CS156 (Introduction to AI), Fall 2021

Homework 3 submission

Roster Name: Nand Kishore Khuswaha

Student ID: 013920192

Email address: nandkishore.khuswaha@sjsu.edu (mailto:nandkishore.khuswaha@sjsu.edu)

Any special notes or anything you would like to communicate to me about this homework submission goes in here.

References and sources

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples.

1) Regression.Boston (Example class file)

Solution

Load libraries and set random number generator seed

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn import linear_model
   from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_scc
```

```
In [2]: np.random.seed(42)
```

Code the solution

```
In [3]: datafile = pd.read_csv("/Users/becoming1/Desktop/homework3_input_data.csv")
```

```
print(datafile)
In [4]:
                cement
                         slag
                                flyash
                                         water
                                                 superplasticizer
                                                                   coarseaggregate
                                         162.0
         0
                 540.0
                          0.0
                                   0.0
                                                               2.5
                                                                               1040.0
         1
                540.0
                          0.0
                                   0.0
                                         162.0
                                                               2.5
                                                                               1055.0
         2
                 332.5
                        142.5
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         3
                 332.5
                        142.5
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         4
                 198.6
                        132.4
                                   0.0
                                         192.0
                                                               0.0
                                                                                978.4
         5
                 266.0
                        114.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         6
                380.0
                         95.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         7
                 380.0
                         95.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         8
                266.0
                        114.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
         9
                 475.0
                          0.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
                                         192.0
                                                               0.0
         10
                198.6
                        132.4
                                   0.0
                                                                                978.4
                        132.4
                                                               0.0
         11
                198.6
                                   0.0
                                         192.0
                                                                                978.4
         12
                427.5
                         47.5
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
                190.0
                                                               0.0
         13
                        190.0
                                   0.0
                                         228.0
                                                                                932.0
         14
                 304.0
                         76.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
                                                               0.0
         15
                 380.0
                          0.0
                                   0.0
                                         228.0
                                                                                932.0
                                                               0.0
         16
                 139.6
                        209.4
                                   0.0
                                         192.0
                                                                               1047.0
         17
                 342.0
                         38.0
                                   0.0
                                         228.0
                                                               0.0
                                                                                932.0
In [5]: | features= ['cement', 'slag', 'flyash', 'water', 'superplasticizer', 'coarseaggre'
         print(features)
         ['cement', 'slag', 'flyash', 'water', 'superplasticizer', 'coarseaggregat
         e', 'fineaggregate', 'age']
In [6]: X, Y = datafile[['cement', 'slag', 'flyash', 'water', 'superplasticizer', 'coars'
In [7]: X.shape, Y.shape
Out[7]: ((1030, 8), (1030,))
```

```
In [8]: print(X)
```

```
flyash
                                         superplasticizer
      cement
                 slag
                                water
                                                             coarseaggregate
0
        540.0
                  0.0
                           0.0
                                 162.0
                                                        2.5
                                                                        1040.0
1
       540.0
                  0.0
                           0.0
                                 162.0
                                                        2.5
                                                                        1055.0
2
        332.5
               142.5
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
3
       332.5
               142.5
                                 228.0
                                                        0.0
                                                                         932.0
                           0.0
4
       198.6
               132.4
                           0.0
                                 192.0
                                                        0.0
                                                                         978.4
5
                                                        0.0
       266.0
               114.0
                           0.0
                                 228.0
                                                                         932.0
6
       380.0
                 95.0
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
7
                 95.0
                                                        0.0
        380.0
                           0.0
                                 228.0
                                                                         932.0
8
       266.0
               114.0
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
9
        475.0
                                                        0.0
                  0.0
                           0.0
                                 228.0
                                                                         932.0
10
       198.6
               132.4
                           0.0
                                 192.0
                                                        0.0
                                                                         978.4
11
                                                        0.0
       198.6
               132.4
                           0.0
                                 192.0
                                                                         978.4
12
       427.5
                 47.5
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
13
       190.0
               190.0
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
                 76.0
                                                        0.0
14
        304.0
                           0.0
                                 228.0
                                                                         932.0
15
       380.0
                  0.0
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
16
       139.6
               209.4
                           0.0
                                 192.0
                                                        0.0
                                                                        1047.0
17
        342.0
                 38.0
                           0.0
                                 228.0
                                                        0.0
                                                                         932.0
```

```
In [9]: concrete_df = pd.DataFrame(X, columns = features )
    concrete_df['csMPa'] = Y
    concrete_df.head()
```

Out[9]:

	cement	slag	flyash	water	superplasticizer	coarseaggregate	fineaggregate	age	csMPa
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30

```
# all independent variables vs. the dependent variable
In [10]:
         plt.figure(figsize=(30,20))
         for i, col in enumerate(datafile.columns[0:7]):
             plt.subplot(5,3,i+1)
             x = concrete_df[col]
             y= concrete_df['csMPa']
             plt.plot(x,y, '.', color="forestgreen")
             # create linear regression line:
             plt.plot(np.unique(x), np.polyld(np.polyfit(x, y, 1))(np.unique(x)),col
             plt.xlabel(col)
             plt.ylabel('ConcreteStrength')
In [11]: # correlation matrix between the independent variable
         features= ['cement','slag','flyash','water','superplasticizer','coarseaggre
         sns.set(rc={'figure.figsize': (8.5,8.5)})
         sns.heatmap(concrete df.corr().round(2), square=True, cmap='YlGnBu', annot=
```

Out[11]: <matplotlib.axes. subplots.AxesSubplot at 0x1a27315da0>

Split into training-test sets

```
In [12]: # Breaking the data into the training and test datasets.
        X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, ra
        X_train.shape, Y_train.shape, X_test.shape, Y_test.shape
Out[12]: ((824, 8), (824,), (206, 8), (206,))
In [13]:
        # train a linear regression model
        model = linear model.LinearRegression().fit(X_train, Y_train)
In [14]: # The coefficients:
        print('Coefficients: \n', model.coef )
        Y_test_pred = model.predict(X_test)
        # The mean squared error:
        print('Mean squared error: %.2f' % mean_squared_error(Y_test, Y_test_pred))
        # The coefficient of determination (1 is perfect prediction):
        print('Coefficient of determination: %.2f' % r2_score(Y_test, Y_test_pred))
        Coefficients:
         0.02225423
          0.02248514 0.11520355]
        Mean squared error: 95.62
        Coefficient of determination: 0.64
 In [ ]:
```