Introduction To Machine Learning – Mercan Karacabey

TASK-1 What is machine learning?

General Definition: Gives computers the ability to learn without being explicitly programmed.

Artificial Intelligence-> Machine Learning -> Deep Learning

It is learned by machines based on some algorithms by utilizing its composition and values from the density of data. (Without human programming and rule based programming

Machine Learning:

Explains with 3 categories:

- → Supervised Learning : Classification & Regression Labels Known
- → Unsupervised Learning : Clustering(k-means / dbscan) & Dimension Reduction Labels not known
- → Reinforcement Learning : Deep Learning It used by enhancing power of learning.

Dimension Reduction \rightarrow It is critic and important for performance and visualization.

Knowledge Driven versus Data Driven->

Knowledge Driven: Human based approach - Condition Based

Data Driven: Based on data composition, future extraction

Black Box - White Box →

If we know the content of code defined as White Box, against of this condition defined as Black Box

Black Winter of AI →

Between the 1970s and 1980s, it was not enough knowledge driven models for learning capacity and expected results.

Explicit Programming is similar to White Box Programming.

TASK -2 Supervised versus Unsupervised Learning

Evaluation - Labels

Supervised uses labels.

Unsupervised does not use labels.

<u>Categories</u>

- → Supervised Learning : Classification & Regression Labels Known
- → Unsupervised Learning : Clustering(k-means / dbscan) & Dimension Reduction Labels not known

Supervised Learning Examples:

E-Mail Filtering: Spam or not?

Supervised Learning, because label is known. Regression or decision tree can be use.

Pearson Test of English

Realty Classification

Unsupervised Learning Examples:

Clustering Problems – Define Customer Interest - Anomaly Detection

Some Image Processing Progress

Fraud Detection

TASK 3: Data Science Project Progress:

What are the common steps in data preprocessing?

- → Define research goals
- → Find data and retrieve data
- → Data Preparation // Cleaning // Outlier Detection // Data Scaling(MIN-MAX Method-Z-Score Method)
- → Data Augmentation // Exploration
- → Data Modeling Select algorithm -- Learning Model Model Run & Execution
- → Presentation and automation

___Data Prepation Step : Anomaly Detection Basics___

Outlier Detection

Clean Noise

Find Novelties

Deviations

Exceptions

For min-max standard scaling algorithms: In the preprocessing steps, for missing values we use statistical methods. One of these statistical method is min-max step. Or I replace the median/mean value and missing value. (Has Gaussion Curve – Normal Distributed Situation)

Min-max: Fill the values with 0-1 related column.

MIN-MAX – Standard Scaling – Using Functions

```
import pandas as pd
df = pd.read_csv("iris.csv")
df.head()

df.tail()

df["sepal.length_new"] = df["sepal.length"]

df = df.drop("sepal.length",1)

print(df)

from sklearn import preprocessing
```

```
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
print(scaler.fit(df))
StandardScaler(copy=True, with_mean=True, with_std=True)
print(scaler.mean_)

print(scaler.transform(df))
print(scaler.transform(df))
```

MIN-MAX - STANDARD SCALING - NOT USING FUNCTIONS

```
df["sepal.length_new"].min()
df["sepal.length_new"].max()

min_max_scaler_value = []
for i in df["sepal.length_new"]:
     min_max_scaler_value.append(i - min(df["sepal.length_new"])
/ max(df["sepal.length_new"])-min(df["sepal.length_new"]))

z_score_calculation = []
for i in df["sepal.length_new"]:
    z_score_calculation.append(i - (df["sepal.length_new"]).mean
/ df["sepal.length_new"].std /
math.sqrt(len(df["sepal.length_new"])))
```