

Angelo KlinKatra Analytics

LEARNING OBJECTIVES

- Define Class Label and Classification
- Build a K-Nearest Neighbours using the scikit-learn library
- Evaluate and tune a model by using metrics such as classification accuracy and error

PRE-WORK

PRE-WORK REVIEW

Understand how to optimise for error in a model

Understand the concept of iteration to solve problems

Measure basic probability

OPENING

- So far we have worked primarily with regression problems
- We have focused on predicting a continuous set of values
- That means we have been able to use distance to measure how accurate our prediction is
- However, for other problems, we need to predict binary responses
 - Will a loan will default or not?
 - Is an email a spam or not?

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: (5 MINUTES)

- 1. What if we want to build a model to predict a set of values, like a photo colour or the gender of a baby?
- 2. Can we use regression for binary values?
- 3. Do the same principles apply?

WHAT IS CLASSIFICATION?

WHAT IS CLASSIFICATION?

- Classification is a Machine Learning problem for solving a set value given the knowledge we have about that value
- Many classification problems are trying to predict Binary values
- For example, we may be using patient data (medical history) to predict whether the patient is a smoker or not

WHAT IS CLASSIFICATION?

- Some problems do not appear to be binary at first glance, however, you can boil down the response to a **Boolean** (True/False) value
- What if you are predicting whether an image pixel will be red or blue?
- We do not need to predict that a pixel is blue, just that it is not red
- This is similar to the concept of dummy variables

WHAT IS CLASSIFICATION?

 Binary classification is the simplest form of classification

- However, classification problems can have multiple class labels
 - Instead of predicting whether the pixel is green or blue, you could predict whether the pixel is yellow, green or blue

Binary Classification

Multi-class Classification

WHAT IS A CLASS LABEL?

- A Class Label is a representation of what we are trying to predict
 - The target
- Examples of Class Labels

Data Problem	Class Label
Patient data problem	Smoker, Not Smoker
Pixel colour	Red, Green, Blue

DETERMINING BETWEEN REGRESSION AND CLASSIFICATION

- One of the easiest ways to determine if a problem is regression or classification is to determine if our target variable can be ordered mathematically
- For example, if predicting company revenue, \$100 is greater than \$90
 - This is a regression problem because the target can be ordered
- However, if predicting pixel colour, red is not inherently greater than blue
 - Therefore, this is a classification problem

DETERMINING BETWEEN REGRESSION AND CLASSIFICATION

Classification and Regression differ on what is to be predicted

REGRESSION OR CLASSIFICATION?

ACTIVITY: REGRESSION OR CLASSIFICATION?

DIRECTIONS: (5 MINUTES)

- 1. Review the following situations and decide if each one is a regression problem, a classification problem or neither:
 - a. Using the total number of explosions in a movie, predict if the movie is by JJ Abrams or Michael Bay
 - b. Determine how many tickets will be sold to a concert given who is performing, where and the date and time
 - c. Given the temperature over the last year by day, predict tomorrow's temperature outside
 - d. Using data from four cell phone microphones, reduce the noisy sounds so the voice is crystal clear to the receiving phone
 - e. With customer data, determine if a user will return or not to an e-commerce website in the next 7 days

INDEPENDENT PRACTICE

BUILD A CLASSIFIER

ACTIVITY: BUILD A CLASSIFIER

DIRECTIONS: (20 MINUTES)

- 1. Re-explore the iris dataset and build a program that classifies each data point
 - a. Use if-else statements and some Pandas functions
- 2. Measure the **Accuracy** of your classifier using the math of "total correct" over "total samples"
- 3. Your classifier should be able to:
 - a. Get one class label 100% correct (one type of iris is easily distinguishable from the other two)
 - b. Accurately predict the majority of the other two classes with some error (hint: make sure you generalise)

ACTIVITY: BUILD A CLASSIFIER

DIRECTIONS: (20 MINUTES)

- 1. How simple could the if-else classifier be while remaining relatively accurate?
- 2. How complicated could our if-else classifier be and remain completely accurate? How many if-else statements would you need or nested if-else statements, in order to get the classifier 100% accurate? (The above uses a count of 2)
- 3. Which if-else classifier would work better against iris data that it has not seen? Why is that the case?

M-ATS KREAREST NEGERAL RES

WHAT IS K NEAREST NEIGHBOURS?

- Suppose we want to determine your favourite type of music
 - How might we determine this without directly asking you?
- Generally, friends share similar traits and interests (e.g. music, sports teams, hobbies, etc)
 - We could ask your five closest friends what their favourite type of music is and take the majority vote
- This is the idea behind KNN: we look for things similar or close to our new observation and identify shared traits
 - We can use this information to make an educated guess about a trait of our new observation

WHAT IS K NEAREST NEIGHBOURS?

 KNN uses distance to predict a Class Label

 This application of distance is used as a measure of similarity between classifications

 We are using shared traits to identify the most likely Class Label

WHAT IS K NEAREST NEIGHBOURS?

- K Nearest Neighbours (KNN) is a classification algorithm that makes a prediction based upon the closest data points
- The KNN algorithm:
 - For a given point, calculate the distance to all other points
 - Given those distances, pick the k closest points
 - Calculate the probability of each class label given those points
 - The original point is classified as the class label with the largest probability ("votes")

ACTIVITY: KNOWLEDGE CHECK

DIRECTIONS: (5 MINUTES)

1. In what other tasks do we use a heuristic similar to K Nearest Neighbours?

DEMONSTRATION

KNN IN ACTION

WHAT HAPPENS IN TIES?

- What happens if two classes get the same number of votes?
 - This could happen in binary classification if we use an even number for k
 - This could also happen if there are multiple class labels
- In scikit-learn, it will choose the class that it first saw in the training set

WHAT HAPPENS IN TIES?

- We could implement a weight, taking into account the distance between the point and its neighbours
- This can be done in scikit-learn by changing the weights parameter to "distance"
- Try changing the weights parameter
 - How does this affect accuracy?

WHAT HAPPENS IN HIGH DIMENSIONALITY?

- Since KNN works with distance, higher dimensionality of data (i.e. more features) requires **significantly** more samples in order to have the same predictive power
- Consider this: with more dimensions, all points slowly start averaging out to be equally distant
 - This causes significant issues for KNN
- Keep the feature space limited and KNN will do well
 - Exclude extraneous features when using KNN

WHAT HAPPENS IN HIGH DIMENSIONALITY?

- Consider two different examples: classifying users of a newspaper and users of a particular toothpaste
 - The features of the newspapers are very broad and there are many: sections, topics, types of stories, writers, online vs print, etc
 - However, the features of a toothpaste are more narrow: has fluoride, controls tartar, etc
- For which problem would KNN work better?
 - KNN would work better on classifying users of a particular toothpaste since the feature set is more narrow and distinct

CLASSIFICATION

METRICS

CLASSIFICATION METRICS

- Metrics for regression do not apply to classification
- We could measure the distance between the probability of a given class and an item being in that class
 - Guessing 0.6 for a 1 is a 0.5 error
- But this overcomplicates our goal: understanding binary classification, whether something is black or white, right or wrong
- To do this we will measure "correctness" or "incorrectness"

CLASSIFICATION METRICS

- We will use two primary metrics: accuracy and misclassification rate
 - Accuracy is the number of correct predictions out of all predictions in the sample
 - This is a value we want to **maximise**
 - Misclassification rate is the number of incorrect predictions out of all predictions in the sample
 - This is a value we want to minimise
- These two metrics are directly opposite of each other

 $accuracy = 1 - misclassification \ rate$

CLASSIFICATION METRICS

- WARNING: You cannot use regression evaluation metrics for a classification problem or vice versa
 - This is a common mistake

• scikit-learn will not intuitively understand if you are doing regression or classification, so make sure to manually review your metrics

INDEPENDENT PRACTICE

SOLVING FOR K

SOLVING FOR K

- One of the primary challenges of KNN is solving for k
 - How many neighbours do we use?
- The smallest k we can use is 1, however, using only one neighbour will probably perform poorly
- The largest k we can use is n 1 (every other point in the data set), however, this would result in always choosing the largest class in the sample; This would also perform poorly

ACTIVITY: SOLVING FOR K

DIRECTIONS: (35 MINUTES)

- 1. Use the lesson 8 starter code
 - a. ~/lessons/lesson-08/code/starter/starter-8.ipynb
- 2. Use the iris data set to answer the following questions:
 - b. What is the accuracy for k = 1?
 - c. What is the accuracy for k = n 1?
 - d. Using Cross Validation, what value of k optimises model accuracy. Create a plot with k as the x-axis and accuracy as the y-axis (called a "fit chart") to help find the answer

ACTIVITY: SOLVING FOR K (BONUS)

DIRECTIONS: (35 MINUTES)

- 1. By default, the KNN classifier in scikit-learn uses the Minkowski metric for distance
 - a. What type of data does this metric work best for?
 - b. What type of data does this distance metric not work for?
 - c. You can read about distance metrics in the scikit-learn documentation
- 2. It is possible to use KNN as a regression estimator. Determine the following:
 - a. Steps that KNN Regression would follow
 - b. How it predicts a regression value

CONCLUSION

TOPIC REVIEW

TOPIC REVIEW

- What are Class Labels?
 - What does it mean to classification?
- How is a classification problem different from a regression problem?
 - How are they similar?
- How does the KNN algorithm work?
- What primary parameters are available for tuning a KNN estimator?
- How do you define: accuracy, misclassification?

DATA SCIENCE

BEFORE NEXT CLASS

BEFORE NEXT CLASS

DUE DATE

Q & A

EXITICKETS

DON'T FORGET TO FILL OUT YOUR EXIT TICKET

Exit Ticket Link

What's the lesson number?	08
What was the topic of the lesson?	Introduction to Classification

CREDITS AND REFERENCES

- Machine Learning Methods -Computerphile
 - Uwe Aickelin
 - Professor of Computer Science, Faculty of Science, The University of Nottingham
 - Website
 - youTube

