Control Automático (FIMCP-03905): Examen 03

Año: 2016-2017 Término: II Instructor: Luis I. Reyes Castro Paralelo: 02

COMPROMISO DE HONOR
Yo, al firmar este compromiso, reconozco que el presente examen está diseñado para ser resuelto de manera individual, que puedo usar un lápiz o pluma y una calculadora científica, que solo puedo comunicarme con la persona responsable de la recepción del examen, y que cualquier instrumento de comunicación que hubiere traído debo apagarlo. También estoy conciente que no debo consultar libros, notas, ni materiales didácticos adicionales a los que el instructor entregue durante el examen o autorice a utilizar. Finalmente, me comprometo a desarrollar y presentar mis respuestas de manera clara y ordenada.
Firmo al pie del presente compromiso como constancia de haberlo leído y aceptado.
Firma: Número de matrícula:

Instrucciones: Cada uno de los siguientes cuatro problemas tiene un peso de 10 puntos.

Problema 3.1. Construya un modelo de espacio de estados para el siguiente sistema mecánico rotacional, donde la entrada es el torque T(t) y las salidas son las posiciones angulares de cada uno de los tres cuerpos. Por conveniencia, por favor denote el ángulo del cuerpo del lado izquierdo como $\theta_0(t)$, el del cuerpo del lado derecho superior como $\theta_1(t)$, y el del cuerpo del lado derecho inferior como $\theta_2(t)$.

Problema 3.2. Encuentre la función de transferencia de la entrada $\theta_{11}(s)$ a la salida $\theta_{22}(s)$ en el siguiente sistema, *i.e.*, la función de transferencia $G(s) = \theta_{22}(s) / \theta_{11}(s)$.

Nota: Suponga que la entrada $\theta_{12}(s)$ es nula.

Problema 3.3. Considere un amplificador operacional en la configuración de divisor de voltage que estudiamos en clase, donde $Z_1(s)$ es la impidencia en la parte 'superior' del circuito y $Z_2(s)$ es la impidencia en la parte 'inferior'. En este caso la función de transferencia del amplificador es:

$$G(s) = \frac{Z_1(s) + Z_2(s)}{Z_2(s)}$$

Con esto en mente:

a. Suponga que usted quiere construir un controlador PD con función de transferencia:

$$G_{PD}(s) = K_n + K_d s$$

Indique como puede lograr esto si usted solo tiene dos capacitores C_1 y C_2 y una resistencia R. En particular, indique la arquitectura de su amplificador operacional, su función de transferencia, y los valores de C_1 , C_2 y R como función de K_p y K_d .

b. Suponga que usted quiere construir un controlador PI con función de transferencia:

$$G_{PI}(s) = K_p + \frac{K_i}{s}$$

Indique como puede lograr esto si usted solo tiene un capacitor C y dos resistencias R_1 y R_2 . En particular, indique la arquitectura de su amplificador operacional, su función de transferencia, y los valores de C, R_1 y R_2 como función de K_p y K_i .

Problema 3.4. Para el siguiente sistema:

- a. Encuentre su función de transferencia como función de la ganancia K.
- b. Bosqueje su lugar geométrico de las raíces *(root locus)*. Además, determine la veracidad o falsedad de cada uno de los siguientes enunciados:
 - i. El sistema es estable para todos los valores de la ganancia K.
 - ii. Existe un valor de la ganancia K tal que si la ganancia excede ese valor entonces el sistema es inestable.
 - iii. Existe un valor de la ganancia K tal que todos los polos son reales.
 - iv. Existe un valor de la ganancia K tal que todos los polos son complejos conjugados.
- c. Para K = 20 determine:
 - i. La estabilidad del sistema.
 - ii. Si el sistema es estable, determine la tasa de amortiguamiento y frecuencia natural de su(s) polo(s) dominante(s), junto con el error en estado estable del sistema.

