PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-010763

(43)Date of publication of application: 15.01.2004

(51)Int.Cl.

CO8J 5/18 B29C 41/28 **C08F** C08F251/02 COSG 59/68 CO8G 65/18 GO2B 5/30 G₀₂F GO2F B29K 1:00 B29L 7:00 CO8L 1:10

(21)Application number : 2002-166465

(71)Applicant : FUJI PHOTO FILM CO LTD

(22)Date of filing:

07.06.2002

(72)Inventor: TANEMURA HATSUMI

(54) CELLULOSE ACYLATE FILM AND POLARIZING PLATE OBTAINED USING THE SAME (57)Abstract:

PROBLEM TO BE SOLVED: To provide a cellulose acylate film obtained by a casting film formation method which causes only a slight increase in haze and no deposition of functional additives even when a draw ratio is increased and is excellent in durability.

SOLUTION: The cellulose acylate film is formed by a solution casting film formation method and has a retardation value Re, defined by equation (I): Re=(nx-ny) × d (wherein nx is a refractive index in the slow axis direction in the film plane; ny is a refractive index in the fast axis direction in the film plane; and d is a thickness of the film), within the range of 20–160 nm at a wavelength of 550 nm, where the cellulose acylate film is obtained by casting a cellulose acylate dope composition comprising an ethylenically unsaturated monomer and a photopolymerization initiator and photopolymerizing the ethylenically unsaturated monomer during drying or after drying the composition. The polarizing plate is obtained using the same.

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-10763 (P2004-10763A)

(43) 公開日 平成16年1月15日(2004.1.15)

(51) Int.C1. ⁷	FI		****		テーマ	アコード	(参孝	 (素)
COSJ 5/18	C081	5/18 C	EΡ		2 H C	49		
B 2 9 C 41/28	B29C	41/28			2 H C	91		
CO8F 2/44	CO8F	2/44	C		4 F C	71		
CO8F 251/02	CO8F	251/02			4 F 2	0.5		
CO8G 59/68	C08G	59/68			4 J C	005		
	審査請求 オ	詩求 請求項	で数3 (ЭL	(全 34	頁)	最終真	頁に続く
(21) 出願番号	特願2002-166465 (P2002-166465)	(71) 出願人	00000520	1				
(22) 出願日	平成14年6月7日 (2002.6.7)		富士写真	フイル	ム株式	会社		
() ·, ·, ·	, ,		神奈川県	南足柄	市中沼	2 1 Oi	番地	
		(74) 代理人						
		() ()	弁理士	野口	恭弘			
		(72) 発明者	種村 初	実				
			神奈川県	南足柄	市中沼	210	番地	富士写
			真フイル	ム株式	会社内			
		Fターム (参	考) 2HO49	BA06	BA42	BB33	BB49	BC02
				BC10	BC22			
			2H091	FA08X	FA08Z	FA11X	FB02	FC01
				FC25	FD05	GA06	GA16	GA17
				KA10	LA12	LA16	LA30	
			4F071	AA09	AC10	AE04	AE06	AH12
				BA02	BB02	BC01		
						最	終頁に	続く

(54) 【発明の名称】セルロースアシレートフィルム及びこれを用いた偏光板

(57)【要約】

【課題】流延製膜方法により得られるセルロースアシレートフィルムであって、延伸倍率を上げても、ヘイズの増加少なく、機能性の添加剤の析出(泣き出し)がなく、耐久性に優れたセルロースアシレートフィルムを提供すること。

(I) $Re = (nx - ny) \times d$

(式中、 $n \times t$ はフィルム面内の遅相軸方向の屈折率であり、 $n \times t$ はフィルム面内の進相軸方向の屈折率であり、d はフィルムの厚さである。)

【選択図】 なし

【特許請求の範囲】

【請求項1】

溶液流延製膜方法により形成され、式(I)により定義されるレターデーションRe値が20~160nmの範囲にあるセルロースアシレートフィルムであって、エチレン性不飽和モノマー、および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エチレン性不飽和モノマーを光重合させることにより得られたことを特徴とするセルロースアシレートフィルム。

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

【請求項2】

溶液流延製膜方法により形成され、式(I)により定義されるRe値が20~160nmの範囲にあるセルロースアシレートフィルムであって、エポキシ基又はオキセタニル基を有する化合物および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エポキシ基を有する化合物を光重合または光橋架け反応させることにより得られたことを特徴とするセルロースアシレートフィルム。

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

【請求項3】

偏光板保護膜の少なくとも1枚として請求項1~2いずれか1つに記載のセルロースアシレートフィルムを使用した偏光板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、セルロースアシレートフィルム、特に光学補償フィルムとして用いられるセルロースアシレートフィルム、これを用いた偏光板、およびこの偏光板を用いた液晶表示装置に関する。

[0002]

【従来の技術】

セルロースアシレートフィルムは、その透明性、強靭性、難燃性、均一性、平滑性、比較的安価であること、さらにまた他のポリマーフィルムに比べて、光学的等方性が高い(レタデーションが低い)との特徴があることから各種の光学材料に使用されている。

一方、液晶表示装置の光学補償シート(位相差フィルム)には、光学異方性が要求される。また、位相差フィルムの一種である $\lambda / 4$ 板は種々の液晶表示装置に幅広く用いられている有用な光学材料である。これらの光学異方性材料にはポリカーボネート、ポリスルホンフィルムのような合成ポリマーを用いることが多い。

しかし、上記のセルロースアシレートフィルムの優れた特性を保持したまま、光学異方性を持たせたいという要求は強い。光学異方性が要求される用途にも使用できる高いレタデーションを持つセルロースアシレートフィルムが開示されている。(特開 2 0 0 2 - 7 1 9 5 4, 7 1 9 4 8 など)

特開2002-71954号公報には、レターデーション調節剤として機能する少なくとも2つの芳香族環を有する芳香族化合物を含むポリマーフィルムからなり、そのレタデーション値が特定の範囲にある光学補償シートを用いることにより、液晶表示装置を広い視野角として正面コントラストを改良しうることが記載されている。

しかし、上記の特開 2 0 0 2 - 7 1 9 5 4 に基づいて光学補償機能を有するセルロースアシレートフィルムを作成すると、延伸時に、結晶化、クレーズ、ボイド発生などにより、透明性が悪化することがある。また、レタデーション調節のために上記のレタデーション上昇剤などを使用すると、製造中に膜中からそのレタデーション上昇剤のみならず、他の可塑剤、例えば、紫外線吸収剤などが析出し、フィルムが接触するロールに付着し、さら

10

20

30

40

にそれがフィルムに転写し(ブリードアウト)その表面を汚したり、あるいは、フィルムの経時保存中にそれらの添加物が徐々にフィルム表面に析出し、それが表面に付着することにより曇りを生じる、などの問題があった。

[0003]

【発明が解決しようとする課題】

本発明は上記の課題を鑑みてなされたものであり、本発明が解決しようとする1つの課題は、流延製膜方法により得られるセルロースアシレートフィルムであって、延伸倍率を上げても、ヘイズの増加少なく、機能性の添加剤の析出(泣き出し)がなく、耐久性に優れたセルロースアシレートフィルムを提供することである。本発明が解決しようとする他の課題は、レタデーション上昇剤の使用により大きなレタデーション値を得ることができ、ヘイズも少なく、耐久性が良好なセルロースアシレートフィルム及びこれを用いた偏光板、又は画像表示装置を提供することである。

[0004]

【課題を解決するための手段】

本発明の上記課題は、以下の手段により解決された。

(1)溶液流延製膜方法により形成され、波長 5 5 0 n mにおいて式(I)により定義されるレターデーション R e 値が 2 0 \sim 1 6 0 n m 0 範囲にあるセルロースアシレートフィルムであって、エチレン性不飽和モノマー、および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エチレン性不飽和モノマーを光重合させることにより得られたことを特徴とするセルロースアシレートフィルム。

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

(2)溶液流延製膜方法により形成され、波長550nmにおいて式(I)により定義されるRe値が20~160nmの範囲にあるセルロースアシレートフィルムであって、エポキシ基又はオキセタニル基を有する化合物および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エポキシ基またはオキセタニル基を有する化合物を光重合反応させることにより得られたことを特徴とするセルロースアシレートフィルム。

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

(3) 少なくとも 2 つの芳香族環を有する芳香族化合物を含むセルロースアシレートフィルムである(1) 又は(2) に記載のセルロースアシレートフィルム。

(4)溶液流延製膜装置の無限移行する無端の金属支持体に流延して乾燥装置でウエブの 乾燥が終了するまでの間において、ウエブに紫外線を照射したことを特徴とする(1)~ (3)いずれか1つに記載のセルロースアシレートフィルム。

(5) 偏光板保護膜の少なくとも1枚として(1)~(4)いずれか1つに記載のセルロースアシレートフィルムを使用した偏光板。

[0005]

【発明の実施の形態】

本発明のセルロースアシレートフィルムは、溶液流延製膜方法により形成されたセルロースアシレートフィルムであって、波長 5 5 0 n mにおいて式(I)により定義されるレターデーションRe値が 2 0~1 6 0 n mの範囲にあり、エチレン性不飽和モノマー、および光重合開始剤を含有するセルロースアシレートドープ組成物、又は、エポキシ基又はオキセタニル基を有する化合物および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エチレン性不飽和モノマーを光重合させるか、又は、エポキシ基又はオキセタニル基を有する化合物を光重合・光橋架け等の反応させることにより得られたセルロースアシレートフィルムである。

(I) $Re = (nx - ny) \times d$

10

20

30

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

また、本発明の偏光板は、偏光子と、上記のセルロースアシレートフィルムを含有する。 さらに、本発明の液晶表示装置は、前記の偏光板と液晶セルからなる。

まず最初に、本発明のセルロースアシレートフィルムについて説明する。

[0006]

(セルロースアセテート)

セルロースアシレートフィルムの製造には、酢化度が55.0乃至62.5%であるセルロースアセテートを使用することが好ましい。特に酢化度が57.0乃至62.0%であることが好ましい。

酢化度とは、セルロース単位質量当たりの結合酢酸量を意味する。酢化度は、ASTM:D-817-91(セルロースアセテート等の試験法)におけるアセチル化度の測定および計算に従う。

セルロースエステルの粘度平均重合度(DP)は、250以上であることが好ましく、290以上であることがさらに好ましい。また、本発明に使用するセルロースエステルは、ゲルパーミエーションクロマトグラフィーによるMw/Mn(Mwは質量平均分子量、Mn に数平均分子量)の分子量分布が狭いことが好ましい。具体的なMw/Mnの値としては、1.0乃至1.7であることが好ましく、1.3乃至1.65であることがさらに好ましく、1.4乃至1.60であることが最も好ましい。

[0007]

セルロースエステルでは、セルロースの2位、3位、6位の水酸基が全体の置換度の1/3づつに均等に分配されるわけではなく、6位水酸基の置換度が小さくなる傾向がある。本発明ではセルロースの6位水酸基の置換度が、2位、3位に比べて多い方が好ましい。全体の置換度に対して6位の水酸基が30%以上40%以下でアシル基で置換されていることが好ましく、更には31%以上、特に32%以上であることが好ましい。6位の置換度は、0.88以上であることが好ましい。

6 位水酸基は、アセチル基以外に炭素数 3 以上のアシル基(例、プロピオニル、ブチリル、バレロイル、ベンゾイル、アクリロイル)で置換されていてもよい。各位置の置換度の測定は、NMRによって求めることができる。

6位水酸基の置換度が高いセルロースエステルは、特開平11-5851号公報の段落番号 $0043\sim0044$ に記載の合成例1、段落番号 $0048\sim0049$ に記載の合成例2、そして段落番号 $0051\sim0052$ に記載の合成例3の方法を参照して合成することができる。

[0008]

(セルロースアシレートフィルムのレターデーション)

本発明では、セルロースアシレートフィルムの波長 5 5 0 n m における R e レターデーション値を 2 0 乃至 1 6 0 n m の範囲に調節する。そして、 R t h レターデーション値を 7 0 乃至 4 0 0 n m の範囲に調節することが好ましい。

ここで、Rthは、以下の式(II)により表される。

(II) R t h = $\{ (n x + n y) / 2 - n z \} \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、nzはフィルムの厚み方向の屈折率であり、dはフィルムの厚さである。)

[00009]

(レターデーション上昇剤)

セルロースアシレートフィルムのレターデーションを上記の範囲に調整するために、少なくとも二つの芳香族環を有する芳香族化合物をレターデーション上昇剤として使用することが好ましい。

芳香族化合物は、セルロースアシレート100質量部に対して、0.01乃至20質量部の範囲で使用する。芳香族化合物は、セルロースアシレート100質量部に対して、0.

10

20

30

40

05乃至15質量部の範囲で使用することが好ましく、0.1乃至10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。

芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。

[0010]

芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。 芳香族性へテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員 環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい 。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子 、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例 には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チ アゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾ ール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3 .5ートリアジン環が含まれる。

芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環および 1 , 3 , 5 - トリアジン環が好ましく、ベンゼン環および 1 , 3 , 5 - トリアジン環が好ましく、ベンゼン環および 1 ,

芳香族化合物は、少なくとも一つの1,3,5-トリアジン環を有することが特に好ましい。

[0011]

芳香族化合物が有する芳香族環の数は、2乃至20であることが好ましく、2乃至12であることがより好ましく、2乃至8であることがさらに好ましく、2乃至6であることが最も好ましい。

二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結される場合および(c)連結基を介して結合される場合に分類できる(芳香族環のため、スピロ結合は形成できない)。本発明に使用する芳香族化合物における結合関係は、(a)~(c)のいずれでもよい。

このようなレターデーション上昇剤については国際公開WOO1/88574A1、同WOO0/2619A1、特開2000-111914号、同2000-275434号、特願2002-70009号等に記載されている。

[0012]

(大きい延伸倍率でもヘイズが少なく、機能性添加剤の泣き出し防止)

本発明ではセルロースアシレートフィルム製造に際して大きい延伸倍率でもヘイズが少なく、かつ、機能性添加剤の泣き出しを防止するためには、重合性モノマーを用いてこれをセルロースアシレートフィルム中で重合させる。重合性モノマーとして、エチレン性不飽和モノマー及び/又は3員又は4員環の環状エーテル基を有する化合物を使用することができる。ここで、3員環の環状エーテル基を有する化合物としてはエポキシ基を有する化合物が挙げられ、又、4員環の環状エーテル基を有する化合物としては、オキセニル基を有する化合物が挙げられる。前記の環状エーテル基を有する化合物としては、エポキシ基を有する化合物、特に脂環式エポキシ基を有する化合物が反応性が高い点で好ましい。以下の説明において、3員又は4員環の環状エーテル基を有する化合物の説明において、エポキシ基を有する化合物を例に挙げて説明するが、本発明はオキセタニル基を有する化合物にも容易に拡張できるものである。

[0013]

エチレン性不飽和モノマーは、多官能の活性エネルギー線重合性化合物であることが好ましく、所望の寸度安定性、および弾性率を得るためには、セルロースアシレート100質量部に対して、5重量部乃至60質量部であることが好ましく、8質量部乃至40質量部であることが最も好ましい。

エチレン性不飽和モノマーの例としては、アクリレート基、メタクリレート基、ビニル基 を挙げることができる。反応性の観点よりアクリレート基が好ましく持いられる。 10

20

30

40

20

40

50

また、本発明に用いるエチレン性不飽和モノマーは公知の重合性樹脂を用いることができ、熱硬化性樹脂、活性エネルギー線重合性樹脂等があるが、活性エネルギー線重合性樹脂が好ましい。熱硬化性樹脂としてはメラミン樹脂、ウレタン樹脂、エポキシ樹脂等のプレポリマーの架橋反応を利用する反応性樹脂が挙げられる。

[0014]

活性エネルギー線としては、放射線、ガンマー線、アルファー線、電子線、紫外線(近紫外線、中紫外線、遠紫外線、真空紫外線を含む。)等が挙げられるが、紫外線が好ましい

[0015]

多官能の活性エネルギー線重合性化合物は、多価アルコールとアクリル酸またはメタクリル酸とのエステルであることが好ましい。多価アルコールの例には、エチレングリコール、1, 4-シクロヘキサンジオール、ペンタエリスリトール、トリメチロールプロパン、トリメチロールエタン、ジペンタエリスリトール、1, 2, 4-シクロヘキサントリオール、ポリウレタンポリオールおよびポリエステルポリオールが含まれる。トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールおよびポリウレタンポリオールが好ましい。二種類以上の多官能の活性エネルギー線重合性化合物を併用してもよい。【0016】

活性エネルギー線重合性化合物の例としては、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等の、活性エネルギー線、特に紫外重合性の多官能化合物が挙げられる。

[0017]

さらに本発明において使用できるエチレン性不飽和モノマーの代表例を例示する。しかし、これらに限定されるものではない。

本発明に有用な光重合ポリマーを形成するエチレン性不飽和モノマーとしては、例えば、 ビニルエステル類として、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニ ル、バレリアン酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、エナント酸ビニル、カ プリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチ ン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、ソルビン酸ビニル 、安息香酸ビニル等、アクリル酸エステル類またはメタクリル酸エステル類(以降、アク リル酸エステル類またはメタクリル酸エステル類を、(メタ)アクリル酸エステル類のよ うに略して記載することがある)として、メチル(メタ)アクリレート、エチルアクリレ ート、n-ブチル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-メチルブ チル (メタ) アクリレート、3 - メチルブチル (メタ) アクリレート、ヘキシル (メタ) アクリレート、3 - メトキシプロピル(メタ)アクリレート、2 - メトキシエチル(メタ) アクリレート、2 - エトキシエチル(メタ)アクリレート、2 - エチルブチル(メタ) アクリレート、2-エチルヘキシル(メタ)アクリレート、3-エトキシプロピル(メタ) アクリレート、n-オクチル (メタ) アクリレート、イソオクチル (メタ) アクリレー ト、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ヒド ロキシエチル (メタ) アクリレート、 2 - ヒドロキシブチル (メタ) アクリレート、 ε -カプロラクトン(メタ)アクリレート、ベンジル(メタ)アクリレート、フェネチル(メ タ) アクリレート、4 - シアノブチル(メタ) アクリレート、2 - シアノエチル(メタ) アクリレート等、ビニルエーテル類として、メチルビニルエーテル、エチルビニルエーテ ル、プロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテ ル、ヘキシルビニルエーテル等、スチレン類として、スチレン、4-〔(2-ブトキシエ トキシ)メチル]スチレン、4ーブトキシメトキシスチレン、4ーブチルスチレン、4ー デシルスチレン、4-(2-エトキシメチル)スチレン、4-(1-エチルヘキシルオキ シメチル)スチレン、4-ヒドロキシメチルスチレン、4-ヘキシルスチレン、4-ノニ ルスチレン、4-オクチルオキシメチルスチレン、2-オクチルスチレン、4-オクチル スチレン、4ープロポキシメチルスチレン、マレイン酸類として、ジメチルマレイン酸、

ジエチルマレイン酸、ジプロピルマレイン酸、ジブチルマレイン酸、ジシクロヘキシルマレイン酸、ジ-2-エチルヘキシルマレイン酸、ジノニルマレイン酸、ジベンジルマレイン酸等を挙げることが出来るが、これらに限定されない。

上記モノマーの他にも、エチレン、プロピレン、ブタジエン、1ーブチレン、アクリロニトリル、Nービニルピロリドン、無水マレイン酸、アクリル酸、上記以外のビニルモノマーとして、塩化ビニル、エチレン、プロピレン、(メタ)アクリロニトリル、Nービニルピロリドン、(メタ)アクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を10質量%以下で上記モノマーとコポリマーを形成してもよい。

さらに、側鎖に紫外線吸収基や帯電防止性基を有しているものも好ましい。以下にそれを例示する.

UVMシリーズは紫外線吸収性残基を有するモノマー例を示し、ASMシリーズは帯電防止性残基を有するモノマー例を示す。

[0018]

【化1】

UVM-1

$$CH_{2} = C$$

$$COOCH_{2}CH_{2} \longrightarrow OH$$

$$N \downarrow N$$

UVM-2

UVM-3

$$\begin{array}{c} \mathbf{CH_2} = \mathbf{CH} \\ \mathbf{COOCH_2CH_2O} \\ \mathbf{(t)H_9C_4} \end{array}$$

UVM-4

UVM-5

$$CH_2 = CH$$
 $OCOCH_2 \longrightarrow C_4H_9(t)$

40

10

【0019】 【化2】 UVM-6

UVM-7

$$CH_2 = CH$$

$$OCO \longrightarrow C_4H_9(t)$$

$$N \longrightarrow N$$

UVM-8

UVM-9

UVM-10

【0020】

10

20

30

UVM-11

UVM-12

UVM-13

$$\begin{array}{c} CH_2 = CH \\ COOCH_2CH_2 - \\ \end{array} \begin{array}{c} COOCOO - \\ C = N - N - \\ C = N - N - \\ C = N - N - \\ \end{array}$$

[0 0 2 1]
[$4 \times 4 = 0$ CH₃

CH₂=

COOCH₂CH₂

COOCH₂CH₂

N

UVM-16

UVM-17

$$\begin{array}{c} CH_3 \\ CH_2 = C \\ COO \end{array} \longrightarrow \begin{array}{c} O \\ C \end{array}$$

【 O O 2 2 】 【化 5 】 20

30

ASM-1

ASM-2

$$CH_2 = CH - CH_2 + N - C_2H_5$$
 $2CI - CH_2 + N - C_2H_5$

ASM-3

$$CH_2 = CH - OCOCH_2 + N - CH_2 - N - CH_2 - CH_2$$

$$ASM-4$$

$$CH_2=CH-OCOCH_2\stackrel{+}{-}N$$

$$N^+-CH_2$$

$$4CI^-$$

ASM-5

$$CH_{2} = C - COOCH_{2}CH_{2} + N$$
 $N^{+}CH_{2} - COOCH_{2}CH_{2} + N$
 $N^{+}CH_{2} - COOCH_{2}CH_{2} + N$

ASM-6

$$CH_2 = CH - COOCH_2CH_2 + N + CH_2 + N + CH_2 + CH_2 + N + CH_2 + CH_2$$

ASM-7

$$\mathbf{CH_2} = \mathbf{CH} - \mathbf{COOCH_2CH_2} - \mathbf{N} - \mathbf{CH_3}$$

$$\mathbf{CH_3}$$

$$\mathbf{CH_3}$$

$$\mathbf{CI}^-$$

$$40$$

【0023】 【化6】

50

ASM-8

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{2} = \text{CH-OCOCH}_{2} - \overset{\mid}{\text{N-CH}_{3}} \\ \overset{\mid}{\text{CH}_{3}} \\ & \text{CH}_{3} \end{array}$$

ASM-9

$$CH_2=CH-SO_3Na$$

【0024】 【化7】

ASM-10

$$CH_2 = C - COOCH_2CH_2 + N + CH_2 - CH_2$$

ASM-11

$$CH_2 = \overset{C}{C} - COOCH_2CH_2 - \overset{+}{N} = \overset{+}{N} - CH_2 - \overset{+}{C} + \overset{+}{N} - CH_2 - \overset{+}$$

ASM -12

ASM -13

$$\begin{array}{cccc} \text{CH}_3 & \text{C}_2\text{H}_5 \\ \text{I} + \\ \text{CH}_2 = \text{C} - \text{COOCH}_2\text{CH}_2 - \text{N} - \text{C}_2\text{H}_5 \\ \text{CH}_2 \text{ C}_6\text{H}_5 & \text{CI}^- \end{array}$$

[0025]

<光ラジカル重合開始剤>

本発明に有用な光重合開始剤としては、エチレン性不飽和モノマーがウェブ中で光重合し得る開始剤であれば制限なく使用できるが、これらの光重合開始剤は公知のものを使用し得る。また光増感剤も使用出来る。具体的には、ベンゾインメチルエーテル、ベンゾインーnープロピルエーテル、ベンゾインーnーブチルエーテル、ベンゾインシリルエーテル

30

40

50

、メチルベンゾインホルメート、ベンジル、ベンゾフェノン、ヒドロキシベンゾフェノン 、 p - メチルベンゾフェノン、α - ヒドロキシイソブチルフェノン、 p - イソプロピルー lpha ーヒドロキシイソブチルフェノン、アセトフェノン、ミヒラーズケトン、lpha , lpha ' ージ クロロー4-フェノキシアセトフェノン、1-ヒドロキシー1-シクロヘキシルアセトフ ェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジアセチル、エオシン、チ オニン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、ジクロロチオキサントン、ジイソプロピルチオキサントン、フェニルジスルフ ィドー2-ニトロソフルオレン、ブチロイン、アニソインエチルエーテル、ジーtーブチ ルパーオキシド、ベンゾイルチアゾリルスルフィド、α-アミロキシムエステル、アゾビ スイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。本 発明において、セルロースアシレートドープ組成物中にエチレン性不飽和モノマーと共に 光重合開始剤を混合する場合、セルロースアシレートに対してエチレン性不飽和モノマー を 5 ~ 6 0 質量%、また光重合開始剤をエチレン性不飽和モノマーに対して 1 ~ 3 0 質量 % 程度加えるのがよい。本発明においては、光重合性のエチレン性不飽和モノマーをセル ロースアシレートドープ組成物流延後、有機溶媒を多く含むウェブにおいても、またかな り乾燥が進んでいてもウェブ内で光重合を起こさせることができるが、金属支持体上で、 紫外線を照射して重合させるのが好ましい。

[0026]

本発明のエチレン性不飽和モノマーと光重合開始剤を含有するセルロースアシレートドープ組成物に二つのエチレン性不飽和基を有する架橋性モノマーを含有させることにより、光重合後、しなやかさと強靱性を兼ね備えたセルロースアシレートフィルムを得ることが出来る。この二つのエチレン性不飽和基を有する架橋性モノマーとしては、ポリエステルジ(メタ)アクリレート、ポリウレタンジ(メタ)アクリレート等を挙げることができる。市販品として、東亜合成社製のウレタンアクリレート(商品名、M-1310)があり、好ましく用いることができる。

[0027]

これらのポリエステルまたはポリウレタンのジ(メタ)アクリレートは、数平均分子量として、6, $000\sim100$, 000、好ましくは1, $000\sim80$, 000のものである

[0028]

(3員又は4員環状エーテル類)

本発明のセルロースアシレート中に含有される重合性モノマー又は重合性化合物の別の一 例はエポキシ基を有する化合物である。これらのエポキシ基を有する化合物もウェブ内で 光重合させることができ、でき上がったフィルムに好ましい特性を付与することができる 。エポキシ基を有する化合物としては、通常接着剤等に使用し得るものを使用することが できる。本発明に有用なエポキシ基を有する化合物を例示すると、芳香族エポキシ化合物 (多価フェノールのポリグリシジルエーテル)としては、水素添加ビスフェノール A また はビスフェノールAとエピクロルヒドリンとの反応物のグリシジルエーテル、エポキシノ ボラック樹脂(例えば、クレゾールノボラックポリグリシジルエーテル、フェノールノボ ラックポリグリシジルエーテル)、レゾールエポキシ樹脂、レゾルシノールジグリシジル エーテル等が挙げられ、又、脂肪族エポキシ樹脂としては、脂肪族多価アルコールまたは そのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリ グリシジルエステル、グリシジルアクリレートやグリシジルメタクリレートのホモポリマ ー、コポリマーなどがあり、その代表例としては、エチレングリコールジグリシジルエー テル、プロピレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジル エーテル、ジプロピレングリコールジグリシジルエーテル、トリプロピレングリコールグ リシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジ オールジグリシジルエーテル、ノナプロピレングリコールジグリシジルエーテル、ネオペ ンチルグリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ジグリセ ロールトリグリシジルエーテル、ジグリセロールテトラグリシジルエーテル、トリメチロ

ールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、 ペンタエリスリトールテトラグリシジルエーテル、ソルビトールのポリグリシジルエーテ ル、脂環式エポキシ化合物、例えば、3,4-エポキシシクロヘキシルメチル-3′,4 ′ーエポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル -5,5-スピロ-3',4'-エポキシ)シクロヘキサン-メタージオキサン、ビス(3, 4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイ ド、ビス(3、4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3、4-エポキシー6ーメチルシクロヘキシルー3′, 4′ーエポキシー6ーメチルシクロヘキサ ンカルボキシレート、メチレンビス (3,4-エポキシシクロヘキサン) ジシクロペンタ ジエンジエポキサイド、エチレングリコールのジ(3,4-エポキシシクロヘキシルメチ ル) エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、ジ シクロペンタジエンジエポキサイド、トリス(2-ヒドロキシエチル)イソシアヌレート のジグリシジルエーテル、トリス (2-ヒドロキシエチル) イソシアヌレートのトリグリ シジルエーテル、ポリグリシジルアクリレート、ポリグリシジルメタクリレート、グリシ ジルアクリレートまたはグリシジルメタクリレートと他のモノマーとの共重合物、ポリー 2 - グリシジルオキシエチルアクリレート、ポリー2-グリシジルオキシエチルメタクリ レート、2-グリシジルオキシエチルアクリレート、2-グリシジルオキシエチルアクリ レートまたは2ーグリシジルオキシエチルメタクリレートと他のモノマーとの共重合物、 ビスー2,2ーヒドロキシシクロヘキシルプロパンジグリシジルエーテル等を挙げること ができ、2種以上組み合わせて使用することができる。本発明においては、上記の例示化 合物に限定されず、これらから類推される化合物も含むものである。

[0029]

また、本発明において、エポキシ基を分子内に2つ以上有する化合物以外に、モノエポキサイドも所望の性能に応じて配合して使用することができる。

[0030]

本発明における紫外線重合性のエポキシ基を有する化合物は、ラジカル重合反応によるのではなく、カチオン重合反応により重合物、架橋構造物または網目構造物を形成する。ラジカル重合と異なり反応系中の酸素に影響を受けないため誘導期間がなく重合を速く行うことができる。

[0031]

さらに、紫外線吸収性基を有しているものも好ましく使用することが出来る。それらを以下に例示する。これらに限定されるものではない。

[0032]

[化8]

10

20

UVE-2

$$\begin{array}{c} \text{CH}_2 - \text{CHCH}_2 - \text{OCH}_2 \\ \text{CH}_2 - \text{CHCH}_2 - \text{OCH}_2 - \text{CH}_2 \text{OCH}_2 - \text{CH}_2 \text{OCH}_2 - \text{CH}_2 \text{OCH}_2 \text{CH}_2 \\ \text{CH}_2 - \text{CHCH}_2 - \text{OCH}_2 \\ \text{CH}_2 - \text{CHCH}_2 - \text{OCH}_2 \\ \end{array}$$

20

UVE-3

$$\begin{array}{c} CH_2-CHCH_2-O \longrightarrow CH_2-CH_2 \longrightarrow O-CH_2CH-\cancel{\times}\\ CH_3 & OH \end{array}$$

$$\begin{array}{c} CH_2-CHCH_2-O-CH_2CH-\cancel{\times}\\ CH_3 & OH \end{array}$$

30

UVE-4

【0033】 【化9】

20

$$\begin{array}{c} C_{2}H_{5} \\ CH_{2}-O-CH_{2} \\ CH_{3} \\ CH_{5} \\ CH_{5} \\ CH_{7} \\ CH_{8} \\ CH_{7} \\ CH_{8} \\ C$$

[0034]

本発明に有用なエポキシ基またはオキセタニル基を有する化合物は、紫外線照射によりカチオン重合を開始する物質を放出する化合物が触媒になってイオン重合反応が進行する。 紫外線照射によりカチオン重合を開始するものとしてはルイス酸を放出するオニウム塩の 複塩の一群が特に好ましい。

[0035]

かかる代表的なものは下記一般式(I)で表される化合物である。

40

50

一般式(I)

20

30

40

[0036]

上記一般式(I)の陰イオン $[MeX_{v+w}]^{-w}$ の具体例としては、テトラフルオロボレート (BF_4^-) 、ヘキサフルオロホスフェート (PF_6^-) 、ヘキサフルオロアンチモネート (SbF_6^-) 、ヘキサフルオロアルセネート (AsF_6^-) 、ヘキサクロロアンチモネート $(SbC1_6^-)$ 等を挙げることが出来る。

[0037]

更に一般式 M X_n (O H) $^-$ の陰イオンも用いることが出来る。また、その他の陰イオンとしては過塩素酸イオン(C 1 O $_4$ $^-$)、トリフルオロメチル亜硫酸イオン(C F $_3$ F O $_3$ $^-$)、トルエンスルホン酸イオン、トリニトロベンゼン酸陰イオン等を挙げることが出来る。

[0038]

このようなオニウム塩の中でも特に芳香族オニウム塩をカチオン重合開始剤として使用するのが、特に有効であり、中でも特開昭 5 0 - 1 5 1 9 9 6 号、同 5 0 - 1 5 8 6 8 0 号公報等に記載の芳香族ハロニウム塩、特開昭 5 0 - 1 5 1 9 9 7 号、同 5 2 - 3 0 8 9 9 号、同 5 9 - 5 5 4 2 0 号、同 5 5 - 1 2 5 1 0 5 号公報等に記載のVIA族芳香族オニウム塩、特開昭 5 6 - 8 4 2 8 号、同 5 6 - 1 4 9 4 0 2 号、同 5 7 - 1 9 2 4 2 9 号公報等に記載のオキソスルホキソニウム塩、特公昭 4 9 - 1 7 0 4 0 号公報等に記載の芳香族ジアゾニウム塩、米国特許第 4 , 1 3 9 , 6 5 5 号明細書等に記載のチオピリリウム塩等が好ましい。また、アルミニウム錯体や光分解性ケイ素化合物系重合開始剤等を挙げることが出来る。上記カチオン重合開始剤と、前記ベンゾフェノン及びその誘導体、前記ベンゾイン及びその誘導体、前記チオキサントン及びその誘導体等の光増感剤を併用することが出来る。この増感剤は近紫外線領域から可視光線領域に吸収極大のあるものが好ましい。

[0039]

本発明において、セルロースアシレートドープ中にエポキシ基またはオキセタニル基を有する化合物と共に光重合開始剤及び/または光増感剤を混合するが、セルロースアシレートに対してエポキシ基またはオキセタニル基を有する化合物が5~30質量%、また光重合開始剤がエポキシ基またはオキセタニル基を有する化合物に対して1~30質量%、好ましくは1~10質量%である。

[0040]

(無機微粒子の添加剤)

また、無機微粒子を添加することにより膜としての架橋収縮率を改良し、フィルムの平面性を向上させ、硬度を上げることができる。一般に無機微粒子は有機物よりも硬く、UV照射等で収縮することがない。従って、無機微粒子をセルロースアシレートフィルムに添加することで、フィルム全体が硬くなり耐傷性が改良されるとともに架橋反応による該フィルムの収縮が抑制され、該フィルムの変形も防止できる。

ただし、無機微粒子はエチレン性不飽和モノマーとの親和性が低いため、無機微粒子のまま添加しても無機微粒子/エチレン性不飽和モノマーからなる重合樹脂間が破壊しやすく、耐傷性、変形を改善することは難しい。そこで、無機微粒子を微粒子と親和性の高い表面処理剤で表面処理することにより、無機微粒子とバインダーポリマーとの親和性を改善することができる。

[0041]

無機 微粒子としては硬度が高いものが好ましく、モース硬度 6 以上、好ましくは 7 以上の無機粒子がさらに好ましい。例えば、二酸化ケイ素粒子、二酸チタン粒子、酸化ジルコニウム粒子、酸化アルミニウム粒子、酸化錫粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク、カオリンおよび硫酸カルシウム粒子が含まれる。このうち二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム粒子が特に好ましい。

[0042]

さらにフィルムの表面硬度を上げるために、ハードコート層を設けてもよい。ハードコート層は、架橋されたバインダーポリマーを含む。架橋されたバインダーポリマーを含むハ

40

50

ードコート層は、前記多官能の活性エネルギー線重合性化合物と重合開始剤を含む塗布液をセルロースアシレートフィルム基材上に塗布し、重合させることにより形成できる。

[0043]

(セルロースアシレートフィルムの製造)

セルロースアシレートフィルムは、調製されたセルロースアシレート溶液(ドープ)から、ソルベントキャスト法により製造することが好ましい。

ドープには、エチレン性不飽和モノマー、あるいはエポキシ基またはオキセタニル基を含有する化合物と光重合開始剤を添加する。さらに、前記レタデーション上昇剤を添加することが好ましい。

ドープは、ドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が10万至40%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ソルベントキャスト法における流延および乾燥方法については、米国特許2,336,310号、同2,367,603号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号、同2,739,070号、英国特許640731号、同736892号の各明細書、特公昭45-4554号、同49-5614号、特開昭60-176834号、同60-203430号、同62-115035号の各公報に記載がある。

ドープは、表面温度が10℃以下のドラムまたはバンド上に流延することが好ましい。流延してから2秒以上風に当てて乾燥することが好ましい。得られたフィルムをドラムまたはバンドから剥ぎ取り、さらに100から160℃まで逐次温度を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。以上の方法は、特公平5−17844号公報に記載がある。この方法によると、流延から剥ぎ取りまでの時間を短縮することが可能である。この方法を実施するためには、流延時のドラムまたはバンドの表面温度においてドープがゲル化することが好ましい。

[0044]

調製したセルロースアシレート溶液(ドープ)を用いて、ドープを2層以上流延すること によりフィルム化することもできる。

複数のセルロースアシレート溶液を流延する場合、支持体の進行方向に間隔をおいて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて、それらを積層させながらフィルムを作製してもよい。例えば、特開昭 6 1 - 1 5 8 4 1 4 号、特開平 1 - 1 2 2 4 1 9 号、および特開平 1 1 - 1 9 8 2 8 5 号の各明細書に記載の方法を用いることができる。また、2 つの流延口からセルロースアシレート溶液を流延することにより成膜してもよい。例えば、特公昭 6 0 - 2 7 5 6 2 号、特開昭 6 1 - 9 4 7 2 4 号、特開昭 6 1 - 9 4 7 2 4 号、特開昭 6 1 - 9 4 7 2 4 号、特開昭 6 1 - 1 5 8 4 1 3 号、および特開平 6 - 1 3 4 9 3 3 号の各明細書に記載の方法を用いることができる。また、特開昭 5 6 - 1 6 2 6 1 7 号明細書に記載の、高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、高粘度および低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルムの流延方法を用いてもよい。

[0045]

セルロースアシレートフィルムは、さらに延伸処理によりレターデーションを調整することができる。延伸倍率は、3乃至100%の範囲にあることが好ましい。10~30%であることがさらに好ましい.本発明のセルロースアシレートフィルムを延伸する場合には、剥ぎ取り速度に対して、巻取り速度を調節することにより行うことができる。また、ロング延伸機を用いることもできる。また、テンター延伸を行うこともできる。遅相軸を高精度に制御するために、左右のテンタークリップ速度、離脱タイミング等の差をできる限り小さくすることが好ましい。

[0046]

本発明のセルロースアシレートフィルムの製造に係る支持体上におけるドープの乾燥は、 乾燥工程における乾燥温度は30~250℃、特に40~180℃が好ましく、特公平5

20

30

40

- 1 7 8 4 4 号公報に記載がある。更には、積極的に幅方向に延伸する方法もあり、本発明では、例えば、特開昭 6 2 - 1 1 5 0 3 5 号、特開平 4 - 1 5 2 1 2 5 号、同 4 - 2 8 4 2 1 1 号、同 4 - 2 9 8 3 1 0 号、同 1 1 - 4 8 2 7 1 号などに記載されている。フィルムの延伸は、一軸延伸でもよく 2 軸延伸でもよい。

[0047]

本発明のでき上がり(乾燥)後のセルロースアシレートフィルムの厚さは、使用目的によって異なるが、通常 $5\sim500~\mu$ m の範囲であり、更に $20\sim250~\mu$ m の範囲が好ましく、特に $30\sim1~80~\mu$ m の範囲が最も好ましい。なお、本発明の主たる課題である L C D パネルの光り漏れに関しては、 $30\sim80~\mu$ m の範囲が好ましい。

[0048]

厚さの調製は、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、支持体速度、延伸倍率などを調節することにより達成することができる。 【0049】

本発明のでき上がり後のセルロースアシレートフィルムの透過率は85%以上が好ましく、90%以上がさらに好ましい。ここで、透過率とは、可視域における平均透過率をいう

[0050]

<UV照射>

本発明において、塗布されたモノマー重合性化合物を重合させるための紫外線照射について説明する。

本発明に係るエチレン性不飽和モノマーまたは 3 員又は 4 員環状エーテル類化合物を光重合させる紫外線照射源は低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光線等を挙げることができる。紫外線を照射による光重合は、空気または不活性気体中で行うことができるが、エチレン性不飽和モノマーを使用する場合には、空気中でもよいが、重合の誘導期を短くするためにできるだけ酸素濃度が少ない気体が好ましい。照射する紫外線の照射強度は $1\sim1000$ mW/c m² 程度が良く、照射量は $100\sim2000$ m J/c m² 程度が好ましい。

紫外線照射はエチレン性不飽和モノマー及び/又は3員若しくは4員環状エーテル類化合物を含有するセルロースアシレート塗布液を塗布、乾燥した後、行うことが好ましい。

[0051]

また、本発明のでき上がり後のセルロースアシレートフィルムのヘイズは 1 %以下が好ましく、 0 . 4 %以下がさらに好ましい。

[0052]

(セルロースアシレートフィルムの表面処理)

本発明では、セルロースアシレートフィルムに表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、ハードコート層、下塗層およびバック層)との接着の向上を達成することができる。接着向上のために、グロー放電処理、紫外線照射処理、コロナ処理、プラズマ処理、火焔処理、酸またはアルカリ処理を用いることができる。また、本発明の表面処理として好ましいアルカリ鹸化処理は、通常、フィルム表面をアルカリ溶液に浸漬した後、酸性溶液で中和し、水洗して乾燥するサイクルで行う。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液が挙げられ、水酸化インの濃度は0.1モル/リットル~3.0モル/リットルがさらに好ましい。アルカリ溶液の温度としては、アルムは、次に一般には水洗され、しかる後に酸性水溶液を通過させた後に再度水洗して、水流をでからに変素を通過させた後に再度水洗したて表面処理したセルロースアシレートフィルムを得る。この時、使用できる酸としては塩酸、硝酸、酢酸、蟻酸、クロロ酢酸、シュウ酸などであり、その濃度は0.01モル/リットルがさらに好ましい。酸が硫酸のような二塩基酸の場合はその濃度は0.005モル/リットル

トル ~ 1 . 5 モル/リットルが好ましく、0. 0 2 5 モル/リットル ~ 1 . 0 モル/リットルがさらに好ましい。

表面エネルギーは55mN/m以上であることが好ましく、60乃至75mN/mの範囲にあることが更に好ましい。

[0053]

固体の表面エネルギーは、「ぬれの基礎と応用」(リアライズ社 1989.12.10 発行)に記載のように接触角法、湿潤熱法、および吸着法により求めることができる。本 発明のセルロースアシレートフィルムの場合、接触角法を用いることが好ましい。

具体的には、表面エネルギーが既知である2種の溶液をセルロースアシレートフィルムに滴下し、液滴の表面とフィルム表面との交点において、液滴に引いた接線とフィルム表面のなす角で、液滴を含む方の角を接触角と定義し、計算によりフィルムの表面エネルギーを算出できる。

本発明のセルロースアシレートフィルム支持体と機能層との接着を達成するために、下塗層(接着層)を設けこの上に所望の機能層を塗布することも好ましい。

これらの処理において、平面性を保持するためにセルロースアシレートフィルムの温度を Tg (ガラス転移温度)以下、具体的には150℃以下とすることが好ましい。

[0054]

本発明のセルロースアシレートフィルムの少なくとも一層に帯電防止層を設けることも可能である。導電性素材としては、導電性金属酸化物や導電性ポリマーが好ましい。なお、蒸着やスパッタリングによる透明導電性膜を設けてもよい。導電性層は、最外層でもよいし、内部層でも良い。導電層の導電性は、抵抗が $10^{\circ}\sim10^{12}$ Ω であることが好ましい。導電性金属酸化物の使用が好ましく、特には $10^{\circ}\sim10^{10}$ Ω であることが好ましい。導電性金属酸化物の使用が好ましく、この例としては Z n O 、 T i O 2 、 S n O 2 、 I n 2 O 3 、 M g O 、 B a O 、 M o O 2 、 V 2 O 5 など、或いはこれらの複合酸化物が好ましく、特に Z n O 、 S n O 2 もるいは V 2 O 5 が好ましい。導電性イオン性高分子化合物としては、主鎖中に解離基をもつアイオネン型ポリマー、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;などを挙げることができる。さらに本発明の導電性材料として、有機電子伝導性材料もこのましく、例えばポリアニリン誘導体、ポリチオフェン誘導体、ポリピロール誘導体、ポリアセチレン誘導体などを挙げることができる。

[0055]

[0056]

(液晶性化合物からなる光学異方性層)

本発明のセルロースアシレートフィルムの上に、液晶性化合物から形成された光学異方性層を設けることが好ましい態様である。該セルロースアシレートフィルムと、その上に設ける光学異方性層との間に、配向膜を設けることが好ましい。配向膜は本発明で用いる液晶性化合物を一定の方向に配向させる働きをする。従って、配向膜は本発明の好ましい態様を実現する上では必須である。しかし、液晶性化合物を配向後にその配向状態を固定してしまえば、配向膜はその役割を果たしているために、本発明の構成要素としては必ずしも必須のものではない。すなわち、配向状態が固定された配向膜上の光学異方性層のみをセルロースアシレートフィルム上に転写して作製することも可能である。

[0057]

30

10

20

20

30

50

(配向膜)

配向膜は、液晶性化合物の配向方向を規定する機能を有する。配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ωートリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。

[0058]

配向膜は、ポリマーのラビング処理により形成することが好ましい。ポリビニルアルコールが、好ましいポリマーである。疎水性基が結合している変性ポリビニルアルコールが特に好ましい。

配向膜については国際公開WO01/88574A1号の43頁24行~49頁8行の記載を参照することができる。

[0059]

(光学異方性層)

本発明において、液晶性化合物から形成される光学異方性層は、セルロースアシレートフィルムに設けられた配向膜の上に形成される。

光学異方性層に用いる液晶性化合物には、棒状液晶性化合物および円盤状液晶性化合物が含まれる。棒状液晶性化合物および円盤状液晶性化合物は、高分子液晶でも低分子液晶でもよく、さらに、低分子液晶が架橋され液晶性を示さなくなったものも含まれる。

光学異方性層は、液晶性化合物および必要に応じて重合性開始剤や任意の成分を含む塗布液を、配向膜の上に塗布することで形成できる。

[0060]

光学異方性層塗設のための塗布液調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N, Nージメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン、テトラクロロエタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1, 2ージメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。

塗布液の塗布は、公知の方法(例、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実施できる。

光学異方性層の厚さは、 0.1 乃至 20μ m であることが好ましく、 0.5 乃至 15μ m であることがさらに好ましく、 1 乃至 10μ m であることが最も好ましい。

本発明に用いる液晶性化合物としては、円盤状液晶性化合物を用いることが好ましい。

[0061]

(棒状液晶性化合物)

棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。

なお、棒状液晶性化合物には、金属錯体も含まれる。また、棒状液晶性化合物を繰り返し単位中に含む液晶ポリマーも、棒状液晶性化合物として用いることができる。言い換えると、棒状液晶性化合物は、(液晶)ポリマーと結合していてもよい。

棒状液晶性化合物については、季刊化学総説第22巻液晶の化学(1994)日本化学会編の第4章、第7章および第11章、および液晶デバイスハンドブック日本学術振興会第142委員会編の第3章に記載がある。

30

40

50

棒状液晶性化合物の複屈折率は、0.001乃至0.7の範囲にあることが好ましい。棒状液晶性化合物は、その配向状態を固定するために、重合性基を有することが好ましい

棒状液晶性化合物については国際公開WOO1/88574A1号の50頁7行~57頁末行に記載されている。

[0062]

光学異方性層は、棒状液晶性化合物あるいは後述の重合性開始剤や任意の添加剤(例、可塑剤、モノマー、界面活性剤、セルロースエステル、1,3,5ートリアジン化合物、カイラル剤)を含む液晶組成物(塗布液)を、配向膜の上に塗布することにより形成する。

[0063]

(円盤状液晶性化合物)

円盤状(ディスコティック)液晶性化合物の例としては、C.Destradeらの研究 報告、Mol. Cryst. 71巻、111頁(1981年)に記載されているベンゼン 誘導体、C. Destradeらの研究報告、Mol. Cryst. 122巻、141頁 (1985年)、Physicslett, A, 78巻、82頁(1990) に記載され ているトルキセン誘導体、B. Kohneらの研究報告、Angew. Chem. 96巻 、70頁(1984年)に記載されたシクロヘキサン誘導体及びJ.M.Lehnらの研 究報告、J. Chem. Commun., 1794頁(1985年)、J. Zhangら の研究報告、J. Am. Chem. Soc. 116巻、2655頁(1994年) に記載 されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることがで きる。さらに、円盤状液晶性化合物としては、一般的にこれらを分子中心の母核とし、直 鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等がその直鎖として放射線状に 置換された構造のものも含まれ、液晶性を示す。また、本発明において、円盤状液晶性化 合物から形成する光学異方性層は、最終的にできた物が前記化合物である必要はなく、例 えば、低分子の円盤状液晶性化合物が熱、光等で反応する基を有しており、結果的に熱、 光等で反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。円盤 状液晶性化合物の好ましい例は、特開平8-50206号公報に記載されている。また、 円盤状液晶性化合物の重合については、特開平8-27284公報に記載がある。

[0064]

円盤状液晶性化合物を重合により固定するためには、円盤状液晶性化合物の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有する円盤状液晶性化合物は、下記式(III)で表わされる化合物であることが好ましい。

[0065]

(III) D (-L-P) n

式中、Dは円盤状コアであり; Lは二価の連結基であり、Pは重合性基であり、そして、n は 4 乃至 1 2 の整数である。

円盤状液晶性化合物についても国際公開WOO1/88574A1の58頁6行~65頁8行に記載されている。

[0066]

円盤状液晶性化合物を用いる場合、円盤状構造単位の面が、ポリマー基材表面に対して傾き、且つ円盤状構造単位の面とポリマー基材表面とのなす角度が、光学異方性層の深さ方向に変化していることが好ましい。

[0067]

円盤状構造単位の面の角度(傾斜角)は、一般に、光学異方性層の深さ方向でかつ光学異方性層の底面からの距離の増加と共に増加または減少している。傾斜角は、距離の増加と共に増加することが好ましい。さらに、傾斜角の変化としては、連続的増加、連続的減少、間欠的増加、間欠的減少、連続的増加と連続的減少を含む変化、及び増加及び減少を含む間欠的変化などを挙げることができる。間欠的変化は、厚さ方向の途中で傾斜角が変化

しない領域を含んでいる。傾斜角は、傾斜角が変化しない領域を含んでいても、全体として増加または減少していることが好ましい。さらに、傾斜角は全体として増加していることが好ましく、特に連続的に変化することが好ましい。

[0068]

支持体側の円盤状単位の傾斜角は、一般に円盤状液晶性化合物あるいは配向膜の材料を選択することにより、またはラビング処理方法の選択することにより、調整することができる。また、表面側(空気側)の円盤状単位の傾斜角は、一般に円盤状液晶性化合物あるいは円盤状液晶性化合物とともに使用する他の化合物を選択することにより調整することができる。円盤状液晶性化合物とともに使用する化合物の例としては、可塑剤、界面活性剤、重合性モノマー及びポリマーなどを挙げることができる。更に、傾斜角の変化の程度も、上記と同様の選択により調整できる。

[0069]

円盤状液晶性化合物とともに使用する可塑剤、界面活性剤及び重合性モノマーとしては、円盤状液晶性化合物と相溶性を有し、円盤状液晶性化合物の傾斜角の変化を与えられるか、あるいは配向を阻害しない限り、どのような化合物も使用することができる。これらの中で、重合性モノマー(例、ビニル基、ビニルオキシ基、アクリロイル基及びメタクリロイル基を有する化合物)が好ましい。上記化合物の添加量は、円盤状液晶性化合物に対して一般に 1~50質量%の範囲にあり、5~30質量%の範囲にあることが好ましい。また反応性官能基数が4以上のモノマーを混合して用いることで配向膜と光学異方性層間の密着性を高めることができる。

[0070]

円盤状液晶性化合物とともに使用するポリマーとしては、円盤状液晶性化合物と相溶性を有し、円盤状液晶性化合物に傾斜角の変化を与えられる限り、どのようなポリマーでも使用することができる。ポリマーの例としては、セルロースエステルを挙げることができる。セルロースエステルの好ましい例としては、セルロースアセテート、セルロースアセテートプロピオネート、ヒドロキシプロピルセルロース及びセルロースアセテートブチレートを挙げることができる。円盤状液晶性化合物の配向を阻害しないように、上記ポリマーの添加量は、円盤状液晶性化合物に対して一般に 0.1~10質量%の範囲にあることがさらに好ましい。

[0071]

光学異方性層は、一般に円盤状液晶性化合物および他の化合物を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱し、その後配向状態(ディスコティックネマチック相)を維持して冷却することにより得られる。あるいは、上記光学異方性層は、円盤状液晶性化合物及び他の化合物(更に、例えば重合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向膜上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱したのち重合させ(UV光の照射等により)、さらに冷却することにより得られる。本発明に用いる円盤状液晶性化合物のディスコティックネマティック液晶相一固相転移温度としては、70~300℃が好ましく、特に70~170℃が好ましい。

[0072]

(液晶性化合物の配向状態の固定)

10

20

30

40

40

50

合わせ(米国特許 3, 5 4 9, 3 6 7 号明細書記載)、アクリジンおよびフェナジン化合物(特開昭 6 0 - 1 0 5 6 6 7 号公報、米国特許 4, 2 3 9, 8 5 0 号明細書記載)およびオキサジアゾール化合物(米国特許 4, 2 1 2, 9 7 0 号明細書記載)が含まれる。 光重合開始剤の使用量は、塗布液の固形分の 0. 0 1 乃至 2 0 質量%の範囲にあることが好ましく、 0. 5 乃至 5 質量%の範囲にあることがさらに好ましい。

液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。

照射エネルギーは、 $20\,\mathrm{m}\,\mathrm{J}/\mathrm{c}\,\mathrm{m}^2$ 乃至 $50\,\mathrm{J}/\mathrm{c}\,\mathrm{m}^2$ の範囲にあることが好ましく、 $20\,\mathrm{D}$ 至 $500\,\mathrm{m}\,\mathrm{J}/\mathrm{c}\,\mathrm{m}^2$ の範囲にあることがより好ましく、 $100\,\mathrm{D}$ 至 $800\,\mathrm{m}\,\mathrm{J}/\mathrm{c}\,\mathrm{m}^2$ の範囲にあることがさらに好ましい。また、光重合反応を促進するため、加熱条件下で光照射を実施してもよい。保護層を、光学異方性層の上に設けてもよい。

以上のように、ポリマー基材上に光学異方性層を設けることにより本発明の好ましい態様 を実現することができる。

[0073]

(偏光板)

本発明の偏光板は、上記のようにして作製されたセルロースアシレートフィルム、もしくは光学補償フィルムを偏光膜の一方の面に貼り合わせ、そして、他方の面に保護フィルム (もしくは光学異方性層)を貼り合わせることにより作製することができる。

偏光膜に用いるポリマーとしては、ポリビルアルコール(以下、PVAと記載する)が好ましく用いられる。PVAは通常、ポリ酢酸ビニルをケン化したものであるが、例えば不飽和カルボン酸、不飽和スルホン酸、オレフィン類、ビニルエーテル類のように酢酸ビニルと共重合可能な成分を含有しても構わない。また、アセトアセチル基、スルホン酸基、カルボキシル基、オキシアルキレン基等を含有する変性PVAも用いることができる。

[0074]

P V A のケン化度は特に限定されないが、溶解性等の観点から 8 0 乃至 1 0 0 m o 1 % の範囲にあることが好ましく、 9 0 乃至 1 0 0 m o 1 % の範囲にあることが特に好ましい。また、 P V A の重合度は特に限定されないが、 1 , 0 0 0 乃至 1 0 , 0 0 0 の範囲にあることが好ましく、 1 . 5 0 0 乃至 5 . 0 0 0 の範囲にあることが特に好ましい。

[0075]

PVAを染色して偏光膜が得られる。染色は、気相または液相吸着により行われる。液相で染色を行う例としては、ヨウ素-ヨウ化カリウム水溶液にPVAフィルムを浸漬させる方法が挙げられる。水溶液中の、ヨウ素の含有量は0.1乃至20g/1、ヨウ化カリウムの含有量は1乃至100g/1、ヨウ素とヨウ化カリウムの質量比は1乃至100の範囲にあることが好ましい。染色時間は30乃至5000秒、溶液温度は5乃至50℃の範囲にあることが好ましい。染色方法としては浸漬だけでなく、ヨウ素あるいは染料溶液の塗布あるいは噴霧など任意の手段で行うことができる。染色は、PVAの延伸工程の前後いずれで行っても良いが、適度に膜が膨潤され延伸が容易になることから、延伸工程前に液相で染色することが特に好ましい。

[0076]

ヨウ素の他に二色性色素で染色することも好ましい。二色性色素の具体例としては、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素、およびアントラキノン系色素等の色素系化合物を挙げることができる。水溶性のものが好ましいが、この限りではない。また、これらの二色性分子にスルホン酸基、アミノ基、水酸基などの親水性置換基が導入されていることが好ましい。

[0077]

二色性分子の具体例としては、例えば、シー.アイ.ダイレクト.イエロー12、シー.アイ.ダイレクト.オレンジ39、シー.アイ.ダイレクト.オレンジ72、シー.アイ.ダイレクト.レッド39、シー.アイ.ダイレクト.レッド79、シー.アイ.ダイレクト.レッド81、シー.アイ.ダイレクト.レッド83、シー.アイ.ダイレクト.レッド89、シー.アイ.ダイレクト.バイオレット48、シー.アイ.ダイレクト.ブル

20

30

40

50

一67、シー・アイ・ダイレクト・ブルー90、シー・アイ・ダイレクト・グリーン59、シー・アイ・アシッド・レッド37等が挙げられる。さらに、特開平1-161202号、特開平1-172906号、特開平1-172907号、特開平1-183602号、特開平1-248105号、特開平1-265205号、および特開平7-261024号の各公報に記載の色素等を二色性分子の具体例として挙げることができる。これらの二色性分子は追離酸、あるいはアルカリ金属塩、アンモニウム塩、アミン類の塩として用いられる。これらの二色性分子は2種以上を配合することにより、各種の色相を有する偏光膜を製造することができる。偏光膜を用いた偏光板(もしくは偏光素子)の偏光軸を直交させた時に黒色を呈する化合物(色素)や黒色を呈するように各種の二色性分子を配合したものが偏光板単独での透過率、偏光率とも優れており好ましい。

[0078]

PVAを延伸して偏光膜を製造する過程では、PVAを架橋させる添加物を用いることが好ましい。特に特開2002-86554に記載の斜め延伸法を用いる場合、延伸工程出口でPVAが十分に硬膜されていないと、工程のテンションでPVAの配向方向がずれてしまうことがある。従って、延伸前の工程あるいは延伸工程において、PVAを架橋剤溶液に浸漬またはPVAに架橋剤溶液を塗布して架橋剤を含ませることが好ましい。架橋剤としては、米国再発行特許第232,897号明細書に記載のものが使用できるが、ホウ酸類が最も好ましく用いられる。

[0079]

また、 P V A , ポリ塩化ビニルを脱水、脱塩素することによりポリエン構造をつくり、共役二重結合により偏光を得るいわゆるポリビニレン系偏光膜の製造にも、前述の斜め延伸法を適用することができる。

[0080]

偏光板に用いる保護フィルムとしては、光透過率が80%以上であるポリマーフィルムを用いることが好ましい。フィルムを構成するポリマーの例には、セルロースエステル(例、セルロースアセテート、セルロースジアセテート)、ノルボルネン系ポリマー、ポリメチルメタクリレートが含まれる。市販のポリマー(ノルボルネン系ポリマーでは、アートン、ゼオネックス)を用いてもよい。セルロースエステルが好ましく、セルロースの低級脂肪酸エステルがさらに好ましい。低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味する。炭素原子数は、2(セルロースアセテート)、3(セルロースプロピオネート)または4(セルロースブチレート)であることが好ましい。セルロースアセテートが特に好ましい。セルロースアセテートが特に好ましい。セルロースアセテートプロピオネートやセルロースアセテートブチレートのような混合脂肪酸エステルを用いてもよい。

また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであってもWOOO/26705号明細書に記載の分子を修飾することで該発現性を低下させたものを用いることもできる。

[0081]

液晶表示装置のコントラスト比を高める観点から、偏光板の透過率は高い方が好ましく、偏光度は高い方が好ましい。偏光板の透過率は、波長550nmの光において、30乃至50%の範囲にあることが好ましく、35乃至50%の範囲にあることがさらに好ましく、40乃至50%の範囲にあることが最も好ましい。偏光度は、波長550nmの光において、90乃至100%の範囲にあることが好ましく、95乃至100%の範囲にあることがよらに好ましく、99乃至100%の範囲にあることが最も好ましい。

[0082]

偏光板の透過率を上げるには、本発明のポリマーフィルムの透過率を上げる、あるいは、 偏光膜と該ポリマーフィルムを一体化する接着剤の屈折率を調節すればよい。 該ポリマーフィルムの透過率を高くするには、厚みを薄くする、あるいはヘイズを低下さ せればよい。

[0083]

偏光膜とポリマーフィルム、あるいは、偏光膜と光学的異方性層を貼り合わせる接着剤は

特に限定されないが、PVA系樹脂(アセトアセチル基、スルホン酸基、カルボキシル基 、オキシアルキレン基等の変性PVAを含む)やホウ素化合物水溶液等が挙げられ、中で もPVA系樹脂が好ましい。接着剤層の厚みは、乾燥後にO.Ol乃至1Oμmの範囲に あることが好ましく、0.05乃至5μmの範囲にあることが特に好ましい。

接着剤の屈折率は、セルロースアシレートフィルムとの屈折率差が小さいことが好ましく 、その差が 0. 1以下であることが好ましく、0. 05以下であることがさらに好ましく 、 0. 01以下であることが最も好ましい。

また、前記の様に、偏光膜自身の偏光度を向上させることも好ましい。

[0084]

(液晶表示装置)

上記のセルロースアシレートフィルム、もしくは光学補償フィルムを用いた偏光板は、液 晶表示装置、特に透過型液晶表示装置に有利に用いられる。

透過型液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。液 晶セルは、二枚の電極基板の間に液晶を担持している。

一方、あるいは双方の偏光板に本発明の偏光板を用いればよい。この際には、偏光板の(光学的異方性)セルロースアシレートフィルム、もしくは光学補償フィルムが液晶セル側 になるよう配置する。

液晶セルは、OCBモード、VAモード、ECBモードまたはTNモードであることが好 ましい。

[0085]

OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方 向に(対称的に)配向させるベンド配向モードの液晶セルである。ベンド配向モードの液 晶セルを用いた液晶表示装置は、米国特許4,583,825号、同5,410,422 号の各明細書に開示されている。棒状液晶性分子が液晶セルの上部と下部とで対称的に配 向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため 、この液晶モードは、OCB (Optically Compensatory Ben d) 液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの 利点がある。

[0086]

本発明の偏光板をOCBモードの液晶表示装置の場合、偏光板に用いるセルロースアシレ ートフィルム上に円盤状化合物、もしくは棒状液晶化合物を含む光学異方性層を有してい ても良い。光学異方性層は、円盤状化合物(もしくは棒状液晶化合物)を配向させ、その 配向状態を固定することにより形成する。 円盤状化合物は、一般に大きな複屈折率を有 する。また、円盤状化合物には、多様な配向形態がある。従って、円盤状化合物を用いる ことで、従来の延伸複屈折フィルムでは得ることができない光学的性質を有するポリマー フィルム(光学補償フィルム)を製造することができる。円盤状化合物を用いたポリマー フィルムについては、特開平 6 - 2 1 4 1 1 6 号公報、米国特許 5 , 5 8 3 , 6 7 9 号、 同5,646,703号、西独特許公報3911620A1号の各明細書に記載がある。

[0087]

VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向してい 40

VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向 させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載) に加えて、(2) 視野角拡大のため、VAモードをマルチドメ イン化した (MVAモードの)液晶セル (SID97、Digest of tech.

Papers (予稿集) 28 (1997) 845記載)、(3) 棒状液晶性分子を電圧 無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード (n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載) および (4) SURVAIVALモードの液晶セル (LCDインターナショナル98で 発表)が含まれる。

10

20

30

[0088]

ECBモードは、最も古くから知られている液晶モードであり、多数の文献に記載がある

TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60万至120°にねじれ配向している。 TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。

[0089]

【実施例】

本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの実施例に限られるものではない。

10

(実施例1)

(ドープ1)

下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製し、ドープ1とした。

[0090]

セルロースアシレート溶液組成

酢化度60.9%のセルロースアセテート100質量部

トリフェニルホスフェート (可塑剤) 7.8質量部

ビフェニルジフェニルホスフェート(可塑剤)3.9質量部

メチレンクロライド(第1溶媒)336質量部

20

メタノール (第2溶媒) 30質量部

[0091]

(ドープ2)

ドープ1と同様にセルロースアセテート溶液を調製した。

さらに、別のミキシングタンクに、下記のレターデーション上昇剤12質量部、メチレンクロライド96質量部およびメタノール12質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。セルロースアセテート100質量部に対して、レターデーション上昇剤が2.5質量部になるように、セルロースアセテート溶液にレターデーション上昇剤溶液を混合し、充分に攪拌してドープ2を調製した。

[0092]

30

【化10】

40

(ドープ3)

ドープ1のセルロースアセテート溶液において、

酢酸ビニル 5質量部

ラウリン酸ビニル 5質量部

ベンゾイン 1質量部 を添加し、ドープ3を作成した.

[0093]

(ドープ4)

ドープ1のセルロースアセテート溶液において、

エチレンビス (3, 4-エポキシシクロヘキサンカルボキシレート) 7 質量部

トリメチロールプロパントリグリシジルエーテル 5 質量部

4, 4' -ビス (ジ (β -ヒドロキシエトキシ) フェニルスルフォニオ) フェニルスルフィドービスーへキサフルオロアンチモネート 1 質量部を添加し、ドープ 4 を作成した。

[0094]

(ドープ5)

ドープ2のセルロースアセテート溶液において、

酢酸ビニル 5質量部

ラウリン酸ビニル 5質量部

ベンゾイン 1質量部を添加し、ドープ5を作成した.

[0095]

(ドープ6)

ドープ5のレタデーション上昇剤溶液において、

レタデーション上昇剤を24質量部、

メチレンクロライドを90質量部、

メタノールを6質量部とし、

セルロースアセテート100質量部に対して、レタデーション上昇剤が5.0質量部になるようにレタデーション上昇剤溶液を添加してドープ6を作成した。

[0096]

(ドープ7)

ドープ2のセルロースアセテート溶液において、

酢酸ビニル 4質量部、

ステアリン酸ビニル 5質量部、

UMV-1 3質量部、

ジエトキシベンゾフェノン 1質量部を添加し、ドープ7を作成した。

[009,7]

(ドープ8)

ドープ2のセルロースアセテート溶液において、

メチルアクリレート 5質量部、

酢酸ビニル 2質量部、

ASM-2 3質量部、

ベンゾイン 1質量部を添加し、ドープ8を作成した。

[0098]

(ドープ9)

ドープ2のセルロースアセテート溶液において、

ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレー

トの混合物 (KAYARAD DPHA) 10質量部

2-メチル-1- [4-(メチルチオ) フェニル] -2-モルホリノプロパン-1-オン -401 質量部

を添加し、ドープ9を作製した。

(ドープ10)

ドープ2のセルロースアセテート溶液において、

エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)7質量部

トリメチロールプロパントリグリシジルエーテル 5質量部、

4, 4'ービス(ジ(β-ヒドロキシエトキシ)フェニルスルフォニオ)フェニルスルフィドービスーへキサフルオロアンチモネート 1質量部を添加し、ドープ10を作成した

[0099]

50

10

20

(ドープ11)

ドープ2のセルロースアセテート溶液において、

エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)4質量部

トリメチロールプロパントリグリシジルエーテル 5質量部、

U V E - 1 3 質量部、

4, 4'ービス (ジ (β — ヒドロキシエトキシ) フェニルスルフォニオ) フェニルスルフィドービスーヘキサフルオロアンチモネート 1 質量部を添加し、ドープ 1 1 を作成した

[0100]

下記のようにして、フィルム $1 \sim 1$ 6 を作成した。フィルムの乾燥厚さはすべて 8 0 μ m 10 であった。

(フィルム1の作成)

ドープ 1 を 3 5 \mathbb{C} に保ち、ダイから 2 2 \mathbb{C} の無限移行する無端のステンレスベルト上に流延し、製膜した。残留溶剤量が 5 0 質量%になるまで乾燥後、フィルムをバンドから剥ぎ取り、 1 0 0 \mathbb{C} 0 3 分、 1 3 0 \mathbb{C} 0 5 分、 1 6 0 \mathbb{C} 0 5 分乾燥した。このようにして得られたフィルムを、さらに 1 5 0 \mathbb{C} 1 時間熱処理した。

(フィルム2の作成)

ドープ 1 を 3 5 \mathbb{C} に保ち、ダイから 2 2 \mathbb{C} の無限移行する無端のステンレスベルト上に流延し、製膜した。残留溶剤量が 5 0 質量%になるまで乾燥後、フィルムをバンドから剥ぎ取った。その際、剥ぎ取り速度に対して、巻き取り速度を速めて延伸した。さらに 1 0 0 \mathbb{C} で 3 分、 1 3 0 \mathbb{C} で 5 分、 1 6 0 \mathbb{C} で 5 分乾燥した。このようにして得られたフィルムを、さらに 1 5 0 \mathbb{C} 1 時間熱処理した。延伸倍率は 1 8 % であった。

(フィルム3の作成)

フィルム2と同様にして作成した。だたし、延伸倍率は30%とした。

(フィルム4の作成)

ドープ2を用いて、フィルム2と同様に作成した。ただし、延伸倍率は10%とした。

(フィルム5の作成)

ドープ 3 を 3 5 \mathbb{C} に保ち、ダイから 2 2 \mathbb{C} の無限移行する無端のステンレスベルト上に流延し、製膜した。その際ステンレスベルト上でウエブに 4 0 \mathbb{C} の風を当てながら、高圧水銀灯にて光照射し、ウエブ中に光重合を起こさせ、ポリマーを生ぜしめた。その際の光照射量は 3 0 0 m J / c m 2 であった。残留溶剤量が 5 0 質量%になるまで乾燥後、フィルムをバンドから剥ぎ取った。その際、剥ぎ取り速度に対して、巻き取り速度を速めて延伸した。さらに 1 0 0 \mathbb{C} で 3 分、 1 3 0 \mathbb{C} で 5 分、 1 6 0 \mathbb{C} で 5 分乾燥した。このようにして得られたフィルムを、さらに 1 5 0 \mathbb{C} 1 時間熱処理した。延伸倍率は 1 8 % であった。

[0101]

(フィルム6の作成)

ドープ3を用いて、フィルム5と同様に作成した。但し、延伸倍率は30%とした。

(フィルム7の作成)

ドープ4を用いて、フィルム5と同様に作成した。

(フィルム8の作成)

ドープ4を用いて、フィルム5と同様に作成した。但し、延伸倍率は30%とした。

(フィルム9の作成)

ドープ5を用いて、フィルム5と同様に作成した。但し、延伸倍率は10%とした。

(フィルム10の作成)

ドープ6を用いて、フィルム9と同様に作成した。

[0102]

(フィルム11の作成)

ドープ7を用いて、フィルム9と同様に作成した。

(フィルム12の作成)

ドープ8を用いて、フィルム9と同様に作成した。

40

20

(フィルム13の作成)

ドープ9を用いて、フィルム9と同様に作成した。

(フィルム14の作成)

ドープ10を用いて、フィルム9と同様に作成した。

(フィルム15の作成)

ドープ11を用いて、フィルム9と同様に作成した。

(フィルム16の作成)

ドープ6を用いて、フィルム9と同様に作成した。但し、延伸倍率は25%とした。

[0103]

得られたフィルムについて光学特性およびヘイズを測定した。

(光学特性の測定)

作成したフィルムについて、エリプソメーター(M-150、日本分光(株)製)を用いて、波長550nmにおけるReレターデーション値を測定した。各々の測定は幅方向10点で行い、平均値を求めた。

(ヘイズの測定)

作製したフィルムについて、ヘイズ計(NDH1001-DP、日本電色工業(株)製)を用いて、ヘイズを測定した。ヘイズは任意の5点の測定値の平均値を採用した。

(偏光板の作成)

(偏光板1~15)

延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光膜を作製した。前述のフィルム1~15をケン化処理し、ポリビニルアルコール系接着剤を用いて、偏光膜の片側に貼り付けた。市販のセルローストリアセテートフィルム(フジタックTD80UF、富士写真フイルム(株)製)をケン化処理し、ポリビニルアルコール系接着剤を用いて、偏光膜の反対側に貼り付けた。このようにして偏光板1~15を作製した。

[0104]

(偏光板の耐久性評価)

偏光板 $1\sim1$ 5 の耐熱試験(8 5 \mathbb{C} と - 3 5 \mathbb{C} の繰り返し試験)を行った。その表面を観察し、以下のごとく評価した。

〇:変化は見られない。

△:わずかに曇り状のものが観察された。

×:可塑剤析出による曇り状のものが観察された。

この結果を表1及び表2にわけて示した。表1において、「Re上昇剤」はレターデーション上昇剤を示す。

[0105]

【表1】

10

20

偏光板	フィルム	ドープ	本発明の添加	Re上昇剤添加	延伸	Re	~イズ	耐久性
			剤(モノマー 量(質量部vs		倍率	(nm)	(%)	評価
			および光重合	ルロースアシレ				
			開始剤)	ート100質量部)				
偏光板1	フィルム1	ドープ1	なし		0	4	0.4	Δ
(比較)	(比較)							
偏光板2	フィルム2	ドープ1	なし		18%	25	0.6	Δ
(比較)	(比較)							
偏光板3	フィルム3	ドープ1	なし		30%	4 0	0.8	Δ
(比較)	(比較)							
偏光板4	フィルム4	ドープ2	なし	2. 5	10%	4 0	0.5	×
(比較)	(比較)							
偏光板5	フィルム5	ドープ3	あり		18%	2 5	0.4	0
(本発明)	(本発明)							
偏光板 6	フィルム6	ドープ3	あり	Name of Assistant Conference	30%	4 0	0.5	0
(本発明)	(本発明)							
偏光板7	フィルム7	ドープ4	あり		18%	2 5	0.4	0
(本発明)	(本発明)							
偏光板8	フィルム8	ドープ4	あり		30%	4 0	0.5	0
(本発明)	(本発明)							
偏光板 9	フィルム9	ドープ5	あり	2, 5	10%	3 7	0.4	0
(本発明)	(本発明)							

【 0 1 0 6 】 【 表 2 】

			1	T .	1		1		1
偏光板	フィルム	ドープ	本発明の添	R e 上昇剤	延伸	R e	ヘイズ	耐久	
			加剤	添加量 (質量	倍率	(nm)	(%)	性評	
	-		(モノマーおよ	部vsセルロ				価	
			び光重合開	ースアシレ					
			始剤)	ート100質量					
				部)					10
偏光板10	フィルム10	ドープ 6	あり	5.0	10%	64	0.4	0	
(本発明)	(本発明)								
偏光板11	フィルム11	ドープ7	あり	2.5	10%	3 7	0.4	0	
(本発明)	(本発明)								
偏光板12	フィルム12	ドープ8	あり	2.5	10%	3 7	0.4	0	
(本発明)	(本発明)								20
偏光板13	フィルム13	ドープ 9	あり	2, 5	10%	3 7	0.4	0	
(本発明)	(本発明)								
偏光板14	フィルム14	ドープ10	あり	2.5	10%	3 7	0.4	0	
(本発明)	(本発明)								
偏光板15	フィルム15	ドープ11	あり	2, 5	10%	3 7	0.4	0	
(本発明)	(本発明)								30
偏光板16	フィルム16	ドープ 6	あり	5,0	25%	136	0.5	0	30
(本発明)	(本発明)			V-1	2070				
. , , , , , , ,	1 . 1 . 2 . 2 . 7	l	l	L		l	i	L	J

液晶表示装置1の作成

TN型液晶セルを使用した液晶表示装置(6E-A3、シャープ(株)製)に設けられている一対の偏光板を剥がし、代わりに偏光板3を、フィルム3が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とは直交であるように配置した。

液晶表示装置2の作成

液晶表示装置1において、偏光板3を偏光板9に変更して、液晶表示装置2を作成した。【0107】

作製した液晶表示装置 1,2 について、コントラストを目視観察したところ、液晶表示装置 2 の方で高いコントラストが認められ好ましい結果であった。

上記のように、レタデーション値を20nm程度以上とするために、延伸倍率を上げると ヘイズが増加するため好ましくない。それに対して、レタデーション上昇剤を添加するこ とにより、延伸倍率を大きく上げずに、レタデーションを上げることができるが、保存性 テストにおいて、レタデーション上昇剤、可塑剤などのフィルム添加物の析出が見られ好

ましくなかった。それに対し、本発明においては、大きなレタデーション値を得るために、延伸倍率を上げても、ヘイズ増加少なく、耐久性悪化も無い。また、さらにレタデーション上昇剤を使用することにより、大きなレタデーション値を得つつ、ヘイズ増加無く、耐久性も良好なフィルム及び偏光板を得ることができる。

【発明の効果】

本発明によると、延伸倍率を上げても、ヘイズ増加少なく、耐久性悪化も無いセルロースアシレートフィルムを得ることができる。また、さらにレタデーション上昇剤を使用することにより、大きなレタデーション値を得つつ、ヘイズ増加無く、耐久性も良好なセルロースアシレートフィルム及び偏光板を得ることができる。

【手続補正書】

【提出日】平成14年7月22日(2002.7.22)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正の内容】

【特許請求の範囲】

【請求項1】

溶液流延製膜方法により形成され、式(I)により定義されるレターデーションRe値が20~160nmの範囲にあるセルロースアシレートフィルムであって、エチレン性不飽和モノマー、および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エチレン性不飽和モノマーを光重合させることにより得られたことを特徴とするセルロースアシレートフィルム。

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

【請求項2】

溶液流延製膜方法により形成され、式(I)により定義されるRe値が20~160nmの範囲にあるセルロースアシレートフィルムであって、エポキシ基又はオキセタニル基を有する化合物および光重合開始剤を含有するセルロースアシレートドープ組成物を流延し、乾燥中又は乾燥後に、該エポキシ基<u>又はオキセタニル基</u>を有する化合物を光重合または光橋架け反応させることにより得られたことを特徴とするセルロースアシレートフィルム

(I) $Re = (nx - ny) \times d$

(式中、nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、dはフィルムの厚さである。)

【請求項3】

偏光板保護膜の少なくとも 1 枚として請求項 1 ~ 2 いずれか 1 つに記載のセルロースアシレートフィルムを使用した偏光板。

フロントページの続き

(51) Int.C1. ⁷				FΙ							テーマコート	・ (参考)
C O 8 G 6	5/18			. C	0.80	65/	18				4 J O 1 1	
G O 2 B	5/30		G O 2 B 5/30							4 J O 2 6		
G O 2 F	1/1335			G	02 F	7 1/	1335	5 1 0			4 J O 3 6	
G O 2 F	1/13363			G	02F	1/	13363					
// B29K	1:00			В	29 K	1:	00					
B 2 9 L	7:00			В	2 9 I	. 7:	00					
C 0 8 L	1:10			C	081	. 1:	10					
F ターム(参考)	4F205 AA01	AA44 A	BO3 A	\G01	AH73	GA07	GB02	GE24	GN21	GW34		
	4J005 AA07	BB02										
	4J011 PA53	PCO2										
	4J026 AA02	BAO2 B	A03 B	3A05	BA10	BA12	BA19	BA20	BA25	BA27		
	BA31	BA33 B.	A35 D)B36	GA06							
	4J036 AA01	GAO1 H	A02 J	A15								