GEOMETRY Through Algebra

Chakali Suresh

Contents

1	Triangle															1
1.1	l Vectors															1

Chapter 1

Triangle

Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}, \, \mathbf{B} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \, \mathbf{C} = \begin{pmatrix} -5 \\ -4 \end{pmatrix}$$
 (1.1)

1.1. Vectors

1.1.1. the direction vector of AB is defined as

$$\mathbf{B} - \mathbf{A} \tag{1.1.1.1}$$

Find the direction vectors of AB, BC and CA.

Solution:

(a) The Direction vector of AB is

$$= \mathbf{B} - \mathbf{A} \tag{1.1.1.2}$$

$$= \begin{pmatrix} -2 - (0) \\ -4 - (-5) \end{pmatrix} \tag{1.1.1.3}$$

$$= \begin{pmatrix} -2\\1 \end{pmatrix} \tag{1.1.1.4}$$

(b) The Direction vector of BC

$$= \mathbf{C} - \mathbf{B} \tag{1.1.1.5}$$

$$= \begin{pmatrix} -5 - (-2) \\ -4 - (-4) \end{pmatrix} \tag{1.1.1.6}$$

$$= \begin{pmatrix} -3\\0 \end{pmatrix} \tag{1.1.1.7}$$

(c) The Direction vector of CA

$$= \mathbf{A} - \mathbf{C} \tag{1.1.1.8}$$

$$= \begin{pmatrix} 0 - (-5) \\ -5 - (-4) \end{pmatrix} \tag{1.1.1.9}$$

$$= \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{1.1.1.10}$$

1.1.2. The length of side AB, BC and AC is

Solution: Given,

$$\mathbf{A} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}, \tag{1.1.2.1}$$

$$\mathbf{B} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}, \tag{1.1.2.2}$$

$$\mathbf{C} = \begin{pmatrix} -5 \\ -4 \end{pmatrix} \tag{1.1.2.3}$$

Now solving for AB,

$$\|\mathbf{A} - \mathbf{B}\| = \sqrt{(\mathbf{A} - \mathbf{B})^{\top} (\mathbf{A} - \mathbf{B})}$$
 (1.1.2.4)

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix} \qquad = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \qquad (1.1.2.5)$$

$$\|\mathbf{A} - \mathbf{B}\| = \sqrt{\begin{pmatrix} 2 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}}$$
 (1.1.2.6)

$$=\sqrt{(2)^2 + (-1)^2} \tag{1.1.2.7}$$

$$\implies \|\mathbf{A} - \mathbf{B}\| = \sqrt{5} \tag{1.1.2.8}$$

Now solving for BC,

$$\|\mathbf{B} - \mathbf{C}\| = \sqrt{(\mathbf{B} - \mathbf{C})^{\top} (\mathbf{B} - \mathbf{C})}$$
 (1.1.2.9)

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \tag{1.1.2.10}$$

$$\|\mathbf{B} - \mathbf{C}\| = \sqrt{\begin{pmatrix} 3 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix}}$$
 (1.1.2.11)

$$=\sqrt{\left(3\right)^2 + \left(0\right)^2} \tag{1.1.2.12}$$

$$\implies \|\mathbf{B} - \mathbf{C}\| = \sqrt{9} \tag{1.1.2.13}$$

Now solving for AC,

$$\|\mathbf{A} - \mathbf{C}\| = \sqrt{(\mathbf{A} - \mathbf{C})^{\top} (\mathbf{A} - \mathbf{C})}$$
 (1.1.2.14)

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} -5\\1 \end{pmatrix} \tag{1.1.2.15}$$

$$\|\mathbf{A} - \mathbf{C}\| = \sqrt{\begin{pmatrix} -5 & 1 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \end{pmatrix}}$$
 (1.1.2.16)

$$=\sqrt{(-5)^2 + (1)^2} \tag{1.1.2.17}$$

$$\implies \|\mathbf{A} - \mathbf{C}\| = \sqrt{26} \tag{1.1.2.18}$$

1.1.3. Points **A**, **B**, **C** are defined to be colliner if

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 2 \tag{1.1.3.1}$$

Solution:

Given that,

$$\mathbf{A} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} -5 \\ -4 \end{pmatrix} \tag{1.1.3.2}$$

Given that A, B, C are collinear if

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} < 3 \tag{1.1.3.3}$$

Let

$$\mathbf{R} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -2 & -5 \\ -5 & -4 & -4 \end{pmatrix} \tag{1.1.3.4}$$

The matrix \mathbf{R} can be row reduced as follows,

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & -2 & -5 \\
-5 & -4 & -4
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 + (5 + R_2)}
\begin{pmatrix}
1 & 1 & 1 \\
0 & -2 & -5 \\
0 & -1 & -4
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow -2R_3 + R_2}
\begin{pmatrix}
1 & 1 & 1 \\
0 & -2 & -5 \\
0 & 0 & 3
\end{pmatrix}$$
(1.1.3.5)

There are no zero rows. So,

$$\operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix} = 3 \tag{1.1.3.7}$$

Hence, from (1.1.3.3) the points $\mathbf{A},\mathbf{B},\mathbf{C}$ are not collinear.

Figure 1.1: $\mathbf{A}, \mathbf{B}, \mathbf{C}$ plot

From Fig. 1.1, We can see that $\mathbf{A},\mathbf{B},\mathbf{C}$ are not collinear .

1.1.4. The parametric form of the equation of AB is

$$\mathbf{x} = \mathbf{A} + k\mathbf{m} \tag{1.1.4.1}$$

where

$$\mathbf{m} = \mathbf{B} - \mathbf{A} \tag{1.1.4.2}$$

is the direction vector of AB. Find the parametric equations of AB, BC and CA.

Solution:

The parametric equation for AB is given by

$$\mathbf{x} = \mathbf{A} + k\mathbf{m} \tag{1.1.4.3}$$

where,
$$\mathbf{m} = \mathbf{B} - \mathbf{A}$$
 (1.1.4.4)

$$= \begin{pmatrix} -2 \\ -4 \end{pmatrix} - \begin{pmatrix} 0 \\ -5 \end{pmatrix} \tag{1.1.4.5}$$

$$= \begin{pmatrix} -2\\1 \end{pmatrix} \tag{1.1.4.6}$$

Hence we get,

$$\mathbf{AB}: \mathbf{x} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} + k \begin{pmatrix} -2 \\ 1 \end{pmatrix} \tag{1.1.4.7}$$

Similarly,

$$\mathbf{BC}: \mathbf{x} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} + k \begin{pmatrix} -3 \\ 0 \end{pmatrix} \tag{1.1.4.8}$$

$$\mathbf{CA}: \mathbf{x} = \begin{pmatrix} -5 \\ -4 \end{pmatrix} + k \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{1.1.4.9}$$

1.1.5. The normal form of the equation of AB is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.1}$$

where

$$\mathbf{n}^{\top}\mathbf{m} = \mathbf{n}^{\top} \left(\mathbf{B} - \mathbf{A} \right) = 0 \tag{1.1.5.2}$$

or,

$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m} \tag{1.1.5.3}$$

then find the normal form of the equations of AB BC and CA

Solution::

The normal equation for the side AB is

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{1.1.5.4}$$

$$\implies \mathbf{n}^{\top} \mathbf{x} = \mathbf{n}^{\top} \mathbf{A} \tag{1.1.5.5}$$

Now our task is to find the **n** so that we can find \mathbf{n}^{\top} . As given.

$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathbf{m} \tag{1.1.5.6}$$

Here $\mathbf{m} = \mathbf{B} - \mathbf{A}$ for side \mathbf{AB}

$$\implies \mathbf{m} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} - \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$

$$= \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$(1.1.5.7)$$

$$(1.1.5.8)$$

Now as we have obtained vector \mathbf{m} we can use this to obtain vector \mathbf{n}

$$\mathbf{n} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{1.1.5.9}$$

The transpose of \mathbf{n} is

$$\mathbf{n}^{\top} = \begin{pmatrix} 1 & 2 \end{pmatrix} \tag{1.1.5.10}$$

Hence the normal equation of side AB is

$$\begin{pmatrix} 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ -5 \end{pmatrix} \tag{1.1.5.11}$$

$$\implies \begin{pmatrix} 1 & 2 \end{pmatrix} \mathbf{x} = -10 \tag{1.1.5.12}$$

Figure 1.2: The line \mathbf{AB} plotted

Similarly

$$\implies$$
 BC: $\begin{pmatrix} 0 & 3 \end{pmatrix}$ **x** = -12 (1.1.5.13)

Figure 1.3: The line ${f BC}$ plotted

$$\implies$$
 CA: $\begin{pmatrix} -1 & -5 \end{pmatrix}$ x = 25 (1.1.5.14)

Figure 1.4: The line **CA** plotted

1.1.6. Find the area of the $\triangle ABC$

Solution:

Given,

$$\mathbf{A} = \begin{pmatrix} 0 \\ -5 \end{pmatrix}; \mathbf{B} = \begin{pmatrix} -2 \\ -4 \end{pmatrix}; \mathbf{C} = \begin{pmatrix} -5 \\ -4 \end{pmatrix}$$
 (1.1.6.1)

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} - \begin{pmatrix} -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
(1.1.6.2)

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} - \begin{pmatrix} -5 \\ -4 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
(1.1.6.3)

$$\therefore (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) = \begin{vmatrix} 2 & -1 \\ 5 & -1 \end{vmatrix}$$
 (1.1.6.4)

$$= 2 \times -1 - 5 \times (-1) \qquad (1.1.6.5)$$

$$= -2 + 5 \tag{1.1.6.6}$$

$$=3$$
 (1.1.6.7)

$$\implies \frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| = \frac{1}{2} \| 3 \| = \frac{3}{2}$$
 (1.1.6.8)

1.1.7. Find the angles A, B, C if

$$\cos A \triangleq \frac{(\mathbf{B} - \mathbf{A})^{\top} \mathbf{C} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{C} - \mathbf{A}\|}$$
(1.1.7.1)

Solution:

From the given values of **A**, **B**, **C**,

(a) Finding the value of angle A

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} -2\\1 \end{pmatrix} \tag{1.1.7.2}$$

and

$$\mathbf{C} - \mathbf{A} = \begin{pmatrix} -5\\1 \end{pmatrix} \tag{1.1.7.3}$$

also calculating the values of norms

$$\|\mathbf{B} - \mathbf{A}\| = \sqrt{5} \tag{1.1.7.4}$$

$$\|\mathbf{C} - \mathbf{A}\| = \sqrt{26} \tag{1.1.7.5}$$

and by doing matrix multiplication we get,

$$(\mathbf{B} - \mathbf{A})^{\top} (\mathbf{C} - \mathbf{A}) = \begin{pmatrix} -2 & 1 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \end{pmatrix} = 11$$
 (1.1.7.6)

So, we get

$$\cos A = \frac{11}{\sqrt{5}\sqrt{26}} \tag{1.1.7.7}$$

$$=\frac{11}{\sqrt{130}}\tag{1.1.7.8}$$

$$\implies A = \cos^{-1} \frac{11}{\sqrt{130}} \tag{1.1.7.9}$$

(b) Finding the value of angle B

$$\mathbf{C} - \mathbf{B} = \begin{pmatrix} -3\\0 \end{pmatrix} \tag{1.1.7.10}$$

and

$$\mathbf{A} - \mathbf{B} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \tag{1.1.7.11}$$

also calculating the values of norms

$$\|\mathbf{C} - \mathbf{B}\| = \sqrt{9} = 3 \tag{1.1.7.12}$$

$$\|\mathbf{A} - \mathbf{B}\| = \sqrt{5} \tag{1.1.7.13}$$

and by doing matrix multiplication we get,

$$(\mathbf{C} - \mathbf{B})^{\top} (\mathbf{A} - \mathbf{B}) = \begin{pmatrix} -3 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = -6 \qquad (1.1.7.14)$$

So, we get

$$\cos B = \frac{-6}{3\sqrt{5}} \tag{1.1.7.15}$$

$$=\frac{-2}{\sqrt{5}}\tag{1.1.7.16}$$

$$\implies B = \cos^{-1} \frac{-2}{\sqrt{5}} \tag{1.1.7.17}$$

(c) Finding the value of angle C

$$\mathbf{A} - \mathbf{C} = \begin{pmatrix} 5 \\ -1 \end{pmatrix} \tag{1.1.7.18}$$

and

$$\mathbf{B} - \mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \tag{1.1.7.19}$$

also calculating the values of norms

$$\|\mathbf{A} - \mathbf{C}\| = \sqrt{26} \tag{1.1.7.20}$$

$$\|\mathbf{B} - \mathbf{C}\| = \sqrt{9} = 3\tag{1.1.7.21}$$

and by doing matrix multiplication we get,

$$(\mathbf{A} - \mathbf{C})^{\top} (\mathbf{B} - \mathbf{C}) = \begin{pmatrix} 5 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

$$= 15$$

$$(1.1.7.22)$$

SO

$$\cos C = \frac{15}{3\sqrt{26}} \tag{1.1.7.23}$$

$$=\frac{5}{\sqrt{26}}\tag{1.1.7.24}$$

$$\implies C = \cos^{-1} \frac{5}{\sqrt{26}}$$
 (1.1.7.25)