Exercise 5 Foundation of Cryptography

Eytan Kidron

Prove claim 18 in lecture 2

Background

Let us first recap what we did so far in class

Defintion Given a function $g:\{0,1\}^n\mapsto\{0,1\}^{n+1}$ and $i\in\mathbb{N}$ define $g^i:0,1^n\mapsto0,1^{n+i}$ as

$$g^{i}(x) = g(x)_{1}, g^{i-1}(g(x)_{2,\dots,n+1})$$

where $g^{0}(x) = x$

Claim 16 Let $g:\{0,1\}^n\mapsto\{0,1\}^{n+1}$ be a PRG, then $g^{t(n)}:0,1^n\mapsto\{0,1\}^{n+t(n)}$ is a PRG, for any $t\in\mathsf{poly}$

Proof: Assume \exists a PPT D, an infinite set $\mathcal{I} \subseteq \mathbb{N}$ and $p \in \mathsf{poly}$ with

$$\left| \Delta_{g^{t}(U_{n}),U_{n+t(n)}}^{D} \right| > \varepsilon \left(n \right) = \frac{1}{p\left(n \right)}$$

for any $n \in \mathcal{I}$. We use D for breaking the hardness of g.

Fix $n \in \mathbb{N}$ and for $i = \{0, ..., t = t(n)\}$, let

$$H^i = U_{t-i}, g^i \left(U_n \right)$$

Note that $H^0 \equiv U_{n+t}$ and $H^t \equiv g^t(U_n)$

Algorithm 17 D'

Input: 1^n and $y \in \left\{0,1\right\}^{n+1}$

 $\texttt{Sample}\ i \leftarrow [t]$

Return $D(1^n, U_{t-i}, y_1, g^{i-1}(y_{2,...,n+1}))$

Claim 18
$$\left|\Delta_{g(U_n),U_{n+1}}^{D'}\right| > \frac{\varepsilon(n)}{t(n)}$$

Claim 18 $\left|\Delta_{g(U_n),U_{n+1}}^{D'}\right| > \frac{\varepsilon(n)}{t(n)}$ If we can prove claim 18, then we effectively proved claim 16 because this means that q is not a PRG.

Proof of claim 18

Claim.
$$\left|\Delta_{g(U_n),U_{n+1}}^{D'}\right| > \frac{\varepsilon(n)}{t(n)}$$

Proof. In the following let D'_i be the algorithm D' which chooses a specific value for i.

$$\left| \Delta_{g(U_n), U_{n+1}}^{D'} \right| = \left| \Pr_{y \leftarrow g(U_n)} \left[D'(y) = 1 \right] - \Pr_{y \leftarrow U_{n+1}} \left[D'(y) = 1 \right] \right|$$
 (1)

$$= \frac{1}{t} \left| \sum_{i=1}^{t} \Pr_{y \leftarrow g(U_n)} \left[D'_i(y) = 1 \right] - \Pr_{y \leftarrow U_{n+1}} \left[D'_i(y) = 1 \right] \right|$$
 (2)

$$= \frac{1}{t} \left| \sum_{i=1}^{t} \Pr_{y \leftarrow H^{i}} \left[D\left(y\right) = 1 \right] - \Pr_{y \leftarrow H^{i-1}} \left[D\left(y\right) = 1 \right] \right|$$
 (3)

$$= \frac{1}{t} \left| \Pr_{y \leftarrow H^{t}} \left[D\left(y\right) = 1 \right] - \Pr_{y \leftarrow H^{0}} \left[D\left(y\right) = 1 \right] \right| \tag{4}$$

$$= \frac{1}{t} \left| \Delta_{H^t, H^0}^D \right| \tag{5}$$

$$= \frac{1}{t} \left| \Delta_{g^t(U_n), U_{n+t}}^D \right| > \frac{\varepsilon}{t} \tag{6}$$

Equation (1) is due to the definition of Δ .

In equation (2), $\frac{1}{t}$ is the probability that D' chooses any specific value of i. Equation (3) is due to the fact that when D'_i is given an input from U_{n+1} then the inner call to D receives an input which is distributed as H^{i-1} and if D'_i is given an input from $g(U_n)$ then the inner call to D receives an input which is distributed as H^i .

Equation (4) is the deletion of all internal values of the telescopic sum.

Equation (5) is again due to the definition of Δ .

And finally, equation (6) is due to the facts that $H^0 = U_{n+t}$ and $H^t = g^t(U_n)$ and our assumption that $\left|\Delta_{g^t(U_n),U_{n+t}}^D\right| > \varepsilon$.

This proves claim 18.