

#### Solution

$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{3c^n}$$
: Interval of convergence is  $-5 < x < 7$ 

## Steps

$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{36^n}$$

Use the Root Test to compute the convergence interval

Hide Steps

$$\sum_{n=0}^{\infty} \frac{(x-1)^{2n}}{36^n}$$

#### Series Root Test:

If 
$$\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$$
, and:

If L < 1, then  $\sum a_n$  converges

If L > 1, then  $\sum a_n$  diverges

If L=1, then the test is inconclusive

$$\left| a_n^{\frac{1}{n}} \right| = \left| \left( \frac{(x-1)^{2n}}{36^n} \right)^{\frac{1}{n}} \right|$$

Compute 
$$L = \lim_{n \to \infty} \left( \left| \left( \frac{(x-1)^{2n}}{36^n} \right)^{\frac{1}{n}} \right| \right)$$

Hide Steps 🖨

$$L = \lim_{n \to \infty} \left( \left| \left( \frac{(x-1)^{2n}}{36^n} \right)^{\frac{1}{n}} \right| \right)$$

Simplify 
$$\left(\frac{(x-1)^{2n}}{36^n}\right)^{\frac{1}{n}}$$
:  $\frac{(x-1)^2}{36}$ 

Hide Steps 🖨

$$\left(\frac{(x-1)^{2n}}{36^n}\right)^{\frac{1}{n}}$$

Use the following exponent property:  $(a \cdot b)^n = a^n \cdot b^n$ 

$$\left(\frac{(x-1)^{2n}}{36^n}\right)^{\frac{1}{n}} = \frac{\sqrt[n]{(x-1)^{2n}}}{\sqrt[n]{36^n}}$$

$$= \frac{\sqrt[n]{(x-1)^{2n}}}{\sqrt[n]{36^n}}$$

Use the following exponent property:  $(a^n)^m = a^{n+m}$ 

$$\sqrt[n]{(x-1)^{2n}} = (x-1)^{2n\frac{1}{n}}, \quad \sqrt[n]{36^n} = 36^{n\frac{1}{n}}$$

$$= \frac{(x-1)^{2n\frac{1}{n}}}{36^{n\frac{1}{n}}}$$

 $36^{n\frac{1}{n}}$  Multiply  $n\frac{1}{n}: \ 1$  Hide Steps lacktriangle  $n\frac{1}{n}$ 

Multiply fractions:  $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$ 

 $=\frac{1\cdot n}{n}$ 

 $36^{n\frac{1}{n}} = 36$ 

Cancel the common factor: n

= 1

 $=36^{1}$ 

Apply rule  $a^1 = a$ 

=36

$$= \frac{(x-1)^{2n\frac{1}{n}}}{36}$$

 $(x-1)^{2n\frac{1}{n}}=(x-1)^2$  Hide Steps

 $(x-1)^{2n\frac{1}{n}}$ 

Multiply  $2n\frac{1}{n}: 2$ 

Hide Steps 🖨

Hide Steps

 $2n\frac{1}{n}$ 

Multiply fractions:  $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$ 

 $=\frac{1\cdot 2n}{n}$ 

Cancel the common factor: n

 $= 1 \cdot 2$ 

Multiply the numbers:  $1 \cdot 2 = 2$ 

=2

 $=(x-1)^2$ 

$$L = \lim_{n \to \infty} \left( \left| \frac{(x-1)^2}{36} \right| \right)$$

$$L = \left| \frac{(x-1)^2}{36} \right| \cdot \lim_{n \to \infty} (1)$$

$$\lim_{n \to \infty} (1) = 1$$

$$\lim_{m \to \infty} (1)$$

$$\lim_$$

$$L = \frac{|x-1|^2}{36}$$

The power series converges for L < 1

$$\frac{|x-1|^2}{36} < 1$$

# Hide Steps Find the interval of convergence To find the interval of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for xHide Steps $\frac{|x-1|^2}{36} < 1$ : -5 < x < 7 $\frac{|x-1|^2}{36} < 1$ Hide Steps 🖨 Find positive and negative intervals Find intervals for |x-1|Hide Steps $x-1 > 0: x > 1, \quad |x-1| = x-1$ Hide Steps $x-1 \ge 0$ : $x \ge 1$ $x-1 \ge 0$ Add 1 to both sides x-1+1 > 0+1

```
Simplify x \ge 1
```

Rewrite 
$$|x-1|$$
 for  $x-1\geq 0$ :  $|x-1|=x-1$    
 Apply absolute rule: If  $u\geq 0$  then  $|u|=u$   $|x-1|=x-1$ 

$$x-1<0: x<1, \quad |x-1|=-(x-1)$$

Hide Steps 

 $x-1<0: x<1$ 

Hide Steps 

 $x-1<0$ 

Add 1 to both sides 
 $x-1+1<0+1$ 

Simplify 
 $x<1$ 

Rewrite  $|x-1|$  for  $x-1<0: |x-1|=-(x-1)$ 

Hide Steps 

Apply absolute rule: If  $u<0$  then  $|u|=-u$ 

Identify the intervals:

|x-1| = -(x-1)

 $x < 1, x \ge 1$ 

|     | x < 1 | $x \ge 1$ |
|-----|-------|-----------|
| x-1 | _     | +         |

 $x < 1, x \ge 1$ 

 $x < 1, x \ge 1$ 



$$\frac{36(-(x-1))^2}{36}$$
 < 1 · 36

Simplify

$$(-(x-1))^2 < 36$$

For  $u^n < a$ , if n is even then  $-\sqrt[n]{a} < u < \sqrt[n]{a}$ 

$$-\sqrt{36} < -(x-1) < \sqrt{36}$$

If a < u < b then a < u and u < b

$$-\sqrt{36} < -(x-1)$$
 and  $-(x-1) < \sqrt{36}$ 

$$-\sqrt{36} < -(x-1) : x < 7$$

Hide Steps

$$-\sqrt{36} < -(x-1)$$

Switch sides

$$-(x-1) > -\sqrt{36}$$

 $\sqrt{36} = 6$ 

Hide Steps

 $\sqrt{36}$ 

Factor the number:  $36 = 6^2$ 

$$=\sqrt{6^2}$$

Apply radical rule:  $\sqrt[n]{a^n} = a$ 

$$\sqrt{6^2} = 6$$

= 6

$$-(x-1) > -6$$

Multiply both sides by -1 (reverse the inequality)

$$(-(x-1))(-1) < (-6)(-1)$$

Simplify

$$x - 1 < 6$$

Add 1 to both sides

$$x-1+1 < 6+1$$

Simplify

x < 7

$$-(x-1) < \sqrt{36}$$
 :  $x > -5$ 

Hide Steps 🖨

 $-(x-1) < \sqrt{36}$ 

Factor the number:  $36 = 6^2$ 

$$-(x-1) < \sqrt{6^2}$$

Apply radical rule:  $\sqrt[n]{a^n} = a$ 

$$\sqrt{6^2} = 6$$

$$-(x-1) < 6$$

Multiply both sides by -1 (reverse the inequality)

$$(-(x-1))(-1) > 6(-1)$$

Simplify

$$x - 1 > -6$$

Add 1 to both sides

$$x-1+1 > -6+1$$

Simplify

$$x > -5$$

Combine the intervals

$$x < 7$$
 and  $x > -5$ 

Merge Overlapping Intervals

The intersection of two intervals is the set of numbers which are in both intervals x < 7 and x > -5

$$-5 < x < 7$$



$$-5 < x < 7$$

Combine the intervals

$$-5 < x < 7$$
 and  $x < 1$ 

#### Merge Overlapping Intervals

Hide Steps

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals

$$-5 < x < 7$$
 and  $x < 1$ 



For 
$$x \ge 1$$
:  $1 \le x < 7$ 

Hide Steps 🖨

For 
$$x \ge 1$$
 rewrite  $\frac{|x-1|^2}{36} < 1$  as  $\frac{(x-1)^2}{36} < 1$ 

$$\frac{(x-1)^2}{36} < 1 \quad : \quad -5 < x < 7$$

Hide Steps 🖨

$$\frac{(x-1)^2}{36} < 1$$

Multiply both sides by 36

$$\frac{36(x-1)^2}{36}$$
 < 1 · 36

Simplify

$$(x-1)^2 < 36$$

For  $u^n < a$ , if n is even then  $-\sqrt[n]{a} < u < \sqrt[n]{a}$ 

$$-\sqrt{36} < x - 1 < \sqrt{36}$$

If a < u < b then a < u and u < b

$$-\sqrt{36} < x-1 \quad \text{and} \quad x-1 < \sqrt{36}$$

$$-\sqrt{36} < x - 1 : x > -5$$

Hide Steps 🖨

Hide Steps

$$-\sqrt{36} < x - 1$$

Switch sides

$$x - 1 > -\sqrt{36}$$

 $\sqrt{36} = 6$ 

 $\sqrt{36}$ 

Factor the number:  $36 = 6^2$ 

$$=\sqrt{6^2}$$

Apply radical rule:  $\sqrt[n]{a^n} = a$ 

$$\sqrt{6^2} = 6$$

= 6

$$x - 1 > -6$$

Add 1 to both sides

$$x-1+1 > -6+1$$

Simplify

$$x > -5$$

$$x - 1 < \sqrt{36}$$
 :  $x < 7$ 

Hide Steps 🖨

$$x - 1 < \sqrt{36}$$

Factor the number:  $36 = 6^2$ 

$$x-1 < \sqrt{6^2}$$

Apply radical rule:  $\sqrt[n]{a^n} = a$ 

$$\sqrt{6^2} = 6$$

x - 1 < 6

Add 1 to both sides

$$x-1+1 < 6+1$$

Simplify

x < 7

Combine the intervals

$$x > -5$$
 and  $x < 7$ 

### Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals  $x>-5 \quad {\rm and} \quad x<7$ 

$$-5 < x < 7$$



-5 < x < 7

Combine the intervals

 $-5 < x < 7 \quad \text{and} \quad x \geq 1$ 

#### Merge Overlapping Intervals

Hide Steps 🖨

The intersection of two intervals is the set of numbers which are in both intervals  $-5\,{<}\,x\,{<}\,7$  and  $x\,{\ge}\,1$ 

 $1 \leq \, x < 7$ 



 $1 \le x < 7$ 

Combine the intervals

 $-5 < x < 1 \quad \text{or} \quad 1 \leq x < 7$ 

-5 < x < 1 or  $1 \le x < 7$ 

#### Merge Overlapping Intervals

Hide Steps 🖨

The union of two intervals is the set of numbers which are in either interval  $-5 < x < 1 \quad {\rm or} \quad 1 < x < 7$ 

-5 < x < 7



-5 < x < 7

-5 < x < 7

Hide Steps Check the interval end points: x = -5:diverges, x = 7:diverges Hide Steps For x = -5,  $\sum_{n=0}^{\infty} \frac{((-5)-1)^{2n}}{36^n}$ : diverges  $\sum_{n=0}^{\infty} \frac{((-5)-1)^{2n}}{36^n}$ Refine  $=\sum_{n=0}^{\infty} 1$ Every infinite sum of a non – zero constant diverges = diverges For x = 7,  $\sum_{n=0}^{\infty} \frac{(7-1)^{2n}}{36^n}$ : diverges Hide Steps Refine Every infinite sum of a non – zero constant diverges = diverges x = -5:diverges, x = 7:diverges Therefore

Interval of convergence is -5 < x < 7

Interval of convergence is -5 < x < 7

Interval of convergence is -5 < x < 7