Four.III Laplace's Expansion

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

1.1 Example Consider the permutation expansion.

$$\begin{vmatrix} t_{1,1} & t_{1,2} & t_{1,3} \\ t_{2,1} & t_{2,2} & t_{2,3} \\ t_{3,1} & t_{3,2} & t_{3,3} \end{vmatrix} = t_{1,1}t_{2,2}t_{3,3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{1,1}t_{2,3}t_{3,2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} + t_{1,2}t_{2,1}t_{3,3} \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{1,2}t_{2,3}t_{3,1} \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} + t_{1,3}t_{2,1}t_{3,2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} + t_{1,3}t_{2,2}t_{3,1} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$

Pick a row or column and factor out its entries; here we do the entries in the first row.

$$= t_{1,1} \cdot \begin{bmatrix} t_{2,2}t_{3,3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,3}t_{3,2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \end{bmatrix} + t_{1,2} \cdot \begin{bmatrix} t_{2,1}t_{3,3} \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,3}t_{3,1} \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} \end{bmatrix} + t_{1,3} \cdot \begin{bmatrix} t_{2,1}t_{3,2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} + t_{2,2}t_{3,1} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$$

In those permutation matrices, swap to get the first rows into place. This requires one swap to each of the permutation matrices on the second line, and two swaps to each on the third line. (Recall that row swaps change the sign of the determinant.)

$$= t_{1,1} \cdot \begin{bmatrix} t_{2,2}t_{3,3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,3}t_{3,2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \end{bmatrix}$$

$$- t_{1,2} \cdot \begin{bmatrix} t_{2,1}t_{3,3} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,3}t_{3,1} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \end{bmatrix}$$

$$+ t_{1,3} \cdot \begin{bmatrix} t_{2,1}t_{3,2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,2}t_{3,1} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \end{bmatrix}$$

$$+ t_{1,3} \cdot \begin{bmatrix} t_{2,1}t_{3,2} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + t_{2,2}t_{3,1} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} \end{bmatrix}$$
 On each line the terms in square brackets simplify to a 2×2 determinant.

 $=t_{1,1}\cdot \left|t_{2,2}t_{3,3}\begin{vmatrix}1&0&0\\0&1&0\\0&0&1\end{vmatrix}+t_{2,3}t_{3,2}\begin{vmatrix}1&0&0\\0&0&1\\0&1&0\end{vmatrix}\right|$

 $-\mathbf{t}_{1,2} \cdot \begin{vmatrix} \mathbf{t}_{2,1} \mathbf{t}_{3,3} \end{vmatrix} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} + \mathbf{t}_{2,3} \mathbf{t}_{3,1} \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$

$$= t_{1,1} \cdot \begin{vmatrix} t_{2,2} & t_{2,3} \\ t_{3,2} & t_{3,3} \end{vmatrix} - t_{1,2} \cdot \begin{vmatrix} t_{2,1} & t_{2,3} \\ t_{3,1} & t_{3,3} \end{vmatrix} + t_{1,3} \cdot \begin{vmatrix} t_{2,1} & t_{2,2} \\ t_{3,1} & t_{3,2} \end{vmatrix}$$

Minor

1.2 Definition For any $n \times n$ matrix T, the $(n-1) \times (n-1)$ matrix formed by deleting row i and column j of T is the i, j minor of T. The i, j cofactor $T_{i,j}$ of T is $(-1)^{i+j}$ times the determinant of the i, j minor of T.

Minor

1.2 Definition For any $n \times n$ matrix T, the $(n-1) \times (n-1)$ matrix formed by deleting row i and column j of T is the i, j minor of T. The i, j cofactor $T_{i,j}$ of T is $(-1)^{i+j}$ times the determinant of the i, j minor of T.

Example For this matrix

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & -1 \\ 7 & 0 & -3 \end{pmatrix}$$

the 2,3 minor is

$$\begin{pmatrix} 3 & 1 \\ 7 & 0 \end{pmatrix}$$

so the associated cofactor is $S_{2,3} = (-1)^5 \cdot (-7) = 7$.

1.5 Theorem Where T is an $n \times n$ matrix, we can find the determinant by expanding by cofactors on any row i or column j.

$$\begin{split} |T| &= t_{i,1} \cdot T_{i,1} + t_{i,2} \cdot T_{i,2} + \dots + t_{i,n} \cdot T_{i,n} \\ &= t_{1,j} \cdot T_{1,j} + t_{2,j} \cdot T_{2,j} + \dots + t_{n,j} \cdot T_{n,j} \end{split}$$

1.5 Theorem Where T is an $n \times n$ matrix, we can find the determinant by expanding by cofactors on any row i or column j.

$$\begin{split} |T| &= t_{i,1} \cdot T_{i,1} + t_{i,2} \cdot T_{i,2} + \dots + t_{i,n} \cdot T_{i,n} \\ &= t_{1,j} \cdot T_{1,j} + t_{2,j} \cdot T_{2,j} + \dots + t_{n,j} \cdot T_{n,j} \end{split}$$

Proof Exercise 25.

QED

1.5 Theorem Where T is an $n \times n$ matrix, we can find the determinant by expanding by cofactors on any row i or column j.

$$\begin{split} |T| &= t_{i,1} \cdot T_{i,1} + t_{i,2} \cdot T_{i,2} + \dots + t_{i,n} \cdot T_{i,n} \\ &= t_{1,j} \cdot T_{1,j} + t_{2,j} \cdot T_{2,j} + \dots + t_{n,j} \cdot T_{n,j} \end{split}$$

Proof Exercise 25.

QED

We can find this determinant

$$\begin{vmatrix} 3 & 1 & 2 \\ 5 & 4 & -1 \\ 7 & 0 & -3 \end{vmatrix}$$

by expanding along the second row. Besides $S_{2,3}=7$, the other two cofactors are here.

$$S_{2,1} = (-1)^3 \cdot \begin{vmatrix} 1 & 2 \\ 0 & -3 \end{vmatrix} = 3 \quad S_{2,2} = (-1)^4 \cdot \begin{vmatrix} 3 & 2 \\ 7 & -3 \end{vmatrix} = -23$$

The Laplace expansion gives $5 \cdot 3 + 4 \cdot (-23) - 1 \cdot 7 = -84$.

Adjoint

1.8 Definition The matrix adjoint to the square matrix T is

$$adj(T) = \begin{pmatrix} T_{1,1} & T_{2,1} & \dots & T_{n,1} \\ T_{1,2} & T_{2,2} & \dots & T_{n,2} \\ & \vdots & & & \\ T_{1,n} & T_{2,n} & \dots & T_{n,n} \end{pmatrix}$$

where $T_{j,i}$ is the j, i cofactor.

Note that the order of the subscripts in this matrix is opposite to the order that you might expect.

Example The matrix adjoint to this

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & -1 \\ 7 & 0 & -3 \end{pmatrix}$$

is this (some of these cofactors we have calculated above).

$$\begin{pmatrix} S_{1,1} & S_{2,1} & S_{3,1} \\ S_{1,2} & S_{2,2} & S_{3,2} \\ S_{1,3} & S_{2,3} & S_{3,3} \end{pmatrix} = \begin{pmatrix} -12 & 3 & -9 \\ 8 & -23 & 13 \\ -28 & 7 & 7 \end{pmatrix}$$

1.9 Theorem Where T is a square matrix, $T \cdot adj(T) = adj(T) \cdot T = |T| \cdot I$. Thus, if $|T| \neq 0$ then $T^{-1} = (1/|T|) \cdot adj(T)$.

1.9 Theorem Where T is a square matrix, $T \cdot \operatorname{adj}(T) = \operatorname{adj}(T) \cdot T = |T| \cdot I$. Thus, if $|T| \neq 0$ then $T^{-1} = (1/|T|) \cdot \operatorname{adj}(T)$.

This summarizes.

$$\begin{pmatrix} t_{1,1} & t_{1,2} & \dots & t_{1,n} \\ t_{2,1} & t_{2,2} & \dots & t_{2,n} \\ & \vdots & & & \\ t_{n,1} & t_{n,2} & \dots & t_{n,n} \end{pmatrix} \begin{pmatrix} T_{1,1} & T_{2,1} & \dots & T_{n,1} \\ T_{1,2} & T_{2,2} & \dots & T_{n,2} \\ & \vdots & & & \\ T_{1,n} & T_{2,n} & \dots & T_{n,n} \end{pmatrix}$$

$$= \begin{pmatrix} |T| & 0 & \dots & 0 \\ 0 & |T| & \dots & 0 \\ \vdots & & & & \\ 0 & 0 & \dots & |T| \end{pmatrix}$$

1.9 *Proof* Theorem 1.5 says we can calculate the determinant of an $n \times n$ matrix T by taking linear combinations of entries from a row and their associated cofactors.

$$t_{i,1} \cdot T_{i,1} + t_{i,2} \cdot T_{i,2} + \dots + t_{i,n} \cdot T_{i,n} = |T|$$

This immediately gives the diagonal entries of the matrix result of $T \operatorname{adj}(T)$.

1.9 *Proof* Theorem 1.5 says we can calculate the determinant of an $n \times n$ matrix T by taking linear combinations of entries from a row and their associated cofactors.

$$t_{i,1} \cdot T_{i,1} + t_{i,2} \cdot T_{i,2} + \dots + t_{i,n} \cdot T_{i,n} = |T|$$

This immediately gives the diagonal entries of the matrix result of T adj(T).

For the off-diagonal entries, recall that a matrix with two identical rows has a determinant of 0. Thus, for any matrix T, weighing the cofactors by entries from row k with $k \neq i$ gives 0

$$t_{i,1} \cdot T_{k,1} + t_{i,2} \cdot T_{k,2} + \cdots + t_{i,n} \cdot T_{k,n} = 0$$

because it represents the expansion along the row k of a matrix with row i equal to row k. QED

1.9 Theorem Where T is a square matrix, $T \cdot adj(T) = adj(T) \cdot T = |T| \cdot I$. Thus, if $|T| \neq 0$ then $T^{-1} = (1/|T|) \cdot adj(T)$.

1.9 Theorem Where T is a square matrix, $T \cdot \operatorname{adj}(T) = \operatorname{adj}(T) \cdot T = |T| \cdot I$. Thus, if $|T| \neq 0$ then $T^{-1} = (1/|T|) \cdot \operatorname{adj}(T)$.

Example The inverse of this matrix

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & -1 \\ 7 & 0 & -3 \end{pmatrix}$$

is this.

$$\frac{1}{|S|} \cdot adj(S) = \frac{1}{84} \cdot \begin{pmatrix} -12 & 3 & -9 \\ 8 & -23 & 13 \\ -28 & 7 & 7 \end{pmatrix}$$

1.9 Theorem Where T is a square matrix, $T \cdot adj(T) = adj(T) \cdot T = |T| \cdot I$. Thus, if $|T| \neq 0$ then $T^{-1} = (1/|T|) \cdot adj(T)$.

Example The inverse of this matrix

$$S = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & -1 \\ 7 & 0 & -3 \end{pmatrix}$$

is this.

$$\frac{1}{|S|} \cdot adj(S) = \frac{1}{84} \cdot \begin{pmatrix} -12 & 3 & -9 \\ 8 & -23 & 13 \\ -28 & 7 & 7 \end{pmatrix}$$

Note The formulas from this section are not the best choice for computations with arbitrary matrices because they typically require more arithmetic than the Gauss-Jordan method.