Google Sheets Visualization

Project Description

Find or create a simple data source and put the data in tabular format into a Google Sheet. Your data source must include at least 10 rows of data and at least 4 columns describing that data. For example, you could describe 10 activities you do in a day including what each activity is called, when you start each activity, when you finish each, and how happy you were when doing that activity. The grain of this data would be one row per activity.

Using the Charts feature of Google Sheets, create a new sheet in this same file, create a simple visualization of this data using a minimum of 2 colors, and be sure to label your data points.

When you are finished with your viz, please respond to these two prompts on another new sheet in this same file:

- List at least 3 skills you used to create your visualization
- Who is this visualization for, i.e. who is your audience?

Import Libraries

```
In [1]:
        import numpy as np
        from numpy import count nonzero, median, mean
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import plotly.express as px
        import random
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from statsmodels.formula.api import ols
        %matplotlib inline
         #sets the default autosave frequency in seconds
        %autosave 60
        sns.set style('dark')
        sns.set(font scale=1.2)
        plt.rc('axes', titlesize=9)
        plt.rc('axes', labelsize=14)
        plt.rc('xtick', labelsize=12)
        plt.rc('ytick', labelsize=12)
        import warnings
        warnings.filterwarnings('ignore')
        pd.set option('display.max columns', None)
        #pd.set option('display.max rows', None)
        pd.set option('display.width', 1000)
        pd.set option('display.float format','{:.2f}'.format)
        random.seed(0)
        np.random.seed(0)
        np.set printoptions(suppress=True)
```

Exploratory Data Analysis

```
In [2]: df = pd.read_csv("pedalme_features.csv")
In [3]: df2 = df.head(30)
df2
```

	dī2						
Out[3]:		year	week	location	time	demand	
	0	2020	22	0	0	12	
	1	2020	22	1	0	2	
	2	2020	22	2	0	0	
	3	2020	22	3	0	1	
	4	2020	22	4	0	0	
	5	2020	22	5	0	0	
	6	2020	22	6	0	1	
	7	2020	22	7	0	1	
	8	2020	22	8	0	1	
	9	2020	22	9	0	0	
	10	2020	22	10	0	0	
	11	2020	22	11	0	0	
	12	2020	22	12	0	0	
	13	2020	22	13	0	4	
	14	2020	22	14	0	0	
	15	2020	23	0	1	119	
	16	2020	23	1	1	30	
	17	2020	23	2	1	3	
	18	2020	23	3	1	31	
	19	2020	23	4	1	24	
	20	2020	23	5	1	14	
	21	2020	23	6	1	15	
	22	2020	23	7	1	7	
	23	2020	23	8	1	9	
	24	2020	23	9	1	5	
	25	2020	23	10	1	38	
	26	2020	23	11	1	4	
	27	2020	23	12	1	3	

```
29 2020
                   23
                          14
                                1
                                        3
In [4]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 540 entries, 0 to 539
        Data columns (total 5 columns):
             Column
                      Non-Null Count Dtype
                       540 non-null
                                       int64
             year
         1
             week
                       540 non-null
                                       int64
             location 540 non-null
                                       int64
         3
            time
                       540 non-null
                                      int64
                       540 non-null
             demand
                                       int64
        dtypes: int64(5)
        memory usage: 21.2 KB
In [5]:
        df2.groupby("week").mean()
                year location time demand
Out[5]:
```

Data Visualization

2020.00

23 2020.00

Time-Series Analysis

7.00

7.00

0.00

1.00

1.47

21.00

year week location time demand

13

10

23

28 2020

week

```
In [6]:
    fig = plt.figure(figsize=(30,10))
    sns.lineplot(x=df.location,y=df.time, data=df, estimator=None)
    plt.title("Bicycle Deliveries", fontsize=20)
    plt.xlabel("Location", fontsize=20)
    plt.ylabel("Time", fontsize=20)
    #plt.legend(['week 22','week 23'])
    plt.show()
```


List at least 3 skills you used to create your visualization

- 1. Programming
- 2. Data Analysis
- 3. Business Objectives

Who is this visualization for, i.e. who is your audience?

General Audience