

Data Science Concepts

About The Course

by <u>Ankit Rathi</u>

References

Springer Texts in Statistics Gareth James Daniela Witten Trevor Hastie Robert Tibshirani An Introduction to Statistical Learning with Applications in R

CS109A Introduction to Data Science
Pavlos Protopapas, Kevin Rader and Chris Tanner

Machine Learning

by Andrew Ng

Topic

Section

Topic of the slide

Section of the course

Course Section Topic

Content of the slide

Status of the course Completed
Upcoming

Outline

- About The Course
- Introduction
- End-to-End Process
- Data Ingestion, Wrangling & Visualization
- Machine Learning Algorithms
- Deep Learning Networks
- Natural Language Processing
- Reinforcement Learning
- Model Training & Deployment
- Appendix

This Lecture

About The Course

Source: https://www.kdnuggets.com/2018/09/what-is-data-science.html

Data Science Lifecycle

Source: https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/lifecycle

Typical Data Analytics Workflow

Machine Learning Algorithms

About The Course

Source: https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png

providing lift for classification and forecasting models

Deep Neural Networks

feature extraction and classification of images

Convolutional
Neural
Networks

for sequence of events, language models, time series, etc.

Recurrent
Neural
Networks

Source: https://www.houseofbots.com/news-detail/11747-1-here-is-the-elementary-study-of-deep-learning-algorithms

Source: https://nervanasystems.github.io/coach/ images/design.png

- Mathematics (Linear Algebra, Multivariate Calculus, Probability & Statistics)
- **Programming** (SQL, Python, PySpark)
- **Big Data** (Spark, Hive)
- Cloud Computing (AWS, GCP & Azure)
- Data Management (Strategy, Governance & Architecture)
- Operating System (UNIX, Linux)
- Algorithms & Data Structures

Course Status

- About The Course
- Introduction
- **End-to-End Process**
- Data Ingestion, Wrangling & Visualization
- Machine Learning Algorithms
- Deep Learning Networks
- Natural Language Processing
- Reinforcement Learning
- Model Training & Deployment
- **Appendix**

In Progress Completed **Upcoming**

Questions?

Thank You