Lógica

Mauro Polenta Mora

CLASE 4 - 25/02/2025

Lógica proposicional

Definición (proposición)

Una oración de la cual podemos decir si es verdadera o falsa

Definición (proposición simple)

Veamos ejemplos para definir una proposición simple:

- Ayer llovió en Paysandú
- El Sol gira alrededor de la Tierra
- $2 \times 3 = 3 + 3$
- 3 es primo
- El sucesor de 3 es primo

Definición (proposición compuesta)

- Si ayer llovió en Paysandú, entonces el Sol gira alrededor de la Tierra
- El sol gira alrededor de la Tierra o la Tierra gira alrededor del Sol
- $2 \times 3 = 6$ y 6 es impar
- 3 no es primo
- Hay un número natural que es par y es primo
- Todo entero par mayor que 4 es la suma de dos números primos

Estas proposiciones, son básicamente una combinación de proposiciones simples. La forma de combinarlas no es única, depende de que forma las quiero relacionar.

Razonamientos

Queremos saber si cierta conclusión (una proposición) se desprende de un conjunto de hipótesis (un conjunto de proposiciones).

Razonamiento válido

Siempre que las hipótesis sean verdaderas, la conclusión también lo será.

Razonamiento inválido

Si es posible obtener conclusiones falsas, a partir de las hipótesis verdadera.

¿Cómo analizar un razonamiento?

Para analizar si un razonamiento es válido o no, tenemos dos enfoques:

- 1. **Semántico**: Investiga si la verdad de las hipótesis implica la verdad de la conclusión.
- 2. **Prueba/Sintáctico**: Investiga la existencia de un objecto formal que encadene las hipótesis con la conclusión usando otras proposiciones.

Traducción a PROP

Las proposiciones simples, se traducen como letras de proposición (elementos de P), por ejemplo:

- Ayer llovió en Paysandú $\Rightarrow p_0$
- El Sol gira alrededor de la Tierra $\Rightarrow p_1$
- $2 \times 3 = 3 + 3 \Rightarrow p_2$
- 6 es primo $\Rightarrow p_3$
- El sucesor de 3 es primo $\Rightarrow p_4$

Las proposiciones compuestas, se traducen usando los conectivos:

- Si ayer llovió en Paysandú, entonces el Sol gira alrededor de la Tierra $\Rightarrow p_0 \rightarrow p_1$
- $2 \times 3 = 6$ y 6 es primo $\Rightarrow p_2 \wedge p_3$
- 6 no es primo $\Rightarrow \neg p_3$

Algunas proposiciones no tienen una buena representación en PROP:

- Hay un número natural que es par y es primo
- Todo entero par mayor que 4 es la suma de dos números primos

Más adelante, trabajaremos con un lenguaje más expresivo para abordar este tipo de problemas.

Definición (alfabeto Σ_{PROP})

El alfabeto del lenguaje de la lógica proposicional $\Sigma_{PROP} := P \cup C \cup A$ consiste de:

- el conjunto de las letras proposicionales: $P := \{p_0, p_1, p_2, ...\}$
- el conjunto de los conectivos: $C := C_0 \cup C_1 \cup C_2$ donde:
 - $-C_0$ es el conjunto de los conectivos nulos: $\{\bot\}$, donde \bot representa siempre un valor falso
 - $-C_1$ es el conjunto de los conectivos unarios: $\{\neg\}$
 - $-C_2$ es el conjunto de los conectivos binarios: $\{\land, \lor, \rightarrow, \leftrightarrow\}$
- el conjunto de los auxiliares: $A := \{(,)\}$

Definición (lenguaje PROP)

El lenguaje de la lógica proposicional $PROP \subseteq \Sigma_{PROP}^*$ está definido inductivamente por:

- 1. Si $p \in P$, entonces $p \in PROP$
- $2. \perp \in PROP$
- 3. Si $\alpha, \beta \in PROP$, entonces:
 - $(\alpha \wedge \beta) \in PROP$
 - $(\alpha \lor \beta) \in PROP$
 - $(\alpha \to \beta) \in PROP$
 - $(\alpha \leftrightarrow \beta) \in PROP$
- 4. Si $\alpha \in PROP$, entonces $(\neg \alpha) \in PROP$

Nomenclatura

- Fórmulas proposicionales: son las palabras de PROP
- **Fórmulas atómicas**: son los elementos del conjunto $AT = P \cup \{\bot\}$. Son precisamente las palabras formadas por las reglas básicas (i) y (ii) de la definición de PROP.
- Metavariables:
 - Usaremos p, q, r, p', \dots para las letras proposicionales
 - Usaremos $\alpha, \beta, \varphi, \psi, \dots$ para las fórmulas proposicionales
 - Usaremos Γ, Δ, \dots para conjuntos de fórmulas proposicionales

PIP para PROP

Sea \mathcal{P} una propiedad sobre las palabras de PROP que cumple:

 $BASE1: \mathcal{P}(p)$ para todo $p \in P$ BASE2: Se cumple $\mathcal{P}(\bot)$ IND1: Para todo $* \in C_2$ y $\alpha, \beta \in PROP$ que cumplen $\mathcal{P}(\alpha)$ y $\mathcal{P}(\beta)$, se cumple $\mathcal{P}((\alpha*\beta))$ IND2: Para todo $\alpha \in PROP$ que cumple $\mathcal{P}(\alpha)$, se cumple $\mathcal{P}((\neg \alpha))$

Entonces, \mathcal{P} se cumple para todas las palabras de PROP.

ERP para PROP

Sea B un conjunto, y:

- 1. una función $H_{AT}:AT\to B,$ y
- 2. para cada conectivo $* \in C_2,$ una función $H_* : PROP \times B \times PROP \times B \rightarrow B,$ y
- 3. una función $H_{-}: PROP \times B \rightarrow B$

Entonces, existe una única función $F: PROP \rightarrow B$ tal que:

- 1. $F(\alpha) = H_{AT}(\alpha) \text{ con } \alpha \in AT$
- 2. $F((\alpha * \beta)) = H_*(\alpha, F(\alpha), \beta, F(\beta)) \text{ con } \alpha, \beta \in PROP$
- 3. $F((\neg \alpha)) = H_{\neg}(\alpha, F(\alpha)) \text{ con } \alpha \in PROP$

Ejemplos de ERP en PROP

 $LARGO: PROP \rightarrow \mathbb{N}$

Veamos dos formas de definirlo, una más informal pero más usada, y luego la más formal que se adapta a la definición de ERP.

1. Versión 1:

- 1. $LARGO(\varphi) = 1 \text{ con } \varphi \in AT$
- 2. $LARGO((\alpha * \beta)) = 3 + LARGO(\alpha) + LARGO(\beta) \text{ con } \alpha, \beta \in PROP$
- 3. $LARGO((\neg \alpha)) = 3 + LARGO(\alpha) \text{ con } \alpha \in PROP$

2. Versión 2:

- 1. $H_{AT}(\varphi) = 1 \text{ con } \varphi \in AT$
- 2. $H_*(\alpha, n, \beta, m) = 3 + n + m \operatorname{con} \alpha, \beta \in PROP$
- 3. $H_{\neg}(\alpha, n) = 3 + n \operatorname{con} \alpha \in PROP$

Observemos que la versión 2 nos define las funciones H, aparte de ellas tenemos que definir LARGO usandolas para terminar la definición. Esto es idéntico a como trabajamos los casos de ERP en el tema anterior.

$$ATOMS: PROP \rightarrow 2^{AT}$$

En este ejemplo solo veremos la forma más directa, se entiende que todos los casos que vemos tienen la forma de ERP.

- 1. $ATOMS(\varphi) = {\varphi} con \varphi \in AT$
- 2. $ATOMS((\alpha * \beta)) = ATOMS(\alpha) \cup ATOMS(\beta) \text{ con } \alpha, \beta \in PROP$
- 3. $ATOMS((\neg \alpha)) = ATOMS(\alpha) \text{ con } \alpha \in PROP$

Árboles etiquetados y ordenados

Consideramos a $\mathcal{T}(\mathcal{L})$ de los árboles etiquetados con palabras del lenguaje \mathcal{L} .

Propiedades

- Cada nodo tiene como máximo un padre, si no tiene un padre, entonces es la raíz del árbol
- Cada nodo tiene un primer hijo, un segundo hijo, etc..., ordenados de izquierda a derecha. Si no tiene hijos, es una hoja del árbol
- A cada nodo se le etiqueta con una palabra de \mathcal{L}

Ahora veamos otro ejemplo de ERP sobre PROP, incluyendo este lenguaje de árboles etiquetados:

$RBOL: PROP \to \mathcal{T}(PROP)$

- 1. ARBOL() = $con \varphi \in AT$
- 2. \$ARBOL((*)) = \$ $con \ \alpha, \beta \in PROP$

Figure 1: Propiedad 1 de arbol

Figure 2: Propiedad 2 de arbol

3. $$ARBOL((\neg)) = $$ con $\alpha \in PROP$

O visto de otra forma:

 $1. \ H_{AT}: AT \to \mathcal{T}(PROP)$

• $H_{AT} := \dots$

 $2. \ \ H_*: PROP \times \mathcal{T}(PROP) \times PROP \times \mathcal{T}(PROP) \rightarrow \mathcal{T}(PROP)$

 $\bullet \ \ H_*(\alpha,t_1,\beta,t_2):=\dots$

3. $H_{\neg}: PROP \times \mathcal{T}(PROP) \to \mathcal{T}(PROP)$

• $H_{\neg}(\alpha,t) := ...$

Figure 3: Propiedad 3 de arbol