11.13 (a) Assume the wire is along the z-direction, then $\vec{E}' = \frac{290}{r} \hat{r} . \qquad \vec{B}' = 0 .$

Where r' is the distance from the wire. Then, apply the lorents transform for $\vec{\beta} = \vec{v}/c$ along \vec{z} -direction. We have $\vec{E} = \vec{v}\vec{E}' = \frac{389}{r}$ ° \vec{r} , $\vec{\beta} = \vec{v}\vec{\beta} \times \vec{E}' = \frac{2889}{r}$ ° $\vec{\phi}$. Here, r' = r. as it is the transverse distance (ii) In the bab frame, the wire is moving in the \vec{z} -direction with velocity \vec{v} . Then, unit leagth in the frame moving with the wire becomes $\vec{J} = \vec{p}$ in the bab frame. Therefore, the charge density in the bab frame becomes $\vec{J} = \vec{p}$ in the bab frame. Therefore, the charge density in the base density $\vec{J} = \vec{J} =$

(c) The electric and magnetic field can be easily determined due to extendrical symmetry.

 $\vec{E} = \frac{2YP_0}{r} \hat{r}$, $\vec{B} = \frac{2Y\beta P_0}{r} \hat{\phi}$, identical to those part (a).