

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Робототехника и комплексная автоматизация	(PK)
$\Psi \Lambda K J J D I L I$	1 000101CAIIIIKA II KOMIIIICKCIIAA ABTOMATIISALIIA	(T T/

КАФЕДРА Системы автоматизированного проектирования (РК6)

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Визуализация природных ландшафтов в Unreal Engine 5»

Студент РК6-73Б		Астахов И. М.
	(Подпись, дата)	И.О. Фамилия
Руководитель		Витюков Ф. А.
•	(Подпись, дата)	И.О. Фамилия

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	ЕРЖД <i>Е</i> ведуют	АЮ ций кафе, А.П. Кар	•	К6
« <u></u>	_»		_ 202	Γ.

ЗАДАНИЕ

на выполнение научно-исследовательскои работы				
по теме: <u>Визуализация природных ланд</u> Engine.)шафтов и средневекового поселен	ния в Unreal		
Студент группы РК6-73Б				
Астах	ов Иван Михайлович			
	(Фамилия, имя, отчество)			
Направленность НИР (учебная, исслед Источник тематики (кафедра, предпри		водственная, др.) <u>учебная</u>		
График выполнения НИР: 25% к 5 нед	., 50% к 11 нед., 75% к 14 нед., 10	0% к 16 нед.		
Техническое задание:	ние интерактивной среды при пом	ощи инструментария Unreal		
Оформление научно-исследовательс	кой работы:			
Расчетно-пояснительная записка на 19 Перечень графического (иллюстративи		ы, слайды и т.п.):		
Дата выдачи задания «6» октября 2024	r.			
Руководитель НИР		<u>Витюков Ф. А.</u>		
	(Подпись, дата)	И.О. Фамилия		
Студент		Астахов И. М.		
• •	(Полпись, дата)	И.О. Фамилия		

Примечание: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

АННОТАЦИЯ

В данной работе рассматривается работа с визуальным движком Unreal Engine и создание в нем интерактивной 3D среды «Остров». Целью курсового проекта является разработка, взаимодействие с представленным инструментарием и обучение работы с ним.

В рамках практической части проекта была разработана концепция и дизайн интерактивной среды. Это включало моделирование объектов, создание и добавление текстур и материалов, а также настройку освещения и атмосферы для достижения реалистичности и эстетической привлекательности.

Для реализации проекта были использованы инструменты и функциональные возможности Unreal Engine 5, такие как Blueprints для визуального программирования, а также передовые технологии рендеринга, обеспечивающие высокое качество графики.

В результате была создана полноценная визуальная среда, которая демонстрирует потенциал современного игрового движка и предлагает пользователю необычный опыт взаимодействия с виртуальным миром.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1. Основные этапы и методы создания интерактивной среды	7
1.1 Планирование и концепция	7
1.2 Создание уровней	8
1.3 Импорт и создание контента	9
1.4 Освещение и атмосфера	. 10
1.5 Интерактивность	. 11
1.6 Тестирование и оптимизация	. 11
2. Интегрирование элементов интерактивной среды в Unreal Engine	. 12
2.1 Создание и импорт объектов	. 12
2.2 Настройка освещения и атмосферы	. 12
2.3 Создание интерактивных объектов	. 13
2.4 Анимация и персонажи	. 13
2.5 Создание пользовательского интерфейса (UI)	. 14
3. Методы работы с интерактивной средой	. 15
3.1 Blueprint для визуального программирования	. 15
3.2 Скрипты на С++	. 15
3.3 Работа с материалами и шейдерами	. 16
3.4 Реализация мультимедийных эффектов	. 16
ЗАКЛЮЧЕНИЕ	. 18
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	. 19

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Unreal Engine 5 (UE5) – трёхмерный движок Unreal Engine 5.

Epic Games — американская компания, занимающаяся разработкой компьютерных игр и программного обеспечения.

Nanite – технология, позволяющая создавать сцены с высокой детализацией без перегрузки системы.

Blueprint – система визуального программирования в UE5 на основе нодов с данными (события и функции).

Game engine (игровой движок) — набор ключевых компонентов программного обеспечения, используемых для разработки игр и иных 3d-приложений. Как правило, инструменты движка абстрагированы от специфики конкретной игры, но могут учитывать некоторые особенности жанра — они предоставляют «базис» для разработки, «надстройку» над которым создает его пользователь.

3d-model (*3d-модель*) — математическое представление объекта в трехмерном пространстве.

3d-modeling (3d-моделирование) — процесс создания 3d-модели объекта.

Actor (актёр) – в рамках движка UE5 любой объект, который может быть размещен на уровне.

ВВЕДЕНИЕ

В данной работе рассматривается процесс использования внутренних функций игрового движка Unreal Engine 5 для создания визуального наполнения интерактивного уровня.

Также в данном проекте будут рассмотрены внутренние инструменты разработки и настройки «актеров» сцены.

Разработка таких интерактивных миров в Unreal Engine 5 — это как творческий, так и технический процесс, который позволяет воплотить идеи и создать уникальные игровые или визуальные переживания.

1. Основные этапы и методы создания интерактивной среды

Основные шаги и аспекты, которые стоит учитывать при создании интерактивной среды в Unreal Engine 5.

1.1 Планирование и концепция

Рисунок 1 – Пример работы в Blueprint

Прежде чем приступать к разработке, важно ясно понимать, какую среду необходимо создать. Это может быть концептуальное изображение, сценарий или даже рабочий прототип. Нужно определить цель, атмосферу и ключевые элементы, которые должны присутствовать в интерактивном окружении.

1.2 Создание уровней

Рисунок 2 — Работа с редактором уровня, на рисунке представлен пример UE5 предоставляет мощные инструменты для создания уровней:

Редактор уровней: позволяет размещать объекты, настраивать ландшафт и создавать архитектурные элементы;

World Partition: облегчает работу с большими мирами, автоматически загружая и выгружая части уровня по мере необходимости.

1.3 Импорт и создание контента

Рисунок 3 – Пример текстур, добавленных из Quixel Bridge (Megascans)

В UE5 имеется возможность импортировать 3D-модели, текстуры и анимации из других программ (например, Blender, Maya или 3ds Max) или создавать их непосредственно в движке. Для этого можно использовать:

Nanite: для работы с высокодетализированными моделями без необходимости оптимизации;

Систему материалов: для создания реалистичных поверхностей с помощью нодового редактора.

1.4 Освещение и атмосфера

Рисунок 4 — Базовые настройки освещения с помощью Env. Lighting Mixer Для создания динамического освещения и реалистичных отражений используется система Lumen. В ней можно настроить атмосферные эффекты, такие как туман, облака и погодные условия, чтобы добавить глубину и реализм.

1.5 Интерактивность

Рисунок 5 – Внешний вид материала в Blueprint

Интерактивные элементы добавляются с помощью системы Blueprints или C++. Это может включать в себя:

Взаимодействие с объектами (открытие дверей, ящиков, подбор предметов и т.д.);

Системы триггеров (активация событий и/или изменений в среде).

1.6 Тестирование и оптимизация

Интерактивная среда подвергается постоянным тестам, чтобы убедиться, что все работает как предполагалось. Налаживается оптимизация производительности, чтобы обеспечить плавный игровой процесс.

2. Интегрирование элементов интерактивной среды в Unreal Engine

Интеграция элементов интерактивной среды в Unreal Engine — это важный процесс, который включает в себя создание и настройку объектов, взаимодействий и логики, чтобы сделать среду живой и увлекательной.

Процесс интегрирования элементов интерактивной среды описан в параграфах ниже.

2.1 Создание и импорт объектов

а) 3D-модели

Импорт: можно загружать 3D-модели из популярных программ, таких как Blender, Maya или 3ds Max. UE5 работает с форматами FBX и OBJ.

Создание: также есть возможность разрабатывать модели прямо в UE5, используя встроенные инструменты, например, Geometry Editing.

b) Текстуры и материалы

Импорт текстур: возможность загружать текстуры в проект и разрабатывать материалы с использованием Material Editor. UE5 поддерживает технологию PBR (Physically Based Rendering), что обеспечивает создание реалистичных материалов.

Создание материалов: применение нодового редактора для разработки сложных материалов путем комбинирования текстур, цветов, отражений и других параметров.

2.2 Настройка освещения и атмосферы

Lumen: применение системы Lumen для динамического освещения, позволяющей создавать реалистичные световые эффекты и тени в сцене. Атмосферные эффекты: включение таких элементов, как туман, облака и освещение, для усиления атмосферы и улучшения визуального восприятия.

2.3 Создание интерактивных объектов

A) Blueprints

Визуальное программирование: Blueprints — это инструмент визуальной настройки поведения, который позволяет разрабатывать интерактивные элементы без написания кода. С его помощью можно строить логические схемы для управления поведением объектов. Создание классов: возможность создавать и настраивать классы для интерактивных объектов, таких как двери, кнопки, рычаги или предметы, с которыми игрок может взаимодействовать или собирать.

В) События и триггеры

Триггеры: применение триггеров событий ДЛЯ активации взаимодействии игрока с объектами. Например, когда игрок входит в определенную зону, может открываться дверь или запускаться анимация. События: настройка различных событий, таких как нажатие кнопки или взаимодействие объектом. чтобы запускать действия, например, воспроизведение звука или изменение состояния объекта.

2.4 Анимация и персонажи

Анимация объектов: применение Animation Blueprints для разработки анимации интерактивных объектов, например, дверей, которые могут открываться и закрываться.

MetaHuman: если в сцене используются персонажи, можно их создать с помощью MetaHuman Creator и настроить анимации для взаимодействия с окружающей средой.

2.5 Создание пользовательского интерфейса (UI)

UMG (Unreal Motion Graphics): использование UMG для создания интерфейсов, таких как меню, инвентари или HUD. При этом есть возможность добавлять кнопки, текстовые поля и другие элементы управления.

Интерактивные элементы UI: настройка взаимодействия с UI, чтобы игроки могли управлять инвентарем, получать подсказки или взаимодействовать с объектами.

3. Методы работы с интерактивной средой

Создание интерактивной среды в Unreal Engine 5 охватывает различные подходы, включая применение Blueprints для визуального программирования, написание кода на C++, работу с материалами и шейдерами, а также интеграцию мультимедийных эффектов.

3.1 Blueprint для визуального программирования

Blueprints — это мощная система визуального программирования в Unreal Engine, которая позволяет создавать игровую логику и интерактивные элементы без необходимости писать код.

Основные аспекты работы с Blueprints:

- Создание классов: создание новых классов объектов (например, персонажи, предметы, уровни) на основе существующих классов, добавив к ним функциональность.
- События и функции: Blueprints позволяют создавать события (например, нажатие кнопки, пересечение триггера) и функции, которые можно вызывать в ответ на эти события.
- Визуальные ноды: логика создается с помощью визуальных нодов, которые представляют собой блоки кода. Они соединяются, чтобы определить порядок выполнения действий.
- Дебаггинг: Unreal Engine предоставляет инструменты для отладки Blueprints, позволяя отслеживать выполнение логики и выявлять ошибки.

•

3.2 Скрипты на С++

Для более сложных и производительных решений можно также использовать C++ для написания кода, который взаимодействует с движком.

Основные аспекты работы с С++:

• Создание классов: создание собственных классов, наследуя их от базовых классов Unreal Engine, таких как AActor или UObject.

- Оптимизация: С++ позволяет более точно контролировать производительность и использование ресурсов, что особенно важно для сложных игр.
- Интеграция с Blueprints: создание функций и переменных в C++, которые будут доступны в Blueprints, что позволяет комбинировать визуальное программирование с мощью C++.
- Доступ к API: C++ предоставляет полный доступ к API Unreal Engine, что позволяет использовать все возможности движка.

3.3 Работа с материалами и шейдерами

Материалы и шейдеры играют ключевую роль в создании визуально привлекательных сред.

Основные аспекты работы с материалами:

- Material Editor: UE5 предоставляет нодовый редактор для создания материалов. Есть возможность комбинирования текстур, цветов, отражений и других параметров, чтобы создать сложные материалы.
- PBR (Physically Based Rendering): UE5 поддерживает PBR, что позволяет создавать реалистичные материалы, которые реагируют на освещение в сцене.
- Шейдеры: создание пользовательских шейдеров для достижения специфических визуальных эффектов, используя HLSL (High-Level Shading Language) в Material Editor.

3.4 Реализация мультимедийных эффектов

Мультимедийные эффекты, такие как звук, анимация и видео, могут значительно улучшить интерактивную среду.

Основные аспекты реализации мультимедийных эффектов:

• Звук: UE5 поддерживает интеграцию звуковых эффектов и музыки. Имеется возможность использовать Audio Components для

- воспроизведения звуков в ответ на события (например, шаги персонажа или звуки окружения).
- Анимация: Использование Animation Blueprints для создания анимации персонажей и объектов. Также можно настраивать анимации в зависимости от состояния игры или взаимодействий.
- Видеоплееры: UE5 позволяет интегрировать видео в среду, используя Media Framework. Это может быть полезно для создания кат-сцен или интерактивных элементов, таких как экраны с видео.

ЗАКЛЮЧЕНИЕ

В результате данной работы была создана интерактивная визуальная среда. Также была изучена работа с внутренним инструментарием движка Unreal Engine 5. Приобретены знания об создании подобных проектов.

Также в рамках данной работы был проведен анализ реализаций проектных решений в существующих продуктах.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Unreal Engine 5 Знакомство с редактором // Unreal Engine Documentation URL: https://dev.epicgames.com/community/learning/tutorials/DYE1/unreal-engine-5-1-unreal-engine-5 (дата обращения: 8.10.2024).
- 2. Unreal Engine 5 Introduction to Materials // Unreal Engine Documentation URL: https://dev.epicgames.com/community/learning/tutorials/9d0a/unreal-engine-introduction-to-materials (дата обращения: 8.10.2024).
- 3. Unreal Engine 5 Procedural Foliage Tool // Unreal Engine Documentation URL: https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-foliage-tool-in-unreal-engine (дата обращения: 8.10.2024).
- 4. Quixel Bridge Marketplace with Megascans and Metahumans // Unreal Engine Documentation URL: https://quixel.com/bridge (дата обращения: 8.10.2024).
- 5. Unreal Engine 5 Interactive water with Niagara // Unreal Engine Documentation URL: https://dev.epicgames.com/community/learning/tutorials/LZen/unreal-engine-interactive-water-with-niagara-fluids-in-5-minutes (дата обращения: 23.10.2024).