

Responsibility in Context: On Applicability of Slicing in Semantic Regression Analysis

ICSE 2023

Sahar Badihi UBC, Canada

Khaled Ahmed UBC, Canada

Yi Li NTU, Singapore

Julia Rubin UBC, Canada

Regressions Are Common

Regressions: **unintended** behavioral differences between the <u>original</u> and <u>modified</u> versions of the program

76% of code upgrades result in regressions [*]

Slicing-based Approaches for Troubleshooting Regressions

- Identify sequences of statements affecting a failure
- Aligned with the mental-model developers use

Classical Slicing

→ s2 is **data-dependent** on s1: s1 defines a variable used in s2

--> s2 is **control-dependent** on s1: s1 directly affects whether s2 is executed

Classical Slicing

→ s2 is **data-dependent** on s1: s1 defines a variable used in s2

--> s2 is **control-dependent** on s1: s1 directly affects whether s2 is executed

Execution Trace-P

a=10 identical b=5 identical

3 | if(a>0)//true

7 | assert(d,20)

Execution Trace-P'

1 a=10

2 b=5

data diff.

data diff.

data diff.

3 if(a<0)//false

4 b=b+!

c=b+5

6 d=c+5

7 assert(d,20)

Identifies aligned trace execution statement (same code statement under the same control path)

Execution Trace-P' **Execution Trace-P** identical identical if(a<0)//false if(a>0)//true b=b+5c=b+5 data diff. c=b+5d=c+5d=c+5data diff. assert(d,20) assert(d,20) data diff.

Idea 1: focus only on differences, ignoring aligned statements with the same control and data values

Align trace execution statement (same statement under the same control path)

Idea 1: focus only on differences, ignoring aligned statements with the same control and data values

Idea 2: synchronize slices by adding aligned trace statement (and their transitive dependencies) to each slice

→ s2 is data-dependent on s1: s1 defines a variable used in s2

--> s2 is **control-dependent** on s1: s1 directly affects whether s2 is executed

Idea 1: focus only on differences, ignoring aligned statements with the same control and data values

Idea 2: synchronize slices by adding aligned trace statement (and their transitive dependencies) to each slice

Produces more precise slices (e.g., handles omission errors)

Study: Slices are Too Long and Unfocused

Project	Failures	LoC	Trace	DSlice
Chart	23	96,517	5,912	61
Closure	95	90,601	92,663	3,341
Lang	49	22,750	3,091	43
Math	63	85,617	8,801	738
Mockito	26	37,277	3,114	377
Time	22	28,422	13,037	518
Average	-	60,199	36,017	1,398

Defects4J

278 Defects4J and 8 large client-library
regression pairs

Slices are > 1.5K statements, on average.

Not all statements are "interesting".

Analyzing Slices

Analyzing Slices

Analyzing Slices

- Large
 (sequences of common code in a slice are 96 statements on average, max 1,032 statements)
- Not directly relevant to the failure (but propagate the effects of the change through the slice)

Information-Preserving Slice Summarization (InPreSS) Main Idea

InPreSS: Block Extraction and Summarization

InPreSS: Block Extraction and Summarization

Step 1: separate common blocks into aligned and unaligned

Step 2: summarize dependencies as input-output relationships

InPreSS: Block Extraction and Summarization

Step 1: separate common blocks into aligned and unaligned

Step 2: summarize dependencies as input-output relationships

Produces 76% shorter slices (207 statements, on average) while keeping the dependencies between the variables in the slice

Summary So Far: Main Contributions

- 1. An annotated benchmark of regression failures in large and popular client-library pairs
- 2. A study on the applicability of slicing for troubleshooting regression failures
- 3. An approach for reducing the size of slices by abstracting contextual information, while preserving its effects on the failure through propagation

Program-P

1	a=10
2	b=5
3	if(a>0)//true
4	b=b+5
5	c=b+5
6	d=c+5
7	assert(d,20)

Program-P

1 a=10 2 b=5 3 if(a>0)//true 4 b=b+5 5 c=b+5 6 d=c+5 7 assert(d,20)

Program-P'

```
1 a=10
2 b=5
3 if(a<0)//false
4 b=b+5
5 c=b+5
6 d=c+5
7 assert(d,20)
```


| Irrelevant statements greyed out (including common aligned statements)

CInspect Dependencies

Program-P

1 a=10 2 b=5 3 if(a>0)//true 4 b=b+5 5 c=b+5 6 d=c+5 7 assert(d,20)

Program-P

```
1 a=10

2 b=5

3 if(a>0)//true

4 b=b+5

5 c=b+5

6 d=c+5

7 assert(d,20)
```


Program-P'

```
Analyze Dependency Flow ×

2: b=5 in main()

3: if(a>0) in main()

4: b=b+5 in main()

7: assert(d, 20) in main()
```


Promote efficient integration of slicing-based techniques in debugging

Summary

The problem: slicing-based techniques are effective to help troubleshooting failures ... but slices are still long and unfocused

Study on the usefulness and properties of slices

Large
 (sequences of common code in a slice are 96 statements on average, max 1,032 statements)
 Not directly relevant to the failure (but propagate the effects of the change through the slice)

Aligned
Unaligned

Context-preserving summarization **technique**

Produces 76% shorter slices (191 statements, on average) while keeping the dependencies between the variables in the slice

LibRench benchmark: https://zenodo.org/record/7683853
InPreSS and Dual Slicing toolset: https://zenodo.org/record/7684134#.ZF1foS8r1hE

