INTÉGRALE DE LEBESGUE

(INTL)

Thibaut Deheuvels

1A maths 2019, ENS de Rennes

OIIA	TITLE 0 CARDINAGA, DENOMBRABIETTE	1	4.4 Theorems de convergence domines et applications . I	10
0.1	Cardinalité	1	4.5 Lien entre les intégrales de RIEMANN et de LEBESGUE	21
0.2	Dénombrabilité	1	Chapitre 5 – Construction de mesures, unicité 2	23
Сна	PITRE 1 – TRIBUS, TRIBU BORÉLIENNE	2	5.1 Construction de mesures 2	23
1.1	Définitions et exemples	2	5.2 Unicité des mesures	
		2	5.3 Tribu complétée, mesure complétée 2	
1.3	Tribu image réciproque, tribu image	3	Chapitre 6 – Mesure produit2	
Сна	PITRE 2 – MESURES	5	6.1 Tribu produit	
$^{2.1}$	Définitions et exemples	5	6.2 Mesure produit	
	Propriétés des mesures	5	6.3 Théorèmes de Fubini	
2.3	Mesure de Lebesgue	6	Chapitre 7 – Changement de variable	
2.4	Ensembles négligeables	7		
Сна	PITRE 3 – FONCTIONS MESURABLES	8		33 33
3.1	Mesurabilité	8	, , , , , , , , , , , , , , , , , , , ,	
3.2	Montrer la mesurabilité	8	CHAPITRE 8 – ESPACES L ^p 3	
3.3	Propriétés des fonctions mesurables	9	8.1 Définitions	
3.4		9	8.2 Inégalités de HÖLDER et MINKOWSKI	
3.5	Approximation des fonctions étagées	10	8.3 Les espaces de Banach L ^p	
Сна	PITRE 4 – INTÉGRALE DE LEBESGUE	11	8.4 Densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$ 4	ŧο
4.1	Intégration de fonctions		Chapitre 9 – Convolution & applications 4	
	Théorème de Beppo Levi et conséquences		9.1 Opérateur de translation 4	
4.3	Fonctions intégrables	16	9.2 Convolution 4	12

Chapitre o

CARDINAUX, DÉNOMBRABILITÉ

0.1 CARDINALITÉ

DÉFINITION 0.1. Deux ensembles E et F sont dits équipotents s'il existe une bijection de E dans F. On note alors $E \simeq F$ ou $\operatorname{Card} E = \operatorname{Card} F$.

 \triangleright EXEMPLE. Si E est un ensemble, alors $\mathscr{P}(E) \simeq \{0,1\}^E$ car la fonction $A \subset E \longmapsto \mathbb{1}_A$ est une bijection.

NOTATION. Si E et F sont deux ensembles, on note $\operatorname{Card} E \leqslant \operatorname{Card} F$ s'il existe une injection de E dans F. Si, de plus, les ensembles E et F ne sont pas équipotents, on note $\operatorname{Card} E < \operatorname{Card} F$. De la même façon, on définit les notations $\operatorname{Card} E \geqslant \operatorname{Card} F$ et $\operatorname{Card} E > \operatorname{Card} F$.

♦ REMARQUE (axiome du choix [AC]). Soit E un ensemble non vide. Il existe une fonction choix $f: \mathscr{P}(E) \to E$ telle que, pour toute partie non vide A de E, on ait $f(A) \in A$. Une formulation équivalente est la suivante : si I est un ensemble et $(E_i)_{i \in I}$ est une famille d'ensembles non vides, alors le produit $\prod_{i \in I} E_i$ est non vide.

PROPOSITION 0.2. – Si Card $E \leq \text{Card } F$, alors Card $F \geqslant \text{Card } E$.

- Si Card $E \geqslant \operatorname{Card} F$, alors Card $F \leqslant \operatorname{Card} E$.

AC

THÉORÈME 0.3 (CANTOR-BERNSTEIN). Si Card $E \leq \text{Card } F$ et Card $F \leq \text{Card } E$, alors Card E = Card F.

PROPOSITION 0.4. Si E est non vide, alors $\operatorname{Card} E < \operatorname{Card} \mathscr{P}(E)$.

Preuve On a Card $E \leq \text{Card } \mathcal{P}(E)$ car la fonction $x \in E \longmapsto \{x\} \in \mathcal{P}(E)$ est clairement injective. Par l'absurde, supposons l'égalité. Alors il existe une fonction $\varphi \colon E \to \mathcal{P}(E)$ bijective. On pose

$$A := \{ x \in E \mid x \notin \varphi(x) \}.$$

Comme φ est une bijection, il existe $a \in E$ tel que $\varphi(a) = A$. Si $a \in A$, alors $a \notin \varphi(a) = A$ ce qui est absurde. Si $a \notin A$, alors $a \in \varphi(a) = A$ ce qui est également absurde. D'où le résultat.

0.2 DÉNOMBRABILITÉ

- DÉFINITION 0.5. Un ensemble E est dit $d\acute{e}nombrable$ si $Card E \leqslant Card \mathbb{N}$.
- ♦ Remarque. De manière équivalente et sans avoir à recourir à l'axiome du choix, un ensemble E est dénombrable si et seulement si Card $\mathbb{N} \geqslant \operatorname{Card} E$.
- \triangleright Exemples. Les ensembles $\mathbb Z$ et $\mathbb N^2$ sont dénombrables par les bijections

$$n \in \mathbb{Z} \longmapsto \begin{cases} 2n & \text{si } n \geqslant 0, \\ -2n-1 & \text{sinon,} \end{cases}$$
 et $(n,m) \in \mathbb{N}^2 \longmapsto \frac{(n+m)(n+m+1)}{2} + m.$

- Par récurrence, on montre que Card $\mathbb{N}^k = \operatorname{Card} \mathbb{N}$ pour tout $k \in \mathbb{N}$.
- Si E_1, \ldots, E_k sont k ensembles dénombrables, alors $\prod_{i=1}^k E_i$ est dénombrable.
- L'ensemble $\mathbb Q$ est dénombrable.
- L'ensemble $\mathscr{P}(\mathbb{N})$ ne l'est pas car Card $\mathbb{N} <$ Card $\mathscr{P}(\mathbb{N})$, donc $\{0,1\}^{\mathbb{N}}$ ne l'est pas.

PROPOSITION 0.6. Si $(E_n)_{n\in\mathbb{N}}$ est une suite d'ensembles dénombrables, alors $\bigcup_{n\in\mathbb{N}} E_n$ est dénombrable.

Théorème 0.7. L'ensemble $\mathbb R$ n'est pas dénombrable.

Preuve La fonction

$$(x_n)_{n\in\mathbb{N}}\in\{0,1\}^{\mathbb{N}}\longmapsto\sum_{n\geq 0}\frac{2x_n}{3^{n+1}}\in[0,1]$$

est injective, donc $\operatorname{Card} \mathbb{N} < \operatorname{Card} \{0,1\}^{\mathbb{N}} \leqslant \operatorname{Card} [0,1] \leqslant \operatorname{Card} \mathbb{R}$.

Chapitre 1

Tribus, tribu borélienne

1.1 Définitions	et exemples	2	1.3 Tri	bu image réciproque, tribu image	3
1.2 Tribu boré	lienne	2	1.3.1	Tribu image réciproque	3
1.2.1 Espace	s topologiques	2	1.3.2	Tribu image	4
1.2.2 Tribu	borélienne	3	1.3.3	Lemme de transport	4

1.1 DÉFINITIONS ET EXEMPLES

Soit E un ensemble. On appelle classe de parties de E tout sous-ensemble de $\mathscr{P}(E)$.

DÉFINITION 1.1. On appelle tribu (ou σ -algèbre) sur E toute classe de parties $\mathscr A$ de E telle que

- $-\emptyset\in\mathscr{A}$;
- si $A \in \mathcal{A}$, alors $A^{c} \in \mathcal{A}$;

(stabilité par passage au complémentaire)

– si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathscr{A} , alors $\bigcup_{n\in\mathbb{N}} A_n \in \mathscr{A}$.

(stabilité par union dénombrable)

On appelle alors (E, \mathscr{A}) un espace mesurable.

- ♦ REMARQUE. Un tribu est aussi stable par intersection dénombrable. En effet, si $(A_n)_{n\in\mathbb{N}}$ est une suite de A, alors $\bigcap_{n\in\mathbb{N}} A_n = (\bigcup_{n\in\mathbb{N}} A_n^c)^c \in \mathscr{A}$.
- \triangleright Exemples. La classe de parties $\{\emptyset, E\}$ est une tribu sur E appelée tribu grossière.
 - La classe de parties $\mathscr{P}(E)$ en est une appelée tribu triviale.
 - Si $A \subset E$, alors $\{\emptyset, E, A, A^c\}$ est une tribu.
 - La classe de parties $\{A \subset E \mid A \text{ dénombrable ou } A^{c} \text{ dénombrable}\}$ est une tribu.
- \diamond Remarque. Une intersection quelconque de tribus sur E est encore une tribu sur E.

DÉFINITION-PROPOSITION 1.2. Si \mathscr{C} est une classe de partie de E, alors il existe une plus petite tribu (au sens de l'inclusion) contenant C. On appelle cette tribu la tribu engendrée par \mathscr{C} et on la note $\sigma(\mathscr{C})$. En d'autres termes, si \mathscr{A} est une tribu sur E telle que $\mathscr{C} \subset \mathscr{A}$, alors $\sigma(\mathscr{C}) \subset \mathscr{A}$.

Preuve La plus petite tribu qui contient \mathscr{C} est clairement

$$\sigma(C) = \bigcup_{\mathscr{C} \subset \mathscr{A}} \mathscr{A}.$$

$$\square \text{ tribu de } E$$

 \triangleright Exemple. Si $A \subset E$, alors $\sigma(\{A\}) = \{\sigma, A, A^c, E\}$.

Exercice 1.1. Quelle est la tribu engendrée par les singletons de E?

Il arrive fréquemment, lorsqu'on est confronté à une tribu engendrée par une classe de parties $\mathscr C$, qu'on veuille démontrer qu'une propriété vérifiée par les éléments de $\mathscr C$ reste vraie pour $\sigma(\mathscr C)$ tout entière. Pour montrer une telle chose, on pourrait vouloir essayer de décrire un élément quelconque de $\sigma(\mathscr C)$ à partir d'éléments de $\mathscr C$. Malheureusement, il n'y a pas de procédé général pour y parvenir : un élément de $\sigma(\mathscr C)$ ne peut pas toujours être décrit comme une union dénombrable d'ensembles de $\mathscr C$, ni comme une intersection d'union de tels ensembles, etc. La remarque suivante suggère un procédé de démonstration bien commode pour montrer que $\sigma(\mathscr C)$ continue de vérifier une propriété vraie pour $\mathscr C$. Nous l'utiliserons à de nombreuses reprises dans ce cours.

- \diamond REMARQUE. Pour montrer que les éléments de $\sigma(\mathscr{C})$ vérifient une propriété (P), il suffit de montrer que
 - les éléments de \mathscr{C} vérifient (P),
 - la classe de parties $\mathscr{B} := \{B \in \sigma(\mathscr{C}) \mid B \text{ vérifie (P)}\}\$ est une tribu.

En effet, on aura alors $\mathscr{C} \subset \mathscr{B}$, donc $\sigma(\mathscr{C}) \subset \mathscr{B}$, donc $\mathscr{B} = \sigma(\mathscr{C})$.

1.2 Tribu borélienne

1.2.1 Espaces topologiques

DÉFINITION 1.3. Soit E un ensemble. On appelle topologie sur E toute classe de parties $\mathscr T$ sur E vérifiant

- $-\emptyset \in \mathscr{T} \text{ et } E \in \mathscr{T},$
- si $(\Omega_i)_{i\in I}$ est une famille d'éléments de \mathscr{T} , alors $\bigcup_{i\in I} \Omega_i \in \mathscr{T}$,
- si $\Omega_1, \ldots, \Omega_n \in \mathcal{T}$, alors $\bigcap_{i=1}^n \Omega_i \in \mathcal{T}$.

On appelle ouverts les éléments de \mathscr{T} et on note $\mathscr{O}(E)$ l'ensemble des ouverts de E, on appelle fermés leurs complémentaires. On appelle alors (E,\mathscr{T}) un espace topologique.

- \triangleright Exemple. L'ensemble \mathbb{R} (ou \mathbb{R}^d) muni de ses ouverts au sens usuel est un espace topologique.
- \diamond REMARQUE. Une intersection quelconque de topologies sur E est encore une topologie sur E. Si $\mathscr{C} \subset \mathscr{P}(E)$, alors il existe une plus petite topologie sur E contenant \mathscr{C} . On l'appelle topologie engendrée par \mathscr{C} .

1.2.2 Tribu borélienne

DÉFINITION 1.4. Soit (E, \mathcal{T}) un espace topologique. On appelle tribu borélienne sur E la tribu engendrée par les ouverts de E. On la note $\mathcal{B}(E) \coloneqq \sigma(\mathcal{T})$. Les éléments de $\mathcal{B}(E)$ sont appelés les boréliens de E.

- \diamond REMARQUES. La tribu borélienne $\mathscr{B}(E)$ est aussi engendrée par les fermés de E.
 - En général, on n'a pas $\mathscr{B}(E) = \mathscr{P}(E)$: c'est le cas de \mathbb{R} . En effet, on peut construire des parties de \mathbb{R} non boréliennes (avec ou sans axiome du choix). En fait, on peut montrer que $\operatorname{Card}\mathscr{B}(\mathbb{R}) = \operatorname{Card}\mathbb{R}$.

PROPOSITION 1.5 (boréliens de \mathbb{R}). On a

$$\mathscr{B}(\mathbb{R}) = \sigma(\{]\alpha, \beta[\mid \alpha, \beta \in \mathbb{Q}\}) = \sigma(\{]-\infty, a[\mid a \in \mathbb{Q}\}).$$

De même avec les autres types d'intervalles pour la seconde égalité.

Preuve • Première égalité. Si $\alpha, \beta \in \mathbb{Q}$, alors $]\alpha, \beta[\in \mathscr{O}(\mathbb{R}), \text{ donc } \sigma(\{]\alpha, \beta[\mid \alpha, \beta \in \mathbb{Q}\}) \subset \sigma(\mathscr{O}(\mathbb{R})) = \mathscr{B}(\mathbb{R}).$ Réciproquement, soit $\Omega \in \mathscr{O}(\mathbb{R})$. Alors

$$\Omega = \bigcup_{\substack{\alpha,\beta \in \Omega\\ \alpha,\beta \in \mathbb{O}}}]\alpha,\beta[\in \sigma(\{]\alpha,\beta[\mid \alpha,\beta \in \mathbb{Q}\}),$$

donc $\mathscr{O}(\mathbb{R}) \subset \sigma(\{ | \alpha, \beta \in \mathbb{Q} \})$, donc $\mathscr{B}(\mathbb{R}) = \sigma(\mathscr{O}(\mathbb{R})) = \sigma(\{ | \alpha, \beta \in \mathbb{Q} \})$.

• Deuxième égalité. Comme $]-\infty, a[\subset \mathscr{O}(\mathbb{R})$ pour tout $a \in \mathbb{Q}$, on a $\sigma(\{]-\infty, a[\mid a \in \mathbb{Q}\}) \subset \sigma(\mathscr{O}(\mathbb{R})) = \mathscr{B}(\mathbb{R})$. Réciproquement, soient $\alpha, \beta \in \mathbb{Q}$. On a

$$]\alpha,\beta[\,=\,]-\infty,\beta[\,\backslash\,\,]-\infty,\alpha]=]-\infty,\beta[\,\backslash\,\bigcap_{n\in\mathbb{N}^*}\Big]-\infty,\alpha+\frac{1}{n}\Big[\,\subset\sigma(\{]-\infty,a[\,\,|\,\,a\in\mathbb{Q}\}),$$

donc $\mathscr{B}(\mathbb{R}) = \sigma(\{ [\alpha, \beta[\mid \alpha, \beta \in \mathbb{Q} \}) \subset \sigma(\{] - \infty, a[\mid a \in \mathbb{Q} \})$. D'où l'égalité.

PROPOSITION 1.6 (boréliens de \mathbb{R}^d). On a

$$\mathscr{B}(\mathbb{R}^d) = \sigma(\{|a_1, b_1| \times \cdots \times |\alpha_d, \beta_d| \mid \alpha_1, \beta_1, \dots, \alpha_d, \beta_d \in \mathbb{Q}\}).$$

PROPOSITION 1.7. Si $B \in \mathcal{B}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, alors $B + a \in \mathcal{B}(\mathbb{R}^d)$.

Preuve Soit $a \in \mathbb{R}^d$. On montre que la classe de parties $\mathscr{A} := \{B \in \mathscr{B}(\mathbb{R}^d) \mid B + a \in \mathscr{B}(\mathbb{R}^d)\}$ contient $\mathscr{O}(\mathbb{R}^d)$ et que c'est une tribu sur \mathbb{R}^d ce qui permet de conclure que $\mathscr{A} \supset \sigma(\mathscr{O}(\mathbb{R}^d)) = \mathscr{B}(\mathbb{R}^d)$.

BORÉLIENS DE $\overline{\mathbb{R}}$. On introduit deux éléments $-\infty$ et $+\infty$, puis on étend l'ordre totale et posant $-\infty \leqslant x \leqslant +\infty$ pour tout $x \in \overline{\mathbb{R}}$ avec $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$. On munit $\overline{\mathbb{R}}$ de la topologie engendrée par les ouverts de \mathbb{R} , les ensembles $[-\infty, a[$ avec $a \in \mathbb{R}$ et les ensembles $[a, +\infty]$ avec $a \in \mathbb{R}$. On a alors $\mathscr{B}(\overline{\mathbb{R}}) = \sigma(\{[-\infty, a[\mid a \in \mathbb{Q}\}).$

1.3 TRIBU IMAGE RÉCIPROQUE, TRIBU IMAGE

1.3.1 Tribu image réciproque

NOTATION. Si \mathscr{C} est une classe de parties de F, on note

$$f^{-1}(\mathscr{C}) = \left\{ f^{-1}(C) \mid C \in \mathscr{C} \right\}.$$

DÉFINITION-PROPOSITION 1.8. Si \mathscr{B} est une tribu sur F, alors $f^{-1}(\mathscr{B})$ est une tribu sur E. On l'appelle tribu image réciproque

 \triangleright EXEMPLE. Soient $\mathscr B$ une tribu sur E et $A \subset E$. On note $i : x \in A \longmapsto x \in E$. Alors $i^{-1}(\mathscr B)$ est une tribu sur A appelée tribu trace.

1.3.2 Tribu image

Soient E et F deux ensembles et $f: E \to F$. Si \mathscr{A} est une tribu sur E, la classe de parties

$$f(\mathscr{A}) \coloneqq \{f(A) \mid A \subset \mathscr{A}\}$$

est-elle une tribu sur F? Non, il suffit de prendre $E = F = \{0,1\}$ muni de $\mathscr{A} \coloneqq \mathscr{P}(E)$ et $f \colon x \in E \longmapsto 0$. On a alors $f(\mathscr{P}(E)) = \{\emptyset, \{0\}\}$ qui n'est pas une tribu.

PROPOSITION 1.9. Si \mathscr{A} est une tribu sur E, alors $\{B \subset F \mid f^{-1}(B) \in \mathscr{A}\}$ est une tribu sur F appelée tribu image de \mathscr{A} par f.

1.3.3 Lemme de transport

LEMME 1.10 (de transport). Soit $\mathscr C$ une classe de parties de F. Alors $\sigma(f^{-1}(\mathscr C)) = f^{-1}(\sigma(\mathscr C))$.

Preuve On a $\mathscr{C} \subset \sigma(\mathscr{C})$, donc $f^{-1}(\mathscr{C}) \subset f^{-1}(\sigma(\mathscr{C}))$, donc $\sigma(f^{-1}(\mathscr{C})) \subset f^{-1}(\sigma(\mathscr{C}))$. Réciproquement, montrons que $f^{-1}(\sigma(\mathscr{C})) \subset \sigma(f^{-1}(\mathscr{C}))$, i. e. que $f^{-1}(B) \subset \sigma(f^{-1}(\mathscr{C}))$ pour tout $B \in \sigma(\mathscr{C})$. Or la classe de partie $\mathscr{B} \coloneqq \left\{ B \subset F \mid f^{-1}(B) \in \sigma(f^{-1}(\mathscr{C})) \right\}$ est une tribu sur F (la tribu image de $\sigma(f^{-1}(\mathscr{C}))$ par f). On a clairement $\mathscr{C} \subset \mathscr{B}$, donc $\sigma(\mathscr{C}) \subset \mathscr{B}$ ce qu'on souhaitait démontrer.

4 Mesures – Chapitre 1

Chapitre 2

MESURES

2.1 Définitions et exemples	5	2.3 Mesure de Lebesgue	6
2.2 Propriétés des mesures	5	2.4 Ensembles négligeables	7

2.1 DÉFINITIONS ET EXEMPLES

Dans cette section, le couple (E, \mathscr{A}) désigne un espace mesurable.

DÉFINITION 2.1. On appelle mesure sur E toute application $\mu \colon \mathscr{A} \to \mathbb{R}_+ \cup \{+\infty\}$ vérifiant

- $-\mu(\emptyset) = 0,$
- si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathscr{A} deux à deux disjoints, alors $\mu(\bigsqcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$.

On appelle alors (E, \mathcal{A}, μ) un espace mesuré.

- \triangleright Exemples. L'application $\mu: A \in \mathscr{A} \longmapsto 0$ est une mesure sur (E, \mathscr{A}) appelée mesure nulle.
 - La mesure grossière sur (E, \mathscr{A}) est l'application

$$\mu \colon A \in \mathscr{A} \longmapsto \begin{cases} 0 & \text{si } A = \emptyset, \\ +\infty & \text{sinon.} \end{cases}$$

– La mesure de comptage sur $(E, \mathcal{P}(E))$ est l'application

$$m: A \in \mathscr{A} \longmapsto \begin{cases} \operatorname{Card} A & \text{si } A \text{ est fini,} \\ +\infty & \text{sinon.} \end{cases}$$

- La mesure de DIRAC sur (E, \mathscr{A}) en $x \in E$ est l'application δ_x définie par $\delta_x(A) = \mathbb{1}_A(x)$ pour tout $A \in \mathscr{A}$.

DÉFINITION 2.2. Soit μ une mesure sur (E, \mathscr{A}) .

- On dit que μ est finie si $\mu(E) < +\infty$.
- On dit que μ est une mesure de probabilité ou probabilité et que (E, \mathscr{A}, μ) est un espace probabilisé si $\mu(E) = 1$.
- On dit que μ est σ -finie, s'il existe $(E_n)_{n\in\mathbb{N}}\in\mathscr{A}^{\mathbb{N}}$ telle que $E=\bigcup_{n\in\mathbb{N}}E_n$ et $\mu(E_n)<+\infty$ pour tout $n\in\mathbb{N}$.
- \triangleright EXEMPLE. La mesure de comptage sur $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$ est σ -finie en posant $E_n = [0, n]$ pour tout $n \in \mathbb{N}$.
- \diamond Remarques. Si μ est une mesure sur (E, \mathscr{A}) et $B \in \mathscr{A}$, alors l'application

$$\nu \colon \left| \mathcal{A} \longrightarrow \mathbb{R} \cup \{+\infty\}, \right.$$
$$A \longmapsto \mu(A \cap B)$$

est encore une mesure sur (E, \mathscr{A}) .

- Si $(\mu_n)_{n\in\mathbb{N}}$ est une suite de mesure sur (E, \mathscr{A}) , alors $\sum_{n\in\mathbb{N}}\mu_n$ est encore une mesure sur (E, \mathscr{A}) . En particulier, si $(x_n)_{n\in\mathbb{N}}$ est une suite de E et $(\alpha_n)_{n\in\mathbb{N}}$ est une suite de réels positifs, alors $\sum_{n\in\mathbb{N}}\alpha_n\delta_{x_n}$ est une mesure.

En particulier, soit X une variable aléatoire discrète dont les valeurs sont les x_n avec $n \in \mathbb{N}$. Pour $n \in \mathbb{N}$, on pose $\alpha_n := \mathbb{P}(X = x_n)$. Alors la loi \mathbb{P}_X de X s'écrit $\mathbb{P}_X = \sum_{n \in \mathbb{N}} \alpha_n \delta_{x_n}$.

2.2 Propriétés des mesures

Dans toute la suite, le triplet (E, \mathcal{A}, μ) désigne un espace mesuré.

PROPOSITION 2.3 (croissance). Soient $A, B \in \mathcal{A}$ tel que $A \subset B$ Alors $\mu(A) \leqslant \mu(B)$. De plus, si $\mu(A) < +\infty$, alors $\mu(B \setminus A) = \mu(B) - \mu(A)$.

Preuve On a $\mu(B) = \mu(A \sqcup B \setminus A) = \mu(A) + \mu(B \setminus A) \geqslant \mu(A)$. Si $\mu(A) < +\infty$, alors $\mu(B) - \mu(A) = \mu(B \setminus A)$. \square

PROPOSITION 2.4 (σ -sous-additivité). Si $(A_n)_{n\in\mathbb{N}}$ est une suite de \mathscr{A} , alors

$$\mu(\bigcup_{n\in\mathbb{N}}A_n)\leqslant \sum_{n\in\mathbb{N}}\mu(A_n).$$

Mesures - Chapitre 2

Preuve On définit la suite de parties $(B_n)_{n\in\mathbb{N}}$ par

$$B_0 = A_0$$
, et $B_n = A_n \setminus \bigcup_{k=0}^{n-1} A_k$

pour tout $n \in \mathbb{N}^*$. Alors

- (i) la suite $(B_n)_{n\in\mathbb{N}}$ est une suite de \mathscr{A} ,
- (ii) les parties B_n sont deux à deux disjointes,
- (iii) on a $\bigsqcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} A_n$.

Montrons (ii). Par l'absurde, supposons qu'il existe $n, m \in \mathbb{N}$ tels que n < m et $B_n \cap B_m \neq \emptyset$. Soit $x \in B_n \cap B_m$. Alors $x \in A_m$ et $x \notin A_n$, donc $x \notin B_n$ ce qui est absurde

Montrons (iii) par double inclusion. L'inclusion directe est claire. Réciproquement, si $x \in \bigcup_{n \in \mathbb{N}} A_n$, alors $x \in B_m$ où $m := \min\{n \mid x \in A_n\}$.

Finalement, on a

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big) = \mu\Big(\bigsqcup_{n\in\mathbb{N}}B_n\Big) = \sum_{n\in\mathbb{N}}\mu(B_n) \leqslant \sum_{n\in\mathbb{N}}\mu(A_n)$$

 $\operatorname{car} B_n \subset A_n \text{ pour tout } n \in \mathbb{N}.$

PROPOSITION 2.5 (continuité). 1. Si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante de \mathscr{A} , alors

$$\mu(\bigcup_{n\in\mathbb{N}} A_n) = \lim_{n\to+\infty} \mu(A_n).$$

On dit alors que μ est continue à gauche.

2. Si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante de \mathscr{A} et il existe $n_0\in\mathbb{N}$ tel que $\mu(A_{n_0})<+\infty$, alors

$$\mu(\bigcap_{n\in\mathbb{N}}A_n)=\lim_{n\to+\infty}\mu(A_n).$$

On dit alors que μ est continue à droite.

Preuve 1. S'il existe $n_0 \in \mathbb{N}$ tel que $\mu(A_{n_0}) = +\infty$, alors $\mu(\bigcup_{n \in \mathbb{N}} A_n) = +\infty$ et $\mu(A_n) = +\infty$ à partir d'un certain rang, d'où l'égalité. On suppose que $\mu(A_n) < +\infty$ pour tout $n \in \mathbb{N}$. On considère la même suite $(B_n)_{n \in \mathbb{N}}$ que dans la preuve précédente, i. e. telle que $B_0 = A_0$ et $B_n = A_n \setminus A_{n-1}$ pour tout $n \in \mathbb{N}^*$. Alors

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big) = \mu\Big(\bigcup_{n\in\mathbb{N}}B_n\Big) = \sum_{n\in\mathbb{N}}\mu(B_n) = \lim_{n\to+\infty}\sum_{k=0}^n\mu(B_k) = \lim_{n\to+\infty}\sum_{k=1}^n[\mu(A_k) - \mu(A_{k-1})] + \mu(A_0)$$
$$= \lim_{n\to+\infty}\mu(A_n).$$

2. On peut supposer que $n_0 = 0$ quitte à considérer la suite $(A_{n_0+n})_{n \in \mathbb{N}}$. La suite $(A_0 \setminus A_n)_{n \in \mathbb{N}}$ est une suite décroissante de A. Par continuité à gauche, on a alors

$$\lim_{n \to +\infty} \mu(A_0 \setminus A_n) = \mu\Big(\bigcup_{n \in \mathbb{N}} A_0 \setminus A_n\Big) = \mu\Big(A_0 \setminus \bigcap_{n \in \mathbb{N}} A_n\Big) = \mu(A_0) - \mu\Big(\bigcap_{n \in \mathbb{N}} A_n\Big)$$

 $\operatorname{car} \mu(A_0) < +\infty, \operatorname{donc} \mu(\bigcap_{n \in \mathbb{N}} A_n) = \lim_{n \to +\infty} \mu(A_n).$

♦ REMARQUE. La seconde hypothèse du point 2 est nécessaire. En effet, sur $(\mathbb{N}, \mathscr{P}(\mathbb{N}), m)$, un contre-exemple est la suite $(A_n := [n, +\infty[)_{n \in \mathbb{N}} \text{ car } m(\bigcup_{n \in \mathbb{N}} A_n) = \mu(\emptyset) = 0$ et $m(A_n) = +\infty$ pour tout $n \in \mathbb{N}$.

2.3 MESURE DE LEBESGUE

But. On veut généraliser la longueur ℓ des intervalles de \mathbb{R} , i. e. pour tout intervalle I,

$$\ell(I) = \begin{cases} b-a & \text{si I est un intervalle d'extrémité $a,b \in \mathbb{R}$,} \\ +\infty & \text{si I est un intervalle non bornée}. \end{cases}$$

Également, on veut généraliser le volume des pavés dans \mathbb{R}^d (les ensembles $\prod_{k=1}^d I_k$ où les I_k sont des intervalles de \mathbb{R}), i. e. pour tout pavé P,

$$\mathscr{V}(P) = \prod_{k=1}^{d} \ell(I_k)$$
 avec $P = \prod_{k=1}^{d} I_k$

avec la convention $\mathcal{V}(P) = 0$ s'il existe $k \in [1, d]$ tel que $\ell(I_k) = 0$.

6 Mesures – Chapitre 2

THÉORÈME 2.6. Soit $d \in \mathbb{N}^*$. Il existe une unique mesure λ_d sur $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$ telle que

- $-\lambda_d([0,1]^d)=1,$
- λ_d est invariante par translation, i. e. si $B \in \mathcal{B}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, alors $\lambda_d(B+a) = \lambda_d(B)$.

Quand d = 1, on note cette mesure λ .

Preuve On l'admet pour l'instant. La mesure de Lebesgue sera construite pour d=1 dans la section 5.1.2. \square

PROPOSITION 2.7. Si P est un pavé de \mathbb{R}^d , alors $\lambda_d(P) = \mathcal{V}(P)$. En particulier, si $x \in \mathbb{R}^d$, alors $\lambda_d(\{x\}) = 0$.

 \diamond REMARQUE. Si D est une partie dénombrable de \mathbb{R}^d , alors $\lambda_d(D) = 0$. La réciproque est fausse : un contreexemple est l'exemple de CANTOR définit comme suit. Pour tout $n \in \mathbb{N}$, on pose

$$K_0 = [0,1]$$
 et $K_{n+1} = \frac{K_n}{3} \cup \frac{K_n + 2}{3}$.

L'ensemble de Cantor est l'ensemble $K = \bigcap_{n \in \mathbb{N}} K_n$. Alors $\lambda(K) = 0$ et l'ensemble K n'est pas dénombrable : on peut montrer qu'il est en bijection avec $\{0,2\}^{\mathbb{N}}$.

K_0		
K_1	 	
K_2	 	
K_3	 	
K_4	 	
K_5	 	

FIGURE 2.1 – Les premiers ensembles de la suite $(K_n)_{n\in\mathbb{N}}$

LEMME 2.8. Si $B \in \mathcal{B}(\mathbb{R}^d)$ et $\varepsilon > 0$, alors il existe un ouvert Ω et un fermé F tels que

- $-F\subset B\subset \Omega,$
- $\lambda_d(\Omega \setminus F) < \varepsilon.$

THÉORÈME 2.9 (régularité de la mesure de LEBESGUE). Si $B \in \mathcal{B}(\mathbb{R}^d)$, alors

$$\lambda_d(B) = \inf \{ \lambda_d(\Omega) \mid \Omega \supset B, \Omega \text{ ouvert} \} = \sup \{ \lambda_d(K) \mid K \subset B, K \text{ compact} \}.$$

2.4 Ensembles négligeables

DÉFINITION 2.10. Soit $N \subset E$. On dit que N est μ -négligeable s'il existe $A \in \mathscr{A}$ tel que $N \subset A$ et $\mu(A) = 0$. On dit qu'une propriété (P) sur E est vraie μ -presque partout si l'ensemble

$$\{x \in E \mid x \text{ ne v\'erifie pas (P)}\}\$$

est μ -négligeable.

- \triangleright Exemples. 1. L'indicatrice $\mathbb{1}_{\mathbb{Q}}$ est nulle λ -presque partout.
 - 2. L'indicatrice $\mathbb{1}_{\mathbb{R}_+}$ est continue λ -presque partout.
 - 3. La suite $(\mathbb{1}_{[0,1/n]})_{n\in\mathbb{N}^*}$ converge vers la fonction nulle λ -presque partout.

DÉFINITION 2.11. On dit que (E, \mathcal{A}, μ) est complet si $\{N \subset E \mid N \text{ est } \mu\text{-négligeable}\} \subset \mathcal{A}$.

Chapitre 3

FONCTIONS MESURABLES

3.1 Mesurabilité	8	3.4 Suites de fonctions mesurables à valeurs réelles	9
3.2 Montrer la mesurabilité	8	3.5 Approximation des fonctions étagées	10
3.3 Propriétés des fonctions mesurables	9		

Dans tous le chapitre, les couples (E, \mathcal{A}) et (F, \mathcal{B}) désigneront deux espaces mesurables.

3.1 MESURABILITÉ

DÉFINITION 3.1. On dit que $f: E \to F$ est $(\mathscr{A}, \mathscr{B})$ -mesurable (ou simplement mesurable) si $f^{-1}(\mathscr{B}) \subset \mathscr{A}$, i. e. $\forall B \in \mathscr{B}, \quad f^{-1}(B) \subset \mathscr{A}$.

Si E et F sont des espaces topologiques associés à leurs tribus boréliennes, on qualifiera de boréliennes les fonctions $(\mathscr{B}(E),\mathscr{B}(F))$ -mesurables.

 \triangleright Exemples. – Une fonction constante est mesurable. En effet, soit $f : x \in E \longmapsto y_0 \in F$. Si $B \in \mathcal{B}$, alors

$$f^{-1}(B) = \begin{cases} \emptyset & \text{si } y_0 \notin B \\ E & \text{si } y_0 \in B \end{cases} \in \mathscr{A}.$$

- Soit $A \subset E$. Alors $\mathbb{1}_A$ est $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ -mesurable si et seulement si $A \in \mathcal{A}$. En effet, si $B \in \mathcal{B}(\mathbb{R})$, alors

$$\mathbb{1}_A^{-1}(B) = \begin{cases} E & \text{si } 0 \in B \text{ et } 1 \in B, \\ A & \text{si } 0 \notin B \text{ et } 1 \in B, \\ A^{\mathsf{c}} & \text{si } 0 \in B \text{ et } 1 \notin B, \\ \emptyset & \text{si } 0 \notin B \text{ et } 1 \notin B. \end{cases}$$

- ♦ REMARQUES. Si $\mathscr{A} = \mathscr{P}(E)$, alors toute fonction $f: E \to F$ est mesurable. Par exemple, dans $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$, toute fonction de \mathbb{N} dans \mathbb{R} est mesurable, *i. e.* les suites réelles sont mesurables.
 - Très souvent, on aura $F \in \{\mathbb{R}, \mathbb{R}_+, \overline{\mathbb{R}}, \mathbb{C}\}$ et, dans ce cas, il sera implicite que la tribu sur F est $\mathcal{B}(F)$.

Mesure image

DÉFINITION 3.2 (mesure image). Soient μ une mesure sur (E, \mathscr{A}) et $f: E \to F$ une fonction mesurable. Alors

$$\mu_f : \left| \mathcal{B} \longrightarrow \mathbb{R} \cup \{+\infty\}, \atop B \longmapsto \mu_f(B) := \mu(f^{-1}(B)) \right|$$

est une mesure sur (F, \mathcal{B}) appelée $mesure\ image\ par\ f.$

 \diamond REMARQUE. Si $X: (\Omega, \mathscr{A}) \to (\mathbb{R}, \mathscr{B}(\mathbb{R}))$ est une variable aléatoire (*i. e.* une fonction mesurable), alors on appelle loi de X la mesure image de \mathbb{P} par X où \mathbb{P} est une probabilité sur (Ω, \mathscr{A}) .

3.2 Montrer la mesurabilité

PROPOSITION 3.3. On suppose que $\mathscr{B} = \sigma(\mathscr{C})$ où \mathscr{C} est une classe de parties de E. Alors $f \colon E \to F$ est mesurable si et seulement si $f^{-1}(\mathscr{C}) \subset \mathscr{A}$.

Preuve Le sens direct est évident car $f^{-1}(\mathscr{C}) \subset f^{-1}(\mathscr{B})$. Réciproquement, si $f^{-1}(\mathscr{C}) \subset \mathscr{A}$, alors $\sigma(f^{-1}(\mathscr{C})) \subset \mathscr{A}$, donc $f^{-1}(\sigma(\mathscr{C})) \subset \mathscr{A}$ par le lemme de transport, donc $f^{-1}(\mathscr{B}) \in \mathscr{A}$.

APPLICATION. Si $f: \mathbb{R} \to \mathbb{R}$ est monotone, alors elle est borélienne.

♦ REMARQUE. On suppose que $(F, \mathcal{B}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Pour montrer que $f : E \to \mathbb{R}$ est mesurable, il suffit de montrer que $f^{-1}(]-\infty, a[) \subset \mathcal{A}$, noté $\{f < a\}$, pour tout $a \in \mathbb{R}$. Idem sur $\overline{\mathbb{R}}$ avec $[-\infty, a[$.

Continuité et mesurabilité

Soient (E, \mathcal{T}) et (F, \mathcal{S}) deux espaces topologiques.

PROPOSITION 3.4. Si $f: E \to F$ est continue, alors f est borélienne.

Preuve Si Ω est un ouvert de F, alors $f^{-1}(\Omega) \in \mathscr{A} \subset \mathscr{B}(E)$. Donc $f^{-1}(\mathscr{S}) \subset \mathscr{B}(E)$. Comme $\mathscr{B}(F) = \sigma(\mathscr{S})$, la fonction f est mesurable.

APPLICATION. Donnons une deuxième démonstration du résultat : si $B \in \mathcal{B}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, alors $B + a \in \mathcal{B}(\mathbb{R}^d)$. La fonction

$$f: \begin{vmatrix} \mathbb{R}^d \longrightarrow \mathbb{R}^d, \\ x \longmapsto x - a \end{vmatrix}$$

est continue, donc elle est mesurable, i. e. pour tout $B \in \mathscr{B}(\mathbb{R}^d)$, on a $f^{-1}(B) = B + a \in \mathscr{B}(\mathbb{R}^d)$.

DÉFINITION 3.5. Soient (E, \mathscr{A}) un espace topologique et $f: E \to \mathbb{R}$. On dit que f est semi-continue inférieurement (resp. supérieurement) si, pour tout $a \in \mathbb{R}$, l'ensemble $\{f \leqslant a\}$ (resp. $\{f \geqslant a\}$) est fermé.

Proposition 3.6. Si $f: E \to \mathbb{R}$ est semi-continue inférieurement ou supérieurement, alors f est borélienne.

Preuve Si f est semi-continue inférieurement, alors $\{f \leq a\}$ est fermé pour tout $a \in \mathbb{R}$, donc $\{f \leq a\} \in \mathcal{B}(E)$, donc f est mesurable car $\mathcal{B}(\mathbb{R}) = \sigma(\{]-\infty, a] \mid a \in \mathbb{R}\}$).

3.3 Propriétés des fonctions mesurables

PROPOSITION 3.7. Soient (E, \mathscr{A}) , (F, \mathscr{B}) et (G, \mathscr{C}) trois espaces mesurables, $f: E \to F$ mesurable et $g: F \to G$ mesurables. Alors $g \circ f$ est mesurable.

Preuve Si $C \in \mathscr{C}$, alors $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C)) \in \mathscr{A}$ car $g^{-1}(C) \in \mathscr{B}$. Donc $g \circ f$ est mesurable.

 \triangleright EXEMPLE. Si $f: \mathbb{R} \to \mathbb{R}$ mesurable, alors |f| est aussi mesurable car $|\cdot|$ est continue, donc mesurable.

LEMME 3.8. Soit $f: (E, \mathscr{A}) \to (\mathbb{R}^2, \mathscr{B}(\mathbb{R}^2)$. On note f_1 et f_2 sont composantes. Alors f est mesurables si et seulement si f_1 et f_2 sont mesurables.

Preuve On suppose que f est mesurable. Pour $i \in \{1,2\}$, en notant $\pi_i : \mathbb{R}^2 \to \mathbb{R}$ la projection sur la i-ième coordonnée, on a $f_i = \pi_i \circ f$ où f est mesurable et π_i est continue, donc f_i est mesurable.

Réciproquement, on suppose que f_1 et f_2 sont mesurables. Si I_1 et I_2 sont deux intervalles de \mathbb{R} , alors $f^{-1}(I_1 \times I_2) = f_1^{-1}(I_1) \cap f_2^{-1}(I_2) \in \mathscr{A}$ car f_1 et f_2 sont mesurables. Comme $\mathscr{B}(\mathbb{R}^2) = \sigma(\{I_1 \times I_2 \mid I_1, I_2 \text{ intervalles}\})$, la fonction f est mesurable.

PROPOSITION 3.9. Soient $f,g: E \to \mathbb{R}$ deux fonctions mesurables. On a

- 1. pour tout $\alpha \in \mathbb{R}$, la fonction $\alpha f + g$ est mesurable;
- 2. la fonction fg est mesurable.

Preuve 1. On écrit $\alpha f + g = \phi \circ \psi$ où les fonctions

$$\psi \colon x \in E \longmapsto (f(x), g(x)) \in \mathbb{R}^2 \quad \text{et} \quad \phi \colon x \in \mathbb{R} \longmapsto \alpha x + y \in \mathbb{R}$$

sont mesurables, donc la fonction $\alpha f + q$ est mesurable.

- 2. Idem avec $\phi: (x,y) \longmapsto xy$.
- ightharpoonup EXEMPLE. Si $A_1, \ldots, A_N \in \mathscr{A}$ et $\alpha_1, \ldots, \alpha_N \in \mathbb{R}$, alors la fonction $\sum_{i=1}^N \alpha_i \mathbbm{1}_{A_i}$ est mesurable de E dans \mathbb{R} . On appelle ces fonctions les fonctions étagées.

PROPOSITION 3.10. Si $f: E \to \mathbb{C}$ est mesurable, alors f est mesurable si et seulement si Re f et Im f le sont. De plus, les points 1 et 2 de la proposition précédente restent vrais (avec $\alpha \in \mathbb{C}$).

3.4 Suites de fonctions mesurables à valeurs réelles

RAPPEL. Si $(x_n)_{n\in\mathbb{N}}$ est une suite de $\overline{\mathbb{R}}$, alors on note

$$\underline{\lim}_{n \to +\infty} x_n \coloneqq \lim_{n \to +\infty} \inf_{k \geqslant n} x_k \quad \text{et} \quad \overline{\lim}_{n \to +\infty} x_n \coloneqq \lim_{n \to +\infty} \sup_{k \geqslant n} x_k$$

Fonctions mesurables - Chapitre 3

resp. les limites inférieure et supérieure de la suite $(x_n)_{n\in\mathbb{N}}$. On peut montrer que $\underline{\lim}_{n\to+\infty} x_n \leqslant \overline{\lim}_{n\to+\infty} x_n$. S'il y a égalité, alors la suite $(x_n)_{n\in\mathbb{N}}$ converge vers $\underline{\lim}_{n\to+\infty} x_n$. La réciproque est également vraie.

PROPOSITION 3.11. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de E dans $\overline{\mathbb{R}}$ mesurables.

1. Alors les fonctions

$$\inf_{n\in\mathbb{N}} f_n \colon \begin{vmatrix} E \longrightarrow \overline{\mathbb{R}}, \\ x \longmapsto \inf_{n\in\mathbb{N}} f_n(x) \end{vmatrix} \text{ et } \sup_{n\in\mathbb{N}} f_n \colon \begin{vmatrix} E \longrightarrow \overline{\mathbb{R}}, \\ x \longmapsto \sup_{n\in\mathbb{N}} f_n(x) \end{vmatrix}$$

sont mesurables. De même pour les limites inférieure et supérieure.

2. Si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers $f\colon E\to\mathbb{R}$, alors f est mesurable.

Preuve 1. Soit $a \in \mathbb{R}$. Comme les ensembles $\{f_n < a\}$ sont dans la tribu, on a

$$\{\inf_{n\in\mathbb{N}} f_n < a\} = \bigcup_{n\in\mathbb{N}} \{f_n < a\} \in \mathscr{A}.$$

Donc la fonction $\inf_{n\in\mathbb{N}}f_n$ est mesurable. Par ailleurs, on a

$$\{\sup_{n\in\mathbb{N}} f_n \leqslant a\} = \bigcap_{n\in\mathbb{N}} \{f_n \leqslant a\} \in \mathscr{A}.$$

Donc la fonction $\sup_{n\in\mathbb{N}} f_n$ est mesurable.

On a $\underline{\lim}_{n\to+\infty} f_n = \sup_{n\in\mathbb{N}} g_n$ avec $g_n \coloneqq \inf_{k\geqslant n} f_n$ pour tout $n\in\mathbb{N}$. D'après ce qui précède, les fonctions g_n sont mesurables, donc leur borne supérieure $\underline{\lim}_{n\to+\infty} f_n$ l'est. De la même manière, la fonction $\overline{\lim}_{n\to+\infty} f_n = \inf_{n\in\mathbb{N}} \sup_{k\geqslant n} f_n$ est mesurable.

2. Si la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f, alors la fonction f vaut $\underline{\lim}_{n\to+\infty} f_n$ qui est mesurable. \square .

3.5 APPROXIMATION DES FONCTIONS ÉTAGÉES À VALEURS RÉELLES

DÉFINITION 3.12. Une fonction $f \colon E \to F$ est appelée fonction étagée si elle est mesurable et elle ne passe que par un nombre fini de valeurs.

 \diamond Remarque. Si f est étagée et x_1, \ldots, x_n sont ses valeurs distinctes, alors elle s'écrit

$$f = \sum_{i=1}^{n} x_n \mathbb{1}_{\{f = x_i\}}.$$

Les fonctions étagées sont exactement les fonctions de la forme $\sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$ où les parties A_i sont des éléments de la tribu \mathscr{A} .

PROPOSITION 3.13. Soit $f: E \to \overline{\mathbb{R}}$ mesurable positive. Alors il existe une suite croissante $(f_n)_{n \in \mathbb{N}}$ de fonctions étagées positives qui converge simplement vers f. De plus, si f est bornée, alors la convergence est uniforme.

Preuve Pour $n \in \mathbb{N}$, on pose

$$f_n = \sum_{k=0}^{n2^n - 1} \frac{k}{2^n} \mathbb{1}_{\{k/2^n \leqslant f \leqslant (k+1)/2^n\}} + n \mathbb{1}_{\{f \geqslant n\}}.$$

Alors les fonctions f_n sont étagées positives car, comme f est mesurable, les ensembles $\{k/2^n \le f \le (k+1)/2^n\}$ sont dans la tribu. Soit $x \in E$. Si $f(x) = +\infty$, alors $f_n(x) = n$ pour tout $n \in \mathbb{N}$, donc $f_n(x) \to +\infty = f(x)$ quand $n \to +\infty$. On suppose que $f(x) < +\infty$. Pour n assez grand, i. e. pour $n \in \mathbb{N}$ vérifiant f(x) < n, il existe $k \in [0, n2^n - 1]$ tel que

$$|f(x) - f_n(x)| \le \frac{k+1}{2^n} - \frac{k}{2^n} = \frac{1}{2^n},$$

donc $f_n(x) \to f(x)$ quand $n \to +\infty$. Donc la suite $(f_n)_{n \in \mathbb{N}}$ converge simplement vers f. Montrons que cette suite est croissante. Soit $x \in E$.

- Si $f(x) \ge n + 1$, alors $f_n(x) \le f_{n+1}(x)$.
- Si f(x) < n, alors $f(x) \in \{k/2^n, (k+1)/2^{n+1}\}$, donc $f_{n+1}(x) \ge k/2^n = f_n(x)$.
- Si $n \le f(x) < n+1$, alors $f_{n+1}(x) = k/2^{n+1} \ge n$.

On suppose que f est bornée. Soit $N \ge ||f||_{\infty}$. Pour tous $n \ge N$ et $x \in E$, on a $|f(x) - f_n(x)| \le 1/2^n$, donc $||f - f_n||_{\infty} \le 1/2^n \to 0$ quand $n \to +\infty$, donc la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f.

♦ REMARQUE. Dans le cas où la fonction f est mesurable de signe quelconque, il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions étagées qui converge simplement vers f. Si f est bornée, alors la convergence est uniforme.

Chapitre 4

Intégrale de Lebesgue

4.1 Int	égration de fonctions	11	4.3.2 Propriétés de l'intégrale	16
-	Intégration des fonctions étagées positives		4.3.3 Formule de transfert	
4.1.2	Intégration des fonctions mesurables positives	12	4.4 Théorème de convergence dominée et applications	18
4.2 Th	éorème de Beppo Levi et conséquences	13	4.4.1 Théorème de convergence dominée	18
4.2.1	Théorème et conséquences	13	4.4.2 Intégrales dépendant d'un paramètre	19
4.2.2	Inégalité de Markov et conséquences	14	4.5 Lien entre les intégrales de RIEMANN et de LEBESGUE	21
4.2.3	Lemme de Fatou	15	4.5.1 Intégrale de RIEMANN	21
4.3 For	nctions intégrables	16	4.5.2 Comparaison entre les deux intégrales	21
4.3.1	L'espace $\mathcal{L}^1(E, \mathcal{A}, \mu)$	16		

4.1 Intégration de fonctions

4.1.1 Intégration des fonctions étagées positives

RAPPEL. Les fonctions étagées sont exactement les fonctions $\varphi \colon E \to \mathbb{R}$ de la forme

$$\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}$$

où $\alpha_1, \ldots, \alpha_N \in \mathbb{R}$ et $A_1, \ldots, A_n \in \mathscr{A}$ tels que $E = \bigsqcup_{i=1}^N A_i$. Dans la suite, on supposera toujours que l'écriture ci-dessus implique que les parties A_i forment une partition de E.

NOTATION. On note \mathscr{E}_+ l'ensemble des fonctions étagées de E dans \mathbb{R}_+ .

DÉFINITION 4.1. Soit $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i} \in \mathscr{E}_+$. On définit l'*intégrale* de φ par rapport à la mesure μ comme

$$\int_{E} \varphi \, \mathrm{d}\mu := \sum_{i=1}^{N} \alpha_{i} \mu(A_{i})$$

avec la convention : si $\mu(A_i) = +\infty$ et $\alpha_i = 0$, alors $\alpha_i \mu(A_i) = 0$.

 \diamond REMARQUES. – La définition ne dépend pas de l'écriture $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}$ où $E = \bigsqcup_{i=1}^{N} A_i$. En effet, si on note $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{\{\varphi = \alpha_i\}}$ où les α_i sont distincts et $\varphi = \sum_{i=1}^{N} \beta_i \mathbb{1}_{B_i}$ où $E = \bigsqcup_{i=1}^{N} B_i$, alors

$$\sum_{j=1}^{N} \beta_j \mu(B_j) = \sum_{i=1}^{N} \sum_{\beta_i = \alpha_i} \beta_j \mu(B_j) = \sum_{i=1}^{N} \alpha_i \mu\left(\bigsqcup_{\beta_i = \alpha_i} B_j\right) = \sum_{i=1}^{N} \alpha_i \mu(\{\varphi = \alpha_i\}).$$

– Si $\varphi \in \mathscr{E}_+$, alors $\int_E \varphi \, \mathrm{d}\mu \geqslant 0$.

NOTATION. On note indifféremment

$$\int_{E} \varphi \, \mathrm{d}\mu, \quad \int \varphi \, \mathrm{d}\mu, \quad \int_{E} \varphi(x) \, \mathrm{d}\mu(x), \quad \int_{E} \varphi(x) \mu(\mathrm{d}x).$$

▶ EXEMPLES. – • Mesure de DIRAC. Soient $x \in E$ et $\varphi \in \mathcal{E}_+$. Notons δ_x la mesure de DIRAC associée à x sur l'espace (E, \mathcal{A}) . Alors

$$\int_{E} \varphi \, \mathrm{d}\delta_x = \varphi(x).$$

En effet, on suppose que $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{\{\varphi = \alpha_i\}}$ où les α_i sont distincts. Alors

$$\int_{E} \varphi \, d\delta_{x} = \sum_{i=1}^{N} \alpha_{i} \delta_{x}(\{\varphi = \alpha_{i}\}) = \alpha_{i_{0}} \quad \text{avec} \quad \alpha_{i_{0}} = \varphi(x).$$

- • Mesure de comptage. Soit $\varphi \in \mathscr{E}_+$. Notons m la mesure de comptage sur l'espace $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$. Alors

$$\int_{\mathbb{N}} \varphi \, \mathrm{d}m = \sum_{n \in \mathbb{N}} \varphi(n).$$

En effet, si $\varphi = \sum_{i=1}^N \alpha_i \mathbbm{1}_{\{\varphi = \alpha_i\}}$ où les α_i sont distincts, alors

$$\sum_{n \in \mathbb{N}} \varphi(n) = \sum_{i=1}^{N} \sum_{\varphi(n) = \alpha_i} \varphi(n) = \sum_{i=1}^{N} \alpha_i m(\{\varphi = a_i\}) = \int_{\mathbb{N}} \varphi \, dm.$$

Intégrale de LEBESGUE - CHAPITRE 4

Proposition 4.2. 1. Si $\varphi, \psi \in \mathscr{E}_+$ et $\alpha \geqslant 0$, alors $\alpha \varphi + \psi \in \mathscr{E}_+$ et

$$\int (\alpha \varphi + \psi) d\mu = \alpha \int \varphi d\mu + \int \psi d\mu.$$

2. Si $\varphi,\psi\in\mathscr{E}_+$ vérifient $\varphi\leqslant\psi,$ alors

$$\int \varphi \, \mathrm{d}\mu \leqslant \int \psi \, \mathrm{d}\mu.$$

Preuve 1. On note $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{\{\varphi = \alpha_i\}}$ et $\psi = \sum_{j=1}^{M} \beta_j \mathbb{1}_{\{\psi = \beta_i\}}$, alors

$$\alpha \varphi + \psi = \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha \alpha_i + \beta_j) \mathbb{1}_{A_i \cap B_j} \in \mathscr{E}_+ \quad \text{et} \quad E = \bigcup_{i=1}^{N} \bigcup_{j=1}^{M} (A_i \cap B_j).$$

On a

$$\int (\alpha \varphi + \psi) \, d\mu = \sum_{i=1}^{N} \sum_{j=1}^{M} (\alpha \alpha_i + \beta_j) \mu(A_i \cap B_j)$$

$$= \alpha \sum_{i=1}^{N} \alpha_i \sum_{j=1}^{M} \mu(A_i \cap B_j) + \sum_{j=1}^{M} \beta_j \sum_{i=1}^{M} \mu(A_i \cap B_j)$$

$$= \alpha \sum_{i=1}^{N} \alpha_i \mu\Big(\bigsqcup_{j=1}^{N} A_i \cap B_j\Big) + \sum_{j=1}^{M} \beta_j \mu\Big(\bigsqcup_{i=1}^{M} A_i \cap B_j\Big)$$

$$= \alpha \sum_{i=1}^{N} \alpha_i \mu(A_i) + \sum_{j=1}^{M} \beta_j \mu(B_j)$$

$$= \alpha \int \varphi \, d\mu + \int \psi \, d\mu.$$

2. On a $\psi = \varphi + (\psi - \varphi)$ où les fonctions φ et $\psi - \varphi$ sont dans \mathscr{E}_+ . D'après le point 1, on a

$$\int \psi \, \mathrm{d}\mu = \int \varphi \, \mathrm{d}\mu + \int (\psi - \varphi) \, \mathrm{d}\mu \geqslant \int \varphi \, \mathrm{d}\mu.$$

NOTATION. Pour $\varphi \in \mathscr{E}_+$ et $A \in \mathscr{A}$, on note

$$\int_A \varphi \, \mathrm{d}\mu \coloneqq \int_E \varphi \mathbb{1}_A \, \mathrm{d}\mu.$$

On a bien $\varphi \mathbb{1}_A \in \mathscr{E}_+$ car, si $\varphi = \sum_{i=1}^N \alpha_i \mathbb{1}_{A_i}$, alors $\varphi \mathbb{1}_A = \sum_{i=1}^N \alpha_i \mathbb{1}_{A_i \cap A}$.

LEMME 4.3. Soient $\varphi \in \mathscr{E}_+$ et $(E_n)_{n \in \mathbb{N}}$ une suite croissante de \mathscr{A} telle que $E = \bigcup_{n \in \mathbb{N}} E_n$. Alors

$$\int_{E_n} \varphi \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int_E \varphi \, \mathrm{d}\mu.$$

Preuve On note $\varphi = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{A_i}$. Alors

$$\int_{E_n} \varphi \, \mathrm{d}\mu = \sum_{i=1}^N \alpha_i \mu(A_i \cap E_n) \xrightarrow[n \to +\infty]{} \sum_{i=1}^N \alpha_i \mu\Big(\bigcup_{n \in \mathbb{N}} [A_i \cap E_n]\Big) = \sum_{i=1}^N \alpha_i \mu(A_i) = \int_E \varphi \, \mathrm{d}\mu$$

car les suites $(\mu(A_i \cap E_n))_{n \in \mathbb{N}}$ sont croissantes et $\bigcup_{n \in \mathbb{N}} E_n = E$.

4.1.2 Intégration des fonctions mesurables positives

NOTATION. On note \mathcal{M}_+ l'ensemble des fonctions mesurables de E dans $\mathbb{R}_+ \cup \{+\infty\}$.

DÉFINITION 4.4. Soit $f \in \mathcal{M}_+$. On définit son intégrale par rapport à la mesure μ comme

$$\int_{E} f \, \mathrm{d}\mu \coloneqq \sup \left\{ \int_{E} \varphi \, \mathrm{d}\mu \, \middle| \, \varphi \in \mathscr{E}_{+}, \varphi \leqslant f \right\}.$$

- \diamond Remarques. Par croissance de l'intégrale des fonctions de \mathscr{E}_+ , la définition précédente n'est pas ambiguë.
 - Si $f \in \mathcal{M}_+$, alors $\int f d\mu \ge 0$.
 - Si $f, g \in \mathcal{M}_+$ vérifient $f \leqslant g$, alors $\int f d\mu \leqslant \int g d\mu$.

NOTATION. Pour $\varphi \in \mathscr{E}_+$ et $A \in \mathscr{A}$, on a $f \mathbb{1}_A \in \mathscr{M}_+$ et on note

$$\int_A f \, \mathrm{d}\mu \coloneqq \int_A f \, \mathbb{1}_A \, \mathrm{d}\mu.$$

 \triangleright EXEMPLES. $-\bullet$ Mesure de DIRAC. Soient $x \in E$ et $f \in \mathcal{M}_+$. On montrera plus tard que

$$\int_{E} f \, \mathrm{d}\delta_x = f(x).$$

- • Mesure de comptage. Soient m la mesure de comptage sur $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$ et $f \in \mathscr{M}_+$. Alors

$$\int_{\mathbb{N}} f \, \mathrm{d}m = \sum_{n \in \mathbb{N}} f(n).$$

4.2 Théorème de Beppo Levi et conséquences

4.2.1 Théorème et conséquences

THÉORÈME 4.5 (Beppo Levi). Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante de fonctions de \mathcal{M}_+ . Alors

$$\int_{E} \lim_{n \to +\infty} f_n \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Preuve Comme $(f_n)_{n\in\mathbb{N}}$ est croissante, la suite $(\int f_n d\mu)_{n\in\mathbb{N}}$ est croissante, donc elle admet une limite et

$$\forall n \in \mathbb{N}, \quad \int_E f_n \, \mathrm{d}\mu \leqslant \int_E f \, \mathrm{d}\mu \quad \text{avec} \quad f \coloneqq \lim_{n \to +\infty} f_n,$$

donc

$$\lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu \leqslant \int_{E} f \, \mathrm{d}\mu. \tag{1}$$

Montrons l'autre inégalité. Soit $\varphi \in \mathscr{E}_+$ telle que $\varphi \leqslant f$. Soit $\alpha \in]0,1[$. Pour $n \in \mathbb{N}$, posons $E_n = \{f_n \geqslant \alpha \varphi\} \in \mathscr{A}$. La suite $(E_n)_{n \in \mathbb{N}}$ est croissante et $E = \bigcup_{n \in \mathbb{N}} E_n$ car, si $x \in E$, il existe $n \in \mathbb{N}$ tel que $f_n(x) > \alpha \varphi(x)$. Par le lemme précédent, on a alors

$$\int_{E_n} \alpha \varphi \, \mathrm{d}\mu \longrightarrow \int_E \alpha \varphi \, \mathrm{d}\mu.$$

Comme $\alpha\varphi\mathbbm{1}_{E_n}\leqslant f_n,$ la croissance de l'intégrale donne

$$\int_{E_n} \alpha \varphi \, \mathrm{d}\mu \leqslant \int_E f_n \, \mathrm{d}\mu, \quad \mathrm{donc} \quad \alpha \int_E \varphi \, \mathrm{d}\mu \leqslant \lim_{n \to +\infty} \int_E f_n \, \mathrm{d}\mu.$$

Ceci est vrai pour tout $\alpha \in]0,1[$. En laissant tendre α vers 1, on obtient

$$\int_{E} \varphi \, \mathrm{d}\mu \leqslant \lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

On passe à la borne supérieure sur les fonctions $\varphi \in \mathscr{E}_+$ vérifiant $\varphi \leqslant f$ et on obtient

$$\int_{E} f \, \mathrm{d}\mu \leqslant \lim_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu. \tag{2}$$

Les inégalités (1) et (2) montrent l'égalité voulue

 \diamond Remarque. Le résultat est faux pour les suites décroissantes. Par exemple, si $f_n = \mathbb{1}_{[n,+\infty[}$ pour $n \in \mathbb{N}$, alors

$$\forall n \in \mathbb{N}, \quad \int_{\mathbb{R}} f_n \, \mathrm{d}\lambda = \lambda([n, +\infty[) = +\infty \quad \text{et} \quad \int_{\mathbb{R}} \lim_{n \to +\infty} f_n \, \mathrm{d}\lambda = \int_{\mathbb{R}} 0 \, \mathrm{d}\lambda = 0.$$

Proposition 4.6. Soient $f, g \in \mathcal{M}_+$ et $\alpha \geqslant 0$. Alors

$$\int_{E} (\alpha f + g) d\mu = \alpha \int_{E} f d\mu + \int_{E} g d\mu.$$

Preuve On sait qu'il existe deux suites $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ croissantes de \mathscr{E}_+ qui convergent simplement respectivement vers f et g. Comme la suite $(f_n+g_n)_{n\in\mathbb{N}}$ est croissante de \mathscr{E}_+ , le théorème de Beppo Levi donne

$$\alpha \int f_n d\mu + \int g_n d\mu = \int (\alpha f_n + g_n) d\mu \longrightarrow \int (\alpha f + g) d\mu$$

 et

$$\alpha \int f_n d\mu + \int g_n d\mu \longrightarrow \alpha \int f d\mu + \int g d\mu.$$

D'où l'égalité.

APPLICATION. • Mesure de DIRAC. Soient $x \in E$ et $f \in \mathcal{M}_+$. Il existe une suite $(f_n)_{n \in \mathbb{N}}$ croissante de \mathcal{E}_+ qui converge simplement vers f. D'après le théorème de Beppo Levi, on a

$$f_n(x) = \int f_n \, \mathrm{d}\delta_x \longrightarrow \int f \, \mathrm{d}\delta_x.$$

Or $f_n(x) \to f(x)$, donc $\int f d\delta_x = f(x)$.

 \diamond REMARQUE. Si $f, g \in \mathcal{M}_+$ vérifient $f \leqslant g$ et $\int f d\mu < +\infty$, alors

$$\int (g - f) d\mu = \int g d\mu - \int f d\mu.$$

PROPOSITION 4.7. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de \mathcal{M}_+ . Alors $\sum_{n\in\mathbb{N}} f_n \in \mathcal{M}_+$ et

$$\int_{E} \sum_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int_{E} f_n \, \mathrm{d}\mu.$$

Preuve La fonction $\sum_{n\in\mathbb{N}} f_n$ étant une limite de fonctions mesurables positives, elle est elle-même mesurable positive. De plus, la suite $(\sum_{n=0}^N f_n)_{N\in\mathbb{N}}$ est croissante, donc on peut appliquer le théorème de Beppo Levi, i. e.

$$\sum_{n=0}^{N} \int f_n \, \mathrm{d}\mu = \int \sum_{n=0}^{N} f_n \, \mathrm{d}\mu \longrightarrow \int \sum_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu.$$

Or

$$\sum_{n=0}^{N} \int f_n \, \mathrm{d}\mu \longrightarrow \sum_{n \in \mathbb{N}} \int f_n \, \mathrm{d}\mu.$$

PROPOSITION 4.8 (mesure à densité). Soit $g \in \mathcal{M}_+$. Pour $A \in \mathcal{A}$, on pose

$$\nu(A) = \int_A g \, \mathrm{d}\mu.$$

Alors ν est une mesure sur (E, \mathscr{A}) , appelée la mesure à densité g par rapport à μ . Par ailleurs, si $f \in \mathscr{M}_+$, alors

$$\int_{E} f \, \mathrm{d}\nu = \int_{E} f g \, \mathrm{d}\mu.$$

ightharpoonup EXEMPLE. Cette notion a déjà été utilisée en probabilité. Si $X \colon \Omega \to \mathbb{R}$ est une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, on dit que X suit la loi normale $\mathscr{N}(\mu, \sigma)$ si sa loi \mathbb{P}_X est la mesure à densité

$$x \longmapsto \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

i. e. pour tout $A \in \mathcal{B}(\mathbb{R})$, on a

$$\mathbb{P}_X(A) = \int_A \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) d\lambda(x).$$

4.2.2 Inégalité de Markov et conséquences

LEMME 4.9 (inégalité de MARKOV). Soient $f \in \mathcal{M}_+$ et a > 0. Alors

$$\mu(\{f \geqslant a\}) \leqslant \frac{1}{a} \int_E f \,\mathrm{d}\mu.$$

Preuve On a $a\mathbb{1}_{\{f\geqslant a\}}\leqslant f$. Par croissance, on a

$$a\mu(\{f \geqslant a\}) = a \int \mathbb{1}_{\{f \geqslant a\}} d\mu \leqslant \int f d\mu.$$

D'où l'inégalité.

COROLLAIRE 4.10. Si $f \in \mathcal{M}_+$ vérifie $\int f d\mu < +\infty$, alors $\mu(\{f = +\infty\}) = 0$.

Preuve Pour tout $n \in \mathbb{N}^*$, on a

$$\mu(\lbrace f = +\infty \rbrace) \leqslant \mu(\lbrace f \geqslant n \rbrace) \leqslant \frac{1}{n} \int f \, \mathrm{d}\mu \longrightarrow 0,$$

 $\operatorname{donc} \mu(\{f = +\infty\}) = 0.$

PROPOSITION 4.11. 1. Si $f \in \mathcal{M}_+$, alors $\int f d\mu = 0$ si et seulement si f = 0 μ -presque partout. 2. Si $f, g \in \mathcal{M}_+$ vérifie f = g μ -presque partout, alors $\int f d\mu = \int g d\mu$.

♦ REMARQUE. Si $f \in \mathcal{M}_+$ et $A \in \mathcal{A}$ vérifie $\mu(A) = 0$, alors $\int_A f \, d\mu = 0$.

4.2.3 Lemme de FATOU

LEMME 4.12 (FATOU). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de \mathcal{M}_+ . Alors

$$\int_{E} \underline{\lim}_{n \to +\infty} f_n \, \mathrm{d}\mu \leqslant \underline{\lim}_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Preuve Comme la suite $(\inf_{k\geqslant n} f_k)_{n\in\mathbb{N}}$ est une suite croissante de \mathcal{M}_+ , le théorème de Beppo Levi donne

$$\int \lim_{n \to +\infty} f_n \, \mathrm{d}\mu = \int \lim_{n \to +\infty} \inf_{k \geqslant n} f_k \, \mathrm{d}\mu = \lim_{n \to +\infty} \int \inf_{k \geqslant n} f_k \, \mathrm{d}\mu.$$

Soit $m \ge n$. On a $\inf_{k \ge n} f_n \le f_m$. Par croissance de l'intégrale, on a

$$\int \inf_{k \geqslant n} f_k \, \mathrm{d}\mu \leqslant \int f_m \, \mathrm{d}\mu.$$

En passant à l'infimum pour $m \ge n$, on obtient que

$$\int \inf_{k \geqslant n} f_k \, \mathrm{d}\mu \leqslant \inf_{m \geqslant n} \int f_m \, \mathrm{d}\mu.$$

D'où le lemme.

APPLICATION. Si $(f_n)_{n\in\mathbb{N}}$ est une suite de fonctions de \mathcal{M}_+ telle que

$$\sup_{n\in\mathbb{N}}\int f_n\,\mathrm{d}\mu<+\infty$$

et qui converge simplement vers une fonction f, alors $\int f d\mu < +\infty$. En effet, par le lemme de FATOU, on a

$$\int f \, \mathrm{d}\mu = \int \underline{\lim}_{n \to +\infty} f_n \, \mathrm{d}\mu \leqslant \underline{\lim}_{n \to +\infty} \int f_n \, \mathrm{d}\mu \leqslant \sup_{n \in \mathbb{N}} \int f_n \, \mathrm{d}\mu < +\infty.$$

♦ Remarque. – Il est essentiel que les fonctions soient positives. Un contre-exemple est le suivant. Pour $n \in \mathbb{N}^*$, on pose $f_n := \mathbb{1}_{[0,1]} - \mathbb{1}_{[n,n+1]}$. On verra que

$$\int_{\mathbb{R}} f_n \, \mathrm{d}\lambda = 0 \quad \text{et} \quad \int_{\mathbb{R}} \underline{\lim}_{n \to +\infty} f_n \, \mathrm{d}\lambda = \int_{\mathbb{R}} \mathbb{1}_{[0,1]} \, \mathrm{d}\lambda = \lambda([0,1]) = 1,$$

mais on a

$$\underline{\lim}_{n \to +\infty} \int_{\mathbb{R}} f_n \, \mathrm{d}\lambda = 0.$$

 Les inégalités avec la limite supérieure ne sont pas vraies dans le cas général. En revanche, le résultat suivant est vrai.

LEMME 4.13. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de \mathcal{M}_+ telle qu'il existe $g\in\mathcal{M}_+$ vérifiant

$$\forall n \in \mathbb{N}, \quad f_n \leqslant g \qquad \text{et} \qquad \int g \, \mathrm{d}\mu < +\infty.$$

Alors

$$\int_{E} \overline{\lim}_{n \to +\infty} f_n \, \mathrm{d}\mu \geqslant \overline{\lim}_{n \to +\infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Preuve On applique le lemme de Fatou à la suite $(g-f_n)_{n\in\mathbb{N}}$ et on obtient

$$\int \underline{\lim}_{n \to +\infty} (g - f_n) \leqslant \underline{\lim}_{n \to +\infty} \int (g - f_n) \, \mathrm{d}\mu.$$

Or

$$\int \underline{\lim}_{n \to +\infty} (g - f_n) = \int (g - \overline{\lim}_{n \to +\infty} f_n) \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu - \overline{\lim}_{n \to +\infty} \int f_n \, \mathrm{d}\mu$$

et

$$\underline{\lim_{n \to +\infty}} \int (g - f_n) d\mu = \int g d\mu - \overline{\lim_{n \to +\infty}} \int f_n d\mu.$$

D'où l'inégalité.

4.3 FONCTIONS INTÉGRABLES

4.3.1 L'espace $\mathcal{L}^1(E, \mathcal{A}, \mu)$

Dans la suite, on notera $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Attention, le corps n'est pas le corps « rouc ».

DÉFINITION 4.14. On dit qu'une fonction $f:(E,\mathscr{A})\to (\mathbb{K},\mathscr{B}(\mathbb{K}))$ est μ -intégrable si elle est μ -mesurable et

$$\int_{E} |f| \, \mathrm{d}\mu < +\infty.$$

On note $\mathscr{L}^1(E,\mathscr{A},\mu)$ (ou $\mathscr{L}^1(E,\mu)$ ou encore $\mathscr{L}^1(\underline{E})$) l'ensemble des fonctions μ -mesurables de E dans \mathbb{K} . On étend cette définition aux fonctions à valeurs dans $\overline{\mathbb{R}}$ ou dans un sous-ensemble de \mathbb{K} .

NOTATION. Si $f: (E, \mathscr{A}) \to (\overline{\mathbb{R}}, \mathscr{B}(\overline{\mathbb{R}}))$ est mesurable, on note

$$f^+ := \max(f, 0) = f \mathbb{1}_{\{f \ge 0\}} \quad \text{et} \quad f^- := -\min(f, 0) = -f \mathbb{1}_{\{f \le 0\}}.$$

On remarque que ce sont des fonctions positives telles que $f = f^+ - f^-$ et $|f| = f^+ + f^-$. Alors la fonction f est mesurable si et seulement si les fonctions f^+ et f^- le sont.

Proposition 4.15. Soit $f: (E, \mathscr{A}) \to (\mathbb{K}, \mathscr{B}(\mathbb{K}))$.

- 1. Si $\mathbb{K} = \mathbb{R}$, alors f est intégrable si et seulement si f^+ et f^- sont intégrables.
- 2. Si $\mathbb{K} = \mathbb{C}$, alors f est intégrable si et seulement si $\operatorname{Re} f$ et $\operatorname{Im} f$ sont intégrables.

Preuve 1. D'après la remarque précédente, on sait déjà que f est mesurable si et seulement si f^+ et f^- le sont. D'autre part, on a $f^+ \leq |f| = f^+ + f^-$ et $f^- \leq |f| = f^+ + f^-$, donc

$$\int f^{\pm} d\mu \leqslant \int |f| d\mu = \int f^{+} d\mu + \int f^{-} d\mu.$$

donc $\int |f| d\mu < +\infty$ si et seulement si $\int f^+ d\mu < +\infty$ et $\int f^- d\mu < +\infty$.

2. L'équivalence est vraie pour la mesurabilité. On a $|\text{Re }f| \leq |f| \leq |\text{Re }f| + |\text{Im }f|$ et $|\text{Im }f| \leq |f| \leq |\text{Re }f| + |\text{Im }f|$. De même, on établit l'équivalence.

DÉFINITION 4.16. Soit $f: (E, \mathscr{A}) \to (\mathbb{K}, \mathscr{B}(\mathbb{K}))$ une fonction μ -intégrable. Si $\mathbb{K} = \mathbb{R}$, on pose

$$\int_{E} f \, \mathrm{d}\mu \coloneqq \int_{E} f^{+} \, \mathrm{d}\mu - \int_{E} f^{-} \, \mathrm{d}\mu.$$

Si $\mathbb{K} = \mathbb{C}$, on pose

$$\int_{E} f \, \mathrm{d}\mu \coloneqq \int_{E} \operatorname{Re} f \, \mathrm{d}\mu + i \int_{E} \operatorname{Im} f \, \mathrm{d}\mu.$$

Si $A \in \mathcal{A}$, alors $f \mathbb{1}_A \in \mathcal{L}^1(E)$ et on pose

$$\int_A f \, \mathrm{d}\mu := \int_E f \mathbb{1}_A \, \mathrm{d}\mu.$$

PROPOSITION 4.17. Soient $f,g \colon E \to \mathbb{K}$ mesurables tels que f = g μ -presque partout. Alors $f \in \mathscr{L}^1(E)$ si et seulement si $g \in \mathscr{L}^1(E)$. Dans ce cas, on a $\int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu$.

Preuve On suppose que $\mathbb{K}=\mathbb{R}$. On a $\{f^+\neq g^+\}\subset \{f\neq g\}$ et $\{f^-\neq g^-\}\subset \{f\neq g\}$, donc $f^+=g^+$ et $f^-=g^ \mu$ -presque partout, donc $f^+,f^-\in \mathscr{L}^1(E)$ si et seulement si $g^+,g^-\in \mathscr{L}^1(E)$. Dans ce cas, on a

$$\int f^+ d\mu - \int f^- d\mu = \int g^+ d\mu - \int g^- d\mu, \quad \text{donc} \quad \int f d\mu = \int g d\mu.$$

On suppose que $\mathbb{K}=\mathbb{C}$. On a $\{\operatorname{Re} f\neq\operatorname{Re} g\}\subset\{f\neq g\}$ et $\{\operatorname{Im} ff\neq\operatorname{Im} g\}\subset\{f\neq g\}$, donc $\operatorname{Re} f=\operatorname{Re} g$ et $\operatorname{Im} f=\operatorname{Im} g$ μ -presque partout, donc $\operatorname{Re} f,\operatorname{Im} f\in \mathscr{L}^1(E)$ si et seulement si $\operatorname{Re} g,\operatorname{Im} g\in \mathscr{L}^1(E)$.

4.3.2 Propriétés de l'intégrale

PROPOSITION 4.18 (linéarité). Soient $f, g \in \mathcal{L}^1(E)$. Alors

1. on a
$$f + q \in \mathcal{L}^1(E)$$
 et

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu ;$$

2. pour tout $\alpha \in \mathbb{K}$, on a $\alpha f \in \mathscr{L}^1(E)$ et

$$\int \alpha f \, \mathrm{d}\mu = \alpha \int f \, \mathrm{d}\mu.$$

Preuve 1. On a

$$\int |f + g| \, \mathrm{d}\mu \leqslant \int |f| \, \mathrm{d}\mu + \int |g| \, \mathrm{d}\mu < +\infty,$$

donc $f + g \in \mathcal{L}^1(E)$. On suppose que $\mathbb{K} = \mathbb{R}$. On a $f + g = f^+ - f^- + g^+ - g^-$, donc

$$(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+,$$

donc

$$\int (f+g)^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int (f+g)^- d\mu + \int f^+ d\mu + \int g^+ d\mu,$$

En réarrangeant les termes, on obtient l'égalité. On suppose que $\mathbb{K}=\mathbb{C}.$ On a

$$\int (f+g) d\mu = \int (\operatorname{Re} f + \operatorname{Re} g) d\mu + i \int (\operatorname{Im} f + \operatorname{Im} g) d\mu$$
$$= \int \operatorname{Re} f d\mu + \int \operatorname{Re} g d\mu + i \int \operatorname{Im} f d\mu + i \int \operatorname{Im} g d\mu$$
$$= \int f d\mu + \int g d\mu.$$

2. Soit $\alpha \in \mathbb{K}$. On a

$$\int |\alpha f| \, \mathrm{d}\mu \leqslant \int |a| \, |f| \, \mathrm{d}\mu \leqslant |\alpha| \int |f| \, \mathrm{d}\mu < +\infty,$$

donc $\alpha f \in \mathcal{L}^1(E)$. On suppose que $\mathbb{K} = \mathbb{R}$. Si $a \geqslant 0$, alors

$$\int \alpha f \, d\mu = \int (\alpha f)^+ \, d\mu - \int (\alpha f)^- \, d\mu = \int \alpha f^+ \, d\mu - \int \alpha f^- \, d\mu$$
$$= \alpha \int f^+ \, d\mu - \alpha \int f^- \, d\mu = \alpha \int f \, d\mu.$$

Si a < 0, alors

$$\int \alpha f \, \mathrm{d}\mu = \int (\alpha f)^+ \, \mathrm{d}\mu - \int (\alpha f)^- \, \mathrm{d}\mu = \int -\alpha f^- \, \mathrm{d}\mu - \int -\alpha f^+ \, \mathrm{d}\mu = \alpha \int f \, \mathrm{d}\mu.$$

Si $\mathbb{K} = \mathbb{C}$, on utilise la linéarité dans le cas $\mathbb{K} = \mathbb{R}$.

COROLLAIRE 4.19 (relation de CHASLES). Soient $f \in \mathcal{L}^1(E)$ et $A, B \in \mathcal{A}$ tels que $A \cap B = \emptyset$. Alors

$$\int_{A \cup B} f \, \mathrm{d}\mu = \int_A f \, \mathrm{d}\mu + \int_B f \, \mathrm{d}\mu.$$

Preuve On utilise la linéarité et le fait que $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B$.

COROLLAIRE 4.20 (croissance). Soient $f, g \in \mathcal{L}^1(E)$ tels que $f \leq g$ sur E. Alors

$$\int f \, \mathrm{d}\mu \leqslant \int g \, \mathrm{d}\mu.$$

Preuve La fonction g-f est mesurable et positive, donc $\int (g-f) d\mu \ge 0$, d'où l'inégalité par linéarité.

 \diamond Remarque. Le résultat est également vraie si $f\leqslant g$ $\mu\text{-presque}$ partout.

PROPOSITION 4.21 (inégalité triangulaire). Soit $f \in \mathcal{L}^1(E)$. Alors

$$\left| \int f \, \mathrm{d}\mu \right| \leqslant \int |f| \, \mathrm{d}\mu.$$

Preuve On suppose que $\mathbb{K} = \mathbb{R}$. On a

$$\left| \int f \, \mathrm{d}\mu \right| = \left| \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu \right| \leqslant \int f^+ \, \mathrm{d}\mu + \int f^- \, \mathrm{d}\mu = \int |f| \, \mathrm{d}\mu.$$

On suppose que $\mathbb{K}=\mathbb{C}.$ Si $\int f\,\mathrm{d}\mu=0$, l'inégalité est vraie. On suppose ainsi que $\int f\,\mathrm{d}\mu\neq0$. On a

$$\left| \int f \, \mathrm{d}\mu \right| = \int \alpha f \, \mathrm{d}\mu \quad \text{avec} \quad \alpha \coloneqq \frac{\left| \int f \, \mathrm{d}\mu \right|}{\int f \, \mathrm{d}\mu}.$$

On remarque que $|\alpha| = 1$. D'après l'inégalité triangulaire pour $\mathbb{K} = \mathbb{R}$ et comme $|\int f d\mu|$ est un réel, on a

$$\left| \int f \, \mathrm{d}\mu \right| = \int \mathrm{Re}(\alpha f) \, \mathrm{d}\mu + i \int \mathrm{Im}(\alpha f) \, \mathrm{d}\mu$$

$$\leqslant \int |\mathrm{Re}(\alpha f)| \, \mathrm{d}\mu$$

$$\leqslant \int |\alpha f| \, \mathrm{d}\mu = \int |f| \, \mathrm{d}\mu.$$

4.3.3 Formule de transfert

RAPPEL. Si une fonction $\varphi \colon (E, \mathscr{A}) \to (F, \mathscr{B})$ est mesurable et l'application μ est une mesure sur (E, \mathscr{A}) , alors

$$\mu_{\varphi} \colon \begin{vmatrix} \mathscr{B} \longrightarrow \overline{\mathbb{R}}, \\ B \longmapsto \mu(\varphi^{-1}(B)) \end{vmatrix}$$

est une mesure appelée mesure image de μ par φ .

PROPOSITION 4.22. Soient $f: F \to \mathbb{K}$ mesurable. Alors la fonction f est μ_{φ} intégrable si et seulement si la fonction $f \circ \varphi$ est μ -intégrable. Dans ce cas, on a

$$\int_{F} f \, \mathrm{d}\mu_{\varphi} = \int_{E} f \circ \varphi \, \mathrm{d}\mu.$$

Preuve On adopte la méthode de la Standard Machine pour montre cette propriété. On suppose que $f=\mathbbm{1}_B$ avec $B\in \mathscr{B}$. Alors

$$\int_{E} f \circ \varphi \, \mathrm{d}\mu = \mu(\{\varphi \in B\}) \quad \text{et} \quad \int_{E} f \, \mathrm{d}\mu_{\varphi} = \mu_{\varphi}(B) = \mu(\varphi^{-1}(B)) = \mu(\{\varphi \in B\}).$$

Par linéarité, c'est vrai pour des fonctions f étagées. On suppose que $f \geqslant 0$. Il existe une suite $(f_n)_{n \in \mathbb{N}}$ de fonctions mesurables positives qui converge simplement vers f. Alors

$$\forall n \in \mathbb{N}, \quad \int_E f_n \circ \varphi \, \mathrm{d}\mu = \int_E f_n \, \mathrm{d}\mu_{\varphi}.$$

Comme les suites $(f_n)_{n\in\mathbb{N}}$ et $(f_n\circ\varphi)_{n\in\mathbb{N}}$ sont croissantes, le théorème de Beppo Levi donne

$$\int_{E} f_n \, \mathrm{d}\mu_{\varphi} \longrightarrow \int_{E} f \, \mathrm{d}\mu_{\varphi} \quad \text{et} \quad \int_{E} f_n \circ \varphi \, \mathrm{d}\mu \longrightarrow \int_{E} f \circ \varphi \, \mathrm{d}\mu.$$

D'où l'égalité pour des fonctions f mesurables positives. Par linéarité, on montre que c'est vrai pour des fonctions f mesurables. Enfin, on traire le même dans le cas des fonctions f à valeurs dans \mathbb{C} .

APPLICATION AU CALCUL DE L'ESPÉRANCE. Soit $X \colon \Omega \to \mathbb{R}$ une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. L'espérance de X vérifie

$$\mathbb{E}(X) := \int_{\Omega} X \, \mathrm{d}\mathbb{P} = \int_{\mathbb{P}} x \, \mathrm{d}\mathbb{P}_X(x)$$

en prenant $\varphi = X$ et $f = \mathrm{Id}_{\mathbb{R}}$.

4.4 Théorème de convergence dominée et applications

4.4.1 Théorème de convergence dominée

THÉORÈME 4.23. Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables E dans \mathbb{K} et $f\colon E\to\mathbb{K}$ mesurable telles que

- pour μ -presque tout $x \in E$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers f(x);
- il existe $g \colon E \to \mathbb{K}$ intégrable telle que, pour tout $n \in \mathbb{N}$, on ait μ -presque partout $|f_n| \leqslant g$.

Alors les fonctions f_n et f sont intégrables et

$$\int_{E} |f - f_n| \,\mathrm{d}\mu \xrightarrow[n \to +\infty]{} 0.$$

En particulier, on a

$$\int_{E} f_n \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int_{E} f \, \mathrm{d}\mu.$$

Preuve En notant $\{f_n \to f\} := \{x \in E \mid f_n(x) \to f(x)\}, \text{ soit}$

$$A := \{f_n \to f\} \cap \bigcap_{n \in \mathbb{N}} \{|f_n| \leqslant g\} \in \mathscr{A}.$$

Alors

$$\mu(A^{c}) \leqslant \mu(\lbrace f_n \nrightarrow f \rbrace) + \sum_{n \in \mathbb{N}} \mu(\lbrace |f_n| > g \rbrace) = 0.$$

On applique le lemme 4.13 aux fonctions $|f - f_n| \mathbbm{1}_A \in \mathscr{M}_+$. En effet, on a

$$|f - f_n| \mathbb{1}_A \leq (|f| + |f_n|) \mathbb{1}_A \leq 2q$$

car, si $x \in A$, alors $|f_n(x)| \leq g(x)$ pour tout n et $f_n(x) \to f(x)$, donc $|f(x)| \leq g(x)$. Comme $2g \in \mathcal{L}^1(E)$, on a

$$0 = \int_{E} \overline{\lim}_{n \to +\infty} |f - f_n| \, \mathbb{1}_A \, \mathrm{d}\mu \geqslant \overline{\lim}_{n \to +\infty} \int_{E} |f - f_n| \, \mathbb{1}_A \, \mathrm{d}\mu,$$

ce qui donne

$$0 \leqslant \underline{\lim}_{n \to +\infty} \int_{A} |f - f_n| \, \mathrm{d}\mu \leqslant \overline{\lim}_{n \to +\infty} \int_{A} |f - f_n| \, \mathrm{d}\mu \leqslant 0.$$

Ainsi, les limites supérieures et inférieures sont égales, donc la limite en nulle. Comme A^c est un ensemble négligeable, on en déduit que

$$\lim_{n \to +\infty} \int_{E} |f - f_n| \, \mathrm{d}\mu = \lim_{n \to +\infty} \int_{A} |f - f_n| \, \mathrm{d}\mu = 0.$$

COROLLAIRE 4.24. Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{K} telle que

$$\sum_{n\in\mathbb{N}}\int_{E}|f_{n}|\,\mathrm{d}\mu<+\infty.$$

Alors la fonction $\sum_{n\in\mathbb{N}} f_n$ est définie μ -presque partout, intégrable et

$$\int_{E} \sum_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int_{E} f_n \, \mathrm{d}\mu.$$

Preuve Par le théorème de Beppo Levi, on a

$$\int_{E} \sum_{n \in \mathbb{N}} f_n \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} \int_{E} f_n \, \mathrm{d}\mu < +\infty,$$

donc la fonction $\sum_{n\in\mathbb{N}}|f_n|$ est finie μ -presque partout, donc la série $\sum f_n(x)$ converge absolument pour μ -presque tout $x\in E$. On définit donc la fonction $\sum_{n\in\mathbb{N}}f_n$ μ -presque partout. Soit $A:=\{\sum_{n\in\mathbb{N}}|f_n|<+\infty\}\in\mathscr{A}$. On pose $\sum_{n\in\mathbb{N}}f_n(x)=0$ pour $x\notin A$. Alors la fonction $\sum_{n\in\mathbb{N}}f_n$ est mesurable et même intégrable car

$$\int_{E} \left| \sum_{n \in \mathbb{N}} f_n \right| d\mu \leqslant \int_{E} \sum_{n \in \mathbb{N}} |f_n| d\mu < +\infty.$$

On applique le théorème de convergence dominée à la suite $(\sum_{k=0}^n f_k)_{n\in\mathbb{N}}$ qui converge μ -presque partout vers la fonction $\sum_{k\in\mathbb{N}} f_k$ et dont chaque terme est dominé par $\sum_{k\in\mathbb{N}} f_k$. Ainsi

$$\sum_{k=0}^{n} \int_{E} f_k \, \mathrm{d}\mu = \int_{E} \sum_{k=0}^{n} f_k \, \mathrm{d}\mu \xrightarrow[n \to +\infty]{} \int_{E} \sum_{k \in \mathbb{N}} f_k \, \mathrm{d}\mu.$$

 \diamond REMARQUE. Lorsqu'une fonction est définie μ -presque partout et égale à une fonction intégrable μ -presque partout, on s'autorisera à parler de son intégrale.

4.4.2 Intégrales dépendant d'un paramètre

(i) Limite et continuité sous l'intégrale

Soient (Y,d) un espace métrique et $f: E \times Y \to \mathbb{K}$. On s'intéresse aux propriétés de la fonction

$$F: \begin{vmatrix} Y \longrightarrow \mathbb{K}, \\ y \longmapsto \int_{E} f(x, y) \, \mathrm{d}\mu(x) \end{vmatrix}$$

lorsqu'elle est définie.

THÉORÈME 4.25 (limite sous l'intégrale). Soient $\overline{y} \in Y$ et $\ell \colon E \to \mathbb{K}$ mesurable. On suppose que

- (i) pour tout $y \in Y$, la fonction $x \mapsto f(x, y)$ est mesurable;
- (ii) pour μ -presque tout $x \in E$, on a $f(x,y) \to \ell(x)$ quand $y \to \overline{y}$;
- (iii) il existe $g \in \mathcal{L}^1(E)$ telle que, pour μ -presque tout $x \in E$, on ait $|f(x,y)| \leq g(x)$ pour tout $y \in Y$.

Alors $\ell \in \mathcal{L}^1(E)$, la fonction F est bien définie sur tout Y et

$$F(y) = \int_{E} f(x, y) d\mu(x) \xrightarrow{y \to \overline{y}} \int_{E} \ell(x) d\mu(x).$$

Preuve Par (i) et (iii), la fonction F est définie sur tout Y. Soient $(y_n)_{n\in\mathbb{N}}$ une suite de Y telle que $y_n \to \overline{y}$. On considère la suite de fonctions $(\varphi_n)_{n\in\mathbb{N}}$ définie par

$$\varphi_n : \begin{vmatrix} E \longrightarrow \mathbb{K}, \\ x \longmapsto f(x, y_n) \end{vmatrix}$$

pour tout $n \in \mathbb{N}$. Par (i), pour tout $n \in \mathbb{N}$, la fonction φ_n est mesurable. Par (ii), pour μ -presque tout $x \in E$, on a $\varphi_n(x) \to \ell(x)$. Par (iii), pour tout $n \in \mathbb{N}$, on a μ -presque partout $|\varphi_n| \leq g$. Par le théorème de convergence dominée, on a $\ell \in \mathcal{L}^1(E)$ et

$$F(y_n) = \int_E f(x, y_n) \, \mathrm{d}\mu(x) \xrightarrow[n \to +\infty]{} \int_E \ell(x) \, \mathrm{d}\mu(x).$$

COROLLAIRE 4.26 (continuité sous l'intégrale). En remplaçant l'hypothèse (ii) du théorème précédent par

(ii') pour μ -presque tout $x \in E$, la fonction $y \longmapsto f(x,y)$ est continue en \overline{y} .

Alors la fonction F est définie sur Y et continue en \overline{y} .

Preuve Idem que celle du théorème avec $\ell \colon x \longmapsto f(x, \overline{y})$.

(ii) Dérivation sous l'intégrale

Soient I un intervalle non vide de \mathbb{R} et $f: E \times I \to \mathbb{R}$. On pose toujours

$$F: \begin{vmatrix} I \longrightarrow \mathbb{K}, \\ y \longmapsto \int_E f(x, y) \, \mathrm{d}\mu(x) \end{vmatrix}$$

Théorème 4.27 (dérivation sous l'intégrale). On suppose que

- (i) pour tout $y \in I$, la fonction $x \mapsto f(x, y)$ est intégrable;
- (ii) pour μ -presque tout $x \in E$, la fonction $y \longmapsto f(x,y)$ est dérivable sur I, de dérivée notée $y \longmapsto \partial_y f(x,y)$;
- (iii) il existe $g \in \mathcal{L}^1(E)$ telle que, pour μ -presque tout $x \in E$, on ait $|\partial_y f(x,y)| \leq g(x)$ pour tout $y \in I$.

Alors la fonction F est dérivable sur I et, pour tout $y \in I$, on a

$$F'(y) = \int_E \partial_y f(x, y) \, \mathrm{d}\mu(x).$$

Preuve Soient $\overline{y} \in I$ et $(y_n)_{n \in \mathbb{N}}$ une suite de $I \setminus \{\overline{y}\}$ telle que $y_n \to \overline{y}$. Pour $n \in \mathbb{N}$, on pose

$$\varphi_n : \begin{vmatrix} E \longrightarrow \mathbb{K}, \\ x \longmapsto \frac{f(x, y_n) - f(x, \overline{y})}{y_n - \overline{y}}. \end{vmatrix}$$

Par (i), les fonctions φ_n sont mesurables. Par (ii), pour μ -presque tout $x \in E$, on a $\varphi_n(x) \to \partial_y f(x, \overline{y})$. Enfin, pour tout $n \in \mathbb{N}$ et pour μ -presque tout $x \in E$, le théorème des accroissements finis puis (iii) donnent

$$|\varphi_n(x)| \le \left| \frac{f(x, y_n) - f(x, \overline{y})}{y_n - \overline{y}} \right| \le \sup_{y \in [y_n, \overline{y}]} |\partial_y f(x, y)| \le g$$

Le théorème de convergence dominée affirme alors

$$\frac{F(y_n) - F(\overline{y})}{y_n - \overline{y}} = \int_E \varphi_n(x) \, \mathrm{d}\mu(x) \xrightarrow[n \to +\infty]{} \int_E \partial_y f(x,y) \, \mathrm{d}\mu(x).$$

Ceci est vrai pour tout $\overline{y} \in I$, donc la fonction F est dérivable en \overline{y} et cette dernière limite permet de conclure. \square

 \diamond REMARQUE. Si on remplace « dérivable » par « de classe C^1 » dans (ii), on obtient que la fonction F est de classe C^1 sur I. En effet, il suffit d'appliquer le théorème de continuité sous l'intégrale à $\int_E \partial_y f(x,y) \, \mathrm{d}\mu(x)$.

4.5 LIEN ENTRE LES INTÉGRALES DE RIEMANN ET DE LEBESGUE

4.5.1 Intégrale de RIEMANN

DÉFINITION 4.28. Soit [a,b] un segment de \mathbb{R} . On dit qu'une fonction $f:[a,b] \to \mathbb{R}$ est en escalier si elle est de la forme

$$f = \sum_{i=1}^{N} \alpha_i \mathbb{1}_{I_i}$$

où les ensembles I_1, \ldots, I_n sont des intervalles de [a, b]. On note Esc l'ensemble des fonctions en escalier. Avec ces mêmes notations, on note alors

$$\int_{a}^{b} f(x) dx := \sum_{i=1}^{N} \alpha_{i} \ell(I_{i}).$$

où la notation $\ell(I)$ désigne la longueur d'un intervalle I.

♦ REMARQUE. Toute fonction en escalier est une fonction étagée. La réciproque est fausse.

DÉFINITION 4.29. Soit $f:[a,b]\to\mathbb{R}$ bornée. On pose

$$I_{-}(f) := \sup \left\{ \int_{a}^{b} \varphi(x) \, \mathrm{d}x \mid \varphi \in \mathrm{Esc}, \varphi \leqslant f \right\} \quad \text{et} \quad I_{+}(f) := \inf \left\{ \int_{a}^{b} \varphi(x) \, \mathrm{d}x \mid \varphi \in \mathrm{Esc}, \varphi \geqslant f \right\}.$$

Lorsque ces deux quantités sont égales, on dit que la fonction f est RIEMANN-intégrable.

 \triangleright EXEMPLE. L'indicatrice $\mathbb{1}_{\mathbb{Q}}$ n'est pas RIEMANN-intégrable car $I_{-}(\mathbb{1}_{\mathbb{Q}}) = 0$ et $I_{+}(\mathbb{1}_{\mathbb{Q}}) = 1$.

THÉORÈME 4.30. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions RIEMANN-intégrable qui converge uniformément vers une fonction f. Alors la fonction f est RIEMANN-intégrable et

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} f_n(x) dx.$$

DÉFINITION 4.31. On dit qu'une fonction $f:[a,b]\to\mathbb{R}$ bornée est réglée si elle est limite uniforme d'une suite de fonctions en escalier.

- \diamond REMARQUE. Par le dernier théorème, toute fonction réglée est RIEMANN-intégrable. On peut montrer qu'une fonction f est réglée si et seulement si elle admet en tout point une limite à gauche et une limite à droite et que, si f est réglée, alors elle admet un nombre dénombrable de discontinuité.
- ▶ EXEMPLE. Les fonctions continues, continues par morceaux et monotones sont réglées. On peut montrer le théorème suivant.

THÉORÈME 4.32 (critère de LEBESGUE). Soit $f:[a,b] \to \mathbb{R}$ bornée. Alors la fonction f est RIEMANN-intégrable si et seulement si elle est continue λ -presque partout.

4.5.2 Comparaison entre les deux intégrales

THÉORÈME 4.33. Soit $f:[a,b]\to\mathbb{R}$ RIEMANN-intégrable. Alors il existe $g:[a,b]\to\mathbb{R}$ intégrable telle que

$$f = g$$
 λ -presque partout et $\int_a^b f(x) dx = \int_{[a,b]} g d\lambda$.

Preuve Par définition, il existe deux suites $(\varphi_n)_{n\in\mathbb{N}}$ et $(\psi_n)_{n\in\mathbb{N}}$ de fonctions en escalier telles que $\varphi_n\leqslant f\leqslant \psi_n$ pour tout $n\in\mathbb{N}$ et

$$\int_a^b \varphi_n(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_a^b f(x) \, \mathrm{d}x \quad \text{et} \quad \int_a^b \psi_n(x) \, \mathrm{d}x \xrightarrow[n \to +\infty]{} \int_a^b f(x) \, \mathrm{d}x.$$

On peut supposer la suite $(\varphi_n)_{n\in\mathbb{N}}$ croissante quitte à remplacer φ_n par $\max(\varphi_0,\ldots,\varphi_n)$. De même, on peut supposer la suite $(\psi_n)_{n\in\mathbb{N}}$ décroissante. On pose alors $g:=\lim_{n\to+\infty}\varphi_n$. Elle est mesurable comme limite de fonctions mesurables. La suite $(\varphi_n-\varphi_0)_{n\in\mathbb{N}}$ est une suite croissante de \mathscr{M}_+ . Le théorème de Beppo Levi donne

$$\int_{[a,b]} (\varphi_n - \varphi_0) \, \mathrm{d}\lambda \xrightarrow[n \to +\infty]{} \int_{[a,b]} (g - \varphi_0) \, \mathrm{d}\lambda.$$

Intégrale de LEBESGUE - CHAPITRE 4

Or comme les fonctions φ_n sont en escaliers, on a

$$\int_{a}^{b} \varphi_{n}(x) \, \mathrm{d}x = \int_{[a,b]} \varphi_{n} \, \mathrm{d}\lambda \xrightarrow[n \to +\infty]{} \int_{[a,b]} g \, \mathrm{d}\lambda.$$

D'où

$$\int_{[a,b]} g \, \mathrm{d}\lambda = \int_a^b f(x) \, \mathrm{d}x \quad \text{avec} \quad g \leqslant f.$$

De même, en notant note $h := \lim_{n \to +\infty} \psi_n$, on a

$$\int_{[a,b]} h \, \mathrm{d}\lambda = \int_a^b f(x) \, \mathrm{d}x \quad \text{avec} \quad f \leqslant h.$$

La fonction h-g est positive et d'intégrale nulle, donc g=h λ -presque partout. Comme $\{f \neq g\} \subset \{g \neq h\}$, on en déduit l'égalité f=g λ -presque partout.

♦ REMARQUE. Dans la suite, lorsque f est RIEMANN-intégrable et mesurable, on écrira indifféremment

$$\int_{a}^{b} f(x) dx, \quad \int_{[a,b]} f d\lambda \quad \text{et} \quad \int_{a}^{b} f d\lambda.$$

On peut montrer le théorème suivant.

THÉORÈME 4.34. Si une fonction $f:]a, b[\to \mathbb{R}$ est mesurable, localement RIEMANN-intégrable et d'intégrale de RIEMANN absolument convergente, alors

$$f \in \mathscr{L}^1_{\lambda}([a,b])$$
 et $\int_{[a,b]} f \, d\lambda = \int_a^b f(x) \, dx$.

Preuve On applique le théorème de convergence dominée à la suite $f\mathbbm{1}_{[a_n,b_n]}$ où les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont respectivement décroissante et croissante et tendent respectivement vers a et b.

Chapitre 5

Construction de mesures, unicité

5.1 Construction de mesures	23	5.2.2 Théorème d'unicité des mesures	26
5.1.1 Mesures extérieures	23	5.2.3 Unicité de la mesure de LEBESGUE	26
5.1.2 Mesure de Lebesgue	24	5.3 Tribu complétée, mesure complétée	27
		5.3.1 Définition	
5.2.1 Lemme des classes monotones	25	5.3.2 Complétion de $\mathscr{B}(\mathbb{R}^d)$	27

5.1 Construction de mesures

PROBLÉMATIQUE. Par exemple, on peut facilement construire la mesure de Lebesgue sur les intervalles de $\mathbb R$: on associe un intervalle I à sa longueur, notée $\ell(I)$. On souhaite prolonger ça aux boréliens de $\mathbb R$.

5.1.1 Mesures extérieures

Dans toute la sous-section, la lettre E désignera un ensemble quelconque.

DÉFINITION 5.1. On appelle mesure extérieure sur E toute application $\mu^* \colon \mathscr{P}(E) \to \mathbb{R} \cup \{+\infty\}$ vérifiant

- $-\mu^*(\emptyset) = 0,$
- si A et B sont deux parties de E telles que $A \subset B$, alors $\mu^*(A) \leqslant \mu^*(B)$,
- si $(A_n)_{n\in\mathbb{N}}$ est une suite de $\mathscr{P}(E)$, alors $\mu^*(\bigcup_{n\in\mathbb{N}}A_n)\leqslant \sum_{n\in\mathbb{N}}\mu^*(A_n)$.
- \diamond Remarque. Toute mesure sur $(E, \mathscr{P}(E))$ est en particulier une mesure extérieure.

DÉFINITION 5.2. Soit μ^* un mesure extérieure sur E. On dit qu'une partie A de E est μ^* -mesurable si, pour toute partie B de E, on a $\mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A)$. On note \mathcal{M}_{μ^*} l'ensemble des parties μ^* -mesurables.

Proposition 5.3. Soit μ^* est mesure extérieure sur E. Alors

- 1. la classe de parties \mathcal{M}_{μ^*} est une tribu sur E;
- 2. la mesure extérieure μ^* définit une mesure sur l'espace mesurable (E, \mathscr{M}_{μ^*}) .

Preuve 1. On a bien $\emptyset \in \mathcal{M}_{\mu^*}$. Si $A \in \mathcal{M}_{\mu^*}$, alors

$$\forall B \subset E, \quad \mu^*(B) = \mu^*(B \cap A) + \mu^*(B \setminus A) = \mu^*(B \setminus A^{c}) + \mu^*(B \cap A^{c}),$$

donc $A^c \in \mathcal{M}_{\mu^*}$. Soit $(A_n)_{n \in \mathbb{N}}$ une suite de \mathcal{M}_{μ^*} . Il suffit de montrer que

$$\forall B \subset E, \quad \mu^*(B) \geqslant \mu^* \Big(B \cap \bigcup_{n \in \mathbb{N}} A_n \Big) + \mu^* \Big(B \setminus \bigcup_{n \in \mathbb{N}} A_n \Big).$$

Soit $B\subset E.$ Par récurrence, on montre que, pour tout $N\in\mathbb{N},$ on a

$$\mu^*(B) = \sum_{n=0}^N \mu^* \Big(B \setminus \bigcup_{k=1}^{n-1} A_k \cap A_n \Big) + \mu^* \Big(B \setminus \bigcup_{n=0}^N A_n \Big)$$
$$\geqslant \sum_{n=0}^N \mu^* \Big(B \setminus \bigcup_{k=1}^{n-1} A_k \cap A_n \Big) + \mu^* \Big(B \setminus \bigcup_{n \in \mathbb{N}} A_n \Big).$$

En laissant tendre N vers $+\infty$, on obtient

$$\mu^{*}(B) \geqslant \sum_{n=0}^{+\infty} \mu^{*} \left(B \setminus \bigcup_{k=0}^{n-1} A_{k} \cap A_{n} \right) + \mu^{*} \left(B \setminus \bigcup_{n \in \mathbb{N}} A_{n} \right)$$
$$\geqslant \mu^{*} \left(\bigcup_{n \in \mathbb{N}} B \setminus \bigcup_{k=0}^{n-1} A_{k} \cap A_{n} \right) + \mu^{*} \left(B \setminus \bigcup_{n \in \mathbb{N}} A_{n} \right)$$
$$\geqslant \mu^{*} \left(B \cap \bigcup_{n \in \mathbb{N}} A_{n} \right) + \mu^{*} \left(B \setminus \bigcup_{n \in \mathbb{N}} A_{n} \right)$$

ce qui montre que l'union des A_n est dans \mathcal{M}_{μ^*} . Donc \mathcal{M}_{μ^*} est bien une tribu sur E.

2. On a bien $\mu^*(\emptyset) = 0$. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathscr{M}_{μ^*} deux à deux disjoints. Montrons que

$$\mu^* \left(\bigsqcup_{n \in \mathbb{N}} A_n \right) \geqslant \sum_{n \in \mathbb{N}} \mu^* (A_n).$$

Pour tout $N \in \mathbb{N}$, on a

$$\mu^* \Big(\bigsqcup_{n \in \mathbb{N}} A_n \Big) \geqslant \mu^* \Big(\bigsqcup_{n=0}^N A_n \Big) = \mu^* (A_N) + \mu^* \Big(\bigsqcup_{n=0}^{N-1} A_n \Big) = \dots = \sum_{n=0}^N \mu^* (A_n).$$

En laissant tendre N vers $+\infty$, on obtient bien l'inégalité voulue.

5.1.2 Mesure de Lebesgue

On traite le cas d=1. On note $\mathscr I$ l'ensemble des intervalles ouverts bornés de $\mathbb R$. Pour $A\subset\mathbb R$, on introduit

$$\lambda^*(A) := \inf \left\{ \sum_{n \in \mathbb{N}} \ell(I_n) \mid A \subset \bigcup_{n \in \mathbb{N}} I_n, (I_n)_{n \in \mathbb{N}} \in \mathscr{I}^{\mathbb{N}} \right\}.$$

PROPOSITION 5.4. L'application λ^* ainsi définie est une mesure extérieure sur $(\mathbb{R}, \mathscr{P}(\mathbb{R}))$.

Preuve Comme $\emptyset \subset I$ pour tout $I \in \mathscr{I}$, on a $\lambda^*(\emptyset) = \emptyset$. Soient $A, B \subset \mathbb{R}$ telles que $A \subset B$. Si $(I_n)_{n \in \mathbb{N}}$ est une suite de \mathscr{I} vérifiant $B \subset \bigcup_{n \in \mathbb{N}} I_n$, alors $A \subset \bigcup_{n \in \mathbb{N}} I_n$. Donc $\lambda^*(B) \geqslant \lambda^*(A)$. Soit $(A_k)_{k \in \mathbb{N}}$ une suite de $\mathscr{P}(\mathbb{R})$. Montrons que

$$\lambda^* \left(\bigcup_{k \in \mathbb{N}} A_k \right) \leqslant \sum_{k \in \mathbb{N}} \lambda^* (A_k).$$

Soit $\varepsilon > 0$. Pour tout $k \in \mathbb{N}$, il existe une suite $(I_n^k)_{n \in \mathbb{N}}$ de \mathscr{I} telle que

$$\sum_{n\in\mathbb{N}}\ell(I_n^k)\leqslant \lambda^*(A_k)+\frac{\varepsilon}{2^{k+1}}\quad\text{et}\quad A_k\subset\bigcup_{n\in\mathbb{N}}I_n^k.$$

On a donc

$$\bigcup_{k\in\mathbb{N}} A_k \subset \bigcup_{k\in\mathbb{N}} \bigcup_{n\in\mathbb{N}} I_n^k \quad \text{et} \quad \lambda^* \Big(\bigcup_{k\in\mathbb{N}} A_k\Big) \leqslant \sum_{k\in\mathbb{N}} \sum_{n\in\mathbb{N}} \ell(I_n^k) \leqslant \sum_{k\in\mathbb{N}} \lambda^* (A_k) + \varepsilon.$$

En laissant tendre ε vers o, on obtient bien l'inégalité voulue. Donc λ^* est une mesure extérieure sur \mathbb{R} .

Proposition 5.5. 1. On a $\lambda^*([0,1]) = 1$.

2. La mesure extérieure λ^* est invariante par translation.

Preuve 1. Montrons l'égalité par double inégalité. Pour $\varepsilon > 0$, on a $[0,1] \subset]-\varepsilon, 1+\varepsilon[$, donc $\lambda^*([0,1]) \leqslant 1+2\varepsilon$ et, en laissant tendre ε vers 0^+ , on obtient que $\lambda^*([0,1]) \leqslant 1$.

Montrons l'autre inégalité. Soient $(a_i)_{i\in\mathbb{N}}$ et $(b_i)_{i\in\mathbb{I}}$ deux suites telles que $[0,1]\subset\bigcup_{i\in\mathbb{N}}]a_i,b_i[$. Par la propriété de Borel-Lebesgue, il existe $n\in\mathbb{N}$ tel que $[0,1]\subset\bigcup_{i=0}^n]a_i,b_i[$. Soit $i_1\in\mathbb{N}$ tel que $0\in]a_{i_1},b_{i_1}[$. Si $b_{i_1}\in[0,1]$, il existe $i_2\in\mathbb{N}$ tel que $b_{i_2}\in]a_{i_1},b_{i_1}[$. On répète ensuite l'opération pour créer des entiers i_k vérifiant $b_{i_{k+1}}\in]a_{i_k},b_{i_k}[$ jusqu'à obtenir $b_{i_N}>1$. On a alors

$$\sum_{i \in \mathbb{N}} (b_i - a_i) \geqslant \sum_{k=1}^{N} (b_{i_k} - a_{i_k}) \geqslant \sum_{k=2}^{N} (b_{i_k} - b_{i_{k-1}}) + b_{i_1} - a_{i_1} = b_{i_N} - a_{i_1} \geqslant 1.$$

En passant à la borne inférieure, on obtient que $\lambda^*([0,1]) \ge 1$.

2. Soient $A \subset \mathbb{R}$ et $x \in \mathbb{R}$. On a

$$\lambda^*(A) = \inf \left\{ \sum_{n \in \mathbb{N}} \ell(I_n) \mid A \subset \bigcup_{n \in \mathbb{N}} I_n, (I_n)_{n \in \mathbb{N}} \in \mathscr{I}^{\mathbb{N}} \right\}$$

$$= \inf \left\{ \sum_{n \in \mathbb{N}} \ell(J_n - x) \mid A + x \subset \bigcup_{n \in \mathbb{N}} I_n, (I_n)_{n \in \mathbb{N}} \in \mathscr{I}^{\mathbb{N}} \right\}$$

$$= \inf \left\{ \sum_{n \in \mathbb{N}} \ell(J_n) \mid A + x \subset \bigcup_{n \in \mathbb{N}} I_n, (I_n)_{n \in \mathbb{N}} \in \mathscr{I}^{\mathbb{N}} \right\} = \lambda^*(A + x).$$

Proposition 5.6. Les boréliens de \mathbb{R} sont λ^* -mesurables.

Preuve Il suffit de montrer que $]-\infty,a]$ est λ^* -mesurable pour tout $a\in\mathbb{R}$. Soit $I:=]-\infty,a]$ avec $a\in\mathbb{R}$. Il suffit de montrer que, pour toute $B \subset \mathbb{R}$, on a $\lambda^*(B) \geqslant \lambda^*(B \cap I) + \lambda^*(B \setminus I)$. Soit $B \subset \mathbb{R}$. Si une suite $(I_n)_{n \in \mathbb{N}}$ de \mathscr{I} vérifie $B \subset \bigcup_{n \in \mathbb{N}} I_n$, alors

$$B \cap I \subset \bigcup_{n \in \mathbb{N}} I_n \cap I$$
 et $B \setminus I \subset \bigcup_{n \in \mathbb{N}} I_n \setminus I$,

donc

$$\lambda^*(B \cap I) + \lambda^*(B \setminus I) \leqslant \sum_{n \in \mathbb{N}} \ell(I_n \cap I) + \sum_{n \in \mathbb{N}} \ell(I_n \setminus I) = \sum_{n \in \mathbb{N}} \ell(I_n).$$

En passant à la borne inférieure sur les recouvrements $(I_n)_{n\in\mathbb{N}}$ de B, on obtient l'inégalité. D'où la proposition.

- \diamond REMARQUE. On vient de montrer que l'application λ^* est une mesure sur l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ vérifiant (i) $\lambda^*([0,1]) = 1$,
 - (ii) λ^* est invariante par translation

ce qui montre l'existence de la mesure de LEBESGUE sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$. Sur \mathbb{R}^d , on définit de même la mesure extérieure de LEBESGUE d-dimensionnelle par

$$\lambda_d^*(A) := \inf \left\{ \sum_{n \in \mathbb{N}} \mathscr{V}(P_n) \mid A \subset \bigcup_{n \in \mathbb{N}} P_n, \, (P_n)_{n \in \mathbb{N}} \in \mathscr{P}^{\mathbb{N}} \right\}$$

où ${\mathscr P}$ est l'ensemble des pavés ouverts bornées de ${\mathbb R}^d.$ De même que précédemment, on montre que λ_d^* est une mesure sur $(\mathbb{R}^d, \mathscr{B}(\mathbb{R}^d))$ telle que

- (i) $\lambda_d^*([0,1]^d) = 1$,
- (ii) λ_d^* est invariante par translation

On retrouve alors la propriété de régularité 2.9 de la mesure de LEBESGUE : pour tout $A \in \mathcal{M}_{\lambda_d^*}$, on a

$$\lambda_d^*(A) = \inf \{ \lambda_d(\Omega) \mid \Omega \supset A, \Omega \text{ ouvert} \}$$
 et $\lambda_d^*(A) = \sup \{ \lambda_d(K) \mid K \subset A, K \text{ compact} \}.$

Unicité des mesures

PROBLÉMATIQUE. Soit (E, \mathscr{A}) un espace mesure dont la tribu \mathscr{A} est engendrée par une classe de parties \mathscr{C} . Si deux applications μ et ν sont deux mesures sur (E, \mathcal{A}) telles que $\mu = \nu$ sur \mathcal{C} , a-t-on $\mu = \nu$? En général non! Par exemple, on prend $E := \{0,1\}$ et $\mathscr{A} := \mathscr{P}(E) = \sigma(\{0\})$. On prend deux mesures μ et ν vérifiant

5.2.1 Lemme des classes monotones

DÉFINITION 5.7. On appelle classe monotone sur E toute classe de parties \mathcal{M} de E telle que

- $E \in \mathcal{M}$, si A et B sont des éléments de \mathcal{M} tels que $A \subset B$, alors $B \setminus A \in \mathcal{M}$ si $(A_n)_{n \in \mathbb{N}}$ est une suite croissante de \mathcal{M} , alors $A_n \in \mathcal{M}$.
 - $n \in \mathbb{N}$ est une suite croissante de \mathscr{M} , alors $\bigcup_{n \in \mathbb{N}} A_n \in \mathscr{M}$.
- \diamond Remarques. 1. Une tribu sur E est une classe monotone. La réciproque est fausse.
 - 2. Une intersections quelconques de classes monotones est encore une classe monotone. Pour tout $\mathscr{C} \subset \mathscr{P}(E)$, il existe une plus petite classe monotone $m(\mathscr{C})$ contenant \mathscr{C} . Elle vérifie

$$m(\mathscr{C}) = \bigcap \mathscr{M}.$$

$$\mathscr{M} \text{ classe monotone de } E$$

LEMME 5.8. Si \mathscr{M} est une classe monotone sur E stable par intersection finie, alors \mathscr{M} est une tribu sur E.

Preuve On a $\emptyset = E \setminus E \in \mathcal{M}$ et, si $A \in \mathcal{M}$, alors $A^c = E \setminus A \in \mathcal{M}$. Soit $(A_n)_{n \in \mathbb{N}}$ une suite de \mathcal{M} . Alors

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} \bigcup_{k=0}^n A_k = \bigcup_{n\in\mathbb{N}} \left(\bigcap_{k=0}^n A_k^{\mathrm{c}}\right)^{\mathrm{c}} \in \mathscr{M}.$$

LEMME 5.9 (des classes monotones). Si \mathscr{C} est une classe de parties de E stable par intersection finie, alors on a $m(\mathscr{C}) = \sigma(\mathscr{C})$.

Preuve La tribu $\sigma(\mathscr{C})$ est une classe monotone qui contient \mathscr{C} , donc $\sigma(\mathscr{C}) \supset m(\mathscr{C})$. Montrons que $m(\mathscr{C})$ est une tribu ce qui permettra de conclure. Il suffit de montrer que $m(\mathscr{C})$ est stable par intersection finis. Montrons que, si $A \in m(\mathscr{C})$ et $C \in \mathscr{C}$, alors $A \cap C \subset m(\mathscr{C})$. On montre que la classe de parties

$$\mathcal{M}_1 := \{ A \in m(\mathscr{C}) \mid \forall C \in \mathscr{C}, A \cap C \in m(\mathscr{C}) \}$$

est une classe monotone contenant \mathscr{C} , donc $\mathscr{M}_1 \supset m(\mathscr{C})$ et même $\mathscr{M}_1 = m(\mathscr{C})$. Montrons que, si $A, B \in m(\mathscr{C})$, alors $A \cap B \in m(\mathscr{C})$. De même, on montre que la classe de parties

$$\mathcal{M}_2 := \{ A \in m(\mathscr{C}) \mid \forall B \in m(\mathscr{C}), A \cap B \in m(\mathscr{C}) \}$$

est une classe monotone contenant $\mathscr C$ par ce dernier point et on conclut identiquement que $\mathscr M_2=m(\mathscr C)$. On a montré que $m(\mathscr C)$ est stable par intersection finie. D'où le résultat.

5.2.2 Théorème d'unicité des mesures

Théorème 5.10. Soient μ et ν deux mesures sur (E, \mathscr{A}) qui coïncident sur une classe de parties \mathscr{C} telle que

- $-\mathscr{C}$ stable par intersection finie,
- $-E \in \mathscr{C}$,
- $\mathscr{A} = \sigma(\mathscr{C}).$

Alors

- 1. si μ et ν sont finies, alors $\mu = \nu$ sur \mathscr{A} ;
- 2. s'il existe une suite croissante $(E_n)_{n\in\mathbb{N}}$ de \mathscr{C} telle que

$$\forall n \in \mathbb{N}, \quad \mu(E_n) = \nu(E_n) < +\infty \quad \text{et} \quad \bigcup_{n \in \mathbb{N}} E_n = E,$$

alors $\mu = \nu \text{ sur } \mathcal{A}$.

Preuve 1. On suppose que μ et ν sont finies. On considère la classe de parties

$$\mathcal{M} := \{ A \in \mathcal{A} \mid \mu(A) = \nu(A) \}.$$

Montrons que \mathscr{M} est une classe monotone sur E. On a $E \in \mathscr{M}$ car $\mu(E) = \nu(E)$. Si $A, B \in \mathscr{M}$ sont telles que $A \subset B$, alors $\mu(B \setminus A) = \mu(B) - \mu(A) = \nu(B) - \nu(A) = \nu(B \setminus A)$ car les mesures sont finies, donc $B \setminus A \in \mathscr{M}$. Enfin, si $(A_n)_{n \in \mathbb{N}}$ est une suite croissante de \mathscr{M} , alors la continuité donne

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\lim_{n\to+\infty}\mu(A_n)=\lim_{n\to+\infty}\nu(A_n)=\nu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big),$$

donc $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}$. Comme \mathcal{M} est une classe monotone contenant \mathcal{C} , on a $\mathcal{M} \supset m(\mathcal{C})$. Par le lemme des classes monotones, on obtient que $m(\mathcal{C}) = \sigma(\mathcal{C})$, donc $\mathcal{M} \supset \mathcal{A}$.

2. Pour $n \in \mathbb{N}$ et $A \in \mathcal{A}$, on pose

$$\mu_n(A) = \mu(A \cap E_n)$$
 et $\nu_n(A) = \nu(A \cap E_n)$.

Alors les applications μ_n et ν_n définissent des mesures finis sur (E, \mathscr{A}) et elles coïncident sur \mathscr{C} , i. e. pour tous $n \in \mathbb{N}$ et $C \in \mathscr{C}$, on a $\mu(C \cap E_n) = \nu(C \cap E_n)$. Finalement, si $A \in \mathscr{A}$, on a

$$\mu(A) = \mu\left(\bigcup_{n \in \mathbb{N}} A \cap E_n\right) = \lim_{n \to +\infty} \mu(A \cap E_n) = \lim_{n \to +\infty} \nu(A \cap A_n) = \nu(A).$$

5.2.3 Unicité de la mesure de LEBESGUE

RAPPEL. Si μ est une mesure sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$, invariante par translation et telle que $\mu([0,1]) = 1$, alors $\mu(I) = \ell(I)$ pour tout intervalle I de \mathbb{R} .

THÉORÈME 5.11 (unicité). Il existe une unique mesure λ sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ invariante par translation telle que

$$\lambda([0,1]) = 1.$$

Preuve D'après le rappel, si λ et λ' sont deux telles mesures sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, alors $\lambda = \lambda'$ sur $\mathscr{C} := \mathscr{I}$. Or \mathscr{C} est stable par intersection finie et on a $\mathbb{R} \in \mathscr{C}$. De plus, en posant $E_n = [-n, n] \in \mathscr{C}$ pour $n \in \mathbb{N}$, on a

$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} E_n$$
 et $\lambda(E_n) = 2n < +\infty$, $\forall n \in \mathbb{N}$.

Par le théorème d'unicité, on a $\lambda = \lambda'$ sur $\sigma(\mathscr{C}) = \mathscr{B}(\mathbb{R})$ ce qui montre l'unicité de la mesure de LEBESGUE. \square

 \diamond REMARQUE. On montre de la même façon l'unicité de la mesure de LEBESGUE d-dimensionnelle λ_d sur l'espace mesurable $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ en considérant $\mathscr{C} := \{P \subset \mathbb{R}^d \mid P \text{ pavé}\}.$

5.3 Tribu complétée, mesure complétée

5.3.1 Définition

NOTATION. Soit (E, \mathscr{A}, μ) un espace mesuré. On note \mathscr{N}_{μ} l'ensemble des parties de E qui sont μ -négligeables. Si $\mathscr{N}_{\mu} \subset A$, on dit que (E, \mathscr{A}, μ) est complet.

DÉFINITION 5.12. On appelle tribu complétée de A la classe de parties

$$\overline{\mathscr{A}} \coloneqq \{B \cup N \mid B \in \mathscr{A}, N \in \mathscr{N}_{\mu}\}.$$

C'est une tribu sur E.

Preuve On a $\emptyset \in \overline{\mathscr{A}}$. Si $B \cup N \in \overline{\mathscr{A}}$, alors $(B \cup N)^c = (B^c \setminus A) \cup (A \setminus N \cap B^c) \subset \overline{\mathscr{A}}$ avec $A \in \mathscr{A}$ tel que $N \subset A$ et $\mu(A) = \emptyset$. Enfin, si $(B_n)_{n \in \mathbb{N}}$ sont des suites de \mathscr{A} et \mathscr{N}_{μ} , alors

$$\bigcup_{n\in\mathbb{N}}[B_n\cup N_n]=\bigcup_{n\in\mathbb{N}}B_n\cup\bigcup_{n\in\mathbb{N}}N_n\in\overline{\mathscr{A}}.$$

Ce qui montre que $\overline{\mathscr{A}}$ est une tribu sur E.

DÉFINITION-PROPOSITION 5.13. Pour $B \cup N \in \overline{\mathscr{A}}$, on pose

$$\overline{\mu}(B \cup N) := \mu(B).$$

Alors l'application $\overline{\mu}$ est une mesure sur $(E, \overline{\mathscr{A}})$.

Preuve Montrons que la définition est cohérente. Si $B \cup N = B' \cup N'$, alors on peut écrire $B \subset B \cup N \subset B \cup A$ et $B' \subset B' \cup N' \subset B' \cup A'$ avec $\mu(A) = \mu(A') = 0$, donc $\mu(B) \leq \mu(B' \cup A') \leq \mu(B')$ et de même $\mu(B') \leq \mu(B)$, d'où $\mu(B) = \mu(B')$. On montre ensuite que c'est bien une mesure.

PROPOSITION 5.14. L'espace mesuré $(E, \overline{\mathscr{A}}, \overline{\mu})$ est complet.

Preuve Il faut montrer que $\mathcal{N}_{\overline{\mu}} \subset \overline{\mathscr{A}}$. Si $N \in \mathcal{N}_{\overline{\mu}}$, alors $N \subset B \cup N'$ avec $\overline{\mu}(B \cup N') = 0$ où $B \in \mathscr{A}$ et $N \in \mathcal{N}_{\mu}$, donc $N \subset B \cup A'$ avec $\mu(A') = 0$, donc $B \in \mathcal{N}_{\mu} \subset \overline{\mathscr{A}}$.

5.3.2 Complétion de $\mathscr{B}(\mathbb{R}^d)$

DÉFINITION 5.15. On appelle tribu de LEBESGUE sur \mathbb{R}^d la tribu complétée de $\mathscr{B}(\mathbb{R}^d)$ et on la note

$$\mathscr{L}(\mathbb{R}^d) := \overline{\mathscr{B}(\mathbb{R}^d)}.$$

On définit aussi $\overline{\lambda_d}$ la mesure complétée de λ_d sur $(\mathbb{R}^d, \mathcal{L}(\mathbb{R}^d))$. Généralement, on la note toujours λ_d .

PROPOSITION 5.16. 1. On a $\mathcal{L}(\mathbb{R}^d) = \mathcal{M}_{\lambda_d^*}$.

2. La mesure $\overline{\lambda_d}$ coïncide avec λ_d^* sur $\mathscr{L}(\mathbb{R}^d)$.

Preuve 1. Montrons que $\mathscr{L}(\mathbb{R}^d) \subset \mathscr{M}_{\lambda_d^*}$. Comme $\mathscr{B}(\mathbb{R}^d) \subset \mathscr{M}_{\lambda_d^*}$, il suffit de montrer que $\mathscr{N}_{\lambda_d} \subset \mathscr{M}_{\lambda_d^*}$. Soit $N \in \mathscr{N}_{\lambda_d}$. Il existe $A \in \mathscr{A}$ tel que $N \subset A$ et $\lambda_d(A) = 0$. Soit $B \subset \mathbb{R}^d$. Montrons que $\lambda_d^*(B) = \lambda_d^*(B \cap N) + \lambda_d^*(B \setminus N)$. Il suffit de montrer l'inégalité \geqslant . On a $\lambda_d^*(B \cap N) \leqslant \lambda_d^*(N) \leqslant \lambda_d(A) = 0$, donc l'inégalité est vraie.

Réciproquement, montrons que $\mathcal{M}_{\lambda_d^*} \subset \mathcal{L}(\mathbb{R}^d)$. Soit $A \in \mathcal{M}_{\lambda_d^*}$. Par régularité de la mesure de LEBESGUE, il existe $B, C \in \mathcal{B}(\mathbb{R}^d)$ tels que $B \subset A \subset C$ et $\lambda_d(C \setminus B) = 0$. On a alors $A = B \cup (A \setminus B) \in \mathcal{L}(\mathbb{R}^d)$.

2. Soit $B \cup N \in \mathcal{L}(\mathbb{R}^d)$. On note $A \in \mathcal{N}_{\lambda}$ tel que $N \subset A$. Alors $\overline{\lambda_d}(B \cup N) = \lambda_d(B) = \lambda_d^*(B)$. Or

$$\lambda_d^*(B) \leqslant \lambda_d^*(B \cup N) \leqslant \lambda_d^*(B \cup A) = \lambda_d^*(B).$$

On en déduit que

$$\lambda_d^*(B \cup N) = \lambda_d^*(B) = \lambda_d(B) = \overline{\lambda_d}(B \cup N).$$

PROPOSITION 5.17. On a Card $\mathcal{L}(\mathbb{R}) = \text{Card } \mathcal{P}(\mathbb{R})$.

Preuve On note K l'ensemble de Cantor. On a montré en TD que $K \in \mathscr{B}(\mathbb{R})$, $\lambda(K) = 0$ et Card $K = \operatorname{Card} \mathbb{R}$. On a donc Card $\mathscr{P}(\mathbb{R}) = \operatorname{Card} \mathscr{P}(K) \leqslant \operatorname{Card} \mathscr{N}_{\lambda} \leqslant \operatorname{Card} \mathscr{L}(\mathbb{R})$ car $\mathscr{P}(K) \subset \mathscr{N}_{\lambda}$ et $\mathbb{N}_{\lambda} \subset \mathscr{L}(\mathbb{R})$. L'autre inégalité est clairement vraie car $\mathscr{L}(\mathbb{R}) \subset \mathscr{P}(\mathbb{R})$. D'où l'égalité

Chapitre 6

Mesure Produit

6.1 Tribu produit	28	6.2 Mesure produit	29
6.1.1 Définition	28	6.3 Théorèmes de Fubini	30
6.1.2 Sections	28		

6.1 Tribu produit

6.1.1 Définition

DÉFINITION 6.1. Soient (E, \mathcal{A}, μ) et (F, \mathcal{B}, μ) deux espaces mesurés. On note

$$\mathscr{A} \times \mathscr{B} \coloneqq \{A \times B \mid A \in \mathscr{A}, B \in \mathscr{B}\}.$$

On appelle tribu produit de $\mathscr A$ et $\mathscr B$ la tribu $\mathscr A\otimes\mathscr B\coloneqq\sigma(\mathscr A\times\mathscr B)$ sur $E\times F.$

On étend la définition au cas d'un nombre fini d'espaces mesurables (E_i, \mathscr{A}_i) avec $i \in [1, k]$. On note

$$\mathscr{A}_1 \otimes \cdots \otimes \mathscr{A}_k = \sigma(\{A_1 \times \cdots \times A_k \mid A_i \in \mathscr{A}_i, \forall i \in [1, k]\}).$$

PROPOSITION 6.2. Si (E, \mathscr{A}) , (F, \mathscr{B}) et (G, \mathscr{C}) sont trois espaces mesurables, alors

$$\mathscr{A}\otimes(\mathscr{B}\otimes\mathscr{C})=(\mathscr{A}\otimes\mathscr{B})\otimes\mathscr{C}$$

qu'on note alors $\mathscr{A} \otimes \mathscr{B} \otimes \mathscr{C}$.

Proposition 6.3. On définit les projections

$$\pi_1 : \begin{vmatrix} E \times F \longrightarrow E, \\ (x,y) \longmapsto x \end{vmatrix}$$
 et $\pi_2 : \begin{vmatrix} E \times F \longrightarrow E, \\ (x,y) \longmapsto y \end{vmatrix}$

les projections sur E et F. Alors

donc $\mathscr{A} \otimes B \subset \mathscr{X}$.

- 1. les projections π_1 et π_2 sont respectivement $(\mathscr{A} \otimes \mathscr{B}, \mathscr{A})$ -mesurable et $(\mathscr{A} \otimes \mathscr{B}, \mathscr{B})$ -mesurable;
- 2. la tribu $\mathscr{A} \otimes \mathscr{B}$ est la plus petite tribu telle que π_1 et π_2 soient mesurables, *i. e.* si \mathscr{X} est un tribu sur $E \times F$ telle que les projections π_1 et π_2 soit mesurables, alors $\mathscr{X} \subset \mathscr{A} \otimes \mathscr{B}$

Preuve 1. Soit $A \in \mathscr{A}$. Alors $\pi_1^{-1}(A) = A \times F \in \mathscr{A} \times \mathscr{B} \subset \mathscr{A} \otimes \mathscr{B}$. Donc π_1 est mesurable. De même pour π_2 .

2. Soit $\mathscr X$ un tribu comme dans l'énoncé. Soit $A\times B\subset\mathscr A\times\mathscr B$. Alors

$$A \times B = A \times F \cap E \times B = \pi_1^{-1}(A) \cap \pi_2^{-1}(B) \in \mathcal{X},$$

PROPOSITION 6.4 (cas des boréliens de \mathbb{R}^d). On a

$$\mathscr{B}(\mathbb{R}^d) = \underbrace{\mathscr{B}(\mathbb{R}) \otimes \cdots \otimes \mathscr{B}(\mathbb{R})}_{l \in \mathbb{R}}.$$

Preuve Si I_1, \ldots, I_d sont des intervalles de \mathbb{R} , alors $I_1 \times \cdots \times I_d \in \mathcal{B}(\mathbb{R}) \otimes \cdots \otimes \mathcal{B}(\mathbb{R})$. D'où

$$\mathscr{B}(\mathbb{R}^d) = \sigma(\{I_1 \times \cdots \times I_d \mid I_i \text{ intervalle de } \mathbb{R}\}) \subset \mathscr{B}(\mathbb{R}) \otimes \cdots \otimes \mathscr{B}(\mathbb{R}).$$

Réciproquement, pour $i \in [\![1,d]\!]$, la projection sur la i-ième composante est continue, donc elle est $(\mathscr{B}(\mathbb{R}^d),\mathscr{B}(\mathbb{R}))$ mesurables. D'où l'inclusion réciproquement.

6.1.2 Sections

DÉFINITION 6.5. Soit $C \subset E \times F$. Pour $x \in E$ et $y \in F$, on pose

$$C_x = \{ y \in F \mid (x, y) \in C \}$$
 et $C^y = \{ x \in E \mid (x, y) \in C \}.$

 \diamond REMARQUES. – Pour tout $C \subset E \times F$ et pour tout $(x,y) \in E \times F$, on a $\mathbb{1}_C(x,y) = \mathbb{1}_{C_x}(y) = \mathbb{1}_{C_y}(x)$.

– Pour tout $C := A \times B \subset E \times F$ et $(x, y) \in E \times F$, alors

$$C_x = \begin{cases} B & \text{si } x \in A, \\ \emptyset & \text{sinon} \end{cases} \quad \text{et} \quad C_y = \begin{cases} A & \text{si } y \in B, \\ \emptyset & \text{sinon} \end{cases}$$

Proposition 6.6. Soit $C \in \mathcal{A} \otimes \mathcal{B}$. Alors

- 1. pour tout $x \in E$, on a $C_x \in \mathcal{B}$;
- 2. pour tout $y \in F$, on a $C^y \in \mathscr{A}$;

Preuve Soit $x \in E$. On pose

$$\mathscr{X}_x := \{ C \in \mathscr{A} \otimes \mathscr{B} \mid C_x \in B \}.$$

Par la remarque précédente, on a $\mathscr{A} \times \mathscr{B} \subset \mathscr{X}_x$. Montrons que \mathscr{X}_x est une tribu sur $E \times F$. On a $\emptyset_x = \emptyset \in \mathscr{B}$, donc $\emptyset \in \mathscr{X}_x$. Si $C \in \mathscr{X}_x$, alors

$$(C^{c})_{x} = \{ y \in F \mid (x, y) \in C^{c} \} = \{ y \in F \mid (x, y) \in C \}^{c} = (C_{x})^{c} \in \mathscr{X}_{x}.$$

Si $(C_n)_{n\in\mathbb{N}}$ est une suite de \mathscr{X}_x , alors

$$\left(\bigcup_{n\in\mathbb{N}}C_n\right)_x=\bigcup_{n\in\mathbb{N}}(C_n)_x\in\mathscr{B}.$$

Finalement, c'est une tribu contenant $\mathscr{A} \otimes \mathscr{B}$, donc $\mathscr{X}_x = \mathscr{A} \otimes \mathscr{B}$ ce qui conclut. De même pour le point 2. \square

 \diamond REMARQUE. Pour tout $C := A \times B \in \mathscr{A} \times \mathscr{B}$ et pour tout $(x,y) \in E \times F$, on a

$$\nu(C_x) = \nu(B) \mathbb{1}_A(x)$$
 et $\mu(C^y) = \mu(A) \mathbb{1}_B(y)$.

PROPOSITION 6.7. Soient (E, \mathscr{A}) , (F, \mathscr{B}) et (G, \mathscr{D}) trois espaces mesurables et $f: E \times F \to G$. On suppose que f est $(\mathscr{A} \otimes \mathscr{B}, \mathscr{D})$ -mesurable. Alors

- 1. pour tout $x \in E$, la fonction $f_x \colon y \in F \longmapsto f(x,y)$ est $(\mathcal{B}, \mathcal{D})$ -mesurable;
- 2. pour tout $y \in E$, la fonction $f^y : x \in E \longmapsto f(x,y)$ est $(\mathscr{A}, \mathscr{D})$ -mesurable.
- ♦ Remarque. Attention : la réciproque est fausse.

Preuve Pour tout $x \in E$ et pour tout $D \in \mathcal{D}$, la proposition précédente donne $f_x^{-1}(D) = f^{-1}(D)_x \in \mathcal{B}$ car $f^{-1}(D) \in \mathcal{A} \times \mathcal{B}$. De même pour le point 2.

LEMME 6.8. On suppose que μ et ν sont des mesures σ -finies. Alors pour tout $C \in \mathcal{A} \otimes \mathcal{B}$, les fonctions

$$x \in E \longmapsto \nu(C_x)$$
 et $y \in F \longmapsto \mu(C^y)$

sont mesurables.

Preuve On suppose que μ et ν sont finies. On montre aisément que la classe de parties

$$\mathcal{M} := \{ C \in \mathcal{A} \otimes \mathcal{B} \mid x \longmapsto \nu(C_x) \text{ est mesurable} \}$$

est une classe monotone. De plus, elle contient $\mathscr{A} \times \mathscr{B}$. En effet, pour tous $(A, B) \in \mathscr{A} \times \mathscr{B}$ et $x \in E$, on a

$$\nu((A \times B)_x) = \nu(B) \mathbb{1}_A(x),$$

donc la fonction $x \mapsto \nu((A \times B)_x)$ est mesurable. Alors $\mathscr{M} \supset m(\mathscr{A} \otimes \mathscr{B})$. Mais comme $\mathscr{A} \otimes \mathscr{B}$ est stable par intersection finie, le lemme des classes monotones donne $m(\mathscr{A} \otimes \mathscr{B}) = \sigma(\mathscr{A} \otimes \mathscr{B})$. Finalement, on montré que

$$\mathscr{M} = \sigma(\mathscr{A} \otimes \mathscr{B}).$$

On suppose que μ et ν sont σ -finies. Alors il existe une suite croissante $(F_n)_{n\in\mathbb{N}}$ de \mathscr{B} vérifiant $F=\bigcup_{n\in\mathbb{N}}F_n$ et $\nu(F_n)<+\infty$ pour tout $n\in\mathbb{N}$. Pour $n\in\mathbb{N}$ et $B\in\mathscr{B}$, on pose alors

$$\nu_n(B) := \nu(B \cap F_n).$$

Alors pour tout $B \in \mathcal{B}$, on a $\nu(B) = \lim_{n \to +\infty} \nu_n(B)$, donc la fonction $x \mapsto \nu(C_x)$ est mesurable comme limite simple de fonctions mesurables. On raisonne de même pour montrer que $x \in E \mapsto \mu(C^y)$ est mesurable. \square

6.2 MESURE PRODUIT

THÉORÈME 6.9. Soient (E, \mathscr{A}, μ) et (F, \mathscr{B}, ν) deux espaces mesurés σ -finies. Il existe une unique mesure $\mu \otimes \nu$ sur $(E \times F, \mathscr{A} \otimes \mathscr{B})$ telle que

$$\mu \otimes \nu(A \times B) = \mu(A)\nu(B), \quad \forall (A, B) \in \mathscr{A} \otimes \mathscr{B}.$$

De plus, la mesure $\mu \otimes \nu$ est σ -finie et, pour tout $C \in \mathscr{A} \otimes \mathscr{B}$, on a

$$\mu \otimes \nu(C) = \int_E \nu(C_x) \,\mathrm{d}\mu(x) = \int_E \mu(C^y) \,\mathrm{d}\nu(y). \tag{6.1}$$

Preuve Pour $C \in \mathcal{A} \otimes \mathcal{B}$, on pose

$$\mu \otimes \nu(C) \coloneqq \int_E \nu(C_x) \, \mathrm{d}\mu(x).$$

Montrons que l'application $\mu\otimes\nu$ est bien une mesure de $(E\times F,\mathscr{A}\otimes\mathscr{B}).$ On a

$$\mu \otimes \nu(\emptyset) = \int_E \nu(\emptyset_x) \, \mathrm{d}\mu_x = 0.$$

Soient $(C_n)_{n\in\mathbb{N}}$ une suite de $\mathscr{A}\times\mathscr{B}$ d'éléments deux à deux disjoints. Le théorème de Beppo Levi donne

$$\mu \otimes \nu \Big(\bigsqcup_{n \in \mathbb{N}} C_n \Big) = \int_E \nu \Big(\Big(\bigsqcup_{n \in \mathbb{N}} C_n \Big)_x \Big) \, \mathrm{d}\mu(x)$$

$$= \int_E \nu \Big(\bigsqcup_{n \in \mathbb{N}} (C_n)_x \Big) \, \mathrm{d}\mu(x)$$

$$= \int_E \sum_{n \in \mathbb{N}} \nu ((C_n)_x) \, \mathrm{d}\mu(x)$$

$$= \sum_{n \in \mathbb{N}} \int_E \nu ((C_n)_x) \, \mathrm{d}\mu(x) = \sum_{n \in \mathbb{N}} \mu \otimes \nu(C_n).$$

Donc c'est bien une mesure. Montrons qu'elle vérifie (6.1). Pour tous $A \in \mathscr{A}$ et $B \in \mathscr{B}$, on a

$$\mu \otimes \nu(A \times B) = \int_E \nu((A \times B)_x) \, \mathrm{d}\mu(x) = \int_E \nu(B) \mathbb{1}_A \, \mathrm{d}\mu = \nu(B)\mu(A).$$

Montrons l'unicité. Soit m une autre mesure sur $(E \times F, \mathscr{A} \otimes \mathscr{B})$ vérifiant (6.1). Alors $\mu \otimes \nu$ et m coïncident sur $\mathscr{A} \times \mathscr{B}$ qui est stable par intersection finie et contient $E \times F$. De plus, soient $(E_n)_{n \in \mathbb{N}}$ et $(F_n)_{n \in \mathbb{N}}$ deux suites croissantes de \mathscr{A} et \mathscr{B} telle que

$$\begin{cases} E = \bigcup_{n \in \mathbb{N}} E_n, \\ \forall n \in \mathbb{N}, \ \mu(E_n) < +\infty \end{cases} \text{ et } \begin{cases} F = \bigcup_{n \in \mathbb{N}} F_n, \\ \forall n \in \mathbb{N}, \ \mu(F_n) < +\infty. \end{cases}$$

Alors $(E_n \times F_n)_{n \in \mathbb{N}}$ est une suite croissante de $\mathscr{A} \times \mathscr{B}$ vérifiant

$$E \times F = \bigcup_{n \in \mathbb{N}} (E_n \times F_n)$$
 et $\forall n \in \mathbb{N}, \ \mu \otimes \nu(E_n \times F_n) = \mu(E_n)\nu(F_n) < +\infty.$

Ainsi le théorème d'unicité des mesures affirme que $m = \mu \otimes \nu$.

Enfin, pour $C \in \mathscr{A} \otimes \mathscr{B}$, on pose

$$m(C) = \int_{F} \mu(C^{y}) \,\mathrm{d}\nu(y).$$

Alors m est une mesure sur $(E \times F, \mathscr{A} \otimes \mathscr{B})$ vérifiant (6.1). Par unicité, on a conclut également que $m = \mu \otimes \nu$. \square

 \diamond REMARQUE. Par le théorème d'unicité, si μ , ν et ξ sont des mesures sur (E, \mathscr{A}) , (F, \mathscr{B}) et (G, \mathscr{C}) , alors

$$\mu \otimes (\nu \otimes \xi) = (\mu \otimes \nu) \otimes \xi = \mu \otimes \nu \otimes \xi$$

car les mesures coïncident sur $\mathscr{A} \times \mathscr{B} \times \mathscr{C}$.

Proposition 6.10. Soit $d \in \mathbb{N}^*$. Alors $\lambda_d = \lambda^{\otimes d}$.

Preuve Procédons par récurrence sur d. C'est évident pour d=1. Soit $d\geqslant 2$. Supposons que $\lambda_{d-1}=\lambda^{\otimes (d-1)}$. Soit $P:=\sum_{k=1}^d I_k$ un pavé de \mathbb{R}^d . Alors

$$\lambda^{\otimes d}(P) = \lambda^{\otimes d-1} \Big(\prod_{k=1}^{d-1} I_k \Big) \lambda(I_d) = \prod_{k=1}^{d-1} \lambda(I_k) \lambda(I_d) = \prod_{k=1}^{d} \lambda(I_k) = \lambda_d(P).$$

Les mesures coïncident sur les pavés. Par le théorème d'unicité, on en déduit que $\lambda^{\otimes d} = \lambda_d$. D'où la proposition. \square

6.3 Théorèmes de Fubini

THÉORÈME 6.11 (FUBINI-TONELLI). Soient (E, \mathscr{A}, μ) et (F, \mathscr{B}, ν) deux espaces mesurés σ-finis et $f: E \times F \to \mathbb{R}_+$ une fonction $(\mathscr{A} \otimes \mathscr{B}, \mathscr{B}(\mathbb{R}))$ -mesurables. Alors les fonctions

$$x \longmapsto \int_{F} f(x, y) d\nu(y)$$
 et $y \longmapsto \int_{F} f(x, y) d\mu(x)$

sont mesurables et

$$\int_{E\times F} f \,\mathrm{d}\mu \otimes \nu = \int_{E} \left(\int_{F} f(x,y) \,\mathrm{d}\nu(y) \right) \mathrm{d}\mu(x) = \int_{F} \left(\int_{E} f(x,y) \,\mathrm{d}\mu(x) \right) \mathrm{d}\nu(y). \tag{6.2}$$

Preuve Soit $C \in \mathcal{A} \times \mathcal{B}$. Le résultat pour $f := \mathbbm{1}_C$ a déjà été démontré (cf. lemme 6.8). Par linéarité, c'est vrai si $f \in \mathscr{E}_+$. On suppose que $f \in \mathscr{M}_+$. Il existe une suite croissante $(f_n)_{n \in \mathbb{N}}$ de \mathscr{E}_+ qui converge simplement vers f. On applique le théorème de Beppo LEVI à la suite $((f_n)_x)_{n \in \mathbb{N}}$ avec $x \in E$. On obtient que

$$\forall x \in E, \quad \int_{F} f_n(x, y) \, d\nu(y) \longrightarrow \int_{F} f(x, y) \, d\nu(y).$$

Donc la fonction

$$x \longmapsto \int_{F} f(x, y) \, \mathrm{d}\nu(y)$$

est mesurable comme limite simple de fonctions mesurables. De même pour l'autre fonction. On applique maintenant le théorème de Beppo Levi à la suite croissante $(x \longmapsto \int_F f_n(x,y) \, \mathrm{d}\nu(y))_{n \in \mathbb{N}}$ et on obtient que

$$\int_{E} \left(\int_{F} f_{n}(x, y) \, d\nu(y) \right) d\mu(x) \longrightarrow \int_{E} \left(\int_{F} f(x, y) \, d\nu(y) \right) d\mu(x).$$

De plus, par ce même théorème, on a

$$\int_{E} \left(\int_{F} f_{n}(x, y) \, d\nu(y) \right) d\mu(x) = \int_{E \times F} f_{n} \, d\mu \otimes \nu \longrightarrow \int_{E \times F} f \, d\mu \otimes \nu$$

car les fonctions f_n sont en escalier. Ce qui montre le première égalité de l'égalité (6.2). De même pour l'autre.

 \diamond REMARQUE. L'hypothèse σ -finie est cruciale. On considère les espaces mesurés $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \lambda)$ et $(\mathbb{R}, \mathscr{P}(\mathbb{R}), m)$. On pose $C := \{(x, x) \mid x \in \mathbb{R}\}$. On a

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \underbrace{\mathbb{1}_{C}(x,y)}_{\mathbb{1}_{\{y\}}(x)} d\lambda(x) \right) dm(y) = \int_{\mathbb{R}} \lambda(\{y\}) dm(y) = 0,$$

mais

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} \mathbbm{1}_C(x,y) \, \mathrm{d} m(y) \right) \mathrm{d} \lambda(x) = \int_{\mathbb{R}} m(\{y\}) \, \mathrm{d} \lambda(x) = \int_{\mathbb{R}} 1 \, \mathrm{d} \lambda(x) = +\infty.$$

Or $\mathbb{1}_C$ est $(\mathscr{B}(\mathbb{R}) \otimes \mathscr{P}(\mathbb{R}), \mathscr{B}(\mathbb{R}))$ -mesurable car $C \in \mathscr{B}(\mathbb{R}) \otimes \mathscr{B}(\mathbb{R}) \subset \mathscr{B}(\mathbb{R}) \otimes \mathscr{P}(\mathbb{R})$.

 $\,\vartriangleright\,$ Exemple. Soient (E,\mathscr{A},μ) un espace mesuré et $f\colon E\to\mathbb{R}_+$ mesurable. Alors

$$\int_E f \,\mathrm{d}\mu = \int_{\mathbb{R}_+} \mu(\{f>t\}) \,\mathrm{d}t.$$

Preuve En effet, en justifiant plus tard l'interversion, il vient que

$$\int_{\mathbb{R}_{+}} \mu(\lbrace f > t \rbrace) dt = \int_{\mathbb{R}_{+}} \left(\int_{E} \mathbb{1}_{\lbrace f > t \rbrace}(x) d\mu(x) \right) dt$$

$$= \int_{E} \left(\int_{\mathbb{R}_{+}} \mathbb{1}_{\lbrace f > t \rbrace}(x) dt \right) d\mu(x)$$

$$= \int_{E} \left(\int_{\mathbb{R}_{+}} \mathbb{1}_{[0, f(x)[}(t) dt \right) d\mu(x)$$

$$= \int_{E} \lambda([0, f(x)[) d\mu(x)$$

$$= \int_{E} f d\mu.$$

Justifions l'interversion. Si $\pi_1 : \mathbb{R}_+ \times E \to \mathbb{R}_+$ et $\pi_2 : \mathbb{R}_+ \times E \to E$ sont les projections sur \mathbb{R}_+ et E, la fonction $(t,x) \longmapsto \mathbb{1}_{\{f>t\}}(x) = \mathbb{1}_{\{(s,y)\in\mathbb{R}_+\times E|f(y)>s\}}(t,x) = \mathbb{1}_{\{f\circ\pi_2-\pi_1>0\}}(t,x)$

est mesurable puisque les fonctions f, π_1 et π_2 le sont. On peut donc appliquer le théorème de Fubini. \Box

THÉORÈME 6.12 (FUBINI-LEBESGUE). Soient (E, \mathcal{A}, μ) et (F, \mathcal{B}, ν) deux espaces mesurés σ -finis et $f: E \times F \to \mathbb{K}$ une fonction $\mu \otimes \nu$ -intégrable. Alors

- (i) la fonction f_x est ν -intégrable pour μ -presque tout $x \in E$;
- (ii) la fonction f^y est μ -intégrable pour ν -presque tout $y \in E$;
- (iii) la fonction $x \longmapsto \int_F f(x,y) d\nu(y)$ est μ -intégrable;

- (iv) la fonction $y \longmapsto \int_F f(x,y) \, \mathrm{d}\mu(x)$ est ν -intégrable;
- (v) l'égalité (6.2) est vérifiée.

Preuve On peut appliquer le théorème de Fubini-Tonelli à la fonction |f| et on obtient que

$$\int_{E} \left(\int_{F} |f(x,y)| \, \mathrm{d}\nu(y) \right) \mathrm{d}\mu(x) = \int_{E \times F} |f| \, \mathrm{d}\mu \otimes \nu < +\infty,$$

donc la fonction $x \longmapsto \int_F |f(x,y)| \, \mathrm{d}\nu(y)$ est fini μ -presque partout ce qui veut dire que la fonction f_x est ν -intégrable pour μ -presque tout $x \in E$. De même, on a montre le point (ii). De plus, on a

$$\int_{E} \left| \int_{F} f(x, y) \, d\nu(y) \right| d\mu(x) \leqslant \int_{E} \left(\int_{F} |f(x, y)| \, d\nu(y) \right) d\mu(x) < +\infty,$$

donc la fonction $x \longmapsto \int_F f(x,y) \, \mathrm{d}\nu(y)$ est μ -intégrable. De même, on montre le point (iv). Pour montrer le point (v), si $\mathbb{K} = \mathbb{R}$, on écrit $f = f^+ - f^-$, on applique le théorème de Fubini-Tonelli à f^+ et f^- et on obtient l'égalité (6.2) en soustrayant. Si $\mathbb{K} = \mathbb{C}$, on écrit $f = \operatorname{Re} f + i \operatorname{Im} f$ et on applique le cas $\mathbb{K} = \mathbb{R}$.

♦ Remarque. On peut avoir

$$\int_E \left(\int_F f(x,y) \, \mathrm{d} \nu(y) \right) \mathrm{d} \mu(x) < +\infty \quad \text{et} \quad \int_F \left(\int_E f(x,y) \, \mathrm{d} \mu(x) \right) \mathrm{d} \nu(y) < +\infty,$$

sans pour avoir $f \in \mathscr{L}^1_{\mu \otimes \nu}(E)$. Par exemple, on a

$$\int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \right) dx = \frac{\pi}{4} \quad \text{et} \quad \int_0^1 \left(\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \right) dy = -\frac{\pi}{4}$$

et, pour cause, la fonction n'est pas λ_2 -intégrable, i. e.

$$\int_{[0,1]^2} \frac{x^2 - y^2}{(x^2 + y^2)^2} \, \mathrm{d}\lambda_2(x, y) = +\infty.$$

Chapitre γ

Changement de Variable

7.1 Application C ¹ -difféomorphe et inversion globale	33	7.2.2 Théorème		34
7.2 Théorème de changement de variables, applications .	33	7.2.3 Passage en	n coordonnées polaires 3	34
7.2.1 Cas particulier : changement de variables affine .	33	7.2.4 Passage ei	n coordonnées sphériques 3	35

RAPPEL. Soient (E, \mathscr{A}) et (F, \mathscr{B}) deux espaces mesurables, μ une mesure sur (E, \mathscr{A}) et $\varphi \colon E \to F$ mesurable. On note μ_{φ} la mesure image par φ . Alors la formule de transfert donne, pour $f \colon F \to \mathbb{R}_+$ mesurable,

$$\int_{E} f \, \mathrm{d}\mu_{\varphi} = \int_{E} f \circ \varphi \, \mathrm{d}\mu.$$

 \triangleright Exemple. Soient $f \colon \mathbb{R}^d \to \mathbb{R}$ intégrable et $a \in \mathbb{R}^d$. Alors

$$\int_{\mathbb{R}^d} f(x) \, \mathrm{d}\lambda_d(x) = \int_{\mathbb{R}^d} f(x+a) \, \mathrm{d}\lambda_d(x).$$

En effet, si on note $\varphi \colon x \in \mathbb{R}^d \longmapsto x + a \in \mathbb{R}^d$, alors

$$\forall B \in \mathscr{B}(\mathbb{R}^d), \quad (\lambda_d)_{\varphi}(B) = \lambda_d(\varphi^{-1}(B)) = \lambda_d(B - a) = \lambda_d(B).$$

7.1 APPLICATION C¹-DIFFÉOMORPHE ET INVERSION GLOBALE

Soient U et V deux ouverts de \mathbb{R}^d et $\varphi \colon U \to V$. Si φ est différentiable sur U, on appelle jacobienne de φ en un point $x \in U$ la matrice de l'application linéaire $d\varphi_x$ dans la base canonique de \mathbb{R}^d et on la note

$$J_{\varphi}(x) = \left(\frac{\partial \varphi}{\partial x_1}(x) \quad \cdots \quad \frac{\partial \varphi}{\partial x_d}(x)\right) \in \mathcal{M}_d(\mathbb{R}).$$

Rappels.

- La fonction φ est classe C^1 si et seulement si ses dérivées partielles existent et sont continues sur U.
- On dit que φ est un C¹-difféomorphisme si φ est classe C¹, bijective et de réciproque de classe C¹.

On rappel également le théorème d'inversion globale qui découle de sa version locale.

THÉORÈME 7.1 (d'inversion globale). Soit $\varphi \colon U \to \mathbb{R}^d$. Alors φ est un C¹-difféomorphisme si et seulement si

- $-\varphi$ est classe C^1 sur U,
- $-\varphi$ est injective,
- pour tout $x \in U$, on a $J_{\varphi}(x) \in GL_d(\mathbb{R})$, i. e. $\det J_{\varphi}(x) \neq 0$.

7.2 THÉORÈME DE CHANGEMENT DE VARIABLES, APPLICATIONS

7.2.1 Cas particulier : changement de variables affine

LEMME 7.2. Soient $A \in GL_d(\mathbb{R})$ et $b \in \mathbb{R}^d$. On pose $\varphi \colon x \in \mathbb{R}^d \longmapsto Ax + b$. Alors la mesure image de λ_d par φ est le mesure

$$(\lambda_d)_{\varphi} = \frac{\lambda_d}{|\det A|}.$$

Preuve Pour tout $B \in \mathscr{B}(\mathbb{R}^d)$, on a

$$(\lambda_d)_{\varphi}(B) = \lambda_d(\varphi^{-1}(B)) = \lambda_d(A^{-1}B - A^{-1}b) = \lambda_d(A^{-1}B).$$

Sans perte de généralité, on peut donc supposer b=0. La mesure $(\lambda_d)_{\varphi}$ est invariante par translation. En effet, pour tous $B \in \mathcal{B}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, on a

$$(\lambda_d)_{\varphi}(B) = \lambda_d(\varphi^{-1}(B+a)) = \lambda_d(A^{-1}B + A^{-1}a) = \lambda_d(A^{-1}B) = (\lambda_d)_{\varphi}(B).$$

Par unicité de la mesure de LEBESGUE, on a

$$\frac{(\lambda_d)_{\varphi}}{(\lambda_d)_{\varphi}([0,1])} = \lambda_d.$$

Il existe donc $\gamma > 0$ tel que $(\lambda_d)_{\varphi} = \gamma \lambda_d$. Montrons que $\gamma = 1/|\det A|$.

Changement de variable – Chapitre 7

• Cas particuliers. On suppose que $A \in \mathcal{O}_d(\mathbb{R})$. On pose $B := \{x \in \mathbb{R}^d \mid ||x|| \le 1\}$. Comme $A^{-1}B = B$, on a $(\lambda_d)_{\varphi}(B) = \lambda_d(B)$, donc $\gamma = 1 = 1/\det A$. On suppose que $A \in \mathscr{S}_d^{++}(\mathbb{R})$. Il existe $P \in \mathcal{O}_d(\mathbb{R})$ et $\alpha_1, \ldots, \alpha_d \geqslant 0$ tels que

$$A = {}^{\mathsf{t}}PDP$$
 avec $D := \operatorname{diag}(\alpha_1, \dots, \alpha_d)$.

On pose $B := {}^{\mathrm{t}}PD[0,1]^d$. Alors

$$(\lambda_d)_{\varphi} = \lambda_d(A^{-1}B) = \lambda_d({}^{\mathrm{t}}PD^{-1}PB) = \lambda_d(D^{-1}PB) = \lambda_d([0,1]^d) = 1$$

et

$$\lambda_d(B) = \lambda_d({}^{\mathrm{t}}PD[0,1]^d) = \lambda_d(D[0,1]^d) = \prod_{i=1}^d \alpha_i = |\det A|,$$

donc

$$(\lambda_d)_{\varphi}(B) = \frac{\lambda_d(B)}{|\det A|}.$$

• Cas général. Soit $A \in GL_d(\mathbb{R})$. Par décomposition polaire, on sait qu'il existe $P \in O_d(\mathbb{R})$ et $S \in \mathscr{S}_d^{++}(\mathbb{R})$ telles que A=PS. Soit $B\in \mathscr{B}(\mathbb{R}^d).$ D'après les cas particuliers, on obtient que

$$(\lambda_d)_{\varphi}(B) = \lambda_d(A^{-1}B) = \lambda_d(S^{-1}P^{-1}B) = \frac{\lambda_d(P^{-1}B)}{\det S} = \frac{\lambda_d(B)}{\det S}.$$

Or $|\det A| = \det S$, donc $\gamma = 1/|\det A|$

COROLLAIRE 7.3. Soit $f \in \mathcal{L}^1(\mathbb{R}^d)$. Alors

$$\int_{\mathbb{R}^d} f(y) \, \mathrm{d}y = \int_{\mathbb{R}^d} f(Ax + b) \left| \det A \right| \, \mathrm{d}x.$$

Preuve On applique la formule de transfert et le lemme précédent.

7.2.2 Théorème

THÉORÈME 7.4. Soient U et V deux ouverts de \mathbb{R}^d et φ un \mathbb{C}^1 -difféomorphisme de U dans V.

1. Si $f: V \to \mathbb{R}_+$ est mesurable, alors

$$\int_{V} f(y) \, \mathrm{d}y = \int_{U} f \circ \varphi(x) \left| \det \mathcal{J}_{\varphi}(x) \right| \, \mathrm{d}x. \tag{*}$$

2. Si $f: V \to \mathbb{K}$, alors $f \in \mathcal{L}^1(V)$ si et seulement si $f \circ \varphi |\det J_{\varphi}| \in \mathcal{L}^1(U)$ et, dans ce cas, on a (*).

- \diamond REMARQUES. En d'autres termes, l'égalité (*) exprime que λ_d est la mesure image par φ de la mesure qui a pour densité $|\det J_{\varphi}(\cdot)|$ par rapport à λ_d .
 - Si V est un ouvert de \mathbb{R}^d s'écrivant $V=\varphi(U)$ où $\varphi\colon U\to V$ est un C¹-difféomorphisme, alors

$$\lambda_d(V) = \int_U |\det J_{\varphi}(x)| d\lambda_d(x).$$

7.2.3 Passage en coordonnées polaires

On pose

$$\varphi : \left| U := \mathbb{R}_+^* \times \left] - \pi, \pi \right[\longrightarrow V := \mathbb{R}^2 \setminus D, \\ (r, \theta) \longmapsto (r \cos \theta, r \sin \theta). \right|$$

Ici, on a « perdu » la demi-droite $D := \mathbb{R}_- \times \{0\}$, mais ce n'est pas très grave car celle-ci est de mesure nulle dans \mathbb{R}^2 . L'application φ est de classe \mathbb{C}^1 et c'est une bijection de U dans V. Pour tout $(r,\theta) \in U$, on a

$$|\det J_{\varphi}(r,\theta)| = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r \neq 0.$$

Finalement, c'est un C^1 -difféomorphisme de U dans V. Par la formule de changement de variables puis le théorème de Fubini, si $f \in \mathcal{L}^1(\mathbb{R}^2)$, alors

$$\int_{\mathbb{R}^2} f(x, y) \, d\lambda_2(x, y) = \int_{\mathbb{R}^2 \setminus D} f(x, y) \, d\lambda_2(x, y)$$
$$= \int_{\mathbb{R}^*_+ \times]-\pi, \pi[} f(r \cos \theta, r \sin \theta) r \, d\lambda_2(r, \theta)$$

$$= \int_{r=0}^{+\infty} \int_{\theta=-\pi}^{\pi} f(r\cos\theta, r\sin\theta) r \,dr \,d\theta.$$

7.2.4 Passage en coordonnées sphériques

On pose

$$\Phi \colon \left| U \coloneqq \mathbb{R}_+^* \times \left] - \pi, \pi[\times] 0, \pi[\longrightarrow V \coloneqq \mathbb{R}^2 \setminus P, \\ (r, \theta, \varphi) \longmapsto (r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi). \right.$$

On a « perdu » le demi-plan $P := \mathbb{R}_- \times \{0\} \times \mathbb{R}_-$. L'application Φ est de classe C^1 et c'est une bijection de U dans V car, pour tout $(r, \theta, \varphi) \in U$, on a

$$\begin{split} |\det J_{\Phi}(r,\theta,\varphi)| &= \begin{vmatrix} \sin\varphi\cos\theta & -r\sin\varphi\sin\theta & r\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & r\sin\varphi\cos\theta & r\cos\varphi\sin\theta \\ \cos\varphi & 0 & -r\sin\varphi \end{vmatrix} \\ &= \left| -r^2\sin^2\varphi\cos^2\theta - r^2\sin^3\varphi\sin^2\theta - r^2\cos\varphi(\sin\varphi\cos\varphi\sin^2\theta + \sin\varphi\cos\varphi\cos^2\theta) \right| \\ &= \left| -r^2\sin^3\varphi - r^2\cos^2\varphi\sin\varphi \right| = r^2\sin\varphi \neq 0. \end{split}$$

Cela montre que Φ est un C¹-difféomorphisme de U dans V. Par la formule du changement de variables et le théorème de Fubini, si $f \in \mathcal{L}^1(\mathbb{R}^2)$, alors

$$\int_{\mathbb{R}^3} f \, d\lambda_3 = \int_{\mathbb{R}_+^* \times]-\pi, \pi[\times]0, \pi[} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^2 \sin \varphi \, d\lambda_3(r, \theta, \varphi)$$
$$= \int_{r=0}^{+\infty} \int_{\theta=-\pi}^{\pi} \int_{\varphi=0}^{\pi} f(r \sin \varphi \cos \theta, r \sin \varphi \sin \theta, r \cos \varphi) r^2 \sin \varphi \, dr \, d\theta \, d\varphi.$$

Chapitre 8

Espaces L^p

nitions	36	8.3 Les espaces de Banach \mathcal{L}^p	39
Espaces $\mathcal{L}^p(E)$ et $L^p(E)$	36	8.3.1 Théorème de Riesz-Fischer	39
Norme p	37	8.3.2 Lien entre convergences μ -presque partout et L^p	39
Inégalité de HÖLDER	37	8.4 Densité de $C_c(\mathbb{R}^d)$ dans $L^p(\mathbb{R}^d)$	40
	Espaces $\mathcal{L}^p(E)$ et $\mathrm{L}^p(E)$	Espaces $\mathcal{L}^p(E)$ et $\mathrm{L}^p(E)$	nitions

8.1 DÉFINITIONS

On se place dans un espace mesuré (E, \mathcal{A}, μ) .

8.1.1 Espaces $\mathcal{L}^p(E)$ et $L^p(E)$

DÉFINITION 8.1. Soit $p \in [0, +\infty)$. On note

$$\mathscr{L}^p(E,\mathscr{A},\mu) := \left\{ f \colon E \to \mathbb{K} \text{ mesurable } \middle| \int_E |f|^p \, \mathrm{d}\mu < +\infty \right\}.$$

On note également

$$\mathscr{L}^{\infty}(E,\mathscr{A},\mu) \coloneqq \left\{ f \colon E \to \mathbb{K} \text{ mesurable } | \; \exists C \geqslant 0, \; |f \leqslant C| \; \; \mu\text{-presque partout} \right\}.$$

On notera souvent $\mathscr{L}^p_{\mu}(E)$ ou $\mathscr{L}^p(E)$ ces ensembles quand le contexte est clair. Les fonctions de $\mathscr{L}^{\infty}(E)$ sont appelées les fonctions essentiellement bornées. Si m est la mesure de comptage sur $(\mathbb{N}, \mathscr{P}(\mathbb{N}))$, on note

$$\ell^p := \mathcal{L}^p(\mathbb{N}, \mathscr{P}(\mathbb{N}), m).$$

PROPOSITION 8.2. Soit $p \in [0, +\infty]$. L'ensemble $\mathcal{L}^p(E)$ est un sous-espace vectoriel de $\mathscr{F}(E, \mathbb{K})$.

Preuve On suppose que $p < +\infty$. On a clairement $0 \in \mathcal{L}^p(E)$. Soient $f, g \in \mathcal{L}^p(E)$. On a

$$|f+g|^p \le (|f|+|g|)^p \le (2\max(|f|,|g|))^p \le 2^p (|f|^p + |g|^p),$$

donc

$$\int_{E} |f+g|^{p} d\mu \leq 2^{p} \left(\int |f|^{p} d\mu + \int |g|^{p} d\mu \right) < +\infty$$

ce qui montre que $f+g\in \mathscr{L}^p(E)$. De même, on montre que $\alpha f\in \mathscr{L}^p(E)$ pour $\alpha\in\mathbb{R}$. Cela montre que $\mathscr{L}^p(E)$ est un sous-espace vectoriel. De la même façon, on montre que $\mathscr{L}^\infty(E)$ est un sous-espace vectoriel. \square

 \diamond REMARQUE. Soit $p \in]0, +\infty]$. L'ensemble $\{f \in \mathcal{L}^p(E) \mid f = 0 \text{ μ-presque partout}\}$ est un sous-espace vectoriel.

DÉFINITION 8.3. Soit $p \in [0, +\infty]$. On note

$$\mathbf{L}^p(E,\mathscr{A},\mu)\coloneqq \mathscr{L}^p(E,\mathscr{A},\mu)/\{f\in\mathscr{L}^p(E,\mathscr{A},\mu)\mid f=0 \text{ μ-presque partout}\}.$$

On le notera souvent $L^p_\mu(E)$ ou $L^p(E)$.

 \diamond REMARQUE. De manière équivalente, on peut définir $L^p(E)$ comme $L^p(E) = \mathcal{L}^p(E)/\sim$ où la relation d'équivalence \sim est définie par $f \sim g$ si et seulement si f = g μ -presque partout.

À partir de maintenant, on fait l'abus d'identifier un élément de $L^p(E)$, i. e. une classe d'équivalence, à l'un de ses représentants. On s'autorisera à dire que $\overline{f} \in L^p(E)$ vérifie une propriété (P) si l'un de ses représentants pour la relation \sim la vérifie.

- ♦ REMARQUES. L'ensemble L^p(E) possède une structure de K-espace vectoriel muni des lois définies, pour toutes $f, g \in L^p(E)$ et tous $\alpha \in \mathbb{K}$, par $\overline{f} + \overline{g} = \overline{f+g}$ et $\alpha \overline{f} = \overline{\alpha f}$.
 - En toute généralité, si p < q, on a ni $L^p(E) \subset L^q(E)$ ni $L^q(E) \subset L^p(E)$. Par exemple, on a

$$\left(x \in \mathbb{R} \longrightarrow \frac{1}{\sqrt{x}}\mathbb{1}_{]0,1]}\right) \in L^1(\mathbb{R}) \setminus L^2(\mathbb{R}) \quad \text{et} \quad \left(x \in \mathbb{R} \longrightarrow \frac{1}{x}\mathbb{1}_{[1,+\infty[}\right) \in L^2(\mathbb{R}) \setminus L^1(\mathbb{R})\right)$$

Proposition 8.4. Soit $p, q \in]0, +\infty[$ tels que p < q.

- 1. On suppose que $\mu(E) < +\infty$. Alors $L^{q}(E) \subset L^{p}(E)$.
- 2. On a $\ell^p \subset \ell^q$.

Preuve 1. Soit $f \in L^q(E)$. On a

$$\int_{E} |f|^{p} d\mu = \int_{\{|f| \le 1\}} |f|^{p} d\mu + \int_{\{|f| > 1\}} |f|^{p} d\mu$$
$$\le \mu(E) + \int |f|^{q} d\mu < +\infty$$

ce qui permet d'écrire $f \in L^p(E)$.

2. Soit $(u_n)_{n\in\mathbb{N}}\in\ell^p$. Il existe $N\in\mathbb{N}$ tel que

$$\forall n \geqslant N, \quad |u_n| \leqslant 1.$$

Alors

$$\sum_{n \in \mathbb{N}} |u_n|^q = \sum_{n=0}^N |u_n|^q + \sum_{n=N+1}^\infty |u_n|^q$$

$$\leq \sum_{n=0}^N |u_n|^q + \sum_{n=N+1}^\infty |u_n|^p$$

$$\leq \sum_{n=0}^N |u_n|^q + \sum_{n=0}^{+\infty} |u_n|^q < +\infty.$$

8.1.2 Norme p

NOTATION. Pour $p \in]0, +\infty[$ et $f : E \to \mathbb{K}$ mesurable, on pose

$$\|f\|_p \coloneqq \left(\int_E |f|^p \,\mathrm{d}\mu\right)^{1/p} \quad \text{et} \quad \|f\|_\infty = \inf\left\{C \geqslant 0 \mid |f| \leqslant C \; \mu\text{-presque partout}\right\}$$

avec la convention inf $\emptyset = +\infty$.

⋄ REMARQUES. – Soient $f,g: E \to \mathbb{K}$ mesurables. Si f = g μ -presque partout, alors $||f||_p = ||g||_p$ pour tout $p \in]0,+\infty]$. C'est clair pour $p < +\infty$. Si $p = +\infty$, on remarque que $\mu(\{|f| > C\}) = \mu(\{|g| > C\})$ pour $C \ge 0$. – Si $f \in \mathbb{C}(\mathbb{R}^d, \mathbb{K})$, alors $||f||_{\infty} = \sup_{\mathbb{R}^d} |f|$.

LEMME 8.5. Soient $f: E \to \mathbb{K}$ mesurable et $p \in]0, \infty[$. Alors $|f| \leqslant ||f||_p$ μ -presque partout.

Preuve On sait que, pour tout $n \in \mathbb{N}^*$, on a $\mu(\{f > ||f||_{\infty} + 1/n\}) = 0$. Or

$$\{|f| > ||f||_{\infty}\} = \bigcup_{n \in \mathbb{N}} \{|f| > ||f||_{\infty} + 1/n\},$$

donc la continuité de la mesurable donne

$$\mu(\{|f| > \|f\|_{\infty}\}) \leqslant \sum_{n \in \mathbb{N}} \mu(\{|f| > \|f\|_{\infty} + 1/n\}) = 0.$$

On en déduit que $|f| \leq ||f||_p$ μ -presque partout.

 \diamond REMARQUE. Soient $f \colon E \to \mathbb{K}$ et $p \in]1, \infty]$. Alors $f \in \mathrm{L}^p(E)$ si et seulement si $\|f\|_p < +\infty$.

PROPOSITION 8.6. Soient $p_0 \in]1, \infty[$ et $f \in L^{p_0}(E)$. Alors $||f||_p \to ||f||_\infty$ quand $p \to +\infty$.

8.2 Inégalités de Hölder et Minkowski

8.2.1 Inégalité de HÖLDER

DÉFINITION 8.7. Soient $p, q \in [1, \infty]$. On dit que p et q sont conjugués si

$$\frac{1}{p} + \frac{1}{q} = 0$$

avec la convention $1/\infty = 0$.

THÉORÈME 8.8 (inégalité de HÖLDER). Soient $f, g \in E \to \mathbb{K}$ mesurables et $p, q \in [1, \infty]$ conjugués.

1. Si f et g sont à valeurs dans \mathbb{R}_+ , alors

$$\int_{E} fg \,\mathrm{d}\mu \leqslant \|f\|_{p} \,\|g\|_{q} \,.$$

2. Si $f \in L^p(E)$ et $g \in L^q(E)$, alors $fg \in L^1(E)$ et $||fg||_1 \le ||f||_p ||g||_q$.

Preuve 1. On suppose d'abord que p=1 et donc $q=\infty$. On a $g\leqslant \|g\|_{\infty}$ μ -presque partout, donc

$$\int_{E} f g \, \mathrm{d}\mu \leqslant \|g\|_{\infty} \int_{E} f \, \mathrm{d}\mu = \|f\|_{1} \, \|g\|_{\infty} \,.$$

On suppose désormais que p et q ne valent pas ∞ . Si $\|f\|_p = 0$ ou $\|g\|_q = 0$, alors fg = 0 μ -presque partout et l'inégalité est triviale. Supposons alors que $\|f\|_p \neq 0$ et $\|g\|_q \neq 0$. Par concavité du logarithme, on montre que

$$\forall u, v \geqslant 0, \quad u^{1/p} v^{1/q} \leqslant \frac{u}{p} + \frac{v}{q}.$$

Pour $x \in E$, en appliquant cette inégalité à $u = f^p(x) / ||f||_p^p$ et $v = g^q(x) / ||g||_q^q$, on obtient

$$\frac{f(x)g(x)}{\|f\|_{p} \|g\|_{q}} \leqslant \frac{1}{p} \frac{f^{p}(x)}{\|f\|_{p}^{p}} + \frac{1}{q} \frac{g^{q}(x)}{\|g\|_{q}^{q}}.$$

En intégrant, on obtient que

$$\int_E \frac{fg}{\|f\|_p \|g\|_q} \,\mathrm{d}\mu \leqslant \frac{1}{p} + \frac{1}{q} = 1.$$

En multipliant par $||f||_p ||g||_q$, l'inégalité est démontrée.

2. On applique le point 1 à |f| et |g|.

 \Leftrightarrow REMARQUE (cas d'égalité). L'inégalité $\|fg\|_1 \leqslant \|f\|_p \|g\|_q$ est une égalité si et seulement si g=0 μ-presque partout ou il existe $\alpha \in \mathbb{R}$ tel que $|f|^p = \alpha |g|^p$ μ-presque partout

8.2.2 Inégalité de MINKOWSKI

THÉORÈME 8.9 (inégalité de MINKOWSKI). Soient $p \in [1, \infty]$ et $f, g \in L^p(E)$. Alors $f + g \in L^p(E)$ et $||f + g||_p \le ||f||_p + ||g||_p$.

Preuve On suppose que $p=\infty$. Alors $|f+g|\leqslant |f|+|g|\leqslant \|f\|_p+\|g\|_\infty$. On obtient l'inégalité triangulaire en passant à la borne inférieure. On suppose désormais que $p<\infty$. Alors $|f+g|^p\leqslant (|f|+|g|)|f+g|^{p-1}$, donc l'inégalité de HÖLDER pour q=p/(p-1) donne

$$\begin{split} \int_{E} |f+g|^{p} & \leqslant \int_{E} |f| \, |f+g|^{p-1} \, \mathrm{d}\mu + \int_{E} |g| \, |f+g|^{p-1} \, \mathrm{d}\mu \\ & \leqslant \left(\int_{E} |f|^{p} \, \mathrm{d}\mu \right)^{1/p} \left(\int_{E} |f+g|^{p} \, \mathrm{d}\mu \right)^{(p-1)/p} + \left(\int_{E} |g|^{p} \, \mathrm{d}\mu \right)^{1/p} \left(\int_{E} |f+g|^{p} \, \mathrm{d}\mu \right)^{(p-1)/p}, \end{split}$$

donc

$$||f + g||_p^p \le ||f||_p ||f + g||_p^{p-1} + ||g||_p ||f + g||_p^{p-1}.$$

Si $||f+g||_p = 0$, l'inégalité est triviale. Sinon, on divise par $||f+g||_p^{p-1}$ ce qui conclut.

COROLLAIRE 8.10 (inégalité de MINKOWSKI généralisée). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables positives. Alors

$$\left\| \sum_{n \in \mathbb{N}} f_n \right\|_p \leqslant \sum_{n \in \mathbb{N}} \left\| f_n \right\|_p.$$

Preuve La suite $(\sum_{k=0}^{n} f_k)_{n \in \mathbb{N}}$ est une suite croissante de fonctions mesurables positives, donc l'inégalité de MINKOWSKI donne

$$\left\| \sum_{k=0}^{n} f_k \right\|_p \leqslant \sum_{k=0}^{n} \left\| f_k \right\|_p \longrightarrow \sum_{k=0}^{+\infty} \left\| f_k \right\|_p$$

et le théorème de BEPPO-LEVI donne

$$\left\| \sum_{k=0}^{n} f_{k} \right\|_{p} = \left(\int \left| \sum_{k=0}^{n} f_{k} \right|^{p} d\mu \right)^{1/p} \longrightarrow \left\| \sum_{n \in \mathbb{N}} f_{k} \right\|_{p}$$

ce qui montre l'inégalité.

PROPOSITION 8.11. Soit $p \in [1, \infty]$. Alors le couple $(L^p(E), || \cdot ||_p)$ est un espace vectoriel normé.

Preuve Il suffit de montrer que l'application $\| \|_p$ est une norme sur $L^p(E)$. On suppose que $p < \infty$. Si $\| f \|_p = 0$, alors f = 0 μ -presque partout, donc f = 0 dans $L^p(E)$. L'inégalité de MINKOWSKI donne l'inégalité triangulaire et on a bien l'homogénéité. On montre également le cas $p = \infty$.

8.3 Les espaces de Banach L^p

8.3.1 Théorème de RIESZ-FISCHER

THÉORÈME 8.12 (RIESZ-FISCHER). Soit $p \in [1, \infty]$. L'espace $L^p(E)$ muni de la norme $\| \cdot \|_p$ est complet.

Preuve On suppose que $p < \infty$. Soit $(f_n)_{n \in \mathbb{N}}$ un suite de CAUCHY de $L^p(E)$. Il existe une sous-suite $(f_{\varphi(n)})_{n \in \mathbb{N}}$ telle que

$$\forall n \in \mathbb{N}, \quad ||f_{\varphi(n+1)} - f_{\varphi(n)}||_p \leqslant 1/2^n.$$

En effet, on peut construire l'extraction $\varphi \colon \mathbb{N} \to \mathbb{N}$ par récurrence. Montrons que la série $\sum |f_{\varphi(n+1)} - f_{\varphi(n)}|$ converge absolument μ -presque partout. En effet, l'inégalité de MINKOWSKI généralisée donne

$$\left\| \sum_{n \in \mathbb{N}} |f_{\varphi(n+1)} - f_{\varphi(n)}| \right\|_p \leqslant \sum_{n \in \mathbb{N}} \|f_{\varphi(n+1)} - f_{\varphi(n)}\|_p \leqslant \sum_{n \in \mathbb{N}} \frac{1}{2^n} < +\infty.$$
 (*)

On en déduit que

$$\int_E \Bigl(\sum_{n \in \mathbb{N}} |f_{\varphi(n+1)} - f_{\varphi(n)}| \Bigr)^p \, \mathrm{d}\mu < +\infty \quad \text{et} \quad \sum_{n \in \mathbb{N}} |f_{\varphi(n+1)} - f_{\varphi(n)}| < +\infty.$$

On définit alors μ -presque partout

$$f := \sum_{n \in \mathbb{N}} (f_{\varphi(n+1)} - f_{\varphi(n)}) + f_{\varphi(0)}.$$

Alors la suite $(f_{\varphi(n)})_{n\in\mathbb{N}}$ converge μ -presque partout vers f. L'inégalité (*) nous donne que $f\in L^p(E)$. De plus, elle tend vers f pour la norme $\|\cdot\|_p$ puisque, pour tout $n\in\mathbb{N}$, on a

$$\|f-f_{\varphi(n)}\|_p = \Big\|\sum_{k=n}^{+\infty} (f_{\varphi(k+1)}-f_{\varphi(k)})\Big\|_p \leqslant \sum_{k=n}^{+\infty} \|f_{\varphi(k+1)}-f_{\varphi(k)}\|_p \leqslant \sum_{k=n}^{+\infty} \frac{1}{2^k} \longrightarrow 0.$$

Donc la suite $(f_n)_{n\in\mathbb{N}}$ admet une sous-suite convergente dans $L^p(E)$, donc elle converge dans $L^p(E)$. D'où la complétude de $L^p(E)$.

On suppose que $p = \infty$. On se ramène à la complétude de l'ensemble $\mathscr{F}_b(E, \mathbb{K})$ des fonctions bornées de E dans \mathbb{K} . Soit $(f_n)_{n\in\mathbb{N}}$ une suite de CAUCHY de $L^{\infty}(E)$. On considère

$$A := \bigcap_{n \in \mathbb{N}} \left\{ \left| f_n \right| \leqslant \left\| f_n \right\|_{\infty} \right\} \cap \bigcap_{m,n \in \mathbb{N}} \left\{ \left| f_n - f_m \right| \leqslant \left\| f_n - f_m \right\|_{\infty} \right\}.$$

On remarque que $\mu(A^c) = 0$. De plus, la suite $(f_n \mathbb{1}_A)_{n \in \mathbb{N}}$ est une suite de $\mathscr{F}_b(E, \mathbb{K})$ qui est de CAUCHY, donc elle converge vers une fonction $f \in \mathscr{F}_b(E, \mathbb{K})$. Alors

$$||f_n - f||_{\infty} = ||f_n \mathbb{1}_A - f||_{\infty} \longrightarrow 0$$

ce qui montre la complétude de $L^{\infty}(E)$.

8.3.2 Lien entre convergences μ -presque partout et L^p

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de $L^p(E)$. La convergence simple μ -presque partout de cette suite n'implique pas la convergence $L^p(E)$: il suffit de considérer la suite $(n\mathbb{1}_{[0,1/n]})_{n\in\mathbb{N}}$. Mais la réciproque est-elle vraie? Encore une fois, c'est faux : des fonctions créneaux qui se décalent de gauche à droite et qui rétrécissent. En revanche, on a le résultat suivant.

Espaces L^p – Chapitre 8

PROPOSITION 8.13. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de $L^p(E)$ convergeant dans $L^p(E)$ vers f. Alors il existe une sous-suite $(f_{\varphi(n)})_{n\in\mathbb{N}}$ convergeant μ -presque partout vers f.

Preuve Comme $(f_n)_{n\in\mathbb{N}}$ est convergente, elle est de CAUCHY. On peut donc construire une sous-suite $(f_{\varphi(n)})_{n\in\mathbb{N}}$ comme dans la preuve du théorème précédent qui converge μ -presque partout vers une fonction $g\in L^p(E)$. La sous-suite $(f_{\varphi(n)})_{n\in\mathbb{N}}$ converge a fortiori vers f dans $L^p(E)$. Par unicité de la limite, on en déduit que f=g. \square

8.3.3 Théorème de convergence dominée L^p

THÉORÈME 8.14 (de convergence dominée L^p). Soient $(f_n)_{n\in\mathbb{N}}$ une suite de $L^p(E)$ et $f\colon E\to\mathbb{K}$ mesurable telles que

- (i) la suite $(f_n)_{n\in\mathbb{N}}$ converge μ -presque partout vers f,
- (ii) il existe $g \in L^p(E)$ telle que, pour tout $n \in \mathbb{N}$, on ait μ -presque partout $|f_n| \leqslant g$.

Alors $||f_n - f||_p \to 0$.

Preuve On applique le théorème de convergence dominée à la suite $(|f_n - f|^p)_{n \in \mathbb{N}}$. D'après les hypothèse (i) et (ii), on a $||f|| \leq g \mu$ -presque partout, donc

$$\int_{E} |f|^{p} d\mu \leqslant \int g^{p} d\mu < +\infty,$$

donc $f \in L^p(E)$. De plus, on a $|f_n - f|^p \to 0$ et

$$|f_n - f|^p \leqslant (|f_n| + |f|)^p \leqslant (2g)^p$$
 μ -presque partout

avec $(2g)^p \in L^1(E)$. Par le théorème de convergence dominée, on obtient que $||f_n - f||_p \to 0$.

8.4 Densité des fonctions continues à support compact dans $\mathrm{L}^p(\mathbb{R}^d)$

DÉFINITION 8.15. On dit qu'une fonction $f: \mathbb{R}^d \to \mathbb{K}$ est à support compact si elle est nulle en dehors d'un compact de \mathbb{R}^d . On note $C_c(\mathbb{R}^d)$ l'ensemble des fonctions continues à support compact de \mathbb{R}^d dans \mathbb{K} .

THÉORÈME 8.16. Soit $p \in [1, \infty[$. Alors $C_c(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$ pour la norme $\| \|_p$. En d'autres termes, si $f \in L^p(\mathbb{R}^d)$ et $\varepsilon > 0$, alors il existe $\varphi \in C_c(\mathbb{R}^d)$ telle que

$$||f - \varphi||_p < \varepsilon.$$

 \diamond REMARQUE. Le résultat est faux pour $p = \infty$. En fait, l'adhérence de $C_c(\mathbb{R}^d)$ pour la norme $\| \|_{\infty}$ est l'ensemble des fonctions continues $f \colon \mathbb{R}^d \to \mathbb{K}$ telle que $f(x) \to 0$ quand $\|x\| \to +\infty$.

LEMME 8.17. On note $\mathscr{E}^1(\mathbb{R}^d)$ l'ensemble des fonctions étagées intégrables sur \mathbb{R}^d . Alors

$$\overline{\mathscr{E}^1(\mathbb{R}^d)}^{\parallel \parallel_p} = \mathrm{L}^p(\mathbb{R}^d).$$

Preuve Soient $f \in L^p(\mathbb{R}^d)$ et $\varepsilon > 0$. Si f est à valeurs dans \mathbb{R}_+ , alors il existe une suite croissante $(\varphi_n)_{n \in \mathbb{N}}$ de fonctions de \mathscr{E}^+ qui converge simplement vers f. Or pour tout $n \in \mathbb{N}$, on a $\varphi_n \leqslant f \in L^p(\mathbb{R}^d)$. Le théorème de convergence dominée L^p donne $\|f - \varphi_n\|_p \to 0$ ce qui conclut. Si f est à valeurs dans \mathbb{R} , on conclut en écrivant $f = f^+ - f^-$ et en utilisant l'inégalité de MINKOWSKI. De même si f est à valeurs dans \mathbb{C} .

Preuve du théorème Il suffit de montrer que

$$\overline{\mathrm{C}_{\mathrm{c}}(\mathbb{R}^d)}^{\parallel \parallel_p} \supset \mathscr{E}^1(\mathbb{R}^d).$$

Le lemme donnera alors la conclusion. On se place dans le cas d=1. Soit $f\in L^p(\mathbb{R}^d)$.

D'abord, supposons que $f = \mathbb{1}_I$ où I est un intervalle de \mathbb{R} . Alors I est borné. Pour $n \in \mathbb{N}$, on pose

$$f_n \colon x \in \mathbb{R} \longmapsto n \max(0, 1 - d(x, I)).$$

Alors pour tout $n \in \mathbb{N}$, on a

$$||f - f_n||_p = \left(\int_{\mathbb{R}} |f - f_n|^p d\lambda\right)^{1/p} \leqslant \left(\frac{2}{n}\right)^{1/p} \longrightarrow 0.$$

Supposons que $f = \mathbb{1}_{\Omega}$ ou Ω est un ouvert de \mathbb{R} . Alors $\lambda(\Omega) < +\infty$. On peut écrire

$$\Omega = \bigsqcup_{k \in \mathbb{N}} I_k$$

8.4. DENSITÉ DE
$$C_{\mathcal{C}}(\mathbb{R}^D)$$
 DANS $L^P(\mathbb{R}^D)$

où les ensembles I_k sont des intervalles ouverts (bornés). Alors

$$\mathbb{1}_{\Omega} = \sum_{k \in \mathbb{N}} \mathbb{1}_{I_k}.$$

donc la suite $(\sum_{k=0}^{n} \mathbbm{1}_{I_k})_{n\in\mathbb{N}}$ converge simplement vers $\mathbbm{1}_{\Omega}$. De plus, pour tout $n\in\mathbb{N}$, on a

$$\sum_{k=0}^{n} \mathbb{1}_{I_k} \leqslant \mathbb{1}_{\Omega} \in L^p(\mathbb{R}).$$

Le théorème de convergence dominée donne alors

$$\left\|\mathbb{1}_{\Omega}-\sum_{k=0}^{n}\mathbb{1}_{I_{k}}\right\|_{p}\longrightarrow0.$$

Soient $\varepsilon > 0$ et $n \in \mathbb{N}$ tel que $\|\mathbb{1}_{\Omega} - \sum_{k=0}^{n} \mathbb{1}_{I_k}\|_p < \varepsilon/2$. D'après le cas précédent, pour $k \in \mathbb{N}$, il existe $\varphi_k \in C_c(\mathbb{R})$ telle que $\|\mathbb{1}_{I_k} - \varphi_k\|_p < \varepsilon/2^{k+2}$. Par l'inégalité de MINKOWSKI, on obtient que

$$\left\| \mathbb{1}_{\Omega} - \sum_{k=0}^{n} \varphi_k \right\|_p \leqslant \left\| \mathbb{1}_{\Omega} - \sum_{k=0}^{n} \mathbb{1}_{I_k} \right\|_p + \left\| \sum_{k=0}^{n} (\mathbb{1}_{I_k} - \varphi_k) \right\|_p < \varepsilon$$

ce qui conclut.

Supposons que $f=\mathbbm{1}_B$ où B est un borélien de \mathbb{R} . Alors $\lambda(B)<+\infty$. Par la régularité de la mesure de LEBESGUE, il existe un ouvert Ω de \mathbb{R} tel que

$$B \subset \Omega$$
 et $\lambda(\Omega \setminus B) < (\varepsilon/2)^p$.

Soit $\varphi \in C_c(\mathbb{R})$ telle que $||\mathbb{1}_{\Omega} - \varphi|| < \varepsilon/2$. Alors

$$\begin{split} \|\mathbbm{1}_B - \Omega\|_p &\leqslant \|\mathbbm{1}_\Omega - \mathbbm{1}_B\|_p + \|\mathbbm{1}_\Omega - \varphi\|_p \\ &\leqslant \left(\int_{\mathbbm{D}} \mathbbm{1}_{\Omega \backslash B} \, \mathrm{d}\lambda\right)^{1/p} + \varepsilon/2 < \varepsilon. \end{split}$$

Supposons que $f = \sum_{i=1}^n \alpha_i \mathbbm{1}_{A_i} \in \mathscr{E}^1(\mathbb{R})$. Pour $i \in [\![1,N]\!]$, il existe $\varphi_i \in \mathcal{C}_c(\mathbb{R})$ telle que

$$\|\mathbb{1}_{A_i} - \varphi_i\|_p < \varepsilon/n |\alpha_i|.$$

Alors

$$\left\| f - \sum_{i=1}^{n} \alpha_{i} \varphi_{i} \right\|_{p} \leqslant \sum_{i=1}^{n} |\alpha_{i}| \left\| \mathbb{1}_{A_{i}} - \varphi_{i} \right\|_{p} < \varepsilon \quad \text{avec} \quad \sum_{i=1}^{n} \alpha_{i} \varphi_{i} \in C_{c}(\mathbb{R}).$$

Cela termine la preuve dans le cas d=1.

• Idée de la preuve pour d > 1. Tout fonctionne sauf le point suivant. Un ouvert $\Omega \subset \mathbb{R}^d$ ne s'écrit pas, en général, sous la forme d'une union disjointe dénombrable de pavés ouverts de \mathbb{R}^d . Cependant, on peut écrire

$$\Omega = \bigcup_{k \in \mathbb{N}} P_k$$

où les ensembles P_k sont des pavés ouverts et bornés. On peut réécrire cette réunion comme

$$\bigsqcup_{k\in\mathbb{N}}Q_k$$

à un ensemble λ_d -négligeable près. Dans ce cas, on a

$$\mathbb{1}_{\Omega} = \sum_{k \in \mathbb{N}} \mathbb{1}_{Q_k} \quad \lambda_d$$
-presque partout.

Chapitre 9

CONVOLUTION & APPLICATIONS

9.1 Opérateur de translation	42	9.2.2	Cas général	44
9.2 Convolution	42	9.2.3	Approximation de l'unité	45
9.2.1 Le cas mesurable positif	42	9.2.4	Régularisation par convolution	46

9.1 OPÉRATEUR DE TRANSLATION

DÉFINITION 9.1. Soit $a \in \mathbb{R}^d$. On définit l'opérateur

$$\tau_a: \begin{vmatrix} \mathbf{L}^p(\mathbb{R}^d) \longrightarrow \mathbf{L}^p(\mathbb{R}^d), \\ f \longmapsto \tau_a f: \begin{vmatrix} \mathbb{R}^d \longrightarrow \mathbb{R}^d, \\ x \longmapsto f(x-a). \end{vmatrix}$$

 \diamond REMARQUE. Cet opérateur est bien définie puisque la mesure de LEBESGUE est invariante par translation, *i. e.* deux fonctions f et g égales λ -presque partout vérifient bien f(x-a)=g(x-a) pour λ -presque tout $x \in \mathbb{R}^d$. De plus, si $f \in L^p(\mathbb{R}^d)$, alors un changement de variables affine donne $\tau_a f \in L^p(\mathbb{R}^d)$.

PROPOSITION 9.2. Soient $p \in [1, \infty]$ et $a \in \mathbb{R}^d$. Alors l'opérateur τ_a est une isométrie, i. e.

$$\forall f \in L^p(\mathbb{R}^d), \quad \|\tau_a f\|_p = \|f\|_p.$$

Preuve Si $p < \infty$, il suffit d'appliquer le changement de variables $x \mapsto x - a$. Si $p = \infty$, on remarque que, pour tout $C \ge 0$, on a $|f| \le C$ presque partout si et seulement si $|\tau_a f| \le C$ presque partout.

THÉORÈME 9.3. Soient $p \in [1, \infty[$ et $f \in L^p(\mathbb{R}^d)$. Alors

$$\|\tau_a f - f\|_p \xrightarrow{\|a\| \to 0} 0.$$

Preuve On suppose d'abord que $f \in C_c(\mathbb{R}^d)$. Soit $(a_n)_{n \in \mathbb{N}}$ une suite de \mathbb{R}^d telle que $||a_n|| \to 0$. On souhaite montrer que

$$\int_{\mathbb{R}^d} |f(x - a_n) - f(x)|^p dx \longrightarrow 0.$$

À partir d'un certain rang N, on a $|a_n| \leq 1$. Soit K un compact de \mathbb{R}^d tel que f soit nulle sur K^c . Si $n \geq N$, alors la fonction $x \longmapsto f(x - a_n) - f(x)$ est nulle sur K_1^c où $K_1 \coloneqq K + \mathrm{B}_{\mathrm{f}}(0,1)$ est un compact. Comme f est continue sur K', elle y est uniformément continue. Soit $\varepsilon > 0$. Il existe alors $\eta > 0$ tel que

$$\forall x, y \in \mathbb{R}^d$$
, $||x - y|| < \eta \implies |f(x) - f(y)| < \varepsilon$.

Finalement, en reprenant les mêmes arguments, pour n assez grand, on peut écrire que

$$\int_{\mathbb{R}^d} |f(x - a_n) - f(x)|^p \, \mathrm{d}x \le \int_{K'} |f(x - a_n) - f(x)|^p \, \mathrm{d}x < \int_{K'} \frac{\varepsilon}{\lambda_d(K')} \, \mathrm{d}x = \varepsilon$$

Revenons au cas général. Soient $f \in L^p(\mathbb{R}^d)$ et $\varepsilon > 0$. Il existe $\varphi \in C_c(\mathbb{R}^d)$ telle que $||f - \varphi||_p < \varepsilon/3$. D'après le cas précédent, il existe $\delta > 0$ tel que

$$\forall a \in B(0, \delta), \quad \|\tau_a \varphi - \varphi\|_p < \varepsilon/3.$$

Alors pour tout $a \in B(0, \delta)$, il vient que

$$\|\tau_a f - f\|_p \le \|\tau_a (f - \varphi)\|_p + \|\tau_a \varphi - \varphi\|_p + \|\varphi - f\|_p$$

$$\le 2 \|f - \varphi\|_p + \|\tau_a \varphi - \varphi\|_p < 2\varepsilon/3 + \varepsilon/3 = \varepsilon$$

ce qui montre la limite dans le cas général.

 \diamond Remarque. Le théorème est faux pour $p=\infty$. Il suffit de prendre $f=\mathbbm{1}_{[0,1]}$ et a>0. On voit alors que

$$\|\tau_a f - f\|_{\infty} = \|\mathbb{1}_{[-a,1-a]} - \mathbb{1}_{[0,1]}\|_{\infty} = 1 \longrightarrow 0.$$

9.2 CONVOLUTION

9.2.1 Le cas mesurable positif

DÉFINITION 9.4. Soient $f,g \colon \mathbb{R}^d \to \mathbb{K}$ deux fonctions mesurables positives. On définit

$$f \star g: \begin{vmatrix} \mathbb{R}^d \longrightarrow \mathbb{R}^d, \\ x \longmapsto \int_{\mathbb{R}^d} f(x - y) g(y) \, \mathrm{d}y. \end{vmatrix}$$

PROPOSITION 9.5. Soient $f, g \in \mathcal{M}_+$. Alors $f \star g$ est mesurable positive et

$$\int_{\mathbb{R}^d} f \star g(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x.$$

Preuve On note que les fonctions $(x,y) \mapsto x-y$ et $(x,y) \mapsto y$ sont continues, donc elles sont mesurables. On en déduit que la fonction $(x,y) \mapsto f(x-y)g(y)$ est mesurable. Le théorème de Fubini-Tonelli assure alors que la fonction $f \star g$ est mesurable.

Proposition 9.6. Soient $f, g, h \in \mathcal{M}_+$. Alors

- 1. on a $f \star g = g \star f$;
- 2. on a $(f \star g) \star h = f \star (g \star h)$;
- 3. on a $\{f \star g \neq 0\} \subset \{f \neq 0\} + \{g \neq 0\}.$

Preuve 1. Ce point résulte du changement de variables z=x-y dans l'intégrale.

2. Pour tout $x \in \mathbb{R}^d$, le théorème de FUBINI-TONELLI donne

$$[(f \star g) \star h](x) = \int_{\mathbb{R}^d} f \star g(x - y)h(y) \, dy$$

$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(z)g(x - y - z) \, dz \right) h(y) \, dy$$

$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} g(x - z - y)h(y) \, dy \right) f(z) \, dz$$

$$= \int_{\mathbb{R}^d} g \star h(x - z)f(z) \, dz = [(g \star h) \star f](x) = [f \star (g \star h)](x).$$

3. Soit $x \in \mathbb{R}^d$. Supposons que $x \notin \{f \neq 0\} + \{g \neq 0\}$. Alors pour tout $y \in \{f \neq 0\}$, on a $x - y \notin \{g \neq 0\}$. Autrement dit, pour tout $y \in \mathbb{R}^d$ tel que $f(y) \neq 0$, on a g(x - y) = 0. On en déduit que

$$f \star g(x) = \int_{\mathbb{R}^d} f(y)g(x-y) \, \mathrm{d}y = 0$$

et donc $x \notin \{f \star g \neq 0\}$. La contraposée de ce qu'on vient de montrer donne l'inclusion voulue.

 \triangleright Exemple. Soit $f := \mathbb{1}_{[-1/2,1/2]}$. Pour tout $x \in \mathbb{R}$, on a

$$f \star f(x) = \int_{\mathbb{R}} \mathbb{1}_{[-1/2, 1/2]}(y) \mathbb{1}_{[-1/2, 1/2]}(x - y) \, \mathrm{d}y$$

$$= \int_{\mathbb{R}} \mathbb{1}_{[x - 1/2, x + 1/2]}(y) \, \mathrm{d}y$$

$$= \lambda([-1/2, 1/2] \cap [x - 1/2, x + 1/2])$$

$$= \begin{cases} 0 & \text{si } x \leqslant -1, \\ \lambda([-1/2, x + 1/2]) = x + 1 & \text{si } x \in [-1, 0], \\ \lambda([x - 1/2, 1/2]) = 1 - x & \text{si } x \in [0, 1], \\ 0 & \text{si } x \geqslant 1. \end{cases}$$

9.2.2 Cas général

♦ REMARQUE. Soient $f, g: \mathbb{R}^d \to \mathbb{K}$ mesurables. Alors la convolution $f \star g$ existe en $x \in \mathbb{R}^d$ si et seulement si la fonction $y \longmapsto f(x-y)g(y)$ est intégrable, i. e. $|f| \star |g|(x) < +\infty$.

FIGURE 9.1 – Graphe de la fonction $f := \mathbb{1}_{[-1/2,1/2]}$ (gras) et de sa convolution par elle-même $f \star f$ (pointillé)

THÉORÈME 9.7 (convolution L^p - L^q). Soit $p, q \in [1, \infty]$ des exposants conjugués. Soient $f \in L^p(\mathbb{R}^d)$ et $g \in L^q(\mathbb{R}^d)$. Alors $f \star g$ existe sur \mathbb{R} , est uniformément continue et

$$\forall x \in \mathbb{R}^d$$
, $|f \star g(x)| \leq ||f||_p ||g||_q$.

Preuve Soit $x \in \mathbb{R}^d$. L'inégalité de HÖLDER donne

$$\int_{\mathbb{R}^d} \left| f(x-y)g(y) \right| \mathrm{d}y \leqslant \left(\int_{\mathbb{R}^d} \left| f(x-y) \right|^p \mathrm{d}y \right)^{1/p} \left(\int_{\mathbb{R}^d} \left| g(y) \right|^q \mathrm{d}y \right)^{1/q} = \left\| f \right\|_p \left\| g \right\|_q < +\infty.$$

Montrons que $f\star g$ est uniformément continue. Soient $x,a\in\mathbb{R}^d.$ On a

$$|f \star g(x+a) - f \star g(x)| = \left| \int_{\mathbb{R}^d} (f(x+a-y) - f(x-y))g(y) \, \mathrm{d}y \right|$$
$$= \left| \int_{\mathbb{R}^d} (\tau_{-a}f - f)(x-y)g(y) \, \mathrm{d}y \right|$$
$$= \left| (\tau_{-a}f - f) \star g(x) \right|.$$

Comme $\tau_a f - f \in L^p(\mathbb{R}^d)$ et $g \in L^q(E)$. De ce qui précède, on obtient que

$$|f \star g(x+a) - f \star g(x)| \le ||\tau_{-a}f - f||_p ||g||_q$$
.

Quitte à échanger p et q, on peut supposer que p est fini. Alors

$$\|\tau_{-a}f - f\|_p \xrightarrow{\|a\| \to 0} 0,$$

donc

$$|f \star g(x+a) - f \star g(x)| \xrightarrow{\|a\| \to 0} 0$$

et ceci indépendamment de x. Finalement, la fonction $f \star g$ est uniformément continue.

THÉORÈME 9.8 (convolution L^p - L^1). Soit $p \in [1, \infty[$. Soient $f \in L^p(\mathbb{R}^d)$ et $g \in L^1(\mathbb{R}^d)$. Alors $f \star g$ existe presque partout, appartient à $L^p(\mathbb{R}^d)$ et

$$||f \star g||_n \leq ||f||_n ||g||_1$$
.

Preuve Soit $x \in \mathbb{R}^d$. On note $q \in [1, \infty[$ le conjugué de p. L'inégalité de HÖLDER donne

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)g^{1/p}(y)| |g^{1/q}(y)| \, \mathrm{d}x \, \mathrm{d}y \leqslant \left(\int_{\mathbb{R}^d} |f(x-y)|^p \, |g(y)| \, \mathrm{d}y \right)^{1/p} \left(\int_{\mathbb{R}^d} |g(y)| \, \mathrm{d}y \right)^{1/q}.$$

En utilisant le théorème de Fubini, on obtient alors

$$\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x-y)g(y)| \, \mathrm{d}y \right)^p \, \mathrm{d}x \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)|^p \, |g(y)| \, \mathrm{d}y \, ||g||_1^{p-1} \, \mathrm{d}x \\
= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x-y)|^p \, \mathrm{d}x \, |g(y)| \, \mathrm{d}y \, ||g||_1^{p-1} = ||f||_p^p \, ||g||_1^p < +\infty.$$

L'utilisation du théorème de Fubini-Tonelli est valide puisque la fonction $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d \longmapsto |f(x-y)|^p |g(y)|$ est mesurable. On en déduit que

$$\int_{\mathbb{R}^d} |f(x-y)g(y)| \, \mathrm{d}y < +\infty \quad \text{pour presque tout } x \in \mathbb{R}^d.$$

De plus, la fonction $(x,y) \in \mathbb{R}^d \times \mathbb{R}^d \longmapsto |f(x-y)|^p |g(y)|$ est intégrable par ce qui précède. Enfin, on a

$$\int_{\mathbb{R}^d} |f \star g(x)|^p \, \mathrm{d}x \le \int_{\mathbb{R}^d} (|f| \star |g|(x))^p \, \mathrm{d}x \le ||f||_p^p \, ||g||_p^1$$

ce qui montre l'inégalité.

PROPOSITION 9.9. L'espace $L^1(\mathbb{R}^d)$ muni de la loi de convolution \star possède une structure de \mathbb{K} -algèbre commutative qui n'a pas d'unité.

Preuve La commutativité se montre à l'aide du changement de variables z = x - y. La distributivité de \star par rapport à + se déduit de la linéarité de l'intégrable. L'associativité découle du théorème de FUBINI. Montrons que cette algèbre ne possède pas d'unité. Par l'absurde, supposons qu'il existe $\varphi \in L^1(\mathbb{R}^d)$ telle que

$$\forall f \in L^1(\mathbb{R}^d), \quad f \star \varphi = \varphi.$$

Pour $n \in \mathbb{N}$, on pose

$$f_n \colon x \in \mathbb{R}^d \longmapsto e^{-n\|x\|^2} \in \mathbb{R}.$$

Soit $n \in \mathbb{N}$. Alors l'égalité $f_n \star \varphi = f_n$ est vraie dans $L^1(\mathbb{R}^d)$, i. e. ces fonctions sont égales presque partout. Comme $f_n \in L^{\infty}(\mathbb{R}^d)$ et $\varphi \in L^1(\mathbb{R}^d)$, la fonction $f_n \star \varphi$ est continue. Alors $f_n \star \varphi(x) = f_n(x)$ pour tout $x \in \mathbb{R}^d$. En particulier, on a $f_n \star \varphi(0) = f_n(0) = 1$. Cependant, comme $f_n(y) \to 0$ et $|f_n(y)| \leq |\varphi(y)|$ pour tout $y \in \mathbb{R}^d$, le théorème de convergence dominée donne $f_n(0) \to 0$ ce qui est impossible.

9.2.3 Approximation de l'unité

DÉFINITION 9.10. On appelle approximation de l'unité une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions de L¹(\mathbb{R}^d) telle que

- pour tout $n \in \mathbb{N}$, on ait $\varphi_n \geqslant 0$ presque partout;
- pour tout $n \in \mathbb{N}$, on ait

$$\int_{\mathbb{R}^d} \varphi_n(x) \, \mathrm{d}x = 1 \; ;$$

– pour tout $\delta > 0$, on ait

$$\int_{B(0,\delta)^c} \varphi_n(x) dx \xrightarrow[n \to +\infty]{} 0.$$

♦ REMARQUE. Soit $\varphi \in L^1(\mathbb{R}^d)$ presque partout positive telle que $\int_{\mathbb{R}^d} \varphi(x) dx < +\infty$. Quitte à diviser φ par son intégrale sur \mathbb{R}^d , on peut supposer que $\int_{\mathbb{R}^d} \varphi(x) dx = 1$. Pour $n \in \mathbb{N}$, on pose

$$\varphi_n : x \in \mathbb{R}^d \longrightarrow n^d \varphi(nx).$$

Alors $(\varphi_n)_{n\in\mathbb{N}}$ est une approximation de l'unité. En effet, pour $n\in\mathbb{N}^*$, le changement de variables y=nx donne

$$\int_{\mathbb{R}^d} \varphi_n(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} \varphi(nx) n^d \, \mathrm{d}x = \int_{\mathbb{R}^d} \varphi(y) \, \mathrm{d}y = 1.$$

Soit $\delta > 0$. Le même changement de variables et le théorème de convergence dominée affirment

$$\int_{\mathrm{B}(0,\delta)^{\mathrm{c}}} \varphi_n(x) \, \mathrm{d}x = \int_{\mathbb{R}^d} \mathbb{1}_{\mathrm{B}(0,n\delta)^{\mathrm{c}}}(y) \varphi(y) \, \mathrm{d}y \xrightarrow[n \to +\infty]{} 0.$$

THÉORÈME 9.11. Soit $p \in [1, \infty[$. Soient $f \in L^p(\mathbb{R}^d)$ et $(\varphi_n)_{n \in \mathbb{N}}$ une approximation de l'unité. Alors

$$||f \star \varphi_n - f||_p \xrightarrow[n \to +\infty]{} 0.$$

Preuve On note $q \in [1, \infty[$ le conjugué de p. Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}^d$. L'inégalité de HÖLDER donne

$$|f \star \varphi_n(x) - f(x)| = \left| \int_{\mathbb{R}^d} f(x - y) \varphi_n(y) \, \mathrm{d}y - f(x) \right|$$

$$\leqslant \int_{\mathbb{R}^d} |f(x - y) - f(x)| \, \varphi_n(y) \, \mathrm{d}y$$

$$\leqslant \int_{\mathbb{R}^d} |f(x - y) - f(x)| \, \varphi_n^{1/p}(y) \varphi_n^{1/q}(y) \, \mathrm{d}y$$

$$\leqslant \left(\int_{\mathbb{R}^d} |f(x - y) - f(x)|^p \, \varphi_n(y) \, \mathrm{d}y \right)^{1/p}.$$

On en déduit, avec le théorème de Fubini-Tonelli, que

$$\int_{\mathbb{R}^d} |f \star \varphi_n(x) - f(x)|^p \, \mathrm{d}x \le \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |f(x - y) - f(x)|^p \, \varphi_n(y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x - y) - f(x)|^p \, \mathrm{d}x \right) \varphi_n(y) \, \mathrm{d}y$$

$$= \int_{\mathbb{R}^d} \|\tau_y f - f\|_p^p \varphi_n(y) \, \mathrm{d}y.$$

Cassons l'intégrale en deux parties. Soit $\varepsilon > 0$. Par le théorème 9.3, on sait qu'il existe $\delta > 0$ tel que

$$\forall y \in B(0, \delta), \quad \|\tau_y f - f\|_p^p < \varepsilon/2.$$

Comme la suite $(\varphi_n)_{n\in\mathbb{N}}$ est une approximation de l'unité, il existe $N\in\mathbb{N}$ tel que

$$\forall n \geqslant N, \quad \int_{\mathrm{B}(0,\delta)^c} \varphi_n(y) \, \mathrm{d}y < \frac{\varepsilon}{(2 \|f\|_p)^p}.$$

Alors pour tout $n \ge N$, on obtient que

$$\int_{\mathbb{R}^d} |f \star \varphi_n(x) - f(x)|^p \, \mathrm{d}x \leq \int_{\mathrm{B}(0,\delta)} \|\tau_y f - f\|_p^p \varphi_n(y) \, \mathrm{d}y + \int_{\mathrm{B}(0,\delta)^c} \|\tau_y f - f\|_p^p \varphi_n(y) \, \mathrm{d}y \\
\leq \frac{\varepsilon}{2} + (2 \|f\|_p)^p \int_{\mathrm{B}(0,\delta)^c} \varphi_n(y) \, \mathrm{d}y < \varepsilon$$

ce qui montre la convergence de la suite $(f \star \varphi_n)_{n \in \mathbb{N}}$ vers la fonction f pour la norme $\| \|_p$.

THÉORÈME 9.12. Soient $f \in L^{\infty}(\mathbb{R}^d)$ uniformément continue sur \mathbb{R}^d et $(\varphi_n)_{n \in \mathbb{N}}$ une approximation de l'unité.

$$||f \star \varphi_n - f||_{\infty} \xrightarrow[n \to +\infty]{} 0.$$

Preuve Soit $x \in \mathbb{R}^d$. Comme précédemment, on a

$$|f \star \varphi_n(x) - f(x)| \le \int_{\mathbb{R}^d} |f(x - y) - f(x)| \varphi_n(y) \, dy.$$

Soit $\varepsilon > 0$. Par l'uniforme continuité, on sait qu'il existe $\delta > 0$ tel que

$$\forall y \in B(0, \delta), \quad |f(x - y) - f(x)| < \varepsilon/2.$$

En utilisant le même découpage que précédemment, on montre que $|f \star \varphi_n(x) - f(x)| < \varepsilon$ pour $n \in \mathbb{N}$ assez grand. Cela montre que $||f \star \varphi_n - f|| \longrightarrow 0$.

9.2.4 Régularisation par convolution

THÉORÈME 9.13. Soient $f \in L^1(\mathbb{R}^d)$ et $\varphi \in C_c^1(\mathbb{R}^d)$. Alors $f \star \varphi$ est classe C^1 et, pour tout $i \in [1, d]$, on a

$$\partial_{x_i}(f\star\varphi)(x)=f\star(\partial_{x_i}\varphi)(x)$$

pour tout $x \in \mathbb{R}^d$.

Preuve On applique le théorème de convergence dominée en utilisant le fait que $\|\partial_{x_i}\varphi\|_{\infty} < +\infty$.

 \diamond REMARQUES. – Par récurrence immédiate, on montre que, pour toute fonction $\varphi \in \mathrm{C}^k_\mathrm{c}(\mathbb{R}^d)$, on montre que

$$\partial_{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}^{|\alpha|}(g \star \varphi) = f \star (\partial_{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}^{|\alpha|} \varphi)$$

pour tout $(\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ tel que $|\alpha| := \alpha_1 + \cdots + \alpha_n \leqslant k$.

– On peut prendre f appartenant à $L^1_{loc}(\mathbb{R}^d)$, l'ensemble des fonctions intégrables sur tout compact de \mathbb{R}^d .

DÉFINITION 9.14. On appelle suite régularisante une approximation de l'unité $(\varphi_n)_{n\in\mathbb{N}}$ dont les termes sont des éléments de $C_c^{\infty}(\mathbb{R}^d)$.

▶ Exemple. On introduit la fonction

$$\psi \colon x \in \mathbb{R}^d \longmapsto \begin{cases} \exp(-1/(1-\|x\|^2)) & \text{si } \|x\| < 1, \\ 0 & \text{sinon.} \end{cases}$$

Alors on montre que $\psi \in C_c^{\infty}(\mathbb{R}^d)$. En utilisant le procédé de la remarque page 45, on construit une suite régularisante ce qui montre leur existence.

THÉORÈME 9.15. Soit $p \in [1, \infty[$. Alors l'ensemble $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $L^p(\mathbb{R}^d)$

Preuve Soit $f \in L^p(\mathbb{R}^d)$. On suppose d'abord que $f \in C_c(\mathbb{R}^d)$. Soit $(\varphi_n)_{n \in \mathbb{N}}$ une suite régularisante. Alors pour tout $n \in \mathbb{N}$, on a $f \star \varphi_n \in C_c^{\infty}(\mathbb{R}^d)$. Or $||f \circ \varphi_n - f||_p \longrightarrow 0$ où la suite $(f \circ \varphi_n)_{n \in \mathbb{N}}$ est une suite de $C_c^{\infty}(\mathbb{R}^d)$. Revenons au cas général. Soit $\varepsilon > 0$. Il existe $\varphi \in C_c(\mathbb{R}^d)$ telle que $||f - \varphi||_p < \varepsilon/2$. D'après le cas particulier,

il existe $\psi \in C_c^{\infty}(\mathbb{R}^d)$ telle que $\|\varphi - \psi\|_p < \varepsilon/2$. Finalement, on a $\|f - \psi\| < \varepsilon$ ce qui montre le résultat.

APPLICATION (LEMME D'URYSOHN). Soient K un compact de \mathbb{R}^d et Ω un ouvert de \mathbb{R}^d tels que $K \subset \Omega$. Alors il existe une fonction $f \in C^{\infty}(\mathbb{R}^d)$ telle que f = 1 sur K et f = 0 sur Ω^c .