]$.

On l'appelle abscisse curviligne principale d'un point M

Exemples:

- 1) les abscisses curvilignes de I sont de la forme $:0+2k\pi$ avec $k\in\mathbb{Z}$ Donc 0 est l'abscisses curviligne principale de I car $0\in]-\pi\,;\pi]$
- **2)** pour J on a $\frac{\pi}{2} \in]-\pi;\pi]$ Donc $\frac{\pi}{2}$ est l'abscisses curviligne principale de J
- **3)** de même J on a $\pi \in]-\pi \, ;\pi]$ Donc π est l'abscisses curviligne principale de I'
- **4)** de même J' on a $-\frac{\pi}{2} \in]-\pi;\pi]$ Donc $-\frac{\pi}{2}$ est l'abscisses curviligne principale de J'

APPLICATION:

1)Déterminer l'abscisses curviligne principale de chacune des abscisses suivantes

$$7\pi$$
 , $\frac{110\pi}{3}$, $\frac{19\pi}{4}$, $-\frac{131\pi}{3}$, $-\frac{217\pi}{6}$

الأستاذ: عثماني نجيب

2) Placer sur le cercle trigonométrique les points
$$A\left(0\right)$$
; $B\left(\frac{\pi}{2}\right)$; $C\left(\frac{\pi}{4}\right)$; $D\left(\frac{\pi}{3}\right)$; $E\left(\frac{\pi}{6}\right)$ $M\left(\frac{7\pi}{2}\right)$; $H\left(-\frac{\pi}{4}\right)$; $G\left(-\frac{\pi}{2}\right)$; $F\left(\frac{5\pi}{6}\right)$; $I\left(\frac{2007\pi}{4}\right)$; $N\left(\frac{3\pi}{2}\right)$

Correction:

- $x=7\pi$ et soit α l'abscisses curviligne principale associée a x Alors il existe un $k\in\mathbb{Z}$ tel que : $\alpha-x=2k\pi$ c a d $\alpha=7\pi+2k\pi$ et $\alpha\in]-\pi\,;\pi]$ c a d $-\pi<7\pi+2k\pi\leq\pi$ et $k\in\mathbb{Z}$ ssi $\pi-7\pi<2k\pi\leq\pi-7\pi$ ssi $-8<2k\leq-6$ ssi $-4< k\leq -3$ et $k\in\mathbb{Z}$ alors k=-3 et donc $\alpha=7\pi+2\left(-3\right)\pi=7\pi-6\pi=\pi$ donc l'abscisses curviligne principale associée a $x=7\pi$ est $\alpha=\pi$
 - $x = \frac{110\pi}{3}$ et soit α l'abscisses curviligne principale associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d $\alpha = \frac{110\pi}{3} + 2k\pi$ et $\alpha \in]-\pi;\pi]$

cad
$$-\pi < \frac{110\pi}{3} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi - \frac{110\pi}{3} < 2k\pi \le \pi - \frac{110\pi}{3}$$
 ssi $-\frac{113\pi}{3} < 2k\pi \le -\frac{107\pi}{3}$ ssi

$$-\frac{113}{6} < k \le -\frac{107}{6}$$
 et $k \in \mathbb{Z}$ ssi $-18.83 < k \le -17.83$ et $k \in \mathbb{Z}$

alors
$$k = -18$$
 et donc $\alpha = \frac{110\pi}{3} + 2k\pi = \frac{110\pi}{3} + 2(-18)\pi = \frac{110\pi - 108\pi}{3} = \frac{2\pi}{3}$

donc l'abscisses curviligne principale associée a $x = \frac{110\pi}{3}$ est $\alpha = \frac{2\pi}{3}$

On a
$$\frac{19\pi}{4} = \frac{16\pi}{4} + \frac{3\pi}{4} = 4\pi + \frac{3\pi}{4} = \frac{3\pi}{4} + 2 \times 2\pi$$
 et $\frac{3\pi}{4} \in]-\pi;\pi]$

donc l'abscisses curviligne principale associée a $\frac{19\pi}{4}$ est $\alpha = \frac{3\pi}{4}$

• $x = -\frac{131\pi}{3}$ et soit α l'abscisses curviligne principale associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d $\alpha = -\frac{131\pi}{3} + 2k\pi$ et $\alpha \in]-\pi;\pi]$

cad
$$-\pi < -\frac{131\pi}{3} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi + \frac{131\pi}{3} < 2k\pi \le \pi + \frac{131\pi}{3}$$
 ssi $\frac{128\pi}{3} < 2k\pi \le \frac{134\pi}{3}$

لأستاذ: عثماني نجيب 4

ssi
$$\frac{128}{6} < k \le \frac{134}{6}$$
 et $k \in \mathbb{Z}$ ssi $21.33 < k \le 22.33$ et $k \in \mathbb{Z}$

alors
$$k=22$$
 et donc $\alpha=-\frac{131\pi}{3}+2k\pi=-\frac{131\pi}{3}+2\left(22\right)\pi=\frac{-131\pi+132\pi}{3}=\frac{\pi}{3}$

donc l'abscisses curviligne principale associée a $x = -\frac{131\pi}{3}$ est $\alpha = \frac{\pi}{3}$

•
$$x = -\frac{217\pi}{6}$$
 et soit α l'abscisses curviligne principale associée a x

Alors il existe un $k \in \mathbb{Z}$ tel que : $\alpha - x = 2k\pi$ c a d $\alpha = -\frac{217\pi}{6} + 2k\pi$ et $\alpha \in]-\pi;\pi]$

cad
$$-\pi < -\frac{217\pi}{6} + 2k\pi \le \pi$$
 et $k \in \mathbb{Z}$

ssi
$$-\pi + \frac{217\pi}{6} < 2k\pi \le \pi + \frac{217\pi}{6}$$
 ssi $\frac{211\pi}{6} < 2k\pi \le \frac{223\pi}{6}$

ssi
$$\frac{211}{12} < k \le \frac{223}{12}$$
 et $k \in \mathbb{Z}$ ssi $17.58 < k \le 18.58$ et $k \in \mathbb{Z}$

alors
$$k = 18$$
 et donc $\alpha = -\frac{217\pi}{6} + 2k\pi = -\frac{217\pi}{6} + 2(18)\pi = \frac{-217\pi + 216\pi}{6} = -\frac{\pi}{6}$

donc l'abscisses curviligne principale associée a $x = -\frac{217\pi}{6}$ est $\alpha = -\frac{\pi}{6}$

2) Placer sur le cercle trigonométrique les points
$$A(0)$$
; $B\left(\frac{\pi}{2}\right)$; $C\left(\frac{\pi}{4}\right)$; $D\left(\frac{\pi}{3}\right)$; $E\left(\frac{\pi}{6}\right)$

$$M\left(\frac{7\pi}{2}\right);\ H\left(-\frac{\pi}{4}\right);G\left(-\frac{\pi}{2}\right);\ F\left(\frac{5\pi}{6}\right)\ ;\ I\left(\frac{2007\pi}{4}\right);\ N\left(\frac{3\pi}{2}\right)$$

•
$$x = \frac{7\pi}{2}$$
 On a $\frac{7\pi}{2} = \frac{8\pi - \pi}{2} = \frac{8\pi}{2} - \frac{\pi}{2} = 4\pi - \frac{\pi}{2} = -\frac{\pi}{2} + 2 \times 2\pi$ et $-\frac{\pi}{2} \in]-\pi;\pi]$

donc l'abscisses curviligne principale associée a $x = \frac{7\pi}{2}$ est $\alpha = -\frac{\pi}{2}$

$$x = \frac{2007\pi}{4}$$

Methode1 : On divise 2007 par 4 on trouve 501,75 on prend le nombre entier proche ex : 502

Donc:
$$\frac{2007\pi}{4} - 502\pi = \frac{2007\pi}{4} - \frac{2008\pi}{4} = -\frac{\pi}{4}$$

$$\frac{2007\pi}{4} = -\frac{\pi}{4} + 502\pi = -\frac{\pi}{4} + 2 \times 251\pi \text{ et } -\frac{\pi}{4} \in \left[-\pi ; \pi \right]$$

donc l'abscisses curviligne principale associée a

$$x = \frac{2007\pi}{4} \text{ est } \alpha = -\frac{\pi}{4}$$

Methode2 :
$$-\pi < \frac{2007\pi}{4} + 2k \ \pi \le \pi$$

$$-1 < \frac{2007}{4} + 2k \le 1 \text{ ssi } -1 - \frac{2007}{4} < 2k \le 1 - \frac{2007}{4}$$

$$\text{ssi } -\frac{2011}{8} < k \le -\frac{2003}{8} \quad \text{donc } -251, 3 \simeq -\frac{2011}{8} < k \le -\frac{2003}{8} \simeq -250, 3$$

$$\text{Donc } k = -251 \quad \text{Donc } \alpha = \frac{2007\pi}{4} + 2(-251)\pi = -\frac{\pi}{4}$$

Exercice:

1)Déterminer l'abscisses curviligne principale de chacune des points suivants $M_0\left(\frac{9\pi}{2}\right)$; $M_1\left(\frac{11\pi}{3}\right)$; $M_2\left(\frac{67\pi}{4}\right)$; $M_3\left(\frac{19\pi}{3}\right)$

Correction :

Methode1:
$$\frac{9\pi}{2} = \frac{8\pi + \pi}{2} = \frac{8\pi}{2} + \frac{\pi}{2} = 4\pi + \frac{\pi}{2} = 2 \times 2\pi + \frac{\pi}{2}$$
 et $\frac{\pi}{2} \in]-\pi$; π]

donc l'abscisses curviligne principale du point M_0 est $\alpha = \frac{\pi}{2}$

Methode2:
$$-\pi < \frac{9\pi}{2} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{9}{2} + 2k \le 1$$
 Donc $-1 - \frac{9}{2} < -\frac{9}{2} + \frac{9}{2} + 2k \le 1 - \frac{9}{2}$

Donc
$$-\frac{11}{2} < 2k \le -\frac{7}{2}$$
 Donc $-\frac{11}{4} < k \le -\frac{7}{4}$

Donc
$$-2,7 \simeq -\frac{11}{4} < k \le -\frac{7}{4} \simeq -1,7$$
 et $k \in \mathbb{Z}$

Donc
$$k = -2$$
 Donc $\alpha = \frac{9\pi}{2} + 2(-2)\pi = \frac{9\pi}{2} - 4\pi = \frac{9\pi - 8\pi}{2} = \frac{\pi}{2}$

donc l'abscisses curviligne principale du point M_0 est $\alpha = \frac{\pi}{2}$

$$M_1 \left(\frac{11\pi}{3} \right)$$

Methode1: On a
$$\frac{11\pi}{3} = \frac{12\pi - \pi}{3} = 4\pi - \frac{\pi}{3} = -\frac{\pi}{3} + 2 \times 2\pi$$
 et $-\frac{\pi}{3} \in]-\pi;\pi]$

donc l'abscisses curviligne principale du point M_1 est $\alpha = -\frac{\pi}{3}$

Methode2:
$$-\pi < \frac{11\pi}{3} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{11}{3} + 2k \le 1$$
 Donc $-1 - \frac{11}{3} < -\frac{11}{3} + \frac{11}{3} + 2k \le 1 - \frac{11}{3}$

Donc
$$-\frac{14}{3} < 2k \le -\frac{8}{3}$$
 Donc $-\frac{7}{3} < k \le -\frac{4}{3}$

Donc
$$-2,3 = -\frac{7}{3} < k \le -\frac{4}{3} = -1,3$$
 et $k \in \mathbb{Z}$

Donc
$$k = -2$$
 Donc $\alpha = \frac{11\pi}{3} + 2(-2)\pi = \frac{11\pi}{3} - 4\pi = \frac{11\pi - 12\pi}{3} = -\frac{\pi}{3}$

donc l'abscisses curviligne principale du point M_1 est $\alpha = -\frac{\pi}{3}$

•
$$M_2\left(\frac{67\pi}{4}\right)$$

Methode1: On a
$$\frac{67\pi}{3} = \frac{64\pi + 3\pi}{4} = \frac{64\pi}{4} + \frac{3\pi}{4} = 16\pi + \frac{3\pi}{4} = 2 \times 8\pi + \frac{3\pi}{4}$$
 et $\frac{3\pi}{4} \in]-\pi$; π]

donc l'abscisses curviligne principale du point M_2 est $\alpha = \frac{3\pi}{4}$

Methode2:
$$-\pi < \frac{67\pi}{4} + 2k \pi \le \pi$$
 et $k \in \mathbb{Z}$

Donc
$$-1 < \frac{67}{4} + 2k \le 1$$
 Donc $-1 - \frac{67}{4} < -\frac{67}{4} + \frac{67}{4} + 2k \le 1 - \frac{67}{4}$

Donc
$$-\frac{71}{4} < 2k \le -\frac{63}{4}$$
 Donc $-8, 8 \simeq -\frac{71}{8} < k \le -\frac{63}{8} \simeq -7, 8$ et $k \in \mathbb{Z}$

Donc
$$k = -8$$
 Donc $\alpha = \frac{67\pi}{4} + 2(-8)\pi = \frac{67\pi}{4} - 16\pi = \frac{67\pi - 64\pi}{4} = \frac{3\pi}{4}$

donc l'abscisses curviligne principale du point M_2 est $\alpha = \frac{3\pi}{4}$

•
$$M_3\left(\frac{19\pi}{3}\right)$$

On a
$$\frac{19\pi}{3} = \frac{18\pi + \pi}{3} = \frac{18\pi}{3} + \frac{\pi}{3} = 6\pi + \frac{\pi}{3} = 2 \times 3\pi + \frac{\pi}{3}$$
 et $\frac{\pi}{3} \in]-\pi;\pi]$

donc l'abscisses curviligne principale du point M_3 est $\alpha = \frac{\pi}{3}$

3)L'angle orienté de deux demi-droites

■ **Définition**: Soit [Ox) et [Oy) deux demi-droites ayant même origine O Le couple ([Ox);[Oy)) constitué des demi-droites [Ox) et [Oy) (dans cet ordre) détermine un angle orienté qu'on le note : ([Ox);[Oy))

الأستاذ: عثماني نجيب

7

Remarque: Le couple ([Oy);[Ox)) constitué des demi-droites [Oy) et [Ox) (dans cet ordre) détermine un angle orienté qu'on le note : ([Oy);[Ox))

Mesures de l'angle orienté de deux demi-droites

Soit [Ox) et [Oy) deux demi-droites d'origine O et soit (C) le cercle trigonométrique de cercle O

Soit A et B les points d'intersections de (C) avec les demi-droites [Ox) et [Oy) respectivement si a et b sont deux abscisses curvilignes respectives de A et B.

Définitions:

On appelle mesure de l'angle orienté (Ox; Oy) tout réel qui s'écrit sous la forme :

 $\frac{b-a+2k\pi \text{ avec } k \in \mathbb{Z} \text{ et on le note :}}{(Ox;Oy)=b-a+2k\pi}$

✓ Parmi Toute les mesures de (Ox; Oy)

Une seule se situe dans l'intervalle $]-\pi;\pi]$ et elle s'appelle abscisse curviligne principale de l'angle (Ox;Oy)

Cas particuliers :

1)L'angle orienté nul :

2)L'angle orienté plat : [Ox] et [Oy] opposées

$$\overline{(Ox;Oy)} = \pi + 2k\pi \text{ ou } \overline{(Ox;Oy)} \equiv \pi[2\pi]$$

2)L'angle orienté droit direct

$$\overline{\left(Ox;Oy\right)} = \frac{\pi}{2} + 2k\pi \text{ ou } \overline{\left(Ox;Oy\right)} \equiv \frac{\pi}{2} \left[2\pi\right]$$

L'angle orienté droit indirect

$$\overline{\left(Ox;Oy\right)} = -\frac{\pi}{2} + 2k\pi \text{ ou } \overline{\left(Ox;Oy\right)} \equiv -\frac{\pi}{2} \left[2\pi\right]$$

Relation de Chasles pour les angles orientés de deux demi-droites

Soit [Ox) et [Oy) et [Oz) trois demi-droites d'origine O

On a:
$$\overline{(Ox;Oy)} + \overline{(Oy;Oz)} \equiv \overline{(Ox;Oz)} [2\pi]$$

Conséquence :

$$(Ox; Oy) \equiv -(Oy; Ox)[2\pi]$$

4)L'angle orienté de deux demi-droites

Soit \overrightarrow{U} et \overrightarrow{V} deux vecteurs non nuls et $\left[Ox\right)$ et

Oy deux demi-droites dirigées respectivement

par \overrightarrow{U} et \overrightarrow{V}

Définition: l'angle orienté des vecteurs non nuls \overrightarrow{U} et \overrightarrow{V} dans cet ordre est l'angle

orienté $\left(Ox;Oy\right)$ et on le note : $\left(\overrightarrow{U};\overrightarrow{V}\right)$

et on la note : $\overline{\left(\overrightarrow{U}\,;\overrightarrow{V}
ight)}$

Propriétés: Pour tout vecteur \vec{u} non nul, on a :

1)
$$(\vec{u}; \vec{u}) \equiv 0[2\pi]$$

2)
$$(\vec{u}; -\vec{u}) = \pi [2\pi]$$

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} non nuls, on a :

$$\overline{\left(\vec{u}\;;\vec{v}\right)} + \overline{\left(\vec{v}\;;\vec{w}\right)} \equiv \left(\vec{u}\;;\vec{w}\right) \left[2\pi\right]$$

Voici des propriétés sur les angles orientés que nous allons démontrer à l'aide de la relation de Chasles :

Propriété :On considère deux vecteurs non nuls \vec{u} et \vec{v} .

$$(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v}) + 2k\pi$$

$$(-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$$

$$3.(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + 2k\pi$$

4.
$$(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$$
 où k est entier relatif

Démonstration:

1.D'après la relation de Chasles :

$$(\vec{u}, \vec{v}) + (\vec{v}, \vec{u}) = (\vec{u}, \vec{u}) = 0 + 2k\pi$$

Donc $(\vec{v}, \vec{u}) = -(\vec{u}, \vec{v}) + 2k\pi$

2. D'après la relation de Chasles :

$$(-\vec{u}, \vec{v}) = (-\vec{u}, \vec{u}) + (\vec{u}, \vec{v}) + 2k\pi = \pi + (\vec{u}, \vec{v}) + 2k\pi$$
 Donc $(-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi + 2k\pi$

3. D'après la relation de Chasles :

$$(-u, -v) = (-u, u) + (u, v) + (v, -v) + 2k\pi = \pi + (\vec{u}, \vec{v}) + \pi + 2k\pi$$
 Donc $(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + 2k'\pi$

4. D'après la relation de Chasles :

$$(\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + (\vec{v}, -\vec{v}) + 2k\pi = (\vec{u}, \vec{v}) + \pi + 2k\pi$$

$$\mathsf{Donc}\left(\vec{u},-\vec{v}\right) = \left(\vec{u},\vec{v}\right) + \pi + 2k\pi$$

III)Les rapports trigonométriques d'un nombre réel.

1)Repère orthonormé lié au cercle trigonométrique

Soit (C) un cercle trigonométrique de centre O et d'origine I

Soit J un point de ig(Cig) tel que L'angle

orienté $\left(\overrightarrow{OI}\,;\overrightarrow{OJ}\right)$ soit droit et direct

On a donc OI = OJ = 1 et $(OI) \perp (OJ)$

Le Repère orthonormé $\left(O;\overrightarrow{OI};\overrightarrow{OJ}\right)$ est appelé

Repère orthonormé lié au cercle trigonométrique (C)

2)Les rapports trigonométriques d'un nombre réel.

Soit $x \in \mathbb{R}$ il existe un point M de (C) unique tel que x est une abscisse curviligne de M

✓ Sinus et cosinus du nombre réel X

Soit C le projeté orthogonal de M sur (OI)

Et soit S le projeté orthogonal de M sur (OJ)

Définitions:

- Le <u>cosinus du nombre réel</u> x est l'abscisse de M et on note **cos** x.
- Le <u>sinus du nombre réel</u> x est l'ordonnée de M et on note **sin** x.

✓ Tangente du nombre réel X

Soit (Δ) la droite tangente a (C) en I

Si M
eq J et M
eq J' alors la droite (OM) coupe la tangente (Δ) en un point T

Le nombre réel \overline{IT} l'abscisse de T sur l'axe (Δ) est appelé : La tangente du nombre réel x et on note $\tan x$.

Remarques:

✓ Les rapports trigonométriques : $\cos x$ et $\sin x$ et $\tan x$. sont aussi appelés cosinus et sinus et tangente de l'angle orienté $(\overrightarrow{OI}; \overrightarrow{OM})$

✓
$$\tan x$$
 existe ssi $x \neq \frac{\pi}{2} + 2k\pi$ et $x \neq -\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$

✓ La cotangente de x est le nombre réel x noté cotant x et on a : $\cot x = \frac{1}{\tan x}$

الأستاذ: عثماني نجيب

10

2)Cosinus, sinus et tangente d'angles remarquables

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Propriétés :

Pour tout nombre réel x, on a :

1)
$$-1 < \cos x < 1$$

2)
$$-1 \le \sin x \le 1$$

3)
$$\cos^2 x + \sin^2 x = 1$$

1)
$$-1 \le \cos x \le 1$$
 2) $-1 \le \sin x \le 1$ 3) $\cos^2 x + \sin^2 x = 1$
4) $\cos x = \cos(x + 2k\pi)$ où k entier relatif 5) $\sin x = \sin(x + 2k\pi)$ où k entier relatif

5)
$$\sin x = \sin(x + 2k\pi)$$
 où k entier relatif

6) si
$$x \neq \frac{\pi}{2} + 2k\pi$$
 et $x \neq -\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$ alors: $\tan x = \frac{\sin x}{\cos x}$

7) si
$$x \neq \frac{\pi}{2} + 2k\pi$$
 et $x \neq -\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$ alors: $\tan(x + k\pi) = \tan x$

Démonstration : 4) et 5)

Aux points de la droite orientée d'abscisses x et $x + 2k\pi$ ont fait correspondre le même point du cercle trigonométrique.

3) le triangle (OCM) est rectangle en C. Le théorème de Pythagore donne alors

$$OC^2 + CM^2 = 1$$
. Or $OC = \cos x$ et $CM = OC = \sin x$

En remplacant, il vient que : $\cos^2 x + \sin^2 x = 1$

Remarque:

On dit que cosinus et sinus sont périodiques de période 2π .

Conséquence:

Pour tracer la courbe représentative de la fonction cosinus ou de la fonction sinus, il suffit de la tracer sur un intervalle de longueur 2π et de la compléter par translation.

3) Propriétés de Cosinus, sinus et tangente

Pour tout nombre réel x, on a :

1)
$$\cos(-x) = \cos x$$
 et $\sin(-x) = -\sin x$ 2) $\cos(\pi + x) = -\cos x$ et $\sin(\pi + x) = -\sin x$

3)
$$\cos(\pi - x) = -\cos x$$
 et $\sin(\pi - x) = \sin x$ 4) $\cos(\frac{\pi}{2} + x) = -\sin x$ et $\sin(\frac{\pi}{2} + x) = \cos x$

5)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

6)
$$\tan(\pi - x) = -\tan x$$
 et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$

7)
$$\tan(\pi - x) = -\tan x$$
 et $\tan(\pi + x) = \tan x$ si $x \neq \frac{\pi}{2} + k\pi$

الأستاذ: عثماني نجيب

<u>Démonstrations</u>: Par symétries, on démontre les résultats:

APPLICATION:

Calculer les rapports trigonométriques des nombre réel suivantes

$$7\pi$$
 , $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{4}$, $-\frac{4\pi}{3}$

Solution:

$$\checkmark \cos(7\pi) = \cos(\pi + 6\pi) = \cos(\pi + 2 \times 3\pi) = \cos(\pi) = -1$$

$$\sin(7\pi) = \sin(\pi + 6\pi) = \sin(\pi + 2 \times 3\pi) = \sin(\pi) = 0$$

$$\tan(7\pi) = \tan(0+7\pi) = \tan(0) = 0$$

✓ On a:
$$\frac{5\pi}{6} = \frac{6\pi - \pi}{6} = \frac{6\pi}{6} - \frac{\pi}{6} = \pi - \frac{\pi}{6}$$

$$\cos\left(\frac{5\pi}{6}\right) = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

$$\sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$\tan\left(\frac{5\pi}{6}\right) = \tan\left(\pi - \frac{\pi}{6}\right) = \tan\left(-\frac{\pi}{6}\right) = -\tan\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$$

$$\checkmark$$
 On a: $\frac{7\pi}{6} = \frac{6\pi + \pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \pi + \frac{\pi}{6}$

$$\cos\left(\frac{7\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

$$\sin\left(\frac{7\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$$

$$\tan\left(\frac{7\pi}{6}\right) = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

✓ On a:
$$\frac{3\pi}{4} = \frac{4\pi - \pi}{4} = \frac{4\pi}{4} - \frac{\pi}{4} = \pi - \frac{\pi}{4}$$

$$\cos\left(\frac{3\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$\tan\left(\frac{3\pi}{4}\right) = \tan\left(\pi - \frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$$

$$\checkmark$$
 On a: $\frac{4\pi}{3} = \frac{3\pi + \pi}{3} = \frac{3\pi}{3} + \frac{\pi}{3} = \pi + \frac{\pi}{3}$

$$\cos\left(-\frac{4\pi}{3}\right) = \cos\left(\frac{4\pi}{3}\right) = \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right) = -\frac{1}{2}$$

$$\sin\left(-\frac{4\pi}{3}\right) = -\sin\left(\frac{4\pi}{3}\right) = -\sin\left(\pi + \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\tan\left(-\frac{4\pi}{3}\right) = -\tan\left(\frac{4\pi}{3}\right) = -\tan\left(\pi + \frac{\pi}{3}\right) = -\tan\left(\frac{\pi}{3}\right) = -\sqrt{3}$$

Exercice: montrer que :1+
$$(\tan x)^2 = \frac{1}{(\cos x)^2}$$
 si $x \neq \frac{\pi}{2} + k\pi$

Solution :
$$1 + (\tan x)^2 = 1 + \left(\frac{\sin x}{\cos x}\right)^2 = 1 + \frac{(\sin x)^2}{(\cos x)^2} = \frac{(\cos x)^2 + (\sin x)^2}{(\cos x)^2}$$

Et on a :
$$\cos^2 x + \sin^2 x = 1$$
 donc : $1 + (\tan x)^2 = \frac{1}{(\cos x)^2}$

4)Signe de Cosinus, sinus

Le sinus et le cosinus de tout nombre réel font partie de l'intervalle [-1; 1]. Plus précisément, la position de M nous permet d'en savoir plus sur le cosinus et le sinus de x. Ainsi :

- $Si \frac{\pi}{2} \le x \le \frac{\pi}{2}$ alors $\cos x \ge 0$
- $Si \frac{\pi}{2} \le x \le \frac{3\pi}{2}$ alors $\cos x \le 0$
- $Si \ 0 \le x \le \pi \text{ alors } \sin x \ge 0$
- $Si \ \pi \le x \le 2\pi \text{ alors } \sin x \le 0$

Exercice: montrer que : $\tan x = \frac{1}{3}$ et $\frac{\pi}{2} < x < \pi$

Calculer: 1) $\cos x$ 2) $\sin x$

Solution : 1) on a : $1 + (\tan x)^2 = \frac{1}{(\cos x)^2} \operatorname{donc} 1 + (\frac{1}{3})^2 = \frac{1}{\cos^2 x}$

Donc $1 + \frac{1}{9} = \frac{1}{\cos^2 x}$ Donc $\frac{10}{9} = \frac{1}{\cos^2 x}$ Donc $10\cos^2 x = 9$

Donc $\cos^2 x = \frac{9}{10} \text{ Donc } \cos x = \sqrt{\frac{9}{10}} \text{ et } \cos x = -\sqrt{\frac{9}{10}}$

Et on a $\frac{\pi}{2} < x < \pi$: donc $\cos x \le 0$ Donc: $\cos x = -\sqrt{\frac{9}{10}} = -\frac{3\sqrt{10}}{10}$

الأستاذ: عثماني نجيب 14

2) on a :
$$\tan x = \frac{\sin x}{\cos x}$$
 : donc $\sin x = \tan x \times \cos x$ donc $\sin x = -\frac{1}{3} \times \frac{3\sqrt{10}}{10} = -\frac{\sqrt{10}}{10}$

Exercice: simplifier les expressions suivantes:

$$A = \sin(\pi - x) \times \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) \times \cos(\pi - x)$$

$$B = \frac{\sin x + \sin(\pi - x)}{\cos(\pi - x)}$$

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right)$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$
$$E = \tan(\pi - x) + \tan(\pi + x)$$

$$E = \tan(\pi - x) + \tan(\pi + x)$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$$

$$A = \sin(\pi - x) \times \cos\left(\frac{\pi}{2} - x\right) - \sin\left(\frac{\pi}{2} - x\right) \times \cos(\pi - x)$$

$$A = \sin(x) \times \sin(x) - \cos x \times (-\cos x) = \sin^2 x + \cos^2 x = 1$$

$$B = \frac{\sin x + \sin(\pi - x)}{\cos(\pi - x)} = \frac{\sin x + \sin x}{-\cos x} = -\frac{2\sin x}{\cos x} = -2\tan x$$

$$C = \cos\left(\frac{5\pi}{6}\right) + \sin\left(\frac{5\pi}{6}\right) - \tan\left(\frac{5\pi}{6}\right) = \cos\left(\frac{6\pi - \pi}{6}\right) + \sin\left(\frac{6\pi - \pi}{6}\right) - \tan\left(\frac{6\pi - \pi}{6}\right)$$

$$C = \cos\left(\pi - \frac{\pi}{6}\right) + \sin\left(\pi - \frac{\pi}{6}\right) - \tan\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{6}\right)$$

$$C = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sin\left(\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)} = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2} + \frac{1}{2} + \frac{\sqrt{3}}{3} = -\frac{3\sqrt{3}}{6} + \frac{3}{6} + \frac{2\sqrt{3}}{6}$$

Donc :
$$C = \frac{3 - \sqrt{3}}{6}$$

$$D = \sin(11\pi - x) + \cos(5\pi + x) + \cos(14\pi - x)$$

$$D = \sin(10\pi + \pi - x) + \cos(4\pi + \pi + x) + \cos(2 \times 7\pi - x)$$

$$D = \sin(\pi - x) + \cos(\pi + x) + \cos(-x)$$

$$D = \sin(x) - \cos(x) + \cos(x) = \sin(x)$$

$$E = \tan(\pi - x) + \tan(\pi + x) = -\tan(x) + \tan(x) = 0$$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{3\pi}{10}\right)$$

On a
$$\frac{\pi}{5} + \frac{3\pi}{10} = \frac{2\pi}{10} + \frac{3\pi}{10} = \frac{5\pi}{10} = \frac{\pi}{2}$$
 donc : $\frac{3\pi}{10} = \frac{\pi}{2} - \frac{\pi}{5}$

$$F = \cos^2\left(\frac{\pi}{5}\right) + \sin^2\left(\frac{\pi}{2} - \frac{\pi}{5}\right) = \cos^2\left(\frac{\pi}{5}\right) + \cos^2\left(\frac{\pi}{5}\right) = 1$$

$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{5\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right)$$

On a
$$\frac{\pi}{7} + \frac{6\pi}{7} = \pi$$
 donc : $\frac{\pi}{7} = \pi - \frac{6\pi}{7}$

Et on a
$$\frac{2\pi}{7} + \frac{5\pi}{7} = \pi$$
 donc : $\frac{5\pi}{7} = \pi - \frac{2\pi}{7}$

Et on a
$$\frac{3\pi}{7} + \frac{4\pi}{7} = \pi$$
 donc : $\frac{4\pi}{7} = \pi - \frac{3\pi}{7}$

Donc:
$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) + \cos\left(\pi - \frac{3\pi}{7}\right) + \cos\left(\pi - \frac{2\pi}{7}\right) + \cos\left(\pi - \frac{\pi}{7}\right)$$

Donc:
$$G = \cos\left(\frac{\pi}{7}\right) + \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{3\pi}{7}\right) - \cos\left(\frac{2\pi}{7}\right) - \cos\left(\frac{\pi}{7}\right) = 0$$

$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{5\pi}{8}\right) + \sin^2\left(\frac{7\pi}{8}\right)$$

On a
$$\frac{\pi}{8} + \frac{7\pi}{8} = \pi$$
 donc: $\frac{7\pi}{8} = \pi - \frac{\pi}{8}$

Et on a
$$\frac{3\pi}{8} + \frac{5\pi}{8} = \pi$$
 donc : $\frac{5\pi}{8} = \pi - \frac{3\pi}{8}$

Donc:
$$H = \sin^2\left(\frac{\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{3\pi}{8}\right) + \sin^2\left(\pi - \frac{\pi}{8}\right)$$

Donc:
$$H = +\sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{3\pi}{8}\right) + \sin^2\left(\frac{\pi}{8}\right) = 2\sin^2\left(\frac{\pi}{8}\right) + 2\sin^2\left(\frac{3\pi}{8}\right)$$

Et on a
$$\frac{\pi}{8} + \frac{3\pi}{8} = \frac{\pi}{2}$$
 donc : $\frac{3\pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}$

Donc on a:
$$H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\sin^2\left(\frac{\pi}{2} - \frac{\pi}{8}\right)$$

Donc
$$H = 2\sin^2\left(\frac{\pi}{8}\right) + 2\cos^2\left(\frac{\pi}{8}\right) = 2\left(\sin^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{\pi}{8}\right)\right) = 2 \times 1 = 2$$