

Outline

- Simplicial Complexes and CW-complexes
- Classical Morse Theory
- Discrete Morse Theory

Simplicial Complexes

Definition

An abstract simplicial complex is a set of vertices V, along with a collection K of subsets of V called simplices, which is closed under subsets and contains all singletons. Their geometric realisations are topological spaces.

Different models of S²

Cell Attachment

Definition

A d-cell is a closed ball of dimension d.

Definition

We can attach a d-cell to a topological space X by **gluing** its boundary to X by a continuous map.

CW complexes

Definition

A CW complex is a space built out of smaller spaces, iteratively by a process called attaching cells. A k-cell is a k-dimensional disc. Attaching a k-cell to another space X means, intuitively, forming the union of X and D^k where we glue the boundary of D^k to X.

CW complex structure

 S^2 as a CW – complex with a 0 – cell and a 2 – cell

 S^2 as a CW – complex with a 0 – cell, 1 – cell and two 2 – cell

Vedge of d-spheres

Theorem

Let X be a CW-complex obtained by attaching n d-cells to a O-cell. Then X is homotopy equivalent to $\vee^n S^d$

Proposition

The homotopy group $\pi_{d-1}(\vee^n S^d) = \{0\}$

Classical Morse Theory

SLOGAN:

A well chosen map $f: M \longrightarrow \mathbb{R}$ can be used to analyse the topology of M.

Critical Point

Let M be a compact subset of \mathbb{R}^n . Given a C^{∞} -function $f: M \longrightarrow \mathbb{R}$ the set of critical points of f is defined as

$$Crit(f) \colon = \{ x \in M \mid df(x) = 0 \}$$

f is said to be a *Morse* if every critical point is non-degenerate. That is to say that for all $x \in Crit(f)$, the Hessian matrix $\left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{1 \leq i,j \leq n}$ has non-zero determinant.

Non-degenerate critical points

Notice on a neighborhood of a non-degenerate critical point a, the function f can be written as (Taylor Expansion)

$$T(x) = f(a) + (x - a)^{t} df(a)(x - a) + \frac{1}{2!}(x - a)^{t} d^{2} f(a)(x - a) + \dots$$
$$= f(a) + \frac{1}{2!}(x - a)^{t} d^{2} f(a)(x - a) + \dots$$

Notice that the second term is a quadratic form. We get the following lemma for Morse functions.

Morse Lemma

Suppose M has dimension d, then on an open neigborhood U of a critical point x there exists a diffeomorphism $\phi\colon U\longrightarrow \mathbb{R}^d$ such that

$$f \circ \phi^{-1}(y_1, \dots, y_d) = f(x) - (y_1^2 + \dots + y_k^2) + (y_{k+1}^2 + \dots + y_d^2)$$

(Türkçesi: f fonksiyonu x'in komşuluğunda yukarıdaki gibi bir kuadratik form olarak yazılabilir.)

We call k the Morse index of f at x.

Morse Index

By $c_k(f)$ we denote the number of critical points of a Morse function f with Morse index k, and by $b_k(M)$ the k-th Betti number of M, the rank of the k-th homology group $H_k(M; Z)$. Morse theory relates these quantites, they are called the Morse inequalities.

A Theorem

Suppose M is a closed surface and f a Morse function having a critical point of index 2 and a critical point of index 0, then M is diffeomorphic to S^2 .

This gives us a clue that using Morse function on spaces we can **collapse** those unnecessary parts of the space that don't carry any relevant topological data. This is what we exactly do with **Discrete Morse Theory** on simplicial complexes.

Computing Homology

For a Morse function f on M, we define C_k to be the free abelian group generated by critical points of index k. We need to define a boundary map that goes from points of index k to those that are of index k-1. This is a very technical process. We instead give some intuiton by example.

Homology of S^2 using height function

Homology of Torus

С

Discrete Morse Theory

Definition

A discrete Morse function on a simplicial complex K is a function f:K such that for any p-simplex $\alpha \in K$, it takes every (p+1)-simplex that contains α , except for at most one, to a value strictly greater than $f(\alpha)$. Similarly, f takes every (p-1)-simplex that is contained in α , except for at most one, to a value strictly smaller than $f(\alpha)$.

Definition

 $\alpha \in K$ is a critical p-simplex of the Morse function f. if f takes every (p+1)-simplex that contains α , to a value strictly larger than $f(\alpha)$ and takes every (p-1)-simplex that is contained in α , to a value strictly smaller than $f(\alpha)$

Elementary Collapse

Collapse

Discrete Vector Field

Let K be a simplicial complex. A discrete vector field V on K is a matching of the simplices of K satisfying

$$V = \{(\sigma^{p-1}, \tau^p) : \sigma \subset \tau, \text{ each simplex in at most one pair}\}$$

Let V be a discrete vector field on K. A V-path is a sequence of simplices

$$\sigma_0^{(p)}, \tau_0^{(p+1)}, \sigma_1^{(p)}, \cdots, \tau_{k-1}^{(p+1)}, \sigma_k^{(p)}$$

such that $(\sigma_i^{(p)}, \tau_i^{p+1}) \in V$ and $\tau_{i-1}^{(p+1)} > \sigma_i^{(p)}$. If $\sigma_0^{(p)} = \sigma_k^{(p)}$, the V-path is said to be **closed**

Vector Field Example

A discrete vector field with no closed V-paths is said to be a gradient

A discrete vector field with no closed V-paths is said to be a gradient vector field. A simplex that is not gradient vector field is **critical**.

Weak discrete Morse inequalities (Forman)

Let K be a simplicial complex, $\dim(K) = n$, and f a discrete Morse function (or V a gradient vector field) with m_i ; critical simplices of dimension i on K. Then

- $b_i \leq m_i$ for all $i = 0, 1, \dots, n$
- $m_0 m_1 + m_2 \cdots + (-1)^n m_n = \chi(K)$

Example

Main Theorem of Discrete Morse Theory

Theorem

Suppose K is a simplicial complex with a discrete Morse function or gradient vector field. Then K is homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical simplex of dimension p.

Morse Complex

Let X be a simplicial complex with discrete Morse function f. Let C_k denote the simplicial k-chains of X. Define the subspace M_k of C_k be the space of critical k-chains. We write M_* as the space of these Morse chains. Since homotopic spaces have the same homology, if we define the boundary map

$$\tilde{\partial}\colon M_{p+1}\longrightarrow M_p$$

correctly, we must have

$$H_k(M_*, \tilde{\partial}) \cong H_k(C_k, \mathbb{Z}).$$

Boundary Map $ilde{\partial}$

Theorem

Choose an orientation for each simplex. Then for any critical point p+1-simplex β , set

$$\tilde{\partial}\beta = \sum_{\textit{critical }\alpha^{(p)}} c_{\alpha,\beta}\alpha$$

where

$$c_{lpha,eta} = \sum_{\gamma \in \Gamma(lpha,eta)} m(\gamma)$$

where $\Gamma(\alpha,\beta)$ is the set of gradient paths which go from a maximal face of β to α . The multiplicity $m(\gamma)$ of any gradient path γ is equal to ± 1 depending on whether, given γ , the orientation that β gives to α is the same as the orientation chosen.

Example

On the example below, how do we decide the orientation that β gives to α and how do we calculate $m(\gamma)$?

A gradient path from the boundary of β to α .

$$\tilde{\partial}(\beta) = -\alpha$$

Homology of \mathbb{RP}^2

 $A\ gradient\ vector\ field\ on\ the\ real\ projective\ plane.$