utrjp0mq4

April 29, 2025

```
[16]: import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      import seaborn as sns
[17]: # Create sample dataset
      data = {
          'Student ID': [1, 2, 3, 4, 5],
          'Age': [18, 20, np.nan, 19, 22],
          'Gender': ['Male', 'Female', 'Female', 'Male'],
          'Exam Score': [90, 85, 75, 95, 65],
          'Study Hours': [4, 6, 8, np.nan, 5],
          'Attendance Percentage': [80, 95, 85, 70, 60]
      }
      df = pd.DataFrame(data)
[18]: # print dataset
[18]:
         Student ID
                      Age
                           Gender Exam Score
                                               Study Hours Attendance Percentage
                             Male
                                                        4.0
                  1
                     18.0
                                           90
                                                                                80
                                                        6.0
      1
                  2
                     20.0
                           Female
                                           85
                                                                                95
      2
                  3
                      NaN Female
                                           75
                                                        8.0
                                                                                85
      3
                     19.0
                                           95
                                                                                70
                             Male
                                                       NaN
                     22.0
                                                        5.0
                             Male
                                           65
                                                                                60
[19]: df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 5 entries, 0 to 4
     Data columns (total 6 columns):
                                  Non-Null Count Dtype
          Column
          -----
      0
          Student ID
                                  5 non-null
                                                  int64
      1
                                  4 non-null
                                                  float64
          Age
      2
          Gender
                                  5 non-null
                                                  object
          Exam Score
                                  5 non-null
                                                  int64
```

4 Study Hours 4 non-null float64 5 Attendance Percentage 5 non-null int64

dtypes: float64(2), int64(3), object(1)

memory usage: 372.0+ bytes

[20]: df.describe()

[20]:		Student ID	Age	Exam Score	Study Hours	Attendance Percentage
	count	5.000000	4.000000	5.000000	4.000000	5.000000
	mean	3.000000	19.750000	82.000000	5.750000	78.000000
	std	1.581139	1.707825	12.041595	1.707825	13.509256
	min	1.000000	18.000000	65.000000	4.000000	60.000000
	25%	2.000000	18.750000	75.000000	4.750000	70.000000
	50%	3.000000	19.500000	85.000000	5.500000	80.000000
	75%	4.000000	20.500000	90.000000	6.500000	85.000000
	max	5.000000	22.000000	95.000000	8.000000	95.000000

[21]: df.isnull()

[21]:		Student ID	Age	Gender	Exam Score	Study Hours	Attendance Percentage
	0	False	False	False	False	False	False
	1	False	False	False	False	False	False
	2	False	True	False	False	False	False
	3	False	False	False	False	True	False
	4	False	False	False	False	False	False

[22]: df.isnull().sum()

[22]:	Student ID	0
	Age	1
	Gender	0
	Exam Score	0
	Study Hours	1
	Attendance Percentage	0
	1	

dtype: int64

[23]: df.notnull()

[23]:	Student ID	Age	Gender	Exam Score	Study Hours	Attendance Percentage
0	True	True	True	True	True	True
1	True	True	True	True	True	True
2	True	False	True	True	True	True
3	True	True	True	True	False	True
4	True	True	True	True	True	True

[24]: df.notnull().sum()

```
[24]: Student ID
                                 5
      Age
                                 4
      Gender
                                 5
      Exam Score
                                 5
      Study Hours
      Attendance Percentage
                                 5
      dtype: int64
[25]: # Inpute missing values with mean
      df['Age'].fillna(df['Age'].mean(), inplace=True)
      df['Study Hours'].fillna(df['Study Hours'].mean(), inplace=True)
[26]: # Now everything is okay
      df.isnull().sum()
[26]: Student ID
                                 0
      Age
                                 0
      Gender
                                 0
      Exam Score
                                 0
      Study Hours
                                 0
      Attendance Percentage
      dtype: int64
[27]: # Check for inconsistencies
      # no of time a value is given in dataset
      print(df['Age'].value_counts())
     Age
     18.00
               1
     20.00
     19.75
     19.00
               1
               1
     22.00
     Name: count, dtype: int64
[28]: # Detect outliers using IQR method
      # Handle outliers by replacing with maximum and minimum values
      lower_bound = 65
      upper_bound = 95
      df['Exam Score'] = np.where(df['Exam Score'] < lower_bound, lower_bound, </pre>

df['Exam Score'])
      df['Exam Score'] = np.where(df['Exam Score'] > upper_bound, upper_bound, upper_bound, upper_bound, upper_bound

df['Exam Score'])
      df['Exam Score']
[28]: 0
           90
      1
           85
```

```
2   75
3   95
4   65
Name: Exam Score, dtype: int64
```

```
[29]: # Check the distribution of 'Attendance Percentage' variable
sns.histplot(df['Attendance Percentage'], kde=True)
plt.show()
```



```
[30]: # Apply square root transformation
df['Attendance Percentage'] = np.sqrt(df['Attendance Percentage'])

# Check the transformed distribution
sns.histplot(df['Attendance Percentage'], kde=True)
plt.show()
```


[]:	
[]:	
[]:	